

SEQUENCE LISTING

<110> Moore, Rachael
Dudley, Adam Jeston

<120> METHODS FOR THE DETECTION OF POLYMORPHISMS IN THE HUMAN OATPF GENE

<130> 06275-422US1

<150> PCT/GB03/02487
<151> 2003-06-10

<150> GB 0213580.4
<151> 2002-06-13

<150> US 60/388,692
<151> 2002-06-14

<160> 17

<170> PatentIn Ver. 2.1

<210> 1
<211> 40
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR forward primer OATPF-1F

<400> 1

actgtaaaac gacggccagt aatgaggctt aaactgggca

40

<210> 2
<211> 40
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR reverse primer OATPF-1R

<400> 2

accaggaaac agctatgacc ggttagagatt gcttgcacccg

40

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Validation primer

<400> 3
tggacacttc atccaaagaa 20

<210> 4
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR forward primer OATPF-2F

<400> 4
actgtaaaac gacggccagt ctatgagcca gatcttctgg c 41

<210> 5
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR reverse primer OATPF-2R

<400> 5
accaggaaac agctatgacc cagaagcttt gaaagatttt ccc 43

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Validation primer

<400> 6
tattctcctt cctccaaattc 20

<210> 7
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR forward primer OATPF-3F

<400> 7
actgtaaaac gacggccagt tgggcaccta attgctacct 40

<210> 8
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR reverse primer OATPF-3R

<400> 8
accaggaaac agctatgacc tgagggaca tacccttggt 40

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Validation primer

<400> 9
atcagtgtgt gtggagctgc 20

<210> 10
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR forward primer OATPF-4F

<400> 10
actgtaaaac gacggccagt gctgttctag gcaaacaggg 40

<210> 11
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR reverse primer OATPF-4R

<400> 11
ccagtagttg ggttgt 16

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:Validation
 primer

<400> 12
 cttcttcttag acatataatat 20

<210> 13
 <211> 40
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:PCR forward
 primer OATPF-5F

<400> 13
 actgtaaaac gacggccagt cttagtct ttctgtgcc 40

<210> 14
 <211> 41
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:PCR reverse
 primer OATPF-5R

<400> 14
 accagggaaac agctatgacc ttccatcaaa ctaatgaggg g 41

<210> 15
 <211> 54
 <212> DNA
 <213> Homo sapiens

<400> 15
 atttttactt taaaaactaa ctttgacaga tcagagtcaa ggaatgtgtt tata 54

<210> 16
 <211> 3077
 <212> DNA
 <213> Homo sapiens

<400> 16
 cattgaaagg aaatggctat ctttgatctc ttcctccaga tcagagtcaa ggaatgtgtt 60
 tataatggac acttcatcca aagaaaatat ccagttgttc tgcaaaaactt cagtgcacc 120
 tgtttggagg ctttctttta aaacagaata tccctcctca gaagaaaagc aaccatgctg 180
 tggtaacta aaggtgttct tgggtgcctt gtctttgtt tactttgcca aagcattggc 240
 agaaggctat ctgaagagca ccatcactca gatagagaga aggtttgata tcccttctc 300
 actgggtggga gttattgtat gtagtttga aattggaaat ctcttagtta taacatttgt 360
 tagtacttt ggagccaaac ttcacaggcc aaaaataatt ggagcagggt gtgtaatcat 420
 gggagttgga acactgctca ttgcaatgcc tcagttctc atggaggcagt acaaatatga 480

