Algoritmus pro hledání maximálních nezávislých množin

Milan Munzar Jakub Sochor

xmunza00, xsocho06

1 Úvod

2 Maximální nezávislé množiny

Následující kapitola popisuje teoretické základy týkající se maximálních nezávislých množin. Při psaní této kapitoly jsme vycházeli především z knihy Grafy a jejich aplikace od Jiřího Demela [1].

Množina vrcholů $S\subseteq V$ neorientovaného grafu G(V,E) je nezávislá, když pro každé dva vrcholy platí, že nejsou spojeny hranou. Dále definujeme množinu S jako maximální právě tehdy když již nelze přidat do množiny další vrchol tak, aby množina zůstala zároveň nezávislá. Případně lze maximální nezávislou množinu definovat formálně následujícím způsobem.

Definice 1. Mějme neorientovaný graf G(V, E). Podmnožinu $S \subseteq V$ nazveme maximální nezávislou množinou právě tehdy když platí:

$$\forall v_1, v_2 \in S : (v_1, v_2) \notin E \land \forall v' \in V \setminus S : Adj(v') \cap S \neq \emptyset$$

Typickou úlohou pro nalezení nezávislých množin je hledání prvků, které spolu mohou nějakým způsobem fungovat. Mohou to být například procesy počítače, jež pracují nad společnými daty. Procesy jsou tomto případě vrcholy grafu a budou spojeny hranou v případě, že pro svůj běh potřebují stejná data. Nezávislá množina potom bude obsahovat ty procesy, které mohou běžet současně.

Hledání maximálních nezávislých množin je NP-těžký [[TODO: Není NP-complete?]] problém. Jedinou známou možností jak tento problém řešit je procházet všechny podmnožiny množiny vrcholů a určovat zda je zvolená množina maximální nezávislá. Jelikož množství podmnožin roste exponenciálně s počtem vrcholů je toto řešení pro velké grafy náročné.

Často se v aplikacích setkáváme s potřebou určit nezávislost grafu. Nezávislost grafu G je rovna velikosti nejpočetnější nezávislé množiny a značí se $\alpha(G)$. Tato množina je zároveň množinou maximální, ale naopak to neplatí, tedy každá maximální nezávislá množina není nejpočetnější nezávislou množinou. Jiným požadavkem může být například nalezení nejdražší nezávislé množiny ve smyslu ohodnocení vrcholů.

Pojmy úzce související s maximálními nezávislými množinami jsou klika grafu a dominující podmnožina. Klika je maximální úplný podgraf grafu G a odpovídá nějaké maximální nezavislé množině doplňkového grafu -G. Dominující podmnožina vrcholů grafu jsou ty vrcholy, jež se svými sousedy pokrávají celý graf. Tedy každá maximální nezávislá množina je zároveň množinou dominující.

2.1 Popis použitého algoritmu

Implementovaný algoritmus jsme převzali z [1]. Jeho základem je metoda zpětného navracení. Složitost je $O(2^{n/3})$ [[TODO: Zkontrolovat složitost]], kde n je počet uzlů grafu [4]. Algoritmus lze upravit pro hledání nejpočetnější nebo nejdražší nezávislé množiny. Během svého běhu si udržuje 3 navzájem disjunktní množiny vrcholů R, N, S. R je nezávislá množina vrcholů. Množina N obsahuje vrcholy, které zatím nebyly přidány R. S obsahuje vrcholy, jejichž přidání do množiny R obsahující nezávislou množinu již bylo vyzkoušeno.

Algoritmus 1 sekvenční hledání maximálních nezávislých množin

```
function SEQINDSETS(Graph G)
    // inicializace
    k \leftarrow 0
    R_k, S_k \leftarrow \emptyset
    N_k \leftarrow V
    // rozšíř R
    x \in N_k
    k \leftarrow k + 1
    R_k \leftarrow \{x\}
    N_k \leftarrow N_{k-1} \setminus (x \cup Adj(x))
    while True do
         reduce \leftarrow True
         // test zda-li je R maximální
         if N_k \neq \emptyset \lor S_K \neq \emptyset then
              // test možnosti zvětšování R
              if N_k \neq \emptyset then
                   // test zda-li může být R maximální
                   if \forall y \in S_k : Adj(y) \cap S_k \neq \emptyset then
                        reduce \leftarrow False
                   end if
              end if
         else
              independent\_sets \leftarrow independent\_sets \cup \{R_k\}
         end if
         if reduce = False then
              // rozšiř R
              x \in N_k
              k \leftarrow k + 1
              R_k \leftarrow R_{k-1} \cup x
              N_k \leftarrow N_{k-1} \setminus (x \cup Adj(x))
              S_k \leftarrow S_{k-1} \setminus x
         else
              // navrat
              if k = 0 then
                   return independent_sets
              end if
              x \in R_k
              k \leftarrow k - 1
              N_k \leftarrow N_k \setminus x
              S_k \leftarrow S_k \cup x
         end if
    end while
end function
```

Jiným řešením pro nalezení maximálních nezávislých množin je například Robsonův algoritmus se složitostí $O(2^{0.296n})$ [2]. Fomin dosáhl složitosti $O(2^{0.288n})$ pomocí metody rozděl a panuj [3]. Tyto algoritmy využívají heuristiky pro vyloučení některých množin z prohledávání a pro výběr uzlu.

3 Implementace

Implementovaný algoritmus 1 využívá vzájemné disjunkce množin R, S, N. Tato vlastnost dovoluje uchovat informace o příslušnosti uzlu grafu k uvedeným množinám v matici. Řádky matice představují stav nezávislé množiny v nějakém kroku k metody zpětného navracení.

Úprava algoritmu pro paralelizaci, využité prostředky pro paralelizaci A

4 Vyhodnocení

Pro účely vyhodnocení zrychlení paralelní verze algoritmu oproti sekvenční byly vytvořeny skripty, které generují náhodné grafy se zadaným počtem vrcholů a hran ve formátu GraphML.

Jednotlivé grafy jsou rozděleny do skupin podle toho, kolik procent maximálního možného počtu hran obsahují. K tomuto rozdělení jsme přistoupili zejména proto, aby čas běhu algoritmu v jedné skupině grafů byl rostoucí s počtem vrcholů daného zpracovávaného grafu, jelikož počet hran grafu významně ovlivňuje také počet maximálních nezávislých množin v daném grafu a tudíž i dobu běhu.

Celé vyhodnocování bylo prováděno na třech skupinách grafů po 31 grafech ve skupině. Program byl vždy puštěn sekvenčně a změřen čas běhu t_S a následně byl puštěn paralelně a určen čas t_P , po který pracovala paralelní verze algoritmu. Do změřených časů není započteno načítání grafu ani případný výpis maximálních nezávislých množin, ale pouze čistý čas běhu algoritmu pro určení těchto množin. Pro každý graf bylo určeno zrychlení s podle vzorce 1.

$$s = \frac{t_S}{t_P} \tag{1}$$

Testování bylo prováděno na počítači s procesorem AMD Phenom X4 945, který má 4 fyzická jádra běžící na frekvenci 3 GHz a 4 GB RAM. Během běhu programu nebyl na počítači puštěn žádný další výpočetně náročný proces a pro měření času bylo využito high_resolution_clock ze standardu C++11. [[TODO: přidat přesnost???]]

Grafy vytvořené z naměřených výsledků lze vidět na obrázku 1 a všechny naměřené časy a určené zrychlení jsou obsaženy v příloze B.

Maximální teoreticky možné dosažitelné zrychlení na procesoru se čtyřmi jádry je 4,0. Jak lze vidět z uvedených grafů, tak nám se podařilo dosáhnout zrychlení kolem 3,5. Toto považujeme za solidní výsledek, protože v rámci programu je též nutné řešit synchronizaci přístupu do struktury obsahující výsledné maximální nezávislé množiny.

Ovšem jak si lze z grafů všimnout, tak s narůstajícím počtem vrcholů se zrychlení snižuje. Tento fakt je dle našeho zkoumání způsoben především tím, že velmi zásadně roste počet maximálních nezávislých množin a jejich reprezentace v paměti již není triviální a program celkově využije velkého množství paměti (více než 1 GB).

Kvůli tomuto problému jsme také experimentovali s tím, že se maximální nezávislé množiny nebudou ukládat do paměti, ale rovnou vypisovat. S tímto přístupem jsme ovšem dosahovali ještě horších výsledků, jelikož program trávil podstatně další čas v kritické sekci výpisu výsledku a tímto byla paralelní verze programu velmi zpomalena.

5 Závěr

Reference

[1] DEMEL, Jiří. *Grafy a jejich aplikace*. Vyd. 1. Praha: Academia, 2002, 257 s. ISBN 80-200-0990-6.

Obrázek 1: Naměřené výsledky rychlosti hledání maximálních nezávislých množin a zrychlení oproti sekvenčnímu algoritmu. Grafy obsažené v jednom grafu obsahují stejné procento všech hran.

- [2] ROBSON, J.M. Algorithms for maximum independent sets. Journal of Algorithms. 1986, vol. 7, issue 3, s. 425-440.
- [3] FOMIN, Fedor V., FABRIZIO Grandoni, DIETER Kratsch. Measure and conquer: a simple $O(2^{0.288n})$ independent set algorithm. Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. ACM, 2006.
- [4] TARJAN, Robert Endre, TROJANOWSKI Anthony E. Finding a maximum independent set. SIAM Journal on Computing 6.3 (1977): 537-546.

A Použití programu

B Naměřené výsledky

Vrcholů	Hran	Sekvenční [s]	Parelelní [s]	Zrychlení
200	9950	4.806	1.379	3.484
205	10455	5.457	1.583	3.446
210	10972	6.417	1.862	3.447
215	11502	7.905	2.233	3.539
220	12045	8.834	2.486	3.554
225	12600	10.320	2.926	3.528
230	13167	11.675	3.307	3.531
235	13747	13.686	3.897	3.512
240	14340	15.704	4.519	3.475
245	14945	18.481	5.391	3.428
250	15562	20.852	6.254	3.334
255	16192	23.675	7.085	3.341
260	16835	26.377	8.003	3.296
265	17490	30.030	9.123	3.292
270	18157	35.272	11.169	3.158
275	18837	39.345	12.627	3.116
280	19530	43.736	13.849	3.158
285	20235	49.988	15.907	3.142
290	20952	56.912	18.233	3.121
295	21682	61.219	20.003	3.060
300	22425	71.425	23.343	3.060
305	23180	80.738	26.021	3.103
310	23947	88.890	29.152	3.049
315	24727	101.445	33.761	3.005
320	25520	108.687	36.410	2.985
325	26325	124.581	42.150	2.956
330	27142	138.036	47.123	2.929
335	27972	154.214	51.808	2.977
340	28815	174.083	59.911	2.906
345	29670	189.836	65.013	2.920
350	30537	206.761	71.886	2.876

Tabulka 1: Naměřené výsledky pro grafy s 50 % hran

Vrcholů	Hran	Sekvenční [s]	Parelelní [s]	Zrychlení
300	26910	6.805	1.938	3.511
305	27816	7.280	2.169	3.356
310	28737	8.192	2.413	3.396
315	29673	9.049	2.624	3.448
320	30624	10.111	2.942	3.437
325	31590	11.002	3.167	3.474
330	32571	11.819	3.395	3.481
335	33567	13.254	3.878	3.418
340	34578	14.360	4.213	3.408
345	35604	15.617	4.960	3.149
350	36645	16.846	5.182	3.251
355	37701	18.513	5.536	3.344
360	38772	20.369	6.360	3.202
365	39858	21.536	6.546	3.290
370	40959	23.727	7.260	3.268
375	42075	25.338	7.765	3.263
380	43206	27.552	8.358	3.297
385	44352	29.760	9.326	3.191
390	45513	32.013	10.009	3.198
395	46689	35.218	10.803	3.260
400	47880	37.397	11.926	3.136
405	49086	40.661	13.008	3.126
410	50307	43.336	13.655	3.174
415	51543	47.390	15.475	3.062
420	52794	50.443	16.103	3.133
425	54060	55.128	17.948	3.072
430	55341	58.416	18.720	3.121
435	56637	64.123	20.668	3.103
440	57948	69.349	22.250	3.117
445	59274	72.653	23.972	3.031
450	60615	76.661	25.176	3.045

Tabulka 2: Naměřené výsledky pro grafy s $60\,\%$ hran

Vrcholů	Hran	Sekvenční [s]	Parelelní [s]	Zrychlení
400	55860	4.118	1.156	3.561
405	57267	4.361	1.258	3.466
410	58691	4.567	1.275	3.583
415	60133	4.875	1.393	3.500
420	61592	5.169	1.457	3.547
425	63069	5.538	1.572	3.522
430	64564	5.929	1.729	3.430
435	66076	6.263	1.731	3.617
440	67606	6.720	1.862	3.610
445	69153	7.085	1.956	3.623
450	70717	7.570	2.081	3.638
455	72299	7.977	2.185	3.650
460	73899	8.391	2.299	3.650
465	75516	8.952	2.478	3.613
470	77150	9.362	2.589	3.616
475	78802	9.900	2.819	3.511
480	80472	10.345	2.936	3.523
485	82159	11.172	3.143	3.555
490	83863	11.838	3.417	3.465
495	85585	12.301	3.552	3.463
500	87325	13.155	3.888	3.383
505	89082	13.664	3.806	3.590
510	90856	14.445	4.222	3.421
515	92648	15.364	4.538	3.386
520	94458	16.111	4.790	3.363
525	96285	16.770	5.069	3.308
530	98129	17.903	5.243	3.415
535	99991	18.835	5.486	3.433
540	101871	19.660	5.838	3.368
545	103768	20.578	6.180	3.330
550	105682	21.710	6.519	3.330

Tabulka 3: Naměřené výsledky pro grafy s $70\,\%$ hran