

Relational Algebra

Chapter 4

Formal Query Languages

- Foundation for commercial query languages like SQL
- Two types
 - Declarative: Relational Calculus
 - Describe what a user wants, rather than how to compute it
 - Procedural: Relational Algebra
 - Operational, very useful for representing execution plans
- Query Languages != programming languages
 - QLs not expected to be "Turing complete"
 - QLs not intended to be used for complex calculations
 - QLs support easy, efficient access to large data sets

Understanding Algebra & Calculus is key to understanding SQL query processing!

1/26/16

Relational Algebra Preliminaries

- Query:
 - Input: Relational instances
 - Output: Relational instances
 - Specified using the schemas
 - May produce different results for different instances
 - But schema of the result is fixed

Numeric Algebra

- Input: Rational Numbers
- Output: Rational Numbers
- Operators: +, -, x, /
- Closed under these operators

Question??

The smallest set of numbers that is CLOSED with respect to the operators {+,-,x} is:

- A. Natural Numbers
- B. Integers
- C. Rational Numbers
- D. Real Numbers

Relational Operators

- Selection σ : Selects a subset of rows from relation
- Projection π : Deletes unwanted columns from relation relation
- Cross-product X: Allows us to combine two relations
 Set-difference —: Tuples in reln. 1, but not in reln. 2 reln
- Union (j: Tuples in reln. 1 and in reln. 2
- Additional operations (constructed from basic ops not essential, but very useful):
 - Intersection, Join, Division, Renaming
- Because algebra is closed, we can compose operators

Selection

Retrieve **rows** that satisfy a logical condition

$$\sigma_{condition}(relation)$$

- Conditions are boolean combinations (\land , \lor) of terms
- Each term has one of the following forms:

Athlete

aid	name sport		country
1	Simone Biles	gymnastics	USA
2	Gabby Thomas	track	USA
3	Katie Ledecki	swimming	USA
4	Embla Njerve	pole vault	Norway
5	Zhang Boheng	gymnastics	China
6	Sunisa Lee	gymnastics	USA

aid	name	sport	country
1	Simone Biles	gymnastics	USA
6	Sunisa Lee	gymnastics	USA

Question??

A SET of items can have duplicate entries. That is, the same item can occur more than once in a set. E.g. {4, 5, 4, 3, 2, 4, 2, 7}

- A. True
- B. False
- C. Depends

Projection

- Selects columns
- Delete attributes that are not in projection list
- Remove duplicates!
 - Remember classical relational model is a SET

Athlete

aid	name	sport	country
1	Simone Biles	gymnastics	USA
2	Gabby Thomas	track	USA
3	Katie Ledecki	swimming	USA
4	Embla Njerve	pole vault	Norway
5	Zhang Boheng	gymnastics	China
6	Sunisa Lee	gymnastics	USA
	· · · · · · · · · · · · · · · · · · ·		

$$\pi_{sport,country}(Athlete)$$

sport	country
gymnastics	USA
track	USA
swimming	USA
gymnastics	China
skating	Norway

Set Operations: Union (∪), Intersection(∩), Set-Difference (-)

- Input: Two union-compatible relations
 - Same number and type of attributes, in same order
- Field names of result: uses the name from the FIRST input

name		AthleteName		
Simone Biles		Simone Biles		
Gabby Thomas		Zhang Boheng		name
Katie Ledecki	_	Apollo Ono	 =	Gabby Thomas
Embla Njerve		Picabo Street	1 —	Embla Njerve
Zhang Boheng		Chen Yibing		Sunisa Lee
Sunisa Lee		Katie Ledecki		

Cross-Product (Cartesian Product)

Result Schema:

All fields from both relations, names inherited if possible

Athlete

aid	name	sport	country
1	Simone Biles	gymnastics	USA
2	Gabby Thomas	track	USA

Venue

vid	venue
1	Paris
2	London

aid	name	sport	country	vid	venue
1	Simone Biles	gymnastics	USA	1	Paris
2	Gabby Thomas	track	USA	1	Paris
1	Simone Biles	gymnastics	USA	2	London
2	Gabby Thomas	track	USA	2	London

Question??

