Physics 129: Particle Physics Lecture 7: Symmetries and Conservation Laws (Part I)

Sept 17, 2020

- Suggested Reading:
 - ► Thomson Sections 1.1, 3.1, 9.1-9.2
 - ► Griffiths Chapter 4
 - ► Perkins Sections 3.1-3.10

Our Goal:

Determine the Lagrangian $\mathcal L$ that describes the fundamental particles in the Standard Model and the interactions between these particles:

- ullet Deduce the form of ${\mathcal L}$ through experimental measurements of
 - ► Particle decays
 - Scattering cross sections
 - Mass spectra
- First step: make observations that constrain the form of the Lagrangian (determine what possible terms are allowed)
 - Learn what the symmetries and conservation laws obeyed by each type of interation
- Next step: use properties of each particle species to determine which are pointlike (fundamental) and which are composed of smaller constituents
 - ▶ Will find that leptons are pointlike but hadrons have substructure
- Final step: postulate form for \mathcal{L} ; test postulate using detailed measurements

This is an ongoing activity as we continue to look for new physics beyond the Standard Model

Particle Decays: Fermi's Golden Rule (FGR)

Reminder from Lecture 3:

- The transition rate W_{ka} is the transition probability per unit time for going from state $|a\rangle$ to a state with energy in the range δ around E_k
- Fermi's Golden Rule tells us how to calculate W_{ka} :

$$\frac{d}{dt} \left(P_{a \to k} \right) \equiv W_{ka} = 2\pi \lambda^2 \left| H'_{ka} \right|^2 \mathcal{D}(E_k)$$

- Decays of fundamental particles will obey this rule
 - $ightharpoonup \mathcal{D}(E_k)$ depends only on the kinematics (masses and momenta of decay products)
 - "Matrix element" $\lambda |H'_{ka}|$ contains all the information about $\mathcal L$
 - λ explicitly pulled out here to remind us that there is a perturbative parameter that characterizes the strength of the interaction
 - Usually, the λ is incorporated into the definition of H'
- ⇒ Measuring decay rates provides information on the strength of the interaction

Decay rates, lifetimes and particle widths

Decay rate measured in 1/sec. Moving to natural units:

$$\frac{1}{\text{sec}} \to \frac{\hbar}{\text{sec}} \to \text{MeV}$$

- Called "partial width": $\Gamma_{ka} \equiv W_{ka}$ measured in units of energy
- Lifetime of a particle is related to its decay width summed over all possible decay channels:

$$\Gamma_{tot} = \sum_{1}^{n} \Gamma_{i}$$

$$\tau = \frac{1}{\Gamma_{tot}}$$

- If a particle is unstable, it's mass cannot be describes as a δ -function in energy
- Uncertainty principle

$$\Delta E \Delta t \geq \hbar$$

Finite lifetime means mass distribution has finite width
 Using FGR, after correcting for density of states, can determine strength of interaction that causes the particle to decay from its lifetime/width

Using Scattering to Measure Particle Widths

- Large bumps: "resonances"
- Eg: near 1236 MeV
 - ▶ This is called Δ^{++} resonance
- From the plot: width $\approx 120~{\rm MeV}$ \Rightarrow short lifetime
- Using $\Delta E \Delta t \sim \hbar$:

$$\Delta t \sim \frac{h}{\Delta E}$$

$$\sim \frac{6.58 \times 10^{-22} \text{ MeV s}}{120 \text{ MeV}}$$

$$\sim 5 \times 10^{-24} \text{ s}$$

• Large decay width means short lifetime which means large value for $\lambda H'_{int}$

Decays via the Strong Interaction

- Widths of 10 to 100's of MeV typical of strong decays
- Indicate that strength of interaction is big
- Take a look at in the PDG:
 - Most hadrons aside from the lightest ones decay strongly
 - There are exceptions and these exceptions will tell a story

From PDG particle table

 $\rho(770)$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the note in $\rho(770)$ Particle Listings. Mass $m = 775.26 \pm 0.25$ MeV

Full width $\Gamma=149.1\pm0.8~\text{MeV}$

 ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3773.7\pm0.4$ MeV (S = 1.4) Full width $\Gamma=27.2\pm1.0$ MeV

