Фамилия студента_	
Группа студента_	

Лабораторная работа №1

Простейшие компоненты электрических цепей

Цель работы: Ознакомление с измерительными приборами и стендом, изучение свойств реальных источников энергии и линейных компонентов электрической цепи при постоянных токах и напряжениях.

Подготовка к работе

1. Ознакомиться с составом стенда, техническими характеристиками и правилами эксплуатации измерительных приборов.

Выполнение работы

- 2. Измерение внешней вольт-амперной характеристики (ВАХ) реального источника постоянного напряжения
- 2.1. Собрать электрическую цепь рис. 1.1

Рис. 1.1 – Схема для измерения внешней ВАХ реального источника

2.2. С помощью вольтметра измерить напряжение на зажимах источника, устанавливая величину сопротивления нагрузки от 50 до 900 Ом, а также напряжение на разомкнутых зажимах источника (режим холостого хода $R \to \infty$). По данным измерений рассчитать ток. Результаты измерений и расчетов свести в таблицу 1.1.

Таблица 1.1

R, Om	50	100	150	200	250	300	400	500	600	700	800	900	8
U, B													
I, MA													

2.3. Построить измеренную внешнюю вольт-амперную характеристику реального источника. По полученной характеристике определить внутреннее сопротивление источника $r_{\rm BH}$.

Граф. 1.1 - Вольт-амперная характеристика реального источника

2.4. Нарисовать последовательную и параллельную схемы замещения реального источника, рассчитать их параметры U_p , I_{κ} , $r_{\kappa H}$, $g_{\kappa H}$.

3.Измерение тока и напряжения в схемах

- 3.1. Согласно варианту аналитически рассчитать коэффициент деления резистивного делителя напряжения рис. 1.2 $(K^V = \frac{U_2}{U_1})$
 - 3.2.Нарисовать схему рис.1.2 с источником постоянного напряжения и необходимыми приборами, для измерения напряжений U_1 и U_2

Рис. 1.2 – Схема резистивного делителя напряжения

- 3.3.Собрать схему рис.1.2. На входе схемы включить источник постоянного напряжения. Измерить напряжения U_1 и U_2 . Рассчитать коэффициент деления напряжения $K^V = \frac{U_2}{U_1}$ и сравнить с аналитически вычисленным значением в п. 3.1.
- 3.4.Собрать схему рис 1.3 с источник постоянного напряжения на входе.

Рис 1.3-Схема резистивного делителя токов

Величину сопротивления R задать в соответствии с нижеследующей таблицей 1. 2, согласно варианту (N – младшая значащая цифра номера стенда).

Таблица 1. 2

N	0	1	2	3	4	5	6	7	8	9
R, Om	100	200	250	300	400	500	600	700	800	900

- 3.5. Измерить напряжения $U_{1,}U_{2}$, U. По показаниям вольтметров определить токи I_{1} , I_{2} , I.
- 3.6. Используя вторую формулу разброса, проверить полученный результат.

4. Определение эквивалентного сопротивления.

4.1 .В схеме рис. 1.4.(в соответствии с вариантом) рассчитать с помощью законов Кирхгофа эквивалентное сопротивление относительно реального источника (активного двухполюсника) и определить его, используя омметр. (При этом реальный источник отключить от схемы.)

Величину сопротивления R задать в соответствии с таблицей 1.2, согласно варианту (N – младшая значащая цифра номера стенда).

4.2.Определить эквивалентное сопротивление R_{3KB} относительно реального источника с помощью вольтметра. Измерить

напряжение U, а также напряжение на резисторе R_4 (в схеме рис. 1.4a) или на R (в схеме рис. 1.4б) для определения тока I.

Сравнить полученное сопротивление R_{3KB} с рассчитанным по схеме и измеренным омметром (таблица 1.3).

Таблица 1.3.

	$R_{ m ЭKB}$	Измеренное R_{3KB} (п.4.2)	Измеренное омметром $R_{3KB}(\Pi.4.1)$
$R_{ m 9KB}$			

Рис. 1.4 – Расчетные схемы для четных (а) и нечетных (б) вариантов N

4.3. Записать законы Кирхгофа для данной схемы, обозначив на схеме направление токов в ветвях.

Контрольные вопросы

- 1. Нарисуйте вольт-амперные характеристики идеальных источников напряжения и тока.
- 2. Каким образом находят ЭДС и внутреннее сопротивление реального источника напряжения?
- 3. Какие существуют эквивалентные схемы замещения реального источника?
- 4. Каково внутреннее сопротивление идеального вольтметра?
- 5. Каково внутреннее сопротивление идеального амперметра?