Constant Function Market Makers and Friends

Guillermo Angeris (joint work with Alex Evans and Tarun Chitra)

April 15, 2021

Outline

Introduction

Examples and properties of CFMMs

The reachable set

Desired payoffs

Conclusion

Trading assets

- Many possible ways of buying/selling goods!
- Order books, auctions, etc.
- ▶ We will focus on a (computationally) simple mechanism
- (When dealing with blockchains: simple is better)

Automated market making

- Liquidity providers put assets in a pool
- ightharpoonup Call the pools R_a and R_b (the reserves)

Automated market making

- ► Liquidity providers put assets in a *pool*
- ightharpoonup Call the pools R_a and R_b (the reserves)
- ► Traders will be allowed to trade *a* for *b* against this pool

Automated market making

- Liquidity providers put assets in a pool
- ightharpoonup Call the pools R_a and R_b (the reserves)
- ► Traders will be allowed to trade a for b against this pool
- But we clearly can't allow any trade!

Constant function market makers

▶ Idea: Let traders propose a trade (Δ_a, Δ_b)

Constant function market makers

- ▶ Idea: Let traders propose a trade (Δ_a, Δ_b)
- Accept it if, and only if:

$$\psi(R_a + \Delta_a, R_b + \Delta_b) = \psi(R_a, R_b),$$

where ψ is a fixed function (the *trading function*)

▶ If accepted: pay out $-\Delta_a$ and $-\Delta_b$ from reserves

Constant function market makers

- ▶ Idea: Let traders propose a trade (Δ_a, Δ_b)
- Accept it if, and only if:

$$\psi(R_a + \Delta_a, R_b + \Delta_b) = \psi(R_a, R_b),$$

where ψ is a fixed function (the *trading function*)

- ▶ If accepted: pay out $-\Delta_a$ and $-\Delta_b$ from reserves
- ► These are the constant function market makers (CFMMs)

Generality

- ▶ Doesn't look very general (but it is!)
- lacktriangle Easy/inexpensive to check if a trade makes sense: evaluate ψ

Generality

- ▶ Doesn't look very general (but it is!)
- lacktriangle Easy/inexpensive to check if a trade makes sense: evaluate ψ
- lacktriangle Most importantly, ψ is often simple to write down

Generality

- ► Doesn't look very general (but it is!)
- lacktriangle Easy/inexpensive to check if a trade makes sense: evaluate ψ
- lacktriangle Most importantly, ψ is often simple to write down
- Leads to a very general, practical theory

A quick aside

- ▶ We will only discuss the 2 asset case
- ► No fees ('path independent')
- Everything generalizes beautifully to n assets
- ▶ But many fee ('path deficient') questions remain
- See: 'Improved Price Oracles [...],' Angeris and Chitra, 2020

Outline

Introduction

Examples and properties of CFMMs

The reachable set

Desired payoffs

Conclusion

Example: constant sum

► The simplest example of a trading function is the 'constant sum':

$$\psi(R_a, R_b) = R_a + R_b$$

▶ In other words, a trade Δ_a , Δ_b is accepted only when

$$\psi(R_a + \Delta_a, R_b + \Delta_b) = \psi(R_a, R_b)$$

or

$$(R_a + \Delta_a) + (R_b + \Delta_b) = R_a + R_b$$

i.e., if, and only if

$$\Delta_a = -\Delta_b$$
.

Example: constant sum (cont.)

- To get out one unit of a, we have to put in one unit of b
- ▶ In other words, the *price* of a relative to b is always 1
- Q: if 1 unit of a is worth more than 1 unit of b, what happens?

Example: constant sum (cont.)

