

# แผนการจัดการเรียนรู้รายวิชาชุมนุม

# การวิเคราะห์ปัจจัยที่มีผลต่อการรอดชีวิตของต้นกล้าโกงกางโดยใช้ข้อมูลสภาพแวดล้อม

#### 1. บทน้ำและความเป็นมา

ป่าชายเลนเป็นระบบนิเวศที่มีบทบาทสำคัญต่อสิ่งแวดล้อม โดยทำหน้าที่เป็นแนวป้องกันการ กัดเชาะชายฝั่ง เป็นแหล่งอนุบาลสัตว์น้ำ และช่วยดูดซับก๊าซคาร์บอนไดออกไซด์ อย่างไรก็ตาม ใน ปัจจุบันป่าชายเลนหลายพื้นที่ รวมถึงบริเวณโดยรอบโรงเรียนซึ่งล้อมรอบไปด้วยพื้นที่ป่าชายเลน กำลังเผชิญกับปัญหาการเสื่อมโทรมจากหลายปัจจัย เช่น การเปลี่ยนแปลงของระดับน้ำทะเล อุณหภูมิ ที่สูงขึ้น และค่า pH ของดินและน้ำที่ไม่เหมาะสม ส่งผลให้ต้นกล้าที่ปลูกเพื่อฟื้นฟูป่าชายเลนมีอัตรา การรอดชีวิตต่ำ ปัญหาดังกล่าวชี้ให้เห็นถึงความจำเป็นในการติดตามและวิเคราะห์ปัจจัยแวดล้อมที่มี ผลต่อการเจริญเติบโตของต้นกล้าอย่างเป็นระบบ ซึ่งงานวิจัยที่เกี่ยวข้อง พบว่าปัจจัยทางอุทก พลศาสตร์ เช่น ระดับน้ำ คลื่น และกระแสน้ำ มีผลต่อการเจริญเติบโตและอัตราการรอดตายของต้น กล้าป่าชายเลน นอกจากนี้ ความเค็มของน้ำและดินยังเป็นปัจจัยสำคัญที่ส่งผลต่อการเจริญเติบโตและ การกระจายของพันธุ์ไม้ป่าชายเลน

ในยุคดิจิทัล การนำเครื่องมือเทคโนโลยีมาสนับสนุนการเรียนรู้และการอนุรักษ์สิ่งแวดล้อมเป็น แนวทางที่มีประสิทธิภาพ การเขียนโค้ดและการใช้เทคโนโลยีวิเคราะห์ข้อมูล ช่วยให้นักเรียนสามารถ เข้าใจผลกระทบของปัจจัยสิ่งแวดล้อมที่มีต่อต้นกล้าได้อย่างลึกซึ้งยิ่งขึ้น และสามารถนำความรู้นี้ไป ประยุกต์ใช้ในโครงการฟื้นฟูป่าชายเลนให้เกิดประโยชน์สูงสุด ด้วยเหตุนี้ จึงได้พัฒนา แบบจำลอง ดิจิทัล เพื่อ ติดตามการเปลี่ยนแปลงของระดับน้ำ อุณหภูมิ และค่า pH รวมถึง วิเคราะห์โอกาสรอด ชีวิตของต้นกล้า โดยใช้ โปรแกรม Python ในการประมวลผลข้อมูลจากการสำรวจภาคสนามและ นำเสนอผลลัพธ์ในรูปแบบที่เข้าใจง่าย ซึ่งจะช่วยให้สามารถวางแผนการปลูกต้นกล้าให้มีอัตราการรอด ชีวิตที่สูงขึ้น นอกจากนี้ การใช้โค้ดเพื่อสนับสนุนการศึกษาในลักษณะนี้ยังช่วยส่งเสริม STEM Education และพัฒนาทักษะการคิดวิเคราะห์ของนักเรียนให้สอดคล้องกับยุคดิจิทัล

