Learning locomotion gaits through hormone-based controller in modular robots

Author: David Estévez Fernández Advisor: Avinash Ranganath

Outline

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Introduction

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work
- **Modular robot**: robot composed of several smaller robots, called modules.

 Each module has its own control and communication electronics, sensors, actuators, batteries, etc.

 Modular robots can be reconfigurable, changing their shape and abilities.

Introduction

- Introduction
- Objectives
 - Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Superbot M-TRAN

Introduction

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Flexibility

Space Applications

Unknown or unstructured terrains

Objectives

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work
- 1. To find optimal locomotion gaits for at least 3 configurations
- 2. To discover the robot configuration and to select the required gaits
- Test the gaits and controller on a simulated robot
- 4. Test the gaits and controller on a real robot

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Problem: to achieve coordination between modules

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work
- **Solution:** Sinusoidal oscillators

- Inspired by nature (Central Pattern Generators)
- Defined by 4 main parameters:
 - Amplitude
 - Offset
 - Frequency / period
 - Phase

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work
- Parameter optimization: Differential evolution
- Fitness function: distance travelled in 30 s

Selecting Locomotion Gaits

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work
- Problem: discovering robot configuration and module function

Selecting Locomotion Gaits

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Module configuration encoding:

ID = f (Local connector, remote connector, relative orientation)

Selecting Locomotion Gaits

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Digital hormones:

Do not have a fixed destination

• They have a limited lifetime

 They can trigger different actions on different receptors

Implementation: Software

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Software:

Framework for testing gaits and controllers

Developed in C++

Explained in detail in chapter 4 of the Thesis

Implementation: Hardware

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Challenges:

Large number of modules required

Modules are expensive

Not easy to manufacture

Implementation: Hardware

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work
- Existing open platform designed by Juan Gonzalez-Gomez:

Y1 Module

SkyMega Board

Implementation: Hardware

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work
- Development of a platform based on the existing one

REPY-2 Module

SkymegaSMD board

Results

- Introduction
- Objectives
- Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

Future work

- Introduction
- Objectives
 - Finding Locomotion Gaits
- Selecting Locomotion Gaits
- Implementation
- Results
- Future work

More advanced modules

Adding sensory feedback

More generic controller

Learning locomotion gaits through hormone-based controller in modular robots

Thank you!

Author: David Estévez Fernández

Advisor: Avinash Ranganath