CHIMICA GENERALE

Corso A Anno Accademico 2024-2025

Docente: Prof. Francesco Pineider

Email: francesco.pineider@unipi.it

Indirizzo: Dipartimento di Chimica e Chimica Industriale
Via Moruzzi 13

Le Interazioni Intermolecolari

Capitolo 9

Le Forze Intermolecolari

Forze INTRAMOLECOLARI

Tengono insieme gli atomi all'interno delle molecole

Forze di legame

- Legame ionico
- Legame covalente

930 kJ

Energia richiesta per rompere tutti i legami in 1 mole di acqua (INTRA)

Forze INTERMOLECOLARI

Forze che si instaurano fra le molecole

- 1. Forze di van der Waals
- Forze dipolo-dipolo (tra cui legame a idrogeno)
- Forze dipolo-dipolo indotto
- Forze di dispersione (forze di London, dipolo indottodipolo indotto)
- 2. Forze elettrostatiche
- Forze ione-dipolo

41 kJ

Energia richiesta per vaporizzare 1 mole di acqua (INTER)

Le Forze Intermolecolari

Forze intermolecolari e passaggi di stato

Una fase è una parte omogenea di un sistema in contatto con altre parti del sistema ma da esse separata

Le Forze Intermolecolari

Effetti delle forze intermolecolari

Le interazioni intermolecolari sono alla base

- di molte proprietà dei composti puri
- dei comportamenti relativi delle molecole in soluzione
- della forma di macromolecole biologiche in soluzione e della loro attività biologica

"Misura" delle forze intermolecolari

Punto di ebollizione

Punto di fusione

 ΔH_{vap}

 ΔH_{fus}

 ΔH_{sub}

Tensione di vapore

Viscosità

Tensione superficiale

Forze attrattive tra di dipoli di molecole polari

Relazione tra momento di dipolo e temperatura di ebollizione

Tra molecole polari le interazioni di van de Waals sono più forti, quindi la temperatura di ebollizione è più alta

Il legame idrogeno è una speciale interazione dipolo-dipolo tra l'atomo di idrogeno coinvolto in un legame polare, come N-H, O-H o F-H, e un atomo elettronegativo O, N o F

Legame a idrogeno

Perchè il legame idrogeno è considerato una "speciale" interazione dipolo-dipolo?

Le Forze di van der Waals

Legame a idrogeno

Nell'acqua ciascun atomo di ossigeno può formare 2 legami a idrogeno per la presenza di due coppie elettroniche non di legame

Le molecole d'acqua nel ghiaccio sono disposte in un reticolo tridimensionale in cui l'atomo di ossigeno è legato, con geometria tetraedrica, a due atomi di idrogeno con legami covalenti e a due atomi di idrogeno con legami a idrogeno

Il legame a idrogeno e la struttura delle macromolecole biologiche

Vi sono diversi tipi di configurazioni secondarie, tutte rese stabili da PONTI IDROGENO che si instaurano tra i gruppi peptidici che la torsione interna del filamento porta uno di fronte all'altro (l'idrogeno fa da ponte tra due elementi molto elettronegativi: l'azoto e l'ossigeno)

Il legame a idrogeno e la struttura delle macromolecole biologiche

Le Forze Ione-Dipolo

Forze attrattive tra uno ione e una molecola polare

A parità di carica, sono più forti per ioni più piccoli

Le Forze Ione-Dipolo

Effetti delle forze ione-dipolo

Le interazioni ione-dipolo determinano

l'alta tendenza di molti sali a dissolversi in acqua (molecola polare)

Le Forze Ione-Dipolo

Effetti delle forze ione-dipolo

MICELLA

Le interazioni ioni-dipolo fra le teste idrofile delle catene di ioni palmitato e le molecole d'acqua sono alla base della stabilizzazione della struttura micellare (alla base del funzionamento del sapone)

Le interazioni ione-dipolo fra ioni metallici e amminoacidi stabilizzano complessi metallo-proteina

Uno ione o una molecola polari inducono un dipolo in una specie apolare

Neutral species

Cation Induced dipole

Interazione ione – dipolo indotto

Induced dipole

Interazione dipolo - dipolo indotto

Forze di dispersione: forze di attrazione che aumentano in conseguenza di un dipolo temporaneo indotto in atomi o molecole apolari

Sono dipoli indotti che interagiscono tra loro. I dipoli esistono temporaneamente e le disposizioni cambiano istante per istante

La polarizzabilità è la facilità con cui può essere distorta la distribuzione elettronica in un atomo o in una molecola

La polarizzabilità aumenta con:

- Maggior numero di elettroni
- Nuvola elettronica più diffusa
- Di solito anche con massa molare

Le forze di dispersione a volte sono maggiori delle forze dipolo-dipolo in molecole polari CH_3F b.p. = $-78.4^{\circ}C$; CCl_4 b.p. = $76.5^{\circ}C$

