EUROPEAN PATENT FICE

Patent Abstracts of Japan

PUBLICATION NUMBER

06057360

PUBLICATION DATE

01-03-94

APPLICATION DATE

06-08-92

APPLICATION NUMBER

04231306

APPLICANT: KUBOTA CORP;

INVENTOR: OKANO HIROAKI;

INT.CL.

C22C 19/05

TITLE

CORROSION RESISTANT AND WEAR RESISTANT NI-BASE ALLOY

ABSTRACT :

PURPOSE: To produce an Ni-base allay excellent in corrosion resistance and wear resistance and useful as the constituting material for a cylinder, screw or the like of an

injection molding machine, etc.

CONSTITUTION: This Ni-base alloy is constituted of 5 to 20% Cr, 7 to 30% Mo. 0.5 to 30% of one or two kinds of W and V 0.1 to 6% B, 0.5 to 3% Si and 1.5% or less C, and the balance being substantially Nix f desired, the chemical compsn. contg. 0.5 to 15% Co

or/and 2 to 10% Fe is given thereto for the purpose of improving its toughness.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出額公開番号

特開平6-57360

(43)公開日 平成6年(1994)3月1日

(51) Int.Cl.5

識別記号

FI

技術表示箇所

C 2 2 C 19/05

D

審査請求 未請求 請求項の数4(全 5 頁)

(21)出願番号	特願平4-231306	(71)出願人	000081052				
			株式会社クポタ				
(22)出顧日	平成4年(1992)8月6日		大阪府大阪市浪速区敦津東一丁目2番47号				
		(72)発明者	牧野 宏				
			兵庫県尼崎市西向島町64番地 株式会社ク				
			ボタ尼崎工場内				
		(72)発明者	乾 一幸				
			兵庫県尼崎市西向島町64番地 株式会社ク				
			ボタ尼崎工場内				
		(72) 発明者	岡野 宏昭				
			兵庫県尼崎市西向島町64番地 株式会社ク				
		1	ボタ尼崎工場内				
		(74)代理人	介理士 宮崎 新八郎				
		İ					
		1					

(54)【発明の名称】 耐食耐摩耗性N i 基合金

(57)【要約】

【目的】 射出成形機等のシリンダ、スクリユー等の構 成材料として有用な耐食性、耐摩耗性にすぐれたNi基

【構成】 Cr:5~20%, Mo:7~30%, W, Vの1種もしくは2種:0.5~30%, B:0.1~ 6%, Si:0.5~3%, C:1.5%以下、残部实 質的にNiからなる。所望により、靱性向上を目的とし て、Co:0.5~15%または/およびFe:2~1 0%を含有する化学組成が与えられる。

【特許請求の範囲】

【請求項1】 Cr:5~20%, Mo:7~30%, W, Vの1種もしくは2種:0.5~30%, B:0. 1~6%, Si:0.5~3%, C:1.5%以下、残 部実質的にNiからなる耐食耐摩耗性Ni基合金。

【請求項2】 Cr:5~20%, Mo:7~30%, W. Vの1種もしくは2種: 0. 5~30%, B: 0. $1 \sim 6\%$, Co: 0. $5 \sim 15\%$, Si: 0. $5 \sim 3$ %, C: 1. 5%以下、残部実質的にNiからなる耐食 耐摩耗性N i 基合金。

【請求項3】 Cr:5~20%, Mo:7~30%, W, Vの1種もしくは2種:0.5~30%, B:0. $1 \sim 6\%$, Fe: $2 \sim 1.0\%$, Si: 0: $5 \sim 3\%$, C:1. 5%以下、残部実質的にNiからなる耐食耐摩 耗性Ni基合金。

【請求項4】 Cr:5~20%, Mo:7~30%, W, Vの1種もしくは2種:0.5~30%, B:0. 1~6%, Co: 0. 5~15%, Fe: 2~10%, Si:0.5~3%, C:1.5%以下、残部実質的に Niからなる耐食耐摩耗性Ni基合金。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、射出成形機や押出成形 機のシリンダ、スクリユー、プランジヤ等、耐食性と耐 摩耗性を必要とする各種部材の構成材料として有用なN i基合金に関する。

