QUASI-AMICABLE NUMBERS ARE RARE

PAUL POLLACK

ABSTRACT. Define a quasi-amicable pair as a pair of distinct natural numbers each of which is the sum of the nontrivial divisors of the other, e.g., $\{48,75\}$. Here nontrivial excludes both 1 and the number itself. Quasi-amicable pairs have been studied (primarily empirically) by Garcia, Beck and Najar, Lal and Forbes, and Hagis and Lord. We prove that the set of n belonging to a quasi-amicable pair has asymptotic density zero.

1. Introduction

Let $s(n) := \sum_{d|n,d < n} d$ be the sum of the proper divisors of n. Given a natural number n, what can one say about the aliquot sequence at n defined as $n, s(n), s(s(n)), \ldots$? From ancient times, there has been considerable interest in the case when this sequence is purely periodic. (In this case, n is called a sociable number; see Kobayashi et al. [11] for some recent results on such numbers.) An n for which the period is 1 is called perfect (see sequence A000396), and an n for which the period is 2 is called amicable (see sequence A063990). In the latter case, we call $\{n, s(n)\}$ an amicable pair.

Let $s^-(n) := \sum_{d|n,1 < d < n} d$ be the sum of the nontrivial divisors of the natural number n, where nontrivial excludes both 1 and n. According to Lal and Forbes [12], it was Chowla who suggested studying quasi-aliquot sequences of the form $n, s^-(n), s^-(s^-(n)), \ldots$ Call n quasi-amicable if the quasi-aliquot sequence starting from n is purely periodic of period 2 (see sequence A005276). Thus, a quasi-amicable pair is a pair of distinct natural numbers n and m with $s^-(n) = m$ and $s^-(m) = n$ (e.g., n = 48 and m = 75). The numerical data, reproduced in Table 1 from sequence A126160, suggests that the number of such pairs with a member < N tends to infinity with N, albeit very slowly.

While quasi-amicable pairs have been studied empirically (see [8, 12, 1, 10, 2], and cf. [14, 13], [9, section B5]), it appears that very little theoretical work has been done. In this paper, we prove the following modest theorem, which is a quasi-amicable analogue of Erdős's 1955 result [4] concerning amicable pairs:

Theorem 1.1. The set of quasi-amicable numbers has asymptotic density zero. In fact, as $\epsilon \downarrow 0$, the upper density of the set of n satisfying

$$1 - \epsilon < \frac{s^-(s^-(n))}{n} < 1 + \epsilon \tag{1.1}$$

tends to zero.

Remark. With s replacing s^- , Theorem 1.1 follows from work of Erdős [4] and Erdős et al. [7, Theorem 5.1].

²⁰¹⁰ Mathematics Subject Classification. Primary: 11A25, Secondary: 11N37.

Key words and phrases. aliquot sequence, quasi-aliquot sequence, quasi-amicable pair, augmented amicable pair.

N	\mid # of quasi-amicable pairs with least member $\leq N$
10^{5}	9
10^{6}	17
10^{7}	46
10^{8}	79
10^{9}	180
10^{10}	404
10^{11}	882
10^{12}	1946

Table 1

Notation. Throughout, p and q always denote prime numbers. We use $\sigma(n) := \sum_{d|n} d$ for the sum of all positive divisors of n, and we let $\omega(n) := \sum_{p|n} 1$ stand for the number of distinct prime factors of n. We write P(n) for the largest prime divisor of n, with the understanding that P(1) = 1. We say that n is y-smooth if $P(n) \leq y$. For each n, its y-smooth part is defined as the largest y-smooth divisor of n.

The Landau–Bachmann o and O-symbols, as well as Vinogradov's \ll notation, are employed with their usual meanings. Implied constants are absolute unless otherwise specified.

2. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1, assuming two preliminary results whose proofs are deferred to §3 and §4.

Proposition 2.1. For each $\epsilon > 0$, the set of natural numbers n with

$$\frac{\sigma(n+1)}{n+1} - \epsilon < \frac{\sigma(s^-(n))}{s^-(n)} < \frac{\sigma(n+1)}{n+1} + \epsilon. \tag{2.1}$$

has asymptotic density 1.

Remark. If n is prime, then $s^-(n) = 0$, and the expression $\sigma(s^-(n))/s^-(n)$ is undefined. This does not contradict Proposition 2.1, since the set of primes has asymptotic density zero.

Proposition 2.2. As $\epsilon \downarrow 0$, the upper density of the set of natural numbers n for which

$$1 - \epsilon < \left(\frac{\sigma(n)}{n} - 1\right) \left(\frac{\sigma(n+1)}{n+1} - 1\right) < 1 + \epsilon \tag{2.2}$$

tends to zero.

