Termodynamik - Slafs Aron Granberg, Daniel Kempe, Mårten Wiman

Utvidgning

 $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T [Pa^{-1}]$ Isobar volymutvidgningskoefficient $\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p [\mathrm{K}^{-1}]$ Relativa volymändringen $\frac{dV}{V} = -\kappa \cdot dp + \alpha_V \cdot dT$

Kinetisk gasteori

m = massan per partikel [kg]Molara massan $M = mN_A$ $\nu R = N k_B$ $n = \frac{N}{V}$ $v_p = \sqrt{2} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle v \rangle = \sqrt{\frac{8}{\pi}} \cdot \sqrt{\frac{k_B T}{m}}$ $v_{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{3} \cdot \sqrt{\frac{k_B T}{m}}$ $\langle E_k \rangle = \frac{3k_BT}{2}$ Ekvipartitionsprincipen $U = Nk_BT \cdot \frac{1}{2} \cdot (\#\text{frihetsgrader}) [J]$ Energi i enatomig gas $U = N \frac{m\langle v^2 \rangle}{2} = \frac{3}{2} N k_B T [J]$ Notera $N\vec{k}_BT = pV$ $pV = \frac{2}{3}U$

Medelfri väg $l = \frac{k_B T}{p \pi d^2 \sqrt{2}} = \frac{1}{n \pi d^2 \sqrt{2}} [\text{m}]$ Där d = partikelns diameter $\nu^* = \frac{p}{\sqrt{2\pi m k_B T}} = \frac{1}{4} n \langle v \rangle [s^{-1} m^{-2}]$ Maxwell-Boltzmanns hastighetsfördelning $n(v) = \mathbf{K} \cdot v^2 \cdot e^{-\frac{mv^2}{2k_BT}}$ om $\int n(v)dv = \frac{N}{V}$, dvs om normaliserat $K = 4\pi n \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}}$

Värme

Energi för att förändra temp. $\Delta Q = mc\Delta T [J]$ Molar isokor värmekapacitet ideal gas $C_V = \frac{1}{\nu} \left(\frac{\partial U}{\partial T} \right)_V \left[\text{J mol}^{-1} \, \text{K}^{-1} \right]$ Enatomig ideal gas har $C_V = \frac{3}{2}R$ Molar isobar värmekapacitet ideal gas $C_p = C_V + R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$ Molar isobar värmekapacitet ideal gas $C_p = \frac{1}{\nu} \left(\frac{\partial H}{\partial T} \right)_p \left[\operatorname{Jmol}^{-1} \operatorname{K}^{-1} \right]$ Molar värmekapacitet fast kropp $C_m = 3R \, [\text{J mol}^{-1} \, \text{K}^{-1}]$

Adiabatiska processer

 C_n = isobara molara värmekapaciteten C_V = isokora molara värmekapaciteten $\gamma = \frac{C_p}{C_V} = \frac{c_p}{c_V}$ $pV^{\gamma} = \text{konst.}$

 $Tp^{(1-\gamma)/\gamma} = \text{konst.}$ $TV^{\gamma-1} = \text{konst.}$ Adiabatiskt arbete på en gas $W = -\int_{1}^{2} p dV = \frac{p_{1}V_{1} - p_{2}V_{2}}{1 - \gamma}$

Matematik

Sfär: $A = 4\pi r^2$; $V = \frac{4\pi r^3}{2}$

Värmetransport

 $\lambda = V\ddot{a}rmekonduktivitet$ $\alpha = V$ ärmeövergångskoefficient Ledning $U = \frac{\lambda}{d} [W K^{-1} m^{-2}]$ Konvektion $U=\alpha\;[\mathrm{W\,K^{-1}\,m^{-2}}]$ Värmemotstånd $\frac{1}{U} = \sum \frac{1}{U_i}$ Värmeflöde $\Phi = UA \left(T_i - T_u \right)$ Kom ihåg: Vid jämvikt är värmeflödet konstant, och i t.ex en vägg är värmeflödet konstant genom hela väggen.

