Econometrics Week 6 Test

William Schill

This file was originally created using Jupyter with Python and HTML and has been saved as a pdf rather than exported to a pdf due to errors in exporting and latex, because of this formatting is a little wonky.

Out[1]: Toggle Code.

Were going to import the data and then using *pandas* in python to set the 'YYYY-MM' column to an actual date-time index.

Out[75]:

	YYYY-MM	TOYOTA	OTHER	TOYOTA_SA	OTHER_SA
0	1980M01	175734	315111	200015.142857	352054.297619
1	1980M02	200479	377893	198443.190476	363393.202381
2	1980M03	200373	385236	168488.047619	329570.059524

DatetimeIndex(['1980-01-01', '1980-02-01', '1980-03-01'], dtype='datetime64[n s]', freq=None)

	TOYOTA	OTHER	TOYOTA_SA	OTHER_SA
1999-10-01	259871	436813	237267.047619	422691.535714
1999-11-01	263580	470356	249988.809524	458444.535714
1999-12-01	206280	433729	223074.571429	438129.630952
240				
	TOYOTA	OTHER	TOYOTA_SA	OTHER_SA
2000-01-01	225841	392589	250122.142857	429532.297619
2000-02-01	267084	499199	265048.190476	484699.202381
2000-03-01	294538	551228	262653.047619	495562.059524
12				

PART A

1980-01-01352054.2976191980-02-01363393.2023811980-03-01329570.059524

Name: OTHER_SA, dtype: float64 1980-01-01 200015.142857

1980-02-01 198443.190476 1980-03-01 168488.047619 Name: TOYOTA_SA, dtype: float64

Out[130]: <matplotlib.axes._subplots.AxesSubplot at 0x155c5a90>

(a):

The variables have been set in the python code and plotted above. The toyota share stays with in the 30 to 40 percent range of the other share. However it seems that when comparing the TOYOTA_SA to OTHER_SA, that they did not experience as significant uptake in the early 1990's as some of the companies might have, but never-the-less, both sets of data seem correlated with each other.

The standardized version of the TOYOTA SHARE confirms the suspicion above and even highlights were Toyoata maintaned the same chunk of share for quite some time.

PART B

Results: Ordinary least squares

========					=======	
Model: C		OLS		dj. R-sq	0.293	
Dependent \	Variable: d	d y		[C:		5221.9067
Date:	2		09:55 B	IC:		5239.2258
No. Observa	ations: 2	236	Lo	g-Likel	-2606.0	
Df Model:	4			·statist	25.34	
Df Residua	ls: 2	231	Pı	ob (F-s	tatistic):	2.05e-17
R-squared:	6	305	S	ale:	•	2.3331e+08
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	19281.8945	8430.4101	2.287	0.0231	2671.5701	35892.2190
lag1	-0.0832	0.0368	-2.2623	0.0246	-0.1557	-0.0107
d_lag1	-0.5630	0.0699	-8.056	0.0000	-0.7007	-0.4253
d_lag2	-0.3243	0.0745	-4.3546	0.0000	-0.4710	-0.1776
d_lag3	-0.0639	0.0650	-0.983	0.3264	-0.1920	0.0641
Omnibus:		0.924	Durl	oin-Wats	on:	2.013
Prob(Omnibus):		0.630 Jarque-Bera (JB):		(JB):	0.736	
Skew:		0.132	Prol	o(JB):		0.692
Kurtosis:		3.072	Cond	dition N	o.:	1948470
========	=======	:======:	======		=======	=======

^{*} The condition number is large (2e+06). This might indicate strong multicollinearity or other numerical problems.

Y ADF:

(-2.262284216076055, 0.18442063656746183, {'5%': -2.8738660999177132, '1%': -3.4583663275730476, '10%': -2.5733390785693766}, <statsmodels.tsa.stattools.R esultsStore object at 0x0000000012ABF6A0>)

X ADF:

(-2.1056761420521739, 0.2422383304024896, {'5%': -2.8738660999177132, '1%': -3.4583663275730476, '10%': -2.5733390785693766}, <statsmodels.tsa.stattools.R esultsStore object at 0x0000000012ABF668>)

