ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5: C12N 15/12, 15/62, 15/81 C12P 21/02, C07K 13/00 A61K 37/02, C12N 1/19 // (C12N 1/19, C12R 1:85)

(11) Numéro de publication internationale:

WO 93/15199

A1

(43) Date de publication internationale:

5 août 1993 (05.08.93)

(21) Numéro de la demande internationale: PCT/FR93/00085

(22) Date de dépôt international:

28 janvier 1993 (28.01.93)

(30) Données relatives à la priorité:

92/01064

31 janvier 1992 (31.01.92)

FR

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond-Aron, F-92160 Antony (FR).

(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): FLEER, Reinhard [DE/FR]; 47, avenue Beauséjour, F-91440 Bures-sur-Yvette (FR). FOURNIER, Alain [FR/FR]; 28, avenue Roger-Salengro, F-92000 Châtenay-Malabry (FR). GUITTON, Jean-Dominique [FR/FR]; 74, rue Dunois, F-75013 Paris (FR). JUNG, Gérard [FR/FR]; 72, rue des Grands-Jardins, Leuville-sur, Orge, F-91310, Monthère Grands-Jardins, Leuville-sur-Orge, F-91310 Montlhery (FR). YEH, Patrice [FR/FR]; 11 bis, rue Lacépède, F-75005 Paris (FR).

(74) Mandataire: BECKER, Philippe; Rhone-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cedex (FR).

(81) Etats désignés: CA, FI, JP, NO, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

(54) Title: NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITION CONTAINING SAID POLYPEPTIDES

(54) Titre: NOUVEAUX POLYPEPTIDES BIOLOGIQUEMENT ACTIFS, LEUR PREPARATION ET COMPOSITION PHARMACEUTIQUE LES CONTENANT

(57) Abstract

Novel biologically active polypeptides, preparation thereof and pharmaceutical compositions containing said polypeptides.

(57) Abrégé

La présente invention concerne de nouveaux polypeptides biologiquement actifs, leur préparation et des compositions pharmaceutiques les contenant.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

ΑT	Autriche	FR	France	MR	Mauritanie
ΑU	Australic	GA	Gahon	MW	Malawi
88	Barbade	GB	Royaume-Uni	NL	Pays-Bas
BE	Belgique	GN	Guinée	NO	Norvège
BF	Burkina Faso	GR	Grèce	NZ	Nouvelle-Zélande
BG	Bulgaric	HU	Hongrie	PŁ	Pologne
BJ	Bénin	ΙE	frlande	PT	Portugal
BR	Brésil	IT	Italie	RO	Roumanie
CA	Canada	JP	Japon	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SK	République slovaque
CI	Côte d'Ivoire	K2	Kazaklistan	SN	Sénégal
CM	Cameroun	1.1	Liechtenstein	SU	Union soviétique
cs	Tchécoslovaquie	LK	Sri Lanka	TD	Tehad
C2	République telièque	1.0	Luxembourg	TG	logo
DE	Allemagne	MC	Monaco	UA	Ukraine
DK	Danemark	MG	Mudagascar	US	Etats-Unis d'Amérique
ES	Espugne	ML	Mali	VN	Vict Nam
FI	Finlande	MN	Maggalic		

25

30

NOUVEAUX POLYPEPTIDES BIOLOGIOUEMENT ACTIFS. LEUR PREPARATION ET COMPOSITION PHARMACEUTIOUE LES CONTENANT

La présente invention concerne de nouveaux polypeptides biologiquement actifs, leur préparation et des compositions pharmaceutiques les contenant.

Plus particulièrement, la présente invention concerne des polypeptides recombinants essentiellement composés d'une partie active dérivée d'un polypeptide, naturel ou artificiel, ayant une activité thérapeutique, et couplé à une albumine ou à un variant de l'albumine. Il est entendu que l'activité thérapeutique des polypeptides de l'invention peut être soit directe (traitement des maladies), ou indirecte (et par exemple utilisable dans la prévention des maladies, dans la conception des vaccins, dans les techniques de l'imagerie médicale etc...).

Il est entendu dans ce qui suit que les variants de l'albumine désignent toute protéine à haute demie-vie plasmatique obtenue par modification (mutation, délétion et/ou addition) par les techniques du génie génétique d'un gène codant pour un isomorphe donné de la sérum-albumine humaine, ainsi que toute macromolécule à haute demie-vie plasmatique obtenue par modification in vitro de la protéine codée par de tels gènes. L'albumine étant très polymorphe, de nombreux variants naturels ont été identifiés et répertoriés [Weitkamp L.R. et al., Ann. Hum. Genet. 37 (1973) 219].

Le but de la présente invention est d'élaborer des protéines artificielles biologiquement actives et utilisables sur le plan pharmaceutique. En effet, de nombreux polypeptides possédant une ou plusieurs activités thérapeutiques potentielles ne peuvent être exploités pharmaceutiquement. Ceci peut avoir différentes raisons, telles que notamment leur faible stabilité <u>in vivo</u>, leur structure complexe ou fragile, la difficulté de les produire à une échelle industriellement acceptable, etc... De même, certains polypeptides ne donnent pas les résultats attendus <u>in vivo</u> en raison de problèmes d'administration, de conditionnement, de pharmacocinétique etc...

La présente invention permet de remédier à ces inconvénients. La présente invention fournit en effet de nouvelles molécules permettant une exploitation optimale sur le plan thérapeutique des propriétés biologiques de ces polypeptides. La

présente invention résulte notamment de la mise en évidence qu'il est possible de génétiquement toute structure active dérivée d'un polypeptide biologiquement actif à une autre structure protéique constituée d'albumine, sans en altérer lesdites propriétés biologiques. Elle résulte également de la mise en évidence par la demanderesse que la sérum-albumine humaine permet de présenter efficacement la structure active à ses sites d'interaction, et qu'elle assure une stabilité plasmatique élevée du polypeptide de l'invention. Les polypeptides de l'invention permettent ainsi de maintenir dans l'organisme une activité biologique donnée pendant un temps prolongé. Ils permettent ainsi de réduire les doses administrées et, dans certains cas, de potentialiser l'effet thérapeutique, par exemple en réduisant les effets secondaires consécutifs à une administration plus importante. Les polypeptides de l'invention permettent de plus de générer et d'utiliser des structures dérivées des polypeptides biologiquement actifs très petites et donc très spécifiques d'un effet recherché. Il est entendu que les peptides ayant une activité biologique présentant un intérêt thérapeutique peuvent également correspondre à des séquences peptidiques non naturelles, isolées par exemple à partir de banques peptidiques aléatoires. Les polypeptides de l'invention possèdent par ailleurs une répartition particulièrement avantageuse dans l'organisme, ce qui modifie leurs propriétés pharmacocinétiques et favorise le développement de leur activité biologique et leur utilisation. En outre, ils présentent également l'avantage d'être faiblement ou non-immunogéniques pour l'organisme dans lequel ils sont utilisés. Finalement, les polypeptides de l'invention peuvent être exprimés (et préférentiellement sécrétés) par des organismes recombinants, à des niveaux permettant leurs exploitation industrielle.

10

20

25

30

Un objet de la présente invention concerne donc des polypeptides comportant une partie active dérivée d'un polypeptide ayant une activité thérapeutique, couplée à une albumine ou à un variant de l'albumine.

Dans un mode de réalisation particulier, les peptides possédant une activité thérapeutique ne sont pas d'origine humaine. Par exemple on peut citer des peptides, ou leurs dérivés, possèdant des propriétés potentiellement utiles dans les pathologies des compartiments sanguins et interstitiels, tels que l'hirudine, la trigramine, l'antistatine, les peptides anticoagulant des tiques (TAP), l'ariétine, l'applagine etc....

30

î

Plus particulièrement, dans les molécules de l'invention, le polypeptide ayant une activité thérapeutique est un polypeptide d'origine humaine ou un variant moléculaire. Par exemple, il peut s'agir de tout ou partie, d'un enzyme, d'un inhibiteur d'enzyme, d'un antigène, d'un anticorps, d'une hormone, d'un facteur intervenant dans le contrôle de la coagulation, d'un interféron, d'une cytokine [les interleukines, mais aussi leurs variants antagonistes naturels de leur fixation au(x) récepteur(s), les cytokines de type SIS (small induced secreted) et par exemple les protéines inflammatoires des macrophages (les MIPs), etc...], d'un facteur de croissance et/ou de différenciation [et par exemple les facteurs de croissance transformants (les TGFs), les facteurs de différenciation des cellules sanguines (érythropoiétine, M-CSF, G-CSF, GM-CSF etc..), l'insuline et les facteurs de croissance qui lui ressemblent (les IGFs), ou encore les facteurs de perméabilité cellulaire (VPF/VEGF), etc..], d'un facteur impliqué dans la génèse/résorption des tissus osseux (OIF et ostéospontine par exemple), d'un facteur impliqué dans la motilité ou la migration cellulaire [et par exemple le facteur de motilité autocrine (AMF), le facteur de stimulation de la migration (MSF), ou encore le facteur de dispersion (scatter factor/facteur de croissance des hépatocytes)], d'un facteur bactéricide ou antifongique, d'un facteur chimiotactique [et par exemple le facteur plaquettaire 4 (PF4), ou encore les peptides chemoattractants des monocytes (MCP/MCAF) ou des neutrophiles (NCAF), etc...], d'un facteur cytostatique (et par exemple les protéines qui se fixent aux galactosides), d'une molécule adhésive plasmatique (et par exemple le facteur de von Willebrand, le fibrinogène etc...) ou interstitielle (laminine, ténascine, vitronectine, etc...) ou des matrices extracellulaires, ou encore toute séquence peptidique antagoniste ou agoniste d'interactions moléculaires et/ou intercellulaires impliquées dans les pathologies des compartiments circulatoires et interstitiels et par exemple la formation des thrombus artériels et veineux, les métastases cancéreuses, l'angiogénèse tumorale, le choc inflammatoire, les maladies autoimmunes, les pathologies osseuses et ostéoarticulaires etc...

La partie active des polypeptides de l'invention peut être constituée, par exemple, par le polypeptide ayant une activité thérapeutique entier, ou par une structure dérivée de celui-ci, ou encore par un polypeptide non naturel isolé à partir d'une banque peptidique. Au sens de la présente invention, on entend par structure dérivée tout polypeptide obtenu par modification et conservant une activité

WO 93/15199 PCT/FR93/00085

4

thérapeutique. Par modification, on doit entendre toute mutation, substitution, délétion, addition ou modification de nature génétique et/ou chimique. De tels dérivés peuvent être générés dans des buts différents, tels que notamment celui d'augmenter l'affinité de la molécule pour ses sites de fixation, celui d'améliorer ses niveaux de production, celui d'augmenter sa résistances aux protéases, celui d'augmenter son efficacité thérapeutique ou encore de réduire ses effets secondaires, ou celui de lui conférer de nouvelles propriétés biologiques. A titre d'exemple, les polypeptides chimères de l'invention possèdent des propriétés pharmacocinétiques et une activité biologique utilisable pour la prévention ou le traitement des maladies.

Des polypeptides de l'invention particulièrement avantageux sont ceux dans lesquels la partie active présente :

(a) la structure peptidique entière ou,

10

15

20

25

30

(b) une structure dérivée de (a) par modification structurale (mutation, substitution addition et/ou délétion d'un ou plusieurs résidus) et possédant une activité thérapeutique.

Parmi les structures du type (b), on peut citer plus particulièrement les molécules dans lesquelles certains sites de N- ou O-glycosylation ont été modifiés ou supprimés, les molécules dans lesquelles un ou plusieurs résidus ont été substitués, ou les molécules dans lesquelles tous les résidus cystéine ont été substitués. On peut citer également des molécules obtenues à partir de (a) par délétion de régions n'intervenant pas ou peu dans l'interaction avec les sites de liaison considérés, ou exprimant une activité indésirable, et des molécules comportant par rapport à (a) des résidus supplémentaires, tels que par exemple une méthionine N-terminale et/ou un signal de sécrétion et/ou un peptide de jonction.

La partie active des molécules de l'invention peut être couplée soit directement soit par l'intermédiaire d'un peptide artificiel à l'albumine. De plus, elle peut constituer l'extrémité N-terminale comme l'extrémité C-terminale de la molécule. Préférentiellement, dans les molécules de l'invention, la partie active constitue la partie C-terminale de la chimère. Il est également entendu que la partie biologiquement active peut être redondante au sein de la chimère. Une représentation schématique des molécules de l'invention est donnée à la Figure 1.

10

15

20

25

Un autre objet de l'invention concerne un procédé de préparation des molécules chimères décrites ci-avant. Plus précisément, ce procédé consiste à faire exprimer par un hôte cellulaire eucaryote ou procaryote une séquence nucléotidique codant pour le polypeptide désiré, puis à récolter le polypeptide produit.

Parmi les hôtes eucaryotes utilisables dans le cadre de la présente invention, on peut citer les cellules animales, les levures, ou les champignons. En particulier, s'agissant de levures, on peut citer les levures du genre <u>Saccharomyces</u>, <u>Kluyveromyces</u>, <u>Pichia</u>, <u>Schwanniomyces</u>, ou <u>Hansenula</u>. S'agissant de cellules animales, on peut citer les cellules COS, CHO, Cl27, etc... Parmi les champignons susceptibles d'être utilisés dans la présente invention, on peut citer plus particulièrement <u>Aspergillus</u> ssp. ou <u>Trichoderma</u> ssp. Comme hôtes procaryotes, on préfère utiliser les bactéries telles que <u>Escherichia coli</u>, ou appartenant aux genres <u>Corynebacterium</u>, <u>Bacillus</u>, ou <u>Streptomyces</u>.

Les séquences nucléotidiques utilisables dans le cadre de la présente invention peuvent être préparées de différentes manières. Généralement, elles sont obtenues en assemblant en phase de lecture les séquences codant pour chacune des parties fonctionnelles du polypeptide. Celles-ci peuvent être isolées par les techniques de l'homme de l'art, et par exemple directement à partir des ARN messsagers (ARNm) cellulaires, ou par reclonage à partir d'une banque d'ADN complémentaire (ADNc), ou encore il peut s'agir de séquences nucléotidiques totalement synthétiques. Il est entendu de plus que les séquences nucléotidiques peuvent également être ultérieurement modifiées, par exemple par les techniques du génie génétique, pour obtenir des dérivés ou des variants desdites séquences.

Plus préférentiellement, dans le procédé de l'invention, la séquence nucléotidique fait partie d'une cassette d'expression comprenant une région d'initiation de la transcription (région promoteur) permettant, dans les cellules hôtes, l'expression de la séquence nucléotidique placée sous son contrôle et codant pour les polypeptides de l'invention. Cette région peut provenir de régions promoteurs de gènes fortement exprimés dans la cellule hôte utilisée, l'expression étant constitutive ou régulable. S'agissant de levures, il peut s'agir du promoteur du gène de la phosphoglycérate kinase (PGK), de la glycéraldéhyde-3-phosphate déshydrogénase (GPD), de la lactase (LAC4), des énolases (ENO), des alcools deshydrogénases (ADH), etc... S'agissant de bactéries, il peut s'agir du promoteur des gènes droit ou gauche du bactériophage lambda (PL, PR), ou encore des promoteurs des gènes des

WO 93/15199 PCT/FR93/00085

10

opérons tryptophane (Ptrp) ou lactose (Plac). En outre, cette région de contrôle peut être modifiée, par exemple par mutagénèse <u>in vitro</u>, par introduction d'éléments additionnels de contrôle ou de séquences synthétiques, ou par des délétions ou des substitutions des éléments originels de contrôle. La cassette d'expression peut également comprendre une région de terminaison de la transcription fonctionnelle dans l'hôte envisagé, positionnée immédiatement en aval de la séquence nucléotidique codant pour un polypeptide de l'invention.

