Állománynév: aramkorok_10log_alapok01.pdf

Irodalom: Tankönyv: Haizmann J., Varga S. és Zoltai J., "Elektronikus áramkörök,"

Tankönyvkiadó, Budapest, 1992 (javasolt, pp. 295-340, 347-358)

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

 5^{th} Edition (kevésbé ajánlott).

10. Logikai alapáramkörök és logikai áramkörcsaládok. Digitális áramkörökben mért jelalakok jellemzése

Oktatási célkitűzés:

Bevezetés a logikai áramkörök használatába, logikai rendszerek blokkdiagram szintű kezelésének bemutatása

Az áramköri és blokkdiagram szintű tervezés megközelítése

TRF6900A SoC adó-vevő

Tervezési szintek:

- Áramköri szint $C_{32}-C_7-L_2-C_6$ bemeneti illesztő áramkör
- Blokkdiagram szint "Serial Interface" és "Direct Digital Synthesizer and Power-Down Logic"

Blokkdiagram szint:

- Belső felépítés irreleváns
- Fontos a funkció
- Kellenek az interface adatok (pl. jelalakok, terhelések)

A TRF6900A SOC áramkör vezérlése

A vezérlő szavak soros beléptetése

Félvezető eszközök kapcsoló üzemű működése

Az ideális kapcsoló állapotai és karakterisztikái

A valóságos kapcsoló karakterisztikái és helyettesítő képei

Félvezető dióda kapcsoló üzemű viselkedése

Vedd észre: • Bekapcsolt állapot: Kb. 0,7–0,8 V esik rajta, egy feszültségforás és egy ellenállás soros kapcsolásával helyettesíthető

• Kikapcsolt állapot: Szakadással helyettesíthető

Schottky dióda: • Fém-félvezető átmenet

- Jóval kisebb nyitóírányú feszültség, típikusan 0,15–0,45 V
- Jóval rövidebb kapcsolási idők

Bipoláris tranzisztor kapcsoló üzemű viselkedése

Vedd észre: Logikai szempontból a fenti áramkör egy invertert valósít meg

MOS tranzisztor kapcsoló üzemű viselkedése

Vedd észre: Logikai szempontból a fenti áramkör egy invertert valósít meg

MOS tranzisztoros inverter

Kapcsolási rajza

Helyettesítő képe

Jelalakjai

Egyszerű kapuk áramköri felépítése

Diódás **ÉS** kapu és annak igazságtáblája

A	В	Y
L	L	L
L	H	L
H	L	L
H	H	H
I		ı

- Pozitív logika: H szint pozitívabb mint a L szint
- Negatív logika: H szint negatívabb mint a L szint

TTL LS NAND kapu és annak igazságtáblája

A	B	Y
L	L	$\mid H \mid$
L	H	$\mid H \mid$
H	L	$\mid H \mid$
H	H	$\mid L \mid$

CMOS NAND kapu és annak igazságtáblája

A	В	Y	R_{ki}
L	L	H	$R_p/2$
L	Н	H	R_p
Н	L	Н	R_p
Н	Н	L	$2R_n$

 R_n , R_p = a vezető n- ill. p-csatornás tranzisztor csatornaellenállása

CMOS inverter átkapcsolási folyamata és áramfelvétele

Logikai rendszerek tervezésének alapelvei

Példa: Egy 4-bites shiftregiszter logikai kapcsolása

- Interface adatok: 1. Komparálási szint, H és L logikai szintek
 - 2. Terhelhetőség: Fan-out és fan-in
 - 3. AC jellemzők: Késleltetés, jelszélesség, stb

