CSE4351/5351: Course Syllabus

Introduction

Basics of high-performance computing

Driving forces and technology constraints

Types of parallelism

Classes of parallel computers, SIMD and MIMD architectures

Multicores and GPUs

Scalability Issues

Interconnection networks

Routing and communication techniques

Clustering

Cloud Computing

Basic Parallel Programming

Inter-process communications

Programming models

SIMD, MIMD and SPMD programming

Parallelism issues

Synchronization

Computing styles of commercial machines

Performance Analysis Methods

Various performance measures

Performance analysis methods

Amdahl's Law Gustafson-Barsis Law

Speedup and scalability

Benchmarking

Parallel Paradigms and Programming Models

Distributed-memory message passing programming (MPI)

Shared memory programming (Threads)

SIMD and GPU programming

Comparison of programming models

Parallel Algorithms

Parallelizing algorithms

Linear equation solvers

Matrix algorithms

Sorting algorithms

PDEs and FFTs

Resource Management

Scheduling techniques

Mapping algorithms

Static and dynamic load balancing