American University of Kurdistan - Math 202 Calculus II Syllabus - Spring 2019

COURSE DESCRIPTION: Calculus II: Derivatives and integrals of exponential and logarithmic functions, applications, Sequences and Series, Power, Taylor and Maclaurin Series, Polar Coordinate.

INSTRUCTOR: Daner Ferhadi

PRE-REQUISITE: Math 120 Calculus I

TEXT: Thomas' Calculus Early Transcendentals 13th Edition with SI Units

COURSE FORMAT: There are three 1.25-hour lectures each week. The sections covered in each

lecture is listed at the end of this syllabus.

OFFICE HOURS: Wednesdays 10:30 AM to 11:30 AM

MATH 202 COURSE LEARNING OBJECTIVES:

upon successfully completing Math 202, students should be able to:

1	Differentiate exponential, logarithmic, and inverse trigonometric functions			
2	Integrate exponential, logarithmic, and inverse trigonometric functions			
3	Recognize integrands for which integration by parts is appropriate			
4	Use the formula to integrate by parts			
5	Use techniques for integrals of products of sines and cosines			
6	Use techniques for integrals of secants and tangents			
7	Use technique of trigonometric substitution to solve integrals			
8	Complete the square to express an irreducible quadratic polynomial as a sum or difference of squares			
9	Perform polynomial long division to reduce an integrand to a more easily integrated form			
10	Use the technique of partial fraction decomposition to reduce an integrand to a more easily integrated form			
11	Given a random integration problem, choose the proper method and proceed with integration			
12	Evaluate limits using L'Hospital's Rule			
13	Recognize improper integrals and put in proper form for determination			

14	Determine if an improper integral diverges or converges (and if so, to what?)			
15	Identify and compare different types of sequences			
16	Determine if a sequence diverges or converges (and if so, to what?)			
17	Recognize famous series in standard and non-standard form			
18	Apply infinite series tests for convergence and divergence			
19	Find the interval of convergence and radius of convergence for a given power series			
20	Generate power series representations of some functions from a geometric series perspective			
21	Recognize and manipulate important Maclaurin Series (e x , sin x, cos x, tan-1 x, $1/(1-x)$) by differentiation, integration, and substitution			
22	Find the nth degree Taylor Polynomial of a function f at a point a and determine the error associated with the estimate			
23	Sketch graphs of polar equations			
24	Find slopes of tangents to polar-defined curves			
25	Find points of intersection of two or more polar functions			
26	Find areas enclosed by polar-defined curves			

EXAMINATIONS: Two 120-minute exams will be given during the semester and a comprehensive final exam will be given during the final exam period.

Following dates:

Midterm I	February 12th
Midterm II	March 12th
Final Exam	Week of April 23 rd – May 9th

COURSE GRADES: Grades will be assigned on a basis of 500 points, distributed as follows:

Midterm I	100
Midterm II	100
Homework and Quizzes	150
Final Exam	150
Total	500

Month	Day	Sections	Topic	
January	15th	1.5, 1.6	Exponential Functions, Inverse Functions and	
			Logarithms	
January	17th	7.1	The Logarithm Defined as an Integral	
January	20th	7.1	The Logarithm Defined as an Integral	
January	22nd, 24th	8.1	Basic Integration Formulas	
January	27th	8.2	Integration by Parts	
January	29th	8.2	Integration by Parts	
February	31st, 3rd	8.3	Trigonometric Integrals	
February	5th	8.3	Trigonometric Integrals	
February	7th, 10th	8.8 or	Improper Integrals or Trigonometric Substitution	
		8.4		
February	12th	Midterm I		
February	14th	10.1	Sequences	
February	17th, 19th	10.2	Infinite Series, Geometric Series	
February	20th	10.3	The Integral Test	
February	21st	10.3	The Integral Test	
February	24th, 26th	10.4	Comparison Test	
February	26th, 28th	10.5	Absolute Convergence; Ratio and Root Test	
February	28th, 3rd	10.5	Absolute Convergence; Ratio and Root Test	
March	5th	10.6	Alternating Series Test	
March	7th, 10th	10.7	Power Series	
March	12th	Midterm II		
March	14th	10.8	Taylor and Maclaurin Series	
March	24th, 26th	10.8	Taylor and Maclaurin Series	
March	28th, 31st	10.9	Convergence of Taylor Series	
March	2nd, 4th	10.9	Convergence of Taylor Series	
March	7th, 9th	11.3	Polar Coordinates	
April	11th, 14th,	11.4	Graphing Polar Coordinate Equations	
	16th			
April	18th, 21st,	-	Review	
	23rd			