General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-159879) ROTOR REDESIGN FOR A HIGHLY LOADED 1800 FT/SEC TIP SPEED FAN, 2 Final Report (Pratt and Whitney Aircraft Group) 185 p HC A09/MF A01 CSCL 21E

N81-12087

Unclas G3/07 29421

NASA

ROTOR REDESIGN FOR A HIGHLY LOADED 1800 FT/SEC TIP SPEED FAN II. FINAL PERFORMANCE REPORT

by

C.R. BOLT, D. LEE and P.W. McDONALD

December 1980

UNITED TECHNOLOGIES CORPORATION Pratt & Whitney Aircraft Group Commerical Products Division

DEC 1980

RECEIVED

NASA STIFACILITY

ACCESS DEPT.

191515151515151

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA-Lewis Research Center Contract NAS3-20591

FOREWORD

The work described herein was performed under NASA Contract NAS3-20591 by the United Technologies Corporation, Pratt & Whitney Aircraft Group, Commercial Products Division, Hartford, Connecticut under the direction of Mr. N. T. Monsarrat, Program Manager. The NASA Project Manager was Mr. L. J. Herrig, NASA-Lewis Research Center, Fluid Mechanics and Acoustics Division.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

SECTION	TITLE	
1.0	SUMMARY	
2.0	INTRODUCTION	5
3.0	APPARATUS 3.1 Fan Stage 3.2 Test Facility 3.3 Instrumentation and Calibration 3.3.1 Overall and Blade Element Instrumentation 3.3.2 Special Instrumentation	2 2 3 3 3 7
4.0	PROCEDURES 4.1 Test Procedures 4.1.1 Shakedown and Stator Stagger Angle Optimization Tests	9 9 9
	4.1.2 Overall and Blade Element Performance Tests (Design Vane Stagger) 4.2 Data Reduction Procedures	9 10
5.0	RESULTS AND DISCUSSION 5.1 Shakedown and Stator Stagger Angle Optimization 5.2 Overall Performance 5.3 Blade Element Data 5.4 Rotor Tip Static Pressure Contours 5.5 Rotor Leading Edge Hot Film Data at Surge	13 13 14 15 16 17
6.0	CONCLUSIONS	17
7.0	REFERENCES	18
APPENDICES		
A	Symbols	85
В	Performance Parameters	89
С	Overall and Blade Element Performance Tabulations Design Stagger	93
DISTRIBI	CTON I TST	172

LIST OF ILLUSTRATIONS

FI GURE	TITLE	PAGE
1	Cross Section of Test Compressor	19
2	Redesigned Rotor Blade	20
3	Rotor Assembly Installed in the Test Rig	21
4	Stator Vane	25
5	Stator Assembly Installed in the Test Rig	23
6	Schematic of Test Stand	24
7	Casing Instrumentation Over Rotor Blade Tips	24
8	Typical Instrumentation	25
9	Axial Station Number and Location of Instrumentation Stations	26
10	Circumferential Location of Aerodynamic Instrumentation Viewed from Rear	27
11	Rotor and Stator Loss at the Design Speed Peak Efficiency Point (Peak Pressure Analysis Method)	28
12	Stator Exit Total Pressure Data	29
13	Stator Exit Total Temperature Data	30
14	Stator Exit Efficiency Profiles	31
15	Rotor and Stator Loss at the Design Speed Peak Efficiency Point (Alternative Data Analysis Method)	32
16	Axial Distribution of Aerodynamic Blockage Substantiated by Measured Endwall Static Pressures	33
17	Stage Performance for Stator Stagger Angle Optimization Test	34
18	Stator Recovery vs Stagger Setting for Stage Optimization Tests	35
19	Stage Performance Before and After Stress Survey Showing 0.6% Loss in Efficiency Due to Deterioration	36
20	Stage Efficiency Proifle Before and After Stress Survey	37

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE	TITLE	PAGE
21	Stage Pressure Ratio Before and After Stress Survey	37
22	Stage Performance Map	38
23	Fan Tip Static Pressure Diffusion with Started and Unstarted Shock	39
24	Rotor Performance Map	40
25	Stage Total Pressure Profile	41
26	Stage Efficiency Profile	41
27	Rotor Total Pressure Profile	42
28	Rotor Efficiency Profile	42
29	Rotor Total Temperature Profile	43
30	Rotor Blade Element Performance vs Span	44
31	Stator Blade Element Performance vs Span	45
32	Ratio of Density - Meridional Velocity Across the Rotor	46
33	Design Incidence Evaluated with Intrablade and Non-Intrablade Through Flow Calculations	47
34	Rotor Blade Element Performance vs Incidence	48
35	Stator Blade Element Performance vs Incidence	59
36	Stage Overall Performance with Rocor Tip High Frequency Response Pressure Transducer Data Points	70
37	Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data	71
38	Rotor Leading Edge Hot Film Data at Surge	82

LIST OF TABLES

NUMBER	TITLE	PAGE
I	Summary of Design Speed Peak Efficiency Performance	1
11	Design Parameters	2
111	Performance and Blade Element Instrumentation	4
IV	Special Instrumentation	7
٧	Rotor Performance vs Method of Data Analysis	12
VI	Flowfield Blockages	13

ROTOR REDESIGN FOR A HIGHLY LOADED 1800 FT/SEC TIP SPEED FAN

II. FINAL PERFORMANCE REPORT

BY

C. R. BOLT, D. LEE AND P. W. McDONALD PRATT & WHITNEY AIRCRAFT GROUP

1.0 SUMMARY

A fan stage with a rotor tip speed of 548.6 m/sec (1800 ft/sec) was tested to evaluate the performance of a redesigned rotor blade. The rotor was designed (ref. 1) using a quasi three-dimensional design system, and blade shapes were designed using four-part multiple-circular-arc airfoil sections. The rotor had a hub/tip radius ratio of 0.5 and an aspect ratio of 2.87 (average span/hub axial chord). The stator was designed with multiple-circular-arc airfoils and was not changed from a previously tested configuration (ref. 2 and 3).

At design speed the peak rotor adiabatic efficiency was 86.1% or 0.7% below the design goal. The stage adiabatic efficiency was 82.8% (after 0.6 of a point performance deterioration), which was one percent below the design objective. At this operating condition the mass flow was approximately equal to design flow, and the rotor pressure ratio (2.26) and stage pressure ratio (2.20) were below design level. The surge margin from the peak efficiency point was 13%, which exceeded the 7% design level. A summary of the design speed peak efficiency point test values and design intent values is presented in Table I.

TABLE I

SUMMARY OF DESIGN SPEED
PEAK EFFICIENCY PERFORMANCE
(Point 110-10-04)

	DESIGN	TEST
Stage Adiabatic Efficiency, %	83.8	82.8(a)
Stage Pressure Ratio	2.28	2.20
Corrected Inlet Flow, kg/sec (lbm/sec)	78.8 (173.8)	78.59 (173.3)
Surge Margin	7%	13%
Rotor Adiabatic Efficiency, %	86.8	86.1
Rotor Pressure Ratio	2.34	2.26
Running Tip Clearance, meters (inches)	762X10-6(0.030)	610x10-6(0.024)

aEfficiency obtained after deterioration.

2.0 INTRODUCTION

A replacement rotor for the 548.6 m/sec (1800 ft/sec) tip speed, transonic fan stage was designed, fabricated, and tested. The purpose of the program originally reported (ref. 2 and 3) was to demonstrate improved efficiency by greater control over shock loss. The replacement rotor was designed using a quasi three-dimensional design system, and blade shapes were designed using four-part, multiple-circular-arc airfoil sections. The design is discussed in detail in reference 1.

In this report the experimental data obtained during the program are presented and compared with design values. High frequency response static pressure data measured over the rotor tip are presented in isobar contours. Laser velocimetry measurements of the rotor flow field were also obtained and are discussed in reference 4.

The symbols used in this report are defined in Appendix A.

3.0 APPARATUS

3.1 FAN STAGE

The fan stage (Figure 1) was a single-stage, axial-flow fan without inlet guide vanes. A detailed description is given in the Design Report (ref. 1). The stage was designed to provide a pressure ratio of 2.28, an adiabatic efficiency of 0.838, and a specific flow rate of 188.9 kg/sec- m^2 (38.7 lbm/sec-ft²). The stage flowpath was maintained from the original configuration described in reference 2. The stage design parameters are summarized in Table II.

TABLE II

DESIGN PARAMETERS

Corrected Weight Flow Per Unit Annulus Area, kg/m²-sec (lbm/ft²-sec) Rotor Pressure Ratio Staqe Pressure Ratio 2.28 Rotor Adiabatic Efficiency, % Stage Adiabatic Efficiency, % Tip Diameter, meters (in.) Hub/Tip Ratio at Rotor Inlet Rotor Tip Solidity Rotor Aspect Ratio(a) Stator Hub Solidity Stator Aspect Ratio(a) Stator Aspect Ratio(a) Constant Annulus 2.34 2.28 0.868 0.838 0.838 1.635 2.87 2.204 2.204
Rotor Pressure Ratio Stage Pressure Ratio Rotor Adiabatic Efficiency, % Stage Adiabatic Efficiency, % Tip Diameter, meters (in.) Hub/Tip Ratio at Rotor Inlet Rotor Tip Solidity Rotor Aspect Ratio(a) Stator Hub Solidity, 2.204
Rotor Adiabatic Efficiency, % Stage Adiabatic Efficiency, % Tip Diameter, meters (in.) Hub/Tip Ratio at Rotor Inlet Rotor Tip Solidity Rotor Aspect Ratio(a) Stator Hub Solidity, 2.204
Stage Adiabatic Efficiency, % Tip Diameter, meters (in.) Hub/Tip Ratio at Rotor Inlet Rotor Tip Solidity Rotor Aspect Ratio(a) Stator Hub Solidity, 2.204
Tip Diameter, meters (in.) Hub/Tip Ratio at Rotor Inlet Rotor Tip Solidity Rotor Aspect Ratio(a) Stator Hub Solidity 2.204
Hub/Tip Ratio at Rotor Inlet Rotor Tip Solidity Rotor Aspect Ratio(a) Stator Hub Solidity 2.204
Rotor Tip Solidity Rotor Aspect Ratio(a) Stator Hub Solidity 2.204
Rotor Aspect Ratio(a) 2.87 Stator Hub Solidity, 2.204
Stator Hub Solidity, 2.204
Staten Acrost Patio(d)
Stage Average Exit Flow Angle, degrees 0
Number of Rotor Blades 38
Number of Stator Vanes 60

aAspect Ratio = average span/axial chord at hub

The rotor blade and assembly are shown in Figures 2 and 3, respectively. The rotor was designed to operate at 548.6 m/sec (1800 ft/sec) with a pressure ratio of 2.34 and an adiabatic efficiency of 0.868. The rotor had 38 blades with an aspect ratio of 2.87 (average span/hub axial chord). The blade consists of standard multiple-circular-arc sections from the hub to 20 percent span and four-part, multiple-circular-arc sections from 34 percent span to the tip. The region between 20 and 34 percent span provided a smooth transition from a standard multiple-circular-arc section to a four-part, multiple-circular-arc section. Details of the rotor design are given in reference 1.

The stator vane and assembly (Figures 4 and 5) were retained from the previous configurations. The stator vane had multiple-circular-arc sections. There were 60 stator vanes with an aspect ratio of 2.22 (average span/hub axial chord). Details of the stator design are provided in reference 2.

3.2 TEST FACILITY

The test program was conducted in a modern compressor test facility, Figure 6, equipped with a synchronous motor with a multi-ratio gearbox to provide speed range capability. The inlet air flowed through a flatplate orifice and through an inlet plenum to provide a uniform total pressure and temperature profile to the test rig. The airflow was exhausted from the rig into a toroidal collector through a set of valves of various sizes, providing coarse and fine adjustment of backpressure or throttling for the test compressor, and then through exhausters. Strain-gage instrumentation signals from the rotor were transmitted via telemetry to recording equipment.

3.3 INSTRUMENTATION AND CALIBRATION

3.3.1 Overall and Blade Element Instrumentation

Airflow to the stage was measured by means of a flatplate orifice designed to the specifications defined by the International Organization for Standards. All orifice related instrumentation was installed per Power Test Code 19.5, 4-1959. This system provided a flow rate measurement accurate to within ± 1.0 percent.

The rotor speed was measured using an impulse type pickup through a frequency-to-DC converter. The measurement accuracy was within ± 0.1 percent of the indicated speed.

All temperatures were measured with Chromel-Alumel Type K thermocouples with an individual wire calibration applied to each sensor. Sample elements from the temperature pole rakes were calibrated over the expected Mach number range to determine recovery factor variations with yaw and pitch angle. Variations of the recovery correction with pressure were applied as noted in NASA Technical Note 3766 and complemented by results of testing at Pratt & Whitney Aircraft. Overall root mean square temperature accuracy was estimated to be $\pm 0.28 \text{ K } (\pm 0.59\text{F})$.

Measurements of airflow angle were obtained by radially traversing 15-degree included angle wedge probes. Total pressure recovery and yaw angle deviations were calibrated as functions of Mach number and pitch angle. The measurement accuracy of the air angle probe system was ± 0.5 degrees.

All pressures from wake rakes and static pressure taps were measured with transducers on scanivalves and recorded by an automatic data acquisition system. The accuracy of the pressure measurements was ± 0.1 percent of the full scale value for that transducer.

Nine high-frequency-response pressure transducers were installed* in the case over the rotor tips to measure instantaneous static-pressure fluctuations. Ten taps for measuring wall steady state static-pressure were also installed over the rotor blade tips in axial locations corresponding to the pressure transducers to measure the average static-pressure level. Figure 7 shows the rotor-blade tip-shock pressure instrumentation in relation to the blades.

Two proximity detectors, located over the rotor blade tips but apart from the pressure transducers, generated an electrical pulse for each blade passing. The signals from both the pressure transducers and the proximity detectors were recorded on the same time reference by a multichannel tape recorder.

Photographs of typical instrumentation are shown in Figure 8, and the axial and circumferential positions of the instrumentation are shown in Figures 9 and 10.

Instrumentation for measuring overall and blade-element performance data is listed in Table III.

TABLE III

PERFORMANCE AND BLADE ELEMENT INSTRUMENTATION

All measurements were recorded by automatic data acquisition system unless noted otherwise.

Instrument Plane Location	Parameter	Type and Quantity
Inlet Flow Measuring Orifice	PS	4 Static taps downstream and 4 static taps upstream of inlet orifice
	Delta P	delta P transducers sensing the differential pressure between the upstream and downstream orifice pressures

*Orginally ten transducers had been planned, but because of an installation problem, one transducer had to be omitted.

TABLE IIi (Cont'd)

Instrument Plane Location	<u>Parameter</u>	Type and Quantity
Inlet Flow Measuring Orifice (Cont'd)	тт	6 total temperature thermocouples located up- stream of the orifice
Station O Plenum Chamber	Ps	9 static pressure taps circumferentially equally spaced on the plenum wall
	Τ _T	10 bare wire thermocouples located in a plane in the plenum chamber and distributed equally in the radial and circumferential direction
Station 1.0 Instrumentation Ring	PS	4 O.D. wall static taps
Station 2.0 Inlet Duct 3.0 4.0 7.0 9.0	PS	2 O.D. and 2 I.D. wall static taps, 180 degrees apart
Station 11 Rotor Inlet (within 1/2 chord)	PT, PS, Radial	2 wedge traverse probes 11 radial positions
	PS	4 O.D. and 4 I.D. wall static taps
Stations 13 to 14 Rotor Casing	Ps	10 high frequency response pressure transducers mounted in axial line over rotor blade tips. Recorded on magnetic tape.
	PS	10 O.D. wall static taps in axial line over rotor blade tip.
	Blade Clearance	Two proximity detectors positioned apart from the pressure transducers and in a line at about the rotor blade tip-chord angle. Recorded on magnetic tape.

TABLE III (Cont'd)

Instrument Plane Location	Parameter	Type and Quantity
Station 15 Stator Leading Edge	PS	4 O.D. and 4 I.D. wall static taps equally spaced and located on extension of midchannel lines.
	PS	4 O.D. and 4 I.D. wall static taps spaced across one vane gap.
Station 17 Stator Exit	P _T , Radial	2 circumferential wake rakes (14 kiel headed elements) traversable to each of eleven radial location. Each wake rake spans at least one vane gap at O.D.
	Τ _Τ , Radial	? circumferential wake rakes (11 kiel headed elements) traversable to each of eleven radial locations. Each wake rake spans at least one vane gap at O.D.
	PT PS, Radial	2 wedge traverse probes, 11 radial positions. Probes spaced 162 degrees apart.
	PS	4 O.D. and 4 I.D. wall static taps equally spaced and located on the extension of a stator mid-channel streamline
	PS	4 O.D. and 4 I.D. wall static taps spaced across vane gap.
Station 22 Rig Exit	PT	1 fixed five-element cir- cumferential rake located at about 30% span.

The eleven radial positions called out for the wake rake traverses are defined by the intersection of the axial station and design streamlines that pass through 5, 10, 15, 30, 50, 60, 65, 70, 85, 90, and 95 percent of the passage height at the rotor trailing edge.

3.3.2 Special Instrumentation

Stall detection instrumentation was installed at the leading edge of the rotor blade row and at the trailing edge of the stator vane row. This instrumentation consisted of high frequency response thermocouples and static pressure taps with close-mounted pressure transducers. All sensors were connected to the test stand safety monitoring system which automatically sequenced the compressor to stall recovery. This system was used along with the automatic data recording system to identify the point of compressor instability.

A hot-film probe at the rotor inlet with sensors at 25, 50, and 85 percent of blade height from the hub was used to continuously record velocity fluctuations on a multichannel tape recorder when operating near or within the stall region.

Strain gages on selected blades and vanes, as well as the hot film probe, were used to detect excessive vibratory or flutter stresses.

Special instrumentation for measuring both aerodynamic and mechanical characteristics during excursions into stall are listed in Table IV.

TABLE IV
SPECIAL INSTRUMENTATION

Instrument Plane Location	<u>Parameter</u>	Type and Quantity
Inlet Orifice	PS	1 static tap downstream and 1 static tap upstream of inlet orifice.
	Delta P	A delta P transducer sensing the differential pressure between the upstream and downstream orifice static pressures.
	TŢ	One orifice upstream total temperature.
Station O Plenum	PS	One plenum static tap.
	ΤŢ	One plenum total tempera- ture.

Table IV (Cont'd)

Instrument Plane Location	<u>Parameter</u>	Type and Quantity
Station 11 Rotor Inlet	Velocity	One probe with three hot film sensors at 25, 50, and 85 percent of the blade height from the hub.
	Τ _T	1 high frequency response bare wire thermocouple near the outer wall.
	Ps	1 static pressure tap on outer wall with close- coupled mounted transducer.
Station 17 Stator Exit	Τ _T	1 high frequency response bare wire thermocouple near the outer wall.
Station 17 Stator Exit (Cont'd)		
	Ps	1 static pressure tap on outer wall with close-coupled transducers.
Station 22 Rig Exit	PT	5 total pressure taps located on the fixed wake rake connected to close coupled transducers.
Rotor Blades	Stress	24 strain gages distributed on six rotor blades.
Stator Vanes	Stress	22 strain gages distributed on six stator vanes.
Gearbox	Speed	Impulse pickup.

4.0 PROCEDURES

4.1 TEST PROCEDURES

4.1.1 Shakedown and Stator Stagger Angle Optimization Tests

Shakedown tests were conducted to establish the mechanical integrity of the compressor and to locate stress boundaries that might limit the operating range over which tests could be conducted.

The compressor stage was accelerated to 50, 70, 80, 95, and 100 percent of design speed along the wide-open discharge line with the stator stagger angle set at design. Rotor and stator vibratory stresses were recorded during the acceleration. Vibration levels on several critical compressor components were also recorded along the wide-open line.

Four data points for overall and blade-element performance were taken over a range of flows between wide-open throttle and stall and at a stall point. The data were taken at design speed with the stator at five degrees open, at design, and at five degrees closed. These data points were used to select the stagger angle that would produce the best stage efficiency without sacrificing flow range. Based on these data, the design stagger angle was used in all subsequent performance tests.

Upon setting the stator stagger angle to design position, a stress survey was conducted along the wide open discharge line, the operating line and above the operating line. Along each acceleration line, steady state data and stress levels were acquired at 50, 70, 80, 95, 100, and 105 percent speed. After the stress survey, four data points for overall and blade element performance were taken at design speed to check instrumentation. Eview of these data showed a decrease of efficiency at design speed as compared with the previous data. The efficiency loss was investigated by acquiring overall and blade element performance data at design speed with the stator set at design, 2.5 degrees open, and 1.25 degrees open. Data were also taken at 1.25 degrees open after the rotor blades were cleaned to remove any dirt accumulation.

4.1.2 Overall and Blade Element Performance Tests (Design Vane Stages)

Overall and blade-element performance data were acquired at 100, 95, 80, 105, 50, and 70 percent design corrected speed in the order listed. Data points were taken between the wide-open flow and the stability limit as represented by rotating stall or surge. Stall point flows were measured at all speeds tested.

Each data point consisted of: 1) a radial wake rake traverse at two circumferential locations, measuring total pressure and temperature covering one stator vane gap each at the stator exit, and 2) a radial wedge probe traverse at the inlet of the rotor and at the exit of the stator vanes to acquire air angle data. Static pressure fluctuations (measured by high-frequency response pressure transducers) over the rotor blade tip were recorded for one point at

70 percent speed, for three points at 95 percent speed, for five points at 100 percent speed, and for four points at 105 percent speed. These data were used to obtain a static pressure field relative to the rotor blade tips for indicating shock position and strength. Rotating stall surveys were conducted at 70, 95, 100, and 105 percent of design speed. A three-sensor, hot-film probe was used to detect rotating stall by measuring rotor inlet velocity fluctuations at 25, 50, and 85 percent of the rotor inlet passage height. Readings from the probe were recorded along with a speed signal by a multichannel tape recorder. Readings of other transient parameters were recorded every three seconds as the fan stage was throttled into stall.

Tip clearances were measured at all speeds at or near their peak efficiency settings; proximity pickup detectors were employed.

4.2 DATA REDUCTION PROCEDURES

An automated data reduction and analysis program was used to condition, organize, and process the raw data into engineering units and to perform circumferential mass averaging for use in the flowfield analysis program. All performance data were automatically recorded in millivolts, converted to engineering units, corrected, and averaged as described below.

The data reduction program conditioned total pressure and total temperature data from the two pressure and two temperature traversing wake rakes located downstream of the stator. Total temperature measurements were corrected for temperature recovery as a function of Mach number modified for pressure level effects using the procedure outlined in reference 5.

Overall stage performance and gap-wise mass-flow averaged total pressure ratio and total temperature ratio were calculated for each rake at each radial location. Static pressure for the mass-flow averaging was taken from a linear interpolation of the hub and tip wall static pressure tap readings; the static pressures were assumed to be constant circumferentially. Total temperatures required for gap-wise mass-flow averaging of total pressure were obtained by interpolation from a radial and circumferential matrix of temperatures generated from averages of readings made with the two temperature rakes. A similar procedure was used to obtain the total pressures for gap-wise mass-flow averaging of total temperature from each rake. This process resulted in two radial distributions of gap-wise, mass-flow averaged pressures and two radial distributions of gap-wise, mass-flow averaged temperatures. The two gap-wise averaged pressures and two gap-wise averaged temperatures were averaged at each corresponding radial location to give one radial distribution of pressure and one radial distribution of temperature for input to the flowfield analysis program. Radial locations at which averaged data were input were determined by averaging the radial locations at which redundant temperatures or pressures were measured.

The data reduction program also conditioned data from the radially traversed wedge probes. Two equally spaced wedge probes were used at the rotor inlet and at the stator exit. The measured flow angles were corrected using calibration curves for each individual probe and averaged.

The flowfield analysis program was used to construct the flowfield and provide overall performance and blade-element performance parameters at blade row leading and trailing edges. This program solved the continuity, energy, and radial equilibrium equations for axisymmetric flow at stations corresponding to blade edges and instrumentation planes and at other stations required to define the flowfield. Curvature, enthalpy, and entropy gradient terms were included in the equilibrium calculations. Thermodynamic properties of air were calculated from gas tables for the component gases, including water vapor. Input to the flowfield analysis program consisted of the geometry of the compressor flowpath and blade rows, blockage factors, and the following aerodynamic data:

Location

<u>Data</u>

Compressor Inlat

Corrected mass flow, corrected speed, NASA standard day sea level values of total pressure, and total temperature. (Zero inlet swirl was assumed.)

Stator Inlet

Radial distribution of total pressure ratio.

Stator Exit

Radial distributions of total pressure ratio, total temperature ratio, and absolute air angle.

The radial distribution of total pressure ratio at the rotor exit was interpreted from the stator exit total pressure and total temperature measurements. The normal procedure was to choose the peak value from the stator gapwise total pressure profiles. The peak total pressure value was carried forward along a streamline to the stator leading edge where it was defined as the rotor exit total pressure.

Using the maximum value, the peak pressure analysis procedure, as utilized in reference 3, produced unrealistic rotor-stator loss splits. This is illustrated in Figure 11 where rotor losses at the root are shown as being negative, indicating efficiency levels over 100 percent.

A review of the stator gapwise total pressure profiles indicated a root analysis problem. The total pressure variation across the stator gap at 15, 30, and 50 percent spans is shown in Figure 12. The 50 percent span data were characteristic of the profiles between 50 percent and 95 percent span where the total pressure profile was flat with distinct stator wakes. At 30 and 15 percent span the peak total pressure occurred as a local maximum and not representative of the rotor exit total pressure. The gapwise total temperature data at the stator exit (Figure 13) indicated that the local total pressure peak was accompanied by a local total temperature peak. An efficiency calculated using the normal method of the peak total pressure and gap mass average total temperature was substantially higher than the efficiency calculated using the local total pressure and total temperature values.

Because of this root analysis problem, an alternative data analysis method was employed. This method produced a realistic rotor-stator loss split.

The alternative data analysis method consists of two parts:

- a. In regions where the exit total pressure is flat with distinct stator wakes (50% span 95% span), the peak pressure carried forward along a streamline to the stator leading edge was designated to be the rotor exit total pressure.
- b. In regions where the exit total pressure was not flat, the average of the three highest efficiency points at the stator exit was carried forward to the stator leading edge along a streamline and designated to be the rotor efficiency.

This procedure was used for the 5, 10, 15, and 30 percent span data. Examples of local efficiency profiles are given in Figure 14.

This alternative data analysis method provided a reasonable rotor-stator loss split, as shown in Figure 15. The stator loss was essentially the same as when previously tested with the precompression rotor (ref. 3). Table V summarizes rotor performance determined with both analysis methods.

TABLE V

ROTOR PERFORMANCE VS METHOD OF DATA ANALYSIS

	Rotor Adiabatic Efficiency, %	Efficiency from Design, %
Design Alternative Data Analysis Method	86.8 86.1	0-0.7
Peak Pressure Method	87.6	+0.8

The alternative data analysis method was used for all overall performance and blade element data analyses.

Flow blockage factors were used to provide effective flow areas for static pressure and velocity calculations at blade-row stations. Axial distributions of flow blockage factors were selected so that the hub and tip static pressure obtained from the flowfield calculation matched the wall static pressure measurements for a representative data point at design speed. The calculated I.D. and O.D. static pressure distribution obtained using the design blockage factors showed good agreement with the measured wall static pressures (Figure 16). The design flow-blockage factors used in the data reduction flowfield calculation are shown in Table VI.

TABLE VI

FLOW FIELD BLOCKAGES

Station	Blockage, %
Upstream to Rotor Leading Edge	2.6
Rotor Trailing Edge	3.3
Stator Leading Edge	3.3
Stator Trailing Edge and Downstream	4.0

To calculate performance at blade leading and trailing edge, the flowfield analysis program was used to translate data along streamlines from instrumentation planes to blade edges. Blade element performance parameters were calculated for each streamline, and linear interpolations were made between streamlines to provide data at selected radial locations. For the 548.6 m/sec (1800 ft/sec) fan, these locations were defined by design streamlines that pass through the trailing edge of the rotor at 5, 10, 15, 30, 50, 60, 75, 70, 85, 90, and 95 percent of passage height. Performance parameter definitions are given in Appendix B. The output of the flowfield analysis program also included overall performance of the rotor and stator as well as for the stage.

5.0 RESULTS AND DISCUSSION

5.1 SHAKEDOWN AND STATOR STAGGER ANGLE OPTIMIZATION

The shakedown test included measurements of rotor and vane stress along a wide open throttle line. All stress levels were found to be within acceptable limits. The shakedown test was conducted with the stator stagger angle set at the nominal (design) setting.

The optimum stator stagger angle was determined at 100 percent design speed by varying the vane stagger angle from the nominal setting to 5 degrees open and 5 degrees closed. The resulting performance and surge line data are shown in Figure 17. The nominal vane setting achieved the maximum stage efficiency without sacrificing flow range or surge margin. The stator recovery vs stagger setting is shown in Figure 18 and confirms that the nominal setting is optimum. The nominal stator setting was chosen for the performance test program.

After optimizing the stator stagger angle, a complete stress survey program was run. Again all stress levels were within acceptable limits. Following the stress survey program, performance data were acquired for the 100 percent

speedline to recheck the instrumentation prior to the performance testing. These data indicated a decrease in the efficiency level relative to the previous data. Figure 19 shows the difference between the data acquired during stator optimization (before the stress survey) and the data obtained during the performance test. The most significant difference was the deterioration of stage peak adiabatic efficiency from 83.4% to 82.8%. The spanwise stage efficiency profiles shown in Figure 20 were examined to determine the source of the performance deterioration. Small efficiency losses were seen near the hub and in the 85 to 90 percent span region. The spanwise stage total pressure profiles, shown in Figure 21, indicated that slight declines occurred in the regions with reduced efficiency.

The following steps were taken to identify the source of the efficiency deterioration:

- o Remeasured Static Blade Tip Clearance
- o Cleaned Rig of Accumulated Dirt o Check Axial Location of Rotor
- o Repaired Minor Leading Edge Damage
- o Acquired Performance Data with Stator Settings Modified by 1.25 Degree Increments to Verify Exit Air Angle.

These efforts failed to reveal the source of the performance loss. After completion of the test program, the rig was disassembled and carefully examined, and it was discovered that the rubber seals covering the leakage path between rotor platforms had been destroyed. These missing seals are the suspected cause of the performance deterioration. Since the damaged platform seals were the only source of deterioration identified, the 83.4% stage efficiency measured before deterioration occurred is believed to represent the true efficiency potential of this stage, although the bulk of the data presented and discussed herein reflects performance levels after the initial deterioration had occurred. Additionally, the data point taken prior to deterioration is shown in the figure for reference to indicate the potential for this stage. The prior to deterioration data are also summerized in tabular form at the end of Appendix C, pages 170 and 171.

OVERALL PERFORMANCE 5.2

The overall performance of the fan stage is summarized by the stage performance map in Figure 22. The map indicates that at the design speed peak efficiency point the mass flow was approximately the same as the design level. The total pressure ratio was 2.20 as compared with the design value of 2.28. The stage adiabatic efficiency was 82.8%, or 1% below the design goal. This point is identified as (04) on Figure 22. The point identified as (07) was close to the stage operating line. Here the stage efficiency was 81.6%, and the pressure ratio was 2.26. The mass flow at this point was 1.9% below the design level. At design speed the stall margin was 13% from the peak efficiency point and 10% from the design operating line point. Additionally, the data point taken prior to deterioration is shown in the figure for reference in order to indicate the potential for this stage. The prior-to-deterioration data are also summarized in tabular form at the end of Appendix C, pages 170 and 171.

The influence of speed over the envelope of maximum efficiency for this stage was unlike that observed for fans designed at moderate inlet Mach numbers. Here the trend of maximum efficiency versus speed peaked locally at the design speed, suggesting that the rotor was optimized at the correct speed. However, it also indicates that within a practical operating range there would be a substantal off-design-speed penalty. The abrupt fall-off in peak efficiency at 95 percent speed is believed to be the result of increased shock loss as the shock structure moves forward of the leading edge and becomes more nearly normal to the flow.

Evidence to support the conclusion that the shock moves forward at part speed was provided by the tip static pressure data at the 95 and 100 percent speed peak efficiency conditions. Figure 23 shows that at 100 percent speed the diffusion began gradually at the leading edge, suggesting that the shock structure was contained within the rotor passage. In contrast, at 95 percent speed the steep pressure rise began immediately at the leading edge, and the last 40 percent of chord contributed far less to the total diffusion. The conclusion that the variation in rotor efficiency was associated with the change in shock structure is supported by the data from reference 6. This 487.6 m/sec (1600 ft/sec) fan tested under NASA Contract NAS3-13498 exhibited a similar trend of peak efficiency vs speed, and hologram data was shown which demonstrates the shock movement. The tendency for strong shocks and high shock losses at speeds below design but within the normal operating range appears to be a basic problem in this design speed range and may limit the usefulness of high speed fans unless shock strength can be controlled over a range of speeds.

The rotor performance is summarized by the map in Figure 24. At the design speed peak efficiency point, the rotor total pressure ratio was 2.26 as compared with the design level of 2.34. The rotor adiabatic efficiency was 86.1%, which was 0.7% below the design goal and 1.3% above the performance of the precompression rotor. The rotor map also exhibits the local peak in the trend of maximum efficiency vs speed, which is attributed to the shock unstarting phenomenon.

5.3 BLADE ELEMENT DATA

ハース・カー・ラー できた 公共 (1)地区の地域を大学の基本を対象を対し、大学の一般などの表示をおりませた。

The spanwise comparisons of the blade-element data to the design intent are summarized in Figures 25 to 30. The design speed peak efficiency point and operating line point have been selected for this comparison. Figure 25 shows the stage spanwise total pressure profile compared with the design intent and with the test results from the precompression rotor test. The measured total pressure at peak efficiency was below design intent except at the hub. At the design operating line, the pressure ratio was still below the design level, reflecting the fact that the measured mass flow was below design intent.

The stage spanwise adiabatic efficiency profile is presented in Figure 26. The measured efficiency exceeds the design goal between 60 and 85 percent span, reflecting a significant improvement in shroud loss. The efficiency exceeds that of the precompression rotor test between 50 percent span and the tip. Between 85 and 95 percent span the improvement is very substantial. The tip

clearance measurements suggest that only a small part of this improvement can be attributed to tighter tip clearances. The running tip clearance was 610 x 10^{-6} meters (0.024 in.) for the present rotor and 762 x 10^{-6} meters (0.030 in.) for the precompression rotor. Only 0.1 to 0.2% of the 1.3% improvement in rotor efficiency relative to the precompression rotor is attributable to this difference in tip clearance. The rotor total pressure ratio and adiabatic efficiency comparisons in Figures 27 and 28 show the same comparison trends as the stage data. Figure 29 shows the temperature profile for the peak efficiency and operating line point. The high temperature at the tip corresponds to the fall off in tip efficiency below design intent. The temperature ratio is below design intent in the shroud region where the efficiency exceeds design intent. Near the hub the temperature ratio reflects the local high pressure ratio which resulted from less than expected deviation in this region. Figures 30 and 31 compare the design values of loss, diffusion factor, deviation, and incidence to the test results for the rotor and stator. At peak efficiency the rotor incidence is in reasonable agreement with the design intent. The rotor loss is above the design level except in the shroud region. The rotor diffusion factor is in good agreement with the design intent.

The variation in the shapes of the design and test incidence curves corresponds directly to the design-test discrepancy of rotor ρ V_m ratio in Figure 32. The ρ V_m ratio variation, however, is not believed to be the cause, but rather a secondary symptom of a fundamental data analysis problem. Figure 33 describes the effect of using intrablade throughflow calculations on the predicted incidence. The discrepancy here (using the same mass flow) is virtually the same as that shown in Figure 30. The differences between the design and test incidences were caused primarily by the fact that the design aerodynamic calculation was done with an intrablade procedure while the data reduction analysis was not. The shape of the test incidence curve, which cannot be reliably evaluated without an appropriate intrablade calculation, is believed to be in better agreement with design intent than indicated by the data analysis.

The rotor deviation shows the most significant discrepancy between test results and design intent. The over prediction of the deviation near the hub and the under prediction of the deviation in the outer half of the span resulted in the corresponding discrepancy between the design intent total pressure profile and the test results. The detailed variation of the rotor and stator blade element performance vs incidence is provided in Figures 34 and 35. These data are in general agreement with the design principles of reference 1. The individual flow field definitions from which the blade element data were obtained are available in Appendix C.

5.4 ROTOR TIP STATIC PRESSURE CONTOURS

High frequency response static pressure taps were installed over the rotor tip for the purpose of qualitatively defining the flow field in the tip region of the rotor. Unfortunately, the probe at 18 percent chord was not installed because the threads in the hole had been damaged during assembly, and the recorder for the 31 percent probe malfunctioned. No data are available between the leading edge and 43 percent chord, and the primary (leading edge) shock is undefined. The operating points for which the tip high frequency response

pressure data were obtained are shown in Figure 36. The data obtained on 95, 100, and 105 percent speed lines are presented as isobar plots in Figures 37a-37k. The 100 percent speed low pressure ratio flow field in Figure 37a shows a trailing edge shock. A segment of the leading edge shock impinging on the suction surface near the 60 percent chord can also be seen. The same features are observed at the slightly higher pressure ratio peak efficiency point (37b) except that the trailing edge shock is slightly weaker. At the two higher pressure ratio points (37c, d), the trailing edge shock vanishes and the leading edge data suggest that the leading edge shock becomes increasingly detached. The 95 percent design speed data (Figure 37e) show a trailing edge shock that moves forward at the higher pressure ratio (37f). At the near surge point (37g) the leading edge shock is again detached.

At the 105 percent design speed choke point (Figure 37h), a strong shock is observed downstream of the trailing edge. As the pressure ratio is increased, the aft shock weakens and moves into the passage (Figures 37i, j, k). No indication of the detached leading edge shock was observed at the 105 percent speed condition.

5.5 ROTOR LEADING EDGE HOT FILM DATA AT SURGE

Hot-film data were taken at surge in the leading edge plane for the rotor hub, midspan, and tip. In Figure 38 the data are presented for the nominal stator setting at 95, 100, and $\overline{105}$ percent of design speed and for the 5 degrees open and 5 degrees closed settings at 100 percent speed. Rotating stall did not occur during these tests.

6.0 CONCLUSIONS

- The peak efficiency for this stage at design speed was 82.8% at a point slightly below the operating line. This is one percent below the design goal.
- 2. At design speed near the design operating line the efficiency was 81.6% at a flow 1.9% below design and a pressure ratio of 2.26 -design goal was 2.28. These values were measured after performance deterioration.
- 3. The indicated efficiency potential for this stage, as measured before performance deterioration, was 83.4%, which is 0.4% below the design goal.
- 4. The rotor peak efficiency was 86.1% (after 0.6 percent deterioration in stage performance), which is a 1.3% improvement relative to the precompression rotor, but is 0.7% below the design goal. Before performance deterioration, the peak rotor efficiency essentially met its design goal.
- 5. The stall margin was 13% for the peak efficiency point and 10% for the design speed operating line--the design goal was 7%.
- High shock losses at speeds below design and their effect on efficiency may limit the practical application of fans in this design speed range.

7.0 REFERENCES

- Norton, J. M., Tari, U., and Weber, R. M.: "Rotor Redesign for a Highly Loaded 1800 ft/sec Tip Speed Fan Stage - I. Aerodynamic and Mechanical Design," NASA CR-159596, PWA-5523-42, 1979.
- Morris, A. L., Halle, J. E., and Kennedy, E.: "High-Loading, 1800 ft/sec Tip Speed Transonic Compressor Fan Stage - I. Aerodynamic and Mechanical Design," NASA-CR-120907, PWA-4534, 1972.
- Morris, A. L., and Sulam D. H.: "High-Loading, 1800 ft/sec Tip Speed Transonic Compressor Fan Stage II. Final Report," NASA CR-12091, PWA-4463, 1972.
- 4. 1800 ft/sec Tip Speed Fan Stage II Final LDV Report
- 5. ASME Research Committee on Fluid Meters, "Fluid Meters Their Theory and Application, "Fifth Edition, American Society of Mechanical Engineers, New York, 1959, p. 47.
- 6. Ware, T. C., Kobayashi, R. J., and Jackson, R. J., "High-Tip-Speed, Low-Loading Transonic Fan Stage," NASA CR-121263, AiResearch 73-9488, 1974.

