

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ	Фундаментальные науки	
—— КАФЕДРА	Прикладная математика	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Поиск потенциала электрического поля между заряженными пластинами

Студент	ФН2-62Б		А. Д. Егоров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руковолите	ль курсовой работы		К. Е. Казаков
т уповодите	ing people in particular	(Подпись, дата)	(И.О. Фамилия)

Оглавление

В	веден	ие	3
1.	Пос	становка задачи	3
2.	Обз	ор задачи	3
	2.1.	Физическая составляющая задачи	3
	2.2.	Математическая постановка задачи	4
3.	Реп	пение двумерного уравнения Лапласа	5
	3.1.	Аппроксимация уравнения Лапласа	5
	3.2.	Метод конечных элементов на треугольной сетке	6
		3.2.1. Триангуляция области	6
		3.2.2. Сборка глобальной матрицы жесткости	8
		3.2.3. Применение граничных условий первого рода	9
		3.2.4. Применение периодических граничных условий	9
4.	При	имеры решения задачи	11
	4.1.	Задача №1 (задача с граничными условиями первого рода)	11
		4.1.1. Условие задачи	11
		4.1.2. Решение	12
		4.1.3. Оценка погрешности аппроксимации решения	14
		4.1.4. Погрешность аппроксимации на сетках	15
	4.2.	Задача №2 (периодические граничные условия)	18
		4.2.1. Условие задачи	18
		4.2.2. Решение	18
		4.2.3. Проверка решения на удовлетворение условиям периодичности .	19
	4.3.	Задача № 3 (периодические граничные условия)	21
		4.3.1. Условие задачи	21
		4.3.2. Решение	21
		4.3.3. Проверка решения на удовлетворение условиям периодичности .	22
5 .	Про	ограммная реализация	24
За	клю	чение	24
Сг	іисоі	к использованных источников	25

Введение 3

Введение

Задача по вычислению потенциала электрического поля является задачей раздела электростатики. Она возникает при вычислении электростатического поля в различных конденсаторах. Ее решение сводится к решению уравнения Пуассона или его частного случая — уравнения Лапласа. Данные уравнения появляются и при решении ряда задач из других сфер: аэродинамики, гидродинамики, механики сплошных сред. Так что методы примененные в данной работе, могут быть применены и к другим задачам, что показывает актуальность данной проблемы.

1. Постановка задачи

Найти потенциал электрического поля между двумя бесконечными пластинами, профиль одной из которых плоский, а профиль другой описывается некоторой периодической функцией. Значения потенциала на пластинах заданы и константны.

2. Обзор задачи

2.1. Физическая составляющая задачи

Для постоянного электрического (электростатического) поля уравнения Максвелла имеют вид

$$\operatorname{div}\mathbf{E} = 4\pi\rho,\tag{1}$$

$$rot \mathbf{E} = 0, \tag{2}$$

где ρ — объемная плотность внешних зарядов. Электрическое поле **E** выражается через только скалярный потенциал соотношением

$$\mathbf{E} = -\mathrm{grad}\varphi,\tag{3}$$

подставляя (3) в (1), получим уравнение, которому удовлетворяет потенциал постоянного электрического поля:

$$\Delta \varphi = -4\pi \rho. \tag{4}$$

Уравнение (4) есть уравнение Пуассона. При $\rho = 0$, т.е. при отсутствии внешних сил, потенциал удовлетворяет уравнению Лапласа [1]

$$\Delta \varphi = 0. \tag{5}$$

2.2. Математическая постановка задачи

Из условия поставленной задачи известно, что внешних сил нет, следовательно, потенциал электростатического поля должен удовлетворять уравнению (5). Через функцию w(x) зададим профиль искривленной пластины, w(x) — некоторая периодическая функция с периодом T, т.е. w(x) = w(x+T). Пусть плоская пластина находится над искривленной на уровне y_a . Значение потенциала на пластинах заданы и константны, обозначим значение на верхней (плоской) пластине как φ_a , на нижней (искривленной) — φ_w . Так как профиль профиль задан периодической функцией, следовательно необходимо использовать условие равенства потенциалов в точках x и x+T, т.е. $\varphi(x,y)=\varphi(x+T,y)$.

Из этих условий составим систему, которую требуется решить:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, y_a) = \varphi_a, \\ \varphi(x, w(x)) = \varphi_w, \\ \varphi(x, y) = \varphi(x + T, y). \end{cases}$$

$$(6)$$

Рис. 1. Иллюстрация области, в которой будет решаться задача

3. Решение двумерного уравнения Лапласа

3.1. Аппроксимация уравнения Лапласа

Рассмотрим уравнение Лапласа в двумерной области $\Omega \subset \mathbb{R}^2$

$$\begin{cases} -\Delta u = 0 & \text{в } \Omega, \\ u = g & \text{на } \Gamma_D, \end{cases}$$

где Γ_D — часть границы области, на которой заданы граничные условия первого рода, $\Gamma_D = \partial \Omega, \, \Gamma_D \neq \varnothing.$

Опираясь на сведения из источника [2], представим решение задачи в виде $u=u_0+u_g$, где функция u_0 обращается в ноль на границе Γ_D а u_g — некоторая, произвольная, но наперед заданная функция, значения которой совпадают с g на границе области, $u_g|_{\Gamma_D}=g$.

И переходим к следующей задаче с однородными граничными условиями первого рода на Γ_D относительно функции u_0 :

$$\begin{cases} -\Delta u = \Delta u_g \text{ B } \Omega, \\ u_0 = 0 \text{ Ha } \Gamma_D. \end{cases}$$

Запишем слабую постановку задачи для определения u_0 , способом описанным в разделе **16.3.1** источника [2]: необходимо определить $u_0 \in V_D$, такое, что

$$\int_{\Omega} \nabla u_0 \cdot \nabla v \, d\Omega = -\int_{\Omega} \nabla u_g \cdot \nabla v \, d\Omega, \quad v \in V_D,$$

где пространство V_D состоит из функций, имеющих суммируемые с квадратом первые производные и обращающихся в ноль на части Γ_D границы расчетной области:

$$V_D = \{ v \in V : v|_{\Gamma_D} = 0 \},$$

а пространство V состоит из произвольных заданных в Ω функций, имеющих суммируемые с квадратом первые производные.

Для аппроксимации задачи с помощью МКЭ рассмотрим конечномерное пространство V_h , аппроксимирующее пространство V и пространство $V_{D,h} = V_h \cap V_D(\Omega)$, элементы которого приближают элементы пространства V_D .

Пусть функция $u_{g,h} \in V_h$ представляет собой аппроксимацию функции u_g , задающей граничное условие первого рода. В качестве функции $u_{g,h}$.

Тогда конечномерная задача примет вид:

$$\int_{\Omega} \nabla u_{0,h} \cdot \nabla v_h \, d\Omega = -\int_{\Omega} \nabla u_{g,h} \cdot \nabla v_h \, d\Omega, \quad v_h \in V_{D,h},$$

Пусть φ_i , $\mathbf{i} = \overline{1,N}$, — базис в пространстве V_h , причем часть функций φ_i с номерами $i \in I$ образуют базис в пространстве $V_{D,h}$, т.е. обращаются в ноль на границе Γ_D . Количество таких индексов будем считать равным $M = |I| < N, \ |I| > 1$.

Тогда последнее уравнение будет эквивалентно

$$\int_{\Omega} \nabla u_{0,h} \cdot \nabla \varphi_i \, d\Omega = -\int_{\Omega} \nabla u_{g,h} \cdot \nabla \varphi_i \, d\Omega, \quad i \in I.$$

Представляя неизвестное решение в виде линейной комбинации базисных функций:

$$u_{0,h} = \sum_{i \in I} u_{0,h,i} \varphi_i, \quad u_{g,h} = \sum_{i=1}^{N} u_{g,h,i} \varphi_i,$$

окончательно получим СЛАУ для определения неизвестных коэффициентов $U_h = \{u_{0,h,i}\}:$

$$Au_{0,h} = b,$$

где $A = A_{M \times M}$ — матрица жесткости, $b = b_{M \times 1}$,

$$A_{ij} = \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega, \quad i, j \in I, \tag{7}$$

$$b_{i} = -\sum_{j=1}^{N} u_{g,h,j} \int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega, \quad i \in I.$$
 (8)

3.2. Метод конечных элементов на треугольной сетке

3.2.1. Триангуляция области

Зададим в нашей области Ω правильную триангуляцию \mathcal{T} , т. е. такое разбиение области Ω на треугольные ячейки, что любые два треугольника имеют либо общее ребро, либо общую вершину, либо пустое пересечение. Таким образом,

$$\Omega = \bigcup_{T \in \mathcal{T}} T.$$

Каждый треугольник T при этом задается набором трех своих узлов P_k с координатами $P_k = (x_k, y_k)$. Будем считать, что узлы треугольника обходятся в положительном направлении (против хода часовой стрелки).

