第6讲:决策树

Lecture 6: Decision Tree

张永飞 2023年10月17日

引例

● 引例1: 天气是否适合打网球?

P38 机器学习, T.M. Mitchell著,曾华军译

引例

● 引例2: 西瓜分类

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.46	是
2	乌黑	-	沉闷	-	凹陷	硬滑	0.774	0.376	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
7	乌黑	稍蜷	浊响	稍糊	-	软粘	0.481	0.149	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
11	浅白	-	清脆	模糊	平坦	硬滑	0.245	-	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
15	乌黑	稍蜷	-	清晰	稍凹	软粘	0.36	0.37	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

引例

● 问题举例

- ■根据症状或检查结果分类患者
- ■根据起因或现象分类设备故障
- •••

●适用问题的特征

- ■实例由"属性-值"对表示
- ■属性可以是连续值或离散值
- ■具有离散的输出值
- ■训练数据可以包含缺少属性值的实例

● 分类问题

■核心任务是把样例分类到各可能的离散值对应的类别

决策树算法

- 基本思想:采用自顶向下的递归方法,(以信息熵为度量) 构造一棵(熵值下降最快的)树,(到叶子节点处的熵值为 零)此时每个叶节点中的实例都属于同一类
- 决策树是一种树型结构,由结点和有向边组成
 - 节点
 - 内部结点表示一个属性或特征
 - 叶结点代表一种类别
 - 有向边/分支
 - 分支代表一个测试输出
- 可看成一个if-then的规则集合
 - 将特征空间划分为不相交的区域(region)

(Outlook = Overcast)

 $(Outlook = Rain \land Wind = Weak)$

决策树算法

- 决策树分类: 分为两步
 - 第1步-决策树生成/学习、训练:利用训练集建立(并精化)一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程

■ 第2步-分类/测试:利用生成的决策树对输入数据进行 分类。对输入的记录,从根结点依次测试记录的属性 值,直到到达某个叶结点,从而找到该记录所在的类

决策树生成/学习算法

- step 1:选取一个属性作为决策树的根结点,然后就这个属性所有的取值创建树的分支
- step 2: 用这棵树来对训练数据集进行分类:
 - 如果一个叶结点的所有实例都属于同一类,则以 该类为标记标识此叶结点
 - 如果所有的叶结点都有类标记,则算法终止
- step 3: 否则,选取一个从该结点到根路径中没有出现过的属性为标记标识该结点,然后就这个属性所有的取值继续创建树的分支;重复算法步骤step 2

主要算法

● 建立决策树的关键,即在当前状态下选择哪个属性作为 分类依据

示例-高考报志愿:好学校?好专业?好位置?...

找对象:年龄?学历?兴趣爱好?身高? ...

- 目标:每个分支节点的样本尽可能属于同一类别,即节点的"纯度"(purity)越来越高;最具区分性的属性!
- 根据不同目标函数,建立决策树主要有以下三种算法

■ ID3: 信息增益

■ C4.5: 信息增益率

■ CART: 基尼指数

- ●ID3 (Iterative Dichotomiser 3)算法
 - ID3算法是一种最经典的决策树学习算法,由Ross Quinlan于1975年提出
 - 基本思想:以信息熵为度量,用于决策树节点的属性选择,每次优先选取信息增益最大的属性,亦即能使熵值变为最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0。此时,每个叶子节点对应的实例集中的实例属于同一类
 - 熵值下降 → 无序变有序

信息论基础

- 信息论与概率统计中,熵表示随机变量不确定性的大小,是 度量样本集合纯度最常用的一种指标
- 信息量: 具有确定概率事件的信息的定量度量
 - · 定义: $I(x) = -\log_2 p(x)$ 其中 p(x) 为事件x发生的概率
- 信息熵: 事件集合的信息量的平均值
 - \not **EX**: $H(x) = \sum_{i} h(x_i) = \sum_{i} p(x_i) I(x_i) = -\sum_{i} p(x_i) \log_2 p(x_i)$
 - · 若 X 为连续随机变量,则概率分布变成概率密度函数, 求和符号变成积分符号即可

信息论基础

- 信息熵
 - 熵定义了一个函数(概率密度函数pdf)到一个值(信息熵) 的映射 $p(x) \rightarrow H$ (函数→数值)
 - 熵是随机变量不确定性的度量:
 - 不确定性越大,熵值越大
 - 若随机变量退化成定值,熵为0
 - 示例: 明天晴天? 明天下雪?
 - 均匀分布是"最不确定"的分布

