HOW TO BEGIN V2X DEVELOPMENT ON LINUX

AUTOMOTIVE LINUX SUMMIT 2015, TOKYO

HONG-JONG JEONG (HJ.JEONG@ZENOME.CO.KR)

STEVE KWON (STEVE.KWON@ZENOME.CO.KR)

WWW.ZENOME.CO.KR 2015 © ZENOME INC.

What is V2X Communication and its Future?

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X on Linux

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

- * "TALKING" CARS COMING SOON
 - ▶ VEHICLE-TO-VEHICLE (V2V) TECHNOLOGY IN 2017 CADILLAC CTS
 - ▶ US NHTSA FINISHES ITS ANALYSIS OF DATA FROM NEARLY 3,000 VEHICLES
- ❖ ABI RESEARCH, 2014
 - ▶ GLOBAL VEHICLE-TO-X (V2X) MODULES IN NEW VEHICLES WILL REACH 62% BY 2027
 - ▶ OEM AND AFTERMARKET V2X MODULES WILL GROW TO 423 MILLION BY 2027

Source: The Daily Conversation - <u>https://youtu.be/jzSPoDkAleE</u>

What is V2X Communication and its Future?

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X on Linux

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

❖ VEHICLE TO EVERYTHING

- ▶ ADVANCED DRIVING ASSISTANT SYSTEM (ADAS)
- ► CONNECTED CAR → SMART CAR
- ▶ AUTONOMOUS DRIVING → DRIVERLESS DRIVING

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

V2X COMMUNICATION STANDARDS

- ❖ WIRELESS ACCESS IN VEHICULAR ENVIRONMENTS (WAVE) STANDARDS
 - ▶ INCLUDING IEEE 802.11P & 1609.x + SAE J2735/2945

STANDARD	USAGE	DESCRIPTION	OSI LAYER
IEEE 802.11-2012 (IEEE 802.11P)	WAVE PHY AND MAC	Specifies the PHY and MAC functions required of an IEEE 802.11 device to work in the rapidly varying vehicular environment	I and 2
IEEE 1609.0-2013	Architecture	Describes the architecture and service necessary for multi- channel WAVE devices	N/A
IEEE 1609.2-2013	Security Services for Applications and Management Messages	Covers methods for securing WAVE management messages and application messages, It also describes administrative functions necessary to support the core security functions	N/A
IEEE 1609.3-2010	Networking Services	Describes standard messages that support higher layer communication stacks, including TCP/IP	2, 3, and 4
IEEE 1609.4-2010	Multi-Channel Operation	Describes various standard message formats for DSRC applications at 5.9 GHz	2
IEEE 1609.11-2010	Over-the-Air Electronic Payment Data Exchange Protocol	Defines a basic level of technical interoperability for electronic payment equipment, i.e. On board unit (OBU) and roadside equipment (RSE) using DSRC	7
IEEE 1609.12-2012	Identifier Allocations	Indicates identifier values that have been allocated for use by WAVE systems, including the Provider Service Identifier allocations harmonized with ISO, CEN, and ETSI.	N/A
SAE J2735-2015	DSRC Message Set Dictionary	Comprises a complete list of all dialogs (messages exchanges), messages, data frames (complex elements), and data elements (atomic elements) which are used in the message set	7
SAE J2945 (WIP)	DSRC Minimum Performance Requirements	Specifies the minimum communication performance requirements of the DSRC Message message sets, the associated data frames and data elements defined in SAE J2735	N/A

SOURCE(MODIFIED): OVERVIEW OF WAVE PROTOCOLS AND STANDARDS, INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2013

IEEE 802.11P & 1609.X

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE |2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

* IEEE 802.11-2012

- ▶ INCORPORATES AMENDMENTS I TO 10 PUBLISHED IN 2008 TO 2011
 - IT INCLUDES **IEEE 802.11p-2010**
- ▶ OUTSIDE THE CONTEXT OF A BSS (OCB) MODE
 - DOTITOCBACTIVATED TRUE OR FALSE
 - Data frame can be sent to either an **individual or a group destination MAC address**
 - IMMEDIATE COMMUNICATION, AVOIDING LATENCY ASSOCIATED WITH ESTABLISHING A BSS
 - Not utilize IEEE 802.11 authentication, association, or data confidentiality
 - IN A FREQUENCY BAND THAT IS DEDICATED FOR ITS USE