Рассмотрим простейший случай: выберем базисные функции φ_k такие, что φ_k — кусочно-линейная функция, принимающая значение единица в узле P_k и ноль во всех остальных узлах, в пределах одного треугольника она продолжена линейно.

В силу аддитивности интеграла относительно области интегрирования формулы (7) и (8) могут быть записаны в виде

$$A_{ij} = \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega, \quad i, j \in I,$$

$$(9)$$

$$b_{i} = -\sum_{j=1}^{N} u_{g,h,j} \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega, \quad i \in I.$$
 (10)

Таким образом, задача вычисления интегралов для коэффициентов матрицы жесткости задачи и ее правой части сводится к задаче вычисления тех же интегралов по отдельным треугольникам.

Рассмотрим один из треугольников T триангуляции \mathcal{T} . Будем считать, что его вершины имеют координаты $P_i = (x_i, y_i), \ i = \overline{1,3}$. Пусть $\varphi_i, \ i = \overline{1,3}$, — базисные функции соответствующие этим вершинам и данному треугольнику. Таким образом

$$\varphi_i(x_j, y_j) = \delta_{ij}, \ i, j = 1, 2, 3.$$

Функции φ_i являются линейными в пределах T и имеют следующий вид

$$\varphi_{i}(x,y) = \frac{\det \begin{pmatrix} 1 & x & y \\ 1 & x_{i+1} & y_{i+1} \\ 1 & x_{i+2} & y_{i+2} \end{pmatrix}}{\det \begin{pmatrix} 1 & x_{i} & y_{i} \\ 1 & x_{i+1} & y_{i+1} \\ 1 & x_{i+2} & y_{i+2} \end{pmatrix}}, \quad i = 1, 2, 3, \tag{11}$$

где для удобства обозначения считается, что $P_4 = P_1$, $x_4 = x_1$, $y_4 = y_1$, аналогично индекс 5 идентичен индексу 2.

Из формулы (11) получаем следующие соотношения:

$$\nabla \varphi_i(x, y) = \frac{1}{2|T|} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix},$$

где |T| — площадь треугольника T, такая, что

$$|T| = \frac{1}{2} det \begin{pmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{pmatrix}.$$

В результате получаем следующее выражение для матрицы жесткости конечного элемента T:

$$A_{T,ij} = \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega = \frac{|T|}{(2|T|)^{2}} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix}^{T} \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}, \quad i, j = 1, 2, 3. \tag{12}$$

3.2.2. Сборка глобальной матрицы жесткости

В предыдущем пункте было рассмотрено, как составляется матрица жесткости для одного элемента T триангуляции \mathcal{T} . Основываясь на формулах (9, 10, 12) для каждого элемента T триангуляции \mathcal{T} имеем:

- A_T симметричная матрица размером 3×3 ,
- b_T вектор правой части, состоящий из 3, компонент,
- u_T вектор неизвестных, состоящий из 3 компонент.

Для решения задачи необходимо составить полную систему Au = b, где A — матрица жесткости размером $N \times N$, b — вектор правой части длины N, u — вектор неизвестных длины N, N — количество узлов триангуляции \mathcal{T} , для этого нужно собрать все локальные матрицы жесткости A_T , т. е. учесть вклад каждого конечного элемента.

Проиллюстрируем эту процедуру на примере. У нас есть треугольник T, составленный из узлов $P_1=(x_1,y_1),\ P_3=(x_3,y_3),\ P_5=(x_5,y_5)$ (номера узлов взяты из глобальной нумерации), для него были получены следующая матрица жесткости A_T и вектор правой части b_T

$$A_T = \begin{pmatrix} 1.3 & -0.5 & 7 \\ -0.5 & -0.45 & 0.3 \\ 7 & 0.3 & 2.1 \end{pmatrix}, \quad b_T = \begin{pmatrix} 2 \\ 2.1 \\ 1 \end{pmatrix}.$$

Допустим, что полная система состоит из 7 узлов. Тогда мы расширяем матрицу A_T до размера 7×7 , добавляя нулевые строки и столбцы на место отсутствующих узлов, аналогично для вектора b_T . Таким образом получаем следующие матрицу и вектор правой части

$$\widehat{A}_T = \begin{pmatrix} 1.3 & 0 & -0.5 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.5 & 0 & -0.45 & 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & 0.3 & 0 & 2.1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad \widehat{b}_T = \begin{pmatrix} 2 \\ 0 \\ 2.1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Тогда для полной системы матрица A и вектор правой правой части b имеют следующий вид

$$A = \sum_{T \in \mathcal{T}} \widehat{A}_T, \quad b = \sum_{T \in \mathcal{T}} \widehat{b}_T.$$

3.2.3. Применение граничных условий первого рода

Полную систему уравнений Au = b можно записать в виде

$$\sum_{j=1}^{N} a_{ij} u_j = b_i, \quad i = \overline{1, N}, \tag{13}$$

где a_{ij} — компоненты матрицы A, а b_j , и u_j — компоненты вектора правой части b и вектора неизвестных u соответственно. Значения решения в узлах, принадлежащих границе Γ_D известны и равны $u_k = g(P_k), \forall k \in K$, где K — множество индексов узлов принадлежащих границе Γ_D . Тогда уравнения (13) могут быть перезаписаны следующим образом

$$\sum_{j \in I} a_{ij} u_j = b_i - \sum_{k \in K} a_{ij} g(P_j), \quad i \in I,$$

$$(14)$$

где, как было указано выше, I — множество индексов узлов, лежащих внутри области, |I| + |K| = N. Что приводит к уменьшению размера матрицы A от $N \times N$ до $M \times M$, по средствам удаления строк и столбцов с номерами $k \in K$ [2].

3.2.4. Применение периодических граничных условий

В поставленной задаче помимо условий первого рода дополнительно наложены условия периодичности на левой и правой границах. Обозначим множество индексов узлов, принадлежащих данной данной части границы, как PB. Это множество такое, что

$$PB = PB_l \cup PB_r$$

где PB_l — множество индексов узлов принадлежащих левой границе, PB_r — множество индексов узлов принадлежащих правой границе. Зададим такое разбиение исходной области, что количество узлов на левой и правой границах будет одинаково, т. е. $|PB_l| = |PB_r|$ и будет выполнено следующее условие: для любого узла P, принадлежащего левой границе PB_l , найдется единственный узел \widetilde{P} , принадлежащий правой границе PB_r , такой, что вертикальные координаты этих узлов будут совпадать, т. е.

$$\forall P = P(x, y) \in PB_l \ \exists ! \widetilde{P} = P(\widetilde{x}, \widetilde{y}) \in PB_r : \ y = \widetilde{y}.$$

Тогда можно задать массив с парами индексов таких узлов, а условие периодичности, предполагает равенство значений в соответствующих парах узлов.

Пусть на узлы P_p и P_q наложено условие периодичности, т. е.

$$u_p = u(P_p) = u(P_q) = u_q.$$

Тогда, чтобы учесть периодичность нужно изменить систему, полученную на предыдущем этапе. Применяется следующий алгоритм:

- заменить все значения в p-ом ряду матрицы A на $a_{pj}+a_{qj}$, т. е. сложить p-ую и q-ую строки, аналогично для вектора правой части b: заменить b_p на b_p+b_q ,
- заметь q-ую системы на условие $u_p u_q = 0$.

Однако, при данном подходе симметричность матрицы системы теряется. Если симметричность важна, можно поступить, как в случае с граничными условиями первого рода:

- заменить все значения в p-ой строке матрицы A на $a_{pj} + a_{q,j}$, т. е. сложить p-ую и q-ую строки, аналогично для вектора правой части b: заменить b_p на $b_p + b_q$,
- заменить все значения в p-ого столбца матрицы A на $a_{jp}+a_{jq}$, т. е. сложить p-ый и q-ый столбцы,
- ullet удалить q-ую строку и q-ый столбец из системы.

В результате размер решаемой системы уменьшится на единицу, а условие $u_p = u_q$ будет применено уже к итоговому решению [3]. Таким образом рассматриваются все узлы, на которые наложено условие периодичности.

4. Примеры решения задачи

4.1. Задача № 1 (задача с граничными условиями первого рода)

4.1.1. Условие задачи

Для проверки алгоритма, рассмотрим его работу на примере задачи для которой решение известно: поиск потенциала в прямоугольной области $\Omega = [0,4] \times [0,2]$ с граничными условиями первого рода:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, 0) = \varphi(0, y) = \varphi(4, y) = 0, \\ \varphi(x, 2) = 10. \end{cases}$$

Точное решение этой задачи:

$$\varphi(x,y) = \sum_{n=1}^{\infty} \frac{20\left(1 - (-1)^n\right)}{\pi n \left[\exp\left(-\frac{\pi n}{2}\right) - \exp\left(\frac{\pi n}{2}\right)\right]} \left[\exp\left(-\frac{\pi n}{4}y\right) - \exp\left(\frac{\pi n}{4}y\right)\right] \sin\left(\frac{\pi n}{4}x\right)$$
(15)

Естественно, все члены ряда вычислить не получится, ограничимся первыми 350. Тогда точное решение в области $[0,4] \times [0,2]$ выглядит как на рис. 2.

