DIAGNOSIS INDEKS KESEHATAN TRANSFORMATOR DAYA MENGGUNAKAN LONG SHORT TERM MEMORY (LSTM)

LAPORAN TUGAS AKHIR

Oleh: Muhammad Ali Wafa 102117002

FAKULTAS TEKNOLOGI INDUSTRI PROGRAM STUDI TEKNIK ELEKTRO UNIVERSITAS PERTAMINA 2021

DIAGNOSIS INDEKS KESEHATAN TRANSFORMATOR DAYA MENGGUNAKAN LONG SHORT TERM MEMORY (LSTM)

LAPORAN TUGAS AKHIR

Oleh: Muhammad Ali Wafa 102117002

FAKULTAS TEKNOLOGI INDUSTRI PROGRAM STUDI TEKNIK ELEKTRO UNIVERSITAS PERTAMINA 2021

LEMBAR PENGESAHAN

Judul Tugas Akhir : Diagnosis Indeks Kesehatan Transformator

Daya Menggunakan Long Short Term Memory

(LSTM)

Nama Mahasiswa : Muhammad Ali Wafa

Nomor Induk Mahasiswa : 102117002

Program Studi : Teknik Elektro

Fakultas : Teknologi Industri

Tanggal Lulus Sidang Tugas Akhir : 15 Juni 2021

Jakarta, 29 Juni 2021

MENGESAHKAN

Pembimbing I : Nama : Dr.Eng. Muhammad Abdillah, S.T., M.T.

NIP : 116153

Pembimbing II : Nama : Teguh Aryo Nugroho, S.T., M.T.

NIP : 116054

MENGETAHUI,

Ketua Program Studi

Dr.Eng. Wahyu Kunto Wibowo, S.T., M.Eng.

NIP. 116059

ABSTRAK

Muhammad Ali Wafa. **102117002**. Diagnosis Indeks Kesehatan Transformator Daya Menggunakan *Long Short Term Memory* (LSTM).

Transformator daya merupakan salah satu komponen yang fundamental dalam sistem transmisi jaringan listrik. Hal ini karena pada dasarnya transformator daya berperan dalam mengurangi rugi-rugi daya pada proses transmisi yakni dengan menaikkan tegangan selama proses transmisi pada jarak yang sangat jauh. Oleh karena itu kegiatan pemeliharaan dalam memastikan kondisi transformator daya dapat bekerja dengan baik menjadi penting dilakukan. Namun, proses menentukan kondisi transformator berlangsung dalam waktu yang panjang serta harus dilakukan oleh teknisi yang handal. Pada Tugas Akhir ini dilakukan sebuah perancangan diagnosis indeks kesehatan transformator daya berbasis *machine learning* dengan metode *Long Short-Term Memory* (LSTM). Perancangan dilakukan dengan beberapa perubahan pada jumlah *hidden layer*, fungsi aktivasi serta perubahan rasio set data yang digunakan selama pelatihan dan pengujian. Hasilnya, pada kasus pertama diperoleh akurasi terbaik 99% pada proses pelatihan dan pada kasus kedua diperoleh model yang mendiagosis tanpa kesalahan saat pengujian. Model terbaik yang dihasilkan selanjutnya diimplementasikan pada sebuah aplikasi yang ditanamkan dalam perangkat digital.

Kata kunci: Indeks Kesehatan, Transformator Daya, Machine learning, LSTM.

ABSTRACT

Muhammad Ali Wafa. **102117002**. Health Index Diagnosis of Power Transformer using Long Short Term Memory (LSTM).

Power transformers are one of the fundamental components in electrical transmission systems. This is because power transformers basically play a role in reducing power losses in the transmission process by increasing the voltage during the transmission process at long distances. Therefore maintenance activities in ensuring the condition of the power transformer can work properly become important to do. However, the process of determining the condition of the transformer lasts for a long time and must be done by a reliable engineer. In this Final Project, a machine learning-based power transformer health index diagnosis is designed with the Long Short-Term Memory (LSTM) method. The design was done with some changes to the number of hidden layers, activation function and data set ratio that used during training and testing. As a result, in the first case the best accuracy was obtained 99% in the training process and in the second case obtained a model that diagosis without errors during testing. The best model produced is then implemented in an application embedded in a digital device.

Keywords: Health Index, Power Transformer, Machine learning, LSTM

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT, karena berkat rahmat dan karunia-Nya penulis dapat menyelesaikan laporan Tugas Akhir dengan judul Diagnosis Indeks Kesehatan Transformator Daya Menggunakan *Long Short Term Memory* (LSTM). Keberhasilan dalam penyusunan laporan ini tentunya tidak akan terwujud dan terselesaikan dengan sangat baik tanpa adanya bimbingan, bantuan dan dorongan dari berbagai pihak, baik itu secara material maupun spiritual.

Dengan segala ketulusan dan kerendahan hati, penulis ingin menyampaikan banyak terima kasih kepada semua pihak yang terlibat dalam penulisan laporan Tugas Akhir ini. Oleh karena itu penulis sampaikan ucapak terima kasih kepada:

- 1. Orang tua serta keluarga yang senantiasa mendoakan serta memberikan dukungan dan motivasi selama proses pengerjaan dan penyelesaian Tugas Akhir.
- 2. Bapak Dr. Eng. Muhammad Abdillah, S.T, M.T. selaku pembimbing I dan Bapak Teguh Aryo Nugroho, M.T selaku dosen pembimbing II yang bersedia meluangkan banyak waktu dalam memberikan bimbingan, arahan serta motivasi kepada penulis.
- 3. Dr.Eng. Wahyu Kunto Wibowo S.T., M.Eng selaku Ketua Program Studi Teknik Elektro, Universitas Pertamina serta sebagai dosen wali yang telah banyak memberikan motivasi dan dorongan selama masa perkuliahan.
- 4. Ibu Aulia Rahma Annisa, S.T., M.T., selaku Koordinator Kemahasiswaan Program Studi Program Studi Teknik Elektro Universitas Pertamina.
- 5. Seluruh jajaran dosen dan staf Program Studi Teknik Elektro Universitas Pertamina.
- 6. Seluruh pihak yang tidak dapat penulis sebutkan yang terlibat secara langsung maupun tidak langsung.

Penulis menyadari bahwa dalam penyusunan laporan Tugas Akhir ini masih banyak terdapat kekurangan yang disebabkan oleh banyak faktor dan keterbatasan penulis. Akhir kata, terimakasih dan semoga hasil dari Tugas Akhir ini dapat bermanfaat bagi semua pihak.

Jakarta, 27 Mei 2021

Muhammad Ali Wafa

DAFTAR ISI

ABSTR	AK	i
ABSTR	ACT	iii
KATA I	PENGANTAR	iv
DAFTA	R ISI	v
DAFTA	R TABEL	viii
DAFTA	R GAMBAR	ix
BAB I	PENDAHULUAN	2
1.1	Latar Belakang	2
1.2	Rumusan Masalah	3
1.3	Batasan Masalah	3
1.4	Tujuan Perancangan	3
1.5	Manfaat Perancangan	4
1.6	Waktu Pelaksanaan Perancangan	4
BAB II	TINJAUAN PUSTAKA	6
2.1	Transformator Daya	6
2.2	Indeks Kesehatan Trafo	6
	2.2.1 Dissolve Gas Analysis (DGA)	6
	2.2.2 Kualitas Minyak Transformator	7
	2.2.3 Pengujian Furan	8
2.3	Machine Learning	8
2.4	Long Short Term Memory (LSTM)	9
	2.4.1 Forget Gate	9
	2.4.2 Input Gate	10
	2.4.3 Cell gate	11

	2.4.4 Output Gate		11
2.5	Fungsi Aktivasi		12
BAB III	II KONSEP PERANCANGAN		16
3.1	Diagram Alir Perancangan		16
3.2	Perancangan Model		16
	3.2.1 Set Data Indeks Kesehatan Transformator Daya		17
	3.2.2 Perancangan Model LSTM		39
	3.2.3 Multilayer layer LSTM		40
3.3	Pertimbangan Perancangan		40
	3.3.1 Akurasi		40
	3.3.2 Presisi		41
	3.3.3 Sensitifitas (recall)		41
	3.3.4 Spesificitiy		41
	3.3.5 <i>F1 Score</i>		41
	3.3.6 Waktu Pelatihan dan Pengujian		41
3.4	Analisis Teknis		42
3.5	Peralatan dan Bahan		42
BAB IV	V HASIL DAN PEMBAHASAN		44
4.1	Spesfiksi Perangkat Keras dan Perangkat Lunak		44
4.2	Menentukan Jumlah Backpropagation (Epochs)		44
4.3	Kombinasi pada Fitur <i>Input</i>		45
4.4	Studi Kasus 1: Penggunaan Set Data 1		47
	4.4.1 Perubahan Jumlah <i>Hidden Layer</i>		47
	4.4.2 Perubahan Fungsi Aktivasi		49
	4.4.3 Perubahan Pembagian Data dengan Rasio 8:2		52
4.5	Studi Kasus 2		55
	4.5.1 Perubahan Jumlah <i>Hidden Layer</i>		55
	4.5.2 Perubahan Fungsi Aktivasi		57
	4.5.3 Perubahan Pembagian Data dengan Rasio 8:2		60
4.6	Perbandingan Terhadap Metode Artificial Neural Network (ANN) S	ederhana	63

4.7	Implementasi Model LSTM pada Aplikasi Website	64
BAB V	KESIMPULAN DAN SARAN	69
5.1	Kesimpulan	69
5.2	Saran	69
DAFTA	R PUSTAKA	7 1

DAFTAR TABEL

Tabel 1.1	Waktu Pelaksanaan Tugas Akhir	۷
Tabel 2.1	Standar Pengujian Minyak Tranformator	8
Tabel 2.2	Standar Pengujian Furan	8
Tabel 3.1	Set Data Studi Kasus 1	17
Tabel 3.2	Set Data Studi Kasus 2	37
Tabel 3.3	Confussion Matrrix	40
Tabel 3.4	Alat dan Bahan	42

DAFTAR GAMBAR

Gambar 2.1	Segitiga Duval [1]	7
Gambar 2.2	Sel LSTM [2]	9
Gambar 2.3	Forget Gate [2]	10
Gambar 2.4	Input Gate [2]	10
Gambar 2.5	Cell Gate [2]	11
Gambar 2.6	Output Gate [2]	11
Gambar 2.7	Plot Fungsi Aktivasi Sigmoid	12
Gambar 2.8	Plot Fungsi Aktivasi Tanh	12
Gambar 2.9	Plot Fungsi Aktivasi Relu	13
Gambar 2.10	Plot Fungsi Aktivasi Elu	13
Gambar 2.11	Plot Fungsi Aktivasi Selu	14
Gambar 2.12	Plot Fungsi Aktivasi Softplus	14
Gambar 2.13	Plot Fungsi Aktivasi Softplus	14
Gambar 3.1	Diagram Alir Perancangan Sistem Model LSTM	16
Gambar 3.2	Pair Plot	36
Gambar 3.3	Perbandingan Jumlah Kategori Dataset-1	37
Gambar 3.4	Jumlah Untuk Setiap Kategori Dataset-2	38
Gambar 3.5	Pair Plot Set Data 2	39
Gambar 4.1	Pengaruh <i>Epochs</i> terhadap Akurasi dengan Set Data 1	44
Gambar 4.2	Hubungan Kombinasi Fitur Terhadap Akurasi pada Studi Kasus 1	46
Gambar 4.3	Studi Kasus 1: Akurasi Percobaan Perubahan Layer	47
Gambar 4.4	Studi Kasus 1: Persebaran Akurasi Menggunakan 2 Layer	48
Gambar 4.5	Studi Kasus 1: Confusion Matrix LSTM dengan 2 Hidden Layer	48
Gambar 4.6	Studi Kasus 1: Presisi Percobaan Perubahan Layer	49
Gambar 4.7	Studi Kasus 1: Akurasi Percobaan Perubahan Fungsi Aktivasi	50
Gambar 4.8	Studi Kasus 1: Persebaran Akurasi Menggunakan Fungsi Aktivasi Selu	51
Gambar 4.9	Studi Kasus 1: Confusion Matrix Menggunakan Fungsi Aktivasi Selu	51

Gambar 4.10	Studi Kasus 1: Presisi Percobaan Perubahan Layer	52
Gambar 4.11	Studi Kasus 1: Akurasi Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	53
Gambar 4.12	Studi Kasus 1: Persebaran Akurasi Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	53
Gambar 4.13	Studi Kasus 1: <i>Confusion Matrix</i> Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	54
Gambar 4.14	Studi Kasus 1: Presisi dan Sensitivitas Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	54
Gambar 4.15	Studi Kasus 2: Akurasi Percobaan Perubahan Hidden Layer	55
Gambar 4.16	Studi Kasus 2: Akurasi Percobaan Single Layer	56
Gambar 4.17	Studi Kasus 2: Confusion Matrix LSTM dengan 1 Hidden Layer	56
Gambar 4.18	Studi Kasus 2: Presisi Percobaan Perubahan Layer	57
Gambar 4.19	Studi Kasus 2: Akurasi Percobaan Perubahan Fungsi Aktivasi	58
Gambar 4.20	Studi Kasus 2: Akurasi Percobaan Menggunakan Fungsi Aktivasi Selu	59
Gambar 4.21	Studi Kasus 2: Confusion Matrix Menggunakan Fungsi Aktivasi Selu	59
Gambar 4.22	Studi Kasus 2: Presisi dan Sensitivitas Percobaan Perubahan Layer	60
Gambar 4.23	Studi Kasus 2: Akurasi Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	61
Gambar 4.24	Studi Kasus 2: Akurasi Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	61
Gambar 4.25	Studi Kasus 2: <i>Confusion Matrix</i> Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	62
Gambar 4.26	Studi Kasus 2: Grafik Presisi dan Sensitivitas Menggunakan Rasio Data Pelatihan dan Pengujian 8:2	62
Gambar 4.27	Perbandingan Neuron pada ANN dengan Set Data 2	63
Gambar 4.28	Perbandingan Neuron pada ANN dengan Set Data 2	64
Gambar 4.29	Tautan Aplikasi Diagnosis Indeks Kesehatan Transformator Daya	64
Gambar 4.30	Tampilan Aplikasi Diagnosis Indeks Kesehatan Transformator Daya pada Perangkat <i>Mobile</i>	65
Gambar 4.31	Tampilan Aplikasi Diagnosis Indeks Kesehatan Transformator Daya pada Perangkat <i>Dekstop</i>	66
Gambar 4.32	Peringatan Aplikasi Jika Terdapat Masukkan yang Belum Lengkap pada Perangkat Mobile	66
Gambar 4.33	Berhasil Mendiagnosis Indeks Kesehatan Transformator Daya pada Perangkat <i>Mobile</i>	67

BAB I

PENDAHULUAN

1.1 Latar Belakang

Transformator daya merupakan salah satu peralatan dalam sistem kelistrikan yang memiliki peran fundamental. Dalam pengoperasiannya transformator berperan dalam menaikkan serta menurunkan tegangan pada jaringan transmisi. Apabila transformator daya tidak dapat bekerja dengan baik maka dapat menurunkan kualitas listrik atau lebih lanjut dapat menyebabkan terhentinya pelayanan listrik yang diterima oleh konsumen. Kerugian lainnya dapat membuat rugi-rugi daya menjadi semakin besar, hal ini tentunya dapat merugikan penyedia listrik. Menurut manufaktur usia transformator daya diperkirakan antara 25-40 tahun, tetapi terkadang terdapat transformator yang usianya di bawah range usia minimal telah rusak [3].

Pemeliharaan transformator daya sangat penting dilakukan untuk memastikan agar selalu dapat beroperasi dengan baik. Namun jika pemeliharaan dilakukan dengan intensitas yang tinggi tentunya dapat membuat dana yang harus dialokasikan semakin besar. Sedangkan diketahui bahwa transformator merupakan komponen yang membutuhkan hampir 60% dari biaya total pada gardu induk [3]. Sehingga diperlukan penjadwalan agar proses pemeliharaan dapat dilakukan secara efektif. Pada dasarnya kondisi sebuah transformator daya dapat diketahui berdasarkan beberapa metode seperti DGA (Dissolve Gas Analysis), pengujian minyak trafo, serta furan.

