O Obere Grenze

 $f(n) \in O(g(n))$

⇔ ∃c >0, n0 ≥ 1 ∀n≥ n0 :

 $f(n) \le cg(n)$

Für eine Konstante c wird f(n) ab einem n0 von g(n) dominiert

Ω Untere Grenze

 $f(n) \in \Omega (g(n))$

 $\Leftrightarrow \exists c > 0, n0 \ge 1 \ \forall n \ge n0$:

 $f(n) \ge cg(n)$

Für eine Konstante c dominiert f(n) ab einem n0 die Funktion g(n)

 Θ : $f(n) \in \theta(g(n))$

 $\Leftrightarrow f(n) \in O(g(n)) \land f(n) \in \Omega (g(n))$ Die Funktionen f(n) und g(n) sind "gleichmächtig"

> $3n^3 - 2n^2 + 4 \in O(n^3)$ $\exists c > 0, \exists n0 > 0 \forall n \ge n0$: $3n^3 - 2n^2 + 4 \le c*n^3$ $3n^3 - 2n^2 + 4 \le 3*n^3$ $4 \le 2n^2$

Komposition: Für Laufzeitfkt. f(n),g(n) einem Komplexitätssymbol MεO,Ω,θ und einen Operator ○ ∈ {+, *} def.:

n0 = 2, c = 3

 $f(n) \circ M(g(n)) := M(f(n) \circ g(n))$ $M(f(n)) \circ M(g(n)) := M(f(n) \circ g(n))$

Countingsort(Strichliste): C=Countarray →1 ≤Ai≤k C Aufbauen O(n) + k-Schritte $\rightarrow O(n+k)$ Radix(-2)sort: Binäre Folge O(b*n) b-Bit; b konst. → kein zusätzlicher Speicher

sortiert nach MSB →2Teillisten MSB=0; =1 Teillisten r-sort nächst höchstwertigem Bit Wenn nicht optimal b = $log2n \rightarrow n*log n$ **Introsort:** Quicksort, wenn entartet → Heap

Timsort: Teilsequenzen Insert. dann Merge

ADT **verkettete** Liste (Laufzeit: O(x), Speicher: O(y)) position first() (1,1) position last() (1,1) position next(elem) int length() elem retrieve(posi) (1,1) void delete(posi) (n,1) void insert(posi, elem) (1,1) //fügt elem hinter posi ein void create() (1,1)

ADT Set void create() value Size() add(elem), remove(elem) bool member(elem)

ADT Queue (FIFO) elem front(), elem dequeue() & remove enqueue(elem), bool empty() Darstellund durch mind. zwei Stacks

ADT Stack (LIFO) elem top(), elem pop() & remove, push(elem.), bool empty() Darstellung durch mind. eine Queue

ADT Liste (Laufzeit: O(x), Speicher: O(y)) **Array**

position first() (1,1) position last() (1,1) position next(elem) int length() elem retrieve(posi) (1,1) void delete(posi) (n,1) void insert(posi, elem) (n,1)//fügt elem hinter posi

ein

void create() (1,1)

Sortieralgorithmen Verkettete Liste

Mergesort: Teillisten(Länge 1)erstellen;zwei sortierte Teillisten werden zu einer sortierten Liste verschmolzen(Laufzeit: n*log n), schneller als Quicksort, aber benötigt Zusatzspeicher **Heapsort**: Liste → Heap → delMax; Max als Element ans Ende Aufbauphase(n) + Auswahlphase(n*log n)

= O(n*log n)

Sortieralgorithmen (Best-C., Worst-C., Average-C.) **Insertionsort**: aktuelles Elem. in sortierten Breich links (n,n*(n-1):2,n²) Selectionsort: select den nächst kleineren in hänge ihn rechts an den sortierten Bereich links(n²,n*(n-1):2,n²)

Bubblesort: tauscht den aktuellen Wert so lange durch, bis ein kleinere kommt und fängt dann von vorne an (n²,n*(n-1):2,n²) Effektive: Quicksort: Pivot-Element egal wo-links alle kleineren, rechts alle größeren(nlogn,n²,nlogn) Zusatzspeicher (Stack) In-Place (unabhängig #Elemente)

