Analiza wieku Słuchotek

1. Wstęp

Celem jest zrobienie projektu na danych, których współczynniki korelacji są duże (0.8,1). Taka trudność pojawia się często w problemach w biologii. Wybraliśmy bazę danych *Abalone*, jest to baza danych opisująca Słuchotki (mięczaki). Problemem będzie znalezienie wieku "mięczaków". W tym celu będziemy estymować liczbę "pierścieni skorupy" od reszty cech.

1.1. Opis danych

Nasz zbiór danych opisuje pomiary poszczególnych cech słuchotek. Istotną dla informacji z "punktu widzenia" biologii jest, że uchotki mają kształt okrągły albo owalny, zatem powinniśmy się spodziewać dużej korelacji pomiędzy *Długością* oraz Średnicą. Istotne też dla nas będą okresy rozwoju uchotek, ponieważ dojrzałość płciową osiągają dopiero po około 4 latach. **Opis danych**

- \bullet $Ple\acute{c}$ zmienna kategoryczna opisująca płeć osobnika. Możliwe wartości: M samiec, F samica, I niemowlę.
- Długość odległość między dwoma najdalszymi punktami na osi poziomej muszli (mm).
- Średnica szerokość muszli mierzona pod katem prostym do jej długości (mm).
- Wysokość wysokość muszli z mięsem w środku (mm).
- Cała_waga waga całkowita muszli z mięsem (g).
- Waga_po_obraniu waga mięsa po wyjęciu go z muszli, bez żadnych innych części (g).
- Waga_trzewi waga narządów wewnętrznych, które zostają po wykrwawieniu (g).
- Waga_powłoki waga samej muszli po wysuszeniu (g).
- Pierścienie liczba pierścieni widocznych na muszli.

2. Koliniowość ze względu na płeć

2.1. Wstęp

Chcemy sprawdzić, czy zmienna *Pleć* ma istotny wpływ na wartości innych zmiennych objaśniających, ponieważ rozwój osobników może przebiegać odmiennie w zależności od płci (zarówno pod względem wielkości, jak i tempa wzrostu).

2.2. Wnioski

Na podstawie zaprezentowanych macierzy korelacji (Rysunki:1, 2, 3) dla różnych płci, możemy zauważyć, że w przypadku niemowląt obserwujemy bardzo silne korelacje pomiędzy większością zmiennych, a u samic obserwujemy słabsze związki między niektórymi cechami (np. wysokość vs długość). W związku z tym zdecydowaliśmy się stworzyć osobny model dla każdej z płci, $Model_Sex_F$, $Model_Sex_M$, $Model_Sex_I$.

2.3. Opracowanie wyników

Rysunek 1: Korelacja - Płeć I

Rysunek 2: Korelacja - Płeć F

Rysunek 3: Ko
ŗelacja - Płeć ${\mathcal M}$

3. Dobór zmiennych objaśniających

3.1. Wstęp

Celem tego etapu jest wybór odpowiednich zmiennych objaśniających do każdego z modeli regresji liniowej dla poszczególnej płci, które najlepiej tłumaczą zmienną objaśnianą. Stworzyliśmy dodatkowe zmienne: stosunki mas, wymiarów oraz stosunek masy do objętości, gdzie objętość osobnika przybliżyliśmy przez iloczyn długości, wysokości i szerokości.

3.2. Metodologia

Postępowanie przeprowadzamy dla każdego modelu.

- 1. Sprawdzamy wykresy QQ reszt modelu oraz Wykres reszt vs. przewidywanych wartości oraz przeprowadzamy testy: Normalności (Shapiro-Wilk), homoskedastyczności (Breuscha-Pagana).
- 2. Przeprowadzamy analize współliniowości (Vif) dla zmiennych objaśniających, odrzucamy te zmienne dla których współczynnik Vif jest większy od 10
- 3. Przeprowadzamy testy permutacyjne F dla nowo stworzonych zmiennych przy ilości permutacji równej 100,000.
- 4. Odrzucamy H_0 : zmienna nie wnosi istotnej różnicy na poziomie istotności $\alpha=0.05$
- 5. Przeprowadzamy ponownie analizę współlinowości (Vif) naszego modelu i odrzucamy najwyższą wartość dopóki jest ona większa od Vif równego 12.
- 6. Porównujemy R^2 naszego modelu ze wszystkimi zmiennymi (bazowe oraz dodatkowe zmienne) oraz R^2 modelu ze zredukowaną ilością zmiennych (końcowe proponowane).

