多元分析: 第十三周作业

蒋翌坤 20307100013

《实用多元统计分析》P416: 9.19(e)

先利用原始数据将新的销售人员的测试分数标准化,然后利用加权最小二乘法和回归方法,分别对 m=2 和 m=3 个公共因子计算因子得分。m=2 时,利用加权最小二乘法得因子得分 [0.59,0.70],利用回归方法得因子得分 [1.58,0.31]。m=3 时,利用加权最小二乘法得因子得分 [-1.92,-2.62,4.80],利用回归方法得因子得分 [-2.34,-2.55,2.55]。

《实用多元统计分析》P418: 9.28

利用协方差矩阵 S, 取 m=2, 可以得到因子载荷和旋转因子载荷如表 1 所示。从表中可以发现,马拉松变量的载荷十分高,而其他变量的载荷很小。

变量	<u> </u>	因子载荷	<u> </u>	旋转因子载荷		
	$\overline{F_1}$	F_2	ψ_i	$\overline{F_1}$	F_2	ψ_i
100 米	0.34	-0.15	0.01	0.32	-0.18	0.01
200 米	0.82	-0.39	0.02	0.78	-0.47	0.02
400 米	2.12	-1.07	0.99	2.0	-1.28	0.99
800 米	0.08	-0.0	0.0	0.08	-0.01	0.0
1500 米	0.26	0.05	0.0	0.27	0.02	0.0
3000 米	0.77	0.22	0.02	0.78	0.14	0.02
马拉松	13.21	1.3	89.1	13.27	-0.03	89.1

表 1: 利用协方差矩阵 S 的因子载荷和旋转因子载荷

通过加权最小二乘法得到的两个因子得分如图 1 所示。从图中可以看出,有两个明显的离群点位于图像的右侧。

图 1: 加权最小二乘法得到的两个因子得分(S)

利用相关系数矩阵 R, 取 m=2, 可以得到因子载荷和旋转因子载荷如表 2 所示。从表中可以发现,在进行因子旋转后,第一个因子上高载荷的为短跑项目,第二个因子上高载荷的为长跑项目,这与协方差矩阵 S 所得出的结论差距很大。

变量	因子载荷			旋转因子载荷		
	$\overline{F_1}$	F_2	ψ_i	$\overline{F_1}$	F_2	ψ_i
100 米	0.86	-0.39	0.09	0.45	-0.83	0.09
200 米	0.88	-0.42	0.03	0.44	-0.87	0.03
400 米	0.81	-0.42	0.15	0.39	-0.83	0.15
800 米	0.92	-0.02	0.14	0.72	-0.57	0.14
1500 米	0.97	0.16	0.02	0.87	-0.46	0.02
3000 米	0.94	0.26	0.03	0.91	-0.37	0.03
马拉松	0.8	0.07	0.33	0.68	-0.43	0.33

表 2: 利用相关系数矩阵 R 的因子载荷和旋转因子载荷

通过加权最小二乘法得到的两个因子得分如图 2 所示。该图与协方差矩阵 S 得出的因子得分图一样。

图 2: 加权最小二乘法得到的两个因子得分 (R)

《实用多元统计分析》P506: 11.7

 \mathbf{a}

两个密度函数如图 3 所示。

图 3: 两个密度函数

 \mathbf{b}

$$R_1: \frac{f_1(x)}{f_2(x)} \ge 1$$
 $R_2: \frac{f_1(x)}{f_2(x)} < 1$

$$R_2: \frac{f_1(x)}{f_2(x)} < 1$$

解得 $R_1: -1 \le x \le 0.25$, $R_2: 0.25 < x \le 1.5$ 。

 \mathbf{c}

$$R_1: \frac{f_1(x)}{f_2(x)} \ge \frac{0.8}{0.2}$$
 $R_2: \frac{f_1(x)}{f_2(x)} < \frac{0.8}{0.2}$

$$R_2: \frac{f_1(x)}{f_2(x)} < \frac{0.8}{0.2}$$

解得 $R_1: -1 \le x \le -\frac{1}{3}$, $R_2: -\frac{1}{3} < x \le 1.5$ 。