	Segunda Avalla	ação		Nota: 8,0+1,0
Curso:	Ciência da Computação			
Disciplina:	Linguagens Formais e Autômatos			
Aluno(a):			Data:	55/1
	, ~~.			1 2 2 1

1) Aplique o algoritmo de exclusão de produções vazias à GLCs dada e em seguida marque a opção incorreta. (2 pts)
G = ({S, A, B, C, D}, {a, b}, P, S)
S → aAa | bAb | Cb | C
A → a | b |Baa
B → ε
C → aa | bb | D
D → ba | ε

- a) () O conjunto $V\varepsilon = \{B, D, C, S\}$
- b) () "S→C" e "S→ε" estão entre as produções da gramática resultante
- c) () "A \rightarrow aa" e "D \rightarrow ba" estão entre as produções da gramática resultante
- d) () O conjunto de variáveis (V) da gramática resultante é {S, A, B, C, D}
- e) O conjunto de terminais da gramática resultante é T = {a}

 Aplique o algoritmo de exclusão de produções da forma A → B (variável deriva variável) e em seguida marque a opção verdadeira. (1 pt)

- a) () O conjunto de variáveis (V) da gramática resultante é {S, A, D}
- b) () O conjunto de terminais da gramática resultante é T = {a, b, d}
- d) () Fecho-S={A, D}
- e) () O conjunto de terminais da gramática resultante é T = {a, b, d}
- 3) Marque a opção que apresenta uma palavra que não seja aceita pelo AP M1: (2 pts)

$M_1 = (\{x, y, z\}, \{q_0, q_1, q_2\})$	q ₂ , q ₃ , q ₄ }, δ, q ₀ , {q ₄ }, {A})
$\delta(q_0, x, \varepsilon) = (q_1, \varepsilon)$ $\delta(q_1, y, \varepsilon) = (q_1, A)$ $\delta(q_1, z, \varepsilon) = (q_2, \varepsilon)$ $\delta(q_2, x, \varepsilon) = (q_2, A)$	$\delta(q_2, \varepsilon, \varepsilon) = (q_3, \varepsilon)$ $\delta(q_3, y, A) = (q_3, \varepsilon)$ $\delta(q_3, ?, ?) = (q_4, \varepsilon)$

- a) (
- b) () xyzy
- xyyzxyy
-) xyzxxyyy
- 4) Qual a opção que apresenta a LLC aceita pelo AP M₂ dado? (2 pts)

$M_2 = (\{x, y, z\}, \{q_0, q_1, q_2\})$	$q_2, q_3, q_4\}, \delta, q_0, \{q_4\}, \{A\})$
$\delta(q_0, x, \varepsilon) = (q_1, A)$ $\delta(q_1, x, \varepsilon) = (q_1, A)$ $\delta(q_1, y, A) = (q_2, \varepsilon)$ $\delta(q_2, y, A) = (q_2, \varepsilon)$	$δ(q_2, z, A) = (q_3, ε)$ $δ(q_3, z, A) = (q_3, ε)$ $δ(q_3, ?, ?) = (q_4, ε)$

- a) $L = \{w = x^{i+j}y^iz^j \mid i, j \ge 0\}$
- b) () L = {w = $x^{i+j}y^iz^j | i, j \ge 1}$
- c) () $L = \{w = x^i y^j z^j \mid i, j \ge 1\}$
- d) () $L = \{w = x^i y^i z^j \mid i, j \ge 0\}$
-) Nenhuma das respostas anteriores
- 5) Marque a opção que corresponde a LLC denotada pela GLC G: (1 pt)

$$G = (\{S, A\}, \{a, b\}, P, S)$$

 $S \rightarrow aSc \mid A$

 $A \rightarrow Ab \mid b$

a) () $L = \{w = a^n b^m c^n \mid n \ge 0, m \ge 0\}$

- b) $L = \{w = a^n b^m c^n \mid n \ge 0, m \ge 1\}$
- c) () $L = \{w = a^n b^m c^n \text{ ou } a^n c^n b^m \mid n \ge 0, m \ge 0\}$
- d) () $L = \{w = a^n b^m c^n \text{ ou } a^n c^n b^m \mid n >= 1, m >= 1\}$
- e) () Nenhuma das respostas anteriores.
- 6) Marque V (verdadeiro) ou F (falso) para cada uma das afirmativas: (2 pts)
- a) (No contexto do algoritmo de exclusão de símbolos inúteis. Um símbolo variável v $(v \in V)$ que não seja atingível a partir do símbolo inicial (S), mas que gere símbolos terminais não é inútil.
- b) (\blacktriangleright) Nas GLCs as regras de produção têm a forma A \rightarrow α ; sendo que A \in (V \cup T)⁺ e $\alpha \in (\mathsf{V} \cup \mathsf{T})^{\star}$
- o) (\blacksquare) A função programa da MT é: Q X ($\Sigma \cup V$) \rightarrow Q X ($\Sigma \cup V$) x {E, D}

 Conjunto de variáveis que constituem produções vazias. O algoritmo para construir Ve é o seguinte:

$$V\varepsilon = \{ A \mid A \rightarrow \varepsilon \}$$

Repita

$$V_{\epsilon} = V_{\epsilon} \cup \{X \mid X \rightarrow X1 \; ... \; Xn \in P \; tal \; que \; X1 \; ... \; Xn \in V_{\epsilon}\}$$

Até que Vε não aumente

2) Conjunto de produções sem produções vazias. A GLC resultante dessa etapa é:

G1 = (V, T, P1, S). P1 é construído como segue:

P1 =
$$\{A \rightarrow \alpha \mid \alpha \neq \epsilon\}$$

Repita

Para toda A
$$\rightarrow \alpha \in P1$$
 e X $\in V\epsilon$ tal que $\alpha = \alpha 1X\alpha 2$ e $\alpha 1\alpha 2 \neq \epsilon$
Faça P1 = P1 $\cup \{A \rightarrow \alpha 1\alpha 2\}$

Até que P1 não aumente

3) Inclusão de geração da palavra vazia se necessário. Se a palavra vazia pertence a linguagem, então a GLC resultante dessa etapa é:

$$G2 = (V, T, P2, S)$$

$$P2 = P1 \cup \{S \rightarrow \varepsilon\}$$

Algoritmo "Exclusão de produções na forma A→B"

1) Construção do fecho de cada variável

Para todo $A \in V$

Faça fecho-A = {B | A \neq B e A \Rightarrow + B usando exclusivamente produções da forma X \rightarrow Y}

2) Exclusão das produções da forma A→B. A GLC resultante dessa etapa é:

$$G1 = (V, T, P1, S)$$

P1 é construído como segue:

P1 = {
$$A \rightarrow \alpha \mid \alpha \notin V$$
}

Para todo $A \in V e B \in FECHO-A$

Faça se B
$$\rightarrow \alpha \in P e \alpha \notin V$$

Então P1 = P1
$$\cup \{A \rightarrow \alpha\}$$