CP Snippets

About Codeforces GitHub LinkedIn

About

A collection of CPP Snippets to aid in competetive programming.

This site was auto generated with the help of marked.

The old version of site is available here.

This site is also available in the form of a PDF book for your convenience, you can download it from here.

BIT-general

- · easy BIT general with range updates by diff array too
- https://thesobersobber.github.io/CP-Snippets/BIT-general
- github-snip-file

```
template <class T>
class BIT
{
    static_assert(is_integral<T>::value, "Integer required");

private:
    const size_t N;
    vector<T> data;

public:
    // Binary indexed tree or fenwick tree
```

```
// O (log n) all operations except order
// order complexity - 0 (log n)
// 1 based indexing
BIT() : N(0) {}
BIT(const size_t _N) : N(_N), data(_N + 1) {}
size_t size()
{
    return N;
}
// sum of [1, idx]
// range sum query
T sum(size_t idx)
{
    T ans = 0;
    for (; idx > 0; idx -= (idx & -idx))
    {
        ans += data[idx];
    }
    return ans;
}
T sum(size_t l, size_t r)
{
    return sum(r) - sum(l - 1);
}
// Point update
void add(size_t idx, T val)
{
    for (; idx \le N; idx += (idx \& -idx))
    {
        data[idx] += val;
```

```
}
    }
    // Range update
    void range_add(size_t l, size_t r, T val)
    {
        add(l, val);
        add(r + 1, -val);
    }
    template <class OStream>
    friend OStream &operator<<(OStream &os, BIT &bit)</pre>
    {
        T prv = 0;
        os << '[';
        for (int i = 1; i \le bit.N; i++)
        {
             T \text{ now = bit.sum(i);}
             os << now - prv << ',', prv = now;
        }
        return os << ']';
    }
};
DSU
  • DSU
  • https://thesobersobber.github.io/CP-Snippets/DSU
  • github-snip-file
class DSU {
```

private:

```
vector<int> parent, size;
public:
    DSU(int n) {
        parent = vector<int>(n);
        size = vector<int>(n, 1);
        iota(begin(parent), end(parent), 0);
    }
    int getParent(int x) {
        if (parent[x] == x) return x;
        return parent[x] = getParent(parent[x]);
    }
    void join(int x, int y) {
        x = getParent(x);
        y = getParent(y);
        if (size[x] > size[y])
            swap(x, y);
        if (x == y) return;
        parent[x] = y;
        size[y] += size[x];
    }
    int getSize(int x) {
        return size[x] = size[getParent(x)];
    }
};
```

General-Hash

• General Hash functions that returns two hashes, takes in 0 indexed arr or string, allows hash query on range, beware that this uses the decreasing power

convention

```
    https://thesobersobber.github.io/CP-Snippets/General-Hash

    github-snip-file

struct PolyHash {
    /*
        WARNING: make sure the values in the array or string ar
        */
    vector<long long> powers;
    vector<long long> powers2;
    vector<long long> hashes;
    vector<long long> hashes2;
    long long seed = 500002961;
    long long seed2 = 500003263;
    const long long mod = (long long)1e9 + 7;
    const long long mod2 = 998244353;
    vector<long long> arr;
    void init(long long n){
        powers.resize(n + 5);
        powers[0] = 1;
        powers2.resize(n + 5);
        powers2[0] = 1;
        hashes.resize(n + 5);
        hashes[0] = arr[0];
        hashes2.resize(n + 5);
        hashes2[0] = arr[0];
        for (long long i = 1; i \le n; i++){
            powers[i] = powers[i - 1] * seed;
            powers[i] %= mod;
            powers2[i] = powers2[i - 1] * seed2;
            powers2[i] %= mod2;
```

```
}
    for (long long i = 1; i \le n; i++){
        hashes[i] = hashes[i - 1] * seed + arr[i];
        hashes[i] %= mod;
        hashes2[i] = hashes2[i - 1] * seed2 + arr[i];
        hashes2[i] %= mod2;
    }
}
void init(long long n, string s){ //string is 0 indexed
    arr.resize(n + 5);
    for (long long i = 1; i \le n; i++){
        arr[i] = s[i - 1];
    }
    init(n);
}
void init(long long n, vector<long long> a){ //a is 0 index
    arr.resize(n + 5);
    for (long long i = 1; i \le n; i++){
        arr[i] = a[i - 1];
    }
    init(n);
}
// returns hash like a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
// 2,5 query will yeild: a2*p^3 + a3*p^2 + a4*p^1 + a5 and
// no need of power combi manually
pair<long long, long long> subhash(long long l, long long r
    long long hsh = hashes[r] - hashes[l - 1] * powers[r -
    hsh += mod;
    hsh %= mod;
    long long hsh2 = hashes2[r] - hashes2[l - 1] * powers2[
    hsh2 += mod2;
    hsh2 %= mod2;
```

```
return {hsh, hsh2};
    }
};
// Example Usage:
// PolyHash hsh;
// int n = word.size();
// hsh.init(n,word);
// subhash is inclusive of l and r remember that
Segtree-General
  • General segree, needs node struct (with members def and epsilon(default) for
    all of them) and operation lambda (merge)

    https://thesobersobber.github.io/CP-Snippets/Segtree-Genera

    github-snip-file

template <typename T>
class segtree
{
public:
    // 0 based indexing
    // def= default value
    vector<T> t;
    int n;
    T def;
    function<T(T, T)> merge;
    void build(int _n, T _def, functionT(T, T) > fx)
    {
         n = _n;
        def = _def;
```

```
merge = fx;
    t.assign(n * 2, def);
    for (int i = n - 1; i; i--)
        t[i] = merge(t[i * 2], t[i * 2 + 1]);
}
void build(vector<T> &a, T _def, function<T(T, T)> _fx)
{
    n = a.size();
    def = \_def;
    merge = fx;
    t.assign(n * 2, def);
    for (int i = 0; i < n; i++)
        t[i + n] = T(a[i]);
    for (int i = n - 1; i; i--)
        t[i] = merge(t[i * 2], t[i * 2 + 1]);
}
void update(int i, T v)
{
    for (t[i += n] = T(v); i;)
    {
        i /= 2;
        t[i] = merge(t[i * 2], t[i * 2 + 1]);
    }
}
// this query is made on [1, r]
T query(int 1, int r)
{
    T lans = def, rans = def;
    for (1 += n, r += n + 1; 1 < r; 1 /= 2, r /= 2)
    {
        if (1 % 2)
            lans = merge(lans, t[l++]);
```

```
if (r % 2)
                 rans = merge(t[--r], rans);
        return merge(lans, rans);
    }
};
// demo usage
struct node
{
    int val;
    node(int x)
    {
        val = x;
    }
    // default value
    node()
    {
        val = 1e18;
    }
};
segtree<node> seg;
seg.build(n + 1, node(), [\&](node x, node y){ return node(min(x))
```

Simpler-Segtree

- Init with an array simply using the build fn, customize operation and epslion in the struct itself, supports point updates and range queries
- https://thesobersobber.github.io/CP-Snippets/Simpler-Segtre
- github-snip-file

```
struct segtree {
    vector<int> t;
    int emptyans = -1e18;
    int n;
    int op(int a, int b){
        return max(a, b); // custom operation
    }
    int construct(int v, int l, int r, vi &a){
        if(1 == r){
            t[v] = a[1];
            return t[v];
        }
        int mid = (r + 1)/2;
        return t[v] = op(construct(2*v+1, 1, mid, a), construct
    }
    void build(vi &a){
        n = a.size();
        t = vector < int > (4*n);
        construct(0, 0, n-1, a);
    }
    int queryans(int v, int curl, int curr, int l, int r){
        if(curl >= 1 \&\& curr <= r){
            return t[v];
        }
        if(curr < 1 \mid \mid curl > r)
            return emptyans;
        }
        int mid = (curl + curr)/2;
        return op(queryans(2*v+1, curl, mid, l, r), queryans(2*
    int query(int 1, int r){
        return queryans(0, 0, n-1, 1, r);
```

```
}
    int updateval(int v, int i, int x, int l, int r){
        if(r < i | | 1 > i){
            return t[v];
        if(1 == r \&\& 1 == i){
             return t[v] = x;
        int mid = (r + 1)/2;
        return t[v] = op(updateval(2*v+1, i, x, l, mid), update
    }
    void update(int i, int x){
        updateval(0, i, x, 0, n-1);
    }
};
arr-inp
  arr-inp

    https://thesobersobber.github.io/CP-Snippets/arr-inp

    github-snip-file

vector<int> a(n, 0);
for(int i=0;i<n;i++) cin>>a[i];
arr-pref
  arr-pref
  • https://thesobersobber.github.io/CP-Snippets/arr-pref
  • github-snip-file
```

```
vector<int> pre(n, 0);
for(int i=1;i<n;i++) pre[i]=a[i]+pref[i-1];</pre>
bfs-dist

    bfs that measures levels/dist

    https://thesobersobber.github.io/CP-Snippets/bfs-dist

  • github-snip-file
queue<int> q;
vector<int> dist, visG(n+1, 0);
q.push(1); visG[1]=1;
while(!q.empty()){
    int curr = q.front();
    q.pop();
    for(auto i: g[curr]){
        if(!visG[i]) continue;
        dist[i] = dist[curr] + 1;
        q.push(i);
    }
}
binpow
  binpow
  • https://thesobersobber.github.io/CP-Snippets/binpow
  • github-snip-file
11 binpow(ll x, ll y){
    ll res = 1;
```

```
while (y>0){
        if (y&1) res = (11)(res*x);
        y = y >> 1;
        x = (11)(x*x);
    }
    return res;
}
binsearch

    binsearch

  • https://thesobersobber.github.io/CP-Snippets/binsearch
  • github-snip-file
int lo = 0, hi = n-1;
while(hi-lo>1) {
    int mid = lo + ((hi-lo) >> 1);
    // if condition true toh bas right segment mai search hoga,
    auto check = [\&](ll mid) {
      return (/*condition here*/);
    };
    if(check(mid)){
        // do stuff here
        lo = mid;
    }
    else {
        hi = mid;
    }
}
```

bp-small

```
bp-small

    https://thesobersobber.github.io/CP-Snippets/bp-small

  • github-snip-file
#include <bits/stdc++.h>
#ifndef ONLINE JUDGE
#include "debug.h"
#pragma GCC optimize("03,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#else
#define dbg(x...) "11-111"
#endif
using namespace std;
#define ll long long
#define int long long // because mai bevakoof hu
constexpr int mod = 1e9+7;
// constexpr int mod = 998244353;
constexpr int maxn = 1e6+5;
// pows
inline ll po(ll a, ll b) { ll res = 1; for (; b; b >>= 1) { if
inline ll modpow(ll a, ll b, ll mod) { ll res = 1; for (; b; b
void pre_process(){
}
int solve(){
```

```
int n; cin>>n;
    dbg(n);
    return 2*n;
}
int32_t main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
    pre_process();
    int t; cin>>t;
    while(t--) cout<<solve()<<'</pre>
}
bp
  • bp
  • https://thesobersobber.github.io/CP-Snippets/bp
  • github-snip-file
#include <bits/stdc++.h>
#ifndef ONLINE_JUDGE
#include "debug.h"
#pragma GCC optimize("03,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#else
#define dbg(x...) "11-111"
#endif
using namespace std;
#define ll long long
```

```
#define int long long // because mai bevakoof hu
#define logCont(arr,f,l) { auto start=arr.begin(), end=arr.be
#define uniq(x) x.erase(unique(all(x)), x.end());
#define tr(s, args...) transform(s.begin(), s.end(), args)
#define sz(x) (ll)x.size()
// variadic lambda
#define f(u, args...) [&](auto &&u) { return args; }
#define g(u, v, args...) [&](auto &&u, auto &&v) { return args
// precesion
#define precise(n)
                          cout<<fixed<<setprecision((n))</pre>
// bits
#define bpc(n)
                          std::popcount((unsigned long long)(n)
#define hsb(n)
                          std::has_single_bit((unsigned long lc
#define MSB(n)
                          std::bit_floor((unsigned long long)(r
                          ((n) ? __builtin_ctzll((unsigned long
#define ctz(n)
                          ((n) ? __builtin_clzll((unsigned long
#define clz(n)
#define LSB(n)
                          ((n)&(-(n)))
// general amax, amin for any ds, to be able to use swap in gra
template<typename T, typename T1> inline bool amax(T &a, T1 b){ i
template<typename T, typename T1> inline bool amin(T &a, T1 b){ i
// comparison struct for maps (or use decltype)
template<typename T> struct Comp { bool operator()(const T& 1,
constexpr ll Inf = 4e18;
constexpr int mod = 1e9+7;
// constexpr int mod = 998244353;
constexpr int maxn = 1e6+5;
```

```
// sasta mint
ll inv(ll i) {if (i == 1) return 1; return (mod - ((mod / i) *
11 \mod_{mul}(11 \ a, \ 11 \ b) \{a = a \% \mod; b = b \% \mod; return (((a * a ) ) \}
11 \mod_{add}(11 \ a, \ 11 \ b) \{a = a \% \mod; b = b \% \mod; return (((a + a))) \}
ll\ gcd(ll\ a,\ ll\ b)\ \{\ if\ (b==0)\ return\ a;\ return\ gcd(b,\ a\ %\ b)
ll ceil_div(ll a, ll b) \{return a \% b == 0 ? a / b : a / b + 1;
ll pwr(ll a, ll b) {a \%= mod; ll res = 1; while (b > 0) {if (b
// pows
inline ll po(ll a, ll b) { ll res = 1; for (; b; b >>= 1) { if
inline ll modpow(ll a, ll b, ll mod) { ll res = 1; for (; b; b
void pre_process(){
}
int solve(){
    int n; cin>>n;
    dbg(n);
    return 2*n;
}
int32_t main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);
    pre_process();
    int t; cin>>t;
    while(t--) cout<<solve()<<'
}
```

clock_for_TL

```
clock

    https://thesobersobber.github.io/CP-Snippets/clock_for_TL

    github-snip-file

auto start = chrono::high_resolution_clock::now();
// code goes here
auto stop = chrono::high_resolution_clock::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(stc
cout << duration.count() << " ms</pre>
combi-mint

    combi template with mint

    https://thesobersobber.github.io/CP-Snippets/combi-mint

    github-snip-file

const int mod=1e9+7;
struct mi {
    int64_t v; explicit operator int64_t() const { return v % n
    mi() { v = 0; }
    mi(int64_t _v) {
        v = (-mod < v & v < mod) ? v : v % mod;
        if (v < 0) v += mod;
    }
    friend bool operator==(const mi& a, const mi& b) {
        return a.v == b.v; }
    friend bool operator!=(const mi& a, const mi& b) {
        return !(a == b); }
    friend bool operator<(const mi& a, const mi& b) {</pre>
```

```
return a.v < b.v; }
mi& operator+=(const mi& m) {
    if ((v += m.v) >= mod) v -= mod;
    return *this; }
mi& operator-=(const mi& m) {
    if ((v -= m.v) < 0) v += mod;
    return *this; }
mi& operator*=(const mi& m) {
    v = v*m.v%mod; return *this; }
mi& operator/=(const mi& m) { return (*this) *= inv(m); }
friend mi pow(mi a, int64_t p) {
    mi ans = 1; assert(p \ge 0);
    for (; p; p /= 2, a *= a) if (p&1) ans *= a;
    return ans;
}
friend mi inv(const mi& a) { assert(a.v != 0);
    return pow(a, mod-2); }
mi operator-() const { return mi(-v); }
mi& operator++() { return *this += 1; }
mi& operator--() { return *this -= 1; }
mi operator++(int32_t) { mi temp; temp.v = v++; return temp
mi operator--(int32_t) { mi temp; temp.v = v--; return temp;
friend mi operator+(mi a, const mi& b) { return a += b; }
friend mi operator-(mi a, const mi& b) { return a -= b; }
friend mi operator*(mi a, const mi& b) { return a *= b; }
friend mi operator/(mi a, const mi& b) { return a /= b; }
friend ostream& operator<<(ostream& os, const mi& m) {</pre>
    os << m.v; return os;
friend istream& operator>>(istream& is, mi& m) {
```

```
int64_t x; is >> x;
        m.v = x;
        return is;
    }
    friend void __print(const mi &x) {
        cerr << x.v;
    }
};
const int maxn=2e5+5;
vector<mi> fct(maxn, 1), invf(maxn, 1);
void calc_fact() {
    for(int i = 1 ; i < maxn ; i++) {
        fct[i] = fct[i - 1] * i;
    }
    invf.back() = mi(1) / fct.back();
    for(int i = \max - 1; i; i--)
        invf[i - 1] = i * invf[i];
}
mi choose(int n, int r) { // choose r elements out of n element
    if(r > n) return mi(0);
    assert(r \le n);
    return fct[n] * invf[r] * invf[n - r];
}
```