Dans un mode préféré, les polypeptides de l'invention résultent de l'expression dans un hôte eucaryote ou procaryote d'une séquence nucléotidique et de la sécrétion du produit d'expression de ladite séquence dans le milieu de culture. Il est en effet particulièrement avantageux de pouvoir obtenir par voie recombinante des molécules directement dans le milieu de culture. Dans ce cas, la séquence nucléotidique codant pour un polypeptide de l'invention est précédée d'une séquence "leader" (ou séquence signal) dirigeant le polypeptide naissant dans les voies de sécrétion de l'hôte utilisé. Cette séquence "leader" peut être la séquence signal naturelle du polypeptide biologiquement actif dans le cas où celui-ci est une protéine naturellement sécrétée, ou celle de la structure stabilisatrice, mais il peut également s'agir de toute autre séquence "leader" fonctionnelle, ou d'une séquence "leader" artificielle. Le choix de l'une ou l'autre de ces séquences est notamment guidé par l'hôte utilisé. Des exemples de séquences signal fonctionnelles incluent celles des gènes des phéromones sexuelles ou des toxines "killer" de levures.

En plus de la cassette d'expression, un ou plusieurs marqueurs permettant de sélectionner l'hôte recombiné peuvent être additionnés, tels que par exemple le gène <u>URA3</u> de la levure <u>S. cerevisiae</u>, ou des gènes conférant la résistance à des antibiotiques comme la généticine (G418) ou à tout autre composé toxique comme certains ions métalliques.

L'ensemble constitué par la cassette d'expression et par le marqueur de sélection peut être introduit directement dans les cellules hôtes considérées, soit inséré préalablement dans un vecteur autoréplicatif fonctionnel. Dans le premier cas, des séquences homologues à des régions présentes dans le génôme des cellules hôtes sont préférentiellement additionnées à cet ensemble; lesdites séquences étant alors positionnées de chaque côté de la cassette d'expression et du gène de sélection de façon à augmenter la fréquence d'intégration de l'ensemble dans le génôme de l'hôte

WO 93/15199 PCT/FR93/00085

7

en ciblant l'intégration des séquences par recombinaison homologue. Dans le cas où la cassette d'expression est insérée dans un système réplicatif, un système de réplication préféré pour les levures du genre <u>Kluvveromyces</u> est dérivé du plasmide pKD1 initialement isolé de <u>K.drosophilarum</u>; un système préféré de réplication pour les levures du genre <u>Saccharomyces</u> est dérivé du plasmide 2µ de <u>S. cerevisiae</u>. De plus, ce plasmide d'expression peut contenir tout ou partie desdits systèmes de réplication, ou peut combiner des éléments dérivés du plasmide pKD1 aussi bien que du plasmide 2µ.

En outre, les plasmides d'expression peuvent être des vecteurs navettes entre un hôte bactérien tel que <u>Escherichia coli</u> et la cellule hôte choisie. Dans ce cas, une origine de réplication et un marqueur de sélection fonctionnant dans l'hôte bactérien sont requises. Il est également possible de positionner des sites de restriction entourant les séquences bactériennes et uniques sur le vecteur d'expression: ceci permet de supprimer ces séquences par coupure et religature <u>in vitro</u> du vecteur tronqué avant transformation des cellules hôtes, ce qui peut résulter en une augmentation du nombre de copies et en une stabilité accrue des plasmides d'expression dans lesdits hôtes. Par exemple, de tels sites de restriction peuvent correspondre aux séquences telles que 5'-GGCCNNNNNGGCC-3' (<u>Sfi</u>I) ou 5'-GCGGCCGC-3' (<u>Not</u>I) dans la mesure où ces sites sont extrêmement rares et généralement absents d'un vecteur d'expression.

10

15

20

c

Après construction de tels vecteurs ou cassette d'expression, ceux-ci sont introduits dans les cellules hôtes retenues selon les techniques classiques décrites dans la littérature. A cet égard, toute méthode permettant d'introduire un ADN étranger dans une cellule peut être utilisée. Il peut s'agir notamment de transformation, électroporation, conjugaison, ou toute autre technique connue de l'homme de l'art. A titre d'exemple pour les hôtes de type levure, les différentes souches de Kluyveromyces utilisées ont été transformées en traitant les cellules entières en présence d'acétate de lithium et de polyéthylène glycol, selon la technique décrite par Ito et al. [J. Bacteriol. 153 (1983) 163]. La technique de transformation décrite par Durrens et al. [Curr. Genet. 18 (1990) 7] utilisant l'éthylène glycol et le diméthylsulfoxyde a également été utilisée. Il est aussi possible de transformer les levures par électroporation, selon la méthode décrite par Karube et al. [FEBS Letters 182 (1985) 90]. Un protocole alternatif est également décrit en détail dans les exemples qui suivent.

Après sélection des cellules transformées, les cellules exprimant lesdits polypeptides sont inoculées et la récupération desdits polypeptides peut être faite, soit au cours de la croissance cellulaire pour les procédés "en continu", soit en fin de croissance pour les cultures "en lots" ("batch"). Les polypeptides qui font l'objet de la présente invention sont ensuite purifiés à partir du surnageant de culture en vue de leur caractérisation moléculaire, pharmacocinétique et biologique.

Un système d'expression préféré des polypeptides de l'invention consiste en l'utilisation des levures du genre <u>Kluyveromyces</u> comme cellule hôte, transformées par certains vecteurs dérivés du réplicon extrachromosomique pKD1 initialement isolé chez <u>K. marxianus</u> var. <u>drosophilarum</u>. Ces levures, et en particulier <u>K. lactis</u> et <u>K. fragilis</u> sont généralement capables de répliquer lesdits vecteurs de façon stable et possèdent en outre l'avantage d'être incluses dans la liste des organismes G.R.A.S. ("Generally Recognized <u>As Safe"</u>). Des levures privilégiées sont préférentiellement des souches industrielles du genre <u>Kluyveromyces</u> capables de répliquer de façon stable lesdits plasmides dérivés du plasmide pKD1 et dans lesquels a été inséré un marqueur de sélection ainsi qu'une cassette d'expression permettant la sécrétion à des niveaux élevés des polypeptides de l'invention.

10

15

20

25

La présente invention concerne également les séquences nucléotidiques codant pour les polypeptides chimères décrits ci-avant, ainsi que les cellules recombinantes, eucaryotes ou procaryotes, comprenant de telles séquences.

La présente invention concerne aussi l'application à titre de médicament des polypeptides selon la présente invention. Plus particulièrement, l'invention a pour objet toute composition pharmaceutique comprenant un ou plusieurs polypeptides ou séquences nucléotidiques tels que décrits ci-avant. Les séquences nucléotidiques peuvent en effet être utilisées en thérapie génique.

La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

10

15

25

30

LISTE DES FIGURES

Les représentations des plasmides indiquées dans les Figures suivantes ne sont pas traçées à l'échelle et seuls les sites de restriction importants pour la compréhension des clonages réalisés ont été indiqués.

Figure 1: Schématisation des chimères du type SAH-PEPTIDE (A), du ype PEPTIDE-SAH (B) ou PEPTIDE-SAH-PEPTIDE (C). Abréviations utilisées : M/LP, résidu méthionine initiateur de la traduction, éventuellement suivie d'une séquence signal de sécrétion; SAH, albumine mature ou un de ses variants moléculaires; PEP, peptide d'origine naturelle ou artificielle possédant une propriété thérapeutique donnée. La séquence PEP peut être présente plusieurs fois dans les molécules de type A, B ou C. La flèche noire indique l'extrémité N-terminale de la protéine mature.

Figure 2 : Exemples de séquences nucléotidiques d'un fragment de restriction HindIII codant pour une protéine chimère du type prépro-SAH-PEPTIDE. Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Le site de restriction MstII est souligné et le codon spécifiant la terminaison de la traduction est en caractères gras.

Figure 3 : Carte de restriction du plasmide pYG105 et stratégie générique de construction des plasmides d'expression des protéines chimères de la présente invention. Abréviations utilisées : P, promoteur transcriptionnel ; T, terminateur transcriptionnel ; IR, séquences répétées inversées du plasmide pKD1 ; LP, séquence signal de sécrétion ; Apr et Kmr désignent respectivement les gènes de résistance à l'ampicilline (<u>E, coli</u>) et au G418 (levures).

Figure 4: Exemples de séquences nucléotidiques de fragments de restriction MstII-HindIII dérivés du facteur von Willebrand. Représentation de la structure des fragments MstII-HindIII des plasmides pYG1248 (panneau A), pYG1214 (panneau B), pYG1206 [panneau C, dans cette chimère particulière le résidu Leu694 du vWF est également le dernier résidu (Leu585) de la SAH] et pYG1223 (panneau D); la numérotation des acides aminés correspond à la numérotation du vWF mature d'après Titani et al. [Biochemistry 25 (1986) 3171-3184]. Les sites de restriction MstII et HindIII sont soulignés et le codon de

15

20

25

30

terminaison de la traduction est en caractères gras. Panneau E : séquence nucléotidique du fragment de restriction <u>MstII-HindIII</u> du plasmide pYG1248. La numérotation des acides aminés (colonne de droite) correspond à la protéine chimère SAH-vWF470->713 mature (829 résidus). Les résidus Thr470, Leu494, Asp498, Pro502, Tyr508, Leu694, Pro704, et Pro708 du vWF mature sont soulignés.

Figure 5 : Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers) de la souche CBS 293.91 transformée par les plasmides pYG1248 (plasmide d'expression d'une chimère du type SAH-vWF Thr470-->Val713) et pKan707 (plasmide contrôle). Dans cette expérience les résultats des panneaux A, B, et C ont été migrés sur le même gel (SDS-PAGE 8,5 %) puis traités séparemment.

A, coloration au bleu de coomassie; standard de poids moléculaire (piste 2); surnageant équivalent à 50 µl de la culture transformée par les plasmides pKan707 en milieu YPL (piste 1), ou pYG1248 en milieu YPD (piste 3) ou YPL (piste 4).

B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps de souris dirigés contre le vWF humain: même légende qu'en A à l'exception que des standards biotinilés de poids moléculaire ont été utilisés.

C, caractérisation immunologique du matériel sécrété après utilisation d'anticorps de lapin dirigés contre l'albumine humaine: surnageant équivalent à 50 µl de la culture transformée par les plasmides pKan707 en milieu YPL (piste 1), ou pYG1248 en milieu YPD (piste 2) ou YPL (piste 3).

Figure 6 : Cinétique de sécrétion d'une chimère de l'invention par la souche CBS 293.91 transformée par le plasmide pYG1206 (SAH-vWF Leu694-Pro708).

A, coloration au bleu de coomassie ; standard de poids moléculaire (piste 1) ; surnageant équivalent à 2,5 µl d'une culture "Fed Batch" en milieu YPD après 24h. (piste 2), 40h. (piste 3) ou 46h. (piste 4) de croissance.

B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps de souris dirigés contre le vWF humain : même légende qu'en A à l'exception que des standards biotinilés de poids moléculaire ont été utilisés.

Figure 7: Caractérisation du matériel sécrété par <u>K. lactis</u> transformé par les plasmides pKan707 (plasmide contrôle, piste 2), pYG1206 (piste 3), pYG1214 (piste 4) et pYG1223 (piste 5); standard de poids moléculaire (piste 1). Les dépôts correspondent à 50 µl de surnageant d'une culture stationnaire après

15

croissance en milieu YPD, migration dans un gel à 8.5 % d'acrylamide et coloration au bleu de coomassie.

Figure 8 : Séquence nucléotidique du fragment de restriction MstII-HindIII du plasmide pYG1341 (SAH-UK1->135). La limite du domaine EGF-like (UK1->46) présent dans le fragment de restriction MstII-HindIII du plasmide pYG1340 est indiquée. La numérotation des acides aminés correspond à la protéine chimère SAH-UK1->135 mature (720 résidus).

Figure 9 : Sécrétion des chimères SAH-UK1-46 et SAH-UK1-135 par la souche CBS 293.91 respectivement transformée par les plasmides pYG1343 (SAH-UK1-46) et pYG1345 (SAH-UK1-135), après 4 jours de croissance (milieu YPL+G418). Les dépôts (équivalents à 50 µl de culture) sont migrés en gel PAGE-SDS à 8,5 % et colorés au bleu de coomassie: surnageant d'un clone transformé par les plasmides pKan707 (piste 1), pYG1343 (piste 3) ou pYG1345 (piste 4) ; standard de poids moléculaire (piste 2).

Figure 10: Séquence nucléotidique du fragment de restriction MstII-HindIII du plasmide pYG1259 (SAH-G.CSF). La limite de la partie G-CSF (174 résidus) est indiquée. Les sites de restriction ApaI et SstI (SstI) sont soulignés. La numérotation des acides aminés correspond à la protéine chimère SAH-G.CSF mature (759 résidus).

Figure 11: Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1301 (chimère G.CSF-Gly4-SAH). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction ApaI, SstI (SacI) et MstII sont soulignés. Les domaines G.CSF (174 résidus) et SAH (585 résidus) sont séparés par le linker synthétique GGGG. La numérotation des acides aminés correspond à la protéine chimère G.CSF-Gly4-SAH mature (763 résidus). La séquence nucléotidique comprise entre le codon de terminaison de la traduction et le site HindIII provient de l'ADN complémentaire (cDNA) de la SAH tel que décrit dans la demande de brevet EP 361 991.

Figure 12 : Caractérisation du matériel sécrété après 4 jours de culture

(erlenmeyers) de la souche CBS 293.91 transformée par les plasmides pYG1266
(plasmide d'expression d'une chimère du type SAH-G.CSF) et pKan707 (plasmide

15

25

30

- contrôle). Dans cette expérience les résultats des panneaux A, B, et C ont été migrés sur le même gel (SDS-PAGE 8,5 %) puis traités séparemment.
- A, coloration au bleu de coomassie; standard de poids moléculaire (piste 2); surnageant équivalent à 100 µl de la culture transformée par les plasmides pKan707 en milieu YPL (piste 1), ou pYG1266 en milieu YPD (piste 3) ou YPL (piste 4).
- B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain : même légende qu'en A.
- C, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre l'albumine humaine : même légende qu'en A.
- Figure 13: Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers en milieu YPD) de la souche CBS 293.91 transformée par les plasmides pYG1267 (chimère SAH-G.CSF), pYG1303 (chimère G.CSF-Gly4-SAH) et pYG1352 (chimère SAH-Gly4-G.CSF) après migration sur gel SDS-PAGE 8,5 %.
 - A, coloration au bleu de coomassie ; surnageant équivalent à 100 µl de la culture transformée par les plasmides pYG1303 (piste 1), pYG1267 (piste 2) ou pYG1352 (piste 3); standard de poids moléculaire (piste 4).
 - B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain : même légende qu'en A.
- Figure 14: Séquence nucléotidique du fragment de restriction MstII-HindIII du plasmide pYG1382 (SAH-Fv'). Les domaines VH (124 résidus) et VL (107 résidus) du fragment Fv' sont séparés par le linker synthétique (GGGGS)_{x3}. La numérotation des acides aminés correspond à la protéine chimère SAH-Fv' mature (831 résidus).
 - Figure 15: Sécrétion de la chimère SAH-Fv' par la souche CBS 293.91 transformée par le plasmide pYG1383 (<u>LAC4</u>) après 4 jours de croissance en erlenmeyers à 28°C en milieu YPD (piste 2), ou YPL (piste 3); standard de poids moléculaire (piste 1). Les dépôts, équivalents à 200 μl de culture (précipitation à l'éthanol), sont migrés en gel PAGE-SDS (8,5 %).
 - A, : coloration du gel au bleu de coomassie.
 - B, : caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre la SAH.

