

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Wykonał:

Katedra Energoelektroniki i Automatyki Systemów Przetwarzania Energii

UKŁADY ENERGOELEKTRONICZNE - LABORATORIUM

Temat ćwiczenia:

Regulowany zasilacz impulsowy z falownikiem i transformatorem w. cz. (ćwiczenie C2)

(01110=01110 0=)			
Data wykonania:	Data zaliczenia:	Ocena:	

1. Cel ćwiczenia

Celami ćwiczenia są:

- zapoznanie się z topologią zasilacza impulsowego z falownikiem i transformatorem wysokiej częstotliwości, określanego w literaturze jako Fullbridge Push-Pull Converter),
- nabycie kompetencji związanej z obsługą programów symulacyjnych klasy SPICE,
- zaprojektowanie impulsowego zasilacza sieciowego z regulowanym napięciem wyjściowym,
- zbadanie charakterystyk roboczych tego układu.

2. Topologia układu i charakterystyczne przebiegi sygnałów elektrycznych

Rys. 1. Schemat blokowy układu

Rys. 2. Topologia falownika pełnomostkowego napięcia z transformatorem w.cz., prostownikiem i filtrem

Rys. 3. Przebiegi w czasie charakterystycznych sygnałów w obwodzie z rys. 2.

3. Założenia projektowe

Wykonać projekt układu regulowanego zasilacza impulsowego z falownikiem i transformatorem wysokiej częstotliwości zasilanego sieciowo (230 V AC):

- założone maksymalne napięcie wyjściowe Uout = 50 V DC,
- dobrać elementy półprzewodnikowe (diody i tranzystory w technologii n-MOSFET) o parametrach prądu i napięcia odpowiednich dla pracy w układzie,
- zaprojektować algorytm sterowania tranzystorami falownika mostkowego zachowując minimalny czas martwy (dla maksymalnej mocy wyściowej) pomiędzy sygnałami sterującymi parami tranzystorów w gałęziach falownika mostkowego,
- dobrać parametry elementów biernych (kondensatory filtrujące C_{in} i C_{out} oraz dławik L) w układzie.

4. Narzędzie symulacyjne

Badania symulacyjne wykonać w programie LTspice, który można bezpłatnie pobrać ze strony producenta:

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

5. Badania symulacyjne

6. Sprawozdanie i opracowanie wyników

Część teoretyczna:

- określić mechanizm korzyści i celowość używania wysokoczęstotliwościowych układów zasilających (wymienić wady, zalety oraz skonfrontować je za sobą),
- narysować/dorysować do istniejącego schematu elektrycznego obwodu siłowego,

ogólną topologię (schemat blokowy) układu sterowania,

- opisać działanie falownika i poszczególne bloki/fragmenty,
- wyjaśnić potrzebę stosowania driver'ów do tranzystorów typu MOSFET,
- uzasadnić konieczność stosowania układu rozruchowego kondensatorów przy załączaniu układu,
- określić sposób regulacji napięcia wyjściowego (opisać sygnały sprzężeń wykorzystywanego do tego modulatora PWM na przykładzie układu UC3525).

Część praktyczna:

- w sprawozdaniu należy pokazać charakterystyczne przebiegi sygnałów w układzie,
- oraz wykonać badania symulacyjne i wyznaczyć charakterystyki regulacyjne:
- 1. Charakterystykę regulacyjną:
 - $t_{on} = f(U_{out})$ wartość napięcia wyjściowego w zależności od czasu załączenia przewodzącej pary tranzystorów w stałym okresie sterowania,
- 2. Charakterystykę obciążalności prądowej układu:
 - $U_{\text{out}} = f(I_{\text{out}})$ wartość napięcia wyjściowego w zależności od prądu obciążenia układu (w badaniu symulacyjnym zmieniać wartość rezystora R_{odb}).