STA 4990 Introduction to Statistical Learning

Spring 2023

Thursday March 2

LDA, QDA, Naive Bayes all use Bayes Theorem

$$P(Y=k|X=x) = \frac{\pi_k f_k(x)}{\sum_{k=1}^{K} \pi_k f_k(x)}$$

They differ in the assumptions on $f_k(x) = \|P(X=x|Y=k)\|$

Ŋ	Height	Weight
,,,,		1
Heigh	Mt XI,	weight Normal J
WUY	ht (is different from this Height

Ex 1

Ex	2		
4	Height	Weight	
,,,,	, ,	1 ,	
Щ.	1	h_	
	Height		Weight
	is norm	la (XZ is NOT
(veight γ		

e height and weight look
relatively uncorrelated
a Height

Naive Bages

- · LDA/ add assume X is normally distributed: X ~ MVN(M, Z) coveriance matrix, describes variances and correlations of all variables
- · Naive Bayes assumes each X1, --, Xp is independent of one another

$$f_{k}(x_{1},x_{2},x_{p}) = f_{k_{1}}(x_{1}) f_{k_{2}}(x_{2}) \cdots f_{k_{p}}(x_{p})$$

Y=k

Coordinate of X

- -> Highly flexible, since each frej(xj) can have a different distribution (ex X, ~ N(M, or), X2~Exp(2))
- => More appropriate when some x; are categorical/binary
- => Independence assumption is rarely true! (Despite this, its flexibility Still makes it a good mode! when n is very large, even if X1, ", Xp are not independent).

Naive Bayes Syntax

3

5 ## 6

No No 1073.5492 31767.139 No No 529.2506 35704.494 No No 785.6559 38463.496

No No 785.6559 38463.496 No Yes 919.5885 7491.559

```
library(caret)
library(modelr)
library(ISLR)
head(Default)
## default student balance
                               income
## 1
        No No 729.5265 44361.625
## 2
        No
              Yes 817.1804 12106.135
```

Comparing Classification Methods Thus Far

	Model Form	Notes
Lagistic Regression	$P(Y=k X=x) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$	- No assumption on dist. of X - Assumes prob. has form on left - Linear decision boundary
LDA all 3 use	XIY=k~MVN(MK, Z)	- Assums X is normal (strong assumption) -> Voriances/correlations are some regardless - Linear Desistan boundary
QDA Buyes Thin P(Y=h)X=x)	$X(Y=k \sim MUN(\mu_k, \Sigma_k)$	- Assumes X is normal - Narianus/correlations are different depending - Quadratic decision boundary
Naire Bayes Ettefix	$f_{\mathbf{k}}(\mathbf{x}_{1}, \mathbf{x}_{p}, \mathbf{x}_{p}) = f_{\mathbf{k}_{1}}(\mathbf{x}_{1}) - f_{\mathbf{k}_{p}}(\mathbf{x}_{p})$	- Assumes X, -, Xe are interculent (strong - Highly flexible - Any distis can be used for fkj(xj)
KNN	$P(Y = k X = x) = \frac{\# \cdot \text{of } Y = k \text{ in } N x)}{\# \text{ in } V(x)}$ $V(x) \text{ is a "neighborhood" around } x$	- Nonparametric (others are all parametric) - Highly flexible (good when n large) - Has problems when p is large

EX! Above

X's are normal (LDA+aDA good). Different variance/correlation depending on or *

Ex 2 Above

X2 is not normal UDA tada bad)

X, Xz are uncorrelated => Naive Bayes is good

Synthetic Examples (K=2)

Scenario 1 :	
V=10, b=5	X1, X2 are uncorrelated and normally distributed
	(same vortance)

JOHNOUIO L.	
Same as 1, but	corr(K, X2) = -0.5

Scenario 3: As before, but X1 and X2 are t-distributed (heavy tailed)

Hy poth	esized R	lanlein y	uoust Best (1-10	(My ran in pink)	kív)
Logit	LDA	DDA	NB	KNN	_
8	10	7	9	5	
8	10	8	3	6	
9	6	5	6	7	

Synthetic Experiments

FIGURE 4.11. Boxplots of the test error rates for each of the linear scenarios described in the main text.

FIGURE 4.12. Boxplots of the test error rates for each of the non-linear scenarios described in the main text.

