Cognate Discovery For Bootstrapping Lexical Resources

Shantanu Kumar (2013EE10798)

Supervisors

Prof. Sumeet Agarwal Dr. Ashwini Vaidya

Motivation

Cognates: Cross-language words which originate from a common ancestral language.

```
Night (English) Nacht (German) *
Father (English) Pater (Greek)
Star (English) Tara (Hindi)
```

- → Essential for historical linguists.
- → Successfully applied to NLP tasks like as Sentence Alignment [Simard et al., 1993][Navlea et al., 2011] and Statistical Machine Translation [Kondrak et al., 2003].
- → Assist in lexical resource creation.

Datasets

Indo-European Dataset (Dyen et al., 1992)

- 84 Languages, 200 Meanings
- Romanized transcription

Indo-European Lexical Cognacy Database (IELex)

- 163 Languages, 225 Meanings
- 5000 Cognate Sets
- IPA transcription

Parallel Corpora

- Hindi-Marathi (TDIL)
- English-French (Europarl)

Part of Wordlist Used

Concepts

	ALL	AND	ANIMAL
English	All	And	Animal
French	Tut	Et	Animal
Marathi	Serve	Ani	Jenaver
Hindi	Sara	Or	Janver

[From Dataset by Dyen et al.]

Previous Work

- 1. H. Bradley and G. Kondrak. "Clustering Semantically Equivalent Words into Cognate Sets in Multilingual Lists."
 - Orthographic word similarity features
 - Language pair similarity features
- 2. T. Rama. "Automatic cognate identification with gap-weighted string subsequences."
 - String subsequences based features
- 3. T. Rama. "Siamese convolutional networks based on phonetic features for cognate identification."
 - Representing words as images

Common Subsequence Model

$$\phi_u(s) = \sum_{\forall I, s[I] = u} \lambda^{l(I)}$$

$$l(I) = i_{|u|} - i_1 + 1$$

$$\Phi(s) = \{\phi_u(s); \forall u \in \cup_{n=1}^p \Sigma^n\}$$

Subsequence Vector Example

PATER

'ae':	0.14925373,
'ar':	0.10447761,
'at':	0.21321962,
'er':	0.21321962,
'pa':	0.21321962,
'pe':	0.10447761,
'pr':	0.07313433,
'pt':	0.14925373,
'te':	0.21321962,
'tr':	0.14925373

EATHED

	FAIRER
'ae':	0.07763300,
'ah':	0.11090429,
'ar':	0.05434310,
'at':	0.15843470,
'er':	0.15843470,
'fa':	0.15843470,
'fe':	0.05434310,
'fh':	0.07763300,
'fr':	0.03804017,

'he': 0.15843470, 'hr': 0.11090429,

0.11090429.

'ft':

'te': 0.11090429,

'th': 0.15843470,

'tr': 0.07763300

Multiplicative Model

$$\Phi_1(s_1, s_2) = \{\phi_u(s_1) + \phi_u(s_2); \forall u \text{ present in } s_1 \text{ and } s_2\}$$

Additive Model

$$\Phi_2(s_1, s_2) = \{\phi_u(s_1) + \phi_u(s_2); \forall u \text{ present in } s_1 \text{ or } s_2\}$$

Testing Methods

1. Simple 5-Fold Cross Validation

- Training samples taken from all concepts
- No common words between Training and Testing set

2. Cross-Concept 5-Fold Cross Validation

- Training samples taken from certain concepts and Testing samples from remaining concepts
- Learn general trends of sound change in the languages

Error Analysis

Performance over Broad Categories of Samples

	Testing Data From			
Training Data From	Adjectives	Nouns	Others	
Adjectives	0.513	0.330	0.160	
Nouns	0.422	0.490	0.208	
Others	0.350	0.380	0.360	
All	0.522	0.495	0.351	

Multiplicative model, $\lambda = 0.7$, p = 3

Performance over Individual Concepts

Concept	Precision	Recall	F-Score	Cognate Classes
CHILD	99.98	79.99	0.888	24
тоотн	99.99	76.92	0.869	5
BLACK	85.70	85.70	0.856	14
LAKE	81.81	89.99	0.856	22
WHEN	99.98	7.59	0.141	8
HOW	79.98	7.69	0.140	8
WHAT	99.95	5.49	0.103	5
IN	59.98	3 99 Multiplicat	0.074 ive model, $\lambda =$	12 0.7, p = 3

Role of Transcription In Detecting Sound Change

Cognates for the concept 'WHAT'

Language	IPA	Romanized IPA	CV String
Danish	va	HVAD	CCVC
English	wat	WHAT	CCVC
French	kə	QUE	CVV
Marathi	kaj	KAY	CVV
Slovak	tʃɔ	СО	CV
Slovenian	kăːj	KAJ	CVC
Spanish	ke	QUE	CVV
Swedish	va:d	VAD	CVC

Analysis of Additive Model

- Overfitting on training data
- Large gap between training and testing constant with varying regularisation penalty
- High f-score on samples with high positive sample bias

 $\lambda = 0.7, p = 3$

Hybrid Model

- Hybrid model between Multiplicative and Additive models
- Smoothing used to form hybrid features
 - Weight stolen from positive feats of the Multiplicative model
 - Distributed to features of the Additive model

Romanized IPA Dataset, $\lambda = 0.7$, p = 3

Hybrid

Additive

Future Work

- → Word Embedding based features
 - Introduce semantic features
 - Context information
 - PolyGlot Distributed word representation for multilingual NLP
 - Word embeddings for 117 Languages and 100K Vocabulary size
 - Trained on processed Wikipedia text dumps
- Character level RNN based model
 - Character encodings to help against transcription problem
 - Attention models
- → Apply model to the domain of Hindi-Marathi and Hindi-Punjabi

References

- 1. Simard, Michel, George F. Foster, and Pierre Isabelle. "Using cognates to align sentences in bilingual corpora." Proceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative research: distributed computing-Volume 2. IBM Press, 1993.
- 2. Kondrak, Grzegorz, Daniel Marcu, and Kevin Knight. "Cognates can improve statistical translation models." Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology. Association for Computational Linguistics, 2003.
- 3. Hauer, Bradley, and Grzegorz Kondrak. "Clustering Semantically Equivalent Words into Cognate Sets in Multilingual Lists." *IJCNLP*. 2011.
- 4. Rama, Taraka. "Automatic cognate identification with gap-weighted string subsequences."

 Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2015.
- 5. Rama, Taraka. "Siamese convolutional networks based on phonetic features for cognate identification." arXiv preprint arXiv:1605.05172(2016).