# Solving Feynman-kac and Fokker-Planck equations via Neural Networks

Annie Zhang

#### Deep Backward SDE

#### Deep Galerkin Method

#### Deep Galerkin Method















| Equation      | Method        | Model                                | Input Parameters                                       | Output                                                                                                                                  | Training<br>Time |
|---------------|---------------|--------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Feynman-Kac   | Black-Scholes | Deep<br>Backward SDE                 | $S_0$ for fixed $\sigma, K, r$                         | NPV at $t = 0$ $\frac{\partial u}{\partial S}$ (Delta) at $t_1, t_2 \dots t_N$                                                          | ~ 3 min          |
|               | SABR          | Deep<br>Backward SDE                 | $F_0$ , $lpha_0$ for fixed $eta$ , $ u$ , $ ho$ , $ K$ | NPV at ${ m t}=0$ $\dfrac{\partial u}{\partial F}$ (Delta) and $\dfrac{\partial u}{\partial lpha}$ (Vega) at $t_1,t_2t_N$               | ~ 5 min          |
|               | Black-Scholes | Deep <u>Galerkin</u><br>method (DGM) | $t, S, r, \sigma, K$                                   | NPV at any time $t_n$ w.r.t to $S, r, \sigma, K$ . Greeks from derivatives                                                              | ~ 7 min          |
|               | SABR          | Deep <u>Galerkin</u><br>method (DGM) | $t, F, \alpha, \beta, \rho, \nu, K$                    | NPV at any time $t_n$ w.r.t to $F$ , $\alpha$ , $\beta$ , $\rho$ , $\nu$ , $K$ . Greeks from derivatives                                | ~ 10 min         |
| Fokker-Planck | Black-Scholes | Deep <u>Galerkin</u><br>method (DGM) | t, S, r, σ, K                                          | CDF $F_{S_t}(t, S, r, \sigma, S_0)$ .  PDF from $\frac{\partial F_{S_t}}{\partial S_T}$                                                 | ~ 15 min         |
|               | SABR          | Deep <u>Galerkin</u><br>method (DGM) | $t, F, \alpha, \beta, \rho, \nu, K$                    | Joint CDF $G_{F_t,\alpha_t}(t,F,\alpha,eta, ho, u,K,F_0,lpha_0)$ PDF from $rac{\partial^2 G_{F_t,lpha_t}}{\partial F_T\partiallpha_T}$ | ~ 30 min         |





Require grid construction (e.g. finite difference)

Mesh-Free — no need to construct grids, possible to go high dimension

One setting per run - re-solve if  $r,K,\sigma$  change

One model fits multiple market settings (e.g. output option price as a function of (t, S,  $\alpha$ ,  $\rho$ ,  $\beta$ , v, T) in SABR)

Discrete time space - approximate Greeks via finite difference

Continuous function - extract Greeks via automatic differentiation (Autograd in PyTorch).

Compute price only at grid points - interpolation required

Option price at any (t, S) no interpolation required

# Using Neural Network Learning Functions



Neural Network Learning sin(x)

Neural Network Learning Gaussian Surface

1.0 0.8

0.6

#### How Do Neural Networks Learn?



#### **How Training Works:**

- Inputs like (t, S, volatility...) go into the network
- The network predicts a option price
- A loss function compares prediction to true price
- The optimizer adjusts weights to reduce the error
- This process repeats until error is minimized

#### Goal:

 Train the network to map (t, S, volatility...) → Option Price

## Deep BSDE - Black Scholes

We consider the Black-Scholes PDE for a European call option:

$$\frac{\partial u}{\partial t}(t,S) + rS\frac{\partial u}{\partial S}(t,S) + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 u}{\partial S^2}(t,S) = ru(t,S), \quad u(T,S) = (S-K)^+$$

Under the risk-neutral measure  $\mathbb{Q}$ , the forward SDE for the stock price is:

$$dS_t = rS_t dt + \sigma S_t d\widetilde{W}_t, \quad S_0 = s$$

Define the value process:

$$Y_t := u(t, S_t) = \mathbb{E}^{\mathbb{Q}} \left[ e^{-r(T-t)} (S_T - K)^+ \mid \mathcal{F}_t \right]$$

