An analysis of Seashore's musical performance measurements

Johanna Devaney School of Music The Ohio State University

Introduction Motivations and a brief history of Seashore's lab.

Performance scores

Recapturing performance data.

Analysis of extracted data

Intonation in the singing voice.

Conclusions

Summary and future directions.

2

3

Introduction

Why study musical performance?

- Performances convey musicians' interpretations
- Performances are what listeners actually hear
- Studying performance can help us gain insight into
 - how an individual's performance practice evolves as they gain more experience
 - how performance practices evolve over time
- Observing how performance practices relate to musical materials can help us develop models of "expressive" performance

A Brief History

Performance Studies at the University of Iowa

- Carl Seashore began by studying musical talent (1919)
- In the 1920s, Seashore's lab began quantitative research into music performance, e.g., Schoen's work on vocal intonation and vibrato (1922)
- By the 1930s, Seashore's lab had a large number of researchers working on music performance, including: Metfessel, H. Seashore, Small, Tiffin, Vernon, and Williams (Seashore 1938)

A Brief History

Performance Studies at the University of Iowa

- Seashore's lab studied timing, dynamics, intonation, and vibrato in pianists, violinists, and singers
 - Equipment: piano rolls, films of the movement of piano hammers during performance, and phonophotographic apparati

Wave recorder for use with disk phonograph; the lever, acting like a pantograph, traces the waves on a revolving smoked drum

A Brief History

Phonophotography technique

Henrici Harmonic Analyzer

Seashore (1937)

- Frequency graphed in 10 cent units
- Intensity graphed in decibels
- Timing information as a function of linear space

Conclusions

Summary and future directions.

7

University of Iowa

"there is rich raw material to work upon in the performance scores" Seashore (1938, 129)

University of Iowa

University of Iowa

University of Iowa

Notes from the musical score are marked roughly at the time where they occur

Lyrics are annotated in line with the notes from the score

Rests from the musical score are marked roughly at the time where they occur

Digitizing the data

Digitizing the data

Conclusions

Summary and future directions.

An Objective Analysis of Singing

Singers studied

- Baker "He shall feed His flock" from Messiah (Commercial) Figure 6
- Crooks "All through the night" (Commercial) Not reproduced
- Homer "Calm as the night" (Commercial) Not reproduced
- Kraft "Drink to me only with thine eyes" (Lab) Figure 3
- Kraft "All through the night" (Lab) Figure 4
- Marsh "Come unto him" from Messiah (Commercial) Figure 7
- Seashore "Come unto him" from Messiah (Lab) Figure 2
- Stark "Ave Maria" by Bach-Gounod (Lab) Figure 1
- Thompson "Phosphorescence" by Loewe (Lab) Not reproduced
- **Tibbett** "Drink to me only with thine eye" (Commercial) Figure 5

Vibrato

	H. Seashore	Computational
Vibrato rate	Manually counted in units of 0.5 cycles/second	$\frac{\operatorname{argmax} f(x) }{\operatorname{length}(x)} * sr$
Vibrato extent	Distance from peak to trough	$\frac{\max f(x) }{\operatorname{length}(x)} * 2$

Vibrato

Extent = 42 cents
Rate = 5.9 hertz

Vibrato

	Rate (Hz)						Extent (Cents)					
	Seashore			Computational			Seashore			Computational		
	N	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean	SD
1	533	6.5	0.6	513	5.8	1.2	533	48	14	513	47	22
2	412	6.3	0.5	389	5.6	1.0	412	44	14	389	40	14
3	238	5.9	0.7	223	5.4	1.2	238	61	19	223	60	30
4	252	5.9	0.7	252	5.6	8.0	252	58	19	238	52	21
5	327	5.9	0.7	327	6.3	1.0	327	53	12	314	45	13
6	698	6.2	0.6	698	5.4	0.9	698	45	11	597	41	14
7	534	6.4	0.6	534	5.8	0.9	534	53	14	510	51	14
Avg	2994	6.3	0.7	2784	5.8	1.2	2994	50	15	2784	47	19

Vibrato

		Rate (Hz)						Extent (Cents)					
	Se	Seashore			Computational			Seashore			Computational		
	N	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean	SD	
1	533	6.5	0.6	513	5.8	1.2	533	48	14	513	47	22	
2	412	6.3	0.5	412	5.6	1.0	412	44/	14	389	40	14	
3	238	5.9 2	2994	238	5.4	1.2	278	4 61	19	223	60	30	
4	252	5.9	0.7	252	5.6	0.8	252	58	19	238	52	21	
5	327/	5.9	0.7	327/	6.3	1.0	327	53	12	314	45	13	
6	698	6.2	0,6	698	5.4	0.9	898	45	11	597	41	14	
7	534	6.4	0.6	534	5.8	0.9	534	53	14	510	51	14	
Avg	2994	6.3	0.7	2784	5.8	1.2	2994	50	15	2784	47	19	

