范畴论

孙天阳

2023年6月8日

目录		1
1	范畴	2
2	对偶范畴	4
3	同构	5
4	始、终、零对象	6
5	零映射	7
6	乘积与上乘积	8
7	函子	9
8	幺半范畴 1	.0
9	Abel 范畴	1
10	有零态射的范畴	2
11	ker 与 coker	3
12	自然变换 1	4
13	函子范畴 1	.5
14	Yoneda 嵌入	6
15	正向极限与逆向极限 1	7

1 范畴

定义 1.1. 一个范畴 C 为一个数学系统

- (1) C 有一些对象,记作 $X \in C$
- (2) 任意两个对象 $X,Y \in \mathcal{C}$,有 $\operatorname{Hom}_{\mathcal{C}}(X,Y)$,称为 X 到 Y 的态射集. 满足 $\operatorname{Hom}_{\mathcal{C}}(X,Y) \cap \operatorname{Hom}_{\mathcal{C}}(X',Y') = \emptyset$ 除非 X = X' 且 Y = Y'.
- (3) 态射集之间可定义复合

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X,Z)$$

 $(f,g) \mapsto g \circ f$

满足

- 存在 $1_X \in \text{Hom}_{\mathcal{C}}(X,X)$ 使得 $f \circ 1_X = f, 1_X \circ f = f$
- $(f \circ g) \circ h = f \circ (g \circ h)$

定义 1.2. 小范畴, 局部小范畴.

来自集合的例子

集合范畴 SET,

- Ob(SET) = 所有集合.
- 态射是关系.

来自点集拓扑的例子

拓扑空间范畴 TOP,

- Ob(TOP) = 所有拓扑空间,
- 态射是拓扑空间之间的连续映射.

来自代数拓扑的例子

单纯复形范畴,参见代数拓扑笔记. 单纯复形偶范畴,参见代数拓扑笔记.

来自线性代数的例子

向量空间范畴 VECT,

- $Ob(\mathcal{VECT}) = 所有向量空间,$
- 态射是向量空间之间的线性映射.

来自近世代数的例子

群范畴 GROUP,

- Ob(GROUP) = 所有群,
- 态射是群同态.

来自微分流形的例子

光滑流形 M 上的实向量丛范畴

来自层论的例子

- 一个拓扑空间 (X, \mathcal{T}) 作为一个范畴,
- Ob(SET) = X 的所有开集.
- 态射是嵌入映射.

2 对偶范畴

3 同构

定义 3.1. 设 C 是范畴, $f: X \to Y$ 是一个态射,

(1) 称 f 是单态射, 如果 f 是左消去的, 即对任意 Z 和 $g_i: Z \to X$, 有

$$f \circ g_1 = f \circ g_2 \Longrightarrow g_1 = g_2.$$

(2) 称 f 是满态射,如果 f 是右消去的,即对任意 Z 和 $g_i: Y \to Z$,有

$$g_1 \circ f = g_2 \circ f \Longrightarrow g_1 = g_2.$$

- (3) 称 f 是双态射, 如果 f 既是单态射又是满态射.
- (4) 称 f 是截面,如果 f 是某个态射的右逆,即存在 $g: Y \to X$ 使得 $g \circ f = \mathrm{Id}_X$.
- (5) 称 f 是收缩,如果 f 是某个态射的左逆,即存在 $h: Y \to X$ 使得 $f \circ h = \mathrm{Id}_Y$.

命题 3.2. 记号同上,设 f 既是截面又是收缩,则 g=h. 称 g 为 f 的逆, 称 f 是同构. 证明.

$$g = g \circ \operatorname{Id}_Y = g \circ (f \circ h) = (g \circ f) \circ h = \operatorname{Id}_X \circ h = h.$$

4 始、终、零对象

定义 4.1.

- 称 $I \in \mathrm{Obj}(\mathcal{C})$ 中的始对象,如果对任意 $X \in \mathrm{Obj}(\mathcal{C})$ 有 $\mathrm{Hom}_{\mathcal{C}}(I,X)$ 只包含一个元素.
- 称 $T \in \text{Obj}(\mathcal{C})$ 中的终对象,如果对任意 $X \in \text{Obj}(\mathcal{C})$ 有 $\text{Hom}_{\mathcal{C}}(X,T)$ 只包含一个元素.
- $\phi \in \mathrm{Obj}(\mathcal{C})$ 中的零对象,如果它既是始对象又是终对象.

命题 4.2. 始/终/零对象在存在的前提下是唯一的.

例 4.3. SET 中, \varnothing 是始对象, 独点集 $\{pt\}$ 是终对象, 没有零对象.

5 零映射

6 乘积与上乘积

9

7 函子

8 幺半范畴

9 Abel 范畴

定义 9.1. 称范畴 C 为预加性范畴, 如果

- (1) Hom(A, B) 为 Abel 群. 将运算记作 +.
- (2) 复合运算为 Z-双线性, 即

$$f\circ (g+h)=(f\circ g)+(f\circ h),\quad (f+g)\circ h=(f\circ h)+(g\circ h).$$

定义 9.2. 加性范畴

定义 9.3. Abel 范畴

10 有零态射的范畴

定义 10.1. 称 C 是有零映射的范畴, 如果对任意 $A,B \in \mathbb{C}$, 存在态射 $0_{AB}: A \to B$, 使得下图交换

命题 10.2. 设 \mathbb{C} 是有零映射的范畴,则 $\{0_{AB}\}$ 是唯一的.

证明. 假设有另一组 $\{\tilde{0}_{AB}\}$ 符合要求.

命题 10.3. 预加性范畴是有零映射的范畴.

例 10.4. 含幺交换环范畴不是有零映射的范畴.

证明. 因为 $\mathbb{Z}/2\mathbb{Z}$ 到 \mathbb{Z} 甚至没有态射.

11 ker 与 coker

设C是有零映射的范畴

12 自然变换

13 函子范畴

为什么关心函子范畴

• many commonly occurring categories are (disguised) functor categories, so any statement proved for general functor categories is widely applicable;

• every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer properties than the original category, allowing certain operations that were not available in the original setting.

14 Yoneda 嵌入

15 正向极限与逆向极限