10

15

20

25

30

Figure 16: Dosage de l'activité antagoniste <u>in vitro</u> de l'agglutination des plaquettes humaines fixées au formaldéhyde: CI50 des hybrides SAH-vWF694-708, [SAH-vWF470-713 C471G, C474G] et [SAH-vWF470-704 C471G, C474G] relativement à l'étalon RG12986. La détermination de l'inhibition dose-dépendante de l'agglutination plaquettaire est réalisée selon la méthode décrite par C. Prior et al. [Bio/Technology (1992) 10 66] en utilisant un agrégamètre enregistrant les variations de la transmission optique sous agitation à 37°C en présence de vWF humain, de botrocétine (8,2 mg/ml) et du produit à tester à différentes dilutions. La concentration du produit qui permet d'inhiber de moitié l'agglutination contrôle (en l'absence de produit) est alors déterminée (CI50).

Figure 17: Activité sur la prolifération cellulaire <u>in vitro</u> de la lignée murine NFS60. La radioactivité (³H-thymidine) incorporée dans les noyaux cellulaires après 6 heures d'incubation est représentée en ordonnée (cpm); la quantité de produit indiquée en abscisse est exprimée en molarité (unités arbitraires).

Figure 18: Activité sur la granulopoièse <u>in vivo</u> chez le rat. Le nombre de neutrophiles (moyenne de 7 animaux) est indiquée en ordonnée en fonction du temps. Les produits testés sont la chimère SAH-G.CSF (pYG1266, 4 ou 40 mg/rat/jour), le G-CSF référence (10 mg/rat/jour), la SAH recombinante purifiée à partir de surnageant de <u>Kluyveromyces lactis</u> (SAH, 30 mg/rat/jour, cf. EP 361 991), ou du sérum physiologique.

EXEMPLES

TECHNIQUES GENERALES DE CLONAGE

Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, l'électrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extraction de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans Escherichia coli etc ... sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F.M. et al.

15

20

25

30

(eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].

Les enzymes de restriction ont été fournies par New England Biolabs (Biolabs), Bethesda Research Laboratories (BRL) ou Amersham et sont utilisées selon les recommandations des fournisseurs.

Les plasmides de type pBR322, pUC et les phages de la série M13 sont d'origine commerciale (Bethesda Research Laboratories).

Pour les ligatures, les fragments d'ADN sont séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur.

Le remplissage des extrémités 5' proéminentes est effectué par le fragment de Klenow de l'ADN Polymérase I d'<u>E. coli</u> (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase S1.

La mutagénèse dirigée <u>in vitro</u> par oligodéoxynucléotides synthétiques est effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. <u>13</u> (1985) 8749-8764] en utilisant le kit distribué par Amersham.

L'amplification enzymatique de fragments d'ADN par la technique dite de PCR [Polymérase-catalyzed Chain Reaction, Saiki R.K. et al., Science 230 (1985) 1350-1354; Mullis K.B. et Faloona F.A., Meth. Enzym. 155 (1987) 335-350] est effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.

La vérification des séquences nucléotidiques est effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, <u>74</u> (1977) 5463-5467] en utilisant le kit distribué par Amersham.

Les transformations de <u>K. lactis</u> avec l'ADN des plasmides d'expression des protéines de la présente invention sont effectuées par toute technique connue de l'homme de l'art, et dont un exemple est donné dans le texte.

Sauf indication contraire, les souches bactériennes utilisées sont <u>E. coli</u> MC1060 (<u>lac</u>IPOZYA, X74, <u>gal</u>U, <u>gal</u>K, <u>str</u>A^r), ou <u>E. coli</u> TG1 (<u>lac, pro</u>A,B, <u>sup</u>E, <u>thi, hsdD5</u> / <u>FtraD36</u>, <u>pro</u>A⁺B⁺, <u>lac</u>I^q, <u>lac</u>Z, M15).

25

30

Les souches de levures utilisées appartiennent aux levures bourgeonnantes et plus particulièrement aux levures du genre <u>Kluvveromyces</u>. Les souche <u>K. lactis</u> MW98-8C (a, <u>uraA</u>, <u>arg</u>, <u>lys</u>, K⁺, pKD1°) et <u>K. lactis</u> CBS 293.91 ont été particulièrement utilisées; un échantillon de la souche MW98-8C a été déposé le 16 Septembre 1988 au Centraalbureau voor Schimmelkulturen (CBS) à Baarn (Pays Bas) où il a été enregistré sous le numéro CBS 579.88.

Une souche bactérienne (<u>E. coli</u>) transformée avec le plasmide pET-8c52K a été déposée le 17 Avril 1990 auprès de l'American Type Culture Collection sous le numéro ATCC 68306.

Les souches de levures transformées par les plasmides d'expression codant pour les protéines de la présente invention sont cultivées en erlenmeyers ou en fermenteurs pilotes de 2l (SETRIC, France) à 28°C en milieu riche (YPD: 1% yeast extract, 2% Bactopeptone, 2% glucose; ou YPL: 1% yeast extract, 2% Bactopeptone, 2% lactose) sous agitation constante.

15 EXEMPLE 1 : COUPLAGE EN C-TERMINAL DE LA SAH

Le plasmide pYG404 est décrit dans la demande de brevet EP 361 991. Ce plasmide comporte un fragment de restriction HindIII codant pour le gène de la prépro-SAH précédé des 21 nucléotides naturellement présents immédiatement en amont de l'ATG initiateur de traduction du gène PGK de S. cerevisiae. La séquence nucléotidique de ce fragment de restriction est incluse dans celle de la Figure 2. Le site MstII localisé dans la séquence codante, à trois résidus du codon spécifiant la fin de traduction est particulièrement utile comme site de clonage d'un peptide biologiquement actif que l'on désire coupler en phase traductionnelle en C-terminal de la SAH. Dans un mode de réalisation particulier, il est utile d'utiliser des peptides dont la séquence est codée par un fragment de restriction MstII-HindIII du type : 5'-CCTTAGGCTTA [3xN]_p TAAGCTT-3', la séquence codant le peptide (p résidus) biologiquement actif est [3xN]_p). La ligature de ce fragment avec le fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la SAH à l'exception des trois acides aminés les plus C-terminaux (résidus leucine-glycineleucine) génère un fragment de restriction HindIII comportant un gène hybride codant pour une protéine chimère du type SAH-PEPTIDE (Figure 1, panneau A). immédiatement précédée de la région d'exportation "prépro" de la SAH. Dans un

10

15

25

autre mode de réalisation, le peptide biologiquement actif peut être présent plus d'une fois dans la chimère.

EXEMPLE 2: COUPLAGE EN N-TERMINAL DE LA SAH

Dans un mode réalisation particulier, les techniques combinées de mutagénèse dirigée et d'amplification PCR permettent de construire des gènes hybrides codant pour une protéine chimère résultant du couplage traductionnel entre un peptide signal (et par exemple la région prépro de la SAH), une séquence incluant le peptide biologiquement actif et la forme mature de la SAH ou un de ses variants moléculaires. Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII et codent pour des protéines chimères du type PEPTIDE-SAH (Figure 1, panneau B). Dans un mode réalisation encore plus particulier, le peptide biologiquement actif peut être présent plus d'une fois dans la chimère.

EXEMPLE 3: COUPLAGE EN N- ET C-TERMINAL DE LA SAH

Les techniques combinées de mutagénèse dirigée et d'amplification PCR décrites dans les exemples 1 et 2 permettent de construire des gènes hybrides codant pour une protéine chimère résultant du couplage traductionnel entre la forme mature de la SAH, ou un de ses variants moléculaires, et un peptide biologiquement actif couplé aux extrémités N- et C-terminales de la SAH. Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII et codent pour des protéines chimères du type PEPTIDE-SAH-PEPTIDE (Figure 1, panneau C), immédiatement précédées de la région d'exportation "prépro" de la SAH. Dans un mode réalisation encore plus particulier, le peptide biologiquement actif peut être présent plus d'une fois dans la chimère.

10

15

20

25

30

EXEMPLE 4: PLASMIDES D'EXPRESSION

Les protéines chimères des exemples précédents peuvent être exprimées dans les levures à partir de promoteurs fonctionnels, régulables ou constitutifs, tels que, par exemple, ceux présents dans les plasmides pYG105 (promoteur LAC4 de Kluvveromyces lactis), pYG106 (promoteur PGK de Saccharomyces cerevisiae), pYG536 (promoteur PHO5 de S.cerevisiae), ou des promoteur hybrides tels que ceux décrits dans la demande de brevet EP 361 991. Les plasmides pYG105 et pYG106 sont ici particulièrement utiles car ils permettent l'expression des gènes codés par les fragments de restriction HindIII tel que décrits dans les exemples précédents et clonés dans le site HindIII et dans l'orientation productive (définie comme l'orientation qui place la région "prépro" de l'albumine de façon proximale par rapport au promoteur de transcription), à partir de promoteurs fonctionnels chez K.lactis, régulables (pYG105) ou constitutifs (pYG106). Le plasmide pYG105 correspond au plasmide pKan707 décrit dans la demande de brevet EP 361 991 dans lequel le site de restriction HindIII unique et localisé dans le gène de résistance à la généticine (G418) a été détruit par mutagénèse dirigée tout en conservant une protéine inchangée (oligodeoxynucleotide 5'-GAAATGCATAAGCTCTTGCCATT-CTCACCG-3'). Le fragment SalI-SacI codant pour le gène URA3 du plasmide muté a été ensuite remplacé par un fragment de restriction SalI-SacI comportant une cassette d'expression constituée du promoteur LAC4 de K. lactis (sous la forme d'un fragment <u>Sal</u>I-<u>Hind</u>III) et du terminateur du gène <u>PGK</u> de <u>S. cerevisiae</u> (sous la forme d'un fragment HindIII-SacI). Le plasmide pYG105 est mitotiquement très stable chez les levures Kluyveromyces et une carte de restriction en est donnée à la Figure 3. Les plasmides pYG105 et pYG106 ne diffèrent entre eux que par la nature du promoteur de transcription encodé par le fragment SalI-HindIII.

EXEMPLE 5: TRANSFORMATION DES LEVURES

La transformation des levures appartenant au genre <u>Kluyveromyces</u>, et en particulier les souches MW98-8C et CBS 293.91 de <u>K. lactis</u>, s'effectue par exemple par la technique de traitement des cellules entières par de l'acétate de lithium [Ito H. et al., J. Bacteriol. <u>153</u> (1983) 163-168], adaptée comme suit. La croissance des cellules se fait à 28°C dans 50 ml de milieu YPD, avec agitation et jusqu'à une densité optique à 600 nm (DO₆₀₀) comprise entre 0,6 et 0,8; les cellules sont

20

25

30

récoltées par centrifugation à faible vitesse, lavées dans une solution stérile de TE (10 mM Tris HCl pH 7,4; 1 mM EDTA), resuspendues dans 3-4 ml d'acétate lithium (0,1 M dans du TE) pour obtenir une densité cellulaire d'environ 2 x 10^8 cellules/ml, puis incubées à 30°C pendant 1 heure sous agitation modérée. Des aliquotes de 0,1 ml de la suspension résultante de cellules compétentes sont incubés à 30°C pendant 1 heure en présence d'ADN et à une concentration finale de 35% de polyéthylène glycol (PEG4000, Sigma). Après un choc thermique de 5 minutes à 42°C, les cellules sont lavées 2 fois, resuspendues dans 0,2 ml d'eau stérile et incubées 16 heures à 28°C dans 2 ml de milieu YPD pour permettre l'expression phénotypique du gène de résistance au G418 exprimé sous contrôle du promoteur P_{k1} (cf. EP 361 991); 200 μ l de la suspension cellulaire sont ensuite étalés sur boites YPD sélectives (G418, 200 μ g/ml). Les boites sont mises à incuber à 28°C et les transformants apparaissent après 2 à 3 jours de croissance cellulaire.

EXEMPLE 6: SECRETION DES CHIMERES

Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature des protéines chimères. Quelques clones correspondant à la souche CBS 293.91 ou MW98-8C transformée par les plasmides d'expression des chimères entre la SAH et la partie biologiquement active sont mis à incuber en milieu YPD ou YPL à 28°C. Les surnageants cellulaires sont récupérés par centrifugation quand les cellules atteignent la phase stationnaire de croissance, éventuellement concentrés 10 fois par précipitation pendant 30 minutes à -20°C dans une concentration finale de 60% d'éthanol, puis testés après électrophorèse en gel SDS-PAGE à 8.5%, soit directement par coloration du gel par du bleu de coomassie, soit après immunoblot en utilisant des anticorps primaires dirigés contre la partie biologiquement active ou un sérum polyclonal de lapin dirigé contre la SAH. Lors des expériences de détection immunologique, le filtre de nitrocellulose est d'abord incubé en présence des anticorps primaires spécifiques, lavé plusieurs fois, incubé en présence d'anticorps de chèvre dirigés contre les anticorps primaires, puis incubé en présence d'un complexe avidine-péroxydase en utilisant le "kit ABC" distribué par Vectastain (Biosys S.A., Compiègne, France). La réaction immunologique est ensuite révélée par addition de diamino-3,3' benzidine tetrachlorydrate (Prolabo) en présence d'eau oxygénée, selon les recommandations du fabricant.

WO 93/15199 PCT/FR93/00085

19

EXEMPLE 7: CHIMERES DERIVEES DU FACTEUR VON WILLEBRAND

E.7.1. Fragments antagonistes de la fixation du vWF aux plaquettes.

E.7.1.1. Résidus Thr470-Val713 du vWF.

10

15

25

Le plasmide pET-8c52K comporte un fragment du cDNA du vWF codant pour les résidus 445 à 733 du vWF humain et inclus donc plusieurs déterminants cruciaux de l'interaction entre le vWF et les plaquettes d'une part, et certains éléments de la membrane basale et du tissu sous-endothelial d'autre part, et notamment les peptides G10 et D5 antagonistes de l'interaction entre vWF et GP1b [Mori H. et al., J. Biol. Chem. 263 (1988) 17901-17904]. Cette séquence peptidique est identique à la séquence correspondante décrite par Titani et al. [Biochemistry 25] (1986) 3171-3184]. L'amplification de ces déterminants génétiques peut être réalisée à partir du plasmide pET-8c52K, par exemple par la technique d'amplification PCR, en utilisant comme amorce des oligodéoxynucléotides codant pour des résidus contigus localisés de part et d'autres de la séquence à amplifier. Les fragments amplifiés sont ensuite clonés dans des vecteurs du type M13 en vue de leur vérification par séquençage en utilisant soit les amorces universelles situées de part et d'autre du multisite de clonage, soit des oligodéoxynucléotides spécifiques de la région amplifiée du gène du vWF dont la séquence de plusieurs isomorphes est connue [Sadler J.E. et al., Proc. Natl. Acad. Sci. 82 (1985) 6394-6398; Verweij C.L. et al., EMBO J. 5 (1986) 1839-1847; Shelton-Inloes B.B. et al., Biochemistry 25 (1986) 3164-3171; Bonthron D. et al., Nucleic Acids Res. 17 (1986) 7125-7127]. Ainsi, l'amplification PCR du plasmide pET-8c52K avec les oligodéoxynucléotides 5'-CCCGGGATC<u>CCTTAGG</u>CTTAACCTGTGAAGCCTGC-3' (Sq1969, le site MstII est souligné) et 5'-CCCGGGATCCAAGCTTAGACTTGTGCCATGTCG-3' (Sq2029, le site HindIII est souligné) génère un fragment de restriction MstII-HindIII incluant les résidus Thr470 à Val713 du vWF (Figure 4, panneau E). La ligature de ce fragment avec le fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la SAH à l'exception des trois acides aminés les plus C-terminaux (cf. Figure 2) génère un fragment de restriction HindIII comportant un gène hybride codant pour une protéine chimère du type SAH-PEPTIDE (Figure 1, panneau A), immédiatement précédée de la région d'exportation "prépro" de la SAH. Ce fragment de restriction est cloné dans l'orientation productive et dans le site HindIII du plasmide pYG105, ce qui génère le plasmide d'expression pYG1248 (SAH-vWF470-713).

