

8장 라우팅

- 8.1 | TCP/IP에서의 라우팅
- 8.2 | 복잡한 네트워크에서의 라우팅
- 8.3 | 내부 라우터 파헤치기
- 8.4 | 외부 라우터: BGP
- 8.5 | 클래스리스 라우팅
- 8.6 | 스택에서 더 높게
- 8.7 | 요약
- 8.10 | 핵심 용어

8.1 TCP/IP에서의 라우팅

» 라우터는 무엇인가

- 라우터(router)는 네트워크와 네트워크를 연결하는 장치로서 논리 주소에 따라 트래픽을 전달하는 가장 기본적인 형태의 장치
- 전통적인 네트워크 라우터는 IP 주소 정보를 사용하는 네트워크 계층에서 작동
- 라우터는 하나의 네트워크에서 다음 네트워크로 데이터를 전달할 때 네트워크 접근 계층 헤더 정보를 대체하기 때문에 라우터는 서로 다른 네트워크 유형을 연결할 수 있음
- 라우터의 일반적 구조

>> 라우팅의 기본 개념

- 소스 호스트에서 목적지 호스트로의 패킷 전달은 소스 호스트에 연결된 소스 라우터에서 목적지 호스트가 연결된 목적지 라우터까지 패킷을 전달하는 것을 의미
- 1. 라우터는 연결된 네트워크 중 하나에서 프레임을 수신
- 2. 라우터는 네트워크 접근 계층 헤더 정보를 버리고 IP 데이터그램을 인터넷 계층으로 전달
- 3. 라우터는 IP 헤더에서 목적지 주소를 확인
- 4. 데이터그램이 다른 네트워크로 전달되어야 한다면 라우터는 라우팅 테이블을 참조하여 해당 데이터그램을 어디로 전달할지 결정
- 5. 라우터가 어떤 어댑터(인터페이스)로 데이터그램을 전달할지 결정하고 나면, 라우터는 전송에 적절한 네트워크 접근 계층 소프트웨어로 보냄

그림 8-2 복잡한 네트워크에서의 라우팅

8.1 TCP/IP에서의 라우팅

- 라우팅 유형은 라우팅 테이블 정보를 어디서 가지고 오느냐에 따라 이름이 달라짐
 - 정적 라우팅: 네트워크 관리자가 라우팅 정보를 수동으로 입력
 - **동적 라우팅:** 라우팅 프로토콜을 사용해 얻은 라우팅 정보를 바탕으로 라우팅 테이블을 동적으로 생성

>> 라우팅 테이블

- 라우팅 테이블은 기본적으로 대상 네트워크 ID를 데이터그램이 대상 네트워크에 도달하는 경로의 중간 지점인 다음 홉의 IP 주소에 매핑
- 라우팅 테이블은 완전한 IP 주소를 저장하지 않고 네트워크 주소로 저장함
- 라우터 포트 인터페이스는 라우터가 데이터를 전송하는 라우터 포트를 의미

목적지	다음 홉	라우터 포트 인터페이스
129.14.0.0	직접 연결	1
150.27.0.0	131.100.18.6	3
155.111.0.0	직접 연결	2
165.48.0.0	129.14.16.1	1

>> IP 포워딩 살펴보기

- 호스트와 라우터는 모두 라우팅 테이블을 가짐
- 호스트의 라우팅 테이블은 일반적으로 라우터의 라우팅 테이블보다 간단함
- 호스트에서의 포워딩 과정

8.1 TCP/IP에서의 라우팅

>> IP 포워딩 살펴보기

- 호스트와 라우터는 모두 라우팅 테이블을 가짐
- 호스트의 라우팅 테이블은 일반적으로 라우터의 라우팅 테이블보다 간단함
- 라우터에서의 포워딩 과정

>> 라우터에서의 포워딩 과정

8.1 TCP/IP에서의 라우팅

TCP/IP

AND A

>> 직접 라우팅 vs 간접 라우팅

그림 8-6 두 세그먼트와 연결된 라우터는 각 세그먼트에 직접 접근한다

그림 8-7 라우터가 데이터그램을 직접 연결되지 않은 네트워크로 보내려면 간접 라우팅을 해야 한다

>> 동적 라우팅 알고리즘

- 라우터는 네트워크에 대한 정보를 교환해서 각 라우터가 특정 세그먼트로 지정된 데이터그램을 보낼 경로를 알려줌
- 라우터는 라우팅 프로토콜을 이용하여 라우팅 테이블을 생성
- 거리 벡터(distance-vector) 라우팅과 링크 상태(link-state) 라우팅 방식
- ✓ 거리벡터 라우팅 인접한 이웃 노드들과의 지속적인 정보교환을 통해 네트워크 내 다른 모든 노드로의 최소 거리(흡수) 경로를 계산하는 라우팅 방식
- ✓ 링크상태 라우팅 모든 노드가 네트워크 구성과 링크 비용 정보를 가진 상태에서 네트워크 내 다른 노드로의 최소 비용(흡 수, 처리량, 지연시간, 지불 비용 등) 경로를 계산하는 라우팅 방식