Första huvudsatsen

Arbete på en gas dW = -pdVEnergiutbyte med omgivningen dQ = dU + pdVDerivatan av inre energi dU = dQ + dW = dQ - pdVVid isokor process $dU = \nu C_V dT$

Arbete på en gas $W = -\int_{1}^{2} p dV$ Isotermt kompressionsarbete på en gas $W_T = -\nu RT \ln \left(\frac{V2}{V_1} \right)$ Isobart kompressionsarbete på en gas $W_p = -p_2(V_2 - V_1)$ Isokort arbete på en gas $W_V = 0$

Andra huvudsatsen

Tillförs dQreversibelt till ett system så är Reversibel process i slutet system $\Delta S = 0$ Irreversibel process i slutet system $\Delta S > 0$

För ideal gas $\Delta S = \nu C_V \cdot \ln \frac{T_2}{T_2} + \nu R \cdot \ln \frac{V_2}{V_2}$

Övrigt om entropi

 $T=0 \Rightarrow S=0$ W =antal möjliga mikroskopiska tillstånd $S = k_B \ln W$ Om S_A är entropi för system A och S_B entropi för system B så har S_A och S_B sett som ett enda system entropin

 $S_{A\cup B} = S_A + S_B$ Entalpi $H = \hat{U} + pV$ dH = dU + pdV + VdpFria energin (Helmholtz funktion) F = U - TSdF = dU - TdS - SdT

Fria entalpin (Gibbs funktion) G = F + pV μ är en ämneskonstant $dU = TdS - pdV + \mu dN$ $dF = -SdT - pdV + \mu dN$ $dH = TdS + Vdp + \mu dN$ $dG = -SdT + Vdp + \mu dN$

Vid isoterm process så är dW = dF

Vid fasövergång är H ej kontinuerlig (med avseende på temperatur), G är kontinuerlig men dess derivata är inte det H = G + TS

Carnotprocesser

 $T_H \geq T_C$

Var noga med tecken Q_H Värme som reservoaren vid T_H avger Q_C Värme som reservoaren vid T_C avger W Arbete som tillförs processen

Notera tecken $\frac{\sqrt{N_{H}}}{T_{H}} = -\frac{1}{T_{C}}$ $-W = Q_{H} + Q_{C}$ (termer kan vara negativa) $|W| = |Q_H| - |Q_C|$ $\eta = \frac{Q_H - Q_C}{Q_H} = \frac{T_H - T_C}{T_H}$

Köldfaktor, värmefaktor

 $\begin{array}{l} \mbox{K\"oldfaktor} \\ \varepsilon_C = \frac{Q_C}{W} = \frac{Q_C}{Q_H - Q_C} = \frac{T_C}{T_H - T_C} \\ \mbox{V\"armefaktor} \\ \varepsilon_H = \frac{Q_H}{W} = 1 + \varepsilon_C \end{array}$

Konstanter

Massenhet	u	$1.66054 \cdot 10^{-27}$	kg
Avogadros	N_A	$6.02214 \cdot 10^{23}$	mol^{-1}
Boltzmanns	k_B	$1.38065 \cdot 10^{-23}$	$\rm JK^{-1}$
Gaskonstanten	R	8.3145	$J \text{ mol}^{-1} \text{ K}^{-1}$
Stefan-Boltzmanns	σ	$5.6704 \cdot 10^{-8}$	${ m W}{ m m}^{-2}{ m K}^{-4}$
Plancks	h	$6.62607 \cdot 10^{-34}$	Js
Ljushastigheten	c	299 792 458	$\mathrm{m}\mathrm{s}^{-1}$

Vettiga värden

Arbete vid sömn	1	$\rm Wkg^{-1}$
Lätt arbete utvecklar vid 25% eff.	55-75	W
Energibehov människa (3000 kcal)	12	${ m MJd^{-1}}$
Jordens radie	$6.4 \cdot 10^{6}$	m
Månens radie	$1.7 \cdot 10^{6}$	m
Solens radie	$7.0 \cdot 10^{8}$	m
Sveriges area	$4.5 \cdot 10^{11}$	m^2
Solens yttemperatur	5800	K
Värmekapacitet c_{luft}	1.007	${ m kJkg^{-1}K^{-1}}$
Energidensitet Li-ion batteri	0.3 - 0.9	${ m MJkg^{-1}}$
Energidensitet trä	16	${ m MJkg^{-1}}$
Energidensitet kol	24	${ m MJkg^{-1}}$
Energidensitet fett	37	${ m MJkg^{-1}}$
Energidensitet bensin	44	${ m MJkg^{-1}}$
Energidensitet uran	$8.1 \cdot 10^{7}$	${ m MJkg^{-1}}$
Sveriges elkonsumption	$1.5 \cdot 10^{10}$	W
Världens elkonsumption	$2.1 \cdot 10^{12}$	W
Sveriges energikonsumption	$7.4 \cdot 10^{10}$	W
Världens energikonsumption	$1.5 \cdot 10^{13}$	W
Effekt (aktivt) kärnkraftverk	1-10	GW
Effekt (aktivt) vattenkraftverk	0.2 - 10	GW
Effekt (aktivt) vindkraftverk	1-5	MW