โครงการนี้จึงเป็นการบูรณาการความรู้ด้านวิทยาศาสตร์ เทคโนโลยี และสิ่งแวดล้อมเข้าด้วยกัน โดยไม่ เพียงช่วยให้นักเรียนได้เรียนรู้แนวทางการอนุรักษ์ป่าชายเลนอย่างเป็นระบบเท่านั้น แต่ยังเป็นการ เสริมสร้างทักษะด้าน การวิเคราะห์ข้อมูล การเขียนโปรแกรม และการใช้เครื่องมือดิจิทัล เพื่อ แก้ปัญหาสิ่งแวดล้อมในชีวิตจริง

# 2. วัตถุประสงค์การเรียนรู้ (Objectives)

- 1. วิเคราะห์ปัจจัยสิ่งแวดล้อมที่มีผลต่อการรอดชีวิตของต้นกล้าป่าชายเลน
- 2. พัฒนาโค้ดสำหรับติดตามการเปลี่ยนแปลงของระดับน้ำ อุณหภูมิ และค่า pH
- 3. สร้างแบบจำลองเพื่อพยากรณ์โอกาสรอดชีวิตของต้นกล้า และให้คำแนะนำสำหรับการปลูก พืชทดแทน
- 4. ส่งเสริมการใช้เทคโนโลยีดิจิทัลในการอนุรักษ์ทรัพยากรธรรมชาติอย่างมีประสิทธิภาพ

# 3. ผลลัพธ์การเรียนรู้ (Leaning Outcome)

- 1. อธิบายบทบาทของป่าชายเลนต่อระบบนิเวศ
- 2. ระบุปัจจัยที่มีผลต่อการเจริญเติบโตของต้นโกงกาง
- 3. รวบรวมและบันทึกข้อมูลระดับน้ำ อุณหภูมิ และค่า pH
- 4. วิเคราะห์แนวโน้มของข้อมูลสิ่งแวดล้อมที่มีต่อการรอดชีวิตของต้นกล้า
- 5. ใช้ Python ในการคำนวณและวิเคราะห์ข้อมูลสิ่งแวดล้อม
- 6. ใช้เครื่องมือดิจิทัลในการวิเคราะห์และติดตามการเจริญเติบโตของต้นกล้า
- 7. ออกแบบแนวทางการใช้เทคโนโลยีเพื่อลดอัตราการตายของต้นโกงกาง
- 8. ทำงานเป็นทีมเพื่อเก็บรวบรวมข้อมูลและวิเคราะห์ผล
- 9. ใช้ข้อมูลที่ได้เพื่อเสนอแนวทางฟื้นฟูป่าชายเลนต่อชุมชน

## 4. กระบวนการจัดการเรียนรู้

จัดการเรียนรู้โดยใช้ Project-Based Learning (PBL) ในการติดตามการเจริญเติบโตของต้นโกงกาง โดย การเรียนรู้แบบ Project-Based Learning (PBL) เป็นแนวทางที่มุ่งเน้นให้ผู้เรียนได้เรียนรู้ผ่านการทำโครงงานจริง ซึ่งช่วยเสริมสร้างความเข้าใจเชิงลึกเกี่ยวกับ การติดตามการเจริญเติบโตของต้นโกงกางผ่านเครื่องมือดิจิทัล ใน โครงการนี้ ผู้เรียนจะได้ ออกแบบ ดำเนินการวิเคราะห์ และนำเสนอผลลัพธ์ ตามลำดับขั้นตอนที่ชัดเจน โดยมี ขั้นตอนดังนี้

## 1. กำหนดปัญหาและตั้งคำถาม (Problem Identification & Inquiry)

- 1.1 ครูเริ่มต้นด้วยการ อภิปรายปัญหาการเสื่อมโทรมของป่าชายเลน รอบโรงเรียน และปัจจัยที่ส่งผลต่อ อัตราการรอดชีวิตของต้นโกงกาง
  - 1.2 นักเรียนตั้งคำถามที่เกี่ยวข้อง เช่น
    - 1. ปัจจัยใดที่มีผลต่อการรอดชีวิตของต้นโกงกาง
    - 2. เราจะใช้เทคโนโลยีอะไรเพื่อช่วยติดตามต้นกล้าได้
    - 3. สามารถพยากรณ์โอกาสรอดของต้นโกงกางได้อย่างไร
- 1.3 แบ่งกลุ่มนักเรียนเพื่อทำโครงงาน โดยแต่ละกลุ่มอาจเลือกเน้นปัจจัยเฉพาะ ได้แก่ ระดับน้ำทะเล อุณหภูมิ หรือค่า pH

