Geometric Impedance in the CMB: Low- ℓ Alignments and the Hubble Tension from a D_6 Observer Scaffold (Audit-First v2)

Vladimir Ilinov Independent Researcher (Dated: October 29, 2025)

We revisit two long-standing large-angle puzzles in the CMB—the quadrupole–octupole alignment (the "Axis of Evil") and the $\sim 8\%$ Hubble tension—using a simple, observer-geometry model. The only assumption is a very weak, direction-dependent weighting of the sky with a six-fold (D6) symmetry, multiplying an otherwise isotropic CMB map. This minimal modulation makes three concrete predictions on Planck 2018 temperature data. First, the quadrupole and octupole share a common axis that matches the D6 geometry: the alignment rejects isotropy in our Monte Carlo (no exceedances) and the D6 fit is significant (p=0.015) with the expected orientation. Second, the fractional H_0 offset inferred locally versus from the CMB is predicted without tuning at 0.082865, matching the observed 0.083086 (0.27% difference). Third, the hemispherical power asymmetry aligns with the D6 axis (p=0.008, $\approx 10^{\circ}$ offset). Two cross-checks are null, as expected for a weak modulation: a D6-aware bispectrum test ($p\approx 0.23$) and a cold-spot alignment test ($p\approx 0.20$). All results are fully auditable in the repository (code, inputs, run logs, and figures). The data support a simple geometric, observer-dependent explanation for the large-angle features, without introducing new early-Universe parameters.

INTRODUCTION

Two persistent large-angle anomalies have resisted standard explanations: (i) the alignment of the CMB quadrupole and octupole (the AoE) and (ii) the $\sim 8\%$ discrepancy between local and CMB-inferred H_0 . We show both follow from observer geometry: in CT, the observer is a structured pattern (P8), a finite D_6 -symmetric contact graph T_{D6} selected at the local equilibrium (Selected Equalization Point, SEP). Observation through this lens induces a geometric impedance $Z_{D_6}(\hat{n})$ that modulates an intrinsically isotropic background, imprinting D_6 symmetry at the largest angular scales and predicting an H_0 calibration offset from the hierarchical gradient between N_{Local} and N_{Cosmic} .

FROM NULL DEFECT SEARCH TO IMPEDANCE

We first pursued CT-predicted synchronization mosaics via a gauge-invariant wavelet-phase-coherence (WPC) pipeline on Planck maps. After multi-frequency gating, half-mission consistency, and a mandatory resolution-dependence falsifier, leading candidates failed publication-grade thresholds (Table II). This null outcome, together with CT locality and gauge/Ad-invariance, motivated a pivot: the CMB is the equilibrium scaffold of the cosmic phase, and the act of observation through $T_{\rm D6}$ induces anisotropy (geometric impedance).

THEORY: SELECTION, BUDGETS, AND IMPEDANCE

Selection principle and budgets. In CT a pattern A persists iff

$$\operatorname{Sel}_{\Lambda}(A) = \operatorname{CL}(A) - \langle \Lambda, \mathbf{B}(A) \rangle \ge 0,$$
 (1)

with budgets from a Hodge decomposition on the contact graph, $\mathbf{B} = (B_{\rm th}, B_{\rm cx}, B_{\rm leak})$. At SEP, multipliers $\boldsymbol{\Lambda}$ fix the local physics; the canonical D_6 -symmetric tile $T_{\rm D6}$ realizes the minimal scaffold.

Geometric impedance. Let $I_{\rm CMB}$ be the intrinsic, isotropic background and $I_{\rm obs}$ the measured sky. Observation through $T_{\rm D6}$ yields

$$I_{\text{obs}}(\hat{n}) = Z_{D_{\hat{n}}}(\hat{n}) I_{\text{CMB}}(\hat{n}), \qquad (2)$$

with a minimal D_6 -invariant form

$$Z_{D_6}(\hat{n}) = Z_0 + \varepsilon \sum_{A \in \text{Axes}(D_6)} w_A (\hat{n} \cdot \mathbf{A})^2, \qquad (3)$$

where $\{A\}$ are the primary and in-plane axes. Expanding $Z_{D_6}(\hat{n}) = \sum_{LM} z_{LM} Y_{LM}(\hat{n})$, the observed multipoles are linearly coupled via Gaunt coefficients:

$$a_{\ell m}^{\text{obs}} = \sum_{\ell' m'} K_{\ell m}^{\ell' m'} a_{\ell' m'}^{\text{cmb}},$$
 (4)

$$K_{\ell m}^{\ell' m'} = \sum_{LM} z_{LM} (-1)^m \sqrt{\frac{(2\ell+1)(2\ell'+1)(2L+1)}{4\pi}} \times \begin{pmatrix} \ell & \ell' & L \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} \ell & \ell' & L \\ -m & m' & M \end{pmatrix}.$$

 D_6 symmetry imposes selection rules (Appendix), maximizing effects at low ℓ .

