

NATIONAL ENERGY TECHNOLOGY LABORATORY

Life Cycle Results from the NGCC LCI&C Study

Robert James, Tim Skone

Office of Systems, Analyses and Planning
National Energy Technology Laboratory (NETL), U.S. DOE

Conceptual Study Boundary

Natural Gas Combined Cycle (NGCC)

LCA's Expanded Boundary for NGCC

Current Technology

*Red Blocks Indicate Unit Operations Added for CO₂ Capture Case

NOx Control: LNB + SCR to maintain 2.5 ppmvd @ 15% O₂

Steam Conditions: 2400 psig/1050°F/950°F

Study Scenarios

Parameters	wo-CCS	w-CCS
Net Power Output (MW)	555	474
Emissions Normalizing Basis (MW)	555	474
Information Source	NGCC LCI&C	NGCC LCI&C

Key Modeling Assumptions

Parameters	NGCC w/Foreign NG	NGCC w/Domestic NG							
Study Boundary Assumptions									
Temporal Boundary (Years)	30								
Cost Boundary	Ov	vernight							
LC Stage #1: Raw Material Acquisition									
Extraction Location	Trinidad & Tobago	Domestic US							
Feedstock	LNG	NG							
Extraction Method	Off-Shore Drilling	Domestic Process							
C&O Costs	In Delivery Price								
LC Stage #2: Raw Material Transport									
One-way transport Distance (Miles)	2260	NA							
U.S. LNG Terminal Location	Lake Charles, LA	NA							
Pipeline Length to ECF (Miles)	208	604							
LNG Infrastructure C&O Costs	In Delivery Price								

Key Modeling Assumptions (Cont.)

Parameters	NGCC								
LC Stage #3: Energy Conversion Facility									
Location	Southern Mississippi								
Net Output (MW)	555								
Net Output w/CCS (MW)	474								
Trunk line Constructed Length (Miles)	50								
Capacity Factor	85%								
CO ₂ Capture Percentage	90%								
CO ₂ Pipeline Pressure (psia)	2215								
CO ₂ Pipeline Length (Miles)	100								
CO ₂ Loss Rate	1% / 100 yrs								
LC Stage #4: Product Transport									
Transmission Line Loss	7%								
Transmission Grid Construction	Pre-Existing								

Life Cycle Cost Parameters

Property	Value	Units
Reference Year Dollars	December	Year
	2006/January 2007	
Assumed Start-Up Year	2010	Year
Real After-Tax Discount Rate	10.0	Percent
After-Tax Nominal Discount Rate	12.09	Percent
Assumed Study Period	30	Years
MACRS Depreciation Schedule Length	Variable	Years
Inflation Rate	1.87	Percent
State Taxes	6.0	Percent
Federal Taxes	34.0	Percent
Total Tax Rate	38.0	Percent
Fixed Charge Rate Calculation Factors		
Capital Charge Factor – wo-CCS	0.1502	
Capital Charge Factor – w-CCS	0.1567	
Levelization Factor – wo-CCS	1.432773	
Levelization Factor – w-CCS	1.410939	
Start Up Year (2010) Feedstock & Utility Prices	\$2006 Dollars	Units
Natural Gas	6.76	\$/MMBtu
Coal	1.51	\$/MMBtu
Process Water	0.00049	\$/L (\$/gal)
	(0.0019)	

Life Cycle Inventory Data Reported

- GHG Emissions (2007 IPCC CO₂e Values, 100 Year basis)
 - Carbon Dioxide (CO₂)
 - Methane (CH₄)
 - Nitrous Oxide (N₂O)
 - Sulfur Hexafluoride (SF₆)
- Water Usage
 - Withdrawal
 - Consumption

Non-GHG Emissions

- Criteria Air Pollutants
 - Carbon Monoxide (CO)
 - Nitrogen Oxides (NOX)
 - Sulfur Oxides (SOX)
 - Volatile Organic Compounds (VOC)
 - Particulate Matter (PM)
 - Lead (Pb)
- Species of Interest
 - Ammonia (NH₃)
 - Mercury (Hg)

