

Example: Map-Coloring Problems

Goal: To color the provinces of Australia as red, green, or blue, with no adjacent provinces having the same color.

Variables: WA, NT, Q, NSW, V, SA, T

Domains: {red, green, blue}

Constraints: Adjacent regions must have

different colors: WA≠NT, etc.

Example: Cryptarithmetic Puzzles

Goal: To assign (all different) digits to the symbols.

Variables: F, T, U, W, R, O, C₁, C₂, C₃

Domains: {0,1,2,3,4,5,6,7,8,9} for F, T, U, W, R, O

$$\{0,1\}$$
 for C_1, C_2, C_3

Constraints: F > 0

alldiff(F, T, U, W, R, O)

$$O + O = R + 10^* C_1$$
, etc.

Constraint Satisfaction Problems

- Information about the state space:
 - Variables: X_i
 - Domains (allowed values for the variables): D_i (one for each variable)
- Goal test: Whether the variable assignments satisfy the given set of constraints *C*.
- Solution: Variable assignments that satisfy all the constraints.
- Search algorithms can be used to find solutions. (Only the final state, not the path, is needed).

Example Solution for Map-Coloring

Varieties of CSPs

- Discrete variables with finite domains (covered here):
 - n variables, domain size = d: $O(d^n)$ complete assignments
- Discrete variables with infinite domains:
 - Example: job scheduling with the variables being the start/end days for the jobs.
 - Such CSPs with linear constraints are solvable. For such CSPs with nonlinear constraints, the problem is undecidable.
- Continuous variables:
 - Example: job scheduling with the variable being the start/end times for the jobs.
 - Such CSPs with linear constraints are solvable in polynomial time by linear programming methods.

Types of Constraints

- Unary constraints: involving a single variable
 - e.g., *SA* ≠ *green*
- Binary constraints: involving pairs of variables
 - e.g., *SA* ≠ *WA*
- Higher-order constraints: involving 3 or more variables
 - e.g., cryptarithmetic column constraints
- Global constraints: involve an arbitrary number of variables
 - e.g., alldiff, atmost, etc.
 - Some are better solved with specialized methods.
- Preferences (soft constraints)
 - e.g., SA likes red more than green
 - often represented by a cost for each variable assignment
 - optimization problems

Constraint Graph

Binary CSPs: Variables as vertices and edges as constraints

Higher-order CSPs: Represented as hypergraphs

Constraint Propagation

Inference in CSP: Given the constraints and possible assigned values of some variables, determine the domains (allowed values) of the other variables.

- Node consistency: A variable is node-consistent if each possible value satisfies its unary constraints.
- Arc consistency: An arc $(X_i \rightarrow X_j)$ is arc-consistent if each possible value of X_i leaves some valid values for X_j according to the binary constraints for $\{X_i, X_j\}$.
- Path consistency: A path $(X_i \rightarrow X_m \rightarrow X_j)$ is path-consistent if each pair of possible values for X_i and X_j leaves some valid values for X_m according to the binary constraints for $\{X_i, X_m\}$ and $\{X_i, X_m\}$.

AC-3 Algorithm

- Goal: To make every arc arc-consistent. (It attempts to reduce the domains by removing values that cause violation of arc-consistency.)
- Initialization: A set comtaining every arc in a CSP.
- In each step, an arc $(X_i \rightarrow X_j)$ is popped off the set for consideration.
 - Make $(X_i \rightarrow X_j)$ arc-consistent by removing from D_i those values that would leave no valid value for X_j according to the binary constraints for $\{X_i, X_i\}$.
 - If D_i is changed, then for each neighbor X_k of X_i , add the arc $(X_k \rightarrow X_i)$ to the set.
 - If D_i becomes empty, terminate the processing; there is no solution.

AC-3 Example

Example: X, Y are digits, and $Y=X^2$.

- Initial domains:
 - $D_X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - $D_Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- \blacksquare After checking the arc $(X \rightarrow Y)$:
 - \bullet $D_X = \{0, 1, 2, 3\}$
- Next, after checking the arc $(Y \rightarrow X)$:
 - \bullet $D_Y = \{0, 1, 4, 9\}$
- No more change; the process terminates.

AC-3 Example (Sudoku)

						5		
3		2		7		5 9	~	
3 6			9					
							2	6
	2		3			1	2 5 8	6 9
7	9		3 6		5		8	
1		9	7					
4	5					2	3	
	5 3	8	4	5		2 6		

Initially, all the unassigned blanks have domain {1,2,...,9}.

An example problem:

- ▶ 81 variables
- > 32 unary constraints
- Q: How many binary constraints?

AC-3 Example (Sudoku)

						5		
3		2		7		9	1	
3 6			9					
							2	6
	2		3			1	5	9
7	9		6		5		8	
1	6	9	7			48	4	458
4	5	67				2	3	178
2	3	8	4	5		6	79	127

Some updated domains after
checking arcs involving
already assigned blanks.

						5		
3		2		7		9	1	
6			9					
							2	6
	2		3			1	5	9
7	9		6		5		8	
1	6	9	7			48	4	458
4	5	67				2	3	178
2	3	8	4	5		6	79	127

Further reduction of some domains.

AC-3 Example (Sudoku)

						5		
3		2		7		9	1	
3 6			9					
							2	6
	2		3			1	5	9
7	9		6		5		8	
1	6	9	7			48	4	4 5 8
4	5	67				2	3	1 78
2	3	8	4	5		6	79	127

						5		
3		2		7		9	1	
6			9					
							2	6
	2		3			1	5	9
7	9		6		5		8	
1	6	9	7			48	4	4 5 8
4	5	6 7				2	3	1 78
2	3	8	4	5		6	79	12 7

AC-3 can occasionally solve a problem by itself.

Solving CSPs by Searching

Backtracking search: depth-first, incremental formulation (assigning one variable in each step).

Backtracking Search

General-purpose methods can give huge gains in speed:

- Which variable should be assigned next?
 - Minimum remaining values (MRV) heuristic
 - Degree heuristic
- In what order should its values be tried?
 - Least constraining value (LCV) heuristic
- Can we detect an inevitable failure early?
- Can we take advantage of the problem structure?

Usually applied in the order of MRV→degree→LCV.

Minimum Remaining Values (MRV)

Idea: Choose the variable with the fewest legal values

Example: Which region to color next?

Degree Heuristic

Idea: Choose the variable with the most constraints on the remaining variables

Least Constraining Value (LCV)

Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables.

Interleaving Searching and Inference

Standard backtracking detects a failure only when it is assigning a variable with an empty domain.

Q: Can we detect an inevitable failure earlier?

■ Forward checking:

- Idea: After each assignment, update the domains of all the neighbors of the assigned variable.
- If any domain becomes empty, then backtrack.

■ Maintaining arc consistency:

- Detects more upcoming failures than forward checking.
- A common method is to run AC-3 (only updating the domains of unassigned variables) after each assignment.

Forward Checking Example

Min-Conflicts Local Search for CSPs

- Start from a complete configuration (each variable assigned by randomly selecting a value from its domain).
- Iteratively select a variable (randomly), and reassign its value to minimize conflicts.
- Example (4 queens):

1			
2	Q	Q	
2			Q
1			

Q	3		
	2	Ø	
	2		Q
	0		

Q		1	
		1	
		2	Q
	Q	1	

Q		Q	2
			2
			0
	Q		1

1		Q	
0			
1			Q
1	Q		

		Q	
Q			
			Q
	Q		

This can solve million-queen problems!

