

University of Luxembourg

THESIS FOR THE BACHELOR OF MATHEMATICS

High Dimensional Regression Models

BY JORIS LIMONIER

Supervisor: Mark PODOLSKIJ Submitted: June 4, 2021

Abstract

Abstract goes here.

Contents

1	Introduction			
	1.1	Notes for chapter 1	1	
2	Classical theory of Linear Regression			
	2.1	Linear models	(
		The least squares method		
3	Theory for LASSO in high dimensions			
	3.1	Assuming the truth is linear	7	
		Linear approximation of the truth		

vi *CONTENTS*

Chapter 1

Introduction

1.1 Notes for chapter 1

Chapter 2

Classical theory of Linear Regression

To be added

- how to get \hat{b} on page 101.
- where the χ^2 distribution comes from in page 101

2.1 Linear models

We consider the setting of having a sample of n observations

$$(\mathbf{X}_1,\mathbf{Y}_1),\ldots,(\mathbf{X}_n,\mathbf{Y}_n)$$

where $X_i \in \mathcal{X} \subseteq \mathbb{R}^p$, i = 1, ..., n and $Y_i \in \mathcal{Y} \subseteq \mathbb{R}$, i = 1, ..., n. In other words, each of the observations contains p covariates. In the real world this could mean having n patients, p observations per patient and trying to predict an outcome such as having a certain type of cancer.

A Bit out of context

Definition 2.1 (The linear model). The relationship between an observation $X_i \in \mathscr{X}$ and its outcome $Y_i \in \mathscr{Y}$ can be established by a linear model, that is

$$i = 1, \dots, n$$
 $\mathbf{Y}_i = \sum_{j=1}^p \boldsymbol{\beta}_j \mathbf{X}_i^{(j)} + \boldsymbol{\varepsilon}_i$ (2.1)

On Ei?

Instead of seeing each observation individually we can deal with all of them together by expressing the linear model in matrix notation

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{2.2}$$

Definition 2.2. (a) X is called the **design matrix**. It has dimension $n \times p$.

X consists of stacking the vectors relative to each observation inside of a matrix

$$X = egin{bmatrix} - & X_1^T & - \ & dots \ - & X_n^T & - \end{bmatrix}$$

- (b) β is called the **parameter vector**. It has dimension $p \times 1$.
- (c) ε is called the **error vector**. It has dimension $n \times 1$.
- (d) Y is called the **response vector**. It has dimension $n \times 1$.

2.2 The least squares method

We define the objective function $S(\beta)$ as follows

$$S(\beta) = \sum_{i=1}^{n} \varepsilon_i^2 = \varepsilon^T \varepsilon = (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta)$$

$$(2.3)$$

which may be rewritten as

$$S(\beta) = (\mathbf{Y} - \mathbf{X}\beta)^{T}(\mathbf{Y} - \mathbf{X}\beta)$$

$$= \mathbf{Y}^{T}\mathbf{Y} - \mathbf{Y}^{T}\mathbf{X}\beta - \beta^{T}\mathbf{X}^{T}\mathbf{Y} + \beta^{T}\mathbf{X}^{T}\mathbf{X}\beta$$

$$= \mathbf{Y}^{T}\mathbf{Y} - 2\beta^{T}\mathbf{X}^{T}\mathbf{Y} + \beta^{T}\mathbf{X}^{T}\mathbf{X}\beta$$

 $\stackrel{\text{def}}{\longrightarrow}$ The least squares method aims at finding the vector $\hat{\beta}$ minimizing S, that is

$$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

 \checkmark We find $\hat{\beta}$ by differentiating S with respect to β and setting the result to 0.

$$\frac{\partial}{\partial \boldsymbol{\beta}} S(\hat{\boldsymbol{\beta}}) = 0$$

$$\Rightarrow \frac{\partial}{\partial \hat{\boldsymbol{\beta}}} \left(\mathbf{Y}^T \mathbf{Y} - 2 \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{Y} + \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} \right) = 0$$

$$\Rightarrow -2 \mathbf{X}^T \mathbf{Y} + 2 \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = 0$$

$$\Rightarrow \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y} \tag{2.4}$$

 \leftarrow where equation (2.4) is called the least squares normal equations.

If we assume that $\mathbf{X}^T\mathbf{X}$ is invertible, then (2.4) yields that our least squares estimator $\hat{\boldsymbol{\beta}}$ is given by

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \tag{2.5}$$

We are interested in estimating the quality of our prediction. The residuals can help us do that.

Definition 2.3 (Residuals). For a given set of observations **Y**, the **residuals** (or **vector of residuals**) is the difference between the prediction of our model and the observed value, that is

$$X(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \in \mathbb{R}^n$$

However, since the residuals take into account the sign of the difference, they may partially cancel out. We would like a measure that indicates how far our predictions are from the measurements. We will use the prediction error for for that purpose.

