Álgebra Linear - Lista de Exercícios 4 (RESOLUÇÃO)

Luís Felipe Marques

Agosto de 2022

- 1. Sejam S e T dois subespaços de um espaço vetorial V.
 - (a) Defina $S+T=\{s+t;s\in S\ \mathrm{e}\ t\in T\}$. Mostre que S+T é um subespaço vetorial.
 - (b) Defina $S \cup T = \{x; x \in S \text{ ou } x \in T\}$. Argumente que $S \cup T$ não é necessariamente um subespaço vetorial.
 - (c) Se S e T são retas no \mathbb{R}^3 , o que é S+T e $S\cup T$?

Resolução:

(a) Devemos mostrar que A = S + T é um subespaço vetorial. Para isso devemos ter:

i.
$$x, y \in A \Rightarrow x + y \in A;$$

ii.
$$x \in A \Rightarrow \alpha x \in A \ \forall \ \alpha \in \mathbb{R}$$
.

Sejam $x = s_1 + t_1$ e $y = s_2 + t_2$, para $s_1, s_2 \in S$ e $t_1, t_2 \in T$. Então, $x + y = (s_1 + s_2) + (t_1 + t_2)$. Como S é subespaço, $s_1 + s_2 \in S$, e o mesmo vale para t_1 e t_2 para T, o que implica que x + y é da forma $s_3 + t_3$, ou seja, pertence a S + T.

Além disso, $\alpha x = \alpha(s_1 + t_1) = \alpha s_1 + \alpha t_1$. Novamente, como S e T são subespaços, $\alpha s_1 \in S$ e $\alpha t_1 \in T$. Portanto, x é da forma $s_4 + t_4$, ou seja, pertence a S + T.

Daí, S+T é também um subespaço.

- (b) Tome, por exemplo, $V = \mathbb{R}^2$, $S = \left\{ \begin{bmatrix} a \\ 0 \end{bmatrix}; \ \forall \ a \in \mathbb{R} \right\}$, $T = \left\{ \begin{bmatrix} 0 \\ b \end{bmatrix}; \ \forall \ b \in \mathbb{R} \right\}$. Daí, podemos escolher $s \in \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in S$ e $t = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in T$. Daí, para $S \cup T$ ser subespaço, s + t deve também pertencer a $S \cup T$. Entretanto, $s + t = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \not\in S \cup T$, já que não é nem da forma $\begin{bmatrix} a \\ 0 \end{bmatrix}$ nem da forma $\begin{bmatrix} 0 \\ b \end{bmatrix}$. Portanto, $S \cup T$ não é sempre um subespaço.
- (c) Como S+T representa as combinações lineares de vetores obtidas por uma componente em S e outra em T, caso as retas sejam distintas, teremos como resultado todo o plano definido por essas duas retas. Caso S e T representem a mesma reta, teremos apenas essa reta como resultado. Por outro lado, como $S \cup T$ não é fechado para a soma vetorial, estamos restritos às próprias retas.
- **2.** Como o núcleo N(C) é relacionado aos núcleos N(A) e N(B), onde $C = \begin{bmatrix} A \\ B \end{bmatrix}$?

Resolução:

Seja \mathbf{x} um vetor. Assim, $C\mathbf{x} = \begin{bmatrix} A \\ B \end{bmatrix} \mathbf{x} = \begin{bmatrix} A\mathbf{x} \\ A\mathbf{x} \end{bmatrix}$. Portanto, $C\mathbf{x}$ é igual a $\mathbf{0}$ se, e somente se, $\begin{cases} A\mathbf{x} = \mathbf{0} \\ B\mathbf{x} = \mathbf{0} \end{cases} \iff \begin{cases} x \in N(A) \\ x \in N(B) \end{cases}$. Ou seja, $N(C) = N(A) \cup N(B)$.

3. Considere a matriz

$$A = \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 2 & -2 & 11 & -3 \end{bmatrix}.$$

1

(a) Ache a sua forma escalonada reduzida.

- (b) Qual é o posto dessa matriz?
- (c) Ache uma solução especial para a equação Ax = 0.

Resolução:

(a)

$$\begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 2 & -2 & 11 & -3 \end{bmatrix} \xrightarrow{L_3 - 2L_1} \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 0 & -12 & -3 & -21 \end{bmatrix} \xrightarrow{L_3 + 3L_2} \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 0 & 4 & 1 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 - 5/4L_2} \begin{bmatrix} 1 & 0 & ^{23}/_4 & ^{1}/_4 \\ 0 & 4 & 1 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{1/_4L_2} \begin{bmatrix} 1 & 0 & ^{23}/_4 & ^{1}/_4 \\ 0 & 1 & ^{1}/_4 & ^{7}/_4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (b) Como A possui 2 linhas não-nulas quando reduzida por linhas, seu posto é 2.
- (c) Em particular, se \tilde{A} é a forma escalonada reduzida por linhas de A, e $\tilde{A}\mathbf{x} = \mathbf{0} \Rightarrow A\mathbf{x} = \mathbf{0}$, já que existe uma matriz de eliminação $E_{3\times 3}$ tal que $EA = \tilde{A} \Rightarrow A = E^{-1}\tilde{A}$. Logo, podemos escolher

