

INTAKE CROSS-SHEETS FOR GAS CHROMATOGRAPHIC OVEN

1 **Technical Field**

2 The technical field relates to a gas chromatographic oven, and, in particular, to
3 oven cooling efficiency.

4 **Background**

5 Gas chromatography (GC) is a physical method for the separation, identification,
6 and quantification of chemical compounds. A sample mixture is injected into a flowing
7 neutral carrier stream and the combination flows through a tube or chromatographic
8 column. The inner surface of the column is coated or packed with a stationary phase. As
9 the sample mixture and carrier stream flow through the column, the components within
10 the mixture are retained by the stationary phase to varying degrees depending on the
11 relative volatility of the individual components and on their respective affinities for the
12 stationary phase. Different chemical compounds are retained for different times by the
13 stationary phase. When the individual mixture components are released into the carrier
14 stream by the stationary phase, the components are swept towards the column outlet to be
15 detected and measured by a detector. The specific compounds in the components of the
16 mixture can be identified and their relative concentrations determined by measuring peak
17 retention times and peak areas, respectively.

18 A current trend in chromatography is towards improving sample cycle time to
19 increase customer throughput. Cycle time includes sample injection time, oven heating
20 time, sample separation time, and oven cooling or equilibration time. To decrease sample
21 residence time, ovens are increasingly becoming more powerful (higher wattage coils)
22 and smaller (lower thermal mass). As the size of the oven shrinks, often the ductwork for
23 the oven's intake and exhaust becomes more complex in order to fit in smaller places or
24 to be located more remotely from the oven.

25 A geometry that is utilized in small and fast GC ovens includes one or more axial
26 boxer intake fans connected to an intake duct of convergent geometry. The intake fans
27 supply fresh air to the GC oven through the converging intake duct. The use of a
28 converging intake duct allows larger intake fans located remotely from a small oven to be
29 used during cool-down. However, further improvements can be made to this system to
30 cool the oven more quickly.

1 **Summary**

2 An oven intake for a gas chromatographic (GC) oven includes an intake duct
3 having a convergent geometry to accommodate a small oven. The intake duct has one or
4 more intake fans that supply airflow to the GC oven. The airflow originates from the one
5 or more intake fans and flows through the intake duct into the GC oven. The oven intake
6 further includes one or more cross-sheets positioned inside the intake duct parallel to a
7 direction of the airflow flowing into the GC oven. The one or more cross-sheets reduce
8 spin of the airflow originating from the one or more intake fans and guide the airflow
9 through the intake duct into the GC oven.

10 A system for providing intake cross-sheets for a GC oven includes an intake duct
11 having a convergent section to accommodate the GC oven located at one end of the intake
12 duct. The system further includes one or more intake fans located remotely from the GC
13 oven at an opposite end of the intake duct. The one or more intake fans supply airflow to
14 the GC oven. The system further includes one or more cross-sheets positioned inside the
15 intake duct parallel to a direction of the airflow flowing into the GC oven. The one or
16 more cross-sheets reduce spin of the airflow originating from the one or more intake fans
17 and reduce frictional losses of the airflow flowing into the GC oven.

18 A method for cooling an oven includes providing one or more cross-sheets inside
19 an intake duct parallel to a direction of airflow flowing into the oven. The intake duct has
20 a convergent geometry to accommodate the oven and has one or more intake fans located
21 remotely from the oven. The one or more intake fans supply airflow for the oven. The
22 utilization of the one or more cross-sheets reduces spin of the airflow originating from the
23 one or more intake fans and reduces a cool-down time of the oven.

24 **Description of the Drawings**

25 The preferred embodiments of a system and method for providing intake cross-
26 sheets for a gas chromatographic (GC) oven will be described in detail with reference to
27 the following figures, in which like numerals refer to like elements, and wherein:

28 Figure 1 illustrates an exemplary oven intake with a converging intake duct and an
29 intake fan;

30 Figure 2 illustrates a cutaway side view of the exemplary oven intake of Figure 1
31 without cross-sheets showing the potential tendency for airflow spin;

32 Figure 3A illustrates a front view of the exemplary oven intake of Figure 1 with
33 the intake fan;

1 Figure 3B illustrates another front view of the exemplary oven intake of Figure 1
2 without the intake fan;

3 Figure 4 illustrates a cutaway top view of the exemplary oven intake of Figure 1
4 showing the location of cross-sheets inside the intake duct;

5 Figure 5 illustrates an exemplary cross-sheet used in the exemplary oven intake of
6 Figure 1 to improve airflow speed; and

7 Figure 6 illustrates a cutaway side view of the exemplary oven intake of Figure 1
8 showing the direction of airflow into a GC oven.

9 **Detailed Description**

10 Current small and fast gas chromatographic (GC) ovens may use a converging
11 intake duct to connect remotely located larger intake fans to a small oven. However, a
12 converging geometry downstream of an axial flow fan generally sustains airflow spin
13 induced by the axial flow fan that can lead to significant frictional losses. This effect, in
14 the specific case of conical geometry, is discussed in Bleier, Frank, Fan Handbook:
15 Selection, Application, and Design, McGraw-Hill, 1998 (pp 1.09-1.11), but may be
16 extended to include all geometry of convergent shape. The induced friction greatly
17 reduces the speed of the airflow and the volume of fresh air flowing into the oven from
18 the intake fans.

