Etude des effets des pésticides dans la production des vins de table Analyse empirique des marchés

A. Blanc, N. Gusarov, S. Picon

Université Grenoble Alpes

11/12/2019

Etude des effets des pésticides dans la production des vins de table

Introduction

Plan de la présentation

- Présentation de la problématique
- Présentation des données
- Modélisation
- Les résultats

Le problème des pesticides

- Présentation du problème des pésticides
- Etat actuel
- Comment combattre

Le marché du vin français

- ► Le marché commun
- Utilisation des pésticides
- Heterogénéité
- Pourquoi vins de table

Le Modèle théorique

- Le rôle des pesticides dans la production du vin
- Le rôle de la demande sur la production et l'offre en général
- La formalisation et les équations

Les données

- Dimentions :
 - Départements
 - Années
- Les variables :
 - Pésticides (quantités)
 - Vins (quantités produits, prix)
 - Variables de controle (revenus, surface cultivé)

Les statistiques déscriptives

- Between and within variance par variable
- Bivariate plots with support regressions
- Covariance analysis
- Fixed vs Random effects

Etude de la variance

Table 1: Variance study

	Mean	Overall	Between	Within
Index prix	0.175	0.568	0.368	0.434
Index pesticides	0.170	0.333	0.239	0.234
Surface	4.892	1.986	1.955	0.410
Revenus	9.891	0.061	0.061	0.011
Temps	3	1.416	0	1.416

Visualisatoin des interdependances

```
## `geom_smooth()` using method = 'loess' and formula 'y ~

## Warning in simpleLoess(y, x, w, span, degree = degree, ]

## parametric, : span too small. fewer data values than deg

## Warning in simpleLoess(y, x, w, span, degree = degree, ]

## parametric, : pseudoinverse used at 9.2573
```

parametric, : neighborhood radius 0.18005
Warning in simpleLoess(y, x, w, span, degree = degree,]
parametric, : reciprocal condition number 0

Warning in simpleLoess(y, x, w, span, degree = degree,

parametric, : There are other near singularities as well
Warning in simpleLoess(y, x, w, span, degree = degree,)

Warning in simpleLoess(y, x, w, span, degree = degree,)

Visualisatoin des interdependances

```
## `geom_smooth()` using method = 'loess' and formula 'y ~

## Warning in simpleLoess(y, x, w, span, degree = degree, ]

## parametric, : span too small. fewer data values than deg

## Warning in simpleLoess(y, x, w, span, degree = degree, ]

## parametric, : pseudoinverse used at 9.2573
```

parametric, : neighborhood radius 0.18005
Warning in simpleLoess(y, x, w, span, degree = degree,]
parametric, : reciprocal condition number 0

Warning in simpleLoess(y, x, w, span, degree = degree,

parametric, : There are other near singularities as well
Warning in simpleLoess(y, x, w, span, degree = degree,)

Warning in simpleLoess(y, x, w, span, degree = degree,)

Random and fixed effects testing

▶ Poolability tests (tested versus pooled model)

Table 2: Effects testing, p-values

	Random	Fixed
Index prix	0.535	0.533
Index pesticides	0.485	0.451
Surface	0	0.0001
Revenus	0.297	0.247

Type of fixed effect testing

▶ Type of fixed effects testing

Table 3: Effects testing, p-values

	Individual	Time	Two-ways
Index prix	0	0.169	0
Index pesticides	0	0.222	0
Surface	0	0.030	0
Revenus	0	0.248	0

Correlation

Table 4: Overall correlation

	Quantité du vin	IP	Surface	Revenus	Index pésticides	Temps
Quantité du vin	1	0.154	0.956	-0.027	-0.078	-0.036
IP	0.154	1	0.045	-0.037	-0.127	0.043
Surface	0.956	0.045	1	-0.057	-0.060	-0.064
Revenus	-0.027	-0.037	-0.057	1	-0.052	0.119
Index pésticides	-0.078	-0.127	-0.060	-0.052	1	0.291
Temps	-0.036	0.043	-0.064	0.119	0.291	1

Modèlisation

- Explication de la méthode utilisée
 - Panel data
 - ► AIDS model
- Limites du modèle

Résultats d'estimation

- Les coefficients estimés avec leurs variance
- Etude des erreurs
- Vérification des hypothèses (5 hypothèses) :
 - La moyenne nulle des herreurs
 - Homoscedacité
 - Autocorrélation
 - Spécification du modèle
 - ▶ ... (à voir)

Conclusions

- Le rôle des pésticides
- Le marché du vin
- Validité
- Limitations
- Ouverture

Bibliographie

- ► Inclure seulement les articles importants
- ► Faire des réferences et mentionner ces articles dans la partie théorique