It doesn't state that ConvLSTM will give you better results than Conv3D. The explanation should be as detailed as possible so that the logic behind the decision is conveyed. Also, there are a lot of things you can experiment with in the generator function and elsewhere. Please do not forget to specify the exact metric values, here Accuracy which drives your decision.

You can draw inspiration from the concepts taught in the Industry demo in CNNs to experiment with the data and different architectures.

Experiment Number	Model	Case	Result	Decision + Explanation
1	Conv3D	Batch size = 70 image size(160,160, 30, 3)	OOM Error: Out of memory exception	This means that the GPU memory cannot fit that much into memory. Reduce to 50.
2	Conv3D	Batch size = 40 30 Epochs image size(160,160, 30, 3)	Validation Categorical Accuracy: 0.3 Training Categorical Accuracy: 0.98	Model is overfitting with: with a subset of the data.
3	Conv3D	Use image size(160,160, 30, 3) Added some more layers to the model	ResourceExh austedError: Graph execution error	Model not trainable as a lot of parameter Decision: Resize the image to have smaller dimensions
4	Conv3D	Use image size(120,120, 30, 3) Set model padding to retain same image dimensions	ResourceExh austedError: Graph execution error	Model not trainable as a lot of parameter Decision: Allow shrinkage of the dimensions
5	Conv3D	Image size (120,120, 15, 3) Using half of the sequences	ValueError: Error while initializing model	Model not trainable as the shrinkage get dimension to zero or less Decision: Increase the number of the sequences

6	Conv3D	Imaga siza	Model was	It appears that the
0	COLIVOD	Image size (80,80, 30, 3)	not learning	It appears that the cropping has removed
		` ' ' ' '	not learning	
		Using half of the	catagorical	some important features required to
		sequences	categorical	•
		20	accuracy:	classify the image
		30 epochs	0.203	sequences.
		The layers were	validation	Decision: reduce
		also reduced and	categorical	cropping and use resize
		padding applied	accuracy:	to reduce size of image
		to reduce	0.1180	but still maintain most
		dimension		of the image features
		reduction		needed for
				classification
		More data was		
		used in training		
7	Conv3D	Image size	Faster	Model is overfitting
		(80,80, 15, 3)	training	because it was trained
		Using half of the		on a small part of the
		sequences	categorical	data
			accuracy:	
		The layers were	1.0000	
		also reduced and	validation	
		padding applied	categorical	
		to reduce	accuracy:	
		dimension	0.2000	
		reduction		
8	Conv3D	I changed model	categorical	The model seem to
		architecture by	accuracy:	perform poorly on
		replacing global	0.9759	validation data
		average pooling	validation	because it is unable to
		by flattening	categorical	identify the patterns
		'	accuracy:	there. There are still
		Used all the train	0.2400	signs of overfitting
		and validation		
		data available	validation	
			loss as	
			consistently	
			increasing	
			while	
			training loss	
			was	
			consistently	
			reducing	
9	Conv3D	Augmented the	categorical	This seems to be the
		validation data	accuracy:	best possible case with
		by adding 10% of	0.9759	the Conv3D model.
	l .		1	

		,	T	,
		train data to validation data increased the dropout on final out before softmax introduced again the Global average pooling Image size: (80,80, 15, 3)	validation categorical accuracy: 0.2638	The data may be insufficient to adequately train the model so that it does not learn the specific data set but generalizes overall and predicts more accurately unseen data.
		Batch size: 80		
10	CNN_GRU	Batch size: 50 Image size: (120,120, 30, 3) Using only 20% of data for training gru_cells: 15	categorical accuracy: 0.9900 validation categorical accuracy: 0.2250	It can be seen that there is overfitting. Decision: increase drop out and change input to GRU model a bit
11	CNN_GRU	pretrained model pooling = max Image size: (120,120, 30, 3) Using only 20% of data for training gru_cells: 15	categorical accuracy: 0.29000 validation categorical accuracy: 0.10850	The learning of the model seems to have been greatly impacted by this singular modification.
12	CNN_GRU	pretrained model pooling = avg Image size: (120,120, 15, 3)	categorical accuracy: 1.0000 validation categorical accuracy: 0.2000	The validation accuracy was constantly 0.2000 where as the validation loss was increasing constantly and the training loss constantly reduce

		Using only 20% of data for training dropout = 0.5 before final output gru_cells: 15		Remove: dropout in final and increase time series data for learning
13	CNN_GRU	pretrained model pooling = avg Image size: (80,80, 15, 3) batch_size = 100 Using only 20% of data for training gru_cells: 15 Epochs: 30	categorical accuracy: 0.9100 validation categorical accuracy: 0.4000	This could have significantly improved with more epochs Decision: Try with full data set and more epochs
14	CNN_GRU	pretrained model pooling = avg Image size: (80,80, 15, 3) batch_size = 100 Using full data set gru_cells: 15 Epochs: 30	categorical accuracy: 0.9698 validation categorical accuracy: 0.6000	There could be some more improvements if trained over more epochs.
15	CNN_LSTM	pretrained model pooling = avg Image size: (80,80, 15, 3)	categorical accuracy: 0.6700 validation categorical	The result is a bit indecisive because training accuracy should be greater than validation accuracy.

		batch_size = 100	accuracy: 0.4250	Decision: increase the number of units and
		Using only 20%		use the full data set to
		of data for		train the LSTM model.
		training		
		units: 5		
		Epochs: 40		
16	ConvLSTM	pretrained model	categorical	
		pooling = avg	accuracy:	
			0.4100	
		Image size:	validation	
		(80,80, 15, 3)	categorical	
			accuracy:	
		batch_size = 100	0.4500	
		Full data set		
		units: 5		
		Epochs: 30		
Final Model	CNN_GRU.	pretrained model	categorical	This is the best model
		pooling = avg	accuracy:	that has the least
			0.9698	overfitting tendency
		Image size:	validation	and the best
		(80,80, 15, 3)	categorical	generalization and
			accuracy:	accuracy on validation
		batch_size = 100	0.6000	data.
		Using full data		
		set		
		gru_cells: 15		
		Epochs: 30		