Ejercicios Resueltos de Circuitos de Corriente Alterna

Ejemplo resuelto nº 1

¿Cuál ha de ser la frecuencia de una corriente alterna para que una autoinducción, cuyo coeficiente es de 8 henrios, presente una reactancia de 6000 Ω ?¿Y para que un condensador de 5 μ F presente la misma reactancia?

Resolución

La impedancia viene expresada por la ecuación:

$$Z = X_L = L \cdot \omega$$

como:

$$\omega = 2 \cdot \pi \cdot \sigma$$

$$\mathbf{X_L} = \mathbf{L} \cdot 2 \cdot \pi \cdot \sigma \; ; \; 6000 \; \Omega = 8 \; \mathrm{H} \cdot 2 \cdot 3,14 \cdot \sigma$$

H = Henrios

$$\sigma = 6000 \Omega / 50,24 H = 119,42 Hz$$

En el caso del condensador:

$$Z = X_C = 1 / C \cdot \omega$$
; $X_C = 1 / (C \cdot 2 \cdot \pi \cdot \sigma)$
 $X_C \cdot C \cdot 2 \cdot \pi \cdot \sigma = 1$; $\sigma = 1 / X_C \cdot C \cdot 2 \cdot \pi$

$$X_{C} = 6000 \Omega$$

 $C = 5 \mu F \cdot 10^{-6} F / 1 \mu F = 5 \cdot 10^{-6} F$
 $\sigma = 1 / (6000 \Omega \cdot 5 \cdot 10^{-6} F \cdot 2 \cdot 3,14) =$
 $= 5,26 HZ (1/s)$

Determinar la reactancia capacitiva de una corriente alterna cuya frecuencia es de 75 r.p.m. El circuito está integrado por un generador de corriente alterna y un condensador de 20 µF.

Resolución

$$\sigma$$
 = 75 r.p.m = 75 ciclos/min . 1 min /60 s = 1,25 ciclos /s = 1,25 (1/s) = = 1,15 Hz

$$20 \, \mu \text{F} \cdot 10^{-6} \, \text{F} / 1 \, \mu \text{F} = 20 \cdot 10^{-6} \, \text{F}$$

$$X_C = 1/C \cdot \omega \rightarrow X_C = 1/C \cdot 2\pi\sigma$$

$$X_C = 1/20 \cdot 10^{-6} \,\mathrm{F} \cdot 2 \cdot 3,14 \cdot 1,15 \,1/\mathrm{s} = 0,007 \cdot 10^6 = 7 \cdot 10^3 \,\Omega$$

Ejercicio resuelto nº 3

Calcula la reactancia inductiva y la impedancia de una bobina cuyo coeficiente de inducción vale 1,2 henrios y cuya resistencia óhmica es de $10~\Omega$ cuando por dicha bobina circula una corriente alterna cuya pulsación es de 125 ciclos/s.

Resolución

La reactancia inductiva viene dada por la ecuación:

$$X_L = L \cdot \omega$$
 (1)

Pondremos la velocidad angular en función de la frecuencia:

$$\Omega = 2 \cdot \pi \cdot \sigma$$

La ecuación (1) se transforma en:

$$X_L = L \cdot 2 \cdot \pi \cdot \sigma \rightarrow X_L = 1.2 \text{ h} \cdot 2 \cdot 3.14 \cdot 125 (1/\text{s}) = 942 \Omega$$

La Impedancia la podremos conocer con la ecuación:

$$Z = [R^2 + (L \cdot \omega)^2]^{1/2}$$
 \Rightarrow $Z = [(10 \Omega)^2 + (942 \Omega)^2]^{1/2}$
 $Z = (100 + 887364)^{1/2} = 942,05 \Omega$

Por un circuito de corriente alterna de coeficiente de autoinducción 5 henrios pasa una corriente alterna de 50 Hz. Calcula la reactancia inductiva.