Figure 1 Cross Section of Test Compressor

Figure 2 Redesigned Rotor Blade

ORIGINAL PAGE IS OF POOR QUALITY

OF POOR QUALITY

VIEWED FROM RIG INLET

Figure 3 Rotor Assembly Installed in the Test Rig

VIEWED FROM LEADING EDGE SUCTION SURFACE

Figure 4 Stator Vane

Figure 5 Stator Assembly Installed in the Test Rig

Figure 5 Schematic of Test Stand

Figure 7 Casing Instrumentation Over Rotor Blade Tips

WEDGE PROBE

HOT FILM PROBE

PRESSURE WAKE RAKE

TEMPERATURE WAKE RAKE

Figure 8 Typical Instrumentation

OF POOR QUALITY

Figure 9 Axial Station Number and Location of Instrumentation Stations

Figure 10 Circumferential Location of Aerodynamic InstrumentationViewed from Rear

Figure 11 Rotor and Stator Loss at the Design Speed Peak Efficiency Point (Peak Pressure Analysis Method)

Figure 12 Stator Exit Total Pressure Data

Figure 13 Stator Exit Total Temperature Data

Figure 15 Rotor and Stator Loss at the Design Speed Peak Efficiency Point (Alternative Data Analysis Method)

Figure 16 Axial Distribution of Aerodynamic Blockage Substantiated by Measured Endwall Static Pressures

Figure 17 Stage Performance for Stator Stagger Angle OptimizationTest

Figure 18 Stator Recovery vs Stagger Setting for Stage Optimization Tests

Figure 19 Stage Performance Before and After Stress Survey Showing 0.6% Loss in Efficiency Due to Deterioration

Figure 20 Stage Efficiency Proifle Before and After Stress Survey

Figure 21 Stage Pressure Ratio Before and After Stress Survey

Figure 22 Stage Performance Map

Figure 23 Fan Tip Static Pressure Diffusion with Started and Unstarted Shock

Figure 24 Rotor Performance Map

Figure 25 Stage Total Pressure Profile

Figure 26 Stage Efficiency Profile

Figure 27 Rotor Total Pressure Profile

Figure 28 Rotor Efficiency Profile

Figure 29 Rotor Total Temperature Profile

Figure 30 Rotor Blade Element Performance vs Span

Figure 31 Stator Blade Element Performance vs Span

Figure 32 Ratio of Density - Meridional Velocity Across the Rotor

Figure 33 Design Incidence Evaluated with Intrablade and Non-Intrablade Through Flow Calculations

Figure 34a Rotor Blade Element Performance vs Incidence (Five Percent Span)

Figure 34b Rotor Blade Element Performance vs Incidence (Ten Percent Span)

Figure 34c Rotor Blade Element Performance vs Incidence (Fifteen Percent Span)

Figure 34d Rotor Blade Element Performance vs Incidence (Thirty Percent Span)

Figure 34e Rotor Blade Element Performance vs Incidence (Fifty Percent Span)

Figure 34f Rotor Blade Element Performance vs Incidence (Sixty Percent Span)

Figure 34g Rotor Blade Element Performance vs Incidence (Sixty-Five Percent Span)

Figure 34h Rotor Blade Element Performance vs Incidence (Seventy Percent Span)

Figure 34i Rotor Blade Element Performance vs Incidence (Eighty-Five Percent Span)

Figure 34j Rotor Blade Element Performance vs Incidence (Ninety Percent Span)

Figure 34k Rotor Blade Element Performance vs Incidence (Ninety-Five Percent Span)

Figure 35a Stator Blade Element Performance vs Incidence (Five Percent Span)

Figure 35b Stator Blade Element Performance vs Incidence (Ten Percent Span)

Figure 35c Stator Blade Element Performance vs Incidence (Fifteen Percent Span)

Figure 35d Stator Blade Element Performance vs Incidence (Thirty Percent Span)

Figure 35e Stator Blade Element Performance vs Incidence (Fifty Percent Span)

Figure 35f Stator Blade Element Performance vs Incidence (Sixty Percent Span)

Figure 35g Stator Blade Element Performance vs Incidence (Sixty-Five Percent Span) 65

Figure 35h Stator Blade Element Performance vs Incidence (Seventy Percent Span)

Figure 35i Stator Blade Element Performance vs Incidence (Eighty-Five Percent Span)

67

Figure 35j Stator Blade Element Performance vs Incidence (Ninety Percent Span)

Figure 35k Stator Blade Element Performance vs Incidence (Ninety-Five Percent Span)

Figure 36 Stage Overall Performance with Rotor Tip High Frequency Response Pressure Transducer Data Points

Figure 37a Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37b Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37c Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37d Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37e Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37f Rotor Tip Static Pressure Contours from High Frequency Resp e Pressure Transducer Data

Figure 37g Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37h Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37i Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

3000

N/m² x 10⁻³

69

lbf/in²

9

10

11

CURVE LABEL

Figure 37j Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 37k Rotor Tip Static Pressure Contours from High Frequency Response Pressure Transducer Data

Figure 38a Rotor Leading Edge Hot Film Data at Surge

Figure 38b Rotor Leading Edge Hot Film Data at Surge

Figure 38c Rotor Leading Edge Hot Film Data at Surge

Figure 38d Rotor Leading Edge Hot Film Data at Surge

Figure 38e Rotor Leading Edge Hot Film Data at Surge

APPENDIX A

SYMBOLS	
A	area, $meters^2$ (inches ²)
av	average
Cp	specific heat at constant pressure, joule/kg-K (Btu/lbm-9R)
D	diffusion factor
9c	conversion factor - 32.17 lbm-ft/lbf-sec ²
im	incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, degrees
iss	incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, degrees
j ·	conversion factor, 1.00m-kg/joule (778 ft-1bf/Btu)
М	Mach number
N	rotor speed, rpm
P _T	total pressure, N/m ² or 1bf/ft ²
PS	static pressure, N/m ² or 1bf/ft ²
R	gas constant for air
r	radius measured from rig centerline, meters (inches)
SL	streamline number
TT	total temperature, K (OR)
TS	static temperature, K (OR)
. t	blade maximum thickness, meters (inches)
U	rotor speed, m/sec (ft/sec)
V	air velocity, m/sec (ft/sec)
v_{m}	meridional velocity $(V_F^2 + \frac{1}{2})1/2$, m/sec (ft/sec)
• V ₀ ·	tangential velocity, m/sec (ft/sec)
W	mass flow rate, kg/sec (1bm/sec)

SYMBOLS (Con't)

z	axial distance - meters (inches)
β	absolute air angle, $\cot^{-1} (V_m/V_Q)$, degrees
β'	relative air angle, \cot^{-1} (v_m/v_0) , degrees
Δβ	air turning angle, degrees
γ	ratio of specific heats for air
δ	ratio of total pressure to standard pressure of 1.01325 x 10^5 N/m ² (2.116 x 10^3 1bf/ft ²)
δο	deviation angle, exit air angle minus tangent to blade mean camber line at trailing edge, degrees
e	angle between tangent to streamline projected on meridional plane and axial direction, degrees
η	efficiency
0	ratio of total temperature to standard temperature of 288.16K (518.7°R)
ρ	mass density - kg/m^3 (1bm/ft ³)
σ	solidity, ratio of aerodynamic chord to gap between blades
ω	angular velocity of rotor, radians/sec
a	total pressure loss coefficient

SUPERSCRIPTS

relative to rotor

★ blade metal angle

SUBSCRIPTS

ad adiabatic

des. design

in inlet

m meridional direction

SUBSCRIPTS (Cont'd)

```
selected operating point
n
              polytropic or profile
p
              radial direction; radius
r,
              ratio (e.g., P_{T,r} = total pressure ratio)
ï,
              rotor leading edge
RLE
RTE
              rotor trailing edge
              stator leading edge
SLE
              stator trailing edge
STE
              suction surface
SS
              axial component
\theta
              tangential component
Ŏ
              plenum chamber
             station at rotor inlet
13
14
             station at rotor exit
15
             station at stator inlet
16
             station at stator exit
```

APPENDIX B

PERFORMANCE PARAMETERS

a) Relative total temperature

$$T'_{T,RLE} = T_{S,RLE} \left[1 + \frac{\gamma - 1}{2} (M'_{RLE})^2 \right]$$
 (rotor) IN

$$T'_{T, RTE} = T'_{T, RLE} + \begin{bmatrix} (\omega_r)_{RLE}^2 - (\omega_r)_{RTE}^2 \\ \frac{2 \gamma}{\gamma - 1} Rg_c \end{bmatrix}$$
 (rotor) GUT

b) Incidence angle based on mean camber line

$$i_m = \beta'_{RLE} - \beta^*_{RLE}$$
 (rotor)

$$i_{m} = \beta_{SLE} - \beta_{SLE}^*$$
 (stator)

Incidence angle based on suction surface metal angle

$$i_{ss} = \beta'_{RLE} - \beta'_{ss,RLE}$$
 (rotor)

$$i_{ss} = \beta_{SLE} - \beta_{ss,SLE}^*$$
 (stator)

c) Deviation angle

$$\delta^{\circ} = \beta'_{RTE} - \beta^*_{RTE} \qquad (rotor)$$

$$\delta^{\circ} = \beta_{STE} - \beta^{*}_{STE}$$
 (stator)

d) Diffusion factor

$$D = 1 - \frac{V'_{RTE}}{V'_{RLE}} + \frac{r_{RTE}V_{0 RTE} - rV_{0 RLE}}{(r_{RTE} + r_{RLE})\sigma V'_{RLE}}$$
 (rotor)

$$D = 1 - \frac{V_{STE}}{V_{SLE}} + \frac{r_{SLE}V_{0} SLE - r_{STE}V_{0} STE}{(r_{SLE} + r_{STE})_{0} "_{SLE}}$$
(stator)

e) Loss coefficient

$$\bar{\omega} = \frac{P'_{T,RLE}}{T'_{T,RLE}} - P'_{T,RTE}$$

$$- P'_{T,RTE}$$

$$P'_{T,RLE} - P_{S,RLE}$$
(rotor)

$$\bar{\omega} = \frac{P_{T,SLE} - P_{T,STE}}{P_{T,SLE} - P_{S,SLE}}$$
 (stator)

f) Loss parameter

$$\frac{\bar{\omega}\cos\beta\,\text{STE}}{2\,\sigma}$$
 (stator)

g) Polytropic efficiency

$$\frac{\gamma - 1}{\gamma} = \frac{P_{T,RTE}}{P_{T,RLE}}$$

$$\frac{T_{T,RTE}}{T_{T,RLE}}$$

$$\frac{T_{T,RTE}}{T_{T,RLE}}$$

$$\frac{\gamma - 1}{\gamma - 1} = P_{T,STE}$$
(rotor)

$$\eta_{p} = \frac{\frac{\gamma - 1}{n} \frac{P_{T,STE}}{P_{T,RLE}}}{\frac{T_{T,STE}}{T_{T,RLE}}}$$
(stage)

h) Adiabatic efficiency

$$\eta_{\text{ad}} = \frac{\begin{bmatrix} \frac{p_{\text{T}, \text{RTE}}}{p_{\text{T}, \text{RLE}}} \end{bmatrix} \frac{\gamma_{-1}}{\gamma_{-1}}}{\begin{bmatrix} \frac{T_{\text{T}, \text{RTE}}}{T_{\text{T}, \text{RLE}}} \end{bmatrix} - 1}$$
(rotor)

$$\eta_{\text{ad}} = \frac{\begin{bmatrix} P_{\text{T},STE} \\ \hline P_{\text{T},RLE} \end{bmatrix} \frac{\gamma_{-1}}{\gamma}}{\begin{bmatrix} T_{\text{T},STE} \\ \hline T_{\text{T},RLE} \end{bmatrix} - 1}$$
(stage)

i) Surge margin

SM =
$$\begin{bmatrix} \frac{P_{T,STE}/P_{T,RLE}}{W\sqrt{\theta}/\delta} \end{bmatrix}$$
 Stall
$$\frac{W\sqrt{\theta}/\delta}{P_{T,STE}/P_{T,RLE}}$$
 Reference Point or Operating Point

APPENDIX C

Overall and Blade Element Performance Tabulations Design Stagger

PRECEDING PAGE BLANK NOT FILMED

COMPUTER TABLE SYMBOL TRANSLATION

								COI	SPUIER I	Vare 21	MOUL TR	ANSLATION				
PERCEN	IT OESIG	SPEEC	(ROTOR	PERFOR	MANCE)	AIREC	IL AERO	DYNAMIC				CODE NA POI	NT NO x S			
	V-3 M-SEG	VM-1 M/SEC	VM-2 M/SEC	VO-1 M/SEC	VO-2 M/SEC	U-1 M/SEC	U-2 M/SEC	M/SEC	V'-2 M/SEC	VO'-1	VO'-2 M/SEC	RHOVM-1 kg/m2 sec	RHOVM-2 KG/M2 SEC	EPSI-1 RADIAN	EPSI-2 RADIAN	
VRLE		V _{m.RLE}		Ve.RLE		URLE		VIRLE		Y'O,RLE		ρν _{m,RLE}				(i
	VRTE		Vm,RYE		VO,RTE	!	URTE		V'ATE		V'O,RTE		PVm.RTE		FRIE	
DEGREE	DEGREE	DEGREE	DEGREE	M-1	M-2	M'-3	M'-2	DEGREE	INCM DEGREE	DEGREE	TURN	D FAC OME	GA-B LOSS-P TAL TOTAL	P02/ P01	SEFF-A 3	
		· ·		MRLE		M'RLE				δο		D	ವ cosβ RT	E	η_{ad}	
	BRTE		β' _{RTE}		MRTE		M'RTE		1 _m		Δβ'	ā				η_{p}
	. 4													PT,RLE	RIE	
										of the						RTE
										 	1					
V-1	V-2 FT/SEC	VM-1	VM-2 FT/SEC	VO-1	VO-2	U-1	U-2	V'-1	V'-2	V0'-1	VO'-2	RHOVM-1	RHOVM-2	EPSI-1	EPSI-2 PC	T TE
							- N									
														RLE		span
	TRIE		'M,RIE		*O,RTE		∨R1E		RTE		O,RTE		bam'kiF			TE 2T
		(a t la								e Nobelo Nacional						
	LBM/SEC	KG/SE	C				I	02/101	P02/P01	ROTOR	ROTO					
	¥¥ ¥¥	₩/3 8 N					*****			η_{ad}	η_{p}					
								I,KLL	TT.RLE	RIE						
	V-1 FT/SEC	V-1 V-2 M/SFC M SAU VRLE VRTE B-1 B-2 DEGREE DEGREE PRTE V-1 V-2 FT/SEC FT/SEC VRLE VATE VATE VATE	V-1 V-2 VM-1 WATE VATE VATE VATE VATE VM-1 V-2 VM-1 FT/SEC FT/SEC FT/SEC VRLE VATE VATE VM-1 V-2 VM-1 FT/SEC FT/SEC FT/SEC VRLE VATE VATE VATE VATE	WIAL WOLLAND WATE WM.RIE WRIE Vm.RIE WRIE Vm.RIE WRIE Vm.RYE B-1 B-2 B-1 B'-2 DEGREE DEGREE DEGREE PRIE PRIE P'RIE V-1 V-2 VM-1 VM-2 FT/SEC FT/SEC FT/SEC FT/SEC VRIE Vm.RIE WATE Vm.RIE WATE Vm.RIE WATE Vm.RIE	V-1 V-2 VM-1 VM-2 VO-1 M/SFG M-SEG: W/SEG M/SEG VRLE Vm,RLE Vm,RYE B-1 B-2 B-1 B'-2 M-1 DEGREE DEGREE DEGREE DEGREE ARLE ARTE ARLE FT/SEG FT/SEG FT/SEG FT/SEG VRLE Vm,RLE Vm,RLE Vm,RLE Vm,RLE Vm,RLE Vm,RLE Vm,RTE WC1/A1 MC1/A1 LBM/SEG SGT SGM	VRLE Vm,RLE Vo,RLE VATE Vm,RTE Vo,RTE B-1 B-2 B-1 B'-2 M-1 M-2 DEGREE DEGREE DEGREE DEGREE PRLE PRTE PRTE MRLE PRTE PRTE MRTE V-1 V-2 VM-1 VM-2 VO-1 VO-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC VRLE Vm,RLE Vo,RLE VATE Vm,RTE Vo,RTE VATE Vm,RTE Vo,RTE SQT SQM	PERCENT OESIGN SPEED (ROTOR PERFORMANCE) V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 M/SFC M-SEI; M/SEC M/SEC M/SEC M/SEC VRLE Vm,RLE Vo,RLE URLE VRTE Vm,RYE Vo,RTE B-1 B-2 B-1 B'-2 M-1 M-2 M'-1 DEGREE DEGREE DEGREE DEGREE PRLE PRE PRE M'RLE M'RLE PRTE PRE PRE M'RLE VM,RLE Vo,RLE URLE VRIE Vm,RLE Vo,RLE URLE VRIE Vm,RLE Vo,RLE URLE VRIE Vm,RLE Vo,RLE URLE VRIE Vm,RLE Vo,RTE VATE Vm,RTE Vo,RTE	PERCENT DESIGN SPEED (ROTOR PERFORMANCE) V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 M/SFC MISER MYSEC MYSEC MYSEC MYSEC MYSEC MYSEC VRLE Vm,RLE Vm,RTE Vm,RTE URLE VRTE Vm,RTE Vm,RTE URTE B-1 B-2 B'-1 B'-2 M-1 M-2 M'-1 M'-2 DEGREE DEGREE DEGREE DEGREE PRIE PRIE PRIE MRLE M'RLE PRIE PRIE PRIE MRTE M'RTE Vm,RTE Vm,RTE URLE VRTE Vm,RTE Vm,RTE URLE VRTE Vm,RTE Vm,RTE URLE VRTE Vm,RTE Vm,RTE URLE VRTE Vm,RTE Vm,RTE URTE WC1/A1 WC1/A1 LBM/SEC KG/SEC SCET SCM WAS WAS AAA	PERCENT DESIGN SPEED (ROTOR PERFORMANCE) V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 M/SFC M-SEC; M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC VRLE Vm,RLE Vo,RLE URLE V'RLE VRTE Vm,RYE Vo,RYE URYE DEGREE DEGREE DEGREE DEGREE PRLE PRLE PRLE M'RLE M'RLE M'RLE PRTE PRISE FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC VRLE Vm,RLE Vo,RLE URLE V'RLE VRTE VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC VRLE Vm,RLE Vo,RLE URLE V'RLE VRTE Vm,RYE Vo,RYE URYE VRTE Vm,RYE Vo,RYE URYE VRTE Vm,RYE Vo,RYE URYE TO2/TO1 I LBM/SEC KG/SEC SOFT SCM WV9 WAS AAA	PERCENT DESIGN SPEED (ROTOR PERFORMANCE) AIRFOIL AERODYNAMIC SUMMAR RUN V-1 V-2 VM-1 VM-2 VD-1 VO-2 U-1 U-2 V-1 V-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC VRLE Vm,RLE Vo,RLE URLE V'RLE VATE Vm,RYE Vo,RTE URTE V'HTE B-1 B-2 B'-1 B'-2 M-1 M-2 M'-1 M'-2 INCS INCM DEGREE DEGREE PERCENT DEGREE DEGREE DEGREE PRILE PRILE MRLE M'RLE 15s PRILE PRILE M'RTE 1m FV-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC VRLE Vm,RLE Vo,RLE URLE V'RLE VATE Vm,RTE Vo,RTE URTE V'RTE NC1/A1 WC1/A1 CM,RTE Vo,RTE URTE TO2/TO1 PO2/PO1 LBM/SEC KG/SEC SCCT SCCT SCCT SCCT SCCT SCCT SCCT S	AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO XXX V-1 V-2 VM-1 VM-2 VD-1 VD-2 U-1 U-2 V-1 V-2 VD-1 VM/SFC M/SEC DEGREE	PERCENT DESIGN SPEED (ROTOR PERFORMANCE) V-1 V-2 VM-1 VM-2 V0-1 V0-2 U-1 U-2 V'-1 V'-2 V0'-1 V0'-2 V'-1 V'-2 V0'-1 V0'-2 V'-1 V'-2 V'-2 V0'-1 V0'-2 V'-2 V'-2 V'-2 V'-2 V'-2 V'-2 V'-2 V	PERCENT VESION SPEED (ROTOR PERFORMANCE) Y-1 V-2 VM-1 VM-2 VW-1 VM-2 VW-1 VW-2 UW-1 W-2 PHOWM-1 W/SFC M/SEC	Percent Design Speed (ROTOR PERFORMANCE)	Percent Design Speed (ROTOR Performance)	Percent Design Speed (ROTOR Performance)

94

C - 7

COMPUTER TABLE SYMBOL TRANSLATION

V-1 M/SEC	V-2 M/SEC	VM-1 M/SEC	VM-2 M/SEC	VO-1 M/SEC	VO-2 M/SEC		C KG/M	VM-2 2 SEC	EPSI-1 RADIAN	EPSI-2 RADIAN					
VSLE	AZJE	V _m ,SLE	V _{rn} ,STE	VO, SLE	V o , ste	ρV _m ,SLE	ρν _m ,	STE	FSLE	e _{STE}					
B-1 DEGREE	B-2 DEGREE	M-1	M-2	INCS DEGREE	INCM DEGREE	DEV DEGREE	TURN DEGREE	D-FAC	OMEGA-B TOTAL	LOSS-P TOTAL	P02/ P01	PO/PO STAGE		%EFF-A TOT-STG	
β _{SLE}	BSTE	MSLE	M STE	155	ing i m	8°	Δβ	D	<u>و</u> ت	Jeos A Ste	PT, SLE	PT, STE	TT,STE	η _{Ad} STE RLE	η _p STE RLE
V-1 FT/SEC		VM-1 FT/SEC	YM-2 FT/SEC	VO-1 FT/SEC	VO-2 FT/SEC	RHOVM-1 LBM/F T2SE	L RHO	VM-2 T2SEC	PCT TE SPAN	EPS (-1 DEGREE	EPS1-2 DEGREE				
VSLE	YSTE	Vm,SLE	V _m ,STE	Ve, SLE	VO.STE	ρν _{m.SLE}	ρν _{m,}	STE	STE	€ SLE	ESTE				
	N	WCORR INLET LBM/SEC	WCORR INLET KG/SEC			TO/TO STAGE	P02/P01	PO/PO STAGE	EFF-AD STAGE	STAGE %					
	₹VF	W√S 8 RLE	δ RLE			TT, RLE	PT.STE								

```
50 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
```

					177						HU	n nu 11)	l SPEED	CODE 50	POINT N	0 2			
	SŁ	V-1	V-2	VM-1	V!/-2	****										1 L			
		M/SEC					7.5	U-1	13-2	7'-1	V'-2	183.4	1 101-2						
					C M/SE	C M/SE	C M/SEC	M/SE		C M/SE						HIMH-S	EPSI-I	EPSI-2	
	1	68.9	171.	5 63.	9 121.	e 0.		175	7 7 7 7 1	o myse		M/SEC	M/SEC	KG/M2	SEC KG	JUZ SEC	DAMAN	PADIAN	
	2	73.6	165.6	72 :	122.	5 0	0 120 ₂ 0	145.2	166.	5 159.	I 130.	1 - 143.4				49.72		CHUIAN	
1 1111	3	72 0	159.0		2 166.	5 0.1	7 111.5	152.8	171.3	3 169.	5 176 5	3 500 6					U_1116	0.5192	
	Ģ	70.0	135.0		124.	9 0.0	93.3	151.6	175.7	1 170	5 147.1	363 6			-	51.21	0.4228	0.4379	
		60.7	138.9	85.	7 117.4	0.0	74 2	125 2	100	200	3-7-	-1010	-//-/	91.9	5 1	55.13	0.7452	0.3654	
	5	88.7	121.7	7 88_7	7 105.	0.0	1 En 7	733 5	150.5	204.	5 165.2	-185.2	-116.1	101.4		46.55	0.3260	0.4705	
	- 5	28.2	116.3		101.		, ,,,,,,	211.7	1 / 18-	1 770	7 707 /	7777 7	* *** ~		· -		0.1268	0-1/95	
i sa La si	7	97 0	115.4		IVI	3 0.1		66323	127	1 /011	1 300 0	7777 7	177 0	ـ ندند خد		31_06	-0.0757	9.0077	
	-	07.5	110.4		102.0) 0.0	53.9	229.0	223 6	265	193.0	-223.3	-101-5			24.39	-0.1478	-7.7549	
	. 🤰	87.3	115.4		104.7	7 0.0	51.0	276 6	220 3	250	2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-229.19	-103.0	102.2	2 13	25.22	-0.1804	-0 1015	
	9		110.2	84.2	100.8	0.0	100 6	251 0	220.5	259.3	205.9	-234.5	-177.3	192.2		28.51	-9.2144	0.1300	
	10	82.9	96.1	82.9	85.3		• · · · · · · · · · · · · · · · · · · ·	231.3	141 6	260	1 222 2	25 0	. 400 4			3.23	-0-2144 0 21-2	-0-1355	
	11	82.1					7.7	4.0.5.1	7413	ンかびつ	בות ככי	7777	~~~				-0.3179	-0.2577	
			13.2	02.1	67.4	0.0	41.5	261.0	252.1	273 6	221.1	251 0	210.0	3/-3/		13.62	-9.3449	-0.2950	
	~		120							2.701.	25.4.6.1	-201-0	-219.0	95.4	٠, ٤	31.50	-9.3492	-0 3222	
	SL	8-1	B-2	B*-1	8*-2	M-1	8-2	M*-1	101 0	THE				F 41 (4)	is, i				
		DEGREE	DEGREE	DEGREE	DECREE	· · · · · ·	** 4-	*3 -1	14 -Z	INCS	INCM	DEV	TURN	D FAC	OMERA D	* ಕರ್ಣ	n non-		
	1	0.0	44 4	64 64	20.36	0.0104	S =1 -4	-1		DEGREE	DEGREE	DECREE	DECREE		TOTAL				XEFF-P
	2	0.0	12 2	64.05	20.59	13.62134	0.5161	0.4359	0.3915		3.06	8 42	43.68	0 7555	FUIFE	TOTA	al per	TOTAL	TOTAL
	3		7.4	04.00	Z3 - 4-4	41 2242	0 7027	A 5176	W #7.00			8.20	73.89	0.3566	U.2421	9.048	31 1.2437	7 85.45	
		9.0	35.3	64.07	31. 94	11 2325	0 7700	G. EARC	O France					0.3539	0.1284	9.037	77 1.2399		87.03
	4	0.0	****	U1 - 100	44.87	31 765 t	0.00	A COEA				8.49	32.12	0.3190	0.1017	0.000	2 1 2107	7 03 00	
	5	0.0	29.3	67 25	54 60	0.2716	0.3665	0-0409	0.49/9			9.02	20.04	0.2962	0 0515	0.000	7 1.1807		
	б	0.0	20 2	69 AE	57. 70	0.2710	0.3000	O. MIZZ	0.5522	3.08	4,94	9.04	17.65	0.2000	0.0000	(4-10-0)	2.1731	7 93.00	93.17
	7	0.0		100,443	7//1	11 / /31a	JR 7577	n 77**	A	3.32	5.05		10.73	0.2692	6.4322	9.015	4 1.1394	82.14	87.48
	8			ジフ・ジエ	30. ZF	11 7667	(1 7/7/	A 75AA	B FATA	3.57		7.44	10.14	U. Z/33	11.1777	0.020	は オーオウミツ	76 20	74.73
		0.0		ツフ・ツリ	39.13	11 /1/1	ו סמבר ח	n 7550	0 0000			الل قبوج لا ا	10.39	U-2523	31.1152	0.610	S 7 7777	75 4 74	79.57
	9	0.0	23.6	71.55	62 74	0 2575	0.3329	0.0560	0.0203	4.08		5.54	10.46	0.2425	0 0957	0.015	4 1.1226		
. 3	LO	0.0	27.3	72 16	67 M	0.2575	0.5329	0.0100	0.5595	4.41	5.83	4.27	8.81	0.2169	0.000	0.010	7 1-1200		ैं 31
. 3	1	0.0	21 E	72 50	77.00	0-2555	0.2839	1.8235	0.6615	4.05	5.44	5.47	5 17	0.2240	0.0933	v.uls	5 1.1081		74.89
. 7	_	9.0	ومدو	14.09	14-13	U.Z510	0.2375	0.8369	0.6631	3.54	4.83		3.17	0.2349	y. 144 f	9.017	8 1.0876	59.52	59.99
	~									3.37	7.00	9.52	U.45	0.2397	0.1753	0.016	7 1.0662	47 71	19 10
-	_ ــاد	V-1	V-2	VM-1	VY-2	V 9-1	VD-2	U-1	U-2	*** *								78882	70-13
	F	T/SEC F	FT/SEC	FT/SEC	FT/SEC	FT /SEC	FT /CEC :	- JCCC	0-2	V -1	V'-2	W'-1 □	V9 *-2	RHOVM-1 BM/F125E	i pur	WM_2	PSI-1	ENET A A	
	1 .	225.2	552-5	725.2	200 =		11/250 E	1/3EL .	FI/SEC					RM/FT2CE	r ibur	7755	DCCCCC I	1731-Z P	La at
	2	241.4	543 3	241.4	601.0	v.0	395.2 365.7	4/3.5	546.4	522.2	426.R	470 6	-150 2	16.74	عورتان ب.	36356	DEGREE 1	EGREE S	SPAN .
	3	256.0	521 5	271.4	401.8										3 U	. 56	29.255	29.231 O.	กรดา
		200.0	4C1.3	256.0	409.7	0.0	322.5	530.3	577 6	599 0	400 E	-333.G -	7.70.3	17.82	39	.97	24.225 2	15.092 D	1000
,	4 4	254.4	455.8	284.4	385.3	0.0	243 4	607.7	534 4	220.0	456.0	-550.3 -	-255.0	18.83	31	. 77	19.493	מ מכני מי	MEDIA MEDIA
	თ , ,	291.1	399.4	291.1	348.0	n n	243.4 195.9	602 0	000	0/1.0	541.9	-697.7 -	-38I.O	20.79		.02	7 755 1	0.333 0.	エングン
i	6 2	289.5	381.4	289 5	332.4									21.24			7-400 1	0.284 0.	3999
	7 2	22 4	372 7	288.4	224 0	0.0		137	14 / C R 4	/2/ U	E75 8	710		21.13			-4.337	0.440 0.	5000
	8 2	85.6	202.0	200.4			~ / / * * * * * * * * * * * * * * * * *	4-32-4			48A C	777				.43	-8.453 -	3.717 0.	EODO
1 3			382.0	28b.b	343.4									21.06	25	.65 -	10.338 -	5 217 n	5500
		76.2	351.5	275.2	330.6	ก_ก	146 2	222 E	705 0	621.3	0/5.5 -	-/59.5 -	581.8	20.93	25	.32 -	12.283 -	7 050 A	7000 7000
10	J 2	72.0	315.5	272 n	270 0			ور سافت عنا	4 - Fig. 6 2		133 n.	777	~	20.23			10 1CC 1	1. 227 Or	1753
11	1 2	59.3	259 g	269.3	221 2									19.94			18.165 -1	4.757 0.1	8590
		ur	1/A1	EUT FAT				D313 _ 44	~// /	<i>2011</i> 2	725 4	256 4	500 o				19.711 -1	5.902 0.1	9000
		Mu.	LIMI	WC1/AI					Tno	/T/N1 PX	2/P01		U3J.Y	19.75	15.	.71 -	19.953 -1	3.495 n	9570
				KG/SEC					+02	JAUL PC	K / LOT	EFF-AU							200
			QFT	50M								ROTOR	ROTOR				-		
		10	9.93	97.25					3 g 🔝			*	*	(, a					
									1.	0502 1	.1528	22.70	83.05						
													الدالية بدراسات						

AIRFOIL AERODYNAMIC SUMMARY PRINT

50 PERCENT DESIGN SPEED (STATOP PERFORMANCE) PUN NO 111 SPEED CODE 50 POINT NO 2 V-1 **V-2** VM-1 VV-2 VI-1 **VD-2** RHOVM-I PH3/K-2 EPSI-1 EPSI-2 MISEC M/SEC M/SEC MISEC YGINZ SEC M/SEC M/SEC KG/KZ SEC PADIAN PADIAN 129.7 204.0 135.7 204.0 118.1 0.0 165.63 225.03 9.4548 0.0828 174.1 203,4 135.4 203.4 109.5 154.97 0.0 223.82 0.4968 0.0711 167.4 197.0 135.6 197.0 0.0 167.59 95.7 224.44 9.3436 0.0615 148.5 172.5 129.1 172.6 73.3 159.12 0.0 0.1969 0.0344 199.31 130.7 154.4 116.4 154.4 59.5 9.0 142.39 178.94 0.5694 -0.0937 6 125.2 151.5 135.52 136.30 139.47 111.5 151.5 57.0 0.0 -0.0086 -0.0249 175.55 124.5 151.4 112.2 151.4 54.1 0.9 175.49 -0.0425 -0.0357 125.7 151.5 114.8 151.5 51.3 0.0 -0.0737 -0.0455 -0.1619 -0.0759 175.68 122.1 147.0 113.5 147.0 45.0 0.0 137.23 169.65 10 111.5 139.3 102.0 139.3 45.2 0.0 122.31 159.66 -0.1955 -0.0865 11 97.3 123.5 87.6 123.5 42.3 0.0 104.53 140.42 -0.2443 -0.0969 SL 3-1 3-2 11-1 M-2 INCS INCH DEV TUPN D-FAC GMEGA-B LOSS-P P02/ POPT TO/TO MEFF-A MEFF-P DEGREE DEGREE DEGPEE DEGREE DEGPTE DEGREE TOTAL TOTAL P91 STAGE STAGE TOT-STG FOT-STG 42.9 0.0 0.5454 -11.52 -8.57 0.6211 13.85 9.0141 0.2565 0.0591 42.92 0.9531 1.1818 1.0743 2 49.5 0.0 0.5255 0.6202 -11.89 -8.75 11.97 40.53 -0.0312 0.1644 0.0385 0.9719 1.1950 1.0693 74.93 3 35.3 0.0 0.5057 0.6015 -15.44 -12-97 10.34 36.33 -0.0513 0.1445 0.0346 0.9772 1.1895 1.0630 29.9 0.0 0.4488 0.5255 -23.63 29.90 -0.6494 0.2120 0.6536 27.13 -0.6638 0.2059 0.5560 27.09 -0.0852 0.1534 0.428 -18.83 10.00 0.9731 1.1459 1.0517 5 27.1 0.0 0.3954 0.4687 -26.84 -21.48 10.07 0.9791 I.1138 1.0463 27.1 0.0 0.3774 0.4593 -26,72 10.10 10.15 -29.930.9857 1.1984 1.0450 65.53 7 25.7 -22.07 0.0 0.3755 0.4595 -22.20 25.72 -0.6907 0.1414 0.5469 0.9258 1.1077 1.0445 €5.76 67.24 8 24.1 0.0 0.3794 0.4692 -29.74 -23.75 24.97 -9.0377 0.1448 10.25 0.0416 0.9863 1.1979 1.0439 9 21.7 0.0 0.3689 0.4457 -34.25-28.0312.36 21.68 -0.6903 0.1741 0.0521 0.9843 1.0919 1.6409 10 24.0 0.0 0.3361 -28.09 -31.43 0.4224 -34.24 13.78 15.43 24.02 -0.1170 0.1990 0.0600 0.9855 1.0744 1.0479 11 26.1 0.0 0.2927 0.3735 -37.5726.05 -0.1339 0.3701 0.1135 0.9786 1.0434 1.0388 SL **V-1 V-2** VK-I VM-2 **79-1** 19-2 RHOVM-1 EPSI-1 DEGREE RHOVY-2 PIT TE EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC FT/SEC SPAN DEGREE 592.8 669.5 448.5 659.5 387.5 0.0 33.92 45.29 0.0439 26.633 4.743 571.3 667.2 444.2 667.2 359.3 33.79 0.0 46.85 0.0301 23.310 4.077 3 549.2 645.4 34.32 32.59 29.15 27.75 448.3 646.4 317.3 9.0 45.97 0.1419 19.558 3.522 487.2 566.3 423.7 566.3 240.6 0.0 49.82 0.2989 11.283 1.970 428.9 596.5 506.5 381.8 195.3 0.0 36.65 0.5035 3.458 -C.212 410.9 497.2 355.8 497.2 187.1 0.0 35.95 016103 -0.491 - 1.428408.5 496.6 352.0 496.6 177.4 27.92 28.57 0_0 -2.449 -2.044 35.94 0.5593 412.4 495.9 376.5 495.9 168.2 0.0 35.99 -4.221 -2.664 0.7107 400.7 482.2 372.5 482.2 147,7 28.11 0.0 34.74 -9.275 -4.348 0.8629 10 366.0 457.1 334.5 457.1 148.3 25.95 9.0 32.79 0.9191 -11.199 -4.957 17 319.3 405.2 287.5 405.2 138.9 0.0 21.41 28.75 0.9571 -13.995NOORR MCOSE. WORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE STAGE LBM/SEC PPM YS/SEC * 2 6234.70 88.80 40.27 1.0502 0.9776 1.1269

69.27

59.79

AIPFOIL AEPSDYNAMIC SOMMARY PRINT PUN NO 111 SPEED OSSE 50 POINT NO 3

N 12345578991	V-I M/SES 65.3 69.7 81.8 83.5 82.8 82.3 79.5 78.4 77.7	162.5 154.4 135.4 118.3 113.9 114.2 114.6	W-1 M/CEC 55.3 69.8 81.8 83.5 83.1 82.8 82.3 79.5 78.4	114.7 115.9	000000000000000000000000000000000000000	113.9	143.39 1451.39 1561.28 1561.28 2355.6	156.2 171.7 189.9 202.9 218.4 227.9 242.1 246.9	157.3 167.5 177.4 202.1 227.0 237.9 243.0 243.1 262.8 267.4	129.1 135.1 151.1 179.0 189.7 199.7 206.6		-110.0 -141.1 -152.9 -159.6 -166.6 -186.0 -190.0	23.41 52.11 97.03 98.98 96.51	ES KS/M 145 149 149 149 127 127 128 119 119 119	2 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	0.1451 0.1773 0.2111 0.2536 0.3353	EP51-2 RADIAN 9.5297 9.4259 9.1776 9.10554 9.1655 -9.1497 -9.2939 -9.3218		
SL I 234567891011	3-1 DE CREE 0.9 0.0 0.0 0.0 0.0 0.0 0.0	35.3 34.9 34.5 33.6 31.0	65.19 65.23 65.23 66.05 68.43 69.56 70.09 70.64 72.44 72.99	19.76 25.13 32.60 45.33 55.46 59.52 59.52 63.66	M-I 0.1994 0.2129 0.2156 0.2153 0.2154 0.2543 0.2518 0.2518 0.2518 0.2433 0.2399 0.2376	0.4887 0.4647 0.4073 0.3550 0.3414 0.3426 0.3440 0.3239 0.2954	0.5118 0.5423 0.6187 0.6549 0.7282 0.7440 0.7595 0.8180	9.3883 9.4163 9.4656 0.5137 9.5579 9.5579 9.6228 9.6182	INCS DECREE 0.11 1.47 2.79 4.16 4.43 4.612 5.29 4.35	INCM DEGREE 4.18 5.18 6.11 6.16 6.72 6.72 6.72 6.72 6.73	DEV DESE 13.24 9.153 9.153 9.162 5.622 4.13 8.59	TUPN DEGREE 45.43 39.67 32.63 20.73 11.11 11.68 11.13 9.11 6.34 2.09	0.4055 0.3932 0.3549 0.2454 0.3371 0.3323 0.3323 0.2177 0.2782 0.2782	0.1232 0.6517 0.0357 0.0359 0.1250 0.1159 0.1037 0.1105 0.1521	LUCS-P TOTAL 0.0352 0.5245 0.627 0.0165 0.0165 0.0165 0.0169 0.0189 0.0189	P01 1.251 1.251 1.251 1.163 1.152 1.154 1.154 1.154	TOTAL 5 89.93 1 91.64 5 94.93 0 95.55 2 84.03 9 78.23 7 78.92 8 80.17 3 76.06	90.24 91.90 95.03 95.67 95.67 95.67 78.67 79.35 76.51 67.51	
N 123456789011	214.2 228.6 242.1 258.3 274.0 272.6 271.6 270.0 250.9 257.3 254.9	533.2 506.7 444.2 383.9 373.5 374.7 376.1 354.4 325.1	VM-1 FT/SEC 214.2 228.6 242.1 268.3 274.0 272.6 271.6	3/6.5 389.2 382.6 358.6 317.8 305.4 317.9 202.8 266.3 216.2		373.9 373.9 332.2 262.1 202.6 215.0 203.4 201.0 184.0 185.5	459.7 499.8 529.2 696.5 731.3 749.7 768.1 838.7	545.3 560.9 576.5 623.2 635.4 716.5 722.1 747.7 794.4 809.9 825.5	516.2 549.6 582.0 663.2 744.7 789.4 797.4 814.2 862.3 877.3	FT/SEC 400.7 423.7 453.9 561.5 567.2 699.2 632.4 631.4 678.5 02/P01	WY-1 FT/SEC -463.7 -493.2 -529.2 -636.5 -731.3 -749.7 -760.1 -838.7 -854.7 EFF-AD POTOR	-137.1 -187.0 -244.3 -351.1 -462.8 -501.5 -523.7 -546.7 -619.4 -623.5 -643.1	P	1 255 EC LEMFT 29. 30. 26. 25. 24. 25. 23.	725EC 74 75 75 75 75 75 75 75	7.120 4.347 -8.315 19.157 12.097 17.740 19.213	EPSI-2 DESREE 29.203 25.031 29.882 10.173 0.335 -3.817 -5.922 -8.062 -14.740 -16.841 -18.440	57AN 0.6552 0.1000 0.1550 0.3000 0.5000 0.6500 0.6500 0.7000 0.2500	

AIRFOIL AERODYNAMIC SUMMARY PRINT

50 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 59 POINT NO 3 V-1 V-2 VM-1 VM-Z **VO-1 VD-2** PHSVM-1 PHSVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/MZ SEC KG/MZ SEC PADIAN PADIAN 177.1 186.0 128.5 185.9 121.7 4.3 150.71 1.2 160.51 219.78 0.4648 0.6831 169.8 184.8 127.5 184.8 112.0 221.56 0.4068 0.0719 178.1 161.7 127.3 0.3443 0.0623 0.1968 0.0355 0.6590 -0.0328 -0.0139 -0.0257 178.1 99.6 -2.6 161.02 215.59 79.0 143.6 155.5 79.0 -7.7 152.27 67.6 -2.2 134.15 65.6 -0.7 122.70 119.9 155.3 199.11 125.1 139.1 105.4 139.1 170.56 121.7 136.5 102.6 136.5 167.19 122.2 135.4 104.3 135.4 -0.8 139.84 -1.6 133.35 63.7 -0.0482 -0.0354 -0.0794 -0.0471 167.09 122.8 136.2 106.3 136.2 51.6 -1.5 166.81 118.5 132.3 132.1 104.0 129.93 56.7 -5.5 169.95 -9.1719 -0.0763 10 111.9 125.1 95.9 125.9 57.7 -7.7 119.01 152.36 -0.2049 -0.0867 11 101.4 115.7 24.1 115.0 56.7 103.85 -12.5138.28 -0.2597 -0.0958 SL. 8-1 B-2 R - 1M-2 INCS INCH DEA TURN D-FAC OMEGA-B LOSS-P P021 P0/P0 TO/TO MEFF-A MEFF-P DEGREE DEGREE DEGREE DEGREE -5.95 DEGREE DEGREE TOTAL TOTAL PG1 STACE STAGE TOT-STG TGT-STG 1 45.5 -3.91 1.3 0.5336 0.5622 44.27 0.6947 0.2274 0.6523 0.9590 1.2112 1.6764 15.13 73.79 74.50 42.8 0.4 0.5117 0.5699 -9.58 12.32 -6.4542.48 0.0524 0.1380 0.0324 0.9775 1.2211 1.0714 82.47 -9.8 0.4875 0.5491 -12.67 39.1 39.94 0.0367 0.1102 0.0264 0.9837 36.50 0.0590 0.1545 0.0390 0.9816 -9.30 10.00 0.9637 1.2138 1.0650 27.69 33.7 -2.8 0.4329 0.4794 -19.29 -15.04 7.19 1.1762 1.6559 85.07 32.5 -0.9 0.3792 0.4195 -21.50 -15.14 33.36 0.0413 0.1116 0.6392 0.9895 9.18 1.1495 1.0526 77.32 32.6 -0.3 0.3656 0.4114 -21.21 -15.47 9.81 32.88 0.0309 0.0793 0.6221 0.9939 1.1447 1.0539 74.34 74.83 -0.3 0.3671 0.4113 -22.39 -16.51 31.4 31.75 0.0344 0.6862 9.81 0.0244 0.9923 1.1440 1.0525 74.79 75.27 -9.7 0.3692 0.4109 30.1 -23.73 -17.73 -27.24 -21.02 9.51 39.73 0.0379 0.0344 0.0271 0.9915 1.1427 i.0517 75.21 9 28.7 -2.8 0.3561 0.3989 9.56 31.50 0.0443 0.1112 0.6332 1.1299 1.0503 0.9997 70.71 71.22 10 31.2 -3.4 0.3356 0.3794 -27.03-20.79 10.33 34.68 0.0540 0.1423 0.0439 0.9394 1.1163 1.0521 61.41 62.00 34.3 -23.14 -6.1 0.3035 0.3473 -29.28 40.44 0.0599 0.2080 0.0634 0.9871 1.0951 1.0519 10.33 V-1 V-2 VM-1 VM-2 **V9-1** V)-2 PHOVE-1 RHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DECREE DECREE 610.2 589.9 421.8 399.4 610.0 14.0 32.91 45.01 0.6430 26.639 4.762 557.1 605.5 418.8 605.5 3.9 -8.7 32.87 367.4 45.38 0.9991 23.319 4.118 584.3 326.8 509.6 259.1 539.4 524.4 417.8 32.98 31.19 44.17 0.1419 19.728 3.572 471.1 510.2 393.5 259.1 -25.2 221.9 -7.1 38.94 0.2989 11.277 2.032 5 413.7 455.4 349.2 455.3 27.48 34.93 0.5986 3.321 -0.219 Б 399.4 447.9 335.5 -2.2 -2.7 447.9 215.2 26.36 34.24 0.6193 -0.794 -1.473 400.9 447.6 342.1 447.5 209.0 25.80 34.22 -2.763 -2.086 0.6593 402.9 447.0 348.7 447.0 202.0 -5.1 27.31 34.15 0.7107 -4.549 -2.698 388.7 434.1 341.3 433.6 -21.4 126.0 32.97 31.20 26.51 0.8620 -9.859 -4.373 10 413.9 413.1 189.3 367.1 314.5 -25.2 24.37 0.9101 -11.737 -4.967 379.6 332.7 275.9 377.4 185.9 40.9 21.27 28.32 0.9571 -14.362 -5.543