combi-struct

- combi-struct
- https://thesobersobber.github.io/CP-Snippets/combi-struct
- github-snip-file

```
struct Comb {
    int n;
    std::vector<int> _fac;
    std::vector<int> _invfac;
    std::vector<int> _inv;
    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }
    void init(int m) {
        if (m <= n) return;
        _{fac.resize(m + 1);}
        _invfac.resize(m + 1);
        _{inv.resize(m + 1);}
        for (int i = n + 1; i \le m; i++) {
            _{fac[i]} = _{fac[i - 1]} * i;
        _{invfac[m]} = _{fac[m].inv();}
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }
    int fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
```

```
int invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    int inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    int binom(int n, int r) {
        if (n < r | | r < 0) return 0;
        return fac(n) * invfac(r) * invfac(n - r);
    }
};
combination-non-mod

    combination-non-mod

    https://thesobersobber.github.io/CP-Snippets/combination-no

    github-snip-file

vector<vector<int>> dp(n+1, vector<int> (k+1));
int binomalCoeff(int n, int k){
    for (int i=0; i<=n; i++){
        for (int j=0; j <= k; j++){
             if (!j || j == i) dp[i][j] = 1;
             // binomial coefficient approach
             else dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
         }
     }
     return dp[n][k];
}
```

combination-small

- · combination-small
- https://thesobersobber.github.io/CP-Snippets/combination-sm
- github-snip-file

```
int C(int n,int r){
    r = min(r,n-r);
    int ans = 1;
    for(int i=1;i<=r;i++,n--){
        ans *=n;
        ans/=i;
    }
    return ans;
}</pre>
```

combination

- combination
- https://thesobersobber.github.io/CP-Snippets/combination
- github-snip-file

```
int C(int n, int r){
    int v = (fac[n] * inv[r])%mod;
    v = (v * inv[n-r])%mod;
    return v;
}
```

crt

```
crt

    https://thesobersobber.github.io/CP-Snippets/crt

    github-snip-file

/**
 * Chinese remainder theorem.
 * Find z such that z \% x[i] = a[i] for all i.
 * */
long long crt(vector<long long> &a, vector<long long> &x) {
  long long z = 0;
  long long n = 1;
  for (int i = 0; i < x.size(); ++i)
    n *= x[i];
  for (int i = 0; i < a.size(); ++i) {
    long long tmp = (a[i] * (n / x[i])) % n;
    tmp = (tmp * mod_inv(n / x[i], x[i])) % n;
    z = (z + tmp) \% n;
  }
  return (z + n) \% n;
}
cute-lcm
```

- [a,b,c]=abc(a,b,c)/(a,b)(b,c)(c,a), where []=lcm adn ()=gcd or [a,b,c]=abc/gcd(ab,bc,ca)
- https://thesobersobber.github.io/CP-Snippets/cute-lcm
- github-snip-file

```
"https://math.stackexchange.com/questions/1579/n-ary-version-of
"N-ary versions of gcd and lcm"
"proof is heavy lattice ordered smthing based or use inclusion
derangments

    derangments

    https://thesobersobber.github.io/CP-Snippets/derangments

  • github-snip-file
int countDerangements(int n){
    int dp[n + 1];
    if (n < 3) return (dp[n]=(n % 2)?1:0);
    dp[0] = 1, dp[1] = 0, dp[2] = 1;
    for (int i=3; i< n; i++) dp[i] = (i-1)*(dp[i-1]+dp[i-2]);
    return dp[n];
}
dfs-full

    dfs with lots of stuff implemented

    https://thesobersobber.github.io/CP-Snippets/dfs-full

    github-snip-file

auto dfs = [&](auto &&dfs, int curr, int parent, vector<int> &v
    for(auto i: adj[curr]){
        if(visPath[i]) cycle_directed[=1;
        if(i==parent || visG[i]) continue;
        dfs(dfs, i, curr, visG, visPath, comp, cycle_directed,
        topo.push(i);
```

```
}
};
int cnt_comp=0;
vector<int> visG(n+1, 0), visPath(n+1, 0), comp;
vector<vector<int>> components;
stack<int> topo;
bool cycle_directed=0;
for(int i=1; i<=n; i++){
    if(visG[i]) continue;
    visG[i]=visPath[i]=1;
    comp.push_back(i);
    dfs(dfs, 1, -1, visG, visPath, comp, cycle_directed, topo,
    components.push_back(comp);
    comp.clear();
    visPath.assign(n+1, 0);
    cnt_comp++;
}
dfs
  · weird ass dfs

    https://thesobersobber.github.io/CP-Snippets/dfs

    github-snip-file

map<int,int> dfs(int cur,int par,vi&a){
    // stuff
    for(auto child:adj[cur]){
        if(child==par)continue;
        // stuff
        dfs(child,cur,a);
        // or return smthing and use it
```

```
auto smthing = dfs(child, cur, a);
        // stuff
    }
    // stuff and then return smthing or not, meh
    return cur_prime;
}
diophantine

    linear diophantine

  • https://thesobersobber.github.io/CP-Snippets/diophantine

    github-snip-file

long long gcd(long long a, long long b, long long &x, long long
  if (a == 0) {
    x = 0;
    y = 1;
    return b;
  long long x1, y1;
  long long d = gcd(b \% a, a, x1, y1);
  x = y1 - (b / a) * x1;
  y = x1;
  return d;
}
bool find_any_solution(long long a, long long b, long long c, l
    long long &y0, long long &g) {
  g = gcd(abs(a), abs(b), x0, y0);
  if (c % g) {
    return false;
```

```
}
 x0 *= c / g;
 y0 *= c / g;
 if (a < 0) \times 0 = -x0;
 if (b < 0) y0 = -y0;
 return true;
}
long long cnt) {
 x += cnt * b;
 v = cnt * a;
}
long long find_all_solutions(long long a, long long b, long lor
   long long minx, long long maxx, long long miny,
   long long maxy) {
 long long x, y, g;
 if (!find_any_solution(a, b, c, x, y, g)) return 0;
 a /= g;
 b /= g;
  long long sign_a = a > 0 ? +1 : -1;
 long long sign_b = b > 0 ? +1 : -1;
  shift_solution(x, y, a, b, (minx - x) / b);
  if (x < minx) shift_solution(x, y, a, b, sign_b);</pre>
  if (x > maxx) return 0;
  long long 1x1 = x;
  shift_solution(x, y, a, b, (maxx - x) / b);
```

```
if (x > maxx) shift_solution(x, y, a, b, -sign_b);
  long long rx1 = x;
  shift_solution(x, y, a, b, -(miny - y) / a);
  if (y < miny) shift_solution(x, y, a, b, -sign_a);</pre>
  if (y > maxy) return 0;
  long long 1x2 = x;
  shift_solution(x, y, a, b, -(maxy - y) / a);
  if (y > maxy) shift_solution(x, y, a, b, sign_a);
  long long rx2 = x;
  if (1x2 > rx2) swap(1x2, rx2);
  long long lx = max(lx1, lx2);
  long long rx = min(rx1, rx2);
  if (1x > rx) return 0;
  return (rx - lx) / abs(b) + 1;
}
dsu-rr
  dsu-rr

    https://thesobersobber.github.io/CP-Snippets/dsu-rr

    github-snip-file

class Solution {
    struct DSU
    {
        vector<int> siz,parent;
        void init()
```

```
{
        siz.resize(26);
        parent.resize(26);
        for(int i=0;i<26;i++)
        {
             siz[i]=1;
             parent[i]=i;
        }
    }
    int leader(int ex)
    {
        if(ex==parent[ex])
             return ex;
        return parent[ex]=leader(parent[ex]);
    }
    void merge(int a,int b)
    {
        a=leader(a);
        b=leader(b);
        if(a==b)
             return;
        if(siz[a]<siz[b])</pre>
             swap(a,b);
        siz[a]+=siz[b];
        parent[b]=parent[a];
    }
};
```

