Unit 3:Geometry and Trigonometry

VECTOR KINEMATICS

AIHL 3.12

Vectors are used to represent forces, acceleration, velocity and momentum and enable the motion of an object to be predicted and described.

CONSTANT VELOCITY

$$r=a+\lambda b$$

 ${\pmb a}$ represents the initial position of the object and vector ${\pmb b}$ represents the velocity, which takes into account the direction of motion. parameter ${\pmb \lambda}$ represents time

Therefore, the equation can be written as

$$r=r_0+vt$$

Where

 \boldsymbol{r} is the position vector at time t,

 r_0 is the initial position vector and

 \boldsymbol{v} is the velocity, which is constant.

Example 1. Consider a ship moving north-east with a speed of 30 km h^{-1} from port A, as shown below. How can you represent its movement using vectors?

$$V = \begin{pmatrix} 30 \text{ cas } 45^{\circ} \\ 30 \text{ sin } 45^{\circ} \end{pmatrix}$$
 so $r = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \frac{1}{5\sqrt{2}} \begin{pmatrix} 15\sqrt{2} \\ 15\sqrt{2} \end{pmatrix}$

$$\gamma = \begin{pmatrix} 30 \times \sqrt{2} \\ 30 \times \sqrt{2} \end{pmatrix}$$

$$\gamma = \begin{pmatrix} 15\sqrt{2} \\ 15\sqrt{2} \end{pmatrix}$$

Example 2. A ship traveling from port A, the origin, travels with $\binom{30}{40}$ velocity kilometers per hour. a) How far will the ship be from the port after 10 hours?

$$|V| = \sqrt{30^2 + 40^2}$$

 $|V| = 50 \text{ km} \times 10 \text{ h}$
 $|V| = 500 \text{ km}$

b) Write the coordinates of the ship relative to the port.

$$p = 10 \times \begin{pmatrix} 30 \\ 40 \end{pmatrix} \qquad p = \begin{pmatrix} 300 \\ 400 \end{pmatrix} \qquad p \cdot \begin{pmatrix} 300 \\ 400 \end{pmatrix}$$
that worth

Example 3. A drone is flying in a straight line starting from point (2, 1, 2) with constant speed in					
ms ⁻¹ . After 10s its position is $\begin{pmatrix} 4 \\ 3 \\ 3 \end{pmatrix}$. Find its velocity vector and its speed. (All positions are in					
meters relative to a fixed origin.)					
meters relative to a fixed origin.) $ \sqrt{2} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} \text{direction vector} \qquad \begin{cases} 80 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} + 10 \begin{pmatrix} v_{1} \\ v_{2} \\ 1 \end{pmatrix} \qquad V_{2} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \\ 1 + 10 \begin{pmatrix} v_{2} \\ v_{3} \\ 1 \end{pmatrix} \qquad V_{3} = \frac{1}{5} \qquad V_{4} = \frac{1}{5} \qquad V_{2} = \frac{1}{5} \qquad V_{2} = \frac{1}{5} \qquad V_{3} = \frac{1}{5} \qquad V_{4} = \frac{1}{5} \qquad V_{5} =$					
$\begin{pmatrix} 3 \\ 2 \\ \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} + \langle 0 \\ \begin{pmatrix} v_y \\ v_z \end{pmatrix} \qquad $					
$\begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} v_y \\ v_z \end{pmatrix}$ $4 = 2 + 10v_x$ $3 = 1 + 10v_y$ $3 = 2 + 10v_z$ 5					
$t = 10 / 4 $ $V_x = \frac{1}{5} V_y = \frac{1}{5} V_z = \frac{1}{10} $					
speed = $ V = \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2 = \frac{3}{5}$ m/c					

Example 4. The position vector at time t seconds of a moving object, P, relative to a fixed point, O, is given by

$$\overrightarrow{OP} = i + j + k + t(2i - k) \rightarrow \overrightarrow{OP} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$
 a) Find the coordinates of the initial position of the object.

