الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات المدة: 30 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

الجدول التالي يمثل تطور ميزانية الإشهار بالمليون دينار لمؤسسة اقتصادية من سنة 2009 الى سنة 2016.

السنة	2009	2010	2011	2012	2013	2014	2015	2016
x_i ترتیب السنوات	1	2	3	4	5	6	7	8
الميزانية y_i بالمليون دينار	0,4	0,45	0,5	0,56	0,63	0,68	0,75	0,83

. مثّل سحابة النقط $M\left(x_{i};y_{i}
ight)$ في معلم متعامد (1

(نأخذ $100000 \, \mathrm{DA} \, \mathrm{DA}$ لكل 1cm على محور الفواصل و 1cm لكل 1cm

- مها. وحداثيات G النقطة المتوسطة لسحابة النقط ثم علّمها.
- (10⁻² النتائج تدور الى y = 0.06x + 0.33) بيّن أنّ معادلة مستقيم الانحدار (Δ) بالمربعات الدّنيا هي: (Δ) على المعلم السابق.
 - 4) أ) باستعمال التعديل الخطي السابق قدّر الميزانية المتوقعة سنة 2020.
 - ب) ابتداء من أي سنة تتجاوز هذه الميزانية DA 1200000.

التمرين الثاني: (04 نقاط)

.
$$u_{n+1}=rac{1}{3}u_n+2$$
 ، n عدد طبيعي المتتالية العددية المعرّفة بحدها الأول $u_0=-1$ ومن أجل كل عدد طبيعي $\left(u_n\right)$

- $u_n < 3$ ، n عدد طبیعی (1 أجل كل عدد أنّ: من أجل أنّا برهن بالتراجع أنّ
 - . متزایدة تماما ثم استنتج أنّها متقاربة (u_n) متزایدة تماما ثم استنتج أنّها متقاربة
- . $v_n=3-u_n$ ، n المتتالية المعرّفة بـ : من أجل كل عدد طبيعي (v_n
 - . أ) بيّن أنّ المتتالية (v_n) هندسية أساسها $\frac{1}{3}$ ثم عيّن حدها الأول
 - . $S_n = u_0 + u_1 + \dots + u_n$ ، n عدد طبیعي (ب

$$S_n = 3(n-1) + 2\left(\frac{1}{3}\right)^n$$
 ، n عدد طبیعي من أجل كل عدد طبیعي

التمرين الثالث: (04 نقاط)

يستقبل مركز إجراء امتحان شهادة البكالوربا مترشحين موزّعين على ثلاث شعب هي:

شعبة الآداب والفلسفة (L)، شعبة العلوم التجريبية (S) ، شعبة التسيير والاقتصاد (G)

47% من المترشحين ذكور (M) والباقى اناث (F) .

من بين الذكور يوجد 35% في شعبة العلوم التجريبية و 49% في شعبة الآداب والفلسفة.

من بين الإناث يوجد 10% في شعبة التسيير والاقتصاد و 37% في العلوم التجريبية .

نختار عشوائيا مترشحا من هذا المركز.

- 1) انجز شجرة الإحتمالات التي تنمذج هذه الوضعية.
 - 2) احسب احتمال كل حادثة مما يلي:
- . "المترشح المختار انثى ومن شعبة التسيير والاقتصاد ${f A}$
 - . " المترشح المختار من شعبة التسيير والاقتصاد ${f B}$
- " المترشح المختار انثى علما انه من شعبة التسيير والاقتصاد" .

التمرين الرابع: (08 نقاط)

- $g(x)=x^2+3\ln x-3$: نعتبر الدالة g المعرفة على المجال $g(x)=x^2+3\ln x-3$ نعتبر الدالة و المعرفة على المجال
 - 1) ادرس اتجاه تغيّر الدالة g.
- x عين أنّ: المعادلة g(x)=0 تقبل حلا وحيدا α حيث $\alpha < 1,41$ ثم استنتج إشارة و $\alpha < 1,41$ عبين أنّ: المعادلة $\alpha < 1,41$
 - $f(x) = x + 1 \frac{3\ln x}{x}$ بعتبر الدالة f المعرفة على المجال $f(x) = x + 1 \frac{3\ln x}{x}$ بعتبر الدالة $f(x) = x + 1 \frac{3\ln x}{x}$

