Remote Work: Fad or Future?

Team 15440

Hamish Starling, Hasan Shahrestani, Luke Powney, James Elcock
Watford Boys Grammar School

April 25th 2022

Overview

Part I: Ready or Not

Problem

→ Percentage of remote ready jobs in 5 given cities.

Approach

→ Exponential regression on industries; percentage in each industry.

Overview

Part I: Ready or Not

Problem

→ Percentage of remote ready jobs in 5 given cities.

Approach

→ Exponential regression on industries; percentage in each industry.

Part II: Remote Control

Problem

→ Will a given remote-ready worker actually work from home?

Approach

→ Conditional probability on demographic factors

Overview

Part I: Ready or Not

Problem

→ Percentage of remote ready jobs in 5 given cities.

Approach

→ Exponential regression on industries; percentage in each industry.

Part II: Remote Control

Problem

→ Will a given remote-ready worker actually work from home?

Approach

→ Conditional probability on demographic factors

Part III: Just a Little Home-Work

Problem

- → Determine true remote worker percentage in each city.
- → Rank WFH's impact on the 5 cities.

Approach

→ Population Simulation Method combining models I and II.

Global Assumption

G.1: "Working from home" is a general term including partial and full remote work.

Part I: Ready or Not

Given Problem

→ Create a model which, for a given city, estimates the percentage of workers whose jobs are currently remote-ready. The model should be applied to the following cities:

Seattle Omaha Scranton Liverpool Barry

Assumptions

Remote Work Rate Constant within industries over time.

Assumptions

Remote Work Rate Constant within industries over time 2024 2025 2026 2027

Pre-Pandemic trends in sector workforce share, from lower base of post pandemic levels.

Assumptions

Remote Work Rate Constant within industries over time.

Profession Only - "Remote readiness" defined by job; not employee.

2 Post-Pandemic Economy

Pre-Pandemic trends in sector workforce share, from lower base of post pandemic levels.

Variables & Constants

Туре	Symbol	Definition	Units
Variable	t	Time since 2000.	years
Variable	$N_{I,C}(t)$	Number of workers in industry I in city C at time t.	1000 people
Variable	$P_{I,C}(t)$	Proportion of city C's jobs being in industry I at time t.	%
Variable	R _C (t)	Percentage of city C's jobs being remote ready at time t.	%
Constant	HI	Proportion of remote ready jobs in a given industry I.	%

Model Development

$$R_C(t) = \sum_I \left[P_{I,C}(t) \cdot H_I \right]$$

Proportion of jobs in each industry

Proportion of jobs that are work from home ready

Team 15440 (WBGS)

¹Chart for intuition only; not real data!

Finding Industry Trends

$$\mathsf{P}_{\mathsf{I},\mathsf{C}}(\mathsf{t}) = \mathsf{a} \cdot \mathsf{e}^{\mathsf{b}\mathsf{t}}$$

Justifications

• An exponential model better **fits the data**. Visually & Mathematically (measuring PMCC of the data after logged)

¹P_{I C} - Proportion of city C's jobs being in industry I at time t.

²a,b are constants fitted to the data

Finding Industry Trends

$$\mathsf{P}_{\mathsf{I},\mathsf{C}}(\mathsf{t}) = \mathsf{a} \cdot \mathsf{e}^{\mathsf{b}\mathsf{t}}$$

Justifications

- An exponential model better **fits the data**. Visually & Mathematically (measuring PMCC of the data after logged)
- An exponential model demonstrates asymptotic behaviour.
- Exponentials are established to represent changes in populations over time.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 9 / 33

¹P_{I C} - Proportion of city C's jobs being in industry I at time t.

²a.b are constants fitted to the data

P_{I.C}(t) Exponential Regression

Percentage of Jobs in Each Industry - Omaha

$$R_{C}(t) = \sum_{I} \boxed{P_{I,C}(t) \cdot H_{I}}$$

10 / 33

Figure: $P_{I,C}(t)$ vs t with exponential trend lines; some industries omitted for clarity.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022

¹Note: All jobs; not just remote ready ones.

