Задача А. Префикс-функция

Имя входного файла: prefix-function.in Имя выходного файла: prefix-function.out

Ограничение по времени: 3 секунды Ограничение по памяти: 64 мегабайта

Дана непустая строка S, длина которой N не превышает 10^6 . Будем считать, что элементы строки нумеруются от 1 до N.

Требуется для всех i от 1 до N вычислить её префикс-функцию $\pi[i]$.

Формат входных данных

Одна строка длины $N, 0 < N \leqslant 10^6,$ состоящая из маленьких латинских букв.

Формат выходных данных

Выведите N чисел — значения префикс-функции для каждой позиции, разделённые пробелом.

prefix-function.in	prefix-function.out
abracadabra	0 0 0 1 0 1 0 1 2 3 4

Задача В. Z-функция

Имя входного файла: z-function.in Имя выходного файла: z-function.out

Ограничение по времени: 3 секунды Ограничение по памяти: 64 мегабайта

Дана непустая строка S, длина которой N не превышает 10^6 . Будем считать, что элементы строки нумеруются от 1 до N.

Требуется для всех i от 1 до N вычислить её z-функцию z[i].

Формат входных данных

Одна строка длины $N,\,0 < N \leqslant 10^6,\,$ состоящая из маленьких латинских букв.

Формат выходных данных

Выведите N чисел — значения z-функции для каждой позиции, разделённые пробелом.

z-function.in	z-function.out
abracadabra	11 0 0 1 0 1 0 4 0 0 1

Задача С. Сравнения подстрок

Имя входного файла: substrcmp.in Имя выходного файла: substrcmp.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка. Нужно уметь отвечать на запросы вида: равны ли подстроки $[a \dots b]$ и $[c \dots d]$.

Формат входных данных

В первой строке записана непустая строка S, состоящая из не более чем 10^5 строчных латинских букв. Во второй строке записано целое число M — количество запросов.

В следующих M строках записаны запросы. Каждый запрос задаётся четырьмя целыми числами $a,\,b,\,c,\,d.$

$$0 \leqslant M \leqslant 10^5$$
, $1 \leqslant a \leqslant b \leqslant |S|$, $1 \leqslant c \leqslant d \leqslant |S|$.

Формат выходных данных

Выведите M строк, по одной для каждого запроса. Выведите в соответствующей строке «Yes», если подстроки совпадают, и «No» иначе.

substrcmp.in	substrcmp.out
trololo	Yes
3	Yes
1 7 1 7	No
3 5 5 7	
1 1 1 5	

Задача D. Подстроки

Имя входного файла: substr.in
Имя выходного файла: substr.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дано K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Формат входных данных

В первой строке число K ($1\leqslant K\leqslant 10$). В следующих K строках — собственно K строк (длины строк от 1 до $10\,000$).

Формат выходных данных

Наибольшая общая подстрока.

substr.in	substr.out
3	cab
abacaba	
mycabarchive	
acabistrue	

Задача Е. Неточное совпадение

Имя входного файла: inexact-matching.in Имя выходного файла: inexact-matching.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки с точностью до возможного несовпадения одного символа.

Формат входных данных

Первая строка входного файла содержит p, вторая — t ($1 \leqslant |p|, |t| \leqslant 10^6$). Строки состоят из букв латинского алфавита.

Формат выходных данных

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

inexact-matching.in	inexact-matching.out
aaaa	4
Caaabdaaaa	1 2 6 7

Задача F. Кубики

Имя входного файла: cubes.in
Имя выходного файла: cubes.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Привидение Петя любит играть со своими кубиками. Он любит выкладывать их в ряд и разглядывать своё творение. Однако недавно друзья решили подшутить над Петей и поставили в его игровой комнате зеркало. Ведь всем известно, что привидения не отражаются в зеркале! А кубики отражаются.

Теперь Петя видит перед собой N цветных кубиков, но не знает, какие из этих кубиков настоящие, а какие — всего лишь отражение в зеркале.

Помогите Пете! Выясните, сколько у него может быть кубиков. Петя видит отражение всех кубиков в зеркале и часть кубиков, которая находится перед ним. Часть кубиков может быть позади Пети, их он не видит.

Формат входных данных

Первая строка входного файла содержит два целых числа: N ($1 \le N \le 100\,000$) и количество различных цветов, в которые могут быть раскрашены кубики,— M ($1 \le M \le 100\,000$). Следующая строка содержит N целых чисел от 1 до M — цвета кубиков.

Формат выходных данных

В выходной файл выведите в порядке возрастания все такие K, что у Пети может быть K кубиков.

cubes.in	cubes.out
6 2	3 5 6
1 1 2 2 1 1	