Characterization of Faces

Theorem 3.28.

Consider a polyhedron $P \subseteq \mathbb{R}^n$ be defined by

$$a_i^T \cdot x \geq b_i$$

for $i \in M$,

$$a_i^T \cdot x = b_i$$

for $i \in N$,

and let $F \neq \emptyset$ be a face of P.

- There exists $K \subseteq M$ with $F = \{x \in P \mid a_i^T \cdot x = b_i \text{ for } i \in K\}$.
- **b** For $K \subseteq M$, the subset $\{x \in P \mid a_i^T \cdot x = b_i \text{ for } i \in K\}$ is a face of P.
- $G \subseteq F$ is a face of F if and only if it is a face of P.
- d There is a chain of faces $F = F_0 \subset F_1 \subset \cdots \subset F_q = P$ such that $\dim(F_{i+1}) = \dim(F_i) + 1$, for $i = 0, \dots, q-1$.

M. Skutalla ADM I (winter 2010/20) 67

"2": Assume by contradiction that yePIF with at y = bi for all iek => ct. y>y since y & F For each ie MK there is xiEF with a : x'>8; Let X:= MKI : EMIN EF (since Fconvex) => cTx = 8 Notice that a Txo = b; for all ick and aitikosti for all iEMIK (because at xo = 1 mkl jenk 3 b; for i=j For 20 Su-11 enough, 2:= x0+ 2(x0-y) Then cT2 = cTx0 + E. (cTx0 - cTy) < y
= 2 & P On the other hand: FEP Secause. att = (1+E) atx - Eaty = 6; for ie NUK $a[\cdot, 2] = a[\cdot, x_0 + \varepsilon] \cdot (a[\cdot, x_0 - a[\cdot, y)] \ge \delta$; for iefl\K e small

() Let c:= Za; and y:= Zs. Then cix = y for all x ∈ P, because ctx = \(\alpha \); \(\alpha and: cix=y <= >aix=6; Viek => {xep| cTx=y} = {xep|a; x=6; Vie K} c) = ": G = {x e P | eTx = y } = F with eTx = y valid for P then G= ExeF | cTx=y} and cTx=y valid for F => G fuce of F. =>": F= Exla, x > 6; Vietik, a, x=8; Viekuns for some KCM, Since G is face of F, we can write G= {x | a:Tx 26; V: EMIL, a:Tx=8; V: ENUL} for some KELEM by part a). Thus G= ExeP | a; Tx = S; VieL} and G is face of P by b). d) Follows from a) and Lemma 3.17.

Proof of Theorem 3.28 a

Let $K := \{i \in M \mid a_i^T \cdot x = b_i \text{ for all } x \in F\}.$

Claim: $F = \{x \in P \mid a_i^T \cdot x = b_i \text{ for } i \in K\}$

 \subseteq : Clear by definition of K.

' \supseteq ': Assume by contradiction that $y \in P \setminus F$ with $a_i^T \cdot y = b_i \ \forall \ i \in K$. Let $c^T \cdot x \ge \gamma$ valid for P such that $F = \{x \in P \mid c^T \cdot x = \gamma\}$. In particular, $c^T \cdot y > \gamma$ as $y \in P \setminus F$.

For each $i \in M \setminus K$ there is an $x^i \in F$ with $a_i^T \cdot x^i > b_i$.

Let $x_0 := \frac{1}{|M \setminus K|} \sum_{i \in M \setminus K} x^i \in F$ (convex), thus $c^T \cdot x_0 = \gamma$.

Notice that $a_i^T \cdot x_0 = b_i \ \forall \ i \in K \ \text{and} \ a_i^T \cdot x_0 > b_i \ \forall \ i \in M \setminus K$.

For $\varepsilon > 0$ small enough, $z := x_0 + \varepsilon(x_0 - y) \in P$ because:

$$a_i^T \cdot z = (1 + \varepsilon) a_i^T \cdot x_0 - \varepsilon a_i^T \cdot y \begin{cases} = b_i & \text{for } i \in N \cup K, \\ \geq b_i & \text{for } i \in M \setminus K \end{cases}$$

But
$$c^T \cdot z = (1 + \varepsilon) c^T \cdot x_0 - \varepsilon c^T \cdot y < \gamma$$
.

M. Skutella

ADM I (winter 2019/20)

Proof of Theorem 3.28 b-d

- b) Let $c := \sum_{i \in K} a_i$ and $\gamma := \sum_{i \in K} b_i$. Then, $c^T \cdot x \ge \gamma$ is a valid inequality for P and for $x \in P$ $c^T \cdot x = \gamma \qquad \iff \qquad a_i^T \cdot x = b_i \text{ for all } i \in K.$
- c) ' \Leftarrow ': If $G = \{x \in P \mid c^T \cdot x = \gamma\} \subseteq F$ with $c^T \cdot x \ge \gamma$ valid for P, then $G = \{x \in F \mid c^T \cdot x = \gamma\}$ and $c^T \cdot x \ge \gamma$ valid for F.
 - ' \Longrightarrow ': $F = \{x \mid a_i^T \cdot x \geq b_i \ \forall i \in M \setminus K, \ a_i^T \cdot x = b_i \ \forall i \in K \cup N \}$ for some $K \subseteq M$ due to a). Since G is a face of F, again due to a), $G = \{x \mid a_i^T \cdot x \geq b_i \ \forall i \in M \setminus L, \ a_i^T \cdot x = b_i \ \forall i \in L \cup N \}$ for some $K \subseteq L \subseteq M$. Thus, due to b), G is a face of P.
- d) Follows from a-c and Lemma 3.17.

Characterization of Faces (Cont.)

Corollary 3.29.

Consider a polyhedron $P \subseteq \mathbb{R}^n$ be defined by

$$a_i^T \cdot x \ge b_i$$
 for $i \in M$,
 $a_i^T \cdot x = b_i$ for $i \in N$.

- P has finitely many distinct faces.
- **b** If F is a facet of P, then $\dim(F) = \dim(P) 1$.
- An inclusion-wise minimal proper face F of P can be written as $F = \{x \in \mathbb{R}^n \mid {a_i}^T \cdot x = b_i \text{ for all } i \in K \cup N\}$ for some $K \subseteq M$ with $\text{rank}\{a_i \mid i \in K \cup N\} = \text{rank}\{a_i \mid i \in M \cup N\}$.
- \blacksquare If P is pointed, every minimal nonempty face of P is a vertex.

Proof: Exercise.

M. Skutella ADM I (winter 2019/20) 70

Edges, Extreme Rays, Extreme Lines

Definition 3.30.

A one-dimensional face F of polyhedron P is

- an edge if F has two vertices, i.e., $F = \text{conv}(\{x,y\})$ with $x,y \in \mathbb{R}^n$, $x \neq y$;
- an extreme ray if F has one vertex, i.e., $F = x + \text{cone}(\{z\})$ with $x \in \mathbb{R}^n$, $z \in \mathbb{R}^n \setminus \{0\}$;
- an extreme line if F has no vertex, i.e., $F = x + \text{lin}(\{z\})$ with $x \in \mathbb{R}^n$, $z \in \mathbb{R}^n \setminus \{0\}$.