EECS 336: Introduction to Algorithms

Sample Midterm

80 minutes

Advice: Skip problems that might take a while and come back to them later. If an algorithm is requested, be as succinct as possible. Often a simple description in English is more effective than pseudocode. You do not need to supply any proofs unless explicitly asked. All runtimes should be given using big-oh notation.

1. Simplify the following expressions if possible.

[Points: ____/12]

- (a) $O(n^2 + 500n)$. $O(n^2)$
- (b) $O(n \log n + n^{1.01})$. $O(n^{1.01})$
- (c) $O(3n^3 2n^2 + n)$. $O(n^3)$
- (d) $O(\sqrt{n} + \log n)$. $O(\sqrt{n})$
- (e) O(1+1/n). O(1)
- (f) $O(\log(n^2))$. $O(\log n)$
- 2. The Mergesort algorithm described in class works as follows on an unordered list U of n numbers:
 - If n = 1, return U (it is already sorted).
 - Break U into two lists U_1 and U_2 (of roughly the same length).
 - Recursively sort: $S_1 = \text{Mergesort}(U_1)$ and $S_2 = \text{Mergesort}(U_2)$.
 - Output merger: $S = \text{Merge}(S_1, S_2)$

Answer the following questions:

[Points: ____/2]

(a) Give the recurrence relationship that describes the runtime of Mergesort.

$$T(n) = 2T(n/2) + O(n)$$

(b) Give the runtime of Mergesort using big-oh notation.

$$O(n \log n)$$

- 3. Define 3-Mergesort to break the list into three sublists of length roughly n/3, recursively sort these sublists, and then 3-Merge them together. [Points: _____/8]
 - (a) Give an algorithm for 3-Merge.

Return
$$Merge(S_1, Merge(S_2, S_3))$$

(b) Give the runtime for 3-Merge using big-oh notation.

(c) Give the recurrence relationship that describes the runtime of 3-Mergesort.

$$T(n) = 3T(n/3) + O(n)$$

(d) Give the runtime for 3-Mergesort using big-oh notation.

$$O(n \log n)$$

- - (a) Assume that k-Merge (on lists of size n/k) can be implemented in $\Theta(n \log k)$ and give the recurrence relationship for the runtime of k-Mergesort.

```
T(n) = kT(n/k) + \Theta(n \log k)
```

- (b) Give the runtime for k-Mergesort using big-oh notation.
 - $T(n) = \log_k n \times n \times \log k$
 - $\log_k n = \frac{\log n}{\log k}$
 - $\Rightarrow O(n \log n)$
- (c) Give an algorithm for k-Merge that runs in $O(n \log k)$ time. (Hint: use priority queues.)
 - i. $S = \emptyset$.
 - ii. Insert each list into priority queue Q with first element as key.
 - iii. L = DeleteMin(Q).
 - iv. Append first element of L to S.
 - v. Insert list of remaining elements of L into Q with first element as key.
 - vi. Repeat iii.
- 5. You are given a graph G(V, E) with edge costs c(e) for $e \in E$. You may assume that the edge costs $c(\cdot)$ are distinct. Let $T \subset E$ be the minimum spanning tree. Consider what happens to the tree if we change the cost of an edge e'. Formally, the the new edge costs are $c'(\cdot)$ given by $c'(e') \neq c(e')$ and c'(e) = c(e) if $e \neq e'$. You may assume that the edge costs $c'(\cdot)$ are each distinct. Let T' be the minimum spanning tree with respect to costs $c'(\cdot)$. [Points: ______/10]
 - (a) Consider decreasing the cost of an edge in T (i.e., $e' \in T$ and c'(e') < c(e')). Is T' = T always?

Yes.

(b) Consider increasing the cost of an edge in T (i.e., $e' \in T$ and c'(e') > c(e')). Is T' = T always?

Not always.

(c) Consider decreasing the cost of an edge not in T (i.e., $e' \notin T$ and c'(e') < c(e')). Is T' = T always? If not, give an illustrative example that shows why and give a simple algorithm for computing T' from T without solving the MST problem over from scratch.

Not always. To compute T', consider adding edge e' to T. Since T is a spanning tree, adding e' creates a cycle. The most expensive edge in any cycle is not in any spanning tree. Therefore, we can break this cycle by removing the most expensive edge. The resulting graph is a spanning tree.

(d) Consider increasing the cost of an edge not in T (i.e., $e' \notin T$ and c'(e') > c(e')). Is T' = T always? If not, give an illustrative example that shows why and give a simple algorithm for computing T' from T without solving the MST problem over from scratch.

Yes.

6. You've just started consulting for a startup company, DigiDyne, that is doing dynamic pricing of digital music downloads. They are considering two business models. In the *subscription* model customers are asked to pay a fixed price p and can download as many songs as they please. In the *a-la-carte* model a customer is asked to pay a fixed price q per song. The price for d downloads in the a-la-carte model is $d \cdot q$.

Example:

- $S = \{1, 2, 3\}, \mathbf{v} = (4, 5, 6), \mathbf{d} = (1, 2, 3).$
- For subscription price p = 5: consumers 2 and 3 buy (v_2 and v_3 are greater than p = 5), consumer 1 does not buy ($v_1). The total revenue is 10.$
- For a-la-carte price q = 3: consumer 1 buys $(v_1/d_1 \ge q = 3)$, consumers 2 and 3 do not buy (v_2/d_2) and $v_3/d_3 < q = 3$. The total revenue is 3 (consumer 1 buys one song for q = 3).
- (a) Show that neither of these business models is always better than the other. To do so, give an input (\mathbf{v}, \mathbf{d}) where the revenue from the optimal subscription price, p^* , is less than the revenue from the optimal a-la-carte price, q^* . Then given an input $(\mathbf{v}', \mathbf{d}')$ where the revenue from the optimal subscription price, p^* , is more than the revenue from the optimal a-la-carte price, q^* .
 - For $\mathbf{v} = (1,3)$ and $\mathbf{d} = (1,3)$, the optimal subscription price is $p^* = 3$ which sells to consumer 2 for a revenue of 3. The optimal a-la-carte price is $q^* = 1$ that sells to both consumers for a revenue of 4. The a-la-carte revenue is higher.
 - For $\mathbf{v}' = (3,3)$ and $\mathbf{d}' = (1,3)$, the optimal subscription price is $p^* = 3$ which sells to both consumers for a revenue of 6. The optimal a-la-carte price is $q^* = 1$ that sells to both consumers for a revenue of 4. The subscription revenue is higher.
- (b) Give an algorithm that on input (\mathbf{v}, \mathbf{d}) computes the a-la-carte price, q^* , with the highest total revenue. What is the runtime of your algorithm?

Algorithm:

- i. Sort the consumers by decreasing value-per-song, v_i/d_i .
- ii. Notice that at a-la-carte price $q = v_i/d_i$, the first i consumers will buy.
- iii. Compute $D_i = \sum_{j=1}^i d_i$ for all i.
- iv. Compute $P_i = D_i v_i / d_i$ for all i.
- v. For $i^* = \operatorname{argmax}_i P_i$ output price $q^* = v_{i^*}/d_{i^*}$.

Analysis: Step 1: $O(n \log n)$; Steps 3-5: O(n) each; Total: $O(n \log n)$.