

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

High-performance Fe₅C₂@CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons

Shin Wook Kang ^a, Kyeounghak Kim ^b, Dong Hyun Chun ^a, Jung-Il Yang ^a, Ho-Tae Lee ^a, Heon Jung ^a, Jung Tae Lim ^c, Sanha Jang ^a, Chul Sung Kim ^c, Chan-Woo Lee ^d, Sang Hoon Joo ^{e,*}, Jeong Woo Han ^{b,*}, Ji Chan Park ^{a,*}

- ^a Clean Fuel Laboratory, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, Daejeon 34129, South Korea
- ^b Department of Chemical Engineering, University of Seoul, 163 Siripdae-Ro, Dongdaemun-Gu, Seoul 02504, South Korea
- ^cDepartment of Physics, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul 02707, South Korea
- ^d R&D Platform Center, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, Daejeon 34129, South Korea
- ^eSchool of Energy & Chemical Engineering, Ulsan National Institute of Science & Technology, Ulsan 44919, South Korea

ARTICLE INFO

Article history: Received 26 December 2016 Revised 3 March 2017 Accepted 3 March 2017 Available online 27 March 2017

Keywords: Selective Fischer-Tropsch synthesis Amorphous carbon Ordered mesoporous carbon Density functional theory Iron-carbide

ABSTRACT

Highly-loaded and well-dispersed Fe_5C_2 nanoparticles within ordered mesoporous carbon CMK-3 (Fe_5C_2 @CMK-3) were prepared via a simple melt infiltration method. They were successfully applied to high-temperature Fischer-Tropsch synthesis, and showed high CO conversion (91%) and activity ($5.1 \times 10^{-4} \, \mathrm{mol_{co}} \, \mathrm{g_{Fe}^{-1}} \, \mathrm{s^{-1}}$) as well as good selectivity (38 wt%) for gasoline-range hydrocarbons (C_5-C_{12}). The catalytic property of Fe_5C_2 @CMK-3 was newly interpreted, based on theoretical data obtained by computational simulations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Fischer–Tropsch synthesis (FTS) has been a key technology that can produce a high quality petroleum substitute by coupling CO and H_2 gases derived from fossil resources such as coal, natural gas, and biomass [1,2]. Using this reaction for selective, high-yield production of synthetic fuel has been a significant challenge [3]. Typically, gasoline and lower-olefin products are effectively obtained by high-temperature FTS (HT-FTS) operated at temperatures of 300–350 °C using an iron-based catalyst [4]. Recently, some research has been reported for ways to provide more selective production of lower-olefins (C_2 – C_4) [5–7]. However, profound studies and efficient new ways to produce gasoline-range hydrocarbons (C_5 – C_{12}), without additional use of zeolite materials as a cracking catalyst, are rare [8].

Until now, iron-based nanocatalysts with carbon support (e.g. activated carbon, charcoal, carbon nanotubes, carbon nanofibers,

E-mail addresses: shjoo@unist.ac.kr (S.H. Joo), jwhan@uos.ac.kr (J.W. Han), jcpark@kier.re.kr (J.C. Park).

and graphene) have been used for HT-FTS due to their high specific surface areas and good thermal stability [9–14]. The recent use of ordered mesoporous carbon materials with high surface area, large pore volume and uniform mesopores enabled the uniform dispersion of tiny nanoparticles and efficient mass transfer [15–17].

Generally, alkali metals serving as a base promoter (e.g. Na, K, Cs) have been exploited in order to improve the catalytic activity of the catalysts [18-21]. However, when using a large amount of base promoter, the selectivity and productivity for gasoline-range hydrocarbons tend to decrease, because of the high basicity of the active surfaces formed by the promoters [22]. In the present work, we report Fe₅C₂ nanoparticles (4.6 nm) encapsulated within amorphous carbon CMK-3 (Fe₅C₂@CMK-3) as an efficient catalyst for selective production of gasoline-range hydrocarbons. The catalyst, which was prepared via melt infiltration of hydrated iron nitrate salt and a subsequent thermal activation process preoptimized by screening various temperatures and gas conditions, showed higher activity and better selectivity for C₅-C₁₂ hydrocarbons than those in graphene. Furthermore, the catalytic property of Fe₅C₂@CMK-3 was newly interpreted, based on theoretical data obtained by computational simulations.

^{*} Corresponding authors.