Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

 ${\bf Version} \ {\bf 1}$

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d '	V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.	Mark:					
Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be	written	as a linear combination of the vectors	$\begin{bmatrix} -1\\ -9\\ 15 \end{bmatrix}$	and	$\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$	

|--|--|--|

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.	Mark:							
Determine if $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ can $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$	be writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

|--|--|--|

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:						
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} $ is a lin	near com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix},$	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d '	V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:				
Determine if	$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} $ can be	written	as a linear combination of the vectors	$\begin{bmatrix} -1\\ -9\\ 15 \end{bmatrix}$	and	$\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}.$

|--|--|--|