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 50 POINT NO 7

SL	V-1	V-2	VM-1	VM-2	V9-1	V0-2	U-1	U-2	V*-1	V'-2	VO 1-1	VO*-2	RHOYM-	nug T	7/14-2	FDCT_T	EPSI-2	
	M/SEC	M/SEC		M/SEC	M/SEC	M/SEC			M/SEC		M/SEC		KG/M2 S			RADIAN		
1	63.4	170.0	63.4	115.2				,			-142.9	-41.0	76.92			0.5977		
2		161.7							166.5		-152.1		81.88				0.4379	
3		151.5	71.6	111.9	0.0		161 0	175 /	175.2		-161.0							
4			79.2	104.5			101.0	100 5	110.5	133.7	-101-0	107.5	86.45	,			0.3669	
5			80.8	93.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		101.0		200.8				95.07			0.1215		
6					0.0						-210.7		95.93			0.0774		
		113.2	80.4	88.8			PHE		235.6		-222.5		96.45	·		0.1459	-0.0674	
7		113.5	80.1	91.0					241.8		-228.1		96.15			0.1773	-0.1042	
8		114.8	79.6	93.5							-233.7		95.61	120	.50 ~	0.2109	-0.1418	
9		107.3	77.0	87.5	0.0					199.7	-250.1	-179.5	92.65	112	.27 -	0.3059	-0.2574	
10		99.3	76.1	77.6	0.0	62.0	255.2		265.3	200+5	-255.2	-184.5	91.56	99	.31 -	9.3396	-9.2932	
11	75.4	89.6	75.4	65.8	0.0	60.9	260.1	251.2	270.8	201.3	-260.1	-190.3	90.77				-0.3209	
																	510205	
SL		B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B	LOSS-P	P02/	XEFF-A	YFFF-P
	DEGREE	DEGREE	DEGREE	DEGREE							DEGREE			TOTAL	TOTAL	P01		TOTAL
1	0.0	47.0	65.78	19.34	0.1940	0.5125	0.4787	0.3685	0.70	4.79		46.44	0.4032	0.1031	0.0206			
2	0.0	45.2	65.77	26.09	0.2072	0.4873	0.5099	0.3821	2.05	5.76	8.30		0.4066	0.063	0.0167			94.57
3	0.0	42.5		33.25	0.2194	0.4569	0.5402	0.4030	3.38	6.77	9.80	32.57		0.0512	0.0100			
4	0.0	- ,		45 94	0 2429	0.4005	0.5162	0.4536	4.81	7.09	10.13		0.3705	0.0330	0.0070			95.97
5	0.0	37.8				0.3554			4.87	6.72	9.90					,		
- 6	0.0	38.1	70.15			0.3398			5.01	6.74	8.50	11.35		0.1058	0.0177			
7	0.0		70.65	59 33	0.2450	0.3330	0.7601	0.5175	5.21	6.89		11.33			0.0215			
B	0.0	35.1	71.19			0.3449			5.67					0.1225				79.66
9	0.0	35.1		63 74	0.2444	0.3219	0.7377	0.5000	5.77	7.23	5.93	11.66	0.3311					80.32
10	0.0	38.3	73.43			0.2974				7.19	5.27	9.17			0.0183			
11	0.0	42.6	73.82	70 91	0.2333	0.2579	0.0100	0.0932	5.32	6.70	6.43	6.47	0.3214		0.0197			68.71
11	0.0	72.0	15.02	10.01	0.5311	0.20/9	0.0000	0.0017	4.77	6.11	8.20	3.01	0.3256	0.1855	0.0189	1.129	8 62.25	62.90
SI	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	V'-2	101.1	VD*-2	DUDGE					
					ET ICEL	ET ISEC	ET ICEC	ET ICEC	ET ISEC	ET ICEC	10 -1	An5	-RHOVM LBM/FT2S	T KHA	4M-2		EPSI-2	
1	207.9	557.6	207.9	377.8	0.0	410.1	160 D	544.5	E12 0	101.0	FI/DEL	11/3EC				DEGREE	DEGREE	
Ž		530.4		373.3	0.0		499.0		213.0	401.0	-469.0	-134.4	15.75			29.089	29.245 (
3	234.9	497.2	234.9	367.0		335.4	528.4	200.0	546.1				16.77			23.924	25.092 (
4			259.7		0.0			575.6	578.3		-528.4		17.71			19.084	20.972 (
5	265.1		265.1	306.5	0.0		605.6	622.2			-605.6		19.47		-92	6.953	10.187 (
6	263.7	371.5			0.0	237.9	691.4	684.3	740.5		-69: 4		19.85			4.434	0.312 (
7	262.8			291.3	0.0		730.1	715.4	776.3	565.6	-730.1	-484.8	19.75			-8.357	-3.861 (
6		372.3	262.8	298.5	0.0	222.5	748.5	731.0	793.3		-748.5		19.69			0.157	-5.972	
8	261.3	376.8	261.3	306.9	0.0	218.5	766.9		810.2		-766.9		19.58				-8.122 (
9	252.7	352.2	252.7	286.9	0.0	204.2	820.6	793.1			-820.6		18.98		.99 -1	7.583	-14.750 C	.2500
10	249.6	325.9	249.6	254.7	0.0		837.4		873.8				18.75	20.	.34 -	8.943	-16.800 0	.9000
11		294.1		215.8	0.0	199.8	853.4	£24.2	888.5	660.6	-853.4	-624.4	18.59	17	.18 -1	9.299 -	-18.387 (9500
		C1/A1	WC1/A1					TO	2/T01 P	02/P01	EFF-AD	EFF-	P					
		BM/SEC	KG/SEC								ROTOR	ROTO	R					
		SOFT	SQM								%	*						
		18.40	89.80					1	.0599	1.1905	85.35	85.7	L					

AIRFOIL AERODYNAMIC SUMMARY PRINT

50 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 50 POINT NO / V-1 V-2 VM-1 VM-2 VO-1 V0-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC 122.3 RADIAN RADIAN M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC 177.2 128.2 179.5 179.5 4.5 163.69 218.78 0.4684 0.0836 160.31 157.40 149.32 102.64 218.50 0.4124 0.0729 168.4 177.1 125.0 177.1 112.3 1.3 122.2 0.3508 0.0634 158.3 169.9 169.9 100.6 -2.8 211.72 147.8 114.8 147.7 185.86 0.1995 0.0364 140.7 81.3 4 -6.75 125.5 132.4 102.6 132.4 166.68 0.0588 -0.0028 -0.0142 -0.0248 72.3 -3.1125.17 70.3 120.5 129.5 98.0 129.5 -1.9162.82 -0.0493 -0.0355 -0.0897 -0.0462 -0.1763 -0.0761 -0.2103 -0.0866 7 121.0 129.8 100.1 129.8 68.0 -2.0 127.90 163.17 122.5 117.2 -2.5 131.09 130.5 102.6 130.4 66.9 8 163.92 126.3 q 98.9 126.1 63.0 -6.7125.70 157.57 115.92 10 111.1 120.1 91.6 119.8 62.9 -7.9 148.87 11 193.5 111.6 82.9 110.9 62.1 -11.7 104.44 -0.2551 -0.0967 137.07 SL B-1 B-2 M-2 M-1INCS INCM DEV TURN D-FAC OMEGA-B LOSS-P P02/ PO/PG TO/TO XEFF-A XEFF-P DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 STAGE STAGE TOT-STG TOT-STG 0.0537 0.0343 45.8 1.4 -8.54-5.68 15.29 0.1326 0.0928 1.2252 0.5355 0.5431 44.38 0.2332 1.0772 0.9586 77.52 78.17 12.37 43.8 0.4 0.5087 0.5364 -8.67 -5.54 43.35 0.1462 0.9763 1.2309 1.0725 84.53 84.99 -7.79 9.91 7.43 41.55 38.20 0.0707 0.0979 40.6 -0.9 0.4781 0.5152 -11.16 0.0234 1.2727 0.0980 0.9860 1.0661 89.58 89.88 0.4472 -13.10 35.6 -2.6 0.4246 -17.340.1308 0.0330 0.9350 1.1874 1.0579 87.05 87.36 35.2 -1.3 0.3779 0.3993 -18.77-13.418.75 36.52 0.1027 0.1003 0.0271 78.24 0.9907 1.1632 1.0565 78.79 9.26 36.50 0.0929 0.0186 35.7 -0.8 0.3626 0.3902 -18.15-12.410.0667 0.9942 1.1580 1.0570 75.19 75.71 34.2 0.3640 0.3911 -19.60-13.73 9.28 -0.9 35.06 0.0943 0.0725 0.0205 0.9936 1.1580 1.0564 75.93 8 -14.70 9.12 34.25 0.0979 0.0225 0.9930 33.1 -1.1 0.3685 0.3932 -20.70 0.0783 1.1584 1.0565 76.02 76.51 0.0263 0.9928 0.0369 0.9910 32.6 -3.0 0.3523 0.3803 -23.31 -17.09 9.34 35.64 0.1017 0.0882 71.26 1.1457 1.0562 70.70 -3.8 0.3335 -5.9 0.3101 0.3609 0.3347 -23.55 -17.31 0.1155 38.46 19 34.7 10.03 0.1219 1.1325 1.0570 63.58 64.21 11 37.3 -26.38 -20.24 10.50 43.18 0.1432 0.1878 0.0573 0.9879 1.1161 1.0571 56.61 V-1 V-2 SL VM-1 VM-2 V0-1 VD-2 RHOVM-1 RHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 589.1 420.6 581.4 588.9 401.4 15.2 33.52 26.840 4.790 44.81 0.0430 552.6 580.9 410.0 580.9 370.5 32.83 23.629 4.1 44.75 4.177 0.0901 20.101 11.433 3.634 2.087 519.4 557.5 401.0 557.4 330.1 -9.2 32.24 43.36 0.1410 461.5 485.1 376.7 484.6 266.6 30.38 -21.938.07 0.2989 3.367 -0.161 -0.816 -1.418 5 411.9 434.5 336.7 434.4 237.2 -10.C 26.96 34.14 0.5086 25.64 395.8 425.0 321.5 425.0 230.8 -6.333.35 0.6103 -2.824 -2.032 -4.626 -2.648 397.1 425.8 328.4 425.8 223.2 -6.5 26.19 33.42 0.6598 25.85 402.0 428.1 336.7 428.0 219.6 -8.5 33.57 0.7107 25.74 -10.100 -4.358 414.4 324.4 206.6 384.6 413.8 -22.0 32.27 0.8620 -12.047 -4.965 -14.615 -5.538 10 364.7 394.0 300.6 393.1 206.5 -26.1 23.74 30.49 0.9101 339.7 271.9 364.0 0.9571 11 366.0 203.7 21.39 28.07 -38.3WCORR NCORR WCORR TO/10 P02/P01 P0/P0 EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE STAGE LBM/SEC RPM KG/SEC 7 X 82.00 37.19 1.0599 0.9866 1.1746 6235.10 78.59 79.08

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 50 POINT NO 6

SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	V'-2	1-104	VO'-2	RHOVM-	L RHO	VM-2	EPSI-1	EFSI-2		
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/MZ SE	C KG/M	2 SLC	RADIAN	NATICAR		
1	62.3	168.2	62.3	111.2	0.0	126.1	143.2	165.2			-143.2	-49.1	75.72		.87	0.5085	0.5105		
1	10.100													144	The other		0.4379		
2		161.6	бб.5	111.5	0.0			171.0			-152.4	-54.0	80.61	_,	A 14 III				
3	70.4	152.3	70.4	110.6	0.0	104.8	161.3	175.7	176.0	131.4	-161.3	-71.0	85.15	144			0.3557		
4	78.0	132.8	78.0	102.6	0.0	84.3	184.9	190.0	200.7	147.3	-184.9	-105.7	93.73	134	.36	0.1227	0.1773		
5	79.6		79.6	92.2	0.0	73.6					-211.1		95.59	119		0.0773	0.0047		
				87.2		72.7	222.9				-222.9		95.06			0.1467 -			
5		113.6	79.1		0.0											0.1783 -			
7			78.8	89.5	0.0	70.4	228.5				-228.5		94.73						
- 8	78.3	114.7	78.3	91.4	0.0	69.2	234.2				-234.2		94.16			0.2119 -	, , , , , , , , , , , , , , , , , , , ,		
9	75.8	107.5	75.8	85.2	0.0	65.5	250.6	242.2	261.8	195.2	-250.6	-176.7	91.23	109	- 43.	D.3061 -	-9.2579		
10	74.8	100.7	74.8	76.1	0.0	66.1	255.7				-255.7		90.17	97	-57 -	0.3292 -	-0.2932		
11	74.1	92.6	74.1	65.3	0.0						-260.6		89.39	23	.52 -	0.3357 -	0.3207		
TT	14.1	32.0	27.1	05.5	0.0	03.0	200.0	ZUI.	210.3	131-6	-200.0	-100-1		-	• ••	,,,,,,,,,			
			n. 1	21.2				ui s	THE	THEFT	neu	TURN	D FAC (SUCCE D	1 000 0	P02/	YFFF_A	%EFF-P	
SL	B-1	8-2	B*-1		M-1	M-2	M'-1	WS	INCS	INCM	DEA		U SAL L				-,		
	DEGREE	DEGREE	DEGREE								DEGREE		100	TOTAL	TOTAL			TOTAL	
1	0.0	48.2	66.18	19.60	0.1907	0.5062	0.4777	0.3559	1.10	5.19	7.65	45.58	0.4289	0.1277	0.0255	1.2774	92.91		
2	0.0	46.3	66 1R			0.4865			2.45	6.17	7.98	49.41	0.4253	0.0939	0.0188	1.2665	93.86	94.06	
3	0.0	43.5	65.22			0.4585			3.78	7.17	9.29	33 47	0.4952	0.0544	0.0107	1.2433	95.70	95.84	
4	0.0	39.5				0.3995			5.16	7.45				0.0407	0.0075				
		J									10.13			0.0981	0.0164				
5	0.0	38.6	69.36			0.3540			5.19	7.94									
6	0.0	39.6	70.47			0.3402			5.33	7.05	8.60			0.1369		1.1722			
7	0.0	37.9	70.98	59.39	0.2417	0.3413	0.7412	0.5308	5.53	7.21	7.01	11.59		0.1244		1.1725			
8	0.0	36.8	71.51	59.76	0.2401	0.3437	0.7569	0.5490	5.99	7.55	6.16	11.76	0.3465	0.1200	0.0190	1.1736	5 79.73	89.18	
ğ	0.0	37.2	73.20			0.3216			6.06	7.48	5.50	9.23	0.3301	0.1391	0_0194	1.1616	74.13	74.67	
10		40.7				0.3009			5.60	6.97	6.44	6.73		0.1716			67.90		
	0.0								5.04	6.38	7.92	3.55	0.3464						
11	0.0	44.9	74.09	70.53	0.2211	0.2759	0.0300	0.30/6	3.04	0.30	1.32	5.55	0.5404	0-13/1	0.000	1.177.	. 00,500	00.60	
						***	** *		***	*** 0	10.1.1	101 2	DOOUM .	nun	VY-2	COCT 1	EPSI-2	DCT TE	
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	N-5	V'-1	V'-2	A) -1	VO'-2	RHOYM-						
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC								LBM/FT2SI	L LBM/r	izsel		DEGREE		
1	204.5	551.7	204.5	364.9	0.0	413.8	469.8	545.5	512.4	387.9	-469.8	-131.7	15.51				29.248		
2	218.3	530.4	218.3	365.9	0.0	383.9	499.9	561.0	545.5	406.5	-499.9	-177.1	16.51	29	-65	24.015	25.090	0.1000	
3	231.1			362.7	0.0			576 6	577.6	431.0	-529.3	-232.8	17.44	29	1.53	19.187	20.952	0.1500	
	255.8	435.7		336.8	0.0	The second second		623.3			-695.6		19.20		.52	7.032	10.158	0_3000	
4				pr							-692.7		19.58			-4.430	0.270		
5	261.1	387.0		302.4	0.0											- 6 - 1			
6	259.6	372.6	259.6	285.1	0.0		731.4	716.7			-731.4		19.47			-8.405	-3.910		
7	258.7	373.6	258.7	293.7	0.0	230.8	749.9	732.3	793.2	581.1	-749.9	-501.4	19.40			10.219	-6.028		
8	257.0	376.3	257.0	300.0	0.0	227.1	768.3	747.8	819.1	699.9	-768.3	-520.7	19.29	24	-22 -	12.142	-8.184	0.7000	
g	248.6	352.6	248.6	279.5		C 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	822.1	794.5	858.8	643.6	-822.1	-579.7	18.69	22	-50 -	17.539 -	-14.776	0.8500	
25.	M		245.5	249.5							-838.9		18.47			18.862 -	-16.801	0.9000	
10	245.5	330.6						010.1	000 0	CA7 0	-854.9	610 E	18.31				-18.374		
11		303.7		214.3	0.0	213.2	854.9						_	1.	-1,5	TOTAL	- THE STATE	u = 23334	
		KI/AI	WC1/AI					10	101 /20	UZ/PUI	EFF-AL								
	L	.BM/SEC	KG/SEC								ROTO		K						
		SOFT	SOM								%	*							
		18.11	88.38						1.0618	1.1965	85.18	85.5	6					2	
				• 14 14 15 16 1															

50 PERCENT DESIGN SPEED (STATOR PERFORMANCE)

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 50 POINT NO 6

	SL	V-1	V-2	VM-1	VM-2	VD-1	VO-2	PHOVM-1		VM-2 2 SEC	EPSI-1 RADIAN	EPSI-2 RADIAN					
		M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE			0.4673	0.0834					
	1	175.0	174.4	124.1	174.4	123.4	5.2	158.78	214			0.0634					
	2	168.0	173.4	122.5	173.4	115.0	1.6	157.55	216		0.4106						
	3	158.7	166.2	120.6	165.2	103.1	-2.6	155.84		.22	0.3486	0.0630					
	4	140.1	144.1	112.7	144.0	83.3	-6.3	146.15	182		0.1975	0.0363					
	5	124.9	128.6	101.1	128.6	73.4	-3.3	130.33		.49		-9.0021					
	б	120.6	125.3	96.2	125.3	72.8	-2.1	123.45		.18	-0.0136						
	7	121.1	126.7	98.4	126.6	70.6	-2.5	126.32		.71	-0.0483						
	8	122.1	127.3	100.3	127.2	69.6	-2.9	128.73	161		-0.0799						
	9	117.0	123.2	96.4	123.1	66.3	-6.1	123.13	155	.16	-0-1773	-0.0753					
	10	112.0	117.8	89.7	117.6	67.1	-7.1	113.95	147	.38	-0.2115	-0.0651					
	11	105.7	110.1	81.9	109.6	66.8	-10.3	103.61	136	.52	-0.2558	-0.0964					
	SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	U-FAC	OMEGA-B	LOSS-P	P02/	P0/P0	TO/TO	XEFF-A	XEFF-P
		DEGREE	DEGREE		T.T.	DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STE
	1	47.0	1.6	0.5279	0.5252	-7.47	-4.51	15.51	45.33	0.1517	0.2170	0.0590	0.9525	1.2289	1.0779	78.00	78.64
	2	44.8	0.5	0.5066	0.5238	-7.58	-4.45	12.48	44.33	0.1150	0.1327	0.0311	0.9787	1.2376	1.0739	85.24	85.69
	3	41.7	-0.9	0.4785	0.5926	-10.11	-6.73	9.95	42.56	0.0987		0.0225	0.9865	1.2292	1.0577	89.84	90.14
	4	36.8	-2.5	0.4223	0.4349	-15.16	-11.91	7.50	39.31	0.1237		0.0395	0.9862	1.1940	1.0593	87.75	88.05
	5	36.0	-1.5	0.3755	0.3370	-17.94	-12.58	8.61	37.49	0.1324		0.0258	0.9912	1.1700	1.0575	79.98	80.43
	6	37.1	-1.0	0.3619	0.3794	-16.71	-10.97	9.14	38.05	0.1264			0.9947	1.1660	1.0591	75.05	76.58
	7	35.6	-1.1	0.3635	0.3897	-18.16	-12.28	9.04	36.75	0.1267		0.0178	0.9945	1.1663	1.0585	76.86	77.36
	8	34.7	-1.3	0.3665	0.3825	-19.97	-13.08	8.95	36.04	0.1283		0.0187	0.9942	1.1665	1.0588	75.65	77.16
				0.3508	0.3700	-21.30	-15.08	9.56	37.43	0.1337		0.0224	0.9939	1.1546	1.0591	71.10	71.69
	9	34.6	-2.8		0.3530	-21.23	-14.99	10.35	40.46	0.1520		0.0324	0.9920	1.1430	1.0608	64.16	64.83
	10	37.0	-3.4	0.3351					44.97	0.1350		0.0525	0.9885	1.1280	1.0515	57.01	57.75
	11	39.7	-5.3	0.3158	0.3291	-23.95	-17.82	11.12	44.37	0.1000	0.1110	0.0363	0.3003	1.1600	1-0010	34.44	J
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-	1 RHC	V11-2	PCT TE	EPSI-1	EPSI-2				
		FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SI			SPAN	DEGREE	DEGREE				
	1	574.2	572.4	407.1	572.1	404.9	17.0	32.52		.02	0.0430	26.772	4.776				
	2	551.3	568.8	401.8	568.8	377.4	5.2	32.27			0.0901	23.523	4.150				
	3	520.6	545.4	395.6	545.3	338.3	-8.7	31.92			0.1410	19.973	3.610				
	4	459.8	472.9	369.7	472.5	273.3	-20.7	29.93			0.2989	11.316	2.082				
	5	409.8	422.1	331.6	421.9	240.8	-10.7	26.69			0.5086	3.336	-0.120				
	6	395.7	414.3	315.6	414.3	238.7	-7.0	25.28			0.6103	-0.781					
	7				415.5	231.5	-8.1	25.87		.91	0.6593	-2.770	-1.966				
		397.3	415.6	322.8				26.36			0.7107	-4.580	-2.584				
	8	400.5	417.5	329.1	417.4	228.2	-9.5	25.22			0.2520	-10.157	-4.312				
	. 9	383.9	404.4	316.4	403.9	217.4	-19.9					-12.118	-4.933				
	วัง	367.4	386.6	294.2	385.8	220.0	-23.4	23.34			0.9101 0.9571	-14.659	-5.522				
	11	346.7		268.6	359.5	219.3	-33.8	21.22					-3.366				
Ž.			NCORR	WCORR	WCORR			TO/TO	ruz/PUL	P9/P0	EFF-AD						
			INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE				2.14	
			RPM	LBM/SEC	KG/SEC			1 0010	0 0070	11 12110	*	% 70 71					
			6241.00	80.70	36.60			1.0618	0.93/8	1.1819	79.21	79.71					

```
50 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
```

RUM NO 111 SPEED CODE 50 POINT NO 4

.*							•				***	8,00 EL	Larceu	טעב שטטט	Puim m	J 45			
	SL	V-1	V-2	VM-1	VM-2	VO-1	1/0-2	# T	. 41 2		4.2								
		M/SEC						U-I		V'-1			[WY-2	PHOYN	-1 R	IOYM-2	FPCI_1	EPSI-2	
	1	69.3									M/SE	: M/SEC	MISEC	KG/M2			RADIAN	25272	
) 127.E	143.1	l 165.2	2 155.3	113	5 -147 1	-38.5			112, JLC	THE PROPERTY.	RADIAN	
	2		159.8		107.1	0.0	118.5	152.3	3 170 0	165.3	110	-152.3	-52.4			3.93		0.5099	
	3	68.1	151.1	68.1	107.4	0.0		161	175	7 175 1	エンフィ	7 -132-3	-52.4	78.1	T	0.05	0.4196		
	4	75.4	132.3	75.4			077	105	1700	1/3-1	167.1	3 -151.3	69.4	82.6		1.03	0.3352	0.3645	
	- 5		117.3				20 0	204-0	183.9	195.9	143.1	1-184.8	-102.7	90.9	5 13	1.11	0.1205	0.1763	
	6	76.3	114.2	76.3				ζιι.ι	208.5	224.6	157.	2 -211.0	-130.7	92.5	5 11	4.38	-0.0783	n mes	
	7						//.6	444.9	218.4	235.6	163.8	-722 9	_160 7	D2 0			0.0700	0.0092	
			114.6	,,,,,,			76.1	228.5	223.1	240.8	170 1	-728 5	-147.0	91.7			-0.1455	-0.0009	
	8		115.6		87.9	0.0	75.1	234 1	227.9	2/5 0	175 4	- TEEU-J	-152.8			1.64	-0.1779		
	9	73.1	108.7	73.1	81.0	0.0		250 5	2/2 1	250.0	110.0	-234.1	-135.8	91.1		4.46	-0.2119	-0.1437	
	10	72.3	102.7	72.3				255.7	242.1	200.9	163.4	-250.5	-169.6	88.4	0 10	5.14	-0.3034	-0.2522	
	11	71.7						400.0	245.8	265.6	188.0	-255.6	-173.6	87.4	3 9	3.21	-0.3245	-0 2026	
			2,43	12.4	03.4	0.0	12.9	260.5	251.6	270.2	190.3	-260.5	-178.7	85.7			-0.3312	0.2200	
	51	0.7	~ ~										-,	J	- 0	7.76	-0.3312	-0.3130	
	SL	8-1	B-2	8'-1		M-1	M-2	M'-I	#1-2	INCS	INCM	DEV	TURN	D FRC	A				
		ULGREE	DEGREE	DEGREE	DEGREE			1.25		BECREE		DECOLE	I OFM	U FAL	OMEGA-B			XEFF-A	XEFF-P
	1	0.0	49.7	66.88	19.61	0.1840	0 /507	O 8782	0.2200	DEGMEE	DEFECT	CEGREE	DEGREE		TOTAL	TOTA	i par	TOTAL	TOTAL
	2	0.0	47.8	66 RQ	25.00	0.1965	0.4337	0.4743	0.3409	1.81	5.90	7.66	47.27	0.4583	0.1299	0.025	7 1.289	4 92.99	93.24
	3	0.0	AA D	55 m	22.00	0.1503	0.4/9/	U.505Z	0.3581	3.16	5.87	8.22	40.88	0.4519	0.0945	0.019	9 1.269		
	4	0.0	44.U	00.32	32.90	0.2082	9.4539	0.5352	0.3840	4.48	7.85	9.45	34.01	0 4241	0.0459	0.020) 1.507 1.507		
				67.74		0.2306	0.3969	0.5108	0.4290	5.84	8.12	10.25	21 60	0.4079	0.0735	0.007	0 1.254		
	5	0.0	41./	70.03	56.15	0.2349	0.3510	0 6873	0 6704	E 06	7.71			0.4073	0.0416	0.007	7 1.220		95.45
	6	0.0	42.0	/1.10	59.04	0.2335	0.3411	0 7200	0.4002	5.97				0.4055	0.1141	0.018	B 1.190	84.07	84.47
	7	0.0	41.3	71.60	59 51	0.2327	0 3433	0.7260	0.7652		7.70	8.75	12.07	0.4062	0.1477	0.023	3 1.183	78.40	
	8	0.0	40.2			0.2313	0.3453	0. 1309	0.5053	5.15	7.83	7.13		0.3917	0.1415	0.0223	3 1.184		~ ~ ~ ~ ~ ~
	9	0.0	41.5	73.73		0.2312	0.3452	U. /52/	0.5263	6.60	8.15	6.21	12.32	0.3794	0.1368	0.021	5 1.186	78.67	
	10	5.0			04.21	0.2237	0.3239	0.7982	0.5603	6.59	8.01	5.73			0 1621	0.0021	1.1754	70.07	
			43.1	74.19	67.24	0.2211	0.3955	0.8125	0.5591	6.09	7.47	6.72	6 95	0.3323	0.1021	0.0224	1.1669		73.27
	11	0.0	47.9	74.55	69.77	0.2192	0.2907	0.8263	0.5652	5.52	6.85	7.16	8 70	0.3700	0-1732	n.uc3:	1.166	3 67.29	63.01
	24.5										0.03	7.10	4-13	0.3780	0.2093	0.0725	1.161	64.12	F4.88
	SL.	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	*** 7	***								
	1	T/SEC	FT/SFC	FT/SFC	FT /SEC	ET /CEC	ET ACCC	D_T VCCV	U-Z	V'-1	AS	VO'-1	V9 *-2	RHOYM-	I RHO	VM-2	EPSI-I	EPSI-2 s	ALT TO
	1	197 7	546.0	197.7	350 3	11/356	FIJSEL	LIASEL	F1/SEC	FI/SEC	FT/SEC	FT/SEC	FT/SEC 1	BM/FT2S	I RHO EC LBM/F	TOSEC			541
2.5	2	211.0	E24.2	13/./	350.2			70000		-017-13	372.4	-469.7	-126.5	15.04	20,00				
		Z11.U	324.2	211.0		0.0	388.9	499.8	550.8	542.5	391 3	499.8	_172 n	15.01			29.156	29.218 (
	3	223.5	495.8	223.5	352.3	0.0	348.9	529.2	576.4	574 4	ATO A	-529.2	227.5				24,040	25.039 %	
		247.3	434.0	247.3	326.3	0.0	286.1	606 4	623.1	EEA O	460 1	-323.2	-221.5	16.92			19.208	20.835 9	.1500
	5	251.9	384.9	251.9	225 9	0.0	256.6	692.5		654.9	509.1	-605.4	-337.0	18.63		.85	6.904	10.100 0	3700
	6	250.4	374.7	250.4	278 0					736.8	515.8	-592.5	-428.7	18.95	23	.43	-4-515	0.242 5	5000
			376.1	249.5	201.0		254.7	731.2	716.5	772.9	537.4	-731.2	-461.8	18.85			F-17- F-	-3.945 E	
	- 2					0.0	249.7	749.6	732.0	790.0	558.3	-749-6	-492 3	18.78					
			379.2		288.3	0.0	246.4	768.0	747.6	807.0	578.2	-762 A	-501 2	13.67			10.190	-5.072 0	.6509
		240.0	356.5	240.0	265.7	0.0	237.7	821_8	794 3	856.1	616 9	_021 0	-JUL.C			.44 -	12.039	-8.232 0	. 7000
	10	237.2	337.0	237.2	235.4	0.0	240.2	338 E	ano o	871.5	C1 C 0	D21-0	-220.0	18.10	21.		17.382 -	14.794 0	.8500
	11	235.2	321.1	235.2	214 4	กก	230 U	CEN C	025.0	011°2	010.0	-335.6	-569.7	17.91	19.	.09 -	18.591 -	16.765 n	9000
		LIC.	1/A1	WC1/AL		J.U		U34-D	023.4	886.4	624.3	-854-6	-586.4	17.76	17.	.29 -	18.979 -	19 312 n	GENN
			-	KG/SEC					TO	E/TOI PO	12/P01	EFF-AD	EFF-P				च्याच्याच्या च्या व	- JOHAL U	* ~ ~ ~ .
			OFT									ROTOR	ROTOR						
				SQM								ž	×						
		1	7.50	85.42	100				1.	.0652 1	2063	84.50	84.91						
												GE-30	64-31						
						4 F													

50 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 50 POINT NO 4 RHOVM-2 V-1 V-2 VO-2 PHOYM-1 EPSI-1 EPSI-2 SL VM-1 VM-2 VO-1 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN 5.3 153.54 2.0 152.53 -1.9 152.34 166.0 165.9 0.4564 0.0337 172.6 119.1 124.9 208.65 165.1 117.7 165.1 0.4089 0.0730 115.5 209.95 165.6 158.4 0.3470 0.0539 203.21 156.9 158.4 116.9 104.6 -1.9 152.34 -5.7 142.43 -4.3 124.76 -3.0 119.53 -2.4 121.99 -3.0 124.73 -3.7 118.23 0.1995 0.0385 0.0602 0.0903 -0.0129 -0.0214 -0.0482 -0.0322 -0.0803 -0.9433 -0.1295 -0.0742 136.5 121.8 119.9 120.8 121.8 117.7 86.2 78.0 136.6 108.9 176.38 138.9 121.9 123.7 95.0 157.42 77.7 76.3 154.59 119.9 92.4 120.7 120.8 121.3 94.3 155.71 121.9 75.5 73.3 156.96 122.5 96.5 8 117.8 117.6 9 91.9 150.67 74.3 74.3 -0.2161 -0.0854 -0.2598 -0.0960 -4.5 -5.5 109.19 113.1 112.9 85.2 112.8 143.55 10 109.8 107.1 80.9 107.0 103.31 135.47 11 B-1 B-2 M-2 INCS DEV TURN D-FAC OMEGA-B LOSS-P SL M-1 INCM P0/P0 P02/ 17)/TO XEFF-A XEFF-P DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 STAGE STAGE TOT-STG TOT-STG -3.03 15.64 45.69 0.1994 1.0786 1.8 0.5194 0.4986 -5.98 48.5 0.2053 0.0473 0.9655 1.2357 79.41 80.03 -2.97 -5.46 0.1£17 0.0285 0.0870 0.0208 0.7 0.4980 0.4958 0.9811 0.9879 12.63 0.1536 85.50 46.3 -6.09 45.66 1.2433 1.0745 55.92 -0.7 0.4720 0.4771 0.1494 42.9 -8.83 10.15 43.64 1.2364 91.37 1.0585 91.63 -2.4 0.4176 0.4103 41.08 0.1763 0.1152 0.0291 41.17 0.1927 0.0710 0.0192 38.7 -14.26-10.017.64 0.9871 1.2727 1.9613 89.44 33.75 -2.0 0.3707 0.3650 -9.49 8.02 39.1 -14.84 0.9936 1.1816 1.0609 90.33 80.79 0.0486 0.0136 0.0461 0.0131 0.9958 0.9950 0.3611 0.3587 -13.76 -8.02 40.0 -1.48.66 41.48 0.1935 1.1725 1.0530 76.39 76.94 0.3629 0.3613 40.11 0.1897 -14.82 -8.94 39.0 -1.19.01 1.1797 1.0631 75.70 77.24 -9.77 39.43 0.1898 40.53 0.1969 0.0477 0.0137 0.9953 1.1808 0.0540 0.0191 0.9948 1.1694 0.3663 0.3645 -15.77 38.0 -1.48.87 1.0636 76.58 77.13 0.3517 -17.19 -10.97 10.58 38.7 -1.8 0.3510 1.0651 TC.32 70.98 -2.3 0.3370 0.9932 65.06 10 41.4 0.3364 -16.90-10.55 11.52 43.62 0.2160 0.0903 0.0274 64.31 1.1591 1.0571 -14.46 0.3268 0.3187 13.55 11 43.0 -2.9 -20.60 45.91 0.2498 0.1605 0.9885 0.0492 1.1478 1.0681 V-1 V-2 VM-1 VM-2 V9-1 **VO-2** RHOYM-I RHOVM-2 PCT TE EPSI-1 EPSI-2 DEGREE DEGREE 26.721 4.794 23.426 4.183 19.834 3.650 FT/SEC LBM/FT2SEC LEM/FT2SEC 17.5 31.47 42.73 SPAN 0.0430 0.0901 0.1410 FT/SEC FT/SEC FT/SEC FT/SEC 544.8 390.9 544.5 565.4 409.8 541.8 519.8 382.2 343.2 543.3 541.8 386.1 6.4 31.24 43.00 383.6 -5.4 514.8 519.8 31.20 41.62 0.2989 0.5086 0.6103 0.6598 0.7107 0.8620 0.9101 0.9571 2.203 0.015 11.437 455.9 448.1 357.4 447.7 282.9 -18.529.17 36.12 406.0 399.9 315.1 399.7 255.9 -14.3 25.55 3.452 32.24 -1.225 -1.848 393.5 303.2 393.4 254.9 -9.9 31.66 396.1 24.48 -0.741396.4 309.4 250.5 395.3 -7.9 31.89 -2.759 398.1 24.98 -4.602 -2.479 -10.339 -4.249 -12.380 -4.291 -14.886 -5.501 399.8 399.7 401.8 316.5 247.6 -9.7 25.55 32.15 386.3 370.1 351.0 WCORR 24.21 22.36 21.16 240.6 -10.339 -12.380 -14.886 385.7 386.5 301.5 -12.1 30.86 243.8 243.6 -14.8 -17.9 371.0 370.4 279.7 10 29.40 351.5 265.3 11 360.2 27.74 TO/TO PO2/PO1 PO/PO STAGE STAGE 1.0652 0.9893 1.193? WCORR NCORR EFF-AD EFF-P INLET INLET LBM/SEC KG/SEC INLET STAGE STAGE RPM Y. 1 6230.60 78.00 35.37 79.51 80.02

AIRFOIL AERODYNAMIC SUMMARY PRINT RUK NO 111 SPEED CODE 50 POINT NO 5

50 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)

																-			
	SL	V-1	V-2	VM-1	VM-2	W)-1	V0-2	U-1	U-2	V*-1	Y'-2	1721 1	10'-2	Pictorial	3 700	****** * *			
		M/SEC												PHOYN			EPSI-1		
	1	58.4												KS/M2 S			NAICAS	RAJIAN	
												-143.1		71.54		5.23	0.5095	0.5098	
	2		160.0							164.5	115.8	-152.3	-50.5	76.21	139	9.00	0.4202	0.4355	
	3	66.0					108.9	161.2	175.6	174.2	124.1	-161.2	-66.7	80.54	138			0.3639	
	4	72.8	131.3	72.5	95.3	0.0	90.3	184.8	189.9	198.6		-184.8		88.47	,			0.1763	
	5	74.0	117.6	70.0	83.4	0.0	22 0	211 0	208.8			-211.0		89.89					
	5	73.7	115.5	73.7	91.3				218.3									0.0051	
	7	73.4		73.4	33.4							-222.8	-135.3	89.45				-0.0579	
	8	72.9	., .,			7 - 7					165.0	-228.4	-142.3	89.17).1757	-0.1052	
	-			72.9	85.5				221.8	245.1	170.5	-234.0	-147.5	89,63	112	-48 -	0.2097	-0.1432	
	9	70.6		70.6	77.5			250.4		260.2	18).4	-250.4	-162.9	85.90	101	.56 -	1.3021	-0.2581	
	10	69.8		69.8	69.7	0.0	80.0	255.5	246.8	254.9	120.7	-255.5	-166.7	84.97				-0.2925	
	11	69.2	102.7	69.2	63.6	0.0	80.6	260.4	251.5	269.4	182 4	-260.4		84.28				-0.2325 -0.3195	
						1.					A CAN . T		-110-3	UT-20	436	- 20 -	3-3630	-0-3120	
	SL	B-1	B-2	B*-1	B*-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DCV	71704	D F80	040E 0		-		
				DEGREE		*4-7	# 1 - Z,	11 -1	*1 -Z			DEA	TURK	U TAL	OMEGA-B		P02/		
	1	0.0					0 1000			ULLKEE		DEGREE			TOTAL	TOTAL	P01	TOTAL	TOTAL
		100		67.54	19.10	0.1783	0.4985	0.4/22	0.3304	2.46	5,55	7.22	48.38	0.4813	0.1313	0.0262	1.285	5 93.03	93.28
	2	0.0		67.54	25.54	0.1904	0.4804	0.5029	0.3509	3.81	7,52	7.75	42.00	0.4670	0.0863	0.0174	1.276	5 94.56	94.76
	3	0.0		67.56	32.57	0.2018	0.4535	0.5328	0.3727	5.12	8.51	9.12	34.99		0.0517	0.0102	1.250		35.23
	4	0.0	43.5	68.42	45.36	0.2229	0.3939	0.6080	0.4133	6.51	8.80	10.56	22.06		0.0594	0.0109	1.224		93.76
	- 5	0.0	44.8	70.68	55-42	0.2267	0.3515	0 6846	0.4513	6.51	8.35	10.86		0.4365					Dec 100 100 100 100
	б	0.0	45 0	71.70	58 98	0 2255	0.3447	n 7104	0.7325	6.57						0.0219	1.193		82.87
	7	0.0		72.18	50.37	0.2233	0.3464	0.710+	0.4130		8.30	8.69			0.1577	0.0249	1.1944		73.79
	8	0.0		72.69	72.37	0.2247	0.3404	0.7343	0.4923	6.74	8.42	6.99			0.1519	0.0241	1.1958	3 78.37	78.91
					59.01	0.2233	0.3499	U. /593	0.5088	7.17	8.72	6.02			0.1501	0.0239	1.1993	3 78.12	78.68
	9	0.0	45.2	74.26	64.28	0.2160	0.3296	0.7961	0.5357	7.12	8.54	5.80	9.99	0.4025	0.7852	0.0255	1.1891		72.00
	10	0.0	48.6	74.71	67.09	0.2135	0.3152	0.8105	0.5366	6.60	7.98	6.56	7.62		0.2127		1.182		67.73
	11	0.0	51.5	75.06	69.44	0.2177	0.3044	0.8244	0.5407	6.02	7.35	6.83	5 62	0.4143	0.2315	0.0252	1 1700	63.94	64_79
											9.555	0.00	W- C/E	0.7173	0.6313	V. UZJZ	1-1/0:	03.39	04-13
	SL:	V-1	V-2	VM-1	VM-2	70-1	VO-2	U-1	U-2	V'-1	V*-2	VO '-1	200 4 7	DV3PMY44					
							ET ICCO	TT ICCO	0-2	A -T	V -Z	10 -T	TU'-2	PHOVM-	T 1340	AX-5 E		EPSI-2 P	
	٠, ١	191.5	ERE C	101 5	7/256	L: \SEC	FI/SEC	FI/SEC	FI/SEC	F1/SEC	F1/SEC	FIVSEC	FT/SEC 1	LBM/FT2SI	EC LBM/F	ISSEC D		DEGREE	SPAN
				191.5	340.4		425.1	459.5	545.1	507.0		-459.5		14.65	27	.90 2	9.200	29.152 0	.0500
		204.4	524.8	204.4	345.7	0.0	394.9	499.6	560.7	539.8	383.4	-499.6	-165.8	15.61	28	.47 2	4.079	24-955 0	1000
		215.5	495.4	216.5	343.2	0.0	357.3	529.0	576.2	571.6	407.1	-529.0	-219.0	15.49				20.847 0	
	4	238.9	430.9	238.9	312.8	0.0	295.4	606.3	622.9			-605.3		18.12				10.100	
	5	242.9	385.8	242.9	273.6	0.0	272.1	692.2	685.1	733.6	495.4	-692.2	_X13_U	18.41					
	6	241.7	378.9	241.7	266.7	0.0	269.1	731.0	716.2		E20 E	721 0	-412.0				4.395	0.292 0	
	-	240.8	380.8	240.8	273.7	0.0	264.9	749.4				-731-0		18.32				-3.893 0	
		239.3	384.7						731.8	737.1	541.2	-749.4	-466.9	18.26	22.	.47 -1	0.066	-5,028 0	.6500
	_			239.3	280.5	0.0	263.3	767.8	747.4	804.2	559.5	-767.8	-484.0	18.15	23.	.04 -1	2.017	-8.2060	.7990
		231.6	363.4	231.6	254.3	0.0	259.6	821.6	794.0	653.6	591.8	-821.6	-534.4	17.59				14.789 0	
		229.0	348.2	229.0	228.7	0.0	262.6	838.4	809.6	869.1		-838.4		17.40				16.758 0	
1	ll .	227.0	336.9	227.0	208.8	0.0	264.4		825.2	284 0	598 A	_R54 4	-560 2	17.26					
			C1/A1	WC1/AI	7.			·	Tn	2/101 5	2222	EFF-AD	EFF-F		17	-10 -1	0.030 -	13.309 0	טעכב.
			BM/SEC						10	CLINT L	OC 1 LITE								
			SOFT	SOM								ROTOR		•					
												×	* *						
			15.97	82.79					1	.0689	1.2155	83.32	83.78	}					

