Projeto e Análise de Algoritmos

Caminhos Mínimos Utilizando Algoritmos de Dijkstra, Bellman-Ford, Floyd-Warshall, com detecção de Ciclos de Custo Negativo

Conrado C. Bicalho, Danilo S. Souza, Rodolfo L. M. Guimarães, Thiago Schons 18 de maio de 2016

{conradobh, danilo.gdc, rodolfolabiapari, thiagoschons2}@gmail.com Departamento de Computação — Universidade Federal de Ouro Preto 35.400-000 — Ouro Preto - MG — Brasil

Introdução

Teoria dos Grafos

- Estrutura G = (V, E) onde [2]:
 - V é um conjunto discreto e n\u00e3o vazio de v\u00e9rtices;
 - E é uma família de elementos não vazios definidos em função dos elementos em V.
 Cada aresta tem um ou dois nós associados a ela e faz o papel de interligar suas extremidades.
- No grafo orientado cada aresta orientada está associada a um par ordenado de nós (u, v).

• Tais arcos também podem ser ponderados sendo sua função peso $w(u,v):E \to \mathbb{R}$ [2].

Definição do Problema

Definição do Problema de Caminhos Mínimos de Única Origem [1]

• Grafo G = (V, E) sem laços e valorado por uma função peso $w : E \to \mathbb{R}$, sendo o peso $p = \langle v_1, v_2, \dots, v_k \rangle$ onde o somatório dos pesos de suas arestas

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

ullet Assim, o peso do caminho mais curto de u até v é

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \xrightarrow{p} v\} & \text{se existe um caminho de } u \text{ até } v, \\ \infty & \text{em caso contrário.} \end{cases}$$

- Propriedade de que:
 - Um caminho mais curto entre dois vértices pode conter outros caminhos mais curtos em seu interior.

Caminhos mais Curtos de Todos para Todos

- Deseja-se encontrar o caminho mais curto entre todos os pares de vértices $u, v \in V$.
- Este problema também pode ser resolvido utilizando um algoritmo de caminho mínimo um para todos |V| vezes, uma para cada vértice de origem:
 - Mas existem algoritmos específicos para a resolução deste.
- Sua estrutura de dados é lidada como uma matriz de adjacência:
 - É exibido os valores de todos para todos de acordo com sua linha e colina.

Caminhos mais Curtos de Todos para Todos

• Supondo que existem |V| vértices e enumerados de forma crescente e contínua, uma matriz de entrada seria W $n \times n$ representando os peso das arestas do grafo orientado de n vértices. Isto é, $W = (w_{ij})$ onde

$$\forall \delta(u,v) = \begin{cases} \min\{w(p) : u \xrightarrow{p} v\} & \text{se existe um caminho de } u \text{ até } v, \\ \infty & \text{em caso contrário.} \end{cases}$$

Prova

Subestrutura Ótima de um Caminho Mais Curto [1]

• Lema:

- Dado um grafo orientado ponderado G = (V, E) com função peso $w : E \to \mathbb{R}$, seja $p = \langle v_1, v_2, \dots, v_k \rangle$ um caminho mais curto.
- Para quaisquer i e j tais que $1 \le i \le j \le k$, seja $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ o subcaminho.
- Então, p_{ij} é um caminho mais curto de v_i e v_j .

Subestrutura Ótima de um Caminho Mais Curto [1]

• Lema:

- Dado um grafo orientado ponderado G = (V, E) com função peso $w : E \to \mathbb{R}$, seja $p = \langle v_1, v_2, \dots, v_k \rangle$ um caminho mais curto.
- Para quaisquer i e j tais que $1 \le i \le j \le k$, seja $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ o subcaminho.
- Então, p_{ij} é um caminho mais curto de v_i e v_j .

