Object-Oriented Programming and Data Structures

COMP2012: Trees, Binary Trees and Binary Search Trees

Trees

- The linear access time of linked lists is prohibitive for large amount of data.
 - Does there exist any simple data structure for which the average running time of most operations (search, insert, delete) is O(log N)?

Trees

- Basic concepts
- Tree traversal
- Binary tree
- Binary search tree and its operations

Recursive Definition of Trees

- A tree T is a collection of nodes
 - (base case) T can be empty
 - (recursive definition) If not empty, a tree T consists of
 - a root node r
 - and zero or more non-empty subtrees T₁, T₂,, T_k

Tree Terminologies

- Child and parent
 - Every node except the root has only one parent
 - A node can have zero or more children
- Leaves: nodes with no children
- Sibling: nodes with same parent
- Path from node n_1 to n_k : a sequence of nodes $n_{1,n_2,...,n_k}$ such that for $1 \le i \le k$, n_i is the parent of n_{i+1} .

Tree Terminologies ...

- Length of a path: number of edges on the path
- Depth of a node
 - length of the unique path from the root to that node
- Height of a node
 - length of the longest path from that node to a leaf
 - all leaves are at height 0
- The height of a tree
 - = the height of the root
 - = the depth of the deepest leaf
- Ancestor and descendant: If there is a path from n₁ to n₂
 - n₁ is an ancestor of n₂
 - n₂ is a descendant of n₁
 - if $n_1 \neq n_2$, proper ancestor and proper descendant

Example: Unix Directory

Binary Trees

 Generic binary tree: A tree in which no node can have more than two children.

- The depth of an "average" binary tree is considerably < N.
- A well-balanced tree has a depth of O(log N).
- But, in the worst case, the depth
 can be as large as N 1.

Convert a Generic Tree to a Binary Tree

- A downward link points to the first child.
- A horizontal link points to the next sibling.

p. 8

Pre-/In-/Post-order Binary Tree Traversal

```
Algorithm Inorder(x)

Input: x is the root of a subtree.

1. if x \neq NULL

2. then Inorder(left(x));

3. output key(x);

4. Inorder(right(x));
```

```
Algorithm Preorder(x)
                                          Algorithm Postorder(x)
Input: x is the root of a subtree.
                                          Input: x is the root of a subtree.
                                          1. if x \neq \text{NULL}
1.
    if x \neq \mathsf{NULL}
                                                 then Postorder(left(x));
                                          2.
2.
       then output key(x);
                                                       Postorder(right(x));
                                          3.
3.
             Preorder(left(x));
                                                      output key(x);
                                          4.
4.
             Preorder(right(x));
```

- Use #1: To print out the data in a tree in a certain order
- Use #2: To evaluate an expression tree

Binary Tree ADT

```
template <class Comparable>
class Btree_node
   Comparable element; // the data
   Btree_node* left; // left child
   Btree_node* right; // right child
  public:
   Btree_node get_left ( ) { return left; }
   Btree_node get_right ( ) { return right; }
};
template<class Comparable>
void preorder (Btree_node<Comparable>* root)
    if (root)
       // output the node
        preorder(root->get_left( ));
        preorder(root->get_right());
```

Example: Unix Directory Traversal

Preorder

/usr

mark book ch1.r ch2.r ch3.r course cop3530 fa1198 syl.r spr99 syl.r sum99 syl.r junk. alex junk bill work course cop3212 fa1198 grades prog1.r prog2.r fa1199 prog2.r

prog1.r

grades

Postorder

```
ch1.r
             ch2.r
             ch3.r
                                4
         book
                               10
                      syl.r
                 fall98
                                2
                                5
                      syl.r
                 spr99
                      syl.r
                 sum99
             cop3530
                               12
                              13
        course
        junk
                                6
    mark
                               30
                               8
         junk
    alex
                                9
                                1
        work
                      grades
                      prog1.r
                      prog2.r
                 fa1198
                               9
                     prog2.r
                               2
                     prog1.r
                     grades
                 fa1199
                              19
             cop3212
                              29
                              30
        course
    bill
                              32
                              72
/usr
```

(Compiler) Example: Expression Trees

- Leaves are operands (constants or variables)
- The internal nodes contain operators
- Will not be a binary tree if some operators are not binary

