

NASA CR-159045

(NASA-CR-159405) ATLAS, AN INTEGRATED
STRUCTURAL ANALYSIS AND DESIGN SYSTEM.

N79-31624

VOLUME 5: SYSTEM DEMONSTRATION PROBLEMS

(Boeing Commercial Airplane Co., Seattle)
271 p HC #12/MF A01

Unclassified
CSCL 20K G3/39 35735

ATLAS – An Integrated Structural Analysis and Design System

System Demonstration Problems

R. A. Samuel

**Boeing Commercial Airplane Company
Seattle, Washington 98124**

**Prepared for
Langley Research Center
under contract NAS1-12911**

NASA
National Aeronautics and
Space Administration

1979

ATLAS SYSTEM DOCUMENTATION

VOLUME I

ATLAS User's Guide
NASA CR-159041

VOLUME II

System Design Document
NASA CR-159042

VOLUME III

User's Manual-Input and Execution Data
NASA CR-159043

VOLUME IV

Random Access File Catalog
NASA CR-159044

VOLUME V

System Demonstration Problems
NASA CR-159045

VOLUME VI

DESIGN Module Theory
NASA CR-159046

VOLUME VII

LOADS Module Theory
Boeing Commercial Airplane Company
D6-25400-0101

VOLUME VIII

SNARK User's Manual
Boeing Computer Services
BCS-G0686

FOREWORD

Development of the ATLAS integrated structural analysis and design system was initiated by The Boeing Commercial Airplane Company in 1969. Continued development efforts have resulted in the release and application of several extended versions of the system to aerospace and civilian structures. Those capabilities of the current ATLAS version developed under the NASA Langley Contract No. NAS1-12911 include the following: geometry control, thermal stress, fuel generation/management, payload management, loadability curve generation, flutter solution, residual flexibility, strength design of composites, thermal fully stressed design, and interactive graphics. The monitor of this contract was G. L. Giles. The inertia loading capability was developed under the Army Contract No. DAAG46-75-C-0072.

This document is one volume of a series of documents describing the ATLAS System. The remaining documents present details regarding the input data and program execution, data management, system design, and the engineering method used by the computational modules.

The key responsibilities for development of ATLAS have been within the Integrated Analysis/Design Systems Group of the Structures Research Unit of BCAC and the ATLAS System Group of the Boeing Computer Services Company (BCS) Integrated Systems and Systems Technology Unit. R. E. Miller, Jr. was the Program Manager of ATLAS until 1976 after which K. H. Dickenson assumed this position. The current ATLAS System is the result of the combined efforts of many Boeing engineering and programming personnel. Those who contributed directly to the current version of ATLAS are as follows:

B. F. Backman	H. B. Hansteen	C. D. Mounier
G. N. Bates	B. A. Harrison	F. D. Nelson
L. C. Carpenter	J. M. Held	M. C. Redman
R. E. Clemons	M. Y. Hirayama	R. A. Samuel
R. L. Dreisbach	J. R. Hogley	M. Tamekuni
W. J. Erickson	H. E. Huffman	G. von Limbach
S. H. Gadre	D. W. Johnson	S. O. Wahlstrom
F. P. Gray	A. S. Kawaguchi	R. A. Woodward
D. W. Halstead		K. K. Yagi

PRECEDING PAGE BLANK NOT FILMED

ABSTRACT

This document is one of a series of documents describing the ATLAS System for structural analysis and design. This volume describes a set of problems that demonstrate the various analysis and design capabilities of the ATLAS System proper as well as capabilities available by means of interfaces with other computer programs.

Input data and results for each demonstration problem are discussed. Results are compared to theoretical solutions or experimental data where possible. Listings of all input data are included.

CONTENTS

	<u>Page</u>
101. INTRODUCTION	101.1
201. SUBSTRUCTURED STRESS AND VIBRATION ANALYSES OF A TRANSMISSION TOWER	201.1
202. STRESS, VIBRATION AND FLUTTER ANALYSES OF A DELTA WING .	202.1
203. STRESS AND VIBRATION ANALYSES OF AN SST AIRCRAFT . . .	203.1
204. SUBSTRUCTURED STRESS AND VIBRATION ANALYSES OF AN SST AIRCRAFT	204.1
205. VIBRATION ANALYSIS OF THE FIREBEE DRONE	205.1
206. BEAM VIBRATION	206.1
207. BUCKLING AND SUPERPOSITION	207.1
208. FUEL AND PAYLOAD MANAGEMENT	208.1
209. FULLY STRESSED DESIGN AND COMPOSITE OPTIMIZATION . . .	209.1
210. THERMAL FULLY STRESSED DESIGN	210.1
211. FLUTTER ANALYSIS OF AN SST AIRCRAFT	211.1
212. FLUTTER ANALYSIS OF A T-TAIL AIRCRAFT	212.1
213. 3-D STRESS ANALYSIS OF A ROTATING DISK	213.1
301. ATLAS/FLEXSTAB INTERFACES	301.1
302. ATLAS/NASTRAN INTERFACES	302.1
303. ATLAS/NASA-LARC AIRPLANE CONFIGURATION PROGRAM INTERFACE	303.1
401. REFERENCES	401.1

FIGURES

<u>No.</u>		<u>Page</u>
201-1	Transmission Tower	201.10
201-2	Substructure Models, Transmission Tower	201.11
201-3	Substructure Interaction Tree, Transmission Tower	201.12
202-1	Delta Wing Structural Grid with Node Numbers	202.10
202-2	Delta Wing Weights Panels	202.11
202-3	Flutter Analysis of Delta Wing	202.12
202-4	First Flexible Mode Shape Along Spar 2 of Delta Wing	202.13
202-5	Flutter V-g Plot, Delta Wing	202.14
202-6	Flutter V-f Plot, Delta Wing	202.15
202-7	Delta Wing Upper Surface Stress Contours - Pressure Loading	202.16
203-1	SST Structural Model	203.11
203-2	SST Body Stiffness Properties	203.12
203-3	Freedoms Retained in SST Vibration Analysis	203.13
203-4	Third Mode Shape, SST	203.14
204-1	Substructured Model of SST	204.12
205-1	Total FIREBEE Structural Model	205.17
205-2	Fuselage Model, FIREBEE Drone	205.18
205-3	Wing Upper Surface Model, FIREBEE Drone	205.19
205-4	Wing Lower Surface Model, FIREBEE Drone	205.20
205-5	Wing-Body Intersection Model, FIREBEE Drone	205.21
205-6	Horizontal Tail Model, FIREBEE Drone	205.22
205-7	Fourth Mode Shape, FIREBEE Drone	205.23
205-8	Sixth Mode Shape, FIREBEE Drone	205.24
206-1	Beam Model with Structural Nodes at Concentrated Mass C.G.'s	206.11
206-2	Beam Model with Structural Nodes at Elastic Axis	206.12
206-3	Tapered Beam	206.13
206-4	BEAM Element Model of Tapered Beam	206.14
206-5	BRICK Element Model of Tapered Beam	206.15
206-6	Fourth Mode Shape, Uniform Beam without Concentrated Masses	206.16
206-7	Third Mode Shape, Tapered Beam	206.17
207-1	Structural Model and Loading for Buckling Analysis	207.7
207-2	Loading for Superposition Demonstration	207.8
207-3	Half-Models for Superposition Demonstration	207.9
207-4	Buckled Shape for Third Mode of Frame	207.10
207-5	Bending Moment at End of Beam	207.11
207-6	Frame Displacements Due to Support Motion	207.12
208-1	Mass Model for Fuel and Payload Demonstration	208.9
208-2	Location of Fuel Tanks, Cargo Holds and Seating	208.10
208-3	Loadability Diagram, Fuel and Payload Demonstration	208.11
209-1	Structural Model, Design Demonstration	209.14
209-2	Element Subsets for Design	209.15

209-3	SPAR Element Subsets for Design	209.16
209-4	Total Weight vs. Cycle, Design Demonstration	209.17
209-5	Surface Thickness Changes, Element Subset 121	209.18
209-6	Margins of Safety, Cycle 1, Element Subset 121	209.19
209-7	Margins of Safety, Cycle 2, Element Subset 121	209.20
210-1	25-Bar Transmission Tower Model	210.6
210-2	Total Mass vs. Design Cycle, 25-Bar Transmission Tower	210.7
210-3	Thermal Margins of Safety, 25-Bar Transmission Tower	210.8
211-1	Structural Model for Flutter Demonstration	211.18
211-2	Mass Model for Flutter Demonstration	211.19
211-3	First Flutter Analysis, Mach=0.8	211.20
211-4	Second Flutter Analysis, Mach=0.8	211.21
211-5	Third Flutter Analysis, Mach=1.526	211.22
211-6	Fourth Flutter Analysis, Mach =0.8	211.23
211-7	V-g Plot, First Flutter Analysis Including Residual Flexibility Effects	211.24
211-8	V-f Plot, First Flutter Analysis Including Residual Flexibility Effects	211.25
211-9	V-q Plot, First Flutter Analysis Without Residual Flexibility Effects	211.26
211-10	V-f Plot, First Flutter Analysis Without Residual Flexibility Effects	211.27
211-11	V-g Plot, Second Flutter Analysis	211.28
211-12	V-f Plot, Second Flutter Analysis	211.29
212-1	Structural Model, YC-14 Empennage	212.13
212-2	Aerodynamic Modelling for YC-14 Empennage Surfaces	212.14
212-3	V-g Plot, YC-16 Empennage	212.16
212-4	V-f Plot, YC-14 Empennage	212.17
213-1	Disk	213.5
213-2	Model of Disk Segment	213.6
213-3	Stresses Due to Angular Velocity	213.7
213-4	Stresses Due to Angular Acceleration	213.8
213-5	Stresses Due to Bore Pressure	213.9
213-6	Stresses Due to Rim Pressure	213.10
213-7	Stresses Due to Thermal Loading	213.11
301-1	Schematic of ATLAS/FLEXSTAB Interface Demonstration	301.19
301-2	Structural Model	301.20
301-3	Mass Model	301.21
301-4	Body Bending Moment	301.22
302-1	Schematic of ATLAS/NASTRAN Interface Demonstration	302.5
303-1	SST Configuration	303.14
303-2	ATLAS Nodal Data for SST Aircraft	303.15
303-3	Fighter Aircraft Configuration	303.16
303-4	ATLAS Nodal Data for Fighter Aircraft	303.16
303-5	Schematic of ATLAS/LaRC Airplane Configuration Program Interface Demonstration	303.17

TABLES

<u>No.</u>		<u>Page</u>
101-1	Description of Demonstration Decks	101.2
101-2	Summary of Capabilities Demonstrated	101.3
201-1	Comparison of Natural Frequencies for Transmission Tower	201.9
202-1	Mass Comparison for Delta Wing	202.8
202-2	Comparison of Natural Frequencies for Symmetric Modes of Delta Wing	202.9
203-1	Natural Frequencies for SST Aircraft	203.10
205-1	Natural Frequencies for FIREBEE Drone	205.16
206-1	First Mode Frequencies for Uniform Beam with Offset Masses	206.8
206-2	Natural Frequencies of Uniform Beam without Concentrated Masses	206.9
206-3	Natural Frequencies of Tapered Beam	206.10
207-1	Critical Load Values for Plane Frame	207.6
209-1	Summary of Design Options Used	209.12
209-2	Optimum Number of Layers per Lamina	209.13
212-1	Natural Frequencies, YC-14 Empennage	212.12

101. INTRODUCTION

This document describes the set of ATLAS System demonstration problems. A list of the problem decks and a brief description of each are presented in table 101-1.

The 200-series sections of this document discuss the problem used to demonstrate capabilities of the ATLAS System proper, whereas the 300-series sections discuss several analytical capabilities available to ATLAS users by means of interfaces with other computer programs.

The discussion of each demonstration problem is comprised of the following parts:

- Description of the analysis (model, loading, analysis performed, etc.)
- Presentation and discussion of results
- Listing of Control Program and input data

The features demonstrated by each deck are summarized in table 101-2. Reference 101-1 should be consulted for descriptions of system capabilities and input data formats.

Other documentation of ATLAS usage in production environments include that presented in references 101-2 through 101-7. The stress analysis of a large sports stadium (3400 nodes, 9600 elements, 20 000 freedoms, 70 million words of storage), and a detailed three-dimensional stress analysis of a gas turbine engine blade (3200 nodes, 350 solid elements, 9500 freedoms, 15 million words of storage) are described in references 101-2, 101-3 and 101-4, respectively, in terms of problem definition, solution approach, data management and cost. The automated strength resizing of an arrow-wing supersonic cruise aircraft (ref. 101-5) with approximately 20 000 design variables demonstrated the practicality of using ATLAS in the earliest stages of the interdisciplined aeroelastic design process. Use of those methods implemented in ATLAS during its continued development to automate the strength/stiffness (flutter) aeroelastic design process for metallic and composite structural components are described in references 101-6 and 101-7.

Table 101-1. Description of Demonstration Decks

Deck Number	Document Section	Description
1	204	Substructured stress and vibration analyses of an SST
2	203	Non-substructured stress and vibration analyses of an SST
3	209	Fully stressed design and composite optimization
4	211	Flutter analysis of an SST
5	301	ATLAS to FLEXSTAB interface
6	301	FLEXSTAB to ATLAS interface
7	303	NASA-LaRC Configuration Program interface to ATLAS
8	206	Normal mode analyses of cantilever beams
9	302	ATLAS-NASTRAN interfaces
10	202	Stress, vibration and flutter analyses of a delta wing
11	201	Substructured stress and vibration analyses of a transmission tower
12	213	Stress analysis of a rotating disk
13	207	Frame buckling and superposition
14	212	Flutter analysis of a T-tail aircraft
15	205	Vibration analysis of the FIREBEE Drone
16	208	Fuel and payload management
17	210	Thermal fully stressed design

Table 101-2. Summary of Capabilities Demonstrated

CAPABILITY	DECK NUMBER															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CONTROL PROGRAM PROCEDURES										X X		X X				
STATIC STRESS ANALYSIS, STRESS	X															
STATIC STRESS ANALYSIS, R-STRESS						X							X			
REDUCED STIFFNESS MATRIX, K-REDUCE				X				X	X						X X	
REDUCED FLEXIBILITY MATRIX, F-REDUCE					X											
REDUCED STIFFNESS AND MASS MATRICES, REDUCE	X							X								
SUBSTRUCTURE PROCEDURES	X										X					
DESIGN, DESIGN			X													
STRUCTURE DEFINITION																
GEOMETRY								X								
LOCAL ANALYSIS FRAMES												X	X X			
SPECIAL MATERIALS												X	X X	X		
COMPOSITE MATERIALS			X													
BC SPECIFICATION	X	X	X	X	X	X		X	X	X	X	X X	X X	X		
STIFFNESS ELEMENTS:							X X		X	X			X X	X		
ROD							X X									
BEAM	X	X	X	X	X	X		X X		X X	X X	X X	X X			
SPAP	X	X	X	X	X	X			X							
COVER		X	X	X	X	X				X						
PLATE									X				X			
GPLATE									X				X			
BRICK								X		X						
SPLATE							X X		X				X			
CCOVER			X													
SUBSETS	X	X	X	X	X	X	X X		X X	X X	X X	X X	X X	X X	X X	X X
SUBSTRUCTURES	X									X						
STATIC LOADING																
NODAL LOADING	X	X	X						X	X X	X X	X X	X X	X X		
ELEMENT LOADING										X	X X					
ROTATIONAL INERTIA LOADING												X				
THERMAL LOADING											X				X	
SUPPORT DISPLACEMENTS													X			
SUPERPOSITION												X				
EXTERNAL NODAL LOADS MATRIX								X								
WEIGHTS & DYNAMIC MODELING																
STRUCTURAL MASS	X	X							X	X X						
NON-STRUCTURAL MASS	X	X														
MASS ELEMENTS	X	X	X	X	X								X X			
CONCENTRATED MASS						X		X					X X			
FUEL													X			
PAYOUT												X				
SUBSTRUCTURES	X										X					
FUEL AND PAYLOAD MANAGEMENT													X			
WEIGHT CALCULATION ONLY							X						X X			
REDUCED MATRIX CALCULATION																
BY MASS PROCESSOR:																
DIAGONAL							X		X		X	X				
NON-DIAGONAL							X		X		X	X		X X		
ELEMENT MASS MATRICES	X	X					X		X		X	X				

Table continued on next page

Table 101-2. Summary of Capabilities Demonstrated (Cont'd.)

CAPABILITY	DECK NUMBER															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
<u>BUCKLING</u>											x					
<u>DESIGN</u>																
FULLY-STRESSED RESIZE			x													
THERMAL DESIGN													x			
COMPOSITE OPTIMIZATION			x													
HISTORY			x										x			
<u>UNSTEADY AERODYNAMICS & FLUTTER</u>																
DOUBLET LATTICE			x							x		x				
MACH BOX			x													
AF1												x				
RH03			x													
RESIDUAL FLEXIBILITY			x													
FLUTTER			x						x			x				
<u>PRINTED OUTPUT</u>																
MATERIAL DATA													x			
NODAL DATA	x	x	x	x	x		x	x	x	x	x	x	x	x	x	x
STIFFNESS DATA	x	x	x	x	x		x	x	x	x	x	x	x	x	x	x
BC DATA		x	x	x	x		x	x	x	x	x	x	x	x	x	x
MASS																
INPUT	x		x	x		x						x		x	x	
OUTPUT	x		x	x		x		x				x	x	x	x	
LOADS																
INPUT									x		x					
OUTPUT	x	x			x					x	x					
DESIGN																
INPUT					x											
OUTPUT			x										x			
ADD/INTERPOLATE OUTPUT				x												
AF1																
INPUT												x				
OUTPUT												x				
DOUBLET LATTICE					x							x				
INPUT					x							x				
OUTPUT				x								x				
FLEXAIR OUTPUT			x													
FLUTTER					x							x				
INPUT				x								x				
OUTPUT			x				x			x		x		x		
MACH BOX					x											
INPUT				x												
OUTPUT			x													
RH03					x											
INPUT				x												
OUTPUT			x													
INTERACT DATA		x								x						
STRESSES:																
ELEMENT	x	x			x		x		x	x	x	x	x	x	x	
PICK NODAL STRESSES									x	x	x	x	x	x	x	

Table continued on next page

Table 101-2. Summary of Capabilities Demonstrated (Cont'd)

CAPABILITY	DECK NUMBER																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
PRINTED OUTPUT (Cont'd)																	
DISPLACEMENTS	X	X				X			X	X	X	X	X				
REACTIONS	X	X							X	X	X	X					
VIBRATION OUTPUT	X	X	X					X	X	X			X	X			
BUCKLING OUTPUT												X					
GRAPHICAL OUTPUT																	
STRUCTURAL GRID					X	X		X	X		X	X	X	X	X		X
MASS ELEMENTS					X	X										X	
STIFFNESS ELEMENT PROPERTIES	X																
ELEMENT STRESS CONTOURS											X						
STATIC DISPLACEMENTS													X				
VIBRATION MODE SHAPES	X							X	X					X			
BUCKLING MODE SHAPES												X					
MARGINS OF SAFETY:																	
STRENGTH					X												
THERMAL															X		
LOADABILITY DIAGRAMS																	X
ELEMENT STRESS VS. LOADCASE													X				
V-G AND V-F GRAPHS						X				X			X				
EXPLODED GEOMETRY PLOTS	X										X						
SYSTEM INTERFACES												X					
ATLAS-NASTRAN																	
ATLAS-FLEXSTAB								X	X								
ATLAS/LARC CONFIGURATION									X								

201. SUBSTRUCTURED STRESS AND VIBRATION ANALYSES OF A TRANSMISSION TOWER (DECK 11)

201.1 DESCRIPTION OF ANALYSES

The structure analyzed in this demonstration problem is a power transmission tower as shown in figure 201-1.

The structural model consists of four substructures as shown in figure 201-2. The interaction tree is shown schematically in figure 201-3. The legs of the tower were modelled with BEAM elements, the diagonals with ROD elements. Masses are obtained from the stiffness finite elements. All translational freedoms at the base are supported. Nodal loads are applied at the six hanger points.

The vibration analysis for natural frequencies and mode shapes is performed on the top level substructure using reduced stiffness and mass matrices. All translational freedoms (except TZ at the intersection of the bottom panel diagonals) are retained. The reduced mass matrices for the lowest level substructures are calculated directly by the Mass Processor.

To obtain an alternate solution, a NASTRAN (ref. 201-1) model of the same structure was made and analyzed. ROD and BAR elements were used for the structural model. All mass was specified as concentrated masses. The NASTRAN model was not substructured.

201.2 RESULTS

Nodal displacements, element stresses and reactions from the ATLAS analysis agree exactly with the corresponding quantities from the NASTRAN analysis.

Natural frequencies obtained from ATLAS are compared with the corresponding NASTRAN values in table 201-1.

..... IN THE ORIGINAL SOURCE, BUT FILMED

201.3 LISTING OF CONTROL PROGRAM AND DATA

BEGIN CONTROL PROGRAM DEMOII
PROBLEM IC(CEM011 - SUBSTRUCTURED STRESS/VIBRATION ANALYSES)

C PURPOSE THE PRINCIPAL CAPABILITIES DEMONSTRATED BY
C THIS DECK ARE
C 1. SUBSTRUCTURED STRESS ANALYSIS
C 2. SUBSTRUCTURED VIBRATION ANALYSIS
C 3. EXPLODED GEOMETRY PLOTS

C AUTHOR M. TAMEKUNI

C CORE 130K (OCTAL)

C *****
C * THIS EXAMPLE REPRESENTS AN ATLAS RUN TO PERFORM STRESS *
C * AND VIBRATION ANALYSES FOR A TRANSMISSION TOWER WHICH *
C * IS MODELED AS FIVE SUBSTRUCTURES, SS=1 TO 4. SS=5 IS *
C * FORMED BY INTERACTING SS=1 TO 4.
C *
C * THE EXECUTION SEQUENCE IS
C *
C * 1) READ INPLT THE INPUT DATA ARE
C * PREPROCESSED, AND WRITTEN
C * ON THE DATA FILE. SS=1 TO 4
C * ARE DEFINED AS STIFFNESS/MASS
C * SETS 1 TO 4. SS=5 IS DEFINED
C * AS SET=5 FOR VIBRATION
C * ANALYSIS.
C *
C * 2) EXECUTE STIFFNESS, . COMPUTE ELEMENTAL STIFFNESSES
C * MASS AND THE NON-DIAGONAL MASS
C * MATRICES FOR THE RETAINED
C * FREEDOMS FOR SETS 1 TO 4.
C *
C * 3) EXECUTE LOADS PROCESS LOADS FOR
C * SUBSTRUCTURES 1 AND 3. NO
C * LOADS ARE APPLIED TO
C * SUBSTRUCTURES 2 AND 4.
C *
C * 4) PERFORM SS-MERGE, .. FORM GROSS STIFFNESS AND LOAD
C * STIF,LOAD MATRICES FOR SS=1 TO 4.
C *
C * 5) PERFORM SS-REDU, ... REDUCE GROSS STIFFNESS AND
C * STIF,LOAD MATRICES FOR SS=1 TO 4.
C *
C * 6) PERFORM SS-MERGE, .. FORM GROSS STIFFNESS, LOADS
C * STIF,LOAD,MASS AND MASS MATRICES FOR SS=5.
C *
C * 7) PERFORM SS-VSQL COMPUTE REDUCED STIFFNESS AND
C * MASS MATRICES FOR SS=5 TO
C * PERFORM SUBSEQUENT VIBRATION
C * ANALYSIS.
C *
C * 8) EXECUTE MASS COMPUTE MASS PROPERTIES FOR
C * TOTAL STRUCTURE. (SET=5)
C *
C * 9) EXECUTE VIBRATION .. COMPUTE THE FIRST 5 FREQUENCIES
C * AND MODES.
C *
C * 10) PERFORM SS-SSQL COMPUTE DISPLACEMENTS FOR
C * SS=5.

```

C   * 11) PERFORM ..... FROM THE DISPLACEMENT MATERI- *
C   * SS-PARTITION      CES FOR SS=5, EXTRACT DISPLA-*
C   *                   CEMENTS AT RETAINED FREEDOMS *
C   *                   FOR SS=1 TO 4.          *
C   *
C   * 12) PERFORM SS-BACK .... PERFORM BACK SUBSTITUTION TO *
C   *                   COMPUTE ALL DISPLACEMENTS AND *
C   *                   REACTIONS FOR SS=1 TO 4.          *
C   *
C   * 13) EXECUTE STRESS, .... COMPUTE ELEMENTAL STRESSES *
C   *                   PRINT STRESSES,          *
C   *                   DISPLACEMENTS        *
C   *                   AND REACTIONS       *
C   *                   FOR SUBSTRUCTURES 1 TO 4          *
C   *
C   * 14) PRINT INPUT, ..... PRINT NOCAL AND STIFFNESS *
C   *                   NOCAL AND           INPUT DATA FOR SETS 1 TO 4 *
C   *                   STIFFNESS          *
C   *
C   * 15) EXECUTE GRAPHICS ... PLOT TOTAL STRUCTURE AND *
C   *                   COMPONENT SUBSTRUCTURES          *
C   *
C   * 16) PRINT INPUT, ..... PRINT INTERACT DATA FOR *
C   *                   INTERACT          ALL SUBSTRUCTURES.          *
C   *
C   * 17) PRINT OUTPUT, ..... PRINT FREQUENCIES AND MODE *
C   *                   VIBRATION          SHAPES.          *
C   *
C   * 18) ERROR PROCEDURE .... SAVE DATA FILES IF AN ERROR *
C   *                   IS ENCOUNTERED DURING *
C   *                   EXECUTION.          *
C   *
C   *
C   *****
C   * USER COMMON (K)
C   ----- 1) -----
C   READ INPUT
C   ----- 2) -----
C   DO 10 K=1,4
C   EXECUTE STIFFNESS (SET=K)
C   EXECUTE MASS (SET=K,COPTION=3,CONDITION=1)
C 10 CCNTINUE
C   ----- 3) -----
C   EXECUTE LOADS (SS=(1,3))
C   ----- 4) -----
C   PERFORM SS-MERGE (STIF,LOAD,SS=1 TO 4)
C   ----- 5) -----
C   PERFORM SS-RECU (STIF,LOAD,SS=1 TO 4)
C   ----- 6) -----
C   PERFORM SS-MERGE (STIF,LOAD,MASS,SS=5)
C   ----- 7) -----
C   PERFORM SS-VSCL (SS=5)
C   ----- 8) -----
C   EXECUTE MASS (SET=5,CCONDITON=1)
C   ----- 9) -----
C   EXECUTE VIBRATION (STIF=KREDC05,MASS=PREDO05,NFREQS=5,SET=5)
C   ----- 10) -----
C   PERFORM SS-SECL (SS=5)
C   ----- 11) -----
C   PERFORM SS-PARTITION (SS=5)
C   ----- 12) -----
C   PERFORM SS-BACK (SS=1 TO 4)
C   ----- 13) -----
C   DO 20 K=1,4
C   EXECUTE STRESS(SS=K)
C   PRINT OUTPUT(STRESS,SS=K)
C   PRINT OUTPUT(CISP,SS=K)
C   PRINT CLTPUT(REACTIONS,ECCHK,SS=K)
C 20 CONTINUE
C   ----- 14) -----
C   DO 30 K=1,4
C   PRINT INPUT (NOCAL,SET=K)
C   PRINT INPUT (STIFFNESS,SET=K)

```

30 CONTINUE
C ---- 15) ----
EXECUTE EXTRACT(EXNAME=SS1,LSUB=KGRID,KSET=1,ESUB=E1,NSUB=N2)
EXECUTE EXTRACT(EXNAME=SS2,LSUB=KGRID,KSET=2,ESUB=E1,NSUB=N1)
EXECUTE EXTRACT(EXNAME=SS3,LSUB=KGRID,KSET=3,ESUB=E1,NSUB=N1)
EXECUTE EXTRACT(EXNAME=SS4,LSUB=KGRIC,KSET=4,ESUB=E1,NSUB=N1)
EXECUTE GRAPHICS(GNAME=GEO1,CFFLINE=CALCCMP,EXPLCDE,TYPE=ORTH,
X SIZE=(15,15),EXNAME=(SS1,SS2,SS3,SS4))
EXECUTE GRAPHICS(GNAME=GEO1,EXPLODE,TYPE=ORTH,SIZE=(15,15),
X TX=-250.,EXNAME=SS1,TX=0.,TY=100.,EXNAME=SS2,
X TX=50.,TY=0.,EXNAME=SS3,TX=0.,TY=-250.,
X EXNAME=SS4)
C ---- 16) ----
PRINT INPUT (INTERACT,NODE,SS=1 TO 5)
PRINT INPLT (INTERACT,CONN,SS=1 TO 4)
PRINT INPLT (INTERACT,RETA,SS=1 TO 4)
PRINT INPUT (INTERACT,BG,SS=1 TO 5)
PRINT INPUT (INTERACT,LOADS,SS=1 TO 5)
C ---- 17) ----
PRINT OUTPLT (VIBRATION)
ERROR PROCEDURE
SAVE FILES
END CONTROL PROGRAM

ORIGINAL PAGE IS
SCANNED GRAYSCALE

```

*/ **** BEGIN NOCAL DATA **** /
BEGIN NOCAL DATA
    1 169.0 148.0 634.5
    2 169.0 190.0 634.5
    400 112.8 169.0 96.0
    1001 1CC.0 * 406.0 TO 1003 100.0 169.0 600.0 /
    101 1CC.0 100.0 0.0 TO 106 148.0 *= 360.0
        OF 8.0,7.0,6.0,5.0,4.0 /
    401 * 238.0 *2 406 148.0 190.0 ** /
    106 TO 116 148.0 148.0 600.0 /
    406 * 416 * 190.0 ** /
RECDER FRGM 101
SET 2
*/ **** BEGIN NOCAL DATA **** /
    2 169.0 190.0 634.5
    300 * 225.2 96.0
    301 238.0 *= 0.0 TO 306 190.0 *= 360.0
        CF 8.0,7.0,6.0,5.0,4.0 /
    401 100.0 *3 406 148.0 ** /
    306 TO 316 190.0 190.0 600.0 /
    406 * 416 148.0 ** /
RECDER FRGM 301
SET 3
    1 169.0 148.0 634.5
    2 * 190.0 *
    200 225.2 169.0 96.0
    2001 238.0 * 408.0 TO 2003 238.0 169.0 600.0 /
    201 * 100.0 0.0 * 206 190.0 148.0 360.0
        OF 8.0,7.0,6.0,5.0,4.0 /
    301 * 238.0 *2 306 * 190.0 ** /
    206 TO 216 190.0 148.0 600.0 /
    306 * 316 * 190.0 ** /
RECDER FRGM 201
SET 4
*/ **** BEGIN NOCAL DATA **** /
    1 169.0 148.0 634.5
    1CC * 112.8 56.0
    101 100.0 *= 0.0 TO 106 148.0 *= 360.0
        CF 8.0,7.0,6.0,5.0,4.0 /
    201 238.0 *3 206 190.0 ** /
    106 TO 116 148.0 148.0 600.0 /
    206 * 216 190.0 ** /
RECDER FRGM 101
ENC NOCAL DATA
BEGIN SET-FNESS DATA
BEGIN PROPERTY DATA
    P1 5.75 C. 0. 39.8 19.9 *=
    P2 3.75 C. 0. 11.2 5.6 5.6
    P3 2.11 C. C. 3.6 1.8 1.8 2.11 0. 0. 3.6 1.8 1.8 111.0
    P4 2.11 2.11
    P5 1.15 *=
    P6 3.25 3.25
ENC PROPERTY DATA
BEGIN ELEMENT DATA
    BEAM MP 101 102 400 P1 TO 105 106 400 BY 1 1 0 /
    * 4C1 4C2 400 P1 TO 405 406 400 BY 1 1 0 /
    * 1C 1C7 406 P2 TO 115 116 406 ** /
    * .6 407 106 P2 TO 415 416 106 ** /
    * 416 2 116 P2
    * 116 1 416 P2
    * 4C2 400 403 P3
    * 102 4CC 1C3 P3
    ROD 401 400 P4
    * 1C1 400 *
    * 4C3 400 *
    * 1C3 400 *
    * 4C3 1C3 P5 TO 416 116
    * 1C3 404 *2 115 416 BY 2 2
    * 4C4 105 *2 414 115 ** /
    * 1 2 P5
    * 1 416 *
    * 1001 108 P6 TO 1003 116 BY 1 4

```

```

*   *   408   *   *   416   **
*   *   109   *
*   *   409   *
*   1002 113   *
*   *   413   *
*   1003 1   *
*   *   2   *

ENC ELEMENT DATA
SET 2
*/
BEGIN PROPERTY DATA
P3 2.11 C. C. 3.6 1.8 1.8 2.11 0. C. 3.6 1.8 1.8 111.0
P4 2.11 2.11
P5 1.15 **

ENC PROPERTY DATA
BEGIN ELEMENT DATA
BEAM ME 3C2 3CC 303 P3
BEAM 402 300 403 P3
RCC 3C1 3CC P4
ROD 401 300 *
ROD 3C3 * *
RCD 4C3 * *
RCD 3C3 402 P5 TO 316 416
ROD 4C3 304 *2 415 316 BY 2 2
ROD 304 405 *2 314 415 **
ENC ELEMENT DATA
SET 3
*/
BEGIN PROPERTY DATA
P1 5.75 C. 0. 39.8 19.9 **
P2 3.75 C. 0. 11.2 5.6 5.6
P3 2.11 0. C. 3.6 1.8 1.8 2.11 0. 0. 3.6 1.8 1.8 111.0
P4 2.11 2.11
P5 1.15 **
P6 3.25 3.25

ENC PROPERTY DATA
BEGIN ELEMENT DATA
BEAM ME 2C1 202 200 P1 TO 205 206 200 BY 1 1 0
* 3C1 302 200 P1 TO 305 306 200 BY 1 1 0
* 2C2 207 306 P2 TO 215 216 306 **
* 3C6 3C7 206 P2 TO 315 316 206 **
* 216 1 316 P2
* 316 2 216 *
* 202 200 2C3 P3
* 302 200 3C3 P3
RCC 2C1 200 P4
* 3C1 *
* 2C3 *
* 3C3 *
* 2C3 302 P5 TO 216 316
* 3C3 204 * * 315 216 BY 2 2
* 2C4 3C5 * * 214 315 **
* 216 2 *
* 2CC1 2C8 P6 TO 2003 216 BY 1 4
* 3C8 * * * 316 **
* 2C6 P6
* 3C6 *
* 2CC2 212 *
* 312 *
* 2CC3 1 *
* 2 *
ENC ELEMENT DATA
SET 4
*/
BEGIN PROPERTY DATA
P3 2.11 C. C. 3.6 1.8 1.8 2.11 0. C. 3.6 1.8 1.8 111.0
P4 2.11 2.11
P5 1.15 **

ENC PROPERTY DATA
BEGIN ELEMENT DATA
BEAM ME 1C2 1CC 1C2 P3
* 2C2 100 203 P3
ROD 1C1 1CO P4

```

```

*      201 100      *
*      1C3 100      *
*      2C3 100      *
*      1C3 2C3      P5 TO 116 216
*      2C3 104      *2 215 116 BY 2 2
*      1C4 205      *2 114 215 **

ENC ELEMENT DATA
ENC STIFFNESS DATA
*/
BEGIN BC DATA
SET 1
RETAIN TX TY TZ FCR 1C01 TC 1003
RETAIN TX TY FCR 4C0
SUPPORT ALL FCR 101 4C1
SET 2
RETAIN TX TY FCR 300
SUPPORT ALL FCR 301 4C1
SET 3
RETAIN TX TY TZ FCR 2CC1 TC 2003
RETAIN TX TY FCR 200
SUPPORT ALL FCR 2C1 3C1
SET 4
RETAIN TX TY FCR 100
SUPPORT ALL FCR 101 201
END BC DATA
*/
BEGIN MASS DATA
SET 1
BEGIN CONCITION DATA
STAGE 1 CONCITION 1
ENC CONCITION DATA
END MASS DATA
BEGIN MASS DATA
SET 2
BEGIN CONCITION DATA
STAGE 1 CONCITION 1
ENC CONCITION DATA
END MASS DATA
BEGIN MASS DATA
SET 3
BEGIN CONCITION DATA
STAGE 1 CONCITION 1
ENC CONCITION DATA
END MASS DATA
BEGIN MASS DATA
SET 4
BEGIN CONCITION DATA
STAGE 1 CONCITION 1
ENC CONCITION DATA
END MASS DATA
*/
BEGIN LOADS DATA
SET 1
BEGIN NODAL LCAC DATA
CASE 1
CRDER FX FY FZ
1CC1 TC 1C03 10000.0 *= 20000.0
ENC NODAL LCAC DATA
SET 3
BEGIN NODAL LCAC DATA
CASE 1
CRDER FX FY FZ
2C01 TC 2C03 10000.0 *= 20000.0
ENC NODAL LCAC DATA
END LOADS DATA
*/
BEGIN SUBSET DEFINITICK
SUBSETS OF STIFFNESS SET 1
E1 = ALL
E6 = E1
N1 = 1CC1 TC 1C03
E5 = GPER IN N1

```

```
EXCLUE E5 FRGM E6
N2 = ALL
SUBSETS OF STIFFNESS SET 2
E1 = ALL
N1 = ALL
SUBSETS OF STIFFNESS SET 3
E1 = ALL
N1 = ALL
SUBSETS OF STIFFNESS SET 4
E1 = ALL
N1 = ALL
ENC SUBSET DEFINITION
BEGIN INTERACT DATA
DEFINE SS 1 AS SET 1 STAGE 1
DEFINF SS 2 AS SET 2 STAGE 1
DEFINH SS 3 AS SET 3 STAGE 1
DEFINE SS 4 AS SET 4 STAGE 1
SS 5
INTERALT 1 2 3 4
BEGIN BC CHANGES
SS 5
REFERENCE SS 1
RETAIN TX TY FCR 102 TO 116
*4 402 TO 416
*4 1 2
REFERENCE SS 3
RETAIN TX TY FCR 202 TO 216
*4 302 TO 316
END BC CHANGES
DEFINE HIGHEST SS 5 AS SET 5
END INTERACT DATA
ENC PROBLEM DATA
```

**Table 201-1. Comparison of Natural Frequencies
for Transmission Tower**

(1) Mode Number	Frequency (Hertz)		(4) $\frac{(3)-(2)}{(2)} \times 100$ (%)
	(2) NASTRAN	(3) ATLAS	
1	7.783 87	7.813 51	0.4
2	7.851 53	7.855 62	0.4
3	10.293 9	10.634 7	3.3
4	10.294 0	10.834 8	5.3
5	10.320 3	10.862 8	5.3

Figure 201-1. Transmission Tower

Figure 201-2. Substructure Models, Transmission Tower

Figure 201-3. Substructure Interaction Tree, Transmission Tower

202. STRESS, VIBRATION AND FLUTTER ANALYSES OF A DELTA WING (DECK 10)

202.1 DESCRIPTION OF ANALYSES

Three analyses of a 45° delta wing are performed in this demonstration problem:

- Normal mode analysis for symmetric modes
- Flutter analysis using symmetric modes and DUBLAT aerodynamics
- Stress analysis of a cantilever wing subject to pressure loading

The structure being analyzed is a small-scale structural model of a delta wing as described in reference 202-1. The ATLAS structural model is comprised of mid-surface nodes with SPAR and COVER elements. Because the structure is symmetric about the plane Y=0 only one-half of the structure is modelled. A plan view of the structural model is shown in figure 202-1. The same structural model is used for each of the three analyses.

202.1.1 Normal Mode Analysis

The mass model consists of the mass of the stiffness finite elements plus SCALAR mass finite elements representing the concentrated weights described in reference 202-1. A diagonal mass matrix is produced directly by the Mass Processor. The panels for which weights are calculated are shown in figure 202-2.

Boundary conditions are applied to the plane Y=0 to enforce symmetric behavior. Rigid body translation in the X-direction is eliminated by supporting TX at node 195. All Z-direction translational freedoms are retained.

The Vibration Processor is executed using reduced stiffness and mass matrices. All natural frequencies and mode shapes are calculated.

202.1.2 Flutter Analysis

The first seven vibration modes obtained in the first part of this demonstration problem are used together with DUBLAT aerodynamics to obtain flutter speeds. The Doublet Lattice box grid is shown in figure 202-3 along with a flow chart of the flutter analysis.

202.1.3 Stress Analysis

Pressure loading is applied as element loads uniformly distributed over each COVER. The pressure magnitudes vary from a maximum at $Y=16$ to a minimum at the wing tip. All freedoms are supported in the plane $Y=0$.

202.2 RESULTS

202.2.1 Normal Mode Analysis

The mass of the ATLAS model is compared to the experimentally obtained value in table 202-1. Natural frequencies of the five lowest symmetrical modes from ATLAS are compared with experimentally obtained values in table 202-2. The first mode shape along spar 2 from this analysis is compared to the shape given in reference 202-1 in figure 202-4.

202.2.2 Flutter Analysis

The results of the flutter analysis are presented as velocity vs. damping ($V-g$) and velocity vs. frequency ($V-f$) plots in figures 202-5 and 202-6.

202.2.3 Stress Analysis

Contour plots of upper surface stresses are presented in figure 202-7. Lower surface stresses are equal in magnitude and opposite in sign because of the structural symmetry and the loading antisymmetry about the wing mid-surface.

202.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEMO10
PROBLEM ICICEMU10 - STRESS/FLUTTER ANALYSES OF A DELTA WING

C PURPOSE      THE PRINCIPAL ATLAS CAPABILITIES DEMONSTRATED BY
C               THIS DECK ARE
C               1. NORMAL MODE ANALYSIS
C               2. PLOT OF VIBRATION MODE SHAPE
C               3. FLUTTER ANALYSIS - DUBLAT AERODYNAMICS
C               4. V-G AND V-F PLOTS
C               5. STRESS ANALYSIS
C               6. STRESS CONTOUR PLOTS
C
C AUTHOR        F.P.GRAY
C
C CORE          130K (OCTAL)
C
C METHOD        THE SYSTEM IS EXECUTED TO DEMONSTRATE THE
C               PROCEDURE TO OBTAIN STRESSES,DISPLACEMENTS, AND A
C               FLUTTER SOLUTION FOR A DELTA WING.

C *****
C *
C * THIS DECK DEMONSTRATES AN ATLAS ANALYSIS OF THE 45 DEGREE
C * DELTA WING DESCRIBED IN NACA TN 3999.
C *
C * THE PROBLEM TO BE EXECUTED CONTAINS
C *
C *     117 STRUCTURAL NODES
C *     154 SPAR ELEMENTS
C *     102 COVER ELEMENTS
C *
C *****
C
C READ INPUT
C
C PRINT THE STIFFNESS AND LOADS INPUT DATA. PLOT GEOMETRY.
C
C PRINT INPUT (NODAL,SUBSETS,N1=INPUT,N2)
C PRINT INPUT (STIFFNESS,SUBSETS,E10,E20,E30)
C PRINT INPUT(LOADS,STAGE=2)
C EXECUTE EXTRACT(EXNAME=NACA1,LSUB=KGRID,ESUB=E10,NSUB=N1)
C EXECUTE GRAPHICSGNAME=PLANVIEW,OFFLINE=CALCOMP,TYPE=(ORTH,
X           POINT).LABEL=N,SCALE=.05,VIEW=100,EXNAME=NACA1)
C EXECUTE EXTRACT(EXNAME=NACA2,LSUB=KGRID,ESUB=E25,NSUB=N25)
C EXECUTE GRAPHICSGNAME=REARSPAR,TYPE=ORTH,LABEL=N+E,SCALE=.10,
X           VIEW=1000000,EXNAME=NACA2)

C GENEPEATE THE REDUCED STIFFNESS MATRIX.
C
C PERFORM K-REDUCE
C PRINT INPUT(BC)
C
C GENERATE AND PRINT THE DIAGONAL MASS MATRIX,PANEL WEIGHT
C MATRIX,AND WEIGHT STATEMENT.
C
C EXECUTE MASS (OPTION=2)
C PRINT OUTPUT(MASS,STATEMENT,SUMMARY,MDC=MDC****)
C
C GENERATE AND PRINT THE MODES,FREQUENCIES,GENERALIZED MASS,AND
C GENERALIZED STIFFNESS. PRODUCE MODE SHAPE PLOT.
C
C EXECUTE VIBRATION(STIF=KRED,MASS=MDC001A,NMODES=7,SUBSETS=(N1,
X           N29))
```

```

PRINT OUTPUT(VIBRATION,SUBSETS=(N1,N29))
EXECUTE EXTRACT(EXNAME=SPAR2,LSUB=VMODE,VSET=1,NSUB=N29,MODE=3,
X           BSUB=ON2)
EXECUTE GRAPHICS(GNAME=MNODES,TYPE=ORTH,SCALE=.1,VX=-1.,
X           VECTOR2=VMODE,VSCALE=60.,EXNAME=SPAR2)

C C C
      GENERATE,PRINT,AND PLOT THE FLUTTER DATA.

      EXECUTE INTERPOLATION(N1=(SURFSPLINE,CMD0),DOF=1000)
      EXECUTE DUBLAT(COND=1,MACH=.5,KVAL=(35.0,14.2,5.0,2.2,1.0),
I           BREF=11240)
      EXECUTE ADDINT(ID=FCHCK,INT,DUBLAT,IGAIN=9,MACH=.5)
      EXECUTE FLUTTER(GAFID=FCHCK)
      PRINT OUTPUT(FLUTTER)
      EXECUTE EXTRACT(EXNAME=FCASE1,LSUB=VGVF)
      EXECUTE GRAPHICS(GNAME=FLUTTER,TYPE=GRAPH,SIZE=(10,10),
X           X=V,Y1=G,Y2=F,XMIN=J.,XMAX=3000.,Y1MIN=-.2,
X           Y2MIN=0.,Y1MAX=.1,Y2MAX=200.,EXNAME=FCASE1)

C C C
      GENERATE AND PRINT THE ELEMENT STRESSES,NUDAL DISPLACEMENTS,
      AND REACTIONS. PLOT STRESS CONTOURS.

      PERFORM STRESS(STAGE=2,[K]=[S])
      PRINT OUTPUT(STRESSES,STAGE=2)
      PRINT OUTPUT(DISPLACE,STAGE=2)
      PRINT OUTPUT(REACTIONS,STAGE=2,R3=R31,EQCHK)
      EXECUTE EXTRACT(EXNAME=NACA3,LSUB=STRESS,ESUB=E10,NSUB=N1,
X           STAGE=2,BSUB=ON1)
      EXECUTE GRAPHICS(GNAME=CONTOURS,TYPE=CONTOUR,SIZE=(15,15),
X           SCALAR=COVSIGMA1U,FLEV=-250.,LLEV=0.,
X           INTLEV=25.,EXNAME=NACA3)
      EXECUTE GRAPHICS(GNAME=CONTOURS,TYPE=CONTOUR,SIZE=(15,15),
X           SCALAR=COVSIGMA2U,FLEV=-60.,LLEV=30.,
X           INTLEV=10.,EXNAME=NACA3)

C C C
      INDEX THE RANDOM ACCESS FILES.

      CALL PRNTCAT
      INDEX FILES
      END

```

ALL IMAGE IS
FOR QUALITY

```

BEGIN NODAL DATA
/* STRUCTURAL NODES
   15 196.0  0.0  0.0   2.72  TO  195 100.0  0.0  0.0  2.72 BY
**+2 -1  0.0  8.0  0.0  0.0   0   -1  0.0  8.0  0.0  0.0  0.0  BY
   1 196.0 112.0  0.0   0.844 TO  193
   1                               TO  13
**+11 16                               0  15

/* AUXILIARY PANEL NODES
   310 196.  0.  0.  TO 310 100.  0.  0.
   320 * 16. * 2 326 * 16. 0.
   330 * 28. * 2 336 112. 28. 0.
   340 * 40. * 2 346 124. 40. 0.
   350 * 40. * 2 354 124. 40. 0.
   360 * 56. * 2 364 140. 56. 0.
   370 * 72. * 2 374 156. 72. 0.
   380 * 88. * 2 382 172. 88. 0.
   390 * 112. 0.

END NODAL DATA
BEGIN STIFFNESS DATA
/* BEGIN ELEMENT DATA
/* RIB ELEMENTS
   SPAR M01 15.30 0.0254 .01905 TO 180,195 BY 15,15
   *2 14.29 0.0508 .03810 TO 179,194 **
   *2 13.28 0.1412 .12355 TO 178,193 **
   *2 12.27 0.0508 .03810 TO 162,177 **
**+9 0.0 -1,-1 010 .0 3 -16,-16 0.0,0
   *2 2.17 *2

/* SPAR ELEMENTS
   SPAR 1 2 0.0695 0.201362 TO 3 4
   * 4 5 0.0695 0.476579 TO 14 15
   * 49 50 0.0701 0.477268 TO 59 60
   * 97 98 0.0718 1.498695 TO 104 105
   * 145 146 0.0720 0.205189 TO 149 150
   * 153 154 0.0706 0.039597 TO 194 195
   * 1 17 0.0706 0.039597 TO 177 193 BY 16 16

/* COVER ELEMENTS
   COVER N1001 1 2 17 0.0696 0.0281 0. TO N1166 177 178 193
   BY N15 16 16 16
   COVER N1002 2 3 18 17 0.0696 0.0281 0. TO N1014 14 15 30 29
**+11 0 15 16 *=3 0. 0. 0. 0. 14 15 *=3

END ELEMENT DATA
END STIFFNESS DATA
*/
BEGIN BC DATA
STAGE 1
  RETAIN TZ FOR 1 TO 195
  SUPPORT TX FOR 195
  SUPPORT ASYM IN SURFACE 2 THROUGH 15
STAGE 2
  SUPPORT ALL FOR 15 TO 195 BY 15
END BC DATA
*/
BEGIN MASS DATA
/* BEGIN MASS ELEMENT DATA
  SCALAR F2 NODE002 2 .003
  SCALAR F2 NODE003 3 .003
  SCALAR F2 NODE004 4 .003
  SCALAR F2 NODE005 5 .008
  SCALAR F2 NODE006 6 .019
  SCALAR F2 NODE007 7 .012
  SCALAR F2 NODE008 8 .014
  SCALAR F2 NODE009 9 .017
  SCALAR F2 NODE010 10 .020
  SCALAR F2 NODE011 11 .022
  SCALAR F2 NODE012 12 .025
  SCALAR F2 NODE013 13 .058
  SCALAR F2 NODE014 14 .026
  SCALAR F2 NODE015 15 .013
  SCALAR F2 NODE017 17 .003
  SCALAR F2 NODE033 33 .003
  SCALAR F2 NODE049 49 .003
  SCALAR F2 NODE050 50 .008
  SCALAR F2 NODE051 51 .009

```

```

SCALAR F2 NODE152 52 .012
SCALAR F2 NODE053 53 .014
SCALAR F2 NODE054 54 .017
SCALAR F2 NODE055 55 .020
SCALAR F2 NODE056 56 .022
SCALAR F2 NODE057 57 .025
SCALAR F2 NODE058 58 .058
SCALAR F2 NODE059 59 .026
SCALAR F2 NODE060 60 .013
SCALAR F2 NODE065 65 .004
SCALAR F2 NODE081 81 .006
SCALAR F2 NODE097 97 .006
SCALAR F2 NODE098 98 .014
SCALAR F2 NODE099 99 .017
SCALAR F2 NODE100 100 .020
SCALAR F2 NODE101 101 .022
SCALAR F2 NODE102 102 .025
SCALAR F2 NODE103 103 .058
SCALAR F2 NODE104 104 .026
SCALAR F2 NODE105 105 .013
SCALAR F2 NODE113 113 .006
SCALAR F2 NODE129 129 .007
SCALAR F2 NODE145 145 .008
SCALAR F2 NODE146 146 .008
SCALAR F2 NODE147 147 .010
SCALAR F2 NODE148 148 .020
SCALAR F2 NODE149 149 .010
SCALAR F2 NODE150 150 .005
SCALAR F2 NODE161 161 .008
SCALAR F2 NODE177 177 .010
SCALAR F2 NODE193 193 .298
SCALAR F2 NODE194 194 .010
SCALAR F2 NODE195 195 .2445

END MASS ELEMENT DATA
BEGIN CONCITION DATA
STAGE 1 CONDITION 1
PANEL DATA 1 CONDITION 2
ENL CONDITION DATA
BEGIN PANEL DATA 1
  1 315 316 326 325 TO 6 BY 1 -1 **3
**2 6 10 10 10 0 6 0 **5
  19 353 354 364 363 TO 22 **5
**1 4 10 10 10 0 4 0 **5
  27 372 374 382 381 TO 28 BY 1 -2 -2 -1 -1
  29 380 382 390
ENC PANEL DATA
BEGIN LABEL DATA
  LEVEL1 ** TOTAL WING STRUCTURE *
  EK10 ** COVER MATERIAL *
  EK30 ** RIB MATERIAL *
  LEVEL2 ** SPAR MATERIAL *
  EK21 ** SPAR 1 (FS) *
  EK22 ** SPAR 2 *
  EK23 ** SPAR 3 *
  EK24 ** SPAR 4 *
  EK25 ** SPAR 5 (RS) *
END LABEL DATA
END MASS DATA
BEGIN LOADS DATA
STAGE 2
LOAD CASE ID AIRLOAD **PRESSURE LOAD ON ENTIRE WING SURFACE**
BEGIN ELEMENT LOAD DATA
CASE AIRLOAD
DIRECTION GLOBAL 0. 0. 1.
  1014 TO 1168 BY 14 .2
  1013 TO 1167 BY 14 .15
  1012 TO 1166 BY 14 .10
**10 -1 0 -15 0 0 -.01
  1001 .005
ENC ELEMENT LOAD DATA
END LOADS DATA

```

```

BEGIN SUBSET DEFINITION
SUBSETS OF STIFFNESS SET 1
/* SUBSETS OF ALL STRUCTURAL NODES AND ELEMENTS
E1 = ALL
N1 = ALL
N2 = 300 TO 400
EXCLUDE N2 FROM N1
/* SUBSET OF ALL COVER ELEMENTS
E10 = COVERS
/* SUBSETS OF ELEMENTS FOR THE WING SPARS
N21 = 1 TO 193 BY 16 194 195
E21 = IN N21
E22 = SLAB X 124.0
**3 1 0 0 0 240
N25 = NODES IN E25
/* SUBSET OF ALL WING SPARS
E20 = E21 U E22 U E23 U E24 U E25
/* SUBSET OF ALL SPAR ELEMENTS
E100 = SPARS
/* SUBSET OF ALL WING RIBS
E30 = E100
EXCLUDE E20
/* RETAINED NODES ON SPAR 2
N29 = 49 TO 60
/* BOUNDARY SUBSET FOR STRESS CONTOUR PLOTS
ON1 = 1 TO 15, 30 TO 195 BY 15, 194, 193 TO 17 BY -16
/* SUBSET FOR MODE SHARE PLOT
ON2 = 49 *11+1
END SUBSET DEFINITION
BEGIN FLUTTER DATA
CASE 1 ** NACA DELTA WING *
ALTITUDE 500.0
END FLUTTER DATA
*/
BEGIN DUBLAT DATA
BEGIN GEOMETRY DATA
LIFTING SURFACE DATA
PANEL WING1 100.0 196.0 100.0 196.0 0. 16.0 0. 0.
CHORD DIV 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SPAN DIV 0. 1.0
PANEL WING2 100.0 196.0 190.0 196.0 16.0 112.0 0. 0.
CHORD DIV 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SPAN DIV 0. 0.1 0.2 0.3 0.4 0.5 0.57 0.64 0.7 0.75 0.8
0.85 0.88 0.92 0.95 0.98 1.0
END GEOMETRY DATA
BEGIN SUBSET DATA
SUBSETS OF BOXES
SUBSET SS 1 TO 170
END SUBSET DATA
BEGIN MODAL DATA
USE CMOD WITH LIFTING SURFACE SS
END MODAL DATA
END DUBLAT DATA
END PROBLEM DATA

```

**Table 202-1. Mass Comparison for
Delta Wing**

Experimental (ref. 202-1)	185.330 kg (408.583 lb)
ATLAS	185.298 kg (408.514 lb)

**Table 202-2. Comparison of Natural Frequencies
for Symmetric Modes of Delta Wing**

(1) Mode	Frequency (Hertz)		(4) $\frac{(3)-(2)}{(2)} \times 100$ (%)
	(2) Experimental (ref. 202-1)	(3) ATLAS	
1	43.3	47.7	10.2
2	88.8	91.4	2.9
3	122.8	127.5	3.8
4	164.2	169.0	2.9
5	179.7	191.4	0.9

Figure 202-1. Delta Wing Structural Grid with Node Numbers

Figure 202-2. Delta Wing Weights Panels

Figure 202-3. Flutter Analysis of Delta Wing

Figure 202-4. First Flexible Mode Shape along Spar 2 of Delta Wing

Figure 202-5. Flutter V-g Plot,Delta Wing

Figure 202-6. Flutter V-f Plot,Delta Wing

SIGMA1U

SIGMA2U

Figure 202-7. Delta Wing Upper Surface Stress Contours - Pressure Loading

203. STRESS AND VIBRATION ANALYSES OF AN SST AIRCRAFT (DECK 2)

203.1 DESCRIPTION OF ANALYSES

An SST aircraft is analyzed to obtain symmetric vibration modes and stresses due to pressure loads applied to the wings. Because of structural symmetry only one half of the aircraft is modelled.

The stiffness finite element model is shown in figure 203-1. Mid-surface nodes with SPAR and COVER elements are used for the wing, wing fin and horizontal tail. The body is modelled with BEAM elements the properties of which are shown in figure 203-2. Mass is obtained from the stiffness finite elements.

203.1.1 Vibration Analysis

Symmetric boundary conditions are applied in the plane $Y=0$. The degrees of freedom retained in the normal mode analysis are shown in figure 203-3. Rotational degrees of freedom are retained only at control surfaces. Rigid body translation in the X-direction is eliminated by supporting TX at the aftmost body node. The pitching and Z-translation rigid body modes are included in the analysis.

The analysis is performed using a reduced stiffness matrix and a reduced mass matrix obtained by Guyan reduction of the merged elemental mass matrices.

203.1.2 Stress Analysis

Symmetric boundary conditions are applied in the plane $Y=0$. Rigid body motions are eliminated by supporting X and Z-direction translations and rotation about the Y axis at the aftmost body node. The pressure loading is simulated with nodal loads.

203.2 RESULTS

Natural frequencies of the first eight modes are given in table 203-1. The third mode shape is shown in figure 203-4; this is the first flexible mode.

203.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEM002
PROBLEM ID(DEMU02 - STRESS/VIBRATION ANALYSES OF AN SST)
C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY
C               THIS DECK ARE
C               1. STRESS ANALYSIS
C               2. NORMAL MODE ANALYSIS
C               3. ELEMENT PROPERTY PLOTS
C               4. VIBRATION MODE SHAPE PLOTS
C
C AUTHOR        R.A. SAMUEL
C
C CORE          150K (OCTAL)
C
C METHOD        THE RESULTS OBTAINED FROM THIS DECK SHOULD BE THE
C               SAME AS THOSE FROM DECK DEM001.
C
C
READ INPUT
PRINT INPUT (NODAL)
PRINT INPUT(STIFFNESS)
EXECUTE EXTRACT(ENAME=GEOM,LSUB=KGRID,ESUB=E1,NSUB=N1)
EXECUTE GRAPHICS(ENAME=GEOMETRY,OFFLINE=CALCOMP,TYPE=(ORTH,
X           POINT),SIZE=(20.,20.),RZ=30.,RX=0.,RY=20.,
X           EXNAME=GEOM)
EXECUTE EXTRACT(ENAME=PROPS,LSUB=KPROP,ESUB=E2,NSUB=N2)
EXECUTE GRAPHICS(ENAME=BODY,TYPE=ORTH,SIZE=(10,10),
X           SCALAR=BMIZ(1),SSCALE=.002,EXNAME=PROPS)
EXECUTE GRAPHICS(ENAME=BODY,TYPE=ORTH,SIZE=(10,10),
X           SCALAR=BMA(1),SSCALE=5.,EXNAME=PROPS)
PERFORM REUCE
PRINT INPUT(BC)
EXECUTE VIBRATION (STIF=KRED,MASS=MRED,NFREQS=8)
PRINT OUTPUT (VIBRATION)
EXECUTE EXTRACT(ENAME=MODE3,LSUB=VMODE,VSET=1,MODE=3,BSUB=ON1)
EXECUTE GRAPHICS(ENAME=VMODES,TYPE=ORTH,SIZE=(20,20),
X           RX=0.,RZ=20.,RY=20.,VECTOR2=VMODE,VSCALE=100.,
X           EXNAME=MODE3)
PURGE FILES(STIFRNF,MEGRNF,MASSRNF,MULTRNF,CHOLRNF,VIBRRNF)
PERFORM STRESS(STAGE=2)
PRINT INPUT(BC,STAGE=2)
PRINT OUTPUT(LOADS,STAGE=2)
PRINT OUTPUT(STRESS,STAGE=2)
PRINT OUTPUT(DISP,STAGE=2)
PRINT OUTPUT(REACTIONS,STAGE=2,EQCHK)
END CONTROL PROGRAM
```

```

*/ MODE2 /
BEGIN NODAL DATA
*/
*/ BODY NUODES
*/
      1   20.    0.  0.    TO   25    94.    0.  0.    BY  2
     27 1060.    0.  0.  30.0  TO   45  1780.    0.  0.  42.5  BY  2
**+1 200    0.  65.  0.  0.    0   200    0.  65.    0.  0.    **  2
     45                      TO   55  2180.    0.  0.  31.0  BY  2
**+1 200    0.  200    0.  65.    0   63  2500.    0.  0.  13.5  BY  2
     55                      TO   200    0.  65.    0.  0.    **  2
**+1 200    0.  200    0.  65.    0   77  3060.    0.  0.    BY  2
     65 2580.    0.  0.    TO   79  3140.    0.  0.    3.0
     79 3140.    0.  0.    TO   81  3220.    0.  0.    6.5
**+1 200    0.  65.    0.  0.    0   83  3300.    0.  0.    7.0
**+1 200    0.  65.    0.  0.    0   85  3380.    0.  0.    2.0
**+1 200    0.  65.    0.  0.    0   87  3460.    0.  0.    **  2
     89 3540.    0.  0.    TO   89
*/
*/ WING NODES
*/
      427 1060.  65.  0.  30.0  TO   435 1380.  180.  0.  17.5  BY  2
      435                      TO   445 1780.  180.  0.  27.5  BY  2
      445                      TO   455 2180.  180.  0.  25.0  BY  2
      455                      TO   463 2500.  180.  0.  13.0  BY  2
      635 1380.  180.  0.  17.5  TO   641 1620.  265.  0.  10.0  BY  2
      641                      TO   655 2180.  265.  0.  22.5  BY  2
      655                      TO   663 2500.  265.  0.  12.5  BY  2
      841 1620.  265.  0.  10.0  TO   847 1971.  380.  0.  9.0  BY  2
      847                      TO   855 2291.  380.  0.  17.0  BY  2
      855                      TO   863 2611.  380.  0.  10.0  BY  2
      1047 1971.  380.  0.  9.0  TO   1051 2205.  455.  0.  8.5  BY  2
      1051                      TO   1059 2525.  455.  0.  15.0
      1059                      TO   1063 2685.  455.  0.  8.0
      1251 2205.  455.  0.  8.5  TO   1254 2409.  538.  0.  6.5
      1254                      TO   1259 2609.  538.  0.  11.0
      1259                      TO   1263 2769.  538.  0.  5.5
      1454 2409.  538.  0.  6.5  TO   1456 2545.  594.  0.  5.0
      1456                      TO   1459 2665.  594.  0.  7.5
      1459                      TO   1463 2825.  594.  0.  3.5
      1656 2545.  594.  0.  5.0  TO   1658 2710.  680.  0.  3.0
      1658                      TO   1663 2910.  680.  0.  3.0
      1858 2710.  680.  0.  3.0  TO   1860 2875.  765.  0.  1.5
      1860                      TO   1863 2995.  765.  0.  2.5
*/
*/ WING TRAILING EDGE NODES
*/
      3001 2500.  65.  0.  13.5  TO   3005 2580.  65.  0.  1.0  BY  2
      3101 2500.  180.  0.  13.0  TO   3105 2580.  180.  0.  1.0  **
      3201 2500.  265.  0.  12.5  TO   3205 2580.  265.  0.  1.0  **
      3305 2830.  538.  0.  1.0  TO   3605 3045.  765.  0.  1.0
      BY 100 OF 56.  86.  85. +
*/
*/ WING FIN NODES
*/
      REC WINGFIN 0. 594. 0., 1. 594. 0., 0. -1. 0.
      2056 2545.    .1 0.  3.5  TO   2456 2830.  100.  0.  2.5  BY  200
      2058 2625.    .1 0.  3.5  TO   2458 2842.  100.  0.  3.0  **
      2061 2745.    .1 0.  4.0  TO   2461 2859.  100.  0.  3.0  **
      2063 2825.    .1 0.  4.0  TO   2463 2870.  100.  0.  3.0  **
*/
*/ HORIZONTAL TAIL NODES
*/
      RESUME GLOBAL
      279                      TO   679 3365.  200.  0.  2.0  BY  200
      281                      TO   681 3388.  200.  0.  2.5  **
      283                      TO   683 3412.  200.  0.  2.5  **
      285                      TO   685 3435.  200.  0.  1.0  **
END NODAL DATA

```

BEGIN STIFFNESS DATA
BEGIN PROPERTY DATA

P1 .05 1. *(WING FIN SPARS AND RIBS)
P2 2. 0. 0. .2 .2 .2 *(WING FIN ATTACHMENT BEAMS - TYPE 1)
P3 10. 0. 0. 100. 100. 100. *(WING FIN ATTACHMENT BEAMS - TYPE 2)
P4 .15 .50 *(CONTROL SURFACE RIBS)
P5 0. *=2 100. 100. 0. 10. *(BEAMS AT 455 RIB TO PICK UP SPARS)

END PROPERTY DATA
BEGIN ELEMENT DATA

/*
/* WING FRONT SPAR
*/

SPAR	M5	N2003	227	429	.12	2.	TO	N2605	433	435	*
*2		N2205	429	431	.12	2.	BY	N200	2	2	
*2		N2805	435	637	.12	2.	TO	N3207	639	641	*
*2		N3007	637	639	.12	2.	BY	N200	2	2	
*2		N3407	641	843	.12	2.	TO	N3809	845	847	*
*2		N3609	843	845	.12	2.	BY	N200	2	2	
*2		N4009	847	1049	.12	2.					
*2		N4211	1049	1051							
*2		N4411	1051	1253							
*2		N4613	1253	1254							
*2		N4713	1254	1455							
*2		N4815	1455	1456							
*2		N4915	1456	1657							
*2		N5017	1657	1658							
*2		N5117	1658	1859							
*2		N5219	1859	1860							

/*
/* WING REAR SPAR
*/

SPAR	M5	N5603	263	463	.40	12.					
*2		N5605	463	663	.40	12.					
*2		N5607	663	863	.34	12.					
*2		N5609	863	1063	.34	12.					
*2		N5611	1063	1263	.30	8.					
*2		N5613	1263	1463	.30	8.					
*2		N5615	1463	1663	.30	4.					
*2		N5617	1663	1863	.30	4.					