3.3. Opracowanie wyników

3.3.1 Ogólne

Tabela 1: Wartości p-value testów normalności i homoskedastyczności

Model	Test Shapiro–Wilka	Test Breuscha–Pagana
Model_Sex_F	$2.193e{-23}$	$1.601e{-19}$
Model_Sex_M	$2.311e{-23}$	$2.953e{-28}$
Model_Sex_I	2.887e - 30	$6.007e{-23}$

3.3.2 Model_Sex_I

Tabela 2: Vify - model podstawowy

NAME_INDEX	Długość	Średnica	Wysokość	Cała_waga	Waga_po_obraniu	Waga_trzewi	Waga_powłoki
Model bazowy	37.54204416640646	40.43	7.50	102.49	23.21	20.81	25.08
Model bazowy po redukcji			5.34		6.57		9.04

Tabela 3: F test wyniki

Tested feature	F statistic	P_statistic	P value	Odrzucenie H_0 dla $\alpha = 0.05$
Długość/Wysokość	1.9	16732	0.17	False
Masa/objętość	4.99	2632	0.03	True
Waga_powłoki/Cała_waga	2.57	10659	0.11	False
Waga_po_obraniu/Cała_waga	1.64	15941	0.16	False
Waga_trzewi/Cała_waga	1.81	17660	0.18	False
Waga_powłoki/Waga_po_obraniu	4.29	3826	0.04	True
Waga_trzewi/Waga_po_obraniu	0.52	47014	0.47	False
Waga_trzewi/Waga_powłoki	0.06	80600	0.81	False

3.3.3 Model_Sex_F

Tabela 4: Vify - model podstawowy

NAME_INDEX	Długość	Średnica	Wysokość	Cała_waga	Waga_po_obraniu	Waga_trzewi	Waga_powłoki
Model bazowy	20.64	19.57	1.55	63.39	18.13	9.8	13.02
Model bazowy po redukcji		7.29	1.55		6.02	6.49	4.92

Tabela 5: F test wyniki

Tested feature	F statistic	P_statistic	P value	Odrzucenie H_0 dla $\alpha = 0.05$
Długość/Wysokość	2.2007	11516	0.11517	False
Masa/objętość	0.35558	51252	0.51252	False
Waga_powłoki/Cała_waga	0.04639	83287	0.83287	False
Waga_po_obraniu/Cała_waga	137.94333	0	1e-05	True
Waga_trzewi/Cała_waga	33.58466	0	1e-05	True
Waga_powłoki/Waga_po_obraniu	91.54663	0	1e-05	True
Waga_trzewi/Waga_po_obraniu	26.58653	0	1e-05	True
Waga_trzewi/Waga_powłoki	4.01512	4506	0.04507	True

3.3.4 Model_Sex_M

Tabela 6: Vify - model podstawowy

NAME_INDEX	Długość	Średnica	Wysokość	Cała_waga	Waga_po_obraniu	Waga_trzewi	Waga_powłoki
Model bazowy	31.52	30.62	4.18	84.74	23.38	13.04	16.08
Model bazowy po redukcji		6.9	4.17		6.82	7.76	5.94

Tabela 7: F test wyniki

	Tabela 7. F test wymki						
Tested feature	F statistic	P_statistic	P value	Odrzucenie H_0 dla $\alpha = 0.05$			
Długość/Wysokość	0.04972	82194	0.82194	False			
Masa/objętość	32.83583	0	1e-05	True			
Waga_powłoki/Cała_waga	0.00855	92656	0.92656	False			
Waga_po_obraniu/Cała_waga	117.1675	0	1e-05	True			
Waga_trzewi/Cała_waga	19.88455	0	1e-05	True			
Waga_powłoki/Waga_po_obraniu	54.98979	0	1e-05	True			
Waga_trzewi/Waga_po_obraniu	25.9749	0	1e-05	True			
Waga_trzewi/Waga_powłoki	2.54613	11085	0.11086	False			

Tabela 8: Porównanie modeli regresji dla poszczególnych płci przed i po redukcji zmiennych

