Problem Set 3

Prof. Conlon

Due: 3/27/20

Packages to Install

The packages used this week are

• ggplot2

Problem 1 (Coding Exercise)

This exercise asks you to implement and assess the performance of the bootstrap for the linear regression model. Suppose you have the linear regression model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where,

- $-x_i \sim U[0,2]$
- $\epsilon_i | x_i \sim U[-1, 1]$
- $\beta_0 = \beta_1 = 1$

We ask you to answer the following questions:

- a. Write a code that generates i.i.d. samples of sizes n=10, 50, 200 from that distribution, computes (1) the least squares estimator for β , (2) the t-ratio for the least squares coefficient β_1 , $t_n = \frac{\hat{\beta}_{1,LS} 1}{s.\hat{e}.(\hat{\beta}_{1,LS})}$, and (3) the least square residuals $\hat{\epsilon}_i = y_i \hat{\beta}_{0,LS} \hat{\beta}_{1,LS}x_i$
- b. Write a code for drawing n times at random from the discrete uniform distribution over the estimated residuals $\hat{\epsilon}_1, ..., \hat{\epsilon}_n$ (i.e. with replacement).
- c. Use your code from parts (a) and (b) to implement the residual bootstrap assuming that ϵ_i and x_i are independent to estimate the 95th percentiles of the respective distributions of $\hat{\beta}_{1,LS}$ and t_n
- d. Repeat part (a) for sample size n = 10, 50, 200 with 200 replications, where you keep the initial draws of $x_1, ..., x_n$ from part (a) and only generate new residuals from their conditional distribution. Compute $\hat{\beta}_{1,LS}$ and the statistic t_n using 200 independent samples of size n. Use your results to compute a simulated estimate for the 95th percentiles of the respective sampling distributions for $\hat{\beta}_{1,LS}$ and t_n .
- e. Compare your results from (c) and (d). What do you conclude about the performance of the bootstrap? How does it compare to the 95th percentile of the asymptotic distribution of t_n ?