Metode DGA memungkinkan bagi teknisi operator dalam mengetahui adanya kontaminan pada minyak transformator daya. Kadar gas kontaminan dapat menjadi indikator kondisi sebuah transformator daya untuk dapat beroperasi secara normal atau tidak [1]. Pada sisi yang lain adanya pengujian pada transformator daya baik pengujian fisik, pengujian elektrik dan pengujian kimia dapat memberikan data penting mengenai kondisi transformator daya. Pada pengujian fisik akan diperoleh kekuatan minyak transformator dalam menahan tekanan fisik [4]. Pada pengujian dapat diperoleh informasi mengenai breakdown voltage yang untuk mengetahui tegangan yang dapat diizinkan beroperasi pada transformator daya. Pengujian kimia berkontribusi dalam memberikan informasi mengenai tingkat keasaman serta kandungan air dalam minyak transformator yang dapat memicu adanya elektron bebas sebagai penghantar listrik dalam isolator [5]. Selain itu adanya furan yang merupakan salah satu kontaminan dalam minyak transformator daya dapat memberikan informasi mengenai estimasi umur kertas isolasi.

Dalam setiap metode yang digunakan dalam pengujian transformator daya memiliki tujuan tertentu mengenai bagian yang ingin dilakukan pengecekan. Diagnosis kondisi keseluruhan sebuah transformator dapat dilakukan dengan menggunakan metode indeks kesehatan transformator daya yang melibatkan seluruh pengujian pada masing-masing bagian[3]. Dengan menggunakan metode tersebut memungkinkan dalam mengetahui kapan transformator daya harus dilakukan pemeliharaan yang berupa pergantian komponen secara akurat. Namun penggunaan keseluruhan hasil pengujian transformator daya berdampak dalam proses diagnosis yang harus dilakukan dalam waktu yang lama.

Peninjauan pada sisi yang lain, seiring dengan perkembangan komputer saat ini mulai dikembangkan metode komputasi dalam mengelola sebuah data. Metode tersebut dikenal dengan istilah *Machine Learning* [6], yakni algoritma komputer yang disusun secara matematis untuk mempela-

jari sebuah data. Dalam perkembangannya *Machine Learning* telah mengalami banyak perbaikan hingga melahirkan metode baru yang meniru sistem kerja syaraf manusia yang dikenal dengan algoritma *Artificial Neural Network* (ANN) [7]. Pengembangan dari ANN telah banyak disesuaikan dengan jenis data yang diolah diantaranya dalam mengolah data sekuensial adalah *Recurrent Neural Network* (RNN). Data sekuensial merupakan data yang tersusun pada pola berurutan dan saling berkaitan contohnya data yang berkaitan dengan waktu. Beberapa implementasi dari RNN adalah pada prediksi beban listrik [8, 9, 10], pengenalan suara [11, 12], atau dalam memprediksi hujan [13]. Secara sederhana RNN tidak mampu menangani data dengan deret yang panjang karena adanya pengaruh *vanishing gradient*. Modifikasi pada RNN melahirkan metode baru yakni *Long Short-Term Memory* (LSTM) yang dapat mengingat semua data walaupun pada deret yang panjang sehingga dapat memprediksi secara terus menerus [14].

Merujuk pada permasalahan di atas memperlihatkan adanya sebuah solusi dalam metode diagnosis indeks kesehatan transformator daya. Dengan adanya data yang telah terkumpul pada penggunaan metode indeks kesehatan transformator daya dapat dijadikan sebuah objek data yang dapat dipelajari menggunakan *Machine learning*. Hal ini memungkinkan dalam membuat sebuah sistem yang dapat menerima *input* dengan beberapa pengujian yang dapat memberikan *output* diagnosis indeks kesehatan transformator. Dalam perancangan sebelumnya telah digunakan metode ANN dalam kasus yang sama dengan perolehan akurasi 53.42% untuk input DGA dan 69.86% untuk input pengujian minyak isolasi [15]. Sehingga masih tergolong kurang optimal dalam proses diagnosis. Pada tugas akhir ini akan dirancang sebuah model LSTM yang menyesuaikan terhadap data pengujian transformator daya. Perancangan dilakukan dengan memodifikasi arsitektur LSTM sehingga diperoleh akurasi yang tinggi dalam mendiagnosis indeks kesehatan transformator daya.

1.2 Rumusan Masalah

Merujuk pada latar belakang yang telah disampaikan, maka diperoleh rumusan masalah sebagai berikut:

- 1. Bagaimana perancangan sistem LSTM sehingga dapat mendiagnosis indeks kesehatan transformator daya dengan akurasi yang tinggi?
- 2. Bagaimana pengaruh hyperparameter dalam meningkatkan performa dari sistem yang dirancang?

1.3 Batasan Masalah

Agar perancangan yang diharapkan sesuai dan dapat tercapai, maka dalam perancangan sistem tersebut, ditentukan ruang lingkup perancangan sebagai berikut:

- 1. Proses perancangan yang diterapkan pada sistem dilakukan dalam lingkup metode Long Short Term Memory (LSTM).
- 2. Hasil perancangan dapat diimplementasikan untuk diagnosis indeks kesehatan transformator daya dengan parameter *input* yang dibutuhkan sesuai dengan dataset yang digunakan.

1.4 Tujuan Perancangan

Adapun tujuan perancangan ini terdiri dari:

- 1. Merancang sistem diagnosa indeks kesehatan pada transformator daya menggunakan metode LSTM sehingga diperoleh arsitektur yang optimal dengan akurasi yang tinggi.
- 2. Menganalisis kemampuan dari hasil perancangan sistem dalam mendiagnosis indeks kesehatan transformator daya.

1.5 Manfaat Perancangan

- 1. Menghasilkan *software* dalam membantu operator dalam mendiagnosis indeks kesehatan transformator daya
- 2. Dapat melakukan penjadwalan pemeliharaan (*maintenance*) pada transformator daya untuk mencegah terjadinya gangguan pada transformator daya.
- 3. Dapat menjadi masukan dalam menjaga performa dari transformator daya agar dapat bekerja secara normal.

1.6 Waktu Pelaksanaan Perancangan

Pada tugas akhir ini akan dikerjakan dari proses pengajuan hingga selesai dilakukan dalam 22 minggu terhitung dari bulan januari 2021 hingga Mei 2021. Proses seluruh kegiatan disajikan pada tabel 1.1.

Tabel 1.1. Waktu Pelaksanaan Tugas Akhir

No	No Kegiatan			Minggu ke-																			
NO	Regiatali		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	Penyusunan proposal TA																						
2	Pengumpulan Referensi																						
3	Pendaftaran TA																						
4	Pengumpulan data																						
5	Penyusunan dan perancangan																						
3	sistem																						
6	Seminar Kemajuan																						
7	Penyusunan dokumen akhir																						
8	Pendaftaran sidang TA																						
9	Sidang TA																						

BAB II

TINJAUAN PUSTAKA

2.1 Transformator Daya

Transformator daya merupakan salah satu peralatan tenaga listrik yang berfungsi dalam mentrasmisikan daya listrik dengan cara menaikkan dan menurunkan tegangan listrik [15]. Hal ini bertujuan dalam mengurangi rugi-rugi daya yang dikarenakan adanya impedansi yang timbul akibat jarak transmisi yang panjang dapat dikurangi dengan menaikkan tegangan. Transformator daya ditempatkan pada sisi pembangkitan untuk menaikkan tegangan dan pada sisi penerimaan untuk menurunkan tegangan. Merujuk pada standar PLN 61: 1997 pengelompokan transformator yakni berdasarkan tegangan operasinya yang melebihi 20 kV [15]. Karena beroperasi pada daya dan tegangan tinggi maka diperlukan sistem pengaman pada transformator daya sehingga dapat bekerja dengan aman dan terhindar dari adanya gangguan sistem tenaga listrik. Sistem pengaman pada transformator daya ialah dengan menggunakan bahan dielektrik cair yakni minyak transformator serta berupa dielektrik pada berupa kertas. Selain dalam menahan tegangan yang tinggi adanya minyak transformator juga berfungsi dalam menghantarkan panas dari dalam akibat rugi-rugi daya ke udara bebas sehingga panas berlebih dapat dicegah [16].

2.2 Indeks Kesehatan Trafo

Dalam sistem jaringan tenaga listrik pada umumnya transformator daya yang digunakan saat beroperasi yang memiliki kondisi yang baik agar terhindar dari gangguan. Kondisi sebuah transformator secara keseluruhan dapat dievaluasi dengan sebuah metode yakni indeks kesehatan transformator [17]. Metode ini merupakan hasil kombinasi data hasil inspeksi lapangan, selama beroperasi maupun hasil pengujian transformator daya di laboratorium atau lapangan [18]. Pengujian pada transformator daya dibagi atas pengujian elektrik, pengujian kimia, dan pengujian fisik. Metode-metode yang sering digunakan pada transformator daya diantaranya adalah *Dissolve Gas Analysis* (DGA), kualitas minyak transformator, furan, faktor daya, pemantauan *tap changer*, riwayat pembebanan serta data pemeliharaan [3].

2.2.1 Dissolve Gas Analysis (DGA)

DGA merupakan salah satu metode yang digunakan dalam mendeteksi adanya gangguan pada transformator daya. Dalam kondisi normal dielektrik cair pada transformator daya tidak mengalami dekomposisi dengan cepat. Namun jika terjadi adanya gangguan termal atau elektrik dapat mempercepat laju dekomposisi pada dielektrik. Proses dekomposisi dapat menghasilkan gas kontaminan yang dapat mengubah sifat kondutivitas dari isolator yang dapat memicu adanya gangguan lanjutan. Secara umum terdapat beberapa jenis gas hasil dekomposisi yang dilakukan pengecekan diantaranya adalah hidrogen (H₂), metana (CH₄), asetilen (C₂H₂), etilen (C₂H₄), etana (C₂H₆), selain itu bahan dielektrik pada berupa kertas juga mengalami dekomposisi yang menghasilkan karbon monoksida (CO) dan karbon dioksida (CO₂) [19]. Beberapa dari konsentrasi masing-masing gas yang telah diketahui kemudian dapat dianalisis dengan menggunakan segitiga Duval[1]. Hal dapat dilihat pada Gambar 2.1 untuk menentukan jenis gangguan yang terjadi, yang terdiri dari:

- a. Percikan energi tinggi (High-energy Arching)
- b. Percikan energi rendah (*Low-energy Arching*)
- c. Peluahan korona (Corona Discharges)
- d. Titik panas suhu rendah (*Hot spots*, T < 200°C)
- e. Titik panas suhu sedang (*Hot spots*, 200° C $< T < 400^{\circ}$ C)
- f. Titik panas suhu tinggi (*Hot spots*, $T > 400^{\circ}C$)

Gambar 2.1. Segitiga Duval [1]

2.2.2 Kualitas Minyak Transformator

Pada sebuah transformator daya peranan minyak adalah sebagai isolator cair, penghantar panas ke udara luar serta pelindung bagian dalam. Adapun fungsi sebagai isolator cair adalah untuk mencegah adanya loncatan listrik keluar karena pada umumnya transformator daya beroperasi pada tegangan tinggi. Kegunaan minyak transformator sebagai penghantar panas adalah untuk menjaga kestabilan suhu transformator karena adanya rugi-rugi daya yang berubah menjadi kalor. Sedangkan sebagai pelindung adalah untuk mencegah adanya reaksi kimia dari logam bagian dalam terhadap oksigen yang dapat menyebabkan adanya korosi [20].

Minyak transformator daya dapat beroperasi dengan baik jika belum melampaui batasan-batasan standar yang ditetapkan di antaranya tingkat keasaman serta kandungan airnya yang dapat diketahui melalui pengujian secara kimia [21]. Selain itu pengujian secara fisik dapat diperoleh *interfacial tension* yang menjadi indikator banyaknya kontaminan polar tang terlarut dalam minyak [15]. Adapun pengujian elektrik dapat membantu mengetahui batas ambang tegangan yang dapat ditahan oleh bahan dielektrik transformator daya, hal ini dengan tegangan tembus (*breakdown voltage*). Semakin tinggi nilai dari tegangan tembusnya maka semakin aman suatu transformator daya untuk dioperasikan. Tegangan tembus terjadi karena adanya elektron bebas pada bahan dielektrik, adanya elektron bebas pada bahan dielektrik disebabkan keberadaan kontaminan baik berupa gas, cair maupun padat pada sistem isolasi. Standar yang dijadikan rujukan untuk mengetahui kondisi minyak transformator adalah IEC 60422-2013 [22].

Tabel 2.1. Standar Pengujian Minyak Tranformator

Parameter Uji	Metode	Score (Si)	Weight		
Tarameter Off	Metode	Good(1)	Fair (2)	Poor (3)	(Wi)
Tegangan Tembus (kV/2.5mm)	IEC 156	50	40 - 50	40	3
Kandungan Air (mg/kg)	IEC 60814	20	20 - 30	30	4
Keasaman (mgKOH/g)	C2011K06	0.1	0.15 - 0.2	0.2	1
Interfacial Tension (mN/m)	ISO 6295	28	22 - 28	22	2

2.2.3 Pengujian Furan

Seiring menurunnya umur dari minyak transformator daya akan membentuk suatu senyawa kimia yang dikenal dengan furan. Pembentukan furan juga disebabkan adanya suhu yang tinggi serta proses oksidasi senyawa asam. kerusakan akibat peningkatan konsentrasi di udara serta keberadaan oksigen dapat meningkatkan proses pembentukan furan. Keberadaan furan dapat menjadi acuan mengenai umur dari dielektrik padat yang berupa kertas. Standar pengujian furan disajikan pada Tabel 2.2 [15].

Tabel 2.2. Standar Pengujian Furan

No	2 FAL saat 55°C	Estimasi	Keterangan		
	(ppb)	Umur Kertas (%)			
1	58	100			
2	130	90	Penuaan Normal		
3	292	79			
4	654	66			
5	1464	50	Percepatan Penuaan		
6	1720	46	reicepatan renuaan		
7	2021	42			
8	2374	38			
9	2789	33	Daerah Peringatan : Penuaan Tidak Normal		
10	3277	29			
11	3851	24	Sangat Rentan Gangguan		
12	4524	19	Sangat Kentan Gangguan		
13	5315	13			
14	6245	7	Akhir Pemakaian Kertas		
15	7337	0	1		

2.3 Machine Learning

Machine learning merupakan salah satu metode yang digunakan dalam mempelajari pola serangkaian data dengan proses komputasi digital [6]. Secara sederhana algoritma dirancang untuk digunakan dalam mempelajari suatu data kemudian dapat melakukan prediksi berdasarkan *input* baru yang diberikan. Berdasarkan cara belajarnya terdapat pengelompokkan pada *machine learning* yakni *supervised learning* dan *unsupervised learning*. Pada *supervised learning* model dapat mempelajari data yang memiliki fitur yang dilengkapi dengan data target, sedangkan pada *unsupervised learning* model belajar tanpa menggunakan adanya data target sehingga pada proses prediksi model akan

memberikan keluaran berupa pengelompokan data [23].

Machine Learning telah mengalami banyak modifikasi untuk menyesuaikan jenis data yang diolah. Arsitektur baru dari machine learning yang banyak digunakan saat ini berupa algoritma yang meniru sistem kerja syaraf manusia yang dikenal dengan algoritma Artificial Neural Network (ANN) [7]. Dengan menggunakan ANN sistem memungkinkan dalam mengenali objek dalam sebuah gambar merupakan salah satu implementasinya. Adapun pada pengolahan data yang bersifat time series atau berupa deret ANN dikembangkan agar dapat melakukan sebuah prediksi berdasarkan input yang diterima sebelumnya sebagai dasar referensi prediksi ke depan. Model tersebut dikenal dengan Recurrent Neural Network dimana setiap input yang diterima sebelum dilakukan prediksi akan diproses secara berulang pada satu sel RNN sehingga model dapat mengingat informasi pentingnya [24].

2.4 Long Short Term Memory (LSTM)

Pada pemodelan dengan menggunakan metode RNN secara umum memiliki kemampuan dalam membuat prediksi yang dipengaruhi oleh *input* sebelumnya. Namun terdapat kekurangan pada metode tersebut yakni tidak mampu mengatasi dengan seri yang panjang, misalnya pada sebuah data *time series*, RNN akan sulit mengkorelasikan antara data saat ini dengan data yang sangat lampau, akibatnya jika data yang diproses dalam rentang waktu yang lama maka RNN hanya mampu membuat prediksi yang hanya berkaitan pada waktu yang pendek. Kekurangan pada RNN dikarenakan adanya *vanising gradient*, yakni menghapus data yang tidak berkaitan dengan data baru yang dimasukkan. Adanya kekurangan tersebut maka dibutuhkan suatu metode baru yang dapat mengingat data lampau saat menerima *input* terbaru. LSTM merupakan salah satu turunan dari pemodelan matematis yang digunakan dalam mengenali pola serangkaian data. Sel LSTM dalam sebuah jaringan dapat dilihat pada 2.2.

Gambar 2.2. Sel LSTM [2]

Kelebihan yang dimiliki LSTM dibandingkan dengan RNN dikarenakan algoritma yang digunakan terdiri dari struktur yang kompleks. Secara umum terdapat 4 bagian pada arsitektur LSTM yakni forget gate, input gate, Cell gate, dan Output gate.

