

Module 7: Graphs and Trees I (?q=onlinecourse/course/43601)

Graph Exercise Part I

- วิชชาภัทร จินดานาถ previously submitted answers to this quiz/test on 29-Oct-2023 @ 05:09:57 and obtained 15 correct answers out of 15.
- This test/quiz can be taken many times.
- Correct answers will NOT be revealed after submission.

The exercises in this module are still under revision.

In the meanwhile, feel free to watch the video contents in the learning path of this module.

1	Find	the number of edges of $K_{ m 10}$	
		40	From previous attempt
		45	
		50	
		55	
2	Find	the number of edges of $Q_{ar{5}}$	
		12	From previous attempt
		32	
		80	
		160	

3 Find the number of maximum edges of a bipartite graph with 30 vertices.

	30		From previous attempt
	135		
	225		
	435		
4	Determine whether the follo	owing sentences are true or false respectively.	
	1. Adjency matrix is always	symmetric.	From previous attempt
	2 Sum of each row in the ac	djacency matrix is equal to number of edges inc	cident to that vertex.
	True, True		
	True, False		
	False, True		
	False, False		
5	Determine whether the follo	owing sentences are true or false respectively.	
	$_{ m 1}$. The total degree of $K_{ m 100}$.c attempt
	2. Every simple graph with 3	From previous attempt	
	True, True		
	True, False		
	False, True		
	False, False		
6	What is the maximum numb	per of edges that can be removed from W_{10} and	koon the graph
U	connected?	From previous attempt	
	9		From P'-

10

11

12

7 Let G be a connected simple graph with 100 edges.

What is the minimum and maximum number of vertices that G can have?

From previous attempt

15, 101

15, 100

14, 101

14, 100

8 Find the number of paths with length 4 of a pair of vertices in K_5 .

50

From previous attempt

51

99

100

If the number of subgraphs of $K_{6,6}$ that are isomorphic with Q_3 is $\binom{6}{n}\binom{6}{n}m!$ Find n.

1

3

4

6

10 If the number of subgraphs of $K_{6,6}$ that are isomorphic with Q_3 is $\binom{6}{n}\binom{6}{n}m!_{r_{70}m}p_{revious}attempt}$

Find m.

- 2
- 4
- 6
- 8
- 11 Find the length of the longest simple path in K_6 .
 - 6

From previous attempt

- 12
- 13
- 15
- 12 Find the length of the longest simple path in C_7 .
 - 4

From previous attempt

- 5
- 6
- 7
- 13 Find the length of the longest simple path in Q_7 .
 - 259

- 322
- 385

448

14	1	Find	the	length (of the	longest	simple	path i	n l	1	4	ě
----	---	------	-----	----------	--------	---------	--------	--------	-----	---	---	---

8

From previous attempt

9

10

13

15 Find the length of the longest simple path in $K_{5,5}$

10

From previous attempt

11

20

21

Submit

Next > (?

q=onlinecourse/theatre/27060/lddv8gOxfDOwv9T)

Version 1.15.23.2

Privacy Policy (https://lic.chula.ac.th/?page_id=7606) updated on 06 Jan 2023 Cookie Policy (https://www.mycourseville.com/cookiepolicy.html) updated on 21 May 2022

LMS and Online Course Platform within mycourseville.com are operated by Learning Innovation Center, Chulalongkorn University (http://www.lic.chula.ac.th/)