## Math 1580: Cryptography Lecture Notes

### E. Larson

## Spring 2022

These are lecture notes for Math 1580: Cryptography taught at Brown University by Eric Larson in the Spring of 2022.

## **Contents**

| 0 | January 26, 2022   |                               |  |  |
|---|--------------------|-------------------------------|--|--|
|   | 0.1                | Course Logistics              |  |  |
|   | 0.2                | Introduction                  |  |  |
|   | 0.3                | Simple Substitution Ciphers   |  |  |
|   | 0.4                | Divisibility                  |  |  |
| 1 | January 28, 2022 2 |                               |  |  |
|   | 1.1                | Greatest Common Divisors      |  |  |
|   | 1.2                | Euclidean Algorithm           |  |  |
|   | 1.3                | Linear Combinations           |  |  |
| 2 | January 31, 2022   |                               |  |  |
|   |                    | Linear Combinations continued |  |  |
|   | 2.2                | Modular Arithmetic            |  |  |
| 3 | February 2, 2022   |                               |  |  |
|   | 3.1                | Inverses mod $m$              |  |  |
|   | 3.2                | Modular Arithmetic continued  |  |  |
|   | 3.3                | Fastish Powering              |  |  |
| 4 | February 4, 2022 9 |                               |  |  |
|   |                    | Fast Powering continued       |  |  |
|   |                    | Fun Integers 11               |  |  |

## §0 January 26, 2022

- §0.1 Course Logistics
- §0.2 Introduction
- §0.3 Simple Substitution Ciphers
- §0.4 Divisibility
- §1 January 28, 2022
- §1.1 Greatest Common Divisors
- §1.2 Euclidean Algorithm
- §1.3 Linear Combinations
- §2 January 31, 2022
- §2.1 Linear Combinations continued

Recall from last time that we proposed that

greatest common divisor  $\leq$  least linear combination.

# Example 2.1 gcd(2024, 748) = 44 because we have

$$2024 = 748 \cdot 2 + 528$$

$$748 = 528 \cdot 1 + 220$$

$$528 = 220 \cdot 2 + 88$$

$$220 = 88 \cdot 2 + \boxed{44} \leftarrow \gcd(2024, 748)$$

$$88 = 44 \cdot 2 + 0$$

We determine which linear combinations or 2024 znd 748 we can create:

$$2024 = 1 \cdot 2024 + 0 \cdot 748$$

$$748 = 0 \cdot 2024 + 1 \cdot 748$$

$$528 = 1 \cdot 2024 + (-2) \cdot 748$$

$$220 = 748 - 1 \cdot 528$$

$$= 748 - 1 \cdot (1 \cdot 2024 + (-2) \cdot 748)$$

$$= -1 \cdot 2024 + 3 \cdot 748$$

$$88 = 528 - 2 \cdot 220$$

$$= \underbrace{[1 \cdot 2024 + (-2) \cdot 748]}_{528} - 2 \cdot \underbrace{[-1 \cdot 2024 + 3 \cdot 748]}_{220}$$

$$= 3 \cdot 2024 - 8 \cdot 748$$

$$44 = 220 - 2 \cdot 88$$

$$= [-1 \cdot 2024 + 3 \cdot 748] - 2 \cdot [3 \cdot 2024 - 8 \cdot 748]$$

$$= -7 \cdot 2024 + 19 \cdot 748$$

Following this example, we have shown that every common divisor of a and b can be written as a linear combination of a and b, and since the greatest common divisor has to be less than the least linear combination (as shown last time), the greatest common divisor is the least linear combination<sup>1</sup>.

We realize that there is a recurrence happening here. If we call every set of coefficients x, y and z, w for a and b respectively, such that

$$a = x \cdot a_0 + y \cdot b_0$$
$$b = z \cdot a_0 + y \cdot b_0$$

where  $a_0$  and  $b_0$  are the original numbers, we can use a sliding window approach<sup>2</sup> again to determine the next set of x, y, z, w, a, b.

