Outline

- Definition of r-(Re)parameterizations
- "Proof by Example" of existence of r-(re)parameterizations
- Uniform parameterizations via compactness

1 Parameterizations

Let R be an ordered field with some given O-minimal structure. We begin with several definitions.

Definition 1.1.

- (1) A set $X \subset \mathbb{R}^m$ is **strongly bounded** if there is some $N \in \mathbb{N}$ such that $X \subset [-N, N]^m$. A map $f: X \to Y$ is **strongly bounded** if its graph Γ_f is. Equivalently, both X and f(X) are strongly bounded.
- (2) Let $X \subset \mathbb{R}^m$ be definable and set $d = \dim(X)$. A finite set S of definable maps $\varphi :]0,1[^d \to X$ is called an **parameterization** of X if

$$\bigcup_{\varphi \in S} \operatorname{Im}(\varphi) = X.$$

- (3) A parameterization S of a definable set X is called an r-parametrization if every $\varphi \in S$ is of class $C^{(r)}$ and has the property that $\varphi^{(\alpha)}$ is strongly bounded for every $\alpha \in \mathbb{N}^k$ with $|\alpha| = \alpha_1 + \cdots + \alpha_k \leq r$
- (4) An r-parametrization is called a **strong** r-parameterization if for every $\varphi \in S$, $\varphi^{(\alpha)}$ is bounded by 1 for every $\alpha \in \mathbb{N}^k$ with $|\alpha| \leq r$

Remark 1.2. A definable set admits an r-parameterization iff it admits a strong r-parameterization.

Example. If $\varphi:]0,1[\to X \text{ satisfies } |\varphi^{(\alpha)}| \le c \text{ for all } \alpha \in \mathbb{N}, \text{ then consider }$

$$\psi_i:]0,1[\to X, \ \psi_i(t) = \varphi\left(\frac{i+t}{c}\right) \text{ for } i=0,\ldots,c-1.$$

Then, $\psi_i'(t) = \frac{1}{c}\varphi\left(\frac{i+t}{c}\right)$ and so on...

In higher dimension, do the same thing but break domain up into cubes of size 1/c.

(5) Let S be an r-parameterization of a definable set $X \subset R^m$ and $F: X \to R^n$ a definable map. Then, S is an r-reparameterization of F if $F \circ S := \{F \circ \varphi : \varphi \in S\}$ is an r-parameterization of f(X).

Theorem 1.3 (Goal). Fix any $r \in \mathbb{N}$.

- (1) Any strongly bounded, definable set X admits an r-parametrization.
- (2) Any strongly bounded, definable map F admits an r-reparametrization.

We won't go over the proof of this theorem in detail, but here's an outline. The proof is inductive. First consider the statements

Ultimately interested in $R = \mathbb{R}$, but need to work in greater generality e.g. to apply compactness at the end

I think

 $F \circ \varphi$ of class $C^{(r)}$ and $(F \circ \varphi)^{(\alpha)}$ strongly bounded for all $\alpha \in \mathbb{N}^{\dim X}$ with $|\alpha| \le r$

Δ

B(r) Every strongly bounded, definable $F:]0,1[\to R]$ admits an r-reparameterization S such that for each $\varphi \in S$, either φ or $F \circ \varphi$ is a polynomial with strongly bounded coefficients.

R(m,n,r) Every strongly bounded, definable $F:X\to R^m$ (w/ $X\subset]0,1[^n)$ admits an r-reparameterization.

P(n,r) Every strongly bounded, definable set $X \subset \mathbb{R}^n$ admits an r-parameterization.

The proof proceeds in several steps

- (1) Use induction to prove B(r) ($\Longrightarrow R(1,1,r) \Longrightarrow P(1,r)$) for all r
- (2) Another induction then proves, for fixed n, r, 1

$$R(1,d,r)$$
 for all $d \le n \implies R(m,n,r)$ for all m .

R(n, n, r)

(since X

strongly bounded.