Electromagnetic and Weak Decays

$$\pi^0$$

$$I^G(J^{PC}) = 1^-(0^{-+})$$

Mass $m = 134.9768 \pm 0.0005$ MeV (S = 1.1)
 $m - m_{ab} = 4.5936 \pm 0.0005$ MeV (S = 1.2)

$$I^G(J^P) = 1^-(0^-)$$
 Mass $m = 139.57039 \pm 0.00018$ MeV (S = 1.8) Mean life $\tau = (2.6033 \pm 0.0005) \times 10^{-8}$ s (S = 1.2) $c\tau = 7.8045$ m

• π are the lightest hadrons

 $c\tau = 25.5 \text{ nm}$

- Cannot decay via strong interaction since no channel with available where decay products feel strong interaction
- ullet π^0 can decay to 2 photons via electromagnetic interaction

$$\pi^0 \to \gamma \gamma$$

- ► Technique to measure decay width complicated; won't discuss here
- π^+ can decays via weak interaction

$$\pi^+ \rightarrow \mu^+ \nu_\mu$$
 $\pi^- \rightarrow \mu^- \overline{\nu}_\mu$

But why doesn't it decay electromagnetically (eg $\to \mu \gamma$?)

• e, μ and τ number individually conserved (aside from small effect from ν oscillations)

What we just learned

- Strong, electromagnetic and weak interactions have very different strengths
- If strong decay possible, it will dominate the decay rate
- If strong decay not possible but electromagnetic is, electromagnetic will dominate
- If electromagnetic also not possible, decay must be weak
- If a particle decays weakly, we should ask why it can't decay strongly or electromagnetically
 - In case of π^{\pm} decay, this led us to postulate conservation of lepton number
 - ▶ We can then check this postulate in other interactions to see if it is correct

Can learn about conservation laws using particle decays

Extending the argument

- We developed our strategy using decays
- But same idea can be used for scattering cross sections, angular distributions and other observables
- If a process can occur via strong interaction, the strong interaction will dominate
 - Even if EM or weak process present, difficult to observe over strong background
 - Processes that cannot proceed via strong interaction allow us to study EM and weak processes
 - Or, alternately, if EM and weak processes populate phase space differently from the strong process, can isolate these smaller processes

Different interactions, different conserved quantities

- For π decay, reason strong interaction not possible was obvious
- In other cases, must work harder to understand why
- We will see today and next week that symmetries and conservation laws satisfied by the different interactions are not the same
 - ► Example: Strong and EM interactions conserve quark flavor, but weak interaction does not
- \bullet Understanding these symmetries and conservation laws tells us about ${\cal L}$

Symmetries and Conservation Laws

• Symmetry of H: Operator R leaves H unchanged

$$R^{-1}H(t)R = H(t)$$

Relationship between symmetries and conservation laws:

$$i\frac{dQ}{dt} = i\frac{\partial Q}{\partial t} + [Q, H]$$

If operator has no explicit time dependence

$$[Q, H] = 0 \implies \langle Q \rangle$$
 is conserved

- Conserved quantum #'s are associated with operators that commute with H (Noether's Theorm)
- Most common examples:
 - ▶ space-time invariance (translations) ←⇒ energy-momentum conservation
 - ▶ space-time invariance (rotations) ←⇒ angular momentum conservation

In general, we write these invariance principles in terms of infinitesmal transformation

Nature of H_{int} determines the symmetries we observe

Symmetries of Interest in Particle Physics

- Continuous Space-Time Transformations
 - ► Translations
 - Rotations
 - Extension of Poincare group to include fermionic anticommuting spinors (SUSY)
- Discrete Transformations
 - ► Space Time Inversion (Parity≡P)
 - ► Particle-Antiparticle Interchange (Charge Conjugation≡C)
 - ► Time Reversal (≡T)
 - Combinations of these: CP, CPT
- Continuous Transformations of Internal Symmetries
 - ► Isospin
 - ► SU(3)_{flavor}
 - ► SU(3)_{color}
 - Weak Isospin

Continuous Space Time Transformations

- Translations
 - ► Infinitesmal: $\mathcal{D} = 1 + \delta r \frac{\partial}{\partial r}$ ► Finite: $\mathcal{D} = e^{ip\Delta r}$
- Rotations
 - ▶ Infinitesmal: $\mathcal{R} = 1 + \delta \phi \frac{\partial}{\partial \phi}$
 - Finite: $\mathcal{R} = e^{iJ_z\Delta\phi}$
- Symmetries under continuous transformations lead to additive conservation laws

