V. ANÁLISE DE SINAIS

Capítulo que aborda:

- Análise espectral dos sinais
 - Interpretação das propriedades dos sinais no domínio das frequências
 - Séries de Fourier
 - Teorema da potência de Parseval
 - Largura de Banda de um sinal
- Modulação de Sinais
 - Consequências no espectro do sinal após modulação

V. ANÁLISE DE SINAIS

Sinais Periódicos

Considere-se uma forma de onda sinusoidal v(t)

$$v(t) = A \cos(\omega_0 t + \phi)$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

 ω_0 é a frequência angular

 ϕ o ângulo de fase

$$T_0 = 2\pi/\omega_0$$

$$f_0 = \frac{1}{T_0} = \frac{\omega_0}{2\pi}$$

$$W_0 = 2.\pi.f_0$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

- A sinusoide pode ser representada no plano complexo por uma exponencial ou fasor.
- Teorema de Euler:

$$e^{\pm \jmath \theta} = \cos \theta \pm \jmath \sin \theta$$

 Então pode representar-se qualquer sinusoide como sendo a parte real de uma exponencial complexa:

$$A \cos(\omega_0 t + \phi) = A \Re \left[e^{j(\omega_0 t + \phi)} \right] = \Re \left[A e^{j\omega_0 t} \cdot e^{j\phi} \right]$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Espectro de linhas unilateral

$$A \cos(\omega_0 t + \phi) = A \Re \left[e^{j(\omega_0 t + \phi)} \right] = \Re \left[A e^{j\omega_0 t} \cdot e^{j\phi} \right]$$

$$W_0 = 2.\pi.f_0$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Regras a adotar na representação espectral:

- (i) A variável independente é a frequência, f em Hz. A frequência angular ω , em radianos/seg, é uma notação sintética para o valor $2\pi f$
- (ii) Os ângulos de fase são medidos relativamente a funções cosseno. Os senos serão convertidos a cosseno através da identidade $\sin \omega t = \cos(\omega t 90^{\circ})$
- (iii) A amplitude é sempre uma quantidade positiva. Quando aparecerem sinais com amplitude negativa, esta será absorvida na fase, isto é, $-A \cos(\omega t) = A \cos(\omega t \pm 180^{\circ})$
- (iv) Os ângulos de fase são expressos em graus embora ângulos tais como ωt sejam inerentemente em radianos.

V. ANÁLISE DE SINAIS

Sinais Periódicos

Exemplo de espectro de linhas unilateral

 $v(t) = 7 - 10 \cos(40\pi t - 60^{\circ}) + 4 \sin(120\pi t)$

Comunicação de Dados

Mestrado Integrado em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

Sinais Periódicos

- É mais comum a representação de espectros de linhas bilateral por facilitar a manipulação e aplicação nalgumas ferramentas matemáticas.
- Representação espectral passa a contemplar também frequências negativas.

$$\Re[z] = 1/2(z+z^*)$$

$$A \cos(2\pi f_0 t + \phi) = \frac{A}{2} e^{j2\pi f_0 t} \cdot e^{j\phi} + \frac{A}{2} e^{-j2\pi f_0 t} \cdot e^{-j\phi}$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Espectro de Linhas Bilateral

$$A \cos(2\pi f_0 t + \phi) = \frac{A}{2} e^{j2\pi f_0 t} \cdot e^{j\phi} + \frac{A}{2} e^{-j2\pi f_0 t} \cdot e^{-j\phi}$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Exemplo de espectro de linhas bilateral

$$v(t) = 7\cos(2\pi \theta t) + 10\cos(2\pi 2\theta t + 12\theta^{\circ}) + 4\cos(2\pi 6\theta t - 9\theta^{\circ})$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

$$v(t) = v(t \pm mT_0)$$

O valor médio de v(t)

$$\langle v(t) \rangle = \frac{1}{T_0} \int_{t_1}^{t_1+T_0} v(t) dt = \frac{1}{T_0} \int_{T_0} v(t) dt$$

Potência média do sinal

$$S = \langle |v(t)|^2 \rangle = \frac{1}{T_0} \int_{T_0} |v(t)|^2 dt$$

 Se 0 < S < ∞ então o sinal é designado de sinal periódico de potência

V. ANÁLISE DE SINAIS

Sinais Periódicos

Usa-se o desenvolvimento em **Série Exponencial de Fourier** para decompor um determinado sinal periódico (apresentado no domínio do tempo) em somas de sinusoides.

Nos exemplos de espectros apresentados anteriormente o sinal v(t) já era dado como uma soma sinusoides (um valor constante também é uma sinusoide com frequência nula).

V. ANÁLISE DE SINAIS

Sinais Periódicos

Série de Fourier

Seja v(t) um sinal de potência de período $T_0=1/f_0$, o desenvolvimento em série exponencial de Fourier é igual a:

$$v(t) = \sum_{n=-\infty}^{+\infty} C_n e^{j2\pi n f_0 t}$$
 $n = 0, \pm 1, \pm 2, \cdots$

em que os coeficientes C_n da série são dados por

$$C_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} dt$$

Mestrado Integrado em Engenharia Informática

V. ANÁLISE DE SINAIS

Sinais Periódicos

Série de Fourier:

$$v(t) = \sum_{n=-\infty}^{+\infty} C_n e^{j2\pi n f_0 t}$$
 $n = 0, \pm 1, \pm 2, \cdots$

em que os coeficientes C_n da série são dados por

$$C_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} dt$$

Departamento de Informática, Universidade do Minho

- v(t) consiste numa soma de fasores de amplitude $|C_n|$ e ângulo $arg\ C_n$ com frequências $nf_0 = 0, \pm 1f_0 \pm 2f_0,...$
- A representação gráfica no domínio da frequência consiste num espectro de linhas bilateral definido pelos coeficientes da série;
- $|C_n|$ representará o espetro de amplitude;
- $arg C_n$ representará o espetro de fase.

Comunicação de Dados

Mestrado Integrado em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

Sinais Periódicos

Algumas propriedades dos espectros dos sinais de potência:

- ⇒ Todas as frequências são multiplas inteiras, harmónicas, da frequência fundamental, $f_0 = \frac{1}{T_0}$. Assim, as linhas espectrais estão uniformemente espaçadas de um valor igual a f_0
- ⇒ A componente constante é igual ao valor médio do sinal, dado que para n=0, a equação 2.10 dá

$$C_0 = \frac{1}{T_0} \int_{T_0} v(t) dt = \langle v(t) \rangle$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Após o cálculo dos coeficientes para representação espectral é possível apresentar o sinal como uma soma de sinusoides:

$$v(t) = C_0 + \sum_{n=1}^{\infty} |2C_n| \cos(2\pi n f_0 t + \arg C_n)$$

$$v(t) = 7\cos(2\pi \ 0t) + 10\cos(2\pi \ 20t + 120^{\circ}) + 4\cos(2\pi \ 60t - 90^{\circ})$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Exemplo de sinal periódico: pulso periódico de duração τ

Calcular os coeficientes de Fourier e o espectro de amplitude do sinal:

$$C_{n} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} v(t) e^{-\jmath 2\pi n f_{0} t} dt$$

$$C_{n} = \frac{1}{T_{0}} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A e^{-\jmath 2\pi n f_{0} t} dt$$

$$C_{n} = \frac{A}{-\jmath 2\pi n f_{0} T_{0}} \left(e^{-\jmath \pi n f_{0} \tau} - e^{+\jmath \pi n f_{0} \tau} \right)$$

$$C_{n} = A f_{0} \frac{\sin(\pi n f_{0} \tau)}{\pi n f_{0}} \cdots$$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Exemplo para pulso periódico de duração $T_0 = 4\tau$

V. ANÁLISE DE SINAIS

Sinais Periódicos

Exemplo para pulso periódico de duração $T_0 = 4\tau$

- O que acontece se só forem consideradas algumas componentes do espectro apresentado?
- As partes do sinal com transições mais "bruscas" resultam das harmónicas com as frequências mais altas...

V. ANÁLISE DE SINAIS

Sinais Periódicos

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

Sinais Periódicos

$$C_n = A f_0 \frac{\sin(\pi n f_0 \tau)}{\pi n f_0}$$

V. ANÁLISE DE SINAIS

V. ANÁLISE DE SINAIS

V. ANÁLISE DE SINAIS

V. ANÁLISE DE SINAIS

V. ANÁLISE DE SINAIS

Sinais Periódicos

Representação esquemática tridimensional...

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

Sinais Periódicos

Teorema da potência de Parseval

Relaciona a potência média *S* de um sinal periódico com os seus coeficientes de Fourier.

