Introduction

Generalized method of moments estimation of linear dynamic panel data models

Sebastian Kripfganz

University of Exeter Business School, Department of Economics, Exeter, UK

Stata Conference July 31, 2020

ssc install xtdpdgmm net install xtdpdgmm, from(http://www.kripfganz.de/stata/) Introduction

GMM estimation of linear dynamic panel data models

- Instrumental variables (IV) / generalized method of moments (GMM) estimation is the predominant estimation technique for panel data models with unobserved unit-specific heterogeneity and endogenous variables, in particular lagged dependent variables, when the time horizon is short.
- This presentation introduces the community-contributed xtdpdgmm Stata command.
- For a longer version of this talk with many additional details, see my 2019 London Stata Conference presentation: https://www.stata.com/meeting/uk19/slides/uk19_kripfganz.pdf

GMM estimation of linear dynamic panel data models

- Official Stata commands:
 - xtdpd command for the Arellano and Bond (1991) difference GMM (diff-GMM) and the Arellano and Bover (1995) and Blundell and Bond (1998) system GMM (sys-GMM) estimation.
 - xtabond command for diff-GMM estimation; xtdpd wrapper.
 - xtdpdsys command for sys-GMM estimation; xtdpd wrapper.
 - gmm command for GMM estimation (not just of dynamic panel data models).
- Community-contributed Stata commands:
 - xtabond2 command by Roodman (2009) for diff-GMM and sys-GMM estimation.
 - xtdpdgmm command for diff-GMM, sys-GMM, and GMM estimation with the Ahn and Schmidt (1995) nonlinear moment conditions.

Concerns about existing Stata commands

- Official Stata commands lack flexibility and suffer from bugs:
 - Specification of time dummies i.timevar: collinearity checks in xtdpd (and therefore also xtabond and xtdpdsys) lead to the omission of 1 time dummy too many.
 - xtdpd and gmm yield incorrect estimates in some cases of unbalanced panel data sets.
 - Option diffvars() of xtabond yields incorrect predictions.
- Community-contributed Stata command xtabond2 suffers from bugs as well:
 - Incorrect estimates in some cases when forward-orthogonal deviations are combined with standard instruments.
 - Incorrect estimates in some cases of unbalanced panel data sets.
 - Incorrect degrees of freedom and p-values for the overidentification tests if some coefficients are shown as omitted (or empty), a typical concern with time dummies.

Introduction

Linear dynamic panel data model

Linear dynamic panel data model:

$$y_{it} = \lambda y_{i,t-1} + \mathbf{x}'_{it}\boldsymbol{\beta} + \underbrace{\alpha_i + u_{it}}_{=e_{it}}$$

with many cross-sectional units i = 1, 2, ..., N and few time periods $t = 1, 2, \ldots, T$.

- Further lags of y_{it} and \mathbf{x}_{it} can be added as regressors.
- The regressors \mathbf{x}_{it} can be strictly exogenous, weakly exogenous (predetermined), or endogenous.
- The idiosyncratic error term u_{it} shall be serially uncorrelated.
- The unobserved unit-specific heterogeneity α_i can be correlated with the regressors \mathbf{x}_{it} . It is correlated by construction with the lagged dependent variable $y_{i,t-1}$.

Special features

Model transformations supported by xtdpdgmm

• First-difference transformation (Anderson and Hsiao, 1981; Arellano and Bond, 1991), option model(difference):

$$\Delta y_{it} = \lambda \Delta y_{i,t-1} + \Delta \mathbf{x}'_{it} \boldsymbol{\beta} + \Delta e_{it}$$

• Forward-orthogonal deviations (Arellano and Bover, 1995), option model(fodev):

$$\tilde{\Delta}_t y_{it} = \lambda \tilde{\Delta}_t y_{i,t-1} + \tilde{\Delta}_t \mathbf{x}_{it}' \boldsymbol{\beta} + \tilde{\Delta}_t e_{it}$$

where
$$\tilde{\Delta}_t e_{it} = \sqrt{\frac{T-t+1}{T-t}} \left(e_{it} - \frac{1}{T-t+1} \sum_{s=0}^{T-t} e_{i,t+s} \right)$$
.

Deviations from within-group means, option model(mdev):

$$\ddot{\Delta}y_{it} = \lambda \ddot{\Delta}y_{i,t-1} + \ddot{\Delta}\mathbf{x}'_{it}\boldsymbol{\beta} + \ddot{\Delta}e_{it}$$

where
$$\ddot{\Delta}e_{it} = \sqrt{\frac{T}{T-1}}(e_{it} - \bar{e}_i)$$
.