# 2. วางแผนและออกแบบกระบวนการเก็บข้อมูล (Planning & Experiment Design)

- 2.1 นักเรียนร่วมกันออกแบบ แผนการเก็บข้อมูลภาคสนาม โดยกำหนด ดังนี้
  - 1. สถานที่ปลูกต้นกล้าและจุดเก็บข้อมูล
  - 2. ระยะเวลาที่ใช้ในการเก็บข้อมูล (เช่น ทุกสัปดาห์เป็นเวลา 2 เดือน)
  - 3. เครื่องมือที่ใช้ (เช่น เทอร์โมมิเตอร์ วัดอุณหภูมิ pH Meter บันทึกระดับน้ำ)
- 2.2 ศึกษาการใช้ Python ในการวิเคราะห์ข้อมูล โดยครูสอนพื้นฐานการใช้ Pandas, Matplotlib และ NumPy

#### 3. การเก็บข้อมูลภาคสนาม (Data Collection)

- 3.1 นักเรียน ออกไปสำรวจพื้นที่ และทำการบันทึกข้อมูลของต้นกล้าในแต่ละจุด
- 3.2 เก็บค่าตัวแปร ได้แก่

ระดับน้ำ (เมตร)  $\rightarrow$  ใช้ไม้บรรทัดหรือเครื่องมือวัดระดับน้ำ อุณหภูมิ (°C)  $\rightarrow$  ใช้เทอร์โมมิเตอร์หรือบันทึกอุณหภูมิจากสถานีอากาศ ค่า pH  $\rightarrow$  ใช้ pH Meter

- 3.3 นักเรียนบันทึกข้อมูลใน Google Sheets หรือ Excel เพื่อใช้วิเคราะห์ใน Python
- 4. วิเคราะห์ข้อมูลด้วย Python (Data Analysis)
- 4.1 นักเรียนทำการเขียนโปรแกรม Python เพื่อทำการสิเคราะห์ข้อมูลดิบ
- 4.2 นักเรียนวิเคราะห์ข้อมูลดิบดดยใช้โปรแกรม Python โดยใช้ไลบรารี ดังนี้
  - 4.1 นำเข้าข้อมูลที่เก็บรวบรวมได้เข้าสู่ Python
  - 4.2 ใช้ Pandas วิเคราะห์แนวโน้มของระดับน้ำ อุณหภูมิ และค่า pH
  - 4.3 ใช้ Matplotlib สร้าง กราฟแสดงความสัมพันธ์ของปัจจัยต่าง ๆ กับอัตราการรอดชีวิต
  - 4.4 ใช้เงื่อนไขทางคณิตศาสตร์ ในการพยากรณ์ว่าต้นกล้าจะรอดหรือไม่ โดยอิงจากงานวิจัย