Recall from last time we had

$$a' = b$$
$$b' = a \mod b$$

We can extend this algorithm for our new coefficients:

$$x' = z$$

$$y' = w$$

$$z' = w - \left\lfloor \frac{a}{b} \right\rfloor \cdot z$$

$$w' = y - \left\lfloor \frac{a}{b} \right\rfloor \cdot w$$

<sup>&</sup>lt;sup>1</sup>Assume for contradiction that the gcd were any less, then that would also be a linear combination. 4

<sup>&</sup>lt;sup>2</sup>Updating our iterators on every loop by sliding our window of coefficients down.

where  $\left|\frac{a}{b}\right|$  are the quotients from our Euclidean Algorithm. Note that initially, we have

$$a = 1 \cdot a_0 + 0 \cdot b_0$$
$$b = 0 \cdot a_0 + 1 \cdot b_0$$

so we have initial values of x = 1, y = 0, z = 0, w = 0.

so our code for the extended Euclidean's Algorithm is now

```
def ext_gcd(a, b):
    x, y, z, w = 1, 0, 0, 1
    while b!= 0:
    x, y, z, w = z, w, w - (a // b) * z, y - (a // b) * w
    a, b = b, a % b
    return (x, y)
```

#### §2.2 Modular Arithmetic

Recall: We used a substitution/shift cipher to encrypt text:

by incrementing 5 letters for each lecture.

$$a = 0, b = 1, \dots, z = 25.$$

We had this notion of

$$\begin{aligned} \text{ciphertext} &= \text{plaintext} + 5 \\ \mathbf{d} &= \mathbf{y} + 5 \\ 3 &= 24 + 5 = 29 \end{aligned}$$

#### **Definition 2.2**

We say  $a \equiv b \mod m$  if  $m \mid a - b$ .

We say "a is congruent a to b modulo m".

<sup>a</sup>Congruence is a "behave like" equality.

#### Example 2.3

$$24 + 5 \equiv 3 \mod 26$$
$$22 + 2 \equiv 1 \mod 12$$

The first example is from our shift sipher, the second example is equivalent to "two hours after 11:00, it is 1:00".

#### Proposition 2.4

If we have

$$a_1 \equiv a_2 \mod m$$
  
 $b_1 \equiv b_2 \mod m$ 

Then we have the following:

$$a_1 + b_1 \equiv a_2 + b_2 \mod m \tag{1}$$

$$a_1 - b_1 \equiv a_2 - b_2 \mod m \tag{2}$$

$$a_1 \cdot b_1 \equiv a_2 \cdot b_2 \mod m \tag{3}$$

*Proof.* For eq. (1), realize that we have

$$(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2)$$

and the two terms on the right are each divisible by m by our premise. We can also write out

$$a_1 + b_1 = (a_2 + \alpha m) + (b_2 + \beta m)$$
  
=  $(a_2 + b_2) + (\alpha + \beta) \cdot m$ .

Similarly, for eq. (2), we have

$$a_1 - b_1 = a_2 + \alpha m - (b_2 + \beta m)$$
  
=  $a_2 - b_2 + (\alpha - \beta) \cdot m$ .

and for eq. (3), we have

$$a_1 \cdot b_1 = (a_2 + \alpha m) \cdot (b_2 + \beta m)$$
$$= a_2 \cdot b_2 + \alpha m b_2 + \beta m a_2 + \alpha \beta m^2$$
$$= a_2 \cdot b_2 + (\alpha b_2 + \beta a_2 + \alpha \beta m) \cdot m.$$

which concludes the proofs of the premod rules.

#### Proposition 2.5

There exists b with

$$a \cdot b \equiv 1 \mod m$$

if and only if gcd(a, m) = 1.

*Proof.* We can write linear combination equation

$$a \cdot b + m \cdot k = 1$$

and we have that the following are equivalent (we cascade down the list and can easily prove the iff relations):

- i. such a *b* exists,
- ii. there is a solution b, k to this equation,
- iii. 1 is a linear combination of a and m,
- iv. 1 is the *least* linear combination of a and m,
- v.  $1 = \gcd(a, m)$ .

so we have that  $1 = \gcd(a, m)$  if and only if a's inverse b exists.

