

TSV321-TSV358-TSV324

General purpose input/output rail-to-rail low power operational amplifiers

Features

- Operating range V_{CC} = 2.5 V to 6 V
- Rail-to-rail input and output
- Extended V_{icm} (V_{DD} 0.2 V to V_{CC} + 0.2 V)
- Capable of driving a 32 Ω load resistor
- High stability: 500 pF
- Available in SOT23-5 micropackage
- Operating temperature range: -40° C, +125° C

Applications

- Battery-powered applications
- Audio driver (headphone driver)
- Sensor signal conditioning
- Laptop/notebook computers

Description

The TSV358 and TSV324 (dual and quad) are low voltage versions of the LM358 and LM324 commodity operational amplifiers. The TSV321 is the single version. The TSV321/358/324 are able to operate with voltages as low as 2.5 V and feature both I/O rail-to-rail.

The common mode input voltage extends 200 mV beyond the supply voltages at 25° C while the output voltage swing is within 100 mV of each rail with a 600 Ω load resistor. At V_{CC} = 3 V, these devices offer 1.3 MHz of gain-bandwidth product and provide high output current capability with a typical value of 80 mA.

These features make the TSV3xx family ideal for active filters, general purpose low-voltage applications, and general purpose portable devices.

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ⁽¹⁾	7	V
V _{id}	Differential input voltage (2)	±1	V
V _{in}	Input voltage	V _{DD} -0.3 to V _{CC} +0.3	V
T _{stg}	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	150	°C
R_{thja}	Thermal resistance junction to ambient ⁽³⁾ SOT23-5 SO-8 SO-14 TSSOP8 TSSOP14 MiniSO-8	250 125 105 120 100 190	°C/W
R_{thjc}	Thermal resistance junction to case ⁽³⁾ SOT23-5 SO-8 SO-14 TSSOP8 TSSOP14 MiniSO-8	81 40 31 37 32 39	°C/W
	HBM: human body model ⁽⁴⁾	2	kV
ESD	MM: machine model ⁽⁵⁾	200	V
	CDM: charged device model ⁽⁶⁾	1.5	kV
	Latch-up immunity	200	mA
	Lead temperature (soldering, 10s)	250	°C
	Output short-circuit duration	See note ⁽⁷⁾	

- 1. All voltages values, except differential voltage are with respect to network terminal.
- Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If V_{id} > ±1 V, the maximum input current must not exceed ±1 mA. When V_{id} > ±1 V, an input series resistor must be added to limit input current.
- 3. Short-circuits can cause excessive heating and destructive dissipation. R_{th} are typical values.
- 4. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.
- Short-circuits from the output to V_{CC}can cause excessive heating. The maximum output current is approximately 80 mA, independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.5 to 6	V
V _{icm}	Common mode input voltage range $T_{amb} = 25^{\circ}C, \ 2.5 \le V_{CC} \le 6V$ $T_{min} < T_{amb} < T_{max}, \ 2.5 \le V_{CC} \le 5.5V$	V _{DD} - 0.2 to V _{CC} + 0.2 V _{DD} to V _{CC}	>
T _{oper}	Operating free air temperature range	-40 to + 125	°C