P_{I.C}(t) Exponential Regression

Percentage of Jobs in Each Industry - Omaha

 $R_{C}(t) = \sum_{l} [P_{l,C}(t) H_{l}]$

Figure: $P_{I,C}(t)$ vs t with exponential trend lines; some industries omitted for clarity.

¹Note: All jobs; not just remote ready ones.

The H_I constant

• P_{I C}(t) industries don't perfectly match given H_I values' industries.

⇒ weighted average where necessary

P _{I,C} (t) Industry	Given H _I industry values	Weights	HI
Education and Health Services	Education / Health Services	0.3 / 0.7	34%
Professional and Business Services	Sales / Office and Administrative / Management	0.5 / 0.4 / 0.1	49%
Information Technology	Computer and Mathematical	-	100%
Leisure and Hospitality	Food Preparation and Service Related	-	0%

¹H_I is the percentage of jobs in industry I being remote ready.

Results

Example Regression for Industry Labour Market Share

$$P_{trade,Omaha}(t) = 0.237 \cdot e^{-0.0117t}$$

$$P_{trade,Omaha}(24) = 17.90 \%$$

$$P_{trade,Omaha}(27) = 17.28 \%$$

Results

Example Regression for Industry Labour Market Share

$$P_{trade,Omaha}(t) = 0.237 \cdot e^{-0.0117t}$$

 $P_{trade,Omaha}(24) = 17.90 \%$
 $P_{trade,Omaha}(27) = 17.28 \%$

Then we multiply by H_I ...

Model Reminder

$$R_C(t) = \sum_I \ [P_{I,C}(t) \cdot H_I]$$

Results

Example Regression for Industry Labour Market Share

$$\mathsf{P}_{\mathsf{trade},\mathsf{Omaha}}(\mathsf{t}) = 0.237 \cdot \mathsf{e}^{-0.0117\mathsf{t}}$$

$$\mathsf{P}_{\mathsf{trade},\mathsf{Omaha}}(24) = 17.90 \ \%$$

$$P_{trade,Omaha}(27) = 17.28 \%$$

Then we multiply by H_1 ...

Model Reminder

$$R_C(t) = \sum_{I} \ [P_{I,C}(t) \cdot H_I]$$

City	2024	2027
Seattle	41%	42%
Omaha	40%	40%
Barry	39%	39%
Scranton	36%	36%
Liverpool	31%	31%

Table: Percentage of jobs being remote ready.

+ Consistent with recent studies¹ suggesting 36 % on average.

¹Holgersen, H., Jia Z., Svenkerud, S., Who and How Many Can Work From Home? Evidence From Task Descriptions (April 20, 2020).

- + Consistent with recent studies¹ suggesting 36 % on average.
- + Reflects industry trends over time.

¹Holgersen, H., Jia Z., Svenkerud, S., Who and How Many Can Work From Home? Evidence From Task Descriptions (April 20, 2020).

- + Consistent with recent studies¹ suggesting 36 % on average.
- + Reflects industry trends over time.
- + Not overly sensitive to small changes in time.

¹Holgersen, H., Jia Z., Svenkerud, S., Who and How Many Can Work From Home? Evidence From Task Descriptions (April 20, 2020).

- + Consistent with recent studies¹ suggesting 36 % on average.
- + Reflects industry trends over time.
- + Not overly sensitive to small changes in time.
- Over longer periods of time (20+ years), model will become unsuitable:
 - Assumes each H_I is constant over time; doesn't account for tech. advancements
 - Exponential models for each industry independent; total not guaranteed to be 100%.

¹Holgersen, H., Jia Z., Svenkerud, S., Who and How Many Can Work From Home? Evidence From Task Descriptions (April 20, 2020).

Part II: Remote Control

Given Problem

→ Create a model that predicts whether an individual worker whose job is remote-ready will be allowed to and will choose to work from home.

