$12n_{0459} \ (K12n_{0459})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ -2.55290 \times 10^{42} u^{36} + 5.44795 \times 10^{42} u^{35} + \dots + 1.76508 \times 10^{43} a - 3.00825 \times 10^{43}, \\ & u^{37} - u^{36} + \dots + 3u - 1 \rangle \\ I_2^u &= \langle b+u, \ 250 u^{18} - 299 u^{17} + \dots + 73a + 547, \ u^{19} - u^{18} + \dots + 3u + 1 \rangle \\ I_3^u &= \langle 2.39883 \times 10^{77} u^{33} + 4.38682 \times 10^{77} u^{32} + \dots + 2.11269 \times 10^{80} b + 4.67078 \times 10^{80}, \\ & -2.66819 \times 10^{80} u^{33} - 6.63024 \times 10^{80} u^{32} + \dots + 4.21058 \times 10^{83} a - 5.18491 \times 10^{83}, \\ & u^{34} + u^{33} + \dots + 1952 u - 1993 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 90 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b-u, -2.55 \times 10^{42} u^{36} + 5.45 \times 10^{42} u^{35} + \dots + 1.77 \times 10^{43} a - 3.01 \times 10^{43}, \ u^{37} - u^{36} + \dots + 3u - 1 \rangle$$

(i) Arc colorings

$$\begin{array}{l} a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_4 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_9 = \begin{pmatrix} 0.144634u^{36} - 0.308653u^{35} + \cdots - 1.70408u + 1.70432 \\ u \end{pmatrix} \\ a_3 = \begin{pmatrix} 0.0641583u^{36} - 0.204773u^{35} + \cdots - 2.93838u + 1.14286 \\ 0.00595874u^{36} - 0.0145660u^{35} + \cdots + 0.258814u - 0.0315982 \end{pmatrix} \\ a_8 = \begin{pmatrix} 0.144634u^{36} - 0.308653u^{35} + \cdots - 0.704084u + 1.70432 \\ u \end{pmatrix} \\ a_7 = \begin{pmatrix} 0.144634u^{36} - 0.308653u^{35} + \cdots - 0.704084u + 1.70432 \\ -0.0315982u^{36} + 0.0375570u^{35} + \cdots + 0.363310u + 0.164019 \end{pmatrix} \\ a_{11} = \begin{pmatrix} 0.287497u^{36} + 0.387357u^{35} + \cdots + 0.523806u + 0.805473 \\ 0.0315982u^{36} - 0.0375570u^{35} + \cdots + 1.63669u - 0.164019 \end{pmatrix} \\ a_{10} = \begin{pmatrix} -0.255898u^{36} + 0.349800u^{35} + \cdots + 2.16050u + 0.641454 \\ 0.0315982u^{36} - 0.0375570u^{35} + \cdots + 1.63669u - 0.164019 \end{pmatrix} \\ a_1 = \begin{pmatrix} -0.113036u^{36} + 0.271096u^{35} + \cdots + 3.34077u - 1.86834 \\ 0.206163u^{36} - 0.241526u^{35} + \cdots - 0.860551u + 0.362165 \end{pmatrix} \\ a_2 = \begin{pmatrix} 0.121719u^{36} + 0.0603587u^{35} + \cdots + 2.89319u - 1.94734 \\ 0.177072u^{36} - 0.177109u^{35} + \cdots - 0.860687u + 0.281992 \end{pmatrix} \\ a_6 = \begin{pmatrix} -0.0205670u^{36} - 0.0114078u^{35} + \cdots - 1.02788u + 1.87960 \\ -0.0935046u^{36} + 0.0800631u^{35} + \cdots + 1.12160u + 0.0897229 \end{pmatrix} \\ \end{array}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3.05287u^{36} + 2.19238u^{35} + \cdots + 12.4820u 10.7486$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{37} + 19u^{36} + \dots + 13u + 4$
