Homework 2 solution

Max marks: 110

Due on September 17, 2021, 9 AM, before class.

Row	x_1	x_2	x_3	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Table 1: Truth table for a 3-way light switch

1 Sept 10th Lecture

Problem 1 If the SOP form for $\bar{f} = A\bar{B}\bar{C} + \bar{A}\bar{B}$, then give the POS form for f. [10 marks]

Solution

Take inversion on both sides

$$\begin{split} \overline{f} &= \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \\ f &= \overline{A} \overline{B} \overline{C} \cdot \overline{A} \overline{B} & \text{by DeMorgan's} \\ &= (\overline{A} + B + C)(A + B) & \text{by DeMorgan's} \end{split}$$

Problem 2 Use DeMorgan's Theorem to find f if $\bar{f} = (A + BC)D + EF$. [10 marks]

Solution

Take inversion on both sides

$$\begin{split} \overline{\bar{f}} &= \overline{(A+BC)D+EF} \\ f &= \overline{((A+BC)D)} \cdot \overline{EF} \qquad \text{by DeMorgan's} \\ &= (\overline{(A+BC)} + \bar{D})(\bar{E} + \bar{F}) \qquad \text{by DeMorgan's} \\ &= (\bar{A}\overline{(BC)} + \bar{D})(\bar{E} + \bar{F}) \qquad \text{by DeMorgan's} \\ &= (\bar{A}(\bar{B} + \bar{C}) + \bar{D})(\bar{E} + \bar{F}) \qquad \text{by DeMorgan's} \end{split}$$

Problem 3 Implement the function in Table 1 using only NAND gates. [10 marks]

Solution

To implement the function using NAND gates, we seek the SOP form of the function,

	\bar{x}_1	c_1			
	\bar{x}_2	x	2	\bar{x}_2	
\bar{x}_3	0	1	0	1	-•
x_3	1	0	1	0	

The function cannot be simplified beyond minterms.

$$f = \bar{x}_1 \bar{x}_2 x_3 + \bar{x}_1 x_2 \bar{x}_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 x_3$$

$$= \overline{\bar{x}_1 \bar{x}_2 x_3} + \overline{\bar{x}_1 x_2 \bar{x}_3} + \overline{x_1 \bar{x}_2 \bar{x}_3} + \overline{x_1 x_2 x_3}$$

$$= \overline{\bar{x}_1 \bar{x}_2 x_3} \cdot \overline{x_1 x_2 \bar{x}_3} \cdot \overline{x_1 \bar{x}_2 \bar{x}_3} \cdot \overline{x_1 x_2 x_3}$$

Problem 4 Implement the function in Table 1 using only NOR gates. [10 marks]

Solution

To implement the function using NAND gates, we seek the POS form of the function. We plot the K-map for \bar{f} ,

The function \bar{f} cannot be simplified further,

$$\bar{f} = \bar{x}_1 \bar{x}_2 \bar{x}_3 + \bar{x}_1 \bar{x}_2 x_3 + \bar{x}_1 x_2 \bar{x}_3 + x_1 \bar{x}_2 x_3$$

Taking inverse of both sides and observing $\overline{f} = f$.

$$\begin{split} f &= (x_1 + x_2 + x_3)(x_1 + \bar{x}_2 + \bar{x}_3)(\bar{x}_1 + x_2 + \bar{x}_3)(\bar{x}_1 + \bar{x}_2 + x_3) \\ &= \overline{(x_1 + x_2 + x_3)(x_1 + \bar{x}_2 + \bar{x}_3)(\bar{x}_1 + x_2 + \bar{x}_3)(\bar{x}_1 + \bar{x}_2 + x_3)} \end{split}$$

 $=\overline{(x_1+x_2+x_3)}+\overline{(x_1+\bar{x}_2+\bar{x}_3)}+\overline{(\bar{x}_1+x_2+\bar{x}_3)}+\overline{(\bar{x}_1+\bar{x}_2+x_3)}\ \textbf{Solution}$

2 Sept 13th Lecture

Problem 5 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3) = m(1, 2, 3, 5)$. [1, Prob 2.37] [10 marks]

Solution

Minimum cost SOP

$$f = \bar{x}_1 x_2 + \bar{x}_2 x_3 \tag{1}$$

Cost = 2 AND + 1 OR + (2 * (2 input per AND gates) + 2 input per OR gate) inputs = 9

To find Minimum cost POS, we draw K-map for \bar{f} .

