Machine Intelligence 1 - Exercise 3: Multilayer Perceptrons and Backpropagation Algorithm

Liu, Zhiwei 387571 Moon, Chulhyun 392865 Wenzel, Daniel 365107 Ozmen, Cengizhan 388011

Pipo, Aiko 390011

November 8, 2017

H3.1 Binary Classification (3 Points)

(a)

We can simply derivate the given function $e^{(\alpha)}$:

$$\begin{split} \frac{\delta e^{(\alpha)}}{\delta y(\underline{x}^{(\alpha)};\underline{w}))} &= -\frac{y_T^{(\alpha)}}{y(\underline{x}^{(\alpha)};\underline{w})} - (1 - y_T^{(\alpha)}) \left(-\frac{1}{1 - y(\underline{x}^{(\alpha)};\underline{w})} \right) \\ &= -\frac{y_T^{(\alpha)}}{y(\underline{x}^{(\alpha)};\underline{w})} - \frac{1 - y_T^{(\alpha)}}{1 - y(\underline{x}^{(\alpha)};\underline{w})} \\ &= -\frac{y_T^{(\alpha)}(1 - y(\underline{x}^{(\alpha)};\underline{w})) - (1 - y_T^{(\alpha)})y(\underline{x}^{(\alpha)};\underline{w})}{y(\underline{x}^{(\alpha)};\underline{w})(1 - y(\underline{x}^{(\alpha)};\underline{w})} \\ &= -\frac{y_T^{(\alpha)} - y_T^{(\alpha)}y(\underline{x}^{(\alpha)};\underline{w}) - y(\underline{x}^{(\alpha)};\underline{w}) + y_T^{(\alpha)}y(\underline{x}^{(\alpha)};\underline{w})}{y(\underline{x}^{(\alpha)};\underline{w})(1 - y(\underline{x}^{(\alpha)};\underline{w}))} \\ &= -\frac{y_T^{(\alpha)} - y(\underline{x}^{(\alpha)};\underline{w})}{y(\underline{x}^{(\alpha)};\underline{w})(1 - y(\underline{x}^{(\alpha)};\underline{w}))} \\ &= \frac{y(\underline{x}^{(\alpha)};\underline{w}) - y_T^{(\alpha)}}{y(\underline{x}^{(\alpha)};\underline{w})(1 - y(\underline{x}^{(\alpha)};\underline{w}))} \end{split}$$

(b)

Again, a simple derivation yields:

$$\begin{split} f'(h_1^2) &= -\frac{1}{(1+e^{-h_1^2})^2} \cdot \left(-e^{-h_1^2}\right) \\ &= \frac{1}{1+e^{-h_1^2}} \cdot \frac{e^{-h_1^2}}{1+e^{-h_1^2}} \\ &= f(h_1^2) \cdot \frac{1+e^{-h_1^2}-1}{1+e^{-h_1^2}} \\ &= f(h_1^2) \left(\frac{1+e^{-h_1^2}}{1+e^{-h_1^2}} - \frac{1}{1+e^{-h_1^2}}\right) \\ &= f(h_1^2)(1-f(h_1^2)) \end{split}$$

(c)

First, we look at the derivative of $e^{(\alpha)}$ again:

$$\frac{\delta e^{(\alpha)}}{\delta w_{1j}^{21}} = \frac{y_T^{(\alpha)}}{y(\underline{x}^{(\alpha)};\underline{w})} \left(\frac{\delta y(\underline{x}^{(\alpha)};\underline{w})}{\delta w_{1j}^{21}} \right) - \frac{1 - y_T^{(\alpha)}}{1 - y(\underline{x}^{(\alpha)};\underline{w})} \left(\frac{\delta y(\underline{x}^{(\alpha)};\underline{w})}{\delta w_{1j}^{21}} \right)$$

We now look at the derivative for $y(\underline{x}^{(\alpha)};\underline{w})=S_1^2=f_1^2(h_1^2)$:

$$\frac{\delta y(\underline{x}^{(\alpha)};\underline{w})}{\delta w_{1j}^{21}} = \left(\frac{\delta}{\delta h_1^2} f_1^2(h_1^2)\right) \left(\frac{\delta}{\delta w_{1j}^{21}} h_1^2\right)$$

With the knowledge from (b) we can simplify this to

$$\frac{\delta y(\underline{x}^{(\alpha)};\underline{w})}{\delta w_{1j}^{21}} = f_1^2(h_1^2)(1 - f_1^2(h_1^2)) \left(\frac{\delta}{\delta w_{1j}^{21}} h_1^2\right).$$

Transforming back and adding the explicit form for h_1^2 , we obtain

$$\frac{\delta y(\underline{x}^{(\alpha)};\underline{w})}{\delta w_{1j}^{21}} = y(\underline{x}^{(\alpha)};\underline{w})(1-y(\underline{x}^{(\alpha)};\underline{w})) \left(\frac{\delta}{\delta w_{1j}^{21}} \sum_{i=0}^{N} w_{1i}^{21} \cdot S_{i}^{1}\right),$$

and thus

$$\frac{\delta y(\underline{x}^{(\alpha)};\underline{w})}{\delta w_{1j}^{21}} = y(\underline{x}^{(\alpha)};\underline{w})(1 - y(\underline{x}^{(\alpha)};\underline{w}))S_j^1.$$

Now, plugging this back into our original derivation we get

$$\begin{split} \frac{\delta e^{(\alpha)}}{\delta w_{1j}^{21}} &= \frac{y_T^{(\alpha)}}{y(\underline{x}^{(\alpha)};\underline{w})} y(\underline{x}^{(\alpha)};\underline{w}) (1 - y(\underline{x}^{(\alpha)};\underline{w})) S_j^1 - \frac{1 - y_T^{(\alpha)}}{1 - y(\underline{x}^{(\alpha)};\underline{w})} y(\underline{x}^{(\alpha)};\underline{w}) (1 - y(\underline{x}^{(\alpha)};\underline{w})) S_j^1 \\ &= \left((1 - y_T^{(\alpha)}) y(\underline{x}^{(\alpha)};\underline{w}) - y_T^{(\alpha)} (1 - y(\underline{x}^{(\alpha)};\underline{w})) \right) S_j^1 \\ &= \left(y(\underline{x}^{(\alpha)};\underline{w}) - y_T^{(\alpha)} y(\underline{x}^{(\alpha)};\underline{w}) - y_T^{(\alpha)} + y_T^{(\alpha)} y(\underline{x}^{(\alpha)};\underline{w}) \right) S_j^1 \\ &= \left(y(\underline{x}^{(\alpha)};\underline{w}) - y_T^{(\alpha)} \right) S_j^1 \end{split}$$