# CE2003 Digital Systems Design, Sem 2 2018/19

Solver: Ng Joshua Jeremiah

E-Mail Address: NGJO0009@e.ntu.edu.sg

# **Question 1: Multiple Choice Questions**

# **Section A**

#### 1. D

(The bitwise AND operator (&) compares each bit of the first operand to the corresponding bit of the second operand.)

#### 2. B

(\$stop suspends the simulation, \$finish makes the simulator exit and passes control back to the host OS.)

#### 3. D

(There are only three valid magnitudes for use in time\_unit arguments in Verilog. 1, 10, 100)

# 4. E

(Timescale 10ns:1ns. Step 1: 10.6 \* 10ns = 106ns. Step 2: Round it to the nearest 1ns = 106ns. It will run the statement after 106ns.)

#### 5. C

```
(#5 + #15 = #20 = 20 \text{ time units})
```

# 6. A

(Negative numbers can be specified by putting a minus sign before the size for a constant number)

#### 7. B

("=" is blocking assignment and "<=" is nonblocking assignment.)

## 8. B

(*NOT* combinational logic  $\Rightarrow$  latch is inserted)

## 9. D

(Concatenate '{a,b}' has to be used instead of brackets (a,b) for extending bits)

#### 10.D

(eg. Always #1 clk=~clk)

#### 11.B

(if a=1'd1, 2'b11=1'd3; 1'd1!= 1'd3, hence it's false. Y=false=1'b0.)

#### 12.E

(An always block acts as an infinite loop. Instantiating a module will result in stack overflow.)

#### 13. A

(A=0; B[0]=0; C[1]=0; Hence, concatenating then will result in 3'b000.)

### 14.E

(3 integer bits and 5 frac bits can represent -2^3 to (2^3-2^-5), B and D fits in this range)

## 15.A

(worst case error is half of the smallest representable bit y, hence 2^-(y+1).)

# Section B

# 16. D

(required int bits: Smallest int no = -2.2\*0.8 - 1.2 = -2.96 (3 bits). Hence, frac bits for highest accuracy = 16-3 = 13 bits.)

## 17.A

(Just draw the table and it'll be obvious. Remember to read from **bottom to top**.)

#### 18 D

(Note that branch takes 1 cycle to execute hence Add \$3, \$2 will run every loop, and that BGT runs before Add \$3, \$2 reaches the ALU stage.)

## 19.C

(Draw out the state transition diagrams, you can make use of the blank state or same letters in other states for double transition. Eg for PQ=01, State D -> State C -> State A.)

# **Question 2**

(a) Information given: Tadd= 2ns, Tmul = 5ns, TcQ = 0.4ns and Ts = 0.1ns

 i. Critical Path Delay = TcQ + Tmul + 3(Tadd) + Ts = 11.5ns Max Freq = 1/11.5ns = 87.0MHz Throughput = 1 sample every 11.5ns Latency = 11.5ns

ii.



iii. Critical Path Delay =

TcQ + Tmul + Ts = 5.5ns Max Freq = 1/5.5ns = 181.8MHz Throughput = 1 sample evert 5.5ns Latency = 3\*5.5=16.5ns

(b)

- 1) In the ID stage: inst[13:0] needs to be zero extended and fed to the S1 mux. The control module now needs to generate a 2-bit S1 signal.
- 2) PCplus1 needs to be fed through the pipeline registers to the S3 mux. The control module would need to generate a 2-bit S3 signal.



# **Question 3**

```
(a) Always @*

ns=s;

Case({X,Y})

00: if (s == C)

ns = A;

01: if (s == B)

ns = C;

11: if ((s==A) || (s==B))

ns = C;

10: if (s==A)

ns=B;

endcase

assign Z = (s==B) ? 1: 0;

end
```

Is this synchronous part necessary? The above one is for state transitions, below is for reset and putting ns into s.

```
Always @ (posedge clk) begin

If (rst)

s<=A;

else

s<=ns;
```

(b) If B=01 and C=10, there will be dynamic hazard when changing between those states. Hence we have to create a transition state of D=11.

The resulting state transition table will look like this:

| Present State | Input XY = |          |          |          | Output |
|---------------|------------|----------|----------|----------|--------|
| Present State | 00         | 01       | 11       | 10       | (Z)    |
| A (00)        | <u>A</u>   | <u>A</u> | В        | U        | 0      |
| B (01)        |            | D        | <u>B</u> | D        | 1      |
| D (11)        |            | C        | -        | C        | 1      |
| C (10)        | Α          | <u>C</u> | <u>C</u> | <u>C</u> | 0      |

The excitation table will hence look like:

| Present State | Input XY = |           |           |           | Output |
|---------------|------------|-----------|-----------|-----------|--------|
| Present state | 00         | 01        | 11        | 10        | (Z)    |
| A (00)        | <u>00</u>  | 00        | 01        | 10        | 0      |
| B (01)        | -          | 11        | <u>01</u> | 11        | 1      |
| D (11)        |            | 10        |           | 10        | 1      |
| C (10)        | 00         | <u>10</u> | <u>10</u> | <u>10</u> | 0      |

Kmaps for  $1^{st}$  bit (B1) and  $2^{nd}$  bit (B2) are as follows (ensure that there are no static hazards):

| B1    |    | XY |    |    |    |  |
|-------|----|----|----|----|----|--|
|       |    | 00 | 01 | 11 | 10 |  |
| b1 b2 | 00 | 0  | 0  | 0  | 1  |  |
|       | 01 | X  | 1  | 0  | 1  |  |
|       | 11 | X  | 1  | X  | 1  |  |
|       | 10 | 0  | 1  | 1  | 1  |  |

| B2    |    | XY          |    |    |           |  |
|-------|----|-------------|----|----|-----------|--|
|       |    | 00          | 01 | 11 | 10        |  |
| b1 b2 | 00 | 0           | 0  | 1  | 0         |  |
|       | 01 | $ \forall $ | 1  | 1  | $\bigcap$ |  |
|       | 11 | X           | 0  | Χ  | 0         |  |
|       | 10 | 0           | 0  | 0  | 0         |  |

Note that the output Z is the same as the  $2^{nd}$  bit b2.

Write out equations:

B1 = b2X' + b1Y + b1X + XY'

B2 = b1'b2 + b1'XY



This is all done without an answer key so do clarify via email if you find any errors.

All the best for your exams