easy_seive

• easy_seive

```
    https://thesobersobber.github.io/CP-Snippets/easy_seive

  • github-snip-file
void ez_seive(int n){
     vector<bool> prime(n,1);
     for (int p = 2; p*p <= n; p++){
         if (prime[p]){
            for (int i = p * p; i \le n; i += p) prime[i] = fals
         }
     }
}
for (int p = 2; p \le n; p++){
      // do whatever you want with those primes${1}
      if (prime[p]) cout << p << " ";
}
euclid

    euclid

    https://thesobersobber.github.io/CP-Snippets/euclid

    github-snip-file

int euclid_gcd(int a, int b){
    if (b==0) return a;
    return gcd(b, a % b);
}
int euclid_gcdExtended(int a, int b, int *x, int *y){
    if (a == 0){
        *x = 0;
         *y = 1;
```

```
return b;
    }
    int x1, y1;
    int gcd = gcdExtended(b \% a, a, &x1, &y1);
    *x = y1 - (b / a) * x1;
    *v = x1;
    return gcd;
}
explanation_binsearch

    explanation binsearch

    https://thesobersobber.github.io/CP-Snippets/explanation_bi

    github-snip-file

int lo = 0, hi = n-1; // see constraints for lo and hi, nahi mi
while(hi-lo>1) {
    int mid = lo + ((hi-lo) >> 1); // to avoid overflows
    // lo will become the last index that satisfies X condition
    // hi is the first element that doesn't satisfy X condition
    // lower_bound = <</pre>
    // upper_bound = <=</pre>
    // upper using lower = lo, < + ek for loop to traverse the
    // essence ->
    // remember, lo ke left mai condition always true, lo last
    // hi ke right mai condition always false, hi first one jis
    // hi will probably be the answer in most cases
```

// hi+1, lo, lo-1 are also potential answers (maybe, mujhe

```
// always make condition such that when it's true, left seg
    // if condition true toh bas right segment mai search hoga,
    auto check = [\&](ll mid) {
        // this is where majority is what you wanna write happe
      return (/*condition here*/);
    };
    if(check(mid)){
        // do stuff here
        lo = mid;
    }
    else {
        hi = mid;
    }
}
fac
  fac

    https://thesobersobber.github.io/CP-Snippets/fac

    github-snip-file

int fac[maxn];
int inv[maxn];
fac[1] = inv[1] = 1;
for (int i=2; i<maxn; i++){
  fac[i] = (fac[i-1] * i)%mod;
  inv[i] = power(fac[i], mod - 2);
}
```

factorization

```
    factorization

  • https://thesobersobber.github.io/CP-Snippets/factorization
  • github-snip-file
void printFactors(int n) {
    for (int i=1; i * i<=n; i++){}
        if (n%i == 0) {
            if (n/i == i) cout << i << " ";
            else cout << i << " " << n/i << " ";
        }
    }
    cout << "
" ,
}
void printPrimeFactors(int n){
 set<int> f;
 for (int i = 2; i*i <= n; i++){
     while (n \% i == 0){
         f.insert(i);
         n /= i;
      }
 }
for (auto &i : f){
     cout << i << " ";
 cout << "
}
```

fenwick

```
    binary indexed tree

    https://thesobersobber.github.io/CP-Snippets/fenwick

    github-snip-file

// 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0,
template <class T>
struct BIT{
    int n;
    vector<T> data;
    BIT(int len = 0) : n(len), data(len) {}
    void reset() { fill(data.begin(), data.end(), T(0)); }
    void add(int pos, T v){
        // a[pos] += v
        pos++;
        while (pos > 0 and pos <= n)
            data[pos - 1] += v, pos += pos & -pos;
    }
    T sum(int k) const{
        // a[0] + ... + a[k - 1]
        T res = 0;
        while (k > 0)
            res += data[k - 1], k -= k & -k;
        return res;
    }
    T sum(int 1, int r) const { return sum(r) - sum(1); } // a[
    // dbg functions
    template <class OStream>
    friend OStream &operator<<(OStream &os, const BIT &bit){</pre>
        T prv = 0;
        os << '[';
```

```
for (int i = 1; i \le bit.n; i++){
            T now = bit.sum(i);
             os << now - prv << ',', prv = now;
        return os << ']';
    }
};
file_io

    for coding competetions

  • https://thesobersobber.github.io/CP-Snippets/file_io
  • github-snip-file
void file_i_o(){
    freopen("./tests/test01.txt", "r", stdin);
    freopen("./tests/output01.txt", "w", stdout);
}
freq-map
  • freq-map
  • https://thesobersobber.github.io/CP-Snippets/freq-map
  • github-snip-file
map<int, int> m;
for(int i=0; i<n;i++){</pre>
  if(m.find(a[i])==m.end()) m[a[i]]=1;
  else m[a[i]]++;
}
```

gr-inp-Fwt

```
· graph input weight

    https://thesobersobber.github.io/CP-Snippets/gr-inp-Fwt

  • github-snip-file
int e=f(n);
vector<vector<pair<int,int>>> g(n+1);
for(int i=1;i<=e;i++){
  int u, v, wt; cin>>u>>v>>wt;
  g[u].push_back({v,wt});
  g[v].push_back({u,wt});
}
gr-inp

    graph input

  • https://thesobersobber.github.io/CP-Snippets/gr-inp

    github-snip-file

int e=f(n);
vector<vector<int>> g(n+1);
for(int i=1;i<=e;i++){
  int u, v; cin>>u>>v;
  g[u].push_back(v);
  g[v].push_back(u);
}
```

highest_exponent

```
    power in fac

  • https://thesobersobber.github.io/CP-Snippets/highest_expone
  • github-snip-file
int highest_exponent(int p, const int &n){
  int ans = 0;
  int t = p;
  while(t \le n){
    ans += n/t;
    t*=p;
  }
  return ans;
}
interactive

    essential measures for interactive problems

  • https://thesobersobber.github.io/CP-Snippets/interactive

    github-snip-file

void solve(){
    int n; cin>>n;
    auto querySystem = [\&](int 1, int r) {
        // print your query
        cout<<r-l+1<<endl;
        cout << end1;
        // receive and return reply from system
        int wt; cin>>wt;
        return wt;
```

```
};
    // write your logic here and use querySystem to receive ans
    // do a cout<<endl after each cout
    cout << endl;
}
ip-overloads

    I/O Overloads that I don't use

    https://thesobersobber.github.io/CP-Snippets/ip-overloads

    github-snip-file

template<typename T1, typename T2> inline istream& operator >>
template<typename T1, typename T2> inline ostream& operator <<
template<typename T> istream& operator >> (istream& in, vector<
void read(auto&... args) { ((cin>>args), ...); }
void put(auto&&... args) { ((cout<<args<<" "), ...);}</pre>
#define get(T,args...) T args; read(args);
#define putn(args...) { put(args); cout<<"</pre>
"; }
#define pute(args...) { put(args); cout<<endl; }</pre>
#define putr(args...) { putn(args) return ;}
```

