ARQUITECTURA DE COMPUTADORES

2º Grado en Ingeniería Informática

Práctica 2

Control microprogramado en SiCoMe

¿Cómo se construye el microprograma de la instrucción?

La microprogramación consiste en almacenar los microprogramas correspondientes a las instrucciones del repertorio de la computadora en una memoria ROM, a la cual se accede según lo requiera el programa que se esté ejecutando.

En nuestro caso, las micropalabras que almacena la CROM tienen una longitud de 28 bits, de los cuales los 16 primeros son usados como señales de codificación de microoperaciones , los 4 siguientes como señales de control, y los 8 últimos como señales de direccionamiento, tal y como se muestra en la siguiente tabla:

s15	s14	s13	s12	s11	s10	s9	s8	s7	s6	s5	s4	s3	s2	s1	s0	В3	В2	В1	В0	M7	М6	M5	M4	М3	M2	M1	М0
M	AR	_	R y EM	PC,	SP y	SC			AL	U				GPR				rol de cació				Direc	ción d	le la C	ROM		

La codificación de las distintas señales de microoperaciones es la siguiente:

Señales del MAR.

Son las señales s15 y s14.

s15	s14	Microoperación
0	0	Ninguna
0	1	PC → MAR
1	0	GPR(AD) → MAR
1	1	SP → MAR

Señales del OPR y de control de la memoria.

Son las señales s13 y s12.

s13	s12	Microoperación
0	0	Ninguna
0	1	GPR → M
1	0	QR → M
1	1	GPR(OP) → OPR

Señales de control del PC, SP y SC.

Son las señales s11, s10 y s9.

s11	s10	s9	Microoperación
0	0	0	Ninguna
0	0	1	PC+1 → PC
0	1	0	GPR → PC
0	1	1	SP+1 → SP
1	0	0	SP-1 → SP
1	0	1	LOAD SC
1	1	0	SC-1 → SC

Señales de control del GPR.

Las señales de control del registro de propósito general son s2, s1 y s0.

s2	s1	s0	Microoperación
0	0	0	Ninguna
0	0	1	M → GPR
0	1	0	Acc → GPR
0	1	1	PC → GPR
1	0	0	GPR+1 → GPR
1	0	1	$QR \rightarrow GPR$
1	1	0	$\overline{\text{GPR}} \rightarrow \text{GPR}$
1	1	1	GPR+1 → GPR

ARQUITECTURA DE COMPUTADORES 2º Grado en Ingeniería Informática

Señales de control de la ALU

Son 6 las señales que se encargan de controlar la ALU: s8, s7, s6, s5, s4 y s3

s8	s7	s6	s5	s4	s3	Microoperación
0	0	0	0	0	0	Ninguna
0	0	0	0	0	1	0 → Acc
0	0	0	0	1	0	$\overline{\text{Acc}} \rightarrow \text{Acc}$
0	0	0	0	1	1	Acc+1 → Acc
0	0	0	1	0	0	Acc+1 → Acc
0	0	0	1	0	1	GPR+Acc → Acc
0	0	0	1	1	0	ROL F Acc
0	0	0	1	1	1	ROR F Acc
0	0	1	0	0	0	0 → QR
0	0	1	0	0	1	1 → OVF
0	0	1	0	1	0	0 → OVF
0	0	1	0	1	1	0 → Qn+1
0	0	1	1	0	0	<u>QR</u> +1 →QR
0	0	1	1	0	1	GPR → QR
0	0	1	1	1	0	M → QR
0	0	1	1	1	1	1 → Qn
0	1	0	0	0	0	$X \rightarrow Qs$
0	1	0	0	0	1	ASHR ACC QR
0	1	0	0	1	0	ROL F ACC QR
0	1	0	0	1	1	ROR F ACC QR
0	1	0	1	0	0	SHL F A Q
0	1	0	1	0	1	SHR F A Q
0	1	0	1	1	0	0> F
0	1	0	1	1	1	F → F
0	1	1	0	0	0	GPR+1+Acc → Acc
0	1	1	0	0	1	$\overline{ACCQR}+1 \rightarrow ACCQR$
0	1	1	0	1	0	0 → N
0	1	1	0	1	1	1 → N
0	1	1	1	0	0	Ā+1 → A
0	1	1	1	0	1	$\overline{As} \rightarrow As$
0	1	1	1	1	0	0 → As
0	1	1	1	1	1	As → Qs
1	0	0	0	0	0	Qs@Bs → As
1	0	0	0	0	1	Qs@Bs → Qs
1	0	0	0	1	0	<u>Q</u> +1 → Q
1	0	0	0	1	1	0 → A
1	0	0	1	0	0	A+B → EA
1	0	0	1	0	1	A+ <u>B</u> +1 → EA
1	0	0	1	1	0	A+B+1 → A
1	0	0	1	1	1	E → OVF

ARQUITECTURA DE COMPUTADORES 2º Grado en Ingeniería Informática

Ejemplo de codificación de los ciclos de búsqueda y ejecución de la instrucción ADD mediante micropalabras:

FETCH
PC → MAR
M → GPR
PC+1 → PC
GPR(OP) → OPR
ADD dir
GPR(AD) → MAR
M → GPR
GPR+Acc → Acc

s15	s14	s13	s12	s11	s10	s9	s8	s7	s6	s5	s4	s3	s2	s 1	s0	В3	B2	B1	во	M7	M6	M5	M4	МЗ	M2	M1	МО	Codificación hexadecimal
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1000100
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	201100
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	3000300
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	8000100
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1100
0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	28200

Esta codificación está realizada según la siguiente tabla lógica de bifurcación:

В3	B2	B1	В0	F	Zb	Za	Zac	Zsc	X	Qn	Qn+1	As	Qs	Bs	N
0	0	0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ
0	0	0	1	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
0	0	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ
0	0	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ

I	В	R
0	0	0
1	0	0
0	1	0
0	0	1