 $(0; \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f

- انيا. أي المسب النتيجة بيانيا. ا $\lim_{\substack{x \to 0 \\ x \to 0}} f(x)$
 - . $\lim_{x\to +\infty} f(x)$ بالحسب (ب
- . $f'(x) = \frac{g(x)}{x^2}$ ، ابیّن أنّ: من أجل کل عدد حقیقي x موجب تماما (2
 - . استنتج اتجاه تغیّر الدالهٔ f ثم شکّل جدول تغیراتها (3
- . $\left(C_{f}
 ight)$ مقارب مائل للمنحنى y=x+1 ذا المعادلة (Δ) ذا المعادلة (ϕ) بيّن أنّ المستقيم
 - (Δ) ادرس وضعية (C_f) بالنسبة إلى
 - $(f(lpha) \simeq 1,68$ (ميعطى (Δ) والمنحني (المنحني ((C_f) والمنحني (المنحني ((Δ)
- . $]0;+\infty[$ على المجال $]0;+\infty[$ على المجال $]0;+\infty[$ أصلية للدالة $]0;+\infty[$ على المجال $]0;+\infty[$ أن الدالة $]0;+\infty[$
 - ب) احسب S مساحة الحيز المستوي المحدد بالمنحنى (C_f) والمستقيمات التي معادلاتها:

و الأول
$$y=x+1$$
 و $x=e$ ، $x=1$

الموضوع الثاني

التمرين الأول: (04 نقاط)

يمثل الجدول التالي نسب النجاح في امتحان شهادة البكالوريا لشعبة التسيير والاقتصاد بثانوية في الفترة من سنة 2010 الى سنة 2014.

السنة	2010	2011	2012	2013	2014
رتبة السنة x_i	1	2	3	4	5
y _i النسبة المئوية	33,1	36,8	41,0	41,1	44,1
$z_i = \ln y_i$					

- $M_i(x_i; y_i)$ عين إحداثيات G النقطة المتوسطة لسحابة النقط (1
- . $(x_i\,;y_i)$ لتكن y=ax+b معادلة مستقيم الانحدار بالمربعات الدنيا للسلسلة a=2,63 بيّن أنّ a=2,63 ثم أحسب قيمة
 - (10 $^{-2}$ النتائج الني الخير من الجدول أعلاه . (تدور النتائج الى (3
- z = 0.07x + 3.46 هي: $(x_i; z_i)$ هي الانحدار بالمربعات الدنيا للسلسلة بين أنّ معادلة مستقيم الانحدار بالمربعات الدنيا للسلسلة المنافقة المنافقة الانحدار بالمربعات الدنيا للسلسلة المنافقة المنافقة
 - 4) من بين التعديلين السابقين، ما هو التعديل الذي يعطي أكبر نسبة نجاح في سنة 2017 ؟

التمرين الثاني: (04 نقاط)

 $u_{n+1}=3u_n-2$ ، لتكن $u_0=2$ ومن أجل كل $u_0=1$ المعرّفة بحدها الاول $u_0=1$

- (u_n) أحسب المتتالية u_3 ، u_2 ، u_1 احسب (1
- $v_n = u_{n+1} u_n$ ، طبیعي n کل n طبیعي (2) المعرّفة ب $v_n = u_{n+1} u_n$ ، المعرّفة ب $v_n = u_{n+1} u_n$ ، المتتالية $v_n = u_{n+1} u_n$ هندسية أساسها $v_n = u_{n+1} u_n$ هندسية أساسها $v_n = u_{n+1} u_n$ ، الأولى المتتالية $v_n = u_{n+1} u_n$ هندسية أساسها $v_n = u_{n+1} u_n$ ، الأولى المتتالية $v_n = u_{n+1} u_n$ ، هندسية أساسها $v_n = u_{n+1} u_n$ ، الأولى المتتالية $v_n = u_{n+1} u_n$ ، المعرّفة ب $v_n = u_{n+1} u_n$ ، المعرفة ب $v_n = u_n u_n$
 - . متزایدة (u_n) عین v_n بدلاله n ثم استنتج أن المتتالیة v_n عین v_n
 - $S_n = v_0 + v_1 + \dots + v_{n-1}$ ، غير معدوم n غير عدد طبيعي n غير عدد n غير معدوم n بدلالة n
- $u_n=S_n+u_0$ ، u_n عدد طبیعي عبارة $u_n=S_n+u_0$ ، عبارة عبارة بدلالة u_n

التمربن الثالث: (04 نقاط)

أجريت دراسة إحصائية حول العلاقة بين استعمال الانترنت وامتلاك جهاز حاسوب في مدينة ما، فكانت النتائج كما يلى: 80% من سكان هذه المدينة يملكون جهاز حاسوب.

