

Universidade Federal do Rio Grande do Norte Centro de Ensino Superior do Seridó Departamento de Computação e Tecnologia Prof. Dr. Francisco Márcio Barboza

Avaliação 02 de Álgebra Linear

[M] In Exercises 37 and 38, construct bases for the column space and the null space of the given matrix A. Justify your work.

37.
$$A = \begin{bmatrix} 3 & -5 & 0 & -1 & 3 \\ -7 & 9 & -4 & 9 & -11 \\ -5 & 7 & -2 & 5 & -7 \\ 3 & -7 & -3 & 4 & 0 \end{bmatrix}$$

38.
$$A = \begin{bmatrix} 5 & 3 & 2 & -6 & -8 \\ 4 & 1 & 3 & -8 & -7 \\ 5 & 1 & 4 & 5 & 19 \\ -7 & -5 & -2 & 8 & 5 \end{bmatrix}$$

29. [M] Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Show that \mathbf{x} is in H, and find the \mathcal{B} -coordinate vector of \mathbf{x} , when

$$\mathbf{v}_{1} = \begin{bmatrix} 15 \\ -5 \\ 12 \\ 7 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 14 \\ -10 \\ 13 \\ 17 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 16 \\ 0 \\ 11 \\ -3 \end{bmatrix}$$

30. [M] Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Show that \mathcal{B} is a basis for H and \mathbf{x} is in H, and find the \mathcal{B} -coordinate vector of \mathbf{x} , when

$$\mathbf{v}_{1} = \begin{bmatrix} -6 \\ 3 \\ -9 \\ 4 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 8 \\ 0 \\ 7 \\ -3 \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} -9 \\ 4 \\ -8 \\ 3 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} 11 \\ -2 \\ 17 \\ -8 \end{bmatrix}$$

19. [M] Certain dynamical systems can be studied by examining powers of a matrix, such as those below. Determine what happens to A^k and B^k as k increases (for example, try k = 2,..., 16). Try to identify what is special about A and B. Investigate large powers of other matrices of this type, and make a conjecture about such matrices.

$$A = \begin{bmatrix} .4 & .2 & .3 \\ .3 & .6 & .3 \\ .3 & .2 & .4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & .2 & .3 \\ .1 & .6 & .3 \\ .9 & .2 & .4 \end{bmatrix}$$

20. [M] Let A_n be the n × n matrix with 0's on the main diagonal and 1's elsewhere. Compute A_n⁻¹ for n = 4, 5, and 6, and make a conjecture about the general form of A_n⁻¹ for larger values of n.

44. [M] Is it true that det AB = (det A)(det B)? Experiment with four pairs of random matrices as in Exercise 43, and make a conjecture.

- 45. [M] Construct a random 4 × 4 matrix A with integer entries between -9 and 9, and compare det A with det A^T, det(-A), det(2A), and det(10A). Repeat with two other random 4 × 4 integer matrices, and make conjectures about how these determinants are related. (Refer to Exercise 36 in Section 2.1.) Then check your conjectures with several random 5 × 5 and 6 × 6 integer matrices. Modify your conjectures, if necessary, and report your results.
- 46. [M] How is det A⁻¹ related to det A? Experiment with random n × n integer matrices for n = 4, 5, and 6, and make a conjecture. Note: In the unlikely event that you encounter a matrix with a zero determinant, reduce it to echelon form and discuss what you find.

[M] Use a matrix program to compute the determinants of the following matrices.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

Use the results to guess the determinant of the matrix below, and confirm your guess by using row operations to evaluate that determinant.

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2 & \cdots & 2 \\ 1 & 2 & 3 & \cdots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \cdots & n \end{bmatrix}$$

[M] Use the method of Exercise 19 to guess the determinant of

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 3 & 3 & \cdots & 3 \\ 1 & 3 & 6 & \cdots & 6 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 3 & 6 & \cdots & 3(n-1) \end{bmatrix}$$

Justify your conjecture. [Hint: Use Exercise 14(c) and the result of Exercise 19.]

 [M] Determine whether w is in the column space of A, the null space of A, or both, where

$$\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \quad A = \begin{bmatrix} -8 & 5 & -2 & 0 \\ -5 & 2 & 1 & -2 \\ 10 & -8 & 6 & -3 \\ 3 & -2 & 1 & 0 \end{bmatrix}$$

39. [M] Let a₁,..., a₅ denote the columns of the matrix A, where

$$A = \begin{bmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_4 \end{bmatrix}$$

- Explain why a₃ and a₅ are in the column space of B.
- Find a set of vectors that spans Nul A.
- c. Let T: R⁵ → R⁴ be defined by T(x) = Ax. Explain why T is neither one-to-one nor onto.
- **40.** [M] Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $K = \text{Span}\{\mathbf{v}_3, \mathbf{v}_4\}$, where

$$\mathbf{v}_1 = \begin{bmatrix} 5 \\ 3 \\ 8 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ -12 \\ -28 \end{bmatrix}.$$

