Stochastic Processes

13. Markov Processes: Definition and examples

Peter Pfaffelhuber

December 2, 2024

Definition

 $(\mathcal{F}_t)_{t\in I}$ filtration, $\mathcal{X}=(X_t)_{t\in I}$ adapted.

 \blacktriangleright \mathcal{X} is a *Markov process* if \mathcal{F}_s is indep. of X_t given X_s , $s \leq t$,

$$\mathbf{P}(X_t \in A|\mathcal{F}_s) = \mathbf{P}(X_t \in A|X_s)$$
 or $\mathbf{E}(f(X_t)|\mathcal{F}_s) = \mathbf{E}(f(X_t)|X_s), \quad f \in \mathcal{C}_b(E).$

Markov kernels $\mu_{s,t}^{\mathcal{X}}$ and transition operator $\mathcal{T}_{s,t}^{\mathcal{X}}$ of \mathcal{X} are

$$\mu_{s,t}^{\mathcal{X}}(X_s,B) := \mathbf{P}(X_t \in B|X_s) = \mathbf{P}(X_t \in B|\mathcal{F}_s),$$

$$T_{s,t}^{\mathcal{X}}f(x) := \mathbf{E}[f(X_t)|X_s = x] = \int \mu_{s,t}^{\mathcal{X}}(x,dy)f(y).$$

▶ For Markov kernels μ, ν , define

$$(\mu \otimes \nu)(x, A \times B) = \int \mu(x, dy) \nu(y, dz) 1_{y \in A, z \in B},$$
$$(\mu \nu)(x, A) = (\mu \otimes \nu)(x, E \times A).$$

Example: Markov chains

▶ If E is at most countable, X is a Markov chain. If

$$\begin{split} I &= \{0,1,2,...\}, \; \mu^{\mathcal{X}}_{t,t+1} \; \text{is given by matrices} \\ &(p_{t,t+1}(x,y))_{x,y \in E} \; \text{so that} \\ &p_{t,t+1}(x,y) = \mathbf{P}(X_{t+1} = y | X_t = x), \\ &\mu^{\mathcal{X}}_{t,t+1}(x,A) = \sum_{y \in A} p_{t,t+1}(x,y), \\ &(\mathcal{T}^{\mathcal{X}}_{t,t+1}f)(x) = \sum_{y \in E} \mu^{\mathcal{X}}_{t,t+1}(x,dy) f(y) = \sum_{y \in E} p_{t,t+1}(x,y) f(y). \end{split}$$

Example: Sums

 $ightharpoonup X_1, X_2, ...$ independent. Then, $\mathcal{S} = (S_t)_{t=0,1,2,...}$ with

$$S_t = \sum_{s=1}^t X_s$$
 is a Markov process with

$$\mathbf{P}(S_{t+1} \in A | \mathcal{F}_t) = \int 1_{S_t \in A-x} \mathbf{P}(X_{t+1} \in dx) = \mathbf{P}(S_{t+1} \in A | S_t).$$

In this case

$$\mu_{t,t+1}^{\mathcal{S}}(x,A) = \mathbf{P}(X_{t+1} \in A - x)$$

and

$$(T_{t,t+1}^{S}f)(x) = \mathbf{E}[f(x+X_{t+1})].$$

Example: The Poisson Point Process

 $ightharpoonup \mathcal{X} = (X_t)_{t \geq 0} \ \mathsf{PPP}(\lambda).$ Then $(X_t)_{t \geq 0}$ is a Markov process with

$$\mu_{s,t}^{\mathcal{X}}(x,A) = \sum_{k \in A \cap \{x,x+1,\dots\}} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{k-x}}{(k-x)!},$$

$$(T_{s,t}^{\mathcal{X}}f)(x) = \sum_{k=0}^{\infty} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^k}{k!} f(x+k) = \mathbf{E}[f(x+P)],$$
where $P_{s} = P_{s}(\lambda(t-s))$

Example: Brownian Motion

 $ightharpoonup \mathcal{X} = (X_t)_{t \geq 0}$ Brownian motion is a Markov process with

$$\mu_{s,t}^{\mathcal{X}}(x,A) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{A} \exp\left(-\frac{(y-x)^2}{2(t-s)}\right) dy$$

and the transition operator for $f \in \mathcal{B}(\mathbb{R})$

$$(T_{s,t}^{\mathcal{X}}f)(x) = \frac{1}{\sqrt{2\pi(t-s)}} \int \exp\left(-\frac{y^2}{2(t-s)}\right) f(x+y) dy$$
$$= \mathbf{E}[f(x+\sqrt{t-s}Z)],$$

where Z is a N(0,1)-distributed random variable.