c_2, c_5	$u^{37} + 5u^{36} + \dots + 11u + 2$
c_3,c_{10}	$u^{37} - 16u^{35} + \dots + 286u + 313$
c_4, c_8	$u^{37} + u^{36} + \dots + 3u + 1$
<i>c</i> ₆	$u^{37} + 15u^{36} + \dots + 1057u + 142$
	$u^{37} + 33u^{36} + \dots + 2424832u + 131072$
c_9,c_{12}	$u^{37} + 2u^{36} + \dots - 4u + 1$
c_{11}	$u^{37} - 20u^{36} + \dots + 3129u + 416$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{37} + y^{36} + \dots + 417y - 16$
c_{2}, c_{5}	$y^{37} - 19y^{36} + \dots + 13y - 4$
c_3, c_{10}	$y^{37} - 32y^{36} + \dots + 1668y - 97969$
c_4, c_8	$y^{37} - 53y^{36} + \dots + y - 1$
	$y^{37} + 17y^{36} + \dots + 321765y - 20164$
	$y^{37} - 7y^{36} + \dots + 124554051584y - 17179869184$
c_9,c_{12}	$y^{37} + 18y^{36} + \dots + 52y - 1$
c ₁₁	$y^{37} - 40y^{36} + \dots + 11555313y - 173056$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.227341 + 1.006740I		
a = -0.014320 + 0.531612I	2.19421 - 2.66186I	-12.2194 + 11.4876I
b = 0.227341 + 1.006740I		
u = 0.227341 - 1.006740I		
a = -0.014320 - 0.531612I	2.19421 + 2.66186I	-12.2194 - 11.4876I
b = 0.227341 - 1.006740I		
u = -0.572877 + 0.421277I		
a = -0.589584 - 0.431854I	-4.23503 - 2.99580I	-10.42564 + 0.99385I
b = -0.572877 + 0.421277I		
u = -0.572877 - 0.421277I		
a = -0.589584 + 0.431854I	-4.23503 + 2.99580I	-10.42564 - 0.99385I
b = -0.572877 - 0.421277I		
u = 0.443470 + 0.512589I		
a = -0.93334 - 2.14850I	-2.92897 + 7.93095I	-9.93339 - 5.60925I
b = 0.443470 + 0.512589I		
u = 0.443470 - 0.512589I		
a = -0.93334 + 2.14850I	-2.92897 - 7.93095I	-9.93339 + 5.60925I
b = 0.443470 - 0.512589I		
u = -0.425682 + 0.515838I		
a = -0.912897 - 0.668737I	-4.36721 + 4.92237I	-9.76383 - 6.76217I
b = -0.425682 + 0.515838I		
u = -0.425682 - 0.515838I		
a = -0.912897 + 0.668737I	-4.36721 - 4.92237I	-9.76383 + 6.76217I
b = -0.425682 - 0.515838I		
u = 0.640765 + 0.065448I		
a = 0.06676 + 1.55654I	0.561173 + 0.639753I	-5.50967 - 0.34463I
b = 0.640765 + 0.065448I		
u = 0.640765 - 0.065448I		
a = 0.06676 - 1.55654I	0.561173 - 0.639753I	-5.50967 + 0.34463I
b = 0.640765 - 0.065448I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.276215 + 0.533554I		
a = -1.16500 - 2.16159I	-3.55570 - 0.00267I	-10.39254 + 2.55625I
b = 0.276215 + 0.533554I		
u = 0.276215 - 0.533554I		
a = -1.16500 + 2.16159I	-3.55570 + 0.00267I	-10.39254 - 2.55625I
b = 0.276215 - 0.533554I		
u = 0.440393 + 0.380348I		
a = 0.896498 - 0.271334I	-1.26315 - 1.02773I	-6.64941 + 3.71665I
