Quis 2 jam 9 Kelas 30

1. Roket naik vertikal dan dipantau oleh stasiun radar yang terletak 5 km dari landasan peluncuran. Berapa cepat roket naik jika tingginya 4 km dan jaraknya dari stasiun radar bertambah dengan laju 2000 km/jam?

Penyelesaian:

Ilustrasi gambar:

Diketahui:

$$h = 4~\mathrm{km}$$

$$\left.\frac{\mathrm{d}r}{\mathrm{d}t}\right|_{h=4} = 2000~\mathrm{km/jam}$$

Dari Ilustrasi diatas didapatkan persamaan

$$r^2 = 5^2 + h^2$$

$$r^2 = 25 + h^2$$

Subtitusi h untuk mendapatkan nilai r ketika h=4 km

$$r^2 = 5^2 + 4^2$$

$$r = \sqrt{5^2 + 4^2}$$

$$r = \sqrt{25 + 16}$$

$$r = \sqrt{41}$$

Kemudian turunkan kedua ruas terhadap t. Dilanjutkan dengan subtitusi nilai h, r dan $\frac{\mathrm{d}r}{\mathrm{d}t}$.

$$\frac{\mathrm{d}}{\mathrm{d}t}(r^2) = \frac{\mathrm{d}}{\mathrm{d}t}(25 + h^2)$$
$$2r\frac{\mathrm{d}r}{\mathrm{d}t} = 2h\frac{\mathrm{d}h}{\mathrm{d}t}$$

$$r\frac{\mathrm{d}r}{\mathrm{d}t} = h\frac{\mathrm{d}h}{\mathrm{d}t}$$

$$(\sqrt{41})(2000) = (4)\frac{\mathrm{d}h}{\mathrm{d}t}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 500\sqrt{41}$$

 \therefore kecepatan roket saat ketinggiannya 4 km adalah $500\sqrt{41}$ km/jam.

2. Tentukan nilai maksimum dan minimum dari

$$f(x) = \begin{cases} 2x+1, & x \le 1\\ x^2 - 6x + 8, & x > 1 \end{cases}$$

Pada [-1, 4]

Penyelesaian:

f(x) dapat ditulis kembali dengan mengiriskan domainnya pada interval yang telah diberikan. $[-1,1]\cup(1,4]$

$$f(x) = \begin{cases} 2x+1, & -1 \le x \le 1\\ x^2 - 6x + 8, & 1 < x \le 4 \end{cases}$$

Sebelum menentukan titik ekstrimnya, perlu ditinjau bahwa f(x) kontinu pada selang [-1,4].

- Untuk $f(x) = 2x + 1, -1 \le x \le 1$ jelas bahwa fungsi linear merupakan fungsi kontinu
- Cek kekontinuan di x = 1.
 - ① f(1) = 2(1) + 1 = 3
 - ② $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} 2x + 1 = 3$ $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} x^2 - 6x + 8 = 3$ $\lim_{x\to 1} f(x) = 3$
 - ③ $\lim_{x\to 1} f(x) = f(1)$ fungsi kontinu di x=1
- \bullet Untuk $f(x) = x^2 6x + 8, 1 < x \le 4$ jelas bahwa fungsi polinomial merupakan fungsi kontinu. Dapat dicek turunan pertamanya

$$f'(x) = 2x - 6, 1 < x < 4$$
-----++++++++++

|------|
1 3 4 titik kritis di $x = 3$

Titik uji:

$$\rightarrow f'(2) = 2(2) - 6 = -2$$
 (Turun)
 $\rightarrow f'(\frac{7}{2}) = 2(\frac{7}{2}) - 6 = 1$ (Naik)

Step terakhir adalah mencari nilai pada titik-titik ujung dan titik kritis fungsi yang telah dicari

Setelah itu, bandingkan saja nilai f(x) yang telah didapat.

 \therefore nilai maksimumnya adalah 3 dan nilai minimumnya adalah -1.

