%pip install -U dataprep

```
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.7/dist-pa
Requirement already satisfied: fsspec>=0.6.0 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: partd>=0.3.10 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: Werkzeug>=2.0 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: itsdangerous>=2.0 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: importlib-metadata>=3.6.0 in /usr/local/lib/python3.7/
Requirement already satisfied: click>=8.0 in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: Six in /usr/local/lib/python3.7/dist-packages (from fl
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: traitlets>=4.3.1 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.7/
Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.7/di
Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.7/dist-packag
Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.7/
Requirement already satisfied: jupyter-client in /usr/local/lib/python3.7/dist-packag
Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3
Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (fro
Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (fr
Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: ply in /usr/local/lib/python3.7/dist-packages (from js
Requirement already satisfied: jupyter-core in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.7/di
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.7
Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/d
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: locket in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (fro
Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: asttokens<3.0.0,>=2.0.0 in /usr/local/lib/python3.7/di
Requirement already satisfied: pure eval<1.0.0 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: executing<0.9.0,>=0.8.3 in /usr/local/lib/python3.7/di
Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: nbconvert in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: Send2Trash in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: ptyprocess in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: idna>=2.0 in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.7/dist-pa
Requirement already satisfied: bleach in /usr/local/lib/python3.7/dist-packages (from
```

```
Requirement already satisfied: testpath in /usr/local/lib/python3.7/dist-packages (trequirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.7/dist-Requirement already satisfied: defusedxml in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: webencodings in /usr/local/lib/python3.7/dist-packages
```

```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files unc
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the
from dataprep.eda import create report
from sklearn.model selection import train test split
from sklearn.metrics import auc, classification_report, roc_auc_score
from sklearn.ensemble import RandomForestClassifier
import warnings
warnings.filterwarnings('ignore')
```

▼ Reading Data

```
train=pd.read_csv('/content/beginner.csv')
train.head()
```

		YEAR	SERIAL	MONTH	HWTFINL	CPSID	ASECFLAG	HFLAG	ASECWTH	REGION	ST
	0	2015	16566	3	NaN	0	1.0	NaN	1671.32	12	
	1	2020	49554	6	1930.4505	20200504991400	NaN	NaN	NaN	33	
print	("S	hape o	f Train	Dataset	: "+str(tr	ain.shape))					
	Sha	pe of	Train Da	taset:	(54737, 29)					
	4	2018	31356	3	NaN	20170102597500	1.0	NaN	1719.16	22	
					_				_		

If we exclude the Column we plan to predict, we have 28 columns to use as features and we are going to predict the INCWAGE column

▼ Let's check the type of these columns

train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54737 entries, 0 to 54736
Data columns (total 29 columns):
     Column
                Non-Null Count
                                 Dtype
     YEAR
 0
                54737 non-null
                                 int64
 1
     SERIAL
                54737 non-null
                                 int64
 2
    MONTH
                54737 non-null
                                int64
 3
    HWTFINL
                30160 non-null
                                float64
 4
    CPSID
                54737 non-null
                                 int64
 5
     ASECFLAG
                26695 non-null
                                 float64
 6
    HFLAG
                2028 non-null
                                 float64
 7
     ASECWTH
                24577 non-null float64
 8
     REGION
                54737 non-null
                                int64
 9
                54737 non-null
     STATEFIP
                                 int64
 10
    NFAMS
                54737 non-null
                                 int64
 11
    PERNUM
                54737 non-null
                                 int64
 12
    WTFINL
                30160 non-null
                                 float64
13
    CPSIDP
                54737 non-null
                                 int64
 14
    ASECWT
                24577 non-null
                                 float64
15
    AGE
                54737 non-null
                                int64
    SEX
                54737 non-null
                                 int64
 16
 17
     RACE
                54737 non-null
                                 int64
 18
                54737 non-null
    MARST
                                 int64
    BPL
 19
                54737 non-null
                                 int64
 20
    EMPSTAT
                54737 non-null
                                 int64
 21
    OCC
                54737 non-null
                                 int64
 22
                54737 non-null
    UHRSWORKT
                                 int64
 23
    WKSTAT
                54737 non-null
                                 int64
 24
    JOBCERT
                30160 non-null
                                 float64
 25
     EDUC
                54737 non-null
                                 int64
 26
     EDDIPGED
                30160 non-null
                                 float64
 27
     INCWAGE
                24577 non-null
                                 float64
```

```
28 OINCWAGE 24577 non-null float64
```

dtypes: float64(10), int64(19)

memory usage: 12.1 MB

We have 8 columns considered as Categorical features and the rest are numerical features

▼ Let's check for missing values

train.isna().sum()

YEAR	0
SERIAL	0
MONTH	0
HWTFINL	24577
CPSID	0
ASECFLAG	28042
HFLAG	52709
ASECWTH	30160
REGION	0
STATEFIP	0
NFAMS	0
PERNUM	0
WTFINL	24577
CPSIDP	0
ASECWT	30160
AGE	0
SEX	0
RACE	0
MARST	0
BPL	0
EMPSTAT	0
OCC	0
UHRSWORKT	0
WKSTAT	0
JOBCERT	24577
EDUC	0
EDDIPGED	24577
INCWAGE	30160
OINCWAGE	30160
dtype: int64	

To have quick EDA we will use a powerful library that provides insights on the dataset

