Network Basics 1

ML with Graphs

Department of Computer Science University of Massachusetts, Lowell Spring 2021

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Graph Theory
 - Node degree
 - Graph density
 - Complete Graph
 - Distance and Diameter
 - Adjacency matrix
 - Graph Connectivity
 - Reachability
 - Sub-graphs
 - Graph Types

Graph Theory

- A graph consists of
 - N: a set of nodes (items, entities, people, etc), and
 - E: a set of links or edges between nodes
- Graph is a way to specify relationships / links amongst a set of nodes.
- We define
 - $N=|N| \rightarrow \text{ size of } N$
 - $E=|E| \rightarrow \text{ size of } E$

- Nodes i and j are adjacent or neighbors if:
 - There is an edge btw them!
 - $\cdot i \in \mathbb{N}$
 - $\cdot j \in \mathbb{N}$
 - $(i,j) \in \mathbf{E}$

Node Degree *d*(*i*)

UMASS

- Given Node *i*, its degree d(i) is:
 - the number nodes adjacent to it.

	Actor	Lives near:	Degree
n_1	Allison	Ross, Sarah	2
n ₂	Drew	Eliot	1
n3	Eliot	Drew	1
n4	Keith	Ross, Sarah	2
n5	Ross	Allison, Keith, Sarah	3
n_6	Sarah	Allison, Keith, Ross	3

$$l_1 = (n_1, n_5)$$

$$l_2 = (n_1, n_6)$$

$$l_3 = (n_2, n_3)$$

$$l_4 = (n_4, n_5)$$

$$l_5 = (n_4, n_6)$$

$$l_6 = (n_5, n_6)$$

Graph Density

How many edges are possible?

j b

•
$$(N-1) + (N-2) + (N-3) + ... + 1 = N * (N-1) / 2$$

Graph Density- Cnt.

- Graph Density of a given graph G is determined by:
 - the proportion of all possible edges that are present in the graph.
 - with N nodes and E edges, graph density is:

Density =
$$2 * E / N * (N-1)$$

• If all edges are present, then all nodes are adjacent (neighbors), and the graph is a *Complete Graph*.

What is the density of a complete graph?

Distance and Diameter

- Distance btw node i and j: d(i,j)
 - length of the **shortest path** between i and j
- Diameter of a graph
 - the maximum value of d(i,j) for all i and j

The path with min number of edges.

distance

Diameter of graph = max d(i, j) = d(1, 5) = 3

What is the distance and diameter of a complete graph?

Adjacency Matrix

Each row or column represents a node!

$$A = A^{T}$$

Properties of adjacency matrix → next session

Graph Connectivity

- Indirect connections between nodes:
 - Walks
 - Trails
 - Paths

Graph Connectivity- Cnt.

- Walk
 - A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.
- Trail
 - A trail is a walk with distinct edges
- Path
 - A path is a walk with distinct nodes & edges.
- The length of a walk, trail, or path is the number of edges in it.

Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

Sample Walk:

$$W=n_1 l_2 n_4 l_3 n_2 l_3 n_4$$

Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

Sample Trail: $T=n_4 l_3 n_2 l_4 n_3 l_5 n_4 l_2 n_1$

Path

 A path is a walk in which all nodes and all edges are distinct.

Path

 A path is a walk in which all nodes and all edges are distinct.

Sample Path:

$$P=n_1 l_2 n_4 l_3 n_2$$

- Is this a Walk? Trail? Path?
 - We call a closed path is a Cycle!

$$n_2 l_4 n_3 l_5 n_4 l_3 n_2$$

• If there is a **path between nodes** *i* and *j*, then *i* and *j* are reachable from each other.

Connected Graph

- A graph is connected if **every pair of its nodes** are reachable from each other
 - i.e. there is a path between them.

Disconnected Graph

How can we make this graph connected?

Connected Graph

and this graph disconnected?

Sub-graphs

• Graph G_s is a sub-graph of G if its nodes and edges are a subset of G's nodes and edges respectively.

Sub-graphs- Cnt.

• Graph G_s is a sub-graph of G if its nodes and edges are a subset nodes and edges of G respectively.

Graph Types

- Several types of graphs:
 - Bipartite graphs
 - Digraphs
 - Multigraphs
 - Hypergraphs
 - Weighted/Signed

Graph Types- Bipartite Graphs

- A bipartite graph is an undirected graph in which
 - nodes can be partitioned into two (disjoint) sets N_1 and N_2 such that:
 - $(u, v) \in E$ implies either $u \in N_1$ and $v \in N_2$ or vice versa
 - So, all edges go between the two sets N_1 and N_2 but not within N_1 or N_2 .

- Digraphs or Directed Graphs
 - Edges are directed
- Adjacency:
 - There is a direct edge btw nodes!
 - $\cdot i \in N$
 - $\cdot j \in \mathbb{N}$
 - $(i,j) \in E$

Graph Types- Digraphs- Cnt.

- Node Indegree and Outdegree
 - Indegree
 - The indegree of a node, $d_I(i)$, is the number of nodes that link to i,
 - Outdegree
 - The outdegree of a node, $d_O(i)$, is the number of nodes that are linked by i,
- Indegree: number of edges terminating at *i*.
- Outdegree: number of edges originating at *i*.

Graph Types- Digraphs- Cnt.

 $A != A^T$

- Density of Digraph:
 - Number of all possible edges in Digraph?

- Connectivity
 - Walks
 - Trails
 - Paths

The same as before just links are directed!

Graph Types- Multigraphs

- A Multigraph (or multivariate graph) G consists of:
 - a set of nodes, and
 - two or more sets of edges, $E^+ = \{E_1, E_2, ..., E_r\}$, r is the number of edge sets.

Multigraph 2.

Graph Types- Multigraphs- Cnt.

- Number of edges btw any two nodes in a multigraph?
 - $E^+ = \{E_1, E_2, ..., E_r\}, r \text{ is the number of sets of edges}$
 - Undirected multigraph
 - [0, r]
 - Directed multigraph
 - · [0, 2*r]

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

Graph Types- Hypergraphs- Cnt.

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

$$\begin{split} \mathbf{N} &= \{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_4, \, \mathbf{v}_5, \, \mathbf{v}_6, \, \mathbf{v}_7 \} \\ \\ \mathbf{E} &= \{\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3, \, \mathbf{e}_4 \} = \\ \\ &\{ \{\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3 \}, \, \{\mathbf{v}_2, \, \mathbf{v}_3 \}, \, \{\mathbf{v}_3, \, \mathbf{v}_5, \, \mathbf{v}_6 \}, \, \{\mathbf{v}_4 \} \} \end{split}$$

Graph Types- Hypergraphs- Cnt.

- Applications:
 - Recom. systems (communities as edges),
 - Image retrieval (correlations as edges),
 - Bioinformatics (interactions or semantic types as edges).

$$N=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

$$\mathbf{E} = \{e_1, e_2, e_3, e_4\} =$$

$$\{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$$

Weighted/Signed Graphs

- Edges may carry additional information
 - □ Tie strength → how good are two nodes as friends?
 - □ Distance → how long is the distance btw two cities?
 - Delay → how long does the transmission take btw two cities?
 - □ Signs → two nodes are friends or enemies?

Reading

• Ch. 22 Elementary Graph Algorithms [CLRS]

Network Basics 2

ML with Graphs

Department of Computer Science University of Massachusetts, Lowell Spring 2021

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Connected Components
- Breadth-First Search
- Depth-First Search
- Shortest Path Algorithm
 - Dijkstra's algorithm

Connected Components

- Connected component of a graph is a subset of nodes such that:
 - every node in the subset has a path to every other;
 and
 - the subset is not part of a bigger component.

Figure 2.5: A graph with three connected components.

Connected Components

- Connected component of a graph is a subset of nodes such that:
 - every node in the subset has a path to every other;
 and
 - the subset is not part of a bigger component.

Figure 2.5: A graph with three connected components.

