# Aplicație Practică 1 - Electricity Predictor

Nume: Pricope Marius-Andrei Grupă: A2

#### 29 decembrie 2024

# Cuprins

| 1 | Descrierea problemei                                                                       | 2 |
|---|--------------------------------------------------------------------------------------------|---|
|   | 1.1 Contextul și scopul proiectului                                                        | 2 |
| 2 | Analiza problemei 2.1 Înțelegerea setului de date                                          | 2 |
|   | 2.1 Înțelegerea setului de date                                                            | 2 |
|   | 2.2 Preprocesarea datelor                                                                  | 2 |
| 3 | Implementarea algoritmilor                                                                 | 3 |
|   | 3.1 Adaptarea tabelului de valori pentru regresie                                          | 3 |
|   | Implementarea algoritmilor         3.1       Adaptarea tabelului de valori pentru regresie | 5 |
| 4 | Prezentarea rezultatelor                                                                   | 5 |
| 5 | Concluzii                                                                                  | 5 |
|   | 5.1 Ce am învățat?                                                                         | 5 |
|   | 5.2 Cum poate fi îmbunătățită metoda?                                                      | 6 |
| 6 | Referințe                                                                                  | 6 |

## 1 Descrierea problemei

#### 1.1 Contextul și scopul proiectului

În cadrul acestei teme, obiectivul este dezvoltarea unei soluții pentru predicția soldului total al Sistemului Energetic Național (SEN) pentru luna decembrie 2024. Aceasta implică utilizarea și adaptarea algoritmilor ID3 și clasificării bayesiene pentru o problemă de regresie.

**Setul de date:** Datele includ consumul și producția de energie electrică, defalcate pe diverse surse, și sunt furnizate de Transelectrica SEN Grafic.

# 2 Analiza problemei

## 2.1 Înțelegerea setului de date

Setul de date conține următoarele coloane principale:

- Data: Timpul specific al înregistrării.
- Consum[MW]: Consumul total de energie electrică.
- Medie Consum[MW]: Media consumului.
- Producție [MW]: Producția totală de energie.
- Carbune[MW]: Producție pe bază de cărbune.
- Hidrocarburi[MW]: Producție pe bază de hidrocarburi.
- **Ape**[**MW**]: Producție hidro.
- Nuclear[MW]: Producție nucleară.
- Eolian[MW]: Producție eoliană.
- Foto[MW]: Producție solară.
- Biomasă[MW]: Producție din biomasă.
- Sold[MW]: Diferența dintre producție și consum.

# 2.2 Preprocesarea datelor

Inițial am realizat un tabel, cu media valorile pentru fiecare coloana pentru fiecare lună. Coloanele pe care le-am păstrat, au fost doar cele de consum si producție, si soldul era coloana rezultat. Motivul pentru care am ales sa încerc așa prima dată a fost ca productia este suma tuturor surselor de productie, si m-am gandit ca e suficient daca ma raportez doar la productia totala, astfel rezultatul algoritmului devenind mai general.

| Date       | Consum | Productie | Sold  |
|------------|--------|-----------|-------|
| Nov. 2023  | 5402   | 5384      | 18    |
| Dec. 2023  | 6753   | 7059      | -306  |
| Jan. 2024  | 8223   | 7574      | 649   |
| Feb. 2024  | 6281   | 6690      | -409  |
| Mar. 2024  | 4808   | 6337      | -1529 |
| Apr. 2024  | 5334   | 5045      | 289   |
| May 2024   | 6011   | 5126      | 885   |
| Jun. 2024  | 5847   | 5449      | 398   |
| Jul. 2024  | 7622   | 6073      | 1549  |
| Aug. 2024  | 5659   | 5515      | 144   |
| Sept. 2024 | 5374   | 5156      | 218   |
| Oct. 2024  | 7055   | 6308      | 747   |
| Nov. 2024  | 5784   | 5086      | 698   |

Am ales pe parcurs să mai adaug și o coloana numită "Intermitenta" pentru productia de Hidrocarburi, Eolian, Foto si una numită "Constantă" pentru productia de Carbune, Nuclear, Ape, Biomasa. Am făcut suma coloanelor corespunzătoare și le-am pus in tabel.

| Date       | Consum | Producție | Intermitent | Constant | Sold  |
|------------|--------|-----------|-------------|----------|-------|
| Nov. 2023  | 5402   | 5384      | 1913        | 3471     | 18    |
| Dec. 2023  | 6753   | 7059      | 3012        | 4047     | -306  |
| Jan. 2024  | 8223   | 7574      | 2014        | 5560     | 649   |
| Feb. 2024  | 6281   | 6690      | 1709        | 4981     | -409  |
| Mar. 2024  | 4808   | 6337      | 2301        | 4036     | -1529 |
| Apr. 2024  | 5334   | 5045      | 1833        | 3212     | 289   |
| May 2024   | 6011   | 5126      | 840         | 4286     | 885   |
| Jun. 2024  | 5847   | 5449      | 1951        | 3498     | 398   |
| Jul. 2024  | 7622   | 6073      | 2123        | 3950     | 1549  |
| Aug. 2024  | 5659   | 5515      | 2057        | 3458     | 144   |
| Sept. 2024 | 5374   | 5156      | 2367        | 2789     | 218   |
| Oct. 2024  | 7055   | 6308      | 3903        | 2405     | 747   |
| Nov. 2024  | 5784   | 5086      | 2182        | 2904     | 698   |

