Processing Big Data

Introduction

- How to efficiently process large amount of data?
 - Use many machines
 - Use many cores
- How to efficiently use many machine/cores
 - Use a suitable programming model
- What is a programming model
 - A way to write some program,
 - with access to a limited set of functions,
 - provided by libraries or frameworks
 - and an environment to execute it.

MapReduce

The MapReduce programming model

- Popularized by a paper from Google: MapReduce: simplified data processing on large clusters (2008)
- Simple model with 2 basic operations
 - Map
 - Reduce
- Assume data are structured as (key,value)
- Apply successive map and reduce operations
 - Not necessarily limited to 1 map and 1 reduce in theory

Map and Reduce

- Map and reduce are functions with defined input-output
- Map :
 - Uses a single (key, value) to produce multiple pairs
 - Input: (key, value) or (key,_) (__, velue)
 - Output : One or many (key, value) pairs
- Reduce:
 - Gets all values associated with a given key and produce new pairs
 - Input: (key, [value1, value2, ..., valueN])
 - Output : One or many (key, value) pairs

Example

- Word count
 - Take a text, produce a list of (word, Nb occurences)
- Map function :
 - Assume each word appears only once
 - Use word as key and add value 1
 - Input : (word, _)
 - Output : (word, 1)
- Reduce function :
 - Sum all '1' for a given key (word)
 - Input : (word, [1,1,1,1,1,1])
 - Output : (word, 6)

Reduce Map E> nosic (aaa,1) (bbb,1) (aaa,[1,1]) (aaa,2) (ccc,1) (ccc,[,,1]) (ccc,2) (ddd,1) aaa bbb ccc ddd eee (ddd,[1,1]) (ddd,2) aaa ccc ddd (aaa,1) (bbb,[1]) (bbb,1) (eee,[1]) (eee,1) (eee,1) (ccc,1) (ddd,1)

Benefits of MapReduce

- A lot of real world problems can be expressed as MapReduce
- Maps and reduce functions can be executed in parallel
 - Map works on independent data
 - Reduce works on a single key
- Reduce can have inner parallelism
 - If complex, can reduce with multiple threads

Implementations questions

- How is the input split into individual pairs for mappers?
- How are output of map grouped by key and sent to the correct reduce?
- How is final result written?
- All these are answered by a framework
 - All follow the same model but implementation may vary
- Basically, a MapReduce application has 4 phases
 - Splitting, Mapping, Grouping/Shuffling, Reducing

Grouping Map Shuffling Reduce Splitting (aaa,1) (bbb,1) (ccc,1) (aaa,[1,1]) (aaa,2) (ddd,1) (ccc,[1,1]) (ccc,2) aaa bbb ccc ddd eee (aaa,1) (ddd,[1,1]) (ddd,2) aaa ccc ddd (bbb,[1]) (bbb,1) (eee,1) (eee,[1]) (eee,1) (ccc,1) (ddd,1)

MapReduce

The Hadoop Framework

Introduction

- Hadoop is an open source implementation of Google MapReduce
- Provides full stack of services/frameworks
 - Not only MapReduce since version 2
- Most important components
 - HDFS
 - YARN
 - MapReduce

https://www.edureka.co/blog/hadoop-ecosystem

YARN

- Yet Another Resource Negotiator
- Manages resources (nodes)
 - Knows the nodes available
 - Can provide nodes to an application
- YARN doesn't know or care about applications
 - So it can be used by any kind of application
- Main benefits
 - Nodes can be shared between user/applications
 - New applications/frameworks can use it and avoid managing resources
- Yarn is used outside of Hadoop

Writing Hadoop MapReduce Programs

- A MapReduce program is called a Job
- Main language is Java
 - But can use any executable or script
- Map function implemented in a Mapper
- Reduce function implemented in a Reducer
- Default implementation
 - Splitting
 - If input is text file, keys are whole line
 - Shuffling
 - Based on hash value of key

Mapper example

```
#!/usr/bin/env python
"""mapper.py"""
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
    words = line.split()
    # increase counters
    for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        # tab-delimited; the trivial word count is 1
        print '%s\t%s' % (word, 1)
                     -> se paretse key, value
preduce-program-in-python/
```