Proof of Theorem 1.1. It suffices to prove the upper density assertion of the theorem. Let $\delta > 0$. We will show that if $\epsilon > 0$ is sufficiently small, then the upper density of the set of n for which (1.1) holds is at most 2δ . We start by assuming that both $\sigma(n)/n \leq B$ and $\sigma(n+1)/(n+1) \leq B$, where B > 0 is chosen so that these conditions exclude a set of n of upper density at most δ . To see that such a choice is possible, we can use a first moment argument; indeed, since

$$\sum_{n \le x} \frac{\sigma(n)}{n} = \sum_{n \le x} \sum_{d \mid n} \frac{1}{d} \le x \sum_{d \le x} \frac{1}{d^2} < 2x,$$

we can take $B = 4/\delta$. Moreover, Proposition 2.1 shows that by excluding an additional set of density 0, we can assume that

$$\left|\frac{\sigma(s^-(n))}{s^-(n)} - \frac{\sigma(n+1)}{n+1}\right| < \frac{\epsilon}{2B}.$$

Now write

$$\frac{s^{-}(s^{-}(n))}{n} = \frac{s^{-}(n)}{n} \frac{s^{-}(s^{-}(n))}{s^{-}(n)}$$
$$= \left(\frac{\sigma(n)}{n} - 1 - \frac{1}{n}\right) \left(\frac{\sigma(s^{-}(n))}{s^{-}(n)} - 1 - \frac{1}{s^{-}(n)}\right).$$

If n is a large natural number satisfying (1.1) and our above conditions, then a short computation shows $\frac{s^-(s^-(n))}{n}$ is within ϵ of the product $(\frac{\sigma(n)}{n}-1)(\frac{\sigma(n+1)}{n+1}-1)$. (Keep in mind that since n is composite, we have $s^-(n) \geq \sqrt{n}$.) Thus,

$$1 - 2\epsilon < \left(\frac{\sigma(n)}{n} - 1\right) \left(\frac{\sigma(n+1)}{n+1} - 1\right) < 1 + 2\epsilon.$$

Finally, Proposition (2.2) shows that if ϵ is chosen sufficiently small, then these remaining n make up a set of upper density $< \delta$.

3. The proof of Proposition 2.1

3.1. **Preparation.** The proof of the proposition is very similar to the proof, due to Erdős, Granville, Pomerance, and Spiro, that s(s(n))/s(n) = s(n)/n + o(1), as $n \to \infty$ along a sequence of density 1 (see Erdős et al. [7, p. 195]). We follow their argument, as well as the author's adaptation [15], very closely.

We begin by recalling some auxiliary estimates. The first of these is due to Pomerance [16, Theorem 2].

Lemma 3.1. Let D be a natural number, and let $x \ge 2$. The number of $n \le x$ for which $D \nmid \sigma(n)$ is $\ll x/(\log x)^{1/\varphi(D)}$.

For a given α , we call the natural number n an α -primitive number if $\sigma(n)/n \geq 1 + \alpha$ while $\sigma(d)/d < 1 + \alpha$ for every proper divisor d of n. The following estimate is due to Erdős [5, p. 6]:

Lemma 3.2. Fix a positive rational number α . There is a constant $c = c(\alpha) > 0$ and an $x_0 = x_0(\alpha)$ so that for $x > x_0$, the number of α -primitive $n \le x$ is at most

$$\frac{x}{\exp(c\sqrt{\log x \log \log x})}.$$

As a consequence of Lemma 3.2, we obtain the following convergence result, which we will need to conclude the proof of Proposition 2.1.

Lemma 3.3. Fix a positive rational number α . Then

$$\sum_{\substack{a, \alpha - nrimitive}} \frac{2^{\omega(a)}}{a} < \infty.$$

Proof. We split the values of a appearing in the sum into two classes, putting those a for which $\omega(a) \leq 20 \log \log a$ in the first class and all other a in the second. If a belongs to the first class, then $2^{\omega(a)} \leq (\log a)^{20 \log 2}$, and Lemma 3.2 shows that the sum over these a converges (by partial summation). To handle the a in the second class, we ignore the α -primitivity condition altogether and invoke a lemma of Pollack [15, Lemma 2.4], according to which $\sum_{a: \omega(a) > 20 \log \log a} \frac{2^{\omega(a)}}{a} < \infty$.

3.2. **Proof proper.** We proceed to prove Proposition 2.1 in two stages; first we prove that the lower-bound holds almost always, and then we do the same for the upper bound. The following lemma is needed for both parts.