/*
/* WING INTERMEDIATE SPARS
*/

SPAR	M5	N2203	229	429	.20	2.	TO	N3603	243	443	*
*2		N3803	245	445	.36	2.	BY	N200	2	2	
*2		N4803	255	455	.60	12.					
*2		N5003	257	457	.24	12.	TO	N5403	261	461	*
*2		N3005	437	637	.20	2.	TO	N3605	443	643	*
*2		N3805	445	645	.36	2.	BY	N200	2	2	
*2		N4005	447	647	.20	4.	TO	N4605	453	653	*
*2		N4805	455	655	.60	12.	BY	N200	2	2	
*2		N5005	457	657	.24	12.	TO	N5405	461	661	*
*2		N3607	643	843	.20	2.	TO	N3807	645	845	*
*2		N4007	647	847	.20	4.	TO	N4607	653	853	*
*2		N4807	655	855	.20	8.	BY	N200	2	2	
*2		N5007	657	857	.20	10.	TO	N5407	661	861	*
*2		N4209	849	1049	.20	4.	TO	N4609	853	1053	*
*2		N4809	855	1055	.20	8.	BY	N200	2	2	
*2		N5009	857	1057	.20	10.	TO	N5409	861	1061	*
*2		N4611	1053	1253	.12	4.	TO	N4811	1055	1255	*
							BY	N100	1	1	

*2	N4911	1056	1256	.06	4.	TO BY	N5511 N100	1062 1	1262 1	*	
*2	N4813	1255	1455	.12	4.	TO BY	N5513 N100	1262 1	1462 1	*	
*2	N4913	1256	1456	.06	4.	TO BY	N5513 N100	1	1	*	
*2	N5015	1457	1657	.06	2.	TO BY	N5515 N100	1462 1	1662 1	*	
*2	N5217	1659	1859	.06	2.	TO BY	N5517 N100	1662 1	1862 1	*	
*/ WING IN-BODY SPARS											
*/											
SPAR	M5	N2001	27	227	1.00	10.	TO BY	N3601 N200	43	243	*
*2	N3801	45	245	1.80	10.	TO BY	N4601 N200	53	253	*	
*2	N4801	55	255	3.00	60.	TO BY	N5401 N200	61	261	*	
*2	N5001	57	257	1.20	60.	TO BY	N5401 N200	2	2	*	
*2	N5601	63	263	2.00	60.						
*/ WING RIBS											
*/											
SPAR	M5	N6001	227	229	.25	4.	TO BY	N6035 N2	261	263	*
*2	N6109	436	437	.30	4.	TO BY	N6135 N2	461	463	*	
*2	N6215	641	643	.20	3.	TO BY	N6235 N2	661	663	*	
*2	N6425	1051	1053	.20	4.						
*2	N6425	1053	1054	.20	4.	TO	N6435	1062	1063	*	
*2	N6629	1456	1457	.12	2.	TO	N6635	1462	1463	*	
*2	N6833	1860	1861	.30	1.4	TO	N6835	1862	1863	*	
*/ WING COVERS											
*/											
COVER	M5	N7003	229	429	227	.06					
*2	N7203	229	429	431	231	.06					
	N8603	243	443	445	245		BY N200	2	**=3		*
*2	N8803	245	445	447	247	.12	.00				*
	N9603	253	453	455	255		BY N200	2	**=3		
*2	N9803	255	455	457	257	.10	.14				
*2	N10003	257	457	459	259		**				
*2	N10203	259	459	461	261	.26	.14	.22	.00		
*2	N10403	261	461	463	263		**				
*2	N7805	437	637	435		.06					
*2	N8005	437	637	639	439	.06					
	N9605	453	653	655	455		BY N200	2	**=3		
*2	N9805	455	655	657	457	.10	.14				
*2	N10005	457	657	659	459		**				
*2	N10205	459	659	661	461	.26	.14	.22	.00		
*2	N10405	461	661	663	463		**				
*2	N8407	643	843	641		.06					
*2	N8607	643	843	845	645	.06					
	N9607	653	853	855	655		BY N200	2	**=3		
*2	N9807	655	855	857	657	.10	.08				
*2	N10007	657	857	859	659		**				
*2	N10207	659	859	861	661	.30	.14	.20	.00		
*2	N10407	661	861	863	663		**				
*2	N9009	849	1049	847		.06					
*2	N9209	849	1049	1051	851	.06					
	N9609	853	1053	1055	855		BY N200	2	**=3		
*2	N9809	855	1055	1057	857	.10	.08				
*2	N10009	857	1057	1059	859		**				
*2	N10209	859	1059	1061	861	.30	.14	.20	.00		
*2	N10409	861	1061	1063	863		**				
*2	N9411	1053	1253	1051		.30	.14	.22	.12		
*2	N9611	1053	1253	1254	1054	.30	.14	.22	.12	TO	*
	N10511	1062	1262	1263	1063		BY N100	1	**=3		
*2	N9713	1255	1455	1254		.30	.14	.22	.12		
*2	N9813	1255	1455	1456	1256	.30	.14	.22	.12	TO	*
	N10513	1262	1462	1463	1263		BY N100	1	**=3		

*2	N9915	1457	1657	1456	.08					
*2	N10015	1457	1657	1658	1458	.08				
	N10515	1462	1662	1663	1463		BY N100	1	TO	*
*2	N10117	1659	1859	1658		.08				
*2	N10217	1659	1859	1860	1660	.08			TO	*
	N10517	1662	1862	1863	1663		BY N100	1	TO	*
*/										
*/	WING IN-BODY COVERS									
*/										
COVER	MS	N7001	27	227	229	29	.30		TO	*
		N8601	43	243	245	45		BY N200	2	**3
*2	N8801	45	245	247	47	.60			TO	*
	N9601	53	253	255	55		BY N200	2	**3	
*2	N9801	55	255	257	57	.70				
*2	N10001	57	257	259	59	.70				
*2	N10201	59	259	261	61	1.30	.70 1.10	.00		
*2	N10401	61	261	263	63		**			
*/										
*/	WING FIN SPARS									
*/										
SPAR	MS	N11001	2056	2256		P1				
*2	N11003	2256	2456			*				
*2	N11201	2058	2258			*				
*2	N11203	2258	2458			*				
*2	N11501	2061	2261			*				
*2	N11503	2261	2461			*				
*2	N11701	2063	2263			*				
*2	N11703	2263	2463			*				
*/										
*/	WING FIN RIBS									
*/										
SPAR	MS	N12001	2256	2258		P1				
*2	N12003	2258	2261			*				
*2	N12005	2261	2263			*				
*2	N12201	2456	2458			*				
*2	N12203	2458	2461			*				
*2	N12205	2461	2463			*				
*/										
*/	WING FIN COVERS									
*/										
COVER	MS	N13001	2056	2256	2258	2058	.05			
*2	N13003	2058	2258	2261	2061	*				
*2	N13005	2061	2261	2263	2063	*				
*2	N13201	2256	2456	2458	2258	*				
*2	N13203	2258	2458	2461	2261	*				
*2	N13205	2261	2461	2463	2263	*				
*/										
*/	WING FIN ATTACHMENT BEAMS									
*/										
BEAM	Z5	N20001	1456	2056	1463	P2				
*2	N20003	1458	2058	1463		*				
*2	N20005	1461	2061	1463		*				
*2	N20007	1463	2063	1461		*				
*2	N21001	1456	1458			P3				
*2	N21003	1458	1461			*				
*2	N21005	1461	1463			*				
*/										
*/	WING TRAILING EDGE CONTROL SURFACE RIBS									
*/										
SPAR	MS	N101	263	3003		P4				
**2	0 0 2	200	100		0					
*2	N102	3003	3005			*				
**2	0 0 2	100	100		0					
*2	N107	1263	3305			*				
**3	0 0 1	200	100		*					
*/										
*/	WING TRAILING EDGE CONTROL SURFACE COVERS									
*/										
COVER	MS	N151	263	463	3103	3003	.10			
*2	N153	463	663	3203	3103	*				
*2	N152	3003	3103	3105	3005	*				
*2	N154	3103	3203	3205	3105	*				
*2	N155	1263	1463	3405	3305	*				
**2	0 0 1	200	200	100	100	*				

```

/*
*/ HORIZONTAL TAIL SPARS
*/
    SPAR M5 N14003 279 479 .10 1.2
    *2   N14005 479 679 ** 
    *2   N14103 281 481 .05 1.8
    *2   N14105 481 681 ** 
    *2   N14203 283 483 .05 1.6
    *2   N14205 483 683 ** 
    *2   N14303 285 485 .20 2.6
    *2   N14305 485 685 ** 

/*
*/ HORIZONTAL TAIL RIBS
*/
    SPAR M5 N14401 279 281 .15 2.0 TO N14405 283 285 +
    *2   N14501 479 481 .10 1.2 TO N14505 483 485 +
    *2   N14601 679 681 .10 1.2 TO N14605 683 685 +
                                BY N2      2 2

/*
*/ HORIZONTAL TAIL IN-BODY SPARS
*/
    SPAR M5 N14001 79 279 .50 6.0
    *2   N14101 81 281 .25 9.0
    *2   N14201 83 283 .25 8.0
    *2   N14301 85 285 1.00 13.0

/*
*/ HORIZONTAL TAIL COVERS
*/
    COVER M5 N15003 279 479 481 281 .16
    *+2  0 0 200 2 *=3 0.
    COVER M5 N15005 479 679 681 481 .07
    *+2  0 0 200 2 *=3 0.

/*
*/ HORIZONTAL TAIL IN-BODY COVERS
*/
    COVER M5 N15001 79 279 281 81 .80
    N15401 83 283 285 85 BY N200 2 TO *=3 +
    *+3 0 0 2 2 2 -12. *+3 -34000. -12. *+3 -34000.

/*
*/ BODY BEAMS
*/
    BEAM M5 N1001 1 3 5. 0. *=3 16000. 10. 0. *=3 30000.
    *+30 0 0 2 2 2 5. *+4 14000. 5. *+4 14000.
    *2   N1063 63 65 160. *+4 450000. 148. *+4 416000.
    *+12 0 0 2 2 2 -12. *+4 -34000. -12. *+4 -34000.

/*
*/ BEAMS AT 455 RIB TO PICK UP DISCONTINUED SPARS
*/
    BEAM M5 N30002 1053 1054 PS
    *+4 0 0 2 2 2 *
    BEAM M5 N30011 1063 1062 PS
    *+4 0 0 -2 -2 -2 *

END ELEMENT DATA
END STIFFNESS DATA
BEGIN MASS DATA
BEGIN MASS ELEMENT DATA
    BEAM 1456 2056 1463 .1 .1 *=3
    BEAM 1458 2C58 1463 **
    BEAM 1461 2061 1463 **
    BEAM 1463 2063 1461 **
END MASS ELEMENT DATA
END MASS DATA
BEGIN BC DATA
STAGE 1 *(FOR VIBRATION ANALYSIS)
ORDER RETAIN BY INTERNALID
SUPPORT ASYM IN SURFACE 2
SUPPORT TX FOR 89
RETAIN TZ FOR 1 7 13 19 27 45 55 63 67 73 79 85 89
RETAIN TZ FOR 227 237 245 255 435 441 445 451 +55
RETAIN TZ FOR 641 645 649 655 659 847 851 855 859 863 1051 *=3+4
RETAIN TZ FOR 1254 1259 1456 1459 1658 1661 1859 1860 1861

```

```

RETAIN TZ FOR 3003 3005 3103 3105 3203 3205
RETAIN TZ FOR 3305 3405 3505 3605
RETAIN TZ FOR 279 479 679
RETAIN TY FOR 2058 2061 2258 2261 2458 2461
RETAIN TZ RX RY FOR 263 463 663 1263 1463 1663 1863 285 485 685 83 +
283 483 683
STAGE 2 *(FOR STRESS ANALYSIS)
SUPPORT ASYM IN SURFACE 2
SUPPORT TX TZ RY FOR 89
END BC DATA
BEGIN LOAD DATA
SET 1 STAGE 2
LOAD CASE ID SYMM **SYMMETRIC AIRLOADS*
BEGIN NODAL LOAD DATA
ORDER FZ
CASE SYMM
 3 -2275.
 9 -6110.
15 -4970.
23 -3255.
31 -245.
39 -5400.
45 -380.
53 -3830.
61 140.
67 -165.
75 -6365.
83 -3495.
87 -3160.
85 -150.
89 -150.
ORDER FZ FY
2056 -125. 1220.
2456 -100. 1360.
2458 -100. -410.
2058 -125. 955.
2061 -125. 1075.
2461 -100. 7665.
2463 -100. -4960.
2063 -125. -660.
ORDER FZ
431 13475.
231 -8500.
637 8030.
237 -7750.
245 -11770.
655 -4640.
255 -5330.
663 1565.
263 5445.
843 36405.
645 -20750.
1051 21130.
649 3435.
1055 3365.
1063 1435.
1456 13820.
1459 21815.
1463 6155.
1860 860.
1861 1435.
1863 2762.
659 -450.
1059 -8710.
1461 -10655.
1862 -5150.
279 -5060.
679 -4040.
681 -7375.
281 -5415.
283 -1620.

```

```

683    -865.
685    -1725.
285    -3425.
END NODAL LOAD DATA
END LOAD DATA
BEGIN SUBSET DEFINITION
SUBSETS OF STIFFNESS SET 1
*/ SUBSETS FOR GEOMETRY PLOTS
E1 = ALL
N1 = ALL
*/ SUBSETS FOR BODY PROPERTY PLOTS
N2 = 1 TO 89
E2 = BEAMS IN N2
*/ SUBSETS FOR STRESS CONTOUR PLOTS
N10 = TUBE 227 1860 1863 *=8-200 DIRECTION 0 0 1
N11 = SLAB Z 0.
N12 = N10 I N11
E12 = COVERS IN N12
ON2 = 227 435 641 847 1051 1254 1456 1658 1859 *=4+1
      *=8-200 *=17-2
*/ SUBSET FCR VMODE PLOT
DN1 =   1    7   13   19   27   227   237   245   255   263   3003   3005
      3105 3103 463 455 451 445 441 435 641 645 649 655
      659 663 3203 3205 3105 3103 463 663 863 859 855 851
      847 1051 1055 1059 1063 1263 1259 1254 1456 1459 1463 3405
      3305 1263 1463 1663 1661 1658 1859 1860 1861 1863 3605 3505
      3405 3505 1663 1863 1861 1860 1859 1658 1456 1254 1051 847
      641 435 227 27 45 55 63 263 463 663 863 1063
      1263 1463 1459 2058 2258 2458 2461 2261 2258 2261 2061 1463
      1263 1063 863 663 463 263 63 67 73 79 83 85
      89 85 285 485 685 583 679 479 279 79 83 85
      285 283 279 479 483 485
END SUBSET DEFINITION
END PROBLEM DATA

```

ORIGINAL PAGE IS
OF POOR QUALITY

**Table 203-1. Natural Frequencies
for SST Aircraft**

Mode No.	Frequency (Hertz)
1	0.
2	0.
3	2.754
4	3.627
5	5.428
6	7.595
7	9.444
8	10.768

Figure 203-1. SST Structural Model

PROPERTY BMAL(1)

PROPERTY BMIZ(1)

Figure 203-2. SST Body Stiffness Properties

Figure 203-3. Freedoms Retained in SST Vibration Analysis

FREQUENCY = 2.754

Figure 203-4. Third Mode Shape, SST

204. SUBSTRUCTURED STRESS AND VIBRATION ANALYSES OF AN SST AIRCRAFT (DECK 1)

204.1 DESCRIPTION OF ANALYSES

The SST aircraft described in section 203 is analyzed using substructures. The same vibration and stress analyses are performed. The half-model of section 203 is modelled as three substructures: body, wing and horizontal tail as shown in figure 204-1. These three substructures are interacted in a single step to obtain the highest level substructure (substructure 4).

204.2 RESULTS

Natural frequencies, mode shapes, displacements and stresses obtained in this problem are identical to those obtained in section 203.

204.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEM001
PROBLEM ID(DEM001 - SUBSTRUCTURED STRESS/VIBRATION ANALYSES)

C PURPOSE      THE PRIMARY CAPABILITIES DEMONSTRATED BY THIS
C               DECK ARE
C               1. SUBSTRUCTURED STRESS ANALYSIS
C               2. SUBSTRUCTURED VIBRATION ANALYSIS
C               3. EXPLODED PLOT OF MODEL

C AUTHOR       R.A. SAMUEL

C CORE         150K (OCTAL)

C METHOD      STRESS AND VIBRATION ANALYSES ARE PERFORMED ON A
C               SUBSTRUCTURED HALF-AIRPLANE MODEL OF AN SST.
C               DISPLACEMENTS, STRESSES, NATURAL FREQUENCIES AND
C               MODE SHAPES ARE COMPARED WITH RESULTS OF A
C               NON-SUBSTRUCTURED MODEL.

C USER COMMON(1)

C
READ INPUT
DO 10 I = 1,3
PRINT INPUT(STIFFNESS,SET=1)
PRINT INPUT (NODAL,SET=1)
PRINT INPUT(MASS,SET=1)
10 CONTINUE
EXECUTE EXTRACT(EXNAME=SS1,LSUB=KGRID,ESUB=E1,NSUB=N1)
EXECUTE EXTRACT(EXNAME=SS2,LSUB=KGRID,KSET=2,ESUB=E1,NSUB=N1)
EXECUTE EXTRACT(EXNAME=SS3,LSUB=KGRID,KSET=3,ESUB=E1,NSUB=N1)
EXECUTE GRAPHICS(GNAME=GEOMETRY,OFLINE=CALCOMP,TYPE=(ORTH,
X           POINT),SIZE=(20.,20.),EXplode,RZ=30.,RY=20.,
X           RX=0.,EXNAME=SS1,TY=100.,EXNAME=(SS2,SS3))

C VIBRATION ANALYSIS

C
DO 20 I = 1,4
PRINT INPUT(INTERACT,SS=I,NODES,RCTAINS,CONN,BC)
20 CONTINUE
DO 30 I = 1,3
EXECUTE STIFFNESS(SET=1)
EXECUTE MASS(SET=1,OPTION=4,CONDITION=1)
30 CONTINUE
PERFORM SS-MERGE(STIF,MASS,SS=1 TO 3)
PERFORM SS-RECU(STIF,MASS,SS=1 TO 3)
PERFORM SS-MERGE(STIF,MASS,SS=4)
EXECUTE MASS(SET=4,OPTION=4,CONDITION=1)
PRINT OUTPUT(MASS,SET=4,SUMMARY)
PERFORM SS-VSOL(SS=4)
```

```
EXECUTE VIBRATION (STIF=KREDO04,MASS=MREDO04,NFREQS=8,SET=4)
PRINT OUTPUT (VIBRATION)
PURGE FILES(MERGRNF,MULTRNF,VIBRRNF,MASSRNF,CHOLRNF)

C STRESS ANALYSIS
C
DO 40 I = 11,14
PRINT INPUT(INTERACT,SS=I,NODES,RETAINS,CONN,BC,LOADS)
40 CONTINUE
EXECUTE LOADS(SS=(11,12,13))
PERFORM SS-MERGE(STIF,LOADS,SS=11 TO 13)
PERFORM SS-REDU(STIF,LOADS,SS=11 TO 13)
PERFORM SS-MERGE(STIF,LOADS,SS=14)
PERFORM SS-SSOL(SS=14)
PERFORM SS-PART(SS=14)
PERFORM SS-BACK(SS=11 TO 13)
DO 45 I = 11,13
EXECUTE STRESS(SS=I)
45 CONTINUE
DO 50 I = 11,13
PRINT OUTPUT(DISP,SS=I)
PRINT OUTPUT(STRESS,SS=I)
PRINT OUTPUT(LOADS,SS=I)
PRINT OUTPUT(REACTIONS,SS=I)
50 CONTINUE
END CONTROL PROGRAM
```

ORIGINAL PAGE IS
OF POOR QUALITY

```

*/ MODE2 /
BEGIN NODAL DATA
SET 1 *(BODY)
      1   20.    0.  0.    TO   25   980.    0.  0.    BY  2
      27 1060.    0.  0.  30.0    TO   45  1780.    0.  0.  42.5    BY  2
**1 200    0.  65.  0.    0.    TO   200    0.  65.    0.  0.  31.0    BY  2
      45                      TO   55  2180.    0.  0.  31.0    BY  2
**1 200    0.    0.    0.    TO   200    0.  65.    0.  0.  13.5    BY  2
      55                      TO   63  2500.    0.  0.  13.5    BY  2
**1 200    0.    0.    0.    TO   200    0.  65.    0.  0.  31.0    BY  2
      65 2580.    0.  0.    TO   77  3060.    0.  0.    BY  2
      79 3140.    0.  0.  3.0
**1 200    0.  65.    0.    **1
      81 3220.    0.  0.  6.5
**1 200    0.  65.    0.    **1
      83 3300.    0.  0.  7.0
**1 200    0.  65.    0.    **1
      85 3380.    0.  0.  2.0
**1 200    0.  65.    0.    **1
      .87 3460.    0.  0.    0.    **1
      89 3540.    0.  0.    0.    **1
END NODAL DATA
BEGIN STIFFNESS DATA
BEGIN ELEMENT DATA
*/
/*
/* BODY BEAMS
*/
      BEAM  M5  N1001    1   3   5.    0.  *=3  16000.  10. 0.  *=3  30000.
**30  0    0    2       2   2   5.    *4  14000.  5.    *4  14000.
      *2          N1063   63  65 160.    *4  450000. 148.    *4  416000.
**12  0    0    2       2   2 -12.    *4 -34000. -12.    *4 -34000.
*/
/*
/* WING IN-BODY SPARS
*/
      SPAR  M5  N2001    27  227    1.00  10.    TO  N3601    43  243    +
      *2          N3801   45  245    1.90  10.    TO  N4601    53  253    +
      *2          N4801   55  255    3.00  60.    BY  N200     2    2
      *2          N5001   57  257    1.20  6C.    TO  N5401    61  261    +
      *2          N5601   63  263    2.00  60.    BY  N200     2    2
*/
/*
/* S.O.B. RIB - WING
*/
      SPAR  M5  N6001    227  229    .25   4.    TO  N6035    261  263    +
*/
/*
/* WING IN-BODY COVERS
*/
      COVER  M5  N7001    27  227  229  29  .30    TO
      N8601   43  243  245  45  .60    BY  N200     2    *=3
      *2          N8801   45  245  247  47  .60    TO
      N9601   53  253  255  55  .70    BY  N200     2    *=3
      *2          N9801   55  255  257  57  .70
      *2          N10001   57  257  259  59  .70
      *2          N10201   59  259  261  61  1.30  .70  1.10  .00
      *2          N10401   61  261  263  63  **1
*/
/*
/* S.O.B. RIB - HORIZONTAL TAIL
*/
      SPAR  M5  N14401   279  281    .15   2.0    TO  N14405    283  285    +
*/
/*
/* HORIZONTAL TAIL IN-BODY SPARS
*/
      SPAR  M5  N14001   79  279    .50   6.0
      *2          N14101   81  281    .25   9.0
      *2          N14201   83  283    .25   8.0
      *2          N14301   85  285    1.00  13.0
*/

```

*/ HORIZONTAL TAIL IN-BODY COVERS

*/

COVER	M5	N15001	79	279	281	81	.80		TO		
		N15401	83	283	285	85		3Y	N200	2	*=3

END ELEMENT DATA

FND STIFFNESS DATA

BEGIN NODAL DATA

SET 2 *(WING)

327	1060.	65.	0.	30.0	TO	345	1780.	65.	0.	42.5	BY	2
345					TO	355	2180.	65.	0.	31.0	BY	2
355					TO	363	2500.	65.	0.	13.5	BY	2
427	1060.	65.	0.	30.0	TO	435	1380.	180.	0.	17.5	BY	2
435					TO	445	1780.	180.	0.	27.5	BY	2
445					TO	455	2180.	180.	0.	25.0	BY	2
455					TO	463	2500.	180.	0.	13.0	BY	2
635	1380.	180.	0.	17.5	TO	641	1620.	265.	0.	10.0	BY	2
641					TO	655	2180.	265.	0.	22.5	BY	2
655					TO	663	2500.	265.	0.	12.5	BY	2
841	1620.	265.	0.	10.0	TO	847	1971.	380.	0.	9.0	BY	2
847					TO	855	2291.	380.	0.	17.0	BY	2
855					TO	863	2611.	380.	0.	10.0	BY	2
1047	1971.	380.	0.	9.0	TO	1051	2205.	455.	0.	8.5	BY	2
1051					TO	1059	2525.	455.	0.	15.0		
1055					TO	1053	2685.	455.	0.	8.0		
1251	2205.	455.	0.	8.5	TO	1254	2409.	538.	0.	6.5		
1254					TO	1259	2609.	538.	0.	11.0		
1255					TO	1263	2769.	538.	0.	5.5		
1454	2409.	538.	0.	6.5	TO	1456	2545.	594.	0.	5.0		
1456					TO	1459	2605.	594.	0.	7.5		
1459					TO	1463	2925.	594.	0.	3.5		
1656	2545.	594.	0.	5.0	TO	1656	2710.	680.	0.	3.0		
1658					TO	1663	2910.	680.	0.	3.0		
1858	2710.	680.	0.	3.0	TO	1860	2875.	765.	0.	1.5		
1860					TO	1863	2995.	765.	0.	2.5		

*/

*/ WING TRAILING EDGE NODES

*/

3001	2500.	65.	0.	13.5	TO	3005	2580.	65.	0.	1.0	BY	2
3101	2500.	130.	0.	13.0	TO	3105	2580.	180.	0.	1.0	**	
3201	2500.	205.	0.	12.5	TO	3205	2580.	265.	0.	1.0	**	
3305	2830.	538.	0.	1.0	TO	3605	3045.	765.	0.	1.0		

BY 100 OF 56. 86. 85.

*/

*/ WING FIN NODES

*/

REC	WINGFIN	0.	534.	0..	1.	594.	0..	0.	-1.	0.		
2056	2545.	.	1.0.	3.5	TO	2456	2330.	100.	0.	2.5	BY	200
2058	2625.	.	1.0.	3.5	TO	2458	2942.	100.	0.	3.0	**	
2061	2745.	.	1.0.	4.0	TO	2461	2859.	100.	0.	3.0	**	
2063	2825.	.	1.0.	4.0	TO	2463	2870.	100.	0.	3.0	**	

END NODAL DATA

BEGIN STIFFNESS DATA

SET 2 *(WING)

BEGIN PROPERTY DATA

P1 .05 1. *(WING FIN SPARS AND RIBS)

P2 2. 0. 0. .2 .2 .2 *(WING FIN ATTACHMENT BEAMS - TYPE 1)

P3 10. 0. 0. 100. 100. 100. *(WING FIN ATTACHMENT BEAMS - TYPE 2)

P4 .15 .50 *(CONTROL SURFACE RIBS)

P5 0. **=2 100. 100. 0. 10. *(BEAMS AT 455 RIB TO PICK UP SPARS)

END PROPERTY DATA

OF FOUR QUALITY

BEGIN ELEMENT DATA

4

* WING FRONT SPAN

SPAR	M5	N2003	327	429	.12	2.	TQ	N2605	433	435	*
*2		N2205	429	431	.12	2.	BY	N200	2	2	
*2		N2805	435	637	.12	2.	TQ	N3207	639	641	*
*2		N3007	637	639	.12	2.	BY	N200	2	2	
*2		N3407	641	843	.12	2.	TQ	N3809	845	847	*
*2		N3609	843	845	.12	2.	BY	N200	2	2	
*2		N4009	847	1049	.12	2.					
*2		N4211	1049	1051							
*2		N4411	1051	1253							
*2		N4613	1253	1254							
*2		N4713	1254	1455							
*2		N4815	1455	1456							
*2		N4915	1456	1657							
*2		N5017	1657	1658							
*2		N5117	1658	1859							
*2		N5219	1859	1860							

• 1

* / WING REAR SPAR

```

*/ SPAR    M5   N5603      363  463      .40  12.
*2      N5605      463  603      .40  12.
*2      N5607      663  863      .34  12.
*2      N5609      863  1063     .34  12.
*2      N5611      1063 1263     .30   8.
*2      N5613      1263 1463     .30   8.
*2      N5615      1463 1663     .30   4.
*2      N5617      1663 1863     .30   4.

```

*1

*/ WING INTERMEDIATE SPARS											*
SPAR	M5	N2203	329	429	.20	2.	TO BY	N3603 N200	343 2	443 2	*
*2		N3803	345	445	.36	2.					*
*2		N4803	355	455	.60	12.					*
*2		N5003	357	457	.24	12.	TO	N5403	361	461	*
							BY	N200	2	2	
*2		N3005	437	637	.20	2.	TO	N3605	443	643	*
							BY	N200	2	2	
*2		N3805	445	c45	.36	2.					*
*2		N4005	447	647	.20	4.	TO	N4605	453	653	*
							BY	N200	2	2	
*2		N4805	455	655	.60	12.	TO	N5405	461	661	*
*2		N5005	457	657	.24	12.					*
*2		N3607	643	843	.20	2.	TO	N3807	645	845	*
							BY	N200	2	2	
*2		N4007	647	847	.20	4.	TO	N4607	653	853	*
							BY	N200	2	2	
*2		N4807	655	855	.20	9.					*
*2		N5007	657	857	.20	10.	TO	N5407	661	861	*
							BY	N200	2	2	
*2		N4209	849	1049	.20	4.	TO	N4609	853	1053	*
							BY	N200	2	2	
*2		N4809	855	1055	.20	8.					*
*2		N5009	857	1057	.20	10.	TO	N5409	861	1061	*
							BY	N200	2	2	
*2		N4611	1053	1253	.12	4.	TO	N4811	1055	1255	*
							BY	N100	1	1	
*2		N4911	1056	1256	.06	4.	TO	N5511	1062	1262	*
							BY	N100	1	1	
*2		N4813	1255	1455	.12	4.					*
*2		N4913	1256	1456	.06	4.	TO	N5513	1262	1462	*
							BY	N100	1	1	
*2		N5015	1457	1657	.06	2.	TO	N5515	1462	1662	*
							BY	N100	1	1	
*2		N5217	1659	1859	.06	2.	TO	N5517	1662	1862	*
							BY	N100	1	1	

*/
 */ WING RIBS
 */

SPAR	M5	N6109	435	437	.30	4.	TO	N6135	461	463	*
*2		N6215	641	643	.20	3.	TO	N6235	661	663	*
*2		N6425	1051	1053	.20	4.	BY	N2	2	2	*
*2		N6425	1053	1054	.20	4.	TO	N6435	1062	1063	*
*2		N6629	1456	1457	.12	2.	TO	N6635	1462	1463	*
*2		N6833	1860	1861	.30	1.4	TO	N6835	1862	1863	*

*/
 */ BEAMS AT 455 RIB TO PICK UP DISCONTINUED SPARS
 */

BEAM	M5	N30002	1053	1054	P5						
*+4	0	0	2	2	*						
BEAM	M5	N30011	1063	1062	P5						
*+4	0	0	-2	-2	*						

*/
 */ WING COVERS
 */

COVER	M5	N7003	329	429	327	.06					
*2		N7203	329	429	431	331	.06				
		N8603	343	443	445	345		BY	N200	2	*=3
*2		N8803	345	445	447	347	.12	.00			
		N9603	353	453	455	355		BY	N200	2	*=3
*2		N9803	355	455	457	357	.10	.14			
*2		N10003	357	457	459	359		**			
*2		N10203	359	459	461	361	.26	.14	.22	.00	
*2		N10403	361	461	463	363		**			
*2		N7805	437	637	435		.06				
*2		N8005	437	637	639	439	.06				
		N9605	453	653	655	455		BY	N200	2	*=3
*2		N9805	455	655	657	457	.10	.14			
*2		N10005	457	657	659	459		**			
*2		N10205	459	659	661	461	.26	.14	.22	.00	
*2		N10405	461	661	663	463		**			
*2		N8407	643	843	641		.06				
*2		N8607	643	843	845	645	.06				
		N9607	653	853	855	655		BY	N200	2	*=3
*2		N9807	655	855	857	657	.10	.08			
*2		N10007	657	857	859	659		**			
*2		N10207	659	859	861	661	.30	.14	.20	.00	
*2		N10407	661	861	863	663		**			
*2		N9009	849	1049	847		.06				
*2		N9209	849	1049	1051	851	.06				
		N9609	853	1053	1055	855		BY	N200	2	*=3
*2		N9809	855	1055	1057	857	.10	.08			
*2		N10009	857	1057	1059	859		**			
*2		N10209	859	1059	1061	861	.30	.14	.20	.00	
*2		N10409	861	1061	1063	863		**			
*2		N9411	1053	1253	1051		.30	.14	.22	.12	
*2		N9611	1053	1253	1254	1054	.30	.14	.22	.12	
		N10511	1062	1262	1263	1063		BY	N100	1	*=3
*2		N9713	1255	1455	1254		.30	.14	.22	.12	
*2		N9813	1255	1455	1456	1256	.30	.14	.22	.12	
		N10513	1262	1462	1463	1263		BY	N100	1	*=3
*2		N9915	1457	1657	1458		.08				
*2		N10015	1457	1657	1658	1458	.08				
		N10515	1462	1662	1663	1463		BY	N100	1	*=3
*2		N10117	1659	1859	1658		.08				
*2		N10217	1659	1859	1860	1660	.08				
		N10517	1662	1862	1863	1663		BY	N100	1	*=3

*/
 */ WING FIN SPARS
 */

SPAR	M5	N11001	2056	2256	P1						
*2		N11003	2256	2456	*						
*2		N11201	2058	2258	*						
*2		N11203	2258	2458	*						
*2		N11501	2061	2261	*						
*2		N11503	2261	2461	*						
*2		N11701	2063	2263	*						
*2		N11703	2263	2463	*						

*/ WING FIN RIBS

*/
SPAR M5 N12001 2256 2258 P1
*2 N12003 2258 2261 *
*2 N12005 2261 2263 *
*2 N12201 2456 2458 *
*2 N12203 2458 2461 *
*2 N12205 2461 2463 *

*/
*/ WING FIN COVERS
*/

COVER M5 N13001 2056 2256 2258 2058 .05
*2 N13003 2058 2258 2261 2061 *
*2 N13005 2061 2261 2263 2063 *
*2 N13201 2256 2456 2458 2258 *
*2 N13203 2258 2458 2461 2261 *
*2 N13205 2261 2461 2463 2263 *

*/
*/ WING FIN ATTACHMENT BEAMS
*/

BEAM Z5 N20001 1456 2056 1463 P2
*2 N20003 1458 2058 1463 *
*2 N20005 1461 2061 1463 *
*2 N20007 1463 2063 1461 *
*2 N21001 1456 1458 P3
*2 N21003 1458 1461 *
*2 N21005 1461 1463 *

*/
*/ WING TRAILING EDGE CONTROL SURFACE RIBS
*/

SPAF M5 N101 363 3003 P4
**1 0 0 2 100 100 0
**1 0 0 2 200 100 0
*2 N102 3003 3005 *
**2 0 0 2 100 100 0
*2 N107 1263 3305 *
**3 0 0 1 200 100 *

*/
*/ WING TRAILING EDGE CONTROL SURFACE COVERS
*/

COVER M5 N151 363 463 3103 3003 .10
*2 N153 463 663 3203 3103 *
*2 N152 3003 3103 3105 3005 *
*2 N154 3103 3203 3205 3105 *
*2 N155 1263 1463 3405 3305 *
**2 0 0 1 200 200 100 100 *

END ELEMENT DATA

END STIFFNESS DATA

BEGIN NODAL DATA

SET 3 *(HORIZONTAL TAIL)

379 3140.0 65.0 0. 3.0
479 3252.5 132.5 0. 2.5
679 3365.0 200.0 0. 2.0
381 3220.0 65.0 0. 6.5
481 3304. 132.5 0. 4.5
681 3388.0 200.0 0. 2.5
383 3300.0 65.0 0. 7.0
483 3356.0 132.5 0. 4.75
683 3412.0 200.0 0. 2.5
385 3380.0 65.0 0. 2.0
485 3407.5 132.5 0. 1.5
685 3435.0 200.0 0. 1.0

END NODAL DATA

BEGIN STIFFNESS DATA

SET 3 *(HORIZONTAL TAIL)

BEGIN ELEMENT DATA

*/

*/ HORIZONTAL TAIL SPARS

*/
SPAR M5 N14003 379 479 .10 1.2
*2 N14005 479 679 **
*2 N14103 381 481 .05 1.8
*2 N14105 481 681 **
*2 N14203 383 483 .05 1.6

```

*2      N14205   483  683    **  

*2      N14303   385  485    .20  2.6  

*2      N14305   485  685    **  

*/  

/* HORIZONTAL TAIL RIBS  

*/  

SPAR      N14501   479  481    .10  1.2 TU  N14505   483  485    *  

                                BY  N2      2      2  

*2      N14601   679  681    .10  1.2 TO  N14605   683  685    +  

                                BY  N2      2      2  

*/  

/* HORIZONTAL TAIL COVERS  

*/  

COVER MS N15003   379  479  481  381  .16  

*+2  0     0     200      2  *+3      0.  

COVER MS N15005   479  679  681  481  .07  

*+2  0     0     200      2  *+3      0.  

END ELEMENT DATA  

END STIFFNESS DATA  

BEGIN MASS DATA  

SET 2  

BEGIN MASS ELEMENT DATA  

BEAM 1456 2056 1463 .1 *+4  

BEAM 1458 2058 1463 **  

BEAM 1461 2061 1463 **  

BEAM 1463 2063 1461 **  

END MASS ELEMENT DATA  

END MASS DATA  

BEGIN SUBSET DEFINITION  

SUBSETS OF STIFFNESS SET 1  

*/  

/* E1 - BODY ELEMENTS  

*/  

E1 = ALL  

SUBSETS OF STIFFNESS SET 2  

*/  

/* E1 - WING ELEMENTS  

/* E2 - WING FIN ELEMENTS  

*/  

E1 = SLAB Z 0.  

E2 = SLAB Z .1 TO 500.  

SUBSETS OF STIFFNESS SET 3  

*/  

/* E1 - HORIZONTAL TAIL ELEMENTS  

*/  

E1 = ALL  

END SUBSET DEFINITION  

BEGIN BC DATA  

*/  

/* STAGE 1 FOR VIBRATION ANALYSIS  

/* STAGE 2 FOR STRESS ANALYSIS  

*/  

SET 1 STAGE 1  

SUPPORT ASYM IN SURFACE 2  

SUPPORT TX FGR 89  

SUPPORT RZ FOR 227 TO 263 BY 2, 279 TO 285 BY 2  

RETAIN TZ FOR 1 7 13 19 27 45 55 63 67 73 79 85 89  

RETAIN TZ RX RY FGR 83  

SET 2 STAGE 1  

SUPPORT ALL FOR 427 3001  

SUPPORT RZ FOR 327 TO 363 BY 2  

RETAIN TZ FOR 435 441 445 451 455  

RETAIN TZ FOR 641 645 649 655 659 847 851 855 859 863 1051 1055 1059 1063  

RETAIN TZ FOR 1254 1259      1456 1459 1658 1661 1859 1860 1861  

RETAIN TZ FGR 3003 3005 3103 3105 3203 3205  

RETAIN TZ FGR 3305 3405 3505 3605  

RETAIN TY FOR 2058 2061 2258 2261 2458 2461  

RETAIN TZ RX RY FOR 463 663 1263 1463 1663 1863  

SET 3 STAGE 1  

SUPPORT RZ FOR 379 TO 385 BY 2  

RETAIN TZ FOR 479 679  

RETAIN TZ RX RY FOR 483 683 485 685

```

```

SET 1 STAGE 2
  SUPPORT ASYM IN SURFACE 2
  SUPPORT RZ FOR 227 TO 263 BY 2, 279 TO 285 BY 2
  SUPPORT ALL FOR 89
SET 2 STAGE 2
  SUPPORT ALL FOR 427 3001
  SUPPORT RZ FOR 327 TO 363 BY 2
SET 3 STAGE 2
  SUPPORT RZ FOR 379 TO 385 BY 2
END BC DATA
BEGIN LOAD DATA
SET 1 STAGE 2
LOAD CASE ID SYMM **SYMMETRIC AIRLOADS*
BEGIN NODAL LOAD DATA
  ORDER FZ
  CASE SYMM
    3      -2275.
    5      -6110.
   15      -4970.
   23      -3255.
   31      -245.
   39      -5400.
   45      -380.
   53      -3830.
   61      140.
   67      -165.
   75      -6365.
   83      -3495.
   87      -3160.
   85      -150.
   89      -150.
  END NODAL LOAD DATA
SET 2 STAGE 2
LOAD CASE ID SYMM **SYMMETRIC AIRLOADS*
BEGIN NODAL LOAD DATA
  ORDER FZ FY
    CASE SYMM
  2056      -125.      1220.
  2456      -100.      1360.
  2458      -100.      -410.
  2058      -125.      955.
  2061      -125.      1075.
  2461      -100.      7665.
  2463      -100.      -4960.
  2063      -125.      -660.
  ORDER FZ
    431      13475.
    331      -8500.
    637      8030.
    337      -7750.
    345      -11770.
    655      -4640.
    355      -5330.
    663      1565.
    363      5445.
    843      36405.
    645      -20790.
   1051      21130.
    649      3435.
   1055      3365.
   1063      1435.
   1456      13820.
   1459      21815.
   1463      6155.
   1860      860.
   1861      14395.
   1863      2762.
    659      -450.
   1059      -8710.
   1461      -10695.
   1862      -5150.
  END NODAL LOAD DATA

```

```

SET 3 STAGE 2
  LOAC CASE ID SYMM **SYMMETRIC AIRLOADS*
BEGIN NODAL LOAC DATA
  ORDER FZ
  CASE SYMM
    376   -5060.
    679   -4040.
    681   -7375.
    381   -5415.
    383   -1620.
    683   -865.
    685   -1725.
    385   -3425.
END NODAL LOAC DATA
END LOAD DATA
BEGIN SUBSET DEFINITION
  SUBSETS OF STIFFNESS SET 1
    E1 = ALL
    N1 = ALL
  SUBSETS OF STIFFNESS SET 2
    E1 = ALL
    N1 = ALL
  SUBSETS OF STIFFNESS SET 3
    E1 = ALL
    N1 = ALL
END SUBSET DEFINITION
BEGIN INTERACT DATA
  DEFINE SS 1 AS SET 1 STAGE 1      *(BODY)
  DEFINE SS 2 AS SET 2 STAGE 1      *(WING)
  DEFINE SS 3 AS SET 3 STAGE 1      *(HORIZONTAL TAIL)
  SS 4
    INTERACT 1 2 3
BEGIN BC CHANGES
  SS 4
    REFERENCE SS 1
    RETAIN TZ          FOR 227 237 245 255 279
    RETAIN TZ RX RY   FOR 263 283 285
END BC CHANGES
  DEFINE HIGHEST SS 4 AS SET 4
END INTERACT DATA
BEGIN INTERACT DATA
  DEFINE SS 11 AS SET 1 STAGE 2      *(BODY)
  DEFINE SS 12 AS SET 2 STAGE 2      *(WING)
  DEFINE SS 13 AS SET 3 STAGE 2      *(HORIZONTAL TAIL)
  SS 14
    INTERACT 11 12 13
  DEFINE HIGHEST SS 14
END INTERACT DATA
END PROBLEM DATA

```


Figure 204-1. Substructured Model of SST

205. VIBRATION ANALYSIS OF THE FIREBEE DRONE (DECK 15)

205.1 DESCRIPTION OF ANALYSIS

An analysis is performed to determine symmetrical modes of vibration of the FIREBEE Drone. Because of structural symmetry, only one half of the Drone is modelled. The wing model is based upon the supercritical wing (ARW-1); the fuselage and horizontal tail models are based upon the data reported in reference 205-1.

The outboard wing is modelled using SPLATE and ROD elements. The wing center section is modelled using GPLATE and BEAM elements and the fuselage and horizontal tail are modelled using BEAM elements. The total structural model is shown in figure 205-1. More detailed views of the model are presented in figures 205-2 through 205-6.

The number of degrees of freedom retained in the analysis is 107. Z-direction translations are retained at outboard wing upper surface, fuselage and horizontal tail nodes. Rotations about the Y axis are retained at fuselage and horizontal tail nodes; rotations about the X axis are retained at horizontal tail nodes. Symmetry is imposed on the plane Y=0. Rigid body translation in the X-direction is restrained near the center of the fuselage.

The reduced mass matrix is a nondiagonal matrix produced directly by the Mass Processor. The wing mass is obtained exclusively from the stiffness finite elements; the fuselage and horizontal tail mass exclusively from concentrated masses.

205.2 RESULTS

The natural frequencies of the first ten modes are presented in table 205-1. The first two modes are rigid body modes. The mode shapes for modes 4 and 6 are shown in figures 205-7 and 205-8.

The third mode shape closely resembles the first mode shape of a cantilever wing. The frequency and mode shape for this mode are similar to the results obtained from a NASTRAN analysis of a cantilever wing.

Modes 4 and 5 are the first two fuselage bending modes and mode 8 is the first horizontal tail bending mode. The results for these three modes compare favorably with those reported in reference 205-1.

205.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEM015
PROBLEM (DEM015 - VIBRATION ANALYSIS OF THE FIREBEE DRONE)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C              DECK ARE
C              1. GENERATION OF NON-DIAGONAL MASS MATRIX BY
C                 MASS PROCESSOR
C              2. VIBRATION ANALYSIS
C              3. PLOTS OF VIBRATION MODE SHAPES

C AUTHOR       M. TAMEKUNI

C CORE         150 K (OCTAL)

C
C READ INPUT
PRINT INPUT (NODAL)
PRINT INPUT (STIFFNESS)
PRINT INPUT(MATERIAL)
EXECUTE EXTRACT(ENAME=J0-TAL,LSUB=KGRID,ESUB=E1,NSUB=N1)
EXECUTE GRAPHICS(GNAME=GEM,OFFLINE=CALCOMP,TYPE=ORTH,
X           SIZE=(20.,20.),VIEW=100,EXNAME=TOTAL)
EXECUTE EXTRACT(ENAME=BODY,LSUB=KGRID,ESUB=E2,NSUB=N2)
EXECUTE GRAPHICS(GNAME=GEM,TYPE=ORTH,SIZE=(25,25),LABEL=N,
X           RY=0,RZ=90,RX=-90,EXNAME=BODY)
EXECUTE EXTRACT(ENAME=UPRSURF,LSUB=KGRID,ESUB=E4,NSUB=N4)
EXECUTE GRAPHICS(GNAME=GEM,TYPE=ORTH,SIZE=(20.,20.),LABEL=N,
X           VIEW=100,EXNAME=UPRSURF)
EXECUTE EXTRACT(ENAME=LWRSURF,LSUB=KGRID,ESUB=E5,NSUB=N5)
EXECUTE GRAPHICS(GNAME=GEM,TYPE=ORTH,SIZE=(20.,20.),LABEL=N,
X           VIEW=100,EXNAME=LWRSURF)
EXECUTE EXTRACT(ENAME=WNGBDY,LSUB=KGRID,ESUB=E6,NSUB=N6)
EXECUTE GRAPHICS(GNAME=GEM,TYPE=ORTH,SIZE=(20.,20.),LABEL=N+T,
X           VIEW=100,EXNAME=WNGBDY)
EXECUTE EXTRACT(ENAME=TAIL,LSUB=KGRID,ESUB=E3,NSUB=N3)
EXECUTE GRAPHICS(GNAME=GEM,TYPE=ORTH,SIZE=(20.,20.),LABEL=N,
X           VIEW=100,EXNAME=TAIL)

PERFORM K-REDUCE
PRINT INPUT(BC)
EXECUTE MASS(OPTION=3)
PRINT OUTPUT(MASS,MDC=MDC****,SUMMARY)
EXECUTE VIBRATION(MASS=MDC001A,STIF=KRED,VSET=1,NMODES=20)
PRINT OUTPUT(VIBRATION,VSET=1)
EXECUTE EXTRACT (ENAME=DRONE,LSUB=VMODE,VSET=1,
X           ESUB=ON1,MODE=1 TO 101
EXECUTE GRAPHICS(GNAME=MODES,TYPE=ORTH,SIZE=(20.,20.),RZ=60.,
X           RY=-35.,RX=0.,VECTOR2=VMODE,VSCALE=15.,
X           EXNAME=DRONE)
END CONTROL PROGRAM
```

BEGIN MATERIAL DATA /

M51 .05 /

0 .228E+07 0. .695E+06 0. /

M52 .1 /

0 .10500000E+08 .31250000E+00 .40000000E+07 0. /

M53 0. /

0 .228E+07 0. .695E+06 0. /

M54 0. /

0 .10500000E+08 .31250000E+00 .40000000E+07 0. /

M55 .285 /

0 .29000000E+08 .31818182E+00 .11000000E+08 0. /

END MATERIAL DATA /

BEGIN NUVAL DATA /

REC WING -1.01 0. 0. 1. 0. 0. -1.01 0. 1. /

1	310.6360000	85.5000000	1.4070000	/
2	310.6360000	85.5000000	.9100000	/
3	311.8520000	85.5000000	1.6630000	/
4	311.8520000	85.5000000	.8630000	/
5	313.8790000	85.5000000	1.9310000	/
6	313.8790000	85.5000000	.9790000	/
7	316.2430000	85.5000000	2.1750000	/
8	316.2430000	85.5000000	1.2410000	/
9	318.6080000	85.5000000	2.3940000	/
10	318.6080000	85.5000000	1.5980000	/
11	321.9860000	85.5000000	2.5950000	/
12	321.9860000	85.5000000	2.2870000	/
13	323.6740000	85.5000000	2.4240000	/
21	304.5500000	79.2500000	1.3600000	/
22	304.5500000	79.2500000	.7860000	/
23	305.9200000	79.2500000	1.6310000	/
24	305.9200000	79.2500000	.7440000	/
25	308.2060000	79.2500000	1.9300000	/
26	308.2060000	79.2500000	.3720000	/
27	310.8700000	79.2500000	2.2110000	/
28	310.8700000	79.2500000	1.1400000	/
29	313.5300000	79.2500000	2.4560000	/
30	313.5300000	79.2500000	1.5280000	/
31	317.3400000	79.2500000	2.6550000	/
32	317.3400000	79.2500000	2.3210000	/
33	319.2480000	79.2500000	2.4395000	/
41	297.8290000	72.3490000	1.3470000	/
42	297.8290000	72.3490000	.6630000	/
43	298.6570000	71.5980000	1.6320000	/
44	298.6570000	71.5980000	.6173000	/
45	300.0810000	70.3040000	1.9740000	/
46	300.0810000	70.3040000	.7250000	/
47	301.8190000	68.7260000	2.3630000	/
48	301.8190000	68.7260000	.9750000	/
49	303.6430000	67.0700000	2.5820000	/
50	303.6430000	67.0700000	1.3870000	/
51	306.4150000	64.5530000	2.7630000	/
52	306.4150000	64.5530000	2.3580000	/
53	307.8.90000	63.2230000	2.4530000	/
61	285.4500000	63.7470000	.3680000	/
62	285.4500000	63.7470000	.5720000	/
63	290.3930000	62.8920000	1.6950000	/
64	290.3930000	62.8920000	.4990000	/
65	292.0140000	61.4200000	2.0760000	/
66	292.0140000	61.4200000	.5870000	/
67	293.9920000	59.6240000	2.4190000	/
68	293.9920000	59.6240000	.8340000	/
69	296.0670000	57.7400000	2.6840000	/
70	296.0670000	57.7400000	1.2720000	/
71	299.2210000	54.8760000	2.8070000	/
72	299.2210000	54.8760000	2.3480000	/
73	300.8870000	53.3630000	2.4410000	/
81	281.0740000	55.1450000	1.4420000	/
82	281.0740000	55.1450000	.5280000	/
83	282.1300000	54.1460000	1.8160000	/
84	282.1300000	54.1460000	.4080000	/
85	283.9470000	52.5360000	2.2320000	/
86	283.9470000	52.5360000	.4560000	/
87	286.1650000	50.5220000	2.5640000	/

ORIGINAL PAGE IS
OF POOR QUALITY

88	286.1650000	50.5220000	.6960000	/
89	288.4920000	48.4100000	2.7900000	/
90	288.4920000	48.4100000	1.1530000	/
91	292.0270000	45.1990000	2.8370000	/
92	292.0270000	45.1990000	2.3210000	/
93	293.8960000	43.5030000	2.4230000	/
101	272.6970000	46.5430000	1.5510000	/
102	272.6970000	46.5430000	.5090000	/
103	273.8670000	45.4810000	1.9720000	/
104	273.8670000	45.4810000	.3320000	/
105	275.8800000	43.6520000	2.4100000	/
106	275.8800000	43.6520000	.3290000	/
107	278.3380000	41.4210000	2.7170000	/
108	278.3380000	41.4210000	.5580000	/
109	280.9160000	39.0800000	2.8960000	/
110	280.9160000	39.0800000	1.0340000	/
111	284.8340000	35.5220000	2.8680000	/
112	284.8340000	35.5220000	2.2940000	/
113	286.5040000	33.6420000	2.4040000	/
121	264.3190000	37.9410000	1.7230000	/
122	264.3190000	37.9410000	.4270000	/
123	265.6030000	36.7750000	2.1280000	/
124	265.6030000	36.7750000	.2560000	/
125	267.8140000	34.7680000	2.5870000	/
126	267.8140000	34.7680000	.2010000	/
127	270.5110000	32.3190000	2.8710000	/
128	270.5110000	32.3190000	.4200000	/
129	273.3400000	29.7500000	3.0020000	/
130	273.3400000	29.7500000	.9150000	/
131	277.6400000	25.8450000	2.8980000	/
132	277.6400000	25.8450000	2.2660000	/
133	279.9130000	23.7820000	2.3850000	/
141	255.9420000	29.3390000	1.7790000	/
142	255.9420000	29.3390000	.4720000	/
143	257.3400000	28.0690000	2.2850000	/
144	257.3400000	28.0690000	.1800000	/
145	259.7470000	25.8840000	2.7650000	/
146	259.7470000	25.8840000	.0730000	/
147	262.6830000	23.2170000	3.0240000	/
148	262.6830000	23.2170000	.2830000	/
149	265.7650000	20.4200000	3.1090000	/
150	265.7650000	20.4200000	.7960000	/
165	251.6800000	17.0000000	2.9430000	/
166	251.6800000	17.0000000	-.0550000	/
167	254.8560000	14.1160000	3.1770000	/
168	254.8560000	14.1160000	.1450000	/
169	258.1890000	11.0900000	3.2150000	/
170	258.1890000	11.0900000	.6770000	/
174	251.6800000	17.0000000	1.9480000	/
176	258.1890000	11.0900000	1.9480000	/
200	243.3000000	9.0000000	1.9480000	/
201	244.4200000	9.0000000	1.9480000	/
202	251.6300000	9.0000000	1.9480000	/
203	258.1800000	9.0000000	1.9480000	/
204	259.3800000	9.0000000	1.9480000	/
205	263.3300000	9.0000000	1.9480000	/
206	268.1500000	9.0000000	1.9480000	/
207	272.3900000	9.0000000	1.9480000	/
208	275.0500000	9.0000000	1.9480000	/
223	258.1800000	4.3500000	1.9480000	/
225	263.3300000	4.3500000	1.9480000	/
226	268.1500000	4.3500000	1.9480000	/
227	272.3900000	4.3500000	1.9480000	/
242	245.7800000	.0000000	1.9480000	/
243	258.1800000	.0000000	1.9480000	/
245	263.3300000	.0000000	1.9480000	/
246	268.1500000	.0000000	1.9480000	/
247	272.3900000	.0000000	1.9480000	/

