

CENG 3526 Natural Language Processing

Lecture 2

Text Preprocessing & Representation

Instructor **Bekir Taner Dinçer**

Teaching Assistant Selahattin Aksoy

MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ **COMPUTER ENGINEERING**

1

Recap

Text Representation

Text Representation in (NLP)

 is the process of converting textual data into a numerical format that can be understood and processed by machine learning algorithms.

Goal

 transform raw text into a structured representation so that the semantic and syntactic information contained within the text is captured.

Common text representation techniques include:

- · Bag of Words (BoW)
- **TF-IDF** (Term Frequency-Inverse Document Frequency):
- Word Embeddings (e.g., Word2Vec, GloVe)
- · Character-level Embeddings
- · n-gram language models
- Document Embeddings (Doc2Vec, or Deep Learning Models)

CENG-3526 Natural Language Processing

3

5

Text Representation

Data Acquisition: a Movie Review from the Internet

7

Data Acquisition: a Movie Review from the Internet

Data Acquisition: a Movie Review from the Internet

9

Extract the Text from the HTML


```
| TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL | TOOL |
```

The text so far

MSKU NLP CENG-3526 Natural Language Processing

11

Normalization

Converting text to a consistent format: lowercase, removing diacritics, handling contractions, typos, and other inconsistencies

Before

After

lowercased & punct removal

Most Frequent Words

The most frequent terms are mostly the terms that are used due to grammatical necessity

CENG-3526 Natural Language Processing

13

Stopwords

Frequency

Stop words are common words in a language that are often removed from text data before processing.

 These words, such as "the", "and", "a", "in" and "it" typically do not carry significant semantic meaning and can add noise to text analysis tasks.

MSKU NLP CENG-3526 Natural Language Processing

The key terms

Or

Itent bearing term

content bearing terms
also have high frequencies
but not more than those
non-content bearing terms

Stopword Removal

Why remove stop words?

- Reduce dimensionality: Removing stop words can significantly reduce the dimensionality of the feature space, making it easier to process and analyze text data.
- Improve accuracy: Stop words can often introduce noise into models, leading to reduced accuracy. Removing them can help improve the performance of NLP tasks like text classification, sentiment analysis, and information retrieval.
- Focus on meaningful words: By removing stop words, you can focus on the more informative words in the text, which can provide better insights.

15

Stopword Removal

After

lowercased & punct removal & stopword removal

CENG-3526 Natural Language Processing

Stopword Removal: Important Note

While removing stop words can be beneficial in many cases, it's important to consider the specific requirements of your NLP task.

Sometimes,

stop words may contain important information and removing them could lead to a loss of valuable context.

"to be or not to be that's the question"

CENG-3526 Natural Language Processing

17

Low Frequency Tokens

CENG-3526 Natural Language Processing

Hapax Legomena and Dis Legomena

Hapax legomenon:

A word that appears only once in a given text corpus.

Dis legomenon:

A word that appears twice in a given text corpus.

Significance of Hapax Legomena and Dis Legomena

Vocabulary richness

The number of hapax legomena can provide insights into the vocabulary richness of a text or author.

A high number of hapax legomena may indicate a diverse and

A high number of hapax legomena may indicate a diverse and specialized vocabulary.

CENG-3526 Natural Language Processing

19

High Frequency vs Low Frequency Terms

The most frequent term appears approximately twice as frequent as (when s=1.0) the second most frequent term

> freq("the") ~> 2 x freq("of") 35 ~> 2 x 28

Hapax legomenon:

A word that appears only once in a given text corpus.

Dis legomenon:

A word that appears twice in a given text corpus.

