МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и кибербезопасности Высшая школа технологий искусственного интеллекта Направление **02.03.01**: Математика и компьютерные науки

Курсовая работа «Синтез функциональной схемы простейших часов»

Вариант 19

Обучающийся:	Яшнова Дарья Михайловна группа 5130201/20002
Руководитель:	Востров Алексей Владимирович
	2024

Санкт-Петербург, 2024

Содержание

В	веде	ение	3
1	Пос	становка задачи	4
2	Ma	атематическое описание	5
	2.1	Конечный автомат	5
	2.2	Описание конечного автомата для часов	5
		2.2.1 Множество состояний	5
		2.2.2 Входной алфавит	6
		2.2.3 Выходы	7
	2.3	Управляющие воздействия	7
	2.4	Минимизация функций	8
		2.4.1 Минимизация Q	10
	2.5	Минимизация L	11
	2.6	Минимизация і	13
3	Cxe	емотехническая реализация	16
	3.1	Анализ схемотехнических элементов	16
	3.2	Схемотехнические элементы	16
	3.3	Расчет площади схемы	22
3	аклі	ючение	23
\mathbf{C}	пис	ок литературы	24

Введение

Современные дискретные системы управления взаимодействуют с окружающей средой через события и условия. Их разработка основана на конечно-автоматной модели, применяемой в автоматике для создания устройств и систем дискретной техники. Автоматные описания алгоритмов важны для проектирования и синтеза устройств и программ.

Курсовая работа посвящена разработке функциональной схемы электронных часов с дополнительными функциями для демонстрации применимости дискретных принципов в реальных проектах.

1 Постановка задачи

В ходе работы необходимо построить функциональную схему электронных часов с функциями, соответствующими варианту 2111010:

- 2 отображение и корректировка дня недели;
- 1 режим работы часов: 24-х часовой;
- 1 отключение индикаторов с целью экономии электроэнергии;
- 1 останов часов по нажатию кнопки;
- 0 секундомер отсутствует;
- 1 звуковая сигнализация каждый час в течение четырех секунд;
- 0 звуковой сигнал в устанавливаемое время отсутствует.

2 Математическое описание

2.1 Конечный автомат

Конечный автомат определяется в виде упорядоченной пятёрки элементов некоторых множеств:

$$A = (S, X, Y, \delta, \lambda, s_0),$$
 где

- S конечное множество состояний автомата;
- X, Y конечные входной и выходной алфавиты соответственно, из которых формируются строки, считываемые и выдаваемые автоматом;
- $\delta: S \times X \to S$ функция переходов;
- $\lambda: S \times X \to Y$ функция выходов;
- \bullet s_0 начальное состояние.

2.2 Описание конечного автомата для часов

На рис.1 изображен детерминированный конечный автомат для часов, реализуемых в этой работе.

Рис. 1: Детерминированный конечный автомат

2.2.1 Множество состояний

В ходе работы было выделено 6 состояний автомата: $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$

 S_0 Отображение времени : состояние отображения текущего времени. На индикаторах отображаются значения часов, минут, дня недели. При нажатии кнопки «с» происходит останов часов, при нажатии кнопки «е» происходит переход в режим сохранения энергии.

