

Mobile Video Trends & Study of Real-Time, Delay Sensitive Video over LTE

Jim Seymour, Ph.D. Principal Engineer Mobility CTO Group Cisco Systems Inc. August 2015

© 2011 Cisco and/or its affiliates. All rights reserved.

Outline

- Global Mobile Data Growth Trends (Cisco VNI data)
- Studies of Real-Time, Delay Sensitive Video over LTE

Global Mobile Data Traffic Growth

Global Mobile Data Traffic will Increase 10-Fold from 2014—2019

57% CAGR 2014-2019

Source: Cisco VNI Global Mobile Data Traffic Forecast, 2014–2019

Average Mobile User (Cellular Traffic per Month) Sample Global Usage

Source: Cisco VNI Global Mobile Data Traffic Forecast, 2014-2019

Global Mobile Data Traffic Growth / Apps

Video to Exceed 72 Percent of Mobile Data Traffic by 2019

^{*} Figures (n) refer to 2014 and 2019 mobile data traffic shares

Source: Cisco VNI Global Mobile Data Traffic Forecast, 2014–2019

Global Mobile Video Traffic

By 2019, Video Will Drive 72% of Mobile Traffic, Up from 55% in 2014

North America

75% of traffic by 2019 54% CAGR

Western Europe

74% of traffic by 2019 56% CAGR

Central/Eastern Europe

70% of traffic by 2019 83% CAGR

Latin America

72% of traffic by 2019 69% CAGR

Middle East & Africa

68% of traffic by 2019 84% CAGR

Asia Pacific

71% of traffic by 2019 67% CAGR

Source: Cisco VNI Global Mobile Data Traffic Forecast, 2014–2019

Increasing Video Definition By 2019, More Than 30% of Connected Flat-Panel TV Sets Will Be 4K

Source: Cisco VNI Global IP Traffic Forecast, 2014–2019

Outline

- Global Mobile Data Growth Trends (Cisco VNI data)
- Studies of Real-Time, Delay Sensitive Video over LTE

Real-Time, Delay Sensitive Video over LTE

Objective:

To understand capacity of real-time, delay sensitive video+audio traffic (e.g. video conferencing)
over LTE, and evaluate the impact of QCI assignments on the capacity requirements for video
conferencing & residual background FTP traffic that can be supported.

Approach:

- Collaboration with Real Wireless to develop simulation capability accounting for RF network, system level, link level & time domain packet scheduling which used 'real world' traffic obtained from devices running the Cisco Jabber codec.
- Evaluated delays to individual IP packets due to buffering for multi-user scheduling of video & audio flows for UEs supporting Jabber, in the presence of other UEs performing file transfers.
- Worst case delay performance determined UE outage. Capacity defined as <5% UEs in outage in any given network.

High Level Summary of Assumptions

- 2x10 MHz FDD LTE carriers @ 700 MHz with 2x2 (DL) and 1x2 (UL) MIMO
- 19x3 sector sites with wrap around
- Dense urban morphology
- FTP model for background users
 - 0.5 Mbyte packets
 - 2 s mean inter-arrival time
- 256k Jabber codec → ~220 kbps mean
- 80 kbps for audio
- VolTE assumed 12.65 kbps WB-AMR
- QCI8 traffic prioritized over QCI9 traffic
- QCI2 uses GBR with delay weighted scheduler

Results — Uplink, 256k video

Aggregate FTP Tput (UL)

Results — Downlink, 256k video

Aggregate FTP Tput — Uplink, 5 FTP UEs, A1V8 for 256k Video

- Shows UL Cell capacity remaining for FTP for given VoLTE & Video Loads
- Loading to 5% VUE outage always leaves around 0.7 Mbps FTP Tput

Aggregate FTP Tput — Downlink, 5 FTP UEs, A1V8 for 256k Video

- Shows DL Cell capacity remaining for FTP at given VolTE & Video Loads
- Loading to 5% DL VUE outage always leaves around ~1.5 Mbps FTP Tput
- Where VUE loading is uplink limited, DL FTP Tput is higher, at around ~3.2Mbps

