TEST CODE: MIII (Objective type) 2010

SYLLABUS

Algebra — Permutations and combinations. Binomial theorem. Theory of equations. Inequalities. Complex numbers and De Moivre's theorem. Elementary set theory. Simple properties of a group. Functions and relations. Algebra of matrices. Determinant, rank and inverse of a matrix. Solutions of linear equations. Eigenvalues and eigenvectors of matrices.

Coordinate geometry — Straight lines, circles, parabolas, ellipses and hyperbolas. Elements of three dimensional coordinate geometry — straight lines, planes and spheres.

Calculus — Sequences and series. Power series. Taylor and Maclaurin series. Limits and continuity of functions of one or more variables. Differentiation and integration of functions of one variable with applications. Definite integrals. Areas using integrals. Definite integrals as limits of Riemann sums. Maxima and minima. Differentiation of functions of several variables. Double integrals and their applications. Ordinary linear differential equations.

SAMPLE QUESTIONS

<u>Note:</u> For each question there are four suggested answers of which only one is correct.

1. If a, b are positive real variables whose sum is a constant λ , then the minimum value of $\sqrt{(1+1/a)(1+1/b)}$ is

(A) $\lambda - 1/\lambda$ (B) $\lambda + 2/\lambda$ (C) $\lambda + 1/\lambda$ (D) none of the above.

2. Let x be a positive real number. Then
(A)
$$x^2 + \pi^2 + x^{2\pi} > x\pi + (\pi + x)x^{\pi}$$

(B)
$$x^{\pi} + \pi^{x} > x^{2\pi} + \pi^{2x}$$

(C)
$$\pi x + (\pi + x)x^{\pi} > x^{2} + \pi^{2} + x^{2\pi}$$

- (D) none of the above.
- 3. Suppose in a competition 11 matches are to be played, each having one of 3 distinct outcomes as possibilities. The number of ways one can predict the outcomes of all 11 matches such that exactly 6 of the predictions turn out to be correct is

(A)
$$\binom{11}{6} \times 2^5$$
 (B) $\binom{11}{6}$ (C) 3^6 (D) none of the above.

4.	1. A club with x members is organized into four committees such that				
	(a) each member is in exactly two committees,				
	(b) any two committees have exactly one member in common.				
	Then x has				
	(A) exactly two values both between 4 and 8(B) exactly one value and this lies between 4 and 8				
		o values both betwee value and this lie		6.	
5.	, ,	(D) exactly one value and this lies between 8 and 16. Let X be the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Define the set \mathcal{R} by			
0.					
	$\mathcal{R} = \{(x, y) \in X \times X : x \text{ and } y \text{ have the same remainder when divided by } 3\}.$				
	Then the number	er of elements in \mathcal{I}	2 is		
	(A) 40	(B) 36	(C) 3	4 (D) 33.	
6.	i. Let A be a set of n elements. The number of ways, we can choose an ordered pair (B, C) , where B, C are disjoint subsets of A , equals				
	(A) n^2	(B) n^3	(C) 2	(D) 3^n .	
7.	$Let (1+x)^n = 0$	$C_0 + C_1 x + C_2 x^2 + \dots$	$\ldots + C_n x^n$, n being	ng a positive integer. The	
	value of	$\left(1 + \frac{C_0}{C_1}\right) \left(1\right.$	$+\frac{C_1}{C_2}$) $\left(1+\frac{C_1}{C_2}\right)$	$\left(\frac{n-1}{C_n}\right)$	
	is				
	(A) $\left(\frac{n+1}{n+2}\right)^n$	(B) $\frac{n^n}{n!}$	(C) $\left(\frac{n}{n+1}\right)$	$)^n (D) \frac{(n+1)^n}{n!}. $	
8.	The value of the	e infinite product			
		$P = \frac{7}{9} \times \frac{26}{28} \times$	$\frac{63}{65} \times \dots \times \frac{n^3 - 1}{n^3 + 1}$	× · · ·	
	is				
	(A) 1	(B) 2/3	(C) 7/3	(D) none of the above.	
9.		positive integers we of 17, 19 and 23		or equal to 1000 and are	
	(A) 854	(B) 153	(C) 160	(D) none of the above.	