- S_1 Останов часов остановка хода часов. В этом состоянии индикаторы часов, минут и дня недели показывают последние значения до перехода в это состояние. При нажатии кнопки «с» часы возобновляют ход. При нажатии «а», «b», «d» меняется либо день недели, либо часы, либо минуты соответственно.
- S_2 Установка минут состояние, когда отчет времени приостановлен, по нажатии на «d» значение минут увеличивается на один, при этом отображаются значения дней, часов и минут с учетом корректировок. При нажатии на «b» происходит переход к установке часов, при нажатии на «a» происходит переход к установке дня недели. При нажатии на кнопку «c» происходит переход в состояние отображения времени.
- S_3 Установка часов состояние, когда отчет времени приостановлен, по нажатии на «b» значение часов увеличивается на один, при этом отображаются значения дней, часов и минут с учетом корректировок. При нажатии на «a» происходит переход к установке минут, при нажатии на «a» происходит переход к установке дня недели. При нажатии на кнопку «c» происходит переход в состояние отображения времени.
- S₄ Установка дней состояние, когда отчет времени приостановлен, по нажатии на «а» значение дня недели увеличивается на один, при этом отображаются значения дней, часов и минут с учетом корректировок. При нажатии на «b» происходит переход к установке часов, при нажатии на «d» происходит переход к установке минут. При нажатии на кнопку «c» происходит переход в состояние отображения времени.
- S_5 Отключение индикатора. В этом состоянии индикаторы часов не горят для эко- номии энергии, при нажатии «е» индикаторы загораются. При нажатии других кнопок ничего не происходит.

Далее приведены коды состояний, необходимых для реализации:

$$S_0 \rightarrow 000$$

 $S_1 \rightarrow 001$

 $S_2 \rightarrow 010$

 $S_3 \rightarrow 011$

 $S_4 \rightarrow 100$

 $S_5 \rightarrow 101$

2.2.2 Входной алфавит

Входной алфавит был определен как $X = \{a, b, c, d, e\}$. Он может быть закодирован следующим образом:

 $a \rightarrow 001$

 $b \rightarrow 010$

 $c \rightarrow 100$

 $d \rightarrow 011$

 $e \rightarrow 101$

λ	а	b	С	d	e
s0	z0	z0	z1	z0	z5
s1	z4	z3	z0	z2	z0
s2	z4	z3	z0	z2	z0
s3	z4	z3	z0	z2	z0
s4	z4	z3	z0	z2	z0
s5	z5	z5	z 5	z5	z0

Рис. 3: Таблица выходов конечного автомата

2.2.3 Выходы

Множество выходов определено так: $Y = \{z_0, z_1, z_2, z_3, z_4, z_5\}.$

- z_0 Отображение времени;
- z_1 Останов часов;
- z_2 Коррекция минут;
- z_3 Коррекция часов;
- z_4 Коррекция дней недели;
- z_5 Энергосбережение;

6	a	b	С	d	e
s0	s0	s0	s1	s0	s1
s1	s4	s3	s0	s2	s1
s2	s4	s3	s0	s2	s2
s3	s4	s3	s0	s2	s3
s4	s4	s3	s0	s2	s4
s5	s5	s5	s5	s5	s0

Рис. 2: Таблица переходов конечного автомата

2.3 Управляющие воздействия

Входом в управляющий автомат являются преобразованные внешние воздействия, выходы - это два типа управляющих воздействий: импульсные и потенциальные.

Импульсные микрокоманды являются функцией выходных сигналов управляющего автомата. Значение импульсной микрокоманды (кратковременное воздействие) может быть отлично от нуля лишь во время перехода из одного состояния в другое.

Импульсные микрокоманды:

```
i_1 	o 	ext{Увеличение минут на 1;} \ i_2 	o 	ext{Увеличение часов на 1;} \ i_3 	o 	ext{Увеличение дней недели на 1;} \ i_4 	o 	ext{Отключение индикаторов.}
```

Потенциальные микрокоманды - это продолжительное воздействие, которое действует в период нахождения автомата в определенном состоянии и может измениться только при переключении автомата в другое состояние.

Потенциальные микрокоманды:

```
L1 - отображение дней;
L2 - отображение часов;
L3 - отображение минут;
L4 - Поддержание состояния энергосбережения;
L5 - Поддержание состояния паузы.
```

2.4 Минимизация функций

На рис.4 представлена таблица истинности кодирования переходов состояний и импульсных микроокоманд. a, b, c, d, e - вход с кнопок, S_i - текущее состояние, S_{inext} - состояние после перехода. i1-i4 - управляющие импульсные микрокоманды, L1-L5 - управляющие потенциальные микрокоманды.

