

Apprentissage automatique et applications

Stage L2 laboratoire ETIS

Tuteur: Pierre Andry

Etat de l'art

- 1951 M.Minsky: premier réseau de neuron
- 1957 F.Rosenblatt: Perceptron
- 1969 Minsky & Papert : livre « Perceptrons »
 - Limites réseaux de neurones → Al winter
- 1986 Rumrlhart & Hinton: backpropagation
- 1989 Watkins & Sutton: reinforcment learning
- 1997 IBM: DeepBlue bat Kasparov aux échecs
- 1998 Y.LeCun: Deep learning
- 2016 Google: AlphaGo bat Lee Sedol aux Go

Réseaux de neurones

Modélisation simpliste du fonctionnement d'un neurone biologique

Perceptron simple

Fonctionnement perceptron simple

Perceptron simple

Fonctionnement perceptron simple

Matthieu Vilain UCP

Perceptron simple **Application**

Limites

- Position dans la grille
- Temps d'apprentissage
- Non ergonomique

Rétine : 100 neurones Sortie : 10 neurones

Perceptron simple **Application**

Limites

- Position dans la grille
- Temps d'apprentissage
- Non ergonomique

Rétine : 100 neurones Sortie : 10 neurones

Outils d'apprentissage

Base de données MNIST

Yann LeCun & Corinna Cortes & J.C. Burges

- Images 28x28
- Labélisées
- Base d'entrainement : 60 000 exemples
- Base de test : 10 000 exemples
 - 5000 normaux
 - 5000 bruités

Fonctionnement perceptron multicouches

Matthieu Vilain UCP

Fonctionnement perceptron multicouches

Propagation de l'information

Pot_j =
$$\sum_i w_{ij} \times x_i$$

Fonctionnement perceptron multicouches

Propagation de l'information

Pot_j =
$$\sum_i w_{ij} \times x_i$$

$$Signal_{out} = sigmoid(Pot)$$

Fonctionnement perceptron multicouches

Propagation de l'information

Pot_j =
$$\sum_i w_{ij} \times x_i$$

$$Signal_{out} = sigmoid(Pot)$$

Calcul de l'erreur

$$E_i^{out} = superviseur_i^d - sig_i^{out}$$

Calcul du signal d'erreur

 $E_i^{out} = superviseur_i^d - sig_i^{out}$

$$\delta^{out} = sig^{out} \circledast (1 - sig^{out}) \circledast E^{out}$$

Propage signal d'erreur

$$E_i^n = \sum_j W_{ij} \times \delta_j^{n+1}$$

Matthieu Vilain UCP

Mise à jour des poids

$$E_i^n = \sum_j W_{ij} \times \delta_j^{n+1}$$

$$W_{ij}^{t+1} = W_{ij}^t + \eta \times sig_i^n \times \delta_j^{n+1}$$

Calcul du signal d'erreur

$$E_i^n = \sum_j W_{ij} \times \delta_j^{n+1}$$

$$W_{ij}^{t+1} = W_{ij}^t + \eta \times sig_i^n \times \delta_j^{n+1}$$

$$\delta^n = sig^n \circledast (1 - sig^n) \circledast E^n$$

Propagation jusqu'au début

$$E_i^n = \sum_j W_{ij} \times \delta_j^{n+1}$$

$$W_{ij}^{t+1} = W_{ij}^t + \eta \times sig_i^n \times \delta_j^{n+1}$$

$$\delta^n = sig^n \circledast (1 - sig^n) \circledast E^n$$

Résultats

Résultats

Optimisation

150 000 – 200 000 training 95% de réussite 100 sec de training

Application

Problème

Non résistant aux :

- Translation
- Zoom
- Rotation
- Position
- Bruit

Fonctionnement du CNN

Réseau de neurones convolutif Yann LeCun 1998

Couches de convolution

Couches de normalisation

Couches de pooling

Organisation des couches

$$INPUT \rightarrow \big((CONV \rightarrow ReLU) \times N \rightarrow POOL\big) \times M \rightarrow (FC \rightarrow RELU) \times K \rightarrow FC$$

Avec $0 \le N \le 3$, $M \ge 0$, $0 \le K < 3$

Backpropagation

Réseau de neurones convolutif Résultats

LeNet-5

99,28% de réussite

26 minutes de training

20 000 training

CPU - 8 cœurs

Réseau de neurones en robotique Le katana©

Apprendre à un bras robotique à attraper des objets

Réseau de neurones en robotique

Le model

Réseau de neurones en robotique **Le model**

$$V(s_t) = V(s_t) + \alpha \times [R_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

[0,0]	1000		200						
	[0,1]	[0, 2]	[0,3]	[0,4]	[0,5]	[0,6]	[0,7]	[0,8]	[0,9]
[1,0]	[1,1]	[1,2]	[1,3]	[1,4]	[1,5]	[1,6]	[1,7]	[1,8]	[1,9]
[2,0]	[2,1]	[2,2]	[2,3]	[2,4]	[2,5]	[2,6]	[2,7]	[2,8]	[2,9]
[3,0]	[3,1]	[3,2]	[3,3]	[3,4]	[3,5]	[3,6]	[3,7]	[3,8]	[3,9]
[4,0]	[4,1]	[4,2]	[4,3]	[4,4]	[4,5]	[4,6]	[4,7]	[4,8]	[4,9]
[5,0]	[5,1]	[5,2]	[5,3]	[5,4]	[5,5]	[5,6]	[5,7]	[5,8]	[5,9]
[6,0]	[6,1]	[6,2]	[6,3]	[6, 4]	[6,5]	[6,6]	[6,7]	[6,8]	[6, 9]
[7,0]	[7,1]	[7,2]	[7,3]	[7,4]	[7,5]	[7,6]	[7,7]	[7,8]	[7,9]
[8,0]	[8,1]	[8, 2]	[8,3]	[8, 4]	[8,5]	[8,6]	[8,7]	[8,8]	[8, 9]
[9,0]	[9,1]	[9,2]	[9,3]	[9,4]	[9,5]	[9,6]	[9,7]	[9,8]	[9,9]

Réseau de neurones en robotique **Implémentation**

Réseau de neurones

Traitement d'images

Conclusion

Bilan du stage

- ✓ Appris énormément sur les réseaux de neurones
- ✓ Conforté dans mon choix d'orientation
- ✓ Plein de nouvelles idées de projets

Regret:

Pas avoir eu le temps de plus appliquer la théorie

Continuité du stage :

Projet de voiture autonome L3

Finir l'apprentissage sur le Katana