Beyond Microcredit

GIVING THE POOR A WAY TO SAVE THEIR WAY OUT OF POVERTY

Kumar Aniket

University College London

EEA-ESEM, Cologne 2018

28 August 2018

FINANCIAL INTERMEDIATION FOR THE POOR

- Savers
 - funds to save
 - returns on savings low if poor

- Borrowers
 - fund to borrow
 - interest rates high if poor

- Financial Institution
 - gather savings,
 - o disburse loans,
 - more difficult to collect information *on the poor*
- Role for policy

FIRST WAVE

Compares joint liability with individual lending in terms of lending efficiency

Strands of the literature

Adverse Selection

Varian (1990), Ghatak (1999, 2000), Van Tassel (1999), Aghion & Gollier (2000)

Moral Hazard

Ghatak (1999), Stiglitz (1990), Conning (2000)

Auditing and Enforcement

Besley & Coate (1995), Ghatak (1999)

Criticism of the First Wave

o Pitt & Khandkar (1998), Aghion & Morduch (2000), Karlan and Morduch (2009)

Group Lending

Results from *impact evaluation* exercise gloomy Group lending does not do always do better than individual lending

Theory literature under estimates the *practical problems* associated with group lending

Various mechanisms, other than group lending, used in microfinance

SECOND WAVE

Look *beyond joint liability* at the internal mechanism of group lending

Sjostrom and Rai (2005): cross-reporting

Jain and Mansuri (2003): periodicity of loans

Besley Coate Loury (1993, 1994), Klonner (2008, 2013): ROSCAs

Chowdhury (2005), Aniket (2003): Sequential Group Lending

Moral Hazard Strand

Recurrent Theme: it is more efficient to incentivize effort collectively for the group rather than individually

Ghatak (1999): incentivizing effort less expensive

Varian (1990): collective project choices more prudent

Conning (2000): incentivizing complementary tasks leads to multiple equilibria

CASE STUDY

- ⊙ Case-study of a Microfinance Institution in Harayana
 - Documents the innovative design features of India's new national microfinance programme.
- Lender lends only to *groups* not individuals
 - Individuals may join a group as either a borrower or a saver (depending on their cash-wealth)
 - o Borrowers partly self-finance their project
 - Savers (non-borrower) co-finance the borrower's project (and get a premium interest rate on their savings)
- We observed
 - Intra-group income heterogeneity
 - savers were poorer than borrowers

CASE STUDY OF SHGS IN HARYANA, INDIA

Group Lending

Environment

•00000

- \odot opportunity cost of capital ρ
- \odot Agent k
 - o Risk neutral
 - Cash wealth $w_k < 1$
 - Reservation income 0

Project & Effort Level

Borrower's project

Environment

000000

1 unit of capital
$$\longrightarrow \begin{cases} \bar{x} & \text{with probability } \pi^i \\ 0 & \text{with probability } (1 - \pi^i) \end{cases}$$

Borrower *chooses* effort level $i = \{H, L\}$

$$\pi^i = egin{cases} \pi^h & ext{(High effort level)} \ \pi^l & ext{(Low effort level)} \end{cases}$$

Environment

000000

EFFORT LEVEL & PRIVATE BENEFITS

Borrower *i*'s effort unobservable

Effort	Cost of action	Private Benefits
High	0	0
Low	0	$B_i(c_j)$

- \odot *j* monitoring *i* with intensity c_i curtails *i*'s private benefits B_i
 - \circ cost of c_i is c_i
 - monitoring unobservable
- Private benefits are non transferable amongst agents

Environment

000000

Assumption (Monitoring function)

- *i.* B(c) *is continuous and twice differentiable*
- *ii.* B(0) > 0, $\lim_{c \to \infty} B(c) = 0$
- iii. B'(c) < 0, B''(c) > 0;

