# **ECE 101: Linear Systems Fundamentals**

Summer Session II 2020 - Lecture 7

Saharnaz Baghdadchi

University of California, San Diego

# Today's topics

- CT LTI systems and convolution integral
- Properties of LTI systems using impulse response

Signals and Systems (2th Edition): sections 2.2 and 2.3.4-7

CT LTI Systems and

**Convolution Integral** 

## Output of Discrete-time LTI Systems for an Arbitrary Input



# Continuous-time LTI Systems

• Reminder: Define 
$$\delta_{\Delta}(t) = \begin{cases} \frac{1}{\Delta} & \text{if } t \in [0, \Delta] \\ 0 & \text{else.} \end{cases}$$

- $\Delta \delta_{\Delta}(t)$  is a pulse of height 1 and width  $\Delta$
- We can approximate a nice-enough signal  $x(t) \approx \hat{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \Delta \delta_{\Delta}(t-k\Delta)$





- Let  $h_{\Delta}(t)$  be the response to the input  $\delta_{\Delta}(t)$
- By Time-Invariant property:





# Continuous-time LTI Systems

•  $x(t) \approx \hat{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \Delta \delta_{\Delta}(t-k\Delta)$ 



By LTI property:

- Letting ∆ → 0:
  - $\delta_{\Delta}(t) \rightarrow \delta(t)$
  - $\hat{x}(t) \rightarrow x(t)$  (piece-wise approximation becomes exact)
  - $\hat{y}(t) \rightarrow y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$  (by the Riemann approximation of the integral),

where h(t) is the response of the system to  $\delta(t)$ .

# Continuous-time LTI Systems

• Define the impulse response of a CT system to be the response of the system to  $x(t) = \delta(t)$  and denote it by h(t).

## Response of CT LTI System to an Arbitrary Input

Let h(t) be the impulse response of an LTI system. Then for any input x(t), the output is

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

• This integral is called **the convolution (integral)** of x(t) and h(t). Denote it by  $y(t) \stackrel{def}{=} x(t) * h(t)$ .

# Convolutions integral

For signals x(t) and h(t), convolution integral y(t) = h(t) \* x(t) is given by:

$$y(t) = \int_{-\infty}^{\infty} h(t-\tau)x(\tau)d\tau.$$

# How to compute convolution in CT?



- Given input x(t) and impulse response h(t)
- The main idea: fix time t
- $y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$
- As a function of  $\tau$ ,  $x(\tau)$  remains the same
- As a function of  $\tau$ ,  $h(t-\tau)$ :  $h(\tau)$  flipped and shifted to t
- Output at time t: sample by sample multiply  $x(\tau)$  by  $h(t-\tau)$  and then add integrate

**Properties of LTI Systems** 

Using Impulse Response

# Impulse Response



- We know that impulse response tells us everything about a system.
- We can determine the properties (memorlyess, causality, invertibility, BIBO stability) of an LTI system by investigating its impulse response.

## Memoryless



### Memoryless Property for LTI Systems

A discrete-time LTI system is memoryless if and only if

$$h[n] = a\delta[n], \text{ for some } a \in \mathbb{C}.$$
 (1)

A continuous-time LTI system is memoryless if and only if

$$h(t) = a\delta(t)$$
, for some  $a \in \mathbb{C}$ .

## Causal



## Causal Property for LTI Systems

A discrete-time LTI system is causal if and only if

$$h[n] = 0$$
, for  $n < 0$ . (2)

A continuous-time LTI system is causal if and only if

$$h(t) = 0$$
, for  $t < 0$ .

# Invertibility



### Invertible Property for LTI Systems

A discrete-time LTI system is invertible if and only if there exists a g[n] such that:

$$g[n] * h[n] = \delta[n]. \tag{3}$$

A continuous-time LTI system is invertible if and only if there exists a g(t) such that:

$$g(t)*h(t)=\delta(t).$$

# **BIBO Stability**



### Invertible Property for LTI Systems

A discrete-time LTI system is BIBO stable if and only if:

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty. \tag{4}$$

A continuous-time LTI system is BIBO stable if and only if:

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty.$$