

AitZiber AtutXa aitziber.atucha@ehu.eus

Índice

- 1 Objetivos de Aprendizaje
- ¿Cómo validamos nuestros modelos/algoritmos?
- 3 Lectura y visionado de vídeos
- 4 Bibliografía

Objetivos de Aprendizaje

- Ser capaces de estimar la calidad de un modelo
- Conocer los esquemas de evaluación
 - no-honesta
 - hold-out
 - k-fold-cross validation

Proceso de aprendizaje automático:

- Recogemos Datos
- Preprocesamos los datos
- Entrenamos nuestro algoritmo/modelo
- Y la gran pregunta.....

Pregunta.

¿Cómo sabemos si ha aprendido lo que se suponía que tenía que aprender?

¿Cómo sabemos si un modelo es suficientemente bueno?

¿Cómo medir la bonanza del modelo?

Debemos encontrar una medida objetiva:

- ¿los errores qué comete? (minimizarlos)
- ¿los premios que obtenemos? (maximizarlo)
- ¿lo bien que se amolda? (maximizarlo)

 Partiendo de los datos (recordad, supervidado vs. no-sup.)

La muestra

$$X = \{x^{\{1\}}, x^{\{2\}}, x^{\{3\}}...x^{\{n\}}\}$$

$$n \text{ es tamaño de la muestra}$$
 (i.e. núm. instancias)

$$Y = \{y^{d\{1\}}, y^{d\{2\}}, y^{d\{3\}}...y^{d\{n\}}\}$$
 (¡Si supervisada! i.e. deseado)

Las diferentes hipótesis (i.e. los diferentes modelos)

$$H = \{h_1, h_2, h_3...h_j\}$$

j núm. de hipotesis

Con cada hipótesis h_i obtengo una predicción

$$Y_i^* = \{y^{*\{1\}}, y^{*\{2\}}, y^{*\{3\}}...y^{*\{n\}}\}$$

El error de la hipótesis h_i

$$\sum_{k=1}^{n} (y^{*\{k\}} - y^{d\{k\}})^2$$

n: tamaño de la muestra

 $y^{*\{k\}}$: predicción mi modelo para la instancia k

 $y^{d\{k\}}$: salida deseada para la instancia k

Las diferentes hipótesis (i.e. los diferentes modelos)

$$H = \{h_1, h_2, h_3...h_j\}$$

j núm. de hipotesis

Con cada hipótesis h_i obtengo una predicción

$$Y_i^* = \{y^{*\{1\}}, y^{*\{2\}}, y^{*\{3\}}...y^{*\{n\}}\}$$

El error de la hipótesis h_i

$$\sum_{k=1}^{n} (y^{*\{k\}} - y^{d\{k\}})^2$$

n: tamaño de la muestra

 $y^{*\{k\}}$: predicción mi modelo para la instancia k

 $y^{d\{k\}}$: salida deseada para la instancia k

Ejercicio: ¿Qué son los epochs?

Supongamos que pongo el límite aleatoriamente en 8.0. Así toda nota que sea >=8 considero que da lugar a un aprobado. Si no acierto, actualizo el limite con -2.0 (learning rate).

Nombre	Nota	Y deseada (0/1)
Asier Arrutia	10	Aprobado (1)
Xabier Axular	8	Aprobado (1)
Unai Lopetegi	4	Suspenso (0)
Jorge Zelaia	6	Aprobado (1)

Ejercicio: ¿Qué son los epochs?

Supongamos que pongo el límite aleatoriamente en 8. Así toda nota que sea >=8 considero que da lugar a un aprobado. Si no acierto, actualizo el límite con -2 (*learning rate*).

Epoch 1 (o vuelta completa sobre los datos):

Nb.	Nota	Y ^d (0/1)	Y* (0/1)	Error	Lím.
A. A.	10	Aprob. (1)	$10 >= 8 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	8
X. A.	8	Aprob. (1)	$8 \ge 8 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	8
U. L.	4	Susp. (0)	$4 < 8 \rightarrow Susp.(0)$	$(0-0)^2 = 0$	8
J. Z.	6	Aprob. (1)	$6 < 8 \rightarrow Susp.(0)$	$(0-1)^2 = 1$	6

IO/37 EHU

Ejercicio: ¿Qué son los epochs?