1. Logikai szintek, zavarvédettség

TTL áramkörcsaládok jellemző paraméterei

Áramköri jellemzők		TTL Áramkörcsalád						Dimenzió	
	· · · · · · · · · · · · · · · · · · ·		74	74S	74F	74LS	74AS	74ALS	
	Jelterj. idő	t_{pd}	10	3	3	10	4	1,7	ns
TS	Disszipáció	P_{D}	10	20	4	2	8	1	mW
tipikus	H szint	U_{H}	3,4	3,4	3,4	3,4	3,4	3,4	V
ti	Komp. szint	U_{K}	1,4	1,25	1,4	1,1	1,4	1,4	V
	L szint	U_L	0,2	0,35	0,3	0,35	0,35	0,35	V
		$U_{OH\ min}$	2,4	2,7	2,7	2,7	$(U_{cc}-2)$	$(U_{cc}-2)$	V
	Logikai	$U_{\mathit{IH}\ min}$	2,0	2,0	2,0	2,0	2,0	2,0	V
(1)	szintek	$U_{\mathit{OL\ max}}$	0,4	0,5	0,5	0,5	0,5	0,5	V
worst-case		$U_{IL\ max}$	0,8	0,8	0,8	0,8	0,8	0,8	V
rst-	Bemenet	I _{IH max}	40	50	20	20	20	20	μА
WO	terhelése	$I_{IL\ max}$	-1,6	-2	-0,6	-0,4	-0,5	-0,1	mA
	Kimenet terhel-	I _{OH max}	-0,4	-1	-1	-0,4	-2	-0,4	mA
	hetősége	$I_{OL\ max}$	16	20	20	8	20	8	mA

2.(a). Egységterhelés (Unit Load, UL) definíciója

1 TTL Unit Load (U.L.) = 40 μ A in the HIGH state (Logic "1")

1 TTL Unit Load (U.L.) = 1.6 mA in the LOW state (Logic "0")

2.(b). TTL logikai áramkörcsaládok terhelhetősége és terhelései

FAMILY	INPUT	LOAD	OUTPUT DRIVE			
FAMILI	HIGH	LOW	HIGH	LOW		
74LS00	0.5 U.L.	0.25 U.L.	10 U.L.	5 U.L.		
7400	1 U.L.	1 U.L.	20 U.L.	10 U.L.		
9000	1 U.L.	1 U.L.	20 U.L.	10 U.L.		
74H00	1.25 U.L.	1.25 U.L.	25 U.L.	12.5 U.L.		
74S00	1.25 U.L	1.25 U.L.	25 U.L.	12.5 U.L.		
74 ALS	0.5 U.L	0.0625 U.L	10 U.L.	5 U.L.		

3. AC jellemzők

Késleltetési idők definíciója

Fel- és lefutási idők definíciója

Pulzus szélességének definíciója

Set-up (előkészítési) és hold (tartási) idők definíciója

Logikai kapuk rajzjelei

CMOS logikai áramkörcsalád adatai

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

Characteristic			V _{DD}	- 55°C		25°C			125°C		
		Symbol	VDD	Min	Max	Min	Тур (3)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	Ξ	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	Ξ	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	-	4.95 9.95 14.95	5.0 10 15	111	4.95 9.95 14.95		Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _{IL}	5.0 10 15	Ξ	1.5 3.0 4.0	Ξ	2.25 4.50 6.75	1.5 3.0 4.0	Ξ	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	*1" Level	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25	111	3.5 7.0 11		Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	Іон	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	111	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	1111	- 1.7 - 0.36 - 0.9 - 2.4		mAdo
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	loL	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.8	111	0.36 0.9 2.4	-	mAdo
Input Current		lin	15	-	± 0.1	-	±0.00001	± 0.1	_	± 1.0	μAdo
Input Capacitance (V _{in} = 0)		C _{in}	-	=.	-	-	5.0	7.5	-		pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	Ξ	0.25 0.5 1.0	=	0.0005 0.0010 0.0015	0.25 0.5 1.0	Ξ	7.5 15 30	μAdo
Total Supply Current ^{(4) (5)} (Dynamic plus Quiesce Per Gate, C _L = 50 pF)	nt,	Ι _Τ	5.0 10 15			$I_{T} = (0$.3 μΑ/kHz) f - .6 μΑ/kHz) f - .9 μΑ/kHz) f -	I _{DD} /N	,		μAdo

^{3.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in µA (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.001 x the number of exercised gates per package.

Vedd észre: Komparálási szint $rac{V_{DD}}{2}$

The formulas given are for the typical characteristics only at 25°C.
To calculate total supply current at loads other than 50 pF: