Telecom Churn Analysis

Justin Lee

Overview

Analyst: Justin Lee

Stakeholder: SyriaTel

Background: A leading mobile telecommunications company in Syria since 2000.

Motive: The company aims to minimize revenue losses caused by customers who discontinue their services prematurely. This analysis seeks to identify and understand patterns that may predict customer churn.

Data Understanding

Dataset features:

- 20 predictor variables
- 3,333 records
- Churn
 - 483 churn
 - o 2850 non-churn
 - 14% ratio

account length	int64
area code	int64
phone number	object
international plan	object
voice mail plan	object
number vmail messages	int64
total day minutes	float64
total day calls	int64
total day charge	float64
total eve minutes	float64
total eve calls	int64
total eve charge	float64
total night minutes	float64
total night calls	int64
total night charge	float64
total intl minutes	float64
total intl calls	int64
total intl charge	float64
customer service calls	int64
churn	bool

Baseline Model

- Accuracy: 86%
- Non-churn
 - Precision: 87%
 - o Recall: 99%
 - o F1: 0.92
- Churn
 - o Precision: 58%
 - o Recall: 8%
 - o F1: 0.14
- ROC-AUC: 0.78

Classification	Report: precision	recall	f1-score	support
0 1	0.87 0.58	0.99 0.08	0.92 0.14	857 143
accuracy macro avg	0.72 0.82	0.53 0.86	0.86 0.53 0.81	1000 1000 1000

Confusion Matrix: [[849 8] [132 11]]

ROC-AUC Score: 0.7826863917879088

Addressing Churn Class Imbalance

Accuracy: 70%

Non-churn

Precision: 94%

o Recall: 69%

o F1: 0.8

Churn

Precision: 29%

o Recall: 76%

o F1: 0.42

ROC-AUC: 0.778

Classification	Report (SMO	TE):			
	precision	recall	f1-score	support	
0	0.94	0.69	0.80	857	
1	0.29	0.76	0.42	143	
accuracy			0.70	1000	
macro avg	0.62	0.72	0.61	1000	
weighted avo	0.85	0.70	0.75	1000	

Confusion Matrix (SMOTE):
[[595 262]

[35 108]]

ROC-AUC Score (SMOTE): 0.7784351004887762

Evaluation

Baseline Iterated Model High accuracy (86%) but low recall (8%) Improved recall for churn (from 8% to 76%) 29% higher precision score for chun than ROC-AUC remained consistent at 0.78 iterated model SMOTE addressed class imbalance ROC-AUC remained consistent at 0.78 Class imbalance present

Recommendations & Next Steps

1 2 3 4

Test on more advanced models like Random Forest or Gradient Boosting. Adjust decision threshold to achieve a better precision-recall balance for churn cases. Improve data collection to better capture factors driving churn.

Deploy model in a live environment to predict churn and measure effectiveness of intervention.

Contact Information

Justin Lee

Email: <u>ilee8150@gmail.com</u>

LinkedIn:

https://www.linkedin.com/in/justinlee2023

Thank you