This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-138970

(43)公開日 平成11年(1999) 5月25日

(51) Int.Cl. 6		識別記号	F I
B41M	1/06		B41M 1/06
B41C	1/10	·	B 4 1 C 1/10
B41N	1/10		B 4 1 N 1/10
G03F	7/00	503	G03F 7/00 503
	7/004	5 2 1	7/004 5 2 1
			審査請求 未請求 請求項の数2 OL (全 9 頁
(21)出願番号	特願平9-308822		(71) 出願人 000005201
			富士写真フイルム株式会社
(22)出願日		平成9年(1997)11月11日	神奈川県南足柄市中沼210番地
			(72)発明者 中山 隆雄
			静岡県榛原郡吉田町川尻4000番地 富士2
			真フイルム株式会社内
			(72)発明者 神山 宏二
			神奈川県足柄上郡開成町宮台798番地 富
			士写真フイルム株式会社内
			(72)発明者 山田 隆
			神奈川県足柄上郡開成町宮台798番地 富
			士写真フイルム株式会社内
			(74)代理人 弁理士 萩野 平 (外3名)

(54)【発明の名称】 オフセット印刷方法

(57)【要約】

【課題】アルカリ現像液を必要とせず、画像部と非画像部の識別性が高く、優れた画質の印刷画面を作りうるオフセット印刷方法であって、かつその印刷原版は反復して使用できる印刷方法を提供する。

【解決手段】活性光の照射によって親水性に変化する特定構造の金属酸化物の薄層を表面に有する印刷用原版に活性光を用いて像様露光を行い、画像領域がインクを受け入れた印刷面を形成させて印刷を行い、印刷の終了後使用した印刷版面上に残存するインクを洗浄除去し、次いで原版を80°C以上に加熱して、その印刷用原版を用いて反復して印刷を行うことを特徴とする印刷方法。

_

【特許請求の範囲】

【請求項1】 RTiO3 (Rはアルカリ土類金属原子)、AB $_{2-x}$ C $_x$ D $_{3-x}$ E $_x$ O $_{10}$ (Aは水素原子又はアルカリ金属原子、Bはアルカリ土類金属原子又は鉛原子、Cは希土類原子、Dは周期律表の $_5$ A族元素に属する金属原子、Eは同じく $_4$ A族元素に属する金属原子、 $_5$ xは $_5$ 2の任意の数値を表す)、SnO $_5$ 8i $_5$ O $_5$ 及びFe $_5$ O $_5$ の少なくとも一つからなる薄層を有する印刷用原版に活性光を用いて像様露光を行い、露光面を印刷用インクに接触させて、画像領域がインクを受け 10入れた印刷面を形成させて印刷を行い、印刷の終了後使用した印刷版面上に残存するインクを洗浄除去し、次いで原版を $_5$ 80 C以上に加熱して、その印刷用原版を用いて反復して印刷を行うことを特徴とするオフセット印刷方法。

【請求項2】 オフセット印刷機の版胴の印刷面側の表面に請求項1に記載の薄層を設けたことを特徴とする請求項1に記載のオフセット印刷方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、一般軽印刷分野、 とりわけオフセット印刷、特に簡易に印刷版を製作でき る新規なオフセット印刷方法及び印刷版に関するもので ある。さらに具体的には、印刷用原版の反復再生使用を 可能にするオフセット印刷方法とその印刷用原版に関す るものである。

[0002]

【従来の技術】オフセット印刷法は、数多くの印刷方法の中でも印刷版の製作工程が簡単であるために、とくに一般的に用いられてきており、現在の主要な印刷手段となっている。この印刷技術は、油と水の不混和性に基づいており、画像領域には油性材料つまりインクが、非画像領域には湿し水が選択的に保持される。したがって印刷される面と直接あるいはブランケットと称する中間体を介して間接的に接触させると画像部のインクが転写されて印刷が行われる。

【0003】オフセット印刷の主な方法は、アルミニウム基板を支持体としてその上にジアゾ感光層を塗設したPS板である。PS板においては、アルミニウム基板を支持体としてその表面を砂目立て、陽極酸化、その他の 40諸工程を施してインク受容能と非画像部のインク反発性を強め、耐刷力を向上させ、印刷面の精彩化を図るなどを行い、その表面に印刷用画像を形成させる。したがってオフセット印刷は、簡易性に加えて耐刷力や印刷面の高精彩性などの特性も備わってきている。しかしながら、印刷物の普及に伴って、オフセット印刷法の一層の簡易化が要望され、数多くの簡易印刷方法が提案されている。

【0004】その代表例がAgfa-Gevaert社から市販されたCopyrapid オフセット印刷版をはじめ、米国特許35 50

11656号、特開平7-56351号などでも開示されている銀塩拡散転写法による印刷版作製に基づく印刷方法であって、この方法は、1工程で転写画像を作ることができて、かつその画像が親油性であるために、そのまま印刷版とすることができるので、簡易な印刷方法として実用されている。しかしながら、簡易とはいいながらこの方法もアルカリ現像液による拡散転写現像工程を必要としている。現像液による現像工程を必要としないさらに簡易な印刷方法が要望されている。

【0005】画像露光を行ったのちのアルカリ現像液による現像工程を省略した簡易印刷版の製作方法の開発は上記の背景から行われてきた。現像工程を省略できることから無処理刷版とも呼ばれるこの簡易印刷版の技術分野では、これまでに主として