	50	PERCENT	DESIGN	SPEED (ST	TATOR PE	RFORMANCE)	, ic 12,100			0 111 SPI	ED CODE	50 POINT	NO 5			
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-		DVM-2		EPSI-2					
		M/SEC			M/SEC	M/SEC		KG/M2 S				RADIAN					
	1	171.6	159.2		159.1	126.8	5.9	150.62		1.14		0.0841				er gran	
	2	165.2			157.8	118.3	2.6	150.98		. 63	0.4091	0.0738					
	3	156.2			151.4	107.2	-1.3	149.45		. 84		0.0648					
	4	137.4	129.9		129.8	89.3	-5.2	137.68	170	.85	0.2026	0.0392					
	5	123.5	115.8		115.7	82.7	-4.3	120.20		2.04	0.0596	0.0006					
1 1	6	121.5	114.4		114.3	82.1	-3.8	117.02		95	-0.0141	-0.0208					
	7	122.3	115.4		115.4	81.0	-3.6	119.73		.27	-0.0485	-0.0314					
	8	123.6			116.8	80.7	-3.7	122.42	153	1.01	-0.0798						
	9	119.1	113.2	88.1	113.1	80.1	-3.6	114.45		7.05	-0.1804						
	10	115.7			109.2	81.3	-3.6	106.59	141	.26	-0.2167						
	11	113.6	105.1	78.4	105.0	82.1	-3.9	101.24	135	5.17	-0.2607	-0.C954					
	SL	B-1	8-2	M-1	M-2	INCS	INCM	DEV	TURN	D_FAC	OMEGA-B	I 055 -D	P02/	P0/P0	TO /TO	ZEFF-A	₩EEE D
		DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE	ם-יהנ	TOTAL	TOTAL	P01	STAGE		TOT-STG	
	1	49.7		0.5164	0.4772	-4.73	-1.78	15.91	47 67	0 2276	0.1942	0.0447	0.0677	1 2/136	1.0799		
	2	47.3	0.9		0.4739	-5.08	-1.95	12.89		0.1978		0.0293		1.2500			
	3	44.5	-0.5		0.4549	-7.31	-3.93	10.36	44.95	0.1850	0.0822		0.9886	1 2/21	1.0704	91.23	
	4	40.9	-2.3		C.3895	-12 M	-7.80	7.73		0.2212	0.0869	0.0230	0.9905	1 2113	1.0637		91.49 88.85
	5	42.1		0.3696		-11.88	-6.53	7.92		0.2516	0.0559	0.0220	0.9950	1 1016			80.12
	6	42.5	-1.9		0.3433	_11 20	-5.55	8.21	44.25	0.2562		0.0131	0.9960	1 1905	1.0667		77.00
	7	41.5	-1.8		0.3444		-6.45	8.36	13 26	0.2535		0.0125	0.9958	1 1010			
	8	40.7	-1.8		0.3487		-7.09	8.43		0.2520	0.0470	0.0133	0.9955	1 1020	1.0681	76.04	76.63
	9	42.4	-1.8		0.3369	-13.49	-7.27	10.54	11 26	0.2630	0.0683	0.0143	0.9943	1 1025	1.0712		
٠.	10	44.9	-1.9		0.3247	-13.36	-7.12	11.92	46.76	0.2810	0.3921	0.0279	0.9927	1.1063	1.0734		64.91
	11	46.8	-2.1		0.3118	-16.84	-10.70	14.32		0.3098					1.0754	59.48	
		70.0		0.5574	0.3210	-10.01	-10.70	17.52	40.03	0.3030	0.1477	0.0433	0.5000	1.1037	1.0/34	33.40	00.30
	SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	RHOVM-	L RHC		PCT TE	EPSI-1	EPSI-2				
		FI/SEC			FT/SEC	FT/SEC	FT/SEC	LBM/FT2SI	EC LBM/F	T2SEC	SPAN	DEGREE	DEGREE				
	1	563.2	522.3		521.9	416.0	19.3	30.85		.31	0.0430	26.681	4.818				
	2	542.0	517.9		517.8	388.1	8.5	30.92	41	.91	0.0901	23.441	4.228				
	3	512.5	496.7	372.9	496.7	351.6	-4.3	30.61	40	.52	0.1410	20.014	3.715				
	4	450.9	426.2		425.9	293.1	-17.0	28.20	34	.99	0.2989	11.607	2.245				
	5	405.2	379.8		379.6	271.3	-14.2	24.62			0.5086	3.413	0.034				
	6	398.6	375.4		375.2	269.4	-12.4	23.97	30	.71	3,6103	-0.809	-1.194				
	7	401.2	378.7		378.5	265.7	-11.9	24,52	30	.98	06598	-2.779	-1.801				
	8	405.7	383.4		383.2	264.7	-12.2	25.07	31	.34	0.7107	-4.574	-2.420				
	9	390.6	371.3		371.1	262.8	-11.9	23.44	30	.12	0.8620	-10.335	-4.187				
	10	379.6	358.5	270.2	358.3	266.7	-11.8	21.83	28	.93	0.9101	-12.417	-4.836				
	11	372.6	344.9	257.3	344.7	269.4	-12.8	20.73	27	.68	0.9571	-14.935	-5.463	100			
			NCORR	WCORR	WCORR			T0/T0	P02/P01	PO/PO	EFF-AD	EFF-P					
			INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
			RPM	LBM/SEC							%	**					
			6233.20	75.60	34.29			1.0689	0.9903	1.2037	79.06	79_61					

	50	PERCENT	DESIGN	SPEED	(ROTOR	PERFOR	MANCE)	AIRFO	IL AERO	DYNAMIC				ODE 59 A	CH THIC	9			
	SL	V-1	V-2	Vr-1	V!4-2	VO-1	V)-2	U-1	IJ-2	V'-1	V'-2	tx1 *_1	VO'-2	PHOYM	1 Dec	VK-2	EPSI-1	EDCT 2	
			M/SEC	M/SEC							M/SEC		M/SEC	KG/M2		2 SEC		PADIAN	
	1	55.8	165.9	55.8		0.9				153.4		-142.9		59.1				0.5101	
	2		159.6	59.5	102.6	0.0		152.0	170.5	163.3	113.4	-152.0	-48.3	73.67		.71		0.4374	
	3	63.0			100.5		111.9	151.0	175.3	172.9	118.9	-151.0	-53.5	77.23	3 135	.41		0.3655	
	4		132.0	69.4	91.5	0.0		184.5	129.6	197.1	131.4	-184.5	-94.4	85.37	7 123	.49	0.1098	0.1755	
	5		117.5	79.2	77.4	0.0			208.5	222.0				25.38		.53	-0.0957	0.0049	
	6		116.9	69.8	77.5	0.0						-222.4		85.82			-0.1523 -		
	7		118.1	69.5	79.3	0.0						-228.0		25.46			-9.1248 -		
	8		119.0	68.9	79.7	0.0			227.4	243.5	160.3	-233.6	-139.1	84.85			-0.2183 -		
	10	55.5 65.9		56.6	70.4	0.0			241.5	258.7	157.8	-250.0	-152.2	82.13			-0.3041 -		
	11		110.8	65.9	64.6	9.0	90.0	255.1	245.4	263.5	199-1	-255.1	-155.3	81.29			-0.3?15 -		
	LI	55.4	100.0	65.4	61.0	0.0	. 89.9	260.0	251.1	268.1	1/2.4	-260.0	-151.2	80.55	80	-78 -	-0.3285 -	0.3192	
		8-1		3'-1		M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B	LOSS-F	P02/	ZEFF-	4 KEFF-P
		DEGREE (DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL			TOTAL
	1	0.0	51.5	68.33	18.23	0.1707	0.4990	0.4595	0.3259		7.40		49.56		0.0743	0.0169	1.2972	95.60	95.75
	2	0.0	49.9	68.37	25.15	0.1822	0.4300	0.4999	0.3409		2.3 6	7.37	43.21	0.4883	0.0628	0.0127	7 1.2873	95.15	95.28
	3	0.0	48.1	68.40	32.31	0.1930	0.4522	0.5296	0.3574	5.95	9.35	8.85	35.09		0.0473	0.0094			
	4	0.0					0.3960				9.57	10.23			0.0697				
	5	0.0	46./	/1.59	57.13	0.2153	0.3513	0.6808	0.4259	7.42	9.27	11.55	14.45	0.4774	0.1551	0.0251			
	5 7	ე.0 ა.ე	40.4	72.00	59.UD	0.2139	0.3490	0.7148	0.4529	7.47	9,20	8.77	13.55	0.4659	0.1719	0.0271	1.2075		
	8	0.0	47.5	72 50	50 01	0.2129	0.3524 0.3546	0.7599	0.40/5	7.54	9.32		13.74	0.4573	0.1749	0.0277	1.2199		
	g	9.9		75.09	57.51	0.2113	0.3380	0.7020	0.4779	8.07 7.95	9.63 9.37	5.32			0.1849				
	10	0.0		75 49	67 74	0.2042	0.3285	0.7323	0.4762	7.39	9.37 8.76	6.43 6.81	10.18	0.4504		0.0311			68.96
	11	0.0	55.F	75.22	60 13	0.2003	0.3217	0.0075	0.5915	5.78	8.11	6.51		0.4640	0.2500	0.0302	1.2021		
		3.0	50.0	x 5.00	0,	9-2003	U.JEIF	0.0213	01 3103	0.75	0.11	0.31	0.70	0.4392	0.2559	U. U280	1.2906	03.70	04-04
	SL	V-1		V%-1	VY-2	₩)-1	Y 9-2	U-1	U-2	AI	V'-2	VO'-1	1/2 -2	PHOYM-	1 PHO	YM-2	EPSI-1	EPSI-2	PCT TE
pe		FI/SEC F	T/SEC F	T/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		EC LBM/F		DEGREE	DEGREE	SPAN
		183.0				0.0	428.2	463.8	544.3	503.2	355.5	453.8	-116.1	14.17				29.224	
		195.3			336.5		401.3							15.09			23.723	25.060	0.1999
	3	206.7 227.5		205.7 227.5			367.1					-528.2		15.94				20.944	
		230.4			300.1		312.2		621.9	545.7	431.3	-605.3	-309.S	17.49		.27		10.054	
	5	228.9	353.7 222.7	230.4	254.0		290.2			728.5				17.69	21		-4.956	0.281	
		227.9					287.2	729.8 748.2	730.5	754.9				17.58				-3.931	
		225.2		226.2			289.7	755.5		782.2 799.3				17.50		.68 -		-5.133	
		218.6			231.1		293.3	220.3		848.9		-765.6 -820.3		17.38			12.510		
	10				211.9		295.4	237.0		864.5	555.4	7520.5	ביבבי	16.82			17.421 -		
		214.5		214.5					227 0	879.6	555.5	-037.0	-312.3 520 0	16.65 16.52			18.423 - 18.824 -		
				WC1/AL				ي دورون		2/TOI P					10	. 7+ -	10.044 -	10-504	ひょっこうろ
				KG/SEC					*6			ROTOR							
			OFT	SOM						pr ^e Y		*	*	•					
		1	5.16	78.25					*	.0	1.2290	82.19		9		4			
									4.0										

RIN NO 111 SPEED CODE 50 POINT NO 9 50 PERCENT DELIGN SPEED (STATOR PERFORMANCE) PHOME-I PHOMM-2 EPSI-1 EPSI-2 17-2 1-2 74-1 14-2 W3-1 SL - V-1 MISEC NEINZ SEC NEINZ SEC RADIAN PASIAN M/SEC X/SEC K/SEC K/SEC M/SEC 150.85 199.74 0.4595 0.5350 151.2 127.7 5.2 113.7 151.3 171.0 149.37 199.42 0.4159 0.0758 3.2 149.6 120.3 149.5 112.0 154.3 0.3563 0.0678 145.04 191.63 -0.5 142.3 109.1 142.8 110.2 155.1 134.03 163.69 0.2119 0.0452 121.3 121.2 94.1 -4.1 100.0 137.3 113.57 143.90 0.0797 0.0679 -4.1 195.3 85.3 105.8 23.2 122.7 -9.0029 -0.0134 4.2 113.11 142.51 105.9 87.5 122.2 105.0 25.2 6 115.39 -9.0357 -9.0249 144.49 107.5 85.9 197.4 87.8 -4.1 123.5 -0.0530 -0.0352 82.8 -3.8 115.93 145.20 108.9 109.0 37.5 124.6 -9.1779 -0.0591 141.24 -3.2105.17 99.5 105.2 20.5 105.1 121.2 -0.2173 -0.9817 135.74 193.2 91.4 -2.4 100.41 103.2 75.5 10 119.2 132.20 -9.2512 -9.0942 37.77 91.5 -5.0 100.2 74.5 100.2 113.1 TO/TO XEFF-A XEFF-P TIPI B-FAC OYEGA-3 LOSS-P P02/ PO/PO DEV 7-2 INCS MON 2-2 1-1 SL 3-1 P01 STAGE TOT-STE TOT-STE TOTAL STATE DEGREE TOTAL DEGPEE DEGREE DEGREE DEGREE DEGPEE 0.9674 1.2547 1.0908 53.05 0.0452 -1.32 15.12 48.22 0.2725 0.1966-3.97 2.3 0.5151 0.4533 50.5 23.03 0.1339 0.0312 0.9795 1.2593 1.0776 0.2430 13.15 47.52 -3.70-0.571.2 0.4948 0.4483 48.7 1.2521 1.0729 91.21 0.2458 0.0912 0.0218 0.9874 45.53 -5.28 -1.91 10.55 -0.2 0.4667 0.4284 45.5 1.2221 1.0573 87.73 0.0370 0_9245 0.9393 8.09 45.62 0.2926 -5.02 -1.9 0.41259.3631 -9.27 43.7 79.52 1.2038 1.0629 79.07 0.3320 0.0413 0.0111 0.9963 7.87 48.21 -2.2 0.3571 0.3185 -7.95 -2.6045.0 76.90 75.28 0.9954 1.2932 1.0713 -2.257.84 48.66 0.3424 0.0407 0.0114 -2.990.3157 45.8 -2.3 0.3551 1.2054 75_58 0.0490 0.0113 0.9954 1.0727 47.45 0.3492 7.93 -2.2 0.3589 0.3200 -2.51 -2.64 45.3 74.05 74.75 0.9951 1.2074 1.0748 3.29 47,36 0,3399 0.0427 0.0122 -3.42 -2.420.3243 -2.0 0.3719 45.4 0.9949 1.1998 1.0804 65.52 67.38 50.14 0.3582 0.0594 0.0178 0.3149 -7.49 -1.2710.55 -1.7 0.3504 42.4 0.0260 0.9929 1.1936 1.0827 63.71 51.67 0.3754 0.0359 62.79 12.48 -7.89 -1.65-1.3 0.3539 0.3057 59.4 10 0.3989 0.1365 0.0419 0.9389 1.1372 1.0843 59.72 50.59 52.46 0.2964 -12.30-5.1515.29 -1.1 0.3504 11 51.3 EPSI-1 EPSI-2 PHONM-2 PET TE PHOME-1 74-1 11-2 V9-1 777-2 SI V-1 ¥-2 FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC DECREE DECREE SPAI FT/SEC FT/SEC FT/SEC 25_901 4.372 0.6439 29.2 39.90 40.91 495.4 372.9 495.0 419.1 551.0 23.780 4.343 33.59 0.6901 49.64 490.9 334.5 19.5 491.0 357.5 539.2 29,412 3,892 0.1410 29.91 39.25 468.5 351.4 -1.5598.7 468.5 358.9 12.141 2.590 33.52 0.2989 328.0 397.8 398.8 -13.327.45 393.0 450.5 4.051 0.455 29.47 0.5985 -13.523.25 359.3 289.3 279.9 492.5 359.5 -0.156 -0.766 29.19 0.5103 279.4 347.5 287.4 -13.723.17 400.8 347.8 -2.194 -1.377 -13.4 23.51 29.57 0.5593 352.4 288.1 352.5 285.0 495.3 -3.953 -2.018 29.94 0.7107 23.74 -12.3287.0 357.4 291.2 498.9 357.6 -19.192 -3.957 -19.421.74 28.93 0.8520 348.4 264.5 348.3 295.8 397.6 0.9101 -12.449 -4.581 28.00 338.7 299.9 -7.8 23.57 338.8 250.3 10 391.0 -14.957 -5.394 0.9571 399.5 -6.5 20.03 27.08 328.8 328.8 244.5 387.5 11 EFF-AD EFF-P T9/T0 P02/P01 P0/P0 WOORR ACOPP. NCOS3 STAGE STAGE STACE STAGE INLET INLET INLET * KS/SEC LBM/SEC PPM

1.0749 0.9903 1.2170

72.00

6235.70

32.65

78.78

72.17

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 70 POINT NO 5

70 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)

SL 1 2 3 4 5 6 7 8 9 10 11	M/SEC 85.3 91.2 96.7 106.8 109.1 108.6 108.3 107.6 104.3 103.3	180.8 167.1 165.5	96.7 106.8 109.1 108.6 108.3 107.6 104.3	122.1 113.4 109.3 111.7 112.9	0.0 0.0 0.0 0.0	168.9 155.0 133.4 122.8 124.2 124.8 124.3 120.9 122.0	257.2 293.7 310.1 317.9 325.7 348.6	244.5 264.3 290.7 303.9 310.5 317.1 336.9 343.5	216.7 230.7 244.4 278.5 313.3 328.6 335.9 343.0 363.8	151.1 159.0 167.1 179.0 202.6 210.3 216.7 223.4 239.7 241.2	VO'-1 M/SEC -199.2 -212.0 -224.4 -257.2 -293.7 -310.1 -317.9 -325.7 -348.6 -355.7 -362.5	-50.6 -69.0 -89.5 -130.9 -167.9 -179.6 -185.7 -192.7 -216.0 -221.4	RHOVM- KG/M2 St 97.79 104.03 109.78 120.08 122.39 121.91 121.53 120.84 117.59 116.51 115.63	EC KG/M2 190. 192. 191. 165.	SEC 13 (185	RADIAN D.5083 D.4180 D.3317 D.1184 D.0722 D.1413 D.1733 D.2063 D.2941 D.3144	EPSI-2 RADIAN 0.5126 0.4425 0.3723 0.1844 0.0108 -0.0646 -0.1028 -0.1413 -0.2555 -0.2894 -0.3171	
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC (OMEGA-B I	LOSS-P	P02/	%EFF-A	XEFF-P
	DEGREE	DEGREE						11 1 7			DEGREE			TOTAL	TOTAL	P01	TOTAL	TOTAL
1	0.0	51.4				0.6857			1.45	5.54		47.17			0.0180			
2	0.0					0.6600			2.75	6.47		40.80			0.0125			
3	0.0 0.0	47.8 47.7	бб.48 67 36			0.6242 0.5357			4.04 5.46	7.42 7.74	9.04 11.36	33.98 20.21		0.0444 4	8800.0			
5	0.0	47.2	69.62			0.4927			5.45	7.30			0.4706		0.7245	1.448		83.96
6	0.0	48.4	70.69			0.4859			5.55	7.28					3.7300			
7	0.0	47.9	71.19			0.4911			5.74	7.42	6.34					1.451		
8	0.0	47.4				0.4920			6.19	7.75	5.74	12.38			5.0314			77.44
9 10	0.0	48.9 51.6	73.30 73.75			0.4650			6.16 5.64	7.58 7.02	5.52 5.86	9.30 7.36			0.0307		1 71.53 7 68.33	
11	0.0	53.3	74.14			0.4420			5.09	6.43	5.53	6.00		0.2590		1.428		
		55.5			0.01.1	0. 1120	1.100	0.,055	3.05	0.75	5.00	0.00	0.1121	0.2330	0.0233	1.720		00.00
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1				V0 '-1		RHOVM-			EPSI-1		
														C LBM/FTZ		DEGREE	DEGREE	
2	279.8 299.2	754.7	299.2			592.7 554.2		758.8 780.4	757.1		-653.6 -695.4		20.03	38.9 39.9		29.122 23.949	29.371 25.351	
3	317.3		317.3	463.0	0.0	508.6	736.4		801.8		-736.4		22.48	39.		19.004	21.331	
4	350.5	593.3		400.6	0.0	437.7			913.8		-843.9		24.59	33.8		6.781	10.565	
5	358.0	548.4	358.0	372.0	0.0	402.9			1028.0		-963.5		25.07	31.		4.134	0.620	
6	356.5	543.0	356.5	358.8	0.0				1078.2		-1017.5		24.97	29.		-8.095	-3.704	
7	355.2 353.0	549.4	355.2	366.4	0.0				1102.0		-1043.2		24.89	30.3		-9.928	-5.893 -8.094	
9	342.3	551.1 523.2	353.0 342.3	370.5 341.2	0.0				1125.5 1193.7		1068.7		24.75 24.08	30.8 28.			-14.639	
10	338.8	508.7	338.8	313.8	0.0				1215.2				23.86	26.0			-16.584	
11	336.0	500.1	336.0		0.0	402.4			1235.8			-745.2	23.68	24.			-18.170	
		C1/A1	WC1/AL					T(02/T01 F	02/P01								
		BM/SEC	KG/SEC								ROTOR	ROTO	К.,					
		SQFT 24.44	SQM 119.26	ger et l					L.1446	1 4817	% 82.81		4					
		- 1 - 17	11111						L- 177U	1.7037	UL . UI	الا موت	•					

70 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 70 POINT NO 5 RHOWM-2 EPSI-1 EPSI-2 **10-2** RHOWM-1 SL V-1 V-2 VK-1 VM-2 VO-1 KG/MZ SEC RADIAN RADIAN M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC M/SEC 0.4714 0.0834 5.5 208.55 273.94 175.8 237.6 209.3 153.6 209.2 203.24 205.14 0.4194 0.0730 155.2 273.73 1.8 228.5 205.9 156.9 295.8 0.3628 0.0543 -3.5 254.65 153.5 195.5 152.7 215.5 195.5 0.2139 0.0397 131.9 -9.7 181.09 228.15 135.5 157.6 189.1 157.9 165.73 208.38 0.0647 0.0917 153.0 122.5 -7.7 175.3 153.2 125.4 160.46 205.91 -0.0091 -0.0191 124.4 -3.9173.9 152.2 121.5 152.2 163.33 -0.0450 -0.0299 154.5 125.2 -2.3 208.77 176.1 154.6 123.8 165.20 155.70 -0.0787 -0.0411 125.4 156.9 124.9 -1.8 211.46 177.0 156.9 -0.1871 -0.0730 9 171.1 153.4 119.5 153.3 122.4 -3.7 204.21 148.56 -0.2233 -0.0845 124.0 195.60 158.4 149.0 114.0 143.9 -2.9 10 -0.2653 -0.0953 144.69 190.73 11 167.5 145.7 111.4 145.7 125.1 -2.7D-FAC OMEGA-B LOSS-P P02/ PO /PO TO/TO XEFF-A XEFF-P DEY TURIL SL B-1 2-2 M-1 M-2 INCS INCM STACE TOT-STG TOT-STG DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL POI STAGE DEGREE DEGREE 1.5354 1.1572 23.01 -4.17 -1.22 15.31 0.2030 0.0467 0.9420 48.83 0.2790 50.3 1.4 0.7104 0.6190 87.58 88.31 0.2605 0.0349 0.9601 1.5432 1.1510 48.4 0.5 0.6827 0.6093 -4.03-0.91 12.47 47.89 0.1483 -2.26 1.5278 1.1423 99.58 0.5827 -5.63 9.84 47.15 0.2576 0.1102 0.0264 0.9731 0.6454 45.1 -1.00.0177 1.4649 1.1328 26.93 87.53 0.2975 0.0701 0.9355 44.7 -3.3 0.5618 0.4953 -8.29 -4.04 5.72 47.97 82.12 -4.25 47.23 0.3252 0.0412 0.0111 0.9931 1.4377 1.1349 81.18 -2.9 0.5180 -9.517.20 44.4 0.4499 77.70 1.4354 1.1424 76.52 0.3312 0.0365 0.0102 0.9940 -8.15 -2.418.65 47.11 45.7 -1.50.5118 0.4453 1.1459 76.71 0.4519 -8.50 -2.63 9.30 45.15 0.3275 0.0415 0.0118 0.9931 1.4409 0.5177 45.3 -0.9 0.9935 1.4454 1.1485 74.85 76.14 0.3297 0.0380 C. 9109 44.9 0.5199 0.4583 -2.91 -2.919.60 45.56 -0.71.1533 71.35 1.4273 0.5007 0.4455 -10.07-3.25 10.93 47.24 0.3271 0.0530 0.0158 0.9917 45.9 -1.40.0268 1.4115 1.1578 65.64 67.27 -10.54-4.30 12.55 0.3466 0.0884 0.9865 10 0.4913 0.4324 48.83 47.7 -1.163.97 0.0425 0.9792 1.3935 1.1618 -14.81 15.40 49.25 0.3671 0.1324 11 48.8 -1.00.4877 0.4219 -8.67 VD-2 RHOWK-1 RHOVM-2 PCT TE EPSI-1 EPSI-2 SL 7-1 V-2 VM-1 VM-2 **VO-1** SPAN DEGREE DEGREE FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC FT/SEC 0.0430 27.011 4.777 580.2 17.9 42.71 55.11 779.4 626.7 520.5 685.5 0.0901 4.184 545.2 5.0 42.65 55.97 24.030 749.8 675.4 514.8 675.4 20.785 3.687 0.1410 544.8 501.0 -11.5 42.02 54.20 644.9 503.7 710.4 0.2989 0.5986 37.09 45.73 12.256 2.277 620.5 550.7 444.5 549.8 432.9 -31.7 0.096 -25.134.15 42.68 3.706 575.1 502.8 411.5 502.1 8.104 5 32.85 -0.522 -1.097 42.17 0.6103 570.5 499.4 393.7 499.3 402.1 -12.7-2.578 -1.719 -7.6 33.45 42.75 0.6593 507.4 405.3 507.3 410.7 577.8 43.31 0.7107 -4.510 -2.352 33.83 520.8 514.9 411.4 514.8 410.0 -6.0401.6 32.09 41.82 0.8629 -10.719 -4.180 503.2 392.4 503.0 -12.2561.5 40.27 -12.794-4.842 0.9101 488.7 405.7 -9.5 39.43 10 552.5 488.8 374.0 478.1 410.4 -8.7 29.63 39.06 0.9571 -15.199 -5.45911 549.5 478.2 365.5 TO/TO P02/P01 P0/P0 EFF-AD EFF-P NCORR **HCORR** WCORR INLET INLET INLET STAGE STAGE STAGE STAGE X RPM LBM/SEC KG/SEC × 1.1446 0.9830 1.4595 79.02 80.11

8731.90 108.90

49.39

RUN NO 111 SPEED CODE 70 POINT NO 4 70 PERCENT DESIGN SPEED (ROTOR PERFORMANCE) EPSI-2 EPSI-1 RHOVM-2 RHOVM-1 V'-1 V'-2 V0'-1 V0'-2 U-1 U-2 VM-2 VO-1 VO-2 SL V-1 V-2 VM-1 RADIAN RADIAN KG/M2 SEC KG/M2 SEC M/SEC 0.5079 0.5124 188.72 148.5 -199.1 -48.9 96.35 215.9 182.3 199.1 231 0.0 83.5 140.2 83.5 230.0 0.4172 0.4423 229.9 156.6 -211.9 -67.4 191.67 102.53 237.6 211.9 221.3 89.3 141.3 0.0 170.4 89.3 0.3303 0.3722 189.02 243.5 164.0 -224.4 -87.6 108.19 156.7 224.4 244.4 94.7 138.6 0.0 94.7 209.2 0.1169 0.1843 162.04 264.2 277.5 174.1 -257.1 -127.3 118.27 136.9 257.1 104.5 118.8 104.5 181.2 0.0 -0.0721 0.0109 290.6 312.4 197.6 -293.6 -163.9 120.54 149.86 126.7 293.6 106.7 110.4 0.0 106.7 168.0 144.69 -0.1412 -0.0645 327.7 205.9 -310.0 -175.8 120.10 303.8 310.0 127.9 106.3 166.9 106.3 107.2 0.0 335.0 212.4 -317.8 -181.8 148.16 -0.1738 -0.1030 119.72 128.6 317.8 310.4 0.0 105.9 169.1 105.9 109.8 -0.2072 -0.1416 -0.2938 -0.2555 342.2 218.1 -325.6 -188.2 148.57 119.01 325.6 317.0 128.7 105.2 110.2 0.0 105.2 169.4 115.78 135.43 233.3 -348.4 -210.4 363.1 336.8 126.4 348.4 102.0 161.6 102.0 100.7 0.0 -0.3137 -0.2893 369.6 235.6 -355.6 -216.3 125.30 114.73 355.6 343.4 0.0 127.1 101.0 93.4 101.0 157.8 362.4 350.0 375.9 239.9 -362.4 -223.0 118.73 -0.3239 -0.3170 113.87 88.6 0.0 127.0 100.2 154.8 100.2 PO2/ XEFF-A XEFF-P D FAC OMEGA-B LOSS-P DEV TURN INCS INCM M-2 M'-1 M'-2 B-2 B'-1 B'-2 M-1SL B-1 P01 TOTAL TOTAL TOTAL TOTAL DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE 0.0181 1.6374 95.45 95.76 0.0903 5.96 7.06 47.94 0.5072 19.00 0.2578 0.6851 0.6663 0.4423 1.86 52.1 66.94 1.6155 96.39 0.0612 0.0123 41.40 0.4992 7.70 25.49 0.2758 0.6590 0.7101 0.4661 6.88 3.17 66.89 50.3 1.5781 0.0095 34.47 0.4909 0.0480 32.43 0.2927 0.6224 0.7528 0.4878 4.45 7.84 8.98 48.7 66.89 20.64 0.5113 0.1113 0.0202 1.4953 89.58 8.18 11.36 47.16 0.3236 0.5360 0.8595 0.5150 5.90 49.2 67.80 0.0 0.0259 1.4607 82.61 83.52 14.05 0.4884 0.1564 7.71 10.41 55.98 0.3307 0.4944 0.9679 0.5816 5.86 70.03 0.0 48.9 1.4591 77.97 0.0308 58.42 0.3294 0.4893 1.0154 0.6036 12.65 0.4908 0.1922 7.66 8.12 5.93 71.07 49.8 77.16 78.36 0.4845 0.1971 0.0319 1.4673 58.61 0.3281 0.4950 1.0378 0.6219 6.23 12.95 6.12 7.80 49.2 71.56 0.0 0.2045 0.0328 1.4708 75.94 77.22 0.4797 59.35 0.3259 0.4954 1.0600 0.6377 8.12 5.76 12.73 6.56 49.1 72.08 0.0 71.03 72.53 0.2330 0.0323 1.4577 9.52 0.4664 64.12 0.3159 0.4701 1.1239 0.6785 6.50 7.92 5.65 73.64 0.0 68.38 70.00 0.2530 0.0318 1.4511 0.4687 66.38 0.3126 0.4575 1.1439 0.6833 7.35 5.85 7.69 5.97 0.0 53.4 74.07 6.29 0.4644 0.2640 0.0305 1.4483 66.78 68.47 5.56 5.41 6.75 68.17 0.3100 0.4481 1.1633 0.6944 74.46 54.9 11 0.0 EPSI-1 EPSI-2 PCT TE RHOVM-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 U-2 VM-2 VO-1 VO-2 U-1 V-1 V-2 VM-1 FT/SEC LBM/FT2SEC DEGREE DEGREE SPAN 29.361 0.0500 0.0 598.2 653.3 758.5 708.5 487.2 -653.3 -160.3 38.65 29.100 19.73 274.1 460.0 274.1 754.6 23.902 25.341 0.1000 695.2 780.2 754.4 513.6 -695.2 -221.2 39.26 21.00 0.0 559.0 726.2 293.0 463.6 293.0 18.926 21.323 0.1500 736.1 801.8 799.0 538.0 -736.1 -287.5 22.16 33.71 0.0 514.3 686.5 310.7 454.7 310.7 6.698 10.558 0.3000 33.19 866.8 910.6 571.3 -843.6 -417.7 24.22 0.0 449.1 843.6 389.7 594.6 342.8 342.8 0.627 0.5000 -4.1280.0 415.6 963.3 953.4 1024.9 648.4 -963.3 -537.8 24.69 30.69 362.3 350.2 551.3 350.2 -8.090 -3.697 0.6000 0.0 419.8 1017.2 996.7 1075.3 675.6-1017.2 -576.9 24.60 29.63 547.6 348.8 351.7 348.8 0.0 421.8 1042.8 1018.3 1099.2 696.9-1042.8 -596.5 -9.959 -5.899 0.6500 24.52 30.34 554.7 347.5 360.3 347.5 -11.872 -8.112 0.7000 30.43 0.0 422.3 1068.4 1039.9 1122.8 715.7-1068.4 -617.6 24.38 361.6 -16.835 -14.641 0.8500 556.0 345.3 345.3 0.0 414.6 1143.2 1104.9 1191.2 765.4-1143.2 -690.3 27.74 23.71 330.5 334.8 334.8 530.2 -17.971 -16.577 0.9000 0.0 417.0 1166.6 1126.6 1212.7 772.9-1166.6 -709.5 23.50 25.66 517.6 331.4 306.6 331.4 -18.561 -18.161 0.9500 0.0 416.6 1188.9 1148.2 1233.5 787.2-1188.9 -731.6 23.32 24.32 328.7 290.6 328.7 508.0 T02/T01 P02/P01 EFF-AD EFF-P WC1/Al WC1/A1 ROTOR ROTOR LBM/SEC KG/SEC * % SOFT SOM 82.41 1.1486 1.4976 23.97 116.96

70	PERCENT	DESIGN	SPEED (S	TATOR PE	RFOR MANCE)			RUN I	NO 111 SP	EED CODE	70 POINT	NO 4			
SL 1 2 3 4 5 6 7 8 9 10 11	V-1 M/SEC 237.0	V-2 M/SEC 203.2	VM-1 M/SEC 156.0 154.4 150.5 131.8 122.1 118.9 121.5 122.3 116.0	VM-2 M/SEC 203.1 199.7 190.3 161.5 146.9 147.1 149.8 152.4 149.3 145.5	VO-1 M/SEC 178.5 167.6 154.4	VO-2 M/SEC 5.9 2.1 -4.0 -9.2 -7.5 -3.7 -2.1 -1.2 -3.4 -2.7	206.95 206.81 202.92 177.56 163.81	EC KG/N 271 270 261 223 203 202 205 206 207 207 208 208 208 208	DVM-2 M2 SEC L.53 D.98 L.29 3.76 3.27 39 5.76 5.31 D.84	EPSI-1 RADIAN 0.4716 0.4199 0.3638 0.2148 0.0650 -0.083 -0.0434 -0.0768 -0.1868 -0.2235	EPSI-2 RADIAN 0.0836 0.0735 0.0649 0.0405 0.0030 -0.0175 -0.0281 -0.0393 -0.0720 -0.0839 -0.0950					
SL 1 2 3 4 5 6 7 8 9 10 11	B-1 DEGREE 51.0 49.1 47.0 46.2 46.0 47.1 46.7 46.6 48.0 49.6 50.5	-2.9 -1.5 -0.8 -0.5	0.6802 0.6431 0.5601 0.5180 0.5136 0.5201 0.5218 0.5039 0.4959	0.4435	INCS DEGREE -3.44 -3.33 -4.74 -6.75 -7.94 -6.69 -7.11 -7.20 -7.94 -8.69 -13.18	INCM DEGREE -0.49 -0.20 -1.37 -2.50 -2.59 -0.95 -1.24 -1.21 -1.72 -2.45 -7.03	DEV DEGREE 15.48 12.54 9.66 6.77 7.16 8.65 9.36 9.80 11.08 12.71 15.45	48.52 48.21 49.46 48.93 48.56 47.48 47.07 49.27 50.64	0.3331 0.3683 0.3692	TOTAL 3 0.1971 0 0.1440 2 0.1036 1 0.0669 3 0.0512 2 0.0541 2 0.0501 4 0.0446 6 0.0607 6 0.0945	TOTAL 0.0454 0.0338 0.0248 0.0169 0.0138 0.0123 0.0142 0.0181 0.0286	0.9749 0.9872 0.9914 0.9927 0.9916 0.9924 0.9903	1.5521 1.5364 1.4749 1.4480 1.4485 1.4547 1.4599 1.4439 1.4301	STAGE 1.1586 1.1523 1.1439 1.1362 1.1389 1.1464 1.1501 1.1535 1.1601 1.1643	XEFF-A T07-ST6 83.60 88.05 90.83 86.35 90.42 76.38 75.41 74.46 69.20 65.59 62.75	707-STG 84.57 88.77 91.37 87.08 81.42 77.59 76.68 75.79
SL 1234567891011	777.7 747.7 707.5 619.8 576.3 573.6 581.4 584.1 566.7 559.1		VM-1 FT/SEC 511.9 506.6 493.9 432.3 400.5 390.3 398.7 401.2 380.7 364.9 357.1 WCORR INLET LBM/SEC 106.80	VM-2 FT/SEC 666.4 655.1 624.3 530.0 481.9 482.5 491.6 500.0 489.9 477.4 WCORR INLET KG/SEC 48.44	VO-1 FT/SEC 585.5 549.9 506.6 444.2 414.4 420.3 423.1 424.5 419.8 423.6 424.8	19.5 6.8 -13.1 -30.1 -24.5 -12.2 -6.8 -4.0 -11.0 -9.0 -8.1	RHOVM-1 LBM/FT2SE 42.38 42.36 41.56 36.37 33.55 32.51 33.18 33.33 31.44 30.01 29.30 TO/TO P STAGE	EC LBM/F 55 55 53 45 41 41 42 42 41 40 38 702/P01	T2.SEC .61 .50 .51 .83 .63 .45 .14 .76 .38 .00 .88 PO/PO STAGE	0.9101 0.9571 EFF-AD STAGE	DEGREE 27.020 24.059 20.842 12.310 3.725 -0.473 -2.485 -4.400 -10.702 -12.806 -15.209	-2.254 -4.127 -4.805				

AIRFOIL AERODYNAMIC SUMMARY PRINT PUN NO 111 SPEED CODE 70 POINT NO 8

70	חבח כביות	DECTON	cocco	/norna	neneno	UNIO CE B	AIRFO	IL FEHU	DAHWATC			caren e	005 70 B	07127 40	~	. in		
/0	PERCENT	DE2164	SPEED	ERUIUR	PERFUR	PARLET				2.01	un iii	SPEED E	100E 70 P	niui un	8			
SL	V-1	V-2	VI-1	V%-2	V9-1	VI-2	U-1	1-2	V*-1	V'-2	90 F_7	VO*-2	SHOAK-	7 500	14K-2	EPSI-I	EPSI-2	
	M/SEC	M/SEC	M/SEC		M/SEC	M/SEC	MISEC	M/SEC			M/SEC		KG/MZ S		S SEC		RADIAN	
1	82.1	249.4	82.1	157.6							-199.1	-49.7	95.52		293		0.5154	
2	27.7	219.6		139.5		159.5			229.3				191.62		.67		0.4492	
3	92.6			139.7		157.5			242.7				105.87		.43		0.3763	
4	101.1			111.1	0.0				276.2				115.73		.50	0.1032		
5	103.0			104.5		131.1					-293.5		117.71			-0-0755		
5		169.3				132.9			326.5				117.44			-0.1437		
7		171.6				134.1		310.3			-317.8		117.05			-0.1775		
s	101.7			105.3		134.7					-325.5		116.34			-0.2114		
ğ		164.3	98.5	95.8			348.4	335.7	362.0	224.7	-342.4	-203.3	113.04			-0.2969		
10	97.5	161.1	97.5	29.1	0.0	134.2	355.5	343.3			-355.5		112.00			-0.3155		
11	95.7	158.4	95.7	84.7	9.9		362.3			232.0	-352.3	-215.0	111.17			-0.3250		
	8-1	3-2	B'-1		M-I	14-2	M'-1	M'-2	INCS	INCH	DEA	TURK	D FAC	DMEGA-B	LOSS-	P P02/	XEFF-A	XEFF-P
	DEGREE										DEGREE			TOTAL	TOTAL			TOTAL
1	0.0				0.2535				2.12	6.22			0.4324	-0.1271	-0.025	7 1.722	5 105.22	
2	0.0				0.2710					7.14	8.33		0.5077					
3	0.0		67.24		0.2865				4.80	8.19	10.31	33.48					1 95.35	95.59
4	9.0				0.3132				5.52	18.8	12.37		0.5439					28.71
5	0.0				0.3193				5.51	8.36	11.15						7 81.61	
6	0.0				0.3184					8.25	7.93			0.1988				79.24
7	0.0				0.3173				6.71	8.38	5.03		0.5066					78.21
8	0.0				0.3150				7.15	8.70	5.85		0.5043					76.68
9 10	0.0				0.3050				7.05	8.48	6.00		9.4948					71.72
11	0.0	56.1 57.5			0.3019				6.51 5.93	7.23	6.15 5.82		0.4959					69-52
11	0.0	2/.2	14.30	00.45	0.2993	0.45//	1.1010	0.0701	5.93	7.27	3.62	5.54	8.4999	0.2732	0.0315	9 1.474	7 65.44	68.22
SI	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	11-2	V'-1	112	۷0'-1	90*-2	SHOAK-	n pun	WM-2	FPCI_1	EPSI-2	NT TE
													LEM/FT2SI			DEGREE	DEGREE	
	269.4	722.6							796.5				19.58		-06	7.0	29.532	
2	287.7			457.7		555.3		780.0			-695.1		20.81		.67		25.739	
3	393.8	671.6	303.8	428.9		515.8			795.2				21.89				21.590	
4	331.6	588.5	331.5	364.4	0.0	462.2	843.5	255.6	995.3	544.4	-243.5	-494.5	23.70		.44		10.738	
5	337.9			342.7	0.0	430.0	963.1		1020.6				24.11	29	.44	-4.331	0.829	1.5000
6		555.6							1071.4				24.05		.44		-3.544 (0.6999
7	335.8	562.9	335.8	351.2	0.0	439.9	1042.5	1.8101	1095.4	675.5-	1942.6	-578.2	23.93	30	.01 -		-5.832 (
S	333.5	562.9	333.5	348.6	9.9	441.9	1068.2	1039.8	1119.1	692.1-	1063.2	-597.9	23.83		.75 -	-12.111	-8.059	.7999
9	323.1	539.0	323.1	314.3	0.0	437.9	1143.0	1104.7	1187.8	737.2-	1143.0	-666.9	23.15				-14.554	
10	319.8	528.5	319.8						1209.4				22.94	24		-18.079	-16.599	.9000
11	317.2			277.8	0.0	439.4	1183.7		1230.3				22.77	23	.57	-18.523	-13.176 (.9500
		C1/A1	WC1/AL					76	02/T01 P	02/P01								
		BM/SEC		•							ROTOR		2					
		SOFT	504								*	*						
	2	23.34	113.89						1.1540	1.5215	82.83	83.8	1					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 70 POINT NO 8