You compute the cartesian product of two sets, with cardinalities 3 and 4 respectively. The cardinality of the result is:

- A. 7
- B. 12
- C. Not possible to determine with the information given.

Cross-Product (Cartesian Product)

Result Schema:

- All fields from both relations, names inherited if possible
- If both input relations have a field with the same name, use the rename operator

Athlete

aid	name	sport	place
1	Simone Biles	gymnastics	USA
2	Gabby Thomas	track	USA

Venue

vid	place
1	Paris
2	London

aid	name	sport	country	vid	place
1	Simone Biles	gymnastics	USA	1	Paris
2	Gabby Thomas	track	USA	1	Paris
1	Simone Biles	gymnastics	USA	2	London
2	Gabby Thomas	track	USA	2	London

Rename Operator

$$\rho_{AFTER}(BEFORE)$$
 or $\rho(AFTER, BEFORE)$

- Use cases:
 - Shorthand
 - Self-joins
 - If two relations have the same field

aid	name	sport	place
1	Simone Biles	gymnastics	USA
2	Gabby Thomas	track	USA

aid	name	sport	country
1	Simone Biles	gymnastics	USA
2	Gabby Thomas	track	USA

Derived Operators: Joins

- Most common way of combining information from two tables
- Conditional join or Θ-join
 - $R \boxtimes _{c} S = \sigma_{c}(R \times S)$, where c is a condition
- Equijoin
 - Join condition consists only of equalities
- Natural Join
 - Like equijoin but drops the duplicate columns
 - $R \boxtimes S$
- Despite equivalence, joins faster than crossproduct!

tample

Examples: Writing Queries in RA

Sailors (<u>sid</u>, sname, rating, age) Reserves (<u>sid</u>, <u>bid</u>, <u>day</u>) Boats (bid, bname, color)

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who have reserved boat #103

Find names of sailors who have reserved boat #103

Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \boxtimes Sailors)$$

Solution 2:
$$\rho \text{ (Temp1, } \sigma_{bid=103} \text{ Reserves)}$$
$$\rho \text{ (Temp2, Temp1 \boxed{\temp8 Sailors)}}$$
$$\pi_{sname} \text{ (Temp2)}$$

Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \boxtimes Sailors))$$

Example

Find names of sailors who have reserved a red boat

$$\pi_{sname}((\sigma_{color='red'}, Boats) \boxtimes Reserves \boxtimes Sailors)$$

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who have reserved a red boat

$$\pi_{sname}((\sigma_{color='red'}, Boats) \boxtimes Reserves \boxtimes Sailors)$$

An equivalent solution:

$$\pi_{\text{sname}}$$
 (π_{sid} ((π_{bid} $\sigma_{\text{color='red'}}$ Boats) $\triangleright \triangleleft$ Res) $\triangleright \triangleleft$ Sailors)

The query optimizer chooses from the (equivalent) expressions and chooses one for efficiency of evaluation.

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

π_{sname} (Reserves \boxtimes Sailors)

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Example

Find names of sailors who have reserved at least one boat

$$\pi_{sname}$$
(Reserves \boxtimes Sailors)

Sailor appears in this intermediate relation only if there is at least one Reserves tuple with same sid.

Derived Operators: Division

Useful for queries like:

"Find the sailors who have reserved all boats."

Derived Operators: Division

Useful for queries like:

"Find the sailors who have reserved all boats."

