Assignment #2

Janelle Morano

2/14/2022

This assignment fits and tests OLS, ridge, and lasso regression models to average annual runoff vs. many other characteristics for 211 catchments across the Northeast US.

A-D) Download and read in data. Standardize the variables.

```
# Read in data
Gages2 <- read.table("/Users/janellemorano/Git/Reference-R-scripts/Envtl-Multivariate-Stats/data/gages2
# Function to standardize
scale2 <- function(x) {
    x <- (x- mean(x))/sd(x)
    return(x)
}
# Standardize each variable in the dataset and save to Gages2.scale
# MARGIN = 2 applies the function scale2 to each column
Gages2.scale <- data.frame(apply(Gages2, MARGIN = 2, FUN=scale2))
# head(Gages2.scale)</pre>
```

E) Fit a standard linear regression for annual average runoff vs. the other covariates for the 211 catchments. Do not include an intercept in this regression because the data were standardized in the previous step by centering the runoff data around 0.

```
# '.' applies lm to all columns; +0 removes intercept
lm.Gages2.scale <- lm(runoff ~ . +0, data = Gages2.scale)
summary(lm.Gages2.scale)</pre>
```

```
##
## lm(formula = runoff ~ . + 0, data = Gages2.scale)
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
## -2.05998 -0.35788 0.00505 0.39857
                                        1.55008
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
## PPTAVG_BASIN
                        0.247902
                                   0.135405
                                               1.831
                                                       0.0688 .
                                                       0.5136
## DRAIN_SQKM.log
                        0.070113
                                   0.107109
                                               0.655
## BAS_COMPACTNESS
                       -0.086435
                                   0.083804
                                             -1.031
                                                       0.3038
## T_AVG_BASIN
                       -0.029815
                                   0.458921
                                             -0.065
                                                       0.9483
## PET
                       -0.434367
                                   0.487480
                                             -0.891
                                                       0.3741
## ARTIFPATH_PCT
                       -0.055182
                                   0.072428
                                             -0.762
                                                       0.4472
## BFI AVE
                        0.110502
                                   0.086445
                                               1.278
                                                       0.2028
```

```
## PERDUN
                         0.068328
                                     0.082811
                                                0.825
                                                         0.4104
## PERHOR
                        -0.112175
                                     0.088308
                                               -1.270
                                                         0.2057
                                                1.331
## TOPWET
                         0.154006
                                     0.115716
                                                         0.1850
## DEVNLCD06
                                               -0.510
                        -0.043112
                                     0.084609
                                                         0.6110
## FORESTNLCD06
                         0.177977
                                     0.219463
                                                0.811
                                                         0.4185
## PLANTNLCD06
                        -0.079150
                                     0.195206
                                               -0.405
                                                         0.6856
## AWCAVE.log
                        -0.045114
                                     0.140098
                                               -0.322
                                                         0.7478
## PERMAVE.log
                        -0.005651
                                     0.133691
                                               -0.042
                                                         0.9663
## BDAVE
                         0.056100
                                     0.094705
                                                0.592
                                                         0.5544
## OMAVE.log
                         0.027116
                                     0.102819
                                                0.264
                                                         0.7923
## WTDEPAVE
                         0.037886
                                     0.120315
                                                0.315
                                                         0.7532
## ROCKDEPAVE
                         0.219900
                                     0.114812
                                                1.915
                                                         0.0571
## NO4AVE
                        -0.073859
                                     0.505194
                                               -0.146
                                                         0.8839
## NO200AVE
                         0.110173
                                     0.154788
                                                0.712
                                                         0.4776
## NO10AVE
                         0.484342
                                     0.533392
                                                0.908
                                                         0.3651
## KFACT_UP
                        -0.136155
                                     0.114211
                                               -1.192
                                                         0.2348
## RFACT
                                     0.153614
                                                1.091
                                                         0.2767
                         0.167609
## ELEV_MEAN_M_BASIN
                         0.170114
                                     1.598947
                                                0.106
                                                         0.9154
## ELEV_MAX_M_BASIN
                        -0.463264
                                     0.322102
                                               -1.438
                                                         0.1521
## ELEV MIN M BASIN
                        -1.165825
                                     1.022860
                                               -1.140
                                                         0.2559
## ELEV_MEDIAN_M_BASIN
                         0.267400
                                     1.323247
                                                0.202
                                                         0.8401
## ELEV STD M BASIN
                         0.056960
                                     0.228043
                                                0.250
                                                         0.8031
## ELEV_SITE_M
                                     0.934966
                                                0.980
                                                         0.3282
                         0.916682
## RRMEAN
                         0.033227
                                     0.254881
                                                0.130
                                                         0.8964
## RRMEDIAN.log
                        -0.145778
                                     0.274008
                                               -0.532
                                                         0.5954
## SLOPE PCT.log
                        -0.006511
                                     0.147462
                                               -0.044
                                                         0.9648
## ASPECT_DEGREES
                         0.075576
                                     0.105432
                                                0.717
                                                         0.4744
## ASPECT_NORTHNESS
                        -0.080235
                                     0.054818
                                               -1.464
                                                         0.1451
## ASPECT_EASTNESS
                                     0.113888
                        -0.069366
                                               -0.609
                                                         0.5433
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6458 on 175 degrees of freedom
## Multiple R-squared: 0.6524, Adjusted R-squared:
## F-statistic: 9.124 on 36 and 175 DF, p-value: < 2.2e-16
# Remember that Betahat is the Estimate/StdError = t-value
```