2.4.1 Forget Gate

Pada *Forget gate* merupakan bagian yang menentukan mengenai informasi pada keluaran sel sebelumnya untuk dipertahankan atau dihapus. Hal ini dilakukan dengan memasukkan keluaran sel sebelumnya yang digabungkan dengan masukan baru ke dalam fungsi aktivasi *sigmoid*. Informasi akan dipertahankan untuk hasil dari *sigmoid* dengan nilai 1 dan dihapus untuk keluaran yang bernilai

0. Secara matematis pada forget gate digunakan persamaan sebagai berikut:

$$f_t = \sigma_q(W_f.[h_{t-1}, x_t] + b_f)$$
(2.1)

Gambar 2.3. Forget Gate [2]

Berdasarkan persamaan (2.1) dapat diketahui pada persamaan tersebut terdapat bentuk $[h_{t-1}, x_t]$. Hal ini merupakan operasi penggabungan vektor yakni penggabungan baris pada h_{t-1} dengan baris pada x_t .

2.4.2 Input Gate

Salah satu kelebihan LSTM adalah dapat mengingat informasi data masukan yang lama. Hal ini dikarenakan karena adanya satu bagian yang berperan dalam memperbarui memori berdasarkan informasi penting dari masukan baru. Kemampuan ini diperoleh karena ada dua tahapan penting pada *input gate* yakni melalui lapisan sigmoid dan tanh. lapisan akan memberikan keluaran berupa nilai mana saja yang harus dilakukan pembaruan pada memori sedangkan lapisan tanh memberikan keluaran berupa calon (\tilde{C}) yang ditambahkan pada memori.

$$i_t = \sigma_i(W_f \cdot [h_{t-1}, x_t] + b_i)$$
(2.2)

$$\tilde{C} = tanh(W_C.[h_{t-1}, x_t] + b_C)$$
(2.3)

Gambar 2.4. Input Gate [2]

Hasil perkalian dari dua lapisan pada *input gate* akan menjadi *input* pada memori sebagai pembaruan. pembaruan yang terjadi dalam hanya dalam jumlah yang sedikit, oleh karena itu informasi penting pada data yang lampau akan tetap tersimpan untuk jumlah data yang banyak.

2.4.3 Cell gate

Cell gate merupakan tempat penyimpanan informasi penting pada setiap data yang diberikan pada LSTM. cell gate terdiri dari masukan dari forget gate untuk mengurangi informasi yang tidak diperlukan dari semua masukan sebelumnya melalui persamaan (2.1). Kemudian ditambahkan dengan hasil perkalian dari i_t dan \tilde{C} .

$$C_t = f_t * C_{t-1} + i_t * \tilde{C} \tag{2.4}$$

Gambar 2.5. Cell Gate [2]

Hal utama yang perlu diperhatikan adalah bahwa pada LSTM bagian *cell gate* merupakan lapisan yang saling terhubung, sehingga antar sel yang berjauhan pun dapat terintegrasi. Kondisi ini yang menjadikan LSTM dapat mengatasi permasalahan versi RNN sebelumnya yang diakibatkan adanya *vanishing gradient*.

2.4.4 Output Gate

Pada bagian akhir merupakan keluaran dari sel LSTM atau dapat berupa hasil prediksi berdasarkan masukan yang diberikan. Keluaran ditentukan oleh memori C_t dan masukan yang diberikan. Hal ini dilakukan dengan memasukkan x_t dan keluaran sebelumnya (h_{t-1}) pada fungsi sigmoid. Hasil dari fungsi sigmoid kemudian akan memfilter nilai dari $cell\ state$ yang dapat diteruskan menuju keluaran. Sebelum dikalikan dengan hasil dari gerbang sigmoid, $cell\ state$ terlebih dahulu melewati gerbang tanh untuk mengubah nilai pada rentang -1 sampai 1. Secara matematis dapat dituliskan sebagai berikut:

$$o_t = \sigma(W_i.[h_{t-1}, x_t] + b_o)$$
(2.5)

$$h_t = o_t * tanh(C_t) \tag{2.6}$$

Gambar 2.6. Output Gate [2]

2.5 Fungsi Aktivasi

Fungsi aktivasi merupakan sebuah fungsi matematis yang diterapkan setiap keluaran dari *neu*ron pada pemodelan ANN. Model LSTM pada dasarnya dibentuk berdasarkan model dari ANN, sehingga arsitekturnya menggunakan fungsi aktivasi. Hampir di setiap bagian pada LSTM terdapat adanya fungsi aktivasi. Pada model LSTM, umumnya melibatkan dua fungsi aktivasi yakni tanh dan $sigmoid(\sigma)$. Selain fungsi aktivasi tersebut terdapat juga jenis yang lain. Secara detail persamaan fungsi aktivasi dan plot grafik adalah sebagai berikut:

Sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2.7}$$

Gambar 2.7. Plot Fungsi Aktivasi Sigmoid

Tanh:

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 (2.8)

Gambar 2.8. Plot Fungsi Aktivasi Tanh

Relu:

$$f(x) = \begin{cases} x & \text{if } x > 0, \\ 0.01x & \text{otherwise.} \end{cases}$$
 (2.9)

Gambar 2.9. Plot Fungsi Aktivasi Relu

Softmax:

$$f(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$
 for $i = 1, \dots, K$ and $\mathbf{z} = (z_1, \dots, z_K) \in \mathbb{R}^K$. (2.10)

Elu:

$$f(x) = \begin{cases} \alpha (e^x - 1) & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$
 (2.11)

 $\mathrm{untuk}\ \alpha=1$

Gambar 2.10. Plot Fungsi Aktivasi Elu

Selu:

$$f(x) = \lambda \begin{cases} \alpha(e^x - 1) & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$$
 (2.12)

dengan $\lambda=1.05070098$ dan $\alpha=1.67326324$

Gambar 2.11. Plot Fungsi Aktivasi Selu

Softplus:

$$f(x) = \ln(1 + e^x) \tag{2.13}$$

Gambar 2.12. Plot Fungsi Aktivasi Softplus

Softsign:

$$f(x) = \frac{x}{|x|+1} {(2.14)}$$

Gambar 2.13. Plot Fungsi Aktivasi Softplus

BAB III

KONSEP PERANCANGAN

3.1 Diagram Alir Perancangan

Perancangan sistem dilakukan dalam beberapa tahap untuk menghasilkan sistem yang dapat bekerja dengan baik saat melakukan diagnosis indeks kesehatan pada transformator daya. Pada Gambar 3.1 merupakan tahapan perancangan yang digambarkan dalam diagram alir

Gambar 3.1. Diagram Alir Perancangan Sistem Model LSTM

3.2 Perancangan Model

Sistem diagnosis indeks kesehatan transformator daya yang diharapkan pada dasarnya adalah yang memiliki performa yang baik. Sehingga pada perancangan ini dilakukan percobaan untuk men-

dapatkan model dari LSTM dengan akurasi minimal 90% baik pada proses pelatihan dan pengujian. Pada dasarnya dalam *machine learning* belum ada kesepakatan umum mengenai berapa akurasi minimal secara umum untuk menilai performa model, namun merujuk pada [25] yang telah melakukan perbandingan penggunaan beberapa metode *mechine learning* dan memperoleh model dengan akurasi maksimum 85%, nilai tersebut sudah layak dalam memodelkan suatu sistem. Sehingga merujuk pada sumber tersebut maka pada perancangan ini diinginkan model dengan performa yang lebih baik dari yang pernah diteliti pada kasus yang berbeda sebelumnya.

Indikator yang digunakan dalam penilaian baik dan buruknya sistem adalah akurasi sistem. Nilai akurasi ditentukan yang terbesar. Untuk mendapatkan model dengan performa yang diharapkan baik dilakukan beberapa modifikasi pada arsitektur pada LSTM diantaranya penggunaan banyaknya *layer* LSTM yang digunakan serta penggunaan jenis fungsi aktivasi yang digunakan pada setiap bagian dari LSTM. Di sisi lain perlakukan pada pembagian set data juga menjadi fokus pembahasan pada perancangan.

3.2.1 Set Data Indeks Kesehatan Transformator Daya

Pada proses pelatihan dan pengujian pada *machine learning* jumlah set data yang digunakan dapat mempengaruhi performa sistem. Semakin banyak jumlah set data yang digunakan dalam proses pelatihan secara ideal dapat memperbaiki performa karena model dapat terlatih dengan banyaknya data. Namun disisi lain dalam proses validasi diperlukan sebagian dari set data untuk menguji sistem ketika dihadapkan pada data yang belum pernah dikenali. Sehingga diperlukan rasio yang tepat agar model yang dihasilkan memiliki performa yang baik pada proses pelatihan dan pengujian. Pada perancangan ini akan dilakukan beberapa percobaan dengan variabel bebas berupa rasio set data pelatihan dan pengujian, yakni pertama digunakan set data dengan perbandingan pelatihan:pengujian adalah 7:3, kemudian yang kedua adalah 8:2.

Dalam perancangan ini akan dibagi menjadi 2 studi kasus berdasarkan sumber data yang digunakan dalam percobaan. Terdapat dua set data yang digunakan dalam perancangan model LSTM yakni diperoleh dari [26, 27, 28]. Set data pertama yang selanjutnya digunakan pada studi kasus 1 merupakan data indeks kesehatan transformator daya dengan menggunakan hasil pengujian berdasarkan kandungan air (*water content*), jumlah kandungan asam (*acid number*), tegangan tembus (*breakdown voltage*), faktor disipasi (*disspation factor*), dan tegangan muka (*interfacial tension*). Pada set data pertama data target yang berupa hasil diagnosis indeks kesehatan terbagi menjadi 4 kategori yakni Normal, baik (*Good*), menengah (*moderate*), dan buruk (*bad*). Berikutnya pada studi kasus kedua, set data merupakan data indeks kesehatan transformator daya berdasarkan hasil pengujian kandungan air (*water*), jumlah kandungan asam (acidity), tegangan tembus (BDV), faktor disipasi (DF), gas mudah terbakar terlarut (DGC), dan furan (*furfuraldehyde*). Hasil diagnosis yang diperoleh pada set data ini terbagi menjadi baik (*good*), menengah (*moderate*), dan buruk (*bad*).

No	Water Content (ppm)	Acid Number (mgKOH/g)	Breakdown (kV)	Dissipation Factor	Interfacial Tension (mN/m)	Health Index
1	1	0.005	4	0.009	32	Good
2	16	0.198	1	0.113	14	Normal
3	1	0.005	4	0.002	32	Good

Tabel 3.1. Set Data Studi Kasus 1

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	` ′		(mN/m)	
4	10	0.005	4	0.001	39	Good
5	6	0.005	4	0.006	38	Good
6	8	0.035	2	0.041	19	Bad
7	1	0.005	4	0.014	29	Good
8	5	0.005	4	0.002	35	Good
9	4	0.005	4	0.003	33	Good
10	6	0.005	4	0.001	31	Good
11	16	0.005	4	0.001	37	Good
12	8	0.03	4	0.013	26	Good
13	18	0.031	3	0.04	22	Moderate
14	8	0.024	3	0.034	25	Moderate
15	4	0.005	4	0.004	37	Good
16	1	0.005	4	0.043	35	Good
17	9	0.0055	4	0.017	30	Good
18	6	0.005	4	0.049	31	Good
19	6	0.005	4	0.015	32	Good
20	7	0.015	3	0.026	23	Moderate
21	12	0.013	4	0.031	26	Good
22	6	0.005	4	0.002	36	Good
23	5	0.061	2	0.037	19	Bad
24	5	0.005	4	0.003	33	Good
25	5	0.005	4	0.002	39	Good
26	2	0.005	4	0.02	39	Good
27	10	0.005	4	0.003	35	Good
28	12	0.102	2	0.084	17	Bad
29	3	0.005	4	0.002	40	Good
30	7	0.005	4	0.013	36	Good
31	8	0.005	4	0.004	29	Good
32	2	0.005	4	0.005	38	Good
33	5	0.005	4	0.005	37	Good
34	6	0.005	4	0.003	34	Good
35	5	0.005	4	0.003	37	Good
36	5	0.036	4	0.024	26	Good
37	11	0.061	2	0.034	18	Bad
38	6	0.005	4	0.003	28	Good
39	2	0.012	4	0.001	40	Good
40	1	0.005	4	0.013	39	Good
41	6	0.005	4	0.003	36	Good
42	1	0.005	4	0.003	33	Good
43	7	0.005	4	0.004	32	Good
44	4	0.012	4	0.005	31	Good
45	3	0.028	4	0.016	26	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(11, 1)		(mN/m)	Index
46	3	0.005	4	0.003	38	Good
47	9	0.005	4	0.004	40	Good
48	11	0.116	2	0.07	17	Bad
49	4	0.005	4	0.003	39	Good
50	3	0.043	2	0.042	19	Bad
51	9	0.005	4	0.003	36	Good
52	1	0.029	4	0.015	28	Good
53	7	0.005	4	0.001	35	Good
54	24	0.043	1	0.049	15	Normal
55	7	0.015	3	0.021	21	Moderate
56	7	0.005	4	0.002	41	Good
57	2	0.005	4	0.003	41	Good
58	4	0.005	4	0.003	40	Good
59	7	0.005	4	0.001	39	Good
60	2	0.005	4	0.002	34	Good
61	6	0.005	4	0.001	31	Good
62	3	0.005	4	0.003	32	Good
63	1	0.005	4	0.005	42	Good
64	4	0.005	4	0.001	39	Good
65	2	0.005	4	0.002	33	Good
66	3	0.005	4	0.002	31	Good
67	9	0.087	2	0.033	18	Bad
68	15	0.019	4	0.03	26	Good
69	4	0.024	3	0.023	23	Moderate
70	1	0.005	4	0.036	37	Good
71	2	0.005	4	0.001	42	Good
72	3	0.005	4	0.004	39	Good
73	10	0.005	4	0.003	38	Good
74	3	0.005	4	0.004	40	Good
75	3	0.005	4	0.002	42	Good
76	3	0.005	4	0.018	31	Good
77	2	0.005	4	0.005	36	Good
78	8	0.005	4	0.006	33	Good
79	6	0.005	4	0.002	29	Good
80	14	0.171	1	0.113	13	Normal
81	11	0.021	3	0.024	24	Moderate
82	3	0.018	4	0.004	31	Good
83	9	0.005	4	0.002	39	Good
84	5	0.005	4	0.005	33	Good
85	6	0.005	4	0.005	41	Good
86	21	0.027	3	0.057	21	Moderate
87	4	0.029	2	0.041	18	Bad

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(K V)	ractor	(mN/m)	Hucx
88	10	0.005	4	0.007	34	Good
89	2	0.005	4	0.002	42	Good
90	7	0.054	3	0.037	21	Moderate
91	6	0.005	4	0.003	41	Good
92	3	0.005	4	0.01	37	Good
93	8	0.005	4	0.007	33	Good
94	2	0.005	4	0.002	32	Good
95	6	0.005	4	0.024	31	Good
96	9	0.005	4	0.002	35	Good
97	1	0.005	4	0.006	35	Good
98	9	0.099	2	0.035	17	Bad
99	1	0.005	4	0.002	36	Good
100	1	0.005	4	0.007	40	Good
101	3	0.005	4	0.002	30	Good
102	6	0.046	2	0.022	18	Bad
103	1	0.005	4	0.006	40	Good
104	5	0.005	4	0.001	28	Good
105	1	0.005	4	0.003	37	Good
106	9	0.005	4	0.005	38	Good
107	13	0.117	2	0.073	16	Bad
108	4	0.005	4	0.001	34	Good
109	13	0.015	3	0.017	24	Moderate
110	4	0.01	4	0.003	33	Good
111	5	0.005	4	0.002	36	Good
112	14	0.153	2	0.097	16	Bad
113	24	0.179	2	0.078	16	Bad
114	5	0.005	4	0.004	36	Good
115	2	0.005	4	0.004	34	Good
116	9	0.019	4	0.021	27	Good
117	9	0.005	4	0.002	33	Good
118	4	0.005	4	0.001	42	Good
119	8	0.005	4	0.031	32	Good
120	9	0.005	4	0.003	31	Good
121	3	0.005	4	0.002	34	Good
122	10	0.005	4	0.002	30	Good
123	6	0.005	4	0.003	31	Good
124	9	0.005	4	0.006	36	Good
125	6	0.005	4	0.002	29	Good
126	1	0.005	4	0.004	34	Good
127	5	0.076	4	0.032	26	Good
128	11	0.08	2	0.034	19	Bad
129	2	0.074	2	0.031	20	Bad