2 Electrical characteristics

Table 3. Electrical characteristics at V_{CC} = +3V, V_{DD} = 0V, R_L , C_L connected to $V_{CC}/2$, and T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage	$\begin{split} &V_{icm} = V_{out} = V_{CC}/2 \\ &TSV321/358/324 \\ &T_{min} \le T_{amb} \ \le T_{max} \\ &TSV321A/358A/324A \\ &T_{min} \le T_{amb} \ \le T_{max} \end{split}$		0.2	3 6 1 3	mV
ΔV_{io}	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current	$V_{icm} = V_{out} = V_{CC}/2$ (1) $T_{min} \le T_{amb} \le T_{max}$		3	30 60	nA
I _{ib}	Input bias current	$V_{icm} = V_{out} = V_{CC}/2$ (1) $T_{min} \le T_{amb} \le T_{max}$		40	125 150	nA
CMR	Common mode rejection ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$0 \le V_{icm} \le V_{CC}, V_{out} = V_{CC}/2$	60	80		dB
A _{vd}	Large signal voltage gain	$V_{out} = 0.5V$ to 2.5V $R_L = 2k\Omega$ $R_L = 600\Omega$	80 74	92 95		dB
V _{OH}	High level output voltage	$\begin{split} &V_{id} = 100 mV \\ &R_L = 2k\Omega \\ &R_L = 600\Omega \\ &T_{min} \leq T_{amb} \ \leq T_{max,} \ R_L = 2k\Omega \\ &T_{min} \leq T_{amb} \ \leq T_{max,} \ R_L = 600\Omega \end{split}$	2.82 2.80 2.82 2.80	2.95 2.95		V
V _{OL}	Low level output voltage	$\begin{split} &V_{id} = \text{-}100\text{mV} \\ &R_L = 2k\Omega \\ &R_L = 600\Omega \\ &T_{min} \leq T_{amb} \ \leq T_{max,} \ R_L = 2k\Omega \\ &T_{min} \leq T_{amb} \ \leq T_{max,} \ R_L = 600\Omega \end{split}$		88 115	120 160 120 160	mV
I _o	Output source current	$V_{id} = 100$ mV, $V_O = V_{DD}$	20	80		- mA
'0	Output sink current	$V_{id} = -100$ mV, $V_O = V_{CC}$	20	80		IIIA
I _{CC}	Supply current (per amplifier)	$A_{VCL} = 1$, no load $T_{min} \le T_{amb} \le T_{max}$		420	650 690	μΑ
GBP	Gain bandwidth product	$R_L = 10k\Omega$, $C_L = 100pF$, $f = 100kHz$	1	1.3		MHz
SR	Slew rate	$R_L = 10k\Omega$, $C_L = 100pF$	0.42	0.6		V/µs
φm	Phase margin	C _L = 100pF		53		Degrees
en	Input voltage noise			27		nV/√Hz

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

Table 4. Electrical characteristics at V_{CC} = +5V, V_{DD} = 0V, R_L , C_L connected to $V_{CC}/2$, and T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage	$\begin{split} &V_{icm} = V_{out} = V_{CC}/2 \\ &TSV321/358/324 \\ &T_{min} \leq T_{amb} \leq T_{max} \\ &TSV321A/358A/324A \\ &T_{min} \leq T_{amb} \leq T_{max} \end{split}$		0.2	3 6 1 3	mV
ΔV_{io}	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current	$V_{icm} = V_{out} = V_{CC}/2$ (1) $T_{min} \le T_{amb} \le T_{max}$		3	30 60	nA
l _{ib}	Input bias current	$V_{icm} = V_{out} = V_{CC}/2$ (1) $T_{min} \le T_{amb} \le T_{max}$		70	130 150	nA
CMR	Common mode rejection ratio 20 log $(\Delta V_{ic}/\Delta V_{io})$	$0 \le V_{icm} \le V_{CC}, V_{out} = V_{CC}/2$	65	85		dB
SVR	Supply voltage rejection ratio 20 log ($\Delta V_{CC}/\Delta V_{io}$)	V _{CC} = 2.5 to 5V	70	90		dB
A _{vd}	Large signal voltage gain	$V_{out} = 0.5V$ to $4.5V$ $R_L = 2k\Omega$ $R_L = 600\Omega$	83 77	92 85		dB
V _{OH}	High level output voltage	$\begin{split} V_{id} &= 100 mV \\ R_L &= 2k\Omega \\ R_L &= 600\Omega \\ T_{min} &\leq T_{amb} \ \leq T_{max,} \ R_L = 2k\Omega \\ T_{min} &\leq T_{amb} \ \leq T_{max,} \ R_L = 600\Omega \end{split}$	4.80 4.75 4.80 4.75	4.95 4.90		V
V _{OL}	Low level output voltage	$\begin{split} &V_{id} = \text{-}100\text{mV} \\ &R_L = 2k\Omega \\ &R_L = 600\Omega \\ &T_{min} \leq T_{amb} \ \leq T_{max,} \ R_L = 2k\Omega \\ &T_{min} \leq T_{amb} \ \leq T_{max,} \ R_L = 600\Omega \end{split}$		88 115	130 188 130 188	mV
	Output source current	$V_{id} = 100$ mV, $V_O = V_{DD}$	20	80		mΛ
I _o	Output sink current	$V_{id} = -100$ mV, $V_O = V_{CC}$	20	80		- mA
I _{CC}	Supply current (per amplifier)	$A_{VCL} = 1$, no load $T_{min} \le T_{amb} \le T_{max}$		500	835 875	μA
GBP	Gain bandwidth product	$R_L = 10k\Omega$, $C_L = 100pF$, $f = 100kHz$	1	1.4		MHz
SR	Slew rate	$R_L = 10k\Omega, C_L = 100pF$	0.42	0.6		V/µs
φm	Phase margin	C _L = 100pF		55		Degrees
en	Input voltage noise			27		nV/√Hz
THD	Total harmonic distortion			0.01		%

