APPLIED REGRESSION ANALYSIS

Ch2: R Lab

Gengxin li

Department of Mathematics and Statistics University of Michigan Dearborn

Exercise: The gasoline mileage performance of 32 different automobiles.

TABLE B.3 Gasoline Mileage Performance for 32 Antomobiles

Automobile	у	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	x_9	x_{10}	<i>x</i> ₁₁
Apollo	18.90	350	165	260	8.0:1	2.56:1	4	3	200.3	69.9	3910	Α
Omega	17.00	350	170	275	8.5:1	2.56:1	4	3	199.6	72.9	2860	Α
Nova	20.00	250	105	185	8.25:1	2.73:1	1	3	196.7	72.2	3510	Α
Monarch	18.25	351	143	255	8.0:1	3.00:1	2	3	199.9	74.0	3890	Α
Duster	20.07	225	95	170	8.4:1	2.76:1	1	3	194.1	71.8	3365	M
Jenson Conv.	11.2	440	215	330	8.2:1	2.88:1	4	3	184.5	69	4215	A
Skyhawk	22.12	231	110	175	8.0:1	2.56:1	2	3	179.3	65.4	3020	A
Monza	21.47	262	110	200	8.5:1	2.56:1	2	3	179.3	65.4	3180	Α
Scirocco	34.70	89.7	70	81	8.2:1	3.90:1	2	4	155.7	64	1905	M
Corolla SR-5	30.40	96.9	75	83	9.0:1	4.30:1	2	5	165.2	65	2320	M
Camaro	16.50	350	155	250	8.5:1	3.08:1	4	3	195.4	74.4	3885	Α
Datsun B210	36.50	85.3	80	83	8.5:1	3.89:1	2	4	160.6	62.2	2009	M
Capri II	21.50	171	109	146	8.2:1	3.22:1	2	4	170.4	66.9	2655	M
Pacer	19.70	258	110	195	8.0:1	3.08:1	1	3	171.5	77	3375	Α
Babcat	20.30	140	83	109	8.4:1	3.40:1	2	4	168.8	69.4	2700	M
Granada	17.80	302	129	220	8.0:1	3.0:1	2	3	199.9	74	3890	Α
Eldorado	14.39	500	190	360	8.5:1	2.73:1	4	3	224.1	79.8	5290	Α
Imperial	14.89	440	215	330	8.2:1	2.71:1	4	3	231.0	79.7	5185	Α
Nova LN	17.80	350	155	250	8.5:1	3.08:1	4	3	196.7	72.2	3910	Α
Valiant	16.41	318	145	255	8.5:1	2.45:1	2	3	197.6	71	3660	Α
Starfire	23.54	231	110	175	8.0:1	2.56:1	2	3	179.3	65.4	3050	Α
Cordoba	21.47	360	180	290	8.4:1	2.45:1	2	3	214.2	76.3	4250	Α
Trans AM	16.59	400	185	NA	7.6:1	3.08:1	4	3	196	73	3850	Α
Corolla E-5	31.90	96.9	75	83	9.0:1	4.30:1	2	5	165.2	61.8	2275	M
Astre	29.40	140	86	NA	8.0:1	2.92:1	2	4	176.4	65.4	2150	M
Mark IV	13.27	460	223	366	8.0:1	3.00:1	4	3	228	79.8	5430	Α
Celica GT	23.90	133.6	96	120	8.4:1	3.91:1	2	5	171.5	63.4	2535	M
Charger SE	19.73	318	140	255	8.5:1	2.71:1	2	3	215.3	76.3	4370	Α
Cougar	13.90	351	148	243	8.0:1	3.25:1	2	3	215.5	78.5	4540	Α
Elite	13.27	351	148	243	8.0:1	3.26:1	2	3	216.1	78.5	4715	Α
Matador	13.77	360	195	295	8.25:1	3.15:1	4	3	209.3	77.4	4215	A
Corvette	16.50	350	165	255	8.5:1	2.73:1	4	3	185.2	69	3660	A

y: Miles/gallon

Source: Motor Trend, 1975.

```
> ### 32 automobiles
> ### load the antomobile data in R
> setwd('D:\\bf\\UMD\\teaching\\STT530\\exercise')
> dir()
[1] "chap2 exercise l.csv"
                            "Exercise chapter2.docx"
> auto <- read.csv("chap2 exercise 1.csv", header=T)
> attach(auto)
> dim(auto)
[1] 32 12
> auto
                  x3
                        x4
                             x5 x6 x7
1 18.90 350.0 165 260 8.00 2.56
                                4 3 200.3 69.9 3910
  17.00 350.0 170 275 8.50 2.56
                                 4
                                   3 199.6 72.9 3860
  20.00 250.0 105 185 8.25 2.73
                                1
                                   3 196.7 72.2 3510
  18.25 351.0 143 255 8.00 3.00
                                 2
                                   3 199.9 74.0 3890
  20.07 225.0 95 170 8.40 2.76
                                 1 3 194.1 71.8 3365
  11.20 440.0 215 330 8.20 2.88
                                 4
                                   3 184.5 69.0 4215
  22.12 231.0 110 175 8.00 2.56 2 3 179.3 65.4 3020
  21.47 262.0 110 200 8.50 2.56
                                2 3 179.3 65.4 3180
9 34.70 89.7 70 81 8.20 3.90
                                2 4 155.7 64.0 1905
                                                       0
10 30.40 96.9 75 83 9.00 4.30 2
                                   5 165.2 65.0 2320
11 16.50 350.0 155 250 8.50 3.08
                                4 3 195.4 74.4 3885
12 36.50 85.3 80 83 8.50 3.89
                                   4 160.6 62.2 2009
13 21.50 171.0 109 146 8.20 3.22
                                 2
                                   4 170.4 66.9 2655
14 19.70 258.0 110 195 8.00 3.08
                                1 3 171.5 77.0 3375
15 20.30 140.0 83 109 8.40 3.40
                                2
                                   4 168.8 69.4 2700
16 17.80 302.0 129 220 8.00 3.00 2 3 199.9 74.0 3890
17 14.39 500.0 190 360 8.50 2.73
                                4 3 224.1 79.8 5290
18 14.89 440.0 215 330 8.20 2.71 4 3 231.0 79.7 5185
19 17.80 350.0 155 250 8.50 3.08
                                4 3 196.7 72.2 3910
20 16.41 318.0 145 255 8.50 2.45
                                2 3 197.6 71.0 3660
21 23.54 231.0 110 175 8.00 2.56
                                 2
                                   3 179.3 65.4 3050
22 21.47 360.0 180 290 8.40 2.45
                                 2
                                   3 214.2 76.3 4250
23 16.59 400.0 185 NA 7.60 3.08
                                 4
                                   3 196.0 73.0 3850
        96.9 75
                  83 9.00 4.30
                                 2
                                   5 165.2 61.8 2275
                  NA 8.00 2.92
25 29.40 140.0
               86
                                    4 176.4 65.4 2150
26 13.27 460.0 223 366 8.00 3.00
                                4 3 228.0 79.8 5430
27 23.90 133.6 96 120 8.40 3.91
                                 2
                                   5 171.5 63.4 2535
                                                       0
28 19.73 318.0 140 255 8.50 2.71
                                 2 3 215.3 76.3 4370
29 13.90 351.0 148 243 8.00 3.25
                                 2
                                   3 215.5 78.5 4540
30 13.27 351.0 148 243 8.00 3.26
                                2 3 216.1 78.5 4715
31 13.77 360.0 195 295 8.25 3.15 4 3 209.3 77.4 4215
32 16.50 360.0 165 255 8.50 2.73 4 3 185.2 69.0 3660
```

 x_1 : Displacement (cubic in.)

x1. Displacement (cubic in.)

 x_2 : Horsepower (ft-lb)

 x_3 : Torque (ft-lb)

 x_4 : Compression ratio

x₅: Rear axle ratio

x₆: Carburetor (barrels)

 x_7 : No. of transmission speeds

x₈: Overall length (in.)

x₀: Width (in.)

 x_{10} : Weight (lb)

 x_{11} : Type of transmission (A automatic; M manual)

The gasoline mileage performance of 32 different automobiles.

- a. Fit a simple linear regression model relating gasoline mileage y (miles per gallon) to engine displacement x l (cubic inches).
- b. Draw the scatter plot between gasoline mileage y and engine displacement x1, and draw the fitted the simple linear regression line

```
> ### a. Fit a simple linear regression model relating gasoline mileage y (miles per gallon) to
         engine displacement x 1 (cubic inches).
> model <- lm(y ~ x1, data=auto)
> summary(model)
Call:
lm(formula = y \sim xl, data = auto)
Residuals:
   Min
             1Q Median
-6.7923 -1.9752 0.0044 1.7677 6.8171
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.722677 1.443903
                                 23.36 < 2e-16
            -0.047360
                      0.004695 -10.09 3.74e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.065 on 30 degrees of freedom
Multiple R-squared: 0.7723,
                               Adjusted R-squared: 0.7647
F-statistic: 101.7 on 1 and 30 DF, p-value: 3.743e-11
> ### b. Draw the scatter plot between gasoline mileage y and engine displacement x1,
         and draw the fitted the simple linear regression line
> plot(x1, y,
       xlab="Displacement", ylab="Miles/Gallon",
       main="Miles/Gallon versus Displacement",
       panel.last = lines(sort(x1), fitted(model)[order(x1)]))
```

Miles/Gallon versus Displacement

$$\hat{y} = 33.72 - 0.047 \text{x} 1$$

- c. Test the hypothesis H $0: \beta 1 = 0$.
- d. Find 95% Confidence Interval for β_0 and β_1

```
> ### c. Test the hypothesis H 0 : ? 1 = 0.
> model <- lm(y ~ x1, data=auto)
> summary(model)
Call:
lm(formula = y ~ x1, data = auto)
Residuals:
            10 Median
-6.7923 -1.9752 0.0044 1.7677 6.8171
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.722677 1.443903 23.36 < 2e-16 ***
           -0.047360 0.004695 -10.09 3.74e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.065 on 30 degrees of freedom
Multiple R-squared: 0.7723, Adjusted R-squared: 0.7647
F-statistic: 101.7 on 1 and 30 DF, p-value: 3.743e-11
> ### rejection region
> qt(1-0.05/2,30)
[1] 2.042272
> ### d. Find 95% Confidence Interval for ? 0 and ? 1. Find 95% C.I for ? 1.
> confint(model)
                 2.5 %
                            97.5 %
(Intercept) 30.77383383 36.67151954
           -0.05694883 -0.03777032
> confint(model, "x1")
         2.5 %
                   97.5 %
x1 -0.05694883 -0.03777032
```

Conclusion:

c. Hypothesis test

i. hypothesis
$$\begin{cases} H_0: \beta_1 = 0 \\ H_a: \beta_1 \neq 0 \end{cases}$$

ii. Test statistic:
$$t_{obs} = \frac{b_1 - \beta_{10}}{\sqrt{\frac{s^2}{S_{xx}}}} = \frac{-0.04736 - 0}{0.004695} = -10.09$$

iii. Rejection region:
$$t > t_{\frac{\alpha}{2}, n-2} = 2.042$$
 or $t < -t_{\frac{\alpha}{2}, n-2} = -2.042$

iv. Since t_{obs} is in the rejection region, we reject the H_0 . It indicates that x1 (displacement) is negatively linear related to y (miles/gallon)

d. Find 95% Confidence Interval for β_0 and β_1 , and 95% Confidence Interval for β_1

95% CI for β_0 is (30.77, 36.67); 95% CI for β_1 is (-0.057, -0.038); Since 0 is outside of C.I, it indicates that we reject the H_0

e. Find 80% Confidence Interval for β_0 and β_1

80% Confidence Interval for β_0 is (31.83, 35.61) 80% Confidence Interval for β_1 is (-0.054, -0.041)

```
confint {stats}

R Documentation

Confidence Intervals for Model Parameters
```

Description

Computes confidence intervals for one or more parameters in a fitted model. There is a default and a method for objects inheriting from class "lm".

```
Usage
confint(object, parm, level = 0.95, ...)
Arguments
object
a fitted model object.
```

a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

the confidence level required.

additional argument(s) for methods.

Details

confint is a generic function. The default method assumes asymptotic normality, and needs suitable <u>coef</u> and <u>vcov</u> methods to be available. The default method can be called directly for comparison with other methods.

For objects of class "lm" the direct formulae based on t values are used.

There are stub methods in package stats for classes "glm" and "nls" which call those in package MASS (if installed): if the MASS namespace has been loaded, its methods will be used directly. (Those methods are based on profile likelihood.)

f. Calculate R^2 , and calculate the **correlation** between miles/gallon (y) and engine displacement (x1).

```
> ### f. Calculate R^2 and calculate the correlation between v and xl.
> model <- lm(y ~ x1, data=auto)
> summary(model)
 Call:
lm(formula = y ~ x1, data = auto)
 Residuals:
    Min
          1Q Median 3Q
                                   Max
 -6.7923 -1.9752 0.0044 1.7677 6.8171
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) 33.722677   1.443903   23.36 < 2e-16 ***
            -0.047360 0.004695 -10.09 3.74e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.065 on 30 degrees of freedom
Multiple R-squared: 0.7723, Adjusted R-squared: 0.7647
F-statistic: 101.7 on 1 and 30 DF, p-value: 3.743e-11
> cor(y,x1)
[1] -0.8787896
```

Conclusion: R^2 =0.7723, and the correlation between y and x1 is r=-0.8788

$$r^2 = -0.8788^2 = 0.7723 = R^2$$

g. Calculate sum of squared errors (SSE), mean square error (MSE), and regression (or residual) standard error (s).

```
> # g. find SSE, MSE and s
> sum(residuals(model)^2) ##SSE=281.42
[1] 281.8244
>
> n=32
> sum(residuals(model)^2)/(n-2) ##MSE=s^2=9.39
[1] 9.394146
>
> n=32
> sqrt(sum(residuals(model)^2)/(n-2)) ## s=3.06
[1] 3.064987
```

The LSE estimator of σ^2 is $s^2 = MSE = 3.065^2 = 9.39$

```
> model <- lm(v ~ xl, data=auto)
> summary(model)
Call:
lm(formula = y \sim x1, data = auto)
Residuals:
    Min
             10 Median
-6.7923 -1.9752 0.0044 1.7677 6.8171
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) 33.722677 1.443903 23.36 < 2e-16 ***
x1
            -0.047360 0.004695 -10.09 3.74e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.065 on 30 degrees of freedom
Multiple R-squared: 0.7723, Adjusted R-squared: 0.7647
F-statistic: 101.7 on 1 and 30 DF, p-value: 3.743e-11
```

- **h.** Find a 95% PI on the **mean (average) gasoline mileage** if the engine displacement is 275 in.
- **i.** Suppose that we wish to predict <u>the gasoline mileage</u> obtained from a car with a 275 in engine. Give a point estimate of mileage. Find a 95% prediction interval on the mileage.
- **j.** Compare the two intervals obtained in parts h and i. Explain the difference between them. Which one is wider, and why?

Conclusion:

- **h.** The 95% confidence interval on the mean mileage is (19.59, 21.81).
- **i.** The point estimate of mileage is 20.69879. The 95% prediction interval on the mileage is (14.34, 27.06).
- j. Compare the above two intervals obtained in parts h and i, the interval of mean mileage gives us a narrower interval. The PI of mileage gives a wider interval.

ii. Predictive variance. $\hat{Y}_0 = b_0 + b_1 x_0 + \xi = Y | x_0$ Var(g) = E (yo - yo) = E [(6-16) + (6-1/2) x 0 - 2] = Warlbort E[(bo-Po) + (xo-x)(b,-Po) + x(b,-Bo) - 2]2 Var(bo) + (xo-x) Var(b,) + x Var(b,) + Var(4) + 2 (xo-x) Cov (bo,b, +21x Cov(bo, bi) + 2 2(xo-x) Var (bi) - x Kest of theteems one o assuming the independence of to with 41, 42, ... En. = Var(bo) + [(xo-x)2+x2+2(xo-x)x] Var(b,) + Var(4)+[2(xo-x)+2x](a/bo, = [lar(bo) + [(xo-x+x)2] Var(b1) + Var(4) + 2 xo (ov (bo, b1) = Var(bo) + xo Var(bi) + Var(a) + 2 % (ou(bo, b.) = 8 1 + x2 + x2 + x2 + 62 + 24. Cou (7-bix, b,) = 62/1+ x2 + x02 +1] + - 2x0x Var (b1) = 52[+1+++ x+x0] - 200x. 0 $= 6^{2} \left[1 + \frac{1}{n} + \frac{N_0^2 - 2N_0 N_0 + N}{N_0^2} \right]$ = 62 [1+ h + (x0-x)2]

Python version

The gasoline mileage performance of 32 different automobiles.

TABLE B.3 Gasoline Mileage Performance for 32 Antomobiles

Automobile	у	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁
Apollo	18.90	350	165	260	8.0:1	2.56:1	4	3	200.3	69.9	3910	Α
Omega	17.00	350	170	275	8.5:1	2.56:1	4	3	199.6	72.9	2860	A
Nova	20.00	250	105	185	8.25:1	2.73:1	1	3	196.7	72.2	3510	Α
Monarch	18.25	351	143	255	8.0:1	3.00:1	2	3	199.9	74.0	3890	Α
Duster	20.07	225	95	170	8.4:1	2.76:1	1	3	194.1	71.8	3365	M
Jenson	11.2	440	215	330	8.2:1	2.88:1	4	3	184.5	69	4215	A
Conv.												
Skyhawk	22.12	231	110	175	8.0:1	2.56:1	2	3	179.3	65.4	3020	A
Monza	21.47	262	110	200	8.5:1	2.56:1	2	3	179.3	65.4	3180	Α
Scirocco	34.70	89.7	70	81	8.2:1	3.90:1	2	4	155.7	64	1905	M
Corolla	30.40	96.9	75	83	9.0:1	4.30:1	2	5	165.2	65	2320	M
SR-5												
Camaro	16.50	350	155	250	8.5:1	3.08:1	4	3	195.4	74.4	3885	A
Datsun	36.50	85.3	80	83	8.5:1	3.89:1	2	4	160.6	62.2	2009	M
B210												
Capri II	21.50	171	109	146	8.2:1	3.22:1	2	4	170.4	66.9	2655	M
Pacer	19.70	258	110	195	8.0:1	3.08:1	1	3	171.5	77	3375	A
Babcat	20.30	140	83	109	8.4:1	3.40:1	2	4	168.8	69.4	2700	M
Granada	17.80	302	129	220	8.0:1	3.0:1	2	3	199.9	74	3890	A
Eldorado	14.39	500	190	360	8.5:1	2.73:1	4	3	224.1	79.8	5290	A
Imperial	14.89	440	215	330	8.2:1	2.71:1	4	3	231.0	79.7	5185	A
Nova LN	17.80	350	155	250	8.5:1	3.08:1	4	3	196.7	72.2	3910	A
Valiant	16.41	318	145	255	8.5:1	2.45:1	2	3	197.6	71	3660	A
Starfire	23.54	231	110	175	8.0:1	2.56:1	2	3	179.3	65.4	3050	A
Cordoba	21.47	360	180	290	8.4:1	2.45:1	2	3	214.2	76.3	4250	A
Trans AM	16.59	400	185	NA	7.6:1	3.08:1	4	3	196	73	3850	A
Corolla E-5	31.90	96.9	75	83	9.0:1	4.30:1	2	5	165.2	61.8	2275	M
Astre	29.40	140	86	NA	8.0:1	2.92:1	2	4	176.4	65.4	2150	M
Mark IV	13.27	460	223	366	8.0:1	3.00:1	4	3	228	79.8	5430	A
Celica GT	23.90	133.0	96	120	8.4:1	3.91:1	2	5	171.5	63.4	2535	M
Charger SE	19.73	318	140	255	8.5:1	2.71:1	2	3	215.3	76.3	4370	A
Cougar	13.90	351	148	243	8.0:1	3.25:1	2	3	215.5	78.5	4540	A
Elite	13.27	351	148	243	8.0:1	3.26:1	2	3	216.1	78.5	4715	A
Matador	13.77	360	195	295	8.25:1	3.15:1	4	3	209.3	77.4	4215	A
Corvette	16.50	350	165	255	8.5:1	2.73:1	4	3	185.2	69	3660	A

y: Miles/gallon

Source: Motor Trend, 1975.

```
# supp_lecture3
# load chapter 2 exercise data set
auto = pd.read_csv('chap2_exercise_1.csv')
print(auto.shape)
print(auto)
```

	у	x1	х2	х3	х4	х5	хб	х7	х8	х9	x10	x11
Θ	18.90	350.0	165	260.0	8.00	2.56	4	3	200.3	69.9	3910	1
1	17.00	350.0	170	275.0	8.50	2.56	4	3	199.6	72.9	3860	1
2	20.00	250.0	105	185.0	8.25	2.73	1	3	196.7	72.2	3510	1
3	18.25	351.0	143	255.0	8.00	3.00	2	3	199.9	74.0	3890	1
4	20.07	225.0	95	170.0	8.40	2.76	1	3	194.1	71.8	3365	Θ
5	11.20	440.0	215	330.0	8.20	2.88	4	3	184.5	69.0	4215	1
6	22.12	231.0	110	175.0	8.00	2.56	2	3	179.3	65.4	3020	1
7	21.47	262.0	110	200.0	8.50	2.56	2	3	179.3	65.4	3180	1
8	34.70	89.7	70	81.0	8.20	3.90	2	4	155.7	64.0	1905	Θ
9	30.40	96.9	75	83.0	9.00	4.30	2	5	165.2	65.0	2320	Θ
10	16.50	350.0	155	250.0	8.50	3.08	4	3	195.4	74.4	3885	1
11	36.50	85.3	80	83.0	8.50	3.89	2	4	160.6	62.2	2009	Θ
12	21.50	171.0	109	146.0	8.20	3.22	2	4	170.4	66.9	2655	Θ
13	19.70	258.0	110	195.0	8.00	3.08	1	3	171.5	77.0	3375	1
14	20.30	140.0	83	109.0	8.40	3.40	2	4	168.8	69.4	2700	Θ
15	17.80	302.0	129	220.0	8.00	3.00	2	3	199.9	74.0	3890	1
16	14.39	500.0	190	360.0	8.50	2.73	4	3	224.1	79.8	5290	1

 x_1 : Displacement (cubic in.)

 x_2 : Horsepower (ft-lb)

 x_3 : Torque (ft-lb)

 x_4 : Compression ratio

x₅: Rear axle ratio

x₆: Carburetor (barrels)

 x_7 : No. of transmission speeds

 x_8 : Overall length (in.)

 x_9 : Width (in.)

 x_{10} : Weight (lb)

 x_{11} : Type of transmission (A automatic; M manual)

The gasoline mileage performance of 32 different automobiles.

- a. Fit a simple linear regression model relating gasoline mileage y (miles per gallon) to engine displacement x l (cubic inches).
- b. Draw the scatter plot between gasoline mileage y and engine displacement x1, and draw the fitted the simple linear regression line

```
# fit a simple linear regression model
X = MS(['x1']).fit_transform(auto)
y = auto['y']
model1 = sm.OLS(y, X)
results1 = model1.fit()
print(summarize(results1))
```

```
coef std err t P>|t|
intercept 33.7227 1.444 23.355 0.0
x1 -0.0474 0.005 -10.086 0.0
```


- c. Test the hypothesis H $0: \beta 1 = 0$.
- d. Find 95% Confidence Interval for β_0 and β_1

```
# rejection region
# for t test
import scipy.stats
import pandas as pd
auto = pd.read_csv('chap2_exercise_1.csv')
t_value=scipy.stats.t.ppf(q=1 - 0.05/2, df=auto.shape[0]-2)
print('t critical value:',t_value)
t critical value: 2.0422724563012373
```

Conclusion:

c. Hypothesis test

i. hypothesis
$$\begin{cases} H_0: \beta_1 = 0 \\ H_a: \beta_1 \neq 0 \end{cases}$$

ii. Test statistic:
$$t_{obs} = \frac{b_1 - \beta_{10}}{\sqrt{\frac{s^2}{s_{xx}}}} = \frac{-0.04736 - 0}{0.004695} = -10.09$$

iii. Rejection region: t >
$$t_{\frac{\alpha}{2},n-2} = 2.042$$
 or t < $-t_{\frac{\alpha}{2},n-2} = -2.042$

iv. Since t_{obs} is in the rejection region, we reject the H_0 . It indicates that x1 (displacement) is negatively linear related to y (miles/gallon)

d. Find 95% Confidence Interval for β_0 and β_1 , and 95% Confidence Interval for β_1

95% CI for β_0 is (30.77, 36.67); 95% CI for β_1 is (-0.057, -0.038); e. Find 80% Confidence Interval for β_0 and β_1

```
# Confidence Interval (80%)
CI = results1.conf_int(alpha=0.20)
print(CI)
```

```
0 1
intercept 31.830565 35.614789
x1 -0.053512 -0.041207
```

- **80%** Confidence Interval for β_0 is (31.83, 35.61)
- **80%** Confidence Interval for β_1 is (-0.054, -0.041)

f. Calculate R^2 , and calculate the **correlation** between miles/gallon (y) and engine displacement (x1).

```
# find R^2
X = MS(['x1']).fit_transform(auto)
y = auto['y']
model1 = sm.OLS(y, X)
results1 = model1.fit()
print('The R square r2:', results1.rsquared)
print('The adjusted R square r2_adj:', results1.rsquared_adj)
```

```
The R square r2: 0.772271242320445
The adjusted R square r2_adj: 0.7646802837311264
```

Conclusion: R^2 =0.7723, and the correlation between y and x1 is r=-0.8788

```
# Find correlation between x1 and y
corr = np.corrcoef(auto['x1'], auto['y'])
corr2 = corr[0,1]**2
print('The correlation between y and x1:', corr[0,1])
print('The square of correlation:', corr2)
```

The correlation between y and x1: -0.8787896462296564
The square of correlation: 0.7722712423204446

$$r^2 = (-0.8788)^2 = 0.7723 = R^2$$

g. Calculate sum of squared errors (SSE), mean square error (MSE), and regression (or residual) standard error (s).

```
# Find SSres=SSE, MSE
print('SSres:', results1.ssr)
print('MSE = s^2 = SSres/n-2:', results1.mse_resid)
```

```
SSres: 281.82437762005355
MSE = s^2 = SSres/n-2: 9.394145920668452
```

The LSE estimator of σ^2 is $s^2 = 9.39$. The residual sum of squares SSres=281.82

- **h.** Find a 95% PI on the **mean (average) gasoline mileage** if the engine displacement is 275 in.
- **i.** Suppose that we wish to predict <u>the gasoline mileage</u> obtained from a car with a 275 in engine. Give a point estimate of mileage. Find a 95% prediction interval on the mileage.
- **j.** Compare the two intervals obtained in parts h and i. Explain the difference between them. Which one is wider, and why?

```
design = MS(['x1'])
design = design.fit(auto)
X = design.transform(auto)
print(X[:4])
new_df = pd.DataFrame({'x1':[275]})
newX = design.transform(new_df)
print(newX)
new_predictions = results1.get_prediction(newX)
print(new_predictions.predicted_mean)
CI = new_predictions.conf_int(alpha=0.05)
print('95% CI on the mean gasoline mileage:', CI)
PP = new_predictions.conf_int(obs=True , alpha=0.05)
print('95% prediction interval on the mileage:', PI)
```

```
intercept x1
0     1.0 350.0
1     1.0 350.0
2     1.0 250.0
3     1.0 351.0
    intercept x1
0     1.0 275
[20.69879276]
95% CI on the mean gasoline mileage: [[19.58806865 21.80951687]]
95% prediction interval on the mileage: [[14.34147153 27.05611399]]
```

Conclusion:

- **h.** The 95% confidence interval on the mean mileage is (19.59, 21.81).
- **i.** The point estimate of mileage is 20.69879. The 95% prediction interval on the mileage is (14.34, 27.06).
- j. Compare the above two intervals obtained in parts h and i, the interval of mean mileage gives us a narrower interval. The PI of mileage gives a wider interval.

1. Skin cancer

- Load the skin cancer data, estimate β_0 and β_1 , and produce a scatterplot with a simple linear regression line
- 95% Confidence Interval for β_0 and β_1

```
> setwd('F:\\UMD\\teaching\\STT530\\Lab')
> skincancer <- read.table("skincancer.txt", header=T)
> attach(skincancer)
The following objects are masked from skincancer (pos = 3):
    Lat, Long, Mort, Ocean, State
The following objects are masked from skincancer (pos = 4):
    Lat, Long, Mort, Ocean, State
> dim(skincancer)
[1] 49 5
> skincancer[1:3,]
     State Lat Mort Ocean Long
1 Alabama 33.0 219
                       1 87.0
2 Arizona 34.5 160
                       0 112.0
3 Arkansas 35.0 170
                       0 92.5
> model <- lm(Mort ~ Lat)
> summary(model)
Call:
lm(formula = Mort ~ Lat)
Residuals:
    Min
             1Q Median
-38.972 -13.185 0.972 12.006 43.938
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 389.1894
                       23.8123
                                16.34 < 2e-16 ***
             -5.9776
                        0.5984
Lat
                                -9.99 3.31e-13 ***
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Residual standard error: 19.12 on 47 degrees of freedom
Multiple R-squared: 0.6798, Adjusted R-squared: 0.673
F-statistic: 99.8 on 1 and 47 DF, p-value: 3.309e-13
> confint (model)
                 2.5 %
                          97.5 %
(Intercept) 341.285151 437.093552
             -7.181404 -4.773867
```

Skin Cancer Mortality versus State Latitude

- 2. Student height and weight
- Load the student height and weight data.
- Fit a simple linear regression model.

```
> heightweight <- read.table("student height weight.txt", header=T)
> attach(heightweight)
> dim(heightweight)
[1] 10 2
> heightweight
   ht wt
1 63 127
2 64 121
3 66 142
4 69 157
5 69 162
6 71 156
7 71 169
8 72 165
9 73 181
10 75 208
> model <- lm(wt ~ ht)
> summary(model)
Call:
lm(formula = wt ~ ht)
Residuals:
    Min
              1Q Median
                                30
                                       Max
-13.2339 -4.0804 -0.0963 4.6445 14.2158
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -266.5344 51.0320 -5.223 8e-04 ***
                        0.7353 8.347 3.21e-05 ***
ht
              6.1376
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.641 on 8 degrees of freedom
Multiple R-squared: 0.897, Adjusted R-squared: 0.8841
F-statistic: 69.67 on 1 and 8 DF, p-value: 3.214e-05
```

2. Student height and weight

- Produce a scatterplot with a simple linear regression line and another line with specified intercept and slope.
- Calculate **sum of squared errors (SSE)**.
- **Predict** weight for height=66 and height=67.
- PIs for $E(y|x_0)$ and $y|x_0$.

> detach(heightweight)

```
> plot(x=ht, y=wt, ylim=c(110,210), xlab="height", ylab="weight",
       panel.last = c(lines(sort(ht), fitted(model[order(ht)]))))
> sum(residuals(model)^2) # SSE = 597.386
[1] 597.386
> predict(model, newdata=data.frame(ht=c(66, 67))) # 138.5460 144.6836
138.5460 144.6836
> predict(model, newdata=data.frame(ht=c(66, 67)), interval="confidence") # PI for E(y|x0)
       fit
                lwr
                         upr
1 138.5460 130.1186 146.9734
2 144.6836 137.2728 152.0943
> predict(model, newdata=data.frame(ht=c(66, 67)), interval="prediction") # PI for y|x0
                lwr
       fit
                         upr
1 138.5460 116.9102 160.1818
2 144.6836 123.4231 165.9440
```


3. High school GPA and college test scores

- Generate the high school GPA and college test score (population) data.
- Produce a scatterplot of the population data with the population regression line.

```
> X <- c(rep(1, 100), rep(2, 100), rep(3, 100), rep(4, 100))
> Y <- 2 + 4*X + rnorm(400, 0, 1)
> plot(X, Y, xlab="High school gpa", ylab="College entrance test score",
+ panel.last = lines(X, 2+4*X))
```


- 3. High school GPA and college test scores
- Sample the data (your results will differ since we're randomly sampling here).
- Produce a scatterplot of the sample data with a simple linear regression line and the population regression line.

- 3. High school GPA and college test scores
- Calculate sum of squared errors (SSE), mean square error (MSE), and regression (or residual) standard error (S).

```
> sum(residuals(model)^2) # SSE = 9.669
[1] 9.669046
> sum(residuals(model)^2)/10 # MSE = 0.9669
[1] 0.9669046
> sgrt(sum(residuals(model)^2)/10) # S = 0.9833
[1] 0.9833131
> summary(model) # Residual standard error: 0.9833 on 10 degrees of freedom
Call:
lm(formula = Ys ~ Xs)
Residuals:
   Min 10 Median 30 Max
-1.6775 -0.5155 0.1725 0.7420 1.3440
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.8679 0.6953 4.125 0.00206 **
          3.6250 0.2539 14.278 5.61e-08 ***
Xз
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9833 on 10 degrees of freedom
Multiple R-squared: 0.9532, Adjusted R-squared: 0.9486
F-statistic: 203.9 on 1 and 10 DF, p-value: 5.612e-08
```

4. Skin cancer

- Load the skin cancer data.
- Fit a simple linear regression model with y = Mort and x = Lat and display the **coefficient of determination**, \mathbb{R}^2 .
- Calculate the correlation between Mort and Lat.

```
> skincancer <- read.table("skincancer.txt", header=T)
> attach(skincancer)
The following objects are masked from skincancer (pos = 3):
    Lat, Long, Mort, Ocean, State
> model <- lm(Mort ~ Lat)
> summary(model) # Multiple R-squared: 0.6798
Call:
lm(formula = Mort ~ Lat)
Residuals:
    Min
         1Q Median 3Q
                                  Max
-38.972 -13.185 0.972 12.006 43.938
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 389.1894 23.8123 16.34 < 2e-16 ***
          -5.9776 0.5984 -9.99 3.31e-13 ***
Lat
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Residual standard error: 19.12 on 47 degrees of freedom
Multiple R-squared: 0.6798, Adjusted R-squared: 0.673
F-statistic: 99.8 on 1 and 47 DF, p-value: 3.309e-13
> cor(Mort, Lat) # correlation = -0.8245178
[11 -0.8245178
> detach(skincancer)
```

