2.2 Fuzzy Sets (Cont'd)

Crisp sets: $A \begin{cases} 1 \\ 0 \end{cases}$

Concepts and thoughts are abstract and imprecise \neq random.

Fuzzy logic → approximate knowledge

Membership function (MF) grade.

Consider:

Height:

 $H=6.001\,ft$

"Tall" MF grade: 99.9%

H' = 5.999 ft

"not Tall" MF grade: 0.01%

Fuzzy set:

 $A = \{x, \mu_A(x)\}$

 $x = \text{variable} \in X$

 $\mu_A = MF$

X = universe of discourse

1) Fuzzy sets with a discrete non-ordered universe

 $X = \{Montreal, Toronto, Vancouver\}$

C = "desired city to live in"

 $C = \{(Mon, 0.5), (Tor, 0.8), (Van, 0.7)\}$

Graphical representation:

2) Fuzzy set with a discrete ordered universe

$$X = \{0, 1, 2, 3, 4\}$$

Fuzzy set A = "sensible number of cars in a family" $A = \{(0, 0.1), (1, 0.8), (2, 1.0), (3, 0.4), (4, 0.1)\}$

Graphical representation:

3) Fuzzy sets with a continuous space

$$X = \text{"ages"} (0 \sim 120)$$

Fuzzy set B = "about 40 years old" $B = \{(x, \mu_B(x)), x \in X\}$

Graphical representation:

$$\mu_B(x) = \frac{1}{1 + \left(\frac{x - 40}{10}\right)^4}$$

- Subjective (*X*, *MF*)
- Not random

4) Other fuzzy set representations

For a discrete, non-ordered universe:

$$A = \frac{\mu_A(x_1)}{x_1} + \frac{\mu_B(x_2)}{x_2} + \frac{\mu_C(x_3)}{x_3} + \cdots$$

e.g.

$$C = \frac{0.5}{Mon} + \frac{0.8}{Tor} + \frac{0.7}{Van}$$

For a discrete, ordered universe:

$$A = \frac{0.1}{0} + \frac{0.8}{1} + \frac{1.0}{2} + \frac{0.4}{3} + \frac{0.1}{4}$$

For a continuous space:

$$B = \frac{\mu_B(x)}{x}$$

$$B = \left[\frac{1}{1 + \left(\frac{x - 40}{10}\right)^4}\right] / x$$

If the universe space X is a continuous space, we can partition X into several fuzzy sets.

Consider:

$$X = \text{"age"}$$

Partitions:

y M O "young", "middle aged", "old" $\mu_Y(x)$, $\mu_M(x)$, $\mu_O(x)$, where $x \in X$

2.3 Other Concepts of Fuzzy Sets

1) Support

$$support(A) \rightarrow \{x | \mu_A(x) > 0\}$$

2) Core

$$core(B) \rightarrow \mu_B(x) = 1$$

3) Normality

 $normality(C) \to \max\{\mu_C(x)\} = 1$

4) Cross-over Points

$$\mu_B(x_0) = \mu_C(x_0) = 0.5$$

$$x_0 = \text{a cross-over point}$$

this is a cross-over point,
but doesn't have specified
indication. If no specified
indication, grade = 0.5

5) Fuzzy singletons

Basically, a fuzzy set in discrete form.

Diagnosis:

Class 1, Class 2, ...

6)
$$\alpha - cut$$

$$B=\{x,\mu_B(x)|_{\mu_A(x)\geq\alpha}\}$$

• Strong
$$\alpha - cut$$

$$B = \{x, \mu_B(x) | \mu_A(x) > \alpha\}$$

7) Convexity

Fuzzy sets are convex functions.

8) Fuzzy Numbers

A fuzzy number is a fuzzy set

- $\rightarrow \text{normality}$
- → convexity (monotonically increasing, followed by monotonically decreasing, or constant)

9) Bandwith

$$x_2 - x_1 =$$
bandwith

$$x_2-x_1=\text{bandwith} \\ \mu_A(x_1)=\mu_A(x_2)=0.5$$

10) Symmetry

compared

Table 2.1: Some properties of fuzzy sets

Property name	Relation	
Commutativity	$A \cap B = B \cap A$ $A \cup B = B \cup A$	
Associativity	$(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$	
Distributivity	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
Absorption	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	
Idempotency (Idem = same; potent = power) (Similar to unity or identity operation)	$A \cup A = A$ $A \cap A = A$	
Exclusion: Law of excluded middle Law of contradiction	$A \cup A' \subset X$ $A \cap A' \supset \phi$	
DeMorgan's Laws	$(A \cap B)' = A' \cup B'$ $(A \cup B)' = A' \cap B'$	
Boundary conditions	$A \cup X = X$ $A \cap X = A$ $A \cup \phi = A$ $A \cap \phi = \phi$	

2.4 Set Operations

1) Subset

Consider fuzzy set A & B

If *A* is a subset of *B*:

2) Union (Disjunction) - OR

Given A & B

$$C = A \cup B$$

$$\mu_C(x) = \max\{ \mu_A(x), \ \mu_B(x) \}$$

3) Intersection (Conjunction) – AND

Given A & B

$$C = A \cap B$$

$$\mu_C(x) = \min\{ \mu_A(x), \ \mu_B(x) \}$$

4) Complement (Negation) – NOT

Given A & B

 $not\ A \ or\ \bar{A}$ (fuzzy set)

5) Cartesian Product / Co-product

 $A \sim \text{fuzzy set in } X$ "different universes / domains" $B \sim \text{fuzzy set in } Y$

