

FERMI Data Analysis

Documentation

Simon Schreck

January 2018

Stockholm University
Department of Physics, Chemical Physics Division

Content

- Experiment Overview
- Data acquisition and data structure
- Data sources
- Data reduction
 - Data collection
 - To come... Data Binning

Experiment Overview

Each black box in the diagram represents a data source that is described in more detail on the following pages.

All data sources are read out shot-to-shot.

All data sources are read out shot-to-shot.

Note: Not for all runs all data sources are saved!

Time of flight mass spectrometer

TFY XAS detector

Data Acquisition and Folder Structure

For XAS Runs

For one XAS run (e.g. 'XAS001') we recorded several FEL photon energies and for each FEL photon energy several delays. For each delay we recorded a number of shots - typically a few 100.

This resulted in the following folder structure for the raw data:

work

Delay File Structure (HDF5)

Raw data file

▼ 5 E286p00eV_Ver_367673584.h5 The delay files are in HDF5 format. ExperimentalComments ▼ 📟 FEL Each delay file contains many FelSource variables of different format. Only ► Cin KB PadresShutter a few of them are of interested for ₩ ValveDPI3 us. A few examples on the right. A few examples: ▼ 🖷 Laser Baslerlmage 1 XAS detector image Baslerlmage2 XAS001 BaslerInt1 combined BaslerInt2 E285p50eV_Ver Delay stage ■ DelayPosVector rawdata m DelaySeedps E285p50eV_Ver_367660832.h5 The Delay vs FEL E285p50eV Ver 367661244.h5 Energy1 PF E285p50eV_Ver_367661545.h5 Lecroy E285p50eV_Ver_367661851.h5 Time of flight mass spec Wave1 F E285p50eV_Ver_367662145.h5 C PAM F E285p50eV_Ver_367662451.h5 Bunch (Shot) ID the bunches E285p50eV_Ver_367662775.h5 photon_diagnostics E285p50eV_Ver_367663070.h5 ▶ Called Delay_Line E285p50eV_Ver_367663375.h5 ▶ ☐ FEL02 E285p50eV_Ver_367663680.h5 ▶ Call Filters work Online/Upstream Spectrometer Spectrometer E286p00eV_Ver Pixel2micron rawdata Mavelength (FF E286p00eV_Ver_367673228.h5 WavelengthSpan mhor_area E286p00eV_Ver_367673584.h5 mhor_pos E286p00eV_Ver_367673919.h5 mhor_sigma E286p00eV_Ver_367674247.h5 the hor_spectrum the hor_spectrum is a second the hor_spectrum. E286p00eV_Ver_367674572.h5 m vert_pos E286p00eV_Ver_367674901.h5 m vert_sigma E286p00eV_Ver_367675237.h5 m vert_spectrum E286p00eV_Ver_367675561.h5 ▼ m photon_source

5

SeedLaser

work

Data Sources

Online/Upstream Spectrometer

The **online/upstream spectrometer** is a CCD camera that sees a small fraction of the incident x-ray beam, which is diffracted (energy dispersed) onto the camera.

We use only the projection onto the dispersive direction, which is called ,hor_spectrum' and saved under:

/photon_diagnostics/Spectrometer/hor_spectrum

From ,hor_spectrum' we extract:

- Incident intensity (I0) = area under peak
- Incident photon energy = peak position
- Bandwidth of incident photon energy = peak width

Delay stage

The **delay stage** is a linear drive that moves two mirrors which ultimately changes the path length of the optical laser and with this the delay between X-ray and optical laser pulse.

The delay stage position in mm is saved under:

/Laser/DelayPosVector

With the delay stage position and the time-zero position the delay can be calculated for each shot in femtoseconds.

Laser diode

The **laser diode** is a photodiode that sees a fraction of the incident optical laser beam and with this supplies an intensity that is proportional to the laser intensity on the sample.

The laser diode reading in µJ is saved under:

/Laser/Energy1

For now we don't use the laser diode in the analysis, but it is saved in the processes data in case we need it later.

TFY XAS detector

The **TFY** (total fluorescence yield) **XAS** detector is a CCD camera that looks at the phosphor screen behind our MCP x-ray detector. Each bright spot, which we called a <u>blob</u>, on the detector corresponds to one photon.

The integrated intensity on the camera (after proper background treatment) is promotional to the total fluoresce coming from the sample and with this prontoional to the absorption.

