Mathématiques

Henri LEFEBVRE

6 mars 2018

Table des matières

1	${f Analyse \; dans \; \mathbb{R} \; (MT90/MT91/MT12)}$						
	1.1	Propriétés de $\mathbb R$	4				
	1.2	Suites réelles $\mathbb{N} \to \mathbb{R}$	4				
	1.3	Fonctions réelles $\mathbb{R} \to \mathbb{R}$ (généralités)	5				
	1.4	Dérivation	6				
	1.5	Théorie de la mesure	7				
		1.5.1 Généralités	7				
		1.5.2 Exemples de mesures	7				
	1.6	Intégration	8				
		1.6.1 Définitions	8				
		1.6.2 Propriétés	8				
		1.6.3 Convergence	10				
			10				
			11				
		•	11				
	1.7		11				
			11				
			12				
		· ·	13				
	1.8		14				
	1.9	±	15				
			15				
			16				
	1.10		16				
			16				
			17				
			17				
	1.11		18				
			18				
			19				
	1.12		20				
		•	20				
			21				
2			22				
	2.1	Fonction de plusieurs variables $\mathbb{R}^n \longrightarrow \mathbb{R}$					
		2.1.1 Généralités					
			22				
			23				
	2.2	ų.	23				
	2.3		24				
			24				
			25				
	2.4		26				
		2.4.1 Intégrales doubles	26				

		2.4.2 Intégrales triples	26
		2.4.3 Intégrales curvillignes	27
		2.4.4 Intégrales surfaciques	28
	2.5	Théorèmes intégraux	29
		2.5.1 Théorème de Stokes-Ampères	29
		2.5.2 Théorème de Gauss-Ostrogradski	29
3	Alg	bre linéaire (MT23)	30
	3.1	Espace vectoriels	30
	3.2	Applications linéaires et matrices	31
		3.2.1 Applications linéaires	31
		3.2.2 Matrices	32
	3.3	Déterminants et systèmes linéaires	34
		3.3.1 Déterminants	34
		3.3.2 Systèmes linéaires $Ax = b$	35
	3.4	Valeurs propres et diagonalisation	35
		3.4.1 Valeurs propres	35
	3.5	Espaces euclidiens	37
		3.5.1 Généralités	37
		3.5.2 Matrices orthogonales	38
		3.5.3 Matrices symétriques	38
		3.5.4 Formes quadratiques	38
4	Ana	lyse numérique (MT09)	39
	4.1	Systèmes linéaires	39
		4.1.1 Algorithme de Gauss	39
		4.1.2 Factorisation de matrices	39
	4.2	Problèmes de moindres carrées	40
	4.3	Méthodes itératives	40
		4.3.1 Définitions	40
		4.3.2 Méthodes de Newton (équation et systèmes non-linéaires)	40
		4.3.3 Résolution de systèmes linéaires (Jacobi et Gauss-Seidel)	41
	4.4	Interpolation	42
	4.5	Intégration numérique	43
	4.6	Équations différentielles	43
	4.7	Valeurs propres	43
5	Stat	istiques (SY02)	44
		Éléments de probabilités	44
	5.2	Échantillonnage	44
	5.3	Éstimation	44
	5.4	Intervalle de confiance	44
	5.5	Éstimation optimale	44
	5.6	Régression linéaire	44
	5.7	Tests d'hypothèses	44
	5.8	Tests de conformité	44
	5.9	Tests d'homogénéité	44
	5.10	Tests d'adéquation	44
	5.11	Tests d'indépendance	44
	5.12	Analyse de la variance	44
6	Ont	misation (RO03/RO04)	45
-	6.1	Algorithmes de graphe	45
	6.2	Programmation linéaire	45
	6.3	Ontimisation non-linéaire	45

7	For	mulaires	46
	7.1	Équations différentielles	46
	7.2	Trigonométrie	46

Analyse dans \mathbb{R} (MT90/MT91/MT12)

1.1 Propriétés de \mathbb{R}

Structure : $(\mathbb{R}, +, \dot)$ est un corps ordonné

Formule du binôme :

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \text{ avec } \binom{n}{k} = \frac{n!}{k!(n-k)!}, \forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}$$

Produit scalaire : $\langle x, y \rangle = xy, \forall x, y \in \mathbb{R}$

Norme (\mathbb{R}) (valeur avsolue) : $\mathbb{R} \to \mathbb{R}_+, x \to |x| = \begin{cases} x & \text{si } x > 0 \\ -x & \text{sinon} \end{cases}$

Positivité: |x| > 0 et $|x| = 0 \Leftrightarrow x = 0$

Homothétie : |ax| = |a||x|

Inégalité triangulaire : $|x+y| \le |x| + |y|$ Convergence: $f(x) \longrightarrow l \Leftrightarrow |f(x) - l| \longrightarrow 0$

Intervalles: I est un intervalle si $\forall a, b \in I, a < c < b \Rightarrow c \in I$

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$

$$c \in [a,b] \Leftrightarrow \exists \theta \in [0,1], c = \theta a + (1-\theta)b$$

Densité de \mathbb{Q} :

$$\forall]a,b[\neq\emptyset,\exists\alpha\in\mathbb{Q}\cap]a,b[\text{ et }\exists\beta\in(\mathbb{R}-\mathbb{Q})\cap]a,b[$$

Ensembles bornées : Soit $A \subset \mathbb{R}$

Majoration: $\forall x \in A, x \leq M$ **Minoration**: $\forall x \in A, x \geq m$ Encadrement: $\forall x \in A, |x| < M$

Borne supérieur : Plus petit des majorants (s'ils existent)

$$s = \sup A \Leftrightarrow \Big\{ \forall x \in A, x \le s \quad \forall t < s, \exists x \in A \text{ tel que } t < x \Big\}$$

Droite numérique achevée : $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$

1.2 Suites réelles $\mathbb{N} \to \mathbb{R}$

Définition: $u: \mathbb{N} \to \mathbb{R}, n \mapsto u_n$

Convergence:

$$(U_n) \longrightarrow l, n \longrightarrow \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow |u_n - l| < \varepsilon)$$

Limite infinie:

$$(U_n) \longrightarrow l, n \longrightarrow \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow u_n > \varepsilon)$$

Convergences connues:

$$\lim_{n \to \infty} \frac{k^n}{n!} = 0; \lim_{n \to \infty} \frac{n^{\alpha}}{k^n} = 0; \lim_{n \to \infty} \frac{(\ln \beta)^{\beta}}{n^{\alpha}} = 0$$

Propriétés de convergence : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ avec $u_n \longrightarrow l$ et $v_n \longrightarrow l'$ quand $n \longrightarrow \infty$

Combinaison: $u_n + \lambda v_n \longrightarrow l + \lambda l'$ quand $n \longrightarrow \infty$

Produit: $u_n v_n \longrightarrow \infty$ quand $n \longrightarrow \infty$

Quotient: Si $l' \neq 0$, $u_n/v_n \longrightarrow l/l'$ quand $n \longrightarrow \infty$

Vers zéro : Si $u_n \longrightarrow 0$ et v_n bornée, alors $u_n v_n \longrightarrow 0$ quand $n \longrightarrow \infty$

Ordre : Si $u_n \leq v_n$ alors $\lim_{n \to \infty} u_n \leq \lim_{n \to \infty} v_n$

Suites adjacentes : (u_n) et (v_n) sont dites adjacentes si et seulement si

 (u_n) est croissante; (v_n) est décroissante; $\lim_{n\to\infty} (v_n-u_n)=0$

Suite arithmétique:

Définition récursive : $u_{n+1} = u_n + r$ Définition générale : $u_n = u_0 + nr$

Somme des termes :

$$\sum_{k=0}^{n-1} u_k = n \frac{u_0 + u_{n-1}}{2}$$

Suite géométrique :

Définition récursive : $u_{n=1} = qu_n$ Définition générale : $u_n = q^n u_0$

Somme des termes :

$$\sum_{k=0}^{n-1} u_k = u_0 \frac{1 - q^n}{1 - q}$$

Suites récurrentes : $u_{n+1} = f(u_n)$

Si $\exists l \in \mathbb{R}$ point fixe de f (i.e. f(l) = l) et f contractancte (i.e. f k-lipschitzienne avec 0 < k < 1) alors $(u_n) \longrightarrow l$

1.3 Fonctions réelles $\mathbb{R} \to \mathbb{R}$ (généralités)

Définition: $f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x)$

Image: $\forall A \subset \mathbb{R}, f(A) = \{y | \exists x \in A, y = f(x)\}$

Image réciproque : $f^{-1}(B) = \{x \in D_f | f(x) \in B\}$

Support: supp $\varphi = \overline{\{x | \varphi(x) \neq 0\}}$

Correspondances : Pour $f: E \to F$

Surjection: $\forall x, x' \in E, f(x) = f(x') \Rightarrow x = x'$

Injection: $\forall y \in F, \exists x \in E \text{ tel que } y = f(x)$

Bijection: $\forall y \in F, \exists ! x \in E \text{ tel que } y = f(x) \text{ (} f \text{ injective et surjective)}$

Composée : $f \circ g(x) = f(g(x))$ Fonction identité : $id : x \mapsto x$

Bijection réciproque : Si f bijective, alors $\exists f^{-1}$ tel que $f \circ f^{-1} = f^{-1} \circ f = id$

Convergence : $f(x) \longrightarrow l, x \longrightarrow a$

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Limite à droite:

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, a < x < a + \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Caractérisation de la limite (par les suites) :

$$\lim_{x \to a} f(x) = l \Leftrightarrow \left(\forall (x_n)_{n \in \mathbb{N}}, \begin{cases} \lim_{n \to \infty} x_n = a \\ \forall n \in \mathbb{N}, x_n \in \Omega - \{a\} \end{cases} \Rightarrow \lim_{x \to \infty} f(x_n) = l \right)$$

Continuité :

$$\lim_{x \to a} f(x) = f(a)$$

Théorème des valeurs intermediaires (TVI) : Soit $f \in C^0([a,b])$ et $y \in \mathbb{R}$

$$f(a) < y < f(b) \Rightarrow \exists x \in [a, b], f(x) = y$$

Condition de Lipschitz:

$$\exists k \in \mathbb{R}, \forall x, y \in \mathbb{R}, |f(x) - f(y)| < k|x - y|$$

1.4 Dérivation

 $\mathbf{D\acute{e}rivabilit\acute{e}}: f$ est dérivable si et seulement si

$$\exists d \in \mathbb{R}, \text{ tel que } f(x+h) = f(x) + hd + |h|\epsilon(h)$$

Taux de variation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Théorème de Rolle : Soit $f \in C^0([a,b])$

$$f(a) = f(b) \Rightarrow \exists c \in [a, b] \text{ tel que } f'(c) = 0$$

Théorème des accroissements finis : Soit $f \in C^0([a,b])$

$$\exists c \in [a, b] \text{ tel que } f'(c) = \frac{f(b) - f(a)}{b - a}$$

Formule de Leibniz:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

Opérations:

$$(f+\lambda g)'=f'+\lambda g', \lambda\in\mathbb{R}; \ \left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2}; \ (f\circ g)'=g'\times(f'\circ g)$$

Fonction réciproque :

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

Dérivées connues :

$$(x^q)' = qx^{q-1}, q \in \mathbb{Z}; (e^x)' = e^x; (\ln|x|)' = \frac{1}{x}; (\cos x)' = -\sin x; (\sin x)' = \cos x; (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Saut d'une fonction:

$$\sigma_m = f^{(m)}(0^+) - f^{(m)}(0^-), m \ge 0$$

1.5 Théorie de la mesure

1.5.1 Généralités

Fonction indicatrice (ou caractéristique):

$$1_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \in /A \end{cases}$$

 σ -algèbre (tribu) : Une famille A de sous-ensemble de X est une tribu si :

- 1. $X \in A$
- 2. A est stable par complémentarité
- 3. A est stable par union dénombrable

Espace mesurable: Ensemble muni d'une tribu (X, A)

Tribu borélienne : Plus petite tribu de $\mathbb R$ contenant tous les intervalles

Mesure: Une mesure μ sur (X,A) est une application de $A \to [0,\infty]$ telle que

- 1. $\mu(\emptyset) = 0$
- 2. Si $(An)n \ge 1$ est une suite dénombrable de A deux à deux disjointes alors : $\mu\left(\bigcup_{n\ge 1}A_n\right) = \sum_{n\ge 1}\mu(A_n)$ $(\sigma\text{-additivit\'e})$

Espace mesuré: Le triplet (X, A, μ) est appelé un espace mesuré Proposition: soit \bar{x} une tribu de X

- 1. Si $A, B \in \bar{x}$ et $A \subset B$ alors $\mu(A) \leq \mu(B)$
- 2. Si $A_1 \subset A_2 \subset ... \subset A_n \subset ..., A_k \in \bar{x}$ alors $\lim_{n \to \infty} A_n = \bigcup_n A_n$ et $\mu(\bigcup_n A_n) = \lim_{n \to \infty} \mu(A_n)$
- 3. Si $A, B \in \bar{x}$ alors $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$

Ensemble négligeable : A est dit négligeable si $\mu(A) = 0$

Proposition vraie presque partout (pp) : Une proposition est dite vraie (μ -)presque partout sur X si elle est vrai sur X E avec $\mu(E) = 0$

Ensemble de mesure nulle : Un sous-ensemble A de \mathbb{R} est dit de mesure nulle si pour tout $\varepsilon > 0$, il existe une suite d'intervalles ouverts et bornés (I_n) telle que :

- 1. $A \subset \bigcup_{i>1} I_i$
- 2. $\sum_{i>1} |I_i| < \varepsilon$

Propositions:

- 1. Tout ensemble dénombrable est de mesure nulle
- 2. Si A est de mesure nulle et $B \subset A$, alors B est de mesure nulle
- 3. Si $A \bigcup_{n \ge 1} A_n$ avec chaque A_n de mesure nulle, alors A est de mesure nulle

Fonction mesurable : $f:(X,\bar{x})\to(\mathbb{R},B)$ est mesurable si $f^{-1}(B)\subset\bar{x}$

1.5.2 Exemples de mesures

Mesure de Lebesgue : Il existe une unique mesure λ sur $(\mathbb{R}, B(\mathbb{R}))$ telle que $\forall I = [a, b]$ borné, $\lambda([a, b]) = \lambda([a, b]) = b - a$

Mesure de Dirac : $\delta_a : T \to \{0,1\}$ avec T une tribu et $\delta_a = \begin{cases} 1 \text{ si } a \in A \\ 0 \text{ si } a \notin A \end{cases}$

Mesure de comptage (cardinal) : Pour un ensemble dénombrable de \mathbb{R} , $\forall n, \mu(\{n\}) = 1$

