COMP361

Assignment 1

William Kilty

Core:

5.1. & 5.2

5.5.

```
boolean checkSumEqual(double[] a, double val) {
    for (int i = 0; i < n; i++) {
        for(int j = i; j < n; j++) {
            if (a[i] + a[j] == val) return true;
        }
    }
    return false;
}</pre>
```

Exercises:

H										
H										
L										
L										
_		1				I Irominoes				- ⊔
										4 4 UL 6 6 UR
										7 7 UR 5 7 UL
										75 LR 55 UR 26 UL
F										3 7 UR 1 7 UL
-										35 UL 15 LL
H										62 LR 73 UR
F										53 UR 71 LR
L										51LL 22LL 33LL
										13 UL 3 1 LR
Г				l						1111
L										
Ī										
h										
H						1				
L										
L										

4.

			1	1	1
_		_			

5.

$$T(n) = 1$$
 $n = 2$
 $1 + 4T(\frac{n}{2})$ $n > 2$

$$\alpha = log_2 4 = 2$$

$$f(n) \in O(n^{\alpha - \epsilon}) = 1 \in O(n^{2-2}) = 1 \in O(1)$$

In the master theorem, case 1 applies, so T(n) $\in \Theta(n^2)$, where T(n) == c_n

6.

7.

Looking at the green tile highlighted, there are only two possible ways to fit a tromino into its space. Either via the blue highlighted spaces, or via the yellow. In both situations, we end up with two tiles in a row, which cannot be tiled by a tromino. These are highlighted in red.

Completion:

8. We start with our base-case of i = j = 1:

Now, any multiples of i or j will simply tile this pattern.

For example, if i = 2:

Or, if j = 2:

This works for any positive integers i, j

```
void tile2x3(int i, int j) {
    for (int x = 0; x < i; x++) {
        for(int y = 0; y < j; y++) {
            placeTromino(x*2-1, y*3-2, Dir.UL);
            placeTromino(x*2-1, y*3-1, Dir.LR);
        }
    }
}</pre>
```

9. Due to symmetry; rotating and flipping the board around its centre leaves only these tiles as unique deficient boards:

Note the three different colours. This is because any missing tile within a colour can be tiled by a single tromino in the centre of that coloured section. This means there are only three base cases with which to tile a deficient 7x7 board.

We just need to include these extra tiles to make complete squares. Then it's a simple case of creating a tiling for the rest of the board

These three cases allow a tiling of any deficient 7x7 board with Trominoes.

10. Similarly to 7x7, utilising symmetry allows only a limited number of deficient 11x11 boards

Upon closer inspection, it can be noted that all these cases fit within a 7x7 subgrid of the board. This means we can use a 7x7 tiling to fit each of these cases. It's then just a case of filling out the rest of the board.

And filling out the rest of the board, it turns out, can be achieved through a combination of the question 8 and question 6 solutions as follows:

Using a 5x5 board missing the top left spot to tile the lower right of the board, and then filling in the remaining spaces with 2x3 mappings, we get a completely tiled 11x11 deficient board.

```
void tile11x11(int x, int y) {
    If ((10-y) > x || x > 5) {
        rotateAndFlip(11, x, y);
        return;
    }
    tile7x7(x, y-4, 0, 4); //tile a 7x7 offset by (0,4)
    tile5x5(6, 0); //tile a 5x5 offset by (6,0)
    tile2x3(2, 2, 0, 0); //tile a 2x3 offset by (0,0)
    tile3x2(2, 2, 7, 5); //tile a 3x2 offset by (7,5)
}
```

11. Tiling an nxn deficient board where n is odd and nxn % 3 = 1:

```
void tileOdd(int n, int x, int y, int x0ff, int y0ff) {
    If (n <= 5 || n*n % 3 != 1) return;
    If (n == 7) tile7x7(x, y, x0ff, y0ff);
    If ((n-1-y) > x || x > (n+1)/2) {
        rotateAndFlip(n, x, y, x0ff, y0ff);
        return;
    }
    tileOdd(n-4, x, y-4, 0+x0ff, 4+y0ff);
    tile5x5(n-3+x0ff, y0ff);
    tile2x3(2, 2, x0ff, y0ff);
    tile3x2(2, 2, x0ff+n-4, y0ff+5);
}
```

16x16 as required by marking schedule:

