1 2

1

2

1

2

1

6

7

8

9

WHAT IS CLAIMED IS:

	1. A mathod for converting a signal to differing sample rates, comprising
	receiving, at a first sample rate, a plurality of data points, associated with a
īrst signal;	

operating on said plurality of data points to associate said signal with a predetermined set of parameters, with said set of parameters including a first transition band having an image corresponding thereto; and

varying said sample rate associated with said first signal by interpolation with an interpolator having associated therewith a second transition band, with the width associated with said second transition band being a function of a spectral separation of said first transition band and said image, wherein a second signal is produced having a sequence of data samples approximating the first signal.

- 2. The method recited in claim 1 wherein varying said sample rate includes producing each data sample associated with said second signal by convolving a predetermined finite number N of data points with an equal number of coefficients, with N being greater than two.
- 3. The method recited in claim 2 wherein coefficients vary as a function of the temporal spacing between the output point and the corresponding input points.
- 4. The method as recited in claim 1 wherein varying said sample rate increases said sample rate.
- 5. The method as recited in claim 1 wherein varying said sample rate decreases said sample rate.
- 1 6. The method as recited in claim 1 wherein operating on said plurality of data points includes up-sampling said plurality of data points by a factor of two.
 - 7. The method as recited in claim 1 wherein operating on said plurality of data points includes filtering said plurality of data points with a half-band filter.
 - 8. The method as recited in claim 1 wherein operating on said plurality of data points includes decimating said plurality of data points with a half-band decimator.

1	9. The method as recited in claim 6 further including decimating a
2	plurality of data points output by said interpolator with a half-band decimator, with varying
3	said sample rate occurring after receiving said plurality of data points and before decimating
4	said plurality of data points.
1	10. The method as recited in claim 1 wherein operating on said plurality of
\ 2	data points to associate said signal includes filtering the same with a finite impulse response
<i>(</i>)	filter.
1	11. The method as recited in claim 1 wherein operating on said plurality of
2	data points to associate said signal includes filtering the same with an infinite impulse
3	response filter.
1	12. A method for converting a digital audio signal to a different sample
2	rate, comprising:
3	receiving a plurality of data points, associated with an audio signal, at an
4	initial sample rate;
5	halfband filtering said plurality of data points with a halfband filter; and
6	interpolating with an interpolator having independently programmable
7	parameters.
1	13. The method as recited in claim 2 wherein:
2	said halfband filtering is done in conjunction with upsampling said plurality of
3	data points; and
4	said interpolating follows said upsampling and halfband filtering.
1	14. The method as recited in claim 12 wherein:
2	said halfband filtering is done, without upsampling, on said plurality of
3	datapoints; and
4	said interpolating follows said halfband filtering.
1	15. The method as recited in claim 12 wherein:
2	said halfband filtering follows said interpolating.
1	16. The method as recited in claim 12 wherein:
2	said halfband filtering is done in conjunction with upsampling said plurality of

3

1

2

1

2

data points; 3 said interpolating follows said halfband filtering; and 4 halfband filtering and decimating following said interpolating. 5 17. A computer program product for converting signals to differing sample 1 rates comprising: 2 code for receiving a plurality of data points, associated with a signal, at a first 3 sample rate; code for operating on said plurality of data points to associate said signal with a predetermined set of parameters, with said set of parameters including a first transition band having a first width; code for varying said sample rate associated with said first signal by 9 10 11 11 12 13 14 14 1 2 interpolating a subset of data points of said plurality of data points with an interpolator having associated therewith a second transition band, with the width associated with said second transition band being a function of a spectral separation of said first transition band and said image, wherein a second signal is produced having a sequence of data samples approximating the first signal; and a computer-readable storage medium for storing code. The computer program product as recited in claim 17 wherein code for 18. operating on said plurality of data points includes code for up-sampling said plurality of data points by a factor of two. 3 The computer program product as recited in claim 17 wherein code for 19. 1 operating on said plurality of data points includes code for filtering said plurality of data 2 points with a half-band filter. 3 The computer program product as redited in claim 17 wherein code for 20. 1 operating on said plurality of data points includes code for decimating said plurality of data 2

points with a half-band decimator.

- The computer program product as recited in claim 18 further including 21. code for decimating said plurality of data points with a half-band decimator.
- The computer program product as recited in claim 17 wherein code for 22. operating on said plurality of data points to associate said signal includes code for filtering

	,
3	said data points with a filter selected from the set of filters consisting essentially of a finite
4	impulse response filter and a infinite impulse response filter.
	1 . (Company divine a digital audio giornal to g
1	A computer program product for converting a digital audio signal to a
2	different sample rate, comprising:
3	a computer-readable storage medium for storing code, said code including
4	code for receiving a plurality of data points, associated with an audio signal, a
7	an initial sample rate;
6	code for halfband filtering said plurality of data points with a halfband filter;
7	and
8	code for interpolating with an interpolator having independently
9	programmable parameters.
1	24. The computer program product as recited in claim 23 wherein:
2	said code for halfband tering is executable in conjunction with code for
3	upsampling said plurality of data points;\and
4	said code for interpolating sexecutable following said upsampling and
5	halfband filtering code.
	25. The computer program product as recited in claim 23 wherein:
1	said code for halfband filtering is executable, without upsampling code, on
2	
3	said plurality of datapoints; and
4	said code for interpolating is executable following said halfband filtering code
1	26. The computer program product as recited in claim 23 wherein:
2	said code for halfband filtering is executable following said code for
3	interpolating.
1	27. The computer program product as recited in claim 23 wherein:
2	said code for halfband filtering is executable in conjunction with code for
3	upsampling said plurality of data points;
4	said code for interpolating is executable following said code for halfband
5	filtering; and further comprising:
6	code for halfband filtering and decimating executable following said code for
7	interpolating.
	1 .

1

2

1

2

- 28. The method of claims 1 or 12 wherein said interpolator is an FIR Nth order sum of products interpolator with linear interpolation of coefficients.
- 29. The computer program product of claims 17 or 23 wherein said interpolator is an FIR Nth order sum of products interpolator with linear interpolation of coefficients.
- 30. The method of claims 1 or 12 wherein said interpolator has a transition band beginning adjacent the top of a passband and ending adjacent the bottom of a passband image.
- 31. The computer program product of claims 17 or 23 wherein said interpolator has a transition band beginning adjacent the top of a passband and ending adjacent the bottom of a passband image.
- 32. The method of claims 7, 8, 9 or 12 wherein said halfband filter is an IIR filter composed of first order allpass blocks.
- 33. The computer program product of claims 19 or 23 wherein said halfband filter is an IIR filter composed of first order allpass blocks.