Multivariate Data Analysis

(MGT513, BAT531, TIM711)

Lecture 12

Ch.12 Discriminant Analysis

References

- LCG (textbook) Ch.12 Discriminant Analysis
- An Introduction to Statistical Learning with Applications in R (2nd Edition) by James et al: available online
- Lecture 15: Linear Discriminant Analysis
 (https://www.doc.ic.ac.uk/~dfg/ProbabilisticInference/IDAPISlides15
 .pdf)
- Linear and Quadratic Discriminant Analysis: Tutorial (https://arxiv.org/abs/1906.02590)
- Jonathan Taylor's Stats202 Lecture note: Not available anymore

Linear Classification

- Focus on linear classification model: the decision boundary is a linear function of x
 - Defined by (D-1)-dimensional hyperplane
- If the data can be separated exactly by linear decision surfaces, they are called linearly separable
- Implicit assumption: Classes can be modeled well by Gaussians
- Treat classification as a projection problem

From PRML (Bishop, 2006)

Discriminant Analysis

- Goal: To explain possible separation or discrimination between or among groups using independent variables
- Two approaches:
 - Fisher's Discriminant Analysis (FDA)
 - Linear Discriminant Analysis (LDA) / Quadratic
 Discriminant Analysis (QDA)

Fisher's Discriminant Analysis

- IDEA: Project input vector x to a one-dimensional subspace with basis vector w
- Assume we know the basis vector w, we can compute the projection of any point x onto the one-dimensional subspace spanned by w

FIGURE 12.1
Stylized scatter
plot showing two
groups

FIGURE 12.2Using X_1 to discriminate between groups 1 and 2

FIGURE 12.3

Using a linear combination of X_1 and X_2 to discriminate between groups 1 and 2

FIGURE 12.15
Stylized scatter plot for three-group discriminant analysis problem

Figure 12.16
First discriminant function separates group 1 from groups 2 and 3

FIGURE 12.17 Second discriminant function separates group 2 from group 3

- Adjust components of basis vector w
- => Select projection that maximizes the class separation

K classes case: class k(Y = k) with n_k observations

Mean vector for each class k:

$$\mu_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

Covariance matrix for each class k:

$$\Sigma_{k} = \frac{1}{n_{k}} \sum_{i: y_{i} = k} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{T}$$

 Goal: To find the linear combination w to maximize the Fisher criterion

 $f = \frac{\text{Between} - \text{class sum of squares of the discriminant scores}}{\text{Within} - \text{class sum of squares of the discriminant scores}}$

$$f(w) = \frac{w^T S S_B w}{w^T S S_W w}$$

$$SS_W = \sum_{k=1}^K \Sigma_k$$

$$SS_B = \sum_{k=1}^K (\mu_k - \bar{\mu})(\mu_k - \bar{\mu})^T$$

where
$$\bar{\mu} = \frac{1}{K} \sum_{k=1}^{K} \mu_k$$

$$w^* = \underset{w}{\operatorname{argmax}} \frac{w^T S S_B w}{w^T S S_W w}$$

We find w by setting $\frac{df}{dw} = 0$

$$\frac{df}{dw} = 0 \iff (w^T S S_W w) S S_B w - (w^T S S_B w) S S_W w = 0$$

$$\iff S S_B w - f S S_W w = 0$$

$$\iff S S_B w = f S S_W w$$

$$\iff S S_W^{-1} S S_B w = f w$$

This is an eigenvalue problem.

The projection vector is the eigenvector of $SS_W^{-1}SS_B$.

$$w \propto S S_W^{-1} S S_B$$

Linear Discriminant Analysis

Instead of estimating P(Y|X), we will estimate:

- P(X|Y): Given the response, what is the distribution of the inputs.
- P(Y): How likely are each of the classes.