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

Vcc = 5V Supply Current (µA) Vcc = 3V Supply Current (µA) Tamb = 25°C -40 -20 Temperature (°C) Supply Voltage (V)

Figure 1. Supply current/amplifier vs. supply Figure 2. Supply current/amplifier vs. voltage temperature

Figure 3. Output power vs. supply voltage

Figure 4. Input offset voltage drift vs. temperature

Figure 5. Input bias current vs. temperature Figure 6. Open loop gain vs. temperature at

6/17

Figure 7. Open loop gain vs. temperature at $V_{CC} = 3 V$ High level output voltage vs. temperature

Figure 9. Low level output voltage vs. temperature

110 **RL = 600 ohms** Voltage Referenced to Gnd (mV) 100 90 Vcc = 5V 80 Vcc = 3V 70 60 50 40 -40 -20 0 20 40 60 80 100 120 Temperature (°C)

Figure 10. Output current vs. temperature at $V_{CC} = 5 \text{ V}$

Figure 11. Output current vs. temperature at $V_{CC} = 3 \text{ V}$

İsink

Isource

20

40 60

Temperature (°C)

80

Vcc = 3V Vid = 1V

100 120 140

2.0

3.0

Output Voltage (V)

4.0

0.0

1.0

477

100

50

0

-100

-40

-20 0

Output Current (mA)

5.0

Figure 13. Output current vs. output voltage at Figure 14. Gain and phase vs. frequency at V_{CC} = 3 V V_{CC} = 5 V

Figure 15. Gain and phase vs. frequency at $V_{CC} = 3 \text{ V}$

Figure 16. Slew rate vs. temperature at $V_{CC} = 5 \text{ V}$

Figure 17. Slew rate vs. temperature at $V_{CC} = 3 \text{ V}$

Figure 18. Distortion vs. frequency

Package information 3

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.

SOT23-5 package information 3.1

С

Figure 19. SOT23-5 package mechanical drawing

Table 5. SOT23-5 package mechanical data

	Dimensions							
Ref.		Millimeters			Mils			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	0.90		1.45	35.4		57.1		
A1	0.00		0.15	0.00		5.9		
A2	0.90		1.30	35.4		51.2		
b	0.35		0.50	13.7		19.7		
С	0.09		0.20	3.5		7.8		
D	2.80		3.00	110.2		118.1		
Е	2.60		3.00	102.3		118.1		
E1	1.50		1.75	59.0		68.8		
е		0.95			37.4			
e1		1.9			74.8			
L	0.35		0.55	13.7		21.6		

9/17

3.2 SO-8 package information

Figure 20. SO-8 package mechanical drawing

Table 6. SO-8 package mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.75			0.069		
A1	0.10		0.25	0.004		0.010		
A2	1.25			0.049				
b	0.28		0.48	0.011		0.019		
С	0.17		0.23	0.007		0.010		
D	4.80	4.90	5.00	0.189	0.193	0.197		
Е	5.80	6.00	6.20	0.228	0.236	0.244		
E1	3.80	3.90	4.00	0.150	0.154	0.157		
е		1.27			0.050			
h	0.25		0.50	0.010		0.020		
L	0.40		1.27	0.016		0.050		
k	1°		8°	1°		8°		
ccc			0.10			0.004		

3.3 TSSOP8 package information

Figure 21. TSSOP8 package mechanical drawing

Table 7. TSSOP8 package mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.2			0.047		
A1	0.05		0.15	0.002		0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.008		
D	2.90	3.00	3.10	0.114	0.118	0.122		
Е	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.177		
е		0.65			0.0256			
k	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1			0.039			
aaa		0.1			0.004			

