AFLL ISA-1 Practice Quiz

* Required

Answer All Questions (Time Limit : 45 min)	
Choose the FALSE Statement *	1 point
Deterministic Finite Automata are strictly weaker class than Non-deterministi Finite Automata (NFAs), i.e., there exists a language that is accepted by an NF but is not accepted by any DFA.	
Let Σ = (,) be an alphabet. Then the grammar G: S \rightarrow (S) represents the empty language.	,
There are regular languages that contain context-free languages as subsets.	
\bigcirc a^nb^m, where the alphabet is a, b and $n \ge 0$, $m \ge 0$, is a regular language.	
The complement of an infinite language is necessarily finite. *	1 point
True	
False	

!

. Given an arbitrary non-deterministic finite automaton (NFA) with N states, 1 point the maximum number of states in an equivalent minimized DFA is at most.
○ N^2
2^N
○ 2N
○ N!

The number of derivation steps required to derive a string of length x from $\ ^{1}$ point a grammar in GNF are *

- O x 1
- X
- () x +
- 2x

2 of 16

Consider the set of strings on {0,1} in which, every substring of 3 symbols 2 points has atmost two zeros. For examples, 001110 and 011001 are in the language, but 100010 isnot. All strings of length less than 3 are also in the language. A partially completed DFA that accepts this language is shown below. *

(A)		
	0	1
00	01	00
01		11
10	00	
11	10	
q		
(C)		

	0	1
00	q	01
01		01
10	10	
11	01	
q		

\bigcirc	Α
	В
	С

	0	1
00	01	q
01		01
10	11	

(B)

(D)

01		01
10	11	
11	01	
q		

	0	1
00	q	01
01		11
10	00	
11	10	
q		

Definition of a language L with alphabet $\{a\}$ is given as following. L= $\{a^n(n) \mid 1 \text{ point } n > 0$, and n is a positive integer constant $\}$ What is the minimum number of states needed in a DFA to recognize L? *

- () r
- \bigcap n + 1
- n+2
- ① 2^rr
- 2⁽ⁿ⁺¹⁾

5 of 16 13/10/20, 12:05 pm

What is the complement of the language accepted by the NFA shown below? Assume Σ = {a} *

1 point

- We cannot take compliment of NFA
- a+
- (λ
- Ο Φ

The language represented by the given NFA is (here ε is the empty string) 2 points 3 q_0 q_2 0* + 11*1 0*11*1 11*1 0*1* Ο* (ε+ 11*1)

A PDA behaves like a FSM when the amount of auxiliary memory it has is * 1 point

- 0
- \bigcirc 1
- \bigcirc 2
- Infinite

Consider the following regular expression: (a + ab + abc) * Which of the following regular expressions denote the same language as the above regular expression? *

- (ϵ + a + ab + abc)
- \bigcirc a(ε + b + bc)
- \bigcirc a*(ϵ + b + bc)*
- (a(ϵ + b + bc))*
- \bigcirc a* + (ab)* + (abc)*

Pick the right option to complete the given statement S, where S = "Any 2 points string of terminals that can be generated by the following CFG *

$$S \rightarrow XY$$

 $X \rightarrow aX \mid bX \mid a$
 $Y \rightarrow Ya \mid Yb \mid a$

- A Has atleast one b
- Should end in an 'a'
- Has no consecutive a's and b's
- Has atleast two a's

2 points

Consider the following Context-Free Grammar (CFG) G:

$$\begin{array}{ccc} S & \rightarrow & X \mid XY \\ X & \rightarrow & aXb \mid aYb \\ Y & \rightarrow & bYc \mid \epsilon \end{array}$$

where S, X, Y are nonterminal symbols, S is the start symbol, and a, b, c are terminal symbols.

Which of the following statements about the language L(G) generated by G are correct?

