- 3. A square conducting loop of side-length $L=3\,\mathrm{m}$ is in a region with a time-varying magnetic field (\vec{B}) . The field is directed into the page, and its magnitude as a function of time is shown in the graph to the right. The total resistance of the loop is $R=3\,\Omega$
 - (a) Calculate the area of the loop, and specify the direction of its normal vector (\bigcirc, \bigotimes) .
 - (b) Find the magnetic flux (Φ_B) through the loop at time $t=1\,\mathrm{s}$.
 - (c) Find the induced EMF (\mathcal{E}) in the loop at time $t=3\,\mathrm{s}$.

- 3. A conducting loop of total resistance $R=4\,\Omega$ is shown in the figure to the right. A time-dependent magnetic field is present throughout the region. The field has a magnitude given by the equation $B(t)=B_0t+B_1$, where $B_0=3\,\mathrm{T/s}$ and $B_1=2\,\mathrm{T}$, and is directed out of the plane.
 - (a) Calculate the area of the loop, and specify the direction of its normal vector (\odot, \otimes) .
 - (b) Find the magnetic flux through the loop at t = 0.
 - (c) Find the induced emf \mathcal{E} at time t = 1 s.

NAME and ID:	SCORE: /	4 points
		-

PHY 274 PROBLEM SOLVING WORKSHOP X

- 1. A triangular conducting loop is shown in the figure to the right. A time-dependent magnetic field is present throughout the region. The field has a magnitude given by the equation $B(t) = B_0 t^3 + B_1$, where $B_0 = 1 \, \mathrm{T/s^3}$ and $B_1 = 3 \, \mathrm{T}$, and is directed into the plane.
 - (a) Calculate the area of the loop, and specify the direction of its normal vector (\bigcirc, \bigotimes) .
 - (b) Find the magnetic flux through the loop at t = 0.
 - (c) Find the magnitude and direction (cw/ccw) of the induced emf \mathcal{E} at time $t=2\,\mathrm{s}$.

- 2. A conducting loop has a time-dependent area vector given by $\vec{A}(t) = (A_0 t^2 A_1) \hat{k}$, where $A_0 = 1 \, \text{m}^2/\text{s}^2$ and $A_1 = 4 \, \text{m}^2$ are constants. A constant magnetic field $\vec{B} = 2 \, \text{T} \, \hat{k}$ is present throughout the region.
 - (a) Find the magnetic flux Φ_B through the loop at $t=1\,\mathrm{s}.$
 - (b) Find the induced emf \mathcal{E} in the loop at time $t=2\,\mathrm{s}$.