Q: Which of the different predictors have a statistically significant relationship to flow based on a standard t-test framework? At what significance level?

Answer:Currently, none of the predictors have a statistically significant relationship to flow at <0.05, but PPTAVG BASIN and ROCKDEPAVE do at <0.10.

Q: How would you interpret the magnitude of the regression coefficients for those covariates, i.e., how would you articulate how much runoff changes per change in the covariates? Think about the standardization you did in step c for your answer here.

Answer:The estimate for PPTAVG_BASIN is 0.247902 and ROCKDEPAVE is 0.219900, so the runoff would increase by a factor of 0.247902 and 0.219900 from the average runoff for every incremental increase of PPTAVG_BASIN and ROCKDEPAVE, respectively $Y = (0.247902 * x_PPTAVG_BASIN) + (0.219900 * x_ROCKDEPAVE)$.

F) Create a vector of runoff predictions and calculate the root mean squared error (RMSE) of these predictions.

$$RMSE = \sqrt{\frac{\Sigma(Pred_i \ Obs_i)^2}{n}}$$

```
#Create a vector of runoff predictions based on the model. These are predictions
pred.runoff <- predict(lm.Gages2.scale)
#Calculate the root mean squared error (RMSE) of the predictions.
sqrt(mean((Gages2.scale$runoff - pred.runoff)^2))</pre>
```

[1] 0.5881706

Plot your predicted values against the observed values. Be sure to include a 1:1 line and to label your axes appropriately (what exactly is being plotted on each axis?).

```
plot(x = Gages2.scale$runoff,
    y = pred.runoff,
    xlim = c(-2.5, 2),
    ylim = c(-2.5, 2),
    xlab='Observed Annual Runoff (standardized)',
    ylab='Predicted Annual Runoff (standardized)',
    main='Predicted vs. Observed Annual Runoff')

# add line passing through the intercept and slope
abline(a = 0,
    b = 1,
    col = "red",
    lwd = 2)
```

Predicted vs. Observed Annual Runoff

G) Calculate the VIF for each covariate and sort the VIF values from smallest to largest.

```
library(car)
## Loading required package: carData
sort(vif(lm.Gages2.scale))
```

 $\hbox{\tt\#\# Warning in vif.default(lm.Gages2.scale): No intercept: vifs may not be sensible.}$

##	ASPECT_NORTHNESS	ARTIFPATH_PCT	PERDUN	BAS_COMPACTNESS
##	1.512900	2.641062	3.452593	3.535864
##	DEVNLCD06	BFI_AVE	PERHOR	BDAVE
##	3.604096	3.762243	3.926198	4.515552
##	OMAVE.log	ASPECT_DEGREES	DRAIN_SQKM.log	ASPECT_EASTNESS
##	5.322501	5.596471	5.775855	6.530206
##	KFACT_UP	ROCKDEPAVE	TOPWET	WTDEPAVE
##	6.567254	6.636530	6.741536	7.287941
##	PERMAVE.log	PPTAVG_BASIN	AWCAVE.log	SLOPE_PCT.log
##	8.998545	9.230811	9.881688	10.947796
##	RFACT	NO200AVE	PLANTNLCD06	FORESTNLCD06
##	11.880367	12.062673	19.184698	24.248889
##	ELEV_STD_M_BASIN	RRMEAN	RRMEDIAN.log	ELEV_MAX_M_BASIN
##	26.181840	32.707301	37.800295	52.234215
##	T_AVG_BASIN	PET	NO4AVE	NO10AVE
##	106.033880	119.641542	128.494770	143.239126
##	ELEV_SITE_M	ELEV_MIN_M_BASIN	ELEV_MEDIAN_M_BASIN	ELEV_MEAN_M_BASIN
##	440.109046	526.744829	881.556664	1287.172165

The VIF values of many of the predictors are >10, therefore, several of these predictors are correlated with each other. This means that the variance for the predictors are inflated and the p-values are underestimating significance of predictors.

