Numerical Methods Runtime Table

Mohamed Emary Mohamed Abdelfattah Abdelfattah Zakaria

Shrouk Elsayed Dalia Abdallah Sara Reda

November 27, 2023

1 Equations

We have used the same 25 equations with each method and run each method (Bisection, False Position, and Hybrid) 500 times for each problem and then we have calculated the average time. We have also calculated the number of iterations each method have taken for each problem.

We have also used the same tolerance for each method which is 10^{-14}

These are the equations that we have used with each method:

1.1 Our Equations

In these equations we have tried to use different types of functions and intervals to test our methods.

Equation No **Equation Code** Interval $f(x) = x^3 + 4x^2 - 10 = 0$ P1x**3 + 4*x**2 - 10[0, 4]P2 $f(x) = x^2 - 4$ [0, 4] x**2 - 4 $f(x) = e^x - 2$ P3math.exp(x) - 2[0, 2] P4 $f(x) = \sin(x)$ [2, 6] math.sin(x) $f(x) = x^3 - 6x^2 + 11x - 6$ P5x**3 - 6*x**2 + 11*x - 6[1, 2.5] $f(x) = x^2 + 3x + 2$ P6x**2 + 3*x + 2[-2.5, -1.5]P7 $f(x) = \cos(x) - x$ [0, 1] math.cos(x) - x $f(x) = 2^x - 8$ P82**x - 8 [2,4]P9 $f(x) = \tan(x)$ [-1, 1]math.tan(x)

Table 1: Our Equations

1.2 Equations From Paper

 $x^{4} - 8x^{3} + 18x^{2} - 9x + 1$

f(x) =

P10

We got these equations from this paper and we have used the same intervals too.

Table 2: Equations From Paper

x**4 - 8*x**3 + 18*x**2 - 9*x + 1

[2, 4]

No	Equation	Equation Code	Interval	Reference
P11	$f(x) = x^2 - 3$	x**2 - 3	[1,2]	Harder [18]
P12	$f(x) = x^2 - 5$	x**2 - 5	[2,7]	Srivastava[9]
P13	$f(x) = x^2 - 10$	x**2 - 10	[3,4]	Harder [18]
P14	$f(x) = x^2 - x - 2$	x**2 - x - 2	[1,4]	Moazzam [10]
P15	$f(x) = x^2 + 2x - 7$	x**2 + 2*x - 7	[1,3]	Nayak[11]
P16	$f(x) = x^3 - 2$	x**3 - 2	[0,2]	Harder [18]
P17	$f(x) = xe^x - 7$	x * math.exp(x) - 7	[0,2]	Callhoun [19]
P18	$f(x) = x - \cos(x)$	x - math.cos(x)	[0,1]	Ehiwario [6]

No	Equation	Equation Code	Interval	Reference
P19	$f(x) = x\sin(x) - 1$	x * math.sin(x) - 1	[0,2]	Mathews [20]
P20	$f(x) = x\cos(x) + 1$	x * math.cos(x) + 1	[-2,4]	Esfandiari [21]
P21	$f(x) = x^{10} - 1$	x**10 - 1	[0,1.3]	Chapra [17]
P22	$f(x) = x^2 + e^{x/2} - 5$	x**2 + (2.71828**(x/2)) - 5	[1,2]	Esfandiari [21]
P23	$f(x) = \sin(x)\sinh(x) + 1$	<pre>math.sin(x) * math.sinh(x) +</pre>	[3,4]	Esfandiari [21]
		1		
P24	$f(x) = e^x - 3x - 2$	(2.71828**x) - 3*x - 2	[2,3]	Hoffman [22]
P25	$f(x) = \sin(x) - x^2$	math.sin(x) - x**2	[0.5,1]	Chapra[17]

2 Results

These are the results we got with each method. We have run each method 500 times on each equation and took the average time to get the highest accuracy possible.

2.1 False Position

These are the results we got with False Position method:

