DRAFT: Discrete differential geometry in homotopy type theory

Greg Langmead

Carnegie Mellon University

April 2025

Motivation

Introduction

To use HoTT to study connections and explain their applicability to algebraic topology, via

- the Gauss-Bonnet theorem
- its vast generalization, Chern-Weil theory

Plan

Introduction

- Manifolds
- Classifying maps
- Connections and curvature
- Theorems

HoTT background

Introduction

- Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) Symmetry. https://github.com/UniMath/SymmetryBook.
- Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) Central H-spaces and banded types. arXiv:2301.02636
- Scoccola, L. (2020) Nilpotent types and fracture squares in homotopy type theory, MSCS 30(5). arXiv:1903.03245

Discrete manifolds in HoTT

- Recall the classical theory of simplicial complexes
- Define a realization functor to turn them into homotopy pushouts

Simplicial complexes

A Hasse diagram of a simplicial complex (vertices named for the colors on a Hungarian Cube)

Form a pushout of edges to create a 1-type.

$$egin{aligned} \mathcal{M}_1 imes \partial \Delta^1 & \stackrel{\mathrm{pr}_1}{\longrightarrow} \mathcal{M}_1 \ & & \downarrow_{h_1} & \downarrow_{*_{\mathbb{M}_1}} \ & \mathcal{M}_0 = \mathbb{M}_0 & \longrightarrow & \mathbb{M}_1 \end{aligned}$$

 $\partial \Delta^1$ is a 0-sphere: the set $\{a, b\}$.

Definition

An n-gon $\mathbb{C}(n)$ is the realization of a complex C(n):

$$C(n)_0 = \{v_1, \dots, v_n\}$$

 $C(n)_1 = \{e_1 = \{v_1, v_2\}, \dots, e_{n-1} = \{v_{n-1}, v_n\}, e_n = \{v_n, v_0\}\}$

Toss in two non-complexes

$$\mathbb{C}(1) \stackrel{\mathrm{def}}{=} S^1, \quad \mathbb{C}(2) \stackrel{\mathrm{def}}{=} \ell_{12} \stackrel{\mathbf{v}_1}{\bigcirc} r_{21}$$

Then push out faces o from a 2-dim type.

$$egin{aligned} \mathcal{M}_1 imes \partial \Delta^1 & \stackrel{\operatorname{pr}_1}{\longrightarrow} \mathcal{M}_1 \ & & \downarrow^{st_{\mathbb{M}_1}} & \downarrow^{st_{\mathbb{M}_1}} \ \mathcal{M}_0 &= & \mathbb{M}_0 & \stackrel{\operatorname{pr}_1}{\longrightarrow} & \mathbb{M}_1 & \stackrel{h_2}{\longrightarrow} & \uparrow^{st_{\mathbb{M}_2}} \ & & & \downarrow^{h_2} & \uparrow^{st_{\mathbb{M}_2}} \ \mathcal{M}_2 imes \partial \Delta^2 & \stackrel{\operatorname{pr}_1}{\longrightarrow} & \mathcal{M}_2 \end{aligned}$$

 $\partial \Delta^2$ is a 1-sphere, i.e. $\mathbb{C}(3)$.

Lemma

 $\mathbb{C}(2) \simeq \mathbb{C}(1)$ and in general $\mathbb{C}(n) \simeq \mathbb{C}(n-1)$.

Corollary

All n-gons are equivalent to S^1 .

 $*_{\mathbb{M}_1}$, $*_{\mathbb{M}_2}$ provide hubs. h_1 , h_2 provide spokes.

$$M_1 imes \partial \Delta^1 \stackrel{\operatorname{pr}_1}{\longrightarrow} M_1$$
 $A_0 \downarrow \qquad \qquad \downarrow^{*_{\mathbb{M}_1}} \downarrow^{*_{\mathbb{M}_1}}$
 $M_0 = \mathbb{M}_0 \stackrel{\longrightarrow}{\longrightarrow} \mathbb{M}_1 \stackrel{h_2}{\longrightarrow} \mathbb{M}_2$
 $A_1 \uparrow \qquad \qquad \downarrow^{h_2} \uparrow^{*_{\mathbb{M}_2}}$
 $M_2 imes \partial \Delta^2 \stackrel{\operatorname{pr}_1}{\longrightarrow} M_2$

The link of a vertex v in a 2-complex is the polygon of edges not containing v but whose union with v is a face.

This will be our model of the tangent space.

