Lógica Computacional

Aula Teórica 17: Forma Normal de Skolem e Unificação

Ricardo Gonçalves

Departamento de Informática

10 de novembro de 2023

Forma Normal de Skolem

A fórmula está na FNCP e os quantificadores são todos universais.

Exemplos

- $Q(x) \vee P(x,y)$
- $\bullet \ \forall_x Q(f(x),y)$
- $\bullet \ \forall_x \forall_y P(x, f(y))$
- $\forall_x (P(g(x,y)) \land (Q(x) \lor P(x,f(x))))$

Contra-Exemplos

- $\bullet \exists_y P(x,y)$
- $\bullet \ \forall_x \exists_y f(x) = y$
- $\forall_x P(f(x), y) \lor (P(x, y) \land Q(y))$
- $\bullet \neg \forall_x (Q(x,y) \land P(x,f(x)))$

Forma Normal de Skolem

Definição

Uma fórmula φ da linguagem de primeira ordem está na Forma Normal de Skolem ou FNS, e escreve-se FNS(φ), se

$$\varphi = \forall_{x_1} \dots \forall_{x_n} \psi$$

sendo ψ uma fórmula de primeira ordem sem quantificadores tal que FNC(ψ).

Quantificadores existenciais

E se a fórmula tiver quantificadores existenciais?

Podemos transformar em algo que não tenha existenciais?

Skolemização - Ideia intuitiva

Constantes de Skolem

Quando o quantificador existencial ocorre no início da fórmula:

$$\exists_x \forall_y P(x,y)$$

Indica a existência de um elemento do domínio.

Qual? Não sabemos... mas existe.

Ideia: usar uma constante nova para representar esse elemento - constantes de Skolem.

Funções de Skolem

Quando o quantificador existencial tem universais antes, o elemento que existe depende dos valores quantificados universalmente.

Exemplo: $\forall_x \forall_y \exists_z \ Soma(x, y, z)$

Para todo o x e todo o y existe z (que depende da escolha de x e y)

Ideia: usar um símbolo de função binário novo que dado x e y devolve z correspondente - funções de Skolem

Forma Normal de Skolem

Procedimento de conversão

Seja δ tal que FNCP(δ). Vamos eliminar iterativamente cada um dos quantificadores existenciais de δ , da esquerda para a direita:

• Se δ é da forma

$$\exists_{\boldsymbol{x}} Q_{x_1}^1 \dots Q_{x_n}^n \psi$$

então obtemos

$$Q_{x_1}^1 \dots Q_{x_n}^n [\psi]_{\mathbf{a}}^x$$

onde a é uma constante nova (não ocorre em ψ)

• Para o quantificador existencial mais à esquerda:

$$\forall_{x_1} \dots \forall_{x_{i-1}} \exists_{x_i} Q_{x_{i+1}}^{i+1} \dots Q_{x_n}^n \psi'$$

obtemos

$$\forall_{x_1} \dots \forall_{x_{i-1}} Q_{x_{i+1}}^{i+1} \dots Q_{x_n}^n [\psi]_{f(x_1,\dots,x_{i-1})}^{x_i}$$

onde f é um símbolo de função de aridade i-1 novo.

Forma Normal de Skolem

Dada φ uma fórmula de primeira ordem

- Converter φ na FNCP (aula passada)
- 2 Eliminamos quantificadores existenciais (slide anterior)

O resultado, chamado de Skolemização de φ e representado por φ^S , está na FNS

Conversão para a Forma Normal de Skolem

Seja
$$\varphi = \neg(\forall_x \exists_y P(x,y,z) \lor \exists x \forall_y \neg Q(x,y,z))$$

Como φ não está na FNCP, faz-se primeiro essa conversão.

