

Этикетка

КСНЛ.431271.012 ЭТ

Микросхема интегральная 1564ЛА1УЭП Функциональное назначение: Два логических элемента «4И-НЕ»

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
		Вход первого			Выход второго
1	A1	элемента	9	Y2	элемента
		Вход первого			Вход второго
3	B1	элемента	11	A2	элемента
4	NC	Не подключен	12	B2	Вход второго элемента
5	C1	Вход первого элемента	13	NC	Не подключен
6	D1	Вход первого элемента	14	C2	Вход второго элемента
7	Y1	Выход первого элемента	15	D2	Вход второго элемента
8	0V	Общий	16	V_{CC}	Питание

Для микросхем 1564ЛА1УЭП выводы 2 и 10 – свободные

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B}, I_0=20 \text{ MKA}$	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =20 mkA		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} = 4,2 B, I_{O} = 20 MKA		Ī	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B , I_{O} = 4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} = 4,2 B, I_{O} = 5,2 mA		Ī	0,26

1	2	2	4
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IH}=0.3 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IH} =0,9 B, I_{O} = 20 MKA		4,4	-
U_{CC} =6,0 B, U_{IH} = 1,2 B, I_{O} = 20 мкА		5,9	-
при:			
$U_{CC} = 4.5 \text{ B}, U_{IH} = 0.9 \text{ B}, I_0 = 4.0 \text{ mA}$		3,98	-
$U_{CC} = 6.0 \text{ B}, U_{IH} = 1.2 \text{ B}, I_0 = 5.2 \text{ mA}$		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$I_{\rm IL}$	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{II} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	_	2,0
CCC 0,0 B, OIL 0 B, OIH CCC	100		2,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 10 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	12
7. P.			
7. Время задержки распространения при	t _{PHL} ,		
включении и выключении, нс, при:	$t_{\rm PLH}$		00
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ n}\Phi$		-	90 18
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi$		-	_
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	15
0.0			10
8. Входная емкость, пФ	C_{I}	-	10
$U_{CC} = 0 B$			

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Ι
серебро	Г

Цветных металлов не содержится

- 2 НАДЕЖНОСТЬ
- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{\rm CC} = 5 \, {\rm B} \pm 10\%$ - не менее 120000ч.

 $^{-}$ 2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-01ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛА1УЭП соответствуют техническим условиям АЕЯР.431200.424-01ТУ и признаны годными для эксплуатации.

Приняты по	от	
(извещение, акт и	др.) (дата)	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепрог	верка произведена	»
Приняты по (извещение, акт	от (дата)	
Место для штампа ОТК		Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): выход – общий, вход-выход.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.