Resolución

La reactancia inductiva viene dada por la expresión:

$$X_L = L \cdot \omega = L \cdot 2 \cdot \pi \cdot \sigma$$

 $X_L = 5 \text{ h} \cdot 2 \cdot 3.14 \cdot 50 \ (1/\text{s}) = 1500 \ \Omega$

Ejercicio resuelto nº 5

Una bobina con inductancia L=230 mH se conecta a una fuente con Vmax =36 V, operando a una frecuencia de f=60 Hz . Obtenga el valor máximo de la corriente.

Resolución

La ecuación de Imax viene dado por la ecuación:

$$Imax = Vmax / (R^2 + X_L^2)$$
$$Imax = Vmax / X_L^2$$

$$X_L = L \cdot \omega = L \cdot 2\pi\sigma$$

$$Imax = 36 \text{ V} / (230 \cdot 10^{-3} \text{ H} \cdot 2 \cdot 3,14 \cdot 60 (1/\text{s}) = 0,41 \text{ A}$$

Ejercicio resuelto nº 6

Un condensador de C=15 μF se conecta a una fuente con Vmax=36 V, operando a una frecuencia de f=60 Hz . Obtenga el valor máximo de la corriente.

Resolución

$$C = 15 \mu F$$
. $10^{-6} F / 1 \mu F = 15 \cdot 10^{-6} F$
 $\sigma = 60 Hz$

$$Vmax = 36 V$$

$$I = V / X_C$$

$$Xc = 1/C \cdot 2\pi\sigma = 1/15 \cdot 10^{-6} \text{ F} \cdot 2 \cdot 3.14 \cdot 60 \text{ 1/s} = 176 \Omega$$

Volvemos a:

$$I = V / X_C = 36 \text{ V} / 176 \Omega = 0.2 \text{ A}$$

Ejercicio resuelto nº 7

Un circuito de corriente alterna se encuentra integrado por una $R=20~\Omega$, una bobina de 0,5 H de autoinducción y un condensador de 10 μF . Se conecta a una fuente de energía de fuerza electromotriz eficaz de 220 V y 50 Hz de frecuencia. Determinar:

- a) La Intensidad eficaz
- b) La impedancia del circuito
- c) La diferencia de potencial entre los extremos de cad uno de los receptores del circuito

Resolución

a)
$$Ief = Vef/Z$$

Debemos conocer primero la Impedancia Z

Nos vamos al apartado b)

b)
$$Z = [R^2 + (L \cdot \omega - 1/C \cdot \omega)^2]^{1/2}$$

 $Z = [R^2 + (L \cdot 2\pi\sigma - 1/C \cdot 2\pi\sigma)]^{1/2}$
 $Z = (20 \Omega)^2 + (0.5 H \cdot 2 \cdot 3.14 \cdot 50 (1/s) - 1/10 \cdot 10^{-6} F \cdot 2 \cdot \pi \cdot 50 (1/s)$
 $Z = 400 + (157 - 1/3400 \cdot 10^{-6}) = 400 + (157 - 2.94 \cdot 10^{-4} \cdot 10^{6}) =$
 $= 400 + (157 - 294) = 400 + (-137) = 400 - 137 = 263 \Omega$

Volvemos al apartado a)

$$Ief = Vef / Z = 220 V / 263 \Omega = 0.84 A$$

c) Diferencia de potencial entre los bornes de la resistencia:

$$V_R = I \cdot R = 0.84 \text{ A} \cdot 20 \Omega = 16.8 \text{ V}$$

Entre los extremos de la bobina:

$$V_L = I \cdot X_L \rightarrow X_L = L \cdot \omega = L \cdot 2\pi\sigma = 0.5 H \cdot 2 \cdot 3.14 \cdot 50 (1/s) = 170 \Omega$$