b = 0.440393 + 0.380348I		
u = 0.440393 - 0.380348I		
a = 0.896498 + 0.271334I	-1.26315 + 1.02773I	-6.64941 - 3.71665I
b = 0.440393 - 0.380348I		
u = -0.388482 + 0.417207I		
a = 0.91985 - 2.32255I	-0.15749 - 3.53597I	-7.19576 + 1.75427I
b = -0.388482 + 0.417207I		
u = -0.388482 - 0.417207I		
a = 0.91985 + 2.32255I	-0.15749 + 3.53597I	-7.19576 - 1.75427I
b = -0.388482 - 0.417207I		
u = -0.536439 + 0.152143I		
a = 0.19810 - 2.15263I	1.28152 - 3.19239I	-5.87746 + 5.99544I
b = -0.536439 + 0.152143I		
u = -0.536439 - 0.152143I		
a = 0.19810 + 2.15263I	1.28152 + 3.19239I	-5.87746 - 5.99544I
b = -0.536439 - 0.152143I		
u = 0.411639		
a = 0.358793	-0.908630	-11.5680
b = 0.411639		
u = 0.069113 + 0.352786I		
a = 2.46626 - 1.42359I	-0.90988 - 2.23770I	0.21125 + 2.16221I
b = 0.069113 + 0.352786I		_

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.069113 - 0.352786I		
a = 2.46626 + 1.42359I	-0.90988 + 2.23770I	0.21125 - 2.16221I
b = 0.069113 - 0.352786I		
u = -1.79797 + 0.39975I		
a = 0.791512 + 0.386512I	-10.49280 - 5.44002I	0
b = -1.79797 + 0.39975I		
u = -1.79797 - 0.39975I		
a = 0.791512 - 0.386512I	-10.49280 + 5.44002I	0
b = -1.79797 - 0.39975I		
u = 1.84834 + 0.40321I		
a = -0.787306 + 0.304002I	-7.74174 - 0.09044I	0
b = 1.84834 + 0.40321I		
u = 1.84834 - 0.40321I		
a = -0.787306 - 0.304002I	-7.74174 + 0.09044I	0
b = 1.84834 - 0.40321I		
u = -1.86346 + 0.35746I		
a = 0.898519 + 0.269725I	-12.94290 + 3.71649I	0
b = -1.86346 + 0.35746I		
u = -1.86346 - 0.35746I		
a = 0.898519 - 0.269725I	-12.94290 - 3.71649I	0
b = -1.86346 - 0.35746I		
u = -1.87706 + 0.37684I		
a = 0.894002 + 0.031082I	-5.46083 + 8.77952I	0
b = -1.87706 + 0.37684I		
u = -1.87706 - 0.37684I		
a = 0.894002 - 0.031082I	-5.46083 - 8.77952I	0
b = -1.87706 - 0.37684I		
u = 1.88332 + 0.36296I		
a = -0.835463 + 0.083202I	-5.07424 - 3.40985I	0
b = 1.88332 + 0.36296I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.88332 - 0.36296I		
a = -0.835463 - 0.083202I	-5.07424 + 3.40985I	0
b = 1.88332 - 0.36296I		
u = -1.91093 + 0.40135I		
a = 1.032100 + 0.006450I	-9.1177 + 10.8968I	0
b = -1.91093 + 0.40135I		
u = -1.91093 - 0.40135I		
a = 1.032100 - 0.006450I	-9.1177 - 10.8968I	0
b = -1.91093 - 0.40135I		
u = 1.91805 + 0.38450I		
a = -1.045410 + 0.056772I	-13.7875 - 7.1044I	0
b = 1.91805 + 0.38450I		
u = 1.91805 - 0.38450I		
a = -1.045410 - 0.056772I	-13.7875 + 7.1044I	0
b = 1.91805 - 0.38450I		
u = 1.92006 + 0.40960I		
a = -1.059660 - 0.009858I	-12.0188 - 16.0848I	0
b = 1.92006 + 0.40960I		
u = 1.92006 - 0.40960I		
a = -1.059660 + 0.009858I	-12.0188 + 16.0848I	0
b = 1.92006 - 0.40960I		

II.