## §3 February 2, 2022

#### §3.1 Inverses mod m

Recall: Last time, we showed in proposition 2.5 that there exists an integer b with with  $a \cdot b \equiv 1 \mod m$  iff  $\gcd(a, m) = 1$ .

Claim 3.1 — We further claim that if such a b exists, then it is unique mod m.

That is, if we have

$$a \cdot b_1 \equiv 1 \pmod{m}$$

$$a \cdot b_2 \equiv 1 \pmod{m}$$

then we have that  $b_1 \equiv b_2 \pmod{m}$ .

*Proof.* We consider  $b_1ab_2$ . We have

$$b_2 \equiv (b_1 a)b_2 = b_2(ab_2) \equiv b_2$$

all taking mod m.

How, then, could we compute this inverse b efficiently?

Recall that last class, we used the extended Euclidean algorithm to compute the linear combination of a and m efficiently,

$$1 = a \cdot u + m \cdot v$$
$$\equiv a \cdot \boxed{u} \mod m$$

where u is b.

#### §3.2 Modular Arithmetic continued

**Definition 3.2** (Ring of Integers mod m)

 $\mathbb{Z}/m\mathbb{Z} = \{0, 1, 2, \dots, m-1\}$  with operations  $+, -, \times \pmod{m}$ .

Example 3.3

 $\mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}$ . We have the following operation tables for  $\mathbb{Z}/4\mathbb{Z}$ :

#### **Definition 3.4** (Group of Units mod m)

We have the set of units in  $\mathbb{Z}/m\mathbb{Z}$  as

$$(\mathbb{Z}/m\mathbb{Z})^{\times} = \{ a \in \mathbb{Z}/m\mathbb{Z} \mid \exists b \text{s.t. } a \cdot b \equiv 1 \}$$
$$= \{ a \in \mathbb{Z}/m\mathbb{Z} \mid \gcd(a, m) = 1 \}$$

Example 3.5

$$(\mathbb{Z}/4\mathbb{Z})^{\times} = \{1, 3\}.$$

#### **Definition 3.6** (Euler Totient Function)

We have

$$\varphi(m) = \#(\mathbb{Z}/m\mathbb{Z})^{\times}$$

which counts the number of units modulo m.

#### Example 3.7

$$\varphi(4)=2.$$

Let's investigate the properties of units. Let's say  $a_1, a_2$  are units. Which of the following have to be units?

|                 | Does this have to be a unit?                                                                                                                                                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $a_1 \cdot a_2$ | Yes!                                                                                                                                                                                                 |
|                 | Since $\gcd(a_1, m) = 1$ and $\gcd(a_2, m) = 2$ so we have $\gcd(a_1a_2, m) = 1$ . We also have $a_1b_1 \equiv 1 \mod m$ and $a_2b_2 \equiv 1 \mod m$ , we have $(a_1a_2)(b_2b_1) \equiv 1 \mod m$ . |
| $a_1 + a_2$     | No. We have counterexample $m = 4$ : $1 + 1$ is not a unit.                                                                                                                                          |
| $a_1 - a_2$     | Also no. For any $a$ , $a - a = 0$ which is never a unit.                                                                                                                                            |

#### **Definition 3.8** (Prime Number)

An integer  $n \geq 2$  is prime if its only (positive) divisors are 1 and n.

#### Example 3.9

Numbers like  $2, 3, 5, 7, 11, 12, \ldots$ 

What if m is a prime number? Then we have

$$(\mathbb{Z}/m\mathbb{Z})^{\times} = \{1, 2, \dots, m-1\}$$

so we can divide by elements of  $\mathbb{Z}/m\mathbb{Z}$ , just like in  $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ . We can divide by any nonzero element of  $\mathbb{Z}/m\mathbb{Z}$ . We call these fields!

