

实验四 低频功率放大电路--OTL功放

实验目的

- 1. 理解OTL功率放大器的工作原理;
- 2. 学会OTL电路的调试及主要性能指标的测试方法。

实验内容和线路

1.静态工作点调整和测量

1) 将 R_{W2} 的阻值调到最小,首先不采用自举电路(即不接入 C_2)。接通电源 V_{CC} (+6V)。缓慢调节电位器 R_{W1} 使输出端中点电位 V_B =0.5 V_{CC} =3V,以下保持电位器 R_{W1} 位置不变。

2)观察交越失真

输入1KHz的正弦交流信号,调整输入幅度用示波器观察输出波形的交越失真现象。调节 R_{W2} ,消除交越失真。毫安表读数约为 I_{C2} 。

2、最大输出功率和效率的测定

$$P_{O\max} = U_{O\max}^2 / R_L$$

2)测出此时直流电源供出的平均电流 I_{DC} ,求得电源输出功率 P_E ,进而求出效率 η 。

$$P_E = V_{CC} * I_{DC}, \quad \eta = P_{Omax} / P_E$$

	I_{C2}	I _{C2最佳}	U_{Omax}	P_{Omax}	$I_{ m DC}$	P_{E}	η
无自举							
有自举							

3.采用自举电路(即接入C2,连接A、B), 重复以上各实验步骤。

4.用multisim仿真软件,画出仿真电路,重复上述实验步骤.