GMM-type instruments

Stacked moment conditions (for the first-differenced model):

$$E\left[\boldsymbol{Z}_{i}^{D'}\Delta\boldsymbol{e}_{i}\right]=\boldsymbol{0}$$

where $\Delta \mathbf{e}_i = (\Delta e_{i2}, \Delta e_{i3}, \dots, \Delta e_{iT})'$, and $\mathbf{Z}_i^D = (\mathbf{Z}_{yi}^D, \mathbf{Z}_{xi}^D)$, with *GMM-type* instruments

$$\mathbf{Z}_{yi}^{D} = \begin{pmatrix} y_{i0} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & y_{i0} & y_{i1} & \cdots & 0 & 0 & \cdots & 0 \\ & & & \ddots & & & \\ 0 & 0 & 0 & \cdots & y_{i0} & y_{i1} & \cdots & y_{i,T-2} \end{pmatrix} \quad \begin{array}{l} \leftarrow t = 2 \\ \leftarrow t = 3 \\ \vdots \\ \leftarrow t = T \end{array}$$

and similarly for \mathbf{Z}_{xi}^{D} .

 Moment conditions for other model transformations are stacked likewise. . webuse abdata

One-step diff-GMM estimation

• *GMM-type* instruments specified with the gmmiv() option, exemplarily for predetermined w and strictly exogenous k:

```
. xtdpdgmm L(0/1).n w k, model(diff) gmm(n, lag(2 .)) gmm(w, lag(1 .)) gmm(k, lag(. .)) nocons
note: standard errors may not be valid
Generalized method of moments estimation
Fitting full model:
Step 1 f(b) = .01960406
                                        Number of obs
Group variable: id
                                                                   891
Time variable: year
                                        Number of groups =
                                                                  140
Moment conditions:
                   linear =
                               126
                                        Obs per group: min =
                                                         avg = 6.364286
                  nonlinear =
                     total =
                              126
                                                         may =
                 Coef. Std. Err.
                                           P>|z|
                                                    [95% Conf. Interval]
                                      z
         n I
             .4144164 .0341502 12.14 0.000 .3474833 .4813495
        L1. I
              -.8292293 .0588914 -14.08 0.000 -.9446543 -.7138042
               .3929936
                        .0223829 17.56 0.000
                                                   .3491239 .4368634
```

One-step diff-GMM estimation

```
Instruments corresponding to the linear moment conditions:
 1. model(diff):
   1978:L2.n 1979:L2.n 1980:L2.n 1981:L2.n 1982:L2.n 1983:L2.n 1984:L2.n
   1979:L3.n 1980:L3.n 1981:L3.n 1982:L3.n 1983:L3.n 1984:L3.n 1980:L4.n
   1981:I.4.n 1982:I.4.n 1983:I.4.n 1984:I.4.n 1981:I.5.n 1982:I.5.n 1983:I.5.n
   1984:I.5.n 1982:I.6.n 1983:I.6.n 1984:I.6.n 1983:I.7.n 1984:I.7.n 1984:I.8.n
2. model(diff):
   1978:L1.w 1979:L1.w 1980:L1.w 1981:L1.w 1982:L1.w 1983:L1.w 1984:L1.w
   1978:L2.w 1979:L2.w 1980:L2.w 1981:L2.w 1982:L2.w 1983:L2.w 1984:L2.w
   1979:L3 w 1980:L3 w 1981:L3 w 1982:L3 w 1983:L3 w 1984:L3 w 1980:L4 w
   1981:L4.w 1982:L4.w 1983:L4.w 1984:L4.w 1981:L5.w 1982:L5.w 1983:L5.w
   1984:I.5.w 1982:I.6.w 1983:I.6.w 1984:I.6.w 1983:I.7.w 1984:I.7.w 1984:I.8.w
3, model(diff):
   1978 F6 k 1978 F5 k 1979 F5 k 1978 F4 k 1979 F4 k 1980 F4 k 1978 F3 k
   1979:F3.k 1980:F3.k 1981:F3.k 1978:F2.k 1979:F2.k 1980:F2.k 1981:F2.k
   1982:F2.k 1978:F1.k 1979:F1.k 1980:F1.k 1981:F1.k 1982:F1.k 1983:F1.k
   1978:k 1979:k 1980:k 1981:k 1982:k 1983:k 1984:k 1978:L1.k 1979:L1.k
   1980:L1.k 1981:L1.k 1982:L1.k 1983:L1.k 1984:L1.k 1978:L2.k 1979:L2.k
   1980:L2.k 1981:L2.k 1982:L2.k 1983:L2.k 1984:L2.k 1979:L3.k 1980:L3.k
   1981:L3.k 1982:L3.k 1983:L3.k 1984:L3.k 1980:L4.k 1981:L4.k 1982:L4.k
   1983:L4.k 1984:L4.k 1981:L5.k 1982:L5.k 1983:L5.k 1984:L5.k 1982:L6.k
   1983: L6. k 1984: L6. k 1983: L7. k 1984: L7. k 1984: L8. k
```

 xtdpdgmm has the options nolog, noheader, notable, and nofootnote to suppress undesired output.