● 经验(信息)熵

● 假设当前样本集合D中第c (c=1,2,...,C) 类样本所占比例为 p_c (c=1,2,...,C) ,则D的经验信息熵(简称经验熵)定义为

$$\begin{split} H(D) &= -\sum_{c=1}^{C} p_c \log_2 p_c \\ &= -\sum_{c=1}^{C} \frac{\left|D_c\right|}{\left|D\right|} \log_2 \frac{\left|D_c\right|}{\left|D\right|} \end{split}$$

● H(D)的值越小,则D的纯度越高

- 条件熵 (conditional entropy)
 - 对随机变量(X, Y), 联合分布为: $p(X = x_i, Y = y_i) = p_{ij}$
 - 条件熵 H(Y|X) 表示在已知随机变量X的条件下,随机变量Y的不确定性:

$$H(Y | X) = -\sum_{i=1}^{n} p_i H(Y | X = x_i)$$

■ 条件熵H(Y|X)相当于联合熵H(X,Y)减去单独的熵H(X),即

$$H(Y \mid X) = H(X,Y) - H(X)$$

● 条件熵-推导

$$H(Y | X) = H(X,Y) - H(X)$$

$$= -\sum_{x,y} p(x,y) \log_2 p(x,y) + \sum_x p(x) \log_2 p(x)$$

$$= -\sum_{x,y} p(x,y) \log_2 p(x,y) + \sum_y (\sum_x p(x,y)) \log_2 p(x)$$

$$= -\sum_{x,y} p(x,y) \log_2 p(x,y) + \sum_{x,y} p(x,y) \log_2 p(x)$$

$$= -\sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)}$$

$$= -\sum_x p(x,y) \log_2 p(y | x)$$

$$= -\sum_x p(x) \sum_y p(y | x) \log_2 p(y | x)$$

$$= -\sum_x p(x) \sum_y p(y | x) \log_2 p(y | x)$$

$$= -\sum_x p(x) \sum_y p(y | x) \log_2 p(y | x)$$

● 经验条件熵

● 假设当前样本集合D共有C类,每一类有 D_c 个样本,属性a ($a \in A$)有不同的取值 $\{a_1, a_2, ..., a_N\}$,每一类中属性为i 的样本数为 D_c ⁿ,则D的经验条件熵定义为

$$H(D \mid a) = -\sum_{n,c} p(D_c, a_n) \log_2 p(D_c \mid a_n)$$

$$= -\sum_{n=1}^{N} \frac{|D^n|}{|D|} \sum_{c=1}^{C} \frac{|D_c^n|}{|D^n|} \log_2 \frac{|D_c^n|}{|D^n|}$$

$$\sum_{n=1}^{N} |D^n|$$

 $=\sum_{n=1}^N \frac{\left|D^n\right|}{\left|D\right|} H(D^n)$

● 即特征a的信息对样本D的信息的不确定性减少的程度

- 信息增益 (information gain):
 - 特征 a 对训练数据集 D 的信息增益 G(D,a) ,定义为集合D 的经验熵 H(D) 与特征 a 给定条件下 D 的经验条件熵 $H(D \mid a)$ 之差,即

$$G(D, a) = H(D) - H(D | a)$$

= $H(D) - \sum_{n=1}^{N} \frac{|D^{n}|}{|D|} H(D^{n})$

■ ID3算法即是以此信息增益为准则,对每次递归的节点 属性进行选择的

● 决策树的生成算法:

 $输入: 训练数据集D, 特征集A, 阈值\varepsilon$

输出: 决策树T

- (1) 若D中所有实例属于同一类 C_k ,则T为单结点树,并将类 C_k 作为该结点的类标记,返回T;
- (2) 若 $A=\emptyset$,则T为单结点树,并将D中实例数最大的类 C_k 作为该结点类标记,返回T;
 - (3) 否则,计算A中各特征对D的信息增益,选择信息增益最大的特征 A_g
- (4) 如果 A_s 的信息增益小于阈值 ε ,则置T为单结点树,并将D中样本数最大的类 C_k 作为该结点的类标记,返回T
- (5) 否则,对 A_g 的每一个可能值 a_i ,依 $A_g = a_i$,奖D分割为若干非空子集 D_i ,将 D_i 中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T
 - (6) 对第i个子结点,以 D_i 为训练集,以A-{ A_g }为特征集,递归的调用第(1) ~
 - (5) 步,得到子树 T_i ,返回 T_i 。