• Prova:

- Quando decompõe o caminho p em $v_1 \xrightarrow{p_{1i}} v_i \xrightarrow{p_{ij}} v_j \xrightarrow{p_{jk}} v_k$, teremos $w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$.
- Supondo que existisse um caminho p'_{ii} de v_i até v_j com peso $w(p'_{ij}) < w(p_{ij})$.
- Então, $v_1 \xrightarrow{\rho_{1i}} v_i \xrightarrow{\rho'_{ij}} v_j \xrightarrow{\rho_{jk}} v_k$ é um caminho de v_1 até v_k cujo peso $w(p) = w(p_{1i}) + w(p'_{ij}) + w(p_{jk})$ é menor que w(p), o que contradiz a hipótese de que p é um caminho mais curto de v_1 até v_k .

Itens Importantes

Arestas de Peso Negativo

• Em algumas instâncias do problema, pode haver arestas cujo pesos são negativos.

Figura 1: Exemplo simples de um grafo com arestas de peso negativo. Fonte: [1].

Arestas de Peso Negativo

- Um grafo G = (V, E) que não contenha nenhum ciclo de peso negativo acessível a partir da origem s:
 - $\forall v \in V$, o peso do caminho mais curto $\delta(s, v)$ permanece **bem definido**, mesmo tendo um valor negativo.

Arestas de Peso Negativo

- Um grafo G = (V, E) que não contenha nenhum ciclo de peso negativo acessível a partir da origem s:
 - $\forall v \in V$, o peso do caminho mais curto $\delta(s, v)$ permanece **bem definido**, mesmo tendo um valor negativo.
 - Mas, caso exista um ciclo de peso negativo acessível, os pesos dos caminhos não serão bem definidos:
 - Existindo o ciclo negativo no caminho de s até v, então $\delta(s,v)=-\infty$ [1].

Algoritmos

Ambiente de Hardware e Software Utilizado

Tabela 1: Tabela com as informações de ambiente de execução do trabalho realizado.

Item	Descrição
Processador	1 Processador Intel Core i7 - 2,9 GHz
Núcleos	4 Núcleos
Cache L2 (por Núcleo)	256 KB
Cache L3	4 MB
Memória RAM	10 GB DDR3
Arquitetura	Arquitetura de von Neumann
Sistema Operacional	OS X 10.11.4 (15E65)
Versão do Kernel	Darwin 15.4.0
Compilador	Apple LLVM version 7.3.0 (clang-703.0.31)

Algorithm 1 Bellman-Ford

```
1: procedure Bellman-Ford(G, w, s)
       INICIALIZA-UNICA-FONTE(G, s);
       for i \leftarrow 1, |V[G]| - 1 do
 3:
           for cada aresta (u, v) \in E[G] do
 4:
              RELAXA(u, v, w);
 5:
 6:
           end for
       end for
 7:
 8:
       for cada aresta (u, v) \in E[G] do
           if d[v] > d[u] + w(u, v) then
 9:
              return FALSE:
10:
           end if
11:
12:
       end for
       return TRUE:
13:
14: end procedure
```

Algorithm 2 Bellman-Ford

- 1: **procedure** Bellman-Ford(G, w, s)
- INICIALIZA-UNICA-FONTE(G, s);
- for $i \leftarrow 1, |V[G]| 1$ do 3: **for** cada aresta $(u, v) \in E[G]$ **do** 4:

 $\triangleright \mathcal{O}(V)$

10

- RELAXA(u, v, w); 5:
- 6: end for
- end for 7:

8:

11: 12:

- **for** cada aresta $(u, v) \in E[G]$ **do**
- if d[v] > d[u] + w(u, v) then 9:
- return FALSE: 10:
 - end if
 - end for
- return TRUE: 13:

14: end procedure

Algorithm 3 Bellman-Ford

- 1: **procedure** Bellman-Ford(G, w, s)
 - INICIALIZA-UNICA-FONTE(G, s);
- for $i \leftarrow 1, |V[G]| 1$ do 3:

 $\triangleright \mathcal{O}(V)$

 $\triangleright \mathcal{O}(E)$

11

- **for** cada aresta $(u, v) \in E[G]$ **do** 4:
- RELAXA(u, v, w); 5:
- 6: end for end for 7:
- 8: **for** cada aresta $(u, v) \in E[G]$ **do** if d[v] > d[u] + w(u, v) then 9:
- return FALSE: 10:

14: end procedure

- end if 11:
- 12: end for
- return TRUE: 13:

Algorithm 4 Bellman-Ford

- 1: **procedure** Bellman-Ford(G, w, s)
- INICIALIZA-UNICA-FONTE(G, s);
- for $i \leftarrow 1, |V[G]| 1$ do 3:

 $\triangleright \mathcal{O}(V)$

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(1)$

12

- **for** cada aresta $(u, v) \in E[G]$ **do** 4:
- RELAXA(u, v, w); 5: 6: end for
- end for 7:
- 8: **for** cada aresta $(u, v) \in E[G]$ **do**
- if d[v] > d[u] + w(u, v) then 9:
- 10:
 - return FALSE:
- end if 11:
- 12:

- end for

14: end procedure

- return TRUE: 13:

Algorithm 5 Bellman-Ford

- 1: **procedure** Bellman-Ford(G, w, s)
- INICIALIZA-UNICA-FONTE(G, s);
- for $i \leftarrow 1, |V[G]| 1$ do 3:
 - **for** cada aresta $(u, v) \in E[G]$ **do** 4:

 $\triangleright \mathcal{O}(V)$

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(1)$

 $\triangleright \mathcal{O}(E)$

13

- RELAXA(u, v, w); 5:
- 6: end for
 - end for 7:
- 8: **for** cada aresta $(u, v) \in E[G]$ **do**
- if d[v] > d[u] + w(u, v) then 9:

end for return TRUE:

14: end procedure

end if

- return FALSE:
- 10:

11: 12:

13:

Algorithm 6 Bellman-Ford

- 1: **procedure** Bellman-Ford(G, w, s)
 - INICIALIZA-UNICA-FONTE(G, s);
 - for $i \leftarrow 1, |V[G]| 1$ do 3:
 - **for** cada aresta $(u, v) \in E[G]$ **do** 4:

 $\triangleright \mathcal{O}(V)$

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(1)$

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(1)$

14

- RELAXA(u, v, w); 5:
- 6: end for

return FALSE:

- end for 7:
- 8: **for** cada aresta $(u, v) \in E[G]$ **do**

- if d[v] > d[u] + w(u, v) then 9:

end if

end for return TRUE:

10:

11: 12:

13:

Algorithm 7 Dijkstra

```
1: procedure DIJKSTRA(G, w, s)
         INICIALIZA-UNICA-FONTE(G, s);
         S \leftarrow \emptyset:
     Q \leftarrow V[G]:
 4:
         while Q \neq \emptyset do
 5:
             u \leftarrow \mathsf{RETIRA}\text{-}\mathsf{MINIMO}(\mathsf{Q});
 6:
             S \leftarrow S \cup \{u\}:
 7:
 8:
             for cada vértice vizinho v \in Adj[u] do
                  RELAXA(u, v, w);
 9:
             end for
10:
11:
         end while
12: end procedure
```

Algorithm 8 Dijkstra

```
1: procedure DIJKSTRA(G, w, s)
         INICIALIZA-UNICA-FONTE(G, s);
         S \leftarrow \emptyset:
     Q \leftarrow V[G]:
 4:
         while Q \neq \emptyset do
 5:
             u \leftarrow \mathsf{RETIRA}\text{-}\mathsf{MINIMO}(\mathsf{Q});
 6:
             S \leftarrow S \cup \{u\}:
 7:
 8:
             for cada vértice vizinho v \in Adj[u] do
                  RELAXA(u, v, w);
 9:
             end for
10:
11:
         end while
12: end procedure
```

