Filled Co_xNi_{4-x}Sb_{12-y}Sn_y skutterudites: processing and thermoelectric properties

Jon Mackey

Mechanical Engineering, University of Akron

Alp Sehirlioglu

Materials Science and Engineering, Case Western Reserve University

Fred Dynys

NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004

Processing

Properties

System Background

- Skutterudites are based on CoAs₃ mineral; first mined in Skotterud, Norway.
- Exhibit a high figure of merit for n-type systems (ZT=1.7).
- Relatively low cost system.
- Introduce disorder on pnictogen ring sites (X).
 - Dominate heat carrying modes are associated with pnictogen vibration.
- Introduce a range of fillers (A) to scatter various phonon wavelengths.
- Tune electronic properties
 (A,B,X) for optimal
 thermoelectric power factor .

Systems Investigated

- Ternary systems studied with combination of solidification and powder processing techniques.
- Ni₄Bi₈Ge₄
 - •Shown below, skutterudite phase not obtained.
- Ni₄Sb₈Ge₄
 - Skutterudite phase not obtained.
- •Ni₄Sb₈Sn₄

Objectives

- Focus on finding a p-type skutterudite with improved ZT.
- Study behavior of the skutterudite Co_xNi_{4-x}Sb_{12-y}Sn_y.
 - Grytsiv et. al has reported a Ni₄Sb₈Sn₄ skutterudite system.
 - Parameters of study:
 - \cdot x= {0,0.5,1,1.5,2}
 - $y = \{3,4,5\}$
- Samples created from a melt/mill/hot press procedure.

Processing

Properties

S

- Ternary sy of solidific technique
- Ni₄Bi₈Ge₄
 - Show obtai
- Ni₄Sb₈Ge₄
 - Skutt
- Ni₄Sb₈Sn₄

$Co_xNi_{4-x}Sb_{12-y}Sn_y$

Sample	Co	Sn	Lattice
#			Parameter
	(x)	(y)	(Å)
1	0.0	4.0	9.113
2	0.0	5.0	9.128
3	0.5	5.0	9.126
4	1.0	5.0	9.118
5	1.5	5.0	9.123
6	2.0	5.0	9.104
7	2.0	4.0	9.109
8	2.0	3.0	9.087

Objectives

A_zCo₂Ni₂Sb₈Sn₄

Sample Filler Level Lattice # Parameter (Å) (z)7 N/A0.0 9.109 Ce 9 0.1 9.108 Dy 10 0.1 9.114 Yb 11 0.059.019 Yb 12 0.19.111 Yb 0.2 13 9.114

Licuitai

dure.

d ZT.

 δn_{v} .

te

rted

Processing

Properties

S

- Ternary sy of solidific technique
- Ni₄Bi₈Ge₄
 - •Show obtai
- Ni₄Sb₈Ge₄
 - Skutt
- Ni₄Sb₈Sn₄

$Co_xNi_{4-x}Sb_{12-y}Sn_y$

Sample	Co	Sn	Lattice
#			Parameter
	(x)	(y)	(Å)
1	0.0	4.0	9.113
2	0.0	5.0	9.128
3	0.5	5.0	9.126
4	1.0	5.0	9.118
5	1.5	5.0	9.123
6	2.0	5.0	9.104
7	2.0	4.0	9.109
8	2.0	3.0	9.087

Objectives

A_zCo₂Ni₂Sb₈Sn₄

Sample Filler Level Lattice # Parameter (Å) (z)7 N/A0.0 9.109 Ce 9 0.1 9.108 Dy 10 0.1 9.114 Yb 11 0.059.019 Yb 12 0.19.111 Yb 0.2 13 9.114

d ZT.

 δn_{v} .

te

rted

dure.

Pellet

ermal

Processing

Properties

S

- Ternary sy of solidific technique
- Ni₄Bi₈Ge₄
 - Show obtai
- Ni₄Sb₈Ge₄
 - Skutt
- Ni₄Sb₈Sn₄

$Co_xNi_{4-x}Sb_{12-y}Sn_y$

Sample	Co	Sn	Lattice
#			Parameter
	(x)	(y)	(Å)
1	0.0	4.0	9.113
2	0.0	5.0	9.128
3	0.5	5.0	9.126
4	1.0	5.0	9.118
5	1.5	5.0	9.123
6	2.0	5.0	9.104
7	2.0	4.0	9.109
8	2.0	3.0	9.087

Objectives

A_zCo₂Ni₂Sb₈Sn₄

Sample Filler Level Lattice # Parameter (Å) A (z)N/A 7 0.0 9.109 Ce 9 0.1 9.108 Dy10 0.1 9.114 Yb 11 0.059.019 Yb 12 0.1 9.111

LICULIUAL

13

Yb

0.2

9.114

ite

dure.

