STAT 706 – GLM I Syllabus

Instructor

Course Overview

Vitaly Druker

STAT 706 (GLM I) will introduce generalized linear models by building on ordinary linear regression within the larger generalized framework. The course will focus on regression applications for binary, count and multinomial data along with diagnostics and likelihood theory. All analyses and simulations will be completed using the R language.

Email

vitaly.druker@hunter.cuny.edu

Class Location

Blackboard Collaborate Ultra Thursday: 5:35 pm -7:25pm

Office Hours

After class (Thursday 7:30 pm – 8:30 pm) or by appointment

Course Resources

Academic Calendar

- https://www.cuny.edu/academics/academic-calendars/

Required Text

Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, 2nd Edition, Faraway

Optional Texts

Applied Linear Statistical Models, 5th edition, Kutner, Naschtsheim, Neter and Li

Statistical Rethinking, 2nd edition, McElreath

- https://xcelab.net/rm/statistical-rethinking/

R for Data Science, Wickham

http://r4ds.had.co.nz

Tentative Course Schedule

Week	Class Date	Class Topic	Homework
1	27-Aug	Course Overview, Basics of R OLS: Linear Regression with one predictor	Setup R, Survey Questions, Introduction
2	3-Sep	OLS: Multiple Variable Regression, Hypothesis Testing, Diagnostics	Introduction, Problem Set 1
3	10-Sep	OLS: Variations of OLS, Variable Transformations, Likelihood Theory	Appendix A
4	17-Sep	Binary Response	Chapter 2, Problem Set 2
5	24-Sep	B/P Response: Model, Inference, x2	Chapter 3
6	1-Oct	B/P Response: Overdispersion and how to deal with it	Problem Set 3
7	8-Oct	Variations on Logistic Regression	Chapter 4, Study for Midterm
8	15-Oct	Midterm (Timed)	Problem set 4
9	22-Oct	Count Regression: Poisson, Dispersed	Chapter 5
10	29-Oct	Count Regression: Rate, Negative Binomial and Zero Inflated	
11	5-Nov	Multinomial Data, Hierarchical or Nested, Proportional Hazard	Chapter 7 (skip LDA)
12	12-Nov	GLM: Fitting, Hypothesis Tests	Problem set 5, Chapter 8
13	19-Nov	GLM: Diagnostics, Sandwich/Robust	
14	3-Dec	Final Project Presentations	
15	10-Dec	Final Project Presentations	

Fall 2020 Page 2

Grading Policy

Midterm - 30%

I would like this to be "in class" or during a 2 hour period of your choosing.

Final Project - 30%

A larger analysis/problem using techniques from class. Details to follow

Homework – 30%

Bi-weekly homework (drop lowest grade)

Class Participation – 10%

Ask questions, discuss homework/reading.

Extra Credit

- 1. Turn in notes at the end of semester (max 2 points)
- 2. Complete Teacher evaluation (1 point)

Students wishing to request a CR/NCR grade must notify the instructor one week before final, must have taken all the exams, and have at least a 40% average. INC are only given to students with an average of at least 70% with most of the work completed.

Academic Integrity

Hunter College regards acts of academic dishonest (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honest. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

American Disability Act (ADA)

In compliance with the American Disability Act of 1990 (ADA) and with Section 504 of the Rehabilitation Act of 1973, Hunter College is committed to ensuring educational parity and accommodations for all students with documented disabilities and/or medical conditions. It is recommended that all students with documented disabilities (Emotional, Medical, Physical and/or Learning) consult the Office of AccessABILITY, located in Room E1214B, to secure necessary academic accommodations. For further information and assistance, please call: (212) 772-4857 or (212) 650-3230.

Fall 2020 Page 3