——— MODULE KnightsKnaves —

Constant Native

CONSTANT Knight, Knave

ASSUME $KnightOrKnave \stackrel{\triangle}{=} Knight \cup Knave = Native \land Knight \cap Knave = \{\}$

 $\begin{array}{ccc} \mathit{Lying}(p) & \stackrel{\triangle}{=} & p \in \mathit{Knave} \\ \mathit{Truthful}(p) & \stackrel{\triangle}{=} & p \in \mathit{Knight} \end{array}$

 $p :> statement \stackrel{\triangle}{=} Truthful(p) \equiv statement p says$

Constants A, B, C

Assume $ABC_Natives \triangleq \{A, B, C\} \subseteq Native$

 $\begin{array}{lll} \text{Assume } B_Says & \stackrel{\triangle}{=} & B :> (A :> (A \in Knave)) \\ \text{Assume } C_Says & \stackrel{\triangle}{=} & C :> Lying(B) \end{array}$

Theorem $C \in \mathit{Knight}$

PROOF BY KnightOrKnave, ABC_Natives, B_Says, C_Says DEF: >, Lying, Truthful