UMASS

Connected Components- Cnt.

Figure 2.7: A network in which the nodes are students in a large American high school, and an edge joins two who had a romantic relationship at some point during the 18-month period in which the study was conducted [49].

Breadth & Depth-First Search

- General techniques for traversing graphs!
 - Start from a given node s (i.e. start node) and visit all nodes and edges in the graph.
- Compute the connected components of graph!
 - Use components to determine whether graph is connected!
 - How?
 - Use components to determine if there is a path btw node pairs!
 - How?

Breadth-First Search

- Start with s
- Visit all neighbors of s
 - these are called level-1 nodes
- Visit all neighbors of level-1 nodes
 - these are called level-2 nodes
- Repeat until all nodes are visited.
 - Each Node is only visited once.
- Key Point:
 - All level-k nodes should be visited before any level-(k+1) node!

• Graph G:

Example 1. BFS -Cnt.

- BFS traversal:
 - Distance to root at level-i?
 - Components?
 - Connectivity?
 - Paths?

Depth-First Search

- Starts from s
- Explores as far as possible along each branch before backtracking.
 - Visit a neighbor of s [say v₁]
 - Visit a neighbor of v₁ [say v₂]
 - · Repeat until all nodes are visited.

- Given a weighted directed graph and two nodes *s* and *t*, find the shortest path from *s* to *t*.
 - Cost of path = sum of edge weights in path

- Dijkstra's algorithm
- The Bellman-Ford algorithm
- The Floyd-Warshall algorithm
- Johnson's algorithm
- Etc.

• Shortest path from *s* to *t*?

Shortest Path Algorithms- Cnt.

- Shortest Path= s-2-3-5-t
- Cost of path = 9 + 23 + 2 + 16 = 48.

- Applications
 - Small World Phenomenon
 - Internet packet routing
 - Flight reservations
 - Driving directions

•••

Dijkstra algorithm

- Weighted Directed graph G = (N, E),
 - s: source node
 - *t*: target node
 - $l_{(u,v)}$: weight of the edge btw nodes u and v
 - -d(u): shortest path distance from s to u.
 - sum of edge weights in path
- We aim to compute d(t)!

Dijkstra algorithm- Cnt.

• Initialization?

$$d(s) = 0$$

$$d(u) = ∞$$
 for all other nodes

Dijkstra algorithm- Cnt.

- To find the shortest path from *s* to *t*:
 - ⁿ Maintain a set of *explored nodes* S for which we have determined the shortest path distance from s to any $u \in S$.
 - Repeatedly expand S.

- Repeatedly expand S?
 - Repeatedly update *d(.)* for the unexplored nodes:

if
$$d(v) > d(u) + l_{(u,v)}$$

then $d(v) \leftarrow d(u) + l_{(u,v)}$

• add v with smallest d(v) to S.

Dijkstra algorithm- Cnt.

•
$$d(s) \leftarrow 0$$

- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅ ←

Set of explored nodes

Set of unexplored nodes

- $Q \leftarrow N \rightarrow Q$ is a set maintaining N S
- while $\mathbf{Q} \neq \emptyset$
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q}) \leftarrow$
 - **S**← **S**∪ {u} ←
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u,v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

Returns node $u \in Q$ that has minimum d(u)

Add it to explored nodes

Update d(.) for all neighbors of u: this is called **relaxation**!

•
$$d(s) \leftarrow 0$$

- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q** ≠ Ø
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {*u*}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u,v)}$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\Box \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each $v \in Adj(u)$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$Q = \{s, b, c, d, e\}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ do
$$u \leftarrow$$
 Extract-Min(Q)

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each $v \in Adj(u)$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S = \{s\}$$

$$Q = \{b, c, d, e\}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each $v \in Adj(u)$

• **do if**
$$d(v) > d(u) + l_{(u,v)}$$

• then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S = \{s\}$$

$$Q = \{b, c, d, e\}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\Box$$
 do $d(v) \leftarrow \infty$