Then, we use Bayes rule to obtain the estimate:

$$P(Y = k | X = x) = \frac{P(X = x | Y = k)P(Y = k)}{P(X = x)}$$

$$= \frac{P(X = x | Y = k)P(Y = k)}{\sum_{j} P(X = x | Y = j)P(Y = j)}$$

Let

- $P(Y = k) = \pi_k$
- $P(X = x | Y = k) = f_k(x)$ follows a multivariate normal distribution:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}[(x-\mu_k)^T \Sigma^{-1} (x-\mu_k)]}$$

- μ_k : Mean of the inputs for class k
- Σ: Covariance matrix common to all classes

By Bayes rule, the probability of class k, given the input x is:

$$P(Y = k | X = x) = \frac{f_k(x)\pi_k}{P(X = x)}$$

The denominator does not depend on the response k, so we can write it as a constant:

$$P(Y = k | X = x) = c_1 f_k(x) \pi_k$$

$$P(Y = k | X = x) = \frac{c_1 \pi_k}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}[(x - \mu_k)^T \Sigma^{-1} (x - \mu_k)]}$$

Absorb everything that does not depend on k into a constant c_2 :

$$P(Y = k | X = x) = c_2 \pi_k e^{-\frac{1}{2}[(x - \mu_k)^T \Sigma^{-1} (x - \mu_k)]}$$

Take log of both sides:

$$\ln[P(Y = k | X = x)]$$

$$= \ln(c_2) + \ln(\pi_k) - \frac{1}{2}[(x - \mu_k)^T \Sigma^{-1} (x - \mu_k)]$$

So we want to find the maximum of this over k.

LDA has linear decision boundaries

Goal, maximize the following over k:

$$\ln(\pi_k) - \frac{1}{2} [(x - \mu_k)^T \Sigma^{-1} (x - \mu_k)]$$

$$= \ln(\pi_k) - \frac{1}{2} [x^T \Sigma^{-1} x + \mu_k^T \Sigma^{-1} \mu_k] + x^T \Sigma^{-1} \mu_k$$

$$= c_3 + \ln(\pi_k) - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + x^T \Sigma^{-1} \mu_k$$

Objective function (linear discriminant function):

$$\delta_k(x) = \ln(\pi_k) - \frac{1}{2}\mu_k^T \Sigma^{-1} \mu_k + x^T \Sigma^{-1} \mu_k$$

At an input x, we predict the response with the highest $\delta_k(x)$.

LDA has linear decision boundaries

Decision boundary

$$\delta_k(x) = \delta_l(x)$$

$$\ln(\pi_k) - \frac{1}{2}\mu_k^T \Sigma^{-1} \mu_k + x^T \Sigma^{-1} \mu_k$$

$$= \ln(\pi_l) - \frac{1}{2}\mu_l^T \Sigma^{-1} \mu_l + x^T \Sigma^{-1} \mu_l$$

This equation is a linear function of x

The locus of x by LDA is the set of all points x perpendicular to w, Fisher's discriminant function coefficients.

Parameter estimation

- Estimating π_k
 - proportion of the training observations that belong to the kth class

$$\hat{\pi}_k = \frac{n_k}{n}$$

- Estimating μ_k
 - average of training observations in the kth class

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

Parameter estimation

• Estimating Σ

— weighted average of the sample covariance matrices for each of the k classes.

$$\hat{\Sigma} = \frac{1}{n - K} \sum_{k=1}^{K} \sum_{i: y_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T$$

LDA prediction

• For an input x, predict the class with the largest:

$$\hat{\delta}_k(x) = \ln(\hat{\pi}_k) - \frac{1}{2}\hat{\mu}_k^T \hat{\Sigma}^{-1} \hat{\mu}_k + x^T \hat{\Sigma}^{-1} \hat{\mu}_k$$

The decision boundaries

$$\ln(\hat{\pi}_{k}) - \frac{1}{2}\hat{\mu}_{k}^{T}\hat{\Sigma}^{-1}\hat{\mu}_{k} + x^{T}\hat{\Sigma}^{-1}\hat{\mu}_{k}$$

$$= \ln(\hat{\pi}_{l}) - \frac{1}{2}\hat{\mu}_{l}^{T}\hat{\Sigma}^{-1}\hat{\mu}_{l} + x^{T}\hat{\Sigma}^{-1}\hat{\mu}_{l}$$

- The boundary will be a line for two dimensional problems.
- The boundary will be a plane for three dimensional problems.

