Lógica Formal: Semântica e Leis De Morgan

CCMP0133 - Aula 04

Prof. Valdigleis S. Costa valdigleis.costa@univasf.edu.br

24 de maio de 2022

Universidade Federal do Vale do São Francisco Colegiado de Ciência da Computação *Campus* Salgueiro-PE

Roteiro

Um Pouco de Sintaxe e Semântica por Tabelas Verdade

Tabela verdade estendida

Leis De Morgan e Identidades Notáveis

Um Pouco de Sintaxe e Semântica

por Tabelas Verdade

O Básico

Definição (Sintaxe)

Seja $\Sigma = \{ \alpha_i \mid i \in \mathbb{N}, \alpha \in Alfabeto \ latino \} \cup \{ \alpha \mid \alpha \in Alfabeto \ latino \}$ o conjunto dos símbolos proposicionais, a linguagem proposicional L_{Prop} é o menor conjunto gerado pelas seguintes regras:

- Todo $\alpha \in \Sigma$ é tal que $\alpha \in L_{Prop}$.
- Se $\alpha, \beta \in L_{Prop}$, então $(\alpha \wedge \beta) \in L_{Prop}$.
- Se $\alpha, \beta \in L_{Prop}$, então $(\alpha \vee \beta) \in L_{Prop}$.
- Se $\alpha, \beta \in L_{Prop}$, então $(\alpha \Rightarrow \beta) \in L_{Prop}$.
- Se $\alpha \in L_{Prop}$, então $(\neg \alpha) \in L_{Prop}$.

O Básico

Definição (Sintaxe)

Seja $\Sigma = \{ \alpha_i \mid i \in \mathbb{N}, \alpha \in Alfabeto \ latino \} \cup \{ \alpha \mid \alpha \in Alfabeto \ latino \}$ o conjunto dos símbolos proposicionais, a linguagem proposicional L_{Prop} é o menor conjunto gerado pelas seguintes regras:

- Todo $\alpha \in \Sigma$ é tal que $\alpha \in L_{Prop}$.
- Se $\alpha, \beta \in L_{Prop}$, então $(\alpha \wedge \beta) \in L_{Prop}$.
- Se $\alpha, \beta \in L_{Prop}$, então $(\alpha \vee \beta) \in L_{Prop}$.
- Se $\alpha, \beta \in L_{Prop}$, então $(\alpha \Rightarrow \beta) \in L_{Prop}$.
- Se $\alpha \in L_{Prop}$, então $(\neg \alpha) \in L_{Prop}$.

Observação: Os parênteses mais externos podem ser removidos sem qualquer problema de representação.

2

Tabela verdade para o \wedge

Dado $P,Q\in\Sigma$ a interpretação de $(P\wedge Q)$ é dada pela tabela verdade a seguir.

\wedge	P = 0	P=1
Q = 0	0	0
Q = 1	0	1

Tabela 1: Tabela verdade para a semântica do \wedge .

Tabela verdade para o \lor

Dado $P,Q \in \Sigma$ a interpretação de $(P \lor Q)$ é dada pela tabela verdade a seguir.

V	P = 0	P=1
Q = 0	0	1
Q = 1	1	1

Tabela 2: Tabela verdade para a semântica do \vee .

Tabela verdade para a \Rightarrow

Dado $P,Q \in \Sigma$ a interpretação de $(P \Rightarrow Q)$ é dada pela tabela verdade a seguir.

\Rightarrow	P = 0	P=1
Q = 0	1	0
Q = 1	1	1

Tabela 3: Tabela verdade para a semântica da \Rightarrow .

Tabela verdade para a ¬

Dado $P \in \Sigma$ a interpretação de $\neg(P)$ é dada pela tabela verdade a seguir.

Р	$\neg(P)$
0	1
1	0

Tabela 4: Tabela verdade para a semântica da ¬.

Bi-implicação como Relação de Equivalência

Definição

Duas palavras $\alpha, \beta \in L_{Prop}$ são ditas equivalentes semanticamente, denotado por $\alpha \Leftrightarrow \beta$, sempre que suas tabelas verdades forem iguais em todos as suas linhas.

Tabela verdade estendida

O Problema

Como seria a construção das tabelas para as palavras:

- $\neg(Q \land S) \Rightarrow P$
- $P \wedge (Q \vee R)$
- $(P \Rightarrow (P \land \neg Q)) \lor S$
- $((P_1 \wedge P_2) \wedge (P_3 \wedge (P_4 \wedge P_5))) \Rightarrow \neg (\neg P_3 \vee (P_6 \wedge P_7))$

Definições Básicas (1)

Definição

Seja $\alpha \in L_{Prop}$ o conjunto das sub-palavras de α , denotado por Sub_{α} , é o menor conjunto indutivamente gerado pelas seguintes regras:

- R1. Se $\alpha \in \Sigma_s \cup \{\bot\}$, então Sub $\alpha = \{\alpha\}$.
- R2. Se $\alpha = \neg \beta$ com $\beta \in L_{Prop}$, então $\neg \beta, \beta \in Sub_{\alpha}$ e todo $\alpha_i \in Sub_{\beta}$ é tal que $\alpha_i \in Sub_{\alpha}$.
- R3. $Se \ \alpha = \beta \bullet \gamma \ com \bullet \in \{\land, \lor, \Rightarrow\} \ e \ \beta, \gamma \in L_{Prop}, \ ent\ \tilde{ao} \ \beta \bullet \gamma, \beta, \gamma \in Sub_{\alpha} \ e \ todo \ \alpha_i \in Sub_{\beta} \cup Sub_{\gamma} \ \acute{e} \ tal \ que \ \alpha_i \in Sub_{\alpha}.$

Determine o conjunto das sub-palavras para as palavras

- $\neg (P \lor Q) \land P$.
- $R \wedge (S \Rightarrow (Q \vee T))$.

