Syntaks og semantik

Lektion 7

6 marts 2007

Fra sidst

1 Kontekstfrie grammatikker2 Pushdown-automater3 Lukningsegenskaber

Definition 2.2: En kontekstfri grammatik (CFG) er en 4-tupel $G = (V, \Sigma, R, S)$, hvor delene er

PDA

- V : en endelig mængde af variable
- ② Σ : en endelig mængde af terminaler, med $V \cap \Sigma = \emptyset$
- **3** $R: V \to \mathcal{P}((V \cup \Sigma)^*)$: produktioner / regler
- $S \in V$: startvariablen
- produktioner skrives $A \rightarrow w$ i stedet for $w \in R(A)$
 - Hvis $u, v, w \in (V \cup \Sigma)^*$ er ord og $A \to w$ er en produktion, siges uAv at frembringe uwv: $uAv \Rightarrow uwv$.
 - Hvis u, v ∈ (V ∪ Σ)* er ord, siges u at derivere v: u ⇒ v, hvis u = v (!) eller der findes en følge u₁, u₂, ..., uk af ord således at u ⇒ u₁ ⇒ u₂ ⇒ ... ⇒ uk ⇒ v.
 - Sproget som G genererer er $\llbracket G \rrbracket = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$
- dvs. et ord $w \in \Sigma^*$ genereres af G hvis og kun hvis der findes en derivation $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \ldots \Rightarrow w_k \Rightarrow w$, hvor alle $w_i \in (V \cup \Sigma)^*$.

Eksempel: Opgave 2.6 d (ca.)

$$S \rightarrow A \# T \# A$$
 $T \rightarrow aTa \mid bTb \mid \# A \#$
 $A \rightarrow aA \mid bA \mid \varepsilon \mid A \# A$

Genererer sproget

$$\{x_1 \# x_2 \# \dots \# x_k \mid k \geq 5, \text{alle } x_i \in \{a, b\}^*,$$
 og $x_i = x_j^R$ for to indices $i \neq j\}$

Definition 2.13: En pushdown-automat (PDA) er en 6-tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Γ : stack-alfabetet
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$: transitionsfunktionen
- $oldsymbol{0} q_0 \in Q$: starttilstanden
- $F \subseteq Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $w_1, w_2, \ldots, w_m \in \Sigma_{\varepsilon}, r_0, r_1, \ldots, r_m \in Q$ og $s_0, s_1, \ldots, s_m \in \Gamma^*$ således at $w = w_1 w_2 \ldots w_m$ og

- ② for alle i = 0, 1, ..., m-1 findes $a, b \in \Gamma_{\varepsilon}$ og $t \in \Gamma^*$ som opfylder $s_i = at$, $s_{i+1} = bt$ og $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, og
- \circ $r_m \in F$.

Genkender sproget

 $\{w \in \{a,b\}^* \mid \text{antallet af } a \text{ i } w = \text{antallet af } b \text{ i } w\}$

At læse strengen abba:

Definition: Et sprog siges at være kontekstfrit hvis der findes en CFG der genererer det.

Sætning 2.20: Et sprog er kontekstfrit hvis og kun hvis der findes en PDA der genkender det.

Bevis lige om lidt.

Sætning: Klassen af kontekstfrie sprog er lukket under \cup , \circ og *.

Bevis: (Opgave 2.8) Lad A_1 og A_2 være kontekstfrie sprog over et fælles alfabet Σ .

- ∪: Lad $G_1 = (V_1, \Sigma, R_1, S_1)$, $G_2 = (V_2, \Sigma, R_2, S_2)$ være CFGs med $\llbracket G_1 \rrbracket = A_1$ og $\llbracket G_2 \rrbracket = A_2$. Konstruér en ny CFG $G = (V, \Sigma, R, S)$ ved $V = V_1 \cup V_2 \cup \{S\}$ og $R = R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}$. Da er $\llbracket G \rrbracket = A_1 \cup A_2$.
- o : Lad $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, F_1)$, $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, F_2)$ være PDAs med $[\![M_1]\!] = A_1$ og $[\![M_2]\!] = A_2$. Antag at $\Gamma_1 \cap \Gamma_2 = \emptyset$. Konstruér en ny PDA $M = (Q, \Sigma, \Gamma, \delta, q_1, F_2)$ ved $Q = Q_1 \cup Q_2$, $\Gamma = \Gamma_1 \cup \Gamma_2$ og $\delta = \delta_1 \cup \delta_2 \cup \{(q_f, \varepsilon, \varepsilon) \to (q_2, \varepsilon) \mid q_f \in F_1\}$. Da er $[\![M]\!] = A_1 \circ A_2$.
- *: Lad $G_1 = (V_1, \Sigma, R_1, S_1)$ være en CFG med $\llbracket G_1 \rrbracket = A_1$. Konstruér en ny CFG $G = (V, \Sigma, R, S)$ ved $V = V_1 \cup \{S\}$ og $R = \{S \rightarrow \varepsilon \mid SS \mid S_1\}$. Da er $\llbracket G \rrbracket = A_1^*$.