N T	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
120	(ppm)	(mgKOH/g)		0.000	(mN/m)	G 1
130	5	0.005	4	0.008	30	Good
131	3	0.005	4	0.003	28	Good
132	11	0.005	4	0.004	38	Good
133	7	0.005	4	0.002	32	Good
134	5	0.005	4	0.001	37	Good
135	6	0.005	4	0.001	37	Good
136	5	0.005	4	0.003	37	Good
137	9	0.005	4	0.002	30	Good
138	7	0.005	4	0.001	31	Good
139	15	0.18	2	0.045	16	Bad
140	14	0.031	3	0.024	25	Moderate
141	7	0.052	2	0.047	19	Bad
142	7	0.053	2	0.069	17	Bad
143	3	0.005	4	0.001	38	Good
144	9	0.049	3	0.059	21	Moderate
145	5	0.005	4	0.015	32	Good
146	4	0.059	2	0.051	19	Bad
147	3	0.005	4	0.003	36	Good
148	5	0.011	4	0.007	34	Good
149	9	0.005	4	0.003	30	Good
150	4	0.005	4	0.001	30	Good
151	2	0.005	4	0.002	32	Good
152	3	0.03	4	0.003	33	Good
153	3	0.005	4	0.003	35	Good
154	1	0.018	2	0.018	20	Bad
155	7	0.005	4	0.003	38	Good
156	5	0.005	4	0.005	33	Good
157	4	0.024	3	0.023	25	Moderate
158	5	0.005	4	0.003	29	Good
159	7	0.005	4	0.003	34	Good
160	4	0.005	4	0.003	36	Good
161	3	0.005	4	0.001	41	Good
162	1	0.005	4	0.036	36	Good
163	17	0.005	4	0.002	41	Good
164	9	0.005	2	0.049	20	Bad
165	7	0.005	4	0.005	36	Good
166	2	0.005	4	0.007	32	Good
167	3	0.005	4	0.003	38	Good
168	6	0.005	4	0.001	35	Good
169	7	0.005	4	0.002	38	Good
170	6	0.005	4	0.003	34	Good
171	9	0.005	4	0.004	33	Good

No	Water Content (ppm)	Acid Number (mgKOH/g)	Breakdown (kV)	Dissipation Factor	Interfacial Tension (mN/m)	Health Index
172	2	0.032	3	0.032	21	Moderate
173	7	0.005	4	0.004	32	Good
174	2	0.09	2	0.027	20	Bad
175	12	0.012	4	0.004	31	Good
176	8	0.012	2	0.029	20	Bad
177	4	0.005	4	0.003	35	Good
178	6	0.005	4	0.001	41	Good
179	2	0.095	2	0.021	20	Bad
180	1	0.037	3	0.018	22	Moderate
181	6	0.046	2	0.033	18	Bad
182	6	0.005	4	0.001	41	Good
183	6	0.005	4	0.006	32	Good
184	20	0.035	3	0.044	22	Moderate
185	8	0.005	4	0.002	42	Good
186	8	0.104	2	0.061	17	Bad
187	20	0.034	3	0.027	25	Moderate
188	1	0.073	2	0.036	17	Bad
189	3	0.005	4	0.004	32	Good
190	12	0.065	2	0.069	18	Bad
191	10	0.005	4	0.001	38	Good
192	3	0.005	4	0.003	33	Good
193	3	0.005	4	0.006	32	Good
194	4	0.005	4	0.001	35	Good
195	1	0.005	4	0.034	31	Good
196	6	0.005	4	0.008	32	Good
197	7	0.005	4	0.002	32	Good
198	21	0.032	3	0.039	21	Moderate
199	10	0.176	2	0.098	16	Bad
200	4	0.005	4	0.003	31	Good
201	13	0.005	3	0.038	24	Moderate
202	4	0.005	4	0.014	33	Good
203	7	0.04	3	0.029	21	Moderate
204	5	0.024	3	0.032	21	Moderate
205	2	0.06	2	0.043	16	Bad
206	11	0.005	4	0.004	33	Good
207	1	0.018	4	0.011	31	Good
208	8	0.005	4	0.001	31	Good
209	7	0.005	4	0.002	32	Good
210	4	0.005	4	0.029	30	Good
211	4	0.005	4	0.001	33	Good
212	7	0.005	4	0.004	36	Good
213	3	0.021	4	0.013	32	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(KV)	ractor	(mN/m)	Hiuex
214	1	0.005	4	0.002	36	Good
215	1	0.005	4	0.003	32	Good
216	6	0.005	4	0.001	37	Good
217	6	0.005	4	0	40	Good
218	5	0.005	4	0.014	32	Good
219	11	0.005	4	0.007	31	Good
220	2	0.005	4	0.001	42	Good
221	1	0.005	4	0.001	29	Good
222	3	0.005	4	0.047	39	Good
223	4	0.005	4	0.004	42	Good
224	3	0.005	4	0.021	37	Good
225	8	0.063	2	0.017	19	Bad
226	5	0.087	3	0.034	21	Moderate
227	5	0.005	4	0.001	39	Good
228	1	0.005	4	0.003	39	Good
229	4	0.005	4	0.001	38	Good
230	2	0.042	2	0.028	20	Bad
231	2	0.005	4	0.001	37	Good
232	2	0.005	4	0.001	30	Good
233	8	0.054	2	0.052	19	Bad
234	1	0.005	4	0.003	39	Good
235	7	0.037	2	0.042	20	Bad
236	6	0.005	4	0.004	31	Good
237	10	0.014	4	0.003	33	Good
238	3	0.005	4	0.003	34	Good
239	6	0.016	3	0.024	21	Moderate
240	7	0.005	4	0.006	31	Good
241	3	0.026	4	0.003	32	Good
242	9	0.005	4	0.023	31	Good
243	3	0.005	4	0.004	34	Good
244	6	0.005	4	0.004	41	Good
245	8	0.005	4	0.002	37	Good
246	5	0.005	4	0.002	33	Good
247	4	0.011	4	0.002	39	Good
248	6	0.005	4	0.002	37	Good
249	19	0.027	3	0.016	25	Moderate
250	6	0.036	3	0.034	24	Moderate
251	5	0.005	4	0.003	38	Good
252	3	0.005	4	0.008	40	Good
253	5	0.078	2	0.005	18	Bad
254	5	0.005	4	0.004	39	Good
255	22	0.013	4	0.018	29	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(K V)	1 actor	(mN/m)	Index
256	3	0.01	4	0.005	32	Good
257	6	0.005	4	0.001	31	Good
258	3	0.005	4	0.002	32	Good
259	5	0.005	4	0.002	33	Good
260	3	0.005	4	0.003	37	Good
261	6	0.005	4	0.007	32	Good
262	9	0.094	2	0.044	20	Bad
263	22	0.096	2	0.021	17	Bad
264	3	0.029	2	0.042	18	Bad
265	5	0.005	4	0.027	33	Good
266	5	0.005	4	0.003	37	Good
267	3	0.005	4	0.006	35	Good
268	4	0.005	4	0.049	33	Good
269	3	0.005	4	0.013	41	Good
270	11	0.046	3	0.025	23	Moderate
271	3	0.005	4	0.004	41	Good
272	8	0.06	2	0.05	19	Bad
273	7	0.005	4	0.002	30	Good
274	1	0.005	4	0.009	41	Good
275	6	0.056	2	0.039	18	Bad
276	3	0.005	4	0.03	29	Good
277	2	0.005	4	0.002	30	Good
278	8	0.005	4	0.003	34	Good
279	3	0.038	2	0.037	19	Bad
280	14	0.012	4	0.003	31	Good
281	1	0.005	4	0.003	32	Good
282	5	0.005	4	0.001	41	Good
283	7	0.079	2	0.048	18	Bad
284	2	0.005	4	0.003	28	Good
285	3	0.005	4	0.001	33	Good
286	4	0.005	4	0.009	33	Good
287	1	0.005	4	0.013	33	Good
288	12	0.041	3	0.04	23	Moderate
289	7	0.005	4	0.004	40	Good
290	5	0.005	4	0.086	34	Good
291	1	0.005	4	0.001	37	Good
292	15	0.01	4	0.017	28	Good
293	25	0.174	2	0.058	16	Bad
294	1	0.111	2	0.08	17	Bad
295	9	0.076	2	0.058	18	Bad
296	4	0.005	4	0.002	33	Good
297	4	0.005	4	0.001	42	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	` ′		(mN/m)	
298	1	0.005	4	0.01	34	Good
299	4	0.005	4	0.006	31	Good
300	5	0.043	3	0.035	21	Moderate
301	4	0.005	4	0.002	37	Good
302	2	0.005	4	0.001	32	Good
303	1	0.005	4	0.039	29	Good
304	2	0.005	4	0.03	36	Good
305	1	0.085	2	0.089	17	Bad
306	15	0.005	4	0.003	30	Good
307	8	0.005	4	0.005	30	Good
308	2	0.005	4	0.001	31	Good
309	6	0.005	4	0.003	31	Good
310	4	0.019	3	0.035	21	Moderate
311	3	0.005	4	0.002	33	Good
312	3	0.005	4	0.002	32	Good
313	2	0.005	4	0.002	31	Good
314	6	0.005	4	0.002	32	Good
315	9	0.005	4	0.002	30	Good
316	5	0.005	4	0.001	33	Good
317	15	0.044	3	0.031	21	Moderate
318	7	0.181	2	0.09	16	Bad
319	1	0.005	4	0.001	29	Good
320	7	0.018	4	0.019	28	Good
321	3	0.005	4	0.002	43	Good
322	3	0.005	4	0.003	43	Good
323	6	0.048	2	0.035	20	Bad
324	9	0.047	2	0.05	19	Bad
325	1	0.005	4	0.023	34	Good
326	19	0.02	3	0.027	21	Moderate
327	9	0.005	4	0.003	32	Good
328	1	0.005	4	0.006	38	Good
329	8	0.005	4	0.002	33	Good
330	1	0.005	4	0.004	33	Good
331	3	0.005	4	0.001	36	Good
332	1	0.005	4	0.001	37	Good
333	5	0.032	2	0.005	19	Bad
334	3	0.005	4	0.002	33	Good
335	4	0.005	4	0.002	32	Good
336	15	0.041	2	0.053	19	Bad
337	3	0.012	4	0.027	28	Good
338	5	0.013	4	0.003	39	Good
339	6	0.005	4	0.013	32	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	` ′		(mN/m)	
340	6	0.005	4	0.002	32	Good
341	1	0.018	3	0.023	22	Moderate
342	6	0.005	4	0.002	30	Good
343	9	0.005	4	0.002	32	Good
344	5	0.005	4	0.003	32	Good
345	7	0.013	4	0.004	37	Good
346	10	0.005	4	0.003	37	Good
347	5	0.005	4	0.003	38	Good
348	4	0.037	2	0.022	20	Bad
349	7	0.005	4	0.005	31	Good
350	6	0.022	4	0.028	26	Good
351	2	0.005	4	0.003	32	Good
352	8	0.005	4	0.003	32	Good
353	5	0.013	4	0.006	33	Good
354	7	0.005	4	0.003	34	Good
355	6	0.067	3	0.045	25	Moderate
356	5	0.027	4	0.014	31	Good
357	5	0.005	4	0.19	35	Good
358	2	0.005	4	0.001	41	Good
359	10	0.005	4	0.035	33	Good
360	2	0.005	4	0.002	40	Good
361	7	0.038	2	0.026	19	Bad
362	1	0.063	3	0.02	22	Moderate
363	1	0.033	3	0.024	22	Moderate
364	13	0.1	2	0.054	18	Bad
365	8	0.005	4	0.005	35	Good
366	5	0.005	4	0.003	29	Good
367	12	0.032	4	0.01	26	Good
368	6	0.005	4	0.004	36	Good
369	2	0.066	2	0.02	17	Bad
370	4	0.029	3	0.037	24	Moderate
371	1	0.005	4	0.004	34	Good
372	3	0.005	4	0.004	34	Good
373	1	0.005	4	0.002	35	Good
374	9	0.005	4	0.003	36	Good
375	5	0.023	3	0.028	25	Moderate
376	4	0.026	4	0.016	26	Good
377	6	0.005	4	0.001	39	Good
378	11	0.046	3	0.054	21	Moderate
379	2	0.13	2	0.035	19	Bad
380	4	0.144	2	0.033	19	Bad
381	7	0.122	2	0.103	17	Bad

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(K V)	ractor	(mN/m)	index
382	7	0.005	4	0.004	37	Good
383	3	0.005	4	0.002	34	Good
384	10	0.005	4	0.004	32	Good
385	4	0.017	4	0.021	27	Good
386	4	0.005	4	0.001	33	Good
387	5	0.024	3	0.024	22	Moderate
388	24	0.019	4	0.024	26	Good
389	7	0.005	4	0.003	37	Good
390	2	0.005	4	0.005	33	Good
391	1	0.005	4	0.003	33	Good
392	10	0.005	4	0.004	39	Good
393	7	0.024	4	0.016	28	Good
394	1	0.005	4	0.002	32	Good
395	2	0.005	4	0.003	34	Good
396	1	0.005	4	0.002	33	Good
397	2	0.005	4	0.006	31	Good
398	6	0.005	4	0.001	42	Good
399	3	0.005	4	0.011	31	Good
400	13	0.125	2	0.067	20	Bad
401	8	0.005	4	0.006	39	Good
402	4	0.005	4	0.002	34	Good
403	1	0.005	4	0.003	36	Good
404	5	0.005	4	0.002	36	Good
405	4	0.005	4	0.014	30	Good
406	13	0.005	4	0.001	37	Good
407	9	0.005	4	0.003	33	Good
408	2	0.005	4	0.002	33	Good
409	2	0.005	4	0.009	33	Good
410	2	0.005	4	0.031	32	Good
411	16	0.034	3	0.064	22	Moderate
412	15	0.005	2	0.065	19	Bad
413	20	0.005	4	0.005	30	Good
414	2	0.005	4	0.003	40	Good
415	7	0.121	2	0.082	16	Bad
416	7	0.039	2	0.041	20	Bad
417	4	0.005	4	0.001	41	Good
418	18	0.005	4	0.003	35	Good
419	3	0.005	4	0.002	40	Good
420	8	0.005	4	0.001	37	Good
421	1	0.005	4	0.003	34	Good
422	3	0.005	4	0.023	30	Good
423	2	0.005	4	0.004	38	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(11)	140001	(mN/m)	
424	8	0.005	4	0.001	36	Good
425	3	0.005	4	0.004	36	Good
426	3	0.005	4	0.001	35	Good
427	8	0.059	2	0.037	18	Bad
428	3	0.005	4	0.006	32	Good
429	2	0.015	3	0.031	25	Moderate
430	8	0.023	3	0.021	22	Moderate
431	22	0.088	2	0.068	16	Bad
432	4	0.005	4	0.002	35	Good
433	5	0.005	4	0.008	35	Good
434	4	0.005	4	0.014	33	Good
435	1	0.005	4	0.023	34	Good
436	3	0.005	4	0.005	31	Good
437	2	0.005	4	0.002	41	Good
438	4	0.005	4	0.002	31	Good
439	6	0.005	4	0.003	35	Good
440	4	0.005	4	0.002	33	Good
441	3	0.043	2	0.048	20	Bad
442	6	0.005	4	0.001	34	Good
443	6	0.011	4	0.039	31	Good
444	5	0.005	4	0.003	31	Good
445	17	0.05	3	0.026	21	Moderate
446	3	0.005	4	0.001	38	Good
447	1	0.005	4	0.003	41	Good
448	6	0.005	4	0.002	31	Good
449	2	0.005	4	0.002	32	Good
450	3	0.02	3	0.031	21	Moderate
451	5	0.005	4	0.003	39	Good
452	3	0.005	4	0.001	42	Good
453	6	0.013	4	0.004	32	Good
454	3	0.005	4	0.001	32	Good
455	3	0.005	4	0.002	40	Good
456	12	0.048	3	0.024	25	Moderate
457	13	0.005	4	0.004	31	Good
458	4	0.005	4	0.001	34	Good
459	6	0.005	4	0.001	32	Good
460	6	0.005	4	0.002	35	Good
461	13	0.005	4	0.003	31	Good
462	3	0.027	3	0.03	25	Moderate
463	3	0.011	4	0	36	Good
464	14	0.186	2	0.061	16	Bad
465	2	0.036	2	0.034	20	Bad

