Titel

Mladen Ivkovic mladen.ivkovic@uzh.ch

Datum

Inhaltsverzeichnis

1.	Kapitel 1									
	1.1. Unterkapitel 1.1	4								
	1.1.1. Unterunterkapitel 1.1.1	4								
2.	Tabellen									
	2.1. Einfach	4								
	2.2. Mit extra + Seitenumbruch	4								
3.	Zwei Bilder									
4.	Mathematik und Symbole									
Α.	. Bildanhang									
В.	Zeilenumbruch									
C.	. Neue Befehle definieren									

Anmerkung des Autoren

Dieser Abschnitt ist nicht nummeriert und nicht im Inhaltsverzeichnis.

Zweck Dieses Dokument blablabla.

Punkt 2 Punkt 2

1. Kapitel 1

1.1. Unterkapitel 1.1

1.1.1. Unterunterkapitel 1.1.1

Die gängigste Form der Zahlensysteme sind Stellenwertsysteme. Eine Zahl a wird in Form einer Reihe von Ziffern z_i mit dazugehöriger Potenz der Basis b^i dargestellt. Der Wert der Zahl ergibt sich dann als Summe der Werte aller Einzelstellen: $a = \sum z_i b^i$.

Umrechnung in andere Zahlensysteme: Gegeben sei Zahl Z, umzuwandeln in System mit Basis b. Eine angenehme Vorgehensweise gibt uns das Horner Schema¹: Dividiere Z durch b. Der Rest dieser Division ist die letzte Stelle der Zahl in der Basis b (Einerstelle). Dividiere den Quotienten dieser Division wieder durch b. Der Rest dieser zweiten Division ergibt die zweite Stelle der Zahl in der neuen Basis. Wiederhole Divisionen, bis kein Rest mehr.

Abb. 1: Darstellung des Zahlenbereichs des Zweierkomplements mit acht Stellen

2. Tabellen

2.1. Einfach

Konjunktion			Disjunktion		Negation		NAND			NOR			
UND		ODER											
\overline{a}	b	$a \wedge b$	a	b	$a \lor b$	a	\bar{a}	a	b	$\overline{a \wedge b}$	a	b	$\overline{a \vee b}$
0	0	0	0	0	0	0	1	0	0	1	0	0	1
0	1	0	0	1	1	1	0	0	1	1	0	1	0
1	0	0	1	0	1			1	0	1	1	0	0
1	1	1 1	1	1	1			1	1	0	1	1	0

2.2. Mit extra + Seitenumbruch

Kommutativgesetz:	$a \wedge b = b \wedge a$	$a \vee b = b \vee a$
Distributivgesetz:	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge b)$	$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$
Neutrales Element	$a \wedge 1 = a$	$a \lor 0 = a$
Inverses Element	$a \wedge \bar{a} = 0$	$a \vee \bar{a} = 1$

¹ Website mit Umrechnungen und Erklärungen: http://www.arndt-bruenner.de/mathe/scripts/ Zahlensysteme.htm

Assoziativgesetz $(a \land b) \land c = a \land (b \land c)$ $(a \lor b) \lor c = a \lor (b \lor c)$

Idempotenzgesetz $a \wedge a = a$ $a \vee a = a$

Absorptionsgesetz $a \wedge (a \vee b) = a$ $a \vee (a \wedge b) = a$

DeMorgan-Gesetz $\overline{a \wedge b} = \overline{a} \vee \overline{b} \text{ (NAND)}$ $\overline{a \vee b} = \overline{a} \wedge \overline{b} \text{ (NOR)}$

Gesetz vom Widerspruch $a \wedge \overline{a} = 0$

Gesetz vom ausgeschl. Dritten $a \vee \overline{a} = 1$

Gesetz der doppelten Negation $\overline{\overline{a}} = a$

3. Zwei Bilder

Abb. 3: getaktetes RS-Flipflop

Dabei müssen wir eine Nebenbedingung $R \wedge S = 0$ setzen - R und S dürfen niemals gleichzeitig = 1 sein. In der Realisierung, dargestellt in Abb. 2, führt dies zu oszillationen.

Will man ein taktgesteuertes RS-Flipflop, so braucht man lediglich das Taktsignal mit einem UND-Gatter jeweils mit dem R- und S-Eingang zu verbinden (siehe Abb. 3).

