Problem 1

1(a)

Given, Loss function,

$$L(y_i, \hat{y}_i) = \log(1 + e^{-y_i \hat{y}_i}) \tag{1}$$

Gradient

$$g_{i} = \frac{\partial L(y_{i}, \hat{y}_{i})}{\partial \hat{y}_{i}}$$

$$= \frac{\partial}{\partial \hat{y}_{i}} log(1 + e^{-y_{i}\hat{y}_{i}})$$

$$= \frac{-y_{i}e^{-y_{i}\hat{y}_{i}}}{1 + e^{-y_{i}\hat{y}_{i}}}$$

$$\Rightarrow g_{i} = \frac{-y_{i}e^{-y_{i}\hat{y}_{i}}}{1 + e^{-y_{i}\hat{y}_{i}}}$$
(2)

1(b)

Let,

$$\gamma^* = \min_{\gamma \in R} \sum_{i=1}^n (-g_i - \gamma h(x_i))^2$$

We solve for y^* below

$$\frac{\partial \sum_{i=1}^{n} (-g_i - \gamma h(x_i))^2}{\partial \gamma} = \sum_{i=1}^{n} 2h(x_i)(g_i + \gamma h(x_i)) = 0$$

$$\Rightarrow \sum_{i=1}^{n} g_i h(x_i) + \gamma \sum_{i=1}^{n} h(x_i)^2 = 0$$

$$\Rightarrow \gamma^* = -\frac{\sum_{i=1}^{n} g_i h(x_i)}{\sum_{i=1}^{n} h(x_i)^2}$$

We find Second derivative to check if minimum is achieved

$$\frac{\partial^2 \sum_{i=1}^n (-g_i - \gamma h(x_i))^2}{\partial \gamma^2} = 2h(x_i)^2 > 0$$

Hence, we conclude γ can be computed in a closed form solution. Now we solve for h^*

$$h^* = min_{h \in R} \ y^* = min_{h \in R} - \frac{\sum_{i=1}^n g_i h(x_i)}{\sum_{i=1}^n h(x_i)^2}$$

$$\frac{\partial \frac{-\sum_{i=1}^{n} g_i h(x_i)}{\sum_{i=1}^{n} h(x_i)^2}}{\partial h} = -\frac{\sum_{i=1}^{n} g_i h'(x_i)}{\sum_{i=1}^{n} h(x_i)^2} + \frac{\sum_{i=1}^{n} g_i h(x_i) \sum_{i=1}^{n} 2h(x_i) h'(x_i)}{(\sum_{i=1}^{n} h(x_i)^2)^2} = 0$$

Solving the above equation gives us h^* . Since γ is not at all present in the equation, we can imply that h^* can be derived independent of γ

1(c)

As per Newtons Method, at step t + 1, we have,

$$\alpha^{*^{t+1}} = \alpha^{*^t} - \frac{f'(\alpha)}{f''(\alpha)} \tag{3}$$

$$f(\alpha) = \sum_{i=1}^{n} log(1 + e^{-y_i(\hat{y}_i + \alpha h^*(x_i))})$$

$$f'(\alpha) = \frac{\partial \sum_{i=1}^{n} log(1 + e^{-y_i(\hat{y}_i + \alpha h^*(x_i))})}{\partial \alpha}$$
$$= \sum_{i=1}^{n} \frac{-y_i h^*(x_i) e^{-y_i(\hat{y}_i + \alpha h^*(x_i))}}{1 + e^{-y_i(\hat{y}_i + \alpha h^*(x_i))}}$$

$$\Rightarrow f'(\alpha) = \sum_{i=1}^{n} \frac{-y_i h^*(x_i)}{e^{y_i(\hat{y}_i + \alpha h^*(x_i))} + 1}$$
 (4)

$$f''(\alpha) = \frac{\partial f'(\alpha)}{\partial \alpha} = \sum_{i=1}^{n} \frac{-y_i^2 h^*(x_i)^2 e^{y_i(\hat{y_i} + \alpha h^*(x_i))}}{(e^{y_i(\hat{y_i} + \alpha h^*(x_i))} + 1)^2}$$

$$f''(\alpha) = \sum_{i=1}^{n} \frac{-y_i^2 h^*(x_i)^2 e^{y_i(\hat{y}_i + \alpha h^*(x_i))}}{(e^{y_i(\hat{y}_i + \alpha h^*(x_i))} + 1)^2}$$
 (5)

Substituting (4) and (5) in (3), we get, for step t+1,

$$\alpha^{*^{t+1}} = \alpha^* - \frac{f'(\alpha^*)}{f''(\alpha^*)}$$

$$\Rightarrow \alpha^{*^{t+1}} = \alpha^* - \sum_{i=1}^n \frac{e^{-y_i(\hat{y}_i + \alpha^* h^*(x_i))} + 1}{y_i h^*(x_i) 1}$$
 (6)

