

KT AIVLE School

1일차 정리

전체 Process(CRISP-DM)

복습 – ML 알고리즘

✓알고리즘 한판 정리

	선형회귀	로지스틱회귀	KNN	SVM	Decision Tree	Random Forest	Gradient Boost (GBM, XGB, LGBM)
개념	✔오차를 최소화 하는 직선, 평면	✓ 오차를 최소화 하는 직선, 평면 ✓ 직선을 로지스틱 함수로 변환 (0~1 사이 값으로)	✔예측할 데이터와 train set과의 거리 계산 ✔가까운 [k개 이웃의 y] 의 평균으로 예측	✓마진을 최대화 하는 초 평면 찾기 ✓데이터 커널 변환	 ✓ 정보전달량 = 부모 불순도 - 자식 불순도 ✓ 정보 전달량이 가장 큰 변수를 기준으로 split 	✔ 여러 개의 트리 ✔ 각각 예측 값의 평균 ✔ 행과 열에 대한 랜덤 : 조금씩 다른 트리들 생성	✔여러 개의 트리 ✔트리를 더해서 하나의 모델로 생성 ✔더해지는 트리는 오차를 줄이는 모델
전제 조건	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✓ NaN조치 ✓ 가변수화 ✓ 스케일링	✓NaN조치 ✓가변수화 ✓스케일링	✓ NaN조치 ✓ 가변수화	✔NaN조치 ✔가변수화	✓ NaN조치 ✓ 가변수화
성능	✓ 변수 선택 중요 ✓ x가 많을 수록 복잡	✓변수 선택 중요 ✓x가 많을 수록 복잡	✓ 주요 hyper-parameter - n_neighbors : k 작을수록 복잡 - metric : 거리계산법	✓주요 hyper-parameter - C : 클수록 복잡 - gamma : 클수록 복잡	√주요 hp - max_depth : 클수록 복잡 - min_samples_leaf 작을수록 복잡	✓주요 hp 기본값으로도 충분! - n_estimators - max_features ✓기본값으로 생성된 모 델 ==> 과적합 회피	✓주요 hp - n_estimators - learning_rate ✓ XGB, LGBM : 과적합 회피를 위한 규제

KT AIVLE School

복습 - 회귀모델 평가

딥러닝 개념 - 학습 절차

✓ model.fit(x_train, y_train) 하는 순간...

단계①: 가중치에 (초기)값을 할당한다.

■ 초기값은 랜덤으로 지정

단계② : (예측) 결과를 뽑는다.

단계③ : <mark>오차</mark>를 계산한다.

단계(4): 오차를 줄이는 방향으로 가중치를 조정

• Optimizer : GD, Adam...

단계⑤: 다시 단계①로 올라가 반복한다.

■ max iteration에 도달.(오차의 변동이(거의) 없으면 끝.)

■ 가중치(weight)의 다른 용어 **파라미터(parameter)**

medv	Istat	$\widehat{\mathbf{y}}$
20	10	13
10	11	14
8	15	18

$$mse = \frac{\sum (y - \hat{y})^2}{n} = \frac{7^2 + 6^2 + 8^2}{3}$$

$$w_1: 1 \to 0.8$$

$$w_0^-: 3 \to 3.3$$

 $medv = w_1 \cdot lstat + w_0$

forward propagation

back propagation

딥러닝 개념 - 학습 절차

✓ 30번 학습(epochs = 30)하며 최적의 Weight를 찾아가는 과정

모델의 가중치가 업데이트되는 과정

모델의 오차가 줄어드는 과정(학습곡선)

딥러닝 구조

 $medv = w_1 \cdot lstat + w_2 \cdot ptratio + w_3 \cdot crim + w_0$

딥러닝 코드 - Dense

- ✓ input_shape = (,)
 - **분석단위**에 대한 shape
 - 1차원 : (feature 수,)
 - 2차원 : (rows, columns)
- ✓ output
 - 예측 결과가 1개 변수(y가 1개 변수)

딥러닝 코드 - Compile

✓ 컴파일(Compile)

선언된 모델에 대해 몇 가지 설정을
 한 후, 컴퓨터가 이해할 수 있는 형태로
 변환하는 작업

Python Code

model.compile(optimizer = Adam(0.1), loss='mse')

✓ loss function(오차함수)

- 오차 계산을 무엇으로 할지 결정
- mse: mean squared error, 회귀모델은 보통 mse로 오차 계산

✓ optimizer

- 오차를 최소화 하도록 가중치를 조절하는 역할
- optimizer = 'adam' : learning_rate 기본값 = 0.001
- optimizer = Adam(lr = 0.1) : 옵션 값 조정 가능
 - Ir과 learning_rate은 같지만, learning_rate 사용을 권장

딥러닝 코드 - 학습곡선

✓ .history

- 학습을 수행하는 과정 중에
- 가중치가 업데이트 되면서
- 그때그때마다의 성능을 측정하여 기록
- 학습 시 계산된 오차 기록
- 그것을 저장한 후 차트를 그리면...