WO 93/15199 ' PCT/FR93/00085

20

E.7.1.2. Variants moléculaires:

15

30

Dans un autre mode de réalisation, le site de liaison du vWF est un peptide incluant les résidus Thr470 à Asp498 du vWF mature. Cette séquence inclus le peptide G10 (Cys474-Pro488) décrit par Mori et al. [J. Biol. Chem. 263 (1988) 17901-17904] et capable d'antagoniser l'interaction du vWF humain à la GP1b des plaquettes humaines. La séquence correspondant au peptide G10 est d'abord incluse dans un fragment de restriction MstII-HindIII (Figure 4, panneau B), par exemple par amplification PCR du plasmide pET-8c52K avec les oligodéoxynucléotides Sq1969 et 5'-CCCGGGATCCAAGCTTAGTCCTCCACATACAG-3' (Sq1970, le site HindIII est souligné), ce qui génère un fragment de restriction MstII-HindIII incluant le peptide G10, et dont la séquence est: 5'-CCTTAGGCTTAACCTGTGA-AGCCTGCCAGGAGCCGGGAGGCCTGGTGCTCCCACAGATGCC-CCGGTGAGCCCCACCACTCTGTATGTGGAGGACTAAGCTT-3' (la séquence codant pour le peptide G10 est en caractères gras). La ligature de ce fragment avec le fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la SAH à l'exception des trois acides aminés les plus C-terminaux (cf. Figure 2) génère un fragment de restriction HindIII comportant un gène hybride codant pour une protéine chimère du type SAH-PEPTIDE (Figure 1, panneau A), immédiatement précédée de la région d'exportation "prépro" de la SAH. Ce fragment de restriction est cloné dans l'orientation productive dans le site HindIII du plasmide pYG105, ce qui génère le plasmide d'expression pYG1214.

Dans un autre mode de réalisation, le site de liaison du vWF à la GP1b est directement conçu à l'aide d'oligodéoxynucléotides synthétiques, et par exemple les oligodéoxynucléotides 5'-TTAGGCCTCTGTGACCTTGCCCCTG-AAGCCCCCCTG-AAGCCTCCTCCTACTCTGCCCCCCTAAGCTTA-3' et 5'-GATC-TAAGCTTAGGGGGGCAGAGTAGGAGGAGGGGCTTCAGGGGGCAAGGTC-ACAGAGGCC-3'. Ces oligodéoxynucléotides forment en s'appariant un fragment de restriction MstII-BgIII incluant le fragment MstII-HindIII (Figure 4, panneau C) correspondant au peptide D5 défini par les résidus Leu694 à Pro708 du vWF. La ligature du fragment MstII-HindIII avec le fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la SAH à l'exception des trois acides aminés les plus C-terminaux (cf. Figure 2) génère un fragment de restriction HindIII comportant un gène hybride codant pour une protéine chimère du type SAH-PEPTIDE (Figure 1, panneau A), immédiatement précédée de la région d'exportation

15

20

25

30

"prépro" de la SAH. Ce fragment de restriction est cloné dans l'orientation productive dans le site <u>Hind</u>III du plasmide pYG105, ce qui génère le plasmide d'expression pYG1206.

Des variants utiles du plasmide pET-8c52K sont délétés par mutagénèse dirigée entre les peptides G10 et D5, par exemple des sites de fixation au collagène, et/ou à l'héparine, et/ou à la botrocétine, et/ou aux sulfatides et/ou à la ristocétine. Un exemple est le plasmide pMMB9 délété par mutagénèse dirigée entre les résidus Ile662. L'amplification PCR de ce plasmide oligodéoxynucléotides Sq1969 et Sq2029 génère un fragment de restriction MstII-HindIII (Figure 4, panneau D) incluant les résidus Thr470 à Tyr508 et Arg663 à Val713 et en particulier les peptides G10 et D5 du vWF et délété en particulier de son site de fixation au collagène localisé entre les résidus Glu542 et Met622 [Roth G.J. et al. Biochemistry 25 (1986) 8357-8361]. La ligature de ce fragment avec le fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la SAH à l'exception des trois acides aminés les plus C-terminaux (cf. Figure 2) génère un fragment de restriction HindIII comportant un gène hybride codant pour une protéine chimère du type SAH-PEPTIDE (Figure 1, panneau A), immédiatement précédée de la région d'exportation "prépro" de la SAH. Ce fragment de restriction est cloné dans l'orientation productive dans le site HindIII du plasmide pYG105, ce qui génère le plasmide d'expression pYG1223.

Dans d'autres modes de réalisation, l'utilisation des techniques combinées de mutagénèse dirigée et d'amplification PCR permet de générer à volonté des variants du fragment de restriction MstII-HindIII du panneau A de la Figure 4 mais délétés d'un ou plusieurs sites de fixation aux sulfatides et/ou à la botrocétine et/ou à l'héparine et/ou au collagène, et/ou substitué par tout résidu impliqué dans l'émergence de pathologies de type IIB associée au vWF.

Dans d'autres variants utiles du plasmide pET-8c52K des mutations sont introduites, par exemple par mutagénèse dirigée, pour remplacer ou supprimer tout ou partie de l'ensemble des cystéines présentes aux positions 471, 474, 509 et 695 du vWF humain. Des exemples particuliers sont les plasmides p5E et p7E dans lesquels les cystéines présentes aux positions 471 et 474 d'une part et aux positions 471, 474, 509 et 695 d'autre part ont été respectivement remplacés par des résidus glycine. L'amplification PCR de ces plasmides avec les oligodéoxynucléotides Sq2149 (5'-CCCGGGATCCCTTAGGCTTAACCGGTGAAGCCGGC-3', le site MstII est

20

25

souligné) et Sq2029 permet de générer des fragments de restriction MstII-HindIII incluant les résidus Thr470 à Val713 du vWF naturel à l'exception qu'au moins les résidus cystéine aux positions 471 et 474 ont été mutés en des résidus glycine. La ligature de ces fragments avec le fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la SAH à l'exception des trois acides aminés les plus C-terminaux (cf. Figure 2) génère un fragment de restriction HindIII comportant un gène hybride codant pour une protéine chimère du type SAH-PEPTIDE (Figure 1, panneau A), immédiatement précédée de la région d'exportation "prépro" de la SAH. Ces fragments de restriction sont clonés dans l'orientation productive dans le site HindIII du plasmide pYG105, ce qui génère les plasmides d'expression pYG1283 (chimère SAH-vWF470-713, C471G, C474G) et pYG1279 (chimère SAH-vWF470-713, C471G, C509G, C695G).

D'autres mutations particulièrement utiles concernent au moins un résidu impliqué dans des pathologies de type IIB associées au vWF (augmentation de l'affinité intrinsèque du vWF pour la GP1b), comme les résidus Arg543, Arg545, Trp550, Val551, Val553, Pro574 ou Arg578 par exemple. Les techniques de recombinaison génétique <u>in vitro</u> permettent également d'introduire à volonté un ou des résidus supplémentaires dans la séquence du vWF et par exemple une méthionine surnuméraire entre les positions Asp539 et Glu542.

E.7.2. Fragments antagonistes de la fixation du vWF au sous endothélium.

Dans un mode de réalisation particulier, les sites de liaison du vWF aux composants du tissu sous-endothélial, et par exemple du collagène, sont générés par amplication PCR du plasmide pET-8c52K, par exemple avec (5'-GGATCCTTAGGGCTGoligodéoxynucléotides Sq2258 TGCAGCAGGCTACTGGACCTGGTC-3', le site MstII est souligné) et Sq2259 (5'-GAATTCAAGCTTAACAGAGGTAGCTAACGATCTCGTCCC-3', le site HindIII est souligné), ce qui génère un fragment de restriction MstII-HindIII codant pour les résidus Cys509 à Cys695 du vWF naturel. Des variants moléculaires de délétion ou modifiés sont également générés qui comportent toute combinaison souhaitable entre les sites de fixation du vWF aux sulfatides et/ou à la botrocétine et/ou à l'héparine et/ou au collagène et/ou tout résidu responsable d'une modification de l'affinité du vWF pour la GP1b (pathologies de type II associée au vWF). Dans un autre mode de réalisation, le domaine capable de se fixer au collagène peut également provenir du

15

20

25

30

fragment du vWF compris entre les résidus 911 et 1114 et décrit par Pareti et al. [J. Biol. Chem. (1987) 262: 13835-13841]. La ligature de ces fragments avec le fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la SAH à l'exception des trois acides aminés les plus C-terminaux (cf. Figure 2) génère des fragments de restriction HindIII comportant un gène hybride codant pour une protéine chimère du type SAH-PEPTIDE (Figure 1, panneau A), immédiatement précédée de la région d'exportation "prépro" de la SAH. Ces fragments de restriction sont clonés dans l'orientation productive dans le site HindIII du plasmide pYG105, ce qui génère les plasmides d'expression correspondants, et par exemple le plasmide pYG1277 (SAH-vWF509-695).

E.7.3. Purification et caractérisation moléculaire des chimères entre SAH et vWF.

Les chimères présentes dans les surnageants de culture correspondant à la souche CBS 293.91 transformée, par exemple par les plasmides d'expression selon les exemples E.7.1. et E.7.2., sont caractérisées dans un premier temps à l'aide d'anticorps spécifiques de la partie SAH et de la partie vWF. Les résultats des Figures 5 à 7 démontrent que la levure K. lactis est capable de sécréter des protéines chimères entre la SAH et un fragment du vWF, et que ces chimères sont immunologiquement réactives. Il peut être également souhaitable de purifier certaines de ces chimères. La culture est alors centrifugée (10000 g, 30 min), le surnageant est passé à travers un filtre de 0,22 mm (Millipore), puis concentré par ultrafiltration (Amicon) en utilisant une membrane dont le seuil de discrimination se situe à 30 kDa. Le concentrat obtenu est alors dialysé contre une solution de Tris HCl (50 mM pH 8) puis purifié sur colonne. Par exemple, le concentrat correspondant au surnageant de culture de la souche CBS 293.91 transformée par le plasmide pYG1206 est purifiée par chromatographie d'affinité sur Bleu-Trisacryl (IBF). Une purification par chromatographie d'échange d'ions peut également être utilisée. Par exemple dans le cas de la chimère SAH-vWF470-713, le concentrat obtenu après ultrafiltration est dialysé contre une solution de Tris HCl (50 mM pH 8), puis déposé par fractions de 20 ml sur une colonne (5 ml) échangeuse de cations (S Fast Flow, Pharmacia) équilibrée dans le même tampon. La colonne est alors lavée plusieurs fois par la solution de Tris HCl (50 mM pH 8) et la protéine chimère est alors éluée de la colonne par un gradient (0 à 1 M) de NaCl. Les fractions contenant la protéine chimère sont alors réunies et dialysées contre une solution de

15

Tris HCl 50 mM (pH 8) puis redéposées sur colonne S Fast Flow. Après élution de la colonne, les fractions contenant la protéine sont réunies, dialysées contre de l'eau et lyophilisées avant caractérisation: par exemple, le séquençage (Applied Biosystem) de la protéine [SAH-vWF470-704 C471G, C474G] sécrétée par la levure CBS 293.91 donne la séquence N-terminale attendue de la SAH (Asp-Ala-His...), démontrant une maturation correcte de la chimère immédiatement en C-terminal du doublet de résidus Arg-Arg de la région "pro" de la SAH (Figure 2). Le caractère essentiellement monomérique des protéines chimères entre SAH et vWF est également confirmé par leur profil d'élution sur colonne TSK 3000 [Toyo Soda Company, équilibrée par une solution de cacodylate (pH 7) contenant 0,2 M de Na2SO4] : par exemple la chimère [SAH-vWF 470-704 C471G, C474G] se comporte dans ces conditions comme une protéine de poids moléculaire apparent de 95 kDa démontrant son caractère monomérique.

EXEMPLE 8: CHIMERES DERIVEES DE L'UROKINASE

E.8.1. Constructions.

Un fragment correspondant au fragment amino-terminal de l'urokinase (ATF: domaine EGF-like + domaine kringle) peut être obtenu à partir de l'ARN messager correspondant des cellules de certains carcinome humain, par exemple en utilisant le kit RT-PCR distribué par Pharmacia. Un fragment de restriction MstII-HindIII incluant l'ATF de l'urokinase humaine est donné à la Figure 8. La ligature du fragment HindIII-MstII du plasmide pYG404 avec ce fragment MstII-HindIII permet de générer le fragment HindIII du plasmide pYG1341 qui code pour une protéine chimère dans laquelle la molécule de SAH est génétiquement couplée à l'ATF (SAH-UK1->135). De façon similaire, le plasmide pYG1340 contient un fragment HindIII codant pour une chimère composée de la SAH immédiatement suivi par les 46 premiers résidus de l'urokinase humaine (SAH-UK1->46, cf. Figure 8). Le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1340 (SAH-UK1->46) dans le site HindIII des plasmides pYG105 (LAC4) et pYG106 (PGK) génère les plasmides d'expression pYG1343 et pYG1342, respectivement. De façon similaire, le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1341 (SAH-UK1->135) dans le site HindIII des plasmides pYG105 (LAC4) et pYG106 (PGK) génère les plasmides d'expression pYG1345 et pYG1344, respectivement.

25

30

E.8.2. Sécrétion des hybrides.

Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature des protéines chimères SAH-UK. Quelques clones correspondant à la souche K. lactis CBS 293.91 transformée par les plasmides d'expression selon l'exemple E.9.1. sont mis à incuber en milieu liquide complet sélectif à 28°C. Les surnageants cellulaires sont alors testés après électrophorèse en gel d'acrylamide à 8.5 %, soit directement par coloration du gel au bleu de coomassie, soit après immunoblot en utilisant comme anticorps primaires un sérum polyclonal de lapin dirigé contre l'albumine humaine ou contre l'urokinase humaine. Les résultats de la Figure 9 démontrent que les protéines hybrides SAH-UK1->46 et SAH-UK1->135 sont particulièrement bien sécrétées par la levure Kluyveromyces.

E.8.3. Purification des chimères entre SAH et urokinase.

Après centrifugation d'une culture de la souche CBS 293.91 transformée par les plasmides d'expression selon l'exemple E.8.1., le surnageant de culture est passé à travers un filtre de 0,22 mm (Millipore), puis concentré par ultrafiltration (Amicon) en utilisant une membrane dont le seuil de discrimination se situe à 30 kDa. Le concentrat obtenu est alors ajusté à 50 mM Tris HCl à partir d'une solution stock de Tris HCl 1M (pH 7), puis déposé par fractions de 20 ml sur une colonne (3 ml) échangeuse d'anions (D-Zephyr, Sepracor) équilibrée dans le même tampon. La protéine chimère (SAH-UK1->46 ou SAH-UK1->135) est alors éluée de la colonne par un gradient (0 à 1 M) de NaCl. Les fractions contenant la protéine chimère sont alors réunies et dialysées contre une solution de Tris HCl 50 mM (pH 6) et redéposées sur colonne D-Zephyr équilibrée dans le même tampon. Après élution de la colonne, les fractions contenant la protéine sont réunies, dialysées contre de l'eau et lyophilisées avant caractérisation de leur activité biologique et notamment vis à vis de leur aptitude à déplacer l'urokinase de son récepteur cellulaire.

