Introduction to Reinforcement Learning 3/10

Jean Martinet

MSc DSAI

2024 - 2025

Program<u>me</u>

- Introduction
 - Course 1 : Introduction to Reinforcement Learning (RL)
- Part I on tabular methods
 - Course 2: Markov Decision Processes
 - Course 3 : Dynamic programming in RL
 - Course 4 : Temporal difference 1/2 (Q-learning)
 - Course 5 : Temporal difference 2/2 (SARSA)
- Part II on approximate methods
 - Course 6 : Value function approximation
 - Course 7 : Eligibility traces
 - Course 8 : Policy gradient 1/2 (REINFORCE)
 - Course 9 : Policy gradient 2/2 (actor-critic methods)
 - Course 10 : Projects presentation session

Reminder: think of a project topic

Choose from :

- Public presentation of articles/advanced topics/applications
 - Conference paper or book chapter
 - Advanced theme (e.g. actor-critic, eligibility trace, etc.)
 - Application domain (e.g. temperature control, revenue management, etc.)
- Deepening or exploration project
 - Subject to be chosen/defined and validated
- Choice to be validated before session 4
- Expected result :
 - Short 2-page max PDF report
 - Code (ipynb / py / git)
 - Short 10-min presentation during last / before last session

About the project

- Double objective
 - Dig deeper in a specific subject (discussed or not during the lectures)
 - Share your insights with other students (in a teacher mode)
- A bit hard to choose early, before having reviewed all topics
- If you can define what is the environment, the reward, the agent, and the actions, it is a good start
- Stay small, at least for a first version, then make it more complex if you have time
- An experimental contribution is needed
 - E.g. compare two algorithms
 - E.g. start from an existing approach, and monitor changes when parameters vary
- The project needs be ORIGINAL
 - You need an original contribution of your own
 - Make sure your project is different from what can be found online
- IMPORTANT: if you decide to use an existing work, it is MANDATORY to cite the source, and you need to state what your contribution is

Note

• Graded lab next week (Q-learning)

Today's menu

- Key idea of DP
- Policy iteration (evaluation-improvement)

Dynamic programming

- Collection of algorithms that can be used to compute optimal policies given a perfect model of the environment like MDP
- Limited utility yet theoretically important
 - Perfect model assumption
 - Computationally expensive
- DP uses value functions to organise the search for good policies

Remember last week

ullet Bellman optimality equation for V^*

$$V^{*}(s) = \max_{a} \mathbb{E}[r_{t+1} + \gamma V^{*}(S_{t+1}) | S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V^{*}(s')]$$

• Bellman optimality equation for Q^*

$$Q^*(s, a) = \mathbb{E}[r_{t+1} + \gamma \max_{a'} Q^*(S_{t+1}, a') | S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r | s, a) [r + \gamma \max_{a'} a' Q^*(s', a')]$$

- ullet We can easily find π^* once we have once we have V^* or Q^*
- DP algorithms turn Bellman equations into update rules

Policy evaluation (prediction)

- How to compute V^{π} for an arbitrary π ?
- Remember last week

$$V^{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma V^{\pi}(S_{t+1})|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma V^{\pi}(s')]$$

If the environment dynamics are completely known, we can iterate:

$$\begin{aligned} V_{k+1}^{\pi}(s) &= \mathbb{E}_{\pi}[r_{t+1} + \gamma V_{k}^{\pi}(S_{t+1}) | S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V_{k}^{\pi}(s')] \end{aligned}$$

- Initialisation : random for all states, expect 0 terminal states
- ullet We are guaranteed to converge towards V^π when $k o \infty$
- This is the iterative policy evaluation

Policy evaluation (prediction)

Each iteration updates all cells

Input π , the policy to be evaluated

• Two versions : 2 arrays versus in-place (equivalent, the latter is faster)

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0

Loop:  \Delta \leftarrow 0 
Loop for each s \in \mathbb{S}:  v \leftarrow V(s) 
 V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] 
 \Delta \leftarrow \max(\Delta,|v-V(s)|) 
until \Delta < \theta
```

Policy improvement

- ullet The objective of estimating V^π is to improve π
 - From s, we know how good it is to follow π : it is $V^{\pi}(s)$
 - What if we took another action $a \neq \pi(s)$?
- ullet One way to answer : select a and then follow π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

=
$$\sum_{s', r} p(s', r | s, a)[r + \gamma V^{\pi}(s')]$$

- Key criterion : is it greater than or less than $V^{\pi}(s)$?
 - ullet If greater, change π so as to always select a in s
 - ullet We obtain a new greedy policy π'

$$\begin{split} \pi'(s) &\doteq \arg\max_{a} Q^{\pi}(s, a) \\ &= \arg\max_{a} \mathbb{E}[r_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s, A_t = a] \\ &= \arg\max_{a} \sum_{s', r} p(s', r | s, a) [r + \gamma V^{\pi}(s')] \end{split}$$

Policy improvement theorem

• Let π and π' be any pair of deterministic policies such that

$$Q^{\pi}(s,\pi'(s)) \geq V^{\pi}(s)$$
 for all s

• Then π' must be as good or better than π

$$V^{\pi'}(s) \geq V^{\pi}(s)$$
 for all s

- Note that if $V^{\pi} = V^{\pi'}$
 - $V^{\pi'}$ must be V^* , and
 - ullet π and π' must be optimal policies

Policy iteration

- Once a policy π has been improved using V^{π} to obtain the better π' . we can compute $V^{\pi'}$ and improve it again to obtain π''
- Sequence of monotonically improving policies

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \pi_2 \dots \xrightarrow{I} \pi^* \xrightarrow{E} V^{\pi^*}$$

- Finite MDP has finite number of policies, so finite number of iterations
- This is called policy iteration

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization
 - $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta,|v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

policy-stable $\leftarrow true$ For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \underset{arg \max_{a} \sum_{s', r} p(s', r | s, a)}{\text{residunce}} [r + \gamma V(s')]$$

If old-action $\neq \pi(s)$, then policy-stable \leftarrow false

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Today's lab

- Find $\pi*$ for TicTacToe using DP
 - Check https://medium.com/@nour.oulad.moussa/ tic-tac-toe-with-reinforcement-learning-part-i-markov-deci for help
- (Note: Gymnasium next next week)