收益率计算

杨弘毅

创建: 2021 年 4 月 2 日 修改: 2021 年 9 月 13 日

1 连续复利收益率(continuously compounded return)

己知,根据定义自然常数为如下极限值:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

假设名义利率 (Nominal interest rate) 为 r, 进行再投资且一年计息 m 次, 则有实际利率 (Effective interest rate, EIR) 为:

当
$$m = 1$$
 时 $1 + r$
当 $m = 2$ 时 $(1 + r/2)^2$
当 $m = 3$ 时 $(1 + r/3)^3$
... ...
当 $m = \infty$ 时 $\lim_{m \to \infty} (1 + r/m)^m$

将其变形,则有连续复利收益率为:

$$\lim_{m \to \infty} (1 + r/m)^m = \lim_{m \to \infty} (1 + \frac{1}{m/r})^{m/r \times r} = e^r$$

例: 当名义利率为 12% 时,有年化实际利率(Effective annual interest rate, Annual equivalent rate (AER))为:

m	(周期)	实际利率	实际年化利率
1	(一年)	$\frac{0.12}{1} = 0.12$	$(1.12)^1 - 1 = 0.12$
2	(半年)	$\frac{0.12}{2} = 0.06$	$(1.06)^2 - 1 = 0.1236$
4	(季度)	$\frac{0.12}{4} = 0.03$	$(1.03)^4 - 1 = 0.125509$
12	(月度)	$\frac{0.12}{12} = 0.01$	$(1.01)^{12} - 1 = 0.126162$
52	(周度)	$\frac{0.12}{52} = 0.0023$	$(1.0023)^{52} - 1 = 0.127341$
365	(日度)	$\frac{0.12}{365} = 0.00033$	$(1.00033)^365 - 1 = 0.127475$
∞	(连续)	$\lim_{m\to\infty} (1+\frac{0.1}{m})$	$(\frac{2}{a})^m - 1 = e^{0.12} = 0.127497$