um
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ x \\ y \end{bmatrix}$$
, de tal forma que:

$$\begin{cases} 2^{3/4}x + 1/4y = -1 \\ 1/4x + 7/4y = -1 \end{cases} \iff \begin{cases} x = -3/20 \\ y = -11/20 \end{cases} \Rightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ -3/20 \\ -11/20 \end{bmatrix}$$

4. Ache a matrizes A_1 e A_2 (não triviais) tais que $posto(A_1B) = 1$ e $posto(A_2B) = 0$ para $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Resolução:

Seja
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow AB = \begin{bmatrix} a+b & a+b \\ c+d & c+d \end{bmatrix}$$
. Assim, podemos fazer $a=b=c=1, d=-1$ para que $A_1B = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$, com posto 1. Para A_2 , fazemos $a=c=1$ e $b=d=-1 \Rightarrow A_2B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, com posto 0.

- 5. Verdadeiro ou Falso:
 - (a) O espaço das matrizes simétricas é subespaço.
 - (b) O espaço das matrizes anti-simétricas é um subespaço.
 - (c) O espaço das matrizes não-simétricas $(A^T \neq A)$ é um subespaço.

Resolução:

(a) Verdadeiro.

Sejam A e B matrizes simétricas. Daí, $(A+B)^T=A^T+B^T=A+B$, o que prova que a soma de matrizes simétricas é também simétrica. Por outro lado $(\alpha A)^T=\alpha A^T$, ou seja, um múltiplo de matriz simétrica é também simétrico. Logo, combinações lineares de matrizes simétricas são simétricas, o que prova o espaço formado por elas é um subespaço vetorial.

(b) Verdadeiro.

Sejam A e B matrizes anti-simétricas. Daí, $(A+B)^T=A^T+B^T=-A-B=-(A+B)$, ou seja, A+B é anti-simétrica. Além disso, $(\alpha A)^T=-\alpha A^T$. Isso prova que o espaço das matrizes anti-simétricas é um subespaço vetorial.

(c) Falso.

Note $\mathbf{0}^T = \mathbf{0}$, ou seja, $\mathbf{0}$ é simétrica, e não faz parte desse subespaço, o que o torna impede de ser um subespaço vetorial, já que não possui elemento neutro.

2

6. Se $A \notin 4 \times 4$ e inversível, descreva todos os vetores no núcleo da matriz $B = \begin{bmatrix} A & A \end{bmatrix}$ (que é 4×8).

Resolução:

Para que $B\mathbf{x} = \mathbf{0}, x \in \mathbb{R}^8$. Assim, \mathbf{x} pode ser expresso como $\begin{bmatrix} a \\ b \end{bmatrix}, a, b \in \mathbb{R}^4$. Dessa forma, se expressar-

$$\operatorname{mos} A = \begin{bmatrix} v_1^T \\ v_2^T \\ v_3^T \\ v_4^T \end{bmatrix}, \operatorname{sendo} v_i^T \text{ os vetores-linha de } A, \operatorname{temos} \operatorname{que} B\mathbf{x} = \begin{bmatrix} v_1 \cdot a + v_1 \cdot b \\ v_2 \cdot a + v_2 \cdot b \\ v_3 \cdot a + v_3 \cdot b \\ v_4 \cdot a + v_4 \cdot b \end{bmatrix} = \begin{bmatrix} v_1 \cdot (a+b) \\ v_2 \cdot (a+b) \\ v_3 \cdot (a+b) \\ v_4 \cdot (a+b) \end{bmatrix} = A(a+b). \operatorname{Como} A \text{ \'e inversivel}, A(a+b) = \mathbf{0} \iff A^{-1}A(a+b) = A^{-1}\mathbf{0} \iff a+b = \mathbf{0} \iff b = -a.$$

A(a+b). Como A é inversível, $A(a+b) = \mathbf{0} \iff A^{-1}A(a+b) = A^{-1}\mathbf{0} \iff a+b=\mathbf{0} \iff b=-a$. Ou seja, todo vetor $v \in N(B)$ pode ser descrito como $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & -x_1 & -x_2 & -x_3 & -x_4 \end{bmatrix}^T$, sendo x_1, x_2, x_3, x_4 números reais quaisquer.

- 7. Mostre por contra-exemplos que as seguintes afirmações são falsas em geral:
 - (a) $A \in A^T$ tem os mesmos núcleos.
 - (b) $A \in A^T$ tem as mesmas variáveis livres.
 - (c) Se R é a forma escalonada de A, então R^T é a forma escalonada de A.

