

Aircraft Arrival Schedule Optimization

Zhixun Wu (Herman)

Senior Design Finalist

Project Overview

Problem

Irregular volume flow → Operation delay → ~\$3.1 M Excess cost

Methodology

- Optimization of aircraft arrival schedule
- · Simulation of volume flow

Deliverables

- Optimal scheduling and validation tools
- Revised schedule based on current parameters

Value

Approximate annual savings: \$1.7 M

Project Roadmap

7 months

Form Team

Analyze Data

Create Strategy

Deliver Product

- Member recruitment
- Project search
- Proposal creation

- Problem & scope outline
- Data collection
- Model input preparation

- Simulation
- Optimization
- Validation
- Scheduling tool
- Report
- Presentation

My Contribution

Form Team Analyze Data **Create Strategy**

Deliver Product

- Member recruitment
- Project search
- Proposal creation

- Problem & scope outline
- Data collection
- Model input preparation

- Simulation
- Optimization
- Validation
- Scheduling tool
- Report
- Presentation

Client Description

Over 130 nightly aircraft arrivals

155 miles of conveyors

1.6M packages sorted daily

400K packages/hr processed

Project Scope

Problem Statement

Simulation

Process Flow Simulation

Simulation Validation

Optimization Model

Strategy

1. Schedule flights as late as possible

2. On-time shift completion

Objective Function

Maximize arrival lateness

Subject to

Capacity constraints

Deadline constraints

Business constraints

Landing constraints

Model Input

Worldport parameters

Flight arrival information

Expected volume

Flight specifics

Overview

My Contribution

Results

Optimization Validation

Origin	Flight Number	Original Time	Proposed Time	Reschedule (mins)
ATL	UPS1305	11:07 PM	10:52 PM	-15
PIT	UPS1151	11:11 PM	11:07 PM	-4
PIE	UPS1337	11:30 PM	11:22 PM	-8
MEM	UPS1381	11:32 PM	12:02 AM	30
BKW	AC1255	11:34 PM	11:26 PM	-8
SBN FWA	UPS1467	11:37 PM	11:07 PM	-30
MHT	UPS1057	11:37 PM	11:16 PM	-21

Deliverables

Summary

Process time simulation Optimization formulation Xpress scheduling model Excel validation tool Improved arrival scheduling

3.6M variables

2.4M constraints

<15 minute runtime

Overview

My Contribution

Results

Project Results

- Senior Design Finalist: top 4 among 28 teams
- Client Satisfaction: attended our final presentation
- Valid Results: same as UPS internal team's
- Cost Reductions: \$1.7 M annually

Thank You

Also Attached: Model Run Example & Appendix

Flight Assignment Matrix

				Tin	ne Wind	dow				
		1	2	3	4	5	6	•••	254	255
	1			1				•••		
	2	1						•••		
Flight	3				1			•••		
FII	4		1					•••		
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
	99							•••	1	
	100						1	•••		

Volume Flow Profile

Appendix – Model


```
Parameters:
```

```
i - Flight
                  (1 - # Flights)
i-Time\ window\ (1-300)\ (10:00PM-3:00AM,1\ minute\ intervals)
u – #th ULD
                  (1-40)
Package type -(1 - small, 2 - parcel, 3 - irregular):
Note: All calculations related to ULD will be calculated three times for the three package types.
Flight Details:
CSA; - Current Scheduled Arrival for i
V_{i,k} - Volume of packages in flight i of type k
```

```
ST: - Setup Time for flight i
UR: - ULD unload Rate for flight i
TT: - Transit time for ULDs for flight i
TT_i = \left\{ egin{array}{ll} 8.5 \ \emph{minutes if flight i parks at Wing} \\ 13 \ \emph{minutes if flight i parks at Ramp} \end{array} 
ight.
DT; - Delay Tendency for flight i
 \begin{array}{ll} East\ Coast \\ EAST\_WEST_i - Flights\ Origin\ Direction\ \left\{\begin{matrix} 1 & East\ Coast \\ 0 & West\ Coast \end{matrix}\right. \end{array}
```

Hub Details:

```
UUX_{i,u,j} - ULD u of flight i entering in the sorting system in time j
\mathit{UUV}_{i,u,j} – \mathit{Volume} of \mathit{ULD} u of flight i entering in the sorting system in time j
UUV_{i,u,j} = UUX_{i,u,j} \times UUR_i \quad \forall i, u, j
YQ = Average Queuing Time at Yard
UT = Average Unload Time for ULD at Spot
EASTERN DEADLINE = Deadline set by client for when eastern flight volume must enter the system.
```

ULD Details:

```
NULD; - Number of ULDs in flight i
U_{i,j} - ULD Matrix
U_{i,u} = \begin{cases} 1 & \text{if } uth \text{ ULDs exists in flight } i \end{cases}
UV<sub>i,k</sub> - Average Package Volume in ULD of flight i
UV_{i,k} = V_{i,k}/NULD_i
```

Appendix - Model (cont.)