Given Problem

→ Create a model that predicts whether an individual worker whose job is remote-ready will be allowed to and will choose to work from home.

Our Interpretation

→ Create a model to determine the percentage probability that a worker with a given set of characteristics who can work from home will do so.

Given Problem

→ Create a model that predicts whether an individual worker whose job is remote-ready will be allowed to and will choose to work from home.

Our Interpretation

→ Create a model to determine the percentage probability that a worker with a given set of characteristics who can work from home will do so.

Remark

This definition is advantageous as the model can be used in two ways:

- 1 Compare probability to 0.5 for binary answer in Part II.
- 2 Take percentage as expected value in Part III.

1 Independent: Desire to work from home is independent of employer's permission and remote readiness.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 16 / 33

¹ONS = UK Office for National Statistics, similar to US BLS.

- **I** Independent: Desire to work from home is independent of employer's permission and remote readiness.
- 2 Representative: 2019 ONS¹ remote work data is representative of pre-pandemic remote work levels.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 16 / 33

¹ONS = UK Office for National Statistics, similar to US BLS.

- Independent: Desire to work from home is independent of employer's permission and remote readiness.
- 2 Representative: 2019 ONS¹ remote work data is representative of pre-pandemic remote work levels.
- 3 Constant:
 - Impact of pandemic on desire to WFH can be modelled by a constant multiple.
 - Remote work rate constant within industries over time.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 16 / 33

¹ONS = UK Office for National Statistics, similar to US BLS.

- Independent: Desire to work from home is independent of employer's permission and remote readiness.
- 2 Representative: 2019 ONS¹ remote work data is representative of pre-pandemic remote work levels.
- 3 Constant:
 - Impact of pandemic on desire to WFH can be modelled by a constant multiple.
 - Remote work rate constant within industries over time.
- Age Distribution: Workers' age can be normally distributed with $\mu=35$ and $\sigma=10$, capped at a minimum of 20 and a maximum of 80.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022

¹ONS = UK Office for National Statistics, similar to US BLS.

Feature Identification

Included

- Age
- Sex
- Ethnicity
- Level of Education
- Industry
- Full Time / Part Time
- Commute Length

Feature Identification

Included

- Age
- Sex
- Ethnicity
- Level of Education
- Industry
- Full Time / Part Time
- Commute Length

Excluded

- Family Characteristics
- Income
- Size of Team

Defining Events & Model Parameters

• W: the worker wants to work from home.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 18 / 33

 $^{^{1}}$ We set c=1.4 based on data from Taneja S., Mizen P., Bloom N., "Working from home is revolutionising the UK labour market", VOXEU, Fig. 3

Defining Events & Model Parameters

- W: the worker wants to work from home.
- R: the worker's job enables them to work from home (remote ready job).

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 18 / 33

 $^{^{1}}$ We set c = 1.4 based on data from Taneja S., Mizen P., Bloom N., "Working from home is revolutionising the UK labour market", VOXEU, Fig. 3

Defining Events & Model Parameters

- W: the worker wants to work from home.
- R: the worker's job enables them to work from home (remote ready job).
- A: the worker's employer allows them to work from home.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 18 / 33

 $^{^{1}}$ We set c=1.4 based on data from Taneja S., Mizen P., Bloom N., "Working from home is revolutionising the UK labour market", VOXEU, Fig. 3

Defining Events & Model Parameters

- W: the worker wants to work from home.
- R: the worker's job enables them to work from home (remote ready job).
- A: the worker's employer allows them to work from home.
- W_p: the worker would want to work from home pre-pandemic.

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 18 / 33

 $^{^1\}mbox{We set }c=1.4$ based on data from Taneja S., Mizen P., Bloom N., "Working from home is revolutionising the UK labour market", VOXEU, Fig. 3

Defining Events & Model Parameters

- W: the worker wants to work from home.
- R: the worker's job enables them to work from home (remote ready job).
- A: the worker's employer allows them to work from home.
- W_p: the worker would want to work from home pre-pandemic.