*/ BODY NODES /
REC BODY 0. 0. 1.948 1. 0. 1.948 0. 0. 10. /
302 10C. 0. 0. /
304 120. 0. 0. /

```

306 130. 0. 0. /
308 140. 0. 0. /
310 150. 0. 0. /
312 160. 0. 0. /
314 170. 0. 0. /
316 180. 0. 0. /
318 190. 0. 0. /
320 200. 0. 0. /
322 210. 0. 0. /
324 220. 0. 0. /
326 230. 0. 0. /
328 240. 0. 0. /
330 250. 0. 0. /
332 260. 0. 0. /
334 270. 0. 0. /
336 280. 0. 0. /
338 290. 0. 0. /
340 310. 0. 0. /
342 315.1 0. 0. /
344 320. 0. 0. /
346 332.7 0. 0. /
348 340. 0. 0. /
350 344.2 0. 0. /
352 350. 0. 0. /
354 356.5 0. 0. /
356 359.50 0. 0. /
358 368. 0. 0. /
360 370. 0. 0. /
362 384.5 0. 0. /
364 400. 0. 0. /
366 408.1 0. 0. /
*/ HORIZONTAL TAIL NODES /
401 355.56 9.9 0. /
408 373.411 34.234 0. /
REC HT 401 408 355.56 9.9 10.0 /
ANALYSIS FRAME HT /
401 0. 0. 0. TO 408 28. 0. 0. /
411 0. -5823 0. /
412 4. 2.519 0. /
413 8. 1.978 0. /
414 12. 1.417 0. /
415 16. -887 0. /
416 20. -1567 0. /
417 24. -5425 0. /
418 28. -1.306 0. /
END NCAL DATA /
BEGIN BC DATA /
*/ RETAINED FREEDOMS /
*/ WING /
RETAIN TZ FOR 165 167 169 /  

RETAIN TZ FOR 141 TO 149 BY 2 /  

RETAIN TZ FOR 121 TO 133 BY 2 /  

**6 0 0 0 -20 0 -20 0 0 /  

*/ FUSELAGE /
RETAIN TZ FOR 304 310 316 322 328 243 247  

238 344 352 356 360 364 /  

RETAIN KY FOR 304 310 316 322 328 243 247  

238 344 352 356 360 364 /  

*/ HORIZONTAL TAIL /
RETAIN TZ FOR 401 TO 408 /  

RETAIN RX FOR 401 TO 408 /  

RETAIN KY FOR 401 TO 408 /  

SUPPORT ASYM IN SURFACE 2 /  

SUPPORT TX FOR 247 /  

END BC DATA /
BEGIN STIFFNESS DATA /
BEGIN ELEMENT DATA /
BEAM M52 T+0000 N4000 165 174 145
-12200000E+01 0. 0. 0.
.27100000E+00 .25000000E+00 0.0 /
BEAM M52 T+0000 N4001 166 174 146
.12200000E+01 0. 0. 0.
.27100000E+00 .25000000E+00 0.0 /

```

BEAM	M52	T+0000	N4002	169	176	149
		.12200000E+01	0.	0.	0.	
		.27100000E+00	.25000000E+00		0.0 /	
BEAM	M52	T+0000	N4003	170	176	150
		.12200000E+01	0.	0.	0.	
		.27100000E+00	.25000000E+00		0.0 /	
BEAM	M52	T+0000	N4005	174	176	242
		.18750000E+01	0.	0.		.28500000E+00
		.97700000E+00	.87900000E-01		0.0 /	
BEAM	M52	T+0000	N4006	174	202	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4007	174	201	242
		.37500000E+01	0.	0.		.17610000E+01
		.19530000E+01	.70300000E+00		0.0 /	
BEAM	M52	T+0000	N4008	200	201	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4009	201	202	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4010	203	204	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4011	204	205	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4012	205	206	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4013	206	207	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4014	207	208	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4015	201	242	243
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4016	202	242	243
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4017	202	243	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4018	223	225	242
		.12500000E+01	0.	0.		.91000000E-01
		.65100000E+00	.26000000E-01		0.0 /	
BEAM	M52	T+0000	N4019	225	226	242
		.12500000E+01	0.	0.		.91000000E-01
		.65100000E+00	.26000000E-01		0.0 /	
BEAM	M52	T+0000	N4020	225	227	242
		.12500000E+01	0.	0.		.91000000E-01
		.65100000E+00	.26000000E-01		0.0 /	
BEAM	M52	T+0000	N4021	242	243	201
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4022	243	245	201
		.12500000E+01	0.	0.		.91000000E-01
		.65100000E+00	.26000000E-01		0.0 /	
BEAM	M52	T+0000	N4023	245	246	201
		.12500000E+01	0.	0.		.91000000E-01
		.65100000E+00	.26000000E-01		0.0 /	
BEAM	M52	T+0000	N4024	246	247	201
		.12500000E+01	0.	0.		.91000000E-01
		.65100000E+00	.26000000E-01		0.0 /	
BEAM	M52	T+0000	N4025	203	223	242
		.31250000E+01	0.	0.		.11180000E+01
		.16280000E+01	.40700000E+00		0.0 /	
BEAM	M52	T+0000	N4026	205	225	242
		.12500000E+01	0.	0.		.91000000E-01
		.65100000E+00	.26000000E-01		0.0 /	

BEAM	M52	T+0000	N4027	206	226	242
	.12500000E+01	0.	0.		.91000000E-01	
	.65100000E+00	.26000000E-01		0.0 /		
BEAM	M52	T+0000	N4028	207	227	242
	.12500000E+01	0.	0.		.91000000E-01	
	.65100000E+00	.26000000E-01		0.0 /		
BEAM	M52	T+0000	N4029	223	243	242
	.31250000E+01	0.	0.		.11180000E+01	
	.16280000E+01	.40700000E+00		0.0 /		
BEAM	M52	T+0000	N4030	225	245	242
	.12500000E+01	0.	0.		.91000000E-01	
	.65100000E+00	.26000000E-01		0.0 /		
BEAM	M52	T+0000	N4031	226	246	242
	.12500000E+01	0.	0.		.91000000E-01	
	.65100000E+00	.26000000E-01		0.0 /		
BEAM	M52	T+0000	N4032	227	247	242
	.12500000E+01	0.	0.		.91000000E-01	
	.65100000E+00	.26000000E-01		0.0 /		
BEAM	M54	T+0000	N8000	202	204	242
	.40000000E+01	0.	0.		.40000000E+01	
	.20000000E+03	.20000000E+03		0.0 /		
RDD	M53	T+0000	N2000	1	21	.60000000E-01 /
RDD	M53	T+0000	N2001	3	23	.98000000E-01 /
RDD	M53	T+0000	N2002	5	25	.67000000E-01 /
RCD	M53	T+0000	N2003	7	27	.13400000E+00 /
RDD	M53	T+0000	N2004	9	29	.18800000E+00 /
RCD	M53	T+0000	N2005	11	31	.15900000E+00 /
RCD	M53	T+0000	N2006	13	33	.15500000E+00 /
RCD	M53	T+0000	N2007	12	32	.15900000E+00 /
RDD	M53	T+0000	N2008	10	30	.18800000E+00 /
RDD	M53	T+0000	N2009	8	28	.13400000E+00 /
RDD	M53	T+0000	N2010	6	26	.67000000E-01 /
RDD	M53	T+0000	N2011	4	24	.98000000E-01 /
RDD	M53	T+0000	N2012	2	22	.60000000E-01 /
RDD	M53	T+0000	N2013	21	41	.52000000E-01 /
RCD	M53	T+0000	N2014	23	43	.10400000E+00 /
RDD	M53	T+0000	N2015	25	45	.12200000E+00 /
RDD	M53	T+0000	N2016	27	47	.15700000E+00 /
RCD	M53	T+0000	N2017	29	49	.20700000E+00 /
RDD	M53	T+0000	N2018	31	51	.18600000E+00 /
RDD	M53	T+0000	N2019	33	53	.18200000E+00 /
RCD	M53	T+0000	N2020	32	52	.19600000E+00 /
RCD	M53	T+0000	N2021	30	50	.20700000E+00 /
RCD	M53	T+0000	N2022	28	48	.15700000E+00 /
RDD	M53	T+0000	N2023	26	46	.12200000E+00 /
RDD	M53	T+0000	N2024	24	44	.10400000E+00 /
RCD	M53	T+0000	N2025	22	42	.52000000E-01 /
RDD	M53	T+0000	N2026	41	61	.51000000E-01 /
RCD	M53	T+0000	N2027	43	63	.11400000E+00 /
RCD	M53	T+0000	N2028	45	65	.16000000E+00 /
RCD	M53	T+0000	N2029	47	67	.18000000E+00 /
RDD	M53	T+0000	N2030	49	69	.23200000E+00 /
RCD	M53	T+0000	N2031	51	71	.21400000E+00 /
RDD	M53	T+0000	N2032	53	73	.20800000E+00 /
RDD	M53	T+0000	N2033	52	72	.21400000E+00 /
RDD	M53	T+0000	N2034	50	70	.23200000E+00 /
RDD	M53	T+0000	N2035	48	68	.18000000E+00 /
RCD	M53	T+0000	N2036	46	66	.16000000E+00 /
RCD	M53	T+0000	N2037	44	64	.11400000E+00 /
RDD	M53	T+0000	N2038	42	62	.51000000E-01 /
RDD	M53	T+0000	N2039	61	81	.58000000E-01 /
RCD	M53	T+0000	N2040	63	83	.12900000E+00 /
RDD	M53	T+0000	N2041	65	85	.18000000E+00 /
RDD	M53	T+0000	N2042	67	87	.20300000E+00 /
RCD	M53	T+0000	N2043	69	89	.26200000E+00 /
RCD	M53	T+0000	N2044	71	91	.24200000E+00 /
RDD	M53	T+0000	N2045	73	93	.23500000E+00 /
RDD	M53	T+0000	N2046	72	92	.24200000E+00 /
RDD	M53	T+0000	N2047	70	90	.15200000E+00 /
RDD	M53	T+0000	N2048	68	88	.20300000E+00 /
RDD	M53	T+0000	N2049	66	86	.18000000E+00 /
RDD	M53	T+0000	N2050	64	84	.12900000E+00 /

R00	M53	T+0000	N2051	62	82	.58000000E-01 /
R00	M53	T+0000	N2052	81	101	.64000000E-01 /
R00	M53	T+0000	N2053	83	103	.14300000E+00 /
R00	M53	T+0000	N2054	85	105	.20100000E+00 /
R00	M53	T+0000	N2055	87	107	.22600000E+00 /
R00	M53	T+0000	N2056	89	109	.29200000E+00 /
R00	M53	T+0000	N2057	91	111	.26900000E+00 /
R00	M53	T+0000	N2058	93	113	.26200000E+00 /
R00	M53	T+0000	N2059	92	112	.26900000E+00 /
R00	M53	T+0000	N2060	90	110	.29200000E+00 /
R00	M53	T+0000	N2061	88	108	.22500000E+00 /
R00	M53	T+0000	N2062	86	106	.20100000E+00 /
R00	M53	T+0000	N2063	84	104	.14300000E+00 /
R00	M53	T+0000	N2064	82	102	.64000000E-01 /
R00	M53	T+0000	N2065	101	121	.71000000E-01 /
R00	M53	T+0000	N2066	103	123	.14900000E+00 /
R00	M53	T+0000	N2067	105	125	.23000000E+00 /
R00	M53	T+0000	N2068	107	127	.25000000E+00 /
R00	M53	T+0000	N2069	109	129	.32200000E+00 /
R00	M53	T+0000	N2070	111	131	.29700000E+00 /
R00	M53	T+0000	N2071	113	133	.28900000E+00 /
R00	M53	T+0000	N2072	112	132	.29700000E+00 /
R00	M53	T+0000	N2073	110	130	.32200000E+00 /
R00	M53	T+0000	N2074	108	128	.25000000E+00 /
R00	M53	T+0000	N2075	106	126	.23000000E+00 /
R00	M53	T+0000	N2076	104	124	.14900000E+00 /
R00	M53	T+0000	N2077	102	122	.71000000E-01 /
R00	M53	T+0000	N2078	121	141	.77000000E-01 /
R00	M53	T+0000	N2079	123	143	.16400000E+00 /
R00	M53	T+0000	N2080	125	145	.25100000E+00 /
R00	M53	T+0000	N2081	127	147	.27300000E+00 /
R00	M53	T+0000	N2082	129	149	.14000000E+00 /
R00	M53	T+0000	N2083	130	150	.14000000E+00 /
R00	M53	T+0000	N2084	128	148	.27300000E+00 /
R00	M53	T+0000	N2085	126	146	.25100000E+00 /
R00	M53	T+0000	N2086	124	144	.16400000E+00 /
R00	M53	T+0000	N2087	122	142	.77000000E-01 /
R00	M53	T+0000	N2088	145	165	.14500000E+00 /
R00	M53	T+0000	N2089	147	167	.29500000E+00 /
R00	M53	T+0000	N2090	149	169	.15200000E+00 /
R00	M53	T+0000	N2091	150	170	.15200000E+00 /
R00	M53	T+0000	N2092	148	168	.29500000E+00 /
R00	M53	T+0000	N2093	146	166	.14500000E+00 /
R00	M52	T+0000	N2102	47	67	.40000000E-01 /
R00	M52	T+0000	N2103	67	87	.44800000E-01 /
R00	M52	T+0000	N2104	87	107	.48300000E-01 /
R00	M52	T+0000	N2105	107	127	.51300000E-01 /
R00	M52	T+0000	N2106	127	147	.53500000E-01 /
R00	M52	T+0000	N2112	48	68	.40000000E-01 /
R00	M52	T+0000	N2113	68	88	.44800000E-01 /
R00	M52	T+0000	N2114	88	108	.48300000E-01 /
R00	M52	T+0000	N2115	108	128	.51300000E-01 /
R00	M52	T+0000	N2116	128	148	.53500000E-01 /
R00	M52	T+0000	N2117	148	168	.55300000E-01 /
R00	M51	T+0000	N2120	1	3	.19700000E-01 /
R00	M51	T+0000	N2121	3	5	.31200000E-01 /
R00	M51	T+0000	N2122	5	7	.33200000E-01 /
R00	M51	T+0000	N2123	7	9	.30900000E-01 /
R00	M51	T+0000	N2124	9	11	.19100000E-01 /
R00	M51	T+0000	N2125	11	13	.40000000E-03 /
R00	M51	T+0000	N2126	12	13	.40000000E-03 /
R00	M51	T+0000	N2127	10	12	.19100000E-01 /
R00	M51	T+0000	N2128	8	10	.30900000E-01 /
R00	M51	T+0000	N2129	6	8	.33200000E-01 /
R00	M51	T+0000	N2130	4	6	.31200000E-01 /
R00	M51	T+0000	N2131	2	4	.19700000E-01 /
R00	M52	T+0000	N2140	21	23	.20000000E+00 /
R00	M52	T+0000	N2141	23	25	.26600000E+00 /
R00	M52	T+0000	N2142	25	27	.29100000E+00 /
R00	M52	T+0000	N2143	27	29	.27300000E+00 /
R00	M52	T+0000	N2144	29	31	.17200000E+00 /
R00	M52	T+0000	N2145	31	33	.46000000E-01 /
R00	M52	T+0000	N2146	32	33	.46000000E-01 /

ROD	M52	T+000C	N2147	30	32	.17200000E+00 /
ROD	M52	T+000C	N2148	28	30	.27300000E+00 /
ROD	M52	T+0000	N2149	26	28	.29100000E+00 /
ROD	M52	T+0000	N2150	24	26	.26600000E+00 /
ROD	M52	T+000C	N2151	22	24	.20000000E+00 /
ROD	M52	T+000C	N2160	41	43	.22100000E-01 /
RCD	M52	T+000C	N2161	43	45	.30600000E-01 /
ROD	M52	T+000C	N2162	45	47	.29500000E-01 /
RCD	M52	T+000C	N2163	47	49	.29100000E-01 /
ROD	M52	T+0000	N2164	49	51	.24000000E-01 /
ROD	M52	T+000C	N2165	51	53	.50000000E-02 /
ROD	M52	T+0000	N2166	52	53	.50300000E-02 /
ROD	M52	T+0000	N2167	50	52	.24000000E-01 /
ROD	M52	T+000C	N2168	48	50	.29100000E-01 /
ROD	M52	T+0000	N2169	46	48	.29500000E-01 /
ROD	M52	T+0000	N2170	44	46	.30600000E-01 /
ROD	M52	T+000C	N2171	42	44	.22100000E-01 /
ROD	M52	T+000C	N2180	61	63	.25300000E-01 /
ROD	M52	T+000C	N2181	63	65	.33900000E-01 /
ROD	M52	T+000C	N2182	65	67	.32900000E-01 /
RCD	M52	T+0000	N2183	67	69	.32400000E-01 /
ROD	M52	T+0000	N2184	69	71	.26900000E-01 /
ROD	M52	T+0000	N2185	71	73	.74000000E-02 /
ROD	M52	T+000C	N2186	72	73	.74000000E-02 /
ROD	M52	T+000C	N2187	70	72	.26900000E-01 /
ROD	M52	T+0000	N2188	68	70	.32400000E-01 /
RCD	M52	T+0000	N2189	66	68	.32900000E-01 /
RCD	M52	T+000C	N2190	64	66	.33900000E-01 /
ROD	M52	T+000C	N2191	62	64	.25300000E-01 /
RCD	M52	T+0000	N2200	81	83	.28400000E-01 /
ROD	M52	T+000C	N2201	83	85	.37400000E-01 /
ROD	M52	T+0000	N2202	85	87	.36400000E-01 /
ROD	M52	T+000C	N2203	87	89	.35500000E-01 /
ROD	M52	T+000C	N2204	89	91	.29600000E-01 /
RCD	M52	T+000C	N2205	91	93	.95000000E-02 /
RCD	M52	T+0000	N2206	92	93	.95000000E-02 /
ROD	M52	T+0000	N2207	90	92	.29600000E-01 /
RCD	M52	T+0000	N2208	88	90	.35500000E-01 /
RCD	M52	T+0000	N2209	86	88	.36400000E-01 /
ROD	M52	T+0003	N2210	84	66	.37400000E-01 /
RCD	M52	T+000C	N2211	82	84	.28400000E-01 /
ROD	M52	T+0000	N2220	101	103	.31300000E-01 /
ROD	M52	T+0000	N2221	103	105	.40800000E-01 /
RCD	M52	T+0000	N2222	105	107	.39700000E-01 /
RCD	M52	T+000C	N2223	107	109	.38500000E-01 /
RCD	M52	T+000C	N2224	109	111	.32000000E-01 /
ROD	M52	T+000C	N2225	111	113	.11500000E-01 /
ROD	M52	T+000C	N2226	112	113	.11500000E-01 /
RCD	M52	T+000C	N2227	110	112	.32000000E-01 /
RCD	M52	T+000C	N2228	108	110	.38500000E-01 /
ROD	M52	T+000C	N2229	106	108	.39700000E-01 /
RCD	M52	T+000C	N2230	104	106	.40800000E-01 /
ROD	M52	T+000C	N2231	102	104	.31300000E-01 /
ROD	M52	T+0000	N2240	121	123	.33800000E-01 /
ROD	M52	T+000C	N2241	123	125	.43900000E-01 /
ROD	M52	T+000C	N2242	125	127	.42800000E-01 /
ROD	M52	T+000C	N2243	127	129	.41300000E-01 /
ROD	M52	T+000C	N2244	129	131	.34200000E-01 /
ROD	M52	T+000C	N2245	131	133	.13200000E-01 /
ROD	M52	T+0000	N2246	132	133	.13200000E-01 /
ROD	M52	T+000C	N2247	130	132	.34200000E-01 /
ROD	M52	T+000C	N2248	128	130	.41300000E-01 /
ROD	M52	T+000C	N2249	126	128	.42800000E-01 /
RCD	M52	T+000C	N2250	124	126	.43900000E-01 /
ROD	M52	T+0000	N2251	122	124	.33800000E-01 /
ROD	M52	T+0000	N2260	141	143	.36100000E-01 /
ROD	M52	T+000C	N2261	143	145	.46800000E-01 /
ROD	M52	T+000C	N2262	145	147	.45800000E-01 /
ROD	M52	T+000C	N2263	147	149	.43900000E-01 /

ORIGINAL PAGE
OF POOR QUALITY

ROD	M52	T+000C	N2264	148	150	.43900000E-01	/
ROD	M52	T+0000	N2265	146	148	.45800000E-01	/
ROD	M52	T+0000	N2266	144	146	.46800000E-01	/
ROD	M52	T+000C	N2267	142	144	.36100000E-01	/
ROD	M52	T+000C	N2282	165	167	.74700000E-01	/
ROD	M52	T+0000	N2283	167	169	.71100000E-01	/
ROD	M52	T+000C	N2284	168	170	.71100000E-01	/
ROD	M52	T+0000	N2285	166	168	.74700000E-01	/
ROD	M55	T+0000	N2301	25	45	.11600000E+00	/
ROD	M55	T+0000	N2302	45	65	.13900000E+00	/
ROD	M55	T+0000	N2303	65	85	.16300000E+00	/
ROD	M55	T+0000	N2304	85	105	.18700000E+00	/
ROD	M55	T+0000	N2305	105	125	.21400000E+00	/
RCD	M55	T+0000	N2306	125	145	.24300000E+00	/
ROD	M55	T+0000	N2307	145	165	.27700000E+00	/
ROD	M55	T+0000	N2311	26	46	.11600000E+00	/
ROD	M55	T+0000	N2312	46	66	.13900000E+00	/
ROD	M55	T+0000	N2313	66	86	.16300000E+00	/
RCD	M55	T+0000	N2314	86	106	.18700000E+00	/
ROD	M55	T+0000	N2315	106	126	.21400000E+00	/
ROD	M55	T+0000	N2316	126	146	.24300000E+00	/
ROD	M55	T+0003	N2317	146	166	.27700000E+00	/
RCD	M55	T+0000	N2321	29	49	.13700000E+00	/
ROD	M55	T+0000	N2322	49	69	.15500000E+00	/
ROD	M55	T+0000	N2323	69	89	.17200000E+00	/
RCD	M55	T+0000	N2324	89	109	.19000000E+00	/
ROD	M55	T+0000	N2325	109	129	.20700000E+00	/
ROD	M55	T+0000	N2326	129	149	.22800000E+00	/
RCD	M55	T+0000	N2327	149	169	.25000000E+00	/
ROD	M55	T+0000	N2331	30	50	.13700000E+00	/
RCD	M55	T+0000	N2332	50	70	.15500000E+00	/
ROD	M55	T+0000	N2333	70	90	.17200000E+00	/
RCD	M55	T+0000	N2334	90	110	.19000000E+00	/
RCD	M55	T+0000	N2335	110	130	.20700000E+00	/
ROD	M55	T+0000	N2336	130	150	.22800000E+00	/
ROD	M55	T+0000	N2337	150	170	.25000000E+00	/
GPLATE M52 T+LJ00 N5500				243	223	225	245
	.25000000E+00	.25000000E+00	0.				/
GPLATE M52 T+0000 N5501				223	203	205	225
	.25000000E+00	.25000000E+00	0.				/
GPLATE M52 T+0000 N5502				245	225	226	246
	.25000000E+00	.25000000E+00	0.				/
GPLATE M52 T+0000 N5503				225	205	206	226
	.25000000E+00	.25000000E+00	0.				/
GPLATE M52 T+0000 N5504				246	226	227	247
	.25000000E+00	.25000000E+00	0.				/
GPLATE M52 T+0000 N5505				226	206	207	227
	.25000000E+00	.25000000E+00	0.				/
ROD	M53	T+0000	N3000	1	2	.10000000E-01	/
RCD	M53	T+0000	N3001	3	4	.10000000E-01	/
ROD	M53	T+0000	N3002	5	6	.10000000E-01	/
ROD	M53	T+0000	N3003	7	8	.10000000E-01	/
RCD	M53	T+0000	N3004	9	10	.10000000E-01	/
ROD	M53	T+0000	N3005	11	12	.10000000E-01	/
RCD	M54	T+0000	N3006	21	22	.10000000E-01	/
ROD	M54	T+0000	N3007	23	24	.10000000E-01	/
ROD	M54	T+0000	N3008	25	26	.10000000E-01	/
ROD	M54	T+0000	N3009	27	28	.10000000E-01	/
ROD	M54	T+0000	N3010	29	30	.10000000E-01	/
ROD	M54	T+0000	N3011	31	32	.10000000E-01	/
ROD	M54	T+0000	N3012	41	42	.10000000E-01	/
ROD	M54	T+0000	N3013	43	44	.10000000E-01	/
ROD	M54	T+0000	N3014	45	46	.10000000E-01	/
RCD	M54	T+0000	N3015	47	48	.10000000E-01	/
ROD	M54	T+0000	N3016	49	50	.10000000E-01	/
ROD	M54	T+0000	N3017	51	52	.10000000E-01	/
ROD	M54	T+0000	N3018	61	62	.10000000E-01	/
ROD	M54	T+0000	N3019	63	64	.10000000E-01	/
ROD	M54	T+0000	N3020	65	66	.10000000E-01	/
ROD	M54	T+0000	N3021	67	68	.10000000E-01	/
ROD	M54	T+0000	N3022	69	70	.10000000E-01	/
ROD	M54	T+0000	N3023	71	72	.10000000E-01	/
ROD	M54	T+0000	N3024	81	82	.10000000E-01	/

ROD	M54	T+0000	N3025	83	84	.10000000E-01	/
ROD	M54	T+0000	N3026	85	86	.10000000E-01	/
ROD	M54	T+0000	N3027	87	88	.10000000E-01	/
ROD	M54	T+0000	N3028	89	90	.10000000E-01	/
ROD	M54	T+0000	N3029	91	92	.10000000E-01	/
ROD	M54	T+0000	N3030	101	102	.10000000E-01	/
ROD	M54	T+0000	N3031	103	104	.10000000E-01	/
ROD	M54	T+0000	N3032	105	106	.10000000E-01	/
ROD	M54	T+0000	N3033	107	108	.10000000E-01	/
ROD	M54	T+0000	N3034	109	110	.10000000E-01	/
ROD	M54	T+0000	N3035	111	112	.10000000E-01	/
ROD	M54	T+0000	N3036	121	122	.10000000E-01	/
ROD	M54	T+0000	N3037	123	124	.10000000E-01	/
ROD	M54	T+0000	N3038	125	126	.10000000E-01	/
ROD	M54	T+0000	N3039	127	128	.10000000E-01	/
ROD	M54	T+0000	N3040	129	130	.10000000E-01	/
ROD	M54	T+0000	N3041	131	132	.10000000E-01	/
ROD	M54	T+0000	N3042	141	142	.10000000E-01	/
ROD	M54	T+0000	N3043	143	144	.10000000E-01	/
ROD	M54	T+0000	N3044	145	146	.10000000E-01	/
ROD	M54	T+0000	N3045	147	148	.10000000E-01	/
ROD	M54	T+0000	N3046	149	150	.10000000E-01	/
ROD	M54	T+0000	N3047	167	168	.10000000E-01	/
ROD	M55	T+0000	N3052	45	46	.50000000E-01	/
ROD	M55	T+0000	N3053	65	66	.50000000E-01	/
ROD	M55	T+0000	N3054	85	86	.50000000E-01	/
ROD	M55	T+0000	N3055	105	106	.50000000E-01	/
ROD	M55	T+0000	N3056	125	126	.50000000E-01	/
ROD	M55	T+0000	N3057	145	146	.50000000E-01	/
ROD	M55	T+0000	N3062	49	50	.50000000E-01	/
ROD	M55	T+0000	N3063	69	70	.50000000E-01	/
ROD	M55	T+0000	N3064	89	90	.50000000E-01	/
ROD	M55	T+0000	N3065	109	110	.50000000E-01	/
ROD	M55	T+0000	N3066	129	130	.50000000E-01	/
ROD	M55	T+0000	N3067	149	150	.50000000E-01	/
SPLATE	M51	T+0000	N1000	21	1	3	23 .70000000E-01 /
SPLATE	M51	T+0000	N1001	23	3	5	25 .70000000E-01 /
SPLATE	M51	T+0000	N1002	25	5	7	27 .70000000E-01 /
SPLATE	M51	T+0000	N1003	27	7	9	29 .70000000E-01 /
SPLATE	M51	T+0000	N1004	29	9	11	31 .70000000E-01 /
SPLATE	M51	T+0000	N1005	31	11	13	33 .70000000E-01 /
SPLATE	M51	T+0000	1006	33	13	12	32 .70000000E-01 /
SPLATE	M51	T+0000	1007	32	12	10	30 .70000000E-01 /
SPLATE	M51	T+0000	N1008	30	10	8	28 .70000000E-01 /
SPLATE	M51	T+0000	N1009	28	8	6	26 .70000000E-01 /
SPLATE	M51	T+0000	N1010	26	6	4	24 .70000000E-01 /
SPLATE	M51	T+0000	N1011	24	4	2	22 .70000000E-01 /
SPLATE	M51	T+0000	N1012	22	2	1	21 .70000000E-01 /
SPLATE	M51	T+0000	N1020	41	21	23	43 .70000000E-01 /
SPLATE	M51	T+0000	N1021	43	23	25	45 .70000000E-01 /
SPLATE	M51	T+0000	N1022	45	25	27	47 .70000000E-01 /
SPLATE	M51	T+0000	N1023	47	27	29	49 .70000000E-01 /
SPLATE	M51	T+0000	N1024	49	29	31	51 .70000000E-01 /
SPLATE	M51	T+0000	N1025	51	31	33	53 .70000000E-01 /
SPLATE	M51	T+0000	N1026	53	33	32	52 .70000000E-01 /
SPLATE	M51	T+0000	N1027	52	32	30	50 .70000000E-01 /
SPLATE	M51	T+0000	N1028	50	30	28	48 .70000000E-01 /
SPLATE	M51	T+0000	N1029	48	28	26	46 .70000000E-01 /
SPLATE	M51	T+0000	N1030	46	26	24	44 .70000000E-01 /
SPLATE	M51	T+0000	N1031	44	24	22	42 .70000000E-01 /
SPLATE	M51	T+0000	N1032	42	22	21	41 .70000000E-01 /
SPLATE	M51	T+0000	N1040	61	41	43	63 .70000000E-01 /
SPLATE	M51	T+0000	N1041	63	43	45	65 .70000000E-01 /
SPLATE	M51	T+0000	N1042	65	45	47	67 .70000000E-01 /
SPLATE	M51	T+0000	N1043	67	47	49	69 .70000000E-01 /
SPLATE	M51	T+0000	N1044	69	49	51	71 .70000000E-01 /
SPLATE	M51	T+0000	N1045	71	51	53	73 .70000000E-01 /
SPLATE	M51	T+0000	N1046	73	53	52	72 .70000000E-01 /
SPLATE	M51	T+0000	N1047	72	52	50	70 .70000000E-01 /
SPLATE	M51	T+0000	N1048	70	50	48	68 .70000000E-01 /
SPLATE	M51	T+0000	N1049	68	48	46	66 .70000000E-01 /
SPLATE	M51	T+0000	N1050	66	46	44	64 .70000000E-01 /
SPLATE	M51	T+0000	N1051	64	44	42	62 .70000000E-01 /

SPLATE	M51	T+0000	N1052	62	42	41	61	.70000000E-01 /
SPLATE	M51	T+0000	N1060	81	61	63	83	.70000000E-01 /
SPLATE	M51	T+0000	N1061	83	63	65	85	.70000000E-01 /
SPLATE	M51	T+0000	N1062	85	65	67	87	.70000000E-01 /
SPLATE	M51	T+0000	N1063	87	67	69	89	.70000000E-01 /
SPLATE	M51	T+0000	N1064	89	69	71	91	.70000000E-01 /
SPLATE	M51	T+0000	N1065	91	71	73	93	.70000000E-01 /
SPLATE	M51	T+0000	N1066	93	73	72	92	.70000000E-01 /
SPLATE	M51	T+0000	N1067	92	72	70	90	.70000000E-01 /
SPLATE	M51	T+0000	N1068	90	70	68	88	.70000000E-01 /
SPLATE	M51	T+0000	N1069	88	68	66	86	.70000000E-01 /
SPLATE	M51	T+0000	N1070	86	66	64	84	.70000000E-01 /
SPLATE	M51	T+0000	N1071	84	64	62	82	.70000000E-01 /
SPLATE	M51	T+0000	N1072	82	62	61	81	.70000000E-01 /
SPLATE	M51	T+0000	N1080	101	81	83	103	.70000000E-01 /
SPLATE	M51	T+0000	N1081	103	83	85	105	.70000000E-01 /
SPLATE	M51	T+0000	N1082	105	85	87	107	.70000000E-01 /
SPLATE	M51	T+0000	N1083	107	87	89	109	.70000000E-01 /
SPLATE	M51	T+0000	N1084	109	89	91	111	.70000000E-01 /
SPLATE	M51	T+0000	N1085	111	91	93	113	.70000000E-01 /
SPLATE	M51	T+0000	N1086	113	93	92	112	.70000000E-01 /
SPLATE	M51	T+0000	N1087	112	92	90	110	.70000000E-01 /
SPLATE	M51	T+0000	N1088	110	90	88	108	.70000000E-01 /
SPLATE	M51	T+0000	N1089	108	88	86	106	.70000000E-01 /
SPLATE	M51	T+0000	N1090	106	86	84	104	.70000000E-01 /
SPLATE	M51	T+0000	N1091	104	84	82	102	.70000000E-01 /
SPLATE	M51	T+0000	N1092	102	82	81	101	.70000000E-01 /
SPLATE	M51	T+0000	N1093	121	101	103	123	.70000000E-01 /
SPLATE	M51	T+0000	N1094	123	103	105	125	.70000000E-01 /
SPLATE	M51	T+0000	N1095	125	105	107	127	.70000000E-01 /
SPLATE	M51	T+0000	N1096	127	107	109	129	.70000000E-01 /
SPLATE	M51	T+0000	N1097	129	109	111	131	.70000000E-01 /
SPLATE	M51	T+0000	N1098	131	111	113	133	.70000000E-01 /
SPLATE	M51	T+0000	N1099	133	113	112	132	.70000000E-01 /
SPLATE	M51	T+0000	N1100	132	112	110	130	.70000000E-01 /
SPLATE	M51	T+0000	N1101	130	110	108	128	.70000000E-01 /
SPLATE	M51	T+0000	N1102	129	109	106	126	.70000000E-01 /
SPLATE	M51	T+0000	N1103	127	107	105	125	.70000000E-01 /
SPLATE	M51	T+0000	N1104	125	105	103	123	.70000000E-01 /
SPLATE	M51	T+0000	N1105	123	103	105	125	.70000000E-01 /
SPLATE	M51	T+0000	N1106	125	105	107	127	.70000000E-01 /
SPLATE	M51	T+0000	N1107	127	107	109	129	.70000000E-01 /
SPLATE	M51	T+0000	N1108	129	109	111	131	.70000000E-01 /
SPLATE	M51	T+0000	N1109	131	111	113	133	.70000000E-01 /
SPLATE	M51	T+0000	N1110	133	113	112	132	.70000000E-01 /
SPLATE	M51	T+0000	N1111	132	112	110	130	.70000000E-01 /
SPLATE	M51	T+0000	N1112	130	110	108	128	.70000000E-01 /
SPLATE	M51	T+0000	N1113	128	108	106	126	.70000000E-01 /
SPLATE	M51	T+0000	N1114	126	106	104	124	.70000000E-01 /
SPLATE	M51	T+0000	N1115	124	104	102	122	.70000000E-01 /
SPLATE	M51	T+0000	N1116	122	102	101	121	.70000000E-01 /
SPLATE	M51	T+0000	N1117	120	101	121	143	.70000000E-01 /
SPLATE	M51	T+0000	N1118	119	101	121	145	.70000000E-01 /
SPLATE	M51	T+0000	N1119	118	101	121	147	.70000000E-01 /
SPLATE	M51	T+0000	N1120	116	100	120	145	.70000000E-01 /
SPLATE	M51	T+0000	N1121	114	99	119	144	.70000000E-01 /
SPLATE	M51	T+0000	N1122	112	98	118	142	.70000000E-01 /
SPLATE	M51	T+0000	N1123	110	97	117	141	.70000000E-01 /
SPLATE	M51	T+0000	N1124	108	96	116	140	.70000000E-01 /
SPLATE	M51	T+0000	N1125	106	95	115	139	.70000000E-01 /
SPLATE	M51	T+0000	N1126	104	94	114	138	.70000000E-01 /
SPLATE	M51	T+0000	N1127	102	93	113	137	.70000000E-01 /
SPLATE	M51	T+0000	N1128	100	92	112	136	.70000000E-01 /
SPLATE	M51	T+0000	N1129	98	91	111	135	.70000000E-01 /
SPLATE	M51	T+0000	N1130	96	90	110	134	.70000000E-01 /
SPLATE	M51	T+0000	N1131	94	89	109	133	.70000000E-01 /
SPLATE	M51	T+0000	N1132	92	88	108	132	.70000000E-01 /
SPLATE	M51	T+0000	N1133	90	87	107	131	.70000000E-01 /
SPLATE	M51	T+0000	N1134	88	86	106	130	.70000000E-01 /
SPLATE	M51	T+0000	N1135	86	85	105	129	.70000000E-01 /
SPLATE	M51	T+0000	N1136	84	84	104	128	.70000000E-01 /
SPLATE	M51	T+0000	N1137	82	83	103	127	.70000000E-01 /
SPLATE	M51	T+0000	N1138	80	82	102	126	.70000000E-01 /
SPLATE	M51	T+0000	N1139	78	81	101	125	.70000000E-01 /
SPLATE	M51	T+0000	N1140	76	80	100	124	.70000000E-01 /
SPLATE	M51	T+0000	N1141	74	79	99	123	.70000000E-01 /
SPLATE	M51	T+0000	N1142	72	78	98	122	.70000000E-01 /
SPLATE	M51	T+0000	N1143	70	77	97	121	.70000000E-01 /
SPLATE	M51	T+0000	N1144	68	76	96	120	.70000000E-01 /
SPLATE	M51	T+0000	N1145	66	75	95	119	.70000000E-01 /
SPLATE	M51	T+0000	N1146	64	74	94	118	.70000000E-01 /
SPLATE	M51	T+0000	N1147	62	73	93	117	.70000000E-01 /
SPLATE	M51	T+0000	N1148	60	72	92	116	.70000000E-01 /
SPLATE	M51	T+0000	N1149	58	71	91	115	.70000000E-01 /
SPLATE	M51	T+0000	N1150	56	70	90	114	.70000000E-01 /
SPLATE	M51	T+0000	N1151	54	69	89	113	.70000000E-01 /
SPLATE	M51	T+0000	N1152	52	68	88	112	.70000000E-01 /
SPLATE	M51	T+0000	N1153	50	67	87	111	.70000000E-01 /
SPLATE	M51	T+0000	N1154	48	66	86	110	.70000000E-01 /
SPLATE	M51	T+0000	N1155	46	65	85	109	.70000000E-01 /
SPLATE	M51	T+0000	N1156	44	64	84	108	.70000000E-01 /
SPLATE	M51	T+0000	N1157	42	63	83	107	.70000000E-01 /
SPLATE	M51	T+0000	N1158	40	62	82	106	.70000000E-01 /
SPLATE	M51	T+0000	N1159	38	61	81	105	.70000000E-01 /
SPLATE	M51	T+0000	N1160	36	60	80	104	.70000000E-01 /
SPLATE	M51	T+0000	N1161	34	59	79	103	.70000000E-01 /
SPLATE	M51	T+0000	N1162	32	58	78	102	.70000000E-01 /
SPLATE	M51	T+0000	N1163	30	57	77	101	.70000000E-01 /
SPLATE	M51	T+0000	N1164	28	56	76	100	.70000000E-01 /
SPLATE	M51	T+0000	N1165	26	55	75	99	.70000000E-01 /
SPLATE	M51	T+0000	N1166	24	54	74	98	.70000000E-01 /
SPLATE	M51	T+0000	N1167	22	53	73	97	.70000000E-01 /
SPLATE	M51	T+0000	N1168	20	52	72	96	.70000000E-01 /
SPLATE	M51	T+0000	N1169	18	51	71	95	.70000000E-01 /
SPLATE	M51	T+0000	N1170	16	50	70	94	.70000000E-01 /
SPLATE	M51	T+0000	N1171	14	49	69	93	.70000000E-01 /
SPLATE	M51	T+0000	N1172	12	48	68	92	.70000000E-01 /
SPLATE	M51	T+0000	N1173	10	47	67	91	.70000000E-01 /
SPLATE	M51	T+0000	N1174	8	46	66	90	.70000000E-01 /
SPLATE	M51	T+0000	N1175	6	45	65	89	.70000000E-01 /
SPLATE	M51	T+0000	N1176	4	44	64	88	.70000000E-01 /
SPLATE	M51	T+0000	N1177	2	43	63	87	.70000000E-01 /
SPLATE	M51	T+0000	N1178	0	42	62	86	.70000000E-01 /
SPLATE	M52	T+0000	N1203	7	9	10	8	.70000000E-01 /
SPLATE	M52	T+0000	N1204	9	11	12	10	.70000000E-01 /
SPLATE	M52	T+0000	N1205	21	23	24	22	.16400000E+01 /
SPLATE	M52	T+0000	N1206	23	25	26	24	.16400000E+01 /
SPLATE	M52	T+0000	N1207	25	27	28	25	.16400000E+01 /
SPLATE	M52	T+0000	N1208	27	29	30	28	.16400000E+01 /
SPLATE	M52	T+0000	N1209	29	31	32	30	.16400000E+01 /
SPLATE	M52	T+0000	N1210	41	43	44	42	.50000000E-01 /
SPLATE	M52	T+0000	N1211	43	45	46	44	.50000000E-01 /
SPLATE	M52	T+0000	N1212	45	47	48	46	.50000000E-01 /
SPLATE	M52	T+0000	N1213	47	49	50	48	.50000000E-01 /
SPLATE	M52	T+0000	N1214	49	51	52	50	.50000000E-01 /
SPLATE	M52	T+0000	N1215	61	63	64	62	.50000000E-01 /
SPLATE	M52	T+0000	N1216	63	65	66	64	.50000000E-01 /
SPLATE	M52	T+0000</						

SPLATE	M52	T+0000	N1220	81	83	84	82	.50000000E-01	/			
SPLATE	M52	T+0000	N1221	83	85	86	84	.50000000E-01	/			
SPLATE	M52	T+0000	N1222	85	87	88	86	.50000000E-01	/			
SPLATE	M52	T+0000	N1223	87	89	90	88	.50000000E-01	/			
SPLATE	M52	T+0000	N1224	89	91	92	90	.50000000E-01	/			
SPLATE	M52	T+0000	N1225	101	103	104	102	.50000000E-01	/			
SPLATE	M52	T+0000	N1226	103	105	106	104	.50000000E-01	/			
SPLATE	M52	T+0000	N1227	105	107	108	106	.50000000E-01	/			
SPLATE	M52	T+0000	N1228	107	109	110	108	.50000000E-01	/			
SPLATE	M52	T+0000	N1229	109	111	112	110	.50000000E-01	/			
SPLATE	M52	T+0000	N1230	121	123	124	122	.50000000E-01	/			
SPLATE	M52	T+0000	N1231	123	125	126	124	.50000000E-01	/			
SPLATE	M52	T+0000	N1232	125	127	128	126	.50000000E-01	/			
SPLATE	M52	T+0000	N1233	127	129	130	128	.50000000E-01	/			
SPLATE	M52	T+0000	N1234	129	131	132	130	.50000000E-01	/			
SPLATE	M52	T+0000	N1235	141	143	144	142	.50000000E-01	/			
SPLATE	M52	T+0000	N1236	143	145	146	144	.50000000E-01	/			
SPLATE	M52	T+0000	N1237	145	147	148	146	.50000000E-01	/			
SPLATE	M52	T+0000	N1238	147	149	150	148	.50000000E-01	/			
SPLATE	M52	T+0000	N1239	165	167	168	166	.80000000E-01	/			
SPLATE	M52	T+0000	N1240	167	169	170	168	.80000000E-01	/			
SPLATE	M55	T+0000	N1301	45	25	26	46	.10000000E+00	/			
SPLATE	M55	T+0000	N1302	65	45	46	66	.10000000E+00	/			
SPLATE	M55	T+0000	N1303	85	65	66	86	.10000000E+00	/			
SPLATE	M55	T+0000	N1304	105	85	86	106	.10000000E+00	/			
SPLATE	M55	T+0000	N1305	125	105	106	126	.10000000E+00	/			
SPLATE	M55	T+0000	N1306	145	125	126	146	.10000000E+00	/			
SPLATE	M55	T+0000	N1307	165	145	146	166	.10000000E+00	/			
SPLATE	M55	T+0000	N1311	49	29	30	50	.10000000E+00	/			
SPLATE	M55	T+0000	N1312	69	49	50	70	.10000000E+00	/			
SPLATE	M55	T+0000	N1313	89	69	70	90	.10000000E+00	/			
SPLATE	M55	T+0000	N1314	109	89	90	110	.10000000E+00	/			
SPLATE	M55	T+0000	N1315	129	109	110	130	.10000000E+00	/			
SPLATE	M55	T+0000	N1316	149	129	130	150	.10000000E+00	/			
SPLATE	M55	T+0000	N1317	169	149	150	170	.10000000E+00	/			
GPLATE	M52	T+0000	N5000	202	176	203						
			.25000000E+01	.25000000E+01	0.		/					
GPLATE	M52	T+0000	N5001	201	202	242						
			.25000000E+00	.25000000E+00	0.		/					
GPLATE	M52	T+0000	N5002	202	243	242						
			.25000000E+00	.25000000E+00	0.		/					
GPLATE	M52	T+0000	N5003	202	203	243						
			.25000000E+00	.25000000E+00	0.		/					
* / ADDITIONAL ELEMENTS /												
ROD	M53	TO	N7003	5	6	.01						
ROD			N7004	9	10	.01						
ROD	M54	TO	N7005	25	26	.01						
ROD	M54	TO	N7006	29	30	.01						
SPLATE			N7001	5	6	26	25	.1	/			
SPLATE			N7002	9	10	30	29	.1	/			
PLATE	M54	TO	N7007	11	12	13	.05					
PLATE			N7008	31	32	33	.05					
PLATE			N7009	51	52	53	.05					
PLATE			N7010	71	72	73	.05					
PLATE			N7011	91	92	93	.05					
PLATE			N7012	111	112	113	.05					
PLATE			N7013	131	132	133	.05					
* / FUSELAGE BEAMS /												
BEAM	M54	TO	N6001	304	308	0.	*=4	9.524	0.	*=4	52.381	/
BEAM			N6002	308	310	0.	*=4	52.381	0.	*=4	59.524	/
BEAM			N6003	310	316	0.	*=4	59.524	0.	*=4	80.952	/
BEAM			N6004	316	320	0.	*=4	80.952	0.	*=4	126.190	/
BEAM			N6005	320	320	0.	*=4	126.190	0.	*=4	106.101	/
BEAM			N6006	322	326	0.	*=4	106.101	0.	*=4	61.905	/
BEAM			N6007	326	328	0.	*=4	61.905	0.	*=4	100.000	/
BEAM			N6008	328	242	0.	*=4	100.000	0.	*=4	106.625	/
BEAM			N6009	242	243	0.	*=4	106.625	0.	*=4	123.810	/
BEAM			N6010	243	246	0.	*=4	123.810	0.	*=4	116.667	/
BEAM			N6011	246	247	0.	*=4	116.667	0.	*=4	164.286	/
BEAM			N6012	247	334	0.	*=4	164.286	0.	*=4	169.048	/
BEAM			N6013	334	338	0.	*=4	169.048	0.	*=4	181.548	/
BEAM			N6014	338	340	0.	*=4	181.548	0.	*=4	195.238	/
BEAM			N6015	340	344	0.	*=4	195.238	0.	*=4	140.476	/

```

BEAM      N6016 344 348 0. **=4 140.476 0. **=4 33.333 /
BEAM      N6017 348 352 0. **=4 33.333 0. **=4 47.619 /
BEAM      N6018 352 356 0. **=4 47.619 0. **=4 33.709 /
BEAM      N6019 356 358 0. **=4 33.709 0. **=4 21.429 /
BEAM      N6020 358 360 0. **=4 21.429 0. **=4 26.191 /
BEAM      N6021 360 364 0. **=4 26.191 0. **=4 9.524 /

/* HORIZONTAL TAIL BEAMS /
BEAM M54 TO N8001 356 401 0. 0. 0. 100. 0. 100. /
BEAM      N8002 401 402 0. 0. 0. 1.330 0. .5635
    0. 0. 0. 1.033 0. .427 /
BEAM      N8003 402 403 0. 0. 0. 1.033 0. .427
    0. 0. 0. .7418 0. .2949 /
BEAM      N8004 403 404 0. 0. 0. .7418 0. .2949
    0. 0. 0. .4873 0. .181 /
BEAM      N8005 404 405 0. 0. 0. .4873 0. .181
    0. 0. 0. .2825 0. .0981 /
BEAM      N8006 405 406 0. 0. 0. .2825 0. .0981
    0. 0. 0. .1575 0. .04856 /
BEAM      N8007 406 407 0. 0. 0. .1575 0. .04856
    0. 0. 0. .0775 0. .02286 /
BEAM      N8008 407 408 0. 0. 0. .0775 0. .02286
    0. 0. 0. .03 0. .00762 /

END ELEMENT DATA /
END STIFFNESS DATA /
BEGIN MASS DATA /
BEGIN CONDITION DATA /
STAGE 1 CONDITION 1 0 0 1 /
END CONDITION DATA /
BEGIN MASS ELEMENT DATA /
/* FUSELAGE MASSES /
SCALAR F2 N326 326 29.3 /
SCALAR F2 N328 328 35.7 /
SCALAR F2 N330 330 42.6 /
SCALAR F2 N243 243 56.5 /
SCALAR F2 N246 246 30.2 /
SCALAR F2 N247 247 30.3 /
SCALAR F2 N332 332 18.0 /
END MASS ELEMENT DATA /
BEGIN CONCENTRATED MASS DATA 1 /
/* FUSELAGE WEIGHTS /
CM302 304 302 2.4 /
CM304 304 304 27.2 /
CM306 304 306 11.3 /
CM308 310 308 16.4 /
CM310 310 310 18.5 /
CM312 310 312 19.0 /
CM314 316 314 24.8 /
CM316 316 316 18.7 /
CM318 316 318 18.2 /
CM320 322 320 21.8 /
CM322 322 322 29.6 /
CM324 322 324 36.8 /
CM336 338 336 10.8 /
CM338 338 338 221.0 0. 57450. /
CM342 344 342 11.0 /
CM346 344 346 11.8 /
CM350 352 350 16.1 0. .01 /
CM354 356 354 17.8 /
CM356 356 356 15.6 /
CM360 360 360 36.1 0. .01 /
CM362 364 362 12.9 /
CM366 364 366 5.9 /

/* HORIZONTAL TAIL WEIGHTS /
CM411 401 411 I=HT 1.920 11.406 2.56 /
CM412 402 412 I=HT 1.588 19.544 2.12 /
CM413 403 413 I=HT 1.335 15.368 1.78 /
CM414 404 414 I=HT 1.080 11.482 1.44 /
CM415 405 415 I=HT 0.868 8.627 1.16 /
CM416 406 416 I=HT 0.722 6.623 0.94 /
CM417 407 417 I=HT 0.553 4.987 0.74 /
CM418 408 418 I=HT 0.245 1.662 0.33 /

END CONCENTRATED MASS DATA /
END MASS DATA /

```

OF POOR QUALITY

```
BEGIN SUBSET DEFINITION /
SUBSETS OF STIFFNESS SET 1 /
N1 = ALL /
N2 = 242 TO 247 302 TO 366 / FUSELAGE NODES
N3 = 401 TO 418 352 TO 360 / HORIZ. TAIL NODES
N4 = 1 TO 169 BY 2 / UPPER WING SURFACE
N5 = 2 TO 170 BY 2 13 TO 133 BY 20 / LOWER WING SURFACE
N6 = 174 TO 247 / WING-BODY
E1 = ALL /
E2 = CLOSED IN N2 /
E3 = CLOSED IN N3 /
E4 = CLOSED IN N4 /
E5 = CLOSED IN N5 /
E6 = CLOSED IN N6 /
ON1 = 304 310 316 322 328 165 145 143 141 TO 1 BY -20 +
3 TO 143 BY 20 145 TO 5 BY -20 7 TO 167 BY 20 +
169 TO 9 BY -20 11 TO 131 BY 20 133 TO 13 BY -20 +
11 TO 1 BY -2 21 TO 33 BY 2 53 TO 1 BY -2 61 TO 73 BY 2 +
93 TO 81 BY -2 101 TO 113 BY 2 +
133 TO 121 BY -2 141 TO 149 BY 2 169 167 165 328 243 169 243 +
247 338 344 352 356 360 364 360 356 401 TO 408 /
END SUBSET DEFINITION /
END PROBLEM DATA /
```

Table 205-1. Natural Frequencies
for FIREBEE Drone

Mode No.	Frequency (Hertz)	Description
1	0.	Rigid body
2	0.	Rigid body
3	10.05	Wing bending
4	17.41	Fuselage bending
5	42.86	Fuselage bending
6	46.15	Wing bending
7	52.81	Wing twisting
8	63.76	Horizontal tail bending
9	73.05	Coupled wing, fuselage and tail
10	106.3	Wing twisting

Figure 205-1. Total FIREBEE Structural Model

.302

304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
.306

OF PUBLIC DOMAIN

Figure 205-2. Fuselage Model, FIREBEE Drone

Figure 205-3. Wing Upper Surface Model, FIREBEE Drone

Figure 205-4. Wing Lower Surface Model, FIREBEE Drone

Figure 205-5. Wing-Body Intersection Model, FIREBEE Drone

Figure 205-6. Horizontal Tail Model, FIREBEE Drone

FREQUENCY = 17.412

Figure 205-7. Fourth Mode Shape, FIREBEE Drone

FREQUENCY = 46.154

Figure 205-8. Sixth Mode Shape, FIREBEE Drone

206. BEAM VIBRATION (DECK 8)

206.1 DESCRIPTION OF ANALYSES

This problem demonstrates the various ATLAS mass matrix generation capabilities by using models of two cantilever beams:

- A beam with a straight elastic axis, uniform stiffness properties and concentrated masses offset from the elastic axis
- A beam of constant width and linearly varying depth along its span

206.1.1 Beam with Offset Concentrated Masses

The stiffness of this structure is modelled in two ways, both employing BEAM stiffness finite elements and concentrated masses:

- Structural nodes are located at the concentrated mass locations and the BEAMS are offset to the elastic axis. This model, SET 1, is shown in figure 206-1
- Structural nodes are located along the elastic axis and the concentrated masses are offset. This model, SET 2, is shown in figure 206-2

Four different mass matrices are calculated for each of these stiffness models and a normal mode analysis performed with each. The mass matrices used are:

- Guyan reduced mass matrix considering only the concentrated masses
- Guyan reduced mass matrix considering only the mass of the stiffness model
- Guyan reduced mass matrix considering both concentrated masses and stiffness element mass
- Reduced mass matrices produced directly by the Mass Processor considering only the concentrated masses

In all cases the retained freedoms are the translation in the Z-direction and rotations about the X and Y axes.

206.1.2 Tapered Beam

The structure analyzed is shown in figure 206-3. The stiffness of the structure is modelled in two ways: (1) with BEAM elements and (2) with 20-node BRICK elements.

The BEAM model, SET 3, is shown in figure 206-4. Three different mass matrices are calculated using the mass of the stiffness elements and normal mode analyses performed. The mass matrices used are:

- Guyan reduced mass matrix
- Diagonal mass matrix produced directly by the Mass Processor
- Nondiagonal mass matrix produced directly by the Mass Processor

For all three analyses the retained degrees of freedom are translation in the Z-direction and rotation about the Y axis.

The BRICK model, SET 4, is shown in figure 206-5. The mass matrix is obtained by Guyan reduction from the merged consistent elemental matrices. The retained degrees of freedom are the X- and Z-direction translations at the BRICK corner nodes.

206.2 RESULTS

206.2.1 Beam with Offset Concentrated Masses

First mode frequencies for the eight vibration analyses are presented in table 206-1. It can be seen that, as expected, identical results are obtained from SET 1 and SET 2 when the same procedure is used to generate the mass matrix. Frequencies for the beam without concentrated masses are compared with exact values in table 206-2. The fourth mode shape for this case is compared with the exact shape in figure 206-6. Exact values for frequency and mode shape were obtained using the methods of reference 206-1.

206.2.2 Tapered Beam

Frequencies obtained from the three BEAM element analyses and the BRICK element analysis are compared with exact values given in reference 206-2 in table 206-3. The mode shape for the third mode is shown in figure 206-7 for the BEAM element stiffness model and Guyan reduced mass matrix.

