Math 29: Computability Theory

Spring 2024

PSET 1 - 04/05/2024

Prof. Miller

Student: Amittai Siavava

Problem 1.

The rational numbers, \mathbb{Q} , are $\left\{\frac{p}{q} \mid p, q \in \mathbb{Z}, q > 0\right\}$. The Gaussian rationals are complex numbers of the form $\{r+si \mid r,s\in\mathbb{Q}\}$. Provide a bijection between the Gaussian rationals and \mathbb{N} .

Prove that it is a bijection.

We can provide a bijection between the Gaussian rationals and $\mathbb N$ by using the Cantor Pairing Function. The Cantor Pairing Function is defined as $p: \mathbb N \times \mathbb N \to \mathbb N$ with

$$p(x,y) = \frac{1}{2}(x+y)(x+y+1) + y.$$

p is a bijection a. We can construct a correspondence between the Gaussian rationals to $\mathbb N$ as follows. First, write r+si in the form $\frac{a}{b}+\frac{c}{d}i$ where $a,b,c,d\in\mathbb Z$ such that b,d>0, a,b are coprime, and c,d are coprime. Since $r,s\in\mathbb Q$, this is possible. Define the map $\psi:\mathbb Q[i]\to\mathbb N$ as follows:

$$\psi: \mathbb{Q}[i] \to \mathbb{N}$$

$$\frac{a}{b} + \frac{c}{d}i \mapsto p\left(p(a, b), p(c, d)\right).$$

To show bijectivity, we must show that ψ is both injective and surjective.

1. ψ is injective:

Suppose $\psi\left(\frac{a_1}{b_1} + \frac{c_1}{d_1}i\right) = \psi\left(\frac{a_2}{b_2} + \frac{c_2}{d_2}i\right)$. This means that $p\left(p(a_1,b_1),p(c_1,d_1)\right) = p\left(p(a_2,b_2),p(c_2,d_2)\right)$. However, the Cantor Pairing Function is a bijection, meaning that $p\left(p(a_1,b_1),p(c_1,d_1)\right) = p\left(p(a_2,b_2),p(c_2,d_2)\right)$ if and only if $p(a_1,b_1) = p(a_2,b_2)$ and $p(c_1,d_1) = p(c_2,d_2)$, which in turn implies that $a_1 = a_2$, $b_1 = b_2$,

 $c_1 = c_2$, and $d_1 = d_2$. Therefore,

$$\psi\left(\frac{a_1}{b_1} + \frac{c_1}{d_1}i\right) = \psi\left(\frac{a_2}{b_2} + \frac{c_2}{d_2}i\right) \implies \frac{a_1}{b_1} + \frac{c_1}{d_1}i = \frac{a_2}{b_2} + \frac{c_2}{d_2}i.$$

2. ψ is surjective:

Let $n \in \mathbb{N}$. Since the Cantor Pairing Function is surjective, $\exists x, y \in \mathbb{N}$ such that n = p(x, y). Likewise, $\exists a, b, c, d \in \mathbb{N}$ such that x = p(a, b) and y = p(c, d). Therefore, there exists some $\gamma := \frac{a}{b} + \frac{c}{d}i$ in $\mathbb{Q}[i]$ such that

$$\psi(\gamma) = \psi\left(\frac{a}{b} + \frac{c}{d}i\right) = p(p(a,b), p(c,d)) = p(x,y) = n.$$

^aWe used this in class. Do I need to show that it is a bijection?

Problem 2.

Give a register machine which converges if there is a 2 in R_0 and diverges otherwise.

Figure 1: Converge if there is a 2 in R_0 and diverge otherwise.

Idea

The register machine in Figure 1 runs as follows:

- 1. Start at the **start** state. Let the initial value of R_0 be n.
- **2.** Decrement R_0 by 1.
 - If impossible, go to the looping state.
 - If possible, the current value of R_0 is n-1.
- **3.** If step **2.** was possible, decrement R_0 by 1 again.
 - If impossible, this means the value of R_0 before the decrement was n-1=0, therefore n=1, so $n\neq 2$. Go to the looping state.
 - If possible, the current value of R_0 is n-2.
- **4.** If step **3.** was possible, decrement R_0 by 1 again.
 - If impossible, this means the value of R_0 before the decrement was n-2=1, therefore n=2. Go to the **stop** state.
 - If possible, the current value of R_0 is $n-3 \ge 0$, meaning $n \ge 3 > 2$. Therefore, $n \ne 2$. Go to the looping state.
- **5.** Finally, the looping node just increments R_2 ad-infinitum.

Problem 3.

Prove that the squaring function is computable by providing a register machine which takes in n in R_0 and outputs n^2 in R_1 . You may use the multiplication function x(n,m) — which starts with n in R_0 and m in R_1 and outputs $n \cdot m$ in R_2 — as a black box function labeled M.

Idea

I found it useful to categorize the machine into five general parts (by height in Figure 2):

- 1. start
- **2.** Copy n to R_1 and R_2 , which sets $R_0 \leftarrow 0$.
- **3.** Copy n from R_2 back to R_0 .
- **4.** Call M to calculate $R_2 \leftarrow R_0 \cdot R_1 = n \cdot n = n^2$.
- 5. Set $R_1 \leftarrow 0$.
- **6.** Move n^2 from R_2 to R_1 .
- 7. *stop*

Algorithm

I wrote this to convince myself that the machine works as I intended.

Please disregard if irrelevant.

Algorithm 1: Calculate $f: n \mapsto n^2$ for $n \in \mathbb{N}$.

- 1 start
- 2 while $(\textit{status} \coloneqq R_0 1) \neq e \; \mathbf{do}$ > Copy n to R_1 and R_2 , which sets $R_0 = 0$
- $\mathbf{3} \quad R_1 \leftarrow R_1 + 1$
- $\mathbf{4} \quad \boxed{\quad R_2 \leftarrow R_2 + 1}$
- 5 while $(status := R_2 1) \neq e \text{ do}$

riangleright Move n from R_2 back to R_0

 \triangleright Move n^2 from R_2 to R_1

 \triangleright Set $R_1 \leftarrow 0$

- 6 $R_0 \leftarrow R_0 + 1$
- 7 call M

- hiftharpoons Call M to populate R_2 with $n^2 \coloneqq R_0 \cdot R_1$
- s while $(status := R_1 1) \neq e do$
- loop
- 10 while $(status := R_2 1) \neq e$ do
- $R_1 \leftarrow R_1 + 1$
- 12 stop

Problem 4.

Prove that the set of ordered pairs of natural numbers (x, y) such that $x \leq y$ is computable by providing a register machine which takes n and m as imputs in R_0 and R_1 respectively and outputs 1 if $n \leq m$ and 0 in R_2 otherwise.

Register Machine

Figure 3: Calculate $f:(x,y)\mapsto \begin{cases} 1 & \text{if } x\leq y.\\ 0 & \text{otherwise.} \end{cases}$

Idea

The register machine in Figure 3 runs as follows:

- 1. start
- **2.** Deduct 1 from R_0
 - If impossible, R₀ = 0. Since we have deducted the same times from R₁ as we have from R₀ and R₁ has not run out before now, R₁ ≥ R₀, meaning R₀ ≤ R₁.
 Increment R₂ and go to the *stop* state.
 - If possible, go to step 3.
- **3.** Deduct 1 from R_1
 - If impossible, R₁ = 0. Since R₀ ≥ 0 (as we have not branched out in the previous deduction from R₀ and gone to the *stop* state), R₁ < R₀, meaning R₀ \neq R₁.
 Go to the *stop* state (leaving the default value of 0 in R₂).
 - If possible, go to step 2.