8.1 TCP/IP에서의 라우팅

>> 거리 벡터 라우팅

● Bellman-Ford 방정식에 기반함

a. General case with three intermediate nodes

b. Updating a path with a new route

- >> 거리 벡터 라우팅
 - 트리에 대응되는 거리벡터
 - 거리벡터는 목적지 노드까지의 홉 수

a. Tree for node A

b. Distance vector for node A

>> 거리 벡터 라우팅의 예 - 그림 8-8

라우터 B

라우터 B

라우터 A 테이블			
지	함	경로	
워크 1	0	직접	

목적시	곱	경토
네트워크 1	0	직접
네트워크 2	0	직접
네트워크 6	1	라우터 B
네트워크 7	3	라우터 C
네트워크 14	6	라우터 C

라우터 B 테이블						
목적지	홉	경로				
네트워크 1	1	라우터 A				
네트워크 2	0	직접				
네트워크 6	0	직접				
네트워크 7	6	라우터 D				
네트워크 14	4	라우터 D				
네트의그 15	2	STORIN				

i	업데이트된 라우터 A 테이블		
	목적지	옵	경로
	네트워크 1	0	직접
	네트워크 2	0	직접
	네트워크 6	1	라우터 B
	네트워크 7	3	라우터 C

네트워크 14

네트워크 15

8.1 TCP/IP에서의 라우팅

- >> 링크 상태 라우팅
 - 링크상태 라우팅을 사용하여 최소 비용 트리를 작성하기 위해 각 노드는 각 링크의 상태를 알아야 함 → 링크상태 데이터베이스 (LSDB)

	A	В	C	D	E	F	G
A	0	2	8	3	∞	8	8
В	2	0	5	8	4	8	8
C	8	5	0	8	∞	4	3
D	3	8	8	0	5	8	8
E	8	4	8	5	0	2	8
F	8	8	4	8	2	0	1
G	8	8	3	8	~	1	0

b. Link state database

- >> 링크 상태 라우팅
 - 노드는 링크상태패킷 (LSP)을 플러딩하고 수신된 LSP 내 정보를 이용하여 LSDB를 생성

8.1 TCP/IP에서의 라우팅

- >> 링크 상태 라우팅
 - 최소 경로 트리 생성

8.2 복잡한 네트워크에서의 라우팅

- 실제로 몇몇 대규모 네트워크는 수백 개의 라우터를 가지고 있으며, 인터넷에는 수백만 개의 라우터가 있으
- >> 인터넷 같은 대규모 네트워크에서 모든 라우터가 이전 절에서 설명한 라우팅 방식을 제공하는 데 필요한 모든 정보를 공유하는 것은 불가능
- >> 인터넷은 자율 시스템이라고 하는 독립적으로 관리된 네트워크로 구성되어 있음
- 가율 시스템은 기업 네트워크, 혹은 최근에는 더 일반적으로 인터넷 서비스 제공자(ISP)와 관련된 네트워크를 의미
- >> 자율 시스템의 소유자는 개별 라우터 구성의 세부 사항을 관리

8.2 복잡한 네트워크에서의 라우팅

- >> 인터넷 라우팅 프로토콜들
 - Interior Gateway Protocols RIP(Routing Information Protocol), OSPF(Open Shortest Path First)
 - Exterior Gateway Protocol BGP(Border Gateway Protocol)

8.3 내부 라우터 파헤치기

>> RIP

- RIP 라우터는 30초마다 변경 사항을 중계
- 즉시 업데이트를 요청할 수 있음
- 라우터의 개수가 너무 많아지면 라우팅 테이블의 느린 수렴 때문에 문제가 생길 수 있음
- 이러한 이유로 RIP는 첫 라우터부터 목적지까지 라우터 홉의 최대 개수를 15로 제한