NI.	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
166	(ppm)	(mgKOH/g)	2	0.022	(mN/m)	N/ 1 /
466	7	0.041	3	0.032	22	Moderate
467	7	0.025	2	0.041	19	Bad
468	5	0.005	4	0.003	35	Good
469	1	0.005	4	0.002	33	Good
470	8	0.005	4	0.023	29	Good
471	16	0.005	4	0.005	35	Good
472	8	0.005	4	0.001	39	Good
473	11	0.005	4	0.009	36	Good
474	1	0.005	4	0.039	32	Good
475	9	0.014	4	0.003	32	Good
476	4	0.005	4	0.011	31	Good
477	6	0.005	4	0.005	33	Good
478	8	0.005	4	0.002	36	Good
479	4	0.005	4	0.003	41	Good
480	5	0.005	4	0.002	41	Good
481	3	0.005	2	0.035	19	Bad
482	14	0.005	4	0.005	32	Good
483	2	0.005	4	0.014	30	Good
484	21	0.005	4	0.002	33	Good
485	1	0.005	4	0.006	33	Good
486	3	0.005	4	0.004	32	Good
487	16	0.062	2	0.072	19	Bad
488	14	0.005	4	0.001	37	Good
489	5	0.005	4	0.008	27	Good
490	6	0.058	2	0.046	19	Bad
491	5	0.0367	3	0.03	24	Moderate
492	4	0.005	4	0.001	41	Good
493	1	0.005	4	0.008	31	Good
494	2	0.005	4	0.001	43	Good
495	2	0.026	4	0.015	29	Good
496	6	0.026	4	0.026	27	Good
497	5	0.005	4	0.002	35	Good
498	5	0.005	4	0.001	32	Good
499	5	0.005	4	0.003	32	Good
500	9	0.005	4	0.002	37	Good
501	2	0.005	4	0.003	30	Good
502	5	0.005	4	0.001	35	Good
503	5	0.005	4	0.003	30	Good
504	6	0.005	4	0.002	32	Good
505	5	0.005	4	0.002	39	Good
506	6	0.005	4	0.002	30	Good
507	3	0.005	4	0.004	34	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(K V)	ractor	(mN/m)	Hucx
508	2	0.005	4	0.002	33	Good
509	5	0.005	4	0.007	32	Good
510	3	0.005	4	0.003	32	Good
511	9	0.005	4	0.005	38	Good
512	7	0.005	4	0.003	32	Good
513	6	0.01	4	0.004	34	Good
514	7	0.005	4	0.001	32	Good
515	12	0.055	3	0.025	23	Moderate
516	5	0.045	3	0.033	24	Moderate
517	2	0.005	4	0.006	26	Good
518	1	0.005	4	0.006	32	Good
519	2	0.005	4	0.03	33	Good
520	9	0.005	4	0.001	40	Good
521	2	0.015	4	0.001	41	Good
522	7	0.036	2	0.047	19	Bad
523	9	0.005	4	0.004	33	Good
524	1	0.005	4	0.003	40	Good
525	6	0.005	4	0.001	43	Good
526	8	0.005	4	0.003	32	Good
527	5	0.005	4	0.003	36	Good
528	1	0.005	4	0.017	31	Good
529	1	0.005	4	0.003	33	Good
530	5	0.005	4	0.002	34	Good
531	7	0.005	4	0.003	30	Good
532	4	0.024	3	0.036	25	Moderate
533	3	0.005	4	0.03	31	Good
534	10	0.005	4	0.006	30	Good
535	1	0.005	4	0.006	33	Good
536	9	0.005	4	0.003	37	Good
537	3	0.005	4	0.001	39	Good
538	1	0.005	4	0.008	32	Good
539	1	0.041	3	0.036	21	Moderate
540	9	0.015	4	0.021	26	Good
541	24	0.039	3	0.035	24	Moderate
542	3	0.005	4	0.002	31	Good
543	10	0.005	4	0.006	33	Good
544	9	0.055	3	0.027	24	Moderate
545	6	0.005	4	0.009	32	Good
546	10	0.012	4	0.018	27	Good
547	1	0.005	4	0.002	40	Good
548	5	0.005	4	0.003	36	Good
549	2	0.015	4	0.002	39	Good

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(K V)	ractor	(mN/m)	Hucx
550	1	0.005	4	0.004	35	Good
551	2	0.005	4	0.006	31	Good
552	4	0.034	3	0.037	22	Moderate
553	22	0.055	2	0.036	19	Bad
554	5	0.005	4	0.001	40	Good
555	5	0.005	4	0.001	41	Good
556	6	0.005	4	0.005	38	Good
557	1	0.005	4	0.022	33	Good
558	4	0.005	4	0.005	36	Good
559	19	0.051	4	0.048	30	Good
560	4	0.005	4	0.032	32	Good
561	2	0.005	4	0.002	35	Good
562	1	0.005	4	0.002	41	Good
563	4	0.005	4	0.007	40	Good
564	3	0.005	4	0.002	33	Good
565	3	0.026	3	0.025	25	Moderate
566	6	0.077	2	0.041	19	Bad
567	6	0.005	4	0.003	38	Good
568	1	0.005	4	0.016	39	Good
569	6	0.005	4	0.01	34	Good
570	5	0.005	4	0.003	41	Good
571	3	0.005	4	0.002	33	Good
572	2	0.005	4	0.011	34	Good
573	2	0.005	4	0.003	43	Good
574	6	0.005	4	0.001	39	Good
575	2	0.005	4	0.007	33	Good
576	9	0.005	4	0.004	37	Good
577	4	0.005	4	0.001	32	Good
578	4	0.005	4	0.001	34	Good
579	2	0.005	4	0.005	35	Good
580	6	0.005	4	0.003	34	Good
581	1	0.005	4	0.01	32	Good
582	10	0.005	4	0.002	32	Good
583	1	0.005	4	0.001	41	Good
584	1	0.005	4	0.002	33	Good
585	11	0.234	1	0.092	15	Normal
586	2	0.055	2	0.036	19	Bad
587	5	0.005	4	0.003	39	Good
588	7	0.005	4	0.004	31	Good
589	29	0.028	3	0.011	24	Moderate
590	5	0.005	4	0.003	40	Good
591	2	0.071	2	0.041	19	Bad

	Water	Acid	Breakdown	Dissipation	Interfacial	Health
No	Content	Number	(kV)	Factor	Tension	Index
	(ppm)	(mgKOH/g)	(K V)	ractor	(mN/m)	Hiuex
592	4	0.057	2	0.043	18	Bad
593	1	0.005	4	0.028	32	Good
594	5	0.005	4	0	40	Good
595	3	0.005	4	0.002	42	Good
596	9	0.005	4	0.003	42	Good
597	1	0.005	4	0.005	32	Good
598	8	0.005	4	0.002	37	Good
599	3	0.005	4	0.002	41	Good
600	5	0.005	4	0.008	34	Good
601	7	0.005	4	0.007	34	Good
602	6	0.048	2	0.035	19	Bad
603	9	0.005	3	0.003	23	Moderate
604	3	0.005	4	0.008	40	Good
605	1	0.005	4	0.003	40	Good
606	19	0.187	2	0.108	16	Bad
607	1	0.013	4	0.014	27	Good
608	2	0.025	3	0.032	21	Moderate
609	7	0.005	4	0.009	34	Good
610	10	0.015	4	0.027	28	Good
611	16	0.005	3	0.032	25	Moderate
612	4	0.005	4	0.035	34	Good
613	6	0.07	2	0.04	19	Bad
614	6	0.005	4	0.045	34	Good
615	20	0.175	1	0.147	15	Normal
616	8	0.068	4	0.02	27	Good
617	7	0.059	2	0.058	19	Bad
618	1	0.005	4	0.002	31	Good
619	1	0.085	4	0.021	26	Good
620	7	0.005	4	0.005	37	Good
621	2	0.005	4	0.003	31	Good
622	7	0.042	2	0.042	18	Bad
623	8	0.005	4	0.002	33	Good
624	21	0.005	4	0.003	31	Good
625	15	0.019	4	0.021	28	Good
626	5	0.005	4	0.001	34	Good
627	5	0.005	4	0.002	39	Good
628	2	0.005	4	0.001	28	Good
629	4	0.005	4	0.001	32	Good
630	12	0.005	4	0.013	34	Good
631	6	0.005	4	0.007	32	Good
632	8	0.005	4	0.002	37	Good
633	6	0.039	2	0.02	20	Bad

No	Water Content	Acid Number	Breakdown	Dissipation	Interfacial Tension	Health
110	(ppm)	(mgKOH/g)	(kV)	Factor	(mN/m)	Index
634	3	0.005	4	0.002	32	Good
635	14	0.005	4	0.005	35	Good
636	4	0.005	4	0.003	35	Good
637	2	0.005	4	0.003	34	Good
638	5	0.005	4	0.003	36	Good
639	8	0.183	2	0.084	16	Bad
640	6	0.005	4	0.002	37	Good
641	5	0.005	4	0.013	30	Good
642	2	0.005	4	0.003	37	Good
643	8	0.019	3	0.021	25	Moderate
644	4	0.005	4	0.003	36	Good
645	10	0.005	4	0.005	33	Good
646	3	0.005	4	0.001	34	Good
647	1	0.005	4	0.003	35	Good
648	3	0.005	4	0.002	34	Good
649	9	0.012	4	0.004	41	Good
650	17	0.146	1	0.059	15	Normal
651	11	0.14	2	0.105	16	Bad
652	4	0.005	4	0.002	33	Good
653	1	0.005	4	0.03	36	Good
654	5	0.005	4	0.014	32	Good
655	6	0.064	2	0.066	20	Bad
656	1	0.005	4	0.002	34	Good
657	3	0.005	4	0.008	31	Good
658	16	0.011	4	0.007	30	Good
659	1	0.005	4	0.001	34	Good
660	4	0.045	3	0.041	23	Moderate
661	6	0.005	3	0.037	25	Moderate
662	6	0.005	4	0.002	33	Good
663	8	0.005	4	0.004	40	Good
664	1	0.005	4	0.003	35	Good
665	5	0.052	3	0.025	24	Moderate
666	6	0.005	4	0.02	38	Good
667	7	0.005	4	0.004	38	Good
668	4	0.005	4	0.001	37	Good
669	7	0.087	2	0.054	18	Bad
670	3	0.005	4	0.004	35	Good
671	7	0.072	2	0.098	17	Bad
672	9	0.025	3	0.032	24	Moderate
673	10	0.019	3	0.019	25	Moderate
674	5	0.016	3	0.039	21	Moderate
675	1	0.005	4	0.024	39	Good

No	Water Content	Acid Number	Breakdown	Dissipation	Interfacial Tension	Health
	(ppm)	(mgKOH/g)	(kV)	Factor	(mN/m)	Index
676	2	0.005	4	0.009	38	Good
677	2	0.005	4	0.004	31	Good
678	13	0.103	2	0.06	16	Bad
679	4	0.005	4	0.003	38	Good
680	6	0.083	3	0.032	23	Moderate
681	3	0.005	4	0.002	32	Good
682	3	0.005	4	0.005	32	Good
683	4	0.005	4	0.003	29	Good
684	1	0.133	2	0.048	20	Bad
685	4	0.005	4	0.005	35	Good
686	13	0.032	3	0.035	22	Moderate
687	4	0.075	2	0.048	19	Bad
688	6	0.005	4	0.002	34	Good
689	2	0.005	4	0.011	36	Good
690	4	0.005	4	0.004	33	Good
691	9	0.005	4	0.038	37	Good
692	32	0.037	2	0.014	20	Bad
693	8	0.005	4	0.003	37	Good
694	7	0.005	4	0.003	33	Good
695	14	0.074	2	0.078	18	Bad
696	4	0.005	4	0.004	30	Good
697	6	0.011	4	0.003	40	Good
698	2	0.005	4	0.024	32	Good
699	8	0.144	2	0.059	17	Bad
700	4	0.005	4	0.09	32	Good
701	7	0.005	4	0.007	36	Good
702	6	0.005	4	0.006	34	Good
703	4	0.005	4	0.007	29	Good
704	3	0.068	2	0.041	18	Bad
705	4	0.026	4	0.009	32	Good
706	23	0.261	1	0.087	13	Normal
707	1	0.065	3	0.018	22	Moderate
708	2	0.005	4	0.002	42	Good
709	5	0.005	4	0.003	31	Good
710	6	0.005	4	0.003	41	Good
711	7	0.005	4	0.003	33	Good
712	5	0.005	4	0.003	27	Good
713	2	0.024	4	0.02	26	Good
714	14	0.04	3	0.035	21	Moderate
715	5	0.005	4	0.002	30	Good
716	7	0.014	4	0.003	35	Good
717	1	0.005	4	0.004	31	Good

No	Water Content (ppm)	Acid Number (mgKOH/g)	Breakdown (kV)	Dissipation Factor	Interfacial Tension (mN/m)	Health Index
718	7	0.005	4	0.012	30	Good
719	3	0.005	4	0.001	29	Good
720	3	0.005	4	0.003	37	Good
721	12	0.025	3	0.024	23	Moderate
722	7	0.005	4	0.005	37	Good
723	2	0.005	4	0.005	34	Good
724	6	0.005	4	0.003	34	Good
725	7	0.005	4	0.002	34	Good
726	2	0.005	4	0.002	33	Good
727	4	0.005	4	0.003	39	Good
728	1	0.005	4	0.001	30	Good
729	8	0.005	4	0.003	37	Good

Gambar 3.2. Pair Plot

Gambar 3.2 merupakan bentuk representasi yang lain dari set data 1, yakni bagaimana hubungan setiap data fitur terhadap data target atau data kategori. Hal ini bertujuan agar lebih mudah dalam memahami bagaimana hubungan setiap fitur data terhadap data target. Selain itu penting untuk diketahui juga mengenai perbandingan jumlah masing-masing kategori pada set data yang disajikan pada Gambar 3.3.

Gambar 3.3. Perbandingan Jumlah Kategori Dataset-1

Berdasarkan Gambar 3.3 dapat dilihat bahwa jumlah kategori "Normal" terhitung paling sedikit (1%) jika dibandingkan dengan kategori yang lain, sedangkan kategori "Baik" terhitung paling banyak yakni 76% dari keseluruhan data.

Selanjutnya pada set data 2 secara keseluruhan terdapat 30 jumlah data. Secara detail set data 2 ditampilkan pada Tabel 3.2.

Tabel 3.2. Set Data Studi Kasus 2

No	Water	Acidity	BDV	DF	DGC	Furfuraldehyde	Health
140	(ppm)	(mgKOH/g)	(kV)	(%)	(%)		Index
1	21.7	0.024	32.5	0.075	483	0.86	Good
2	26.9	0.098	40.5	0.894	254	0.65	Good
3	14.5	0.033	58	0.14	78	0.26	Good
4	21.2	0.226	48.7	0.424	215	5.53	Bad
5	10	0.01	75	0.111	126	0.06	Good
6	15.5	0.075	71	0.143	38	0.53	Good
7	16.8	0.167	70.1	0.255	149	0.78	Good
8	15	0.092	67.8	0.211	28	0.69	Good
9	17	0.035	62.7	0.113	9	0.21	Good
10	30	0.088	37.6	0.353	197	0.31	Good
11	16.2	0.181	25.5	0.201	35	8.76	Bad
12	15	0.155	37.5	0.182	53	7.29	Bad
13	16.8	0.115	25.6	0.174	78	9.6	Bad
14	15	0.21	57	0.22	53	6.69	Bad
15	27.6	0.089	30.4	0.128	336	5.12	Bad
16	23.5	0.106	45.8	0.207	30	0.24	Good
17	24.8	0.012	29.9	0.068	504	1.68	Moderate
18	23.6	0.07	39.2	0.203	22	0.5	Good
19	30.5	0.073	28.7	67	30	1.7	Bad

No	Water	Acidity	BDV	DF	DGC	Furfuraldehyde	Health
110	(ppm)	(mgKOH/g)	(kV)	(%)	(%)		Index
20	18.4	0.063	64.5	0.243	69	0.15	Good
21	21.1	0.019	28.4	0.025	144	0.02	Moderate
22	8.1	0.01	66.9	0.042	71	0.05	Good
23	19.6	0.216	41.1	0.264	48	7.54	Bad
24	6	0.01	67.6	0.126	427	0.08	Good
25	18.4	0.152	37.2	0.299	81	1.14	Moderate
26	11.1	0.032	67.2	0.089	119	0.04	Good
27	21.5	0.147	60.8	0.938	168	0.92	Good
28	7.5	0.16	70.1	0.448	10	0.06	Good
29	13	0.091	51.6	0.369	8	0.32	Good
30	35.7	0.229	41.4	0.639	24	1.07	Moderate

Ditinjau dari jumlah kategori indeks kesehatan transformator daya pada set data 2 dapat dilihat dari sajian perbandingan yang terdapat pada Gambar 3.4. Pada Gambar tersebut memperlihatkan bahwa dari 30 data 60% diantaranya merupakan kategori indeks kesehatan "Baik" yang merupakan jumlah terbanyak, sedangkan kategori menengah merupakan kategori dengan jumlah terendah dengan persentase 13.3% atau hanya berjumlah 4 data saja. Kemudian pada representasi hubungan antar data fitur terhadap data kategori dapat dilihat pada Gambar 3.5.