FDA = LDA

• TWO classes case: class 1 (Y=1) with n_1 observations and class 2 (Y=2) with n_2 observations

In FDA,

$$f(w) = \frac{w^T S S_B w}{w^T S S_W w} = \frac{w^T (\mu_1 - \bar{\mu})(\mu_2 - \bar{\mu})^T w}{w^T (\Sigma_1 + \Sigma_2) w} = \frac{(w^T (\mu_2 - \mu_1))^2}{w^T (\Sigma_1 + \Sigma_2) w}$$
$$\frac{df}{dw} = 0 \iff (\mu_2 - \mu_1)^2 w = f(\Sigma_1 + \Sigma_2) w$$
$$w \propto (\Sigma_1 + \Sigma_2)^{-1} (\mu_2 - \mu_1)^2$$

If the equality of covariance matrices is assumed (as in LDA)

$$w \propto (2\Sigma)^{-1} (\mu_2 - \mu_1)^2 \propto \Sigma^{-1} (\mu_2 - \mu_1)^2$$
$$w^T x \propto (\Sigma^{-1} (\mu_2 - \mu_1)^2)^T x$$

FDA = LDA

In LDA,

$$\Sigma_1 = \Sigma_2 = \Sigma$$

$$\frac{c_1 \pi_1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}[(x-\mu_1)^T \Sigma^{-1} (x-\mu_1)]} = \frac{c_1 \pi_2}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}[(x-\mu_2)^T \Sigma^{-1} (x-\mu_2)]}$$

which is equivalent to

$$\ln(\pi_1) - \frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + x^T \Sigma^{-1}\mu_1 = \ln(\pi_2) - \frac{1}{2}\mu_2^T \Sigma^{-1}\mu_2 + x^T \Sigma^{-1}\mu_2$$

up to a scaling factor $(\mu_2 - \mu_1)^T \Sigma^{-1} (\mu_2 - \mu_1)$ if $\pi_1 = \pi_2$

Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA)

We now introduce Quadratic Discriminant Analysis, which handles the following:

- The assumption that the inputs of every class have the same covariance Σ can be quite restrictive:
- If the k are not assumed to be equal, then convenient cancellations in our derivations earlier do not occur.
- The quadratic pieces in x end up remaining leading to quadratic discriminant functions (QDA).
- QDA is similar to LDA except a covariance matrix must be estimated for each class k.

Quadratic discriminant analysis (QDA)

- In quadratic discriminant analysis we estimate a mean $\hat{\mu}_k$ and a covariance matrix $\hat{\Sigma}_k$ for each class separately.
- Given an input, it is easy to derive an objective function:

$$\delta_k(x) = \ln(\pi_k) - \frac{1}{2}\mu_k^T \Sigma^{-1} \mu_k + x^T \Sigma^{-1} \mu_k - \frac{1}{2} x^T \Sigma^{-1} x - \frac{1}{2} \ln|\Sigma_k|$$

• This objective is now quadratic in *x* and so are the decision boundaries.

LDA VS. QDA

Box's Test for Equality of Covariance Matrices Across Groups

$$H_0: \Sigma_1 = \Sigma_2 = \cdots \Sigma_G = \Sigma$$

$$B = (1 - c) \{ \left[\sum_{g} (n_g - 1) \right] \ln |C_w| - \sum_{g} [(n_g - 1) \ln |C_{w(g)}|] \}$$

where

$$c = \left[\sum_{g} \frac{1}{(n_g - 1)} - \frac{1}{\sum_{g} (n_g - 1)} \right] \left[\frac{2p^2 + 3p - 1}{6(p+1)(G-1)} \right]$$

Box's Test for Equality of Covariance Matrices Across Groups

and where

$$p = number\ of\ independent\ vaiables$$
 $n_g = number\ of\ observations\ in\ group\ g$
 $G = number\ of\ groups$
 $n = \sum_g n_g = total\ sample\ size$

 $C_{w(g)} = sample \ within - group \ covariance \ matrix \ for \ group \ g$ $C_w = sample \ within - group \ covariance \ matrix \ pooled \ across \ groups$

Then

$$B \sim \chi^2 \left(\frac{1}{2}p(p+1)(G-1)\right)$$

Diagnostic testing

Confusion matrix:

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a population.

