Question

Q. $5n^3+2n^2+3n=O(n^3)$ means there exist positive yeal constant C and a positive integer constant No such that $5n^3+2n^2+3n \le C \cdot n^3$ for all $n \ge n_0$ $5n^3+2n^2+3n \le C \cdot n^3 + for \text{ all } n \ge n_0$ $5n^3+2n^3+3n^2 \le C \cdot n^3 + for \text{ all } n \ge n_0$ $5n^3+2n^3+3n^2 \le C \cdot n^3$ $10n^3 \le C \cdot n^3$ $10 \le C$ $C = [0, n_0 = 1]$ Therefore: $5n^3+2n^2+3n = O(n^3)$

b. $\sqrt{7n^2+2n-8} = \Theta(n) \text{ means there exist positive real constants}$ $C_1, C_2 \text{ and a positive integer constant } n_0 \text{ such that}$ $C_2 \cdot n \leq \sqrt{7n^2+2n-8} \leq C_1 \cdot n \quad \text{for all } n \geq n_0$ $C_2 \cdot n \leq \sqrt{7n^2+2n-8} \leq C_1 \cdot n$

$$C_2 = \sqrt{57}$$
, $N_0 = 4$, $C_1 = 3$
Therefore, $\sqrt{7}n^2+2n-8 = \Theta(n)$

C d(n) = O(f(n)) means there exist a posture sinteger C_1 and a positive number no such that $C_1 \cdot f(n) \ge d(n)$ for all $n \ge n_0$

integer (2 and a positive number N_{ϕ} such that (2 · g(n) Z e(n) for all $n \ge N_{\phi}$

domecn) $\leq C_1 \cdot C_2 \cdot f(n) \cdot g(n)$ for $n \geq n_0 \geq n_0$ it no The OY $dn e(n) \leq C_1 \cdot C_2 \cdot f(n) \cdot g(n) for n > n_1 > n_0$ if Nis No assume a positive constanto cz which equals to the product of C, and Cz. So $d(n)e(n) \neq C_3 \cdot f(n) \cdot g(n) for$ n 7 No7/1 (or n7/1/2/10) Through the defination of "O(n)", we

can conclud that don ear is Octon, gar)

Question 2.

1. 6 CN2)

2. g(n)

3. 0 (log (n))

4,0(n)

.