

Predicting Songs Genres

A machine learning model for identifying song genre

Ziyad M. Subyani

To predict genre of a song

Too many genres

Understanding yourself and personality more

Tools:

Understanding the Audio Data

- Librosa: Mother of Audio files
- Songs were translated to Wave forme
- using Librosa we can see what the audio file look like

- Cleaning data
- Compressing the data for visualization
- Data preparation
- Fitting the data in models and measure the performance

Visualizing data

Two songs comparison

Disco has more rolloff than Rock has

Disco has more spectral centered than Blues

Tempos for different genres

Data scatter plot

XGBoost

plues	157	2	7	2	1	7	4	0	1	1	- 17
dassical	0	194	3	0	0	8	0	0	1	1	- 17
country	13	2	159	3	1	10	1	1	6	2	- 15
disco	2	2	4	162	3	1	5	3	4	6	- 12
Truth hiphop	0	1	4	1	175	0	5	7	3	1	- 10
Tr	6	14	5	0	0	185	1	0	2	2	
metal	0	1	0	2	3	0	177	0	5	9	- 75
dod	0	0	13	5	1	5	0	168	1	4	- 50
reggae	0	1	6	2	2	1	1	12	180	0	- 25
rock	8	0	7	6	0	5	11	3	9	159	-0
	blues	dassical	country	disco	hiphop Pred	jazz icted	metal	pop	reggae	rock	-0

senIq	161	2	5	6	1	3	1	0	2	1	
classical	1	197	1	0	0	5	0	0	0	3	- 175
country	7	1	179	2	1	5	0	0	0	3	- 150
disco	5	2	4	170	0	0	1	3	4	3	- 125
Truth hiphop	1	2	3	1	184	0	0	3	2	1	- 100
Tr	3	10	6	0	0	194	0	0	1	1	
metal	1	1	1	1	2	0	181	0	1	9	- 75
dod	0	0	3	5	2	3	0	176	1	7	- 50
reggae	2	0	3	0	1	2	0	8	188	1	- 25
rock	7	0	3	4	4	0	4	1	2	183	-0
	blues	classical	country	disco	hiphop Pred	jazz icted	metal	pop	reggae	rock	-0

Conclusion and future upgrades

Conclusion

- XGboost preformed better than random forest.
- The overall performance of the models were good on data that has only 3 seconds long of information.
- Some genres has some similarity like rock and metal.

Future upgrades:

- Use Spotify API to get more music data.
- Recommendation system using Annoy.
- Deploy the model online so that anyone can use it and enjoy.

Thank you all

Any Questions?