$$I_2^u = \langle b+u, \ 250u^{18} - 299u^{17} + \dots + 73a + 547, \ u^{19} - u^{18} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3.42466u^{18} + 4.09589u^{17} + \dots - 5.61644u - 7.49315 \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.219178u^{18} + 0.630137u^{17} + \dots - 0.479452u + 1.61644 \\ 0.219178u^{18} - 0.630137u^{17} + \dots + 0.479452u + 0.383562 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -3.42466u^{18} + 4.09589u^{17} + \dots - 6.61644u - 7.49315 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -3.42466u^{18} + 4.09589u^{17} + \dots - 6.61644u - 7.49315 \\ 0.383562u^{18} - 0.602740u^{17} + \dots - 2.41096u + 0.671233 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.80822u^{18} + 3.69863u^{17} + \dots - 2.20548u - 5.16438 \\ 0.383562u^{18} - 0.602740u^{17} + \dots - 0.410959u + 0.671233 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.42466u^{18} + 3.09589u^{17} + \dots - 0.410959u + 0.671233 \\ 0.383562u^{18} - 0.602740u^{17} + \dots - 0.410959u + 0.671233 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3.04110u^{18} - 3.49315u^{17} + \dots + 2.68493u - 0.452055 \\ 0.273973u^{18} + 0.671233u^{17} + \dots + 2.68493u - 0.452055 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 4.10959u^{18} - 4.31507u^{17} + \dots + 2.73973u + 8.19178 \\ -0.561644u^{18} + 0.739726u^{17} + \dots + 2.95890u - 0.232877 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3.30137u^{18} + 4.61644u^{17} + \dots + 1.53425u - 7.02740 \\ 0.0547945u^{18} - 0.657534u^{17} + \dots + 0.630137u + 1.09589 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{128}{73}u^{18} - \frac{149}{73}u^{17} + \dots + \frac{2032}{73}u + \frac{589}{73}u^{17} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{19} - 10u^{18} + \dots + 4u - 1$
c_2	$u^{19} + 2u^{18} + \dots + 2u + 1$
c_3, c_{10}	$u^{19} - 9u^{17} + \dots + 5u^2 + 1$
c_4, c_8	$u^{19} - u^{18} + \dots + 3u + 1$
c_5	$u^{19} - 2u^{18} + \dots + 2u - 1$
c_6	$u^{19} - 6u^{18} + \dots + 2u^2 - 1$
	$u^{19} - 2u^{18} + \dots - 2u + 1$
c_{9}, c_{12}	$u^{19} - 2u^{18} + \dots - 2u + 1$
c_{11}	$u^{19} + 17u^{18} + \dots + 126u + 13$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} + 2y^{18} + \dots + 8y - 1$
c_2, c_5	$y^{19} - 10y^{18} + \dots + 4y - 1$
c_3, c_{10}	$y^{19} - 18y^{18} + \dots - 10y - 1$
c_4, c_8	$y^{19} - 15y^{18} + \dots + 3y - 1$
<i>C</i> ₆	$y^{19} + 6y^{18} + \dots + 4y - 1$
c_7	$y^{19} - 6y^{18} + \dots + 4y - 1$
c_9, c_{12}	$y^{19} - 4y^{18} + \dots + 6y - 1$
c_{11}	$y^{19} - 19y^{18} + \dots - 1076y - 169$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.389670 + 0.971259I		
a = 0.122229 - 0.627078I	2.33089 + 2.35439I	-2.65418 + 9.07433I
b = 0.389670 - 0.971259I		
u = -0.389670 - 0.971259I		
a = 0.122229 + 0.627078I	2.33089 - 2.35439I	-2.65418 - 9.07433I
b = 0.389670 + 0.971259I		
u = 0.107461 + 0.844602I		
a = -0.493610 - 0.405220I	2.97743 + 2.82971I	1.23971 - 7.37257I