Model	R^2 przed redukcją	R^2 po redukcji	Ostateczne zmienne w modelu
Model_Sex_F	0.4018	0.4016	Średnica, Wysokość, Waga_powłoki,
			$Waga_po_obraniu/Cala_waga,$
			$Waga_trzewi/Cala_waga,$
			$Waga_trzewi/Waga_powłoki$
Model_Sex_M	0.4761	0.4747	Średnica, Wysokość,
			Waga_po_obraniu, Masa/objętość,
			$Waga_po_obraniu/Cala_waga,$
			$Waga_trzewi/Cala_waga,$
			$Waga_powloki/Waga_po_obraniu$
Model_Sex_I	0.6163	0.6013	Wysokość, Waga_po_obraniu,
			Masa/Objetość,
			Waga_powłoki/Waga_po_obraniu

3.4. Wnioski i dyskusja

3.4.1 Normalność

W żadnym z analizowanych modeli reszty nie mają rozkładu normalnego, co potwierdziły wyniki testu Shapiro-Wilka oraz nie mają spełnionego założenia o homoskedastyczności - test Breuscha-Pagana (Tabela: 1).

3.4.2 Analiza współliniowości - model podstawowy

W każdym z modeli po analizie współliniowości modelu podstawowego odrzuciliśmy zmienne *Cała_waga*, *Długość*. Dodatkowo w modelu *Model_Sex_I* odrzuciliśmy *Średnica*, *Waga_trzewi* (Tabele: 2, 4, 6)

3.4.3 Permutacyjny test F

Ze względu na niespełnienie założenia o normalności rozkładu reszt (potwierdzone testem Shapiro-Wilka Tabela 1), zastosowanie klasycznego testu F nie było możliwe. W tej sytuacji wybraliśmy permutacyjny test F, który nie wymaga założenia o normalności i pozwala na wiarygodną weryfikację istotności statystycznej nowo wprowadzanych zmiennych objaśniających. W poniższych wnioskach korzystaliśmy z wyników z kodu oraz tabel: 3, 5, 7.

Model_Sex_I W modelu dla niedojrzałych osobników po przeprowadzeniu testu permutacyjnego na poziomie istotności $\alpha=0.05$ odrzucamy zmienne: Dlugość/Wysokość, $Waga_trzewi/Waga_powloki$, $Waga_trzewi/Cala_waga$, $Waga_po_obraniu/Cala_waga$, $Waga_trzewi/Waga_po_obraniu$ oraz $Waga_powloki/Cala_waga$. Następnie ze względu na wysoki współczynnik vif, usunięto zmienną $Waga_powloki$.

Model_Sex_F W przypadku modelu zbudowanego dla samic po przeprowadzeniu testu permutacyjnego na poziomie istotności $\alpha=0.05$ odrzucamy zmienne: Dlugość/Wysokość, Masa/Objętość oraz $Waga_powloki/Cala_waga$. Dodatkowo ze względu na wysoki współczynnik vif, z modelu usunięto zmienne $Waga_trzewi/Waga_po_obraniu$, $Waga_trzewi$, $Waga_po_obraniu$ oraz $Waga_powloki/Waga_po_obraniu$.

 $\mathbf{Model_Sex_M}$ Dla modelu dla samców po przeprowadzeniu testu permutacyjnego na poziomie istotności $\alpha=0.05$ odrzucamy zmienne: Dlugość/Wysokość, $Waga_trzewi/Waga_powloki$ oraz $Waga_powloki/Cala_waga$. Następnie ze względu na wysoki współczynnik vif, z modelu usunięto zmienne $Waga_trzewi$, $Waga_powloki$ oraz $Waga_trzewi/Waga_po_obraniu$.

3.4.4 Poprawność wykonania redukcji

Aby zweryfikować poprawność zastosowanej metodologii redukcji zmiennych, porównaliśmy współczynniki determinacji \mathbb{R}^2 dla modeli zawierających wszystkie zmienne oraz modeli ze zredukowaną liczbą zmiennych (Tabela 8). Zaobserwowane różnice w wartościach \mathbb{R}^2 są nieznaczne, co potwierdza, że proces redukcji nie wpłynął istotnie na jakość modeli. Możemy zatem uznać, że zastosowana metodologia selekcji zmiennych jest poprawna.