[0002]

【従来の技術】射出成形機や押出成形機を構成するシリ ンダ、およびスクリユー、プランジヤ等の部材は高圧力 や腐食抵抗性が要求される。従来より、その材料として 窒化鋼(JIS G4202, SACM645等) が専 ら使用されてきた。

[0003]

【発明が解決しようとする課題】窒化鋼の表面の有効窒 化層厚は、約0.5mm程度に過ぎず、このため窒化鋼 を使用している従来の射出成形機や押出成形機の耐久性 は必ずしも十分なものと言えない。殊に、近時は繊維強 化プラスチツク成形品、プラスチツクマグネツト、ある いはセラミツクス成形品等に対する希要が増大しつつあ り、これらの成形品の成形操業における部材表面の摩耗 ・腐食の進行、およびそれに伴う耐用寿命の低下は顕著 であり、生産機として対応することは極めて困難な状況 となつている。この言葉として、特開平1-27273 2号公報には、Cr:5~20%, Mo:5~20%, $W.5\sim1.5\%$, B: 0. $5\sim4\%$, Si: 0. $5\sim3$ %, C: 1. 5%以下, 残部Coからなる、改良された 耐食性および耐摩耗性を有するCo基合金が開示されて いる。しかるに、Coは戦略物質であり、コストが高

し全部をNiで置換した新規化学組成を有し、高耐食性 と高耐摩耗性を備えたNi基合金を提供するものであ

[0004]

【課題を解決するための手段および作用】本発明の耐食 耐摩耗性Ni基合金は、Cr:5~20%, Mo:7~ 30%, B: 0. 1~6%, W, Vの1種もしくは2 種: 0.5~30%, Si: 0.5~3%, C: 1.5 %以下、残部実質的にNiからなる化学組成を有してい 10 る。本発明のNi基合金は、所望により、上記元素のほ か、Co:0.5~15%、Fe:2~10%の一方ま たは両者を含有する化学組成が与えられる。

【0005】本発明のNi基合金の成分限定理由は次の とおりである。

Cr:5~20%

Crは、一部はマトリツクスに固溶して合金の耐食性を 高め、残部は炭化物、硼化物を形成して合金の硬度を高 め耐摩耗性を強化する。含有量の下限を5%としたの は、それより少ない量ではこれらの効果が不足するから 20 であり、その増量に従つて効果は増大する。特に、耐食 性の強化を必要とする場合は、Cr含有量を、(1.4 2 (B+1/2C) +11. 9) (%) 以上としてCr の固溶量を富化するとよい。20%までの含有量で効果 はほぼ飽和するので、これを上限とした。

[0006] Mo: $7\sim30\%$

Moは、炭化物、硼化物を形成して合金の耐摩耗性を高 め、また炭化物、硼化物を形成せずにマトリツクスに固 溶したMoは、耐食性、殊に塩酸等の非酸化性酸に対す る腐食抵抗性の改善に寄与する。これらの効果を得るた ・高速度で圧送される流動体の接触に対する摩耗抵抗性 30 めには少なくとも7%の含有を必要とする。特に、耐食 性の強化を必要とする場合は、その含有量を、〔4.7 (B+1/2C) +7) (%) 以上としてMoの固溶量 を増加するとよい。しかし、Mo含有量をあまり多くす ると、合金の脆化をきたすので、30%を上限とする。

 $[0007]W, V:0.5\sim30\%$

WおよびVは、それぞれ炭化物、硼化物を形成して合金 の硬度、耐摩耗性を高める効果を有する。この2元素 は、一方のみの単独使用、または両者の複合使用のいず れであつてもよい。この効果は0.5%以上(複合添加 の場合は合計量) の含有により得られ、含有量の増加に 伴つて効果は増大する。しかし、多量に添加すると、合 金の曲げ強度、靭性の低下をきたすので、30% (複合 添加の場合は合計量)を上限とする。