- To get out one unit of a, we have to put in one unit of b
- ▶ In other words, the *price* of a relative to b is always 1
- Q: if 1 unit of a is worth more than 1 unit of b, what happens?
- Think about it, we will come back to this :)

Example: constant product

► A (very!) popular trading function is the 'constant product':

$$\psi(R_a, R_b) = R_a R_b$$

(originally Uniswap, later adopted throughout)

► A little bit of algebra gives

$$\Delta_a = -\frac{R_a \Delta_b}{R_b + \Delta_b}.$$

Example: constant product (cont.)

- ► More complicated...
- ▶ But, we can still compute the marginal price at some reserves!

$$-\frac{d\Delta_a}{d\Delta_b} = \frac{R_b}{R_a}$$

- ▶ We can see the marginal price is adaptive
- ▶ More of R_a relative to R_b : price of a vs. b goes down
- ► (And vice versa)

Examples: continued

- Many more!
- Constant mean market (Balancer):

$$\psi(R_a, R_b) = R_a^w R_b^{1-w},$$

where 0 < w < 1 (with w = 1/2 equivalent constant product.)

Curve:

$$\psi(R_a, R_b) = (R_a + R_b) - \alpha \frac{1}{R_a R_b},$$

where $\alpha \geq 0$ (with $\alpha = 0$ is equivalent to constant sum)

► All of these are very similar

- ► All of these are very similar
- ▶ What can we say about them?

- ► All of these are very similar
- ▶ What can we say about them?
- ► Can we give geometric interpretations?

- All of these are very similar
- ▶ What can we say about them?
- Can we give geometric interpretations?
- ▶ (obviously, the answer is yes :)

Outline

Introduction

Examples and properties of CFMMs

The reachable set

Desired payoffs

Conclusion

The level sets

- ▶ We can view the trading function as its *level sets*
- ightharpoonup i.e., what are the reserves R_a , R_b that satisfy

$$\psi(R_a,R_b)=k$$

for some constant k?

Level sets (constant sum)

▶ The graph for k = 2, constant sum

▶ (Note that $R_a \ge 2$ means $R_b = 0$)

Level sets (constant product)

▶ The graph for k = 1, constant product/Unsiwap

Simply a hyperbola

Why is this useful?

► Traders can trade against reserves, so long as reserves *after the trade* remain on the level set

lackbox (An alternate characterization of ψ)

The reachable set

▶ We define the *reachable set S* as all points above/to the right

The reachable set (cont.)

➤ Since we've only added points, all of the reserves that were reachable are still 'reachable'

The reachable set (cont.)

▶ But, no rational trader will ever pick a point inside of the set!

► (The set of all such points is called the *dominated interior*)

Properties of the reachable set

- ▶ The resulting set S is convex (\approx easy to optimize over) In fact, all known CFMMs have convex reachable sets
- ► Essentially unique over all trading functions for rational agents
- Easy to write for most CFMMs
- Leads to simple definitions and proofs!

Marginal price

► For example, the *price* at some reserves is the tangent line

▶ No-arbitrage tells us these are the reserves at a given price

Equivalence

- It also gives us a useful way of characterizing equivalence!
- Two CFMMs are equivalent if, and only if, their reachable sets are equal
- Any rational agent will perform exactly the same trades on either
- (They will always choose points on the boundary!)

One more thing...

▶ It will additionally give us one more (very important) thing :)

Outline

Introduction

Examples and properties of CFMMs

The reachable set

Desired payoffs

Arbitrageurs

- ▶ We will introduce one more agent: the arbitrageur
- \blacktriangleright An external market has some price p_a and p_b for assets a, b
- ► The arbitrageur seeks to maximize profit by trading between:
 - 1. The CFMM
 - 2. The market
- The agent is locked in a zero-sum battle against liquidity providers!

Liquidity providers

▶ Given the market prices p_a , p_b , and reserves R_a , R_b , liquidity providers' value in reserves is:

$$V(p) = p_a R_a + p_b R_b$$

- ▶ But, note that no-arbitrage implies that the CFMM price needs to be equal to p!
- ightharpoonup In other words, for every price p, there corresponds a value V
- How do we get this?