"A potência média de um sinal pode ser determinada quadrando e adicionando os coeficientes de Fourier das harmónicas que compõem o sinal."

$$S = \sum_{n=-\infty}^{+\infty} |C_n|^2 = \langle |v(t)|^2 \rangle = \frac{1}{T_0} \int_{T_0} |v(t)|^2 dt$$

Comunicação de Dados

Mestrado Integrado em Engenharia Informática Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

Sinais Não Periódicos

Espectros contínuos

Se um sinal não periódico possui uma energia total finita e não nula será representado por um espectro contínuo. Exemplo do pulso com duração τ:

Energia normalizada do sinal:

$$E \doteq \int_{-\infty}^{+\infty} |v(t)|^2 dt$$

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

Sinais Não Periódicos

Espectros contínuos

A transformada de Fourier no caso dos sinais não periódicos é dada pela função V(f) e representa o espectro do sinal, neste caso, um espectro contínuo.

$$V(f) \doteq \mathcal{F}[v(t)] = \int_{-\infty}^{+\infty} \, v(t) \, e^{-\jmath 2\pi f t} \, dt$$

V. ANÁLISE DE SINAIS

Sinais Não Periódicos

Espectros contínuos

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

V. ANÁLISE DE SINAIS

Sinais Não Periódicos

Teorema de energia de Rayleigh

Relaciona a energia *E* de um sinal não periódico com o seu espectro, i.e.,

$$E = \int_{-\infty}^{+\infty} |V(f)|^2 df$$

V. ANÁLISE DE SINAIS

Largura de Banda dum Sinal

- Relaciona-se com o intervalo de frequência onde está a maior parte da energia (ou potência média para os sinais periódicos) do sinal.
- Exemplo: sinal com uma energia = $A^2\tau$

$$E_{1/\tau} = \int_{-\frac{1}{\tau}}^{+\frac{1}{\tau}} |V(f)|^2 df$$

$$E_{1/\tau} = \int_{-\frac{1}{\tau}}^{+\frac{1}{\tau}} (A\tau)^2 \operatorname{sinc}^2(f\tau) df$$

$$E_{1/\tau} = 0.92 A^2 \tau$$

V. ANÁLISE DE SINAIS

Largura de Banda dum Sinal

Definição 2.1 —Largura de Banda de um sinal

Largura de Banda, B, de um sinal é a amplitude do menor intervalo espectral positivo que contém 90% da energia total do sinal (ou da sua potência média total, caso se trate de um sinal periódico).

Existem outras definições usadas em diferentes contextos, algumas vezes erradamente...

V. ANÁLISE DE SINAIS

Exemplo de exercício:

	Considere o sinal x(t) (em volts) que é apresentado como uma soma
	de ondas sinusoidais, sendo estas as componentes de maior energia:
	$x(t) = 0.6 \cos(100 \pi t) + 0.4 \cos(800 \pi t) + 0.3 \cos(1600 \pi t) +$
	$0.1 \cos(3200 \pi t) +$
	Assuma que o sinal tem uma potência média total de 320 miliwatt.
	Poderemos afirmar que:
A1	Trata-se de um sinal periódico com um período de 20 milisegundos e
	com valor médio igual a zero volts.
B2	Trata-se de um sinal com frequência fundamental de 100 Hz.
C3	Trata-se de um sinal com uma largura de banda de 350 Hz.
	Considere que se transmite o sinal x(t) através de um filtro passa-
D4	baixo ideal com largura de banda B _T =500 Hz e ganho igual a um.
D4	Nestas condições, à saída do filtro obteríamos um sinal com um valor
	de potência igual 260 miliwatt.

V. ANÁLISE DE SINAIS

Espectogramas: representação das características de frequência dos sinais ao longo do tempo.

V. ANÁLISE DE SINAIS

Exemplo de espectograma de sinal duma fonte áudio.

V. ANÁLISE DE SINAIS

Modulação de Sinais

Analisar as consequências das operações de modulação em amplitude e em frequência no espectro do sinal modulado em comparação com o sinal original.

V. ANÁLISE DE SINAIS

Modulação em Amplitude

A multiplicação de um sinal v(t) por uma onda sinusoidal dá origem a um novo sinal $v_m(t)$ cujo espectro é o de v(t) transladado na frequência de um valor igual à frequência do sinal sinusoidal.

Seja
$$v(t) \leftrightarrow V(f)$$

 $v(t) \cdot \cos(2\pi f_p t) \leftrightarrow \frac{1}{2} \left[V(f - f_p) + V(f + f_p) \right]$

Sinal modulado em amplitude tem uma largura de banda que é o dobro da largura de banda do sinal modulante.

V. ANÁLISE DE SINAIS

Modulação em Amplitude

Exemplo de modulação em amplitude.

V. ANÁLISE DE SINAIS

Modulação em Frequência

Sinal modulado em amplitude tem uma largura de banda que quatro vezes a largura de banda do sinal modulante.