1

2

3

4

5

PST-104US PATENT

What is Claimed Is:

1	1.	A microfluidic device comprising:
2		A) a substrate and
3		B) a channel on the substrate, the channel comprising a side wall,
4	wherein the	side wall comprises a polymeric material, the side wall is formed by
5	deposition o	f a plurality of microdroplets comprising the polymeric material from
6	a nozzle.	

- 2. The microfluidic device of claim 1 wherein the channel further comprises a cover comprising the polymeric material.
- 3. The microfluidic device of claim 1 wherein the channel also comprises a bottom comprising the polymeric material.
- 4. The microfluidic device of claim 1 wherein the device further comprises an overhang structure comprising the polymeric material, wherein the overhang structure comprises a base positioned over the substrate and an extension extending from an end of the base opposite the substrate, the extension being substantially parallel to the substrate.
- 5. The microfluidic device of claim 1 wherein the microdroplets of the polymeric material comprise a polymer solution, a polymer suspension, or a combination thereof.

PST-104US PATENT

1	6.	An injection molding master for fabricating a molded microfluidic		
2	device, the master comprising:			
3		A) a substrate and		
4		B) a channel on the substrate, the channel comprising a side wall,		
5	wherein the	side wall comprises a polymeric material, the side wall is formed by		
6	deposition of a plurality of microdroplets comprising the polymeric material from			
7	a nozzle.			
1	7.	The master of claim 6 wherein the master reflects a positive		
2	representation of the molded microfluidic device.			
1	8.	The master of claim 6 wherein the master reflects a negative		
2	representation of the molded microfluidic device.			
1	9.	A process of making a pattern of microfluidic device features on a		
2	substrate, th	e process comprising:		
3	forming said pattern by emitting microdroplets of a polymeric material			
4	from a nozzle onto the substrate to form a deposited pattern on the substrate.			
1	10.	The process of claim 9 wherein the pattern of microfluidic device		
2	features on s	aid substrate forms an injection molding master for producing a		
3	molded micr	rofluidic device, and the process further comprises:		
4	curing	g the polymeric material forming said deposited pattern to form the		
5	injection mo	lding master.		

1

2

1

2

3

4

1

2

3

4

5

PST-104US PATENT

1 11. The process of claim 10 wherein the deposited pattern is a positive representation of the molded microfluidic device.

- 1 12. The process of claim 11 further comprising electroforming a metal 2 onto the injection molding master to form a metallic mold.
- 1 13. The process of claim 10 wherein said deposited pattern is a negative 2 representation of the molded microfluidic device.
 - 14. The process of claim 9 wherein emitting the microdroplets of polymeric material is performed by an ink-jet printer.
 - 15. The process of claim 9 wherein the substrate is mounted on a translation device, wherein the translation device moves the substrate to form the pattern of microfluidic features from the microdroplets of polymeric materials emitted from the nozzle.
 - 16. The process of claim 9 comprising forming an overhang structure in the pattern of microfluidic features, forming the overhang structure comprises forming a base positioned over the substrate and an extension extending from an end of the base opposite the substrate, the extension being substantially parallel to the substrate.
- 1 17. The process of claim 9 comprising forming a channel in the pattern 2 of microfluidic features.

1

2

3

4

1

2

3

PST-104US PATENT

1 18. The process of claim 17 comprising forming a channel bottom, a channel sidewall and a channel cover.

- 1 19. The process of 18 wherein the sidewall and the cover are formed 2 from the same polymeric material.
- 1 20. The process of claim 19 wherein the bottom, the sidewall and the cover are formed from the same polymeric material.
 - 21. The process of claim 9 wherein forming the deposited pattern comprises depositing the microdroplets of polymeric material in a first area and depositing microdroplets of a second polymeric material from the nozzle in a second area of the substrate.
 - 22. The process of claim 21 wherein the deposited microdroplets of polymeric material in the first area and the second polymeric material comprise the same polymeric material.
- 1 23. The process of claim 21 wherein the microdroplets of polymeric 2 material deposited in the first area are not soluble in a solvent that solubilizes the 3 second polymeric material.
- 1 24. The process of claim 21 further comprising a step removing the 2 first polymeric material.
- 1 25. A microfluidic device comprising a device substrate and a channel, 2 wherein the channel comprises a bottom and a sidewall, said device formed by

PST-104US PATENT

3	A) preparing an injection molding mmaster, wherein preparing the injection		
4	molding master comprises forming a negative impression of the channel by		
5	emitting microdroplets of a polymeric material onto a injection molding master		
6	substrate;		
7	B) injecting a second polymeric material into the injection molding master;		
8	C) curing the second polymeric material to form the microfluidic device;		
9	and		
10	D) removing the microfluidic device from the injection molding model.		