EXEMPLE 9: CHIMERES DERIVEES DU G-CSF

E.9.1. Constructions.

E.9.1.1. Couplage en C-terminal de la SAH.

Un fragment de restriction <u>Mst</u>II-<u>Hind</u>III incluant la forme mature du G-CSF humain est généré, par exemple selon la stratégie suivante : un fragment de

WO 93/15199 PCT/FR93/00085

restriction KpnI-HindIII est d'abord obtenu par la technique d'amplification enzymatique PCR en utilisant les oligodéoxynucléotides Sq2291 CAAGGATCCAAGCTTCAGGGCTGCGCAAGGTGGCGTAG-3', le site HindIII Sq2292 (5'-CGGGGTACCTTAGGCTTAACCCCCCTGsouligné) GGCCCTGCCAGC-3', le site KonI est souligné) comme amorce sur le plasmide . BBG13 servant comme matrice. Le plasmide BBG13 comporte le gène codant pour la forme B (174 acides aminés) du G-CSF mature humain, obtenu auprès de British Bio-technology Limited, Oxford, England. Le produit d'amplification enzymatique d'environ 550 nucléotides est ensuite digéré par les enzymes de restriction KonI et HindIII et cloné dans le vecteur pUC19 coupé par les mêmes enzymes, ce qui génère le plasmide recombinant pYG1255. Ce plasmide est la source d'un fragment de restriction MstII-HindIII permettant de fusionner le G-CSF immédiatement en aval de la SAH (chimère SAH-G.CSF) et dont la séquence nucléotidique est donnée à la Figure 10.

Il peut être également souhaitable d'insérer un linker peptidique entre la partie SAH et G-CSF, par exemple pour permettre une meilleure présentation fonctionnelle de la partie transductrice. Un fragment de restriction MstII-HindIII est par exemple généré par substitution du fragment MstII-ApaI du plasmide pYG1255 par les oligodéoxynucléotides Sq2742 (5'-TTAGGCTTAGGTGGTGGCGGTACCCCCCTGGGCC-3', les codons codant pour les résidus glycine de ce linker particulier sont soulignés) et Sq2741 (5'-CAGGGGGGTACCGCCACCACCTAAGCC-3') qui forment en s'appariant un fragment MstII-ApaI. Le plasmide ainsi généré comporte donc un fragment de restriction MstII-HindIII, dont la séquence est identique à celle de la Figure 10 à l'exception du fragment MstII-ApaI.

15

25

30

La ligature du fragment <u>HindIII-Mst</u>II du plasmide pYG404 avec le fragment <u>MstII-HindIII</u> du plasmide pYG1255 permet de générer le fragment <u>HindIII</u> du plasmide pYG1259 qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH (SAH-G.CSF).

Un fragment de restriction <u>Hind</u>III identique à l'exception du fragment <u>Mst</u>II-<u>Apa</u>I peut également être facilement généré et qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH et d'un linker peptidique WO 93/15199 PCT/FR93/00085

5

10

15

20

25

particulier. Par exemple ce linker est constitué de 4 résidus glycine dans le fragment <u>Hind</u>III du plasmide pYG1336 (chimère SAH-Gly4-G.CSF).

Le fragment de restriction <u>Hind</u>III du plasmide pYG1259 est cloné dans l'orientation productive et dans le site de restriction <u>Hind</u>III du plasmide d'expression pYG105, ce qui génère le plasmide d'expression pYG1266 (SAH-G.CSF). Dans une autre exemplification, le clonage du fragment de restriction <u>Hind</u>III du plasmide pYG1259 dans l'orientation productive et dans le site <u>Hind</u>III du plasmide pYG106 génère le plasmide pYG1267. Les plasmides pYG1266 et pYG1267 sont isogéniques entre eux à l'exception du fragment de restriction <u>SalI-Hind</u>III codant pour le promoteur <u>LAC</u>4 de <u>K. lactis</u> (plasmide pYG1266) ou le promoteur <u>PGK</u> de <u>S. cerevisiae</u> (plasmide pYG1267).

Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction <u>Hind</u>III du plasmide pYG1336 (chimère SAH-Gly4-G.CSF) dans le site <u>Hind</u>III des plasmides pYG105 (<u>LAC</u>4) et pYG106 (<u>PGK</u>) génère les plasmides d'expression pYG1351 et pYG1352, respectivement.

E.9.1.2. Couplage en N-terminal de la SAH.

Dans un mode réalisation particulier, les techniques combinées de mutagénèse dirigée et d'amplification PCR permettent de construire des gènes hybrides codant pour une protéine chimère résultant du couplage traductionnel entre un peptide signal (et par exemple la région prépro de la SAH), une séquence incluant un gène ayant une activité G-CSF, et la forme mature de la SAH ou un de ses variants moléculaires (cf. chimère du panneau B, Figure 1). Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII. Par exemple l'oligodéoxynucléotide Sq2369 (5'-GTTCTACGCCACCTTGCGCAGCCCGGTGGAGGCGGT-GATGCACACAAGAGTGAGGTTGCTCATCGG-3', résidus soulignés (optionnels) correspondent dans cette chimère particulière à un linker peptidique composé de 4 résidus glycine) permet par mutagénèse dirigée de mettre en phase traductionelle la forme mature du G-CSF humain du plasmide BBG13 immédiatement en amont de la forme mature de la SAH, ce qui génère le plasmide intermédiaire A. De façon similaire, l'utilisation de l'oligodéoxynucléotide Sq2338 [5'-<u>CAGGGAGCTGGCAGGGCCCAGGGGGGT</u>TCGACGAAACACACCCCTG-GAATAAGCCGAGCT-3' (brin non codant), les nucléotides complémentaires aux nucléotides codant pour les premiers résidus N-terminaux de la forme mature du G-

15

20

25

CSF humain sont soulignés] permet par mutagénèse dirigée de coupler en phase traductionnelle de lecture la région prépro de la SAH immédiatement en amont de la forme mature du G-CSF humain, ce qui génère le plasmide intermédiaire B. On génère ensuite un fragment HindIII codant pour une protéine chimère du type PEPTIDE-SAH (cf. Figure 1, panneau B) en associant le fragment HindIII-SstI du plasmide B (jonction région prépro de la SAH + fragment N-terminal du G-CSF mature) avec le fragment SstI-HindIII du plasmide A [jonction G-CSF mature-(glycine)_X4-SAH mature]. Le plasmide pYG1301 contient ce fragment de restriction HindIII particulier codant pour la chimère G.CSF-Gly4-SAH fusionnée immédiatement en aval de la région prépro de la SAH (Figure 11). Le clonage de ce fragment de restriction HindIII dans l'orientation productive et dans le site HindIII des plasmides pYG105 (LAC4) et pYG106 (PGK) génère les plasmides d'expression pYG1302 et pYG1303, respectivement.

E.9.2. Sécrétion des hybrides.

Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature des protéines chimères entre SAH et G-CSF. Quelques clones correspondant à la souche K. lactis CBS 293.91 transformée par les plasmides pYG1266 ou pYG1267 (SAH-G.CSF). pYG1302 ou pYG1303 (G.CSF-Gly4-SAH) ou encore pYG1351 ou pYG1352 (SAH-Gly4-G.CSF) sont mis à incuber en milieu liquide complet sélectif à 28°C. Les surnageants cellulaires sont alors testés après électrophorèse en gel d'acrylamide à 8.5 %, soit directement par coloration du gel au bleu de coomassie, soit après immunoblot en utilisant comme anticorps primaires des anticorps polyclonaux de lapin dirigés contre le G-CSF humain ou un sérum polyclonal de lapin dirigé contre l'albumine humaine. Les résultats de la Figure 12 démontrent que la protéine hybride SAH-G.CSF est reconnue à la fois par des anticorps dirigés contre l'albumine humaine (panneau C) et le G-CSF humain (panneau B). Les résultats de la Figure 13 indiquent que la chimère SAH-Gly4-G.CSF (piste 3) est particulièrement bien sécrétée par la levure Kluyveromyces, possiblement du fait que la présence du linker peptidique entre partie SAH et partie G-CSF est plus favorable à un repliement indépendant de ces 2 parties lors du transit de la chimère dans la voie sécrétoire. De plus la fusion N-terminale (G.CSF-Gly4-SAH) est également sécrétée par la levure Kluvveromyces (Figure 13, piste 1).

25

E.9.3. Purification et caractérisation moléculaire des chimères entre SAH et G-CSF.

Après centrifugation d'une culture de la souche CBS 293.91 transformée par les plasmides d'expression selon l'exemple E.9.1., le surnageant de culture est passé à travers un filtre de 0,22 mm (Millipore), puis concentré par ultrafiltration (Amicon) en utilisant une membrane dont le seuil de discrimination se situe à 30 kDa. Le concentrat obtenu est alors ajusté à 50 mM Tris HCl à partir d'une solution stock de Tris HCl 1M (pH 6), puis déposé par fractions de 20 ml sur une colonne (5 ml) échangeuse d'ions (Q Fast Flow, Pharmacia) équilibrée dans le même tampon. La protéine chimère est alors éluée de la colonne par un gradient (0 à 1 M) de NaCl. Les fractions contenant la protéine chimère sont alors réunies et dialysées contre une solution de Tris HCl 50 mM (pH 6) et redéposées sur colonne Q Fast Flow (1 ml) équilibrée dans le même tampon. Après élution de la colonne, les fractions contenant la protéine sont réunies, dialysées contre de l'eau et lyophilisées avant caractérisation: par exemple, le séquençage (Applied Biosystem) de la protéine SAH-G.CSF sécrétée par la levure CBS 293.91 donne la séquence N-terminale attendue de la SAH (Asp-Ala-His...), démontrant une maturation correcte de la chimère immédiatement en C-terminal du doublet de résidus Arg-Arg de la région "pro" de la SAH (Figure 2).

20 EXEMPLE 10 : CHIMERES DERIVEES D'UNE IMMUNOGLOBULINE

E.10.1. Constructions.

Un fragment Fv' peut être construit par les techniques du génie génétique, et qui code pour les fragments variables des chaines lourdes et légères d'une immunoglobuline (Ig), reliés entre eux par un peptide linker [Bird et al., Science (1988) 242: 423; Huston et al., (1988) Proc. Natl. Acad. Sci. 85: 5879]. Schématiquement, les régions variables (environ 120 résidus) des chaines lourdes et légères d'une Ig donnée sont clonées à partir de l'ARN messager de l'hybridome correspondant, par exemple en utilisant le kit RT-PCR distribué par Pharmacia (Mouse ScFv Module). Dans une seconde étape les régions variables sont génétiquement couplées par génie génétique par l'intermédiaire d'un peptide de liaison synthétique et par exemple le linker (GGGGS)_{x3}. Un fragment de restriction MstII-HindIII incluant le fragment Fv' d'une immunoglobuline sécrétée par un hybridome murin est donné à la Figure 14. La ligature du fragment HindIII-MstII du

25

30

plasmide pYG404 avec ce fragment MstII-HindIII permet de générer le fragment HindIII du plasmide pYG1382 qui code pour une protéine chimère dans laquelle la molécule de SAH est génétiquement couplée au fragment Fv' de la Figure 14 (chimère SAH-Fv'). Le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1382 dans le site HindIII des plasmides pYG105 (LAC4) et pYG106 (PGK) génère les plasmides d'expression pYG1383 et pYG1384, respectivement.

E.10.2. Sécrétion des hybrides.

Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature de la protéine chimère SAH-Fv'. Quelques clones correspondant à la souche K. lactis CBS 293.91 transformée par les plasmides pYG1383 ou pYG1384 (SAH-Fv') sont mis à incuber en milieu liquide complet sélectif à 28°C. Les surnageants cellulaires sont alors testés après électrophorèse en gel d'acrylamide à 8.5 %, soit directement par coloration du gel au bleu de coomassie, soit après immunoblot en utilisant comme anticorps primaires un sérum polyclonal de lapin dirigé contre l'albumine humaine, ou directement incubée avec des anticorps biotinylés et dirigés contre les immunoglobulines d'origine murine. Les résultats de la Figure 15 démontrent que la protéine hybride SAH-Fv' est reconnue à la fois par des anticorps dirigés contre l'albumine humaine (panneau C) et réagit avec des anticorps de chèvre biotinylés immunologiquement réactifs à l'encontre d'immunoglobulines de souris (panneau B).

EXEMPLE 11: ACTIVITE BIOLOGIQUE DES CHIMERES

E.11.1. Activité biologique in vitro.

E.11.1.1. Chimères entre SAH et vWF.

L'activité antagoniste des produits est déterminée par mesure de l'inhibition dose-dépendante de l'agglutination des plaquettes humaines fixées au paraformaldéhyde selon la méthode décrite par Prior et al. [Bio/Technology (1992) 10: 66]. Les mesures se font dans un agrégamètre (PAP-4, Bio Data, Horsham, PA, USA) qui enregistre les variations au cours du temps de la transmission optique sous agitation à 37°C en présence de vWF, de botrocétine (8,2 mg/ml) et du produit à tester à différentes dilutions (concentrations). Pour chaque mesure, 400 ml (8x10⁷ plaquettes) d'une suspension de plaquettes humaines stabilisées au paraformaldéhyde

30

(0,5 %, puis resuspendues en [NaCl (137 mM); MgCl2 (1 mM); NaH2PO4 (0,36 mM); NaHCO3 (10 mM); KCl (2,7 mM); glucose (5,6 mM); SAH (3,5 mg/ml); tampon HEPES (10 mM, pH 7,35)] sont préincubés à 37°C dans la cuve cylindrique (8,75 x 50 mm, Wellcome Distriwell, 159 rue Nationale, Paris) de l'agrégamètre pendant 4 min puis sont additionnés de 30 ml de la solution du produit à tester à différentes dilutions dans du véhicule de formulation apyrogène [mannitol (50 g/l); acide citrique (192 mg/l); L-lysine monochlorhydratée (182,6 mg/l); NaCl (88 mg/l); pH ajusté à 3,5 par addition de NaOH (1M)], ou de véhicule de formulation uniquement (essai contrôle). La suspension résultante est alors incubée pendant 1 min à 37°C et on ajoute 12,5 ml de vWF humain [American Bioproducts, Parsippany, NJ, USA; 11 % d'activité von Willebrand mesurée selon les recommandations d'utilisation du PAP-4 (Platelet Aggregation ProfilerR) à l'aide de plaquettes fixées au formaldéhyde (2x10⁵ plaquettes/ml), de plasma humain contenant de 0 à 100 % de vWF et de ristocétine (10 mg/ml, cf. p. 36-45 : vW ProgramTM] que l'on incube à 37°C pendant 1 min avant d'ajouter 12,5 ml de la solution de botrocétine [purifiée à partir de venin lyophilisé de Bothrops jararaca (Sigma), selon le protocole décrit par Sugimoto et al., Biochemistry (1991) 266: 18172]. L'enregistrement de la lecture de la transmission en fonction du temps est alors réalisée pendant 2 min sous agitation à l'aide d'un barreau aimanté (Wellcome Distriwell) placé dans la cuve et sous une agitation magnétique de 1100 tr/min assurée par l'agrégamètre. La variation moyenne de la transmission optique (n³5 pour chaque dilution) au cours du temps est donc une mesure de l'agglutination plaquettaire due à la présence de vWF et de botrocétine, en l'absence ou en présence de concentrations variables du produit à tester. A partir de tels enregistrements, on détermine alors le % d'inhibition de l'agglutination plaquettaire due à chaque concentration de produit et on trace la droite donnant le % d'inhibition en fonction de l'inverse de la dilution de produit en échelle log-log. La CI50 (ou concentration de produit provoquant 50 % d'inhibition de l'agglutination) est alors déterminée sur cette droite. Le Tableau de la Figure 16 compare les CI50 de quelques unes des chimères SAH-vWF de la présente invention et démontre que certaines d'entre elles sont de meilleurs antagonistes de l'agglutination plaquettaire que le produit RG12986 décrit par Prior et al. [Bio/Technology (1992) 10: 66] et inclus dans les essais à titre de valeur étalon. Des tests identiques de l'inhibition de l'agglutination de plaquettes humaines en présence de vWF de plasma de porc (Sigma) permet en plus de

15

20

25

30

démontrer que certains des hybrides de la présente invention, et notamment certains variants de type IIB, sont de très bons antagonistes de l'agglutination plaquettaire en l'absence de co-facteurs de type botrocétine. L'antagonisme botrocétine-indépendant de ces chimères particulières peut également être démontré selon le protocole initialement décrit par Ware et al. [Proc. Natl. Acad. Sci. (1991) <u>88</u>: 2946] par déplacement de l'anticorps monoclonal ¹²⁵I-LJ-IB1 (10 mg/ml), un inhibiteur compétitif de la fixation du vWF sur la GPIb plaquettaire [Handa M. et al., (1986) J. Biol. Chem. <u>261</u>: 12579] après 30 min d'incubation à 22°C en présence de plaquettes fraiches (10⁸ plaquettes/ml).