Applying Itô's lemma to  $Y_t = u(t, S_t)$ , we get:

$$dY_t = \left(\frac{\partial u}{\partial t} + rS_t \frac{\partial u}{\partial S} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 u}{\partial S^2}\right) dt + \sigma S_t \frac{\partial u}{\partial S}(t, S_t) d\widetilde{W}_t$$

Since u satisfies the Black-Scholes PDE, we have:

$$dY_t = rY_t dt + \sigma S_t \delta(t, S_t) d\widetilde{W}_t, \quad \text{where } \delta(t, S_t) := \frac{\partial u}{\partial S}(t, S_t)$$

# Deep BSDE - Black Scholes

Discretize the time interval [0, T] into N steps:

$$0 = t_0 < t_1 < \dots < t_N = T, \quad \Delta t = t_{n+1} - t_n$$

Simulate the forward SDE using Euler–Maruyama:

$$S_{n+1} = S_n + rS_n \Delta t + \sigma S_n \Delta W_n, \quad \Delta W_n \sim \mathcal{N}(0, \Delta t)$$

Discretize the BSDE:

$$Y_{n+1} = (1 + r\Delta t) Y_n + \sigma S_n \cdot \delta(t_n, S_n) \cdot \Delta W_n$$

In the Deep BSDE method:

- $Y_0$  is a learnable scalar parameter.
- $\delta(t_n, S_n)$  is predicted by a neural network (MLP).
- The above update is applied recursively from  $t_0$  to  $t_N$ .

At maturity  $t_N = T$ , the terminal condition is:

$$Y_T \approx (S_T - K)^+$$

We define the loss function as the expected squared error at the terminal time:

$$\mathcal{L} = \mathbb{E}\left[\left(Y_T - (S_T - K)^+\right)^2\right]$$



Predicted Deltas match analytical values well across time, especially near the strike, indicating that the model correctly captures the **hedging ratio Delta** at each time step.



- The model learns accurate Deltas at each time step for hedging. (As shown previously)
- These Deltas are used to simulate terminal hedge values.
- We only need to train another MLP at t = 0 to output the correct initial NPV as a function of initial stock price S0, which is the option price we want at t = 0

We consider the SABR stochastic volatility model:

$$\begin{cases} dF_t = \alpha_t F_t^{\beta} dW_t \\ d\alpha_t = \nu \alpha_t dZ_t \\ dW_t dZ_t = \rho dt \end{cases}$$

We define the value function:

$$u(t, F, \alpha) = \mathbb{E}[(F_T - K)^+ \mid F_t = F, \alpha_t = \alpha]$$

Under the risk-neutral measure, the function  $u(t, F, \alpha)$  satisfies the following parabolic PDE:

$$\frac{\partial u}{\partial t} + \frac{1}{2}\alpha^2 F^{2\beta} \frac{\partial^2 u}{\partial F^2} + \rho \nu \alpha^2 F^{\beta} \frac{\partial^2 u}{\partial F \partial \alpha} + \frac{1}{2}\nu^2 \alpha^2 \frac{\partial^2 u}{\partial \alpha^2} = 0$$

with terminal condition:

$$u(T, F, \alpha) = (F - K)^+$$

We apply Itô's lemma to the composite process  $Y_t = u(t, F_t, \alpha_t)$ :

$$du(t, F_t, \alpha_t) = \frac{\partial u}{\partial t} dt + \frac{\partial u}{\partial F} dF_t + \frac{\partial u}{\partial \alpha} d\alpha_t + \frac{1}{2} \frac{\partial^2 u}{\partial F^2} d\langle F \rangle_t + \frac{1}{2} \frac{\partial^2 u}{\partial \alpha^2} d\langle \alpha \rangle_t + \frac{\partial^2 u}{\partial F \partial \alpha} d\langle F, \alpha \rangle_t$$

We compute the quadratic variations:

$$\begin{split} d\langle F\rangle_t &= \alpha_t^2 F_t^{2\beta} \, dt \\ d\langle \alpha\rangle_t &= \nu^2 \alpha_t^2 \, dt \\ d\langle F, \alpha\rangle_t &= \rho \nu \alpha_t^2 F_t^\beta \, dt \end{split}$$