	The number	of real roots of th	ne equation	
		$2\cos$	$\left(\frac{x^2+x}{6}\right) = 2^x + 2$	-x
	is			
	(A) 0	(B) 1	(C) 2	(D) infinitely many
12.	Consider the	e following system	of equivalences of i	ntegers.
			$x \equiv 2 \mod 15$ $x \equiv 4 \mod 21.$	
	The number equivalences		where $1 \le x \le 3$	15, to the above system o
	(A) 0	(B) 1	(C) 2 (D) 3
13.	The number	of real solutions	of the equation $(9/1)$	$(0)^x = -3 + x - x^2$ is
	(A) 2	(B) 0	(C) 1	(D) none of the above
14.	If two real p tively, satisf	·y	and $g(x)$ of degrees r $x^2 + 1) = f(x)g(x),$	$n \ (\geq 2)$ and $n \ (\geq 1)$ respec
	for every $x \in$	• (x + 1 = f(x)g(x),	
			ot x_0 such that $f'(x)$	$(c_0) \neq 0$
			ot x_0 such that $f'(x)$	
	(C) f has r	n distinct real roo	ts	
	(D) f has r	no real root.		
15.	Let $X = \frac{1}{100}$	1 1	$+\cdots+\frac{1}{3001}$. Then	n,
		01 1002 1003		
	(A) X < 1			X > 3/2

10. Consider the polynomial $x^5 + ax^4 + bx^3 + cx^2 + dx + 4$ where a, b, c, d are real numbers. If (1+2i) and (3-2i) are two roots of this polynomial then the

(B) 524/65

(C) -1/65

(D) 1/65.

value of a is

(A) -524/65

16. The set of complex numbers z satisfying the equation

$$(3+7i)z + (10-2i)\overline{z} + 100 = 0$$

represents, in the complex plane,

- (A) a straight line
- (B) a pair of intersecting straight lines
- (C) a point
- (D) a pair of distinct parallel straight lines.
- 17. The limit $\lim_{n\to\infty}\sum_{k=1}^n\left|e^{\frac{2\pi ik}{n}}-e^{\frac{2\pi i(k-1)}{n}}\right|$ is
 - (A) 2 (B) 2e (C) 2π (D) 2i.
- 18. Let ω denote a complex fifth root of unity. Define

$$b_k = \sum_{j=0}^4 j\omega^{-kj},$$

for $0 \le k \le 4$. Then $\sum_{k=0}^{4} b_k \omega^k$ is equal to

- (A) 5 (B) 5ω (C) $5(1+\omega)$ (D) 0.
- 19. Let $a_n = \left(1 \frac{1}{\sqrt{2}}\right) \cdots \left(1 \frac{1}{\sqrt{n+1}}\right)$, $n \ge 1$. Then $\lim_{n \to \infty} a_n$
 - (A) equals 1 (B) does not exist (C) equals $\frac{1}{\sqrt{\pi}}$ (D) equals 0.
- 20. Let X be a nonempty set and let $\mathcal{P}(X)$ denote the collection of all subsets of X. Define $f: X \times \mathcal{P}(X) \to \mathbb{R}$ by

$$f(x,A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Then $f(x, A \cup B)$ equals

- (A) f(x,A) + f(x,B)
- (B) f(x,A) + f(x,B) 1
- (C) $f(x, A) + f(x, B) f(x, A) \cdot f(x, B)$
- (D) f(x,A) + |f(x,A) f(x,B)|

- 21. The limit $\lim_{x\to\infty} \left(\frac{3x-1}{3x+1}\right)^{4x}$ equals
 - (A) 1 (B) 0 (C) $e^{-8/3}$ (D) $e^{4/9}$
- 22. $\lim_{n\to\infty} \frac{1}{n} \left(\frac{n}{n+1} + \frac{n}{n+2} + \dots + \frac{n}{2n} \right)$ is equal to
 - (A) ∞ (B) 0 (C) $\log_e 2$ (D) 1
- 23. Let $\cos^6 \theta = a_6 \cos 6\theta + a_5 \cos 5\theta + a_4 \cos 4\theta + a_3 \cos 3\theta + a_2 \cos 2\theta + a_1 \cos \theta + a_0$. Then a_0 is
 - (A) 0 (B) 1/32. (C) 15/32. (D) 10/32.
- 24. The set $\{x: \left|x+\frac{1}{x}\right| > 6\}$ equals the set
 - (A) $(0, 3 2\sqrt{2}) \cup (3 + 2\sqrt{2}, \infty)$
 - (B) $(-\infty, -3 2\sqrt{2}) \cup (-3 + 2\sqrt{2}, \infty)$
 - (C) $(-\infty, 3 2\sqrt{2}) \cup (3 + 2\sqrt{2}, \infty)$
 - (D) $(-\infty, -3 2\sqrt{2}) \cup (-3 + 2\sqrt{2}, 3 2\sqrt{2}) \cup (3 + 2\sqrt{2}, \infty)$
- 25. Suppose that a function f defined on \mathbb{R}^2 satisfies the following conditions:

