COMP3411 Week 05 Tutorial

Yifan He

z5173587@unsw.edu.au

https://github.com/hharryyf/COMP3411-24T1-tutoring

- Branch on the feature that has the highest information gain
 - Entropy difference between the parent and the children
 - $H(\langle p_1,...,p_n \rangle) = \sum_{i=1}^n -p_i \cdot \log_2 p_i$

height	0			
short	blond	blue	+	
tall	red	blue	+	
tall	blond	blue	+	
tall	blond	brown	_	
short	dark	blue	_	
tall	dark	blue	_	
tall	dark	brown	_	
short	blond	brown	_	

•
$$E_{parent} = -\frac{3}{8} \cdot \log_2 \frac{3}{8} - \frac{5}{8} \cdot \log_2 \frac{5}{8} = 0.954$$

height	hair	eyes	hired		
short	blond	blue	+		
tall	red	blue	+		
tall	blond	blue	+		
tall	blond	ond brown			
short	dark	blue	_		
tall	dark	blue	_		
tall	dark	brown	_		
short	blond	brown	_		

- $E_{parent} = -\frac{3}{8} \cdot \log_2 \frac{3}{8} \frac{5}{8} \cdot \log_2 \frac{5}{8} = 0.954$
- Branching on height

height	hair	eyes	hired	
short	blond	blue	+	
tall	red	blue	+	
tall	blond	blue	+	
tall	blond	d brown		
short	dark	blue	_	
tall	dark	blue	_	
tall	dark	brown	_	
short	blond	brown	_	

- $E_{parent} = -\frac{3}{8} \cdot \log_2 \frac{3}{8} \frac{5}{8} \cdot \log_2 \frac{5}{8} = 0.954$
- Branching on height

- $E_{short} = -\frac{1}{3} \cdot \log_2 \frac{1}{3} \frac{2}{3} \cdot \log_2 \frac{2}{3} = 0.918$ $E_{long} = -\frac{2}{5} \cdot \log_2 \frac{2}{5} \frac{3}{5} \cdot \log_2 \frac{3}{5} = 0.971$

height	hair	eyes	hired
short	blond	blue	+
tall	red	blue	+
tall	blond	blue	+
tall	blond	brown	_
short	dark	blue	_
tall	dark	blue	_
tall	dark	brown	_
short	blond	brown	_

- $E_{parent} = -\frac{3}{8} \cdot \log_2 \frac{3}{8} \frac{5}{8} \cdot \log_2 \frac{5}{8} = 0.954$
- Branching on height

- $E_{short} = -\frac{1}{3} \cdot \log_2 \frac{1}{3} \frac{2}{3} \cdot \log_2 \frac{2}{3} = 0.918$ $E_{long} = -\frac{2}{5} \cdot \log_2 \frac{2}{5} \frac{3}{5} \cdot \log_2 \frac{3}{5} = 0.971$
- $\triangle_{height} = E_{parent} (\frac{3}{8} \cdot E_{short} + \frac{5}{8} \cdot E_{long}) = 0.003$

height	hair	hired	
short	blond	blue	+
tall	red	blue	+
tall	blond	blue	+
tall	blond	brown	_
short	dark	blue	_
tall	dark	blue	_
tall	dark	brown	_
short	blond	brown	_

height	hair	eyes	hired
short	blond	blue	+
tall	red	blue	+
tall	blond	blue	+
tall	blond	brown	_
short	dark	blue	_
tall	dark	blue	_
tall	dark	brown	_
short	blond	brown	_

Branching on hair

height	hair	eyes	hired
short	blond	blue	+
tall	red	blue	+
tall	blond	blue	+
tall	blond	brown	_
short	dark	blue	_
tall	dark	blue	_
tall	dark	brown	_
short	blond	brown	_

Branching on hair

•
$$E_{red} = E_{dark} = 0$$

•
$$E_{red} = E_{dark} = 0$$

• $E_{blond} = -\frac{2}{4} \cdot \log_2 \frac{2}{4} - \frac{2}{4} \cdot \log_2 \frac{2}{4} = 1$

height	hair	eyes	hired
short	blond	blue	+
tall	red	blue	+
tall	blond	blue	+
tall	blond	brown	_
short	dark	blue	_
tall	dark	blue	_
tall	dark	brown	-
short	blond	brown	_

