Major Types of Machine Learning

1. Supervised Learning

Definition:

The machine learns from **labeled data** — where both the **input and the correct output** are given.

• In Simple Words:

It's like learning with a teacher. You give the machine lots of examples (input + correct answer), and it learns to make predictions.

• Example: Email spam detection (Input: email text → Output: spam or not spam)

> Key Concepts:

- **Regression**: Predict **numbers** (e.g., house prices)
- Classification: Predict categories (e.g., dog vs cat)

> Highlights:

- Learns the relationship between inputs and outputs
- Useful for predicting either numbers or categories

2. Unsupervised Learning

Definition:

The machine learns from **unlabeled data**, and finds patterns, groups, or structures on its own.

• In Simple Words:

There's no teacher. The machine explores data and groups it based on similarity.

• Example: Grouping customers by behavior for marketing (Clustering)

> Key Techniques:

- **Clustering** (e.g., K-Means)
- **Dimensionality Reduction** (e.g., PCA)

Highlights:

- Clustering & dimensionality reduction are powerful
- Dimensionality reduction helps simplify complex data
- Unsupervised learning has 4 main real-world use cases
- Beer & Diaper Story shows how patterns can emerge without labels

3. Semi-Supervised Learning

Definition:

A mix of a small amount of labeled data and a large amount of unlabeled data.

• In Simple Words:

It's like the machine learns from a few examples and figures out the rest on its own.

• Example: Google Photos labeling a few faces, then recognizing all similar ones.

> Benefit:

• Saves time — no need to label all data manually

> Highlight:

• Helps reduce the need for labeling by auto-labeling most of the data

4. Reinforcement Learning

• Definition:

An agent **learns by interacting** with an environment — it gets rewards for good actions and penalties for bad ones.

• In Simple Words:

Like training a dog — reward for doing the right thing, punishment for mistakes. Over time, it learns what actions get the most reward.

• Example: AlphaGo playing chess or Go, learning by winning or losing games

> Highlight:

• Learns to maximize rewards and minimize punishments

> Extra Resource:

AlphaGo Movie: Real-world example of reinforcement learning in action

Summary

Туре	Labeled Data?	Learns From	Main Use Case	Example
Supervised	Yes	Input-output pairs	Predictions	Spam detection, price prediction
Unsupervised	No	Patterns in data	Clustering, dimensionality reduction	Customer segmentation
Semi- Supervised	Partially	Few labeled + many unlabeled	Efficient learning with less data	Auto face-tagging in photos
Reinforcement	No	Actions + feedback	Learning through interaction	Game-playing AI, robotics