

Drift Rate Analysis of Detected Signals of Interest

ANNA GAGNEBIN, PHYSICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO Cal-Bridge, Berkeley SETI Research Center, Dr. David DeBoer

Cal-Bridge Research Symposium | August 28, 2021

Background and Motivation

- This project builds upon previous research analyzing the validity of a signal of interest that seemed to originate from Proxima Centauri.
- What makes a signal interesting:
 - It is only observed when the telescope is directed at a specific point on the sky
 - It doesn't seem to match the drift of any known astrophysical phenomenon or radio interference at the frequency of the signal
- Causes of frequency drift:
 - Movement of the Earth as well as the signal source
 - Movement of man-made radio transmitters
 - Electronic oscillations of Earth-bound transmitters

Methods

- To analyze the signal, I developed a Jupyter notebook to help visualize the relative location of a potential signal as well as simulate waterfall plots of the signal's drift.
- Model 1: The signal was sent intentionally to our solar system
- Model 2: The signal was intentionally sent to the Earth

Final Product

- Two other functions of the notebook:
 - A detailed walkthrough of the code
 - An overview of all the research
 I've done this summer
- The point of the notebook was to develop code that could be used in any instance to aid in the search for extraterrestrial intelligence.

