

 Álgebra Linear
 LCC
 Teste 1
 Duração: 1h45
 [Teste modelo A]
 Universidade do Minho Escola de Olências

| Nome:                                                                                                                                                                                                       |                                                                                   | Número:                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grupo I                                                                                                                                                                                                     |                                                                                   |                                                                                                                                                           |
| correta é atribuída uma cotação de 1                                                                                                                                                                        | 1.25 valores (ape                                                                 | enas uma das opções de resposta. A uma resposta<br>enas uma resposta está correta) e a uma resposta<br>a cotação mínima total deste grupo de $0$ valores. |
| 1. As matrizes $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ e $B$                                                                                                                                     | $= \begin{bmatrix} a & 1 \\ 0 & 1 \end{bmatrix}$                                  |                                                                                                                                                           |
| são comutáveis para qua                                                                                                                                                                                     | alquer $a \in \mathbb{R}$ .                                                       | $\Box$ B é a inversa de A se $a=0$ .                                                                                                                      |
| são ambas invertíveis.                                                                                                                                                                                      |                                                                                   | são comutáveis se $a=2$ .                                                                                                                                 |
| 2. Para uma matriz quadrada d<br>matriz $I_n - A$ é a matriz                                                                                                                                                | le ordem $n$ tal $\alpha$                                                         | que $A^3 = O$ e $A^p \neq O$ para $p < 3$ , a inversa da                                                                                                  |
|                                                                                                                                                                                                             |                                                                                   | $A^3 + 2I_n$ .                                                                                                                                            |
| $I_n + A$ .                                                                                                                                                                                                 |                                                                                   |                                                                                                                                                           |
| 3. Se $A$ e $B$ são matrizes de ordem $n>1$ tais que $AB=2I_n$ , então                                                                                                                                      |                                                                                   |                                                                                                                                                           |
| $\square$ A e B não são matrizes                                                                                                                                                                            | invertíveis.                                                                      |                                                                                                                                                           |
| A é invertível e $A^{-1} = 2B$ .                                                                                                                                                                            |                                                                                   | A é invertível e $A^{-1} = \frac{1}{2}B$ .                                                                                                                |
| 4. Se $A$ e $B$ são matrizes de ordem 4 tais que $\det(A)=2$ e $\det(B)=3$ , então                                                                                                                          |                                                                                   |                                                                                                                                                           |
|                                                                                                                                                                                                             |                                                                                   |                                                                                                                                                           |
|                                                                                                                                                                                                             | , <u>-</u>                                                                        |                                                                                                                                                           |
| 5. Se $\begin{bmatrix} 1 & -2 & 4 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & \alpha+1 & \beta-2 \end{bmatrix}$ é a matriz ampliada de um sistema de equações lineares, com $\alpha$ e $\beta$ parâmetros reais, então |                                                                                   |                                                                                                                                                           |
| o sistema é sempre possível.                                                                                                                                                                                |                                                                                   | o sistema é possível e indeterminado se                                                                                                                   |
| o sistema é possível e determinado se $\alpha = -1$ e $\beta = 2$ .  o sistema é impossível se $\alpha \neq -1$ .                                                                                           |                                                                                   |                                                                                                                                                           |
| _                                                                                                                                                                                                           | 7                                                                                 |                                                                                                                                                           |
| 6. A característica da matriz                                                                                                                                                                               | $\left. egin{array}{cccc} 1 & 1 & 1 & 1 \ 0 & a & 0 \end{array} \right ,  { m c}$ | om $a, b \in \mathbb{R}$ , é igual a                                                                                                                      |

## Grupo II

Neste grupo as respostas a todos as questões devem ser devidamente justificadas.

1. [1.5 valores] Sejam A e B matrizes reais de ordem n invertíveis, tais que B é simétrica e  $A+B=I_n$ . Mostre que

$$A\left(B - B^{-1}B\right)^T = -A^2.$$

(Recorde que uma matriz quadrada se diz simétrica se for igual à sua transposta).

2. [2.5 valores] Considere o sistema de equações lineares nas incógnitas x,y,z e w com a seguinte matriz ampliada:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 0 & -1 \\ -2 & 0 & 3 & 0 & 1 \\ 0 & 1 & 3 & 1 & 3 \\ 1 & 2 & 4 & 2 & 4 \end{bmatrix}$$

- (a) Verifique que (4, -6, 3, 0) é solução do sistema.
- (b) Use o método de eliminação de Gauss para verificar que se trata de um sistema possível e indeterminado. Obtenha a solução geral do sistema.
- 3. [4 valores] Considere a matriz invertível  $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix}$ .
  - (a) Use o método de eliminação de Gauss-Jordan para determinar  $A^{-1}$ .
  - (b) Use  $A^{-1}$  para resolver o sistema de equações lineares Ax = b com  $b = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$ . Nota: Caso não tenho respondido à alínea a), resolva o sistema usando o método de eliminação de Gauss.
  - (c) A partir de  $A^{-1}$  obtenha a inversa da matriz 2A e da matriz  $A^T$ .
- 4. [3 valores] Considere a matriz

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

- (a) Mostre que A é invertível.
- (b) Sem calcular  $\operatorname{adj}(A)$  nem  $A^{-1}$ , determine o elemento na posição (2,1) de cada uma destas matrizes.
- (c) Use a regra de Cramer para obter o valor da incógnita  $x_3$  do sistema  $Ax = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}^T$  (sem resolver completamente o sistema).
- 5. [1.5 valores] Seja  $A \in \mathcal{M}_{n \times n}(\mathbb{R})$  uma matriz ortogonal, isto é, tal que  $AA^T = A^TA = I_n$ . Justifique que se  $n \geq 2$ , então

 $^{2}$ 

$$\operatorname{adj}(A) = A^T$$
 ou  $\operatorname{adj}(A) = -A^T$ .