$$\bar{f} = \bar{x}_2 \bar{x}_3 + x_1 x_2 \tag{2}$$

$$\implies f = (x_2 + x_3)(\bar{x}_1 + \bar{x}_2) \tag{3}$$

Cost = 2 OR + 1 AND + (2 * (2 inputs per OR gate) + 2 input AND gate) inputs = 9

Problem 6 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3) = \sum m(1, 4, 7) + D(2, 5)$. [1, Prob 2.38] [10 marks]

1

 x_3

$$f = x_1 \bar{x}_2 + x_1 x_3 + \bar{x}_2 x_3 \tag{4}$$

Cost = 3 AND + 1 OR + (3 * (2 input per AND gate) + 3 inputs per OR gate) inputs = 13

d + d + d

To find minimum cost POS, we draw K-map for \bar{f} ,

		\bar{x}_1		r_1	-
	\bar{x}_2	$ x_2 $		\bar{x}_2	
\bar{x}_3	1	d + d + d	1	0	
$ar{x}_3 \ x_3$	0	1	0	d	

$$\bar{f} = \bar{x}_1 \bar{x}_3 + \bar{x}_1 x_2 + x_2 \bar{x}_3 \tag{5}$$

$$\implies f = (x_1 + x_3)(x_1 + \bar{x}_2)(\bar{x}_2 + x_3) \tag{6}$$

Cost = 3 OR + 1 AND + (3*(2 inputs per OR gate) + 3 inputs per AND gate) inputs = 13

Problem 7 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3, x_4) = \prod M(0, 1, 2, 4, 5, 7, 8, 9, 10, 12, 14, 15)$. [1, Prob 2.39] [10 marks]

Solution

The function f is zero at the maxterms. We draw the following K-map,

		\bar{x}_1			x_1	_
		\bar{x}_2	x	2	\bar{x}_2	
	\bar{x}_4	0	0	0	0	
\bar{x}_3	$\begin{bmatrix} \bar{x}_4 \\ x_4 \end{bmatrix}$	0	0	1	0	
<i>m</i> -	x_4	1	0	0	1	
x_3	$\begin{vmatrix} x_4 \\ \bar{x}_4 \end{vmatrix}$	0	1	0	0	

$$f = \bar{\mathbf{x}}_2 \mathbf{x}_3 \mathbf{x}_4 + \bar{x}_1 \mathbf{x}_2 \mathbf{x}_3 \bar{x}_4 + \mathbf{x}_1 \mathbf{x}_2 \bar{x}_3 \mathbf{x}_4 \tag{7}$$

Cost = 3 AND gates + 1 OR gate + (3+4+4) inputs to the AND gates + 3 inputs to the OR gate) = 18.

To find the POS form, we draw K-map for \bar{f} ,

		\bar{x}	1		x_1
		\bar{x}_2	x_2		\bar{x}_2
=	\bar{x}_4	1 + 1	1 + 1	1	1 + 1
\bar{x}_3	$\begin{vmatrix} \bar{x}_4 \\ x_4 \end{vmatrix}$	1	1	0	1
<i>m</i> -		0	1	1	0
x_3	$\begin{vmatrix} x_4 \\ \bar{x}_4 \end{vmatrix}$	1	0	1	1 + 1

$$\bar{f} = \bar{x}_1 \bar{x}_3 + \bar{x}_3 \bar{x}_4 + x_2 x_3 x_4 + x_1 \bar{x}_2 \bar{x}_3$$

$$+ x_1 x_3 \bar{x}_4 + \bar{x}_2 x_3 \bar{x}_4$$

$$\Longrightarrow f = (x_1 + x_3)(x_3 + x_4)(x_2 + x_3 + x_4)$$

$$(\bar{x}_1 + x_2 + x_3)$$

Problem 8 Find the minimum-cost SOP and POS forms for the function $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 8, 9, 12, 15) + D(1, 3, 6, 7)$. [1, Prob 2.40] [10 marks]

Solution

The K-map for f is

		\bar{x}	1		x_1
		\bar{x}_2	x	2	\bar{x}_2
\bar{x}_3	\bar{x}_4	1	0	1	1 + 1
x_3	x_4	d	0	0	1
<i>m</i> -	x_4	d	d	1	0
x_3	$ \begin{vmatrix} \bar{x}_4 \\ x_4 \\ x_4 \\ \bar{x}_4 \end{vmatrix} $	1	d	0	0

$$f = \bar{x}_1 \bar{x}_2 + x_1 \bar{x}_3 \bar{x}_4 + x_1 \bar{x}_2 \bar{x}_3 + x_2 x_3 x_4$$