1.6 Intégration

1.6.1 Définitions

Fonction en escalier : Fonctions constantes sur des intervalles

Intégrale de Riemann : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{I_i}$$

une fonction en escalier, on définit l'intégrale de f par

$$I(f) = \int_{a}^{b} f(t)dt = \sum \alpha_{i}(x_{i+1} - x_{i})$$

Pour une fonction quelconque, s'il existe, pour tout $\varepsilon > 0$, deux fonctions en escalier f_{ε} et F_{ε} telle que $f_{\varepsilon} \leq f \leq F_{\varepsilon}$ et $I(f_{\varepsilon}) - I(f_{\varepsilon}) < \varepsilon$), alors f est dite Riemann-intégrable et on a :

$$\int_{a}^{b} f(t)dt = \sup \{I(g)|g \text{ fonction en escalier et } g \leq f\}$$

Fonction étagée : Fonction dont l'image est constituée d'un nombre fini de valeurs réelles

Théorème : Toute fonction à valeur dans \mathbb{R}^n est limite de fonctions étagées

Intégrale de Lebesgue : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

une fonction étagée, on définit l'intégrale de f par rapport à la mesure μ par

$$\int_X f d\mu = \sum_{i=1}^n \alpha_i \mu(A_i)$$

et pour $E \subset X$

$$\int_{E} f d\mu = \int_{X} f 1_{E} d\mu$$

Pour f une fonction positive,

$$\int_X f d\mu = \sup \left\{ \int s d\mu | s \text{ \'etag\'ee et } s \leq f \right\}$$

Enfin pour une fonction quelconque, on définit : $f^+ = \max(0, f)$ et $f^- = \max(0, -f)$ de sorte que :

$$\int f d\mu = \int f^+ d\mu + \int f^- d\mu$$

1.6.2 Propriétés

Lien Riemann-Lebesgue : Si f est Riemann-Intégrable, alors f est Lebesgue-intégrable Ensemble de fonctions intégrables (au sens de Lebesgue) :

$$L^p(A) = \left\{ f : \mathbb{R} \to \mathbb{R} | \int_A |f|^p < \infty \right\}$$

Fonctions localement intégrables : $f: \mathbb{R} \to \mathbb{R}$ Lebesgue-intégrable sur tout intervalle borné $(L^1 \subset L^1_{loc})$ Intégration et dérivation :

$$f(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

Egalité d'intégrales :

$$f \stackrel{pp}{=} g \Leftrightarrow \int f(t)dt = \int g(t)dt$$

Linéarité:

$$\int (f(t) + \lambda g(t))dt = \int f(t)dt + \lambda \int g(t)dt$$

Relation de Chasles: Qui implique aussi $\int_a^b f(t)dt = -\int_b^a f(t)dt$

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Relation d'ordre:

$$f \le g \Leftrightarrow \int f(t)dt \le \int g(t)dt$$

Fonction périodique : Soit f une fonction T-périodique,

$$\int_{0}^{T} f(t)dt = \int_{c}^{c+T} f(t)dt$$

Inégalité triangulaire :

$$\left| \int f(t)dt \right| \le \int |f(t)|dt$$

Cauchy-Schwartz:

$$\left| \int f(t)g(t)dt \right| \leq \sqrt{\int f^2(t)dt \times \int g^2(t)dt}$$

Inégalité de Holder:

$$\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \int f(t)g(t)dt \le \left(\int |f(t)|^p dt\right)^{\frac{1}{p}} \left(\int |g(t)|^q dt\right)^{\frac{1}{q}}$$

Théorème de la moyenne :

$$\forall x \in [a, b], m \le f \le M, \Rightarrow m \le \frac{1}{b - a} \int_a^b f(t)dt \le M$$

Inégalité de la movenne :

$$\left| \int_a^b f(x)g(x)dx \right| \leq \sup_{x \in [a,b]} |f(x)| \times \int_a^b |g(x)|dx$$

Intégrale sur un ensemble négligable : Soit μ une mesure alors

$$\mu(E) = 0 \Rightarrow \int_{E} f d\mu = 0$$

Théorème fondamental:

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt$$

Intégration par partie (IPP):

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt$$

Changement de variable :

$$\int_a^b f(x) dx \stackrel{x=u(t)}{=} \int_{u^{-1}(a)}^{u^{-1}(b)} f(u(t)) u'(t) dt$$

Propositions sur l'intégrabilité :

- f monotone $\Rightarrow f$ Riemann-intégrable
- f continue $\Rightarrow f$ Riemann-intégrable
- f pp-continue et bornée $\Rightarrow f$ Riemann-intégrable
- f pp-continue $\Rightarrow f$ Lebesgue-intégrable
- |f| < g, g Lebesgue-intégrable $\Rightarrow f$ Lebesgue-intégrable
- f Lebesgue-intégrable $\Leftrightarrow |f|$ Lebesgue-intégrable

1.6.3 Convergence

Convergence (Riemann):

$$f_n \stackrel{unif}{\longrightarrow} f \Rightarrow \int f_n(t)dt \stackrel{unif}{\longrightarrow} \int f(t)dt$$

Théorème de convergence monotone (Beppo-Levi) :

$$\begin{cases} (f_n) \text{ suite croissante de fonction} \\ f_n \longrightarrow f, n \longrightarrow \infty \end{cases} \Leftrightarrow \int f_n \longrightarrow \int f, n \longrightarrow \infty$$

Théorème de convergence dominée :

$$\begin{cases} f_n \xrightarrow{pp} f \\ |f_n| < g, g \in L^1 \end{cases} \Rightarrow \int f_n \longrightarrow \int f \left(\text{et même} : \int |f_n - f| \longrightarrow 0 \right)$$

Inversion somme-integrale:

$$(f_n)$$
 suite de fonction positive $\Rightarrow \int \sum_{n=0}^{\infty} f_n(x) dx = \sum_{n=0}^{\infty} \int f_n(x) dx$

Théorème de Fubini:

$$f \in L^1 \Rightarrow \iint f(x,y)dxdy = \int \left(\int f(x,y)dx\right)dy$$

Théorème de Fubini-Tonnelle :

$$f \ge 0 \Rightarrow \iint f(x,y) dx dy = \int \left(\int f(x,y) dx \right) dy$$

Définition : intégrale de fonction discontinue, intégrale sur un intervalle non bornée, etc.

Intégrales Riemann-impropre de références :

$$\int_0^1 \frac{dt}{t^{\alpha}} \text{ converge si } \alpha < 1; \int_1^{\infty} \frac{dt}{t^{\alpha}} \text{ converge si } \alpha > 1; \int_0^1 \ln t dt = -1$$

Riemann-impropre et Lebesgue : Si f est Riemann-intégrable au sens impropre et de signe constant alors f est Lebesgue-intégrable

1.6.4 Intégrale de Riemann-Stieltjes

Définition : Si α est une fonction croissante, alors elle définit une mesure. On appelle intégrale de Riemann-Stieltjes l'intégrale par rapport à cette mesure : $\int f(x)d\alpha(x)$ et on a :

$$\alpha([a,b]) = \alpha(b^+) - \alpha(a^-)$$

$$\alpha([a,b[) = \alpha(b^-) - \alpha(a^-)$$

$$\alpha(]a,b[) = \alpha(b^-) - \alpha(a^+)$$

$$\alpha(]a,b]) = \alpha(b^+) - \alpha(a^+)$$

Calcul:

$$\int f(x)d\alpha(x) = \int f(x)\alpha'(x)dx$$

1.6.5 Fonctions définies par une intégrale

Définition: Soit $f:(x,t) \to f(x,t)$, si f est continue en t pour presque-tout x et $|f(t,x)| \le g(x)$, $g \in L^1$ alors la fonction suivante est défini et est continue

 $F(t) = \int f(t, x) dx$

Dérivabilité : Si $\frac{\partial f}{\partial t}(x,t)$ existe et est continue et $\left|\frac{\partial f}{\partial x}(x,t)\right| < g(x), g \in L^1$ alors F est dérivable et

$$\frac{dF}{dt}(t) = \int \frac{\partial f}{\partial t}(t, x) dx$$

Formule:

$$\begin{split} F(t) &= \int_{[u(t),v(t)]} f(x,t) dx \\ \frac{dF}{dt}(t) &= f(t,v(t)) \frac{dv(t)}{dt} + f(t,u(t)) \frac{du(t)}{dt} + \int_{[u(t),v(t)]} \frac{\partial f}{\partial t}(x,t) dx \end{split}$$

1.6.6 Introduction au calcul des variations

Problème de variation : Trouver u^* telle que

$$u^* = \min_{u \in K} J(u) \text{ avec } J(u) = \int_{\alpha}^{\beta} \varphi(u, \dot{u}, t) dt$$

Équation d'Euler-Lagrange : u solution du problème de variation, alors

$$\frac{\partial}{\partial u}\varphi(u,\dot{u},t) - \frac{d}{dt}\left[\frac{\partial}{\partial \dot{u}}\varphi(u,\dot{u},t)\right] = 0$$

Intégrale première d'Euler-Lagrange : $\varphi(u, \dot{u}, t) = \varphi(u, \dot{u})$

$$\varphi(u, \dot{u}) = \left[\frac{\partial}{\partial \dot{u}}\varphi(u, \dot{u})\right]\dot{u} + k, k \in \mathbb{R}$$

Condition aux limites:

— Deux extrémités fixes : $u(\alpha) = a$ et $u(\beta) = b$

— Une extrémité libre : $u(\alpha) = a$ et $\frac{\partial}{\partial u} \varphi(u(\beta), \dot{u}(\beta), \beta) = 0$

— Deux extrémités libres : $\frac{\partial}{\partial \dot{u}} \varphi(u(\alpha), \dot{u}(\alpha), \alpha) = 0$ et $\frac{\partial}{\partial \dot{u}} \varphi(u(\beta), \dot{u}(\beta), \beta) = 0$

1.7 Séries dans \mathbb{R}

1.7.1 Généralités

Condition nécessaire de convergence :

$$\sum_{n>0} u_n \text{ converge} \Rightarrow u_n \longrightarrow 0$$

Espace vectoriel : L'espace des séries convergentes est un espace vectoriel Critère de Cauchy :

$$\sum u_n \text{ converge} \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, \forall p \in \mathbb{N}, \left| \sum_{k=n+1}^{n+p} \right| < \varepsilon$$

Règle de Riemann: Si $\forall n \in \mathbb{N}, u_n > 0$ et $n^{\alpha}u_n$ majoré pour $\alpha > 1$ alors $\sum u_n$ converge **Règle de d'Alembert**: Si $\forall n \in \mathbb{N}, u_n > 0$ et $\frac{u_{n+1}}{u_n} \longrightarrow l$ avec l < 1 alors $\sum u_n$ converge **Séries géométrique**:

$$\sum_{n\geq 0} aq^n = a\frac{1}{1-q}$$

Séries de Riemann:

$$\sum_{n>1} \frac{1}{n^{\alpha}} \text{ CV } \Leftrightarrow \alpha > 1$$

Série exponentielle:

$$\sum_{n\geq 0} \frac{z^n}{n!} = e^z, z \in \mathbb{C}$$

1.7.2 Séries de Taylor

Formule générale:

$$f(x) = \sum_{n \ge 0} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

Formule de Taylor-Lagrange:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + \frac{f^{(n+1)}(x_0 + \theta h)}{(n+1)!} h^{n+1}, \theta \in [0, 1]$$

Formule de Taylor-Young:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + h^n \epsilon(h), \epsilon(h) \longrightarrow \infty, h \longrightarrow \infty$$

Séries connues :

Équivalence :

$$(1+x)^{\alpha} = 1 + \alpha \frac{x}{1!} + \dots + \alpha(\alpha - 1) \dots (\alpha - n - 1) \frac{x^n}{n!} + o(x^n)$$

$$e^x = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{2p-1} \frac{x^{2p-1}}{(2p-1)} + o(x^{2p})$$

$$\tan x = x + \frac{1}{3}x + \frac{2}{15}x^5 + o(x^6)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

Infiniment petit : f est un infiniment petit au voisinage de a si $\lim_{x\to a} f(x) = 0$ Infiniment grand : f est un infiniment grand au voisinage de a si $\lim_{x\to a} |f(x)| = +\infty$ Ordre d'un infiniment petit : f et g sont dit de même ordre si $\lim_{x\to a} \frac{f(x)}{g(x)} \in \mathbb{R}^*$ f est d'ordre p si f et $(x-a)^p$ sont du même ordre

$$f \sim g \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Développements limités :

f admet un DL à l'ordre n au voisinage de a si

$$\exists \alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{R} \text{ tel que } f(a+h) = \alpha_0 + \alpha_1 h + \dots + \alpha_n h^n + h^n \epsilon(n), \epsilon(h) \longrightarrow 0, h \longrightarrow 0$$

f admet un DL à l'ordre n au voisinage de $+\infty$ si

$$\exists \alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{R} \text{ tel que } f(x) = \alpha_0 + \frac{\alpha_1}{x} + \dots + \frac{\alpha_n}{x^n} + \frac{1}{x^n} \epsilon \left(\frac{1}{x}\right)$$

Le DL d'une fonction paire (resp. impaire) ne contient que des termes de puissances paire (resp. impaire).