Branching on hair

•
$$E_{red} = E_{dark} = 0$$

•
$$E_{red} = E_{dark} = 0$$

• $E_{blond} = -\frac{2}{4} \cdot \log_2 \frac{2}{4} - \frac{2}{4} \cdot \log_2 \frac{2}{4} = 1$

•
$$\triangle_{hair} = E_{parent} - (\frac{1}{8} \cdot E_{red} + \frac{3}{8} \cdot E_{dark} + \frac{4}{8} \cdot E_{blond}) = 0.454$$

height	hair	eyes	hired		
short	blond	blue	+		
tall	red	blue	+		
tall	blond	blue	+		
tall	blond	blond brown			
short	dark	blue	_		
tall	dark	blue	_		
tall	dark	brown	_		
short	blond	brown	-		

- You can calculate the information gain for eyes
- Branching on hair is the best
- Branching on eyes in the yellow node is the best

height	hair	eyes	hired
short	blond	blue	+
tall	red	blue	+
tall	blond	blue	+
tall	blond	nd brown	
short	dark	blue	_
tall	dark	blue	_
tall	dark	brown –	
short	blond	brown	-

- Branching on hair is the best
- Branching on eyes in the yellow node is the best

Construct the DT to the leaf might overfit

- Construct the DT to the leaf might overfit
- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - *n* is the items in the majority class
 - N is the total number of items
 - k is the number of classes

- Construct the DT to the leaf might overfit
- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - *n* is the items in the majority class
 - N is the total number of items
 - k is the number of classes
- E = 0 when the class is pure

- Construct the DT to the leaf might overfit
- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - n is the items in the majority class
 - N is the total number of items
 - k is the number of classes
- E = 0 when the class is pure
- We stop growing the tree when the Laplace Error of the parent is smaller than the Backed Up Error

- Construct the DT to the leaf might overfit
- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - n is the items in the majority class
 - N is the total number of items
 - k is the number of classes
- E = 0 when the class is pure
- We stop growing the tree when the Laplace Error of the parent is smaller than the Backed Up Error
- Backed up error is the weighted Laplace Error

- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - n is the items in the majority class
 - N is the total number of items
 - k is the number of classes

- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - *n* is the items in the majority class
 - N is the total number of items
 - k is the number of classes

•
$$E_{parent} = 1 - \frac{7+1}{11+2} = 0.385$$

- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - *n* is the items in the majority class
 - N is the total number of items
 - k is the number of classes

•
$$E_{parent} = 1 - \frac{7+1}{11+2} = 0.385$$

•
$$E_{left} = 1 - \frac{2+1}{3+2} = 0.4$$

- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - n is the items in the majority class
 - N is the total number of items
 - k is the number of classes

•
$$E_{parent} = 1 - \frac{7+1}{11+2} = 0.385$$

•
$$E_{left} = 1 - \frac{2+1}{3+2} = 0.4$$

•
$$E_{right} = 1 - \frac{6+1}{8+2} = 0.3$$

- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - n is the items in the majority class
 - N is the total number of items
 - k is the number of classes

•
$$E_{parent} = 1 - \frac{7+1}{11+2} = 0.385$$

•
$$E_{left} = 1 - \frac{2+1}{3+2} = 0.4$$

•
$$E_{right} = 1 - \frac{6+1}{8+2} = 0.3$$

•
$$E_{back} = \frac{3}{11} \cdot E_{left} + \frac{8}{11} \cdot E_{right} = 0.327$$

- Laplace Error $E = 1 \frac{n+1}{N+k}$
 - n is the items in the majority class
 - N is the total number of items
 - k is the number of classes

•
$$E_{parent} = 1 - \frac{7+1}{11+2} = 0.385$$

•
$$E_{left} = 1 - \frac{2+1}{3+2} = 0.4$$

•
$$E_{right} = 1 - \frac{6+1}{8+2} = 0.3$$

•
$$E_{back} = \frac{3}{11} \cdot E_{left} + \frac{8}{11} \cdot E_{right} = 0.327$$