ENVIRONMENT

- \odot opportunity cost of capital ρ
- \odot Agent k
 - Risk neutral
 - Cash wealth $w_k < 1$
 - Reservation income 0
- ⊙ Lender
 - o Risk neutral
 - No access to monitoring technology
 - \circ Lends at rate r in a competitive loan market
 - For project that succeeds with probability π^i

$$\rho = \pi^i r \tag{L-ZPC}$$

Individual Lending

Environment

00000

ρ opportunity *cost* of capital

directly gives us r

 w_b borrower's *self investment* in her project

$$\max \pi^h r(1-w_b)$$

$$E[b_i \mid H] \geqslant \rho w_b$$
 (B-PC)

$$E[b_i \mid H] \geqslant E[b_i \mid L] + B(0)$$
 (B-ICC)

$$r = \frac{\rho}{\pi^h} \tag{L-ZPC}$$

Individual Lending

o Borrower's payoff:

$$\begin{cases} b_{\scriptscriptstyle S} = \bar{x} - r(1 - w_b) & ext{success} \dots \pi^h \ b_f = 0 & ext{failure} \dots (1 - \pi^h) \end{cases}$$

- Lender's objective function: $\pi^h r(1-w_b)$
- Lender's zero profit condition: $\rho = \pi^h r$

Conclusion

INDIVIDUAL LENDING WITHOUT SUBSIDY

• Lender offers the borrower a contract (r, w^I) where $r = \frac{\rho}{\pi^{II}}$

INDIVIDUAL LENDING with Subsidy

• Lender offers the borrower a contract (r, w^I) where $r = \frac{\rho}{\pi^h}$

Group Lending

GROUP LENDING: Key Variables

ρ opportunity *cost* of capital.

directly gives us r

 w_b borrower's *self investment* in her project

 w_s saver's equity stake in borrower's project c intensity with which the saver monitors the borrower

R returns offered to the borrower

compensates for opportunity cost of capital ρ the premium $R - \rho$ gives saver incentive to monitor the borrower

- \odot Saver invests w_s in borrower's project
- Saver's payoff:

$$\begin{cases} s_s = \mathbf{R} \mathbf{w_s} & \text{success} \dots \pi^h \\ s_f = 0 & \text{failure} \dots (1 - \pi^h) \end{cases}$$

Borrower's payoff:

$$\begin{cases} b_{\text{\tiny S}} = \bar{x} - R w_{\text{\tiny S}} - r(1 - w_{\text{\tiny S}} - w_b) & \text{success} \dots \pi^h \\ b_f = 0 & \text{failure} \dots (1 - \pi^h) \end{cases}$$

TIMING

t=1 The Lender offers a *group-contract*.

$$\begin{array}{ll} \textbf{Saver's contract} & (w_s^*\,,R^*) \\ \textbf{Borrower's contracts} & (w_b^*\,,\bar{x}-Rw_s^*-r(1-w_b^*-w_s^*)) \end{array}$$

- *t*=2 The agents *self-select* into roles of *saver* and *borrower* according to their wealth. They subsequently pair up to form a group.
- t=3 Group borrows $(1-w_h^*-w_s^*)$ from lender
 - Borrower invests 1 unit of capital in the project.

TIMING

- t=4 The saver chooses monitoring intensity c.
- t=5 The borrower chooses effort level.
- t=6 The project's outcome is realised.
 - If the project **succeeds**, \bar{x} gets distributed as follows:

Saver:
$$R^*w_s^*$$

Lender: $r(1-w_s^*-w_b^*)$
Borrower: $\bar{x}-R^*w_s^*-r(1-w_s^*-w_b^*)$

• If the project **fails**, everyone gets 0

LENDER'S PROBLEM

$$\max \pi^h r(1 - w_s - w_b)$$

$$E[s_i \mid H] - c \geqslant \rho w_s \tag{S-PC}$$

$$E[\mathbf{s}_i \mid H] - c \geqslant E[\mathbf{s}_i \mid L] \tag{S-ICC}$$

$$E[b_i \mid H] \geqslant \rho w_b \tag{B-PC}$$

$$E[b_i \mid H] \geqslant E[b_i \mid L] + B(c) \tag{B-ICC}$$

$$r = \frac{\rho}{\pi^h} \tag{L-ZPC}$$

$$\phi = \pi^h r \Big[1 - \Big(w_b (R, w_s(R, c), c) + w_s(R, c) \Big) \Big]$$

OPTIMAL CONTRACT

Proposition

For projects $\pi^h \bar{x} \ge \rho + c^*$, the lender induces the saver to monitor with intensity $c^* = B'^{-1}(-1)$ by setting

$$R^* = \frac{\rho}{\pi^l}$$

Proposition

With the optimal contract (R^*, c^*) , the borrower gets positive rents and the saver gets zero rents.

MINIMUM WEALTH REQUIRED & INTEREST RATE

Saver gets a contract (R^*, w_s^*) and borrower gets a contract (r, w_b^*)

Proposition (Group Lending v Individual Lending)

Group Lending

0000000000000

Group lending is only feasible if $\rho > \tilde{\rho}$

Group Lending v Individual Lending

Proposition (Pairing-up)

If $\rho > \tilde{\rho}$, a potential borrower will always prefer to pair up with a potential saver and not a potential borrower and vice versa.

- For a potential borrower, pairing up with another potential borrower leads to competition for credit. (savers get no rent)
- ⇒ Pairing with a agent who can only save ensures timely credit.
- A potential saver can only get premium on her saving by pairing with a potential borrower.

INTEREST RATE POLICY

Proposition

Subsidising the cost of capital decreases the wealth required to participate in the group as a borrower. Conversely, it increases the wealth required to participate in the group as a saver.

Proposition

Subsidising the cost of capital decreases the wealth required to participate in the group as a borrower. Conversely, it increases the wealth required to participate in the group as a saver.

Proposition (Escaping the Credit Trap)

There exists a $\hat{\rho}$ *such that for all* $\rho \in (\tilde{\rho}, \hat{\rho}]$ *the savers are able to* accumulate enough wealth to be able to borrow in the next period, if the current project succeeds.

Proposition

Subsidising the cost of capital decreases the wealth required to participate in the group as a borrower. Conversely, it increases the wealth required to participate in the group as a saver.

Proposition (Escaping the Credit Trap)

There exists a $\hat{\rho}$ *such that for all* $\rho \in (\tilde{\rho}, \hat{\rho}]$ *the savers are able to* accumulate enough wealth to be able to borrow in the next period, if the current project succeeds.

OPTIMAL INTEREST RATE ho

CONCLUSION

- Does Subsidising the Cost of Capital Really Help the Poorest? An Analysis of Saving Opportunities in Group Lending
 - Subsidising the cost of capital (interest rate) reduces ↓ the cash-wealth required to participate in the group as a borrower, thus reaching out to poorer borrowers.
 - Conversely, it *increases* ↑ the cash-wealth required to participate as a saver, thus curtailing the opportunity for the poorest to enrich themselves.
 - There exists an optimal cost of capital at which the *poorest* savers today can become tomorrow's borrowers.

Conclusions

Mature Capital Markets

- allow savers to match with borrowers
- task of monitoring is delegated to financial institutions
- financial institutions have a distinct advantage in monitoring projects (borrowers)

Rural Financial Markets

savers may have the advantage in monitoring projects (borrowers)

Microfinance institutions

- should *physically match* the savers and borrowers and lend to the resulting collective entity
- Matching savers and borrower within group maybe more efficient than through capital markets

Conclusions

- The difference between saving and borrowing returns determines the long run wealth distribution (Matsuyama)
 - Very low returns for saving in rural financial markets
 - Cost of borrowing very high

... cost of financial intermediation high

 Matching savers and borrower within group maybe more efficient than through capital markets