70 PERCENT DESIGN SPEED (STATOR PERFORMANCE)

SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	RHO	VM-2	EPSI-1	EPSI-2					
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE		2 SEC	RADIAN	RADIAN					
1	247.4	198.4	172.1	198.3	177.7	7.3	236.85	271		0.4880	0.0879					
2	226.0	193.6	152.2	193.6	167.0	2.8	209.04	268	.91		0.0809					
3	210.6	183.5	142.2	183.5	155.3	-3.0	195.42	257	.88		0.0723					
4	186.5	154.1	123.9	153.8	139.3	-2.1	169.40	218	.08	0.2329	0.0474					
5	174.6	138.4	115.9	138.2	130.6	-7.Z	157.79	195	. 72	0.0738	0.0084					
6	176.5	140.7	116.0	140.7	133.0	-3.0	157.31	198	.21	-0.0004	-0.0124					
7	179.0	143.9	118.2	143.9	134.5	-0.8	160.05	202	.21	-0.0348						
8	179.5	146.3	118.0	146.3	135.3	0.3	159.35	205		-0.0682						
9	174.7	143.7	110.7	143.6	135.1	-2.4	148.62	198		-0.1813						
10	172.9	140.6	106.3	140.6	136.3	-2.0	142.19	193	. 100	-0.2200	-0.0817					
11	171.8	138.5	104.2	138.5	136.5	-1.9	139.10	188	. 95	-0.2633	-0.0940					
454.8					14222									-		
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B		P02/	PO/PO		%EFF-A	
	DEGREE	DEGREE			DEGREE	DEGREE		DEGREE	0.0530	TOTAL	TOTAL	P01	STAGE			TOT-STG
1	48.4	2.0	0.7436		-6.09	-3.13	15.90	46.32	0.3574		0.0745	0.8984	1.5574	1.1589	85.04	85.95
2	49.7	8.0	0.6750	0.5711	-2.70	0.43	12.76	48.93		0.1925	0.0451	0.9475	1.5613	1.1537	88.48	89.18
3	49.1	-0.9	0.6273	0.5414	-2.69	0.68	9.92	50.01	0.3092		0.0261		1.5453	1.1461	90.74	91.29
4:	48.9	-3.0	0.5520	0.4518	-4.06	0.19	6.99	51.93	0.3718		0.0157		1.4864	1.1405	85.47	86.26
5	48.5			0.4037	-5.48	-0.12	7.07	51.49	0.4204		0.0157			1.1438	79.48	80.56
6	48.9		0.5182	0.4092	-4.90	0.83	8.89	50.11	0.4169			0.9902		1.1521	76.04 74.91	77.30 76.25
7	48.7	-0.3	0.5248		-5.14	0.73	9.82	48.99	0.4101			0.9890	1.4732			
8	48.9	0.1	0.5254	0.4244	-4.90	1.09	10.39			0.0582	0.0167		1.4781		73.59	75.00
9	50.8			0.4148	-5.11	1.11	11.41	51.77	0.4159			0.9884	1.4645	1.1092	68.14	69.81
10	52.3	-0.8	0.5020	0.4048	-5.93	0.31	13.00	53.11	10.4324			0.9340	1.4532		64.97	66.76
11	53.1	-0.8	0.4980	0.3982	-10.51	-4.37	15.65	55, 89	IJ.4444	0.1336	0.0410	0.9792	1.4440	1.1/09	62.65	64.53
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	RHO	NM-2	PCT TE	EPSI-1	EPSI-2				
J.	FT/SEC	and the second second	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE			SPAN	DEGREE					
1	811.7	651.1	564.6	650.6	583.2	24.0	48.51			0.0430	27.951	5.039				
2	741.5	635.2	499.4	635.1	548.1	9.1	42.81			0.0901	25.471	4.633				
3	691.0	602.0	466.7	602.0	509.6	-9.9	40.02			0.1410	22.200	4.144				
4	611.7	505.5	406.5	504.8	457.1	-26.7	34.70			0.2989	13.343	2.718				
5	572.9	454.1	380.2	453.5	428.6	-23.7	32.32			0.5086	4.229	0.480				
6	579.2	461.7	380.7	461.6	436.5	-9.7	32.22	40	. 50	0.6103	-0.020	-0.709				
7	587.4	472.0	387.8	472.0	441.1	-2.8	32.78	41	.41	0.6598	-1.991	-1.323				
8	589.0	480.1	387.0	480.1	444.1	1.1	32.64			0.7107	-3.910	-1.982				
9	573.1	471.4	363.3	471.3	443.2	-7.9	30.44			0.8620	-10.388	-3.965				
10	567.2	461.2	348.9	461.2	447.2	-6.4	29.12				-12.607	-4.684				
11	563.6	454.5	342.0	454.4	448.0	-5.2	28.49	38	3.70	0.9571	-15.088	-5.384				
- TT		NCORR	WCORR	WCORR			TO/TO P			EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
			LBM/SEC	KG/SEC						*	* *					
1		8737.50	104.00	47.17			1.1540	0.9774	1.4872	78.05	79.25					

70	PERCENT	DESTGN	SPEED	(ROTOR	PERFOR	MANCE)	Nini 0	IL ACTO	DIMMIL			SPEED (ODE 70 I	OH THIO	6			
SL	V-1	V-2	VM-1	114-2	V0-1	VO-2	U-1	1-2	V*-1	V'-2	W1*_1	V2*-2	PHOAN	_1 Du/)YM-2	EPSI-1	EPSI-2	
	M/SEC	M/SEC	M/SEC									M/SEC	KG/M2		2 SEC	,	PADIAN	
1	73.5	227.4	78.5		-/-	183.5						-47-6	92.23		- 90	0.5070		
2	83.9	219.5		134.9		173.1			227.8				98.16		7.16	0.4149		
3		208.1				160.7					-224.3		103.60		.43	0.3260		
4		181.9	97.8			.144.4			275.0	167 0	-257 N	-119.7	112.96			0.1079		
5	99.4	169.2	99.4	100.4		136.2		290.5	200.0	104.0	207.0	-154.2	114.7				ed to be a to to	
6		171.9	99.1			138.1			325.3				114.34			-0.0766	Later of the management of the	
7		174.0	98.6					210.0	327.3	100 7	7307.7	-179.5	113.90			-0.1454 -		
8		173.9	97.9	102.3			325.5		339.9				113.3			-0.1799 ·		
9		168.5	94.7					226 6	350.9	215 0	-323.3	-1/D.C				0.2140 -		
10		165.3	93.7	86.1			355.4						109.79			0.2931 -		
11								343.2	357.6	210.7	-355.4	-201.0	108.77			-0.3166 -		
11	93.0	163.9	93.0	80.9	0.0	142.0	352-2	349.8	373.9	222.4	-362.2	-207.2	107.93	110	. 21 -	0.3258 -	0.3179	
5L	3-1	B-2	8'-1	B'-2	M-1	₩-2	M'-1	M'-2	INCS	INCM	DEV	TURH	D FAC	OMEGA-B	I MSS-E	P02/	TEFE-1	XEFF-P
	DEGREE I	DEGREE I	DEGREE	DEGREE							DEGREE		- 17.0	TOTAL	TOTAL		TOTAL	
1	0.0	53.5	68.18	19.30	0.2422	0.5766	0.6691	0.4249		7.19		48.88	0.5327			1.6445		
2	0.0						0.7034			8.11		42.56		0.0667				
3	0.0						0.7455			9.07	8.95			0.0577				
4	0.0						0.2511			9.45				0.1379		1.514		
5	0.0						0.9593			8.98				0.1901				
6	0.0						1.0072			B. B7	7.75				0.0344			
7	0.0						1.0293		7.32	9.00	6.04	14.34		0.2224	0.0363			
8	0.0						1.0520		7.75	9.31	5.97	13.71		0.2361	0.0375			
ğ	0.0						1.1165		7.63	9.06	6.06	10.24	0.5243	0.2735	0.0373			
10	0.0						1.1368		7.07	8.45	6.04	8.50		0.2899				
11	0.0		75.53				1.1563		6.49	7.82	5.91				0.0362			68.87
11	0.0	00.2	73233	00,00	0.2013	0.4710	1.1595	V. 0333	C.43	1.134	3. 31	7_01	0.5213	0.3020	U. U343	1.5011	00.01	67.42
SL	V-1		VM-1	V17-2	VO-1	M-S	U-1	1 J-2	V*-1	V*-2	17'-1	10'-2	RHOVM-	1 RHO	VM-2	EPSI-1	EPSI-2	PCT TE
5.7	FT/SEC F	T/SEC F	T/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LEM/FT2S	EC LEM/F	TZSEC	DEGREE	DEGREE	SPAN
1	257. 6	746.0	257.6	440.5			653.1				-653.1		18.89			29.050	29.322	0.0500
2	275.4	720.1	275.4	442.7	0.0	567.9	694.9	779.9			-694.9		20.10			23.774		
3	291.8	682.8	291.8	434.0	0.0	527.2			791.6				21.22			18.679		
4	320.7	595.9	320.7	363.2	0.0	473.7	843.3	865.5	902.2	534.9	-843.3	-392.7	23.14		.56		19.547	
5	326.2	555.3	325.2	329.5	0.0	447.0			1016.6	8603	-952-9	-506.0	23.49				0.733	
6	325.0	564.1	325.0		0.0	453.2	1016.8	996.3	1067.5	538.6-	1016.8	-543.1	23.42				-3.601	
7	323.7		323.7		0.0	458.1	1042.4	1017.9	1091.5	655 3-	1042 4	-550 0	23.33			10.309		
2			321.2	335.7					1115.2				23.17			12.262		
g	310.8								1184.3				22.48			17.081 -		
10	307.6		and the second second						1205.0				22.27			12.140 -		
11	305.0				ດິດ	467 9	1122 4	1147 R	1226.9	720 0	1122 6	-570 Q	22.10	27		18.668 -		
			WC1/AL				mm marke 3		2/TO1 P					- 44		**************************************	ATHERE &	4×3334
			KG/SEC						M/ 1UX 1		ROTOR							
		OFT	SOM									. ROID	*					
			109.84					1	-1594	1 5270	80.76		2					
									******		00.70	· (04,50)	•					

St. V-1	24						AIRF	OIL AEROD	YNAMIC:								
M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC K/R/S SEC KR/R/S SEC R/R/R/SEC K/R/R/SEC R/R/R/SEC KR/R/S SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/R/SEC R/R/R/SEC R/	70	PERCENT	DES IGN	SPEED (SI	IATOR PER	REGRMANCE	-)			RUN N	111 SP	EED CODE	70 POIN	T NO 6			
M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC K/RZ SEC K/RZ SEC RADIAN RADIAN RADIAN	SL	V-1	V-2	VM-I	VM-2	VO-1	V0-2	RHOVM-	1 RH	0VM-2	EPSI-1	EPSI-2					
1 233.3 186.6 148.9 186.6 179.6 0.0 202.63 262.72 9.4725 0.0947 2 225.0 182.9 147.0 182.9 170.3 0.0 201.83 260.66 0.4220 0.0756 3 213.5 174.2 143.2 174.2 143.2 0.0 197.76 250.71 0.3678 0.0679 4 188.2 146.4 122.6 146.4 142.8 0.0 189.00 211.27 0.2238 0.9457 5 175.5 129.6 111.1 129.6 135.8 0.0 152.61 186.57 0.0755 0.0933 0.9591 6 178.4 133.1 1112.7 133.1 138.2 0.0 154.29 190.3 20.0012 -0.0103 7 180.7 136.4 114.2 135.4 140.0 0.0 156.14 195.07 -0.0316 -0.0206 8 181.1 138.7 131.3 138.2 19.0 143.65 195.00 -0.1766 -0.0570 10 177.1 136.9 102.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 134.02 188.33 -0.2620 -0.0929 SL 8-1 8-2 M-1 M-2 INCS INCS EXCRET DEGREE DEGREE FORME TO THAN 1071.1 1071.1 P01 STAGE STAGE TOT-STG TO		M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 S									
2 225.0 182.9 147.0 182.9 170.3 0.0 201.83 260.66 0.4220 0.0756	1																
3 213.5 174.2 143.2 174.2 143.8 3 0.0 197.75 250.71 0.3578 0.0579 4 188.2 146.4 122.6 146.4 142.8 0.0 159.00 211.72 0.2238 0.0852 5 175.5 129.6 111.1 129.6 135.8 0.3 152.61 186.57 0.0725 0.0093 6 178.4 133.1 112.7 133.1 138.2 0.0 154.29 193.3 0.0012 -0.0103 7 180.7 136.4 114.2 136.4 140.0 0.0 156.14 195.07 -0.0316 -0.0206 8 181.1 128.7 113.3 138.7 141.3 0.0 154.52 197.72 -0.0645 -0.0318 9 178.0 138.6 106.1 138.6 142.9 0.0 154.55 197.72 -0.0645 -0.0318 10 177.1 136.9 192.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 138.23 -0.2620 -0.0929 SL 8-1 8-2 M-1 M-2 INCS INCM DEFRE DEGREE	2	225.0	182.9	147.0	182.9												
4 188.2 146.4 122.6 146.4 142.8 0.0 169.00 211.72 0.2238 0.0052 5 175.5 129.6 111.1 129.6 135.8 0.0 152.61 186.57 0.0725 0.0093 6 178.4 133.1 112.7 133.1 138.2 0.0 154.29 190.78 0.0012 0.00103 7 180.7 136.4 141.2 136.4 140.0 0.9 156.14 195.07 0.0316 0.0206 8 181.1 138.7 113.3 138.7 141.3 0.0 154.52 197.72 -0.0645 0.00318 9 178.0 138.6 106.1 138.6 142.9 0.0 143.65 195.07 -0.0316 0.0206 10 177.1 136.9 102.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0590 11 176.2 135.8 99.5 135.8 145.4 0.0 138.23 191.21 -0.2179 -0.0799 SL B-1 B-2 B-1 B-2 B-2 B-1 B-2								197.76	25	0.71							
5 175.5 129.6 111.1 129.6 135.8 0.0 152.61 186.57 0.0725 0.0093 6 178.4 133.1 133.1 133.2 133.1 33.2 0.0 154.29 190.78 0.0012 -0.0005 8 181.1 138.7 133.3 133.7 141.3 0.0 154.52 197.72 -0.0645 -0.0206 8 181.1 138.6 105.1 133.6 142.9 0.0 143.65 195.00 -0.1705 -0.0570 10 177.1 135.9 102.4 135.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 134.02 188.38 -0.2620 -0.0929 SL R-1 R-2 DEGREE DEGR										72							
6 178.4 133.1 112.7 133.1 132.7 133.1 138.2 0.0 156.14 195.07 -0.012 -0.0103 8 181.1 138.7 113.3 138.7 141.3 138.2 191.21 9 178.0 138.6 106.1 138.6 142.9 0.0 154.52 197.72 -0.0645 -0.0318 177.1 136.9 102.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 10 177.1 136.9 102.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 138.23 191.21 -0.2179 -0.0799 13	Ę									C 67	0.6230	0.0002					
7 180.7 136.4 114.2 136.4 140.0 0.9 156.14 195.07 -0.0316 -0.0206 8 181.1 138.7 131.3 138.7 141.3 0.0 154.52 197.72 -0.0645 -0.0318 9 178.0 138.6 106.1 138.6 142.9 0.0 143.65 195.07 -0.0799 10 177.1 136.9 102.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 134.02 188.38 -0.2620 -0.0929 SL B-1 B-2 M-1 M-2 INCS INCM DEV TURN D-FAC ONEGA-B LOSS-P PO2/ PO/PO TO/TO XEFF-A XEFF-F DEGREE D	ř							15/ 20	10	7.37	0.0723	0.0073					
8 181.1 138.7 113.3 138.7 141.3 0.0 154.52 197.72 -0.0645 -0.0318 9 178.0 138.6 106.1 138.6 142.9 0.0 143.65 195.00 -0.1766 -0.0670 10 177.1 136.9 102.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 134.02 188.38 -0.2620 -0.0929 SL B-1 B-2 M-1 M-2 INCS INCM DEV TURN D-FAC OMEGA-B LOSS-P P02/ P0/P0 T0/T0 XEFF-A XEFF-F DEGREE DEG								155 14	10	5. 10 E 07	0.0015	-0.0103					
9 178.0 138.6 106.1 138.6 142.9 0.0 143.65 195.00 -0.1786 -0.0670 10 17.1 136.9 192.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 138.23 191.21 -0.2179 -0.0799 SL B-1 B-2 M-1 M-2 DEGREE D									10	7.0/	-0.0510	-0.0200					
10 177.1 136.9 102.4 136.9 144.4 0.0 138.23 191.21 -0.2179 -0.0799 11 176.2 135.8 99.5 135.8 145.4 0.0 134.02 188.38 -0.2620 -0.9929 SL									19	- 14							
11 176.2 135.8 99.5 135.8 145.4 0.9 134.02 188.38 -0.2620 -0.0929	. 7.								19	UJ							
SL B-1 B-2 M-1 M-2 INCS INCM DEV TURN D-FAC DXECA-B LOSS-P PO2/ PO/PO TO/TO XEFF-A XEFF-F DEGREE DEG																	
DEGREE DEGREE 1 52.5 0.0 0.6961 0.5472 -1.96 0.99 DEGREE	TT	1/6.2	135.8	99.5	135.8	145.4	0.0	134.02	18	3.38	-0.2620	-0.0929					
DEGREE DEGREE 1 52.5 0.0 0.6961 0.5472 -1.96 0.99 13.86 52.49 0.3719 0.1814 0.0418 0.9498 1.5617 1.1598 85.10 85.10 84.25 2 50.9 0.€ 0.6703 0.5370 -1.48 1.65 11.97 50.94 0.3584 0.1402 0.0329 0.9635 1.5659 1.1550 88.32 89.0 149.9 0.0 0.56353 0.4217 -2.57 0.80 10.94 49.21 0.3559 0.1013 0.0242 0.9759 1.5553 1.1479 90.66 91.2 1.36 1.36 1.36 1.37 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	P0/P0	TO/TO	≭EFF-A	ZEFF-P
1 52.5 0.0 0.6961 0.5472 -1.95 0.99 13.26 52.49 0.3719 0.1814 0.0418 0.9498 1.5617 1.1598 85.10 85.2 50.9 0.0 0.600 0.6503 0.5370 -1.43 1.65 11.97 50.94 0.3594 0.1402 0.0329 0.9635 1.5659 1.1550 82.32 89.0 19.3 0.000 0.5503 0.5370 -1.43 1.65 11.97 50.94 0.3599 0.1013 0.0242 0.9759 1.5523 1.1479 99.66 91.2 1.3 10.00 49.86 0.4111 0.0516 0.0156 0.0556 0.983 1.4968 1.1438 85.05 85.8 0.0 0.5553 0.3769 -3.21 2.15 10.07 50.77 0.4704 0.0720 0.0195 0.9831 1.4968 1.1438 85.05 85.8 0.0 0.5503 0.3769 -3.21 2.15 10.07 50.77 0.4704 0.0720 0.0195 0.9831 1.4968 1.1438 85.05 85.8 0.0 0.5503 0.3769 -3.21 2.15 10.07 50.77 0.4704 0.0720 0.0195 0.9831 1.4968 1.1438 85.05 85.8 0.0 0.0 0.521 0.3845 -3.00 2.73 10.10 50.20 0.4684 0.0771 0.0215 0.9870 1.4762 1.1575 74.82 76.1 75.0 0.8 0.0 0.521 0.3843 -3.04 2.23 10.15 50.75 0.4635 0.0823 0.0233 0.9958 1.4836 1.1623 73.60 75.0 9 53.6 0.0 0.5516 0.3990 -2.37 3.85 12.36 53.57 0.4639 0.0777 0.0223 0.9865 1.4882 1.1671 72.09 73.6 9 53.6 0.0 0.5161 0.3990 -2.37 3.85 12.36 53.57 0.4639 0.0071 0.0261 0.9955 1.4819 1.1785 66.72 68.5 10 54.9 0.0 0.5161 0.3990 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 0.9955 1.4819 1.1785 66.72 68.5 11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 51.71 56.1 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 51.71 63.7 57.5 575.7 425.1 364.7 425.1 445.5 0.0 31.60 33.90 0.0901 24.178 4.331 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.4909 12.265 2.592 5.592 575.7 425.1 364.7 425.1 445.5 0.0 31.60 33.90 7 0.6103 0.071 -0.589 7 0.532 1.80 9 584.1 454.9 348.1 455.2 463.6 0.0 31.60 33.90 7 0.6103 0.071 -0.589 9 584.1 454.9 348.1 454.9 469.0 0.0 2.813 39.95 0.6598 -1.312 -1.178 459.9 348.1 454.9 447.6 459.3 40.0 0.0 2.813 39.95 0.6598 -1.312 -1.178 459.9 348.1 454.9 348.1 455.2 463.6 0.0 31.66 39.99 9.9900 0.9900 -1.2.486 4.157 0.5324 4.1895 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	100	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE									
2 50.9 0.6 0.6703 0.5370 -1.48 1.655 11.97 50.94 0.3584 0.1402 0.0329 0.9635 1.5659 1.1550 89.32 89.0 3 49.2 0.2 0.623 0.5117 -2.57 0.80 10.84 49.21 0.3559 0.1013 0.0242 0.9759 1.5523 1.1479 90.66 91.2 49.9 0.0 0.5563 0.4275 -3.12 1.13 10.00 49.86 0.4111 0.0516 0.0156 0.9881 1.4988 1.1438 85.05 85.8 50.8 0.0 0.5513 0.3769 -3.21 2.15 10.07 50.77 0.4704 0.0720 0.0195 0.9881 1.4673 1.1491 77.2 78.5 50.8 0.0 0.5221 0.3851 -3.00 2.73 10.10 50.80 0.4684 0.0771 0.0215 0.9801 1.4673 1.1491 77.2 78.5 50.8 0.0 0.5221 0.3851 -3.00 2.73 10.10 50.80 0.4684 0.0771 0.0215 0.9801 1.4673 1.1491 77.2 78.5 50.8 0.0 0.5221 0.3851 -3.00 2.73 10.10 50.80 0.4684 0.0771 0.0215 0.9801 1.4676 1.1557 74.82 76.1 75.0 8 51.2 0.0 0.5281 0.3943 -3.04 2.83 10.15 50.75 0.4635 0.0823 0.0233 0.9858 1.4836 1.1623 73.60 75.5 953.6 0.0 0.5281 0.3943 -2.58 3.42 10.26 51.23 0.4899 0.0777 0.0223 0.9865 1.4882 1.1671 72.09 73.6 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0	1	52.5	0.0	0.6961	0.5472					0_3719			0.9493		1 1592	85 10	
3 49.2	2								50.94	0.3584	0 1402	0.0329	0.9635				
4 49.9 0.0 0.5563 0.4275 -3.12 1.13 10.00 49.86 0.4111 0.9616 0.0156 0.9883 1.4678 1.1438 85.05 85.6 50.8 0.0 0.5153 0.3769 -3.21 2.15 10.07 50.77 0.4704 0.0720 0.0195 0.9881 1.4673 1.1491 77.74 78.7 50.8 0.0 0.5221 0.3851 -3.00 2.73 10.10 50.80 0.4684 0.0771 0.0215 0.9870 1.4762 1.1575 74.82 75.1 750.8 0.0 0.5281 0.3943 -3.04 2.83 10.15 50.75 0.4635 0.0823 0.0233 0.9958 1.48836 1.1623 73.60 75.2 0.0 0.5284 0.4093 -2.58 3.42 10.26 51.23 0.4589 0.0777 0.0223 0.9865 1.4882 1.1671 72.09 73.6 9 53.6 0.0 0.5161 0.3980 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 0.9955 1.4882 1.1671 72.09 73.6 10 54.9 0.0 0.5121 0.3920 -3.33 2.91 13.78 54.93 0.4769 0.1125 0.0341 0.9915 1.4473 1.1835 64.01 65.9 11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 11 56.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3700.3 571.5 489.9 571.5 519.3 0.0 41.50 53.81 0.0430 27.072 4.852 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3700.3 571.5 489.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.899 447.6 374.8 447.6 459.3 0.0 31.66 38.21 0.5086 4.157 0.532 6.589 7 0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.65 38.21 0.5086 4.157 0.532 6.589 7 0.0 31.65 38.21 0.5086 4.157 0.532 6.589 7 0.0 31.65 38.21 0.5086 4.157 0.532 6.589 7 0.0 31.65 38.21 0.5086 4.157 0.532 6.589 7 0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.65 38.21 0.5086 4.157 0.532 6.589 7 0.									49.21	0.3559	0.1013	0.0242	0 9759	1 5523	1 1470		
5 50.8 0.0 0.5153 0.3769 -3.21 2.15 10.07 50.77 0.4704 0.0720 0.0195 0.9821 1.4673 1.1491 77.% 78.5 65.08 0.0 0.5221 0.3851 -3.00 2.73 10.10 50.80 0.4684 0.0771 0.0215 0.9870 1.4762 1.1575 74.82 76.1 75.08 0.0 0.5281 0.3943 -3.04 2.83 10.15 50.75 0.4635 0.0823 0.0233 0.0938 1.4673 1.1623 73.60 75.7 8 51.2 0.0 0.5284 0.4003 -2.58 3.42 10.26 51.23 0.4589 0.0777 0.0223 0.9865 1.4882 1.1671 72.09 73.6 953.6 0.0 0.5161 0.3980 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 9.9855 1.4882 1.1671 72.09 73.6 953.6 0.0 0.5161 0.3980 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 9.9855 1.4882 1.1671 72.09 73.6 953.6 0.0 0.5121 0.3980 -3.33 2.91 13.78 54.93 0.4769 0.1125 0.0341 0.9915 1.4473 1.1835 66.07 68.5 11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 St. V-1 V-2 VM-1 VM-2 VD-1 VD-2 RHOWM-1 RHOWM-2 PCT TE EPSI-1 EPSI-2 EFT/SEC FT/SEC FT/SEC FT/SEC FT/SEC EMM/FT2SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 1 765.6 612.2 488.7 612.2 559.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.899 4 617.5 480.2 402.2 480.2 468.5 0.0 31.65 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6193 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.65 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.65 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 8000 -5.324 80			0.0	0.5563	0.4275	-3.12			49.85	0.4111	0.0516	กการธ	0.0583	1 4968			
6 50.8 0.0 0.5221 0.3851 -3.00 2.73 10.10 50.80 0.4684 0.0771 0.0215 0.9870 1.4762 1.1575 74.82 76.1 7 50.8 0.0 0.5281 0.3943 -3.04 2.83 10.15 50.75 0.4635 0.0623 0.0233 0.9358 1.4816 1.1623 73.60 75.0 9 53.6 0.0 0.5284 0.4093 -2.58 3.42 10.26 51.23 0.4589 0.0777 0.0223 0.9865 1.4828 1.1671 72.09 73.6 9 53.6 0.0 0.5161 0.3980 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 9.9355 1.4819 1.1785 66.72 68.5 10 54.9 0.0 0.5121 0.3920 -3.33 2.91 13.78 54.93 0.4769 0.1125 0.0341 0.9915 1.4743 1.1835 64.01 65.9 11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 St. V-1 V-2 VM-1 VM-2 VO-1 VM-2 RHOWN-1 RHOWN-2 PCT TE EPSI-1 EPSI-2 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC EBM/FT2SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE DEGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 660.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 53.81 0.0430 27.072 4.852 2 555.7 425.1 364.7 425.1 445.5 0.0 31.60 39.07 0.6103 0.071 -0.589 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 6 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 1.820 9 584.1 454.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 1.820 9 584.1 1.81ET INLET INLE	5		0.0	0.5153	0.3769				50 77	0 4704	0.0720	0.0195	U OSSI	1 4673	7 7407	77 74	
7 50.8 0.0 0.5281 0.3943 -3.04 2.83 10.15 50.75 0.4635 0.0823 0.0233 0.9358 1.4836 1.1023 73.60 75.0 8 51.2 0.0 0.5284 0.4003 -2.58 3.42 10.26 51.23 0.4589 0.0777 0.0223 0.9865 1.4892 1.1671 72.09 73.6 9 53.6 0.0 0.5161 0.3980 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 0.9855 1.4892 1.1671 72.09 73.6 10 54.9 0.0 0.5121 0.3920 -3.33 2.91 13.78 54.93 0.4769 0.1125 0.0341 0.9915 1.4743 1.1835 66.72 68.5 11 56.1 0.0 0.5086 0.3829 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 SL V-1 V-2 VM-1 VM-2 VD-1 VD-2 RHOWN-1 RHOWN-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.899 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR MCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P LBM/SEC KG/SEC									50.20	0.4684	0.0771	0.0215	0.9870	1 4762	1 1575	75 92	75.31
8 51.2 0.0 0.5284 0.4003 -2.58 3.42 10.26 51.23 0.4589 0.0777 0.0223 0.9865 1.4882 1.1571 72.09 73.6 9 53.6 0.0 0.5161 0.3980 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 0.9955 1.4882 1.1571 72.09 73.6 66.72 68.5 10 54.9 0.0 0.5121 0.3920 -3.33 2.91 13.78 54.93 0.4769 0.1125 0.0341 0.9915 1.4743 2.1835 64.01 65.9 11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 SL V-1 V-2 VM-1 VM-2 V0-1 V0-2 RHOWM-1 RHOWM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC EBM/FT2SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.899 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2939 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR MCORR M											ก กลวร	0.0533	0.3373	3503 1	1 1623		76.17
9 53.6 0.0 0.5161 0.3980 -2.37 3.85 12.36 53.57 0.4639 0.0871 0.0261 0.9355 1.4819 1.1785 66.77 68.5 10 54.9 0.0 0.5121 0.3920 -3.33 2.91 13.78 54.93 0.4769 0.1125 0.0341 0.9915 1.4743 1.1835 64.01 65.9 11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 SL V-1 V-2 VM-1 VM-2 VO-1 V0-2 RHOWM-1 RHOWM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC ET/SEC LBM/FTZSEC LBM/FTZSEC SPAN DEGREE 0EGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.899 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2939 12.825 2.592 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6193 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.60 39.07 0.6193 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P LBM/SEC KG/SEC						-2 58		10.26				0.0(33	0.0065	7 4000			73.54
10 54.9 0.0 0.5121 0.3920 -3.33 2.91 13.78 54.93 0.4769 0.1125 0.0341 0.9915 1.4743 1.1835 64.01 65.9 11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 SL V-1 V-2 VM-1 VM-2 VD-1 VD-2 RHOWM-1 RHOWM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC LBM/FTZSEC LBM/FTZSEC SPAN DEGREE DEGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.899 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR WCORR WCORR NCORR WCORR WCORR NCORR WCORR NCORR N									57 57	0.4620	0.0777	0.0223	0.3003	1 2002	1 1700	72.U3	73.UL
11 56.1 0.0 0.5086 0.3889 -7.56 -1.42 16.43 56.06 0.4860 0.1380 0.0423 0.9777 1.4676 1.1879 61.71 63.7 SL V-1 V-2 VM-1 VM-2 VD-1 VD-2 RHOWN-1 RHOWN-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.899 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 388.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.426 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR INLET INLET INLET INLET INLET INLET INLET INLET INLET STAGE STA									5/ 02	0.4750	0.0071	0.0201	0.7333	1.4017		68.01	
St. V-1 V-2 VM-1 VM-2 VD-1 VD-2 RHOVM-1 RHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC SPAN DEGREE DEGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.890 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR WCORR FINLET INLET STAGE STA									55 DC	0.4960	0.1123	0.0341	0.9515	1.4743			52.33
FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE 1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.890 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2939 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TOTAL TIMET STAGE STAGE STAGE STAGE STAGE RPM LBM/SEC KG/SEC	11	30.1	0.0	0.5000	0.3000	-1,430	_T*45	10-43	20.00	0.4000	0.1500	J_0423	0.9/11	1.40/0	1.10/9	01.71	03.12
1 765.6 612.2 488.7 612.2 589.3 0.0 41.50 53.81 0.0430 27.072 4.852 2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.890 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2939 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.426 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR WCORR INLET INLET INLET STAGE STAGE STAGE STAGE STAGE STAGE STAGE	SL											EPSI-1					
2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 49.50 51.35 0.1410 21.076 3.899 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET INLET STAGE STAGE STAGE STAGE STAGE		FT/SEC			FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	EC LIBRYF	T2SEC	SPAN	DEGREE	DEGREE				
2 738.1 600.2 482.4 600.2 558.7 0.0 41.34 53.39 0.0901 24.178 4.331 3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.890 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET INLET RPM LBM/SEC KG/SEC TO/TO PO2/PO1 PO/PO EFF-AD EFF-P STAGE STAGE STAGE STAGE STAGE	1	765.6	612.2	488.7	612.2	589.3	0.0	41.50	53	.81	0.0430	27.072	4.852				
3 700.3 571.5 469.9 571.5 519.3 0.0 40.50 51.35 0.1410 21.076 3.890 4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC	2	738.1	600.2	482.4	600.2	558.7	0.0	41.34	53	.39	0.0901	24.178					
4 617.5 480.2 402.2 480.2 468.5 0.0 34.61 43.36 0.2989 12.825 2.592 5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC		700.3	571.5	469.9	571.5	519.3	0.0	49.50	51	.35	0.1410	21.076	3.899				
5 575.7 425.1 364.7 425.1 445.5 0.0 31.26 38.21 0.5086 4.157 0.532 6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC	4	617.5	480.2	402.2	480.2	468.5	0.0		43	.36							
6 585.2 436.7 369.8 436.7 453.6 0.0 31.60 39.07 0.6103 0.071 -0.589 7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC	5	575.7	425.1	364.7			0.0		38	.21							
7 592.9 447.6 374.8 447.6 459.3 0.0 31.98 39.95 0.6598 -1.812 -1.178 8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR NCORR NCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE	6	585.2	436.7	369.8	436.7		0.0		39	-07							
8 594.3 455.2 371.9 455.2 463.6 0.0 31.65 40.49 0.7107 -3.693 -1.820 9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC \$\$\frac{1}{2}\$\$ STAGE STAGE \$\$\frac{1}{2}\$\$\$ \$\frac{1}{2}\$									30	95							
9 584.1 454.9 348.1 454.9 469.0 0.0 29.42 39.94 0.8620 -10.234 -3.837 10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC \$\$\frac{1}{2}\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\$\frac{1}{2}\$\									40	49		-3 693					
10 580.9 449.2 336.0 449.2 473.9 0.0 28.31 39.16 0.9101 -12.486 -4.577 11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC X X X																	
11 578.1 445.6 326.5 445.6 477.1 0.0 27.45 38.58 0.9571 -15.010 -5.324 NCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC \$\$\fmu\$\$ \$\$\fmu\$\$\$ \$\$\fmu\$									30	16 (1 0101						
NCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC \$\$\fmu\text{X}\$										50 (3.5101						
INLET INLET STAGE STAGE STAGE RPM LBM/SEC KG/SEC * * *		379.1				7##-1	0.0						-3.324				
RPM LBM/SEC KG/SEC									OZJEGE								
								JIHOC		SINCE							
1.19.4 (1.4362) 18.71 (4.74 vi.)								1 1500	0.0012	1 4000							
			P/30.10	100.20	40.47			1.15%	0.9815	1.4963	10.93	15.21					

435.5 585.1

10 430.7 573.4 430.7 396.8

435.5 427.5

AIRFOIL AERODYNAMIC SUMMARY PRINT

PUN NO 111 SPEED CODE 80 POINT NO 2 80 PERCENT DESIGN SPEED (ROTOR PERFORMANCE) V'-1 V*-2 10'-1 10'-2 PHOYM-1 PHOYM-2 EPSI-1 EPSI-2 **VO-1 U-1 U-2** SL V-1 V-2 VM-1 174-2 V9-2 M/SEC M/SEC M/SEC KG/M2 SEC KS/M2 SEC RADIAN RADIAN M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC 297.58 0.5092 0.5141 106.9 163.7 0.0 202.3 229.5 255.5 253.2 175.8 -229.5 -64_2 111.40 106.9 260.2 220.23 0.4192 0.4457 274.1 269.7 190.9 -244.2 -84.0 118.35 114.4 255.9 114.4 171.4 0.0 190.0 244.2 0.3331 0.3763 281.7 285.8 200.8 -258.6 -109.7 124.78 217.59 121.6 240.5 121.6 158.1 0.0 172.0 253.6 216.9 -296.3 -158.6 135.39 191.41 0.1190 0.1888 135.2 147.9 0.0 145.9 295.3 394.5 325.7 135.2 207.8 239.6 -338.4 -198.3 138.69 -0.0749 0.0138 338.4 334.9 355.4 171.32 137.9 191.8 137.9 134.6 0.0 136.6 0.0 137.8 246.1 -357.3 -212.3 138.09 156.61 -0.1387 -0.0620 124.5 357.3 350.1 382.8 137.2 185.7 137.2 137.84 -0.1660 -0.0995 151.00 127.7 0.0 135.0 366.3 357.7 391.1 256.7 -356.3 -222.7 136.9 185.8 136.9 136.3 186.7 136.3 0.0 130.4 375.3 399.3 270.3 -375.3 -234.9 137.36 169.41 -0.1965 -0.1371 133.7 365.3 295.5 -491.6 -266.4 134.37 -0.2889 -0.2521 0.0 121.8 401.6 383.1 423.0 155.29 132.7 178.3 132.7 130.3 -0.3140 -0.2878 131.3 120.9 0.0 126.2 409.8 395.7 430.3 295.4 -409.8 -269.6 133.14 152.80 10 131.3 174.8 132.10 -0.3262 -0.3170 134.54 130.1 107.4 0.0 130.2 417.6 403.3 437.4 293.5 -417.6 -273.2 130.1 168.8 11 D FAC DYEGA-B LOSS-P PO2/ XEFF-A XEFF-P TURN B-1 B-2 B'-1 B'-2 M-1 K-2 K'-1 M'-2 INCS INCM DEA SL TOTAL PCI TOTAL TOTAL DEGREE DEGREE DEGREE DEGREE TOTAL DEGREE DEGREE DEGREE 50.7 64.73 21.20 0.3281 0.7628 0.7773 0.5155 -0.35 3.74 9.26 43.53 0.4887 0.1183 0.0233 1.8215 93.88 94.37 26.13 0.3519 0.7513 0.8294 0.5604 0.92 4.63 8.35 38.51 0.4620 0.0486 0.0097 1.8211 64.65 48.0 0.4502 0.0281 0.0055 1.7602 97.97 98.13 45.8 64.59 33.28 0.3746 0.7058 0.8892 0.5891 2.15 5.54 9.83 31.31 0.0 92.54 5.78 11.38 18.22 0.4606 0.0815 0.0147 1.6361 92.01 47.18 0.4177 0.6063 1.0066 0.6328 3.49 44.8 65.40 12.07 0.4563 0.1601 5.52 10.20 0.0266 1.5719 81.61 82.75 45.4 67.83 55.77 0.4266 0.5554 1.1301 0.6939 3.66 0.0 0.0333 59.41 0.4243 0.5345 1.1835 0.7083 3.84 5.58 9.11 9.57 0.4667 0.2134 1.5495 74.79 47.7 68.98 0.0 59.91 0.4233 0.5348 1.2991 0.7389 5.71 7.53 0.4495 0.2052 0.0320 1.5532 75.16 76.65 4.03 2.55 0.0 46.3 69.47 60.05 0.4214 0.5382 1.2344 0.7790 4.47 6.02 5.45 9.94 0.4239 0.1829 0.0287 1.5609 77.09 73.48 8 43.9 59.99 0.0 63.62 0.4100 0.5130 1.3063 0.8530 4.50 5,93 5.14 8.03 0.3885 0.1764 0.0249 1.5454 75.97 77.41 0.0 42.7 71.65 72.17 65.57 0.4053 0.5001 1.3285 0.8453 4.55 5.44 5.05 6.59 0.4039 0.2164 0.0281 1.5381 70.95 72.67 10 45.9 0.0 4.24 0.4194 0.2572 0.0294 1.5240 65.95 67.92 4.91 72.62 68.38 0.4014 0.4800 1.3501 0.8350 3.57 5.76 V'-1 V'-2 VO'-1 VO'-2 RHOYM-1 PHOYM-2 EPSI-I EPSI-2 PCT TE V-1 V-2 VM-I VY-2 **V**0-1 VO-2 U-1 IJ-Ż DEGREE SPAN FT/SEC LBM/FT2SEC LBM/FT2SEC DEGREE 0.0 663.6 753.0 874.3 830.6 576.9 -753.0 -210.6 22.82 42.51 29.173 29.454 0.0500 350.6 853.7 350.6 537.1 25.534 0.1000 623.5 801.3 899.2 884.9 626.4 -891.3 -275.7 24.24 45.11 24.016 375.5 839.7 375.5 562.5 0.0 25.56 0.0 564.3 848.4 924.1 937.6 658.7 -848.4 -359.9 44.56 19.062 21.558 0.1500 399.0 551.7 399.0 789.1 27.93 6.820 10.817 0.3000 0.0 478.8 972.3 999.0 1068.7 711.5 -972.3 -529.2 39.20 443.4 631.8 443.4 485.4 0.0 448.3 1110.2 1098.8 1198.9 786.3-1110.2 -650.5 28.40 35,09 -4.290 ° 0.791 0.5000 452.6 629.3 452.6 441.7 0.0 452.1 1172.4 1148.7 1255.8 807.4-1172.4 -696.6 28.28 32.07 -7.945 -3.553 0.6000 450.2 609.2 450.2 408.3 28.23 -9.509 32.97 -5.703 0.6500 449.2 418.9 0.0 442.9 1201.9 1173.7 1283.1 242.3-1201.9 -730.7 449.2 609.6 0.0 427.8 1231.4 1198.6 1310.1 886.8-1231.4 -770.8 28.13 34.70 -11.259 -7.855 0.7000 447.3 438.5 447.3 612.7

27.52

27.27

27.06

33.98

31.30

27.58

-16.554 -14.443 0.8500

-17.993 -16.492 0.9000

-13.692 -18.165 0.9500

11 426.7 553.7 426.7 352.4 0.0 427.1 1370.3 1323.4 1435.2 963.1-1370.3 -896.3 T02/T01 P02/P01 EFF-AD EFF-P WCI/AI WC1/A1 ROTOR POTOR LBM/SEC KG/SEC X SOFT SOM 1.1768 1.6192 83.58 29.69 144.89

