The hierarchy of Ramsey-like cardinals

Victoria Gitman

 $\label{local-problem} $$ vgitman@nylogic.org $$ http://victoriagitman.github.io $$ $$$

Algebra and Logic Seminar University of Denver January 14, 2019

Models of set theory

A universe V of set theory satisfies the Zermelo-Fraenkel axioms ZFC.

It is the union of the von Neamann hierarchy of the V_{α} 's.

$$egin{aligned} V_0 &= \emptyset \ V_{lpha+1} &= \mathscr{P}(V_lpha). \ V_\lambda &= igcup_{lpha < \lambda} V_lpha ext{ for a limit ordinal } \lambda. \ V &= igcup_{lpha \in Ord} V_lpha. \end{aligned}$$

Definition: A class M is an inner model of V if M is:

- transitive: if $a \in M$ and $b \in a$, then $b \in M$,
- Ord $\subseteq M$,
- $M \models ZFC$.

Gödel's constructible universe *L* is the smallest inner model.

$$L_0 = \emptyset$$

 $L_{\alpha+1}$ = "All definable subsets of L_{α} "

$$L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$$
 for a limit λ .

$$L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}.$$

A hierarchy of set-theoretic assertions

There are many set theoretic assertions independent of ZFC.

Some of these assertions are stronger than others.

A theory T is stronger than a theory S if from a model of T we can construct a model of S, but not the other way around.

Examples:

ZFC + CH and $ZFC + \neg CH$ are equally strong.

 \bullet Given a model of ZFC + CH, we can use forcing to build a model of ZFC + $\neg CH$ and visa-versa.

ZFC and ZFC + V = L are equally strong.

- The axiom V = L: V is equal to its constructible universe.
- The constructible universe $L \models V = L$.

ZFC + Con(ZFC) is stronger than ZFC.

- The axiom Con(ZFC): Gödel's arithmetized assertion that ZFC is consistent.
- The strength is a consequence of Gödel's Second Incompleteness Theorem.

ZFC + Con(ZFC + Con(ZFC)) is stronger than ZFC + Con(ZFC).

Algebra and Logic Seminar

Large cardinal axioms

A large cardinal axiom LC asserts the existence of some very large infinite object.

- ZFC + LC is stronger than ZFC.
- Large cardinal axioms form a hierarchy of increasingly strong set theoretic assertions.
- The strength of every known set theoretic assertion can be measured against the large cardinal hierarchy.

Motivating themes:

- $m{\omega}$ is not unique: generalize combinatorial relationships between finite numbers and ω to uncountable cardinals.
- Reflection: properties of large V_{α} should reflect down.
- Elementary embeddings: the universe should elementarily embed into large inner models.

Smaller large cardinals are defined via combinatorial properties.

Larger large cardinals are defined via existence of elementary embeddings.

Inaccessible cardinals

Definition: (Sierpiński, Tarski) An uncountable cardinal κ is inaccessible if:

- κ is regular: there is no cofinal function $f: \alpha \to \kappa$ for any $\alpha < \kappa$,
- κ is a strong limit: $|\mathscr{P}(\alpha)| < \kappa$ for every $\alpha < \kappa$.

Observations:

- \bullet ω is inaccessible to the finite numbers.
- If κ is inaccessible, then $V_{\kappa} \models \mathrm{ZFC}$.
- ZFC + Inaccessible is stronger than ZFC.

Weakly compact cardinals

Definition: (Erdös, Tarski) An uncountable cardinal κ is weakly compact if every coloring $f: [\kappa]^2 \to 2$ has a homogeneous set of size κ .

- $[\kappa]^2 = \{ \langle \alpha, \beta \rangle \mid \alpha < \beta < \kappa \}.$
- Equivalently we can use α -many colors for any $\alpha < \kappa$.

Definition: Suppose κ is a cardinal.