- 4.3 สรุปผลการวิเคราะห์โดยใช้ ตารางและกราฟ
- 5. สรุปและอภิปรายผล (Data Interpretation & Discussion)
- 5.1 สรุปและอภิปรายผลโดยใช้ข้อมูลที่ได้จากการวิเคราะห์ใน Python ในประเด็นดังต่อไปนี้
  - 1. ต้นกล้าเติบโตดีในเงื่อนไขใด
  - 2. ระดับน้ำและอุณหภูมิที่เหมาะสมต่อการเจริญเติบโตคืออะไร
  - 3. หากค่า pH ผิดปกติ ต้นกล้าจะได้รับผลกระทบอย่างไร
  - 4. เปรียบเทียบผลลัพธ์กับงานวิจัยก่อนหน้า เพื่อดูว่าสอดคล้องกันหรือไม่
- 6. นำเสนอผลการศึกษา (Presentation & Communication)
- 6.1 นักเรียนแต่ละกลุ่มนำเสนอผลการศึกษาในรายละเอียดดังนี้
  - 1. นักเรียนสร้าง Dashboard / Report เพื่อแสดงผลข้อมูล
  - 2. ออกแบบ สไลด์นำเสนอ และใช้ กราฟจาก Python เพื่ออธิบายข้อมูล
  - 3. นำเสนอผลลัพธ์แก่เพื่อนร่วมชั้น ครู และผู้เชี่ยวชาญด้านสิ่งแวดล้อม
  - 4. เผยแพร่ข้อมูลในรูปแบบ บทความวิทยาศาสตร์หรือ Infographic เพื่อให้ความรู้แก่ชุมชน
- 5. การประเมินผล(Assessment Strategy)
- 1.การประเมินความเข้าใจด้านวิทยาศาสตร์
  - 1. ใช้แบบทดสอบสั้น ๆ เกี่ยวกับปัจจัยที่ส่งผลต่อการรอดชีวิตของต้นโกงกาง
  - 2. ให้นักเรียนอธิบายผลกระทบของระดับน้ำ อุณหภูมิ และค่า pH ต่อการเจริญเติบโตของพืช
- 2. การประเมินความเข้าใจด้านการเขียนโปรแกรม
  - 1. ตรวจสอบว่านักเรียนสามารถ รันโค้ดและวิเคราะห์ข้อมูล ได้อย่างถูกต้อง
  - 2. ให้นักเรียนอธิบาย การทำงานของโค้ด และแต่ละฟังก์ชัน
- 3. การสะท้อนผลการเรียนรู้ (Reflection)
  - 1. ให้นักเรียน เขียนสะท้อนคิด เกี่ยวกับการใช้โค้ดในการวิเคราะห์ข้อมูล
  - 2. อภิปรายว่า การใช้เทคโนโลยีมีบทบาทอย่างไรในการอนุรักษ์สิ่งแวดล้อม

