Introducción a Machine Learning Supervisado

Ejercicio práctico: Predicción de precios de casas

En este notebook, exploraremos un problema de regresión utilizando el conjunto de datos "House Prices: Advanced Regression Techniques". Vamos a realizar un análisis exploratorio, preprocesar los datos y entrenar un modelo de regresión lineal simple.

Pasos:

- 1. Carga de datos
- 2. Análisis exploratorio de datos (EDA)

prompt: carga los datos en un dataframe de pandas

- 3. Preprocesamiento de los datos
- 4. Entrenamiento del modelo
- 5. Evaluación del modelo
- 6. Conclusiones

1. Carga de datos

Primero, vamos a cargar los datos y ver una vista general del dataset. Usa la librería pandas para leer el archivo House_Price_dataset.csv y crear un df.

```
import pandas as pd
# Reemplaza 'House Price dataset.csv' con la ruta correcta a tu archivo CSV
df = pd.read csv('House Price dataset.csv')
# Muestra las primeras filas del DataFrame para verificar que se cargó correctamente
print(df.head())
       property_id location_id \
          237062
     a
                    3325
            346905
                            3236
    1
     2
            386513
                            764
            656161
                            340
             841645
                            3226
                                                 page_url property_type
     0 <a href="https://www.zameen.com/Property/g_10_g_10_2_gr...">https://www.zameen.com/Property/g_10_g_10_2_gr...</a>
                                                                   Flat
     1 https://www.zameen.com/Property/e 11 2 service...
                                                                   Flat
     2 https://www.zameen.com/Property/islamabad_g_15...
     3 https://www.zameen.com/Property/islamabad bani...
                                                                  House
     4 <a href="https://www.zameen.com/Property/dha_valley_dha...">https://www.zameen.com/Property/dha_valley_dha...</a>
                                                                  House
             price location
                                     city
                                                province name
                                                               latitude
                      G-10 Islamabad Islamabad Capital 33.679890
      10000000.0
                          E-11 Islamabad Islamabad Capital 33.700993
        6900000.0
     2 16500000.0
                          G-15 Islamabad Islamabad Capital 33.631486
     3 43500000.0 Bani Gala Islamabad Islamabad Capital 33.707573
       7000000.0 DHA Defence Islamabad Islamabad Capital 33.492591
                             area purpose bedrooms date_added
        longitude baths
                                                                             agency
     0 73.012640 2.0 4 Marla For Sale 2.0 02-04-2019
     1 72.971492
                    3.0 5.6 Marla For Sale
                                                   3.0 05-04-2019
                                                                                NaN
     2 72.926559
                    6.0 8 Marla For Sale
                                                   5.0 07-17-2019
                                                                                NaN
                    4.0 2 Kanal For Sale
                                                   4.0 04-05-2019
     3
       73.151199
       73.301339
                    3.0
                          8 Marla For Sale
                                                    3.0 07-10-2019 Easy Property
```

```
agent Area Type Area Size
0
                                            NaN
                                                    Marla
                                                                4.0
                                                                5.6
1
                                            NaN
                                                    Marla
2
                                                                 8.0
                                                    Marla
                                            NaN
3
                                           NaN
                                                    Kanal
                                                                2.0
  Muhammad Junaid Ceo Muhammad Shahid Director
                                                   Marla
                                                                 8.0
```

Area Category
0 0-5 Marla
1 5-10 Marla
2 5-10 Marla
3 1-5 Kanal
4 5-10 Marla

df.info()

</

рата	columns (total	20 COLUMNS):	
#	Column	Non-Null Count	Dtype
0	property_id	7716 non-null	int64
1	location_id	7716 non-null	int64
2	page_url	7715 non-null	object
3	property_type	7715 non-null	object
4	price	7715 non-null	float64
5	location	7715 non-null	object
6	city	7715 non-null	object
7	province_name	7715 non-null	object
8	latitude	7715 non-null	float64
9	longitude	7715 non-null	float64
10	baths	7715 non-null	float64
11	area	7715 non-null	object
12	purpose	7715 non-null	object
13	bedrooms	7715 non-null	float64
14	date_added	7715 non-null	object
15	agency	1940 non-null	object
16	agent	1940 non-null	object
17	Area Type	7715 non-null	object
18	Area Size	7715 non-null	float64
19	Area Category	7715 non-null	object
<pre>dtypes: float64(6), int64(2), object(12)</pre>			
memory usage: 1.2+ MB			