①像様露光による画像記録面上の照射部の熱破壊による像形成、②像様露光による照射部の親油性化(ヒートモード硬化)による画像形成、③同じく照射部の親油性化であるが、光モード硬化によるもの、④ジアゾ化合物の光分解による表面性質の変化、⑤画像部のヒートモード溶融熱転写などの諸原理に基づく手段が提案されている。

【0006】上記の簡易オフセット印刷方法として開示されている技術には、米国特許第3,506,779号、同第3,549,733号、同第3,574,657号、同第3,739,033号、同第3,832,948号、同第3,945,318号、同第3,962,513号、同第3,964,389号、同第4,034,183号、同第4,081,572号、同第4,693,958号、同第731,317号、同第5,238,778号、同第5,3353,705号、同第5,385,092号、同第5,395,729号等の米国特許及び欧州特許第1068号などがある。

【0007】これらは、製版に際して現像液を必要としないように考案されているが、親油性領域と親水性領域との差異が不十分であること、したがって印刷画像の画質が劣ること、解像力が劣り、先鋭度の優れた印刷画面が得にくいこと、画像面の機械的強度が不十分で傷がつきやすいこと、そのために保護膜を設けるなどによって却って簡易性が損なわれること、長時間の印刷に耐える耐久性が不十分なことなどのいずれか一つ以上の欠点を伴っていて、単にアルカリ現像工程を無くすだけでは実用性は伴わないことを示している。印刷上必要とされる諸特性を具備し、かつ簡易に印刷版を製作できる印刷版作成方法への強い要望は、いまだに満たされていない。

【0008】上記した無処理型印刷版作成方法の一つに ジルコニアセラミックが光照射によって親水性化することを利用した印刷版作製方法が特開平9-169098 号で開示されている。しかし、ジルコニアの光感度は不 十分であり、かつ疎水性から親水性への光変換効果が不 十分のため画像部と非画像部の識別性が不足している。

3

【0009】上記した現像液を必要としない簡易な印刷方法とともに、使用済みの印刷用原版を簡単に再生して再使用できる手段があれば、コストの低減と廃棄物の軽減の2面から有利である。印刷用原版の再生使用には、その再生操作の簡易性が実用価値を左右するが、再生操作の簡易化は難度の高い課題であり、従来殆ど検討されきておらず、わずかに上記の特開平9-169098号でジルコニアセラミックという特殊な原版用材料について開示されているに過ぎない。

[0010]

【発明が解決しようとする課題】本発明が解決しようとしている第1の課題は、アルカリ性現像液を必要としない簡易性と実用レベルの十分の画質を有し、かつ印刷原版を反復して使用することもできるオフセット印刷方法を提供することである。具体的には、第1にアルカリ現像液を必要とせず、第2に画像部と非画像部の識別性が高く、したがって優れた画質の印刷画面を作ることができ、かつその印刷原版は簡易な操作で反復して使用できるオフセット印刷方法を提供することである。

[0011]

【課題を解決するための手段】本発明者たちは、上記の目的を達成するために、鋭意検討の結果、特定の金属酸化物が光照射によって表面の親水性が変化する現象と変化した親水性が熱処理によってもとに戻る性質を有することを認め、この現象を印刷方法の簡易化と印刷版の再利用化に応用して上記の課題を解決できる可能性に着目し、これに基づいて本発明を完成するに至った。すなわち、本発明は、下記の通りである。

【0012】1. RTiO $_3$ (Rはアルカリ土類金属原子)、AB $_{2-x}$ C $_x$ D $_{3-x}$ E $_x$ O $_{10}$ (Aは水素原子又は 30 アルカリ金属原子、Bはアルカリ土類金属原子又は鉛原子、Cは希土類原子、Dは周期律表の5 A族元素に属する金属原子、Eは同じく4 A族元素に属する金属原子、 x は $0\sim2$ の任意の数値を表す)、S nO $_2$, Bi $_2$ O $_3$ 及びFe $_2$ O $_3$ の少なくとも一つからなる薄層を有する印刷用原版に活性光を用いて像様露光を行い、露光面を印刷用インクに接触させて、画像領域がインクを受け入れた印刷面を形成させて印刷を行い、印刷の終了後使用した印刷版面上に残存するインクを洗浄除去し、次いで原版を 80° C以上に加熱して、その印刷用原版を用 40 いて反復して印刷を行うことを特徴とするオフセット印刷 100

2. オフセット印刷機の版胴の印刷面側の表面に上記1 に記載の薄層を設けたことを特徴とする上記1に記載の オフセット印刷方法。

[0013]

【発明の実施の形態】以下に本発明の実施の形態について詳細に説明する。本発明は、特定の金属酸化物の薄層が活性光の照射を受けてその表面が親水性へと性質を変える特性を有することと、熱によってその変化した表面 50

の性質がもとの性質に戻ることとを発見し、それらの現象をインクの受容性と反接性の識別へ応用して、それをオフセット印刷用の印刷版の作製と、使用済みの印刷版の再生に応用する技術を確立したことを特徴点としている

4

【0014】以下の説明では、本発明に使用する上記の特定の金属酸化物を「光触媒型金属酸化物」と呼ぶ。その詳細を述べる前に、蛇足ながら、本明細書で用いている用語について触れておくと、「活性光」とは、光触媒型金属酸化物が吸収すると励起されて、その表面を親水性に変化させる光を指しており、その光源や波長などの詳細は後述する。また、「像様露光」は、受光面照度が画像状に分布するように変調された光による露光である。「薄膜」と「薄層」は、同義に用いる。