Cost = 4 AND gates + 1 OR gate + (2 + 3 + 3 + 3) inputs to the AND gates + 4 inputs to the OR gate) = 20

The K-map for \bar{f} is

			\bar{x}_1		x_1
		\bar{x}_2	x_2		\bar{x}_2
=	\bar{x}_4	0	1	0	0
\bar{x}_3	$\begin{bmatrix} \bar{x}_4 \\ x_4 \end{bmatrix}$	d	1 + 1	1	0
~	x_4	d	d	0	1
x_3	$\begin{vmatrix} x_4 \\ \bar{x}_4 \end{vmatrix}$	0	d	1	1 + 1

$$\bar{f} = \bar{x}_1 x_2 + x_2 \bar{x}_3 x_4 + x_1 x_3 \bar{x}_4 + x_1 \bar{x}_2 x_3. (8)$$

$$\implies f = (x_1 + \bar{x}_2)(\bar{x}_2 + x_3 + \bar{x}_4)$$

$$(\bar{x}_1 + \bar{x}_3 + x_4)(\bar{x}_1 + x_2 + \bar{x}_3). (9)$$

Cost = 4 OR gates + 1 AND gate + (2 + 3 + 3 + 3 inputs to OR gates and 4 inputs to the AND gate) = 20

Problem 9 Derive a minimum-cost realization of the four-variable function that is equal to 1 if

exactly two or exactly three of its variables are equal to 1; otherwise it is equal to 0. [1, Prob 2.46] [10 marks]

Solution

Row	x_1	x_2	x_3	x_4	f	Reason
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	1	2-var are one
4	0	1	0	0	0	
5	0	1	0	1	1	2-var
6	0	1	1	0	1	2-var
7	0	1	1	1	1	3-var
8	1	0	0	0	0	
9	1	0	0	1	1	2-var
10	1	0	1	0	1	2-var
11	1	0	1	1	1	3-var
12	1	1	0	0	1	2-var
13	1	1	0	1	1	3-var
14	1	1	1	0	1	3-var
15	1	1	1	1	0	

K-map for the function f is

		\bar{x}	l	x_1	
		\bar{x}_2		x_2	\bar{x}_2
==	\bar{x}_4	0	0	1	0
\bar{x}_3	x_4	0	1	1 + 1	1
<i>m</i> -	x_4	1	1	0	1
x_3	\bar{x}_4 \bar{x}_4	0	1	1 + 1	1

$$f = x_2 \bar{x}_3 x_4 + x_2 x_3 \bar{x}_4 + x_1 \bar{x}_2 x_4 + \bar{x}_1 x_3 x_4 + x_1 x_3 \bar{x}_4 + x_1 x_2 \bar{x}_3$$

 $\begin{array}{l} {\rm Cost} = 5 \ {\rm AND} \ {\rm gate} + 1 \ {\rm OR} \ {\rm gate} + (5*3 \ {\rm inputs} \\ {\rm per} \ {\rm AND} \ {\rm gate} + 5 \ {\rm inputs} \ {\rm to} \ {\rm the} \ {\rm OR} \ {\rm gate}) = 26 \\ {\rm K-map} \ {\rm for} \ {\rm the} \ {\rm inverted} \ {\rm function} \ \bar{f} \ {\rm is} \\ \end{array}$

		\bar{x}_1			$\overline{x_1}$
		\bar{x}_2	x	2	\bar{x}_2
=	\bar{x}_4	1 + 1 + 1 + 1	1	0	1
\bar{x}_3	$\begin{bmatrix} \bar{x}_4 \\ x_4 \end{bmatrix}$	1	0	0	0
	x_4	0	0	1	0
x_3	\bar{x}_4 \bar{x}_4	1	0	0	0

$$\bar{f} = \bar{x}_1 \bar{x}_3 \bar{x}_4 + \bar{x}_2 \bar{x}_3 \bar{x}_4 + \bar{x}_1 \bar{x}_2 \bar{x}_3
+ \bar{x}_1 \bar{x}_2 \bar{x}_4 + x_1 x_2 x_3 x_4
f = (x_1 + x_3 + x_4)(x_2 + x_3 + x_4)
(x_1 + x_2 + x_3)(x_1 + x_2 + x_4)
(\bar{x}_1 + \bar{x}_2 + \bar{x}_3 + \bar{x}_4)$$

Table 2: Two ways to represent K-map for f in problem 10. Either way is correct. The essential minterm for the Essential Prime implicant is indicated with the same color.

