Institute Core Course for BTech Program

IC250: Materials Chemistry II

Dr. Arup Mukherjee

Assistant Professor

Department of Chemistry

Atomic Structures, Interatomic Bonding and Structure of Crystalline Solids

Introduction

Atomic Structure

- Every atom consists of a small nucleus composed of protons and neutrons, which is encircled by moving electrons in their orbitals, specific energy levels.
- The top most orbital electrons, valence electrons, <u>affect most material</u> <u>properties that are of interest to engineers</u>, e.g.: chemical properties, nature of bonding, size of atom, optical/magnetic/electrical properties etc.

Atomic Structure

- Electrons and protons are negative and positive charges of the same magnitude being 1.60 x 10⁻¹⁹ coulomb. Neutrons are electrically neutral.
- Protons and neutrons have approximately the mass, 1.67x10⁻²⁷ kg, which is significantly larger than that of an electron, 9.11x10⁻³¹ kg.
- Atomic number (Z) is the number of protons per atoms.
- Atomic mass (A) is the sum of the masses of protons and neutrons within the nucleus.
- Atomic mass is measured in atomic mass unit (amu), where 1 amu = (1/12) the mass of most common isotope of carbon atom, measured in grams.

Atomic Structure

- $A \cong Z+N$, where N is number of neutrons.
- Isotopes: Atoms with same atomic number but different atomic masses.
- A <u>mole</u> is the amount of matter that has a mass in grams equal to the atomic mass in amu of the atoms. Thus a mole of carbon has a <u>mass of 12 grams</u>.
- The number of atoms or molecules in a mole of substance is called the Avogadro's number = 6.023×10^{23} .
- Most solid materials will have atomic density in the order of 6x10²², that's about 39 million atoms per centimeter.

The Periodic Table

									Metal								
IA																	0
(1)				Key		.:											(18)
1				29 🚄		nic numb	er		Nonme	tal							2
Н	IIA			Cu <	— Syml	ool						IIIA	IVA	VA	VIA	VIIA	He
1.0080	(2)	ı		63.55~	- Atom	ic weigh	t		l			(13)	(14)	(15)	(16)	(17)	4.0026
3	4								Interme	diate		5	6	7	8	9	10
Li 6.941	Be 9.0122									diato		B	C 12.011	N 14.007	0 15.999	F 18.998	Ne 20.180
11	12								1			10.811	14	14.007	16	18.998	18
Na	Mg	IIIB	IV/D	VB	VIB	VIIB		VIII		IB	IIB	Al	Si	P 15	S	CI	Ar
22.990	24.305	(3)	IVB (4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982	28.085	30.974	32.064	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.69	63.55	65.38	69.72	72.63	74.922	78.97	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	earth	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	series	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	Acti-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	nide	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	UUp	Lv	Uus	Uuo
(223)	(226)	series	(267)	(268)	(269)	(270)	(269)	(278)	(281)	(280)	(285)	(286)	(289)	(289)	(293)	(294)	(294)
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
R	are earth	series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	5 541 611	3000	138.91	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Actinide	series	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Atomic Bonding in Solids

Ionic Bonding

- This primary bond exists between two atoms when transfer of electron(s) results in one of the atoms to become negative (has an extra electron) and another positive (has lost an electron).
- This bond is a direct consequence of strong coulombic attraction between charged atoms.
- Ionic bonds are non-directional in nature.

Covalent Bonding

- This bond comes into existence if valence electrons are shared between a pair of atoms, thus acquire stability by saturating the valence configuration.
- Covalent bonds are stereospecific, *i.e.* each bond is between a specific pair of atoms, which share a pair of electrons (of opposite magnetic spins).
- Typically, covalent bonds are very strong, and directional in nature.

Metallic Bonding

- This bond comes into existence if valence electrons are shared between number of atoms, *i.e.* arranged positive nucleuses are surrounded by electron pool.
- Shared electrons are not specific to a pair of atoms, in contrast to covalent bond, i.e.
 - electrons are delocalized.
- As shared electrons are delocalized, metallic bonds are non-directional.
- Very characteristic properties of metals like high thermal and electrical conductivities are result of presence of delocalized electron pool.

