Math 142: Section 10.4 - Notes

1 Comparison Tests

The Comparison Test

Let $\sum a_n$, $\sum c_n$, and $\sum d_n$ be series with nonnegative terms. Suppose that for some integer N

$$d_n \le a_n \le c_n$$
 for all $n > N$.

- a) If $\sum c_n$ converges, then $\sum a_n$ also converges. b) If $\sum d_n$ diverges, then $\sum a_n$ also diverges.

Example 1 Determine if the series converges or diverges using the Comparison Test.

a)

$$\sum_{n=1}^{\infty} \frac{5}{5n-1}$$

b)

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

c)

$$5 + \frac{2}{3} + \frac{1}{7} + 1 + \frac{1}{2 + \sqrt{1}} + \frac{1}{4 + \sqrt{2}} + \frac{1}{8 + \sqrt{3}} + \dots + \frac{1}{2^n + \sqrt{n}} + \dots$$

The Limit Comparison Test

- Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

 1) If $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.

 2) If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.

 3) If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Example 2 Determine if the following series converge or diverge using the Limit Comparison Test.

$$\frac{3}{4} + \frac{5}{9} + \frac{7}{16} + \frac{9}{25} + \dots = \sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$$

b)
$$\frac{1}{1} + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

c)
$$\frac{1+2\ln 2}{9} + \frac{1+3\ln 3}{14} + \frac{1+4\ln 4}{21} + \dots = \sum_{n=2}^{\infty} \frac{1+n\ln n}{n^2+5}$$