Preetam Kumar Ghosh

CS17M033

November 23, 2017

Amar Vashishth

CS17M052

64.0

16

DET PARZEN WINDOV

Assignment 05

Abstract Table 1: Model Accuracy Table

Accuracy (in %) Dataset Parzen Window

Fisher Discriminant Based Classifier	76.6
Perceptron Based Classifer	60.8
SVM (OCR)	41.6927
SVM (Speech)	83.6015
Neural Network (OCR)	40.4
Neural Network (Speech)	87.0

1

 $\mathbf{2}$

estimator used is given as: $\phi(u) = \left(\frac{1}{\sqrt{2\pi}}\right)^d \exp\left\{-\frac{1}{2}||u||^2\right\}$

 $f(x) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{h\sqrt{2\pi}} \right)^{d} \exp\left\{ -\frac{||x - x_i||^2}{2h^2} \right\}$ This is a kind of mixture density where, instead of choosing a gaussian mixture, we choose exactly n gaussians and centering gaussian

h at different regions of the feature space.

Opencountry 77 **10 28** Tallbuilding **63 17** 21

Figure 1: Confusion Matrix for Parzen Window @h=0.08

OC FOR PARZEN WINDOW FOR DIFFERENT VALUES OF "h"		
0.00	1 4	40
0.00	16	30
	- 7	20
	- (% uj)	10
	l l l lss probability (in %)	5 -
	- Ss pr	

Figure 4: Fisher Discriminant Based Classifier

To compute such a W, we consider a binary classification problem. So we have two classes, namely Class 1 and Class 2.

Let, M_1 and M_2 be the means for each class. These are computed using the training data items, as:

We have a binary classifier, but we have to classify data into multiple classes. To do this we have reduced this problem to subproblems of binary classification. One-vs-all (one-vs-rest):

 $W = S_w^{-1}(M_2 - M_1)$

Class 1:
$$\bigwedge$$
 \leftarrow Class 2: \square \leftarrow Class 3: \times \leftarrow $h_{\theta}^{(i)}(x) = P(y=i|x;\theta)$ $(i=1,2,3)$ Figure 5: Multiclass Classification

Forest Opencountry Tallbuilding Forest 90 **54** 1 Opencountry 61 5 4 Tallbuilding 5 8 101

Figure 8: ROC & DET Plots for Fisher Discriminant Based Classifier

Perceptron Learning Algorithm

and a =

Update Step:

3

Figure 10: Confusion Matrix for Classifier using Perceptron Learning Algorithm, took 1700 Iteration

 $y_i = \begin{cases} \text{Augmented } x_i & \text{if } x_i \in \omega_1 \\ -\text{Augmented } x_i & \text{if } x_i \in \omega_2 \end{cases}$

 $a(k+1) = a(k) + \eta(k) \sum y \quad \forall y \in \text{misclassified}$

Opencountry

27

57

39

Tallbuilding

11

14

82

Forest

61

31

7

Forest

Opencountry

Tallbuilding

for $\vec{x_i} \in \text{gutter are: } y_i(\vec{w}\vec{x_i}) - 1 = 0$

where, α_i is the lagrange's multiplier there.

answer to which we get,

5

called widest street approach. To get the widest street:

Digit 1 1394 **67 150** Digit 2 166 1277 **94** Digit 5 **248 70** 1382

Multi-layer Feed-forward Neural Network

0.8

0.2

0

True Positive Rate

0.2

0

0

tΑ

True Positive Rate 0.6

0.2

0

True Positive Rate 0.6 **Training ROC**

False Positive Rate

Test ROC

True Positive Rate 0 0.4 0.6 8.0 0 0.2 0.4 False Positive Rate False Positive Rate

Figure 15: ROC Plot for OCR Data

475

Figure 16: Confusion Matrix for OCR data

O.8 Class 2 Class 3 O.6 O.4 O.2 O.2	0.8 O.6 O.4 O.2 O.2
0 0.2 0.4 0.6 0.8 1 False Positive Rate	0 0.2 0.4 0.6 0.8 False Positive Rate
Test ROC	All ROC

	Figure 18: ROC Plot for Speech Data
Inference	

Digit 5

0.4

False Positive Rate

0.2

0.6

0.8

• In support vector machines, we utilized features which were local to each point hence the accuracy went down to $\approx 40\%$ • In Perceptron, the accuracy obtained was not good enough because we attempted to separate real data using hyperplanes.

6

Digit 2 **59 85** 66 **708**

Parzen Window In this method, we define a function such that $\phi(u) = \begin{cases} 1 & \text{if } |u_i| \le 0.5, \ i = 1, 2, 3, \dots, d \\ 0 & \text{otherwise} \end{cases}$ where, $u = (u_1, u_2, \dots, u_d)^T$. The function ϕ is a mapping such that, $\phi : \mathbb{R}^d \to \mathbb{R}^d$ This is a definition of a hypercube in \mathbb{R}^d , centered at the origin; The function ϕ is an indicator of a data point being inside that hypercube. It is also called as the Kernel Density Estimator. We have used a Gaussian Kernel for the given data. The Kernel density with this the hypercube volume, $V = h^d$. The density estimator is:

We can understand it by this figure below:

$M_1 = \frac{1}{n_1} \sum_{X_i \in C_1} X_i$ $M_2 = \frac{1}{n_2} \sum_{X_i \in C_2} X_i$ Also, we compute a real symmetric matrix(hence, would be invertible) which is given as, $S_w = \sum_{X_i \in C1} (X_i - M_1)(X_i - M_1)^T + \sum_{X_i \in C2} (X_i - M_1)(X_i - M_2)^T$

finally, the W matrix is computed as:

It is an iterative algorithm to learn W corresponding to a hyperplane. By adding the incorrectly classified vector to the current hyperplane. We are actually rotating the hyperplane about the origin towards that point, hopefully which could also lead to its

Figure 11: Perceptron Variation of Accuracy and DET Plot

Figure 14: Confusion Matrix for Speech data

0.8

True Positive Rate

0.2

0.8

Validation ROC

0.4

0.6

0.6

tΑ

248

49

606

Validation ROC

0.8

0.6

False Positive Rate

86

8.0

False Positive Rate

All ROC

Here we provided two sets of data, we have used a neural network for classifying them, 100 neurons were used in the process.

 $y_i(\vec{w}\vec{x_i} + b) - 1 \ge 0$

 $\text{minimize} \frac{||\vec{w}||^2}{2}$

 $\vec{w} = \sum_{i} \alpha_i y_i x_i = 0$

Then, we try to find out how to arrange the line such that we get the widest gutter(street). That's why the svm approach is also

chA a a 325 **271** chA **79** 4

465

Training ROC

0.4 0.6 0.8 1	0	0.2	0.4	0.6	8.0	1
alse Positive Rate		Fa	ilse Pos	sitive R	ate	
Test ROC	1 г		AII	ROC		
	0.0			/		
	True Positive Rate					
	0.2					

0.2

0.4

674 45