Prostate

```
• lcavol: log-cancer volume
   • lweight: log prostate weight
   • age: age in years
   • 1bph: log benign prostatic hyperplasia
   • svi: seminal vesicle invasion
   • lcp: log of capsular penetration
   • gleason: Gleason score
   • pgg45: percent of Gleascores 4/5
   • lpsa: Outcome. Log of PSA (prostate specific antiqen)
   • train: TRUE or FALSE (added variable)
Turn into classification problem: categorize if lpsa greater than 3 (high PSA)
library(dplyr)
library(ggplot2)
library(genridge)
prostate$PSAhigh <- as.factor(prostate$lpsa > 3)
prostate$svi <- as.factor(prostate$svi)</pre>
prostate <- prostate %>% select(-lpsa)
head(prostate)
                                                      lcp gleason pgg45 train PSAhigh
##
          lcavol lweight age
                                     lbph svi
```

6

6

7

6

6

0 -1.386294

0 -1.386294

O TRUE

O TRUE

20 TRUE

O TRUE

TRUE

TRUE

0

FALSE

FALSE

FALSE

FALSE

FALSE FALSE

train or test set

1 -0.5798185 2.769459 50 -1.386294 0 -1.386294

2 -0.9942523 3.319626 58 -1.386294 0 -1.386294

4 -1.2039728 3.282789 58 -1.386294 0 -1.386294

5 0.7514161 3.432373 62 -1.386294 0 -1.386294

prostate_train <- prostate %>% filter(train == TRUE) %>% select(-train)

prostate_test <- prostate %>% filter(train == FALSE) %>% select(-train)

3 -0.5108256 2.691243 74 -1.386294

6 -1.0498221 3.228826 50 -1.386294

ggpairs(aes(col=PSAhigh)) # GGally

library(GGally)
prostate_train %>%


```
library(caret)
fit_logit <- train(
    PSAhigh ~ lcavol + age + svi,
    data = prostate_train,
    method = "glm",
    family = "binomial", # passed to GLM
)
summary(fit_logit$finalModel)

##
## Call:
## NULL</pre>
```

```
## NULL
## Deviance Residuals:
      Min
           1Q Median
                                 3Q
                                         Max
## -2.1199 -0.4991 -0.2442
                             0.3866
                                       2.2641
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.70649
                          4.07772 -0.418 0.67559
                                   2.811 0.00493 **
## lcavol
              1.56796
                          0.55772
## age
              -0.03370
                          0.06412 -0.526 0.59913
              1.96124
                          0.97744
                                   2.007 0.04480 *
## svi1
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
## Null deviance: 83.324 on 66 degrees of freedom
## Residual deviance: 44.536 on 63 degrees of freedom
## AIC: 52.536
##
## Number of Fisher Scoring iterations: 6

# spread predictions onto original "prostate" dataset
prostate <- prostate %>%
    mutate(logit_yhat = predict(fit_logit, newdata = ., type="raw")) %>%
    mutate(logit_prob = predict(fit_logit, newdata = ., type="prob")$`TRUE`)
```

Evaluate on Training Set

```
library(yardstick)
prostate %>%
 filter(train == TRUE) %>%
  conf_mat(PSAhigh, logit_yhat)
##
            Truth
## Prediction FALSE TRUE
##
       FALSE 43 6
##
       TRUE
               3 15
prostate %>%
 filter(train == TRUE) %>%
 roc_curve(truth = PSAhigh,
           estimate = logit_prob,
           event_level = "second") %>%
  autoplot()
```



```
# without setting event_level
prostate %>%
  filter(train == TRUE) %>%
  roc_auc(PSAhigh, logit_prob)
## # A tibble: 1 x 3
##
     .metric .estimator .estimate
     <chr> <chr>
                           <dbl>
## 1 roc_auc binary
                          0.0797
# with setting event_level
prostate %>%
  filter(train == TRUE) %>%
  roc_auc(PSAhigh, logit_prob, event_level = "second")
## # A tibble: 1 x 3
##
     .metric .estimator .estimate
     <chr> <chr>
                           <dbl>
                            0.920
## 1 roc_auc binary
```

Test Set (Logistic)

1 roc_auc binary

```
prostate %>%
  filter(train == FALSE) %>%
  conf_mat(PSAhigh, logit_yhat)
##
             Truth
## Prediction FALSE TRUE
##
        FALSE
                 21
##
        TRUE
                  3
prostate %>%
  filter(train == FALSE) %>%
  roc_curve(truth = PSAhigh,
            estimate = logit_prob,
            event_level = "second") %>%
  autoplot()
```



```
prostate %>%
  filter(train == FALSE) %>%
  roc_auc(PSAhigh, logit_prob, event_level = "second")
## # A tibble: 1 x 3
     .metric .estimator .estimate
##
     <chr>
            <chr>
                           <dbl>
                           0.917
```

