Parcial Cálculo Avanzado

Leonardo Lanciano

16 de septiembre de 2020

1.

1.a.

Sea $A = \{x \in P(\mathbb{N}) \mid \#x = \#(\mathbb{N} - x)\}$. Por cómo A está definido, tenemos que A son los conjuntos numerables de complemento numerable. Ya que, supongamos que $\exists x \in A / x$ es finito, luego $\#x = k \in \mathbb{N}$, y como $x \in A$, $\#x = \#x^c = \#(\mathbb{N} - x) = \aleph_0$ Abs!

Por lo que x no es finito. De esto se sigue, además, que si hubiera un conjunto infinito con complemento finito \Rightarrow este conjunto no pertenece a A

Así, dado $x \in A$, $\#x = \aleph_0$. Ahora bien, queremos calcular #A.

Sabemos que $A \subseteq P(\mathbb{N})$ y $\#P(\mathbb{N}) = 2^{\aleph_0} = c$. Pero si lo pensamos bien, solamente existen tres tipos de conjuntos en $P(\mathbb{N})$. De manera que estos son los conjuntos numerables de complemento finito, los conjuntos numberables de complemento numerable, y los conjuntos finitos. Dicho esto, tenemos que:

 $P(\mathbb{N}) = \{x \in P(\mathbb{N})/x \text{ es finito}\} \cup \{x \in P(\mathbb{N})/\#x = \aleph_0 \text{ } y \text{ } \#x^c \text{ es finito}\} \cup \{x \in P(\mathbb{N})/\#x = \#x^c = \aleph_0\}$ Ahora bien, $\#\{x \in P(\mathbb{N})/x \text{ es finito}\} = \#\{x \in P(\mathbb{N})/\#x = \aleph_0 \text{ } y \text{ } \#x^c \text{ es finito}\}$, ya que $f: \{x \in P(\mathbb{N})/x \text{ es finito}\} \rightarrow \{x \in P(\mathbb{N})/\#x = \aleph_0 \text{ } y \text{ } \#x^c \text{ es finito}\} \text{ } / f(x) = x^c \text{ es biyectiva.}$ Primero veamos su inyectividad. Sean $x, y \in Dom(f)$

Tenemos que $f(x) = f(y) \Leftrightarrow x^c = y^c \Leftrightarrow (x^c)^c = (y^c)^c \Leftrightarrow x = y$

Además, es sobreyectiva, puesto que dado $x \in \{x \in P(\mathbb{N})/\#x = \aleph_0 \ y \ \#x^c \ es \ finito\} \Rightarrow \#x^c$ es finito $\Rightarrow x^c$ es finito $\Rightarrow x^c \in \{x \in P(\mathbb{N})/x \ es \ finito\}$

Luego $f(x^c) = (x^c)^c = x$, que es lo que queríamos ver.

Esto implica que $x^c \in \{x \in P(\mathbb{N})/x \ es \ finito\} = \aleph_0$ debido a que puedo construir una $g: \{x \in P(\mathbb{N})/x \ es \ finito\} \to \bigcup_{i \geq 1} \mathbb{N}^i$ inyectiva, donde g es una función que a un conjunto $R \subseteq \mathbb{N}$ de cardinal finito lo transforma en un vector de tamaño #R que tiene sus elementos ordenados de menor a mayor de manera tal que:

$$g(R) = \underbrace{(min(R), min(R \setminus \{min(R)\}), \dots, max(R))}_{si \#R=i}$$

 $g(R) = \underbrace{(min(R), min(R \setminus \{min(R)\}), \dots, max(R))}_{vector\ de\ tama\~no\ i}$ Esta función es inyectiva puesto que si $g(x) = g(y) \Rightarrow \#x = \#y = k$ y min(x) = min(y), y así sucesivamente. Luego $\Rightarrow x^c \in \{x \in P(\mathbb{N})/x \ es \ finito\} \subseteq \# \bigcup_{i \in \mathbb{N}} \mathbb{N}^i = \aleph_0$ por ser unión numerable de conjuntos numerables

Es obvio que
$$\# \{x \in P(\mathbb{N})/x \ es \ finito\} \ge \aleph_0$$

 $\Rightarrow \# \{x \in P(\mathbb{N})/x \ es \ finito\} = \aleph_0 = \# \{x \in P(\mathbb{N})/\#x = \aleph_0 \ y \ \#x^c \ es \ finito\}$
Ahora, dicho y hecho esto, estamos listos para calcular $\#A$.
 $\#P(\mathbb{N}) = c = \#A + \# \{x \in P(\mathbb{N})/x \ es \ finito\} + \# \{x \in P(\mathbb{N})/\#x = \aleph_0 \ y \ \#x^c \ es \ finito\}$
 $c = \#A + \aleph_0 + \aleph_0 \Leftrightarrow \#A = c$
 $\Rightarrow \# \{x \in P(\mathbb{N})/\#(x) = \#(\mathbb{N} - x)\} = c$

1.b.

Sea
$$B = \{f : \mathbb{N} \to \mathbb{N}/f \text{ es biyectiva}\}\$$

Queremos calcular #B. Como $B \subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow$ trivialmente #B < c. Entonces, debemos ver que $\#B \geq c$. Sea A el conjunto del ejercicio anterior, entonces por lo probado en a), sabemos que #A = c.

Afirmo que $A \sim B$ (es coordinable con B). Demostremos esto.

Para demostrarlo, bastaría ver que $\#B \ge c = \#A$. Es decir, bastaría demostrar que $\exists f: A \to B$ inyectiva. Ahora sea $L \in A$, luego $\#L = \aleph_0$. Además, $L \subseteq \mathbb{N}$, luego L tiene un buen orden. Entonces, $\exists (a_n)_{n\in\mathbb{N}}$ que recorre monótonamente a L. Demostremos esto: Como L está bien ordenado todos los subconjuntos de L tienen mínimo \Rightarrow Defino $a_1 = min(L), a_2 = min((L) \setminus \{a_1\}) \dots a_n =$ $min(L \setminus \bigcup_{i=1}^{n-1} \{a_i\})$ Además, $a \in A \Leftrightarrow a^c \in A \Rightarrow$ esta sucesión que construimos \exists para a^c , llamémosla b_n . Notamos además, que $\{a_n\}_{n\geq 1} \cup \{b_n\}_{n\geq 1} = a \cup a^c = \mathbb{N}$.

Ahora estamos listos para definir $f:A\to B$ inyectiva, luego sea $f:A\to B/f(a)=g$ donde $g(n) = \begin{cases} a_{\frac{n}{2}} & \sin n \equiv 0(2) \\ b_{\frac{n+1}{2}} & \sin n \equiv 1(2) \end{cases}$

Notemos primero que f(a) está bien definida, es decir que efectivamente f(a) = g, es una función bivectiva de \mathbb{N} en \mathbb{N} .