The camera image is saved under:

/Laser/BaslerImage2

For some runs also the integrated intensity is saved directly under:

/Laser/BaslerInt2

XES Spectrometer

The **XES Spectrometer** is a CCD camera in the same way as for the TFY XAS detector. However, since the x-rays are dispersed by a grating before hitting the XES CCD camera, one dimension of the camera is the dispersive direction.

Projection onto the dispersive direction under consideration of the curvature yields the x-ray emission spectrum.

The camera image is saved under:

/Laser/BaslerImage1

For some runs also the integrated intensity is saved directly under:

/Laser/BaslerInt1

XES analysis is not yet included in the scripts! (As of Jan 2018)

The above image is the sum of many 100 shots. On a single shot there will be only a 1 to a few blobs!

Time of Flight Mass Spectrometer

The **time of flight mass spectrometer** records molecules of a specific mass that desorbed from the surface as a function of time after the optical laser hit the sample.

In the data source the arrival time of each count is saved in

units of 5e-9 sec.

The arrival times for each shot are saved under:

/Lecroy/Wave1

Data Reduction Structure

The reduction of the raw data is done in two steps:

Step 1: Data Collection (script: 16_data_collection.ipynb)

- In this step all relevant data from the raw HDF5 files (delay files) are collected and saved in a new HDF5 file.
- For the more complex data sources (e.g. XAS detector or online/upstream spectrometer) the data are reduced to more compact formats. E.g. for the XAS detector the image is reduced to a single number representing the integrated intensity in the image.
- The data from all delay files within one photon energy folder are combined in a single HDF5 file with the name run_photonenergy_polarization_col.h5 e.g.: XAS001_E285p50eV_Ver_col.h5

 This combined file is saved in the ,combined folder of the run folder.
- In the combined files the data from each data source is saved for each shot.

Step 2: Data Binning

- In this step all combined files for a number of selected runs (or a single run) are loaded.
- Filters are applied on a shot-to-shot basis on all shots in the selected runs. E.g. Filtering out all shots with an incident intensity below a certain value.
- All *good shots* (the ones not filtered out) are then binned into a 2d-raster with dimensions photon energy X delay, which provides delay dependent X-ray absorption spectra.
- The binned data are saved in new HDF5 file called XAS_RunNo1_RunNoLast_bin.h5 (e.g.: XAS_001_003_bin.h5) inside the folder 'Binned' in the main data path (data_path).

Data Collection

(script: 16_data_collection.ipynb)

The data collection script consists of three cells:

1. Initialization

Initialize python by loading packages and defining some settings.

This cell needs to be run only once after starting the juyter notebook.

2. Define Parameters

Define which data to collect and parameters for e.g. the XAS detector camera.

This cell needs to be run whenever you have changed a parameter defined here.

3. Do the Data Collection

This cell performs the main data collection.

In the top part of the cell you can define which run(s) (run, run type, beamtime) to collect the data from.

Also you have to set correct main data path.

3. Do the Data Collection

(Cell 3 in script: 16_data_collection.ipynb)

The main data collection consists of a three nested loops with the following structure:

1. Loop over selected runs

- Collect data which are global for the entire run (harmonic, polarization)

1.1. Loop over photon energy folders for this run

- Check that all data that should be collected do exist (checks this for the first delay file in the first photon energy folder)

1.1.1. Loop over delay files for this photon energy folder

- Collect the data for all delay files
- Save the collected data for this photon energy folder in the combined file.

Collected Date in the Combined File

After running the Data Collection

Global data (not shot-to-shot)

FEL_Avg_Spectrum and FEL_eV

each 1d array with length 1000

Average spectrum of all shots form the online/upstream spectrometer (FEL_Avg_Spectrum is the intensity and FEL_eV is the photon energy)

fitfail_counter

integer number

Number of shots for which the gaussian fit of the FEL spectrum failed. Typically 0...10

xas_thr

floating point number

Intensity threshold for the XAS meteor images. This number is set in the data collection parameters.

harmonic

integer number

FEL harmonic

Polarisation

integer number

FEL polarization: 1 = linear vertical, 0 = linear horizontal

• t0

floating point number

Zime zero position on the delay stage in mm as it was set during data acquisition.

NOTE: THIS IS NOT THE FINAL CALIBRATED TIME ZERO!