- A κ -tree is a tree of height κ with levels of size less than κ .
- The infinitary logic $L_{\kappa,\kappa}$ allows conjunctions, (disjunctions) and quantifier blocks of size less than κ .

Theorem: (Erdös, Tarski) An inaccessible cardinal κ is weakly compact iff Konig's Lemma holds for κ -trees (every κ -tree has a cofinal branch).

Theorem: (Kiesler, Tarski) An inaccessible cardinal κ is weakly compact iff every $<\kappa$ -satisfiable theory of size κ of $L_{\kappa,\kappa}$ is satisfiable.

Theorem: A weakly compact cardinal is a limit of inaccessible cardinals.

6 / 30

Ramsey cardinals

Definition: (Erdös, Hajnal) A cardinal κ is Ramsey if every coloring $f: [\kappa]^{<\omega} \to 2$ has a homogeneous set of size κ .

- $[\kappa]^{<\omega} = \bigcup_{n<\omega} [\kappa]^n$.
- A set $H \subseteq \kappa$ is homogeneous for a coloring $f : [\kappa]^{<\omega} \to 2$ if for every $n < \omega$, f is constant on $[H]^n$.
- Equivalently we can use α -many colors for any $\alpha < \kappa$.
- \bullet ω is not Ramsey.

Theorem: If κ is a Ramsey cardinal, then every model M in a language of size less than κ with $\kappa \subseteq M$ has a set of indiscernibles of size κ .

Ramsey

Theorem:

- Ramsey cardinals are weakly compact limits of weakly compact cardinals.
- (Rowbottom) Ramsey cardinals cannot exist in L.

weakly compact

Next up: large large cardinals...

Ultrafilters and ultrapowers

Suppose κ is a cardinal and $U \subseteq \mathscr{P}(\kappa)$ is an ultrafilter:

- If A, $B \in U$, then $A \cap B \in U$ (closed under intersections).
- If $A \in U$ and $B \supseteq A$, then $B \in U$ (closed under supersets),
- Either $A \in U$ or $\kappa \setminus A \in U$ (ultra).

Definition: Suppose $f : \kappa \to V$ and $g : \kappa \to V$.

- $f \sim g$ whenever $\{\alpha < \kappa \mid f(\alpha) = g(\alpha)\} \in U$,
- $f \in {}^* g$ whenever $\{\alpha < \kappa \mid f(\alpha) \in g(\alpha)\} \in U$.

Fact: \sim is an equivalence relation with equivalence classes $[f]_U$ which respects \in^* .

Definition: Let the ultrapower UltV/U be the structure with universe $\{[f]_U \mid f : \kappa \to V\}$ and membership relation \in^* .

Łoś' Theorem:

- Ult $V/U \models \varphi([f]_U)$ iff $\{\alpha < \kappa \mid \varphi(f(\alpha))\} \in U$.
- $i: V \to Ult V/U$ defined by $i(a) = [c_a]_U$ is an elementary embedding $(c_a(x))$ is the constant function with value a).

The model UltV/U is usually ill-founded. Unless...

Well-founded ultrapowers

Definition: An ultrafilter $U \subseteq P(\kappa)$ is α -complete if it is closed under intersections of size less than α . ω_1 -complete ultrafilters are called countably complete.

Theorem: An ultrafilter U is countably complete iff the ultrapower $\mathrm{Ult} V/U$ is well-founded.

- (Mostowski Collapse) A class model with a well-founded set-like membership relation is isomorphic to an inner model.
- If there is a non-principal countably complete ultrafilter, then there is a non-trivial elementary embedding $j: V \to M$ for some inner model M.

Well-founded ultrapowers (continued)

Definition: The critical point crit(j) of an elementary embedding $j: V \to M$ is the least ordinal moved by j.