Consider

In particular, this + (1) gives R(m, 1, r) for all m, r.

(3) Finally, prove that, for fixed r, 2

$$P(n,k)$$
 and $R(m,n,k)$ for all $k \le r$, all $m \implies P(n+1,r)$ and $R(1,n+1,r)$.

(this let's us increase n)

Now, can proves $\forall (m,r): R(m,n,r)$ via strong induction on n.

"Proof" by Example $\mathbf{2}$

Proposition 2.1 (B(r) for all r). Every definable map $F:]0,1[\rightarrow]0,1[$ admits a (strong) r-reparameterization for any r.

Proof. Induct on r. If r=1, a strengthened version of the monotonicity theorem from Katia's talk let's us partition

$$0 = a_0 < a_1 < \dots < a_n = 1$$

so that $F|_{a_i,a_{i+1}}$ is continuously differentiable and monotone for all i and furthermore $|F'| \le 1$ or |F'| > 1on each subinterval. Two cases

- Say $|F'| \leq 1$ on $]a,b[\subset]0,1[$. Then, $\varphi(x) = a + (b-a)x$ is a parameterization of]0,1[so that $|(F \circ \varphi)'| < 1.$
- Say |F'| > 1 on $|a, b| \subset [0, 1]$. F is strictly monotone (so invertible) and strongly bounded³, so we can write F([a,b]) = [m,M] with m,M strongly bounded. Now, $\varphi(x) = F^{-1}(m+(M-m)x)$ gives a 1-reparameterization of F on a, b (Note $F \circ \varphi = m + (M - m)x$ has derivative (M - m)).

We still need to cover the remaining finitely many points a_1, \ldots, a_{n-1} . For these, we use constant functions $\varphi_i:]0,1[\mapsto a_i.$

 $^3m = \lim_{x \to 0} F(x)$

¹Specifically, R(m-1, n, r) and R(1, d, r) for all $d \leq n$ together imply R(m, n, r)

²Possibly m=1,2 suffices. Didn't read closely enough to be sure. Certainly, m=1 alone does not suffice

Now fix r > 1 and assume B(k) holds for any k < r. Let S be an (r-1)-reparametrization of F with the extra property. For $\varphi \in S$, write $\{\varphi, F \circ \varphi\} = \{g, h\}$ where g is a polynomial with strongly bounded coefficients. Then, $g^{(k)}$ exists and is strongly bounded for every k, so we focus on h. We know $h^{(k)}$ exists, is continuous, and is strongly bounded for $k \le r - 1$ by hypothesis. We can partition]0,[1] into f.many intervals $]a,b[\subset]0,1[$ such that h is of class $C^{(r)}$ with $|h^{(r)}|$ monotonic on each subinterval. Given one such [a,b[, define

$$\psi(x) = \begin{cases} a + (b - a)x & \text{if } |h^{(r)}| \text{ is decreasing} \\ b + (a - b)x & \text{if } |h^{(r)}| \text{ is increasing} \end{cases}$$

Now, $h \circ \psi :]0,1[\to R \text{ is of class } C^{(r)}, (h \circ \psi)^{(k)} \text{ is strongly bounded for } k < r \text{ and } \left| (h \circ \psi)^{(k)} \right| \text{ is decreasing.}$ An analytic argument using the chain rule and Rolle's theorem then shows that

$$x \longmapsto h(\psi(x^2))$$

has all derivatives up to order r (not just r-1) strongly bounded. Similarly $x \mapsto g(\psi(x^2))$ is still a polynomial with strongly bounded coefficients. Varying the]a,b[, this functions $x \mapsto \varphi(\psi(x^2))$ with ranges covering $\mathrm{Im}(\varphi)$ except maybe finitely many points. For the missing points, we add constant maps and so obtain an r-reparameterization of F.