$$f(x+t,y) = f(x,y) + ty,$$

$$f(x, t + y) = f(x, y) + tx$$
 and

$$f(0,0) = K$$
, a constant.

Then for all $x, y \in \mathbb{R}$, f(x, y) is equal to

- (A) K(x+y). (B) K-xy. (C) K+xy. (D) none of the above.
- 26. Consider the sets defined by the real solutions of the inequalities

$$A = \{(x,y) : x^2 + y^4 \le 1\} \qquad B = \{(x,y) : x^4 + y^6 \le 1\}.$$

Then

- (A) $B \subseteq A$
- (B) $A \subseteq B$
- (C) Each of the sets A B, B A and $A \cap B$ is non-empty
- (D) none of the above.

27. If f(x) is a real valued function such that

$$2f(x) + 3f(-x) = 15 - 4x,$$

for every $x \in \mathbb{R}$, then f(2) is

- (A) -15 (B) 22
- (C) 11 (D) 0.
- 28. If $f(x) = \frac{\sqrt{3}\sin x}{2 + \cos x}$, then the range of f(x) is
 - (A) the interval $[-1, \sqrt{3}/2]$
- (B) the interval $[-\sqrt{3}/2, 1]$

(C) the interval [-1, 1]

- (D) none of the above.
- 29. If $f(x) = x^2$ and $g(x) = x \sin x + \cos x$ then
 - (A) f and g agree at no points
 - (B) f and g agree at exactly one point
 - (C) f and g agree at exactly two points
 - (D) f and g agree at more than two points.
- 30. For non-negative integers m, n define a function as follows

$$f(m,n) = \begin{cases} n+1 & \text{if } m = 0\\ f(m-1,1) & \text{if } m \neq 0, n = 0\\ f(m-1,f(m,n-1)) & \text{if } m \neq 0, n \neq 0 \end{cases}$$

Then the value of f(1,1) is

- (A) 4 (B) 3 (C) 2 (D) 1.
- 31. A real 2×2 matrix M such that

$$M^2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 - \varepsilon \end{array} \right)$$

- (A) exists for all $\varepsilon > 0$
- (B) does not exist for any $\varepsilon > 0$
- (C) exists for some $\varepsilon > 0$
- (D) none of the above is true

- 32. The eigenvalues of the matrix $X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ are
 - (A) 1, 1, 4
- (B) 1, 4, 4
- (C) 0, 1, 4
- (D) 0, 4, 4.
- 33. Let $x_1, x_2, x_3, x_4, y_1, y_2, y_3$ and y_4 be fixed real numbers, not all of them equal to zero. Define a 4×4 matrix **A** by

$$\mathbf{A} = \begin{pmatrix} x_1^2 + y_1^2 & x_1 x_2 + y_1 y_2 & x_1 x_3 + y_1 y_3 & x_1 x_4 + y_1 y_4 \\ x_2 x_1 + y_2 y_1 & x_2^2 + y_2^2 & x_2 x_3 + y_2 y_3 & x_2 x_4 + y_2 y_4 \\ x_3 x_1 + y_3 y_1 & x_3 x_2 + y_3 y_2 & x_3^2 + y_3^2 & x_3 x_4 + y_3 y_4 \\ x_4 x_1 + y_4 y_1 & x_4 x_2 + y_4 y_2 & x_4 x_3 + y_4 y_3 & x_4^2 + y_4^2 \end{pmatrix}.$$

Then $rank(\mathbf{A})$ equals

- (A) 1 or 2.
- (B) 0.
- (C) 4.
- (D) 2 or 3.

