Data Structures and Algorithms CMPSC 465

LECTURE 4, 8/31

Paul Medvedev

9/1/2015

Some of these slides are based on slides of S. Raskhodnikova, A. Smith, K. Wayne, E. Demaine and C. Leiserson

- •Transpose Symmetry:
 - -f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$
 - -f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$
- If f(n) = o(g(n)) then f(n) = O(g(n))
- If $f(n) = \omega(g(n))$ then $f(n) = \Omega(g(n))$
- Transitivity of Θ : (same holds for O, Ω, o, ω)
 - -If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$
- Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Additivity for θ (same holds for $O,\Omega,o,\omega)$:
- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $f(n) + g(n) = \Theta(h(n))$
- Multiplication: If $f(n)=\Theta(h_1(n))$ and $g(n)=\Theta(h_2(n))$ then $f(n)\cdot g(n)=\Theta(h_1(n)\cdot h_2(n))$
- Same holds for O, Ω , o, ω

2

Summary

Notation	means	Think	E.g.
f(n)=O(n)	$\exists c > 0, n_0 > 0, \forall n \ge n_0: \\ 0 \le f(n) \le cg(n)$	Upper bound "≤"	$100n^2 = \mathcal{O}(n^3)$
$f(n) = \Omega(g(n))$	$\exists c > 0, n_0 > 0, \forall n \ge n_0: $ $0 \le cg(n) \le f(n)$	Lower bound "≥"	$n^{100} = \Omega(2^n)$
$f(n)=\Theta(g(n))$	$f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$	Tight bound	$\log(n!) = \Theta(n \\ \log n)$
f(n)=o(g(n))	$ \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : \\ 0 \le f(n) < cg(n) $	"<"	$n^2 = o(2^n)$
$f(n)=\omega(g(n))$	$ \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 \colon \\ 0 \le cg(n) < f(n) $	">"	$n^2 = \omega(\log n)$

9/1/2015 3

Useful identities for logarithms

• For all *x*>0 and *a*,*b*>1:

$$^{1.}x = a^{\log_a(x)}$$

$$2.\log_a(b) = \frac{\log_2(b)}{\log_2(a)}$$

$$3. a^{\log_b(x)} = x^{\log_b(a)}$$

Examples:

$$2^{\log_2(n)} = n$$

$$2^{\log_3(n)} = n^{\log_3(2)}$$

$$\approx n^{0.63}$$

$$9^{\log_3(n)} = n^2$$

9/1/2015

Exercise: Sort by asymptotic order

- 1. \sqrt{n}
- $2. n \log n$
- 3. $n^{1/\log n}$
- 4. n^2
- 5. $2^{\log n}$
- 6. $2^{\log_3 n}$
- 7. $2^{n/100}$
- 8. $\log(n!)$
- $\frac{9}{n}\sqrt{n}$

Post questions to Piazza, instructors will answer