Optimising NMR Spectroscopy through Method and Software Development

./figures/ox_black-eps-converte

Jonathan R. J. Yong

Lincoln College University of Oxford

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Michaelmas Term 2022

Contents

At	strac	t		v			
Ac	know	ledgem	ents	vi			
Pr	eface			vii			
Lis	st of fi	igures		xii			
Li	st of t	ables		xvii			
Lis	st of c	ode list	ings	xix			
1	NMR theory						
	1.1	Quant	tum mechanics	. 3			
	1.2	The ro	otating frame	. 6			
	1.3	Densit	ty operators	. 9			
	1.4	Pulse s	sequences	. 12			
		1.4.1	1D pulse-acquire	. 12			
		1.4.2	INEPT and product operators	. 16			
		1.4.3	2D NMR: general principles	. 20			
		1.4.4	The States HSQC experiment	. 24			
		1.4.5	The echo-antiecho HSQC: gradients and coherence selection	. 25			
	1.5	Refere	ences	. 33			
2	Pure	Pure shift NMR					
	2.1	Theoretical background					
	2.2	Pure shift in practice					
		2.2.1	Acquisition modes	. 42			
		2.2.2	Pure shift elements	. 44			
		2.2.3	PSYCHE in detail	. 46			

	2.3	PSYCHE with a variable number of saltires				
	2.4	Direct optimisation of PSYCHE waveform				
		2.4.1 Techniques for pure shift optimisations				
		2.4.2 Flip angle optimisation				
		2.4.3 Waveform parameterisation and optimisation 60				
	2.5	Time-reversal method				
	2.6	'Discrete PSYCHE'				
		2.6.1 Speeding up dPSYCHE simulations				
		2.6.2 Optimisations and experimental evaluation				
	2.7	Ultrafast PSYCHE-iDOSY				
	2.8	References				
_	D.O.T.					
3	POI					
	3.1	Introduction				
	3.2	Technical overview				
		3.2.1 Routines				
		3.2.2 The experiment				
		3.2.3 Optimisation options				
		3.2.4 Optimisation algorithms				
		3.2.5 Implementation details				
	3.3	What POISE is not				
	3.4	Applications				
		3.4.1 Pulse width calibration				
		3.4.2 Ernst angle optimisation				
		3.4.3 Inversion–recovery				
		3.4.4 NOE mixing time				
		3.4.5 ASAP-HSQC excitation delay				
		3.4.6 Ultrafast NMR				
		3.4.7 HMBC low-pass J-filter				
		3.4.8 PSYCHE pure shift NMR				
		3.4.9 Water suppression				
		3.4.10 Diffusion NMR				
	3.5	POISE for ESR				
	3.6	References				
4	NOA					
	4.1	Introduction				
		4.1.1 Time sayings and sensitivity analyses 173				

		4.1.2	Magnetisation pools
		4.1.3	Case studies
	4.2	GENE	SIS: automated pulse programme creation
		4.2.1	Motivation
		4.2.2	Implementation details
		4.2.3	Processing improvements
	4.3	Discus	sion of individual modules
		4.3.1	¹³ C sensitivity-enhanced HSQC
		4.3.2	¹⁵ N HMQC
		4.3.3	¹⁵ N sensitivity-enhanced HSQC
		4.3.4	Dual HSQC and HSQC-TOCSY
		4.3.5	HSQC-COSY
		4.3.6	2DJ and PSYCHE
		4.3.7	HMBC
		4.3.8	ADEQUATE
	4.4	Solven	t suppression in NOAH
		4.4.1	Presaturation
		4.4.2	Intrinsic suppression
		4.4.3	Excitation sculpting
	4.5	Paralle	l and generalised NOAH supersequences
		4.5.1	Parallel NOAH supersequences
		4.5.2	Generalised supersequences
	4.6	Referen	nces
A	Peak	assignr	ments for some samples 279
		U	grapholide (A)
	A.2		porin (C)
	A.3		e acid (F)
	A.4		cidin (G)
	A.5		e (X)
	A.6		riptan (Z)
			1 , ,

Appendix A

Peak assignments for some samples

chpt:assignments

In this appendix, I provide assignments of ¹H and ¹³C chemical shifts for some of the more frequently-used samples in this thesis, occasionally with some additional data. I have made no attempt to distinguish the shifts of diastereotopic protons or methyl groups.

A.1 Andrographolide (A)

Figure A.1: Structure of andrographolide.

 δ (13C) (ppm) $\delta(^{1}\text{H}) \text{ (ppm)}$ Label in Claridge (2016) Label in fig. A.1 1 170.42 3 4.40, 4.04 74.80 g, i 4 4.92 64.99 d 4-OH b 5.71 5 129.46 6 6.63 146.76 a 7 m, n 2.52, 2.47 24.43* 8 1.87 55.96 q 9 148.07 10 e, f 4.82, 4.63 108.71 11 2.33, 1.94 37.98 o, p 12 1.75, 1.36 24.42* r, v 13 1.21 54.84 W 14 42.75 15 1.09 23.54 y 16 j, k 3.85, 3.27 63.11 16-OH h 4.13 17 1 3.24 78.91 17-OH 5.05 c 18 1.65, 1.65 28.36 t, u 19 1.70, 1.21 36.99 s, x 20 39.06 15.22 21 0.67 \mathbf{Z}

grapholide_assignments

amples_andrographolide

Table A.1: Peak assignments for andrographolide; these can also be found in Figure 9.26 (page 340) of: Claridge, T. D. W., *High-Resolution NMR Techniques in Organic Chemistry*, 3rd ed.; Elsevier: Amsterdam, 2016. Asterisks indicate ¹³C chemical shifts which could not be disambiguated.

A.2 Cyclosporin (C)

Figure A.2: Structure of cyclosporin.

Yada...

ig:samples_cyclosporin

Ferulic acid (F) **A.3**

Figure A.3: Structure of ferulic acid.

Label	δ(¹ H) (ppm)	δ(¹³ C) (ppm)	¹ <i>J</i> _{CH} (Hz)	$T_1(^1\text{H})$ at 600 MHz (s)
1		126.25		
2	7.28	111.62	157.6	1.15
3		148.38		
3-OMe	3.82	56.16	147.8	1.08
4		149.54		
5	6.79	115.98	159.5	1.59
6	7.08	123.27	158.6	2.00
7	7.49	144.97	154.3	1.96
8	6.36	116.08	160.6	1.75
9		168.45		

Table A.2: Peak assignments and other physical data for ferulic acid.

fig:samples_ferulic

A.4 Gramicidin (G)

Figure A.4: Structure of gramicidin.

fig:samples_gramicidin

Residue	Label	δ(¹ H) (ppm)	δ (13C) (ppm)	δ (15N) (ppm)
Leu NH		8.33		123.3
	α-СН	4.57	50.09	
	β -CH ₂	1.35, 1.29	41.38	
	γ-CH	1.41	24.45	
	δ -CH ₃	1.41	23.20, 23.02	
Orn	NH	8.66		125.4
	α-СН	4.76	51.43	
	β -CH $_2$	1.75, 1.60	30.12	
	γ -CH $_2$	1.65	23.52	
	δ -CH $_2$	2.84, 2.78	39.02	
	ε-NH ₂	8.04		36.0
Val	NH	7.22		113.2
	α-СН	4.41	57.31	
	β-СН	2.07	31.49	
	γ-CH ₃	0.80, 0.77	19.44, 18.50	
Pro	α-СН	4.31	60.36	
	β -CH $_2$	1.95, 1.48	29.50	
	γ -CH $_2$	1.52	23.58	
	δ -CH $_2$	3.59, 2.50	46.48	
D-Phe	NH	9.09		128.0
	α-СН	4.36	54.38	
	β -CH $_2$	3.59, 2.50	46.48	
	ipso-C		136.77	
	ortho-CH	7.26	129.80	
	meta-CH	7.29	128.71	
	para-CH	7.25	127.34	

Table A.3: Peak assignments for gramicidin.

gramicidin_assignments

A.5 Brucine (X)

Figure A.5: Structure of brucine.

 $\delta(^{15}{
m N})~({
m ppm})$ $\delta(^{1}\mathrm{H})$ (ppm) δ (13C) (ppm) Label 1 6.69 105.52 2 146.24 2-OMe 3.87 56.46 3 149.25 3-OMe 3.92 56.21 4 7.83 101.00 5 135.98 6 123.33 7 51.94 8 3.85 60.35 9 152.38 10 168.94 42.39 11 3.12, 2.67 12 4.30 77.79 13 1.28 48.26 3.16 31.55 14 15 2.37, 1.49 26.79 16 3.90 60.00 17 42.41 1.89 18 3.22, 2.87 50.21 19 40.55 20 3.73, 2.75 52.71 21 140.32 22 5.92 127.54 23 4.16, 4.07 64.60

Table A.4: Peak assignments for brucine.

bl:brucine_assignments

fig:samples_brucine

A.6 Zolmitriptan (Z)

Figure A.6: Structure of zolmitriptan.

Label	δ (¹ H) (ppm)	δ (13C) (ppm)	δ (15N) (ppm)	¹ <i>J</i> _{CH} (Hz)
2		159.16		
3	7.77		89.2	
4	4.05	53.64		146.7
5	4.23, 4.03	68.54		153.0, 151.7
6	2.90, 2.79	41.11		127.7, 127.1
7		126.32		
8	7.37	119.24		155.4
9		127.99		
10		112.92		
11	7.12	123.18		179.7
12	10.71		129.6	
13		135.64		
14	7.26	111.71		158.9
15	6.93	122.97		155.7
16	2.81	23.55		125.8
17	2.53	60.46		132.2
18			106.6	
19	2.26	45.65		132.5

Table A.5: Peak assignments and other physical data for zolmitriptan.

g:samples_zolmitriptan

lmitriptan_assignments