• $E_{parent} > E_{back}$, don't prune

Q3 Perceptron Learning

Requirement

- Aim: train a linear separable function, that separates positive and negative instances.
- Each instance is a n-dim point $(x_1, x_2, ..., x_n)$
- Target function: weights $w_1, ..., w_n$ and a bias w_0
- Transfer: $g(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + ... + w_n \cdot x_n + w_0$
 - Positive: $g(x) \ge 0$
 - Negative: g(x) < 0

Q3 Perceptron Learning

Perceptron learning algorithm

- 1 Initialize $w_0, \ldots, w_n \ (\vec{\mathbf{w}} = < w_1, w_2, \ldots, w_n >)$
- Initialize converge = False
- Repeat the following step until converge = True
- converge = True
- **5** For each training instance $\langle \vec{\mathbf{x}}_i, y_i \rangle$

 - ② If $(y_i = 1 \text{ and } y' < 0) \text{ or } (y_i = -1 \text{ and } y' \ge 0)$
 - $\bullet \quad \vec{\mathbf{W}} = \vec{\mathbf{W}} + \eta \cdot \mathbf{y}_i \cdot \vec{\mathbf{X}}_i$
 - $\bullet \quad w_0 = w_0 + \eta \cdot y_i$
 - converge = False

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	0	-1
С	1	1	+1

#	<i>w</i> ₀	<i>W</i> ₁	W ₂	ID	<i>X</i> ₁	<i>X</i> ₂	У	$y' = \vec{\mathbf{x}}_{\mathbf{i}} \cdot \vec{\mathbf{w}} + w_0$
1	-1.5	0	2	а	0	1	-1	0.5
		•						

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	0	-1
С	1	1	+1

#	<i>W</i> ₀	<i>W</i> ₁	W ₂	ID	<i>X</i> ₁	<i>X</i> ₂	У	$y' = \vec{\mathbf{x}}_{\mathbf{i}} \cdot \vec{\mathbf{w}} + w_0$
1	-1.5	0	2	а	0	1	-1	0.5
2	-2.5	0	1	b	2	0	-1	-2.5

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	0	-1
С	1	1	+1

#	<i>w</i> ₀	<i>W</i> ₁	W ₂	ID	<i>X</i> ₁	<i>X</i> ₂	У	$y' = \vec{\mathbf{x}}_{\mathbf{i}} \cdot \vec{\mathbf{w}} + w_0$
1	-1.5	0	2	а	0	1	-1	0.5
2	-2.5	0	1	b	2	0	-1	-2.5
3	-2.5	0	1	С	1	1	+1	-1.5

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	0	-1
С	1	1	+1

#	w_0	<i>W</i> ₁	<i>W</i> ₂	ID	<i>X</i> ₁	<i>X</i> ₂	У	$y' = \vec{\mathbf{x}}_{\mathbf{i}} \cdot \vec{\mathbf{w}} + w_0$
1	-1.5	0	2	а	0	1	-1	0.5
2	-2.5	0	1	b	2	0	-1	-2.5
3	-2.5	0	1	С	1	1	+1	-1.5
4	-1.5	1	2	а	0	1	-1	0.5
	•		•				•	

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	0	-1
С	1	1	+1

1 -1.5 0 2 a 0 1 -1 0.5 2 -2.5 0 1 b 2 0 -1 -2.5	
2 -2.5 0 1 b 2 0 -1 -2.5	
3 -2.5 0 1 c 1 1 +1 -1.5	
4 -1.5 1 2 a 0 1 -1 0.5	
5 -2.5 1 1 b 2 0 -1 -0.5	

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	0	-1
С	1	1	+1

#	w_0	<i>W</i> ₁	W ₂	ID	<i>X</i> ₁	<i>X</i> ₂	У	$y' = \vec{\mathbf{x}}_{\mathbf{i}} \cdot \vec{\mathbf{w}} + w_0$
1	-1.5	0	2	а	0	1	-1	0.5
2	-2.5	0	1	b	2	0	-1	-2.5
3	-2.5	0	1	С	1	1	+1	-1.5
4	-1.5	1	2	а	0	1	-1	0.5
5	-2.5	1	1	b	2	0	-1	-0.5
6	-2.5	1	1	С	1	1	+1	-0.5

