- 1. Let V and W be finite dimensional vector spaces with given bases $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ and $\mathcal{D} = \{\vec{d}_1, \dots, \vec{d}_m\}$, respectively.
 - (a) For a given $\vec{x} \in V$, there are unique scalars so that $\vec{x} = a_1 \vec{b}_1 + \dots + a_n \vec{b}_n$. Define the vector $[\vec{x}]_{\mathcal{B}} := (a_1, \dots, a_n)^T \in \mathbb{C}^n$. Show that the map $\vec{x} \mapsto [\vec{x}]_{\mathcal{B}}$ is a linear isomorphism from V into \mathbb{C}^n .

Linearity: Let \vec{x} , $\vec{y} \in V$. Then write $\vec{x} = a_1 \vec{b}_1 + \dots + a_n \vec{b}_n$ and $\vec{y} = c_1 \vec{b}_1 + \dots + c_n \vec{b}_n$. Now:

$$[\vec{x} + \vec{y}]_{\mathcal{B}} = \begin{bmatrix} a_1 + c_1 \\ \vdots \\ a_n + c_n \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = [\vec{x}]_{\mathcal{B}} + [\vec{y}]_{\mathcal{B}}$$
$$[\alpha \vec{x}]_{\mathcal{B}} = \begin{bmatrix} \alpha a_1 \\ \vdots \\ \alpha a_n \end{bmatrix} = \alpha \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \alpha [\vec{x}]_{\mathcal{B}}.$$

So $[\cdot]_{\mathcal{B}}$ is linear.

Isomorphism: Since $\dim V = \dim \mathbb{C}^n = n$, it will suffice to show that this mapping is injective. We do so by showing $\ker[\cdot]_{\mathcal{B}} = \{0\}$. Clearly 0 is in the kernel since $[0]_{\mathcal{B}} = [0\vec{x}]_{\mathcal{B}} = 0$. For inclusion the other way, let $\vec{x} \in \ker[\cdot]_{\mathcal{B}}$. Then $[\vec{x}]_{\mathcal{B}} = 0$; meaning the basis representation of \vec{x} is through zero coefficients; and

$$\vec{x} = 0\vec{b}_1 + \ldots + 0\vec{b}_n = 0.$$

So $\ker[\cdot]_{\mathcal{B}} = \{0\}$, and this map is injective. But since the spaces are of the same dimension it must also be surjective thanks to Rank-Nullity. So the map is a linear isomorphism from V to \mathbb{C}^n .

(b) Let $T:V\to W$ be a linear map. In class, we defined the matrix representation of T with respect to $\mathcal B$ and $\mathcal D$ as the $m\times n$ matrix $[T]_{\mathcal B\mathcal D}=[[T\vec b_1]_{\mathcal D},\ldots,[T\vec b_n]_{\mathcal D}]$. In other words, the j-the column of $[T]_{\mathcal B\mathcal D}$ is $[T\vec b_j]_{\mathcal D}$. Show that $[T]_{\mathcal B\mathcal D}[\vec x]_{\mathcal B}=[T\vec x]_{\mathcal D}$ for any $\vec x\in V$.

Solution: Let $T: V \to W$ be linear, then write $\vec{x} = a_1 \vec{b}_1 + ... + a_n \vec{b}_n$.

$$[T]_{\mathcal{BD}}[\vec{x}]_{\mathcal{B}} = [[T\vec{b}_{1}]_{\mathcal{D}} \dots [T\vec{b}_{n}]_{\mathcal{D}}] \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix}$$

$$= a_{1}[T\vec{b}_{1}]_{\mathcal{D}} + \dots + a_{n}[T\vec{b}_{n}]_{\mathcal{D}}$$

$$= [a_{1}T\vec{b}_{1} + \dots + a_{n}T\vec{b}_{n}]_{\mathcal{D}}$$

$$= [T(a_{1}\vec{b}_{1} + \dots + a_{n}\vec{b}_{n})]_{\mathcal{D}}$$
By linearity of T

$$= [T\vec{x}]_{\mathcal{D}}.$$

(c) Show that $[T]_{\mathcal{BD}}$ is a linear isomorphism from L(V, W) (the vector space of linear maps from V to W) to $M_{mn}(\mathbb{C})$ (vector space of $m \times n$ complex matrices).