Pellet

ermal

Processing

Properties

ICP analysis of an ingot

- •2 Hr @ 1100°C (+20,-10°C /min)
- Silica crucible in He atmosphere
- •<1% wt loss

X	
×	
	X

	at%	at%	at%	at%
Со	9.4	9.1	7.3	9.0
Ni	15.6	14.9	13.7	14.6
Sb	43.7	42.4	43.7	44.1
Sn	31.2	33.5	35.3	32.2
Ca	0	2e-4	7e-4	7e-4
Mg	0	1e-4	2e-4	2e-4
Na	0	3e-3	4e-3	4e-3

EDS map of an ingot

Processing

Properties

Milling Details

- Planetary mill
 - •550 rpm
 - Ball to powder weight ratio 3.8
 - Ar atmosphere

Sample 1 Ni₄Sb₈Sn₄ Milling

Sample 4 Co₁Ni₃Sb₇Sn₅ Milling

Hot Pressed SEM

Sample 1 Ni₄Sb₈Sn₄

- NiSb (3.1wt%, 109nm cryst.) precip 1μm.
- •SbSn (1.3wt%, 45 nm cryst.) precip 30 μm.

Sample 2 Ni₄Sb₇Sn₅

- NiSb (6.8wt%) precip 1µm.
- Ni₃Sn₄ (1.2wt%) precip 30 μm.
- SbSn (1.4wt%) surrounding Ni₃Sn₄.

Sample 4 Co₁Ni₃Sb₇Sn₅

- NiSb (3.2wt%) precip 1μm.
- Ni₃Sn₄ (6.5wt%) precip 1μm.

Rietveld Refinement

FIGURE: Eilertsen et al. Acta Mater. 60 (2012) 2178-2185

Hot Pressed Structure Refinement

Sample	e Skutterudite	Lattice	SKD
#	$A_{\delta} B_{x} B'_{4-x} X_{12-y} X'_{y}$	(Å)	(wt%)
1	$\rm Sn_{0.2}Co_{0.0}Ni_{4.0}Sb_{8.5}Sn_{4.4}$	9.113	96.65
2	$\rm Sn_{0.3}Co_{0.0}Ni_{4.0}Sb_{7.9}Sn_{5.1}$	9.128	87.38
3	$Sn_{0.3}Co_{0.6}Ni_{3.4}Sb_{7.2}Sn_{4.7}$	9.126	94.97
4	$Sn_{0.3}Co_{1.2}Ni_{2.8}Sb_{8.3}Sn_{5.4}$	9.118	89.25
5	$\rm Sn_{0.3}Co_{1.5}Ni_{2.5}Sb_{7.0}Sn_{4.7}$	9.123	91.33
6	$Sn_{0.3}Co_{2.4}Ni_{1.6}Sb_{9.4}Sn_{5.8}$	9.104	80.08
7	$Sn_{0.3}Co_{2.1}Ni_{1.9}Sb_{9.1}Sn_{3.7}$	9.109	93.64
8	${ m Sn_{0.2}Co_{2.1}Ni_{1.9}Sb_{9.0}Sn_{2.6}}$	9.087	98.20

Processing

Properties

Pressed Co₂Ni₂Sb₇Sn₅

Density 7.64 g/cm³ 99%

Phase	Wt%
Co ₂ Ni ₂ Sb ₇ Sn ₅	82.6
Ni ₃ Sn ₄	8.7
Sn	6.2

Ni₃Sn₄ (230°C)

200°C Anneal 72 Hrs

Density 7.25 g/cm³ 95%

Phase	Wt%
Co ₂ Ni ₂ Sb ₇ Sn ₅	80.0
Ni ₃ Sn ₄	11.9
Sn	7.6

Ni₃Sn₄ (230°C)

400°C Anneal 72 Hrs

Density 6.75 g/cm³ 88%

Phase	Wt%
Co ₂ Ni ₂ Sb ₇ Sn ₅	73.6
Ni ₃ Sn ₄	14.7
Sn	10.0

Porosity Ni₃Sn₄ (230°C)

 $Sn_{0.5}Co_{2.4}Ni_{1.6}Sb_{9.7}Sn_{5.7}$

Electrical Hysteresis Sample 8 Co₂Ni₂Sb₉Sn₃

Sample Stability Sample 7 Co₂Ni₂Sb₈Sn₄

Sample 8 Co₂Ni₂Sb₉Sn₃

Transport Properties- Unfilled (40°C)

 $Co_xNi_{4-x}Sb_{12-y}Sn_y$

					•	
Sample	Co	Sn	Lattice	Seebeck	Electrical	Thermal
#			Parameter	Coefficient	Resistivity	Conductivity
	(x)	(y)	(Å)	$(\mu V/K)$	$(\mu Ohm-cm)$	(W/m-K)
1	0.0	4.0	9.113	-40.7	233	4.7
2	0.0	5.0	9.128	-33.4	255	4.1
3	0.5	5.0	9.126	-8.7	560	2.2
4	1.0	5.0	9.118	32.9	784	1.6
5	1.5	5.0	9.123	13.7	449	1.4
6	2.0	5.0	9.104	7.1	233	3.9
7	2.0	4.0	9.109	17.7	540	2.5
8	2.0	3.0	9.087	37.9	2282	1.5