Introduction

Too-many-instruments problem

- Too many instruments relative to the cross-sectional sample size can aggravate finite-sample biases in the coefficient and standard error estimates and potentially weakens specification tests (Roodman, 2009a).
- To reduce the number of instruments, two main approaches are typically used (Roodman, 2009a, 2009b; Kiviet, 2020):
 - Curtailing: Limit the number of lags used as instruments, suboption lagrange(), e.g. $y_{i,t-2}, y_{i,t-3}, \dots, y_{i,t-l}$.
 - Collapsing: Use standard instruments instead of GMM-type instruments, suboption collapse or option iv(), e.g.

$$\mathbf{Z}_{yi}^{D} = \begin{pmatrix} y_{i0} & 0 & \cdots & 0 \\ y_{i1} & y_{i0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ y_{i,T-2} & y_{i,T-3} & \cdots & y_{i0} \end{pmatrix} \quad \begin{array}{l} \leftarrow t = 2 \\ \leftarrow t = 3 \\ \vdots \\ \leftarrow t = T \\ \end{array}$$

Sys-GMM estimation

- Instruments for different model transformations can be combined with each other and with instruments for the untransformed model, option model(level).
 - Instruments for the level model might require an additional initial-conditions / mean stationarity assumption to ensure that they are uncorrelated with the unobserved unit-specific heterogeneity α_i (Blundell and Bond, 1998; Blundell, Bond, and Windmeijer; 2001).
- Stacked moment conditions:

$$E\left[\begin{pmatrix} \mathbf{Z}_{i}^{D'} \Delta \mathbf{e}_{i} \\ \mathbf{Z}_{i}^{L'} \mathbf{e}_{i} \end{pmatrix}\right] = \mathbf{0}$$

where $\mathbf{e}_{i} = (e_{i2}, e_{i3}, \dots, e_{iT})'$.

Sys-GMM as level GMM

Introduction

• Alternative formulation of the stacked moment conditions, noting that $\Delta \mathbf{e}_i = \mathbf{D}_i \mathbf{e}_i$ (where \mathbf{D}_i is the first-difference transformation matrix):

$$E\left[\begin{pmatrix} \mathbf{Z}_{i}^{D'}\mathbf{D}_{i}\mathbf{e}_{i} \\ \mathbf{Z}_{i}^{L'}\mathbf{e}_{i} \end{pmatrix}\right] = E\left[\begin{pmatrix} \mathbf{Z}_{i}^{D'}\mathbf{D}_{i} \\ \mathbf{Z}_{i}^{L'} \end{pmatrix}\mathbf{e}_{i}\right] = E[\mathbf{Z}_{i}'\mathbf{e}_{i}] = \mathbf{0}$$

where $\mathbf{Z}_i = (\tilde{\mathbf{Z}}_i^D, \mathbf{Z}_i^L)$ is a set of instruments for the level model with transformed instruments $\tilde{\mathbf{Z}}_i^D = \mathbf{D}_i' \mathbf{Z}_i^D$, and analogously for other model transformations.

- The sys-GMM estimator can be written as a *level GMM* estimator (Arellano and Bover, 1995).
- Internally, this is how xtdpdgmm is implemented.

Two-step estimation with optimal weighting matrix

- One-step diff-GMM is efficient only under a strong homoskedasticity assumption.
- One-step sys-GMM is inefficient even under homoskedasticity.
- For efficient two-step estimation with an optimal weighting matrix, option <u>two</u>step, the Windmeijer (2005) finite-sample correction is applied for panel-robust or cluster-robust standard errors, options vce(<u>robust</u>) or vce(<u>cluster</u> clustvar), respectively.

