Module Interface Specification for Optimal EM Placement

Hussein Saad

April 16, 2025

1 Revision History

Date	Version	Notes
April 16, 2025	1.3	Implement instructor suggestions
April 16, 2025	1.2	Add moment and pose modules
April 16, 2025	1.1	Implement domain expert suggestions
March 20, 2025	1.0	Initial Release

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/husseinsd1/optimal-em-arrangement/blob/main/docs/SRS/SRS.pdf

Contents

1	Rev	vision 1	History			i				
2	Symbols, Abbreviations and Acronyms ii									
3	Introduction 1									
4	Not	ation				1				
5	Mo	Module Decomposition								
6	MIS	S of Co	onstant Parameters Module			3				
	6.1	Modu	ıle			3				
	6.2	Uses				3				
	6.3	Syntax	NX			3				
		6.3.1	Exported Constants			3				
		6.3.2	Exported Access Programs			3				
	6.4	Semar	ntics			3				
		6.4.1	State Variables			3				
		6.4.2	Environment Variables			3				
		6.4.3	Assumptions			3				
		6.4.4	Access Routine Semantics			3				
		6.4.5	Local Functions		•	3				
7	MIS	of In	nput Parameters Module			4				
	7.1	Modu	ıle			4				
	7.2	Uses				4				
	7.3	Syntax	NX			4				
		7.3.1	Exported Constants			4				
		7.3.2	Exported Access Programs			4				
	7.4	Semar	ntics			4				
		7.4.1	State Variables			4				
		7.4.2	Environment Variables			4				
		7.4.3	Assumptions			5				
		7.4.4	Access Routine Semantics			5				
		7.4.5	Local Functions		•	5				
8	MIS	of M	Iagnetic Moment Module			6				
	8.1		ile			6				
	8.2					6				
	8.3		NX			6				
		8.3.1	Exported Constants			6				
		8.3.2	Exported Access Programs			6				

	8.4	Seman	ntics	6
		8.4.1	State Variables	6
		8.4.2	Environment Variables	6
		8.4.3	Assumptions	6
		8.4.4	Access Routine Semantics	6
		8.4.5	Local Functions	7
9	MIS	of Ma	agnetic Field Module	8
	9.1	Modul	le	8
	9.2			8
	9.3	Syntax	X	8
		9.3.1	Exported Constants	8
		9.3.2	Exported Access Programs	8
	9.4	Seman	ntics	8
		9.4.1	State Variables	8
		9.4.2	Environment Variables	8
		9.4.3	Assumptions	8
		9.4.4	Access Routine Semantics	8
		9.4.5	Local Functions	9
10	MIS	of M	agnetic Force Module	10
			le	10
				10
			x	10
	10.0	_	Exported Constants	10
			Exported Access Programs	10
	10 4		ntics	10
	10.4		State Variables	10
			Environment Variables	10
			Assumptions	10
			Access Routine Semantics	10
			Local Functions	11
11			enerate Poses Module	12
			le	12
				12
	11.3		X	12
			Exported Constants	12
			Exported Access Programs	12
	11.4		ntics	12
			State Variables	12
			Environment Variables	12
		11 / 2	Assumptions	10

		Access Routine Semantics	12 13
19 MT	S of A a	tuation Matrix Module	14
		ee	14
			$\frac{14}{14}$
			14
12.0		Exported Constants	14
			14 14
10 /		Exported Access Programs	14 14
12.4		tics	
		State Variables	14
		Environment Variables	14
		Assumptions	14
		Access Routine Semantics	14
	12.4.5	Local Functions	15
13 MI	S of Op	otimal Placement Module	16
13.1	l Module	e	16
13.2	Uses .		16
13.3	3 Syntax	[16
		Exported Constants	16
	13.3.2	Exported Access Programs	16
13.4		tics	16
		State Variables	16
		Environment Variables	16
		Assumptions	16
		Access Routine Semantics	16
		Local Functions	17
14 MT	S of Ou	atput Results Module	18
		e	18
) II		18
		· · · · · · · · · · · · · · · · · · ·	18
11.0		Exported Constants	18
		Exported Access Programs	18
14 /		tics	18
14.5		State Variables	18
		Environment Variables	18
		Assumptions	18
		Access Routine Semantics	18
	14.4.5	Local Functions	19

15	MIS	of Ma	ain (Control) Module	
	15.1	Module	le	
	15.2	Uses .		
	15.3	Syntax	ς	
		15.3.1	Exported Constants	
		15.3.2	Exported Access Programs	
	15.4	Seman	tics	
		15.4.1	State Variables	
		15.4.2	Environment Variables	
		15.4.3	Assumptions	
		15.4.4	Access Routine Semantics	
		15.4.5	Local Functions	