Gambar 3.4. Jumlah Untuk Setiap Kategori Dataset-2

Gambar 3.5. Pair Plot Set Data 2

Pada Gambar 3.5 tersebut diperoleh informasi bahwa pada plot *scatter* setiap *input* masih banyak yang masih beririsan jika dihubungkan terhadap kategori indeks kesehatan transformator daya. Hal ini tentunya dapat berdampak terhadap hasil percobaan nantinya baik pada pelatihan atau pada pengujian.

3.2.2 Perancangan Model LSTM

Pada perancangan model LSTM yang akan digunakan adalah model dengan jumlah sel sama dengan jumlah data fitur yang digunakan. Karena pada umumnya LSTM digunakan dalam memprediksi suatu nilai dengan menggunakan data daret, maka pada perancangan ini data fitur dari hasil pengujian transformator daya akan dianalogikan sebagai data deret. Tujuan analogi tersebut adalah untuk memanfaatkan dari kelebihan LSTM sendiri yang dapat mengingat kuat setiap *input*nya walaupun input deret yang diberikan sangat panjang. Sehingga pada model nantinya akan digunakan sel LSTM dengan jumlah yang sama dengan totat data fiturnya. Oleh karena itu dalam data yang digunakan pada

studi kasus 1 terdapat 5 data fitur, maka akan digunakan jumlah sel LSTM sebanyak 5 buah, begitu juga pada studi kasus 2 akan menggunakan jumlah sel 6 buah yang menyesuaikan dengan jumlah data fiturnya.

3.2.3 Multilayer layer LSTM

Jumlah *layer* LSTM secara umum digunakan dalam meningkatkan performa sistem karena secara sederhana jika pada penggunaan *single layer* nilai prediksi hanya mempertimbangkan masukan masing-masing sel serta keluaran hanya ditentukan oleh sel terakhir. Pada penggunaan *multilayer* keluaran akhir sistem akan mempertimbangkan keluaran setiap sel pada layer sebelumnya. Penambahan *layer* LSTM akan menambah kapasitas belajar dari model yang akan membuat proses pelatihan cenderung lebih lama. Sehingga pada perancangan penambahan *layer* tidak dilakukan pada jumlah yang banyak agar sistem cepat dalam hal komputasi namun performa masih memiliki akurasi yang tinggi.

3.3 Pertimbangan Perancangan

Pada perancangan ini pertimbangan utama penggunaan model LSTM adalah karena pada dasarnya LSTM mampu memprediksi suatu klasifikasi dimana vektor masukan (*input*) yang diberikan akan saling mendukung. Dalam diagnosis indeks kesehatan transformator daya prosesnya dilakukan melalui beberapa hasil pengujian yang berupa pengujian kimia, fisik, maupun elektrik. Data hasil pengujian pada dasarnya saling berkaitan, misalnya pengujian tegangan tembus erat kaitanya dengan adanya kontaminasi pada bahan dielektrik, di sisi lain pengujian secara kimia dilakukan dengan menggunakan DGA untuk mengetahui kandungan gas yang terlarut. Pada proses pembuatan model LSTM *input* yang akan digunakan nantinya adalah data hasil percobaan pengujian transformator daya. Merujuk pada sifat model LSTM yang mengingat semua *imput* untuk mendapatkan hasil prediksi yang maksimal, maka penggunaan model ini memiliki kecocokan terhadap proses diagnosis indeks kesehatan transformator daya.

Menggunakan metode LSTM dalam memodelkan diagnosis indeks kesehatan transformator tidak dapat dilakukan secara langsung. Pemodelan harus disesuaikan dengan sistem yang akan diterapkan. Oleh karena itu akan dilakukan beberapa percobaan untuk memodifikasi arsitektur pada LSTM. Terdapat beberapa pertimbangan utama dalam menentukan baik dan tidaknya suatu model dapat dilakukan dengan melihat performa dari sistem tersebut. Performa sistem pada algoritma machine learning umumnya dapat ditentukan dengan menggunakan confusion matrix. Dari confusion matrix selanjutnya akan diperoleh akurasi, presisi, sensitifitas, specificity, dan F1 score.

ConfussionNilai AktualMatrixPositifNegatifNilaiPositifTPFP

FN

TN

Tabel 3.3. Confussion Matrrix

Negatif

Terprediksi

3.3.1 Akurasi

Nilai akurasi menunjukkan seberapa akurat dalam memprediksi suatu nilai. Dalam confusion matrix akurasi merupakan rasio prediksi Benar (positif dan negatif) dengan total keseluruhan data.

Algoritma machine learning dipilih berdasarkan akurasi yang tinggi jika set data yang digunakan memiliki jumlah data False Negative (FN) dan False Positive (FP) yang sangat mendekati (symmetric).

3.3.2 Presisi

Nilai dari presisi merupakan perbandingan data yang terprediksi benar yang bernilai positif terhadap keseluruhan jumlah data yang bernilai positif dan yang bernilai negatif. Pemilihan nilai presisi sebagai bahan pertimbangan dalam menentukan model yang terbaik jika diinginkan terjadinya prediksi benar yang bernilai positif, serta sangat menghindari terjadinya hasil prediksi yang salah dan bernilai negatif.

3.3.3 Sensitifitas (recall)

Sensitifitas merupakan perbandingan data yang terprediksi benar yang bernilai positif dibandingkan terhadap keseluruhan data yang terprediksi benar dan bernilai positif. Pertimbangan pemilihan nilai ini diambil jika model yang diinginkan merupakan model yang memiliki kecenderungan memprediksi salah bernilai positif dibandingkan dengan hasil prediksi salah yang bernilai negatif.

3.3.4 Spesificitiy

Specificity merupakan perbandingan antara data yang terprediksi dengan benar yang bernilai negatif terhadap keseluruhan data yang bernilai negatif. Pemilihan nilai ini didasarkan jika model tidak diinginkan terjadinya hasil prediksi yang bernilai positif.

3.3.5 *F1 Score*

F1 Score merupakan perbandingan rata-rata dari presisi dan recall yang dilakukan pembobotan. Nilai dari F1 Score dijadikan sebagai pertimbangan baik dan tidaknya suatu algoritma machine learning jika nilai dari nilai dari hasil prediksi salah dengan nilai negatif (FN) dan False positif (FP) berbeda jauh.

3.3.6 Waktu Pelatihan dan Pengujian

Waktu training merupakan durasi waktu yang dibutuhkan dalam proses pelatihan untuk mendapatkan nilai performa tertinggi dalam satu data set. Waktu testing merupakan waktu yang dibutuhkan dari suatu sistem dalam memprediksi dari *input* yang belum pernah di berikan pada sistem. Kedua parameter ini dapat dijadikan acuan sebagai baik dan buruknya suatu sistem biasanya untuk waktu pemrosesan yang lebih singkat tidak dibutuhkan komputasi yang besar sehingga spesifikasi hardware yang digunakan tidak terlalu tinggi.

3.4 Analisis Teknis

Hasil dari perancangan ini merupakan sebuah pemodelan indeks kesehatan transformator. Dalam implementasinya model akan memberikan keluaran berupa indeks kesehatan transformator dengan menggunakan *input* berupa hasil pengujian laboratorium atau lapangan. *Input* yang digunakan berupa fitur data yang digunakan dalam proses pelatihan dan pengujian. set data yang digunakan adalah set data yang telah terdapat hasil klasifikasi berupa indeks kesehatan yang diubah dalam bilangan numerik. Hal ini bertujuan agar LSTM mampu melakukan komputasi. Pada perolehan data akan dilakukan pra-proses data untuk mengatasi adanya *missing data* atau data yang tidak lengkap untuk tidak dimasukkan ke dalam proses pelatihan.

Pada dasarnya model dirancang untuk tetap memberikan keluaran berupa diagnosis indeks kesehatan transformator daya tanpa menggunakan semua data pengujian laboratorium atau lapangan. Model hasil perancangan ini merupakan sebuah komputasi dalam sebuah program berbasis bahasa pemrograman python. Hal ini tentu akan sulit dipahami bagi orang yang belum mengenal bahasa pemrograman. Oleh karena itu pada tahapan akhir perancangan ini model yang dihasilkan akan diteruskan pada pembuatan tampilan antar muka sistem. Untuk memenuhi kebutuhan tersebut model dikonversikan ke dalam bentuk aplikasi baik pada perangkat portabel maupun yang berbasis *Personal Computer* (PC). Desain aplikasi yang dirancang adalah berupa tampilan beberapa kolom *input* untuk memasukkan data hasil pengujian transformator daya, kemudian setelah semua *input* diberikan, pengguna akan memberikan perintah berupa tombol untuk memproses *input* agar sistem dapat menampilkan hasil diagnosis indeks kesehatan transformator daya. Penggunaan metode tersebut secara signifikan dapat mengurangi waktu dalam menentukan indeks kesehatan transformator daya yang yang dapat menggantikan cara konvensional.

3.5 Peralatan dan Bahan

Pada perancangan ini dalam mendukung proses analisis menggunakan metode LSTM digunakan peralatan dan bahan yang ditunjukkan pada Tabel 3.4.

Tabel 3.4. Alat dan Bahan

No	Alat dan Bahan	Jumlah
1	Personal Komputer (PC)	1 Set
2	Executable Code (Jupyter Notebook)	1 Buah
3	Library Python	1 Set
4	Jaringan Internet	1 Set

BAB IV

HASIL DAN PEMBAHASAN

Dalam merancang model LSTM untuk mendiagnosis indeks kesehatan transformator daya, digunakan dua buah dataset yang berbeda. Sebelum proses pelatihan dilakukan, dilakukan perubahan pada data target yakni hasil diagnosis indeks kesehatan transformator daya diubah dalam bentuk numerik agar dapat dilakukan komputasi pada model.

4.1 Spesfiksi Perangkat Keras dan Perangkat Lunak

Adapun komponen yang digunakan dalam proses komputasi pembuatan model yang digunakan dalam diagnosis indeks kesehatan transformator daya memiliki spesifikasi sebagai berikut:

- 1. Processor Intel(R) Core(TM) i3-4030U CPU @ 1.90GHz
- 2. Random Access Memory (RAM) 6GB
- 3. Sistem Operasi Linux Ubuntu 20.04 focal
- 4. Google Colaboratory (Intel(R) Xeon(R) CPU @ 2.20GHz) RAM 12.69GB

4.2 Menentukan Jumlah Backpropagation (Epochs)

Percobaan menentukan jumlah *epochs* dilakukan sebagai dasar percobaan selanjutnya dalam melakukan pelatihan. Dalam percobaan ini dilakukan dengan menggunakan model LSTM yang digunakan pada pengaturan bawaan pada *library* keras serta jumlah *hidden layer* yang digunakan adalah sebanyak 1 buah. Adapun data yang digunakan adalah set data 1 yang terbagi atas data latih dan data uji dengan perbandingan 7:3. Hasil percobaan ini digambarkan pada grafik akurasi terhadap jumlah *epochs* yang disajikan pada Gambar 4.1.

Gambar 4.1. Pengaruh *Epochs* terhadap Akurasi dengan Set Data 1

Berdasarkan hasil percobaan pada Gambar 4.1 memperlihatkan pengujian yang dilakukan dengan menggunakan *epochs* pada rentang 1 sampai dengan 6000. Terlihat pada gambar bahwa baik

pada pelatihan dan pengujian akurasi masih di bawah 90% pada penggunaan *epochs* 1 sampai 1000. Akurasi secara konsisten di atas 90% pada penggunaan epochs lebih dari 2000. Pada perancangan ini akurasi yang diharapkan adalah di atas 90% maka pada percobaan berikutnya akan digunakan jumlah epochs 2000. Pada dasarnya penggunaan epoch yang lebih tinggi juga dapat menghasilkan akurasi yang baik, namun konsekuensinya adalah proses komputasi menjadi lebih besar. Oleh karena itu agar proses komputasi berjalan efisien digunakan *epochs* paling minimum namun akurasi yang diharapkan tetap dapat tercapai.

4.3 Kombinasi pada Fitur *Input*

Pada percobaan ini dilakukan percobaan untuk mengetahui pengaruh urutan data fitur (*input*) terhadap akurasi sistem. Pada dasarnya penggunaan kombinasi fitur tidak menjadi masalah selama pada saat pengujian urutan yang digunakan untuk input pada sistem adalah sama dengan pada saat pelatihan. Hal ini dapat dapat terjadi karena pada dasarnya penggunaan LSTM untuk penggunaan data deret biasanya digunakan *input* dengan tipe yang sama. Sedangkan pada perancangan diagnosis indeks kesehatan transformator daya input diolah menyerupai data deret dimana panjang deret menyatakan *time-stamp* dan setiap waktu kejadian merupakan *input* pada sistem. Untuk membuktikan kebenaran tersebut dilakukan percobaan dengan melakukan semua kombinasi yang mungkin dilakukan pada bagian *input* data. Percobaan ini akan dilakukan dengan menggunakan set data 1 sebagai sampel. Diketahui bahwa terdapat 5 data fitur, oleh karena itu kombinasi yang mungkin dilakukan adalah dengan mencari permutasinya yakni 5! atau sebanyak 120 kombinasi yang dapat dibentuk. Pada Gambar 4.2 akan diperlihatkan hubungan antara akurasi terhadap semua kombinasi fitur yang dapat terbentuk menggunakan regresi linier.

Gambar 4.2. Hubungan Kombinasi Fitur Terhadap Akurasi pada Studi Kasus 1

Melalui grafik korelasi pada Gambar 4.2 dapat diperoleh informasi bahwa dari 6 kali percobaan memiliki hubungan yang berbeda-beda, hal ini dapat dilihat dari kemiringan garis yang berbeda-beda setiap percobaan yang dilakukan. Hal ini dapat dijelaskan karena umumnya LSTM dapat bekerja dengan baik pada data deret pada sebuah variabel yang sama, sedangkan perancangan ini merupakan manipulasi setiap fitur data menjadi sebuah data deret, sehingga dalam penggunaanya selama saat pengujian urutan data fitur yang digunakan sesuai dengan ketika proses pelatihan maka tidak menjadi permasalahan. Maka dengan alasan ini, ketika model dihadapkan pada *input* yang salah satunya merupakan data yang bernilai 0, maka sistem dapat memprediksi seperti halnya pada *Artificial Neural Network* dasar. Sehingga pada perancangan ini dapat diperoleh model yang merupakan irisan kelebihan dari LSTM serta ANN sekaligus. Oleh karena itu, jika pada saat penggunaan nantinya *user* tidak memberikan *input* yang lengkap maka *input* yang kosong akan di transformasikan menjadi data yang bernilai 0 pada penggunaan aplikasi.

4.4 Studi Kasus 1: Penggunaan Set Data 1

4.4.1 Perubahan Jumlah Hidden Layer

Pada percobaan ini dilakukan untuk menentukan jumlah *layer* yang digunakan pada LSTM sehingga diperoleh model dengan *hyperparameter* yang optimal. Karena pada studi kasus 1 data yang digunakan memiliki jumlah data fitur 5 buah maka akan digunakan 5 sel LSTM. Hal ini bertujuan untuk menyesuaikan dengan karakteristik dari LSTM dimana *output* pada suatu sel LSTM akan menjadi *input* pada sel berikutnya. Sehingga jumlah unit disesuaikan dengan banyaknya fitur data atau yang dalam hal ini adalah jumlah tes yang dilakukan pada pengujian transformator daya. Di sisi yang lain dataset akan dibagi menjadi dua yakni data pelatihan dan pengujian dengan rasio perbandingan 7:3. Jumlah *layer* yang akan dicoba meliputi *layer* tunggal hingga jumlah *layer* 5 buah kemudian dipilih yang memiliki *layer* tertinggi. Proses pelatihan dilakukan dengan *epochs* sebanyak 2000 kali *backpropagation* sesuai dengan pertimbangan percobaan sebelumnya.

Gambar 4.3. Studi Kasus 1: Akurasi Percobaan Perubahan Layer

Gambar 4.3 memperlihatkan hasil percobaan perbandingan penggunaan *layer* yang berbeda pada LSTM. Berdasarkan hasil percobaan pada Gambar 4.3 dapat dilihat bahwa jumlah *hidden layer* paling optimal adalah sebanyak 2 *layer* yang memberikan hasil akurasi rata-rata sebesar 95.6% pada proses pelatihan dan 95.1% pada proses pengujian. Selain itu pada kondisi tersebut jika dilihat pada persebaran hasil akurasinya memiliki jarak rata-rata terhadap nilai rata-rata akurasi terkecil hal ini dilihat pada standar deviasi yang ditandai pada garis berwarna hitam pada Gambar 4.3. Kemudian untuk mengetahui performa dari model dengan menggunakan 2 *hidden layer*, maka akan dipilih model dari hasil percobaan dengan nilai akurasi maksimum dari 30 percobaan yang telah dilakukan. Nilai akurasi pengujian maksimum dari percobaan dengan menggunakan 2 *hidden layer* dapat dilihat pada Gambar 4.4 yang memperlihatkan persebaran datanya.