Substitute all components into the Itô expansion:

$$du = \left[ \frac{\partial u}{\partial t} + \frac{1}{2} \alpha_t^2 F_t^{2\beta} \frac{\partial^2 u}{\partial F^2} + \frac{1}{2} \nu^2 \alpha_t^2 \frac{\partial^2 u}{\partial \alpha^2} + \rho \nu \alpha_t^2 F_t^{\beta} \frac{\partial^2 u}{\partial F \partial \alpha} \right] dt$$
$$+ \alpha_t F_t^{\beta} \frac{\partial u}{\partial F} dW_t + \nu \alpha_t \frac{\partial u}{\partial \alpha} dZ_t$$

Now, recall that  $u(t, F, \alpha)$  satisfies the SABR PDE:

$$\frac{\partial u}{\partial t} + \frac{1}{2}\alpha^2 F^{2\beta} \frac{\partial^2 u}{\partial F^2} + \rho \nu \alpha^2 F^{\beta} \frac{\partial^2 u}{\partial F \partial \alpha} + \frac{1}{2}\nu^2 \alpha^2 \frac{\partial^2 u}{\partial \alpha^2} = 0$$

Therefore, the entire drift term (the dt-part) cancels out.

We are left with only the stochastic (martingale) part:

$$du = \alpha_t F_t^{\beta} \frac{\partial u}{\partial F} dW_t + \nu \alpha_t \frac{\partial u}{\partial \alpha} dZ_t$$

Discretize time:  $0 = t_0 < t_1 < \cdots < t_N = T$ 

Euler–Maruyama forward simulation:

$$\begin{cases} F_{t_{n+1}} = F_{t_n} + \alpha_{t_n} F_{t_n}^{\beta} \Delta W_n \\ \alpha_{t_{n+1}} = \alpha_{t_n} + \nu \alpha_{t_n} \Delta Z_n \end{cases}$$

Discretized BSDE:

$$u(t_{n+1}, F_{t_{n+1}}, \alpha_{t_{n+1}}) \approx u(t_n, F_{t_n}, \alpha_{t_n})$$

$$+ \alpha_{t_n} F_{t_n}^{\beta} u_F(t_n, F_{t_n}, \alpha_{t_n}) \Delta W_n + \nu \alpha_{t_n} u_{\alpha}(t_n, F_{t_n}, \alpha_{t_n}) \Delta Z_n$$

We approximate:

- $Y_{t_n} \approx u(t_n, F_{t_n}, \alpha_{t_n})$
- $\delta_F(t_n) \approx u_F(t_n, F_{t_n}, \alpha_{t_n})$  is predicted by a neural network
- $\delta_{\alpha}(t_n) \approx u_{\alpha}(t_n, F_{t_n}, \alpha_{t_n})$  is predicted by a neural network

At each step  $t_n$ , a neural network takes  $(t_n, F_{t_n}, \alpha_{t_n})$  as input and predicts  $\delta_F$  and  $\delta_{\alpha}$ .

#### Terminal Condition and Loss

At t = T, we match the terminal payoff:

$$Y_T \approx u(T, F_T, \alpha_T) \approx (F_T - K)^+$$

Loss function:

$$\mathcal{L} = \mathbb{E}\left[\left(Y_T - (F_T - K)^+\right)^2
ight]$$

The Deep BSDE method learns to approximate gradients  $u_F$ ,  $u_\alpha$ , and recursively predicts  $u(t, F, \alpha)$  backward from maturity using Monte Carlo paths and neural networks.

# Effect of α on SABR Pricing: Deep BSDE vs Analytical



- Deep BSDE captures the pricing surface under different initial volatility α and forward price F.
- When α increases (from 0.05 to 0.1), the curvature around ATM increases.

# Deep Galerkin Method (DGM) - Black Scholes

Consider the Black-Scholes PDE:

$$\frac{\partial u}{\partial t}(t,S) + rS\frac{\partial u}{\partial S}(t,S) + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 u}{\partial S^2}(t,S) = ru(t,S)$$

We have the terminal condition as payoff:

$$u(T,S) = (S - K)^+$$

• With boundary condition when K>>S and K<<S:

$$egin{cases} u(t,S)pprox S-Ke^{-r(T-t)}, & ext{as }S o\infty \ u(t,S)pprox 0, & ext{as }S o0 \end{cases}$$

# Deep Galerkin Method (DGM) - Black Scholes

- Given the condition for BS PDE, we could construct the loss function with 3 components as follow:
- PDE Loss:

$$\mathcal{L}_{\text{PDE}} = \mathbb{E}_{(t,S) \sim \text{interior}} \left[ \left( u_t + rSu_S + \frac{1}{2}\sigma^2 S^2 u_{SS} - ru \right)^2 \right]$$