Volviendo a:

$$V_L = I \cdot X_L = 0.84 A \cdot 170 \Omega = 142.8 V$$

Entre los extremos del condensador:

$$V_C = I \cdot X_C$$
; $X_C = 1/C \cdot \omega = 1/C \cdot 2\pi\sigma = 1/10 \cdot 10^{-6} \text{ F} \cdot 2 \cdot 3,14 \cdot 50 \text{ s}^{-1}$
 $X_C = 318,4 \Omega$
 $V_C = 0.84 \text{ A} \cdot 318,4 \Omega = 267,46 \text{ V}$

Ejercicio resuelto nº 8

Determinar la impedancia, intensidad eficaz y el ángulo de desfase de un circuito de corriente alterna RLC en donde los receptores están montados en serie y cuyos datos son:

$$\sigma = 50~Hz$$
 ; L = 1,6 H ; R = 15 Ω ; V = 450 V y C = 40 μF

Resolución

Impedancia:

$$Z = [R^{2} + (L \cdot \omega - 1/C \cdot \omega)^{2}]^{1/2}$$

$$Z = [R^{2} + (L \cdot 2\pi\sigma - 1/C \cdot 2\pi\sigma)^{2}]^{1/2}$$

$$Z = [(15)^{2} + (1,6 \cdot 2 \cdot 3,14 \cdot 50 - 1/40 \cdot 10^{-6} \cdot 2 \cdot 3,14 \cdot 50)^{2}]^{1/2}$$

$$Z = [225 + (502,4 - 1/12560 \cdot 10^{-6})^{2}]^{1/2}$$

$$Z = [225 + (502,4 - 79,6)^{2}]^{1/2}$$

$$Z = [225 + (422,8)^{2}]^{1/2}$$

$$Z = (225 + 178759,84)^{1/2} = 423,06 \Omega$$

Intensidad eficaz:

$$I_{ef} = V_{ef} / Z$$

$$Ief = 450 \text{ V} / 587,83 \Omega = 0,76 \text{ A}$$

Angulo de desfase:

$$tag \ \theta = [L \cdot \omega - 1/(C \cdot \omega)]/R \ \Rightarrow \ tag \ \theta = [L \cdot 2\pi\sigma - 1/C \cdot 2\pi\sigma]/R$$

$$tag \ \theta = (1,6 \cdot 2 \cdot 3,14 \cdot 50 - 1/40 \cdot 10^{-6} \cdot 2 \cdot 3,14 \cdot 50)/15$$

$$tag \ \theta = (502,4 - 79,6)/15 = 28,2$$

 θ = arctag 28,82 = 1,53 rad (angulo de desfase)

Ejercicio resuelto nº 9

Una bobina de 2 H y resistencia $500~\Omega$ está montada en serie con un condensador de 4 μF . Si al conjunto se le aplica una tensión eficaz de 200~V y la frecuencia de la corriente es de 50~Hz, determinar:

- a) La intensidad de la corriente
- b) La tensión eficaz en los bornes de la bobina y del condensador
- c) El desfase entre la intensidad y las diferencias de potencial en los bornes del circuito y de la bobina

Resolución

a) Sabemos que:

$$I_{ef} = V_{ef} / Z$$

Debemos conocer el valor de la impedancia:

$$Z = [R^{2} + (L \cdot \omega - 1/C \cdot \omega)^{2}]^{1/2}$$

$$Z = [(500)^{2} + (2 \cdot 2\pi\sigma - 1/C \cdot 2\pi\sigma)^{2}]^{1/2}$$

$$Z = [250000 + (2 \cdot 2 \cdot 3,14 \cdot 50 - 1/4 \cdot 10^{-6} \cdot 2 \cdot 3,14 \cdot 50)^{2}]^{1/2}$$

$$Z = [250000 + (628 - 796,17)^{2}]^{1/2}$$

$$Z = [(250000 + (-168,17)^{2}]^{1/2}$$

$$Z = (250000 + 28281,15)^{1/2}$$

$$Z = 527,52 \Omega$$

Volvemos a la ecuación:

$$I_{ef} = V_{ef}/Z$$
; $I_{ef} = 200 \text{ V}/527,52 \Omega = 0.38 \text{ A}$

b) Tensión eficaz en los bornes de la bobina:

Vef = Ief.
$$Z_L = Ief [(R^2 + (L \cdot \omega)^2]^{1/2}]$$

Vef = Ief $[R^2 + (L \cdot 2\pi\sigma)2]^{1/2}$
Vef = 0,38 $[(500)^2 + (2 \cdot 2 \cdot 3,14 \cdot 50)^2]^{1/2}$
Vef = 0,38 $(250000 + 394384)^{1/2}$
Vef = 0,38 $\cdot 802,7 = 305 V$

Tensión eficaz en los bornes del condensador:

Vef = *Ief* .
$$X_C$$
 = Ief . 1 / C . $2\pi\sigma$ = 0,38 . 1 / 4 . 10^{-6} . 2 . 3,14 . 50 = 0,38 / 1256 . 10^{-6} = 302,5 *V*

c) Desfase en los extremos del circuito:

Conoceremos primero la tag de Θ y después por el arctag sacaremos el desfase.

Tag θ =
$$(L \cdot \omega - 1/C \cdot \omega)/R = (L \cdot 2\pi\sigma - 1/C \cdot 2\pi\sigma)/R =$$

= $(2 \cdot 2 \cdot 3,14 \cdot 50 - 1/4 \cdot 10^{-6} \cdot 2 \cdot 3,14 \cdot 50)/500 =$
= $(628 - 796,17)/500 = -0,336$
Θ = arctag $(-0,336)$

Al ser negativo el desfase nos está indicando que la intensidad está adelantada a la tensión.

Desfase en la bobina:

$$tag \ \theta = L \cdot \omega / R = L \cdot 2\pi\sigma / R = 2 \cdot 2 \cdot 3,14 \cdot 50 / 500 = 1,25$$

 $\theta = arctag \ 1,25$

Al ser positivo nos indica que el potencial está adelantado a la intensidad.

EJERCICIOS RESUELTOS DE LA CORRIENTE ALTERNA

Ejercicio resuelto nº 10

Un circuito de corriente alterna se encuentra en resonancia. El circuito está compuesto por una asociación en serie de una bobina de autoinducción 1,5 henrios y un condensador de 25 μ F. Determinar la frecuencia de la corriente.

Resolución

$$25 \mu F = 25 \cdot 10^{-6} F$$

Para que un circuito de corriente alterna se encuentre en resonancia es indispensable que se cumpla la condición:

$$X_L = X_C (1)$$

$$X_L = L \cdot \omega$$

$$X_C = 1 / C \cdot \omega$$

Como el ejercicio nos pide la frecuencia, XL y XC deberán ser puestas en función de la frecuencia:

$$X_L = L \cdot 2\pi\sigma$$

$$X_C = 1 / C \cdot 2\pi\sigma$$

Llevamos estas dos últimas ecuaciones a la ecuación (1) y nos nqueda:

$$L \cdot 2\pi\sigma = 1 / C \cdot 2\pi\sigma$$

L.
$$2\pi\sigma$$
. C. $2\pi\sigma = 1$

$$\sigma^2 = 1 / L \cdot C \cdot (2\pi)^2$$

$$\sigma^2 = 1 / 1,5 \cdot 25 \cdot 10^{-6} \cdot 4 \cdot 9,86$$

$$\sigma^2 = 1 / 1479 \cdot 10^{-6}$$

$$\sigma^2 = 676,13 \Rightarrow \sigma = (676,13)^{1/2} = 26 \text{ Hz}$$

En un circuito de corriente alterna tenemos montado en serie una resistencia de 50 Ω , un condensador con una capacidad de 20 μF y una bobina de resistencia 12 Ω y de autoinducción 0,2 henrios. Para la frecuencia de 200 ciclos/s, determinar:

- a) La impedancia del circuito
- b) La impedancia de la autoinducción

Resolución

a)

$$C = 20 \mu F = 20 \cdot 10^{-6} F$$

 $L = 0.2 H$

La resistencia, en este caso, será la resistencia total:

$$R_T = 50 + 12 = 62 \Omega$$

La impedancia del circuito:

$$Z = [R_T^2 + (L \cdot \omega - 1/C \cdot \omega)^2]^{1/2}$$

$$Z = [R_T^2 + (L \cdot 2\pi\sigma - 1/C \cdot 2\pi\sigma)^2]^{1/2}$$

$$Z = [(62)^2 + (0.2 \cdot 2 \cdot 3.14 \cdot 200 - 1/20 \cdot 10^{-6} \cdot 2 \cdot 3.14 \cdot 200)^2]^{1/2}$$

$$Z = [3844 + (251.2 - 39.8)^2]^{1/2} = (3844 + 44689.96)^{1/2} = 220.30 \Omega$$
b)

Impedancia en los bornes de la bobina:

$$Z = [R^2 + (L \cdot \omega)^2]^{1/2} = [R^2 + (L \cdot 2\pi\sigma)^2]^{1/2} =$$

$$= [(12)^2 + (0.2 \cdot 2 \cdot 3.14 \cdot 200)^2]^{1/2} = (144 + 63101.44)^{1/2} = 251.5 \Omega$$

Montados en serie en, un circuito de corriente alterna se encuentran: una resistencia de 10 Ω , una bobina de autoinducción 0,05 henrios y un condensador de 20 μ F. Se conecta al circuito una corriente alterna de 125 V eficaces. Determinar:

- a) La frecuencia de la resonancia
- b) La intensidad máxima que circula por el circuito
- c) La impedancia que presenta el circuito a la intensidad máxima

Resolución

$$R = 10 \Omega$$

$$L = 0.05 H$$

$$C = 20 \mu F = 20 \cdot 10^{-6} F$$

$$Vef = 125 V$$

a) Condición de resonancia:

$$X_{L} = X_{C}$$

$$L \cdot \omega = 1 / C \cdot \omega$$

$$L \cdot 2\pi\sigma = 1 / C \cdot 2\pi\sigma \; ; \; L \cdot 2 \cdot \pi \cdot \sigma \cdot C \cdot 2 \cdot \pi \cdot \sigma = 1$$

$$\sigma^{2} = 1 / 4 \cdot \pi^{2} \cdot L \cdot C \; ; \; \sigma = [1 / (4 \cdot \pi^{2} (L \cdot C))^{1/2}]$$

$$\sigma = 1 / [2 \cdot \pi (L \cdot C)^{1/2}]$$

$$\sigma = 1 / 2 \cdot 3,14 \cdot (0,05 \cdot 20 \cdot 10^{-6})^{1/2}$$

$$\sigma = 1 / 6.28 \cdot 10^{-3} = 159.23 \; Hz$$

b) Intensidad máxima que calcularemos en función de la ecuación:

$$Imax = Vmax / Z$$
$$Vmax = Vef. (2)^{1/2}$$

Calculo de la impedancia:

$$Z = [R^2 + (L.2\pi\sigma - 1/C.2\pi\sigma)^2]^{1/2}$$

$$Z = [(10)^2 + (0.05.2.3.14.159.23 - 1/20.10^{-6}.2.3.14.159.23)^2]^{1/2}$$

$$Z = [100 + (49.99 - 50)^2]^{1/2} \approx (100)^{1/2} = 10 \Omega$$

Volvemos a la ecuación:

$$Imax = Vmax / Z$$

$$Vmax = Vef. (2)^{1/2} = 120.1,41 = 169,2 V$$

$$Imax = 169,2 V / 10 \Omega = 16,92 A$$

c) La impedancia ha sido calculada en el apartado anterior.

-----O ------