Peptide Detection Using Convolutional Neural Network

Zaid Ur Rehman

JNI REIBURG

Motivation (contd.)

- Mass spectrometer produce huge amounts of data
- Without sequence information, characteristic patterns in protein fragments have to be identified
- Feature finding algorithms need parameter tuning by an expert
- A neural network can leverage huge amount of data without any manual tuning

Outline

1. Background

- a) Mass Spectrometry Based Proteomics Experiment
- b) MS Spectra
- c) MS Data Analysis Tools
- d) Convolutional Neural Network
- 2. Data Insight
- 3. Data Preprocessing
- 4. Rendered Images
- 5. Evaluation
 - a) Binary Classification
 - b) Evaluation Metrics
- 6. Results
 - a) Quantitative Results
 - b) Qualitative Results
 - c) Sparse Region Analysis
- 7. Conclusion
- 8. Future Work

Mass Spectrometry Based Proteomics Experiment

> CA146_HUMAN (protein accession Q5VVC0)
MAESGKEKIKWTTTIIISSSLKSYEVATALENRSHKVRYSDSV
ENGSIIFSLSGVAFLLMDTKECLLSTEEIFLAKIEKFINIHQN
SFLVLSAALHGPEEWKLMFRIQQRFLGCNLRILPVHNTVNAIN
LMCTIAKTTSKPYIDSICYRMITAKAYIIEQSPVWKTLQKIKL
NSDSVNPN

MAESGKEK IKWTTTIIISSSLK SYEVATALENRSHK VR. YSDSVENGSIIFSLSGVAFLLMDTK **ECLLSTEEIFLAK** IEK FINIHQNSFLVLSAALHGPEWK LMFR IQQRFLGCNLR ILPVHNTVNAINLMCTIAK TTSKPYIDSICYR MITAK AYIIEQSPVWK TLQK ΙK LNSDSVNPN

MS Spectra

- A 3D plot represents a MS Experiment
- RT: retention time, measured in seconds
- MZ: mass-to-charge ratio, measured in Thomson (Th)

MS Spectra (contd.)

- Presence of C¹³ isotope adds a mass of 1 Da
- MZ offset depends on charge

MS Spectra (contd.)

 Peptides features can be detected due to the characteristic isotope peaks pattern

OpenMS [1]

- An open source software platform for mass spectrometry data analysis
- The tools used during this project:
 - TOPPView : for viewing mass spectra [2]
 - FeatureFinderMultiplex: for detecting peptide features in mass spectra
 - MSSimulator: for generating simulated mass spectra [3]
 - pyOpenMS: a python interface for data pre- and post-processing [4]

FeatureFinderMultiplex (FFM)

- Classical feature finding algorithm in OpenMS
- Does not rely on peptide sequence information
- Parameters were tuned for available MS data
- Used for generating ground truth for real data

Convolutional Neural Networks (CNN)

- Take advantage of spatial structure of data
- Widely used for visual recognition tasks, examples shown below
- Reformulate the peptide detection problem as semantic segmentation

Image Classification

Object Localization

Semantic Segmentation Images from [5]

U-Net

• CNN architecture referred to as U-Net [6]

CNN Training

- Objective Function: Cross-entropy of the pixel-wise softmax over the final output channels
 - Softmax score gives probability of class label for each pixel
 - Cross-entropy measures similarity between predictions and ground truth distributions
- Optimizer: Stochastic Gradient Descent
 - Fixed Learning Rate: 0.01
 - Momentum: 0.9
 - Iterations: ~ 380000

Data Insight

Intensities comparison

a) High Intensity Features

b) Low Intensity Features

c) No feature / noise

• Higher intensity features are easier to detect due to a higher S/N ratio

REIBURG

Data Insight

Real vs. Simulated Data

Real MS Spectra

Simulated MS Spectra

- Experimental spectra contain irregular mass traces at lower intensities
- Simulated spectra does not contain any noise

Data Insight

Real Data Overview

Peptides detected by FFM are marked by black squares. Dense and sparse regions are marked with rectangles.

UNI FREIBURG

Data Insight

Sparse Region In Experimental Data

- Signal-to-noise ratio drops in low-intensity regions
- Shorter RT times for peptides

Data Insight

Dense Region In Experimental Data

- Dense regions have overlapping peptide features
- Peptides have longer RT times in dense regions

Data Preprocessing

Subsampling Step

- Higher rendering resolution allows overlapping spectra remain distinguishable
- Full MS Spectra becomes a 50000x75000 pixels image
- Trade-off: Higher resolution needs more computational resources for preprocessing and network training
- CNN can not "look" at full spectra at the same time
- U-Net has a receptive field of 44 s across 10 Th

A CONTROLLING THE PARTY OF THE

Data Preprocessing

Interpolation along MZ axis

Data Preprocessing

Repetition along RT axis

 Intensity values are repeated along RT axis for every spectrum to fill missing values