Co (x) Study

Processing

Properties

Transport Properties- Unfilled (40°C)

 $Co_xNi_{4-x}Sb_{12-y}Sn_y$

Sample	Co	Sn	Lattice	Seebeck	Electrical	Thermal
#			Parameter	Coefficient	Resistivity	Conductivity
	(x)	(y)	(Å)	$(\mu V/K)$	$(\mu Ohm - cm)$	(W/m-K)
1	0.0	4.0	9.113	-40.7	233	4.7
2	0.0	5.0	9.128	-33.4	255	4.1
3	0.5	5.0	9.126	-8.7	560	2.2
4	1.0	5.0	9.118	32.9	784	1.6
5	1.5	5.0	9.123	13.7	449	1.4
6	2.0	5.0	9.104	7.1	233	3.9
7	2.0	4.0	9.109	17.7	540	2.5
8	2.0	3.0	9.087	37.9	2282	1.5

Co (x) Study

Processing

Properties

Transport Properties- Unfilled (40°C)

 $Co_xNi_{4-x}Sb_{12-y}Sn_y$

Sample	Co	Sn	Lattice	Seebeck	Electrical	Thermal
#			Parameter	Coefficient	Resistivity	Conductivity
	(x)	(y)	(Å)	$(\mu V/K)$	$(\mu Ohm-cm)$	(W/m-K)
1	0.0	4.0	9.113	-40.7	233	4.7
2	0.0	5.0	9.128	-33.4	255	4.1
3	0.5	5.0	9.126	-8.7	560	2.2
4	1.0	5.0	9.118	32.9	784	1.6
5	1.5	5.0	9.123	13.7	449	1.4
6	2.0	5.0	9.104	7.1	233	3.9
7	2.0	4.0	9.109	17.7	540	2.5
8	2.0	3.0	9.087	37.9	2282	1.5

Sn (y) Study

Transport Properties- Filled (40°C)

AzCo2Ni2Sb8Sn4

Sample	Filler	Level	Lattice	Seebeck	Electrical	Thermal
#			Parameter	Coefficient	Resistivity	Conductivity
	A	(z)	(Å)	$(\mu V/K)$	$(\mu Ohm - cm)$	(W/m-K)
7	N/A	0.0	9.109	25.3	659	2.5
9	Се	0.1	9.108	35.1	1036	2.1
10	Dy	0.1	9.114	27.4	681	2.9
11	Yb	0.05	9.019	23.3	618	2.6
12	Yb	0.1	9.111	25.6	592	2.9
13	Yb	0.2	9.114	-	-	-

Processing

Properties

Transport Properties- Filled (40°C)

AzCo2Ni2Sb8Sn4

Sample	Filler	Level	Lattice	Seebeck	Electrical	Thermal
#			Parameter	Coefficient	Resistivity	Conductivity
	A	(z)	(Å)	$(\mu V/K)$	$(\mu Ohm - cm)$	(W/m-K)
7	N/A	0.0	9.109	25.3	659	2.5
9	Ce	0.1	9.108	35.1	1036	2.1
10	Dy	0.1	9.114	27.4	681	2.9
11	Yb	0.05	9.019	23.3	618	2.6
12	Yb	0.1	9.111	25.6	592	2.9
13	Yb	0.2	9.114	-	-	-

Mobility and Carrier Comparison

Yb_xCoSb₃: L. Fu et al. Intermetallics (2013) Ce_xCoSb₃: D. Morelli et al. Phys. Rev. B (1997) Others: J.-P. Fleurial et al. Proc. XVI ICT (1997)

S.P.B. Modeling

- Applied a single parabolic band model to the system
- Carrier mass (m/me)

• N-Type: 5.48

• P-Type: 1.48

Optimal carrier density

• N-Type: 2.1E19 cm⁻³

• P-Type: 2.7E19 cm⁻³

Conclusion

- The Co_xNi_{4-x}Sb_{12-y}Sn_y skutterudite can be synthesized from a melt/mill/hot press schedule.
- Both n- and p-type conduction can be achieved by Co doping.
- System exhibits low thermal conductivity, but also low Seebeck coefficient.
- Thermoelectric performance of the system is hindered by large carrier densities and low carrier mobilities.
- Fillers improve Seebeck coefficient, but do not reduce thermal conductivity.

<u>Acknowledgements</u>

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross, Kerem Sayir

NASA Glenn Research Center

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial JPL

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004