206.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEMO08
PROBLEM ID(DEMO08 - VIBRATION ANALYSES WITH VARIOUS MASS MATRICES)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C              DECK ARE
C              1. DIAGONAL REDUCED MASS MATRIX GENERATED BY
C                 MASS PROCESSOR
C              2. NON-DIAGONAL REDUCED MASS MATRIX GENERATED
C                 BY MASS PROCESSOR
C              3. GUYAN-REDUCED MASS MATRIX
C              4. VIBRATION ANALYSES USING BOTH REDUCED
C                 STIFFNESS AND REDUCED FLEXIBILITY MATRICES

C AUTHOR       F. P. GRAY

C CORE         130K (OCTAL)

C READ INPUT

C UNIFORM BEAM WITH OFFSET MASSES

C PRINT INPUT(NODAL)
C PRINT INPUT(STIFFNESS)
C PRINT INPUT(MASS)
C EXECUTE EXTRACT(EXNAME=SET1,LSUB=KGRID,ESUB=E1,NSUB=N1)
C EXECUTE GRAPHICS(GNAME=GEOM,OFFLINE=CALCOMP,VIEW=100,TYPE=ORTH,
X           SIZE=(20.,20.),LABEL=N+E,EXNAME=SET1)

C GUYAN REDUCED MASS MATRIX, STIFFNESS ELEMENTS ONLY

C PERFORM RECUCE(SET=1)
C PRINT INPUT(BC1)
C EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFREQS=10,SET=1)
C PRINT OUTPUT(VIBRATION)
C PRINT INPUT(NODAL,SET=2)
C PRINT INPUT(STIFFNESS,SET=2)
C PRINT INPUT(MASS,SET=2)
C EXECUTE EXTRACT(EXNAME=SET2,LSUB=KGRID,KSET=2,ESUB=E1,NSUB=N1)
C EXECUTE GRAPHICS(GNAME=GEOM,VZ=-1,TYPE=ORTH,LABEL=N+E,
X           SIZE=(20.,20.),EXNAME=SET2)
C PERFORM RECUCE(SET=2)
C PRINT INPUT(BC,SET=2)
C EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFRECS=10,SET=2,VSET=2,
X           SUBSETS=N2)
C PRINT OUTPUT(VIBRATION,VSET=2)
C EXECUTE EXTRACT("XNAME=NODE4,LSUB=VMODE,VSET=2,NSUB=N2,MODE=4,
X           DSUB=DN1")
C EXECUTE GRAPHICS(GNAME=NODES,TYPE=ORTH,VECTORZ=VMODE,SCALE=0.1,
X           VSCALE=15,VX=5,VY=-70,EXNAME=MODE4)

C SAME ANALYSIS USING REDUCED FLEXIBILITY MATRIX

C EXECUTE CHOLESKY(DEC0,KRED=DKRED)
C EXECUTE CHOLESKY(IFOR,DKRED,DFRED)
C EXECUTE MULTIPLY(IFRED=[DFRED(T)*DFRED])
C EXECUTE VIBRATION(FLEX=FRED,MASS=MRED,NFFEOS=10,SET=2,VSET=2)
C PRINT OUTPUT(VIBRATION,VSET=2)
C PURGE FILES(MASSRNF)

C GUYAN REDUCED MASS MATRIX, CONCENTRATED MASSES ONLY
```

ORIGINAL PAGE IS
OF POOR QUALITY

```

C
C      PERFORM REDUCE(SET=1,[4]=[4,STIFFELEM=0],
1      [MASS]=[MASS,CONMASS=1])
      EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFREQS=10,SET=1)
      PRINT OUTPUT(VIBRATION)
      PERFORM REDUCE(SET=2,[4]=[4,STIFFELEM=0],
1      [MASS]=[MASS,CONMASS=1])
      EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFREQS=10,SET=2,VSET=2)
      PRINT OUTPUT(VIBRATION,VSET=2)
      PURGE FILES(MASSRNF)

C      GUYAN REDUCED MASS MATRIX, STIFFNESS ELEMENTS + CONCENTRATED MASS
C
C      PERFORM REDUCE(SET=1,[MASS]=[MASS,CONMASS=1])
      EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFREQS=10,SET=1)
      PRINT OUTPUT(VIBRATION)
      PERFORM REDUCE(SET=2,[MASS]=[MASS,CONMASS=1])
      EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFREQS=10,SET=2,VSET=2)
      PRINT OUTPUT(VIBRATION,VSET=2)
      PURGE FILES(MASSRNF)

C      DIAGONAL MASS MATRIX, CONCENTRATED MASSES ONLY
C
C      PERFORM K-REDUCE
      EXECUTE MASS(SET=1,OPTION=2)
      EXECUTE VIBRATION(STIF=KRED,MASS=MDC001A,NFREQS=10,SET=1)
      PRINT OUTPUT(VIBRATION)

C      NON-DIAGONAL MASS MATRIX, CONCENTRATED MASSES ONLY
C
C      PURGE FILES(MASSRNF)
      PERFORM K-REDUCE(SET=2)
      EXECUTE MASS(SET=2,OPTION=3)
      EXECUTE VIBRATION(STIF=KRED,MASS=MDC001B,NFREQS=10,SET=2,VSET=2)
      PRINT OUTPUT(VIBRATION,VSET=2)

C      T A P E R E D      B E A M
C
C      BEAM ELEMENTS - GUYAN REDUCED MASS MATRIX
C
C      PRINT INPUT(NODAL,SET=3)
      PRINT INPUT(STIFFNESS,SET=3)
      EXECUTE EXTRACT(EXNAME=SET3,LSUB=KGRID,KSET=3,ESUB=E1,NSUB=N1)
      EXECUTE GRAPHICS(GNAME=GEOM,VIEW=100,TYPE=LRT,H,LABEL=N,
X           SIZE=(20.,20.),EXNAME=SET3)

      PERFORM REDUCE(SET=3)
      PRINT INPUT(BC,SET=3)
      EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFREQS=10,SET=3,VSET=3)
      PRINT OUTPUT(VIBRATION,VSET=3)

C      BEAM ELEMENTS - DIAGONAL MASS MATRIX
C
C      EXECUTE MASS(SET=3,OPTION=2)
      EXECUTE VIBRATION(STIF=KRED,MASS=MDC001C,NFREQS=10,SET=3,VSET=3)
      PRINT OUTPUT(VIBRATION,VSET=3)

C      BEAM ELEMENTS - NON-DIAGONAL MASS MATRIX
C
C      EXECUTE MASS(SET=3,OPTION=3)
      EXECUTE VIBRATION(STIF=KRED,MASS=MDC001C,NFREQS=10,SET=3,VSET=3)
      PRINT OUTPUT(VIBRATION,VSET=3,NOGSTIF,NOGMASS)
      EXECUTE EXTRACT(EXNAME=MODE3,LSUB=VMODE,VSET=3,MODE=3,BSU3=ON1)
      EXECUTE GRAPHICS(GNAME=MODE3,TYPE=ORTH,VIEW=1000,VECTOR2=VMODE,
X           SCALE=0.1,VSCALE=25.,EXNAME=MODE3)

C      BRICK ELEMENTS - GUYAN REDUCED MASS MATRIX
C
C      PRINT INPUT(NODAL,SET=4)
      PRINT INPUT(STIFFNESS,SET=4)
      EXECUTE EXTRACT(EXNAME=SET4,LSUB=KGRID,KSET=4,ESUB=E1,NSUB=N1)
      EXECUTE GRAPHICS(GNAME=GEOM,TYPE=ORTH,LABEL=E,SIZE=(20,20),
X           RZ=60,RX=0,RY=30,EXNAME=SET4)

```

```

PERFORM REDUCE(SET=4)
PRINT INPUT(BC,SET=4)
EXECUTE VIBRATION(STIF=KRED,MASS=MRED,NFREQS=10,SET=4,VSET=99)
PRINT OUTPUT(VIBRATION,VSET=99)
CALL PRNTCAT
INDEX FILES(DATARNF,"IBRRNF")
END

/*
*/
/* UNIFORM BEAM WITH OFFSET MASSES */
/* STRUCTURAL NODES AT CONCENTRATED MASS LOCATIONS */
/*
BEGIN NODAL DATA /
1 0. 0. 0. TO 15 70. 5. 0. /
21 0. 8. 0. /
22 4. 7. 0. /
23 11. 7. 0. /
24 17. 4. 0. /
25 23. 6. 0. /
26 26. 4. 0. /
27 31. 3. 0. /
28 34. 7. 0. /
29 39. 6. 0. /
30 47. 4. 0. /
31 51. 3. 0. /
32 54. 2. 0. /
33 60. 4. 0. /
34 66. 6. 0. /
35 71. 6. 0. /
END NODAL DATA /
BEGIN STIFFNESS DATA /
BEGIN ELEMENT DATA /
BEAM 21 22 1 2 1. 0. 0. .15 .15 .20 TO 34 35 14 15 /
END ELEMENT DATA /
END STIFFNESS DATA /
BEGIN MASS DATA /
BEGIN CONDITION DATA /
STAGE 1 CONDITION 1 0 0 1 /
END CONDITION DATA /
BEGIN CONCENTRATED MASS DATA 1 /
21 1.0 *=3 /
22 2.5 4. 4. 4. /
3+13 1 -.1 *=3 /
END CONCENTRATED MASS DATA /
END MASS DATA /
BEGIN BC DATA /
SUPPORT TX TY TZ RX RY RZ FUH 21 /
RETAIN TZ RX RY FOR 22 TO 35 /
END BC DATA /
*/
/* STRUCTURAL NODES ALONG ELASTIC AXIS */
/*
BEGIN NODAL DATA /
SET 2 /
1 0. 0. 0. TO 15 70. 5. 0. /
21 0. 8. 0. /
22 4. 7. 0. /
23 11. 7. 0. /
24 17. 4. 0. /
25 23. 6. 0. /
26 26. 4. 0. /
27 31. 3. 0. /

```

```

28 34. 7. 0. /
29 39. 6. 0. /
30 47. 4. 0. /
31 51. 3. 0. /
32 54. 2. 0. /
33 60. 4. 0. /
34 66. 6. 0. /
35 71. 6. 0. /
END NODAL DATA /
BEGIN STIFFNESS DATA /
SET 2 /
BEGIN ELEMENT DATA /
BEAM 1 2 1.0 0. 0. .15 .15 .20 TO 14 15    /
END ELEMENT DATA /
END STIFFNESS DATA /
BEGIN MASS DATA /
SET 2 /
BEGIN CONDITION DATA /
STAGE 1 CONDITION 1 0 0 1    /
END CONDITION DATA /
BEGIN CONCENTRATED MASS DATA 1    /
1 21 1.0 *=3 /
2 22 2.5 4. 4. 4. /
*=13 1 1 -.1 *=3 /
END CONCENTRATED MASS DATA   /
END MASS DATA   /
BEGIN BC DATA   /
SET 2 /
SUPPORT TX TY TZ RX RY RZ FOR 1    /
RETAIN TZ RX RY FOR 2 TO 15    /
END BC DATA   /
*/
*/
/* T A P E R E D   B E A M
*/
/* BEAM ELEMENT MODEL
*/
BEGIN NODAL DATA /
SET 3 /
100 0. 0. 0. TO 120 100. 0. 0.    /
END NODAL DATA /
BEGIN STIFFNESS DATA /
SET 3 /
BEGIN ELEMENT DATA /
BEAM 100 101 10. 0. 0. 0. 0. 0. 83.3333 9.6 0. 0. 0. 0. 0. 73.728    /
101 .02 5.6 *4 73.728 9.2 *4 64.6907    /
* 102 103 5.2 *4 64.8907 8.8 *4 56.7893    /
* 103 104 8.8 *4 56.7893 8.4 *4 49.9920    /
* 104 105 8.4 *4 49.3920 8.0 *4 42.6667    /
* 105 106 8.0 *4 42.6667 7.6 *4 36.5813    /
* 106 107 7.6 *4 36.5813 7.2 *4 31.1041    /
* 107 108 7.2 *4 31.1040 6.8 *4 26.2027    /
* 108 109 6.8 *4 26.2027 5.4 *4 21.8453    /
* 109 110 6.4 *4 31.8453 6.0 *4 18.0000    /
* 110 111 6.0 *4 18.0000 5.6 *4 14.6347    /
* 111 112 5.6 *4 14.6347 5.2 *4 11.7173    /
* 112 113 5.2 *4 11.7173 4.8 *4 7.2160    /
* 113 114 4.8 *4 9.216 4.4 *4 7.0987    /
* 114 115 4.4 *4 7.0987 4.0 *4 5.3323    /
* 115 116 4.0 *4 5.3333 3.6 *4 3.8880    /
* 116 117 3.6 *4 3.8880 3.2 *4 2.7307    /
* 117 118 3.2 *4 2.7307 2.8 *4 1.8293    /
* 118 119 2.8 *4 1.8293 2.4 *4 1.1520    /
* 119 120 2.4 *4 1.1520 2.0 *4 .6667    /
END ELEMENT DATA /
END STIFFNESS DATA /
BEGIN BC DATA /
SET 3 /
RETAIN TZ RY FOR 102 TO 120 BY 2    /
SUPPORT TX TY TZ RX RY RZ FOR 100    /
END BC DATA /
BEGIN MASS DATA /
SET 3 /

```

```

BEGIN CONCITION DATA /
STAGE 1 CONDITION 1
END CONDITION DATA /
END MASS DATA /
*/
*/
BRICK ELEMENT NUODEL
*/
BEGIN NODAL DATA /
SET 4 /
REC JUNK 1. 0. 0. 2. 0. 0. 0. 0. 1. /
100 0. -5. 5. TO 120 100. -5. 1. /
200 0. .5 5. TO 220 100. .5 1. /
300 0. .5 -5. TO 320 100. .5 -1. /
400 0. -.5 -5. TO 420 100. -.5 -1. /
500 0. 0. 5. TO 510 100. 0. 1. /
600 0. .5 0. TO 610 100. .5 0. /
700 0. 0. -.5 TO 710 100. 0. -1. /
800 0. .5 0. TO 810 100. -.5 0. /
ENC NODAL DATA /
BEGIN STIFFNESS DATA /
SET 4 /
BEGIN ELEMENT DATA /
BRICK 100 200 300 400 102 202 302 402 500 600 700 800
501 601 701 801 101 201 301 401 /
**9 0 2 **7 1 **7 2 **3 /
ENC ELEMENT DATA /
END STIFFNESS DATA /
BEGIN BC DATA /
SET 4 /
ORDER RETAIN BY INTERNALID /
RETAIN TX TZ FOR 102 TO 120 BY 2 /
**3 0 **3 100 0 100 0 0 /
SUPPORT TX TY TZ RX RY RZ FOR 100 TO 800 BY 100 /
SUPPORT TY FOR 100 TO 100C /
END BC DATA /
BEGIN SUBSET DEFINITION
SUBSETS OF STIFFNESS SET 1
N1 = ALL
E1 = ALL
SUBSETS OF STIFFNESS SET 2
N1 = ALL
E1 = ALL
N2 = 1 TO 15
ON1 = 2 TO 15
SUBSETS OF STIFFNESS SET 3
N1 = ALL
E1 = ALL
ON1 = 102 TO 120 BY 2
SUBSETS OF STIFFNESS SET 4
N1 = ALL
E1 = ALL
END SUBSET DEFINITION
END PROBLEM DATA /

```

Table 206-1. First Mode Frequencies for Uniform Beam with Offset Masses

Mass Matrix		Stiffness Model	
		SET 1	SET 2
Guyan Reduced Matrix	Concentrated masses only	5.518 179	5.518 179
	Stiffness elements only	10.182 41	10.182 41
	Concentrated masses + Stiffness elements	4.852 565	4.852 565
Concentrated masses only produced by Mass Processor		5.518 179	5.518 179

Frequencies in Hertz

**Table 206-2. Natural Frequencies of
Uniform Beam without Concentrated
Masses**

(1) Mode No.	Frequency (Hertz)		(4) Difference $\frac{(3)-(2)}{(2)} \times 100$ (%)
	(2) Exact	(3) ATLAS	
1	10.181 5	10.182 4	0.0
2	63.806 4	63.584 6	-0.3
3	178.660	176.658	-1.1
4	350.104	341.924	-2.3

Table 206-3. Natural Frequencies of Tapered Beam

Stiffness Model	Mass Matrix	Frequency (Hertz)					
		Mode 1 $f_{exact} = 39.5196$		Mode 2 $f_{exact} = 144.931$		Mode 3 $f_{exact} = 339.566$	
		ATLAS	%Error	ATLAS	%Error	ATLAS	%Error
BEAM	Diagonal Lumped	39.1177	-1.0	138.441	-4.5	307.584	-9.4
BEAM	Non-Diagonal Lumped	39.5951	0.2	144.394	-0.4	332.875	-2.0
BEAM	Guyan	39.5294	0.0	144.566	-0.3	336.253	-1.0
BRICK	Guyan	41.4888	6.2	150.553	3.9	347.329	2.3

Figure 206-1. Beam Model with Structural Nodes at Concentrated Mass C.G.'s (SET 1)

Figure 206-2. Beam Model with Structural Nodes at Elastic Axis (SET 2)

Figure 206-3. Tapered Beam

Figure 206-4. BEAM Element Model of Tapered Beam (SET 3)

Figure 206-5. BRICK Element Model of Tapered Beam (SET 4)

Figure 206-6. Fourth Mode Shape, Uniform Beam without Concentrated Masses (SET 2)

Figure 206-7. Third Mode Shape, Tapered Beam (SET 3)

207. BUCKLING AND SUPERPOSITION (DECK 13)

207.1 DESCRIPTION OF ANALYSES

Two separate analyses are performed in this demonstration problem. The first is a buckling analysis and the second is a stress analysis demonstrating the ATLAS superposition capability.

Buckling loads are calculated for a plane frame with equal concentrated loads at the column tops. The model and loading are shown in figure 207-1. Translations in the X and Y-directions and rotation about the Z axis are retained at all nodes except where a freedom is supported.

Superposition is demonstrated by performing a stress analysis of the structure in figure 207-1 loaded as shown in figure 207-2 in two ways. The first analysis is performed using the total model and total loads as shown in figure 207-2. The second analysis takes advantage of the symmetry of the structure. SET 2 is defined as shown in figure 207-3. STAGE 1 is defined to have symmetry on section A-A with the symmetric load components applied. STAGE 2 is defined to have antisymmetry on section A-A with the antisymmetric load components applied. The total solution is obtained by adding 5 times the solution from STAGE 1 to 2 times the solution from STAGE 2.

In addition to the two analysis capabilities described above this problem is used to demonstrate the capability to produce graphs of element stress vs. load case and plots of displacements. Four loadcases were added to SET 1 to demonstrate stress vs. loadcase graphs (BEAM1, BEAM2, BEAM3 and BEAM4). These cases consist of distributed loading along part or all of the horizontal beam. To demonstrate displacement plots loadcase MOVE1 was added. This case consists of a unit displacement in the X-direction at node 1.

207.2 RESULTS

Critical buckling loads for the first six modes were calculated and are presented in table 207-1. Also presented are analytical solutions obtained using the techniques of reference 207-1. The buckled shape for the third mode is shown in figure 207-4 along with the shape obtained using the techniques of reference 207-1.

Nodal displacements and element stresses calculated by superimposing STAGES 1 and 2 of SET 2 are identical to those calculated from SET 1 within the accuracy of the computer.

Figure 207-5 presents a graph of bending moment at the left end of the beam vs. loadcase for loadcases BEAM1 through BEAM4.

Displacements due to motion of the left support are shown in figure 207-6.

207.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEMO13
PROBLEM ID(DEMO13 - BUCKLING AND SUPERPOSITION)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C DECK ARE
C           1. BUCKLING
C           2. SUPERPOSITION
C           3. PLOTS OF BUCKLING MODE SHAPES
C           4. PLOTS OF STRESS VS. LOADCASE
C           5. PLOTS OF STATIC DISPLACEMENTS

C AUTHOR        R. A. SAMUEL
C CORE          130K (OCTAL)

READ INPUT(MODE2)
PRINT INPUT(NODAL)
PRINT INPUT(STIFFNESS)
PRINT INPUT(NODAL,SET=2)
PRINT INPUT(STIFFNESS,SET=2)
EXECUTE EXTRACT(ENAME=TOTAL,LSUB=KGRID,ESUB=E1,NSUB=N1)
EXECUTE GRAPHICS(GNAME=GEOMETRY,OFFLINE=CALCOMP,VIEW=100,
X           TYPE=ORTH,LABEL=N+E,SIZE=(10,15),EXNAME=TOTAL)
EXECUTE EXTRACT(ENAME=HALF,LSUB=KGRID,ESUB=E1,NSUB=N1,KSET=2)
EXECUTE GRAPHICS(GNAME=GEOMETRY,VIEW=100,TYPE=ORTH,LABEL=N+E,
X           SIZE=(10,15),EXNAME=HALF)

C C BUCKLING AND      STRESS      ANALYSES
C C           SET 1
C C
C C PERFORM R-STRESS
C C PRINT INPUT(BC)
C C PRINT OUTPUT(LOADS,L2=L21)
C C PRINT OUTPUT(DISPL)
C C PRINT OUTPUT(STRESS)
C C EXECUTE EXTRACT(ENAME=BEAM4,LSUB=STRESS,LC=BEAM1 TO BEAM4,
C X           ESUB=E2,NSUB=N1)
C C EXECUTE GRAPHICS(GNAME=MOMENT,TYPE=GRAPH,X=LC,Y1=8MMZ(1),
C X           XMIN=1,XMAX=6,Y1MIN=0.,Y1MAX=40.,SIZE=(10,10),
C X           EXNAME=BEAM4)
C C EXECUTE EXTRACT(ENAME=DEFL,LSUB=DISGRID,ESUB=E1,NSUB=N1,
C X           LC=MOVE1)
C C EXECUTE GRAPHICS(GNAME=DISPL,TYPE=ORTH,SCALE=.2,VIEW=100,
C X           VECTOR2=DISP,VSCALE=1.,EXNAME=DEFL)
C C EXECUTE STIFFNESS(LC=COLMLD,BSET=1)
C C EXECUTE MERGE(GSTIF,BSET=1,KG22=22)
C C EXECUTE BUCKLING(STIF=KRED,KG=KG22,BSET=1)
C C PRINT OUTPUT(BUCKLING,BSET=1)
C C EXECUTE EXTRACT(ENAME=MODE3,LSUB=BMUDE,BSET=1,MODE=3,BSUB=ON1)
C C EXECUTE GRAPHICS(GNAME=BUCKLING,TYPE=ORTH,VIEW=100,
C X           SCALE=12,VECTOR2=BMUDE,VSCALE=3.,
C X           EXNAME=MODE3)

C C S T R E S S      A N A L Y S I S   -   S E T   2
C C           ( S U P E R P O S I T I O N )
C C
C C PURGE FILES(MERGRNF,MULTRNF,CHOLRNF)
C C PERFORM STRESS(SET=2)
C C PRINT INPUT(BC,SET=2,STAGE=1)
C C PRINT OUTPUT(LOADS,SET=2,L1=L11)
C C PURGE FILES(MERGRNF,MULTRNF,CHOLRNF)
C C PERFORM STRESS(SET=2,STAGE=2)
C C PRINT INPUT(BC,SET=2,STAGE=2)
C C PRINT OUTPUT(LOADS,SET=2,STAGE=2,L1=L11)
```

ORIGINAL PAGE IS
OF POOR QUALITY

```
EXECUTE STRESS(SET=2,SUPSTAGE=3)
PRINT OUTPUT(DISP,SET=2,STAGE=3)
PRINT OUTPUT(STRESS,SET=2,STAGE=3)
END CONTROL PROGRAM
```

```
BEGIN NODAL DATA
  SET 1 / COMPLETE MODEL
    1 0. 0. 0. TO 4 0. 12. 0.
    4           TO 8 24. 12. 0.
    8           TO 21 24. 0. 0.
    REORDER FROM -1
  SET 2 / HALF MODEL
    1 0. 0. 0. TO 4 0. 12. 0.
    4           TO 6 12. 12. 0.
    REORDER FROM -1
END NODAL DATA
BEGIN STIFFNESS DATA
  SET 1 / COMPLETE MODEL
    BEGIN ELEMENT DATA
      BEAM N1 1 2 11 10000. 18 TO N3 3 4 11
      BEAM N4 4 5 11 10000. 24 TO N7 7 8 11
      BEAM N8 8 9 1 10000. 1. TO N10 10 11 1
    END ELEMENT DATA
  SET 2 / HALF MODEL
    BEGIN ELEMENT DATA
      BEAM N1 1 2 6 10000. 18 TO N3 3 4 6
      BEAM N4 4 5 1 10000. 24 TO N5 5 6 1
    END ELEMENT DATA
END STIFFNESS DATA
BEGIN BC DATA
  SET 1 STAGE 1 / BC FOR BUCKLING AND STRESS ANALYSES
    SUPPORT TX TY FOR 1 11
    RETAIN TX TY RZ FOR 2 TO 10
    RETAIN RZ FOR 1 11
  SET 2 STAGE 1 / SYMMETRIC BC
    SUPPORT TX TY FOR 1
    SUPPORT ASYM IN SURFACE 1 THROUGH 6
  SET 2 STAGE 2 / ANTI-SYMMETRIC BC
    SUPPORT TX TY FOR 1
    SUPPORT SYMM IN SURFACE 1 THROUGH 6
END BC DATA
BEGIN LOADS DATA
  SET 1 STAGE 1
    LOAD CASE IC COLM0 *UNIT LOAD CONDITION FOR BUCKLING ANALYSIS*
    LOAD CASE ID TOTAL *LOAD CASE FOR SUPERPOSITION DEMONSTRATION*
    LOAD CASE ID BEAM1 *1 LB/INCH LOAD ON BEAM 4*
    LOAD CASE ID BEAM2 *1 LB/INCH LOAD ON BEAMS 4 AND 5*
    LOAD CASE ID BEAM3 *1 LB/INCH LOAD ON BEAMS 4, 5 AND 6*
    LOAD CASE ID BEAM4 *1 LB/INCH LOAD ON BEAMS 4, 5, 6 AND 7*
    LOAD CASE ID MOVE1 *UNIT X DISPLACEMENT AT NODE 1*
    BEGIN NODAL LOAD DATA
      CASE COLM0
        4 8 FY -1.
      CASE TOTL
        4 FX 1. FY -3.
        8 FX -3. FY -7.
    END NODAL LOAD DATA
    BEGIN ELEMENT LOAD DATA
      DIRECTION 0. 1. 0.
      CASE BEAM1
        4 1.
```

```

CASE BEAM2
  4 5 1.
CASE BEAM3
  4 5 6 1.
CASE BEAM4
  4 TO 7 1.
END ELEMENT LOAD DATA
BEGIN SUPPORT DISPLACEMENT DATA
  CASE MOVE1
    1 TX 1.
END SUPPORT DISPLACEMENT DATA
SET 2 STAGE 1
LOAD CASE ID SYMPART **SYMMETRIC PART OF LOADCASE TOTAL*
BEGIN NODAL LOAD DATA
  CASE SYMPART
    4 FX -.4 FY -1.
END NODAL LOAD DATA
SET 2 STAGE 2
LOAD CASE ID ASMPART **ANTISYMMETRIC PART OF LOADCASE TOTAL*
BEGIN NODAL LOAD DATA
  CASE ASMPART
    4 FX -.5 FY 1.
END NODAL LOAD DATA
END LOADS DATA
BEGIN STRESS DATA
SET 2
  SUPSTAGE 3
    TOTAL 1 5. SYMPART , 2 2. ASMPART
LOAD CASE ID TOTAL **SAME AS LOADCASE TOTAL IN SET 1*
END STRESS DATA
BEGIN SUBSET DEFINITION
  SUBSETS OF STIFFNESS SET 1
    E1 = ALL
    E2 = 4
    N1 = ALL
    ON1 = 1 *=10*1
  SUBSETS OF STIFFNESS SET 2
    E1 = ALL
    N1 = ALL
END SUBSET DEFINITION
END PROBLEM DATA

```

Table 207-1. Critical Load Values
for Plane Frame

(1) Mode Number	(2) K --ef. 207-1)	(3) K (ATLAS)	(4) $\frac{(3)-(2)}{(2)} \times 100$ (%)
1	1.349 553	1.349 558	0.0
2	3.590 681	3.594 686	0.1
3	4.111 618	4.118 577	0.2
4	6.566 437	6.638 602	1.1
5	6.992 352	7.073 246	1.2
6	9.625 433	10.654 702	10.7

$$P_{cr} = \frac{K^2 EI}{L^2}$$

Figure 207-1. Structural Model and Loading for Buckling Analysis
(SET 1)

Figure 207-2. Loading for Superposition Demonstration

STAGE 1

STAGE 2

Figure 207-3. Half-Models for Superposition Demonstration (SET 2)

EIG.VALUE= .123E+07

Figure 207-4. Buckled Shape for Third Mode of Frame

For Beam 4

Figure 207-5. Bending Moment at End of Beam

Case BEAM4

**Figure 207-6. Frame Displacements Due to Support Motion
(Loadcase MOVE1)**

208. FUEL AND PAYLOAD MANAGEMENT (DECR 16)

208.1 DESCRIPTION OF ANALYSIS

This problem demonstrates the ATLAS capabilities for calculating weights based upon user specified management sequences for fuel and payload.

The mass model is shown in figure 208-1; no stiffness element model is used. Locations of the fuel tanks and body cargo holds are shown in figure 208-2. Passenger seating is two abreast in the half airplane model spaced at 1.02 m (40 in).

The first fuel management sequence is as follows:

- The tanks are loaded until not quite full such that the weight ratio of tanks 11 and 12 is 4:3 and tanks 21 and 22 is 1:1
- Fuel is used from tanks 11 and 12 in proportion to their weights until their total equals the total of tanks 21, 22 and 31
- All fuel in tank 12 is transferred to tank 11
- Fuel is used from tanks 11, 21 and 22 at rates in the ratio of 2:1:1 until the weight of fuel in tank 21 is 6803.9kg (15 000 lb)
- Fuel is used from tanks 11, 21 and 31 in rough proportion to their weights until all are empty

The second sequence loads all tanks until full to demonstrate the system's ability to calculate fuel capacities.

The payload sequence specifies that the cargo holds are partially loaded from the bottom with the forward hold being loaded before the aft hold. Passengers are loaded from each end.

In addition to the fuel and payload sequences described above, two loading sequences are defined for the purpose of generating a loadability diagram. In the first of these sequences passengers are loaded from fore to aft with all window seats loaded before any aisle seats. Cargo is also loaded from fore to aft. The second sequence is similar to the first except that loading occurs in the aft to forward direction.

208.2 RESULTS

The loadability diagram resulting from the last two loading sequences is shown in figure 208-3.

208.3 LISTING OF CONTROL PROGRAM AND DATA

BEGIN CONTROL PROGRAM DEMO16
PROBLEM ID(DEMO16 - FUEL AND PAYLOAD MANAGEMENT)

C C PURPOSE THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C C DECK ARE
C C 1. FUEL AND PAYLOAD MANAGEMENT
C C 2. LOADABILITY DIAGRAM GENERATION

C C AUTHOR R. A. WOODWARD

C C CORE 130K (OCTAL)

READ INPUT
PRINT INPUT(NODAL)
PRINT INPUT(MASS)
EXECUTE EXTRACT(EXNAME=MASSGRD,LSUB=MGRID,ESUB=E5,NSUB=1,
EXECUTE GRAPHICS(GNAME=GEOM,OFFLINE=CALCOMP,TYPE=(ORTHO,POLY),
X SIZE=(20,20),RZ=30,RX=0,RY=20,EXNAME=MASSGRD)
EXECUTE MASS (OPTION=1)
PRINT OUTPUT (MASS,FUEL,TABLES,TANKS=22,PAYOUT=22,MDC=MDC***A)
EXECUTE EXTRACT(EXNAME=LOADAB,LSUB=LOADAB,PCOND=20,PCOND=30,
CCOND=20,CCOND=30,FCOND=15,FCOND=15)
EXECUTE GRAPHICS(GNAME=LOADAB,SIZE=(10,10),
1 LWLNE=540000.,WTINC=20000.,FCGLNE=6.,LCGLNE=36.,
2 DATUM=21.,CGINC=3.,LEMAC=1600.,MAC=1100.,
3 FUELFAC=2.,PASSFAC=2.,CARGOFAC=2.,CGTOL=1.,
4 OEWFAC=2.,EXNAME=LOADAB, TYPE=GRAPH)
END CONTROL PROGRAM

ORIGINAL PAGE IS
OF POOR QUALITY

```

*/ MODE2/
BEGIN NODAL DATA
 1 20. 0. 1. TO 9 340. 0. 65. BY 2
101 20. 0. -1. TO 109 340. 0. -65. BY 2
201 20. 1. 0. TO 209 340. 65. 0. BY 2
11 420. 0. 65. TO 83 3300. 0. 65. BY 2
111 420. 0. -65. TO 169 3540. 0. -65. BY 2
211 420. 65. 0. TO 225 180. 65. 0. BY 2
265 2580. 65. 0. TO 277 3060. 65. 0. BY 2
287 3460. 65. 0. TO 289 3540. 65. 0. BY 2
*/ WING COORDINATES
227 1060. 65. 0. 26.25 TO 245 1780. 65. 0. 36.35 BY 2
245 1060. 65. 0. 26.25 TO 255 2180. 65. 0. 28.8 BY 2
255 1060. 65. 0. 26.25 TO 263 2000. 65. 0. 12.0 BY 2
327 1060. 65. 0. 26.25 TO 341 1620. 265. 0. 8.85 BY 2
445 1780. 195. 0. 22.65 TO 455 2180. 195. 0. 20.15 BY 2
541 1620. 265. 0. 8.85 TO 551 2205. 455. 0. 5.75 BY 2
651 2205. 455. 0. 5.75 TO 656 2545. 594. 0. 3.2
756 2545. 594. 0. 3.2 TO 760 2875. 765. 0. .95
760 1060. 65. 0. 26.25 TO 763 2995. 765. 0. 1.85
341 1060. 65. 0. 26.25 TO 355 2180. 255. 0. 20.15 BY 2
355 1060. 65. 0. 26.25 TO 363 2500. 265. 0. 11.25 BY 2
551 1060. 65. 0. 26.25 TO 559 2525. 455. 0. 10.0
559 1060. 65. 0. 26.25 TO 563 2685. 455. 0. 5.0
656 1060. 65. 0. 26.25 TO 655 2665. 594. 0. 4.85
659 1060. 65. 0. 26.25 TO 663 2825. 594. 0. 2.45
*/ HORIZONTAL TAIL
279 140. 65. 0. 1.80
779 -40. 65. 0. 1.80 TO 979 3365. 200. 0. 1.25 BY 100
281 3220. 65. 0. 4.25
781 3220. 65. 0. 4.25 TO 981 3388. 200. 0. 1.75 BY 100
283 3300. 65. 0. 4.55
783 3300. 65. 0. 4.55 TO 983 3412. 200. 0. 1.80 BY 100
285 3380. 65. 0. 1.40
785 3380. 65. 0. 1.40 TO 985 3435. 200. 0. .80 BY 100
*/ VERTICAL TAIL
REC REC1 0. 0. 0. 1. 0. 0. 0. -1. 0.
85 3380. 65. 0. 3.25
87 3460. 65. 0. 2.40
1085 3460. 140. 0. 1.50
1087 3500. 140. 0. 1.80
*/ WING FIN
1156 2545. .1 -594. 2.40 TO 1356 2830. 100. -594. 1.80 BY 100
1158 2625. .1 -594. 2.40 TO 1358 2842. 100. -594. 1.90 BY 100
1161 2745. .1 -594. 2.80 TO 1361 2859. 100. -594. 1.95 BY 100
1163 2825. .1 -594. 2.80 TO 1363 2870. 100. -594. 2.05 BY 100
RESUME GLOBAL
89 3540. 0. 65.
*/ AIRLOAD PANEL NODES
*/ BODY
 5100 0. 0. 0. TO 5112 3564. 0. 0.
 5251 0. 26.1279 0.
 5252 297. 26.1279 0.
 5253 297. 63.5215 0.
 5254 594. 63.5215 0.
 5202 594. 65.1 0. TO 5212 3564. 65.1 0.
*/ WING
 5400 741. 65.1 0. TO 5405 2715. 65.1 0.
 5410 1017.7530 146.6 0. TO 5415 2705.9945 146.6 0.
 5420 1294.1665 228. 0. TO 5425 2697. 228. 0.
 5430 1677.8854 341. 0. TO 5435 2722.8855 341. 0.
 5440 2065. 455. 0. TO 5445 2749. 455. 0.
 5450 2487. 594. 0. TO 5455 2874.059 594. 0.
 5460 2689.47 696. 0. TO 5465 2965.8289 696. 0.
 5470 2884. 794. 0. TO 5475 3054. 794. 0.
*/ HOR TAIL
 5500 3124. 65.1 0. TO 5502 3417. 65.1 0.
 5510 3255.0804 146.6 0. TO 5512 3440.5144 146.6 0.
 5520 3386. 228. 0. TO 5522 3464. 228. 0.
*/ VERT WING FIN
 5313 2467. 594. 0. TO 5315 2880. 594. 134.
 5316 2680.5 594. 0. TO 5318 2910. 594. 134.
 5319 2874.059 594. 0. TO 5321 2940. 594. 134.

```

```

*/ WEIGHT PANELS - BODY
6001 0. 0. 0. TO 6016 3564. 0. 0.
6021 0. 65. 0. TO 6036 3564. 65. 0.
*/ WEIGHT PANELS - WING
6100 741.0 65.0 0. TO 6220 2487.0 594.0 0. BY 20
6100 TO 6260 2487.0 594.0 0. BY 80
6180 TO 6240 2487.0 594.0 0. BY 20
6260 TO 6320 2884.0 794.0 0. BY 20
6110 2715.0 65.0 0. TO 6170 2715.0 329.5 0. BY 20
6189 2715.0 329.5 0. TO 6249 2874.0 594.0 0. BY 20
6266 2874.0 594.0 0. TO 6326 3054.0 794.0 0. BY 20
6100 TO 6110
**3 20 0 20
6180 TO 6189
**3 20 0 20
6260 TO 6266
**3 20 0 20
*/ WEIGHT PANELS - HCR TAIL
6400 3124. 65.1 0. TO 6403 3417. 65.1 0.
6410 3386. 228.0 0. TO 6413 3464. 228.0 0.
*/ WEIGHT PANELS - VERT FIN
6501 3374.6 0. 92.8
6502 3472. 0. 92.8
6503 3458.7 0. 149.8
6504 3514.6 0. 149.8
*/ WEIGHT PANELS - WING VERT FIN
6601 2487. 594. 0. TO 6603 2880. 594. 134.
6604 2874.059 594. 0. TO 6606 2940. 594. 134.
*/ NODES FOR CARGO HOLDS
7001 400. 0. -55.
7002 400. 20. -55.
7003 400. 50. -20.
7004 400. 0. -20.
7005 650. 0. -55.
7006 650. 20. -55.
7007 650. 50. -20.
7008 650. 0. -20.
7011 2800. 0. -55.
7012 2800. 20. -55.
7013 2800. 50. -20.
7014 2800. 0. -20.
7015 2950. 0. -55.
7016 2950. 20. -55.
7017 2950. 50. -20.
7018 2950. 0. -20.

END NODAL DATA
BEGIN MASS DATA
BEGIN CONDITION DATA
    PANEL DATA 1 CONDITION 1 11 11 0
    PANEL DATA 1 CONDITION 2 12 11 0
    PANEL DATA 1 CONDITION 3 20 12 0
    PANEL DATA 1 CONDITION 4 20 13 0
END CONDITION DATA
BEGIN MASS ELEMENT DATA
PLATE F2 8-1 6001 6002 6022 3495.
PLATE F2 8-2 6002 6003 6023 6022 5955.
PLATE F2 8-3 6003 6004 6024 6023 2589.
PLATE F2 8-4 6004 6005 6025 6024 3440.
PLATE F2 8-5 6005 6006 6026 6025 5420.
PLATE F2 8-6 6006 6007 6027 6026 3280.
PLATE F2 8-7 6007 6008 6028 6027 3306.
PLATE F2 8-8 6008 6009 6029 6028 4346.
PLATE F2 8-9 6009 6010 6030 6029 4507.
PLATE F2 8-10 6010 6011 6031 6030 4486.
PLATE F2 8-11 6011 6012 6032 6031 3619.
PLATE F2 8-12 6012 6013 6033 6032 4730.
PLATE F2 8-13 6013 6014 6034 6033 3982.
PLATE F2 8-14 6014 6015 6035 6034 947.
PLATE F2 8-15 6015 6016 6036 6035 1788.
PLATE F2 VT-1 6501 6502 6504 6503 600.
PLATE F2 w-1 6100 6101 6121 6120 768.
PLATE F2 w-2 6101 6102 6122 .21 1151.
PLATE F2 w-3 6102 6103 6123 .22 1667.

```

PLATE F2	w-4	6103	6104	6124	6123	1112.
PLATE F2	w-5	6104	6105	6125	6124	1190.
PLATE F2	w-6	6105	6106	6126	6125	1659.
PLATE F2	w-7	6106	6107	6127	6126	1988.
PLATE F2	w-8	6107	6108	6128	6127	2467.
PLATE F2	w-9	6108	6109	6129	6128	1335.
PLATE F2	w-10	6109	6110	6130	6129	338.
PLATE F2	w-11	6120	6121	6141	6140	795.
PLATE F2	w-12	6121	6122	6142	6141	1415.
PLATE F2	w-13	6122	6123	6143	6142	813.
PLATE F2	w-14	6123	6124	6144	6143	1259.
PLATE F2	w-15	6124	6125	6145	6144	1248.
PLATE F2	w-16	6125	6126	6146	6145	1720.
PLATE F2	w-17	6126	6127	6147	6146	1494.
PLATE F2	w-18	6127	6128	6148	6147	1888.
PLATE F2	w-19	6128	6129	6149	6148	498.
PLATE F2	w-20	6129	6130	6150	6149	126.
PLATE F2	w-21	6140	6141	6161	6160	508.
PLATE F2	w-22	6141	6142	6162	6161	1279.
PLATE F2	w-23	6142	6143	6163	6162	536.
PLATE F2	w-24	6143	6144	6164	6163	532.
PLATE F2	w-25	6144	6145	6165	6164	559.
PLATE F2	w-26	6145	6146	6166	6165	1055.
PLATE F2	w-27	6146	6147	6167	6166	1405.
PLATE F2	w-28	6147	6148	6168	6167	1953.
PLATE F2	w-29	6148	6149	6169	6168	274.
PLATE F2	w-30	6149	6150	6170	6169	172.
PLATE F2	w-31	6180	6181	6201	6200	614.
PLATE F2	w-32	6181	6182	6202	6201	1286.
PLATE F2	w-33	6182	6183	6203	6202	562.
PLATE F2	w-34	6183	6184	6204	6203	786.
PLATE F2	w-35	6184	6185	6205	6204	1386.
PLATE F2	w-36	6185	6186	6206	6205	1849.
PLATE F2	w-37	6186	6187	6207	6206	1649.
PLATE F2	w-38	6187	6188	6208	6207	421.
PLATE F2	w-39	6188	6189	6209	6208	255.
PLATE F2	w-40	6200	6201	6221	6220	207.
PLATE F2	w-41	6201	6202	6222	6221	497.
PLATE F2	w-42	6202	6203	6223	6222	692.
PLATE F2	w-43	6203	6204	6224	6223	755.
PLATE F2	w-44	6204	6205	6225	6224	816.
PLATE F2	w-45	6205	6206	6226	6225	843.
PLATE F2	w-46	6206	6207	6227	6226	687.
PLATE F2	w-47	6207	6208	6228	6227	136.
PLATE F2	w-48	6208	6209	6229	6228	94.
PLATE F2	w-49	6220	6221	6241	6240	136.
PLATE F2	w-50	6221	6222	6242	6241	522.
PLATE F2	w-51	6222	6223	6243	6242	510.
PLATE F2	w-52	6223	6224	6244	6243	530.
PLATE F2	w-53	6224	6225	6245	6244	555.
PLATE F2	w-54	6225	6226	6246	6245	580.
PLATE F2	w-55	6226	6227	6247	6246	704.
PLATE F2	w-56	6227	6228	6248	6247	119.
PLATE F2	w-57	6228	6229	6249	6248	91.
PLATE F2	w-58	6260	6261	6281	6280	289.
PLATE F2	w-59	6261	6262	6282	6281	306.
PLATE F2	w-60	6262	6263	6283	6282	244.
PLATE F2	w-61	6263	6264	6284	6283	507.
PLATE F2	w-62	6264	6265	6285	6284	116.
PLATE F2	w-63	6265	6266	6286	6285	76.
PLATE F2	w-64	6280	6281	6301	6300	216.
PLATE F2	w-65	6281	6282	6302	6301	144.
PLATE F2	w-66	6282	6283	6303	6302	245.
PLATE F2	w-67	6283	6284	6304	6303	305.
PLATE F2	w-68	6284	6285	6305	6304	86.
PLATE F2	w-69	6285	6286	6306	6305	71.
PLATE F2	w-70	6300	6301	6321	6320	184.
PLATE F2	w-71	6301	6302	6322	6321	100.
PLATE F2	w-72	6302	6303	6323	6322	126.
PLATE F2	w-73	6303	6304	6324	6323	273.
PLATE F2	w-74	6304	6305	6325	6324	66.
PLATE F2	w-75	6305	6306	6326	6325	66.
PLATE F2	wT-1	6400	6401	6411	6410	283.

PLATE F2 HT-2 6401 6402 6412 6411 212.
 PLATE F2 HT-3 6402 6403 6413 6412 522.
 PLATE F2 HF-1 6601 6602 6605 6604 500.
 PLATE F2 HF-2 6602 6603 6606 6605 400.
 END MASS ELEMENT DATA
 BEGIN FUEL DATA
 TANK 11
 POLYGON 20 95. PERCENT
 237 337 339 239 TO 243 343 345 245 BY 2 2 2 2
 445 345 347 447 TO 449 349 351 451 BY 2 2 2 2
 TANK 12
 POLYGON 20 97. PERCENT
 451 351 353 453
 453 353 355 455
 255 355 357 257 TO 261 361 363 263 BY 2 2 2 2
 TANK 21
 POLYGON 30 90. PERCENT
 367 547 549 349 TO 353 553 555 355 BY 2 2 2 2
 TANK 22
 POLYGON 30 90. PERCENT
 355 555 557 357 TO 361 561 563 363 BY 2 2 2 2
 TANK 31
 POLYGON 20 85. PERCENT
 553 653 654 554 TO 562 662 663 563
 MANAGEMENT SEQUENCE 10
 LOAD TANKS 21 22 UNTIL 70000.
 LOAD TANKS 11 12 31 RATIO 8. 6. 1. UNTIL 220000. TOTAL
 LOAD TANKS 31 UNTIL 31
 USE TANKS 11 12 RATIO 1. .75 UNTIL 11 12 EQUALS 2. 21 31
 TRANSFER 100. PERCENT 12 TO 11
 USE TANKS 11 21 22 RATIO 2. 1. 1. UNTIL 22 15000.
 TRANSFER 15000. FROM 22 TO 21
 USE TANKS 11 21 31 RATIO 3. 2. 1. UNTIL 60000.
 USE TANKS 11 21 31 RATIO 3. 2. 1. UNTIL 0. TOTAL
 MANAGEMENT SEQUENCE 20
 LOAD TANKS 11 12 21 UNTIL 11
 LOAD TANKS 22 31 UNTIL 22
 CONDITION 11 180000. 10
 CONCITION 12 120000. 10
 CONCITION 15 100000. 10
 CONDITION 20 0. 20
 END FUEL DATA
 BEGIN PAYLOAD DATA
 BEGIN SEAT LOCATION DATA
 101 +00. -10. 54. TO 160 3000. -10. 54.
 201 400. -10. 34. TO 266 3000. -10. 34.
 END SEAT LOCATION DATA
 HOLD 1 BRICK .05
 7001 7002 7003 7004 7005 7006 7007 7008
 HOLD 2 BRICK -.05
 7011 7012 7013 7014 7015 7016 7017 7018
 LOADING SEQUENCE 1
 LOAD SEATS 101 166 201 266 TO 133 134 233 234 BY 1 -1 1 -1
 LOAD CARGO HOLD 1 IN DIRECTION +Z UNTIL 10000. LOADED
 LOAD CARGO HOLD 2 IN DIRECTION +Z UNTIL 5000. LOADED
 LOADING SEQUENCE 10
 LOAD SEATS 101 TO 166
 LOAD SEATS 201 TO 266
 LOAD CARGO HOLD 1 IN DIRECTION +X UNTIL FULL
 LOAD CARGO HOLD 2 IN DIRECTION +X UNTIL FULL
 LOADING SEQUENCE 11
 LOAD SEATS 166 TO 101 BY -1
 LOAD SEATS 266 TO 201 BY -1
 LOAD CARGO HOLD 2 IN DIRECTION -X UNTIL FULL
 LOAD CARGO HOLD 1 IN DIRECTION -X UNTIL FULL
 CONCITION 11 SEQUENCE 1 80 14000.
 CONCITION 12 SEQUENCE 1 132 0.
 CONCITION 13 SEQUENCE 1 0 15000.
 CONCITION 20 SEQUENCE 11 132 24500.
 CONCITION 30 SEQUENCE 10 132 24500.
 END PAYLOAD DATA

```

BEGIN PANEL DATA 1
*/* BODY
MASS SUBSETS 1
FUEL,PAYLCAC
  DIRECTION Z
    1 5100 5251 5252 5101
    2 5101 5253 5254 5102
    3 5202 5203 5103 5102 TO 12
*/* WING FIN
MASS SUBSETS 2
  DIRECTION Y
    13 5313 5316 5317 5314
    14 5316 5319 5320 5317
    15 5314 5317 5318 5315
    16 5317 5320 5321 5318
*/* WING
MASS SUBSETS 3
FUEL,PAYLOADC
  DIRECTION Z
    17 5400 5401 5411 5410 TO 21
**6      5   10 *=3          0   5
*/* HOR TAIL
MASS SUBSETS 4
  DIRECTION Z
    52 5500 5501 5511 5510 TO 53
**1      2   10 *=3          0   2
END PANEL DATA 1
END MASS DATA
BEGIN SUBSET DEFINITION
SUBSETS OF MASS SET 1
  N1 = 6001 TO 6036 6501 TO 6504
  E1 = ALL IN N1
  N2 = 6601 TO 6606
  E2 = ALL IN N2
  N3 = 6100 TO 6325
  E3 = ALL IN N3
  N4 = 6400 TO 6413
  E4 = ALL IN N4
  N5 = 6001 TO 6606
  E5 = ALL IN N5
END SUBSET DEFINITION
END PROBLEM DATA

```


Figure 208-1. Mass Model for Fuel and Payload Demonstration

Figure 208-2. Location of Fuel Tanks,Cargo Holds and Seating

Figure 208-3. Loadability Diagram, Fuel and Payload Demonstration

209. FULLY-STRESSED DESIGN AND COMPOSITE OPTIMIZATION (DECK 3)

209.1 DESCRIPTION OF PROBLEM

This problem demonstrates the fully-stressed design and composite optimization capabilities of the Design Module. The structural model, shown in figure 209-1, is the same as that described in section 203 with the addition of several CCOVER elements (element subset 200 as shown in figure 209-2). These CCOVERs have upper surfaces only with a stackup of (0/+45/90). The symmetric loading described in section 203 is factored by ten to obtain the design loading condition (except as shown in table 209-1).

All the CCOVER elements constitute a single optimization problem. A separate execution of the Design Module produces an optimized lay-up based upon the strains in a subregion consisting of one element.

The subsets used to define the design problem are shown in figures 209-2 and 209-3. The design options employed are summarized in table 209-1.

209.2 RESULTS

Two resize cycles were executed. The total weight at each cycle is shown in figure 209-4. As an example, upper and lower surface basic plate thicknesses before and after resize are shown in figure 209-5 for element subset 121. Margins of safety for this subset for the two cycles are shown in figures 209-6 and 209-7.

The composite optimization converged after 7 local and 2 global iterations producing the number of layers shown in table 209-2.

209.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL MATRIX PROGRAM DEMO03
PROBLEM 1C(DEMO03 - FULLY-STRESSED DESIGN/COMPOSITE OPTIMIZATION)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C              DECK ARE
C                  1. FULLY-STRESSED DESIGN
C                  2. COMPOSITE OPTIMIZATION
C                  3. STRENGTH MARGIN OF SAFETY PLOTS
C
C AUTHOR        BJURN BACKMAN
C
C CORE          170K (OCTAL)
C
C INTEGER BEGCYCL,ENDCYCL,CURCYCL
C DIMENSION CONVERG(17)
C USER COMMON (BEGCYCL,ENDCYCL,CURCYCL,CONVERG,SET,ISTAGE,IPOS)
C
C BEGCYCL=1
C ENDCYCL=2
C READ INPUT
C PRINT INPUT(NODAL)
C PRINT INPUT(STIFFNESS)
C PRINT INPUT(BC,STAGE=2)
C EXECUTE EXTRACT(EXNAME=TOTAL,LSUB=KGRID,ESUB=E1,NSUB=N1)
C EXECUTE GRAPHICS(GNAME=GEOM,OFFLINE=CALCOMP,RZ=30,RX=0,RY=20,
C X           TYPE=ORTH,POINT,SIZE=(20,20),EXNAME=TOTAL)
C PERFORM DESIGN (STAGE=2)
C PRINT INPUT(CDESIGN,SET=1)
C EXECUTE DESIGN(HISTORY,SET=1,STAGE=2,CYCLE=(1,2),IELN=(1,3,16,18,
C 119,21,29))
C EXECUTE DESIGN(COMPOSITE,SET=1,STAGE=2,CYCLE=3)
C PRINT OUTPUT(CDESIGN,SET=1)
C PRINT OUTPUT(CDESIGN,HISTORY,SET=1)
C EXECUTE EXTRACT(EXNAME=MARGINS,LSUB=SMS,STAGE=2,CYCLE=(1,2),
C X           ESUB=E121,NSUB=N121)
C EXECUTE GRAPHICS(GNAME=DESIGN,TYPE=ORTH,SIZE=(15,15),
C X           VIEW=100,SCALAR=COVSMS,SSCALE=100,EXNAME=MARGINS)
C END CONTROL PROGRAM
```

```

/* MODE2 /
BEGIN MATERIAL DATA
COMPOSITE MATERIAL DATA
C01 .0052 3.77E-4
70 30.0E6 2.7E6 .21 .7E6 1.E-6 == 1.28E5 2.E4 1.28E5 2.E4 6.4E4 ==5
500 29.E6 2.6E6 .20 .6E6 .4E-6 == 1.18E5 1.9E4 1.18E5 1.9E4 6.3E4 ==5
END MATERIAL DATA
BEGIN NODAL DATA
*/
/* BODY NODES
*/
      1   20.   0.   0.   TO   25   980.   0.   0.   BY   2
      27  1060.   0.   0.   30.0   TO   45   1780.   0.   0.   42.5   BY   2
**+1  200   0.   65.   0.   0.   0   200   0.   65.   **   BY   2
      45   TO   55   2180.   0.   0.   31.0   BY   2
**+1  200   0   200   0.   65.   **   BY   2
      55   TO   63   2500.   0.   0.   13.5   BY   2
**+1  200   0   200   0.   65.   **   BY   2
      65   2580.   0.   0.   TO   77   3060.   0.   0.   BY   2
      79   3140.   0.   0.   3.0   **   BY   2
**+1  200   0.   65.   **   BY   2
      81   3220.   0.   0.   6.5   **   BY   2
**+1  200   0.   65.   **   BY   2
      83   3300.   0.   0.   7.0   **   BY   2
**+1  200   0.   65.   **   BY   2
      85   3380.   0.   0.   2.0   **   BY   2
**+1  200   0.   65.   **   BY   2
      87   3460.   0.   0.   **   BY   2
      89   3540.   0.   0.   **   BY   2
*/
/* WING NODES
*/
      427  1060.   65.   0.   30.0   TO   435   1380.   180.   0.   17.5   BY   2
435   TO   445   1780.   180.   0.   27.5   BY   2
445   TO   455   2180.   180.   0.   25.0   BY   2
455   TO   463   2500.   180.   0.   13.0   BY   2
635   1380.   180.   0.   17.5   TO   641   1620.   265.   0.   10.0   BY   2
641   TO   655   2180.   265.   0.   22.5   BY   2
655   TO   663   2500.   265.   0.   12.5   BY   2
841   1620.   265.   0.   10.0   TO   847   1971.   380.   0.   9.0   BY   2
847   TO   855   2291.   380.   0.   17.0   BY   2
855   TO   863   2611.   380.   0.   10.0   BY   2
1047  1971.   380.   0.   9.0   TO   1051   2205.   455.   0.   8.5   BY   2
1051   TO   1059   2525.   455.   0.   15.0   BY   2
1059   TO   1063   2685.   455.   0.   8.0   BY   2
1251  2205.   455.   0.   8.5   TO   1254   2409.   538.   0.   6.5   BY   2
1254   TO   1259   2609.   538.   0.   11.0   BY   2
1259   TO   1263   2769.   538.   0.   5.5   BY   2
1454  2409.   538.   0.   6.5   TO   1456   2545.   594.   0.   5.0   BY   2
1456   TO   1459   2665.   594.   0.   7.5   BY   2
1459   TO   1463   2825.   594.   0.   3.5   BY   2
1656  2545.   594.   0.   5.0   TO   1658   2710.   680.   0.   3.0   BY   2
1658   TO   1663   2910.   680.   0.   3.0   BY   2
1858  2710.   680.   0.   3.0   TO   1860   2875.   765.   0.   1.5   BY   2
1860   TO   1863   2995.   765.   0.   2.5   BY   2
*/
/* WING TRAILING EDGE NODES
*/
      3001  2500.   65.   0.   13.5   TO   3005   2715.   65.   0.   1.0   BY   2
3101  2500.   180.   0.   13.0   TO   3105   2715.   180.   0.   1.0   **   BY   2
3201  2500.   265.   0.   12.5   TO   3205   2715.   265.   0.   1.0   **   BY   2
3405  2874.   594.   0.   1.0   TO   3605   3027.9   765.   0.   1.0   **   BY   2
                                BY 100 OF 86. 85.
*/
/* WING FIN NODES
*/
      REC WINGFIN 0. 594. 0.. 1. 594. 0., 0. -1. 0.
      2056  2545.   .1 0.   3.5   TO   2456   2830.   100.   0.   2.5   BY   200
      2058  2625.   .1 0.   3.5   TO   2458   2842.   100.   0.   3.0   **   BY   200
      2061  2745.   .1 0.   4.0   TO   2461   2859.   100.   0.   3.0   **   BY   200
      2063  2825.   .1 0.   4.0   TO   2463   2870.   100.   0.   3.0   **   BY   200
*/

```

*/ HORIZONTAL TAIL NODES

*/

RESUME GLOBAL

279	TO	679	3365.	200.	0.	2.0	BY	200
281	TO	681	3388.	200.	0.	2.5	**	
283	TO	683	3412.	200.	0.	2.5	**	
285	TO	685	3435.	200.	0.	1.0	**	

END NODAL DATA

BEGIN STIFFNESS DATA

BEGIN PROPERTY DATA

P1	.05	1.	*(WING FIN SPARS AND RIBS)						
P2	2.	0.	0.	.2	.2	*(WING FIN ATTACHMENT BEAMS - TYPE 1)			
P3	10.	0.	0.	100	100.	100.	*(WING FIN ATTACHMENT BEAMS - TYPE 2)		
P4	.15	.50	*(CONTROL SURFACE RIBS)						
P5	0.	**2	100.	100.	0.	10.	*(BEAMS AT 455 RIB TO PICK UP SPARS)		

END PROPERTY DATA

BEGIN ELEMENT DATA

*/

*/ WING FRONT SPAR

*/

SPAR	M5	N2003	227	429	.12	2.	TO	N2605	433	435	+
*2		N2205	429	431	.12	2.	BY	N200	2	2	
*2		N2805	435	637	.12	2.	TO	N3207	639	641	+
*2		N3007	637	639	.12	2.	BY	N200	2	2	
*2		N3407	641	843	.12	2.	TO	N3809	845	847	+
*2		N3609	843	845	.12	2.	BY	N200	2	2	
*2		N4009	847	1049	.12	2.					
*2		N4211	1049	1051							
*2		N4411	1052	1253							
*2		N4613	1253	1254							
*2		N4713	1254	1455							
*2		N4815	1455	1456							
*2		N4915	1456	1657							
*2		N5017	1657	1658							
*2		N5117	1658	1859							
*2		N5219	1859	1860							

*/

*/ WING REAR SPAR

*/

SPAR	M5	N5603	263	463	.40	12.					
*2		N5605	463	663	.40	12.					
*2		N5607	663	863	.34	12.					
*2		N5609	863	1063	.34	12.					
*2		N5611	1063	1263	.30	8.					
*2		N5613	1263	1463	.30	8.					
*2		N5615	1463	1663	.30	4.					
*2		N5617	1663	1863	.30	4.					

*/

*/ WING INTERMEDIATE SPARS

*/

SPAR	M5	N2203	229	429	.20	2.	TU	N3603	243	443	+
*2		N3803	245	445	.36	2.	BY	N200	2	2	
*2		N4803	255	455	.60	12.	TO	N5403	261	461	+
*2		N5003	257	457	.24	12.	BY	N200	2	2	
*2		N3005	437	637	.20	2.	TO	N3605	443	643	+
*2		N3805	445	645	.36	2.	BY	N200	2	2	
*2		N4005	447	647	.20	4.	TO	N4605	453	653	+
*2		N4805	455	655	.60	12.	TO	N5405	461	661	+
*2		N5005	457	657	.24	12.	BY	N200	2	2	
*2		N3607	643	843	.20	2.	TO	N3807	645	845	+
*2		N4007	647	847	.20	4.	TO	N4607	653	853	+
*2		N4807	655	855	.20	8.	BY	N200	2	2	

*2	N5007	657	857	.20	10.	TO	N5407	661	861	*					
*2	N4209	849	1 49	.20	4.	TO	N4009	853	1053	*					
*2	N4809	855	1055	.20	8.	BY	N200	2	2	*					
*2	N5009	857	1057	.20	10.	TO	N5409	861	1061	*					
*2	N4611	1053	1253	.12	4.	TO	N4811	1055	1255	*					
*2	N4911	1056	1256	.06	4.	TO	N5511	1062	1262	*					
*2	N4813	1255	1455	.12	4.	TO	N5513	1262	1462	*					
*2	N4913	1256	1456	.06	4.	BY	N100	1	1	*					
*2	N5015	1457	1657	.06	2.	TU	N5515	1462	1662	*					
*2	N5217	1659	1859	.06	2.	TO	N5517	1662	1862	*					
						BY	N100	1	1						
*/															
*/	WING IN-BODY SPARS														
*/															
	SPAR	M5	N2001	23	227	1.00	10.	TO	N3601	43	243	*			
*2	N3801	45	245	1.80	10.	TO	N4601	53	253	*					
*2	N4801	55	255	3.00	60.	BY	N200	2	2	*					
*2	N5001	57	257	1.20	60.	TO	N5401	61	261	*					
*2	N5601	63	263	2.00	60.	BY	N200	2	2	*					
*/															
*/	WING RIBS														
*/															
	SPAR	M5	N6001	223	229	.25	4.	TO	N6035	261	263	*			
*2	N6109	435	437	.30	4.	TO	N6135	461	463	*					
*2	N6215	641	643	.20	3.	TO	N6235	661	663	*					
*2	N6425	1051	1053	.20	4.	BY	N2	2	2	*					
*2	N6426	1053	1054	.20	4.	TO	N6435	1062	1063	*					
*2	N6629	1456	1457	.12	2.	TO	N6635	1462	1463	*					
*2	N6833	1860	1861	.30	1.4	TO	N6835	1862	1863	*					
*/															
*/	WING COVERS														
*/															
	COVER	M5	N7003	229	429	227	.06								
*2	N7203	229	429	431	231	.06									
	N8603	243	443	445	245	BY	N200	2	**3						
CCOVER	T70	N27203	229	429	431	231	0.	A0	TO	L1	C01	A-45.	A45.	A90.	*
	TO	N28603	243	443	445	245	BY	N200	2	**3					
COVER	M5	N8803	245	445	447	247	.12	.00	TO	*					
	N9603	253	453	455	255	BY	N200	2	**3						
*2	N9803	255	455	457	257	.10	.14								
*2	N10003	257	457	459	259	**									
*2	N10203	259	459	461	261	.26	.14	.22	.00						
*2	N10403	261	461	463	263	**									
*2	N7805	437	637	435	.06										
*2	N8005	437	637	639	.19	.06									
	N9605	453	653	655	.55	BY	N200	2	**3						
*2	N9805	455	655	657	457	.10	.14								
*2	N10005	457	657	659	459	**									
*2	N10205	459	659	661	461	.26	.14	.22	.00						
*2	N10405	461	661	663	463	**									
*2	N8407	643	843	641	.06										
*2	N8607	643	843	845	645	.06									
	N9607	653	853	855	655	BY	N200	2	**3						
*2	N9807	655	855	857	657	.10	.08								
*2	N10007	657	857	859	659	**									
*2	N10207	659	859	861	661	.30	.14	.20	.00						
*2	N10407	661	861	863	663	**									
*2	N9009	849	1049	1047	.06										
*2	N9209	849	1049	1051	851	.06									
	N9609	853	1053	1055	855	BY	N200	2	**3						

*2	N9809	855	1055	1057	857	.10	.08		
*2	N10009	857	1057	1059	859		**		
*2	N10209	859	1059	1061	861	.30	.14	.20	.00
*2	N10409	861	1061	1063	863		**		
*2	N9411	1053	1253	1051		.30	.14	.22	.12
*2	N9611	1053	1253	1254	1054	.30	.14	.22	.12
	N10511	1062	1262	1263	1063		BY N100	1	TO +
*2	N9713	1255	1455	1254		.30	.14	.22	.12
*2	N9813	1255	1455	1456	1256	.30	.14	.22	.12
	N10513	1262	1462	1463	1263		BY N100	1	TO +
*2	N9915	1457	1657	1456			.08		
*2	N10015	1457	1657	1658	1458	.08			
	N10515	1462	1662	1663	1463		BY N100	1	TO +
*2	N10717	1659	1859	1658		.08			
*2	N10217	1659	1859	1860	1660	.08			TO +
	N10517	1662	1862	1863	1663		BY N100	1	TO +

*/

*/ WING IN-BODY COVERS

*/

COVER	M5	N7001	27	227	229	29	.30		
		N8601	43	243	245	45		BY N200	2
*2		N8801	45	245	247	47	.60		TO +
		N9601	53	253	255	55		BY N200	2
*2		N9801	55	255	257	57	.70		
*2		N10001	57	257	259	59	.70		
*2		N10201	59	259	261	61	1.30	.70 1.10	.00
*2		N10401	61	261	263	63			**

*/

*/ WING FIN SPARS

*/

SPAR	M5	N11001	2056	2250		P1			
*2		N11003	2256	2456		*			
*2		N11201	2058	2258		*			
*2		N11203	2258	2458		*			
*2		N11501	2061	2261		*			
*2		N11503	2261	2461		*			
*2		N11701	2063	2263		*			
*2		N11703	2263	2463		*			

*/

*/ WING FIN RIBS

*/

SPAR	M5	N12001	2256	2258		P1			
*2		N12003	2258	2261		*			
*2		N12005	2261	2263		*			
*2		N12201	2456	2458		*			
*2		N12203	2458	2461		*			
*2		N12205	2461	2463		*			

*/

*/ WING FIN COVERS

*/

COVER	M5	N13001	2056	2256	2258	2058	.05		
*2		N13003	2058	2258	2261	2061	*		
*2		N13005	2061	2261	2263	2063	*		
*2		N13201	2256	2456	2458	2258	*		
*2		N13203	2258	2458	2461	2261	*		
*2		N13205	2261	2461	2463	2263	*		

*/

*/ WING FIN ATTACHMENT BEAMS

*/

BEAM	Z5	N20001	1456	2056	1463	P2			
*2		N20003	1458	2058	1463	*			
*2		N20005	1461	2061	1463	*			
*2		N20007	1463	2063	1461	*			
*2		N21001	1458	1458		P3			
*2		N21003	1458	1461		*			
*2		N21005	1462	1463		*			

*/

/* WING TRAILING EDGE CONTROL SURFACE RIBS

*/	SPAR	M5	N101	263	3003	P4
**2	0	0	2	200	100	0
**2			N102	3003	3005	*
**2	0	0	2	100	100	0
**2			N108	1463	3405	*
**2	0	0	1	200	100	*

/* WING TRAILING EDGE CONTROL SURFACE COVERS

*/	COVER	M5	N151	263	463	3103	3003	.10
**2			N153	463	663	3203	3103	*
**2			N152	3003	3103	3105	3005	*
**2			N154	3103	3203	3205	3105	*
**2			N156	1463	1663	3505	3405	*
**1	0	0	1	200	200	100	100	*

/* HORIZONTAL TAIL SPARS

*/	SPAR	M5	N14003	279	479	.10	1.2
**2			N14005	479	679	**	
**2			N14103	282	481	.05	1.8
**2			N14105	481	681	**	
**2			N14203	283	483	.05	1.6
**2			N14205	483	683	**	
**2			N14303	285	485	.20	2.6
**2			N14305	485	685	**	

/* HORIZONTAL TAIL RIBS

*/	SPAR	M5	N14401	279	281	.15	2.0	TO	N14405	283	285	*
**2			N14501	479	481	.10	1.2	TO	N14505	483	485	*
**2			N14601	679	681	.10	1.2	TO	N14605	683	685	*
							BY	N2		2	2	

/* HORIZONTAL TAIL IN-BODY SPARS

*/	SPAR	M5	N14001	79	279	.50	6.0
**2			N14101	81	281	.25	9.0
**2			N14201	83	283	.25	8.0
**2			N14301	85	285	1.00	13.0

/* HORIZONTAL TAIL COVERS

*/	COVER	M5	N15003	279	479	481	281	.16
**2	0	0	200	2	**3			0.
COVER	M5	N15005	479	679	681	**81	.07	
**2	0	0	200	2	**3			0.

/* HORIZONTAL TAIL IN-BODY COVERS

*/	COVER	M5	N15001	79	279	281	81	.80					
			N15401	83	283	285	85						
							BY	N200		2		TO	*

/* BODY BEAMS

*/	BEAM	M5	N1001	1	3	5.	0.	**3	16000.	10.	0.	**3	30000.
**30	0	0	2	2	2	5.		**4	14000.	5.		**4	14000.
**2			N1063	63	65	160.		**4	450000.	148.		**4	416000.
**12	0	0	2	2	2	-12.		**4	-34000.	-12.		**4	-34000.

/* BEAMS AT 455 RIB TO PICK UP DISCONTINUED SPARS

*/	BEAM	M5	N30002	1053	1054	P5
**4	0	0	2	2	2	*
BEAM	M5	N30011	1063	1062	P5	
**4	0	0	-2	-2	-2	*

END ELEMENT DATA
END STIFFNESS DATA

