R&S®FSWP Phase Noise Analyzer and VCO Tester Instrument Security Procedures

This document describes the types of memory and their use in the R&S®FSWP.

While every effort has been made to ensure the accuracy of the information herein, it is provided without warranty. Design iteration and revisions may result in minor differences between the information provided here and your product.

© 2022 Rohde & Schwarz GmbH & Co. KG Muehldorfstr. 15, 81671 Muenchen, Germany

Phone: +49 89 41 29 - 0 Email: info@rohde-schwarz.com Internet: www.rohde-schwarz.com

Subject to change – data without tolerance limits is not binding. R\&S^@ is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

Trade names are trademarks of the owners.

1177.5704.02 | Version 04 | R&S®FSWP

Throughout this document, products from Rohde & Schwarz are indicated without the [®] symbol , e.g. R&S[®]FSWP is indicated as R&S FSWP.

Contents

1	Overview	3
2	Instrument Models Covered	4
3	Security terms and definitions	4
4	Statement of volatility	5
5	Instrument sanitization procedure	7
6	Operability outside the secured area	8
7	Validity of instrument calibration after sanitization	9
8	Special security features	9
	Glossary	10
	Index	10

1 Overview

Securing important information is crucial in many applications.

Generally, highly secured environments do not allow any test equipment to leave the area unless it can be proven that no user information leaves with the test equipment, e.g. to be calibrated.

"Regarding sanitization, the principal concern is ensuring that data is not unintentionally released" [1].

This document provides a statement regarding the volatility of the memory types used and specifies the steps required to sanitize an instrument.

The procedures in this document follow "NIST Special Publication 800-88: Guidelines for Media Sanitization" [1].

In addition, recommendations are provided to safeguard information on the R&S FSWP.

References

See the following literature for further information.

- [1] Kissel Richard L. [et al.] Guidelines for Media Sanitization = Special Publication (NIST SP) = NIST SP 800-88 Rev 1. Gaithersburg : [s.n.], December 17, 2014.
- [2] National Industrial Security Program Authorization Office Defense Security Service (DSS)
 Assessment and Authorization Process Manual (DAAPM). May 6, 2019.
- [3] ACSC Australian Cyber Security Centre Australian Government Information Security Manual, January 2020.

2 Instrument Models Covered

Product name	Order number
R&S FSWP8	1322.8003.08 1322.8003.09
R&S FSWP26	1322.8003.26 1322.8003.27
R&S FSWP50	1322.8003.50 1322.8003.51

3 Security terms and definitions

Terms defined in Guidelines for Media Sanitization

NIST Special Publication 800-88 [1]

Sanitization

"Media sanitization refers to a process that renders access to target data on the media infeasible for a given level of effort."

Clear

"Clear applies logical techniques to sanitize data in all user-addressable storage locations for protection against simple non-invasive data recovery techniques; typically applied through the standard Read and Write commands to the storage device, such as by rewriting with a new value or using a menu option to reset the device to the factory state (where rewriting is not supported)."

Purge

"Purge applies physical or logical techniques that render Target Data recovery infeasible using state of the art laboratory techniques."

Destroy

"Destroy renders Target Data recovery infeasible using state of the art laboratory techniques and results in the subsequent inability to use the media for storage of data."

Control of media

Another option to secure sensitive information is to keep physical media within the classified area, see [1], paragraph 4.4.

Volatile memory

"Memory components that do not retain data after removal of all electrical power sources, and when reinserted into a similarly configured system, are considered volatile memory components." [2]

The volatile memory in the instrument does not have battery backup. It loses its contents when power is removed from the instrument.

If the instrument is battery operated, e.g. handhelds, it retains data in the volatile memory as long as the battery is installed.

Typical examples are RAM, e.g. SDRAM.

Non-volatile memory

"Components that retain data when all power sources are discontinued are non-volatile memory components." [2].

In the context of this document, non-volatile memory components are non-user accessible internal memory types, e.g. EEPROM, Flash, etc.

Media

Media are types of non-volatile memory components. In the context of this document, media are user-accessible and retain data when you turn off power.

Media types are Hard Disk Drives (HDD), Solid State Drives (SSD), Memory Cards, e.g. SD, microSD, CFast, etc., USB removable media, e.g. Pen Drives, Memory Sticks, Thumb Drives, etc. and similar technologies.

4 Statement of volatility

The R&S FSWP contains various memory components. See the subsequent sections for a detailed description regarding type, size, usage and location.

Notes on memory sizes

Due to the continuous development of memory components, the listed values of memory sizes may not represent the current, but the minimal configuration.

Media

4.1 Volatile memory

Volatile memory modules are considered as non-accessible internal storage devices, as described in Security terms and definitions > Volatile memory.

Table 4-1: Types of volatile memory

Memory type	Location	Size	Content / Function	User modifi- able
SDRAM	CPU board	16 Gbyte	Temporary information storage for operating system and instrument firmware	Yes
SDRAM/DDR3	Detector board	2 Gbyte	Measurement data	Yes
SDRAM/DDR3	optional B160/B320 band- width extension	6 Gbyte	Measurement data	Yes

4.2 Non-volatile memory

Non-volatile memory modules are considered as non-accessible internal storage devices, as described in Security terms and definitions > Non-volatile memory.

