Introduction to Microprocessors

Course Teacher:

Md. Fahmidur Rahman Sakib

Lecturer, Department of Computer Science & Engineering Metropolitan University

Course ID: CSE 237

Course Title: Microprocessor and Interfacing

Topics to be Covered in this Course!!

- Concept of microprocessor
- Evolution and Internal architecture of microprocessors
- Intel 8086 Microprocessor: internal architecture, register structure, programming model, addressing modes, instruction set
- Coprocessors, Multiprocessor system
- An overview of Intel 80186, 80286, 80386 & Pentiums
- Stepper Motor, Transducers, printers, motors and peripherals.
- Assembly language programming

Recommended Texts

- Microprocessors and Interfacing: Programming and Hardware, Author: Douglas V. Hall
- Microprocessors and Interfacing, Author: D. A. Godse,
 A.P. Godse
- Computer Peripheral & Interfacing, Author: Gourav
 Gupta, Eagle Prakashan, Jalandhar

Does Earlier Knowledge Require ??

- You should have the knowledge about
 - Number Systems.
 - Basics of "Digital Logic Design" course.
 - Basics of "Computer Organization and Architecture" course.
 - "Basic Programming".

Concept of Computer

Major Components of Computer

Concept about Microprocessor

A microprocessor incorporates most or all of the functions of a <u>central processing unit (CPU)</u> on a single integrated circuit (IC).
Die of an Intel 80486DX2

microprocessor (actual size: 12×6.75 mm)

in its packaging

Central Processing Unit

- \square A central processing unit (CPU), or sometimes just called Microprocessor (μ P), is a description of a class of logic machines that can execute <u>computer programs</u>.
- This broad definition can easily be applied to many early computers that existed long before the term "CPU" ever came into widespread usage. However, the term itself and its initialism have been in use in the computer industry at least since the early 1960s.
- The form, design and implementation of CPUs have changed dramatically since the earliest examples, but their fundamental operation has remained much the same.

Central Processing Unit/Microprocessor (µP)

CSE 237 : Microprocessor & Interfacing Metropolitan University

So .. What is Microprocessor?

- A microprocessor (abbreviated as μP or uP) is a Silicon Chip that contains an electronic central processing unit (CPU). In the world uP or CPU used interchangeably, which is made from miniaturized transistors and other circuit elements on a single semiconductor integrated circuit (IC).
- The integration of the whole CPU onto a single VLSI Chip therefore greatly reduced the cost of processing capacity.

Architectures of Microprocessors:

- 8-bit designs
- I6-bit designs
- □ 32-bit designs
- 64-bit designs
- Multi-core designs

- RISC (Reduced Instruction Set Computer)
- CISC (Complex Instruction Set Computer)
- Special-purpose designs: Microcontrollers,
 Digital Signal Processors (DSP) and Graphics
 Processing Units (GPU).

List of Microprocessors

- 1971 Intel 4004, 1st single chip CPU, 4-bit processor, 45 instructions
- 1972 Intel 4040, enhanced 4004, 60 instructions
- **1972** Intel 8008, 8-bit μP
- 1972 Texas Instrument TMS 1000, 1st single μC,
- 1974 Intel 8080, successor to the 8008, used in Altair
- 1975 Motorola 6800, used MOS technology
- 1976 Intel 8085, updated 8080, +5V power
- 1976 Zilog Z80, improved
- **1996** TI TMS 9900, 1st 16-bit μP
- **1978** Zilog Z8000, Motorola 68000, 16-bit μP
- 1978 Intel 8086, 16-bit, IBM's choice...

Similar but Different!! Microcontroller (µC)

- Microcontroller is an IC dedicated to perform one task.
 - Integrates the memory and other features of a microprocessor.
 - A microcontroller is the integration of
 - Microprocessor
 - Memory
 - ROM types commonly flash PROM
 - □ RAM Static ram

List of Microcontrollers

- 1972 Texas Instrument TMS 1000, 1st single μC, 4-bit
- **1976** Intel 8048, 8-bit μC, 1k ROM, 64b RAM, 27 I/O
- 1980 Intel 8051, 4k ROM, 128b RAM, 32 I/O, 2 16-bits

4i9808

(MCS-51 family)

- Intel 8031, 8052, 8751, ...
- Atmel AT89C51, AT 89C1052/2051,...
- Dallas Semiconductor DS5000 series...
- -Philips, National Semiconductor, ...
- (Other μ Cs) Microchip PIC16 series, Motorola 68HC11, Zilog's Z86

