Домашняя работа 4

November 14, 2019

Задача 1 (5 баллов)

Гамма-распределение Gamma (α,λ) - это распредление с плотностью вероятности $f(x)=\frac{\lambda^{\alpha}x^{\alpha-1}}{\Gamma(\alpha)}e^{-\lambda x},$ $x \ge 0$ ($\Gamma(\alpha)$ - гамма-функция Эйлера) Посчитайте мат.ожидание и дисперсию для гамма-распределения. Как распределена сумма n независимых случайных величин, каждая из которых распределена как $\Gamma(\alpha, \lambda)$? Если $X \sim \Gamma(\alpha, \lambda)$, то как распределена с.в. aX, где a>0 - произвольная константа? (приведите все! выкладки)

Решение:

G - с.в. с гамма-распределением $\operatorname{Gamma}(\alpha,\lambda)$

Найдем характеристическую функцию гамма-распределения:
$$\varphi_G(t) = \int\limits_0^{+\infty} f(x)e^{itx}dx = \int\limits_0^{+\infty} \frac{\lambda^\alpha x^{\alpha-1}}{\Gamma(\alpha)}e^{(it-\lambda)x}dx = \int\limits_0^{+\infty} \frac{\lambda^\alpha ((\lambda-it)x)^{\alpha-1}}{(\lambda-it)^\alpha\Gamma(\alpha)}e^{-(\lambda-it)x}d(\lambda-it)x = \int\limits_0^{+\infty} \frac{\lambda^\alpha (u)^{\alpha-1}}{(\lambda-it)^\alpha\Gamma(\alpha)}e^{-ux}du = \frac{\lambda^\alpha \Gamma(\alpha)}{(\lambda-it)^\alpha\Gamma(\alpha)} = \frac{\lambda^\alpha}{(\lambda-it)^\alpha}$$

Теперь с помощью характеристической функции найдем матожидание и дисперсию:

$$iEG = \varphi_G'(0) = i\frac{\alpha}{\lambda}$$

$$EG = \frac{\alpha}{\lambda}$$

$$EG = \frac{\alpha}{3}$$

$$-EG^2 = \varphi_G''(0) = -\frac{\alpha(\alpha+1)}{\lambda^2}$$
$$DG = EG^2 - (EG)^2 = \frac{\alpha}{\lambda^2}$$

$$DG = EG^2 - (EG)^2 = \frac{\alpha}{\sqrt{2}}$$

Так как хар. функция суммы н.с.в. равна произведению хар. функций: $\varphi_{\Sigma G}(t)=\varphi_G(t)^n=\frac{\lambda^{n\alpha}}{(\lambda-it)^{n\alpha}}$

$$\varphi_{\Sigma G}(t) = \varphi_G(t)^n = \frac{\lambda^{n\alpha}}{(\lambda - it)^{n\alpha}}$$

Тогда ΣG распределена как $\operatorname{Gamma}(n\alpha, \lambda)$

Пусть f_a, F_a – плотность и функция распределения aX соответственно.

$$F_a(x) = F(ax)$$

$$f_a(x) = F'_a(x) = F'(ax) = f(ax) * a = \frac{(a\lambda)^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-a\lambda x} = \text{Gamma}(\alpha, a\lambda)$$

Задача 2 (4 балла)

Пусть ξ с.в. с действительной характеристической функцией f(t) и дисперсией σ^2 . Доказать, что:

$$f(t) \ge 1 - \frac{t^2 \sigma^2}{2}$$

Решение:

$$Ee^{it\xi} \ge 1 - \frac{t^2\sigma^2}{2}$$

Так как функция действительнозначная то можно отбросить мнимую часть. Также заметим, что матожидание ξ равно нулю:

$$E\xi = -i * f'(0) = 0$$

Так как комплексная часть f'(0) равна нулю.

Тогда:

$$Ee^{it\xi} = Ecos(t\xi) \ge 1 - \frac{t^2 E \xi^2}{2} = 1 - \frac{E \xi^2 t^2}{2}$$

Достаточно доказать что

$$Ecos(t\xi) - (1 - \frac{E\xi^2 t^2}{2}) \ge 0$$

$$E(\cos(t\xi) - (1 - \frac{\xi^2 t^2}{2})) \ge 0$$

Для любого u верно:

$$\cos u - (1 - \frac{u^2}{2}) \ge 0$$

Следовательно:

$$cos(t\xi) - (1 - \frac{\xi^2 t^2}{2}) \ge 0$$

$$E(\cos(t\xi) - (1 - \frac{\xi^2 t^2}{2})) \ge 0$$

чтд

Задача 3 (2 балла)

$$x = \begin{pmatrix} x_1 \\ X_2 \\ X_3 \end{pmatrix} \sim N \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 & 2 & 7 \\ 2 & 5 & 7 \\ 7 & 7 & 14 \end{pmatrix}$$

Найдите распределение случайного вектора $(Y_1, Y_2)^T$, где $Y_1 = X_1 + X_2 - X_3$, $Y_2 = X_1 + X_2 + X_3$

Решение:

Темение.
$$(Y_1,Y_2)^T=y=Ax, \text{ где } A=\begin{pmatrix}1&1&-1\\1&1&1\end{pmatrix}$$
 Также введем обозначения: $R=\begin{pmatrix}5&2&7\\2&5&7\\7&7&14\end{pmatrix}, \, m=\begin{pmatrix}2\\3\\1\end{pmatrix}$

Тогда $y \sim N(Am, ARA^T)$

$$Am = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

$$ARA^T = \begin{pmatrix} 0 & 0 \\ 0 & 56 \end{pmatrix}$$

$$y = \sim N\left(\begin{pmatrix} 4\\6 \end{pmatrix}, \begin{pmatrix} 0 & 0\\0 & 56 \end{pmatrix}\right)$$

Задача 4 (5 баллов)

Докажите, что сумма n независимых случайных величин, равномерно распределенных на отрезке [-1,1], имеет плотность f, задаваемую формулой

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} \left(\frac{\sin t}{t}\right)^{n} \cos(tx) dt$$

Верна ли эта формула при n=1?

Решение:

Найдем характеристическую функцию св равномерно распределенной на отрезке [-1,1]

$$\varphi(t) = \frac{1}{2} \int_{-1}^{1} e^{-itx} dx = \frac{e^{it} - e^{-it}}{2it} = \frac{sint}{t}$$

Тогда хар функция суммы n независимых случайных величин, равномерно распределенных на отрезке [-1,1],

$$\varphi_{\Sigma}(t) = \left(\frac{sint}{t}\right)^n$$

Найдем функцию плотности распределения с помощью обратного преобразования:

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} \left(\frac{\sin t}{t}\right)^{n} e^{-itx} dt$$

Благодаря тому что функция плотности действительнозначная можно откинуть комплексную часть. Получим:

$$f(x) = \frac{1}{\pi} \int_{0}^{+\infty} \left(\frac{\sin t}{t}\right)^{n} \cos(tx) dt$$

Для того чтобы проверить верно ли это при n=1 проинтегруем f(x) в Вольфраме от $-\infty$ до $+\infty$ Получаем функцию которая на отрезке [-1,1] равна $\frac{1}{2}$, а вне отрезка нулю, что соответствует равномерному распределнию.

Задача 5 (4 балла)

Пусть f - непрерывная, монотонно-возрастающая, неотрицательная, ограниченная функция, такая, что f(0) = 0.

Докажите, что для сходимости ξ_n к 0 по вероятности необходимо и достаточно, чтобы сходилась к 0 последовательность $\mathbb{E}f(|\xi_n|)$

Решение:

Сначала докажем что из сходимости к нулю последовательности $\mathbb{E}f(|\xi_n|)$ следует сходимость ξ_n к 0 по вероятности.

Используем обобщенное неравенство Маркова для св $|\xi_n|$:

$$P(|\xi_n| \ge t) \le \frac{Ef(|\xi_n|)}{f(t)},$$

где t > 0, f удовлетворяет условию монотонного возрастания.

f(t) > 0, так как f() сторого монотонна и равна нулю в нуле.

Тогда при фиксированном t > 0 последовательность $P(|\xi_n| \ge t)$ стремится к нулю, так как она ограниченна сходящейся к нулю последовательностью и положительна.

Значит, ξ_n сходится к нулю по вероятности.

В другую сторону верно, так как из сходимости по вероятности следует сходимость по распределению.

Из сходимости по распределению:

 $Ef(|\xi_n|) \to Ef(|\xi|)$, где f(|t|) удовлетворяет условиям непрерывности и ограниченности.

Задача 6 (5 баллов) Пусть ξ_1, ξ_2, \ldots – последовательность случайных величин с конечными дисперсиями. Положим $a_n = \mathbb{E}\xi_n, \ \sigma_n^2 = \mathbb{D}\xi_n$. Доказать, что если $a_n \to \infty$ и $\sigma_n^2 = o(a_n^2)$ при $n \to \infty$, то

$$\frac{\xi_n}{a_n} \stackrel{P}{\to} 1, n \to \infty$$

Решение:

Введем случайную величину $\eta = \frac{\xi_n}{a_n}.$

$$E\eta = 1$$

$$D\eta = \frac{D\xi}{a_n^2} = \frac{\sigma_n^2}{a_n^2}$$

Неравенство Чебышева:

$$P(|\eta - E\eta| \ge t) \le \frac{D\eta}{t^2}, \forall t > 0$$

$$P(|\frac{\xi_n}{a_n} - 1| \ge t) \le \frac{\left(\frac{\sigma_n^2}{a_n^2}\right)}{t^2}$$

Последовательность $P(|\frac{\xi_n}{a_n}-1|\geq t)$ сходится к нулю так как она ограниченна сходящейся к нулю $\frac{\sigma_n^2}{a_n^2}$. Следовательно $\frac{\xi_n}{a_n}$ сходится по вероятности к 1.