【0015】本発明に使用する光触媒型金属酸化物につ いて説明する。RTiO3のRはマグネシウム、カルシ ウム、ストロンチウム、バリウム、ベリリウムなどの周 期律表のアルカリ土類元素に属する金属原子であり、と くにストロンチウムとバリウムが好ましい。上記のR は、その合計が上記の式に化学量論的に整合する限り2 種以上のアルカリ土類金属原子を共存することができ る。一般式AB_{2-x} C_x D_{3-x} E_x O₁₀で表される化合 物において、Aは水素原子及びナトリウム、カリウム、 ルビジウム、セシウム、リチウムなどのアルカリ金属原 子から選ばれる1価原子で、その合計が上記の式に化学 量論的に整合する限りそれらの2種以上を共存してもよ い。Bは、上記のRと同義のアルカリ土類金属原子又は 鉛原子であり、上記同様に化学量論的に整合する限り2 種以上の原子が共存してもよい。Cは希土類原子であ り、好ましくはスカンジウム、イットリウムのほかラン タン、セリウム、プラセオジウム、ネオジウム、ホルミ ウム、ユウロピウム、ガドリニウム、テルビウム、ツリ ウム、イッテルビウム、ルテチウムなどのランタノイド 系元素に属する原子であり、また、その合計が上記の式 に化学量論的に整合する限りそれらの2種以上を共存し てもよい。Dは周期律表の5A族元素から選ばれた一種 以上で、窒素、リン、ヒ素、アンチモン、ビスマスが挙 げられる。また、化学量論関係を満たす限り、2種以上 の5A族元素が共存してもよい。Eは同じくシリコン、 ゲルマニウム、錫、鉛などの4A族元素に属する金属原 子であり、また、2種以上の4A族の金属原子が共存し てもよい。xは0~2の任意の数値を表す。

【0016】本発明においては、以上の $RTiO_3$ 、 $AB_{2-x}C_xD_{3-x}E_xO_{10}$ 、 SnO_2 , Bi_2O_3 及び Fe_2O_3 の少なくとも一つを単独あるいは 2 種以上を組み合わせからなる薄層を感光層として印刷用原版表面に設ける。この薄層は、活性光の照射によって表面が親水性になる性質を有する。この特性を利用して、活性光を用いて像様露光を行って露光面に像様の親水性部分を生成させたのち、その面を印刷用インクに接触させて、

画像領域がインクを受け入れた印刷面を形成させて印刷を行い、印刷の終了後使用した印刷版面上に残存するインクを洗浄除去し、次いで原版を一様に80°C以上に加熱すると、親水性化していた露光部の表面層がもとの疎水性に戻り全面が均一なインク受容性の疎水性表面となるので、印刷原版が再生される。したがってその印刷用原版を用いて反復して印刷を行うことができるのが本発明のオフセット印刷方法の特徴である。

【0017】上記の金属酸化物が光触媒反応によってその表面が親水性化する現象は、特開平9-70541号、同9-77535号などで公知であるが、活性光によて表面が親水性化させることと同時に、その表面を加熱して疎水性化させることも可能であって、原版を反復使用する新たな方式のオフセット印刷に応用するという着想は、新しい技術思想である。

【0018】本発明に使用する上記の光触媒型金属酸化物を原版の表面に設けるには、たとえば、①上記酸化物微粒子の分散物を印刷版の原版上に塗設する方法、②塗設したのち焼成してバインダーを減量或いは除去する方法、③印刷版の原版上に上記酸化物を各種の真空薄膜法 20で膜形成する方法、④例えば金属元素のアルコレートのような有機化合物を原版上に塗布したのち、加水分解させ、さらに焼成酸化を施して適当な厚みの金属薄膜とする方法、⑤上記金属を含む塩酸塩、硝酸塩などの水溶液を加熱スプレーする方法など、既知の任意の方法を用いることができる。本発明においては、真空蒸着による酸化チタン層が特に好ましい。

【0019】上記①又は②のチタン酸バリウム微粒子を **塗設する方法には、チタン酸バリウムとシリコンの混合** 分散物を塗布して表面層を形成させる方法、チタン酸バ 30 リウムとオルガノポリシロキサンまたはそのモノマーと の混合物を塗布する方法などがある。また、酸化物層の 中に酸化物と共存するできるポリマーバインダーに分散 して塗布することもできる。酸化物微粒子のバインダー には、チタン酸バリウム微粒子に対して分散性を有する ポリマーを広く用いることができる。好ましいバインダ ーポリマーの例としては、ポリエチレンなどのポリアル キレンポリマー、ポリブタジエン、ポリアクリル酸エス テル、ポリメタクリル酸エステル、ポリ酢酸ビニル、ポ リ蟻酸ビニル、ポリエチレンテレフタレート、ポリエチ 40 レンナフタレート、ポリビニルアルコール、部分鹸化ポ リビニルアルコール、ポリスチレンなどの疎水性バイン ダーが好ましく、それらの樹脂を混合して使用してもよ い。この方法の場合にはチタン酸バリウム以外にチタン 酸マグネシウム、チタン酸カルシウム、チタン酸ストロ ンチウム又はそれらの分子間化合物、混合物も同様に薄 膜形成可能である。

【 0 0 2 0 】 同様にして①、②の塗設方法で C s L a 2 N b T i 2 O 10 微粒子を塗設することが可能である。 C s L a 2 N b T i 2 O 10 微粒子は、その化学 最論に対応