Introduction

Combination of curtailed and collapsed instruments:

```
. xtdpdgmm L(0/1).n w k, model(diff) collapse gmm(n, lag(2 4)) gmm(w k, lag(1 3)) ///
> gmm(n, lag(1 1) diff model(level)) gmm(w k, lag(0 0) diff model(level)) two vce(r) nofootnote
Generalized method of moments estimation
Fitting full model:
Step 1 f(b) = .00285146
Step 2 f(b) = .11568719
Group variable: id
                                         Number of obs
                                                                     891
Time variable: year
                                         Number of groups
                                                                    140
                                         Obs per group:
Moment conditions:
                    linear =
                                13
                                                          min =
                  nonlinear =
                                                          avg = 6.364286
                      total =
                                  1.3
                                                          may =
                                (Std. Err. adjusted for 140 clusters in id)
                         WC-Robust
                  Coef. Std. Err. z P>|z|
                                                     [95% Conf. Interval]
          n I
        L1. |
             .5117523 .1208484 4.23 0.000
                                                     . 2748937
                                                                .7486109
              -1.323125 .2383451
                                    -5.55
                                            0.000
                                                    -1.790273
                                                                - 855977
              .1931365 .0941343 2.05
          k l
                                            0.040
                                                    .0086367
                                                                .3776363
              4.698425
                         .7943584
                                     5.91
                                            0.000
                                                     3.141511
                                                                6.255339
      cons
```

Postestimation specification tests

- Arellano and Bond (1991) tests for absence of higher-order serial correlation: estat serial.
- Sargan (1958) / Hansen (1982) tests for the validity of the overidentifying restrictions: estat overid.

```
. quietly xtdpdgmm L(0/1).n w k, model(diff) collapse gmm(n, lag(2 4)) gmm(w k, lag(1 3)) ///
> gmm(n, lag(1 1) diff model(level)) gmm(w k, lag(0 0) diff model(level)) two vce(r)
. estat serial, ar(1/3)
Arellano-Rond test for autocorrelation of the first-differenced residuals
HO: no autocorrelation of order 1:
                                    z = -3.3341
                                                    Prob > |z| =
                                                                    0.0009
HO: no autocorrelation of order 2: z = -1.2436 Prob > |z| = 0.2136
                                                    Prob > |z| = 0.8462
HO: no autocorrelation of order 3: z = -0.1939
. estat overid
Sargan-Hansen test of the overidentifying restrictions
HO: overidentifying restrictions are valid
2-step moment functions, 2-step weighting matrix
                                                    chi2(9) = 16.1962
                                                    Prob > chi2 = 0.0629
2-step moment functions, 3-step weighting matrix
                                                    chi2(9)
                                                              = 13.8077
```

0.1293

Prob > chi2 =

Incremental overidentification tests

- Under the assumption that the diff-GMM estimator is correctly specified, we can test the validity of the additional moment conditions for the level model with incremental overidentification tests / difference Sargan-Hansen tests
 - xtdpdgmm specified with option <u>overid</u> computes incremental overidentification tests for each set of <u>gmmiv()</u> or iv() instruments, and jointly for all moment conditions referring to the same model transformation. The incremental tests are displayed by the postestimation command <u>estat overid</u> when called with option <u>difference</u>.
- A generalized Hausman (1978) test can be performed as an alternative to incremental Sargan-Hansen tests: estat hausman.

Introduction

Incremental overidentification tests

```
. xtdpdgmm L(0/1).n w k, model(diff) collapse gmm(n, lag(2 4)) gmm(w k, lag(1 3)) ///
> gmm(n, lag(1 1) diff model(level)) gmm(w k, lag(0 0) diff model(level)) two vce(r) overid
Generalized method of moments estimation
Fitting full model:
Step 1 f(b) = .00285146
Step 2 f(b) = .11568719
Fitting reduced model 1:
Step 1 f(b) = .10476123
Fitting reduced model 2:
Step 1 f(b) = .02873833
Fitting reduced model 3:
Step 1 f(b) = .1131458
Fitting reduced model 4:
Step 1 f(b) = .08632894
Fitting no-diff model:
Step 1 f(b) = 8.476e-19
Fitting no-level model:
Step 1 f(b) = .05779984
(Some output omitted)
(Continued on next page)
```

Incremental overidentification tests

```
Instruments corresponding to the linear moment conditions:

1, model(diff):
    L2.n L3.n L4.n

2, model(diff):
    L1.w L2.w L3.w L1.k L2.k L3.k

3, model(level):
    L1.D.n

4, model(level):
    D.w D.k

5, model(level):
    _cons

. estat overid, difference

Sargan-Hansen (difference) test of the overidentifying restrictions HO: (additional) overidentifying restrictions are valid
```

2-step weighting matrix from full model

Moment conditions	Excluding chi2	df	 p	Difference chi2	df	р
1, model(diff)	14.6666	6	0.0230	1.5296	3	0.6754
2, model(diff)	4.0234	3	0.2590	12.1728	6	0.0582
3, model(level)	15.8404	8	0.0447	0.3558	1	0.5509
4, model(level)	12.0861	7	0.0978	4.1102	2	0.1281
model(diff)	0.0000	0	. 1	16.1962	9	0.0629
model(level)	8.0920	6	0.2314	8.1042	3	0.0439