Linearity: Let *T*, *S* be linear from *V* to *W*. Then:

$$\begin{split} [T+S]_{\mathcal{B}\mathcal{D}} &= \left[[(T+S)\vec{b}_1]_{\mathcal{D}} \dots [(T+S)\vec{b}_n]_{\mathcal{D}} \right] \\ &= \left[[(T\vec{b}_1 + S\vec{b}_1)]_{\mathcal{D}} \dots [(T\vec{b}_n + S\vec{b}_n)]_{\mathcal{D}} \right] \\ &= \left[[T\vec{b}_1]_{\mathcal{D}} \dots [T\vec{b}_n]_{\mathcal{D}} \right] + \left[[S\vec{b}_1]_{\mathcal{D}} \dots [S\vec{b}_n]_{\mathcal{D}} \right] \quad \text{By Linearity of } [\cdot]_{\mathcal{D}} \\ &= [S]_{\mathcal{B}\mathcal{D}} + [T]_{\mathcal{B}\mathcal{D}}. \end{split}$$

And then letting $\alpha \in \mathbb{C}$,

$$\alpha[T]_{\mathcal{BD}} = \alpha[[T\vec{b}_1]_{\mathcal{D}} \dots [T\vec{b}_n]_{\mathcal{D}}]$$

$$= [\alpha[T\vec{b}_1]_{\mathcal{D}} \dots \alpha[T\vec{b}_n]_{\mathcal{D}}]$$

$$= [[\alpha T\vec{b}_1]_{\mathcal{D}} \dots [\alpha T\vec{b}_n]_{\mathcal{D}}]$$

$$= [\alpha T]_{\mathcal{BD}}.$$
Linearity of $[\cdot]_{\mathcal{D}}$

Injective: Clearly $0 \in \ker[\cdot]_{\mathcal{BD}}$; take any transformation T and $[0]_{\mathcal{BD}} = [T - T]_{\mathcal{BD}} = [T]_{\mathcal{BD}} - [T]_{\mathcal{BD}} = 0$.

Then let $\mathcal{B} = \{b_1, \dots, b_n\}$ and $T \in \ker[\cdot]_{\mathcal{BD}}$. Then:

$$[T]_{\mathcal{BD}} = 0$$
$$[[Tb_1]_{\mathcal{D}} \dots [Tb_n]_{\mathcal{D}}] = [0 \dots 0].$$

Then $[Tb_i]_{\mathcal{D}}=0$ for any basis vector b_i . In particular this means that $TB_i=0$, since $[\cdot]_{\mathcal{D}}$ is an isomorphism. Now for any arbitrary $v\in V$, write $v=a_1b_1+\ldots a_nb_n$. Then $Tv=T(a_1b_1+\ldots a_nb_n)=a_1Tb_1+\ldots +a_nTb_n=0+\ldots +0=0$ and T=0.

Therefore $\ker[\cdot]_{\mathcal{BD}} = \{0\}.$

Surjective: The argument that $\dim L(V,W) = \dim M_{mn}(\mathbb{C})$ proves difficult, so instead we show directly that $[L(V,W)]_{BD} = M_{mn}(\mathbb{C})$.

