

Table of contents

01

Case Overview

History of Cook County Assessor's Office & Objectives 02

Methodology & Visualizations

Preprocessing, selecting predictors, and algorithms

03

Key Observations

Results and MSEs of the predicted market value models

Cook County Assessor's Office Timeline

<u>Source</u>

James Houlihan (1997-2010)

1.1% of his reassessments were identical over 2 assessment periods

Joseph Berrios (2010-2018)

67.4% of his reassessments were identical over 2 assessment periods

Fritz Kaegi (2018)

Beats Berrios in election for Cook County Assessor due to ethics ruling cases

Problem

Current system creates inaccurate assessed values for housing units, disportionately affecting homeowners in lower socioeconomic brackets.

Objectives

- Create more accurate property taxes by improving the computer program used to determine a property's assessed value
 - Develop an algorithm that can predict the fair market value of
 - Identify the characteristics that will increase the accuracy of the predictions

Methodology

Preprocessing

- Eliminate columns not indicated as predictors in the codebook
- Eliminate duplicate rows
- Missing values
 - Impute by meta_nbhd & meta_town_code (Last Observation Carried Forward)
 - Impute numerical values with the mean of the column

Preprocessing Continued

- Outliers
 - Winsorize the values below 1% and above 99%

```
historic_property_data[numeric_cols] <- lapply(historic_property_data[numeric_cols],

function(x) Winsorize(x, probs = c(0.01, 0.99)))
```

- Negative Values
 - o Change to 0
- Removed remaining columns with too many missing values: "char_apts", "char_porch", "char_attic_fnsh",
 "char_tp_dsgn"
- Results: Dataframe with 49,362 rows and 38 columns

Histogram of Sales Price

Hypothesis: Our predicted assessment values should have a similar distribution

Selecting Predictors

- Location, size, and potential risk to construction quality
 - 'Meta_nbhd', 'geo_school_elem_district', 'geo_school_hs_district'
 - 'char_hd_sf', 'char_bldg_sf', 'char_beds', 'char_fbath', 'char_hbath'
 - 'geo_fs_flood_factor','geo_fs_flood_risk_direction'

Correlation Matrix of Numerical Variables

Testing for Multicollinearity

Variance Inflation Factor(VIF)→ Remove township code

meta_town_code	meta_nbhd
66205.936494	66171.245959
char_hd_sf	char_bldg_sf
1.355389	4.253432
char_beds	char_fbath
2.635338	3.285497
char_hbath	geo_fs_flood_factor
1.167887	2.160514
<pre>geo_fs_flood_risk_direction</pre>	

2.153850

Drop 'meta_town_code'

```
        meta_nbhd
        char_hd_sf

        1.311712
        1.346188

        char_bldg_sf
        char_beds

        4.246855
        2.629873

        char_fbath
        char_hbath

        3.280663
        1.167812

        geo_fs_flood_factor
        geo_fs_flood_risk_direction

        2.156316
        2.153380
```


Predictive Test Models

Set seed and prepare data for cross-validation

```
set.seed(123) # Set a seed for reproducibility

# Split the data into training and testing sets
index <- createDataPartition(data_selected_reduced$sale_price, p = 0.8, list = FALSE)
train_data <- data_selected_reduced[index, ]
test_data <- data_selected_reduced[-index, ]

# Set up cross-validation
train_control <- trainControl(method = "cv", number = 5, allowParallel = TRUE)</pre>
```

Linear, Random Forest, and Lasso Regression Models (see next slide)

Predictive Models

Linear Regression	Random Forest
MSE: 43,220,479,448RMSE: 207,895.4	MSE: 15,276,646,289RMSE: 123,598.7
Lambda	Combined
o MSE: 43,217,434,819	o MSE: 28,847,341,624

Final Model Design

```
new_data <- predict_property_data</pre>
new data cols <- c('meta nbhd', 'char hd sf', 'char bldg sf', 'char beds', 'char fbath', 'char hbath', 'geo fs flo
od factor', 'geo fs flood risk direction')
new data prepared <- select(new data, all of(new data cols))</pre>
# Predicting values using the best model or combined approach
final predictions <- (predict(lm model, new data prepared) +
                      predict(rf_model, new_data_prepared) +
                      predict(lasso model, new data prepared)) / 3
# Combine final predictions with the pid column from new data
assessed_values <- data.frame(pid = new_data$pid, assessed_value = final_predictions)
# Ensure that all pid and assessed value values are non-missing and non-negative
assessed values <- assessed values %>%
  filter(!is.na(assessed value) & assessed value >= 0)
```

	pid assessed_value
	1 247432.935
Assessment Values	2 339336.788
	3 161193.162
	4 275215.696
Summary Statistics:	5 424739.132
•	6 194805.689
M: /2.012	7 246633.161
• Min: 42,012	8 425016.315
• 1st Quartile: 184,985	9 318902.218
 Median: 255, 128 	10 565756.817
• Mean: 308,566	
• 3rd Quartile: 372,765	9990 175777.32719738374
•	9991 172559.3446619915
• Max: 2,180,952	9992 386877.4458173979
	9993 190178.8693811753
	9994 179101.7659442090
	9995 523595.8526599297
	9996 509194.1624321558
	9997 146496.2266306680
	9998 397966.7463866722
	9999 581761.7615871712
	10000 230271.7486975915

Distribution of Assessed Values

Sources

- Slide 1 Photo
- Slide 2 Photo
- Slide 3 Photo (<u>Redfin</u>)
- Slide 4 Photo <u>1</u>, <u>2</u>, <u>3</u> (<u>Information</u>)
- Slide 6 Photo (<u>Flickr</u>) (section 2)
- Slide 10 Photo (<u>Flickr</u>) (section 3)
- Slide 18 Photo (<u>Flickr</u>)

Work Distribution

- Courteney Chan Data Preprocessing
- Xinyuan Chen Selecting Predictors, Algorithms
- Ishika Gupta Selecting Predictors, Algorithms
- Kaitlyn Ho Selecting Predictors, Visualizations, executive summary, slides
- Chih-Yu Hsu Data preprocessing
- Rutuja Lohakare Data Preprocessing, Selecting Predictors, Algorithms
- Raj Mehta Selecting Predictors, Algorithms
- Yifeng Zhang Executive Summary

slidesgo