$$\begin{array}{lll} \varphi & \equiv & \neg \forall_x \exists_y P(x,y,z) \wedge \neg \exists_x \forall_y \neg Q(x,y,z) \text{ [Passo 2]} \\ & \equiv & \exists_x \neg \exists_y P(x,y,z) \wedge \forall_x \neg \forall_y \neg Q(x,y,z) \text{ [Passo 2]} \\ & \equiv & \exists_x \forall_y \neg P(x,y,z) \wedge \forall_x \exists_y \neg \neg Q(x,y,z) \text{ [Passo 2]} \\ & \equiv & \exists_x \forall_y \neg P(x,y,z) \wedge \forall_x \exists_y Q(x,y,z) \text{ [Passo 2]} \\ & \equiv & \exists_{x_1} \forall_{x_2} \neg P(x_1,x_2,z) \wedge \forall_{x_3} \exists_{x_4} Q(x_3,x_4,z) \text{ [Passo 3]} \\ & \equiv & \exists_{x_1} \forall_{x_2} (\neg P(x_1,x_2,z) \wedge \forall_{x_3} \exists_{x_4} Q(x_3,x_4,z)) \text{ [Passo 4]} \\ & \equiv & \exists_{x_1} \forall_{x_2} \forall_{x_3} \exists_{x_4} (\neg P(x_1,x_2,z) \wedge Q(x_3,x_4,z)) \text{ [Passo 4]} \end{array}$$

Está na FNCP. Vamos agora eliminar os quantificadores existenciais.

Conversão para a Forma Normal de Skolem

$$\varphi \equiv \exists_{x_1} \forall_{x_2} \forall_{x_3} \exists_{x_4} (\neg P(x_1, x_2, z) \land Q(x_3, x_4, z))$$

Eliminar quantificadores existencial - esquerda para a direita:

$$\exists_{\mathbf{x}_1} \forall_{x_2} \forall_{x_3} \exists_{x_4} (\neg P(x_1, x_2, z) \land Q(x_3, x_4, z))$$

 \rightsquigarrow

$$\forall_{x_2}\forall_{x_3}\exists_{x_4}(\neg P(a,x_2,z)\land Q(x_3,x_4,z))$$

e continuamos ~>

$$\forall_{x_2} \forall_{x_3} (\neg P(a, x_2, z) \land Q(x_3, f(x_2, x_3), z))$$

$$\forall_{x_2}\forall_{x_3}(\neg P(a,x_2,z) \land Q(x_3,f(x_2,x_3),z))$$
 é a Skolemização de φ

Conversão para a Forma Normal de Skolem

Atenção: φ^S não é equivalente a φ

Basta comparar $\exists_x P(x)$ e P(a):

Suponhamos que $M, \rho \Vdash \exists_x P(x)$

Então existe $u \in U$ tal que $M, \rho[x := u] \Vdash P(x)$

 $\mathsf{Mas}...\ \underline{a}_I$ pode não ser u

Logo, pode acontecer que $M, \rho \not\Vdash P(a)$

Apesar de não ser equivalente...

 φ^S é possível se e só se φ é possível

 φ^S é contraditória se e só se φ é contraditória

Resultado

Teorema de Skolem

Para qualquer fórmula de primeira ordem φ temos que:

- FNS (φ^S)
- 2 φ é possível se e só se φ^S é possível

A prova faz-se por indução no número de quantificadores existenciais da fórmula.

Caso interessante - Teorema de Skolem

Seja $\varphi = \exists_x \psi \text{ com FNS}(\psi)$. Então $\varphi^S = [\psi]_a^x$

Suponhamos que φ é possível.

Então existe estrutura de interpretação $\mathcal{M}=(U,I)$ e atribuição ρ tal que $\mathcal{M}, \rho \Vdash \exists_x \psi$.

Ou seja, existe $u \in U$ tal que $\mathcal{M}, \rho[x := u] \Vdash \psi$.

Podemos então considerar $\mathcal{M}'=(U,I')$ em tudo igual a \mathcal{M} , excepto, possivelmente, que $\underline{a}_{I'}=u$.

Logo $\mathcal{M}', \rho \Vdash [\psi]_a^x$, o que significa que $\varphi^S = [\psi]_a^x$ é possível.