Lemma 3.4. Fix a natural number T. For each composite value of n with $1 \le n \le x$, write

$$n+1 = m_1 m_2$$
 and $s^-(n) = M_1 M_2$,

where $P(m_1M_1) \leq T$ and every prime dividing m_2M_2 exceeds T. Then, except for o(x) (as $x \to \infty$) choices of n, we have $m_1 = M_1$.

Proof. At the cost of excluding o(x) values of $n \leq x$, we may assume that

$$m_1 \le (\log \log x)^{1/2} \left(\prod_{p \le T} p\right)^{-1} =: R.$$

Indeed, in the opposite case, n+1 has a T-smooth divisor exceeding R, and the number of such $n \leq x$ is

$$\ll x \sum_{\substack{e \text{ T-smooth} \\ e>R}} \frac{1}{e} = o(x),$$

as $x \to \infty$. Here we use that the sum of the reciprocals of the *T*-smooth numbers is $\prod_{p \le T} (1 - 1/p)^{-1} < \infty$. Hence, $m_1 \prod_{p \le T} p \le (\log \log x)^{1/2}$, and so Lemma 3.1 shows that excluding o(x) values of $n \le x$, we can assume that $m_1 \prod_{p \le T} p$ divides $\sigma(n)$. Since

$$s^{-}(n) = \sigma(n) - (n+1),$$

it follows that m_1 is the T-smooth part of $s^-(n)$. That is, $m_1 = M_1$.

Proof of the lower bound half of Proposition 2.1. Fix $\delta > 0$. We will show that the number of $n \leq x$ for which the left-hand inequality in (2.1) fails is smaller than $3\delta x$, once x is large.

Fix B large enough that $\sigma(n+1)/(n+1) \leq B$ except for at most δx exceptional $n \leq x$. That this is possible follows from the first moment argument used in the proof of Theorem 1.1 (e.g., we may take $B = 4/\delta$ again). Next, fix T large enough so that with m_2 defined as in Lemma 3.4, we have

$$\frac{\sigma(m_2)}{m_2} \le \exp(\epsilon/B)$$

except for at most δx exceptional $n \leq x$. To see that a suitable choice of T exists, observe that

$$\sum_{n \le x} \log \frac{\sigma(m_2)}{m_2} \le \sum_{n \le x} \sum_{\substack{p|n+1 \ p > T}} \log \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right)$$

$$\le \sum_{n \le x} \sum_{\substack{p|n+1 \ p > T}} \frac{1}{p-1} \le 2x \sum_{p > T} \frac{1}{p(p-1)} < \frac{2x}{T}.$$

Hence, we may take $T = \lceil 2B/(\delta \epsilon) \rceil$.

For large x, we have that n is composite (so that M_1 is defined) and that $m_1 = M_1$, except for at most δx values of $n \leq x$. This follows from Lemma 3.4 and the fact that the primes have density 0.

If n is not in any of the exceptional classes defined above, then

$$\frac{\sigma(s^{-}(n))}{s^{-}(n)} = \frac{\sigma(M_1 M_2)}{M_1 M_2} \ge \frac{\sigma(M_1)}{M_1} = \frac{\sigma(m_1)}{m_1} = \frac{\sigma(n+1)/(n+1)}{\sigma(m_2)/m_2} \\
\ge \frac{\sigma(n+1)}{n+1} \exp\left(-\frac{\epsilon}{B}\right) > \frac{\sigma(n+1)}{n+1} \left(1 - \frac{\epsilon}{B}\right) \ge \frac{\sigma(n+1)}{n+1} - \epsilon,$$

which is the desired lower bound. Note that at most $3\delta x$ values of $n \leq x$ are exceptional, as claimed.

Proof of the upper bound half of Proposition 2.1. We may suppose that $0 < \epsilon < 1$. Let $\delta > 0$ be given. Fix $\eta \in (0,1)$ so small that the number of $n \le x$ which are either prime or which fail to satisfy

$$P(n) > x^{\eta}$$
 and $P(n)^2 \nmid n$ (3.1)

is smaller than δx , once x is large. The existence of such an η follows either from Brun's sieve or well-known work of Dickman on smooth numbers. Next, using the first moment argument from the proof of Theorem 1.1, choose a fixed number $B \geq 1$ so that all but at most δx of the numbers $n \leq x$ satisfy

$$\frac{\sigma(n+1)}{n+1} \le B. \tag{3.2}$$

We fix rational numbers α_1 and α_2 satisfying

$$0 < \alpha_1 \le \frac{\epsilon}{4B}, \quad 0 < \alpha_2 \le \frac{\alpha_1 \eta}{12}.$$

Finally, we fix a natural number T which is sufficiently large, depending only on the α_i , δ , η , and B. The precise meaning of "sufficiently large" will be specified in the course of the proof.