Secondary Bonding

- These bonds involves atomic or molecular dipoles.
- Bonds can exists between induced and permanent dipoles (polar molecules).
- Bond comes into existence because of Columbic attraction between positive end of one dipole and negative end of another dipole.
- Bond energies range between about 4 and 30 kJ/mol.

Fluctuating Induced Dipole Bonds

- A dipole may be created or induced in an atom or molecule that is normally electrically symmetric; that is, the overall spatial distribution of the electrons is symmetric with respect to the positively charged nucleus.
- All atoms are experiencing constant vibrational motion that can cause instantaneous and short-lived distortions of this electrical symmetry for some of the atoms or molecules, and the creation of small electric dipoles.

Polar-Molecule Dipole Bonds

- Permanent dipole moments exist in some molecules by virtue of an asymmetrical arrangement of positively and negatively charged regions; such molecules are termed polar molecules.
- Polar molecules can also induce dipoles in adjacent nonpolar molecules, and a bond will form as a result of attractive forces between the two molecules.
- Furthermore, the magnitude of this bond will be greater than for fluctuating induced dipoles.

Permanent Dipole Bonds

- It occurs between molecules in which hydrogen is covalently bonded to fluorine (as in HF), oxygen (as in H_2O), and nitrogen (as in NH_3).
- For each H–F, H–O, or H–N bond, the single hydrogen electron is shared with the other atom. Thus, the hydrogen end of the bond is essentially a positively charged bare proton that is unscreened by any electrons.
- This highly positively charged end of the molecule is capable of a strong attractive force with the negative end of an adjacent molecule.

Crystal Structures

- All solid materials are made of atoms/molecules, which are arranged in specific
 - order in some materials, called crystalline solids.
- Else, non-crystalline or amorphous solids.

- Groups of atoms/molecules specifically arranged **crystal**.
- Unit cell is smallest repeatable entity that can be used to completely represent a crystal structure. It is the building block of crystal structure.
- Lattice is used to represent a three-dimensional periodic array of points coinciding with atom positions.

Crystal Structures

Atomic hard sphere model

Crystal Lattice

Unit Cell

Unit Cells

It is characterized by:

- Type of atom and their radii, R
- Cell dimensions, a and c (for hexagonal structures)
- Number of atoms per unit cell, n
- Coordination number (CN)— closest neighbors to an atom
- Atomic packing factor, APF
- Most common unit cells:
- a) Simple Cubic (SC)

- c) Face-centered Cubic (FCC)
- b) Body-centered cubic (BCC)
- d) Hexagonal close-packed (HCP)

Simple Cubic (SC) Unit Cell

% space occupied= 52

Body Centered Cubic (BCC) Unit Cell

% space occupied = 68

Face Centered Cubic (BCC) Unit Cell

Face Centered Cubic

% space occupied = 74

Hexagonal Close Packed (HCP) Unit Cell

Perovskite Structure

Physical properties of interest to materials science among perovskites include superconductivity, magnetoresistance, ionic conductivity, and a multitude of dielectric properties, which are of great importance in microelectronics and telecommunication.

Summary of the Crystal Systems

	Structure		Coordi Num	ination abers	Examples	
Structure Name	Type	Anion Packing	Cation	Anion		
Rock salt (sodium chloride)	AX	FCC	6	6	NaCl, MgO, FeO	
Cesium chloride	AX	Simple cubic	8	8	CsCl	
Zinc blende (sphalerite)	AX	FCC	4	4	ZnS, SiC	
Fluorite	AX_2	Simple cubic	8	4	CaF ₂ , UO ₂ , ThO ₂	
Perovskite	ABX_3	FCC	12(A) 6(B)	6	BaTiO ₃ , SrZrO ₃ , SrSnO ₃	
Spinel	AB_2X_4	FCC	4(A) 6(B)	4	MgAl ₂ O ₄ , FeAl ₂ O ₄	

• Examples of metals with the bcc structure are alpha iron, tungsten, chromium, and beta titanium.

Cation-Anion Radius Ratios

Coordination Number	Cation-Anion Radius Ratio	Coordination Geometry		
2	<0.155			
3	0.155-0.225			
4	0.225-0.414			

Coordination Number	Cation-Anion Radius Ratio	Coordination Geometry		
6	0.414-0.732			
8	0.732-1.0			