Relembrando a resolução...

Exemplo em Primeira Ordem

Considere-se o seguinte conjunto de cláusulas, assumindo as variáveis universalmente quantificadas.

$$\{\{\neg Q(x,y), P(f(x),y)\}, \{\neg P(f(x),y), R(x,y,z)\}\}$$

- Um resolvente das duas cláusulas em cima é a cláusula $R_1 = \{\neg Q(x,y), R(x,y,z)\}.$
- Considere-se agora a cláusula $\{\neg P(z,y), R(x,y,z)\}$. Não conseguimos usar resolução directamente com a primeira cláusula do conjunto acima, mas substituindo f(x) por z obtém-se a cláusula $\{\neg P(f(x),y), R(x,y,f(x))\}$ para a qual já podemos encontrar um resolvente: $R_2 = \{\neg Q(x,y), R(x,y,f(x))\}$.
- Nota: R_2 é consequência de R_1 . Se R_1 é satisfeita (para qualquer z), então é satisfeita para z = f(x) (que é R_2).

Cláusulas de Primeira Ordem

Definição

Considere-se uma fórmula $\varphi \in F^X_\Sigma$ tal que FNS(φ), *i.e.*,

$$\varphi = \forall_{x_1} \dots \forall_{x_n} \psi$$

sendo ψ uma fórmula sem quantificadores tal que FNC(ψ).

- Como todas as variáveis estão universalmente quantificadas (as variáveis livres estão *implicitamente* quantificadas), φ pode ser representada como um conjunto de cláusulas.
- Definimos $C(\varphi)$ como o conjunto das cláusulas que se obtêm de ψ (que está na FNC).

Cláusulas de Primeira Ordem

Resultados

- Para qualquer $\varphi \in F_{\Sigma}^X$ tal que FNS(φ), existe um único $C(\varphi)$ (a menos do nome das variáveis)
- $\bullet \ \ {\rm Para} \ \ {\rm quaisquer} \ \varphi, \psi \in F^X_\Sigma {\rm , \ se} \ C(\varphi) = C(\psi) \ \ {\rm ent} \ \ {\rm fo} \ \ \varphi \equiv \psi.$

Estes resultados derivam dos respectivos da Lógica Proposicional.

Motivação

Considere:

$$C_1 = \{ \neg P(z,y), R(x,y,z) \} \text{ e } C_2 = \{ \neg P(f(x),y), R(x,y,f(x)) \}.$$
 No exemplo atrás, usámos uma substituição (z por $f(x)$) que converteu C_1 em C_2 , o que permitiu encontrar resolvente com $C_3 = \{ \neg Q(x,y), P(f(x),y) \}.$

Unificação - motivação

Para encontrar um resolvente de duas cláusulas é às vezes necessário encontrar substituições que tornem iguais duas fórmulas atómicas.

A esse processo se chama Unificação.

Substituição

Definição

Uma substituição é uma função $\sigma: X \to T^X_\Sigma$.

Dada $\sigma: X \to T^X_\Sigma$ uma substituição, $t \in T^X_\Sigma$ e $\varphi \in F^X_\Sigma$,

- $[t]^{\sigma}$ denota o termo que se obtém de t substituindo simultaneamente as suas variáveis de acordo com σ
- $[\varphi]^{\sigma}$ denota a fórmula que se obtém de φ substituindo simultaneamente as suas variáveis livres de acordo com σ .

Dadas duas substituições σ_1 e σ_2 , por $\sigma_1\sigma_2$ representamos o resultado de aplicar σ_2 ao resultado de σ_1 , isto é, para cada $x \in X$, temos que $\sigma_1\sigma_2(x) = [\sigma_1(x)]^{\sigma_2}$.