H) Fit ridge and lasso regressions in R using the glmnet package. Calculate the best lambda value for the regression based on a K-fold cross validation (CV).

```
library(glmnet)
```

```
## Loading required package: Matrix
## Loaded glmnet 4.1-3

# Create 100 lambda values between 0 and 0.5 (use sequence() to make these lambda values.
lambda.seq <- seq(0, 0.5, length=100)

# Change the variable types from a data frame to a data matrix to use in glmnet.

X <- data.matrix(Gages2.scale) # turns the data frame into a data matrix

x <- X[,2:ncol(X)] # pulls out the independent variables

y <- X[,1] # pulls out the dependent variable

# The cv.glmnet function will automatically select a 10-fold CV and average the cross-validated mean sq
# Lasso regression: alpha=1

cv.lasso <- cv.glmnet(x, y, lambda = lambda.seq, alpha = 1)

# Ridge regression: alpha = 0

cv.ridge <- cv.glmnet(x, y, lambda = lambda.seq, alpha = 0)</pre>
```

I) Plot the mean cross-validated error values vs. lambda. The lambda values and the cross-validated mean error values are stored in the objects returned by cv.glmnet. Select and report the lambda with the smallest mean cross-validated error for both ridge and lasso regression.

```
# plot the mean cross-validated error values against the lambda values for both ridge and lasso cross-v
par(mfrow = c(1, 2))
plot(cv.lasso$lambda, cv.lasso$cvm)
plot(cv.ridge$lambda, cv.ridge$cvm)
```



```
# Select the lambda with the smallest mean cross-validated error min(cv.lasso$lambda.min)
```

```
## [1] 0.03535354
```

```
min(cv.ridge$lambda.min)
```

[1] 0.2727273

J) Fit a final lasso and ridge model using the glmnet() function and the selected lambda values.

```
# Lasso regression: alpha=1
lasso <- glmnet(x, y, lambda = cv.lasso$lambda.min, alpha = 1)

# Ridge regression: alpha = 0
ridge <- glmnet(x, y, lambda = cv.ridge$lambda.min, alpha = 0)</pre>
```

Report the fitted regression coefficients for the OLS, ridge, and lasso regressions and all covariates in a table.

```
# Grab the estimates for each of the models
beta.OLS <- as.matrix(summary(lm.Gages2.scale)$coefficients[,2])
beta.lasso <- lasso$beta
beta.ridge <- ridge$beta

# Put them together
table1 <- cbind(beta.OLS, beta.lasso, beta.ridge)
# print(table1)
# I can't figure out how to convert the sparse matrix into a data table or add a row to id the columns,</pre>
```

Q: Compare the coefficient values, focusing on variables with high VIF values from (g). What sign and magnitude of coefficients does OLS regression assign to these variables?

A: The estimates of the coefficients with high VIF values under OLS do not have any distinction from other estimates. All of the estimates have positive values and vary in magnitude.

Q:How do the lasso and ridge approaches differ in how they assign the coefficients compared to the OLS regression?