What if, in general for a language,

of tokens with freq=1 > # of tokens with freq=2 (412) (53)

Example: Alice in Wonderland Rank Word Frequency freq(the) > 2 x freq(and)the 1640 1640 > 2 x 846 2 and 846 3 721 to she 537 Zipf's Law: Word Frequency Distribution with Fitted Curve for Alice in Wonderland 6 it 526 of 511 8 462 said 401 385 10 alice Frequency (log scale) 11 369 12 you 360 13 357 was 14 that 276 262 15 as 16 her 248 209 17 18 193 on

10² Rank (log scale)

21

19

20

with

all

MSKU NLP

181

179

CENG-3526 Natural Language Processing

Text Classification

Trivial Approach to the Document Similarity Problem

if two documents are similar to each other, they need to be composed of the same set of words

25

Similarity Measure: Pros & Cons

Results

	Doc1	Doc2	Doc 3	Doc 4
Doc 1	222	54	38	45
Doc 2		178	29	37
Doc 3			216	79
Doc 4				231

Weakness:

Longer documents are favored!

Solution:

Document length normalization.

n(A \cap B) = 3

27

Improved Similarity Measure

$$similarity(doc_1, doc_2) = \dfrac{intersection}{union} = \dfrac{doc_1 \cap doc_2}{doc_1 \cup doc_2}$$

- Magnitudes are comparable.
- 0 <= similarity <= 1

Previous Results

	Doc1	Doc2	Doc 3	Doc 4
Doc 1	222	54	38	45
Doc 2		178	29	37
Doc 3			216	79
Doc 4				231

New Results

	Doc1	Doc2	Doc 3	Doc 4
Doc 1	1	0.16	0.10	0.11
Doc 2		1	0.08	0.10
Doc 3			1	0.21
Doc 4				1

MSKU NLP CENG-3526 Natural Language Processing

Analysis of the Results: Within Theme

Doc1 Doc2

Natural Language Processing

'human', 'this', 'while', 'is', 'several', 'may', 'as', 'in', 'also', 'development', 'to', 'other', 'used', 'computer', 'for', 'are', 'science,', 'subfield', 'a', 'processing', 'how', 'Natural', 'be', 'issue', 'with', 'over', 'and', 'computers', 'As', 'people', 'even', 'that', 'English', 'more', 'linguistics', 'NLP', 'intelligence', 'interactions', 'language.', '(NLP)', 'linguistics,', 'the', 'between', 'at', 'artificial', 'has', 'understanding', 'not', 'language', 'concerned', '(e.g.,', 'process', 'of', 'own'

79 Doc3 Doc4

Web Development

'complex', 'where', 'services.', 'user', 'to', 'other', 'used', 'range', 'ln', 'involved', 'network', 'page', 'example,', 'which', 'goal', 'often', 'an', 'way', 'specific', 'it', 'Web', 'this', 'is', 'make', 'then', 'in', 'businesses,', 'if', 'website', 'plain', 'text', 'be', 'products', 'simple', 'some', 'these', 'the', 'private', 'also', 'work', 'for', 'hosting', 'a', 'by', 'one', 'Internet', 'can', 'they', 'Web', 'not', 'become', 'developing', 'or', 'most', 'static', 'addition', 'social', 'as', 'development', 'are', 'network).', 'with', 'electronic', 'and', 'familiar', 'intranet', 'from', 'developers', 'that', 'such', 'web', '(a', 'applications,', 'Wide', 'part', '(World', 'single', 'of', 'very'

CENG-3526 Natural Language Processing

29

Analysis of the Results: Between Themes

'understand', 'this', 'social', 'is', 'may', 'as', 'in', 'also', 'development', 'them', 'to', 'other', 'used', 'computer', 'ln', 'range', 'for', 'The', 'are', 'such,', 'a', 'be', 'with', 'thought', 'and', 'As', 'systems', 'can', 'providing', 'which', 'goal', 'an', 'that', 'tools.', 'such', 'through', 'way', 'technologies', 'the', 'using', 'learning', 'not', 'it', 'of', 'own'

'this', 'is', 'may', 'as', 'in', 'also', 'development', 'to', 'other', 'used', 'computer', 'for', 'are', 'a', 'be', 'with', 'and', 'As', 'that', 'the', 'not', 'of', 'own'

 $(Doc1 \cap Doc2) \cap Doc3$

'this', 'is', 'as', 'in', 'also', 'development', 'to', 'other', 'used', 'for', 'are', 'a', 'how', 'be', 'with', 'and', 'that', 'more', 'the', 'not', 'of'