Рис. 2. Точное решение задачи № 1

4.1.2. Решение

Численное решение будем искать на сетках с разными размерами конечного элемента: будет варьироваться параметр S_{max} , отвечающий за максимальную площадь конечного элемента. Для построения сеток в данном примере использовалась библиотека CALFEM [4], в которой отношение самой длинной и самой короткой сторон треугольного конечного элемента в среднем стремится к 1.

Полученные сетки с параметром S_{max} равным 0.05, 0.01, 0.001 выглядят следующим образом:

Рис. 3. Иллюстрации разбиения области Ω задачи № 1: a — параметр $S_{max} \to 0.05;$ b — параметр $S_{max} \to 0.01;$ c — параметр $S_{max} \to 0.001$

Для того, чтобы в дальнейшем качественно сравнить результаты, граничные условия для алгоритма МКЭ будут задаваться с помощью точного решения. Тогда решения поставленной задачи, полученные на сетках рис. 3, выглядят следующим образом:

Рис. 4. Численное решение задачи № 1 с разбиением области Ω на элементы с параметром $S_{max} \to 0.05$

Рис. 5. Численное решение задачи № 1 с разбиением области Ω на элементы с параметром $S_{max} \to 0.01$

Рис. 6. Численное решение задачи № 1 с разбиением области Ω на элементы с параметром $S_{max} \to 0.001$

4.1.3. Оценка погрешности аппроксимации решения

Для оценки погрешности полученного решения u_{approx} относительно точного решения u_{exact} возьмем среднее значении абсолютной погрешности по всем узлам (16) и квадрат погрешности решения в норме L_2 (17):

$$\operatorname{avg}(\operatorname{AbsErr}) = \frac{1}{N} \sum_{i=1}^{N} |u_{exact,i} - u_{approx,i}|, \qquad (16)$$

где N — количество узлов, $u_{exact,i},\ u_{approx,i}$ — точное и приближенное решения в i-ом узле;

$$\operatorname{Err}_{L_2}^2 = \|u_{exact} - u_{approx}\|_{L_2}^2 = \int_S (u_{exact} - u_{approx})^2 dS, \tag{17}$$

где S — площадь области Ω . Численный аналог формулы (17) получается следующим образом:

$$\int_{S} (u_{exact} - u_{approx})^{2} dS = \sum_{i=1}^{N_{el}} \int_{S_{i}} (u_{exact} - u_{approx})^{2} dS,$$

$$\int_{S_{i}} (u_{exact} - u_{approx})^{2} dS \approx \frac{S_{i}}{N_{v}} \sum_{j=1}^{N_{v}} (u_{exact,ij} - u_{approx,ij})^{2},$$

$$u_{approx,ij} = \sum_{k=1}^{N_{v}} u_{approx,ij} \varphi_{ik},$$

где где N_{el} — количество конечных элементов, S_i — площадь i-ого конечного элемента, N_v — количество узлов конечного элемента, $u_{exact,ij}$, $u_{approx,ij}$ — точное и приближенное значения решения в j-ом узле i-ого элемента, φ_{ik} — базисная функция в k-ом узле i-ого конечного элемента.

Так как в качестве конечного элемента выбран треугольный элемент, а базисные функции такие, что имеют значение 1 в своем узле и 0 во всех остальных, то формула для вычисления погрешности решения в норме L_2 примет вид

$$\operatorname{Err}_{L_2}^2 \approx \sum_{i=1}^{N_{el}} S_i \sum_{j=1}^3 \frac{(u_{exact, ij} - u_{approx, ij})^2}{3}.$$
 (18)

4.1.4. Погрешность аппроксимации на сетках

Для анализа качества аппроксимации дополнительно построим решения на сетках с параметром S_{max} равным 0.005, 0.0005.