kadane

max subarray sum O(n)

```
    https://thesobersobber.github.io/CP-Snippets/kadane

    github-snip-file

int maxSubArraySum(vector<int> &v, int size){
    int max_so_far=INT_MIN, max_ending_here = 0;
    for (int i=0; i<v.size(); i++){
        max_ending_here += a[i];
        if (max_so_far<max_ending_here) max_so_far=max_ending_r
        if (max_ending_here < 0) max_ending_here = 0;</pre>
    return max_so_far;
}
kahn's algo

    toposort using bfs (kahn's algo)

    https://thesobersobber.github.io/CP-Snippets/topo-bfs

    github-snip-file

queue<int> q;
vector<int> in(n+1, 0), topo, visG(n+1, 0);
for(int i=1; i<=n; i++) for(auto child: adj[i]) in[child]++;</pre>
for(int i=1; i<=n; i++) if(in[i]==0) q.push(i);
while(!q.empty()){
    int curr = q.front(); q.pop();
    topo.push_back(curr);
    for(auto i: g[curr]){
        if(!visG[i]) continue;
        in[i]--;
        if(in[i]==0) q.push(i);
    }
```

```
}
if(topo.size()==n) for(auto i: topo) cout<<i<<" ";</pre>
else cout<<"cycle in und graph";
kosaraju

    kosaraju

  • https://thesobersobber.github.io/CP-Snippets/kosaraju
  • github-snip-file
class Graph {
 int V;
 vector<int> *adj;
 void fillOrder(int v, bool visited[], stack<int> &s);
 void dfsUtil(int v, bool visited[]);
public:
 Graph(int V) : V(V)
   adj = new vector<int>[V];
 ~Graph()
    delete[] adj;
 }
 void addEdge(int v, int w);
 void printSCCs();
```

```
Graph getTranspose();
};
void Graph::dfsUtil(int v, bool visited[]) {
 visited[v] = true;
 cout << v << " ";
 for (auto &it : adj[v])
     if (!visited[it])
        dfsUtil(it, visited);
}
Graph Graph::getTranspose() {
 Graph g(V);
 for (int i = 0; i < V; i++) {
     for (auto &it : adj[i])
         g.adj[it].push_back(i);
 }
 return g;
}
void Graph::addEdge(int v, int w) {
adj[v].push_back(w);
}
void Graph::fillOrder(int v, bool visited[], stack<int> &s) {
 visited[v] = true;
 for (auto &it : adj[v])
     if (!visited[it])
         fillOrder(it, visited, s);
 s.push(v);
```

```
void Graph::printSCCs() {
 stack<int> s;
 bool visited[V] = {0};
 for (int i = 0; i < V; i++)
      if (!visited[i])
        fillOrder(i, visited, s);
 Graph gr = getTranspose();
 for (int i = 0; i < V; i++)
     visited[i] = false;
 while (!s.empty()) {
     int v = s.top();
     s.pop();
     if (!visited[v]){
        gr.dfsUtil(v, visited);
        cout << "
     }
}
kruskal

    kruskal

  • https://thesobersobber.github.io/CP-Snippets/kruskal

    github-snip-file

auto kruskalMST(vector<Edge> &edges, int V){
    int cost = 0;
```

```
DSU dsu(V);
sort(begin(edges), end(edges));
vector<Edge> tree;
for (const auto &[u, v, w] : edges){
    if (dsu.getParent(u) != dsu.getParent(v)) {
        cost += w;
        tree.emplace_back(u, v, w);
        dsu.join(u, v);
    }
}
return make_pair(tree, cost);
}
```

lambda_function

- lambda_function
- https://thesobersobber.github.io/CP-Snippets/lambda_functio
- github-snip-file

```
auto check = [&](ll mid) {
  return mid - (mid / n) >= k;
};
```

Ica-isAncestor

- Ica that uses isAncestor instead of level jumping, sets a level upper limit of 25 itself since 2^25 is bigger than any N give anyways
- https://thesobersobber.github.io/CP-Snippets/lca-isAncestor
- github-snip-file

```
void dfs(int node,int parent,vector<vector<pair<int,int>>>&g,ve
                                     vector<int>&tin, vector<int>
   up[node][0]=parent;
   for(int i=1;i<25;i++)
      up[node][i] = up[up[node][i-1]][i-1];
   tin[node]=timer++;
   for(auto &[child,wt] : g[node])
   {
         if(child==parent)
               continue;
         depth[child]=depth[node]+1;
         dp[child]=dp[node];
         dp[child][wt]++;
         dfs(child, node, g, up, dp, tin, tout, depth);
   }
   tout[node]=timer++;
}
bool is_ancestor(int u,int v,vector<int>&tin,vector<int>&tout)
{
   return tin[u]<=tin[v] && tout[u]>=tout[v];
}
int LCAquery(int u,int v,vector<vector<int>>&up,vector<int>&tir
      if( is_ancestor(u,v,tin,tout) )
```

```
return u;
      if( is_ancestor(v,u,tin,tout) )
            return v;
      for(int i=24;i>=0;i--)
      {
           if (!is_ancestor(up[u][i], v,tin,tout))
           {
                 u = up[u][i];
           }
      }
      return up[u][0];
}
lca

    LCA path satisfying some condition

  • https://thesobersobber.github.io/CP-Snippets/lca
  • github-snip-file
constexpr int N = 5; // No. of vertices
constexpr int L = 4; // ceil(logN / log2) + 1
// Vertices from 1 to N.
vector<int> adj[N + 1];
int up[N + 1][L];
int level[N + 1];
void dfs(int u, int prev = 0){
up[u][0] = prev;
 for (auto &v : adj[u]){
     if (v == prev) continue;
```

```
level[v] = level[u] + 1;
     dfs(v, u);
}
}
void binaryLift(){
dfs(1);
for (int i = 1; i < L; i++)
     for (int j = 1; j \le N; j++)
          up[j][i] = up[up[j][i - 1]][i - 1];
}
int LCA(int a, int b){
 if (level[a] > level[b])
     swap(a, b);
 int diff = level[b] - level[a];
 for (int i = 0; i < L; i++){
     if ((diff & (1 << i)))
         b = up[b][i];
}
 if (a == b) return a;
 for (int i = L - 1; i \ge 0; i--){
     if (up[a][i] != up[b][i]){
         a = up[a][i];
         b = up[b][i];
     }
 }
 return up[a][0];
```

```
}
void addEdge(int u, int v){
adj[u].push_back(v);
adj[v].push_back(u);
}
int dist(int a, int b){
return level[a] + level[b] - 2 * level[LCA(a, b)];
}
log
  log
  • https://thesobersobber.github.io/CP-Snippets/log

    github-snip-file

// Computes x which a ^{x} = b mod n.
long long d_log(long long a, long long b, long long n) {
  long long m = ceil(sqrt(n));
  long long aj = 1;
  map<long long, long long> M;
  for (int i = 0; i < m; ++i) {
    if (!M.count(aj))
      M[aj] = i;
    aj = (aj * a) % n;
  }
  long long coef = mod_pow(a, n - 2, n);
  coef = mod_pow(coef, m, n);
```

```
// coef = a \wedge (-m)
  long long gamma = b;
  for (int i = 0; i < m; ++i) {
    if (M.count(gamma)) {
      return i * m + M[gamma];
    } else {
      gamma = (gamma * coef) % n;
    }
  }
  return -1;
}
matrix

    matrix

  • https://thesobersobber.github.io/CP-Snippets/matrix

    github-snip-file

const int MN = 111;
const int mod = 10000;
struct matrix {
  int r, c;
  int m[MN][MN];
  matrix (int _r, int _c) : r (_r), c (_c) {
    memset(m, 0, sizeof m);
  }
  void print() {
    for (int i = 0; i < r; ++i) {
```

```
for (int j = 0; j < c; ++j)
        cout << m[i][j] << " ";
      cout << endl;
    }
  }
  int x[MN][MN];
  matrix & operator *= (const matrix &o) {
    memset(x, 0, sizeof x);
    for (int i = 0; i < r; ++i)
      for (int k = 0; k < c; ++k)
        if (m[i][k] != 0)
          for (int j = 0; j < c; ++j) {
            x[i][j] = (x[i][j] + ((m[i][k] * o.m[k][j]) % mod)
          }
    memcpy(m, x, sizeof(m));
    return *this;
  }
};
void matrix_pow(matrix b, long long e, matrix &res) {
  memset(res.m, 0, sizeof res.m);
  for (int i = 0; i < b.r; ++i)
    res.m[i][i] = 1;
  if (e == 0) return;
  while (true) {
    if (e & 1) res *= b;
    if ((e >>= 1) == 0) break;
    b *= b;
}
```