する Cs_2CO_3 , La_2O_3 , NbO_5 , TiO_2 を乳鉢で 微粉砕して、白金るつぼに入れ、 130° C で 5時間焼成し、それを冷却してから乳鉢に入れて数ミクロン以下 の微粒子に粉砕した。この $CsLa_2NbTi_2O_{10}$ 微粒子を前記しチタン酸バリウムと同様にバインダーの中に分散し、塗布して薄膜を形成した。この方法は、 $CsLa_2NbTi_2O_{10}$ 型微粒子に限られず、 $HCa_{1.5}La_{0.5}Nb_{2.5}Ti_{0.5}O_{10}$, $LaNbTi_2O_{10}$ など前述の $AB_{2-x}C_xD_{3-x}E_xO_{10}$ 、($0 \le x \le 2$) に適用される。

【0021】上記③の真空薄膜形成法を用いた光触媒型 金属酸化物層の形成方法としては、一般的にはスパッタ リング法あるいは真空薄膜形成法が用いられる。スパッ タリング法では、あらかじめ単体もしくは2元の酸化物 ターゲットを準備する。例えば、チタン酸バリウムター ゲットを用いて蒸着膜用の支持体の温度を450°C以 上に保ち、アルゴン/酸素混合雰囲気中でRFスパッタ リングを行うことによりチタン酸バリウム決勝薄膜が得 られる。結晶性の制御には必要に応じてポストアニーリ ングを300~900° Cで行えばよい。本方法は前述 のRTiO₃ (Rはアルカリ土類金属原子)をはじめ他 の前記光触媒型金属酸化物にも、結晶制御に最適な基板 温度を調整すれば同様の考え方で薄膜形成が可能であ る。例えば酸化錫薄膜を設ける場合には基板温度120 ° C、アルゴン/酸素混合雰囲気中でRFスパッタリン グを行うことによりチタン酸バリウム結晶薄膜が得比5 0/50、RFパワー200Wで本目的に沿う薄膜が得 られる。

【0022】上記Qの金属アルコレートを用いる方法も、バインダーを使用しないで目的の薄膜形成が可能な方法である。チタン酸バリウムの薄膜を形成するにはバリウムエトキシドとチタニウムブトキシドの混合アルコール溶液を表面に SiO_2 を有するシリコン基板上に塗布し、その表面を加水分解したのち、 200° C以上に加熱してチタン酸バリウムの薄膜を形成することが可能である。本方式は前述した他のRTiO₃ (Rはアルカリ土類金属原子)、 AB_{2-x} C_x D_{3-x} E_x O₁₀ (A, B, C, D, Eはそれぞれ前記の定義の内容を表す)、 SnO_2 ,Bi2O₃ 及びFe2O₃ の薄膜形成に適用することができる。

【0023】上記⑤の光触媒性機能を発現する金属酸化物薄膜を形成する方法も、バインダーを含まない系の目的の薄膜の形成が可能である。 SnO_2 の薄膜を形成するには $SnCl_4$ の塩酸水溶液を 200° C以上に加熱した石英又は結晶性ガラス表面に吹きつけて薄膜を生成することができる。本方式は、 SnO_2 薄膜のほか,前述した $RTiO_3$ (Rはアルカリ土類金属原子)、 AB_{2-x} C_x D_{3-x} E_x O_{10} (A, B, C, D, E はそれぞれ前記の定義の内容を表す)、 Bi_2O_3 及び Fe_2O_3 のいずれの薄膜形成にも適用することができる。

【0024】金属酸化物薄膜の厚みは、上記のいずれの場合も1~100000オングストロームがよく、好ましくは10~10000オングストロームである。さらに好ましくは3000オングストローム以下として光干渉の歪みを防ぐのがよい。また、光活性化作用を十分に発現させるには厚みが50オングストローム以上あることが好都合である。

【0025】バインダーを使用した場合の上記光触媒型 金属酸化物の薄層において、金属酸化物の体積率は50~100%であり、好ましくは90%以上を酸化物が占 10 めるのがよく、さらに好ましくは酸化物の連続層つまり 実質的に100%であるのがよい。また、光照射によって表面の親水性が変化する性質を増進させるためにある種の金属をドーピングすることは有効な場合があり、この目的にはイオン化傾向が小さい金属のドーピングが適しており、Pt, Pd, Au, Ag, Cu, Ni, Fe, Coをドーピングするのが好ましい。また、これらの好ましい金属を複数ドーピングしてもよい。

【0026】本発明に係わる印刷版は、いろいろの形態と材料を用いることができる。例えば、印刷機の版胴の 20表面に光触媒型金属酸化物を蒸着、浸漬あるいは塗布するなど上記した方法で直接酸化物層を設ける方法、金属板の表面に光触媒型金属酸化物層を設けてそれを版胴に巻き付けて印刷版とする方法、その金属板としては、アルミニウム板、ステンレス鋼、ニッケル、銅板が好ましく、また可撓性(フレキシブル)な金属板を用いることが出来る。また、ポリエステル類やセルローズエステルなどのフレキシブルなプラスチック支持体も用いることが出来る。防水加工紙、ポリエチレン積層紙、含浸紙などの支持体上に酸化物層を設けてもよく、それを印刷版 30として使用してもよい。

【0027】本発明において、光触媒型金属酸化物の層を支持体上に設ける場合、使用される支持体としては、寸度的に安定な板状物であり、例えば、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅、ステンレス等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、アロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール等)、上記のごとき金属がラミネート、もしくは蒸着された紙、もしくはプラスチックフィルム等が含まれる。

【0028】好ましい支持体は、ポリエステルフィルム、アルミニウム、又は印刷版上で腐食しにくいSUS板であり、その中でも寸法安定性がよく、比較的安価であるアルミニウム板は特に好ましい。好適なアルミニウム板は、純アルミニウム板およびアルミニウムを主成分とし、微量の異元素を含む合金板であり、更にアルミニ 50