•
$$Q \leftarrow N$$

$$ightharpoonup$$
 □ do $u \leftarrow$ Extract-Min(\mathbf{Q})

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

• then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S=\{s,c\}$$

$$\mathbf{Q}$$
={b, d, e}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {*u*}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S=\{s,c\}$$

$$\mathbf{Q}$$
={b, d, e}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$\mathbf{S} = \{s, c\}$$

$$\mathbf{Q}$$
={b, d}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S=\{s, c, e\}$$

$$\mathbf{Q}$$
={b, d}

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each $v \in Adj(u)$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S=\{s, c, e\}$$

$$\mathbf{Q}$$
={b, d}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$\mathbf{S}$$
={s, c, e} b \mathbf{Q} ={d}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b\}$$

$$\mathbf{Q} = \{d\}$$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {u}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b\}$$

$$\mathbf{Q} = \{d\}$$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - $\Box \mathbf{do} d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$\mathbf{S}$$
={s, c, e, b} d \mathbf{Q} ={}

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while **Q**≠∅

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

- **S**← **S**∪ {*u*}
- for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b, d\}$$

$$\mathbf{Q} = \{\}$$

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$
 - □ **do** $u \leftarrow \text{Extract-Min}(\mathbf{Q})$
 - **S**← **S**∪ {u}
 - for each $v \in Adj(u)$
 - **do if** $d(v) > d(u) + l_{(u, v)}$
 - then $d(v) \leftarrow d(u) + l_{(u, v)}$

$$S = \{s, c, e, b, d\}$$

$$\mathbf{Q} \text{=} \{ \}$$

•
$$d(s) \leftarrow 0$$

• for each
$$v \in N - \{s\}$$

$$\neg \mathbf{do} d(v) \leftarrow \infty$$

•
$$Q \leftarrow N$$

□ **do**
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$

• for each
$$v \in Adj(u)$$

• **do if**
$$d(v) > d(u) + l_{(u, v)}$$

• then
$$d(v) \leftarrow d(u) + l_{(u, v)}$$

$$S = \{s, c, e, b, d\}$$

• Dijkstra's algorithm computes the shortest distances btw a start node and all other nodes in the graph (not only a target node)!

Assumptions:

- the graph is connected, and
- the weights are nonnegative

Dijkstra's algorithm- Analysis

- $d(s) \leftarrow 0$
- for each $v \in N \{s\}$
 - \Box **do** $d(v) \leftarrow \infty$
- **S** ← ∅
- $Q \leftarrow N$
- while $\mathbf{Q} \neq \emptyset$

□ do
$$u \leftarrow \text{Extract-Min}(\mathbf{Q})$$
• $\mathbf{S} \leftarrow \mathbf{S} \cup \{u\}$
• for each $v \in Ad(u)$
• do if $d(v) > d(u) + l_{(u,v)}$
□ then $d(v) \leftarrow d(u) + l_{(u,v)}$
degree (u)
times

Time = Θ ($N \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{Relaxation}}$), Handshaking Lemma!

Dijkstra's algorithm- Analysis- Cnt.

Time =
$$\Theta$$
 ($N \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{Relaxation}}$)

Q	$T_{ m EXTRACT-MIN}$ $T_{ m DECREASE-KEY}$		Total
Array	O(N)	<i>O</i> (1)	$O(N^2)$

Reading

Ch.24 Single Source Shortest Paths [CLRS]

Network Basics 3

Advanced Social Computing

Department of Computer Science University of Massachusetts, Lowell Fall 2020

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Triadic closure and Bridges
- Neighborhood overlap
- The Strength of Weak Ties
- Structural Holes
- Node Centrality
- Edge Centrality
- Homophily
- Snapshot Algorithm
- Network Segregation

Triadic Closure

- If two **nodes** in a network have a **neighbor** in common, then there is an increased likelihood they will become **connected** themselves.
 - Reasons for Triadic Closure:
 - Opportunity, Trust, Incentives
- Clustering Coefficient
 - A measure to capture the prevalence of Triadic Closure
 - Defined for nodes

$$CF(A) = \frac{Number\ of\ connections\ btw\ A's\ friends}{Possible\ Number\ of\ connections\ btw\ A's\ friends} = 1/6$$

Bridge

- An edge is bridge if deleting it would put its two ends into two different connected components.
 - Bridges provide access to parts of the network that are unreachable by other means!