Rotation

Let $R : [abcd] \rightarrow [abcd]$ send $a \mapsto b, b \mapsto c, c \mapsto d, d \mapsto a$.

Extend R to edges.

Lemma

 $[\![R]\!]$: $[\![abcd]\!] \to [\![abcd]\!]$ is homotopic to the identity, i.e. we have $\prod_{x:[\![abcd]\!]} x = [\![R]\!](x)$.

Proof.

Use edges.

Let G be a group with identity element e. A G-set is a set X equipped with a homomorphism $\phi:(G,e)\to \operatorname{Aut}(X)$. If we have

$$\mathsf{is_torsor}(X,\phi) \stackrel{\mathrm{def}}{=} ||X||_{-1} \times \prod_{x:X} \mathsf{is_equiv}(\phi(-,x) : (G,e) \to (X,x))$$

we say (X, ϕ) is a G-torsor. Denote the type of G-torsors by BG.

Lemma

Point BG at G_{reg} , the G-torsor G acting on itself on the right. Then $\Omega_{G_{reg}}BG \simeq G$, so BG is a $\mathrm{K}(G,1)$.

- $S^1 \cdot \mathcal{U}$ is not an Aut S^1 -torsor
- It's a torsor for $(S^1 = S^1)_{(id)}$, the identity component.
- This omits the flip, the reversal of orientation.

Torsors 000

• See the Buchholtz et. al. H-spaces paper for more.

$$\mathrm{EM}(G,n)\stackrel{\mathrm{def}}{=} \mathsf{BAut}(\mathrm{K}(G,n))\stackrel{\mathrm{def}}{=} \sum_{Y:\mathcal{U}}||Y\simeq \mathrm{K}(G,n)||_{-1}$$

Definition

A K(G, n)-bundle on a type M is a map $f: M \to EM(G, n)$.

We further assume f factors through K(G, n+1) and so is principal.

If $\mathbb{M} \stackrel{i_0}{=} \mathbb{M}_0 \xrightarrow{i_0} \cdots \xrightarrow{i_{n-1}} \mathbb{M}_n$ is a cellular type and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ i_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

the filler \flat_k is called a flatness structure for the face m_k , and its ending path is called curvature at the face m_k .

Vector fields

Let $T: \mathbb{M}_2 \to \mathrm{K}(\mathbb{Z},2)$ be an oriented tangent bundle on an oriented 2-dim cellular type

- A vector field is a term $X : \prod_{m:\mathbb{M}_1} Tm$.
- It's a nonvanishing vector field on the 1-skeleton.
- We model classical zeros by omitting the faces.

- $\partial F \stackrel{\text{def}}{=} e_{12} \cdot e_{23} \cdot e_{31}$
- We access pathovers asymmetrically: $X_{12}: T_{12}X_1 = X_2$
- $X(\partial F)$ is 3-sided

inside a square

• To make a loop we cat with $\flat(\partial F)$

holonomy

flatness

$$\operatorname{\sf tr}_F \stackrel{\mathrm{def}}{=} \operatorname{\sf tr}(\partial F)$$
 : $Tm = Tm$

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{Tm=Tm} \text{tr}(\partial F)$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}(\partial F)(X(m)) =_{T_m} X(m)$ swirling

Definition

The index of the vector field X on the face F is the integer

$$I_F^X \stackrel{\mathrm{def}}{=} \Omega(\flat_F(X(m)) \cdot X_F) : \Omega(X(m) =_{Tm} X(m)).$$

holonomy

flatness

$$\operatorname{\sf tr}_F \stackrel{\operatorname{def}}{=} \operatorname{\sf tr}(\partial F) : Tm = Tm$$

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{Tm=Tm} \text{tr}(\partial F)$$

$$X_F \stackrel{\mathrm{def}}{=} X(\partial F)$$
 : $\operatorname{tr}(\partial F)(X(m)) =_{T_m} X(m)$ swirling

Definition

The index of the vector field X on the face F is the integer

$$I_F^X \stackrel{\text{def}}{=} \Omega(\flat_F(X(m)) \cdot X_F) : \Omega(X(m) =_{T_m} X(m)).$$

Classical proof

[26.2] The difference $\Re(\Delta) - 2\pi \Im_F(s)$ can be found by summing over the edges K_j the change $\Phi(K_j)$ in the illustrated angle $\angle FW_{||}$ i.e., the rotation of $\mathbf{w}_{||}$ relative to \mathbf{F} .

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.