 $\triangleright \mathcal{O}(E)$

16

Algorithm 9 Dijkstra

- 1: procedure DIJKSTRA(G, w, s)
- INICIALIZA-UNICA-FONTE(G, s); $S \leftarrow \emptyset$:
- $Q \leftarrow V[G]$: 4:
- while $Q \neq \emptyset$ do 5:
- $u \leftarrow \mathsf{RETIRA}\text{-}\mathsf{MINIMO}(\mathsf{Q});$ 6:
- $S \leftarrow S \cup \{u\}$: 7:
- RELAXA(u, v, w); 9:

for cada vértice vizinho $v \in Adj[u]$ **do**

- end for 10:
- 11: end while
- 12: end procedure

8:

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(V)$

Algorithm 10 Dijkstra

- 1: **procedure** DIJKSTRA(G, w, s)
- 2: INICIALIZA-UNICA-FONTE(G, s);
- 3: $S \leftarrow \emptyset$;
- 4: $Q \leftarrow V[G]$;
- 5: while $Q \neq \emptyset$ do
- 6: $u \leftarrow \mathsf{RETIRA}\text{-}\mathsf{MINIMO}(\mathsf{Q});$
- 7: $S \leftarrow S \cup \{u\}$;
- 8: **for** cada vértice vizinho $v \in Adj[u]$ **do**
- 9: RELAXA(u, v, w);
- 10: end for
- 11: end while

12: end procedure

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(V)$ $\triangleright \mathcal{O}(1)$

Algorithm 11 Dijkstra

- 1: procedure DIJKSTRA(G, w, s)
- INICIALIZA-UNICA-FONTE(G, s);
- $S \leftarrow \emptyset$:
- $Q \leftarrow V[G]$: 4:
- while $Q \neq \emptyset$ do 5:
- $u \leftarrow \mathsf{RETIRA}\text{-}\mathsf{MINIMO}(\mathsf{Q});$ 6:
- $S \leftarrow S \cup \{u\}$: 7:
- 8: **for** cada vértice vizinho $v \in Adj[u]$ **do**
- RELAXA(u, v, w); 9:
 - end for
- 11: end while
- 12: end procedure

10:

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(V)$

 $\triangleright \mathcal{O}(1)$

 $\triangleright \mathcal{O}(\log V)$

Algorithm 12 Dijkstra

- 1: procedure DIJKSTRA(G, w, s)
- INICIALIZA-UNICA-FONTE(G, s);
- $S \leftarrow \emptyset$:
- $Q \leftarrow V[G]$: 4:
- while $Q \neq \emptyset$ do 5:
- $u \leftarrow \mathsf{RETIRA}\text{-}\mathsf{MINIMO}(\mathsf{Q});$ 6:
- $S \leftarrow S \cup \{u\}$: 7: 8: **for** cada vértice vizinho $v \in Adj[u]$ **do**
- RELAXA(u, v, w); 9:
 - end for

 - end while
- 11: 12: end procedure

10:

 $\triangleright \mathcal{O}(E)$

 $\triangleright \mathcal{O}(V)$

 $\triangleright \mathcal{O}(1)$

 $\triangleright \mathcal{O}(1)$

 $\triangleright \mathcal{O}(\log V)$

Algorithm 13 Floyd-Warshall

```
1: procedure FLOYD-WARSHALL(W)
         n \leftarrow linhas[W];
 3: D \leftarrow W:
 4:
        for k \leftarrow 1, n do
 5:
             for i \leftarrow 1, n do
                  for i \leftarrow 1, n do
 6:
                      d_{ii}^k \leftarrow min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1});
 7:
 8:
                  end for
              end for
 9:
         end for
10:
11:
         return D:
12: end procedure
```

Algorithm 14 Floyd-Warshall

```
1: procedure FLOYD-WARSHALL(W)
         n \leftarrow linhas[W];
     D \leftarrow W:
 4:
         for k \leftarrow 1, n do
                                                                                                                      \triangleright \mathcal{O}(V)
 5:
              for i \leftarrow 1, n do
 6:
                   for i \leftarrow 1, n do
                        d_{ii}^k \leftarrow min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1});
 7:
 8:
                    end for
               end for
 9:
          end for
10:
11:
          return D:
12: end procedure
```


