混合气 T、V相同 p叠加

FangYi

 $\begin{cases}
\mathbf{pV} = v\mathbf{RT} & \overline{\mathbf{p}_1\mathbf{V}_1} = \mathbf{p_2V_2} \\
\mathbf{p} = \mathbf{nkT} & \overline{\mathbf{T}_1} & \mathbf{T_2}
\end{cases}$ [1]理气方程

$$p = \frac{2}{3} n \overline{\varepsilon}_{k} \qquad \overline{\varepsilon}_{k} = \frac{3}{2} kT$$

$$E = vN_{A} \frac{i}{2} kT = v \frac{i}{2} RT ( \text{\mathbb{\psi}} 3 + 0; \text{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathbb{\mathba}\mathbb{\mathbb{\mathbb{\mathbb{\mathba}\mathbb{\mathbb{\mathbb{\mathbb{\mathba{\mathbb{\mathbb{\mathba{\mathba{\mathbb{\mathba{\mathbb{\mathbb{\mathba{\mathbb{\mathba{\mathbb{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba}{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\mathba{\matha}\math$$

能量均分原理: 平衡态T, 分子每自由度有kT/2平均动能

[3]分布律 速率分布函数 $f(v) = \frac{dN/dv}{N}$   $\bar{x} = \int_{v_1}^{v_2} x dN / \int_{v_1}^{v_2} dN$ 

[2]微观解释

玻氏分布律  $n = n_0 e^{-\frac{\mu y^2}{kT}}$   $p = p_0 e^{-\frac{\mu y^2}{kT}}$ 

[4] 统计平均  $\bar{z} = \sqrt{2\pi d^2 v n}$   $\bar{\lambda} = \frac{1}{\sqrt{2\pi d^2 n}}$  [例题7-2] 及讨论2

**FangYi** 

[习题1]容器 V内同时盛 M<sub>1</sub>、 M<sub>2</sub>的单原子分子理气, 混合气平衡时各自内能均为 E. 求混合气 p及 两分子平均速率之比

解:

[讨论1]  $M_1$ 单原子、 $M_2$ 双原子分子理气,重新求解

[习题2]某系统由理气A、B组成(其分子数为 $N_A$ 和 $N_B$ ), T时各自速率分布函数分别为 $f_A(v)$ 和 $f_B(v)$ ,该系统T时的f(v)为:

$$(1)N_{A}f_{A}(v)+N_{B}f_{B}(v); \qquad 2\frac{N_{A}f_{A}(v)+N_{B}f_{B}(v)}{2};$$

$$(3)\frac{N_{A}f_{A}(v)+N_{B}f_{B}(v)}{N_{A}+N_{B}}; \qquad 4\frac{N_{A}f_{A}(v)+N_{B}f_{B}(v)}{2(N_{A}+N_{B})}.$$
解:  $f(v) = \frac{dN}{Ndv} = \frac{dN_{A}+dN_{B}}{(N_{A}+N_{B})dv}$ 

$$= \frac{1}{(N_{A}+N_{B})}(\frac{dN_{A}}{dv} + \frac{dN_{B}}{dv})$$

 $= \frac{1}{(N_A + N_B)} (f_A(v)N_A + f_B(v)N_B)$ 

[讨论2]一容器内盛有1mol氧气和3 mol氦气,经混合后,温度为127℃,求该混合气体分子的平均速率解: 试卷1 第2题

### [习题3]试指出下列各式对理气的物理意义

$$(1)\frac{1}{2}kT$$

$$(2)\frac{3}{2}kT$$

$$(3)\frac{i}{2}kT$$

$$(4)\frac{i}{2}RT$$

$$(5)\upsilon\frac{3}{2}RT$$

$$(6)\upsilon\frac{i}{2}RT$$

[习题4]用总分子数N、气体分子速率v、速率分布函数*f(v)*表示下列各量

(1) 速率大于 $v_0$ 的那些分子平均速率

(2) 速率小于v<sub>p</sub>的那些分子方均根

[讨论3]f(v)为麦氏函数,N为总分子数,则

- (1)速率 v>100m·s-1的分子数占总数百分比的表达式
- (2)速率  $v>100m \cdot s^{-1}$ 的分子数的表达式

解:(1) (2)

# [讨论4] 选择可能是同T下N<sub>2</sub>和He的麦氏速率分布曲线 ang Yi



$$f(v) = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{\mu v^2}{2kT}} v^2$$