Definition 2.4 (Prediction error). For a given set of observations \mathbf{Y} , the **prediction error** is the squared ℓ^2 -norm of the difference between the prediction of our model and the observed value. In other words, it is the squared residuals, that is

$$||X(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})||_2^2 \in \mathbb{R}$$

. What about asymptotic properties of $\hat{\beta}$ or $X\hat{\beta}$? . What about optimality?

Delete this Sentence

Chapter 3

Theory for LASSO in high dimensions

3.1 Assuming the truth is linear

. Here you need a long motivation

We work with an underdetermined system: there are more variables than equations, or in our context, there are more parameters than observations (p > n).

We define $\hat{\boldsymbol{\beta}}$ as follows $\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \left\{ \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2}{n} + \lambda \|\boldsymbol{\beta}\|_1 \right\} \tag{3.1}$

Lemma 3.1 (Basic Inequality).

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Proof. By definition of $\hat{\beta}$, we have that

 $\forall \beta \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2}{n} + \lambda \|\boldsymbol{\beta}\|_1$ In particular for $\boldsymbol{\beta} = \boldsymbol{\beta}^0$ we have the model

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

We now replace $\mathbf Y$ using equation (2.2).

$$\begin{split} &\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1} \\ &\Rightarrow \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1} \\ &\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \boldsymbol{\beta}^{0}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1} \\ &\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1} \\ &\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}})\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1} \\ &\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\langle \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1} \\ &\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1} \end{split}$$

This completes the proof.

Let explanations

needed

$$\mathscr{T} := \left\{ \max_{1 \leq j \leq p} 2 \frac{\left| \varepsilon^T \mathbf{X}^{(j)} \right|}{n} \leq \lambda_0 \right\}$$

Lemma 3.2 (Lemma 6.2.). For all t > 0 and \longrightarrow assumption missing ?

$$\lambda_0 := 2\sigma \sqrt{\frac{t^2 + 2\log p}{n}}$$

we have

$$\mathbb{P}(\mathscr{T}) \ge 1 - 2\exp\left[-t^2/2\right]$$

Proof. We define

$$V_j := rac{arepsilon^T \mathbf{X}^{(j)}}{\sqrt{noldsymbol{\sigma}^2}}$$

Then we have

$$\mathbb{P}(\mathscr{T}) = \mathbb{P}\left(\max_{1 \leq j \leq p} 2 \frac{\left|\varepsilon^{T} \mathbf{X}^{(j)}\right|}{n} \leq 2\sigma \sqrt{\frac{t^{2} + 2\log p}{n}}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} \left|\frac{\varepsilon^{T} \mathbf{X}^{(j)}}{\sqrt{n\sigma^{2}}}\right| \leq \sqrt{t^{2} + 2\log p}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| \leq \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\bigcup_{j=1}^{p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
\geq 1 - \sum_{j=1}^{p} \mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
\geq 1 - p \,\mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \tag{3.2}$$

Now, let us define $\zeta := \sqrt{t^2 + 2 \log p}$. Since V_i is $\mathcal{N}(0, 1)$ -distributed and $\zeta > 0$.

$$\mathbb{P}(V_j > \zeta) = \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} e^{-y^2/2} dy$$

$$< \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} \frac{y}{\zeta} * e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} \int_{\zeta}^{\infty} y * e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} e^{-\zeta^2/2}$$

We note that $p \geq 2 \implies \zeta \sqrt{2\pi} \geq 1$ therefore

$$\mathbb{P}(V_i > \zeta) < e^{-\zeta^2/2}$$

Moreover by symmetry of the $\mathcal{N}(0,1)$ distribution,

$$\mathbb{P}(|V_j|>\zeta)
otin \mathbb{P}(|V_j|>\zeta) + \mathbb{P}(-V_j<-\zeta)$$
 omit this line $=2\mathbb{P}(V_j>\zeta) \ <2e^{-\zeta^2/2}$

Thus by definition of ζ

$$\begin{split} & \left| \mathbb{P}(|V_j| > \zeta) < 2e^{-\zeta^2/2} \right| \\ & = 2 \exp\left[\frac{-\sqrt{t^2 + 2\log p^2}}{2}\right] \\ & = 2 \exp\left[\frac{-t^2}{2} - \log p\right] \\ & = 2 \exp\left[\frac{-t^2}{2}\right] \exp\left[\log \frac{1}{p}\right] \\ & = \frac{2}{p} \exp\left[\frac{-t^2}{2}\right] \end{split}$$

Inserting this result into (3.2) we obtain

$$\begin{split} \mathbb{P}(\mathscr{T}) &\geq 1 - p \, \mathbb{P}\left(|V_j| > \sqrt{t^2 + 2\log p}\right) \\ &\geq 1 - p \, \frac{2}{p} \exp\left[\frac{-t^2}{2}\right] \\ &= 1 - 2 \exp\left[\frac{-t^2}{2}\right] \end{split}$$

Corollary 3.3 (Consistency of the LASSO). Assume $\sigma^2 = 1$ for all j. We define the regularization parameter as

$$\lambda = 4 \hat{m{\sigma}}^2 \sqrt{rac{t^2 + 2 \log p}{n}}$$

where $\hat{\boldsymbol{\sigma}}$ is some estimator of $\boldsymbol{\sigma}$.

