

基于实时定位与地图构建的桥梁裂缝检测与评价技术研究

2014级 软件工程 汪之涛

目录 CONTENTS

1/ 研究综述

4/研究方法

2/ 研究现状

5 研究结果

3/ 研究目标

6/专家意见

研究综述

研究背景

桥梁属于国家基础设施,桥梁的使用年限通常也非常长,由于桥梁长期暴露在自然环境中,难免会受到空气和雨水的腐蚀。近些年来,由于机动车辆的增加,也使得桥梁的负载远远大于了建造时对桥梁负载的估量,这些因素使得桥梁很容易出现一些安全上的问题。

人工检测

传统的桥梁检测主要靠人工 检测,工人们定期检测桥梁 固定的部分,凭借经验判断 桥梁的健康状态。

监控摄像头

在固定部分使用摄像头定期 拍摄桥梁照片,之后将照片 交给检测人员进行人工判别, 得出桥梁健康状态。

研究综述

人工检测

很多地方的桥梁建造在高山大河之上,桥梁检测任务往往较为危险,不适合人工作业。

普通摄像头

检测部分单一较为死板,一旦损坏,维修起来危险。

无人机是一种空中飞行的机器人,和普通机器人相比更加灵活,适合工作在普通机器人无法到达的地方。无人机不仅可以灵活飞行,也能够携带传感器对桥梁进行多维度融合的无损检测,因此使用无人机进行桥梁检测具有操作灵活、使用安全、检测全面等特点

研究现状

目前对于桥梁裂缝检测的研究主要集中在对桥梁裂缝的识别上。

- 1. 滤波器的图像滤波。
- 2. 基于灰色系统理论的路面图像裂缝检测算法。
- 3. 形态学的裂缝去噪方法
- 4. 基于深度学习的裂缝定位。

这一步分做的已经比较完善,能够很好的将裂缝从图像中分离出来。

研究现状

桥梁的裂缝评价还是一个比较空白的部分,对于桥梁的评价少之又少。

- 1. 简单的将裂缝分为网状裂缝和线性裂缝。
- 2. 网状裂缝计算器外接面积,对于线性裂缝,计算器长宽比。

我们希望建立一个动态评价机制,能够自动的给出桥梁的健康指数,或是获取更多的桥梁健康参数,以便后期的工作的开展。

研究目标

二、实时定位与地图构建

数据的获取依赖无人机的自主飞行, 实时定位与地图构建是自主飞行机 器人的关键性技术。在飞行过程中 建立桥梁的三维模型(局部)。

获取清晰的桥梁二维图像,镶嵌成 局部全景图像,给后期提供清晰的 裂缝数据基础。

对二维图像中的裂缝进行提取和评价,建立一个自动的评价机制。

匹配点对的数量

匹配点对越多,越精确,计算出的单应性矩阵精度就越高,那么匹配点对的数量和单应性矩阵就密切相关。

点对是如何确定的?

两幅图中的特征点进行配对后,通过验证第一幅图中已经匹配的特征点的最近邻点和次近邻点(欧式距离,参数由特征点向量给出)的比值对待匹配点对进行筛选,这个比值叫做阈值。

阈值调节

图像最佳重叠比的概念做了分析,当两张图片之间的重叠比例达到一定数值时,图像镶嵌的误差可以降到最低。

根据历史匹配点对数量,可以计算出第N幅图像镶嵌时最佳匹配点对数量,从而调节阈值。

引入误差? 放大阈值有一定概率增加误匹配。减小则相反。

这是一个概率问题,引入的点是误匹配点对的期望? 这里是由精匹配中误匹配点对消除来解决的。(RANSAC)

2

基于深度传感 器的实时定位 与地图构建

实时定位与地图构建

一、在哪里?

二、怎么走?

2D到3D

拼接3D

里程计

优化姿态图

回环检测

点云变换

使用深度摄像头,将二 维图像变换到三维世界 中去。

点云拼接

变换两个相邻的点云, 使得两个动作之间发生 关系。

数据累计

多个点云的拼接使得历 史场景得以重现。

框架搭建

进行框架化的优化,生 景,寻找可能的闭环, 正真正的地图,这里是 致密地图。

降低误差

将整体的数据累计结果 寻找可能出现的重复场 减小误差。

2D到3D

2D

借助深度摄像头获取的图像深度信息, 我们可以将图像从二维变换到三维,生 成彩色三维点云图像。

优化姿态图

姿态图优化是SLAM的基本理论,也是核心内容。 在视觉里程计工作之后,整个系统属于零散且相互冲突的各个部分,经过优化之后,整个系统才建立起来。

回环检测的目的是消除漂移的部分,大大增强系统的可靠性。

回环检测的关键部分:**寻找回环**

视觉词袋模型

回环检测

视觉词袋模型

检测裂缝并给予裂缝定量分析,对于建立动态桥梁裂缝机制有重要意义。

裂缝提取

自动阈值分割(Otsu)

由于裂缝图片场景简单,图像中仅仅存在背景(桥面或桥墩)和裂缝,裂缝在裂开的过程中,由于空气和雨水的腐蚀使得颜色有别于桥面,本文仅采用二值化就能得到较好的裂缝提取的方法。

裂缝提取

裂缝评价

- 1.最大方差投影
- 2.基尼系数
- 3.聚合度

三种相互独立的评价指标,基于这个指标可以进行各种变换, 也可将这三个独立指标当作特征对裂缝进行分类等。 裂缝评价

自动阈值分割(Otsu)

最大方差投影

首先找到二值化图像的方差最大方向,将其他方向的裂缝投影到主裂缝上,并计算方差的损失,也就是次裂缝和主裂缝的比例情况。这个方差的比例也能代表裂缝其他方向的开裂情况。

