HW12: Sequential logic, clocks, triggers, flip-flops (CS220-04)

1) Complete the empty cells of the table below for an SR Latch. Use '?' in cells for which the correct answer could be 0 or 1. Assume the bit was a 1 just before this sequence starts.

s	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0
R	0	0	0	1	1	0	1									0	1	0	1	1	0
Q				D		0	\bigcirc	?	2	Ò	0	\bigcirc	V	0		1	0		0	0	0

*Assuming this is a sequence left-right, where Q and Qnot values remain in the circuit

2) Draw the curve of the bit Q given the D flip flop inputs below. Assume the bit Q starts with a value of 0.

3) Draw the curve of the bit Q given the D flip flop inputs below. *This time*, assume the bit Q starts with a value of 1. Mwa-ha-ha!

4) Draw the curve of the bit Q given the J-K flip flop inputs below. Assume the bit Q starts with a value of 0.

5) Draw the curve of the bit Q given the J-K flip flop inputs below. *This time*, assume the bit Q starts with a value of 1. Mwa-ha-ha!

Name: Anna Kurchenko

EXTRA CREDIT

6) The circuit below is NOT a clock circuit we've seen before. Show the alternate clock patterns at X and C. For X, remember a super tiny delay has been added by the inversions.