All interactions are invariant under these global space-time transformations

Intrinsic Spin

- From QM, know particles have intrinsic spin
 - ▶ Spin $\frac{1}{2}$: electrons, protons, neutrons
 - ► Spin 1: photon
- Simple extension of the algebra used for orbital angular momentum
 - For spin- $\frac{1}{2}$ particles

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

► Transformation: $\psi \to e^{i\vec{\sigma}\cdot\hat{n}\theta/2}\psi$

$$\psi' \rightarrow \psi + \delta \psi$$
$$\delta \psi = i\theta \hat{n} \cdot \left(\frac{\vec{\sigma}}{2}\psi\right)$$

- \triangleright θ defines the magnitude of the rotation angle in spin space
- $ightharpoonup \hat{n}$ is the axis of rotation
- ▶ The Pauli matrices $\vec{\sigma}$ are a representation of SU(2)
 - 2×2 : "fundamental representation" of SU(2)

Determining spin of other particles

- Experimentally determined from particle's decays and interactions
 - ▶ Eg ν is fermion since β -decay $n \to pe^-\overline{\nu}$
- Measure rates or angular distributions to further determine value of spin
 - Eg: he π^+ : $pp \to \pi^+ d$ Principle of Detailed Balance: $|\mathcal{M}_{if}|^2 = |\mathcal{M}_{fi}|^2$ $\sigma(pp \to \pi^+ d) = (2s_\pi + 1)(2s_d + 1)p_\pi^2$ $\sigma(\pi^+ d \to pp) = \frac{1}{2}(2s_p + 1)^2 p_\pi^2$
 - $(\frac{1}{2}$ due to identical particles in final state)
 - ▶ Spin of the π^+ is 0:
- We'll see more examples of this on HW and in class

Don't forget for identical particles, we need to symmetrize (bosons) or antisymmetrize (fermions) the wave function!

Discrete Transformations: P, C, T

- These symmetries depend on characteristics of the Lagrangian
- Because EM interaction symmetric under P, C and T, we are familiar with them from Quantum Mechanics
- Strong interaction also symmetric under C, P and T separately
- Weak interaction is not:
 - ightharpoonup P violation as large as it can be (totally left handed ν)
 - ▶ Small violation of simulataneous application of C and P ($\approx 10^{-3}$ effect)
 - All field theories invariant under simultaneous application of C, P and T (CPT theorem)
- \Rightarrow Must test whether each symmetry is respected by each interaction
 - Symmetries under discrete transformations lead to multiplicative conservation laws

Parity

Parity operator defined as spatial inversion

$$\begin{array}{ccc} (x,y,z) & \longrightarrow & (-x,-y,-z) \\ P(\psi(\vec{r})) & = & \psi(-\vec{r}) \end{array}$$

- Repetition of the operations gives $P^2 = 1$
 - ightharpoonup P is a unitary operator with eigenvalues ± 1
- If system is an eigenstate of P, its eigenvalue is called the parity of the system

Reminder: Parity and orbital angular momentum

Something familiar from atomic physics and quantum mechanics:

$$\psi(r,\theta,\phi) = \chi(r)Y_{\ell m}(\theta,\phi)$$

$$= \chi(r)\sqrt{\frac{2\ell+1)(\ell-m)}{4\pi(\ell+m)!}}P_{\ell m}(\cos\theta)e^{\imath m\phi}$$

Spatial inversion:

$$\vec{r} \to -\vec{r}$$
 is equiv to $\theta \to \pi - \theta$, $\phi \to \phi + \pi$.