Python Code

Epoch	1/20						í
11/11	[]	- 1s	31ms/step - loss	571.5110	- val_loss	577.0120	
Epoch							
	[]	- Os	8ms/step - loss:	489.2647 -	val_loss:	499.1079	
Epoch							
	[]	- Os	11ms/step - loss	418.2319	- val_loss	432.6833	
Epoch							
	[]	- Os	11ms/step - loss	359.0570	- val_loss	377.7811	
Epoch		_					
	[]	- Us	/ms/step - loss:	309.7421 -	val_loss:	332.4446	
Epoch			7	070 0050		000 0750	
	7/00	- US	/ms/step - loss:	270.8658 -	val_loss:	296.9759	
Epoch	[]	0.0	Cnoloton Loos	240 5217	ual laga:	270 1676	
Epoch		- 05	oms/step = ross.	240.5217 -	vai_loss.	270.1070	
	[========]	- Ne	12mc/stan - Loss	218 4201	- ual locc	240 3737	
Epoch		03	12m3/3(Cp 1033	210.4201	Vu1_1033	243.0101	
	[]	- As	7ms/step - Loss:	200.8222 -	val loss:	233.2946	
Epoch			,				
11/11	[]	- Os	10ms/step - loss	: 187.6137	- val_loss	219.1513	
Epoch							
11/11	[]	- Os	7ms/step - loss:	175.6799 -	val_loss:	208.9160	
Epoch							
11/11	[]	- Os	5ms/step - loss:	167.5694 -	val_loss:	200.2585	
Epoch							
	[]	- Os	7ms/step - loss:	160.8632 -	val_loss:	193.0237	
Epoch		_		.=			
	[]	- Us	bms/step - loss:	154.9114 -	val_loss:	186.9379	
Epoch	[]	- 0-	Omo/oton - Looo:	140 6200 -	ual laco'	101 1966	
Epoch		- 05	am2/2(ch - 1022)	149.0200 -	Va1_1055.	101.1300	
	[]	- No	Ame/sten = loss:	1/15 2706 -	ual Inco:	176 1777	
Epoch		03	Om3/3(Cp 1033.	140.2100	Va1_1033.	110.1111	
	[]	- Ns	7ms/sten - Loss:	141.4094 -	val loss:	172.2429	
Epoch			1110,0100		141_1000		
	[]	- Os	8ms/step - loss:	138.0926 -	val_loss:	168.4736	
Epoch	19/20						
	[]	- Os	7ms/step - loss:	135.0007 -	val_loss:	164.8660	
Epoch							
11/11	[]	- Os	13ms/step - loss	131.7069	- val_loss	161.3870	

딥러닝 코드 - 학습곡선

✓ 바람직한 곡선의 모습

- Epoch가 증가하면서 Loss가 큰 폭으로 축소
- 점차 Loss 감소 폭이 줄어들면서 완만해짐.

- Loss가 줄어들기는 하나, 들쑥날쑥
- → Learning_rate을 줄여 봅시다.

- Val_loss가 줄어들다가 다시 상승(과적합)
- → Epochs와 learning_rate을 조절해 봅시다.

딥러닝 구조 - Hidden Layer

✓ layer 여러 개 : 리스트[]로 입력

√ hidden layer

- input_shape 는 첫번째 layer만 필요
- activation
 - 히든 레이어는 활성함수를 필요로 합니다.
 - 활성함수는 보통 'relu'를 사용

✓ output layer

■ 예측 결과가 1개

```
Python Code
# 메모리 정리
clear session()
# Sequential 타입 모델 선언
model3 = Sequential([Dense(2, input shape = (nfeatures,)
                               , activation = 'relu')
                       , Dense (1) 1)
# 모델요약
model3.summary()
Model: "sequential"
 Laver (type)
dense (Dense)
                         (None, 2)
dense 1 (Dense)
                         (None, 1)
Total params: 29
Trainable params: 29
Non-trainable params: 0
```


활성화 함수 Activation Function

✓ 그래서 활성화 함수는...

■ Hidden Layer에서는 : 선형함수를 비선형 함수로 변환

■ Output Layer에서는 : 결과값을 다른 값으로 변환해 주는 역할

• 주로 분류Classification 모델에서 필요

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

요약:회귀모델링

✓ 딥러닝 전처리

■ NaN 조치, 가변수화, 스케일링

✓ Layer

- 첫번째 Layer는 input_shape를 받는다.(분석단위의 shape)
 - 2차원 데이터셋의 분석단위 1차원 → shape는 (feature수,)
- Output layer의 node 수:1
- Activation Function
 - Hidden layer에 필요 :
 - 비선형 모델로 만들려고 → hidden layer를 여럿 쌓아서 성능을 높이려고.
 - 회귀 모델링에서 Output Layer에는 활성화 함수 필요하지 않음!

구분	Hidden Layer	Output Layer		Compile		
TE	Activation	Activation	Node수	optimizer	loss	
Regression	relu	X	1	adam	mse	