3 Introduction

The following document details the Module Interface Specifications for OEMP (Optimal Electromagnet Placement). This document describes, in detail, how the interfaces, assumptions and interactions among the modules of the program.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/husseinsd1/optimal-em-arrangement.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Optimal EM Placement.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Optimal EM Placement uses some derived data types: sequences, strings, tuples, and vectors. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. An n-dimensional vector is a list of n real numbers. In addition, Optimal EM Placement uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2			
Hardware-Hiding Module				
	Constant Parameters Module			
	Input Parameters Module			
	Magnetic Moment Module			
Behaviour-Hiding Module	Magnetic Field Module			
	Magnetic Force Module			
	Generate Poses Module			
	Actuation Matrix Module			
	Output Results Module			
	Main (Control) Module			
Software Decision Module	Optimal Placement Module			

Table 1: Module Hierarchy

6 MIS of Constant Parameters Module

6.1 Module

ConstantParams

6.2 Uses

None

6.3 Syntax

6.3.1 Exported Constants

Label	Symbol	Value	Description
MU0	μ_0	$4\pi \times 10^{-7}$	Permeability of free space
MAX_CURR	I_{\max}	20000	Maximum EM current allowed

6.3.2 Exported Access Programs

None

6.4 Semantics

6.4.1 State Variables

None

6.4.2 Environment Variables

None

6.4.3 Assumptions

Constant values are assumed immutable.

6.4.4 Access Routine Semantics

None

6.4.5 Local Functions

7 MIS of Input Parameters Module

7.1 Module

params

7.2 Uses

• Hardware-Hiding Module

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
takeInputs	-	params of	type negativeValueError,
		Params	${\tt invalidCurrentError}$

7.4 Semantics

Params is a data structure used to store the parameter values the user enters into the program.

7.4.1 State Variables

```
\begin{array}{l} \operatorname{params}:\operatorname{Params} = [ \\ N:\operatorname{\mathbb{N}}, \\ I:\operatorname{\mathbb{R}}, \\ A:\operatorname{\mathbb{R}}, \\ M:\operatorname{\mathbb{N}}, \\ K:\operatorname{\mathbb{N}}, \\ V:\operatorname{\mathbb{R}}, \\ t:\operatorname{\mathbb{R}}, \\ m_t:\operatorname{\mathbb{R}} \end{array}
```

The description of the elements of the above array is found in Section 1.2 of the SRS.

7.4.2 Environment Variables

• A console: The medium through which the user will enter the parameter values.

• A keyboard: The module takes input from the user's keyboard.

7.4.3 Assumptions

None

7.4.4 Access Routine Semantics

takeInputs():

- transition:
 - Initialize params: Params.
 - Display prompt for user to enter the value of the parameters, one by one, and raise and exception and re-prompt if the entered value is not in line with the constraints outline in Table 2 of the SRS.

• output: params : Params

 \bullet exception: exc =

Exception	When
negativeValueError	When the input for
	any of the parameters
	is negative.
invalidCurrentError	When the input for
	the current I is greater
	than I_{max}

7.4.5 Local Functions

8 MIS of Magnetic Moment Module

8.1 Module

MagMoment

8.2 Uses

None

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
calculateMoment	$N:\mathbb{N},I:\mathbb{R},A:\mathbb{R}$	in \mathbb{R}	None

8.4 Semantics

8.4.1 State Variables

None

8.4.2 Environment Variables

None

8.4.3 Assumptions

None

8.4.4 Access Routine Semantics

calculateMoment($N : \mathbb{N}, I : \mathbb{R}, A : \mathbb{R}$):

- transition: N/A
- output: The result of using the given inputs in the magnetic moment formula described in TM1 of the SRS.
- exception: N/A

8.4.5 Local Functions

9 MIS of Magnetic Field Module

9.1 Module

MagField

9.2 Uses

- Constant Parameters Module
- Input Parameters Module

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In			Out	Exceptions
calculateField	params Params	of	type	\mathbb{R}^3	None

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Environment Variables

None

9.4.3 Assumptions

Assumes the execution of the Input Parameters Module prior to running.

9.4.4 Access Routine Semantics

calculateField(params : Params):

- transition: N/A.
- output: This module outputs a real 3D vector describing the magnetic field at some distance t (retrieved from params), by doing the following:

- Extract necessary parameters (N, I, A, t) from params.
- Calculate and store magnetic moment using the calculateMoment() local function.
- Find the magnetic field with the given parameters, the calculated moment value, and μ_0 from the Constant Parameters Module using the equation defined in TM2 of the SRS.

• exception: N/A

9.4.5 Local Functions

calculateMoment(N : N, I : \mathbb{R} , A : \mathbb{R} , t : \mathbb{R}): A function to compute the magnetic moment at some distance t as specified in TM1 of the SRS.

• output: A magnetic moment vector in \mathbb{R}^3

• exception: None

10 MIS of Magnetic Force Module

10.1 Module

MagForce

10.2 Uses

- Input Parameters Module
- Magnetic Field Module

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In			Out	Exceptions
calculateForce	params Params	of	type	\mathbb{R}^3	None

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

None

10.4.3 Assumptions

None

10.4.4 Access Routine Semantics

calculateForce(params : Params):

- transition: N/A.
- output: A real 3D vector describing the magnetic force on some target, calculated by the following procedure:

- Invoke and store the magnetic field returned by the Magnetic Field Module.
- Extract the magnetic moment of the target object from params.
- Compute the force vector as described in TM3 of the $\overline{\rm SRS}$
- exception: N/A.