Substituição

Exemplo

Seja $\varphi=P(x,y)\to \exists_x Q(x)$ e σ tal que $\sigma(x)=f(y)$ e $\sigma(y)=g(y)$, obtemos:

$$[\varphi]^{\sigma} = [P(x,y) \to \exists_x Q(x)]_{f(y),g(y)}^{x,y} = P(f(y),g(y)) \to \exists_x Q(x)$$

Atenção: substituir simultaneamente.

Quando queremos apenas indicar que valor uma substituição σ dá a algumas variáveis (o que na prática é o caso), usamos a notação:

$$\sigma = \{x_0/t_0, \dots, x_n/t_n\}$$

e assumimos que $\sigma(x) = x$, para $x \notin \{x_0, \dots, x_n\}$

Unificação

Definição

Um conjunto de literais \mathcal{L} é unificável se existe uma substituição σ que aplicada a todos os elementos de \mathcal{L} torna o conjunto singular (*i.e.*, os vários literais convertem-se num só). Nesse caso σ diz-se um unificador de \mathcal{L} .

Exemplo

Seja $\mathcal{L} = \{P(f(x), y), P(z, w)\}.$

- Como unificar?
- Tome-se $\sigma = \{z/f(x), y/w\}$. Obtemos:
- $\bullet \ [\{P(f(x),y),P(z,w)\}]^{\sigma} = \\ \{[P(f(x),y)]^{\sigma},[P(z,w)\}]^{\sigma} = \\ \{P(f(x),w)\} \text{conjunto singular}$

Unificação

Unificações não são necessariamente únicas.

Considere-se novamente $\mathcal{L} = \{P(f(x), y), P(z, w)\}.$

• Já vimos que se escolhermos $\sigma = \{z/f(x), y/w\}$ obtemos:

$$[\mathcal{L}]^{\sigma} = \{ P(f(x), w) \}$$

• Mas se escolhermos $\sigma' = \{z/f(x), w/y\}$ obtemos:

$$[\mathcal{L}]^{\sigma'} = \{ P(f(x), y) \}$$

• E se escolhermos $\sigma'' = \{x/a, \ z/f(a), \ y/b, \ w/b\}$ obtemos:

$$[\mathcal{L}]^{\sigma''} = \{ P(f(a), b) \}$$

Unificador mais geral

Definição

Dado um conjunto de literais \mathcal{L} , uma substituição σ^* é um unificador mais geral de \mathcal{L} , o que se denota por $umg(\mathcal{L})$, se

- σ^* é um unificador de $\mathcal L$
- qualquer outro unificador σ de \mathcal{L} é tal que $\sigma^*\sigma=\sigma$.

Teorema

Um conjunto finito de literais é unificável se e só se tem um unificador mais geral.

Prova: Algoritmo de unificação.

Algoritmo de unificação

Dado um conjunto de literais ${\cal L}$

Ideia: Construir uma sequência $(\mathcal{L}_0, \sigma_0), \dots, (\mathcal{L}_n, \sigma_n)$ tal que:

- \mathcal{L}_n é singular
- $\sigma_0 \dots \sigma_n$ é o unificador mais geral de $\mathcal L$

Se em algum passo não conseguimos construir $(\mathcal{L}_i, \sigma_i)$, podemos concluir que \mathcal{L} não é unificável.

Algoritmo de unificação

Seja $\mathcal L$ um conjunto finito de literais.

 $\bullet \ (\mathcal{L}_0, \sigma_0) = (\mathcal{L}, \emptyset).$

Para $k \geq 0$:

Forma Normal de Skolem

- Se \mathcal{L}_k é singular então retornar: " $\sigma_0 \dots \sigma_k$ é unificador mais geral de \mathcal{L} "
- Caso contrário: existem dois literais $L_i, L_j \in \mathcal{L}_k$ que diferem em pelo menos um símbolo. Seja n a menor posição em que L_i e L_j diferem.
 - Se a posição n num deles corresponde a uma variável z e no outro ao início de um termo t que não tem z, então: $\sigma_{k+1} = \{z/t\}$ e $\mathcal{L}_{k+1} = [\mathcal{L}_k]^{\sigma_{k+1}}$
 - Se algumas das hipótese acima não se verifica, então retornar: " \mathcal{L} não é unificável"