```

BEGIN BC DATA
STAGE 2
  SUPPORT ASYM IN SURFACE 2
  SUPPORT TX TZ RY FOR 89
END BC DATA
BEGIN LOAD DATA
SET 1 STAGE 2
LOAD CASE ID SYMM **SYMMETRIC AIRLOADS*
BEGIN NODAL LOAD DATA
  ORDER FZ
  CASE SYMM
    3   -2275.
    9   -6110.
   15   -4970.
   23   -3255.
   31   -245.
   39   -5400.
   45   -380.
   53   -3830.
   61    140.
   67   -165.
   75   -6365.
   83   -3495.
   87   -3160.
   85   -150.
   89   -150.
  ORDER FZ FY
  2056   -125.    1220.
  2456   -100.    1360.
  2458   -100.    -410.
  2058   -125.     955.
  2061   -125.    1075.
  2461   -100.    7665.
  2463   -100.    -4960.
  2063   -125.    -660.
  ORDER FZ
  431   13475.
  231   -8500.
  637   8030.
  237   -7750.
  245   -11770.
  655   -4640.
  255   -5330.
  663   1565.
  263   5445.
  843   36405.
  645   -20750.
  105   21130.
  649   3435.
  1055   3365.
  1063   1435.
  1456   13820.
  1459   21815.
  1463   6155.
  1860    860.
  1861   14395.
  1863    2762.
  659   -490.
  1059   -8710.
  1461   -10695.
  1862   -5190.
  279   -5060.
  679   -4040.
  681   -7375.
  281   -5415.
  283   -1620.
  683   -865.
  685   -1725.
  285   -3425.
END NODAL LOAD DATA
END LOAD DATA

```



```

*/ GROUP 5 /
*/ E004 IS THE HORIZONTAL TAIL /
*/ E002 IS THE VERTICAL WING FIN /
E2 = SLAB Y 594. /
E4 = SPARS COVERS TUBE 79 279 679 685 85 DIRE. ON 0. 0. 1. /
*/ E200 AND E201 ARE COMPOSITE SUBSETS /
E200 = 27203 TO 28603 BY 200 /
E201 = 27203 /
END SUBSET DEFINITION /
BEGIN MATERIAL DATA /
M51 .16 /
60 1. *=11 170.E3 168.E3 166.E3 140.E3 138.E3 136.E3 100.E3 98.E3 96.E3
      50.E3 *=8 /
120 *=12 165.E3 163.E3 161.E3 135.E3 133.E3 131.E3 95.E3 93.E3 91.E3
      48.E3 *=8 /
200 *=12 160.E3 158.E3 156.E3 130.E3 128.E3 126.E3 90.E3 88.E3 86.E3
      46.E3 *=8 /
500 *=12 130.E3 128.E3 126.E3 100.E3 98.E3 96.E3 60.E3 58.E3 56.E3
      26.E3 *=8 /
M52 .10 /
50 1. *=11 90.E3 88.E3 86.E3 70.E3 68.E3 66.E3 50.E3 48.E3 46.E3
      13.E3 *=8 /
200 *=12 80.E3 78.E3 76.E3 60.E3 58.E3 56.E3 40.E3 38.E3 36.E3
      12.E3 *=8 /
600 *=12 70.E3 68.E3 66.E3 50.E3 48.E3 46.E3 30.E3 28.E3 26.E3
      11.E3 *=8 /
END MATERIAL DATA /
BEGIN DESIGN DATA /
MODE 1 /
BEGIN TABLE DATA /
BC51 60 .04 .08 .12 .30 110.E3 115.E3 120.E3 130.E3 /
BC51 120 *4 105.E3 110.E3 115.E3 125.E3 /
BC51 200 *4 100.E3 105.E3 110.E3 120.E3 /
BC51 500 *4 80.E3 85.E3 90.E3 100.E3 /
BC52 60 *4 50.E3 52.E3 54.E3 55.E3 /
BC52 200 *4 48.E3 50.E3 52.E3 53.E3 /
BC52 500 *4 25.E3 26.E3 27.E3 27.5E3 /
BS51 60 *4 70.E3 75.E3 80.E3 83.E3 /
BS51 180 *4 60.E3 65.E3 70.E3 72.E3 /
BS51 540 *4 30.E3 35.E3 40.E3 41.E3 /
BS52 60 *4 35.E3 37.5E3 40.E3 41.5E3 /
BS52 180 *4 30.E3 32.5E3 35.E3 36.E3 /
BS52 540 *4 15.E3 17.5E3 20.E3 20.5E3 /
END TABLE DATA /
SET 1 /
BEGIN PROPERTY DATA /
BEAMS .5 /
END PROPERTY DATA /
BEGIN FIXED DATA /
E117 0 0 .04 .03 .03 0 0 .04 .03 .03 /
END FIXED DATA /
BEGIN LOWER BOUND DATA /
E118 0 0 .06 0 0 0 0 .05 0 0 /
E119 0 0 .06 0 0 0 0 .06 0 0 /
E120 0 0 .07 .04 0 0 0 .06 .03 0 /
E121 .5 0 .06 .04 0 .5 0 .06 .04 0 /
E122 .5 0 .09 0 0 0 0 .09 0 0 /
E123 0 0 .045 0 0 0 0 .045 0 0 /
SPARS .04 .7 *=3 .5 /
END LOWER BOUND DATA /
BEGIN UPPER BOUND DATA /
E123 0 0 .15 0 0 0 0 .12 0 0 /
END UPPER BOUND DATA /
BEGIN MARGIN DATA /
E120 .15 /
E4 SPARS .20 /
N6833 .35 /
END MARGIN DATA /
BEGIN SIZING DATA /
M5 /
M51 E121 BC51 BS51 .5 /
M52 E122 BC52 B .65 /
M51 SPARS B BS52 /
END SIZING DATA /

```

```
BEGIN RESTRAIN SIZING DATA /
E116 /
E125 /
E4 COVERS /
BEAMS /
E124 /
E2 /
END RESTRAIN SIZING DATA /
BEGIN OPTIMIZATION DATA /
CCOVER E200 E201 /
ENC OPTIMIZATION DATA /
STAGE 2 1 1 /
BEGIN LOADS DATA /
CASE SYMM 10. /
CASE SYMM 20. T400 E121 /
CASE SYMM 15. T350 E122 /
CASE SYMM 10. T300 E123 /
CASE SYMM 15. E105 /
CASE SYMM 30. E107 /
CASE SYMM 30. E106 /
CASE SYMM 2000. E200 /
END LOADS DATA /
BEGIN SUPERPOSITION DATA /
CASE HEAVY 15. SYMM 15. SYMM E106 /
END SUPERPOSITION DATA /
END DESIGN DATA /
END PROBLEM DATA /
```

Table 209-1. Summary of Design Options Used

ELEMENT SUBSET NO.	ELEMENT TYPES	LOWER BOUND	UPPER BOUND	FIXED	SPECIFIED MARGIN	SIZING RESTRAINED	LOAD FACTOR	TEMPERATURE	COMPOSITE OPTIMIZATION
2 4	SPARS & COVERS				X (SPARS)	X (COVERs)			
105 106 107	SPARS					X	15 30 30		
116 117 118 119		X		X		X			
120	COVERs	X			X				
121 122 123 124 125		X	X			X	20 15	400°F 350°F 300°F	
— — 200	SPARS BEAMS CCOVERS	X				X	2000		X

Table 209-2. Optimum Number of Layers per Lamina

Fiber Angle	Number of Layers
0°	10
+45°	1
-45°	1
90°	48

Figure 209-1. Structural Model, Design Demonstration

Figure 209-2. Element Subsets for Design

Figure 209-3. SPAR Element Subsets for Design

FIGURE 209-4. Total Weight vs. Cycle, Design Demonstration

$T(0)U/T(0)L$

Figure 209-5. Surface Thickness Changes, Element Subset 121

PLOT ID = MARGINS. COVAMS . CYCLE = 1

Figure 209-6. Margins of Safety,Cycle 1, Element Subset 121

PLOT ID = MARGINS_COVSM8 .CYCLE = 2

Figure 209-7. Margins of Safety,Cycle 2 , Element Subset 121

210. THERMAL FULLY STRESSED DESIGN (DECK 17)

210.1 DESCRIPTION OF PROBLEM

This demonstration problem consists of a thermal fully stressed design of the well-known 25-bar transmission tower. The model and loading are based upon the information shown in reference 210-1. The loading consists of nodal loads at four nodes and thermal loads at each node. The model is shown in figure 210-1.

The design is performed iteratively and terminated when the relative weight change is less than 5%. The starting point for the design variables is unit area for all 25 ROD elements.

210.2 RESULTS

The analysis stabilized after two iterations to a relative weight change of less than 5%. The total weight compares quite favorably with that reported in reference 210-1. A plot of weight vs. design cycle is shown in figure 210-1. Thermal margins of safety for the elements on one face of the tower are shown in figure 210-3.

210.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL MATRIX PROGRAM DEMO17
PROBLEM ID10EM017 - THERMAL DESIGN OF A 25-BAR TRUSS

C PUPPCSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C DECK ARE
C           1. THERMAL DESIGN
C           2. PLOTS OF THERMAL MARGINS OF SAFETY

C AUTCR       BJORN BACKMAN

C CCRE        145K (OCTAL)

USER COMMON (BEGCYCL,ENDCYCL,CURCYCL,CCNVERG,ISET,ISTAGE,IPCS)
INTEGER BEGCYCL,CURCYCL,ENDCYCL
DIMENSCA CONVERG(17)
CCNVERG(15) = .05
CCNVERG(16) = 1.0
ENDCYCL = 5
READ INPUT
PRINT INPUT(NCDAL)
PRINT INPUT(STIFFNESS)
EXECUTE EXTRACT(XNAME=CECM,LSUB=KGRC,ESUB=E1,NSUB=N1)
EXECUTE GRAPHICS(XNAME=GECM,OFFLINE=CALCCMP,TYPE=ORTH,SIZE=(15.,
X           15.),LABEL=N,RZ=20.,FY=1C.,RX=0.,EXNAME=GECM)
IF(BEGCYCL .LT. 1) BEGCYCL=1
IF(ENDCYCL .LT. BEGCYCL ) ENDCYCL=BEGCYCL
CURCYCL = BEGCYCL
IF(BEGCYCL .EQ. 1) GO TO 70001

C THIS IS A RESTART,
C LOAD RANDOM FILES FROM SAVESS4
C
LOAD FILES(SAVESS4=REWIND)
SAVE MATRIX(SAVESS4=REWIND,MEGRNF,D31)
GC TC 70002
70001 CONTINUE
C
BEGCYCL = 1,
C COMPUTE AND PRINT INITIAL WEIGHT
C
EXECUTE MASS(ISET=1)
70002 CONTINUE
CALL DESCUNS
IF(CURCYCL .EQ. 0) CALL EXIT
C
C DESIGN CYCLES BEGCYCL THROUGH ENDCYCL
C
70003 CONTINUE
EXECUTE STIFFNESS(ISET=1,LLMP=C,C)
EXECUTE MERGE(STIFFNESS,SET=1,STAGE=1,K11=11,K13=13,K33=33)
EXECUTE LCACSI(SET=1,STAGE=1,LC=ALL,MATERIAL=CONSTANT)
EXECUTE MERGE(LOADS,SET=1,STAGE=1,L11=11,L31=31)
IF(CUFYCYL .GT. 1) GO TO 70004
C
C FIRST CYCLE, MERGE AND SAVE SUPPORT DISPLACEMENTS
C
EXECUTE MERGE(DISPLACEMENT,SET=1,STAGE=1,[31=31])
SAVE MATRIX(SAVESS4=REWIND,MEGRNF,D31)
70004 CONTINUE
EXECUTE MULTIPLY([TEMP=[L11-K13*D31]])
EXECUTE CHOLESKY(SOLVE,K11,D11,TEMP)
IF(CURCYCL .EQ. ENDCYCL) GC TC 70005
```

```

C
C INTERMEDIATE CYCLE, ASSEMBLE DISPLACEMENTS AND
C COMPUTE STRESSES IN INTERNAL ORDER
C
C EXECUTE STRESS(SET=1,STAGE=1,INTERNAL,D1=D11,D3=D31)
C GO TO 70006
70005 CONTINUE
C
C LAST CYCLE, ASSEMBLE DISPLACEMENTS AND
C COMPUTE STRESSES IN USER ORDER
C
C EXECUTE STRESS(SET=1,STAGE=1,D1=D11,D3=D31)
70006 CONTINUE
EXECUTE CSICN(SET=1,STAGE=1,CYCLE=CLRCYCL,PRCCFCURE=1,TFSD,NCFS0)
EXECUTE MASS(SET=1)
CALL DESCUNS
IF(CURCYCL .GE. ENDCYCL) GO TO 70007
PURGE FILES(MERGRNF,CHLRF,LLTRNF,STIFRNF,LCACRNF,STRERNF,
  MASSRNF)
LCAC FILES(SAVESS4=REINC)
CURCYCL = CURCYCL + 1
GO TO 70003
70007 CONTINUE
C
C LAST CYCLE.
C COMPUTE REACTIONS AND PREPARE SAVESS4
C
EXECUTE MULTIPLY(B31=[-L31+K13(T)*U11+K23*D31])
SAVE MATPIX(SAVESS4,MULTRNF,P31)
SAVE MATPIX(SAVESS4,VASSRF,TOTLWT#)
SAVE FILES(SAVESS4,DATAFRF,DESIRNF,LCACRNF,STRERNF)
PRINT OUTPUT (DESIGN)
PRINT OUTPUT(DESIGN,PISTORY,CYCLE=HEGCYCL TO ENDCYCL)
EXECUTE EXTRACT(ExNAME=MARGIN,LSUB=TMS,CYCLE=(1,2,3),ESUB=E2,
  NSUB=N2)
EXECUTE (GRAPHICSIGNAME=MARGIN,TYPE=ORTH,SIZE=(20.,20.),
  SCALAR=RCTMS,SSCALE=3,VY=-1,EXNAME=MARGIN)
END CONTROL PROGRAM

```

```

BEGIN MATERIAL DATA /
M51 .101 /
 0 1.E7 .3 3.8E6 0. 1.E7 .3 3.8E6 0. 1.E7 .3 3.8E6 .0
 40.E3 *=17 /
 500 1.E7 .3 3.8E6 6.4E-3 1.E7 .3 3.8E6 6.4E-3 1.E7 .3 3.8E6
 6.4E-3 40.E3 *=17 /
END MATERIAL DATA /
BEGIN NODAL DATA /
 1 0. -25. 200. /
 2 0. +25. 200. /
 3 -37.5 37.5 100. /
 4 37.5 37.5 100. /
 5 37.5 -37.5 100. /
 6 -37.5 -37.5 100. /
 7 -100. 100. 0. /
 8 100. 100. 0. /
 9 100. -100. 0. /
10 -100. -100. 0. /
END NODAL DATA /
BEGIN STIFFNESS DATA /
BEGIN ELEMENT DATA /
R00 M51 N1 1 2 1. /
R00 M51 N2 1 4 1. /
R00 M51 N3 2 3 1. /
R00 M51 N4 1 5 1. /
R00 M51 N5 2 6 1. /
R00 M51 N6 2 4 1. /
R00 M51 N7 2 5 1. /
R00 M51 N8 1 3 1. /
R00 M51 N9 1 6 1. /
R00 M51 N10 3 6 1. /
R00 M51 N11 4 5 1. /
R00 M51 N12 3 4 1. /
R00 M51 N13 5 6 1. /
R00 M51 N14 3 10 1. /
R00 M51 N15 6 7 1. /
R00 M51 N16 4 9 1. /
R00 M51 N17 5 8 1. /
R00 M51 N18 4 7 1. /
R00 M51 N19 3 8 1. /
R00 M51 N20 5 10 1. /
R00 M51 N21 6 9 1. /
R00 M51 N22 6 10 1. /
R00 M51 N23 3 7 1. /
R00 M51 N24 5 9 1. /
R00 M51 N25 4 8 1. /
END ELEMENT DATA /
END STIFFNESS DATA /
BEGIN BC DATA /
  SET 1 STAGE 1 /
    SUPPORT TX TY TZ FOR 7 8 9 10 /
END BC DATA /
BEGIN LOADS DATA /
  SET 1 STAGE 1 /
    BEGIN NODAL LOADS DATA /
      FREEDOM FX1 FY1 FZ1 FX2 FY2 FZ2 FX3 FX6 /
      1 1000. 10000. -5000. 1000. 10000. -5000. 500. 500. /
    END NODAL LOADS DATA /
    BEGIN NODAL THERMAL LOADS DATA /
      CASE 2 /
        1 2 100. /
        3 TO 6 30. /
        7 TO 10 -35. /
    END NODAL THERMAL LOADS DATA /
END LOADS DATA /
BEGIN SUBSET DEFINITION
  SUBSETS OF STIFFNESS SET 1 /
    E1 = ALL /
    N1 = ALL /
    N2 = 1 5 6 9 10 /
    E2 = ALL IN N2 /
END SUBSET DEFINITION /

```

```
BEGIN DESIGN DATA /
  MODE 1 /
  SET 1 /
BEGIN SIZING DATA /
  #51 /
END SIZING DATA /
STAGE 1 1 0 TH1 /
BEGIN THERMAL DATA /
CASE UFF U 1. 1 1. 2 /
END THERMAL DATA /
END DESIGN DATA /
END PROBLEM DATA /
```


Figure 210-1. 25-Bar Transmission Tower Model

Figure 210-2. Total Mass vs. Design Cycle, 25-Bar Transmission Tower

210.7

Figure 210-3. Thermal Margins of Safety, 25-Bar Transmission Tower

211. FLUTTER ANALYSIS OF AN SST AIRCRAFT (DECK 4)

211.1 DESCRIPTION OF ANALYSIS

Four separate flutter analyses of an SST aircraft are performed in this demonstration problem. The structural model, shown in figure 211-1, is the same as that described in section 203. The same degrees of freedom are retained in the vibration analysis; only the symmetric modes are considered.

The mass is modelled using mass plate elements as shown in figure 211-2. The mass of the stiffness elements is ignored.

The vibration analysis is performed using a reduced stiffness matrix and a non-diagonal reduced mass matrix produced directly by the Mass Processor.

All four flutter analyses employ the same set of generalized coordinates which are equivalent to the first twenty free-free symmetric vibration modes. The first flutter analysis, performed at Mach 0.8, is based on an aerodynamic model of the wing and tail using only the tail oscillations. Doublet Lattice airforce theory is used. Aerodynamic influence coefficients are obtained for four reduced frequencies. They are produced by FLEXAIR to obtain two sets of generalized airforces; the first set includes the effects of the flexibility of the truncated higher frequency modes of vibration, while the second set does not. V-q and V-f plots are obtained for both sets of generalized airforces. This analysis is shown schematically in figure 211-3.

The second flutter analysis is also based on the Doublet Lattice theory, but includes the wing, body and tail in the aerodynamic representation. Only the first ten generalized coordinates are used in the flutter analysis. This analysis is shown schematically in figure 211-4.

The third flutter analysis is performed at Mach 1.526 using Mach Box aerodynamics including the aerodynamic influence of the wing upon the tail. Only the lowest ten vibration modes are used. A consistent flutter speed and altitude consistent with the Mach number (matched point) is calculated. This analysis is shown schematically in figure 211-5.

The fourth flutter analysis is performed at Mach 0.8 using RHO3 aerodynamics for the wing and control surfaces. Doublet Lattice aerodynamics are used for the tail with inter-surface aerodynamic interaction ignored. The flutter analysis is performed for several combinations of generalized coordinates. This analysis is shown schematically in figure 211-6.

211.2 RESULTS

Results of the flutter analyses are presented as V-q and V-f plots. Results of the first analysis are presented in figures 211-7 to 211-10. RESULTS of the second analysis are presented in figures 211-11 and 211-12.

BOEING COMMERCIAL AIRPLANE COMPANY

211.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEMO04
PROBLEM ID(DEMO04 - FLUTTER ANALYSES OF AN SST AIRCRAFT)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C              DECK ARE
C              1. DUBLAT AERODYNAMICS
C              2. RESIDUAL FLEXIBILITY (FLEXAIR)
C              3. MACHBOX AERODYNAMICS
C              4. RHO3 AERODYNAMICS
C              5. FLUTTER ANALYSES
C              6. V-G AND V-F PLOTS

C AUTHOR       JOHN HOCLEY
C CORE         260K (OCTAL)

C READ INPUT
PRINT INPUT(NODAL)
PRINT INPUT(STIFFNESS)
PRINT INPUT(MASS)
EXECUTE EXTRACT(EXNAME=KGRID,LSUB=KGRID,ESUB=E1,NSUB=N1)
EXECUTE GRAPHICS(GNAME=GEOM,OFFLINE=GERRER,
X           TYPE=(ORTH,POINT),SIZE=(30,20),RZ=30,RY=20,RX=0,
X           EXNAME=KGRID)
EXECUTE EXTRACT(EXNAME=MGRID,LSUB=MGRID,ESUB=E2,NSUB=N2)
EXECUTE GRAPHICS(GNAME=GEOM,TYPE=(ORTH,POINT),SIZE=(30,20),
X           RZ=30,RY=20,RX=0,EXNAME=MGRID)

C CALCULATE NORMAL MODES

C PERFORM K-REDUCE
PRINT INPUT(BC)
EXECUTE MASS(OPTION=3)
PRINT OUTPUT(MASS, MDC=MDC****)
EXECUTE VIBRATION(ISTIF=KPED,MASS=MDC001A,NFREQS=16,
A   SUBSETS=(N51,N42,N43,N53,N44,N45,N55,N46,N56,N57,N67,N62,N99))
A   SUBSETS=(N51,N42,N43,N53,N44,N45,N55,N46,N56,N57,N67,N62,N99))

C INTERPOLATE MODE SHAPES

C EXECUTE INTEFP (N62=(BEAMSPLINE,C062),DOF=1CO0, BEAM0=N064,
A   BEAM=(N063,N065,N066), BEAMI=(N068 TO N070, N061))
EXECUTE INTERP (
A   N51=(MOTIONAXIS,C51),DOF=1000,DEFNPTS=(1,89),ANGLES=(90.0,90.0),
B   N42=(SURFSPLINE),DOF=1000,
C   N43,DOF=1000,
D   N53=MOTIONAXIS,DOF=1110,DEFNPTS=(83,283,483,683),
E   N44=SURFSPLINE,DOF=10000,
F   N45,DOF=1000)
EXECUTE INTERP (
G   N55=(MOTIONAXIS,C55),DOF=1110,DEFNPTS=(263,663),
H   N56,DOF=1110,DEFNPTS=(1463,1663,1863),
I   N57,DOF=1110,DEFNPTS=(285,685),
J   N46=(SURFSPLINE,C46),DOF=1000,
K   N67=(MOTIONOPT),DOF=1110,
Z )
```

```

EXECUTE INTERP (
L N57=(POLYNOMIAL,C77), MODE, A00=1.0, M00E, M00E, A10=10.0)
EXECUTE INTERP ( AIC=N99,
A N42=(1,CA42), DDF=1000,
D N43=(1,CA43), DDF=1000)

C
C FLUTTER ANALYSIS USING DUBLAT WITH AND WITHOUT FLEXAIR
C

EXECUTE DUBLAT ( CASE=3, MACH=0.8, KVAL = (.005,.002,.0006,.0001))
EXECUTE FLEXAIR ( ID=FL01, DUBLAT, CASE=3, ALT=(0.0, 10000.0),
A FREEDOMS= {TZ263, RY263}, SUBSET=N99)
PRINT OUTPUT (FLEXAIR, ID=FL01, ALT=0.0, KVAL= (.005,.002,.0001))
EXECUTE FLEXAIR ( ID=FL02, DUBLAT, CASE=3,
A FLUTFREQ=0.0, FREEDOMS={TZ263, RY263}, SUBSET=N99, ALT=0.0)
PRINT OUTPUT (FLEXAIR, ID=FL02)
EXECUTE ADDINT (ID=AFC, INT, FLEXAIR=FL01)
EXECUTE FLUTTER (GAFID= AFC, COND=4, VMAX=2000.0)
PRINT OUTPUT (FLUTTER, CASE=1, COND=4)
EXECUTE EXTRACT (EXNAME=FLPL4D, LSUB=VGVF, COND=4)
EXECUTE GRAPHICS (GNAME=FLPL4D, TYPE=GRAPH, X=V, Y1=G, Y2=F,
1 XMIN=0.0, XMAX=1000.0, Y1MIN=-.1, Y1MAX=.1, Y2MIN=0.0, Y2MAX=9.0,
2 SIZE=(6,6), EXNAME=FLPL4D)
EXECUTE ADDINT (ID=AFC, INT, FLEXAIR=FL02)
EXECUTE FLUTTER (GAFID= AFC, COND=5, VMAX=2000.0)
PRINT OUTPUT (FLUTTER, CASE=1, COND=5)
EXECUTE EXTRACT (EXNAME=FLPL4E, LSUB=VGVF, COND=5)
EXECUTE GRAPHICS (GNAME=FLPL4E, TYPE=GRAPH, X=V, Y1=G, Y2=F,
1 XMIN=0.0, XMAX=1000.0, Y1MIN=-.1, Y1MAX=.1, Y2MIN=0.0, Y2MAX=9.0,
2 EXNAME=FLPL4E)

C
C FLUTTER ANALYSIS USING DUBLAT FOR WING, TAIL, AND BODY.
C ADDITIONAL AIRFORCES FROM ADDINT.
C

PRINT INPUT (DUBLAT, CASE=2 )
EXECUTE DUBLAT (CASE=2, MACH=0.8, BREF=1000.0, QUASI=WT,
A KVAL= (5.0, 2.0, 1.0, 0.6, 0.2))
PRINT OUTPUT (DUBLAT, CASE=2, LEVEL= (1,2,3,4,5))
EXECUTE ADDINT (ID = AFC, INT, DUBLAT, CASE=2, GET=73 )
PRINT OUTPUT (ADDINT, ID=AFC, KVAL= (2.0, 1.2, 0.6, 0.3))
EXECUTE FLUTTER (GAFID=AFC, COND=2,
A STILL,NMODES=10,ITER=3,DENSITY=.0020482)
PRINT OUTPUT (FLUTTER, CASE=1, COND=2)
EXECUTE EXTRACT (EXNAME=FLPL4B, LSUB=VGVF, COND=2)
EXECUTE GRAPHICS (GNAME=FLPL4B, TYPE=GRAPH, X=V, Y1=G, Y2=F,
1 XMIN=0., XMAX=1000., Y1MIN=-1., Y1MAX=1., Y2MIN=0., Y2MAX=10.,
2 EXNAME=FLPL4B)

C
C FLUTTER ANALYSIS USING MACHBOX FOR 2 NON-COPLANAR SURFACES
C WITH SUBSONIC LEADING EDGES
C

PRINT INPUT (MACHBOX)
EXECUTE MACHBOX ( MACH=1.5, COND=1, BREF=1000.0 ,
A KVAL = ( 10.0, 2.0, 1.0, 0.4 , 0.15 ))
PRINT OUTPUT (MACHBOX, LEVEL=(1,4))
EXECUTE ADDINT (ID=AFC, INT, MACHBOX, GET=140)
PRINT OUTPUT (ADDINT, ID=AFC)
PRINT INPUT(FLUTTER)
EXECUTE FLUTTER (GAFID=AFC, COND=3,
B EVEC=FLUTTER, AVEC=FLUTTER,
A NMODES=10,NKF=40,MPS=5000.0,NALT=3)
PRINT OUTPUT (FLUTTER, CASE=1, COND=3)
EXECUTE EXTRACT (EXNAME=FLPL4C, LSUB=VGVF, COND=3)
EXECUTE GRAPHICS (GNAME=FLPL4C, TYPE=GRAPH, X=V, Y1=G, Y2=F,
1 XMIN=420., XMAX=2000., Y1MIN=-.237, Y1MAX=.568, Y2MIN=1., Y2MAX=5.,
2 EXNAME=FLPL4C)

```

ORIGINAL PAGE IS
OF POOR QUALITY

C FLUTTER ANALYSTS USING RHO3 FOR WING WITH CONTROL SURFACES AND
C DUBLAT FOR TAIL. RESULTS COMBINED USING ADUINT.
C
PRINT INPUT (RHO3)
EXECUTE RHO3 (MACH = 0.8,
A KVALUES = (0.005, 0.002, 0.001, 0.0007, 0.0004, 0.0001)
PRINT OUTPUT (RHO3)
PRINT INPUT (DUBLAT)
EXECUTE DUBLAT (MACH=0.8,KVALUE=(5.0,2.0,1.0,0.7,0.4,0.1),
A BREF=1000.0, QUASI=TQ)
PRINT OUTPUT (DUBLAT, LEVEL= (1,2,51)
EXECUTE ADDINT (ID=AFA,ADD,INT,RHO3,DUBLAT,IGAIN=25)
PRINT OUTPUT (ADDINT, ID=AFA, KVAL= (.005, .001, .00076, .00025)
EXECUTE FLUTTER (GAFID=AFA, DFNSITY=.0020482, GCRUSS=(-.03,.0,.05),
A VMIN= 500., VMAX=1500.0, FMIN=2.8, FMAX=3.5,
A EVAL=(1 TO 126 BY 20), EVEC=(FLUTTER, 1, 51, 101), AVEC=FLUTTER)
PRINT OUTPUT (FLUTTER, COND=1)
EXECUTE EXTRACT (EXNAME=FLPL4A; LSUB=VGVF,COND=1)
EXECUTE GRAPHICS (GNAME=FLPL4A, TYPE=GRAPH, X=V, Y1=G, Y2=F,
1 XMIN=0., XMAX=2000., Y1MIN=-.1, Y1MAX=.1, Y2MIN=0., Y2MAX=10.0,
3 EXNAME=FLPL4A)
EXECUTE GRAPHICS (GNAME=FLPL4A1, TYPE=GRAPH, X=V, Y1=G, Y2=F,
1 XMIN=500., XMAX=1500., Y1MIN=-.05, Y1MAX=.05, Y2MIN=2.8, Y2MAX=3.5,
2 EXNAME=FLPL4A)
E..J CONTROL PROGRAM

```

*/ MODE2 /
BEGIN MACHBOX DATA
LABEL DEMONSTRATION PROBLEM - BOTH SURFACES
BEGIN GEOM
BOX 12 XCENTER 2710.0
SURFACE 1
LEADING EDGE 510.0 0.0 741.0 65.1 2065.0 455.0 2487.0 594.0 2884.0 794.0
TRAILING EDGE 2715.0 0.0 2715.0 65.1 2697.0 228.0 2749.0 455.0 2874.059 594.0 +
3054.0 794.0
SURFACE 2 0.0 20.0 0.2
LEADING EDGE 2985.0 0.0 3124.0 65.1 3386.0 228.0
TRAILING EDGE 3400.0 0.0 3417.0 65.1 3464.0 228.0
END GEOM
BEGIN MODAL DATA
USE C062 WITH SURFACE 1
USE C053 WITH SURFACE 2
END MODAL DATA
END MACHBOX DATA
BEGIN RHU3 DATA
BEGIN GEOMETRY DATA
MAIN SURFACE MS1
LEADING EDGE 510.0 0.0 741.0 65.1 2065.0 455.0 2487.0 594.0 2884.0 794.0
TRAILING EDGE 2715.0 0.0 2715.0 65.1 2697.0 228.0 2749.0 455.0 2874.059 594.0 +
3054.0 794.0
DOWNWASH BAR +
CHORD 0.2 -0.86 -0.64 -0.3 0.3 0.64 0.86 +
CHORD 0.45 -0.86 -0.64 -0.3 0.3 0.64 0.86 +
CHORD 0.65 -0.56 -0.54 -0.3 0.3 0.64 0.86 +
CHORD 0.78 -0.86 -0.64 -0.3 0.3 0.64 0.86 +
CHORD 0.88 -0.86 -0.64 -0.3 0.3 0.64 0.86 +
CHORD 0.95 -0.86 -0.64 -0.3 0.3 0.64 0.86
CONTROL SURFACE CS1 HINGE 2500.0 65.0 2500.0 265.0 +
MODE 1 0.0 0.0 0.0 0.0 +
MODE 2 0.0 0.0 0.0 0.0 +
MODE 3 0.0 0.0 0.0 0.0 +
MODE 4 0.0 0.0 0.0 0.0 +
MODE 5 0.0 0.0 0.0 0.0 +
MODE 6 0.0 0.0 0.0 0.0 +
MODE 7 0.0 0.0 0.0 0.0 +
MODE 8 0.0 0.0 0.0 0.0 +
MODE 9 0.0 0.0 0.0 0.0 +
MODE 10 0.0 0.0 0.0 0.0 +
MODE 11 0.0 0.0 0.0 0.0 +
MODE 12 0.0 0.0 0.0 0.0 +
MODE 13 0.0 0.0 0.0 0.0 +
MODE 14 0.0 0.0 0.0 0.0 +
MODE 15 0.0 0.0 0.0 0.0 +
MODE 16 0.0 0.0 0.0 0.0
CONTROL SURFACE CS2 HINGE 2769.0 538.0 2995.0 765.0
END GEOMETRY DATA
BEGIN MODAL DATA
USE C042 WITH MAIN SURFACE
USE C55 WITH CONTROL SURFACE CS1
USE C056 WITH CONTROL SURFACE CS2
END MODAL DATA
BEGIN OPTION DATA
LABEL DEMONSTRATION PROBLEM - TWO CONTROL SURFACES
SECTIONAL FORCES
PRESSURE REPORT
VELOCITY PROFILE DLE1 1. DTE1 1. 0.0 1.00001 0.5 1.00002 1.0 1.0
END OPTION
END RHU3 UN A
BEGIN DUBLAT DATA
CASE 1
BEGIN GEOMETRY DATA
LIFTING SURFACE DATA
PANEL T1 2985.0 3365.0 3386.0 3446.0 0.0 228.0 0.0 0.0

```

```

CHORD DIV 0.0 0.2 0.4 0.6 0.8 1.0
SPAN DIV 0.0 0.25 0.5 0.75 1.0
PANEL T2 3365.0 3400.0 3446.0 3464.0 0.0 228.0 0.0 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 0.25 0.5 0.75 1.0
END GEOMETRY DATA
BEGIN SUBSET DATA
SETS OF BOXES
SUBSET 1 1 TO 20
SUBSET 2 21 TO 24
END SUBSET DATA
BEGIN MODAL DATA
USE C053 WITH LIFTING SURFACE 1
USE C057 WITH LIFTING SURFACE 2
END MODAL DATA
CASE 2
BEGIN GEOMETRY DATA
LIFTING SURFACE DATA
PANEL W1 741.0 2500.0 1419.8 2500.0 65.1 265.0 0.0 0.0
CHORD DIV 0.0 0.25 0.5 0.75 1.0
SPAN DIV 0.0 1.0
PANEL W2 1419.8 2500.0 2028.0 2500.0 265.0 329.5 0.0 0.0
CHORD DIV 0.0 0.25 0.5 0.75 1.0
SPAN DIV 0.0 1.0
PANEL W2A 2500.0 2715.0 2500.0 2715.0 265.0 329.5 0.0 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 1.0
PANEL W3 2028.0 2500.0 2487.0 2825.0 329.5 594.0 0.0 0.0
CHORD DIV 0.0 0.25 0.5 0.75 1.0
SPAN DIV 0.0 0.4 0.7 0.9 1.0
PANEL W3A 2500.0 2715.0 2825.0 2874.0 329.5 594.0 0.0 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 0.4 0.7 0.9 1.0
PANEL W4 2487.0 2825.0 2884.0 3023.087 594.0 794.0 0.0 0.0
CHORD DIV 0.0 0.25 0.5 0.75 1.0
SPAN DIV 0.0 0.5 0.8 1.0
PANEL CS1 2500.0 2715.0 2500.0 2715.0 65.1 265.0 0.0 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 1.0
PANEL CS2 2825.0 2874.0 3023.087 3057.0 594.0 794.0 0.0 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 0.5 0.8 1.0
PANEL WF 2487.0 2874.0 2880.0 2940.0 594.0 594.0 0.0 134.0
CHORD DIV 0.0 0.5 1.0
SPAN DIV 0.0 0.65 1.0
PANEL T1 3124.0 3380.0 3386.0 3446.0 65.1 228.0 0.0 0.0
CHORD DIV 0.0 0.5 1.0
SPAN DIV 0.0 0.7 1.0
PANEL T2 3380.0 3417.0 3446.0 3464.0 65.1 228.0 0.0 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 0.7 1.0
INTERFERENCE SURFACE DATA
BODY B1
PANEL B1 0.0 600.0 594.0 600.0 0.0 65.1 -65.1 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 1.0
PANEL B2 0.0 600.0 594.0 600.0 0.0 65.1 65.1 0.0
CHORD DIV 0.0 1.0
SPAN DIV 0.0 1.0
PANEL B3 600.0 3654.0 600.0 3654.0 0.0 65.1 -65.1 0.0
CHORD DIV 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SPAN DIV 0.0 1.0
PANEL B4 600.0 3654.0 600.0 3654.0 0.0 65.1 65.1 0.0
CHORD DIV 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SPAN DIV 0.0 1.0
DOUBLET DATA
BODY B1 ZDOUBLET
AXIS DIV 0.0 600.0 3564.0
RADII 0.0 65.1 65.1
END GEOMETRY DATA

```

```

BEGIN SUBSET DATA
SUBSETS OF BOXES
SUBSET B1 1 TO 41
SUBSET B2 42
SUBSET B3 43 TO 45
SUBSET B4 46 TO 49
SUBSET B5 50 TO 53
SUBSET B6 54 TO 55
SUBSETS OF STRIPS
SUBSET S1 1 15
END SUBSET DATA
BEGIN MODAL DATA
USE C042 WITH LIFTING SURFACE B1
USE C053 WITH LIFTING SURFACE B5
USE C044 WITH LIFTING SURFACE B4
USE C045 WITH LIFTING SURFACE B2
USE C056 WITH LIFTING SURFACE B3
USE C057 WITH LIFTING SURFACE B6
USE C51 WITH BCY DOUBLET B1
USE C51 WITH INTERF BODY B1
END MODAL DATA
BEGIN OPTION DATA
VELOCITY PROFILES
PROFILE P1 0.0 1.0 0.3 1.2 0.6 1.1 1.0 1.0
USE P1 ON S1
PRESSURE CORRECTIONS
USE 0.85 0.0 AS SCALAR ON B3 B4
END OPTION DATA
CASE 3
BEGIN GEOMETRY DATA
LIFTING SURFACE DATA
PANEL W0 510.0 2715.0 741.0 2715.0 0.0 65.1 0.0 0.0
CHORD DIV 0.0 0.2 0.4 0.6 0.8 1.0
SPAN DIV 0.0 1.0
PANEL W1 741.0 2715.0 2065.0 2749.0 65.1 455.0 0.0 0.0
CHORD DIV 0.0 0.2 0.4 0.6 0.8 1.0
SPAN DIV 0.0 0.3 0.5 0.65 0.8 0.9 1.0
PANEL W2 2065.0 2749.0 2437.0 2874.0 455.0 594.0 0.0 0.0
CHORD DIV 0.0 0.2 0.4 0.6 0.8 1.0
SPAN DIV 0.0 0.4 0.7 0.9 1.0
PANEL W3 2437.0 2874.0 2884.0 3054.0 594.0 794.0 0.0 0.0
CHORD DIV 0.0 0.2 0.4 0.6 0.8 1.0
SPAN DIV 0.0 0.4 0.7 0.9 1.0
PANEL T0 2985.0 3400.0 3124.0 3417.0 0.0 65.1 0.0 0.0
CHORD DIV 0.0 0.2 0.4 0.6 0.8 1.0
SPAN DIV 0.0 1.0
PANEL T1 3124.0 3417.0 3386.0 3464.0 65.1 228.0 0.0 0.0
CHORD DIV 0.0 0.2 0.4 0.6 0.8 1.0
SPAN DIV 0.0 0.4 0.65 0.85 1.0
END GEOMETRY DATA
BEGIN SUBSET DATA
SUBSETS OF BOXES
SUBSET WING 1 TO 75
SUBSET TAIL 76 TO 100
END SUBSET DATA
BEGIN MODAL DATA
USE C443 WITH LIFTING SURFACE TAIL
END MODAL DATA
END DUBLAT DATA
BEGIN FLUTTER DATA
CASE 1
ALTITUDE 0. 10000.
DAMPING 0. 0. 0.02 0.02 0.05
CASE 2
RSET 1 1 2 3 4 5 6 7 8
RSET 2 1 2 3 4 5 6 7 8 9 10 11 12
RSET 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RSET 4 3 4 5 6 7 8
CSET 1 *E NOMINAL CASE 6
RSET 1 2 3 4

```

ALT 10000.0 50000.0
 CSET 2 *6 WITH ADDED STIFFNESS IN MODES 3 AND 4 &
 STIFF SS 3 3 TO 4 4 BY 1 1 1.2
 RSET 1
 END FLUTTER DATA
 BEGIN NODAL DATA
 /*
 /* BODY NODES
 /*
 1 20. 0. 0. TO 25 980. 0. 0. BY 2
 27 1060. 0. 0. 30.0 TO 45 1780. 0. 0. 42.5 BY 2
 **+1 200 0. 65. 0. 0. 0 200 0. 65. **
 45 TO 55 2180. 0. 0. 31.0 BY 2
 **+1 200 0 200 0. 65. **
 55 TO 63 2500. 0. 0. 13.5 BY 2
 **+1 200 0 200 0. 65. **
 65 2580. 0. 0. TO 77 3060. 0. 0. BY 2
 79 3140. 0. 0. 3.0
 **+1 200 0. 65. **
 81 3220. 0. 0. 6.5
 **+1 200 0. 65. **
 83 3300. 0. 0. 7.0
 **+1 200 0. 65. **
 85 3380. 0. 0. 2.0
 **+1 200 0. 65. **
 87 3460. 0. 0.
 89 3540. 0. 0.
 /*
 /* WING NUODES
 /*
 427 1060. 65. 0. 30.0 TO 435 1380. 180. 0. 17.5 BY 2
 435 TO 445 1760. 180. 0. 27.5 BY 2
 445 TO 455 2180. 180. 0. 25.0 BY 2
 455 TO 463 2500. 180. 0. 13.0 BY 2
 635 1380. 180. 0. 17.5 TO 641 1620. 265. 0. 10.0 BY 2
 641 TO 655 2180. 265. 0. 22.5 BY 2
 655 TO 663 2500. 265. 0. 12.5 BY 2
 841 1620. 265. 0. 10.0 TO 847 1971. 380. 0. 9.0 BY 2
 847 TO 855 2291. 380. 0. 17.0 BY 2
 855 TO 863 2611. 380. 0. 10.0 BY 2
 1047 1971. 380. 0. 9.0 TO 1051 2205. 455. 0. 8.5 BY 2
 1051 TO 1059 2525. 455. 0. 15.0
 1059 TO 1063 2685. 455. 0. 8.0
 1251 2205. 455. 0. 8.5 TO 1254 2409. 536. 0. 6.5
 1254 TO 1259 2609. 538. 0. 11.0
 1259 TO 1263 2769. 538. 0. 5.5
 1454 2409. 538. 0. 6.5 TO 1456 2545. 594. 0. 5.0
 1456 TO 1459 2605. 594. 0. 7.5
 1459 TO 1463 2825. 594. 0. 3.5
 1656 2545. 594. 0. 5.0 TO 1658 2710. 680. 0. 3.0
 1658 TO 1663 2910. 680. 0. 3.0
 1858 2710. 680. 0. 3.0 TO 1860 2875. 765. 0. 1.5
 1860 TO 1863 2995. 765. 0. 2.5
 /*
 /* WING TRAILING EDGE NUODES
 /*
 3001 2500. 65. 0. 13.5 TO 3005 2715. 65. 0. 1.0 BY 2
 3101 2500. 180. 0. 13.0 TO 3105 2715. 180. 0. 1.0 **
 3201 2500. 265. 0. 12.5 TO 3205 2715. 265. 0. 1.0 **
 3405 2874. 594. 0. 1.0 TO 3605 3027.9 765. 0. 1.0
 BY 100 OF 86. 85.
 /*
 /* WING FIN NOCES
 /*
 REC WINGFIN 0. 594. 0., 1. 594. 0., 0. -1. 0.
 2056 2545. .1 0. 3.5 TO 2456 2830. 100. 0. 2.5 BY 200
 2058 2625. .1 0. 3.5 TO 2458 2842. 100. 0. 3.0 **
 2061 2745. .1 0. 4.0 TO 2461 2859. 100. 0. 3.0 **
 2063 2825. .1 0. 4.0 TO 2463 2870. 100. 0. 3.0 **
 /*

*/ HORIZONTAL TAIL NODES

*/

RESUME GLOBAL

279	TO	679	3305.	200.	0.	2.0	BY	200
281	TO	681	3388.	200.	0.	2.5	**	
283	TO	683	3412.	200.	0.	2.5	**	
285	TO	685	3435.	200.	0.	1.0	**	

*/

WEIGHT PANEL NODES - BODY

*/

6001	0.	0.	0.	TO	6016	3564.	0.	0.
6021	0.	65.	0.	TO	6036	3564.	65.	0.

*/

WEIGHT PANEL NODES - WING

*/

6100	741.0	65.0	0.	TO	6220	2487.0	594.0	0.	BY	20
6100				TO	6260	2487.0	594.0	0.	BY	80
6180				TO	6240	2487.0	594.0	0.	BY	20
6260				TO	6320	2884.0	794.0	0.	BY	20
6110	2715.0	65.0	0.	TO	6170	2715.0	329.5	0.	BY	20
6189	2715.0	329.5	0.	TO	6249	2874.0	594.0	0.	BY	20
6266	2874.0	594.0	0.	TO	6326	3054.0	794.0	0.	BY	20

6100	TO	6110
------	----	------

*+3

20	0	20
----	---	----

6180	TO	6189
------	----	------

*+3

20	0	20
----	---	----

6260	TO	6266
------	----	------

*+3

20	0	20
----	---	----

*/

WEIGHT PANEL NODES - HORIZONTAL TAIL

*/

6400	3124.	65.1	0.	TO	6403	3417.	65.1	0.
------	-------	------	----	----	------	-------	------	----

6410	3386.	228.0	0.	TO	6413	3464.	228.0	0.
------	-------	-------	----	----	------	-------	-------	----

*/

WEIGHT PANEL NODES - VERTICAL TAIL

*/

6501	3374.6	0.	92.8
6502	3472.0	0.	92.8
6503	3458.7	0.	149.8
6504	3514.6	0.	149.8

*/

WEIGHT PANEL NODES - WING FIN

*/

6601	2487.0	594.	0.	TO	6603	2800.0	594.	134.
------	--------	------	----	----	------	--------	------	------

6604	2874.059	594.	0.	TO	6606	2940.0	594.	134.
------	----------	------	----	----	------	--------	------	------

END NODAL DATA

BEGIN STIFFNESS DATA

BEGIN PROPERTY DATA

P1 .05 1. *(WING FIN SPARS AND RIBS)

P2 2. 0. 0. .2 .2 .2 *(WING FIN ATTACHMENT BEAMS - TYPE 1)

P3 10. 0. 0. 100. 100. 100. *(WING FIN ATTACHMENT BEAMS - TYPE 2)

P4 .15 .50 *(CONTROL SURFACE RIBS)

P5 0. *=2 100. 100. 0. 10. *(BEAMS AT 455 RIB TO PICK UP SPARS)

END PROPERTY DATA

BEGIN ELEMENT DATA

*/

*/ WING FRONT SPAR

*/

SPAR	M5	N2003	227	429	.12	2.				
*2		N2205	429	431	.12	2.	TO	N2605	433	435
							BY	N200	2	2
*2		N2805	435	637	.12	2.				
*2		N3007	637	639	.12	2.	TO	N3207	639	641
							BY	N200	2	2
*2		N3407	641	843	.12	2.				
*2		N3609	843	845	.12	2.	TO	N3809	845	847
							BY	N200	2	2
*2		N4009	847	1049	.12	2.				
*2		N4211	1049	1051			**			

*2	N4411	1051	1253		**	
*2	N4613	1253	1254		**	
*2	N4713	1254	1455		**	
*2	N4815	1455	1456		**	
*2	N4915	1456	1657		**	
*2	N5017	1657	1658		**	
*2	N5117	1658	1859		**	
*2	N5219	1859	1860		**	

*/

/* WING REAR SPAR

*/

SPAR	M5	N5603	263	463	.40	12.
*2	N5605	463	663	.40	12.	
*2	N5607	663	863	.34	12.	
*2	N5609	863	1063	.34	12.	
*2	N5611	1063	1263	.30	8.	
*2	N5613	1263	1463	.30	8.	
*2	N5615	1463	1663	.30	4.	
*2	N5617	1663	1863	.30	4.	

*/

/* WING INTERMEDIATE SPARS

*/

SPAR	M5	N2203	229	429	.20	2.	TQ	N3603	243	443	*
							BY	N200	2	2	
*2	N3803	245	445	.36	2.						*
*2	N4803	255	455	.60	12.						*
*2	N5003	257	457	.24	12.		TQ	N5403	261	461	*
*2	N3005	437	637	.20	2.		BY	N200	2	2	*
*2	N3805	445	645	.36	2.		TQ	N3605	443	643	*
*2	N4005	447	647	.20	4.		BY	N200	2	2	*
*2	N4805	455	655	.60	12.		TQ	N5405	461	661	*
*2	N5005	457	657	.24	12.		BY	N200	2	2	*
*2	N3607	643	843	.20	2.		TQ	N3807	645	845	*
*2	N4007	647	847	.20	4.		BY	N200	2	2	*
*2	N4807	655	855	.20	8.		TQ	N5407	661	861	*
*2	N5007	657	857	.20	10.		BY	N200	2	2	*
*2	N4209	849	1049	.20	4.		TQ	N4609	853	1053	*
*2	N4809	855	1055	.20	8.		BY	N200	2	2	*
*2	N5009	857	1057	.20	10.		TQ	N5409	861	1061	*
*2	N4611	1053	1253	.12	4.		BY	N200	2	2	*
*2	N4911	1056	1256	.06	4.		TQ	14811	1055	1255	*
*2	N4813	1255	1455	.12	4.		BY	10	1	1	*
*2	N4913	1256	1456	.06	4.		TQ	N5513	1262	1462	*
*2	N5015	1457	1657	.06	2.		BY	N100	1	1	*
*2	N5217	1659	1859	.06	2.		TQ	N5517	1662	1862	*
							BY	N100	1	1	

*/

/* WING IN-BODY SPARS

*/

SPAR	M5	N2001	27	227	1.00	10.	TQ	N3601	43	243	*
							BY	N200	2	2	
*2	N3801	45	245	1.80	10.		TQ	N4601	53	253	*
*2	N4801	55	255	3.00	60.		BY	N200	2	2	*
*2	N5001	57	257	1.20	60.		TQ	N5401	61	261	*
*2	N5601	63	263	2.00	60.		BY	N200	2	2	*

*/
*/ WING RIBS
*/

SPAR	M5	N6001	227	229	.25	4.	TO	N6035	261	263	*
*2		N61C9	435	437	.30	4.	TO	N6135	461	463	*
*2		N6215	641	643	.20	3.	TO	N6235	661	663	*
*2		N6425	1051	1053	.20	4.	BY	N2	2	2	*
*2		N6426	1053	1054	.20	4.	TO	N6435	1062	1063	*
*2		N6629	1456	1457	.12	2.	TO	N6635	1462	1463	*
*2		N6833	1860	1861	.30	1.4	TO	N6835	1862	1863	*

*/
*/ WING COVERS
*/

COVER	M5	N7003	229	429	227	.06					*
*2		N7203	229	429	431	231	.06				*
		N8603	243	443	445	245		BY	N200	2	*=3
*2		N8803	245	445	447	247	.12	.00			*
		N9603	253	453	455	255		BY	N200	2	*=3
*2		N9803	255	455	457	257	.10	.14			*
*2		N10003	257	457	459	259					*
*2		N10203	259	459	461	261	.26	.14	.22	.00	*
*2		N10403	261	461	463	263					*
*2		N7805	437	637	435		.06				*
*2		N8005	437	637	639	439	.06				*
		N9605	453	653	655	455		BY	N200	2	*=3
*2		N9805	455	655	657	457	.10	.14			*
*2		N10005	457	657	659	459					*
*2		N10205	459	659	661	461	.26	.14	.22	.00	*
*2		N10405	461	661	663	463					*
*2		N6407	643	843	641		.06				*
*2		N8607	643	843	845	645	.06				*
		N9607	653	853	855	655		BY	N200	2	*=3
*2		N9807	655	855	857	657	.10	.06			*
*2		N10007	657	857	859	659					*
*2		N10207	659	859	861	661	.30	.14	.20	.00	*
*2		N10407	661	861	863	663					*
*2		N9009	849	1049	847		.06				*
*2		N9209	849	1049	1051	851	.06				*
		N9609	853	1053	1055	855		BY	N200	2	*=3
*2		N9809	855	1055	1057	857	.10	.08			*
*2		N10009	857	1057	1059	859					*
*2		N10209	859	1059	1061	861	.30	.14	.20	.00	*
*2		N10409	861	1061	1063	863					*
*2		N9411	1053	1253	1051		.30	.14	.22	.12	*
*2		N9611	1053	1253	1254	1054	.30	.14	.22	.12	*
		N10511	1062	1262	1263	1063		BY	N100	1	*=3
*2		N9713	1255	1455	1254		.30	.14	.22	.12	*
*2		N9813	1255	1455	1456	1255	.30	.14	.22	.12	*
		N10513	1262	1462	1463	1263		BY	N100	1	*=3
*2		N9915	1457	1657	1456		.06				*
*2		N10015	1457	1657	1658	1458	.08				*
		N10515	1462	1662	1663	1463		BY	N100	1	*=3
*2		N10117	1659	1859	1658		.08				*
*2		N10217	1659	1859	1860	1660	.08				*
		N10517	1662	1862	1863	1663		BY	N100	1	*=3

*/
*/ WING IN-BODY COVERS
*/

COVER	M5	N7001	27	227	229	29	.30				*
		N8601	43	243	245	45		BY	N200	2	*=3
*2		N8801	45	245	247	47	.60				*
		N9601	53	253	255	55		BY	N200	2	*=3
*2		N9801	55	255	257	57	.70				*
*2		N10001	57	257	259	59	.70				*
*2		N10201	59	259	261	61	1.30	.70	1.10	.00	*
*2		N10401	61	261	263	63					*

*/

*/ WING FIN SPARS

*/

SPAR	M5	N11001	2056	2256	P1
*2		N11003	2256	2456	*
*2		N11201	2058	2258	*
*2		N11203	2258	2458	*
*2		N11501	2061	2261	*
*2		N11503	2261	2461	*
*2		N11701	2063	2263	*
*2		N11703	2263	2463	*

*/

*/ WING FIN RIBS

*/

SPAR	M5	N12001	2256	2258	P1
*2		N12003	2258	2261	*
*2		N12005	2261	2263	*
*2		N12201	2456	2458	*
*2		N12203	2458	2461	*
*2		N12205	2461	2463	*

*/

*/ WING FIN COVERS

*/

COVER	M5	N13001	2056	2256	2258	2058	.05
*2		N13003	2058	2258	2261	2061	*
*2		N13005	2061	2261	2263	2063	*
*2		N13201	2256	2456	2458	2259	*
*2		N13203	2258	2458	2461	2261	*
*2		N13205	2261	2461	2463	2263	*

*/

*/ WING FIN ATTACHMENT BEAMS

*/

BEAM	Z5	N20001	1456	2056	1463	P2
*2		N20003	1458	2058	1463	*
*2		N20005	1461	2061	1463	*
*2		N20007	1463	2063	1461	*
*2		N21001	1456	1458		P3
*2		N21003	1458	1461		*
*2		N21005	1461	1463		*

*/

*/ WING TRAILING EDGE CONTROL SURFACE RIBS

*/

SPAR	M5	N101	263	3003	P4
*+2	0	0	2	200	100
*2		N102		3003	3005
*+2	0	0	2	100	100
*2		N108		1463	3405
*+2	0	0	1	200	100

*/

*/ WING TRAILING EDGE CONTROL SURFACE COVERS

*/

COVER	M5	N151	263	463	3103	3003	.10
*2		N153	463	663	3203	3103	*
*2		N152	3003	3103	3105	3005	*
*2		N154	3103	3203	3205	3105	*
*2		N156	1463	1663	3505	3405	*
*+1	0	0	1	200	200	100	100

*/

*/ HORIZONTAL TAIL SPARS

*/

SPAR	M5	N14003	279	479	.10	1.2
*2		N14005	479	679		**
*2		N14103	281	481	.05	1.8
*2		N14105	481	681		**
*2		N14203	283	483	.05	1.6
*2		N14205	483	683		**
*2		N14303	285	485	.20	2.6
*2		N14305	485	685		**

*/

*/ HORIZONTAL TAIL RIBS

*/

SPAR	M5	N14401	279	281	.15	2.0	TO	N14405	283	285
*2		N14501	479	481	.10	1.2	TO	N14505	483	485
*2		N14601	679	681	.10	1.2	TO	N14605	683	685
						BY	N2		2	2

*/

*/ HORIZONTAL TAIL IN-BODY SPARS

*/

SPAR	M5	N14001	79	279	.50	6.0
*2		N14101	91	281	.25	9.0
*2		N14201	83	283	.25	8.0
*2		N14301	85	285	1.00	13.0

*/

*/ HORIZONTAL TAIL COVERS

*/

COVER	M5	N15003	279	479	481	281	.16
*+2	0	0	200	2	*=3		0.
COVER	M5	N15005	479	679	681	481	.07
*+2	0	0	200	2	*=3		0.

*/

*/ HORIZONTAL TAIL IN-BODY COVERS

*/

COVER	M5	N15001	79	279	281	81	.80	TO
		N15401	83	283	285	85	BY N200	2

*/

*/ BODY BEAMS

*/

BEAM	M5	N1001	1	3	5.	0.	*=3	16000.	10.	0.	*=3	30000.
*+30	0	0	2	2	5.		*4	14000.	5.		*4	14000.
*2		N1063	63	65	160.		*4	450000.	148.		*4	416000.
*+12	0	0	2	2	-12.		*4	-34000.	-12.		*4	-34000.

*/

*/ BEAMS AT 455 RIB TO PICK UP DISCONTINUED SPARS

*/

BEAM	M5	N30002	1053	1054	P5
*+4	0	0	2	2	*
BEAM	M5	N30011	1063	1062	P5
*+4	0	0	-2	-2	*

END ELEMENT DATA

END STIFFNESS DATA

BEGIN MASS DATA

BEGIN CONDITION DATA

STAGE 1 CONDITION 1

END CONDITION DATA

BEGIN MASS ELEMENT DATA

PLATE	F2	8-1	6001	6002	6022	3495.
PLATE		B-2	6002	6003	6023	5955.
PLATE		B-3	6003	6004	6024	2589.
PLATE		B-4	6004	6005	6025	6024
PLATE		B-5	6005	6006	6026	5420.
PLATE		B-6	6006	6007	6027	3280.
PLATE		B-7	6007	6008	6028	3306.
PLATE		B-8	6008	6009	6029	4346.
PLATE		B-9	6009	6010	6030	4507.
PLATE		B-10	6010	6011	6031	4486.
PLATE		B-11	6011	6012	6032	3619.
PLATE		B-12	6012	6013	6033	4730.
PLATE		B-13	6013	6014	6034	3982.
PLATE		B-14	6014	6015	6035	947.
PLATE		B-15	6015	6016	6036	1788.
PLATE		WT-1	6501	6502	6504	6503
PLATE						600.
PLATE		W-1	6100	6101	6121	6120
PLATE						768.
PLATE		W-2	6101	6102	6122	6121
PLATE						1151.
PLATE		W-3	6102	6103	6123	6122
PLATE						1667.
PLATE		W-4	6103	6104	6124	6123
PLATE						1112.
PLATE		W-5	6104	6105	6125	6124
PLATE						1190.
PLATE		W-6	6105	6106	6126	6125
PLATE						1659.
PLATE		W-7	6106	6107	6127	6126
						1988.

PLATE	W-8	6107	6108	6128	6127	2467.
PLATE	W-9	6108	6109	6129	6128	1335.
PLATE	W-10	6109	6110	6130	6129	339.
PLATE	W-11	6120	6121	6141	6140	795.
PLATE	W-12	6121	6122	6142	6141	1415.
PLATE	W-13	6122	6123	6143	6142	813.
PLATE	W-14	6123	6124	6144	6143	1259.
PLATE	W-15	6124	6125	6145	6144	1248.
PLATE	W-16	6125	6126	6146	6145	1720.
PLATE	W-17	6126	6127	6147	6146	1494.
PLATE	W-18	6127	6128	6148	6147	1888.
PLATE	W-19	6128	6129	6149	6148	498.
PLATE	W-20	6129	6130	6150	6149	126.
PLATE	W-21	6140	6141	6161	6160	508.
PLATE	W-22	6141	6142	6162	6161	1279.
PLATE	W-23	6142	6143	6163	6162	536.
PLATE	W-24	6143	6144	6164	6163	532.
PLATE	W-25	6144	6145	6165	6164	559.
PLATE	W-26	6145	6146	6166	6165	1055.
PLATE	W-27	6146	6147	6167	6166	1405.
PLATE	W-28	6147	6148	6168	6167	1953.
PLATE	W-29	6148	6149	6169	6168	274.
PLATE	W-30	6149	6150	617C	6169	172.
PLATE	W-31	6180	6181	6201	6200	614.
PLATE	W-32	6181	6182	6202	6201	1286.
PLATE	W-33	6182	6183	6203	6202	562.
PLATE	W-34	6183	6184	6204	6203	786.
PLATE	W-35	6184	6185	6205	6204	1386.
PLATE	W-36	6185	6186	6206	6205	1649.
PLATE	W-37	6186	6187	6207	6206	1649.
PLATE	W-38	6187	6188	6208	6207	421.
PLATE	W-39	6188	6189	6209	6208	255.
PLATE	W-40	6200	6201	6221	6220	207.
PLATE	W-41	6201	6202	6222	6221	497.
PLATE	W-42	6202	6203	6223	6222	692.
PLATE	W-43	6203	6204	6224	6223	765.
PLATE	W-44	6204	6205	6225	6224	816.
PLATE	W-45	6205	6206	6226	6225	843.
PLATE	W-46	6206	6207	6227	6226	687.
PLATE	W-47	6207	6208	6228	6227	136.
PLATE	W-48	6208	6209	6229	6228	94.
PLATE	W-49	6220	6221	6241	6240	136.
PLATE	W-50	6221	6222	6242	6241	522.
PLATE	W-51	6222	6223	6243	6242	516.
PLATE	W-52	6223	6224	6244	6243	536.
PLATE	W-53	6224	6225	6245	6244	555.
PLATE	W-54	6225	6226	6246	6245	580.
PLATE	W-55	6226	6227	6247	6246	704.
PLATE	W-56	6227	6228	6248	6247	119.
PLATE	W-57	6228	6229	6249	6248	91.
PLATE	W-58	6260	6261	6281	6280	289.
PLATE	W-59	6261	6262	6282	6281	306.
PLATE	W-60	6262	6263	6283	6282	244.
PLATE	W-61	6263	6264	6284	6283	507.
PLATE	W-62	6264	6265	6285	6284	116.
PLATE	W-63	6265	6266	6286	6285	70.
PLATE	W-64	6280	6281	6301	6300	210.
PLATE	W-65	6281	6282	6302	6301	144.
PLATE	W-66	6282	6283	6303	6302	245.
PLATE	W-67	6283	6284	6304	6303	365.
PLATE	W-68	6284	6285	6305	6304	86.
PLATE	W-69	6285	6286	6306	6305	71.
PLATE	W-70	6300	6301	6321	6320	184.
PLATE	W-71	6301	6302	6322	6321	160.
PLATE	W-72	6302	6323	6323	6322	126.
PLATE	W-73	6303	6304	6324	6323	273.
PLATE	W-74	6304	6305	6325	6324	66.
PLATE	W-75	6305	6306	6326	6325	66.
PLATE	HT-1	6400	6401	6411	6410	283.
PLATE	HT-2	6401	6402	6412	6411	212.

PLATE	HT-3	6402	6403	6413	6412	522.
PLATE	WF-1	6601	6602	6605	6604	500.
PLATE	WF-2	6602	6603	6606	6605	400.
*/ PLATES REPRESENTING FUEL						
PLATE	F-1	6102	6103	6123	6122	129.6
PLATE	F-2	6103	6104	6124	6123	8637.2
PLATE	F-3	6104	6105	6125	6124	12852.9
PLATE	F-4	6106	6107	6127	6126	5531.1
PLATE	F-5	6107	6108	6128	6127	6919.3
PLATE	F-6	6108	6109	6129	6128	107.1
PLATE	F-7	6124	6125	6145	6144	442.8
PLATE	F-8	6125	6126	6146	6145	5450.7
PLATE	F-9	6126	6127	6147	6146	6537.6
PLATE	F-10	6128	6129	6149	6148	2604.5
PLATE	F-11	6129	6130	6150	6149	4011.2
PLATE	F-12	6140	6141	6161	6160	5762.0
PLATE	F-13	6144	6145	6165	6164	1128.9
PLATE	F-14	6145	6146	6166	6165	2470.2
PLATE	F-15	6147	6148	6168	6167	1825.8
PLATE	F-16	6148	6149	6169	6168	4994.1
PLATE	F-17	6149	6150	6170	6169	2341.4
PLATE	F-18	6180	6181	6201	6200	3598.6
PLATE	F-19	6184	6185	6205	6204	268.5
PLATE	F-20	6185	6186	6206	6205	1691.6
PLATE	F-21	6186	6187	6207	6206	3248.9
PLATE	F-22	6187	6188	6208	6207	2531.0
PLATE	F-23	6188	6189	6209	6208	4235.0
PLATE	F-24	6200	6201	6221	6220	775.4
PLATE	F-25	6204	6205	6225	6224	457.0
PLATE	F-26	6205	6206	6226	6225	1190.8
PLATE	F-27	6206	6207	6227	6226	1393.2
PLATE	F-28	6207	6208	6228	6227	1591.2
PLATE	F-29	6208	6209	6227	6228	1555.2
PLATE	F-30	6220	6221	6241	6240	140.4
PLATE	F-31	6224	6225	6245	6244	54.0
PLATE	F-32	6225	6226	6246	6245	442.8
PLATE	F-33	6226	6227	6247	6246	658.8
PLATE	F-34	6227	6228	6248	6247	646.0
PLATE	F-35	6228	6229	6249	6248	583.2
*/ PLATES PERTAINING PAYLOAD						
PLATE	P-1	6002	6003	6023	6022	680.
PLATE	P-2	6003	6004	6024	6023	2295.
PLATE	P-3	6004	6005	6025	6024	3585.
PLATE	P-4	6005	6006	6026	6025	2200.
PLATE	P-5	6006	6007	6027	6026	3390.
PLATE	P-6	6007	6008	6028	6027	3475.
PLATE	P-7	6008	6009	6029	6028	2965.
PLATE	P-8	6009	6010	6030	6029	2040.
PLATE	P-9	6010	6011	6031	6030	2125.
PLATE	P-10	6011	6012	6032	6031	2125.
PLATE	P-11	6012	6013	6033	6032	1190.

END MASS ELEMENT DATA

BEGIN FACTOR DATA

 EXCLUDE STIFFNESS ELEMENTS

END FACTOR DATA

END MASS DATA

BEGIN SUBSET DEFINITION

SUBSETS OF NODAL SET 1

*/

*/ SUBSETS FOR PLOTS

*/

N1 = 1 TO 3605 / NODES FOR STIFFNESS MODEL

N2 = 6001 TO 6606 / NODES FOR MASS MODEL

*/

*/ SUBSETS FOR AERODYNAMICS

*/

N51 = 1 7 13 19 27 45 55 63 67 75 79 83 85 89

N42 = 227 237 245 255 263 435 441 445 451 455 463 641 649 655 659 663

847 851 855 859 863 1051 1055 1059 1063 1254 1259 1263 1459

1463 1058 1661 1663 1859 1860 1861 1863

ORIGINAL PAGE IS
OF POOR QUALITY