Substituting (6) in the update step, we get,

$$\hat{y}_i = \hat{y}_i + \left[\alpha^* - \sum_{i=1}^n \frac{e^{-y_i(\hat{y}_i + \alpha^* h^*(x_i))} + 1}{y_i h^*(x_i) 1}\right] h^*(x_i)$$

Problem 2

2(a)

Maximize the flatness means minimize the Norm-2. Hence the Primal optimization formulation is:

$$minimize \frac{1}{2}||w||_2^2 \tag{7}$$

$$y_i - w^T x - b \leqslant \epsilon \tag{8}$$

$$w^T x + b - y_i \leqslant \epsilon \tag{9}$$

2(b)

To cope with unfeasible constraints, we can introduce Slack variables ξ_i, ξ_i^* that ensures the deviation above ϵ is taken care of. Hence, the formulation becomes:

minimize
$$\frac{1}{2}||w||_2^2 + C\sum_{i=1}^l (\xi_i + \xi_i^*)$$
 (10)

$$y_i - w^T x - b \leqslant \epsilon + \xi_i \tag{11}$$

$$w^T x + b - y_i \leqslant \epsilon + \xi_i^* \tag{12}$$

$$\xi_i, \xi_i^* \geqslant 0 \tag{13}$$

The Loss function is called ϵ -insensitive loss function and is given by,

$$|\xi|_{\epsilon} = \begin{cases} 0 & \text{If } |\xi| \leqslant \epsilon \\ |\xi| - \epsilon & \text{Otherwise} \end{cases}$$
 (14)

2(c)

Lagrange function for above Primal form is given by:

$$L = \frac{1}{2}||w||^2 + C\sum_{i=1}^{l}(\xi_i + \xi_i^*) - \sum_{i=1}^{l}(\eta\xi_i + \eta^*\xi_i^*)$$
$$-\sum_{i=1}^{l}\alpha_i(\epsilon + \xi_i - y_i + w^Tb) - \sum_{i=1}^{l}\alpha_i^*(\epsilon + \xi_i^* + y_i - w^Tb)$$

Here, $\eta_i, \eta_i^*, \alpha_i$ and α_i^* are the Lagrange multipliers. These have to satisfy positivity constraints.

Figure 1: 2.(b) Hinge loss function for $\epsilon = 0.5$

 $\eta_i, \eta_i^*, \alpha_i, \alpha_i^* \geqslant 0$ We now take partial derivatives with respect to primal variables.

$$\partial_b L = \sum_{i=1}^l (\alpha_i^* - \alpha_i) = 0 \tag{15}$$

$$\partial_w L = w + \sum_{i=1}^l (\alpha_i^* - \alpha_i) x_i = 0 \tag{16}$$

$$\partial_{\xi_i} L = C - \alpha_i - \eta_i = 0 \tag{17}$$

$$\partial_{\xi_i} L = C - \alpha_i - \eta_i = 0$$

$$\partial_{\xi_i^*} L = C - \alpha_i^* - \eta_i^* = 0$$
(17)

Substituting (15), (16), (17) and (18) into Lagrange function, we get the dual form:

Maximize
$$-\frac{1}{2} \sum_{i,j=1}^{l} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) < x_i, x_j > -\epsilon \sum_{i=1}^{l} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{l} y_i(\alpha_i - \alpha_i^*)$$

Subject to

$$\sum_{i=1}^{l} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C]$$

Also from (16),
$$w = \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) x_i$$
 and $f(x) = \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) < x_i, x > +b$

2(d)

Given Kernel $k(x, x') := \phi^T(x)\phi(x')$. As the above dual form depends only on the Dot product of x, we can transform dot products to the given Kernel function as below:

Maximize
$$-\frac{1}{2} \sum_{i,j=1}^{l} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) k(x_i, x_j) - \epsilon \sum_{i=1}^{l} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{l} y_i(\alpha_i - \alpha_i^*)$$

Subject to

$$\sum_{i=1}^{l} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C]$$

Also from (16), $w = \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) \phi(x_i)$ and $f(x) = \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) k(x_i, x) + b$

Problem 3

3.1

After transforming the data, we get Train and Test sets with dimensions 2000 x 45 each.

3.2

Both trainsym.m and testsym.m files are implemented. For C=0.1, we observed a test accuracy of 0.9365

3.3

(a)

\mathbf{C}	Average $Accuracy(\%)$	Average Time
4^{-6}	58.65	0.8900
4^{-5}	90.40	0.6067
4^{-4}	92.30	0.7867
4^{-3}	93.70	0.7133
4^{-2}	94.25	0.7567
4^{-1}	94.15	0.8300
1	93.85	0.8600
4	93.65	0.9033
4^{2}	93.55	1.0300

Increase in C value results in increase in Average accuracy too. But, we observe that the accuracy seems to reach a plateau at some C and starts to decrease. It may be due to

overfitting caused after a particular C, as more weight is put on slack variables. Increase in C value results in increase of Average Time too. The can be because, as C increases, the model dimension increases, which causes longer compute time.