Summary

- VNI results show that video continues to drive up mobile data usage and continues to become larger percentage of mobile data usage.
- Higher resolution video means there will always be a pent up demand for higher data rates to improve video QoE.
- Capacity for real-time, delay sensitive video (e.g. video conferencing) is UL limited.
- Prioritizing real-time, delay sensitive video through either non-GBR QCI8 or GBR QCI2 significantly improves QoE of video users with modest impact to residual capacity for FTP users.
- GBR based QCI2 provides the benefit of admission control to insure that video users achieve desired QoE.

Backup

Simulation Overview

Geometry & propagation: System parameters

Site locations **UE** distribution Antenna paths path loss Shadowing **Building penetration**

Transmit power UL power control System bandwidth Noise figures

Link parameters MIMO configuration & adaptation Fast fading channel model

Scheduler parameters

Traffic models: video, audio, FTP QCI assignments. GBR rates Scheduler/ Call admission policy Packet and UE outage KPIs

Geometry and Propagation Assumptions (RF Sim)

		<u> </u>	<u> </u>	
	Morphology			
Parameter	Dense Urban	Urban	Suburban	Rural
Network size	19 x 3 sector sites			
Sector orientation	cloverleaf	cloverleaf	cloverleaf	cloverleaf
ISD, km	0.5	1	3	10
UE spatial distribution	uniform area	uniform area	uniform area	uniform area
Path Loss Model	Hata Dense Urban	Hata Urban	Hata Suburban	Hata Rural
BS Antenna Height, m	25	20	20	30
UE Antenna Height, m	1.5	1.5	1.5	1.5
Frequency Band	DL: 747-757 MHz UL: 777-787 MHz			
Carrier Bandwidth	10 MHz	10 MHz	10 MHz	10 MHz
МІМО	DL:2x2, UL: 1x2	DL:2x2, UL: 1x2	DL:2x2, UL: 1x2	DL:2x2, UL: 1x2
Shadow fade standard deviation, dB	6.9	6.9	8.3	8.3
Shadow fade correlation	0.5 site-to-site 1.0 sector-sector	0.5 site-to-site 1.0 sector-sector	0.5 site-to-site 1.0 sector-sector	0.5 site-to-site 1.0 sector-sector
% indoor users	85	85	85	85
Mean BPL, dB	18	15	12	6
Std dev of BPL, dB	6.8	6.8	6.8	6.8
Macro antenna gain, dBi	14	14	14	14
Macro antenna BW, deg	65	65	65	65
UE antenna gain, dBi	0	0	0	0
Min coupling Loss, dB	70	70	70	80

Transmit power

DL: eNodeB +46dBm (PA output)

UL: UE +24dBm EIRP

© 2011 Cisco and/or its affiliates. All rights reserved.

Video and Audio Traffic Captured from PVE (Jabber)

Codec	128kbps	256kbps	600kbps
peak, kbps	127.2	220.4	612.8
mean, kbps	95.4	140.3	428.1
pk:mean	1.33	1.57	1.43

-600k vid

-256k vid

—___128k vid

– – Audio

Audio comprises 1600bit packets sent at 50fps:

1.600kbit x 50fps = 80 kbps

Delay bound: 55ms for air interface & buffering

- Based on G.114 ITU-T, assume a maximum tolerable one-way (i.e. mouth to ear) delay of ~280ms to keep users satisfied. Delay budget analysis:
 - ~35 ms of delay in the UE on the originating side (due to 20 ms packet framing, 10 ms processing and 5 ms look ahead)
 - ~35 ms of delay in the UE on the terminating side (due to de-jitter buffering and processing)

- ~50ms from core network to terminating eNB (due to the same as above)
- This adds up to 170ms, leaving ~110ms for the air-interface (55ms for the UL and 55ms for the DL). So the proposal is to use 55ms for the air-interface delay budget in each direction.
- We assume a mean air interface delay of ~5ms, allowing 50ms for buffering delay

