Session 81: Linearity of Expectation

- Properties of Expected Value
- Independent Random Variables

Linearity of Expectations

Theorem 3: If X_i , i = 1, 2, ..., n with n a positive integer, are random variables on S, and if a and b are real numbers, then

(i)
$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

$$(ii) E(aX + b) = aE(X) + b.$$

• The theorem tells that expected values are linear.

Example

We have shown that the expected value of rolling a single dice is 7/2

Thus the expected value of the sum of rolling two dice is 7/2 + 7/2 = 7

This is a simpler way to compute the expected value for two dice

Inversions in a Permutation

Definition: The ordered pair (i, j) is an **inversion** in a permutation of the first n positive integers if i < j, but j precedes i in the permutation.

Example: There are six inversions in the permutation of 3, 5, 1, 4, 2 (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5).

Problem: Find the expected number of inversions in a random permutation of the first *n* integers.

Expected Number of Inversions

Let $I_{i,j}$ be the random variable on the set of all permutations of the first n positive integers with $I_{i,j} = 1$ if (i,j) is an inversion of the permutation and $I_{i,j} = 0$ otherwise.

Let X be the random variable equal to the number of inversions in the permutation:

$$X = \sum_{1 \le i < j \le n} I_{i,j}$$

It is equally likely for i to precede j in a randomly chosen permutation as it is for j to precede i, therefore for all (i,j)

$$E(I_{i,j}) = 1 \cdot p(I_{i,j} = 1) + 0 \cdot p(I_{i,j} = 0) = 1 \cdot 1/2 + 0 \cdot 1/2 = 1/2$$

There are $\binom{n}{2}$ pairs (i,j) with $1 \le i < j \le n$ and so we obtain the expected number of inversion using linearity of expectation

$$E(X) = E(\sum_{1 \le i < j \le n} I_{i,j}) = \sum_{1 \le i < j \le n} E(I_{i,j}) = \sum_{1 \le i < j \le n} 1/2 = \binom{n}{2} 1/2 = \frac{n(n-1)}{4}$$

Independent Random Variables

Definition 3: The random variables *X* and *Y* on a sample space *S* are independent if

$$p(X = r_1 \land X = r_2) = p(X = r_1) \cdot p(X = r_2)$$

Theorem 5: If X and Y are independent variables on a sample space S, then $E(X \cdot Y) = E(X) \cdot E(Y)$

In general, multiplicativity of expectation values does not hold!

Summary

- Properties of Expected Value
 - Linearity
 - Inversions of Permutations
- Independent Random Variables
 - Multiplicativity