Suchwahrscheinlichkeit

→ mittlere Zugriffszahl: $m(x) = \sum (x \in S) p(x)*(id(x)+1) + \sum (x! \in S) p(x)*n$ m Erfolgreiche Suche: $m(x \mid x \in S) = \sum p(x) *(id(x) + 1) * (1/\sum p(x))$ m Nicht Erfolgreiche Suche $(x|x \in S) = n \rightarrow$ "wie viele Felder bis leeres Feld" → Adaptive Verfahren: move to front, transpose (tauschen mit Vorgänger) Hashing

1. expliziertes verketten: Jeder Tabellenplatz enthält eine Liste von Elementen; #Schlüssel \rightarrow #Tabellenplätze (WorstC.O(n), BestC.O(1), AC.O(1+a) (a = Füllgrad = n/m) 2. Offene Adressierung wenn #Elemente < #Tabellenplätze

→ linears Sondieren: Problem: Cluster/Ketten, die Einfüge-/Suchzeit verschlechtern → double Hashing: Tabellenlänge Primzahl, zwei unanhängige Hash-Fkt. (Teilerfreme Restklassen → h1 % M , h2 % M-1)

Greedy Methode

Teilschritte → optimale Teillösung 82€ gesucht mit 50,20,2,1€ Greedy: 50€,20€,6x1€ →8 Optimal: 4x20€, 2€ → 5

Dijkstra Algorithmus

- → kürzester Weg im Graphen
- kleine Richtung berücksichtigt
 - alle Richtungen gleich - unnötige Knoten auch

Huffmann-Code

→ Symbole/Char mit hoher Häufigkeit bekommen eine kleine Codierung (a=01,e=10,x=01101)

Algorithmen

Pfad

→ Folge von Knoten (Länge m = #Kanten)

 \rightarrow einfach: Knoten nur 1x → *Prim*: kürzeste Pfad **Zyklus**

→ Pfad heißt Zyklus, falls Knoten a = K. e

→ einfacher Zyklus, wenn einfacher Pfad Clique → nicht zsm.hängend

Vollständiger Teilgraph Stark Zusammenhängend Gerichtete Graphen: beide Richtung zwischen Knoten oder Graph = 1Knoten Wald

Azyklisch ungerichteter Graph **Breitendurchlauf** → BFS. Knotenfärbung(W,G,S)

→ Realisierung mit Queue **Tiefendurchlauf** → DFS Dag → gerichtet&azykl.

Graphen (un)gerichtet

Vollständig

Verbindung" Zyklenfrei

Valenz/Knotengrad Ung.:#inzidenten Kanten Gerichtet.Eingangs-+Ausgangsgrad

ADT Graph

.nodes() (Menge aller Knoten) .edges() (Menge aller Kanten) inAdjacent(knoten u) alle eingehenden Knoten zu u outAdjacent(konten u)alle ausgehenden Knoten von u

Adjazenz: Relation zwischen Knoten

Inzidenz: Knoten v ∈ Kante e → Adjazenzmatrix & Adjazenzliste

AB C A: () A/0 0 0 B: (A) B 1 0 0 C: (A,B) 1 1 0

Ein Geordneter Baum besteht aus einem Knoten (Wurzel/ root) r und n ≥ 0 Bäumen

(den Teilbäumen von r). Wichtig für einen geordneten Baum:

 $i < j T_i$ links von T_i

Spannbaum

Ein spannender Baum(auch Gerüst) eines zusammenhängenden ungerichteten Grahen G ist ein Teilgraph mit gleicher Knotenmenge, der ein freier Baum ist. "von r nur kürzeste Pfade zu

jeden Knoten"

B+ Bäume(Mengen)

Ordnung m > 1 → vollständige Suchbäume: 1 ≤ **Schlüssel** ≤ m Interner Knoten (HS) mit N Schlüssel hat n+1(Zeiger) Nachfolger, → hoher Verzweigungsgrad, Schlüssel pro Knoten hoch

→ Dateien alle in Blättern

→ Root r: 1-2m Schlüssel → Interne Knoten: m - 2m

Alle Wege gleiche Länge → suchen/einfügen/löschen

 \rightarrow O(log(n)) $\lfloor \log_{2m+1}(N+1) \rfloor \le h \le 1 + \lfloor \log_{m+1}(N+1) \rfloor$

