SUPPORT VECTOR MACHINES-ML METHOD

Contents

- 1. Introduction to Support Vector Machine (SVM)
- 2. Understanding Hyper Planes
 - i. What is a Hyper Plane
 - ii. Hyper Plane Separation
- 3. Linear Separators
 - . Classification Margin
- 4. Mathematical Approach to Linear SVM
- 5. SVM in R
 - i. SVM Modeling
 - i. ROC and Area Under ROC Curve

Introduction to Support Vector Machines

- Support Vector Machines (SVM's) are a relatively new learning method generally used for classification problem.
- Although the first paper dates way back to early 1960's it is only in 1992-1995 that
 this powerful method was universally adopted as a mainstream machine learning
 paradigm

The basic idea is to find a hyper plane which separates the ddimensional data perfectly into its classes.

What is a Hyper Plane

In two dimensions, a hyper plane is defined by the equation:

$$W_1 X_1 + W_2 X_2 + b = 0$$

This is nothing but equation of line.

The above equation can be easily extended to the p-dimensional setting:

$$W_1 X_1 + W_2 X_2 + ... + W_p X_p + b = 0$$

In short,

$$W^TX+b=0$$

In p > 3 dimensions, it can be hard to visualize a hyper planes.

Separating a Hyper Plane

• Binary classification can be viewed as the task of separating classes in feature space:

Fig. 01: Binary Classification

Linear Separators

The objective in SVM is to find optimum separator

Fig. 02: Linear Separators

Classification Margin

• Distance from case \mathbf{x}_i to the separator is

$$r = \frac{w^T x_i + b}{\parallel w \parallel}$$

Here is length of a vector given by sqrt(sum(W^2))

- Cases closest to the hyper plane are Support Vectors
- Margin ρ of the separator is the distance between support vectors

Maximum Margin Classification

- The objective is now to maximize the margin ρ of the separator
- The focus is on 'Support Vectors'
- Other cases are not considered in the algorithm

Mathematical Approach to Linear SVM

Let training set be separated by a hyper plane with margin. Then for each training observation

$$\leftrightarrow y_i(w^T x_i + b) \ge \rho/2$$

For every support vector the above inequality is an equality

After rescaling and by in the equality, we obtain that distance between each and the hyper plane is
$$r = \frac{y_i(w \ \dot{\iota} \ \dot{\iota} \ T \ x_s + b)}{\| \ w \|} = \frac{1}{\| \ w \|} \dot{\iota}$$

Margin can be expressed through (

$$\rho = 2r = \frac{2}{\parallel w \parallel}$$

Mathematical Approach to Linear SVM

Quadratic Optimisation problem is:

Find and such that is maximised and

which can be reformulated as:

Find and such that is minimised and

Case Study – Predicting Loan Defaulters

Background

• The bank possesses demographic and transactional data of its loan customers. If the bank has a robust model to predict defaulters it can undertake better resource allocation.

Objective

• To predict whether the customer applying for the loan will be a defaulter

Available Information

- Sample size is 700
- Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts are the independent variables
- **Defaulter** (=1 if defaulter, 0 otherwise) is the dependent variable

Data Snapshot

BANK LOAN

Independent Variables

Dependent Variable

	SN AGE EMPLOY ADDRESS DEBTINC CREDDEBT OTHDEBT DEFAULTER				
Column	Description	Type	Measurement	Possible Values	
SN	Serial Number	-	-	-	
AGE	Age Groups	Integer	1(<28 years),2(28- 40 years),3(>40	3	
EMPLOY	Number of years customer working at	Integer	-	Positive value	
ADDRESS	Number of years customer staying at	Integer	-	Positive value	
DEBTINC	Debt to Income Ratio	Continuou s	-	Positive value	
CREDDEBT	Credit to Debit Ratio	Continuou s	-	Positive value	
OTHDEBT	Other Debt	Continuou	-	Positive value	

SVM in R

Importing and Readying the Data

str() is used to check if the conversion to factor has taken place and if all other variable formats are appropriate, before moving to SVM modeling.

Output

```
'data.frame': 700 obs. of 8 variables:
$ SN : int 1 2 3 4 5 6 7 8 9 10 ...
$ AGE : Factor w/ 3 levels "1","2","3": 3 1 2 3 1 3 2 3 1 2 ...
$ EMPLOY : int 17 10 15 15 2 5 20 12 3 0 ...
$ ADDRESS : int 12 6 14 14 0 5 9 11 4 13 ...
$ DEBTINC : num 9.3 17.3 5.5 2.9 17.3 10.2 30.6 3.6 24.4 19.7 ...
$ CREDDEBT : num 11.36 1.36 0.86 2.66 1.79 ...
$ OTHDEBT : num 5.01 4 2.17 0.82 3.06 ...
$ DEFAULTER: int 1 0 0 0 1 0 0 0 1 0 ...
```


SVM in R

```
# SVM Using Package "e1071"
install.packages("e1071")
library(e1071)
model<-svm(formula=DEFAULTER~AGE+EMPLOY+ADDRESS+</pre>
          DEBTINC+CREDDEBT+OTHDEBT, data=bankloan,
          type="C",probability=TRUE,kernel="linear")
                    svm() trains a support vector machine.
                 formula= gives the model to be fit.
                    data= specifies the data object.
Model
                    type= specifies whether SVM is used for classification
coef(model)
                    or regression or novelty detection. Default for type= is
                    probability= logical for indicating whether model
                    should allow for probability predictions.
                    kernel= specifies the kernel used in training and
                    predicting. Here, we have kept kernel as linear.
```

NCE

SVM in R

Output

```
> model

Call:
svm(formula = DEFAULTER ~ AGE + EMPLOY + ADDRESS + DEBTINC + CREDDEBT + OTHDEBT,
    data = bankloan, type = "C", probability = TRUE,
        kernel = "linear")

Parameters:
    SVM-Type: C-classification
SVM-Kernel: linear
        cost: 1

Number of Support Vectors: 312
```


Predictions Based on SVM

Predictions

- attr(), from base R, is used get or set specific attributes of an object.
 Here, we want to get the predicted probabilities obtained by the svm() model.
- First argument is the name of the object whose attributes we want to extract.
- Second argument is the character string specifying which attribute is to be accessed. Check **pred1** to know the exact name, which is

ROC Curve and Area Under ROC Curve

#ROC Curve

```
install.packages("ROCR")
library(ROCR)

pred<-prediction(pred2,bankloan$DEFAULTER)

perf<-performance(pred,"tpr","fpr")

plot(perf)
abline(0,1)</pre>
```

- prediction() creates
 object of class prediction,
 required for ROC curve.
 performance() calculates
 predictor evaluations.
- Using measure="tpr", measure="fpr" we can plot an ROC Curve.
- abline() adds a straight line to the plot.

ROC Curve and Area Under ROC Curve

Output

Area Under ROC Curve

```
auc<-performance(pred, "auc")
auc@y.values
[[1]]
[1] 0.855577</pre>
```

"auc" in performance() calculates Area Under ROC Curve.

Quick Recap

Support Vector Machines • SVMs find a hyper plane which separates the ddimensional data perfectly into its classes

SVM in R

- Package "e1071" has svm() that trains a support vector machine
- The function takes arguments to specify whether **svm()** is to be used for classification or regression; if probabilities are to be returned and which kernel to use for training and predicting

THANK YOU!!