Preorder Traversal

- Order: node, left, right
- Prefix expression: ++a*bc*+*defg

Inorder and Postorder Traversal

Inorder traversal

- order: left, node, right
- infix expression
 - a+b*c+d*e+f*g

Postorder traversal

- order: left, right, node
- postfix expression
 - abc*+de*f+g*+

RPN or Postfix Notation

- Reverse Polish Notation (RPN) = Postfix notation
- Most compilers convert infix expressions to postfix notation. Advantages:
 - expressions can be written without parentheses
 - efficiently evaluated using a stack

Infix	RPN (Postfix)	Prefix
A + B	A B +	+ A B
A * B + C	A B * C +	+ * A B C
A * (B + C)	A B C + *	* A + B C
A - (B - (C - D))	A B C D	-A-B-C D
A - B - C - D	A B-C-D-	A B C D

Infix to Postfix Conversion

- 1. Initialize an empty stack of operators
- 2. While no error and not end of expression
 - a) Get next input "token" from infix expression, where a token is a constant/variable/arithmetic operator/parenthesis
 - b) switch (token):
 - i. "(": push onto stack
 - ii. ")": pop the stack and display the elements until "(" occurs, do not display the "("
 - iii. operator:

```
if the operator has higher priority than the top of stack or top is '(' or stack is empty push token onto the stack else // same or lower precedence pop the stack and display it repeat comparison of the operator with the top of the stack
```

- iv. operand: display it
- 3. End of infix reached: pop and display stack items until empty

RPN Expression Evaluation

Underlining principle

- 1. Scan the expression from left to right to find an operator
- Locate ("underline") the last two preceding operands and combine them using this operator
- 3. Repeat until the end of the expression is reached

Example

$$\rightarrow$$
 234+56--*

$$\rightarrow$$
 2756--*

$$\rightarrow$$
 27-1-*

$$\rightarrow$$
 2 $7 - 1 - *$

$$\rightarrow 16$$

RPN Expression Evaluation ...

- 1. Initialize an empty stack
- 2. Repeat the following until the end of the expression is encountered
 - a) Get the next token (const, var, operator)
 - b) Operand push onto stackOperator do the following
 - i. Pop 2 values from stack

Note: if only 1 value on stack, this is a pop error, i.e., an invalid RPN expression

- ii. Apply operator to the two values
- iii. Push resulting value back onto stack
- 3. When the end of expression is reached, its value should be the only number left in stack; otherwise it is in error.

RPN Expression Evaluation ...

- 2
- ♦ Push 2 onto the stack

♦ Push 4 onto the stack

→ Pop 4 and 2 from the stack, multiply, and push the result 8 back

♦ Push 9 onto the stack

♦ Push 5 onto the stack

→ Pop 5 and 9 from the stack, add, and push the result 14 back

→ Pop 14 and 8 from the stack, subtract, and push the result -6 back

(end of strings)

-6

♦ Value of expression is on top of the stack

Binary Search Trees (BST)

- A data structure for efficient searching, insertion and deletion.
- Binary search tree property: For every node X
 - All the keys in its left subtree are smaller than the key value in X
 - All the keys in its right subtree are larger than the key value in X

Binary Search Trees ...

A binary search tree

Not a binary search tree

BSTs May Not Be Unique

- The same set of values may have different BSTs.
- Average depth of a node is O(log N)
- Maximum depth of a node is O(N)

Searching BST

- E.g., if we are searching for 15, then we are done.
- If we are searching for a value < 15, then we should search in the left subtree.
- If we are searching for a value > 15, then we should search in the right subtree.

Example: Search BST

Search for 9 ...

Compare	Action	
9 vs. 15	continue with the left subtree	
9 vs. 6	continue with the right subtree	
9 vs. 7	continue with the right subtree	
9 vs. 13	continue with the left subtree	
9 vs. 9	eureka!	