 $g: \mathbb{N} \to \mathbb{N}$ es sobreyectiva ya que $Im(g) = \{a_n\}_{n \geq 1} \cup \{b_n\}_{n \geq 1} = \mathbb{N}$ (lo mostramos antes).

Además $g: \mathbb{N} \to \mathbb{N}$ es inyectiva puesto que si $g(m) = g(n) \Rightarrow$, primero notamos que la paridad de m y n debe ser la misma ya que de no ser así, $\{a_n\} \cap \{b_n\} \neq \emptyset$, pero $n \in \mathbb{N}$ tal que $a_n \in a$ y a_n $\in a^c \Rightarrow Abs! \Rightarrow m \ y \ n \ comparten paridad.$

Si $n \equiv 0(2) \Rightarrow a_{\frac{n}{2}} = a_{\frac{m}{2}} \Rightarrow m = n$ ya que $(a_n)_{m \geq 1}$ es estrictamente creciente por cómo está definida.

Si $n \equiv 1(2) \Rightarrow b_{\frac{n+1}{2}} = b_{\frac{m+1}{2}}$ y por el mismo argumento que con $a_n \Rightarrow n = m$

Luego, podemos concluir que f está bien definida ya que $\forall a \in A, f(a) = g$ es una función biyectiva.

Ahora veamos que f es inyectiva.

Sean $a y c \in A$ tal que f(a) = f(c)

Luego, notemos que $f(a) = f(c) \Leftrightarrow h(n) = g(n) \ \forall n \in \mathbb{N}$

Luego si $n \equiv 0(2) \Rightarrow c_{\frac{n}{2}} = a_{\frac{n}{2}} \forall n \in \mathbb{N}$, luego necesariamente $c = \{c_n\}_{n \geq 1} = \{a_n\}_{n \geq 1} = a \Leftrightarrow c = a \Rightarrow f$ es inyectiva.

Luego $\#B \geq c \Rightarrow$ como $c \leq \#B \leq c \Rightarrow \#B = c$ que es lo que queríamos probar \blacksquare

2.

2.a.

Primero consideramos (c_0, d_1) . Veamos que (c_0, d_1) es cerrado, y luego $\overline{c_0} = c_0$. Luego, sea $(a_n)_{n\in\mathbb{N}}\subseteq c_0$ una sucesión de elementos de $c_0/a_n\xrightarrow[d_1]{}x$, veamos que $x\in c_0$, es decir, queremos ver que $x \to 0$.

Como $a_n \xrightarrow[d_1]{d_1} x \Rightarrow \text{Dado } \varepsilon > 0, \exists \ n_0 \in \mathbb{N} / \ \forall n \geq n_0, \ d_1(a_n, x) < \frac{\varepsilon}{2}$ Es decir, $\sup_{m \in \mathbb{N}} \{ \min\{1, |a_n^m - x^m|\} \} < \frac{\varepsilon}{2}$

Además, notemos que $a_{n_0+1} \in c_0$, es decir, que dado $\varepsilon > 0 \; \exists \; m_0 \in \mathbb{N} / \; \forall m \geq m_0, \; d(a_{n_0+1}^m, 0) < \frac{\varepsilon}{2}$

Dicho esto, estamos listos para demostrar que $x \in c_0$. Lo que debemos ver es que dado $\varepsilon > 0$,

 $\exists m_0^* \in \mathbb{N} / \ \forall m \geq m_0^*, \ d(x^m, 0) < \varepsilon. \ \text{Ahora bien}, \ d(x^m, 0) \leq d(x^m, a_{n_0+1}^m) + d(a_{n_0+1}^m, 0).$

Notemos que $d(x^m, a^m_{n_0+1}) = \min\{1, \left|a^m_{n_0+1} - x^m\right|\} \le \sup_{m \in \mathbb{N}} \left\{\min\{1, \left|a^m_{n_0+1} - x^m\right|\}\right\} = d_1(a_{n_0+1}, x)$

Entonces tenemos que $d(x^m, a_{n_0+1}^m) + d(a_{n_0+1}^m, 0) \le d_1(a_{n_0+1}, x) + d_1(a_{n_0+1}, 0)$

Como $n_0 + 1 \ge n_0 \Rightarrow d_1(a_{n_0+1}, x) < \frac{\varepsilon}{2}$

Ahora, si $m \ge m_0^* \Rightarrow d(a_{n_0+1}^m,0) < \frac{\varepsilon}{2}$. Rápidamente entonces, por lo mostrado, tenemos que:

$$d(x^m,0) \leq d(x^m,a^m_{n_0+1}) + d(a^m_{n_0+1},0) \leq d_1(x,a_{n_0+1}) + d(a^m_{n_0+1},0) \stackrel{si \, m \geq m_0^*}{<} \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow \underset{m \to \infty}{x^m} \xrightarrow{d} 0 \Rightarrow x \in c_0 \Rightarrow c_0 \text{ es cerrado con } d_1 \text{ y } \overline{c_0} = c_0.$$

Sea (c_{00},d_1) , notemos que $c_{00}\subseteq c_0 \Rightarrow \overline{c_{00}}\subseteq \overline{c_0}=c_0$, es decir $(c_{00},d_1)=c_0$ (ya que hemos probado que c_0 es cerrado con d_1). Esto mismo nos da la intuición de que $\overline{c_{00}} = c_0$

Entonces, veamos que dada $b \in c_0/b \to \exists (a_n)_{n \in \mathbb{N}} \subseteq c_{00}$ de manera que $a_n \to b$.

Notemos que $b = (b^i)_{i \ge 1}$. Ahora bien, propongo como a_n a la siguiente sucesión de sucesiones en

Definimos $(a_n)_{n\geq 1}$ como: $a_n^k = \begin{cases} b^k & \text{si } 1\leq k\leq n \\ 0 & \text{si } k>n \end{cases} \quad \forall n\in\mathbb{N}, \text{ y obsérvese que}$

 $a_1 = b^1 \ 0 \ 0 \ 0 \ \dots$

 $a_2 = b^1 \ b^2 \ 0 \ 0 \ 0 \ \dots$

$$a_k = b^1 \ b^2 \ b^3 \ \dots \ b^k \ 0 \ 0 \ \dots$$

Ahora veamos que $a_n \xrightarrow[d_1]{} b$. Notemos que dado $\varepsilon > 0$, como $b \in c_0$, $\exists m_0 \in \mathbb{N}/ \ \forall \ m \geq 0$ $m_0, \ d(b^m, 0) < \varepsilon$

Entonces queremos ver que $\exists n_0 \in \mathbb{N} / \forall n \geq n_0, d_1(a_n, b) < \varepsilon$.