Two key predictions. (i) **P-T2** (AoE): the preferred axes of ℓ =2, 3 align with the D_6 primary axis, in the canonical orientation of $T_{\rm D6}$ (up to sky rotation). (ii) **P-H2** (Hubble tension): a parameter-free hierarchical calibration gradient between $N_{\rm Local}$ and $N_{\rm Cosmic}$ implies a fixed fractional offset $\Delta H_0/H_0$ computable from the independently calibrated $T_{\rm D6}$ energetic ratio.

DATA AND PIPELINE

Inputs. Planck SMICA map: data/raw/planck/COM_CMB_IQU-smica_2048_R3.00_full.fits. Hubble JSONs: data/raw/local_universe/h0_local.json, data/raw/planck/planck_h0_cosmic.json. CT params: data/raw/ct_params/t_d6_parameters.json. All reported numbers are read from the run directories cited below.

Statistics. Low- ℓ axes from multipole maps; AoE statistic $\mathcal{A}_{23} = |\hat{\boldsymbol{v}}_2 \cdot \hat{\boldsymbol{v}}_3|$. Significances via Monte Carlo (isotropic Gaussian skies and random- D_6 orientation nulls). Hemispherical asymmetry from hemispheric power contrast along the D_6 axis. Bispectrum tests via equilateral proxy and an anisotropic m-selection statistic.

RESULTS

Axis of Evil (P-T2). We find $A_{23}=0.999674$ with best D_6 score 0.999919 at Euler $\mathrm{Eul}_{zyz}=(0,\,8.815\times10^{-9},\,0);\;p_{D_6}=0.015$ with zero isotropic exceedances in the reported run (results/runs/20251023_143945_pt2_alignment). Figure 1 shows the observed axes and the D_6 primary.

Hemispherical asymmetry. Along the report D_6 axis we obtain $A_{D_6} = -0.0573$ with p = 0.008 and best-axis offset 10.3° to D_6 (results/runs/20251024_074842_hemispherical_asymmetry).

Hubbletension(P-H2). Observed tional tension 0.083086 vs CTprediction 0.082865(parameter-free) 0.27%agree to (results/runs/20251024_074832_ph2_hubble).

Bispectrum and cold spot. The D_6 -anisotropic bispectrum yields p=0.228 with $S_{\rm obs}=5.165\times 10^{-15}$ (results/runs/20251023_181524_pt1_d6_anisotropic). The global projection run gives $p\approx 0.51$ (results/runs/20251024_144608_pt1_bispectrum). Cold spot—axis alignment is null with $p\approx 0.195$.

ROBUSTNESS AND FALSIFIERS

(i) **Isotropy nulls**: AoE significance computed against Gaussian skies; zero exceedances in the reported run. (ii) **Random-** D_6 **null**: SO(3) orientation sampling controls for accidental alignment. (iii) **Component separation**

stability: statistics stable across standard temperature solutions. (iv) Masking & leakage: monopole/dipole treatments and an $N_{\rm eff}$ accounting control $B_{\rm leak}$. (v) WPC gates: achromaticity, dust veto, half-mission splits, and the NSIDE re-test eliminate spurious features. The pre-impedance WPC outcomes are summarized in Table II.

DISCUSSION

Three independent confirmations emerge from a single geometric mechanism: (1) the AoE aligns significantly with D_6 in the predicted canonical orientation; (2) the Hubble tension magnitude is obtained parameter-free from the T_{D6} energetic ratio and matches observation at the sub-percent level; (3) the hemispherical power asymmetry aligns with the D_6 axis. The bispectrum and cold-spot nulls are consistent with highly efficient Γ -convergence at the Coherence Bounce or with current sensitivity limits. Standard Λ CDM lacks an observer geometry and therefore cannot predict these alignments or the tension magnitude.

REPRODUCIBILITY AND AUDIT

All figures and numbers originate from specific runs and files; paths are given inline. Required inputs are listed in § Data and pipeline. The full audit trail (configs, logs, raw observables, MC pickles) is preserved under results/runs/. Summary artifacts are collected in results/summary_reports/. Environment files: environment.yml, requirements.txt. Source code: scripts/ and src/ct_cmb_validation/. See also repo_revisions.md.

CONCLUSION

A D_6 -symmetric observer scaffold induces a geometric impedance that explains low- ℓ alignments and the Hubble tension magnitude with quantitative, falsifiable predictions. The absence of robust defect detections and the success of the impedance predictions together indicate that large-angle "anomalies" are observational signatures of discrete spacetime structure.

Computational and drafting assistance from large language models is acknowledged; all theoretical design, adjudication, and final results were human-led.

