Teoria da Computação

José Osvano da Silva, PMP

Sumário

- > Conteúdo Programático
 - > Habilidades e Competências
 - > Conteúdo Programático
- > Recursos Didáticos
- > Aulas
- > Referências
 - > Básica
 - > Complementar
- > Sábados Letivos
- > Avaliações
- > Atividades Discentes
- > Plano de Aprendizagem

Apresentação

- José Osvano da Silva
 - Pós-Graduado em Melhoria de Processos de Software UFLA (2010);
 - Certificado PMP (Project Management Professional) PMI (Project Management Institute) dos Estados Unidos (2011);
 - Bacharel em Ciência da Computação UNIPAC (2006);
 - Sou Arquiteto de Software na Meta Serviços em Informática LTDA Curitiba/PR (desde Março/2020);
 - Professor do Curso de Ciência da Computação UNIPAC (desde 2011);
 - Coordenador da Pós-Graduação em Gestão e Gerenciamento de Projetos UNIPAC;
 - Coordenador do MBA em Desenvolvimento de Aplicativos Mobile UNIPAC;
 - Atuei como Gerente de Projetos e Analista de Sistemas na Courart Informática LTDA;
 - Atuei como Professor do Curso de Engenharia Civil UNIPAC (2018);
 - Atuei como Professor Pesquisador do IF-SUDESTE-MG (2014 a 2017);
 - Outras áreas de atuação: Engenheiro de Software, Desenvolvedor, Arquiteto de Software, Analista de Qualidade, Gerente de Configuração e Analista de Medição.

Habilidades e Competências

- > Identificar e criar soluções algorítmicas para problemas em qualquer domínio de conhecimento e de aplicação
- explorar os fundamentos da computação para estudos e avanços da área.
- conhecer os limites da computação em seus aspectos lógicos e físicos.
- > analisar quantitativamente e graficamente dados de amostras para tomada de decisão.
- Aplicar conceitos matemáticos (algébricos e geométricos) na construção de programas para aplicações diversas.

Conteúdo Programático

- > REVISÃO E CONTEXTUALIZAÇÃO
 - Introdução
 - > Sintaxe e Semântica
 - > Abordagem
 - Conjuntos, Relações e Funções
 - Noções de Lógica
 - Técnicas de Demonstração
 - Alfabetos, Palavras, Linguagens e Gramáticas

> AUTOMATOS FINITOS

- Princípios de funcionamento das máquinas de estado.
- Máquinas de estado determinísticas DFA.
- Máquinas de estado não determinísticas NFA.

> EXPRESSOES REGULARES

- Notações.
- Expressões regulares como formalismo reconhecedor das linguagens regulares.
- Equivalência DFA x Expressões regulares

Conteúdo Programático

> LINGUAGENS FORMAIS

- Linguagens regulares.
- Linguagens livres de contexto.
- Linguagens sensíveis ao contexto.
- Linguagens recursivamente enumeráveis.
- Pumping Lema para demonstração de linguagens regulares.

> GRAMÁTICAS

- Introdução.
- Gramáticas como formalismo reconhecedor de linguagens livres e sensíveis ao contexto.
- Gramáticas livres de contexto CFG.
- Métodos de construção de gramáticas.
- Normalização de gramáticas.

Conteúdo Programático

- > AUTOMATOS COM PILHA PDA
 - PDA como formalismo reconhecedor de linguagens livres de contexto.
 - Método de construção de PDA's.
 - Equivalência CFG PDA.
- MÁQUINA DE TURING
 - Introdução.
 - Conceitos envolvidos, poder de processamento.
 - Métodos de construção.
 - Modelos equivalentes.
- > COMPUTABILIDADE E DECIDIBILIDADE
 - Classificação de problemas.
 - Análise de problemas

Recursos Didáticos

- > Acervo da Biblioteca Virtual
- Ambiente Virtual de Aprendizagem (plataforma Blackboard).
- > Pesquisa na Internet
- > Software Socrative (https://b.socrative.com/login/student/)
- > Trello (https://trello.com/)
- > Fun Retro (https://funretro.io/)
- > Ferramenta Simulador de Autômatos

Aulas

Segundas: 20:55 às 22:35;

Terças: 20:55 às 22:35.

Referências

- > Básica
 - DIVERIO, Tiarajú Asmuz; MENEZES, Paulo Blauth. Teoria da computação: máquinas universais e computabilidade. 3.ed. Porto Alegre: Bookman, 2011. v.5. 205 p. il.
 - SIPSER, Michael. Introdução à teoria da computação. São Paulo: Cengage Learning, 2012. (e-book)
 - MENEZES, P. B., Linguagens Formais e Autômatos. 5. ed. Porto Alegre: Sagra Luzzatto, 2005.

Referências

- > Complementar
 - CARNIELLI, Walter Alexandre; EPSTEIN, Richard L. Computabilidade, funções computáveis, lógica e os fundamentos da matemática. 2.ed. rev. São Paulo: UNESP, 2009. 413 p
 - CORMEN, Thomas H.Leiserson, CHARLES E.Rivest, RONALD L.Stein, Clifford. **Algoritmos.** São Paulo: GEN LTC, 2012. (e-book)
 - LEWIS, H. R., PAPADIMITRIOU, C. H., Elementos de Teoria da Computação. 2. ed. Porto Alegre: Bookman, 2000.
 - DIVERIO, Tiarajú A.; MENEZES, Paulo Blauth. **Teoria da computação.** Porto Alegre: Bookman, 2011. (e-book).
 - SUDKAMP, T., Languages and Machines An Introduction to the Theory of Computer Science. 2.ed. New York: Addison Wesley, 1997.

Sábados Letivos

- > 21/08/2021;
- > 28/08/2021;
- > 09/10/2021;
- > 20/11/2021.
- > **Obs.**: As atividades serão disponibilizadas na segundafeira antes e ficarão liberadas até o domingo logo depois do sábado letivo no valor de 1,0 ponto.

 π

Avaliações

Avaliações	Pontos	Datas
1 ^a Etapa - Prova	30,0	27/09/2021
1 ^a Etapa - Exame Substitutivo	30,0	19/10/2021 *
1 ^a Etapa - Exercícios	10,0	
1ª Etapa - Trabalho Prático 01	5,0	
2 ^a Etapa - Prova	30,0	23/11/2021
2 ^a Etapa - Exame Substitutivo	30,0	07/12/2021 *
2ª Etapa – Avaliação Colegiada	5,0	
2ª Etapa - Trabalho Prático 02	5,0	
2 ^a Etapa - Exercícios	10,0	
2ª Etapa - Trabalho Prático 03	5,0	30/11/2021
Exame Especial	100,00	21/12/2021 *

^{*} Pode sofrer alterações.

Atividades Discentes

- > Trabalhos e listas de exercícios, totalizando 14 horas (Referente as atividades de complementação de horas).
- > As atividades terão um valor de 3,0 pontos.

Plano de Aprendizagem

> Apresentar o plano.

π

Para discutirmos

Sobre Teoria da Computação

16

Para discutirmos (Feito em 03/08/2021)

Nosso primeiro exemplo

$$L1 = \{0^k \mid k \in par\};$$

$$L2 = \{0^k \mid k \in multiplo de 3\};$$

 π

Nosso primeiro exemplo

$$L1 = \{0^k \mid k \text{ \'e par}\};$$

 $L2 = \{0^k \mid k \in multiplo de 3\};$

Nosso primeiro exemplo L1 U L2.

Nosso primeiro exemplo L1 U L2.

Dúvidas