19 An apparatus, system and method reduce the cool down time of GC ovens by
20 supplying larger volumes of air through oven intake ducts. The system and method
21 provide intake cross-sheets in an oven intake duct to disrupt and reduce airflow spin,
22 increasing the flow rate of fresh air into the GC oven and reducing the overall cool-down
23 time of the GC oven. In addition, because the improved airflow allows the oven wall
24 temperature to quickly match the oven air temperature, the noise in the temperature signal
25 may be reduced. As a result, the GC oven can reach an equilibrium “ready” state faster.
26 Furthermore, the utilization of the cross-sheets may allow for flexibility in the design of a
27 fast GC oven – specifically in the location and shape of the intake duct – without loss of
28 performance. This flexibility may become increasingly significant as GC ovens continue
29 on the trend of becoming smaller and faster.

30 Figure 1 illustrates an exemplary oven intake 100 with a converging intake duct
31 120 and an intake fan 140 located upstream at one end of the converging intake duct 120.
32 The intake fan 140 may be an axial boxer fan. The intake fan 140 supplies fresh air to a
33 GC oven (not shown) located remotely from the intake fan 140 at an opposite end of the
34 converging intake duct 120. As shown in Figure 1, the section of the intake duct 120 that

1 is connected to the intake fan 140 has an approximately square cross-section 190. The
2 intake duct 120 then converges to a rectangular cross-section 195 extending to the GC
3 oven. As an example, an intake duct on an Agilent 6850GC oven is a duct of
4 approximately 92 mm square cross-section (to accommodate a 92 mm boxer fan), that
5 converges to a rectangle of 35 mm x 92 mm cross-section (to fit behind the keyboard and
6 display of a GC). The intake duct 120 may or may not have a conical shape.

7 Figure 2 illustrates a cutaway side view of the exemplary oven intake 100 without
8 cross-sheets showing the potential tendency for airflow spin 210. The intake duct 120 is
9 shown with a convergent geometry 165. The intake fan 140 supplies airflow in the
10 direction 180. The airflow flows through the converging intake duct 120 and into the GC
11 oven in the direction 185. An intake flap 250 directs the airflow direction 185. Because
12 the intake duct 120 has a non-uniform converging cross-section, the spin 210 induced by
13 the axial intake fan 140 about an axis 170 may be sustained through the length of the
14 intake duct 120. Airflow spin 210 may originate from a source other than the intake fan
15 140. The spin 210 may increase the effective distance the airflow travels, which in turn
16 increases the frictional losses the airflow experiences due to interaction with the intake
17 duct wall. This increased friction decreases the airflow flowing into the GC oven. To
18 increase the velocity and volume of the airflow flowing into the GC oven, one or more
19 cross-sheets 110 (shown in Figure 3B) may be added to the intake duct 120 to reduce the
20 airflow spin 210.

21 Figure 3A illustrates a front view of the exemplary oven intake 100 with the
22 intake fan 140. Figure 3B illustrates another front view of the exemplary oven intake 100
23 without the intake fan 140. Two cross-sheets 110 are shown in Figure 3B. The cross-
24 sheets 110 are located inside the intake duct 120 near the intake fan 140, such as 2 cm
25 from the fan 140, and parallel to the direction of the airflow. The cross-sheets 110 shown
26 here are trapezoidal in shape, with bases slightly undersized from 35 mm and 92 mm, to
27 approximate the convergent section of the oven intake 100. However, other shapes and
28 sizes of cross-sheets may be employed. The cross-sheets 110 may be secured to the
29 intake duct wall by riveting metal tabs 115. If only one cross-sheet is used, the cross-
30 sheet may be placed off-centered, for example, at one-third of the width of the intake duct
31 120 or one-third the diameter of the intake fan 140, to disrupt the spin 210. Additional
32 cross-sheets may be used. For example, additional cross-sheets may be added alongside
33 the cross-sheets 110 shown. One, two, three or more may be added. Also, cross-sheets
34 may be added orthogonal to or at right angles to the cross-sheets 110 shown. A preferred

1 embodiment is two cross-sheets placed in an “=” configuration at one-third and two-thirds
2 of the width of the intake duct 120 or intake fan 140 diameter. Other arrangements of
3 cross-sheets are possible with the same beneficial effect.

