ESTIMATING MUTUAL INFORMATION FOR DISCRETE-CONTINUOUS MIXTURES

Weihao Gao † , Sreeram Kannan * , Sewoong Oh † , Pramod Viswanath † University of Illinois at Urbana-Champaign and * University of Washington

MOTIVATION

- Estimate Mutual Information I(X;Y) from i.i.d. samples $\{(X_i,Y_i)\}_{i=1}^n$.
- Applications: Gene Network Influence, Information Bottleneck for Deep Neural Nets, etc.

- Calculating mutual information between genes FMR1 and UTP3 in myogenesis, answer is negative (even with many data points). Why?
- Reason: Histogram of FMR1 implies mixed distribution.

- Another Example: Computing information bottleneck for neural nets with ReLU, neurons admits mixed distribution.
- Goal: develop an algorithm to estimate mutual information for discretecontinuous mixtures.

GENERAL DEFINITION OF MUTUAL INFORMATION

• Let P_{XY} be a probability measure on the space $\mathcal{X} \times \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are both Euclidean spaces. For any measurable set $A \subseteq \mathcal{X}$ and $B \subseteq \mathcal{Y}$, define $P_X(A) = P_{XY}(A \times \mathcal{Y})$ and $P_Y(B) = P_{XY}(\mathcal{X} \times B)$. Let $P_X P_Y$ be the product measure $P_X \times P_Y$. Then the mutual information I(X;Y) of P_{XY} is defined as

$$I(X;Y) \equiv \int_{\mathcal{X} \times \mathcal{Y}} \log \frac{dP_{XY}}{dP_X P_Y} dP_{XY},$$

where $\frac{dP_{XY}}{dP_{Y}P_{Y}}$ is the Radon-Nikodym derivative.

• **Theorem.** P_{XY} is absolutely continuous w.r.t. $P_X P_Y$, hence mutual information is well-defined for any P_{XY} .

ESTIMATOR

- Challenge: want to estimate I(X;Y) in the following cases.
 - X is discrete, Y is continuous (or vice versa).
 - -X or Y has many components, some are discrete, some are continuous.
 - X or Y is a mixture of continuous and discrete distributions.
 - Any mixture of above cases.
- Previous works focus on either purely discrete or purely continuous.
 - Discrete data plug-in estimator.
 - Continuous data k-nearest neighbor methods.
- KSG estimator for continuous data: Let $\rho_{i,xy}$ be the distance of the k-NN for (X_i, Y_i) tuple. $k_{x,i}$ is the number of samples of X_i within distance $\rho_{i,xy}$. Similarly $k_{y,i}$.

$$\widehat{I}_{KSG}(X;Y) = \frac{1}{n} \sum_{i=1}^{n} \{ \psi(k) + \log(n) - \log(k_{x,i}) - \log(k_{y,i}) \}$$

• Proposed estimator for Mixture of data:

$$\widehat{I}(X;Y) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \psi(\widetilde{\mathbf{k}}_{i}) + \log(n) - \log(k_{x,i}) - \log(k_{y,i}) \right\}$$

where $\tilde{k}_i = k$ for continuous point, $\tilde{k}_i = \text{number of times that particular}$ point was seen for discrete point.

THEOREMS

The proposed estimator is ℓ_2 consistent, i.e.

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{I}(X;Y) - I(X;Y)\right)^2\right] = 0,$$

under the following assumptions:

- 1. k is a function of n such that $k_n \to \infty$ and $(k_n \log n)^2/n \to 0$.
- 2. The set of discrete points $\{(x,y): P_{XY}(x,y,0)>0\}$ is finite.
- 3. $\frac{P_{XY}(x,y,r)}{P_X(x,r)P_Y(y,r)}$ converges to f(x,y) as $r\to 0$ and $f(x,y)\leq C$ with prob. 1.
- 4. $\mathcal{X} \times \mathcal{Y}$ can be decomposed into countable disjoint sets $\{E_i\}_{i=1}^{\infty}$ such that f(x,y) is uniformly continuous on each E_i .
- 5. $\int_{\mathcal{X}\times\mathcal{Y}} |\log f(x,y)| dP_{XY} < +\infty$.

EXPERIMENTS

- 1. Synthetic Experiments.
 - Left: X is discrete and Y is continuous.
 - **Right**: (X, Y) is a mixture of continuous (blue) and discrete (red stars) distributions.
 - Plot mean squared error v.s. sample size for **proposed** estimator and other estimators.

- 2. Gene Network Inference.
 - 20 genes, connect with each other through a network
 - If $I(\mathsf{Gene}_i, \mathsf{Gene}_j)$ greater than a threshold, we claim that there are connected.
 - Dropout: $Gene_i = 0$ with probability p.
 - Plot Area Under ROC v.s. level of dropout p.

