Série 4: Détermination des structures cristallines par diffraction des rayons X

Exercice 2 : Détermination de la structure du silicium

• La quatrième ligne se remplit à partir la loi de Bragg:

$$d_i = \frac{1,54}{2 \times \sin \theta_i}$$

• On calcule les rapports:

$$\left(\frac{d_1}{d_i}\right)^2$$

- La comparaison avec le tableau 1 montre que le réseau C.F.C.
- On observe l'extinction de la raie (200) c'est-à-dire que la structure est diamant (réseau C.F.C avec un motif de deux atomes par maille élémentaire).

• On calcule $h^2+k^2+l^2$ en prenant l'entier le plus proche de : $3 imes \left(rac{d_1}{d_i}
ight)^2$

$$3 imes \left(\frac{d_1}{d_i}\right)^2$$

• On calcule les différentes valeurs du paramètre du réseau à partir de la formule :

$$a_i = d_i \sqrt{h^2 + k^2 + l^2}$$

i	1	2	3	4	5	6
2θ _ι °	28,4	47,3	55,9	68,8	76,0	87,6
θ_{ι} °	14,2	23,65	27,95	34,4	38,0	43,8
d_i	3,1389	1,9195	1,6428	1,3629	1,2507	1,1125
$\left(\frac{d_1}{d_i}\right)^2$	1	2,6667	3,6508	5,3043	6,2987	7,9608
$h^2+k^2+l^2$	3	8	11	16	19	24
(hkl)	(111)	(220)	(311)	(400)	(331)	(422)
a_i	5,437	5,418	5,440	5,503	5,452	5,452

Tableau – Part 1

i	7	8	9	10	11	12
2θ,°	94,5	106	113	127	136	156
θ_{ι} °	47,25	53,0	56,5	63,5	68,0	78,0
d_i	1,0486	0,964114	0,92339	0,86040	0,83047	0,78720
$\left(\frac{d_1}{d_i}\right)^2$	8,9606	10,600	11,555	13,309	14,286	1,59
$h^2+k^2+l^2$	27	32	35	40	43	48
(hkl)	(333)	(440)	(531)	(620)	(533)	(444)
a_i	5 ,444	5,453	5,462	5,441	5,446	5,453

Tableau - Part 2

La valeur moyenne:

$$a_m = \frac{1}{12} \sum_{i=1}^{12} a_i = 5,45063636 = 5,45 \text{ Å}$$

- L'écart type:

$$\sigma_{n-1} = \sqrt{\frac{1}{11} \sum_{i=1}^{12} (a_i - a_m)^2} = 2,089149 \times 10^{-2} = 2,1 \times 10^{-2} \text{Å}$$

- L'intervalle de confiance à 95%:

$$\Delta a = t_{95} \frac{\sigma_{n-1}}{\sqrt{n}} = 2,20 \frac{2,089149 \times 10^{-2}}{\sqrt{12}} = 1,4 \times 10^{-2} \text{Å}$$
 $a = (5,45 \pm 0.02) \text{Å}$