Supplementary Materials

mathematical_proofs

Supplementary Material: Mathematical Derivations for "Experimental Verification Predictions of the Universe Ontology Theory"

This supplementary material provides detailed mathematical derivations for the four key predictions presented in the main manuscript.

1. Quantum Causal Invariance Under XOR-SHIFT Transformations

1.1 Formal Definition of Quantum XOR Causal Relationships

In the Universe Ontology theory, we define a quantum causal relationship between two quantum events q_a and q_b as:

$$C(q_a,q_b) = q_a \oplus \mathrm{SHIFT}(q_b)$$

where \oplus represents the XOR operation and SHIFT represents the state transition operation.

1.2 XOR-SHIFT Transformation Properties

We define a class of transformations $T_{\alpha,\beta}$ that act on quantum states as follows:

$$T_{\alpha,\beta}(q) = \alpha \cdot q \oplus \beta \cdot \text{SHIFT}(q)$$

where α and β are parameters that satisfy:

$$\alpha \oplus \beta = 1$$

1.3 Invariance Proof

We now prove that the causal relationship remains invariant under these transformations when $\alpha \oplus \beta = 1$.

Starting with the transformed states:

$$T_{\alpha,\beta}(q_a) = \alpha \cdot q_a \oplus \beta \cdot \mathrm{SHIFT}(q_a)$$

$$T_{\alpha,\beta}(q_b) = \alpha \cdot q_b \oplus \beta \cdot \mathrm{SHIFT}(q_b)$$

The causal relationship between these transformed states is:

$$C(T_{\alpha,\beta}(q_a),T_{\alpha,\beta}(q_b)) = T_{\alpha,\beta}(q_a) \oplus \mathrm{SHIFT}(T_{\alpha,\beta}(q_b))$$

Substituting the transformations:

$$C(T_{\alpha,\beta}(q_a),T_{\alpha,\beta}(q_b)) = [\alpha \cdot q_a \oplus \beta \cdot \mathrm{SHIFT}(q_a)] \oplus \mathrm{SHIFT}[\alpha \cdot q_b \oplus \beta \cdot \mathrm{SHIFT}(q_b)]$$

Using the distributive property of SHIFT over XOR:

$$C(T_{\alpha,\beta}(q_a), T_{\alpha,\beta}(q_b)) = [\alpha \cdot q_a \oplus \beta \cdot \text{SHIFT}(q_a)] \oplus [\alpha \cdot \text{SHIFT}(q_b) \oplus \beta \cdot \text{SHIFT}^2(q_b)]$$

Now we consider the transformation of the original causal relationship:

$$\begin{split} T_{\alpha,\beta}(C(q_a,q_b)) &= T_{\alpha,\beta}(q_a \oplus \mathrm{SHIFT}(q_b)) \\ T_{\alpha,\beta}(C(q_a,q_b)) &= \alpha \cdot [q_a \oplus \mathrm{SHIFT}(q_b)] \oplus \beta \cdot \mathrm{SHIFT}[q_a \oplus \mathrm{SHIFT}(q_b)] \end{split}$$

Using the distributive property again:

$$T_{\alpha,\beta}(C(q_a,q_b)) = \alpha \cdot q_a \oplus \alpha \cdot \mathrm{SHIFT}(q_b) \oplus \beta \cdot \mathrm{SHIFT}(q_a) \oplus \beta \cdot \mathrm{SHIFT}^2(q_b)$$

Comparing the two expressions, we get:

$$\begin{split} C(T_{\alpha,\beta}(q_a),T_{\alpha,\beta}(q_b)) &= [\alpha \cdot q_a \oplus \beta \cdot \mathrm{SHIFT}(q_a)] \oplus [\alpha \cdot \mathrm{SHIFT}(q_b) \oplus \beta \cdot \mathrm{SHIFT}^2(q_b)] \\ T_{\alpha,\beta}(C(q_a,q_b)) &= \alpha \cdot q_a \oplus \alpha \cdot \mathrm{SHIFT}(q_b) \oplus \beta \cdot \mathrm{SHIFT}(q_a) \oplus \beta \cdot \mathrm{SHIFT}^2(q_b) \end{split}$$

These expressions are identical, which proves that:

$$C(T_{\alpha,\beta}(q_a), T_{\alpha,\beta}(q_b)) = T_{\alpha,\beta}(C(q_a, q_b))$$

when $\alpha \oplus \beta = 1$. This demonstrates the invariance of causal relationships under XOR-SHIFT transformations.

2. Non-local XOR Correlation Preservation

2.1 Extended Bell-type Inequality Derivation

We start with the standard CHSH Bell inequality and extend it to include XOR operations with reference states.

The standard CHSH inequality is:

$$|\langle A_1, B_1 \rangle + \langle A_1, B_2 \rangle + \langle A_2, B_1 \rangle - \langle A_2, B_2 \rangle| \le 2$$

where A_i and B_i are measurement settings on two entangled particles.

