

Ordenação em Tempo Linear

Algoritmos e Estuturas de Dados

Cátia Vaz

_

Algoritmos de Ordenação

- insertion sort, selection sort, merge sort, quicksort e heapsort são algoritmos de ordenação baseados em comparações.
- Ω (n lg n) é um limite inferior para algoritmos de ordenação baseados em comparações.
- counting sort, radix sort e bucket sort são algoritmos de ordenação em "tempo linear" que utilizam outras operações para determinar a ordem de ordenação.

Counting Sort

- entre 0...k Assume que cada um dos n elementos do array A é um inteiro
- Se k = O(n), a ordenação é em tempo linear
- Algoritmo:
- menores ou iguais; Determina para cada elemento x o número de elementos
- Utiliza a informação anterior para colocar directamente cada elemento $\mathbf x$ no array final;
- Requer dois arrays:
- Um array c com dimensão k, para contar o número de elementos menores ou iguais;
- ordenados. Um array B com dimensão n, para colocar os elementos

Cátia Vaz

ω

Counting Sort

for $i \leftarrow 0$ to kdo $C[i] \leftarrow 0$ for $j \leftarrow 1$ to ndo $C[A[j]] \leftarrow C[A[j]] + 1$ for $i \leftarrow 1$ to kdo $C[i] \leftarrow C[i] + C[i-1]$ for $j \leftarrow n$ downto 1do $B[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Time: $\Theta(n+k) = \Theta(n)$ se k = O(n)

COUNTING-SORT(A, B, n, k)

C com dimensão k, em que C[k] é atribuído o número de elementos iguais k.

Actualiza C[k] com o número de elementos menores ou iguais k.

Como os elementos podem ser iguais, decrementa-se C[A[j]] cada vez que se coloca um A[j] no array B.

Cátia Vaz

for for $j \leftarrow 1$ to nfor $i \leftarrow 1$ to kfor $i \leftarrow 0$ to k COUNTING-SORT(A, B, n, k)do $C[i] \leftarrow 0$ do B[C[A[j]]]do $C[i] \leftarrow C[i] + C[i$ do $C[A[j]] \leftarrow$ $\leftarrow n$ downto 1 C[A[j]] +C[A[j]]

>	
2	-
5	2
ω	ω
0	4
2	
З	:
0	
ω	œ

W

Cátia Vaz

5

- Ideia do Algoritmo:
- Ordenar primeiro o dígito menos significativo;
- Para ordenar d dígitos:

Radix-Sort(A, d)

for $i \leftarrow 1$ to d

do use a stable sort to sort array A on digit i

Radix-sort - análise

Assumindo que se usa counting-sort

- $\Theta(n+k)$ por passo (digitos entre $0,\ldots,k$)
- d passos
- $\Theta(d(n+k))$ total
- Se k = O(n), time = $\Theta(dn)$.

Como quebrar cada chave em dígitos

- *n* words e *b* bits/word.
- Break em *r*-bit por digito, $d = \lceil b/r \rceil$. Usando counting sort, $k = 2^r 1$.

Exemplo: 32-bit words, 8-bit por digito. b = 32, r = 8, $d = \lceil 32/8 \rceil = 4$, $k = 2^8 - 1 = 255$.

Time = $\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)$.

Radix-sort - análise

Como escolher o número de bits por dígito

Escolhendo $r \approx \lg n$

$$\Theta\left(\frac{b}{\lg n}\left(n+n\right)\right) = \Theta(bn/\lg n).$$

- Se $r < \lg n$, $b/r > b/\lg n$ e $k = 2^r < n$
- Se $r > \lg n$, $k = 2^r > n$.

Exemplo: $r = 2 \lg n \Rightarrow 2^r$ $= 2^{2\lg n} = (2^{\lg n})^2 = n^2$

Ordenar 2^{16} 32-bit numeros, $r = \lg 2^{16} = 16$ bits. $\lceil b/r \rceil = 2$ passos.

 ∞