# Particle Filtering with Progressive Gaussian Approximations to the Optimal Importance Density

Pete Bunch and Simon Godsill

Cambridge University Engineering Department Signal Processing & Communications Lab

17th December, 2012

#### The Plan

# Particle Filtering

$$x_n \sim f(x_n|x_{n-1}) = \mathcal{N}(x_n|\phi(x_{n-1}), Q)$$
  
 $y_n \sim g(y_n|x_n) = \mathcal{N}(y_n|\psi(x_n), R)$   
 $x_1 \sim p(x_1) = \mathcal{N}(x_1|m_1, P_1),$ 

# Particle Filtering

$$x_n \sim f(x_n|x_{n-1}) = \mathcal{N}(x_n|\phi(x_{n-1}), Q)$$
  
 $y_n \sim g(y_n|x_n) = \mathcal{N}(y_n|\psi(x_n), R)$   
 $x_1 \sim p(x_1) = \mathcal{N}(x_1|m_1, P_1),$ 

Particle filter approximates:

$$p(x_{1:n}|y_{1:n}) \propto f(x_n|x_{n-1})g(y_n|x_n)p(x_{1:n-1}|y_{1:n-1})$$

- ullet Select an (n-1) particle and sample a new state,  $x_n^{(i)} \sim q(x_n|x_{n-1}^{(i)})$
- Update weight  $w_n^{(i)} = \frac{f(x_n^{(i)}|x_{n-1}^{(i)})g(y_n|x_n^{(i)})}{q(x_n^{(i)}|x_{n-1}^{(i)})}$ .



## Importance Densities

### Importance Densities

#### Bootstrap filter

$$q(x_n|x_{n-1})=f(x_n|x_{n-1}).$$

## Importance Densities

Bootstrap filter

$$q(x_n|x_{n-1})=f(x_n|x_{n-1}).$$

Optimal Importance Density

$$q(x_n|x_{n-1}) = \frac{f(x_n|x_{n-1})g(y_n|x_n)}{\int f(x_n|x_{n-1})g(y_n|x_n)dx_n}.$$

Approximate by linearisation or sigma-point approximation.

# An Example



# An Example - Linearisation



## An Example - Unscented Transform



## Progressive Principle

Introduce the observation gradually using a stretch of "pseudo-time",  $\lambda \in [0,1].$ 

Smooth sequence of target distributions:

$$\tilde{\pi}_{n,\lambda}(x_{1:n-1},x_{n,\lambda}) = g(y_n|x_{n,\lambda})^{\lambda} f(x_{n,\lambda}|x_{n-1}) p(x_{1:n-1}|y_{1:n-1})$$

Smooth sequence of optimal importance densities:

$$\pi_{n,\lambda}(x_{n,\lambda}|x_{n-1}^{(j)}) = g(y_n|x_{n,\lambda})^{\lambda} f(x_{n,\lambda}|x_{n-1}^{(j)})$$

## Partially Linear Gaussian Models

$$f(x_n|x_{n-1}) = \mathcal{N}(x_n | \phi(x_{n-1}), Q)$$
$$g(y_n|x_n) = \mathcal{N}(y_n | Hx_n, R)$$

Optimal importance density is analytically tractable.

$$\pi_{\lambda}(x_{\lambda}|x_{n-1}) = \mathcal{N}(x_{\lambda}|m_{\lambda}, P_{\lambda}),$$

$$P_{\lambda} = \left[ Q^{-1} + \lambda H^{T} R^{-1} H \right]^{-1}$$
  

$$m_{\lambda} = P_{\lambda} \left[ Q^{-1} \phi(x_{n-1}) + \lambda H^{T} R^{-1} y_{n} \right].$$

### Partially Linear Gaussian Models

Any Gaussian random variable may be expressed as,

$$x = m + P^{\frac{1}{2}}z$$
$$z \sim \mathcal{N}(z|0,I).$$

Progress particle from  $\lambda_0$  to  $\lambda_1$  with a linear transformation.

$$x_{\lambda_1} = m_{\lambda_1} + P_{\lambda_1}^{\frac{1}{2}} P_{\lambda_0}^{-\frac{1}{2}} (x_{\lambda_0} - m_{\lambda_0}).$$

# Partially Linear Gaussian Models



#### Nonlinear Gaussian Models

Approximate the optimal importance density with a Gaussian at each point in pseudo-time.

$$\pi_{\lambda}(x_{\lambda}|x_{n-1}) \approx \mathcal{N}(x_{\lambda}|m_{\lambda}, P_{\lambda})$$

To update from  $\lambda_0$  to  $\lambda_1$ ,

$$\pi_{\lambda_1}(x) \propto \pi_{\lambda_0}(x)g(y_n|x)^{\lambda_1-\lambda_0}$$
  
=  $\mathcal{N}(x|m_{\lambda_0}\lambda_0, P_{\lambda_0})\mathcal{N}(y_n|\psi(x), R)^{\lambda_1-\lambda_0}$ .

