# Degree Under the Preferential Attachment (BA) Model

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <a href="https://chato.cl/teach">https://chato.cl/teach</a>



#### **Contents**

- Degree distribution under the BA model
- Distance distribution under the BA model
- Clustering coefficient under the BA model

BA model means Barabási-Albert model (preferential attachment)

#### Sources

- A. L. Barabási (2016). Network Science Chapter 05
- R. Srinivasan (2013). Complex Networks Chapter 12
- D. Easley and J. Kleinberg (2010): Networks, Crowds, and Markets – Chapter 18
- Data-Driven Social Analytics course by Vicenç Gómez and Andreas Kaltenbrunner

#### Remember the BA model

- Network starts with  $m_0$  nodes connected arbitrarily as long as their degree is  $\geq 1$
- At every time step we add 1 node
- This node will have m outlinks  $(m \le m_0)$
- The probability of an existing node of degree to gain one such k link is  $\Pi(k_i) = \frac{k_i}{\sum_{i=1}^{N-1} k_j}$

4/26

#### Video of degree distribution



## Degree k<sub>i</sub>(t) as a function of time

$$\frac{d}{dt}k_i = m\Pi(k_i) = m\frac{k_i}{\sum_{j=1}^{N-1} k_j}$$

$$\sum_{j=1}^{N-1} k_j = L(0) + 2m(t-1) \approx 2m(t-1)$$

$$\frac{d}{dt}k_i = \frac{mk_i}{2m(t-1)} = \frac{k_i}{2t-2} \approx \frac{k_i}{2t}$$
(For large t)

## Degree k<sub>i</sub>(t) ... continued

$$\frac{d}{dt}k_i(t) = \frac{k_i(t)}{2t}$$

Note: in exams for this course, you will **not** be asked to solve differential equations on your own

$$\frac{1}{k_i(t)}\frac{d}{dt}k_i(t) = \frac{1}{2t}$$

 $\int_{t=t_i}^{\tau} \frac{1}{k_i(t)} \frac{d}{dt} k_i(t) dt = \int_{t=t_i}^{\tau} \frac{1}{2t} dt$ 

$$\log k_{i}(t) - \log k_{i}(t_{i}) = \frac{1}{2} \log t - \frac{1}{2} \log t_{i}$$
$$\log k_{i}(t) = \frac{1}{2} \log t - \frac{1}{2} \log t_{i} + \log m$$

## Degree k<sub>i</sub>(t) ... continued

$$\log k_i(t) = \frac{1}{2} \log t - \frac{1}{2} \log t_i + \log m$$
$$k_i(t) = m \left(\frac{t}{t_i}\right)^{\frac{1}{2}}$$

Is the degree growth linear, super-linear, or sub-linear? Intuitively, why?

$$k_i(t)=m\left(rac{t}{t_i}
ight)^{rac{1}{2}}=m\left(rac{t}{t_i}
ight)^{eta}$$
  $eta=1/2$  is called the dynamical exponent

## Degree k<sub>i</sub>(t) ... consequences

$$\log k_{i}(t) = \frac{1}{2} \log t - \frac{1}{2} \log t_{i} + \log m$$

$$k_{i}(t) = m \left(\frac{t}{t_{i}}\right)^{\frac{1}{2}}$$

$$\frac{dk_{i}(t)}{dt} = \frac{k_{i}(t)}{2t} = \frac{m \left(\frac{t}{t_{i}}\right)^{\frac{1}{2}}}{2t} = \frac{m}{2 (t \cdot t_{i})^{\frac{1}{2}}}$$



## Simulation results

---- Model



#### Degree distribution

The distribution of the degree follows

$$p(k) \approx 2m^2/k^3$$

- Note that it does not depend on the time
- Hence, it describes a stationary network

#### Degree distribution, simulation results



#### More simulations





$$N = 100,000; m_0 = m = 1 \text{ (blue)}, 3 \text{ (green)}, 5 \text{ (gray)}, 7 \text{ (orange)}$$

Observe y is independent of m (and  $m_0$ )

$$m_0 = m = 3$$
; N = 50K (blue), 100K (green), 200K (gray)  
Observe  $p_k$  is independent of N