 $[0008]B:0.1\sim6\%$

Bは、Cr, Mo, W, V等の硼化物の形成のために少 なくとも0. 1%を必要とする。また、Bの添加は、耐 食性を損なわずに合金の融点を低下させ、合金の溶製操 業を有利にする。しかし、6%を越えると籾性が著しく 低下するので、6%を越えてはならない。なお、B含有 く、かつ不安定である。そこで本発明はCoの一部ない 50 畳とC含有量の合計量(B+C)を 6 %以下とすること (3)

は、合金の靭性の確保の点で好ましいことである。

[0009] Si: 0. 5~3%

Siは、Cr, Mo, W, V等の元素と化合物を形成し て合金の耐摩耗性の向上に寄与する。また、Siの含有 により合金の融点が降下することは合金の溶製操業に有 利である。これらの効果を得るために、少なくとも0. 5%の含有量が必要である。しかし、3%を越えて多量 に含有すると合金の脆化をきたし、構造材料としての有 用性を損なうので、これを上限とした。

[0010] C:1.5%以下

Cは、Cr, Mo, W, V等の炭化物の形成に必要な元 素であり、また合金の融点を下げ、合金溶製操業を有利 にする。しかし、含有量が1.5%を越えると、合金の 脆化をきたし構造材料としての有用性を損なうので、 1.5%以下とする。

[0011] Co: 0. 5~15%

Coは、合金の朝性改善に有効な元素である。その効果 は0.5%以上の添加により得られる。しかし、多量の 添加は経済性を損なうだけでなく、耐食性、特に弗化水 素酸に対する腐食抵抗性を減じるので、15%を上限と 20 摩耗減量 (mm²/kgf)を測定する。 する。好ましくは5~12%である。

[0012] Fe: 2~10%

Feは、合金の朝性改善に奏効する。この効果を得るに は、少なくとも2%の含有を必要とする。しかし、多量 に添加すると、耐食性の低下をきたすので、10%まで とする。

【0013】本発明のNi基合金は、例えばその合金粉 末を焼結原料とし、熱間静水等方加圧焼結法等の公知の 焼結プロセスを適用することにより、シリンダ、スクリ る。また、B含有量を比較的高めに設定した場合は、合 金の低融点化により、焼結プロセスに代え、溶融・凝固 プロセスを適用することも容易となり、例えば、融点 約1150℃以下の低融点成分構成とした場合は、普通 鋼々材 (例えばSS41材) を母材金属とし、その表面 に低融点合金粉末を与えて粉末の溶融・凝固を行うこと により、母材の溶損をきたすことなく、その表面に冶金 的に接合した緻密な合金層を積層形成することも可能で ある.

[0014]

【実施例】表1に示す各供試合金について、腐食試験、 摩耗試験および機械試験を行つて、表2に示す結果を得 た。供試合金No.1~7は発明例、No.21~25は比 較例であり、比較例No. 21~23は、前記特開平1-272732号公報に開示されたCo基合金相当材、N o.24は、W. Bをやや低めに設定したCo基合金の 例、No.25は窒化鋼(JIS G4202 SACM 6 1 5, 表面室化層厚 0. 5 mm) である。

