

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3220	К работе допущен	
Студент	Касьяненко В. М.	Работа выполнена	
Преполаватель	Хвастунов Н. Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 3.06

Изучение электрических свойств сегнетоэлектриков

Цель работы:

- 1. Определение значений электрического смещения насыщения D_s , остаточной поляризации P_r , коэрцитивной силы E_c для предельной петли гистерезиса сегнетоэлектрика.
- 2. Расчёт диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
- 3. Получение зависимостей смещения D и диэлектрической проницаемости ε от напряжённости электрического поля E.
- 4. Определение значений начальной и максимальной диэлектрической проницаемости.

Объект исследования: сегнетоэлектрик.

Метод экспериментального исследования: прямые и косвенные измерения.

Рабочие формулы:

$$P_r = D_r - \varepsilon_0 E_r = D_r$$

$$\operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint D dE}{D_s E_s}$$

$$D = \frac{C_1}{S} \cdot U_{C_1} = \frac{C_1}{S} \cdot K_y Y$$

$$E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d} = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d}$$

$$\varepsilon = \frac{D}{\varepsilon_0 E}$$

Измерительные приборы:

No॒	Наименование	Предел	Цена деления	Погрешность	
		измерений		прибора	
1	ИСХ1 (измеритель	-4 - 4 дел	0,1 дел	0,05 дел	
	статических характеристик)				

Схема установки:

Общий вид лабораторной установки

Принципиальная схема установки

Результаты прямых измерений и их обработки:

Эскиз предельной петли гистерезиса:

Nº	U, B	K_x , $\frac{\mathrm{B}}{\mathrm{дел}}$	K_y , $\frac{\mathrm{B}}{\mathrm{дел}}$	Х, дел	<i>Y</i> , дел	$E, \frac{\mathrm{B}}{\mathrm{M}}$	$D, \frac{\mathrm{K}\pi}{\mathrm{M}^2}$	$\varepsilon, \frac{\Phi}{M}$
1	17	<u>дел</u>	<u>дел</u>	2,7	3,3	297000	0,033	12549,256
2	15	5	5	2,4	3,3	264000	0,033	14117,913
3	13	5	5	2,1	3,1	231000	0,031	15156,893
4	11	5	5	1,7	2,6	187000	0,026	15703,347
5	9	2	5	3,6	2,1	158400	0,021	14973,544
6	7	2	2	2,8	3,6	123200	0,0144	13201,165
7	5	2	1	2	3,5	88000	0,007	8984,1263
8	4,4	1	1	3,5	2,5	77000	0,005	7333,9807
9	3,8	1	0,5	3	3,3	66000	0,0033	5647,1651
10	3,2	1	0,5	2,5	2,2	55000	0,0022	4517,7321
11	2,6	1	0,2	2,1	3,4	46200	0,00136	3324,7379
12	2	0,5	0,1	3,2	3,5	35200	0,0007	2246,0316
13	1,4	0,5	0,1	2,2	2	24200	0,0004	1866,8314
14	0,8	0,2	0,02	3,1	3,9	13640	0,000156	1291,7269
15	0,4	0,1	0,02	3,1	1,7	6820	0,000068	1126,1209

Расчёт результатов косвенных измерений:

Коэрцитивное поле:

$$E_c = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X_c}{d} = \frac{47 + 470}{47} * \frac{5 * 0.9}{0.5} = 99 \frac{\text{KB}}{\text{M}}$$

3

Электрическая индукция в состоянии насыщения:

$$D_s = \frac{C_1}{S} \cdot K_y Y_s = \frac{0.000001}{0.0005} * 5 * 3.1 * 10^3 = 31 \frac{\text{MK} \pi}{\text{M}^2}$$

Остаточная поляризация:

$$P_r = \frac{C_1}{S} \cdot K_y Y_r = \frac{0.000001}{0.0005} * 5 * 0.8 * 10^3 = 8 \frac{\text{MK} \pi}{\text{M}^2}$$

Выберем множество точек на петле гистерезиса, и сделаем полиномиальную регрессию 4-й степени для верхней и нижней половины:

$$p_1(x) = 0.0231x^4 - 0.1011x^3 - 0.3001x^2 + 1.7726x + 1.1023$$

 $p_2(x) = -0.0349x^4 - 0.0696x^3 + 0.4421x^2 + 1.6343x - 1.3152$

Тогда площадь предельной петли гистерезиса в делениях шкалы экрана будет примерно равна:

$$S_0 = \oint Y dX \approx \int_{-2,7}^{2,7} p_1(x) dx - \int_{-2,7}^{2,7} p_2(x) dx = 3.34 + 3.30 = 6,64$$
 дел²