	JAPAN	US	EU	
STANDARD / COMMITTEE	ITS-Forum	IEEE802.11P/1609.X	CEN/ETSI EN 302 663	
FREQUENCY RANGE	755 ~ 765 MHz	5850 ~ 5925 MHz	5855 ~ 5925 MHz	
No. of Channels	One 10 Mhz	SEVEN 10 MHZ (TWO 20 MHZ BY COMBINING 10 MHZ)	Seven 10 MHz	
MODULATION	ODULATION OFDM			
OFDM SUBCARRIERS	3 ~ 18 MBIT/S	3 ~ 27 MBIT/S	3 ~ 27 MBIT/S	
OUTPUT POWER	20 dBm (Antenna Input)	23 ~ 33 DBM (EIRP)	23 ~ 33 DBM (EIRP)	
COMMUNICATION	One direction multicasting service (broadcast w/o ACK)	communication, Simplex (N MULTICASTING SERVICE, ONE TO MULTI SICATION, SIMPLEX COMMUNICATION W/O ACK, MULTICAST, UNICAST W/ ACK)	
UPPER POROTOCOL	ARIB STD-T109	WAVE (IEEE 1609) / TCP/IP	ETSI EN 302 665 (INCL. GEONETWORKING,) TCP/UDP/IP	

Source - Intelligent Transportation Systems Using IEEE 802.11p, Rohde & Schwarz

IEEE 802.11P & 1609.X

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X on Linux

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

- ❖ DSRC SPECTRUM BAND AND CHANNELS IN THE U.S.
 - ▶ DATA & MANAGEMENT PLANE SERVICES
 - ▶ SAFETY & NON-SAFETY APPLICATION CONTROL CHANNEL (CCH) / SERVICE CHANNEL (SCH)

IEEE 802.11P & 1609.X

:----- WAVE SHORT MESSAGE

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

- Wave Short Message Protocol (WSMP)
 - ▶ PROVIDER SERVICE IDENTIFIER (PSID) SUPPLEMENTARY INFORMATION RELATED TO THE SERVICE

SAE J2735

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.×
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

- ❖ DEDICATED SHORT RANGE COMMUNICATIONS (DSRC) MESSAGE SET DICTIONARY (I)
 - ▶ REVISED AT APR. 2015 (2ND REVISED VERSION AFTER ISSUING AT DEC. 2006)
 - ▶ SPECIFIED AS ASN.I REPRESENTATION²⁾
 - ► ENCODING STYLE BER-DER

BASIC SAFETY MESSAGE (BSM)

COMMON SAFETY REQUEST (CSR)

EMERGENCY VEHICLE ALERT (EVA)

INTERSECTION COLLISION AVOIDANCE (ICA)

MAP DATA (MAP)

NMEA_CORRECTIONS (NMEA)

PROBE DATA MANAGEMENT (PDM)

PROBE VEHICLE DATA (PVD)

ROAD SIDE ALERT (RSA)

RTCM CORRECTIONS (RTCM)

< SAE 12735 MESSAGE TYPES >

< PROTOCOL STACK USED IN THE BSM EXAMPLES >

¹⁾SAE J2735 - <u>http://www.sae.org/standardsdev/dsrc</u>
²⁾SAE J2735 ASN.1 Specification - <u>http://www.sae.org/standardsdev/dsrc/usa</u>
³⁾ASN.1 Compiler for C/C++ - <u>https://github.com/vlm/asn1c</u>

CURRENT STATUS OF V2X ON LINUX

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

❖ OCB MODE ON LINUX MAINLINE KERNEL

- ▶ INCLUDED IN KERNEL V3.19
- ▶ PULL REQUEST FROM WIRELESS-NEXT 2014-11-07
- ▶ OCB MODE SUPPORTED FROM CZECH TECHNICAL UNIVERSITY IN PRAGUE AND VOLKSWAGEN GROUP RESEARCH
- **OCB** MODE ON IW
 - ▶ IW NL802 | I BASED CLI CONFIGURATION UTILITY FOR WIRELESS DEVICES
 - ▶ INCLUDED IN V4.0

MAC80211: 802.11P OCB MODE SUPPORT

THIS PATCH ADDS 802.11P OCB (OUTSIDE THE CONTEXT OF A BSS) MODE SUPPORT.

WHEN COMMUNICATING IN OCB MODE A MANDATORY WILDCARD BSSID(48 'I' BITS) IS USED.

THE EDCA PARAMETERS HANDLING FUNCTION WAS CHANGED TO SUPPORT 802.11P SPECIFIC VALUES.

THE INSERTION OF A NEWLY DISCOVERED STAS IS DONE IN THE SIMILAR WAY AS IN THE IBSS MODE -- THROUGH THE DEFERRED INSERTION.
THE OCB MODE USES A PERIODIC 'HOUSEKEEPING TASK' FOR EXPIRATION OF DISCONNECTED STAS (IN THE SIMILAR MANNER AS IN THE MESH MODE).

NEW KCONFIG OPTION FOR VERBOSE OCB DEBUGGING OUTPUTS IS ADDED.

CFG80211: 802.11P OCB MODE HANDLING

THIS PATCH ADDS **NEW IFACE TYPE (NL80211_IFTYPE_OCB)** REPRESENTING THE **OCB (OUTSIDE THE CONTEXT OF A BSS) MODE**.

