Einführung in die Geometrie und Topologie Blatt 4

Jendrik Stelzner

13. Mai 2014

Aufgabe 4.1:

1.

Es sei $W\subseteq X\times Y$ offen und beliebig aber fest. Da die Mengen der Form $U\times V\subseteq X\times Y$ mit $U\subseteq X$ offen und $V\subseteq Y$ offen eine topologische Basis von $X\times Y$ bilden, gibt es offene Mengen $\{U_i|i\in I\}\subseteq X$ und $\{V_i|i\in I\}\subseteq Y$ mit

$$W = \bigcup_{i \in I} (U_i \times V_i).$$

Daher sind

$$p_1(W) = \bigcup_{i \in I} U_i \subseteq X \text{ und } p_2(W) = \bigcup_{i \in I} V_i \subseteq Y$$

in den jeweiligen Räumen offen. Wegen der Beliebigkeit von W folgt, dass p_1 und p_2 offen sind.

Aufgabe 4.2:

Lemma 1. Seien X_1, X_2, T_1, T_2 topologische Räume, $f_1: X_1 \to T_1$ und $f_2: X_2 \to T_2$ stetige Abbildungen. Dann ist auch die Abbildung

$$f_1 \times f_2 : X_1 \times X_2 \to T_1 \times T_2, (x_1, x_2) \mapsto (f_1(x_1), f_2(x_2))$$

stetig. Sind f_1 und f_2 offen, so ist auch $f_1 \times f_2$ offen.

Beweis. Wir betrachten das kommutative Diagramm

wobei π_1, π_2, τ_1 und τ_2 die entsprechenden kanonischen Projektionen bezeichnet. Da $\tau_1 \circ (f_1 \times f_2) = f_1 \circ \pi_1$ und $\tau_2 \circ (f_1 \times f_2) = f_2 \circ \pi_2$ stetig sind, ist es auch $f_1 \times f_2$ (siehe Aufgabe 3).

Angenommen, f_1 und f_2 sind offen. Für offene Mengen $U\subseteq X_1, V\subseteq X_2$ ist dann auch $f_1(U)\subseteq T_1$ und $f_2(V)\subseteq T_2$ offen, also

$$(f_1 \times f_2)(U \times V) = f_1(U) \times f_2(V) \subseteq T_1 \times T_2$$

offen. Da die Mengen der Form $U \times V$ mit offenen Mengen $U \subseteq X_1$ und $V \subseteq X_2$ eine topologische Basis von $X_1 \times X_2$ bilden, zeigt dies die Offenheit von $f_1 \times f_2$. \square

Für alle $j \in I$ bezeichne

$$\iota_j: X_j \to \coprod_{i \in I} X_i, x \mapsto (x, j)$$

und

$$\iota'_j: X_j \times Y \to \coprod_{i \in I} (X_i \times Y), (x, y) \mapsto ((x, y), j)$$

die entsprechenden kanonischen Inklusionen. Da ι_j für alle $j\in I$ stetig ist, ist nach Lemma 1 für alle $j\in I$ auch die Abbildung

$$\iota_j \times \mathrm{id}_Y : X_j \times Y \to \left(\coprod_{i \in I} X_i\right) \times Y$$

$$(x, y) \mapsto ((x, j), y).$$

stetig. Deshalb gibt es nach der universellen Eigenschaft des Koproduktes eine stetige Abbildung

$$f: \coprod_{i \in I} (X_i \times Y) \to \left(\coprod_{i \in I} X_i\right) \times Y,$$

so dass das Diagramm

für alle $j \in I$ kommutiert. Dabei ist für alle $j \in I$ und $x \in X_j, y \in Y$

$$f(((x,y),j))=f(\iota_j'(x,y))=(\iota_j\times\operatorname{id}_Y)(x,y)=((x,j),y).$$

f ist offen: Seien $j \in I$ und $U \subseteq X_j \times Y$ offen beliebig aber fest. Da ι_j per Definition des Koproduktes offen ist, und die Identität id $_Y$ offenbar ebenfalls offen ist, ist nach Lemma 1 auch $\iota_j \times \operatorname{id}_Y$ offen. Daher ist

$$f(U \times \{j\}) = f(\iota'_j(U)) = (\iota_j \times \mathrm{id}_Y)(U)$$

offen.

Da die Mengen der Form $U \times \{j\} \subseteq \coprod_{i \in I} (X_i \times Y)$ mit $j \in I$ und $U \subseteq X_j$ offen eine topologische Basis von $\coprod_{i \in I} (X_i \times Y)$ bilden, zeigt dies die Offenheit von f.

Da f offenbar auch bijektiv ist, ist f ein Homö
omorphismus.

Aufgabe 4.3:

Für alle $j \in I$ bezeichnen wir die kanonische Projektion $\prod_{i \in I} X_i \to X_j$ mit π_j , und für alle $i \in I$ setzen wir $f_i := f \circ \pi_i$. Ist f stetig, so ist f_i als Verknüpfung stetiger Funktionen für alle $i \in I$ stetig.

Angenommen f_i ist für alle $i\in I$ stetig. Für paarweise verschiedene Indizes $i_1,\ldots,i_n\in I$ und beliebige offene Mengen $U_1\in X_{i_1},\ldots,U_n\in X_{i_n}$ setzen wir

$$P_{i_1,\dots,i_n}^{U_1,\dots,U_n} = \prod_{i\in I} \begin{cases} U_k & \text{falls } i=i_k, \\ X_i & \text{sonst,} \end{cases} \subseteq \prod_{i\in I} X_i.$$

Da die Mengen dieser Form eine topologische Basis von $\prod_{i\in I}X_i$ bilden, genügt es zum Nachweis der Stetigkeit von f zu zeigen, dass

$$f^{-1}\left(P_{i_1,\dots,i_n}^{U_1,\dots,U_n}\right) \subseteq T$$

offen ist für alle paarweise verschiedenen Indizes $i_1, \ldots, i_n \in I$ und beliebige offene Mengen $U_1 \in X_{i_1}, \ldots, U_n \in X_{i_n}$.

Seien also i_1,\ldots,i_n und U_1,\ldots,U_n wie zuvor beliebig aber fest. Wir bemerken, dass

$$P_{i_1,\dots,i_n}^{U_1,\dots,U_n} = \bigcap_{k=1}^n \pi_{i_k}^{-1}(U_k),$$

und deshalb

$$f^{-1}\left(P^{U_1,\dots,U_n}_{i_1,\dots,i_n}\right) = f^{-1}\left(\bigcap_{k=1}^n \pi_{i_k}^{-1}(U_k)\right) = \bigcap_{k=1}^n (\pi_{i_k}\circ f)^{-1}(U_k) = \bigcap_{k=1}^n f_{i_k}^{-1}(U_k).$$

Da U_k für alle $1 \leq k \leq n$ offen ist, und die f_i alle stetig sind, ist $f_{i_k}^{-1}(U_k)$ für alle $1 \leq k \leq n$ offen, also $f^{-1}(P_{i_1,\dots,i_n}^{U_1,\dots,U_n})$ als endlicher Schnitt offener Mengen offen. Wegen der Beliebigkeit von i_1,\dots,i_n und U_1,\dots,U_n zeigt dies die Stetigkeit von f.