### 第八部分 热力学

**FangYi** 

[1]热一律: 本质是能量守恒;表达式 $Q=\Delta E+A$  常用pV图s求

| RT                              | 等值过程 | 过程方程                                                                              | =0的量         | 其余量 ΔE=υC <sub>V</sub> ΔT                                                                 |
|---------------------------------|------|-----------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------|
| 田河<br>  <b>pV</b> =v <b>R</b> T | 等温   | $\mathbf{p}_1 \mathbf{V}_1 = \mathbf{p}_2 \mathbf{V}_2$                           | <b>∆</b> E=0 | $Q=A=υRT1n(V_2/V_1)$                                                                      |
|                                 | 等容   | $P_1/T_1=p_2/T_2$                                                                 | A=0          | Q= <b>∆</b> E                                                                             |
| 上<br>等<br>成<br>方<br>程           | 等压   | $V_1/T_1=V_2/T_2$                                                                 |              | Q=υC <sub>P</sub> ΔΤ<br>Α=pΔV=υRΔΤ                                                        |
| 过程料                             | 绝热   | $\mathbf{p}_1 \mathbf{V}_1^{\gamma} = \mathbf{p}_2 \mathbf{V}_2^{\gamma}$         | Q=0          | <b>A</b> = <b>-Δ</b> E                                                                    |
| 克拉                              | 多方   | $\mathbf{p}_1 \mathbf{V}_1^{\mathbf{n}} = \mathbf{p}_2 \mathbf{V}_2^{\mathbf{n}}$ |              | $Q = v \frac{\gamma - n}{1 - n} C_v \Delta T  A = \int p dV = \frac{v R \Delta T}{1 - n}$ |

# 应用于循环过程 $\Delta E=0$ , $Q_{\beta}=A_{\beta}$

$$\eta = A_{\text{对外净}} / Q_{\text{W}} = (Q_{\text{W}} - |Q_{\text{D}}|) / Q_{\text{W}} + \ddot{\mathbf{E}} (T_1 - T_2) / T_1$$
  
热温比为常量  
$$\omega = Q_{\text{W}} / A_{\text{对系净}} = Q_{\text{W}} / (|Q_{\text{D}}| - Q_{\text{W}}) + \ddot{\mathbf{E}} T_2 / (T_1 - T_2)$$

### [2]热二律:本质-自发过程不可逆

开氏克氏说法 微观:自然不可逆沿小→大几率

[3]基本概念 准静态、可逆过程、正(逆)循环-pV图顺(逆)时针

基本关系  $C_p = C_v + R$ ;  $\gamma = C_p / C_v = (i + 2) / i$ 

基本问题 吸放热: T个不一定吸热 吸热不一定T个

正负功:

|   | 循环  | V单调 |
|---|-----|-----|
| A | 正>0 | 增>0 |
|   | 逆<0 | 减<0 |

混合气: T、V相同; p叠加

负斜率: 吸放热转折点、温度转折点

绝热自由膨胀: T不变、状态方程成立

绝热及等温过程方程不成立

[4]卡诺定理

$$\eta_{$$
可逆 $}=\eta_{+$ 诺

$$\eta_{ ext{不可逆}} < \eta_{ ext{卡诺}}$$

**FangYi** 

## [习题5]pV图中5个准静态过程(ac等温ae绝热).

其中升温的是

,降温的是

吸热的是

,放热的是



[习题6] 一定量理气 $Q_{acb}$ =500 J.则 $Q_{acbda}$ 为

(A) -1200 J. (B) -700 J.

(C) -400J. (D) 700J.

解1:



# [讨论5] 若 $s_1$ =70J, $s_2$ =30J, DEA放热100J, 求(1) $\boldsymbol{A}_{ABCDEA}$ ?(2) $\boldsymbol{Q}_{BEC}$ ?

### 不讲

解: (1) 
$$A_{\text{net}} = A_{ABEA} + A_{ECDE}$$
  
=  $-30 + 70 = 40J$ 



#### (2) 对整个循环

$$A_{net} = Q_{net} = Q_{BEC} + Q_{DEA}$$

$$Q_{\text{BEC}} = A_{\text{net}} - Q_{\text{DEA}} = 40 - (-100) = 140J$$

[习题7] 理气卡诺循环:  $T_1$ =100°C,  $T_2$ =0°C, 做功800J,维持低温热源温度,提高热源温度至 $T_3$ 并保持循环的两条绝热线不变,使净功增为1600J, 求(1)  $T_3$ (2)  $\eta_{大循环}$ 



[讨论6]卡诺机 $T_1$ =27°C、 $T_2$ =-73°C,10mol空气等温膨胀使体积增至原e倍,求每一循环作功

不讲

解1: 
$$\eta = \frac{A_{net}}{Q_{\text{W}}} = \frac{A_{net}}{A_{ab}}$$

解2: 
$$A_{net} = A_{ab} + A_{bc} + A_{cd} + A_{da}$$
  
=  $vRT_1 \ln(V_2 / V_1) - vRT_2 \ln(V_2 / V_1)$ 

# [习题8]确定图示υmol多原子分子理想气体循环的A<sub>net</sub>、η

 $T_D$ 、  $T_R$ 已知 请同学们课前一定要思考:



# [讨论7]一定量理气循环,已知 $T_1$ 、 $T_2$ ,求 $\eta$ OR $\omega$

