Relatório 05: Fornecimento de Potências Ativa e Reativa entre o Gerador Síncrono e o Barramento Infinito

Batista, H.O.B.¹, Alves, W. F. O.²
Matriculas: 96704¹, 96708²
Departamento de Engenharia Elétrica,
Universidade Federal de Viçosa, Viçosa - MG.
e-mails: hiago.batista@ufv.br¹, werikson.alves@ufv.br²

I. Introdução

Quando um ou mais geradores síncronos estão em paralelo com um barramento infinito, a potência ativa é controlada pela velocidade, enquanto a potência reativa pela excitação do enrolamento de campo. Em um barramento infinito a tensão (V_T) e a frequência (f) do barramento são constantes. [2] A ligação de dois geradores síncronos em paralelo com um barramento no qual existe uma carga ligada é mostrada na figura 1.

Figura 1. Ligação de dois geradores em paralelo com um barramento. [2]

Como pode ser observado na figura 1, ao se conectar o gerador em paralelo com a o barramento infinito, a carga recebe corrente de ambos, dessa forma, ambos alimentam a carga. Considerando que a carga se manteve constante, a potência demanda por ela não se altera, portanto, a soma das potências do barramento e do gerador deve ser a potência da carga. Esse mesmo raciocínio é valido para as potências ativas e reativas, com suas devidas considerações.

II. OBJETIVOS GERAIS E ESPECÍFICOS

Este relatório tem por objetivo analisar como ocorre as distribuições de potências ativa e reativa entre dois

geradores operando em paralelo entre si e com a rede elétrica. Para a simulação da carga foi utilizado um motor de indução trifásico, ligado em estrela, ligado no barramento onde está conectado à rede elétrica e os dois geradores. [2]

III. Materiais

- Duas máquinas de corrente contínua funcionando como motor, ligadas em shunt;
- Duas máquinas síncronas funcionando como gerador, ligadas em estrela;
- Uma máquina de indução trifásica, ligada em estrela;
- Duas fontes de tensão contínua de 220 V/ 1 A;
- Duas fontes de tensão contínua de 220 V/ 10 A;
- Dois reostatos para controle da excitação do enrolamento de campo da máquina de corrente contínua;
- Três wattímetros monofásicos;
- Seis lâmpadas de 220 V;
- Multímetros e um tacômetro;
- Dois disjuntores tripolares;

IV. Desenvolvimento

Para a realização do ensaio é montado um protótipo no laboratório conforme mostrado na figura 2 para a ligação de um gerador. Para o segundo gerador o protótipo é o mesmo onde no final todo o sistema fica em paralelo, ligados no mesmo ponto do barramento.

Figura 2. Ligação de um gerador em paralelo com a rede elétrica. [2]

Após efetuado o paralelo dos dois geradores com o barramento, conforme figura 2, foram feitas as medidas das correntes, potências ativas entre a rede elétrica e o barramento, entre cada gerador e o barramento e entre o motor de indução e o barramento.

A. Variação da Potência Ativa

Para a verificação da contribuição de cada gerador no fornecimento da potência ativa, foram realizadas as medições, as quais são apresentadas na tabela I, descritas nas etapas abaixo.

Obs.: C.A.C é contribuição de cada gerador para alimentação da carga.

- Primeira etapa: Somente a rede elétrica alimentando o motor de indução;
- Segunda etapa: Fazer o paralelo dos geradores 1 e 2 com a rede elétrica, observando o ocorrido (geradores flutuando na rede elétrica);
- Terceira etapa: Aumentar a velocidade do gerador 1, atuando na potência mecânica fornecida no seu eixo;
- Quarta etapa: Diminuir a velocidade do gerador 1, atuando na potência mecânica fornecida no seu eixo;
- Quinta etapa: Aumentar a velocidade do gerador 2, atuando na potência mecânica fornecida no seu eixo;
- Sexta etapa: Diminuir a velocidade do gerador 2, atuando na potência mecânica fornecida no seu eixo;

B. Variação da Potência Reativa

Já para a contribuição de cada gerador no fornecimento de potencia reativa foi realizado de forma semelhante, e em seguida foi preenchido a tabela II. Entretanto, na tabela II as potências reativas foram calculadas, mediante o conhecimento das potências ativas, da tensões e das correntes.