2. Análisis exploratorio de datos (EDA)

Antes de entrenar un modelo, es importante explorar los datos para entender mejor las características, la distribución de la variable objetivo y las correlaciones entre las variables.

a. Información del dataset

Revisemos la estructura de los datos y veamos si hay valores faltantes. Usa la función de pandas.

b. Estadísticas descriptivas

Veamos algunas estadísticas descriptivas para entender mejor la distribución de los datos. Usa la función de pandas.

```
resumen_estadistico = df.describe()
print(resumen_estadistico)
           property_id location_id
                                            price
                                                       latitude
    count 7.716000e+03 7.716000e+03 7.716000e+03 7.716000e+03 7.716000e+03
    mean -2.357425e-16 2.210086e-17 -7.366954e-18 -2.210086e-16 -2.685255e-15
          1.000065e+00 1.000065e+00 1.000065e+00 1.000065e+00 1.000065e+00
    std
    min
          -5.154320e+00 -1.165849e+00 -4.355849e-01 -1.426392e+00 -1.046948e+01
    25%
          -2.596140e-01 -8.795351e-01 -4.292875e-01 -1.372787e+00 -1.409592e+00
           2.332416e-01 -2.668288e-01 -2.529045e-01 3.249277e-01 5.121184e-01
    50%
         6.797940e-01 7.997798e-01 3.242918e-02 8.668385e-01 8.725325e-01
    75%
         1.039365e+00 2.428859e+00 2.742892e+01 1.101351e+01 2.812203e+00
    max
                  baths
                            bedrooms
                                        Area Size
    count 7.716000e+03 7.716000e+03 7.716000e+03
    mean 4.051825e-17 6.630259e-17 1.095834e-16
    std
         1.000065e+00 1.000065e+00 1.000065e+00
    min -1.407616e+00 -1.777676e+00 -9.372982e-01
    25%
          -5.576371e-01 -7.565858e-01 -4.843671e-01
    50%
          -1.326475e-01 -2.460409e-01 -1.608449e-01
           7.173319e-01 7.750488e-01 5.347280e-01
    75%
           2.842280e+00 5.369953e+00 6.632297e+01
    max
```

c. Distribución de la variable objetivo

La variable que queremos predecir es price. Visualicemos su distribución con MatplotLib.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Visualizar la distribución de una variable (por ejemplo, 'variable_objetivo')
sns.histplot(df['price'], kde=True)
plt.title('Distribución del Precio')
plt.xlabel('Precio')
plt.ylabel('Frecuencia')

plt.xlim(0, 60000000)
plt.ylim(0, 5000)
```


d. Matriz de correlación

Vamos a visualizar una matriz de correlación para identificar qué variables están más relacionadas con price. Para ello usad seaborn y pandas.

3. Preprocesamiento de los datos

Ahora vamos a preparar los datos para el modelo:

- 1. Manejo de valores faltantes: Imputamos los valores faltantes con la media.
- 2. Codificación de variables categóricas: Convertimos las variables categóricas en variables dummy.
- 3. Escalado de las características: Escalamos los valores para que tengan media cero y varianza uno.

Para estos procesos usamos funciones de pandas y de sklearn.

```
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# Imputación con la media para columnas numéricas
numerical_columns = df.select_dtypes(include=['float64', 'int64']).columns
imputer = SimpleImputer(strategy='mean')
df[numerical_columns] = imputer.fit_transform(df[numerical_columns])

# Codificación de variables categóricas (one-hot encoding)
categorical_columns = df.select_dtypes(include=['object']).columns
df = pd.get_dummies(df, columns=categorical_columns, drop_first=True)
```

```
# Escalado de características (media cero y varianza uno)
scaler = StandardScaler()
df[numerical_columns] = scaler.fit_transform(df[numerical_columns])
```

4. Dividir el conjunto de datos en entrenamiento y prueba

Vamos a dividir los datos en un conjunto de entrenamiento (70%) y un conjunto de prueba (30%).

