Множество вещественных чисел

Опр: 1. Множество F с операциями + и \cdot называется полем, если выполняются следующие условия:

- 1. (F, +) абелева группа:
 - (a) $\forall a, b, c \in F, a + (b + c) = (a + b) + c$ (ассоциативность);
 - (b) $\exists 0: \forall a \in F, 0 + a = a + 0 = a$ (существование нулевого элемента);
 - (c) $\forall a \in F, \exists (-a): a + (-a) = (-a) + a = 0$ (существование обратного элемента);
 - (d) $\forall a, b \in F, \ a + b = b + a$ (абелевость);
- 2. $(F \setminus \{0\}, \cdot)$ абелева группа:
 - (a) $\forall a, b, c \in F$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (ассоциативность);
 - (b) $\exists 1 \neq 0$: $\forall a \in F$, $1 \cdot a = a \cdot 0 = a$ (существование нулевого элемента);
 - (c) $\forall a \neq 0 \in F, \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (существование обратного элемента);
 - (d) $\forall a, b \in F, a \cdot b = b \cdot a$ (абелевость);
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c$ (дистрибутивность);

Примеры полей:

- (1) Q множество рациональных чисел (см. книгу Ландау для проверки свойств);
- (2) \mathbb{Z}_p , p простое;

Рассмотрим \mathbb{Z}_p : $m \sim n \iff m-n : p$ (одинаковые остатки при делении на p).

Классы эквивалентности: $0, 1, 2, \ldots, p-1$ - остатки при делении на p. Можно проверить, что \mathbb{Z}_p (p - простое) - является полем.

В поле \mathbb{Z}_p есть свойство $\underbrace{1+1+\ldots+1}_{p}=0$ в таком случае говорят, что задано поле характеристики p.

Если ноль никогда не получают, то говорят, что поле - характеристики 0.

 $\mathbb{Z}_p \Rightarrow \underbrace{1+1+\ldots+1}_{\mathbb{P}} = 0$ - поле характеристики p.

 $\mathbb{Q} \Rightarrow 1, 1+1, 1+1+1, \dots$ - не будет 0, то есть это поле характеристики 0 (надо 0 раз сложить 1).

Опр: 2. Поле F называется упорядоченным, если на F задан линейный порядок (любые два элемента можно сравнивать), такой, что:

- 1) $\forall a, b, c \in F, a \le b \Leftrightarrow a + c \le b + c;$
- 2) $\forall a, b, c \in F, \ a \le b \land c \ge 0 \Rightarrow ac \le bc;$

Пример упорядоченного поля: \mathbb{Q} - множество рациональных чисел.

Утв. 1. 1 > 0

 \square Предположим противное $1 < 0 \Rightarrow$ вычитаем 1 справа и слева $\Rightarrow 0 < -1 \Rightarrow$ умножим на $(-1) \Rightarrow$ по второму свойству 0 < 1 - противоречие.

Тогда по свойству (1) получим, что 1+1>1>0 и так далее. Поэтому упорядоченное поле всегда имеет характеристику поля 0.

Rm: 1. Элементы упорядоченного поля: $1, 1+1, \ldots, \underbrace{1+1+\ldots+1}_{n}, \ldots$ отождествляются с множеством натуральных чисел и обозначаются П. (см. В.А. Зорич, 1-ый том для формального отождествления индуктивные множества).

Rm: 2. Элементы вида $\frac{m}{n} = m \cdot n^{-1}$, где $m \in \mathbb{Z} = \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\}$ и $n \in \mathbb{N}$ называем дробями, а их множество - множеством рациональных чисел \mathbb{Q} .

Onp: 3. Множество \mathbb{R} называется множеством действительных или множеством вещественных чисел, если \mathbb{R} - упорядоченное поле, на котором выполняется **аксиома полноты**:

Если $A \subset \mathbb{R}$, $A \neq \emptyset$, $B \subset \mathbb{R}$, $B \neq \emptyset$ и " $A \leq B$ " (то есть $a \leq b$, $\forall a \in A, b \in B$), то $\exists c \in \mathbb{R}$, которое разделяет A и B, то есть $a \le c \le b$, $\forall a \in A, b \in B$.