Model and moment selection criteria

- The Andrews and Lu (2001) model and moment selection criteria (MMSC) can support the specification search.
 - The xtdpdgmm postestimation command estat mmsc computes the Akaike (AIC), Bayesian (BIC), and Hannan-Quinn (HQIC) versions of the Andrews-Lu MMSC.
 - Models with lower values of the criteria are preferred.

```
. estimates store noxlags
. quietly xtdpdgmm L(0/1).n L(0/1).(w k), model(diff) collapse gmm(n, lag(2 4)) ///
> gmm(w k, lag(1 3)) gmm(n, lag(1 1) diff model(level)) gmm(w k, lag(0 0) diff model(level)) two vce(r)
. estimates store xlags
. quietly xtdpdgmm L(0/1).n L(0/1).(w k) c.w#c.k, model(diff) collapse gmm(n, lag(2 4)) ///
> gmm(w k, lag(1 3)) gmm(n, lag(1 1) diff model(level)) gmm(w k, lag(0 0) diff model(level)) two vce(r)
. estat mmsc xlags noxlags
```

Andrews-Lu model and moment selection criteria

```
Model | ngroups
                      J nmom npar
                                   MMSC-AIC
                                            MMSC-BIC MMSC-HQIC
           140
                1.5797
                               7 -10.4203
                                           -28.0702 -17.7844
 xlags |
           140 12.9784 13
                               6 -1.0216
                                           -21.6131 -9.6130
noxlags |
                         13
          140
               16.1962
                               4 -1.8038
                                            -28.2786
                                                     -12.8499
```

Sys-GMM estimation: transformed instruments

 The postestimation command predict with option iv generates the transformed instruments for the level model, $\mathbf{Z}_i = (\tilde{\mathbf{Z}}_i^D, \mathbf{Z}_i^L)$ (excluding the intercept), as new variables, e.g. for subsequent use with the official ivregress command, the community-contributed ivreg2 command (Baum, Schaffer, and Stillman, 2003, 2007), or any other tool.

```
. quietly predict iv*, iv
```

Introduction

variable name	storage type	display format	value label	variable label
iv1	float	%9.0g		1. model(diff): L2.n
iv2	float	%9.0g		1, model(diff): L3.n
iv3	float	%9.0g		1, model(diff): L4.n
iv4	float	%9.0g		2, model(diff): L1.w
iv5	float	%9.0g		2, model(diff): L2.w
iv6	float	%9.0g		2, model(diff): L3.w
iv7	float	%9.0g		2, model(diff): L1.k
iv8	float	%9.0g		2, model(diff): L2.k
iv9	float	%9.0g		2, model(diff): L3.k
iv10	float	%9.0g		3, model(level): L1.D.n
iv11	float	%9.0g		4, model(level): D.w
iv12	float	%9.0g		4. model(level): D.k

[.] describe iv*

. ivregress gmm n (L.n w k = iv*), wmat(cluster id)

```
Number of obs =
Instrumental variables (GMM) regression
                                                           891
                                         Wald chi2(3) =
                                                           485.45
                                         Prob > chi2 =
                                                           0.0000
                                         R-squared =
                                                           0.8545
GMM weight matrix: Cluster (id)
                                         Root MSE
                                                           .51125
```

(Std. Err. adjusted for 140 clusters in id)

n	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
n L1.	.5117523	.098918	5.17	0.000	.3178765	.7056281
w k _cons	-1.323125 .1931365 4.698425	.2031404 .0873607 .6369462	-6.51 2.21 7.38	0.000 0.027 0.000	-1.721273 .0219126 3.450034	924977 .3643604 5.946817

Instrumented: L.n w k

Instruments: iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8 iv9 iv10 iv11 iv12

. estat overid

Introduction

Test of overidentifying restriction:

```
Hansen's J chi2(9) = 16.1962 (p = 0.0629)
```

```
. ivreg2 n (L.n w k = iv*), gmm2s cluster(id)
```

2-Step GMM estimation

Introduction

Estimates efficient for arbitrary heteroskedasticity and clustering on id Statistics robust to heteroskedasticity and clustering on id

```
Number of clusters (id) =
                              140
                                               Number of obs =
                                                                891
                                              F( 3, 139) =
                                                              230.77
                                              Prob > F =
                                                              0.0000
Total (centered) SS = 1601.042507
                                              Centered R2 =
                                                              0.8545
Total (uncentered) SS = 2564.249196
                                              Uncentered R2 =
                                                              0.9092
Residual SS
                   = 232.8868955
                                              Root MSE = .5113
```

n	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	. Interval]
n L1.	.5117523	.0822341	6.22	0.000	. 3505763	. 6729282
w k _cons	-1.323125 .1931365 4.698425	.1621898 .0660458 .5321653	-8.16 2.92 8.83	0.000 0.003 0.000	-1.641011 .0636892 3.655401	-1.005239 .3225838 5.74145