#### §3.3 Fastish Powering

**Problem.** How might we compute  $g^a \mod m$ ?

A naïve solution might be

```
def pow_mod(g, a, m):
return g ** a % m
```

What if we tried to compute pow\_mod(239418762304, 12349876234, 12394876123482783641) or something of the like? Something like this...



We could do something a bit more clever, like taking a mod every time we multiply:

```
def pow_mod(g, a, m):
    p = 1
    for i in range(a):
        p = (p * q) % m
    return p
```

Yet we still couldn't do pow\_mod(239418762304, 12349876234, 12394876123482783641) since that takes the amount of time proportional to  $a^3$ .

#### Example 3.10

Let's try to compute  $3^{37}$  by hand.

$$3^{1}$$
  $\equiv 3 \mod 100$   
 $3^{2}$   $\equiv 9 \mod 100$   
 $3^{4} = (3^{2})^{2} = \equiv 81 \mod 100$   
 $3^{8} = (3^{4})^{2} = 81^{2} = 6561$   $\equiv 61 \mod 100$   
 $3^{16} = (3^{8})^{2} \equiv 61^{2} = 3721$   $\equiv 21 \mod 100$   
 $3^{32} = (3^{16})^{2} \equiv 21^{2} = 441$   $\equiv 41 \mod 100$ 

Since 37 = 32 + 4 + 1, we can simply do

$$3^{37} = 3^{32} \cdot 3^4 \cdot 3^1 = 41 \cdot 81 \cdot 3 = 1863 \equiv 63 \mod 100$$

## §4 February 4, 2022

#### §4.1 Fast Powering continued

<sup>&</sup>lt;sup>3</sup>Which can become big...

```
Example 4.1 

Recall: we wanted to compute 3^{37} \mod 100 3^1 \equiv 3 \pmod{100}
3^2 \equiv 9
3^4 \equiv 81
3^8 \equiv 61
3^{16} \equiv 21
3^{32} \equiv 41
so we have 37 = 1 + 4 + 32
3^{37} = 3^1 \cdot 3^4 \cdot 3^{32} \equiv 3 \cdot 81 \cdot 41 \equiv 63
```

How might we do this as an algorithm? We want to keep track of a few things, such as g (the current power), p (the multiple we are building), a (the remaining powers). This is akin to deconstructing the power in binary and composing our product.

```
def pow_mod(g, a, m):
    p = 1

while a != 0:
    if a % 2 == 1:
        p = (p * g) % m
    a = a // 2
    g = g**2 % m

return p
```

```
Example 4.2
37 = 100101_2, so we peel off last digits and multiply g into p.
Thinking about iterations, we have
                                                   a_2
                                              37 \quad 10010\underline{1}
                                    9
                                        3
                                              18 100100
                                    81 3
                                              9
                                                   1001
                                    61 43
                                              4
                                                  100
                                    21
                                       43
                                              2
                                                   10
                                        43
                                    41
                                              1
                                                   1
                                         63
                                              0
                                                   0
```

This algorithm takes approximately  $\log_2(a)$  time to run, since it does as many steps for each digit in the binary representation of a.

#### §4.2 Fun Integers

*Recall:* An integer p is prime if  $p \geq 2$  and

$$a \mid p \Rightarrow a = \pm 1, \pm p$$

#### Proposition 4.3

Let p be prime. Then  $p \mid ab \Rightarrow p \mid a$  or  $p \mid b$ .

#### Example 4.4

p is not prime, this doesn't work. p = 6.  $p \mid 4 \cdot 9 = 36$  but  $6 \nmid 4$  and  $6 \nmid 9$ .

*Proof.* Let  $g = \gcd(p, a)$ . g is either 1 or p.

If g = p, then we have that  $p = g \mid a$ .

If p = 1, we can write this as

$$1 = g = p \cdot u + a \cdot v$$
$$b = p \cdot ub + ab \cdot v$$

since p is a multiple of p and ab is a multiple of p, we have that  $p \mid b$ .