Thus:

$$e^{\imath m\phi} \rightarrow e^{\imath m(\phi+\pi)} \rightarrow (-1)^m$$

$$P_{\ell m}(\cos \theta) \rightarrow (-1)^{\ell+m} P_{\ell m}(\cos \theta)$$

$$Y_{\ell m}(\theta, \phi) \rightarrow (-1)^{\ell} Y_{\ell m}(\theta, \phi)$$

• Spherical harmonics have parity $(-1)^{\ell}$

More on the Parity Operator

- Define $U_P \equiv P$ such that $U_P \psi(\vec{r}) = \psi(-\vec{r})$
- $\bullet \ U_P^{\dagger} = U_P = U_P^{-1}$
- How do various operators transform under P?

$$\begin{array}{rcl} U_P \ \vec{r} \ U_P^{-1} & = & -\vec{r} \\ U_P \ \vec{p} \ U_P^{-1} & = & -\vec{p} \\ U_P \ \vec{L} \ U_P^{-1} & = & +\vec{L} \\ U_P \ \vec{S} \ U_P^{-1} & = & +\vec{S} \end{array}$$

Notes:

1. Parity is a multiplicative quantum number

$$P(\psi = \phi_a \phi_b) = P(\phi_a) P(\phi_b)$$

- 2. Spin must be an axial vector since L is an axial vector
- 3. \vec{r} and \vec{p} are called vectors and \vec{L} and \vec{S} are called axial vectors
- 4. $\vec{r} \cdot \vec{p}$ is called a scalar and $\vec{r} \cdot \S$ is called a pseudoscalar
- Vectors and pseudoscalars are odd under P, axial vectors and pseudoscalars are even

Parity and Elementary Particles

- If parity is a good symmetry of H_{int} , all elementary particles must be eigenstates of P with eigenvalues ± 1 .
- To determine if parity is a good symmetry, see if it's possible to define eigenstates for each elementary particle (independent of reaction)

Note: It is not necessarily true that definition be *unique* as long as we can define it in a consistent one

- Experimental Facts:
 - Both Strong and EM interactions conserve parity
 - Weak interactions do not

We'll talk more about this in a few weeks

Elementary Particles Have Intrinsic Parity

- The Photon
 - ▶ Electric current is a vector not an axial vector so $P(\gamma) = -1$
- Spin- $\frac{1}{2}$ Particles
 - Dirac Eq and definition of vector current require particle and anti-particle to have opposite parity
 - ▶ Since they are always pair produced, it is a matter of convention as to which is + and which is -
 - ► We'll talk about this more in a few weeks
- Pions
 - Pions are bosons with spin 0 and three charge states π^+ , π^0 , π^-
 - Since bosons, they can be produced singly:
 - ${\cal P}$ can be measured by studying reactions
 - See next two pages for details

Parity of the Charged Pion

- $\bullet \ \, \mathsf{Study} \,\, \pi^- d \to nn$
 - $ightharpoonup \pi$ capture from s-wave (mesonic x-ray spectrum and rate)
 - ▶ Spin(d)=1 and Spin(π)=0 and L=0 so J=1 for initial state
 - ▶ What are the possibilities for the *nn* state?

$$L = 0$$
 $S = 1$
 $L = 1$ $S = 0, 1, 2$
 $L = 2$ $S = 1$

- Fermi statistics: nn w.f. must be anti-symmetric Symmetry of wf: $(-1)^{\ell}(-1)^{s+1}$
- ▶ Only L = 1, S = 1 state is possible
- ▶ Thus nn are in a 3P_1 state with parity $(-1)^{\ell} = -1$
- ▶ To determine P of deuteron: p and n have P=1. Also, we know L=0 so deuteron has P=1

$$\Rightarrow \pi^-$$
 has $P = -1$ (pseudoscalar)

Parity of the Neutral Pion

- Main decay mode $\pi^0 \to \gamma \gamma$
 - ightharpoonup But to measure P in this mode, must measure γ polarization
- Instead use $\pi^0 \to (e^+e^-)(e^+e^-)$ (BR $\sim 10^{-4}$)
 - lacktriangle Look at polarization planes of e^+e^- pairs: Two possible forms

$$\begin{split} \psi & \propto (\vec{\epsilon}_1 \cdot \vec{\epsilon}_2) &= \cos \phi \text{ scalar} \\ \psi & \propto (\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot \vec{k} &= \sin \phi \text{ pseudoscalar} \end{split}$$

PRL 100, 182001 (2008)

FIG. 4: Distribution of the angle ϕ , in units of π , between the planes of the two e^+e^- pairs. The solid histogram shows the Monte Carlo expectation for negative parity.

$$\Rightarrow \pi^0$$
 has $P = -1$ (pseudoscalar)