物理实验室

一种用传感器定量探究安培力大小影响因素的实验装置

徐发林 李 莉 邱 华 (重庆市江北中学校 重庆 400714)

摘 要 本文设计了一种探究安培力大小影响因素的实验装置,并用于进行创新性的实验。

关键词 物理实验 物理课程 通电导线 实验探讨

文章编号 1002-0748(2021)10-0030

中图分类号 G633 • 7

文献标识码 B

1 引言

磁感应强度和安培力是高中物理教学的难点。 磁感应强度的大小无法感知,对学生而言非常抽象。 虽然安培力可以判断,但由于它比较小,只能定性感 知,不易精确测量,更不容易从实验的角度去验证安 培力公式 F = BIL 的正确性。传统实验的做法是将 线圈用粗线连接,但会造成测量安培力时误差很大, 并且使得测量磁感应强度时难以找到与线圈磁感应 强度相等的等效位置。为此,笔者经过长期实验和 研究,制作完成了一套定量探究安培力大小影响因 素的实验装置。该实验装置能精确测量并验证如 下关系: 安培力大小与磁感应强度成正比、与电流 强度成正比、与通电导线在磁场中的长度成正比, 从而定量验证了安培力公式的正确性。此外,该 装置也能作为精确测量安培力的实验仪器。定量 探究安培力大小影响因素这一实验是教材中磁感 应强度这一节知识教学的重点,它不但培养了学 生的实验观察能力和逻辑推理能力,而且使学生 再次熟悉了控制变量法,并使学生在与用电场强 度描述电场的对比中,深入了解到磁感应强度的 意义。

2 实验的基本原理与实验装置的设计思路

首先,在定量探究安培力大小影响因素这一 实验开始之前,我们要了解安培力的本质是什么。 安培力的本质是定向移动的自由电子受洛伦兹力 偏移,产生一个霍尔电场,直到自由电子受到霍尔电场的力和洛伦兹力平衡,从而达到稳定状态。而导体中的其他正离子没有定向移动,它们受到一个霍尔电场的力,这些正离子受力的合力表现为安培力,所以说安培力的本质是电磁场力。了解了它的原理之后我们就可以开始对这个实验进行研究了。

本研究设计的实验装置主要由压力传感系统、 电流传感系统、磁感应强度传感系统、电源系统及外 壳组成,其实物图如图1、图2所示。实验时将通电 线圈支架放在压力传感器上,通电直导线(线圈一边 替代)所在处磁场的强度用霍尔传感器进行测量,通 电线圈通过的电流强度用电流传感器进行测量,通 电直导线在磁场中的长度先行测量,这样F、B、I、 L每个物理量都可进行精确测量,然后将测量数据 代入公式 F = BIL 便可以验证公式的正确性。通电 线圈与电源间用柔性接头连接, 当通电直导线受安 培力作用时可以减小外部连线对压力传感器的影 响。用磁感应强度传感器测量出通电直导线所处 位置的磁感应强度,再把霍尔传感器的探头放在 与通电直导线磁感应强度相同的对应位置,确保 磁感应强度测量值与通电直导线中的磁感应强度 值相同。磁感应强度的变化用螺杆调节,电流强 度的变化用旋钮调节,从而可以在显示器上直接 观察到安培力与磁感应强度、安培力与电流强度 之间的关系。

本实验根据牛顿第三定律,采用测量线圈对磁

^{*} 基金项目:本文系重庆市教育科学"十三五"规划 2018 年度重点课题"普通高中物理学科'四轮驱动,八步进阶'式微课开发与应用研究"(课题批准号: 2018 - 10 - 224)的阶段性成果。

体反作用力的方法,用压力传感器测量磁体底座的 质量变化,从而获取安培力的大小。由于磁体底座 与线圈分离,也没有复杂的电路需要调整,因此,可 以在控制所需变量后直接进行读数。

最后,要做好实验的前期准备工作。首先要调节线圈与磁体底座的相对位置,使线圈下边能居中进入,正对磁极的中央,使线圈平面与磁场方向垂直。打开各模块供电开关,输入电流至线圈,线圈向上离开磁场作用范围,并将压力传感器电路读数清零。

3 实验装置的使用步骤与实验数据分析

经过笔者的实际操作和分析总结发现,我们能 使用该装置通过以下实验步骤来测量出所需要的实 验数据,并探究背后的物理规律。

- ① 测量出导线在磁场中的长度,而通电直导线的长度变化可通过更换不同的线圈实现。
- ② 测量出当磁感应强度不变时,电流强度变化引起的安培力大小的变化,观察电流强度变化时安

培力大小变化的规律。改变电流的方向,观察安培力的方向与电流方向间的关系。

- ③ 测量出当电流强度不变时,磁感应强度变化引起的安培力大小的变化,观察磁感应强度变化时安培力大小变化的规律。
- ④ 通过测得的实验数据,计算安培力 F 与 B I L 的值是否相等,验证安培力公式 F = BIL 的正确性.

