Physics and Mathematics of radiotherapy planning

7

Introduction

What types of cancer therapy are there?

Types for cancer therapy:

Mainstay:

- Surgery
- Radiotherapy
- Chemotherapy
 - Cytostatic drugs
 - Targeted therapies
 - Immunotherapy

Niche / Experimental:

- Oncolytic viruses
- High focused ultra sound
- •

How many cancer patients receive radiation?

How many cancer patients receive radiation?

As a rule of thumb: about 50%

Note: Most treatments are multi-modality (Few patients receive radiation only)

High level view on radiotherapy

Radiotherapy means irradiation with ionizing radiation

Hierarchy of processes:

ionization of atoms / molecules in the tissue (physical processes)

Physics

Damage to DNA molecules (chemical processes, formation of free radicals)

Chemistry

Induction of cell death / damage (biological processes on cellular level, triggering of Biology apoptotic pathways, repair processes)

cancer cure / side effects in healthy tissues (macroscopic effects on tissue / organ level)

Medicine

- 1. Patient is diagnosed
- 2. CT scan is performed

- 1. Patient is diagnosed
- 2. CT scan is performed

- 1. Patient is diagnosed
- 2. CT scan is performed (possibly MRI, PET in addition)

T1 weighted MRI

CT

- Patient is diagnosed
- 2. CT scan is performed (possibly MRI, PET in addition)
- 3. CT and MRI images are registered

- Patient is diagnosed
- 2. CT scan is performed (possibly MRI, PET in addition)
- 3. CT and MRI images are registered
- 4. Tumor volume and radiosensitive organs are segmented

Glioblastoma

- Patient is diagnosed
- 2. CT scan is performed (possibly MRI, PET in addition)
- 3. CT and MRI images are registered
- 4. Tumor volume and radiosensitive organs are segmented

Spinal metastasis

- 1. Patient is diagnosed
- 2. CT scan is performed
- 3. CT and MRI images are registered
- 4. Tumor volume and radiosensitive organs are segmented

Head & neck tumor

- Patient is diagnosed
- CT scan is performed (possibly MRI, PET in addition)
- 3. Images are registered
- 4. Tumor volume and radiosensitive organs are delineated
- 5. A radiotherapy treatment plan is created

Goal

Goal:

Deliver therapeutic radiation dose to the tumor and minimize dose to normal tissue

Dose

Physical measure for the amount of radiation that affects a part of the patient

Physical definition: absorbed energy per unit mass

Dose distribution

3D distribution of dose inside the patient

Clinical prescription

physician provides

- prescription dose
- normal tissue dose constraints

- 70 Gy to the tumor
- mean dose to the parotid gland less than 25 Gy

Dose distribution

Treatment planning

How can a desired dose distribution be achieved with external radiation beams?

Content

Treatment planning system

Dose calculation

Physics

Interactions of radiation in tissue

How much dose does each part of the patient receive for a given radiation field? Plan optimization

Mathematics

Mathematical optimization algorithms

What are the best possible radiation beams?

Illustration

Illustration

- 1. Patient is diagnosed
- 2. CT scan is performed (possibly MRI, PET in addition)
- Images are registered
- 4. Tumor volume and radiosensitive organs are delineated
- A radiotherapy treatment plan is created
 - physician provides prescription dose
 - treatment planner chooses incident beam directions
 - determines radiation fields
 - calculates final dose distribution
 - physician reviews/approves plan
- 6. Some QA is performed, dose measurements
- 7. Treatment starts

Radiotherapy treatment process

- 1. Patient enters the treatment room
- 2. Patient is positioned relative to the treatment beam
 - position lasers
 - X-ray imaging
 - fixation devises

Radiotherapy treatment process

- 2. Patient is positioned relative to the treatment beam
- 3. Patient is irradiated (typically over several weeks)

Radiotherapy treatment process

Cyber knife

Types of irradiation

Types of irradiation

Vast majority of treatments:

High energy X-rays 1 ... 10 MeV

Some superficial tumors (e.g. breast cancer):

Electrons 6 ... 18 MeV

in the order of 100 centers world-wide

(http://ptcog.web.psi.ch)

Protons 250 MeV

What is the advantage of Protons?

The proton depth dose curve

What is the problem with Protons?

Other particle types

Currently in use:

Carbon ions (5 Japan, 2 Germany, 1 Italy, 1 China, 1 Austria)

In the past:

Neutrons (few centers operating for selected tumors)

Pions

He, Ne, O

Funny ideas:

Anti-Protons

Course overview

Syllabus

17.09.2025	Introduction
24.09.2025	Photon interactions
01.10.2025	Pencil beam algorithm
08.10.2025	Convolution-Superposition algorithm
15.10.2025	Proton interactions
22.10.2025	Proton depth dose curve
29.10.2025	Proton pencil beam algorithm
05.11.2025	Fluence map optimization 1
12.11.2025	Fluence map optimization 2
19.11.2025	Direct aperture optimization
26.11.2025	Advanced treatment plan optimization methods
03.12.2025	USZ Visit
10.12.2025	Advanced treatment plan optimization methods
17.12.2025	Current research topics in treatment planning

Relation to other classes

Medical Physics 1, Manser

Interactions in matter, radiation sources, dose measurements

Medical Physics 2, Manser

clinical dosimetry, beam characteristics, treatment planning

MAS (ETH)
Medical Physics

Physics against cancer, Lomax/Schneider

Overview

Specialized / In-depth lectures

Monte-Carlo in Medical Physics, Fix/Stampanoni

Therapeutic applications of particle physics, Lomax

Physics and Mathematics of radiotherapy planning, Unkelbach

Exercises

Main goal:

Implement the main components of a radiotherapy treatment planning system in Python

- dose calculation algorithm
- treatment plan optimization algorithm

- in two dimensions (one slice of a CT)
- otherwise relatively realistic

Exercises

unless stated otherwise,

- assignments are due two weeks after they are handed out (questions can be discussed after one week)
- submit Python files, possibly brief report
- solutions will be presented in class by one of you

Grading

Two components:

Homework assignments pass/fail

Final oral exam grade

Literature

Treatment planning in Radiation Oncology Khan, Gibbons, Sperduto (Editors), Wolters Kluwer, 2016