Marcus Theory Química de Coordenação II

Matheus N.

23 de junho de 2020

Introdução

Geralmente, nas reações químicas, partimos do pressuposto que a termodinâmica da reação não influência na cinética e vice-versa. Ao realizar gráficos de reações químicas, devido ao número de diferentes distâncias interatômicas e ângulos de colisões, gráficos multidimensionais devem ser plotados, o que torna o problema muito complexo, gerando diferentes estados de transição, não é possível discernir a relação entre as energias de ativação padrão e do estado de transição. Uma classe de reações que é uma exceção importante à regra são as Reações Redox de Esfera Externa, entre aceptores e doadores solvatados que trocam elétrons.

Teoria de Marcus

Esse tipo de reação ocorre da seguinte maneira: Primeiramente, forma-se o complexo de associação doador-aceptor, então, ocorre a transferência de elétrons entre as espécies e, por fim, separa-se o complexo. De acordo com a Equação de Eyring:

$$k = A_{ET}e^{-\Delta G/RT}$$

A constante k tende a A_{ET} conforme ΔG do estado de transição tende a zero. O mecanismo reacional de esfera interna, indica que há relação termodinâmica/cinética em que o elétron se transfere rapidamente (devido ao seu peso) que as distâncias entre os núcleos permanecem constantes. Da equação de Marcus, é introduzido o parâmetro λ :

$$\Delta G^{ET} = w + nF(\lambda - \Delta E)^2 (4\lambda)^{-1}$$

Onde w é o trabalho eletrostático realizado. O parâmetro λ indica a energia de reorganização de ΔG , ou seja, a energia necessária para modificar a estrutura dos reagentes que estão solvatados e fiquem de acordo com a dos produtos solvatados, antes que ocorra a transferência eletrônica. E para os parametros λ referentes à esfera externa, a termodinâmica realmente influencia na cinética. Na figura 2, a linha contínua indica que se $\Delta E < \lambda$, a ΔG^{ET} se torna maior, ocorrendo o mesmo se $\Delta E > \lambda$, no lado direito da parábola, conhecido como região invertida.

Referências

[1] Todd P. Silverstein. Marcus Theory: Thermodynamics CAN Control the Kinetics of Electron Transfer Reactions. Willamette University. 2012.

Figure 2. Marcus Theory predictions for the variation with cell potential (ΔE°) of activation free energy (ΔG^{\ddagger} , solid curve, left scale, from eq 3); $k_{\rm ET}$, long dashed curve, left scale, from eq 1 and 3; and $\ln(k_{\rm ET})$, short dashed curve, right scale. Parameter values used are: λ = 0.5 eV, $w_{\rm rct}$ = 5 kJ/mol, T = 25 °C, and $A_{\rm ET}$ = 100 s⁻¹. At ΔE° = 0.5 eV = λ , $\Delta G^{\ddagger}_{\rm min}$ = $w_{\rm rct}$, and $k_{\rm ET}$ (max) = 13.3 = $A_{\rm ET}$ e^{- $w({\rm rct})/{\rm RT}$}.

Figura 1: Retirado de [1]