1 Grundlagen

- Gehen andersherum an Zufallsexperimente an. D.h. wissen nichts über W-Maße, ermitteln diese empirisch (meistens wissen wir die Verteilung aber nicht P)
- z.B. N Orangen, davon f faule, und g = N f gute. N bekannt, f und g nicht. Wie soll der Empfänger n Stichproben schätzen?
- ullet z.B. Werfen einer Reißzwecke (Oben oder Unten). Wie kann man p nach n-maligem Werfen abschätzen?
- \Rightarrow Hauptaufgabe ist:
 - Parameterschätzung: W-Maß schätzen
 - Konfidenzbereiche: Man schätzt nicht W sondern ein Intervall, wo die Parameter höchst wahrscheinlich liegen
 - Testen von Hypothesen: Hier geht es um statistische Entscheidungsverfahren (z.B. Soll die Orangenlieferung akzeptiert werden oder nicht?)

2 Statistisches Modell

2.1 Definition: Statistisches Modell

Ein statistisches Modell ist ein Tripel $\mathcal{M} = (\mathcal{X}, \mathcal{A}, (P_{\theta})_{\theta \in \Theta})$ bestehend aus:

- ullet einem Stichprobenraum ${\mathcal X}$
- einer σ -Algebra \mathcal{A} auf \mathcal{X} und
- einer Familie $(P_{\theta})_{\theta \in \Theta}$ von W-Maßen auf $(\mathcal{X}, \mathcal{A}), |\Theta| \geq 2$

Statt Ω nutzen wir \mathcal{X} als Stichprobenraum, da Ω die detaillierte Beschreibung und \mathcal{X} die tatsächliche Beobachtung ist. Außerdem schreiben wir E_{θ} statt $E_{P\theta}$ und V_{θ} statt $V_{P\theta}$

2.2 Modellklassen

Sei $\mathcal{M} = (\mathcal{X}, \mathcal{A}, (P_{\theta})_{\theta \in \Theta})$ ein statistisches Modell

- Ist $\Theta \subset \mathbb{R}^d$ für ein $d \in \mathbb{N}$ so heißt das statische Modell, parametrisches Modell (für d = 1 ein einparametrisches Modell)
- \mathcal{M} heißt ein diskretes Modell, wenn \mathcal{X} diskret ist, d.h. $|\mathcal{X}| \leq |\mathbb{N}|$ und $\mathcal{A} = 2^{\mathcal{X}}$ ist. Dann ist jedes P_{θ} durch die W-Funktion: $p_{\theta}: x \mapsto p_{\theta}(x) := P_{\theta}(\{x\})$
- M heißt ein stetiges Modell, wenn \mathcal{X} eine Borel-Teilmenge von \mathbb{R}^n ist, $\mathcal{A} = B_{\mathcal{X}}^n$, die auf \mathcal{X} eingeschränkte Borel- σ -Algebra von \mathbb{R}^n und jedes P_{θ} eine Dichtefunktion p_{θ} besitzt
- Ist \mathcal{M} diskret oder stetig, so sprechen wir von \mathcal{M} als ein Standardmodell

2.3 Produktmodelle

Oft werden statistische Modelle betrachtet, die die unabhängige Wiederholung von identischen Einzelexperimenten beschreiben. Das führt zu folgender Definition

Definition Ist $(E, \mathcal{E}, (Q_{\theta})_{\theta \in \Theta})$ ein statistisches Modell und $n \geq 2$ so heißt:

- $(\mathcal{X}, \mathcal{A}, (P_{\theta})_{\theta \in \Theta}) := (E^n, \mathcal{E}^{\otimes n}, (Q_{\theta}^{\otimes n})_{\theta \in \Theta})$ das dazugehörige n-fache Produktmodell
- In dem Fall bezeichne $X_i: \mathcal{X} \to E$ die Projektion auf die i-te Koordinate. Diese Projektion beschreibt den Ausgang des i-ten Teilexperiments. Die X_1, \ldots, X_n sind dann bzgl. jedes $P_{\theta} = Q_{\theta}^{\otimes n}$ unabhängig und identisch verteilt mit Verteilung Q_{θ}

2.4 Statistiken und Schätzer

Es sei $(\mathcal{X}, \mathcal{A}, (P_{\theta})_{\theta \in \Theta})$ ein statistisches Modell und (Σ, \mathcal{S}) ein Messraum.

- Eine beliebige ZV S: $(\mathcal{X}, \mathcal{A}) \to (\Sigma, \mathcal{S})$ heißt eine Statistik
- Sei $\tau: \Theta \mapsto \Sigma$ eine Abbildung, die jedem $\theta \in \Theta$ eine Kenngröße $\tau(\theta) \in \Sigma$ zuordnet. Eine Statistik $T: \mathcal{X} \to \Sigma$ heißt dann ein Schätzer für τ (Oft ist $\tau = id_{\Theta}$; T heißt dann auch Schätzer für θ)

Bemerkung: Neue Namensgebung Statistik statt ZVs, Schätzer statt Statistik wegen neuer Interpretationen:

- ZVs: beschreibt unvorhersehbare Ergebnisse
- Statistik: ist eine vom Statistiker wohlkonstruierte Abbildung, die aus den Beobachtungsdaten Essentielles extrahiert.
- \bullet Statistiken gibt es viele, ein **Schätzer** ist zugeschnitten auf das Schätzen von τ

2.5 Maximum Likelihood Schätzer

Es sei $(\mathcal{X}, \mathcal{A}, (P_{\theta})_{\theta \in \Theta})$ ein statistisches **Standardmodell**; dann ist jedes P_{θ} durch eine W-Funktion oder Dichte p_{θ} gekennzeichnet.

- Idee: Wird $x \in \mathcal{X}$ beobachtet, so bestimme den Schätzwert $T(x) \in \Theta$ so, dass:
- $p_{T(x)}(x) = max_{\theta \in \Theta} p_{\theta}(x)$
- Bemerkung: Da im stetigen Modell $P_{\theta}(\{x\})$ typischerweise gleich Null ist, sind wir zu Dichten übergegangen.

Definition: Die Funktion $p: \mathcal{X} \times \Theta \to [0, \infty)$ mit

- $p(x,\theta) := p_{\theta}(x)$ heißt die zugehörige **Likelihood-Funktion**
- $p(x,\dot):\Theta\to[0,\infty)$ heißt die Likelihood-Funktion zum Beobachtungswert $x\in\mathcal{X}$

Definition: Ein Schätzer $T: \mathcal{X} \to \Theta$ für θ heißt **Maximum-Likelihood-Schätzer**, kurz MLE, wenn für jedes $x \in \mathcal{X}$ stets T(x) eine Maximalstelle von $p(x, \dot{)}$ ist,d.h:

- $p(x,T(x)) = max_{\theta \in \Theta} p_{\theta}(x)$
- Bemerkung: Zur MLE-Bestimmung ist es oft bequem mit dem Log MLE zuarbeiten $logp(x, \dot{)}$, da wegen der Monotonie der Log Funktion diese dieselben Maximalstellen besitzt.

3 Bonus (glaube Def. ist falsch)

${\bf Def.\ Erwartungstreu+Konsistent}$

- \bullet Erwartungswert Theta hat. D.h. $E_{\theta}(T) = \theta$
- Konsistenz: Wenn der Schätzer Erwartungstreu ist und zusätzlich die Varianz von T für n gegen unendlich gegen 0 geht: $Var_{\theta}(T) \rightarrow^{n \rightarrow \infty} 0$