0.0 399.5 1317.6 1273.5 1387.7 972.9-1317.6 -874.0

0.0 414.0 1344.5 1298.4 1411.9 969.3-1344.5 -884.4

RUM NO III SPEED CODE 80 POINT NO 2 80 PERCENT DESIGN SPEED (STATOR PERFORMANCE) EPSI-1 EPSI-2 **YO-2** RHOVM-1 RHOVM-2 VM-1 VM-2 **V9-1** ¥-2 SL V-1 RADIAN RADIAN M/SEC KG/M2 SEC KG/M2 SEC M/SEC M/SEC M/SEC M/SEC M/SEC 0.4708 0.0839 248.5 293.32 198.0 2.8 228.47 248.6 184.5 270.6 237.13 233.39 209.21 0.4206 0.0736 -1.0303.99 187.0 251.1 251.1 188.5 265.6 0.3654 0.0643 300.63 -4.0 243.0 184.0 243.0 169.5 250.1 0.2187 0.0377 144.3 -10.7 265.23 216.2 219.3 210.4 165.1 0.0703 -0.0026 240.39 -6.8 188.01 190.9 136.2 203.0 191.0 150.5 -0.0115 -0.0247 137.9 -4.8 174.27 232.84 186.6 141.1 197.3 185.7 -0.0531 -0.0359 234.92 -5.0 178.46 188.2 135.3 188.2 144.2 197.8 238.22 -0.0898 -0.0479 -6.1 185.26 190.5 131.0 190.6 149.9 199.0 -0.1928 -0.0759 -0.2234 -0.0863 185.96 231.34 123.2 -6.7 187.1 149.6 187.0 193.8 176.56 225.18 184.7 143.5 184.7 128.2 -4.5 192.5 -0.2634 -0.0961 163.78 132.8 -4.9 214.84 179.2 189.1 179.2 134.6 TO/TO XEFF-A XEFF-P DEV TURN D-FAC OMEGA-B LOSS-P P02/ PO/PO M-2 INCS INCM M-1 SL B-1 B-2 P)1 STAGE STAGE TOT-STG TOT-STG DEGREE DEGREE TOTAL TOTAL DEGREE DEGREE DEGREE DEGREE 0.9072 1.6525 77.53 14.48 0.2711 0.0624 1.1932 48.56 0.6 0.7972 0.7253 -5.26 -2.31 0.2423 49.2 1 89.46 0.9322 1.6975 1.1926 -5.89 -2.76 -4.43 11.75 46.75 C.2149 0.2031 0.0476 0.7356 -0.2 0.7828 46.5 99.60 0.9513 1.6912 1.1790 44.91 0.1892 0.1274 0.0304 9.91 -0.9 0.7369 0.7138 -7.8044.0 87.97 88.75 -7.09 -5.40 0.0201 0.9308 1.6033 1.1643 0.6146 -11.33 7.11 44.54 0.2156 0.0795 -2.9 0.6425 41.6 8.01 44.27 0.2484 0.0503 0.0136 0.9395 1.5540 1.1597 79.18 80.43 -11.76 0.5528 5 42.2 -2.1 0.5899 73.52 75.08 1.5390 1.1785 45.81 0.2563 0.0353 0.0099 0.9930 -9.45-3.728.63 0.5374 44.3 -1.5 0.5699 1.5432 74.10 75.60 44.70 0.2501 43.01 0.2409 0.0351 0.0099 0.9330 1.1783 8.63 0.5423 -10.62-4.75 43.2 -1.5 0.5714 0.0104 0.9927 1.5491 1.1760 75.76 77.21 0.0363 0.5750 0.5500 -12.63-6.64 8.42 41.2 -1.8 73.13 74.68 41.73 0.2374 0.0782 0.0234 0.9550 1.5230 1.1748 -10.0110.33 -2.0 0.5602 0.5396 -16.23 39.7 43.48 0.2519 0.1098 0.0333 0.9794 1.5063 1.1848 67.26 69.09 -9.93 12.40 42.1 -1.4 0.5536 0.5300 -16.1710 -12.3714.89 46.65 0.2787 0.1601 0.0491 0.9711 1.4796 1.1944 -1.5 0.5410 0.5112 -18.52 45.1 RHOVM-1 RHOVM-2 PCT TE EPSI-1 EPSI-2 VM-VO-1 **VO-2** V-2 VM-I SL V-1 DEGREE DEGREE FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN FT/SEC 60.08 26.977 4.809 0.0430 815.7 649.5 9.2 46.79 815.8 605.4 888.0 62.26 61.57 0.0901 24.097 4.215 824.0 613.6 -3.2 48.57 618.6 871.3 824.0 0.1410 20.933 3.683 797.3 603.6 797.2 555.0 -13.247.80 820.6 3 473.6 -35.1 54.32 0.2989 12.532 2.159 42.85 689.5 690.4 541.6 719.4 49.23 -22.5 -15.7 -16.5 4.029 -0.149 446.9 452.5 0.5086 38.51 626.7 493.7 626.3 665.9 -0.658 -1.416 35.69 47.69 0.6103 612.4 452.8 612.2 647.3 48.11 0.6598 -3.043 -2.056 444.9 36.55 617.6 473.2 617.4 648.9 -5.148 -2.593 48.79 0.7107 429.8 -20.1 38.15 491.7 625.0 653.1 625.3 -11.045 -4.350 -21.9 38.69 47.38 0.8620 404.3 613.8 490.9 613.4 636.0

46.12

44.00

STAGE

TO/TO PO2/PO1 PO/PO

0.9101

0.9571

EFF-AD EFF-P

STAGE

×

STAGE

1

78.84

420.7

435.8

606.1

588.0

9970.00 132.30

NCORR

INLET

RPM

631.5

620.4

10

470.9

441.6

LBM/SEC KG/SEC

WCORR

INLET

605.9

587.8 WCORR

INLET

60.00

-14.8

-16.0

36.16

33.54

STAGE

1.1768 0.9747 1.5782

-12.799 -4.947

-15.094 -5.509

29.29

142.91

```
80 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
                                                                  RUN NO 111 SPEED CODE 80 POINT NO 3
           V-2
SL V-1
                                             U-1
                                                                V*-2
                                                                       VO'-1 VO'-2
                                                                                                          EPSI-1 EPSI-2
                 VM-1
                        VM-2
                               VO-1
                                     VD-2
                                                    U-2
                                                         V'-1
                                                                                     PHOYM-1
                                                                                                RH04X-2
    M/SEC M/SEC M/SEC
                       M/SEC
                              M/SEC
                                     M/SEC
                                           M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC
                                                                                               KG/M2 SEC
                                                                                                         RADIAN RADIAN
                                                                                     KG/M2 SEC
          261.1
                 104.6
                       163.0
                                0.0
                                     203.9
                                            229.2
                                                  266.1
                                                         251.9
                                                                174.5 -229.2 -62.2
                                                                                                210.58
                                                                                                          0.5095 0.5149
   104.6
                                                                                     110.06
   112.1
          253.5
                 112.1
                       167.3
                                 0.0
                                    190-4
                                            243.9
                                                  273.7
                                                         268.4
                                                                185.8 -243.9
                                                                             -83.2
                                                                                     117.01
                                                                                                218.48
                                                                                                          0.4195 0.4463
          238.8
                                 0.0 174.2
                                            258.2
   119.1
                119.1
                        163.3
                                                  281.3
                                                         284.4
                                                                195.3 -258.2 -107.1
                                                                                     123.41
                                                                                                          0.3333 0.3773
                                                                                                214.67
          207.1 132.3 142.6
                                 0.0 150.2 295.9
                                                  304.1
                                                                                     134.92
   132.3
                                                         324.2
                                                                209.8 -295.9 -153.8
                                                                                                187.43
                                                                                                          0.1206 0.1393
   135.3
          193.5 135.3 130.4
                                 0.0 143.0 337.9
                                                  334.4
                                                         364.0
                                                                231.6 -337.9 -191.4
                                                                                     137.46
                                                                                                         -0.0704 0.0150
                                                                                                169.09
                                                                239.0 -356.8 -205.5
          188.8
                                                                                                         -0.1346 -0.0697
   134.9
                134.9 122.0
                                 0.0 144.1 356.8
                                                  349.6
                                                         381.5
                                                                                     137.11
                                                                                                156.90
                                           365.8 357.2 389.8 249.8 -365.8 -215.4
                                                                                                         -0.1634 -0.0994
   134.7
          189.9
                134.7 126.4
                                 0.0 141.8
                                                                                     136.93
                                                                                                162.91
                                                                                     136.46
133.37
   134.1
         190.5 134.1 131.5
                                 0.0 137.8 374.8 354.8 398.1 262.3 -374.8 -227.0
                                                                                                         -0.1954 -0.1363
                                                                                                170.30
                                0.0 130.5 401.0 387.6 421.7 286.5 -401.0 -257.1
                                                                                                         -0.2899 -0.2525
   130.5 181.8 130.5 126.5
                                                                                                164.37
10 129.0 178.0 129.0 115.4
                                 0.0 135.5 409.2 395.2 429.1 284.2 -409.2 -259.7
                                                                                     132.14
                                                                                                148.74
                                                                                                         -0.3141 -0.2880
11 127.9
          173.8 127.9 104.9
                                    138.5 417.1 402.8 436.2 284.3 -417.1 -264.3
                                0.0
                                                                                     131.12
                                                                                                134.46
                                                                                                         -0.3256 -0.3168
                                     M-2 M'-1 M'-2 INCS
SL B-1
           B-2 3'-1 B'-2
                               M-1
                                                               INCM
                                                                        DEV TURN
                                                                                    D FAC OMEGA-B LOSS-P
                                                                                                            POZ/ SEFF-A XEFF-P
   DEGREE DEGREE DEGREE
                                                         DEGREE DEGREE DEGREE
                                                                                                     TOTAL
                                                                                                                   TOTAL TOTAL
                                                                                            TOTAL
                                                                                                            P01
           51.1 65.17
                       20.68 0.3214 0.7662 0.7742 0.5120 0.09
                                                                4.19
                                                                       8.73 44.50
                                                                                    0.4937 0.0872 0.0173
                                                                                                           1.8493 95.55 95.92
                       25.50 0.3449 0.7441 0.8261 0.5485
                                                                        8.71 38.59
                                                                                    0.4757 0.0391 0.0078
     0.0
           48.8 65.08
                                                          1.35
                                                                 5.07
                                                                                                           1.8305 97.68 97.87
           47.0 65.03 33.42 0.3671 0.7004 0.8766 0.5728
     0.0
                                                          2.59
                                                                 5.98
                                                                        9.97
                                                                             31.61
                                                                                    0.4691 0.0292 0.0057
                                                                                                           1.7730
                                                                                                                   97.91 98.07
           46.7 65.83 47.37 0.4091 0.6037 1.0025 0.6114
                                                                                            0.0095
     0.0
                                                          3.93
                                                                 6-21
                                                                       11.56
                                                                             18.47
                                                                                    9.4832
                                                                                                    0.0162
                                                                                                           1.6549
                                                                                                                   91.48 92.37
           47.6 68.18 55.68 0.4187 0.5594 1.1265 0.6695
49.5 69.27 59.08 0.4174 0.5428 1.1804 0.6870
                                                                 5.86
     0.0
                                                          4.01
                                                                       10.12
                                                                             12.50
                                                                                    0.4809
                                                                                            0.1663
                                                                                                    0.0278
                                                                                                           1.6048
                                                                                                                   81.68 82.86
     0.0
                                                          4.13
                                                                 5.87
                                                                                    0.4881
                                                                                            0.2133
                                                                                                    0.0336
                                                                                                           1.5899
                                                                        8.79
                                                                              10.19
                                                                                                                   75.89 77.42
           48.0 69.75
                       59.34 0.4167 0.5459 1.2062 0.7179
                                                          4.31
                                                                 5.98
                                                                                            0.2044
                                                                                                    0.0324
     0.0
                                                                        6.96
                                                                              10.41
                                                                                    0.4706
                                                                                                            1.5979
                                                                                                                   76.38 77.89
                       59.60 0.4149 0.5479 1.2315 0.7545
           46.0 70.26
                                                          4.74
                                                                                            0.1868
                                                                                                    0.0297
     0.0
                                                                 6.29
                                                                        5.00
                                                                              10.66
                                                                                    0.4479
                                                                                                           1.6053
                                                                                                                   77.74 79.18
     0.0
           45.5 71.92
                       63.48 0.4033 0.5212 1.3036 0.8216
                                                          4.78
                                                                 6.20
                                                                        5.01
                                                                              8.44
                                                                                    0.4171 0.1893 0.0269 1.5902
                                                                                                                   75.61 77.15
                       65.77 0.3987 0.5074 1.3259 0.8101
                                                          4.33
     0.0
           49.2 72.43
                                                                 5.70
                                                                                    0.4351 0.2339 0.0300 1.5810 70.50 72.34
                                                                       5.25
                                                                              6.66
     0.0
           52.6 72.87
                       68.18 0.3949 0.4929 1.3475 0.8066
                                                          3.82
                                                                 5.16
                                                                       5.57
                                                                              4.69
                                                                                    0.4447 0.2644 0.0305 1.5726 66.82 68.87
SL V-1
           V-2 VM-1
                        VM-2 VO-1 VO-2
                                             U-1
                                                   U-2 V'-1 V'-2 VO'-1 VO'-2
                                                                                     RHOVM-1
                                                                                                PHOYN-2
                                                                                                          EPSI-1 EPSI-2 PCT TE
   FT/SEC LBM/FT2SEC DEGREE DEGREE SPAN
1 343.2 856.6 343.2 534.9
                                0.0 669.0 752.0 873.1 826.6 572.5 -752.0 -204.0
                                                                                     22.54
                                                                                                 43.13
                                                                                                          29.193 29.499 0.0500
          831.6
                367.6
                       548.8
                                0.0 624.8 800.2 898.0 880.6 613.0 -800.2 -273.1
                                                                                      23.95
                                                                                                          24.035 25.599 0.1000
   367.6
                                                                                                 44.75
                                0.0 571.6 847.3 922.9 933.0 640.7 -847.3 -351.2
          783.5
                 390.8 535.8
                                                                                                          19.098 21.620 0.1500
   390.8
                                                                                      25.28
                                                                                                 43.97
                                                                                                 38.39
34.63
   434.0
          679.7
                434.0 467.9
                                0.0 493.0 971.0 997.7 1063.6 688.2 -971.0 -504.7
                                                                                      27.63
                                                                                                          6.908 10.848 0.3000
                                0.0 469.2 1108.7 1097.3 1194.3 759.9-1108.7 -628.1
                443.9 427.8
                                                                                                                 0.857 0.5000
   443.9
          634.9
                                                                                      28.15
                                                                                                          -4.031
                                0.0 472.9 1170.7 1147.1 1251.6 784.2-1170.7 -674.3
   442.5 619.6
                442.5 400.4
                                                                                      28.08
                                                                                                 32.13
                                                                                                          -7.710 -3.479 0.6000
                                0.0 465.2 1200.2 1172.1 1279.0 819.5-1200.2 -706.9
                                                                                                 33.37
                                                                                                         -9.362 -5.637 0.6500
   441.8
          623.1
                 441.8 414.6
                                                                                      28.04
                                0.0 452.2 1229.7 1197.0 1306.0 860.7-1229.7 -744.7 0.0 428.3 1315.8 1271.7 1383.7 940.1-13 .8 -843.5 0.0 444.6 1342.7 1296.7 1407.9 932.5-1342.7 -852.1
   440.0 625.0
                                                                                                         -11.197 -7.810 0.7909
                440.0 431.4
                                                                                      27.95
                                                                                                 34.88
                                                                                      27.32
27.06
   428.1 596.4
                                                                                                 33.67
                                                                                                         -16.608 -14.465 0.8500
                428.1 415.1
   423.4
          584.0 423.4 378.7
                                                                                                 30.46
                                                                                                        -17.998 -16.499 0.9000
11 419.5 570.1 419.5 344.2
                                0.0 454.5 1368.4 1321.6 1431.7 932.9-1368.4 -867.1
                                                                                      26.85
                                                                                                 27.54
                                                                                                        -18,655 -18,154 0,9500
                                                      TO2/TO1 PO2/PO1 EFF-AD EFF-P
        WC1/A1
                 WCI/AI
        LBM/SEC KG/SEC
                                                                       ROTOR ROTOR
         SOFT
                   SOM
                                                                                 z
```

1.1845 1.6511 83.57 84.69

					222-1		AIRFO	IL AERODY	MAMIC S	UMMARY F	PRINT						
	80	PERCENT	DESIGN S	SPEED (ST	ATOR PER	FORMANCE)) 111 SPE	EO CODE	80 POINT	110 3			
	SL	V-1	V-2	VM-1	VM-2	W0-1	VO-2	RHOVM-1	RHO	VM-2	EPSI-1	EPSI-2					
	~-	M/SEC	M/SEC		M/SEC	M/SEC	M/SEC	KG/M2 SE		2 SEC	RADIAN						
	1	270.6	239.3		239.2	199.6	3.2	230.86		.66	0.4731						
	2	262.3	238.0		238.0	187.4	-1.5	235.20		. 77	0.4235			-			
	3	247.6	228.5	178.4	228.5	171.7	-7.1	230.36		.89	0.3680			الها			
	4	217.6	198.2	159.0	197.9	148.6	-11.2	205.16		1.58	0.2191	0.0379					
	5	203.8	181.1	145.6	180.9	142.6	-7.2	185.67		.12	0.0576	-0.0026					
	6	199.6	177.3	137.9	177.3	144.3	-4.7	174.27		.18	-0.0134						
	7	200.9	179.6	142.0	179.5	142.2	-4.5	179.86		.14	-0.0536	-0.0353					
	8	202.0	182.4	147.1	182.3	138.5	-5.3	186.95		.07	-0.0888						
	9	196.4	180.0	145.3	179.9	132.1	-5.6	184.53	231	.38	-0.1904	-0.0752					
	10	194.7		137.7	177.2	137.7	-3.1	172.97	224	.51	-0.2223						
	11	192.8	172.9	131.2	172.9	141.3	-3.0	153.40		.97	-0.2635			9.5 Y =			
		102.0	1,5.3	121.0	1,213	1,1.5	· · · ·	100.70			010,00						
	SL	B-1	B-2	M-1	M-2	INCS	INOM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO		%EFF-A	
		DEGREE	DEGREE			DEGREE	DEGREE		DEGREE		TOTAL	TOTAL	P01	STAGE		TOT-STG	
	1	49.7	0.7	0.7976	0.6957	-4.71	-1.75	14.59		0.2776		0.0542	0.9194		1.2011	81.49	82.82
	2	47.4	-0.4		0.6943	-5.02	-1.89	11.61	47.76	0.2559		0.0412	0.9426	1.7251	1.1932	87.38	88.31
	3	45.3	-1.8	0.7288	0.6680	-6.52	-3.15	9.09	47.01	0.2439	0.1156		0.9655	1.7107	1.1815	91.42	92.04
	4	43.5	-3.2	0.6368	0.5759	-9.44	-5.19	6.78	46.75		0.0532	0.0134	0.9873	1.6327	1.1694	88.83	89.58
	5	44.5	-2.3	0.5911	0.5213	-9.52	-4.16	7.77	45.74	0.3096	0.0371	0.0100	0.9922	1.5912	1.1779	79.84	81.12
	6	46.3	-1.5			-7.52	-1.78	8.57	47.81	0.3208	0.0388	0.0108	0.9922	1.5784	1.1870	74.55	75.14
	7	45.0	-1.4			-8.77	-2.89	8.71	45.47	0.3140	0.0435	0.0123	0.9911	1.5845	1.1876	74.96	76.53
	8	43.3	-1.7	0.5832	0.5233	-10.51	-4.51	8.59		0.3024	0.0435 0.0412	0.0118	0.9915	1.5917	1.1864	75.78	
	9	42.5	-1.8	0.5657	0.5158	-13.44	-7.22	10.51	44.25	0.2958	0.0643	0.0192	0,9375	1.5702	1.1875	73.40	75.04
	10	45.3	-1.0		0.5050	-12.95	-6.72	12.79	46.30	0.3118	0.0939	0.0284	0.9821	1.5528	1.1984	67.58	
	11	47.6	-1.0	0.5500	0.4904	-15.00	-9.86	15.45	48.60	0.3359	0.1416	0.0434	0.9737	1.5311	1.2070	62.58	64.75
	c i	., ,	11.0	1704 1	1/u 2	1m 1	310 2	RHOVM-1	กมด)VM-2	PCT TE	EPSI-1	EDC1_2				
	SL	V-1	V-2	VM-1	VM-2	VO-1 FT/SEC	VO-2	LBM/FT2SE			SPAN	DEGREE					
	•	FT/SEC			FT/SEC						0.0430	27.107	4.770				
	1	887.8	785.0		784.9	655.0	10.4	47.28 48.17			0.0430	24.264	4.166				
	2	860.7	781.0		7.00.9		-5.1				0.1410	21.085	3.653				
	3	812.3	750.1	585.3	7.9.8	563.3	-23.4	47.18			0.2989	12.551	2.174				
	4	714.1	650.4	521.8	649.3	487.5	-36.7	42.02				3.872	-0.151				
	5	668.6	594.1	477.8	593.6	467.8	-23.8 -15.5	38.03	40		0.5086 0.6103	-0.770	-1.402				
-	5	654.8	581.8		581.6	473.3		35.69	47		0.6598	-3.068	-2.023				
	7	659.3	589.2	465.9	589.0	466.4	-14.8	36.84			0.7107	-5.086	-2.648				
	8	662.7	598.4	482.5	598.2	454.3	-17.5	38.29	40			-10.909	-4.309				
	9	644.4	590.5	476.8	590.2	433.5	-18.2	37.79	47	00 (0.9101	-12.734	-4.919				
	10	638.9	581.4	451.9	581.3 567.3	451.7	-10.2	35.43 33.47	40	.9B (0.9571	-15.100	-5.494				
	11	632.6	567.4	430.4		463.6	-9.8				EFF-AD		-3.434				
			NCORR	WCORR	WCORR			TO/TO I	OCITOT	STAGE	STACE	STAGE		ertuir offi			
			INLET	INLET	INLET			STAGE		JINUC	31MGE	ZINGE					
				LBM/SEC	KG/SEC 59.18			1.1845	0.0794	1 6155	79.68	81.01					
			3303.70	130.50	39.10			1.1043	U. 3/04	1.0133	13.00	DIUI					

```
80 PERCENT DESIGN SPEED (PSTOR PERFORMANCE)
```

AIPFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 DREED CODE 80 POINT NO 5

	61	Y-1	¥-2	W-I	75-2	WD-I	30-2	但-支	1-2	W*-1	Y"-Z	70°-3	10"-2	F14-1	-	14-2	EPSI-I	E357_3	
	SL.		-										14 FT TO						
		M/SEC	K/SEC	K/SEC	M/CEC	H/SEC	WITEC	K/SEC	MICEC	M/SEC	MISEC	MITEC	M/SEC	KG/YZ SE		? SES		PACIAN	
	1	102.4	253.5	152.4	155.4	· · · • • • • • • • • • • • • • • • • •	205.9	228.3	255.7	250.7	257.4	-228.8	-53.8	108.91	205	.39	0.5035	0.5143	
	2	109.5	259.5	109.5	150.4	0.0	192.5	243.5	273.3	257.3	170 5	-243.5	-30.7	115.75	575		9.4271	3.4455	
	3	116.4	237.1	115.4	158.4	9.9	175.4	257.8	230.8	222.9		-257.8		122.05	511	+10°		3.3757	
	4	129.1	235.0	129.1	137.3	0.0	153.9	295.5	333.6	377.4	202 9	-295.5	-149.7	133_31	183	.63	0.1228	0-1552	
	5	132.0	193.1	132.0	123.9	0.0		337.4	333.9			-337.4		135.98	154		-0.0531	3.5143	
	5		189.4	131.9	121.3	0.0		355.3	249.I	313.9		-355.3		135.74	150		-0.1282		
	7	131.7	123.3	131.7	124.3	0.0	143.7	355.2	355.7	333.2		-355.2		135.57	155	.72	-3.1591	-7. 3995	
	8	131.1	182.9	131.1	127.3	0.0	140.3	374.2	354.2	335.5	257 7	-374.2	-773 3	135.57	159	55	-0.1922	-0.1375	
	50.0		44 40 11 11					400.4									-0.2224		
	3	127.7		127.7	119.2	9.0	,		357.0			433.4		132.17	153				
	13	125.5	175.8	125.5	112.9	0.0	135.1	438.5	394.5	427.7	282.0	-413.5	-258.5	131.19	150	.43	-0.3555	-7,2352	
	11	175 4	173.2	125.4	105.1	9.0	176 0	415.4	412 2	434.9	535 7	-675 A	-7F5 7	139.13	141	10	-0.3199	T 31 27	
-	11	163.7	2000	4000	10012	2.3	2020	42044	726.06	4022		-27.52.2	2000	20020		<i>y</i>			
										****	-		-					والمستقومون	
	SL	8-1	2-2		3'-2	K-I	20-6	18°-1	H"-Z	INCS	INCH	DEA	TUP	D FAT 0		1000-			
	1	DECREE	DECREE	DECREE	DECREE					DEFEE	XPE	DEFIE	ŒŒŒ		TOTAL	TOTA		3.572	ಾರ್ಡ ನ್ನ
	3	0.0	52.5	55.50	70 77	0.3150	0.7500	0.7772	3 LOTT	9.52	4.52	8.73	44.58	9.5205	0.0333	0.519	3 1.554	3 94.37	95.39
	2	9.0		65.54		0.3377				1.81	5.52	8.94	38.81		0.0523	0.515			97.21
					400 to 10 to 10			- +											# - Jr
	3	0.0	42.3	65.50		0.3592				3.05	5.45	10.11	31.94		9.5237	0.005			93.09
	4	0.0	48.5	55.33	47.73	0.3994	0.6000	0.9978	0.5310	4.43	5.71	11.92	18.61	0.5539	9.6919	0.515		2 91.52	92.11
	5	9.0	=0.0	62.52	F5 25	0.4523	O 5573	1.1720	M F525	4.45	6.30	10.53	12.37	0.5345	0.1538	0.027	9 1.535	0 82.09	83.28
	5	0.0	49.9	59.55		0.4384				4.51	5.24	3.71	10.54		0.1273	0.529			33.62
	7	0.0	43.8	70.12		0.4377				4.63	6.35	7.39	19.65		0.1537	9.029			87.65
	8	0.0	47.5	79.63	60.61	0.4558	0.5453	1.2275	0.7383	5.11	5.57	5.42	19.62	0.4511	0.1751	3.527	5 1.640	7 79.71	21.07
	9	0.0	42.4	72.21	EE 22	0.3952	0.5177	1 300	0.7050	5.07	5.49	5.81	7.93	0.4329	0.1923	0.026	5 1.525	4 76.22	77.25
						0.3913				4.58	5.35	5.50	6.55			0.026			75.71
	10 m	0.0	50.0																
	11	0.0	52.0	73.12	58.03	0.3378	0.4924	1.3445	9.522Z	4.08	5.41	5.41	5,10	0.4334	0.2274	1.320	4 1.513	9 71.65	73.50
	SŁ	V-1	7-2	WY-I	111-2	10-1	VV-2	I-U	C-2	Y*-I	¥"-2	70 -1	10'-2	PHOYY-I	PHO	14-2	EPSI-1	EP51-2 1	PCT TE
		ET ISEC	FT /SEC	ET ICEC	et icer	FT ISEC	ET ICEC	FE ITER	FT ICEC	FT /CFC	FILEF	FT ICES	FTICER	LEK/FTZGE	C DEWIF	TOSEC	DESPEE	DESPEE	PAN
							675.4					-759.8		22.31		.00	29.193	29.466	
		335.9	843.2	335.9	513.9	0.0		750.8											
	2	359.5	822.2	359.6	525.2	9.9	631.8		836.5			-732.9		23.71		.59		25.528	
	3	331.9	777.8	381.9	519.6	0.0	573.8	845.9	921.4	1.856	522.3	-245.9	-342.5	25.00	43	-39	19.179	21.523	1.1500
	4	423.4	675 A	423.4	449.5	0.0	504.9	GEO A	995.1	1957 9	665 9	-959.4	451 7	27.33	37	.61	7.037	10.731	3000
		433.2		433.2		0.0				1183.7		1105.9		27.23		.52	-3.515	0.271	
	5	432.7	621.3	432.7		9.9			1145.3			1168.9		27.90		.92		-3.526	
	7	432.0	623.2	432.0	407.7	6.0	471.3	1192.3	1170.2	1273.3	209.1-	·1192.3	-698.9	27.77	33	.30	-9.118	-5.639	1.5500
	8	420.1	522.9	430.1	417.5	0.0			1195.1			1227.7		27.55	34	.72	-11_013	-7.276	2,7000
	g	419.1	593.2	419.1	391.1					1379.0				27.07				-14.382 (
						0.0													and the same of
	10	415.1	520.2	415.1	373.4	0.0				1493.4				25.25				-15.349 (
	11	411.5	552.2	411.5	343.0	0.0	449.2	1355.2	1319.5	1425.8	937.3-	1355.2	-873.3	25.55	28	.83	-18.339 -	-13.037 (3.9500
		2.3	CI/AI	XCI/AL						12/TOI P				D.					
			EN/SEC	KG/SEC								FOTOP							
														F.3					
			50F1	Sim								*	, <u>*</u>	_					
			23,77	149_39						.1825	1.6777	34.50	85.5	9					
	100																		

80 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 80 POINT NO 5 51 7-0 7-2 VM-I 44-2 M-1 173-2 PHTM-1 PH3/4-7 EPSI-1 EPSI-2 MISEC K/SEC K/SEC M/SEC K/SEC M/SEC YG/YZ SEC YG/YZ SEC PADIAN PADIAN 3.4 267.0 228.7 175.2 228.5 201.5 225.35 297.86 0.4713 0.0225 258.5 224.9 175.9 224.9 189.5 -1.5 229.48 293.38 0.4200 0.0705 244.9 215.0 172.6 173.8 214.3 -3.0 227.22 289.47 0.3535 0.0531 215.5 135.7 152.5 185.3 152.2 -11.2 201.03 254.56 0.2149 0.5380 202.5 171.7 138.6 171.6 147.7 -7.7 232.83 229.28 121.19 0.0591 -9.0031 199.2 159.8 135.0 163.7 145.5 177.39 -0.0207 -0.0245 -0.0584 -0.0350 4.5 200.3 172.0 139.1 172.0 144.1 232.15 236.05 -4.0 181.65 200.7 274.9 142.3 174.9 141.5 4.5 185.25 -0.0924 -0.0458 194.7 173.1 137.7 173.9 137.5 -5.2 179.79 239.47 -9.1983 -0.0754 192.5 179.5 134.0 179.5 138.3 -2.7 174.33 225.34 -9.2312 -0.0661 11 191.2 168.1 139.5 163.1 139.7 -2.7 168.95 219.72 -9.2694 -9.5959 8-1 3-2 M-I Y-2 INCS INDY DEY TURN D-FAC ONEGA-B LOSS-P P32/ P0/P0 CT/CT DEGREE XEFF-A XEFF-P DEGREE DECREE DESPEE DEGREE DEGPEE TOTAL TETAL P01 STATE STAGE TOT-STE TOT-STE 51.2 0.3 9-7251 0.5525 -3.29 -0.33 14.53 59.34 Ø.3335 0.1975 0.0455 0.9339 1.7313 1.2031 83.66 48.9 0.7599 -0.4 0.6529 -3.55 -9.42 11.60 49.24 0,2952 9.1577 9.3379 0.9493 1.7415 1.1952 88.13 45.5 -2.1 0.7204 0.6251 -5.25 -1.29 8.74 43.51 0.2933 0.1155 0.0276 0.9553 1.7233 1.1838 92_24 45.4 -3.4 0.6295 5.58 7.50 0.5492 -7.53 -3.34 48.81 0.3221 0.6513 0.9139 0.9880 1.5573 1.1733 89.77 45.9 -7.11 -2.6 0.5864 0.4924 -1.75 49.43 0.3537 0.0444 0.1120 0.9998 1.5192 1.1243 89.20 81.50 47.9 -1.59.5749 0.4856 -5.25 -1.118.53 48.45 0.3587 9.6479 0.0131 9.9995 1.5131 1.1890 77.50 78.35 45.0 -1.3 0.5777 9.4929 -7.73 -1.90 E.SI 47.35 0.3515 0.G519 0.6147 9.9895 1.6197 1.1905 44.9 -1.5 9.5793 0.5005 -8.91 -2.92 2.73 45.37 0.3390 9.3460 0.0132 0.9905 1.5257 1.1996 45.3 -1.7 0.5593 0.4940 -10.53 -4.45 10.55 45.95 0.3329 0.0551 9.0195 0.9875 1.6059 1.1957 74.12 10 75.79 46.3 -0.9 0.5519 0.4859 -11.93 -5.75 12.83 47.15 9.3332 0.0910 0.0276 0.9830 1.5915 1.1998 71.11 47.5 -0.9 0.5454 0.4772 -15.15 -19.01 15.51 48.49 9.3525 0.1276 0.5391 0.9765 1.5759 1.2049 Y-1 11-2 VM-I W-2 V3-2 79-I PHOVE-I 24314-2 PCT TE EPSI-1 FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT25EC LBM/FT25EC FT/SEC FT/SEC SPAN DEGREE DEGREE 875.0 759.2 574.7 759.1 £51.1 11.1 45.15 51.01 0.0433 27.901 4.724 848.2 737.2 577.1 737.2 521.5 -4.9 47.00 51.11 0.0901 24.953 4.103 893.5 795.3 566.1 734.8 579.2 -25.445.54 59.29 0.1410 20.225 3.613 756.9 612.5 500.4 511.4 499.3 -35.8 41.17 52.14 0.2939 12.311 2.175 E64.5 553.4 454.7 562.9 484.5 -25.2 47.69 37.09 0.5586 3.327 -9.177 653.6 557.0 445.1 -14.7 556.8 477.7 35.31 45.95 0.5193 -I-187 -1.495 564.3 557.1 564.4 455.3 472.8 -13.347.55 37.21 9.6599 ·3.343 -2.003 658.6 573.9 455.2 573.7 454.5 -14.2 32.15 48.35 0.7197 -5.293 -2.524 633.7 567.9 451.7 557.6 451.5 -17.9 35.82 47.20 9.2529 -11.351 -4.323 10 631.9 559.9 439.8 559.2 453.8 -3.9 35.70 45.15 0.9101 -13.246 -4.934 527.2 551.5 551.4 428.2 453.3 -3.9 34.60 45.00 0.9571 -15.434 NOOPS MCGP2 WCOP? TO/TO POZ/POI PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STACE STAGE STAGE PPY LEM/SEC KG/SEC 75

1.1535 0.9793 1.5438

31.03

82.31

9963.39

122.20

53.14

```
80 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
```

AIRFOIL AERODYNAKIC SUMMARY PRINT PUN NO 111 SPEED CODE 80 POINT NO 4

						the section												
	Ł Y-	1 4-2	774_1	74-2	V 0-1	VD-2	J-1	13-2	V*-I	41-2	10'-1	tents o	THE SPECIAL	خان ت	Wree To			
			· •		,								PHOYY-				EP5I-2	
	4/5						M/SEC						KG/KZ S	ec ka/x	is ses i	PAJIAN	RADIAN	
	1 100	.3 259.8	100.3	155.2	0.9	258.4	229.0	255.9	250.0	165.5	-229.9	-57.5	107.35	295	-57	9.50%	0.5154	
	2 107	.4 259.4	167.4	158.8	9.3	193.5	243.7			177.7	-243.7	-73.9	114.15			3.41%	0.4472	
	3 114			155.4							-258.0		120.43				0.3771	
	4 125										-295.7							
													131.77				0.1234	
	5 129						337.6				-337.5		134.40	156	.39	9.9719	0.0144	
	6 129	.2 195.3	129.2	118.5	0.9	155.2	355.5	349.3	379.2	227.5	-356.5	-194.2	133.95	157	1.99 -	0.1395	-0.0515	
	7 128	.8 197.1	128.8	122.3	0.0	154.6	355.5	356.9	337.5	236.4	-355.5	-252 3	133.62	553	.10 -	1775	-0.1001	
	8 122										-374.5		132.95	165			-0.1323	
	9 124		124.3						419.5									
	T										-400.7		129.71	153			-0.2533	
. =	0 123		123.1			149.9					-408.9		128.53				-0.2373	
1	1 122	.0 121.4	122.0	191.1	0.0	150.5	415.7	402.5	434.2	271.4	-415.7	-251.9	127.55	134	.52 -1	3.3230	-0.3152	
															-			
· · · · · · · · · · · ·	L 3-	E-2	B*-1	21-7	M-I	M-2	M'-I	81-2	THEE	INCH	TEN	TURN	D FAS (WECK D	10000	P02/	WEEE 8	ZEFF-P
	DEGE		DESPÉE		**	-1	95 — <u>A</u> ,	**		د دور و کار سومه و کار	00000	المراجع المراجع	The Part of					
					~ ~~~	G 7636	-				DEGREE			TOTAL	TOTAL	P91	TOTAL	
		.0 53.0			0.3322					5.06				6.0974	0.0174	1.274	5 95.58	95.05
		.0 50.7	65.97	25.73	0.3395	9.7337	9.8155	0.5297	2.24	5.95	8.9¢	39.24	0.5651	0.0409	0.0031	1.743	1 97.54	97.83
	3 0.	.0 49.2	65.93	33.51	0.3517	0.6334	0.2594	0.5444	3.49	5.23	10.06	32.42	0.5011	0.0313	0.9951	1.797	3 97.34	10.59
	4 0.	0 49.9	55.73		0.3915					7.11	11.69			0.1000				
	5 O			EE E2	0.4319	Ø 5575	3 3306	0.5376						0.100				
									4.83	5.63	9.95			0.1718	9.9788			
		.0 52.4			0.3934					5.57	8.97			0.2138				72.99
	7 O.		70.58	58.57	0.3932	0.5541	1.1933	0.6765	5.13	6.2I	5.19	12.00	0.5126	0.2132	0.0346	1.579	9 77.16	78.75
	8 O.	.0 50.6	71.10	59.29	0.3353	9.5531	1.2235	0.7010	5.58	7.14	5.70	11.81	0.5003	0.2123	0.9341	1.575	4 75.78	72.41
	g g	.O 51.B	72.71		0.3340				5.57	5.99	5.54	8.59		0.2324	0.0323			
1	9 0.				0.3301				5.06	5.44	5.52	7.02			9.9325			
ī																		
£	L 9.	55.5	13.00	07.53	0.3767	U. DICL	1.3433	U-1004	4.54	5.87	5.34	5.63	0.4802	0.2708	0.0315	1.550	0 63.43	79.57
_		1 1 L. L.		427														
- 5	L 1/-3		74-1	14-5		10-2	U-1	3-2	Y'-1	Y*-Z	W'-1	*7*-2	23/04%-	P2+10	4x-2 E	PSI-1	EPSI-2	PCT TE
	FT/55	C FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	I BM /FT2SF	C CRMIE	TZSEC I	ESPEE	DEGREE	CIN
	1 329.	1 252.5		509.3	2.0	€22.7	751.3		820.2		-751.3		21.99			9.141	29.532	
100	2 352.			521.0					273.7		-799.5							
	3 374.				1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1								23.35				25.623	
				509.8	0.0				925.6		-845.5		24.57		,	9.048	21.507	9.1500
	415.				0.0	519.7		995.8		549.1	-370.1	-477.1	25.99	37	.17	5.283	10.792	0.3000
	5 425.	4 646.5	425.4	497.2	0.0	502.2	1107.7	1095.4	1185.5	720.3-	-1107_7	-594-2	27.53	34	- 80	4.117	0.824	7000
	5 423.	7 649.9	423.7	329.2	0.0			1145.2			1169.7	· · · - · · · ·	27.44				-3.531	
	7 422.			401.3	0.0				1271.5		1199.2							
													27.37				-5.734	
		0 646.3				502.0					1228.5		27.23	33	.93 -1	1.641	-7.952	0.7000
		9 515.4		377.1	0.0	425.3	1314.7	1270.7	1375.5	879.3-	1314.7	-784.4	25.57	31	.44 -1	6.545	-14.540	0.2500
74	1 493.	8 594.2	403.8	351.0	0.0	491.8	1341.6	1295.5	1401.0		1341.5		25.34				15.488	
1	400	4 595.1	400.4		0.0	494 n	1767.7	1320 4	1424.5	P00 5	3767 2	-825 F	25.14				-18.117	
~	- 1140	WCI/AI	WCI/AI		0.0	4.00	20000	چەر دران. رىپ	シッチエマッジ					21	- 33 1	י טערים.	-10.11/	ひょうかいき
								13	12/TOL P	4111								
		LBM/SEC									P.OTOP		4			:		
		SOFT	Som			494.73					*	, : ×						
		22.21	137.66					1	.1922	1.7040	83.08	84.3	0					
													•					

80 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 20 POINT NO 4 SL V-1 V-2 YM-1 VM-2 10-1 VO-2 RHOVM-2, RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN PADIAN 3.9 267.8 221.1 173.4 221.0 204.0 0.4733 0.0828 0.4231 0.0726 0.3668 0.0648 225.88 295.06 215.2 257.8 173.7 216.2 190.5 -0.9 229.42 294.77 -0.9 229.42 -7.2 225.14 -10.3 198.68 -6.6 182.28 -2.7 174.28 205.9 244.2 169.1 205.8 175.1 284.41 215.3 178.5 149.2 178.2 156.5 0.2176 0.9423 0.0593 0.0039 -10.3249.14 205.7 165.1 137.9 164.9 152.6 229.28 204.4 163.5 132.8 163.5 155.3 -0.0973 -0.0173 -0.0446 -0.0282 225.41 206.5 166.5 -1.9 179.07 -2.0 121.20 228.99 135.4 166.5 155.1 206.9 159.4 138.4 169.4 153.8 -0.0791 -0.0395 -0.1839 -0.0716 232.75 167.5 132.9 173.97 166.30 200.5 157.5 150.0 -3.7227.35 10 193.8 165.3 127.8 165.3 152.3 -2.4 222.13 -0.2240 -0.0833 198.0 153.7 125.0 163.7 153.6 -2.1152.06 -0.2655 -0.0946 212.04 B-2 DEGREE 8-1 TURN D-FAC OMEGA-B LOSS-P 14-1 M-2 IMCS INCM DEV P02/ TO/TO XEFF-A XEFF-P P0/P0 DEGREE DEGREE DEGREE DEGREE PEE TOTAL TOTAL POI STAGE STAGE TOT-STG TOT-STG 51.8 1.0 0.7373 0.6377 -2.64 0.31 14.85 ...27 0.3405 0.1976 0.0455 0.9337 1.7499 1.2056 84.41 49.4 -0.2 0.7578 0.6251 -2.99 0.13 11.74 0.3293 0.1578 0.0370 0.9509 49.66 1.7549 1.1964 88.84 47.5 -2.0 0.7158 0.5959 -4.27 -9.90 8.83 0.0283 0.9556 0.0147 0.9854 1.7349 1.1965 49.47 0.3310 0.1185 91.50 92.13 -3.3 0.6394 45.9 0.5137 -6.10 -1.366.70 50.17 0.3576 0.0581 1.6705 1.1788 88.42 -5.02 -4.34 -5.14 47.9 -2.3 0.5942 0.4709 -0.67 7.77 50.24 0.4065 0.0526 0.0142 0.9838 1.6435 1.1900 80.36 81.69 -0.9 0.5872 -0.7 0.5928 49.5 0.4644 1.39 9.16 50.40 0.4152 0.0578 0.0161 0.9889 1.6394 75.47 77.12 48.5 0.4722 0.73 49.31 0.4097 9.49 1.6472 1.2047 1.6545 1.2069 0.0658 0.0126 0.9861 74.92 76.52 48.0 -0.7 0.5933 0.4804 -5.80 0.20 9.59 48.68 0.3990 0.0589 0.0169 0.9875 74.83 76.55 -1.2 0.5721 0.4736 48.7 -7.27 -1.0549.91 0.3966 11.11 0.0636 1.2129 0.0190 0.9873 71.12 73.05 1.6375 10 50.3 -0.8 0.5655 0.4657 -1.70 -7.94 12.95 51.15 0.4074 0.0369 0.0263 0.9830 1.6245 1.2195 57.31 69.92 11 51.4 -0.7 0.5617 0.4601 -12.27-5.13 15.70 52.08 0.4175 0.1169 0.0358 0.9775 1.6128 1.2250 65.08 67.34 SL V-1 **VO-1 V-2** VM-1 VM-Z V9-2 EPSI-1 EPSI-2 RHOVM-1 RHOVM-2 PCT TE FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LRM/FT2SEC DEGREE DEGREE SPAH 725.2 709.4 878.6 669.4 625.2 725.4 569.0 12.9 45.25 27.115 4.743 60.64 0.0439 569.9 846.0 709.4 -2.9 45.99 60.37 0.0901 24.240 4.158 577.9 2.108 675.7 554.8 675.3 45.11 -23.558.25 0.1410 21.015 3.713 489.4 584.7 709.7 585.5 513.9 40.69 37.33 -33.9 0.2989 51.03 12.469 2.424 500.6 509.7 574.9 452.6 -21.7 541.5 541.1 46.95 0.5036 3.968 0.222 536.7 435.8 670.5 536.8 -3.8 35.59 46.17 0.6103 -0.419 -0.994 36.68 37.23 35.63 34.06 677.6 546.2 447.5 -5.3 546.2 598.8 45.90 0.6598 -2.555 -1.615 504.5 678.8 555.8 454.1 555.8 -5.5 47.67 -4.535 -2.260 0.7107 657.7 436.2 549.7 549.5 492.3 -12.045.55 0.8520 -10.823 -4.103 499.5 -9.0 -5.9 419.3 542.2 10 652.2 542.3 -12.837 -4.773 -15.211 -5.420 45.49 0.9101 11 649.6 537.2 537.2 410.1 503.8 33.19 44.65 0.9571 T9/T0 P02/P01 P0/P0 STAGE STAGE 1.1982 0.9785 1.6674 NCORR MCORR WCORP. EFF-AD EFF-P INLET INLET INLET STAGE STAGE LBM/SEC KG/SEC RPM * * 9969.40 125.70 57.01 79.44

AIRFOIL AERODYNAMIC SUMMARY PRINT
HUN NO 111 SPEED LODE 80 POINT NO 6 BO PERCENT DESIGN SPEED (POTOR PERFCHMANCE)

St V-1 V-2 VY-1	914-2 40-1 10-2 IS-1 U-2	V'-1 V'-2 VO'-1 VO'-2	PHIVM-I PHIVM-2 EPSI-I EPSI-2
		MISEC MISEC MISEC MISEC	KG/MZ SEC KS/MZ SES TADIAN PADIAN
		243.6 161.8 -228.7 -55.7	105.59 234.42 0.5386 0.5132
. A Pries Article		264.7 172.1 -243.3 -75.6	112.25 259.51 0.4180 0.4440
			118.49 254.68 0.3315 0.3745
3 110.6 235.3 110.6			129.48 178.94 0.1199 D.1877
4 122.6 207.9 122.6		319.7 191.5 -295.3 -140.9	
5 125.6 199.1 125.6	6 120.4 0.0 158.6 337.2 333.7	359.8 212.5 -337.2 -175.1	APREME PER PERSON DESCRIPTION DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE
6 125.2 199.3 125.2	2 117.3 0.0 161.1 355.1 348.9	377.4 221.4 -355.1 -187.8	131.79 159.12 -0.1397 -0.0513
7 124.7 200.7 124.7	7 119.6 0.0 161.2 365.9 355.5	355.7 229.0 -355.0 -195.3	131.49 152.31 -0.1723 -0.1061
8 123.9 200.1 123.9	9 129.1 0.0 169.0 374.9 354.9	394.0 235.7 -374.0 -254.0	139.68 163.12 -0.2555 -0.1392
9 120.2 191.4 120.2		417.8 254.0 -400.2 -229.4	127.33 147.82 -5.2997 -5.2541
	The second second second second	425.4 257.1 -418.4 -235.8	126.25 138.58 -9.3193 -0.2878
	The second secon		125.34 132.90 -0.3212 -0.3151
11 118.1 185.5 118.1	I ADMIT ATOM TODOM ATOM ADMIN	TOLIC MONEY SANGE WILLIAM	
	P'-2 M-1 M-2 M'-1 M'-2	INCS INDM DEV TOPN	D FAS GREGA-B LOSS-P POZ/ XEFF-A XEFF-P
SL B-1 8-2 8*-1		DEGREE DEGREE DEGREE	
DEGREE DEGREE DEGREE			
	4 19.93 0.2995 0.7591 0.7645 0.4742		
2 0.0 51.9 66.57		2.85 6.56 8.64 40.14	Order to the second sec
3 0.0 50.7 65.55	5 33.64 0.3412 0.6894 0.8548 0.5244	4.11 7.50 10.19 32.91	Market and the contract of the
4 0.0 51.6 67.33	7 47.56 0.3791 0.6037 0.9537 0.5559	5.47 7.75 11.75 19.82	Company Comments Comments and Comments of
5 0.0 52.7 69.57		5.40 7.25 9.85 14.14	
6 0.0 53.7 79.62		5.49 7.22 7.49 12.83	
7 0.0 53.1 71.12	2 58.24 0.3259 0.5736 1.1934 0.6544	5.53 7.35 5.85 12.88	
		6.13 7.69 5.61 12.45	0.5253 0.2261 0.0364 1.7071 76.18 77.91
	3 64.29 0.3715 0.5424 1.2913 0.7197	5.03 7.51 5.22 2.94	0.5097 0.2556 0.0352 1.6929 71.69 73.70
9 0.0 54.9 73.23	6 66.23 0.3678 0.5334 1.3141 0.7261	5.56 6.93 5.70 7.44	
	0 00123 013010 013034 113141 911694 C CT OC O 3617 O 6569 1 3369 0 7300	5.01 6.35 5.25 5.20	0.5948 0.2843 0.0333 1.6906 68.26 79.59
11 0.0 58.0 74.06	6 57.86 0.3647 0.5253 1.3362 0.7399	مسيد معدل عربيل يوريق	
		V-1 V-2 W-1 W-2	PHOYM-1 PHOYM-2 EPSI-1 EPSI-2 PCT TE
SL V-1 V-2 VV-1	W-2 W-1 W-2 U-1 U-2	V'-1 V'-2 VO'-1 VO'-2	
FT/SEC FT/SEC FT/SEC	C HISEC HISEC HISEC HISEC HISEC	FI/SEC FI/SEC FI/SEC FI/SEC	The same of the sa
1 319.5 849.8 319.	5 498.4 0.0 688.3 750.3 871.2	815.5 530.9 -103.3 -162.6	21.02 41.67 23.140 23.750 0.3533
2 341.9 819.4 341.9	9 505.7 0.6 644.7 798.4 896.0	868.6 564.6 -798.4 -251.3	22.99 42.93 23.951 25.449 0.1999
	0 499.6 0.0 595.3 895.4 929.9	920.1 588.2 -845.4 -324.6	24.25 41.92 18.994 21.454 0.1500
4 492.3 582.3 492.	استنسست باستان فالتان الاستان	1949.1 628.2 -958.9 -452.2	
5 412.1 553.4 412.		1180.5 597.3-1106.3 -574.5	27.07 33.62 -4.034 0.838 0.5000
		1238.3 726.4-1168.2 -616.1	26.99 32.59 -8.007 -3.515 0.5000
	3 392.4 0.0 528.8 1197.6 1169.5	1265.6 751.3-1197.6 -649.7	<i>r</i>
7 499.3 658.5 409.	Fig. 7	1292.5 776.7-1227.0 -669.4	26.76 33.41 -11.777 -7.976 0.7999
8 495,6 555.5 495.		1371.0 833.3-1313.0 -752.1	The second secon
9 394.5 628.1 394.			AND THE RESERVE AND ADDRESS OF THE PARTY OF
10 390.6 619.7 390.	6 336.6 0.0 520.3 1339.8 1293.9	1393.0 043.0-1339.0 -//3.0	
11 387.4 611.9 387.		1419.3 850.8-1365.4 -793.4	
KI/AI KI/	<u> 41</u>	02/TOL PO2/POL EFF-AD EFF	-r
LBM/SEC YS/S	SEC TO A STATE OF THE STATE OF	POTOR POT	
SOFT SO			
27.47 134.		1.2057 1.7276 82.28 83.	,5 9
THE PARTY OF THE P			

80 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 80 POINT NO 6 SL V-1 V-2 VM-1 VM-2 VD-1 VD-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC 205.4 M/SEC 209.9 M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN 223.96 225.74 219.69 194.76 1 266.0 209.9 159.1 4.9 291.77 0.4717 0.0837 256.3 193.3 179.0 204.5 168.3 204.5 0.4211 0.0742 0.3656 0.0666 0.2180 0.0448 0.0 288.62 3 241.8 194.0 162.5 193.9 276.99 241.81 -6.0 215.7 167.8 143.8 167.6 150.7 -8.3 179.60 174.64 177.77 179.00 168.29 162.47 206.9 156.9 158.1 133.5 156.8 -5.1 224.74 0.0704 0.0073 -0.0036 -0.0138 -0.0394 -0.0247 -0.0734 -0.0361 -0.1267 -0.0698 207.5 157.3 161.3 130.5 157.3 -1.1 223.45 160.1 209.3 160.1 132.9 161.7 0.4 226.84 209.2 162.5 133.8 162.5 160.8 0.2 229.84 160.9 203.4 160.9 126.5 159.3 161.1 -2.0 224.43 202.5 159.4 159.0 10 159.4 122.5 -1.1-0.2241 -0.0819 220.37 11 201.9 159.0 120.9 161.7 159.80 -0.7218.18 -0.2661 -0.0938 SL B-1 B-2 M-I M-2 INCS INCM TURN D-FAC OMEGA-B LOSS-P DEV P02/ P0/P0 TO/TO XEFF-A XEFF-P DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 STAGE TOT-STG TOT-STG STAGE 1.3 0.7820 0.0 0.7528 52.7 15.15 11.97 0.6035 -1.78 1.18 51.39 0.3785 0.1872 0.0431 0.9378 0.9518 1.7651 1.2073 25.13 26.27 1.41 50.7 0.5888 -1.710.1537 50.70 0.3727 0.0360 1.7669 1.1996 88.48 89.37 49.1 -1.7 0.7091 0.5590 9.09 7.18 -2.70 50.83 0.3757 0.1095 0.0262 0.9687 1.7449 1.1898 90.92 91.61 48.6 49.9 -2.8 0.6279 0.4813 0.4461 0.4448 -0.08 1.28 2.94 2.64 -4.33 -4.08 51.47 0.4176 0.9869 0.0560 0.0142 87.79 1.6866 1.1837 88.66 5 -1.9 0.5970 -0.4 0.5954 8.21 9.70 51.75 0.4544 51.40 0.459B 0.0547 0.0148 0.9883 1.6679 1.1969 80.00 81.39 б 51.0 -2.20 0.0653 0.0182 0.0718 0.0203 0.9861 1.6694 75.60 77.29 1.2087 0.1 0.5997 0.1 0.5988 -3.24 50.6 0.4521 10.28 10.34 50.43 0.4537 50.13 0.4455 0.9845 0.9856 1.6768 1.2134 76.39 75.94 74.62 8 50.2 0.4525 -3.59 2.40 0.0667 0.0191 1.6827 1.2164 1.6679 1.2262 74.12 9 51.7 -0.7 0.5786 0.4521 -4.19 2.03 11.66 52.45 0.4492 0.0740 0.0221 0.9850 69.62 71.72 10 53.0 1.02 -0.4 0.5741 0.4465 13.38 16.16 53.44 0.4526 53.99 0.4629 -5.22 0.0977 1.6577 1.2324 66.89 64.87 0.0296 0.9804 69.15 11 0.4445 53.7 -0.30.5714 -9.90 -3.76 0.1206 0.0379 0.9760 1.6501 1.2373 67.25 SL V-1 V-2 VM-1 VM-2 VO-2 RHOVM-1 RHOVM-2 ET/SEC LBM/FT2SEC LBM/FT2SEC VO-1 EPSI-1 EPSI-2 DEGREE DEGREE PCT TE FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC SPAN 688.7 671.0 872.8 554.8 688.5 45.87 46.23 673.8 16.0 59.76 4.798 0.0430 27.027 59.76 59.11 56.73 49.53 46.03 45.77 840.9 552.1 671.0 634.3 0.0 0.0901 4.251 24.126 46.23 44.99 39.89 36.78 35.77 36.41 36.66 34.47 33.28 793.3 636.4 533.3 -19.8 -27.3 -16.7 -3.6 636.1 587.3 0.1410 3.817 20.946 707.6 559.7 527.3 471.9 550.0 0.2989 12.491 2.565 514.9 516.0 678.9 437.9 514.6 518.8 0.5086 4.033 0.417 680.7 428.2 516.0 529.1 0.6103 -0.204-0.791 435.0 7 686.6 525.1 530.4 527.7 1.2 525.1 46.46 0.6598 -2.255 -1.413586.5 533.1 439.1 533.0 47.07 45.97 0.7107 -4.204-2.069 527.9 522.9 415.0 527.9 667.4 -6.5 -3.7 522.7 0.8620 -10.696 -3.997 10 664.3 522.8 528.6 521.6 530.7 492.3 45.13 0.9101 0.9101 -12.840 0.9571 -15.249 EFF-AD EFF-P -4.695 521.6 NCORR 395.5 WCORR 11 662.4 -2.4 32.73 44.68 T9/T0 P02/P01 P0/P0 STAGE STAGE 1.2057 0.9785 1.6905 WCORR INLET INLET LBM/SEC KG/SEC INLET STAGE STAGE RPM 1 * 9969.80 122.40 55.51 78.76 80.27

95 PERCENT DESIGN SPEED (ROTOR PERFORMANCE) RUN NO 111 SPEED CODE 95 POINT NO 1 SI V_1 V-2 VM-1 VM-2 V0-1 VO-2 U-1 U-2 V*-1 V'-2 VO'-1 VO'-2 RHOVE-1 RHOVM-7 FPSI-1 FPSI-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC M/SEC M/SEC M/SEC M/SEC RADTAN RADTAN 136.4 300.3 136.4 184.4 0.0 237.1 270.6 314.1 303.0 199.8 -270.6 -77.0 229.34 128.08 0.5111 0.5166 146.5 295.4 146.6 188.0 0.0 227.9 287.9 323.1 323.1 210.8 -287.9 -95.2 135.74 237.05 0.4230 0.4507 0.0 209.1 304.8 332.0 342.7 226.6 -304.8 -122.9 156.6 282.8 156.6 190.4 142.85 243.51 0.3399 0.3814 176.8 249.7 176.8 171.6 0.0 181.4 349.4 359.0 391.6 246.9 -349.4 -177.6 155.99 220.82 0.1290 0.1970 182.0 225.2 182.0 157.9 398.9 394.8 438.5 282.4 -393.9 -234.2 0.0 160.6 159.07 200-95 -0.0696 0.0208 180.9 215.3 180.9 146.4 0.0 157.9 421.2 412.7 458.4 293.9 -421.2 -254.8 158.41 184.15 -0.1373 -0.0570 145.4 180.3 211.4 180.3 0.0 153.4 431.8 421.7 468.0 305.2 -431.8 -268.3 158.07 183.16 -0.1649 -0.0956 179.4 211.0 179.4 150.2 0.0 148.2 442.4 430.7 477.4 319.9 -442.4 -282.5 157.52 190.23 -0.1940 -0.1337 473.4 457.6 504.4 350.7 -473.4 -315.9 174.2 207.9 174.2 152.2 0.0 141.7 154.35 194.15 -0.2857 -0.2498 202.4 172.0 10 172.0 140.0 0.0 146.1 483.1 466.5 512.8 349.5 -483.1 -320.4 153.03 176.82 -0.3128 -0.286111 170.3 193.8 170.3 124.7 0.0 148.4 492.3 475.5 520.9 350.1 -492.3 -327.1 151.91 156.27 -0.3255 -0.3161 SL B-1 B-2 B'-1 B'-2 M-1 M-2 M'-1 M'-2 INCS INCM DEV TURN D FAC OMEGA-B LOSS-P PO2/ XEFF-A XEFF-P DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 62.95 22.48 0.4252 0.8729 0.9443 0.5806 -2.13 1.96 10.53 40.47 0.5188 0.1749 0.0342 2,2120 91,12 92,05 0.0 50.6 62.79 26.93 0.4583 0.8578 1.0097 0.6120 -0.94 2.78 9.15 35.85 0.5152 0.1373 0.0272 2.2111 92.13 92.95 0.047.9 62.63 33.06 0.4909 0.8218 1.0743 0.6586 0.19 3.58 9.61 29.57 0.4903 0.0852 0.0167 2.1576 94.31 94.89 46.23 0.5580 0.7201 1.2356 0.7122 0.0 45.8 63.09 1.19 3.47 10.43 16.86 0.4976 0-1178 0.0217 89 52 90 49 1.9930 65.48 55.96 0.5754 0.6452 1.3861 0.8091 0.0 45.4 1.31 3.16 10.39 9.52 0.4650 0.1597 0.0264 1.8760 82,76 84,22 3.34 46.9 56.74 59.90 0.5716 0.6130 1.4487 0.8366 0.0 1.61 5.84 9.61 0.4637 0.2039 0.0313 1.8289 76.98 78.84 46.2 67.30 61.28 0.5697 0.6013 1.4785 0.8683 0.0 1.86 3.53 8.90 6.02 0.4483 0.2012 0.0301 1_B166 76.63 78.51 0.0 67.87 61.69 0.5666 0.6010 1.5079 0.9113 2.35 3.90 8.10 6.18 0.4255 0.1835 0.0273 1.8222 78.10 79.26 42.5 69.72 0.0 63.95 0.5491 0.5908 1.5903 0.9962 2.58 4.00 5.47 5.77 0.3921 0.1793 0.0250 1.8297 77.47 79.29 70.31 66.13 0.5420 0.5708 1.6155 0.9863 2.21 3.58 0.0 45.9 5.60 4.18 0.4059 0.2223 0.0282 1.8108 72.29 74.49 49.7 70.82 68.97 0.5361 0.5432 1.6401 0.9812 11 0.0 3.11 1.78 6.36 1.85 0.4145 0.2580 0.0287 1.7837 67.93 70.41 V-2 SL V-1 VM-1 VM-2 VO-1 VO-2 V'-1 V'-2 VO'-1 VO'-2 U-1 U-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 PCT TE FT/SEC LBM/FT2SEC DEGREE DEGREE SPAN 0.0 777.9 887.7 1030.6 994.2 655.5 -887.7 -252.7 447.6 985.4 447-6 604-9 26.23 46.97 29,282 29,598 0,0500 481.1 969.4 481.1 617.0 0.0 747.7 944.6 1060.0 1060.1 691.5 -944.6 -312.4 27.80 48.55 24.235 25.822 0.1000 513.9 927.9 513.9 624.7 0.0 686.1 1000.2 1089.4 1124.5 743.6-1000.2 -403.4 29.26 49.87 19.472 21.850 0.1500 580.2 819.1 580.2 562.9 0.0 595.0 1146.2 1177.7 1284.7 810.2-1146.2 -582.7 31.95 45.23 7.393 11.289 0.3000 597.1 739.0 597.1 518.0 0.0 527.0 1308.8 1295.4 1438.6 926.6-1308.8 -758.3 32.58 41.16 -3.991 1.191 0.5000 593.5 705.6 593.5 480.4 0.0 518.1 1382.0 1354.2 1504.1 964.2-1382.0 -836.1 32.44 37.72 -7.866 -3.265 0.6000 591.6 477.1 591.6 693.5 0.0 503.2 1416.9 1383.6 1535.4 1001.3-1416.9 -880.4 32.37 37.51 -9.447 -5.480 0.6500 588.6 692.2 588.6 492.7 486.2 1451.6 1413.0 1566.4 1049.6-1451.6 -926.8 0.0 32.26 -11.116 -7.662 0.7000 38.96 571.4 682.3 571.4 499.4 0.0 464.8 1553.3 1501.3 1655.1 1150.5-1553.3-1036.5 31.61 39.76 -16.426 -14.314 0.8500 564.5 663.9 0.0 479.4 1585.0 1530.7 1682.6 1147.2-1585.0-1051.2 564.5 459.2 31.34 36.22 -17.925 -16.393 0.9000 558.7 635.8 558.7 409.0 0.0 486.8 1615.3 1560.1 1709.2 1148.6-1615.3-1073.3 31.11 32.01 -18.652 -18.111 0.9500 WC1/AI WC1/A1 T02/T01 P02/P01 EFF-AD EFF-P LBM/SEC KG/SEC ROTOR ROTOR SOFT SOM % 36.78 179.49 1.2498 1.9375 83.34

AIRFOIL AERODYNAMIC SUMMARY PRINT 95 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 95 POINT NO 1 SL V-2 V-1 VM-1 VM-2 **VD-1** VO-2 PHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC #7/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN -25.6 311.9 278.3 208.4 277.1 1.585 251.53 302.75 0.4727 0.0255 -27.7 305.3 278.1 208.7 276.8 224 3 255.93 309.56 0.4236 0.0771 209.4 250.91 279.7 293.8 278.9 205.0 -21.8 323.67 0.3671 0.0695 0.3671 0.0695 0.2226 0.0414 0.0747 -0.0033 -0.0060 -0.0255 -0.0491 -0.0366 -0.0286 -0.0478 -0.1949 -0.0766 -0.2239 -0.0870 179.4 160.1 316.37 263.4 261.5 192.8 261.0 -16.2241.10 235.4 177.8 234.5 -20.9 -20.6 -14.3 286.88 273.66 239.3 220.41 167.1 166.5 225.9 225.2 158.0 153.8 204.69 204.10 230.0 226.8 226.7 225.7 272.84 274.72 226.8 226.9 171.1 226.5 148.9 -14.1210.79 227.2 175.9 227.0 269.77 258.87 226.3 143.4 -20.4216.95 167.9 158.2 10 224.2 222.3 221.7 148.5 -15.0204.34 218.9 215.2 11 214.9 151.3 -11.5190.27 246.13 -0.2639 -0.0965 SL B-1 B-2 M-1 11-2 INCS INCM DEV TUPN D-FAC OMEGA-B LOSS-P P02/ PO/PO TO/TO DEGREE -4.18 DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 STAGE STAGE TOT-STG TOT-STG 50.3 -5.10.9118 0.8003 -1.22 55.37 0.2941 54.42 0.2832 8.76 1.8418 0.4014 0.0921 0.8326 1.2795 68.21 70.80 48.9 0.8940 0.8005 -0.44 2 -5.6 -3.57 6.40 1.8830 0.3534 0.0860 0.8503 1.2776 71.44 73.84 0.8531 0.8114 50.25 0.2329 0.2646 46.96 0.1943 0.1097 47.16 0.2194 0.0712 45.9 4.4 -5.91 -2.53 6.46 6.48 4.97 0.0631 1.9442 0.8984 1.2615 80.05 81.82 -3.5 -5.1 0.7579 0.6770 0.7642 -5.29 43.4 -9.54 0.0277 0.9647 1.9301 1.2446 84.56 85.91 0.6892 42.1 0.0192 0.9907 0.0176 0.9841 -11.90 -6.55 1.8385 1.2383 79.80 81.45 0.2298 0.2151 0.2071 4.89 6.53 6.71 7.25 48.59 43.4 -5.2 0.6583 0.6483 -10.42-4.68 1.7984 1.7922 1.7950 0.0632 1.2446 74.69 76.68 42.7 0.6453 46.34 44.59 -3.6 0.6484 -11.08 -5.21 0.0557 0.0617 0.0157 0.9863 0.0177 0.9848 1.2426 76.80 41.0 -3.5 0.6498 0.6501 -12.77 -6.78 1.2395 75.02 77.91 0.6498 39.4 -5.1 0.6491 -16.51 -10.2944.53 0.2169 0.1331 0.0397 0.9672 1.7697 1.2436 72.77 74.86 41.8 -4.I 0.6369 0.6312 -10.22 9.69 45.89 0.2331 10 -16.450.0548 0.9567 0.1813 1.7318 1.2563 66.31 58.79 11 44.2 0.6186 -3.0 0.6074 -19.40-13.2513.39 47.26 0.2479 0.2354 0.0721 0.9465 1.6873 1.2652 60.82 V-1 V-2 VM-1 VM-2 V9-1 V0-2 RHOVM-1 RHOVM-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC RHOVM-1 SL PCT TE EPSI-1 EPSI-2 SPAN DEGREE DEGREE 62.01 63.40 1023.3 913.1 683.6 909.2 761.4 -84.0 51.52 0.0430 27.081 4.905 735.7 675.8 -90.9 -71.4 -53.0 684.6 687.2 908.0 915.0 912.6 1004.9 0.0901 0.1410 24.272 4.418 21.033 3.980 52.43 917.8 66.29 21.033 963.8 53.44 588.7 525.3 518.5 864.2 857.9 632.7 856.3 0.2989 2.370 49.38 54.80 12.753 785.1 772.5 583.5 769.4 741.1 -68.6 -67.6 58.75 56.05 0.5086 0.6103 4.281 -0.187 45.14 548.4 744.1 754.7 -0.344 -1.459 41.92 504.5 488.4 470.5 487.1 738.9 743.0 743,7 740.4 545.4 -46.9 -46.2 55.88 0.6598 -2.814 -2.097 41.80 744.2 744.5 561.5 56.26 55.25 53.02 0.7107 0.8620 0.9101 0.9571 -5.076 -2.739 -11.115 -4.391 43.17 742.4 -66.9 744.7 745.5 577.2 44.43 729.3 -12.829 -4.986 -15.119 -5.527 735.4 551.0 727.4 -52.6 41.85 706.2 519.1 50.41 718.3 705.2 495.5 -37.938.97 WCORR NCORR TO/TO PO2/PO1 PO/PO WCORR EFF-AD EFF-P

STAGE

1.2498 0.9483 1.8373

STAGE

STAGE

×

76.04

STAGE

*

78.00

INLET

74.33

LBM/SEC KG/SEC

INLET

INLET

RPM

11845.20 163.90

RUN NO 111 SPEED CODE 95 POINT NO 4

	SI	V-1	V-2	VM-1	VM-2	V9-1	VD-2	U-1	U-2	V*-1	V1-2	19'-1	V11-2	PHOWA-	RHO	VM-2 E	PSI-1	EPSI-2	
		M/SEC		M/SEC	M/SEC							M/SEC		KG/H2 S				RADIAN	
	ž	136.1	303.3	135.1	181.3		243.1	270.5				-270.5	-70.9	128.27	231			0.5032	
	2	145.4	298.3		193.5			287.8				-237.8		135.96	251			0.4397	
	3	156.3	283.7	156.3	192.4	0.0	208.6					-304.8		143.04	252			0.3729	
	4	175.0	246.4	175.0	154.3	0.0	183.6	349.3	358.9	390.7	249.3	-349.3	-175.3	155.38	215	.28 0	1217	0.1929	
	5	179.2	225.5	179.2	149.9	0.0	168.5	393.8	394.7	437.2	271.3	-398.8	-226.2	157.94	194	.13 -0	0.9660	0.0174	
	6		216.8		141.1	0.0		421.1		457.4		-421.1		157.58	181			-0.0595	
	7		215.2		143.4			431.7		467.1				157.49				-0.0973	
	8		216.6			0.0				476.6				156.93	195			-0.1345	
	9	172.3			146.3		159.6					-473.3		153.69				-0.2495	
	10		206.0					483.0			Part 100 100 100 100 100 100 100 100 100 10	-483.0		152.36				-0.2869	
	11	168.5	200.6	168.5	122.1	0.0	159.2	492.2	475.4	520.2	338.9	-492.2	-316.2	151.25	157	.01 -0).3239	-0.3162	
	SL	B-1	B-2	B*-1	8'-2	M-1	11-2	M*-1	M* -2	INCS	INCM	DEV	TUPN	D FAC	OMEGA-B	L055-P	P02/	XEFF-A	XEFF-P
		DEGREE	DEGREE	DEGREE	DEGREE					DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	TOTAL	TOTAL
	1	0.0	52.9	63.01		0.4243	O 2201	0.9137	0.5550		2.02	9.14		0.5402	0.1444	0.0225	2.283	2 92.84	93.62
	Ž	0.0		62.25		0.4574				-0.88	2.83	2.55	36.51		0.0527	0.0105	2.289		
	3	0.0		62.67		0.4898					3.62	9.35		0.4871	0.0259	0.0051	2.216		
														0.5170	0.1144	0.0208	2.017		
	4	0.0	48.4	63.30		0.5521				1.39	3.68	11.26	16.23						
	5	0.0				0.5562					3.48		9.38		0.1735	0.0234	1.918		
	6	0.0	49.1			0.5642				1.83	3.57	9.86	6.82	0.4348	0.2037	0.0311	1.883		
	7	0.0	47.9	67.49		0.5632				2.05	3:72	8.58	6.52	0.4670	0.1950	0.0295	1.884		
	8	0.0	45.8	68.04	59.99	0.5605	0.6150	1.5946	0.8879	2.52	4.09	7.40	7.05	C.4444	G.1773	0.0270	1,900	3 79.53	81.56
	9	0.0	45.4	69.91	64.17	0.5429	0.5932	1.5871	0.9602	2.77	4.19	5.70	5.74	0.4181	0.1377	0.0260	1.895	1 77.50	79.42
	10	0.0	48.5	70.49	66.21	0.5360	0.5781	1.6124	0.9521	2.39	3.76	5.68	4.29	0.4397	0.2277	8890.0	1.883	1 72.95	75.23
	11	0.0	52.3	70.99		0.5303					3.29	6.11	2.27	0.4414			1.867	68.80	71.40
				,,,,,,		V. 00 J.	0.0071	24.00.7	2531.0			~~~		•••••	012000	0.0202			
	SL	V-1	V-2	VM-1	VM-2	VO-1	¥0-2	U-1	U-2	V*-1	W1 2	V9*-1	101-2	RHOVM-	ร อยุก	NN-S I	EPSI-1	EPSI-2	BET TE
																	DEGREE	DEGREE	
														LBWFT25				,	
		446.7		446.7						993.5				26.27				29.177	
	2		978.8				744.9	4				-944.3		27.85			24.344	25.195	
	3	512.7		512.7		0.0				1123.7				29.30				21.365	
	.4	574.3	808.4	574.3	539.2	0.0	602.3	1145.9	1177.4	1221.8	788.3	-1145.9	-575.0	31.82	44			11.050	
أأستر	41.40	588.1	739.9	588.1	491.7	0.0	552.9	1308.4	1295.0	1434.5	890.2	-1308.4	-742.1	32.35	39	.76 -	-3.783	0.999	0.5090
		555.2	711.2	585.2	463.1	0.0	539.8	1381.7	1353.8	1500.9	936.5	-1381.7	-814.0	32-27		.23 -	-7.407	-3.415	0.6000
		25.2	706.0	585.2	470.5	0.0				1532.6				32.24			-9.005	-5.577	0.6500
		32.5	710.8		492.6					1563.8				32.14				-7. 705	
			289.0	565.3	480.1					1652.6				31.47				-14.294	
																		-16.385	
		556.5		558.5		0.0				1680.1				31.20			20	,	
	11		658.2		400.5	0.0	522.3	1614.9		1706.9				_ 30,98	36	.16	8.335	-18.114	0.9500
		100000000000000000000000000000000000000	C1/A1	WC1/AI					- T	02/T01 F	U2/P91								
			.BM/SEC	KG/SEC								ROTO		R					
			SOFT	504								%	*						
			36.58	178.51						1.2588	1.9939	84.28	85.7	73					
1. 1.		1. 4 1. 4 1. 5																	

95 PERCENT DESIGN SPEED (STATOR PERFORMANCE)

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 111 SPEED CODE 95 POINT NO 4

SL	V-1	V-2	VM-1	VM-2	V)-1	V9-2	RHOVM-1	RHO	01/M-2	EPSI-1	EPSI-2					
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE	C KG/F	E SEC	RADIAN	RADIAN					
1	314.5	269.7	205.8	259.7	237.9	-3.0	254.59		0.10	0.4636						
2	308.6	270.4	213.2	270.3	223.2	-6.4	269.98		77	0.4128						
3	294.1	263.8	210.4	263.7	205.4	-7.8			.99		0.0643					
4	259.1	232.2	184.8	232.0	181.6	-10.2	235.90	306	5.35	0.2250	0.0337					
5	238.4	209.4	169.1	209.1	168.0	-10.7	213.78		5.57		-0.0091					
6	230.2	202.6	160.8	202.4	164.7	-9.0	202.05		64		-0.0302					
7	229.1	204.4	163.1	204.2	160.9	-9.0	205.70		7.26		-0.0302					
8	231.1	208.3	169.7	208.1	156.9	-8.6	215.29		2.63		-0.0509					
9	227.9	207.5	169.3	207.5	152.5	+	214.49									
10	226.4	205.0	162.3	205.0		-5.4			.95		-0.0783					
11	223.8	199.1			157.8	-3.1	203.18		2.04		-0.0881					
11	223.0	199.1	154.0	199.1	162.4	-3.6	190.51	246	5.60	-0.2658	-0.0968					
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B.	1.055_P	P02/	PO/PO	TO/TO	XEFF-A	ALLE D
	DEGREE	DEGREE			DEGREE	DEGREE		DEGREE	D 1110	TOTAL	TOTAL	P01	STAGE	STAGE		TOT-STG
1	51.2	-0.6	0.9181	0.7705	-3.26	-0.31	13.24	51.81	0.3134		0.0621	0.8867		1.2863	78.07	80.12
2	48.0	-1.3	0.9026		-4.45	-1.32	10.64	49.30	0.2927			0.9078	2.0758	1.2748	84.51	
3	45.6	-1.7	0.8596	0.7605	-6.17	-2.80	9.18	47.27	0.2711		0.0374	0.9400	2.0809	1.2598		96.00
4	45.0		0.7494	0.5645	-7.96	-3.71	7.50	47.52	0.2863		0.0374	0.9400			89.72	90.72
5	44.9	-2.9	0.6829	0.5935	-9.10	-3.75	7.14	47.79	0.3214					1.2474	87.00	88.18
6	45.7		0.6558		-8.12	-2.38					0.0086	0.9915	1.8979	1.2503	80.30	81.99
7	44.6	-2.5	0.6529	0.5777	-9.19	-3.31	7. 7. 64	48.23 47.12	0.3296				1.8677		76.75	78.69
8	42.8	-2.4	0.6596	0.5896	-11.02				0.3192			0.9925	1.8734	1.2537	77.48	79.37
9	42.2					-5.03	7.90	45.15	0.3057			0.9916	1.8860	1.2525	78.76	80.56
10	44.5	-0.9	0.6477 0.6395	0.5857	-13.70	-7.47	10.89	43.71	0.2988		0.0235	0.9807	1.8582	1.2591	74.79	76.87
11	47.0				-13.75	-7.51	12.92	45.37	0.3126		0.0329	0.9739		1.2725	69.44	71.91
111	47.0	-1.0	0.6285	0.5544	-16.59	-10.45	15.40	48.06	13.3414	0.1639	0.0503	0.9517	1.7952	1.2847	53.9	66.75
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	RHO	WM-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	C LBM/F	TZSEC	SPAN	DEGREE	DEGREE				
1	1032.0	884.9	675.2	884.9	780.5	-10.0	52.14			0.0430	26.562	4.838				
2	1012.6	887.1	699.5	886.9	732.2	-21.1	55.29			0.0901	23.653	4.244				
3	964.8	865.7	690.4	865.3	674.0	-25.5	55.28			0.1410	20.781	3.683				
4	850.1	762.0	606.4	761.2	595.8	-33.5	48.31			0.2989	12.893	1.929				
5	782.0	687.0	554.8	685.1	551.2	-35.1	43.78			0.5086	3.720	-0.520				
6	755.1	664.7	527.5	664.1	540.3	-29.6	41.38			0.6103	-1.083	-1.728				
7	751.8	670.8	535.3	670.1	527.8	-29.5	42.13			0.6593	-3.461					
8	758.4	683.4	556.9	682.8	514.8	-28.2	44.09			0.7107	-5.479	-2.917				
9	747.6	680.9	555.5	680.7	500.3	-17.6	43.93			0.8623						
10	742.7	672.7	532.6	672.6	517.6	-10.3	41.61				-11.094	-4.486			1,3	
11	734.4	653.2	505.3	653.1	533.0	-11.9	39.02				-12.886	-5.045				
4.1		N CORR	WCORR	WCORR	233.0	-11.9					-15.228	-5.546				
		INLET	INLET	INLET			TO/TO P	UZTYUL		EFF-AD						
			LBM/SEC	KG/SEC			STAGE		STAGE	STAGE	STAGE					
	7						7 2500	0.000	1 0000	***	* -					
	1	1843.10	102.00	73.92			1.2588	U.9083	1.9308	79.97	81.73					

RUN NO 111 SPEED CODE 95 POINT NO 2

```
SL V-1
              V-2
                   VM-I
                          VM-2
                                10-1
                                       V9-2
                                              U-1
                                                    U-2 V'-1 V'-2 VO'-1 VO'-2
      M/SEC
            M/SEC
                   M/SEC
                                M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC
                                                                                      RHOYM-1
                          M/SEC
                                                                                                PHOYM-2
                                                                                                          EPSI-1 EPSI-2
   1 135.2
            302.9
                   135.2
                         183.7
                                  0.0 240.9
                                                                                    K6/M2 SEC
                                             270.3
                                                                                              KG/M2 SEC
                                                   313.9 302.3 197.6 -270.3 -73.0
                                                                                                         RADIAN RADIAN
   2 145.2
            294.6
                  145.2 188.1
                                  0.0 226.8 287.7 322.8 322.2 211.2 -287.7 -96.1
                                                                                     127.79
                                                                                                234.36
                                                                                                         0.5112 0.5146
     154.9
            281.1
                                  0.0 210.3 304.6 331.8 341.7 222.5 -304.6 -121.4
                   154.9 185.5
                                                                                     135.37
                                                                                                243.51
                                                                                                         0.4229 0.4475
   4 174.0 248.2 174.0 164.6
                                  0.0 185.7 349.1 358.7 390.0 238.8 -349.1 -172.9
                                                                                     142.36
                                                                                                244.12
                                                                                                         0.3386 0.3792
   5 178.9
           226.5 178.9 149.6
                                 0.0 170.1 398.6 394.5 436.9 269.8 -393.6 -224.4
                                                                                     155.03
                                                                                                215.29
                                                                                                         0.1274 0.1948
            218.6 178.4 141.2
   6 178.4
                                 0.0 166.9 420.9 412.4 457.1 283.2 -420.9 -245.5
                                                                                     158.03
                                                                                                194.87
                                                                                                        -0.0638 0.0128
     178.1 217.3 178.1 143.3
                                 0.0 163.3 431.5 421.4 466.8 295.2 -431.5 -258.0
                                                                                     157.72
                                                                                               182.81
                                                                                                        -0.1285 -0.0594
   8 177.3 217.8 177.3 148.4
                                 0.0 159.5 442.1 439.3 476.3 308.8 -442.1 -270.9
                                                                                     157.53
                                                                                                        -0.1571 -0.0964
                                                                                               186.11
  9 172.2 212.5 172.2 146.5
                                 0.0 153.9 473.1 457.2 503.4 336.9 473.1 -303.3
                                                                                     157.05
                                                                                               193.81
                                                                                                        -0.1886 -0.1349
  10 170.1
           208.4 170.1 135.8
                                 0.0 158.1 482.7 466.2 511.8 336.7 -482.7 -308.1
                                                                                     153.83
                                                                                               192.53
                                                                                                        -0.2845 -0.2493
     168.3
           201.7 168.3 121.7
                                 0.0 160.8 491.9 475.1 520.0 337.1 -491.9 -314.3
                                                                                     152.57
                                                                                               177.06
                                                                                                        -0.3105 -0.2856
                                                                                     151.44
                                                                                               157.65
                                                                                                        -0.3239 -0.3158
 SL B-1
             B-2 B'-1 B'-2
                                M-1
                                       M-2 M'-1 M'-2 INCS
    DEGREE DEGREE DEGREE
                                                              INCM
                                                                        DEV TURN
                                                                                    D FAC OMEGA-B LOSS-P
                                                                                                           POZ/ XEFF-A XEFF-P
                                                         DEGREE DEGREE DEGREE
             52.4 63.14
                        21.46 0.4215 0.8904 0.9424 0.5744 -1.94
                                                                                           TOTAL
                                                                                                    TOTAL
                                                                                                           POI
                                                                                                                  TOTAL TOTAL
            50.4 63.00 27.10 0.4539 0.8562 1.0074 0.6138
                                                                 2.15
                                                                       9.52 41.67 0.5283
                                                                                           0.1331 0.025
                                                                                                          2.2784
                                                         -0.73
                                                                                                                  93.37 94.09
            48.7 62.87 33.27 0.4856 0.8163 1.0714 0.6462
                                                                 2.99
                                                                             35.90 0.5132 0.0858 0.017 2.2550
       0.0
                                                                       9.32
            48.7 63.44 46.64 0.5489 0.7141 1.2305 0.6370
                                                                                                                 95.09 95.61
                                                          0.43
                                                                      9.82 29.60 0.5034 0.0639 0.0123 2.1912 95.80 96.23
                                                                 3.31
       0.0
                                                          1.54
            48.6 65.82 56.25 0.5654 0.5458 1.3808 0.7691
                                                                 3.132
                                                                     10.84 16.80 0.5203 0.1185 0.0217 2.0319
       0.0
                                                         1.65
                                                                                                                 89.64 90.62
            49.5 66.99 59.87 0.5637 0.6199 1.4444 0.8029
                                                                 3 50
      0.0
                                                                      10.69
                                                                             9.57 0.4990 0.1749 0.0285
                                                                                                         1.9318
           48.4 67.51 60.69 0.5626 0.6157 1.4748 0.8364 46.7 68.06 60.97 0.5600 0.6175 1.5044 0.8756
                                                          1.85
                                                                                                                 82.11 83.69
       0.0
                                                                3.58
                                                                      9.58
                                                                             7.11 0.4908 0.2061 0.0317 1.9011 77.90 79.79
                                                          2.07
                                                                3.74
                                                                             6.82 0.4744 0.2003 0.0305 1.9029 78.04 79.92
      0.0
                                                                       8.31
                                                          2.54
                                                                4.10
      0.0
            46.0 69.91 63.89 0.5428 0.5996 1.5872 0.9507
                                                                       7.38
                                                                             7.09 0.4544 0.1865 0.0284 1.9149
                                                                                                                 79.10 30.91
                                                          2.77
 10
                                                                4.19
                 70.49 65.94 0.5359 0.5842 1.6125 0.9439
      0.0
            49.0
                                                                       5.42
                                                                             6.02 0.4257 0.1928 0.0269 1.9168 77.28 79.26
                                                         2.39
      0.0
                                                                3. 75
            52.6
                 71.00 68.67 0.5301 0.5518 1.6372 0.9391
                                                                       5.41
                                                                             4.55
                                                                                  0.4372 0.2305 0.0295 1.9047
                                                         1.96
                                                                                                                 73.01 75.33
                                                                3.29
                                                                       6.05
                                                                                   0.4456 0.2646 0.0299 1.8841 69.13
                                                                             2.34
    V-1
            Y-2
                 VM-1 VM-2
                              10-1 NO-2
                                            U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1
   FT/SEC LBM/FTZSEC DEGREE SPAN
                                                                                                       EPSI-1 EPSI-2 PCT TE
                                0.0 790.3 837.0 1029.8 991.7 648.4 -837.0 -239.5
    476.4 966.6 476.4 517.1
                                0.0 744.0 943.8 1059.2 1057.2 693.0 -943.8 -315.2 0.0 690.1 999.4 1088.6 1121.2 730.1 -999.4 -398.5
                                                                                    26.17
                                                                                               48.00
                                                                                                       29.291 29.487 0.0500
    508.2 922.3 508.2 611.8
                                                                                    27.72
                                                                                               49.89
                                                                                                       24.229 25.640 0.1000
    570.9
          814.3
                 570.9
                                0.0 609.4 1145.3 1176.8 1279.7 783.4-1145.3 -567.4
                       540.1
                                                                                    29.15
                                                                                               50.00
                                                                                                       19,490 21,725 0,1500
    587.0
          743.2
                587.0 491.0
                                0.0 557.9 1307.8 1294.3 1433.5 885.1-1307.8 -736.4
                                                                                    31.75
                                                                                                        7.298 11.163 0.3990
                                                                                               44.30
    585.3
          717.4
                 585.3 463.4
                                0.0 547.6 1381.0 1353.1 1499.9 929.2-1381.0 -805.5
                                                                                    32.37
                                                                                               39.91
                                                                                                       -3.653 1.077 0.5000
    584.3
          712.9 584.3 470.1
                                                                                    32.30
                                0.0 535.9 1415.8 1382.5 1531.6 968.4-1415.8 -846.6
                                                                                               37.44
                                                                                                       -7.361 -3.345 0.6000
   581.7 714.6 581.7 485.8
                                0.0 523.2 1450.5 1411.9 1562.8 1013.2-1450.5 -888.7
                                                                                    32.26
                                                                                               38.72
                                                                                                       -9.003 -5.525 0.6590
   564.9 697.1 564.9 480.6
                               0.0 504.9 1552.1 1500.1 1651.7 1105.2-1552.1 -995.2
                                                                                    32.17
                                                                                               39.69
                                                                                                      -10.809 -7.680 0.7000
   558.1 683.7 558.1 445.4
                               0.0 518.6 1583.8 1529.5 1679.3 1104.6-1583.8-1010.8
                                                                                    31.52
                                                                                               39.43
                                                                                                      -16.300 -14.286 0.8500
11 552.3 661.6 552.3
                               0.0 527.5 1614.1 1558.9 1706.0 1105.9-1614.1-1031.3
                       399.3
                                                                                    31.25
                                                                                               36.25
                                                                                                      -17.795 -15.362 0.9000
        WCI/AI
                WC1/AL
                                                                                    31.02
                                                                                               32.29
                                                                                                      -18.561 -18.092 0.9500
                                                     T02/T01 P02/P01 EFF-AD
        LBM/SEC KG/SEC
                                                                            EFF-P
         SOFT
                  SOM
                                                                      ROTOR
                                                                             ROTOR
         35.47
                177.96
                                                                               X
                                                     1.2621 2.0017
                                                                      83.73
```