Decision Variables:

 $X_{i,j} = Assignment of flight i to window j$ $X_{i,j} = \begin{cases} 1 & Landing \ Assigned \\ 0 & Not \ Assigned \end{cases}$

Landing Time of flight $i, L_i = \sum_{j=1}^{Total_Windows} j \times X_{i,j}$ $\forall i$

 $\textit{ULD Yard Arrival Time} = \textit{Landing Time} + \textit{Setup Time} + \textit{u} \times \textit{offload Rate} + \textit{Transit Time}$

Objective Function:

 $\max \sum_{i=1}^{\# of flights} L$

Subject To:

1. Each flight is only assigned one landing time:

$$\sum_{j=1} X_{i,j} = 1 \quad \forall i$$

2. No more than two flights assigned in two time windows:

$$\sum_{i}^{\#Flights} \sum_{j=t}^{t+1} X_{i,j} \leq 2 \qquad \forall t, 1 \leq t \leq TOTAL \ WINDOWS - 1$$

3. Maximum 53 flights can land in one hour:

$$\sum_{j=t}^{t+60} \sum_{i=1}^{t+60} X_{i,j} \le 53 \qquad \forall t \text{ s.t. } 1 \le t \le TOTAL \text{ WINDOWS} - 60$$

4. Flight cannot be scheduled beyond lower bound:

$$L_i \ge CSA_i - SCHEDULE_BACK_i$$

5. Flight cannot be scheduled beyond upper bound:

$$L_i \leq CSA_i + SCHEDULE_FORWARD_i$$

Appendix - Model (cont.)

Process Time Calculations

a. Process Time by Flight, ULD $PROCESS_TIME_{i,u} = (ST_i + DT_i + (u * UR_i) + TT_i + YQ) * U_{i,u}$ $\forall i, \forall u$

b. ULD Spot Arrivals

c. ULD Spot Departures

 $ULD_SpotDeparture_{j,i,u} = ULD_SpotArrival_{j,i,u}\big(i,(j-UT)\big)*U_{i,u} \qquad \forall \hat{\imath}, \ \forall u, \ \forall j$

d. ULDs Unloading from Flight i

$$ULD_UNLOADING_{j,i} = ULD_UNLOADING_{j-1,i} + \sum_{u=1}^{40} ULD_SpotArrival_{j,i,u} - \sum_{u=1}^{40} ULD_SpotDeparture_{j,i,u} \qquad \forall i, \ \forall j \ st \ j \geq 2$$

e. Total Entering Volume in time j from all flights, by package type \boldsymbol{k}

$$TEV_{j,k} = \sum_{i=1}^{\#Flights} ULD_UNLOADING_{j,i} * UV_{i,k} \qquad \forall j, \ \forall k$$

f. Cumulative Volume up to 'Process Capacity Window Precision' Limited to Process Capacity Constraint f+WindowPrecision

$$\sum_{j=t} \qquad \textit{TEV}_{j,k} \leq (\textit{Process_Capacity}_k * \textit{WindowPrecision}) \qquad \forall k, \ \forall j \ \textit{st.} \ 1 \leq j \leq (\textit{TOTAL}_{\textit{WINDOWS}} - \textit{WindowPrecision})$$

g. Limiting Volume from Eastern Origin Flights after Deadline

$$TEV_EASTERN_{j,k} = \sum_{i=1}^{\#Flights} ULD_UNLOADING_{j,i} * UV_{i,k} * EAST_WEST_i \qquad \forall j, \ \forall k \in TEV_EASTERN_{j,k} \le 0 \qquad \forall k, \ \forall j \ st. \ j > EASTERN_DEADLINE$$

Appendix - Valuation

- Operation delay decisions are in 5 min. increments
- For estimating the new costs and project savings:
 2012 actual delay data (Mon. Thurs.)

	Reduced Delay	Current Costs w/o Special Conditions	Revised Costs	Project Savings
Realistic	10 min.	3145000	1400000	1745000
Pessimistic	5 min.	3145000	1945000	1200000
Optimistic	15 min.	3145000	1151000	1994000

Operation Delay	Monday	Tuesday	Wednesday	Thursday	Total
0	3	2	2	2	9
5	4	6	10	2	22
10	18	25	19	12	74
15	18	13	15	16	62
20	2	4	3	12	21
25	2	1	1	5	9
30	1	2	0	1	4
40	0	0	0	2	2
45	0	0	2	0	2
55	1	0	0	0	1
60	0	1	0	0	1
68	1	0	0	0	1
135	0	0	0	1	1
Total	50	54	52	53	209

Operation Delay	Marginal Cost per Minute (\$)
[0 min, 15 min]	1000
[20 min, 30 min]	10000
≥35 min	12500

Operation Delay	Marginal % Caused by Bad Scheduling		
[0 min, 10 min]	80%		
[15 min, 20 min]	60%		
≥25 min	Special Conditions, Not Applicable		