Project Euler #190: Maximising a weighted product

This problem is a programming version of Problem 190 from projecteuler.net

Let $S_m=(x_1,x_2,\ldots,x_m)$ be the m-tuple of positive real numbers with $x_1+x_2+\ldots+x_m=m$ for which $P_m=x_1\times x_2^2\times\ldots\times x_m^m$ is maximised.

For example, it can be verified that $P_{10} pprox 4112.085$.

Let's make a generalization of S_m . Let $T_m(X,a)=(x_1,x_2,\ldots,x_m)$ (where X is a natural number and a is an m-tuple of natural numbers) be the m-tuple of positive real numbers with $x_1+x_2+\ldots+x_m=X$ for which $Q_m(X,a)=x_1^{a_1}\times x_2^{a_2}\times\ldots\times x_m^{a_m}$ is maximised.

It's easy to see that $S_m = T_m(m, (1, 2, \dots m))$.

You're given three natural numbers: X, A and m. Find the sum of $Q_m(X,a)$ among all a with $a_1+a_2+\ldots+a_m=A$ modulo 10^9+7 . It is guaranteed that in every test case this sum could be represented as a rational fraction with a denominator not divisible by 10^9+7 .

Definitions

In this problem it is considered that set of natural numbers does not include 0.

If we have some rational number $\frac{p}{q}$ where p is integer and q is natural, then $\frac{p}{q} \pmod{m} = p \times q^{-1} \pmod{m}$ where q^{-1} is a modular multiplicative inverse.

Input Format

The only line of each test case contains exactly three integers separated by single spaces: X, A and m.

Constraints

•
$$1 \le X, A, m \le 5 \times 10^4$$

Output Format

Print exactly one number which is the answer to the problem modulo $10^9 + 7$.

Sample Input

6 3 2

Sample Output

64

Explanation

There are two ways to represent 3 as a sum of two ordered natural numbers: 3=1+2 and 3=2+1. $Q_2(6,(1,2))=Q_2(6,(2,1))=32$, thus the answer is 64.