let

at

when
$$t = 0$$

$$\overrightarrow{OP} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
The initial position is of (1,1,1)

b) Find the coordinates of the object when t = 2 seconds.

$$\frac{1}{0P} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

$$\frac{1}{0P} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

magnitude of the displacement vector

c) Hence, find the distance the object travelled in 2 seconds if the velocity is given in m/s. Give your answer to 3 significant figures.

$$d = \sqrt{(5-1)^2 + (1-1)^2 + (-1-1)^2} \qquad d = 4.47$$

Example 5. The position vector at time t seconds of a moving object is given by

$$\overrightarrow{\mathrm{OP}} = oldsymbol{r} = oldsymbol{\left(egin{array}{c} -t^2 \ 1 \ 2t \end{array}
ight)}$$

Show that the path of the object is not a straight line.

as of a moving object is given by
$$\overrightarrow{A}$$
 \overrightarrow{B} \overrightarrow{C} $\overrightarrow{DP} = r = \begin{pmatrix} -t^2 \\ 1 \\ 2t \end{pmatrix}$ t line.

Wich to

tel

> assume it follows a line, with three more collinear points a-b=k(b-c)

$$t=1$$
 then $b=\begin{pmatrix} -1\\1\\2\end{pmatrix}$

$$\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = K \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$

$$t-2$$
 then $C = \begin{pmatrix} -4 \\ 4 \end{pmatrix}$

0 = 0K

so the points are not on the same line.

Example 7. Two objects are moving with a constant velocity in a straight line.

Initially, object A is at a point with coordinates (1, 3, 0) m, relative to a fixed origin, and is

moving with velocity
$$\begin{pmatrix} -3\\4\\2 \end{pmatrix}$$
 ms⁻¹.

Object B is initially at a point with coordinates (-1, 2, -2)m, relative to the fixed origin, and is moving with

velocity
$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 ms⁻¹.

- a) Show that these objects do not collide.
- b) Find an equation in terms of t for the distance, d, between the objects.

- d) Find the velocity vector that the object B must have so that the two objects will collide after 3s.

$$\overrightarrow{A} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}$$

$$\overrightarrow{B} = \begin{pmatrix} -1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\overrightarrow{A} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

$$5t = -2$$

$$t = -\frac{1}{5}$$

$$t = -\frac{1}{5}$$

$$\therefore \text{ in consistent, so they don't collide}$$

b.
$$\begin{pmatrix} 1-3t \\ 3+4t \\ 2t \end{pmatrix}$$
 $r_{B} = \begin{pmatrix} -1+2t \\ 2-t \\ -2+3t \end{pmatrix}$

$$d = \left[\left(-1 + 2t \right) - \left(1 - 3t \right) \right]^{2} + \left[\left(2 - t \right) - \left(3 + 4t \right) \right]^{2} + \left[\left(-213t \right) - \left(2t \right) \right]^{2}$$

$$d = \sqrt{(-2 + 5t)^2 + (-1 - 5t)^2 + (-2 + t)^2}$$

$$d = \sqrt{4 - 20t + 25t^2 + 1 + 10t + 25t^2 + 4 - 4t + t^2}$$

$$d = \sqrt{9 - 14t + 51t^2}$$

C.
$$d = \sqrt{9 - 14t + 51t^2}$$

Their closest

approach is at

2.835 km at 0.137 s

$$r_{A} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} \qquad r_{B} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} + t \begin{pmatrix} 6 \\ 6 \\ C \end{pmatrix}$$

$$|-3(3) = -1 + 3\alpha \Rightarrow -7 = 3\alpha \Rightarrow \alpha = -\frac{7}{3}$$

$$3 + 4(3) = 2 + 3b = 7 + 13 = 3b = 7 + b = \frac{13}{3}$$

$$2(3) = -2 + 3C \Rightarrow 8 = 3C \Rightarrow C = \frac{8}{3}$$

The new velocity vector for B to collide with after 3 sec is

$$\begin{pmatrix} -\frac{7}{3} \\ \frac{13}{3} \\ \frac{8}{3} \end{pmatrix} \text{ m/s}$$