Definições Básicas (2)

Definição (Átomos)

Todo $\alpha \in L_{Prop}$ tal que $\alpha \in \Sigma_s \cup \{\bot\}$ é chamado de átomo.

Definições Básicas (2)

Definição (Átomos)

Todo $\alpha \in L_{Prop}$ tal que $\alpha \in \Sigma_s \cup \{\bot\}$ é chamado de átomo.

Definição (Conjunto dos átomos)

Seja $lpha \in \mathsf{L}_{\mathsf{Prop}}$ o conjunto dos átomos de lpha corresponde ao conjunto

$$Ato_{\alpha} = Sub_{\alpha} \cap (\Sigma_s \cup \{\bot\}).$$

Dado a palavra $P\Rightarrow (\neg Q\Rightarrow (P\lor T))$ tem-se:

(a) As sub-palavras de $P\Rightarrow (\neg Q\Rightarrow (P\lor T))$ formam o conjunto:

Dado a palavra $P \Rightarrow (\neg Q \Rightarrow (P \lor T))$ tem-se:

(a) As sub-palavras de $P \Rightarrow (\neg Q \Rightarrow (P \lor T))$ formam o conjunto:

$$\{P,Q,T,\neg Q,P\vee T,\neg Q\Rightarrow (P\vee T),P\Rightarrow (\neg Q\Rightarrow (P\vee T))\}$$

(b) Os átomos de $P \Rightarrow (\neg Q \Rightarrow (P \lor T))$ formam o conjunto:

Dado a palavra $P \Rightarrow (\neg Q \Rightarrow (P \lor T))$ tem-se:

(a) As sub-palavras de $P \Rightarrow (\neg Q \Rightarrow (P \lor T))$ formam o conjunto:

$$\{P,Q,T,\neg Q,P\vee T,\neg Q\Rightarrow (P\vee T),P\Rightarrow (\neg Q\Rightarrow (P\vee T))\}$$

(b) Os átomos de $P \Rightarrow (\neg Q \Rightarrow (P \lor T))$ formam o conjunto:

$$\{P,Q,T\}$$

Algoritmo para Construir Tabelas Estendidas

Dado uma palavra $\alpha \in L_{Prop} - \Sigma$ execute os seguintes passos:

- 1. Se α possui n átomos então nas n primeiras colunas distribua os átomos de α .
- 2. Escolha uma ordem das palavras em $(Sub_{\alpha} Ato_{\alpha})$ e para cada $\beta \in (Sub_{\alpha} Ato_{\alpha})$ construa uma nova coluna na tabela e rotule a mesma por β .
- 3. Preencha a tabela.

Construa as tabelas estendidas para as tabelas:

•
$$\neg(Q \land S) \Rightarrow P$$

•
$$P \wedge (Q \vee R)$$

•
$$(P \Rightarrow (P \land \neg Q)) \lor S$$

Pontos Sobre as Tabelas Verdade

- Crescimento exponencial das linhas com respeito ao número de símbolos proposicionais.
- Crescimento linear nas colunas referente ao número de sub-palavras.
- Dado o crescimento exponencial se torna rapidamente um algoritmo intratável.
- Não exibe facilmente as propriedades algébricas.

Leis De Morgan e Identidades

Notáveis

Leis De Morgan

Definição (Negação da Conjunção)

Seja α e β duas palavras quaisquer de L_{Prop} , tem-se que a negação da conjunção de α e β é semanticamente equivalente a disjunção das negações de α e β , em símbolos tem-se que:

$$\neg(\alpha \land \beta) \Leftrightarrow \neg\alpha \lor \neg\beta$$

Definição (Negação da Disjunção)

Seja α e β duas palavras quaisquer de L_{Prop} , tem-se que a negação da disjunção de α e β é semanticamente equivalente a conjunção das negações de α e β , em símbolos tem-se que:

$$\neg(\alpha \lor \beta) \Leftrightarrow \neg\alpha \land \neg\beta$$

Identidades Notáveis

Dado $\alpha, \beta \in L_{Prop}$

•
$$\alpha \Rightarrow \beta \Leftrightarrow \neg \alpha \vee \beta$$
.

- $\neg \neg \alpha \Leftrightarrow \alpha$.
- $\alpha \wedge \beta \Leftrightarrow \beta \wedge \alpha$.
- $\alpha \vee \beta \Leftrightarrow \beta \vee \alpha$.
- $\neg \alpha \lor \alpha \Leftrightarrow \top$.
- $\neg \alpha \land \alpha \Leftrightarrow \bot$.

Observação: os símbolos \top e \bot representam respectivamente a tautologia e o absurdo (ou contradição).