WHEN ESTABLISHING A CONNECTION TO THE NETWORK A **CFG80211_JOIN_OCB** FUNCTION IS CALLED (PARTICULAR NL80211 COMMAND IS ADDED AS

A MANDATORY PARAMETERS DURING THE OCB JOIN OPERATION ARE 'CENTER FREQUENCY' AND 'CHANNEL WIDTH (5/10 MHz)'.

CHANGES DONE IN MAC80211 ARE MINIMAL POSSIBLE REQUIRED TO AVOID MANY WARNINGS (WARNING: ENUMERATION VALUE 'NL80211_IFTYPE_OCB' NOT HANDLED IN SWITCH) DURING COMPILATION. FULL FUNCTIONALITY (WHERE NEEDED) IS ADDED IN THE FOLLOWING PATCH.

IW: ADD OCB MODE HANDLING

WELL).

MODIFY THE COMMAND FOR DEVICE TYPE SETTING TO SUPPORT OCB MODE. ADD COMMANDS FOR "JOINING" AND "LEAVING" THE OCB MODE NETWORK. WHEN JOINING TWO ARGUMENTS ARE MANDATORY -- FREQUENCY AND CHANNEL BANDWIDTH (5 OR 10 MHz).

RAW SOCKET APPROACH

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

- ❖ NEEDS ROOT OR CAP_NET_RAW CAPABILITIES
 - ▶ SET PF_PACKET AS A DOMAIN TYPE
 - ▶ SET SOCK RAW AS A SOCKET TYPE
 - ▶ SET HTONS(ETH_P_WSMP) AS A PROTOCOL TYPE

```
#define ETH_P_WSMP 0x88DC /* WAVE Short Message Protocol */

/* Open PF_PACKET Socket for EtherType ETHER_P_WSMP */
sockfd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_WSMP)))

/* Bind to Device */
setsockopt(sockfd, SOL_SOCKET, SO_BINDTODEVICE, ifName, IFNAMSIZ - I)

while (I) {
    /* Receive WSMP Packets */
    nread = recvfrom(sockfd, buf, BUF_SIZ, 0, NULL, NULL);
    ...
    ber_decode(0, &asn_DEF_BasicSafetyMessage, (void **)&basicSafetyMessage, buf, nread);
    ...
}
```

< RX EXAMPLE >

```
/* Open PF PACKET Socket for EtherType ETHER P WSMP */
sockfd = socket(PF PACKET, SOCK RAW, htons(ETH P WSMP)))
/* Construct Ethernet Header */
eh = (struct ether header *)buf;
eh->ether type = htons(ETH P WSMP);
memcpy(eh->ether shost, src mac, ETH ALEN);
memcpy(eh->ether dhost, dst mac, ETH ALEN);
tx len += sizeof(struct ether header);
/* Construct sockaddr II */
socket_address.sll_ifindex = ifindex;
socket address.sll halen = ETH ALEN;
memset(socket address.sll addr, 0xFF, ETH ALEN);
/* File WSMP packet as payload */
while (I) {
     /* Send WSMP packets */
     sendto(sockfd, buf, tx_len, 0, (struct sockaddr *)&socket address, sizeof(struct sockaddr_ll))
```

<TX EXAMPLE >

META-V2X YOCTO PROJECT LAYER

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

❖ YOCTO PROJECT

- ▶ OPEN SOURCE PROJECT FOR CUSTOM EMBEDDED LINUX-BASED SYSTEMS REGARDLESS OF HARDWARE ARCHITECTURE
- ▶ HTTPS://WWW.YOCTOPROJECT.ORG
- **❖** LAYER FOR VEHICLE TO EVERYTHING
 - ▶ HTTPS://GITHUB.COM/ZENOME/META-V2X.GIT
 - ▶ BASED ON YOCTO VI.8 FIDO RELEASE
 - ▶ FOCUSED ON RX-SIDE
 - **▶** Work in Progress*

CONCEPT ARCHITECTURE

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

- * WAVE SHORT MESSAGE PROTOCOL (WSMP) KERNEL MODULE
 - ▶ WSMP PACKET MANIPULATION IN KERNEL-SPACE
 - ▶ Network + Transport Layer
- ❖ WSMP DAEMON
 - ▶ SAE J2735 MESSAGE HANDLER
 - ▶ MULTIPLE APPLICATION SUPPORT

REGISTER/UNREGISTER
BY WAVE PSID

WWW.ZENOME.CO.KR 12 2015 © ZENOME INC.