Collected Date in the Combined File

After running the Data Collection

XAS001_E286p00eV_Ver_col.h5 FEL_Avg_Spectrum FEL_eV Gauss_amps Gauss_centers Gauss_widths fitfail_counter LASER mdelay_pos IIII laser_int MASSSPEC m counts ∰ tof XAS mas_int mas_tfy mxas_thr XES maxes_int mbunch_id m harmonic polarization

Shot-to-shot data

Gauss_amps, Gauss_centers and Gauss_width

each 1d array with length of number of shots

Amplitude, central photon energy and photon energy width of the incident x-ray pulse retrieved from a gauss fit to the online spectrometer.

i0

1d array with length of number of shots
Incident x-ray intensity calculated as the intensity in the online

Incident x-ray intensity calculated as the intensity in the online spectrometer over a region of interest.

delay_position and laser_int

each 1d array with length of number of shots
Delay stage position in mm and laser diode reading in μJ

MASSSPEC/counts

1d array with length of number of shots Number of mass spec counts for each shot

MASSSPEC/tof

1d array with length = sum of all mass spec counts

Time of flight of each mass spec count. If the first shot had e.g. three mass spec counts, the first three values in tof give the time of flight of these three counts.

xas int and xas tfy

each 1d array with length of number of shots

Both give the integrated intensity on the XAS detector (difference is the thresholding). - **USE xas_tfy FOR NOW!**

xes_int

Integrated intensity on the XES detector

• bunch_id

each 1d array with length of number of shots
Unique number_identifying each shot. Monotonically increasing from shot to shot.

Data Binning

(script: 26_data_binner.ipynb)

The data binning script filters the collected data on a shot-to-shot basis and bins all good shots into incident photon energy and delay. It consists also of three cells:

1. Initialization

Initialize python by loading packages and defining some settings.

This cell needs to be run only once after starting the juyter notebook.

2. Define Parameters

Define which data to use as XAS intensity.

Define based on which data to filter the data.

Define binning parameters (bin edges and/or centers)

Define time zero

3. Do the Data Binnning

This cell performs the main data binning.

In the top part of the cell you define which run(s) (run, run type, beamtime) to perform the binning on.

Also you have to set correct main data path, which needs to be consistent with the path in the data collector.

(script: 26_data_binner.ipynb)

Say we have a Run with the following 20 shots:

(Values are arbitrary and not in a typical order of magnitude)

Shot No	hv_in (gauss_center)	bandwidth (gauss_width)	delay	I ₀	XAS intensity
1	285.0	0.5	-0.5	75	8
2	287.3	0.2	1.4	62	5
3	285.3	0.4	0.3	85	9
4	286.7	1.1	2.3	10	2
5	287.0	0.7	-0.9	65	5
6	286.2	0.65	0.45	74	6
7	286.0	1.5	1.8	6	0
8	288.9	0.1	2.7	73	8
9	287.9	0.3	0.2	82	7
10	288.5	0.35	1.9	63	7
11	289.0	0.45	-0.1	68	7
12	285.1	0.6	2.4	91	10
13	286.0	0.45	1.9	59	6
14	286.1	1.0	2.2	68	6
15	287.5	0.9	2.5	47	4
16	288.0	0.8	1.0	67	7
17	285.0	0.32	0.1	82	9
18	286.6	0.85	1.7	12	1
19	288.6	0.72	2.7	41	5
20	288.0	0.4	2.0	96	10

(script: 26_data_binner.ipynb)

Say we have a Run with the following 20 shots: (Values are arbitrary and not in a typical order of magnitude)

Shot No	hv_in (gauss_center)	bandwidth (gauss_width)	delay	l ₀	XAS intensity
1	285.0	0.5	-0.5	75	8
2	287.3	0.2	1.4	62	5
3	285.3	0.4	0.3	85	9
4	286.7	1.1	2.3	10	2
5	287.0	0.7	-0.9	65	5
6	286.2	0.65	0.45	74	6
7	286.0	0.6	1.8	6	0
8	288.9	0.1	2.7	73	8
9	287.9	0.3	0.2	82	7
10	288.5	0.35	1.9	63	7
11	289.0	0.45	-0.1	68	7
12	285.1	0.6	2.4	91	10
13	286.0	0.45	1.9	59	6
14	286.1	0.5	2.2	18	6
15	287.5	0.9	2.5	47	4
16	288.0	0.8	1.0	67	7
17	285.0	0.32	0.1	82	9
18	286.6	0.85	1.7	12	1
19	288.6	0.72	2.7	41	5
20	288.0	0.4	2.0	96	10

Step 1: Filtering based on...