Liquidity provider value

► More generally, arbitrageurs maximize their profits when liquidity providers' profits are minimized, *i.e.*,

minimize
$$p_a R_a + p_b R_b$$

subject to $(R_a, R_b) \in S$,

where S is the reachable set.

- ▶ The optimal objective value is $V(p_a, p_b)$
- ► (Exercise for the reader: show that this is indeed equivalent to maximizing arbitrage profit, answer in [AC20]:)

Liquidity provider value (examples)

- Some simple examples!
- ► Constant product:

$$V(p_a, p_b) = 2\sqrt{p_a p_b k}$$

Constant mean:

$$V(p_a, p_b) = k \left(\frac{p_a}{w}\right)^w \left(\frac{p_b}{1-w}\right)^{1-w}$$

- ▶ Most are well known special cases of Fenchel conjugates
- But this need not have a closed form....

The punchline

- ▶ What if you wanted a specific payoff? *I.e.*, given a V, can we come up with a trading function ψ that *replicates* V?
- ► The answer is

The punchline

- ▶ What if you wanted a specific payoff? *I.e.*, given a V, can we come up with a trading function ψ that *replicates* V?
- ► The answer is
- ► Yes!

The punchline

- ▶ What if you wanted a specific payoff? *I.e.*, given a V, can we come up with a trading function ψ that *replicates* V?
- ► The answer is
- ➤ Yes!*
 - *Subject to (some) terms and conditions

The punchline (continued)

- Clearly we can't do everything, but we can do anything that is consistent; i.e.,
 - Concave
 - Increasing
 - Nonnegative
 - 1-homogeneous (this one isn't too important, actually)

The punchline (continued)

- Clearly we can't do everything, but we can do anything that is consistent; i.e.,
 - Concave
 - Increasing
 - Nonnegative
 - $-\ 1-homogeneous\ (this one isn't too important, actually)$
- ▶ In fact, CFMMs are exactly equivalent to the set of payoffs that satisfy these conditions!
- i.e., every CFMM has a payoff of this form and vice versa

The punchline (continued)

- ► The proof isn't immediately obvious
- ▶ (In fact, it follows from a slightly tricky construction)
- But the proof is short! See "Replicating Market Makers," Angeris, Evans, and Chitra, 2021.
- The main thing is that, given any consistent V, we can find a ψ that gives the payoff, by solving:

$$\psi(R_a, R_b) = \sup_{p_a, p_b} \left(V(p_a, p_b) - (R_a p_a + R_b p_b) \right)$$

The punchline (examples)

- We can replicate a number of important instruments
- Black-Scholes covered call price:

$$\psi(R_a, R_b) = \begin{cases} 0 & R_b \le K\Phi(\Phi^{-1}(1 - R_a) - \sigma\sqrt{\tau}) \\ +\infty & \text{otherwise.} \end{cases}$$

Perpetual American puts:

$$\psi(R_a, R_b) = \begin{cases} 0 & K \leq R_b + K R_a^{\frac{2r}{2r+\sigma^2}} \\ +\infty & \text{otherwise.} \end{cases}$$

▶ i.e., we can engineer instruments into CFMMs!

Outline

Introduction

Examples and properties of CFMMs

The reachable set

Desired payoffs

Conclusion

Conclusions

- ► Main idea: study CFMMs in terms of resulting sets
- Leads to simple, general theory
- ► Though unstated, everything is just (basic!) convex analysis
- Properties and behavior are well defined, somewhat studied

Conclusions

- Main idea: study CFMMs in terms of resulting sets
- Leads to simple, general theory
- Though unstated, everything is just (basic!) convex analysis
- Properties and behavior are well defined, somewhat studied
- But there's always more to do :)

Thanks! (And references)

- "Improved Price Oracles: Constant Function Market Makers,"
 Angeris and Chitra, 2020
- "Replicating Market Makers," Angeris, Evans, and Chitra, 2021