- Primeira etapa: Com os geradores em paralelo, com os reostatos do campo shunt das máquinas de corrente contínua ajustados no momento do paralelismo dos geradores com o barramento e as mesmas correntes de campo dos geradores síncronos no momento de efetuado o paralelo;
- Segunda etapa: Aumentar a excitação do enrolamento de campo do gerador 1;
- Terceira etapa: Diminuir a excitação do enrolamento de campo do gerador 1;
- Quarta etapa: Voltar a corrente de campo deste gerador no momento de efetuado o paralelo;
- Quinta etapa: Aumentar a excitação do enrolamento de campo do gerador 2;
- Sexta etapa: Diminuir a excitação do enrolamento de campo do gerador 2;

V. Resultados e Discussões

Tabela I Valores medidos das potências ativas, tensões, correntes e fator de potência entre a rede elétrica e o barramento e a contribuição de cada gerador.

_	Rede Elétrica					
Etapas	Barramento					
	P_1	V_{F1}	I_1	$cos(\Theta_1)$		
1	-	220	0,99	-		
2	795	220	4,17	0,5003		
3	960	220	4,47	0,563612		
4	240	220	2,46	0.256031		
5	-	220	2,59	-		
6	300	220	2,62	0,300495		
	C.A.C. Gerador Síncrono					
	P_2	V_{F2}	I_2	$cos(\Theta_2)$		
1	480	220	-	-		
2	45	220	0,93	0.126983		
3	60	220	0,88	0.178931		
4	300	220	0,89	0.884602		
5	60	220	0,9	0.174955		
6	60	220	0,9	0.174955		
	C.A.C. Motor de Indução					
	<i>P</i> ₃	V_{F3}	I_3	$cos(\Theta_3)$		
1	660	220	1,75	0.9897		
2	960	220	2,46	1		
3	1080	220	3,25	0.872082		
4	180	220	1,35	0.349909		
5	240	220	1,61	0.386403		
6	240	220	1,63	0.386403		

Tabela II Valores medidos das potências reativas, tensões, correntes e fator de potência entre a rede elétrica e o barramento e a contribuição de cada gerador.

	Rede	Elétrica			
0.			$cos(\Theta_1)$		
			0.155132		
			0.199132		
	_		0.030412		
	-		0.310773		
	-		0.176425		
1517.70			0.193915		
Gerador Síncrono					
761.87	220	0.91	0.173032		
600.69	220	0.92	0.171151		
285.33	220	0.92	0.171151		
1159.69	220	0.91	0.173032		
1338.89	220	0.98	0.17692		
1492.84	220	0.9	0.262432		
C.A.C.					
Motor de Indução					
Q_3	V_{F3}	I_3	$cos(\Theta_3)$		
464.84	220	1.23	0.128016		
376.05	220	0.99	0.079525		
353.13	220	0.94	0.167510		
725.33	220	1.91	0.082439		
8483.41	220	22.27	0.024747		
1104.31	220	2.95	0.186816		
	Q2 761.87 600.69 285.33 1159.69 1338.89 1492.84 Q3 464.84 376.05 353.13 725.33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Analisando os resultados obtidos nas tabelas I e II, observa-se que a tensão e a frequência permaneceram constantes durante a operação em paralelo com a rede elétrica. Isto ocorre devido a conexão com o barramento infinito que nada mais é do que um sistema muito maior que os parâmetros do gerador em questão, e assim o gerador não causa variação nos parâmetros em questão do barramento infinito.

Dessa forma, quando se aumenta a velocidade da máquina primária que aciona um dos geradores ou um aumento na excitação do enrolamento de campo de um dos geradores, e considerando o fato de que a frequência e a tensão devem ser mantidas constantes, ocorre um fluxo de potência ativa e reativa coordenado, gerando uma alteração no ângulo de potência. Assim, o valor da potência ativa e reativa do barramento são alterados, às custas de se manter tanto a tensão quanto a frequências constantes.

VI. Conclusões

Portanto, foi possível analisar e visualizar como ocorre as distribuições de potências ativa e reativa entre dois geradores operando em paralelo entre si e com a rede elétrica, quais parâmetros são fixos e quais variam. Além disto, foi possível observar que quando conectado a um barramento infinito, o aumento da alimentação no circuito de campo não faz com que a rotação (frequência) se altere.

Referências

- [1] Stephen J Chapman. Fundamentos de máquinas elétricas. AMGH editora, 2013.
- [2] J. T. Resende. Laboratorio de Máquinas Elétricas 2 Pratica 05.
 D.E.L.-UFV, 2022.