基尼系数

在已经经过投影的裂缝数据上计算基 尼系数,可以知道裂缝在主方向上的 分布情况,也可间接反映出次裂缝的 分布情况。

聚合度

反映出裂缝局部开裂宽度信息。

最大方差投影

$$\begin{cases}
G(i, j)P_{ij} = 0 \\
\emptyset P_{ij} = 255
\end{cases} \qquad
\begin{bmatrix}
a_1, b_1 \\
a_2, b_2 \\
a_3, b_3 \\
a_4, b_4
\end{bmatrix} * u = A * u$$

$$Var(A*u) = (Au - E)^{T} * (Au - E) = (Au)^{T} * (Au) = u^{T} A^{T} Au$$

$$L(u) = u^{T} A^{T} Au - \alpha (u^{T} u - 1)$$

$$A^{T} Au = au$$

u是特征向量, a的特征值, 也就是方差, 由于求的是目标函数的极大值, 所以这个方差就是最大方差, 也就是对原图像的还原程度。

基尼系数

- 1.如果裂缝开裂程度小,处在发展缓慢的阶段,那么裂缝应该是均匀的,Gini系数比较
- 2.如果裂缝开裂程度较大,正在朝一个方向开裂,这个方向的裂缝会越来越大,导致两 头大或是一头大的情况, Gini系数会显著增大。 3. 如果裂缝已经开裂十分严重, Gini系数也比较小, 需要其他数据描述。

基尼系数

次裂缝1,2,3都会影响主裂缝上的Gini系数,因此这个参数也能反映次裂缝上的情况

聚合度

Gini系数只能反映裂缝的分布情况,但如果裂缝开裂很大,但是开裂十分均匀,或是呈放射状,那么Gini系数会比较小,虽然方差可以反映是主裂缝的问题还是次裂缝的合成 , 但是不能表示出程度信息, 那么就需要一个指标指出裂缝开裂程度。

将投影后的裂缝中的点进行离散化处理,计算点覆盖率,开裂严重的地方样本 点密集,聚合度高,反之聚合度低。

单位长度下的点的个数的平均值,表示点的聚合度。

全景图像的镶嵌,包 括减小误差和未减小 误差的对比

实验室环境下的三维 重建,相机轨迹,回 环检测。

对裂缝提取和评价, 以及不同裂缝三种参 数的对比。

图像镶嵌 及累积误差处理

无反馈

有反馈

图像镶嵌 及累积误差处理

图像镶嵌 及累积误差处理

RGBDSLAM

无人机自主飞行

裂缝提取

表3 三种裂缝对应三种参数值

研究结果

裂缝评价

正朝一个方 向开裂

	Y型裂缝	一型裂缝	网状裂缝
最大方差	0.744	0.934	0.594
Gini系数	0.553	0.397	0.362
聚合度	59.6	25	60

本文创新点

- 1. 在特征点粗匹配和精匹配之间建立反馈机制,控制匹配点对数量,从根本上提高单应性矩阵 的精度,从而减小图像镶嵌累积误差。 2. 创新性地提出了三个相互独立的裂缝评价指数,建立一个自动的评级机制。
- 3. 提出将RGBDSLAM使用在桥梁裂缝检测中。

评价优化

评价指标可以进一步细化,去除光照对裂缝 图片的影响,对裂缝提取有着很好的预处理 作用。

裂缝识别

缺少视频裂缝识别的部分,这部分对视频中的裂缝进行判别,然后进行裂缝提取和评价。 裂缝检测的第一步其实是裂缝的识别,怎样 发现裂缝是第一步工作。

多维融合

二维的裂缝提取和评价需要实时地和三维地 图重建结合在一起。在重建过程中,可以将 二维的裂缝处理结果和三维的地图结合在一 起,实现一个多维的裂缝重建结果

THANKS!

研究生生活即将结束,在此,我要感谢所有教导我的老师和陪伴我一齐成长的同学,他们在我的研究生生涯给予了很大的帮助。本论文能够顺利完成,要特别感谢我的导师李良福老师,李良福老师对该论文从选题,构思到最后定稿的各个环节给予细心指引与教导,使我得以最终完成毕业论文!

最后,我要向百忙之中抽时间对本文进行审阅,评议和参与本人论文答辩的各位老师表示感谢!

恳请各位老师批评指正!

外申专家意见

论文题目没有反应论文中所采用的关键技术。(已经修改)

第三章题目和两个公式字体过大。(已经修改)

第2、3、4章中没有说明他人方法和本文创新。(研究现状中就已经说明)

缺少完整的技术方案和流程说明。(添加1.3节的图和说明)

3.2节混乱。(增加了部分叙述和标题,如果仔细看3.2节,它只说了ORB一个问题,在前面的叙述中也说明了为什么3.2节要详细介绍ORB)

3.5和3.6和无人机监测技术无关,没有实验。(在第一节介绍中就已经说清楚,3.5和3.6是SLAM技术的基础理论和核心内容,专家所说"无人机监测技术"一词也不知从何而来,文章并未提及。3.5和3.6节的实验结果清楚的摆放在3.7中,另配实验结果图像。)

实验数据多数与无人机采集图像无关,缺乏说服力。(小型无人机对图像的采集大多数就是特写。且无人机飞行部分是实验室模拟结果,确实不是真实桥梁重建)

文中多次出现机器人技术介绍,没有说明这些技术和无人机的关系。(开篇就说无人机是会飞的机器人)

论文格式等问题(已经更改)

我的论文答辩

感谢聆听

