Partie 1 : Analyse-algèbre

Exercice 1

On note J l'intervalle $]0,+\infty[$ et on définit sur J la fonction h par :

$$\forall x \in J, \quad h(x) = \int_0^{+\infty} \frac{x \cos t}{x^2 + t^2} dt.$$

- 1. Montrer que la fonction h est bien définie.
- 2. (a) À l'aide d'une intégration par parties, établir l'égalité suivante :

$$h(x) = 2x \int_0^{+\infty} \frac{t \sin t}{(x^2 + t^2)^2} dt.$$

(b) En déduire l'inégalité suivante :

$$\forall x \in J, \quad |h(x)| \leqslant \frac{1}{x}.$$

- (c) Donner la limite de h(x) quand x tend vers $+\infty$.
- 3. (a) À l'aide d'un changement de variable, montrer que, pour tout $x \in J$, $h(x) = \int_0^{+\infty} \frac{\cos(xt)}{1+t^2} dt$.
 - (b) Établir, pour tout réel a, l'encadrement suivant : ,

$$0 \leqslant 1 - \cos a \leqslant \frac{a^2}{2}.$$

(c) Montrer l'encadrement suivant :

$$\forall x \in J, \ \forall A > 0, \ 0 \leqslant \frac{\pi}{2} - h(x) \leqslant \frac{x^2}{2} \int_0^A \frac{t^2}{1 + t^2} \mathrm{d}t + 2 \int_A^{+\infty} \frac{1}{1 + t^2} \mathrm{d}t.$$

- (d) Déterminer la limite de h(x) quand x tend vers 0 par valeurs supérieures.
- 4. On définit sur $U = \mathbb{R}^2 \setminus \{(0,0)\}$ la fonction Φ par :

$$\Phi(x,t) = \frac{x}{x^2 + t^2}.$$

On admet que la fonction h est dérivable deux fois sur J et que ses deux dérivées première et seconde sont données sur J par :

$$h'(x) = \int_0^{+\infty} \cos t \times \frac{\partial \Phi}{\partial x}(x, t) dt \text{ et } h''(x) = \int_0^{+\infty} \cos t \times \frac{\partial^2 \Phi}{\partial x^2}(x, t) dt.$$

- (a) Calculer, pour $(x,t) \in U$, $\frac{\partial^2 \Phi}{\partial x^2}(x,t) + \frac{\partial^2 \Phi}{\partial t^2}(x,t)$.
- (b) En déduire que, pour tout $x \in J$, h''(x) = h(x).
- 5. On pose, pour tout $x \in J$, $k(x) = e^{-2x} (e^x h(x))'$.
 - (a) Calculer k'(x).
 - (b) En déduire que, pour tout $x \in J$, $h(x) = \frac{\pi}{2}e^{-x}$.

Exercice 2

On désigne par n un entier naturel supérieur ou égal à 2 et on considère l'espace vectoriel $E_n = \mathbb{R}_n[X]$ des polynômes de degré inférieur ou égal à n, dont la base canonique est $\mathcal{B} = (1, X, \dots, X^n)$. On pose, pour tout couple (P, Q) d'éléments de $(\mathbb{R}_n[X])^2$:

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

- 1. Montrer que (,) est un produit scalaire.
- 2. On pose, pour tout couple de réels (x, y):

$$f(x,y) = \int_{-1}^{1} (t^4 - xt - y)^2 dt.$$

- (a) Justifier l'existence d'un unique couple de réels (x_0, y_0) tel que $f(x_0, y_0) = \inf_{(x,y) \in \mathbb{R}^2} f(x,y)$.
- (b) Déterminer (x_0, y_0) .
- 3. Soit A un élément de E_n . On définit l'application S_A de E_n dans $\mathbb R$ par :

$$\begin{array}{ccc} S_A: & E_n & \longrightarrow & \mathbb{R} \\ & Q & \longmapsto & \langle A, Q \rangle \end{array}.$$

Montrer que l'application h, de E_n dans l'espace vectoriel des formes linéaires de E_n , $\mathcal{L}(E_n, \mathbb{R})$, définie par $h: A \longmapsto S_A$, est un isomorphisme d'espaces vectoriels.