Ahora bien, $d_1(a_n,b)=\sup\left\{\min\{1,|a_n^m-b^m|\}\right\}$ pero $|a_n^m-b^m|=0\ \forall m\leq n.$ $\Rightarrow \min\{1, |a_n^m - b^m|\} = 0 \ \forall m \le n. \text{ Ahora, tomando } n \ge m_0 \Rightarrow \sup_{m \in \mathbb{N}} \{\min\{1, |a_n^m - b^m|\}\} = \sup_{m > n} \{\min\{1, |a_n^m - b^m|\}\}. \text{ Pero } a_n^m = 0 \ \forall m > n \Rightarrow d_1(a_n, b) = \sup_{m > n} \{\min\{1, |a_n^m - b^m|\}\} = \max_{m > n} \{\min\{1, |a_n^m - b^m|\}\}.$

$$\sup_{m>n} \{ \min\{1, |b^m|\} \} = \sup_{m>n} \{ d(b^m, 0) \}$$

 $\sup_{m>n}\left\{\min\{1,|b^m|\}\right\}=\sup_{m>n}\left\{d(b^m,0)\right\}$ Además, notemos que si $m>n>m_0\Rightarrow\ d(b^m,0)<\varepsilon$

Ahora, con todo lo que hemos dicho, estamos listos para probar el resultado.

Ya que
$$d_1(a_n, b) = \sup_{m \in \mathbb{N}} \{ \min\{1, |a_n^m - b^m|\} \} = \sup_{m > n} \{ \min\{1, |a_n^m - b^m|\} \} = \sup_{m > n} \{ \min\{1, |b^m|\} \} = \sup_{m > n} \{ d(b^m, 0) \}$$

$$< \sup_{m > n} \{ \varepsilon \} = \varepsilon \ \forall \ n \ge m_0 + 1 \Rightarrow \overline{(c_{00}, d_1)} = c_0 \blacksquare$$

Veamos ahora que $\overline{(c_{00},d_2)} = \mathbb{R}^{\mathbb{N}}$

Luego, sea $b \in \mathbb{R}^{\mathbb{N}} / b = (b^{i})_{i \geq 1}$. Demostremos que $\exists (a_{n})_{n \in \mathbb{N}} \in c_{00}^{\mathbb{N}} / a_{n} \longrightarrow b$.

Definimos $(a_n)_{n\in\mathbb{N}}$, la siguiente sucesión de sucesiones, como: $a_n^k = \begin{cases} b^k & \text{si } 1 \le k \le n \\ 0 & \text{si } k > n \end{cases} \forall n \in \mathbb{N}.$

Vemos que:

$$a_1 = b^1 \ 0 \ 0 \ 0 \ \dots$$

$$a_2 = b^1 \ b^2 \ 0 \ 0 \ 0 \dots$$

$$a_k = b^1 \ b^2 \ b^3 \ \dots \ b^k \ 0 \ 0 \ \dots$$

Notemos que $(a_n)_{n\in\mathbb{N}}$ está bien definida ya que $a_k\in c_{00}\ \forall\ k\in\mathbb{N}$

Queremos ver que $\exists n_0 \in \mathbb{N}/\forall n \geq n_0, \ d_2(a_n, b) < \varepsilon$. Pero, $d_2(a_n, b) = \sum_{k=1}^{\infty} \frac{d(a_n^k, b^k)}{2^k}$. Además, por

cómo esta definida $(a_n)_{n\in\mathbb{N}}$, se sigue que $a_n^k = b^k \ \forall \ k \leq n$.

Entonces
$$d_2(a_n^k, b^k) = \sum_{k=n+1}^{\infty} \frac{d(a_n^k, b^k)}{2^k}$$

Pero $d(a_n^k, b^k) \le 1$ ya que d es una métrica acotada $\Rightarrow d_2(a_n, b) \le \sum_{k=n+1}^{\infty} \frac{1}{2^k}$, la cual es la cola de

una serie convergente, por lo que $\exists n_0 \in \mathbb{N}/ \forall n \geq n_0, \left| \sum_{k=n+1}^{\infty} \frac{1}{2^k} \right| < \varepsilon.$

Luego, tomando
$$n \ge n_0$$
 tenemos que:
$$0 \le d_2(a_n, b) = \sum_{k=n+1}^{\infty} \frac{d(a_n{}^k, b^k)}{2^k} \le \left| \sum_{k=n+1}^{\infty} \frac{1}{2^k} \right| < \varepsilon.$$

Además, como
$$c_{00} \subseteq c_0 \Rightarrow \overline{(c_{00}, d_2)} \subseteq \overline{(c_0, d_2)} \subseteq \mathbb{R}^{\mathbb{N}} \ \ y \ \overline{(c_{00}, d_2)} = \mathbb{R}^{\mathbb{N}} \Rightarrow \mathbb{R}^{\mathbb{N}} \subseteq \overline{(c_0, d_2)} \subseteq \mathbb{R}^{\mathbb{N}}$$

$$\Rightarrow \overline{(c_0, d_2)} = \mathbb{R}^{\mathbb{N}} \blacksquare$$

2.b.

El enunciado nos pide decidir si $\mathbb{R}^{\mathbb{N}}$ es separable con ambas métricas. Veamos que $(\mathbb{R}^{\mathbb{N}}, d_1)$ no es separable.

Para eso supongamos que sí lo es. Luego, como $(\mathbb{R}^{\mathbb{N}}, d_1)$ es separable $\Rightarrow \forall Y \subseteq (\mathbb{R}^{\mathbb{N}}, d_1)$,

 $(Y, d_1|_{V})$ es separable

Entonces, sea $\{0,1\}^{\mathbb{N}} \subseteq \mathbb{R}^{\mathbb{N}}$. Como supusimos que $(\mathbb{R}^{\mathbb{N}}, d_1)$ era separable \Rightarrow $(\{0,1\}^{\mathbb{N}}, d_1|_{\{0,1\}^{\mathbb{N}}})$ lo es. Así, llamemos d^* a $d_1|_{\{0,1\}^{\mathbb{N}}} \Rightarrow \forall \ a = (a_n)_{n \in \mathbb{N}} \in \{0,1\}^{\mathbb{N}}$ consideremos $B_{\frac{1}{2}}(a)$, esta bola es abierta y más aún, dadas $a = (a_n)_{n \in \mathbb{N}}, b = (b_n)_{n \in \mathbb{N}} \in \{0,1\}^{\mathbb{N}}, \ B_{\frac{1}{2}}(a) \cap B_{\frac{1}{2}}(b) = \emptyset$ si $(a_n)_{n \in \mathbb{N}} \neq (b_n)_{n \in \mathbb{N}}$

Ya que, notemos, que $B_{\frac{1}{2}}(a)=\{a\}$ debido a que: supongamos que $\exists c=(c_n)_{n\in\mathbb{N}}\in B_{\frac{1}{2}}(a)\Rightarrow d^*(c,a)<\frac{1}{2}$, luego $\sup_{n\in\mathbb{N}}\{\min\{1,|c_n-a_n|\}\}<\frac{1}{2}$. Ahora bien, como son sucesiones de 0 y 1, $|c_n-a_n|=0$ o $|c_n-a_n|=1$, lo cual rápidamente implica que

si $c \neq a \ \exists n \in \mathbb{N}/\ |c_n - a_n| = 1 \stackrel{en\ ese\ caso}{\Rightarrow} 1 \leq d^*(c,a) < \frac{1}{2} \text{ jAbs!}$