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	

● 计算信息熵-以属性色泽为例

$$H(D) = -\sum_{c=1}^{C} p_c \log_2 p_c = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

编号	色泽	好瓜	
1	青绿	是	$H(D^{\dagger \sharp \sharp}) = \begin{pmatrix} 3 & 3 & 3 & 3 \\ -1 & -1 & 0 \end{pmatrix} = 100$
2	乌黑	是	$H(D^{\text{\tiny \#}}) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.0$
3	乌黑	是	$(6^{-182} 6^{-182} 6)$
4	青绿	是	
5	浅白	是	
6	青绿	是	
7	乌黑	是	$H(D^{2}) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.9$
8	乌黑	是	$H(D^{(3)}) = - -\log_2 - + -\log_2 - = 0.9$
9	乌黑	否	(6.526.6.26)
10	青绿	否	
11	浅白	否	
12	浅白	否	$\begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$
13	青绿	否	$H(D^{\text{left}}) = -\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.7$
14	浅白	否	$H(D) = - -\log_2 - + -\log_2 - =0.7$
15	乌黑	否	(5 5 5 5)
16	浅白	否	
17	青绿	否	

■参照教材《机器学习》-周志华P75-77示例

● 计算信息增益-以属性色泽为例

$$G(D, 色泽) = H(D) - \sum_{n=1}^{3} \frac{|D^{n}|}{|D|} H(D^{n})$$

$$= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right)$$

$$= 0.109$$

■
$$G(D,$$
 色泽 $) = 0.109$

■
$$G(D, 脐部) = 0.289$$

$$G(D, 根蒂) = 0.143$$

$$G(D, 纹理) = 0.381$$

$$G(D, 触感) = 0.006$$

● 基于属性"纹理"对根节点进行划分

- 继续进行划分-以"纹理=清晰"分支为例
 - ■"纹理=清晰"分支:

样本 {1,2,3,4,5,6,8,10,15}

- ■计算信息增益
 - $G(D^{清晰}, 色泽) = 0.043$
 - $G(D^{清晰}, 敲声) = 0.331$
 - $G(D^{清晰}$,触感) = 0.458

 $G(D^{清晰}, 根蒂) = 0.458$ $G(D^{清晰}, 脐部) = 0.458$

算法特点

- 最大优点是,它可以自学习: 在学习的过程中,不需要使用者了解过多背景知识,只需要对训练实例进行较好的标注,就能够进行学习
- 决策树的分类模型是树状结构,简单直观,比较符合人类的理解方式
- 可将决策树中到达每个叶节点的路径转换为IF— THEN形式的分类规则,这种形式更有利于理解
- 从一类无序、无规则的事物(概念)中推理出决策 树表示的分类规则
- 显然,属于有监督学习

ID3算法的问题

- 信息增益偏好取值多的属性(分散,极限趋近于均匀分布)
 - 属性筛选度量标准
- 可能会受噪声或小样本影响,易出现过拟合问题
 - 剪枝处理
- 无法处理连续值的属性
 - 连续值处理
- 无法处理属性值不完整的训练数据
 - 缺失值处理
- 无法处理不同代价的属性
 - 不同代价属性的处理
- 针对这些问题的改进,ID3被扩展成C4.5(同时处理前4个问题)等算法

属性筛选度量标准

● 信息增益的问题:

$$G(D, a) = H(D) - \sum_{n=1}^{N} \frac{|D^n|}{|D|} H(D^n)$$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

- 信息增益准则对可取值数目 N 较多的属性有所偏好
- 取值更多的属性更容易使得数据更"纯",其信息增益 更大,决策树会首先挑选这个属性作为树的顶/节点
- 以序号为划分属性,信息增益最大!
- 结果训练出来的形状是一棵庞大且深度很浅的树,这样 的划分是极为不合理的

