Week 1 — Practice Proofs (Symmetric & Invertible Matrices)

The examples labeled "Strang" are taken from the problem sets in Ch. 2, §5 & §7 of Gilbert Strang's Introduction to Linear Algebra, fifth edition. Otherwise, the full author's name is given, or the problem is so well known that a citation is unwarranted.

Problems

- 1. (Strang) If A and B are $n \times n$ symmetric matrices, then show that the following are also symmetric, or provide a counterexample.
 - a. $A^2 B^2$
 - b. (A + B)(A B)
 - c. ABA
 - d. ABAB

2. (Jim Kruidenier, SBCC) If $A^2 = [0]$, does $(I - A)^{-1}$ exist? Prove or provide a counterexample.

3. (Strang) Suppose that A is $m \times n$, S is $m \times m$ and symmetric, and both A and S have real valued entries.

- a. Show that A^TA has no negative diagonal entries.
- b. Is A^TSA symmetric? What are its dimensions?

4. (Strang) Let C = AB and D = ABC.

- a. If C is invertible, then A is invertible. Find A^{-1} in terms of C^{-1} and B.
- b. If D is invertible, then B is invertible. Find B^{-1} in terms of D^{-1} , A, and C.

- **5.** Let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.
 - a. Find the matrix A such that $A\mathbf{b} = \mathbf{a} \times \mathbf{b}$, where \times is the cross product.
 - b. What is A^T ?

6. A matrix is skew-symmetric if $A^T = -A$. Show that if A is skew symmetric, then $(I + A)^{-1}$ exists.

- 7. A little algebra shows that $A = \frac{1}{2}(A A^T) + \frac{1}{2}(A + A^T)$.
 - a. Show that $\frac{1}{2}(A A^T)$ is skew symmetric
 - b. Show that $\frac{1}{2}(A+A^T)$ is symmetric