We also define c, the pandemic correction constant¹, so that:

$$\mathsf{P}(\mathsf{W}) = \mathsf{c} \cdot \mathsf{P}(\mathsf{W}_\mathsf{p})$$

[with P(W) capped at 1]

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 18 / 33

 $^{^{1}}$ We set c=1.4 based on data from Taneja S., Mizen P., Bloom N., "Working from home is revolutionising the UK labour market", VOXEU, Fig. 3

$$P((W\cap A)|R)\equiv$$

Event Reminder

- W = Wants to WFH
- R = Job is remote-ready
- A = Employer allows WFH
- W_p = Wanted to WFH pre-pandemic.

$$P((W \cap A)|R) \equiv \frac{P(W \cap A \cap R)}{P(R)}$$

Event Reminder

- W = Wants to WFH
- R = Job is remote-ready
- A = Employer allows WFH
- W_p = Wanted to WFH pre-pandemic.

$$P((W \cap A)|R) \equiv \frac{P(W \cap A \cap R)}{P(R)}$$
$$\equiv \frac{P(W) \cdot P(A \cap R)}{P(R)}$$

Event Reminder

- W = Wants to WFH
- R = Job is remote-ready
- A = Employer allows WFH
- W_p = Wanted to WFH pre-pandemic.

Event Reminder

- W = Wants to WFH
- R = Job is remote-ready
- A = Employer allows WFH
- W_p = Wanted to WFH pre-pandemic.

$$P((W \cap A)|R) \equiv \frac{P(W \cap A \cap R)}{P(R)}$$
$$\equiv \frac{P(W) \cdot P(A \cap R)}{P(R)}$$
$$\equiv \frac{c \cdot P(W_p) \cdot P(A \cap R)}{P(R)}$$

Event Reminder

- W = Wants to WFH
- R = Job is remote-ready
- A = Employer allows WFH
- W_p = Wanted to WFH pre-pandemic.

$$\begin{split} P((W \cap A)|R) &\equiv \frac{P(W \cap A \cap R)}{P(R)} \\ &\equiv \frac{P(W) \cdot P(A \cap R)}{P(R)} \\ &\equiv \frac{c \cdot P(W_p) \cdot P(A \cap R)}{P(R)} \\ &\equiv \frac{(1.4) \cdot P(W_p \cap A \cap R)}{P(R)} \end{split}$$

Full-time

Agriculture, forestry and fishing (A)					
Never	Mainly	Recently	Occasionally		
62.90%	3.83%	7.10%	26.17%		
69.38%	2.45%	7.19%	20.98%		
64.42%	4.21%	5.30%	26.08%		
59.32%	3.90%	10.67%	26.11%		
66.54%	5.11%	6.41%	21.93%		
63.34%	5.62%	8.73%	22.32%		
68.70%	4.34%	6.55%	20.41%		
67.36%	5.87%	4.48%	22.29%		
62.22%	6.95%	6.03%	24.81%		
67.63%	7.49%	10.73%	14.14%		
	Never 62.90% 69.38% 64.42% 59.32% 66.54% 63.34% 68.70% 67.36% 62.22%	Never Mainly 62.90% 3.83% 69.38% 2.45% 64.42% 4.21% 59.32% 3.90% 66.54% 5.11% 63.34% 5.62% 68.70% 4.34% 67.36% 5.87% 62.22% 6.95%	Never Mainly Recently 62.90% 3.83% 7.10% 69.38% 2.45% 7.19% 64.42% 4.21% 5.30% 59.32% 3.90% 10.67% 66.54% 5.11% 6.41% 63.34% 5.62% 8.73% 68.70% 4.34% 6.55% 67.36% 5.87% 4.48% 62.22% 6.95% 6.03%		

$$P((W \cap A)|R) \equiv \frac{(1.4) \cdot \frac{P(W_p \cap A \cap R)}{P(R)}$$

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 20 / 33

¹Homeworking in the UK, work from home status, ONS, 2021

$$P((W \cap A)|R) \equiv \frac{(1.4) \cdot {\color{red} P(W_p \cap A \cap R)}}{P(R)}$$

