Intro to DB

CHAPTER 2 RELATIONAL MODEL

Chapter 2: Relational Model

- Structure of Relational Databases
- Database Schema
- Keys
- Schema Diagrams
- Relational Query Languages
- Relational Operations

The framework/formalism for representing data and their relationships

Data Model - Relational

Relation (in Set Theory)

Binary relation R on a set A
 is a collection of ordered pairs of elements of A

R ⊆ A× A

(Bipartite) Relation R2 between elements of set B and set C

Basic Structure of a Relation

• Formally, given sets $D_1, D_2, \dots D_n$ a relation r is a subset of $D_1 \times D_2 \times \dots \times D_n$ or

Example: customer-name = {Jones, Smith, Curry, Lindsay} customer-street = {Main, North, Park} customer-city = {Harrison, Rye, Pittsfield}

Then $r = \{$ (Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield) $\}$

is a relation over *customer-name x customer-street x customer-city*

Attribute Types

- Each attribute of a relation has a name
- The set of allowed values for each attribute is called the domain of the attribute

-

that is, indivisible

- E.g. multivalued attribute values are not atomic
- E.g. composite attribute values are not atomic
- The null value causes complications in the definition of many operations
 - we shall ignore the effect of null values in our main presentation and consider their effect later

Relation Schema

• $A_1, A_2, ..., A_n$ are attributes

• $R = (A_1, A_2, ..., A_n)$ is a relation schema

r(R) is a relation (variable) on the relation schema R

Relation Instance

The current values (relation instance) of a relation are specified by a table

represented by a *row* in a table

Relations are Unordered

Order of tuples is irrelevant

• E.g. instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Relational Database

 Information about an enterprise is broken up into parts, with each relation storing one part of the information

E.g.: *instructor*: information about teachers in the university *student*: information about students *advisor*: information about which instructor advises which students

- Storing all information as a single relation is not a good idea univ (instructor -ID, name, dept_name, salary, student_Id, ..)
- deals with how to decide on the relational schemas

A relational database for a university

	ID	name	e dej	ot_name	sal	ary				de	pt_name	buildin	g budge	t
	22222	Einste	135	ysics	200 00000	000					ology	Watso		
	12121	Wu	I	nance		000					mp. Sci.	Taylo		2000
	32343	El Sai	d Hi	story	60	000					ec. Eng.	Taylor		
	45565	course_id	title	C.:	<u> </u> ¬=	Aant 1	лата	credits	1		nance	Painte		
	9834:=			<u> </u>		dept_1			<u> </u>					100
	1010	BIO-101	Intro. to Bio	ology		Biolog	зу	4			story	Painte	000 JE 1810 1910	
	1010	BIO-301 BIO-399	Genetics	spal Dialo		Biolog	3y	4 3			usic	Packa		20020
		CS-101	Computation Intro. to Co			Biolog Comp		3 4		Ph	ysics	Watso	n 7000	0
		CS-101 CS-190	Game Design	2.00 m			7. 3CI.	А	<u> </u>					
	000-	CS-315	Robotics	course_ta	sec_id	semester	year	building	room_numb	100	_id			
	1010.	CS-319	Image Proc	BIO-101 BIO-301	1 1	Summe Summe			514 514	B A				
	33450	CS-347	Database S	DIC COI	1	Fall	2009		101	H				
	7654	EE-181	Intro. to Di		1	Spring	2010		101	F				
		FIN-201	Investment	17 (2 1 (0))	1 2	Spring Spring	2009		3128 3128	ID	course_id	sec_id	semester	year
		HIS-351	World Hist	CS-315	1	Spring	2010		120	10101	CS-101	1	Fall	2009
		MU-199	Music Vide	CO 017	1	Spring	2010		100	10101	CS-315	1	Spring	2010
70	t .	DHV 101	Physical Pr	CS-319 CS-347	2 1	Spring Fall	2010		3128 3128	10101	CS-347	1	Fall	2009
ļ	course_		req_id	EE-181	1	Spring	2009		3128	12121	FIN-201	1	Spring	2010
	BIO-30	01 BI	O-101	FIN-201	1	Spring	2010	Packard	101	15151	MU-199	1	Spring	2010
	BIO-39	99 BI	O-101	HIS-351 MU-199	1 1	Spring Spring	2010 2010		514 101	22222	PHY-101	1	Fall	2009
	CS-190	C	S-101	PHY-101	1	Fall	2009		100	32343	HIS-351	1	Spring	2010
	CS-315	500	S-101							45565	CS-101	1	Spring	2010
	CS-319		S-101							45565	CS-319	1	Spring	2010
	CS-347		S-101							76766	BIO-101	1	Summer	2009
			The second second second							76766	BIO-301	1	Summer	2010
22	EE-181	L L'A	IY-101							83821	CS-190	1	Spring	2009
										83821	CS-190	2	Spring	2009
							Intr	o to DB		83821	CS-319	2	Spring	2010
Suc	darshan					Co		© by Sg. l	_ee	98345	EE-181	1	Spring	2009