UNI FREIBURG

Data Preprocessing

Normalization

UNI FREIBURG

Data Preprocessing

Label Images

Rendered Images

Spectra with annotations

for peptides

Rendered Spectra Image

Dot Labels on highest peak of 1st mass trace

Line Labels for 1st mass trace

Weights for Dot Labels

Binary Classification

- True Positive: a label correctly predicted
- False Negative: a label missed in predictions
- False Positive: a predicted label with no corresponding ground truth label
- Red: Ground truth, Green: Predicted label

True Positive

False Negative

False Positive

Green: Predicted label

Evaluation Metrics

$$Precision = \frac{|True Positives|}{|True Positives| + |False Positives|}$$

$$Recall = \frac{|True Positives|}{|True Positives| + |False Negatives|}$$

- Precision measures the efficiency of neural network's predictions
- Recall measures the relevancy of the predictions

Quantitative Results

Exp	Training Data	Valid Data	Results				
			Training Set		Test Set		
			Precision	Recall	Precision	Recall	
1	Sim	Sim					
2	Real + Sim	Sim					
3	Real + Sim	Real					
4	Real	Real					

Exp	Training Data	Valid Data	Results				
			Training Set		Test Set		
			Precision	Recall	Precision	Recall	
1	Sim	Sim	92%	91%	92%	92%	
2	Real + Sim	Sim	94%	88%	94%	89%	
3	Real + Sim	Real	55%	7%	54%	4%	
4	Real	Real	53%	50%	50%	10%	

Qualitative Results

Dense Region Example

Predictions in dense region

- Red: Ground truth labels, Green: U-Net predictions
- Predictions shown here are from the model trained on real data only
- Few true positives in dense regions, many false negatives

Qualitative Results

Medium Density Region

Predictions in dense region

Predictions in medium density region

- Red: Ground truth labels, Green: U-Net predictions
- Predictions shown here are from the model trained on real data only
- Few true positives in dense regions, many false negatives
- More true positives and less false negatives in medium density regions

Qualitative Results

Sparse Region Example

Predictions in dense region

Predictions in medium density region

Predictions in sparse region

- Red: Ground truth labels, Green: U-Net predictions
- Predictions shown here are from the model trained on real data only
- Few true positives in dense regions, many false negatives
- More true positives and less false negatives in medium density regions
- High recall in low intensity regions along with many false positives

Sparse Region Analysis

- Mass Spectra for False Positives have to be analyzed in TOPPView
- Mass offset between two isotope peaks should be 1 Da
- Dimethyl labeled peptides appear in pairs, and CNN should detect them both
- FFM can be fine tuned for sparse region

Conclusion

- CNN did not detect overlapping peptides efficiently mainly due to receptive field limitation
- It detects peptides in low-intensity regions where FFM fails
- CNN can not outperform FFM without any human control since both data and labels had noise
- Data preprocessing is crucial and dictates network configuration as well

Future Work

- Neural Network should be optimized for bigger receptive field
- Sparse encoding and decoding based network should perform better on MS spectra
- Reformulate as Localization problem to draw bounding box around detected peptides
- Data gathered using other brands of mass spectrometers should also be utilized
- Domain adaptation techniques should be used when mixing real and synthetic data

Questions

References

- 1. H. L. Röst, T. Sachsenberg, S. Aiche, C. Bielow, H. Weisser, F. Aicheler, S. Andreotti, H.-C. Ehrlich, P. Gutenbrunner, E. Kenar, et al., "Openms: a flexible open-source software platform for mass spectrometry data analysis," *Nature methods, vol. 13, no. 9, pp. 741–748*, 2016.
- 2. M. Sturm and O. Kohlbacher, "Toppview: an open-source viewer for mass spectrometry data," *Journal of proteome research, vol. 8, no. 7, pp. 3760–3763*, 2009.
- 3. O. Kohlbacher, K. Reinert, C. Gröpl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, and M. Sturm, "Topp—the openms proteomics pipeline," *Bioinformatics, vol. 23, no. 2, pp. e191–e197*, 2007.
- 4. H. L. Röst, U. Schmitt, R. Aebersold, and L. Malmström, "pyopenms: A python-based interface to the openms mass-spectrometry algorithm library," *Proteomics*, vol. 14, no. 1, pp. 74–77, 2014.
- 5. A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez, "A review on deep learning techniques applied to semantic segmentation," *arXiv* preprint *arXiv*:1704.06857, 2017.
- 6. O. Ronneberger, P. Fischer and T. Brox. (2015, October). "U-net: Convolutional networks for biomedical image segmentation". In *International Conference on Medical image computing and computer-assisted intervention* (pp. 234-241). Springer, Cham.

Softmax Score Distributions

Predictions from a model trained on <u>real and simulated</u> data

Predictions from a model trained on <u>real</u> data only

Using simulated data along with real data yields higher softmax scores in predicted labels

Appendix - II

Training and validation on simulated data

Training on real and sim data, validation on real data

Loss Plots

Training on real and sim data, validation on simulated data

Training and validation on real data

Label: Dot Label CH: Line Label