34. If M is a 3×3 matrix such that

$$[0 \ 1 \ 2]M = [1 \ 0 \ 0] \quad \text{and} \quad [3 \ 4 \ 5]M = [0 \ 1 \ 0]$$

then $\begin{bmatrix} 6 & 7 & 8 \end{bmatrix} M$ is equal to

- (A) $\begin{bmatrix} 2 & 1 & -2 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} -1 & 2 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 9 & 10 & 8 \end{bmatrix}$.
- 35. Let $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & \sin t \\ 0 & -\sin t & \cos t \end{pmatrix}.$$

If $\lambda_1 + \lambda_2 + \lambda_3 = \sqrt{2} + 1$, then the set of possible values of $t, -\pi \le t < \pi$, is

- (A) Empty set

- (B) $\left\{\frac{\pi}{4}\right\}$ (C) $\left\{-\frac{\pi}{4}, \frac{\pi}{4}\right\}$ (D) $\left\{-\frac{\pi}{3}, \frac{\pi}{3}\right\}$.
- 36. The values of η for which the following system of equations

$$x + y + z = 1$$

 $x + 2y + 4z = \eta$
 $x + 4y + 10z = \eta$

has a solution are

- (A) $\eta = 1, -2$ (B) $\eta = -1, -2$ (C) $\eta = 3, -3$ (D) $\eta = 1, 2$.

37. Let P_1, P_2 and P_3 denote, respectively, the planes defined by

$$a_1x + b_1y + c_1z = \alpha_1$$

$$a_2x + b_2y + c_2z = \alpha_2$$

$$a_3x + b_3y + c_3z = \alpha_3.$$

It is given that P_1, P_2 and P_3 intersect exactly at one point when $\alpha_1 = \alpha_2 =$ $\alpha_3 = 1$. If now $\alpha_1 = 2, \alpha_2 = 3$ and $\alpha_3 = 4$ then the planes

- (A) do not have any common point of intersection
- (B) intersect at a unique point
- (C) intersect along a straight line
- (D) intersect along a plane.
- 38. Angles between any pair of 4 main diagonals of a cube are

(A)
$$\cos^{-1} 1/\sqrt{3}, \pi - \cos^{-1} 1/\sqrt{3}$$
 (B) $\cos^{-1} 1/3, \pi - \cos^{-1} 1/3$

(B)
$$\cos^{-1} 1/3, \pi - \cos^{-1} 1/3$$

(C)
$$\pi/2$$

(D) none of the above.

39. If the tangent at the point P with co-ordinates (h,k) on the curve $y^2=2x^3$ is perpendicular to the straight line 4x = 3y, then

(A)
$$(h, k) = (0, 0)$$

(B)
$$(h, k) = (1/8, -1/16)$$

(C)
$$(h,k) = (0,0)$$
 or $(h,k) = (1/8,-1/16)$

- (D) no such point (h, k) exists.
- 40. Consider the family \mathcal{F} of curves in the plane given by $x = cy^2$, where c is a real parameter. Let \mathcal{G} be the family of curves having the following property: every member of \mathcal{G} intersects each member of \mathcal{F} orthogonally. Then \mathcal{G} is given by

(A)
$$xy = k$$

(B)
$$x^2 + y^2 = k^2$$

(C)
$$y^2 + 2x^2 = k^2$$

(D)
$$x^2 - y^2 + 2yk = k^2$$

- 41. Suppose the circle with equation $x^2 + y^2 + 2fx + 2gy + c = 0$ cuts the parabola $y^2 = 4ax$, (a > 0) at four distinct points. If d denotes the sum of ordinates of these four points, then the set of possible values of d is
 - $(A) \{0\}$
- (B) (-4a, 4a)
- (C) (-a,a) (D) $(-\infty,\infty)$.