Mean Pitch

"Correct" pitch

Mean pitch calculation

Pitch

	H. Seashore	Computational
Mean Pitch Max/Min Deviations	Deviations of mid-point in vibrato cycles from equal tempered pitch	_
"Perceived Pitch"	_	Robust mean
Intervallic Size	Distance between the points of most accurate mean-pitch measurement	Difference between perceived pitch calculations

Meta-analysis example

Comparative analysis of Seashore and contemporary data

	H. Seashore <i>N</i> = 418	Devaney et al. 2011 <i>N</i> = 3981
Ascending semitones	96 (SD = 24)	96 (SD = 20)
Descending semitones	99 (SD = 24)	93 (SD = 18)
Ascending whole tones	192 (SD = 23)	198 (SD = 18)
Descending whole tones	197 (SD = 20)	201 (SD = 19)

Conclusions

Summary and future directions.

Summary

Where we have been

This talk has

- Described the information contained in Seashore's performance score
- Detailed a method for extracting and analyzing performance score data

Future Work

Where I am going

- Refine and expand computational analyses of performance score data
- Source the recordings corresponding to the performance scores
- Investigate whether the original phonophotograms still exist in the Seashore Archive at the University of Iowa
- Digitize more performance scores

Thank you!

References

Cary, H. December 1922. Are you a musician? Professor Seashore's specific psychological tests for specific musical abilities. *Scientific American*. 326–327

Devaney, J., M. Mandel, D. Ellis, and I. Fujinaga. 2011. Automatically extracting performance data from recordings of trained singers. *Psychomusicology: Music, Mind and Brain* 21 (1–2).

Devaney, J., J. Wild, and I. Fujinaga. 2011 Intonation in solo vocal performance: A study of semitone and whole tone tuning in undergraduate and professional sopranos. In *Proceedings of the International Symposium on Performance Science*. 219–24.

Seashore, C. 1919. *The Psychology of Musical Talent*. New York, NY: Silver, Burdett and Company.

Seashore, C. 1938. Psychology of Music. Iowa City, IA: University of Iowa Press.

Seashore, H. G. 1936. An objective analysis of artistic singing. In *University of Iowa Studies in the Psychology of Music. Vol. IV: Objective Analysis of Musical Performance*, ed. C. Seashore, 12–157. Iowa City, IA: University of Iowa.

An Objective Analysis of Singing

H. Seashore's Schema of the Study of Singing

THE SINGER

Production

(Psychophysiology)

Vocal apparatus

Neurophysiology

Sensitivity

Motor skills

Interpretation

(Psychology)

Perception

Cognition

Emotion

Action

THE SONG

Performance

(Sound Waves)

Pitch (frequency)

Loudness (intensity)

Timbre (wave form)

Duration (time)

Interpretation

(Analysis)

Norms

Individual differences

Variability

Laws of artistry

Musical form

THE LISTENER

Reception

(Psychophysiology)

Auditory system

Neurophysiology

Sensitivity

Interpretation

(Psychology)

Perception

Cognition

Emotion

Action

Seashore (1936)

Meta-analysis example

Exploratory comparative analysis of Seashore and contemporary data

	H. Sea	shore	Devaney et al. 2011			
	a cappella	accompanied	a cappella	accompanied		
Ascending semitones	98	95	95	97		
	(SD = 24)	(SD = 25)	(SD = 20)	(SD = 17)		
Descending semitones	99	100	93	94		
	(SD = 27)	(SD = 23)	(SD = 19)	(SD = 18)		
Ascending whole tones	194	192	199	198		
	(SD = 20)	(SD = 25)	(SD = 20)	(SD = 19)		
Descending whole tones	201	194	201	202		
	(SD = 22)	(SD = 19)	(SD = 18)	(SD = 17)		

Mean-Pitch Deviations

Percentage of minimum values within thresholds

		Seas	hore	Computational					
	N	<0.1	<0.2	<0.3	N	<0.1	<0.2	<0.3	
1	107	57	22	14					
2	109	72	23	5					
3	69	84	13	3					
4	52	85	15	0					
5	69	84	13	3					
6	117	81	13	1					
7	109	81	13	2	6.4	534	6.4	534	

Mean-Pitch Deviations

Percentage of minimum values within thresholds

	Seashore						Computational					
	N	<0.1	<0.2	<0.3	<0.4	N	<0.1	<0.2	<0.3	<0.4		
1	107	57	22	14	1							
2	109	72	23	5	0							
3	69	84	13	3	0							
4	52	85	15	0	0							
5	69	84	13	3	0							
6	117	81	13	1	0							
7	109	6.4	534	6.4	534	6.4	534	6.4	534	6.4		