...bandwidth: min = 0, max = 0.7

...10: min = 20, max = infinity

120

(script: 26_data_binner.ipynb)

Say we have a Run with the following 20 shots: (Values are arbitrary and not in a typical order of magnitude)

Shot No	hv_in (gauss_center)	bandwidth (gauss_width)	delay	I ₀	XAS intensity	
1	285.0	0.5	-0.5	75	8	
2	287.3	0.2	1.4	62	5	
3	285.3	0.4	0.3	85	9	
4	286.7	1.1	2.3	10	2	
5	287.0	0.7	-0.9	65	5	
6	286.2	0.65	0.45	74	6	
7	286.0	0.6	1.8	6	0	
8	288.9	0.1	2.7	73	8	
9	287.9	0.3	0.2	82	7	-
10	288.5	0.35	1.9	63	7	
11	289.0	0.45	-0.1	68	7	
12	285.1	0.6	2.4	91	10	
13	286.0	0.45	1.9	59	6	Delay
14	286.1	0.5	2.2	18	6	۵
15	287.5	0.9	2.5	47	4	
16	288.0	0.8	1.0	67	7	
17	285.0	0.32	0.1	82	9	
18	286.6	0.85	1.7	12	1	
19	288.6	0.72	2.7	41	5	
20	288.0	0.4	2.0	96	10	21

Step 1: Filtering based on...

...bandwidth: min = 0, max = 0.7

...10: min = 20, max = infinity

Step 2: Binning into ...

... $hv_in: Bin width = 1.0 eV$

...delay: Bin edges = [-1, 0, 1, 2, 3]

XAS Intensity

10

(script: 26_data_binner.ipynb)

Say we have a Run with the following 20 shots:

(Values are arbitrary and not in a typical order of magnitude)

Step 1: Filtering based on...

...bandwidth: min = 0, max = 0.7

...10: min = 20, max = infinity

Step 2. Binning into ...

...hv_in: Bin width = 1.0 eV

...delay: Bin edges = [-1, 0, 1, 2, 3]

XAS Intensity

10

Binned data file

▼ SXAS_027_027_bin.h5

▼ BinSettings

E_bin_type

E_bin_width
delay_bin_type
delay_bin_unit
delays_edges_man

▼ ■ BinnedData

E_bin_centers
Shots_2dmatrix

TFY_2dmatrix

TFY_2dmatrix_err

MAS_2dmatrix

XAS_2dmatrix_err

TAS_2dmatrix_v2

TAS_delay_all

XAS_delay_all_err

XAS_hv_all

XAS_hv_all_err

delays_fs

delays_mm

mi0_2dmatrix

mi0_2dmatrix_err

▼ ■ FilterSettings

filter_i0

filter_ms

filter_width

miO_hi_thr

mi0_low_thr

ms_hi_thr

ms_low_thr

mwidth_hi_thr

mwidth_low_thr

TimeZero

XAS_source

m runs

Filter and bin setting defined in the parameters cell

Binned data:

E_bin_centers, delays_fs and delays_mm

1d arrays with photon energy axis and delay axis in fs and mm

• i0_2dmatrix and i0_2dmatrix_err

2d arrays (1st dimension is delay, 2nd dimension is photon energy) Incident intensity per shot, _err contains the standard error for each bin

TFY_2dmatrix and TFY_2dmatrix_err

2d arrays (1st dimension is delay, 2nd dimension is photon energy)
Intensity per shot from XAS source (not normalized by I0)
_err contains the standard error for each bin

XAS_2dmatrix and XAS_2dmatrix_err

2d arrays (1st dimension is delay, 2nd dimension is photon energy) XAS intensity per shot calculated as sum(tfy_i / i0_i) err contains the standard error for each bin

XAS 2dmatrix v2

Same as XAS_2dmatrix, but calculated as sum(tfy_i) / sum (i0_i). For big enough data sets XAS_2dmatrix_v2 and XAS_2dmatrix are identical

XAS_hv_all and XAS_hv_all_err

1d array (same length as E_bin_centers)

Projection of XAS_2dmatrix onto photon energy axis —> XAS spectrum summed over all delays

XAS_delay_all and XAS_delay_all_err

1d array (same length as delays_fs and delays_mm)

Projection of XAS_2dmatrix onto delay axis —> XAS delay trace summed over all photon energies.