⇒ $B_{\frac{1}{2}}(a_n) = \{a_n\}$ ⇒ $B_{\frac{1}{2}}(a_n) \cup B_{\frac{1}{2}}(b_n) = \emptyset$ ⇒ Sea $\{B_{\frac{1}{2}}(a_i)\}_{i \in I}$ (con I un conjunto) un cubrimiento de $\{0,1\}^{\mathbb{N}}$, como $\{0,1\}^{\mathbb{N}}$ es separable ⇒ $\{B_{\frac{1}{2}}(a_i)\}_{i \in I}$ tiene un subcubrimiento numerable. Pero como las bolas son disjuntas ⇒ $\{0,1\}^{\mathbb{N}}$ es unión de numerables sucesiones ¡Abs! ya que $\#\{0,1\}^{\mathbb{N}} = 2^{\aleph_0} = c$. Como el absurdo sale de que $(\mathbb{R}^{\mathbb{N}}, d_1)$ sea separable ⇒ $(\mathbb{R}^{\mathbb{N}}, d_1)$ no es separable, que es lo que queríamos ver. \blacksquare

Ahora, queremos ver que $(\mathbb{R}^{\mathbb{N}}, d_2)$ es separable. Ahora bien, sabemos que un espacio métrico es separable si admite un conjunto denso y numerable. Para $(\mathbb{R}^{\mathbb{N}}, d_2)$, sea D mi conjunto candidato a denso y numerable:

$$D = \{ (q_n)_{n \in \mathbb{N}} \subseteq \mathbb{Q} / \exists n_0 \in \mathbb{N} , q_n = 0 \ \forall n \ge n_0 \}.$$

Es obvio que $\#D \ge \aleph_0$, veamos que $\#D \le \aleph_0$.

Luego, la función $f: D \to \bigcup_{i \geq 1} \mathbb{Q}^i / f((q_n)_{n \in \mathbb{N}}) = (q_i)_{1 \leq i \leq n_0} = (q_1, q_2, ..., q_{n_0})$, donde n_0 es $/ q_n = 0 \ \forall n \geq n_0$. Esta f es trivialmente inyectiva puesto que si $f(q_n) = f(p_n) \Rightarrow q_n \ y \ p_n$ tienen el mismo n_0 y coinciden en todos sus términos $\Rightarrow (q_n)_{n \in \mathbb{N}} = (p_n)_{n \in \mathbb{N}} \Rightarrow f$ es inyectiva $\Rightarrow \#D \leq \# \bigcup_{i \geq 1} \mathbb{Q}^i = \aleph_0$ por ser unión numerable de numerables $\Rightarrow D$ es numerable.

Luego, veamos que D es denso. Notemos que $\mathbb Q$ es denso sobre $\mathbb R$ con d, puesto que dado $b \in \mathbb R$, $\exists \ q \in \mathbb Q/\ |b-q| < \varepsilon \ \forall \varepsilon > 0$ por densidad de $\mathbb Q$ en $(\mathbb R, |\ |)$, en particular si $\varepsilon < 1$, luego $d(b,q) = min\{1, |b-q|\} < \varepsilon, \forall \ 0 < \varepsilon < 1$.

Ahora estamos listos para probar que D es denso sobre $\mathbb{R}^{\mathbb{N}}$ con d_2 . Sea $a=(a^n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$, luego quiero ver que $\exists (q_n)_{n\in\mathbb{N}}\subseteq D$, sucesión de sucesiones $/q_n\xrightarrow[d_2]{}a$, \Rightarrow propongo $q_n\forall n\in\mathbb{N}$ como:

$$(q_n)_i = \begin{cases} b_i & \text{si } 1 \le i \le n \\ 0 & \text{si } i > n \end{cases}, \quad \text{con } \varepsilon' \in \mathbb{R}_{>0} \text{ y } b_i \in \mathbb{Q} \ / \ d(b_i, a^i) < \varepsilon' \ \forall i \in \mathbb{N}.$$

Así, por referencia, notemos que:

$$q_1 = b_1 \ 0 \ 0 \ 0 \ 0 \dots$$

 $q_2 = b_1 \ b_2 \ 0 \ 0 \ 0 \ \dots$
 \vdots
 $q_k = b_1 \ b_2 \ b_3 \ \dots \ b_k \ 0 \ 0 \ 0 \dots$

Ahora, sea $\varepsilon \in \mathbb{R}_{>0}$ y veamos que $\exists n_0 \in \mathbb{N}/ \forall n \geq n_0, d_2(q_n, a) < \varepsilon$. Ahora sea $n_0 \in \mathbb{N}/ \sum_{k=n+1}^{\infty} \frac{1}{2^k} < \varepsilon' \ \forall n \geq n_0$ el cual existe ya que ésta es la cola de una serie convergente $\Rightarrow d_2(q_n, a) = \sum_{k=1}^{\infty} \frac{d(q_n^k, a^k)}{2^k} = \sum_{k=1}^n \frac{d(q_n^k, a^k)}{2^k} + \sum_{k=n+1}^{\infty} \frac{d(q_n^k, a^k)}{2^k} < \sum_{k=1}^n \frac{\varepsilon'}{2^k} + \sum_{k=n+1}^{\infty} \frac{1}{2^k} \leqslant \sum_{k=1}^n \frac{1}{2^k} + \varepsilon' = \varepsilon' \frac{1}{2} - \left(\frac{1}{2}\right)^n > 2\varepsilon' < \varepsilon$, tomando ε' tal que $2\varepsilon' < \varepsilon \blacksquare \Rightarrow D$ es denso en $(\mathbb{R}^{\mathbb{N}}, d_2)$ y numerable $\Rightarrow (\mathbb{R}^{\mathbb{N}}, d_2)$ es separable.

3.

Sean
$$f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}/f_1(x) = e^x, f_2(x) = e^{x^2}, f_3(x) = x^3$$
 y sean $d_i(x, y) = |f_i(x) - f_i(y)|$
 $\forall x, y \in \mathbb{R} \ y \ \forall i \in \{1, 2, 3\}$

3.a.

Queremos ver con cuáles métricas (\mathbb{R}, d_i) es un espacio métrico. Primero, veamos que con d_2 no lo es, ya que, si $x \neq 0 \Rightarrow d_2(x, -x) = |f_2(x) - f_2(-x)| = |e^{x^2} - e^{(-x)^2}| = 0$, no cumpliendo así la identidad de los indiscernibles. Así, d_2 no es una distancia y se sigue que (\mathbb{R}, d_2) no es un espacio métrico.

