6

(i)	State the relation between R , L , A and the resistivity ρ of the material of the wire.
	[1]
(ii)	Show that the fractional change in resistance $\frac{\Delta R}{R}$ is equal to the strain in the wire.
	[2]
) As	teel wire has area of cross-section 1.20 \times 10 ⁻⁷ m ² and a resistance of 4.17 Ω .
The	e Young modulus of steel is $2.10 \times 10^{11} \text{Pa}$.
	e tension in the wire is increased from zero to 72.0 N. The wire obeys Hooke's law at se values of tension.
	termine the strain in the wire and hence its change in resistance. Express your swer to an appropriate number of significant figures.
	change = Ω [5]

For Examiner's Use

7	(a)		tinguish between the electromotive force (e.m.f.) of a cell and the potential difference I.) across a resistor.
			[3]
	(b)	Fig.	7.1. is an electrical circuit containing two cells of e.m.f. E_1 and E_2 .
			$A \xrightarrow{E_1} \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$
			R_2
			R_3 I_3 C
			Fig. 7.1
		The brai	e cells are connected to resistors of resistance R_1 , R_2 and R_3 and the currents in the nches of the circuit are I_1 , I_2 and I_3 , as shown.
		(i)	Use Kirchhoff's first law to write down an expression relating $I_{1,}I_{2}$ and $I_{3}.$
			[1]
		(ii)	Use Kirchhoff's second law to write down an expression relating
			1. E_2 , R_2 , R_3 , I_2 and I_3 in the loop XBCYX,
			[1]
			2. E_1 , E_2 , R_1 , R_2 , I_1 and I_2 in the loop AXYDA.

© UCLES 2006

7 A circuit contains three similar lamps A, B and C. The circuit also contains three switches, S_1 , S_2 and S_3 , as shown in Fig. 7.1.

Fig. 7.1

One of the lamps is faulty. In order to detect the fault, an ohm-meter (a meter that measures resistance) is connected between terminals X and Y. When measuring resistance, the ohm-meter causes negligible current in the circuit.

Fig. 7.2 shows the readings of the ohm-meter for different switch positions.

	switch		meter reading
S ₁	S_2	S_3	/ Ω
open closed open open	open open closed closed	open open open closed	∞ 15Ω 30Ω 15Ω

Fig. 7.2

(a)	Identify the faulty lamp, and the nature of the fault.
	faulty lamp:
	nature of fault:[2]
(b)	Suggest why it is advisable to test the circuit using an ohm-meter that causes negligible current rather than with a power supply.
	[1]

© UCLES 2006 9702/02/M/J/06

(c)	Determine the resistance of one of the non-faulty lamps, as measured using the ohmmeter.
	resistance = Ω [1]
(d)	
	Calculate, for one of the lamps operating at normal brightness,
	(i) its resistance,
	resistance = Ω [2]
	(ii) its power dissipation.
	power = W [2]
(e)	Comment on your answers to (c) and (d)(i).
	[2]

7 A battery of e.m.f. 4.50 V and negligible internal resistance is connected in series with a fixed resistor of resistance 1200 Ω and a thermistor, as shown in Fig. 7.1.

For Examiner's Use

Fig. 7.1

(a) At room temperature, the thermistor has a resistance of $1800\,\Omega$. Deduce that the potential difference across the thermistor (across AB) is $2.70\,V$.

[2]

(b) A uniform resistance wire PQ of length 1.00 m is now connected in parallel with the resistor and the thermistor, as shown in Fig. 7.2.

Fig. 7.2

A sensitive voltmeter is connected between point B and a moveable contact M on the

For Examiner's Use

WITE	2 .
(i)	Explain why, for constant current in the wire, the potential difference between any two points on the wire is proportional to the distance between the points.
	[2]
(ii)	The contact M is moved along PQ until the voltmeter shows zero reading.
	1. State the potential difference between the contact at M and the point Q.
	potential difference = V [1]
	2. Calculate the length of wire between M and Q.
	length = cm [2]
(iii)	The thermistor is warmed slightly. State and explain the effect on the length of wire between M and Q for the voltmeter to remain at zero deflection.
	ומז

7 (a) Define the *resistance* of a resistor.

For
Examiner's
Use

(b) In the circuit of Fig. 7.1, the battery has an e.m.f. of 3.00 V and an internal resistance *r*. R is a variable resistor. The resistance of the ammeter is negligible and the voltmeter has an infinite resistance.

Fig. 7.1

The resistance of R is varied. Fig. 7.2 shows the variation of the power P dissipated in R with the potential difference V across R.

Fig. 7.2

For Examiner's Use

	(i)	Use Fig. 7.2 to determine
		1. the maximum power dissipation in R,
		maximum power =W
		2. the potential difference across R when the maximum power is dissipated.
		potential difference =V [1]
	(ii)	Hence calculate the resistance of R when the maximum power is dissipated.
		resistance = Ω [2]
((iii)	Use your answers in (i) and (ii) to determine the internal resistance r of the battery.
		$r = \dots \Omega$ [3]
(c)	Bv	r = Ω [3] reference to Fig. 7.2, it can be seen that there are two values of potential difference
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W.
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W. te, with a reason, which value of <i>V</i> will result in less power being dissipated in the
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W. te, with a reason, which value of <i>V</i> will result in less power being dissipated in the
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W. te, with a reason, which value of <i>V</i> will result in less power being dissipated in the

6 Fig. 6.1 shows the variation with applied potential difference *V* of the current *I* in an electrical component C.

Fig. 6.1

(a)	(i)	State, with a reason, whether the resistance of component C increases decreases with increasing potential difference.	or
			[2]

(ii) Determine the resistance of component C at a potential difference of 4.0 V.

resistance = Ω [2]

© UCLES 2004

(b) Component C is connected in parallel with a resistor R of resistance 1500Ω and a battery of e.m.f. E and negligible internal resistance, as shown in Fig. 6.2.

For Examiner's Use

Fig. 6.2

- (i) On Fig. 6.1, draw a line to show the variation with potential difference *V* of the current *I* in resistor R. [2]
- (ii) Hence, or otherwise, use Fig. 6.1 to determine the current in the battery for an e.m.f. of 2.0 V.

current	=	 Α	[2]	١

(c) The resistor R of resistance 1500 Ω and the component C are now connected in series across a supply of e.m.f. 7.0 V and negligible internal resistance.

dissipate thermal energy at a greater rate.

Using information from Fig. 6.1, state and explain which component, R or C, will

.....[3]

A household electric lamp is rated as 240 V, 60 W. The filament of the lamp is made from tungsten and is a wire of constant radius $6.0\times10^{-6}\text{m}$. The resistivity of tungsten at the normal operating temperature of the lamp is $7.9\times10^{-7}~\Omega\text{m}$.				
	(a)	For	the lamp at its normal operating temperature,	
		(i)	calculate the current in the lamp,	
			current = A	
		(ii)	show that the resistance of the filament is 960 Ω .	
			[3]	
	(b)	Cal	culate the length of the filament.	
	(c)	Cor	length = m [3] mment on your answer to (b) .	
			[1]	