Suppose that the right-hand inequality (2.1) fails for n, where we assume that n is composite and satisfies both (3.1) and (3.2). Write

$$n+1 = m_1 m_2$$
 and $s^-(n) = M_1 M_2$,

where $P(m_1M_1) \leq T$ and every prime dividing m_2M_2 exceeds T. By Lemma 3.4, we can assume $m_1 = M_1$, excluding at most δx values of $n \leq x$. Thus,

$$\frac{\sigma(M_2)/M_2}{\sigma(m_2)/m_2} = \frac{\sigma(s^-(n))/s^-(n)}{\sigma(n+1)/(n+1)} \ge 1 + \frac{\epsilon}{\sigma(n+1)/(n+1)} \ge 1 + \frac{\epsilon}{B} \ge 1 + 4\alpha_1.$$

In particular,

$$\frac{\sigma(M_2)}{M_2} \ge 1 + 4\alpha_1. \tag{3.3}$$

We can assume our choice of T was such that, apart from at most δx exceptional $n \leq x$, we have

$$\frac{\sigma(m_2)}{m_2} \le 1 + \alpha_1. \tag{3.4}$$

Indeed, the argument for the analogous claim in the proof of the lower-bound shows it is sufficient that $T > 2(\delta \log(1+\alpha_1))^{-1}$. Henceforth, we assume (3.4). Now write $M_2 = M_3 M_4$, where every prime dividing M_3 divides n+1, while M_4 is coprime to n+1. Note that every prime dividing M_3 divides m_2 . Hence,

$$\frac{\sigma(M_3)}{M_3} \le \prod_{p|M_3} \left(1 + \frac{1}{p-1} \right) = \left(\prod_{p|M_3} \frac{p^2}{p^2 - 1} \right) \prod_{q|M_3} \frac{q+1}{q} \\
\le \left(\prod_{p>T} \frac{p^2}{p^2 - 1} \right) \frac{\sigma(m_2)}{m_2} \le 1 + 2\alpha_1,$$

using (3.4) and assuming an initial appropriate choice of T. So from (3.3),

$$\frac{\sigma(M_4)}{M_4} = \frac{\sigma(M_2)/M_2}{\sigma(M_3)/M_3} \ge \frac{1+4\alpha_1}{1+2\alpha_1} \ge 1+\alpha_1.$$

It follows that there is an α_1 -primitive number a_1 dividing M_4 , where each prime dividing a_1 exceeds T.

We claim next that there is a squarefree, α_2 -primitive number a_2 dividing a_1 with

$$a_2 \leq a_1^{\eta/2}$$
.

List the distinct prime factors of a_1 in increasing order, say $T < q_1 < q_2 < \cdots < q_t$, and put $a_0 := q_1 q_2 \cdots q_{|\eta t/2|}$, so that

$$a_0 \le (q_1 \cdots q_t)^{\lfloor \eta t/2 \rfloor/t} \le a_1^{\eta/2}.$$

We will show that $\sigma(a_0)/a_0 \ge 1 + \alpha_2$; then we can take a_2 as any α_2 -primitive divisor of a_0 . First, observe that $\lfloor \eta t/2 \rfloor \ge \eta t/3$. Otherwise, $t < 6/\eta$ and

$$1 + \alpha_1 \le \frac{\sigma(a_1)}{a_1} \le \prod_{1 \le i \le t} \left(1 + \frac{1}{q_i - 1} \right) \le \left(1 + \frac{1}{T} \right)^{6/\eta} \le \exp\left(\frac{6}{\eta T} \right),$$

which is false, assuming a suitable initial choice of T. It follows that

$$\frac{\sigma(a_0)}{a_0} = \prod_{1 \le i \le |\eta t/2|} \frac{q_i + 1}{q_i} \ge \left(\prod_{p > T} \frac{p^2 - 1}{p^2} \right) \prod_{1 \le i \le |\eta t/2|} \frac{q_i}{q_i - 1},$$

while

$$\begin{split} \prod_{1 \leq i \leq \lfloor \eta t/2 \rfloor} \frac{q_i}{q_i - 1} &\geq \left(\prod_{1 \leq i \leq t} \frac{q_i}{q_i - 1} \right)^{\lfloor \eta t/2 \rfloor/t} \\ &\geq \left(\frac{\sigma(a_1)}{a_1} \right)^{\eta/3} \geq (1 + \alpha_1)^{\eta/3} \geq 1 + \frac{\alpha_1 \eta}{6}. \end{split}$$

Thus,

$$\frac{\sigma(a_0)}{a_0} \ge \left(\prod_{p>T} \frac{p^2 - 1}{p^2}\right) \left(1 + \frac{\alpha_1 \eta}{6}\right) \ge 1 + \frac{\alpha_1 \eta}{12} \ge 1 + \alpha_2,$$

again assuming a suitable choice of T to justify the middle inequality.

