Ordenamientos

Uninorte

Temática

- Complejidad
 - Clasificación
 - Estructuras de datos
- Algoritmos de búsqueda
- Algoritmos de ordenamiento

Complejidad: algorítmica

- La complejidad algorítmica es una métrica teórica que se aplica a los algoritmos.
- Esta métrica analiza el comportamiento de los algoritmos con base en el número de instrucciones y la cantidad de datos tratados.
- Representa la cantidad de recursos temporales que necesita el algoritmo para resolverse, y permite determinar su eficiencia.
- En la práctica usualmente se tiene en cuenta: el lenguaje de programación usado, el compilador, hardware y/o software, máquina, entre otras cosas.
- Mejor y peor de los casos suelen ser los más usados.

Complejidad: Clasificación

- Lugar:
 - Memoria interna
 - Memoria externa
- Tiempo
- Complejidad

Complejidad: Estructuras de datos

Data Structure	Time Complexity								Space Complexity
	Average			Worst				Worst	
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	Θ(1)	Θ(n)	Θ(n)	Θ(n)	O(1)	O(n)	O(n)	O(n)	O(n)
Stack	Θ(n)	Θ(n)	Θ(1)	Θ(1)	O(n)	O(n)	O(1)	O(1)	O(n)
<u>Queue</u>	Θ(n)	Θ(n)	Θ(1)	Θ(1)	O(n)	O(n)	O(1)	O(1)	O(n)
Singly- Linked List	Θ(n)	Θ(n)	Θ(1)	Θ(1)	O(n)	O(n)	O(1)	O(1)	O(n)
Doubly- Linked List	Θ(n)	Θ(n)	Θ(1)	Θ(1)	O(n)	O(n)	O(1)	O(1)	O(n)
Skip List	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	O(n)	O(n)	O(n)	O(n)	O(n log(n))
<u>Hash</u> Table	N/A	Θ(1)	Θ(1)	Θ(1)	N/A	O(n)	O(n)	O(n)	O(n)
Binary Search Tree	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	O(n)	O(n)	O(n)	O(n)	O(n)
<u>Cartesian</u> <u>Tree</u>	N/A	Θ(log(n))	$\Theta(\log(n))$	$\Theta(\log(n))$	N/A	O(n)	O(n)	O(n)	O(n)
B-Tree	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Red-Black Tree	$\Theta(\log(n))$	Θ(log(n))	Θ(log(n))	Θ(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Splay Tree	N/A	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	N/A	O(log(n))	O(log(n))	O(log(n))	O(n)
AVL Tree	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
KD Tree	$\Theta(\log(n))$	Θ(log(n))	Θ(log(n))	$\Theta(log(n))$	O(n)	O(n)	O(n)	O(n)	O(n)

http://bigocheatsheet.com/

Algoritmos de búsqueda

- Búsqueda lineal o secuencial O(n)
- Búsqueda binaria O(log(n))
- Otras búsquedas
 - Búsqueda ternaria, Fibonacci, Exponencial

Búsqueda secuencial

Inicio

Entero vector[100], n, dato, i

para i = 1, i <= n, i <- i + 1

Si (dato = vector[i]) entonces

Escribir "El dato esta en el vector en la posicion "+i

finpara

Fin

Búsqueda binaria

- La búsqueda binaria es un algoritmo eficiente para encontrar un elemento en una lista ordenada de elementos
- Funciona al dividir repetidamente a la mitad la porción de la lista que podría contener al elemento, hasta reducir las ubicaciones posibles a solo una.

```
Entero n,dato,V(),centro, inf, sup
Logico sw=falso
lea n
leerVector(V,n)
ordenarVector(V,n)
Lea dato
inf <- 1
sup <- n
HH
centro \leftarrow (sup + inf) / 2
  Si V(centro) = dato entonces
     sw<-verdadero
  Sino
     Si dato < V(centro)
           sup <- centro - 1
     Sino
           inf < -centro + 1
     finSi
  finSi
FinHH (inf > sup o sw=verdadero)
```

Búsqueda binaria

Algoritmos de ordenamiento

Algorithm	Time Complexi	Space Complexity		
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)	O(log(n))
<u>Mergesort</u>	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	O(n)
<u>Timsort</u>	$\Omega(n)$	Θ(n log(n))	O(n log(n))	O(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	O(1)
Bubble Sort	Ω(n)	Θ(n^2)	O(n^2)	O(1)
Insertion Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	O(1)
Selection Sort	Ω(n^2)	Θ(n^2)	O(n^2)	O(1)

http://bigocheatsheet.com/

Algoritmos de ordenamiento

Algorithm	Time Complexi	Space Complexity		
	Best	Average	Worst	Worst
Tree Sort	$\Omega(n \log(n))$	$\Theta(n \log(n))$	O(n^2)	O(n)
Shell Sort	$\Omega(n \log(n))$	Θ(n(log(n))^2)	O(n(log(n))^2)	O(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	O(n^2)	O(n)
Radix Sort	$\Omega(nk)$	Θ(nk)	O(nk)	O(n+k)
Counting Sort	$\Omega(n+k)$	Θ(n+k)	O(n+k)	O(k)
Cubesort	$\Omega(n)$	Θ(n log(n))	O(n log(n))	O(n)