# 3 Implementarea algoritmilor

## 3.1 Adaptarea tabelului de valori pentru regresie

- Am utilizat bucketing-ul pentru a transforma soldul într-o variabilă discretă.
- Am ales sa impartim intervalele uniform. Regulile de separare sunt in tabelul de mai jos.

| Interval Sold | Etichetă     |
|---------------|--------------|
| < -500        | Negativ Mic  |
| [-500, 500]   | Echilibrat   |
| [500, 1500]   | Pozitiv Mic  |
| > 1500        | Pozitiv Mare |

| Date     | Consum | Producție | Intermitent | Constant | Sold         |
|----------|--------|-----------|-------------|----------|--------------|
| Nov.2023 | 5402   | 5384      | 1913        | 3471     | Echilibrat   |
| Dec.2023 | 6753   | 7059      | 3012        | 4047     | Echilibrat   |
| Jan.2024 | 8223   | 7574      | 2014        | 5560     | Pozitiv Mic  |
| Feb.2024 | 6281   | 6690      | 1709        | 4981     | Echilibrat   |
| Mar.2024 | 4808   | 6337      | 2301        | 4036     | Negativ Mic  |
| Apr.2024 | 5334   | 5045      | 1833        | 3212     | Echilibrat   |
| May.2024 | 6011   | 5126      | 840         | 4286     | Pozitiv Mic  |
| Jun.2024 | 5847   | 5449      | 1951        | 3498     | Echilibrat   |
| Jul.2024 | 7622   | 6073      | 2123        | 3950     | Pozitiv Mare |
| Aug.2024 | 5659   | 5515      | 2057        | 3458     | Echilibrat   |
| Sep.2024 | 5374   | 5156      | 2367        | 2789     | Echilibrat   |
| Oct.2024 | 7055   | 6308      | 3903        | 2405     | Pozitiv Mic  |
| Nov.2024 | 5784   | 5086      | 2182        | 2904     | Pozitiv Mic  |

• Mai departe am discretizat intervalele pentru variabile continue. Am luat pentru fiecare coloana valoare cea mai mica si cea mai mare, am rotunjit in sus, pentru valoarea maxima si in jos pentru valoarea minima, si am impartit intervalul mare in intervale mai mici si egale.

| Interval Consum | Etichetă    |
|-----------------|-------------|
| [4500-5500]     | Mic         |
| [5501-6500]     | Mediu       |
| [6501-7500]     | Mare        |
| [7501-8500]     | Foarte Mare |

Tabela 1: Reguli pentru etichetarea Consumului.

| Interval Producție | Etichetă |
|--------------------|----------|
| [5000-6000]        | Mic      |
| [6001-7000]        | Mediu    |
| [7001-8000]        | Mare     |

Tabela 2: Reguli pentru etichetarea Producției.

| Interval Intermitent | Etichetă |  |
|----------------------|----------|--|
| [800-2000]           | Mic      |  |
| [2001-3200]          | Mediu    |  |
| [3201-4400]          | Mare     |  |

Tabela 3: Reguli pentru etichetarea Intermitentului.

#### 3.2 Evaluarea performanței modelelor

Mai jos avem rezultatele evaluarii performanței, folosit metrici precum RMSE sau MAE. Pentru antrenare am folosit 80% din datele din tabelul construi la inceput si 20% pentru teste.

| Mod | lel | RMSE | MAE  |
|-----|-----|------|------|
| ID: | 3   | 0.0  | 0.0  |
| Bay | es  | 0.75 | 1.12 |

Tabela 4: Performanta modelelor

#### 4 Prezentarea rezultatelor

In urma rularii ambilor algoritmi, am obtinut urmatoarele rezultate:

• Bayes: Echilibrat

• ID3: Pozitiv Mic

Am calculat separat media soldului pentru luna Decembrie 2024. Si conform graficului de mai jos, se poate vedea ca media este de 773MW. Care conform regulilor setate la inceput, se incadreaza la eticheta Pozitiv Mic. Deci ID3 este cel care prezice corect rezultatul.



#### 5 Concluzii

## 5.1 Ce am învățat?

Lucrând la această temă, am citit mai multe informatii despre metrici de performanță, si mai multe tipuri de bucketing. Am încercat sa aleg cele mai bune variante pentru tematica primită. Am observat ca pe cazul meu, ID3 si-a facut mai bine treaba decat Bayes.

# 5.2 Cum poate fi îmbunătățită metoda?

In solutia mea, am folosit foarte putine date, facand media pe fiecare luna. Cred ca daca as folosi ceva mai multe date, cel mai probabil si Bayes ar avea o performanta mai buna.

# 6 Referințe

• Transelectrica SEN Grafic: https://www.transelectrica.ro