Le Forze di Legame)

Confronto delle energie di interazione

Forza	Modello	Base dell'attrazione	Energia (kJ/mol)	Esempio
Forze di legame				
Forze di legame ionico	+ - +	Catione-anione	400-4000	NaCl
Forze di legame covalente	0:0	Nuclei-coppia di e- condivisa	150-1100	н—н
Forze di legame metallico		Cationi-elettroni delocalizzati	75-1000	Fe

(Le Forze di Non Legame

Confronto delle energie di interazione

Forza	Modello	Base dell'attrazione	Energia (kJ/mol)	Esempio
Forze di non leg	ame (intermoleco	lari)		
Forze ione dipolo	+	Carica dello ione-carica del dipolo	40-600	Na+···· O
Forze di legame idrogeno	-A-H·····:B-	Legame polare con carica H-dipolo (alta elettronegatività di N, O, F)	10-40	:ö—н···:ö—н Н Н
Forze dipolo- dipolo	••••••	Cariche dei dipoli	5-25	I-CI I-CI
Forze ione- dipolo indotto	+	Carica dello ione- nuvola elettronica polarizzabile	3-15	Fe ²⁺ ····O ₂
Forze dipolo- dipolo indotto		Carica del dipolo- nuvola elettronica polarizzabile	2-10	H-CI····CI-CI
Forze di dispersione (forze di London)		Nuvole elettroniche polarizzabili	0,05-40	F—F····F—F

Prospetto dei tipi di forze intermolecolari

Le Forze di Non Legame

ESEMPIO:

Che tipo(i) di forze intermolecolari esistono tra ognuna delle seguenti molecole?

HBr

HBr è una molecola polare: forze dipolo-dipolo

 CH_4

CH₄ è apolare: forze di dispersione

*SO*₂

SO₂ è una molecola polare: forze dipolo-dipolo

Esempio 11.1

Quali tipi di forze intermolecolari si hanno tra le seguenti coppie di composti: (a) HBr e H_2S , (b) Cl_2 e CBr_4 , (c) I_2 e NO_3 , (d) NH_3 e C_6H_6 ?

Problema di verifica Indica i tipi di forze intermolecolari che si hanno tra le molecole (o le unità base) in ciascuna delle seguenti specie: (a) LiF, (b) CH₄, (c) SO₂.

Esempio 11.2

Quale dei seguenti composti può dare legami idrogeno con l'acqua? CH₃OCH₃, CH₄, F⁻, HCOOH, Na⁺.

Problema di verifica Quali tra le seguenti specie sono in grado di dare legami idrogeno con loro stesse? (a) H₂S, (b) C₆H₆, (c) CH₃OH.

PROBLEMA DI VERIFICA 12.2

Problema Quale delle seguenti sostanze presenta legame idrogeno?

(a) C_2H_6 (b) CH_3OH (c) CH_3C-NH_2

PROBLEMA DI APPROFONDIMENTO 12.2 Quale delle seguenti sostanze presenta legami idrogeno? Si disegnino i legami idrogeno tra due molecole della sostanza quando è appropriato.

(a) CH₃C—OH (b) CH₃CH₂OH (c) CH₃CCH₃

PROBLEMA DI VERIFICA 12.3

Problema Per ciascuna coppia di sostanze, si identifichino le forze intermolecolari dominanti in ciascuna sostanza e si scelga la sostanza con la temperatura di ebollizione più alta:

- (a) MgCl₂ o PCl₃
- (b) CH₃NH₂ o CH₃F
- (c) CH₃OH o CH₃CH₂OH
- (d) Esano (CH₃CH₂CH₂CH₂CH₂CH₃) o 2,2-dimetilbutano CH₃CCH₂CH₃ CH3

PROBLEMA DI APPROFONDIMENTO 12.3 In ciascuna coppia di sostanze, si identifichino tutte le forze intermolecolari presenti per ciascuna sostanza e si scelga la sostanza con la temperatura di ebollizione più alta:

(a) CH₃Br o CH₃F (b) CH₃CH₂CH₂OH o CH₃CH₂OCH₃ (c) C₂H₆ o C₃H₈

CH₃

Ripasso

Concetti fondamentali e parole chiave

- Differenza fra forze inter- e intra-moleolari
- Tipi di forze intermolecolari
- Forze dipolo-dipolo e legame a idrogeno
- Importanza del legame a idrogeno
- Forze ione-dipolo
- Fenomedi governati d aforze ione -dipolo
- Forze ione-dipolo indotto; dipolo-dipolo indotto
- Forze dipolo indotto-dipolo indotto o di dispersione o di London

Ripasso

Domande ed esercizi utili

Eserciziario Chang, Overby capitolo 9

Domande

Esercizi

9.1-9.4

9.7-9.20

9.6