(Continued on next page)

Underidentification test (Kleibergen-Paap rk LM statistic):	30.312
Chi-sq(10) P-val =	0.0008
Weak identification test (Cragg-Donald Wald F statistic):	0.376
(Kleibergen-Paap rk Wald F statistic):	5.128
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias	17.80
10% maximal IV relative bias	10.01
20% maximal IV relative bias	5.90
30% maximal IV relative bias	4.42
Source: Stock-Yogo (2005). Reproduced by permission.	
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.	
Hansen J statistic (overidentification test of all instruments):	16.196
Chi-sq(9) P-val =	0.0629
Instrumented: L.n w k	
Excluded instruments: iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8 iv9 iv10 iv11 iv1	2

- While it is standard practice to test for overidentification, the potential problem of underidentification is largely ignored in the empirical practice.
- The new underid command (now on SSC) by Mark Schaffer and Frank Windmeijer presents underidentification statistics (Windmeijer, 2018). From the users' perspective, underid works as a postestimation command for xtdpdgmm.
 - The null hypothesis of the underidentification tests is that the model is underidentfied. (The aim is to reject the null hypothesis, as opposed to overidentification tests.)

Underidentification tests

```
. quietly xtdpdgmm L(0/1).n w k, model(diff) collapse gmm(n, lag(2 4)) gmm(w k, lag(1 3)) ///
> gmm(n, lag(1 1) diff model(level)) gmm(w k, lag(0 0) diff model(level)) two vce(r)
. underid
Number of obs:
                  891
Number of panels:
                 140
Dep var:
Endog Xs (3):
                  L.nwk
Exog Xs (1):
                  cons
Excl IVs (12):
                  alliv 1 alliv 2 alliv 3 alliv 4 alliv 5 alliv 6
                  alliv 7 alliv 8 alliv 9 alliv 10 alliv 11
                  alliv 12
Underidentification test: Cragg-Donald robust CUE-based (LM version)
 Test statistic robust to heteroskedasticity and clustering on id
j= 26.92 Chi-sq(10) p-value=0.0027
. underid, kp sw noreport
Underidentification test: Kleibergen-Paap robust LIML-based (LM version)
 Test statistic robust to heteroskedasticity and clustering on id
i= 30.31 Chi-sq(10) p-value=0.0008
2-step GMM J underidentification stats by regressor:
j= 30.00 Chi-sq(10) p-value=0.0009 L.n
j= 29.07 Chi-sq( 10) p-value=0.0012 w
j= 26.01 Chi-sq(10) p-value=0.0037 k
```

Nonlinear moment conditions

- Absence of serial correlation in u_{it} is a necessary condition for the validity of $y_{i,t-2}, y_{i,t-3}, \ldots$ as instruments for the first-differenced model.
- The nonlinear (quadratic) moment conditions suggested by Ahn and Schmidt (1995) can help to improve the efficiency and to achieve identification.
 - Absence of serial correlation: option nl(noserial).
 - Absence of serial correlation plus homoskedasticity: option nl(iid).
- While GMM estimators with only linear moment conditions have a closed-form solution, this is no longer the case with nonlinear moment conditions.
 - xtdpdgmm minimizes the GMM criterion function numerically with Stata's Gauss-Newton algorithm.

Introduction

Estimation with nonlinear moment conditions

 The nonlinear moment conditions can be optionally collapsed into a single moment condition.

```
. xtdpdgmm L(0/1).n w k, model(diff) collapse gmm(n, lag(2 4)) gmm(w k, lag(1 3)) nl(noserial) igmm
> vce(r) nolog nofootnote
Generalized method of moments estimation
Group variable: id
                                           Number of obs
                                                                       891
Time variable: year
                                           Number of groups
                                                                      140
Moment conditions:
                                          Obs per group:
                     linear =
                                   10
                                                            min =
                   nonlinear =
                                                            avg = 6.364286
                      total =
                                   11
                                                            max =
                                 (Std. Err. adjusted for 140 clusters in id)
                          WC-Robust
                                                       [95% Conf. Interval]
                   Coef.
                          Std. Err. z P>|z|
          n l
        L1. |
                .5048501 .1229569
                                     4.11 0.000
                                                       . 2638591
                                                                   .7458411
               -1.712339
                         . 2553838
                                      -6.70
                                             0.000
                                                      -2.212882
                                                                  -1.211796
              0645476
                          1152549
                                     0.56
                                             0.575
                                                      -.1613478
                                                                   2904429
       cons | 5.884724
                          .7948763
                                      7.40
                                             0.000
                                                       4.326795
                                                                  7 442653
```

