Chapter 4 – Kinematics in 2D

- Mathematics
- Projectile motion
- Relative motion
- Circular motion (uniform, then nonuniform)

Kinematics in 2D: Mathematics

$$\dot{r} = \chi \hat{i} + y \hat{j}$$

$$\dot{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (\chi \hat{i} + y \hat{j}) = \frac{d\chi}{dt} \hat{i} + \frac{dy}{dt} \hat{j} = v_{\chi} \hat{i} + v_{y} \hat{j}$$

$$\dot{a} = \frac{d\vec{v}}{dt} = \frac{dv_{\chi}}{dt} \hat{i} + \frac{dy}{dt} \hat{j}$$

© 2022 Pearson Education, Inc.

© 2022 Pearson Education, Inc.

(b)

A car goes down a hill, through a valley, then up a hill on the other side of the valley.

© 2022 Pearson Education, Inc.

MODEL 4.1

Projectile motion

For motion under the influence of only gravity.

- Model the object as a particle launched with speed v_0 at angle θ :
- Mathematically:
 - Uniform motion in the horizontal direction with $v_x = v_0 \cos \theta$.
 - Constant acceleration in the vertical direction with $a_v = -g$.
 - Same Δt for both motions.
- Limitations: Model fails if air resistance is significant.

A projectile follows a parabolic trajectory.

Chicago ●

 \vec{v}_{PA} of plane relative to air

© 2022 Pearson Education, Inc.

 $\vec{v}_{AB} + \vec{v}_{BC} + \vec{v}_{CO} = \vec{v}_{AB}$ of plane relative to air

 \vec{v}_{AG} of air

Chicago (

 \vec{v}_{PG} of plane relative to ground

Maria's acceleration is an acceleration of changing direction, not of changing speed.
© 2022 Pearson Education, Inc.

$$|\vec{a}| = \frac{dv}{dt} = \frac{vd\theta}{t} = v\omega = v = \frac{v^2}{t}$$

$$|\vec{a}| = \omega^2 \Gamma$$

MODEL 4.2

Uniform circular motion

For motion with constant angular velocity ω .

Applies to a particle moving along a circular trajectory at constant speed or to points on a solid object rotating at a steady rate.

- Mathematically:
 - The tangential velocity is $v_t = \omega r$.
 - The centripetal acceleration is v_t^2/r or $\omega^2 r$.
 - ω and v_t are positive for ccw rotation, negative for cw rotation.
- Limitations: Model fails if rotation isn't steady.

The velocity is tangent to the circle. The acceleration points to the center.

Exercise 20

MODEL 4.3

Constant angular acceleration

For motion with constant angular acceleration α .

Applies to particles with circular trajectories and to rotating solid objects.

Mathematically: The graphs and equations for this circular/rotational motion are analogous to linear motion with constant acceleration.

• Analogs:
$$s \to \theta \ v_s \to \omega \ a_s \to \alpha$$

w is the slope of θ α is the slope of ω

Rotational kinematics

Linear kinematics

$$\omega_{f} = \omega_{i} + \alpha \Delta t$$

$$\theta_{f} = \theta_{i} + \omega_{i} \Delta t + \frac{1}{2} \alpha (\Delta t)^{2}$$

$$\omega_{f}^{2} = \omega_{i}^{2} + 2\alpha \Delta \theta$$

$$v_{fs} = v_{is} + a_s \Delta t$$

$$s_f = s_i + v_{is} \Delta t + \frac{1}{2} a_s (\Delta t)^2$$

$$v_{fs}^2 = v_{is}^2 + 2a_s \Delta s$$

$$S = \theta r$$