BU CS 332 – Theory of Computation

Lecture 6:

- More on pumping
- Regular expressions
- Regular expressions = regular languages

Ran Canetti September 22, 2020 Reading:

Sipser Ch 1.3

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

```
"Simple" languages: \emptyset, \{\varepsilon\}, \{a\} for some a \in \Sigma
Regular operations:
```

```
Union: A \cup B

Concatenation: A \circ B = \{ab \mid a \in A, b \in B\}

Star: A^* = \{a_1 a_2 ... a_n \mid n \geq 0 \text{ and } a_i \in A\}
```

Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

- 1. ε , \emptyset , and α are regular expressions for every $\alpha \in \Sigma$
- 2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1^*)

Examples: (over
$$\Sigma = \{\underline{a}, b, c\}$$
)
$$(a \circ b) \quad ((((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^*))$$

Regular Expressions – Semantics

L(R) = the language a regular expression describes

- 1. $L(\emptyset) = \emptyset$
- 2. $L(\boldsymbol{\varepsilon}) = \{\varepsilon\}$
- 3. $L(a) = \{a\}$ for every $a \in \Sigma$
- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6. $L((R_1^*)) = (L(R_1))^*$

Example:
$$L(((a^*) \circ (b^*))) =$$

Simplifying Notation

• Omit • symbol: $(ab) = (a \circ b)$

 Omit many parentheses, since union and concatenation are associative:

$$(\underbrace{a \cup b \cup c}) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$$

 Order of operations: Evaluate star, then concatenation, then union

$$ab^* \cup c = (a(b^*)) \cup c$$

Let
$$\Sigma = \{0, 1\}$$

1. $\{w \mid w \text{ contains exactly one } 1\}$

Let
$$\Sigma = \{0, 1\}$$

1. $\{w \mid w \text{ contains exactly one } 1\}$

2. $\{w \mid w \text{ contains the string } 011 \text{ at least twice } \}$

Let
$$\Sigma = \{0, 1\}$$

1. $\{w \mid w \text{ contains exactly one } 1\}$

2. $\{w \mid w \text{ contains the string } 011 \text{ at least twice } \}$

3. $\{w \mid w \text{ has length at least 3 and its third symbol is 0}\}$

Let
$$\Sigma = \{0, 1\}$$

1. $\{w \mid w \text{ contains exactly one } 1\}$

2. $\{w \mid w \text{ contains the string } 011 \text{ at least twice } \}$

3. $\{w \mid w \text{ has length at least 3 and its third symbol is 0}\}$

4. $\{w \mid \text{every odd position of } w \text{ is } 1\}$

Additional notation

- For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma$
- For regex R, the regex $R^+ = RR^*$

Equivalence of Regular Expressions, NFAs, and DFAs

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: For any regular expression R, L(R) is regular.

Theorem 2: For any regular language L, there is a regular expression R such that L=L(R).

Regular expression -> NFA

Theorem 1: For any regular expression R, L(R) is regular.

Proof: Induction on size of R.

Base cases:

$$R = \emptyset$$

$$R = a$$

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:

$$R = (R_1 \cup R_2)$$

$$R = (R_1R_2)$$

$$R = (R_1^*)$$

NFA -> Regular expression

Theorem 2: For any regular language L, there is a regular expression R such that L=L(R).

Proof idea:

Start from an NFA M for L. Simplify the NFA by "ripping out" states one at a time and replacing them with regexes

Hybrid NFAs

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
 - Start state and accept state are distinct

Hybrid NFA Example

NFA -> Regular expression

NFA -> HNFA

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the

missing state

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the