Resolução:

(a) Seja
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
. $A \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a+2b \\ 3a+6b \end{bmatrix} \Rightarrow N(A) = \left\{ \begin{bmatrix} -2a \\ a \end{bmatrix}; \ \forall \ a \in \mathbb{R} \right\}$. Por outro lado, $A^T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a+3b \\ 2a+6b \end{bmatrix} \Rightarrow N(A^T) = \left\{ \begin{bmatrix} -3a \\ a \end{bmatrix}; \ \forall \ a \in \mathbb{R} \right\}$. Ou seja, temos $N(A) \neq N(A^T)$.

(b) Seja
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -4 & 0 \end{bmatrix}$$
. $A \to \begin{bmatrix} 1 & 2 & -1 \\ 0 & -8 & 2 \end{bmatrix}$. Em $A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = b$, temos z como variável livre. Por outro lado, $A^T \to \begin{bmatrix} 1 & 2 \\ 0 & -8 \\ 0 & 0 \end{bmatrix}$. Em $A^T \begin{bmatrix} x \\ y \end{bmatrix} = b$, não temos variáveis livres.

Assim, A e A^{T} têm conjuntos de variáveis livres diferentes.

(c) Seja
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -4 & 0 \end{bmatrix}$$
.

$$\Rightarrow R = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -8 & 2 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & 2 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$
$$\Rightarrow \tilde{A}^{T} = \begin{bmatrix} 1 & 2 \\ 0 & -8 \\ 0 & 0 \end{bmatrix} \neq R^{T}$$

8. Construa uma matriz cujo espaço coluna contenha (1,1,5) e (0,3,1) e cujo núcleo contenha (1,1,2).

Resolução:

É perceptível que se (1,1,5) e (0,3,1) forem colunas da matrizes, eles fazem parte do espaço coluna. Logo, falta definir a última coluna para garantir que (1,1,2) esteja no núcleo. Seja tal matriz A =

$$\begin{bmatrix} x & 1 & 0 \\ y & 1 & 3 \\ z & 5 & 1 \end{bmatrix}$$
. Daí,

$$A \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = 0 \iff \begin{bmatrix} x+1 \\ y+7 \\ z+7 \end{bmatrix} = 0 \iff \begin{cases} x = -1 \\ y = -7 \\ z = -7 \end{cases} \Rightarrow A = \begin{bmatrix} -1 & 1 & 0 \\ -7 & 1 & 3 \\ -7 & 5 & 1 \end{bmatrix}$$

3

9. Construa uma matriz cuio núcleo contenha todos os múltiplos de (4, 3, 2, 1).

Resolução:

Seja tal matriz
$$A_{4\times4} = \begin{bmatrix} v_1^T \\ v_2^T \\ v_3^T \\ v_4^T \end{bmatrix}$$
, sendo v_i vetores do \mathbb{R}^4 . Seja $b = \begin{bmatrix} 4x \\ 3x \\ 2x \\ x \end{bmatrix}$ um múltiplo qualquer de $a = (4, 3, 2, 1)$. Dessa forma, $Ab = 0 \iff \begin{bmatrix} v_1 \cdot xa \\ v_2 \cdot xa \\ v_3 \cdot xa \\ v_4 \cdot xa \end{bmatrix} = 0 \iff \begin{bmatrix} v_1 \cdot a \\ v_2 \cdot a \\ v_3 \cdot a \\ v_4 \cdot a \end{bmatrix} = 0 \iff \begin{bmatrix} v_1 \cdot a \\ v_2 \cdot a \\ v_3 \cdot a \\ v_4 \cdot a \end{bmatrix} = 0$. Assim, os vetores v_i devem todos ser ortogonais a a . Podemos fazer $v_1 = (1, 0, -2, 0)$, $v_2 = (0, 1, -1, -1)$.

$$(4,3,2,1). \text{ Dessa forma, } Ab = 0 \iff \begin{bmatrix} v_1 \cdot xa \\ v_2 \cdot xa \\ v_3 \cdot xa \\ v_4 \cdot xa \end{bmatrix} = 0 \iff x \begin{bmatrix} v_1 \cdot a \\ v_2 \cdot a \\ v_3 \cdot a \\ v_4 \cdot a \end{bmatrix} = 0 \iff \begin{bmatrix} v_1 \cdot a \\ v_2 \cdot a \\ v_3 \cdot a \\ v_4 \cdot a \end{bmatrix} = 0. \text{ Assim,}$$

os vetores v_i devem todos ser ortogonais a a. Podemos fazer $v_1 = (1,0,-2,0), v_2 = (0,1,-1,0)$ $v_3 = (0, 0, 1, -2)$ e $v_4 = (1, -1, 0, -1)$, e assim temos:

$$A = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -2 \\ 1 & -1 & 0 & -1 \end{bmatrix}$$

10. $(B\hat{o}nus)$ Dado um espaço vetorial real V, definimos o conjunto

$$V^* := \{f: V \to \mathbb{R} \mid f \text{ \'e linear}\}.$$

Ou seja, V^* é o conjunto de todas as funções lineares entre V e \mathbb{R} . Relembramos que uma função $f: E \to F$, onde $E \in F$ são espaços vetoriais, é dita linear se para todos $\mathbf{v}, \mathbf{w} \in E$ e $\alpha \in \mathbb{R}$ temos $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w}) \in f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Chamamos V^* de espaço dual de V.