Таблица 1. Оценка погрешности аппроксимации решения в зависимости от м	акси-
мальной площади конечного элемента для задачи № 1	

Количество	Максимальная	Средняя длина		
конечных	площадь конечного	ребра конечного	avg(AbsErr)	$\operatorname{Err}^2_{L_2}$
элементов	элемента, S_{max}	элемента, h		
216	0.05	0.3	0.0289	0.0539
1020	0.01	0.135	0.0121	0.0147
1874	0.005	0.1	0.0044	0.0042
10778	0.001	0.041	0.00107	0.00096
22124	0.0005	0.029	0.00053	0.00046

Из таблицы 1 видно, что $\operatorname{avg}(\operatorname{AbsErr})$ и $\operatorname{Err}^2_{L_2}$ являются величинами порядка $O(h^2)$ или же $O(S_{max})$ и меняются линейно в зависимости от площади конечного элемента.

Исследуем зависимость погрешности решения от отношение самой длинной и самой короткой сторон треугольного конечного элемента. Для этого построим сетки с помощью Wolfram Mathematica, с параметром S_{max} равным 0.05, 0.01, 0.001.

Рис. 7. Иллюстрации разбиения области Ω задачи \mathbb{N} 1 с параметром $S_{max} \to 0.01$: a — сетка Wolfram Mathematica; b — сетка CALFEM;

На этапе построения сетки видно, что, в отличие от CALFEM, где в среднем отношение большего и меньшего ребер конечного элемента $\frac{h_{max}}{h_{min}} \approx 1.1$, сетка в Wolfram Mathematica выходит менее структурированной, для нее отношение большего и меньшего ребер в среднем равно $\frac{h_{max}}{h_{min}} \approx 1.4$.

Таблица 2. Сравнение решений задачи $N 1$ в зависимости от отношения большего и
меньшего ребер конечного элемента

Средняя длина ребра конечного элемента, <i>h</i>	$\operatorname{avg}\left(\frac{h_{max}}{h_{min}}\right)$	$\max\left(\frac{h_{max}}{h_{min}}\right)$	avg(AbsErr)	$\operatorname{Err}^2_{L_2}$
0.3	1.1	1.5	0.03	0.05
0.3	1.4	2	0.02	0.034
0.135	1.1	1.4	0.01	0.015
0.127	1.4	2.3	0.008	0.013
0.04	1.1	1.4	0.001	0.001
0.04	1.4	2.3	0.003	0.007
0.038	1	1.5	0.0007	0.0004
0.036	1.4	2.3	0.0052	0.0047

Из таблицы видно, что при уменьшении ребра h, отношение длин сторон конечного элемента avg $\left(\frac{h_{max}}{h_{min}}\right)$ начинает играть существенную роль. Также отдельно рассмотрим узлы сетки, в которых абсолютная погрешность отличается от своего среднего значения больше чем на 20%.

Рис. 8. Иллюстрация точек с наибольшим отклонением численного решения от точного для задачи № 1 с параметром $S_{max} \to 0.05$: a — на сетке с avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.4$; b — на сетке с avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.1$

Рис. 9. Иллюстрация точек с наибольшим отклонением численного решения от точного для задачи № 1 с параметром $S_{max} \to 0.01$: a — на сетке с avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.4$; b — на сетке с avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.1$

Рис. 10. Иллюстрация точек с наибольшим отклонением численного решения от точного для задачи № 1 с параметром $S_{max} \to 0.001$: a — на сетке с avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.4$; b — на сетке с avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.1$

Как видно из таблицы 2 и рисунков 8–10 большая погрешность аппроксимации возникает в приграничных областях, где заданы разные значения на границах. Также видно, что на сетке с отношением avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.4$ ошибка «проникает» глубже внутрь области, чем на сетке с отношением avg $\left(\frac{h_{max}}{h_{min}}\right) \approx 1.1$.

4.2. Задача № 2 (периодические граничные условия)

4.2.1. Условие задачи

Найти потенциал в области $\Omega = \{-\infty \leqslant x \leqslant \infty, \ w(x) \leqslant y \leqslant 2\}$, где w(x) — периодическая функция с периодом T=2, такая что $w(x)=|x-1|+1, \forall x \in [0,2]$, на верхней пластине потенциал равен 0 B, на нижней — 10 B.

