GeometricalConstructions

Exercise 12A

Question 1:

Steps of Construction:

- (i) Draw a line segment AB = 5 cm
- (ii) With A as centre and radius equal to more than half of AB, draw two arcs, one above AB and the other below AB.
- (iii) With B as a centre and the same radius draw two arcs which cuts the previously drawn arcs at C and D.
- (iv) Join CD, intersecting AB at point P.
- \div CD is the perpendicular bisector of AB at the point P.

Question 2:

Step of Construction:

- (i) Draw a line segment OA.
- (ii) AT A, draw \angle AOE=90 , using ruler and compass.
- (iii) With B as centre and radius more than half of BD, draw an arc.
- (iv) With D as centre and same radius draw another arc which cuts the previous arc at ${\sf F}$.
- (v) Join OF. ∴ ∠AOF=45.
- (vi) Now with centre B and radius more than half of BC, draw an arc.
- (vii) With centre C and same radius draw another arc which cuts the previously drawn arc at X
- (viii) Join OX. ∴ OX is the bisector of ∠AOF.

Question 3:

Step of Construction:

- (i) Draw a line segment OA.
- (ii) With O as centre and any suitable radius draw an arc, cutting OA at B.
- (iii) With B as centre and the same radius cut the previously drawn arc at C.
- (iv) With C as centre and the same radius cut the arc at D.
- (v) With C as centre and the radius more than half CD draw an arc.
- (vi) With D as centre and the same radius draw another arc which cuts the previous arc at E.
- (vii) Join E Now, ∠AOE =900
- (viii) Now with B as centre and radius more than half of CB draw an arc.
- (iv) With C as centre and same radius draw an arc which cuts the previous at F.
- (x) Join OF
- (xi) \therefore F is the bisector of right \angle AOE.

Question 4:

Step of construction:

- (i) Draw a line segment BC=5cm.
- (ii) With B as centre and radius equal to BC draw an arc.
- (iii) With C as centre and the same radius draw another arc which cuts the previous arc at A.
- (iv) Join AB and AC.

Then \triangle ABC is the required equilateral triangle.

Question 5:

- (i) Draw a line XY.

- (ii) Mark any point P on it. (iii) From P, draw PQ ⊥ XY. (iv) From P, set off PA=5.4 cm cutting PQ at A.
- (v) Construct \angle PAB =30 $^{\circ}$ and \angle PAC =30 $^{\circ}$, meeting XY at B and C respectively.
- ∴ △ ABC is required equilateral triangle.

Question 6:

Steps of construction:

- (i) Draw a line segment BC = 5 cm.
- (II) With centre B and radius equal to 3.8 cm draw an arc.
- (iii) With centre C and radius equal to 2.6 cm draw another arc which cuts the previous drawn arc at A.
- (iv) Join AB and AC. ∴ △ ABC is required equilateral triangle.

Question 7:

Steps of Construction:

- (i) Draw a line segments BC =4.7 cm.
- (ii) At B draw ∠ xBC =60°
- (iii) AT C draw ∠YCB =30°.

Let XB and YC intersect at A.

.: ΔABC is the required triangle.

Question 8:

Steps of Construction:

- (i) Draw a line of segment QR =5cm which is the base...
- (ii) With centre Q and radius equal to 4.5 cm, draw an arc.
- (iii) With centre P and same radius draw another arc which cuts the previous arc at P.
- (iv) Join PQ and PR. ∴ △PQR is the required isosceles triangle.

Question 9:

Steps of Construction:

- (i) Draw a line segment BC=4.8 cm.
- (ii) Make \angle CBX =80°, below the line segment BC.
- (iii) Make ∠XBY =90°.
- (iv) Draw the right bisector PQ of BC, intersecting BY at O.
- (v) With O as centre and radius OB, draw a circle intersecting PQ at Δ
- (vi) Join AB and AC. $\ \ \stackrel{\triangle}{.}\ \Delta$ ABC is the required isosceles triangle in which AB =AC.

Question 10:

Steps of construction:

- (i) Draw a line segment BC=5.3cm.
- (II) Find the mid-point O of BC.
- (iii) With O as a centre and radius OB, draw a semicircle on BC.
- (iv) With B as centre and radius equal to $4.5\ \text{cm}$ draw an arc cutting the semicircle at A.
- (v) Join AB and AC, \therefore \triangle ABC is the required triangle.

Question 11:

Steps of Construction:

- (i) Draw any line XY.
- (ii) Take any point P on XY and draw PQ $\perp \chi \gamma$.
- (iii) Along PQ, set off PA=4.8 cm.
- (iv) Through A, draw LM || XY.
- (v) Construct $\angle\,\text{LAB}\,=\!30^{\,0}\,\text{and}\,\,\angle\,\text{MAC}\,=\!60^{\,0}\text{meeting}\,$ XY at B and C respectively .
- $\dot{.}$ $\ \triangle$ ABC is the required triangle.

Question 12:

Steps of Construction:

- (i) Draw a line segment AB=12 cm.
- (ii) Draw a ray AX, making an acute angle with AB and drawn in the downward direction.
- (iii) From A set off (3+2+4) = 9 equal distances along AX.
- (iv) Mark points L, M, N on AX such as that AL =3 units, LM =2 units and MN =4 units.
- (v) Join NB.
- (vi) Through L and M, draw LQ || NB and MR || NB cutting AB at Q and R respectively.
- (vii) With Q as centre and radius AQ, draw an arc.
- (viii) With R as centre and radius RB, draw another arc, cutting the previous arc at P.
- (ix) Join PQ and PR.
- ∴ △ PQR is the required triangle.

Question 13:

Steps of Construction:

- (i) Draw BC = 4.5 cm.
- (ii) Construct \angle CBX = 60°
- (iii) Along BX set off BP =8cm.
- (iv) Join CP.
- (v) Draw the perpendicular bisector of CP to intersecting BP at A.
- (vi) Join AC. Δ ABC is the required triangle.

Question 14:

Steps of Construction:

- (i) Draw BC = 5.2 cm.
- (ii) Construct ∠CBX = 30⁰

- (iii) Set off BP = 3.5 cm.
- (iv) Join PC.
- (v) Draw the right bisector of PC, meeting BP produced at A.
- (vi) Join AC. $\dot{\cdot}$ Δ ABC is the required triangle.