通过以上的实验过程,我们得到了表 1、表 2 和表 3 的实验数据。

由表 1 的实验数据通过计算可以很好地验证安培力公式 F = BIL 的正确性,也能很好地反映出当磁感应强度及导线长度不变时,安培力的大小与通电导体的电流强度成正比,如图 3 所示。

表 1 安培力随电流强度变化实验数据

安培力 F(N)	测量值 M(g)	磁感应强 度 B(T)	电流强 度 I(A)	导线长 度 <i>L</i> (m)	B • I • L (N)	误差(%)
0. 155	15. 87	0.104	0. 15	10	0.156	0.78
0.309	31.61	0. 104	0.30	10	0. 312	0.90
0.463	47. 26	0. 104	0.45	10	0.468	1.03
0. 625	63. 83	0. 103	0.60	10	0. 622	−0.53
0. 783	79. 97	0. 103	0.75	10	0. 775	-1.05
0.944	96. 38	0. 103	0. 90	10	0. 927	-1.79
1. 106	112. 86	0. 102	1.05	10	1. 078	-2.56
1. 258	128. 38	0. 102	1. 20	10	1. 23	-2. 28
1. 418	144. 73	0. 102	1. 35	10	1. 381	-2.70
1. 576	160. 89	0. 102	1. 50	10	1. 530	-3.05

由表 2 的实验数据通过计算也可很好验证安培力公式 F = BIL 的正确性,并能很好地反映出当电流强度及导线长度不变时,安培力的大小与磁感应强度成正比。

安培力 F(N)	测量值 M(g)	磁感应强度 B(T)	电流强度 I(A)	导线长度 L(m)	$B \cdot I \cdot L(N)$	误差(%)
1. 106	112. 86	0. 102	1. 05	10	1.078	-2.56
1. 125	114. 87	0. 105	1. 05	10	1.035	1. 96
1. 166	119.06	0. 107	1. 05	10	1. 128	3. 26
1. 211	123. 66	0.110	1. 05	10	1. 156	4. 60
1. 234	125. 99	0. 112	1.05	10	1. 181	4. 32
1. 248	127. 36	0. 115	1. 05	10	1. 207	3. 25
1. 258	128. 46	0. 117	1. 05	10	1. 232	2. 08
1. 278	130. 46	0. 120	1. 05	10	1. 261	1. 36
1. 305	133. 21	0. 122	1. 05	10	1. 286	1. 47
1 335	136.28	0 125	1.05	10	1 312	1.72

表 2 安培力随磁感应强度变化实验数据

由表 3 的实验数据通过计算仍能验证安培力公 式 F = BIL 的正确性,能很好地反映出当磁感应强

度及导线长度不变,但电流方向改变时,安培力的大 小与电流强度也成正比。

表 3 安培力随反向电流强度变化实验数据						
安培力 F(N)	测量值 M(g)	磁感应强度 B(T)	电流强度 I(A)	导线长度 L(M)	$B \cdot I \cdot L(N)$	误差(%)
-0.149	-15. 22	0. 100	-0.15	10	-0.150	0. 66
-0 . 304	-31.12	0. 100	-0.30	10	-0.301	-1.25
-0.456	-46.54	0. 100	-0.45	10	-0.453	-0.64
-0.608	-62.13	0. 101	-0.60	10	-0.606	-0.47
-0.763	-77.94	0. 101	-0.75	10	-0.759	−0.53
-0.917	-93.58	0. 101	-0.90	10	-0.914	-0.29
-1.072	-109.47	0. 101	-1.05	10	-1.069	-0.26
—1. 224	-124.95	0. 102	-1.20	10	-1.226	0. 15
-1. 379	-140.76	0. 102	-1.35	10	1. 383	0. 31
-1.533	—156.48	0. 102	-1.50	10	-1.542	0. 55

通过实验操作及实验数据可看出,这套实验装 置还有着以下四个优点:

- ① 通过传感器测量安培力、磁感应强度、电流 强度,实验数据准确,测量值在同一显示屏上集中显 示,便于数据采集,方便学生直接观察安培力大小随 磁感应强度和电流强度变化的规律,节约了课堂教 学时间。
- ② 通电线圈放在压力传感器上,可直接通过压 力传感系统读出安培力的数值。线圈与电源间用柔 性接头连接,当导线受安培力作用时可以减小外部 连线对压力传感器的影响。
- ③ 改变线圈中的电流方向时,安培力在压力传 感系统中显示为负值,可让学生直观感受安培力的 方向与通电直导线中的电流方向有关。
 - ④ 用螺杆调节两块强磁体的间距,从而改变通 • 32 •

