Recursive Sets

A set $A \subseteq \mathbb{N}$ is called recursive (or decidable) if its characteristic function is computable. The characteristic function $\chi_A : \mathbb{N} \to \mathbb{N}$ is defined as:

$$\chi_A(x) = 1 \text{ if } x \in A$$

0 if $x \notin A$

In other words, a set A is recursive if there exists an algorithm that, given any $x \in \mathbb{N}$, can determine in a finite number of steps whether x belongs to A or not.

Properties of Recursive Sets

- 1. The class of recursive sets is closed under complement, union, and intersection.
- 2. If A is recursive and B is finite, then $A \cup B$ and $A \cap B$ are also recursive.
- 3. Every finite set is recursive.
- 4. The set \mathbb{N} of natural numbers is recursive.
- 5. The set of prime numbers is recursive.

Reductions

Given two sets A, B \subseteq N, we say that A is many-one reducible to B, written A \leq _m B, if there exists a computable function f : N \rightarrow N such that for all x \in N,

$$x \in A \Leftrightarrow f(x) \in B$$

The function f is called a reduction from A to B.

Properties of Reductions

- 1. If A ≤ m B and B is recursive, then A is also recursive.
- 2. If A ≤ m B and A is not recursive, then B is not recursive.
- 3. The relation \leq _m is transitive: if A \leq _m B and B \leq _m C, then A \leq _m C.
- 4. If A ≤_m B and B ≤_m A, then A and B are said to be many-one equivalent, written A ≡ m B.

Exercises

Exercise 1

Prove that a set $A \subseteq \mathbb{N}$ is recursive if and only if $A \leq_m \{0\}$, where $\{0\}$ is the singleton set containing 0.

Solution

- (⇒) Assume A is recursive. Define the function $f : \mathbb{N} \to \mathbb{N}$ as $f(x) = 1 \chi_A(x)$. Then f is computable and $x \in A \Leftrightarrow f(x) = 0 \Leftrightarrow f(x) \in \{0\}$. Thus, $A \leq_m \{0\}$.
- (\Leftarrow) Assume A ≤_m {0} via a computable function f. Then x ∈ A \Leftrightarrow f(x) = 0. Define χ _A(x) = 1 f(x). Then χ _A is computable, so A is recursive.

Exercise 2

Let A and B be recursive sets. Prove that $A \times B = \{(a, b) \mid a \in A, b \in B\}$ is also recursive.

Solution

Define the characteristic function of A × B as follows:

$$\chi_{A} \times B(x) = \chi_{A}(\pi_{1}(x)) \cdot \chi_{B}(\pi_{2}(x))$$

where π_1 and π_2 are computable functions that extract the first and second components of a pair, respectively.

Since χA , χ_B , π_1 , and π_2 are all computable, χ {A × B} is also computable (as the product of computable functions is computable). Therefore, A × B is recursive.

Exercise 3

Prove that if A is recursive and B is recursively enumerable, then $A \cap B$ is recursively enumerable.

Solution

Since A is recursive, its characteristic function χ _A is computable. Since B is recursively enumerable, there exists a computable function f such that B = $\{x \mid \exists y \ f(x, y) = 1\}$.

Define the function $g(x, y) = \chi_A(x) \cdot f(x, y)$. Then g is computable, and $x \in A \cap B \iff x \in A \text{ and } x \in B$ $\iff \chi_A(x) = 1 \text{ and } \exists y f(x, y) = 1$ $\iff \exists y g(x, y) = 1$

Therefore, $A \cap B$ is recursively enumerable.