 $\begin{array}{c} \mathbf{19} \\ Doc1 \cap Doc2 \cap Doc3 \cap Doc4 \end{array}$

'to', 'are', 'also', 'this', 'other', 'a', 'of', 'that', 'for', 'be', 'with', 'and', 'used', 'development', 'not', 'the', 'in', 'is', 'as'

CENG-3526 Natural Language Processing

Analysis of the Results: Observations

1. Stop-word elimination may help in robustness of decision making.

It is apparent that we made decisions, mainly, based on a set of words that are common for all of the 4 documents: **29%** of $Doc1 \cap Doc2$, **27%** of $Doc3 \cap Doc4$.

```
Doc1 \cap Doc2 \cap Doc3 \cap Doc4 
 \begin{align*} 'to', 'are', 'also', 'this', 'other', 'a', 'of', 'that', 'for', 'be', 'with', 'and', 'used', 'development', 'not', 'the', 'in', 'is', 'as'
```

In the context of NLP, such words that appear on every document are called "stop-words" or rather "function words".

<u>It is assumed that</u> function words are used in languages because of grammatical necessity rather than serving in part of knowledge.

On the other hand,

The words that are not considered as function words are key words.

Key words are those content bearing words that serve in part of knowledge.

31

Analysis of the Results: Observations

2. The str.split() as a <u>tokenizer</u> did not perform well for the current job: there are several mistakes that should be fixed for better measurement of similarity:

```
'science,', 'language.', '(NLP)', 'linguistics,', '(e.g.,',
'Web)', 'network).', '(World', ...
```

- 3. Text normalization (i.e. case-folding for the example) is necessary.
- 4. <u>Stemming or Lemmatization</u> may be applied to merge different surface forms of the same words having the same meaning, e.g.

```
'developing', 'development', 'developers', ...
```


Model Improvement

- Fine-tune tokenizer (w.r.t. Punctuations)
- 2. Apply normalization (case folding, contractions, abbreviations, etc.)
- 3. Stop-word elimination (not always help be cautious).
- 4. Apply either Stemming (Porter) or Lemmatization but not both. (Both method should not (cannot) be applied to the same text.)
- 5. Calculate similarity scores at each of the above steps progressively, i.e., after applying 1st improvement, after applying 1st and 2nd improvement, after 1st, 2nd and 3rd, so on.
- Analyze the results as we did above at every progressive similarity score calculation cycle in 4.
- 7. Based on your observations, make suggestion of new improvements and if any, apply them and "repeat" starting from 4 until there left no room for improvement!?

MSKU NLP CENG-3526 Natural Language Processing

33

Stemming & Lemmatization

MSKU NLP CENG-3526 Natural Language Processing

Stemming

Stemming is a process that reduces words to their root form, removing suffixes or prefixes.

This is done
to normalize words
and group related words together,
which can be helpful for tasks like text
classification, information retrieval, and
search.

Examples of stemming:

Running -> stemmed to "run"

Jumping -> stemmed to "jump"

Happily -> stemmed to "happy"

Countries -> stemmed to "country"

Unhappiness -> stemmed to "unhappy"

Grouping related words to gether

"jumping", "jumped", and "jumps" all stemmed to "jump"

MSKU NLP CENG-3526 Natural Language Processing

36

Lemmatization

Lemmatization is a process of reducing words to their **dictionary form or lemma**.

Unlike stemming, lemmatization takes into account the grammatical context of a word to determine its root form.

This can result in more accurate results, especially for irregular verbs and nouns.

Examples of lemmatization:

Playing becomes "play" Played becomes "play" Plays becomes "play"

Happiness becomes "happy"
Unhappy becomes "happy"

Am becomes "be"
Is becomes "be"
Are becomes "be"

Document/Text Representation

MSKU NLP CENG-3526 Natural Language Processing

38

Common Document Representation Models

Bag-of-Words (BoW):

Represents documents as a collection of words without considering order.

TF-IDF (Term Frequency-Inverse Document Frequency):

Combines word frequency with its importance across the corpus.