#### **Theorem 4.5** (Fundamental Theorem of Arithmetic)

Any integer  $a \ge 1$  can be factored into product of primes

$$a = p_1^{e_1} \cdots p_n^{e_n}$$

and this product of primes is unique up to rearrangement.<sup>a</sup>

<sup>a</sup>This is to say,  $\mathbb{Z}$  is a UFD!

#### Example 4.6

Instead of thinking about integers, we think about  $\mathbb{Z}[\sqrt{-5}]$ , like

$$\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$$

Consider

$$6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \cdot 3$$

and each of  $(1+\sqrt{-5})$ ,  $(1-\sqrt{-5})$ , 2, 3 have no divisors besides themselves and  $\pm 1$  (units).

*Proof.* We begin by working out an example:

#### Example 4.7

Let's factor 60, we can write this as

$$60 = 6 \cdot 10 = (2 \cdot 3) \cdot (2 \cdot 5) = 2^2 \cdot 3 \cdot 5.$$

What if we had different answers

$$p_1 p_2 \cdots p_t = a = q_1 q_2 \cdots q_s$$

We have that

$$p_1 \mid p_1 \cdots p_t = q_1 \cdots q_s$$
$$= q_1(q_2 \cdots q_s)$$

So we have that  $p_1 \mid q_1$  or  $p_1 \mid q_2 \cdots q_s$ , and we go on. So  $p_1$  has to divide *one* of  $q_i$ . But both are primes, so they are equal  $p_1 = q_i$ . We rearrange so  $q_i$  is  $q_1$ . We strip off  $p_1$  and  $q_1$  and we have

$$p_2 \cdots p_t = q_2 \cdots q_s$$

we continue until we have no factors left<sup>4</sup>

#### **Definition 4.8**

We define the order

 $\operatorname{ord}_{p}(a) = \text{the power of } p \text{ in the factorization of } a$ 

such that we have

$$a = \prod_{p} p^{\operatorname{ord}_{p}(a)}$$

(This makes sense since  $\operatorname{ord}_p(a)$  is finite for finitely many p.)

#### **Theorem 4.9** (Fermat's Little Theorem)

Let p be prime,  $a \in \mathbb{Z}/p\mathbb{Z}$ ,

$$a^{p-1} \equiv \begin{cases} 0 & \text{if } a \equiv 0\\ 1 & \text{otherwise} \end{cases}$$

In abstract algebra, this directly follows from Lagrange's Theorem for  $\mathbb{Z}/p\mathbb{Z}$ , we give another argument.

<sup>&</sup>lt;sup>4</sup>We could also have taken a well-ordering approach to this statement, taking a to be the least such non-uniquely factorizable number and showing that by peeling off  $p_1$  and  $q_1$ , we get a smaller such a, which is a contradiction.

*Proof.* If  $a \equiv 0$ , this is sufficiently clear.

Let  $a \not\equiv 0$ . We look at the numbers

$$a, 2a, 3a, \ldots, (p-1)a$$

We consider 2 questions:

i. Are any of these divisible by p?

No!  $p \nmid a$  and  $p \nmid i$  so  $p \nmid ia$  for  $1 \leq i < p$ .

ii. Are any of these equal? i.e.  $ia \equiv ja \mod p$ .

No again! a has an inverse mod p.

So we have that this list is a permutation of  $\{1, 2, \dots, p-1\}$ , that is,

$$\{1, 2, \dots, p-1\} = \{a, 2a, \dots, (p-1)a\} \mod p$$

we multiply these sets together<sup>5</sup>,

$$1 \cdot 2 \cdot 3 \cdots (p-1) \equiv a \cdot 2a \cdots (p-1)a \mod p$$
$$\equiv (1 \cdot 2 \cdots p - 1)a^{p-1}1 \cdot 2 \cdot 3 \cdot (p-1)(a^{p-1} - 1) \equiv 0 \mod p$$
$$\implies a^{p-1} \equiv 1 \mod p.$$

Which is as desired.

<sup>&</sup>lt;sup>5</sup>This is truly a pro-gamer move