Epoch 2 (o vuelta completa sobre los datos):

Nb.	Nota	Y ^d (0/1)	Y* (0/1)	Error	Lím.
A. A.	10	Aprob. (1)	$10 \ge 6 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	6
X. A.	8	Aprob. (1)	$8 \ge 6 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	6
U. L.	4	Susp. (0)	$4 < 6 \rightarrow Susp.(0)$	$(0-0)^2 = 0$	6
J. Z.	6	Aprob. (1)	$6 \ge 6 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	6

jjjjBRAVO!!! jjjCONVERGE!!! jjNum.Errores 0!!

Ejercicio: ¿Qué son los epochs?

Supongamos ahora que mi muestra hubiese sido otra, y el límite es 8. Si no acierto, actualizo el límite con -2 (*learning rate*).

Epoch 1 (o vuelta completa sobre los datos):

Nb.	Nota	Y ^d (0/1)	Y* (0/1)	Error	Lím.
A. A.	10	Aprob. (1)			8
X. A.	8	Aprob. (1)			
M. L.	5	Aprob. (1)			
U. L.	4	Susp. (0)			
J. Z.	6	Aprob. (1)			

Ejercicio: ¿Qué son los epochs?

Epoch 1 (o vuelta completa sobre los datos):

Nb.	Nota	Y ^d (0/1)	Y* (0/1)	Error	Lím.
A. A.	10	Aprob. (1)	$10 \ge 8 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	8
X. A.	8	Aprob. (1)	$8 \ge 8 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	8
M. L.	5	Aprob. (1)	$5 < 8 \rightarrow Susp.(0)$	$(0-1)^2 = 1$	6
U. L.	4	Susp. (0)	$4 < 6 \rightarrow Susp.(0)$	$(0-0)^2 = 0$	6
J. Z.	6	Aprob. (1)	$6 \ge 6 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	6

Número de errores 1.

Ejercicio: ¿Qué son los epochs?

Epoch 2 (o vuelta completa sobre los datos):

Nb.	Nota	Y ^d (0/1)	Y* (0/1)	Error	Lím.
A. A.	10	Aprob. (1)			6
X. A.	8	Aprob. (1)			
M. L.	5	Aprob. (1)			
U. L.	4	Susp. (0)			
J. Z.	6	Aprob. (1)			

Ш

Ejercicio: ¿Qué son los epochs?

Supongamos ahora que mi muestra es otra, y el límite seleccionado aleatoriamente es 6. Si no acierto, actualizo el límite con -2 (*learning rate*).

Epoch 2 (o vuelta completa sobre los datos):

Nb.	Nota	Y ^d (0/1)	Y* (0/1)	Error	Lím.
A. A.	10	Aprob. (1)	$10 \ge 6 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	6
X. A.	8	Aprob. (1)	$8 \ge 6 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	6
M. L.	5	Aprob. (1)	$5 < 6 \rightarrow Susp.(0)$	$(0-1)^2 = 1$	4
U. L.	4	Susp. (0)	$4 \ge 4 \rightarrow Aprob.(1)$	$(1-0)^2 = 1$	2
J. Z.	6	Aprob. (1)	$6 \ge 2 \rightarrow Aprob.(1)$	$(1-1)^2 = 0$	2

iiiNO CONVERGE, Y NO CONVERGIRÁ!! Learn. rate alto

Número de errores 2. ¡¡Crece!!

Fase de Evaluación: Esquemas

Una vez entrenado el modelo con suerte hasta convergencia (o error $< \epsilon$). Lo congelamos

Esquemas de Evaluación

- Evaluación no-honesta: Sobre la muestra empleada para entrenar.
- Evaluación honesta: Sobre otra muestra no empleada en el entrenamiento. Partir la muestra en:
 - Test
 - Desarrollo o development (para probar distintos hiperparámetros (learn. rate 1,2,3)
- Evaluación K-fold: Cuando nuestra muestra no es muy grande

Fase de Evaluación: Generación Muestras

Particiones de entrenamiento, desarrollo y test

- De forma aleatoria
- Estratificada
- Datos muy desbalanceados: Técnicas de under sampling u oversampling

Fase de Evaluación: Métricas

Una vez entrenado el modelo con suerte hasta convergencia (o error $< \epsilon$). Lo *congelamos* y obtenermos la Mátriz de Confusión sobre los datos de desarrollo (o test al final de todo el proceso).

