WHAT IS CLAIMED IS:

1

2

- 1 1. An isolated sweet taste receptor comprising a T1R3 polypeptide, 2 wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under moderately stringent hybridization conditions to a nucleotide sequence encoding an amino 3 4 acid sequence of SEQ ID NO:15, 20, 23, or 25. 1 2. The isolated receptor of claim 1, wherein the T1R3 polypeptide is 2 encoded by a nucleotide sequence that hybridizes under highly stringent hybridization 3 conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 4 23, or 25. 1 3. The isolated receptor of claim 1, wherein the T1R3 polypeptide has an 2 amino acid sequence of SEQ ID NO:15, 20, 23, or 25. 1 4. The isolated receptor of claim 1, wherein the receptor comprises a 2 T1R3 polypeptide and a heterologous polypeptide. 1 5. The isolated receptor of claim 4, wherein the T1R3 polypeptide and the 2 heterologous polypeptide are non-covalently linked. 1 6. The isolated receptor of claim 4, wherein the T1R3 polypeptide and the 2 heterologous polypeptide are covalently linked. 1 7. The isolated receptor of claim 4, wherein the heterologous polypeptide 2 is a T1R1 polypeptide that is encoded by a nucleotide sequence that hybridizes under 3 moderately stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:1, 2, or 3. 4 1 8. The isolated receptor of claim 4, wherein the heterologous polypeptide is a T1R1 polypeptide that is encoded by a nucleotide sequence that hybridizes under highly 2 stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence 3 4 of SEQ ID NO:1, 2, or 3.
 - 9. The isolated receptor of claim 7, wherein the T1R1 polypeptide has an amino acid sequence of SEQ ID NO:1, 2, or 3.

- 1 10. The isolated receptor of claim 4, wherein the heterologous polypeptide
 2 is a T1R2 polypeptide that is encoded by a nucleotide sequence that hybridizes under
 3 moderately stringent hybridization conditions to a nucleotide sequence encoding an amino
 4 acid sequence of SEQ ID NO:7, 8, or 9.

 1 1. The isolated receptor of claim 4, wherein the heterologous polypeptide
 2 is a T1R2 polypeptide is encoded by a nucleotide sequence that hybridizes under highly
- is a T1R2 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:7, 8, or 9.
- 1 12. The isolated receptor of claim 10, wherein the T1R2 polypeptide has 2 an amino acid sequence of SEQ ID NO:7, 8, or 9.
- 1 13. The isolated receptor of claim 1, wherein the receptor has G protein 2 coupled receptor activity.
- 1 14. The isolated receptor of claim 1, wherein the receptor specifically 2 binds to antibodies raised against SEQ ID NO: 15, 20, 23, or 25.
- 1 15. An isolated sweet taste receptor comprising a T1R3 polypeptide and a
 2 T1R1 polypeptide, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that
 3 hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding
 4 an amino acid sequence of SEQ ID NO:15, 20, 23, or 25; and wherein the T1R1 polypeptide
 5 that is encoded by a nucleotide sequence that hybridizes under moderately stringent
 6 hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ
 7 ID NO:1, 2, or 3.
- 1 16. An isolated sweet taste receptor comprising a T1R3 polypeptide and a
 2 T1R2 polypeptide, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that
 3 hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding
 4 an amino acid sequence of SEQ ID NO:15, 20, 23, or 25; and wherein the T1R2 polypeptide
 5 that is encoded by a nucleotide sequence that hybridizes under moderately stringent
 6 hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ
 7 ID NO:7, 8, or 9.

1

17. An antibody that specifically binds to the taste receptor claim 1.

1 18. The antibody of claim 17, wherein the antibody specifically binds to a 2 taste receptor comprising T1R1 and T1R3. 1 19. The antibody of claim 18, wherein the T1R1 polypeptide and the T1R3 2 polypeptide are non-covalently linked. 20. 1 The antibody of claim 18, wherein the T1R1 polypeptide and the T1R3 polypeptide are covalently linked. 2 1 21. The antibody of claim 17, wherein the antibody specifically binds to a 2 taste receptor comprising T1R2 and T1R3. 1 22. The antibody of claim 21, wherein the T1R2 polypeptide and the T1R3 2 polypeptide are non-covalently linked. 1 23. The antibody of claim 21, wherein the T1R2 polypeptide and the T1R3 2 polypeptide are covalently linked. 1 24. A method of identifying a compound that modulates sweet taste signal 2 transduction in taste cells, the method comprising the steps of 3 (i) contacting the compound with a sweet taste receptor comprising a T1R3 4 polypeptide, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that 5 hybridizes under moderately stringent hybridization conditions to a nucleotide sequence 6 encoding an amino acid sequence of SEQ ID NO:15, 20, 23, or 25; and 7 (ii) determining the functional effect of the compound upon the receptor, 8 thereby identifying a compound that modulates sweet signal transduction. 1 The method of claim 24, wherein the T1R3 polypeptide is encoded by 25. 2 a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a 3 nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, or 25 i 26. The method of claim 24, wherein the receptor comprises a T1R3 2 polypeptide and a heterologous polypeptide.