 $\textbf{Op\'erations sur les DL} \,: \text{Soient} \,\, f \,\, \text{et} \,\, g \,\, \text{avec} \,\, \begin{cases} f(a+h) = P(h) + h^n \epsilon_1(h) \\ g(a+h) = Q(h) + h^n \epsilon_2(h) \end{cases}$

Combinaison : $f(a+h) + \lambda g(a+h) = P(h) + \lambda Q(h) + \epsilon(h)$

Produit : $fg(a+h) = PQ(a+h) + h^n \epsilon(h)$ tronqué à l'odre n

Quotient : $\frac{f(a+h)}{g(a+h)}$ = quotient de P(h) par Q(h) suivant les puissances croissantes

Primitivisation: Si F' = f avec $f(a+h) = \sum \alpha_i h^i$ alors $F(a+h) = \sum \alpha_i \frac{h^{i+1}}{i+1}$

Étude locale d'une courbe : Soit x_0 tel que $f'(x_0) = 0$

 $f''(x_0) > 0$ alors la courbe est au dessus de la tangente et x_0 réalise un minimum locale

 $f''(x_0) < 0$ alors la courbe est en dessous de la tangente et x_0 réalise un maximum locale

 $f''(x_0) = 0$ alors x_0 est un point d'inflexion

1.7.3 Séries de Fourier

Dans la base $(e^{in\omega x})_{n\in\mathbb{Z}}$

Série de Fourier : $(e^{in\omega x})_{n\in\mathbb{Z}}$ avec $\omega=\frac{2\pi}{T}$ est une base de l'espace des fonctions T-périodiques, alors pour tout f, fonction T-périodique, on a :

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{in\omega x}$$
 avec $c_n = (f|e^{in\omega \cdot}) = \frac{1}{T} \int f(x)e^{-in\omega x} dx$

Egalité de Parsseval : (égalité de la norme)

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |c_n|^2$$

Dans la base $(\cos n\omega x, \sin n\omega x)_{n\in\mathbb{N}}$

Série de Fourier : Soit f une fonction T-périodique, on a

$$f(x) = a_0 + \sum_{n \ge 1} (a_n \cos n\omega x + b_n \sin n\omega x)$$

$$a_0 = \frac{1}{T} \int_0^T f(x) dx$$
; $a_n = \frac{1}{T} \int_0^T f(x) \cos n\omega x dx$; $b_n = \frac{1}{T} \int_0^T f(x) \sin n\omega x dx$

Egalité de Parsseval : (égalité de la norme)

$$||f||_2^2 = a_0^2 + \frac{1}{2} \sum_{n>1} (a_n^2 + b_n^2)$$

Autres

Convergence:

$$f \in L^2(0,T), f(x) = \sum_{n \in \mathbb{Z}} c_n(f)e^{in\omega x}$$

$$f \in L^1(0,T), c_n(f) \longrightarrow 0, n \longrightarrow \infty$$

Théorème de Dirichlet (convergence ponctuelle) :

$$f \in C^1 \Rightarrow SF(f)(x_0) \xrightarrow{unif} f(x_0)$$

$$f \in CM^1 \Rightarrow SF(f)(x_0) \longrightarrow \frac{f(x_0^-) + f(x_0^+)}{2}$$

Série de Fourier d'une distribution

Définition:

$$T = \sum_{n \in \mathbb{Z}} c_n e^{in\omega x}$$
 avec $c_n = \frac{1}{a} < T, e^{-in\omega s} >$

Convergence : La série de Fourier d'une distribution converge vers la distribution (au sens des distributions) Convergence d'une série trigonométrique dans \mathcal{D}' :

$$\sum c_n e^{in\omega s}$$
 converge dans $\mathcal{D}' \Leftrightarrow |c_n| \leq A|n|^p$ (suite à croissance lente)

1.8 Le corps $\mathbb C$

Définition:

$$\mathbb{C} = \{a + ib | a, b \in \mathbb{R} \text{ et } i^2 = -1\}$$

Partie réelle et imaginaire :

$$Re(a+ib) = a$$
 et $Im(a+ib) = b$

Module et argument :

$$|z| = \sqrt{a^2 + b^2}$$
 et $\arg z = \tan \frac{b}{a}$

Écriture d'un nombre complexe : $\forall z \in \mathbb{C}, \exists a, b, r, \theta \in \mathbb{R}$ tel que

$$z = a + ib = re^{i\theta} = r(\cos\theta + i\sin\theta)$$
 avec $r = |z|$ et $\theta = \arg z$

Conjugaison : Soi z = a + ib alors $\bar{z} = a - ib$ et

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}; \ \overline{z_1.z_2} = \overline{z_1}.\overline{z_2}; \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}; \ \overline{\overline{z}} = z$$

$$z + \overline{z} = 2 \times Re(z)$$
; $z - \overline{z} = 2i \times Im(z)$

Calcul avec les modules :

$$z\bar{z} = |z|^2$$
; $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$; $|z_1 z_2| = |z_1||z_2|$; $|z| = |\bar{z}|$

Calcul avec les arguments :

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)[2\pi]; \arg\left(\frac{1}{z}\right) = -\arg(z)$$

Formule de Moivre:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Formules d'Euler:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
; $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

Théorème de D'Alembert-Gauss : Toute équation algébrique de $\mathbb C$ admet au moins une solution dans $\mathbb C$ Racine n-ième :

$$z^{n} = \alpha \Leftrightarrow \begin{cases} |z| = |\alpha|^{\frac{1}{n}} \\ \arg z = \frac{\arg \alpha}{n} + \frac{2k\pi}{n}, k \in [0, n-1] \end{cases}$$

Racine complexe d'une équation du second degrée : $az^2 + bz + c = 0$

$$\delta^2 = b^2 - 4ac$$
 alors $z = \frac{-b \pm \delta}{2a}$

Polynomes premiers : Les seuls polynômes premier de $\mathbb{C}[X]$ sont les polynomes constants, ceux de degré 1 et ceux de degré 2 qui n'ont pas de racine réelles

Multiplicité d'une racine : Soit P un polynôme de $\mathbb{C}[X]$

$$r$$
 de multiplicité $m \Leftrightarrow P(r) = P'(r) = \cdots = P^{(n-1)}(r) = 0$ et $P^{(m)}(r) \neq 0$

Partie entière d'une fraction rationnelle : Soit $F=P/Q\in\mathbb{C}(X)$ on peut décomposer F de façon unique tel que $F=E+\frac{P_0}{Q}$ avec, ou $P_0=0$ ou $deg(P_0)< deg(Q)$

Décomposition en élément simple dans $\mathbb{C}(X)$: Soit F = P/Q

Objectif : écrire F sous la forme $F=P^*+S$ où P^* est un polynôme et S une somme d'éléments simples :

Si deg(P) < deg(Q) alors $P^* = 0$

Sinon effectuer la division euclidienne

Décomposer Q en produit de facteur premier

Règles de décomposition dont les constantes a,b,c,d,\ldots sont à déterminer :

$$\frac{N(x)}{(x-1)(x-2)} = \frac{a}{x-1} + \frac{b}{x-2}$$

$$\frac{N(x)}{(x-1)^3(x-2)^2} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{(x-1)^3} + \frac{d}{x-2} + \frac{e}{(x-2)^2}$$

$$\frac{N(x)}{(x-1)(x^2+1)} = \frac{a}{x-1} + \frac{bx+c}{x^2+1}$$

1.9 Distributions

1.9.1 Fonctions test ou de base : \mathcal{D}

Définition : $\varphi : \mathbb{R} \to \mathbb{C}$ est dite fonctio test si elle est à support borné et $\varphi \in C^{\infty}$

Exemple:
$$\varphi(x) = \begin{cases} exp\left(-\frac{1}{1-x^2}\right) & \text{si } |x| < 1\\ 0 & \text{sinon} \end{cases}$$

Propriétés de \mathcal{D} :

- 1. \mathcal{D} est un espace vectoriel (car supp $(\varphi + \psi) \subset \text{supp }(\varphi) \cup \text{supp }(\psi)$)
- 2. $\varphi, \psi \in \mathcal{D} \Rightarrow \varphi \psi \in \mathcal{D} \text{ (car supp } (\varphi \psi) \subset \text{supp } (\varphi) \cap \text{supp } (\psi))$
- 3. $\varphi \in \mathcal{D}$ et $f \in L^1 \Rightarrow \psi(x) = \varphi * f(x) \in \mathcal{D}$
- 4. D ne peut pas être muni d'une norme de sorte qu'il soit complet (c-a-d où toute suite convergente est de Cauchy)

Proposition : $f \in C_k^0$ peut-être approché par une fonction test $\varphi \in \mathcal{D}$ uniformement convergence dans \mathcal{D} :

$$\varphi_n \xrightarrow{\mathcal{D}} \varphi \Leftrightarrow \begin{cases} \sup \varphi_n \subset K = [a, b], \forall n \geq 1 \\ \varphi_n^{(k)} \xrightarrow{unif} \varphi^{(k)} \end{cases}$$

Proposition : $f \in L^1_loc$ et $\forall \varphi \in \mathcal{D}$ on a $\int f\varphi = 0 \Rightarrow f \stackrel{pp}{=} 0$

1.9.2 Distibutions : \mathcal{D}'

Définition: $T \in \mathcal{D}' \Leftrightarrow T : \mathcal{D} \to \mathbb{R}, \varphi \mapsto T(\varphi) \stackrel{notation}{=} \langle T, \varphi \rangle$ tel que T soit

1. Linéaire : $< T, \varphi + \psi > = < T, \varphi > + < T, \psi >$

2. Continue: $\varphi \xrightarrow{\mathcal{D}} \varphi \Rightarrow \langle T, \varphi_n \rangle \longrightarrow \langle T, \varphi \rangle$

Addition : $< T + S, \varphi > = < T, \varphi > + < S, \varphi >$

Multiplication : $\langle \lambda T, \varphi \rangle = \lambda \langle T, \varphi \rangle$

Convergence dans \mathcal{D}' :

$$T_n \xrightarrow{\mathcal{D}'} T \Leftrightarrow < T_n, \varphi > \longrightarrow < T, \varphi >, \forall \varphi \in \mathcal{D}$$

Distribution régulière :

$$f \in L^1_{loc}, \langle T_f, \varphi \rangle = \int f(x)\varphi(x)dx, \forall \varphi \in \mathcal{D}$$

Distribution singulière:

$$f \in L^1_{loc}, \langle \delta, \varphi \rangle = \varphi(0), \forall \varphi \in \mathcal{D}$$

Peigne de Dirac : $\Delta_a = \sum_{e \mathbb{Z}} \delta_{na}$, a fixé

Opérations :

Translation : $\tau_a f(x) = f(x-a), \langle T_{\tau_a f}, \varphi \rangle = \langle T_f, \tau_{-a} \varphi \rangle$

Homothétie: $T_{f(a.)}, < T_{f(a.)}, \varphi > = \frac{1}{|a|} < T_f, \varphi\left(\frac{\cdot}{a}\right) >$

Transposition: $\check{f}(x) = f(-x), \langle T_{\check{f}}, \varphi \rangle = \langle T_f, \check{\varphi} \rangle$

Produit: On peut avoir $T, S \in \mathcal{D}'$ sans $TS \in \mathcal{D}'$, en revanche,

 $\forall f, g \in L^1_{loc}, \langle gf, \varphi \rangle = \langle f, g\varphi \rangle$

Dérivation : $< T', \varphi > = - < T, \varphi' >$

Dérivation k-ième : $< T^{(k)}, \varphi > = (-1)^k < T, \varphi^{(k)} >$

Dérivation d'une fonction discontinue à l'origine : $(T_f)' = \sigma_0 \delta + T_{f'}$

Support d'une distribution : supp $T_f = \text{supp } f$

Valeur principale de Cauchy:

$$vp \int_{-A}^{A} \frac{dx}{x} = \lim_{\varepsilon \to 0} \left\{ \int_{-A}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^{A} \frac{dx}{x} \right\} = 0$$

Distribution $vp\frac{1}{x}$:

$$< vp \frac{1}{x}, \varphi > = vp \int \frac{\varphi(x)}{x} dx$$

1.10 Convolution

1.10.1 Convolution de fonction

Définition sur \mathbb{R} :

$$f * g(x) = \int f(x-t)g(t)dt$$

Convolution sur \mathbb{R}_+ :

$$\begin{cases} \operatorname{supp} \, f \subset \mathbb{R}_+ \\ \operatorname{supp} \, g \subset \mathbb{R}_+ \end{cases} \Rightarrow f * g(x) = \int_0^x f(x-t)g(t)dt$$

Support:

$$\mathrm{supp}\ f*g\subset\mathrm{supp}\ f+\mathrm{supp}\ g$$

Propriétés: Le produit de convolution est commutatif, ditributif et associatif

Convolution bornée :

$$f,g \in L^1 \Rightarrow ||f * g||_1 \leq ||f||_1.||g||_1$$
 et $f * g$ définit presque partout $f,g \in L^2 \Rightarrow ||f * g||_{\infty} \leq ||f||_2.||g||_2$ et $f * g$ partout définit $f \in L^1, g \in L^2 \Rightarrow ||f * g||_2 < ||f||_1.||g||_2$ et $f * g$ définit presque partout

Valeur moyenne d'une fonction:

$$m = \frac{1}{2h}f * 1_{[-h,h]}(x)$$

1.10.2 Convolution de suite

Définition:

$$u * v(n) = v * u(n) = \sum_{k \in \mathbb{N}} u(n-k)v(k), n \in \mathbb{N}$$

1.10.3 Convolution de distribution et algèbre dans \mathcal{D}'_{+}

Produit tensoriel: Pour $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$

$$f \otimes q(x,y) = f(x)q(y)$$

Définition: Soit $T, S \in \mathcal{D}'$

$$< T * S, \varphi > = < T, < S, \tau_{-u}\varphi > > = < T \otimes S, \varphi(x+y) >, \forall \varphi \in \mathcal{D}$$

Dérivation :

$$(T*S)' = T*S' = T'*S$$

Existence: Le produit T * S a un sens si les supports A et B de T et S sont tels que $x \in A$, $y \in B$, x + y ne puisse être borné que si x et y restent bornées tous les deux. Il est alors commutatif.

Proposition : Si l'une au moins de T et S est à support bornée alors T*S existe. L'ensemble des distributions à support bornée est noté \mathcal{E}'

Proposition: Si T et S ont leur support limités à gauche (ou à droite) alors T*S existe (i.e. $\exists a \in \mathbb{R}$, tel que supp $T \subset [a, \infty[)$

 D'_+ : Ensemble des distributions à support dans \mathbb{R}_+ est noté \mathcal{D}'_+ ($\subset \mathcal{D}$)

$$T \in \mathcal{D}'_+ \Leftrightarrow \forall \varphi \in \mathcal{D} \text{ tel que supp } \varphi \subset \mathbb{R}_-, \langle T, \varphi \rangle = 0$$

Associativité:

$$T, S \in \mathcal{D}'_{+} \Rightarrow (T * S) * V = T * (S * V)$$

Algèbre de convolution \mathcal{D}'_+ :

1. Le produit de convolution est une loi de composition interne

$$T, S \in \mathcal{D}'_{+} \Rightarrow T * S \in \mathcal{D}'_{+}$$

- 2. D'_{+} est un espace vectoriel
- 3. δ élément neutre

$$T*\delta=T$$

4. Soit $T \in \mathcal{D}'_+$, on dit que $S \in \mathcal{D}'_+$ est un élement inverse de T si $T * S = \delta$ et on note $S = t^{*-1}$

Formule pour Heavyside : $Y^{*2} = xY(x)$ et pour $n \ge 2$

$$Y^{*n} = \frac{x^{n-1}}{(n-1)!}Y(x)$$

Résolution d'équation différentielle à coefficient constant : Soit D un opérateur différentiel tel que

$$D = a_n \frac{d^n}{dt^n} + \dots + a_1 \frac{d}{dt} + a_0$$

Alors pour résoudre l'équation DT = S:

- 1. Résoudre $DE = \delta$
- 2. Solution générale : T = S * E

Inversion type:

$$\left(\delta^{(n)} + a_1 \delta^{(n-1)} + \dots + a_{n-1} \delta' + a_n \delta\right)^{*-1} = Yz$$

avec z solution de

$$\begin{cases} z^{(n)} + a_1 z^{(n-1)} + \dots + a_{n-1} z' + a_n z = 0 \\ z(0) = z'(0) = \dots = z^{(n-2)}(0) = 0 \\ z^{(n-1)}(0) = 1 \end{cases}$$

1.11 Transformées de Fourier

1.11.1 Fonctions

Définition:

$$\mathcal{F}(f)(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-i\xi x} dx$$