				S_i			S_i_r	next	
a	0	0	1	0	0	0	0	0	0
b	0	1	0	0	0	0	0	0	0
С	1	0	0	0	0	0	0	0	1
d	0	1	1	0	0	0	0	0	0
e	1	0	1	0	0	0	0	0	1
a	0	0	1	0	0	1	1	0	0
b	0	1	0	0	0	1	0	1	1
С	1	0	0	0	0	1	0	0	0
d	0	1	1	0	0	1	0	1	0
e	1	0	1	0	0	1	0	0	1
a	0	0	1	0	1	0	1	0	0
b	0	1	0	0	1	0	0	1	1
С	1	0	0	0	1	0	0	0	0
d	0	1	1	0	1	0	0	1	0
e	1	0	1	0	1	0	0	1	0
а	0	0	1	0	1	1	1	0	0
b	0	1	0	0	1	1	0	1	1
С	1	0	0	0	1	1	0	0	0
d	0	1	1	0	1	1	0	1	0
e	1	0	1	0	1	1	0	1	1
a	0	0	1	1	0	0	1	0	0
b	0	1	0	1	0	0	0	1	1
С	1	0	0	1	0	0	0	0	0
d	0	1	1	1	0	0	0	1	0
e	1	0	1	1	0	0	1	0	0
a	0	0	1	1	0	1	1	0	1
b	0	1	0	1	0	1	1	0	1
С	1	0	0	1	0	1	1	0	1
d	0	1	1	1	0	1	1	0	1
e	1	0	1	1	0	1	0	0	0

Рис. 4: Таблица истинности кодирования переходов состояний и импульсных микрокоманд

				Т отображение дней	отображение часов	т отображение минут	т состояние энергосбережения	С состояние паузы
S0	0	0	0	1	1	1	0	0
S1	0	0	1 0 1 0	1	1	1	0	0 1 1 1 1 0
S2	0	1	0	1	1	1	0	1
S3	0	1	1	1	1	1	0	1
S4	1	0	0	1	1	1	0	1
S5	1	0	1	0	0	0	1	0

Рис. 5: Таблица истинности кодирования потенциальных микрокоманд

2.4.1 Минимизация Q

На Рис. 6-8 приведены минимизация соответственно для Q1,Q2,Q3 при помощи Карт Карно.

Рис. 6: Минимизация для Q1

Рис. 7: Минимизация для Q2

Рис. 8: Минимизация для Q3

2.5 Минимизация L

На Рис. 9-11 приведены минимизация соответственно для L1-L5 при помощи Карт Карно.

Рис. 9: Минимизация для L1-L3

Рис. 10: Минимизация для L4

Рис. 11: Минимизация для L5

2.6 Минимизация і

На Рис. 12-15 приведены минимизация соответственно для i1-i4 при помощи Карт Карно.

Рис. 12: Минимизация для і1

Рис. 13: Минимизация для і2

Рис. 14: Минимизация для і3

Рис. 15: Минимизация для і4

3 Схемотехническая реализация

3.1 Анализ схемотехнических элементов

3.2 Схемотехнические элементы

Индикаторный преобразователь предназначен для преобразования двоичного кода десятичной цифры в сигналы, управляющие индикаторами. Каждый индикатор состоит из семи сегментов, которые при включении в определённой комбинации формируют изображение соответствующей цифры. Для отображения информации необходимо подавать напряжение на каждый сегмент, чтобы он «загорелся». На рис.16 представлены индикаторные преобразователи схемы.

Рис. 16: Индикаторный преобразователь

В данной работе был использован индикаторный преобразователь сигналов с шеснадцатиричных счетчиков рис.17. Он имеет 7 выходов, которые кодируют сегменты семисегментного дисплея.