Keys

- Let K ⊆ R
- K is a superkey of R

- By "possible r" we mean a relation r that could exist in the enterprise we are modeling.
 - Example: {customer-name, customer-street} and {customer-name}
 are both superkeys of Customer, if no two customers can possibly have the same name.
- K is a candidate key
 - Example: {customer-name} is a candidate key for Customer, since it is a superkey, and no subset of it is a superkey.

Keys

- Primary key:

 is selected to be the primary key of
 - which one?
- Foreign key: Value in one relation must appear in another
 - Referencing relation
 - Referenced relation

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

Schema Diagram for a Banking Enterprise

Schema Diagram for the University

Query Languages

- Language in which user requests information from the database.
 - procedural

nonprocedural

- "Pure" languages:
 - Relational Algebra
 - Tuple Relational Calculus
 - Domain Relational Calculus
- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Algebra :
 - Relational algebra
 - operands : relations
 - operators : basic operators (+ additional operations)
 - take two or more relations as inputs and give a new relation as a result.

join

. . .

- •
- Operators
 - select
 - project division
 - union assignment
 - set difference
 - Cartesian product
 - rename

Examples of Relational Operators

Symbol (Name)	Example of Use
σ (Selection)	^σ salary>=85000 ^(instructor)
(Selection)	Return rows of the input relation that satisfy the predicate.
[] (Projection)	П _{ID, salary} (instructor)
(Projection)	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.
×	instructor ⋈ department
(Natural Join)	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.
×	instructor imes department
(Cartesian Product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(Cinon)	Output the union of tuples from the two input relations.

Select Operation – selection of tuples

■ Relation *r* :

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 \bullet $\sigma_{A=B \land D>5}(r)$:

Α	В	С	D
α	α	1	7
β	β	23	10

Project Operation – selection of columns

Relation r.

Α	В	С
α	10	1
α	20	1
β	30	1
β	40	2

$$\blacksquare$$
 $\prod_{A,C} (r)$

Α	С		Α	С
α	1		α	1
α	1	=	β	1
β	1		β	2
β	2			

Union Operation – merging two relations

Relations r, s: A B

Α	В		
α	1		
α	2		
β	1		
r			

Α	В			
α	2			
β	3			
s				

r ∪ s:

Α	В
α	1
α	2
β	1
β	3

Set Difference Operation

Relations r, s: A B

Α	В			
α	1			
α	2			
β	1			
r				

■ *r* − s:

Set-Intersection Operation

• Relation *r*, *s*:

Α	В
α	1
α	2
β	1

A B
α 2
β 3

r ∩ S

Joining two relations: Cartesian-Product Op.

• Relations *r*, *s*:

Α	В
α	1
β	2

S	С	D	Ε
	α	10	а
	β	19	a
	β	20	b
	γ	10	b

r x s:

Α	В	С	D	E
α	1	α	10	а
α	1	β	19	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	19	а
β	2	β	20	b
β	2	γ	10	b

Joining two relations: Natural-Join Operation

• Relations *r*, *s*:

r	Α	В	С	D
	α	1	α	а
	β	2	γ	а
	γ	4	β	b
	α	1	γ	а
	δ	2	β	b

S	В	D	E
	1	а	α
	3	а	β
	1	а	γ
	2	b	δ
	3	b	\in

r ⋈ s

Α	В	С	D	Ε
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \times s)$
- rxs

Α	В	С	D	Ε
α	1	α	10	а
α	1	β	19	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	19	а
β	2	β	20	b
β	2	γ	10	b

• $\sigma_{A=C}(r \times s)$

Α	В	С	D	E
α	1	α	10	а
β	2	β	19	а
β	2	β	20	b

Α	В
α	1
β	2

С	D	Ε
α	10	а
β	19	а
β	20	b
γ	10	b

END OF CHAPTER 2