E.11.1.2. Chimères entre SAH et G-CSF.

Les chimères purifiées sont testées pour leur capacité à permettre la prolifération in vitro de la lignée murine IL3-dépendante NFS60, par mesure de l'incorporation de thymidine tritiée essentiellement selon le protocole décrit par Tsuchiya et al. [Proc. Natl. Acad. Sci. (1986) 83 7633]. Pour chaque chimère, les mesures sont réalisées entre 3 et 6 fois dans un test trois points (trois dilutions du produit) dans une zone ou la relation entre quantité de produit actif et incorporation de thymidine marquée (Amersham) est linéaire. Dans chaque plaque de microtitration, l'activité d'un produit référence constitué de G-CSF humain recombinant exprimé dans des cellules mammifères est également systématiquement incorporé. Les résultats de la Figure 17 démontrent que la chimère SAH-G.CSF (pYG1266) sécrétée par la levure Kluyveromyces et purifiée selon l'exemple E.9.3. est capable in vitro de transduire un signal de prolifération cellulaire pour la lignée NFS60. Dans ce cas particulier, l'activité spécifique (cpm/molarité) de la chimère est environ 7 fois plus faible que celle du G-CSF référence (non couplé).

E.11.2. Activité biologique in vivo.

L'activité de stimulation des chimères SAH/G-CSF sur la granulopoièse in vivo est testée après injection sous-cutanée chez le rat (Sprague-Dawley/CD, 250-300 g, 8-9 semaines) et comparée à celle du G-CSF référence exprimé à partir de cellules de mammifère. Chaque produit, testé à raison de 7 animaux, est injecté par voie sous-cutanée en région dorso-scapulaire à raison de 100 ml pendant 7 jours consécutifs (J1-J7). 500 ml de sang sont receuillis aux jours J-6, J2 (avant la 2ème injection), J5 (avant la 5ème injection) et J8, et une numération sanguine est effectuée. Dans ce test, l'activité spécifique (unités de neutropoièse/mole injectée) de la chimère SAH-G.CSF (pYG1266) est identique à celle du G-CSF référence

(Figure 18). Puisque cette chimère particulière possède <u>in vitro</u> une activité spécifique 7 fois plus faible que celle du G-CSF référence (Figure 17), il est donc démontré que le couplage génétique du G-CSF sur la SAH en modifie favorablement les propriétés pharmacocinétiques.

LISTE DE SEQUENCES

- (2) INFORMATION POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 1859 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADNo
 - (iii) HYPOTHETIQUE: NON
 - (iii) ANTI-SENS: NON
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 26..1855
 - (D) AUTRES RENSEIGNEMENTS: /product= "Chimere de type SAH-Peptide"
 - (ix) CARACTERISTIQUE ADDITIONELLE:

 - (A) NOM/CLE: misc_feature
 (B) EMPLACEMENT: 1842..1848
 - (D) AUTRES RENSEIGNEMENTS: /standard_name= "Site Mst II"
- (2) INFORMATION POUR LA SEQ ID NO: 2:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 750 paires de bases

 - (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADNo
 - (iii) HYPOTHETIQUE: NON
 - (iii) ANTI-SENS: NON
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 3..746
 - (D) AUTRES RENSEIGNEMENTS: /product= "Fragment C-ter de la chimere SAH-vWF470"
- (2) INFORMATION POUR LA SEQ ID NO: 3:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 423 paires de bases(B) TYPE: acide nucléique

 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADNo
 - (iii) HYPOTHETIQUE: NON
 - (iii) ANTI-SENS: NON

- (1x) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 3..419
 - (D) AUTRES RENSEIGNEMENTS: /product= "Fragment C-ter de la chimere SAH-UK1-135"
- (2) INFORMATION POUR LA SEQ ID NO: 4:

 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 541 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADNo
 - (iii) HYPOTHETIQUE: NON
 - (iii) ANTI-SENS: NON
 - (ix) CARACTERISTIOUE ADDITIONELLE:

 - (A) NOM/CLE: CDS
 (B) EMPLACEMENT: 3..536
 - (D) AUTRES RENSEIGNEMENTS: /product= "Fragment C-ter de la chimere SAH-G.CSF"
- (2) INFORMATION POUR LA SEQ ID NO: 5:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 2455 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (11) TYPE DE MOLECULE: ADNO
 - (iii) HYPOTHETIQUE: NON
 - (iii) ANTI-SENS: NON
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 26..2389
 - (D) AUTRES RENSEIGNEMENTS: /product= "Chimere G.CSF-Gly4-SAH en aval region prepro de SAH"
 - (ix) CARACTERISTIQUE ADDITIONELLE:

 - (A) NOM/CLE: misc_recomb (B) EMPLACEMENT: 620..631
 - (D) AUTRES RENSEIGNEMENTS: /standard_name= "Linker PolyGly"
 - (ix) CARACTERISTIQUE ADDITIONELLE:

 - (A) NOM/CLE: misc_feature (B) EMPLACEMENT: 106..111
 - (D) AUTRES RENSEIGNEMENTS: /standard_name= "Site Apa I"
- (2) INFORMATION POUR LA SEQ ID NO: 6:

٦,

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 756 paires de bases
 - (B) TYPE: acide nucléique

- (C) NOMBRE DE BRINS: double
- (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADNo
- (iii) HYPOTHETIQUE: NON
- (iii) ANTI-SENS: NON
- (ix) CARACTERISTIQUE ADDITIONELLE:

 - (A) NOM/CLE: CDS
 (B) EMPLACEMENT: 3..752
 (D) AUTRES RENSEIGNEMENTS: /product= "Fragment C-ter de la chimere SAH-Fv'"
- (ix) CARACTERISTIQUE ADDITIONELLE:
 (A) NOM/CLE: misc_recomb
 (B) EMPLACEMENT: 384..428
 (D) AUTRES RENSEIGNEMENTS: /standard_name= "Linker" synthetique"

10

20

REVENDICATIONS

- 1. Polypeptide recombinant comportant une partie active dérivée d'un polypeptide ayant une activité thérapeutique, génétiquement couplée à une albumine ou à un variant de l'albumine.
- 2. Polypeptide selon la revendication 1 caractérisé en ce que le polypeptide ayant une activité thérapeutique est un polypeptide d'origine humaine.
 - 3. Polypeptide selon la revendication 2 caractérisé en ce que le polypeptide ayant une activité thérapeutique est choisi parmi tout ou partie des enzymes, des inhibiteurs d'enzymes, des antigènes, des anticorps, des hormones, des facteurs de la coagulation, des interférons, des cytokines, des facteurs de croissance et/ou de différenciation, des facteurs impliqués dans la génèse/résorption des tissus osseux, des facteurs chimiotactiques, des facteurs de motilité ou de migration cellulaire, des facteurs cytostatiques, des facteurs bactéricides ou antifongiques, ou des molécules adhésives plasmatiques, interstitielles ou des matrices extracellulaires.
- 4. Polypeptide selon l'une des revendications 1 à 3 caractérisé en ce que le polypeptide ayant une activité thérapeutique est choisi parmi toute séquence peptidique antagoniste ou agoniste d'interactions moléculaires et/ou cellulaires impliquées dans les pathologies des compartiments circulatoires et interstitiels.
 - 5. Polypeptide selon l'une des revendications 1 à 4 caractérisé en ce que la partie active présente une structure choisie parmi :
 - (a) la structure peptidique entière ou,
 - (b) un fragment de (a) ou une structure dérivée de (a) par modification structurale (mutation, substitution addition et/ou délétion d'un ou plusieurs résidus) et conservant une activité thérapeutique.
- 25 6. Polypeptide selon l'une des revendications 1 à 5 caractérisé en ce que la partie active est couplée à l'extrémité N-terminale de l'albumine.
 - 7. Polypeptide selon l'une des revendications 1 à 5 caractérisé en ce que la partie active est couplée à l'extrémité C-terminale de l'albumine.

PCT/FR93/00085

5

10

15

20

25

- 8. Polypeptide selon l'une des revendications 1 à 7 caractérisé en ce que la partie active y est représenté plusieurs fois.
- 9. Séquence nucléotidique codant pour un polypeptide selon l'une quelconque des revendications 1 à 8.
- 10. Séquence nucléotidique selon la revendication 9 caractérisée en ce qu'elle comprend une séquence "leader" permettant la sécrétion du polypeptide exprimé.
 - 11. Cassette d'expression comprenant une séquence nucléotidique selon l'une des revendications 9 ou 10 sous le contrôle d'une région d'initiation de la transcription et éventuellement d'une région de terminaison de la transcription.
 - 12. Plasmide autoréplicatif comportant une cassette d'expression selon la revendication 11.
- 13. Cellule recombinante eucaryote ou procaryote dans laquelle a été inséré une séquence nucléotidique selon l'une des revendications 9 ou 10 ou une cassette d'expression selon la revendication 11 ou un plasmide selon la revendication 12.
 - 14. Cellule recombinante selon la revendication 13 caractérisée en ce qu'il s'agit d'une levure, d'une cellule animale, d'un champignon ou d'une bactérie.
 - 15. Cellule recombinante selon la revendication 14 caractérisée en ce qu'il s'agit d'une levure.
- 16. Cellule recombinante selon la revendication 15 caractérisée en ce qu'il s'agit d'une levure du genre <u>Saccharomyces</u> ou <u>Kluyveromyces</u>.
 - 17. Procédé de préparation d'un polypeptide tel que défini dans l'une des revendications 1 à 8 caractérisé en ce que l'on cultive une cellule recombinante selon l'une des revendications 13 à 16 dans des conditions d'expression, et on récupère le polypeptide produit.
 - 18. Composition pharmaceutique comprenant un ou plusieurs polypeptides selon l'une quelconque des revendications 1 à 8.

19. Composition pharmaceutique comprenant une séquence nucléotidique selon l'une quelconque des revendications 9 à 11 utilisable en thérapie génique.

,		
	and the same of th	

Figure 1C

Figure 1A NH₂ COOH M/LP SAH PEP linker peptidique (optionnel) Figure 1B NH₂СООН M/LP PEP SAH L. linker

Figure 1

peptidique (optionnel) SEO, ID NO: 1

-12	TTT Phe	CIC Leu	TTT Phe	.CTT Leu	CTT Leu	TCC	ATT	TTT Phe	ACC Thr	GTA Val	TGG	AAG Lys	ATG Met	AACA	AAAT/	A TA	ACAA	TACA	CTT	AAG
9	CAT His	GCT Ala	GIT Val	GAG Glu	AGT Ser	AAG Lys	CAC His	GCA Ala	GAT As p	CGA Arg	CGT	TTT Phe	GIG Val	GGT Gly	AGG Arg	TCC Ser	TAT Tyr	GCT Ala	TCG Ser	AGC Ser
29	CAG Gln	GCT Ala	TTT Phe	GCC Ala	ATT	TTG Leu	GTG Val	TTG Leu	GCC Ala	AAA Lys	TTC Phe	AAT Asn	GAA Glu	GAA Glu	GGA Gly	TTG Leu	GAT Asp	AAA Lys	TTT Phe	CGG Arg
49	TTT	GAA	ACT	GTA	GAA	AAT	GTG	TTA	AAA	GTA	CAT	GAT	GAA	TTT	CCA	TGT	CAG	CAG	CTT	TAT
	Phe	Glu	Thr	Val	Glu	Asn	Val	Leu	Lys	Val	His	Asp	Glu	Phe	Pro	Cys	Gln	Gln	Leu	Tyr
69	CTT	ACC	CAT	CIT	TCA	AAA	GAC	TGT	AAT	GAA	GCT	TCA	GAG	GAT	GCT	GTT	TGT	ACA	AAA	GCA
	Leu	Thr	His	Leu	Ser	Lys	Asp	Cys	Asn	Glu	Ala	Ser	Glu	Asp	Ala	Val	Cys	Thr	Lys	Ala
89	GAC Asp	GCT Ala	ATG Met	GAA Glu	ogt Gly	TAT	ACC Thr	GAA Glu	CGT Arg	CTT Leu	ACT Thr	GCA Ala	GTT Val	ACA Thr	TGC Cys	TTA Leu	AAA Lys	gac Asp	GGA Gly	TTT Phe
109	AAC	GAC	GAT	AAA	CAC	CAA	TTG	TTC	TGC	GAA	AAT	AGA	GAG	CCT	GAA	CAA	AAA	GCA	TGT	TGC
	Asn	Asp	Asp	Lys	His	Gln	Leu	Phe	Cys	Glu	Asn	Arg	Glu	Pro	Glu	Gln	Lys	Ala	Cys	Cys
129	GAC	CAT	TTT	GCT	ACT	TGC	ATG	GTG	GAT	GTT	GAG	CCA	AGA	GTG	TTG	CGA	CCC	CTC	AAC	CCA
	Asp	His	Phe	Ala	Thr	Cys	Met	Val	Asp	Val	Glu	Pro	Arg	Val	Leu	Arg	Pro	Leu	A sn	Pro
149	TTT	TAC	CCT	CAT	AGA	AGA	GCC	ATT	GAA	TAT	TTA	TAC	AAA	AAA	TTG	TTT	ACA	GAG	GAA	AAT
	Phe	Tyr	Pro	His	Arg	Arg	Ala	Ile	Glu	Tyr	Leu	Tyr	Lys	Lys	Leu	Phe	Thr	Glu	Glu	Asn
169	TGC	TGT	GAA	ACA	TTT	GCT	GCT	AAA	TAT	AGG	AAA	GCT	TTT	TTC	CTT	CTC	GAA	CCG	GCC	TAT
	Cys	Cys	Glu	Thr	Phe	Ala	Ala	Lys	Tyr	Arg	Lys	Ala	Phe	Phe	Leu	Leu	Glu	Pro	Ala	Tyr
189	GGG	GAA	GAT	CGG	CTT	GAA	GAT	CTC	AA G	CCA	TTG	CTG	TGC	GCC	GCT	AAA	GAT	GCT	GCT	CAA
	Gly	Glu	Asp	Arg	Leu	Glu	Asp	Leu	Lys	Pro	Leu	Leu	Cys	Ala	Ala	Lys	Asp	Ala	Ala	Gln
209	AGA	GAA	GGA	TTT	AAA	CAA	CTC	AGT	GCC.	TGT	AA G	CTC	AGA	CAG	AAA	GCC	TCT	TCG	GCT	AAG
	Arg	Glu	Gly	Phe	Lys	Gln	Leu	Ser	Ala	Cys	Lys	Leu	Arg	Gln	Lys	Ala	Ser	Ser	Ala	Lys
229	GCA	TTT	GAG	GCT	AAA	CCC	TTT	AGA	CAG	AGC	CTG	CGC	GCT	GTA	GCA	TGG	GCA	AAA	TTC	GCT
	Ala	Phe	Glu	Ala	Lys	Pro	Phe	Arg	Gln	Ser	Leu	Arg	Ala	Val	Ala	Trp	Ala	Lys	Pne	Ala
249	GAT	GGA	CAT	TGC	TGC	GAA	ACG	CAC	GTC	AAA	ACC	CTT	GAT	ACA	GTG	TTA	AAG	TCC	GTT	GAA
	Asp	Gly	His	Cys	Cys	Glu	Thr	H1s	Val	Lys	Thr	Leu	Asp	Thr	Val	Leu	Lys	Ser	Val	Glu