Equation Equivalent to the OOP Technical Computing Algorithm

$$\mathsf{P}(\mathsf{W}_\mathsf{p}\cap\mathsf{A}\cap\mathsf{R})_\mathsf{est} = \mathsf{B}\cdot\prod_{\mathsf{char}}\left(\frac{\mathsf{ONSRate2019}(\mathsf{char})}{\mathsf{B}}\right)\cdot\mathsf{tanh}\left(\mathsf{C}\right)\cdot\left(1.5-0.5\cdot\mathsf{e}^{\frac{\mathsf{Y}-20}{80}}\right)$$

 $^{^{1}}$ B = 'base' WFH rate for the whole population \approx 0.266; C = commute distance; Y = age in years; char = one characteristic of a *particular worker's* demographic, e.g. *their particular* ethnicity or industry.

$$P((W \cap A)|R) \equiv \frac{(1.4) \cdot P(W_p \cap A \cap R)}{P(R)}$$

Equation Equivalent to the OOP Technical Computing Algorithm

$$P(W_p \cap A \cap R)_{est} = \boxed{B} \cdot \prod_{char} \left(\frac{ONSRate2019(char)}{B} \right) \cdot tanh\left(C\right) \cdot \left(1.5 - 0.5 \cdot e^{\frac{Y-20}{80}}\right)$$

 $^{^{1}}$ B = 'base' WFH rate for the whole population \approx 0.266; C = commute distance; Y = age in years; char = one characteristic of a *particular worker's* demographic, e.g. *their particular* ethnicity or industry.

$$P((W \cap A)|R) \equiv \frac{(1.4) \cdot \frac{P(W_p \cap A \cap R)}{P(R)}$$

Equation Equivalent to the OOP Technical Computing Algorithm

e.g. 0.2 when char = 'Asian' if, in 2019, 20% of Asians worked from home.
$$P(W_p \cap A \cap R)_{est} = B \cdot \prod_{char} \left(\frac{ONSRate2019(char)}{B} \right) \cdot tanh\left(C\right) \cdot \left(1.5 - 0.5 \cdot e^{\frac{Y-20}{80}}\right)$$

 $^{^{1}}$ B = 'base' WFH rate for the whole population \approx 0.266; C = commute distance; Y = age in years; char = one characteristic of a *particular worker's* demographic, e.g. *their particular* ethnicity or industry.

$$P((W \cap A)|R) \equiv \frac{(1.4) \cdot \textcolor{red}{P(W_p \cap A \cap R)}}{P(R)}$$

Equation Equivalent to the OOP Technical Computing Algorithm

$$P(W_p \cap A \cap R)_{est} = B \cdot \prod_{char} \left(\frac{ONSRate2019(char)}{B} \right) \cdot \underbrace{(tanh(C))}_{char} \cdot (1.5 - 0.5 \cdot e^{\frac{Y-20}{80}})$$

 $^{^{1}}$ B = 'base' WFH rate for the whole population \approx 0.266; C = commute distance; Y = age in years; char = one characteristic of a *particular worker's* demographic, e.g. *their particular* ethnicity or industry.

$$P((W \cap A)|R) \equiv \frac{(1.4) \cdot \frac{P(W_p \cap A \cap R)}{P(R)}$$

Equation Equivalent to the OOP Technical Computing Algorithm

$$P(W_p \cap A \cap R)_{est} = B \cdot \prod_{char} \left(\frac{ONSRate2019(char)}{B} \right) \cdot tanh\left(C\right) \cdot \underbrace{\left(1.5 - 0.5 \cdot e^{\frac{Y - 20}{80}}\right)}_{location}$$

 $^{^{1}}$ B = 'base' WFH rate for the whole population \approx 0.266; C = commute distance; Y = age in years; char = one characteristic of a *particular worker's* demographic, e.g. *their particular* ethnicity or industry.

