SDM5008 Advanced Control for Robotics

Lecture 1: Rigid Body Configuration and Velocity

Prof. Wei Zhang

School of Automation and Intelligent Manufacturing Southern University of Science and Technology, Shenzhen, China

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Free Vector

• Free Vector: geometric quantity with length and direction

ullet Given a reference frame, v can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v can be represented by its coordinates v in the reference frame.

ullet v denotes the physical quantity while ${}^{\!\scriptscriptstyle A}\!v$ denote its coordinate wrt frame $\{{\sf A}\}.$

Point

• **Point**: p denotes a point in the physical space

ullet A point p can be represented by a vector from frame origin to p

• ${}^{A}p$ denotes the coordinate of a point p wrt frame $\{A\}$

 When left-superscript is not present, it means the physical vector itself or the coordinate of the vector for which the reference frame is clear from the context.

Cross Product

• Cross product or vector product of $a \in \mathbb{R}^3, b \in \mathbb{R}^3$ is defined as

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$
 (1)

Properties:

- $\bullet \|a \times b\| = \|a\| \|b\| \sin(\theta)$
- $a \times b = -b \times a$
- $a \times a = 0$

Skew symmetric representation

• It can be directly verified from definition that $a \times b = [a]b$, where

$$[a] \triangleq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$
 (2)

- $\bullet \ a = \left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right] \leftrightarrow [a]$
- $[a] = -[a]^T$ (called skew symmetric)
- $[a][b] [b][a] = [a \times b]$ (Jacobi's identity)

Rotation Matrix

- Frame: 3 coordinate vectors (unit length) $\hat{x}, \hat{y}, \hat{z}$, and an origin
 - $\hat{x}, \hat{y}, \hat{z}$ mutually orthogonal
 - $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$
- Rotation Matrix: specifies orientation of one frame relative to another

$${}^{\scriptscriptstyle A}R_B = \left[{}^{\scriptscriptstyle A}\hat{x}_B \, {}^{\scriptscriptstyle A}\hat{y}_B \, {}^{\scriptscriptstyle A}\hat{z}_B \, \right]$$

• A valid rotation matrix R satisfies: (i) $R^TR = I$; (ii) $\det(R) = 1$

Special Orthogonal Group

ullet Special Orthogonal Group: Space of Rotation Matrices in \mathbb{R}^n is defined as

$$SO(n) = \{ R \in \mathbb{R}^{n \times n} : R^T R = I, \det(R) = 1 \}$$

- SO(n) is a *group*. We are primarily interested in SO(3) and SO(2), rotation groups of \mathbb{R}^3 and \mathbb{R}^2 , respectively.
- **Group** is a set *G*, together with an operation •, satisfying the following group axioms:
 - Closure: $a \in G, b \in G \Rightarrow a \bullet b \in G$
 - Associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c), \forall a,b,c \in G$
 - **Identity element:** $\exists e \in G$ such that $e \bullet a = a$, for all $a \in G$.
 - Inverse element: For each $a \in G$, there is a $b \in G$ such that $a \bullet b = b \bullet a = e$, where e is the identity element.

Use of Rotation Matrix (1/2)

- Representing an orientation ${}^{\scriptscriptstyle A}R_B$
- Changing the reference frame ${}^{\scriptscriptstyle A}R_B$:

• Rotating a vector or a frame $\operatorname{Rot}(\hat{\omega},\theta)$: will be discussed in next lecture.

Rigid Body Configuration

- \bullet Given two coordinate frames $\{A\}$ and $\{B\},$ the configuration of B relative to A is determined by
 - AR_B and Ao_B

ullet For a (free) vector r, its coordinates ${}^{\scriptscriptstyle A}r$ and ${}^{\scriptscriptstyle B}r$ are related by:

ullet For a point p, its coordinates ${}^{\scriptscriptstyle A}p$ and ${}^{\scriptscriptstyle B}p$ are related by:

Homogeneous Transformation Matrix

ullet Homogeneous Transformation Matrix: ${}^{\scriptscriptstyle A}T_B$

Homogeneous coordinates:

Example of Homogeneous Transformation Matrix

Fixed frame {a}; end effector frame {b}, the camera frame {c}, and the workpiece frame {d}. Suppose $\|p_c-p_b\|=4$

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Rigid Body Velocity (1/3)

• Consider a rigid body in motion. The body has infinitely many points $\{p_i\}$ with different velocities $\{v_{n_i}\}$

- All these velocities v_{p_i} 's are not independent
- They can be expressed by the same set of parameter
- Rigid body velocity (i.e. spatial velocity, twist) is one such parameterization

Rigid Body Velocity (2/3)

• Pure rotation case

• General motion

Rigid Body Velocity (3/3)

•

Rigid Body Velocity: Spatial Velocity (Twist)

- How to represent a rigid body velocity?
 - Pick an arbitrary point r (reference point), which may or may not be body-fixed
 - Define v_r as the velocity of the body-fixed point currently coincides with r
 - For any body-fixed point p on the body: $v_p = v_r + \omega \times (\overrightarrow{rp})$
- Spatial Velocity (Twist): $V_r = (\omega, v_r)$
- Twist is a "physical" quantity (just like linear or angular velocity)
 - It can be represented in any frame for any chosen reference point \emph{r}
- A rigid body with $\mathcal{V}_r=(\omega,v_r)$ can be "thought of" as translating at v_r while rotating with angular velocity ω about an axis passing through r
 - This is just one way to interpret the motion.