10.4.5 Local Functions

11 MIS of Generate Poses Module

11.1 Module

GeneratePoses

11.2 Uses

None

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
generatePoses	$M: \mathbb{N}, l: \mathbb{R}$	array of M pairs	None

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

None

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

generatePoses $(M : \mathbb{N}, l : \mathbb{R})$:

- transition: N/A
- output: An M sized array of random poses, each generated with the generatePose function defined below.
- exception: N/A

11.4.5 Local Functions

generatePose $(l:\mathbb{R})$: A function to generate a single random pose.

• output: A random 3D coordinate within the under-the-table space, and a 3D rotation matrix.

• exception: None

12 MIS of Actuation Matrix Module

12.1 Module

ActuationMatrix

12.2 Uses

- Input Parameters Module
- Magnetic Field Module
- Magnetic Force Module

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In			Out	Exceptions
constructMatrix	params Params	of	type	\mathbb{R}^6	None

12.4 Semantics

12.4.1 State Variables

None

12.4.2 Environment Variables

None

12.4.3 Assumptions

None

12.4.4 Access Routine Semantics

constructMatrix(params : Params):

- transition: N/A.
- output: A 6×1 real matrix constructed through the following steps:

- Extract parameters from the params argument.
- Generate a set of random positions (of size M from params) using the local function generatePos.
- For each candidate position, calculate the magnetic force and field vectors using Magnetic Force Module and Magnetic Field Module, respectively.
- Sum up the force and field vectors of the candidate positions, the result is two 3D vectors.
- Concatenate the two vectors such that a 6×1 matrix is formed.

• exception: N/A

12.4.5 Local Functions

generatePos(M:N): A function to generate random candidate positions for the EMs.

• output: A set of M [x, y, z] coordinates.

• exception: None

13 MIS of Optimal Placement Module

13.1 Module

 ${\bf FindOptPositions}$

13.2 Uses

- Actuation Matrix Module
- Input Parameters Module

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
solve	vector in \mathbb{R}^6 , params	binary vector in \mathbb{R}^M	SolverException
	of type $Params$		

13.4 Semantics

13.4.1 State Variables

None

13.4.2 Environment Variables

None

13.4.3 Assumptions

None

13.4.4 Access Routine Semantics

 $solve(\mathcal{U}:\,\mathbb{R}^6,\,params:\,\texttt{Params})\text{:}$

- \bullet transition: N/A.
- output: A vector $x \in \{0,1\}^M$ such that:
 - $-\ \mathbbm{1}_M^\top x = K\ (\mathbbm{1} \text{ is a ones vector}).$

– λ_{\min} of $\sum_{i=1}^{K} x_i \mathcal{U}_i \mathcal{U}_i^{\top}$ is maximized.

The vector is found by applying the following:

- Compute and store $\mathcal{U}\mathcal{U}^{\top}$
- Extract M and K from params.
- Pass $\mathcal{U}\mathcal{U}^{\top},\,M$ and K into a cvxpy solver.
- exception: Any exceptions raised by the solver.

13.4.5 Local Functions

14 MIS of Output Results Module

14.1 Module

OutputResults

14.2 Uses

- $\bullet\,$ Hardware-Hiding Module
- Optimal Placement Module

14.3 Syntax

14.3.1 Exported Constants

None

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
output	$x \in \{0, 1\}^M$	-	None

14.4 Semantics

14.4.1 State Variables

None

14.4.2 Environment Variables

Console: this module prints the vector x onto the console for the user to see.

14.4.3 Assumptions

None

14.4.4 Access Routine Semantics

 $\operatorname{output}(x:\,\{0,1\}^M)\colon$

• transition: Prints the given vector onto the console.

• output: N/A

• exception: None

14.4.5 Local Functions

15 MIS of Main (Control) Module

15.1 Module

main

15.2 Uses

- Hardware-Hiding Module
- Constant Parameter Module
- Input Parameters Module
- Magnetic Field Module
- Magnetic Force Module
- Actuation Matrix Module
- Optimal Placement Module
- Output Results Module

15.3 Syntax

15.3.1 Exported Constants

None

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	-	Various

15.4 Semantics

15.4.1 State Variables

• params : Params

 $\bullet \ \mathcal{U}: \mathbb{R}^6$

15.4.2 Environment Variables

15.4.3 Assumptions

None

15.4.4 Access Routine Semantics

main():

- transition:
 - Call and store params from Input Parameters Module.
 - Invoke the Actuation Matrix Module and store the returned \mathcal{U} vector (Actuation Matrix will itself invoke the modules responsible for the magnetic field/force and constant parameters).
 - Provide the \mathcal{U} vector and params to Optimal Placement Module, and store the returned x vector.
 - Pass the returned x vector to Output Results Module.
- output: N/A
- exception: Exceptions arising from submodules.

15.4.5 Local Functions

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.