Terminal Loss:

$$\mathcal{L}_{\text{Terminal}} = \mathbb{E}_{S \sim \text{terminal}} \left[ \left( u(T, S) - (S - K)^+ \right)^2 \right]$$

Boundary Loss:

$$\mathcal{L}_{ ext{Boundary}} = \mathbb{E}\left[\left(u(t, S=0)^2\right) + \left(u(t, S=S_{ ext{max}}) - \left(S_{ ext{max}} - Ke^{-r(T-t)}\right)\right)^2\right]$$

# Deep Galerkin Method (DGM) - Black Scholes



# DGM – Mesh-Free Sampling Space



- PDE points (blue): uniformly sampled inside the domain to minimize the PDE residual.
- Terminal points (red): enforce the terminal condition at t = T
- Boundary points (green): enforce boundary conditions u(t, S\_min )→0 and u(t,S\_max)
  - This approach allows solving high-dimensional PDEs without **requiring** grid discretization.

DGM Predicted Solution Surface







- DGM successfully approximates the solution surface of the Black-Scholes PDE.
- Neural networks provide a smooth and differentiable function, usable for pricing and Greeks extraction.



- DGM predictions are compared with Black-Scholes analytical solutions at multiple time steps.
- Across all snapshots, the predicted curves match the analytical ones almost perfectly.
- This indicates that the DGM model learns the solution accurately not just in space S, but also consistently
  over time.



- DGM provides option price as a continuous and differentiable function to extract Delta
- DGM model not only fits the option price surface, but also captures its gradient —
  hedging ratio across time.

#### Generalized DGM - BS

- **Current Issue** In practice, option pricing parameters like r, K, σ often vary across products or market conditions. Traditional DGM models require retraining when any parameter changes, which is computationally expensive.
- Solution Treat r, K, σ as the the input features for DGM learn a family of solution u(t, S, K, r, σ). This enables amortized inference one model works for many settings, saving time during deployment.



- Generalized DGM accurately predicts option prices under varying parameters.
- One model, many markets achieving amortized inference and saving retraining time.

## DGM - SABR

Consider the follow SABR PDE:

$$\frac{\partial u}{\partial t} + \frac{1}{2}\alpha^2 F^{2\beta} \frac{\partial^2 u}{\partial F^2} + \rho \nu \alpha^2 F^{\beta} \frac{\partial^2 u}{\partial F \partial \alpha} + \frac{1}{2}\nu^2 \alpha^2 \frac{\partial^2 u}{\partial \alpha^2} = 0$$

With terminal condition:

$$u(T, F, \alpha) = (F - K)^{+}$$

And boundary condition:

$$egin{cases} u(t,F,lpha)pprox F-K, & ext{as }F o\infty \ u(t,F,lpha)pprox 0, & ext{as }F o0 \end{cases}$$

## DGM - SABR

PDE Loss:

$$ext{Loss}_{ ext{PDE}} = \mathbb{E}_{(t,F,lpha)\sim ext{interior}} \left[ \left( u_t + rac{1}{2} lpha^2 F^{2eta} u_{FF} + 
ho 
u lpha^2 F^eta u_{Flpha} + rac{1}{2} 
u^2 lpha^2 u_{lphalpha} 
ight)^2 
ight]$$

Terminal Loss:

$$\operatorname{Loss}_{\operatorname{Terminal}} = \mathbb{E}_{F \sim \operatorname{terminal}} \left[ \left( u(T, F, lpha) - (F - K)^+ 
ight)^2 
ight]$$

Boundary Loss:

$$ext{Loss}_{ ext{Boundary}} = \mathbb{E}\left[u(t, F = 0, lpha)^2
ight] + \mathbb{E}\left[\left(u(t, F = F_{ ext{max}}, lpha) - (F_{ ext{max}} - K)^+
ight)^2
ight]$$

## Generalized DGM - SABR

• Similar to Black-Scholes, we can fitted neural network to learn a 7D solution space that maps the all the input parameters,  $t,F,\alpha,\beta,v,\rho,K$ , to the solution of SABR model  $u\theta$  ( $t,F,\alpha,\beta,v,\rho,K$ )  $\approx$  SABR( $t,F,\alpha,\beta,v,\rho,K$ )





- DGM accurately matches Hagan's SABR Normal pricing under different market conditions.
- Left: linear payoff structure (ATM), Right: sharp curvature (deep OTM).
- DGM can handle varying SABR dynamics and nonlinear payoffs robustly.