3.4 MiniSO-8 package information

Figure 22. MiniSO-8 package mechanical drawing

Table 8. MiniSO-8 package mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.1			0.043		
A1	0		0.15	0		0.006		
A2	0.75	0.85	0.95	0.030	0.033	0.037		
b	0.22		0.40	0.009		0.016		
С	0.08		0.23	0.003		0.009		
D	2.80	3.00	3.20	0.11	0.118	0.126		
E	4.65	4.90	5.15	0.183	0.193	0.203		
E1	2.80	3.00	3.10	0.11	0.118	0.122		
е		0.65			0.026			
L	0.40	0.60	0.80	0.016	0.024	0.031		
L1		0.95			0.037			
L2		0.25			0.010			
k	0°		8°	0°		8°		
ccc			0.10			0.004		

3.5 SO-14 package information

Figure 23. SO-14 package mechanical drawing

Table 9. SO-14 package mechanical data

	Dimensions								
Ref.		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.75			0.068			
a1	0.1		0.2	0.003		0.007			
a2			1.65			0.064			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45°	(typ.)					
D	8.55		8.75	0.336		0.344			
E	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		7.62			0.300				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.68			0.026			
S		•	8° (ı	max.)					

13/17

3.6 TSSOP14 package information

Figure 24. TSSOP14 package mechanical drawing

Figure 25. TSSOP14 package mechanical data

			Dimer	ensions			
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.9	5	5.1	0.193	0.197	0.201	
Е	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
K	0°		8°	0°		8°	
L1	0.45	0.60	0.75	0.018	0.024	0.030	

4 Ordering information

Table 10. Order codes

Order code	Temperature range	Package	Packaging	Marking
TSV321RILT		SOT23-5	Tape & reel	K174
TSV321RAILT		30123-3	Tape & Teel	K178
TSV321RIYLT ⁽¹⁾		SOT23-5	Tape & reel	K179
TSV321RAIYLT ⁽¹⁾		(Automotive grade level)	Tape & Teel	K187
TSV321ID/IDT		SO-8	Tube or tape & reel	V321ID
TSV321IYD/IYDT ⁽¹⁾		SO-8 (Automotive grade level)	Tube or tape & reel	V321Y
TSV321AID/IDT		SO-8	Tube or tape & reel	V321AI
TSV358ID/IDT		SO 0	Tube or	V358ID
TSV358AID/IDT		SO-8	tape & reel	V358AID
TSV358IYD/IYDT ⁽¹⁾		SO-8	Tube or	V358YD
TSV358AIYD/AIYDT ⁽¹⁾		(Automotive grade level)	tape & reel	V358AY
TSV358IPT	-40°C to +125°C	5°C TSSOP8 (Thin shrink outline package)	Tape & reel	V358I
TSV358AIPT			rape & reer	V358A
TSV358IYPT ⁽¹⁾		TSSOP8	Tape & reel	V358Y
TSV358AIYPT ⁽¹⁾		(Automotive grade level)	Tape & Teel	V58AY
TSV358IST		MiniSO-8	Tape & reel	K175
TSV358AIST		IVIII IISO-0	Tape & Teel	K184
TSV324ID/IDT		SO-14	Tube or	V324ID
TSV324AID/AIDT		30-14	tape & reel	V324AI
TSV324IYD/IYDT ⁽¹⁾		SO-14	Tube or tape & reel	V324YD
TSV324AIYD/AIYDT ⁽¹⁾		(Automotive grade level)	Tube of tape & reel	V324AY
TSV324IPT		TSSOP14	Tape & reel	V324IP
TSV324AIPT		(Thin shrink outline package)	ιαρε α ισει	V324A
TSV324AIYPT ⁽¹⁾		TSSOP14	Tape & reel	V324AY
TSV324IYPT ⁽¹⁾		(Automotive grade level)	ιαρε α ισει	V324Y

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
2-Aug-2005	1	First release - Products in full production.
20-Sep-2005	2	Addition of TS321A/TS324A/TS358A data in tables in Section 2: Electrical characteristics on page 4. Minor formatting and grammatical changes.
7-Dec-2005	3	Missing PPAP references inserted see Section 4: Ordering information on page 15.
28-Jun-2007	4	Correction made on output drive capability, 80mA in description on cover page. SVR measurement conditions inserted in electrical characteristics tables. Offset voltage limit in temperature added in Section 2: Electrical characteristics on page 4. Correction made on Input Bias Current typical value in Section 2: Electrical characteristics on page 4. Captions of electrical characteristics figures updated. Automotive grade order codes added to Section 4: Ordering information on page 15.
21-Feb-2008	5	Corrected SO-14 R _{thja} value to 105 °C/W. Updated presentation of package information. Corrected footnote for automotive grade order codes in order code table.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com