```
from sklearn.model selection import train test split
# Asumiendo que 'price' es la variable objetivo
X = df.drop('price', axis=1) # Variables predictoras
y = df['price'] # Variable objetivo
# División en conjuntos de entrenamiento (70%) y prueba (30%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# X_train, y_train contienen el 70% de los datos (entrenamiento)
# X_test, y_test contienen el 30% de los datos (prueba)
print("Datos de entrenamiento (X_train):")
print(X_train.head())
print("\nVariable objetivo de entrenamiento (y_train):")
print(y_train.head())
     3095
                                                        False
     2117
                                                        False
     4128
                                                        False
     5860
                                                        False
     6520
                                                        False
           page_url_https://www.zameen.com/Property/adiala_road_green_villas_5_marla_double_storey_house_at_
     3095
                                                        False
     2117
                                                        False
     4128
                                                        False
     5860
                                                        False
     6520
                                                        False
           ... Area Type_Marla Area Category_1-5 Kanal \
     3095
                           True
                                                   False
     2117
                           True
                                                    False
           . . .
     4128 ...
                           True
                                                   False
     5860 ...
                           True
                                                   False
     6520 ...
                           True
                                                    False
```

```
3095
                          True
                                                      False
2117
                          True
                                                      False
4128
                         False
                                                      False
5860
                                                      False
                          True
6520
                         False
                                                      False
[5 rows x 9731 columns]
Variable objetivo de entrenamiento (y_train):
      -0.034446
3095
2117
      -0.434738
4128 -0.379967
5860 -0.435050
6520 -0.246217
Name: price, dtype: float64
```

→ 5. Entrenar el modelo

Ahora vamos a entrenar un modelo de Regresión Lineal usando el conjunto de entrenamiento.

6. Hacer predicciones y evaluar el modelo

Después de entrenar el modelo, predecimos los valores en el conjunto de prueba y evaluamos su rendimiento usando métricas como el error cuadrático medio (MSE) y el coeficiente de determinación (R^2).

```
# Hacer predicciones en el conjunto de prueba
y_pred = modelo.predict(X_test)

# Calcular el error cuadrático medio (MSE)
mse = mean_squared_error(y_test, y_pred)
print("Error cuadrático medio (MSE):", mse)

# Calcular el coeficiente de determinación (R²)
r2 = r2_score(y_test, y_pred)
print("Coeficiente de determinación (R²):", r2)

→ Error cuadrático medio (MSE): 0.5791649054738045
Coeficiente de determinación (R²): 0.574074219216345

# El MSE de aproximadamente 0.579 indica que las predicciones están, en promedio,
# a 0.579 unidades al cuadrado del valor real.
# Este error puede considerarse bajo o alto en función de la escala de los datos.
# Al nosotros contar con un dataset con bastantes datos, es un desempeño aceptable.
```

 $\overline{\Rightarrow}$

- # El coeficiente de determinación (R²) de 0.574 muestra que el modelo explica el 57.4% de la variabilidad en # los datos de prueba.
- # Esto sugiere que el modelo captura parcialmente la relación entre las variables, pero también existe una # variación significativa no explicada.

Conclusión General: El modelo de regresión lineal ofrece un desempeño razonable, aunque no ideal.

7. Visualizar predicciones vs valores reales

Para tener una mejor comprensión del rendimiento del modelo, graficamos los valores reales vs las predicciones.