4.2.2. Решение

Рассмотрим задачу при $x \in [0, 2]$. Запишем систему, которую нужно решить:

$$\begin{cases} \Delta \varphi(x,y) = 0, \\ \varphi(x,2) = 0, \\ \varphi(x,w(x)) = 10, \\ \varphi(0,y) = \varphi(2,y). \end{cases}$$

Тогда численное решение задачи № 2, полученное методом конечных элементов при разбиение Ω с параметром $S_{max} \to 0.01$ выглядит следующим образом:

Рис. 11. Иллюстрации к решению задачи № 2 на отрезке [0,2]: a — иллюстрация разбиения исследуемой области с параметром $S_{max} \to 0.01$; b — численное решение задачи № 2 с разбиением исследуемой области на элементы с параметром $S_{max} \to 0.01$

Аналогично рассмотрим задачу, расширив область поиска решения до трех периодов функции w(x):

Рис. 12. Иллюстрации к решению задачи № 2 на отрезке [0,6]: a — иллюстрация разбиения исследуемой области с параметром $S_{max} \to 0.01$; b — численное решение задачи № 2 с разбиением исследуемой области на элементы с параметром $S_{max} \to 0.01$

4.2.3. Проверка решения на удовлетворение условиям периодичности

Из графиков видно, что решение гладко меняется внутри области, значения потенциалов в точках (x,w(x)) и (x+T,w(x+T)) выглядят равными. Удостоверимся в этом численно: с помощью формулы интерполирования на треугольной сетке

$$u(x,y) \approx \sum_{j=1}^{N} u_j \varphi_j^{xy},$$

где N — количество узлов сетки, u_j — известное значение функции в j-ом узле, φ_i^{xy} — значение базисной функции в точке (x,y) [2]. Вычислим значения в точках,

в которых идеологически эти значения должны совпадать. Рассмотрим две группы точек:

1. Точки вида: (0, y), (2, y) — для решения построенного на одном периоде функции w(x), (0, y), (2, y), (4, y), (6, y) — для решения построенного на трех периодах функции w(x):

Таблица 3. Сравнение значений численного решения задачи № 2 в первой группе точек

Область решения	Координаты (x, y)	Значение потенциала φ , В
1 ()	(0.0, 1.27)	6.3158
1 период $w(x)$	(2.0, 1.27)	6.3158
	(0.0, 1.27)	6.3093
3 Hophono $m(x)$	(2.0, 1.27)	6.2896
3 периода $w(x)$	(4.0, 1.27)	6.2946
	(6.0, 1.27)	6.3093
1 период $w(x)$	(0.0, 1.92)	0.6551
	(2.0, 1.92)	0.6551
	(0.0, 1.92)	0.6547
3 периода $w(x)$	(2.0, 1.92)	0.6549
	(4.0, 1.92)	0.6555
	(6.0, 1.92)	0.6547

2. Точки вида (1, y) — для решения построенного на одном периоде функции w(x), (1, y), (3, y), (5, y) — для решения построенного на трех периодах функции w(x):

Таблица 4. Сравнение значений численного решения задачи № 2 во второй группе точек

Область решения	Координаты (x, y)	Значение потенциала φ , В
1 период $w(x)$	(1.0, 0.75)	8.3049
	(1.0, 0.75)	8.305
3 периода $w(x)$	(3.0, 0.75)	8.3061
	(5.0, 0.75)	8.3055
1 период $w(x)$	(1.0, 1.62)	2.8561
	(1.0, 1.62)	2.8556
3 периода $w(x)$	(3.0, 1.62)	2.858
	(5.0, 1.62)	2.8562

Из таблиц видно, что значения отличаются примерно на порядок $O(h^2)$, что показывает выполнение условий периодичности.

4.3. Задача № 3 (периодические граничные условия)

4.3.1. Условие задачи

Найти потенциал в области $\Omega = \{-\infty \leqslant x \leqslant \infty, \ w(x) \leqslant y \leqslant 2\}$, где w(x) — периодическая функция, такая что $w(x) = \frac{1}{2} sin\left(\frac{\pi x}{2}\right)$, на верхней пластине потенциал равен 12 В, на нижней — -7 В.

4.3.2. Решение

Рассмотрим задачу при $x \in [1, 5]$. Запишем систему, которую нужно решить:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, 2) = 12, \\ \varphi(x, w(x)) = -7, \\ \varphi(1, y) = \varphi(5, y). \end{cases}$$

Тогда численное решение задачи № 3, полученное методом конечных элементов при разбиение Ω с параметром $S_{max} \to 0.001$ выглядит следующим образом:

Рис. 13. Иллюстрации к решению задачи № 3 на отрезке [1,5]: a — иллюстрация разбиения исследуемой области с параметром $S_{max} \to 0.001$; b — численное решение задачи № 3 с разбиением исследуемой области на элементы с параметром $S_{max} \to 0.001$

Как и в задаче № 2 расширим область до 3 периодов и рассмотрим точки, в которых значения решения должны совпадать.