ウムがラミネートもしくは蒸着されたプラスチックフィルムでもよい。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタンなどがある。合金中の異元素の含有量は高々10重量%以下である。本発明において特に好適なアルミニウムは、純アルミニウムであるが、完全に純粋なアルミニウムは精錬技術上製造が困難であるので、僅かに異元素を含有するものでもよい。このように本発明に適用されるアルミニウム板は、その組成が特定されるものではなく、従来より公知公用の素材のアルミニウム板を適宜に利用することができる。本発明で用いられる支持体の厚みはおよそ0.05mm~0.6mm程度、好ましくは0.1mm~0.4mm、特に好ましくは0.15mm~0.3mmである。

【0029】アルミニウム板を粗面化するに先立ち、所 望により、表面の圧延油を除去するための例えば界面活 性剤、有機溶剤またはアルカリ性水溶液などによる脱脂 処理が行われる。アルミニウム板の表面の粗面化処理 は、種々の方法により行われるが、例えば、機械的に粗 面化する方法、電気化学的に表面を溶解粗面化する方法 および化学的に表面を選択溶解させる方法により行われ る。機械的方法としては、ボール研磨法、ブラシ研磨 法、ブラスト研磨法、バフ研磨法などの公知の方法を用 いることができる。また、電気化学的な粗面化法として は塩酸または硝酸電解液中で交流または直流により行う 方法がある。また、特開昭54-63902号に開示さ れているように両者を組み合わせた方法も利用すること ができる。この様に粗面化されたアルミニウム板は、必 要に応じてアルカリエッチング処理および中和処理され た後、所望により表面の保水性や耐摩耗性を高めるため に陽極酸化処理が施される。アルミニウム板の陽極酸化 処理に用いられる電解質としては、多孔質酸化皮膜を形 成する種々の電解質の使用が可能で、一般的には硫酸、 塩酸、蓚酸、クロム酸あるいはそれらの混酸が用いられ る。それらの電解質の濃度は電解質の種類によって適宜 決められる。

【0030】陽極酸化の処理条件は用いる電解質により種々変わるので一概に特定し得ないが一般的には電解質の濃度が $1\sim80$ 重量%溶液、液温は $5\sim70$ ℃、電流密度 $5\sim60$ A/dm²、電圧 $1\sim100$ V、電解時間10 秒 ~5 分の範囲であれば適当である。陽極酸化皮膜の量は1.0 g/m²より少ないと耐刷性が不十分であったり、平板印刷版の非画像部に傷が付き易くなって、印刷時に傷の部分にインキが付着するいわゆる「傷汚れ」が生じ易くなる。

【0031】光触媒型金属酸化物の表面層を有する印刷原版は、本来親油性であり、インクを受容するが、像様露光を行うと光の照射を受けた部分は、親水性となり、インクを受け付けなくなる。したがってこのようにして描画した印刷原版にオフセット印刷用インクに接触させ

て非画像領域が湿し水を保持し、画像領域がインクを受け入れた印刷面を形成させ、該印刷面を印刷される面と接触させてインクを転写することによって印刷が行われる。

【0032】本発明の基本となっている「光の照射による親油性と親水性の間の変化」はきわめて顕著である。画像部と非画像部の親水性と親油性の差が大きいほど識別効果が顕著であり、印刷面が鮮明となり、同時に耐刷性も大きくなる。親水性と親油性の相違度は、水滴に対する接触角によって表すことができる。親水性が大きい10ほど水滴は広がりをみせて接触角が小さくなり、逆に水滴を反発する(はっ水性つまり親油性)場合は接触角が大きくなる。つまり、本発明の光触媒型金属酸化物表面層を有する原版は、本来水に対して高い接触角を有しているが、活性光の照射を受けるとその接触角が急激に低下し、親油性のインクをはじく性質に変化するので、版面上に画像状にインク保持部と水保持部ができて紙などの受像シートと接触することによってその被印刷面にインクが転写される。

【0033】光触媒型金属酸化物を主成分とする薄層を 20 励起させる活性光は、400nm以下に感光域を有するので、水銀灯、タングステンハロゲンランプ、その他のメタルハライドランプ、キセノン灯、その他紫外線光を発する放電管などを用いることが出来る。また、励起光としては、発振波長を325nmに有するヘリウムカドミウムレーザーや発振波長を351.1~363.8nmに有する水冷アルゴンレーザーも用いることができる。さらに近紫外レーザー発振が確認されている窒化ガリウムレーザー系では、発振波長を360~440nmに有するInGaN系量子井戸半導体レーザー、及び360 30~430nmに発振波長を有する導波路 MgO-LiNbO3 反転ドメイン波長変換デバイス型のレーザーも適用できる。

【0034】照射光量に応じて、表面層の光触媒型金属 酸化物を光吸収励起によって親水性に変化して行き、表 面層を構成する光触媒型金属酸化物がすべて活性化する とそれ以上の光照射によってさらに親水性の程度が変化 することはない。好ましい照射光の強さは、光触媒型金 属酸化物の画像形成層の性質によって異なり、また活性 光の波長や分光分布によっても異なるが、通常は印刷用 画像で変調する前の面露光強度が 0.05~100 i o $u l e / c m^2$, 好ましくは $0.05 \sim 10$ joule /cm², より好ましくは0.05~5joule/c m² である。また、光照射には相反則がほぼ成立してお り、例えば10mW/cm² で100秒の露光を行って も、1W/cm²で1秒の露光を行っても、同じ効果が 得られるので活性光を発光する限り光源の選択には制約 はない。この照射光量は、レーザーによるスキャニング 方式あるいはな発散型光源を用いる面露光方式でもとく に支障がないレベルの光量である。