Table 3: False Position

	False Position Algorithm						
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound	
P1	80	0.000229008	1.3652300134140964	-7.11E-15	1.3652300134140964	4	
P2	33	4.399728775024414e-05	1.999999999999978	-8.88E-15	1.999999999999978	4	
P3	51	5.6000232696533204e-05	0.6931471805599422	-6.22E-15	0.6931471805599422	2	
P4	8	6.000041961669922e-06	3.141592653589793	1.2246467991473532e-16	3.141592653589793	3.1415926535899232	
P5	2	0	1	0	1	2.5	
P6	31	4.800844192504883e-05	-2	-5.33E-15	-2.5	-2	
P7	12	1.101541519165039e-05	0.7390851332151551	9.2148511043888e-15	0.7390851332151551	1	
P8	30	4.401159286499024e-05	2.999999999999987	-7.11E-15	2.999999999999987	4	
P9	2	1.991748809814453e-06	0	0	0	1	
P10	13	4.0007591247558594e-05	3.1117486563092474	0	3.1117486563092474	3.1117486563092482	
P11	14	1.7997264862060548e-05	1.732050807568876	-4.00E-15	1.732050807568876	2	
P12	50	6.600427627563476e-05	2.2360679774997876	-9.77E-15	2.2360679774997876	7	
P13	17	2.2464752197265626e-05	3.162277660168379	-1.78E-15	3.162277660168379	4	
P14	38	5.301380157470703e-05	1.999999999999971	-8.66E-15	1.999999999999971	4	
P15	21	3.1998634338378904e-05	1.8284271247461896	-2.66E-15	1.8284271247461896	3	
P16	41	5.600643157958984e-05	1.2599210498948719	-6.22E-15	1.2599210498948719	2	
P17	30	3.40123176574707e-05	1.5243452049841437	-7.99E-15	1.5243452049841437	2	
P18	12	1.2005805969238282e-05	0.7390851332151551	-9.21E-15	0.7390851332151551	1	
P19	7	7.99846649169922e-06	1.1141571408719306	8.881784197001252e-16	1.0997501702946164	1.1141571408719306	
P20	13	1.1332988739013672e-05	2.0739328090912146	7.771561172376096e-16	2.0739328090912146	2.5157197710146586	
P21	139	0.000183961	0.999999999999991	-8.88E-15	0.999999999999991	1.3	
P22	16	3.3281803131103514e-05	1.6490135532979475	-1.78E-15	1.6490135532979475	2	
P23	45	7.994651794433594e-05	3.2215883990939416	6.328271240363392e-15	3.2215883990939416	4	
P24	45	6.818151473999023e-05	2.1253934262332246	-9.77E-15	2.1253934262332246	3	
P25	17	2.703714370727539e-05	0.8767262153950554	7.882583474838611e-15	0.8767262153950554	1	

2.2 Bisection Method

These are the results we got with Bisection method:

Table 4: Bisection

	Bisection Algorithm						
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound	
P1	50	7.303380966186524e-05	1.3652300134140951	-2.84E-14	1.3652300134140916	1.3652300134140987	
P2	1	0	2	0	0	4	
P3	49	4.200363159179687e-05	0.6931471805599436	-3.33E-15	0.6931471805599401	0.6931471805599472	
P4	50	3.406333923339844e-05	3.141592653589793	1.2246467991473532e-16	3.1415926535897896	3.1415926535897967	
P5	48	7.496118545532227e-05	2.00000000000000018	0	1.999999999999964	2.0000000000000007	
P6	1	1.9011497497558594e-06	-2	0	-2.5	-1.5	
P7	48	3.201484680175781e-05	0.7390851332151591	2.55351295663786e-15	0.7390851332151556	0.7390851332151627	
P8	1	1.9893646240234374e-06	3	0	2	4	
P9	1	1.991748809814453e-06	0	0	-1	1	
P10	49	9.199857711791992e-05	3.111748656309249	1.0658141036401503e-14	3.1117486563092456	3.1117486563092527	
P11	48	4.000377655029297e-05	1.7320508075688785	4.440892098500626e-15	1.732050807568875	1.732050807568882	
P12	50	3.901958465576172e-05	2.2360679774997854	-1.95E-14	2.236067977499781	2.236067977	
P13	48	3.7988662719726566e-05	3.1622776601683817	1.5987211554602254e-14	3.162277660168378	3.1622776601683853	
P14	50	4.400014877319336e-05	1.999999999999991	-2.66E-15	1.999999999999964	2.00000000000000018	
P15	49	5.607509613037109e-05	1.828427124746188	-1.15E-14	1.8284271247461845	1.8284271247461916	
P16	49	3.8086414337158205e-05	1.2599210498948743	5.329070518200751e-15	1.2599210498948707	1.2599210498948779	
P17	49	3.905820846557617e-05	1.5243452049841473	3.375077994860476e-14	1.5243452049841437	1.5243452049841508	
P18	48	2.9998779296875e-05	0.7390851332151591	-2.55E-15	0.7390851332151556	0.7390851332151627	
P19	49	0.000136974	1.114157140871928	-3.00E-15	1.1141571408719244	1.1141571408719315	
P20	51	5.606412887573242e-05	2.0739328090912155	-1.33E-15	2.073932809091213	2.073932809091218	
P21	48	4.004716873168945e-05	1.0000000000000001	1.1102230246251565e-14	0.999999999999966	1.00000000000000058	
P22	44	5.988311767578125e-05	1.649013553297948	0	1.6490135532978911	1.6490135532980048	
P23	48	6.889772415161133e-05	3.2215883990939425	-5.55E-15	3.221588399093939	3.221588399093946	
P24	48	4.5994281768798825e-05	2.1253934262332272	5.329070518200751e-15	2.1253934262332237	2.125393426233231	
P25	47	6.799602508544923e-05	0.8767262153950632	-8.88E-16	0.8767262153950597	0.8767262153950668	