Transformée conjuguée :

$$(\overline{\mathcal{F}})(\xi) = \int_{\mathbb{R}} f(x)e^{i\xi x}dx$$

Inversion: Si $f \in L^1(\mathbb{R})$ alors

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{i\xi x} d\xi, x - pp$$

Propriétés sur \hat{f} :

1. \hat{f} est continue et bornée sur \mathbb{R}

2.

$$\lim_{|\xi| \to \infty} \hat{f}(\xi) = 0$$

Propriétés:

1. 3.

$$\widehat{(\tau_{x_0}f)} = e^{-ix_0\xi}$$

$$\widehat{(e^{i\xi_0x}f)} = \tau_{\xi_0}\widehat{f}$$

$$2\pi\widehat{(f\cdot g)} = \widehat{f} * \widehat{g}$$

2. 4.

$$\widehat{(f^{(n)})} = (i\xi)^n \hat{f}$$

$$\widehat{\mathcal{FF}} f = \overline{\mathcal{F}} \mathcal{F} f = 2\pi f \text{ pour } x - pp$$

$$\widehat{\widehat{f}} = 2\pi \check{f}$$

$$\widehat{\widehat{f}} = 2\pi \check{f}$$

1.11.2 Distributions

Distributions tempérées

Décroissance rapide (DR): f décroit plus vite que toute puissance de 1/|x|

$$f \in DR \Leftrightarrow \forall p \in \mathbb{N}, x^p f(x) \longrightarrow 0, x \longrightarrow \pm \infty$$

Proposition:

$$f \in L^1_{loc}(\mathbb{R}) \cap DR \Rightarrow \forall p \in \mathbb{N}, x^p f(x) \in L^1(\mathbb{R})$$

Espace de fonction test : $S : \mathbb{R} \to \mathbb{C}$ tel que

- 1. $f \in C^{\infty}$
- 2. $f^{(n)} \in DR, \forall n \in \mathbb{N}$

Propriétés de S:

- 1. S est un \mathbb{C} -espace vectoriel
- 2. $\mathcal{D} \subset S \subset L^P$
- 3. $\varphi \in S \Rightarrow \hat{\varphi} \in S$
- 4. $\varphi \in S$ et $P \in \mathcal{P}_n \Rightarrow \varphi P \in S$
- 5. $f, g \in S \Rightarrow fg \in S$
- 6. $\varphi \in S \Rightarrow \varphi' \in S$
- 7. $f, g \in S \Rightarrow f * g \in S$
- 8. $f \in S \Rightarrow x^p f^{(q)}$ bornée et sommable

Convergence dans S:

$$\varphi_n \xrightarrow{S} 0 \Leftrightarrow \sup_{x \in \mathbb{R}} |\varphi_n^{(p)} x^q| \longrightarrow 0, n \longrightarrow \infty, \forall p, q \in \mathbb{N}$$

Propriétés de convergence :

$$\varphi_n \xrightarrow{S} \Rightarrow \begin{cases} \varphi_n' \xrightarrow{S} 0 \\ P\varphi_n \xrightarrow{S} 0 \text{ avec } P \in \mathcal{P}_n \\ \varphi_n \xrightarrow{L^1} 0 \\ \widehat{\varphi_n} \xrightarrow{S} 0 \end{cases}$$

Espace des distributions tempérées $S': T: S \to \mathbb{C}, \varphi \mapsto \langle T, \varphi \rangle$

- 1. linéaire : < T, $\varphi + \mu \psi > = < T, \varphi > + \mu < T, \psi >$
- 2. continue: $\varphi_n \xrightarrow{S} \Rightarrow \langle T, \varphi_n \rangle \longrightarrow 0$

Convergence dans S':

$$T_n \xrightarrow{S'} T \Leftrightarrow < T_n, \varphi > \longrightarrow < T, \varphi >, \varphi \in S$$

Fonction à croissance lente $(CL): f: \mathbb{R} \longrightarrow \mathbb{C}$

$$f \in CL \Leftrightarrow |f(x)| \le A|x|^p, |x| \longrightarrow \infty$$

Proposition: Toute fonction à croissance lente définit une distribution tempérée

Transformée de Fourier dans S

Définition:

$$<\widehat{T}, \varphi> = < T, \widehat{\varphi}>, \forall \varphi \in S$$

Propriétés:

1. 3.

$$(\widehat{T})^{(n)} = (\widehat{-ix})^n T)$$

$$\widehat{\widehat{T}} = 2\pi \widecheck{T}$$

$$\widehat{T}^{(n)} = (i\xi)^n \widehat{T}$$
4.

2. $\hat{1} = 2\pi\delta$ $\widehat{t^n} = \frac{1}{(-i)^n} \delta^{(n)}$ $\tau_a \widehat{T} = (\widehat{e^{ixa}T})$

$$\tau_a \widehat{T} = \widehat{(e^{ixa}T)}$$

$$\widehat{(\tau_a T)} = e^{-i\xi a} \widehat{T}$$

$$\widehat{\delta_a}(\xi) = e^{-ia\xi}$$

Transformées de Laplace 1.12

1.12.1**Fonctions**

Définition:

$$\tilde{f}(s) = \mathcal{L}f(s) = \int_0^\infty f(x)e^{-sx}dx$$

Théorème : \tilde{f} est holomorphe et

$$\frac{d^k}{ds^k}\tilde{f}(s) = \int_0^\infty f(x)(-x)^k e^{-sx} dx, \forall k \in \mathbb{N}$$

Théorème: Si F est une fonction analytique dans le demi-plan complexe $z \in \mathbb{C}|Re(z) > \eta 0$, et si, en tant que fonction de $\eta = Im(z)$, F est intégrable, alors elle est la transformée de Laplace d'une fonction continue telle que

$$f(x) = \frac{1}{2i\pi} \int_{\xi - i\infty}^{\xi + i\infty} f(x)e^{zx}dz$$

Théorème : Si les transformées de Laplace coïncides pour un Re(s) assez grand alors f=gExemples:

2. 1. $\widetilde{Y(x)e^{ax}} = \frac{1}{e-a}$ $\widetilde{Y(x)}x^a = \frac{\Gamma(a+1)}{a^{a+1}}$

Propriétés:

1. 5. $\mathcal{L}(e^{-at}f(t)) = \tilde{s}(s+a)$ $\mathcal{L}\left(\frac{f(t)}{t}\right) = \int_0^s \tilde{f}(p)dp$ 2.

 $\mathcal{L}(f^{(n)}(t)) = s^n \tilde{f}(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$ 6.

 $\mathcal{L}(f*q) = \tilde{f}.\tilde{q}$ 3.

 $\mathcal{L}\left(\int_{0}^{t} f(u)du\right) = \frac{\tilde{f}(s)}{s}$ 7. Si f est T-périodique, alors 4.

 $\mathcal{L}(f)(s) = \frac{\int_0^T f(t)e^{-st}dt}{1 - e^{-st}}$ $\mathcal{L}(tf(t)) = -\tilde{f}'(s)$

Transformée inverse:

1. Linéarité: $\mathcal{L}^{-1}(a\tilde{f} + b\tilde{g}) = a\mathcal{L}^{-1}(\tilde{f}) + b\mathcal{L}^{-1}(\tilde{g}) = af + bg$

2. Translation : $\mathcal{L}^{-1}(\tilde{f}(s-a)) = e^{at}f(t)$

3. Modulation : $\mathcal{L}^{-1}(e^{-as}\tilde{f}(s)) = \begin{cases} f(t-a), & \text{si } t > a \\ 0, & \text{sinon} \end{cases}$

4. Changement d'échelle : $\mathcal{L}^{-1}(\tilde{f}(ks)) = \frac{1}{k}f\left(\frac{1}{k}\right)$

5. Dérivée : $\mathcal{L}^{-1}(\tilde{f}^{(k)}(s)) = (-1)^k t^k f(t)$

6. Intégrale : $\mathcal{L}^{-1}\left(\int_0^\infty \tilde{f}(s)ds\right) = \frac{f(t)}{t}Y(t)$

7. Multiplication par $s: \mathcal{L}^{-1}(sf(s)) = f'(t) + f(0)\delta$

Théorèmes taubériens :

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} s\tilde{f}(s)$$

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s\tilde{f}(s)$$

1.12.2 Distributions

 $\mathbf{D\acute{e}finition}\,:T\in\mathcal{D}'_{+}$

$$\mathcal{L}(T) = \tilde{T} = \langle T, e^{-st} \rangle$$

 ${\bf Exemples} \ :$

$$1.\ \tilde{\delta}=1$$

$$2. \ \tilde{\delta}_a = e^{-as}$$

3.
$$\widetilde{\delta'} = s$$

$$4. \ \widetilde{\delta^{(n)}} = s^n$$

Analyse dans \mathbb{R}^n (MT22)

2.1 Fonction de plusieurs variables $\mathbb{R}^n \longrightarrow \mathbb{R}$

2.1.1 Généralités

Disque ouvert de centre A et de rayon ρ :

$$B(A, \rho) = \{ M \in \mathbb{R}^n, ||\overrightarrow{AM} < \rho|| \}$$

Limité:

$$\lim_{M\to M_0} f(M) = l \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall M \in \mathbb{R}^n, ||\overrightarrow{M_0M}|| < \eta \Rightarrow |f(M) - l| < \varepsilon$$

Continuité:

$$\lim_{M \to M_0} f(M) = f(M_0)$$

Condition suffisante de continuité :

$$\begin{cases} x = x_0 + r\cos\theta \\ y = y_0 + r\sin\theta \end{cases}, \exists \varepsilon \text{ tel que } |f(M) - f(M_0)| < \varepsilon(r) \text{ avec } \varepsilon \xrightarrow{r \to 0} 0 \Rightarrow |f(M) - l| < \varepsilon(r) \end{cases}$$

Condition suffisante de non-continuité : S'il existe un chemin C tel que

$$\lim_{M\to M_0} f(M) \neq f(M_0) \Rightarrow f$$
 n'est pas continue

2.1.2 Dérivation

Différentiabilité : f différentiable si

$$f(x_0 + h, y_0 + h) = f(x_0, y_0) + Ah + Bh + \sqrt{h^2 + k^2} \varepsilon(h, k)$$
 avec $\varepsilon \longrightarrow 0$

Condition suffisante de différentiabilité : Si f admet des dérivées partielles premières continues en M_0 alors f est différentiable en M_0

Théorème de Schwarz:

$$\frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x} \in C^0 \Rightarrow \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Dérivation de composée de fonctions :

1. $\Phi(t) = f(\alpha(t), \beta(t))$

$$\Phi'(t) = \alpha'(t) \frac{\partial}{\partial x} f(\alpha(t), \beta(t)) + \beta'(t) \frac{\partial}{\partial u} f(\alpha(t), \beta(t))$$

2. $\psi(u, v) = f(a(u, v), b(u, v))$

$$\frac{\partial \psi}{\partial u}(u,v) = \frac{\partial a}{\partial u}(u,v)\frac{\partial f}{\partial x}(f(a(u,v)),b(u,v)) + \frac{\partial b}{\partial u}(u,v)\frac{\partial f}{\partial y}(f(a(u,v)),b(u,v))$$

$$\frac{\partial \psi}{\partial v}(u,v) = \frac{\partial a}{\partial v}(u,v)\frac{\partial f}{\partial x}(f(a(u,v)),b(u,v)) + \frac{\partial b}{\partial v}(u,v)\frac{\partial f}{\partial u}(f(a(u,v)),b(u,v))$$

3.
$$\zeta(x,y) = \alpha(f(x,y))$$

$$\frac{\partial \zeta}{\partial x}(x,y) = \frac{\partial f}{\partial x}(x,y)\alpha'(f(x,y))$$
$$\frac{\partial \zeta}{\partial y}(x,y) = \frac{\partial f}{\partial y}(x,y)\alpha'(f(x,y))$$

Différentielle:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

Formule des accroissements finis:

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k + \sqrt{h^2 + k^2}\varepsilon(h, k)$$

Taylor à l'ordre 2 :

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k$$
$$+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(x_0, y_0)h^2 + \frac{\partial^2 f}{\partial y^2}(x_0, y_0)k^2 + 2\frac{\partial^2 f}{\partial x \partial y}hk \right) + (h^2 + k^2)\varepsilon(h, k)$$

Condition nécessaire d'optimalité :

$$\frac{\partial f}{\partial x}(x^*, y^*) = \frac{\partial f}{\partial y}(x^*, y^*) = 0$$

Puis, repasser à Taylor:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(x_0, y_0)h^2 + \frac{\partial^2 f}{\partial y^2}(x_0, y_0)k^2 + 2\frac{\partial^2 f}{\partial x \partial y}hk \right) + (h^2 + k^2)\varepsilon(h, k)$$

2.1.3 Dérivées directionnelles

Définition:

$$Df(x,y) = \lim_{\lambda \to 0} \frac{f(x+\lambda y) - f(x)}{\lambda}$$

Remarque:

- 1. $Df(x, \overrightarrow{e_i}) = \frac{\partial f}{\partial x_i}(x)$
- 2. Si f est différentiable, alors Df(x,y) = Df(x)y

Théorème :

$$f(x^*) \le f(x), \forall x \in \mathbb{R}^n \Leftrightarrow Df(x^*, y) = 0, \forall y \in \mathbb{R}^n$$

Existence: Si f est continue et $\lim_{||x||\to\infty} f(x) = +\infty$ alors x^* existe **Unicité**: Si f est une fonction convexe, alors x^* , s'il existe, est unique

2.2 Analyse vectorielle

Produit scalaire : \overrightarrow{u} . $\overrightarrow{v} = 0 \Leftrightarrow \overrightarrow{u}$ et \overrightarrow{v} sont orthogonaux

$$\overrightarrow{u}.\overrightarrow{v} = \sum_{i=1}^{n} x_i y_i = ||x||.||y|| \cos \theta$$

Produit vectoriel : $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0} \Leftrightarrow \overrightarrow{u}$ et \overrightarrow{v} sont colinéaires

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \wedge \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

$$\overrightarrow{y} \wedge \overrightarrow{y} = -\overrightarrow{y} \wedge \overrightarrow{y}$$

Produit mixte : $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 0 \Leftrightarrow \overrightarrow{u}, \overrightarrow{v} \text{ et } \overrightarrow{w} \text{ sont coplanaires}$

 $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = (\overrightarrow{u} \wedge \overrightarrow{v}).\overrightarrow{w} = \text{volume du parallélépipède formé par } \overrightarrow{u}, \overrightarrow{v} \text{ et } \overrightarrow{w}$

Coordonées cylindriques :

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}, \theta \in [0, 2\pi[$$

Coordonées sphériques :

$$\begin{cases} x = \rho \cos \phi \cos \theta \\ y = \rho \cos \phi \sin \theta \\ z = \rho \sin \phi \end{cases}, \theta \in [0, 2\pi[, \phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[\right]]$$