【0035】上記の疎水性から親水性への光による変化をもたらす感光性は、性質及び機構共に従来開示されているジルコニアセラミック(特開平9-169098)の感光性とは異なるものである。たとえば、感度については、ジルコニアセラミックに対しては $7W/\mu m^2$ のレーザー光と記されており、レーザー光のパルス持続時間を100ナノ秒として70 joule $/cm^2$ であって光触媒型金属酸化物層の感度より約1 桁低い。機構的にも、十分解明されてはいないが、親油性有機付着物の光剥離反応と考えられており、ジルコニアの光変化機構とは異なっている。

【0036】親油性の光触媒型金属酸化物の表面層へ画像焼き付け露光を行ったのち、印刷原版は現像処理することなく、そのままオフセット印刷工程に送ることができる。従って通常の公知の平版印刷法に比較して簡易性を中心に多くの利点を有する。すなわち上記したようにアルカリ現像液による化学処理が不要であり、それに伴うワイピング、ブラッシングの操作も不要であり、さらに現像廃液の排出による環境負荷も伴わない。

【0037】以上のようにして得られた平版印刷版の全 面露光部は十分に親水性化しているが、所望により、水 洗水、界面活性剤等を含有するリンス液、アラビアガム や澱粉誘導体を含む不感脂化液で後処理される。本発明 の画像記録材料を印刷用版材として使用する場合の後処 理としては、これらの処理を種々組み合わせて用いるこ とができる。その方法としては、該整面液を浸み込ませ たスポンジや脱脂綿にて、平版印刷版上に塗布するか、 整面液を満たしたバット中に印刷版を浸漬して塗布する 方法や、自動コーターによる塗布などが適用される。ま た、塗布した後でスキージー、あるいは、スキージーロ ーラーで、その塗布量を均一にすることは、より好まし い結果を与える。整面液の塗布量は一般に 0.03~ 0. 8 g/m²(乾燥重量)が適当である。この様な処理に よって得られた平版印刷版はオフセット印刷機等にかけ られ、多数枚の印刷に用いられる。

【0038】次に印刷を終えた印刷版の再生工程について記す。印刷終了後の印刷版は疎水性の石油系溶剤を用いて付着しているインクを洗い落とす。溶剤としては市販の印刷用インキ溶解液として芳香族炭化水素、例えばケロシン、アイソパーなどがあり、それらを用いることができるほか、ベンゾール、トルオール、キシロール、アセトン、メチルエチルケトン及びそれらの混合溶剤を用いてもよい。

【0039】インクを洗浄除去した印刷版は、つぎに熱処理を施すことによって版面全体にわたって均一に親油性となり、かつ均一な新水性化への光感度が回復する。熱処理は、80°C以上、好ましくは100°C以上で酸化チタン又は酸化亜鉛の焼成温度以下で行われるが、高温ほど親油性化時間は短い。より好ましくは150°50 Cで10分以上又は200°Cで1分以上あるいは25

0°Cで10秒以上の程度の熱処理が好ましい。熱処理 時間を延長しても支障はないが、表面の親水性が回復し たのちは時間を延長してもさらなる利点は生まれない。

【0040】再生に用いる熱源は、上記した温度と時間 の条件を満たすものであれば任意の手段を利用できる。 加熱手段の例をあげると、直接赤外線照射による放射加 熱、印刷版表面に黒色カーボン紙などの熱線吸収シート を接触させた間接赤外線照射、温度設定した空気恒温槽 への挿入、ホットプレートその他の熱板との接触加熱、 加熱ローラーとのコンタクトなどが挙げられる。このよ 10 うにして使用済みの印刷版から再生された印刷用原版 は、活性光への暴露を避けて貯蔵され、次の印刷に備え る。

【0041】本発明に係わる印刷原版の反復再生可能回 数は、完全に把握できていないが、少なくとも15回以 上であり、おそらく版面の除去不能な汚れ、修復が実際 的でない刷面の傷や、版材の機械的な変形(ひずみ)な どによって制約されるものと思われる。

[0042]

【実施例】次に実施例により本発明をさらに説明する が、本発明はこれに限定されない。

【0043】 実施例1

99.5重量%アルミニウムに、銅を0.01重量%、 チタンを 0. 03 重量%、鉄を 0. 3 重量%、ケイ素を 0. 1重量%含有するJIS A1050アルミニウム 材の厚み 0. 30㎜圧延板を、400メッシュのパミス トン (共立窯業製) の20重量%水性懸濁液と、回転ナ イロンブラシ(6,10-ナイロン)とを用いてその表 面を砂目立てした後、よく水で洗浄した。これを15重 量%水酸化ナトリウム水溶液(アルミニウム4.5重量 30 %含有)に浸漬してアルミニウムの溶解量が5g/m²にな るようにエッチングした後、流水で水洗した。更に、1 重量%硝酸で中和し、次に0.7重量%硝酸水溶液(ア ルミニウム 0.5重量%含有)中で、陽極時電圧 10. 5ボルト、陰極時電圧9.3ボルトの矩形波交番波形電 圧(電流比r=0.90、特公昭58-5796号公報 実施例に記載されている電流波形)を用いて160クロ ーン/dm²の陽極時電気量で電解粗面化処理を行った。 水洗後、35℃の10重量%水酸化ナトリウム水溶液中 に浸漬して、アルミニウム溶解量が1g/m²になるように 40 エッチングした後、水洗した。次に、50℃、30重量 %の硫酸水溶液中に浸漬し、デスマットした後、水洗し た。

