Homework 2

Abstract Algebra II

Complete the following problems. Note that you should only use results that we've discussed so far this semester or last semester.

Problem 1. Let R be a Euclidean Domain with norm N satisfying $N(a) \le N(ab)$ for all nonzero $a, b \in R^1$. Prove that $a \in R$ is a unit iff N(a) = N(1). Note: Actually, I don't think we need this extra requirement on N, but since I already modified the problem, I'll just leave it.

Problem 2. Consider the Euclidean Domain $\mathbb{Z}[i]$ with norm given by $N(a+bi) = a^2 + b^2$.

- (a) Find the units in $\mathbb{Z}[i]$.
- (b) For each of the following pairs, find q and r such that a = bq + r with r = 0 or N(r) < N(b).
 - (i) a = 11 + 8i, b = 1 + 2i
 - (ii) a = -17 + 15i, b = 3 + i

Problem 3. Consider the Euclidean Domain $\mathbb{Q}[x]$ with norm given by $N(p(x)) = \deg(p(x))$.

- (a) Prove that $(x^2 + 1, x^3 + 1) = \mathbb{Q}[x]$.
- (b) Find polynomials a(x) and b(x) such that $(x^2 + 1)a(x) + (x^3 + 1)b(x) = 1$.

Problem 4. Let R be an integral domain and let u be a unit of R.

- (a) Prove that if $p \in R$ is prime, then up is prime.
- (b) Prove that if $p \in R$ is irreducible, then up is irreducible.

Problem 5. Consider the ring $\mathbb{Z}[\sqrt{-5}]$. Note that $\mathbb{Z}[\sqrt{-5}]$ is a Euclidean Domain with norm $N(a+b\sqrt{-5})=a^2+5b^2$.

- (a) Justify my claim in Example 1.85(3) that $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ are two distinct factorizations of 6 into irreducibles in $\mathbb{Z}[\sqrt{-5}]$.
- (b) Prove that $1 + \sqrt{-5}$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.

Problem 6. Consider the ring $\mathbb{Z}[2\sqrt{2}]$.

- (a) Prove that $\mathbb{Z}[2\sqrt{2}]$ is not a UFD. *Hint:* Fiddle around with 8. You will need to justify that certain ring elements are irreducibles. One way to do this is to play with the map $N: \mathbb{Z}[2\sqrt{2}] \to \mathbb{Z} \cup \{0\}$ given by $N(a+2b\sqrt{2}) = |a^2-8b^2|$ (the vertical bars denote absolute value). It would be useful to know N(rs) = N(r)N(s), N(r) = 1 iff r is a unit, and $N(r) \neq 2$ for all $r \in R$. If you want to use these facts, you should prove them.
- (b) If possible, give an example of an ideal of $\mathbb{Z}[2\sqrt{2}]$ that is not principal. If not possible, briefly explain why.

 $^{^{1}}$ This extra requirement on N is sometimes part of the definition of Euclidean Domain.