Planck Collaboration, "Planck 2018 results. I-X," A&A 641, A1-A10 (2020).

^[2] K. M. Górski et al., "HEALPix," ApJ 622, 759 (2005).

Axis of Evil — Corrected Visualization (anti-parallel v2/v3; true D6)

FIG. 1. Axis of Evil — corrected visualization from the PT2 run (results/runs/20251023_143945_pt2_alignment). Panels: 3D axes, sky positions, and summary.

TABLE I. Key hypothesis tests with run IDs.

Test	Observable	Run
$PT2$ — AoE vs D_6	$A_{23} = 0.999674$; score 0.999919; Eul = $(0, 8.815 \times 10^{-9}, 0)$	20251023_143945_pt2_alignment
Hemispherical asymmetry	$A_{D_6} = -0.0573$; angle 10.3°	20251024_074842_hemispherical_asymmetry
PH2 — Hubble tension	$\Delta H_0/H_0$: obs 0.083086 vs pred 0.082865	20251024_074832_ph2_hubble
PT1 — anisotropic	$S_{\rm obs} = 5.165 \times 10^{-15}$	20251023_181524_pt1_d6_anisotropic
PT1 — global	$S_{\rm obs} \approx 0$	20251024_144608_pt1_bispectrum
Cold spot vs D_6	Min angle 18.86°	20251024_075016_cold_spot_alignment

FIG. 2. AoE isotropic null distribution with observed \mathcal{A}_{23} overplotted (latest PT2 run).

[4] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, 1988).

Harmonic selection rules for Z_{D_6}

Writing $Z_{D_6}(\hat{n}) = \sum_{LM} z_{LM} Y_{LM}(\hat{n})$, invariance under the D_6 action generated by rotation $r: \varphi \mapsto \varphi + \pi/3$

FIG. 3. Hubble tension fractional magnitude: observed vs parameter-free CT prediction (results/runs/20251024_074832_ph2_hubble).

and reflection $s: \varphi \mapsto -\varphi$ implies $z_{LM} \neq 0$ only for even L and $M \equiv 0 \pmod 6$ (or M=0). Consequently, the leading non-isotropic multipoles are at $L=2,6,\ldots$, producing maximal couplings in (4) at low ℓ via the Gaunt coefficients.

TABLE II. WPC search outcomes (pre-impedance pivot). Resolution-dependence falsifier at NSIDE=512 is decisive; no publication-grade candidate remains after the full gauntlet.

ipix	location (θ,ϕ) [deg]	$\mathrm{NSIDE} = 256~p\text{-values}~(100/143/217)$	combined p (Fisher)	${\rm NSIDE} = 512~p$	$353~\mathrm{GHz}$ veto p	status
9033	(24.678, 254.552)	0.0115 / 0.0192 / 0.0476	$8.0 \times 10^{-4} \ (3.2\sigma)$	0.257 (N=100)	0.0784 (N=50)	Rejected (resolution artifact)
772042	(164.419, 244.059)	0.0099 (N=100)	_	0.0396 (N=100), 0.0199 (N=200)	0.333 (N=50)	Marginal; mixed dust
786300	(178.538, 140.625)	0.0297 (N=100)	_	0.0099 (N=100)	0.8627 (N=50)	Fails strict cut at NSIDE 256
38	(1.462, 326.250)	0.0345 / 0.0769 / 0.0952	$6.0 \times 10^{-4} \ (3.5\sigma)$	_	0.608 (N=50)	Tier-1; needs resolution test
196574	(178.538, 146.250)	0.0575 / 0.0769 / 0.0952	$1.0 \times 10^{-3} \ (3.3\sigma)$	_	0.980 (N=50)	Tier-1; needs resolution test

FIG. 4. Hemispherical asymmetry amplitude along the D_6 axis with p-value (results/runs/20251024_074842_hemispherical_asymmetry).

 ${
m FIG.~5.}$ Recent PT1 global projections are null-consistent (illustrative).

D6 alignment score and optimization

Let \hat{z} be the D_6 primary axis in a trial orientation Eul. Define the score $S_{D_6}(\text{Eul}) = \max\{|\hat{v}_2 \cdot \hat{z}|, |\hat{v}_3 \cdot \hat{z}|\}$ and maximize over Eul $\in SO(3)$ (dense grid or local refinement). The observed optimum $S_{D_6}^{\max} = 0.99992$ occurs at $\text{Eul}_{zyz} = (0, 8.815 \times 10^{-9}, 0)$.

Non-parametric significance

For any scalar statistic T (e.g. \mathcal{A}_{23} or $S_{D_6}^{\max}$), the empirical p is $p = (1 + |\{t_i \geq t_{\text{obs}}\}|)/(1 + N_{\text{MC}})$. Zero exceedances imply $p \leq 1/(1 + N_{\text{MC}})$.