

A Unifying Theory for **Experimental Symbolomics**

John Sample, Mike Test and Mary Try

Research Group for Experimental Symbolomics CAS-MPG Partner Institute and Key Laboratory for Computational Biology Shanghai Institutes for Biological Sciences, Shanghai, China

Overview

Sample poster with a more flexible/complex/interesting variant of the basic layout.

Introduction

- automatic sign language recognition system
- necessary for communication between deaf and hearing people
- continuous sign language recognition, several speakers, vision-based approach, no special hardware
- ▶ large vocabulary speech recognition (LVSR) system to obtain a textual representation of the signed sentences
- evaluation of speech recognition techniques on publicly available sign language corpus

Automatic Sign Language Recognition (ASLR)

- similar to speech recognition: temporal sequences of images
- ▶ important features
 - hand-shapes, facial expressions, lip-patterns
 - orientation and movement of the hands, arms or body
- ► HMMs are used to compensate time and amplitude variations of the signers

goal: find the model which best expresses the observation sequence

Experimental Setup

Database

- system evaluation on the RWTH-BOSTON-104 database
 - ▶ 201 sentences (161 training and 40 test sequences)
 - vocabulary size of 104 words
 - ▶ 3 speakers (2 female, 1 male)
 - corpus is annotated in glosses

Problems

- ▶ 26% of the training data are singletons
- simple sentence structure
- ▶ one out-of-vocabulary (OOV) words with whole-word models

Differences in Comparison to ASR

- simultaneousness
- signing space
- environment
- speakers and dialects
- coarticulation and movement epenthesis
- silence
- whole-word models and sub-word units

System Overview

Visual Modeling (VM)

- ▶ related to the acoustic model in ASR
- ► HMM based, with separate GMMs, globally pooled diag. covariance matrix
- monophone whole-word models
- pronunciation handling

Language Modeling (LM)

- according to ASR: LM should have a greater weight than the VM
- trigram LM using the SRILM toolkit, with modified Kneser-Ney discounting with interpolation

Feature Selection and Model Combination

Feature Selection

- concatenation of appearance-based and manual features
- sliding window for context modeling
- dimensionality reduction by PCA and/or LDA

Model Combination

- ▶ log-linear combination of independently trained models
- ▶ profit from independent alignments (e.g. performing well for long and short words)
- profit from different feature extraction approaches