GHG Emissions

2007 GWP

Non-GHG Air Emissions

Water Usage

LCA Inventory Results Recap

Foreign LNG

Emission Type		RMA		RMT		ECF		PT		TOTAL	
	Species	SOO-OM	w-ccs	wo-ccs	SD-w	wo-ccs	w-ccs	SOO-OM	SOO-w	wo-ccs	w-ccs
<u> </u>	CO ₂	104.94	123.00	2.23	2.62	393.00	51.27	0.00	0.00	500.18	176.89
. ≥ ≥	N ₂ O	0.36	0.42	0.00	0.00	0.00	0.01	0.00	0.00	0.37	0.43
GHG 2e /	CH ₄	23.98	28.11	10.67	12.50	0.01	0.02	0.00	0.00	34.66	40.63
GHG (kg CO ₂ e / MWh)	SF ₆	0.00	0.00	0.00	0.00	0.01	0.01	3.27	3.27	3.28	3.28
₹	Total	129.29	151.54	12.90	15.12	393.03	51.30	3.27	3.27	538.48	221.23
	Pb	6.6E-07	7.7E-07	1.7E-07	1.9E-07	2.7E-06	3.1E-06			3.5E-06	4.1E-06
	Hg	4.2E-08	4.9E-08	5.2E-09	6.1E-09	2.5E-08	3.5E-08			7.2E-08	9.0E-08
(n 🙃	NH_3	9.6E-02	1.1E-01	1.1E-06	1.3E-06	1.9E-02	2.0E-02			1.1E-01	1.3E-01
GHG MWh	СО	9.2E-02	1.1E-01	5.3E-04	6.2E-04	3.1E-03	4.5E-03			9.5E-02	1.1E-01
Non-GHG (kg/MWh)	NOx	2.3E-01	2.7E-01	5.1E-04	5.9E-04	3.1E-02	3.4E-02			2.6E-01	3.0E-01
2 5	SOx	1.2E-02	1.4E-02	3.1E-04	3.6E-04	1.2E-03	1.7E-03			1.3E-02	1.6E-02
	VOC	1.1E-01	1.3E-01	3.3E-05	3.8E-05	1.2E-04	1.9E-04			1.1E-01	1.3E-01
	PM	7.7E-03	9.0E-03	1.3E-04	1.6E-04	4.3E-04	7.0E-04			8.3E-03	9.9E-03
Water Usage (Liter / MWh)	Input	57.6	67.6	2.1	2.5	1038.9	2063.3			1098.7	2133.4
Wa Usi (Lit	Consumption	-100.2	-117.4	0.7	0.9	803.3	1541.4			703.9	1424.8

LCA Inventory Results Recap

Domestic NG

Emission Type		RMA		RMT		ECF		PT		TOTAL	
	Species	SOO-OM	w-ccs	SDO-ow	SD-w	wo-ccs	w-ccs	SDD-ow	SOO-w	wo-ccs	w-ccs
ਵ	CO ₂	21.00	24.61	5.83	6.84	393.00	51.27	0.00	0.00	419.83	82.72
 ≥	N ₂ O	0.20	0.24	0.00	0.00	0.00	0.01	0.00	0.00	0.21	0.25
GHG 2e /	CH ₄	48.05	56.32	28.65	33.58	0.01	0.02	0.00	0.00	76.72	89.92
GHG (kg CO ₂ e / MWh)	SF ₆	0.01	0.01	0.00	0.00	0.01	0.01	3.27	3.27	3.28	3.28
₹	Total	69.26	81.18	34.48	40.42	393.03	51.30	3.27	3.27	500.04	176.17
	Pb	2.0E-06	2.3E-06	1.7E-07	1.9E-07	2.7E-06	3.1E-06			4.8E-06	5.6E-06
	Hg	7.2E-08	8.5E-08	5.2E-09	6.1E-09	2.5E-08	3.5E-08			1.0E-07	1.3E-07
φ c	NH ₃	1.1E-06	1.3E-06	2.9E-06	3.5E-06	1.9E-02	2.0E-02			1.9E-02	2.0E-02
Non-GHG (kg/MWh)	СО	4.4E-02	5.1E-02	7.3E-04	8.5E-04	3.1E-03	4.5E-03			4.8E-02	5.7E-02
don-	NOx	4.9E-01	5.7E-01	1.1E-03	1.3E-03	3.1E-02	3.4E-02			5.2E-01	6.0E-01
75	SOx	5.9E-03	6.9E-03	3.2E-04	3.8E-04	1.2E-03	1.7E-03			7.4E-03	9.0E-03
	VOC	1.1E-04	1.2E-04	7.5E-05	8.8E-05	1.2E-04	1.9E-04			3.0E-04	4.0E-04
	PM	1.0E-03	1.2E-03	2.5E-04	2.9E-04	4.3E-04	7.0E-04			1.7E-03	2.2E-03
Water Usage (Liter / MWh)	Input	181.9	213.2	2.1	2.5	1038.9	2063.3			1222.9	2279.0
Ws Usi MV	Consumption	-31.0	-36.4	0.7	0.9	803.3	1541.4			773.1	1505.9

