Obstacle Avoidance using Potential Fields

Bjarke Engsig Larsen

Emil Vincent Ancker

Mathias Emil Slettemark-Nielsen

Mikkel Larsen

Overview

- Obstacle Avoidance using Potential Fields
- Link Collision Avoidance
- Pose Estimation

End-effector Collision Avoidance using Potential Fields

- Spherical obstacles
- DMP

$$\tau \dot{z} = \alpha_z (\beta_z (g - x) - z) + f + C_t,$$

$$\tau \dot{x} = z,$$

Potential Field as a Function of Steering Angle

$$C_t = \gamma_0 R \dot{x} \theta e^{-\beta_0 |\theta|}$$

Potential Field as a Function of Steering Angle

Problems

- Obstacle far away
- $\theta = 0$

$$C_t = \gamma_0 R \dot{x} \theta e^{-\beta_0 |\theta|}$$

- [4] W. Warren, B. Fajen, and D. Belcher. "Behavioral dynamics of steering, obstacle avoidance, and route selection".
- [5] Akshara Rai et al. "Learning coupling terms for obstacle avoidance".

Coupling terms DMP

$$C_t = \gamma_1 R \dot{x} \phi_1 + \gamma_2 R \dot{x} \phi_2 + \gamma_3 R \dot{x} \phi_3$$

$$\phi_1 = \theta e^{-\beta_0|\theta|} \cdot e^{-kd}$$

$$\phi_2 = \theta e^{-\beta_0 |\theta_p|} \cdot e^{-kd_p}$$

$$\phi_2 = \sigma c$$

$$\phi_3 = e^{-kd}$$

Coupling terms DMP

- Choosing distance scaling constant k
 - $\uparrow k \rightarrow$ less impact of obstacles
 - $\downarrow k \rightarrow \text{high impact of obstacles}$
 - k = 15
- Correct weights of three terms
 - γ_1 , γ_2 and γ_3

Coupling terms DMP

Online obstacle avoidance

Evaluating position of obstacle

Link Collision Avoidance

- 7-DOF Franka Emika Panda
- Spherical obstacles

$$\dot{x}_0 = -\gamma_L \nabla U(x_0),$$

$$\nabla_x U(x) = \eta \left(\frac{1}{p(x)} - \frac{1}{p_0} \right) \left(\frac{-1}{p(x)^2} \right) \nabla_x p(x)$$

- [7] Anthony A. Maciejewski and Charles A. Klein. "Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments".
- [8] Dae-Hyung Park et al. "Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields".
- [9] Samuel R Buss. "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods"

$$\begin{split} \dot{x}_0 &= -\gamma_L \nabla U(x_0), \\ \nabla_x U(x) &= \eta \left(\frac{1}{p(x)} - \frac{1}{p_0} \right) \left(\frac{-1}{p(x)^2} \right) \nabla_x p(x) \end{split}$$

$$\dot{q} = \boldsymbol{J}_e^+ \dot{x}_e + \left(\boldsymbol{I} - \boldsymbol{J}_e^+ \boldsymbol{J}_e \right) \boldsymbol{\mathcal{E}}$$

- [7] Anthony A. Maciejewski and Charles A. Klein. "Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments".
- [8] Dae-Hyung Park et al. "Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields".
- [9] Samuel R Buss. "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods"

$$\dot{x}_0 = -\gamma_L \nabla U(x_0),$$

$$\nabla_x U(x) = \eta \left(\frac{1}{p(x)} - \frac{1}{p_0} \right) \left(\frac{-1}{p(x)^2} \right) \nabla_x p(x)$$

$$\dot{m{q}} = m{J}_e^+ \dot{m{x}}_e + \left(m{I} - m{J}_e^+ m{J}_e
ight) m{\mathcal{E}}$$

$$\mathcal{E} = (J_0(I - J_e^+ J_e))^+ (\dot{x}_0 - J_0 J_e^+ \dot{x}_e)$$

 $\dot{q} = J_e^+ \dot{x}_e + (J_0(I - J_e^+ J_e))^+ (\dot{x}_0 - J_0 J_e^+ \dot{x}_e)$