属性筛选度量标准

● 増益率 (gain ratio) :

$$G_{ratio}(D,a) = \frac{G(D,a)}{H(a)}$$

其中

$$H(a) = -\sum_{n=1}^{N} \frac{|D_n|}{|D|} \log_2 \frac{|D_n|}{|D|}$$

称为属性a的固有值

- N 越大, H(a) 通常也越大; 因此,采用增益率,可缓解信息增益准则对可取值数目较多的属性的偏好
- C4.5算法[Quinlan 1993]就基于信息增益(初选)和增益率 (精选)替代了ID3 算法的信息增益

属性筛选度量标准

● 基尼指数 (Gini index):

$$Gini(D) = \sum_{c=1}^{C} \sum_{c' \neq c} p_c p_{c'} = 1 - \sum_{c=1}^{C} p_c^2 = 1 - \sum_{c=1}^{C} \left(\frac{|D_c|}{|D|} \right)^2$$

- 直观反映了从数据集中随机抽取两个样本,其类别不一 致的概率;因此,Gini(D)越小,则数据集D的纯度越高
- 属性A的基尼指数: $Gini(D,a) = \sum_{n=1}^{N} \frac{|D^n|}{|D|} Gini(D^n)$
- 最优属性选择: $a^* = \arg \min_{a \in A} Gini(D, a)$
- CART算法(Breman 1984)就采用基尼指数替代了ID3 算法的信息增益

剪枝处理 (Pruning)

● 问题-过拟合

●可能原因

- ■训练数据有噪声,对训练数据拟合的同时也对噪音进行 拟合,影响了分类效果
- ■叶节点样本太少,易出现耦合的规律性,使一些属性恰 巧可以很好地分类,但却与 实际的目标函数并无关系

剪枝处理 (Pruning)

- 解决办法
 - ■剪枝是决策树学习算法中对付"过拟合"的主要手段
- ●基本策略
 - ■**预剪枝策略**(pre-pruning): 决策树生成过程中,对 每个节点在划分前进行估计,若划分不能带来决策树 泛化性能提升,则停止划分,并将该节点设为叶节点
 - ■后剪枝策略(post-pruning): 先利用训练集生成决策 树,自底向上对非叶节点进行考察,若将该叶节点对 应子树替换为叶节点能带来泛化性能提升,则将该子 树替换为叶节点

剪枝处理 (Pruning)

,	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
训	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
练	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
样	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
什	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
本	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
	编号	 色泽	 根蒂	 敲声	纹理	 脐部	 触感	
测	4	青绿	蜷缩	 沉闷	 清晰	凹陷		 是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
试	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
样	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
17	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
本	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	

- 第一步:评估节点1
 - ■属性选择:基于信息增益准则,选择属性"脐部"
 - ■不划分:
 - ●标记为训练样例数最多的类别,如"好瓜"
 - ●泛化性能: {4,5,8}被正确分类,

3/7= 42.9%

■划 分:

●节点2: 稍凹{6,7,15,17}

"好瓜"

●节点3: 平坦{10,16}

"坏瓜"

●节点4: 凹陷{1,2,3,14}

"好瓜"

- ●泛化性能: {4,5,8,11,12}被正确分类, 5/7=71.4%
- ■评估结果/预剪枝决策: 划分

- 第二步: 评估节点2: 训练样本{6,7,15,17}
 - ■属性选择:基于信息增益准则,选择属性"根蒂"
 - ■**不划分:** {4,5,8,11,12}被正确分类 **5/7=71.4%**
 - 划 分: {4,5,8,11,12}被正确分类 5/7=71.4%
 - ■评估结果/预剪枝决策: 不划分
- 第三步: 评估节点4: 训练样本{1, 2, 3, 14}
 - ■属性选择:基于信息增益准则,选择属性"色泽"
 - ■**不划分:** {4,5,8,11,12}被正确分类 **5/7=71.4%**
 - 划 分: {4,5,8,11,12}被正确分类 4/7= 57.1%
 - ■评估结果/预剪枝决策: 不划分

