TD n°3

Exercice 1. Dterminer par la mthode des trapzes puis par celle de Simpson $\int_0^{\frac{\pi}{2}} f(x)dx$ sur la base du tableau suivant :

	\overline{x}	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
f	(x)	0	0.382683	0.707107	0.923880	1

Ces points d'appui sont ceux donnant $\sin x$, comparer alors les rsultats obtenus avec la valeur exacte.

Exercice 2. On lance une fuse verticalement du sol et l'on mesure pendant les premires 80 secondes l'acclration γ :

t (en s)	0	10	20	30	40	50	60	70	80
$\gamma \left(en m/s^2\right)$	30	31.63	33.44	35.47	37.75	40.33	43.29	46.70	50.67

Calcule la vitesse V de la fuse l'instant t = 80s, par la mthode des trapzes puis par Simpson.

Exercice 3. 1. Calculer l'aide de la mthode des trapzes l'intgrale $I = \int_0^{\pi} \sin(x^2) dx$ avec le nombre de points d'appui n = 5 puis n = 10. Conclusion.

- 2. Trouver le nombre n de subdivisions ncessaires de l'intervalle d'intervallo $[-\pi, \pi]$, pour valuer 0.510^{-3} prs, gree la mthode de Simpson, l'intervalle $\int_{-\pi}^{\pi} \cos(x) dx$.
- 3. Calculer $\int_1^2 \sqrt{x} dx$ par la formule des rectangles en domposant l'intervalle d'intervalle d'intervall

Exercice 4. On consider l'integrale $I = \int_{1}^{2} \ln(x) dx$.

- 1. Calculer la valeur exacte de I.
- 2. valuer numriquement cette intgrale par la mthode des trapzes avec n=4 sous-intervalles.
- 3. Pourquoi la valeur numrique obtenue la question prodente est-elle infrieure exacte? Est-ce vrai quelque soit n? Justifier la rponse. (On pourra s'aider par un dessin.)
- 4. Quel nombre de sous-intervalles n faut-il choisir pour avoir une erreur infrieure 10^{-2} ? On rappelle que l'erreur de quadrature associe s'crit, si $f \in \mathcal{C}^2([a,b])$,

$$|E_n| \le \frac{(b-a)}{12} h^2 \sup_{x \in [a,b]} |f''(x)|$$