Gambar 4.4. Studi Kasus 1: Persebaran Akurasi Menggunakan 2 Layer

Berdasarkan sajian data pada Gambar 4.4 maka dapat dilihat model terbaik adalah pada iterasi percobaan ke-5 dengan akurasi pengujian sebesar 97%. Secara detail untuk mengetahui hasil diagnosis setiap kelasnya pada penggunaan arsitektur LSTM dengan menggunakan 2 *hidden layer*, maka hal ini dapat diketahui menggunakan penggambaran *confusion matrix*. Pada Gambar 4.5 memperlihatkan *confusion matrix* hasil percobaan dengan menggunakan 2 buah *hidden layer*.

Gambar 4.5. Studi Kasus 1: Confusion Matrix LSTM dengan 2 Hidden Layer

Confusion matrix pada Gambar 4.5 memperlihatkan bahwa model sangat baik dalam mendiagnosis indeks kesehatan transformator daya untuk kondisi "Baik" dan sebaliknya untuk kategori kondisi transformator daya "Normal" model sama sekali belum bisa mendiagnosis kelas tersebut. Secara keseluruhan nilai presisi dan sensitifitas dari model dengan menggunakan 2 hidden layer dapat dilihat pada Gambar 4.6.

Gambar 4.6. Studi Kasus 1: Presisi Percobaan Perubahan Layer

Berdasarkan Gambar 4.6 dapat diketahui secara mudah bahwa pada model memiliki sensitivitas yang tinggi untuk mendiagnosis kondisi transformator daya "Baik", namun karena terlampau sensitif mengakibatkan indeks kesehatan transformator daya yang seharusnya terdiagnosis sebagai kondisi "Menengah" menjadi terprediksi sebagai "Baik". Jika dilihat dari segi presisi untuk kategori indeks kesehatan "Buruk", "Menengah", dan "Baik" memiliki presisi yang di atas 90%. Namun untuk kategori "Normal" baik pada presisi maupun sensitivitas keduanya masih memiliki nilai yang buruk. Dengan melihat hasil perolehan performa model LSTM menggunakan 2 *hidden layer*, maka perlu dilakukan percobaan lanjutan dengan model LSTM 2 *hidden layer* untuk memperbaiki dari presisi dan sensitivitas dari kategori "Normal" pada hasil diagnosis.

4.4.2 Perubahan Fungsi Aktivasi

Pada percobaan pengaturan hyperparameter hidden layer sebelumnya diketahui dapat menghasilkan hasil akurasi sebesar 97% secara keseluruhan. Namun, pada model tersebut masih belum bisa mendiagnosis indeks kesehatan transformator daya pada kategori "Normal". Pada percobaan ini akan dilakukan untuk memperbaiki model agar memiliki sensitivitas yang seimbang pada semua kategori indeks kesehatan transformator daya. Percobaan dilakukan dengan melakukan perubahan hyperparameter pada fungsi aktivasi yang digunakan. Pada dasarnya model LSTM menggunakan fungsi aktivasi berupa sigmoid di beberapa bagian, namun tidak menutup kemungkinan jika perubahan fungsi aktivasi dapat memberikan hasil model yang berbeda. Terdapat beberapa fungsi aktivasi yang akan di uji coba pada percobaan ini diantaranya adalah tanh, relu, softmax, selu, elu, softplus, dan softsign. Proses percobaan dilakukan dengan pengulangan sebanyak 30 kali untuk setiap penggunaan fungsi aktivasi.

Gambar 4.7. Studi Kasus 1: Akurasi Percobaan Perubahan Fungsi Aktivasi

Gambar 4.7 memperlihatkan nilai rata-rata dari hasil percobaan penggunaan beberapa fungsi aktivasi yang telah disebutkan sebelumnya pada model LSTM. Berdasarkan hasil percobaan tersebut maka diperoleh informasi bahwa pada studi kasus 1 penggunaan fungsi aktivasi *softmax* memberikan model yang memiliki performa yang buruk. Hal ini dapat dilihat dari akurasi sistem baik pada proses pelatihan maupun pada proses pengujian. Selain itu, jarak rata-rata persebaran datanya terhadap nilai rata-rata tergolong pendek yang mengindikasikan bahwa model memang memiliki akurasi yang buruk. Sebaliknya pada penggunaan fungsi aktivasi *selu* dapat memberikan model yang dapat memiliki akurasi hasil diagnosis tertinggi yakni pada proses pelatihan 99.2% serta pada proses pengujian sebesar 97.4%.

Selanjutnya pada model dengan menggunakan fungsi aktivasi *selu* yang dinilai memiliki performa yang baik akan dilakukan peninjauan nilai presisi dan sensitivitas pada setiap kategori hasil diagnosis indeks kesehatan transformator daya. Pada hasil percobaan dengan menggunakan fungsi aktivasi *selu* akan dipilih 1 diantara 30 percobaan yang dilakukan, yakni model yang memiliki akurasi pengujian tertinggi. Hal ini dapat dicari pada hasil plot percobaan dengan menggunakan fungsi aktivasi *selu* yakni pada Gambar 4.8

Gambar 4.8. Studi Kasus 1: Persebaran Akurasi Menggunakan Fungsi Aktivasi Selu

Informasi yang dapat diperoleh pada Gambar 4.8 diketahui bahwa akurasi model terbaik yakni 99% ketika percobaan pada iterasi ke-26. Selanjutnya dengan menggunakan model tersebut dianalisis untuk melihat bagaimana hasil diagnosis untuk masing-masing katergori. Maka seperti halnya percobaan sebelumnya, cara yang dapat dilakukan adalah dengan menampilkan *confusion matrix* pada hasil pengujian model LSTM dengan menggunakan fungsi aktivasi *selu* tersebut. Hal ini dapat dilihat pada Gambar 4.9.

Gambar 4.9. Studi Kasus 1: Confusion Matrix Menggunakan Fungsi Aktivasi Selu

Kemudian agar lebih mudah dalam memahami informasi yang terdapat pada Gambar 4.9, maka pada gambar tersebut dibuat representasi diagram balok untuk masing-masing nilai presisi dan sensitivitas pada masing-masing kategori. Hal ini dapat dilihat pada penyajian data pada Gambar 4.10. Telah diketahui bahwa akurasi pengujian secara keseluruhan pada sistem ini adalah 99%, namun jika dilihat secara detail model masih sulit dalam mendiagnosis indeks kesehatan pada kategori "Normal", diperlihatkan pada *confusion matrix* bahwa terdapat satu kategori yang terprediksi sebagai "Buruk". Jika dilakukan penilaian terhadap presisi dan sensitivitas, kategori "normal" merupakan satu-satunya yang memiliki nilai paling buruk.

Gambar 4.10. Studi Kasus 1: Presisi Percobaan Perubahan Layer

Pada dasarnnya performa model pada saat mendiagnosis kategori "Normal" yang buruk bukan disebabkan oleh model yang digunakan. Namun, jika melihat karakteristik dari set data 1 yang digunakan pada percobaan ini, berdasarkan Gambar 3.3 dapat dilihat bahwa data target berupa kategori "Normal" merupakan yang paling sedikit dibandingkan yang lainnya atau jika ditinjau dari sisi kuantitas hanya 1% dari total keseluruhan data. Pada kondisi tersebut saat proses pelatihan, model lebih sering dihadapkan kategori dengan jumlah yang lebih banyak akibatnya lebih sulit mengenali kategori dengan jumlah sedikit.

Secara umum model yang baik adalah yang tidak *overfiting* dimana akurasi pelatihan sangat baik namun pada proses pengujian model memiliki akurasi yang buruk. Hal ini untuk menghindari agar adanya data pencilan tidak ikut terlatih dalam model. Pada kasus diagnosis indeks kesehatan transformator daya kurangnya nilai presisi dan sensitivitas pada kategori "Normal" dapat disebabkan karena model menganggap kategori tersebut sebagai sebuah data pencilan sehingga lebih banyak diabaikan. Berdasarkan hasil percobaan ini maka dapat diperoleh informasi bahwa penggunaan data yang tidak seimbang sebaiknya dihindari dalam proses percobaan pada *machine learning* jika model yang diinginkan dapat mendiagnosis setiap kelas dengan baik.

4.4.3 Perubahan Pembagian Data dengan Rasio 8:2

Pada percobaan ini dilakukan dengan menggunakan data yang dipecah menjadi data pelatihan dan data pengujian dengan perbandingan 8:2. 80% data pertama akan digunakan dalam melatih model agar mengenali pola data dan 20% data sisanya digunakan dalam mengevaluasi model. Tujuan dari percobaan ini adalah menambah jumlah data yang dilatih agar model dapat lebih mengenal pola data. Model yang digunakan adalah model terbaik pada percobaan sebelumnya yakni dengan menggunakan model dengan dua *hidden layer* serta dengan menggunakan fungsi aktivasi *selu*. Hasil dari percobaan tersebut dapat dilihat pada Gambar 4.11 dan Gambar 4.12 yang merupakan nilai akurasi rata-rata dan persebaran data percobaan.

Gambar 4.11. Studi Kasus 1: Akurasi Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Gambar 4.12. Studi Kasus 1: Persebaran Akurasi Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Berdasarkan hasil percobaan pada Gambar 4.11 dan Gambar 4.12 dapat diketahui bahwa model memiliki akurasi rata-rata yang lebih kecil dibandingkan dengan percobaan sebelumnya. Namun, pada tahapan selanjutnya tetap dilakukan evaluasi terhadap model dengan akurasi tertingginya. Berdasarkan Gambar 4.12 diketahui bahwa model dengan akurasi tertinggi terjadi pada saat iterasi ke-23. Sehingga pada model tersebut hasil pengujiannya akan ditampilkan menggunakan *confusion matrix* untuk menilai presisi dan sensitivitasnya. Hal ini ditampilkan pada Gambar 4.13.

Gambar 4.13. Studi Kasus 1: *Confusion Matrix* Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Berdasarkan tampilan pada *confusion matrix* diketahui model dapat mendiagnosis indeks kesehatan transformator daya pada kategori "Normal" tanpa adanya kesalahan. Hal ini didukung dengan perolehan nilai presisi dan sensitivitas yang tinggi pada Gambar 4.14. Dapat diketahui juga hanya terdapat satu kesalahan yakni kategori yang seharusnya "Buruk" terdiagnosis sebagai "Menengah".

Gambar 4.14. Studi Kasus 1: Presisi dan Sensitivitas Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Dengan demikian, perubahan jumlah rasio set data dapat mempengaruhi hasil akurasi menjadi lebih baik. Hal ini dapat terjadi karena pada dasarnya terdapat penambahan data pada proses pelatihan sehingga model menjadi lebih mengenali pola data. Dengan Demikian, maka model yang diimplementasikan pada aplikasi ialah model hasil percobaan dengan menggunakan rasio data 8:2 pada pemisahan data pelatihan dan pengujian.

4.5 Studi Kasus 2

4.5.1 Perubahan Jumlah Hidden Layer

Pada studi kasus 2 pada dasarnya memiliki mekanisme yang sama terhadap percobaan yang telah dilakukan pada studi kasus 1. Percobaan ini merupakan sebuah langkah lanjutan untuk mengetahui apakah pada penggunaan data yang berbeda dapat digunakan arsitektur yang sama. Telah dijelaskan pada Bab III bahwa percobaan menggunakan set data 2, yang akan dibagi atas data pelatihan dan pengujian dangan rasio 7:3. Percobaan pertama dilakukan yakni melakukan pelatihan terhadap model LSTM dengan variabel bebas yang diubah adalah jumlah *hidden layer* yang digunakan. Jumlah *hidden layer* yang diuji coba terdiri dari penggunaan yang tunggal sampai 5 buah. Pada Gambar 4.15 disajikan hasil dari percobaan dengan iterasi 30 pelatihan untuk setiap *hidden layer* yang berbeda.

Gambar 4.15. Studi Kasus 2: Akurasi Percobaan Perubahan Hidden Layer

Berdasarkan hasil percobaan pada Gambar 4.15 dapat dilihat bahwa rata-rata akurasi pengujian sistem paling besar diperoleh adalah 70%. Akurasi tersebut diperoleh pada penggunaan *single layer* pada model LSTM. Namun, disisi yang lain nilai rata-rata tersebut memiliki persebaran data yang lebar. Oleh karena itu untuk mengetahui persebaran data secara detail maka dilakukan plot hasil percobaan pada LSTM *single layer* tersebut untuk setiap iterasinya. Gambar 4.16 merupakan hasil plot data percobaan menggunakan *single layer*.

Gambar 4.16. Studi Kasus 2: Akurasi Percobaan Single Layer

Berdasarkan percobaan pada Gambar 4.16 dapat dilihat bahwa pada akurasi pengujian terdapat kecenderungan sistem memperoleh akurasi yang kurang dari 50% serta akurasi pengujian maksimum berada pada 89%. Maka merujuk pada detail hasil percobaan dengan menggunakan *single layer*, walaupun model memiliki persebaran data yang lebar, namun terdapat kecenderungan model pada akurasi pengujian yang tinggi. Selain itu pada model dengan akurasi pengujian yang tinggi pada sisi akurasi pelatihan, juga menunjukkan hasil yang tidak jauh berbeda. Hal ini mengindikasikan bahwa model tidak dalam kondisi *overfitting*. Kemudian pada model dengan akurasi pengujian tertinggi akan dilakukan evaluasi mengenai tingkat presisi serta sensitivitas setiap kelas dengan menggunakan *confusion matrix*. Maka model dengan akurasi tertinggi yakni pada iterasi percobaan ke-7, secara detail hasil percobaan setiap kategori dapat dilihat pada Gambar 4.9. Kemudian dilanjutkan dengan penggambaran detail nilai presisi dan sensitivitasnya yang disajikan pada Gambar 4.18.

Gambar 4.17. Studi Kasus 2: Confusion Matrix LSTM dengan 1 Hidden Layer

Gambar 4.18. Studi Kasus 2: Presisi Percobaan Perubahan Layer

Perolehan hasil percobaan yang disajikan pada Gambar 4.17 serta Gambar 4.18 memperlihatkan bahwa model belum bisa melakukan diagnosis indeks kesehatan transformator daya pada kategori "Menengah". Hal ini ditandai dengan nilai presisi dan sensitivitas yang masil 0. Oleh karena itu masih perlu dilakukan percobaan lanjutan untuk memperbaiki akurasi model LSTM tersebut. Percobaan dilakukan seperti halnya pada studi kasus pertama yang melakukan perubahan *hyperparameter* pada penggunaan fungsi aktivasi yang berbeda.

4.5.2 Perubahan Fungsi Aktivasi

Jenis fungsi aktivasi yang digunakan pada percobaan ini adalah yang tersedia pada *library* Keras yakni *tanh, relu, softmax, selu, elu, softplus,* dan *softsign*. Pada Gambar 4.19 merupakan representasi hasil percobaan tersebut.

Gambar 4.19. Studi Kasus 2: Akurasi Percobaan Perubahan Fungsi Aktivasi

Hasil percobaan pada Gambar 4.19 memberikan informasi bahwa penggunaan fungsi aktivasi softmax menghasilkan model yang memiliki akurasi paling rendah dibandingkan yang lain. Pada model yang menggunakan fungsi aktivasi selu, elu, dan softplus relatif menghasilkan akurasi ratarata yang saling mendekati serta dengan persebaran data yang hampir sama juga. Namun di antara ketiganya, akurasi tertinggi diperoleh ketika menggunakan fungsi aktivasi selu yakni sebesar 74.4%. Sehingga model yang akan dievaluasi hasil pengujiannya adalah yang menggunakan fungsi aktivasi selu. Kemudian untuk menentukan model terbaiknya maka dilakukan plot akurasi yang dilakukan pada 30 kali percobaan dengan menggunakan fungsi aktivasi selu tersebut. Hasil Plot dapat dilihat pada Gambar 4.20.

Gambar 4.20. Studi Kasus 2: Akurasi Percobaan Menggunakan Fungsi Aktivasi Selu

Berdasarkan hasil plot pada Gambar 4.20 diketahui bahwa model terbaik yang menggunakan fungsi aktivasi *selu* terjadi pada iterasi ke-5, maka selanjutnya model tersebut yang akan dievaluasi. Evaluasi model tersebut direpresentasikan menggunakan *confusion matrix* serta diagram batang yang secara berurutan ditampilkan pada Gambar 4.21 dan Gambar 4.22.