```

N43 = 279 283 285 479 483 485 679 683 685
N53 = 83 283 483 683
N44 = 2058 2061 2261 2458 2461
N45 = 263 3003 3015 463 3103 3105 663 3203 3205
N55 = 263 463 663
N46 = 1463 3405 1663 3505 1863 3605
N56 = 1463 1663 1863
N57 = 285 485 685
N67 = 485
N81 = 3003 3103 3203
N82 = 3005 3105 3205
N83 = 3405 3505 3605
N91 = 641 649 663
N99 = N42 U N45
N63 = 663 863 1063 1263 1463 1863
N64 = 655 855 1055
N65 = 435 641 847 1051 1254 1456 1658 1859
N66 = 659 659 1059 1259 1459
N61 = 63 263 463 663
N68 = 55 255 455 655
N69 = 245 445
N70 = 227 435
N62 = N63 U N64 U N65 U N66 U N61 U N68 U N69 U N70
SUBSETS OF STIFFNESS SET 1
*/
*/
*/ SUBSETS FOR PLOTS
*/
E1 = ALL
SUBSETS OF MASS SET 1
*/
*/
*/ SUBSETS FOR PLOTS
*/
E2 = ALL
END SUBSET DEFINITION
BEGIN BC DATA
STAGE 1 *(FOR VIBRATION/FLUTTER ANALYSIS)
ORDER RETAIN BY INTERNALID
SUPPORT ASYM IN SURFACE 2
SUPPRT TX FOR 89
RETAIN TZ FOR 1 7 13 19 27 45 55 63 67 73 79 85 89
RETAIN TZ FOR 227 237 245 255 435 441 445 451 455
RETAIN TZ FOR 641 645 649 655 659 847 851 855 859 863 1051 1055 1059 1063
RETAIN TZ FOR 1254 1259 1456 1459 1658 1661 1859 1860 1861
RETAIN TZ FOR 3003 3005 3103 3105 3203 3205
RETAIN TZ FOR 3305 3405 3505 3605
RETAIN TZ FOR 279 479 679
RETAIN TY FOR 2058 2061 2258 2261 2458 2461
RETAIN TZ PX RY FOR 263 463 663 1263 1463 1663 1863 285 485 685 83 +
283 483 683
END BC DATA
END PROBLEM DATA

```


Figure 211-1. Structural Model for Flutter Demonstration

Figure 211-2. Mass Model for Flutter Demonstration

Figure 211-3. First Flutter Analysis, Mach = 0.8 Using Aerodynamic Influence Coefficients

Figure 211-4. Second Flutter Analysis, Mach=0.8

Figure 211-5. Third Flutter Analysis, Mach = 1.526

Figure 211-6. Fourth Flutter Analysis, Mach= 0.8

Figure 211-7. V-g Plot, First Flutter Analysis Including Residual Flexibility Effects

Figure 211-8. V-f Plot, First Flutter Analysis Including Flexibility Effects

Figure 211-9. V-g Plot, First Flutter Analysis Without Residual Flexibility Effects

Figure 211-10. V-f Plot, First Flutter Analysis Without Residual Flexibility Effects

Figure 211-11. V-g Plot, Second Flutter Analysis

Figure 211-12. V-f Plot Second Flutter Analysis

212. FLUTTER ANALYSIS OF A T-TAIL AIRCRAFT (DECK 14)

212.1 DESCRIPTION OF ANALYSIS

This problem demonstrates the subsonic flutter analysis of the empennage of a T-tail aircraft, the YC-14. The structural model, shown in figure 212-1, is comprised of BEAM and ROD elements. All mass is defined as concentrated masses and a nondiagonal mass matrix is produced directly by the Mass Processor. The X-Y plane is defined as a plane of anti-symmetry and the empennage is cantilevered from the forward end. The model is described in more detail in reference 212-1.

Doublet Lattice aerodynamics, modified to match experimentally obtained steady state aerodynamic derivatives, are used. The aerodynamic modelling is shown in figure 212-2.

212.2 RESULTS

The five lowest natural frequencies obtained in this problem are compared with experimental values from reference 212-1 in table 212-1. Flutter analysis results are presented in the form of V-g and V-f graphs in figures 212-3 and 212-4. The experimental flutter speed is 123 knots.

212.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEMO14
PROBLEM ID(DEMO14 - FLUTTER OF SUPERSONIC T-TAIL AIRPLANE)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C              DECK ARE
C                  1. DUBLAT AERODYNAMICS
C                  2. AFI AERODYNAMICS
C                  3. FLUTTER ANALYSIS
C                  4. V-G AND V-F PLOTS
C
C AUTHOR       J. HUGLEY (MODEL BY YC-14 STAFF)
C
C CORE         260K (OCTAL)

C
READ INPUT
PRINT INPUT(NODAL)
PRINT INPUT(STIFFNESS)
PRINT INPUT(MASS)
PRINT INPUT(EC,NUDEORDER = INTERNAL )
EXECUTE EXTRACT(EXNAME=EMP,LSUB=KGRID,NSUB=N4,ESUB=E4)
EXECUTE GRAPHICS(GNAME=GEOH,OFFLINE=GERBER,
X           TYPE=ORTH,SIZE=(20,20),KZ=125,KY=25,RX=0,
X           EXNAME=EMP)
EXECUTE MASS (OPTION=3)
PERFORM K-REDUCE
PRINT OUTPUT(MASS,SUMMARY,MDC=MDC****)
EXECUTE VIBRATION ( STIF=KKED, MASS=MDC001A, NFREQS=15, NMODES=10,
X SUBSETS=N001 TO N003)
PRINT OUTPUT (VIBRATION)
EXECUTE INTERPOLATION ( N003 = ( MOTIONAXIS,C0003 ), DOF = 001110,
X DEFNPTS = ( 1501,169 ), ANGLES = ( 0.,0. ) )
EXECUTE INTERPOLATION ( N002 = ( MOTIONAXIS,C0002 ), DOF = 010101,
X DEFNPTS = ( 74,112,118,121 ), ANGLES = ( -25.,-25.,-25.,-25. ) )
EXECUTE INTERPOLATION ( N001 = ( MOTIONAXIS,C0001 ), DOF = 010101,
X DEFNPTS = ( 59,77 ), ANGLES = ( 90.,90. ) )
PRINT INPUT(DUBLAT)
EXECUTE DUBLAT(MACH=0.0, KVALUE=(.4,.05,.01,.005),
XY=ANTISYMM,Z=UNSYMM,QASI=D1)
PRINT OUTPUT (DUBLAT, LEVEL =(1,2,3,4,5))
EXECUTE ADDINT(ID=GAFEM,INT,DUBLAT,MACH=0.0, GET=200 )
PRINT INPUT (FLUTTER )
EXECUTE FLUTTER (GAFID=GAFEM,DENSITY=.00237692,STILL)
PRINT INPUT(AFI)
EXECUTE AFI (KVAL=(.4, .05, .01, .005), Y=ANTI)
PRINT OUTPUT (AFI, LEVEL= (1,2,3,4,5,6,7))
EXECUTE ADDINT (ID=GAFAF, AFI, IGAIN=20)
EXECUTE FLUTTER (GAFID=GAFAF, EVAL=(1 TO 61 BY 7), STILL, COND=2)
PRINT OUTPUT(FLUTTER )
EXECUTE EXTRACT (EXNAME=FLDEM18,LSUB=VGVF,CASE=1)
EXECUTE GRAPHICS(GNAME=FLUT,TYPE=GRAPH,SIZE=(15,15),X=V,Y1=G,
Y2=F,XMIN=0.,XMAX=250.,Y2MIN=0.,Y2MAX=50.,
Y1MIN=-.2,Y1MAX=.1,EXNAME=FLDEM18)
END CONTROL PROGRAM
```

```

BEGIN MATERIAL DATA /
M51 0.0 /
70 10.4E6 .30 4.0E6 0.0 /
*/ BODY AND FIN SPAR MATERIAL PROPERTIES /
M60 0.0 /
70 5.2E6 .3 2.0E6 0.0 / .5 STIFFNESS FOR BODY-FIN
*/ STABILIZER SPAR STIFFNESS /
M70 0.0 /
70 10.4E6 .3 4.0E6 0.0 /
END MATERIAL DATA /
BEGIN NJOAL DATA /
*/ MID BODY SPAR NODES /
REC BODYSM 49.0 0.0 12.112 100. 0.0 12.112 49.0 0.0 20. /
50 0.0 0.0 C.0 /
501 0.0 1.0 0.0 / ROOT NODE PITCH
502 1.0 0.0 0.0 / ROOT NODE ROLL
503 0.0 0.0 1.0 / ROOT NODE YAW
51 2.24 0.0 0.0 /
52 4.48 0.0 0.0 /
53 6.72 0.0 0.0 /
54 8.96 0.0 0.0 /
55 9.8C 0.0 0.0 /
56 11.2C 0.0 0.0 /
57 12.88 0.0 0.0 /
58 14.56 0.0 0.0 /
801 0.0 0.0 -1.0 /
811 11.20 0.C -1.C /
*/ AFT BODY SPAR NODES /
REC BODYSA 49.26225 0.0 9.360988 63.56 0.0 12.112 49.0. 12.112 /
59 16.77 0.0 C.0 /
60 18.98 0.0 0.0 /
61 21.189 C.0 C.0 /
62 21.399 0.0 0.0 /
63 25.409 C.0 C.0 /
64 27.427 C.0 0.0 /
65 29.444 0.0 0.0 /
66 31.454 0.0 0.0 /
67 33.236 C.0 C.0 /
68 35.018 C.0 C.0 /
69 36.808 0.0 C.0 /
70 38.583 0.0 C.0 /
71 40.4C C.0 C.0 /
72 42.25 0.0 0.0 /
73 40.40 0.0 1.36 / BASE OF FIN SPAR MOUNT
74 41.40 C.0 1.36 /
75 42.25 C.0 1.36 /
77 45.50 0.0 0.C /
771 45.50 -3.5 0.C /
772 45.50 3.5 0.C /
78 48.55 C.0 -0.6 /
821 23.399 0.0 -1.C /
831 31.454 0.0 -1.C /
841 38.583 0.C -1.C /
*/ FIN SPAR NODES /
REC FINSPL 91.33 0.C 21.905 97.48 0.0 35.094 85. 0.0 35. /
76 -.60 0.0 0.0 /
101 0.0 0.0 0.0 /
102 1.087 0.C 0.0 /
103 1.782 C.0 C.0 /
104 2.863 0.0 0.0 /
105 3.740 0.0 0.0 /
106 5.18 0.0 0.0 /
107 6.45 0.0 0.0 /
108 7.497 0.C 0.0 /
109 8.27 0.0 C.0 /
110 9.14 0.0 C.0 /
111 10.587 C.0 0.0 /
112 11.44 0.C 0.0 /
113 12.904 0.0 C.0 /
114 13.676 0.0 C.0 /
115 14.552 C.0 0.C /

```

ORIGINAL PAGE
OF POOR QUALITY

G

REC FINSPU 87.88069 0.0 24.15718 97.4798 0. 35.0936 85. 0. 35. /
 116 15.824 0.0 C.0 /
 117 14.574 0.0 C.0 /
 118 17.331 C.0 C.0 /
 119 16.152 C.0 C.0 /
 120 19.784 C.0 C.0 /
 121 19.375 C.0 C.0 /
 122 17.454 0.0 1.34 / LOWER PIVOT FOR STABILIZER LEAD SCREW
 1221 17.454 0.0 0.0 / STAB PITCH MECH ATT. TO FIN SPAR.
 123 19.475 1.0 C.0 /
 124 19.475 -1.0 C.0 /
 /* STABILIZER PIVOT MECHANISM /
 RESUME GLOBAL /
 125 101.858 1.0 40.082 /
 126 101.858 -1.0 40.082 /
 127 101.858 .675 40.082 /
 128 101.858 -.675 40.082 /
 129 100.758 .675 40.082 /
 130 100.758 -.675 40.082 /
 137 100.758 0.0 40.082 /
 131 101.108 0.0 40.082 / STABILIZER ROLL-YAW-PITCH MECHANISM
 132 100.358 0.0 40.082 /
 133 99.108 0.0 40.082 /
 134 98.388 C.0 40.082 /
 135 102.608 0.0 40.082 /
 136 102.608 0.0 41.249 /
 360 101.858 .675 41.082 /
 361 101.858 -.675 41.082 /
 362 102.858 .675 40.082 /
 363 102.858 -.675 40.082 /
 364 101.858 .675 40.082 /
 365 101.858 -.675 40.082 /
 /* FUSELAGE SHELL CGS /
 80 54.67 0.0 12.06 / SECT 6
 81 65.95 0.0 12.81 / SECT 7
 82 76.04 0.0 15.02 / SECT 8
 83 83.72 0.0 16.50 / SECT 9
 84 96.09 0.0 18.29 / SECT 10-11
 /* SPAR CG /
 85 54.44 0.0 12.11 / SPAR SECT 6
 86 65.49 0.0 12.49 / SPAR SECT 7
 87 75.97 0.0 14.50 / SPAR SECT 8
 88 83.58 0.0 15.96 / SPAR SECT 9
 89 89.00 0.0 17.08 / SPAR SECT 10-11
 /* OTHER ITEMS /
 79 98.16 0.0 17.94 / TRIM MOTOR
 90 50.79 0.0 9.45 / SECT 6 BASIC WT
 91 68.85 0.0 10.33 / SECT 7 BASIC WT
 92 90.17 0.0 19.55 / 1270-50 BC DY-FIN CONNECTION
 /* FIN SECTION CG LOCATIONS /
 203 91.86 0.0 23.21 /
 207 96.09 0.0 26.78 /
 212 98.56 0.0 31.77 /
 218 100.44 0.0 37.21 /
 221 103.89 0.0 40.31 /
 500 130. C.0 30. / ORIENTATION NODE
 /* HORIZONTAL STABILIZER NODES /
 REC STAB 101.858 0.0 41.249 201.858 0.0 41.249 101.858 6.993 141.249 / 4ANH
 RESUME GLOBAL /
 150 101.858 0.0 41.249 / STAB SPAR ROOT
 REC HTAIL 101.858 C.0 41.249 201.858 -4.76975 41.249 101.858 6.993
 141.249 / 4DEG ANHEDRAL
 ANALYSIS FRAME STAB /
 1501 0.0 .2 C.0 /
 151 0.0 1.261 0.0 /
 152 0.0 2.698 C.0 /
 153 0.0 4.135 0.0 /
 154 0.0 5.571 0.0 /
 155 0.0 7.008 0.0 /
 156 0.0 8.059 0.0 /

157 0.0 9.075 0.0 /
 158 0.0 10.162 0.0 /
 159 0.0 11.072 0.0 /
 160 0.0 11.914 0.0 /
 161 0.0 13.105 0.0 /
 162 0.0 14.016 0.0 /
 163 0.0 15.137 0.0 /
 164 0.0 16.118 0.0 /
 165 0.0 17.169 0.0 /
 166 0.0 18.221 0.0 /
 167 0.0 19.202 0.0 /
 168 0.0 20.323 0.0 /
 169 0.0 21.144 0.0 /
 170 0.0 22.425 0.0 /
 171 10.0 15.0 0.0 / ORIENTATION NODE
 /* STABILIZER PANEL-SPAR CG NODES /
 REC STABCG 0.0 0.0 41.249 100. 0.0 41.249 0.0 6.993 141.249 /
 252 103.4300 2.6400 0.0 /
 254 103.4850 5.5350 0.0 /
 257 103.987 8.761 0.0 /
 261 104.1900 12.7600 0.0 /
 265 104.2100 16.9200 0.0 /
 269 103.9850 21.8400 0.0 /
 RESUME GLOBAL /
 ANALYSIS FRAME GLOBAL /
 250 101.71 0.0 40.63 /
 REC ML 91.33 C.0 21.905 97.48 0.0 35.094 85.0 0.0 35.0 /
 9999 0. 0. 0. /
 RESUME GLOBAL /
 END NODAL DATA /
 BEGIN STIFFNESS DATA /
 BEGIN PROPERTY DATA /
 P1 1.0 *=2 20.0 1.0 1.0 / RIGID ELEMENT PROPERTY
 P2 .013 *=2 20.0 .132E-4 *=1 111100. /FWD RIGID SHELL LINKS
 P3 1.0 *=2 20. 1. 1. 100. / AFT ATTACHMENT OF BODY SHELLS
 END PROPERTY DATA /
 BEGIN ELEMENT DATA /
 /* ELEMENTS FOR MID BODY SPAR /
 BEAM Z60 N50 50 51 2.6269 *=2 .815796 .695927 .568320
 2.6491 *=2 .816595 .705220 .599445 /
 *2 N501 50 501 20. *=2 7.0 500. 500. 110. / PITCH SPRING-ROOT
 *2 N502 50 502 20. *=2 2.385 500. 500. 110. / ROLL SPRING ROOT
 *2 N503 50 503 58 20. *=2 6.45 500. 500. 110. / yaw SPRING ROOT
 *2 N51 51 52 2.6491 *=2 .816595 .705220 .599445
 2.6551 *=2 .817135 .699525 .613247 /
 *2 N52 52 53 2.6551 *=2 .817135 .699525 .613247 /
 *2 N53 53 54 2.6330 *=2 .809515 .684153 .596283 /
 2.5034 *=2 .737986 .655574 .500569 /
 *2 N54 54 55 2.5034 *=2 .737986 .655574 .500569
 2.3657 *=2 .630967 .647414 .447574 /
 *2 N55 55 56 2.3667 *=2 .63097 .647414 .447574
 2.0209 *=2 .300787 .621922 .356925 /
 *2 N56 56 57 1.2524 *=2 .453769 .621646 .356187
 1.1928 *=2 .420834 .595791 .325931 /
 *2 N57 57 58 1.1928 *=2 .420934 .595791 .325931
 1.1295 *=2 .387686 .566946 .294410 /
 /* NOMINAL AFT BODY SPAR ELEMENTS /
 BEAM Z60 N58 58 59 1.3246 *=2 .372488 .567341 .294149
 1.2313 *=2 .331577 .525907 .255116 /
 *2 N59 59 60 1.2313 *=2 .331577 .525907 .255016
 *2 N60 60 61 1.1440 *=2 .295293 .479277 .224486 /
 1.0588 *=2 .262771 .432032 .195999 /
 *2 N61 61 62 1.0588 *=2 .262771 .432032 .195999
 .9776 *=2 .233375 .389427 .169777 /
 *2 N62 62 63 .9776 *=2 .233375 .389427 .169777
 .9035 *=2 .207377 .353343 .147466 /
 *2 N63 63 64 .9035 *=2 .207377 .353343 .147466
 .8390 *=2 .184461 .323113 .130984 /

*2 N64 64 65 .8390 *=2 .184401 .323113 .130984
 *2 N65 65 66 .7836 *=2 .165980 .297177 .117099 /
 *2 N66 66 67 .7305 *=2 .147913 .272751 .106055 /
 *2 N67 67 68 .6887 *=2 .132266 .254542 .098681 /
 *2 N68 68 69 .6554 *=2 .123573 .239385 .091087 /
 *2 N69 69 70 .6945 *=2 .111666 .227279 .085127 /
 *2 N70 70 71 .6688 *=2 .104231 .218352 .080636 /
 *2 N71 71 72 .4620 *=2 .099621 .054947 .077282 /
 *2 N72 72 77 .4551 *=2 .098064 .055313 .074358 /
 *2 N73 77 78 .0745 *=2 .01336 .00668 .00668 /
 *2 77 771 .04925 *=2 .00766 .002370 .009413 /
 *2 77 772 .04925 *=2 .00766 .002370 .009413 /
 /* NOMINAL FIN SPAR ELEMENTS /
 BEAM Z60 N101 101 102 500 .2911 *=2 .020029 .009823 .038493
 .2909 *=2 .020031 .009746 .038200 /
 *2 N102 102 103 500 .2729 *=2 .017623 .009789 .038224
 .2719 *=2 .017525 .009691 .037999 /
 *2 N103 103 104 500 .4039 *=2 .016419 .009518 .038126
 .4015 *=2 .016248 .009734 .037279 /
 *2 N104 104 105 500 .4015 *=2 .016248 .009734 .037279
 .3990 *=2 .016077 .009651 .036283 /
 *2 N105 105 106 500 .3990 *=2 .016077 .009651 .036283
 .3943 *=2 .015792 .009535 .034248 /
 *2 N106 106 107 500 .3943 *=2 .015792 .009535 .034248
 .3906 *=2 .015567 .009437 .032634 /
 *2 N107 107 108 500 .3906 *=2 .015567 .009437 .032634
 .3880 *=2 .015407 .009355 .031695 /
 *2 N108 108 109 500 .3880 *=2 .015402 .009355 .031695
 .3865 *=2 .015288 .009322 .031254 /
 *2 N109 109 110 500 .3865 *=2 .015288 .009322 .031254
 .3844 *=2 .015125 .009242 .030768 /
 *2 N110 110 111 500 .3844 *=2 .015125 .009242 .030768
 .3815 *=2 .014907 .009145 .030003 /
 *2 N111 111 112 500 .3815 *=2 .014907 .009145 .030003
 .3781 *=2 .014637 .009033 .029247 /
 *2 N112 112 113 500 .3781 *=2 .014637 .009033 .029247
 .3759 *=2 .014479 .008954 .028646 /
 *2 N113 113 114 500 .3759 *=2 .014479 .008954 .028646
 .3744 *=2 .014369 .008922 .028235 /
 *2 N114 114 115 500 .3744 *=2 .014369 .008922 .028235
 .3723 *=2 .014213 .008844 .027715 /
 *2 N115 115 116 500 .3723 *=2 .014213 .008844 .027715
 .3686 *=2 .014029 .008409 .027266 /
 *2 N116 116 117 500 .3686 *=2 .014029 .008409 .027266
 .3541 *=2 .013917 .008112 .018519 /
 *2 N117 117 118 500 .3541 *=2 .013917 .008112 .018519
 .3466 *=2 .013769 .007849 .015641 /
 *2 N118 118 121 500 .3466 *=2 .013769 .007849 .015641
 .3466 *=2 .013769 .007849 .015641 /
 *2 N121 122 119 1221 119 500 .3466 *=2 .013769 .007849 .015641
 .3062 *=2 .011182 .007548 .008782 /
 *2 N119 119 120 500 .3062 *=2 .011182 .007548 .008782
 .2650 *=2 .008361 .007163 .003737 /
 *2 N120 120 121 500 .2650 *=2 .008361 .009163 .003737 /
 /* ELEMENTS FOR FIN SPAR MOUNT /
 BEAM Z60 71 73 500 P1 /
 *2 73 74 P1 /
 *2 74 75 P1 /
 *2 72 75 500 P1 /
 *2 76 101 500 P1 /
 *2 74 76 500 .378 *=2 .220340 139503 .1 / 12/0-50

/* ELEMENTS FOR PITCH-ROLL-YAW MECHANISM /

BEAM Z60 N123 121 123 P1 /
 *2 N124 121 12. P1 /
 *2 N125 123 125 .2 *=2 .0033470 .0010420 .0106670
 .075 *=2 .003000 .001465 .0123800 /

*2 N126 124 126 *12 /
 *2 N160 127 360 362 P1 /
 *2 N161 128 361 363 P1 /
 *2 364 360 362 1.0 *=2 .00058 1.0 1.0 10. /
 *2 365 361 363 1.0 *=2 .00058 1.0 1.0 10. /
 *2 N162 127 36 360 P1 /
 *2 N164 128 363 361 P1 /
 *2 364 362 360 1.0 *=2 .00037 1.0 1.0 10. /
 *2 365 363 361 1.0 *=2 .00037 1.0 1.0 10. /
 *2 N127 125 364 1.0 *=2 20. 1.0 1.0 111. /
 *2 N128 126 365 1.0 *=2 20. 1.0 1.0 1000111. /
 *2 N129 129 127 .074 *=2 .0023775 .000309 .00995
 .049 *=2 .001109 .0003395 .0018156 / ROLL CAGE

*2 N130 130 128 *12 /
 *2 130 137 P1 /
 *2 129 137 P1 /
 *2 137 131 P1 /
 *2 137 132 P1 /

*2 N132 132 133 .1845 *=2 .004577 .002093 .003844 / PITCH SPRING
 *2 N133 133 134 1.0 *=2 20.0 .125 .125 /

ROD Z60 N122 122 134 .01615 / LEAD SC-EW

BEAM Z60 131 135 .2547 *=2 .006738 .002697 .011277 /-2 SPRING
 *2 N136 135 136 500 1.0 *=2 20.0 .125 .125 /
 *2 N1361 136 150 1.0 *=2 20.0 .125 .125 /
 *2 N1351 135 150 1.0 *=2 20.0 .125 .125 /

/* MASS ATTACHMENT ARMS /

BEAM Z1 N80 56 8C P3 /
 *2 N801 80 801 P1 /
 *2 801 50 80 P2 /
 *2 N81 62 81 P3 /
 *2 N811 81 811 P1 /
 *2 811 56 81 P2 /
 *2 N82 66 82 P3 /
 *2 N821 82 821 P1 /
 *2 821 62 82 P2 /
 *2 N83 70 83 P3 /
 *2 N831 63 831 P1 /
 *2 831 66 83 P2 /
 *2 771 84 P3 /
 *2 172 84 P3 /
 *2 N841 84 841 P1 /
 *2 841 70 84 P2 /

/* STABILIZER ELEMENT DATA /

BEAM Z70 150 1501 171 1.0 *=2 20. 1. 1. /
 BEAM Z70 1501 151 171 1.0 *=2 20. 1. 1. .2543 *=2 .006348 .003096 .01544 /
 *2 N151 151 152 171 .2543 *=2 .006348 .003096 .015440
 .2456 *=2 .005999 .002715 .013552 /

*2 N152 152 153 171 .2456 *=2 .005999 .002715 .013552
 .2445 *=2 .005537 .002316 .011436 /

*2 N153 153 154 171 .2445 *=2 .005537 .002316 .011436
 .2249 *=2 .005132 .001973 .009842 /

*2 N154 154 155 171 .2249 *=2 .005132 .001973 .009842
 .2098 *=2 .004613 .001631 .008158 /

*2 N155 155 156 171 .2098 *=2 .004613 .001631 .008158
 .1887 *=2 .003967 .001415 .006221 /

*2 N156 156 157 171 .1887 *=2 .003967 .001415 .006221
 .1836 *=2 .003253 .001238 .007143 /

*2 N157 157 158 171 .1836 *=2 .003253 .001238 .007143
 .1659 *=2 .002741 .001092 .005447 /

*2 N158 158 159 171 .1659 *=2 .002741 .001092 .005447
 .1570 *=2 .002446 .000986 .004986 /

*2 N159 159 160 171 .1570 *=2 .002446 .000986 .004986
 .1494 *=2 .002200 .000899 .004474 /

*2 N160 160 161 171 .1494 *=2 .002200 .000899 .004474
 .1402 *=2 .001923 .000797 .003980 /

*2	N161	161 162 171 .1402 *=2 .001923 .000797 .003980
		.1332 *=2 .001711 .000738 .003680 /
*2	N162	162 163 171 .1332 *=2 .001711 .000738 .003680
		.1266 *=2 .001527 .000682 .003389 /
*2	N163	163 164 171 .1266 *=2 .001527 .000682 .003389
		.1201 *=2 .001352 .000625 .003110 /
*2	N164	164 165 171 .1201 *=2 .001352 .000625 .003110
		.1131 *=2 .001184 .000558 .002794 /
*2	N165	165 166 171 .1131 *=2 .001184 .000558 .002794
		.1071 *=2 .001025 .000526 .002619 /
*2	N166	166 167 171 .1071 *=2 .001025 .000526 .002619
		.1015 *=2 .000903 .000432 .002386 /
*2	N167	167 168 171 .1015 *=2 .000903 .000432 .002386
		.0953 *=2 .000778 .000430 .002135 /
*2	N168	168 169 171 .0953 *=2 .000778 .000430 .002135
		.0906 *=2 .000683 .000401 .001985 /
*2	N169	169 170 171 .0906 *=2 .000683 .000401 .001985
		.0830 *=2 .000546 .000344 .001707 /

END ELEMENT DATA /

END STIFFNESS DATA /

BEGIN BC DATA /

SUPPORT SYMM IN SURFACE 2 THROUGH 50 /

SUPPORT TX TY TZ RX RY RZ FOR 50 501 502 503 /

FREE RX RY RZ FOR 50 /

RETAIN TY RX RZ FOR 51 53 56 59 60 62 64 66 68 70 71 77 78 /

RETAIN TY RX RZ FOR 80 81 82 83 84 74 /

RETAIN TY RX RZ FOR 103 107 112 118 121 /

RETAIN TX TY TZ PX RY RZ FOR 1501 152 154 157 161 165 169 /

END BC DATA /

BEGIN MASS DATA /

BEGIN CONDITION DATA /

STAGE 1 CONDITION 1 O C 1 /

END CONDITION DATA /

BEGIN CONCENTRATED MASS DATA 1 /

/* FIN MASS DATA /

FINP1	103 203	I=M1 .1591 .3415 .8430 .6080 /
FINP2	107 207	I=M1 .2029 .9505 5.0475 4.3955 /
FINP3	112 212	I=M1 .2459 .7300 4.8615 4.5360 /
FINP4	118 218	I=M1 .3066 1.0165 5.7665 5.1225 /
FINP5	121 221	I=M1 .2543 1.2115 4.4285 3.6400 /

/* BODY MASS DATA /

ABSEC6SH	80	.3125 15.0625 12.5485 14.7025 /
ABSEC7SH	81	.2675 12.5555 11.5425 12.2730 /
ABSEC8SH	82	.1115 3.3330 2.6840 3.0415 /
ABSEC9SH	83	.1570 3.2900 2.8550 3.2485 /
ABSEC10SH	84	.1215 1.3095 8.6950 9.4100 /
ABSEC6SP	53 85	1.4360 .7255 14.7140 14.8205 /
ABSEC7SP	59 86	.8935 .9550 9.6910 9.7735 /
ABSEC8SP	64 87	.3440 .2420 1.9250 1.8990 /
ABSEC9SP	68 88	.2495 .1525 1.0920 1.0865 /
ABSEC10SP	71 89	.1210 .0675 .4190 .4025 /
BASIC6	51 90	1.2965 5.5090 .7155 2.8245 /
BASIC7	60 91	.2840 .4665 .3615 .1490 /
VTATT	74 92	.2000 .8530 .6980 .2750 /
MOTUR	78 79	.1507 .0165 .0935 .0935 /
MOTORSUP	77	.1068 .23025 .58005 .4973 /
SEC6ATT	56	.0005 .00005 .00005 .00005 /
SEC7ATT	62	.0005 .00005 .00005 .00005 /
SEC6ATT	66	.0005 .00005 .00005 .00005 /
SEC9ATT	70	.0005 .00005 .00005 .00005 /

/* STABILIZER MASS DATA /

SPANEL0	1501 250	.29335 .1465 .2634 .23855 /
SPANEL1	152 252	.247 .269222 1.527759 1.716580 /
SPANEL2	154 254	.1858 .173 1.08849 1.169249 /
SPANEL3	157 257	.2419 .358 1.26 1.56522 /
SPANEL4	161 261	.2609 .368475 .021968 1.129243 /
SPANEL5	165 265	.1961 .269449 .526398 .759347 /
SPANEL6	169 269	.1409 .275112 .342002 .574814 /

END CONCENTRATED MASS DATA /

BEGIN FACTOR DATA /

EXCLUDE STIFFNESS ELEMENTS /
 END FACTOR DATA /
 END MASS DATA /
 BEGIN SUBSET DEFINITION /
 SUBSETS OF STIFFNESS SET 1 /
 N001 = 59 60 62 64 66 68 70 71 77 / BC0Y
 N002 = 74 103 107 112 118 121 / FIN
 N003 = 1501 152 154 157 161 165 169 / STAR
 N004 = ALL / PLUT SET
 EXCLUDE 500 171 FROM N004 /
 E004 = ALL / ELEMENT PLOT SET
 END SUBSET DEFINITION /
 BEGIN DUBLAT DATA /
 CASE 1 /
 BEGIN GEOMETRY DATA /
 LIFTING SURFACE DATA /
 PANEL HTAIL 98.155 110.454 101.107 107.257 0.0 23.062 41.249 39.6363 /
 CHORD DIV 0. .1 .2 .4 .62 .81 1.0 /
 SPAN DIV 0. .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 /
 PANEL TAILF 93.15 114.37 93.15 113.278 0. 0. 43.5 41.249 /
 CHORD DIV 0. .1 .2487 .310 .3709 .4931 .6275 .7436 .8597 1.0 /
 SPAN DIV 0. .5 1.0 /
 PANEL TAILU 93.15 113.278 93.15 112. 0. 0. 41.249 38.5 /
 CHORD DIV 0. .1 .2487 .310 .3709 .4931 .6275 .7436 .8597 1.0 /
 SPAN DIV 0. .5 1.0 /
 PANEL TAILM 93.15 112. 91.55 110.45 0. 0. 38.5 35.094 /
 CHORD DIV 0. .1 .2487 .310 .3709 .4931 .6275 .7436 .8597 1.0 /
 SPAN DIV 0. .5 1.0 /
 PANEL TAILED 91.55 110.45 85.404 104.200 0. 0. 35.094 21.905 /
 CHORD DIV 0. .1 .2487 .310 .3709 .4931 .6275 .7436 .8597 1.0 /
 SPAN DIV 0. .125 .25 .375 .50 .625 .75 .875 1.0 /
 INTERFERENCE SURFACE DATA /
 BODY ARODY /
 PANEL TOPBD 60.2 111.1 60.2 111.1 0. 1.45 21.905 21.905 /
 CHORD DIV 0. .2365 .3919 .4952 .5323 .5874 .6101 .6327 .6780
 .7279 .7709 .8140 .8660 1.0 /
 SPAN DIV 0. 1.0 /
 PANEL USIDE 60.2 111.1 60.2 111.1 1.450 3.5 21.905 19.855 /
 CHORD DIV 0. .2365 .3919 .4952 .5323 .5874 .6101 .6327 .6780
 .7279 .7709 .8140 .8660 1.0 /
 SPAN DIV 0. 1.0 /
 PANEL VSIDE 60.2 111.1 60.2 111.1 3.5 3.5 19.855 16.955 /
 CHORD DIV 0. .2365 .3919 .4952 .5323 .5874 .6101 .6327 .6780
 .7279 .7709 .8140 .8660 1.0 /
 SPAN DIV 0. 1.0 /
 PANEL LSIDE 60.2 111.1 60.2 111.1 3.5 1.450 16.955 14.905 /
 CHORD DIV 0. .2365 .3919 .4952 .5323 .5874 .6101 .6327 .6780
 .7279 .7709 .8140 .8660 1.0 /
 SPAN DIV 0. 1.0 /
 DOUBLET DATA /
 BODY ARODY 0. 18.247 YD00UBLFT /
 AXIS DIV 60.2 72.24 80.15 85.404 87.2916 90.0985 91.2556 92.4061
 94.7118 97.2487 99.44 101.6317 104.28 111.1 /
 RADIUS 0.1 2. 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 0.1 /
 END GEOMETRY DATA /
 BEGIN SUBSET DATA /
 SUBSETS OF BOXES /
 SUBSET S1 1 TO 6 /
 SUBSET S2 7 TO 60 /
 SUBSET F1 61 TO 78 /
 SUBSET F2 79 TO 87 /
 SUBSET F3 88 TO 96 /
 SUBSET F4 97 TO 141 /
 SUBSET F5 142 TO 186 /
 SUBSET UPROD 187 TO 199 BY 1 /
 SUBSET USBOD 200 TO 212 BY 1 /
 SUBSET SIROD 213 TO 225 BY 1 /

```

SUBSET LS600 226 TO 238 BY 1 /
SUBSET BS600 239 TO 251 BY 1 /
SUBSETS OF STRIPS /
SUBSET SS1 1 /
SUBSET SS2 2 /
SUBSET SS3 3 /
SUBSET SS4 4 /
SUBSET SS5 5 /
SUBSET SS6 6 /
SUBSET SS7 7 /
SUBSET SS8 8 /
SUBSET SS9 9 /
SUBSET SS10 10 /
SUBSET FS1 11 /
SUBSET FS2 12 /
SUBSET FS3 13 /
SUBSET FS4 14 /
SUBSET FS5 15 /
SUBSET FS6 16 /
SUBSET FS7 17 /
SUBSET FS8 18 /
SUBSET FS9 19 /
SUBSET FS10 20 /
SUBSET FS11 21 /
SUBSET FS12 22 /
SUBSET FS13 23 /
SUBSET FS14 24 /
END SUBSET DATA /
BEGIN MODAL DATA /
USE C0002 WITH LIFTING SURFACE F1 F2 F3 F4 F5      /
USE C0003 WITH LIFTING SURFACE S1 S2      /
USE C0001 WITH INTEPF BODY ABODY      /
USE C0001 WITH BODY DOUBLET ABODY      /
END MODAL DATA /
BEGIN OPTION DATA /
VELOCITY PROFILES /
PROFILE VPROH RLE1 160. DTE1 -64. 0. 0. .005 .843 .0125 1. .025 1.095
.05 1.17 .075 1.166 .1 1.153 .125 1.14 .15 1.14 .175 1.14 .2 1.145
.25 1.149 .3 1.158 .35 1.158 .4 1.153 .5 1.127 .6 1.086 .7 1.039
.75 1.02 .8 1.005 .85 .99 .9 .964 .95 .927 .975 .954 .99 .742 1. 0. /
PKFILE VPPOF RLE1 160. DTE1 -64. 0. 0. .005 .775 .0125 1. .025 1.118
.05 1.204 .375 1.192 .1 1.17 .125 1.158 .15 1.156 .175 1.158 .2 1.162
.25 1.166 .3 1.17 .35 1.17 .4 1.166 .5 1.14 .6 1.091 .7 1.044 .75 1.02
.8 1.005 .85 .975 .9 .938 .95 .90 .975 .877 .99 .854 1. 0. /
USE VPRI0H ON SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 /
USE VPRI0F ON      FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11 FS12 FS13
      FS14 /
PRESSURE CORRECTIONS /
USE .4092 0.0 AS SCALAR ON S1 /
USE .8930 0.0 AS SCALAR ON S2 /
USE .775 0.0 AS SCALAR ON F2 /
USE .8730 0.0 AS SCALAR ON F3 /
END OPTION DATA /
END DUHLAT DATA /
BEGIN AFL DATA /
CASE 1 /
BEGIN GEOMETRY DATA /
MAIN SURFACE VTAIL /
LEADING EDGE 98.155 0.0 41.249 101.107 23.062 39.6363 /
TRAILING EDGE 110.454 0.0 41.249 107.257 23.062 39.6363 /
STRIP FRACTIONS .1 .2 .3 .4 .5 .6 .7 .8 .9 /
MAIN SURFACE VTAIL /
LEADING EDGE 93.15 0.0 43.5 93.15 0.0 38.5 91.55 0.0 35.094
     85.404 0.0 21.905 /
TRAILING EDGE 114.37 0.0 43.5 113.278 0.0 41.249 112.0 0.0 38.5
     110.45 0.0 35.054 104.28 0.0 21.905 /
STRIP DISTANCES 1.1255 3.6255 6.703 10.0546 11.7033 13.3519 15.0005
     16.649 18.2978 19.9464 /
END GEOMETRY DATA /
BEGIN MODAL DATA /
USE C0002 WITH MAIN SURFACE VTAIL /

```

USE C0003 WITH MAIN SURFACE HTAIL /
END MODAL DATA /
END AFI DATA /
BEGIN FLUTTER DATA /
CASE 1 /
ALTITUDE 0.0 /
END FLUTTER DATA /
END PROBLEM DATA /

Table 212-1. Natural Frequencies,
YC-14 Empennage

(1) Mode Number	Frequency (Hertz)		$\frac{(3)-(2)}{(2)} \times 100$ (%)
	(2) Experimental	(3) ATLAS	
1	4.87	4.90	0.6
2	6.90	6.77	-1.9
3	11.30	11.22	-0.7
4	26.60	28.62	7.6
5	41.55	41.98	1.0

Figure 212-1. Structural Model, YC-14 Empennage

Figure 212-2. Aerodynamic Modeling for YC-14 Empennage Surfaces

Figure 212-3. V-g Plot, YC-14 Empennage

PRECEDING PAGE BLANK NOT FILMED

Figure 212-4. V-f Plot, YC-14 Empennage

212.17

213. 3D STRESS ANALYSIS OF A ROTATING DISK (DECK 12)

213.1 DESCRIPTION OF ANALYSIS

A 3D stress analysis is performed on a rotating disk subjected to the following loads:

- Inertia loads due to angular velocity and acceleration
- Pressure in central hole and on rim
- Thermal loading

The disk is shown in figure 213-1. Rotation is about an axis perpendicular to the plane of the disk. The pressures act in the plane of the disk and are uniform through the thickness of the disk. Two thermal loadcases are applied: a uniform temperature increase and a temperature increase varying linearly in the radial direction and uniform through the thickness.

A 30° sector of the disk is modelled using 20-node BRICK elements. Only one-half of the thickness is modelled and symmetry enforced upon the mid-surface. The model is shown in figure 213-2.

213.2 RESULTS

Radial and tangential stress components due to constant angular velocity, ω , are presented in figure 213-3. The solid lines represent the theory of elasticity solution (ref. 213-1).

Shear stresses due to angular acceleration, α , are presented in figure 213-4. The solid line represents the theory of elasticity solution (ref. 213-2).

Radial and tangential stress components due to pressure loading in the bore and on the rim are presented in figures 213-5 and 213-6, respectively. The solid lines represent the theory of elasticity solution (ref. 213-1).

Element stresses due to the uniform temperature increase are zero within the accuracy of the computer. Displacements are also exact within machine accuracy. Radial and tangential stress components due to the radial temperature gradient are presented in figure 213-7. The solid lines represent the theory of elasticity solution (ref. 213-1).