# เกณฑ์การประเมินผลการเรียนรู้

| เกณฑ์การ        | 5 (ดีเยี่ยม)       | 4 (ดีมาก)          | 3 (พอใช้)          | 2 (ต้อง            | 1 (ต่ำกว่า         |
|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| ประเมิน         |                    |                    |                    | ปรับปรุง)          | มาตรฐาน)           |
| 1. ความเข้าใจใน | สามารถอธิบาย       | อธิบายได้ถูกต้อง   | อธิบายได้ใน        | อธิบายได้เพียง     | ไม่สามารถอธิบาย    |
| แนวคิด          | ปัจจัยที่มีผลต่อ   | แต่ขาด             | ระดับพื้นฐาน แต่   | บางส่วน และยัง     | ปัจจัยที่มีผลต่อ   |
| วิทยาศาสตร์     | การรอดชีวิตของ     | รายละเอียด         | ยังขาดการ          | ไม่สามารถ          | การรอดชีวิตของ     |
|                 | ต้นโกงกางได้อย่าง  | เล็กน้อย หรือยัง   | เชื่อมโยงกับ       | เชื่อมโยงปัจจัยกับ | ต้นโกงกางได้       |
|                 | ถูกต้อง ครบถ้วน    | ไม่เชื่อมโยงกับ    | หลักการ            | ผลกระทบได้ดี       |                    |
|                 | และเชื่อมโยงกับ    | หลักการทาง         | วิทยาศาสตร์ที่     |                    |                    |
|                 | หลักการทาง         | วิทยาศาสตร์อย่าง   | ชัดเจน             |                    |                    |
| / 6             | วิทยาศาสตร์        | สมบูรณ์            |                    |                    |                    |
| 2. ความสามารถ   | ใช้โค้ดได้อย่าง    | ใช้โค้ดได้ถูกต้อง  | ใช้โค้ดได้ถูกต้อง  | ใช้โค้ดได้ใน       | ไม่สามารถใช้โค้ด   |
| ในการใช้ Python | ถูกต้องทั้งหมด     | 80-90% เข้าใจ      | 60-80% มีความ      | ระดับพื้นฐาน แต่   | ได้ หรือไม่เข้าใจ  |
| 1 9             | เข้าใจการทำงาน     | การทำงานของ        | เข้าใจใน           | ยังมีข้อผิดพลาด    | การทำงานของ        |
|                 | ของโค้ด และ        | โค้ดโดยรวม แต่ยัง  | ระดับพื้นฐาน แต่   | มาก หรือขาด        | โค้ดเลย            |
|                 | สามารถอธิบายได้    | มีข้อผิดพลาด       | ยังต้องปรับปรุง    | ความเข้าใจใน       | lana!              |
| 90              |                    | เล็กน้อย           | การอธิบาย          | โครงสร้างโค้ด      |                    |
| 3. การวิเคราะห์ | สามารถวิเคราะห์    | วิเคราะห์ข้อมูลได้ | วิเคราะห์ข้อมูลได้ | วิเคราะห์ข้อมูลได้ | ไม่สามารถ          |
| และแปลผลข้อมูล  | ข้อมูลจากกราฟได้   | ดี แต่ยังมี        | ในระดับพื้นฐาน     | น้อย ยังมี         | วิเคราะห์ข้อมูล    |
| \               | อย่างถูกต้อง และ   | ข้อผิดพลาด         | สามารถอ่านกราฟ     | ข้อผิดพลาดมาก      | จากกราฟได้ หรือ    |
| 1 6-            | สามารถอธิบาย       | เล็กน้อยในการ      | ได้ แต่ยังมี       | และยังไม่สามารถ    | แปลผลได้ผิด        |
| \ 43'           | ผลลัพธ์ที่ได้จาก   | เชื่อมโยงผลลัพธ์   | ข้อผิดพลาดในการ    | เชื่อมโยงผลลัพธ์   | ทั้งหมด            |
|                 | การรันโค้ดได้อย่าง |                    | แปลผล              | กับปัจจัยได้ดี     |                    |
|                 | ชัดเจน             |                    | PR.HDD.            |                    |                    |
| 4. ความคิด      | มีข้อเสนอแนะที่ดี  | มีข้อเสนอแนะที่ดี  | มีข้อเสนอแนะใน     | มีข้อเสนอแนะ       | ไม่มีข้อเสนอแนะ    |
| สร้างสรรค์และ   | สามารถเชื่อมโยง    | แต่ยังขาด          | ระดับพื้นฐาน แต่   | เพียงเล็กน้อย      | หรือไม่มีการ       |
| ข้อเสนอแนะ      | ผลลัพธ์กับแนว      | รายละเอียดใน       | ยังขาดการ          | หรือยังขาด         | เชื่อมโยงกับข้อมูล |
|                 | ทางการปรับปรุง     | บางจุด             | เชื่อมโยงกับผล     | หลักฐานสนับสนุน    | ที่วิเคราะห์ได้    |
|                 | การปลูกต้น         |                    | การวิเคราะห์       | ที่ชัดเจน          |                    |
|                 | โกงกางอย่าง        |                    |                    |                    |                    |
|                 | ชัดเจน             |                    |                    |                    |                    |
| 5. การนำเสนอ    | นำเสนอได้อย่าง     | นำเสนอได้ดี แต่    | นำเสนอได้ใน        | นำเสนอได้ไม่ดีนัก  | นำเสนอไม่ชัดเจน    |
| และการทำงาน     | ชัดเจน เข้าใจง่าย  | ขาดความกระชับ      | ระดับพื้นฐาน ขาด   | ยังขาดการใช้       | ขาดข้อมูล          |
| เป็นทีม         | มีการใช้กราฟและ    | หรือยังไม่ชัดเจน   | รายละเอียด         | กราฟหรือข้อมูล     | สนับสนุน และไม่    |

| เกณฑ์การ | 5 (ดีเยี่ยม)      | 4 (ดีมาก)         | 3 (พอใช้)       | 2 (ต้อง      | 1 (ต่ำกว่า   |
|----------|-------------------|-------------------|-----------------|--------------|--------------|
| ประเมิน  |                   |                   |                 | ปรับปรุง)    | มาตรฐาน)     |
|          | ข้อมูลสนับสนุนที่ | ในบางจุด สมาชิก   | บางส่วน หรือยัง | ในการอธิบาย  | มีการทำงาน   |
|          | ดี สมาชิกในทีมมี  | ในทีมมีส่วนร่วมดี | ขาดการใช้ข้อมูล | อย่างเพียงพอ | ร่วมกันที่มี |
|          | ส่วนร่วมอย่างเท่า |                   | สนับสนุน        |              | ประสิทธิภาพ  |
|          | เทียมกัน          | OJ.               |                 |              |              |