WSMP KERNEL MODULE

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

♦ 802. HP DRIVER

- ▶ QUALCOMM ATHEROS 5GHZ 802. I I A MINI PCI-E CARDS
- AR9592/AR9462 HALF CHANNEL WIDTH (10 MHz)
- "ATH9K: ADD OCB MODE SUPPORT" PATCH BY ROSTISLAV

***** WSMP

- ▶ ADD WSMP ETHERNET TYPE AS "0x88DC"
- ▶ ADD WSMP SOCKET & PROTOCOL FAMILY HANDLER


```
< ADD WSMP ETHERNET TYPE >
```

```
static struct proto wsmp_proto = {
                 = "WSMP",
     .name
                 =THIS MODULE,
     .owner
                 = sizeof(struct wsmp sock),
     .obj size
};
static const struct proto ops wsmp proto ops = {
                  = PF WSMP,
     .family
                  =THIS MODULE,
     .owner
                  = wsmp release,
     .release
     .recvmsg
                  = wsmp_recvmsg,
```

< ADD WSMP SOCKET & PROTOCOL FAMILY HANDLER >

WSMP SOCKET

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.X
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

```
❖ SIMPLE USAGE
```

- **▶** SIMILAR AS A UDP SOCKET
- **❖ PROTOCOL SPECIFICS**
 - ▶ SET PF_WSMP AS A DOMAIN TYPE
 - ▶ BIND BY PROVIDER SERVICE IDENTIFIER (PSID)
 - ▶ NEEDS A LOT OF IMPROVEMENTS

```
/* WSMP Socket Address */
struct sockaddr_wsmp {
    __kernel_sa_family_t wsmp_family;
    unsigned int wsmp_psid;
};
```

```
/* WSMP Socket Address */
struct sockaddr_wsmp addr;

/* Create PF_WSMP Socket */
sockfd = socket(PF_WSMP, SOCK_DGRAM, 0)

/* Set WSMP Socket Address */
memset(&addr, 0, sizeof(struct sockaddr_wsmp));
addr.wsmp_family = AF_WSMP;
addr.wsmp_psid = 0x0;

/* Bind by PSID */
bind(sockfd, (struct sockaddr *)&addr, sizeof(struct sockaddr_wsmp))

while (I) {
    /* Receive WSMP Packets */
    nread = recvfrom(sockfd, buf, BUF_SIZ, 0, NULL, NULL);
    ...
}
```

< WSMP SOCKET - RX EXAMPLE >

COMM. TEST W/ COMMERCIAL VENDORS

WHAT IS V2X?

V2X STANDARDS

- IEEE 802.11 & 1609.×
- SAE J2735

V2X ON LINUX

- CURRENT STATUS
- RAW SOCKET APPROACH

META-V2X

- CONCEPT ARCHITECTURE
- WSMP KERNEL MODULE
- WSMP SOCKET
- W/ COMMERCIAL VENDORS

- ❖ SINGLE BOARD COMPUTERS W/ MINI PCI-E SOCKET
 - ▶ FREESCALE™ I.MX6 800MHz DUAL LITE
 - ▶ W/ AR9592 MINI PCI-E CARD

Set wireless regulation as US

iw reg set US

Set wlan0 as OCB mode & join to 5860 channel

iw dev wlan0 set type ocb ip link set wlan0 up iw dev wlan0 ocb join 5860 I0MHZ

#Add Radio-Tap monitoring interface

iw dev wlan0 interface add mon0 type monitor flags none ip link set mon0 up

capture WSMP packets

tcpdump -i mon0 -w wsmp.pcap ether proto 0x88dc

< WSMP PACKET CAPTURE PROCEDURE >

```
▶ Frame 1: 135 bytes on wire (1080 bits), 135 bytes captured (1080 bits)
▶ Radiotap Header v0, Length 38
▶ IEEE 802.11 QoS Data, Flags: ......

▼ Logical-Link Control

  ▶ DSAP: SNAP (@xaa)
  ▶ SSAP: SNAP (0xaa)
  ► Control field: U, func=UI (0x03)
    Organization Code: Encapsulated Ethernet (0x000000)
    Type: (WAVE) Short Message Protocol (WSM) (0x88dc)
▼ Wave Short Message Protocol(IEEE P1609.3)
     Version: 2
    PSID: 0x0000000a
    Channel: 172
    Data Rate: 12
    Transmit Power: 15
    WAVE element id: WSMP (128)
    WSM Length: 45
    Wave Short Message
     09 9d ca 47 01 00 00 00
                                                        ...G.... ....@A...
     00 26 ad 05 09 fd ff ff ff ff ff b0 20 21 00
     aa aa 03 00 00 00 88 dc
      84 81 8f 88 88 2d 38 2b 88 81 82 81 26 82 81 82
                                                        .....6+ .....6....
     03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12
0070 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22
                                                        .....!"
                                                        #$%.q..
```

< CAPTURED WSMP PACKET IN WIRESHARK >

THANK YOU

CONNECTED DRIVING FOR LIFE

WWW.ZENOME.CO.KR 2015 © ZENOME INC.