Local Bridge

- An edge such that its endpoints have no friends in common! → edge not in a triangle!
 - deleting a local bridge increases the distance btw its endpoints to a value strictly > 2.

- Weak ties (acquaintances) connect us to new sources of information.
 - This dual role as weak connections but also valuable links to hard-to-reach parts of the network - is the surprising strength of weak ties.

A measure to capture bridgeness of an edge!

number of nodes who are neighbors of both A and B number of nodes who are neighbors of at least one of A or B'

Nodes	Neighborhood overlap
A-E	2/4
A-F	1/6
A-B	0/8 (Overlap = 0 for
	local bridges)

Edges with very small neighborhood overlap can be considered as "almost" local bridges

1. Relation btw neighborhood overlap of an edge and its tie strength?

- 1. Relation btw neighborhood overlap of an edge and its tie strength?
 - Neighborhood overlap should grow as tie strength Grows.

2. How weak ties serve to link different communities that each contain large number of stronger ties?

- 2. How weak ties serve to link different communities that each contain large number of stronger ties?
 - Delete edges from the network one at a time, start with the weakest ties first!
 - The giant component shrinks rapidly.

Structural Holes

Structural hole: the "empty space" in the net btw 2 sets of nodes that don't interact closely!

B has early access to info!

B is a gatekeeper and controls the ways in which groups learn about info. She has power!

B may try to prevent triangles from forming around the local bridges she is part of!

How long these local bridges last before triadic closure produces short-cuts around them?

Node Centrality

- Degree centrality
 - A node is central if it has ties to many other nodes
- Closeness centrality
 - A node is central if it is "close" to other nodes
- Betweenness centrality
 - A node is central if other nodes have to go through it to get to each other

Edge Centrality

Betweenness:

- Let's assume 1 unit of "flow" will pass over all shortest path btw any pair of nodes A and B.
- Betweenness of an edge is the total amount of flow t carries!
- If there are *k* shortest path btw A and B, then 1/k units of flow will go along each shortest path!

Girvan-Newman Algorithm:

- Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness

Homophily

- Links connect people with *similar* characteristics.
- Homophily has two mechanisms for link formation:
 - Selection:
 - Selecting friends with similar characteristics
 - Individual characteristics drive the formation of links
 - Immutable characteristics
 - Social Influence (socialization)
 - Modify behaviors to make them close to behaviors of friends
 - Existing links influence the individual characteristics of the nodes
 - Mutable characteristics

Homophily- Cnt.

- Focal Closure:
 B and C people, A focus
- **Selection**: B links to similar C (common focus)

(b) Focal closure

Homophily- Cnt.

- Membership Closure: A and B people, C focus
- Social Influence: B links to C influenced by A

Snapshot Algorithm

Tracking link formation in large scale datasets based on the above mechanisms

- 1) Take 2 snapshots of network at different times:S(1), S(2).
- 2) For each k, find all pairs of nodes in S(1) that are not directly connected but have k common friends.
- 3) Compute T(k) as the fraction of these pairs connected in S(2).

 estimate for the probability that a link will form btw 2 people with k common friends.
- 4) Plot T(k) as a function of k T(o) is the rate of link formation when it does not close a triangle

Spatial Model of Segregation

Schelling model

Local preferences of individuals can produce unintended global patterns.

Effects of homophily in the formation of ethnically and racially **homogeneous neighborhoods** in cities.

People live near others like them!!

(a) Chicago, 1940

(b) Chicago, 1960

Color the map wrt to a given race:

--Lighter: Lowest percentage of the race

--Darker: highest percentage of the race.

(Optional) Reading

- Ch.o2 Graphs [NCM]
- Ch.o3 Strong and Weak Ties [NCM]