Problem II Model

$$P((W \cap A)|R) \approx \frac{c \cdot P(W_p \cap A \cap R)_{est}}{P(R)}$$

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022 22 / 33

¹P(R): Remote Work: Fad or Future, M3 Challenge 2022 Dataset, D3

Results

Sex	Ethnicity	Sector	Education	FT/PT	Commute Distance, m	Age	WFH Probability	Effect of change
Male	White	IT	Degree	FT	1000	40	0.63493	-
Male	White	IT	Degree	FT	1000	80	0.32672	+
Male	White	ΙΤ	No Qualification	FT	1000	40	0.19411	+
Female	White	IT	No Qualification	FT	1000	40	0.55491	↑
Female	Asian	ΙΤ	No Qualification	FT	1000	40	0.13247	+
Female	Asian	Retail	No Qualification	FT	1000	40	0.17857	↑
Female	Asian	Retail	No Qualification	FT	400	40	0.08909	+
Female	Asian	Retail	A Level (High School)	FT	400	40	0.23094	↑

Table: Example work-from-home probabilities for candidates with different characteristics, showing incremental changes.

Part III: Just a Little Home-work

Problem Statement

I Synthesize models from the first two questions to create a model which, for a given city, estimates the percentage of workers who will work remotely.

Problem Statement

- I Synthesize models from the first two questions to create a model which, for a given city, estimates the percentage of workers who will work remotely.
- 2 Apply to Seattle, Omaha, Scranton, Liverpool, and Barry in 2024 and 2027.

Problem Statement

- I Synthesize models from the first two questions to create a model which, for a given city, estimates the percentage of workers who will work remotely.
- 2 Apply to Seattle, Omaha, Scranton, Liverpool, and Barry in 2024 and 2027.
- 3 Use to relatively rank the different cities by the impact of remote work on them.

Assumptions & Variables

Critical Assumption

→ Within each sex, each ethnicity is distributed in the same way as it is for the whole population, and so on for other demographic factors and the industries.

Assumptions & Variables

Critical Assumption

→ Within each sex, each ethnicity is distributed in the same way as it is for the whole population, and so on for other demographic factors and the industries.

Features & Variables

ightarrow We use the same factors as in the previous two parts, as we combine those models to produce this one.

→ Part I : city level, proportion of remote ready jobs.

- → Part I : city level, proportion of remote ready jobs.
- → Part II: individual level, chance of WFH given remote ready.

- → Part I : city level, proportion of remote ready jobs.
- → Part II: individual level, chance of WFH given remote ready.
- → Part III : city level, proportion of actual home-workers.

- → Part I : city level, proportion of remote ready jobs.
- → Part II : individual level, chance of WFH given remote ready.
- → Part III : city level, proportion of actual home-workers.

... Population Simulation Method

- → Part I : city level, proportion of remote ready jobs.
- → Part II : individual level, chance of WFH given remote ready.
- → Part III : city level, proportion of actual home-workers.

... Population Simulation Method

1 Part I gives industry sizes each year, each city; other demographic data researched.

- → Part I : city level, proportion of remote ready jobs.
- → Part II : individual level, chance of WFH given remote ready.
- → Part III : city level, proportion of actual home-workers.

: Population Simulation Method

- 1 Part I gives industry sizes each year, each city; other demographic data researched.
- 2 Generate representative population of Person objects.

- → Part I : city level, proportion of remote ready jobs.
- → Part II : individual level, chance of WFH given remote ready.
- → Part III : city level, proportion of actual home-workers.

: Population Simulation Method

- Part I gives industry sizes each year, each city; other demographic data researched.
- 2 Generate representative population of Person objects.
- 3 Run each Person through model II; aggregate over the city.