Observe that a_2 satisfies

$$a_2 \le a_1^{\eta/2} \le (s^-(n))^{\eta/2} < x^{2\eta/3}$$

for large x. Write n = Pr, where P = P(n). Then r > 1 (since n is composite) and also, by (3.1),

$$r \le x/P \le x^{1-\eta}$$
.

Moreover, a_2 divides

$$s^{-}(Pr) = P(\sigma(r) - r) + \sigma(r) - 1,$$

and so

$$P(\sigma(r) - r) \equiv 1 - \sigma(r) \pmod{a_2}$$
.

We view this as a linear congruence condition on P modulo a_2 . If there are any solutions, then $D := \gcd(\sigma(r) - r, a_2) \mid 1 - \sigma(r)$, and in this case there are exactly D solutions modulo a_2 . Note that if there are any solutions, then $D \mid r - 1$. Also note that D is squarefree, since a_2 is squarefree.

We now sum over pairs a_2 and r, for each pair counting the number of possible values of $P \leq x/r$. By the Brun–Titchmarsh inequality and the preceding remarks about D, we have that the number of possible values of n = Pr is

$$\ll \sum_{\substack{a_2 \text{ } \alpha_2\text{-primitive } 1 < r \leq x^{1-\eta} \\ T < a_2 \leq x^{2\eta/3}}} \sum_{\substack{D \mid (a_2,r-1) \\ D \text{ squarefree}}} D \frac{x/r}{\varphi(a_2) \log (x/(a_2r))} \\
\ll \frac{x}{\eta \log x} \sum_{\substack{a_2 \text{ } \alpha_2\text{-primitive } \\ T < a_2 \leq x^{\eta/3}}} \frac{1}{\varphi(a_2)} \sum_{\substack{D \mid a_2 \\ D \text{ squarefree}}} D \sum_{\substack{1 < r \leq x^{1-\eta} \\ D \mid r-1}}} \frac{1}{r}.$$

The sum on r is $\ll \frac{1}{D} \log x$. Moreover, since a_2 is α_2 -primitive, we have

$$\frac{a_2}{\varphi(a_2)} \ll \frac{\sigma(a_2)}{a_2} \le \frac{3}{2}(1+\alpha_2) \ll 1,$$

and so $\varphi(a_2) \gg a_2$. Thus, the remaining sum is

$$\ll \frac{x}{\eta} \sum_{\substack{a_2 \text{ α_2-primitive} \\ T < a_2 \le x^{2\eta/3}}} \frac{1}{a_2} \sum_{\substack{D \mid a_2 \\ D \text{ squarefree}}} 1 \ll \frac{x}{\eta} \sum_{\substack{a_2 \text{ α_2-primitive} \\ a_2 \ge T}} \frac{2^{\omega(a_2)}}{a_2}.$$

But if T was chosen sufficiently large, then this last sum is bounded by $\eta \delta x$ (by Lemma 3.3), leading to an upper bound of $\ll \delta x$. Since the number of exceptional n appearing earlier in the argument is also $\ll \delta x$, and $\delta > 0$ was arbitrary, the proof is complete.

4. Proof of Proposition 2.2

We start by quoting two lemmas. The first was developed by Erdős [3] to estimate the decay of the distribution function of $\sigma(n)/n$ near infinity. We state the lemma in a slightly stronger form which is supported by his proof.

Lemma 4.1. For x > 0, the number of positive integers $n \le x$ with $\sigma(n)/n > y$ is

$$\leq x/\exp(\exp((e^{-\gamma} + o(1))y)), \quad as \ y \to \infty,$$

uniformly in x, where γ is the Euler-Mascheroni constant.

The next lemma, also due to Erdős [6], supplies an estimate for how often $\sigma(n)/n$ lands in a short interval; note the uniformity in the parameter a.

Lemma 4.2. Let $x > t \ge 2$ and let $a \in \mathbb{R}$. The number of $n \le x$ with $a < \sigma(n)/n < a + 1/t$ is $\ll x/\log t$.

