Backdoor attacks against semantic segmentation models

Author: Dominik Jambrović

Mentor: prof. dr. sc. Siniša Šegvić

Table of contents

- 1. Introduction
- 2. Backdoor attacks
- 3. Experiments Hidden backdoor attack
- 4. Experiments Influencer backdoor attack
- 5. Conclusion and future work

Introduction

Al security:

- a lot of research concerning "classic" classification models
- significantly less research concerning semantic segmentation models

Potential threats:

- adversarial attacks
- backdoor attacks

Backdoor attacks

- images with an added trigger coupled with altered labels
- goal: embedding a backdoor in the targeted model

Experiments – Hidden backdoor attack

Experimental setup

- dataset: ADE20k
- architecture: Single-Scale SwiftNet
- number of epochs: 200

Attack types - triggers

Non-semantic trigger

Semantic trigger

Attack types - labels

Input

BadNets attack

Fine-grained attack

Results

Attack type	mIoU [%]	PA [%]	ASR [%]
Benign	33.08	76.13	_
Line, BadNets	31.80	75.35	39.40
Frame, BadNets	31.92	75.47	35.25
Semantic (grass), BadNets	29.20	69.74	30.97
Line, Fine-grained	32.30	75.71	58.93
Semantic (wall), Fine-grained	32.90	75.00	76.65

Examples: BadNets attack

Examples: Fine-grained attack

Experiments – Influencer backdoor attack

Experimental setup

- dataset: Cityscapes
- architecture: Single-Scale SwiftNet
- number of epochs: 200

Influencer backdoor attack

- addition of a trigger to the input image coupled with the change of labels for victim class pixels
- conditions:
 - trigger must not cover victim class pixels
 - trigger must be completely positioned on pixels belonging to only one class

Influencer backdoor attack

- attack versions:
 - baseline attack (Influencer backdoor attack IBA)
 - attack based on the nearest neighbours (Nearest neighbour injection - NNI)
 - attack based on the change of labels for randomly selected pixels (Pixel random labeling – PRL)

Examples: IBA

Examples: NNI

Attack type	PR [%]	mIoU [%]	PA [%]	ASR [%]
Benign	-	74.76	95.60	-
IBA	1	71.20	95.04	24.22
IBA	3	71.40	95.03	44.08
IBA	5	70.86	95.01	46.82
IBA	10	70.63	94.87	53.73
IBA	15	70.36	94.79	56.38
IBA	20	70.44	94.72	58.36
NNI	1	70.74	95.00	42.14
NNI	3	70.74	94.99	57.83
NNI	5	71.69	95.03	58.60
NNI	10	70.85	94.98	61.59
NNI	15	70.95	94.90	66.06
NNI	20	70.43	94.74	67.64

Conclusion and future work

Semantic segmentation models are also vulnerable to data poisoning attacks

Hidden backdoor attack:

- Fine-grained attack with semantic trigger seems particularly dangerous
- potential future work:
 - implementation of additional triggers
 - capacity analysis of the Single-Scale SwiftNet architecture

Conclusion and future work

Influencer backdoor attack:

- NNI attack is the most successful attack version, but it isn't completely realistic
- potential future work:
 - experiments on different architectures for example, the Multi-Scale SwiftNet architecture
 - research of potential defenses against data poisoning attacks

Literature

- Hidden backdoor attack: Li, Yiming, et al. "Hidden backdoor attack against semantic segmentation models." *arXiv preprint arXiv:2103.04038* (2021).
- Influencer backdoor attack: Lan, Haoheng, et al. "Influencer backdoor attack on semantic segmentation." *arXiv preprint arXiv:2303.12054* (2023).
- slide 4, example of data poisoning: https://mathco.com/blog/data-poisoning-and-its-impact-on-the-ai-ecosystem/
- slide 6, Single-Scale SwiftNet architecture: Oršić, Marin, and Siniša Šegvić. "Efficient semantic segmentation with pyramidal fusion." Pattern Recognition 110 (2021): 107611.

Discussion