mint

```
    modular integer

    https://thesobersobber.github.io/CP-Snippets/mint

    github-snip-file

struct mi {
    int64_t v; explicit operator int64_t() const { return v % n
    mi() \{ v = 0; \}
    mi(int64_t _v) {
        v = (-mod < v & v < mod) ? v : v % mod;
        if (v < 0) v += mod;
    }
    friend bool operator == (const mi& a, const mi& b) {
        return a.v == b.v; }
    friend bool operator!=(const mi& a, const mi& b) {
        return !(a == b); }
    friend bool operator<(const mi& a, const mi& b) {</pre>
        return a.v < b.v; }
    mi& operator+=(const mi& m) {
        if ((v += m.v) >= mod) v -= mod;
        return *this; }
    mi& operator-=(const mi& m) {
        if ((v -= m.v) < 0) v += mod;
        return *this; }
    mi& operator*=(const mi& m) {
        v = v*m.v%mod; return *this; }
    mi& operator/=(const mi& m) { return (*this) *= inv(m); }
    friend mi pow(mi a, int64_t p) {
        mi ans = 1; assert(p \ge 0);
```

```
for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    friend mi inv(const mi& a) { assert(a.v != 0);
        return pow(a, mod-2); }
    mi operator-() const { return mi(-v); }
    mi& operator++() { return *this += 1; }
    mi& operator--() { return *this -= 1; }
    mi operator++(int32_t) { mi temp; temp.v = v++; return temp;
    mi operator--(int32_t) { mi temp; temp.v = v--; return temp;
    friend mi operator+(mi a, const mi& b) { return a += b; }
    friend mi operator-(mi a, const mi& b) { return a -= b; }
    friend mi operator*(mi a, const mi& b) { return a *= b; }
    friend mi operator/(mi a, const mi& b) { return a /= b; }
    friend ostream& operator<<(ostream& os, const mi& m) {</pre>
        os << m.v; return os;
    }
    friend istream& operator>>(istream& is, mi& m) {
        int64_t x; is >> x;
        m.v = x;
        return is;
    }
    friend void __print(const mi &x) {
        cerr << x.v;
    }
};
```

modpow

• modpow

```
    https://thesobersobber.github.io/CP-Snippets/modpow

    github-snip-file

11 modpow(ll a, ll b){
    a \% = m;
    11 \text{ res} = 1;
    while (b > 0) {
        if (b & 1) res = res * a % m;
        a=a*a%m;
        b>>=1;
    }
    return res;
}
pbds
  pbds

    https://thesobersobber.github.io/CP-Snippets/pbds

    github-snip-file

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
// pbds = find_by_value(), order_of_key()
// find_by_order(k) returns iterator to kth element starting f
// order_of_key(k) returns count of elements strictly smaller t
template<class T> using minheap = priority_queue<T, vector<T>, gr
template<class T> using ordered_set = tree<T, null_type,less<T>
template<class key, class value, class cmp = std::less<key>> us
pq
```

```
    pq

    https://thesobersobber.github.io/CP-Snippets/pq

    github-snip-file

priority_queue<int> pq;
priority_queue<int, vector<int>, greater<>> pq;
prime-related-stuff
  • implements prime fac, fac list and is prime in both space optimized and time
    optimized ways

    https://thesobersobber.github.io/CP-Snippets/prime-related-

    github-snip-file

vector<int> smallest_factor;
vector<bool> prime;
vector<int> primes;
void sieve(int maximum)
{
    maximum = max(maximum, 1);
    smallest_factor.assign(maximum + 1, 0);
    prime.assign(maximum + 1, true);
    prime[0] = prime[1] = false;
    primes = \{\};
    for (int p = 2; p \le maximum; p++)
        if (prime[p])
        {
             smallest_factor[p] = p;
             primes.push_back(p);
             for (int64_t i = int64_t(p) * p; i \le maximum; i +=
```

```
if (prime[i])
                 {
                     prime[i] = false;
                     smallest_factor[i] = p;
                 }
        }
}
// Determines whether n is prime in worst case O(sqrt n / log r
// If we've run `sieve` up to at least n, takes O(1) time.
bool is_prime(int64_t n)
{
    int64_t sieve_max = int64_t(smallest_factor.size()) - 1;
    assert(1 <= n && n <= sieve_max * sieve_max);</pre>
    if (n <= sieve_max)</pre>
        return prime[n];
    for (int64_t p : primes)
    {
        if (p * p > n)
            break;
        if (n \% p == 0)
            return false;
    }
    return true;
}
// Prime factorizes n in worst case O(sqrt n / log n). Requires
// If we've run `sieve` up to at least n, takes O(log n) time.
```

```
template <typename T>
vector<pair<T, int>> prime_factorize(T n)
{
    int64_t sieve_max = int64_t(smallest_factor.size()) - 1;
    assert(1 <= n && n <= sieve_max * sieve_max);</pre>
    vector<pair<T, int>> result;
    if (n <= sieve max)
    {
        while (n != 1)
        {
            int p = smallest_factor[n];
            int exponent = 0;
            do
            {
                 n /= p;
                 exponent++;
            } while (n \% p == 0);
            result.emplace_back(p, exponent);
        }
        return result;
    }
    for (int p : primes)
    {
        if (int64_t(p) * p > n)
            break;
        if (n \% p == 0)
        {
            result.emplace_back(p, 0);
            do
            {
                 n /= p;
                 result.back().second++;
```

```
} while (n \% p == 0);
        }
    }
    if (n > 1)
        result.emplace_back(n, 1);
    return result;
}
template <typename T>
vector<T> generate_factors(const vector<pair<T, int>> &prime_fa
{
    // See http://oeis.org/A066150 and http://oeis.org/A036451
    static vector<T> buffer;
    int product = 1;
    for (auto &pf : prime_factors)
        product *= pf.second + 1;
    vector<T> factors = {1};
    factors.reserve(product);
    if (sorted)
        buffer.resize(product);
    for (auto &pf : prime_factors)
    {
        T p = pf.first;
        int exponent = pf.second;
        int before_size = int(factors.size());
        for (int i = 0; i < exponent * before_size; i++)</pre>
            factors.push_back(factors[factors.size() - before_s
        if (sorted && factors[before_size - 1] > p)
            for (int section = before_size; section < int(factor)</pre>
                 for (int i = 0; i + section < int(factors.size(</pre>
```

```
{
                    int length = min(2 * section, int(factors.s
                    merge(factors.begin() + i, factors.begin()
                           factors.begin() + i + section, factor
                          buffer.begin());
                    copy(buffer.begin(), buffer.begin() + lengt
                }
    }
    assert(int(factors.size()) == product);
    return factors;
}
void pre_process() {
    sieve(1e6+5);
}
// mint
struct mi {
    int64_t v; explicit operator int64_t() const { return v % n
    mi() { v = 0; }
    mi(int64_t _v) {
        v = (-mod < v & v < mod) ? v : v % mod;
        if (v < 0) v += mod;
    }
    friend bool operator==(const mi& a, const mi& b) {
        return a.v == b.v; }
    friend bool operator!=(const mi& a, const mi& b) {
        return !(a == b); }
    friend bool operator<(const mi& a, const mi& b) {</pre>
```

```
return a.v < b.v; }
mi& operator+=(const mi& m) {
    if ((v += m.v) >= mod) v -= mod;
    return *this; }
mi& operator-=(const mi& m) {
    if ((v -= m.v) < 0) v += mod;
    return *this; }
mi& operator*=(const mi& m) {
    v = v*m.v%mod; return *this; }
mi& operator/=(const mi& m) { return (*this) *= inv(m); }
friend mi pow(mi a, int64_t p) {
    mi ans = 1; assert(p \ge 0);
    for (; p; p /= 2, a *= a) if (p&1) ans *= a;
    return ans;
}
friend mi inv(const mi& a) { assert(a.v != 0);
    return pow(a, mod-2); }
mi operator-() const { return mi(-v); }
mi& operator++() { return *this += 1; }
mi& operator--() { return *this -= 1; }
mi operator++(int32_t) { mi temp; temp.v = v++; return temp
mi operator--(int32_t) { mi temp; temp.v = v--; return temp;
friend mi operator+(mi a, const mi& b) { return a += b; }
friend mi operator-(mi a, const mi& b) { return a -= b; }
friend mi operator*(mi a, const mi& b) { return a *= b; }
friend mi operator/(mi a, const mi& b) { return a /= b; }
friend ostream& operator<<(ostream& os, const mi& m) {</pre>
    os << m.v; return os;
friend istream& operator>>(istream& is, mi& m) {
```

```
int64_t x; is >> x;
    m.v = x;
    return is;
}
friend void __print(const mi &x) {
    cerr << x.v;
}
</pre>
```