The next two lemmas develop the philosophy that the rough size of $\sigma(n)/n$ is usually determined by the small prime factors of n. Put $h(n) := \sum_{d|n} \frac{1}{d}$, so that $h(n) = \sigma(n)/n$. For each natural number T, set $h_T(n) := \sum_{d|n,P(d) \leq T} \frac{1}{d}$. The next lemma says that h and h_T are usually close once T is large.

Lemma 4.3. Let $\epsilon > 0$ and $x \ge 1$. The number of $n \le x$ with $h(n) - h_T(n) > \epsilon$ is $\ll x/(T\epsilon)$.

Proof. Again, we use a first moment argument. We have

$$\sum_{n \le x} (h(n) - h_T(n)) \le \sum_{n \le x} \sum_{\substack{d | n \\ d > T}} \frac{1}{d} \le x \sum_{d > T} \frac{1}{d^2} \ll x/T,$$

from which the result is immediate.

Lemma 4.4. Let T be a natural number. Let S be any set of real numbers, and define $\mathscr{E}(S)$ as the set of T-smooth numbers e for which $h_T(e) - 1 \in S$. Then for $n \in \mathbb{N}$, we have $h_T(n) - 1 \in S$ precisely when n has T-smooth part e for some $e \in \mathscr{E}(S)$. Moreover, the density of such n exists and is given by

$$\sum_{e \in \mathscr{E}(S)} \frac{1}{e} \prod_{p \le T} (1 - 1/p). \tag{4.1}$$

Proof. It is clear that $h_T(n)$ depends only on the T-smooth part of n. So it suffices to prove that the density of n with T-smooth part in $\mathcal{E}(S)$ is given by (4.1).

For each set of T-smooth numbers \mathscr{E} , let $\overline{d}_{\mathscr{E}}$ and $\underline{d}_{\mathscr{E}}$ denote the upper and lower densities of the set of n whose T-smooth part belongs to \mathscr{E} . If $\overline{d}_{\mathscr{E}} = \underline{d}_{\mathscr{E}}$, then the density of this set exists; denote it by $d_{\mathscr{E}}$.

For each T-smooth number e, a natural number n has T-smooth part e precisely when e divides n and n/e is coprime to $\prod_{p \leq T} p$, so that the set of such n has density $\frac{1}{e} \prod_{p \leq T} (1-1/p)$. Since density is finitely additive, it follows that for any finite subset $\mathscr{E} \subset \mathscr{E}(S)$,

$$d_{\mathscr{E}} = \sum_{e \in \mathscr{E}} \frac{1}{e} \prod_{p \in T} (1 - 1/p).$$

Now let x > 0, and put $\mathscr{E}(S) = \mathscr{E}_1 \cup \mathscr{E}_2$, where $\mathscr{E}_1 = \mathscr{E}(S) \cap [1, x]$ and $\mathscr{E}_2 = \mathscr{E}(S) \setminus \mathscr{E}_1$. Then $\underline{d}_{\mathscr{E}(S)} \geq \underline{d}_{\mathscr{E}_1}$ for all x, and so letting $x \to \infty$, we find that $\underline{d}_{\mathscr{E}(S)}$ is bounded below by (4.1). On the other hand, $\overline{d}_{\mathscr{E}(S)} \leq \overline{d}_{\mathscr{E}_1} + \overline{d}_{\mathscr{E}_2}$. But $\overline{d}_{\mathscr{E}_1}$ is bounded above by (4.1) for all x, while $\overline{d}_{\mathscr{E}_2} \leq \sum_{\substack{e \text{ T-smooth } e>x \\ e>x}} e^{-1} = o(1)$, as $x \to \infty$. Thus, letting $x \to \infty$, we obtain that $\overline{d}_{\mathscr{E}(S)}$ is bounded above by (4.1).

Proof of Proposition 2.2. Let $\delta > 0$ be sufficiently small. We will show that for

$$\epsilon < \exp(-4/\delta),\tag{4.2}$$

the number of $n \leq x$ satisfying (2.2) is $\ll \delta(\log\log\frac{1}{\delta})x$, for large x. Note that since $\delta\log\log\frac{1}{\delta}\to 0$ as $\delta\downarrow 0$, this proves the proposition. In what follows, we fix δ and ϵ , always assuming that δ is small and that $\epsilon>0$ satisfies (4.2).

Put $T := \epsilon^{-1} \delta^{-1}$. We can assume that both n and n+1 have T-smooth part $\leq \log x$. Indeed, for large x, this excludes a set of n size $\leq \delta x$, since

$$\sum_{\substack{e \text{ T-smooth} \\ e > \log x}} \frac{1}{e} = o(1),$$

as $x \to \infty$.

