23CP307 P

Exp.	Experiment Title	Marks			
1	WAP to implement DFS and BFS for traversing a graph from source node (S) to goal node (G), where source node and goal node is given by the user as an input.				
2	Design waterjug problem solver	10			
	You are given two jugs with m litres and a n litre capacity. Both the jugs are initially empty. The jugs don't have markings to allow measuring smaller quantities. You have to use the jugs to measure d litres of water where d is less than n. You are given two jugs with m litres and a n litre capacity. Both the jugs are initially empty. The jugs don't have markings to allow measuring smaller quantities. You have to use the jugs to measure d litres of water where d is less than n.				
	rubrics can explain the algorithm implemented with justification of choice of algorithm 5 marks user input can be dynamic 1 marks execution completes with proper output all cases 2 marks Lab discipline 2 marks				
	conscious use of internet is allowed				
3	Solve 8 puzzle problem using A* algorithm where initial state and Goal state will be given by the users. Those who solved water jug using A* have to apply AO*	10			
	Rubrics:				
	Proper Comments about the algorithm steps 4 marks dynamic input 3 marks No use of internet 3 marks Use of internet -3 marks				
4	Implement the Fixed Increment Perceptron Learning algorithm as presented in the attachment. The training set for a 2- classification problem is also attached (check Teams). Iterate the perceptron through the training set and obtain the weights.	10			
5	Given a c++ code bnp, identify the algorithm implemented through the code. Also document the code	10			
ба	Understand the project available on following link				

	Project Link: https://github.com/aharley/nn_vis							
	Project by: https://adamharley.com/							
	Reference in case needed: https://www.youtube.com/watch?v=pj9-rr1wDhM							
6b	Part 2							
	Populate the table below to summarize your understanding of the project mentioned in part 1							
	Layer	Т	Task Task	Ra	tionale			
	How does the followin	g byne	r-narameters affect th	o notw	vork performance			
	How does the following hyper-parameters affect the network performance Hyper-Parameter One Line Definition Effect on the CNN							
	Hyper-Parameter	One L	ine Definition		Effect on the CNN			
	Stride Dilation Rate							
	Type of pooling							
	layer							
	Kernel size							
	padding							
	References:							
	An Intuitive Explanation of Convolutional Neural Networks – the data science blog (ujjwalkarn.me)							
	Gentle Dive into Math Behind Convolutional Neural Networks by Piotr Skalski							
	Towards Data Science		d Convolutional Neural	rvetwe	orks by Floti Skulski			
	Intuitively Understanding Convolutions for Deep Learning by Irhum Shafkat							
	Towards Data Science							
	An Introduction to different Types of Convolutions in Deep Learning by Paul- Louis Pröve Towards Data Science							
	Louis Prove Towards	Data S	<u>cience</u>					
	Rubrics:							
	Part 1 (Indirect)							
	Part 2 Layer Task – 5 points Hyper Parameter Task – 5 points							
7				the link	shared here.			
,	Prepare your version of CNN following the steps in the link shared here.							
	https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964f							
	<u>5-111115-421/C2C19041</u>							

8	Design the Neural Network model for the project title submitted by you.	10					
	Demonstrate "Over-fitting" and solve the same using "Dropout technique".						
	Rubrics:						
	Model Justification with respect to project domain - 5 marks						
	Demonstration of over fitting and dropout technique - 5 marks						
9	For your project definition demonstrate applicable task out of prediction and classification.	15					
	Explain the entire work flow of your project through a single diagram.						
	Project demonstration - 10 marks						
	Work flow representation - 5 marks						
10	For your project demonstrate the following;	25					
	 need of optimizer - 5 marks significance of your choice of optimizer - 5 marks comparison of outcomes with and without optimization - 5 marks Project Report including minimum (abstract, domain intro, data set description, implementation methodology with brief justification, results and discussion, future scope) - 10 marks 						
11a	Understanding the basics and IDE for Prolog Programming	10					
11b	Implement any two of the following using Prolog: - Medical diagnosis of common cold and flu using symptom inputs - Demonstrating list in prolog - Monkey banana problem - Find the factorial of a given number						
12	WAP to design Tic Tac Toe games from O (Opponent) and X (Player) by using minimax algorithm.	10					