```
# Crear la gráfica de dispersión
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, alpha=0.6, color='b')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', linewidth=2)
plt.xlabel('Valores Reales')
plt.ylabel('Predicciones')
plt.title('Predicciones vs Valores Reales')
plt.show()
```


Podemos observar que el modelo tiene un ajuste aceptable, no se ve sobre ajuste, y los datos pasan cerca de la línea.

8. Optimización del modelo: Validación cruzada y búsqueda de hiperparámetros

Para mejorar el rendimiento del modelo, vamos a utilizar un proceso de **validación cruzada** y una búsqueda exhaustiva de los **mejores hiperparámetros** con **GridSearchCV**. En este ejemplo, utilizaremos un modelo de **Regresión Ridge**.

¿Por qué Ridge?

La regresión Ridge es una variante de la regresión lineal que añade una penalización al tamaño de los coeficientes, lo que puede ayudar a evitar el sobreajuste.

a. Búsqueda de hiperparámetros con GridSearchCV

```
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
# Definir el modelo de regresión Ridge
ridge model = Ridge()
# Definimos los hiperparámetros a probar (valores de alpha)
param grid = {
    'alpha': [0.01, 0.1, 1, 10, 100, 1000]
# Configuramos GridSearchCV con validación cruzada de 5 folds
grid_search = GridSearchCV(estimator=ridge_model, param_grid=param_grid, cv=5, scoring='neg_mean_squared_erro
# Entrenaremos el modelo con GridSearchCV en el conjunto de entrenamiento
grid_search.fit(X_train, y_train)
           GridSearchCV (1) (?)
```



```
# Con el siguiente codigo obtendremos los mejores hiperparámetros y el rendimiento asociado
best_alpha = grid_search.best_params_['alpha']
best_score = -grid_search.best_score_ # Eliminaremos el signo negativo para obtener MSE positivo
print("Mejor valor de alpha:", best_alpha)
print("Mejor puntuación (MSE) en validación cruzada:", best score)
→ Mejor valor de alpha: 10
     Mejor puntuación (MSE) en validación cruzada: 0.4445030288069199
```

b. Evaluación del mejor modelo

Una vez que encontramos los mejores hiperparámetros, usamos el modelo optimizado para predecir en los datos de prueba y evaluamos su rendimiento.

```
from sklearn.metrics import mean squared error, r2 score
# Obtener el mejor modelo del GridSearch
mejor_modelo = grid_search.best_estimator_
# Hacer predicciones en el conjunto de prueba con el modelo optimizado
y pred optimizado = mejor modelo.predict(X test)
# Evaluar el rendimiento con MSE y R²
mse_optimizado = mean_squared_error(y_test, y_pred_optimizado)
r2_optimizado = r2_score(y_test, y_pred_optimizado)
print("Error cuadrático medio (MSE) del modelo optimizado:", mse optimizado)
print("Coeficiente de determinación (R2) del modelo optimizado:", r2_optimizado)
```

Error cuadrático medio (MSE) del modelo optimizado: 0.6615311447689861 Coeficiente de determinación (R2) del modelo optimizado: 0,5135009620136943 Podemos observar que se ha optimizado el MSE, pero el Coeficiente de determinación ha bajado un poco.

Haz doble clic (o pulsa Intro) para editar

c. Comparación de rendimiento

Ahora, comparemos el rendimiento del modelo optimizado con GridSearchCV y el modelo original de regresión lineal.

```
# Evaluación del modelo de regresión lineal original
y_pred_lineal = modelo.predict(X_test)
mse_lineal = mean_squared_error(y_test, y_pred_lineal)
r2_lineal = r2_score(y_test, y_pred_lineal)
print("Modelo de Regresión Lineal:")
print("MSE:", mse_lineal)
print("R2:", r2_lineal)

→ Modelo de Regresión Lineal:
     MSE: 0.5791649054738045
     R2: 0.574074219216345
# Evaluación del modelo optimizado de Ridge
y_pred_ridge = mejor_modelo.predict(X_test)
mse_ridge = mean_squared_error(y_test, y_pred_ridge)
r2_ridge = r2_score(y_test, y_pred_ridge)
print("\nModelo de Regresión Ridge Optimizado:")
print("MSE:", mse_ridge)
print("R2:", r2_ridge)
\overline{\rightarrow}
     Modelo de Regresión Ridge Optimizado:
     MSE: 0.6615311447689861
     R2: 0.5135009620136943
# Comparación
print("\nComparación de Modelos:")
print(f"Diferencia en MSE (Lineal - Ridge): {mse_lineal - mse_ridge}")
print(f"Diferencia en R² (Ridge - Lineal): {r2_ridge - r2_lineal}")
```