Word Embeddings:

Represents words as dense vectors in a continuous space, capturing semantic relationships.

Document Embeddings:

Represents entire documents as dense vectors, capturing the overall semantic meaning.

Topic Modeling:

Identifies latent topics within a collection of documents.

Neural Network-Based Models:

Uses neural networks to learn complex representations of text data.

Bag-of-words (BOW) Model: Vector Space Model

Vector Space Model (Bag of Words Model)

3D Term-Space (TERM1, TERM2, TERM3)

Each doc is a point in term-space (i.e. 3D Vector)

Bag-of-Words (BoW)

Concept: Represents a document as a bag of words, where each word is assigned a numerical value based on its frequency in the document.

Pros: Simple to implement, computationally efficient. **Cons**: Ignores word order and semantic relationships.

CENG-3526 Natural Language Processing

40

Bag-of-words (BOW) Model: Vector Space Model

Example Corpus

Doc 1: "The quick brown fox jumps over the lazy dog"

Doc 2: "The lazy dog sleeps in the sun"

Doc 3: "The quick brown fox jumps over the dog"

Doc 4: "The dog is lazy"

CENG-3526 Natural Language Processing

TF-IDF Model: Vector Space Model

TF-IDF (Term Frequency-Inverse Document Frequency)

Concept: Combines term frequency (TF) with inverse document frequency (IDF) to assign weights to terms based on their importance within a document and across the corpus.

Pros: Addresses the shortcomings of BoW by considering term importance.

Cons: Can be sensitive to stop words and rare terms.

$$score(term_i, doc_j) = TF(term_i, doc_j) \times IDF(term_i)$$

where,

$$TF(term_i, doc_j) = freq \ of term_i \ in \ doc_j$$

$$IDF(term_i) = \log_{10} \left(\frac{N}{df(term_i)} \right)$$

 $N = \# of \ docs \ in \ corpus$ $df(term_i) = \# of \ docs \ that \ contain \ term_i$

CENG-3526 Natural Language Processing

42

TF-IDF Model: Vector Space Model

Word	Doc 1	Doc 2	Doc 3	Doc 4
the	0	0	0	0
quick	0.693	0	0.693	0
brown	0.693	0	0.693	0
fox	0.693	0	0.693	0
jumps	0.693	0	0.693	0
over	0.693	0	0.693	0
lazy	0.173	0.693	0	0.347
dog	0.173	0.347	0.173	0.347
sleeps	0	0.462	0	0
in	0	0.462	0	0
sun	0	0.462	0	0
is	0	0	0	0.347

N = Total number of documents = 4

$$df(the) = 4$$
 $IDF(the) = log(4/4) = 0$ $df(quick) = 2$ $IDF(quick) = log(4/2) \approx 0.693$

$$score(the, doc_1) = TF(the, doc_1) \times IDF(the)$$

= 2 × 0
 $score(quick, doc_1) = 1 \times 0.693$

TF-IDF values are higher

for words that are common in a document but rare in the corpus.

CENG-3526 Natural Language Processing

TF-IDF Model: Vector Space Model

quick 0.693 0 0.693 0 brown 0.693 0 0.693 0 0.693 fox 0.693 0 0 jumps 0.693 0 0.693 0 over 0.693 0 0.693 0 0.173 0.693 0.347 0.173 0.347 0.173 0.347 dog 0.462 sleeps 0 0 0 0 0.462 0 0 0.462 0 sun 0 0 0.347 N = Total number of documents = 4

 $score(quick, doc_1) = 1 \times 0.693$

df(the) = 4 IDF(the) = $\log(4/4) = 0$ df(quick) = 2 IDF(quick) = $\log(4/2) \approx 0.693$

 $score(the, doc_1) = TF(the, doc_1) \times IDF(the)$ = 2 × 0

TF-IDF values are higher for words that are common in a document but rare in the corpus.

CENG-3526 Natural Language Processing

44

BoW Model vs TF-IDF Model

Word Cloud for Document 1 Indistribution Social behavior Anguage Influence Word Cloud for Document 2 english region in the person of the

MSKU NLP CENG-3526 Natural Language Processing