The RecursiveGen Procedure : Diagrammatic Representation

911577

The RecursiveGen Procedure: Diagrammatic Representation

Repeat for all cities, in 2024 and 2027 (All Characteristics) 65164 7.5% 9.5% 82540 Apply 48.8% Model 2 4.7% 40836 868847 Population: 1780424 68368 7.5% 51.2% People 9.5% 86600 4.7%

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022

42844

To %

Problem III Results

Actual Work From Home Percentage

City	2024 predictions	2024 ranking	2027 predictions	2027 ranking
Seattle	30.73%	1st	32.45%	1st
Omaha	29.07%	2nd	29.26%	2nd
Liverpool	27.37%	3rd	29.13%	3rd
Barry	26.51%	4th	26.59%	5th
Scranton	26.36%	5th	26.63%	4th

+ c.f. post-pandemic estimates $\approx 30 \% \rightarrow \text{Slight}$ increase now to 2024/7 as expected.

- + c.f. post-pandemic estimates \approx 30 % \rightarrow Slight increase now to 2024/7 as expected.
- + Applicable to any city, not just those provided.

- + c.f. post-pandemic estimates \approx 30 % \rightarrow Slight increase now to 2024/7 as expected.
- + Applicable to any city, not just those provided.
- + Considers a wide range of factors.
- + Models I, II, III give results consistent with each other.

- + c.f. post-pandemic estimates \approx 30 % \rightarrow Slight increase now to 2024/7 as expected.
- + Applicable to any city, not just those provided.
- + Considers a wide range of factors.
- + Models I, II, III give results consistent with each other.
- Time-consuming to extend to other cities; lots of data formatting required.

- + c.f. post-pandemic estimates \approx 30 % \rightarrow Slight increase now to 2024/7 as expected.
- + Applicable to any city, not just those provided.
- + Considers a wide range of factors.
- + Models I, II, III give results consistent with each other.
- Time-consuming to extend to other cities; lots of data formatting required.
- Pandemic constant (c) has a large impact (see sensitivity analysis).

- + c.f. post-pandemic estimates \approx 30 % \rightarrow Slight increase now to 2024/7 as expected.
- + Applicable to any city, not just those provided.
- + Considers a wide range of factors.
- + Models I, II, III give results consistent with each other.
- Time-consuming to extend to other cities; lots of data formatting required.
- Pandemic constant (c) has a large impact (see sensitivity analysis).
- Sub-demographic assumption time-saving but not necessarily realistic.

Conclusions

Extending our Work

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022

Conclusions

- Post-pandemic, remote work will increase between now and 2027 in all cities:
 - → Avoid disadvantaging remote workers in labour policies.

Extending our Work

Team 15440 (WBGS) Remote Work: Fad or Future? April 25th 2022

Conclusions

- Post-pandemic, remote work will increase between now and 2027 in all cities:
 - → Avoid disadvantaging remote workers in labour policies.
- Inter-city range in WFH % will increase:
 - → Avoid inequality by investing in towns like Barry.

Extending our Work

Conclusions

- Post-pandemic, remote work will increase between now and 2027 in all cities:
 - → Avoid disadvantaging remote workers in labour policies.
- Inter-city range in WFH % will increase:
 - → Avoid inequality by investing in towns like Barry.

Extending our Work

• Assess and reduce impact of Model III assumptions; reduce data dependence.

Conclusions

- Post-pandemic, remote work will increase between now and 2027 in all cities:
 - → Avoid disadvantaging remote workers in labour policies.
- Inter-city range in WFH % will increase:
 - → Avoid inequality by investing in towns like Barry.

Extending our Work

- Assess and reduce impact of Model III assumptions; reduce data dependence.
- Make c individual-dependent (sub-model).

Conclusions

- Post-pandemic, remote work will increase between now and 2027 in all cities:
 - → Avoid disadvantaging remote workers in labour policies.
- Inter-city range in WFH % will increase:
 - → Avoid inequality by investing in towns like Barry.

Extending our Work

- Assess and reduce impact of Model III assumptions; reduce data dependence.
- Make c individual-dependent (sub-model).
- Explore causes of US vs UK differences in our model.

Thank you!

Any questions?