Ahora veamos que d_1 es una métrica. Para eso, basta con ver que dados $x,y,z\in\mathbb{R}$ $d_1(x,y)\geq 0,\ d_1(x,y)=0\Leftrightarrow x=y,\ d_1(x,y)=d_1(y,x)\ y\ d_1(x,y)\leq d_1(x,z)+d_1(z,y).$ Luego, que $d_1\geq 0$ es trivial puesto que $|\ |\ |$ lo es. Veamos que $d_1(x,y)=0\Leftrightarrow x=y.$ Ahora bien, $d_1(x,y)=0\Leftrightarrow |f_1(x)-f_1(y)|=0\Leftrightarrow f_1(x)-f_1(y)=0\Leftrightarrow f_1(x)=f_1(y)\Leftrightarrow e^x=e^y \overset{como\ f_1\ es\ inyectiva}{\Leftrightarrow} x=y.$ La simetría se da ya que $d_1(x,y)=|e^x-e^y|=|e^y-e^x|=d_1(y,x)$ y la desigualdad triangular se cumple ya que $d_1(x,y)=|e^x-e^y|=|e^x-e^z+e^z-e^y|\leq |e^x-e^z|+|e^z-e^y|=d_1(x,z)+d_1(z,y)$ Así, d_1 es métrica y (\mathbb{R},d_1) es espacio métrico.

Ahora veamos que d_3 es una métrica. Similarmente, sean $x,y,z\in\mathbb{R}$, queremos ver las mismas cuatro propiedades anteriores. Por la misma razón que $d_1,d_3\geq 0$; $d_3(x,y)=0\Leftrightarrow |x^3-y^3|=0\Leftrightarrow x^3-y^3=0\Leftrightarrow x^3=y^3\Leftrightarrow x=y$ por inyectividad de f_3 ; $d_3(x,y)=|x^3-y^3|=|y^3-x^3|=d_3(y,x)$ y $d_3(x,y)=|x^3-y^3|=|x^3-z^3+z^3-y^3|\leq |x^3-z^3|+|z^3-y^3|=d_3(x,z)+d_3(z,y)$. Finalmente así, d_3 es métrica y (\mathbb{R},d_3) es un espacio métrico.

3.b.

 $\exists \ \delta \in \mathbb{R}_{>0}/ \ \text{si} \ |x-y| < \delta \Rightarrow |ln(x) - ln(y)| < \varepsilon \ . \ \text{Así, como} \ \varepsilon' \ \text{es arbitrario, tomando} \ \varepsilon' = \delta \ \text{tenemos} \ \text{que} \ d_1(x_n,x) < \delta \ \forall n \geq n_0 \Leftrightarrow |e^{x_n} - e^x| < \delta \ \forall n \geq n_0 \Rightarrow |ln(e^{x_n}) - ln(e^x)| < \varepsilon \ \forall n \geq n_0 \Leftrightarrow |x_n - x| < \varepsilon \ \forall n \geq n_0 \Rightarrow x_n \xrightarrow[]{} x, \ \text{que} \ \text{es lo que queríamos demostrar} \ \blacksquare$ Concluimos que $(\mathbb{R}, |\ |)$ es topológicamente equivalente a (\mathbb{R}, d_1)

Ahora veamos que (\mathbb{R}, d_3) es topológicamente equivalente a $(\mathbb{R}, | |)$, recordando lo hecho con d_1 , dos espacios métricos son topológicamente equivalentes si y solo si tienen las mismas sucesiones convergentes.

Luego, sean $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N},\ x\in\mathbb{R}/x_n\xrightarrow{d_3}x$. Veamos que $x_n\xrightarrow{||}x$. Sean $\varepsilon,\varepsilon'\in\mathbb{R}_{>0}$, sabemos que $\exists n_0\in\mathbb{N}\ /\mathrm{si}\ n\geq n_0,\Rightarrow d_3(x_n,x)<\varepsilon'$. Recordemos que $\mbox{3'}$ es continua en $(\mathbb{R},|\ |)$, por lo que, en particular, ésta es continua en $x\Rightarrow\exists\ \delta\in\mathbb{R}_{>0}/\ \mathrm{si}\ |x-y|<\delta\Rightarrow|\mbox{3'}x-\mbox{3'y}|<\varepsilon$. Luego, como ε' es arbitrario, tomando $\varepsilon'=\delta,\ d_3(x_n,x)<\delta\ \forall n\geq n_0\Leftrightarrow |x_n^3-x^3|<\delta\ \forall n\geq n_0$ $\stackrel{por\ la\ continuidad\ de\ \mbox{3'}}{\Longrightarrow}$ $|\mbox{3'}x_n^3-\mbox{3'}x^3|<\varepsilon\ \forall n\geq n_0\Leftrightarrow |x_n-x|<\varepsilon\ \forall n\geq n_0\Rightarrow x_n\xrightarrow{|\ |\ }x$ que es lo que queríamos probar \blacksquare Para demostrar que (\mathbb{R},d_3) y $(\mathbb{R},|\ |)$ son topológicamente equivalentes bastaría con ver que si $x_n\xrightarrow{|\ |\ }x\Rightarrow x_n\xrightarrow{|\ |\ }x$. Así, sean $\varepsilon,\varepsilon'\in\mathbb{R}_{>0}$ y a su vez, también sean $x\in\mathbb{R},\ (x_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}/x_n\xrightarrow{|\ |\ }x$ Ahora bien, como $x_n\xrightarrow{|\ |\ }x\Rightarrow\exists\ n_0\in\mathbb{N}/\ \mathrm{si}\ n\geq n_0\Rightarrow|x_n-x|<\varepsilon'$ Pero sabemos que x^3 es continua en $(\mathbb{R},|\ |)$ por lo que en particular es continua en $x\Rightarrow\exists\ \delta\in\mathbb{R}_{>0}/\ \mathrm{si}\ |x-y|<\delta\Rightarrow|x^3-y^3|<\varepsilon$. Así, como ε' es arbitrario, entonces tomando $\varepsilon'=\delta$ tenemos que $|x_n-x|<\delta\ \forall n\geq n_0\Rightarrow|x_n\xrightarrow{|\ |\ }x$. Finalmente, $(\mathbb{R},|\ |)$ y (\mathbb{R},d_3) son topológicamente equivalentes y con esto queda demostrado completamente el ítem b \blacksquare

3.c.

Nos preguntamos cuándo (\mathbb{R}, d_i) es completo. Para esto, basta con ver que dada una sucesión de Cauchy en (\mathbb{R}, d_i) , ésta es convergente.

Primero, notemos que (\mathbb{R}, d_2) no es completo ya que ni siquiera es un espacio métrico.