The method of claim 25, wherein the T1R3 polypeptide and the

1

2

27.

heterologous polypeptide are non-covalently linked.

The method of claim 25, wherein the heterologous polypeptide is a 28. 1 T1R1 polypeptide encoded by a nucleotide sequence that hybridizes under moderately 2 stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence 3 of SEQ ID NO:1, 2, or 3. 4 The method of claim 25, wherein the heterologous polypeptide is a 29. 1 T1R1 polypeptide encoded by a nucleotide sequence that hybridizes under highly stringent 2 hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ 3 4 ID NO:1, 2, or 3. The method of claim 25, wherein the T1R1 polypeptide has an amino 1 30. 2 acid sequence of SEQ ID NO:1, 2, or 3. The method of claim 25, wherein the heterologous polypeptide is a 31. 1 T1R2 polypeptide encoded by a nucleotide sequence that hybridizes under moderately 2 stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence 3 of SEQ ID NO:7, 8, or 9. 4 The method of claim 25, wherein the heterologous polypeptide is a 32. 1 T1R2 polypeptide encoded by a nucleotide sequence that hybridizes under highly stringent 2 hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ 3 ID NO:7, 8, or 9. 4 The method of claim 25, wherein the T1R2 polypeptide has an amino 33. 1 acid sequence of SEQ ID NO:6, 7, or 8. 2 The method of claim 24, wherein the receptor is recombinant. 34. 1 The method of claim 24, wherein the receptor has G protein coupled 1 35. receptor activity. 2 The method of claim 24, wherein the functional effect is measured in 36. 1 2 vitro. The method of claim 36, wherein the functional effect is a physical 37. 1

2

effect.

1 2	phase.	38.	The method of claim 36, wherein the receptor is linked to a solid
1 2	measuring bind	39. ding of	The method of claim 36, wherein the functional effect is determined by a compound to the receptor.
1 2	measuring bind	40. ding of	The method of claim 39, wherein the functional effect is determined by a compound to the extracellular domain of the receptor.
1 2	cell membrane	41 .	The method of claim 24, wherein the receptor is expressed in a cell or
1 2	effect.	42.	The method of claim 41, wherein the functional effect is a physical
1 2	measuring liga	43. nd bind	The method of claim 42, wherein the functional effect is determined by ling to the receptor.
1 2		44. ding of	The method of claim 43, wherein the functional effect is determined by a compound to the extracellular domain of the receptor.
1 2	phenotypic eff	45. ect.	The method of claim 41, wherein the functional effect is a chemical or
1 2		46. nges in	The method of claim 45, wherein the functional effect is determined by intracellular cAMP, IP3, or Ca ²⁺ .
1		47.	The method of claim 41, wherein the cell is a mammalian cell.
1		48.	The method of claim 47, wherein the cell is a human cell.
1		49.	A method of identifying a compound that modulates sweet taste signal
2	transduction in	taste c	ells, the method comprising the steps of
3		(i) con	tacting the compound with cell expressing a sweet taste receptor
4	comprising a T	1R3 pc	olypeptide and a T1R2 polypeptide, wherein the T1R3 polypeptide is
5	encoded by a n	ucleoti	de sequence that hybridizes under highly stringent hybridization
6	conditions to a	nucleo	tide sequence encoding an amino acid sequence of SEQ ID NO:15, 20,
7	23, or 25; and	wherei	n the T1R2 polypeptide that is encoded by a nucleotide sequence that

8	hybridizes under moderately stringent hybridization conditions to a nucleotide sequence		
9	encoding an amino acid sequence of SEQ ID NO:7, 8, or 9; and		
10	(ii) determining the functional effect of the compound upon the receptor,		
11	thereby identifying a compound that modulates sweet signal transduction.		
1	50. The method of claim 49, wherein the T1R2 polypeptide and the T1R3		
2	polypeptide are non-covalently linked.		
1	51. The method of claim 49, wherein the T1R2 polypeptide and the T1R3		
2	polypeptide are covalently linked.		
1	52. A method of identifying a compound that modulates sweet taste signal		
2	transduction in taste cells, the method comprising the steps of		
3	(i) contacting the compound with cell expressing a sweet taste receptor		
4	comprising a T1R3 polypeptide and a T1R1 polypeptide, wherein the T1R3 polypeptide is		
5	encoded by a nucleotide sequence that hybridizes under highly stringent hybridization		
6	conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20,		
7	23, or 25; and wherein the T1R1 polypeptide that is encoded by a nucleotide sequence that		
8	hybridizes under moderately stringent hybridization conditions to a nucleotide sequence		
9	encoding an amino acid sequence of SEQ ID NO:1, 2, or 3; and		
10	(ii) determining the functional effect of the compound upon the receptor,		
11	thereby identifying a compound that modulates sweet signal transduction.		
1	53. The method of claim 52, wherein the T1R1 polypeptide and the T1R3		
2	polypeptide are non-covalently linked.		
1	54. The method of claim 52, wherein the T1R1 polypeptide and the T1R3		
2	polypeptide are covalently linked.		