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N^*	

TABLE 4.7. Important measures for classification and diagnostic testing, derived from quantities in Table 4.6.

Diagnostic testing

• Precision:

$$Precision = \frac{TP}{TP + FP}$$

Recall:

$$Recall = \frac{TP}{TP + FN}$$

• F1 score:

$$Precision = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Diagnostic testing

ROC (Receiver Operating Characteristics) Curve

Displays the performance of the method for any choice of threshold.

The area under the curve (AUC) measures the quality of the classifier:

- 0.5 is the AUC for a random classifier
- The closer AUC is to 1, the better

- Real Estate data from a multiple listing service (MLS) for three communities in the San Francisco Bay Area: Los Altos, Menlo Park, and Palo Alto
- Samples: 9 homes in Los Altos, 13 in Menlo Park, and 13 in Palo Alto
- Three characteristics for each listing:
 - 1. Asking price for the property (in thousands of dollars)
 - 2. Number of bedrooms in the home
 - 3. Approximate square footage of the property (in thousands).

Research Questions:

- Are the three communities significantly different with respect to the characteristics of the properties available for sale?
- If so, how do we describe the differences across communities?
- How many discriminant functions are necessary and how do we interpret them?

Test of equality of covariance matrices for real estate data

TABLE 12.12 Test of equality of covariance matrices for real estate data

District $\ln |C_w|$

Los Altos 11.1762

Menlo Park 8.9920

Palo Alto 9.9406

Pooled 10.3657

 $\chi^2 = 12.97$ with 12 df p = 0.3713

1. Fisher's discriminant Analysis Results

TABLE 12.13 Results of Fisher's discriminant analysis of real estate data

	Eigenvalues of W ⁻¹ A		
	λ		
1	1.0352		
2	0.1552		

- 0.1002					
		Standardized Discriminant Function Coefficients			
	k ₁	$\mathbf{k_2}$			
Price	0.1164	-0.7570			
Bedrooms	0.2363	1.300			
Lot Size	1.2818	0.1252			
	Varial	Correlations between Variables and Discriminant Functions			
	1	2			
Price	0.6181	0.0399			
Bedrooms	0.2660	0.8403			
Lot Size	0.9746	-0.1585			
	Group I Discrimina	Group Means on Discriminant Functions			
Group	1	2			
Los Altos	1.6517	0.0306			
Menlo Park	-0.6258	0.4259			
Palo Alto	-0.5177	-0.4471			

FIGURE 12.18
Plot of real estate
data in discriminant
function space

2. Linear discriminant Analysis (LDA) Results

TABLE 12.14 Results of Mahalanobis method: Goodness of fit and predictive validation

•					
	Coefficients of Mahalanobis Distance Function by Group				
	Los Altos	Menlo Park	Palo Alto		
Constant	-27.3139	-16.4950	-14.2933		
Price	0.0034	-0.0008	0.0042		
Bedrooms	6.5300	6.4993	5.0921		
Lot Size	2.1363	1.2895	1.2981		
Classification Summary: Goodness of Fit					
	Number	Number of Observations Classified into			
From	Los Altos	Menlo Park	Palo Alto	Total	
Los Altos	7	1	1	9	
Menlo Park	1	8	4	13	
Palo Alto	1	4	8	13	
Total	9	13	13	35	
	Classification Summary: Jackknifed Validation				
	Number	Number of Observations Classified into			
From	Los Altos	Menlo Park	Palo Alto	Total	
Los Altos	4	2	3	9	
Menlo Park	1	7	5	13	
Palo Alto	1	5	7	13	
Total	6	14	15	35	
				55	