Reducer Example

```
#!/usr/bin/env python
"""reducer.py"""
from operator import itemgetter
import sys
current word = None
current count = 0
word = None
# input comes from STDIN
for line in sys.stdin:
    # remove leading and trailing whitespace
   line = line.strip()
    # parse the input we got from mapper.py
    word, count = line.split (\t',)1)
    # convert count (currently a string) to int
    try:
       count = int(count)
    except ValueError:
       # count was not a number, so silently
        # ignore/discard this line
       continue
    # this IF-switch only works because Hadoop sorts map output
    # by key (here: word) before it is passed to the reducer
   if current word == word:
       current count += count
    else:
       if current word:
            # write result to STDOUT
            print '%s\t%s' % (current word, current count)
       current_count = count
       current word = word
# do not forget to output the last word if needed!
if current word == word:
   print '%s\t%s' % (current word, current count)
```

Execution

- A Job is submitted to a Hadoop Cluster
 - hadoop command
- All files have to be in HDFS
 - All paths relative to HDFS
- Number of mapper instances
 - Automatically decided based on the size (blocks) of input
- Number of reducers
 - Computed, can be set manually
 - Ideal value depends on the output of mappers

Execution - 2

- Mappers/Reducers are executed close to data if possible
 - Use replication factor
- Result of a Job is written to HDFS
 - In a directory
- Output directory contains 1 file per reducer instance
 - Named part-000xxx
- Jobs cannot overwrite existing files
 - Remember to remove previous results before new execution

Hadoop Streaming

- A simple tool to use almost anything as map and reduce functions
 - Part of the standard Hadoop distribution
- Mappers and Reducers can be any exec or script
 - Works with Python
- Mappers
 - Read from files on HDFS
 - Write to standard output as text with tab as (key value) separator
- Reducers
 - Read from standard input, assume tab as separator
 - Get (key value) pairs (!)
 - Write to standard output, automatically saved to file

Hadoop Streaming

- Limitations
 - No real grouping/shuffling
 - Reduce receives multiple (key,value) pairs
 - Relies on files and STDIN/STDOUT for data transfer
- Example :
 - hadoop jar hadoop-streaming-3.1.4.jar -input /sample-text-file.txt -output /results -mapper mapper.py -reducer reducer.py

1+075

Beyond MapReduce

The Spark Framework

Limits of MapReduce & Hadoop

- Only 2 primitives
- No easy support for iterative applications
- Shuffling/grouping phase can be costly
- Hard to have map and reduces phases in parallel
 - Must wait for mappers to finish
- Heavy use of disk for intermediate results
 - Very slow

Apache Spark

- Addresses limitations of Hadoop
- Spark
 - In-Memory computation
 - Workflows with cycles
 - Supports MapReduce like operations
 - Multi languages support : Scala, Java, Python, R
- https://spark.apache.org/

MLib GraphX Spark SQL Spark Streaming graph machine structured data real-time learning processing Spark Core Standalone Scheduler YARN Mesos

Resilient Distributed Datasets

- RDDs
 - Array-like data structure
 - Mostly in-memory
- Partitioned
 - An RDD is divided into blocks
 - Blocks are located on different machines
- Fault tolerant
 - Spark will remember operations on RDDs
 - Replay them in case of failure
- Immutable ← very important!
 - You CANNOT modify an RDD
 - You can only create a new one
 - Beware of memory usage

Resilient Distributed Datasets

- RDDs are created through transformations
 - Of raw data or another RDD
 - Example: map, filter, reduceByKey, groupBy...
- RDDs support actions
 - Action take an RDD and returns something NOT an RDD
 - Example : collect, count, reduce, save...
- Transformations are lazy
 - Nothing will happen until you perform an action
 - Why?

Example: Word Count in Python

Conclusion

- Hadoop and Spark are complex frameworks
 - Relies on other frameworks (Yarn...)
 - Used by higher level frameworks (ML...)
- Many other exists
 - Some are specialized on specific data
- How to choose one?
 - Performance
 - Language supported
 - Ease of use