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	0	-1
С	1	1	+1

#	w_0	<i>W</i> ₁	W ₂	ID	<i>X</i> ₁	<i>X</i> ₂	У	$y' = \vec{\mathbf{x}}_{\mathbf{i}} \cdot \vec{\mathbf{w}} + w_0$
1	-1.5	0	2	а	0	1	-1	0.5
2	-2.5	0	1	b	2	0	-1	-2.5
3	-2.5	0	1	С	1	1	+1	-1.5
4	-1.5	1	2	а	0	1	-1	0.5
5	-2.5	1	1	b	2	0	-1	-0.5
6	-2.5	1	1	С	1	1	+1	-0.5
7	-1.5	2	2	а	0	1	-1	0.5

Instance	<i>X</i> ₁	<i>X</i> ₂	У
а	0	1	-1
b	2	2 0	
С	1	1	+1

#	w_0	<i>W</i> ₁	W ₂	ID	<i>X</i> ₁	<i>X</i> ₂	У	$y' = \vec{\mathbf{x}}_{\mathbf{i}} \cdot \vec{\mathbf{w}} + w_0$
1	-1.5	0	2	а	0	1	-1	0.5
2	-2.5	0	1	b	2	0	-1	-2.5
3	-2.5	0	1	С	1	1	+1	-1.5
4	-1.5	1	2	а	0	1	-1	0.5
5	-2.5	1	1	b	2	0	-1	-0.5
6	-2.5	1	1	С	1	1	+1	-0.5
7	-1.5	2	2	а	0	1	-1	0.5
8	•••	•••						•••

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff *output* ≥ 0

Perceptron for logical OR

2 inputs

- The output is greater than 0 if either green node is 1
- The output is less than 0 if both green nodes are 0

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff *output* ≥ 0

Perceptron for logical OR

2 inputs

- The output is greater than 0 if either green node is 1
- The output is less than 0 if both green nodes are 0

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff *output* ≥ 0

Perceptron for logical OR

m inputs

- The output is greater than 0 if either green node is 1
- The output is less than 0 if all green nodes are 0

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff $output \ge 0$

Perceptron for logical OR

m inputs

- The output is greater than 0 if either green node is 1
- The output is less than 0 if all green nodes are 0
- The weights are 1, the bias is -0.5

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff *output* ≥ 0

Perceptron for logical AND

2 inputs

- Output is greater than 0 if both green nodes are 1
- The output is less than 0 if either green node is 0

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff *output* ≥ 0

Perceptron for logical AND

2 inputs

- Output is greater than 0 if both green nodes are 1
- The output is less than 0 if either green node is 0

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff $output \ge 0$

Perceptron for logical AND

m inputs

- Output is greater than 0 if all green nodes are 1
- The output is less than 0, otherwise

Requirement

- Input for each variable is 0 (False) or 1 (True)
- The expression is true iff $output \ge 0$

Perceptron for logical AND

m inputs

- Output is greater than 0 if all green nodes are 1
- The output is less than 0, otherwise
- The weights are all 1, the bias is $\frac{1}{2} m$

- $\bullet (A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$
- 1 input node for each variable, 1 output node

- $\bullet (A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$
- 1 input node for each variable, 1 output node

- Solve components by components
- Red node is true iff all green nodes are true

- $\bullet (A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$
- 1 input node for each variable, 1 output node

- Red node is true iff all green nodes are true
- Use the "AND modeling" method

- $\bullet (A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$
- 1 input node for each variable, 1 output node

- C_1 node is true iff either A or B is true
- Use the "OR modeling" method

2-layer Neural network for CNF

- $\bullet (A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$
- 1 input node for each variable, 1 output node

C₂ node is false iff B and D are true, C is false

2-layer Neural network for CNF

- $\bullet (A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$
- 1 input node for each variable, 1 output node

• C₂ node is false iff D is false and E is true