Noether $\rightarrow \alpha$ v0.5: Current Matching and What Fixes g_5

Draft for UBT Project October 30, 2025

1 Goal

We derived

$$\alpha(\mu_0) = \frac{g_5^2}{4\pi Z^*}, \qquad Z^* = \int_0^{L_\psi^*} d\psi \, e^{B-2A} \, |\xi_0(\psi)|^2 = L_\psi^* f^*(\tau, BC).$$
 (1)

This section shows how the Noether charge and canonical normalization fix the *field scale*, and how g_5 is or is not fixed, depending on the UV principle chosen in UBT.

2 Zero-Mode Decomposition and Canonical Normalization

Expand the unified field in ψ -modes (for simplicity: complex scalar prototype for the charged excitation)

$$\Theta(x,\psi) = \chi_0(\psi) \,\phi(x) + \cdots, \qquad \int_0^{L_\psi} d\psi \,\, e^{B+2A} \,|\chi_0(\psi)|^2 = 1. \tag{2}$$

Similarly, the photon zero-mode (canonically normalized in 4D) is

$$A_{\mu}(x,\psi) = \xi_0(\psi) A_{\mu}^{(0)}(x) + \cdots, \qquad \int_0^{L_{\psi}} d\psi \ e^{B-2A} |\xi_0(\psi)|^2 = Z.$$
 (3)

With these conventions, the 4D kinetic term of ϕ is canonical,

$$\mathcal{L}_{4D} \supset |\partial_{\mu}\phi|^2 - m_0^2 |\phi|^2, \tag{4}$$

and the 4D Noether current takes the standard form

$$j^{\mu} = i \left(\phi^{\dagger} \partial^{\mu} \phi - (\partial^{\mu} \phi^{\dagger}) \phi \right). \tag{5}$$

3 Current Matching: g_4 from the 5D Coupling

The 5D interaction is $\int d^5x \sqrt{|g_5|} g_5 J^{\mu} A_{\mu}$, which reduces to

$$S_{\text{int}}^{(0)} = \int d^4x \, g_5 \left[\int_0^{L_{\psi}} d\psi \, e^B \, |\chi_0|^2 \, \xi_0 \right] j^{\mu} A_{\mu}^{(0)} = \int d^4x \, \frac{g_5}{\sqrt{Z}} \, j^{\mu} A_{\mu}^{(0)}. \tag{6}$$

Hence

$$g_4 \equiv \frac{g_5}{\sqrt{Z}}, \qquad \alpha = \frac{g_4^2}{4\pi}. \tag{7}$$

The result is robust (spinor/vector generalizations give the same overlap structure).

4 Noether Charge and Field Normalization

The 5D Noether charge

$$Q = \int d^3x \int_0^{L_{\psi}} d\psi \sqrt{|g_5|} J^0$$
 (8)

reduces, for the normalized zero-mode, to the 4D number operator. Choosing the fundamental excitation to have $Q = \pm 1$ fixes the normalization of ϕ and removes any free rescaling of Θ . This does not fix the numerical value of g_5 by itself.

5 What Can Fix g_5 (and Thus α) Ab-Initio?

Noether symmetry and compactification give $\alpha = g_5^2/(4\pi Z^*)$ but leave g_5 as a *UV parameter*. To arrive at a number, UBT needs one of the following principles (each consistent with the framework):

(A) Bare Gauge Term From UBT Lagrangian + Extra Constraint

Assume a tree-level gauge kinetic term $-\frac{1}{4}F^2$. Then g_5 is a fundamental 5D coupling of mass dimension -1/2 and is not fixed by Noether alone. It can be related to other UBT scales if UBT supplies a constraint, e.g.

- tying g_5 to the Θ sector (coupling unification in the biquaternionic algebra),
- matching to gravity via a universal scale (Sakharov-like, but determined by the CCT/UBT cutoff),
- or quantization coming from a topological term (e.g. a 5D abelian Chern–Simons coefficient that is quantized and links to minimal charge units).

(B) *Induced* Photon Kinetic Term (Emergent Gauge Field)

Set the bare coefficient to zero and generate F^2 entirely from loops of Θ -sector fields. Compactification to 4D yields

$$\frac{1}{g_4^2(\mu)} = \sum_{j, \text{KK}} \frac{b_j}{8\pi^2} \ln \frac{\Lambda}{m_{j, \text{KK}}} + \cdots,$$
 (9)

with b_j the standard 4D beta-function weights for each KK mode and Λ the physical UV scale of UBT (finite in CCT/UBT due to the compact ψ and possible warping). In this scenario,

$$\alpha(\mu_0)$$
 is fixed by field content, BC, and $(L_{\psi}^{\star}, \theta_H^{\star}, A, B)$ (no g_5 input). (10)

This produces a numerical α once the spectrum is specified; the calculation is technically involved but conceptually parameter-free.

(C) Holonomy Quantization With Dynamical A_{ψ}

If the vacuum fixes a nontrivial $\langle A_{\psi} \rangle$ through the Hosotani mechanism and UBT relates $\langle A_{\psi} \rangle$ to a geometric invariant, then

$$\theta_H^* = g_5 \int_0^{L_\psi^*} A_\psi \, d\psi = 2\pi n^*$$
 (11)

imposes a relation among g_5 and L_{ψ}^{\star} that can remove the g_5 freedom. Whether this happens depends on the detailed UBT background equations; in many simple models θ_H^{\star} is 0 or π independently of g_5 , leaving g_5 unfixed.

6 Recommendation

For a **fully ab-initio** numeric value of α within the present UBT framework, the cleanest route is (B): treat the photon as emergent and compute the induced $1/g_4^2$ from KK towers of the Θ -sector at the vacuum point $(L_{\psi}^{\star}, \theta_H^{\star}, A, B)$. This uses only symmetries, geometry and field content, with no free gauge coupling left.

7 Next Steps (Minimal Viable Calculation)

- 1. Choose a concrete Θ -sector (spins, charges q_j , masses m_j) and BC.
- 2. Determine $(L_{\psi}^{\star}, \theta_{H}^{\star})$ by minimizing the one-loop V_{eff} (Sec. v0.4).
- 3. Compute the KK spectrum $m_{j,KK}(n)$ on that background.
- 4. Evaluate the induced gauge kinetic term in 4D, e.g. summing the standard one-loop polarizations over KK levels with a regulator consistent with UBT (compact ψ and warp imply a physical cutoff).
- 5. Read off $\alpha(\mu_0)$, then run to M_Z for comparison.

Consistency with m_e . The same background must yield the lightest charged eigenmode mass m_e ; matching both α and m_e with a *single* background is the decisive non-numerological test.