Pattern Recognition (2016 Spring at Nanjing University)

Chong Liu chongliu@ucsb.edu 7595382

February 2019

1 Introduction

A graduate level course provided for master and PhD students at Nanjing University, Nanjing, China.

2 Instructor

Prof. Jianxin Wu, Ph.D. at Georgia Tech, 2009 (https://cs.nju.edu.cn/wujx/)

3 My Score

92 / 100

4 Syllabus

1. Introduction to Pattern Recognition

An example: autonomous driving

Pattern recognition and machine learning

Structure of this lecture

2. Mathematical background

Linear algebra

Probability

Optimization and matrix calculus

Complexity of algorithms

3. Overview of a pattern recognition system

Face recognition

A simple nearest neighbor classifier

The ugly details

Making assumptions and simplifications

A framework

4. Evaluation

Accuracy and error in the simple case

Minimizing the cost or loss

Evaluation in imbalanced problems

Can we reach 100% accuracy?

Confidence in the evaluation results

5. Principal component analysis

Motivation

PCA to zero-dimensional subspace

PCA to one-dimensional subspace

PCA to more dimensions

The complete PCA algorithm

Variance analysis

When to use or not to use PCA?

The whitening transform

Eigen-decomposition vs. SVD

6. Fishers linear discriminant

FLD for binary classification

FLD for more classes

7. Distance metrics and data transformations

Distance metrics and similarity measures

Data transformation and normalization

8. Support vector machines

The key SVM idea

Visualizing and calculating the margin

Maximizing the margin

The optimization and the solution

Nonlinear and multiclass extensions

Kernel SVM

9. Probabilistic methods The probabilistic way of thinking

Choices

Parametric estimation

Nonparametric estimation

Making decisions

10. Information theory and decision tree Prefix code and Huffman tree

Basics of information theory

Information theory for continuous distributions

Information theory in ML and PR

Decision trees

11. Sparse and misaligned data

Sparse machine learning

Dynamic time warping

12. Hidden Markov model

Sequential data and the Markov property

Three basic problems in HMM learning α , β , and the evaluation problem

 γ , δ , ψ , and the decoding problem

 ξ and learning HMM parameters

13. Convolutional neural networks

Preliminaries

CNN overview

Layer input, output and notations

The ReLU layer

The convolution layer

The pooling layer

A case study: the VGG-16 net

Hands-on CNN experiences