电直导线中磁感应强度的大小,用旋钮调节电流强 度的大小,通过以上方法可以测出若干组 B·I·L 的值,使该仪器对验证安培力公式更有说服力。

总的来说,教师可以在课堂教学中利用安培力 的定量测量装置,引导学生有效地开展对 F = BIL这一规律的探究,使学生在学习这一重要规律的同 时,经历物理规律的探究过程,了解科学研究的 方法。

4 实验探究视角下对教师教学的启示

在笔者看来,实验课程最重要的一个作用是它 可以充分调动学生的积极性和创造力。在传统模式 的课堂上,教师通常只能对着课本照本宣科,学生对 于物理课堂也容易产生厌恶、抵触心理,丧失学习兴

(下转第36页)

图 11)。本次实验中,y = (-1.46x) + 2.78,电池的电动势为 2.79 V,内阻为 1.47 Ω 。

借助该实验,笔者在真实世界中向学生展示了图象法的应用,让学生在计算结果和图象法结果之间形成参比对照。进而通过让学生搭建多道试题中的电路并且进行实际测量,促进学生了解"等效电阻法""图象法"等解题方法背后的实际意义。当学生面对实验数据和计算数值的时候,两者的一致性使得他们恍然大悟,深切体会到"一题多解、殊途同归"的含义,对电路的认识也升华到了新的高度。

3 教学效果自评

随着笔者以单元教学为平台、以 DIS 实验的综合强化应用为主导的新教法逐步成型,相当一部分学

(上接第 32 页)

趣,对物理知识的学习只能是机械的、被动的。再加上我们面对的还是一群高中学生,他们的日常学习任务繁重,学习时间比较紧,倘若物理课还无法吸引他们的兴趣,那么就会直接导致学生学习效率低下、教师的课堂效果不尽如人意。要解决这些问题,仅仅依靠传统的课堂教育是不可能做到的,必须要立足于大数据教学模式,从这种创新的学习环境所带来的革新性的教育方式与学习方式出发,才有可能诱发学生的内在动力,化被动为主动,使学生的被动学习变为主动学习,甚至是自主学习。

另外,实验教学还可以破解物理课堂教学中的难题和难点。由于物理概念的抽象性,许多学生在面对这样的物理知识时就出现了很难理解,面对问题束手无策的情况,一些学生遇到不懂的问题也不敢去问老师。但是通过实验教学,教师可以了解学生不懂的点在哪里,借助实验把知识以更生动形象的形式传授给学生;学生也能凭借手上的实际操作,同身边的同学和老师进行知识难点的探讨。这样既

生达到或接近本文所界定的深度学习目标。不少学生表示,经过上述单元教学和 DIS 实验强化,再做题的时候感觉条理清晰、思路明确,顺利解题后成就感满满,增强了针对其他课程单元展开自主学习、自主探究的自信心。

4 小 结

学生认知提升的关键在于深度学习,而学生进入深度学习的关键则在于教师教法的改进。借助单元教学法整合教材中的相关内容,巧用 DIS 实验促进学生形成从理论到实践再到理论的良性循环,可以有效促进学生对物理规律认知的提升,并最终提高其解题能力。当然,教法的改进是一个循序渐进的过程,教师应牢固把握其中的逻辑关联,切不可盲目求快,不然即便最初小有所成也终将昙花一现。

参考文献

- [1] 张宪魁. 物理科学方法教育[M]. 青岛: 中国海洋大学出版社,2000.
- [2]中华人民共和国教育部. 普通高中物理课程标准(2017 年版) [S]. 北京: 人民教育出版社,2018.
- [3] 冯容士,李鼎. DIS,上海创造——数字化实验系统研发纪实 [M]. 上海:上海教育出版社,2018.
- [4] 郭华. 深度学习与课堂教学改进[J]. 基础教育课程,2019(2).

能调动学生学习物理的兴趣,又能让学生和教师同时收获到别致的体验,这是传统课堂中难以达成的效果,也是物理课程实验教学的特别之处。

5 结束语

事实上,实验课程这种教学方式也不是万能的,每一种教学模式都有其局限性和优点。作为教师,我们要灵活运用多种教学方式,因材施教。在开展实验课程教学的时候,教师也可以吸取他人的授课经验,了解学生喜欢什么样的课程教学,什么模式的教学更容易被学生接受,运用合适的教学方法来提高教学效果。

参考文献

- [1] 黄爱凤,李桂旺. 定量探究安培力的影响因素——安培力多元 化演示仪的设计制作[J]. 物理教师,2019(9).
- [2] 丁良峰. 定量探究安培力实验装置的创新设计研究[J]. 物理教师,2019(5).