Gambar 4.21. Studi Kasus 2: Confusion Matrix Menggunakan Fungsi Aktivasi Selu

Gambar 4.22. Studi Kasus 2: Presisi dan Sensitivitas Percobaan Perubahan Layer

Peninjauan berdasarkan hasil percobaan yang disajikan pada Gambar 4.21 dan Gambar 4.22 dapat dilihat bahwa model sudah dapat mendiagnosis setiap kategori tanpa adanya kesalahan, dengan demikian berdasarkan pada studi kasus 1 dan 2 penggunaan fungsi aktivasi *selu* lebih cocok digunakan dalam model LSTM untuk mendiagnosis indeks kesehatan transformator daya. Hal ini dapat terjadi karena berdasarkan persamaan 2.12, pada penggunaan fungsi aktivasi *selu* nilai terendahnya untuk x_i0 akan mendekati -1.76 jika input yang diberikan mendekati negatif tak hingga dan *output* akan linier terhadap *input* dengan faktor pengali 1.05070098. Hal ini akan membuat *output* pada rentang -1.76 sampai tak hingga. Pada model hasil keluaran berupa vektor dengan indeks kesehatan ditentukan oleh urutan nilai tertinggi dari vektor tersebut. Jika sebelumnya digunakan fungsi aktivasi *sigmoid* akan ada beberapa nilai yang berada pada saturasi 1, akibatnya perangkingan akan sulit ditentukan dan bisa terjadi dalam satu vektor terdapat dua nilai tertinggi yang sama yang membuat hasil diagnosis menjadi salah. Maka model LSTM dengan menggunakan sebuah *hidden layer* serta menggunakan fungsi aktivasi *selu* merupakan model dengan arsitektur yang paling baik pada perancangan studi kasus 2.

4.5.3 Perubahan Pembagian Data dengan Rasio 8:2

Pada dasarnya percobaan ini merupakan percobaan lanjutan untuk mengetahui pengaruh rasio set data terhadap akurasi pada model LSTM pada studi kasus 2. Model yang yang digunakan pada percobaan ini merupakan model dengan jumlah *hidden layer* tunggal serta menggunakan fungsi aktivasi *selu*. percobaan dijalankan dengan iterasi sebanyak 30 kali. Hasil percobaan ini dapat dilihat pada Gambar 4.23 dan Gambar 4.24 yang merupakan representasi dari nilai akurasi rata-rata dan persebaran data secara berurutan.

Gambar 4.23. Studi Kasus 2: Akurasi Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Gambar 4.24. Studi Kasus 2: Akurasi Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Berdasarkan hasil percobaan pada Gambar 4.23 diketahui bahwa akurasi pengujian mengalami kenaikan dari 74.4% pada percobaan sebelumnya menjadi 77.2%. Namun, jika dilihat pada persebaran datanya pada Gambar 4.24 model mencapai akurasi tertingginya pada iterasi ke-2 dengan nilai 89%. Apabila model tersebut dilakukan evaluasi terhadap hasil pengujiannya dapat diketahui pada Gambar 4.25 terdapat satu kategori yang terdiagnosis salah yakni kategori "Menengah" yang terdiagnosis sebagai "Baik". Dengan hasil ini diketahui bahwa kategori "Menengah" kembali sulit terprediksi.

Gambar 4.25. Studi Kasus 2: *Confusion Matrix* Percobaan Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Evaluasi untuk masing-masing kategori dapat dilihat pada Gambar 4.26. Diperoleh informasi pada gambar tersebut bahwa katergori "Menengah" mendapatkan nilai yang buruk pada presisi dan sensitivitas, sedangkan kategori "Baik" menjadi memiliki sensitivitas yang tinggi. Hal ini mengindikasikan bahwa penambahan data pada proses pelatihan semakin menguatkan pengaruh kategori "Baik" pada model dan melemahkan kategori "Menengah".

Gambar 4.26. Studi Kasus 2: Grafik Presisi dan Sensitivitas Menggunakan Rasio Data Pelatihan dan Pengujian 8:2

Dengan demikian implementasi model pada aplikasi yang akan dipilih adalah model pada percobaan sebelumnya, yakni percobaan dengan menggunakan rasio data 7:3 dengan jumlah *hidden layer* tunggal serta fungsi aktivasi "*selu*.

4.6 Perbandingan Terhadap Metode Artificial Neural Network (ANN) Sederhana

Dalam mempertimbangkan penggunaan LSTM sebagai metode utama untuk mendiagnosis indeks kesehatan transformator daya, maka dilakukan juga percobaan perbandingan terhadap metode dasar dengan menggunakan arsitektur dari ANN. Pada percobaan ini dilakukan dengan menggunakan set data 2. Pertimbangan ini diambil karena pada percobaan dengan menggunakan model LSTM jika dibandingkan, pada studi kasus 2 yang menggunakan set data 2 lebih cenderung mendapatkan performa yang rendah. Oleh karena itu percobaan ini akan membuktikan pertimbangan penggunaan LSTM sebagai pengganti dari ANN. Pada percobaan dilakukan dengan sebanyak 30 iterasi kemudian diambil nilai rata-rata akurasi baik pada pelatihan maupun pada pengujian. Set data yang digunakan dibagi atas data pelatihan dan pengujian dengan rasio 7:3. *Hyperparameter* uji yang digunakan adalah jumlah dari *hidden neuron* yang setiap percobaan berjumlah 5, 8, 11, 13, 15, 20, 25, dan 30.

Gambar 4.27. Perbandingan Neuron pada ANN dengan Set Data 2

Berdasarkan hasil percobaan yang disajikan pada Gambar 4.27 dapat dilihat bahwa perubahan neuron tidak banyak mempengaruhi akurasi pengujian pada model ANN. model ANN memiliki akurasi pengujian maksimal 67%. Hampir setiap penggunaan jumlah *hidden neuron* yang berbeda memiliki akurasi yang tidak berbeda jauh terhadap akurasi maksimalnya.

Gambar 4.28. Perbandingan Neuron pada ANN dengan Set Data 2

Pada Gambar 4.28 merupakan hasil dari percobaan lanjutan yakni dengan melakukan perubahan pada jumlah *hidden layer* ANN. Berdasarkan hasil tersebut diketahui bahwa penambahan *hidden layer* tidak dapat memperbaiki akurasi pada model ANN. Dengan demikian berdasarkan hasil percobaan dengan menggunakan model ANN, maka penggunaan model LSTM lebih tepat dipilih dalam diagnosis indeks kesehatan transformator daya.

4.7 Implementasi Model LSTM pada Aplikasi Website

Pada akhir percobaan pada studi kasus 1 dan 2, model yang telah dihasilkan akan digunakan dan diimplementasikan pada sebuah aplikasi *website*. Penggunaan aplikasi *website* dipilih karena memungkinkan setiap perangkat dapat menggunakan aplikasi tersebut tidak terbatas oleh sistem operasi tertentu saja. Selain itu, memungkinkan untuk dijalankan pada perangkat *Dekstop* mupun bebas genggam. Aplikasi ini dapat digunakan oleh pengguna dengan mengakses halaman internet pada tautan "transformer-health-index.web.app" atau dengan melakukan pemindaian pada Gambar 4.29.

Gambar 4.29. Tautan Aplikasi Diagnosis Indeks Kesehatan Transformator Daya

Selanjutnya pengguna akan di arahkan pada halaman untuk memasukkan *input* yang merupakan hasil pengujian dari transformator daya. Tampilan antar muka pada halaman aplikasi dapat dilihat

pada Gambar 4.30 pada perangkat *mobile* dan Gambar 4.31 pada perangkat *Dekstop*.

Gambar 4.30. Tampilan Aplikasi Diagnosis Indeks Kesehatan Transformator Daya pada Perangkat *Mobile*

Pada proses *input*, masukan data yang diperlukan, pengguna diharuskan untuk mengisi semua kolom yang diperlukan, jika tidak, maka akan muncul peringatan yang menunjukkan data yang dimasukkan kurang. Tampilan peringatan kesalahan dalam mamasukkan data dapat dilihat pada Gambar 4.32. Namun, apabila jika pada kondisi pada salah satu masukkan tidak dilakukan pengujian, maka pengguna tetap dapat melakukan diagnosis dengan memasukkan nilai 0. Dengan metode tersebut maka akan meminimalisasi adanya data yang kosong pada saat mendiagnosis indeks kesehatan transformator daya.

Gambar 4.31. Tampilan Aplikasi Diagnosis Indeks Kesehatan Transformator Daya pada Perangkat *Dekstop*

Gambar 4.32. Peringatan Aplikasi Jika Terdapat Masukkan yang Belum Lengkap pada Perangkat *Mobile*

Kemudian Apabila semua input yang diperlukan telah lengkap, pengguna dapat melakukan diag-

nosis indeks kesehatan transformator daya dengan menekan tombol "Diagnosis", maka hasil diagnosis akan ditampilkan seperti pada Gambar 4.33.

Gambar 4.33. Berhasil Mendiagnosis Indeks Kesehatan Transformator Daya pada Perangkat Mobile

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan perolehan hasil pada setiap percobaan serta analisis yang telah dipaparkan pada babbab sebelumnya, maka pada perancangan ini dapat ditarik kesimpulan sebagai berikut:

- 1. Pada penggunaan set data yang bersumber dari [27] dalam membentuk sistem diagnosis indeks kesehatan transformator daya dengan menggunakan LSTM diperoleh arsitektur terbaik dengan menggunakan 2 *hidden layer* dan penggunaan fungsi aktivasi berupa *relu*. Arsitektur model LSTM tersebut mampu memberikan hasil akurasi pengujian 99% pada penggunaan rasio set data pelatihan:pengujian adalah 7:3.
- 2. Kasus kedua pada perancangan sistem diagnosis indeks kesehatan transformator daya dengan menggunakan set data [28], model LSTM terbaik berdasarkan hasil percobaan diperoleh ketika digunakan *hidden layer* tunggal dan menggunakan fungsi aktivasi *selu*. Penggunaan konfigurasi *hyperparameter* tersebut mampu menghasilkan model dengan yang dapat mendiagnosis indeks kesehatan transformator daya tanpa kesalahan berdasarkan *input* data pengujian.
- 3. Berdasarkan hasil percobaan pada kedua kasus yang telah dilakukan maka dapat diperoleh informasi bahwa baik pada kasus 1 dan 2 penggunaan fungsi aktivasi *relu* merupakan yang terbaik pada kedua sistem. kategori dengan jumlah data yang sedikit (tidak berimbang) lebih sulit didiagnosis oleh sistem dibandingkan data kategori yang lebih banyak. Penggunaan rasio pelatihan:pengujian sebesar 7:3 lebih cocok digunakan untuk jumlah set data yang sedikit, sedangkan untuk data yang besar lebih bagus untuk menggunakan rasio 8:2.

5.2 Saran

Adapun saran yang dapat diberikan dalam pengembangan diagnosis indeks kesehatan transformator daya adalah sebagai berikut:

- 1. Set data yang digunakan dalam percobaan sebaiknya merupakan data yang seimbang jumlah data targetnya.
- 2. Menggunakan metode penyeimbangan data jika data yang digunakan merupakan data tidak berimbang sebelum dilakukan proses pelatihan.
- 3. Melakukan optimasi pada bobot (*weight*) serta bias agar hasil akurasi setiap percobaan selalu sama, sehingga dapat mengurangi jumlah percobaan dengan arsitektur yang sama.

DAFTAR PUSTAKA

- [1] M. Duval, "Dissolved gas analysis: It can save your transformer," *IEEE Electrical Insulation Magazine*, vol. 5, no. 6, pp. 22–27, 1989.
- [2] C. Olah, "Understanding 1stm networks," 2015.
- [3] A. Jahromi, R. Piercy, S. Cress, J. Service, and W. Fan, "An approach to power transformer asset management using health index," *IEEE Electrical Insulation Magazine*, vol. 25, no. 2, pp. 20–34, 2009.
- [4] N. A. Baka, A. Abu-Siada, S. Islam, and M. F. El-Naggar, "A new technique to measure interfacial tension of transformer oil using uv-vis spectroscopy," *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 22, no. 2, pp. 1275–1282, 2015.
- [5] M. A. Wahab, M. Hamada, A. Zeitoun, and G. Ismail, "Novel modeling for the prediction of aged transformer oil characteristics," *Electric Power Systems Research*, vol. 51, no. 1, pp. 61–70, 1999.
- [6] M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," *Science*, vol. 349, no. 6245, pp. 255–260, 2015.
- [7] P. J. Braspenning, F. Thuijsman, and A. J. M. M. Weijters, *Artificial neural networks: an introduction to ANN theory and practice*. Springer Science & Business Media, 1995, vol. 931.
- [8] A. Tokgöz and G. Ünal, "A rnn based time series approach for forecasting turkish electricity load," in 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018, pp. 1–4.
- [9] X. Tang, Y. Dai, Q. Liu, X. Dang, and J. Xu, "Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting," *IEEE Access*, vol. 7, pp. 160 660–160 670, 2019.
- [10] A. Deihimi and H. Showkati, "Application of echo state networks in short-term electric load forecasting," *Energy*, vol. 39, no. 1, pp. 327–340, 2012.
- [11] Y. Miao, M. Gowayyed, and F. Metze, "Eesen: End-to-end speech recognition using deep rnn models and wfst-based decoding," in *2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)*. IEEE, 2015, pp. 167–174.
- [12] A. Amberkar, P. Awasarmol, G. Deshmukh, and P. Dave, "Speech recognition using recurrent neural networks," in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). IEEE, 2018, pp. 1–4.
- [13] H. V. Habi and H. Messer, "Rnn models for rain detection," in 2019 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 2019, pp. 184–188.
- [14] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with lstm," 1999.
- [15] G. L. Sutaryono, "Analisa indeks kesehatan transformator daya berbasis neural network untuk mereduksi jumlah test pada trafo," Ph.D. dissertation, Institut Technology Sepuluh Nopember, 2015.

- [16] C. Krause, "Power transformer insulation–history, technology and design," *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 19, no. 6, pp. 1941–1947, 2012.
- [17] H. Nurcahyanto, J. M. Nainggolan, I. M. Ardita, and C. Hudaya, "Analysis of power transformer's lifetime using health index transformer method based on artificial neural network modeling," in *2019 International Conference on Electrical Engineering and Informatics (ICEEI)*. IEEE, 2019, pp. 574–579.
- [18] F. Ortiz, I. Fernandez, A. Ortiz, C. J. Renedo, F. Delgado, and C. Fernandez, "Health indexes for power transformers: a case study," *IEEE Electrical Insulation Magazine*, vol. 32, no. 5, pp. 7–17, 2016.
- [19] M. Ahmed, M. Geliel, and A. Khalil, "Power transformer fault diagnosis using fuzzy logic technique based on dissolved gas analysis," in 21st Mediterranean Conference on Control and Automation. IEEE, 2013, pp. 584–589.
- [20] P. PLN, "Panduan pemeliharaan trafo tenaga," *Jakarta: PT PLN (Persero) Penyaluran dan Pusat Pengatur Beban Jawa Bali*, 2003.
- [21] I. T. Committee *et al.*, "Ieee std. c57. 106–2006, ieee guide for acceptance and maintenance of insulating oil in equipment," 2007.
- [22] I. Standard *et al.*, "Mineral insulating oils in electrical equipment–supervision and maintenance guidance," *BS EN*, vol. 60422, 2013.
- [23] E. Alpaydin, *Introduction to machine learning*. MIT press, 2020.
- [24] L. R. Medsker and L. Jain, "Recurrent neural networks," *Design and Applications*, vol. 5, 2001.
- [25] A. K. Dwivedi, "Performance evaluation of different machine learning techniques for prediction of heart disease," *Neural Computing and Applications*, vol. 29, no. 10, pp. 685–693, 2018.
- [26] M. Abdillah, A. U. Krismanto, T. A. Nugroho, H. Setiadi, N. I. Pertiwi, K. Mahmoud, and M. D. Prasetio, "Prognostics health management (phm) system for power transformer using kernel extreme learning machine (k-elm)," in *Proceedings of the International Conference on Engineering and Information Technology for Sustainable Industry*, 2020, pp. 1–6.
- [27] P. Shah, "Predict health of transformer using regression," 2016.
- [28] A. E. Abu-Elanien, M. Salama, and M. Ibrahim, "Calculation of a health index for oil-immersed transformers rated under 69 kv using fuzzy logic," *IEEE Transactions on Power Delivery*, vol. 27, no. 4, pp. 2029–2036, 2012.