Ahora veamos que (\mathbb{R}, d_1) no es completo. Para esto, tomemos la sucesión definida como $x_n = -n \ \forall n \in \mathbb{N}$. Luego, veamos que $(x_n)_{n \in \mathbb{N}}$ es de Cauchy con d_1 pero que no converge con d_1 . Sea $\varepsilon \in \mathbb{R}_{>0}$ y sean $n, m \in \mathbb{N}$, quiero ver que $\exists n_0 \in \mathbb{N}/$ si $n, m \geq n_0 \Rightarrow d_1(x_n, x_m) < \varepsilon$, pero como $e^{x_n} \xrightarrow{} 0$ ya que $x_n \xrightarrow{} -\infty$, entonces $\exists n_0 \in \mathbb{N}/$ $e^{x_n} < \frac{\varepsilon}{2} \ \forall n \geq n_0 \Rightarrow d_1(x_n, x_m) = |e^{x_n} - e^{x_m}| \leq e^{x_n} + e^{x_m} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \ \forall n, m \geq n_0 \Rightarrow (x_n)_{n \in \mathbb{N}}$ es de Cauchy con d_1 , pero veamos que no converge. Para esto, supongamos que sí, es decir, supongamos que $\exists x \in \mathbb{R} \ / x_n \xrightarrow{} x \ y$ lleguemos a una contradicción. Luego, $\forall \varepsilon \in \mathbb{R}_{>0} \ \exists n_0 \in \mathbb{N}/$ si $n \geq n_0 \Rightarrow d_1(x_n, x) < \frac{\varepsilon}{2} \ y$ como $e^{x_n} \xrightarrow{} 0$, $\exists n'_0 \in \mathbb{N}/$ si $n \geq n'_0 \Rightarrow e^{x_n} < e^x$. Así, $\forall \varepsilon \in \mathbb{R}_{>0} \ \exists n_0 \in \mathbb{N}/$ si $n \geq n_0$, $\Rightarrow d_1(x_n, x) < \frac{\varepsilon}{2} \Rightarrow$ Tenemos que $\forall n \geq max\{n_0, n'_0\}$, $d_1(x_n, x) = |e^{x_n} - e^x| = e^x - e^{x_n} < \frac{\varepsilon}{2} \Leftrightarrow e^x < \frac{\varepsilon}{2} + e^{x_n} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, $\forall n \geq max\{n_0, n'_0\}$ Esto inmediatamente provoca un absurdo, ya que x está fijo y ε es arbitrario.

Así, $(x_n)_{n\in\mathbb{N}}$ no es convergente $\Rightarrow (\mathbb{R}, d_1)$ no es completo.

Bastaría ver ahora que (\mathbb{R}, d_3) es completo. Para eso, sea $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ sucesión de Cauchy y queremos ver que converge, es decir, que $\exists x \in \mathbb{R}/x_n \xrightarrow{d_3} x$. Como sabemos que la sucesión es de Cauchy, sabemos que $\forall \ \varepsilon \in \mathbb{R}_{>0} \ \exists n_0 \in \mathbb{N}/\ \forall n, m \geq n_0, \ d_3(x_n, x_m) < \varepsilon$. Si miramos con cariño, observamos que, así, la sucesión $(x_n^3)_{n \in \mathbb{N}}$ es de Cauchy en $(\mathbb{R}, |\ |)$, por lo tanto, como $(\mathbb{R}, |\ |)$ es completo, la sucesión es convergente en ese espacio, y en consecuencia, $\exists \ y \in \mathbb{R}/x_n^3 \xrightarrow{|\ |} y$. Luego, sea $x = \sqrt[3]{y} \Rightarrow \forall \varepsilon \in \mathbb{R}_{>0} \ \exists n_0 \in \mathbb{N}/\ \text{si} \ n \geq n_0 \Rightarrow \ |x_n^3 - x^3| < \varepsilon \Rightarrow \forall \varepsilon \in \mathbb{R}_{>0} \ \exists n_0 \in \mathbb{N}/\ \forall n \geq n_0, \ d_3(x_n, x) < \varepsilon \Rightarrow x_n \xrightarrow{d_3} x \Rightarrow (x_n)_{n \in \mathbb{N}}$ es convergente con $d_3 \Rightarrow (\mathbb{R}, d_3)$ es completo y con esto, damos por finalizado el ejercicio 3. \blacksquare

4.

4.a.

Sean (X,d_X) , (Y,d_Y) espacios métricos

Queremos probar que $f: X \to Y$ es continua $\Leftrightarrow f|_{X_{\alpha}}: X_{\alpha} \to Y$ es continua $\forall \alpha \in \Lambda$

Demostremos la ida:

Sabemos que, como f es continua en $X \Rightarrow \forall x \in X$, dado $\varepsilon > 0$, $\exists \delta_x > 0 / \text{si } d_X(x, x') < \delta_x \Rightarrow d_Y(f(x), f(x')) < \varepsilon$

Ahora, sea $\alpha \in \Lambda$, debemos ver que dado $x \in X_{\alpha}$ y $\varepsilon > 0$, $\exists \delta_{x_{\alpha}} > 0$ / si $d_X(x, x') < \delta_{x_{\alpha}} \Rightarrow d_Y(f(x), f(x')) < \varepsilon$. Sin embargo, cuando nos restringimos a X_{α} , tenemos que $B_{\delta_x}(x) \cap X_{\alpha} \subseteq X_{\alpha}$. Luego, tomando $\delta_{x_{\alpha}} \leq \delta_x$, se sigue que dado $x \in X_{\alpha}$, y $\varepsilon > 0 \exists \delta_{x_{\alpha}} > 0$ / si $d_X(x, x') < \delta_{x_{\alpha}}$ y $x' \in X_{\alpha} \Rightarrow d_Y(f(x), f(x')) < \varepsilon \Rightarrow f|_{X_{\alpha}}$ es continua en x. Además como esta propiedad se cumple $\forall x \in X_{\alpha}$ se sigue que $f|_{X_{\alpha}}$ es continua, y luego, como α era arbitrario $\Rightarrow f|_{X_{\alpha}}$ es continua $\forall \alpha \in \Lambda$ Ahora, probemos la vuelta:

Queremos ver que $f: X \to Y$ es continua, dado que $f\big|_{X_{\alpha}}$ lo es. Sea $\forall \alpha \in \Lambda \ d_X\big|_{X_{\alpha}} = d_{\alpha} \ y \ x \in X$, demostremos que f es continua en x con d_X . Como $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}^{\circ} \Rightarrow \exists \ \widetilde{\alpha} \in \Lambda / \ x \in X_{\widetilde{\alpha}}^{\circ}$. Luego, $\exists \ \delta_1 > 0 / \ B_{\delta_1}(x) \subseteq X_{\widetilde{\alpha}}$, entonces. tenemos que como $f\big|_{X_{\widetilde{\alpha}}}$ es continua en $(X_{\widetilde{\alpha}}, d_{\widetilde{\alpha}})$, en particular es continua en x. Luego, dado $\varepsilon > 0$, $\exists \ \delta_2 > 0 / \ \text{si} \ d_{\widetilde{\alpha}}(x, x') < \delta_2$, $y \ x' \in X_{\widetilde{\alpha}} \Rightarrow d_Y(f(x), f(x')) < \varepsilon$. Entonces, si tomamos $\delta = \min\{\delta_1, \delta_2\}$ se sigue que $\forall \ \varepsilon > 0, \exists \ \delta > 0 / \ \text{si} \ d_{\widetilde{\alpha}}(x, x') = d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \varepsilon \Rightarrow f$ es continua en x con x. Pero como x era arbitrario concluimos que $x \in X$ and $x \in X$ es continua en $x \in X$.