Capital Costs

Levelized Cost of Electricity (LCOE)

2007 \$s

Key Findings

GHG Emissions

- CO₂ is the dominant emission
 - Mostly from the NGCC ECF
 - wo-CCS 79% on LNG, 92% on DNG
 - w-CCS 30% on LNG, 55% on DNG
 - LNG Large spike with Drilling operations 17% wo-CCS, 56% w-CCS
- Methane emissions Highest percentages from RMT
 - Regasification 46.5% Overall GHG emissions
 - Pipeline operation 26.4% on LNG, 81.8% on DNG
- Overall GHG Emissions of Domestic NG is less than LNG
 - wo-CCS
 - LNG 495 kg CO2e/MWH,
 - DNG 428 kg CO2e/MWH
 - W-CCS
 - LNG 171 kg CO2e/MWH
 - DNG 92 kg CO2e/MWH

Key Findings (Cont.)

Non-GHG Emissions

- NOX is the primary effluent, followed closely by CO, SOX and VOC's.
 - Domestic NG NOX is 30% higher than LNG cases w- and wo-CCS
- Ammonia is measurable, but less than the above emissions
 - SCR ammonia slip at the ECF
 - 5 ppmv Average during NGCC Operation
 - Emissions from the Liquefaction plant for LNG
 - 99.9% of RMA NH₃ emissions(
 - 83% of overal NH₃ emissions

Key Findings (Cont.)

Water Usage

- Primary vector of water consumption is the ECF
 - 88 97% of Consumption
- Domestic NG Small Increase in water consumption
 - wo-CCS 5% increase
 - w-CCS 3% increase
- Addition of CCS
 - Water input
 - LNG 94% increase
 - DNG 90% increase
 - Water consumption
 - LNG 90% increase
 - DNG 81% increase

Key Findings (Cont.)

Capital Costs

- Equipment Capital costs are the primary components
 - wo-CCS 89% of CC
 - w-CCS 78% of CC
- Addition of CCS
 - Additional costs for CO2 pipeline & sequestration site 17% of CC w-CCS
 - Increased Decommissioning costs (Extra equipment) increases 115%

LCOE

- Utility costs are the primary component
 - wo-CCS 68% of LCOE
 - w-CCS 53% of LCOE
- Capital Costs are second order
 - wo-CCS 23% of CC
 - w-CCS 30% of CC
- Lesser inputs from Variable O&M and Labor

Contact Information

Timothy Skone

Lead General Engineer Situational Analysis & Benefits (412) 386-4495 timothy.skone@netl.doe.gov

Robert James

General Engineer Situational Analysis & Benefits (304) 285-4309 robert.james@netl.doe.gov

Joe Marriott, PhD

Associate Booz Allen Hamilton (412) 928-4700 marriott joe@bah.com

NETL Website WWW.NETL.DOE.GOV