Table 4-2: Types of non-volatile memory

Memory type	Location	Size	Content / Function	User modifi- able
EEPROM	Board assembly	1 Mbyte	Hardware information: Serial number Product options Calibration correction data	No
Flash	CPU board	8 Mbyte	BIOS	No

4.3 Media

Media memory modules are considered as non-volatile storage devices, as described in Security terms and definitions > Media.

Table 4-3: Types of media memory modules

Memory type	Location	Size	Content / Function	User modifi- able
Solid-state drive (SSD) (removable)	Rear of the R&S FSWP	Variable	Operating system Instrument firmware and firmware options with license keys Instrument states and setups Trace data Limit lines, transducer tables Screen images	Yes

5 Instrument sanitization procedure

5.1 Volatile memory

You can purge the volatile memory by following the procedure below. The sanitizing procedure complies to the definition of NIST [1], see "Terms defined in Guidelines for Media Sanitization" on page 4.

Removing power

To turn off and remove power

- 1. Turn off the R&S FSWP.
- 2. Disconnect the power plug.

Provided the instrument remains without power for at least five minutes, all volatile memory modules lose their contents, see [1].

5.2 Non-volatile memory

The non-volatile memories do not contain user data. Therefore no sanitization procedure is required.

5.3 Media

To remove the classified solid-state drive, perform the following steps:

- 1. Turn off the R&S FSWP and disconnect the power plug.
- 2. Locate the SSD.

Figure 5-1: Location of the solid-state drive

- 3. Unscrew the two knurled screws.
- 4. Remove the solid-state drive from the R&S FSWP.
- 5. Keep the solid-state drive under organizational control.

6 Operability outside the secured area

As the solid-state drive holds the operating system, the R&S FSWP cannot be operated without the solid-state drive. For servicing and calibration, Rohde & Schwarz provides a separate solid-state drive (option R&S FSWP-B18). This solid-state drive contains the operating system and required instrument data.

To establish the functionality outside the secured area:

- Insert a second solid-state drive (option R&S FSWP-B18).
 This solid-state drive enables the R&S FSWP to start the operating system.
- 2. Turn on the R&S FSWP.
- 3. Perform a self-alignment as described in Chapter 7, "Validity of instrument calibration after sanitization", on page 9.

The instrument is ready for use.

7 Validity of instrument calibration after sanitization

The EEPROM is the only memory type used to hold permanent adjustment values required to maintain the validity of the R&S FSWP's calibration. Therefore, the sanitizing procedure does not affect the validity of the instrument's calibration.

After exchanging the removable SSD, perform a self-alignment once:

Ensure that the instrument has sufficient warm-up time before you perform the selfalignment.

- 1. Select the [SETUP] key.
- 2. Select the "Alignment" softkey.
- Select "Start Self Alignment"

This function uses the high-stability internal reference generator to produce the temporary adjustment values. Using the permanent and temporary values, the necessary adjustment information is then stored on the removable SSD. Rohde & Schwarz recommends that you perform the self-alignment function once a week.

8 Special security features

This section leads you to the information on how to use the security features to protect the R&S FSWP from unauthorized access of classified information saved or displayed in the instrument.

The user manual is provided for download on the product page at www.rohde-schwarz.com/manual/FSWP.

8.1 Considerations for USB interfaces

USB ports can pose a security risk in high-security locations. Generally, this risk comes from small USB pen drives, also known as memory sticks or key drives. They can be easily concealed and can quickly read/write several Gbyte of data.

You can disable the write capability on the USB ports of the R&S FSWP via a utility software. This utility software is available on the R&S FSWP website https://www.rohde-schwarz.com/manual/r-s-fswp-instrument-security-manuals-gb1_78701-142593.html.

To disable the write capability, copy the utility software to the R&S FSWP and run it once. After a reboot of the instrument, the write capability to any USB memory device is disabled.

Glossary

C
CFast: Compact Fast - compact flash mass memory device.

D
DRAM: Dynamic Random Access Memory.

HDD: Hard disk drive.

M microSD: Micro Solid-state Drive - memory card.

S SD: Solid-state drive - memory card.

SSD: ATA Solid-state drives (including PATA, SATA, eSATA, mSATA,...).

Index

 Calibration validity
 9

 Sanitization procedure
 9

 Clear
 4

 Control of media
 5

 D
 4

 G
 4

 Guideline definition
 4

 I
 Instrument sanitization

 Non-volatile memory
 7

 L
 Literature

 see References
 4

M

Media	
Memory types	6
Remove	
Sanitization procedure	
Terms and definitions	
Memory types	
Media Non-volatile memory	
Volatile memory	
•	
N	
NIST	3
Non-volatile memory	
Instrument sanitization	
Memory types	
Terms and definitions	5
0	
Overview	3
P	
Purge	4
R	
References	
S	
SanitizationSanitization procedure	•
Calibration validity	
Media	
Non-volatile memory	
Remove power	
Volatile memory Special security features	
USB interface	
Statement of volatility	
T	
Terms and definitions	1
Clear	
Control of media	
Destroy	
Media	5
Non-volatile memory	5
Purge	
Sanitization	
Volatile memory	5
U	
USB interface	
Security features	9

٧

Vol	atile memory
	Instrument sanitization
	Memory types
	Terms and definitions