90% من سكان هذه المدينة الذين يملكون جهاز حاسوب يستعملون الانترنت.

60% من سكان هذه المدينة الذين لا يملكون جهاز حاسوب يستعملون الانترنت.

نختار عشوائيا شخصا من هذه المدينة .

يرمز A إلى الحادثة: "الشخص المختار يملك جهاز حاسوب".

يرمز B إلى الحادثة: "الشخص المختار يستعمل الانترنت".

1) انجز شجرة الاحتمالات التي تنمذج هذه الوضعية .

2) أ) بيّن أنّ احتمال أن يكون الشخص المختار لا يملك جهاز حاسوب يساوي 0,20. ب) ما احتمال أن يكون الشخص المختار يملك جهاز حاسوب ويستعمل الانترنت؟

ج) ما احتمال أن يكون الشخص المختار لا يملك جهاز حاسوب ويستعمل الانترنت؟

عب احتمال أن يكون الشخص المختار يستعمل الانترنت.

4) احسب احتمال أن يكون الشخص المختار يملك جهاز حاسوب علما انه يستعمل الانترنت.

التمرين الرابع: (08 نقاط)

$$f(x) = \frac{1}{2}e^x - \frac{1}{e^x - 1}$$
: يلي يا كما يلي : $D_f =]-\infty; 0$ كما يلي $D_f =]0; +\infty[$ خيت عتبر الدالة $D_f =]0; +\infty[$ خيت عبد المستوي المستوي المنسوب إلى المعلم المتعامد والمتجانس $D_f = [D_f]$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $D_f = [D_f]$

. النهايات $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$ النتائج المحصل عليها (1) احسب النهايات النتائج المحصل عليها (1)

 $\lim_{x\to +\infty} f(x)$ احسب النهاية (ب

.
$$f'(x) = \frac{1}{2}e^x + \frac{e^x}{(e^x - 1)^2}$$
 ، D_f من x من أجل كل x (1) (2)

 \mathbf{p} استنتج اتجاه تغیر الداله f ثم شکل جدول تغیراتها.

. y=1 ادرس الوضعية النسبية للمنحني C_f مع المستقيم (Δ) ذا المعادلة (3

. $\ln 3$ عيّن معادلة لـ (T) المماس للمنحني و (C_f) عند النقطة ذات الفاصلة

.
$$g(x) = f(x) - \frac{9}{4}(x - \ln 3) - 1$$
 نعتبر الدالة g المعرفة على $g(x) = (3 + 1)(1 + 1)(1 + 1)$

الجدول المقابل يمثل جدول تغيرات الدالة g.

$$|g'(x)|$$
 + $|x|$. $|x|$

.
$$x$$
 واستنتج إشارة $g(x)$ حسب قيم $g(\ln 3)$ واستنتج إشارة $g(1)$ حسب قيم $g(1)$ ادرس على المجال $g(1)$ وضعية المنحني $g(1)$ النسبة الى المماس $g(1)$ ، ثم فسّر ذلك بيانيا .

.]- ∞ ;0[\cup]0;3] على المجال $f(\ln 2)$ على المجال $f(\ln 2)$

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تسيير و اقتصاد/البكالوريا دورة: 2017

رمة	العا	عناصر الإجابة
المجموع	مجزأة	

		الموضـــوع الأول
		التمرين الأول (04 نقاط):
0.50	0.50	1- تمثيل سحابة النقط
1.25	01	G(4,5;0,6) إحداثيات النقطة المتوسطة $G(4,5;0,6)$
	0.25	G تعليم الثقطة
		y=0.06x+0.33 لأن $y=0.06x+0.33$ معادلة مستقيم الانحدار هي
1.25	0.75	a = 0.06
	0.25	b = 0.33
	0.25	(Δ) رسم المستقيم
01	0.50	$1050000\mathrm{DA}$ هي 2020 اتقدير الميزانية المتوقعة سنة 2020
	0.50	ب) تتجاوز الميزانية 120 <mark>0000 DA ابت</mark> داء من السنة 15 أي سنة 2023
		التمرين الثاني (04 نقاط):
	01	$u_n < 3$ ، n عدد طبیعي من أجل كل عدد طبیعي أن من أجل كل عدد طبیعي -1
2.25	0.75	$u_{n+1} - u_n = -\frac{2}{3}(u_n - 3) > 0$ متزايدة تماما (سامنتالية (u_n) متزايدة تماما
	0.50	بما ان المتتالية محدودة من اعلى ومتزايدة تماما فهي متقاربة
	0.75	$rac{1}{3}$ ابيان أن المتتالية $\left(v_{n} ight)$ هندسية أساسها $\left(v_{n} ight)$
1.75	0.25	$v_0=3-u_0=4$ تعيّن حدها الأول
	0.75	$S_n = 3(n-1) + 2\left(\frac{1}{3}\right)^n$ ، n عدد طبیعي عدد طبیعي بنین أن: من أجل كل عدد طبیعي
	4	
S		