Let $A \in M_{mn}(\mathbb{C})$, and write $A = [\vec{a}_1 \dots \vec{a}_n]$, where \vec{a}_j are column vectors in \mathbb{C}^m . Then take the inverse map for $[\cdot]_D$ (which was shown to exist in 1(a)), denote it $[\cdot]_D^{-1}$ and define T on the basis vectors in \mathcal{B} such that $Tb_j = [\vec{a}_j]_D^{-1}$. Then:

$$[T]_{\mathcal{BD}} = [[Tb_1]_{\mathcal{D}} \dots [Tb_n]_{\mathcal{D}}]$$

$$= [[[\vec{a}_1]_{\mathcal{D}}^{-1}]_{\mathcal{D}} \dots [[\vec{a}_n]_{\mathcal{D}}^{-1}]_{\mathcal{D}}]$$

$$= [\vec{a}_1 \dots \vec{a}_n]$$

$$= A.$$

So every arbitrary matrix has a preimage in the space of linear transformations, and therefore the mapping is onto. Since $[\cdot]_{\mathcal{BD}}$ is bijective and linear, it must then be an isomorphism.

2. Let V, W and U be finite dimensional vector spaces with given bases:

 $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}, \mathcal{D} = \{\vec{d}_1, \dots, \vec{d}_m\}, \text{ and } \mathcal{F} = \{f_1, \dots, f_k\}, \text{ respectively. Suppose } T: V \to W \text{ and } S: W \to U \text{ are linear. Prove or disprove the following statement for the composition linear map } ST: V \to U$:

$$[ST]_{BF} = [S]_{DF}[T]_{BD}$$
.

Solution: We make great use of the property shown in 1(b). Where it is used will be marked with (*). Let $v \in V$ be arbitrary and recall that $[v]_{\mathcal{B}}$ is unique since $[\cdot]_{\mathcal{B}}$ is an isomorphism.

$$[ST]_{\mathcal{B}\mathcal{F}}[v]_{\mathcal{B}} = [STv]_{\mathcal{F}} \qquad (*)$$

$$= [S]_{\mathcal{D}\mathcal{F}}[Tv]_{\mathcal{D}} \qquad (*)$$

$$= [S]_{\mathcal{D}\mathcal{F}}[T]_{\mathcal{B}\mathcal{D}}[v]_{\mathcal{B}} \qquad (*)$$

So we have shown that these matrices $[ST]_{\mathcal{BF}}$ and $[S]_{\mathcal{DF}}[T]_{\mathcal{BD}}$ agree upon all vectors in the image of $[\cdot]_{\mathcal{B}}$. However since this particular mapping is onto, we know this to be all of \mathbb{C}^n . This means the matrices agree upon all of \mathbb{C}^n and therefore they must be equal.

3. Let V be a finite dimensional vector space and $T: V \to V$ be linear. Show that $\sigma(T) = \sigma([T]_{\mathcal{B}})$ where \mathcal{B} is any basis for V.

Linearity of inverse: To show this we use the fact that $[\cdot]^{-1}_{\mathcal{B}}$ is linear from L(V,V) to $M_{mn}(\mathbb{C})$. Included is a brief demonstration of this fact. Let $T,S\in L(V,V)$ and $\alpha\in\mathbb{C}$.

$$\begin{split} [T]_{\mathcal{B}}^{-1} + [S]_{\mathcal{B}}^{-1} &= [[[T]_{\mathcal{B}}^{-1} + [S]_{\mathcal{B}}^{-1}]_{\mathcal{B}}]_{\mathcal{B}}^{-1} \\ &= [[[T]_{\mathcal{B}}^{-1}]_{\mathcal{B}} + [[S]_{\mathcal{B}}^{-1}]_{\mathcal{B}}]_{\mathcal{B}}^{-1} \\ &= [T + S]_{\mathcal{B}}^{-1}. \end{split}$$

$$\alpha [T]_{\mathcal{B}}^{-1} &= [[\alpha [T]_{\mathcal{B}}^{-1}]_{\mathcal{B}}]_{\mathcal{B}}^{-1} \\ &= [\alpha [[T]_{\mathcal{B}}^{-1}]_{\mathcal{B}}]_{\mathcal{B}}^{-1} \\ &= [\alpha T]_{\mathcal{B}}^{-1}. \end{split}$$

