Started on	Monday, 12 February 2024, 8:04 PM
State	Finished
Completed on	Monday, 12 February 2024, 9:25 PM
Time taken	1 hour 21 mins
Marks	20.00/20.00
Grade	10.00 out of 10.00 (100 %)

```
Question 1
Correct
Mark 10.00 out of 10.00
```

We define super digit of an integer \boldsymbol{x} using the following rules:

Given an integer, we need to find the super digit of the integer.

- If \boldsymbol{x} has only $\boldsymbol{1}$ digit, then its super digit is \boldsymbol{x} .
- Otherwise, the super digit of *x* is equal to the super digit of the sum of the digits of *x*.

For example, the super digit of 9875 will be calculated as:

```
super_digit(9875) 9+8+7+5 = 29
super_digit(29) 2 + 9 = 11
super_digit(11) 1 + 1 = 2
super_digit(2) = 2
```

Example

```
n = 9875'
k = 4
```

The number p is created by concatenating the string n k times so the initial p = 9875987598759875.

All of the digits of p sum to 116. The digits of 116 sum to 8. 8 is only one digit, so it is the super digit.

Function Description

Complete the function *superDigit* in the editor below. It must return the calculated super digit as an integer.

superDigit has the following parameter(s):

- string n: a string representation of an integer
- int k: the times to concatenate $m{n}$ to make $m{p}$

Returns

• int: the super digit of n repeated k times

Input Format

The first line contains two space separated integers, ${\pmb n}$ and ${\pmb k}$.

Constraints

- $1 \le n < 10^{100000}$
- $1 \le k \le 10^5$

Sample Input 0

```
148 3
```

Sample Output 0

```
3
```

Explanation 0

Here n=148 and k=3, so p=148148148.

Sample Input 1

```
9875 4
```

Sample Output 1

```
8
```

Sample Input 2

```
123 3
```

Sample Output 2

```
9
```

Explanation 2

Here n=123 and k=3, so p=123123123.

For example:

Input	Result	
148 3	3	
9875 4	8	
123 3	9	

Answer: (penalty regime: 0 %)

Reset answer

Ace editor not ready. Perhaps reload page?

Falling back to raw text area.

```
for (size_t i = 0; i < n.size(); i++) {
    ans += n[i] - '0';
}
ans = (ans * (k % 9)) % 9;
if (ans == 0 && k > 1) {
    return 9;
}
return ans;
}
int main()
{
    ofstream fout(getenv("OUTPUT_PATH"));
    string first_multiple_input_temp;
    getline(cin, first_multiple_input_temp);

    vector<string> first_multiple_input =
```

		Input	Expected	Got	
~	•	148 3	3	3	~
~	•	9875 4	8	8	~
~	•	123 3	9	9	~

Passed all tests! 🗸

Marks for this submission: 10.00/10.00.

Question 2

Correct

Mark 10.00 out of 10.00

Find the number of ways that a given integer, X, can be expressed as the sum of the N^{th} powers of unique, natural numbers.

For example, if X=13 and N=2, we have to find all combinations of unique squares adding up to 13. The only solution is 2^2+3^2 .

Function Description

Complete the *powerSum* function in the editor below. It should return an integer that represents the number of possible combinations.

powerSum has the following parameter(s):

- X: the integer to sum to
- N: the integer power to raise numbers to

Input Format

The first line contains an integer X.

The second line contains an integer N.

Constraints

- $1 \le X \le 1000$
- $2 \le N \le 10$

Output Format

Output a single integer, the number of possible combinations caclulated.

Sample Input 0

10

Sample Output 0

1

Explanation 0

If X=10 and N=2, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers.

$$10 = 1^2 + 3^2$$

This is the only way in which ${\bf 10}$ can be expressed as the sum of unique squares.

Sample Input 1

100

Sample Output 1

3

Explanation 1

$$100 = (10^2) = (6^2 + 8^2) = (1^2 + 3^2 + 4^2 + 5^2 + 7^2)$$

Sample Input 2

100 3

Sample Output 2

1

Explanation 2

100 can be expressed as the sum of the cubes of 1, 2, 3, 4. (1+8+27+64=100). There is no other way to express 100 as the sum of cubes.

For example:

Input	Result
10 2	1
100	3
100 3	1

Answer: (penalty regime: 0 %)

Reset answer

Ace editor not ready. Perhaps reload page?

Falling back to raw text area.

```
int power (int a, int n) {
   if(n == 0)
      return 1;
   if(n % 2 == 0) {
      int temp = power(a, n / 2);
      return temp * temp;
   }
   return a * power(a, n - 1);
}

int solve(int x, const vector<int> &powers, int index)
{
   if(index == 0) {
      return (x == 1) ? 1 : 0;
   }
   if(x == powers[index])
      return 1 + solve(x, powers, index - 1);
   int res = 0;
```

	Input	Expected	Got	
~	10	1	1	~
~	100	3	3	~
~	100	1	1	~

Passed all tests! 🗸

Correct

Marks for this submission: 10.00/10.00.