4. On définit l'application Φ par :

$$\Phi: E_n \times E_n \longrightarrow \mathbb{R}$$

$$(P, Q) \longmapsto \int_{-1}^1 t P(t) Q(t) dt$$

Montrer que Φ est une forme bilinéaire symétrique sur E_n . Est-ce un produit scalaire sur E_n ?

- 5. Montrer qu'il existe un unique polynôme $A \in E_n$, dépendant de P, tel que : $\forall Q \in E_n$, $\Phi(P,Q) = \langle A,Q \rangle$. On note alors φ l'application de E_n dans lui-même, définie par $\varphi(P) = A$. On a donc $\forall (P,Q) \in E_n^2$, $\Phi(P,Q) = \langle \varphi(P),Q \rangle$.
- 6. (a) Montrer que φ est un endomorphisme de E_n .
 - (b) Montrer que, pour tout polynôme P de E_n , avec deg $P \leq n-1$, $\varphi(P) = XP$.
- 7. On suppose, dans cette question, que n=2.
 - (a) Donner la matrice de φ dans la base canonique de E_2 .
 - (b) Donner les valeurs propres de φ .

Partie 2: Probabilités-statistiques

Exercice 3

- 1. Soit X une variable aléatoire à densité, dont une densité f est nulle sur \mathbb{R}_{-} et continue sur \mathbb{R}_{+} , et on note F la fonction de répartition de X.
 - (a) Établir, pour tout réel x positif, l'égalité suivante :

$$\int_0^x t f(t) dt = \int_0^x [1 - F(t)] dt - x P(X > x).$$

(b) On suppose que l'intégrale $\int_0^{+\infty} [1-F(t)]\,dt$ est convergente. Montrer que X admet une espérance mathématique et établir l'égalité suivante :

$$\mathbb{E}(X) = \int_0^{+\infty} \left[1 - F(t)\right] dt.$$

2. On considère une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$, définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, mutuellement indépendantes et suivant toutes la loi exponentielle de paramètre λ $(\lambda > 0)$. Pour tout n de \mathbb{N}^* , on pose $S_n = \max(X_1, X_2, \ldots, X_n)$, c'est-à-dire que :

$$\forall \omega \in \Omega, S_n(\omega) = \max(X_1(\omega), X_2(\omega), \dots, X_n(\omega)).$$

- (a) i. Déterminer la fonction de répartition F_n de S_n .
 - ii. En déduire que S_n est une variable aléatoire à densité et déterminer une densité f_n de S_n .
- (b) i. On pose, pour tout entier naturel n non nul:

$$J_n = \int_0^{+\infty} [1 - F_n(t)] dt.$$

Montrer que l'intégrale J_n est convergente.

- ii. En déduire que S_n admet une espérance mathématique.
- 3. On se propose de trouver une expression simple de $\mathbb{E}(S_n)$ et un équivalent de $\mathbb{E}(S_n)$ quand n tend vers $+\infty$.

Pour tout entier naturel n non nul, on pose $T_n = \sum_{j=1}^n \frac{X_j}{j}$.

- (a) Déterminer une densité de la variable aléatoire $\frac{X_{n+1}}{n+1}$.
- (b) Montrer que, pour tout entier naturel n non nul, f_n est une densité de \mathcal{T}_n .
- (c) En déduire l'expression de $\mathbb{E}(S_n)$ et un équivalent de $\mathbb{E}(S_n)$ quand n tend vers $+\infty$.

Exercice 4

On dit qu'une variable aléatoire Z à valeurs strictement positives suit une loi lognormale si la variable aléatoire $\ln Z$ suit une loi normale.

