Streamlit MAT File Conversion & Filtering Tool

Purpose of the Tool

This tool converts physiological data stored in MATLAB .mat files into an easy-to-use format (Excel).

It also allows **filtering** and **resampling** of the signals so they can be cleaned, averaged, and better visualized.

The tool is designed for **students and researchers with little or no programming background**. Everything happens through the **Streamlit web interface**:

- Upload a file
- Adjust a few settings Download clean Excel files

How the Tool Works

- 1. Upload a .mat file.
- 2. The tool automatically detects key signals:
 - Finger Pressure

 - Cerebral Blood Flow (CBF) and other derived signals
- 3. Calibration phases in **Finapress** are automatically removed when possible.
- 4. Choose **filtering methods** for Finger Pressure and/or CBF to remove artifacts.
- 5. Resample the data:
 - **Time-based** (e.g., every 1 sec, 5 sec, 1 min)
 - **Beat-based** (e.g., 5 or 10 heartbeats)
- 6. Export the results into **Excel** with:
 - Timestamps
 - Elapsed time
 - Comments Selected signals

Filtering Methods Explained

Filtering is **optional**. If unsure, start with defaults.

1. No Filter

- Leaves the signal exactly as recorded.
- Use this if you trust the raw data.

2. Jump Filter

Removes sudden, unrealistic jumps in the signal caused by sensor noise or movement.

a. Jump Threshold (size of change)

- Defines how big a sudden change must be to count as an artifact.
- If the signal changes more than this threshold between two points, the point is flagged as invalid.
- Lower values → more strict (even small fluctuations removed).
- Higher values → more tolerant (only very large spikes removed).

b. Close Jump Window (gap between jumps)

- Looks at how close together multiple jumps are.
- If two jumps happen within this many samples, the **entire section between them is deleted**.
- Lower values → **narrow effect** (only the exact jumps removed).
- Higher values → wider effect (whole section between close jumps removed).

Examples (at 200 Hz sampling):

- 100 samples ≈ **0.5 sec** → removes very short noisy bursts.
- 500 samples ≈ **2.5 sec** → balanced (default).
- 1000 samples ≈ **5 sec** → aggressive, removes long sections if multiple jumps occur close together.

3. Median Filter (Advanced for CBF)

Suppresses small spikes (upward) or dips (downward) in the CBF signal while preserving the overall shape.

Parameters:

- Median Window Length (smoothing strength)
 - Defines how wide the averaging window is for smoothing.
 - Lower values → lighter smoothing (keeps detail but leaves noise).
- Higher values → stronger smoothing (removes noise but may blur sharp changes).
- Positive Spike Threshold (upward spikes)
 - Defines strictness for suppressing sudden **upward spikes**.
 - Lower values → stricter (removes even small upward jumps).
 - Higher values → more tolerant (keeps detail, but large spikes may remain).
- Negative Spike Threshold (downward dips)
 - Defines strictness for suppressing sudden **downward dips**.
 - Lower values → stricter (removes even small dips).
 - Higher values → more tolerant (keeps detail, but some dips may remain).

Resampling Options

Since raw signals are at 200 Hz (very high frequency), you can reduce them into manageable summaries:

- **Time-based**: average signal every fixed interval (e.g., 1 sec, 10 sec, 1 min). Useful for long recordings.
- Beat-based: produces one row for each detected beat (separately for Finger Pressure and CBF). • Each channel keeps its own beat timing (Finapress and CBF beats do not align exactly).
 - For every beat, the value shown is the mean of N beats centered around it.
 - Example:
 - With 5-beat smoothing → each data point is the average of the current beat plus the 2 beats before and the 2 beats after. • With 10-beat smoothing → each data point is the average of the current beat plus the 4 beats before and the 4 beats after.
 - This avoids the lag effect of using only previous beats and gives a more balanced, real-time representation.
 - Useful for comparing cardiac cycles directly while accounting for natural timing differences.

Important: Comments are preserved at their exact time, even if no other data is present.

Exported Excel Sheets

- Filtered(200Hz)
 - Original signals at high resolution (200 Hz).
 - Includes applied filters and comments.
- Resampled (Time or Beats)
 - Cleaner, downsampled signals for easier analysis.
 - o Includes timestamps, elapsed time, comments, and all selected signals.

Notes for Non-Experts

- If you are not sure which filter to use, **start with defaults**. • Use **No Filter** if the raw data seem clean (no obvious outliers or noise).
- Use **Jump Filter** if you see unrealistic jumps or spikes.
- Use Median Filter for CBF if there is high-frequency noise or small sharp spikes/dips.