Найдём тангенс угла диэлектрических потерь в сегнетоэлектрике:

$$\oint DdE = \oint \left(\frac{C_1}{S} \cdot K_y Y\right) d\left(\frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d}\right) = \frac{C_1}{S} \cdot \frac{R_1 + R_2}{R_1} \cdot \frac{K_x K_y}{d} \oint Y dX = \frac{C_1}{S} \cdot \frac{R_1 + R_2}{R_1} \cdot \frac{K_x K_y}{d} \cdot S_0$$

$$\implies \operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s} = \frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_s E_s \pi} = 0,24$$

Для экстраполяции полученной зависимости $\varepsilon = \varepsilon(E)$ к нулевому значению напряжённости электрического поля была использована полиномиальная регрессия 6-й степени, из которой следует, что $\varepsilon_{\text{нач}} = 0.91 \cdot 10^3$.

Максимальное значение диэлектрической проницаемости $\varepsilon_{\text{макс}}=15.7\cdot 10^3.$ Этому значению диэлектрической проницаемости соответствует $E=187\frac{\text{кB}}{\text{м}}.$

Расчёт погрешности измерений:

Погрешность напряжённости электрического поля (и коэрцитивного поля):

$$E = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d}, \quad \frac{\partial E}{\partial X} = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x}{d}, \quad \frac{\partial E}{\partial R_1} = -\frac{R_2 K_x X}{R_1^2 d}, \quad \frac{\partial E}{\partial R_2} = \frac{K_x X}{R_1 d}$$

$$\frac{\partial E}{\partial d} = -\frac{(R_1 + R_2) K_x X}{R_1 d^2}, \quad \Delta E = \sqrt{\left(\frac{\partial E}{\partial X} \cdot \frac{2}{3} \Delta X\right)^2 + \left(\frac{\partial E}{\partial R_1} \Delta R_1\right)^2 + \left(\frac{\partial E}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial E}{\partial d} \Delta d\right)^2}$$

$$\Rightarrow \Delta E = \sqrt{\left(\frac{R_1 + R_2}{R_1} \cdot \frac{K_x}{d} \cdot \frac{2}{3} \Delta X\right)^2 + \left(-\frac{R_2 K_x X}{R_1^2 d} \Delta R_1\right)^2 + \left(\frac{K_x X}{R_1 d} \Delta R_2\right)^2 + \left(-\frac{(R_1 + R_2) K_x X}{R_1 d^2} \Delta d\right)^2} =$$

$$= \frac{K_x X}{R_1 d} \sqrt{\left(\frac{2}{3} \frac{R_1 + R_2}{X} \Delta X\right)^2 + \left(\frac{R_2}{R_1} \Delta R_1\right)^2 + \Delta R_2^2 + \left(\frac{R_1 + R_2}{d} \Delta d\right)^2}$$

$$\Rightarrow \Delta E_c = 17 \frac{\kappa B}{M}$$

Погрешность электрической индукции (а также индукции в состоянии насыщения и остаточной поляризации):

$$D = \frac{C_1}{S} \cdot K_y Y, \qquad \frac{\partial D}{\partial Y} = \frac{C_1}{S} \cdot K_y, \qquad \frac{\partial D}{\partial C_1} = \frac{K_y Y}{S}, \qquad \frac{\partial D}{\partial S} = -\frac{C_1}{S^2} \cdot K_y Y$$

$$\Delta D = \sqrt{\left(\frac{\partial D}{\partial Y} \cdot \frac{2}{3} \Delta Y\right)^2 + \left(\frac{\partial D}{\partial C_1} \Delta C_1\right)^2 + \left(\frac{\partial D}{\partial S} \Delta S\right)^2}$$

$$\Rightarrow \Delta D = \sqrt{\left(\frac{C_1}{S} \cdot K_y \cdot \frac{2}{3} \Delta Y\right)^2 + \left(\frac{K_y Y}{S} \Delta C_1\right)^2 + \left(-\frac{C_1}{S^2} \cdot K_y Y \Delta S\right)^2} =$$

$$= \frac{K_y Y C_1}{S} \sqrt{\left(\frac{2\Delta Y}{3Y}\right)^2 + \left(\frac{\Delta C_1}{C_1}\right)^2 + \left(\frac{\Delta S}{S}\right)^2}$$

$$\Rightarrow \Delta D_S = 4 \frac{M K \pi}{M^2}, \qquad \Delta P_r = 1.1 \frac{M K \pi}{M^2}$$

Погрешность диэлектрической проницаемости:

$$\varepsilon = \frac{D}{\varepsilon_0 E}, \qquad \frac{\partial \varepsilon}{\partial E} = -\frac{D}{\varepsilon_0 E^2}, \qquad \frac{\partial \varepsilon}{\partial D} = \frac{1}{\varepsilon_0 E}, \qquad \Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial E} \Delta E\right)^2 + \left(\frac{\partial \varepsilon}{\partial D} \Delta D\right)^2}$$

$$\Rightarrow \Delta \varepsilon = \sqrt{\left(-\frac{D}{\varepsilon_0 E^2} \Delta E\right)^2 + \left(\frac{1}{\varepsilon_0 E} \Delta D\right)^2} = \frac{1}{\varepsilon_0 E} \sqrt{\frac{D^2}{E^2} \Delta E^2 + \Delta D^2}$$

Погрешность тангенса угла диэлектрических потерь в сегнетоэлектрике:

$$\operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s} = \frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_s E_s \pi} = T$$

$$\frac{\partial T}{\partial D_s} = -\frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_s^2 E_s \pi}, \quad \frac{\partial T}{\partial E_s} = -\frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_s E_s^2 \pi},$$

$$\frac{\partial T}{\partial S} = -\frac{C_1 (R_1 + R_2) K_x K_y S_0}{S^2 R_1 d D_s E_s \pi}, \quad \frac{\partial T}{\partial R_1} = -\frac{C_1 R_2 K_x K_y S_0}{S R_1^2 d D_s E_s \pi}, \quad \frac{\partial T}{\partial R_2} = \frac{C_1 K_x K_y S_0}{S R_1 d D_s^2 E_s \pi}$$

$$\frac{\partial T}{\partial C_1} = \frac{(R_1 + R_2) K_x K_y S_0}{S R_1 d D_s^2 E_s \pi}, \quad \frac{\partial T}{\partial S_0} = \frac{C_1 (R_1 + R_2) K_x K_y}{S R_1 d D_s^2 E_s \pi}$$

$$\sqrt{\left(\frac{\partial T}{\partial D_s} \Delta D_s\right)^2 + \left(\frac{\partial T}{\partial E_s} \Delta E_s\right)^2 + \left(\frac{\partial T}{\partial S} \Delta S\right)^2 + \left(\frac{\partial T}{\partial R_1} \Delta R_1\right)^2 + \left(\frac{\partial T}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial T}{\partial C_1} \Delta C_1\right)^2 + \left(\frac{\partial T}{\partial S_0} \Delta S_0\right)^2}$$

$$\Rightarrow \Delta T = 0.064$$

Погрешности начальной и максимальной диэлектрических проницаемостей:

$$\Delta \varepsilon_{\text{Hay}} = 0.21 \cdot 10^3$$
, $\Delta \varepsilon_{\text{MaKC}} = 2.9 \cdot 10^3$

Графики:

Окончательные результаты:

$$D_{S} = (31 \pm 4) \frac{\text{MK} \pi}{\text{M}^{2}}, \qquad \varepsilon = 13\%$$
 $P_{r} = (8 \pm 1.1) \frac{\text{MK} \pi}{\text{M}^{2}}, \qquad \varepsilon = 13,8\%$
 $E_{c} = (99 \pm 17) \frac{\text{KB}}{\text{M}}, \qquad \varepsilon = 17,2\%$
 $\text{tg } \delta = 0,24 \pm 0,06, \qquad \varepsilon = 25,0\%$
 $\varepsilon_{\text{Hay}} = (0,91 \pm 0,21) \cdot 10^{3}, \qquad \varepsilon = 23,1\%$
 $\varepsilon_{\text{MAKC}} = (13,3 \pm 2,9) \cdot 10^{3}, \qquad \varepsilon = 21,8\%$

Выводы и анализ результатов работы:

Были получены значения коэрцитивного поля, электрической индукции в состоянии насыщения, остаточной поляризации, а также их погрешности.

Зависимость электрической индукции (смещения) от напряжённости электрического поля в сегнетоэлектрике нелинейная: сначала функция медленно растёт, затем её рост ускоряется, а потом плавно начинает замедляться.

Диэлектрическая проницаемость так же зависит нелинейно от напряжённости — сначала с ростом напряжённости растёт и диэлектрическая проницаемость, но в какой-то момент она достигает своего максимального значения и далее медленно убывает.