Theorem: Suppose $j: V \to M$ is an elementary embedding with $crit(j) = \kappa$. Then:

- $j \upharpoonright V_{\kappa} = id$.
- $M^{\kappa} \subseteq M$ (every sequence of elements of M of length κ is in M).
- $V_{\kappa+1} \subseteq M$.
- $U = \{A \subseteq \kappa \mid \kappa \in j(A)\}$ is a non-principal κ -complete ultrafilter.
 - ▶ U is the ultrafilter generated by κ via j.
 - U is normal.

Theorem: If there is a non-principal κ -complete ultrafilter $U \subseteq P(\kappa)$, then there is an elementary embedding $j: V \to M$ with $\operatorname{crit}(j) = \kappa$.

4 D > 4 P > 4 P > 4 P >

Normal ultrafilters

Definition:

• Suppose $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of subsets of κ . The diagonal intersection

$$\Delta_{\alpha<\kappa}A_{\alpha}=\{\xi<\kappa\mid \xi\in\bigcap_{\alpha\in\xi}A_{\alpha}\}.$$

- An ultrafilter $U \subseteq P(\kappa)$ is normal if:
 - \triangleright $\kappa \setminus \alpha \in U$ for all $\alpha < \kappa$,
 - U is closed under diagonal intersections.

Facts:

- A normal ultrafilter $U \subseteq P(\kappa)$ is κ -complete.
- The ultrafilter $U \subseteq P(\kappa)$ generated from an elementary embedding $j: V \to M$ with $crit(j) = \kappa$ is normal.
- $\kappa = [id]_U (id(x) = x).$

Iterated ultrapowers

Suppose $U \subseteq P(\kappa)$ is a countably complete ultrafilter.

The ultrapower construction can be iterated along the ordinals producing a strictly decreasing chain

$$V = M_0 \supset M_1 \supset M_2 \supset \cdots \supset M_{\xi} \supset \cdots$$

of inner models with elementary embeddings $j_{\xi\eta}:M_\xi\to M_\eta$ between them.

- $j_{0,1} = j : V \to M_1$ is the ultrapower embedding by U.
- $j_{1,2}: M_1 \to M_2$ is the ultrapower embedding by $j_{0,1}(U) \in M_1$.
- $j_{\xi\xi+1}: M_{\xi} \to M_{\xi+1}$ is the ultrapower map by $U_{\xi} = j_{0\xi}(U)$.
- At limit stages λ , take the direct limit M_{λ} of the directed system of embeddings $\langle j_{\xi,\eta} : M_{\xi} \to M_{\eta} \mid \xi, \eta < \lambda \rangle$.

Theorem: (Gaifman) Countable completeness of the ultrafilter U implies that all direct limits are well-founded.

Very large cardinals

Definition: (Banach, Kuratowski, Tarski, Ulam) A cardinal κ is measurable if there exists a non-principal κ -complete ultrafilter on κ .

Fact: If κ is measurable, then there exists an elementary embedding $j:V\to M$ with $\mathrm{crit}(j)=\kappa$, $V_{\kappa+1}\subseteq M$, $M^\kappa\subseteq M$.

Definition: (Mitchell) A cardinal κ is strong if for every $\lambda > \kappa$, there is an elementary embedding $j: V \to M$ with $\operatorname{crit}(j) = \kappa$ and $V_{\lambda} \subseteq M$.

 A strongness embedding is a direct limit of a system of ultrapower embeddings.

Definition: (Reinhardt, Solovay) A cardinal κ is supercompact if for every $\lambda > \kappa$, there is an elementary embedding $j: V \to M$ with $\mathrm{crit}(j) = \kappa$ and $M^{\lambda} \subseteq M$.

A supercompactness embedding is an ultrapower embedding.

Theorem:

- Measurable cardinals are Ramsey limits of Ramsey cardinals.
- Strong cardinals are measurable limits of measurable cardinals.
- Supercompact cardinals are strong limits of strong cardinals.

Small embeddings

Question: Can we characterize smaller large cardinals by the existence of elementary embeddings?

Answer: Yes, small embeddings.

