Architettura degli elaboratori - lezione 1

Appunti di Davide Scarlata 2024/2025

• Professore: Claudio Schifanella

• Email: claudio.schifanella@unito.it

• 📌 Corso: C

Moodle: Moodle Unito

• **Data:** 18/02/2025

Riconoscimenti: Davide Vella

Linguaggio Macchina e Assembly

Linguaggio Macchina

- Il linguaggio più basso e direttamente comprensibile dalla CPU.
- Scritto in **binario** (difficile da leggere per gli umani).

Linguaggio Assembly *

- Un linguaggio a basso livello più leggibile rispetto al linguaggio macchina.
- Tradotto in linguaggio macchina tramite un Assembler.

Strati di Astrazione 🔀

Livello	Descrizione	Conversione al livello inferiore tramite
4	Linguaggi ad alto livello	Compilatore
3	Assembly	Assemblatore
2	Sistema Operativo (OS)	Interpretazione parziale
1	Instruction Set Architecture(isa)	Definisce le istruzioni eseguibili dal processore
0	Logica Digitale	Composta da porte logiche e circuiti elettronici

Conversione dei Linguaggi 🔀

$Da \rightarrow A$	Strumento utilizzato
I Linguaggio Alto Livello → X Assembly	Compilatore
X Assembly → 💾 Linguaggio Macchina	 Assemblatore

m Architettura di Von Neumann

Definizione

Questa architettura, sviluppata durante la Seconda Guerra Mondiale, ha permesso di **caricare programmi in memoria**, a differenza delle architetture precedenti.

- Struttura della CPU
- 🧠 CPU Componenti principali

Unità di Controllo (Control Unit) 🔡

- Decodifica le istruzioni e coordina le altre componenti della CPU per eseguirle.
 - P Alcune istruzioni vengono eseguite direttamente dalla Control Unit.

Unità Aritmetico-Logica (ALU) + -

Esegue operazioni aritmetiche (somma, sottrazione) e logiche (AND, OR, NOT).

Registri

• Memoria ultra-veloce usata per l'elaborazione immediata dei dati (memoria temporanea).

📌 Registri fondamentali

- PC (Program Counter): Indirizzo della prossima istruzione.
- • IR (Instruction Register): Istruzione attualmente in esecuzione.

altri registri:

status register(sr)

📂 Memoria Principale (RAM) 💾

- Memoria volatile che contiene codice macchina e dati.
- Più lenta rispetto ai registri.

Sistema di comunicazione tra le componenti hardware. (fili)

Tipologie di bus:

- 🖳 Bus di sistema: Collega la CPU ai chipset:
 - tra questi abbiamo:
 - bus di controllo: indica se l'operazione in memoria sarà una lettura o una scrittura
- bus degli indirizzi: punta una certa zona di memoria per prelevare il dato
- bus dei dati: bidirezionale verso la memoria per scrivere dalla memoria per leggere
- Bus I/O: Gestisce la comunicazione con le periferiche.
- M Bus locale: Include bus specifici come PCIe o AGP per connettere componenti interni come scheda video e audio.

Data Path

organizzazione interna di una CPU (registri, ALU, bus interno) Ciclo del data path: è un processo per far passare due operandi attraverso l'ALU e memorizzarne il risultato

Esempio in RISC-V:

- I dati in ingresso vengono caricati nei registri.
- Dopo l'elaborazione, i dati in uscita vengono salvati nei registri.