$\Box(\Box A \to B) \lor \Box(\Box B \to A) \text{ (in S4)}$

Build a Tableau

To Check Whether it is Valid

Hypothesis

 $\square(\square A \to B) \vee \square(\square B \to A) \text{ is a theorem of S4.}$

• So we can use all the rules, plus the special rules for T and 4.

 $\Box(\Box \mathsf{A} \to \mathsf{B}) \lor \Box(\Box \mathsf{B} \to \mathsf{A})$

Start with it being false at 1.

$$\Box(\Box \mathsf{A} \to \mathsf{B}) \lor \Box(\Box \mathsf{B} \to \mathsf{A})$$

False ∨ sentences have both sides false.

$$\Box(\Box \mathsf{A} \to \mathsf{B}) \lor \Box(\Box \mathsf{B} \to \mathsf{A})$$

Both of these false \square sentences have to be made false somehow.

$$\Box(\Box A \to B) \lor \Box(\Box B \to A)$$

- False → sentences mean left false; right true.
- Note we have no special rules for 4 or T triggered yet, because no true □ or false ⋄, but that's about to change.

$$\Box(\Box \mathsf{A} \to \mathsf{B}) \lor \Box(\Box \mathsf{B} \to \mathsf{A})$$

1.	1, $\mathbb{F} \square (\square A \rightarrow B) \vee \square (\square B \rightarrow A) \checkmark$	Assumption
2.	1,	∨ F,1
3.	1,	∨ F,1
4.	1.1, $\mathbb{F} \square A \rightarrow B \checkmark$	□ F , 2
5.	1.2,	□ F , 3
6.	1.1, ⊤ □ A	$\rightarrow \mathbb{F}$, 4
7.	1.1,	→F , 4
8.	1.2, T □ B	$\rightarrow \mathbb{F}$, 5
9.	1.2,	$\rightarrow \mathbb{F}$, 5
10.	1.1, ⊤ A	T □ 6
11.	1.2, ⊤ B	T □ 8

T means true \square sentences are true unboxed.

$$\Box(\Box \mathsf{A}\to\mathsf{B})\lor\Box(\Box \mathsf{B}\to\mathsf{A})$$

1.	1, $\mathbb{F} \square (\square A \rightarrow B) \vee \square (\square B \rightarrow A) \checkmark$	Assumption
2.	1,	∨ F,1
3.	1,	∨ F,1
4.	1.1, $\mathbb{F} \square A \rightarrow B \checkmark$	□ F , 2
5.	1.2, F □ B → A ✓	□ F , 3
6.	1.1, T □ A	→F , 4
7.	1.1,	→F , 4
8.	1.2, T □ B	→F , 5
9.	1.2,	→F , 5
10.	1.1, ⊤ A	T □ 6
11.	1.2, ⊤ B	T □ 8

But now we've applied all the rules, and the tableau doesn't close. So not a theorem.

A Model

- Three worlds, w₁, w_{1.1}, w_{1.2}
- The accessibility relations are w₁Rw_{1.1}, w₁Rw1.2, w₁Rw₁, w_{1.1}Rw_{1.1}, w_{1.2}Rw_{1.2}.
- The first two from the tree, the last three from T. Adding 4 doesn't require anything in this case.
- A is true at w_{1.1} and false at w_{1.2}.
- B is true at w_{1.2} and false at w_{1.1}.
- It doesn't matter what values the atomics take at w₁.
- So

 A will be true at w_{1.1}, while B is false.
- And □B will be true at w_{1,2}, while A is false.
- So the original sentence fails at w₁.