Cartesian product $A \times B$ is in $X \times Y$

$$\mu_{A \times B}(x, y) = \min\{ \mu_A(x), \ \mu_B(y) \}$$

Cartesian co-product A + B is in X + Y

$$\mu_{A+B}(x,y) = \max\{ \mu_A(x), \ \mu_B(y) \}$$

2.4 Membership Functions (MF)

1) Triangular Membership Functions

$$\mu_{A}(x; a, b, c) = \begin{cases} 0 & when \ x \le a \\ \left(\frac{x-a}{b-a}\right) & when \ a < x < b \\ \left(\frac{c-x}{c-b}\right) & when \ b < x < c \\ 0 & when \ x > c \end{cases}$$

In MATLAB:

 $trimf(x, [a \ b \ c])$

2) Trapezoidal Membership Functions

$$\mu_{A}(x; a, b, c, d) = \begin{cases} 0 & when \ x < a \\ \left(\frac{x - a}{b - a}\right) & when \ a \le x < b \\ 1 & when \ b \le x < c \\ \left(\frac{d - x}{d - c}\right) & when \ c \le x \le d \\ 0 & when \ x > d \end{cases}$$

In MATLAB:

 $trapmf(x, [a \ b \ c \ d])$

NOTE: Triangular, and trapezoidal membership functions are not continuous, which means the derivatives functions do not exist (equal to zero).

The following membership functions are continuous:

3) Gaussian Membership Functions

$$\mu_A = gauss(x; c, \sigma) = G(x) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^2}$$

$$c = \text{center}$$

$$\sigma = \text{spread}$$

In MATLAB: $gaussmf(x; [c, \sigma])$

$$\mu'(x) = DG(x) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^2} \cdot \left[-\frac{1}{2} \cdot 2\left(\frac{x-c}{\sigma}\right) \cdot \frac{1}{\sigma} \right]$$

4) Generalized Bell Membership Functions

$$\mu_A = bell(x; a, b, c) = \frac{1}{1 + \left|\frac{x - c}{a}\right|^{2b}}$$

Figure 2.8. The effects of changing parameters in bell MFs: (a) changing parameter a; (b) changing parameter b; (c) changing parameter c; (d) changing a and b simultaneously but keeping their ratio constant. (MATLAB file: allbells.m)

In MATLAB:

gbellmf(x; [a, b, c])

5) Sigmoid Membership Functions

$$\mu(x) = sig(x; a, c) = \frac{1}{1 + ex p[-a(x - c)]}$$

In MATLAB:

sigmf(x;[a,c])

$$\mu'(x) = DS(x) = -1[1 + e^{-a(x-c)}]^{-2}e^{-a(x-c)} \cdot (-a)$$

0 \le x < \infty

2.5 Fuzzy Operations

MFs [0, 1]

 $A \sim [0, 1]$

 $B \sim [0, 1]$

 $C \sim A \cup B$

 $D \sim A \cap B$

$$[0,1] \times [0,1] \rightarrow [0,1]$$

1) Triangular Norm (T-Norm) – Generalized Intersection

 $a = \mu_A(x)$

 $b=\mu_B(x)$

T = (a, b), aTb

Properties in table below.

2) T-Conorm (S-Norm)

Properties in table below.

Table 2.2: Some properties of a triangular norm

Item description	T-norm (triangular norm)	S-norm (T-conorm)
Function	$T: [0, 1] \times [0, 1] \to [0, 1]$	Same
Nondecreasing in each argument	If $b \ge a$, $d \ge c$ then $bTd \ge aTc$	Same
Commutative	aTb = bTa	Same
Associative	(aTb)Tc = aT(bTc)	Same
Boundary conditions	aT1 = a aT0 = 0 with a, b, c, $d \in [0, 1]$	aS0 = a $aS1 = 1$
Examples	Conventional: $\min(a, b)$ Product: ab Bounded max (bold intersection): $\max[0, a+b-1]$ General: $1-\min[1, ((1-a)^p+(1-b)^p)^{1/p}]$ $p \ge 1$ $\max[0, (\lambda+1)(a+b-1)-\lambda ab]$ $\lambda \ge -1$	Conventional: $\max(a, b)$ Set addition: $a + b - ab$ Bounded min (bold union): $\min[1, a + b]$ General: $\min(1, (a^p + b)^p)^{1/p}$ $p \ge 1$ $\min[1, a + b + \lambda ab]$ $\lambda \ge -1$
DeMorgan's Laws	aSb = 1 - (1 - a) T(1 - b) aTb = 1 - (1 - a) S(1 - b)	

Example 2.3 (Similar to Example 2.13)

Use DeMorgan's law to determine the S-norm corresponding to max(x, y), and T-norm corresponding to min(x, y).

Solution 2.3

$$xSy = 1 - (1 - x)T(1 - y)$$

$$T \to \min$$

$$= 1 - \min[(1 - x), (1 - y)]$$

$$= \begin{cases} 1 - (1 - y) = y; & x < y \\ 1 - (1 - x) = x; & x \ge y \end{cases}$$

$$xSy = \max(x, y)$$

Example 2.4 (Similar to Example 2.14)

Prove that the min operator is the largest T-norm and the max operator is the smallest S-norm.

Solution 2.4

Nondecreasing, boundary conditions

$$xTy \le 1Ty = y$$

 $xTy \le xT1 = x$
 $xTy \le \min(x, y)$