Рис. 17: Индикаторный преобразователь

Счетчик представляет собой устройство, предназначенное для подсчета и хранения кода числа подсчитанных импульсов. Каждый счетчик имеет тактовый вход, на который поступают электрические импульсы, и несколько выходов, с которых можно получить двоичный код числа, находящегося в счетчике. С каждым новым входным импульсом код изменяется: он может увеличиваться на 1 (суммирующий счетчик), уменьшаться на 1 (вычитающий счетчик) или изменяться в соответствии с каким-либо другим правилом.

Важным параметром счетчика является коэффициент пересчета (K). K — это максимальное число импульсов, которое может быть подсчитано. Если рассматривать счетчик как конечный автомат, то K — это количество различных состояний счетчика. Через K переключений счетчик с коэффициентом пересчета K возвращается в исходное состояние.

Для удобства использования счетчика, кроме тактового входа, существует вход «сброс». При подаче импульса на этот вход на выходе устанавливается нулевой код.

В данной работе используется шестнадцатиричный счетчик (рис.18). В данной работе различные счетчики обнуляются при достижении 10 (единицы минут и часов), 6 (десятки минут и часов) и 7 (дни недели).

Рис. 18: Шестнадцатиричный счетчик

Тактовый генератор Генератор тактовых импульсов (генератор тактовой частоты) предназначен для синхронизации различных процессов в цифровых устройствах, таких как ЭВМ, электронные часы, таймеры и другие. Он вырабатывает электрические импульсы заданной частоты, которая часто используется в качестве эталонной. Считая количество импульсов, можно, например, измерять временные интервалы. В курсовой работе используется тактовый генератор с тактовой частотой 1 Гц и 0.01666 Гц. На рисунке 19 показан тактовый генератор.

Рис. 19: Тактовый генератор

Преобразователь внешних воздействий В схеме реализован конечный автомат, который получает сигнал от преобразователя внешних воздействий. Этот сигнал соответ-

ствует нажатию одной из 5 кнопок, а также сигналу s, который запускает переход часов из одного состояния в другое.

На выходе конечный автомат формирует импульсные и потенциальные команды, которые влияют на работу всей схемы часов.

Блок F Следующее состояние часов формируется в блоке F поразрядно на основе значений входных сигналов и разрядов предыдущего состояния. Таким образом, на выходе формируются разряды следующего состояния, которые поступают на входы D-триггеров блока ЭП. На рис. 20 представлена реализация блока F в схеме.

Рис. 20: Блок F

і-формирователь Для увеличения значения часов или минут при регулировке времени, а также для активации и деактивации тактового генератора и сброса секундомера применяются команды і, которые поступают от блока і-формирователя в рамках функционирования конечного автомата, контролирующего состояние часов.

На рисунке 21 и 22 представлена схема реализации і-формирователя.

Рис. 21: і-формирователь для увеличения счетчиков дней недели и часов

Рис. 22: і-формирователь для увеличения минут

Блок FL Для управления функционированием индикаторов и подачей сигнала тактового генератора на счётчик секундомера применяются потенциальные команды L, генерируемые блоком FL в процессе работы конечного автомата, управляющего состоянием часов. На рисунке 23 представлена схема реализации блока FL.

Рис. 23: Блок FL

Интерфейс часов На рис.24 представлен интерфейс часов. Желтые семисегментные дисплеи демонстрируют часы, минуты и дни недели, синие - секунды. Синяя лампочка X5 заменяет динамик и мигает каждый час в течение 4 секунд.

Рис. 24: Интерфейс часов

Звуковые сигналы В данной работе звуковой сигнал должен воспроизводиться в течение 4 секнуд каждый час. Динамик представляет собой лампочку - лампочка загорается каждый час на 4 секунды. Отсчет времени происходит с помощью тактового генратора и счетчиков. Если на счетчиках значение менее 4 и счетчик минут равен 0, то загорается лампочка(рис.25).

Рис. 25: Схема реализации звукового сигнала

Общая структурная схема На рис.26 представлена общая структурная схема устройства.