- 42. The polar equation $r = a \cos \theta$ represents
 - (A) a spiral (B) a parabola (C) a circle (D) none of the above.
- 43. Let

$$V_1 = \frac{7^2 + 8^2 + 15^2 + 23^2}{4} - \left(\frac{7 + 8 + 15 + 23}{4}\right)^2,$$

$$V_2 = \frac{6^2 + 8^2 + 15^2 + 24^2}{4} - \left(\frac{6 + 8 + 15 + 24}{4}\right)^2,$$

$$V_3 = \frac{5^2 + 8^2 + 15^2 + 25^2}{4} - \left(\frac{5 + 8 + 15 + 25}{4}\right)^2.$$

Then

(A)
$$V_3 < V_2 < V_1$$
 (B) $V_3 < V_1 < V_2$

(C)
$$V_1 < V_2 < V_3$$
 (D) $V_2 < V_3 < V_1$.

44. If a sphere of radius r passes through the origin and cuts the three co-ordinate axes at points A, B, C respectively, then the centroid of the triangle ABC lies on a sphere of radius

(A)
$$r$$
 (B) $\frac{r}{\sqrt{3}}$ (C) $\sqrt{\frac{2}{3}}r$ (D) $\frac{2r}{3}$.

45. Consider the tangent plane \mathcal{T} at the point $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ to the sphere $x^2 + y^2 + z^2 = 1$. If P is an arbitrary point on the plane

$$\frac{x}{\sqrt{3}} + \frac{y}{\sqrt{3}} + \frac{z}{\sqrt{3}} = -2,$$

then the minimum distance of P from the tangent plane, \mathcal{T} , is always

(A)
$$\sqrt{5}$$
 (B) 3 (C) 1 (D) none of these.

46. Let S_1 denote a sphere of unit radius and C_1 a cube inscribed in S_1 . Inductively define spheres S_n and cubes C_n such that S_{n+1} is inscribed in C_n and C_{n+1} is inscribed in S_{n+1} . Let v_n denote the sum of the volumes of the first n spheres. Then $\lim_{n\to\infty} v_n$ is

(A)
$$2\pi$$
. (B) $\frac{8\pi}{3}$. (C) $\frac{2\pi}{13}(9+\sqrt{3})$. (D) $\frac{6+2\sqrt{3}}{3}\pi$.

- 47. If 0 < x < 1, then the sum of the infinite series $\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \cdots$ is

(A) $\log \frac{1+x}{1-x}$ (C) $\frac{1}{1-x} + \log(1-x)$

- (B) $\frac{x}{1-x} + \log(1+x)$ (D) $\frac{x}{1-x} + \log(1-x)$.
- 48. Let $\{a_n\}$ be a sequence of real numbers. Then $\lim_{n\to\infty}a_n$ exists if and only if
 - (A) $\lim_{n\to\infty} a_{2n}$ and $\lim_{n\to\infty} a_{2n+2}$ exists
 - (B) $\lim_{n\to\infty} a_{2n}$ and $\lim_{n\to\infty} a_{2n+1}$ exist
 - (C) $\lim_{n\to\infty} a_{2n}$, $\lim_{n\to\infty} a_{2n+1}$ and $\lim_{n\to\infty} a_{3n}$ exist
 - (D) none of the above.
- 49. Let $\{a_n\}$ be a sequence of non-negative real numbers such that the series $\sum_{n=1}^{\infty} a_n$ is convergent. If p is a real number such that the series $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n^p}$ diverges, then
 - (A) p must be strictly less than $\frac{1}{2}$
 - (B) p must be strictly less than or equal to $\frac{1}{2}$
 - (C) p must be strictly less than or equal to 1 but can be greater than $\frac{1}{2}$
 - (D) p must be strictly less than 1 but can be greater than or equal to $\frac{1}{2}$.
- 50. Suppose a > 0. Consider the sequence

$$a_n = n\{\sqrt[n]{ea} - \sqrt[n]{a}\}, \quad n \ge 1.$$

Then

(A) $\lim_{n\to\infty} a_n$ does not exist

(C) $\lim_{n \to \infty} a_n = 0$

- (D) none of the above.
- 51. Let $\{a_n\}$, $n \geq 1$, be a sequence of real numbers satisfying $|a_n| \leq 1$ for all n.

$$A_n = \frac{1}{n}(a_1 + a_2 + \dots + a_n),$$

for $n \geq 1$. Then $\lim_{n \to \infty} \sqrt{n}(A_{n+1} - A_n)$ is equal to

- (A) 0
- (B) -1
- (C) 1
- (D) none of these.