Figure 2(a)

WO 93/15199 PCT/FR93/00085

CTG	CTT	GAA	TGT	GCT	GAT	GAC	AGG	GCG	GAC	CTT	GCC	AAG	TAT	ATC	TGT	GAA	AAT	CAA	GAT	269
Leu	Leu	Glu	Cys	Ala	Asp	Asp	Arg	Ala	Asp	Leu	Ala	Lys	Tyr	Ile	Cys	Glu	Asn	Gìn	Asp	
TCG Ser	ATC Ile	TCC Ser	AGT Ser	AAA Lys	CTG Leu	AA G Lys	GAA Glu	TGC Cys	TGT Cys	GAA Glu	AAA Lys	CCT Pro	CTG Leu	TTG Leu	GAA Glu	AAA Lys	TCC Ser	CAC His	TGC Cys	289
ATT	GCC	GAA	GTG	GAA	AAT	GAT	GAG	ATG	CCT	GCT	GAC	TTG	CCT	TCA	TTA	GCT	GCT	GAT	TTT	309
Ile	Ala	Glu	Val	Glu	Asn	Asp	Glu	Met	Pro	Ala	Asp	Leu	Pro	Ser	Leu	Ala	Ala	Asp	Phe	
GIT	GAA	AGT	AAG	GAT	GTT	TGC	AAA	AAC	TAT	GCT	GAG	GCA	AAG	GAT	GTC	TTC	CTG	GGC	ATG	329
Val	Glu	Ser	Lys	Asp	Val	Cys	Lys	Asn	Tyr	Ala	Glu	Ala	Lys	Asp	Val	Phe	Leu	Gly	Met	
TTT	TTG	TAT	GAA	TAT	GCA	AGA	AGG	CAT	CCT	GAT	TAC	TCT	GTC	GTA	CTG	CTG	CTG	AGA	CTT	349
Phe	Leu	Tyr	Glu	Tyr	Ala	Arg	Arg	His	Pro	Asp	Tyr	Ser	Val	Val	Leu	Leu	Leu	Arg	Leu	
GCC	AAG	ACA	TAT	GAA	ACC	ACT	CTA	GAG	AAG	TGC	TGT	GCC	GCT	GCA	GAT	CCT	CAT	GAA	TGC	369
Ala	Lys	Thr	Tyr	Glu	Thr	Thr	Leu	Glu	Lys	Cys	Cys	Ala	Ala	Ala	Asp	Pro	His	Glu	Cys	
TAT	GCC	AAA	GTG	TTC	GAT	GAA	TTT	AAA	CCT	CTT	GTG	GAA	GAG	CCT	CAG	AAT	TTA	ATC	AAA	389
Tyr	Ala	Lys	Val	Phe	Asp	Glu	Phe	Lys	Pro	Leu	Val	Glu	Glu	Pro	Gln	Asn	Leu	Ile	Lys	
CAA	AAT	TGT	GAG	CTT	TTT	GAG	CAG	CTT	GGA	GAG	TAC	AA A	TTC	CAG	AAT	GCG	CTA	TTA	GTT	409
Gln	Asn	Cys	Glu	Leu	Phe	Glu	Gln	Leu	Gly	Glu	Tyr	Lys	Phe	Gln	Asn	Ala	Leu	Leu	Val	
CGT	TAC	ACC	AAG	AAA	GTA	CCC	CAA	GTG	TCA	ACT	CCA	ACT	CTT-	GTA	GAG	GTC	TCA	AGA	AAC	429
Arg	Tyr	Thr	Lys	Lys	Val	Pro	Gln	Val	Ser	Thr	Pro	Thr	Leu	Val	Glu	Val	Ser	Arg	Asn	
CTA	GGA	AAA	GTG	GGC	AGC	AAA	TGT	TGT	AAA	CAT	CCT	GAA	GCA	AAA	AGA	ATG	CCC	TGT	GCA	449
Leu	Gly	Lys	Val	Gly	Ser	Lys	Cys	Cys	Lys	His	Pro	Glu	Ala	Lys	Arg	Met	Pro	Cys	Ala	
GAA	GAC	TAT	CTA	TCC	GTG	GTC	CTG	AAC	CAG	TTA	TGT	GTG	TTG	CAT	GAG	AAA	ACG	CCA	GTA	469
Glu	Asp	Tyr	Leu	Ser	Val	Val	Leu	Asn	Gln	Leu	Cys	Val	Leu	His	Glu	Lys	Thr	Pro	Val	
AGT	GAC	AGA	GTC	ACC	AAA	TGC	TGC	ACA	GAA	TCC	TTG	GTG	AAC	AGG	CGA	CCA	TGC	TTT	TCA	489
Ser	Asp	Arg	Val	Thr	Lys	Cys	Cys	Thr	Glu	Ser	Leu	Val	Asn	Arg	Arg	Pro	Cys	Phe	Ser	
GCT	CTG	GAA	GTC	GAT	GAA	ACA	TAC	GTT	CCC	AAA	GAG	TTT	AAT	GCT	GAA	ACA	TTC	ACC	TTC	509
Ala	Leu	Glu	Val	Asp	Glu	Thr	Tyr	Val	Pro	Lys	Glu	Phe	Asn	Ala	Glu	Thr	Phe	Thr	Phe	
CAT	GCA	GAT	ATA	TGC	ACA	CTT	TCT	GAG	AAG	GAG	AGA	CAA	ATC	AAG	AAA	CAA	ACT	GCA	CTT	529
His	Ala	Asp	Ile	Cys	Thr	Leu	Ser	Glu	Lys	Glu	Arg	Gln	Ile	Lys	Lys	Gln	Thr	Ala	Leu	
GTT	GAG	CTT	GTG	AAA	CAC	AA G	CCC	AA G	GCA	ACA	AAA	GAG	C AA	CTG	AAA	GCT	GTT	ATG	GAT	549
Val	Glu	Leu	Val	Lys	His	Lys	Pro	Lys	Ala	Thr	Lys	Glu	Gln	Leu	Lys	Ala	Val	Met	Asp	
GAT	TTC	GCA	GCT	TTT	GTA	GAG	AAG	TGC	TGC	AAG	GCT	GAC	GAT	AAG	GAG	ACC	TGC	TTT	GCC	569
Asp	Phe	Ala	Ala	Phe	Val	Glu	Lys	Cys	Cys	Lys	Ala	Asp	Asp	Lys	Glu	Thr	Cys	Phe	Ala	
GAG Glu	GAG Glu	GGT Gly	AAA Lys	AAA Lys	CTT Leu	GTT Val	GCT Ala	GCA Ala	AGT Ser	CAA Gln	GCT Ala	GCC	TTA Leu	GGC	TTA Leu	(NN) (X PEPT) p	TAA	GCTT	

Figure 2(b)

Figure 3

CC TTA GGC TTA (NNN)244 TAA GCTT
Leu Gly Leu (Thr470->Val713) ***

CC TTA GGC TTA (NNN)29 TAA GCTT Figure 4B

CC TTA GGC CTC (NNN)₁₄ TAA GCTT

Leu Gly Leu (Cys695->Pro708)

----- D5 ----->

Figure 4C

CC TTA GGC TTA (NNN)90 TAA GCTT

Leu Gly Leu (Thr470->Tyr508,Arg663->Val713) ***

Figure 4D

Figure 4 (A à D)

SEO. ID NO: 2

cc	Deu	GIY	Deu	- 4444	. Cys	GIU	GCC Ala ->713	Cys	CAG Gln	GAG Glu	CCG Pro	GGA Gly	Gly	CTG Leu	GTG Val	GTG Val	CCT Pro	Pro	ACA Thr	601
GAT Asp	GCC Ala	CCG	GTG Val	AGC Ser	CCC Pro	ACC Thr	ACT Thr	CTG Leu	TAT Tyr	GTG Val	GAG Glu	GAC Asd	ATC	TCG Ser	GAA Glu	CCG Pro	CCG Pro	TTG	CAC His	621
GAT Asp	TTC Phe	TAC	TGC Cys	AGC Ser	AGG Arg	CTA Leu	CTG	GAC Asp	CTG Leu	GTC Val	TTC Phe	CTG Leu	CTG Leu	GAT Asp	GGC	TCC Ser	TCC Ser	AGG Arg	CTG Leu	641
TCC Ser	GAG Glu	GCT Ala	GAG Glu	TTT Phe	GAA Glu	GTG Val	CTG Leu	AAG Lys	GCC Ala	TTT Phe	GTG Val	GTG Val	GAC Asp	ATG Met	ATG Met	GAG Glu	CGG	CTG Leu	CGC Arg	661
ATC Ile	TCC Ser	CAG Gln	AAG Lys	TGG Trp	GTC Val	CGC Arg	GTG Val	GCC Ala	GTG Val	GTG Val	GAG Glu	TAC Tyr	CAC His	GAC Asp	GGC Gly	TCC Ser	CAC His	GCC Ala	TAC Tyr	681
ATC Ile	GOG Gly	CTC Leu	AAG Lys	GAC Asp	CGG Arg	AAG Lys	CGA Arg	CCG Pro	TCA Ser	GAG Glu	CTG Leu	CGG Arg	CGC	ATT Ile	GCC Ala	AGC Ser	CAG Gln	GTG Val	AAG Lys	701
TAT Tyr	GCG Ala	GGC Gly	AGC Ser	CAG Gln	GTG Val	GCC Ala	TCC Ser	ACC Thr	AGC Ser	GAG Glu	GTC Val	TTG Leu	AAA Lys	TAC Tyr	ACA Thr	CTG Leu	TTC Phe	CAA Gln	ATC Ile	721
TTC Phe	AGC Ser	AAG Lys	ATC Ile	GAC Asp	CGC Arg	CCT Pro	GAA Glu	GCC Ala	TCC Ser	CGC Arg	ATC Ile	GCC Ala	CTG Leu	CTC Leu	CTG Leu	ATG Met	GCC Ala	AGC Ser	CAG Gln	741
GAG Glu	CCC Pro	CAA Gln	CGG Arg	ATG Met	TCC Ser	CGG Arg	AAC Asn	TTT Phe	GTC Val	CGC Arg	TAC Tyr	GTC Val	CAG Gln	GGC	CTG Leu	AAG Lys	AAG Lys	AA G Lys	AAG Lys	761
GTC Val	ATT Ile	GTG Val	ATC Ile	CCG Pro	GTG Val	GGC Gly	ATT Ile	GGG Gly	CCC Pro	CAT His	GCC Ala	AAC Asn	CTC Leu	AAG Lys	CAG Gln	ATC Ile	CGC Arg	CTC Leu	ATC Ile	781
GAG Glu	AAG Lys	CAG Gln	GCC Ala	CCT Pro	GAG . Glu	AAC . Asn	AAG Lys	GCC Ala	TTC Phe	GTG Val	CTG . Leu	AGC Ser	AGT Ser	GTG Val	GAT Asp	GAG Glu	CTG Leu	GA G Glu	CAG Gln	801
CAA Gln	AGG (Arg .	GAC Asp	GAG Glu	ATC Ile	GTT . Val	AGC Ser	TAC Tyr	<u>Leu</u>	TGT Cys	GAC Asp	CTT · Leu	GCC Ala	CCT Pro	GAA Glu	GCC Ala	CCT Pro	CCT Pro	cci Pro	ACT Thr	821
TG (Leu	ccc (Pro .	CCC Erro	GAC Asp	ATG Met	GCA (CAA Gln	GTC Val	TAA	GCTT											920

Figure 4 (E)

Figure 5

Figure 6

Figure 7

SEO, ID NO : 3

œ	Leu	GGC Gly	Leu	Ser	Asn	GAA Glu	CTT Leu	CAT His	CAA Gln	GTT Val	CCA Pro	TCG Ser	AAC Asn	TGT Cys	GAC Asp	TGT Cys	CTA Leu	AAT Asn	GGA Gly	601
	•	AAC	,		>UK															
GGA Gly	ACA Thr	TGT Cys	GTG Val	TCC Ser	AAC Asn	AAG Lys	TAC Tyr	TTC Phe	TCC Ser	AAC Asn	ATT Ile	CAC His	TGG Trp	TCC Cys	AAC Asn	TGC Cys	CCA Pro	AAG Lys	AA A Lys	621
TTC Phe	GGA Gly	GGG Gly	CAG Gln	CAC Hıs	TGT Cys	Glu	Ile	Asp	Lys	Ser	Lys	ACC Thr NGL	Cys	TAT Tyr	GAG Glu	GGG Gly	AAT Asn	GT Gly	CAC His	641
TTT Phe	TAC Tyr	CGA Arg	GGA Gly	AAG Lys	GCC Ala	AGC Ser	ACT Thr	GAC Asp	ACC Thr	ATG Met	GGC Gly	CGG Arg	CCC Pro	TGC Cys	CTG Leu	CCC Pro	TGG Trp	AAC Asn	TCT Ser	661
GCC Ala	ACT Thr	GTC Val	CTT Leu	CAG Gln	CAA Gln	ACG Thr	TAC Tyr	CAT His	GCC Ala	CAC His	AGA Arg	TCT Ser	GAT Asp	GCT Ala	CTT Leu	CAG Gln	CTG Leu	GGC Gly	CTG Leu	681
GGG Gly	AAA Lys	CAT His	AAT Asn	TAC Tyr	TGC Cys	AGG Arg	AAC Asn	CCA Pro	GAC Asp	AAC Asn	CGG	AGG Arg	CGA Arg	CCC Pro	TGG Trp	TGC Cys	TAT Tyr	GTG Val	CAG Gln	701
GTG Val	GGC Gly	CTA Leu	AA G Lys	CCG Pro	CTT Leu	GTC Val	CAA Gln	GAG Glu	TGC Cys	ATG Met	GTG Val	CAT His	GAC Asp	TGC Cys	GCA Ala	GAT Asp	GGA Gly	AAA Lys	TAA	720
GCTT	ı																			

