MATH 5301 Elementary Analysis - Homework 10

Jonas Wagner

2021, November 12th

Problem 1

Prove that the closure and the interior of a convex set $A \subset \mathbb{R}^n$ are also convex.

Definition 1. The set A is called convex if

$$\forall_{x,y \in A} \forall_{t \in [0,1]} ((t)x + (1-t)y) \in A$$

Definition 2. For a given set $A \subseteq (S, d)$,

a. the interior of A is defined as

$$int(A) = \{x \in A : \exists_{\epsilon > 0} B_{\epsilon}(x) \subset A\}$$

b. the closure of A is defined as

$$\overline{A} = \{ x \in S : \forall_{\epsilon > 0} B_{\epsilon}(x) \cap A \neq \emptyset \}$$

Theorem 1. If $A \subset \mathbb{R}^n$ is a convex set, then the closure of A, \overline{A} , is also convex.

Proof. A being convex means that

$$\forall_{x,y \in A} \forall_{t \in [0,1]} ((t)x + (1-t)y) \in A$$

 \overline{A} is defined by

$$\overline{A} = \{ x \in \mathbb{R}^n : \forall_{\epsilon > 0} B_{\epsilon}(x) \cap A \neq \emptyset \}$$

For \overline{A} to be convex, the following would be true:

$$\forall_{x,y\in\overline{A}}\forall_{t\in[0,1]}((t)x+(1-t)y)\in\overline{A}$$

Additionally, since $\overline{A} = A \cup \partial A$, \overline{A} is convex if

$$\left(\forall_{x\in A}\forall_{y\in\overline{A}}\forall_{t\in[0,1]}((t)x+(1-t)y)\in\overline{A}\right)\wedge\left(\forall_{x\in\partial A}\forall_{y\in\overline{A}}\forall_{t\in[0,1]}((t)x+(1-t)y)\in\overline{A}\right)$$

Since $A \subset \overline{A}$, by definition the first statement is true,

$$\forall_{x \in A} \forall_{y \in \overline{A}} \forall_{t \in [0,1]} ((t)x + (1-t)y) \in \overline{A}$$

Additionally, since the boundary of A, ∂A , is the collection of limit points of A and the limit points all exist within the neighborhood of elements in A,

$$\forall_{x \in \partial A} \forall_{y \in \overline{A}} \forall_{t \in [0,1]} ((t)x + (1-t)y) \in \overline{A}$$

Therefore,

$$\forall_{x,y\in\overline{A}}\forall_{t\in[0,1]}((t)x+(1-t)y)\in\overline{A}$$

Prove that the intersection of an arbitrary collection of convex sets $\cap_{i \in I} C_i$ is also convex.

Theorem 2. If each of the sets within the collection $C_i \subset (S,d)$ are convex, then the intersection of the collection, $\cap_{i \in I}$ is also convex.

Proof. For $\cap_{i \in I}$ to be convex, the following must be true:

$$\forall_{x,y\in\cap_{i\in I}C_i}\forall_{t\in[0,1]}(t)x + (1-t)y\in\cap_{i\in I}C_i$$

Which is the same as:

$$\forall_{x,y \in S} : \forall_{i \in I} x, y \in C_i \implies \forall_{t \in [0,1]} \forall_{i \in I} (t) x + (1-t) y \in C_i$$

Since all the sets C_i are convex, by definition:

$$\forall_{x,y \in C_i} \forall_{t \in [0,1]}(t) x + (1-t)y \in C_i$$

Therefore this is true $\forall_{i \in I}$:

$$\wedge_{i \in I} \forall_{x,y \in C_i} \implies \forall_{t \in [0,1]}(t)x + (1-t)y \in C_i$$

Which is equivalent to:

$$\forall_{x,y \in \cap_{i \in I} C_i} \forall_{t \in [0,1]}(t) x + (1-t)y \in \cap_{i \in I} C_i$$

Let $\{C_i\}_{i\in\mathbb{N}}$ be a sequence of nested convex sets in \mathbb{R}^n , i.e. $C_i\subset C_{i+1}$. Prove that $\bigcup_{i=1}^{\infty}C_i$ is also convex.

Theorem 3. For the sequence of nested convex sets in \mathbb{R}^n , $\{C_i\}_{i\in\mathbb{N}}$, a union of all the elements, $\bigcup_{i=1}^{\infty} C_i$, is also convex.

Proof. Proof by induction.

For n=1, the set $\bigcup_{i=1}^n C_i = C_1$ is convex. For n=2, the set $\bigcup_{i=1}^n C_i = C_1 \cup C_2$ is convex.

Proof. Since $C_1 \subset C_2$, $C_1 \cup C_2 = C_2$ and C_2 is convex.

Assuming for n = k, $\bigcup_{i=1}^k C_i = C_k$ is convex, then for n = k+1, $\bigcup_{i=1}^{k+1} C_i = C_{k+1}$ is convex.

Proof. Since $C_k \subset C_{k+1}$,

$$\bigcup_{i=1}^{k+1} C_i = \bigcup_{i=1}^k C_i \cup C_{k+1} = C_{k+1}$$

which is convex.

Therefore, by induction,

$$\forall_{n\in\mathbb{N}}\cup_{i=i}^n C_i$$

is convex. This implies $\bigcup_{i=1}^{\infty} C_i$.

Definition 3. A convex hull is defined as

Hull =

a)

Show that the convex hull of any open sets in \mathbb{R}^n is open.

b)

Provide an example of a closed set $A \subset \mathbb{R}^n$, such that its convex hull is not closed.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and $A \subset \mathbb{R}^n$ be a bounded set. Prove that f(A) is bounded in \mathbb{R} .

Show that the convex hull of a compact set $A \subset \mathbb{R}^n$ is compact. (*Hint:* Caratheodory theorem)