Forwardi	ng table f	or R1	Forwarding table for R2			Forwarding table for R3		
Destination network	Next router	Cost in hops	Destination network	Next router	Cost in hops	Destination network	Next router	Cost in hops
N1		1	N1	R1	2	N1	R2	3
N2		1	N2		1	N2	R2	2
N3	R2	2	N3	_	1	N3	l —	1
N4	R2	3	N4	R3	2	N4	_	1

8.3 내부 라우터 파헤치기

>> OSPF

- OSPF는 RIP와 달리 큰 AS에서 사용될 수 있음
- 그러나 LSP를 플러딩 할 경우 많은 트래픽을 유발하게 되어 지역(area)으로 분할하여 계층적인 구조로 운영

Autonomous System (AS)

8.4 외부 라우터: BGP

- >> 도메인간 라우팅 프로토콜: BGP(Border Gateway Protocol)
 - 오늘날 인터넷에서 사용되는 유일한 도메인간 라우팅 프로토콜

8.5 클래스리스 라우팅

- >> 원래의 라우팅 시스템은 classful addressing을 기반으로 설계되었음
- >> 클래스리스 인터도메인 라우팅(CIDR)은 주소 할당과 경로 결정에 대안 방식을 제공
 - CIDR 시스템은 204.21.128.0/17과 같이 주소/마스트 쌍을 통해 호스트를 지정
 - 마스크 번호는 네트워크 ID과 관련된 주소 비트의 수를 의미
 - CIDR 시스템은 라우팅 프로토콜이 지원되면 좀 더 효율적인 라우팅을 제공
 - OSPF와 BGP4와 같은 최근 프로토콜은 클래스리스 주소 지정을 지원
 - 기존 RIP 프로토콜은 CIDR를 지원하지 않지만, RIP II는 지원

8.6 스택에서 더 높게

- ▶ 스택의 상위 계층에 접근할 수 있는 라우터는 결정을 내릴 수 있는 추가 정보를 가짐
- ≫예를 들어, 전송 계층을 보는 라우터는 소스와 대상 포트의 정보를 기반으로 데이터를 추정할 수 있음(L4 라우터)
- ≫ 응용 계층을 보는 라우터는 데이터를 보낸 애플리케이션의 정보와 해당 애플리케이션에서 사용하는 프로토콜에 대한 더 완전한 정보를 가질 수 있음
- >> 상위 계층이 접근하는 라우터는 여러 이점을 가짐
 - 연결 및 소스 애플리케이션에 더 다양한 지식은 보안 수준을 높임
 - 이러한 기술의 또 다른 중요한 이유는 서비스 품질(QoS)이라고 하는 개념에 있음
 - 인터넷 전화 클라이언트로부터의 패킷과 같은 몇몇 데이터 종류는 이메일 메시지 같은 다른 종류의 데이터보다 훨씬 더 시간에 예민함
 - 연결이 설정되면 패킷은 반드시 적절한 시간 프레임에 도착해야 함
 - 응용 계층에서 작동하는 라우터는 서비스 품질 기준을 바탕으로 패킷의 우선순위를 정함

8.7 요약

>> 요약

- 이 장에서는 라우팅에 대해서 자세히 알아봤음
- 거리 벡터와 링크 상태 라우팅 방식을 살펴봤고 IP 전달, 핵심 라우터, 내부 라우터와 외부 라우터도 알아봤음
- 마지막에는 RIP와 OSPF 두 가지 일반적인 내부 라우팅 프로토콜과 상위 프로토콜 계층에서의 라우팅 개념을 소개했음

8.10 핵심 용어

- 자율 시스템: 자율 주체가 유지 관리하는 대규모 네트워크에 참여하는 네트워크
- BGP(경계 게이트웨이 프로토콜): 자율 시스템 간 트래픽을 라우팅하는 데 사용되는 프로토콜
- **동적 라우팅:** 라우팅 프로토콜을 통해 얻은 정보를 기반으로 라우팅 테이블을 만드는 라우팅 기술
- 간접 라우팅: 연결되지 않은 두 네트워크 간의 라우팅
- OSPF(개방 최단 경로 우선): 일반적인 링크 상태 내부 라우팅 프로토콜
- RIP(라우팅 정보 프로토콜): 일반적인 거리 벡터 내부 라우팅 프로토콜
- 라우팅 프로토콜: 라우터가 경로 정보를 조합하기 위해 사용하는 여러 프로토콜
- SPT(최단 경로 트리): OSPF 라우터로 조립되는 네트워크의 트리와 같은 맵
- 정적 라우팅: 네트워크 관리자가 동적으로 경로 정보를 입력해야 하는 라우팅 기술