4.b.

Sean ahora $(X_{\alpha})_{\alpha \in \Lambda}$ una familia de conjuntos cerrados que cumplen que $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ y para los que existe $\varepsilon > 0$ de manera que $d_X(X_{\alpha}, X_{\beta}) > \varepsilon \ \forall \ \alpha \neq \beta \in \Lambda$.

Nos piden probar que $f: X \to Y$ es continua en $(X, d_X) \Leftrightarrow f|_{X_\alpha}: X_\alpha \to Y$ también lo es en $(X_\alpha, d_\alpha) \ \forall \ \alpha \in \Lambda$

Primero, veamos la ida.

Para demostrar esto procedemos mediante el absurdo. Supongamos que $\exists \ \widetilde{\alpha} \in \Lambda / \ f \big|_{X_{\widetilde{\alpha}}} : X_{\widetilde{\alpha}} \to Y$ no es continua allí con $d_{\widetilde{\alpha}}$. Luego, $\exists \ x \in X_{\widetilde{\alpha}} / \ f \big|_{X_{\widetilde{\alpha}}}$ no es continua en x con $d_{\widetilde{\alpha}}$, es decir que $\exists \ \varepsilon > 0 \ / \ \forall \ \delta > 0$, si $d_{\widetilde{\alpha}}(x,y) < \delta$ (con $y \in X_{\widetilde{\alpha}}$) $\Rightarrow \ d_Y(f(x),f(y)) \ge \varepsilon$. Pero como $f: X \to Y$ es continua en x con d_X . Dado $\varepsilon > 0$, $\exists \ \widetilde{\delta} > 0$ /si $d_X(x,y) < \widetilde{\delta} \Rightarrow d_Y(f(x),f(y)) < \varepsilon$.

Como δ es arbitrario, si $\delta = \widetilde{\delta}$, entonces, se sigue que si $d_X(x,y) < \delta \Rightarrow \varepsilon \leq d_Y(f(x),f(y)) < \varepsilon$, Abs!. Esto vino de suponer que existía $\widetilde{\alpha} \in \Lambda / f|_{X_{\widetilde{\alpha}}} : X_{\widetilde{\alpha}} \to Y$ no era continua ahí con $d_{\widetilde{\alpha}} \Rightarrow f|_{X_{\alpha}} : X_{\alpha} \to Y$ es continua con $d_{\alpha} \forall \alpha \in \Lambda$.

Ahora demostremos la vuelta.

Sabemos que $\forall \alpha \in \Lambda$, $f|_{X_{\alpha}}$ es continua con d_{α} . Luego, queremos ver que f es continua en (X, d_X) . Entonces, sea $x \in X$ arbitrario. Veamos que f es continua allí con d_X . Como $x \in X$ y $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$, $\exists \ \alpha \in \Lambda / \ x \in X_{\widetilde{\alpha}}$. Además, notemos que, por hipótesis $f|_{X_{\widetilde{\alpha}}} : X_{\widetilde{\alpha}} \to Y$ es continua con d_{α} . Luego, dado $\widetilde{\varepsilon} > 0$, $\exists \ \delta_{x_{\widetilde{\alpha}}} > 0 /$ si $d_{\widetilde{\alpha}}(x,y) < \delta_{x_{\widetilde{\alpha}}} \Rightarrow d_Y(f(x),f(y)) < \widetilde{\varepsilon}$. Pero como $d_X(X_{\alpha},X_{\beta}) > \varepsilon$ si $\alpha \neq \beta \Rightarrow \forall x \in X_{\widetilde{\alpha}}$ es obvio que $B_{\frac{\varepsilon}{2}}(x) \subseteq X_{\widetilde{\alpha}}$ puesto que, de no ser así, habría un elemento en la bola que pertenecería a X_{β} y no a $X_{\widetilde{\alpha}}$, por lo que habría un elemento de X_{β} a distancia menor que ε de $X_{\widetilde{\alpha}}$ y eso provocaría un absurdo. Entonces, $B_{\frac{\varepsilon}{2}} \subseteq X_{\widetilde{\alpha}}$. Ahora bien, si $\delta = \min\{\delta_{x_{\widetilde{\alpha}}}, \frac{\varepsilon}{2}\} \Rightarrow \forall \ \widetilde{\varepsilon} > 0, \exists \ \delta > 0 /$ si $d_X(x,y) < \delta \Rightarrow d_Y(f(x),f(y)) < \varepsilon \Rightarrow f$ es continua en x con d_X , pero como x es arbitrario, f es continua en (X,d_X) .

4.c.

Sea $(X, | \ |)$ espacio métrico tal que $X = \bigcup_{i=0}^{\infty} [2i, 2i+1]$ y sea $f: X \to \mathbb{R}$ definida por $f(x) = x^2$. Ahora sean $\{X_i\}_{i \in \mathbb{N}_0} = \{[2i, 2i+1]\}_{i \in \mathbb{N}_0}$ notemos que esta familia cumple con todos los requisitos del ítem b, ya que cada elemento es cerrado con $|\ |, [2i, 2i+1]$ y [2j, 2j+1] distan como mínimo $1 \ \forall i, j \in \mathbb{N}_0 \ / \ i \neq j$ y su unión da todo el conjunto. Queremos ver que el enunciado del ítem b es falso si cambiamos continua por uniformemente continua.

Notemos que $f\big|_{X_i}$ es uniformemente continua $\forall i \in \mathbb{N}$ ya que los X_i son compactos en $(\mathbb{R}_{\geq 0}, |\ |)$ Ahora bien, veamos que f no es uniformemente continua en X. Para esto, procedemos por el absurdo, es decir, supongamos que sí lo es y lleguemos a una contradicción. Luego, supongamos que $f: X \to \mathbb{R}$ es uniformemente continua \Rightarrow Dado $\varepsilon > 0$ y $x \in X$, $\exists \ \delta > 0$ / si $|x-y| < \delta \Rightarrow |f(x)-f(y)| = |x^2-y^2| < \varepsilon$. En particular, $\forall \ x, \ y \in X \ \exists \ \delta_1 > 0$ / si $|x-y| < \delta_1 \Rightarrow |x^2-y^2| < 1$. Ahora, sea $n \in \mathbb{N}/\frac{1}{n} < \delta_1$. Si tomamos x = 2n e $y = 2n + \frac{1}{n} \Rightarrow |x-y| = |2n - 2n - \frac{1}{n}| = |\frac{1}{n}| < \delta_1 \Rightarrow |x^2-y^2| < 1$

Pero, de esta manera vemos que $\left|x^2-y^2\right|<1\Leftrightarrow \left|(2n)^2-(2n+\frac{1}{n})^2\right|<1\Leftrightarrow \left|4n^2-4n^2-4-\frac{1}{n^2}\right|<1\Leftrightarrow \left|4+\frac{1}{n^2}\right|<1$ $\Rightarrow 4\leq \left|4+\frac{1}{n^2}\right|<1$, lo cual inmediatamente provoca un absurdo, el cual provino de suponer que f era uniformemente continua en X. \Rightarrow Podemos determinar que no vale el ítem anterior que es lo que queríamos probar.