Algorithm 15 Floyd-Warshall

```
1: procedure FLOYD-WARSHALL(W)
          n \leftarrow linhas[W];
     D \leftarrow W:
 4:
         for k \leftarrow 1, n do
                                                                                                                            \triangleright \mathcal{O}(V)
                                                                                                                            \triangleright \mathcal{O}(V)
 5:
               for i \leftarrow 1, n do
 6:
                    for i \leftarrow 1, n do
                         d_{ii}^k \leftarrow min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1});
 7:
 8:
                     end for
               end for
 9:
          end for
10:
11:
          return D:
12: end procedure
```

23

Algorithm 16 Floyd-Warshall

```
1: procedure FLOYD-WARSHALL(W)
          n \leftarrow linhas[W];
     D \leftarrow W:
 4:
          for k \leftarrow 1, n do
                                                                                                                                  \triangleright \mathcal{O}(V)
                                                                                                                                  \triangleright \mathcal{O}(V)
 5:
                for i \leftarrow 1, n do
                                                                                                                                  \triangleright \mathcal{O}(V)
 6:
                     for i \leftarrow 1, n do
                           d_{ii}^k \leftarrow min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1});
 7:
 8:
                      end for
                end for
 9:
           end for
10:
11:
           return D:
12: end procedure
```

Algorithm 17 Floyd-Warshall

```
1: procedure FLOYD-WARSHALL(W)
           n \leftarrow linhas[W];
     D \leftarrow W:
 4:
           for k \leftarrow 1, n do
                                                                                                                                        \triangleright \mathcal{O}(V)
                                                                                                                                        \triangleright \mathcal{O}(V)
 5:
                 for i \leftarrow 1, n do
                                                                                                                                        \triangleright \mathcal{O}(V)
 6:
                      for i \leftarrow 1, n do
                            d_{ii}^k \leftarrow min(d_{ii}^{k-1}, d_{ik}^{k-1} + d_{ki}^{k-1});
                                                                                                                                          \triangleright \mathcal{O}(1)
 7:
 8:
                       end for
                 end for
 9:
           end for
10:
11:
           return D:
12: end procedure
```

Experimentos

Experimentos

- Realizou-se teste de todos para todos.
- Utilizou-se de 4 instâncias:
 - rome99.gr, rg300_4730.gr, rg300_768_floyd.gr, rg300_768_floyd-n.gr.
- Para cada instância foi executado 20 vezes no mesmo ambiente de testes e colhido o tempo de execução.
- Todos os resultados estão disponíveis no relatório deste trabalho.

Valores de Tempos de Execução

Tabela 2: Tabela com os valores de tempo médio de cada algoritmo nas quatro instâncias com o objetivo de obter caminhos mínimos de todos para todos.

Instância	Bellman-Ford (s)	Dijkstra (s)	Ford-Warshall (s)
rome99.gr	420.0757	93.59347	149.3292
rg300_4730.gr	1.788467	0.11464	0.118966
rg300_768_floyd.gr	0.294253	0.094997	0.116002
rg300_768_floyd-n.gr	0.289948	Não se aplica.	0.098479

• A Figura 2 exibe um gráfico comparando os resultados de cada algoritmo sobre a instância *rome99.gr*.

 A Figura 3 exibe um gráfico comparando os resultados de cada algoritmo sobre a instância rg300_4730.gr.

 A Figura 4 exibe um gráfico comparando os resultados de cada algoritmo sobre a instância rg300_768_floyd.gr.

 A Figura 5 exibe um gráfico comparando os resultados de cada algoritmo sobre a instância rg300_768_floyd-n.gr.