Microprocessor System Vs Microcontroller System

Microprocessor	Microcontroller	
Used where intensive processing is required	Used where task is fixed and predefined	
Only CPU is in the chip. Memory, I/O port are connected externally	CPU, Memory, I/O port – all are connected on the same single chip	
Higher Clock speed and external RAM used is also higher	Lower Clock speed and RAM used is also lower	
The program for the microprocessor can be changed for different applications.	The program for the microcontroller is fixed once it is designed	
Cost is comparatively higher	Cost is comparatively lower	
Power consumption is higher	Power consumption is lower	
Overall size of the system is large	Overall size of the system is smaller	
Applications include personal computers	Applications include washing machines, camera etc.	

Food for thought

• We know that your computer uses a microprocessor. But what about your keyboard?

Microprocessor System Vs Microcontroller System

CPU	RAM	ROM
I / O Port	Timer	Serial COM Port

General-Purpose Microprocessor System

Microcontroller

Assembly Language

Assembly language:

Assembly language is used for most programming because it is difficult to program a microprocessor in its native machine language.

Assembler:

- An assembler is a program that converts assembly language into machine language.
- Assemblers are similar to compilers in that they produce executable code. However, assemblers are more simplistic.

High level language vs Machine language

```
    int a, b, c;
    a = 83;
    b = -2;
    c = a + b;
```

- 0010 0001 0000 0100
- 0001 0001 0000 0101
- 0011 0001 0000 0110
- 0111 0000 0000 0001
- 0000 0000 0101 0011
- 1111 1111 1111 1110

//machine language

Example of 8085 Assembly Language

Address Instruction

```
MVI A, 21H; Copies 21 into accumulator
MVI B, 2AH; Copies 2A into B register
ADD B; Adds B reg. content with Accand stores the result in Acc.
STA [41 FF]; Stores the Acc (the sum) into the memory location 41 FF.
HLT; Stops the program
```

Memory storage of the Assembly language

Address	ss Instruction/Data	
202A	MVI	Α,
202B	21	
202C	MVI	В,
202D	2A	
202E	ADD	В
202F	STA	
2030	FF	
203 I	4 I	
2032	HLT	

Another Example of 8085 Assembly Language

Address Instruction

```
2020
                 B, 24
          MVI
                           ; Copies 24 into B register
                        ; Increment B reg content by I
2022
          INR B
          MOV A, B
2023
                            ; Copies B register into Acc.
2024
          SUB
                        ; Subtracts B reg content from
      Acc and stores the result in
                                                    Acc.
2025
                [5F FF]; Stores the Acc content into
          STA
              the memory location 5F FF.
2028
          HLT
                        ; Stops the program
```

Example of 8086 Assembly Language

```
mov cl, 3 : copy the value 3 in the internal register cl // so currently cl is holding the value 3

add cl, 2 : add the value 2 with the current value of cl // after adding 2, cl is now and store sum in cl holding the value 5

Subtract 2 from 3

mov cl, 3 : copy the value 3 in the internal register cl //so currently cl is holding the value 3
```

sub cl, 2 : sub the value 2 from the current value of cl //after subtracting 2, cl is now holding the value 1

mov, add, sub --- *opcodes or instructions* cl, 3, 2 ---- **operands**

Food for thought

Using cl register show assembly code for the following expression:

$$5 + 6 - 10$$

Assembly Language vs. Machine Language

- Machine Language vs Assembly Language
 - Machine language or object code is the only code a computer can execute but it is nearly impossible for a human to work with
 - E4 27 88 C3 E4 27 00 D8 E6 30 F4 the object code for adding two numbers input from the keyboard
- When programming a microprocessor, programmers often use assembly language
 - This involves 3-5 letter abbreviations for the instruction codes (mnemonics) rather than the binary or hex object codes

			Mne	emonics	
Address	H	Hex Object Code	e Op-Code	Operand	Comment
0100	E4	27	IN	AL,27H	Input first number from port 27H and store in AL
0102	88	C3	MOV	BL,AL	Save a copy of register AL in register BL
0104	E4	27	IN	AL,27H	Input second number to AL
0106	00	D8	ADD	AL,BL	Add contents of BL to AL and store the sum in AL
0107	E6	30	OUT	30H,AL	Output AL to port 30H
0109	F4		HLT		Halt the computer

Self Learning

- Assembly Language VS Machine Language
- Assembler VS Compiler

Thank You!!