FA 3.4 - 1 Indirekte Proportionalität - MC - BIFIE

1. t ist indirekt proportional zu x und y^2 .

____/1 FA 3.4

Welche der angegebenen Formeln beschreiben diese Abhängigkeiten? Kreuze die beiden zutreffenden Formeln an!

$t = \frac{z}{3 \cdot x \cdot y^2}$	\boxtimes
$t = \frac{x \cdot z}{3 \cdot y^2}$	
$t = \frac{x \cdot y^2}{3 \cdot z}$	
$t = \frac{3 \cdot z}{x \cdot y^2}$	\boxtimes
$t = x \cdot y^2 \cdot z$	

FA 3.4 - 2 Ideales Gas - OA - BIFIE

2. Die Abhängigkeit des Volumens V vom Druck ρ kann durch eine Funktion beschrieben werden. Bei gleichbleibender Temperatur ist das Volumen V eines idealen Glases zum Druck ρ indirekt proportional.

 $200\,cm^3$ eines idealen Glases stehen bei konstanter Temperatur unter einem Druck von 1 bar.

Gib den Term der Funktionsgleichung an und zeichne deren Graphen!

$$V(\rho) =$$

$$V(\rho) = \frac{c}{\rho}$$
$$200 = \frac{c}{1}$$

$$V(\rho) = \frac{200}{\rho}$$

FA 3.4 - 3 Gleichung einer indirekten Proportionalität - OA - BIFIE

3.	Gegeben ist eine Funktion f mit der Gleichung $f(x) = a \cdot x^z + b$, wobei $z \in \mathbb{Z}$	/1
	und $a, b \in \mathbb{R}$ gilt.	FA 3.4

Welche Werte müssen die Parameter b und z annehmen, damit durch f ein indirekt proportionaler Zusammenhang beschrieben wird?

Ermittle die Werte der Parameter b und z.

$$b =$$

$$z =$$

$$b = 0$$

$$z = -1$$