(A) 8	(B) 12	(C) 360	(D) 2520	
54. Let	$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array}\right)$	and $B = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$.	
Then				
(A) there ex	ists a matrix C such t	hat $A = BC = C$	CB	
(B) there is	no matrix C such that	t A = BC		
(C) there ex	ists a matrix C such t	hat $A = BC$, but	$t A \neq CB$	
(D) there is	no matrix C such that	t A = CB.		
end on the x	e-axis moves with a co	onstant velocity on the mide	the coordinate axes. If the of 2 feet per minute then alle point of the rod at the cis is	1
(A) 19/2	(B) 2	(C) $4/\sqrt{1}$	$\overline{19}$ (D) $2/19$	
$(t,\cos t,\sin t)$			nal space at time t be d by the particle between	
(A) 2π .	(B) $2\sqrt{2}\pi$.	(C) $\sqrt{2}\pi$	(D) none of the above	
	1	11		

52. In the Taylor expansion of the function $f(x) = e^{x/2}$ about x = 3, the coeffi-

(A) $e^{3/2} \frac{1}{5!}$ (B) $e^{3/2} \frac{1}{2^5 5!}$ (C) $e^{-3/2} \frac{1}{2^5 5!}$ (D) none of the above.

 $m = \min\{\text{positive integers } n : \sigma^n = I\}.$

I be the identity permutation and m be the order of σ i.e.

cient of $(x-3)^5$ is

53. Let σ be the permutation:

Then m is

57. Let n be a positive real number and p be a positive integer. Which of the following inequalities is true?

(A)
$$n^p > \frac{(n+1)^{p+1} - n^{p+1}}{p+1}$$

(C) $(n+1)^p < \frac{(n+1)^{p+1} - n^{p+1}}{p+1}$

(B)
$$n^p < \frac{(n+1)^{p+1} - n^{p+1}}{p+1}$$

(C)
$$(n+1)^p < \frac{(n+1)^{p+1} - n^{p+1}}{p+1}$$

- (D) none of the above.
- 58. The smallest positive number K for which the inequality

$$|\sin^2 x - \sin^2 y| \le K|x - y|$$

holds for all x and y is

- (A) 2 (B) 1 (C) $\frac{\pi}{2}$ (D) there is no smallest positive value of K; any K > 0 will make the inequality hold.
- 59. Given two real numbers a < b, let

$$d(x, [a, b]) = \min\{|x - y| : a \le y \le b\}$$
 for $-\infty < x < \infty$.

Then the function

$$f(x) = \frac{d(x, [0, 1])}{d(x, [0, 1]) + d(x, [2, 3])}$$

satisfies

- (A) $0 \le f(x) < \frac{1}{2}$ for every x
- (B) 0 < f(x) < 1 for every x
- (C) f(x) = 0 if $2 \le x \le 3$ and f(x) = 1 if $0 \le x \le 1$
- (D) f(x) = 0 if $0 \le x \le 1$ and f(x) = 1 if $2 \le x \le 3$.
- 60. Let

$$f(x,y) = \begin{cases} e^{-1/(x^2 + y^2)} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Then f(x,y) is

- (A) not continuous at (0,0)
- (B) continuous at (0,0) but does not have first order partial derivatives
- (C) continuous at (0,0) and has first order partial derivatives, but not differentiable at (0,0)
- (D) differentiable at (0,0)

61. Consider the function

$$f(x) = \begin{cases} \int_0^x \{5 + |1 - y|\} dy & \text{if } x > 2\\ 5x + 2 & \text{if } x \le 2 \end{cases}$$

Then

- (A) f is not continuous at x=2
- (B) f is continuous and differentiable everywhere
- (C) f is continuous everywhere but not differentiable at x=1
- (D) f is continuous everywhere but not differentiable at x=2.