【0044】さらに、35℃の硫酸20重量%水溶液 (アルミニウム0.8重量%含有)中で直流電流を用い て、多孔性陽極酸化皮膜形成処理を行った。即ち電流密 度13A/dm2で電解を行い、電解時間の調節により陽極 酸化皮膜重量2. 7g/m²とした。この支持体を水洗後、 70℃のケイ酸ナトリウムの3重量%水溶液に30秒間 漫演処理し、水洗乾燥した。以上のようにして得られた 50 厚さ100ミクロンのステンレス板支持体をスパッタリ

アルミニウム支持体は、マクベスRD920反射濃度計 で測定した反射濃度は0.30で、中心線平均粗さは 0. $58 \mu \text{ m}$ σ δ δ δ δ

【0045】次いでこのアルミニウム支持体をスパッタ リング装置内にセットし、5.0 x 10⁻⁷Torrまで真空 排気する。支持体を500°Cに加熱し、Ar/Ooが 60/40 (モル比) となるようにガス圧を5x10-3. Torrに調製した。6インチφのチタン酸バリウムの焼結 ターゲットにRFパワー200Wを投入して膜圧100 O Åのチタン酸バリウム薄膜を形成した。 X 線解析法に よれば、この薄膜は多結晶体であった。サイズを510 ×400mmにカットしてサンプルとした。この表面に4 0 0線/インチのポジの画像を有するリスフィルム原稿 を置き、上から石英ガラス板で機械的に密着させた。こ れにウシオ電気社製USIO焼き付け用光源装置ユニレック URM-600形式GH-60201Xを用いて、光強 度25mW/cm2のもとで2分間露光を行った。協和界面科 学株式会社製CONTACT-ANGLE METERCA-Dを用いて空中水 滴法で表面の接触角を測定したところ水に対する (空中 20 水滴)接触角は露光部7度、非露光部54~56度を得 た。

【0046】このチタン酸バリウム薄膜表面を有する印 刷版を、サクライ社製オリバー52片面印刷機にセット し、湿し水を純水、インキを大日本インキ化学工業社製 Newchampion Fグロス85墨を用いて500枚オフセッ ト印刷を行った。スタートから終了まで鮮明な印刷物が 得られ、印刷版の損傷もみとめられなかった。

【0047】次いでこの版の表面を印刷用インキ洗浄液 ダイクリーンR (発売元;大日本インキ化学工業社)を ウエスにしみ込ませて丁寧に洗浄してインキを除去し た。これを150度のオーブン中に10分間加熱した 後、室温まで冷えた状態で前と同様の方法で接触角を測 定した。版表面のどの箇所でも接触角は54~57度の 範囲に入っており、まったくなにも露光していない初期 の状態に回復していた。この状態でさらに一回目と異な るポジ画像を有するリスフィルムを通して、前と同じ光 源(ウシオ電気社製焼き付け用光源装置)を使い、同じ 光強度(25mw/cm²で2分間露出を行った。1回目同 様、空中水滴方法で表面の接触角を測定したところ露光 部7度、非露光部54~56度を得た。

【0048】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製Newchampion Fグロス85墨を用いて5 00枚オフセット印刷を行った。スタートから終了まで 鮮明な印刷物が得られ、印刷版の損傷も認められなかっ た。以上の繰り返しを15回実施したところ、版の光感 度、接触角および加熱による接触角の回復スピードなど の変化は認められなかった。

【0049】実施例2

ング装置内にセットし、 5×10^{-7} Torrまで真空排気を行った。支持体を120° Cに加熱してアルゴン/酸素混合ガス(50/50モル比)のガス圧を 5×10^{-3} Torr になるように調節した。6インチ ϕ S n O_2 焼結ターゲットにRFパワー150Wを投入し、膜圧1000オングストロームの酸化錫の薄膜を形成した。この原板のサイズを 510×400 mmにカットしてサンプルとした。

【0050】この表面にポジの画像を有するリスフィルム原稿を置き、上から石英ガラス板で機械的に密着させ 10 た。これにウシオ電気社製USIO焼き付け用光源装置ユニレックURM-600形式GH-60201Xを用いて、光強度25mW/cm²のもとで10分間露光を行った。協和界面科学株式会社製CONTACT-ANGLE METER CA-Dを用いて空中水滴法で表面の接触角を測定したところ露光部5度、非露光部51度を得た。

【0051】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製New ChampionFグロス85墨を用いて1 000枚オフセット印刷を行った。スタートから終了ま で非画像部に汚れのない鮮明な印刷物が得られ、印刷版 の損傷もみとめられなかった。次いでこの版の表面を印 刷用インキ洗浄液ダイクリーンR(発売元;大日本イン キ化学工業社)をウエスにしみ込ませて丁寧に洗浄して インキを除去した。これを180度のオーブン中に2分 間加熱した後、室温まで冷えた状態で前と同様の方法で 接触角を測定した。版表面のどの箇所でも接触角は50 ~52度の範囲に入っており、まったくなにも実行して いない初期の状態に回復していた。この状態でさらに一 回目と異なるポジ画像を有するリスフィルムを通して、 前と同じ光源(ウシオ電気社製焼き付け用光源装置)を 使い、同じ光強度(25mw/cm2で10分間露出を行っ た。1回目同様、空中水滴方法で表面の接触角を測定し たところ露光部5度、非露光部51度を得た。

