Notes. Volunteers?

https://bit.ly/pui-lecturenotes

Midterm review

Programming Usable Interfaces 05-430/630 Fall 2023

Alexandra Ion Anthony Levin-Decanini Carnegie Mellon University

- 1 Logistics
- 2 Recap of material
- 3 Study tips

Heads-up: Midterm Quiz

Next Monday, Oct. 9

Topics include everything in class so far, including today's lecture

- all lectures, labs, required readings
- labs: including Lab 5 and HW4 topics

"Traditional" Procedure:

- in-person, on paper, closed book
- HERE, in **TEP 1403**, 8:00am
- **60 min** (timed quiz)

Instructions

- bring your CMU ID!
- leave your backpack, jackets, etc. outside the lecture hall
- bring non-erasable pens

PUI Midterm Quiz

05-430/630 Programming Usable Interfaces, Fall 2023 Human-Computer Interaction Institute, CMU. Wednesday, October 9, 2023

Your NAME:		Number of pages handed in:			
Section: () A w/ Yi Fei	() B w/ Howie	() C w/ Yi-Hao	() D w/ Pranav	() E w/ Seyur	
Instructions					
Do this first : add your nar need to use extra sheets,		•	•	grading. If you	
This is a closed book exam	m. No materials wha	atsoever may be use	d.		
Make clear what we shoul unambiguous. Only have o should grade. No erasable pens will be graded.	ne answer for us to	grade, i.e. strike out	other versions, make	e it clear what we	
Enter the number of page grade, incl. any additional more paper, if you need.	-				
Only one person may hand otherwise please wait you before the exam ends. Aft	r turn. Then leave th	e room quietly. You r	-		
Tip: If you are stuck on a confort each question you are			, ,		
We use the following visua	al conventions:				
Radio buttons, i.e., make only one selection:			Check boxes, i.e., multiple selections possible, guaranteed that >1 to select:		
() option 1 () option 2	() option 3	[] option 1	[] option 2 []	option 3	

Suggested Materials

Lecture & Lab materials

- All slides on Canvas: https://canvas.cmu.edu/courses/36440/files
- Lecture notes: https://bit.ly/pui-lecturenotes
 - Everything discussed in class (lecture & labs) is part of the material

HTML + CSS + JavaScript

- Code examples from lectures & labs:
 https://github.com/interactive-structures/pui-materials
- Review your homework

All required readings: We discussed a lot but not all of it in class

Tentative Quiz Structure

Makeup of the quiz

Expect it to be proportional to the contents taught so far:

~65% programming

~35% UX

Types of questions

- True/False questions
- Multiple choice & Single choice questions (marked as such)
- Few free text, short answer questions
- Programming questions, for example
 - what does this code do
 - what is wrong
 - code few lines to do X
 - etc.

Topics in this slide deck are not comprehensive.

You need to review **all** materials we covered until today for the midterm.

Please don't ask if X will be on the exam.

The answer will be YES.

- **Logistics**
- Recap of material
- Study tips

HTML

- Contrast the main responsibilities of HTML, CSS, and JavaScript
- What HTML stands for
- What is hypertext, might ask you to sketch it
- What are HTML tags & attributes
- How is HTML parsed
- Grouping elements: why?
- Container elements: block-level vs inline
- What semantic elements are, their benefit(s) over the older, generic elements
- Good code style: Blank Lines and Indentation, Use Lowercase Element &
 attribute Names, Close All HTML Elements, ...

HTML: example questions

- Give one example for an inline element
- We give you short HTML code, ask you to identify the tag and the attributes
- Give one example of a semantic element that can replace a <div>
- We give you HTML code and ask you to draw the visual output

CSS

- Describe the main role of CSS within web technology
- What is a CSS declaration, property, selector
- Selectors: element, class, ID selector → how to specify them in HTML & CSS
 - Combining selectors with space, e.g., p.big li {}
 - Grouping selectors with ,
 - What pseudo-class selectors are, how to use them, give one example
- Methods of placing CSS in your HTML code, know which one is better/best and why
 - external file, style tag, inline style
- CSS rules for resolving conflicts:
 - origin precedence rule, inheritance rule, specificity rule
 - Layout models: box model, flexbox

CSS: example questions

- Example code with different selectors, describe or identify how the content will look (color, border, background, ...)
- Write a CSS declaration that changes all p content text color to red
- Given an example CSS box with content, padding, border specifications,
 draw & label the new box after setting box-sizing: border-box
- Given HTML content and CSS code with flexbox declarations, draw the layout as it will be rendered

Look at the in-class code examples (lectures & labs) and the homework

JavaScript: DOM

- Understand what the DOM is
- How you can dynamically change a webpage using JS
- The DOM represents the HTML tree structure
- Select elements from the DOM: document.querySelector() using selectors to retrieve a reference to the first match
- Can add and remove elements
- Can change element contents and element attributes, incl. CSS classes and IDs