Métricas

- Accuracy.
- Precisión (versión Average con multiclass)
- Recall o sensibilidad (versión Average con multiclass)
- Especificidad o TNR (Tasa negativa real)
- F-Score
- Área bajo la curva de funcionamiento del receptor (ROC) (AUC)

Pérdida logarítmica o cross-entropy

Fase de Evaluación: TP, FP, TN, FN

- True Positives TP (Verdaderos Positivos)
- False Positives FP (Falsos Positivos). En este caso 0
- True Negatives TN (Verdaderos Negativos)
- False Negatives FN (Falsos Negativos). En este caso 0

25/37 fuente: EHU

Fase de Evaluación: TP, FP, TN, FN

- True Positives TP (Verdaderos Positivos)
- False Positives FP (Falsos Positivos). En este caso NO es 0
- True Negatives TN (Verdaderos Negativos)
- False Negatives FN (Falsos Negativos). En este caso NO es 0

Proceso de aprendizaje automático (respecto a la clase 1):

- Verdadero Positivo (TP):
 Predicho Verdadero y Verdadero en realidad.
- Verdadero Negativo (TN): Predicho Falso y Falso en realidad.
- Falso Positivo (FP): Predicción de verdadero y falso en la realidad.
- Falso Negativo (FN): Predicción de falso y verdadero en la realidad.

• Precision: $\frac{TP}{TP+FP}$

• Recall: $\frac{TP}{TP+FN}$

• F-Score: 2*Prec*Recall Prec+Recall

¿Soy capaz de...

Calcular las métricas siguientes con respecto a gato?

- Precision: $\frac{TP}{TP+FP}$
- Recall: $\frac{TP}{TP+FN}$
- F-Score: 2*Prec*Recall Prec+Recall

Recomendación:

Visionar el vídeo https://www.youtube.con de Andrew Ng para entender la diferencia entre Precisión y Recall

Evaluación Multiclass

Evaluación multiclase:

Micro and Macro Average Precision, Recall

- Macro-average Precisión: Media de la precisiones de cada clase. Rdo: Todas clases igual importancia. Rdo: el impacto de las predominantes se diluye <u>PrecCl1+PrecCl2+..+PrecCln</u>
- Micro-average Precision: Suma la contribución de todas la instancias y computa una media ponderada. Rdo: la precisión de la clase predominante (si en precisión la predicción predominante, si es recall la real predominante) tendrá mayor impacto. TPCl1+TPCl2+..+TPCln (TPCl1+FPCl1)+(TPCl2+FPCl2)+..+(TPCln+FPCln)

Micro and Macro Average Precision, Recall

¿Soy capaz de ...

¿calcular la micro y macro average precision (precision media micro y macro) disponiendo de la siguiente matriz de confusión?

Matriz De Confusión Multiclase

Class	TP	FP	FN	Precision	Recall
Α	5	2	1	0.71	0.83
В	10	90	7	0.1	0.58
С	15	11	2	0.57	0.88

Figura: Mátriz de Confusión multiclase

Micro and Macro Average Precision, Recall

Matriz De Confusión Multiclase

$$\frac{TP_A + TP_B + TP_C}{TP_A + TP_B + TP_C + FP_A + FP_B + FP_C} = \frac{5 + 10 + 15}{5 + 10 + 15 + 2 + 90 + 11} = 0.22$$

$$\frac{Pre_A + Pre_B + Pre_C}{3} = \frac{.71 + 0.1 + .57}{3} = 0.46$$

Micro and Macro Average Precision, Recall

¿Soy capaz de ...

¿obtener la fórmula el Macro, Micro-average Recall?

Evaluación Multiclass

Evaluación multiclase:

Micro and Macro Average Recall

- Macro-average Recall (Rdo): el impacto de las predominantes se diluye RecCl1+RecCl2+..+RecCln n

¿Soy capaz de...

¿Soy capaz de a partir de las predicciones de un modelo

- generar la Matriz de confusión?
- calcular la accuracy, precisión, recall (sensitivity), especificity y F-score?

Bajarse el enunciado asociado con este tema de eGela

Lecturas y vídeos recomendados

- Capítulo 5 del libro de Data Mining que podréis encontrar en eGela (pg de las 163 a 177)
- Visionado del vídeo de Andrew Ng
 https://www.youtube.com/watch?v=W5meQnGACGo para
 entender la intuición tras la precisión y el recall
- Visionado del vídeo de Hablando en Data para saber como calcular la curva ROC y la AUC https://www.youtube.com/watch?v=TmhzUdPpVPQ

Bibliografía

- Data Mining: Practical Machine Learning Tools and Techniques Morgan Kaufmann Publishers Inc. (The Morgan Kaufmann Series in Data Management Systems) Ian H. Witten, Eibe Frank, Mark A. Hall
- Takaya Saito and Marc Rehmsmeier (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 10(3):e011843