- [7] Anthony A. Maciejewski and Charles A. Klein. "Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments".
- [8] Dae-Hyung Park et al. "Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields".
- [9] Samuel R Buss. "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods"

Threshold on pseudoinverse

$$\min f(\dot{q}) = ||J\dot{q} - \dot{x}_e||^2 + \lambda^2 ||\dot{q}||^2$$
$$\dot{q} = J_e^T f$$
$$(J_e J_e^T + \lambda^2 I) f = \dot{x}_e$$

Combination of the two methods

$$\dot{q} = J_e^T f + (J_0 (I - J_e^+ J_e))^+ (\dot{x}_0 - J_0 J_e^+ \dot{x}_e)$$


```
Algorithm 2: Link collision avoidance using IK solved with damped least squares
```

Requires initialization of: T (trajectory), Δt (time step), q (initial configuration).

while points left in T do

end

ClampAbsMax(
$$\dot{q}, d$$
) =
$$\begin{cases} \dot{q}, & ||\dot{q}|| < d \\ d \frac{\dot{q}}{||\dot{q}||}, & \text{otherwise} \end{cases}$$

Pose Estimation - Iterative Dense Fusion

Pose Estimation - Iterative Dense Fusion

Iterative refinement network (Local alignment)

Iterative Refinement Network

Pose predictor net

ADD score: 0.0147

Pose refine net

ADD score: 0.0074

Pose refine net

ADD score: 0.0034

$$ADD \ score = \underset{x \in \mathcal{M}}{\operatorname{average}} \left\| (Rx + T) - (\tilde{R}x + \tilde{T}) \right\|$$

Visualization of Pose Estimation

Results of DenseFusion vs. 3D-3D

	DenseFusion		3D - 3D	
	Accuracy [%]	$ADD/ADD\text{-}S\ [\mathrm{cm}]$	Accuracy [%]	$\mathrm{ADD}/\mathrm{ADD\text{-}S}\ [\mathrm{cm}]$
Ape	93.71	$0.005(\pm0.00603)$	51.38	$0.02457(\pm0.02217)$
Bench vise	94.67	$0.00767(\pm0.0146)$	59.94	$0.03895(\pm0.04337)$
Can	97.45	$0.00638 (\pm 0.00928)$	44.61	$0.04761(\pm0.04139)$
Camera	94.69	$0.00675(\pm0.0143)$	52.17	$0.04602(\pm0.04364)$
Cat	96.71	$0.00468 (\pm 0.00852)$	57.78	$0.02940(\pm 0.03124)$
Drill	88.31	$0.0143(\pm0.0263)$	65.01	$0.03546(\pm0.04351)$
Duck	93.90	$0.00629(\pm0.0191)$	46.49	$0.02989(\pm0.03083)$
Eggbox	99.81	$0.00763(\pm0.0011)$	99.81	$0.00744(\pm0.002588)$
Glue	99.81	$0.00481 (\pm 0.00192)$	99.90	$0.00611(\pm0.002708)$
Hole pouncher	94.01	$0.00683(\pm0.0102)$	37.68	$0.04104(\pm0.03168)$
Iron	98.47	$0.00651(\pm0.0111)$	41.47	$0.07298 (\pm 0.05758)$
Lamp	97.02	$0.00638(\pm0.0143)$	66.41	$0.03337 (\pm 0.04200)$
Phone	96.35	$0.00693 (\pm 0.0121)$	73.97	$0.02137 (\pm 0.02907)$
All	95.76	$0.00693(\pm0.0133)$	61.28	$0.03510(\pm0.03240)$

References

- [4] W. Warren, B. Fajen, and D. Belcher. "Behavioral dynamics of steering, obstacle avoidance, and route selection".
- [5] Akshara Rai et al. "Learning coupling terms for obstacle avoidance".
- [7] Anthony A. Maciejewski and Charles A. Klein. "Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments".
- [8] Dae-Hyung Park et al. "Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields".
- [9] Samuel R Buss. "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods"
- [12] Stefan Hinterstoisser et al. "Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes"
- [13] Chen Wang et al. "DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion".