VERJETNOST PREKOMERNEGA PRILEGNJA

Tina Janša

27. januar 2014

Uvod

- Pridobitev podatkov
- Implementacija trgovalnih strategij
- Implementacija metode kombinatoričnega simetričnega navzkrižnega preverjanja

Uvod

- Pridobitev podatkov
- Implementacija trgovalnih strategij
- Implementacija metode kombinatoričnega simetričnega navzkrižnega preverjanja

- Random
- Buy & Hold
- SMA
- RSI
- Bollinger

- Random
- Buy & Hold
- SMA
- RSI
- Bollinger

- Random
- Buy & Hold
- SMA
- RSI
- Bollinger

SMA - Preprosto drseče povprečje

- Nakupni signal: zadnja cena > SMA
- Prodajni signal: zadnja cena < SMA

RSI - Indeks relativne moči

- Nakupni signal: RSI < 30
- ullet Prodajni signal: RSI > 70

$$RSI = 100 - \frac{100}{1 - RS}$$

$$RS = \frac{\text{povprečna vrednost pozitivnih period}}{\text{povprečna vrednost negativnih period}}$$

Bollingerjevi pasovi

- Nakupni signal: zadnja cena < spodnji pas
- Prodajni signal: zadnja cena > zgornji pas
- ullet zgornji pas = SMA + faktor imes standardni odklon
- srednji pas = SMA
- ullet spodnji pas = SMA faktor imes standardni odklon

Verejtnot prekomernega prileganja

- Naj bo $R: \mathbb{R}^T \to \mathbb{R}$ funkcija, ki za dano časovno vrsto uspešnosti n-te strategije (velikosti T) vrne realno mero uspešnosti R_n .
- Za dano množico N strategij, naj bo Ω vzorčni prostor vseh možnih rangiranj strategij glede na R_n (v naraščajočem redu).
- Naj bo $\mathcal F$ množica dogodkov, ki vsebuje sigma algebro Ω . Natančneje, eden izmed elementov v $\mathcal F$ je podmnožica vseh izidov v Ω kjer je n-ta strategija rangirana v prvi polovici (pod mediano). Označimo ta dogodek z $\mathcal F_n \in \mathcal F$, $\forall n=1,\ldots,N$.
- Naj bo Prob verjetnostna mera na \mathcal{F} . Na primer, verjetnost, da je uspešnost n-te strategije pod mediano vseh uspešnosti, ustreza relativni frekvenci pri kateri se zgodi katerikoli izid v $\underline{\mathcal{F}}_n$.

Prekomerno prileganje zgodovinskega preverjanja

Naj bo n^* najboljša strategija na učni množici, to je $R_n^* \geq R_n$, za vsak $n=1,\ldots,N$. Označimo z $\overline{R_n^*}$ uspešnost strategije n^* na testni množici. Naj bo $Me[\overline{R}]$ mediana uspešnosti vseh strategij na testni množici. Potem rečemo, da se proces izbire strategije prekomerno prilega, če za strategijo n^* z najvišjim rangom na učni množici velja:

$$E[\overline{R_n^*}] < Me[\overline{R}]$$

Verjetnost prekomernega prileganja

Naj bo n^* najboljša strategija na učni množici. Ker n^* ni nujno najboljša strategija na testni množici, obstaja pozitivna verjetnost, da je $\overline{R_n^*} < Me[\overline{R}]$. Verjetnost, da se izbrana strategija n^* prekomerno prilega, definiramo kot:

$$PBO \equiv Prob[\overline{R_n^*} < Me[\overline{R}]]$$

CSCV - Metoda kombinatoričnega simetričnega prečnega preverjanja I

- Konstruiramo matriko M iz časovne vrste uspešnosti N strategij. M je matrika velikosti $T \times N$.
- ② M razdelimo po vrsticah na S disjunktnih podmatrik enakih velikosti. Vsaka od teh podmatrik M_s , $s=1,\ldots,S$, je velikosti $\frac{T}{S} \times N$.
- **3** Tvorimo kombinacije $\frac{S}{2}$ podmatrik M_s , kar nam da $\left(\frac{S}{2}\right)$ kombinacij C_s .
- **4** Za vsako kombinacijo $c \in C_s$ naredimo naslednje:
 - Konstruiramo učno množico J tako da združimo $\frac{S}{2}$ podmatrik M_s , ki so v kombinaciji c. J je matrika velikosti $\frac{T}{2} \times N$.
 - ullet Konstruiramo testno množico \overline{J} iz podmatrik, ki niso v J.
 - Konstruiramo vektor R, kjer n-ti element pove uspešnost n-tega stolpca matrike J.

CSCV - Metoda kombinatoričnega simetričnega prečnega preverjanja II

- Določimo element n^* tako, da je $R_n \leq R_n^*$, $\forall n = 1, ..., N$.
- Konstruiramo vektor \overline{R} , kjer n-ti element pove uspešnost n-tega stolpca matrike \overline{J} .
- Določimo relativni rank $\overline{R_n^*}$ v \overline{R} . Označimo ga z $\overline{\omega_c}$, kjer je $\overline{\omega_c} \in (0,1)$.
- Definiramo logit $\lambda_c = \log \frac{\overline{\omega_c}}{1 \overline{\omega_c}}$. $\lambda_c = 0$, ko je $\overline{R_n^*} = Me[\overline{R}]$.
- **③** Izračunamo porazdelitev rankov testne množice z zbiranjem vseh λ_c , za $c \in C_s$. $f(\lambda)$ je relativna frekvenca pri kateri se λ zgodi na vseh C_s , z $\int_{-\infty}^{\infty} f(\lambda) d\lambda = 1$.
- Verjetnost prekomernega prileganja lahko ocenimo z $\Phi = \int_{-\infty}^{0} f(\lambda) d\lambda$.
 - Φ ≈ 0: ni velikega prekomernega prileganja, ker je izbor optimalne strategije na učni množici pripomogel k večji uspešnosti na testni množici.

CSCV - Metoda kombinatoričnega simetričnega prečnega preverjanja III

- $\Phi = \frac{1}{2}$: zgodovinsko preverjanje se prekomerno prilega do te mere, da postopek izbora optimalne strategije na učni množici ne doda vrednosti.
- Φ >> ½: prekomerno prileganje je tako veliko, da izbor optimalne strategije na učni množici povzroči slabšo pričakovano uspešnost na testni množici, kot bi bila, če bi naključno izbrali eno izmed strategij.

Rezultati

	STRATEGIJE					
		SMA150	SMA150	RSI2	RSI2	
		RSI14	RSI14	Bollinger	Bollinger	
		Buy&Hold	Buy&Hold	Random	Random	vse
			SMA50		SMA25	strategije
			Random		RSI14	
cscv	5 let	0.7953	0.8038	0.0004	0.0026	0.1060
	13 let	0.7416	0.7025	0.0017	0.0039	0.0333
Hold-out	5 let	3	5	3	5	vse
	13 let	3	5	3	5	vse