● 最终生成的决策树

测试集精度

"脐部=?" 划分前:71.4%

划分后: 57.1%

预剪枝决策: 不划分

测试集精度

"色泽=?" 划分前:71.4%

划分后: 71.4%

预剪枝决策: 不划分

预剪枝算法

●结论

■优势: 预剪枝"剪掉了"很多没必要展开的分支,降低了过拟合的风险,并且显著减少了决策树的训练时间开销和测试时间开销

■ **劣势**:有些分支的当前划分有可能不能提高甚至降低 泛化性能,但后续划分有可能提高泛化性能;预剪枝 禁止这些后续分支的展开,可能会导致欠拟合

- 第一步: 评估节点6
 - ■剪枝前:
 - ●属性为"纹理"; 样本为{7,15}
 - ●泛化性能: {4,11,12}被正确分类,

3/7 = 42.9%

凹陷

{1}

{2、

{14}

{10,16} 平坦

 $\frac{6}{6}$, 7, 15

- ■剪枝后:
 - ●把节点6替换为叶节点,

"好/坏瓜"

●泛化性能 {4, 8/9,11,12}被正确分类, 4/7= 57.1%

6、7、15、17^{稍凹}

{15}

根蒂=?

{17}

■评估结果/后剪枝决策: 剪枝

| Right | Rig

- 第二步:评估节点5
 - ■剪枝前:
 - ●属性为"色泽", 样本{6,7,15}
 - ●泛化性能:同第一步

4/7= **57.1%**

"好瓜"

- ■剪枝后:
 - ●把节点5替换为叶节点,

●泛化性能: {4,8,11,12}被正确分类, 4/7=57.1%

{15}

■评估结果/后剪枝决策: 不剪枝

- 第三步: 评估节点4
 - ■剪枝前:
 - ●属性为"色泽", 样本{1,2,3,14}
 - ●泛化性能:同上一步

4/7= **57.1%**

凹陷

{1}

好瓜

{10,16} 中坦

 $\frac{1}{6}$, 7, 15

- ■剪枝后:
 - ●把节点4替换为叶节点,

"好瓜"

●泛化性能: {4, 5,8,11,12}被正确分类, 5/7= 71.4%

6、7、15、17^{稍凹}

{15}

根蒂=?

{17}

■评估结果/后剪枝决策: 剪枝

| Richard | Fig. | Windows | Fig. | Win

- 第四步:评估节点2
 - ■剪枝前:
 - ●属性为"根蒂", 样本{6,7,15,17}
 - ●泛化性能:同上一步

5/7=71.4%

- ■剪枝后:
 - ●把节点2替换为叶节点,

"好/坏瓜"

●泛化性能: {4,5,8/9,11,12}被正确分类, 5/7= 71.4%

{15}

■评估结果/后剪枝决策: 不剪枝

- 第五步:评估节点1
 - ■剪枝前:
 - ●泛化性能:同上一步
 - ■剪枝后:
 - ●把节点1替换为叶节点
 - ●泛化性能: {4,5,8,11,12}被正确分类, 5/7=71.4%

■评估结果/后剪枝决策: 不剪枝

5/7=71.4%

后剪枝决策:剪枝

● 结论

■ **优势**:测试了所有分支,比预剪枝决策树保留了更多分支,降低了欠拟合的风险,泛化性能一般优于预剪枝决策树

■ **劣势**: 后剪枝过程在生成完全决策树后在进行,且要自底向上对所有非叶节点逐一评估; 因此,决策树的训练时间开销要高于未剪枝决策树和预剪枝决策树

连续值处理

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.46	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
 8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.36	0.37	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

连续值处理

- 基本思想:采用二分法(bi-partition)进行离散化
 - 给定样本集 D 和连续属性 $a(a \in A)$,假定 $a \in D$ 上有 N个不同取值,将这些值从大到小排序得 $\{a_1, a_2, ..., a_N\}$
 - 基于划分点 t,可将 D 分为子集 D_t^+ 和 D_t^- ,其中 D_t^+ (D_t^-) 包含了属性值A不小(大)于 t 的样本子集
 - $t \propto [a_n, a_{n+1}]$ 上的任意取值的划分结果都相同
 - 候选划分点集合

$$T_a = \left\{ \frac{a_n + a_{n+1}}{2} \mid 1 \le n \le N - 1 \right\}$$

■ C4.5算法[Quinlan 1993]就采用了二分法进行离散化

连续值处理

● 信息增益

$$G(D,a) = \max_{t \in T_a} G(D,a,t)$$

$$= \max_{t \in T_a} \left(H(D) - \sum_{\lambda \in \{+,-\}} \frac{\left| D_t^{\lambda} \right|}{\left| D \right|} H(D_t^{\lambda}) \right)$$