- (a) Mostre que V^* é um espaço vetorial.
- (b) Agora, seja $V = \mathbb{R}^n$. Mostre que existe uma bijeção $\varphi: V^* \to V$ tal que, para toda $f \in V^*$ e para todo $\mathbf{v} \in V$, tenhamos

$$f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle.$$

Dica: Utilize a dimensão finita de \mathbb{R}^n para expandir \mathbf{v} como uma combinação linear dos vetores da base canônica e aplique a linearidade de f.

Em dimensão infinita, esse resultado é conhecido como Teorema da Representação de Riesz.

Resolução:

- (a) Sejam $f, g \in V^*$. Definimos $(f+g)(\mathbf{v}) = f(\mathbf{v}) + g(\mathbf{v}) \in (\alpha f)(\mathbf{v}) = \alpha f(\mathbf{v}) \ \forall \ \mathbf{v} \in V$. Sejam \mathbf{u} , \mathbf{v} vetores quaisquer de V. Veja que $(f+g)(\mathbf{u}+\mathbf{v})=f(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})+g(\mathbf{u}+\mathbf{v})=f(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})=f(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})=f(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})=f(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})=f(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})+g(\mathbf{u}+\mathbf{v})=f(\mathbf{u}+\mathbf{v})+g(\mathbf{u$ $g(\mathbf{u}) + g(\mathbf{v}) = (f+g)(\mathbf{u}) + (f+g)(\mathbf{v})$ e que $(f+g)(\alpha \mathbf{u}) = f(\alpha \mathbf{u}) + g(\alpha \mathbf{u}) = \alpha f(\mathbf{u}) + \alpha g(\mathbf{u}) = \alpha f(\mathbf{$ $\alpha(f+g)(\mathbf{u})$, ou seja, $(f+g) \in V^*$. Além disso, $(\alpha f)(\mathbf{u} + \mathbf{v}) = \alpha f(\mathbf{u} + \mathbf{v}) = \alpha f(\mathbf{u}) + \alpha f(\mathbf{v}) = (\alpha f)(\mathbf{u}) + (\alpha f)(\mathbf{v}) = (\alpha f)(\beta \mathbf{u}) = (\alpha f$ $\alpha f(\beta \mathbf{u}) = \alpha \beta f(\mathbf{u}) = \beta(\alpha f)(\mathbf{u}) \Rightarrow (\alpha f) \in V^*.$ Logo, V^* é um espaço vetorial.
- (b) Seja $\varphi: f \to \begin{vmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{vmatrix}$, sendo $\{e_1, \dots, e_n\}$ a base canônica de \mathbb{R}^n .

Digamos que **v** seja um vetor qualquer da forma $\sum_{i=1}^{n} \alpha_i e_i$.

Por um lado, $f(\mathbf{v}) = f(\sum \alpha_i e_i) = \sum \alpha_i f(e_i)$.

Por outro lado,
$$\langle \varphi(f), \mathbf{v} \rangle = \langle \begin{bmatrix} f(e_1) \\ \vdots \\ f(e_n) \end{bmatrix}, \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \rangle = \sum_{i=1}^n \alpha_i f(e_i).$$

Assim, $f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle$ para a φ definida. Falta provar que φ é uma bijeção.

Para isso, basta notar que $\varphi(f) = \varphi(g)$ implica que, $\forall \mathbf{v} \in V, \langle \varphi(f), \mathbf{v} \rangle = \langle \varphi(g), \mathbf{v} \rangle \iff f(\mathbf{v}) = \langle \varphi(g), \mathbf{v} \rangle$ $g(\mathbf{v}) \ \forall \ \mathbf{v} \in V$, ou seja, f e g são a mesma função linear. Isso prova que φ é injetiva.

Além disso, para $f(\sum \alpha_i e_i) = \sum x_i \alpha_i e_i$, temos $\varphi(f) = (x_1, x_2, x_3, \dots, x_n)$ para quaiquer x_i reais. Como podemos escolher x_i tais que $\varphi(f)$ seja qualquer vetor de \mathbb{R}^n , φ é sobrejetiva.

Dessa forma, φ é bijetiva.