Homework 02 (23Mar22)

Name: your name

Rubric for each assignment:

C	ontext	Points
Precision of the	he answer	80%
Answer Markdown	readability	10%
Code	readability	10%

Guidance:

Upload your answers in the Blackboard submission portal as:

lastname-firstname-labwork-xx.pdf or lastname-firstname-labwork-xx.ipynb

Table of Problems

- Problem 1 (20 pts) Cartesian.
- Problem 2 (20 pts) Spherical.
- Problem 3 (20 pts) (Cirular) Cylindrical.
- Problem 4 (20 pts) Elliptic cylindrical.
- Problem 5 (20 pts) Prolate spheroidal.

Problem 1 (20 pts)

Derive the streaming term, $\nabla_{\!\mathbf{x}}\,\boldsymbol{\varphi}\cdot\hat{\mathbf{v}}$, in cartesian coordinates, where $\boldsymbol{\varphi}(\mathbf{x},E,\hat{\mathbf{v}},t)$ is the magnitude of the neutron flux, and $\hat{\mathbf{v}}$, the neutron direction of travel vector.

Answer:

Problem 2 (20 pts)

Derive the streaming term, $\nabla_{\!\mathbf{x}} \, \boldsymbol{\varphi} \cdot \hat{\mathbf{v}}$, in spherical coordinates, where $\boldsymbol{\varphi}(\mathbf{x}, E, \hat{\mathbf{v}}, t)$ is the magnitude of the neutron flux, and $\hat{\mathbf{v}}$, the neutron direction of travel vector.

Answer:

Problem 3 (20 pts)

Derive the streaming term, $\nabla_{\mathbf{x}} \varphi \cdot \hat{\mathbf{v}}$, in (circular) cylindrical coordinates, where $\varphi(\mathbf{x}, E, \hat{\mathbf{v}}, t)$ is the magnitude of the neutron flux, and $\hat{\mathbf{v}}$, the neutron direction of travel vector.

Answer:

Problem 4 (20 pts)

Derive the streaming term, $\nabla_{\mathbf{x}} \varphi \cdot \hat{\mathbf{v}}$, in elliptic cylindrical coordinates, where $\varphi(\mathbf{x}, E, \hat{\mathbf{v}}, t)$ is the magnitude of the neutron flux, and $\hat{\mathbf{v}}$, the neutron direction of travel vector.

Answer:

Problem 5 (20 pts)

Derive the streaming term, $\nabla_{\!\mathbf{x}} \, \boldsymbol{\varphi} \cdot \hat{\mathbf{v}}$, in prolate spheroidal coordinates, where $\boldsymbol{\varphi}(\mathbf{x}, E, \hat{\mathbf{v}}, t)$ is the magnitude of the neutron flux, and $\hat{\mathbf{v}}$, the neutron direction of travel vector.

Answer: