ECS150 SQ15 April 29, 2015

Lecture Notes 6

CPU Scheduling

- I/O Blocking Cycle
 - CPU Burst Burst of processing on the CPU
 - I/O Burst Burst of I/O requests that are interleaved with CPU Bursts
- CPU Scheduler (Short-Term Scheduler)
- Scheduling
 - Types of Scheduling
 - Preemptive Scheduling can occur at any time
 - Non-preemptive (Cooperative) Scheduling occurs at specific call points
 - State Changes
 - Running to Wait (I/O Request, or wait) (Both)
 - Running to Ready (Interrupt or signal) (Preemptive Only)
 - Waiting to Ready (I/O Completion typically via Interrupt) (Preemptive Only)
 - Process/Task/Thread Terminates (Explicit call) (Both)
- Dispatcher Actually gives control to scheduled process
 - Switching Context Changing the stack, CPU registers and pointer to page table
 - Switching to User Mode Changing the CPU protection mode to user
 - Jumping to Proper Location Program counter is set to previous saved instruction
 - Dispatch Latency Time to stop a process and switch to another
- Scheduling Criteria
 - CPU Utilization How busy is the CPU?
 - Throughput How much work is completed per unit time?
 - Turnaround Time How much time did the process take to complete?
 - Waiting Time How much time does the process spending waiting?
 - Response Time How much time does it take for a process to respond when ready?
- Scheduling Algorithms
 - First-Come, First-Served (FCFS) Handled with FIFO, first process starts first and executes to completion (causes Convoy Effect, many small get blocked behind)
 - Shortest Job First (SJF) The shortest expect CPU burst runs next (Exponential Average used to predict: $\tau_{n+1} = \alpha t_n + (1-\alpha)\tau_n$)
 - Shortest Remaining Time First Preemptive SJF
 - Priority Scheduling
 - Indefinite Blocking (Starvation) Low priority tasks can be starved if high priority doesn't block
 - Aging Gradual increase in priority the longer a process waits
 - Round Robin (RR) Like FCFS with preemption
 - Processor Sharing Share the processor each gets a time quantum
 - Time Quantum (Time Slice) A period of time a task gets the processor, typically 10 100ms

ECS150 SQ15 April 29, 2015

• Multilevel Queue Scheduling – Multiple queues are used for scheduling

- Foreground (Interactive) Want low response time
- Background (Batch) Might want higher throughput or other metric
- Multilevel Feedback-Queue Scheduling Allows tasks to move between queues
- Thread Scheduling May be User space (LWT) or Kernel space (HWT)
 - Process-Contention Scope (PCS) LWT are competing for time to run
 - System-Contention Scope (SCS) HWT are competing for CPU time
- Multiple-Processor Scheduling
 - Load Sharing All CPUs share the load of running tasks
 - Asymmetric Multiprocessing Specific CPU(s) handle system (or special) tasks
 - Symmetric Multiprocessing (SMP) All CPUs do self scheduling
 - Processor Affinity (Caching Solution) Task is likely to keep running on same CPU
 - Soft Affinity (Attempt to Keep Processor)
 - Hard Affinity (Process Specifies No Processor Switching)
 - Load Balancing Attempt to keep workload balanced on all CPUs
 - Push Migration Task checks and pushes tasks to balance load
 - Pull Migration Idle CPU pulls waiting task from another CPU
 - Multicore Processors Multiple processing cores on single chip
 - Memory Stall Task stalls waiting for information from memory
 - Coarse-Grained Multithreading Thread runs until memory stall
 - Fine-Grained Multithreading Thread instructions are interleaved
 - Symmetric Multithreading (Hyperthreading)
- Real-Time CPU Scheduling
 - Soft Real-Time No guarantee of when critical real-time task is scheduled
 - Hard Real-Time Strict requirements of scheduling and deadlines
 - Event Latency Time between event and when it is serviced
 - Interrupt Latency Time from interrupt to begin of ISR
 - Dispatch Latency Time to stop a process and switch to another
 - Admission-Control Admits new tasks or not into the system
 - Rate Monotonic Scheduling Periodic tasks have static priority
 - Earliest-Deadline-First (EDF) Earliest deadline will be scheduled first
 - Proportional Share T shares are split up amongst the N tasks
- Algorithm Evaluation
 - Deterministic Modeling Analysis of predetermined workload
 - Analytic Evaluation
 - Queuing Models
 - Network Analysis Use of queuing theory from network to analyze performance on arrival/wait times etc.
 - Little's Formula $(n = \lambda W)$
 - Simulations Use of simulation on traces to determine the performance