Homework 10

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

Due date: December 4, 2019

Textbooks: In the assignment, the two texts are abbreviated as follows:

- [FIS]: Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee]: Beezer, A First Course in Linear Algebra, Version 3.5, 2015.
- 1. Let $V = \mathbb{R}^3$ be equipped with the standard inner product. Apply the Gram-Schmidt process to a basis $\beta = \{v_1 = (1, 0, 1), v_2 = (0, 1, 1), v_3 = (1, 3, 3)\}$ for V to obtain an orthonormal basis for V.
- 2. Let V be an inner product space over F and W a finite dimensional subspace of V. Let β be a basis for W
 - (a) Show that W^{\perp} is a subspace of V.
 - (b) Show that $W \cap W^{\perp} = \{0\}.$
 - (c) Show that $z \in W^{\perp}$ if and only if $\langle z, x \rangle = 0$ for all $x \in \beta$.
- 3. Let V be an inner product space over F, S_1 , S_2 be subsets of V, and W be a finite dimensional subspace of V.
 - (a) Show that if $S_1 \subseteq S_2$, then $S_2^{\perp} \subseteq S_1^{\perp}$.
 - (b) Show that $\operatorname{Span}(S_1) \leq (S_1^{\perp})^{\perp}$.
 - (c) Show that $W = (W^{\perp})^{\perp}$.
- 4. A matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is called unitary if Q is invertible and $Q^{-1} = Q^*$. Show that $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is unitary if and only if the set of the columns of A is orthonormal.
- 5. Let V be an inner product space over $F, T: V \to V$ linear, and $y \in V$. Let $\varphi(x): V \to F$ be defined by $\varphi(x) = \langle T(x), y \rangle$. Show that φ is linear.
- 6. Let V be an inner product space over $F, c \in F$, and $S, T : V \to V$ linear.
 - (a) Show that $(cS+T)^* = \overline{c}S^* + T^*$.
 - (b) Show that $(ST)^* = T^*S^*$.
 - (c) Show that $(T^*)^* = T$ and $I^* = I$.
- 7. Let V be an inner product space over F.
 - (a) (Parseval's identity) Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V. Show that

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}$$

for all $x, y \in V$.

(b) (Bessel's indequality) Let $S = \{v_1, \dots, v_n\}$ be an orthonormal subset for V. Show that

$$\sum_{i=1}^{n} |\langle x, v_i \rangle|^2 \le ||x||^2$$

for all $x \in V$.