其中,G(D,A,t) 是样本集D基于划分点 t 二分后的信息增益,所以,我们需选择使 G(D,A,t) 最大的划分点 t

-	编号		根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
-	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.46	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
_	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
	10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.36	0.37	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
_	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

● 计算候选划分点集合

$$T_a = \left\{ \frac{a_n + a_{n+1}}{2} \mid 1 \le n \le N - 1 \right\}$$

■ $T_{\text{seg}} = \{0.244, 0.294, 0.351, \dots, 0.708, 0.746\}$ **1*16**

■ $T_{\text{含糖率}} = \{0.049, 0.074, 0.095, ..., 0.373, 0.126\}$ **1*16**

■参照教材《机器学习》-周志华P84-85示例

● 计算信息增益

$$G(D,a) = H(D) - \sum_{n=1}^{N} \frac{\left|D^{n}\right|}{\left|D\right|} H(D^{n}) \Longrightarrow G(D,a) = \max_{t \in T_{a}} \left(H(D) - \sum_{\lambda \in \{+,-\}} \frac{\left|D^{\lambda}\right|}{\left|D\right|} H(D^{\lambda})\right)$$

■
$$G(D, 密度) = 0.262$$

$$T^*_{\text{sing}} = 0.381$$

■ 已知

■
$$G(D, 敲声) = 0.141$$

■
$$G(D, 脐部) = 0.289$$

$$G(D, 根蒂) = 0.143$$

$$G(D, 纹理) = 0.381$$

$$G(D, 触感) = 0.006$$

● 最终生成的决策树

● 问题

- 前面假设: 所有样本的属性完整
- 实际情况:存在不完整样本:即样本的某些属性缺失; 特别是属性数目较多时
- 如果简单放弃不完整样本,会导致数据信息的浪费
- 实际中确实需要属性缺失情况下进行决策
- 例如: 医疗领域,由于诊测成本、隐私保护等问题, 只有部分诊断结果

				_		_	
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1		蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰		软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响		稍凹	硬滑	是
9	乌黑		沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆		平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦		否
12	浅白	蜷缩		模糊	平坦	软粘	否
13		稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿		沉闷	稍糊	稍凹	硬滑	

● 需要解决的两个问题

- ●如何在属性值缺失的情况下进行划分属性选择(计算信息增益)?
- 给定划分属性,若样本在该属性上的值缺失,如何对 样本进行划分?

- 问题1: 信息增益计算
 - ■仅可利用没有属性缺失的样本
- 定义:
 - $\blacksquare \tilde{D}: D$ 中在属性a上没有缺失值的样本子集
 - ■属性 $a(a \in A)$ 有N个可取值 $\{a_1, a_2, ..., a_N\}$
 - $\blacksquare \tilde{D}^n : \tilde{D}$ 中在属性a上取值为 a_n 的样本子集
 - ■ \tilde{D}_c : \tilde{D} 中属于第 $c(c \in C)$ 类的样本子集
 - ■ ω_x :样本x的权重,属性缺失时,可能以不同概率被划分

● 定义:

- ■无缺失值样本所占比例
- ■无缺失样本中第c类比例
- 无缺失样本中属性a上取值为 *a*_n 的比例

$$\rho = \frac{\sum_{x \in \tilde{D}} \omega_{x}}{\sum_{x \in D} \omega_{x}}$$

$$\tilde{p}_{c} = \frac{\sum_{x \in \tilde{D}_{c}} \omega_{x}}{\sum_{x \in \tilde{D}_{c}} \omega_{x}}, (1 \le c \le C), \sum_{c=1}^{C} \tilde{p}_{c} = 1$$

$$\tilde{r}_{n} = \frac{\sum_{x \in \tilde{D}^{n}} \omega_{x}}{\sum_{x \in \tilde{D}^{n}} \omega_{x}}, (1 \le n \le N), \sum_{n=1}^{N} \tilde{r}_{n} = 1$$

● 信息増益

$$G(D,a) = H(D) - \sum_{n=1}^{N} \frac{|D^{n}|}{|D|} H(D^{n})$$

$$G(D,a) = \rho \times G(\tilde{D},a) = \rho \times \left(H(\tilde{D}) - \sum_{n=1}^{N} \tilde{r}_{n}H(\tilde{D}_{n})\right)$$

