Total No. of Questions: 6

(a) Trigonal

position its-

(c) Orthorhombic

(a) Kinetic energy decreases

(c) No change in potential energy

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

EN3BS10 Physics for Computing Science

Programme: B.Tech. Branch/Specialisation: CSBS

(b) Cubic

vii. As the particle approaches from the extreme position to the mean 1

(d) Triclinic

(b) Potential energy decreases

(d) Potential energy increases

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

iecessa	ary. N	otations and sy	mbols have their usual	meaning.		
Q.1	i. What is the condition for optical transition from ground state to excestate of an atom? (Incident photon energy = hv and energy gap between the states = ΔE)				1	
		(a) $hv > \Delta E$	(b) $h\nu < \Delta E$	(c) $hv = \Delta E$	(d) None of these	
	ii.	Optical fiber	communication uses ca	arrier wave as-		1
		(a) Laser wave		(b) Radio wave		
		(c) Ordinary l	ight	(d) Microway	'es	
	iii.	When a light	t ray is incident on a	thick glass p	late (μ =1.732), the	1
		reflected light is plane polarised. The angle of incidence is-				
		(a) 45°	(b) 55°	(c) 60°	(d) 68°	
	iv.	Diffraction gr	rating is an arrangemen	nt of-		1
		(a) 2 slits	(b) 4 slits	(c) 6 slits	(d) N slits	
v.		According to	quantum mechanics, fo	or the particle 1	noving in a box-	1
		(a) The energy	y levels are discrete an	d equispaced		
		(b) The energy levels are continuous				
		(c) The energy	y levels are discrete bu	it not equispace	ed	
		. ,	y is always zero			
	vi.	If $a = 10.8 \text{ Å}$,	b = 9.47 Å, c = 5.2 Å	$\alpha = 41^0, \beta = 3$	83^{0} and $\gamma = 93^{0}$, the	1
		crystal structu	re is-			

P.T.O.

[2]

1

viii. The vector field A is irrotational if-

		(a) $\vec{\nabla} \times \vec{A} = 1$	$(b) \vec{\nabla} . \vec{A} = 0$	
		(c) $\vec{\nabla} \times \vec{A} = 0$	(d) $\vec{\nabla} \cdot \vec{A} = 1$	
	ix.	With fall of temperature, the forbidde	en energy gap of a semiconductor-	1
		(a) Remains unchanged		
		(b) Increases		
		(c) Sometimes increases and sometimes	nes decreases	
		(d) Decreases		
	х.	Entropy remains constant in-		1
		(a) Isothermal process	(b) Adiabatic process	
		(c) Cyclic process	(d) Isobaric process	
			-	
Q.2	i.	A step index fiber has a core with	a refractive index of 1.55 and a	3
		cladding with a refractive index of	of 1.51. Calculate the numerical	
		aperture, acceptance angle and fracti	onal refractive index change.	
	ii.	With the help of block diagram and	energy level diagram explain the	7
		construction and working of Carbon	dioxide (CO ₂) laser.	
OR	iii.	Derive the expression for Einstein's	'A' and 'B' coefficients. Why it is	7
		difficult to build up laser in X-ray re	gion?	
Q.3	i.	Distance between the two virtual coh	arant courses in hinriam is 0.1 mm	2
Q.5	1.	Distance between the two virtual coh and the width of the fringes forme	•	3
		distance between the screen and the s		
		wavelength of light used?	int is one meter, what would be the	
	ii.	Make a neat and clean diagram of N	lewton's ring set up. Why circular	7
	11.	fringes are formed in this setup? Pro		•
		is proportional to the square root of r		
OR	iii.	In Fraunhofer's diffraction due to a		7
		of the first secondary maximum is ro	•	
		maxima.		
Q.4	i.	Calculate the deBroglie wavelength		3
		mass 2×10^3 kg which is moving with		
	ii.	Obtain the energy eigen values and		7
0-		particle enclosed in an infinite square	<u>.</u>	_
OR	iii.	Starting from the wave equation	2 25	7
		momentum of the particle obtain an	_	
		Schrodinger's equation in time indep	pendent form	

[3]

Q.5		Attempt any two:	
	i.	Derive a general equation of motion for a simple harmonic oscillator and obtain its solution.	5
	ii.	Explain the following terms with suitable example-	5
		(a) Forced oscillation (b) Resonance	
	iii.	What are Maxwell's equations? Write down their differential form with physical significance.	5
Q.6		Attempt any two:	
	i.	On this basis of energy level diagram of solids, differentiate between insulator, conductor and semiconductor.	5
	ii.	What is the first law of thermodynamics? How can we apply it in the cyclic and isothermal process?	5
	iii.	What are the different statements of the second law of thermodynamics?	5

[1]

Scheme of Marking

Physics for Computing Science (T) - EN3BS10 (T)

Q.1	i)	c) $hv = \Delta E$		1
	ii)	a) laser wave		1
	iii)	c) 60°		1
	iv)	d) N slits		1
	v)	c) the energy levels are discrete but not equispace	ed	1
	vi)	d) triclinic		1
	vii)	b) potential energy decreases		1
	viii)	c) $\vec{\nabla} \times \vec{A} = 0$		1
	ix)	a) remains unchanged		1
	x)	b) adiabatic process		1
Q.2	i.	Correct Formula	1 mark	3
		Remaining calculation (Ans . NA = 0.3499, Acc	p. angle =20.47	
		degree, FRIC= 0.0258)	2 marks	
	ii.	block diagram	1 mark	7
		energy level diagram	2 marks	
		construction	2 marks	
		working	2 marks	_
OR	iii.	Derivation upto three quantum process	2 marks	7
		Remaining derivation	3 marks	
		Reason for (X-ray region)	2 marks	
Q.3	i.	Correct Formula	1 mark	3
		Remaining calculation (Ans. 5000 Angstrom)	2 marks	
	ii.	experimental arrangement	2 marks	7
		rings are circular in nature	1 mark	
0.5		Derivation	4 marks	_
OR	iii.	Diagram	1 mark	7
		Expression upto the resultant intensity	2 marks	
		Condition for principle maxima and minima	2 marks	
		Condition for secondary maxima	2 marks	
Q.4	i.	Correct Formula		3
		Remaining calculation (Ans. 1.24 x 10 ⁻³⁸ m)	2 marks	
	ii.	Boundary Condition and equation	2 marks	7
		Value of constant 'B'	2 marks	

OR	iii.	Energy eigen value Normalized wave function Wave equation Diff. w. r. to 'x' Total energy Final expression	1 mark 2 marks 2 marks 2 marks 1 mark 2 marks	7
Q.5	i.	Attempt any two:		
	ii.	Upto the diff eq. of SHM	2 marks	5
		Remaining derivation	3 marks	
	iii.	Forced oscillation with example	2.5 marks	5
		Resonance with example	2.5 marks	
		What are Maxwell's equations?	1 mark	5
		One mark each for all four (eq. with physical significant	icance.)	
			4 marks	
Q.6	i.	Attempt any two:		
	ii.	Energy level diagram of all three	2 marks	5
		Three differences between insulator, conductor and	semiconductor	
			3 marks	
	iii.	First law of thermodynamics	2 marks	5
		cyclic and isothermal process	3 marks	
	iv.	Clausius statement	2.5 marks	5
		Kelvin statement	2.5 marks	

P.T.O.