b = -0.107461 - 0.844602I		
u = 0.107461 - 0.844602I		
a = -0.493610 + 0.405220I	2.97743 - 2.82971I	1.23971 + 7.37257I
b = -0.107461 + 0.844602I		
u = 0.297145 + 0.782682I		
a = 1.072240 + 0.413603I	-1.69545 - 9.35446I	-5.05835 + 8.47597I
b = -0.297145 - 0.782682I		
u = 0.297145 - 0.782682I		
a = 1.072240 - 0.413603I	-1.69545 + 9.35446I	-5.05835 - 8.47597I
b = -0.297145 + 0.782682I		
u = -0.219141 + 0.729049I		
a = -1.127880 + 0.213922I	0.95654 + 4.52756I	-1.42515 - 5.36291I
b = 0.219141 - 0.729049I		
u = -0.219141 - 0.729049I		
a = -1.127880 - 0.213922I	0.95654 - 4.52756I	-1.42515 + 5.36291I
b = 0.219141 + 0.729049I		
u = 0.347645 + 0.580389I		
a = 1.49707 + 0.47525I	-3.09155 - 1.28314I	-7.80963 + 3.01643I
b = -0.347645 - 0.580389I		
u = 0.347645 - 0.580389I		
a = 1.49707 - 0.47525I	-3.09155 + 1.28314I	-7.80963 - 3.01643I
b = -0.347645 + 0.580389I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.409426 + 0.038014I		
a = -1.22838 - 2.29649I	-1.45073 - 2.37737I	-14.4553 + 5.2559I
b = 0.409426 - 0.038014I		
u = -0.409426 - 0.038014I		
a = -1.22838 + 2.29649I	-1.45073 + 2.37737I	-14.4553 - 5.2559I
b = 0.409426 + 0.038014I		
u = 1.63934 + 0.02428I		
a = 1.081950 - 0.322533I	-8.75263 + 5.21255I	-9.20929 - 3.46517I
b = -1.63934 - 0.02428I		
u = 1.63934 - 0.02428I		
a = 1.081950 + 0.322533I	-8.75263 - 5.21255I	-9.20929 + 3.46517I
b = -1.63934 + 0.02428I		
u = 1.70890 + 0.02593I		
a = 1.228870 + 0.191361I	-9.57662 + 2.62847I	-9.72201 - 4.27468I
b = -1.70890 - 0.02593I		
u = 1.70890 - 0.02593I		
a = 1.228870 - 0.191361I	-9.57662 - 2.62847I	-9.72201 + 4.27468I
b = -1.70890 + 0.02593I		
u = -1.71417 + 0.03393I		
a = -1.039940 - 0.168963I	-6.19104 - 0.62856I	-6.47218 - 0.41177I
b = 1.71417 - 0.03393I		
u = -1.71417 - 0.03393I		
a = -1.039940 + 0.168963I	-6.19104 + 0.62856I	-6.47218 + 0.41177I
b = 1.71417 + 0.03393I		
u = -1.73618		
a = -1.22509	-6.94142	-2.86710
b = 1.73618		

III.
$$I_3^u = \langle 2.40 \times 10^{77} u^{33} + 4.39 \times 10^{77} u^{32} + \dots + 2.11 \times 10^{80} b + 4.67 \times 10^{80}, -2.67 \times 10^{80} u^{33} - 6.63 \times 10^{80} u^{32} + \dots + 4.21 \times 10^{83} a - 5.18 \times 10^{83}, \ u^{34} + u^{33} + \dots + 1952 u - 1993 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.000633687u^{33} + 0.00157466u^{32} + \cdots - 1.38149u + 1.23140 \\ -0.00113544u^{33} - 0.00207642u^{32} + \cdots - 0.586403u - 2.21083 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.00161924u^{33} - 0.00401377u^{32} + \cdots - 1.64818u - 2.45216 \\ 0.00145092u^{33} + 0.00405054u^{32} + \cdots - 2.20190u + 1.96335 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.000501756u^{33} - 0.000501756u^{32} + \cdots - 1.96789u - 0.979428 \\ -0.00113544u^{33} - 0.00207642u^{32} + \cdots - 0.586403u - 2.21083 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.000501756u^{33} - 0.000501756u^{32} + \cdots - 1.96789u - 0.979428 \\ -0.00113544u^{33} - 0.00207642u^{32} + \cdots + 0.413597u - 2.21083 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.00225250u^{33} + 0.00558537u^{32} + \cdots + 0.413597u - 2.21083 \\ -0.00288618u^{33} - 0.00716003u^{32} + \cdots + 3.30794u - 3.41526 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000633687u^{33} - 0.00157466u^{32} + \cdots + 2.38149u - 1.23140 \\ -0.00288618u^{33} - 0.00716003u^{32} + \cdots + 3.30794u - 3.41526 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000633687u^{33} - 0.00157466u^{32} + \cdots + 2.38149u - 1.23140 \\ -0.00288618u^{33} - 0.00716003u^{32} + \cdots + 3.30794u - 3.41526 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000428587u^{33} - 0.000572264u^{32} + \cdots + 0.221236u - 1.56686 \\ 0.00234022u^{33} + 0.00587590u^{32} + \cdots + 1.14397u + 2.65445 \end{pmatrix}$$

$$a_{22} = \begin{pmatrix} -0.00158678u^{33} - 0.00381361u^{32} + \cdots - 1.07544u + 3.26522 \\ -0.00158678u^{33} - 0.00381361u^{32} + \cdots - 0.818276u - 3.70164 \end{pmatrix}$$

$$a_{23} = \begin{pmatrix} 0.000923865u^{33} + 0.00208460u^{32} + \cdots + 1.06868u + 2.80386 \\ 0.000581990u^{33} + 0.000749672u^{32} + \cdots + 1.06868u + 2.80386 \\ 0.000581990u^{33} + 0.000749672u^{32} + \cdots + 1.06868u + 2.80386 \\ 0.000581990u^{33} + 0.000749672u^{32} + \cdots + 2.17844u + 2.36276 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.00320571u^{33} + 0.00635032u^{32} + \cdots + 0.739925u + 0.207764$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^{17} + 9u^{16} + \dots + u + 1)^2$
c_{2}, c_{5}	$(u^{17} - u^{16} + \dots + u - 1)^2$
c_3,c_{10}	$u^{34} - u^{33} + \dots + 116748u - 21241$
c_4, c_8	$u^{34} - u^{33} + \dots - 1952u - 1993$
<i>c</i> ₆	$(u^{17} - 3u^{16} + \dots + 9u - 3)^2$
	$(u-1)^{34}$
c_9,c_{12}	$u^{34} + 15u^{33} + \dots + 284u + 23$
c_{11}	$(u^{17} + 15u^{16} + \dots - 15u + 3)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^{17} - y^{16} + \dots + 9y - 1)^2$
c_2, c_5	$(y^{17} - 9y^{16} + \dots + y - 1)^2$
c_3, c_{10}	$y^{34} - 33y^{33} + \dots - 8863869996y + 451180081$
c_4, c_8	$y^{34} - 45y^{33} + \dots - 19443396y + 3972049$
<i>c</i> ₆	$(y^{17} + 11y^{16} + \dots + 57y - 9)^2$
c_7	$(y-1)^{34}$
c_9, c_{12}	$y^{34} - 5y^{33} + \dots + 580y + 529$
c_{11}	$(y^{17} - 33y^{16} + \dots - 15y - 9)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.167398 + 1.144780I		
a = 0.014539 + 0.424029I	2.19127 - 2.39923I	-7.13400 + 3.27109I
b = -0.139598 + 0.431211I		
u = 0.167398 - 1.144780I		
a = 0.014539 - 0.424029I	2.19127 + 2.39923I	-7.13400 - 3.27109I
b = -0.139598 - 0.431211I		
u = 0.622028 + 0.358140I		
a = -0.443652 - 0.412413I	-4.71195 + 0.50801I	-13.57451 + 0.23246I
b = -0.763740 + 1.107580I		
u = 0.622028 - 0.358140I		
a = -0.443652 + 0.412413I	-4.71195 - 0.50801I	-13.57451 - 0.23246I
b = -0.763740 - 1.107580I		
u = -0.763740 + 1.107580I		