Then with probability at least $1-\alpha$, where $\alpha:=2\exp(-t^2/2)+\mathbb{P}(\hat{\boldsymbol{\sigma}}\leq \boldsymbol{\sigma})$ we have

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^0)\|_2^2}{n} \leq 3\lambda\|\boldsymbol{\beta}^0\|_1$$

Lemma 3.4 (Lemma 6.3.). We have on \mathcal{T} , with $\lambda \geq 2\lambda_0$,

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_0^c}\|_1 \le 3\lambda \|\hat{\boldsymbol{\beta}}_{S_0} - \boldsymbol{\beta}_{S_0}^0\|_1$$
(3.3)

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Now since we are on $\mathscr T$ and since $2\lambda_0 \leq \lambda$ why does it hold? $\frac{\|\mathbf X(\hat{\boldsymbol\beta}-\boldsymbol\beta^0)\|_2^2}{2} + \lambda \|\hat{\boldsymbol\beta}\|_1 \leq \lambda_0 \|\hat{\boldsymbol\beta}-\boldsymbol\beta^0\|_1 + \lambda \|\boldsymbol\beta^0\|_1$

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

Let $\beta_{j,S} := \beta_j 1\{j \in S\}$. We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{0}}^{0} - \boldsymbol{\beta}_{S_{0}}^{0} + \hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} &= \|(\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}}) - (\boldsymbol{\beta}_{S_{0}}^{0} + \underbrace{\boldsymbol{\beta}_{S_{0}^{c}}^{0}}_{=0})\|_{1} \\ &= \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

Injecting these two results, we get that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \left(\|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right) + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\underbrace{\boldsymbol{\beta}_{S_{0}^{0}}^{0}}_{=\boldsymbol{\beta}^{0}}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}^{0}}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}^{0}}^{0}\|_{1}$$

Why do we need this condition?

Definition 3.5 (Compatibility condition). We say that the compatibility condition is met for the set S_0 , if for some $\phi_0 > 0$, and for all $\boldsymbol{\beta}$ satisfying $\|\boldsymbol{\beta}_{S_0^c}\|_1 \leq 3\|\boldsymbol{\beta}_{S_0}\|_1$, it holds that

$$\|\boldsymbol{\beta}_{S_0}\|_1^2 \le (\boldsymbol{\beta}^{7} \boldsymbol{\delta} \boldsymbol{\beta}) \frac{s_0}{\phi_0^2} \tag{3.4}$$

Theorem 3.6 (Theorem 6.1.). Suppose the compatibility condition holds for S_0 . Then on \mathscr{T} , we have for $\lambda \geq 2\lambda_0$,

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0\|_1 \le 4\lambda^2 \frac{s_0}{\phi_0^2}$$

Proof. Using Jemma 3.3 we have that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}} - \boldsymbol{\beta}_{S_{0}}^{0} - \underline{\boldsymbol{\beta}}_{S_{0}^{c}}^{0}}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \quad (by \ lemma \ 3.3)$$

$$\leq 4\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} + \frac{4\lambda^{2}s_{0}}{\phi_{0}^{2}n}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} + \frac{4\lambda^{2}s_{0}}{\phi_{0}^{2}n}$$

Where the last inequality follows from $4uv \le u^2 + 4v^2$.

3.2 Linear approximation of the truth

Introduction is needed here.

Now $\mathbf{Y} := \mathbf{f}^0 + \boldsymbol{\varepsilon}$, therefore $\mathbb{E}[\mathbf{Y}] := \mathbf{f}^0$.