213.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL PROGRAM DEMO12
PROBLEM ID(DEMO12 - 3D STRESS ANALYSIS OF A ROTATING DISK)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C               DECK ARE
C               1. 3D STRESS ANALYSIS
C               2. THERMAL LOADING
C               3. INERTIA LOADING

C CORE        140K (OCTAL)

C AUTHOR      R. A. SAMUEL

C READ INPUT(MODE2)
C PRINT INPUT (NODAL)
C PRINT INPUT(MATERIAL)
C PRINT INPUT(STIFFNESS)
C PRINT INPUT(BC)
C PRINT INPUT(LOADS)
C EXECUTE EXTRACT(EXNAME=DISK,LSUB=KGRID,ESUB=E1,NSUB=N1)
C EXECUTE GRAPHICS(GNAME=BRICKS,OFFLINE=CALCOMP,RZ=30,RX=0,RY=20,
X           TYPE=ORTH,SIZE={20.,20.},LABEL=E,EXNAME=DISK)
C EXECUTE MASS(OPTION=4)
C PERFORM STRESS
C PRINT OUTPUT(LOADS)
C PRINT OUTPUT(DISP,CYL)
C PRINT OUTPUT(STRESS)
C PRINT OUTPUT(REACTIONS,EQCHK)
C PRINT INPUT(BC,STAGE=2)
C PRINT INPUT(LOADS,STAGE=2)
C EXECUTE LOADS(STAGE=2)
C EXECUTE MERGE(STIFFNESS,STAGE=2,KK11=11,KK13=13)
C EXECUTE MERGE(LOADS,STAGE=2,LL11=11,LL31=31)
C EXECUTE CHOLESKY(SOLVE,KK11,CD11,LL11)
C EXECUTE STRESS(STAGE=2,D1=DD11)
C EXECUTE MULTIPLY(RR31=[-LL31+KK13(T)*DD11])
C PRINT OUTPUT(LOADS,L11=LL11,L31=LL31,STAGE=2)
C PRINT OUTPUT(CISP,STAGE=2,CYL)
C PRINT OUTPUT(STRESS,STAGE=2)
C PRINT OUTPUT(REACTION,S,R31=RR31,EQCHK,STAGE=2)
C PURGE FILES(STIFRNF,STRERNF,LOADRNF)
C EXECUTE STIFFNESS(BIGBRICK)
C EXECUTE LOADS
C EXECUTE STRESS(D1=D11)
C PRINT OUTPUT(STRESS)
C PRINT OUTPUT(STRESS,BIGBRICK=NODAL)
C EXECUTE LOADS(STAGE=2)
C EXECUTE STRESS(STAGE=2,D1=DD11)
C PRINT OUTPUT(STRESS,STAGE=2)
C PRINT OUTPUT(STRESS,STAGE=2,BIGBRICK=NODAL)
END CONTROL PROGRAM
```

```

BEGIN MATERIAL DATA
M51 .1
-200 11.3E6 .3 4.34E6 -.003
400 9.3E6 .3 3.58E6 .003
END MATERIAL DATA
BEGIN NODAL DATA
ANALYSIS FRAME INPUT
CYL CAN 0. 0. 0., 5. 0. 0., J. 0. 5.
1 .375 0. 0. TO 3 .75 30. 0.
**+2 11 .5 0. 0. 0 11 .5 0. 0.
**+2 11 1. 0. 0. 0 11 1. 0. 0.
**+1 11 1.375 0. 0. 0 11 1.375 0. 0.
141 .375 0. .15 TO 143 .375 30. .15
**+2 11 .5 0. 0. 0 11 .5 0. 0.
**+2 11 1. 0. 0. 0 11 1. 0. 0.
**+1 11 1.375 0. 0. 0 11 1.375 0. 0.
8 .625 0. 0. TO 9 .625 30. 0.
**+1 11 .5 0. 0. 0 11 .5 0. 0.
**+1 11 .75 0. 0. 0 11 .75 0. 0.
**+1 11 1. 0. 0. 0 11 1. 0. 0.
**+1 11 1.125 0. 0. 0 11 1.125 0. 0.
148 .625 0. .15 TO 149 .625 30. .15
**+1 11 .5 0. 0. 0 11 .5 0. 0.
**+1 11 .75 0. 0. 0 11 .75 0. 0.
**+1 11 1. 0. 0. 0 11 1. 0. 0.
**+1 11 1.125 0. 0. 0 11 1.125 0. 0.
71 .375 0. .075 TO 73 .375 30. .075 BY 2
**+2 11 .5 0. 0. 0 11 .5 0. 0. **
**+2 11 1. 0. 0. 0 11 1. 0. 0. **
**+1 11 1.375 0. 0. 0 11 1.375 0. 0. **
RESUME GLOBAL
210 0. 0. -1.
211 0. 0. 1.
212 -9.7 -.26 .075
REORDER FROM 212
END NODAL DATA
BEGIN STIFFNESS DATA
BEGIN ELEMENT DATA
DICK M51 1 3 143 141 12 14 154 152 2 73 142 71 13 84 153 82 8 9 149 148
**+4 0 0 11 **=19
BEAM N200 210 211 1 1.
END ELEMENT DATA
END STIFFNESS DATA
BEGIN BC DATA
SET 1 STAGE 1 / SYMMETRIC BC
SUPPORT TZ FOR 210
SUPPORT TT FOR 1 TO 103
SUPPORT ASYM IN SURFACE 3 THROUGH 1
SET 1 STAGE 2 / ANTISYMMETRIC BC
SUPPORT TR FOR 1 TO 198
SUPPORT ASYM IN SURFACE 3 THROUGH 1
SUPPORT TT FOR 1 TO 3 71 73 141 TO 143
SUPPORT TZ FOR 210
END BC DATA
BEGIN LL S DATA
LOAD CASE ID INTPRES ** PRESSURE IN HOLE *
LOAD CASE ID RIMPRES ** PRESSURE ON RIM *
LOAD CASE ID OMEGA ** CONSTANT OMEGA = 2000 *
LOAD CASE ID TTERM ** UNIFORM DELTA(T) *
LOAD CASE ID THRLIN ** DELTA(T) = 120*R - 270 *
LOAD CASE ID BEARLD ** AXIAL LCAD ON BEAM *
BEGIN INERTIA LOAD DATA
AXIS 210 211
CASE OMEGA
2000.
END INERTIA LOAD DATA
BEGIN ELEMENT LOAD DATA
DIRECTION ELEMENT -1. 0. 0.
CASE INTPRES
1 1 10000.
CASE RIMPRES
5 2 789.
END ELEMENT LOAD DATA

```

```
BEGIN ELEMENT THERMAL LOAD DATA
CASE THERM
    1 TO 5 200.
END ELEMENT THERMAL LOAD DATA
BEGIN NODAL THERMAL LOAD DATA
CASE THERMLIN
    1 TO 3 71 73 141 TO 143 -225.
    8 9 148 149 -195.
    12 TO 14 82 84 152 TO 154 -165.
    19 20 156 160 -135.
    23 TO 25 93 95 163 TO 165 -105.
    30 31 170 171 -45.
    34 TO 36 104 106 174 TO 176 15.
    41 42 181 182 75.
    45 TO 47 115 117 185 TO 187 135.
    52 53 192 193 210.
    56 TO 58 126 128 196 TO 198 300.
END NODAL THERMAL LOAD DATA
BEGIN NODAL LOAD DATA
CASE BEAMLD
    211 FZ 1000.
ENC NODAL LOAD DATA
SET 1 STAGE 2
LOAD CASE ID ALPHA ** ALPHA = 5000 *
BEGIN INERTIA LOAD DATA
    AXIS 210 211
    CASE ALPHA
        0. 5000.
END INERTIA LOAD DATA
END LOADS DATA
BEGIN SUBSET DEFINITION
SUBSETS OF STIFFNESS SET 1
    E1 = BRICKS
    N1 = ALL
    EXCLUDE 212 FROM N1
END SUBSET DEFINITION
ENC PROBLEM DATA
```

ν = Poisson's ratio
 ρ = Mass density
 ω = Angular velocity
 α = Angular acceleration
 T = Temperature
 β = Coefficient of thermal expansion

$$a = 0.00953 \text{ m (0.375 in.)}$$

$$b = 0.121 \text{ m (4.75 in.)}$$

Figure 213-1. Disk

Figure 213-2. Model of Disk Segment

Figure 213-3. Stresses Due to Angular Velocity

Figure 213-1. Stresses Due to Angular Acceleration

Figure 213-5. Stresses Due to Bore Pressure

Figure 213-6. Stresses Due to Rim Pressure

Linear thermal gradient from center to rim,

$$\Delta T = Kr$$

Figure 213-7. Stresses Due to Thermal Loading

301. ATLAS/FLEXSTAB INTERFACES (DECKS 5 AND 6)

301.1 DESCRIPTION OF DEMONSTRATION

The method used to demonstrate the ATLAS-to-FLEXSTAB and FLEXSTAB-to-ATLAS interfaces is shown schematically in figure 301-1. The structural model is shown in figure 301-2. The body is modelled using BEAMS for the frames, RODs for stringers and SPLATEs for the surfaces. The wing is modelled using SPAR and COVER elements. All mass is obtained from a separate mass model consisting of mass PLATE elements and concentrated masses. The mass model is shown in figure 301-3. Symmetric and antisymmetric boundary conditions are imposed in the plane Y=0.

A reduced flexibility matrix is generated for each boundary condition stage. A diagonal mass matrix is produced directly by the Mass Processor. The interface routines MASSFIL and FLEXFIL are then executed to create the FLEXSTAB input tape NASTAP.

The FLEXSTAB system is executed, producing nodal loads for two symmetric conditions on the SDSS output tape. These nodal loads are read by the interface routine STREFIL and written onto the file DATARNF. The nodal loads are read from DATARNF by the Loads Preprocessor and used to perform an ATLAS stress analysis.

In addition to the stress analysis, the Mass Processor is executed to produce panel weights corresponding to the FLEXSTAB aerodynamic panels. These panel weights, together with airloads data from the SDSS output tape, are used by the routine VAMAT to calculate net shear, moment and torsion at various cuts along the wing and body. These net loads for each condition are searched by the routine VAMSCN to obtain the minimum and maximum values at each cut.

301.2 RESULTS

FLEXSTAB detected no errors while reading the ATLAS-generated NASTAP tape. The airloads calculated by FLEXSTAB appeared reasonable. No errors were detected by ATLAS while using the FLEXSTAB-generated SDSS tape. Displacements and stresses appeared reasonable.

Comparison of the VAMAT and VAMSCN results confirmed that the correct maxima and minima were found. The body bending moment, as calculated by VAMAT, is shown in figure 301-3.

301.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL MATRIX PROGRAM DEMO05
PROBLEM ID (DEMO05 - ATLAS-TU-FLEXSTAB INTERFACE)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C              DECK ARE
C              1. ATLAS-TO-FLEXSTAB INTERFACE
C              2. PLOTS OF MASS MODEL

C AUTHOR       F. P. GRAY

C CORE         13CK (OCTAL)

C DIMENSION FET (100,3),FETS(550)
C

READ INPUT
PRINT INPUT(NODAL)
PRINT INPUT(STIFFNESS)
PRINT INPUT(MASS)
EXECUTE EXTRACT(EXNAME=STIF,L SUB=KGRID,ESUB=E1,NSUB=N5)
EXECUTE GRAPHICS(GNAME=GEOM,TYPE=(ORTH,POINT),SIZE=(30.,20.),  
X          OFFLINE=GERBER,RZ=30.,RX=0.,RY=20.,EXNAME=STIF)
EXECUTE EXTRACT(EXNAME=MASS,L SUB=MGPID,ESUB=E4,NSUB=N6)
EXECUTE GRAPHICS(GNAME=GEUM,TYPE=(ORTH,POINT),SIZE=(30.,20.),  
X          RZ=30.,RX=0.,RY=20.,EXNAME=MASS)
EXECUTE MASS(OPTION=2)
PERFORM F-REDUCE(STAGE=1,[K]=[K1],[FRED]=[FLEX1])
PERFORM F-REDUCE(STAGE=2,[K]=[K2],[FRED]=[FLEX2])
PRINT INPUT(BC)
CALL FILEADD(FET,MULTRNF,MASSRNF,DATARNF)
CALL FETADD(SAVESSF,FETS,550,L,0,IHR)
REWIND SAVESSF
N=1
CALL MASSFIL(7LMDC001A,N,4)
CALL FLEXFIL(SLFLEX1)
CALL FLEXFIL(SLFLEX2)
END
```

BEGIN NODAL DATA /

1	20.	0.	1.	TO	9	340.	0.	65.	BY	2	/		
101	20.	0.	-1.	TO	109	340.	0.	-65.	BY	2	/		
201	20.	1.	0.	TO	209	340.	65.	0.	BY	2	/		
11	420.	0.	65.	TO	83	3300.	0.	65.	BY	2	/		
111	420.	0.	-65.	TO	189	3540.	0.	-65.	BY	2	/		
211	420.	65.	0.	TO	225	980.	65.	0.	BY	2	/		
265	2580.	65.	0.	TO	277	3060.	65.	0.	BY	2	/		
287	3460.	65.	0.	TO	289	3540.	65.	0.	BY	2	/		
*/ WING COORDINATES /													
227	1060.	65.	0.	26.25	TO	245	1780.	65.	0.	36.35	BY	2	/
245					TO	255	2180.	65.	0.	28.8	BY	2	/
255					TO	263	2500.	65.	0.	12.0	BY	2	/
327	1060.	65.	0.	26.25	TO	341	1620.	265	0.	8.85	BY	2	/
445	1780.	195.	0.	22.65	TO	455	2180.	195.	0.	20.15	BY	2	/
541	1620.	265.	0.	8.85	TO	551	2205.	455.	0.	5.75	BY	2	/
651	2205.	455.	0.	5.75	TO	656	2545.	594.	0.	3.2			/
756	2545.	594.	0.	3.2	TO	760	2875.	765.	0.	.95			/
760					TO	763	2995.	765.	0.	1.85			/
341					TO	355	2180.	255.	0.	20.15	BY	2	/
355					TO	363	2500.	265.	0.	11.25	BY	2	/
551					TO	559	2525.	455.	0.	10.0			/
559					TO	563	2685.	455.	0.	5.0			/
656					TO	659	2665.	594.	0.	4.85			/
659					TO	663	2825.	594.	0.	2.45			/
*/ HORIZONTAL TAIL /													
279	3140.	65.	0.	1.80									/
779	3140.	65.	0.	1.80	TO	979	3365.	200.	0.	1.25	BY	100	
281	3220.	65.	0.	4.25									/
781	3220.	65.	0.	4.25	TO	981	3388.	200.	0.	1.75	BY	100	
283	3300.	65.	0.	4.55									/
783	3300.	65.	0.	4.55	TO	983	3412.	200.	0.	1.80	BY	100	
285	3380.	65.	0.	1.40									/
785	3380.	65.	0.	1.40	TO	985	3435.	200.	0.	.80	BY	100	
*/ VERTICAL TAIL /													
REC	REC1	0.	0.	0.	1.	0.	0.	0.	-1.	0.	/		
95	3380.	65.	0.	3.25	/								
87	3460.	65.	0.	2.40	/								
1085	3460.	140.	0.	1.50	/								
1087	3500.	140.	0.	1.80	/								
*/ WING FIN /													
1156	2545.	.1	-594.	2.40	TO	1356	2830.	100.	-594.	1.80	BY	100	
1158	2625.	.1	-594.	2.40	TO	1358	2842.	100.	-594.	1.90	BY	100	
1161	2745.	.1	-594.	2.80	TO	1361	2859.	100.	-594.	1.95	BY	100	
1163	2825.	.1	-594.	2.80	TO	1363	2870.	100.	-594.	2.05	BY	100	
RESUME GLOBAL													
89	3540.	0.	65.										/
*/ WEIGHT PANELS - BODY													
6001	0.	0.	0.	TO	6016	3564.	0.	0.					/
6021	0.	65.	0.	TO	6036	3564.	65.	0.					/
*/ WEIGHT PANELS - WING													
6100	741.0	65.0	0.	TO	6220	2487.0	594.0	0.	BY	20		/	
6100				TO	6260	2487.0	594.0	0.	BY	80		/	
6180				TO	6240	2487.0	594.0	0.	BY	20		/	
6260				TO	6320	2884.0	794.0	0.	BY	20		/	
6110	2715.0	65.0	0.	TO	6170	2715.0	329.5	0.	BY	20		/	
6189	2715.0	329.5	0.	TO	6249	2874.0	594.0	0.	BY	20		/	
6266	2874.0	594.0	0.	TO	6326	3054.0	794.0	0.	BY	20		/	
6100	TO	6110											/
**3	20	0	20										/
	6189	TO	6189										/
**3	20	0	20										/
	6260	TO	6266										/
**3	20	0	20										/
*/ WEIGHT PANELS - HOR TAIL													
6400	3124.	65.1	0.	TO	6403	3417.	65.1	0.					/
6410	3386.	228.0	0.	TO	6413	3464.	228.0	0.					/
END NODAL DATA /													

BEGIN STIFFNESS DATA /
 BEGIN ELEMENT DATA /
 /* WING SPARS /
 SPAR M5 227 329 .06 1.
 SPAR M5 247 447 .10 2.0 TO 253 453 BY 2 2 /
 SPAR M5 329 331 .06 1. TO 339 341 BY 2 2 /
 SPAR M5 341 543 .06 1.
 SPAR M5 543 545 .06 1.
 SPAR M5 551 653 .06 1.
 SPAR M5 653 655 .06 1.
 SPAR M5 655 656 .06 1.
 SPAR M5 656 757 .06 1.
 SPAR M5 757 758 .06 1. TO 759 760 /
 SPAR M5 263 363 .20 6.
 SPAR M5 363 563 .17 6.
 SPAR M5 563 663 .15 4.
 SPAR M5 663 763 .15 2.
 SPAR M5 229 329 .1 1. TO 243 343 BY 2 2 /
 SPAR M5 245 445 .18 1.
 SPAR M5 445 345 .19 1.
 SPAR M5 447 347 .1 2. TO 453 353 BY 2 2 /
 SPAR M5 255 455 .3 6.
 SPAR M5 455 353 .3 6.
 SPAR M5 257 357 .12 6. TO 261 361 BY 2 2 /
 SPAR M5 343 543 .1 1. TO 345 545 BY 2 2 /
 SPAR M5 347 547 .1 2. TO 353 553 BY 2 2 /
 SPAR M5 355 555 .1 4.
 SPAR M5 357 557 .1 5. TO 361 361 BY 2 2 /
 SPAR M5 553 653 .06 2. TO 555 655 BY 2 2 /
 SPAR M5 556 651 .03 2. TO 562 662 /
 SPAR M5 657 757 .03 1. TO 662 762 /
 /* WING RIBS /
 SPAR M5 445 447 .17 2. TO 453 455 BY 2 2 /
 SPAR M5 341 343 .10 1.5 TO 361 363 BY 2 2 /
 SPAR M5 551 553 .10 2. TO 553 555 BY 2 2 /
 SPAR M5 555 556 .10 2. TO 562 563 /
 SPAR M5 656 657 .06 1. TO 662 663 /
 SPAR M5 760 761 .15 .7 TO 762 763 /
 /* WING COVERS /
 COVER M5 229 329 227 .03
 COVER M5 229 329 331 231 .03 TO 241 341 343 243 BY 2 **3 /
 COVER M5 243 343 445 245 .03
 COVER M5 445 345 343 .03 /
 COVER M5 245 247 447 445 .06 .0 TO 253 255 455 453 BY 2 **3 /
 COVER M5 445 345 347 447 .03 TO 453 353 355 455 BY 2 **3 /
 COVER M5 255 455 357 257 .05 .07 /
 COVER M5 455 355 357 .05 .07 /
 COVER M5 257 357 359 259 .05 .07 /
 COVER M5 259 359 361 261 .13 .07 .11 .0 TO 261 361 363 263 BY 2 **3 /
 COVER M5 343 543 341 .03 /
 COVER M5 343 543 545 345 .03 TO 353 553 555 355 BY 2 **3 /
 COVER M5 355 555 557 357 .05 .04 TO 357 557 559 359 BY 2 **3 /
 COVER M5 359 559 561 361 .15 .07 .10 .0 TO 361 561 563 363 BY 2 **3 /
 COVER M5 553 653 551 .15 .07 .11 .06 /
 COVER M5 553 653 655 555 .15 .07 .11 .06 /
 COVER M5 555 655 656 556 .15 .07 .11 .06 TO 562 662 663 563 /
 COVER M5 657 757 656 .04 /
 COVER M5 657 757 758 658 .04 TO 662 762 763 663 /
 /* HORIZONTAL TAIL /
 SPAR M5 279 879 .05 .6 /
 SPAR M5 879 979 .05 .6 /
 SPAR M5 281 881 .025 .9 /
 SPAR M5 881 981 .025 .9 /
 SPAR M5 283 883 .025 .8 /
 SPAR M5 883 983 .025 .8 /
 SPAR M5 285 885 .10 1.3 /
 SPAR M5 885 985 .10 1.3 /
 SPAR M5 879 881 .05 .6 TO 883 885 BY 2 2 /
 SPAR M5 979 981 .05 .6 TO 983 985 BY 2 2 /
 COVER M5 279 879 891 281 .08 /
 **2 0 0 2 **3 0. /
 COVER M5 879 979 981 881 .035 /
 **2 0 0 2 **3 0. /
 /* WING FIN /

SPAR M5 1156 1256 .025 .5 TO 1256 1356 BY 100 100 /
 SPAR M5 1158 1258 .025 .5 TO 1258 1358 BY 100 100 /
 SPAR M5 1161 1261 .025 .5 TO 1261 1361 BY 100 100 /
 SPAR M5 1163 1263 .025 .5 TO 1263 1363 BY 100 100 /
 SPAR M5 1256 1258 .025 .5 TO 1356 1358 BY 100 100 /
 SPAR M5 1258 1261 .025 .5 TO 1358 1361 BY 100 100 /
 SPAR M5 1261 1263 .025 .5 TO 1361 1363 BY 100 100 /
 COVER M5 1156 1256 1258 1158 .025 TO 1256 1356 1358 1258
 BY 100 100 100 100 /
 COVER M5 1158 1258 1261 1161 .025 TO 1258 1358 1361 1261
 BY 100 100 100 100 /
 COVER M5 1161 1261 1263 1163 .025 TO 1261 1361 1363 1263
 BY 100 100 100 100 /
 /* VERTICAL TAIL /
 COVER M5 85 1085 1087 87 .0 C.C35 /
 BEAM M5 85 1085 0.5 0.1 C.1 50. 50. 50. /
 BEAM M5 1085 1087 0.5 0.1 0.1 50. 50. 50. /
 BEAM M5 87 1087 0.5 0.1 C.1 50. 50. 50. /
 /* BODY /
 /* STRINGERS /
 ROD M5 1 3 2.37 TO 23 25 BY 2 2 /
 *+2 0 0 100 100 0. 0 100 100 C C 0 /
 *+1 0 *=3 C. 0 *=5 /
 ROD M5 25 27 4. TO 43 45 BY 2 2 /
 *+2 0 0 100 100 0. 0 100 100 C C 0 /
 *+1 0 *=3 C. 0 *=5 /
 ROD M5 45 47 5.35 TO 67 69 BY 2 2 /
 *+2 0 0 100 100 0. 0 100 100 C C 0 /
 *+1 0 *=3 C. 0 *=5 /
 ROD M5 69 71 4. TO 75 77 BY 2 2 /
 *+2 0 0 100 100 0. 0 100 100 C C 0 /
 *+1 0 *=3 C. 0 *=5 /
 ROD M5 77 79 2.37 TO 87 89 BY 2 2 /
 *+2 0 0 100 100 0. 0 100 100 C C 0 /
 *+1 0 *=3 C. 0 *=5 /
 SPLATE M5 1 3 203 201 .04 TO 25 27 227 225 BY 2 *=3 /
 SPLATE M5 201 203 103 101 .04 TO 225 227 127 125 ** /
 SPLATE M5 27 29 229 227 .06 TO 43 45 245 243 ** /
 SPLATE M5 227 229 129 127 .06 TO 243 245 145 143 ** /
 SPLATE M5 45 47 247 245 .08 TO 67 69 269 267 ** /
 SPLATE M5 245 247 147 145 .08 TO 267 269 169 167 ** /
 SPLATE M5 69 71 271 269 .06 TO 75 77 277 275 ** /
 SPLATE M5 269 271 171 169 .06 TO 275 277 177 175 ** /
 SPLATE M5 77 79 279 277 .04 TO 87 89 289 287 ** /
 SPLATE M5 277 279 179 177 .04 TO 287 289 189 187 ** /
 /* BODY FRAMES /
 BEAM M5 1 201 3. 0. 0. 50. 50. 50. TO 27 227 BY 2 2 /
 *+1 0 0 100 0 0. *=5 0 100 0 *=3 /
 BEAM M5 29 229 4.5 0. 0. 50. 50. 50. TO 45 245 BY 2 2 /
 *+1 0 0 100 0 0. *=5 0 100 0 *=3 /
 BEAM M5 47 247 6. 0. 0. 50. 50. 50. TO 69 269 BY 2 2 /
 *+1 0 0 100 0 0. *=5 0 100 0 *=3 /
 BEAM M5 71 271 4.5 0. C. 50. 50. 50. TO 77 277 BY 2 2 /
 *+1 0 0 100 0 0. *=5 0 100 0 *=3 /
 BEAM M5 79 279 3. 0. 0. 50. 50. 50. TO 89 289 BY 2 2 /
 *+1 0 0 100 0 0. *=5 0 100 0 *=3 /
 BEAM 9 209 14.0 0. 0. 75. 75. 75. /
 *+1 0 100 0 0. *=5 /
 BEAM 27 227 14.0 0. 0. 75. 75. 75. /
 *+1 0 100 C 0. *=5 /
 BEAM 45 245 62. 0. 0. 450. 450. 450. /
 *+1 0 100 C 0. *=5 /
 BEAM 55 255 62. 0. 0. 450. 450. 450. /
 *+1 0 100 0 0. *=5 /
 BEAM 63 263 62. 0. 0. 450. 450. 450. /
 *+1 0 100 0 0. *=5 /
 BEAM 79 279 14. 0. 0. 75. 75. 75. /
 *+1 0 100 C 0. *=5 /
 BEAM 85 285 14. 0. 0. 75. 75. 75. /
 *+1 0 100 0 0. *=5 /

```

*/ ATTACHMENT OF WING FIN /
BEAM 25 656 1156 663 1. 0. C. .1 .1 .1 /
BEAM 25 658 1158 563 1. 0. C. .1 .1 .1 /
BEAM 25 661 1161 663 1. 0. C. .1 .1 .1 /
BEAM 25 663 1163 661 1. 0. C. .1 .1 .1 /
BEAM 25 656 658 10. 0. 0. 100. 100. 100. /
BEAM 25 658 661 10. 0. 0. 100. 100. 100. /
BEAM 25 661 663 10. 0. 0. 100. 100. 100. /
BEAM 25 89 289 0. 0. 0. 10000. **2 /
BEAM 25 189 289 ** /
END ELEMENT DATA /
END STIFFNESS DATA /
BEGIN BC DATA /
*/ORDER BODY,FIN,WING-FIN,WING HORIZONTAL TAIL
STAGE 1 /
RETAIN TZ FOR 3 9 15 23 31 39 45 53 61 67 75 83 87 85 103 1087 /
RETAIN TZ TY FOR 1156 1356 1358 1158 1161 1361 1363 1163 /
RETAIN TZ FOR 223 331 231 337 237 245 355 255 363 263
267 543 345 551 349 555 563 656 659 663
760 761 763 359 559 661 762 279 979 981
281 283 983 985 285 /
SUPPORT TX TZ RY FOR 89 /
SUPPORT ASYM IN SURFACE 2 THRU 1 /
STAGE 2 /
RETAIN TY TZ FOR 3 9 15 23 31 39 45 53 61 67 75 83 87 /
RETAIN TZ TY FOR 85 1085 1087 /
RETAIN TZ TY FOR 1156 1356 1358 1158 1161 1361 1363 1153 /
RETAIN TZ FOR 223 331 231 337 237 245 355 255 363 263
267 543 345 551 349 555 563 656 659 663
760 761 763 359 559 661 762 279 979 981
281 283 983 985 285 /
SUPPORT TX TY TZ RX RY RZ FOR 89 /
SUPPORT SYMM IN SURFACE 2 THROUGH 1 /
END BC DATA /
BEGIN MASS DATA
BEGIN CONDITION DATA
STAGE 1 CONDITION 1 0 0 1
END CONDITION DATA
BEGIN MASS ELEMENT DATA /
PLATE F2 B-1 6001 6002 6022 3495.
PLATE F2 B-2 6002 6003 6023 6022 5955.
PLATE F2 B-3 6003 6004 6024 6023 2589.
PLATE F2 B-4 6004 6005 6025 6024 3441.
PLATE F2 B-5 6005 6006 6026 6025 5420.
PLATE F2 B-6 6006 6007 6027 6026 3280.
PLATE F2 B-7 6007 6008 6028 6027 3306.
PLATE F2 B-8 6008 6009 6029 6028 4346.
PLATE F2 B-9 6009 6010 6030 6029 4507.
PLATE F2 B-10 6010 6011 6031 6030 4486.
PLATE F2 B-11 6011 6012 6032 6031 3619.
PLATE F2 B-12 6012 6013 6033 6032 4730.
PLATE F2 B-13 6013 6014 6034 6033 3982.
PLATE F2 B-14 6014 6015 6035 6034 947.
PLATE F2 B-15 6015 6016 6036 6035 1788.
PLATE F2 W-1 6100 6101 6121 6120 768.
PLATE F2 W-2 6101 6102 6122 6121 1151.
PLATE F2 W-3 6102 6103 6123 6122 1667.
PLATE F2 W-4 6103 6104 6124 6123 1112.
PLATE F2 W-5 6104 6105 6125 6124 1190.
PLATE F2 W-6 6105 6106 6126 6125 1659.
PLATE F2 W-7 6106 6107 6127 6126 1988.
PLATE F2 W-8 6107 6108 6128 6127 2467.
PLATE F2 W-9 6108 6109 6129 6128 1335.
PLATE F2 W-10 6109 6110 6130 6129 338.
PLATE F2 W-11 6120 6121 6141 6140 795.
PLATE F2 W-12 6121 6122 6142 6141 1415.
PLATE F2 W-13 6122 6123 6143 6142 813.
PLATE F2 W-14 6123 6124 6144 6143 1259.
PLATE F2 W-15 6124 6125 6145 6144 1248.
PLATE F2 W-16 6125 6126 6146 6145 1720.
PLATE F2 W-17 6126 6127 6147 6146 1494.
PLATE F2 W-18 6127 6128 6148 6147 1988.
PLATE F2 W-19 6128 6129 6149 6148 498.

```

PLATE F2	W-20	6129	6130	6150	6149	126.	/
PLATE F2	W-21	6140	6141	6161	6160	508.	/
PLATE F2	W-22	6141	6142	6162	6161	1279.	/
PLATE F2	W-23	6142	6143	6163	6162	536.	/
PLATE F2	W-24	6143	6144	6164	6163	532.	/
PLATE F2	W-25	6144	6145	6165	6164	550.	/
PLATE F2	W-26	6145	6146	6166	6165	1055.	/
PLATE F2	W-27	6146	6147	6167	6166	1405.	/
PLATE F2	W-28	6147	6148	6168	6167	1953.	/
PLATE F2	W-29	6148	6149	6169	6168	274.	/
PLATE F2	W-30	6149	6150	6170	6169	172.	/
PLATE F2	W-31	6180	6181	6201	6200	614.	/
PLATE F2	W-32	6181	6182	6202	6201	1286.	/
PLATE F2	W-33	6182	6183	6203	6202	562.	/
PLATE F2	W-34	6183	6184	6204	6203	786.	/
PLATE F2	W-35	6184	6185	6205	6204	1386.	/
PLATE F2	W-36	6185	6186	6206	6205	1849.	/
PLATE F2	W-37	6186	6187	6207	6206	1649.	/
PLATE F2	W-38	6187	6188	6208	6207	421.	/
PLATE F2	W-39	6188	6189	6209	6208	255.	/
PLATE F2	W-40	6200	6201	6221	6220	207.	/
PLATE F2	W-41	6201	6202	6222	6221	497.	/
PLATE F2	W-42	6202	6203	6223	6222	692.	/
PLATE F2	W-43	6203	6204	6224	6223	765.	/
PLATE F2	W-44	6204	6205	6225	6224	816.	/
PLATE F2	W-45	6205	6206	6226	6225	843.	/
PLATE F2	W-46	6206	6207	6227	6226	687.	/
PLATE F2	W-47	6207	6208	6228	6227	136.	/
PLATE F2	W-48	6208	6209	6229	6228	94.	/
PLATE F2	W-49	6220	6221	6241	6240	136.	/
PLATE F2	W-50	6221	6222	6242	6241	522.	/
PLATE F2	W-51	6222	6223	6243	6242	516.	/
PLATE F2	W-52	6223	6224	6244	6243	536.	/
PLATE F2	W-53	6224	6225	6245	6244	555.	/
PLATE F2	W-54	6225	6226	6246	6245	580.	/
PLATE F2	W-55	6226	6227	6247	6246	704.	/
PLATE F2	W-56	6227	6228	6248	6247	119.	/
PLATE F2	W-57	6228	6229	6249	6248	91.	/
PLATE F2	W-58	6260	6261	6281	6280	289.	/
PLATE F2	W-59	6261	6262	6282	6281	306.	/
PLATE F2	W-60	6262	6263	6283	6282	244.	/
PLATE F2	W-61	6263	6264	6284	6283	507.	/
PLATE F2	W-62	6264	6265	6285	6284	116.	/
PLATE F2	W-63	626	6266	6286	6285	76.	/
PLATE F2	W-64	6280	6281	6301	6300	216.	/
PTE F2	W-65	6281	6282	6302	6301	144.	/
PLATE F2	W-66	6282	6283	6303	6302	245.	/
PLATE F2	W-67	6283	6284	6304	6303	365.	/
PLATE F2	W-68	6284	6285	6305	6304	86.	/
PLATE F2	W-69	6285	6286	6306	6305	71.	/
PLATE F2	W-70	6300	6301	6321	6320	184.	/
PLATE F2	W-71	6301	6302	6322	6321	160.	/
PLATE F2	W-72	6302	6303	6323	6322	126.	/
PLATE F2	W-73	6303	6304	6324	6323	273.	/
PLATE F2	W-74	6304	6305	6325	6324	66.	/
PLATE F2	W-75	6305	6306	6326	6325	66.	/
PLATE F2	HT-1	6400	6401	6411	6410	283.	/
PLATE F2	HT-2	6401	6402	6412	6411	212.	/
PLATE F2	HT-3	6402	6403	6413	6412	522.	/
*/ PLATES REPRESENTING FUEL							/
PLATE F2	F-1	6102	6103	6123	6122	129.6	/
PLATE F2	F-2	6103	6104	6124	6123	8637.2	/
PLATE F2	F-3	6104	6105	6125	6124	12852.9	/
PLATE F2	F-4	6106	6107	6127	6126	5531.1	/
PLATE F2	F-5	6107	6108	6128	6127	6919.3	/
PLATE F2	F-6	6108	6109	6129	6128	107.1	/
PLATE F2	F-7	6124	6125	6145	6144	442.8	/
PLATE F2	F-8	6125	6126	6146	6145	5450.7	/
PLATE F2	F-9	6126	6127	6147	6146	6537.8	/
PLATE F2	F-10	6128	6129	6149	6148	2604.5	/
PLATE F2	F-11	6129	6130	6150	6149	4011.2	/
PLATE F2	F-12	6140	6141	6161	6160	762.0	/
PLATE F2	F-13	6144	6145	6165	6164	.28.9	/

```

PLATE F2 F-14 6145 6146 6166 6165 2470.2
PLATE F2 F-15 6147 6148 6168 6167 1825.8
PLATE F2 F-16 6148 6149 6169 6168 4994.1
PLATE F2 F-17 6149 6150 6170 6169 2341.4
PLATE F2 F-18 6180 6181 6201 6200 3598.6
PLATE F2 F-19 6184 6185 6205 6204 268.5
PLATE F2 F-20 6185 6186 6206 6205 1691.6
PLATE F2 F-21 6186 6187 6207 6206 3248.9
PLATE F2 F-22 6187 6188 6208 6207 2531.0
PLATE F2 F-23 6188 6189 6209 6208 4235.0
PLATE F2 F-24 6200 6201 6221 6220 775.4
PLATE F2 F-25 6204 6205 6225 6224 457.0
PLATE F2 F-26 6205 6206 6226 6225 1190.8
PLATE F2 F-27 6206 6207 6227 6226 1393.2
PLATE F2 F-28 6207 6208 6228 6227 1501.2
PLATE F2 F-29 6208 6209 6229 6228 1555.2
PLATE F2 F-30 6220 6221 6241 6240 140.4
PLATE F2 F-31 6224 6225 6245 6244 54.0
PLATE F2 F-32 6225 6226 6246 6245 442.8
PLATE F2 F-33 6226 6227 6247 6246 658.8
PLATE F2 F-34 6227 6228 6248 6247 648.0
PLATE F2 F-35 6228 6229 6249 6248 583.2
*/ PLATES REPRESENTING PAYLOAD
PLATE F2 P-1 6002 6003 6023 6022 680.
PLATE F2 P-2 6003 6004 6024 6023 2295.
PLATE F2 P-3 6004 6005 6025 6024 3585.
PLATE F2 P-4 6005 6006 6026 6025 2200.
PLATE F2 P-5 6006 6007 6027 6026 3300.
PLATE F2 P-6 6007 6008 6028 6027 3475.
PLATE F2 P-7 6008 6009 6029 6028 2965.
PLATE F2 P-8 6009 6010 6030 6029 2040.
PLATE F2 P-9 6010 6011 6031 6030 2125.
PLATE F2 P-10 6011 6012 6032 6031 2125.
PLATE F2 P-11 6012 6013 6033 6032 1190.

END MASS ELEMENT DATA /
BEGIN CONCENTRATED MASS DATA 1
1156 125. /
1356 100. /
1358 100. /
1158 125. /
1161 125. /
1361 100. /
1363 100. /
1163 125. /
85 150. /
87 150. /
1085 150. /
1087 150. /
END CONCENTRATED MASS DATA 1
BEGIN LUMPING DATA /
LUMP MASS SUBSETS 1 AT NODE SUBSET 1 /
*+2 0 0 0 1 0 0 0 1 /
END LUMPING DATA /
BEGIN FACTOR DATA
MASS FACTOR 32.17 /
EXCLUDE STIFFNESS ELEMENTS
END FACTOR DATA
END MASS DATA /
BEGIN SUBSET DEFINITION /
SUBSETS OF NODAL SET 1 /
N1 = 3 TO 87 /
N2 = 223 TO 267 331 TO 763 /
N3 = 279 281 283 285 979 981 983 985 /
N5 = ALL /
N6 = 6000 TO 6499 /
EXCLUDE N6 FROM N5 /
N10 = 6000 TO 6099 /
N11 = 6100 TO 6399 /
N12 = 6400 TO 6699 /
SUBSETS OF STIFFNESS SET 1 /
E1 = ALL /

```

```

SUBSETS OF MASS SET 1 /
E1 = IN N10 /
E2 = IN N11 /
E3 = IN N12 /
E4 = ALL /
END SUBSET DEFINITION /
END PROBLEM DATA /
BEGIN SLENDER BODY DATA /
  0. 0. 1 1 13 1 2 Y Z /
END DATA /
BEGIN VERTICAL THIN BODY DATA /
  0. 0. 0. 1.570796 14 14 1 3 1 14 2 Y Z /
BEGIN PANEL DEFINITION DATA /
  1 2 2 2 3 2 0 0 /
END DATA /
BEGIN VERTICAL THIN BODY DATA /
  0. 594. 0. 1.570796 17 17 0 8 3 17 2 Y Z /
BEGIN PANEL DEFINITION DATA /
  5 3 6 3 7 3 8 3 /
  4 3 3 3 6 3 5 3 /
  1 3 2 3 3 3 4 3 /
END DATA /
BEGIN HORIZONTAL THIN BODY DATA /
  0. 0. 0. C. 33 33 0 27 19 33 1 2 /
BEGIN PANEL DEFINITION DATA /
  1 4 2 4 3 4 0 0 /
  3 4 2 4 4 4 5 4 /
  5 4 4 4 13 4 6 4 /
  6 4 13 4 15 4 3 4 /
  8 4 15 4 7 4 0 0 /
  8 4 7 4 24 4 0 0 /
  8 4 24 4 9 4 10 4 /
  10 4 9 4 11 4 0 0 /
  4 4 12 4 13 4 0 0 /
  13 4 12 4 14 4 15 4 /
  15 4 14 4 16 4 7 4 /
  7 4 16 4 25 4 24 4 /
  24 4 25 4 17 4 9 4 /
  14 4 18 4 19 4 16 4 /
  16 4 19 4 26 4 25 4 /
  25 4 26 4 20 4 17 4 /
  18 4 21 4 22 4 19 4 /
  19 4 22 4 27 4 26 4 /
  26 4 27 4 23 4 20 4 /
END DATA /
BEGIN HORIZONTAL THIN BODY DATA /
  0. 0. 0. 0. 60 60 0 8 3 60 1 2 /
BEGIN PANEL DEFINITION DATA /
  1 2 2 5 3 5 4 5 /
  4 5 3 5 6 5 5 5 /
  5 5 6 5 7 5 8 5 /
END DATA /
END FLEXSTAB DATA /

```

BEGIN CONTROL MATRIX PROGRAM DEMO06
PROBLEM ID(DEMO06 - FLEXSTAB-TO-ATLAS INTERFACE, VAMAT/VAMSCN)

PURPOSE THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
DECK ARE
1. FLEXSTAB-TO-ATLAS INTERFACE
2. SHEAR, MOMENT AND TORSION CALCULATION VIA
VAMAT
3. SUMMARY OF CRITICAL LOADS USING VAMSCN

AUTHOR F. P. GRAY

CORE 130K (OCTAL)

DIMENSION FET(300),FET1(550),FET2(550),FET3(550),FET4(550)

```
CALL FILEADD(FET,DATARNF)
CALL FETADD(SAVESSF,FET1,550,1,C,IRR)
CALL STREFIL
PRINT MATRIX(DATARNF,Q*****)
READ INPUT
PERFORM R-STRESS
PRINT OUTPUT(LOADS)
PRINT OUTPUT(STRESSES)
PRINT OUTPUT(DISPLACE)
EXECUTE MASS
PRINT OUTPUT(MASS,MDC=MDC***,SUMMARY)
CALL FILEADD(FET,DATARNF,MASSRNF)
CALL FETADD(SAVESSF,FET1,550,1,0,IRR)
CALL FETADD(SAVESS1,FET2,550,1,0,IRR)
CALL FETADD(SCOSSF,FET3,550,1,0,IRR)
CALL FETADD(SCOISSF,FET4,550,1,0,IRR)
CALL VAMAT
CALL VAMSCN
END
```

*/ MODE2 /

BEGIN NODAL DATA

1	20.	0.	1.	TO 9	340.	0.	65.	BY 2
101	20.	0.	-1.	TO 109	340.	0.	-65.	BY 2
201	20.	1.	0.	TO 209	340.	65.	0.	BY 2
11	420.	0.	65.	TO 83	3300.	0.	65.	BY 2
111	420.	0.	-65.	TO 189	3540.	0.	-65.	BY 2
211	420.	65.	0.	TO 225	980.	65.	0.	BY 2
265	2580.	65.	0.	TO 277	3060.	65.	0.	BY 2
287	3460.	65.	0.	TO 289	3540.	65.	0.	BY 2

*/ WING COORDINATES

227	1060.	65.	0.	26.25	TO 245	1780.	65.	0.	36.35	BY 2
245					TO 255	2180.	65.	0.	28.8	BY 2
255					TO 263	2500.	65.	0.	12.0	BY 2
327	1060.	65.	0.	26.25	TO 341	1620.	265.	0.	8.85	BY 2
445	1780.	195.	0.	22.65	TO 455	2180.	195.	0.	20.15	BY 2
501	1023.	265.	0.	8.85	TO 551	2205.	455.	0.	5.75	BY 2
651	2205.	455.	0.	5.75	TO 656	2545.	594.	0.	3.2	
756	2545.	594.	0.	3.2	TO 760	2875.	765.	0.	.95	
760					TO 763	2995.	765.	0.	1.85	
341					TO 355	2180.	255.	0.	20.15	BY 2
355					TO 363	2500.	265.	0.	11.25	BY 2
551					TO 559	2525.	455.	0.	10.0	
559					TO 563	2685.	455.	0.	5.0	
656					TO 659	2605.	594.	0.	4.85	
659					TO 663	2825.	594.	0.	2.45	

*/ HORIZONTAL TAIL

279	3140.	65.	0.	1.80						
779	3140.	65.	0.	1.80	TO 979	3365.	200.	0.	1.25	BY 100
281	3220.	65.	0.	4.25						
781	3220.	65.	0.	4.25	TO 981	3388.	200.	0.	1.75	BY 100
283	3300.	65.	0.	4.55						
783	3300.	65.	0.	4.55	TO 983	3412.	200.	0.	1.80	BY 100
285	3380.	65.	0.	1.40						
785	3380.	65.	0.	1.40	TO 985	3435.	200.	0.	.80	BY 100

*/ VERTICAL TAIL

REC REC1 0. 0. 0. 1. 0. 0. 0. -1. 0.

95 3380. 65. 0. 3.25

37 3460. 65. 0. 2.40

1085 3460. 140. 0. 1.50

1087 3500. 140. 0. 1.80

*/ WING FIN

1150	2545.	.1	-594.	2.40	TO 1356	2830.	100.	-594.	1.80	BY 100
1153	2625.	.1	-594.	2.40	TO 1358	2842.	100.	-594.	1.90	BY 170
1161	2745.	.1	-594.	2.80	TO 1361	2859.	100.	-594.	1.95	BY 100
1163	2825.	.1	-594.	2.80	TO 1363	2870.	100.	-594.	2.05	BY 100

RESUME GLOBAL

89 3540. 0. 65.

*/ AIRLOAD PANEL NUDES

*/ BODY

5100	0.	0.	0.	TO 5112	3564.	0.	0.			
5251	0.	26.1279	C.							
5252	297.	26.1279	C.							
5253	297.	63.5215	C.							
5254	594.	63.5215	C.							
5202	594.	65.1	C.	TO 5212	3564.	65.1	0.			

*/ WING

5400	741.	65.1	0.	TO 5405	2715.	65.1	0.			
5410	1017.7530	146.6	0.	TO 5415	2705.9945	146.6	0.			
5420	1294.1665	228.	0.	TO 5425	2697.	228.	0.			
5430	1677.8854	341.	0.	TO 5435	2722.8855	341.	0.			
5440	2065.	455.	0.	TO 5445	2749.	455.	0.			
5450	2487.	594.	0.	TO 5455	2874.059	594.	0.			
5460	2689.47	690.	0.	TO 5465	2965.8299	696.	0.			
5470	2884.	794.	0.	TO 5475	3054.	794.	0.			

*/ HOR TAIL

5500	3124.	65.1	0.	TO 5502	3417.	65.1	0.			
5510	3255.0804	146.6	0.	TO 5512	3440.5144	146.6	0.			
5520	3386.	228.	0.	TO 5522	3464.	228.	0.			

*/ VERT WING FIN

5313	2487.	594.	0.	TO 5315	2880.	594.	134.			
5316	2680.5	594.	0.	TO 5318	2910.	594.	134.			
5319	2874.059	594.	0.	TO 5321	2940.	594.	134.			

```

*/ WEIGHT PANELS - BODY
6001 0. 0. 0. TO 6016 3564. 0. 0.
6021 0. 65. 0. TO 6036 3564. 65. 0.
*/ WEIGHT PANELS - WING
6100 741.0 65.0 C. TO 6220 2487.0 594.0 0. BY 20
6100 TO 6260 2487.0 594.0 0. BY 20
6180 TO 6240 2487.0 594.0 0. BY 20
6260 TO 6320 2884.0 794.0 0. BY 20
6110 2715.0 65.0 0. TO 6170 2715.0 329.5 0. BY 20
6189 2715.0 329.5 C. TO 6249 2874.0 594.0 0. BY 20
6266 2874.0 594.0 C. TO 6320 3054.0 794.0 0. BY 20
6100 TO 6110
**3 20 0 20
6180 TO 6189
**3 20 0 20
6260 TO 6266
**3 20 0 20
*/ WEIGHT PANELS - HOR TAIL
6400 3124. 65.1 0. TO 6403 3417. 65.1 0.
6410 3386. 228.0 0. TO 6413 3464. 228.0 0.
*/ WEIGHT PANELS - VERT FIN
6501 3374.6 0. 92.8
6502 3472. 0. 92.9
6503 3458.7 0. 149.8
6504 3514.6 0. 149.8
*/ WEIGHT PANELS - WING VERT FIN
6601 2487. 594. 0. TO 6603 2880. 594. 134.
6604 2874.050 594. 0. TO 6606 2940. 594. 134.

```

END NODAL DATA

BEGIN STIFFNESS DATA

BEGIN ELEMENT DATA

*/ WING SPARS

SPAR M5	227	329	.06	1.			
SPAR M5	247	447	.10	2.0	TO 253	453	BY 2 2
SPAR M5	329	331	.06	1.	TO 339	341	BY 2 2
SPAR M5	341	543	.06	1.			
SPAR M5	543	545	.06	1.	TO 549	551	BY 2 2
SPAR M5	551	653	.06	1.			
SPAR M5	653	655	.06	1.			
SPAR M5	655	656	.06	1.			
SPAR M5	656	757	.06	1.			
SPAR M5	757	758	.06	1.	TO 759	760	
SPAR M5	263	363	.20	6.			
SPAR M5	363	563	.17	6.			
SPAR M5	563	663	.15	4.			
SPAR M5	663	763	.15	2.			
SPAR M5	229	329	.1	1.	TO 243	343	BY 2 2
SPAR M5	245	445	.18	1.			
SPAR M5	445	345	.18	1.			
SPAR M5	447	347	.1	2.	TO 453	353	BY 2 2
SPAR M5	255	455	.3	6.			
SPAR M5	455	353	.3	6.			
SPAR M5	257	357	.12	6.	TO 261	361	BY 2 2
SPAR M5	363	563	.1	1.	TO 345	545	BY 2 2
SPAR M5	347	547	.1	2.	TO 353	553	BY 2 2
SPAR M5	355	555	.1	4.			
SPAR M5	357	557	.1	5.	TO 361	561	BY 2 2
SPAR M5	553	653	.06	2.	TO 555	655	BY 2 2
SPAR M5	556	656	.03	2.	TO 562	662	
SPAR M5	657	757	.03	1.	TO 662	762	

*/ WING RIBS

SPAR M5	445	447	.17	2.	TO 453	455	BY 2 2
SPAR M5	341	343	.10	1.5	TO 361	363	BY 2 2

SPAR M5	551	553	.10	2.	TO 553	555	BY 2 2
SPAR M5	555	556	.10	2.	TO 562	563	

SPAR M5	656	657	.06	1.	TO 662	663	
SPAR M5	760	761	.15	7	TO 762	763	

*/ WING COVERS

COVER M5	229	329	227	.03								
COVER M5	229	329	331	231	.03	TO 241	341	343	243	BY 2	**3	
COVER M5	243	343	445	245	.03							
COVER M5	445	345	343	.03								
COVER M5	245	247	447	445	.06	.0	TO 253	255	455	453	BY 2	**3

COVER M5 445 345 347 447 .03 TO 453 353 355 455 BY 2 *=3
 COVER M5 255 455 357 257 .05 .07
 COVER M5 455 355 357 .05 .07
 COVER M5 257 357 355 259 .05 .07
 COVER 45 259 359 361 261 .13 .07 .11 .0 TO 261 361 363 263 BY 2 *=3
 COVER M5 343 543 341 .03
 COVER M5 343 543 545 345 .03 TO 353 553 555 355 BY 2 *=3
 COVER M5 355 555 557 357 .05 .04 TO 357 557 559 359 BY 2 *=3
 COVER M5 359 559 561 361 .15 .07 .10 .0 TO 361 561 563 363 BY 2 *=3
 COVER M5 553 653 551 .15 .07 .11 .06
 COVER M5 553 653 655 555 .15 .07 .11 .06
 COVER M5 555 655 656 556 .15 .07 .11 .06 TO 562 662 663 563
 COVER M5 657 757 656 .04
 COVER M5 657 757 758 658 .04 TO 662 762 763 663
 /* HORIZONTAL TAIL
 SPAR M5 279 879 .05 .6
 SPAR M5 879 979 .05 .6
 SPAR M5 281 881 .025 .9
 SPAR 45 881 981 .025 .9
 SPAR M5 283 883 .025 .8
 SPAR M5 883 983 .025 .8
 SPAR M5 285 885 .10 1.3
 SPAR M5 885 985 .10 1.3
 SPAR M5 879 881 .05 .6 TO 883 885 BY 2 2
 SPAR M5 879 981 .05 .6 TO 983 985 BY 2 2
 COVER M5 279 879 881 281 .08
 *=2 0 0 2 *=3 0.
 COVER M5 879 979 981 881 .035
 *=2 0 0 2 *=3 0.
 /* WING FIN
 SPAR M5 1156 1256 .025 .5 TO 1256 1356 BY 100 100
 SPAR M5 1158 1258 .025 .5 TO 1258 1358 BY 100 100
 SPAR M5 1161 1261 .025 .5 TO 1261 1361 BY 100 100
 SPAR M5 1163 1263 .025 .5 TO 1263 1363 BY 100 100
 SPAR 45 1256 1258 .025 .5 TO 1356 1358 BY 100 100
 SPAR M5 1259 1261 .025 .5 TO 1356 1361 BY 100 100
 SPAR M5 1261 1263 .025 .5 TO 1361 1363 BY 100 100
 COVER M5 1156 1256 1258 1158 .025 TO 1256 1356 1358 1258 +
 BY 100 100 100 100
 COVER M5 1158 1258 1261 1161 .025 TO 1258 1353 1361 1261 +
 BY 100 100 100 100
 COVER M5 1161 1261 1263 1163 .025 TO 1261 1361 1363 1263 +
 BY 100 100 100 100
 /* VERTICAL TAIL
 COVER M5 85 1085 1087 87 .0 0.035
 SPAR M5 85 1085 0. 0. .5 .0 .0
 SPAR M5 87 1087 0. 0. .5 .0 .0
 SPAR M5 1085 1087 0. 0. .5 .0 .0
 /* BODY
 /* STRINGERS
 ROD M5 1 3 2.37 TO 23 25 BY 2 2
 *=2 0 0 100 100 0. 0 100 100 C C 0
 *=1 0 *=3 0. 0 *=5
 ROD M5 25 27 4. TO 43 45 BY 2 2
 *=2 0 0 100 100 0. 0 100 100 C C 0
 *=1 0 *=3 0. 0 *=5
 ROD M5 45 47 5.35 TO 67 69 BY 2 2
 *=2 0 0 100 100 0. 0 100 100 0 0 0
 *=1 0 *=3 0. 0 *=5
 ROD M5 69 71 4. TO 75 77 BY 2 2
 *=2 0 0 100 100 0. 0 100 100 0 0 0
 *=1 0 *=3 0. 0 *=5
 ROD M5 77 79 2.37 TO 87 89 BY 2 2
 *=2 0 0 100 100 0. 0 100 100 C C 0
 *=1 0 *=3 0. 0 *=5
 SPLATE M5 1 3 203 201 .04 TO 25 27 227 225 BY 2 *=3
 SPLATE M5 201 203 103 101 .04 TO 225 227 127 125 **
 SPLATE M5 27 29 229 227 .06 TO 43 45 245 243 **
 SPLATE M5 227 229 129 127 .06 TO 241 245 145 143 **
 SPLATE M5 45 47 247 245 .08 TO 67 69 269 267 **
 SPLATE M5 245 247 147 145 .08 TO 267 269 169 167 **
 SPLATE M5 69 71 271 269 .06 TO 75 77 277 275 **

SPLATE M5 269 271 171 169 .06 TO 275 277 177 175 **
 SPLATE M5 77 79 279 277 .04 TO 87 89 289 287 **
 SPLATE M5 277 279 179 177 .04 TO 287 289 189 187 **
 /* BODY FRAMES
 BEAM M5 1 201 3. 0. 0. 50. 50. 50. TO 27 227 BY 2 2
 **1 0 0 100 0 0. **5 C 100 0 **3
 BEAM M5 29 229 4.5 0. 0. 50. 50. 50. TO 45 245 BY 2 2
 **1 0 0 100 0 0. **5 0 100 0 **3
 BEAM M5 47 247 6. 0. 0. 50. 50. 50. TO 69 269 BY 2 2
 **1 0 0 100 0 0. **5 C 100 0 **3
 BEAM M5 71 271 4.5 0. 0. 50. 50. 50. TO 77 277 BY 2 2
 **1 0 0 100 0 0. **5 0 100 C **3
 BEAM M5 79 279 3. 0. 0. 50. 50. 50. TO 89 289 BY 2 2
 **1 0 0 100 0 0. **5 0 100 0 **3
 BEAM 9 209 14.0 0. 0. 75. 75. 75.
 **1 0 100 0 0. **5
 BEAM 27 227 14.0 0. 0. 75. 75. 75.
 **1 0 100 0 0. **5
 BEAM 45 245 62. 0. 0. 450. 450. 450.
 **1 0 100 0 0. **5
 BEAM 55 255 62. 0. 0. 450. 450. 450.
 **1 0 100 0 0. **5
 BEAM 63 263 62. 0. 0. 450. 450. 450.
 **1 0 100 0 0. **5
 BEAM 79 279 14. 0. 0. 75. 75. 75.
 **1 0 100 0 0. **5
 BEAM 85 285 14. 0. 0. 75. 75. 75.
 **1 0 100 0 0. **5
 /* ATTACHMENT OF WING FIN
 BEAM Z5 656 1156 663 1. 0. 0. .1 .1 .1
 BEAM Z5 658 1158 663 1. 0. 0. .1 .1 .1
 BEAM Z5 661 1161 663 1. 0. 0. .1 .1 .1
 BEAM Z5 663 1163 661 1. 0. 0. .1 .1 .1
 BEAM Z5 656 658 10. 0. 0. 100. 100. 100.
 BEAM Z5 658 661 10. 0. 0. 100. 100. 100.
 BEAM Z5 661 663 10. 0. 0. 100. 100. 100.
 BEAM Z5 89 289 0. 0. 0. 10000. **2
 BEAM Z5 189 289 **
 END ELEMENT DATA
 END STIFFNESS DATA
 BEGIN BC DATA
 /* ORDER BODY,FIN,WING-FIN,WING HORIZONTAL TATL
 STAGE 1
 RETAIN TZ FOR 3 9 15 23 31 39 45 53 61 67 75 83 87 95 1085 1087
 RETAIN TZ TY FOR 1156 1356 1358 1158 1161 1361 1363 1163
 RETAIN TZ FOR 223 331 231 337 237 245 355 255 363 263 +
 267 543 345 551 349 555 563 656 659 653 +
 760 761 763 359 559 661 762 279 979 981 +
 281 283 583 985 285
 SUPPORT TX TZ RY FOR 39
 SUPPORT ASYM IN SURFACE 2 THROUGH 1
 END BC DATA
 BEGIN LOAD DATA
 STAGE 1
 READ NOJAL LOADS FROM DATARNF WITH INDEX QSYM**
 END LOAD DATA
 BEGIN MASS DATA
 BEGIN CONDITION DATA
 PANEL DATA 1 CONDITION 1
 END CONDITION DATA
 BEGIN MASS ELEMENT DATA
 PLATE F2 8-1 6001 6002 6022 3495.
 PLATE F2 8-2 6002 6003 6023 6022 5955.
 PLATE F2 8-3 6003 6004 6024 6023 2589.
 PLATE F2 8-4 6004 6005 6025 6024 3440.
 PLATE F2 8-5 6005 6006 6026 6025 5420.
 PLATE F2 8-6 6006 6007 6027 6026 3280.
 PLATE F2 8-7 6007 6008 6028 6027 3306.
 PLATE F2 8-8 6008 6009 6029 6028 4346.
 PLATE F2 8-9 6009 6010 6030 6029 4527.
 PLATE F2 8-10 6010 6011 6031 6030 4486.
 PLATE F2 8-11 6011 6012 6032 6031 3619.
 PLATE F2 8-12 6012 6013 6033 6032 4730.

PLATE F2	B-13	6013	6014	6034	6033	3982.
PLATE F2	B-14	6014	6015	6035	6034	947.
PLATE F2	B-15	6015	6016	6036	6035	1788.
PLATE F2	VT-1	6501	6502	6504	6503	600.
PLATE F2	W-1	6100	6101	6121	6120	768.
PLATE F2	W-2	6101	6102	6122	6121	1151.
PLATE F2	W-3	6102	6103	6123	6122	1667.
PLATE F2	W-4	6103	6104	6124	6123	1112.
PLATE F2	W-5	6104	6105	6125	6124	1190.
PLATE F2	W-6	6105	6106	6126	6125	1659.
PLATE F2	W-7	6106	6107	6127	6126	1988.
PLATE F2	W-8	6107	6108	6128	6127	2467.
PLATE F2	W-9	6108	6109	6129	6128	1335.
PLATE F2	W-10	6109	6110	6130	6129	336.
PLATE F2	W-11	6120	6121	6141	6140	795.
PLATE F2	W-12	6121	6122	6142	6141	1415.
PLATE F2	W-13	6122	6123	6143	6142	813.
PLATE F2	W-14	6123	6124	6144	6143	1259.
PLATE F2	W-15	6124	6125	6145	6144	1248.
PLATE F2	W-16	6125	6126	6146	6145	1720.
PLATE F2	W-17	6126	6127	6147	6146	1494.
PLATE F2	W-18	6127	6128	6148	6147	1888.
PLATE F2	W-19	6128	6129	6149	6148	498.
PLATE F2	W-20	6129	6130	6150	6149	126.
PLATE F2	W-21	6140	6141	6161	6160	508.
PLATE F2	W-22	6141	6142	6162	6161	1279.
PLATE F2	W-23	6142	6143	6163	6162	536.
PLATE F2	W-24	6143	6144	6164	6163	532.
PLATE F2	W-25	6144	6145	6165	6164	559.
PLATE F2	W-26	6145	6146	6166	6165	1055.
PLATE F2	W-27	6146	6147	6167	6166	1405.
PLATE F2	W-28	6147	6148	6168	6167	1953.
PLATE F2	W-29	6148	6149	6169	6168	274.
PLATE F2	W-30	6149	6150	6170	6169	172.
PLATE F2	W-31	6180	6181	6201	6200	614.
PLATE F2	W-32	6181	6182	6202	6201	1286.
PLATE F2	W-33	6182	6183	6203	6202	562.
PLATE F2	W-34	6183	6184	6204	6203	786.
PLATE F2	W-35	6184	6185	6205	6204	1386.
PLATE F2	W-36	6185	6186	6206	6205	1849.
PLATE F2	W-37	6186	6187	6207	6206	1649.
PLATE F2	W-38	6187	6188	6208	6207	421.
PLATE F2	W-39	6188	6189	6209	6208	255.
PLATE F2	W-40	6200	6201	6221	6220	207.
PLATE F2	W-41	6201	6202	6222	6221	497.
PLATE F2	W-42	6202	6203	6223	6222	692.
PLATE F2	W-43	6203	6204	6224	6223	765.
PLATE F2	W-44	6204	6205	6225	6224	816.
PLATE F2	W-45	6205	6206	6226	6225	843.
PLATE F2	W-46	6206	6207	6227	6226	687.
PLATE F2	W-47	6207	6208	6228	6227	136.
PLATE F2	W-48	6208	6209	6229	6228	94.
PLATE F2	W-49	6220	6221	6241	6240	136.
PLATE F2	W-50	6221	6222	6242	6241	522.
PLATE F2	W-51	6222	6223	6243	6242	516.
PLATE F2	W-52	6223	6224	6244	6243	536.
PLATE F2	W-53	6224	6225	6245	6244	555.
PLATE F2	W-54	6225	6226	6246	6245	580.
PLATE F2	W-55	6226	6227	6247	6246	704.
PLATE F2	W-56	6227	6228	6248	6247	119.
PLATE F2	W-57	6228	6229	6249	6248	91.
PLATE F2	W-58	6260	6261	6281	6280	289.
PLATE F2	W-59	6261	6262	6282	6281	306.
PLATE F2	W-60	6262	6263	6283	6282	244.
PLATE F2	W-61	6263	6264	6284	6283	507.
PLATE F2	W-62	6264	6265	6285	6284	116.
PLATE F2	W-63	6265	6266	6286	6285	76.
PLATE F2	W-64	6280	6281	6301	6300	216.
PLATE F2	W-65	6281	6282	6302	6301	144.
PLATE F2	W-66	6282	6283	6303	6302	245.
PLATE F2	W-67	6283	6284	6304	6303	365.
PLATE F2	W-68	6284	6285	6305	6304	86.
PLATE F2	W-69	6285	6286	6306	6305	71.

PLATE F2	W-70	6300	6301	6321	6320	184.
PLATE F2	W-71	6301	6302	6322	6321	160.
PLATE F2	W-72	6302	6303	6323	6322	126.
PLATE F2	W-73	6303	6304	6324	6323	273.
PLATE F2	W-74	6304	6305	6325	6324	66.
PLATE F2	W-75	6305	6306	6326	6325	66.
PLATE F2	HT-1	6400	6401	6411	6410	283.
PLATE F2	HT-2	6401	6402	6412	6411	212.
PLATE F2	HT-3	6402	6403	6413	6412	522.
PLATE F2	WF-1	6601	6602	6605	6604	500.
PLATE F2	WF-2	6602	6603	6606	6605	400.

*/ PLATES REPRESENTING FUEL

PLATE F2	F-1	6102	6103	6123	6122	129.6
PLATE F2	F-2	6103	6104	6124	6123	8637.2
PLATE F2	F-3	6104	6105	6125	6124	12852.9
PLATE F2	F-4	6106	6107	6127	6126	5531.1
PLATE F2	F-5	6107	6108	6128	6127	6919.3
PLATE F2	F-6	6108	6109	6129	6128	107.1
PLATE F2	F-7	6124	6125	6145	6144	442.8
PLATE F2	F-8	6125	6126	6146	6145	5450.7
PLATE F2	F-9	6126	6127	6147	6146	6537.8
PLATE F2	F-10	6128	6129	6149	6148	2604.5
PLATE F2	F-11	6129	6130	6150	6149	4011.2
PLATE F2	F-12	6140	6141	6161	6160	5762.0
PLATE F2	F-13	6144	6145	6165	6164	1128.9
PLATE F2	F-14	6145	6146	6166	6165	2470.2
PLATE F2	F-15	6147	6148	6168	6167	1825.8
PLATE F2	F-16	6148	6149	6169	6168	4994.1
PLATE F2	F-17	6149	6150	6170	6169	2341.4
PLATE F2	F-18	6180	6181	6201	6200	3598.6
PLATE F2	F-19	6184	6185	6205	6204	258.5
PLATE F2	F-20	6185	6186	6206	6205	1691.6
PLATE F2	F-21	6186	6187	6207	6206	3248.9
PLATE F2	F-22	6187	6188	6208	6207	2531.0
PLATE F2	F-23	6188	6189	6209	6208	4235.0
PLATE F2	F-24	6200	6201	6221	6220	775.4
PLATE F2	F-25	6204	6205	6225	6224	457.0
PLATE F2	F-26	6205	6206	6226	6225	1190.8
PLATE F2	F-27	6206	6207	6227	6226	1393.2
PLATE F2	F-28	6207	6208	6228	6227	1501.2
PLATE F2	F-29	6208	6209	6229	6228	1555.2
PLATE F2	F-30	6220	6221	6241	6240	140.4
PLATE F2	F-31	6224	6225	6245	6244	54.0
PLATE F2	F-32	6225	6226	6246	6245	442.8
PLATE F2	F-33	6226	6227	6247	6246	658.3
PLATE F2	F-34	6227	6228	6248	6247	648.0
PLATE F2	F-35	6228	6229	6249	6248	583.2

*/ PLATES REPRESENTING PAYLOAD

PLATE F2	P-1	6002	6003	6023	6022	680.
PLATE F2	P-2	6003	6004	6024	6023	2295.
PLATE F2	P-3	6004	6005	6025	6024	3585.
PLATE F2	P-4	6005	6006	6026	6025	2200.
PLATE F2	P-5	6006	6007	6027	6026	3390.
PLATE F2	P-6	6007	6008	6028	6027	3475.
PLATE F2	P-7	6008	6009	6029	6028	2965.
PLATE F2	P-8	6009	6010	6030	6029	2040.
PLATE F2	P-9	6010	6011	6031	6030	2125.
PLATE F2	P-10	6011	6012	6032	6031	2125.
PLATE F2	P-11	6012	6013	6033	6032	1190.

