

Workshop Analyzing simulation results with IMMA

(Integrated Multi-metrics Model Analyzer)

The Team of Work Package 2

What does IMMA do?

- IMMA implements a state-of-the-art wide choice of model evaluation procedures
- It allows a simple and quick evaluation processing
 - 1) load data 2) associate them 3) call the procedure
- ➤ It is extensible and customizable, and it can run additional procedures obtained from third parties, or you can develop yours and give it to others
- It is capable of doing a global judgment about model quality

Working with IMMA

- > A typical work session with IMMA follows three main steps:
 - Load the two series of data to be compared
 - Associate the two series with some coupling criteria
 - Execute the desired statistical method

Step 1: Load data

- ➤ The typical situation encountered by most modelling researchers is to compare an estimated data series (E "estimates") against some experimental results/observations (M "measures")
- You can load data from various sources (Excel, CSV files, Bioma output, Databases).
- (If necessary) filter the two series to create a subset of data, according to a given criterion, which is specified with logical operators.
- Once the dataset has been specified, it can be saved in a configuration file, to be retrieved later without repeating the previous operations.

Step 2: Match data

- In order to process data, IMMA needs to know how to couple the two series, to identify the correct pairs.
- In the most typical situation, a continuous daily estimates series is compared to a sparse observation series (simulation outputs are produced for each simulation time-step, while field observations are carried out at intervals).
- In cases like this, you generally extract simulation estimates corresponding to the available observation dates, and generate an equal number of pairs.

M. V.							
*.	А	В	С	D	Е	F	G
L	Date	LimitedAboveGroundBiomass			Date	LimitedAboveGroundBiomass	
2	03/05/1999	0.06			03/05/1999	0.11	
3	04/05/1999	0.07			14/05/1999	0.93	
1	05/05/1999	0.1			01/06/1999	4.8	
5	06/05/1999	0.12			15/06/1999	5.6	
5	07/05/1999	0.16			01/07/1999	5.99	
7	08/05/1999	0.2			12/07/1999	6.3	
8	09/05/1999	0.27			23/07/1999	4.9	
9	10/05/1999	0.38			01/08/1999	2.7	
.0	11/05/1999	0.5			10/08/1999	1.5	
1	12/05/1999	0.66			19/08/1999		
2	13/05/1999	0.87			28/08/1999	0.7	
3	14/05/1999	1.08			29/08/1999	0.55	
4	15/05/1999	1.18			27/04/2000	0.05	
.5	16/05/1999	1.49			08/05/2000	0.9	
.6	17/05/1999	1.63			19/05/2000	3.3	
.7	18/05/1999	1.95			31/05/2000	4.6	
8	19/05/1999	2.04			14/06/2000	5.9	
9	20/05/1999	2.2			21/06/2000	5.9	
0	21/05/1999	2.34			04/07/2000	6.5	
1	22/05/1999	2.58			16/07/2000	5.95	
2	23/05/1999	2.9			03/08/2000	2.5	
3	24/05/1999	3.19			15/08/2000	1.5	
4	25/05/1999	3.41			12/05/2001	0.7	
5	26/05/1999	3.64			24/05/2001	3.5	
6	27/05/1999	3.86			04/06/2001	5.2	
7	28/05/1999	4.03			19/06/2001	5.3	
8	29/05/1999	4.2			03/07/2001	5.2	
9	30/05/1999	4.35			15/07/2001	5.4	
0	31/05/1999	4.47			28/07/2001	2.5	
1	01/06/1999	4.6			08/08/2001	0.7	
2	02/06/1999	4.71			15/08/2001		
	V			7.4×1.41		MANAMA MARIERA	GIUGGAZA

48 September 2016

Step 3 – Analysis

- As soon as data are correctly matched, the available statistical methods are displayed, ready to be used.
- ➤ A set of CRA.IRENE methods are currently implemented
- Wrapping R methods is ongoing
- To activate methods, an "estimated", "measured" and "covariate" series must be individuated.

Strategy LeastSquares

- Fit a linear regression model between two series
- Calculate the residuals
- Plot the results

Strategy Probabilities

- Display probability density functions
- Allows a visual direct assessment of difference between the two series

Strategy UnivariateStat

Display basic descriptive statistics

Strategy PatternIndices

Detect presence of patterns in the residuals respect to an independent covariate

Strategy KSTest

> Kolmogorov-Smirnov test

Strategy Integrated Index

- Using fuzzy-logic rules, calculate indicator based on custom-designed aggregated statistics
- Allow to build evaluation criteria around specific needs

Why Integrated Indices are useful

Which is the best model?

Model A: good reproduction of model behaviour (reliable model), but not very useful

Model B: good accuracy (useful model), but scarce capacity to capture model behaviour (not reliable)

- An Integrated Index is a model evaluation metric whose output depends on the values taken by an array of indices.
- The indices composing the Integrated Index are chosen according to specific evaluation needs.

- In IMMA Integrated Indices are based on fuzzy-logic rules:
- They can take values between 0 (= good model performance) and 1 (= bad model performance)

➤ To build an Integrated Index:

- Choose the basic indices to aggregate
- For each basic index, it must be specified:
- The Weight
 - The relative importance assigned to the index withing the integrated index
- The Favourable Limit
 - The index value, beyond which the user is absolutely sure that the value can be considered «good».
- The Unfavourable Limit
 - The index value, beyond which the user is absolutely sure that the value can be considered «bad».

> Some examples:

- RRMSE (%) (the smallest, the better)
 - F-Limit = 20
 - U-Limit = 90
- r Pearson (the highest, the better)
 - F-Limit = 0.90
 - U-Limit = 0.50

Let's start the lab!

