Sistema Embarcados

Controle PID em Sistemas Dinâmicos

Método CHR1 Método Cohen e Coon

- Gabriel Augusto Teodoro Vilas Boas -1707
- Pietro de Souza Cardoso 1598
- Álvaro Alvim 1469

Controle PID em Sistemas Dinâmicos

Introdução

Nesta apresentação, discutiremos a implementação do controle PID em sistemas dinâmicos usando Python.

O controle PID é uma técnica fundamental no campo de controle automático, usado para estabilizar e ajustar o comportamento dos sistemas.

Conceitos Básicos

O Controle PID é baseado na relação entre o desempenho do sistema e o desempenho desejado. Ele utiliza três termos para ajustar o controle do sistema para atingir o desempenho desejado. O termo P é usado para corrigir a variação do desempenho do sistema em relação ao desempenho desejado. O termo I é usado para corrigir a variação do desempenho do sistema em relação ao desempenho anterior. O termo D é usado para corrigir a variação do desempenho do sistema em relação ao desempenho anterior.

Encontrando os valores

Método de Smith

- K = 3.489
- Tau = 14.865
- Theta = 3.045
- Amarelo = Degrau de entrada (16)
- Azul = Saida sem tratamento

Objetivo

O objetivo do trabalho é implementar e simular o controle PID em um sistema dinâmico, permitindo que o usuário ajuste os parâmetros do controlador para observar os efeitos no sistema.

Erros na malha aberta e fechada

ERRO: 55.83

Método CHR e Cohen e Coon

 $Kp_chr = 0.8395$

Ti_chr = 14.865

Td_chr = 1.5225

Kp = 1.9366 K = 1.9366

Ti= 7.725

Td= 1.067

Controle PID

- Implementamos dois tipos de controladores PID: CHR1 e Cohen e Coon:
- O CHR1 foi proposto por Chien, Hrones e Reswick que aborda a sintese completa de controladors para sistemas de tempo continuo e o Cohen e Coon é usado em sistemas de controle de processos.
- Chr é mais flexivel e por isso atende a mais requisitos de desempenho, já o Cohen e Coon serve para sintonizar controladores PID para desempenhos mais basicos.
- O CHR1 é mais complexo porque necessita de um primeiro momento para gerar a função de transferencia em malha aberta. Enquanto o Cohen Coon é mais direto para calcular os parametros PID.

Ajuste no método Cohen

Alterando valor de Kp -> 25% Estabilizou em 40 segundos

Alterando valor de Kp -> 15% Estabilizou em 60 segundos

Ajuste no método CHR1

Alterando valor de Kp -> 15% Estabilizou em MAIS DE 100 segundos KP = 0.1259 em 15% = 0.1259

Alterando valor de Kp ->25% Estabilizou em 60 segundos Kp = 0.2098 em 25%

Controle PID - CHR e COHEN COON 25% Amplitude t[s]

- CHR AMARELO
- Cohen Coon Azul
- Com ajuste

Digite o valor de k para PID - : 1.9366
Digite o valor de Tau para PID - : 7.725
Digite o valor de Theta para PID - : 1.067
Digite o valor de kp para PID - CHR: 0.8395
Digite o valor de Ti para PID - CHR: 14.8395
Digite o valor de Td para PID - CHR: 1.5225

- CHR AMARELO
- Cohen Coon Azul
- Sem ajuste