Рис. 26: Общая структурная схема

3.3 Расчет площади схемы

Для расчета площади схемы можно использовать таблицу на рис.27.

ЭЛЕМЕНТ	КОЛИЧЕСТВО ТРАНЗИСТОРОВ
Инвертор	4
И	4
ИЛИ	6
И / ИЛИ	6
исключающее И	12
исключающее ИЛИ	10
D - триггер	20
Счетчик	16 * n , где n - количество двоичных разрядов
Индикаторный преобразователь	400

Рис. 27: Таблица для расчета площади схемы

На рис.28 представлен расчет количества транзисторов на схеме.

	Количество элементов	Количество транзисторов
	Колич	Колич
Инвертор	7	28
И	16	64
или	5	30
Искл.Или	2	20
Счетчик	7	448
ИП	5	2000
Сумма:		2590

Рис. 28: Расчет количества транзисторов

Число транзисторов, которые могут быть размещены в одном кристалле, составляет при средней степени интеграции - несколько тысяч, при высокой - несколько сотен тысяч. Нашу оценку будем производить из расчета 1000 транзисторов на одном квадратном миллиметре площади кристалла. Значит, для реализации данной схемы требуется $2.59\ mm^2$ площади кристалла.

Заключение

В ходе работы была построена функциональная схема электронных часов с функциями, соответствующими варианту 2111010:

- 2 отображение и корректировка дня недели;
- 1 режим работы часов: 24-х часовой;
- 1 отключение индикаторов с целью экономии электроэнергии;
- 1 останов часов по нажатию кнопки;
- 1 звуковая сигнализация каждый час в течение четырех секунд;

Был построен конечный автомат и проведена минимизация по таблицам истинности кодирования импульсных и потенциальных микрокоманд. Также была рассчитана площадь схемы, зависящая от количества транзисторов в схеме.

Достоинства

- 1. Корректировка времени происходит только в режиме паузы, поэтому вероятность ошибиться и изменить время нечаянно нажав не ту кнопку гораздо меньше.
- 2. В режиме корректировки времени значения индикаторов могут изменяться независимо друг от друга в любом порядке.

Недостатки

- 1. В данной работе используется 5 кнопок, хотя с учетом количества кодируемых сигналов достаточно двух кнопок. При этом чаще всего взаимодействие происходит с кнопкой «с», а значит она может износиться быстрее других кнопок.
- 2. Корректировка времени может занимать много времени, так как времы корректируется с помощью прибавления единицы к каждому значению. Из этого также следует, что нельзя никак уменьшать время, отображенное на часах, кроме как пройти полный цикл изменения минут, секунд и дней недели.
- 3. Из-за того, что минуты отсчитываются с помощью частотного генератора импульсов с частотой $0.016666~\Gamma$ ц, за большой промежуток времени будет накапливаться задержка, так как есть разница между $0.016666~\mathrm{u}~1/6$.

Масштабирование:

- Используя счетчик для зажигания лампочки, можно добавить отображение секунд.
- Можно настроить часы так, чтобы была возможность отображения времени в разных часовых поясах.
 - Есть возможность доработать схему и реализовать будильник.

Список литературы

- [1] Методические указания к курсовой работе. URL:https://www.bsuir.by/m/12_113415_1_67082.pdf (Дата обращения: 01.12.2024).
- [2] «Моделирование импульсных и цифровых устройств в среде Multisim», Белорусский государственный университет информатики и радиоэлектроники URL:https://tema.spbstu.ru/userfiles/files/courses/2018-theory-algorithm/KuR_MU.pdf (Дата обращения: 06.12.2024).
- [3] «NI Multisim User Manual», National Instruments Electronic URL:https://engineering.unt.edu/ee/files/NI_Multisim.pdf (Дата обращения: 01.12.2024).
- [4] Минимизация булевых функций с помощью карты Карно URL:https://sublime.tools/ru/karta-karno (Дата обращения: 10.12.2024).