gagatattct ccccttcata attccactct cagcatctc ccgtgtctcc tagagtcaag 540
cagtcaatta ccagtttcag ttatggaaaa atcaaaatcc aaaataagta acgaatgtga 600
agtggacact agctttcca tgtggattt tgccccctc ggcaatctc ttcgttggat 660
aggagaaact cccattcagc ctttggcat tgccctacctg gatgattttg ccagtgaaga 720
caatgcagct ttctatattt ggtgttgca gacgggttgcattataggac caatcttgg 780
tttcctgtta ggctcattat gtccaaact atatgttgcattggctttg taaaacctaga 840
tcacataacc attaccccaa aagatccccatgggttagga gcctgttgccttgatct 900
aatagcagga atcataagtc ttcttgccagc tggcccttc tggtatattac caaagagtt 960
accaagatcc caaagtagag aggattctaa ttcttcctct gagaatcca agtttattat 1020
agatgatcac acagactacc aaacacccca gggagaaaaat gaaaaataaa tggaaatggc 1080
aagagatttt ctccatcac tgaagaatct tttggaaac ccagtataact tcctatattt 1140
atgtacaaggc actgttcaggc tcaattctct gttcgccatg gtgacgtaca aaccaaaga 1200
cattgagcag cagtatggac agtcatttc cagggccaaac ttgtgtatcg ggctcatcaa 1260
cattccagca gtggcccttgaatattctc tggggggata gttatgaaaaaattcagaat 1320
cagtggtgtt ggagctgaa aactctactt gggatcatct gtccttggtt acctcttatt 1380
tcttccttgc ttgcactgg gctgtgaaaa ttctgtatgttgcaggactaa ctgtctcccta 1440
ccaaggaacc aaacctgtct ctatcatga acgagctctc tttcagatt gcaactcaag 1500
atgcaaatgt tcagagacaa aatgggaacc catgtgcgg gaaaatggaa tcacatatgt 1560
atcagcttgtt ctgtctgggtt gtcacccctc caacaggagt ggaaaaata ttatatttta 1620
caactgact tgggtggaa ttgcagttc taaatccggaa aattcctcag gcatagtggg 1680
aagatgtcag aaagacaatg gatgtccca aatgtttctg tatttccttgaatttcagtt 1740
catcacatcc tatactttat ccctaggtgg catacctggaa tacatattac ttctgaggtg 1800
cattaagcca cagcttaagt ctggccctt gggtatctac acattagcaa taagagttct 1860
tgcaggaatc ccagctccag tggatatttgg agttttgatt gataacttcat gcctcaaatg 1920
gggattttaa agatgtggaa gtagaggatc atgcagatataatgatcttgc 1980
acatatataat ctgggactaa ctgtgataact gggcacagtg tcaattctcc taagcattgc 2040
agtacttttcaattttaaaga aaaattatgt ttcaaaacac agaagttta taaccaagag 2100
agaaagaaca atgggtgtcta caagattcca aaaggaaaaat tacactacaa gtatcatct 2160
gctacaaccc aactactggc caggcaagga aactcaactt tagaaacatg atgactggaa 2220
gtcatgttctt ctaatttgggtt gacattttgc aaacaaataaa attgtatca aaagagctct 2280
aaattttgtaa ttctttctc ctggggggatcttcaatataatgatcttgc cttaggcatttt 2340
ggtaatataat ctgataatataatgatcttgc ttcaagtttgc 2400
tttgaacttt ttaattttata taaatttattt tatatcactt acttatttca ctggggggatcttgc 2460
ctttgtgtc attgatataat attagctgtatcccttgc aacaaattgtc tctattgtca 2520
cacatggta tattttaaatg aatttctgaa ctgtgtatgttgc 2580
tgctaacat taactcatact ctgggggttcc ttcaagtttgc 2640
catagctgtc ttcatctgtt tattttataatgatcttgc 2700
ggaagatttc attttaaatgct cttcccttgc ttgaaatataatgatcttgc 2760
gtacgttgcattatatttgg ggattttatgatcttgc 2820
tacatgtgtt tttgtgttgc cgctataatgactatgttgc 2880
ttaacatgcc caattattgt tctttatgttgc attcaatgttgc 2940
taatactgtcc ccactttat atatgttgc aacttccttgc ttatacacgttgc 3000
aaacatgttt gaaaggtgaa tttctgaaatgatcttgc 3060
aaaaaaaaaaaa aaaaaaaaaaaaa 3077

<210> 17
<211> 712
<212> PRT
<213> *Homo sapiens*

<400> 17
Met Asp Thr Ser Ser Lys Glu Asn Ile Gln Leu Phe Cys Lys Thr Ser
1 5 10 15