Gradient:

$$\overrightarrow{\nabla} f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}; \overrightarrow{\nabla} (fg) = f \overrightarrow{\nabla} g + g \overrightarrow{\nabla} f$$

Rotationnel:

$$\overrightarrow{\operatorname{rot}}\overrightarrow{V} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} P(x,y,z) \\ Q(x,y,z) \\ R(x,y,z) \end{pmatrix}; \overrightarrow{\operatorname{rot}} f\overrightarrow{V} = f\overrightarrow{\operatorname{rot}}\overrightarrow{V} + \overrightarrow{\nabla} f \wedge \overrightarrow{V}$$

Divergence:

$$\operatorname{div} f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \, ; \, \begin{cases} \operatorname{div} \, f\overrightarrow{\overrightarrow{V}} = f \operatorname{div} \, \overrightarrow{V} + \overrightarrow{\nabla} f. \overrightarrow{V} \\ \operatorname{div} \, \overrightarrow{V}_1 \wedge \overrightarrow{V}_2 = \overrightarrow{V}_2 \overrightarrow{\operatorname{rot}} \overrightarrow{V}_1 - \overrightarrow{V}_1 \overrightarrow{\operatorname{rot}} \overrightarrow{V}_2 \end{cases}$$

Laplacien:

$$\Delta f = \operatorname{div} \overrightarrow{\nabla} f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Propositions:

$$\begin{split} &f \in C^2 \Rightarrow \overrightarrow{\operatorname{rot}} \overrightarrow{\nabla} f = 0 \\ &\overrightarrow{V} = (P,Q,R)^T \text{ avec } P,Q,R \in C^1,\overrightarrow{\operatorname{rot}} \overrightarrow{V} = 0 \Rightarrow \exists f \text{ tel que } \overrightarrow{\nabla} f = \overrightarrow{V} \\ &\overrightarrow{V} = (P,Q,R)^T \text{ avec } P,Q,R \in C^2, \operatorname{div } \overrightarrow{\operatorname{rot}} \overrightarrow{V} = 0 \\ &\overrightarrow{V} = (P,Q,R)^T \text{ avec } P,Q,R \in C^1, \operatorname{div } \overrightarrow{V} = 0 \Rightarrow \exists \overrightarrow{A} \text{ tel que } \overrightarrow{\operatorname{rot}} \overrightarrow{A} = \overrightarrow{V} \end{split}$$

2.3 Courbes et surfaces

2.3.1 Surfaces

Plan (cartésien) : Plan passant par M_0 et de normal $\overrightarrow{N} = (a, b, c)$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Plan (paramétrique): Plan passant par M_0 et contenant $\overrightarrow{u} = (\alpha, \beta\gamma)$ et $\overrightarrow{v} = (\alpha', \beta', \gamma')$

$$\begin{cases} x = x_0 + \alpha t + \alpha' t' \\ y = y_0 + \beta t + \beta' t' \\ z = z_0 + \gamma t + \gamma' t' \end{cases}, (t, t') \in \mathbb{R}^2$$

Distance d'un point à un plan : Plan P de normal \overrightarrow{N} contenat M_0

$$\delta(P, M) = \frac{|\overrightarrow{M_0M}.\overrightarrow{N}|}{||\overrightarrow{N}||}$$

Surface (cartésien):

$$f(x, y, z) = 0$$
 (implicite); $z = f(x, y)$ (explicite)

Surface (paramétrique):

$$\begin{cases} x = Q_1(t, t') \\ y = Q_2(t, t') \\ z = Q_3(t, t') \end{cases}, (t, t') \in \mathbb{R}^2$$

Surface de révolution : (S) est dite de révolution autour de (Δ) si l'intersection avec tout plan perpendiculaire à Δ est vide ou un cercle centré sur (Δ)

Vecteur normal à une surface :

Si la surface est définit par une équation cartésienne f(x,y,z)=0 alors $\overrightarrow{\nabla} f$ est normal à SSi la surface est définit par une équation paramétrique en Q_1,Q_2,Q_3 alors $\overrightarrow{N}=\overrightarrow{\nabla}_uQ\wedge\overrightarrow{\nabla}_vQ$ est normal à S

2.3.2Courbes

Droite (cartésien) : Vu comme l'intersection de deux plans

$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$

Droite (paramétrique): Droite de vecteur directeur $\overrightarrow{u} = (\alpha, \beta \gamma)$ et passant par M_0

$$\begin{cases} x = x_0 + \alpha t \\ y = y_0 + \beta t \\ z = z_0 + \gamma t \end{cases}, t \in \mathbb{R}$$

Distance d'un point à une droite : Droite (Δ) de vecteur directeur V et passant par M_0

$$\delta(M,\Delta) = \frac{||\overrightarrow{M_0M} \wedge \overrightarrow{V}||}{||\overrightarrow{V}||}$$

Courbe (cartésien): Vu comme l'intersection de deux Surfaces

$$\begin{cases} f_1(x, y, z) = 0 \\ f_2(x, y, z) = 0 \end{cases}$$

Courbe (paramétrique):

$$\begin{cases} x = Q_1(t) \\ y = Q_2(t) \\ z = Q_3(t) \end{cases}, t \in \mathbb{R}$$

Vecteur tangent à une courbe :

Si C est définit par des équations cartésiennes en f_1 et f_2 alors e vecteur $\overrightarrow{v} = \overrightarrow{\nabla} f_1 \wedge \overrightarrow{\nabla} f_2$ est tangent à C Si C est définit par un système d'équation paramétrique en Q_1, Q_2, Q_3 alors le vecteur $\overrightarrow{v} = \overrightarrow{\nabla} Q$ est tangent à C

Surfaces usuelles:

TODO: sur scilab tracer

- 1. Ellipsoïde
- 2. Cyclindre elliptique
- 3. hyperboloïde à une et deux nappe(s)
- 4. paraboloïde
- 5. cône

2.4 Intégrales dans \mathbb{R}^n

2.4.1 Intégrales doubles

Théorème : Si $D = [a, b] \times [c, d]$

$$\iint_D f(x)g(y)dxdy = \left(\int_a^b f(x)dx\right)\left(\int_c^d g(y)dy\right)$$

Théorème de Fubini : Si $D = \{(x,y) \in \mathbb{R} | a < x < b, \Phi_1(x) < y < \Phi_2(x) \}$ alors

$$\iint_D f(x,y)dxdy = \int_a^b \left(\int_{\Phi_1(x)}^{\Phi_2(x)} f(x,y)dy \right) dx$$

Aire d'un domaine :

$$\iint_D dxdy = \text{Aire du domaine } D$$

Masse d'un domaine : Si on note $\mu(x,y)$, la masse surfacique du domaine alors la masse m du domaine est donnée par

$$\iint_D \mu(x,y) dx dy$$

Centre de gravité:

$$\begin{cases} x_G = \frac{1}{m} \iint_D x \mu(x, y) dx dy \\ y_G = \frac{1}{m} \iint_D y \mu(x, y) dx dy \end{cases}$$

Matrice Jacobienne:

$$J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

Changement de variable : (En coordonées polaire : |J| = r)

$$\iint_{D} f(x,y)dxdy = \iint_{D} elta|J|f(\zeta(u,v),\eta(u,v))dudv$$

Moment d'inertie par rapport à une droite :

$$\mathcal{J}_{\Delta} = \iint_{D} [\delta(M, \Delta)]^{2} \mu(x, y) dx dy$$

Moment d'inertie par rapport à un point :

$$\mathcal{J}_{A} = \iint_{D} [\delta(M, A)]^{2} \mu(x, y) dx dy = \iint_{D} [(x - x_{A})^{2} + (y - y_{A})^{2}] \mu(x, y) dx dy$$

2.4.2 Intégrales triples

Théorème : Si $D = [a, b] \times [c, d] \times [e, i]$

$$\iiint_D f(x)g(y)h(z)dxdydz = \left(\int_a^b f(x)dx\right)\left(\int_c^d g(y)dy\right)\left(\int_e^i h(z)dz\right)$$

Méthode des bâtons : On note D_0 la projection de V sur (xOy)

$$\iiint_V f(x,y,z)dxdydz = \iint_{D_0} \left(\int_{\zeta(x,y)}^{\varphi(x,y)} f(x,y,z)dz \right) dxdy$$

Méthode des tranches :

$$\iiint_V f(x,y,z)dxdydz = \int_a^b \left(\iint_{D(z)} f(x,y,z)dxdy\right)dz$$

Matrice Jacobienne:

$$\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{pmatrix}$$

Changement de variable : (En sphérique : $|J| = r^2 |\cos \varphi|$)

$$\iiint_V f(x,y,z) dx dy dz = \iiint_{\Lambda} |J| f(\epsilon(u,v,w), \eta(u,v,w), \zeta(u,v,w)) du dv dx$$

Masse d'un volume :

$$\iiint_D \mu(x,y,z) dx dy dz$$

Centre de gravité:

$$\begin{cases} x_G = \frac{1}{m} \iiint_V x\mu(x, y, z) dx dy dz \\ y_G = \frac{1}{m} \iiint_V y\mu(x, y, z) dx dy dz \\ z_G = \frac{1}{m} \iiint_V z\mu(x, y, z) dx dy dz \end{cases}$$

Moment d'inertie par rapport à une droite :

$$\mathcal{J}_{\Delta} = \iiint_{V} [\delta(M, \Delta)]^{2} \mu(x, y, z) dx dy dz$$

Moment d'inertie par rapport à un point :

$$\mathcal{J}_{A} = \iiint_{V} [\delta(M,A)]^{2} \mu(x,y,z) dx dy dz = \iiint_{V} [(x-x_{A})^{2} + (y-y_{A})^{2} + (z-z_{A})^{2}] \mu(x,y,z) dx dy dz$$

Moment d'inertie par rapport à un plan :

$$\mathcal{J}_{P} = \iiint_{V} [\delta(M, P)]^{2} \mu(x, y, z) dx dy dz$$

Théorème de Guldin : Si S est un volume de révolution engendré par le domaine (D) autour de l'axe (Oz) alors :

$$V(S) = 2\pi x_G A(D)$$

2.4.3 Intégrales curvillignes

Abscisse curvilligne:

$$s(t) = \int_{t_0}^{t} \sqrt{x'(t) + y'(t) + z'(t)} dt$$

Notation:

$$ds = \sqrt{x'(t) + y'(t) + z'(t)}dt$$

Longueur d'arc:

$$\int_{\theta_0}^{\theta_1} \sqrt{\rho^2(\theta) + \rho'(\theta)} d\theta$$

Masse d'un fil:

$$m = \left| \int_{\Gamma} \mu(s) ds \right|$$

Circulation d'un champ de vecteur : Soit C une courbe paramétrée d'extrémité A et B et d'équation $\left\{x(t),y(t),z(t)\right\}$,

 $t \in [t_A, t_B]$ alors $\forall \overrightarrow{V} = \begin{pmatrix} P(x, y, z) \\ Q(x, y, z) \\ R(x, y, z) \end{pmatrix}$, on définit la circulation de \overrightarrow{V} le long de AB par

$$\mathcal{T}_{AB} = \int_{AB} \overrightarrow{V} \cdot \overrightarrow{dl} = \int_{AB} \left(P(M)dx + Q(M)dy + R(M)dz \right) = \int_{t_A}^{t_B} \left(x'(t)P(M) + y'(t)Q(M) + z'(t)R(M)dt \right)$$

Circulation d'un champ de vecteur dérivant d'un potentiel scalaire : Si $\overrightarrow{\operatorname{rot}}\overrightarrow{V}=0$ alors $\exists f$ telle que $\overrightarrow{\nabla}f=\overrightarrow{V}$ et on a $\mathcal{T}_{AB}=f(B)-f(A)$

Formule de Green-Rieman : Soit $D \in \mathbb{R}^2$ limité par Γ et orienté dans le sens direct, sans point double. $\forall P, Q$,

$$\int_{\Gamma} P(x,y) dx + Q(x,y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dx dy$$

Aire d'un domaine avec Green-Rieman : En prenant $P(x,y)=-\frac{1}{2}y$ et $Q(x,y)=\frac{1}{2}x$ on a $\frac{\partial Q}{\partial x}(x,y)-\frac{\partial P}{\partial y}(x,y)=1$ d'où

$$A(D) = \iint_D dx dy = \int_{\Gamma} x dy = \frac{1}{2} \int_{\Gamma} x dy - y dx$$
$$A(D) = \frac{1}{2} \int_{\theta_0}^{\theta_1} \rho^2(\theta) d\theta \text{ (en polaire)}$$

2.4.4 Intégrales surfaciques

Aire d'une surface paramétrée en (u, v):

$$A(S) = \iint_{\Delta} ||\overrightarrow{T_u} \wedge \overrightarrow{T_v}|| du dv \text{ avec } \overrightarrow{T_u} = \begin{pmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial u} \end{pmatrix} \text{ et } \overrightarrow{T_v} = \begin{pmatrix} \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial v} \end{pmatrix}, (u, v) \in \Delta$$

Aire d'une surface explicité en z:

$$A(S) = \iint_D \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial x}\right)^2 + 1} dx dy, (x, y) \in D$$

Notation:

$$d\sigma = ||\overrightarrow{T_u} \wedge \overrightarrow{T_v}|| du dv$$

Masse d'une surface :

$$m = \iint_{S} \mu(M) d\sigma$$

Centre de gravité:

$$\begin{cases} x_G = \frac{1}{m} \iint_S x\mu(M) d\sigma \\ y_G = \frac{1}{m} \iint_S y\mu(M) d\sigma \\ z_G = \frac{1}{m} \iint_S z\mu(M) d\sigma \end{cases}$$

Moment d'inertie :

$$\mathcal{J}_{\Delta} = \iint_{S} [\delta(M\Delta)]^{2} \mu(M) d\sigma$$

Vecteur normal à une surface (paramétrée) :

$$\overrightarrow{n_1} = -\overrightarrow{n_2} = \frac{\overrightarrow{T_u} \wedge \overrightarrow{T_v}}{||\overrightarrow{T_u} \wedge \overrightarrow{T_v}||}$$

Vecteur normal à une surface (explicitée en z):

$$\overrightarrow{n_1} = -\overrightarrow{n_2} = \begin{pmatrix} -\frac{\partial f}{\partial x} \\ -\frac{\partial f}{\partial y} \\ 1 \end{pmatrix} \times \frac{1}{\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial x}\right)^2 + 1}}$$

Orientation d'une surface : L'orientation associée au vecteur \overrightarrow{n} est faite dans le même sens du mouvement d'un tire-bouchon qui s'enfonce dans la direction de \overrightarrow{n}

Flux d'un champ de vecteur :

$$\Phi_S(\overrightarrow{V}) = \iint_S \overrightarrow{V} \cdot \overrightarrow{n} d\sigma$$