BST ADT (different from textbook)

```
template <typename T> class BST
 private:
    static const T DUMMY; // Returned value of an empty BST
   struct bst_node { // A node in a binary search tree
       T value;
       BST left; // Left sub-tree or called left child
       BST right; // Right sub-tree or called right child
       bst_node(const T& x) : value(x), left( ), right( ) { };
   };
   bst node* root;
  public:
   BST(): root(NULL) { } // Empty BST when its root is NULL
   BST(const BST& bst) { root = bst.root; } // Shallow BST copy
   ~BST() { delete root; }
   bool is_empty( ) const { return root == NULL; }
   bool contains(const T& x) const;
   void print(int depth = 0) const;
   const T& find_max( ) const; // Find the maximum value
   const T& find min() const; // Find the minimum value
   void insert(const T&); // Insert an item with a policy
   void remove(const T&); // Remove an item
};
```

Our BST ADT

 Our ADT definition conforms more with the following BST figure:

< 15 >15

- That is, a BST object has a root pointing to a BST node which has
 - a value (of any type)
 - a left BST subtree
 - a right BST subtree

Searching (contains)

- Check if the BST contains the value X: true or false.
- Time complexity: O(height of the tree)

```
template <typename T>
bool BST<T>::contains(const T& x) const
{
   if (is_empty( ))
      return false;

   if (root->value == x)
      return true;
   else if (x < root->value)
      return root->left.contains(x);
   else
      return root->right.contains(x);
}
```

Inorder Traversal of BST

 Inorder traversal of BST prints out all the values in sorted order.

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Print By Rotating BST -90 Degrees

```
template <typename T>
void BST<T>::print(int depth) const
{
   if (is_empty())
                                    // Base case
      return;
   root->right.print(depth+1);  // Recursion: right subtree
   for (int j = 0; j < depth; j++) // Print the node value
       cout << '\t';
   cout << root->value << endl;
    root->left.print(depth+1);  // Recursion: left subtree
```

Finding the Min/Max Value in a BST

- Start at the root and go left (right) as long as there is a left (right) child. The stopping point is the min. (max.) element.
- Time complexity = O(height of the tree)

```
template <typename T> // Find the minimum value
const T& BST<T>::find_min( ) const
    if (is_empty()) // Should not happen!
        cerr << "Error: find_min() called by an empty BST\n";</pre>
        return DUMMY; // Returned value is a dummy
   const bst_node* node = root;
   while (!node->left.is_empty( ))
        node = node->left.root;
    return node->value;
}
```

Insertion

- Proceed down the tree as you would with a search.
- If X is found, do nothing (or update something).
- Otherwise, insert X at the last spot on the path traversed.
- Time complexity = O(height of the tree)
- E.g., search 13:

Insertion ...

Deletion

- When we delete a node, we need to consider how we take care of the children of the deleted node.
 - This has to be done such that the property of the search tree is maintained.
- Time complexity = O(height of the tree)

Deletion under Different Cases

- Case 1: the node is a leaf
 - Delete it immediately
- Case 2: the node has one child
 - Adjust a pointer from the parent to bypass that node

Example: delete 4

Deletion under Different Cases ...

- Case 3: the node has 2 children
 - Replace its value with the min. value of its right subtree
 - Delete that node with the min. value.
 - Must have either no child or only right child otherwise, that node would not have been the min. in the first place! So, invoke case 1 or 2.

Deletion Code

```
void BST<T>::remove(const T& x) // leftmost item of its right subtree
{
    if (is_empty( ))
                               // Item is not found; do nothing
        return;
    if (x < root->value)
                               // Remove from the left subtree
        root->left.remove(x);
   else if (x > root->value)
                                // Remove from the right subtree
        root->right.remove(x);
   else if (root->left.root && root->right.root) // Found node has 2 children
        root->value = root->right.find_min();
        root->right.remove(root->value);
   else // Found node has 0 or 1 child
        bst_node* deleting_node = root; // Save the root to delete first
        root = (root->left.is_empty()) ? root->right.root : root->left.root;
        // Reset its left/right subtree to null first before removal
        deleting_node->left.root = deleting_node->right.root = NULL;
        delete deleting_node;
```

Deletion Code ..

- The code is not efficient when the node to be deleted has 2 children because
 - it makes another recursive call to delete the node in the right subtree with the min. value
 - deletion in this case is done by copying the value of the min. node to the deleting node (what if the data type of value is that of a big object?)
- Try to re-write without the additional recursive call and without copying.