Formale Systeme, Automaten und Prozesse Beweise

Justin Korte

Februar 2023

1 Beweise

1.1 Sprachbeweise

Für alle Sprachen K, L, M gilt (Beweise 1.1)

- Assoziativgesetz
 - \blacktriangleright (KL)M = K(LM)
 - $\blacktriangleright L\{\varepsilon\} = \{\varepsilon\}L = L$
 - $\blacktriangleright L\emptyset = \emptyset L = \emptyset$
- Distributivgesetz
 - $\blacktriangleright K(L \cup M) = KL \cup KM$
 - \blacktriangleright $(K \cup L)M = KM \cup LM$

1.2 Hilfsbeweise

1.2.1 Darstellung eines Wortes im b-adischen System

Sei $w\in\{0,\dots,b\}^*$ und $a\in\{0,\dots,b\}$ Zahlendarstellungen zur Basis b. Dann gilt $k(wa)=b\cdot k(w)+a$ mit $k(w)=\sum_{i=1}^n w_i\cdot b^{n-i}$

$\underline{\mathbf{Beweis}}$:

Sei $z = z_1 \dots z_{n+1}$ mit $w = z_1 \dots z_n$ und $a = z_{n+1}$. Daraus folgt:

$$k(z) = \sum_{i=1}^{n+1} z_i \cdot b^{n+1-i}$$

$$= \sum_{i=1}^{n} (z_i \cdot b^{n+1-i}) + z_{n+1} \cdot b^0$$

$$= b \cdot \sum_{i=1}^{n} (z_i \cdot b^{n-i}) + z_{n+1}$$

$$= b \cdot k(z_1 \dots z_n) + z_{n+1}$$

$$= b \cdot k(w) + a$$

1.3 Automatenbeweise

1.3.1 Binärautomat mit Teilbarkeit 3

Sei A_2 der folgende Automat:

Dann gilt A_2 akzeptiert $w \in \{0,1\}^* \Leftrightarrow b(w) \equiv 0 \mod 3$

Beweis:

Wir zeigen per vollständiger Induktion über $n \in \mathbb{N}_0$, dass für alle Wörter $w = a_1 \dots a_n \in \Sigma^*$ gilt: Ist (r_0, r_1, \dots, r_n) ein Lauf von A_2 auf $w \Rightarrow r_n \equiv bin(w) \mod 3$

Induktionsanfang:

Sei n = 0. Dann ist der Lauf von A_2 auf $w = \varepsilon$ demnach (0), und $bin(\varepsilon) = 0 \Rightarrow r_0 \equiv bin(\varepsilon) \mod 3$.

Induktionsvoraussetzung:

Für ein beliebiges, festes $n \in \mathbb{N}_0$ gilt $r_n \equiv bin(a_1 \dots a_n) \mod 3$

Induktionsvoraussetzung:

Sei (r_0, \ldots, r_{n+1}) der Lauf von A_2 auf $w = a_1 \ldots a_{n+1}$. Aus (1.2.1) gilt : $bin(w) = bin(a_1 \ldots a_n a_{n+1}) = 2 \cdot bin(a_1 \ldots a_n) + a_{n+1}$ Nun gilt mithilfe der Voraussetzung $b(w) = 2 \cdot bin(a_1 \ldots a_n) + a_{n+1} \stackrel{IV}{\equiv} 2 \cdot r_n + a_{n+1} \mod 3$

Nun betrachten wir alle Belegungen von r_n und a_{n+1} :

Fall 1:
$$r_n = 0, a_{n+1} = 0$$

Dann gilt $bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 0 \mod 3$ und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(0, 0) = 0$

Fall 2:
$$r_n = 0, a_{n+1} = 1$$

Dann gilt $bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 1 \mod 3$ und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(0, 1) = 1$

Fall 3:
$$r_n = 1, a_{n+1} = 0$$

Dann gilt $bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 2 \mod 3$ und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(1, 0) = 2$

Fall 4:
$$r_n = 1, a_{n+1} = 1$$

Dann gilt $bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 0 \mod 3$ und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(1, 1) = 0$

Fall 5:
$$r_n = 2, a_{n+1} = 0$$

Dann gilt $bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 1 \mod 3$ und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(2, 0) = 1$

Fall 6:
$$r_n = 2, a_{n+1} = 1$$

Dann gilt
$$bin(w) \equiv 2 \cdot r_n + a_{n+1} \bmod 3 \equiv 2 \bmod 3$$
 und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(2, 1) = 2$

Damit wurde die Behauptung der Induktion bewiesen. Wenn nun $r_n = 0$ gilt, so befindet sich der Automat in q_0 und akzeptiert. Aus der bewiesenen Induktion folgt nun:

$$A_2$$
akzeptiert $w \in \{0,1\}^* \Leftrightarrow r_n = 0 \overset{Ind.}{\Leftrightarrow} bin(w) \equiv 0 \bmod 3$

Damit wurde die Behauptung bewiesen.