Weak κ -models

Definition: ZFC⁻ is the theory ZFC without the power set axiom (with collection instead of replacement).

Definition Suppose λ is a cardinal. H_{λ} is the collection of all sets of whose transitive closure has size less than λ .

Fact: $H_{\kappa^+} \models \text{ZFC}^-$.

Definition: Suppose κ is a cardinal.

- A weak κ -model is a transitive set $M \models \mathrm{ZFC}^-$ of size κ with $\kappa \in M$.
- A κ -model is a weak κ -model M such that $M^{<\kappa} \subseteq M$.

Facts:

- Every $M \prec H_{\kappa^+}$ of size κ with $\kappa \subseteq M$ is a weak κ -model.
- If κ is inaccessible, there are κ -models $M \prec H_{\kappa^+}$.
- If κ is inaccessible, then every κ -model contains V_{κ} .

M-ultrafilters

Suppose M is a weak κ -model.

Let
$$\mathscr{P}^M(\kappa) = \mathscr{P}(\kappa) \cap M$$
.

Definition: $U \subseteq \mathscr{P}^{M}(\kappa)$ is an *M*-ultrafilter if the structure

$$(M, \in, U) \models$$
 "U is a normal ultrafilter on κ ."

- U is an ultrafilter on $\mathscr{P}^M(\kappa)$.
- U is closed under diagonal intersections of sequences from M.

Fact: We can form the ultrapower of M by an M-ultrafilter:

- Use functions $f : \kappa \to M$ with $f \in M$.
- Łoś' Theorem holds.
- An M-ultrafilter need not be countably complete (unless M is a κ -model).

M-ultrafilters and well-founded ultrapowers

Suppose M is a weak κ -model.

Definition: An *M*-ultrafilter is good if the ultrapower is well-founded.

Theorem: If an *M*-ultrafilter is good, then there is an elementary embedding $j: M \to N$ with $crit(j) = \kappa$.

Theorem: If there is an elementary embedding $j: M \to N$ with $crit(j) = \kappa$, then

$$U = \{ A \in \mathscr{P}^{M}(\kappa) \mid \kappa \in j(A) \}$$

is a good *M*-ultrafilter.

Fact: A countably complete M-ultrafilter is κ -complete.

Theorem: A countably complete *M*-ultrafilter is good.

Weakly amenable M-ultrafilters

Suppose M is a weak κ -model.

Definition: An *M*-ultrafilter *U* is weakly amenable if for every $A \in M$ with $|A|^M = \kappa$, $A \cap U \in M$.

Weakly amenable *M*-ultrafilters can be iterated.

- ullet j:M o N is the ultrapower embedding by a weakly amenable M-ultrafilter U.
- Given $f : \kappa \to M$ in M, we can ask whether $\{\xi < \kappa \mid f(\xi) \in U\} \in U$.
- $j(U) = \{ [f]_U \mid \{ \xi < \kappa \mid f(\xi) \in U \} \in U \}.$

Definition: An elementary embedding $j: M \to N$ with $crit(j) = \kappa$ is κ -powerset preserving if $\mathscr{P}^M(\kappa) = \mathscr{P}^N(\kappa)$.

 κ -powerset preservation creates reflection between M and N.

Theorem:

- If U is a good weakly amenable M-ultrafilter, then the ultrapower embedding $j:M\to N$ is κ -powerset preserving.
- If an elementary embedding $j: M \to N$ with $\operatorname{crit}(j) = \kappa$ is κ -powerset preserving, then the M-ultrafilter U generated by κ via j is weakly amenable.

Iterable M-ultrafilters

Suppose M is a weak κ -model.

Definition: A weakly amenable M-ultrafilter U is α -good if U has α -many well-founded iterated ultrapowers.

Theorem: (Gaifman) An ω_1 -good *M*-ultrafilter is α -good for all α .

Theorem: (Kunen) A weakly amenable countably complete M-ultrafilter is ω_1 -good.