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تسيير و اقتصاد/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

		التمرين الثالث: (04 نقاط)
		1- انجاز شجرة الاحتمالات
		s s
		0,35
		M
		0,47 0,16 G
01	01	α
		s s
		0,53
		F
		0,10
	01	p(A) = 0.053 -2
03	01	$p(B) = 0.53 \times 0.10 + 0.47 \times 0.16 = 0.1282$
		$p(C) = p_G(F) = \frac{p(F \cap G)}{p(G)} = 0.4134$
	01	p(G) $p(G)$
	0.50	التمرين الرابع: (08 نقاط)
0.75	0.50	$g'(x)=2x+rac{3}{x}$ ، $]0;+\infty[$ عبارة المشتقة : الدالمة g تقبل الاشتقاق على المجال (1(I
0.73	0.25	$]0;+\infty[$ بما أن $0:g'(x)>0$ على المجال $[0;+\infty[$ فأن g متزايدة تماما على
01	0.50	$g(x)=0$ بيان انّ: المعادلة $g(x)=0$ تقبل حلا وحيدا α حيث 1,40
	0.50	xاستنتاج إشارة $g(x)$ حسب قيم
	0.50	$\lim_{x \to 0} f(x) = +\infty \text{ (f (1))}$
1.25	0.25	x ightarrow 0 التفسير البياني : المنحني يقبل مقاربا معادلته
	0.50	$\lim_{x \to +\infty} f(x) = +\infty \ (\neg$
		g(x)
0.50	0.50	. $f'(x) = \frac{g(x)}{x^2}$ ، بیان أنّ: من أجل كل عدد حقیقي x موجب تماما ، (2
	0.25	$\operatorname{g}(x)$ من إشارة $f'(x)$ من إشارة
	0.25	f استنتج اتجاه تغیّر الدالة f
01		

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تسيير و اقتصاد/البكالوريا دورة: 2017

رمة	العا	عناصر الإجابة
المجموع	مجزأة	

	T	
	0.50	تشكيل جدول تغيراتها
	0.50	$.ig(C_fig)$ بيان أنّ المستقيم (Δ) مقارب مائل للمنحنى (4
1.25	0.75	ب دراسة الوضع النسبي للمنحني $\left(C_f ight)$ بالنسبة الى . $\left(\Delta ight)$
01	0.25	$(\Delta)_{\text{limila limiting}} (5)$ (C_f) (C_f) (C_f) (C_f) (C_f)
1.25	0.50 0.25 0.25	. $]0;+\infty[$ المجال $]0;+\infty[$ المجال $]0;+\infty[$ المجال $]0;+\infty[$ المحال $]0;+\infty[$

الصفحة 3 من 7

3as.ency-education.com

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تسيير و اقتصاد/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

		الموضـــوع الثاني
		التمرين الأول: (04 نقاط)
	0.25	$\overline{X} = 3$ (1
01	0.75	$\overline{Y} = 39,22$
		G(3;39,22) ومنه
01	0.75	a = 2,63 بيان أنّ (2
	0.25	b = 31,33
1.25	0.50	3) أ) اكمال السطر الأخير من الجدول
		. $z = 0.07x + 3.46$ بيان أنّ معادلة مستقيم الانحدار بالمربعات الدنيا هي:
	0.50	a = 0.07
	0.25	b = 3,46
0.75		4) التعديل الذي يعطي اكبر نسبة نجاح:
	0.25	رتبة السنة 2017 هي 8
	0.25	اما التعديل الثاني يعطي $y=2,63 \times 8+31,33=52,37$
		$y=e^{4.02}=55,77$ ومنه $z=0.07\times 8+3,46=4.02$
	0.25	ومنه التعديل الذي يعطي اكبر نسبة هو التعديل اللوغاريتمي
	ı	التمرين الثاني: (04 نقاط)
01	0.75	$u_3 = 28$ ، $u_2 = 10$ ، $u_1 = 4$ حساب الحدود (1
	0.25	. التخمين : المتتالية $\left(u_{n} ight)$ متزايدة تماما
1.75	0.50	(v_n) أ) بيان أنّ المتتالية (v_n) هندسية أساسها (2
	0.25	$\cdot { m v}_0 = u_1 - u_0 = 2$ تعيين حدها الأول
	0.50	$v_n = 2 \times 3^n$: n בעלה v_n (ب
	0.50	. استنتاج أن المتتالية (u_n) متزايدة
	0.50	n اکسب S_n بدلالة (3
1.25	0.50	$u_n = S_n + u_0$ ، n عدد طبیعي بیان أنّ: من اجل کل عدد طبیعي (ب
	0.25	$u_n=3^n+1$. n عبارة u_n بدلالة
	T	التمرين الثالث: (04 نقاط)
		1) انجاز شجرة الاحتمالات التي تنمذج هذه الوضعية.