Iterated GMM estimation

- While the two-step estimator is asymptotically efficient (for a given set of instruments), in finite samples the estimation of the optimal weighting matrix might be sensitive to the (arbitrarily) chosen initial weighting matrix.
- Hansen, Heaton, and Yaron (1996) suggest to use an iterated GMM estimator that updates the weighting matrix and coefficient estimates until convergence.
 - Similar to Stata's gmm or ivregress command, xtdpdgmm provides the option igmm as alternatives to <u>one</u>step and <u>two</u>step.

Iterated sys-GMM estimation

```
. xtdpdgmm L(0/1).n w k, model(diff) collapse gmm(n, lag(2 4)) gmm(w k, lag(1 3)) ///
> gmm(n, lag(1 1) diff model(level)) gmm(w k, lag(0 0) diff model(level)) igmm vce(r) nofootnote
Generalized method of moments estimation
Fitting full model:
Steps
17
Group variable: id
                                      Number of obs
                                                                891
Time variable: vear
                                      Number of groups =
                                                                140
Moment conditions:
                  linear =
                            13
                                      Obs per group:
                                                     min =
                 nonlinear =
                                                     avg = 6.364286
                    total =
                               13
                                                     may =
                              (Std. Err. adjusted for 140 clusters in id)
                       WC-Robust
                Coef. Std. Err. z P>|z| [95% Conf. Interval]
         n l
       L1. I
               .541044 .1265822 4.27 0.000 .2929474
                                                           .7891406
            -1.527984 .304707 -5.01 0.000 -2.125199 -.9307697
            .1075032 .1115814 0.96 0.335 -.1111923 .3261986
         k l
      _cons | 5.275027
                       .9736502
                                  5.42
                                         0.000
                                                 3.366707
                                                           7.183346
```

Iterated sys-GMM estimation: initial weighting matrices

Introduction

Continuously updated GMM estimation

- As an alternative to the iterated GMM estimator, Hansen, Heaton, and Yaron (1996) also suggest a continuously updated GMM estimator, where the optimal weighting matrix is obtained directly as part of the minimization process.
 - This estimator is not currently implemented in xtdpdgmm but the ivreg2 command can be used with the instruments previously generated from xtdpdgmm.

Introduction

Continuously updated sys-GMM estimation

```
. ivreg2 n (L.n w k = iv*), cue cluster(id)
Iteration 0: f(p) = 24.858945 (not concave)
(Some output omitted)
Iteration 21: f(p) = 8.2335574
```

CUE estimation -----

Introduction

Estimates efficient for arbitrary heteroskedasticity and clustering on id Statistics robust to heteroskedasticity and clustering on id (Some output omitted)

 n	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	. Interval]
n L1.	.5239428	.1138624	4.60	0.000	.3007766	.7471089
w k _cons	-2.025771 0193789 6.781101	.2810169 .1221278 .8346986	-7.21 -0.16 8.12	0.000 0.874 0.000	-2.576555 2587449 5.145122	-1.474988 .2199872 8.41708

(Some output omitted)

Hansen J statistic (overidentification test of all instruments): 8.234 Chi-sq(9) P-val = 0.5108

Instrumented: L.n w k

Excluded instruments: iv1 iv2 iv3 iv4 iv5 iv6 iv7 iv8 iv9 iv10 iv11 iv12

Time effects

Introduction

 To account for global shocks, it is common practice to include a set of time dummies in the regression model:

$$y_{it} = \lambda y_{i,t-1} + \mathbf{x}'_{it}\boldsymbol{\beta} + \delta_t + \underbrace{\alpha_i + u_{it}}_{=e_{it}}$$

• Without loss of generality, time dummies δ_t can be treated as strictly exogenous and uncorrelated with the unit-specific effects α_i . Hence, time dummies can be instrumented by themselves.