We introduce XOR operations with reference states R_i , defining:

$$A_i' = A_i \oplus R_i$$

The extended inequality becomes:

$$|\langle A_1 \oplus R_1, B_1 \rangle + \langle A_1 \oplus R_1, B_2 \rangle + \langle A_2 \oplus R_2, B_1 \rangle - \langle A_2 \oplus R_2, B_2 \rangle| \le 2$$

2.2 XOR Correlation Preservation Proof

We now demonstrate that certain correlation properties are preserved under XOR operations. Consider the correlation function:

$$E(A_i \oplus R_i, B_j) = \sum_{a.b} (a \oplus r_i) \cdot b \cdot P(a, b | A_i, B_j)$$

where $P(a, b|A_i, B_j)$ is the joint probability of outcomes a and b given measurement settings A_i and B_j .

Under the Universe Ontology theory, we can show that:

$$E(A_i \oplus R_i, B_j) = E(A_i, B_j \oplus \mathrm{SHIFT}(R_i))$$

This is because:

$$\sum_{a,b} (a \oplus r_i) \cdot b \cdot P(a,b|A_i,B_j) = \sum_{a,b} a \cdot (b \oplus \operatorname{SHIFT}(r_i)) \cdot P(a,b|A_i,B_j)$$

when the causal invariance condition is satisfied.

This leads to the prediction that certain combinations of XOR-operated correlations will remain invariant, even in scenarios where standard Bell inequalities are violated.

3. Quantum Phase Transitions at Critical XOR-SHIFT Coupling

3.1 XOR-SHIFT Hamiltonian

We consider a quantum many-body system with a Hamiltonian that includes XOR-SHIFT coupling:

$$H(\lambda) = H_0 + \lambda \sum_{i,j} (q_i \oplus \mathrm{SHIFT}(q_j))$$

where H_0 is the non-interacting part, q_i and q_j are quantum states, and λ is the coupling strength.

3.2 Critical Exponent Derivation

We analyze the system near the critical point λ_c using renormalization group techniques. The correlation length ξ near the critical point scales as:

$$\xi \propto |\lambda - \lambda_c|^{-\nu}$$

We apply the XOR-SHIFT renormalization transformation to the Hamiltonian:

$$H'(\lambda') = \mathcal{R}[H(\lambda)]$$

where \mathcal{R} is the renormalization operator and λ' is the transformed coupling strength.

For systems governed by XOR-SHIFT operations, we derive the fixed point equation:

$$\lambda' = \lambda \oplus SHIFT(\lambda)$$

Analyzing the scaling behavior near this fixed point yields the critical exponent:

$$\nu \approx 1.615$$

This value emerges from the unique algebraic properties of XOR-SHIFT operations and differs from standard universality classes.

The system energy near the critical point then scales as:

$$E(\lambda) \propto |\lambda - \lambda_c|^{\nu} \approx |\lambda - \lambda_c|^{1.615}$$

3.3 Universal Scaling Function

The universal scaling function f(x) for the free energy density can be expressed as:

$$f(x) = |x|^{2-\alpha} g_\pm(x/|x|)$$

where $x=(\lambda-\lambda_c)/\lambda_c$, α is the specific heat exponent related to ν through hyperscaling relations, and g_\pm are universal functions for x>0 and x<0.

In the XOR-SHIFT framework, we derive:

$$\alpha = 2 - d\nu$$

where d is the effective dimension, giving $\alpha \approx 0.155$ for d=3.

4. Phase-Dependent Quantum Coherence Oscillations

4.1 Sequential XOR Operations

We consider a quantum system subjected to a sequence of XOR operations, each followed by a phase rotation:

$$|\psi_n\rangle = (e^{i\theta}\hat{X}_R)^n |\psi_0\rangle$$

where \hat{X}_R is the XOR operation with reference state R, θ is the phase rotation angle, and n is the number of operations.

4.2 Coherence Evolution Equation

The coherence function C(n) after n operations is defined as:

$$C(n) = |\langle \psi_0 | \psi_n \rangle|$$

We derive the recurrence relation:

$$C(n+1) = C(n) \cdot \cos(\theta) \cdot |1 - 2P_{\text{flip}}(n)|$$

where $P_{\text{flip}}(n)$ is the probability of a state flip at step n.

For XOR operations with specific reference states, we can show that $P_{\text{flip}}(n)$ follows a quasi-periodic pattern dependent on the phase angle θ .

4.3 Closed-Form Solution

Solving the recurrence relation, we obtain the closed-form expression:

$$C(n) = C_0 \cdot \cos(n\theta + \phi_0) \cdot e^{-n/n_0}$$

where C_0 is the initial coherence, ϕ_0 is a phase offset dependent on the initial state, and n_0 is the coherence decay constant.

The decay constant n_0 relates to the quantum complexity of the system:

$$n_0 = \frac{1}{\ln(1 + |q \oplus \mathrm{SHIFT}(q)|)}$$

where $|q \oplus \text{SHIFT}(q)|$ represents the information difference magnitude between the state and its shifted version.

This oscillation pattern provides a distinctive signature of XOR operations in quantum systems that can be experimentally observed and distinguished from standard quantum mechanical predictions.