2.5 Théorèmes intégraux

2.5.1 Théorème de Stokes-Ampères

Soit S une surface de \mathbb{R}^3 et Γ le bord de S (courbe fermée), alors pour $\overrightarrow{V}=(P(M),Q(M),R(M))^T$ on a

$$\iint_{S} \overrightarrow{\operatorname{rot}} \overrightarrow{V} = \oint_{\Gamma} P dx + Q dy + R dz$$

C'est-à-dire

$$\mathcal{T}_{\Gamma}(\overrightarrow{V}) = \Phi_{S}(\overrightarrow{\operatorname{rot}}\overrightarrow{V})$$

2.5.2 Théorème de Gauss-Ostrogradski

Soit V un volume de \mathbb{R}^3 limité par une surface Σ , on a

$$\iiint_{V} \operatorname{div} \overrightarrow{V} = \iint_{\Sigma} \overrightarrow{V} . \overrightarrow{n} d\sigma = \Phi_{\Sigma}(\overrightarrow{V})$$

Algèbre linéaire (MT23)

3.1 Espace vectoriels

Groupe: (G, +) est un groupe si:

- + est une loi de composition interne
- + est associative
- + admet un élement neutre e dans G tel que $\forall x \in G, x+e=e+x=x$
- Tout élement de G admette un symétrique $(\forall x \in G, \exists \bar{x} \text{ tel que } x + \bar{x} = \bar{x} + x = e)$

Espace vectoriel : $(E, +, .)_K$ est un K-espace vectoriel si

- --(E,+) est un groupe commutatif
- . est une loi de composition externe $K \times E \to E$
- . vérifie les propriétés suivantes $(\forall \lambda, \mu \in K, \forall \overrightarrow{u}, \overrightarrow{v} \in E)$

$$-(\lambda \mu).\overrightarrow{x} = \lambda.(\mu \overrightarrow{x})$$

$$-(\lambda + \mu).\overrightarrow{x} = \lambda \overrightarrow{x} + \mu \overrightarrow{x}$$

$$-\lambda \cdot (\overrightarrow{x} + \overrightarrow{y}) = \lambda \overrightarrow{x} + \lambda \overrightarrow{y}$$

$$-1_{K}$$
. $\overrightarrow{x} = \overrightarrow{x}$

Sous-espace vectoriel : (F, +, .) est un sous-espace vectoriel de (E, +, .) si $F \subset E$ et (F, +, .) est un espace vectoriel

Caractérisation : $F \subset E$ est un sous-espace vectoriel de (E, +, .) si et seulement si

- $--F\neq\emptyset$
- $-\forall \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{x} + \overrightarrow{y} \in F$
- $\forall \lambda \in K, \forall \overrightarrow{x} \in F, \lambda \overrightarrow{x} \in F$

Somme:

$$F + G = \{z \in E | z = x + y, x \in F, y \in E\}$$

Sous-espace supplémentaire : F et G sont supplémentaire dans E si

$$E = F \oplus G \Leftrightarrow E = F + G \text{ et } F \cap G = \{\overrightarrow{0}\}\$$

Famille liée : $(\overrightarrow{x_1}, \dots \overrightarrow{x_p})$ est liée s'il existe $\lambda_1, \dots, \lambda_p$ non tous nuls tel que

$$\sum_{i=1}^{n} \lambda_i \overrightarrow{x_i} = 0$$

Famille libre (famille non liée):

$$\sum_{i=1}^{n} \lambda_i = 0 \overrightarrow{x_i} = 0 \Rightarrow \lambda_i = 0, \forall i$$

Sous-espace vectoriel engendré:

$$\overrightarrow{x} \in \text{vect } \langle \overrightarrow{x_1}, \dots, \overrightarrow{x_p} \rangle \Leftrightarrow \exists \lambda_1, \dots, \lambda_p \in K, \overrightarrow{x} = \sum \lambda_i \overrightarrow{x_i}$$

Base : famille libre et génératrice

Théorème de la base incomplète : Si \mathcal{G} est une famille génératrice de E et \mathcal{L} une famille libre avec $\mathcal{L} \subset \mathcal{G}$, alors il existe une base \mathcal{B} de E telle que $\mathcal{L} \subset \mathcal{B} \subset \mathcal{G}$

Théorème d'existence : Tout espace vectoriel fini, non trivial, possède une base

Dimension : nombre d'élément d'une base

Propositions sur les bases : E est un espace vectoriel de dimension n, \mathcal{F} une famille de p vecteur

- Si p = n et \mathcal{F} est, soit libre, soir génératrice, alors \mathcal{F} est une base de E
- Si p > n alors \mathcal{F} est liée
- Si p < n alors \mathcal{F} n'est pas génératrice

Propositions sur les dimensions : E est un espace vectoriel de dimension n, F et G sont deux sous-espaces vectoriels de E

- $\dim F \leq \dim E$
- $-F = E \Leftrightarrow \dim F = \dim E$
- $--\dim F + G = \dim F + \dim G \dim F \cap G$
- $--\dim F \oplus G = \dim F + \dim G$

3.2 Applications linéaires et matrices

3.2.1 Applications linéaires

E et F sont deux espaces vectoriels sur un même corps K

Application linéaire : $f: E \to F$ est une application linéaire si

$$f(\overrightarrow{x} + \lambda \overrightarrow{y}) = f(\overrightarrow{x}) + \lambda f(\overrightarrow{y})$$

En particulier on a : $f(\overrightarrow{0}_E) = \overrightarrow{0}_F$

Ensemble des applications linéaires : $\mathcal{L}(E, F)$

Noyeau: Sous-espace vectoriel de E tel que

$$\operatorname{Ker} f = \{ \overrightarrow{x} \in E \text{ tel que } f(\overrightarrow{x}) = \overrightarrow{0} \}$$

Image: Sous-espace vectoriel de F tel que

$$\operatorname{Im}\, f=\{\overrightarrow{y}\in F \text{ tel que } \exists \overrightarrow{x}\in E, \overrightarrow{y}=f(\overrightarrow{x})\}$$

Rang:

$$\operatorname{rang}\, f = \dim \operatorname{Im}\, f$$

Image d'une famille : Soit $f \in \mathcal{L}(E, F)$

- L'image par f d'une famille liée de E est une famille liée de F
- L'image par f d'une famille génératrice de E est une famille génératrice de F

Application injective:

- f injective \Leftrightarrow Ker $f = \{\overrightarrow{0_E}\}$
- Si f est injective alors l'image par f d'une famille libre de E est une famille libre de F

Application surjective:

- f surjective \Leftrightarrow Ker f = F
- Si f est surjective alors l'image par f d'une famille génératrice de E est une famille génératrice de F

Application bijective:

- f bijective \Leftrightarrow Ker = $\{0\}$ et Im f = F
- Si f est bijective alors l'image d'une base de E est une base de F

Définitions:

Homomorphisme : application linéaire de E dans F **Endomorphisme** : application linéaire de E dans E **Isomorphisme** : bijection linéaire de E dans F E et F sont isomorphes \Leftrightarrow dim $E = \dim F$

 $\mathbf{Automorphisme}$: bijection linéaire de E dans E

Théorème du rang :

 $\dim \operatorname{Ker} f + \operatorname{rang} f = \dim E$

3.2.2 Matrices

Soient f et g deux applications linéaires telles que :

Définition : Pour chaque élément de ${\mathcal E}$ on a :

$$f(\overrightarrow{e_j}) = \sum_{i=1}^{m} a_{ij} \overrightarrow{f_i}$$

On appelle matrice associé à f le tableau M_f de scalaire suivant :

$$\begin{pmatrix}
f(\overrightarrow{e_1}) & \dots & f(\overrightarrow{e_j}) & \dots & f(\overrightarrow{e_n}) \\
a_{11} & \dots & a_{1j} & \dots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{m1} & \dots & a_{mj} & \dots & a_{mm}
\end{pmatrix} \quad \overrightarrow{f_1}$$

Somme de matrices : $c_{ij} = a_{ij} + b_{ij}$ (associé à f + g) Produit par un scalaire : $c_{ij} = \lambda a_{ij}$ (associé à λf)

Produit de matrices : (associé à $g \circ f$)

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$E \qquad f \qquad F \qquad g \qquad G$$

$$\mathcal{E} = (\overrightarrow{e_1}, \dots, \overrightarrow{e_n}) \qquad M_f \qquad \mathcal{F} = (\overrightarrow{f_1}, \dots, \overrightarrow{f_n}) \qquad M_g \qquad \mathcal{G} = (\overrightarrow{g_1}, \dots, \overrightarrow{g_n})$$

$$E \qquad g \circ f \qquad G$$

$$\mathcal{E} = (\overrightarrow{e_1}, \dots, \overrightarrow{e_n}) \qquad M_{g \circ f} = M_g M_f \qquad \mathcal{G} = (\overrightarrow{g_1}, \dots, \overrightarrow{g_n})$$

$$\textbf{Image d'un vecteur} : \text{Si } \overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = X \text{ et } \overrightarrow{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = Y \text{ image de } \overrightarrow{x} \text{ par } f \text{ alors } Y = M_f X$$

Inverse d'une matrice carée : Si $CM_f=M_fC=I$ alors $C=M_{f^{-1}}$ est appelée inverse de M_f Et $(AB)^{-1}=B^{-1}A^{-1}$

Transposée d'une matrice : $(A^T)_{ij} = A_{ji}$ Et $(AB)^T = B^T A^T$ Matrice de passage : La matrice de passage de la base \mathcal{E} à la base \mathcal{E}'

$$E \qquad id_E \qquad E$$

$$\mathcal{E}' = (\overrightarrow{e_1}, \dots, \overrightarrow{e_n}) \qquad P \qquad \mathcal{E} = (\overrightarrow{e_1}, \dots, \overrightarrow{e_m})$$

$$P = \begin{pmatrix} \overrightarrow{e_1} & \dots & \overrightarrow{e_j} & \dots & \overrightarrow{e_n} \\ a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mm} \end{pmatrix} \xrightarrow{\overrightarrow{e_1'}} \stackrel{P}{\underset{e_m'}{\longrightarrow}}$$

Changement de base (composantes d'un vecteur) : Si P est la matrice de passage de \mathcal{E} à \mathcal{E}' , alors les coordonées de X' dans \mathcal{E}' en fonction des coordonées X dans \mathcal{E} sont données par $X = PX' \Leftrightarrow X' = P^{-1}X$

Changement de base d'un même espace (E = F):

 M_f est la matrice associée à f quand on choisit la base \mathcal{E} M_f' est la matrice associée à f quand on choisit la base \mathcal{E}' P est la matrice de passage de \mathcal{E} à \mathcal{E}'

Changement d'espace vectoriel:

 \mathcal{E} et \mathcal{E}' sont deux bases de E \mathcal{F} et \mathcal{F}' sont deux bases de F M_f est la matrice associée à f de \mathcal{E} à \mathcal{F} M_f' est la matrice de passage de \mathcal{E} à \mathcal{E}' Q est la matrice de passage de \mathcal{F} à \mathcal{F}'

Image d'une matrice : Im $M_f = \text{vect} < M_{f_1}, \dots, M_{f_n} >$

$$Y \in \text{Im } M_f \Leftrightarrow X \in \mathcal{M}_{n1} \text{ tel que } Y = M_f X$$

Rang d'une matrice :

rang $M_f = \dim \operatorname{Im} M_f = \text{ nombre de colonnes linéairements indépendants de la matrice}$

Théorème du rang :

$$\dim \operatorname{Ker} M_f + \operatorname{rang} M_f = \dim E$$

Noyau d'une matrice :

$$Ker A = \{X \in \mathcal{M}_{n1} \text{ tel que } AX = 0\}$$

Condition d'inversibilité d'une matrice :

 M_f inversible $\Leftrightarrow f$ inversible

3.3 Déterminants et systèmes linéaires

3.3.1 Déterminants

Notation : On note $A_{[i,j]}$ la matrice obtenue, à partir de A en ôtant la i-ième ligne et la j-ième colonne

Définition: $\det \mathcal{M}_{n,n} \to K$

Si n = 1, A = (a) et $\det A = a$

Si n > 1, det $A = a_{11} \det A_{[1,1]} + \dots + (-1)^{k+1} a_{1k} \det A_{[1,k]} + \dots + (-1)^{n+1} \det A_{[1,n]}$

Développement selon la i-ième ligne :

$$\det A = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{|i,j|}$$

Co-facteur:

$$cof(a_{ij}) = (-1)^{i+j} \det A_{|i,j|}$$

Co-matrice:

$$[co(A)]_{ij} = cof(a_{ij})$$

Transposée:

$$\det A = \det A^T$$

Matrice triangulaire:

$$A \text{ triangulaire} \Rightarrow \det A = \sum_{i=1}^{n} a_{ii}$$

Matrice à coefficient complexe :

$$\det \overline{A} = \overline{\det A}$$

Déterminant d'une famille de vecteur : Si on note X la matrice dont les colonnes sont les coordonées des $\overrightarrow{x_i}$ dans une base donnée alors $\det(\overrightarrow{x_1}, \dots, \overrightarrow{x_n}) = \det X$

Multi-linéarité:

$$\det(A_1,\ldots,\lambda A_k,\ldots,A_n) = \lambda \det(A_1,\ldots,A_k,\ldots,A_n)$$

$$\det(A_1,\ldots,A_{k-1},B+C,A_{k+1},\ldots,A_n) = \det(A_1,\ldots,A_{k-1},B,A_{k+1},\ldots,A_n) + \det(A_1,\ldots,A_{k-1},C,A_{k+1},\ldots,A_n)$$

Colonnes et lignes:

- Le déterminant est une fonction multi-linéaire des clonnes/lignes
- Si deux colonnes/lignes sont égales, le déterminant est nul
- Si on échange entre elles deux colonnes/lignes, le déterminant change de signe
- Si, à une colonne, on ajoute une combinaison linéaire des autres colonnes, le déterminant ne change pas
- Si, à une ligne, on ajoute une combinaison linéaire des autres lignes, le déterminant ne change pas

Produit de matrices:

$$\det AB = \det B \det A$$

Matrice inversible:

A inversible
$$\Leftrightarrow \det A \neq 0$$
 et $\det A^{-1} = \frac{1}{\det A}$

Base d'un espace vectoriel :

$$(\overrightarrow{a_1},\ldots,\overrightarrow{a_n})$$
 est une base de $E\Leftrightarrow\det(\overrightarrow{a_1},\ldots,\overrightarrow{a_n})\neq 0$

Rang d'une matrice : La rang de A est le plus grand entier r tel qu'il existe une matrice inversible de dimension r extraite de A

De plus, rang $A = \operatorname{rang} A^T$

Famille libre: Soit $H = (\overrightarrow{x_1}, \dots, \overrightarrow{x_n})$ une famille de vecteur de E, si on note X la matrice dont les colonnes sont les coordonnées des vecteurs $\overrightarrow{x_i}$, alors H est une famille libre s'il existe une matrice inversible $n \times n$ extraite de X