- DGM matches Hagan Normal approximation across time
- One model handles time + parameter variation without retraining

#### DGM - Fokker Planck Core Trick

Consider the forward PDE with delta function as the initial condition:

$$\frac{\partial p}{\partial t} = \cdots, \quad p(0, y) = \delta(y - x)$$

• **Delta function is hard** so we train the neural network to approximate the Cumulative Density Function (CDF) from backward Kolmogorov equation of the forward PDE as follow:

$$C(t,x;T,y) = \mathbb{P}(X_T \leq y \mid X_t = x) = \int_{-\infty}^y p(t,x;T,z) dz$$

With terminal condition:

$$C(T,x;T,y)=1_{x\leq y}$$

Get the Transition Probability Densities Function (TPDF) by taking the derivatives:

$$p(t,x;T,y) = rac{\partial C(t,x;T,y)}{\partial y}$$

# DGM Fokker Planck - Geometric Brownian Motion (BS)

Learning Objective:

$$u(t,S,\sigma,r,S_T) = \mathbb{P}(S_T \leq S_T^{( ext{target})} \mid S_t = S)$$

Consider the Backward Kolmogorov Equation:

$$rac{\partial u}{\partial t} + rac{1}{2}\sigma^2 S^2 rac{\partial^2 u}{\partial S^2} + r S rac{\partial u}{\partial S} = 0$$

Terminal Condition:

$$u(T,S,\sigma,r,S_T)=1_{S\leq S_T}$$

Get the TPDF by taking the derivatives w.r.t to S:

$$p(t,S;\sigma,r,S_T) = rac{\partial u}{\partial S_T}$$

#### Benchmark: DGM Recovers Accurate Distributions Across Time









- Learns CDF directly; obtains PDF via differentiation
- Matches analytical solutions at both t = 0.080 and t = 1.175
- Robust across time: handles sharp peaks and smoothed tails
- Captures full market uncertainty beyond simple pricing

# DGM Recovers the Joint Density p(t, S) Over Time

DGM-BS Fokker Planck ( $\sigma$ =0.3, S0=10.0)



Analytical GBM Density ( $\sigma$ =0.3, S0=10.0)



- DGM solution (left) vs. Analytical GBM (right)
- Accurately captures the full evolution of p(t, S)
- Matches surface shape, peak dynamics, and smoothness

## DGM Fokker Planck - SABR

Learning Objective:

$$u(t, F, lpha, 
ho, eta, 
u, F_T, lpha_T) = \mathbb{P}(F_T \leq F_T^{ ext{(target)}}, \, lpha_T \leq lpha_T^{ ext{(target)}} \mid F_t = F, \, lpha_t = lpha)$$

Consider the Backward Kolmogorov Equation for SABR:

$$rac{\partial u}{\partial t} + rac{1}{2} lpha^2 F^{2eta} rac{\partial^2 u}{\partial F^2} + rac{1}{2} 
u^2 lpha^2 rac{\partial^2 u}{\partial lpha^2} + 
ho 
u lpha^2 F^eta rac{\partial^2 u}{\partial F \partial lpha} = 0$$

Terminal Condition:

$$u(T,F,lpha,
ho,eta,
u,F_T,lpha_T)=1_{F_T>F}\cdot 1_{lpha_T>lpha}$$

Get the TPDF by taking the derivatives w.r.t. F and a:

$$p(t,F,lpha;F_T,lpha_T,
ho,eta,
u)=rac{\partial^2 u}{\partial F_T\,\partiallpha_T}$$

# Learned CDF of Joint Distribution (F, a)

$$P(F_t \le F_T, alpha_t \le a_T)$$



Learned joint CDF:

$$\mathbb{P}(F_T \leq f, \, \alpha_T \leq a)$$

- Smoothly captures probability mass over 2D domain
- Derivatives yield joint density via auto-differentiation

# Joint PDF by Auto-Differentiation



- SABR's joint PDF evolution across time
- The density gradually spreads, skews, and stabilizes.



Matched closely in both shape and location of the probability mass