Lecture 13 Support Vector Machines (SVM)

- SVM: find the widest street that separates out classes
- Goal 1: data points should be classified correctly
- Goal 2: Data points should not be in the "street"
 - o The dotted line in the middle is the decision boundary
 - O How do we find this street?
 - What is the format of the equation of this line / decision boundary
 - w1x1+w2x2+b=0
 - $w^Tx+b=0$
 - rule for classifying unknown point u

- Only need to know the middle of the street for classification
- When there are a significant amount of w's and b's : $c*w^T + c*b = 0$
- When c>1
 - you're emphasizing correct classification of training examples more than margin maximization
 - The model penalizes misclassification more heavily.
 - The optimization focuses on minimizing the classification error more than maximizing the margin.
 - This leads to a smaller margin and fewer margin violations
 - It may overfit the training data, especially if it's noisy, because it's trying hard to avoid any misclassification.
- When c=1

•

- When 0<c<1
 - The model is more tolerant of classification errors
 - A smaller c places less penalty on misclassified points
 - This can lead to better generalization on unseen data, especially when the training set is noisy or not linearly separable.
 - The model becomes more robust to outliers.
- When $C \rightarrow 0$
 - Maximize margin, very tolerant of errors → risk of underfitting

C Value	Margin	Misclassification Tolerance	Risk
C < 1	Wider	More tolerance	Underfitting
C = 1	Balanced	Moderate tolerance	Usually good balance
C > 1	Narrower	Less tolerance	Overfitting

- Picking the street
 - o Full Algorithm (Perceptron Algorithm)
 - Start with random line w1 x1 + w2 x2 + b = $0 \bullet$
 - Define:
 - • A total number of iterations (ex: 100)
 - • A learning rate a (not too big not too small)
 - • An expanding rate c (< 1 but not too close to 1)
 - Repeat number of iterations times
 - Pick a point (xi, yi) from the dataset
 - If correctly classified: do nothing
 - If incorrectly classified
 - Adjust w1 by adding (yi * a * x1), w2 by adding (yi * a * x2), and b by adding (yi * a)
 - o Expand or retract the width by c (multiply
 - o A point contributing to a street is called a support vector

• We want samples to lie on the outside of the street so that

$$\vec{w} \cdot \vec{x}_+ + b \ge 1$$

$$\vec{w} \cdot \vec{x}_- + b \le -1$$

• For an unknown u.

$$-1 < \vec{w} \cdot \vec{u} + b < 1$$

- o w is inversely proportional to the width of the street
 - we want to maximize the width

$$\max(\frac{2}{\|\vec{w}\|})$$

• What if there's no line?

- o Option 1: soft margins
 - Can allow for some points in the dataset to be misclassified

- Option 2 : change perspective
 - Find a transformation phi to make the below possible

• How to find phi?

$$\sum_{i} \alpha_{i} \langle x_{i}, x \rangle + b \ge 0 \quad \text{then } +$$

O Using this ^ formula we only need to define a Kernal function to retrieve the phi transformation

$$K(\vec{x}_i, \vec{x}_j) = \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$$

Called a Kernel function. This is often referred to as the "kernel trick".

$$\sum_{i} \alpha_{i} K(x_{i}, x) + b \ge 0 \quad \text{then } +$$

- Kernel Function
 - The inner product of a space describes how close / similar points are
 - Kernel Functions allow for specifying the closeness / similarity of points in a hypothetical transformed space
 - The hope is that with that new notion of closeness, points in the dataset are linearly separable.
 - <u>https://medium.com/@gallettilance/support-vector-machines-16241417ee6d</u>

•