GMM estimation with time effects

 xtdpdgmm has the option <u>teffects</u> that automatically adds the correct number of time dummies and corresponding instruments:

```
. xtdpdgmm L(0/1).n w k, model(diff) collapse gmm(n, lag(2 4)) gmm(w k, lag(1 3)) nl(noserial) ///
> teffects igmm vce(r)
Generalized method of moments estimation
Fitting full model:
Steps
35
Group variable: id
                                        Number of obs
                                                                    891
Time variable: year
                                         Number of groups
                                                                    140
Moment conditions:
                                        Obs per group:
                    linear =
                                 17
                                                         min =
                                                         avg = 6.364286
                  nonlinear =
                     total =
                                 18
                                                         may =
                                (Std. Err. adjusted for 140 clusters in id)
(Continued on next page)
```

GMM estimation with time effects

n	Coef.	WC-Robust Std. Err.	z	P> z	[95% Conf	. Interval]
n						
L1.	.715963	.2630756	2.72	0.006	.2003442	1.231582
w	7645527	.6235711	-1.23	0.220	-1.98673	. 4576242
k	.4043948	. 270444	1.50	0.135	1256657	. 9344553
1						
year						
1978	0656579	.0317356	-2.07	0.039	1278586	0034572
1979	0825628	.0346171	-2.39	0.017	1504111	0147145
1980 l	1035026	.0263053	-3.93	0.000	15506	0519452
1981	1335986	.0313492	-4.26	0.000	1950419	0721553
1982	0661445	.0574973	-1.15	0.250	1788372	.0465482
1983	.0033487	.0685548	0.05	0.961	1310163	.1377137
1984	.0538893	.1010754	0.53	0.594	1442148	.2519933
1						
_cons	2.932618	2.345137	1.25	0.211	-1.663767	7.529002

Instruments corresponding to the linear moment conditions: 1. model(diff):

```
L2.n L3.n L4.n
2. model(diff):
 L1.w L2.w L3.w L1.k L2.k L3.k
3, model(level):
```

1978bn.year 1979.year 1980.year 1981.year 1982.year 1983.year 1984.year

4. model(level):

_cons

Introduction

Summary: the xtdpdgmm package for Stata

- The xtdpdgmm package enables generalized method of moments estimation of linear (dynamic) panel data models.
 - Besides the conventional difference GMM, system GMM, and GMM with forward-orthogonal deviations, additional nonlinear moment conditions can be incorporated.
 - Besides one-step and feasible efficient two-step estimation, iterated GMM estimation is possible as well.
 - Combining the command with other packages in the Stata universe opens up further possibilities.

```
ssc install xtdpdgmm
net install xtdpdgmm, from(http://www.kripfganz.de/stata/)
help xtdpdgmm
help xtdpdgmm postestimation
```

References

- Ahn, S. C., and P. Schmidt (1995). Efficient estimation of models for dynamic panel data. Journal of Econometrics 68 (1): 5–27.
- Anderson, T. W., and C. Hsiao (1981). Estimation of dynamic models with error components. Journal of the American Statistical Association 76 (375): 598-606.
- Andrews, D. W. K, and B. Lu (2001). Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models. *Journal of Econometrics* 101 (1): 123–164.
- Arellano, M., and S. R. Bond (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58 (2): 277–297.
- Arellano, M., and O. Bover (1995). Another look at the instrumental variable estimation of error-components models. *Journal of Econometrics* 68 (1): 29–51.
- Baum, C. F., M. E. Schaffer, and S. Stillman (2003). Instrumental variables and GMM: Estimation and testing. Stata Journal 3 (1): 1–31.
- Baum, C. F., M. E. Schaffer, and S. Stillman (2007). Enhanced routines for instrumental variables/generalized method of moments estimation and testing. Stata Journal 7 (4): 465–506.
- Blundell, R., and S. R. Bond (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87 (1): 115–143.
- Blundell, R., S. R. Bond, and F. Windmeijer (2001). Estimation in dynamic panel data models: Improving on the performance of the standard GMM estimator. Advances in Econometrics 15 (1): 53-91.

References

- Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50 (4): 1029–1054.
- Hansen, L. P., J. Heaton, and A. Yaron (1996). Finite-sample properties of some alternative GMM estimators. Journal of Business & Economic Statistics 14 (3): 262–280.
- Hausman, J. A. (1978). Specification tests in Econometrics. Econometrica 46 (6): 1251–1271.
- Kiviet, J. F. (2020). Microeconometric dynamic panel data methods: Model specification and selection issues. Econometrics and Statistics 13: 16–45.
- Roodman, D. (2009a). A note on the theme of too many instruments. Oxford Bulletin of Economics and Statistics 71 (1): 135–158.
- Roodman, D. (2009b). How to do xtabond2? An introduction to difference and system GMM in Stata. Stata Journal 9 (1): 86–136.
- Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica 26 (3): 393–415.
- Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics 126 (1): 25–51.
- Windmeijer, F. (2018). Testing over- and underidentification in linear models, with applications to dynamic panel data and asset-pricing models. Economics Discussion Paper 18/696, University of Bristol.