Results: Ordinary least squares

========			======	======		
Model: 0		OLS		j. R-sq	0.293	
Dependent \	/ariable: y	У		C:		5221.9067
Date:	2	2017-03-01	09:55 BI	C:		5239.2258
No. Observa	ations: 2	236	Lo	g-Likel:	ihood:	-2606.0
Df Model:	4	1	F-	statist	ic:	25.34
Df Residual	ls: 2	231	Pr	ob (F-s	tatistic):	2.05e-17
R-squared:	6	305	Sc	ale:		2.3331e+08
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
ylag1	-0.0832		-2.2623			
ydiff_lag1			-8.0565			
ydiff_lag2			-4.3546	0.0000	-0.4710	-0.1776
ydiff_lag3	-0.0639	0.0650	-0.9835	0.3264	-0.1920	0.0641
const	19281.8945	8430.4101	2.2872	0.0231	2671.5701	35892.2190
Omnibus:		0.924 Durbin-Watson:			2.013	
Prob(Omnibus):		0.630 Jarque-Bera (JB):		(JB):	0.736	
Skew:		0.132	0.132 Prob(JB):			0.692
Kurtosis:		3.072	Cond	ition No	o.:	1948470
========			======	======	=======	

^{*} The condition number is large (2e+06). This might indicate strong multicollinearity or other numerical problems.

(b):

The value for y_{t-1} is -0.0832 and the t-value is significant at the 5% level with a value of 0.0246.

If we manually calculate the OLS regression using the differenced y and its subsequent lags and compare it to the ADF test regression results from statsmodels, we can see that they are nearly identitical. Thus we can use the statsmodels test as set up above and:

- (i): The Augmented Dickey Fuller test for y has a test statistic of -2.2623 and we cannot reject the Null Hypothesis that there is a unit root and the data is not stationary. This can also be confirmed based on the plot above and the p-value of the test statistic.
- (ii): The ADF test for x has a test statistic of -2.1057 and we cannot reject the Null Hypothesis that there is a unit root and the data is not stationary. This can also be confirmed based on the plot above and the p-value of the test statistic.

Additionally, based on the Autocorrelation plots below, we have further confirmation.

Out[131]: <matplotlib.text.Text at 0x15d987f0>

PART C

Results: Ordinary least squares

Model:		OLS		Adj. R-sq	0.252	
Dependent	Variable:	у		AIC:		5146.6454
Date:		2017-03-0	1 10:43	BIC:		5163.9646
No. Observ	ations:	236		Log-Likel	-2568.3	
Df Model:		4		F-statist	ic:	20.75
Df Residua	ls:	231		Prob (F-s	tatistic):	1.26e-14
R-squared:		0.264		Scale:	1.6961e+08	
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
1 4						
e_lag1	-0.2930	0.0680	-4.3057		-0.4276	
	-0.2858	0.0785	-3.6396	0.0003	-0.4406	
d_e_lag2	-0.1416	0.0754	-1.8794	0.0614	-0.2901	L 0.0068
d_e_lag3	-0.0960	0.0657	-1.4607	0.1454	-0.2254	1 0.0335
const	24.9917	847.8255	0.0295	0.9765	-1645.4676	5 1695.4510
Omnibus: 12.771 Durbin-					son:	2.010
Prob(Omnibus):		0.002	5	25.834		
Skew:		-0.214	. ,			0.000
Kurtosis:		4.563	Condition No.:			19350
=======	======	=======	======	=======	=======	

^{*} The condition number is large (2e+04). This might indicate strong multicollinearity or other numerical problems.

ADF RESULTS ON THE RESIDUAL OF X AND Y

(-4.3057053622664112, 0.000434214635598987, {'5%': -2.8738660999177132, '1%': -3.4583663275730476, '10%': -2.5733390785693766}, <statsmodels.tsa.stattools. ResultsStore object at 0x000000001492F048>)

(c):

Based on the residual in part two, and the results of the ADF test, it appears we can reject the Null Hypothesis that the residuals are not stationary, thus it is not cointegrated between X and y and the linear combination of the two can form a stationary series.

PART D

True

True

True

False

12

13

14

15

11 12

13

14

Sigfinicance Rule = 0.129099444874 Greater than Significance Rule 0 True 1 1 True 2 2 False 3 3 False 4 5 False 4 5 False 6 6 False 7 True 8 7 8 True 9 False 9 10 True 11 10

The ACF and PACF plots are created above. However many more lagged terms than "1 to 5, 10, and 12" appear to be significant. We will just go with the ones listed in the instructions of the assignment since handling this selection should essentially take of the rest.

As an aside, I tried to use the *significance test* from the lecture slides just incase the statsmodels methods were doing something slightly different but this still did not give the expected lag structure. The results can be seen above the ACF and PACF plots.