Рис. 1: Аксиома полноты

Смысл аксиомы полноты - дырок нет. Где есть дыры? Зачем аксиома полноты?

Утв. 2. В \mathbb{Q} существуют дыры.

Например, между $A = \{x : x > 0 \land x^2 < 2\}$ и $B = \{x : x > 0 \land x^2 > 2\}$ нет элементов из \mathbb{Q} .

Пусть $\exists c \colon A \leq c \leq B \Rightarrow$ рассмотрим 3 варианта: (1) $c^2 > 2$, (2) $c^2 < 2$, (3) $c^2 = 2$. Покажем, что ни один из них - невозможен:

(3) $c^2 = 2$, представим c в виде $c = \frac{p}{c}$ - не сократима (так как рассматриваем множество рациональных чисел) т.е. $\mathrm{HOД}(p,q)=1\Rightarrow p^2=2q^2\Rightarrow p=2k$, так как в квадрате только четные числа дают четные. Тогда $4k^2=2q^2\Leftrightarrow 2k^2=q^2\Rightarrow q=2m$, получили, что p и q : $2\Rightarrow$ противоречие.

 $(2) c^2 < 2$. Найдем $\varepsilon > 0$: $(c + \varepsilon)^2 < 2$

Рис. 2: Невозможность сценария (2)

 $c^2+2carepsilon+arepsilon^2<2\Rightarrow 2carepsilon+arepsilon^2<\underbrace{2-c^2}_{>0}$ тогда $arepsilon(2c+arepsilon)<2-c^2$. Пусть 0<arepsilon<1 - поскольку мы можем выбрать ε . Поэтому достаточно найти такое ε , что будет выполнено $\varepsilon(2c+\varepsilon)<\varepsilon(2c+1)<2-c^2$. Возьмем $\varepsilon = \frac{2-c^2}{(2c+1)2017} \Rightarrow c+\varepsilon \in A$ и $c+\varepsilon > c$, а это противоречие с тем, что $A \le c$. (1) - упражнение - доказать, что и это невозможно.

 $c^2>2$. Найдем $\varepsilon>0$: $(c-\varepsilon)^2>2\Rightarrow c^2-2c\varepsilon+\varepsilon^2>2\Rightarrow 2c\varepsilon-\varepsilon^2<\underbrace{c^2-2}_{>0}$ тогда $\varepsilon(2c-\varepsilon)< c^2-2$. Пусть $0<\varepsilon<1$ - поскольку мы можем выбрать ε . Поэтому достаточно найти такое ε , что будет выполнено $\varepsilon(2c-\varepsilon)<2c\varepsilon< c^2-2$. Возьмем $\varepsilon=\frac{c^2-2}{(2c)2017}\Rightarrow c-\varepsilon\in B$ и $c-\varepsilon< c$, а это противоречие с тем, что

 $c \leq B$. Следовательно нет рационального числа, которое бы разделяло эти два множества.

Утв. 3. В \mathbb{R} существует x > 0: $x^2 = 2$, это $\sqrt{2}$.

 \square Доказали в предыдущем утв. по аксиоме полноты есть c которое разделяет A и B. Доказали, что не может быть $c^2 > 2$ и $c^2 < 2$, а значит оно равно 2 ($c^2 = 2 \Rightarrow c = \sqrt{2}$).

Бесконечные десятичные дроби

Опр: 4. Бесконечные десятичные дроби - это набор последовательностей вида $a_0, a_1 a_2 \dots a_n$, где $a_0 \in \mathbb{Z}$, $a_k \in \{0, 1, \dots, 9\}, \ k \geq 1$.

Последовательности с 9999... начиная с некоторого номера - запрещены. Почему запрещаем? Пример: $10 \cdot 0,999... = 9,999... = 9 + 0,999... \Leftrightarrow 10x = 9 + x$. Тогда получим, что 0,999... = 1.

Отношения порядка

 $a_0, a_1 a_2 \ldots \le b_0, b_1 b_2 \ldots$, когда $a_0, b_0 \ge 0$ (остальные случаи - как в школе). Либо $a_0 < b_0$, либо $a_0 = b_0$ и $a_1 < b_1$, либо $a_0 = b_0$, $a_1 = b_1$ и $a_2 < b_2$, либо \ldots - дексикографический порядок.