AVL Bäume

Ist ein binärer Suchbaum, bei dem sich an jedem internen Knoten v die Höhen des linken und rechten Teilbaums um max 1 unterscheiden (ausgeglichener binärer Suchbaum)

Größtes Element im linken Teilbaum rechts unten Kleinstes Element im rechten Teilbaum links unter

denen alle Opertaionen auch im Worst-C. O(log n) sind. Es gilt: 1. Jeder Knoten ist rot oder Schwarz

Rot-Schwarz-Bäume

Sind Suchbäume, bei

2. jeder externe Knoten (null Zeiger) schwarz 3. wenn rot, dann ist direkter Nachfolger schw. 4. Alle Wege haben gl.

Anzahl schw. Knoten

Insert: externen Knoten suchen &ersetzen(rot) + 2xNull-Zeiger(nur 3.Regel verletzt) 1.Wenn u Wurzel oder direkter Vorgänger von u ist schwarz → OK 2. Wenn direkter /orgäng. v ist Wurzel 🗦 u schwarz Sonst neu sortieren

Catalanzahl: beschreiben die # der möglichen strukturell verschiedenen binär Bäume abhängig von der Knoten# n

(2n)!(n+1)! n!n+1

Suchbäume → Geordnet *Insert, member, delete(1,n)*

Verkettete Darstellung: → Zeigerdarstellung binär / A

> B

→ gefädelte binäre Bäume **Sequentielle Darstellung:**

- statische Bäume + platzsparend, Durchlauf, Strukturinformationen (Verzweigungsgrad, Gewicht, Klammerung d. Teilbäume, Blatt-, Nachbar-Bit(0,1))

Baumdurchläufe: → Stufen(links vollständig)-, Prä-(W,L,R), Post(L,R,W)- und Symmetrische Ordnung

(inorder | L,W,R) → Arrayindex i

🗲 (fast) vollstandige binar - Vorgänger((i+1):2) – 1 - Linker Nachfolger 2i + 1 - Rechter Nachfolger 2i +2

ADT Tree create (elem root),

pos root(), value retrieve (pos), pos leftMost(poi), pos nextLeft(pos), pos nextRight(pos), pos parent(pos), void attach(pos, Teilbaum), detach(pos) löscht Teilbaum, bool empty()

Heaps

→ linksvollständiger binärer Baum

→ an den Knoten sind Schlüssel angeheftet

→ Wurzel ist Min / Max → Min-/ MaxHeap **Einfügen** → siftUp: Element wird so lange mit seinem Vorgänger getauscht bis es an der richtigen Stelle im Heap ist

Wurzel löschen

→siftDown: letztes Element an die Wurzel ziehen und dann so lange mit den größten (kleinsten) Nachfolger tauschen bis es richtig ist (alles dadrunter muss monoton fallend oder steigend sein) \rightarrow O(log n) → insert/delete: O(log n)

→ k-kleinstes Element →

k*Wurzel löschen → O(k*log n)

 $X[\lfloor \frac{i+1}{2} \rfloor - 1] \ge X[i], 1 \le i < N$

ADT PriorityQueue (Array / sortiert) void create(), insert(elem) O(1)/n, elem delMin()O(n)/1, elem delMax(), bool empty(), Ein Heap ist eine Darstellung einer

Pr.Queue

Freie Bäume: zsm. hängender Wald

Gewicht

Verzweigungs Grad

Blatt: Knoten ohne direkten Nachfolger Innerer Knoten: Knoten, die keine Blätter sind

Vollständiger binärer Baum, wenn jede Stufe maximal besetzt ist: d.h. Stufe i hat 2[^]i Knoten

v & u Nachbarn, wenn gleicher Vorgänger und kein Teilbaum dazwischen Höhe: Max(#Stufe) | binär: log2n ≤ h≤ n-1

Ein binärer Baum ist **saturiert**, wenn jeder Knoten entweder ein Blatt ist oder zwei nichtleere Teilbäume besitzt Satuierte binäre Tree mit n >= 2 Blättern hat n-1 interne Knoten

Die Wurzel von Teilbäumen direkte Nachfolger von r Alle Knoten der Teilbäume Nachfolger von r Wenn v direkter Nachfolger von u, u direkter Vorgänger von v