2.3 Hybrid Method

These are the results we got with hybrid method:

Table 5: Hybrid

	Hybrid Algorithm							
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound		
P1	10	3.6006927490234375e-05	1.3652300134140964	-7.11E-15	1.365230013413779	1.3675001980274413		
P2	1	1.9969940185546874e-06	2	0	0	4		
P3	10	1.399993896484375e-05	0.6931471805599453	0	0.6931471805599334	0.695162706		
P4	6	1.006174087524414e-05	3.141592653589793	1.2246467991473532e-16	3.1415903579556947	3.141592653604888		
P5	1	3.940105438232422e-06	1	0	1	2.5		
P6	1	1.9888877868652345e-06	-2	0	-2.5	-1.5		
P7	8	1.1938095092773438e-05	0.7390851332151606	1.1102230246251565e-16	0.739085133	0.7422270732175922		
P8	1	2.0036697387695312e-06	3	0	2	4		
P9	1	2.0928382873535157e-06	0	0	-1	1		
P10	8	2.4066925048828126e-05	3.1117486563092474	0	3.1085379927858856	3.1117486563092536		
P11	8	1.7096519470214843e-05	1.7320508075688772	-4.44E-16	1.7320508075688001	1.7350578402209837		
P12	10	1.4061450958251953e-05	2.236067977499789	-3.55E-15	2.236067977499364	2.243929153983615		
P13	8	1.393747329711914e-05	3.1622776601683795	1.7763568394002505e-15	3.16227766	3.1672187190124017		

	Hybrid Algorithm						
Problem	Iter	Avg CPU Time	Approximate Root	Function Value	Lower Bound	Upper Bound	
P14	2	2.0089149475097657e-06	2	0	1.5	2.5	
P15	5	8.056163787841797e-06	1.828427125	0	1.8284271247430004	1.8284271247493797	
P16	9	1.2000083923339844e-05	1.2599210498948723	-4.00E-15	1.259921049893984	1.2611286403176987	
P17	11	1.3935565948486329e-05	1.5243452049841444	0	1.5243452049841386	1.526033337108763	
P18	8	1.0064601898193359e-05	0.7390851332151606	-1.11E-16	0.739085133	0.7422270732175922	
P19	6	8.002758026123047e-06	1.1141571408719302	2.220446049250313e-16	1.1132427327642702	1.1141571408719768	
P20	10	1.5938282012939452e-05	2.073932809091215	-2.22E-16	2.0739328090911866	2.078935003337393	
P21	12	1.6058921813964842e-05	0.999999999999999	-1.11E-15	0.999999999999305	1.000343363282986	
P22	8	2.393531799316406e-05	1.6490135532979473	-3.55E-15	1.6490135532974015	1.6531560376633945	
P23	9	1.7997264862060548e-05	3.221588399093942	3.3306690738754696e-16	3.2215883990939242	3.2224168881395068	
P24	9	1.2019157409667969e-05	2.125393426233225	-7.11E-15	2.1253934262325003	2.1275213330097245	
P25	7	1.1998653411865234e-05	0.8767262153950581	4.773959005888173e-15	0.8767262153886713	0.8772684454348731	

As we see from the table above the hybrid method tend to be faster and take much less iterations than both Bisection and False Position methods.

2.4 Conclusion

Our conclusions based on the tables and the plots are:

Side Note: The equation $f(x) = x^3 - 6x^2 + 11x - 6$ in P5 has two roots. In the false position and hybrid methods, the equation has a root at 1. On the other hand, the bisection method identifies another root at approximately 2.00000000000000018 within the interval [1, 2.5].

2.4.1 Iterations

Figure 1: Iterations Comparison

The hybrid method demonstrates superior performance compared to both the bisection and false position methods in terms of the number of iterations required.

As we see here in P21 the false position method have much more number of iterations than both hybrid and bisection methods which will lead to more CPU time as we will see in the next section.

2.4.2 CPU Time

Figure 2: CPU Time Comparison

The hybrid method shows significant improvement over the bisection method in terms of CPU time, with a ratio of 21:4. This translates to approximately 84% for the hybrid method and 16% for the bisection method.

The hybrid method shows significant improvement over the false position method in terms of CPU time, with a ratio of 19:6. This translates to approximately 76% for the hybrid method and 24% for the false position method.

As a general trend, the hybrid method is faster than both the bisection and false position methods when it comes to finding the approximate root.

2.4.3 Function Value

Figure 3: Function Value Comparison

The hybrid method outperforms both the bisection and false position methods in terms of function value, with smaller values that are closer to zero.