Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Amend claim 2 by replacement as follows:

2. (Twice amended) A compound according to claim 1 of the formula (XVI)

in which

n is 1 or 2, and

if n is 1

X is a hydrazone or imine radical, with the proviso that, if R_{12} , R_{13} , R_{112} and R_{113} are hydrogen, or at least one R_{12} , R_{13} , R_{112} or R_{113} is methyl, the hydrazone radical is excluded, or, if R_{12} , R_{13} , R_{112} or R_{113} is hydrogen, X_1 is not phenylimine- or 4-dimethylamine-phenylimine, or X_1 is a methylene radical,

$$=c^{Q_3}$$

in which

 Q_3 is a primary or secondary amine radical and Q_4 is hydrogen or C_1 - C_{24} alkyl, -CO- $(C_1$ - C_{24} alkyl), -CO- $(C_1$ - C_{24} alkyl), C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy,

 C_s - C_{12} cycloalkylthio, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl,

-CO-O-(C_6 - C_{24} aryl), -CO-(C_6 - C_{24} aryl), C_6 - C_{24} aryloxy, a primary or secondary amine radical, C_6 - C_{12} arylthio, C_7 - C_{25} aralkyl, thienyl, benzothienyl, dibenzothienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzothienyl, O-dibenzothienyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofuranyl,

Cory of

O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-indolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl S-thienyl, S-benzothienyl, S-dibenzothienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-perimidinyl, S-carbazolyl, S-phenathrolinyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-furazanyl or S-phenoxazinyl,

or

 Q_3 and Q_4 together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical, with the proviso that

 Q_4 is not hydrogen and Q_3 is not a primary or secondary amine radical if R_{13} is hydrogen, methoxy or hydroxyl and R_{12} , R_{112} and R_{13} are hydrogen,

and

if n is 2

X is thienyl, furyl, 2H-pyranyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, triazinyl, pyrazinyl, pyridazinyl, morpholin, piperidyl, piperazinyl, or is

$$\begin{bmatrix}
Q_5 & Q_6 \\
C - X_3 - C
\end{bmatrix}$$

in which

X₃ is a single bond, C₄-C₂₄arylene, thienylene, benzothienylene, dibenzothienylene, thianthrenylene, furfurylene, 2H-pyranylene, benzofuranylene, isobenzofuranylene, dibenzofuranylene, phenoxythinylene, pyrrolylene, imidazolylene, pyrazolylene, pyridylene, bipyridylene, benzimidazolylene, benzothiazolylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene, indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, quinolylene, isoquinolylene, phthalazinylene, naphthyridinylene, quinoxalinylene, quinazolinylene, cinnolinylene, pteridinylene, carbazolylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenanthridinylene,

acridinylene, perimidinylene, phenanthrolinylene, phenazinylene, isothiazolylene, phenothiazinylene, isoxazolylene, furazanylene or phenoxazinylene 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene, or a tetravalent polyether, polyimine, polyamine radical, or $bi(C_6-C_{24})$ arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24}) arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C_2 - C_{24} alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR 44R 42-, -CO-, -COO-, -OCO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO $_2$ - or -NR $_{42}$ -, in which

 R_{42} and R_{44} independently of one another are hydrogen, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, thienyl, benzothienyl, dibenzothienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl,

with the proviso that if R_{12} , R_{13} , R_{112} or R_{113} are all tert-butyl or all hydrogen, Q_s and Q_6 are hydrogen, X_3 is not 1,4-phenylene, and Q_s and Q_s independently of one another are hydrogen, C_s - C_{24} aryl, C_s - C_{24} aryloxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy, C_s - C_{12} cycloalkylthio, C_2 - C_{24} alkenyl,

 C_6 - C_{24} aryl, C_6 - C_{24} aryloxy, C_6 - C_{24} arylthio, thienyl, benzothienyl, dibenzothienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzothienyl, Odibenzothienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazoyl, Opyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, Ophthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, Ocarbazolyl, O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, Operimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-

furazanyl or O-phenoxazinyl S-thienyl, S-benzothienyl, S-dibenzothienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, S-phthalazinyl, S-naphthyridinyl, S-quinoxalinyl, S-quinazolinyl, S-carbazolyl, S-carbazolyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl,

or

$$X_2$$
 is Q_7 $NH^-X_4^-HN^-$

in which

 $\mathbf{Q_7}$ and $\mathbf{Q_8}$ independently of one another are $\mathbf{Q_5}$ or $\mathbf{Q_{67}}$ and

 X_4 is C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, a polymethylidene or divalent polyether, polyimine, polyamine radical, or bi(C_6 - C_{24}) arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraxquinoylfuranoylen C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24}) arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C_2 - C_{24} alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-,

or
$$X_{2} \text{ is } = N-NH-X_{4}-HN-N \text{ or } = N-N \text{ } ,$$

and

 R_{12} , R_{112} , R_{13} and R_{113} independently of one another are hydrogen, halogen, OH, NO₂, R_{14} , OR₁₄, OC₉-C₁₈alkyl or SC₉-C₁₈alkyl, in which

 R_{14} is C_1-C_{24} alkyl which is unsubstituted or substituted one or more times by oxo or by $COO^-X_5^+$ and which is uninterrupted or interrupted one or more times by O, N and/or S, or is C_7-C_{18} aralkyl or C_6-C_{12} aryl unsubstituted or substituted one or more times by halogen, OR_{16} , $NR_{16}R_{17}$, $COOR_{16}$, $COOR_{16}$, $NR_{18}COR_{16}$ or $NR_{18}COOR_{16}$,

 X_s^+ is a cation H^+ , Na^+ , K^+ , $Mg^{++}_{y_2}$, $Ca^{++}_{y_2}$, $Zn^{++}_{y_2}$, $Al^{+++}_{y_3}$, or $(NR_{16}R_{17}R_{18}R_{19})^+$, and

D'cont

 R_{16} and R_{17} independently of one another are hydrogen, C_6 - C_{12} aryl, C_7 - C_{10} aralkyl, or C_1 - C_8 alkyl which is unsubstituted or substituted one or more times by halogen, hydroxyl or C_1 - C_4 alkoxy, or R_{16} and R_{17} in $NR_{16}R_{17}$ or $CONR_{16}R_{17}$, together with the nitrogen atom connecting them, are pyrrolidine, piperidine, piperazine or morpholine each of which is unsubstituted or substituted from one to four times by C_1 - C_4 alkyl,

and

 R_{18} and R_{19} independently of one another are hydrogen, C_1 - C_8 alkyl, C_6 - C_{10} aryl or C_6 - C_{12} aralkyl, or R_{12} and R_{112} , R_{112} and R_{13} , R_{13} and R_{113} independently of one another are each together divalent radicals, such as polycyclic radicals.

09/518,464 - 6 - PL/2-21988/A