- Let A have 2 fields, x and y; B have only field y:
 - $A/B = \{ \langle x \rangle \mid \forall \langle y \rangle \in B, \langle x, y \rangle \in A \}$
 - all x tuples (sailors) s.t. for every y tuple (boat) in B,
 there is an <x,y> tuple in A

Example

Examples of Division A/B

 $A/B = { < x > | \forall < y > \in B, < x, y > \in A }$

cid	bname
c1	b1
c1	b2
c1	b3
c1	b4
c2	b1
c2	b2
c3	b2
c4	b2
c4	b4

ل م	bname
DZ	b2

B1

cid
c1
c2
c3
c4

A/B

bname
b2
b4

B2

cid
c1
c4

A/B

B3

cid c1

A/B

1

2

3

24

Expressing A/B Using Basic Operators

- Can be equivalently expressed using basic operators
- Idea: For A/B, compute all x values that are not disqualified by some y value in B
 - x value is disqualified if by attaching y value from B, we obtain an <x,y> tuple that is not in A

Can you express this operator using basic operators?

A/B:
$$\pi_{\chi}(A) - \pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$
Disqualified χ
values

Example

Examples of Division A/B

$$\pi_{\chi}(A) - \pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

cid	bname
c1	b1
c1	b2
c1	b3
c1	b4
c2	b1
c2	b2
сЗ	b2
c4	b2
c4	b4

bname
b2
b4
<u> </u>

cid	bname
c1	b2
c1	b4
c2	b2
c2	b4
	b 2
c3	_
c3	b4
c4	b2
c4	b4

cid	
c1	
c4	

A/B

A

-A

$$\pi_{\chi}(A) \times B$$

Example

Find names of sailors who have reserved a red OR green boat

- Identify all red or green boats, then
- find sailors who have reserved one of these boats

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who have reserved a red OR green boat

- Identify all red or green boats, then
- find sailors who have reserved one of these boats:

$$\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))$$

$$\pi_{sname} (\textit{Tempboats} \ \boxtimes \ \textit{Reserves} \ \boxtimes \ \textit{Sailors})$$

Equivalent:

$$\rho(\textit{Tempboats}, (\sigma_{color='red'}(\textit{Boats}) \cup \sigma_{color='green'}(\textit{Boats}))) \\ \pi_{sname}(\textit{Tempboats} \ \boxtimes \ \text{Reserves} \ \boxtimes \ \textit{Sailors})$$

Example

Find names of sailors who have reserved a red AND green boat


```
\rho \ (\textit{Tempboats}, (\sigma_{color} = 'red' \land color = 'or \land n', Boats)) \pi_{sname} (\textit{Tempboats} \boxtimes Reserves \boxtimes Sa. Sors)
```


Find names of sailors who have reserved a red AND green boat

- Identify
 - sailors who have reserved red boats
 - sailors who have reserved green boats
- Then find the intersection (sid is a key for Sailors):

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who have reserved a red AND green boat

- Identify
 - sailors who have reserved red boats
 - sailors who have reserved green boats
- Then find the intersection (sid is a key for Sailors):

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color='red}$, Boats) \boxtimes Reserves))

$$\rho$$
 (Tempgreen, π_{sid} (($\sigma_{color='green'}$, Boats) \boxtimes Reserves))

$$\pi_{sname}((Tempred \cap Tempgreen) \square Sailors)$$

Find the SIDs of sailors over age 20 who have not reserved a red boat

$$\pi_{sid}(\sigma_{age>20}Sailors) -$$
 $\pi_{sid}((\sigma_{color='red}, Boats) \boxtimes \mathbb{R}eserves)$

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find the names of sailors who have reserved **all** boats

 Uses division; schemas of the input relations must be carefully chosen:

$$\rho \; (\textit{Tempsids}, (\pi \; \textit{sid,bid} \; \textit{Reserves}) \; / \; (\pi \; \textit{bid} \; \textit{Boats})) \\ \pi \; \textit{sname} \; (\textit{Tempsids} \; \boxtimes \; \textit{Sailors})$$

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Review

- Selection
- Projection
- Cross-product
- Set-difference
- Union
- Join

9/15/21