Let I be the closed interval defined by $I := \left[\exp(-1/\delta), 2\log\log\frac{1}{\delta}\right]$. For large x, Lemmas 4.1 and 4.2 imply that all but $\ll \delta x$ values of $n \le x$ are such that $h(n) - 1 \in I$ and $h(n+1) - 1 \in I$. By Lemma 4.3, excluding $\ll \delta x$ additional values of $n \le x$, we can assume that $h_T(n) \ge h(n) - \epsilon$ and $h_T(n+1) \ge h(n+1) - \epsilon$. Recalling the upper bound (4.2) on ϵ , we see that both $h_T(n) - 1$ and $h_T(n+1) - 1$ belong to the interval J, where

$$J := \left[\frac{1}{2}\exp(-1/\delta), 2\log\log\frac{1}{\delta}\right].$$

Moreover (always assuming δ sufficiently small),

$$(h_T(n) - 1)(h_T(n+1) - 1) \ge ((h(n) - 1) - \epsilon)((h(n+1) - 1) - \epsilon) \ge 1 - 5\epsilon \log \log \frac{1}{\delta}, (4.3)$$

and

$$(h_T(n) - 1)(h_T(n+1) - 1) \le (h(n) - 1)(h(n+1) - 1) \le 1 + \epsilon. \tag{4.4}$$

Write J as the disjoint union of $N := \lceil 1/\epsilon \rceil$ consecutive intervals $J_0, J_1, \ldots, J_{N-1}$, each of length 1/N. We estimate, for each $0 \le i < N$, the number of n for which $h_T(n) - 1$ belongs to J_i . Fix $0 \le i < N$. Since $h_T(n) - 1$ belongs to J_i , (4.3) and (4.4) show that

$$h_T(n+1) - 1 \in \left[\frac{1 - 5\epsilon \log \log \frac{1}{\delta}}{x_{i+1}}, \frac{1 + \epsilon}{x_i}\right] =: J_i',$$
 (4.5)

where x_i and x_{i+1} are the left and right endpoints of J_i , respectively. So in the notation of Lemma 4.4, n has T-smooth part $e \in \mathcal{E}(J_i)$ and n+1 has T-smooth part $e' \in \mathcal{E}(J_i')$. Clearly, $\gcd(e,e')=1$. That n and n+1 have T-smooth parts e and e', respectively, amounts to a congruence condition on n modulo $M:=ee'\prod_{p\leq T}p$, where the number of allowable residue classes is $\prod_{p|ee'}(p-1)\prod_{p\nmid ee',p\leq T}(p-2)$. For large x,

$$M \le (\log x)^2 \prod_{p \le T} p < (\log x)^3 \le x.$$

(Recall that $e, e' \leq \log x$.) Thus, the Chinese remainder theorem shows that the number of such $n \leq x$ is

$$\ll \frac{x}{ee'} \prod_{p|ee'} (1 - 1/p) \prod_{\substack{p \nmid ee' \\ p \le T}} (1 - 2/p) \\
\leq x \left(\frac{1}{e} \prod_{p < T} (1 - 1/p) \right) \left(\frac{1}{e'} \prod_{p < T} (1 - 1/p) \right) \prod_{\substack{p|ee' \\ p \in T}} (1 - 1/p)^{-1}.$$

But

$$\prod_{p|ee'} (1 - 1/p)^{-1} = \frac{e}{\varphi(e)} \frac{e'}{\varphi(e')} \ll \frac{\sigma(e)}{e} \frac{\sigma(e')}{e'} \ll \left(\log\log\frac{1}{\delta}\right)^2,$$

since h(e) - 1, $h(e') - 1 \le 2 \log \log \frac{1}{\delta}$. Summing over $e \in \mathcal{E}(J_i)$ and $e' \in \mathcal{E}(J_i')$, we find that the number of n under consideration is

$$\ll x \left(\log\log\frac{1}{\delta}\right)^2 \left(\sum_{e\in\mathscr{E}(J_i)}\frac{1}{e}\prod_{p\leq T}(1-1/p)\right) \left(\sum_{e'\in\mathscr{E}(J_i')}\frac{1}{e'}\prod_{p\leq T}(1-1/p)\right).$$