Val Gln Pro Val Gly Arg Pro Ser Phe Lys Thr Glu Tyr Pro Ser Ser
20 25 30

Glu Glu Lys Gln Pro Cys Cys Gly Glu Leu Lys Val Phe Leu Cys Ala
 35 40 45

Leu Ser Phe Val Tyr Phe Ala Lys Ala Leu Ala Glu Gly Tyr Leu Lys
 50 55 60

Ser Thr Ile Thr Gln Ile Glu Arg Arg Phe Asp Ile Pro Ser Ser Leu
 65 70 75 80

Val Gly Val Ile Asp Gly Ser Phe Glu Ile Gly Asn Leu Leu Val Ile
 85 90 95

Thr Phe Val Ser Tyr Phe Gly Ala Lys Leu His Arg Pro Lys Ile Ile
 100 105 110

Gly Ala Gly Cys Val Ile Met Gly Val Gly Thr Leu Leu Ile Ala Met
 115 120 125

Pro Gln Phe Phe Met Glu Gln Tyr Lys Tyr Glu Arg Tyr Ser Pro Ser
 130 135 140

Ser Asn Ser Thr Leu Ser Ile Ser Pro Cys Leu Leu Glu Ser Ser Ser
 145 150 155 160

Gln Leu Pro Val Ser Val Met Glu Lys Ser Lys Ser Lys Ile Ser Asn
 165 170 175

Glu Cys Glu Val Asp Thr Ser Ser Ser Met Trp Ile Tyr Val Phe Leu
 180 185 190

Gly Asn Leu Leu Arg Gly Ile Gly Glu Thr Pro Ile Gln Pro Leu Gly
 195 200 205

Ile Ala Tyr Leu Asp Asp Phe Ala Ser Glu Asp Asn Ala Ala Phe Tyr
 210 215 220

Ile Gly Cys Val Gln Thr Val Ala Ile Ile Gly Pro Ile Phe Gly Phe
 225 230 235 240

Leu Leu Gly Ser Leu Cys Ala Lys Leu Tyr Val Asp Ile Gly Phe Val
 245 250 255

Asn Leu Asp His Ile Thr Ile Thr Pro Lys Asp Pro Gln Trp Val Gly
 260 265 270

Ala Trp Trp Leu Gly Tyr Leu Ile Ala Gly Ile Ile Ser Leu Leu Ala
 275 280 285

Ala Val Pro Phe Trp Tyr Leu Pro Lys Ser Leu Pro Arg Ser Gln Ser
 290 295 300

Arg Glu Asp Ser Asn Ser Ser Ser Glu Lys Ser Lys Phe Ile Ile Asp
 305 310 315 320

Asp His Thr Asp Tyr Gln Thr Pro Gln Gly Glu Asn Ala Lys Ile Met
 325 330 335

Glu Met Ala Arg Asp Phe Leu Pro Ser Leu Lys Asn Leu Phe Gly Asn
 340 345 350

Pro Val Tyr Phe Leu Tyr Leu Cys Thr Ser Thr Val Gln Phe Asn Ser
 355 360 365

Leu Phe Gly Met Val Thr Tyr Lys Pro Lys Tyr Ile Glu Gln Gln Tyr
 370 375 380

Gly Gln Ser Ser Ser Arg Ala Asn Phe Val Ile Gly Leu Ile Asn Ile
 385 390 395 400

Pro Ala Val Ala Leu Gly Ile Phe Ser Gly Gly Ile Val Met Lys Lys
 405 410 415

Phe Arg Ile Ser Val Cys Gly Ala Ala Lys Leu Tyr Leu Gly Ser Ser
 420 425 430

Val Phe Gly Tyr Leu Leu Phe Leu Ser Leu Phe Ala Leu Gly Cys Glu
 435 440 445

Asn Ser Asp Val Ala Gly Leu Thr Val Ser Tyr Gln Gly Thr Lys Pro
 450 455 460

Val Ser Tyr His Glu Arg Ala Leu Phe Ser Asp Cys Asn Ser Arg Cys
 465 470 475 480

Lys Cys Ser Glu Thr Lys Trp Glu Pro Met Cys Gly Glu Asn Gly Ile
 485 490 495

Thr Tyr Val Ser Ala Cys Leu Ala Gly Cys Gln Thr Ser Asn Arg Ser
 500 505 510

Gly Lys Asn Ile Ile Phe Tyr Asn Cys Thr Cys Val Gly Ile Ala Ala
 515 520 525

Ser Lys Ser Gly Asn Ser Ser Gly Ile Val Gly Arg Cys Gln Lys Asp
 530 535 540

Asn Gly Cys Pro Gln Met Phe Leu Tyr Phe Leu Val Ile Ser Val Ile
 545 550 555 560

Thr Ser Tyr Thr Leu Ser Leu Gly Ile Pro Gly Tyr Ile Leu Leu
 565 570 575

Leu Arg Cys Ile Lys Pro Gln Leu Lys Ser Phe Ala Leu Gly Ile Tyr
 580 585 590

Thr Leu Ala Ile Arg Val Leu Ala Gly Ile Pro Ala Pro Val Tyr Phe
 595 600 605

Gly Val Leu Ile Asp Thr Ser Cys Leu Lys Trp Gly Phe Lys Arg Cys
 610 615 620

Gly Ser Arg Gly Ser Cys Arg Leu Tyr Asp Ser Asn Val Phe Arg His
 625 630 635 640

Ile Tyr Leu Gly Leu Thr Val Ile Leu Gly Thr Val Ser Ile Leu Leu
645 650 655

Ser Ile Ala Val Leu Phe Ile Leu Lys Lys Asn Tyr Val Ser Lys His
660 665 670

Arg Ser Phe Ile Thr Lys Arg Glu Arg Thr Met Val Ser Thr Arg Phe
675 680 685

Gln Lys Glu Asn Tyr Thr Ser Asp His Leu Leu Gln Pro Asn Tyr
690 695 700

Trp Pro Gly Lys Glu Thr Gln Leu
705 710