(b)

We choose C which gives best Average Accuracy. Hence, we choose 4^{-2}

(c)

Test Accuracy = 0.9335

3.4

\mathbf{C}	Average Accuracy($\%$)	Average Time
4^{-6}	56.50	0.2233
4^{-5}	91.35	0.1867
4^{-4}	92.70	0.1267
4^{-3}	93.60	0.0833
4^{-2}	94.40	0.0633
4^{-1}	94.50	0.0600
1	94.40	0.0600
4	94.40	0.1033
4^{2}	94.55	1.1567

(a)

As we see from above tables, compared to my SVM, LIBSVM is marginally better overall. But LIBSVM does give better performance after the model hits a plateau at some C.

(b)

LIBSVM is much faster (5-10 times faster on average) compared to my implementation of SVM.

3.5

(a)

 4^{7}

Table for Average Accuracy							
C/Degree	1	2	3				
4^{-3}	55.7500	55.7500	55.7500				
4^{-2}	78.1500	78.1500	78.1500				
4^{-1}	92.2500	92.2500	92.2500				
1	94.7500	94.7500	94.7500				
4	96.2000	96.2000	96.2000				
4^2	97.0500	97.0500	97.0500				
4^{3}	96.9500	96.9500	96.9500				
4^{4}	96.7500	96.7500	96.7500				
4^5	96.4500	96.4500	96.4500				
4^{6}	96.4500	96.4500	96.4500				

96.4500 96.4500

96.4500

Table for Average Time

C/Degree	1	2	3
4^{-3}	0.2333	0.5067	0.7633
4^{-2}	0.2633	0.4933	0.7633
4^{-1}	0.2067	0.3900	0.5700
1	0.1133	0.2300	0.3500
4	0.0800	0.1633	0.2433
4^2	0.0733	0.1433	0.2200
4^3	0.0667	0.1333	0.2000
4^4	0.0667	0.1333	0.1967
4^5	0.0633	0.1333	0.1967
4^{6}	0.0667	0.1333	0.2033
4^{7}	0.0667	0.1300	0.1967

(b)

Table for Average Accuracy								
C/Gamma	4^{-7}	4^{-6}	4^{-5}	4^{-4}	4^{-3}	4^{-2}	4^{-1}	
4^{-3}	73.2500	73.2500	73.2500	73.2500	73.2500	73.2500	73.2500	
4^{-2}	92.3000	92.3000	92.3000	92.3000	92.3000	92.3000	92.3000	
4^{-1}	93.4000	93.4000	93.4000	93.4000	93.4000	93.4000	93.4000	
1	95.1000	95.1000	95.1000	95.1000	95.1000	95.1000	95.1000	
4	96.2500	96.2500	96.2500	96.2500	96.2500	96.2500	96.2500	
4^{2}	96.9000	96.9000	96.9000	96.9000	96.9000	96.9000	96.9000	
4^{3}	96.9000	96.9000	96.9000	96.9000	96.9000	96.9000	96.9000	
4^4	97.0500	97.0500	97.0500	97.0500	97.0500	97.0500	97.0500	
4^{5}	96.5000	96.5000	96.5000	96.5000	96.5000	96.5000	96.5000	
4^{6}	96.5000	96.5000	96.5000	96.5000	96.5000	96.5000	96.5000	
4^{7}	96.5000	96.5000	96.5000	96.5000	96.5000	96.5000	96.5000	

Table	for	Average	Time
Tabic	101	AVCIAEC	T 1111 C

C/Gamma	4^{-7}	4^{-6}	4^{-5}	4^{-4}	4^{-3}	4^{-2}	4^{-1}
4^{-3}	0.2433	0.4733	0.7067	0.9367	1.1700	1.4067	1.6600
4^{-2}	0.2000	0.4167	0.5933	0.7733	0.9533	1.1333	1.3167
4^{-1}	0.1167	0.2333	0.3567	0.4700	0.5967	0.7133	0.8300
1	0.0900	0.1733	0.2700	0.3633	0.4600	0.5567	0.6533
4	0.0667	0.1333	0.2067	0.2733	0.3533	0.4200	0.4867
4^{2}	0.0667	0.1333	0.2000	0.2633	0.3367	0.4000	0.4667
4^{3}	0.0633	0.1267	0.1867	0.2467	0.3067	0.3600	0.4167
4^{4}	0.0567	0.1133	0.1700	0.2267	0.2833	0.3433	0.3967
4^5	0.0600	0.1167	0.1733	0.2367	0.2967	0.3533	0.4100
4^{6}	0.0600	0.1267	0.2067	0.2667	0.3300	0.3967	0.4733
4^{7}	0.0700	0.1433	0.2100	0.2733	0.3433	0.4133	0.4800

Comparing outputs from Polynomial and RBF Kernels, we see that 97.05% is the highest accuracy achieved. Polynomial Kernel achieves this accuracy for $C=4^2$. So we choose:

Kernel: Polynomial

 $C: 4^2$ Degree: 2

Using above parameters in LIBSVM, we get 94.9500% accuracy on Test dataset.