62. Let $w = \log(u^2 + v^2)$ where $u = e^{(x^2+y)}$ and $v = e^{(x+y^2)}$. Then

$$\left. \frac{\partial w}{\partial x} \right|_{x=0,y=0}$$

is

- 63. Let p > 1 and for x > 0, define $f(x) = (x^p 1) p(x 1)$. Then
 - (A) f(x) is an increasing function of x on $(0, \infty)$
 - (B) f(x) is a decreasing function of x on $(0, \infty)$
 - (C) $f(x) \ge 0$ for all x > 0
 - (D) f(x) takes both positive and negative values for $x \in (0, \infty)$.
- 64. The map $f(x) = a_0 \cos |x| + a_1 \sin |x| + a_2 |x|^3$ is differentiable at x = 0 if and only if
 - (A) $a_1 = 0$ and $a_2 = 0$
- (B) $a_0 = 0$ and $a_1 = 0$
- (C) $a_1 = 0$

- (D) a_0, a_1, a_2 can take any real value.
- 65. f(x) is a differentiable function on the real line such that $\lim_{x\to\infty}f(x)=1$ and $\lim_{x\to\infty}f'(x)=\alpha$. Then
 - (A) α must be 0

(B) α need not be 0, but $|\alpha| < 1$

(C) $\alpha > 1$

(D) $\alpha < -1$.

	(D) $f(1) \ge g(1)$.					
67.	The length of the cur	eve $x = t^3$, $y = 3t^2$ from	m t = 0 to t = 4	1 is		
	(A) $5\sqrt{5} + 1$ (C) $5\sqrt{5} - 1$			(B) $8(5\sqrt{5}+1)$ (D) $8(5\sqrt{5}-1)$.		
68.	Given that $\int_{-\infty}^{\infty} e^{-x^2}$	$dx = \sqrt{\pi}$, the value of				
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + xy + y^2)} dx dy$					
	is					
	(A) $\sqrt{\pi/3}$	(B) $\pi/\sqrt{3}$ (C)	C) $\sqrt{2\pi/3}$	(D) $2\pi/\sqrt{3}$.		
69.	Let $I = \int_1^2 \int_$	$\int_{1}^{2} \int_{1}^{2} \int_{1}^{2} \frac{x_1 + x_2 + x_3}{x_1 + x_2 + x_3}$	$\frac{3-x_4}{3+x_4} dx_1 dx_2 dx_3$	x_3dx_4 .		
	Then I equals					
	(A) 1/2	(B) 1/3	(C) $1/4$	(D) 1.		
70.	Let $D = \{(x, y) \in \mathbb{R}^2$	$: x^2 + y^2 \le 1$. The va	alue of the doub	ble integral		
		$\int_{D} \int (x^2 + y^2) dx$	dxdy			
	is					
	(A) π	(B) $\frac{\pi}{2}$	(C) 2π	(D) π^2		
71.	Let $g(x, y) = \max\{12$ varies over the line x	$\{-x, 8-y\}$. Then the $\{-y, 8-y\}$ is	minimum value	of $g(x, y)$ as (x, y)		
	(A) 5	(B) 7	(C) 1	(D) 3.		

66. Let f and g be two differentiable functions such that $f'(x) \leq g'(x)$ for all

x < 1 and $f'(x) \ge g'(x)$ for all x > 1. Then

(C) $f(1) \le g(1)$

(A) if $f(1) \geq g(1)$, then $f(x) \geq g(x)$ for all x(B) if $f(1) \leq g(1)$, then $f(x) \leq g(x)$ for all x 72. Let $0 < \alpha < \beta < 1$. Then

$$\sum_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} \, dx$$

is equal to

- (A) $\log_e \frac{\beta}{\alpha}$
- (B) $\log_e \frac{1+\beta}{1+\alpha}$ (C) $\log_e \frac{1+\alpha}{1+\beta}$ (D) ∞ .

73. If f is continuous in [0, 1] then

$$\lim_{n \to \infty} \sum_{j=0}^{[n/2]} \frac{1}{n} f\left(\frac{j}{n}\right)$$

(where [y] is the largest integer less than or equal to y)

- (A) does not exist
- (B) exists and is equal to $\frac{1}{2} \int_0^1 f(x) dx$
- (C) exists and is equal to $\int_0^1 f(x) dx$
- (D) exists and is equal to $\int_{0}^{1/2} f(x) dx$.
- 74. The volume of the solid, generated by revolving about the horizontal line y=2 the region bounded by $y^2 \leq 2x, \, x \leq 8$ and $y \geq 2$, is
 - (A) $2\sqrt{2\pi}$
- (B) $28\pi/3$
- (C) 84π
- (D) none of the above.
- 75. If α , β are complex numbers then the maximum value of $\frac{\alpha\beta + \bar{\alpha}\beta}{|\alpha\beta|}$ is
 - (A) 2
 - (B) 1
 - (C) the expression may not always be a real number and hence maximum does not make sense
 - (D) none of the above.
- 76. For positive real numbers $a_1, a_2, \ldots, a_{100}$, let

$$p = \sum_{i=1}^{100} a_i$$
 and $q = \sum_{1 \le i < j \le 100} a_i a_j$.