Conclusão

Conclusão

- O problema de caminhos mínimos também está relacionado a programação linear:
 - É possível reduzir um caso especial de programação linear ao fato de encontrar caminhos mais curtos a partir de uma única origem.
 - Tal problema pode ser resolvido com algoritmo de Bellman-Ford, sendo assim resolvendo também o problema de programação linear [1].
- Realizou-se 20 iterações de teste por ser uma média razoável para análise e também devido ao tempo computacional elevado pelo tamanho das instâncias utilizadas assim como a complexidade dos algoritmos.

Conclusão

- Em termos de implementação:
 - Todos os códigos possuem grande facilidade de implementação:
 - Principalmente o Algoritmo Floyd-Warshall.
- Sobre a análise assintótica:
 - Houve uma grande disputa entre o Bellman-Ford e Dijkstra.
 - O Algoritmo de Floyd-Warshall ficou fora dessa disputa por ser de complexidade de tempo $\mathcal{O}(n^3)$
 - E o Bellman tem complexidade $\mathcal{O}(n^2)$ e o Dijkstra $\mathcal{O}(E+V\log V)$ no pior caso.
 - O Algoritmo Dijkstra teve sucesso em todas as execuções devida sua complexidade assintótica de tempo ser menor que todos os outros $\mathcal{O}(E+V\log V)<\mathcal{O}(n^2)$.

Bibliografia

Algoritmos: teoria e prática.

Elsevier, 2002.

P. O. B. Netto.

Grafos: teoria, modelos, algoritmos.

Edgard Blücher, 2003.

Projeto e Análise de Algoritmos

Caminhos Mínimos Utilizando Algoritmos de Dijkstra, Bellman-Ford, Floyd-Warshall, com detecção de Ciclos de Custo Negativo

Conrado C. Bicalho, Danilo S. Souza, Rodolfo L. M. Guimarães, Thiago Schons 18 de maio de 2016

{conradobh, danilo.gdc, rodolfolabiapari, thiagoschons2}@gmail.com Departamento de Computação — Universidade Federal de Ouro Preto 35.400-000 — Ouro Preto - MG — Brasil

Considerações de Projeto e Análise

- Alguns algoritmos implementados tratam o 'infinito' como: o maior peso encontradas das arestas multiplicado por ele mesmo.
- A estrutura utilizada no Algoritmo de Dijkstra foi projetada pelos integrantes dos grupos.
- Nenhum algoritmo faz teste de verificação de entradas inválidas.
- Foi executado em todos os algoritmos analisadores de código estáticos e dinâmicos. Executou-se primeiramente o Clang Static Analyzer e em seguida o Valgrind. Com exceção do Algoritmo de Bellman Ford, todos retornaram sucesso nas análises.

Relaxamento [1]

- Técnica onde para cada vértice $v \in V$, mantém-se um atributo d[v], que é o limite superior sobre o peso do caminho mais curto entre $s \in v$.
- Funciona da seguinte maneira:
 - Inicialização. Faz a estima de distância $d(v) = \infty$.
 - Relaxamento. Relaxar uma aresta (u, v) consiste em testar alguma forma de melhorar o caminho mais curto para v encontrado até agora por outros caminhos intermediários que utilizem u.

Figura 6: Exemplo de um relaxamento de uma aresta. Fonte:

http://wiki.icmc.usp.br/images/b/b4/7._1GrafosCaminhosLA(Graca).pdf

Variações deste Problema

- Variações descritas até agora:
 - Caminho mais curto de uma única origem; e
 - De todos para todos.
- Mas além destes, é possível obter outras variantes deste problema sem perder sua essência. Seriam as outras variantes:
 - Caminho mais curto de destino único; e
 - Par único.

Aplicações

- Problemas de única origem:
 - Problemas relacionados com sequências de decisões;
 - Escolhas de itinerários ao longo de uma viagem;
 - Traçado de uma estratégia em um problema de investimentos;
 - Trata-se de decisões envolvendo alguma forma de custo a ser minimizado.
- Problema de todos para todos:
 - Elaboração de uma tabela de distância entre todos os pares de cidades de um certa região para um atlas rodoviário.