Lemma 3.7 (New version of the Basic Inequality). $\forall \boldsymbol{\beta}^* \in \mathbb{R}^p$ we have

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(3.5)

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \boldsymbol{\beta} \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}\|_{1}$$

In particular for $\beta = \beta^*$ we have

$$\forall \boldsymbol{\beta}^* \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2}{n} + \lambda \|\boldsymbol{\beta}\|_1$$

We since
$$\mathbf{Y} = \mathbf{f}^0 + \boldsymbol{\varepsilon}$$

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1$$

$$\Rightarrow \frac{\|(\mathbf{f}^0 + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{\|(\mathbf{f}^0 + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^*\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^*\|_1$$

$$\Rightarrow \frac{\|(\mathbf{f}^0 - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{\|(\mathbf{f}^0 - \mathbf{X}\boldsymbol{\beta}^*) + \boldsymbol{\varepsilon}\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^*\|_1$$

$$\Rightarrow \frac{\langle(\mathbf{f}^0 - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, (\mathbf{f}^0 - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1$$

$$\le \frac{\langle(\mathbf{f}^0 - \mathbf{X}\boldsymbol{\beta}^*) + \boldsymbol{\varepsilon}, (\mathbf{f}^0 - \mathbf{X}\boldsymbol{\beta}^*) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1$$

$$\Rightarrow \frac{\|\mathbf{f}^0 - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2 + \|\boldsymbol{\varepsilon}\|_2^2 + 2\langle\mathbf{f}^0 - \mathbf{X}\hat{\boldsymbol{\beta}}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1$$

$$\le \frac{\|\mathbf{f}^0 - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 + \|\boldsymbol{\varepsilon}\|_2^2 + 2\langle\mathbf{f}^0 - \mathbf{X}\boldsymbol{\beta}^*, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^*\|_1$$

$$\Rightarrow \frac{\|\mathbf{f}^0 - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 + \|\boldsymbol{\varepsilon}\|_2^2 + 2\langle\mathbf{f}^0 - \mathbf{X}\boldsymbol{\beta}^*, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n} \end{pmatrix} \text{ out } \mathbf{b}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\langle\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n} \end{pmatrix} \text{ out } \mathbf{b}$$

Lemma 3.8 (New version of Lemma 6.3.). We have on \mathscr{T} , with $\lambda \geq 4\lambda_0$,

$$\frac{4\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_*^c}\|_1 \le 5\lambda \|\hat{\boldsymbol{\beta}}_{S_*} - \boldsymbol{\beta}_{S_*}^*\|_1 + \frac{4\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(3.6)

where $S_* := \{j : \beta_j^* \neq 0\}.$

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$

Now since we are on \mathscr{T} and since $4\lambda_0 \leq \lambda$

$$\begin{split} &\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n} \\ &\Longrightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \lambda_0 \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_1 + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n} \end{pmatrix} \quad \text{out} \quad \downarrow \\ &\Longrightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_1 + 4\lambda \|\boldsymbol{\beta}^*\|_1 + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n} \end{split}$$

We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{*}}^{*} - \boldsymbol{\beta}_{S_{*}}^{*} + \hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_1 &= \|(\hat{\boldsymbol{\beta}}_{S_*} + \hat{\boldsymbol{\beta}}_{S_*^c}) - (\boldsymbol{\beta}_{S_*}^* + \underbrace{\boldsymbol{\beta}_{S_*^c}^*}_{=0})\|_1 \\ &= \|\hat{\boldsymbol{\beta}}_{S_*} - \boldsymbol{\beta}_{S_*}^*\|_1 + \|\hat{\boldsymbol{\beta}}_{S_*^c}\|_1 \end{split}$$

Injecting these two results, we get that

$$4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \left(\|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1}\right) + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\underbrace{\boldsymbol{\beta}_{S_{*}^{*}}^{*}}\|_{1} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1}$$

$$\leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1} \leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Definition 3.9 (Compatibility condition for general sets). We say that the compatibility condition holds for the set S, if for some constant $\phi(S) > 0$, and for all β , with $\|\beta_{S^c}\|_1 \leq 3 \|\beta_S\|_1$, one has

$$\left\|oldsymbol{eta}_{S}
ight\|_{1}^{2} \leq \left(oldsymbol{eta}^{T}\hat{oldsymbol{\sigma}}oldsymbol{eta}
ight)rac{\left|S
ight|}{\phi^{2}(S)}$$

We define ${\mathscr S}$ as the collection of sets S for which the compatibility condition holds.

Definition 3.10 (The oracle). We define the oracle β^* as

$$oldsymbol{eta}^{*} = \arg\min_{oldsymbol{eta}: S_{oldsymbol{eta}} \in \mathscr{S}} \left\{ rac{\left\| \mathbf{X} oldsymbol{eta} - \mathbf{f}^{0}
ight\|_{2}^{2}}{n} + rac{4\lambda^{2} s_{oldsymbol{eta}}}{\phi^{2}\left(S_{oldsymbol{eta}}
ight)}
ight\}$$

where $S_{\beta} := \{j : \beta_j \neq 0\}$, $s_{\beta} := |S_{\beta}|$ denotes the cardinality of S_{β} and the factor 4 in the right hand side comes from choosing $\lambda \geq \lambda_0$.