Spatial Velocity Representation in a Reference Frame

ullet Given frame $\{A\}$ and a spatial velocity ${\mathcal V}$

• Choose o_A (the origin of $\{A\}$) as the reference point to represent the rigid body velocity

• Coordinates of \mathcal{V} in $\{A\}$:

$$^{A}\mathcal{V}_{o_{A}} = (^{A}\omega, ^{A}v_{o_{A}})$$

• By default, we assume the origin of the frame is used as the reference point: ${}^{A}\mathcal{V}={}^{A}\mathcal{V}_{o_A}$

Example of Twist I

• Example I:

Example of Twist II

• Example II:

 $r_s = (2, -1, 0) \text{, } r_b = (2, -1.4, 0) \text{, w=2 rad/s}$

Change Reference Frame for Twist (1/2)

 \bullet Given a twist $\mathcal V$, let ${}^{A}\mathcal V$ and ${}^{B}\mathcal V$ be their coordinates in frames $\{A\}$ and $\{B\}$

$${}^{\scriptscriptstyle A}\mathcal{V} = \left[\begin{smallmatrix} {}^{\scriptscriptstyle A}\omega \\ {}^{\scriptscriptstyle A}v_A \end{smallmatrix} \right], \qquad {}^{\scriptscriptstyle B}\mathcal{V} = \left[\begin{smallmatrix} {}^{\scriptscriptstyle B}\omega \\ {}^{\scriptscriptstyle B}v_B \end{smallmatrix} \right]$$

ullet They are related by ${}^{\scriptscriptstyle A}{\cal V}={}^{\scriptscriptstyle A}X_B{}^{\scriptscriptstyle B}{\cal V}$

Change Reference Frame for Twist (2/2)

• If configuration $\{B\}$ in $\{A\}$ is T=(R,p), then

$${}^{A}X_{B} = [\mathrm{Ad}_{T}] \triangleq \left[\begin{array}{cc} R & 0 \\ [p]R & R \end{array} \right]$$

Example I Revisited

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Screw Motion: Definition

Rotating about an axis while also translating along the axis

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
 - \hat{s} : unit vector in the direction of the rotation axis
 - q: any point on the rotation axis
 - h: screw pitch which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis
- Theorem (Chasles): Every rigid body motion can be realized by a screw motion.

From Screw Motion to Twist

- Consider a rigid body under a screw motion with screw axis $\{\hat{s},h,q\}$ and (rotation) speed $\dot{\theta}$
- Fix a reference frame $\{A\}$ with origin o_A .
- ullet Find the twist ${}^{\scriptscriptstyle A}\mathcal{V}=({}^{\scriptscriptstyle A}\omega,{}^{\scriptscriptstyle A}v_{o_A})$

• **Result**: given screw axis $\{\hat{s},h,q\}$ with rotation speed $\dot{\theta}$, the corresponding twist $\mathcal{V}=(\omega,v)$ is given by

$$\omega = \hat{s}\dot{\theta} \qquad v = -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta}$$

- The result holds as long as all the vectors and the twist are represented in the same reference frame

From Twist to Screw Motion

- The converse is true as well: given any twist $\mathcal{V}=(\omega,v)$ we can always find the corresponding screw motion $\{q,\hat{s},h\}$ and $\dot{\theta}$
 - If $\omega=0$, then it is a pure translation $(h=\infty)$

$$\hat{s} = \frac{v}{\|v\|}, \quad \dot{\theta} = \|v\|, h = \infty, q \text{ can be arbitrary}$$

- If $\omega \neq 0$:

$$\hat{s} = \frac{\omega}{\|\omega\|}, \quad \dot{\theta} = \|\omega\|, \quad q = \frac{\omega \times v}{\|\omega\|^2}, \quad h = \frac{\omega^T v}{\|\omega\|}$$

Examples: Screw Axis and Twist

• What is the twist that corresponds to rotating about \hat{z}_B with $\dot{\theta}=2$?

• What is the screw axis for twist $\mathcal{V} = (0, 2, 2, 4, 0, 0)$?

Screw Representation of a Twist

- Recall: an angular velocity vector ω can be viewed as $\hat{\omega}\dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis
- Similarly, a twist (spatial velocity) $\mathcal V$ can be interpreted in terms of a **screw** axis $\hat{\mathcal S}$ and a velocity $\dot{\theta}$ about the screw axis
- Consider a rigid body motion along a screw axis $\hat{S} = \{\hat{s}, h, q\}$ with speed $\dot{\theta}$. With slight abuse of notation, we will often write its twist as

$$\mathcal{V} = \hat{\mathcal{S}}\dot{\theta}$$

- In this notation, we think of $\hat{\mathcal{S}}$ as the twist associated with a unit speed motion along the screw axis $\{\hat{s},h,q\}$

More Discussions