Sea $(V,+,\cdot)$ un \mathbb{R} -espacio vectorial y $S\subseteq V$ subespacio. Sea $T:S\to\mathbb{R}$ una transformación lineal. Quiero ver que $\exists\ \widetilde{T}:V\to\mathbb{R}$ lineal tal que $\widetilde{T}\big|_S=T$.

Luego sea $L = \{T_k : \widetilde{Y} \to \mathbb{R} \text{ transformaciones lineales } /S \subseteq \widetilde{Y} \subseteq V \land T_k|_S = T \}$. Notemos que $L \neq \emptyset$ ya que $T \in L$

Definimos el orden (\leq) en L tal que dada $F: M \to \mathbb{R}$ y $G: N \to \mathbb{R}$ transformaciones lineales de L, entonces $F \leq G \Leftrightarrow M \subseteq N$ y $G|_{M} = F$.

Veamos que (\leq) es una relación de orden. Sean F y G las mismas que antes. Veamos reflexividad: quiero ver que $F \leq F$. Pero, en efecto, $F \leq F$ ya que $M \subseteq M$ y $F\big|_M = F$. Ahora veamos que (\leq) es antisimétrica. Quiero ver que si $F \leq G$ y $G \leq F \Rightarrow F = G$. Como $F \leq G \Rightarrow M \subseteq N$ y $G\big|_M = F$, y como $G \leq F \Rightarrow N \subseteq M$ y $G = F\big|_N$. Pero como \subseteq sí es un orden, entonces N = M, luego, $G\big|_M = G = F\big|_N = F \Rightarrow G = F$, luego (\leq) es antisimétrica. Bastaría con ver que (\leq) es transitiva, luego sea $H: O \to \mathbb{R}$ en $L/F \leq G$ y $G \leq H$ quiero ver que $F \leq H$. entonces como $F \leq G \Rightarrow M \subseteq N$ y $G\big|_M = F$ y como $G \leq H \Rightarrow N \subseteq O$ y $H\big|_N = G$, luego es obvio que $M \subseteq N \subseteq O$ y $H\big|_N = G\big|_M = F$ y se sigue entonces que $F \leq H$.

Luego, (L, \leq) es un conjunto parcialmente ordenado. Basta con ver ahora que (para usar el lema de Zorn) dada C una cadena $\Rightarrow C$ es acotada superiormente.

Sea $C=\{f_i\}_{i\in\Lambda}\subseteq L$ una cadena \Rightarrow Quiero ver que C está acotada superiormente. Propongo a la función unión de los $f_i:X_i\to\mathbb{R}\in C$ como cota superior. Sea $J:\underset{i\in\Lambda}{+}X_i\to\mathbb{R}$, donde X_i es el dominio de cada función $f_i\in C/J|_{X_i}=f_i\ \forall i\in\Lambda.$

Notemos que J está bien definida pues las funciones f_i se pegan bien, y esto se debe a que C está totalmente ordenado.

Entonces veamos que dado $i \in \Lambda$, $f_i \leq J$

Sea $i \in \Lambda$, $f_i \in C$, luego, $X_i \subseteq \underset{j \in \Lambda}{+} X_j$, y además $J\big|_{X_i} = f_i$ por cómo definimos a J.

Además, notemos que $J|_S = T$ ya que $J|_{X_i} = f_i \Rightarrow J|_{X_i}|_S = f_i|_S = T$. Por otra parte, es importante notar que J es transformación lineal pues dados $a, b \in {}_{i \in \Lambda}^+ X_j$

 $\Rightarrow \exists f_n, f_m \in C/\ a \in Dom(f_n) \ y \ b \in Dom(f_m)$. Pero, como C es una cadena, o bien $f_n \leq f_m$ o bien $f_m \leq f_n \Rightarrow$ Sin pérdida de generalidad, suponemos $f_n \leq f_m$ (el otro caso es análogo) $\Rightarrow Dom(f_n) \subseteq Dom(f_m) \Rightarrow a, b \in Dom(f_m) \ y \ J|_{Dom(f_m)} = f_m$ que es lineal, cumpliéndose las propiedades de linealidad con J en a y b. Concluimos así que $f_i \leq J \ \forall i \in \Lambda : J$ es cota superior de C $y \ \forall \ C \subseteq L$ cadena, $\exists J_C \in L$ cota superior de C.

Entonces hemos probado que dada una cadena del conjunto parcialmente ordenado $(L, \leq) \Rightarrow$ La cadena es acotada superiormente. Luego como L es un conjunto parcialmente ordenado, $L \neq \emptyset$ y toda cadena en L es acotada superiormente \Rightarrow por el lema de Zorn, L tiene elementos maximales. Luego, sea \widetilde{T} un maximal de $L,\,\widetilde{T}:D\subseteq V\to\mathbb{R}$ y $\widetilde{T}\big|_S=T.$ Ahora, supongamos que $D\subsetneq V,$ es decir, $\exists \ v \in V/v \notin D$, luego sea

$$\begin{split} \widetilde{D} &= \langle v \rangle \oplus D \text{ y definimos } \widetilde{T}^* : \langle v \rangle \oplus D \to \mathbb{R} / \ \widetilde{T}^*(x) = \begin{cases} \widetilde{T}(x) & \text{si } p_{\langle v \rangle}^\perp(x) = 0 \\ 0 & \text{si } p_{\langle v \rangle}^\perp(x) \neq 0 \end{cases}. \\ \text{Notemos que } \widetilde{T}^* \text{ es transformación lineal, } \widetilde{T}^* \big|_S = T, \ \widetilde{T}^* \big|_D = \widetilde{T} \text{ y } D \subseteq D \oplus \langle v \rangle, \text{ luego } \widetilde{T} \leq \widetilde{T}^*, \end{split}$$

lo cual es absurdo ya que \widetilde{T} era maximal $\Rightarrow D=V.$

Hemos hallado $\widetilde{T}:V\to\mathbb{R}/\left.\widetilde{T}\right|_S=T$ transformación lineal, que es lo que pedía el enunciado. \blacksquare