Algoritmo de unificação: primeiro exemplo

Seja $\mathcal{L} = \{R(f(g(x)), a, x), R(f(g(b)), a, b), R(f(y), z, b)\}.$ $(\mathcal{L}_0, \sigma_0) = (\mathcal{L}, \emptyset)$

Tome-se $\sigma_1 = \{y/g(b)\}$ obtém-se

$$\mathcal{L}_1 = [\mathcal{L}_0]^{\sigma_1} = \{ R(f(g(x)), a, x), R(f(g(b)), a, b), R(f(g(b)), z, b) \}$$

Como \mathcal{L}_1 não é singular, continuamos.

Tome-se $\sigma_2 = \{x/b\}$ e obtém-se

$$\mathcal{L}_2 = [\mathcal{L}_1]^{\sigma_2} = \{R(f(g(b)), \mathbf{a}, b), R(f(g(b)), \mathbf{z}, b)\}$$

Como \mathcal{L}_2 não é singular, continuamos.

Toma-se $\sigma_3 = \{z/a\}$ e obtém-se

$$\mathcal{L}_3 = [\mathcal{L}_2]^{\sigma_3} = \{R(f(g(b)), a, b)\}$$

Como \mathcal{L}_3 é singular, o unificador mais geral de \mathcal{L} é $\sigma=\sigma_0\sigma_1\sigma_2\sigma_3$

Algoritmo de unificação: segundo exemplo

Seja
$$\mathcal{L} = \{R(f(g(x)), a, x), R(f(g(a)), a, b), R(f(y), a, b)\}.$$

$$(\mathcal{L}_0, \sigma_0) = (\mathcal{L}, \emptyset)$$

Tomando $\sigma_1 = \{y/g(a)\}$ obtém-se

$$\mathcal{L}_1 = [\mathcal{L}_0]^{\sigma_1} = \{R(f(g(\mathbf{x})), a, x), R(f(g(\mathbf{a})), a, b)\}$$

Como \mathcal{L}_1 não é singular, procura-se nova substituição.

Tomando $\sigma_2 = \{x/a\}$ obtém-se

$$\mathcal{L}_2 = [\mathcal{L}_1]^{\sigma_2} = \{R(f(g(a)), a, \mathbf{a}), R(f(g(a)), a, \mathbf{b})\}$$

Como \mathcal{L}_2 não é singular, procura-se nova substituição.

Como na posição onde os dois literais diferem nenhum deles tem uma variável, o algoritmo retorna " \mathcal{L} não é unificável".

Algoritmo de unificação: terceiro exemplo

Seja
$$\mathcal{L} = \{R(f(g(x)), a, b), R(f(g(a)), a, b), R(f(x), a, b)\}\$$

 $(\mathcal{L}_0, \sigma_0) = (\mathcal{L}, \emptyset)$

Tomando $\sigma_1 = \{x/g(a)\}$ obtém-se

$$\mathcal{L}_1 = [\mathcal{L}_0]^{\sigma_1} = \{R(f(g(\mathbf{g(a)})), a, b), R(f(g(\mathbf{a})), a, b)\}$$

Como \mathcal{L}_1 não é singular, procura-se nova substituição.

Como na posição onde os dois literais diferem nenhum deles tem uma variável, o algoritmo retorna " $\mathcal L$ não é unificável".

Algoritmo de unificação: quarto exemplo

Seja
$$\mathcal{L} = \{P(x), P(f(x))\}.$$

 $(\mathcal{L}_0, \sigma_0) = (\mathcal{L}, \emptyset)$

Como \mathcal{L}_0 não é singular, procura-se substituição.

Na posição onde os dois literais diferem:

- um deles tem uma variável
- o outro tem o início de um termo que contém essa variável

O algoritmo retorna " \mathcal{L} não é unificável".