Mathe 1 Tutorium Blatt 9

Alex B.

Januar 2025

1 Komplexe Zahlen

- $\bullet\,$ Die Menge der Zahlen z=a+bimit dem Realteil a und dem Imaginärteil b bildet die komplexen Zahlen
- $i^2 = -1!$ Ansonsten bleiben die bekannten Rechenregeln erhalten
- \bullet Durch Subtraktion statt Addition erhält man die konjungiert komplexe Zahl. $z=a+bi, \bar{z}=a-bi$
- Der Betrag einer komplexen Zahl ist $z = a + bi, |z| = \sqrt{a^2 + b^2}$
- Bei einer Division durch eine komplexe Zahl wird mit deren konjungiert komplexen Gegenstück erweitert.

2 Aufgaben

- Berechne das Ergebnis der folgenden Aufgaben
 - a) (2+3i)*5
 - b) (1+4i)*(-2-3i)
 - c) $z = 5 + 6i, |z|.\bar{z}$
 - d) $z = 2 + i, w = 1 i, \frac{z}{w}$

3 Gaußsche Zahlenebene

- Polarform von komplexen Zahlen: $|z|*(\cos(\varphi)+i*\sin(\varphi)), \varphi=\arctan(\frac{b}{a})$ für a>0 $\varphi=\arctan(\frac{b}{a})+\pi$ für a<0. Für a=0 und b<0 gilt $\varphi=-\frac{\pi}{2}$, für b>0 $\varphi=\frac{\pi}{2}$
- Exponentialdarstellung von komplexen Zahlen: $|z| * e^{i*\varphi}$

4 Aufgaben

- \bullet Gib nachfolgende komplexe Zahlen in Polarform und Exponentialdarstellung an
 - a) i
 - b) -i
 - c) 3 + 4i
 - d) -2 5i
- Berechne folgende Komplexe Zahlen:
 - a) i^{14}
 - b) $(1+2i)^4$
 - c) $\sqrt{4 * e^{\frac{3\pi}{2} * i}}$
 - d) $\sqrt[4]{16 * e^{i*180}}$