#### Nonlinear Gaussian Models

Approximate with linearisation.

$$\hat{H}_{x_{\lambda_0}} = \frac{\partial \psi}{\partial x} x_{\lambda_0}$$

$$\mu_{\lambda_0} = \psi(x_{\lambda_0}) + \hat{H}_{x_{\lambda_0}}(m_{\lambda_0} - x_{\lambda_0})$$

$$\Sigma_{\lambda_0} = \hat{H}_{x_{\lambda_0}} P_{\lambda_0} \hat{H}_{x_{\lambda_0}}^T$$

$$C_{\lambda_0} = P_{\lambda_0} \hat{H}_{x_{\lambda_0}}^T$$

$$m_{\lambda_1} = m_{\lambda_0} + C_{\lambda_0} \left( \Sigma_{\lambda_0} + \frac{R}{\lambda_1 - \lambda_0} \right)^{-1} (y_n - \mu_{\lambda_0})$$

$$P_{\lambda_1} = P_{\lambda_0} - C_{\lambda_0} \left( \Sigma_{\lambda_0} + \frac{R}{\lambda_1 - \lambda_0} \right)^{-1} C_{\lambda_0}^T$$

## Weight Evolution

• Existing particle at pseudo time  $\lambda_0$ ,

$$\left\{x_{1:n-1}^{(i)}, x_{\lambda_0}^{(i)}, w_{\lambda_0}^{(i)}\right\} \sim \eta(x_{1:n-1}, x_{\lambda_0}).$$

ullet ... is replaced by new particle at  $\lambda_1$ ,

$$\left\{x_{1:n-1}^{(i)}, x_{\lambda_1}^{(i)}, w_{\lambda_1}^{(i)}\right\} \sim \eta(x_{1:n-1}, x_{\lambda_1}).$$

• Standard change of variables formula,

$$\eta(x_{1:n-1},x_{\lambda_1}) = \eta(x_{1:n-1},x_{\lambda_0}) \times \left| \frac{\partial x_{\lambda_0}}{\partial x_{\lambda_1}} \right|.$$

Hence weight update,

$$w_{\lambda_1} = w_{\lambda_0} \times \frac{g(y_n|x_{\lambda_1})^{\lambda_1} f(x_{\lambda_1}|x_{n-1})}{g(y_n|x_{\lambda_0})^{\lambda_0} f(x_{\lambda_0}|x_{n-1})} \times \sqrt{\frac{|P_{\lambda_1}|}{|P_{\lambda_0}|}}.$$

## Relationship to Other Methods

Gradual introduction of likelihood underlies numerous existing particle methods,

 LIST BRIDGING DISTRIBUTION, ANNEALING, TEMPERING, PROGRESSIVE CORRECTION PAPERS.

Distinguishing features of the new progressive proposal method:

- Particles moved deterministically.
- Move one particle at a time no intermediate interaction steps needed.
- Adaptive step-size control for each particle.

# Simulations - A Tracking Problem

$$x_n = \begin{bmatrix} p_n^T & v_n^T \end{bmatrix}^T$$

Near-constant velocity model.

$$y_n = \begin{bmatrix} \theta_n & r_n & h_n & s_n \end{bmatrix}^T$$
.

$$\begin{aligned} \theta_n &= \arctan\left(\frac{p_{n,1}}{p_{n,2}}\right) \\ r_n &= \sqrt{p_{n,1}^2 + p_{n,3}^2 + p_{n,3}^2} \\ h_n &= p_{n,3} - T(p_{n,1}, p_{n,2}) \\ s_n &= \frac{p_n \cdot v_n}{r_n}, \end{aligned}$$

# Simulations - Terrain Map





#### Simulations - Results



#### Simulations - Results

| Algorithm                       | $N_F$ | ESS  | RMSE |
|---------------------------------|-------|------|------|
| Bootstrap Proposal              | 6000  | 1.0  | 78.6 |
| Unscented Kalman Proposal       | 460   | 2.4  | 70.2 |
| Gaussian Local Maximum Proposal | 10    | 3.1  | 62.9 |
| Progressive Proposal            | 180   | 56.4 | 22.3 |

## Summary

- The progressive proposal method samples from an effective approximation of the optimal importance density.
- Particles sampled from the transition density, then moved deterministically with a series of approximately optimal steps.
- Lower errors and better sample sizes when filtering with challenging nonlinear models.

17th December, 2012