Kemi

IZCIIII			C-1 -4	α / p	Ä	
Atom	Atomnumi	ner .	Substans	C_V/R	Ämne	γ
Kol		6	He	1.52	Luft	1.4
Kväve		7	H_2	2.44	H_2	1.4
Syre		8	N_2	2.49	CO_2	1.3
Neon		10	O_2	2.51	H_2O	1.3
	nte bort	att	CO	2.53		
molekyler	är flera ato	mer				
Ämne	Densi	itet	$[kg m^{-3}]$	Matemati	ker	

Amne	Densitet	[kg m]	Matematiker
Kol		1050	Carl Fredrik Gauss
Vatten		1000	Leonhard Euler
Järn		7844	G. F. Bernhard Riema
Luft		1.275	Euclid
Helium		0.1785	Isaac Newton
Väte		0.0899	Alan Turing
Nysnö		60	Srinivasa Ramanujan
Packad snö		400	Pythagoras
Is		850	Wilhelm Leibniz

Tillståndsekvationer för gaser

 $M = \text{molara massan [kg mol}^{-1}]; m = \text{totala massan i systemet [kg]}$ $\rho = \frac{m}{V}; p = \frac{\rho RT}{M} = \frac{N k_B T}{V} = \frac{\nu RT}{V}; \nu = \frac{m}{M}$ $b \approx \text{molekylens volym}; a \approx \text{växelverkan mellan partiklar}$ $p = \frac{Nk_BT}{V - Nb} - a\left(\frac{N}{V}\right)^2$ Van der Waals tillståndsekvation $b_0 = bN_A; a_0 = aN_A^2; v = \frac{V}{V}$ $\left(p + \frac{a_0}{v^2}\right) \cdot (v - b_0) = RT$ Van der Waals tillståndsekvation

Strålning

 $\varepsilon = \text{emissivitet}; \alpha = \text{absorptionsfaktor}$

 $\rho = \text{reflexionsfaktor}; \tau = \text{transmissionsfaktor}$

 $\nu = \text{frekvens} = \frac{c}{2}$

Svartkropp $\Rightarrow \varepsilon = 1$

 $\sigma = \frac{2\pi^5 k_B^4}{15-2k_B^3}$

 $\varepsilon(\nu) + \rho(\nu) + \tau(\nu) = 1$

 $\varepsilon(\nu) = \alpha(\nu)$

 $\varphi = \varepsilon \sigma T^4 \, [W/m^2]$

 $\Phi = A\varepsilon\sigma T^4 \text{ [W]}$ Strålningsintensitet

 $\frac{h\nu_{max}}{k_B T} = 2.821$

Wiens förskjutningslag frekvens

 $\lambda_{max}T = 2.898 \cdot 10^{-3} \text{m K}$

Wiens förskjutningslag våglängd

 $u(\nu, T) = \frac{8\pi h \nu^3}{c^3} \cdot \frac{1}{\frac{h\nu}{k \, p \, T}} \, [\text{J s m}^{-3}]$

Planck-fördelningen

 $U(T) = V \frac{\pi^5}{15} \cdot \frac{8h}{c^3} \left(\frac{k_B T}{h}\right)^4 [J]$

Total energi hålrumsstrålning

 $\varphi = \frac{1}{4V}U(T)c = \sigma T^4$

Strålningstäthet hålrumsstrålning

 $E = h\nu = \frac{hc}{\lambda}$ [J]

Fotonenergi

Kirchoffs lag

Strålningstäthet