a = -0.200081 + 0.253771I	-4.71195 + 0.50801I	-13.57451 + 0.23246I
b = 0.622028 + 0.358140I		
u = -0.763740 - 1.107580I		
a = -0.200081 - 0.253771I	-4.71195 - 0.50801I	-13.57451 - 0.23246I
b = 0.622028 - 0.358140I		
u = 0.612488 + 1.252450I		
a = 0.160762 + 0.357838I	-0.42874 - 3.91820I	-8.40216 + 2.39256I
b = -0.475864 + 0.286501I		
u = 0.612488 - 1.252450I		
a = 0.160762 - 0.357838I	-0.42874 + 3.91820I	-8.40216 - 2.39256I
b = -0.475864 - 0.286501I		
u = -0.475864 + 0.286501I		
a = 0.929876 - 0.323850I	-0.42874 - 3.91820I	-8.40216 + 2.39256I
b = 0.612488 + 1.252450I		
u = -0.475864 - 0.286501I		
a = 0.929876 + 0.323850I	-0.42874 + 3.91820I	-8.40216 - 2.39256I
b = 0.612488 - 1.252450I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.507585 + 0.207409I		
a = -1.006380 - 0.653748I	-3.16740 + 8.83664I	-11.62632 - 5.87120I
b = -0.68185 + 1.34359I		
u = 0.507585 - 0.207409I		
a = -1.006380 + 0.653748I	-3.16740 - 8.83664I	-11.62632 + 5.87120I
b = -0.68185 - 1.34359I		
u = 1.46214 + 0.04893I		
a = 1.35960 - 0.49813I	-10.22540 + 6.09306I	-15.2930 - 6.8742I
b = -2.04276 + 0.52099I		
u = 1.46214 - 0.04893I		
a = 1.35960 + 0.49813I	-10.22540 - 6.09306I	-15.2930 + 6.8742I
b = -2.04276 - 0.52099I		
u = -1.49197 + 0.07442I		
a = -1.311960 - 0.394189I	-7.27776 - 1.70542I	-12.10923 + 4.02096I
b = 1.98055 + 0.42754I		
u = -1.49197 - 0.07442I		
a = -1.311960 + 0.394189I	-7.27776 + 1.70542I	-12.10923 - 4.02096I
b = 1.98055 - 0.42754I		
u = -0.68185 + 1.34359I		
a = -0.207231 + 0.384441I	-3.16740 + 8.83664I	-11.62632 - 5.87120I
b = 0.507585 + 0.207409I		
u = -0.68185 - 1.34359I		
a = -0.207231 - 0.384441I	-3.16740 - 8.83664I	-11.62632 + 5.87120I
b = 0.507585 - 0.207409I		
u = 1.51009 + 0.03397I		
a = 1.44977 - 0.35194I	-10.72210 - 2.05778I	-17.0193 + 0.3782I
b = -2.11165 + 0.36683I		
u = 1.51009 - 0.03397I		
a = 1.44977 + 0.35194I	-10.72210 + 2.05778I	-17.0193 - 0.3782I
b = -2.11165 - 0.36683I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.49205 + 0.25792I		
a = -0.992537 - 0.309405I	-5.45645 - 1.83062I	-8.40697 + 5.22267I
b = 1.64331 + 0.42190I		
u = -1.49205 - 0.25792I		
a = -0.992537 + 0.309405I	-5.45645 + 1.83062I	-8.40697 - 5.22267I
b = 1.64331 - 0.42190I		
u = -0.139598 + 0.431211I		
a = 0.512141 + 0.954274I	2.19127 - 2.39923I	-7.13400 + 3.27109I
b = 0.167398 + 1.144780I		
u = -0.139598 - 0.431211I		
a = 0.512141 - 0.954274I	2.19127 + 2.39923I	-7.13400 - 3.27109I
b = 0.167398 - 1.144780I		
u = -1.59159		
a = -1.35109	-7.58450	-18.8690
b = 1.97939		
u = 1.64331 + 0.42190I		
a = 0.921155 - 0.111350I	-5.45645 - 1.83062I	-8.40697 + 5.22267I
b = -1.49205 + 0.25792I		
u = 1.64331 - 0.42190I		
a = 0.921155 + 0.111350I	-5.45645 + 1.83062I	-8.40697 - 5.22267I
b = -1.49205 - 0.25792I		
u = 1.97939		
a = 1.08639	-7.58450	-18.8690
b = -1.59159		
u = 1.98055 + 0.42754I		
a = 1.009540 + 0.029722I	-7.27776 - 1.70542I	0
b = -1.49197 + 0.07442I		
u = 1.98055 - 0.42754I		