 $\mathsf{FFG} \Rightarrow \mathsf{PDA}$ $\mathsf{PDA} \Rightarrow \mathsf{CFG}$

Kontekstfrie grammatikker og pushdown-automater

Lemma 2.21: Lad Σ være et alfabet og $A \subseteq \Sigma^*$ et kontekstfrit sprog. Da findes en PDA P med $\llbracket P \rrbracket = A$.

Bevis: Lad $G = (V, \Sigma, R, S)$ være en CFG med $\llbracket G \rrbracket = A$. Idéen er at PDAen, givet en inputstreng s, nondeterministisk forsøger at finde en derivation for s i G:

- Push S på stacken
- Physical Hvis topsymbolet på stacken er en variabel A: Pop A og push højresiden w af en produktion $A \rightarrow w$ i R. (Dø hvis der ikke er nogen produktion $A \rightarrow w$ i R.)
- Wis topsymbolet på stacken er en terminal a: Sammenlign med næste inputsymbol. Hvis de er ens, pop a. Hvis de ikke er ens, dø.
- Gentag step 2 og 3 indtil stacken er tom.

Lemma 2.21: Lad Σ være et alfabet og $A \subseteq \Sigma^*$ et kontekstfrit sprog. Da findes en PDA P med $\llbracket P \rrbracket = A$.

Bevis: Lad $G=(V,\Sigma,R,S)$ være en CFG med $\llbracket G \rrbracket = A$. Vi konstruerer først en "generaliseret PDA" $P=(Q,\Sigma,\Gamma,\delta,q_s,F)$, der kan pushe strenge i stedet for bare symboler. Lad $Q=\{q_s,q_\ell,q_f\}, F=\{q_a\}$ og $\Gamma=V\cup\Sigma\cup\{\$\}$. Lad

$$\begin{split} \delta(q_{s},\varepsilon,\varepsilon) &= \{(q_{\ell},S\$)\} \\ \delta(q_{\ell},\varepsilon,A) &= \{(q_{\ell},w) \mid w \in R(A)\} \quad \text{for alle } A \in V \\ \delta(q_{\ell},a,a) &= \{(q_{\ell},\varepsilon)\} \quad \text{for alle } a \in \Sigma \\ \delta(q_{\ell},\varepsilon,\$) &= \{(q_{a},\varepsilon)\} \\ \delta(q,a,b) &= \emptyset \quad \text{for alle andre} \end{split}$$

Lav til sidst P om til en "almindelig" PDA ved at erstatte enhver transition $q \xrightarrow{a,b \to s_1 s_2 \dots s_n} r$ med (nye tilstande og) en følge $q \xrightarrow{a,b \to s_n} q_1 \xrightarrow{\varepsilon,\varepsilon \to s_{n-1}} q_2 \longrightarrow \dots \longrightarrow q_{n-1} \xrightarrow{\varepsilon,\varepsilon \to s_1} r$.

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ. Da findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$.

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- Sørg for at P kun har én accepttilstand q_a og at stacken tømmes før P går i q_a .
- **2** Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom stack.
- 3 Lad $S = A_{q_0q_a}$. Voilà!

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ. Da findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$.

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

• Sørg for at P kun har én accepttilstand q_a og at stacken tømmes før P går i q_a .

Nyt stacksymbol \$. Tre nye tilstande: q_s , q_e og q_a . Nye transitioner: $q_s \xrightarrow{\varepsilon,\varepsilon \to \$} q_0$, $q \xrightarrow{\varepsilon,\varepsilon \to \varepsilon} q_e$ for alle $q \in F$, $q_e \xrightarrow{\varepsilon,a \to \varepsilon} q_e$ for alle $a \in \Sigma$, og $q_e \xrightarrow{\varepsilon,\$ \to \varepsilon} q_a$.

Sørg for at enhver transition *enten* pusher *eller* popper.

- Erstat enhver transition $q \xrightarrow{a,b \to c} r$ med $q \xrightarrow{a,b \to \varepsilon} q_1 \xrightarrow{\varepsilon,\varepsilon \to c} r$
- Erstat enhver transition $q \xrightarrow{a,\varepsilon \to \varepsilon} r$ med $q \xrightarrow{a,\varepsilon \to x} q_1 \xrightarrow{\varepsilon,x \to \varepsilon} r$ for et eller andet symbol $x \in \Gamma$.

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ. Da findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$.

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- 2 Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom stack.
 - Lav en produktion $A_{pp} \to \varepsilon$ for alle $p \in Q$ (terminering)
 - Lav en produktion $A_{pq} \rightarrow A_{pr}A_{rq}$ for alle $p, q, r \in Q$ (rekursion)
 - For alle $p, q, r, s \in Q$: Hvis $p \xrightarrow{a,\varepsilon \to t} r$ og $s \xrightarrow{b,t \to \varepsilon} q$ for nogle $a,b \in \Sigma_{\varepsilon}$ og et $t \in \Gamma$: Lav en produktion $A_{pq} \to aA_{rs}b$. (produktion)
 - der skal argumenteres for at dette giver det rigtige resultat!