- (A) $q = \frac{p^2}{2}$ (B) $q^2 \ge \frac{p^2}{2}$ (C) $q < \frac{p^2}{2}$ (D) none of the above.

- 77. The differential equation of all the ellipses centred at the origin is
 - (A) $y^2 + x(y')^2 yy' = 0$
- (B) $xyy'' + x(y')^2 yy' = 0$
- (C) $yy'' + x(y')^2 xy' = 0$
- (D) none of these.
- 78. The coordinates of a moving point P satisfy the equations

$$\frac{dx}{dt} = \tan x, \quad \frac{dy}{dt} = -\sin^2 x, \quad t \ge 0.$$

If the curve passes through the point $(\pi/2,0)$ when t=0, then the equation of the curve in rectangular co-ordinates is

(A) $y = 1/2\cos^2 x$

(B) $y = \sin 2x$

(C) $y = \cos 2x + 1$

(D) $y = \sin^2 x - 1$.

79. Let y be a function of x satisfying

$$\frac{dy}{dx} = 2x^3\sqrt{y} - 4xy$$

If y(0) = 0 then y(1) equals

- (A) $1/4e^2$
- (B) 1/e
- (C) $e^{1/2}$
- (D) $e^{3/2}$.
- 80. Let f(x) be a given differentiable function. Consider the following differential equation in y

$$f(x)\frac{dy}{dx} = yf'(x) - y^2.$$

The general solution of this equation is given by

(A) $y = -\frac{x+c}{f(x)}$

(B) $y^2 = \frac{f(x)}{x+c}$

(C) $y = \frac{f(x)}{x+c}$

- (D) $y = \frac{[f(x)]^2}{x+c}$.
- 81. Let y(x) be a non-trivial solution of the second order linear differential equation

$$\frac{d^2y}{dx^2} + 2c\frac{dy}{dx} + ky = 0,$$

where c < 0, k > 0 and $c^2 > k$. Then

- (A) $|y(x)| \to \infty$ as $x \to \infty$
- (B) $|y(x)| \to 0$ as $x \to \infty$
- (C) $\lim_{x \to +\infty} |y(x)|$ exists and is finite
- (D) none of the above is true.

	The differential equation of origin is	the system of circle	es touching the y -axis at the
	$(A) x^2 + y^2 - 2xy \frac{dy}{dx} = 0$		(B) $x^2 + y^2 + 2xy\frac{dy}{dx} = 0$
	$(C) x^2 - y^2 - 2xy\frac{dy}{dx} = 0$		(D) $x^2 - y^2 + 2xy \frac{dy}{dx} = 0.$
83.	Suppose a solution of the d	ifferential equation	
		$(xy^3 + x^2y^7)\frac{dy}{dx} = 1$,
	satisfies the initial condition is	y(1/4) = 1. Then t	the value of $\frac{dy}{dx}$ when $y = -1$

84. Consider the group

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right) : a, b \in \mathbb{R}, a > 0 \right\}$$

(A) $\frac{4}{3}$ (B) $-\frac{4}{3}$ (C) $\frac{16}{5}$ (D) $-\frac{16}{5}$.

with usual matrix multiplication. Let

$$N = \left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) : b \in \mathbb{R} \right\}.$$

Then,

- (A) N is not a subgroup of G
- (B) N is a subgroup of G but not a normal subgroup
- (C) N is a normal subgroup and the quotient group G/N is of finite order
- (D) N is a normal subgroup and the quotient group is isomorphic to \mathbb{R}^+ (the group of positive reals with multiplication).
- 85. Let G be the group $\{\pm 1, \pm i\}$ with multiplication of complex numbers as composition. Let H be the quotient group $\mathbb{Z}/4\mathbb{Z}$. Then the number of nontrivial group homomorphisms from H to G is