4 Figure 4 illustrates a cutaway top view of the exemplary oven intake 100 showing
5 the location of the cross-sheets 110 inside the intake duct 120. The intake fan 140
6 supplies airflow in the direction 180. The airflow flows through the converging intake
7 duct 120 into the GC oven. As noted above, the intake fan 140 may induce airflow spin
8 210 about an axis 170. The utilization of the cross-sheets 110 disrupts 220 the tendency
9 for the airflow to maintain spin 210 so that the airflow is guided 230 through the intake
10 duct 120 to reach the GC oven. As a result, the frictional losses may be reduced because
11 the distance over which any piece of fluid interacts with the intake duct wall is reduced.
12 The reduced frictional losses may lead to increased airflow speed and consequently more
13 fresh air flowing into the GC oven during cool-down. The cross-sheets 110 preferably
14 are located close to the intake fan 140 to guide the airflow as soon as possible, such as 2
15 cm from the intake fan 140.

16 Figure 5 illustrates an exemplary cross-sheet 110 used in the exemplary oven
17 intake 100 to improve airflow speed. The metal tabs 115 are riveted to secure the cross-
18 sheets 110 to the intake duct wall. Other methods of securing, for example, screws, bolts,
19 etc., may be used. The cross-sheets 110 shown in Figure 5 has a converging shape 160
20 that conforms to and approximates the intake duct’s convergent geometry 165.

21 Figure 6 illustrates a cutaway side view of the exemplary oven intake 100
22 showing the direction 185 of airflow into the GC oven. As stated above, the intake fan
23 140 supplies airflow in the direction 180. The airflow is guided 230 by the cross-sheets
24 110 located inside the intake duct 120 directly in front of the intake fan 140. The guided
25 airflow flows through the converging intake duct 120 into the GC oven in the direction
26 185. The utilization of the cross-sheets 110 reduces the airflow spin 210 induced by the
27 intake fan 140 and sustained by the convergent geometry 165 of the intake duct 120,
28 increasing the flow rate and volume of fresh air into the GC oven.

29 The overall cool-down time of the GC oven may be reduced as the flow rate of
30 fresh air into the GC oven is increased. Also, the noise in the temperature signal may be
31 reduced because the improved airflow allows the oven wall temperature to quickly match
32 the oven air temperature. As a result, the GC oven can reach an equilibrium “ready” state
33 faster. In addition, the utilization of the cross-sheets 110 may allow for flexibility in the
34 design of a fast GC oven without loss of performance. For example, converging intake

1 ducts may be used to allow larger intake fans located remotely from a small oven to be
2 used during cool-down without suffering frictional losses induced by the airflow spin
3 210.

4 The following experiments illustrate the benefit of using the cross-sheet 110,
5 specifically measured as the flow rate of air exhausted from the GC oven into open air.

6 One type of experiment is a battery of airflow measurements. In this experiment,
7 an oven without insulation or support, such as an Agilent 6850 inner oven, is equipped
8 with an axial fan 140 and one or more cross-sheets 110. The cross-sheets are placed in
9 various locations in the oven intake duct 120. The oven stirring fan is not present in this
10 experiment. The oven is sealed with a plastic cover.

11 The flow rate of air exhausted from the oven is measured using both a vane
12 anemometer and a hot-wire anemometer. An anemometer is an instrument for measuring
13 and indicating airspeed. Because the airspeed varies over the cross-section of the oven's
14 exhaust duct (not shown), four points are taken to generate an average velocity. The
15 experiment is performed at room temperature and under standard pressure. Table 1
16 illustrates the results of this experiment.

17 **Table 1**

Number of Cross-Sheets	Airspeed (m/s)	Airspeed (m/s)
	Vane Anemometer	Hot-wire Anemometer
0	3.300	3.1725
1	3.475	N/A
2	3.650	3.450
3	3.675	3.425

18

19 Although some discrepancy exists over absolute values between the vane
20 anemometer and the hot-wire anemometer, the trend is evident. The airspeed increases
21 with the presence of the cross-sheets 110. For this particular application little if any
22 improvement is shown when using more than two cross-sheets 110. As a result, the
23 preferred number of cross-sheets is two.

24 For the special case of one cross-sheet, the cross-sheet is off-centered, for
25 example, at one-third of the width of the intake duct, to generate the beneficial result
26 illustrated in Table 1. If the cross-sheet is centered along the width of the intake duct, the
27 cooling time actually increases.

A second type of experiment is more application specific. This experiment compares the cooling profile of GC ovens, such as Agilent 6850GC prototype ovens, that are equipped with one or more cross-sheets 110 with the same GC ovens without the cross-sheets 110. Table 2 illustrates the cool-down time of an Agilent prototype oven, which is geometrically similar to a standard Agilent 6850GC oven with the exception of the wall material. In addition, a more efficient intake fan 140 is used in this experiment, and the observed benefit of two cross-sheets 110 is apparent as shown below in Table 2.

Table 2
Prototype Oven with More Efficient Fan

Cross-sheets?	Cool-down Time (min)
No	4.07
Yes	3.40

As shown in this experiment, the addition of two cross-sheets 110 inside the intake duct 120 reduces the cool-down time of the GC oven by more than 16%.

13 While the system and method for providing intake cross-sheets for a GC oven
14 have been described in connection with an exemplary embodiment, those skilled in the art
15 will understand that many modifications in light of these teachings are possible, and this
16 application is intended to cover variations thereof.