Back to weakly compact cardinals

Theorem: The following are equivalent for an inaccessible cardinal κ .

- \bullet κ is weakly compact.
- Every $A \subseteq \kappa$ is an element of a weak κ -model M for which there is a good M-ultrafilter.
- Every $A \subseteq \kappa$ is an element of a κ -model M for which there is a good M-ultrafilter.
- Every $A \subseteq \kappa$ is an element of a κ -model $M \prec H_{\kappa^+}$ for which there is a good M-ultrafilter.
- Every weak κ -model M has a good M-ultrafilter.

α -iterable cardinals

Definition: (G.) Supose $1 < \alpha < \omega_1$. A cardinal κ is α -iterable if every $A \subseteq \kappa$ is an element of a weak κ -model M for which there is an α -good M-ultrafilter.

supercompact strong

measurable

Theorem:

- A 1-iterable cardinal κ is a weakly compact limit of weakly compact cardinals.
- (G., Welch) α -iterable cardinals for $\alpha < \omega_1$ can exist in L.
- ω_1 -iterable cardinals cannot exist in L.
- (G., Welch) The α -iterable cardinals form a hierarchy of strength: An α -iterable cardinal is a limit of β -iterable cardinals for every $\beta < \alpha$.
- (Sharpe, Welch) A Ramsey cardinal is a limit of ω_1 -iterable cardinals.

Back to Ramsey cardinals

Theorem: (Mitchell) The following are equivalent for a cardinal κ .

- \bullet κ is Ramsey.
- Every $A \subseteq \kappa$ is an element of a weak κ -model M for which there is a weakly amenable countably complete M-ultrafilter.
 - \triangleright Ramsey ultrapower embeddings are κ -powerset preserving.
 - ▶ Ramsey ultrapower embeddings can be iterated along the ordinals.

Question: Can we replace weak κ -model with κ -model or κ -model elementary in H_{κ^+} ?

Do Ramsey ultrapower embeddings exist for every weak κ -model?

Strongly and super Ramsey cardinals

Definition: (G.) A cardinal κ is:

- strongly Ramsey if every $A \subseteq \kappa$ is an element of a κ -model M for which there is a weakly amenable M-ultrafilter.
- super Ramsey if every $A \subseteq \kappa$ is an element of a κ -model $M \prec H_{\kappa^+}$ for which there is a weakly amenable M-ultrafilter.

Theorem: (G.)

- A strongly Ramsey cardinal is a Ramsey limit of Ramsey cardinals.
- A super Ramsey cardinal is a strongly Ramsey limit of strongly Ramsey cardinals.
- A measurable cardinal is a super Ramsey limit of super Ramsey cardinals.

Theorem: (G.) A cardinal κ such that every weak κ -model M has a weakly amenable M-ultrafilter is inconsistent.

Theorem: (G.) A cardinal κ such that every $A \subseteq \kappa$ is an element of a weak κ -model M with $M^{\omega} \subseteq M$ for which there is a weakly amenable M-ultrafilter is a limit of Ramsey cardinals, but weaker than strongly Ramsey cardinal.

Questions: What large cardinal notions do we get if we:

- stratify by closure on the weak κ -model M?
- require that $M \prec H_{\theta}$ for some large θ ? (We have to drop the requirement that M is transitive.)

The hierarchy so far

α -Ramsey cardinals

Definition: A imperfect weak κ -model is a set $M \models \mathrm{ZFC}^-$ of size κ with $\kappa + 1 \subseteq M$. An imperfect κ -model M is an imperfect weak κ -model such that $M^{<\kappa} \subseteq M$.

Definition: (Holy, Schlicht) Suppose $\omega < \alpha \le \kappa$ is a regular cardinal. A cardinal κ is α -Ramsey if for arbitrarily large regular θ , every $A \subseteq \kappa$ an element of an imperfect weak κ -model $M \prec H_{\theta}$ with $M^{<\alpha} \subseteq M$ for which there is a weakly amenable M-ultrafilter.