Figure 8

Figure 9

SEO. ID NO 4

							γÞ	a I												
α	TTA	GGC	TTA	ACC	CCC	CIG	GGC	_CCT	GCC	AGC	TCC	CTG	∞ c	CAG	AGC	TTC	CIG	cro	AAG	
	Dea	GIY	ren	Thr I	Pro	Leu	Gly	Pro	Ala	Ser	Ser	Leu	Pro	Gln	Ser	Phe	Leu	Leu	Lys	60:
TOC	TTA	GAG	CAA	GTG	AGG	AAG	ATC	CAG	GGC	GAT	œc	GCA	GCG	CTC	CAG	GAG	AAG	علت	TGT	
Cys	Leu	Glu	Gln	Val	Arg	Lys	Ile	Gln	Gly	Asp	Gly	Ala	Xla	Leu	Gln	Glu	Lys	Leu	Cys	623
																			-	
GCC	ACC	TAC	AAG	CTG	TGC	CAC	~~	GAG	GAG	حبدد	CELLO:		~~~	CC1	C10	man	~~~		ATC	
Ala	Thr	Tyr	Lys	Leu	Cys	His	Pro	Glu	Glu	Leu	Val	Leu	Leu	GOV	His	Ser	Len	GGC	ATC Ile	641
														,			200	Gry	116	041
ccc	TCC	CCT	ccc	تكلت	Sat		maa	~~	100											
Pro	Tro	Ala	Pro	Leu	Ser	Ser	_ roc	Dro	AGC	CAG	GCC	CTG	CAG	CIG	GCA	GGC	TGC	TTG	AGC Ser	
					561	Jer	Cys	PLU	261	GIH	MIG	Leu	GIU	Leu	Ala	Gly	Cys	Leu	Ser	661
CAA	CTC	CAT	AGC	GGC	CII	TTC	CTC	TAC	CAG	GGG	CIC	CTG	CAG	GCC	CTG	GAA	GGG	ATA	TCC	
3111	הפת	nis	ser	GIY	Leu	Pne	Leu	Tyr	Gln	Gly	Leu	Leu	Gln	Ala	Leu	Glu	Gly	Ile	Ser	681
CCC	GAG	TTG	GGT	\overline{ccc}	ACC	TTG	GAC	ACA	CTG	CAG	CIG	GAC	GTC	GCC	GAC	TTT	GCC	ACC	ACC	
PIO	GIU	Leu	GIÀ	Pro	Thr	Leu	Asp	Thr	Leu	Gln	Leu	Asp	Val	Ala	Asp	Phe	Ala	Thr	ACC Thr	701
ATC	TGG	CAG	CAG	ATG	GAA	GAA	CTG	GGA	ATG	GCC	CCT	GCC	تغلب	CAG	~~	200	CNC	~~	000	
Ile	Trp	Gln	Gln	Met	Glu	Glu	Leu	Gly	Met	Ala	Pro	Ala	Leu	Gln	Pro	Thr	Gln	Glv	GCC Ala	721
																		,		, 21
ATG	CCG	GCC	TTC	GCC	ىلمىك	ىلىك	الملمك	CAG	~:~	~~	CC X	CCN	~~~	~~~						
Met	Pro	Ala	Phe	Ala	Ser	Ala	Phe	Gln	Ara	Ara	Ala	Glv	Glv	Val	CIG	GTT Val	GCT	AGC	CAT	741
									-			,	,		260	441	urq	3er	nis	741
errica (CAG	AGC	مكنمك	ت الت	CNC	~~~		ma c	~~~											
Leu	Gln	Ser	Phe	Leu	Glu	Val	Ser	Tyr	Ara	GIT Val	CTA	CGC	CAC	CIT	GCC	CAG	ccc	TGA	AGCTT	
																				750

Figure 10

SEO. ID NO: 5

r ≥ -1:	Phe	CTC Leu	TTT Phe	CM Leu	CTT Leu	TCC Ser	ATT	TTT Phe	ACC Thr	GTA Val	TGC	Lys	Met	AACA	TAAA	A TA	ACAA	TACA	CT T	AAC
~	~~~	***	, y.c.	G	I	Apa	. لىك	ccc	ACC	CGA	CCI	ידד :	GTO	GGT	AGG	TCC	TAT	GCT	TCG	AGC
	Leu						SF	·>G-(I											
a 29	GCA Ala	Gly	Asp	Gly	Gln	Ile	Lys	Arg	Val	Gln	Glu	Leu	Cys	Lys	Leu	Leu	Pne	Ser	GIN	Pro
3 49	CTG Leu	GTG Val	CTG Leu	GAG Glu	GAG Glu	CCC Pro	His	Cys	CTG Leu	AAG Lys	TAC	ACC	GCC Ala	TGT Cys	Leu CTG	AAG Lys	GAG Glu	CAG Gln	CTC Leu	GCG Ala
;	CTG Leu	GCC	CAG	AGC	CCC	TGC	مكيك	Set AGC Ser	CIG	CCC	GCT	TGG	ccc	ATC Ile	GGC Gly	CTG	TCT Ser	CAC His	GGA Gly	CTC
	~~~	~~~		CNC	ምእር የ	CTC.	سالمة	بلملم	CCC	AGC	CAT	cre	CAA	AGC	TTG	TGC	GGC	GCA	CTG	CAG
89	Leu	Leu	Gly	Gln	Tyr	Leu	Phe	Leu	Gly	Ser	HIS	Leu	GIN	Ser	rea	Cys	GIA	WIG	Deu	GIII
109	Ąsp	Leu	Gln	Leu	Thr	GAC Asp	Leu	Thr	Pro	Gly	Leu	Glu	Pro	ser	116	GIY	GIU	Leu	ATA	GIR
129	Ala	Pro	Ala	Met	Gly	CTG Leu	Glu	Glu	Met	Gln	Gln	Trp	Ile	Thr	Thr	AIG	РПЕ	ASP	AIA	vaı
149	Gly	Ala	Arg	Arg	Gln		Ala	Ser	Ala	Phe	Ala	Pro	Met	AIA	GIA	GIN	Inr	PIO	GIII	Deu
169	Arg	Leu	Val	Arg	Tyr	TCG Ser	Val	Glu	Leu	Phe	ser	GIN	Leu	HIS	Set	WIG	AGI	Leu	441	GI,
189	TTT Phe	CGG Arg	CAT His	GCT Ala	GTT Val	GAG Glu	AGT Ser	AAG Lys	His	Ala	GAT Asp	Gly	GIV	GGA Gly lin	GIV	CCC Pro	GIN	WTG	CTT Leu	CAC His
209	CTT	TAT Tyr	CAG Gln	GCT Ala	TTT Phe	GCC Ala	ATT Ile	TTG Leu	CTC	יאובוג	GCC	AAA	TTC	AAT	GAA	GAA	GGA	TTG	GAT Asp	AAA Lys
229	AAA Lys	GCA Ala	TTT Phe	GAA Glu	ACT Thr	GTA Val	GAA Glu	AAT Asn	GTG Val	TTA Leu	AAA Lys	GTA Val	CAT His	GAT Asp	GAA Glu	TTT Phe	CCA Pro	TGT Cys	CAG Gln	CAG Gln
249	GGA Gly	TTT Phe	CTT Leu	ACC Thr	CAT His	CIT Leu	TCA Ser	AAA Lys	GAC Asp	TGT Cys	AAT Asn	GAA Glu	GCT Ala	TCA Ser	GAG Glu	GAT Asp	GCT Ala	GTT Val	TGT Cys	ACA Thr
269	TGT Cys	TGC Cys	GAC Asp	GCT Ala	ATG Met	GAA Glu	GCT Gly	TAT Tyr	ACC Thr	GAA Glu	CGT Arg	CTT Leu	ACT Thr	GCA Ala	GTT Val	ACA Thr	TGC Cys	TTA Leu	AAA Lys	GAC Asp
				c	~ m	<b>AAA</b> Lys	CAC	C	تسمك	منت	ጥርረ	GAA	AAT	AGA	GAG	CCT	GAA	CAA	AAA	GCA
			C. C.	C	ندملعك	GCT Ala	Δ	TOO	ATG	GTG	GAT	GTT	GAG	CCA	AGA	GTG	TTG	CGA	222	
	000	~~	بمعمد	<b></b>	سنت	CAT H15	ADA	AGA	GCC	ATT	GAA	TAT	TTA	TAC	AAA	AAA	πG			
מר ר	£ 1 =		PD6		LT O	1172	MI U	~~ <u>~</u>	~.10	=	~ 1 4									

Figure 11 (a)

CCG Pro	GAA Glu	CTC Leu	CTT Leu	TTC Phe	TTT Phe	GCT Ala	AAA Lys	AGG Arg	TAT Tyr	AAA Lys	GCT Ala	GCT Ala	TTT Phe	ACA Thr	GAA Glu	TGT Cys	TGC Cys	CAA Gln	GCT Ala	54·
GCT Ala	GAT Asp	AAA Lys	GCT Ala	GCC Ala	TGC Cys	CTG Leu	TTG Leu	CCA Pro	AAG Lys	CTC Leu	GAT Asp	GAA Glu	CTT Leu	CGG Arg	GAT Asp	GAA Glu	GGG Gly	AAG Lys	GCT Ala	369
TCG Ser	TCT Ser	GCC Ala	AAA Lys	CAG Gln	AGA Arg	CTC Leu	AAG Lys	TGT Cys	GCC Ala	AGT Ser	CTC Leu	CAA Gln	<b>AAA</b> Lys	TTT Phe	GGA Gly	GAA Glu	AGA Arg	GCT Ala	TTC Phe	389
AAA Lys	GCA Ala	TGG Trp	GCA Ala	GTA Val	GCT Ala	CGC Arg	CTG Leu	AGC Ser	CAG Gln	AGA Arg	TTT Phe	CCC Pro	<b>AAA</b> Lys	GCT Ala	GAG Glu	TTT Phe	GCA Ala	GAA Glu	GTT Val	<b>4</b> 09
																			CTT Leu	429
GAA Glu	TGT Cys	GCT Ala	GAT Asp	GAC Asp	AGG Arg	GCG Ala	GAC Asp	CTT Leu	GCC Ala	AAG Lys	TAT Tyr	ATC Ile	TGT Cys	GAA Glu	AAT Asn	CAA Gln	GAT Asp	TCG Ser	ATC Ile	449
																			GCC Ala	469
																			GAA Glu	489
																			TTG Leu	509
																			AAG Lys .	529
	TAT <b>T</b> yr																			549
	GTG Val																			569
	GAG Glu																			589
	<b>AA</b> G Lys																			609
	GTG Val																			629
	CTA Leu																			649
																			CTG Leu	669
	GTC Val																			689
GAT Asp	ATA Ile	TGC Cys	ACA Thr	CTT Leu	TCT Ser	GAG Glu	AAG Lys	GAG Glu	AGA Arg	CAA Gln	ATC Ile	AAG Lys	AAA Lys	CAA Gln	ACT Thr	GCA Ala	CTT Leu	GTT Val	GAG Glu	709
	GTG Val																			729
GCA Ala	GCT Ala	TTT Phe	GTA Val	GAG Glu	AAG Lys	TGC Cys	TGC Cys	AAG Lys	GCT Ala	Asp	GAT Asp MstI	Lys	GAG Glu	ACC Thr	TGC Cys	TTT Phe	GCC Ala	GAG Glu	GAG Glu	749
	AAA Lys									GCC	TTA	GGC			CATO	CACAT	TT			763

AAAAGCATCT CAGCCTACCA TGAGAATAAG AGAAAGAAAA TGAAGATCAA AAGCTT

Figure 11 (b)



Figure 12



Figure 13

SEO. ID NO: 6

CC	Leu	Gly	Leu	CAG Gln	Val	Gln	CTC Leu	GAG Glu	CAG Gln	TCT Ser	GGA Gly	CCT Pro	GAG Glu	CTG Leu	GTG Val	AAG Lys	CCT Pro	GGG Gly	GCC Ala	601	
rca Ser	GTG Val	AAG Lys	ATT Ile	TCC Ser	TGC Cys	AAA Lys	GCT Ala	TCT Ser	GGC Gly	TAC Tyr	GCA Ala	TTC Phe	AGT Ser	AGG Arg	TCT Ser	TGG Trp	ATG Met	AAC Asn	TGG Trp	621	
GTG Val	AAG Lys	CAG Gln	AGG Arg	CCT Pro	GGA Gly	CAG Gln	GGT Gly	CTT Leu	GAG Glu	TGG Trp	ATT Ile	GGA Gly	CGG Arg	ATT Ile	TAT Tyr	CCT Pro	GGA Gly	GAT Asp	GGA Gly	641	L
GAT Asp	ACC Thr	AAA Lys	TAC Tyr	AAT Asn	GGG Gly	AAG Lys	TTC Phe	<b>AA</b> G Lys	GGC Gly	AAG Lys	GCC Ala	ACA Thr	CTG Leu	ACT Thr	GCG Ala	GAC Asp	AGA Arg	TCA Ser	TCC Ser	661	l
AGC Ser	ACA Thr	GCC Ala	TAC Tyr	ATG Met	CAG Gln	CTC Leu	AGC Ser	AGC Ser	CTG Leu	ACC Thr	TCT Ser	GTG Val	GGC	TCT Ser	GCG Ala	GTC Val	TAT Tyr	TTC Phe	TGT Cys	681	L
GCA Ala	AAA Lys	GAG Glu	AAC Asn	AAT Asn	AGG Arg	TTC Phe	GAC Asp	GAG Glu	AGG Arg	GGT Gly	TAC Tyr	TAT Tyr	GCT Ala	ATG Met	GAC Asp	TAC Tyr	TGG Trp	GGC Gly	CAA Gln	701	L
GGG Gly	ACC Thr	ACG Thr	GTC Val	ACC Thr	GTC Val	Ser	TCA Ser	<u>Gly</u>	GGC Gly	GCT Gly	Gly	TCG Ser	Gly	Gly	Gly	Gly	TCG Ser	GGT Gly	GGC Gly	72:	1
GGC Gly	GGA Gly	Ser	AAC Asn	Ile	CAG Gln	TTG Leu	ACC Thr	CAG Gln	TCT Ser	CCA Pro	AAT Asn	TCC Ser	ATG Met	TCC Ser	ACA Thr	TCA Ser	GTA Val	GGA Gly	GAC Asp	74:	1
AGG Arg	GTC Val	AGC Ser	ATC Ile	ACC Thr	TGC Cys	AAG Lys	GCC Ala	AGT Ser	CAG Gln	GAT Asp	GTG Val	GAT Asp	ACT Thr	TCT Ser	GTA Val	GCC Ala	TGG Trp	TAT Tyr	CAA Gln	76	1
CAG Gln	AAA Lys	CCA Pro	GGG Gly	CAA Gln	TCT Ser	CCT Pro	AAA Lys	CTA Leu	CTG Leu	ATT	TAC Tyr	TGG Trp	GCA Ala	TCC Ser	ACC Thr	CGG Arg	CAC His	ACT Thr	GGA Gly	78	1
GTC Val	CCT Pro	GAT Asp	CGC Arg	TTC Phe	ACA Thr	GGC Gly	AGT Ser	GGA Gly	TCT Ser	GGG	ACA Thr	GAT Asp	TTC Phe	ACT Thr	CTC Leu	ACC Thr	ATT Ile	AGC Ser	TAA nzA	80	1
GTG Val	CAG Gln	TCT Ser	GAA Glu	GAC Asp	TCG Ser	GCA Ala	GAT Asp	TAT Tyr	TTC Phe	TGT Cys	CAG Gln	CAA Gln	TAT	AGC Ser	AGC Ser	TAT Tyr	CCG Pro	TGG Trp	ACG Thr	23	: 2
	GGT										GCT	<b>.</b>								63	



Figure 15

PRODUIT	Cl ₅₀ (nM)
RG12986	5 0
SAH-VWF694-708	50000
SAH-VWF _{C471,474-&gt;G}	2 0
SAH-VWF _{C471,474-&gt;G}	<10

Figure 16



Figure 17



Figure 18