END MASS ELEMENT DATA

BEGIN PANEL DATA 1

*/ BODY

MASS SUBSETS 1

DIRECTION Z

1	5100	5251	5252	5101
2	5101	5253	5254	5102
3	5202	5203	5103	5102

TO 12

*/ WING FIN

MASS SUBSETS 2

DIRECTION Y

13	5313	5316	5317	5314
14	5316	5319	5320	5317
15	5314	5317	5318	5315
16	5317	5320	5321	5318

```

*/ WING
MASS SUBSETS 3
DIRECTION Z
  17 5400 5401 5411 5410 TO 21
**6      5   10 **3           0   5
*/
HOR TAIL
MASS SUBSETS 4
DIRECTION Z
  52 5500 5501 5511 5510 TO 53
**1      2   10 **3           0   2

END PANEL DATA 1
BEGIN FACTOR DATA
  EXCLUDE STIFFNESS ELEMENTS
  MASS FACTOR 32.17
END FACTOR DATA
END MASS DATA
BEGIN SUBSET DEFINITION
SUBSETS OF MASS SET 1
  N1 = 6001 TO 6036 6501 TO 6504
  E1 = ALL IN N1
  N2 = 6601 TO 6606
  E2 = ALL IN N2
  N3 = 6100 TO 6326
  E3 = ALL IN N3
  N4 = 6400 TO 6413
  E4 = ALL IN N4
END SUBSET DEFINITION
END PROBLEM DATA
*/ MODE2 /
BEGIN VAMAT DATA
BODY          12        2        2
FIN           0         2        8
WING-FIN     4         3        2
WING          35        3        3
HR-TAIL       4         3        3
      55        33        1
      6         1.       20       24      1      1
      13        16       25       33
1.    0.    .00001
200.   0.    .00001
400.   0.    .00001
600.   0.    .00001
800.   0.    .00001
1000.  0.    .00001
1200.  0.    .00001
1400.  0.    .00001
1600.  0.    .00001
1800.  0.    .00001
2000.  0.    .00001
3599.  0.    0.
3400.  0.    0.
3200.  0.    0.
3000.  0.    0.
2800.  0.    0.
2600.  0.    0.
2400.  0.    0.
2200.  0.    0.
2000.  0.    0.
2985.  793. -9999.
2855.3 696. -9999.
2720.  595. -9999.
2641.8236 594. -9999.
2718.  593. -9999.
2600.  525. -9999.
2475.4  455. -9999.
2390.  398. -9999.
2304.9  341. -9999.
2220.  285. -9999.
2136.  228. -9999.
2030.7  146.6 -9999.
1925.4  65.1 -9999.

```

*# FORE BODY #
*# AFT BODY #
*# OUTBOARD WING #
*# WING FIN #
*# INBOARD WING #
*# HORIZONTAL STABILIZER #

11	20	23	24	33	0
0	0	0	0	0	0
0	3	0	0	2	2
1	2	2	2	2	2
2	2	2	2	2	2
3	2	2	2	2	2
4	2	2	2	2	2
5	2	2	2	2	2
6	2	2	2	2	2
7	2	2	2	2	2
8	2	2	2	2	2
9	2	2	2	2	2
10	2	2	2	2	2
11	2	2	2	2	2
12	2	2	2	2	2
13	2	2	2	2	2
14	2	2	2	2	2
15	2	2	2	2	2
16	2	2	2	2	2
17	0.	18	0.	19	0.
18	0.	23	0.	24	0.
19	0.	28	0.	29	0.
20	0.	37	0.	32	0.
21	17	51	0.		
22	52	55	0.		

MDC001A
END VAMAT DATA
BEGIN VAMSCN DATA
2 2 1
1
2 1
*#GROUP 1 - PASS 1#
1 2
*#GROUP 2 - PASS 1#
1
2
*#GROUP 1 - PASS 2#
1 2
END VAMSCN DATA

Figure 301-1. Schematic of ATLAS/FLEXSTAB Interface Demonstration

Figure 301-2. Structural Model

301.20

Figure 301-3. Mass Model

301.21

Figure 301-4. Body Bending Moment

302. ATLAS/NASTRAN INTERFACES (DECK 9)

302.1 DESCRIPTION OF DEMONSTRATION

The method used to demonstrate the ATLAS-NASTRAN interfaces is shown schematically in figure 302-1. An ATLAS model consisting of ROD, BEAM, PLATE, SPLATE and GPLATE elements was prepared. Only nodal loads are applied. An ATLAS stress analysis is performed and the data are converted to NASTRAN (ref. 201-1) bulk data. Nonconvertible NASTRAN bulk data cards and the Executive and Case Control decks are added. This complete NASTRAN problem deck is then used to perform a NASTRAN stress analysis.

The complete NASTRAN bulk data deck is then processed through the NASTRAN-to-ATLAS interface. The resulting ATLAS data deck is then used to perform a stress analysis.

302.2 RESULTS

NASTRAN detected no data errors while reading and checking the bulk data produced by the ATLAS-to-NASTRAN interface. The stress analysis results of the two ATLAS executions are equal within the accuracy of the data being converted. The NASTRAN stress analysis results agree with the ATLAS results as closely as expected considering the somewhat different behavior of the NASTRAN and ATLAS plate elements.

302.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL MATRIX PROGRAM DEMO09
PROBLEM ICICEM009 - PART I. ATLAS-TO-NASTRAN DATA CONVERSION

C PURPOSE THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C DECK ARE
C   1. ATLAS-TO-NASTRAN DATA CONVERSION
C   2. NASTRAN-TO-ATLAS DATA CONVERSION
C
C AUTHOR M. TAMEKUNI
C
C CORE 140K (OCTAL)

DIMENSION FET(100,5)
DIMENSION A1(200),A3(200),A4(200),A5(200),A6(200)
INTEGER D31,STAGE,SET
READ INPUT
PRINT INPUT(NODAL,SET=3)
PRINT INPUT(STIFFNESS,SET=3)
PRINT INPUT(BC,SET=3)
PERFORM STRESS (SET=3)
PRINT OUTPUT (DISPLACEMENT,SET=3)
PRINT OUTPUT (STRESSES,SET=3)
PRINT OUTPUT (REACTIONS,SET=3)

C
CALL FILEADD(FET,CATAFNF,MERGRNF,MASSRNF,STIFRNF,SCOORNF)
CALL FETADD (SAVESS1,A1,200,1,0,IRR)
CALL FETADD (SCO0SSF,A3,200,1,0,IRR)
CALL FETADD (SCO1SSF,A4,200,1,0,IRR)
CALL FETADD (SCO2SSF,A5,200,1,0,IRR)
CALL FETADD (SCO3SSF,A6,200,1,0,IRR)

C
LOUT1 = SAVESS1
L11 = 3LL11
L21 = 3LL21
L31 = 3LL31
D31 = 3LD31
STAGE = 1
SET = 3
NCOND = 0
NELEM = 1
NNODE = 1
NBCLD = 1
NMASS = 0

C
CALL ATNAISET,NCOND,NELEM,NNODE,NMASS,LOUT1,STAGE,L11,L21,L31,D31
X,NBCLD)
END CONTROL PROGRAM
```

```

*/ MODE2 /
BEGIN NODAL DATA
SET 3
 1 0. 0. 0. TO 21 2G. 0. 0. BY 10
 2 0. 10. 0. TO 22 20. 10. 0. BY 10
 3 0. 10. 10. TO 23 20. 10. 10. BY 10
 4 0. 0. 10. TO 24 20. 0. 10. BY 10
END NODAL DATA
BEGIN STIFFNESS DATA
SET 3
BEGIN ELEMENT DATA
  ROD 1 11 3.
**3 0 1 1 0.
  ROD 11 21 2.
**3 0 1 1 0.
  BEAM N100 11 12 13 1. .2 .3 .4 .5 .6
    * N101 12 13 14 ** 
    * N102 13 14 11 ** 
    * N103 14 11 12 ** 
  BEAM N104 1 11 22 **
    * N105 2 12 1 ** 
    * N106 3 13 1 ** 
    * N107 4 14 1 ** 
    * N201 11 21 2 ** 
    * N202 12 22 1 ** 
    * N203 13 23 2 ** 
    * N204 14 24 1 ** 
  PLATE N110 1 11 12 2 .1
    * N111 4 14 13 3 ** 
    * N112 11 21 22 12 .15 
    * N113 14 24 23 13 .20 
    * N114 3 4 14 .05 
  SPLATE N120 1 11 14 4 .05
    * N121 2 12 13 3 .05 
    * N122 11 21 24 14 .07 
    * N123 12 22 23 13 .07 
  GPLATE N130 21 22 23 24 .06 .06 30.
    * M4 T150 N131 11 12 14 .07 
    * * * N132 12 13 14 .07 
END ELEMENT DATA
END STIFFNESS DATA
BEGIN BC DATA
  SET 3 STAGE 1
  SUPPORT ALL FOR 1 TO 4
END BC DATA
BEGIN LOADS DATA
  SET 3 STAGE 1
  BEGIN NODAL LOAD DATA
  CASE C8
    21 TO 24 FX 1000.
  END NODAL LOAD DATA
END LOADS DATA
END PROBLEM DATA

```

```
BEGIN CONTROL MATRIX PROGRAM DEM009
PROBLEM ID(DEM009 - PART II . NASTRAN-TO-ATLAS DATA CONVERSION)
DIMENSION A1(1000),A2(1000),A3(1000)
CALL FETACC(SCOSSF,A1,1000,1,0,IRK)
CALL FETADD(SCOLSSF,A2,1000,1,0,IRR)
CALL FETADD(SAVESS2,A3,1000,1,0,IRR)
LOUT2 = SAVESS2
CALL NASTATL (LOUT2)
END CONTROL PROGRAM
```

```
BEGIN CONTROL PROGRAM DEM009
PROBLEM ID(DEM009 - PART III. ATLAS STRESS ANALYSIS)
READ INPUT
PRINT INPUT(NODAL)
PRINT INPUT(STIFFNESS)
PRINT INPUT(BC)
PERFORM STRESS (SET=1)
PRINT OUTPUT (DISPLACE,SET=1)
PRINT OUTPUT (STRESSES,SET=1)
PRINT OUTPUT (REACTIONS,SET=1)
END CONTROL PROGRAM
```


Figure 302-1. Schematic of ATLAS/NASTRAN Interface Demonstration

303. ATLAS/NASA-LaRC AIRPLANE CONFIGURATION PROGRAM INTERFACE (DECK 7)

303.1 DESCRIPTION OF DEMONSTRATION

This deck demonstrates the data interface between ATLAS and the NASA-LaRC airplane configuration plot program (ref. 303-1) and the NASA Aerodynamic Design and Analysis System for Supersonic Aircraft (ref. 303-2). The demonstration makes use of two airplane configurations documented in reference 303-1, viz.,

- A cambered circular body SST configuration (fig. 303-1)
- A blended wing-body fighter aircraft (fig. 303-3)

These examples illustrate each type of airplane component that can be defined by the LaRC configuration program.

The demonstration proceeds as shown schematically in figure 303-5. The LaRC configuration program data for the SST aircraft are processed by the ATLAS library subroutine LRCGEOM to produce geometry data in the format expected by the Geometry Preprocessor. Since the SST is symmetrical about the X-Z plane, each LaRC configuration component produces two ATLAS geometry components (right and left sides). The generated data are read by the Geometry Preprocessor and stored on DATARNF. ATLAS nodal data defining the model are read by the Nodal Preprocessor which interrogates the geometry data to obtain nodal coordinates. Surface nodes are defined for the body and pod components, and mid-surface nodes are defined for the wing, fin and canard components. The same process is then repeated for the fighter aircraft.

303.2 RESULTS

Nodal coordinates for both aircraft were printed by the Nodal Postprocessor and compared with the original airplane configuration data to confirm the correct operation of the interface. The ATLAS nodal data for the SST aircraft were plotted and are displayed in figure 303-2. The ATLAS nodal data for the fighter aircraft are displayed in figure 303-4.

303.3 LISTING OF CONTROL PROGRAM AND DATA

```
BEGIN CONTROL MATRIX PROGRAM DEMO07
PROBLEM ID(DEMO07 - NASA/LARC CONFIGURATION PROGRAM INTERFACE)

C PURPOSE      THE PRINCIPAL CAPABILITIES DEMONSTRATED BY THIS
C              DECK ARE
C              1. NASA/LARC CONFIGURATION PROGRAM-TO-ATLAS
C                 INTERFACE
C              2. GEOMETRY PREPROCESSOR

C AUTHOR       R. L. DREISBACH
C
C CURE        20CK (OCTAL)
C
C DIMENSION A1(100)
C
C CALL FILEADD(A1,SAVESS1)

C SST  CONFIGURATION
C
C CALL LFCCFOM($L INPUT,SAVESS1)
C REWIND SAVESS1
C READ INPUT(I=SAVESS1)
C READ INPUT
C PRINT INPUT(NODAL,SET=5)
C EXECUTE EXTRACT(EXNAME=SETS5,LSUB=NODES,KSET=5,NSUB=N5)
C EXECUTE GRAPHICS(GNAME=NODEPLUT,TYPE=(ORTH,POINT),OFFLINE=CALCUMP,
X RZ=60,RY=45,PX=0,SIZE=(30,20),EXNAME=SETS5)
C PURGE FILES(DATARNF)

C FIGHTER  CONFIGURATION
C
C CALL FILEADD(A1,SAVESS1)
C REWIND SAVESS1
C CALL LRCGEOM($L INPUT,SAVESS1)
C REWIND SAVESS1
C READ INPUT(I=SAVESS1)
C READ INPUT
C PRINT INPUT(NODAL,SET=10)
C EXECUTE EXTRACT(EXNAME=SET10,LSUB=NODES,KSET=10,NSUB=N10)
C EXECUTE GRAPHICS(GNAME=NODEPLOT,TYPE=(ORTH,POINT),SIZE=(30,20),
X RZ=-150,RY=35,PX=0,EXNAME=SET10)
C END CONTROL PROGRAM
```

SST CONFIGURATION WITH CAMBERED CIRCULAR BODY												2 10		3 10		REFRA	
1	1	-1	1	1	0	0	12	13	1	17	26					XAF	10
9494.																XAF	13
0.	.1		.6				10.	20.	30.	40.	50.	60.	70.		WAFOPG	1	
80.	90.		100.												WAFORG	2	
82.30	5.05		0.				180.10								WAFORG	3	
93.80	6.60		0.				166.201								WAFORG	4	
114.199	9.90		-4.45				142.351								WAFORG	5	
130.629	13.20		-1.40				124.670								WAFORG	6	
157.98	19.80		-1.85				98.570								WAFORG	7	
181.29	26.40		-1.15				78.510								WAFORG	8	
202.41	33.00		-3.35				61.241								WAFORG	9	
221.63	39.60		-1.60				47.319								WAFORG	10	
239.18	46.20		-2.80				36.719								WAFORG	11	
255.00	52.80		-3.75				25.35								WAFOPG12		
269.23	59.40		-4.30				15.670								TZORD	1	
282.00	66.00		-4.40				7.400								TZORD	1	
3.60	3.70		3.90				3.75	2.75	.95	-1.35	-3.45	-5.30	-6.80		TZORD	2	
-8.20	-9.10		-9.40					2.00	2.10	1.20	-0.05	-1.85	-3.25	-4.70		TZORD	3
.10	.50		1.75												TZORD	3	
-6.30	-7.70		-8.80												TZORD	4	
0.	.35		.90												TZORD	4	
-4.55	-5.75		-6.80												TZORD	5	
0.	.165		.72												TZORD	6	
-3.07	-3.9375	-4.801													TZORD	7	
0.	.16		.45												TZORD	8	
-1.15	-1.685	-2.173													TZORD	9	
0.	.05		.265												TZORD	10	
-.345	-6.175	-8.669													TZORD	11	
0.	.04		.1935												TZORD	12	
.0915	-0.0390	-1.1820													TZORD	13	
0.	.0225		.1085												TZORD	14	
.185	.1235		.0563												TZORD	15	
0.	.02		.1055												TZORD	16	
.2845	.2635		.2385												TZORD	17	
0.	.0085		.049												TZORD	18	
.1545	.148		.1398												TZORD	19	
0.	-.003		-.014												TZORD	20	
-.1155	-1.190		-1.224												TZORD	21	
0.	-.0025		-.010												TZORD	22	
-.1115	-1.1220		-1.1324												TZORD	23	
0.	.304		.491												WAFORD	1	
1.162	.678		0.0												WAFORD	2	
0.0	.265		.423												WAFORD	3	
1.028	.593		0.0												WAFORD	4	
0.0	.226		.338												WAFORD	5	
.886	.506		0.0												WAFORD	6	
0.	.204		.274												WAFORD	7	
.832	.472		0.												WAFORD	8	
0.	.144		.175												WAFORD	9	
.828	.466		0.0												WAFORD	10	
0.0	.066		.09												WAFORD	11	
.852	.48		0.												WAFORD	12	
0.0	.006		.033												WAFORD	13	
.880	.495		0.0												WAFORD	14	
0.	.006		.033												WAFORD	15	
.880	.495		0.0												WAFORD	16	
0.0	.006		.033												WAFORD	17	
.880	.495		0.												WAFORD	18	
0.0	.006		.033												WAFORD	19	
.880	.495		0.												WAFORD	20	
0.0	.006		.033												WAFORD	21	
.880	.495		0.												WAFORD	22	
0.0	.006		.033												WAFORD	23	
.880	.495		0.												WAFORD	24	
0.	20.		40.												XFUS	10	
130.	140.		150.												XFUS	20	
260.	270.		280.												XFUS	26	
7.4	7.4		7.4												ZFUS	10	
1.25	0.		-1.3												ZFUS	20	
-10.2	-10.2		-10.2												ZFUS	26	

0.	18.5	48.	65.	83.	96.	95.5	92.2	95.5	96.	AFUS	10
98.	100.7	101.	98.	89.5	79.	70.	68.5	68.5	67.3	AFUS	20
62.	50.5	37.	24.	11.5	0.					AFUS	26
236.8	7.50	-11.55								PPDORG	1
0.	4.	8.	12.	16.	20.	24.	28.	32.	34.5	XPOD	1
2.292	2.477	2.644	2.791	2.915	3.012	3.076	3.097	3.100	3.100	PODR	1
241.0	31.75	-3.60								PUDORG	2
0.	4.	8.	12.	16.	20.	24.	28.	32.	34.5	XPOD	2
2.292	2.477	2.644	2.791	2.915	3.012	3.076	3.097	3.100	3.100	POUR	2
252.0	47.0	-2.95	35.3	285.36	47.0	6.31	4.77			FINORG	1
0.0	10.0	20.0	30.	40.	50.	60.	70.	90.	100.	XFIN	1
0.0	0.311	0.564	0.759	0.897	0.977	0.999	0.927	0.427	0.0	FINORG	1
277.9	0.	-6.77	35.3	311.3	0.	2.49	4.77			FINORG	2
0.0	10.	20.	30.	40.	50.	60.	70.	90.	100.	XFIN	2
0.	0.311	0.564	0.759	0.897	0.977	0.999	0.927	0.427	0.0	FINORG	2
312.	0.	-10.	0.	277.9	0.	-6.77	35.3			FINORG	3
0.	10.	20.	30.	40.	50.	60.	70.	90.	100.	XFIN	3
0.	0.311	0.564	0.759	0.897	0.977	0.999	0.927	0.427	0.0	FINORG	3

/* DEFINE NODES FOR SST CONFIGURATION -- EXAMPLE 1. /

BEGIN NODAL DATA /

SET 5 /

/* DEFINE A LOCAL INPUT FRAME FOR EACH GEOMETRY COMPONENT. /

REC WINGR	0.	0.	0.	1.	0.	0.	0.	0.	1.	/
REC WINGL	0.	0.	0.	1.	C.	0.	0.	0.	1.	/
REC BODYA	0.	0.	0.	0.	-1.	0.	0.	0.	1.	/
REC PODAR	0.	0.	0.	0.	-1.	0.	0.	0.	1.	/
REC PODAL	0.	0.	0.	0.	-1.	C.	0.	0.	1.	/
REC PODHR	0.	0.	0.	0.	-1.	0.	0.	0.	1.	/
REC PODBL	0.	0.	0.	0.	-1.	0.	0.	0.	1.	/
REC FINAK	0.	0.	0.	1.	0.	0.	0.	-1.	C.	/
REC FINAL	0.	0.	0.	1.	0.	0.	0.	-1.	0.	/
REC FINB	0.	0.	0.	1.	C.	0.	0.	-1.	C.	/
REC FINC	0.	0.	0.	1.	0.	0.	0.	-1.	0.	/

BEGIN EXTRACT /

/* DEFINE MID-SURFACE NODES FOR WING COMPONENTS -- 13 NODES PER SECTION AS DEFINED BY THE GEOMETRY DATA. THE NODES ARE LOCATED SUCH THAT THEY COINCIDE WITH THE LONGITUDINAL CONTROL CURVES DEFINED BY THE ENRICH DATA RECPD IN THE GEOMETRY DATA SET. /

COMPONENT WINGR /

MIDSURFACE NODES IN SECTION	70.	5.05	-10.	290.	5.05	-10.	70.	5.05	70.	/
1 TO 13 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	6.60	-10.	290.	6.60	-10.	70.	6.60	70.	/
14 TO 26 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	9.90	-10.	290.	9.90	-10.	70.	9.90	70.	/
27 TO 39 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	13.2	-10.	290.	13.2	-10.	70.	13.2	70.	/
40 TO 52 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	19.8	-10.	290.	19.8	-10.	70.	19.8	70.	/
53 TO 65 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	26.4	-10.	290.	26.4	-10.	70.	26.4	70.	/
66 TO 78 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	33.0	-10.	290.	33.0	-10.	70.	33.0	70.	/
79 TO 91 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	39.6	-10.	290.	39.6	-10.	70.	39.6	70.	/
92 TO 104 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	46.2	-10.	290.	46.2	-10.	70.	46.2	70.	/
105 TO 117 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	52.8	-10.	290.	52.8	-10.	70.	52.8	70.	/
118 TO 130 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	59.4	-10.	290.	59.4	-10.	70.	59.4	70.	/
131 TO 143 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	66.0	-10.	290.	66.0	-10.	70.	66.0	70.	/
144 TO 156 OF	.001	.005	.094	.1	*=8	/				

/* /

COMPONENT WINGL /

MIDSURFACE NODES IN SECTION	70.	-5.05	-10.	290.	-5.05	-10.	70.	-5.05	70.	/
201 TO 213 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	-6.60	-10.	290.	-6.60	-10.	70.	-6.60	70.	/
214 TO 226 OF	.001	.005	.094	.1	*=8	/				
MIDSURFACE NODES IN SECTION	70.	-9.90	-10.	290.	-9.90	-10.	70.	-9.90	70.	/
227 TO 239 OF	.001	.005	.094	.1	*=8	/				

MIDSURFACE NODES IN SECTION 70. -13.2 -10. 290. -13.2 -10. 70. -13.2 70. /
 240 TO 252 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -19.8 -10. 290. -19.8 -10. 70. -19.8 70. /
 253 TO 265 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -26.4 -10. 290. -26.4 -10. 70. -26.4 70. /
 266 TO 278 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -33.0 -10. 290. -33.0 -10. 70. -33.0 70. /
 279 TO 291 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -39.6 -10. 290. -39.6 -10. 70. -39.6 70. /
 292 TO 304 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -46.2 -10. 290. -46.2 -10. 70. -46.2 70. /
 305 TO 317 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -52.8 -10. 290. -52.8 -10. 70. -52.8 70. /
 318 TO 330 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -59.4 -10. 290. -59.4 -10. 70. -59.4 70. /
 331 TO 343 OF .001 .005 .094 .1 *=8 /
 MIDSURFACE NODES IN SECTION 70. -66.0 -10. 290. -66.0 -10. 70. -66.0 70. /
 344 TO 356 OF .001 .005 .094 .1 *=8 /
 */
 /* DEFINE 30 EQUALLY-SPACED NODES PER SECTION OF THE BODY. /
 COMPONENT HODIA /
 SURFACE NODES IN SECTION -6. 1. -20. 6. 1. -20. -6. 1. 15. /
 1001 TO 1030 /
 SURFACE NODES IN SECTION -6. 20. -20. 6. 20. -20. -6. 20. 15. /
 1031 TO 1060 /
 SURFACE NODES IN SECTION -6. 40. -20. 6. 40. -20. -6. 40. 15. /
 1061 TO 1090 /
 SURFACE NODES IN SECTION -6. 50. -20. 6. 50. -20. -6. 50. 15. /
 1091 TO 1120 /
 SURFACE NODES IN SECTION -6. 60. -20. 6. 60. -20. -6. 60. 15. /
 1121 TO 1150 /
 SURFACE NODES IN SECTION -6. 70. -20. 6. 70. -20. -6. 70. 15. /
 1151 TO 1180 /
 SURFACE NODES IN SECTION -6. 80. -20. 6. 80. -20. -6. 80. 15. /
 1181 TO 1210 /
 SURFACE NODES IN SECTION -6. 90. -20. 6. 90. -20. -6. 90. 15. /
 1211 TO 1240 /
 SURFACE NODES IN SECTION -6. 100. -20. 6. 100. -20. -6. 100. 15. /
 1241 TO 1270 /
 SURFACE NODES IN SECTION -6. 120. -20. 6. 120. -20. -6. 120. 15. /
 1271 TO 1300 /
 SURFACE NODES IN SECTION -6. 130. -20. 6. 130. -20. -6. 130. 15. /
 1301 TO 1330 /
 SURFACE NODES IN SECTION -6. 140. -20. 6. 140. -20. -6. 140. 15. /
 1331 TO 1360 /
 SURFACE NODES IN SECTION -6. 150. -20. 6. 150. -20. -6. 150. 15. /
 1361 TO 1390 /
 SURFACE NODES IN SECTION -6. 160. -20. 6. 160. -20. -6. 160. 15. /
 1391 TO 1420 /
 SURFACE NODES IN SECTION -6. 180. -20. 6. 180. -20. -6. 180. 15. /
 1421 TO 1450 /
 SURFACE NODES IN SECTION -6. 200. -20. 6. 200. -20. -6. 200. 15. /
 1451 TO 1480 /
 SURFACE NODES IN SECTION -6. 220. -20. 6. 220. -20. -6. 220. 15. /
 1481 TO 1510 /
 SURFACE NODES IN SECTION -6. 230. -20. 6. 230. -20. -6. 230. 15. /
 1511 TO 1540 /
 SURFACE NODES IN SECTION -6. 240. -20. 6. 240. -20. -6. 240. 15. /
 1541 TO 1570 /
 SURFACE NODES IN SECTION -6. 250. -20. 6. 250. -20. -6. 250. 15. /
 1571 TO 1600 /
 SURFACE NODES IN SECTION -6. 260. -20. 6. 260. -20. -6. 260. 15. /
 1601 TO 1630 /
 SURFACE NODES IN SECTION -6. 270. -20. 6. 270. -20. -6. 270. 15. /
 1631 TO 1660 /
 SURFACE NODES IN SECTION -6. 280. -20. 6. 280. -20. -6. 280. 15. /
 1661 TO 1690 /
 SURFACE NODES IN SECTION -6. 290. -20. 6. 290. -20. -6. 290. 15. /
 1691 TO 1720 /
 SURFACE NODES IN SECTION -6. 300. -20. 6. 300. -20. -6. 300. 15. /
 1721 TO 1750 /

SURFACE NODES IN SECTION -6. 311. -20. 6. 311. -20. -6. 311. 15. /
 1751 TO 1780 /
 *//
 *// DEFINE 25 EQUALLY-SPACED NODES PER SECTION OF EACH NACELLE. /
 COMPONENT PODAR /
 SURFACE NODES IN SECTION -20. 236.0 -13. -4. 236.8 -13. -20. 236.8 -2. /
 2001 TO 2025 /
 SURFACE NODES IN SECTION -20. 240.0 -13. -4. 240.8 -13. -20. 240.8 -2. /
 2026 TO 2050 /
 SURFACE NODES IN SECTION -20. 244.0 -13. -4. 244.8 -13. -20. 244.8 -2. /
 2051 TO 2075 /
 SURFACE NODES IN SECTION -20. 248.0 -13. -4. 248.8 -13. -20. 248.8 -2. /
 2076 TO 2100 /
 SURFACE NODES IN SECTION -20. 252.0 -13. -4. 252.8 -13. -20. 252.8 -2. /
 2101 TO 2125 /
 SURFACE NODES IN SECTION -20. 256.0 -13. -4. 256.8 -13. -20. 256.8 -2. /
 2126 TO 2150 /
 SURFACE NODES IN SECTION -20. 260.0 -13. -4. 260.8 -13. -20. 260.8 -2. /
 2151 TO 2175 /
 SURFACE NODES IN SECTION -20. 264.0 -13. -4. 264.8 -13. -20. 264.8 -2. /
 2176 TO 2200 /
 SURFACE NODES IN SECTION -20. 268.0 -13. -4. 268.8 -13. -20. 268.8 -2. /
 2201 TO 2225 /
 SURFACE NODES IN SECTION -20. 271.3 -13. -4. 271.3 -13. -20. 271.3 -2. /
 2226 TO 2250 /
 COMPONENT PODAL /
 SURFACE NODES IN SECTION 4. 236.0 -13. 20. 236.0 -13. 4. 236.0 -2. /
 2251 TO 2275 /
 SURFACE NODES IN SECTION 4. 240.0 -13. 20. 240.0 -13. 4. 240.0 -2. /
 2276 TO 2300 /
 SURFACE NODES IN SECTION 4. 244.0 -13. 20. 244.0 -13. 4. 244.0 -2. /
 2301 TO 2325 /
 SURFACE NODES IN SECTION 4. 248.0 -13. 20. 248.0 -13. 4. 248.0 -2. /
 2326 TO 2350 /
 SURFACE NODES IN SECTION 4. 252.0 -13. 20. 252.0 -13. 4. 252.0 -2. /
 2351 TO 2375 /
 SURFACE NODES IN SECTION 4. 256.0 -13. 20. 256.0 -13. 4. 256.0 -2. /
 2376 TO 2400 /
 SURFACE NODES IN SECTION 4. 260.0 -13. 20. 260.0 -13. 4. 260.0 -2. /
 2401 TO 2425 /
 SURFACE NODES IN SECTION 4. 264.0 -13. 20. 264.0 -13. 4. 264.0 -2. /
 2426 TO 2500 /
 SURFACE NODES IN SECTION 4. 268.0 -13. 20. 268.0 -13. 4. 268.0 -2. /
 2451 TO 2475 /
 SURFACE NODES IN SECTION 4. 271.3 -13. 20. 271.3 -13. 4. 271.3 -2. /
 2476 TO 2500 /
 COMPONENT PODBP /
 SURFACE NODES IN SECTION -8.0 241.0 -36.0 0. 241.0 -36.0 -8. 241.0 -28. /
 2501 TO 2525 /
 SURFACE NODES IN SECTION -8.0 245.0 -36.0 0. 245.0 -36.0 -8. 245.0 -28. /
 2526 TO 2550 /
 SURFACE NODES IN SECTION -8.0 249.0 -36.0 0. 249.0 -36.0 -8. 249.0 -28. /
 2551 TO 2575 /
 SURFACE NODES IN SECTION -8.0 253.0 -36.0 0. 253.0 -36.0 -8. 253.0 -28. /
 2576 TO 2600 /
 SURFACE NODES IN SECTION -8.0 257.0 -36.0 0. 257.0 -36.0 -8. 257.0 -28. /
 2601 TO 2625 /
 SURFACE NODES IN SECTION -8.0 261.0 -36.0 0. 261.0 -36.0 -8. 261.0 -28. /
 2626 TO 2650 /
 SURFACE NODES IN SECTION -8.0 265.0 -36.0 0. 265.0 -36.0 -8. 265.0 -28. /
 2651 TO 2675 /
 SURFACE NODES IN SECTION -8.0 269.0 -36.0 0. 269.0 -36.0 -8. 269.0 -28. /
 2676 TO 2700 /
 SURFACE NODES IN SECTION -8.0 273.0 -36.0 0. 273.0 -36.0 -8. 273.0 -28. /
 2701 TO 2725 /
 SURFACE NODES IN SECTION -8.0 275.5 -36.0 0. 275.5 -36.0 -8. 275.5 -28. /
 2726 TO 2750 /

COMPONENT PODBL /
 SURFACE NUODES IN SECTION 0. 241.0 -36.0 8.0 241.0 -36.0 0. 241.0 -28. /
 2751 TO 2775 /
 SURFACE NUODES IN SECTION 0. 245.0 -36.0 8.0 245.0 -36.0 0. 245.0 -28. /
 2776 TO 2800 /
 SURFACE NUODES IN SECTION 0. 249.0 -36.0 8.0 249.0 -36.0 0. 249.0 -28. /
 2801 TO 2825 /
 SURFACE NUODES IN SECTION 0. 253.0 -36.0 8.0 253.0 -36.0 0. 253.0 -28. /
 2826 TO 2850 /
 SURFACE NUODES IN SECTION 0. 257.0 -36.0 8.0 257.0 -36.0 0. 257.0 -28. /
 2851 TO 2875 /
 SURFACE NUODES IN SECTION 0. 261.0 -36.0 8.0 261.0 -36.0 0. 261.0 -28. /
 2876 TO 2900 /
 SURFACE NUODES IN SECTION 0. 265.0 -36.0 8.0 265.0 -36.0 0. 265.0 -28. /
 2901 TO 2925 /
 SURFACE NUODES IN SECTION 0. 269.0 -36.0 8.0 269.0 -36.0 0. 269.0 -28. /
 2926 TO 2950 /
 SURFACE NUODES IN SECTION 0. 273.0 -36.0 8.0 273.0 -36.0 0. 273.0 -28. /
 2951 TO 2975 /
 SURFACE NUODES IN SECTION 0. 275.5 -36.0 8.0 275.5 -36.0 0. 275.5 -28. /
 2976 TO 3000 /
 /* DEFINING MID-SURFACE NUODES FOR FIN COUPONENTS -- 10 NUODES PER SECTION AS
 DEFINED BY THE GEOMETRY DATA. THE NUODES ARE LOCATED SUCH THAT THEY
 COINCIDE WITH THE LONGITUDINAL CONTROL CURVES DEFINED BY THE ENRICH DATA
 RECORD IN THE GEOMETRY DATA SET. /
 /* /
 COMPONENT FINAH /
 MIDSURFACE NUODES IN SECTION 250. -2.95 -48. 300. -2.95 -48. 250. -2.95 -45. /
 4001 TO 4010 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 250. .14 -48. 300. .14 -48. 250. .14 -45. /
 4011 TO 4020 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 250. 3.23 -48. 300. 3.23 -48. 250. 3.23 -45. /
 4021 TO 4030 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 250. 6.31 -48. 300. 6.31 -48. 250. 6.31 -45. /
 4031 TO 4040 OF .1 *=6 .2 .1 /
 COMPONENT FINAL /
 MIDSURFACE NUODES IN SECTION 250. -2.95 45. 300. -2.95 45. 250. -2.95 48. /
 4041 TO 4050 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 250. .14 45. 300. .14 45. 250. .14 48. /
 4051 TO 4060 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 250. 3.23 45. 300. 3.23 45. 250. 3.23 48. /
 4061 TO 4070 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 250. 6.31 45. 300. 6.31 45. 250. 6.31 48. /
 4071 TO 4080 OF .1 *=6 .2 .1 /
 /* /
 COMPONENT FINB /
 MIDSURFACE NUODES IN SECTION 270. -6.77 -1. 318. -6.77 -1. 270. -6.77 1. /
 5001 TO 5010 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 270. -3.68 -1. 318. -3.68 -1. 270. -3.68 1. /
 5011 TO 5020 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 270. -.59 -1. 318. -.59 -1. 270. -.59 1. /
 5021 TO 5030 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 270. 2.49 -1. 318. 2.49 -1. 270. 2.49 1. /
 5031 TO 5040 OF .1 *=6 .2 .1 /
 /* /
 COMPONENT FINC /
 MIDSURFACE NUODES IN SECTION 270. -10.2 -1. 318. -10.2 -1. 270. -10.2 1. /
 5051 TO 5060 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 270. -9.06 -1. 318. -9.06 -1. 270. -9.06 1. /
 5061 TO 5070 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 270. -7.92 -1. 318. -7.92 -1. 270. -7.92 1. /
 5071 TO 5080 OF .1 *=6 .2 .1 /
 MIDSURFACE NUODES IN SECTION 270. -6.77 -1. 318. -6.77 -1. 270. -6.77 1. /
 5081 TO 5090 OF .1 *=6 .2 .1 /
 END EXTRACT /
 END NODAL DATA /
 /* /
 /* DEFINE NUODE SUBSETS FOR PRINT AND PLCT DISPLAYS. /
 BEGIN SUBSET DEFINITION /
 SUBSETS OF NUODA SET 5 /
 NS = ALL /
 END SUBSET DEFINITION /
 END PROBLEM DATA /

BLENDED WING-BODY-FIGHTER -- DATA FOR ATLAS GEOMETRY INTERFACE											S 10 2 10	
1 - L	1	1	1	11	13	1	19	15				
637.94												
0.	.5	10.	20.	.30.	40.	50.	60.	70.	80.			FEFA
90.	95.	100.										XAF 10
14.	3.0	0.	31.									XAF 13
24.	4.0	0.	21.1									WORG 1
28.	5.	0.	17.7									WORG 2
30.	6.	0.	16.2									WORG 3
33.3	8.	0.	13.5									WORG 4
36.	10.	0.	11.5									WORG 5
38.5	12.	0.	9.6									WORG 6
41.2	14.	0.	7.6									WORG 7
44.2	16.	0.	5.2									WORG 8
48.	17.6	0.	2.									WORG 9
50.	18.	0.	0.									WORG 10
0.	.95	1.8	3.2	4.2	4.8	5.0	4.8	4.2	3.2			WORD 11
1.8	.95	0.										WORD 1
0.	.655	1.26	2.24	2.94	3.36	3.5	3.36	2.94	2.24			WORD 2
1.26	.655	0.										WORD 2
0.	.57	1.08	1.92	2.52	2.88	3.0	2.88	2.52	1.92			WORD 3
1.08	.57	0.										WORD 3
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 4
.9	.475	0.										WORD 4
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 5
.9	.475	0.										WORD 5
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 6
.9	.475	0.										WORD 6
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 7
.9	.475	0.										WORD 7
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 8
.9	.475	0.										WORD 8
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 9
.9	.475	0.										WORD 9
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 10
.9	.475	0.										WORD 10
0.	.475	.9	1.6	2.1	2.4	2.5	2.4	2.1	1.6			WORD 11
.9	.475	0.										WORD 11
0.	2.0	4.	6.	12.	16.	20.	24.	28.	32.			XFUS 10
36.	40.	48.	52.	65.								XFUS 15
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.			Y 1
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.			Y 1
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.			Z 1
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.			Z 1
0.	.061	.124	.18	.276	.375	.476	.637	.793	.887			Y 2
.793	.437	.476	.375	.276	.13	.124	.061	0.				Y 2
-.336	-.335	-.331	-.316	-.306	-.275	-.221	-.127	-.007	0.			Z 2
.007	.127	.221	.275	.356	.316	.331	.335	.336				Z 2
0.	.138	.272	.427	.582	.754	.985	1.172	1.394	1.488			Y 3
1.394	1.179	.925	.754	.582	.427	.272	.138	0.				Y 3
-.743	-.735	-.716	-.684	-.634	-.549	-.428	-.228	-.022	0.			Z 3
.002	.228	.428	.549	.634	.664	.716	.735	.743				Z 3
0.	.185	.383	.602	.81	1.077	1.303	1.66	1.924	2.028			Y 4
1.924	1.66	1.363	1.077	.61	.032	.383	.165	0.				Y 4
-1.032	-1.02	-.981	-.938	-.373	-.754	-.548	-.273	-.367	0.			Z 4
.067	.273	.245	.754	.873	.938	.981	1.02	1.032				Z 4
0.	.294	.6	.935	1.283	1.604	2.049	2.466	2.789	2.905			Y 5
2.789	2.466	2.049	1.664	1.283	.935	.6	.294	0.				Y 5
-.1655	-1.637	-1.581	-1.494	-1.368	-1.168	-.882	-.473	-.035	0.			Z 5
.005	.473	.882	1.168	1.368	1.444	1.561	1.637	1.825				Z 5
0.	.35	.725	1.125	1.575	2.0	2.475	3.0	3.0	3.0			Y 6
3.0	3.0	2.475	2.0	1.575	1.125	.725	.35	0.				Y 6
-2.05	-2.04	-2.0	-1.95	-1.825	-1.65	-1.425	-1.05	-.5	0.			Z 6
.5	1.05	1.425	1.65	1.825	1.95	2.0	2.04	2.05				Z 6
0.	.35	.725	1.15	1.575	2.05	2.55	3.0	3.0	3.0			Y 7
3.0	3.0	2.55	2.05	1.575	1.15	.725	.35	0.				Y 7
-2.0	-2.0	-1.975	-1.95	-1.85	-1.7	-1.45	-1.1	-.5	0.			Z 7
.5	1.1	1.45	1.7	1.85	1.95	1.975	2.	2.				Z 7
0.	.35	.725	1.15	1.65	2.2	3.0	3.0	3.0	3.0			Y 8
3.0	3.0	3.0	2.2	1.65	1.15	.725	.35	0.				Y 8

-2.0	-2.0	-2.	-2.	-1.95	-1.85	-1.5	-1.05	-0.5	0.	Y 8
.5	1.05	1.5	1.85	1.95	2.	2.	2.	2.	2.	Z 8
0.	.35	.725	1.15	1.65	2.15	3.0	3.0	3.0	3.0	Y 9
3.0	3.0	3.0	2.15	1.65	1.15	.725	.35	0.		Y 9
-2.0	-2.0	-2.	-2.	-1.95	-1.8	-1.5	-1.05	-0.5	0.	Y 9
.5	1.05	1.5	1.8	1.95	2.	2.	2.	2.	2.	Z 9
0.	.35	.725	1.15	1.65	2.15	3.0	3.0	3.0	3.0	Y 10
3.0	3.0	3.0	2.15	1.65	1.15	.725	.35	0.		Y 10
-2.0	-2.0	-2.	-2.	-1.95	-1.8	-1.5	-1.05	-0.5	0.	Y 10
.5	1.05	1.5	1.8	1.95	2.	2.	2.	2.	2.	Z 10
0.	.35	.725	1.15	1.65	2.15	3.0	3.0	3.0	3.0	Y 11
3.0	3.0	3.0	2.15	1.65	1.15	.725	.35	0.		Y 11
-2.0	-2.0	-2.	-2.	-1.95	-1.8	-1.5	-1.05	-0.5	0.	Y 11
.5	1.05	1.5	1.8	1.95	2.	2.	2.	2.	2.	Z 11
0.	.35	.725	1.15	1.65	2.15	3.0	3.0	3.0	3.0	Y 12
3.0	3.0	2.5	2.15	1.65	1.15	.725	.35	0.		Y 12
-2.0	-2.0	-2.	-2.	-1.95	-1.8	-1.5	-1.05	-0.5	0.	Y 12
.5	1.05	1.5	1.8	1.95	2.	2.	2.	2.	2.	Z 12
0.	.35	.725	1.15	1.65	2.15	2.5	3.0	3.0	3.0	Y 13
2.95	2.875	2.5	2.15	1.65	1.15	.725	.35	0.		Y 13
-2.0	-2.0	-2.	-2.	-1.95	-1.8	-1.5	-1.05	-0.5	0.	Y 13
.5	.975	1.4	1.8	1.95	2.	2.	2.	2.	2.	Z 13
0.	.35	.725	1.125	1.525	1.9	2.25	2.55	2.8	3.0	Y 14
2.8	2.55	2.25	1.9	1.525	1.125	.725	.35	0.		Y 14
-2.0	-2.0	-2.	-2.	-1.95	-1.8	-1.5	-1.05	-0.5	0.	Y 14
.5	.9	1.275	1.6	1.9	1.95	2.	2.	2.	2.	Z 14
0.	.35	.725	1.125	1.525	1.9	2.25	2.55	2.8	3.0	Y 15
2.8	2.55	2.25	1.9	1.525	1.125	.725	.35	0.		Y 15
-2.0	-2.0	-2.	-2.	-1.95	-1.8	-1.5	-1.05	-0.5	0.	Y 15
.5	.9	1.275	1.6	1.8	1.95	2.	2.	2.	2.	Z 15
53.091	0.	2.0	12.162	42.215	0.	3.483	0.129			VING 1
0.	10.	20.	30.	40.	50.	60.	70.	80.	100.	XFIN
0.	.72	1.28	1.68	1.92	2.0	1.92	1.68	1.28	0.	FINDED
62.215	0.	0.483	6.129	64.662	0.	10.18	0.			VING 2
0.	10.	20.	30.	40.	50.	60.	70.	80.	100.	XFIN
0.	.72	1.28	1.68	1.92	2.0	1.92	1.68	1.28	0.	FINDED
55.724	0.	-4.481	0.	55.026	0.	-3.048	1.495			VING 3
0.	13.722	20.	30.	40.	50.	60.	70.	80.278	100.	
0.	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	0.	VRD
55.026	0.	-3.948	8.498	53.073	0.	-2.465	11.473			VRD 4
0.	13.722	20.	30.	40.	50.	60.	70.	80.278	100.	
0.	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	0.	VRD
53.073	0.	-2.465	11.473	52.481	0.	-2.0	12.066			VRD 5
0.	13.722	20.	30.	40.	50.	60.	70.	80.278	100.	
0.	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	0.	VRD
57.473	3.0	0.	9.957	46.868	11.315	0.	3.413			CANRD 1
0.	10.	20.	30.	40.	50.	60.	70.	80.	100.	XCAN
0.	.72	1.28	1.68	1.92	2.0	1.92	1.68	1.28	0.	CANRD
66.868	11.315	0.	3.413	63.215	12.449	0.	0.			CANRD 2
0.	10.	20.	30.	40.	50.	60.	70.	80.	100.	XCAN
0.	.72	1.28	1.68	1.92	2.0	1.92	1.68	1.28	0.	CANRD

/* DEFINE NODES FOR BLENDED WING-BODY FIGHTER -- EXAMPLE 2. /

BEGIN NODAL DATA /

SET 10 /

/* DEFINE A LOCAL INPUT FRAME FOR EACH GEOMETRY COMPONENT. /

```

REC WINGR 0. 0. 0. 1. 0. 0. 0. 0. 1. /
REC WINGL 0. 0. 0. 1. 0. 0. 0. 0. 1. /
REC WINDYA 0. 0. 0. 1. 0. 0. 0. 0. 1. /
REC FINA 0. 0. 0. 1. 0. 0. 0. -1. 0. /
REC FINB 0. 0. 0. 1. 0. 0. 0. -1. 0. /
REC FINL 0. 0. 0. 1. 0. 0. 0. -1. 0. /
REC FIND 0. 0. 0. 1. 0. 0. 0. -1. 0. /
REC FINE 0. 0. 0. 1. 0. 0. 0. -1. 0. /
REC CANRDAR 0. 0. 0. 1. 0. 0. 0. 0. 1. /
REC CANRDAL 0. 0. 0. 1. 0. 0. 0. 0. 1. /
REC CANRDHR 0. 0. 0. 1. 0. 0. 0. 0. 1. /
REC CANRDBL 0. 0. 0. 1. 0. 0. 0. 0. 1. /

```

BEGIN EXTRACT /

*/ DEFINE MID-SURFACE NODES FOR WING COMPONENTS -- 13 NODES PER SECTION AS DEFINED BY THE GEOMETRY DATA. THE NODES ARE LOCATED SUCH THAT THEY COINCIDE WITH THE LONGITUDINAL CONTROL CURVES DEFINED BY THE ENRICH DATA RECD IN THE GEOMETRY DATA SET. /

COMPONENT WING /

MIDSURFACE NODES IN SECTION 13. 3.0 -1. 55. 3.0 -1. 13. 3.0 20. /
 1 TO 13 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 4.0 -1. 55. 4.0 -1. 13. 4.0 20. /
 14 TO 26 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 5.0 -1. 55. 5.0 -1. 13. 5.0 20. /
 27 TO 39 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 6.0 -1. 55. 6.0 -1. 13. 6.0 20. /
 40 TO 52 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 8.0 -1. 55. 8.0 -1. 13. 8.0 20. /
 53 TO 65 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 10.0 -1. 55. 10.0 -1. 13. 10.0 20. /
 66 TO 78 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 12.0 -1. 55. 12.0 -1. 13. 12.0 20. /
 79 TO 91 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 14.0 -1. 55. 14.0 -1. 13. 14.0 20. /
 92 TO 104 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 16.0 -1. 55. 16.0 -1. 13. 16.0 20. /
 105 TO 117 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 17.6 -1. 55. 17.6 -1. 13. 17.6 20. /
 118 TO 130 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. 17.999 -1. 55. 17.999 -1. 13. 17.999 20. /
 131 TO 143 OF .005 .095 .1 * =7 .05 .05 /

*/ COMPONENT WINGL /

MIDSURFACE NODES IN SECTION 13. -3.0 -1. 55. -3.0 -1. 13. -3.0 20. /
 201 TO 213 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -4.0 -1. 55. -4.0 -1. 13. -4.0 20. /
 214 TO 226 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -5.0 -1. 55. -5.0 -1. 13. -5.0 20. /
 227 TO 239 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -6.0 -1. 55. -6.0 -1. 13. -6.0 20. /
 240 TO 252 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -8.0 -1. 55. -8.0 -1. 13. -8.0 20. /
 253 TO 265 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -10.0 -1. 55. -10.0 -1. 13. -10.0 20. /
 266 TO 278 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -12.0 -1. 55. -12.0 -1. 13. -12.0 20. /
 279 TO 291 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -14.0 -1. 55. -14.0 -1. 13. -14.0 20. /
 292 TO 304 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -16.0 -1. 55. -16.0 -1. 13. -16.0 20. /
 305 TO 317 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -17.6 -1. 55. -17.6 -1. 13. -17.6 20. /
 318 TO 330 OF .005 .095 .1 * =7 .05 .05 /

MIDSURFACE NODES IN SECTION 13. -17.999 -1. 55. -17.999 -1. 13. -17.999 20. /
 331 TO 343 OF .005 .095 .1 * =7 .05 .05 /

*/

*/ DEFINE NCDES AT THE INTERSECTION POINTS OF THE LONGITUDINAL CONTROL CURVES WITH THE BODY SECTIONS. FOR THIS CASE, THERE WILL BE 37 NODES PER SECTION OF THE BODY. /

COMPONENT BODYA /

SURFACE NODES IN SECTION 2. -10. -10. 2. 10. -10. 2. -10. 10. /
 1001 TO 1037 AT CURVES /

SURFACE NODES IN SECTION 4. -10. -10. 4. 10. -10. 4. -10. 10. /
 1038 TO 1074 AT CURVES /

SURFACE NODES IN SECTION 6. -10. -10. 6. 10. -10. 6. -10. 10. /
 1075 TO 1111 AT CURVES /

SURFACE NODES IN SECTION 12. -10. -10. 12. 10. -10. 12. -10. 10. /
 1112 TO 1148 AT CURVES /

SURFACE NODES IN SECTION 16. -10. -10. 16. 10. -10. 16. -10. 10. /
 1149 TO 1185 AT CURVES /

SURFACE NODES IN SECTION 20. -10. -10. 20. 10. -10. 20. -10. 10. /
 1186 TO 1222 AT CURVES /

SURFACE NODES IN SECTION 24. -10. -10. 24. 10. -10. 24. -10. 10. /

6
 1223 TO 1259 AT CURVES /
 SURFACE NODES IN SECTION 28. -10. -10. 28. 10. -10. 28. -10. 10. /
 1260 TO 1296 AT CURVES /
 SURFACE NODES IN SECTION 32. -10. -10. 32. 10. -10. 32. -10. 10. /
 1297 TO 1333 AT CURVES /
 SURFACE NODES IN SECTION 36. -10. -10. 36. 10. -10. 36. -10. 10. /
 1334 TO 1370 AT CURVES /
 SURFACE NODES IN SECTION 40. -10. -10. 40. 10. -10. 40. -10. 10. /
 1371 TO 1407 AT CURVES /
 SURFACE NODES IN SECTION 48. -10. -10. 48. 10. -10. 48. -10. 10. /
 1408 TO 1444 AT CURVES /
 SURFACE NODES IN SECTION 52. -10. -10. 52. 10. -10. 52. -10. 10. /
 1445 TO 1491 AT CURVES /
 SURFACE NODES IN SECTION 65. -10. -10. 65. 10. -10. 65. -10. 10. /
 1482 TO 1518 AT CURVES /
 *//
 *// DEFINE MID-SURFACE NODES FOR FIN COMPONENTS -- 10 NODES PER SECTION.
 THE NODES ARE LOCATED SUCH THAT THEY COINCIDE WITH THE LONGITUDINAL
 CONTROL CURVES DEFINED BY THE ENRICH DATA RECORD IN THE GEOMETRY
 DATA SET. /
 COMPONENT FINA /
 MIDSURFACE NODES IN SECTION 50. 2.0 5.0 70. 2.0 5.0 50. 2.0 -5.0 /
 4001 TO 4019 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. 4.0 5.0 70. 4.0 5.0 50. 4.0 -5.0 /
 4011 TO 4029 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. 6.0 5.0 70. 6.0 5.0 50. 6.0 -5.0 /
 4021 TO 4039 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. 8.483 5.0 70. 8.483 5.0 50. 8.483 -5.0 /
 4031 TO 4049 OF .1 #=7 .2 /
 COMPONENT FINB /
 MIDSURFACE NODES IN SECTION 50. 8.483 5.0 70. 8.483 5.0 50. 8.483 -5.0 /
 4041 TO 4059 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. 10.18 5.0 70. 10.18 5.0 50. 10.18 -5.0 /
 4041 TO 4069 OF .1 #=7 .2 /
 COMPONENT FINC /
 MIDSURFACE NODES IN SECTION 50. -4.481 5. 70. -4.481 5. 50. -4.481 -5. /
 4061 TO 4079 OF .1372 .0028 .1 #=4 .1628 .1372 /
 MIDSURFACE NODES IN SECTION 50. -3.948 5. 70. -3.948 5. 50. -3.948 -5. /
 4071 TO 4099 OF .1372 .0028 .1 #=4 .1628 .1372 /
 COMPONENT FIND /
 MIDSURFACE NODES IN SECTION 50. -2.455 5. 70. -2.455 5. 50. -2.455 -5. /
 4081 TO 4099 OF .1372 .0028 .1 #=4 .1628 .1372 /
 COMPONENT FINE /
 MIDSURFACE NODES IN SECTION 50. -2.0 5. 70. -2.0 5. 50. -2.0 -5. /
 4091 TO 4109 OF .1372 .0028 .1 #=4 .1628 .1372 /
 *//
 *// DEFINE MID-SURFACE NODES FOR CANARD COMPONENTS -- 10 NODES PER SECTION.
 THE NODES ARE LOCATED SUCH THAT THEY COINCIDE WITH THE LONGITUDINAL
 CONTROL CURVES DEFINED BY THE ENRICH DATA RECORD IN THE GEOMETRY
 DATA SET. /
 COMPONENT CANBAR /
 MIDSURFACE NODES IN SECTION 50. 3.0 -1. 70. 3.0 -1. 50. 3.0 1. /
 5001 TO 5019 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. 6.0 -1. 70. 6.0 -1. 50. 6.0 1. /
 5011 TO 5029 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. 11.315 -1. 70. 11.315 -1. 50. 11.315 1. /
 5021 TO 5039 OF .1 #=7 .2 /
 COMPONENT CANDAL /
 MIDSURFACE NODES IN SECTION 50. -3.0 -1. 70. -3.0 -1. 50. -3.0 1. /
 5041 TO 5059 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. -6.0 -1. 70. -6.0 -1. 50. -6.0 1. /
 5051 TO 5069 OF .1 #=7 .2 /
 MIDSURFACE NODES IN SECTION 50. -11.315 -1. 70. -11.315 -1. 50. -11.315 1. /
 5061 TO 5079 OF .1 #=7 .2 /
 COMPONENT CANFLR /
 MIDSURFACE NODES IN SECTION 50. 12.319 -1. 70. 12.319 -1. 50. 12.319 1. /
 5031 TO 5049 OF .1 #=7 .2 /
 COMPONENT CANDEL /
 MIDSURFACE NODES IN SECTION 50. -12.319 -1. 70. -12.319 -1. 50. -12.319 1. /
 5071 TO 5089 OF .1 #=7 .2 /
 END EXTRACT /

```
END NODAL DATA /  
*/  
/* DEFINE NODE SUBSETS FOR PRINT AND PLOT DISPLAYS. /  
BEGIN SUBSET DEFINITION /  
SUBSETS OF NODAL SET 10 /  
N10 = ALL /  
END SUBSET DEFINITION /  
END PROBLEM DATA /
```


Figure 303-1. SST Configuration

Figure 303-2. ATLAS Nodal Data for SST Aircraft

Figure 303-3. Fighter Aircraft Configuration

Figure 303-4. ATLAS Nodal Data for Fighter Aircraft

Figure 303-5. Schematic of ATLAS/ LaRC Airplane Configuration Program Interface Demonstration

401. REFERENCES

- 101-1 Dreisbach, R.L., ed., "ATLAS -- An Integrated Structural Analysis and Design System, User's Manual - Input and Execution Data," NASA CR-159043, July 1979.
- 101-2 Tolle, J. M., "Stadium Seats Slide on Water," ASCE Civil Engineering Journal, vol. 48, no. 6, June 1978.
- 101-3 Miller, R. E., Jr., et al., "Recent Advances in Computerized Aerospace Structural Analysis and Design," Computers and Structures Journal, vol. 7, no. 2, April 1977.
- 101-4 Lewis, C. M., Samuel, R. A. and Yen, F., "3-D Stress Analysis of a Turbine Blade," Army Materials and Mechanics Research Center Report, AMMRC CTR-77-14, March 1977 (reprint of Boeing document D6-42735 prepared under contract DAAG46-75-C-0072).
- 101-5 Robinson, J. C., et al., "Application of an Advanced Computerized Structural Design System to an Arrow-Wing Supersonic Cruise Aircraft," AIAA paper no. 75-1038 presented at the AIAA Aircraft Systems and Technology Meeting, Los Angeles, Calif., Aug. 1975.
- 101-6 Turner, M. J. and Grande, D. L., "Study of Metallic Structural Design Concepts for an Arrow Wing Supersonic Cruise Configuration," NASA CR-2743, Dec. 1977.
- 101-7 Turner, M. J. and Grande, D. L., "Study of Advanced Composite Structural Design Concepts for an Arrow-Wing Supersonic Cruise Configuration," NASA CR-2825, April 1978.
- 201-1 McCormick, C.W., ed., "The NASTRAN User's Manual," NASA SP-222(01), June 1972.
- 202-1 Kordes, E.E., Kruszewski, E.T. and Weidman, D.J., "Experimental Influence Coefficients and Vibration Modes of a Built-Up 45° Delta-Wing Specimen," NACA TN3999, May 1957.
- 205-1 Rickard, N.D., "Flutter and Vibration Basic Data Report for BQM-34E Supersonic Aerial Target, Including Addendum I," Teledyne Ryan Aeronautical Report No. TRA 16651-2B, June 22, 1972.

PREVIOUS PAGE WAS NOT FILMED

- 206-1 Hurty, W.C. and Rubinstein, M.F., "Dynamics of Structures," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
- 206-2 Bisplinghoff, R.L., Ashley, H. and Halfman, R.L., "Aeroelasticity," Addison-Wesley Publishing Co., Inc., Reading, Mass., 1955.
- 207-1 Bleich, F., Ramsey, L.B. and Bleich, H.H., "Buckling Strength of Metal Structures," McGraw-Hill Book Co., New York, 1952.
- 210-1 Adelman, H.M., et al., "An Improved Method for Optimum Design of Mechanically and Thermally Loaded Structures," NASA TN-D-7865, Aug. 1975.
- 212-1 Gore, S.W., Imes, R.S. and Jennings, W.P., "YC-14 Flutter Clearance Program, Part 2 Theoretical Flutter Analysis," D748-10075-2, The Boeing Company, Nov. 1975.
- 213-1 Timoshenko, S. and Goodier, J.N., "Theory of Elasticity," McGraw-Hill Book Co., New York, 1951.
- 213-2 Pippard, A.J.S., "Studies in Elastic Structures," Edward Arnold & Co., London, 1952.
- 303-1 Craidon, C.B., "Description of a Digital Computer Program for Airplane Configuration Plots," NASA TM X-2074, Sept. 1970.
- 303-2 Middleton, W.D., Lundry, J.L. and Coleman, R.G., "Aerodynamic Design and Analysis System for Supersonic Aircraft," NASA CR-2521, March 1975.