3.3.2 Systèmes linéaires Ax = b

$$Ax = b \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Existence de solution (matrice carrée) :

Si det $A \neq 0$ le système admet une unique solution quelque soit b Sinon si $b \in \text{Im } A$ alors le système admet une infinité de solution Sinon, il n'en admet aucune

Méthode de Cramer (matrice carrée) :

 $x_i = \frac{\det A_{[i]}}{\det A}$ avec $A_{[i]}$ la matrice carrée formée en remplaçant la i-ième colonne de A par b

Existence de solution (cas générale) : On pose r = rang A

Si les r premières colonnes forment une famille libre, alors

Ax = b admet une unique solution $\Leftrightarrow b \in \text{vect} < A_1, \dots, A_r > b$

Méthode de Cramer (cas générale) :

On note $r = \operatorname{rang} A$

On note A^* une matrice inversible $r \times r$ extraite de A

On note \hat{A} la matrice extraite de A dont les lignes correspondent à celles de A utilisées pour construire A^*

$$Ax = b \Leftrightarrow \begin{cases} \hat{A}x = \hat{b} \\ x \text{ vérifie les } (n-r) \text{ dernières équations} \end{cases} \Leftrightarrow \begin{cases} A^*x = b^* - \sum_{j=r+1}^{n-r} x_j \hat{A}_j \\ x \text{ vérifie les } (n-r) \text{ dernières équations} \end{cases}$$

Calcul de l'inverse d'une matrice : Il s'agit de résoudre $\forall j, A(A^{-1})_j = I_j$

$$A^{-1} = \frac{1}{\det A} (co(A))^T$$

3.4 Valeurs propres et diagonalisation

3.4.1 Valeurs propres

Valeur propre d'un endomorphisme : $\lambda \in K$ est une valeur propre de $f \in \mathcal{L}(E,F) \Leftrightarrow \exists \overrightarrow{y} \in E, \overrightarrow{y} \neq \overrightarrow{0}$ tel que

$$f(y) = \lambda \overrightarrow{y}$$

Valeur propre d'une matrice : $\lambda \in K$ est une valeur propre de $\mathcal{M}_{nm}(K) \Leftrightarrow \exists Y \in \mathcal{M}_{n1}, Y \neq 0$ tel que

$$AY = \lambda Y$$

Couple propre : (λ, Y) avec λ valeur propre et Y un vecteur propre associé à λ

Polynôme caractéristique :

$$\pi_A(s) = \det(sI - A)$$

Caractérisation d'une valeur propre :

$$\lambda$$
 valeur propre de $A \Leftrightarrow \pi_A(s) = 0$

Multiplicité d'une valeur propre : On dit que λ est une valeur propre de A de multiplicité r si λ est une racine de multiplicité r de π_A

De plus, si $A \in \mathcal{M}_{nn}(\mathbb{C})$ admet p valeurs propres $\lambda_1, \ldots, \lambda_n$ de multiplicité r_1, \ldots, r_p , alors $\sum_{i=1}^p r_i = n$

Propriétés:

- Si $A \in \mathcal{M}_{nn}(\mathcal{C})$ alors $\bar{\lambda}$ valeur propre de A
- Si A est diagonnale alors les valeurs propres de A sont ses termes diagonaux
- A et A^T ont les mêmes valeurs propres
- Deux matrices semblables ont les mêmes valeurs propres
- Si μ_1, \ldots, μ_n sont les valeurs propres de $A \in \mathcal{M}_n n(K)$ alors

trace
$$A = \sum_{i=1}^{n} \mu_i$$
 et $\det A = \prod_{i=1}^{n} \mu_i$

Sous-espace propre : Si λ est valeur propre de A, alors le sous-espace propre associé est

$$V_{\lambda} = \{Y \in \mathcal{M}_{n1} | AY = \lambda Y\} = \ker(A - \lambda I)$$

Famille de veteurs propres : Si $\lambda_1, \ldots, \lambda_p$ sont des valeurs propres distinctes de A, alors (Y_1, \ldots, Y_p) est une famille libre $(Y_i$ associé à $\lambda_i)$

Dimension d'un sous-espace propre : Si λ est une valeur propre de multiplicité m de An alors dim $V_{\lambda} \leq m$ Théorème de Cayley-Hamilton :

$$\pi_A(A) = 0$$

Diagonalisation

Diagonalisation : A est dite diagonalisable dans K s'il existe $D \in \mathcal{M}_{nn}(K)$ diagonale et $P \in \mathcal{M}_{nn}(K)$ inversible telle que

$$A = P^{-1}DP$$

Condition nécessaire et suffisante de diagonalisation : Soit $A \in \mathcal{M}_{nn}(K)$ et $\lambda_1, \ldots, \lambda_k$ les k valeurs propres de de multiplicité m_1, \ldots, m_k , alors, les propositions suivantes sont équivalentes :

- A diagonalisable
- $-- \forall i = 1, \ldots, k, \dim \ker(A \lambda_i I) = m_i$
- $--\sum_{i=1}^{n} \dim \ker(A \lambda_i I) = n$

Condition suffisante de diagonalisation : $A \in \mathcal{M}_{nn}(K)$, si A admet n valeurs propres distinctes dans K alors A est diagonalisable dans K

Proposition : Si λ est valeur propre de $A \in \mathcal{M}_{nn}(R)$ de multiplicité n, alors A diagonalisable $\Leftrightarrow A = \lambda I$ Calcul pratique :

- 1. Déterminer les valeurs propres de $A: \lambda_1, \ldots, \lambda_k$
- 2. Déterminer les sous-espaces propres de A pour chaque λ_i (dim $V_i = m_i$)
- 3. On a alors:

$$P = \left(\underbrace{Y_1, Y_2, \dots, Y_p}_{\text{associés à } \lambda_1}, \underbrace{Y_{p+1}, \dots, Y_q}_{\text{associés à } \lambda_2}, \dots, \underbrace{Y_m, \dots, Y_n}_{\text{associés à } \lambda_k}\right)$$

4.
$$D = P^{-1}AP$$

Triangulisation: Toute matrice à coefficients complexes est semblable à une matrice triangulaire supérieure **Application**: Caclul de puissance:

$$A = PDP^{-1} \Rightarrow A^k = PD^kP^{-1}$$

Application : Résolution d'un système de suite récurrente : Soient (u_n) et (v_n) deux suites réelles définis par

$$\begin{cases} u_0, v_0 \text{ données} \\ u_{n+1} = a_{11}u_n + a_{12}v_n \\ v_{n+1} = a_{21}u_n + a_{22}v_n \end{cases}$$

En posant

$$X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} \text{ et } A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

On a alors

$$X_{n+1} = AX_n$$
 et donc $X_n = A^n X_0$

3.5 Espaces euclidiens

3.5.1 Généralités

Produit scalaire : $(x,y) \mapsto \langle x,y \rangle, E^2 \to \mathbb{R}$ est un produit scalaire si elle vérifie les propriétés suivantes

- 1. Symétrique : $\langle x, y \rangle = \langle y, x \rangle$
- 2. Linéarité : $\langle x_1 + \mu x_2, y \rangle = \langle x_1, y \rangle + \mu \langle x_2, y \rangle$
- 3. Positivité: $\forall x \in E, \langle x, x \rangle \geq 0$ et $\langle x, x \rangle = 0 \Rightarrow x = 0$

Inégalité de Cauchy-Schwarz:

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

Famille liée:

$$(x,y)$$
 est liée $\Leftrightarrow \langle x,y\rangle^2 = \langle x,x\rangle\langle y,y\rangle$

Norme : $x \mapsto ||x||, E \to \mathbb{R}^+$ est une norme si elle vérifie les propriétés suivantes

- 1. Séparativité : $||x|| = 0 \Rightarrow x = 0$
- 2. Homogénéité : $||\alpha x|| = |\alpha| . ||x||, \forall \alpha \in \mathbb{R}$
- 3. Inégalité triangulaire : $||x+y|| \le ||x|| + ||y||$

Proposition: Soit E un espace vectoriel muni d'un produit scalaire alors $x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E

Vecteurs orthogonaux : x, y orthogonaux $\Leftrightarrow \langle x, y \rangle = 0$

Famille de vecteur orthogonale : (x_1, \ldots, x_p) est dite orthogonale si $\langle x_i, x_j \rangle = 0, \forall i, j, i \neq j$

Famille de vecteur orthonormée : (x_1, \ldots, x_p) est dite orthonormée si elle est orthogonale et si $||x_i|| = 1, \forall i$

Théorème de Pythagore :

$$\langle x, y \rangle = 0 \Leftrightarrow ||x + y||_2^2 = ||x||_2^2 + ||y||_2^2$$

Sous-espace orthogonal:

$$F^{\perp} = \{ x \in E | \forall y \in F, \langle x, y \rangle = 0 \}$$

Caractérisation : Si $F = \text{vect} < f_1, \dots, f_p >$

$$x \in F^{\perp} \Leftrightarrow \langle x, f_i \rangle = 0, \forall i$$

Famille libre: Toute famille orthogonale de vecteurs non nuls d'un espace euclidien est libre

Théorème: Soit E un espace euclidien et F un sous-espace vectoriel de E, alors

$$E = F \oplus F^{\perp}$$

Espaces orthogonaux : Si $F = \text{vect} < f_1, \dots, f_p > \text{et } G = \text{vect} < g_1, \dots, g_q > \text{alors}$

$$F, G$$
 orthogonaux $\Leftrightarrow \langle f_i, q_i \rangle = 0, \forall i, j$

Proposition: Si F et G sont orthogonaux alors $F \cap G = \{0\}$

Procédé d'orthogonalisation de Gramm-Schmidt : Si (x_1, x_2, \dots, x_p) est une famille libre de E, alors il existe une famille orthonormée (y_1, y_2, \dots, y_p) telle que vect (x_1, x_2, \dots, x_p) evect (x_1, x_2, \dots, x_p) vect (x_1, x_2, \dots, x_p) telle que vect (x_1, x_2, \dots, x_p) est une famille libre de (x_1, x_2, \dots, x_p) telle que vect (x_1, x_2, \dots, x_p) est une famille libre de (x_1, x_2, \dots, x_p) telle que vect (x_1, x_2, \dots, x_p) est une famille libre de (x_1, x_2, \dots, x_p) telle que vect (x_1, x_2, \dots, x_p) est une famille libre de (x_1, x_2, \dots, x_p) telle que vect (x_1, x_2, \dots, x_p) est une famille libre de (x_1, x_2, \dots, x_p) telle que vect (x_1, x_2, \dots, x_p) est une famille libre de (x_1, x_2, \dots, x_p) telle que vect (x_1, x_2, \dots, x_p) est une famille libre de (x_1, x_2, \dots, x_p) est une famille libre

- $p = 1: y_1 = \frac{x_1}{||x_1||}$ on a alors vect $\langle x_1 \rangle = \text{vect} \langle y_1 \rangle$
- p=2: on pose $\hat{y}_2=x_2+\beta y_1$ et $y_2=\frac{\hat{y}_2}{||\hat{y}_2||}$

Par construction, on a vect $\langle x_1, x_2 \rangle = \text{vect} \langle y_1, y_2 \rangle \text{ et } \langle \hat{y}_2, y_1 \rangle = \langle x_2 + \beta y_1, y_1 \rangle = 0 \Rightarrow \beta = -\langle x_2, y_1 \rangle$

— p=3: on pose $\hat{y}_3=x_3+\beta_1y_1+\beta_2y_2$ et $y_3=\frac{y_3}{||y_3||}$ et $\beta_1=-\langle x_3,y_1\rangle,\ \beta_2=-\langle x_3,y_2\rangle$

— ...

Projection orthogonale : Soit F un sous-espace de E, et soit (f_1, f_2, \dots, f_p) une base orthonormée de F, alors $\forall x \in E, x = x_F + x_{F^{\perp}}$

$$x_F = \sum_{k=1}^{p} \langle x, f_i \rangle f_i$$

3.5.2 Matrices orthogonales

Définition: $Q \in \mathcal{M}_{nn}(K)$ est orthogonale si et seulement si

$$(Q_i)^T Q_j = \delta_{ij}$$
 (Kronecker)

Condition nécessaire et suffisante :

$$Q$$
 orthogonale $\Leftrightarrow Q^TQ = I$ (i.e. $Q^T = Q^{-1}$)

 ${\bf Matrice\ de\ passage}\ : La\ matrice\ de\ passage\ entre\ deux\ bases\ orthonorm\'ees\ est\ une\ matrice\ orthogonale$

Stablité: Soient $A, B \in \mathcal{M}_{nn}(K)$ deux matrices orthogonales

- A^T est orthogonale
- -AB est orthogonale

Propositions:

- Q orthogonale $\Leftrightarrow \forall x \in \mathbb{R}^n, ||x|| = ||Qx||$ (norme usuelle de \mathbb{R}^n)
- Q orthogonale $\Leftrightarrow \langle x, y \rangle = \langle Qx, Qy \rangle$

3.5.3 Matrices symétriques

Proposition: Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$ est une matrice symétrique, λ_1 et λ_2 deux valeurs propres de A alors les vecteurs propres asociés y_1 et y_2 sont orthogonaux

Théorème : Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$ est une matrice symétrique

- Toute les valeurs propres de A sont réelles
- A est diagonalisable et P est orthogonale : $D = P^T A P$

3.5.4 Formes quadratiques

Définie-positivité:

- A est semi-positive si $\forall x \in \mathbb{R}^n, x^T A x \geq 0$
- A est définie-positive si, de plus, $\forall x \in \mathbb{R}^n, x^T A x = 0 \Rightarrow x = 0$

Proposition:

- Les termes diagonaux d'une matrice définie positive sont strictement positifs
- Toute matrice symétrique définie-positive est inversible

Définition: Polynôme de degré 2 des variables (x_1, \ldots, x_n)

$$q(x) = \sum_{i=1}^{n} \alpha_i x_i^2 + \sum_{1 \le i < j < n} \beta x_i x_j$$

Caractérisation:

q est une forme quadratique $\Leftrightarrow \exists ! A \in \mathcal{M}_{nn}(\mathbb{R}), q(x) = x^T A x$

Analyse numérique (MT09)

4.1 Systèmes linéaires

4.1.1 Algorithme de Gauss

Élimination de Gauss: Soit une matrice $A \in \mathcal{M}_{nn}$ et $b \in \mathcal{M}_{n1}$, pour résoudre efficacement l'équation Ax = b, on cherche à transformer A en une matrice triangulaire grâce à l'algorithme de Gauss.