re-write

- a bunch of re and write functions based on template meta programming heklpful in cp.
- https://thesobersobber.github.io/CP-Snippets/read-write-fn-
- github-snip-file

```
template <class T1, class T2> void re(pair<T1, T2> &p);
template <class T> void re(vector<T> &a);
template <class T, size_t SZ> void re(array<T, SZ> &a);
template <class T> void re(T &x) { cin >> x; }
void re(double &x) { string t;re(t); x = stod(t);}
template <class Arg, class... Args> void re(Arg &first, Args &.
template <class T1, class T2> void re(pair<T1, T2> &p) { re(p.f template <class T> void re(vector<T> &a) {for (int i = 0; i < s template <class T> void re(array<T, SZ> &a) { for (ir template <class T> void write(T x) { cout << x << " "; }
template <class T> void writen(T x) { cout << x << n1; }
template <class T> using minheap = priority_queue<T, vector<T>, gr template <class T> using ordered_set = tree<T, null_type,less<T> template <class key, class value, class cmp = std::less<key> us
```

recur-binsearch

- recursive binary search implementation to make intution easier ig
- https://thesobersobber.github.io/CP-Snippets/recur-binsearc
- github-snip-file

```
auto check = [&](int mid) {
      // smthing here
      return bool ();
};
function<int(int,int)> recur_binsearch = [&](int lo, int hi) {
   if(hi<=lo) return lo;
   int mid=(lo+hi)/2;
   if(check(mid)) return recur_binsearch(lo, mid-1);
   return recur_binsearch(mid+1, hi);
}</pre>
```

recur-modpow

- recur-modpow
- https://thesobersobber.github.io/CP-Snippets/recur-modpow
- github-snip-file

```
int power(int x, int y){
   if (y==0) return 1;

int v = power(x, y/2);
   v *= v;
   v %= mod;
   if (y&1) return (v*x)%mod;
```

```
else return v;
}
rng
  • rng
  • https://thesobersobber.github.io/CP-Snippets/rng
  • github-snip-file
//random generator
mt19937 rng(chrono::steady_clock::now().time_since_epoch().cour
ll rnd(ll a, ll b){if(a > b){return -1;}return a + (ll)rng() % (
rr-segtree

    best segtree

  • https://thesobersobber.github.io/CP-Snippets/rr-segtree
  • github-snip-file
int phi[N+1];
struct node
{
     long long sum, max, lca, size;
     node()
     {
          lca=-1;
          max=-1;
           sum=-1;
           size=0;
```

```
};
};
struct Segment_Tree
{
     vector<node> segtree;
     int n;
     node identity;
     void init(int _n)
     {
          identity.lca=-1;
          identity.sum=0;
          identity.max=-1;
          identity.size=0;
          n=1;
          while(n<_n)</pre>
                n=n*2;
          segtree.resize(2*n);
     }
     node merge(node a, node b)
     {
             if(a.lca<1)
                 return b;
             if(b.lca<1)
                 return a;
             node ans;
             ans.max=std::max(a.max,b.max);
             ans.sum=a.sum+b.sum;
```

```
ans.size=a.size+b.size;
       int ex=50;
       int A=a.lca;
       int B=b.lca;
       while(true)
       {
            if(A==B)
                break;
            if(A>B)
            {
                ans.sum=ans.sum+a.size;
                A=phi[A];
            }
            else
            {
                ans.sum=ans.sum+b.size;
                B=phi[B];
            }
       }
       ans.lca=A;
       return ans;
}
void build(int curr,int left,int right,vector<int>&ar)
{
     if(right-left==1)
     {
           if(left<ar.size())</pre>
```

```
{
                segtree[curr].sum=0;
                segtree[curr].max=ar[left];
                segtree[curr].lca=ar[left];
                segtree[curr].size=1;
          }
          else
          {
                segtree[curr].sum=0;
                segtree[curr].max=-1;
                segtree[curr].lca=-1;
                segtree[curr].size=0;
          }
          return;
     }
     int mid=(left+right)/2;
     build(2*curr+1, left, mid, ar);
     build(2*curr+2, mid, right, ar);
     segtree[curr]=merge(segtree[2*curr+1], segtree[2*curr+
}
node sum(int lq,int rq,int node,int left,int right)
{
     if(lq>=right || rq<=left)</pre>
          return identity;
     if(left>=lq && rq>=right)
          return segtree[node];
     int mid=(left+right)/2;
```

```
return merge(sum(lq,rq,2*node+1,left,mid),sum(lq,rq,2
     }
     void operate(int lq,int rq,int curr,int left,int right)
     {
          if(lq>=right || rq<=left)</pre>
                     return;
          if(right-left==1)
          {
                int val=segtree[curr].lca;
                val=phi[val];
                segtree[curr].lca=val;
                segtree[curr].max=val;
                segtree[curr].sum=0;
                segtree[curr].size=1;
                return;
          }
          if(segtree[curr].max<=1)</pre>
                return;
          int mid=(left+right)/2;
          operate(lq,rq,2*curr+1,left,mid);
          operate(lq,rq,2*curr+2,mid,right);
          segtree[curr]=merge(segtree[2*curr+1], segtree[2*curr+
     }
};
segtree
```

```
    sextree

    https://thesobersobber.github.io/CP-Snippets/segtree

    github-snip-file

template<class T, class U>
// T -> node, U->update.
struct Lsegtree{
    vector<T>st;
    vector<U>lazy;
    11 n;
    T identity_element;
    U identity_update;
    /*
        Definition of identity_element: the element I such that
        for all x
        Definition of identity_update: the element I such that
        for all x
    * /
    Lsegtree(ll n, T identity_element, U identity_update){
        this->n = n;
        this->identity_element = identity_element;
        this->identity_update = identity_update;
        st.assign(4*n,identity_element);
        lazy.assign(4*n, identity_update);
    }
    T combine(T 1, T r){
        // change this function as required.
```

```
T \text{ ans} = (1 + r);
    return ans;
}
void buildUtil(ll v, ll tl, ll tr, vector<T>&a){
    if(tl == tr){
        st[v] = a[t1];
        return;
    }
    11 tm = (tl + tr) >> 1;
    buildUtil(2*v + 1, tl, tm,a);
    buildUtil(2*v + 2, tm+1, tr, a);
    st[v] = combine(st[2*v + 1], st[2*v + 2]);
}
// change the following 2 functions, and you're more or les
T apply(T curr, U upd, ll tl, ll tr){
    T ans = (tr-tl+1)*upd;
    // increment range by upd:
    // T ans = curr + (tr - tl + 1)*upd
    return ans;
}
U combineUpdate(U old_upd, U new_upd, ll tl, ll tr){
    U ans = old_upd;
    ans=new_upd;
    return ans;
}
void push_down(ll v, ll tl, ll tr){
    //for the below line to work, make sure the "==" operat
    if(lazy[v] == identity_update)return;
```

```
st[v] = apply(st[v], lazy[v], tl, tr);
    if(2*v + 1 \le 4*n){
        11 tm = (tl + tr) >> 1;
        lazy[2*v + 1] = combineUpdate(lazy[2*v+1], lazy[v],
        lazy[2*v + 2] = combineUpdate(lazy[2*v+2], lazy[v],
    }
    lazy[v] = identity_update;
}
T queryUtil(ll v, ll tl, ll tr, ll l, ll r){
    push_down(v,tl,tr);
    if(1 > r)return identity element;
    if(tr < l or tl > r){
         return identity_element;
    }
    if(1 \le t1 \text{ and } r \ge tr)
        return st[v];
    }
    11 tm = (tl + tr) >> 1;
    return combine(queryUtil(2*v+1,tl,tm,l,r), queryUtil(2*
}
void updateUtil(ll v, ll tl, ll tr, ll l, ll r, U upd){
    push_down(v,tl,tr);
    if(tr < 1 \text{ or } tl > r) return;
    if(tl >= l and tr <= r)
        lazy[v] = combineUpdate(lazy[v], upd, tl, tr);
        push_down(v,tl,tr);
    } else{
        11 tm = (tl + tr) >> 1;
        updateUtil(2*v+1, tl, tm, l, r, upd);
        updateUtil(2*v+2, tm+1, tr, 1, r, upd);
```

```
st[v] = combine(st[2*v + 1], st[2*v+2]);
        }
    }
    void build(vector<T>a){
        assert((11)a.size() == n);
        buildUtil(0,0,n-1,a);
    }
    T query(ll l, ll r){
        return queryUtil(0,0,n-1,l,r);
    }
    void update(ll 1,ll r, U upd){
        updateUtil(0,0,n-1,l,r,upd);
    }
};
seive
  seive
  • https://thesobersobber.github.io/CP-Snippets/seive

    github-snip-file

vector<bool> Prime;
vector<int> spf;
void sieve(int s = maxn) {
    Prime.resize(s + 1, 1);
    spf.resize(s + 1, s + 1);
    for(int i = 2 ; i \le s ; i++) if(Prime[i]) {
        spf[i] = min(spf[i], i);
```