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تسيير و اقتصاد/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

		0,90 B
0.75	0.75	0,10
		0,80 B
		0,20 B
		0,40
	0.25	1-0.8=0.20 أ) بيان أنّ احتمال أن يكون الشخص المختار لا يملك جهاز حاسوب يساوي $1-0.8=0.20$
		ب) احتمال أن يكون الشخص المختار يملك جهاز حاسوب ويستعمل الانترنت هو:
02	01	$p(A \cap B) = p(A) \times p_A(B) = 0.80 \times 0.90 = 0.72$
		ج) احتمال أن يكون الشخص المختار لا يملك جهاز حاسوب ويستعمل الانترنت هو:
	0.75	$p(\overline{A} \cap B) = p(\overline{A}) \times p_{\overline{A}}(B) = 0.20 \times 0.60 = 0.12$
		3) احتمال أن يكون الشخص المختار يستعمل الانترنت هو:
0.50	0.50	$p(B) = p(A \cap B) + p(\overline{A} \cap B) = 0.84$
		4) احتمال أن يكون الشخص المختار يملك جهاز حاسوب علما انه يستعمل الانترنت هو:
0.75	0.75	$p_B(A) = \frac{p(A \cap B)}{p(B)} = \frac{0.72}{0.84} = 0.86$
		التمرين الرابع: (08 نقاط)
	3×0.25	$\lim_{x \to \infty} f(x) = -\infty$ و $\lim_{x \to \infty} f(x) = 1$: أ) حساب النهايات $\lim_{x \to \infty} f(x) = 1$ و
1.75	2×0.25	$x o 0$ $x o \infty$ $x o \infty$ $y = 1$ ، $x = 0$ التفسير البياني: (C_f) يقبل مستقيمين مقاربين معادلتهما
	0.50	$y=1$. $x=0$ يبن مسمين معربين معمله (C_f) يبن النهاية (C_f) . $\lim_{x \to \infty} f(x) = +\infty$
	0.50	$x \rightarrow +\infty$
	0.50	$f'(x) = \frac{1}{2}e^x + \frac{e^x}{(e^x - 1)^2}$ ، D_f من أجل كل x من أجل كل (2)
	0.25	$f'(x)>0$ ، D_f من اجل کل x من x من اجل کا x
	0.25	D_f ومنه f متزایدة تماما علّی مجالي D_f
1.50		

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تسيير و اقتصاد/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
	0.50	جدول التغيرات.
		$ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline f'(x) & - & + \\ \hline f(x) & - & +\infty \\ \hline \end{array} $
1.25	0.25	(Δ) دراسة الوضع النسبي للمنحني C_f مع المستقيم $f(x)-1=rac{e^x(e^x-3)}{e^x-1}$
	0.25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.75	$x\in]-\infty;0[\cup]\ln 3;+\infty[oxedow{}(\Delta)$
0.50	0.50	$(T): y = \frac{9}{4}x - \frac{9}{4}\ln 3 + 1 \qquad : (C_f)$ المماس للمنحني (4) المحاس المنحني (4)
1.75	0.25	$g(\ln 3) = 0$ (أ (5 x حسب قیم $g(x)$ حسب قیم ک
	0.50	$\begin{array}{c cccc} x & 0 & \ln 3 & +\infty \\ \hline g(x) & - & 0 & + \end{array}$
	0.50	ب) دراسة وضعية المنحني (C_f) بالنسبة الى المماس (T) ، التفسير البياني المنحني (C_f) يقبل نقطة انعطاف $\Omega(\ln 3;1)$

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تسيير و اقتصاد/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