Results: Ordinary least squares

=======	=======	=======	======	=======	=======	=======
Model:		OLS		Adj. R-sq	uared:	0.427
Dependent	Variable:	d y		AIC:		4980.5786
Date:		2017-03-01 10:43		BIC:	5007.9782	
No. Obser	vations:	227		Log-Likel	-2482.3	
Df Model:		7		F-statist	25.05	
Df Residu	als:	219		Prob (F-s	tatistic):	5.67e-25
R-squared	:	0.445		Scale:	•	1.9112e+08
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	561.6126	919.5108	0.6108	 3 0.5420	-1250.610	1 2373.8353
dlag1	-0.5983	0.0617	-9.7001		-0.7199	
dlag1	-0.2634	0.0017	-3.4686		-0.713	
dlag2 dlag3	-0.2034	0.0749	-3.4006		-0.3749	
dlag4	-0.2273	0.0743	-3.1946		-0.374	
dlag5	-0.1520	0.0610	-2.4941		-0.272	
dlag10	-0.1520	0.0524	-5.1242		-0.272	
dlag12	0.2465	0.0546	4.5121		0.1388	
u1ag12	0.2403		4.512			
Omnibus:		0.156	0.156 Durbin-Watson:		2.072	
Prob(Omnibus):		0.925				0.148
Skew:		-0.060		Prob(JB):	• •	0.929
Kurtosis:		2.964	Condition No.:			25239

^{*} The condition number is large (3e+04). This might indicate strong multicollinearity or other numerical problems.

Out[136]: <matplotlib.text.Text at 0x16932940>

Examining the PACF of the residuals, it can be seen that the model created does cover the majority of the auto-correlation lag structure with the exception of the 18th lag. The model also highlights (based on the p-values) that all of the lag structures added are statistically significant from a standpoint of inclusion and based on the the calculated t-value.

PART E

Model:		OLS	Adj	. R-squa	red:	ð.436
Dependent Variable:		d_y	AIC	:	4	4977.7723
Date:		2017-03-01	10:43 BIC	:	!	5008.5968
No. Obse	rvations:	227	27 Log-Likelihood: -			-2479.9
Df Model	:	8	•			22.87
Df Resid	uals:	218	18 Prob (F-statistic): 3			3.18e-25
R-square	d:	0.456	Sca	le:	:	1.8797e+08
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	4728.0072	2133.7034	2.2159	0.0277	522.6791	8933.3353
dlag1	-0.5223	0.0706	-7.4009	0.0000	-0.6614	-0.3832
dlag2	-0.1866	0.0833	-2.2403	0.0261	-0.3508	-0.0224
dlag3	-0.1581	0.0809	-1.9552	0.0518	-0.3175	0.0013
dlag4	-0.1847	0.0743	-2.4860	0.0137	-0.3311	-0.0383
dlag5	-0.1331	0.0611	-2.1785	0.0304	-0.2535	-0.0127
dlag10	-0.2737	0.0520	-5.2649	0.0000	-0.3762	-0.1712
dlag12	0.2516	0.0542	4.6402	0.0000	0.1448	0.3585
ECM	-0.1503	0.0696	-2.1599	0.0319	-0.2875	-0.0132
Omnibus:		0.012	Durbin-Watson:			2.043
Prob(Omnibus):		0.994	Jarque-Bera (JB):			0.095
Skew:		-0.004		b(JB):	• •	0.954
Kurtosis:		2.900	Condition No.:			76171

^{*} The condition number is large (8e+04). This might indicate strong multicollinearity or other numerical problems.

(e):

According to the statsmodels analysis above, at a value of 0.0319, the Error Correction Term (ECM) is significant at a 5% level but not at a 1% level. For this to have been the case it would have had to have been less than 0.01.

PART F

2000-01-01	429532.297619
2000-02-01	484699.202381
2000-03-01	495562.059524
Name: OTHER_SA	, dtype: float64
2000-01-01	250122.142857
2000-02-01	265048.190476
2000-03-01	262653.047619
Name: TOYOTA_S	A, dtype: float64

Out[140]: <matplotlib.text.Text at 0x161ebef0>

Out[142]: <matplotlib.text.Text at 0x12dd5780>

Out[143]: 223074.57142857101

Out[144]: <matplotlib.text.Text at 0x170712e8>

FIT D : RMSE \ MAE = 16991.8042351 \ 176438.710965

FIT E : RMSE \ MAE = 18204.7593804 \ 186668.020848

(f):

The plots above show the differenced forecast, the forecast with the actuals, and finally a zoomed in view of the forecast only reverse differenced. It can be seen that the Error Correction Term actually deviates the forecast farther from the actuals (in red) than the forecast with out the error term. The error ouput shows that the Forecast D is much better at predicting than Forecast E.