Uge 11

Danny Nygård Hansen

13. januar 2024

9.2 · 🖘

- (a) Uligheden » \geq « følger af Cauchy-Schwarz' ulighed. Den omvendte ulighed følger ved at sætte¹ v = u/||u|| (hvis ||u|| = 0 gælder der oplagt lighed).
- (b) Ja, vi benytter ikke egenskaben (ip4) i del (a).

9.3 • 🖘

- (a) Oplagt da et snit af lukkede mængder er lukket, så $\overline{M} \in \mathcal{F}(M)$.
- (b) Følger af at $X \setminus \overline{M}$ er åben, så ethvert punkt deri er centrum i en åben kugle som ikke snitter M.
- (c) Se på kuglerne $b_{\rho}(x, \frac{1}{n})$ for $n \in \mathbb{N}$.
- (d) Oplagt.
- (e) Hvis f.eks. $u, v \in \overline{U}$, så findes følger (u_n) og (v_n) i U som konvergerer mod u hhv. v. Så konvergerer $(u_n + v_n)$ mod u + v.
- **9.6** ⑤ Inklusionen »⊆« følger da hvis $u \in U$, så er u ortogonal på alle vektorer som er ortogonale på alle vektorer i U (bemærk at vi ikke benytter at U er lukket). For den omvendte inklusion, lad $u \in (U^{\perp})^{\perp}$ og skriv u = u' + u'' med $u' \in U$ og $u'' \in U^{\perp}$ (jf. Korollar 9.3.5). Så er $\langle u, u'' \rangle = 0$, hvilket medfører at u'' = 0, så $u = u' \in U$.

Den anden påstand følger hvis vi kan vise at $V^{\perp} \subseteq \overline{V}^{\perp}$ (den omvendte inklusion er oplagt). Dette følger af kontinuitet af indre produkter sammen med Opgave 9.3(c).

¹Rettelse 2024-01-13: $v = u/||u||^2$ er rettet til v = u/||u||.

9.5 • ☜

(a) Alle funktioner er \mathcal{L}^2 (jf. Eksempel 5.2.13). Vi har

$$\langle f, g \rangle = \sum_{j=1}^{n} f(j) \overline{g(j)},$$

hvilket blot er det sædvanlige indre produkt af (søjle/række)vektorerne (f(1),...,f(n)) og (g(1),...,g(n)). Altså er afbildningen $\mathcal{L}^2(\tau_n) \to \mathbb{C}^n$ givet ved $f \mapsto (f(1),...,f(n))$ en lineær isometri. Dette giver fuldstændigheden af \mathbb{C}^n . Bemærk til sidst at \emptyset er den eneste τ_n -nulmængde.

(b) Bemærk at $f \in \mathcal{L}^2(\tau_{\mathbb{N}})$ hvis og kun hvis

$$\sum_{j=1}^{\infty} |f(j)|^2 < \infty.$$

Et element i $\mathcal{L}^2(\tau_{\mathbb{N}})$ er en følge, og dette rum betegnes også $\ell^2(\mathbb{N})$ eller blot ℓ^2 .

9.8 • ☜

(a) Da (e_n) er en ortonormalbasis, er f.eks. $x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$ ved Korollar 9.4.9. Lad $x' = \sum_{n=1}^{\infty} |\langle x, e_n \rangle| e_n$ (dette giver mening ved Sætning 9.2.3(iii)), og definer y' tilsvarende. Så er ||x|| = ||x'||, og kontinuiteten af det indre produkt sammen med Cauchy-Schwarz' ulighed giver at

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle \langle y, e_n \rangle| = \langle x', y' \rangle \le ||x'|| \, ||y'|| = ||x|| \, ||y||.$$

- (b) Følger igen af kontinuiteten af det indre produkt. Sæt x=y for at opnå Parsevals ligning. (Dette er strengt taget ikke en generalisering, da vi i denne opgave antager at \mathcal{H} er *separabelt*. Men pga. Bemærkning 9.4.5 er det tilstrækkeligt at se på et tælleligt ortonormalsystem svarende til indeksmængden I_x .)
- 8.3 Dette er en konsekvens af Opgave 5.24 i lyset af Opgave 8.1. ■