85 Une municipalité commande à une entreprise, une glissière pour un toboggan, dont l'allure est schématisée par la courbe représentative \mathscr{C}_f d'une fonction f donnée ci-contre (les dimensions sont en mètres). Pour

des raisons de sécurité, la pente de la glissière au sommet M et au sol N doit être horizontale. Enfin l'entreprise ne peut fabriquer que des glissières dont la courbe a une équation de la forme : $y = ax^3 + bx^2 + cx + d$ où a, b, c et d sont des réels.

- **1.a.** Exprimer f'(x) en fonction de x.
- **b.** Montrer que f'(x) = mx(x 6) où m est un réel que l'on déterminera.
- **c.** En déduire b en fonction de a et la valeur de c.
- **2.** Sachant que la glissière passe par les points M(0 ; 4) et N(6 ; 0), en déduire une équation de la courbe \mathscr{C}_f .
- 3. a. Étudier la convexité de f et prouver que la courbe \mathscr{C}_f admet un point d'inflexion.
- **b.** Pour consolider le toboggan, le constructeur souhaite installer une barre de renfort horizontale, au point d'inflexion de la glissière. Déterminer à quelle hauteur cette barre devra être placée et quelle sera sa longueur.

1	
	Covertion du n° 85 p. 218
_	17 a) . { de finie sur [0,6] par!
	· ·
	f(x)=ax²+bx²+cx+d férivables sur [0;6]
	e fédérable sur topemme somme de fendions
	déhirables sur [0,6]
	Paul tout rele M, on a:
	β(n)= 3an2 +2bx+c.
	b) La pente de la alissière est haurantale au sonnet M d'abscisse O et au sol N d'abscisse 6
	sonnet M d'abscisse O et au sol M d'abscisse 6
(madone l'(0)=0 et l'(6)=0.
	Les revines du trinàme l' sont donc 0 et 6
	In a donc f'(0)=0 et f'(6)=0. Les revines du trindre f' sont denc 0 et 6 On en déduit- que la forme fortoisèe de f'est
-	pour tout réel x, l'(x)=mx (x-6)
	C) Identifiers les formes dèvelonnées de l'alterni
	C) Identifiers les formes dévelonnèes de l'détermi -mèes en questions 27 a) et 6)
	D'une park pour tout réel x ([0;6], ona d'aprés 270):
	$\int_{0}^{\infty} (x) = 3ax + 2bx + C$
-	Blankre part pour tout rêel x, ona. d'après 1) b)
1	()(x)=mx-pmx
L	1 CVI - 1

Covertion du QCH sur l'espace

Question 1:

Soit (d) la droite de représentation paramétrique :

$$\begin{aligned}
x &= -1 + 2t \\
y &= 2 - t , t \in \mathbb{R} \\
z &= 3 + t
\end{aligned}$$

Un vecteur directeur de (d) est :

- $\square \overrightarrow{u_1}:(-1;2;3)$
- $\square \overrightarrow{u_2}:(-1;-1;3)$
- $\nearrow \overrightarrow{u_3}:(-2;1;-1)$
- $\overline{u_4}$:(2;1;1)

Un retur direteur de (d) est \overline{u} (-1)
ou encare - u = 1/3 de coordannées (-2)

Question 2:

Soit (d) la droite de représentation paramétrique :

$$\begin{cases} x = -1 + 2t \\ y = 2 - t , t \in \mathbb{R} \\ z = 3 + t \end{cases}$$

Les points suivants appartiennent à (d):

$$\begin{cases} 2 = -1 + 2t \\ -1 = 2 - t \end{cases} = \begin{cases} \frac{3}{2} = t \\ \frac{2}{1} = \frac{3}{2} \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} 1 = 2 + t \\ 1 = -2 \end{cases}$$

$$\begin{cases} -1 = -1 + 2t \\ 1 = 2 - t \\ 1 = 3 + t \end{cases}$$

$$\begin{cases} t = 0 \\ t = 1 \\ t = 1 \end{cases}$$

$$\begin{cases} t = 0 \\ t = 1 \end{cases}$$

$$\begin{cases} t = 0 \\ t = 1 \end{cases}$$

$$\begin{cases} t = 0 \\ t = 1 \end{cases}$$

$$\begin{cases} t = 0 \\ t = 1 \end{cases}$$

$$\begin{cases} t = 0 \\ t = 1 \end{cases}$$

$$\begin{cases} t = 0 \end{cases}$$

$$t = 0 \end{cases}$$

$$\begin{cases} t = 0 \end{cases}$$

$$\begin{cases} t$$

$$\begin{cases} 3 = -1 + 2t \\ 0 = 2 - t \\ 5 = 3 + t \end{cases} \begin{cases} t = \frac{4}{2} = 2 \text{ une solution} \\ t = 2 \text{ Janc} \\ t = 5 - 3 = 2 \end{cases}$$

Alors la droite (D) ...

passe par le point K (0 ; -1 ; 4)

passe par le point L (3;5;-1)

admet le vecteur u comme vecteur directeur.

admet le vecteur v comme vecteur directeur.

So = A+t
$$(t=-1)$$
 le supstême admet $-1=1$ de supstême admet $-1=1$ une solution $-1=3$ den $(K \in (D))$ $-1=3$ den $(K \in (D))$ $-1=3$ den $-1=$

	x=1+t $x=-t'$
	(d) $y=5-4t$, $t \in \mathbb{R}$ et (d') $y=7+4t'$, $t' \in \mathbb{R}$ $z=7+2t'$
	Alors (d') est la parallèle à (d) passant par S(1; 3; 5).
	Van verteur directeur de (d) est- u' (-4)
	$\frac{-5}{\sqrt{5}}$
	Un redon diretur de (d) et to (4)
	Go a To? M donc To et me coline wies
(En a To = - u denc To et u colinèvies denc (d) et (d) sont parellèles.
_	
	Déterminais si (d) passe par S(1;3;5)
	(=) \ (=)
	7 3 = 4+41 / E' = -1
	le système à une solution danc Sappositiont à (d')
	Saphoutient à (d')

Les droites (d) et (d') de représentations paramétriques :