Now sum over $0 \le i < N$. We obtain that the number of remaining n satisfying (2.2) is $\ll Lx(\log\log\frac{1}{\delta})^2$, where

$$\begin{split} L := \sup_{0 \leq i < N} \left\{ \sum_{e' \in \mathscr{E}(J_i')} \frac{1}{e'} \prod_{p \leq T} (1 - 1/p) \right\} \left(\sum_{0 \leq i < N} \left\{ \sum_{e \in \mathscr{E}(J_i)} \frac{1}{e} \prod_{p \leq T} (1 - 1/p) \right\} \right) \\ &\leq \sup_{0 \leq i < N} \left\{ \sum_{e' \in \mathscr{E}(J_i')} \frac{1}{e'} \prod_{p \leq T} (1 - 1/p) \right\}; \end{split}$$

we use here that the J_i are disjoint, so that

$$\sum_{0 \le i < N} \sum_{e \in \mathscr{E}(J_i)} \frac{1}{e} \le \sum_{e \text{ T-smooth}} \frac{1}{e} = \prod_{p \le T} (1 - 1/p)^{-1}.$$

The proof will be completed by showing that $L \ll \delta$. It is enough to argue that each sum

$$\sum_{e' \in \mathscr{E}(J_i')} \frac{1}{e'} \prod_{p \le T} (1 - 1/p)$$

is $\ll \delta$, uniformly for $0 \le i < N$. By Lemma 4.4, this sum describes the density of those natural numbers m for which $h_T(m) - 1 \in J_i'$. We split these m into two classes, according to whether $h(m) - h_T(m) > \epsilon$ or not. The set of m in the former class has upper density $\ll \delta$, by Lemma 4.3. Suppose now that h(m) belongs to the second class. From the expression (4.5) defining J_i' and a short computation, we see that $h_T(m)$ is trapped within a specific interval of length

$$\ll \exp(2/\delta) \left(\log\log\frac{1}{\delta}\right)^2 \epsilon \ll \exp(3/\delta)\epsilon.$$

Since m belongs to the second class, h(m) is also trapped within a specific interval of length $\ll \exp(3/\delta)\epsilon$. By (4.2), $\exp(3/\delta)\epsilon \le \exp(-1/\delta)$, and so by Lemma 4.2, the upper density of the set of those m in the second class is

$$\ll \frac{1}{\delta^{-1} + O(1)} \ll \delta,$$

assuming again that δ is sufficiently small.

Remark. Our argument also shows that the set of augmented amicable numbers has density zero (see sequences A007992, A015630). Here an augmented amicable number is an integer which generates a 2-cycle under iteration of the function $s^+(n) := 1 + \sum_{d|n, d < n} d$, e.g., n = 6160.

Sequences discussed. A000396, A005276, A007992, A015630, A063990, A126160

5. Acknowledgements

The author thanks the National Science Foundation for their generous support (under award DMS-0802970).

References

- [1] W. E. Beck and R. M. Najar, More reduced amicable pairs, Fibonacci Quart. 15 (1977), 331–332.
- [2] _____, Reduced and augmented amicable pairs to 10⁸, Fibonacci Quart. **31** (1993), 295–298.
- [3] P. Erdős, Some remarks about additive and multiplicative functions, Bull. Amer. Math. Soc. **52** (1946), 527–537.
- [4] _____, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111.
- [5] _____, Remarks on number theory. I. On primitive α -abundant numbers, Acta Arith. 5 (1958), 25–33 (1959).
- [6] _____, On the distribution of numbers of the form $\sigma(n)/n$ and on some related questions, Pacific J. Math. **52** (1974), 59–65.
- [7] P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math., vol. 85, Birkhäuser, Boston, 1990, pp. 165–204.
- [8] M. Garcia, Números casi amigos y casi sociables, Revista Annal (1968).
- [9] R. K. Guy, *Unsolved problems in number theory*, third ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004.
- [10] P. Hagis, Jr. and G. Lord, Quasi-amicable numbers, Math. Comp. 31 (1977), 608–611.
- [11] M. Kobayashi, P. Pollack, and C. Pomerance, On the distribution of sociable numbers, J. Number Theory 129 (2009), 1990–2009.
- [12] M. Lal and A. Forbes, A note on Chowla's function, Math. Comp. 25 (1971), 923–925.
- [13] H. Mishima, Table of quasi-amicable pairs under 10¹⁰, online at http://www.asahi-net.or.jp/~kc2h-msm/mathland/math09/math09t2.htm.
- [14] J.M. Pedersen, Tables of aliquot cycles, online at http://amicable.homepage.dk/tables.htm.
- [15] P. Pollack, Powerful amicable numbers, Collog. Math. 122 (2011), 103–123.
- [16] C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217–222.

University of Illinois at Urbana-Champaign, Department of Mathematics, 1409 West Green Street, Urbana, Illinois 61801, USA

E-mail address: pppollac@illinois.edu