Proposition 2.2 $(R(1,1,r) \implies R(2,1,r))$. Every definable map $F: X \rightarrow]0,1[^2 \text{ (with } X \subset]0,1[) \text{ admits a (strong) } r\text{-reparameterization for any } r.$

Proof. Fix r. Let $F, f: X \to]0,1[$ be strongly bounded definable maps. We will show that $(F,f): X \to]0,1[^2$ admits an r-reparameterization. R(1,1,r) given an r-reparameterization S of F. For any $\varphi \in S$, $\varphi:]0,1[^d \to X \ (d=\dim X), R(1,d,r)$ gives an r-reparam. S_{φ} of $f\circ \varphi:]0,1[^d \to]0,1[$. The chain rule then shows that, for any $\psi \in S_{\varphi}$, all order $\leq r$ derivatives of $\varphi \circ \psi$ are strongly bounded. Hence,

$$\left\{\varphi\circ\psi:]0,1[^d\to]0,1[:\varphi\in S,\psi\in S_\varphi\right\}$$

is an r-reparameterization of (F, f).

Proposition 2.3 (P(2,r)). Every open cell $X \subset]0,1[^2$ admits a (strong) r-parameterization for any r.

Proof. Write

$$X = f, q := \{(x, y) : x \in D \text{ and } f(x) < y < q(x)\}$$

where $D \subset]0,1[$ is a 1-cell and $f < g : D \to]0,1[$ are definable, continuous maps. Note that D is strongly bounded, so P(1,r) gives an r-parameterization S of D. For each $\varphi \in S$, $\varphi :]0,1[\to D$, the map

$$(f,g) \circ \varphi :]0,1[\longrightarrow]0,1[^2$$

has an r-parameterization S_{φ} by Lemma 2.2 (R(2,1,r)). For each $\psi \in S_{\varphi}$, we define $\theta_{\varphi,\psi}:]0,1[^2 \to X$ via

$$\theta_{\varphi,\psi}(x_1,x_2) = (\varphi \circ \psi(x_1), (1-x_2)f(\varphi(\psi(x_1))) + x_2g(\varphi(\psi(x_1)))).$$

The collection of theses forms an r-parameterization of X.

This analytic input is the heart of things

3 Uniformity

Recall 3.1 (Compactness Theorem). Fix a structure M. Let V be a definable set, and let $(V_i)_{i \in I}$ be a collection of definable subsets of V. Suppose that for every elementary extension $M \subset M^*$, we have

$$V^* = \bigcup_{i \in I} V_i^*.$$

Then, there exists a finite subset $I_0 \subset I$ such that

$$V = \bigcup_{i \in I_0} V_I.$$

Lemma 3.2. Let R be an o-minimal structure, and let $R \subset R^*$ be an elementary extension. Then, R^* is again o-minimal (only sketch a proof).

Proof. To keep life simple, suppose all singletons in R are basic definable, so definable = basic definable for R. Let $V^* \subset R^*$ be a definable subset; we want to prove that V^* is a finite union of points and open intervals. First write $V^* = (W^*)_{y^*}$ for some basic definable $W^* \subset (R^*)^{n+1}$ and point $y^* \in (R^*)^n$. The set W^* is the extension of some (basic) definable $W \subset R^{n+1}$. By the cell decomposition theorem, W is a finite disjoint union of cells C, so if suffices to prove that each $(C^*)_{y^*}$ is a finite union of points and open intervals. Suppose

$$C =]f, g[= \{(x, y) : x \in D \text{ and } f(x) < y < g(x)\}\$$

where $D \subset \mathbb{R}^n$ is a cell and $f < g : D \to \mathbb{R}$ are definable, continuous functions. Then, $C^* =]f^*, g^*[$, so the fiber above y^* is either an interval $]f^*(y^*), g^*(y^*)[$ if $y^* \in D^*$ or is empty otherwise. The other sorts of cells can be handled similarly.