JavaScript: Basics

- You can include JS everywhere, understand the differences and what is best coding style (think of defer)
- Variable declaration, naming, types
- Conditionals, Booleans and equality operators
- Arrays: indexing, retrieve element, length
- Purpose & structure of loops (for loop, for-of loop)

JavaScript: Advanced

- What are functions, how to declare them (syntax!), use of parameters and return values
- Scope: objects exist in the block they are declared in, not where they are called
- Events: what events are, how you add event listeners, how to declare an event handler/callback function
- Object literal: made up of multiple members, each has a name and a value.
 A member can be any object, e.g., variable, array, object, function, ...
- Constructors: how to define them, what happens when you call one

JavaScript: example questions

- Given HTML structure, draw the DOM tree
- Name the in-built JavaScript object that enables you to access the DOM
- Given HTML structure, write the JS code to select a highlighted element
- Combine two given strings into one
- Name 3 different event types
- Given an array, retrieve a given element
- Add a given text to a given paragraph element

Algorithmic thinking

- The steps of algorithmic thinking
 - 1. Understanding the problem: What is input, what is output?
 - 2. Formulating the problem: data structure, architecture
 - 3. Developing the Algorithm: define functions, code blocks, program flow
 - 4. Implementing the Algorithm: make test cases that you can run repeatedly
 - 5. Running it on the data (if applicable)
- Types of errors: syntax, logic errors
- Debugging & programming tips: implement small parts first and test
 frequently, print variable values in the console, read the error message, ...
- Code repetition is the root of all evil in software

Algorithmic thinking: example questions

- Given a problem description, break it down into small tasks that can be converted into simple code (e.g., variable assignment/increment, conditional, loop, etc.)
- Describe the difference between logic and syntax error
- Given some short code, find the error
- Describe specific steps for debugging
- Order given steps of debugging from what to do first to last

Usability Basics

- Relationship between CX, UX, and UI and examples of each
- Elements of every UX: Content, Context, and Users
- Facets of UX ►
- Usability: definition & components
- Why usability matters
 - 1. Life & death
 - 2. To businesses
 - 3. To product teams

Accessibility

- Why accessibility matters
- What are the types of disabilities, what are the models of disbility
- What is accessibility
- Assistive technologies, give examples (physical & digital)
- Web accessibility:
 - Visual: screen readers, adjust contrast/color schemes
 - Auditory: Captions, Sign Language interpretation
 - Motor: Eye trackers, adaptive buttons
 - Cognitive: Simple language, consistent navigation, color choice
- Web content accessibility guidelines: 4 principles
- Tips for text, selection, keyboard access

Accessibility: example questions

- Give an example for assistive technology for motor disability
- Give an example of accessibility for cognitive disability
- Name at least two ways of improving web accessibility.
- Give one example for how to satisfy the WCAG principle Robust on level A.
- Give examples of good alt text.
- Improve bad alt text.
- Make a case for why accessibility is important, incl. evidence.

Human Factors: Sensation & Perception

- Origin of the field of human factors
- Dreyfuss' The Measure of Man
- Senses
- Visual system
 - 1. Anatomy
 - 2. How we sense motion, color, contrast
- Auditory system
 - 1. Anatomy
 - 2. How sound is processed in the brain
- Perception & design implications:
 - 1. Color
 - 2. Contrast
 - 3. Legibility
 - 4. Visual field, tracking & scanning
 - 5. Visual attention

Human Factors: Cognition

- Historical vs. contemporary models of cognition
- Affordances & Signifiers: definitions & examples
- Conceptual models: definition & examples
- Feedback: definition & examples
- The role of emotion in cognition
- Memory:
 - Dual process theory
 - Short term vs long-term
- Mapping & grouping
 - Gestalt principles and grouping
- Cognitive biases

- 1 Logistics
- 2 Recap of material
- **3** Study tips

Suggestions for Studying

Review the lecture slides, lecture notes & lab notes

Re-read the required readings

HTML/CSS/JavaScript

Go through all the exercises (code) from the labs & lectures

Talk with other students in class about what you're learning

- What (you/they) thought were key ideas + concepts
- Asking them to describe those ideas + concepts (or vice versa)

Study tips

- 1. Read your lecture notes
 - Highlight or make marginal notes for important words or concepts. This will help fix ideas
 and will help you to actively learn the material.
 - Re-do examples yourself, step by step. Examples often look easy when explained in class, but often turn out to be much harder when you do them yourself.
 - Write down questions about things you do not understand. Bring these questions to lecture,
 lab, and to office hours and ask them.
- 2. Re-read the required readings. As you read, highlight, re-work examples yourself, and write down questions, as suggested above.
- Review your homework assignments, solutions and feedback. Event if you did not lose points on a homework question does not necessarily mean you got everything right.

end.

