Summary

- Linear response curve
- Constant elasticity curve
- What is linear response curve?
- Define market size
- Define satiating price
- Elasticity formula in terms of linear response curve
- When price = 0
- Elasticity = ?
- When price $\rightarrow P_S$
 - Elasticity = ?

Linear response curve

• Simplest Price Response Curve:

$$D(p) = D_0 - m * p$$

where, D_0 is the demand at price = 0 (this is called the market size) and m is the

- The price at which demand = 0 is called the satiating price, P_s =
- The elasticity of this curve is $\epsilon = \frac{m*p}{D_0 m*p}$
- We see that $\epsilon = 0$ when p = 0. And as $p \to P_s$, $\epsilon \to \infty$.

- · Constant Elasticity curve
- Revenue formula

Constant elasticity curve

• After algebraic transition, the constant elasticity curve is given by:

$$D = Cp^{-\epsilon}$$

where C is a constant (it is the Demand when price = 1).

- It is not guaranteed that the demand is either finite or satiated $(D \to \infty, as p \to \infty)$ $(0. Also, D \neq 0, for any p).$
- Revenue is $R = p * D = Cp^{(1-\epsilon)}$
- $D(p) = D(1) p^{-\varepsilon}$

- How to increase revenue for products with:
 - 1. Inelastic demand
 - 2. Elastic demand

Constant elasticity curve

We notice that:

- When $\epsilon < 1$, (inelastic product demand) the revenue can be increased by simply
- When $\epsilon > 1$ (elastic demand) the revenue can only be increased by setting price close to zero.
- To increase revenue for products with
 - $\circ \;\;$ Inelastic demand: Increase the price
 - $\circ\;\;$ Elastic demand: Set the price close to zero
 - Huge demand ⇒ Increased revenue