Titanic Dataset

survived	pclass	sex	age	sibsp	parch	fare	cabin	embarked
0	3	male	22	1	0	7.25		S
1	1	female	38	1	0	71.2833	C85	С
1	3	female	26	0	0	7.925		S
1	1	female	35	1	0	53.1	C123	S
0	3	male	35	0	0	8.05		S
0	3	male		0	0	8.4583		Q
0	1	male	54	0	0	51.8625	E46	S
0	3	male	2	3	1	21.075		S
1	3	female	27	0	2	11.1333		S
1	2	female	14	1	0	30.0708		С
1	3	female	4	1	1	16.7	G6	S
1	1	female	58	0	0	26.55	C103	S
0	3	male	20	0	0	8.05		S

A very naïve classifier

pclass	sex	age	sibsp	parch	fare	cabin	embarked
1	female	35	1	0	53.1	C123	S

Does the new data point x^* exactly match a previous point x_i ?

If so, assign it to the same class as x_i

Otherwise, just guess.

This is the "rote" classifier

A minor improvement

pclass	sex	age	sibsp	parch	fare	cabin	embarked
1	female	35	1	0	53.1	C123	S

Does the new data point x^* match a set pf previous points x_i on some specific attribute?

If so, take a vote to determine class.

Example: If most females survived, then assume every female survives

But there are lots of possible rules like this. And an attribute can have more than two values.

If most people under 4 years old survive, then assume everyone under 4 survives If most people with 1 sibling survive, then assume everyone with 1 sibling survives

How do we choose?

IF sex='female' THEN survive=yes ELSE IF sex='male' THEN survive = no

confusion matrix

```
no yes <-- classified as
468 109 | no
81 233 | yes
```

(468 + 233) / (468+109+81+233) = 79% correct (and 21% incorrect)

Not bad!

IF pclass='1' THEN survive=yes ELSE IF pclass='2' THEN survive=yes ELSE IF pclass='3' THEN survive=no

confusion matrix

```
no yes <-- classified as
372 119 | no
177 223 | yes
```

(372 + 223) / (372+119+223+177) = 67% correct (and 33% incorrect)

a little worse

1-Rule

For each attribute A:

For each value V of that attribute, create a rule:

- 1. count how often each class appears
- 2. find the most frequent class, c
- 3. make a rule "if A=V then Class=c"

Calculate the error rate of this rule

Pick the attribute whose rules produce the lowest error rate