Theorem 3.3. Let $X \subset]0,1[^n \times Y$ be a definable family with fiber dimension k over Y. Then, there is a finite set I and definable maps

$$\left\{\varphi_{i,y}:]0,1[^{\dim X_y} \to X_y \subset]0,1[^n\right\}_{i\in I,y\in Y}$$

such that for each $y \in Y$, there is a subset $I_0 \subset I$ so that $\{\varphi_{i,y}\}_{i \in I_0}$ gives a strong r-parameterization of X_y .

(Similarly statement for families of strongly bounded definable maps)

Proof. We may assume X, Y are basic definable. For any $N \in \mathbb{N}$, any basic definable $Z \subset Y$, and any N-tuple of basic definable functions $f_1, \ldots, f_N :]0, 1[^k \times Z \to X \text{ over } Z, \text{ we write}]$

$$Y_{Z,f_1,\dots,f_N} := \left\{y \in Z \mid f_{1,y},\dots,f_{N,y}:]0,1[^k \to X_y \text{ form a strong } r\text{-parameterization}\right\}.$$

We claim all such sets taken together cover Y.

Fix some $y_0 \in Y$, and let $g_1, \ldots, g_N :]0,1[^k \to X_{y_0}]$ be a strong r-param. Since each g_i is definable w/ basic definable (co)domain, there exists some basic definable set $V \ni v$ along with basic definable

TL;DR WTS: $V^* \subset R^*$ is a finite union of points and open intervals. This is a fiber of some basic definable $W^* \subset$ $(R^*)^{n+1}$. By cell decomposition, can assume that $W \subset R^{n+1}$ is a cell, and then just directly check that $(W^*)_{y^*}$ is a point, empty, or an interval for each cell type

Each fiber
has a
strong rparameterizati
of uniformly
bounded size

functions $h_1, \ldots, h_N :]0, 1[^k \times V \to X \times V \text{ over } V \text{ s.t. } g_i = h_{i,v} \text{ for all } i.$ Set

$$W:=\{(y,v)\in Y\times V\mid h_{1,z},\dots,h_{N,z}\text{ form a strong r-param. of }X_y\}\ \text{ and }\ Z:=\operatorname{pr}_1(W)\subset Y.$$

Note that $y_0 \in Z$ by construction. Basic definable choice gives a splitting $s: Z \to W$ which we use to form the compositions

$$f_i:]0,1[^k \times Z \xrightarrow{(\mathrm{id},s)}]0,1[^k \times W \xrightarrow{(\mathrm{id},\mathrm{pr}_2)}]0,1[^k \times V \xrightarrow{h_i} X \times V \xrightarrow{\mathrm{pr}_1} X.$$

By construction, $f_{1,y}, \ldots, f_{N,y} :]0,1[^k \to X_y$ form a strong r-param. for all $y \in Z$. Thus, $y_0 \in Y_{Z,f_1,\ldots,f_N}$. The above argument holds not only in R, but in any elementary extension R^* . Hence, by compactness, $Y = \bigcup Y_{Z,f_1,\ldots,f_N}$ is in fact covered by only finitely many such sets; whence the claim.

Lemma 3.4. Let $g: X \to Y$ be a definable function with basic definable (co)domain X, Y. Then, there exists a basic definable set $V \ni v$ and a basic definable function $h: X \times V \to Y \times V$ over V so that $g = h_s$.

Proof. Write $\Gamma_g = W_s$ for some basic definable $W \subset R^m \times X \times Y$ and $s \in R^m$. Let $p: W \to R^m \times X$ denote the natural projection, and note that

$$B := \{(t, x) \in R^m \times X : \#p^{-1}(t, x) = 1\} \supset \{s\} \times X$$

is basic definable. Furthermore, $p^{-1}(B) \xrightarrow{p} B$ is an isomorphism. Let

$$V:=\{t\in R^m\mid \{t\}\times X\subset B)\}\ni s.$$

Then, $p^{-1}(V)$ is the graph of our desired function h.

Definable functions are fibers of basic definable functions