ı K

The slope of the purple line is -3

#### Average distance

Distances grow slower than log N

$$\langle d \rangle \approx \frac{\log N}{\log \log N}$$

(Why: scale free network with  $\gamma = 3$ )



#### Clustering coefficient

BA networks are locally more clustered than ER networks

$$\langle C \rangle pprox \frac{(\log N)^2}{N}$$



#### Limitations of the BA model

- Predicts a fixed exponent of -3
- Assumes an undirected network, while many real complex networks are directed
- Does not consider node deletions or edge deletions which are common in practice
- Considers that all nodes are equal except for their arrival times

## **Summary**

#### Things to remember

- Degree distribution in the BA model
- Distances and clustering coefficient in BA

#### Practice on your own

- Try to reconstruct the derivations we have done in class; try to understand every step
- Insert a small change in the model and try to recalculate what we have done

## Additional contents (not included in exams)



#### **Cumulative Distribution Function**

Let's calculate the CDF of the degree distribution

By definition of CDF, this is equal to:

$$Pr(k_i(t) \le k) = 1 - Pr(k_i(t) > k)$$

#### CDF (cont.)

Let's calculate  $Pr(k_i(t) > k)$ 

$$k_i(t) = m \left(\frac{t}{t_i}\right)^{\beta}$$

$$k_{i}(t) > k \Rightarrow m \left(\frac{t}{t_{i}}\right)^{\beta} > k$$

$$m^{\frac{1}{\beta}} \left(\frac{t}{t_{i}}\right) > k^{\frac{1}{\beta}}$$

$$\left(\frac{m}{k}\right)^{\frac{1}{\beta}} \left(\frac{t}{t_{i}}\right) > 1$$

$$\left(\frac{m}{k}\right)^{\frac{1}{\beta}} > \left(\frac{t_{i}}{t}\right)$$

This means that nodes i with degree larger than k were created at time  $t_i$  before a certain timestep, which is expected because older nodes have larger degree.



#### CDF (cont.)

From the previous slide, we have:  $Pr(k_i(t)>k)=Pr\left(\left(\frac{m}{k}\right)^{\frac{1}{\beta}}>\frac{t_i}{t}\right)$ 

Remember there is one node created at each timestep, so by time t there are  $N(t) = m_o + t$  nodes, and for large t, we have  $N(t) \approx t$ 

Now, what is  $Pr(x > t_i/t)$  if you pick a node i at random? It is x, because  $t_i/t$  is distributed uniformly in [o,1]

Hence:

$$Pr(k_i(t) > k) = \left(\frac{m}{k}\right)^{\frac{1}{\beta}}$$

Imagine the following "game", in which the larger number wins

- You pick a number x in [0,1]
- Your opponent picks a number y uniformly at random in [0,1]

The probability that x > y and hence you win is exactly x

## CDF (cont.)

Hence: 
$$Pr(k_i(t) \le k) = 1 - Pr(k_i(t) > k)$$
$$= 1 - \left(\frac{m}{k}\right)^{\frac{1}{\beta}}$$

## Probability Density Function (PDF)

Now let's take the derivative of the CDF to obtain the PDF

$$p_k = \frac{d}{dk} Pr(k_i \le k) = \frac{d}{dk} \left( 1 - \left( \frac{m}{k} \right)^{1/\beta} \right)$$
$$= -\frac{d}{dk} \left( \left( \frac{m}{k} \right)^{1/\beta} \right) = -m^{1/\beta} \frac{d}{dk} \left( \frac{1}{k^{1/\beta}} \right)$$
$$= \frac{1}{\beta} \frac{m^{1/\beta}}{k^{1/\beta+1}} \quad (\beta = 1/2)$$

$$= \frac{1}{\beta} \frac{1}{k^{1/\beta+1}} \qquad (\beta = 1/2)$$

$$=2\frac{m^2}{k^3} \qquad \qquad \blacktriangleright p(k) \propto k^{-3}$$

#### Degree distribution

- $\beta=1/2$  is called the dynamical exponent  $\gamma=\frac{1}{\beta}+1=3$  is the power-law exponent

• Note that  $p(k) \approx 2m^2/k^3$ does not depend on t hence, it describes a stationary network