$egin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c ccccccccccccccccccccccccccccccccc$

Table 3: Two ways to represent 5-var K-map for \bar{f} in problem 10. The essential minterms for Essential Prime Implicants (EPI) is shown in the same color.

 $\begin{array}{l} {\rm Cost} = 5 \ {\rm OR} \ {\rm gates} + 1 \ {\rm AND} \ {\rm gate} + (4\ ^*\ 3 \\ {\rm inputs} \ {\rm per} \ {\rm OR} \ {\rm gate} + 4 \ {\rm inputs} \ {\rm to} \ {\rm one} \ {\rm OR} \ {\rm gate} \\ + 5 \ {\rm inputs} \ {\rm to} \ 1 \ {\rm AND} \ {\rm gate} = 27 \\ \end{array}$

The minimal cost representation is the SOP representation:

$$f = x_2 \bar{x}_3 x_4 + x_2 x_3 \bar{x}_4 + x_1 \bar{x}_2 x_4 + \bar{x}_1 x_3 x_4 + x_1 x_3 \bar{x}_4 + x_1 x_2 \bar{x}_3$$

Problem 10 Find the minimum-cost SOP and POS forms for the function $f(x_1,...,x_5) = \sum m(0,1,3,4,6,8,9,11,13,14,16,19,20,21,22,24,25) + D(5,7,12,15,17,23). [1, Prob 2.42] [10 marks]$

Solution

The K-map for the function is in Table 2.

$$f = \bar{x}_1 x_5 + \bar{x}_1 x_3 + x_2 x_3 + \bar{x}_3 \bar{x}_4 + \bar{x}_2 x_5$$

 $\begin{array}{l} {\rm Cost} = 5 \; {\rm AND} \; {\rm gate} + 1 \; {\rm OR} \; {\rm gate} + (5*2 \; {\rm inputs} \; \\ {\rm per} \; {\rm AND} \; {\rm gate} + 5 \; {\rm inputs} \; {\rm to} \; {\rm one} \; {\rm OR} \; {\rm gate}) = 21 \\ {\rm The} \; {\rm K-map} \; {\rm for} \; {\rm the} \; {\rm function} \; {\rm inverse} \; {\rm is} \; {\rm given} \; {\rm in} \\ {\rm Table} \; 3 \\ \end{array}$

$$\bar{f} = x_1 x_2 x_3 + \bar{x}_3 x_4 \bar{x}_5 + x_1 x_2 x_4
\Longrightarrow f = (\bar{x}_1 + \bar{x}_2 + \bar{x}_3)(x_3 + \bar{x}_4 + x_5)
(\bar{x}_1 + \bar{x}_2 + \bar{x}_4)$$

Cost = 3 OR gate + 1 AND gate + (3*3 inputs to the OR gates and 3 inputs to the AND gate)=16.

References

[1] S. Brown and Z. Vranesic. Fundamentals of Digital Logic with Verilog Design: Third Edition. McGraw-Hill Higher Education, 2013.

		\bar{x}_1					x	1	
		$\left \begin{array}{ccc c} \bar{x}_2 & & x_2 \\ \bar{x}_3 & & x_3 & \bar{x}_3 \end{array}\right $			\bar{x}	2	x	2	
		\bar{x}_3	5	x_3	\bar{x}_3	\bar{x}_3	x	3	\bar{x}_3
	\bar{x}_5	0	4	12	8	16	20	28	24
\bar{x}_4	$\left egin{array}{c} ar{x}_5 \ x_5 \end{array}\right $	1	5	13	8 9	17	21	29	25
œ.	$\begin{vmatrix} x_5 \\ \bar{x}_5 \end{vmatrix}$	3	7	15	11	19	23	31	27
x_4	\bar{x}_5	2	6	14	10	18	22	30	26

		$x_1 = 0/1$			
		\bar{x}_2		x_2	
		\bar{x}_3	(x_3	\bar{x}_3
\bar{x}_4	\bar{x}_5	0/16	4/20	12/28	8/24
	x_5	1/17	5/21	13/29	9/25
x_4	x_5	3/19	7/23	15/31	11/27
	\bar{x}_5	2/18	6/22	14/30	10/26

Table 4: K-map for 5-variables with numbered minterms