		Estimates			
Coefficient	OLS		Lasso	Ridge	
PPTAVG_BASIN		0.13540533	0.308607	99 0.180992467	
DRAIN_SQKM.log		0.10710851	0.0093241	69 0.038193573	
BAS_COMPACTNESS		0.08380379	-0.0589694	43 -0.053022563	
T_AVG_BASIN		0.45892125	-0.1181437	62 -0.110978783	
PET		0.48748005	-0.0615041	35 -0.1059857	
ARTIFPATH_PCT		0.07242778		0.006221935	
BFI_AVE		0.08644488	0.1043832	59 0.085865904	
PERDUN		0.0828111	0.0669575	92 0.092138742	
PERHOR		0.08830838	-0.0253530	64 -0.05646072	
TOPWET		0.11571649	0.162845	01 0.094914569	
DEVNLCD06		0.08460851	-0.0801821	08 -0.07261981	
FORESTNLCD06		0.21946323	0.0472632	62 0.106476117	
PLANTNLCD06		0.19520607	-0.1761531	34 -0.123388204	
AWCAVE.log		0.14009783		0.045576512	
PERMAVE.log		0.13369095	0.0325345	0.080846274	
BDAVE		0.09470464		0.026863513	
OMAVE.log		0.10281908		0.017117419	
WTDEPAVE		0.12031459		-0.006358601	
ROCKDEPAVE		0.11481176	0.1020525	11 0.087135703	
NO4AVE		0.50519445	0.2871123	01 0.153737901	
NO200AVE		0.15478812		0.019368301	
NO10AVE		0.53339222	0.0877478	43 0.146863204	
KFACT_UP		0.11421095	-0.0530331	81 -0.048536545	
RFACT		0.15361399	0.0110142	92 0.102269712	
ELEV_MEAN_M_BASIN		1.59894735	•	-0.002100631	
ELEV_MAX_M_BASIN		0.32210197		-0.014515986	
ELEV_MIN_M_BASIN		1.02285951	•	-0.025115908	
ELEV_MEDIAN_M_BASIN		1.32324713		0.002091872	
ELEV_STD_M_BASIN		0.22804257		0.00557425	
ELEV_SITE_M		0.93496638		-0.014858791	
RRMEAN		0.25488143	•	0.014815344	
RRMEDIAN.log		0.27400812		-0.000735858	
SLOPE_PCT.log		0.14746168		-0.009755201	
ASPECT_DEGREES		0.10543212	0.0684958	53 0.051229434	
ASPECT_NORTHNESS		0.05481772	-0.0823500	09 -0.076045914	
ASPECT_EASTNESS		0.11388835		-0.031895876	

Figure 1: Estimates from OLS, Lasso, and Ridge regressions. Bolded coefficients and estimates had high (>10) VIF values.

A: I am not seeing a distinct rule, which makes me wonder if I did something wrong. But from what I see, under LASSO, estimates are missing from many of the coefficients with high VIF. Under LASSO and Ridge, many are negative, the opposite of the direction under OLS, and are smaller than the OLS estimates.

K) We will now test which of these regression approaches provide the best out-of-sample predictions. Randomly split the database into 2 equal size and mutually exclusive subsets (subset 1 and subset 2). You can use the "sample()" function to select half of the 211 catchments at random without replacement for subset 1, and put the remaining catchments into subset 2.

L) Fit a linear regression via OLS to the data for subset 1, the training data.

```
subset1.0LS <- lm(runoff ~ 0+ ., data = Gages2.scale.subset1)</pre>
```

M) Predict annual runoff using the OLS-based model for subset 2, the validation data.

```
pred.subset1.OLS <- predict(subset1.OLS, newdata = Gages2.scale.subset2)</pre>
```

Calculate the root mean square error (RMSE) of these predictions.

```
\# sqrt of the mean of observed values (from observation data) minus the estimated (prediction) data \mbox{sqrt}(\mbox{mean}((\mbox{Gages2.scale.subset2}\mbox{sqrt}(\mbox{noff} - \mbox{pred.subset1.0LS})^2))
```

```
## [1] 0.7892588
```

N) Select lambda values for both lasso and ridge regressions based on the cv.glmnet function and the data in subset 1.

```
# Repeat lasso and ridge procedure in (h) above, but using subset1 data
# Create 100 lambda values between 0 and 0.5 (use sequence() to make these lambda values.
lambda.seq2 <- seq(0, 0.5, length=100)
# Change the variable types from a data.frame to a data matrix to use in glmnet.
subset1.matrix <- data.matrix(Gages2.scale.subset1) # turns the data frame into a data matrix
x2 <- subset1.matrix[,2:ncol(subset1.matrix)] # pulls out the independent variables
y2 <- subset1.matrix[,1] # pulls out the dependent variable

# The cv.glmnet function will automatically select a 10-fold CV and average the cross-validated mean sq
# Lasso regression: alpha=1
subset1.lasso <- cv.glmnet(x2, y2, lambda = lambda.seq2, alpha = 1)
# Ridge regression: alpha = 0
subset1.ridge <- cv.glmnet(x2, y2, lambda = lambda.seq2, alpha = 0)</pre>
```

O) Fit lasso and ridge regression models to the subset1 data using the optimized lambda values.

```
# Lasso regression: alpha=1
subset1.lasso <- glmnet(x, y, lambda = subset1.lasso$lambda.min, alpha = 1)
# Ridge regression: alpha = 0
subset1.ridge <- glmnet(x, y, lambda = subset1.ridge$lambda.min, alpha = 0)</pre>
```