On note $A^{(0)} = A$

On trouve alors $A^{(k+1)}$ en fonction de $A^{(k)}$ avec :

$$\begin{cases} a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}} a_{kj}^{(k)} \\ a_{ij}^{(k+1)} = b_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}} b_{kj}^{(k)}, \text{ pour } j = k, k+1, \dots, n \end{cases}$$

L'algorithme termine pour k = n

Écriture matricielle de Gauss : On peut écrire les équations précédentes sous la forme matricielle suivante, en notant $\underline{A_i}$ la i-ième ligne de A

$$\underline{A_i^{(i)}} = \underline{A_i^{(i-1)}} - \left(\frac{a_{i,i-1}^{(i-1)}}{a_{i-1,i-1}^{(i-1)}}\right) \underline{A_{i-1}^{(i-1)}}$$

 ${\bf Pivot}$: Les coefficients $a_{kk}^{(k)}$ sont appelées les pivots de Gauss

4.1.2 Factorisation de matrices

Sous-matrice principale : On appelle sous-matrice principale de A d'ordre k la matrice notée

$$[A]_k = (a_i j)_{1 \le i \le k, 1 \le j \le k}$$

Factorisation LU: Il s'agit de trouver $U \in \mathcal{M}_{nn}$ triangulaire supérieur et $L \in \mathcal{M}_{nn}$ triangulaire inférieur telle que A = LU, L ayant tous ses termes diagonaux égaux à 1 cf. Algorithme de Doolitle

Existence:

$$A \text{ est } LU\text{-factorisable} \Leftrightarrow [A]_1, [A]_2, \dots, [A]_n \text{ inversible}$$

Unicité: La factorisation LU, si elle existe, est unique

Factorisation PALU: Si A est non LU-factorisable, on peut permuter les lignes de A pour effectuer la factorisation.

Le système s'écrit alors $PA = LU \Leftrightarrow C = LU$ avec C = PA et P la matrice carrée indiquant les permutations effectuées

Factorisation LUPAQ: Pour les mêmes raisons, et de manière similaire, on peut permuter les colonnes de A. Le système devient alors $PAQ = LU \Leftrightarrow C = LU$ avec C = PAQ

Application à la résolution de systèmes linéaires : Si A est LU-factorisable, alors

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

(Ce qui est immédiat puisque L et U sont triangulaires)

Factorisation LDL^T : Si A est LU-factorisable et symétrique, alors $\exists L, D \in \mathcal{M}_{nn}$ avec L une matrice triangulaire inférieur à diagonale unité et D une matrice diagonale telle que

$$A = LDL^T$$

Factorisation de Cholesky (BB^T) : Si A est une matrice symétrique définie-positive alors elle admet une factorisation unique $A = BB^T$ avec B une matrice triangulaire inférieur dont les termes diagonaux sont positifs. cf. Algorithme de Cholesky

4.2 Problèmes de moindres carrées

Définition: Le problème des moindres carrées consiste à trouver x^* telle que

$$x^* = \min_{x \in \mathbb{R}^n} ||Ax - b||$$

Équation normale:

$$x^* = \min_{x \in \mathbb{R}^n} ||Ax - b|| \Leftrightarrow A^T A x^* = A^t b$$

Cette équation provient de $||A(x^* + \Delta x) - b||_2^2$

4.3 Méthodes itératives

4.3.1 Définitions

Méthode itérative: Les méthodes itératives consistent à, étant donné $f: \mathbb{R}^n \to \mathbb{R}^n$ avec $f(\bar{x}) = 0$, $\bar{x} \in \mathbb{R}^n$, construire une suite $(x^(k))_{k \in \mathbb{N}}$ telle que $\lim_{n \to \infty} x^{(n)} = \bar{x}$

Méthode des points fixes : Pour résoudre f(x) = 0, on écrit l'équation sous la forme x = g(x) puis on construit la suite

$$\begin{cases} x^{(0)} \text{ donn\'e} \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$$

Théorème de convergence : Si g est continue et si $(x^{(n)})_n$ converge alors $(x^{(n)})_n$ converge vers un point fixe de g

Théorème de convergence globale : Soit $g:[a,b] \to [a,b]$ une fonction continuement dérivable sur [a,b]. S'il existe $k \in \mathbb{R}$ telle que $0 \le k < 1$ et $\forall x \in [a,b], |g'(x)| \le k$, alors g possède un unique point fixe $x^* \in [a,b]$ et la suite $\begin{cases} x^{(0)} \in [a,b] \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$ converge vers x^*

Théorème de convergence locale : Soit x^* un point fixe de g, fonction continuement dérivable vérifiant |g'(x)| < 1 alors la suite $\begin{cases} x^{(0)} \in [a,b] \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$ converge vers x^* à condition que $x^{(0)}$ soit suffisamment proche de x^*

4.3.2 Méthodes de Newton (équation et systèmes non-linéaires)

Méthode de Newton : Obtenu géométriquement ou par troncature du développement de Taylor

$$x^{(0)} \in \mathbb{R}x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

Théorème de convergence quadratique : Soit g une fonction définie et deux fois continuement dérivable de [a,b] dans lui-même. Soit $x^* \in [a,b]$ tel que $g(x^*) = x^*$ et $g'(x^*) = 0$. Alors la suite définie par $\begin{cases} x^{(0)} \in [a,b] \\ x^{(n+1)} = g(x^{(n)}) \end{cases}$ converge et

$$|x^{(n+1)} - x^*| \le \frac{M}{2} |x^{(n)} - x^*|^2 \text{ avec } M = \max_{x \in [a,b]} |g''(x)|$$

Pour Newton : $g(x) = x - \frac{f(x)}{f'(x)} \Rightarrow g(x^*) = x^*$ et $g'(x^*) = 0$

Matrice Jacobienne:

$$Df(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right), x \in \mathbb{R}^n$$

Méthode de Newton pour un système d'équation : En tronquant les développements de Taylor de dimensions n à l'ordre 1 on obtient

$$x^{(i+1)} = x^{(i)} - f(x^{(i)}) \times [Df(x^{(i)})]^{-1}$$

4.3.3 Résolution de systèmes linéaires (Jacobi et Gauss-Seidel)

Principe générale: Pour résoudre le système Ax = b, on utilise la suite $x^{(k)}$ suivante:

$$x_0 \in \mathbb{R}Mx^{(k+1)} = Nx^{(k)} + b$$

Avec A = M - N de sorte que, lorsque $n \to \infty$, $(x^{(n)})_n$ converge vers \bar{x} et alors $(M - N)\bar{x} = b \Leftrightarrow A\bar{x} = b$

Méthode de Jacobi : La méthode de jacobi consiste, à chaque itération k, à résoudre chaque équation par rapport à une variable, les autres restant fixes. On obtient alors M=D et N=L+U. En pratique :

$$\begin{cases} a_{11}x_1^{(k+1)} = b_1 - \sum_{j=2}^n a_{1j}x_j^{(k)} \\ \vdots \\ a_{ii}x_i^{(k+1)} = b_i - \sum_{j=1, j \neq i}^n a_{ij}x_j^{(k)} \\ \vdots \\ a_{nn}x_n^{(k+1)} = b_n - \sum_{j=1}^{n-1} a_{nj}x_j^{(k)} \end{cases}$$

Méthode de Gauss-Seidel : Modification de la méthode de Jacobi qui consiste à utiliser pour chaque équation les composantes $x^{(k+1)}$ déjà calculés. Il vient alors que M=D-L et N=U. En pratique :

$$\begin{cases} a_{11}x_1^{(k+1)} = b_1 - \sum_{j=2}^n a_{1j}x_j^{(k)} \\ \vdots \\ a_{ii}x_i^{(k+1)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij}x_j^{(k)} \\ \vdots \\ a_{nn}x_n^{(k+1)} = b_n - \sum_{j=1}^{n-1} a_{nj}x_j^{(k)} \end{cases}$$

Théorème de convergence : On considère la méthode itérative suivante : $x^{(k+1)} = Cx^{(k)} + d$ avec $x^{(0)}$ donné

- S'il existe une norme matricielle subordonnée telle que ||C|| < 1 alors la méthode converge vers la solution de $(I C)\bar{x} = d$ quel que soit $x^{(0)}$
- La méthode converge si et seulement si $\rho(C) < 1$, avec $\rho(C) =$ "plus grande valeur prorpe de C"

Matrice à diagonale strictement dominante : On dit que la matrice A est à diagonale strictement dominante si

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \forall i \le n$$

Théorème de convergence pour Jacobi et Gauss-Seidel : Si la matrice A est à diagonale strictement dominante alors les méthodes de Jacobi et Gauss-Seidel convergent

Théorème de convergence pour Gauss-Seidel : Si la matrice A est symétrique définie positive, alors la méthode de Gauss-Seidel est convergente

4.4 Interpolation

Existence: Soient $t_0, t_1, \ldots, t_n \in \mathbb{R}$ distincts et soient $y_0, y_1, \ldots, y_n \in \mathbb{R}$, il existe un et un seul polynôme $p \in \mathcal{P}_n$ tel que

$$p_n - (t_i) = y_i, \forall i = 0, 1, \dots, n$$

Dans la base canonique : Dans la base canonique $(1, x, x^2, \dots, x^n)$ il suffit de résoudre le système $p_i(t_i) = y_i$ i.e.

$$Ax = b \text{ avec } \begin{cases} \underline{A_i} = \begin{pmatrix} 1 & t_i & t_i^2 & \dots & t_i^n \end{pmatrix} \\ \underline{b_i} = \begin{pmatrix} y_i \end{pmatrix} \\ x = \begin{pmatrix} a_0 & a_1 & \dots & a_n \end{pmatrix}^T \end{cases}$$

Dans la base de Lagrange : On appelle base de Lagrange la famille

$$(\mathcal{L}_1(t), \mathcal{L}_2(t), \dots, \mathcal{L}_n(t))$$
 où $\mathcal{L}_i(t) = \prod_{k=0, k \neq i}^n \frac{t - t_k}{t_i - t_k} = \begin{cases} 1 \text{ si } t_i = t \\ 0 \text{ sinon} \end{cases}$

Le polynôme d'interpolation est alors donné par

$$p_n(t) = \sum_{i=0}^{n} y_i \mathcal{L}_i(t)$$

Erreur: On note $e_n(t) = f(t) - p_n(t)$ l'erreur d'interpolation. On note également $\pi_n(t) = (t - t_0)(t - t_1) \dots (t - t_n)$ Alors (en notant $Int(t_0, \dots, t_n)$ le plus petit interval contenant les t_0, \dots, t_n)

$$e_n(t) = \frac{\pi_n(t)}{(n+1)!} f^{(n+1)}(\xi) \text{ avec } \xi \in Int(t_0, \dots, t_n)$$

Dans la base de Newton : Dans la base de Newton $(1, t - t_0, (t - t_0)(t - t_1), \dots, (t - t_0)(t - t_1), \dots, (t - t_{n-1}))$, le polynôme d'interpolation est donné par

$$p_n(t) = c_0 + c_1(t - t_0) + \dots + c_n(t - t_0)(t - t_1) \dots (t - t_{n-1})$$

Où les c_k sont les différences divisés d'ordre k

Différence divisée : Soit f une fonction dont on connait les valeurs en des points disincts t_0, t_1, \ldots, t_n . On appelle différence divisée l'expression suivante :

$$\begin{cases} f[a] = f(a) \\ f[a, X, b] = \frac{f[a, X] - f[X, b]}{a - b} \end{cases}$$

Calcul pratique des différences divisées : Les coéficients c_k sont sur la diagonale en k-ième position

k = 0	k = 1	k=2		k = n
$f[t_0]$				
$f[t_1]$	$f[t_0, t_1]$			
$f[t_2]$	$f[t_1, t_2]$	$f[t_0, t_1, t_2]$		
:	:	:		
f[+]	f[+ , +]	$f[t \circ t \cdot t]$	•	$f[t_0, t_1, t_2]$
$f[t_n]$	$f[t_{n-1}, t_n]$	$f[t_{n-2},t_{n-1},t_n]$		$f[t_0,t_1,\ldots,t_n]$

Schéma de Horner : Pour calculer $p_3(t) = c_0 + c_1(t - t_0) + c_2(t - t_0)(t - t_1) + c_3(t - t_0)(t - t_1)(t - t_2)$, on calculer plutôt

$$p_3(t) = c_0 + (t - t_0)[c_1 + (t - t_1)[c_2 + (t - t_2)[c_3]]]$$

Splines cubiques : Soit $\Delta = (a = t_0, t_1, \dots, t_n = b)$ une subdivision de l'intervalle [a, b]. On dit qu'une fonction g est un spline cubique si

- $--g\in C^2([a,b])$
- g correspond sur chaque intervalle $[t_i, t_{i+1}]$ à un polynôme de degré inférieur à 3
- $-g(t_i)=y_i$

4.5 Intégration numérique

Principe : On cherche à approximer $I(f) = \int_a^b f(x) dx$ par une fonction

$$J(f) = \sum \omega_i f(t_i)$$

Où ω_i est appelé poids du noeud t_i

 \mathbf{Ordre} : On dit qu'une méthode est d'ordre k si

$$I(1) = J(1), I(X) = J(X), \dots, I(X^k) = J(X^k)$$
 et $I(X^{k+1}) \neq J(X^{k+1})$

Erreur d'intégration : e(f) = I(f) - J(f)

Méthode des rectangles (ici, à gauche) : Méthode d'ordre 0 et d'erreur locale (sur $[t_i, t_{i+1}]$) de $\frac{h^2}{2}f''(\eta_0)$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} hf(t_i) + o\left(\frac{1}{n}\right)$$

Méthode des rectangles centrées : Méthode d'ordre 1 et d'erreur locale $\frac{h^3}{24}f''(\eta_0)$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} hf\left(\frac{t_i + t_{i+1}}{2}\right) + o\left(\frac{1}{n^2}\right)$$

Méthode des trapèzes : Méthode d'ordre 1 et d'erreur locale $\frac{h^3}{12}f''(\eta_0)$

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} h\left(\frac{f(t_{i}) + f(t_{i+1})}{2}\right) + o\left(\frac{1}{n^{2}}\right)$$

Méthode de Simpson : Méthode d'ordre 3

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n-1} \frac{h}{3} (f(t_{i-1}) + 4f(t_i) + f(t_{i+1})) + o\left(\frac{1}{n^4}\right)$$

4.6 Équations différentielles

4.7 Valeurs propres

$Statistiques_{\ (sy02)}$

- 5.1 Éléments de probabilités
- 5.2 Échantillonnage
- 5.3 Éstimation
- 5.4 Intervalle de confiance
- 5.5 Éstimation optimale
- 5.6 Régression linéaire
- 5.7 Tests d'hypothèses
- 5.8 Tests de conformité
- 5.9 Tests d'homogénéité
- 5.10 Tests d'adéquation
- 5.11 Tests d'indépendance
- 5.12 Analyse de la variance

$Optimisation \tiny \tiny \text{(RO03/RO04)}$

- 6.1 Algorithmes de graphe
- 6.2 Programmation linéaire
- 6.3 Optimisation non-linéaire

Formulaires

- 7.1 Équations différentielles
- 7.2 Trigonométrie