*

UNIVERSIDAD TECNOLÓGICA NACIONAL

Facultad Regional Buenos Aires

Ingeniería en Sistemas de Información

Técnicas graficas por computador

2010

PROFESORES: Matias Leone,

Leandro Barbagallo

TRABAJO PRÁCTICO

TEMA: Motor de Física.

Objetivo del TP: Realizar una herramienta extensible que realice los cálculos de física.

GRUPO: Piguyis

Integrantes del equipo			
Legajo	Apellido y Nombre		
115227-0	García, Rodrigo Nicolas		
Entrega / Revisión	1	2	3
A entregar el	9-11-2010		
Entregado el			
Calificación			
OBSERVACIONES:			

OBJETIVOS

- Crear un motor de física aplicado a gráficos por computador.
- Mostrar lo desarrollado con escenarios de prueba.

ALCANCE

- Realizar los cálculos de colisiones entre esferas.
- Preformar las colisiones con octree.
- Realizar los cálculos físicos (derivadas) con una solución discreta, Aproximación de Euler.
- Dejar el código lo suficientemente extensible para que en próximos años se pueda continuar con la idea.

EXPLICACION DE IMPLEMENTACION

- La implementación vino dada por el estudio de diferentes técnicas que utilizan los motores actuales de física para los cálculos matemáticos necesarios.
- En base a los motores físicos Box2DLite, Box2D 2.0.1 (http://www.gphysics.com) (C++) y Box2DX (C#) se realizo un estudio de cómo implementan esto la gran variedad de soluciones.
- La implementación tiene cuatro etapas donde se realizan los cálculos necesarios para que la interacción sea lo mas real posible.
 - o Inicialización:
 - o Primera etapa: Se inicializa el mundo se agregan los objetos dinámicos (con diferentes masas y los estáticos con masa infinita), para optimización se agregan en un octree.
 - Rendering:
 - Segunda etapa: Se realizan los testeos de colisión, realizando un cálculo del punto de colisión que luego es utilizado para hacer el cálculo físico.
 - o Tercera etapa: Se realizan los cálculos físicos (impulso elástico), utilizando la aproximación de euler, a partir del tiempo trascurrido en rendering.
 - Cuarta etapa: Luego de realizar las operaciones físicas, se dispone de las nuevas velocidades, lo que nos queda es aplicar dichas velocidades y calcular la nueva ubicación del objeto rígido.
- Explicación de clases importantes:
 - world: Es quien realiza la interacción con todas las etapas.
 - public void Step(float timeStep): metodo donde son llamadas todas las etapas de rendering.
 - public void CollidePhase(): Testeo de colisiones (Contact) y inicializacion de Arbiters.
 - o Arbiter: Contiene la lógica de la etapa física.
 - public void PreStep(float inverseTimeStep): Actualiza el Contact realizando los cálculos matemáticos necesarios para luego poder aplicar los impulsos a los cuerpos rígidos.
 - public void ApplyImpulse(): Realiza el calculo de cómo van a terminar los impulsos, o sea las velocidades finales de los objetos intervinientes.
 - o RigidBody: Es la representacion de un cuerpo rigido en el sistema.
 - Contiene los siguentes atributos importantes:
 - _mass: La masa del objeto.
 - _location: Es la posicion del cuerpo.
 - velocity: Es la velocidad que tiene el objeto en este momento
 - _fuersasInternas: Son las unicas aplicadas apartir de estas se calcula la aceleración del cuerpo, esta fuerza puede ser la gravedad.
 - _boundingVolume: Es el volumen que contiene al cuerpo.
 Actualmente solo existen volumenes esféricos.

- o BoundingVolume: Es el volumen que contiene los cuerpos, esta es una clase abstracta.
 - Toda implementacion tiene que implementar los siguentes metodos:

```
public abstract void SetPosition(Vector3 position);
```

- public abstract Vector3 GetPosition();
- public abstract float GetRadius();
- public abstract void render();
- public abstract void dispose();
- La única implementación en este momento es: BoundingSphere
- o IEscena: Es una escena de test para mostrar el motor, de esta manera se implementa la SolucionAlumno:
 - Se tiene que implementar
 - String GetTitle();
 - String GetDescription();
 - void InitEscena();
 - void Render(float elapsedTime);
 - void CloseEscena();
 - Existe una implementación básica que es:
 - EscenaBase: de esta manera en todas las escenas se evita realizar todos los cambios necesarios para constrir una esena, sino que solo implementa la creacion de los cuerpos.