Рис. 14. Иллюстрации к решению задачи № 3 на отрезке [1,13]: a — иллюстрация разбиения исследуемой области с параметром $S_{max} \to 0.001$; b — численное решение задачи № 3 с разбиением исследуемой области на элементы с параметром $S_{max} \to 0.001$

4.3.3. Проверка решения на удовлетворение условиям периодичности

Аналогично предыдущей задаче проверим выполнение периодических граничных условий. Рассмотрим две группы точек:

- 1. Точки вида: (1, y), (5, y) для решения построенного на одном периоде функции w(x), (1, y), (5, y), (9, y), (13, y) для решения построенного на трех периодах функции w(x) (таблица 5).
- 2. Точки вида (1, y) для решения построенного на одном периоде функции w(x), (1, y), (3, y), (5, y) для решения построенного на трех периодах функции w(x) (таблица 6).

Таблица 5. Сравнение значений численного решения задачи № 3 в первой группе точек

Область решения	Координаты (x, y)	Значение потенциала φ , В
1 HODIOT 40(m)	(1.0, 1.25)	3.4191
1 период $w(x)$	(5.0, 1.25)	3.4191
	(1.0, 1.25)	3.4191
3 периода $w(x)$	(5.0, 1.25)	3.4185
3 периода $w(x)$	(9.0, 1.25)	3.4184
	(13.0, 1.25)	3.4191
1 период $w(x)$	(1.0, 1.6)	7.4927
	(5.0, 1.6)	7.4927
	(1.0, 1.6)	7.4927
3 периода $w(x)$	(5.0, 1.6)	7.4926
	(9.0, 1.6)	7.4927
	(13.0, 1.6)	7.4927

Таблица 6. Сравнение значений численного решения задачи № 3 во второй группе точек

Область решения	Координаты (x, y)	Значение потенциала φ , В
1 период $w(x)$	(3.0, 0.0)	-4.7379
	(3.0, 0.0)	-4.7382
3 периода $w(x)$	(7.0, 0.0)	-4.73749
	(11.0, 0.0)	-4.7386
1 период $w(x)$	(3.0, 1.5)	7.205
	(3.0, 1.5)	7.2051
3 периода $w(x)$	(7.0, 1.5)	7.2051
	(11.0, 1.5)	7.205

Из таблиц 5, 6 видно, что значения отличаются примерно на порядок $O(h^2)$, что показывает выполнение условий периодичности.

5. Программная реализация

Алгоритм для решения задачи методом конечных элементов (МКЭ) был реализован на языке C++. МКЭ предполагает решение системы линейных алгебраических уравнений с разреженной матрицей, для этого использовалась библиотека линейной алгебры для языка C++ — Eigen [5]. Для построения сеток использовались математический пакет Wolfram Mathematica и библиотека CALFEM [4] для языка Python. Графики и иллюстрации строились с помощью встоенных средств Wolfram Mathematica и библиотеки Matplotlib [6] для языка Python.

Заключение

В ходе курсовой работы был изучен и реализован метод конечных элементов для решения уравнения Лапласа. Реализация метода была проверена на тестовом примере с известным решением, также с ее помощью были решены и исследованы несколько вариантов исходной задачи с разными профилями пластин и заданными на них потенциалами. Все описанные подходы выполнены на языке C++ с демонстрацией результатов работы.

Список использованных источников

- 1. Ландау Л.Д., Лифшиц Е.М. Теория поля. 6-е изд., испр. М.: Изд-во Наука, 1973. 507 с.
- 2. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. 2-е изд., испр. М.: Изд-во МГТУ им. Н.Э. Баумана, 2018. 591 с.: ил.
- 3. Stahel A. Calculus of Variations and Finite Elements. 2003. URL: https://www.researchgate.net/publication/268051850_Calculus_of_Variations_and _Finite_Elements (дата обращения 27.05.2023)
- 4. CALFEM for Python. Computer Aided Learning of the Finite Element Method. URL: https://calfem-for-python.readthedocs.io/ (дата обращения 8.06.2023)
- 5. Eigen. C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. URL: https://eigen.tuxfamily.org/ (дата обращения 20.05.2023)
- 6. Matplotlib. A comprehensive library for creating static, animated, and interactive visualizations in Python. URL: https://matplotlib.org/ (дата обращения 8.06.2023)