3. Diberikan fungsi $y = 4x^3 - 3x^2 + 5$

(a) Tentukan fungsi naik dan fungsi turun (berikan tanda f') **Penyelesaian**: Tentukan turunan pertamanya

$$y' = 0$$

$$12x^{2} - 6x = 0$$

$$6x(2x - 1) = 0$$

$$x = 0 \lor x = \frac{1}{2}$$

Titik uji:

→
$$f'(-1) = 6(-1)(2(-1) - 1) = 18$$
 (Naik)
→ $f'(\frac{1}{4}) = 6(\frac{1}{4})(2(\frac{1}{4}) - 1) = -\frac{3}{4}$ (Turun)
→ $f'(1) = 6(1)(2(1) - 1) = 18$ (Naik)

- Fungsi naik pada $[-\infty, 0]$ dan $\left[\frac{1}{2}, +\infty\right]$.
- Fungsi turun pada $\left[0, \frac{1}{2}\right]$.
- (b) Tentukan titik kritis

Penyelesaian: Titik kritis terjadi ketika $x=0 \lor x=\frac{1}{2}$, Sehingga titik kritisnya adalah (0,5) dan $\left(\frac{1}{2},\frac{19}{4}\right)$

(c) Tentukan ekstrim relatif

Penyelesaian: Dengan uji turunan kedua (y'' = 24x - 6) didapatkan

- Untuk x = 0, maka y''(0) = -6. $(f''(x_0) < 0$ definisi maksimum relatif)
- Untuk x = 0, maka $y''(\frac{1}{2}) = 6$. $(f''(x_0) > 0$ definisi minimum relatif)

Atau dapat dilihat dari naik turunnya grafik sebelum dan sesudah titik kritis.

: maksimum relatif ketika x=0 dan minimum relatif ketika $x=\frac{1}{2}$. (Kedua titik tersebut ekstrim relatif)

(d) Tentukan interval dimana fungsi cekung ke atas dan fungsi cekung ke bawah (berikan tanda f'') **Penyelesaian**: Tentukan turunan pertamanya

$$y'' = 0$$
$$24x - 6 = 0$$
$$24 = 6$$
$$x = \frac{1}{4}$$

Titik uji:

$$f''(0) = 24(0) - 6 = -6$$
 (Cekung ke bawah)
 $f''(1) = 24(1) - 6 = 18$ (Cekung ke atas)

• Fungsi cekung ke atas pada $\left[\frac{1}{4}, +\infty\right]$. • Fungsi cekung ke bawah pada $\left[-\infty, \frac{1}{4}\right]$.

(e) Tentukan titik belok

Penyelesaian: Karena arah kecekungan berubah pada $x = \frac{1}{4}$, maka titik beloknya adalah $(\frac{1}{4}, \frac{39}{8})$.

(f) Sketsalah grafiknya

4. Tangki air berbentuk kerucut dengan jari-jari alasnya 10 m dan tinggi kerucut 24 m. Jika air mengalir ke dalam tangki dengan laju 20 m³/menit, Berapa cepat kedalaman air bertambah pada saat kedalaman air 16 m?

Penyelesaian:

Diketahui:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 20$$

Ditanya:

$$\left. \frac{\mathrm{d}h}{\mathrm{d}t} \right|_{h=16} = \dots$$

Perhatikan kesebangunan pada segitiga yang terbentuk

$$\frac{x}{h} = \frac{10}{24}$$
$$x = \frac{5}{12}h$$

Selanjutnya rumuskan volume kerucut

$$\begin{split} V &= \frac{1}{3}\pi r^2 h \\ V &= \frac{1}{3}\pi \left(\frac{5}{12}h\right)^2 h \qquad (\textbf{Subtitusi} \ x = \frac{5}{12}h) \\ V &= \frac{1}{3}\pi \left(\frac{25}{144}h^2\right)h \\ V &= \frac{25}{432}\pi h^3 \end{split}$$

Turunkan persamaannya terhadap waktu dilanjutkan dengan mensubtitusi nilai-nilai yang diketahui

 \therefore Kedalaman air bertambah dengan laju $\frac{9}{20\pi}~\mathrm{m}^3/\mathrm{menit}$.