其中
$$H(\tilde{D}) = -\sum_{c=1}^{C} \tilde{p}_c \log_2 \tilde{p}_c$$

- ●问题2: 含有缺失属性的样本的划分
- ●原则: 让样本根据属性情况以不同概率划分到不同子节点
 - 若样本x在属性a上的取值已知:则将x划入与其取值对应的子节点,且样本权值保持为 ω_x
 - 若样本x在属性a上的取值未知:则将x划入所有子节点,且其在与属性值对应的子节点中的权值根据属性a上已知的样本的比例调整为 $\tilde{r}_n \cdot \omega_x$
- C4.5算法[Quinlan 1993]就采用了上述方法处理缺失值

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1		蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰		软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响		稍凹	硬滑	是
9	乌黑		沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆		平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦		否
12	浅白	蜷缩		模糊	平坦	软粘	否
13		稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿		沉闷	稍糊	稍凹	硬滑	

● 计算信息熵-以属性色泽为例

$$H(\tilde{D}) = -\sum_{c=1}^{C} \tilde{p}_c \log_2 \tilde{p}_c = -\left(\frac{6}{14} \log_2 \frac{6}{14} + \frac{8}{14} \log_2 \frac{8}{14}\right) = 0.985$$

$$H(\tilde{D}^{\dagger \sharp \sharp}) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1.000$$

$$H(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$$

$$H(\tilde{D}^{\text{left}}) = -\left(\frac{0}{4}\log_2\frac{0}{4} + \frac{4}{4}\log_2\frac{4}{4}\right) = 0.000$$

■参照教材《机器学习》-周志华P86-88示例

● 计算信息增益-以属性色泽为例

$$G(\tilde{D}, 色泽) = H(\tilde{D}) - \sum_{n=1}^{3} \tilde{r}_{n} H(\tilde{D}_{n})$$

$$= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$$

$$= 0.306$$

$$G(D,$$
色泽 $) = \rho \times G(\tilde{D},$ 色泽 $) = \frac{14}{17} \times 0.306 = 0.252$

■
$$G(D, ^{2}) = 0.252$$

■
$$G(D, 脐部) = 0.289$$

$$G(D, 根蒂) = 0.171$$

$$G(D, 纹理) = 0.424$$

$$G(D, 触感) = 0.006$$

- 因此选择属性"纹理"用于对根结点划分
 - ■属性不缺失样本
 - "纹理=清晰"分支: 样本 {1, 2, 3, 4, 5, 6, 15}
 - "纹理=稍糊" 分支: 样本 {7,9,13,14,17}
 - "纹理=模糊"分支: 样本 {11, 12, 16}
 - 且样本在各节点中的权重ω保持为1
 - ■属性缺失样本
 - 样本 $\{8,10\}$:同时进入三个分支,权重 ω 分别为 $\frac{7}{15}$, $\frac{5}{15}$, $\frac{3}{15}$

● 最终生成的决策树

不同代价属性的处理

● 问题

- 不同的属性测量具有不同的代价
- 医疗诊断为例:
 - 属 性:体温、血压、血常规、活检
 - 代价不同:所需时间、费用、友好性等

● 解决思路

- 在属性筛选度量标准中考虑属性的不同代价
- 优先选择低代价属性的决策树
- 必要时才依赖高代价属性

不同代价属性的处理

● 属性筛选度量标准1[Tan et al., 1990, 1993]

$$G_{Cost}(D, a) = \frac{G(D, a)}{Cost(a)}$$

● 属性筛选度量标准2[Nunez et al., 1988, 1991]

$$G_{Cost}(D,a) = \frac{2^{G(D,a)} - 1}{(Cost(a) + 1)^{\omega}}$$

其中Cost(a)为属性 a 的代价

 $\omega \in [0,1]$ 为一常数,决定代价对于信息增益的相对重要性

延伸阅读

- 概念学习系统(Concept Learning System, CLS)
 - ■1966年由Hunt等人提出,奠定决策树算法发展的基础
- CART(Classification And Regression Tree)算法:
 - ■即分类回归树算法,简称CART算法,是一种二分递归 分割技术, 1984年由Breiman等人提出
- J. R. Quinlan
 - ■1975年: ID3算法; 1993年: C4.5算法
- 多变量决策树
 - OC1[Murthy et al., 1994]等