Theorem: (Holy, Schlicht) The following are equivalent.

- κ is α -Ramsey.
- For every regular θ , every $A \subseteq \kappa$ is an element...
- For arbitrarily large regular θ , every A is an element ...
- For arbitrarily large θ , there is an imperfect weak κ -model $M \prec H_{\theta}$...

Theorem:

- \bullet An $\omega_1\text{-Ramsey cardinal}$ is a Ramsey limit of Ramsey cardinals.
- ullet (G.) A strongly Ramsey cardinal is a limit of lpha-Ramsey cardinals for every $lpha<\kappa.$
- (Holy, Schlicht) A κ -Ramsey cardinal is a super Ramsey limit of super Ramsey cardinals.
- A measurable cardinal is a κ -Ramsey limit of κ -Ramsey cardinals.

The hierarchy so far

Game Ramsey cardinals

Definition: (Holy, Schlicht) Suppose κ is weakly compact, $\omega \leq \alpha \leq \kappa$ is an ordinal, and $\theta > \kappa$ is regular. Game $G^{\theta}_{\alpha}(\kappa)$ is played by the challenger and the judge.

At every stage $\gamma < \alpha$:

- ullet the challenger plays an imperfect κ -model $M_{\gamma} \prec H_{ heta}$,
- ullet the judge plays an M_{γ} -ultrafilter U_{γ} ,
- $\bullet \ \langle M_{\bar{\gamma}} \mid \bar{\gamma} < \gamma \rangle, \ \langle U_{\bar{\gamma}} \mid \bar{\gamma} < \gamma \rangle \in M_{\gamma},$
- $M_0 \subseteq M_1 \subseteq \cdots \subseteq M_{\gamma}$.

The judge wins if she can play for α -many moves and otherwise the challenger wins.

Facts: Suppose the judge wins.

- $U = \bigcup_{\gamma < \alpha} U_{\gamma}$ is a weakly amenable $M = \bigcup_{\gamma < \alpha} M_{\gamma}$ -ultrafilter.
- If $cf(\alpha) > \omega$, then *U* is good.
- If α is regular, then $M^{<\alpha} \subseteq M$.

Game Ramsey cardinals (continued)

Theorem: (Holy, Schlicht) Suppose $\theta, \rho > \kappa$ are regular cardinals.

- The challenger has a winning strategy in $G_{\alpha}^{\theta}(\kappa)$ iff he has one in $G_{\alpha}^{\rho}(\kappa)$.
- The judge has a winning strategy in $G^{\theta}_{\alpha}(\kappa)$ iff she has one in $G^{\rho}_{\alpha}(\kappa)$.

Definition: (Holy, Schlicht) κ has the α -filter property if the challenger has no winning strategy in the game $G^{\alpha}_{\alpha}(\kappa)$ for any regular $\theta > \kappa$.

Theorem: (Holy, Schlicht) A cardinal κ is α -Ramsey iff κ has the α -filter property.

Baby measurable cardinals

Definition: (Bovykin, McKenzie) A cardinal κ is baby measurable if every $A \subseteq \kappa$ is an element of a κ -model M for which there is a weakly amenable well-order < of M and a weakly amenable M-ultrafilter U such that $\langle M, \in, <, U \rangle \models \mathrm{ZFC}^-$.

Theorem: (Bovykin, McKenzie) Suppose M is a κ -model, < is a weakly amenable well-order of M, U is a weakly amenable M-ultrafilter, and $\langle M, \in, <, U \rangle \models \mathrm{ZFC}^-$. Then inside $\langle M, \in, <, U \rangle$, we construct the ultrapower of M by U.

Theorem:

- Measurable cardinals are baby measurable limit of baby measurable cardinals.
- (G., Schlicht) Baby measurable cardinals are limits of κ -Ramsey cardinals.

The Ramsey-like cardinals hierarchy