P) Predict annual runoff using the fitted ridge and lasso models for the data in subset 2. Calculate the mean square error of these predictions.

```
# make testing data a matrix now
subset2.matrix <- data.matrix(Gages2.scale.subset2)</pre>
subset1.lasso.pred <- predict(subset1.lasso, newx = subset2.matrix[,2:ncol(subset2.matrix)])</pre>
subset1.ridge.pred <- predict(subset1.ridge, newx = subset2.matrix[,2:ncol(subset2.matrix)])</pre>
# RMSE
#...observed values (from test/validation data) minus the estimated (prediction) data
sqrt(mean((subset2.matrix[,1] - subset1.lasso.pred)^2))
## [1] 0.6341788
sqrt(mean((subset2.matrix[,1] - subset1.ridge.pred)^2))
## [1] 0.6410159
Q) Repeat process 100 times.
rmse.OLS <- c()
rmse.lasso <- c()</pre>
rmse.ridge <- c()</pre>
for (i in 1:100) {
#Randomly split database Gages2.scale into 2 equal sizes (train and validate)
  train <-sample(1:nrow(X),</pre>
                  size=round(nrow(X)/2),
                  replace=F) #training data
  test <- (1:nrow(X))[-train] #validation/testing set (new data)
  train <- Gages2.scale[train,]</pre>
  test <- Gages2.scale[test,]</pre>
#Fit OLS on train
  fit.OLS <- lm(runoff ~ 0+ ., data = train)</pre>
#Predict OLS on test
  predict.OLS <- predict(fit.OLS, newdata = test)</pre>
#Calculate RMSE and add to results
  a <- c(sqrt(mean((test$runoff - predict.OLS)^2)))</pre>
  rmse.OLS <- rbind(rmse.OLS, a)</pre>
# Select lambda values
  lambda.seql \leftarrow seq(0, 0.5, length = 100)
  train.matrix <- data.matrix(train)</pre>
  x <- train.matrix[,2:ncol(train.matrix)]</pre>
  y <- train.matrix[,1]</pre>
  train.lasso <- cv.glmnet(x,y, lambda = lambda.seql, alpha = 1)</pre>
  train.ridge <- cv.glmnet(x,y, lambda = lambda.seql, alpha = 0)</pre>
# Fit lasso and ridge with optimized lambda values on set1
  fit.lasso <- glmnet(x,y, lambda = train.lasso$lambda.min, alpha = 1)</pre>
  fit.ridge <- glmnet(x,y, lambda = train.ridge$lambda.min, alpha = 0)</pre>
# Predict with validation set
```

```
test.matrix <- data.matrix(test)</pre>
  pred.lasso <- predict(fit.lasso, newx = test.matrix[,2:ncol(test.matrix)])</pre>
  pred.ridge <- predict(fit.ridge, newx = test.matrix[,2:ncol(test.matrix)])</pre>
# Calculate RMSE and report
# ...observed values (from test/validation data) minus the estimated (prediction) data
  b <- sqrt(mean((test.matrix[,1] - pred.lasso)^2))</pre>
 rmse.lasso <- rbind(rmse.lasso, b)</pre>
  c <- sqrt(mean((test.matrix[,1] - pred.ridge)^2))</pre>
  rmse.ridge <- rbind(rmse.ridge, c)</pre>
# Convert each matrix of rmse to dataframe, rename, and add column to ID
rmse.OLS <- as.data.frame(rmse.OLS)</pre>
rmse.OLS$RMSE <- rmse.OLS$V1</pre>
rmse.OLS$regtype <- "OLS"</pre>
rmse.lasso <- as.data.frame(rmse.lasso)</pre>
rmse.lasso$RMSE <- rmse.lasso$V1</pre>
rmse.lasso$regtype <- "LASSO"</pre>
rmse.ridge <- as.data.frame(rmse.ridge)</pre>
rmse.ridge$RMSE <- rmse.ridge$V1</pre>
rmse.ridge$regtype <- "Ridge"</pre>
results <- rbind(rmse.OLS, rmse.lasso, rmse.ridge)</pre>
```

R) Boxplot of RMSE

RMSE for Predictions of Runoff

The prediction errors with the penalized regression methods, LASSO and Ridge, had significantly lower errors in the predictions than with OLS. This is because of collinearity between multiple predictors in the model, which inflates the variance of the predictors. Under LASSO and Ridge regression, the variances are constrained, which is reflected in the above graph.

S) Dormann et al. 2013 How do lasso and ridge regression approaches compared to other methods for their out-of-sample prediction skill? Many methods performed adequately at low to moderate levels of collinearity, but LASSO and ridge regression were among the few methods that predicted well under high levels of collinearity.