Сложение, умножение вводятся достаточно сложно - об этом можно прочитать в книжках Садовничего (Садовничий, Ильин).

Теорема 1. Справедливы следующие утверждения:

- 1. На множестве бесконечных десятичных дробей выполняется аксиома полноты;
- 2. Множество бесконечных десятичных дробей является моделью множества \mathbb{R} (без доказательства);
- \square Проведем доказательство в случае когда A и B состоят из неотрицательных чисел.

По условию: $A \neq \emptyset$, $B \neq \emptyset$ и $A \leq B$. Строим разделитель $c = c_0, c_1 c_2 \dots$, где c_0 - минимальное b_0 , которое встречается в B (т.к. неотрицательные числа).

Теперь смотрим только на дроби в B, которые начинаются с c_0, \ldots

- c_1 это минимальное b_1 , которое встречается в B в дробях вида $c_0, b_1 \ldots$
- c_2 это минимальное b_2 , которое встречается в B в дробях вида $c_0, c_1 b_2 \dots$

Докажем, что построенная дробь $c=c_0,c_1c_2c_3\dots$ разделяет A и B. Ясно, что $c\leq b,\ \forall b\in B$. Возьмем $b_0,b_1b_2\dots$ и сравним с $c.\ c_0\leq b_0,\ c_1\leq b_1,\ c_2\leq b_2$ и так далее - по построению. Поэтому $c\leq b,\ \forall b\in B$.

Возьмем $a_0, a_1 \dots a_n \dots \in A$. Может ли случиться $a_0 > c_0$? - нет, так как тогда $a_0, a_1 \dots >$ дроби из B, начинающеся с c_0, \dots Пусть $a_0 = c_0$, может ли $a_1 > c_1$? - нет, так как тогда $a_0, a_1 a_2 >$ дроби из B, начинающеся с $c_0, c_1 \dots$ и так далее.

Осталось проверить, что $c_0, c_1 c_2 \dots$ - допустимая запись, то есть нет $\dots 999 \dots$ в конце. Пусть есть, но каждый раз брали наименьшую часть $\Rightarrow c_0, c_1 c_2 \dots c_n 9999 \dots$, но такой записи в B - нет, иначе в B в дроби начиная с некоторого момента будут идти только 9.

Аксиома полноты - тяжела для проверки на практике. Поэтому её обычно переформулируют.

Опр: 5. Если $c \ge a$, $\forall a \in A$, то c - называется верхней гранью A.

Опр: 6. Если у A есть хотя бы одна верхняя грань, то A называется ограниченным сверху множеством.

Опр: 7. Наименьшая из верхних граней множества A называется точной верхней гранью множества A и обозначается $\sup A$.

Опр: 8. Если $c \le a$, $\forall a \in A$, то c - называется нижней гранью A.

Опр: 9. Если у A есть хотя бы одна нижняя грань, то A называется ограниченным снизу множеством.

Опр: 10. Наименьшая из нижних граней множества A называется точной нижней гранью множества A и обозначается inf A.

Иллюстрация определений:

Рис. 3: Грани множеств: A - нижняя грань, B - верхняя грань

Теорема 2. Принцип полноты Вейрштрасса:

Если $A \neq \emptyset$ и ограничено сверху, то $\exists \sup A$. Если $A \neq \emptyset$ и ограничено снизу, то $\exists \inf A$.

□ Пусть $B = \{$ верхние грани $\}$, $A \neq \emptyset$ - по условию, $B \neq \emptyset$ - так как A ограничено сверху $\Rightarrow A \leq B$. По аксиоме полноты существует разделитель c: $A \leq c \leq B$. $c \geq A \Rightarrow$ это верхняя грань. $c \leq B \Rightarrow$ это наименьшая верхняя грань $\Rightarrow c = \sup A$.

Пусть $B = \{$ нижние грани $\}$, $A \neq \emptyset$ - по условию, $B \neq \emptyset$ - так как A ограничено снизу $\Rightarrow B \leq A$. По аксиоме полноты существует разделитель $c \colon B \leq c \leq A$. $c \leq A \Rightarrow$ это нижняя грань. $B \leq c \Rightarrow$ это наибольшая нижняя грань $\Rightarrow c = \inf A$.