Fit Other Models

```
fit knn <- train(</pre>
  PSAhigh ~ lcavol + age + svi,
  data = prostate_train,
  method = "knn",
 tuneGrid=expand.grid(
   k=c(10)),
fit_lda <- train(</pre>
  PSAhigh ~ lcavol + age + svi,
 data = prostate_train,
method = "lda",
fit_qda <- train(</pre>
  PSAhigh ~ lcavol + age + svi,
 data = prostate_train,
 method = "qda",
fit_nbayes <- train(</pre>
  PSAhigh ~ lcavol + age + svi,
 data = prostate_train,
  method = "naive_bayes",
```

Spread Predictions

```
# spread predictions onto original "prostate" dataset
prostate <- prostate %>%
   mutate(knn_yhat = predict(fit_knn, newdata = ., type="raw")) %>%
   mutate(knn_prob = predict(fit_knn, newdata = ., type="prob")$`TRUE`)

prostate <- prostate %>%
   mutate(lda_yhat = predict(fit_lda, newdata = ., type="raw")) %>%
   mutate(lda_prob = predict(fit_lda, newdata = ., type="prob")$`TRUE`)

prostate <- prostate %>%
   mutate(qda_yhat = predict(fit_qda, newdata = ., type="raw")) %>%
   mutate(qda_prob = predict(fit_qda, newdata = ., type="prob")$`TRUE`)

prostate <- prostate %>%
   mutate(nbayes_yhat = predict(fit_nbayes, newdata = ., type="raw")) %>%
   mutate(nbayes_prob = predict(fit_nbayes, newdata = ., type="prob")$`TRUE`)
```

Training Set Comparisons

```
## # A tibble: 15 x 4
##
                 .metric .estimator .estimate
     name
##
      <chr>
                 <chr>
                          <chr>
                                         <dbl>
## 1 knn_yhat accuracy binary
                                         0.776
## 2 lda_yhat
                 accuracy binary
                                         0.851
## 3 logit_yhat accuracy binary
                                         0.866
## 4 nbayes_yhat accuracy binary
                                         0.851
## 5 qda_yhat
                 accuracy binary
                                         0.866
## 6 knn_yhat
                                         0.978
                 sens
                          binary
## 7 lda_yhat
                 sens
                          binary
                                         0.957
## 8 logit_yhat sens
                                         0.935
                          binary
## 9 nbayes_yhat sens
                          binary
                                         0.957
## 10 qda_yhat
                                         0.957
                 sens
                          binary
## 11 knn_yhat
                                         0.333
                 spec
                          binary
## 12 lda_yhat
                 spec
                          binary
                                         0.619
## 13 logit_yhat
                 spec
                          binary
                                         0.714
## 14 nbayes_yhat spec
                                         0.619
                          binary
## 15 qda_yhat
                 spec
                          binary
                                         0.667
```

Test Set Comparisons

```
## # A tibble: 15 x 4
##
     name
             .metric .estimator .estimate
##
      <chr>
                <chr>
                          <chr>
                                         <dbl>
## 1 knn_yhat
                 accuracy binary
                                         0.8
## 2 lda_yhat
                 accuracy binary
                                         0.867
## 3 logit_yhat accuracy binary
                                         0.867
## 4 nbayes_yhat accuracy binary
                                         0.867
## 5 qda_yhat
                 accuracy binary
                                         0.833
## 6 knn_yhat
                                         0.917
                 sens
                          binary
## 7 lda_yhat
                 sens
                          binary
                                         0.917
## 8 logit_yhat sens
                          binary
                                         0.875
## 9 nbayes_yhat sens
                          binary
                                         0.917
## 10 qda_yhat
                 sens
                          binary
                                         0.875
## 11 knn_yhat
                          binary
                                         0.333
                 spec
## 12 lda_yhat
                 spec
                          binary
                                         0.667
## 13 logit_yhat
                          binary
                                         0.833
                 spec
## 14 nbayes_yhat spec
                          binary
                                         0.667
## 15 qda_yhat
                                         0.667
                 spec
                          binary
```