- (i) $\epsilon \in L(G)$
- (ii) $aaabbbcc \in L(G)$
- (iii) $aabbbbcc \in L(G)$
- (iv) $\{a^i b^i b^j c^j \mid i, j \in \mathbb{N}, i > 0\} = L(G)$
- (v) The following CFG G' is equivalent to G above, i.e. L(G') = L(G):

$$\begin{array}{ccc} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid ab \\ Y & \rightarrow & bYc \mid \epsilon \end{array}$$

- (i)
- (ii)
- (iii)
- (iv)
- (v)

В

Identify all the nullable variables *

1 point

Consider the following Context-Free Grammar (CFG):

$$S \rightarrow ABC \mid BC$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow b \mid C$$

$$C \rightarrow cc \mid dd \mid \epsilon$$

 $S,\,A,\,B,\,{\rm and}\,\,C$ are nonterminals, $a,\,b,\,c,\,{\rm and}\,\,d$ are terminals, and S is the start symbol.

- O only
- B and C Only
- S, B and C only
- All variables are nullable

Identify the language of the given PDA *

2 points

- \bigcirc L={a^n b^n | n>=0}
- L={a^n b^2n | n>=0}
- \bigcirc L={a^n b^m | n>=0,m>=0}
- L={a^n b^2m | n>=0,m>=0}

A->BB 0 B->BA 1 C->AC AA 0 BB	->AB E	зс						
3->BA 1 3->AC AA 0 3-BB								
S,B A,C S S,B S A,C A S S,B A S,B C B A,C B A,C A,C 1 1 0 1 0 0								
S,B A,C S S,B S A,C A S S,B A S,B C B A,C B A,C A,C 1 1 0 1 0 0	C->AC	AA 0						
S,B A,C S S,B S A,C A S S,B A S,B C B A,C B A,C A,C 1 1 0 1 0 0								
S,B A,C S S,B S A,C A S S,B A S,B C B A,C B A,C A,C 1 1 0 1 0 0								
S,B S S,B C S,B C B A,C A,C O O	S,B							
A,C A S S,B A S,B C B A,C B A,C A,C 1 1 0 1 0 0	S,B	A,C						
S,B S S,B C B A,C B A,C A,C 1 1 0 1 0 0	S,B		S					
B A,C B A,C A,C 1 1 0 1 0 0	A,C	A	S	S,B				
1 1 0 1 0	Α :	S,B	S	S,B	С			
	в Г	В	A,C	В	A,C	A,C		
	1	1	0	1	0		0	
						A,C	0	
	A,C							
A,C								

!

Given is the regular grammar for the regular expression (a+b+)+ with terminals {a,b} and non-terminals {S, P, Q}, S being the initial state and Q, Choose the production missing in the below grammar for the given regular expression. *
S->aS aP P->bQ Q->aP aS lamda
S->bS
P->bP
Q->bQ
○ S->bP

Pick the string for which the given grammar is ambiguous. G=({S,B}, {a,b,c,d},{P},{S}), *

S->aS|SB|d
B->Bb|c

aaad

adc

dcbb

None of the mentioned options

Which of the following statement is false? *

1 point

- $\begin{tabular}{l} \hline \end{tabular} If we add a finite set of strings to a regular language, the result is a regular language \\ \hline \end{tabular}$
- If we remove a finite set of strings from a regular language, the result is a regular language
- If A is a nonregular language and B is a language such that $B \subseteq A$, then B must be regular
- $\begin{tabular}{ll} \hline O & If language A is recognized by an NFA , and language B is recognized by some DFA then A <math display="inline">\circ$ B is a regular language.

Find the λ -Closure of state 8 from the given NFA. *

1 point

- 8
- 8,1,2
- 7, 6, 5, 2, 1
- 8, 7, 6, 5, 2, 1

ŀ

If language L={0,1}*, then the reversed language L^R = *	1 point
{0,1}*	
О Ф	
Cannot be determined	
(1,0)	

Identify the unambiguous grammar *

2 points

- \bigcirc S \rightarrow a | aAb | abSb, A \rightarrow aAAb | bS
- S -> baS | b
- S -> aSb | bSa | SS | λ

Back

Next

Page 2 of 4

Never submit passwords through Google Forms.

This form was created inside of PES Institutions. Report Abuse

Google Forms

