Image courtesy: http://beetfusion.com/

THE MINERS

The Life of a Miner

- Validate transactions and construct a block
- Use hash power to vote on consensus and commit transactions with a new block
- Store and broadcast the blockchain to the peers

Mining Bitcoins

- Join the network and listen for transactions validate the proposed transactions
- Listen for new blocks validate and re-broadcast a new block when it is proposed
- Collect transactions for a predefined time and construct a new block
- Find a nonce to make the new block valid
- Broadcast the new block everybody accepts it if it is a part of the main chain
- Earn the reward for participating in the mining procedure

Mining Difficulty

- A measure of how difficult it is to fond a hash below a given target
 - Bitcoin network has a global block difficulty
 - Mining pools also have a pool-specific share difficulty
- The difficulty changes for every 2016 blocks
 - Desired rate one block each 10 minutes
 - Two weeks to generate 2016 blocks
 - The change in difficulty is in proportion to the amount of time over or under two weeks the previous 2016 blocks took to find (en.bitcoin.it)

Setting the Difficulty

- Compute the following for every two weeks
- ✓ Current_difficulty = previous_difficulty *(2 weeks in milliseconds)/(milliseconds to mine last 2016 blocks)

Hash-rate versus Difficulty

- The hash is a random number between 0 and 2^{256} -1
 - To find a block, the hash must be less than a given target
- The offset for difficulty 1 is $0xffff * 2^{208}$
- The offset for difficulty D is **0xffff** * **2**²⁰⁸/**D**
- The expected number of hashes we need to calculate to find a block with difficulty D is $(D * 2^{256}) / (0xffff * 2^{208})$

Mining Difficulty

- Current difficulty: 3511060552899.72 (as of 2nd April, 2018)
 - https://blockexplorer.com/api/status?q=getDifficulty

Mining Difficulty

Mining Hardware

- Specialized hardware
 - GPU
 - FPGA
- ASIC
 - Released in 2013
 - Fast computation of SHA256

Image source:

https://steemkr.com/bitcoin/@pawank/bitcoin-mining

TerraMiner IV

- ASIC based bitcoin mining rig
- 2 Terahash per second
- Cost: USD 3500 approx

Mining Pool

- Pooling of resources by the miners
 - Share the processing power over a network to mine a new block
 - Split the reward proportionally to the amount of work they contributed

Hash-rate Distribution: blockchain.info

- Contains hundreds or thousands of miners through special protocols
- BB: Block reward minus pool fee
- pp: Probability of finding a block in a share attempt (pp = 1/DD), DD is the block difficulty

Pay per Share (PPS)

- Instant guaranteed payout to a miner
- Miners are paid from pool's existing balance, share of a miner is $RR = BB \times pp$
- Miners get almost equal payment, risk is at the pool operator

Proportional

- ✓ Miners earn share until the pool finds a block (end of mining round)
- \checkmark $RR = BB \times \frac{nn}{n}$, where nn is amount of his own share, and NN is amount of all shares in the round
- ✓ Payments are made once a pool finds out a block

- Pay per Last N Share (PPLNS)
 - Similar to proportional
 - Miner's reward is calculated on the basis of N last shares
 - Miners get more profit for a short round

Mining Pools – Pros and Cons

Pros

- Small miners can participate
- Predictable mining

• Cons

- Leads to centralization
- Discourages miners for running complete mining procedure

Summary – Permissionless Blockchain and Bitcoin

- The permissionless or open model of blockchain any user can join the network and participate in transactions
 - Bitcoin is developed on this principle
- The blockchain provides the backbone of the permissionless digital currency
 - Provides a decentralized architecture
 - Tamper-proof through hash-chain
- Miners ensures the consensus in the system

