Smooth manifolds

Recall: (1) A topological space X is called Hoursdorff space, if $\forall x,y \in X \text{ w/ } x \neq y$: $\exists \text{ nbhs } U, V \text{ of } x,y : U \cap V = \emptyset$

(2) For a hopdayy I on X we all MET Jams of I, if YUET: I {U;} EB: U=UU;

Det: A Honordooff space with countable basis is called n-dimensional topological manifold M", if it is locally homeomorphic to IR", i.e. VpeM: I alsh U of p, U's IR" open and homeo h: U -> U' (alled "chast").

For charts has: Uas -> Uas we define the tromertion map by has:= hoh?: ha(UanUp) -> ha(UanUp), i.e. the following diagram communks IR" = Ua = ha(UanUp) has ha(UanUp) = Uas = IR"

Manually = Institute of the countable basis is called n-dimensional topological topological manifold M", i.e. Us but following diagram communks IR" = Ua = ha(UanUp) has has(UanUp) = Ua = IR"

Manually = Institute of the countable basis is called n-dimensional topological manifold M", if it is locally homeomorphic to IR",

I shall a label to the local manifold M", if it is locally homeomorphic to IR",

I shall a label to the local manifold M", if it is locally homeomorphic to IR",

I shall a label to IR shall a label to IR",

I shall a label to IR",

I shall a label to IR",

I shall a label to IR shall a label to IR shall a label to IR",

I shall a label to IR shal

A set of charles . (Miller (lha, U2)) aren is called allow, it went = M.

An orlars $\{(h_{\alpha}, U_{\alpha})\}_{\alpha \in \Lambda}$ is colled smooth, if all its transition maps has (for $\alpha, \beta \in \Lambda$) are smooth.

For a smooth allow it we call

D(id) = [all chark, s.t. transition map with chart

of it is smooth }

a differentiable structure (to 16) (note that \$5(4) is then a smooth maximal alas containing 14).

A topological manifold with a differentiable structure

is couled smooth.

Example: $RP^n := R^{nrs} \{0\}/\kappa \times \lambda \kappa$ is a smooth manifold

Hausdorll and combible basis follow from the definition of quotient typology

(oracider quotient projection T_i : $R^{nrs} \{0\} \rightarrow RP^n$ $\kappa \mapsto [n]$ $W_k := \{ [\kappa_i : : \kappa_n] \in RP^n / \kappa_k \neq 0 \}$ open $h_k : U_k \rightarrow R^n$ $[\kappa_0 : : \kappa_n] \mapsto (\kappa_0 \times \kappa_k \times \kappa_k$

Def: A continuous map $f: M \to N$ is called smooth in $p \in M$,

if \exists charks $h: U \to U'$, $k: V \to V'$ s.t. $k \circ f \circ h^{-1}$ smooth in $h(p) \in U'$ p : f(p)is called smooth, if it is smooth in all $p \in M$.

If f is hijective with f and f^{-1} smooth, then f is called diffeomorphism.

Tangent space

For submanifolds of enclidean spaces the tangent space is defined canonically as a vector subspace of the embedding space.

Now for abstract manifolds we need to define it by using solely inner properties of the manifold itself:

Def: $U(p) := \{apen \ nbhs \ of \ p\}$ $C^{\infty}(U(p), N) := U C^{\infty}(U, N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U, N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow N \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow U \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow U \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow U \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow U \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow U \ smooth / U \ smooth / U \in U(p)\}$ $C^{\infty}(U(p), N) = U C^{\infty}(U(p), N) = \{f: P_1 \rightarrow U \ smo$

A germ $(M,p) \xrightarrow{\{f\}} (N,q)$ gives rise to R-algebra homomorphism $f^*: \mathcal{E}(q) \longrightarrow \mathcal{E}(p)$, $[\Psi] \mapsto [\Psi] \circ [f] := [\Psi \circ f]$, which is functorial (i.e. $id^* = id$ and $(g \circ f)^* = f^* \circ g^*$). Thus, for a chart h around $p \in \mathbb{N}^m$ the germ $[h]: (M,p) \longrightarrow (R^n,0)$ defines isomorphism $h^*: \mathcal{E}_n := \mathcal{E}(IR^n,0) \longrightarrow \mathcal{E}(p)$.

Def: A derivation of E(p) is a linear map $X: E(p) \rightarrow \mathbb{R}$, s.t. $X([\alpha] \cdot [\beta]) = X([\alpha]) \cdot [\beta](p) + [\alpha](p) \cdot X([\beta])$.

Recall: for WER" and $\kappa \in U \subseteq \mathbb{R}^n$ three is a linear functional $\frac{\partial}{\partial v}(\kappa)$: $C^{eq}(u) \longrightarrow \mathbb{R}$ $f \longmapsto \frac{\partial f}{\partial v}(\kappa)$

Det: TpM:= { derivations of E(p)} is called tought space of the manifold M in p&M. This is a IR-vector space.

Rumark: (1)
$$X(n) = X(n) + X(n)$$
, i.e. $X(n) = 0 \implies X(c) = 0$

$$|2| df_p(x)([e]) = x \circ f'([e])$$

$$= x \circ e \circ f$$

$$\implies d(g \circ f)_p = dg_{f(p)} \circ df_p$$

Proposition: The partial decivatives $\frac{2}{2\kappa_{\rm h}}$: $E_{\rm h} \rightarrow iR$, [4] $i \rightarrow \frac{24}{2\kappa_{\rm h}}(0)$ from a basis of $t_0 R^{-1}$ (vector space of decivations of $E_{\rm h}$).

Proof: (n) Linearly independent:

Suppore
$$\tilde{\Sigma} a_k \frac{\partial}{\partial \kappa_k} = 0$$
.

 $\tilde{E}_h \ni \kappa_k : \mathbb{R}^n \rightarrow \mathbb{R}$, $(v_i)_{k\rightarrow 0} v_k$ k-th coordinate function

 $\Rightarrow \frac{\partial (\kappa_k)}{\partial \kappa_k} = \frac{\partial \kappa_k}{\partial \kappa_k} (0) = \delta_{kk}$
 $\Rightarrow a_k = \tilde{\Sigma} a_k \frac{\partial}{\partial \kappa_k} [\kappa_k] = 0 \quad \forall k_0 \in \{1, ..., n\}$

(2)
$$T_0 R^n = \operatorname{span} \left\{ \frac{\partial}{\partial \kappa_n}, \dots, \frac{\partial}{\partial \kappa_n} \right\}$$
:

We show: $X = \sum_{k=1}^n X([\kappa_k]) \frac{\partial}{\partial \kappa_k}$

It is $Y := X - \sum_{k=n}^n X([\kappa_k]) \frac{\partial}{\partial \kappa_k}$ a derivation with $Y([\kappa_k]) = 0$ Vh

Lemma: $\forall R^n \neq R \text{ diff.} : \exists R^n \neq R \text{ diff.} (i=1,...,n)$:

$$f(n) = f(0) + \sum_{k=1}^{n} n_k f_k(n)$$

$$f(n) = f(0) + \sum_{k=1}^{n} n_k f_k(n)$$

Now
$$[f] \in \mathcal{E}_n$$
 $\xrightarrow{leminor}$ $[f] = [f](0) + \sum_{k=1}^{n} [x_k] \cdot [f_k]$

$$\Rightarrow Y([f]) = Y(f(0)) + \sum_{k=1}^{n} Y([x_k]) \cdot f_k(0)$$

$$= 0$$

Note: dim (TpM") = n

Proposition Suppose we have local coordinates (N,p) [f] (M,q)

(x_1,...,x_n) around pe Nⁿ

(y_1,...,y_m) around q:=f(p) e Mⁿ

(R_io) \(\frac{1}{\psi_0}\) \(\frac{1}{\psi_0}\) (R_io)

then the differential of a gram [f] (N,p) \(\simes\) (M,q)

(concerning the bases of derivations of TpN resp. TqM) is:

Dfo: Rⁿ \(\simes\) R^m

with Dfo:=\(\frac{\partial f_i}{\partial x_i}\)(o) Jacobi matrix

Proof: $[\Psi] \in \mathcal{E}_m \Rightarrow df_o(\frac{\partial}{\partial x_i})([\Psi]) = \frac{\partial}{\partial x_i}([\Psi] \circ [f])$ $= \frac{m}{j} \frac{\partial \Psi}{\partial \gamma_j}(0) \cdot \frac{\partial f_j}{\partial x_i}(0)$ $\Rightarrow df_o(\frac{\partial}{\partial x_i}) = \frac{m}{j} \frac{\partial f_j}{\partial x_i}(0) \frac{\partial}{\partial \gamma_j}$

Alternative definition of tangent space (geometrical approach):

The Wp:= { diff. genus iv: (IR,D) -> (N,P)}

vir is :=> V f \(\varepsilon \varepsilon(p): \frac{d}{dt} \) fow (0) = \frac{d}{dt} \) fov (0)

Then the (geometrical) tangent space of N in p\(\varepsilon N \) is (TpN) geom:= \wedge \varphi /\circ\).

We define the derivation $X_{W}(\bar{f}) := \frac{d}{d\bar{f}} \bar{f} \circ \bar{w}(o)$ and the mapping $T : (T_{p}N)_{geom} \longrightarrow T_{p}N$ $[\bar{w}] \longrightarrow X_{W}$

Then T is an isomorphism:

"I injective: $X_{w}(\bar{f}) = X_{v}(\bar{f}) \implies \frac{d}{d\bar{f}} = \int_{\bar{u}} \bar{f} = \bar{u}(\bar{u})$ "I unjective: $w(\bar{f}) = t \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} \implies X_{w} = \sum_{k=1}^{\infty} a_{k} \frac{\partial}{\partial x_{k}}$.

then the definitions are equivalent;

$$X_{fow}(\bar{q}) = \frac{d}{dt} \bar{q} \bar{f} \bar{w}(0) = X_w(\bar{q}f) = df_p(X_w)(\bar{q})$$

$$\Rightarrow (T_pN)_{geom} \xrightarrow{df_p} (T_qM)_{geom} \quad comundes$$

$$T \int \int T$$

$$T_pN \xrightarrow{df_p} T_qM$$