Gaussian Markov processes

▶ Theorem 15.5: $\mathcal{X} = (X_t)_{t \geq 0}$ Gaussian. Then, \mathcal{X} is Markov iff

$$\mathbf{COV}(X_s, X_u) \cdot \mathbf{V}(X_t) = \mathbf{COV}(X_s, X_t) \cdot \mathbf{COV}(X_t, X_u), \quad s \leq t \leq u.$$

▶ Wlog $\mathbf{E}[X_t] = 0$ and $\mathbf{V}(X_t) > 0$. Set

$$X_u' = X_u - \frac{\mathbf{COV}(X_t, X_u)}{\mathbf{V}(X_t)} X_t$$

such that $COV(X'_u, X_t) = 0$, i.e. X'_u and X_t are independent.

 \Rightarrow : $X_s \perp X_u$ given X_t , so $X_s \perp X_u'$ given X_t . So,

$$P(X_s \in A, X_u' \in B) = E[P(X_s \in A | X_t) \cdot P(X_u' \in B | X_t)]$$

$$= E[P(X_s \in A | X_t) \cdot P(X_u' \in B)] = P(X_s \in A) \cdot P(X_u' \in B)$$

and therefore $X_s \perp X'_u$. This means that

$$0 = \mathbf{COV}(X_s, X'_u) = \mathbf{COV}(X_s, X_u) - \frac{\mathbf{COV}(X_t, X_u)}{\mathbf{V}(X_t)}\mathbf{COV}(X_s, X_t).$$

Gaussian Markov processes

▶ Theorem 15.5: $\mathcal{X} = (X_t)_{t \geq 0}$ Gaussian. Then, \mathcal{X} is Markov iff

$$\mathbf{COV}(X_s, X_u) \cdot \mathbf{V}(X_t) = \mathbf{COV}(X_s, X_t) \cdot \mathbf{COV}(X_t, X_u), \quad s \leq t \leq u.$$

▶ Wlog $\mathbf{E}[X_t] = 0$ and $\mathbf{V}(X_t) > 0$. Set

$$X_u' = X_u - \frac{\mathbf{COV}(X_t, X_u)}{\mathbf{V}(X_t)} X_t$$

such that $COV(X'_u, X_t) = 0$, i.e. X'_u and X_t are independent.

 \Leftarrow : As seen above, $X_s \perp X_u'$. So, $X_u' \perp \mathcal{F}_t := \sigma((X_s)_{s \leq t})$ and

$$\mathbf{P}(X_u \in A | \mathcal{F}_t) = \int \mathbf{P}\left(X_u' \in dx, \frac{\mathbf{COV}(X_t, X_u)}{\mathbf{V}(X_t)} X_t \in A - x | \mathcal{F}_t\right)$$

$$= \int \mathbf{P}\left(X_u' \in dx, \frac{\mathbf{COV}(X_t, X_u)}{\mathbf{V}(X_t)} X_t \in A - x | X_t\right)$$

$$= \mathbf{P}(X_u \in A | X_t).$$

Examples

- ► BM is a Markov process.
- $(X_t)_{t\geq 0}$ BM, then $(Y_t:=X_t-tX_1)_{t\geq 0}$ is the Brownian Bridge. For $s\leq t\leq u$,

$$COV(Y_s, Y_t) = COV(X_s - sX_1, X_t - tX_1) = s - 2st + st = s(1 - t),$$

So
$$\mathbf{COV}(Y_s, Y_u) \cdot \mathbf{V}(Y_t) = s(1-u)t(1-t)$$

 $= \mathbf{COV}(Y_s, Y_t) \cdot \mathbf{COV}(Y_t, Y_u),$

Spatially homogeneous Markov processes

- ▶ Definition 15.8: *E* Abelian group.
 - 1. A Markov kernel from E to E is called *homogeneous* if $\mu(x,B)=\mu(0,B-x)$ for all $x\in E$ and $B\in\mathcal{B}(E)$.
 - 2. A Markov process $\mathcal X$ is called *spatially homogeneous*, if the Markov kernels $\mu_{s,t}^{\mathcal X}$ are homogeneous, $s \leq t$.
 - 3. A Markov process $\mathcal{X}=(X_t)_{t\geq 0}$ has independent increments if X_t-X_s is independent of \mathcal{F}_s , $s\leq t$.

Homogeneity and independent increments

- Lemma 15.9: $\mathcal{X} = (X_t)_{t \in I}$ Markov process. It has independent increments if and only if \mathcal{X} is spatially homogeneous.
- $\blacktriangleright \ \Leftarrow: \ \mu_{s,t}^{\mathcal{X}}(x,B) = \mu_{s,t}^{\mathcal{X}}(0,B-x) \text{ for all } x \in E \text{ and } B \in \mathcal{B}(E).$

$$\mathbf{P}(X_t - X_s \in B | \mathcal{F}_s) = \mu_{s,t}(X_s, X_s + B) = \mu_{s,t}^{\mathcal{X}}(0, B).$$

 \Rightarrow : $(X_t - X_s)_{t \geq s}$ is a Markov process with

$$\mu_{s,t}^{\mathcal{X}}(X_s,B) = \mathbf{P}(X_t \in B|\mathcal{F}_s) = \mathbf{P}(X_t - X_s \in B - X_s|\mathcal{F}_s)$$
$$= \mu_{s,t}^{\mathcal{X}}(0,B - X_s).$$