1 Vectors in \mathbb{R}^n

1.8 Cross Product in \mathbb{R}^3

Example

Given \overrightarrow{v} , $\overrightarrow{u} \in \mathbb{R}^3$, find $\overrightarrow{w} \in \mathbb{R}^3$ that is perpendicular to both \overrightarrow{u} and \overrightarrow{v} .

Definition

The cross product of \overrightarrow{u} and \overrightarrow{v} is:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{bmatrix} u^2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix} \in \mathbb{R}^3$$

Theorem 1.1: Properties

1.
$$(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{u} = 0$$

2.
$$(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{v} - 0$$

3.
$$||\overrightarrow{u} \times \overrightarrow{v}| = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \sin \theta$$

Note: Cross product satisfies the right-hand rule

Theorem 1.2: Properties

1.
$$\overrightarrow{u} \times \overrightarrow{v} = -(\overrightarrow{u} \times \overrightarrow{v})$$

2.
$$\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{u} \times \overrightarrow{w}$$

3.
$$\overrightarrow{u} \times (c\overrightarrow{v} = c(\overrightarrow{u} \times \overrightarrow{v})) = c\overrightarrow{u} \times \overrightarrow{v}$$

Example

Problem:
$$\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \overrightarrow{e^3} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \overrightarrow{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Find $\overrightarrow{e_1} \times \overrightarrow{e_2}$

1. Find using right hand rule and coordinate system.

2. Math
$$\overrightarrow{e_1} \times \overrightarrow{e_2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \overrightarrow{e_3}$$

Example

Problem: Find $\overrightarrow{e_3} \times \overrightarrow{e_2}$

1. Find using right hand rule and coordinate system.

2. Math
$$\overrightarrow{e_1} \times \overrightarrow{e_2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \overrightarrow{e_3}$$

Example

Suppose: $\overrightarrow{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ What is $\text{proj}_{-e_1} \overrightarrow{v}$

Solution:

$$prof_{-\overrightarrow{e_1}\overrightarrow{v}} = \frac{\begin{bmatrix} 2\\3 \end{bmatrix} \cdot \begin{bmatrix} -1\\0 \end{bmatrix}}{||\begin{bmatrix} -1\\0 \end{bmatrix}||^2}$$
$$= \frac{-2}{1} \begin{bmatrix} -1\\0 \end{bmatrix}$$
$$= \begin{bmatrix} 2\\0 \end{bmatrix}$$

Definition

Let $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$ with $\overrightarrow{w} \neq 0$. The **projection of** \overrightarrow{v} **onto** \overrightarrow{w} is defined by

$$\operatorname{perp}_{\overrightarrow{w}} = \overrightarrow{v} - \operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v})$$

Properties:

- 1. $proj_{\overrightarrow{w}(\overrightarrow{v})}$ is perpendicular to $perp_{\overrightarrow{w}(\overrightarrow{v})}$
- 2. $proj_{\overrightarrow{w}}(c\overrightarrow{v}) = c \cdot proj_{\overrightarrow{w}}(\overrightarrow{v})$
- 3. $proj_{\overrightarrow{v}}(\overrightarrow{v} + \overrightarrow{u}) = proj_{\overrightarrow{v}}(\overrightarrow{v}) + proj_{\overrightarrow{v}}(\overrightarrow{v})$
- $4. \ \operatorname{proj}_{\overrightarrow{w}}(\operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v})) = \operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v})$

Proof of 4:

Proof.

$$prof_{\overrightarrow{w}}(proj_{\overrightarrow{w}}(\overrightarrow{v})) = proj_{\overrightarrow{w}}(\frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2 \overrightarrow{w}})$$

$$= \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \cdot \frac{\overrightarrow{w} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \overrightarrow{w}$$

$$= \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \overrightarrow{w}$$

$$= \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{w}||^2} \overrightarrow{w}$$

$$= proj_{\overrightarrow{w}}(\overrightarrow{v})$$

Standard Inner Project in \mathbb{C}^n

Instead of dot product, we define the Standard inner product.

Definition

The standard inner product of
$$\overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} \in \mathbb{C}^n$$
 is
$$\langle \overrightarrow{v}, \overrightarrow{w} \rangle = v_1 \overrightarrow{w_1} + v_2 \overrightarrow{w_2} + \dots + v_n \overrightarrow{w_n}$$

Definition

The length of the vector $\overrightarrow{v} \in \mathbb{C}^n$ is $||\overrightarrow{v}|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}}$

3