Then H and K are subspaces of \mathbb{R}^3 . In fact, H and K are planes in \mathbb{R}^3 through the origin, and they intersect in a line through $\mathbf{0}$. Find a nonzero vector \mathbf{w} that generates that line. [Hint: \mathbf{w} can be written as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ and also as $c_3\mathbf{v}_3 + c_4\mathbf{v}_4$. To build \mathbf{w} , solve the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = c_3\mathbf{v}_3 + c_4\mathbf{v}_4$ for the unknown c_j 's.]

In Exercises 15–18, find a basis for the space spanned by the given vectors, $\mathbf{v}_1, \dots, \mathbf{v}_5$.

15.
$$\begin{bmatrix} 1 \\ 0 \\ -2 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -2 \\ -8 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 10 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -1 \\ -6 \\ 9 \end{bmatrix}$

16.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ 0 \\ 0 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 5 \\ -3 \\ 3 \\ -4 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}$

17. [M]
$$\begin{bmatrix} 2 \\ 0 \\ -4 \\ -6 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 0 \\ 2 \\ -4 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -4 \\ 0 \\ 1 \\ -7 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 4 \\ 8 \\ -3 \\ 15 \end{bmatrix}$, $\begin{bmatrix} -8 \\ 4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

18. [M]
$$\begin{bmatrix} -3 \\ 2 \\ 6 \\ 0 \\ -7 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 0 \\ -9 \\ 0 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \\ -4 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -2 \\ -14 \\ 0 \\ 0 \\ 13 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 3 \\ 0 \\ -1 \\ 0 \end{bmatrix}$

19. Let
$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ -3 \\ 7 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 9 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix}$, and also let

In Exercises 33 and 34, determine whether the sets of polynomials form a basis for \mathbb{P}_3 . Justify your conclusions.

33. [M]
$$3 + 7t$$
, $5 + t - 2t^3$, $t - 2t^2$, $1 + 16t - 6t^2 + 2t^3$

34. [M]
$$5-3t+4t^2+2t^3$$
, $9+t+8t^2-6t^3$, $6-2t+5t^2$, t^3

35. [M] Let H = Span {v₁, v₂} and B = {v₁, v₂}. Show that x is in H and find the B-coordinate vector of x, for

$$\mathbf{v}_{1} = \begin{bmatrix} 11 \\ -5 \\ 10 \\ 7 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 14 \\ -8 \\ 13 \\ 10 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 19 \\ -13 \\ 18 \\ 15 \end{bmatrix}$$

36. [M] Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Show that \mathcal{B} is a basis for H and \mathbf{x} is in H, and find the \mathcal{B} -coordinate vector of \mathbf{x} , for

$$\mathbf{v}_1 = \begin{bmatrix} -6 \\ 4 \\ -9 \\ 4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 8 \\ -3 \\ 7 \\ -3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -9 \\ 5 \\ -8 \\ 3 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4 \\ 7 \\ -8 \\ 3 \end{bmatrix}$$

35. [M] Let
$$A = \begin{bmatrix} 7 & -9 & -4 & 5 & 3 & -3 & -7 \\ -4 & 6 & 7 & -2 & -6 & -5 & 5 \\ 5 & -7 & -6 & 5 & -6 & 2 & 8 \\ -3 & 5 & 8 & -1 & -7 & -4 & 8 \\ 6 & -8 & -5 & 4 & 4 & 9 & 3 \end{bmatrix}$$
.

- a. Construct matrices C and N whose columns are bases for Col A and Nul A, respectively, and construct a matrix R whose rows form a basis for Row A.
- b. Construct a matrix M whose columns form a basis for Nul A^T, form the matrices S = [R^T N] and T = [C M], and explain why S and T should be square. Verify that both S and T are invertible.
- 36. [M] Repeat Exercise 35 for a random integer-valued 6 × 7 matrix A whose rank is at most 4. One way to make A is to create a random integer-valued 6 × 4 matrix J and a random integer-valued 4 × 7 matrix K, and set A = JK. (See Supplementary Exercise 12 at the end of the chapter; and see the Study Guide for matrix-generating programs.)
- 37. [M] Let A be the matrix in Exercise 35. Construct a matrix C whose columns are the pivot columns of A, and construct a matrix R whose rows are the nonzero rows of the reduced echelon form of A. Compute CR, and discuss what you see.
- 38. [M] Repeat Exercise 37 for three random integer-valued 5 × 7 matrices A whose ranks are 5, 4, and 3. Make a conjecture about how CR is related to A for any matrix A. Prove your conjecture.