Solution: \subseteq : Let $\lambda \in \sigma(T)$, and let \vec{v} be an associated eigenvector. We show that $[\vec{v}]_{\mathcal{B}}$ is an eigenvector for λ under $[T]_{\mathcal{B}}$.

$$[T]_{\mathcal{B}}[\vec{\mathbf{v}}]_{\mathcal{B}} = [T\vec{\mathbf{v}}]_{\mathcal{B}}$$
 By 1(b)
= $[\lambda\vec{\mathbf{v}}]_{\mathcal{B}}$
= $\lambda[\vec{\mathbf{v}}]_{\mathcal{B}}$ [:] $_{\mathcal{B}}$ is linear.

 \supseteq : Let τ be an eigenvalue of $[T]_B$ with associated eigenvector \vec{y} . Since $[\cdot]_B$ is an isomorphism, \vec{y} has a unique preimage under the mapping, say \vec{x} so that $[\vec{x}]_B = \vec{y}$. Recall that $[\cdot]_B$ also must have an inverse. Denote this $[\cdot]_B^{-1}: M_{mn}(\mathbb{C}) \to L(V, W)$.

$$T\vec{x} = [[T\vec{x}]_{\mathcal{B}}]_{\mathcal{B}}^{-1}$$

$$= [[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}]_{\mathcal{B}}^{-1}$$

$$= [[T]_{\mathcal{B}}\vec{y}]_{\mathcal{B}}^{-1}$$

$$= [\tau\vec{y}]_{\mathcal{B}}^{-1}$$

$$= \tau[\vec{y}]_{\mathcal{B}}^{-1}$$

$$= \tau\vec{x}.$$
Again by 1(b)
$$[\cdot]_{\mathcal{B}}$$
 is linear
$$= \tau\vec{x}.$$

Therefore $\sigma(T) = \sigma([T]_{\mathcal{B}})$.

4. Let A be an $n \times n$ complex matrix with $\sigma(A) = \{1\}$. Show that A is diagonalizable if and only if A is the identity matrix.

 \implies : Let A be a diagonalizable matrix and $\sigma(A) = \{1\}$. Then there exists some invertible S so that $S^{-1}AS = D = \text{diag}\{1, ..., 1\} = I$. Multiply both sides:

$$S^{-1}AS = I$$

$$SS^{-1}ASS^{-1} = SIS^{-1}$$

$$A = SS^{-1}$$

$$A = I.$$

 \Leftarrow : Conversely, if A = I, then take the invertible matrix I, so that $IAI^{-1} = A = I$, and since I is diagonal, A is diagonalizable.

5. Determine whether or not the derivative map $D: P_n \to P_n$ given by Dp(z) = p'(z) is diagonalizable.

Claim: The k + 1-th derivative of a polynomial of degree $k \in \mathbb{C}[x]$ is identically zero.

Proof of claim: Proceed by induction on the degree of *p*.

Base case: If p has degree 0, then p is constant and has zero derivative, and as such, any subsequent derivative will be zero.

Inductive hypothesis: Suppose that the k-th derivative of any $p \in \mathbb{C}[x]$ with $\deg p = k - 1$ is identically zero.

Inductive step: Let $f(x) \in \mathbb{C}[x]$ be of degree k. Write $f(x) = a_0 + a_1x + \ldots + a_kx^k$ for complex a_i . Then $Df(x) = a_1 + 2a_2 + \ldots + ka_nx^{k-1}$. And since this polynomial Df is of degree k-1, by the inductive hypothesis the k-th derivative of this must be zero, and $D^{k+1}f = D(D^kf) = 0$. Therefore by induction on deg f, the derivative operator is nilpotent on $\mathbb{C}[x]$

Solution: The derivative map is nilpotent on P_n for $n \ge 1$ (For n = 0, $D^1 = D = 0$, a diagonal operator), and since nilpotent operators are not diagonalizable, the derivative operator is not diagonalizable for $n \ge 1$.