- 1. Soit Z_1 une variable aléatoire à valeurs strictement positives, telle que $X_1 = \ln Z_1$ suive la loi normale centrée réduite.
 - (a) Donner la densité de Z_1 .
 - (b) Calculer, pour tout réel s, $\mathbb{E}(e^{sX_1})$.
 - (c) En déduire que $\mathbb{E}(Z_1) = e^{\frac{1}{2}}$.
- 2. Soit Z_2 une variable aléatoire à valeurs strictement positives telle que $X_2 = \ln Z_2$ suive la loi normale $\mathcal{N}(m, \sigma^2)$, d'espérance m et de variance σ^2 .

Calculer, en utilisant les résultats de la première question, $\mathbb{E}(Z_2)$ et $\mathrm{Var}(Z_2)$.

On considère dorénavant une suite de variables aléatoires $(Y_n)_{n\in\mathbb{N}^*}$, à valeurs strictement positives, indépendantes, suivant toutes la même loi lognormale, associées aux variables $X_i = \ln Y_i$, où, pour tout entier naturel i non nul, X_i suit la loi $\mathcal{N}(m, \sigma^2)$. On notera génériquement $\mathbb{E}(Y)$ et $\mathrm{Var}(Y)$ l'espérance et la variance de ces variables.

On pose, pour tout entier naturel n non nul:

$$\overline{Y_n} = \frac{1}{n} \sum_{i=1}^n Y_i \text{ et } \overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i.$$

- 3. (a) Proposer un estimateur convergent de $\mathbb{E}(Y)$, obtenu à partir des Y_i .
 - (b) Calculer la variance de cet estimateur, en fonction de m et de σ^2 .

On suppose, dans les questions suivantes 4, 5 et 6, que σ^2 est connu : $\sigma^2 = \sigma_0^2$.

- 4. (a) Proposer un estimateur convergent de m obtenu à partir des X_i .
 - (b) En déduire un nouvel estimateur convergent de $\mathbb{E}(Y)$, fonction de $\overline{X_n}$ et de σ_0^2 .
 - (c) Cet estimateur est-il sans biais?
- 5. Comparer, pour n grand, selon leurs variances, les deux estimateurs de $\mathbb{E}(Y)$ obtenus en 3.(a) et en 4.(b). On pourra effectuer des développements limités des variances considérées en puissances de $\frac{1}{n}$.
- 6. On note $T_{1,n}$ l'estimateur de $\mathbb{E}(Y)$ obtenu en 3.(a) et $T_{2,n}$ celui obtenu en 4.(b). On cherche à construire un estimateur convergent de $\mathbb{E}(Y)$, combinaison linéaire de $T_{1,n}$ et de $T_{2,n}$ et de variance minimale. Un tel estimateur sera donc de la forme, pour tout couple de réels (λ_1, λ_2) :

 $T_n = \lambda_1 T_{1,n} + \lambda_2 T_{2,n}.$

(a) En raisonnant sur les moments de $T_{1,n}$ et de $T_{2,n}$, sans chercher à les expliciter à ce stade, montrer que la solution optimale de ce problème conduit à prendre, pour valeur de λ_1 , le réel $\tilde{\lambda}_1$ défini par :

$$\tilde{\lambda}_1 = \frac{\text{Cov}(T_{2,n} - T_{1,n}, T_{2,n})}{\text{Var}(T_{2,n} - T_{1,n})}.$$

- (b) Pour tout *i* fixé, calculer $Cov(Y_i, e^{\overline{X_n}})$.
- (c) En déduire l'expression explicite de l'estimateur optimal obtenu.
- (d) Que devient cette expression pour n assez grand?

 On effectuera à nouveau des développements limités des variances considérées en puissances de $\frac{1}{n}$
- 7. On revient au cas où σ^2 est inconnu. Proposer un estimateur convergent de σ^2 , s'exprimant comme fonction, à la fois, de $\overline{X_n}$ et de $\overline{Y_n}$.

Connaissez-vous d'autres estimateurs de la variance dans un échantillon normal?