【0015】各試験要領は次のとおりである。

〔1〕腐食試験

次の4種の腐食液(液温:50℃)に試験片を浸費し、 48時間経過後の腐食減量 (g/m² hr) を測定す

試験A:10%弗化水素酸水溶液

試験B:10%臭化水素酸水溶液

試験C:20%塩酸水溶液

試験D:50%硫酸水溶液 【0016】 [II] 摩耗試験

大越式迅速摩耗試験機を使用し、下記の摩耗試験により

(1) 相手材 (回転輪): SUJ2, 硬さ (Hac): 5 $8 \sim 60$

(2) 押付荷重: 6. 3 kg/cm²

(3) 潛接速度: 1. 93m/秒

(4) 摺接距離: 400m

【0017】表2に示したように、発明例No.1~7 は、窒化類(No.25)に比べて、各種の酸に対する腐 食抵抗性および摩耗抵抗性のいずれも格段にすぐれてい る。なお、発明例No. 2とNo. 6との比較から、Coの ユー等の母材金属の表面を被覆する焼結合金層を形成す 30 添加による靭性改善効果、同じくNo.6とNo.7との比 較からFe添加による靱性改善効果が得られることがわ かる。また、発明例No.1~7を、Co基合金であるN 0.21~24と比較すると、50%硫酸に対する腐食抵 抗性(表2「D」欄)はやや低いものの、10%弗化水 素酸に対する腐食抵抗性(同「A」欄)は明らかに優位 にあり、他の腐食性酸については同等の耐食性を有して いることがわかる。

[0018]

【表1】

40

(4)

特開平6-57360

		5				. ,			6	ס דר מעודט	513
No.	Cr	Мо	w	V	В	Со	Fe	С	Si	Νi	
1 .	14.9	15.0	5.60	_	2.08	_	-	0.07	2.04	Bal	
2	15.0	15.2	6.00	_	3.12	_	_	0.07	1.98	Bal	発
3	15.2	15.5	_	4.85	2.51	_	_	0.10	3.37	Bal	
4	15.0	15.7	_	4.95	3.01	_	_	0.50	3.20	Bal	明
5	15.0	15.1	5.75	_	2.20	10.2		0.08	2.13	Bal	
6	15.0	15.6	5.50	-	3.19	11.0		0.09	1.87	Bal	例
7	14.8	10.0	4.85		2.85	9.85	3.02	0.18	3.86	Bal	
2 1	15.0	15.7	9.70		1.33	Bal		0.09	1.98	_	
2 2	15.0	15.7	8.05	_	2.26	Bal	_	0.11	2.01	_	比
2 3	15.0	15.8	6.05	_	1.05	Bal	_	0.08	1.95		较
2 4	15.0	15.8	3.00	_	3.19	Bal		0.09	1.87	_	例
2 5	1.40	0.21	_	_	Co	: 42. Si	:0.47	. Mn:0.	3. A1:1	. 0	

[0019]

【表2】

		7 8											
			然		雪		3 5		丑		藢		3
靱性値	MPam'′²	38.4	22.0	38.1	20.5	39.5	23.6	25.1	31.6	26.6	31.4	18.3	
曲げ強さ	kg f/mm²	125.2	175.2	178.1	185.2	120.6	180.3	147.7	170.1	190.3	181.0	120.2	1
聚耗量	×10°°an°/kgf	9.95	6.55	7.95	10'9	10.12	5.12	3.13	4.34	4.82	11.40	3.13	32.53
£0 10	Hac	46.2	55.6	51.9	59.6	47.0	56.8	58.2	53.0	57.4	46.8	61.1	54.0
hr	D	9.61	10.3	5.80	10.5	12.4	16.2	7.10	0.03	0.01	0.05	16.4	50
g∕m¹.hr	၁	9.77	17.6	6.75	17.6	17.5	21.8	20.5	16.5	64.9	24.7	66.0	148
腐食減量,	В	0.40	0.35	0.36	0.52	0.40	0.42	0.36	0.08	0.05	0.10	1.10	09
題	А	0.70	0.85	0.75	1.22	1.70	1.89	2.15	15.9	70.9	32.6	58.0	360
ž	ğ	1	2	က	4	2	9	7	2.1	2.5	2.3	2.4	2.5

100201

【発明の効果】本発明のNi基合金は、室化鋼等を大きく凌ぐ耐摩耗性と耐食性とを備えているので、例えば射出成形機・押出成形機のシリンダ、スクリユー、プランジヤ等の部材料として、その耐用寿命を改善することが

40 でき、通常のプラスチツク成形はもとより、繊維強化プラスチツクやセラミツクス等の射出・押出成形操業の安定化・効率化等に寄与する。また、Coを基とする合金に比べ、原料供給の安定性、コスト面でも有利である。