```
report = create_report(train, title='My Report')
```

report

My Report

Overview

Variables ≡

Interactions

Correlations

Missing Values

Overview

Dataset Statist	ICS	Dataset Insights			
Number of Variables	29	HWTFINL and WTFINL have similar distributions	Similar Distribution		
Number of Rows	54737	CPSID and CPSIDP have similar	Similar		
Missing Cells	299699	distributions	Distribution		
Missing Cells (%)	18.9%	ASECWTH and ASECWT have similar distributions	Similar Distribution		
Duplicate Rows	0	HWTFINL has 24577 (44.9%)	DISTIBUTION		
Duplicate Rows (%)	0.0%	missing values	Missing		
Total Size in Memory	12.1 MB	ASECFLAG has 28042 (51.23%) missing values	Missing		
Average Row Size in Memory	232.0 B	(HFLAG) has 52709 (96.3%)	Minning		
Variable Types	Numerical: 21	missing values	Missing		
	Categorical: 8	ASECWTH has 30160 (55.1%) missing values	Missing		
		WTFINL has 24577 (44.9%) missing values	Missing		
		ASECWT has 30160 (55.1%) missing values	Missing		
		JOBCERT has 24577 (44.9%) missing values	Missing		

Variables

Sort by Feature order ✓ Reverse order	YEAR
nnroximate	

Interactions

Correlations

Cleaning the data

train.dropna()

YEAR SERIAL MONTH HWTFINL CPSID ASECFLAG HFLAG ASECWTH REGION STATEFIP

0 rows × 29 columns

E & 2.2 0 - 4

▼ What about Categorical variables ? => Ordinal encoder

```
# Handling categorical attributes
from sklearn.preprocessing import OrdinalEncoder
ordinal_encoder = OrdinalEncoder()
train['EDDIPGED'] = ordinal encoder.fit transform(train[['EDDIPGED']])
train['JOBCERT'] = ordinal encoder.fit transform(train[['JOBCERT']])
train['EMPSTAT'] = ordinal_encoder.fit_transform(train[['EMPSTAT']])
train['MARST'] = ordinal encoder.fit transform(train[['MARST']])
train['SEX'] = ordinal_encoder.fit_transform(train[['SEX']])
train['REGION'] = ordinal encoder.fit transform(train[['REGION']])
train['HFLAG'] = ordinal encoder.fit transform(train[['HFLAG']])
train['ASECFLAG'] = ordinal_encoder.fit_transform(train[['ASECFLAG']])
           IVIISSING
df=train
#Dropping non correlated columns to INCWAGE
1=['YEAR', 'SERIAL', 'REGION', 'STATEFIP', 'NFAMS', 'SEX', 'RACE', 'BPL', 'HFLAG',]
df.drop(l, inplace=True, axis=1)
#Removing NAN values
```

```
tor 1 in dt.columns:
   vals = pd.to_numeric(df[i], errors='coerce')
   df[i] = vals.fillna(vals.mean())
```

df

	MONTH	HWTFINL	CPSID	ASECFLAG	ASECWTH	PERNUM	WTF
0	3	2969.653939	0	0.000000	1671.320000	1	3041.393
1	6	1930.450500	20200504991400	0.079341	1763.612314	3	1718.642
2	3	2969.653939	0	0.000000	433.890000	2	3041.393
3	3	2969.653939	20091201475800	0.000000	2996.700000	1	3041.393
4	3	2969.653939	20170102597500	0.000000	1719.160000	3	3041.393
•••						•••	
54732	10	766.129300	20191004211300	0.079341	1763.612314	1	766.129
54733	3	2969.653939	20100300901100	0.000000	1477.030000	1	3041.393
54734	11	873.029400	20201006551800	0.079341	1763.612314	3	1468.447
54735	12	4327.645400	20201005723900	0.079341	1763.612314	2	4464.994
54736	3	2969.653939	0	0.000000	570.480000	2	3041.393

54737 rows × 20 columns


```
df = df[df.get("INCWAGE") != 0]
vals = pd.to_numeric(df['INCWAGE'], errors='coerce')
vals
```

```
0
         1.000000e+05
1
         2.257584e+07
5
         1.000000e+08
6
         2.257584e+07
         2.257584e+07
54732
         2.257584e+07
54733
         3.600000e+03
54734
         2.257584e+07
54735
         2.257584e+07
54736
         1.000000e+08
```

Name: INCWAGE, Length: 47241, dtype: float64

- The target variable is very unbalanced so you need to figure out how to fight overfitting in this problem
- ▼ For now we will use only the numerical features

```
df.columns
     Index(['MONTH', 'HWTFINL', 'CPSID', 'ASECFLAG', 'ASECWTH', 'PERNUM', 'WTFINL',
            'CPSIDP', 'ASECWT', 'AGE', 'MARST', 'EMPSTAT', 'OCC', 'UHRSWORKT',
            'WKSTAT', 'JOBCERT', 'EDUC', 'EDDIPGED', 'INCWAGE', 'OINCWAGE'],
           dtype='object')
main_cols=['MONTH', 'HWTFINL', 'CPSID', 'ASECFLAG', 'ASECWTH', 'PERNUM', 'WTFINL',
       'ASECWT', 'AGE', 'MARST', 'EMPSTAT', 'OCC', 'UHRSWORKT', 'WKSTAT',
       'JOBCERT', 'EDUC', 'EDDIPGED']
X=df[main_cols]
y=df.INCWAGE
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.33,random_state=42)
from sklearn.ensemble import RandomForestRegressor
clf=RandomForestRegressor(max depth=100, random state=101,
                          max features=None, min samples leaf=15)
clf.fit(X train,y train)
     RandomForestRegressor(max depth=100, max features=None, min samples leaf=15,
                           random state=101)
y_pred=clf.predict(X_test)
print(y_pred)
     [4.54636958e+04 2.08239721e+04 2.25758421e+07 ... 9.99999990e+07
      2.25758421e+07 9.99999990e+07]
print(clf.score(X train, y train))
print(clf.score(X_test, y_test))
     0.9999993441476379
     0.999999255366242
```

✓ 0s completed at 9:35 PM

×