a = 1.009540 - 0.029722I	-7.27776 + 1.70542I	0
b = -1.49197 - 0.07442I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -2.04276 + 0.52099I		
a = -1.002510 + 0.068296I	-10.22540 + 6.09306I	0
b = 1.46214 + 0.04893I		
u = -2.04276 - 0.52099I		
a = -1.002510 - 0.068296I	-10.22540 - 6.09306I	0
b = 1.46214 - 0.04893I		
u = -2.11165 + 0.36683I		
a = -1.050400 + 0.045887I	-10.72210 - 2.05778I	0
b = 1.51009 + 0.03397I		
u = -2.11165 - 0.36683I		
a = -1.050400 - 0.045887I	-10.72210 + 2.05778I	0
b = 1.51009 - 0.03397I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{17} + 9u^{16} + \dots + u + 1)^2)(u^{19} - 10u^{18} + \dots + 4u - 1)$ $\cdot (u^{37} + 19u^{36} + \dots + 13u + 4)$
c_2	$((u^{17} - u^{16} + \dots + u - 1)^2)(u^{19} + 2u^{18} + \dots + 2u + 1)$ $\cdot (u^{37} + 5u^{36} + \dots + 11u + 2)$
c_3, c_{10}	$(u^{19} - 9u^{17} + \dots + 5u^2 + 1)(u^{34} - u^{33} + \dots + 116748u - 21241)$ $\cdot (u^{37} - 16u^{35} + \dots + 286u + 313)$
c_4, c_8	$(u^{19} - u^{18} + \dots + 3u + 1)(u^{34} - u^{33} + \dots - 1952u - 1993)$ $\cdot (u^{37} + u^{36} + \dots + 3u + 1)$
<i>C</i> ₅	$((u^{17} - u^{16} + \dots + u - 1)^2)(u^{19} - 2u^{18} + \dots + 2u - 1)$ $\cdot (u^{37} + 5u^{36} + \dots + 11u + 2)$
c_6	$((u^{17} - 3u^{16} + \dots + 9u - 3)^{2})(u^{19} - 6u^{18} + \dots + 2u^{2} - 1)$ $\cdot (u^{37} + 15u^{36} + \dots + 1057u + 142)$
<i>c</i> ₇	$((u-1)^{34})(u^{19} - 2u^{18} + \dots - 2u + 1)$ $\cdot (u^{37} + 33u^{36} + \dots + 2424832u + 131072)$
c_9, c_{12}	$(u^{19} - 2u^{18} + \dots - 2u + 1)(u^{34} + 15u^{33} + \dots + 284u + 23)$ $\cdot (u^{37} + 2u^{36} + \dots - 4u + 1)$
c_{11}	$((u^{17} + 15u^{16} + \dots - 15u + 3)^{2})(u^{19} + 17u^{18} + \dots + 126u + 13)$ $\cdot (u^{37} - 20u^{36} + \dots + 3129u + 416)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^{17} - y^{16} + \dots + 9y - 1)^2)(y^{19} + 2y^{18} + \dots + 8y - 1)$ $\cdot (y^{37} + y^{36} + \dots + 417y - 16)$
c_2, c_5	$((y^{17} - 9y^{16} + \dots + y - 1)^2)(y^{19} - 10y^{18} + \dots + 4y - 1)$ $\cdot (y^{37} - 19y^{36} + \dots + 13y - 4)$
c_3, c_{10}	$(y^{19} - 18y^{18} + \dots - 10y - 1)$ $\cdot (y^{34} - 33y^{33} + \dots - 8863869996y + 451180081)$ $\cdot (y^{37} - 32y^{36} + \dots + 1668y - 97969)$
c_4, c_8	$(y^{19} - 15y^{18} + \dots + 3y - 1)$ $\cdot (y^{34} - 45y^{33} + \dots - 19443396y + 3972049)$ $\cdot (y^{37} - 53y^{36} + \dots + y - 1)$
c_6	$((y^{17} + 11y^{16} + \dots + 57y - 9)^{2})(y^{19} + 6y^{18} + \dots + 4y - 1)$ $\cdot (y^{37} + 17y^{36} + \dots + 321765y - 20164)$
C ₇	$((y-1)^{34})(y^{19} - 6y^{18} + \dots + 4y - 1)$ $\cdot (y^{37} - 7y^{36} + \dots + 124554051584y - 17179869184)$
c_9, c_{12}	$(y^{19} - 4y^{18} + \dots + 6y - 1)(y^{34} - 5y^{33} + \dots + 580y + 529)$ $\cdot (y^{37} + 18y^{36} + \dots + 52y - 1)$
c_{11}	$((y^{17} - 33y^{16} + \dots - 15y - 9)^2)(y^{19} - 19y^{18} + \dots - 1076y - 169)$ $\cdot (y^{37} - 40y^{36} + \dots + 11555313y - 173056)$