5. Temperature

- Create the temperature data.
- Fit a simple linear regression model with y = F and x = C and display the **coefficient of determination**, \mathbb{R}^2 .
- Calculate the **correlation** between F and C.

```
> C <- sea(0, 50, bv=5)
> F <- (9/5)*C+32
> model <- lm(F \sim C)
> summary(model) # Multiple R-squared: 1
Call:
lm(formula = F ~ C)
Residuals:
      Min 1Q Median 3Q Max
-1.509e-14 -1.580e-16 2.723e-16 1.628e-15 1.180e-14
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.200e+01 3.714e-15 8.616e+15 <2e-16 ***
         1.800e+00 1.256e-16 1.434e+16 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Residual standard error: 6.584e-15 on 9 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
F-statistic: 2.055e+32 on 1 and 9 DF, p-value: < 2.2e-16
Warning message:
In summary.lm(model) : essentially perfect fit: summary may be unreliable
> cor(F, C) # correlation = 1
[1] 1
```

6. Driver's age and distance

- Load the driver's age and distance data.
- Fit a simple linear regression model with y = Distance and x = Age and display the **coefficient of determination**, \mathbb{R}^2 .
- Calculate the correlation between Distance and Age.

```
> signdist <- read.table("signdist.txt", header=T)
> attach(signdist)
> model <- lm(Distance ~ Age)
> summary(model) # Multiple R-squared: 0.642
Call:
lm(formula = Distance ~ Age)
Residuals:
   Min 1Q Median 3Q
                                  Max
-78.231 -41.710 7.646 33.552 108.831
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 576.6819 23.4709 24.570 < 2e-16 ***
         -3.0068 0.4243 -7.086 1.04e-07 ***
Age
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
Residual standard error: 49.76 on 28 degrees of freedom
Multiple R-squared: 0.642, Adjusted R-squared: 0.6292
F-statistic: 50.21 on 1 and 28 DF, p-value: 1.041e-07
> cor(Distance, Age) # correlation = -0.8012447
[1] -0.8012447
> detach(signdist)
```

7. Lung function

- Load the lung function data.
- Fit a simple linear regression model with y = FEV and x = age for ages 6-10 only and display the model results.

```
> lungfunction <- read.table("fev dat.txt", header=T)
> attach(lungfunction)
The following objects are masked from lungfunction (pos = 3):
   age, FEV, ht, sex, smoke
> dim(lungfunction)
[1] 654 5
> lungfunction[1:5,]
  age FEV ht sex smoke
1 9 1.708 57.0 0
2 8 1.724 67.5 0
3 7 1.720 54.5 0 0
4 9 1.558 53.0 1 0
5 9 1.895 57.0 1 0
> model.1 <- lm(FEV ~ age, subset = age>=6 & age<=10)
> summary(model.1)
Call:
lm(formula = FEV ~ age, subset = age >= 6 & age <= 10)</pre>
Residuals:
    Min
            10 Median 30
                                      Max
-1.22576 -0.28855 -0.00534 0.27106 1.90724
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01165 0.15237 0.076 0.939
          0.26721 0.01801 14.839 <2e-16 ***
age
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Residual standard error: 0.4312 on 349 degrees of freedom
Multiple R-squared: 0.3869, Adjusted R-squared: 0.3851
F-statistic: 220.2 on 1 and 349 DF, p-value: < 2.2e-16
```

7. Lung function

- Produce a scatterplot for ages 6-10 only with a simple linear regression line.
- Fit a simple linear regression model with y = FEV and x = age for the full dataset and display the model results.

```
> plot(age[age>=6 & age<=10], FEV[age>=6 & age<=10],
      xlab="Age", ylab="Forced Exhalation Volume (FEV)",
      panel.last = lines(sort(age[age>=6 & age<=10]),
                         fitted(model.1)[order(age[age>=6 & age<=10])]))
>
> mode1.2 <- lm(FEV ~ age)
> summary(model.2)
Call:
lm(formula = FEV ~ age)
Residuals:
    Min
              1Q Median
                                3Q
                                        Max
-1.57539 -0.34567 -0.04989 0.32124 2.12786
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.431648 0.077895
                               5.541 4.36e-08 ***
                      0.007518 29.533 < 2e-16 ***
           0.222041
age
               0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Signif. codes:
Residual standard error: 0.5675 on 652 degrees of freedom
Multiple R-squared: 0.5722, Adjusted R-squared: 0.5716
F-statistic: 872.2 on 1 and 652 DF, p-value: < 2.2e-16
```


7. Lung function

• Produce a scatterplot for the full dataset with a simple linear regression line.

```
> plot(age, FEV, xlab="Age", ylab="Forced Exhalation Volume (FEV)",
+ panel.last = lines(sort(age), fitted(model.2)[order(age)]))
> detach(lungfunction)
```