4. Mathematik und Symbole

$$\equiv \ll \ll \gg \gg \leq \geq \leq \geqslant \propto \approx \approx \neq \simeq \cong \ncong \tag{1}$$

$$\cdot \times \vee \wedge \stackrel{\vee}{\sim} \bar{\wedge} \pm \mp \sqrt{a} \sqrt[3]{a} \langle \rangle \infty \tag{2}$$

$$\leftarrow \rightarrow \Leftarrow \Rightarrow \parallel \perp$$
 (3)

$$\in \notin \forall \exists \nexists \ni \mathbb{RNZ} \subset \supset \subseteq \supseteq$$
(4)

$$\int_{1}^{2} \oint \iiint \prod \sum$$
 (5)

$$\vec{r}\ \bar{r}\ \dot{r}\ \dot{r}\ r\ \underline{r}$$
 (6)

$$\odot \nabla \partial \hbar$$
 (7)

$$\vec{S}_{\mu} = \vec{S}_{\mu}^{\parallel}(0)\vec{u} + \vec{S}_{\mu}^{\perp}(0)[\cos(\omega_{\mu}t)\vec{v} - \sin(\omega_{\mu}t)\vec{w}]$$
(8)

$$\vec{P} = \frac{2}{\hbar} \langle \Psi | \hat{S} | \Psi \rangle = \vec{S} \tag{9}$$

$$\Rightarrow \varphi(x) = \sum_{L=0}^{\infty} \sum_{m=-L}^{L} \sqrt{\frac{4\pi}{2L+1}} \int_{\mathbb{R}^3} \sqrt{\frac{4\pi}{2L+1}} \rho(\vec{x}') r'^L Y_{l,m}^*(\theta', \varphi') d^3 x' \frac{Y_{l,m}(\theta, \varphi)}{r^{L+1}}$$
(10)

$$= \sum_{L=0}^{\infty} \sum_{m=-L}^{L} \sqrt{\frac{4\pi}{2L+1}} q_{l,m} \frac{Y_{l,m}(\theta,\varphi)}{r^{L+1}}$$
 (11)

$$\Rightarrow q_{0,0} = \int_{\mathbb{R}^3} \rho(\vec{x}') d^3x' \triangleq \begin{cases} \text{total charge (electrostatics)} \\ \text{total mass (gravitation)} \end{cases}$$

$$\vec{r} = \begin{pmatrix} r\cos\varphi\sin\theta\\ r\sin\varphi\sin\theta\\ r\cos\varphi \end{pmatrix} \tag{12}$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \tag{14}$$

$$z + \bar{z} < 2\sqrt{z\bar{z}} \tag{2}$$

$$Re(z) \le |z| = \sqrt{Re(z)^2 + Im(z)^2}$$

$$|\sin z| \stackrel{3b)}{=} \sqrt{\sin^2 x} \tag{15}$$

$$\cosh(y) \stackrel{y \in \mathbb{R}}{\ge} 1 \Rightarrow x = n\pi, n \in \mathbb{Z}$$
 (16)

$$f(z) = \lim_{x \to \infty} \frac{\sin x}{x} = 0 \tag{17}$$

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}}$$
(18)

$$\binom{a}{n} = \frac{a!}{(a-n)!n!} \tag{19}$$

$$\lim_{\epsilon \to 0} \int(z) dz = \lim_{\epsilon \to 0} \frac{1}{4} \left[\int \frac{e^{ia(u+1)}}{u} du - \int \frac{e^{ia(u+1)}}{u+2} du \right]$$

$$\stackrel{z=1 \Rightarrow u=0}{=} \lim_{\epsilon \to 0} \frac{e^{ia}}{4} \left[\underbrace{\underbrace{e^{ia\epsilon e^{i\varphi}}}_{\epsilon e^{i\varphi}} i\epsilon e^{i\varphi}}_{\rightarrow i} d\varphi - \int_{\pi}^{0} \underbrace{\underbrace{e^{ia\epsilon e^{i\varphi}}}_{ia\epsilon e^{i\varphi}} + 2}_{\rightarrow 0} \underbrace{i\epsilon e^{i\varphi}}_{\rightarrow 0} d\varphi \right]$$

$$(20)$$

(21)

$$2+2=4$$
 some more space after this line please.

$$2 + 2 = 4$$
 unnumbered line.
last line is made of text. Yay! (22)

In-line maths elements can be set with a different style: $f(x) = \frac{1}{1+x}$. The same is true the other way around:

$$f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x}$$

$$f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x}$$

$$f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x}$$

$$f(x) = \sum_{i=0}^{n} \frac{a_i}{1+x}$$

A. Bildanhang

Abb. A1: JK-Flipflop

Abb. A2: JK-Flipflop, Darstellung mit RS-Flipflop. C = Takt, $Q_1 = Q$, $Q_2 = \bar{Q}$

B. Zeilenumbruch

asdfghjklösdfghjklosd

C. Neue Befehle definieren

 μSR

myint
$$\int_{-\infty}^{\infty} dr \int_{0}^{2\pi} \sin(\vartheta) \varepsilon d\varphi$$
mysum
$$\sum_{i=0}^{\infty} \frac{x \cdot y}{z} e^{-3\cos(\theta\phi)}$$

myint ist jetzt ein neuer Befehl und macht nur noch das hier.

fettes hallo

 $kursives\ hallo$