tokenizer

- tokenizer that has no use
- https://thesobersobber.github.io/CP-Snippets/tokenizer
- github-snip-file

```
vec(string) tokenizer(string str,char ch) {std::istringstream v
```

totient-seive

- totient-seive
- https://thesobersobber.github.io/CP-Snippets/totient-seive
- github-snip-file

```
for (int i = 1; i < MN; i++)
  phi[i] = i;

for (int i = 1; i < MN; i++)
  if (!sieve[i]) // is prime
    for (int j = i; j < MN; j += i)
    phi[j] -= phi[j] / i;</pre>
```

totient

totient

```
    https://thesobersobber.github.io/CP-Snippets/totient

  • github-snip-file
long long totient(long long n) {
  if (n == 1) return 0;
  long long ans = n;
  for (int i = 0; primes[i] * primes[i] <= n; ++i) {</pre>
    if ((n % primes[i]) == 0) {
      while ((n \% primes[i]) == 0) n /= primes[i];
      ans -= ans / primes[i];
    }
  }
  if (n > 1) {
    ans -= ans / n;
  }
  return ans;
}
trie
  trie
  • https://thesobersobber.github.io/CP-Snippets/trie
  • github-snip-file
struct Trie{
    struct node{
        node* next[10];
        node(){
             for(int i=0;i<10;i++) next[i]=NULL;</pre>
        }
    };
```

```
node root;
    void add(vector<int>&val){
        node* temp=&root;
        for(auto ele : val){
             if(temp->next[ele]==NULL) temp->next[ele]=new node(
             temp=temp->next[ele];
        }
    }
    int query(vector<int>&val){
        node* temp=&root;
        int ans=0;
        for(auto ele : val){
             if(temp->next[ele]==NULL) break;
             ans++;
             temp=temp->next[ele];
        }
        return ans;
    }
};
troll
  troll

    https://thesobersobber.github.io/CP-Snippets/troll

    github-snip-file

// Assembly Generator: gcc -S -o temp.s fileName.cpp
// Executable: gcc -o temp.exe fileName.cpp
```

```
#define assembler(x) \_asm\_(R"(x)");
// real source -
two-sat (kosaraju)

    two-sat (kosaraju)

    https://thesobersobber.github.io/CP-Snippets/two-sat (kosar

  • github-snip-file
/**
 * Given a set of clauses (a1 v a2)^(a2 v \neg a3)...
 * this algorithm find a solution to it set of clauses.
 * test: http://lightoj.com/volume_showproblem.php?problem=125
 **/
#include<bits/stdc++.h>
using namespace std;
#define MAX 100000
#define endl '
vector<int> G[MAX];
vector<int> GT[MAX];
vector<int> Ftime;
vector<vector<int> > SCC;
bool visited[MAX];
int n;
void dfs1(int n){
  visited[n] = 1;
```

```
for (int i = 0; i < G[n].size(); ++i) {
    int curr = G[n][i];
    if (visited[curr]) continue;
    dfs1(curr);
  }
  Ftime.push_back(n);
}
void dfs2(int n, vector<int> &scc) {
  visited[n] = 1;
  scc.push_back(n);
  for (int i = 0; i < GT[n].size(); ++i) {
    int curr = GT[n][i];
    if (visited[curr]) continue;
    dfs2(curr, scc);
  }
}
void kosaraju() {
  memset(visited, 0, sizeof visited);
  for (int i = 0; i < 2 * n ; ++i) {
    if (!visited[i]) dfs1(i);
  }
  memset(visited, 0, sizeof visited);
  for (int i = Ftime.size() - 1; i >= 0; i--) {
    if (visited[Ftime[i]]) continue;
```

```
vector<int> _scc;
    dfs2(Ftime[i],_scc);
    SCC.push_back(_scc);
}
/**
 * After having the SCC, we must traverse each scc, if in one
 * Otherwise we build a solution, making the first "node" that
 **/
bool two_sat(vector<int> &val) {
  kosaraju();
  for (int i = 0; i < SCC.size(); ++i) {
    vector<bool> tmpvisited(2 * n, false);
    for (int j = 0; j < SCC[i].size(); ++j) {
      if (tmpvisited[SCC[i][j] ^ 1]) return 0;
      if (val[SCC[i][j]] != -1) continue;
      else {
        val[SCC[i][j]] = 0;
        val[SCC[i][j] ^ 1] = 1;
      }
      tmpvisited[SCC[i][j]] = 1;
    }
  }
  return 1;
}
// Example of use
int main() {
```

```
int m, u, v, nc = 0, t; cin >> t;
// n = "nodes" number, m = clauses number
while (t--) {
  cin >> m >> n;
  Ftime.clear();
  SCC.clear();
  for (int i = 0; i < 2 * n; ++i) {
   G[i].clear();
   GT[i].clear();
  }
  // (a1 v a2) = (\nega1 -> a2) = (\nega2 -> a1)
  for (int i = 0; i < m; ++i) {
    cin >> u >> v;
    int t1 = abs(u) - 1;
    int t2 = abs(v) - 1;
    int p = t1 * 2 + ((u < 0)? 1 : 0);
    int q = t2 * 2 + ((v < 0)? 1 : 0);
    G[p \land 1].push_back(q);
    G[q \land 1].push_back(p);
    GT[p].push_back(q \land 1);
    GT[q].push_back(p \land 1);
  }
  vector<int> val(2 * n, -1);
  cout << "Case " << ++nc <<": ";
  if (two_sat(val)) {
    cout << "Yes" << endl;</pre>
    vector<int> sol;
    for (int i = 0; i < 2 * n; ++i)
```

variadic

- variadic lambdas with 1 and 2 arguments
- https://thesobersobber.github.io/CP-Snippets/variadic
- github-snip-file

```
#define f(u, args...) [&](auto &&u) { return args; }
#define g(u, v, args...) [&](auto &&u, auto &&v) { return args
```

xor-basis

- xor-basis
- https://thesobersobber.github.io/CP-Snippets/xor-basis
- github-snip-file

```
struct XorBasis{
    private:
    vector<ll> basis;
    int lg;
    int sz = 0;
    public:
    XorBasis(int lg) : lg(lg){
        basis.resize(lg);
    }
    void add(ll x){
        if(x >= (111 << lg)) return;
        for(int i=0;i<lg;i++){</pre>
             if(~x&(1ll<<i)) continue;
             if(!basis[i]){
                 basis[i] = x;
                 ++SZ;
            x^=basis[i];
        }
    }
    bool contains(ll x){
        for(int i=0;i<lg;i++){</pre>
             if(~x&(1ll<<i)) continue;</pre>
             if(!basis[i]){
                 return false;
             }
             x^=basis[i];
        return true;
    int size(){
```

```
return sz;
}
const vector<ll>::iterator begin(){
   return basis.begin();
}
const vector<ll>::iterator end(){
   return basis.end();
}
};
```