Karadeniz Teknik Üniversitesi OF Teknoloji Fakültesi Elektronik ve Haberleşme Mühendisliği

EHM2003-Elektronik Devreler I 2020-2021 Güz Y.Y. Final (Toplam Süre: 130 dk)

Dr. Zeynep HASIRCI TUĞCU 25.01.2021

 V_i ve V_0 işaretlerini alt alta ölçekli olarak çiziniz. (β =100 V_{BE} = 0,7 V V_{CEd} = 0,2 V)

- a) VGG= 0 için JFET' in DC çalışma noktasını bulunuz.
- **b)** VGG= 0 için VG, VS, VD gerilimlerini hesaplayınız.
- c) JFET' i tıkamaya(kesime) sokacak olan VGG değerini bulunuz.

 ${\bf R}{=}1~{\rm k}\Omega~{\bf V}{=}50~{\rm V}~{\bf I_{Zmax}}{=}32~{\rm mA}~{\bf I_{Zmin}}{=}0~{\rm mA}$ olarak verilmiştir.

- a) Yük üzerindeki gerilimi 10 V' ta sabit tutacak
 R_L ve I_L değerleri nelerdir?
- b) Zener diyodun çekeceği maksimum gücü bulunuz.

4) V_i ve V_0 işaretleri aşağıdaki gibi verilen N devresini tasarlayınız. (Eğer diyot kullanacaksanız Silisyum, $V\alpha$ =0,7 V olan diyot kullanılmalıdır.)

D1 ve **D2** ideal olup $V_{\alpha 1} = V_{\alpha 2} = 0,7 \text{ V}$ olup **V1** ve **V2** gerilimlerinin değişimi yandaki gibidir. Buna göre devrenin çıkışı V_0 'ı ölçekli olarak çiziniz.