【0052】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85墨を用いて1000枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷も認められなかった。以上の繰り返しを5回実施したところ、版の光感 40度、接触角および加熱による接触角の回復スピードなどの変化は認められなかった。この結果から、酸化錫感光層をアルミニウム支持体上に設けた印刷原版を使用した場合も、簡易な印刷が可能でしかも印刷原版を反復再生使用できることが示された。

【0053】実施例3

実施例 1 と同様にして陽極酸化処理したアルミニウム支持体をC s L a $_2$ N b T i $_2$ O $_1$ oの化学量論比に相当するセシウムエトキシド、チタンブトキシド、ランタンイソブトキシド、ニオブエトキシドを含む 2 0 %のエタノ 50

ール溶液に浸漬して表面を加水分解したのち 200° C 以上に加熱してアルミニウム支持体表面に $CsLa_2N$ b T i_2O_{10} の厚み1000オングストロームの薄膜を形成させた。

【0054】この複合金属酸化物薄膜付きの陽極酸化処理したアルミニウム支持体をサイズは510×400mmにカットしてサンプルとした。この表面にポジの画像を有するリスフィルム原稿を置き、上から石英ガラス板で機械的に密着させた。これにウシオ電気社製USIO焼き付け用光源装置ユニレックURM-600形式GH-60201Xを用いて、光強度25mW/cm²のもとで5分間露光を行った。協和界面科学株式会社製CONTACT-ANGLE METER CA-Dを用いて空中水滴法で表面の接触角を測定したところ露光部10度、非露光部60度を得た。

【0055】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製New Champion Fグロス85墨を用いて 500枚オフセット印刷を行った。スタートから終了ま で非画像部に汚れのない鮮明な印刷物が得られ、印刷版 の損傷もみとめられなかった。次いでこの版の表面を印 刷用インキ洗浄液ダイクリーンR(発売元;大日本イン キ化学工業社)をウエスにしみ込ませて丁寧に洗浄して インキを除去した。これを160度のオーブン中に15 分間加熱した後、室温まで冷えた状態で前と同様の方法 で接触角を測定した。版表面のどの箇所でも接触角は5 8~62度の範囲に入っており、まったくなにも露光し ていない初期の状態に回復していた。この状態でさらに 一回目と異なるポジ画像を有するリスフィルムを通し て、前と同じ光源(ウシオ電気社製焼き付け用光源装 置)を使い、同じ光強度(25mw/cm2で5分間露出を行 った。1回目同様、空中水滴方法で表面の接触角を測定 したところ露光部10度、非露光部60度を得た。

【0056】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85墨を用いて1000枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷も認められなかった。この結果から、 $CsLa2NbTi2O_{10}$ 感光層も、インク受容部と湿し水保持部との区別が保たれて作業工程を簡易化でき、しかも印刷原版を熱処理によって再生使用できることが示された。

【0057】実施例4

実施例1と同様にして作製した印刷用原板試料に、水冷型アルゴンイオンレーザーの363.8 n m光をビーム幅35ミクロン(1/e²値)に絞り、走査ピッチ22.5ミクロンでレーザー画像を露光した。協和界面科学株式会社製CONTACT-ANGLE METER CA-Dを用いて空中水滴法で表面の接触角を測定したところ露光部7度、非露光部54度を得た。

【0058】この版を、サクライ社製オリバー52片面

印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製New Champion Fグロス85墨を用いて500枚オフセット印刷を行った。スタートから終了まで非画像部に汚れのない鮮明な印刷物が得られ、印刷版の損傷もみとめられなかった。

【0059】次いでこの版の表面を印刷用インキ洗浄液ダイクリーンR(発売元:大日本インキ化学工業社)をウエスにしみ込ませて丁寧に洗浄してインキを除去した。これを160度のオーブン中に15分間加熱した後、室温まで冷えた状態で前と同様の方法で接触角を測10定した。版表面のどの箇所でも接触角は54~56度の範囲に入っており、まったくなにも露光していない初期の状態に回復していた。この状態でさらに水冷型アルゴンイオンレーザーの363.8nm光をビーム幅35ミクロン(1/e²値)に絞り上記と同じ条件で異なるレーザー画像を露光した。

【0060】このレーザー描画版を、サクライ社製オリバー52片面印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85*

*墨を用いて500枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷も認められなかった。この結果から、本発明の方法は、レーザー光による画像焼き付けに対してもインク受容部と湿し水保持部との区別が保たれて作業工程を簡易化でき、しかも印刷原版を熱処理によって再生使用できることが示された。

【0061】実験例1

チタン酸バリウム層を有する実施例1の試料を用いて露光前後の接触角の変化及び露光により接触角が低下した試料に熱処理を加えたときの接触角の増加速度を協和界面科学株式会社製CONTACT-ANGLE METER CA-Dを用いて空中水滴法によって求めた測定値を表1に示す。この表から、露光によって極めて顕著な疎水性から親水性への変化が起こること及びそれが130°Cでも2時間以内、200°Cでは数分でもとの疎水性表面に戻ることが示される。

[0062]

【表1】

(表1)

露光前	露光後	加熱時間	1 min	5 a i n	-10aia	15ain	1 br	2 hr	5 hr
55	5	130 ° C	7	11	22	29	44	50	55
55	7	200 ° C	48	51	50	53	_	-	-

[0063]

【発明の効果】表面に前記した光触媒型金属酸化物を主成分とする薄層を有する本発明の印刷原板は、活性光による像様露光のみで印刷画面が形成され、現像液が不要

で、かつ印刷面の鮮明性が保たれたオフセット印刷が可能となり、かつ使用した印刷原版を熱処理によって再生 し、反復使用することができる。