

Aprendizaje por refuerzo aplicado a tareas de control

Titulación: Máster de Inteligencia

Artificial

Curso académico 2021-2022

Alumno/a: Werner Seoane

Lucas Ezequiel D.N.I: 39459365J

Director/a de TFM: Gabriel Enrique Muñoz Convocatoria:

Tercera

Escribe aquí tu frase favorita.

E indica aquí su autor

Agradecimientos

 \boldsymbol{A} mi familia. \boldsymbol{A} mis padres y mis hermanos y hermanas.

Índice general

ĺnc	lice de	e figuras		Ш
Ínc	lice de	e tablas		IV
ĺnc	lice de	e algoritr	mos	٧
Re	sume	n		1
1.	Intro	ducción		3
	1.1.	Acotaci	ión del problema	3
	1.2.	Disposi	itivo utilizado	3
	1.3.	Marco	teórico	3
		1.3.1.	Aprendizaje por refuerzo	3
		1.3.2.	Algoritmo Policy Gradient	3
		1.3.3.	Algoritmo Actor Critic	3
		1.3.4.	Vision Transformers	3
		1.3.5.	Una subsección	4
		1.3.6.	Una subsubsección	4
2.	Obje	tivos		7
3.	Meto	dología		9
	3.1.	Obteno	sión de los datos	9
	3.2.	Preprod	cesamiento de los datos	9
	3.3.	Análisis	s e investigación de soluciones de aprendizaje por refuerzo	9
		3.3.1.	Elección de los algoritmos utilizados por el agente	9
		3.3.2.	Definición del agente	9
		3.3.3.	Definición del estado	9
		3.3.4.	Definición del estado	9
		3.3.5.	Definición del entorno	9
		3.3.6.	Entrenamiento	9
		-		_

	3.4.	9
4.	Resultados y Discusión	11
5.	Conclusiones	12
	Limitaciones y Perspectivas de Futuro	13
Α.	Apéndize A	16
B.	Apéndize B	17
Rih	oliografía	18

Índice de figuras

	T*																		
1.1.	Tipos de grafos									 									

Índice de tablas

11	Ejemplo de tabla																		_
1.1.	Liempio de tabla																		

Índice de algoritmos

Algoritmo Hill-Climbing (H	IC).		_	 	_			_		_	_		_		į

Resumen

Introducción

1

Escribe aquí la introducción de tu Trabajo Fin de Máster, utilizando tantas secciones, subsecciones y subsubsecciones como estimes necesarias.

1.1. Acotación del problema

1.2. Dispositivo utilizado

Esta palabra está en negrita. Esta palabra está en cursiva. Esta palabra se destaca en púrpura.

1.3. Marco teórico

- 1.3.1. Aprendizaje por refuerzo
- 1.3.2. Algoritmo Policy Gradient
- 1.3.3. Algoritmo Actor Critic

1.3.4. Vision Transformers

En la sección **??** se muestran ejemplos de palabras en negrita, cursiva y destacadas en púrpura.

Una Red Generativa Antagónica o *Generative Adversarial Network* (GAN) es... (Goodfellow et al., 2014).

Goodfellow et al. (2014) diseñaron las redes generativas antagónicas como...

Listado:

- Item 1.
- Item 2.
- Item 3.

Enumeración:

- 1. Item 1.
- 2. Item 2.
- 3. Item 3.

1.3.5. Una subsección

La figura 1.1 muestra...

Figura 1.1: Tipos de grafos.

La tabla 1.1 muestra...

Columna 1	Columna 2	Columna 3	Columna 4	Columna 5
Fila 1	А	В	С	D
Fila 2	E	F	G	H
Fila 3	I	J	K	L

Tabla 1.1: Ejemplo de tabla.

1.3.6. Una subsubsección

El algoritmo 1 muestra...

Algoritmo 1: Algoritmo Hill-Climbing (HC)

- 1. Elegir una estructura de red \mathcal{G} sobre \mathbf{V} , normalmente vacía. Establecer la puntuación máxima inicial: $Score_{max} = Score_{\mathcal{G}}$.
- 2. Repetir los siguientes pasos mientras $Score_{max}$ siga aumentando:
 - a) Calcular las puntuaciones para todas las posibles redes modificadas \mathcal{G}^* que se pueden obtener añadiendo, eliminando o reorientando un solo eje de \mathcal{G} sin que se producan ciclos.
 - b) Si para alguna de las redes modificadas \mathcal{G}^* se cumple que $Score_{G^*} > Score_{\mathcal{G}}$, establecer $G = G^*$ y $Score_{max} = Score_{G^*}$.
- 3. Devolver el DAG \mathcal{G} .

Ejemplo de fórmula:

$$N_k(\mu, \mathbf{\Sigma}) = \frac{1}{\sqrt{2\pi \det(\mathbf{\Sigma})}} \exp\left\{-\frac{1}{2}(\mathbf{X} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{X} - \mu)\right\} \quad \mathbf{X}, \mu \in \mathbb{R}^k$$

Otro ejemplo de fórmula:

$$\underbrace{P(\mathcal{B}|\mathcal{D}) = P(\mathcal{G}, \Theta|\mathcal{D})}_{\text{Aprendizaje}} = \underbrace{P(\mathcal{G}|\mathcal{D})}_{\text{Aprendizaje estructural Aprendizaje paramétrico}} \cdot \underbrace{P(\Theta|\mathcal{G}, \mathcal{D})}_{\text{Aprendizaje paramétrico}}$$

Objetivos

Describe aquí el objetivo general de tu Trabajo Fin de Máster y, a continuación, define los objetivos parciales:

- 1. Objetivo parcial 1.
- 2. Objetivo parcial 2.
- 3. Objetivo parcial 3.

Metodología

- 3.1. Obtención de los datos
- 3.2. Preprocesamiento de los datos
- 3.3. Análisis e investigación de soluciones de aprendizaje por refuerzo
- 3.3.1. Elección de los algoritmos utilizados por el agente
- 3.3.2. Definición del agente
- 3.3.3. Definición del estado
- 3.3.4. Definición del estado
- 3.3.5. Definición del entorno
- 3.3.6. Entrenamiento
- 3.3.7. Evaluación
- 3.4.

Resultados y Discusión

4

Conclusiones

5

- 1. Conclusión 1.
- 2. Conclusión 2.
- 3. Conclusión 3.

Limitaciones y Perspectivas de Futuro

6

Apéndize A

Apéndize B

B

Bibliografía

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., y Bengio, Y. (2014). Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672–2680.