Relación entre operaciones y elementos

Bubble sort

6 5 3 1 8 7 2 4

Select sort

El método select sort consiste en encontrar el menor de todos los elementos del arreglo e intercambiarlo con el que está en la primera posición. Luego el segundo más pequeño, y así sucesivamente hasta que todo el arreglo este ordenado.

```
Entero V(),n,i,j,tmp, menor
Para (i <- 1,n)
    menor <- i
    Para (j <- i+1,n)
        Si (a[j] < a[menor]) ent
            menor = j
        finSi
    finPara
    Si (menor != i) ent
        intercambia(V,i,menor)
    finSi
finPara</pre>
```

Insert sort

Consta de tomar uno por uno los elementos de un arreglo y recorrerlo hacia su posición con respecto a los anteriormente ordenados. Así empieza con el segundo elemento y lo ordena con respecto al primero. Luego sigue con el tercero y lo coloca en su posición ordenada con respecto a los dos anteriores, así sucesivamente hasta recorrer todas las posiciones del arreglo.

```
Entero V[],n, tmp, i, j
Para (i <- 1, n)
   tmp <- V[i]
   j <- i
   MQ (j>1 y tmp < V[j-1]) haga
       V[j] <- V[j-1]
       j <- j-1
   finMQ
   V[j] <- tmp
finPara</pre>
```

6 5 3 1 8 7 2 4

Shell sort

- Este algoritmo mejora Insert sort comparando elementos separados por un espacio de varias posiciones, no sólo una posición.
- Esto permite que un elemento haga "bigger steps" hacia su posición esperada.
- El último paso del Shell sort es un Insert sort, pero los datos del vector están casi ordenados.

```
Entero V[],n, tmp, i, j, inc
inc <- n div 2
MQ(inc >0) haga
    Para(i = inc+1, n)
       j <- i - inc
       MQ(j>0) haga
            k \leftarrow j + inc
           Si(V[j]>V[k])
               intercambia(V,j,k)
           Sino
               i <- 0
           finSi
           j <- j - inc;</pre>
       fin MO
    finPara
    inc <- inc div 2;
fin MO
```


Radix sort

- Primero se va ordenando tomando en consideración el número menos significativo (la unidad) del más pequeño al más grande.
- Luego, a partir de la lista que obtuvimos en el paso anterior, ordenamos los numero de menor a mayor considerando la decena de cada uno de ellos.
- Finalmente comprobamos que la lista fue ordenada satisfactoriamente mediante este procedimiento.

Merge sort

- Dividir la lista al medio, formando dos sublistas de (aproximadamente) el mismo tamaño cada una.
- Ordenar cada una de esas dos sublistas (usando este mismo método)
- Una vez que se ordenaron ambas sublistas, intercalarlas de manera ordenada.

6 5 3 1 8 7 2 4

Heap sort

Este algoritmo consiste en almacenar todos los elementos del vector a ordenar en un montículo (heap), luego extraer el nodo que queda como nodo raíz del montículo (cima) en sucesivas iteraciones obteniendo el conjunto ordenado.

Monticulo maximo: Cumple la condición de que todo padre es mayor que sus hijos.

Deben estar balanceados. No es lo mismo que un ABB.

EL padre de cada K es K/2

Para cada K, el hijo izquierdo es 2*K y el derecho es 2*K+1

Quicksort

 Se basa en la técnica de "Divide y vencerás" por la que en cada recursión, el problema se divide en subproblemas de menor tamaño y se resuelven por separado (aplicando la misma técnica) para ser unidos de nuevo una vez resueltos.

Pasos

- Se elige un elemento v de la lista L de elementos al que se le llama pivote
- Se particiona la lista L en 2 listas:
 - L_1 que contiene todos los elementos de L menos v que sean menores o iguales que v
 - $lackbox{L}_2$ que contiene todos los elementos de $lackbox{L}$ menos v que sean mayores o iguales que v
- Se aplica la recursión sobre L₁ y L₂
- Se unen todas las soluciones que darán forma final a las listas L finalmente ordenada.

Quicksort

Unsorted Array

Referencias

- A. Mancilla, Ebratt, Capacho. Diseño y construcción de algoritmos.
 Universidad del Norte, 2014. ISBNe 9789587414974
- Joyanes Aguilar, Luis, Castillo Sanz, Andrés, Sánchez García, Lucas. Algoritmos, programación y estructuras de datos. McGraw-Hil, 2005.