95 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO III SPEED CODE 95 POINT NO 2 V-2 VM-I VM-Z 170-2 RHOWM-1 RHOVM-2 SL V-1 77-1 EPSI-1 EPSI-2 MISEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN PADIAN 2.4 313.6 262.2 206.7 262.2 235.8 256.54 323,62 0.4712 0.0342 252.3 207.5 262.3 223.1 -2.7262.08 332.28 304.6 0.4216 0.0740 333.76 291.1 257.3 204.5 257.1 207.2 -8.2 261.47 0.3567 0.0647 260.6 231.1 184.8 230.9 183.7 -10.2236.64 306.99 0.2206 0.0358 208.0 276.07 0.0651 -0.0070 239.2 208.2 168.7 169.5 -9.4 214.48 -7.9 202.4 231.8 202.5 160.7 167.1 203.05 256.49 -0.0175 -0.0284 -0.0586 -0.0389 268.93 7 231.0 204.4 162.9 204.2 163.8 -7.6 205.45 232.1 207.4 207.3 273.14 168.0 160.2 -6.5 213.88 -0.0949 -0.0495 230.1 207.3 169.4 207.2 155.8 -5.0215.72 268.27 -0.1954 -0.0775 228.5 204.6 162.5 204-6 160.6 -2-8 204.65 260.27 -0.2256 -0.0875 10 11 224.8 199.0 153.7 199.0 164.0 191.44 248.55 -0.2653 -0.0966 -1.7SL B-1 B-2 M-1 M-2 INCS INCM DEV TURN D-FAC ONEGA-8 LOSS-P P02/ P9/P0 כהעפד XEFF-A XEFF-P DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE P01 TOTAL TOTAL STAGE STAGE TOT-STG TOT-STG -3.531 50.9 0.5 0.9164 9.7478 -0.5814.37 50.41 0.3302 0.2277 0.0662 0.8793 2.0034 1.2842 77.30 79.39 0.7599 48.8 -0.6 0.8896 -3.58-0.4511.40 49.41 0.3083 0.2305 0.0540 2.0466 1.2755 82.49 0.9071 84.15 46.7 -1.8 0.8494 0.7391 -5.06 0.28932.0593 87.38 3 -1.699.05 48.50 0.1605 0.0384 0.9395 1.2625 45.3 -2.5 0.7536 0.6606 -7.65 -3.417.49 47.84 0.2976 0.0562 0.0167 0.9793 1.9871 1.2505 85.60 87.83 5 45.2 -2.6 0.6851 0.5895 -8.78 -3.427.49 47.78 0.3301 0.0408 0.0110 0.9391 1.9976 1.2529 90.20 81.91 45.1 -2.2 0.6604 0.5711 -7.70-1.957.87 48.34 0.3357 0.0374 0.0104 1.8824 1.2590 0.9905 76.53 78.52 45.2 -2.1 0.6579 0.5766 -8.64 -2.77 8.01 0.3265 77.03 47.29 0.0341 0.0095 0.9914 1_2000 1.2587 78.98 43.7 -1.8 0.5516 0.5860 -10.13-4.138.43 45.51 0.3143 0.0389 0.0112 0.9901 1,8973 1.2580 77.88 42.9 -1.4 0.6534 0.5839 -13.08-6.86 10.93 44.23 0.3107 0.0933 0.0279 0.9768 1.8721 1.2647 74.15 76.32 10 45.0 8.0-0.6450 0.5729 -13.26-7.02 13.02 45.77 0.3241 0.1233 0.0374 0.9699 1.8470 1.2775 69.08 71.61 11 47.4 -0.5 0.5309 0.5538 -16.25-10.1115.95 0.3440 0.1644 0.0504 0.9514 1.8105 1.2876 47.85 SL **V-1** V-2 VM-1 VM-2 VO-1 VO-2 RHOYM-I RHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBWFT2SEC LBW/FT2SEC SPAN DEGREE DEGREE 1008.8 869.3 678.3 860.2 773.6 7.9 52.54 66.28 0.0430 26.995 4.822 860.5 999.4 680.7 860.5 731.8 -8.8 53.68 68.05 0.0901 24.154 4.237 243.7 0.1410 955.2 844.1 671.0 679.8 -25.8 53.55 68.36 21.011 3.709 62.88 854.9 758.3 606.3 757.6 602.7 -33.5 48.47 0.2939 12.641 2.050 784.7 683.0 682.3 556.2 -30.743.93 56.54 0.5086 553.5 3.729 -0.402 -25.9 54.58 564.5 527.3 664.0 750.7 548.2 41.59 0.6103 -1.004 -1.526 758.0 670.5 670.0 537.4 -25.0 55.09 534.6 42.28 0.6598 -3.359 -2.231 761.7 680.5 551.2 620.2 525.7 -21.7 43.80 55.94 0.7107 -5.436 -2.842 680.1 679.9 511.1 54.94 0.8520 755.0 555.7 -16.544.18 -11.195 -4.440 10 749.7 671.4 533.7 671.3 527.0 -9.1 41.91 53.31 0.9101 -12.926 -5.015 652.9 652.9 -5.4 11 737.4 504.1 538.2 39.21 50.93 0.9571 -15.199 -5.537 NCORR WCORR MCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE STAGE LBM/SEC KG/SEC RPM * ×

1.2621 0.9663 1.9343

79.20

81.03

11844.60 162.50

73.70

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 95 POINT NO 5

				•													
SL	V-1	V-2	VM-1	VM-2	V9-1	V9-2	U-1	U-2	V*-1	V'-2	ו-ימי	VO 1-2	PHOVM-1	PHOWM-2	FP\$1-1	EPSI-2	
	M/SEC	M/SEC	M/SEC	M/SEC			M/SEC						KG/M2 SE				
1	132.6	300.3	132.6			244.5					-270.5	-69.6	126.55	229.88		0.5095	
	142.4		142.4			228.9			321.2		-287-9		134.13	238.26	A 14	0.4371	
3	152.1			187.5		214.7					-304.8		141.24	255.41	0.3400		
		247.2		153.2		194.0			383.5		-349.3		153.47	207.53		0.1916	
	174.1		174.1			182.2			435.2		-398.9		156.05	187.59	-0.0611		
	174.2		174.2			180.7					-421.2		156.09	184.40	-0.1240		
	174.0		174.0			178.3			465.6		-431.8		155.99	189.88	-0.1548		
		227.0				175.7					-442.4		155.52	195.10	-0.1885		
9	168.2		168.2			172.0					-473.4		152.28	187.50	-0.2845		
10	166.3		165.3			175.8			510.9		-483.1		151.01	173.03	-0.3089		
ĩĩ		214.9			0.0		492.3				-492.3		149.92	158.33	-0.3218		
**	10120	41712	10710		0.0	1.7523	736.3	72,0.0	313.1	Dru-T	-+36-0	~233.0	473.76	230+33	-0.2610	-0-3134	
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEY	TURN	n Far n	MEGA-B LOSS	-P P02/	YEFF_A	XEFF-P
		DECREE			***	** **	**				DEGREE			TOTAL TOT		************	TOTAL
1	0.0	54.1	63.50		0.4129	0.2694	0. 9379	0.5437	-1.48	2.52			0.5617				
· 2	0.0		63.48		0.4445				-0.24	3.47				0.0646 0.01			
3	0.0	49.0			0.4760				0.87	4.26	8.59	31.18		0.0012 -0.00			
4	0.0	51.9			0.5352				2.05	4.33	11.52	16.63		0.1203 0.02			
5	0.0		66.41		0.5487				2.24	4.09	11.14	9.70		0.1819 0.02			
6	0.0	52.6	67.48		0.5489				2.35	4.08	8.92				22 2.019		
7	0.0	51.5			0.5484				2.54	4.22	7.33	8.27		0.2008 0.03			
8	0.0	50.3	68.53		0.5459				3.01	4.57	6.55	8.28		0.1952 0.03			
9	0.0	51.0	70.35		0.5291				3.21	4.63	5.40			0.2176 0.03			
10	0.0	53.8		65 00	0.5226	n soso	1 6750	0.0031	2.80	4.17	5.38	5.00		0.2510 0.03			
11	0.0	56.6	71.39	68 14	0.5172	0.5030	1 2500	0.0760	2.35	3.58	5.53	3.25		0.2794 0.03			
11	0.0	30.0	71.00	00.14	N. JI IL	9. JJL4	110303	0.0703	E-143	3.05	5.55	2.53	0.4324	0.2174 0.03	23 2.032	3 /0.03	#£=09
SL	V-1	¥-2	VP-1	VM-2	VO-1	V0-2	- !J-1	U-2	V'-1	V*-2	VO '-1	¥01-2	RHOYM-1	RHOVM-2	EPSI-1	EPSI-2	PIT TF
								FT/SEC						C LBM/FT2SEC		DEGREE	
1	435.2			572.4	0.0	802.1	237.6	1930.6	988.6	616.3	-837.6	-228.4	25.92	47.08	29.333	29.135	
2	467.3	951.3	467.3	584.1	0.0				1053.8		-944.5		27.47	48.80	24.363	25.046	
	499.0		499.0	615.1							-1000.1		28.93	52.31	19.482	21.168	
4	557.9	811.0	557.9	502.5	0.0						1146.2		31.43	42.50	6.714	10.979	
5	571.2	752.5	571.2		0.0				1427.9		-1308.7		31.96	39.44	-3.499	1.053	
6	571.4	744.1		449.6	0.0				1495.4		1382.0		31.97	37.77	-7.105	-3.302	
7	570.9	745.0	570.9		0.0				1527.5		-1416.8		31.95	38.89	-8.268	-5.455	
8	568.4	744.5	568.4		0.0						1451.5		31.85	39.95		-7.602	
ğ	551.8	724.4	551.8		0.0						1553.2		31.19	38.40	-16.299		
10	545.5	715.9	545.5		0.0						1584.9		30.93	35.44	-17.699		
11	540.1		540.1								-1615.2		30.70	32.43	-18.437		
**		C1/A1	WC1/AI											25.42	-10,431	-IU-UIC 1	W. J.
		BM/SEC	KG/SEC					**	TO FULL	ULJ LUI	ROTOR						
		SOFT	SOM	•							NO LON	. ROSE. X					
		35.84	174.89					1	2803	2 1012	84.35		Q.				
			A - T - 133							E	(J. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	· CAPAC					

RUN NO 111 PEED CODE 95 POINT NO 5 95 PERCENT DESIGN SPEED (STATOR PERFORMANCE) V0-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 VM-1 VM-2 VO-1 V-2 M/SEC RADIAN RADIAN M/SEC M/SEC KG/M2 SEC KG/M2 SEC M/SEC M/SEC M/SEC 2.3 252.90 337.13 0.4624 0.0837 309.6 245.7 196.6 245.6 239.2 -2.1 257.60 0.4075 0.0731 224.9 337.60 241.C 196.7 241.0 298.8 0.3562 0.0648 330 46 271.77 293.5 232.5 203.6 232.4 211.4 -7.5 191.9 -8.8 227.97 8ء.∹ئ 0.2274 0.0394 203.1 257.5 203.2 171.8 207.24 0.0619 -0.0029 -7.6 265.18 240.1 185.9 157.0 185.8 181.7 203.83 209.26 -6.2 -5.6 184.5 184.4 181.0 262.05 -0.0200 -0.0240 154.7 238.0 -0.0578 -0.0344 267.14 178.9 238.8 188.1 158.3 188.0 -0.0909 -0.0451 239.5 192.1 161.7 192.1 176.6 4.9 214.51 272.72 -0.1911 -0.0746 211.10 159.5 193.2 174.7 -3.1 269.42 236.6 193.2 -0.2243 -0.0850 179.6 200.94 264.65 10 236.2 192.6 153.3 192.6 -1.2 -0.2660 -0.0951 191.45 259.30 183.6 -1.011 235.3 191.6 147.2 191.6 INCS INCM DEV TURN D-FAC OMEGA-B LOSS-P P02/ PO/PO TO/TO %EFF-A %EFF-P SL B-1 B-2 M-1M - 2STAGE TOT-STG TOT-STG STAGE DEGREE DEGREE DEGREE TOTAL TOTAL P01 DEGREE DEGREE DEGREE 84.74 2,1436 1.2874 86.28 0.6942 -1.861.10 14.37 52.08 0.3758 0.1896 0.0437 0.9226 52.6 0.5 0.9004 0.3656 0.9399 2.1543 1.2764 88.75 89.89 0.1550 0.0363 50.4 -0.5 0.8683 0.6830 -2.02 1.11 11.49 50.88 91.84 -4.49 -1.11 9.03 49.11 0.3808 0.1732 0.0414 0.9345 2.1396 1.2671 90.93 47.3 -1.8 0.8545 0.6595 3 0.9813 2.0507 1.2614 87.20 88.42 -4.28 -0.037.54 51.16 0.4048 0.0613 0.0155 48.7 -2.5 0.7395 0.5721 82.74 0.0336 0.9910 2,0004 1.2707 80.99 4.75 0.60 7.71 51.57 0.4384 0.0091 49.2 -2.4 0.6821 0.5186 0.4449 0.0503 0.0140 0.9868 1.9933 1.2804 77.73 79.77 0.5123 -4.33 1.41 8.19 51.39 49.5 -1.90.6729 80.01 1.2823 -5.29 0.58 8.44 50.21 0.4323 0.0501 0.0142 0.9868 2.0057 0.6747 0.5225 48.5 -1.72.0187 1.2840 78.29 80.31 -1.5 0.5339 -6.26 -0.278.80 49.01 0.4168 0.0454 0.0130 0.9880 47.5 0.6761 74.10 76.48 0.9802 2.0019 1.2961 0.6638 -1.8911.43 48.75 0.4108 0.0775 0.0232 0.5345 -8.11 47.8 -0.9 72.90 0.0981 0.0297 1.9874 1.3090 70.20 0.5299 -8.41 -2.1713.42 50.21 0.4191 0.9752 10 49.8 -0.4 0.6588 0.9694 1.9702 1.3210 -11.86 -5.72 0.4298 0.1226 0.0376 66.62 51.8 0.6532 0.5245 16.12 52.07 -0.3 11 EPSI-1 EPSI-2 V0-2 RHOVM-1 RHOVM-2 PCT TE SL V-1 V-2 VM-1 VM-2 VO-1 SPAN DEGREE DEGREE FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC FT/SEC FT/SEC FT/SEC 4.793 7.5 0.0430 26.491 806.0 644.9 806.0 784.7 51.80 69.05 1015.8 0.0901 23.348 4.191 -6.769.14 980.3 790.7 645.4 790.7 737.8 52.76 3.714 -24.6 -28.8 762.5 693.4 55.66 67.68 0.1410 20.410 762.9 963.0 668.2 0.2989 2.256 -0.165 13.029 46.69 59.86 666.2 629.5 844.9 666.8 563.6 3.544 0.5086 610.1 609.6 596.0 -25.142.44 54.52 787.7 515.0 -20.2 -1.147-1.375 41.75 53.67 0.6103 593.7 781.0 605.3 507.4 605.0 -1.970-3.312 617.1 519.3 616.9 586.9 -18.442.85 54.71 0.6598 783.6 0.7107 0.8620 -16.1 43.93 -5.208 -2.585 579.5 55.85 630.3 530.6 630.1 785.7 -10.949 -4.274 55.18 776.3 634.0 523.4 633.9 573.3 -10.343.24 41.15 54.20 0.9101 -12.851 -4.871632.0 4.0 774.8 632.0 502.9 589.4 10 -15.241 628.6 628.6 602.3 -3.4 39.21 53.11 0.9571 11 772.1 483.1 WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P **NCORR** STAGE STAGE STAGE STAGE INLET INLET INLET LBM/SEC KG/SEC RPM 11842.00 159.70 72.43 1.2803 0.9708 2.0400 80.63 82.46

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 95 POINT NO 3

SL	V-1	V-2	VM-I	VM-2	VO−1	VO-2	U-1	U-2	V'-1	V*2	- W'-1	V9 '-2	RHOVM-	I RHO	NY-2	EPSI-1	EPSI-2	
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SI	EC KG/M	2 SEC	RADIAN	RADIAN	
1	129.5	302.1		176.4	0.0		270.5	314.0			-270.5	-63.3	124.63	233		0.5095	0.5188	
2	139.1	289.4		177.3	0.0	Anna and and		,			-287.8	-94.3	132.18	238		0.4208	0.4530	
											-304.7		139.16				0.3835	
3	148.3		148.3		0.0		394.7											
4	165.4		165.4		0.0			358.8			-349.2		151.84		.77		0.1958	
5	172.0					187.6			434.3		-393.8		155.47			-0.0575		
6	172.2	231.0	172.2	136.2		185.6					-421.1		155.53	185		-0.1243		
7	172.0	231.5	172.0	139.6	0.0	184.8	431.7	421.6	454.7	274.9	-431.7	-236.8	155.47	191	.30	-0.1563	-0.0950	
8	171.2	231 0	171.2	142 0	0.0	182.2	442 3	430.5	474.3	286.0	-442.3	-248.3	154.95	195	.30	-0.1900	-0.1336	
g	166.3		166.3	135.2	0.0	-1 1	473.3		501.6		-473.3		151.73			-0.2837		
	164.4	223.4		126.0		184.4					-482.9		150.48	173		-0.3080		
10													149.38			-0.3219		
11	162.8	220.7	162.8	110.0	0.0	187.4	492.2	4/5.3	518.4	310.7	-492.2	-266.0	149.30	103	. 39	-0.3219	-0.3132	
					·										* 000			
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEA	TURK	D FAC				%EFF-A	
	DEGREE	DEGREE	DEGREE							DEGREE	DEGREE	DEGREE		TOTAL	TOTA			TOTAL
1	0.0	54.0	64.11	21.13	0.4029	0.8753	0.9331	0.5486	-0.97	3.12	9.19	42.93	0.5555	0.1000	0.019	7 2.341	2 95.17	95.71
2	0.0	52.4	63.97	28.11	0.4338	0.8375	0.9971	0.5810	0.25	3.96	10.32	35.87	0.5431	0.0679	0.013	3 2.227	8 95.20	95.61
3	0.0	51.0	63.86	33.56	0.4638	0.8059	1.0599	0.6096	1.42	4.80	10.11	30.30	0.5358	0.0529	0.010	3 2.245	7 96.59	96.95
4	0.0	52.9				0.7104			2.55	4.83		17.34		0.1317				
5	0.0	53.6				0.6583			2.48	4.34	10.56	10.43	0.5536			2.059		
	0.0	53.6				0.6490			2.57	4.30		9.00	0.5431	0.2089	0.033			4
6																		
7	0.0					0.6501			2.77	4.44	6.21	9.02		0.2064	0.032			
8	0.0	51.7				0.6475			3.24	4.80	6.32	8.84				9 2.089		
9	0.0	52.8	70.55			0.6257			3.49	4.83	5.19	5.83		0.2295	0.032			
10	0.0	55.3	71.09	65.64	0.5157	0.6173	1.6034	0.8535	2.99	4.36	5.11					7 2.093		
11	0.0	57.9	71.59	67.77	0.5113	0.6066	1.6284	0.8540	2.54	3.88	5.16	3.81	0.5194	0.2862	0.033	5 2.091	4 70.21	73.09
SL	V-1	V-2	VX-1	VY-2	V0-1	V9-2	U-1	U-2	V'-1	Y'-2	10'-1	V9 *-2	PHOVM-	1 PHO	NY-2	EPSI-1	EPSI-2	PCT TE
	FT/SFC	FT /SEC		FT /SEC						FT/SFC	FT/SEC	FT /SEC	LBM/FT2S	EC IBM/F	TZSEC	DEGREE	DEGREE	
	424.9	991.2		578.9	0.0						-887.4		25.53		-89	29.197	29.722	
2	456.3	949.4		- /	0.0				1048.7		-944.3		27.07		.81	24.111	25.955	
3	486.6		426.6								-999.9		28.50		.06	19.392	21.971	
							1145.9				-1145.9		31.10		.14	7.318	11.217	
4	546.1	816.2		494.5	0.0													
5	564.4	764.6	554.4			515.6					-1308.4		31.84		.64	-3.297	1.189	
5	565.0	757.8		446.8	0.0				1492.7		-1381.6		31.86		.05	-7.122	-3.232	
7	564.4	760.0	564.4	458.2	0.0						-1416.4		31.84		.18	-8.954	-5.444	
8	561.8	757.9	561.8		0.0						-1451.2		31.74			-10.888	-7.655	
9	545.5	739.5	545.5	443.5	0.0	591.8	1552.8	1500.8	1645.8	1011.4	-1552.8	-909.0	31.08	38	.19	-16.258	-14.332	0.8500
10	539.4	732.9		413.5	0.0						-1584.5		30.82	35	.43	-17.648	-16.348	0.9900
îi		724.1		382.7	0.0						-1614.8		30.59		-68	-18.441	-13.057	0.9500
		C1/A1	WC1/AI								EFF-AD							
		BM/SEC	KG/SEC							J., . U.	ROTOR							
			SOM	•				#			**	, warn	•					
		SQFT		,					1.2884	7 1200	83.56		n ' ' '					
		35.44	172.92	•					1.4004	C-1200	03.30	03.2	U					

95 PERCENT DESIGN SPEED (STATOR PERFORMANCE) PUN NO 111 CREED CODE 95 POINT NO 3 Y-1 ¥-2 VY-I VY-2 M-I 97-2 PHYTHE INTERES EPSI-1 EPSI-2 K/SEC M/SEC M/SES 245.2 MICEC MICES MICEC KS/KZ SEC YG/YZ DEC PADIAN PAGNAN 319.7 235.2 197.1 235.2 2.5 255.E3 334.38 0.4755 0.0815 297.4 229.2 194.5 229.2 225.9 -1.8 255.47 332.22 0.4263 0.0793 285.7 220.4 192.2 220.3 217.8 -7.4 256.49 323.45 0.3589 0.6622 253.4 193.3 163.8 133.2 195.7 -8-0 225.95 285.01 0.2168 0.0384 243.1 179.4 155.2 179.3 187.1 -5.1207.25 253.95 0.5597 -0.9016 241.5 178.8 153.2 173.7 185.8 -4.7 204.95 -0.5193 -9.0221 269.87 242.8 132.5 155.8 182.5 125.4 219.49 4.2 266.04 -0.5554 -0.0322 242.2 185.3 159.5 186.2 183.2 -3.4 214.59 -0.0902 -0.0428 271.31 249.7 123.0 155.7 129.0 182.7 -2.1 210.27 270.42 -9.1935 -9.0727 İŒ 249.7 129.4 151.0 183.4 187.5 0.2 259.94 267.23 --0.2257 -9.0836 249.4 190.4 145.8 190.4 191.2 1 1 192.59 254.93 -9.2555 -9.8945 8-1 3-2 M-1 1-2 MES THOM CEY TURN D-FAC OMEGA-3 LOSS-P PS2/ PO /PO פד/כד MEFF-A MEFF-P DEGPEE DEGREE DECREE DEGPEE DEGREE DEGREE TOTAL TOTAL P31 STATE STATE TOT-STG TOT-STG 52.8 0.5 0.9940 0.5519 52.20 0.4129 0.1783 0.0411 -1.631.32 14.43 9.9267 2.1698 1.2590 25.70 51.0 -0.4 0.8640 0.5458 11.53 -1.451.67 51.40 0.4023 0.1316 0.0309 0.9493 2.1711 1.2773 49.3 -1.9 0.8317 0.6222 8.95 7.54 -2-51 0.85 51.14 0.4100 0.1107 0.0254 0.9597 2.1541 1.2593 91.08 49.7 -2.4 0.7411 0.5416 0.35 -3.39 52.04 0.4495 0.0542 0.0137 0.9834 2.0745 1.2563 85.95 59.4 -1.9 0.58340.4982 -3.611.74 2.13 52.29 0.4764 0.0397 0.0197 0.3892 2.0374 1.27% 59.6 -1.5 0.5816 0.4941 -3.15 2.58 8.58 52.15 0.4818 0.6585 0.3944 0.51632-0337 1.2232 77.77 -1.3 0.5542 0.5142 49.8 -4.92 1.25 8.84 51.09 0.4702 0.0505 0.0171 0.9837 2.5455 1.2925 77.65 49.0 -1-0 0.5538 0.5147 -4.83 1.17 9.21 50.03 0.4559 0.0559 9.0158 0.9252 2.5534 1.2945 77.92 49.5 -0.6 0.6728 0.5197 -5.32 -0.10 11.72 50.24 0.4455 0.0316 0.0244 9.9786 2.9495 1.3523 73.59 75.99 10 51.5 0.1 0.6693 0.5182 -5.78 -3.58 13.85 51.49 9.4512 0.0992 o.ceci 0.9743 2.0395 1-3221 79.16 11 53.2 0.3 0.6552 0.5185 -10.45-4.32 52.83 0.4539 0.1132 16.77 9-9347 0.9709 2.0305 1.3342 67.13 70.19 1-1 4-2 VM-I 111-2 99-1 **177-2** PHS/M-I PHOYE-2 PUT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FIT/SEC FT/SEC FT/SEC FT/SEC LEN/FTZSEC LEN/FTZSEC PAN DEGREE DEGREE 1019.4 771.7 545.7 771.7 728.0 8.5 52.34 63,48 9.0439 27.243 4.672 975.7 752.0 633.1 752.0 738.2 -5.9 52.53 53.04 0.0901 24,424 4.023 349.2 723.2 635.6 722.8 52.53 593.I -24.1 66.25 0.1410 21.138 3,551 843.0 634.4 553.9 633.8 542.1 -25.3 46.28 58.58 0.2939 12.424 2,201 797.7 582.7 509.4 4.583 613.9 -19.9 42.57 54.05 3.419 -0.091 0.5035 792.8 585.6 502.7 586.4 513.9 -15.5 41.93 53.43 9.5IN -1.195 -1.254 593.8 795.5 514.5 598.7 £08.2 -13.7 43.03 54.49 0.6533 -3.233 -1.545 795.8 611.I 523.2 611.0 E111.19 -11.2 43.95 55.57 0.7107 -5.158 -2.453 789.6 620.2 514.1 520.2 599.3 -5.9 43.97 55.33 0.8620 -11.094 -4.163 10 789.9 621.5 495.5 621.5 515.1 0.2 41.15 54.74 0.9101 -12.931 -4-727 722.2 624.6 472.3 624.5 627.2 39.45 54.27 0.9571 -15.214 -5.415 NCOP2 WCOP? MODER TD/TD P02/P01 P0/P0 EFF-AD EFF-P IMET THEET MET STAGE STAGE STAGE STAGE LEK/SEC KG/SEC 1.2284 0.9745 2.0742 1 7 11843.90 157.90 71.61 80.33

537.3

533.0

6 537.3

788.5 537.3 437.9

789.8 537.3 436.1

787.9 533.0 441.9

536.1 792.2 536.1 442.1

517.6 766.9 517.6 414.2

10 512.1 761.2 512.1 392.5

```
95 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
                                                                                                   RUN NO 111 SPEED CODE 95 POINT NO 6
                 V-2 VM-1 VM-2
                                                        V3-2
                                                                   U-1
                                                                             U-2 V'-1 V'-2 VO'-1 VO'-2
                                              VO-1
                                                                                                                                               PHOVM-2
                                                                                                                               RHOVM-1
                                                                                                                                                             EPSI-1 EPSI-2
      M/SEC 
                                                                                                                                                            RADIAN PADIAN
               301.7 123.8 171.4
                                                0.0 248.2 270.5
                                                                          314.0 297.4 183.6 -270.5 -65.8
                                                                                                                               121.81
                                                                                                                                               232.17
                                                                                                                                                             0.5080 0.5221
 2 132.7 290.6 132.7 172.8
                                                0.0 233.6 287.8 323.0 316.9 194.6 -287.8 -89.4
                                                                                                                               129.18
                                                                                                                                               237.54
                                                                                                                                                             0.4178 0.4576
 3 141.2 277.8 141.2 166.2
                                                0.0 222.5
                                                                 304.7 331.9 335.9 198.9 -304.7 -109.3
                                                                                                                               135.91
                                                                                                                                               230.08
                                                                                                                                                             0.3339 0.3863
  4 158.0 251.3 158.0 142.5
                                                0.0 207.0 349.2 358.8 383.3 208.2 -349.2 -151.8
                                                                                                                               148.37
                                                                                                                                              199.02
                                                                                                                                                             0.1293 0.1956
                                                0.0 199.9 398.7 394.7 431.1 236.1 -398.7 -194.8
  5 163.8 240.3 163.8 133.5
                                                                                                                               152.35
                                                                                                                                              187.29
                                                                                                                                                           -0.0589 0.0208
                                               0.0 200.7 421.1 412.6 451.8 250.1 -421.1 -211.9
 6 163.8 240.7 163.8 132.9
                                                                                                                               152.37
                                                                                                                                              186.65
                                                                                                                                                            -0.1297 -0.0573
     163.4 241.4 163.4 134.7
                                               0.0 200.3 431.7 421.5 461.6 259.0 -431.7 -221.2
                                                                                                                               152.11
                                                                                                                                              189.63
                                                                                                                                                           -0.1639 -0.0966
 8 162.4 240.1 162.4 134.7
                                                0.0 193.8 442.3 430.5 471.2 268.0 -442.3 -231.7
                                                                                                                               151.46
                                                                                                                                              190.08
                                                                                                                                                           -0.1965 -0.1356
    157.7
               233.7 157.7 125.2
                                                0.0 196.7 473.2 457.4 498.8 289.6 -473.2 -260.7
                                                                                                                               148.17
                                                                                                                                              178.91
                                                                                                                                                           -0.2844 -0.2512
10 156.1 232.0 156.1 119.6
                                                0.0 198.8 482.9 466.3 507.5 293.1 -482.9 -267.6
                                                                                                                               146.98
                                                                                                                                                           -9.3974 -0.2856
                                                                                                                                               169.32
11 154.6
               229.4 154.6 111.5
                                                       200.5 492.1 475.3 515.8 296.6 -492.1 -274.8
                                                0.0
                                                                                                                               145.91
                                                                                                                                               157.64
                                                                                                                                                           -0.3216 -0.3151
                 B-2
                        B'-1 B'-2
                                               M-1
                                                         M-2
                                                                 M'-1 M'-2
S_ B-1
                                                                                     INCS
                                                                                                INCM
                                                                                                           DEV TURN
                                                                                                                              D FAC OMEGA-B LOSS-P
                                                                                                                                                                 PO2/ ZEFF-A ZEFF-P
    DEGREE DEGREE DEGREE
                                                                                    DEGREE DEGREE DEGREE
                                                                                                                                         TOTAL
                                                                                                                                                     TOTAL
                                                                                                                                                                POI
                                                                                                                                                                           TOTAL TOTAL
                 55.2 65.09 20.86 0.3845 0.8724 0.9242 0.5309 0.01
                                                                                               4.11
                                                                                                           8.92 44.23
                                                                                                                             0.5736 0.1078
                                                                                                                                                   0.0213 2.3577 94.91 95.48
                                   27.50 0.4133 0.8393 0.9869 0.5620
                 53.7 64.98
                                                                                      1.25
                                                                                               4.97
                                                                                                           9.71
                                                                                                                   37.48
                                                                                                                             0.5619 0.0764
                                                                                                                                                   0.0151
                                                                                                                                                               2.3169 95.81 96.23
                 53.5 64.92 33.59 0.4408 0.7997 1.0483 0.5726
                                                                                     2.48
                                                                                               5.87 10.14 31.33
                                                                                                                            0.5724 0.0895
                                                                                                                                                               2.2577 94.44 95.03
                                                                                                                                                    0.0175
                 55.7 65.59 47.05 0.4957 0.7146 1.2023 0.5922
                                                                                      3.69
                                                                                               5.97 11.25 18.54 0.6042
                                                                                                                                       0.1564 0.0284
                                                                                                                                                               2.1520 87.82 89.05
                56.2 67.66 55.53 0.5146 0.6756 1.3545 0.6638
 5
                                                                                      3.49
                                                                                               5.34
                                                                                                          9.96
                                                                                                                  12.13 0.5880 0.2041 0.0342
                                                                                                                                                               2.1380 81.90 83.71
        0.0
                56.3 68.71 57.67 0.5146 0.6726 1.4197 0.6989
                                                                                       3.57
                                                                                                5.30
                                                                                                          7.38
                                                                                                                   11.03
                                                                                                                             0.5800 0.2274 0.0373
                                                                                                                                                               2.1593 79.18 81.29
                 55.8 69.23 58.37 0.5133 0.6731 1.4502 0.7221
                                                                                       3.78
                                                                                               5.46
                                                                                                          5.99
                                                                                                                   10.25
                                                                                                                            0.5713 0.2318 0.0378
                                                                                                                                                               2.1758 78.47 80.66
        0.0
                 55.5 69.78 59.51 0.5102 0.6680 1.4799 0.7455
                                                                                      4.25
                                                                                                5.82
                                                                                                           5.91
                                                                                                                   10.27
                                                                                                                             0.5613 0.2355 0.0375
                                                                                                                                                               2.1818 77.72 86.01
        0.0
                 56.9 71.48 63.84 0.4947 0.6444 1.5645 0.7985
                                                                                      4.33
                                                                                               5.76
                                                                                                          5.37
                                                                                                                    7.64 0.5417 0.2620 0.0367
                                                                                                                                                               2.1866
                                                                                                                                                                          74.18 76.82
                 58.6 71.98 65.63 0.4893 0.6366 1.5909 0.8043
                                                                                       3.88 5.25
                                                                                                                    6.35 0.5428 0.2817 0.0365 2.1902 72.17 75.02
        0.0
                                                                                                           5.10
                 60.7 72.45 67.74 0.4843 0.6265 1.6163 0.8100
                                                                                      3.41
                                                                                               4.74
                                                                                                           5.13
                                                                                                                   4.71 0.5431 0.3010 0.0354 2.1905 70.22 73.27
SL V-1
                V-2
                         VM-1
                                   VM-2
                                                       V0-2
                                                                   U-1
                                                                            U-2 V'-1 V'-2 V9'-1 V0'-2 RHOYM-1
                                             VO-1
                                                                                                                                               PHOVM-2
                                                                                                                                                             EPSI-1 EPSI-2 PCT TE
    FT/SEC LBM/FT2SEC DEGREE DEGREE SPAN
 1 406.1 989.8 406.1 562.4
                                                0.0 814.5 887.3 1030.2 975.9 602.4 -887.3 -215.7
                                                                                                                              24.95
                                                                                                                                            47.55
                                                                                                                                                            29.108 29.915 0.0500
                                               0.0 766.4 944.2 1059.6 1039.8 638.4 -944.2 -293.2
     435.5
               953.4 435.5 567.1
                                                                                                                               26.46
                                                                                                                                               48.65
                                                                                                                                                            23.937 26.217 0.1000
                                                                                                                                           47.12
                                               0.0 730.5 999.8 1089.0 1101.9 652.6 -999.8 -358.5
 3 463.4
               911.6 463.4 545.3
                                                                                                                               27.83
                                                                                                                                                            19.129 22.136 0.1599
                                               0.0 679.1 1145.8 1177.3 1257.6 683.2-1145.8 -498.2
     518.5 824.5 518.5 467.5
                                                                                                                               30.39
                                                                                                                                               40.76
                                                                                                                                                             7.410 11.210 0.3009
```

0.0 655.8 1308.3 1294.9 1414.3 774.7-1308.3 -639.1

0.0 658.5 1381.5 1353.7 1482.3 820.6-1381.5 -695.2

0.0 657.3 1416.3 1383.1 1514.4 849.8-1416.3 -725.7

0.0 652.3 1451.1 1412.4 1545.9 879.2-1451.1 -760.1

0.0 645.4 1552.7 1500.7 1636.7 950.3-1552.7 -855.3

0.0 652.2 1584.4 1530.1 1665.1 961.7-1584.4 -877.9

31.21

31,21

31.15

31.02

30.35

30.10

29.88

38.36

38.23

38.85

38.93

36.54

34.68

32.29

-3.372 1.191 0.5000

-7.433 -3.284 0.6090

-9.340 -5.533 0.6590

-11.258 -7.770 0.7000

-16.297 -14.392 0.2500

-17.615 -16.366 0.9000

-18.427 -18.055 0.9500

11 507.2 752.6 507.2 365.8 0.0 657.7 1614.7 1559.5 1692.5 973.1-1614.7 -901.7 WC1/A1 WC1/A1 T02/T01 P02/P01 EFF-AD EFF-P LBM/SEC KG/SEC ROTOR ROTOR SOFT Som % 34.11 166.45 1.3063 2.1940 B2.19 84.03

95 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN HO 111 SPEED CODE 95 POINT HO 6 51 V-1 **V-2** 111-1 VM-2 PHOVM-1 **W**-1 **VD-2** PHOVY-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/KZ SEC KG/M2 SEC PADIAN PADIAN 243.1 308.6 214.0 190.0 214.0 0.0 252.94 323.79 0.4797 0.0319 297.0 207.1 188.3 229.8 254.92 318.69 207.1 0.0 0.4324 0.0719 246.69 284.1 193.9 180.7 198.9 219.2 0.0 398.51 0.3727 0.0653 259.2 174.8 159.0 174.8 204.7 0.0 218.51 272.54 0.2137 0.0448 248.8 165.7 149.0 155.7 205.64 199.3 0.0 253.01 0.0524 0.0050 269.13 249.9 169.4 148.4 169.4 201.0 0.0 204.83 -0.0123 -0.0146 173.5 251.1 173.5 150.6 201.0 0.0 208.06 265.50 -0.0482 -9.0253 250.6 176.5 151.1 176.5 199.9 209.10 0.0 259.53 -0.0224 -0.0367 247.4 178.2 146.8 178.2 199.2 202.82 0.0 267.31 -0.1927 -0.0695 10 247.6 179.4 143.1 179.4 202.0 195.86 0.0 265.34 -0.2258 -0.0812 247.1 182.1 138.7 182.1 204.5 0.0 189.89 267.45 -0.2653 -0.0934 3-1 SL B-2 M-1 M-2 INCS INCM DEV TURY D-FAC OMEGA-8 LOSS-P P02/ P0/P0 TO/TO XEFF-A XEFF-P DECREE DEGREE DEGREE DEGREE DEGPEE DEGREE TOTAL TOTAL P01 STACE STACE TOT-STG TOT-STG 54.2 0.0 0.8955 0.5957 -9.242.72 13.86 54.21 0.1793 0.9399 0.4827 0.0392 2.1952 1.2928 85.05 52.5 0.0 0.2605 0.5785 0.11 3.24 11.97 52.53 0.4795 0.1454 0.0341 0.9442 2.1699 1.2835 23.55 89.74 51.9 0.5555 0.0 0.82010.10 3.47 10.84 51.88 0.4806 0.1045 0.0250 0.9626 2.1752 1.2775 89.51 90.58 52.6 0.0 0.7395 0.4845 -0.393.86 10.00 52.59 0.5232 0.0603 0.0153 0.9315 2.1127 1.2736 25.56 26.99 53.3 0.0 0.7018 0.4580 -0.704.65 19.97 53.27 0.5464 0.0635 2.1000 0.0172 0.9821 1.2957 79.88 21.25 53.5 0.0 0.7996 0.4633 -0.26 5.48 19.10 53.54 0.5457 0.0789 0.0220 0.9780 2.1102 1.3097 76.82 79.10 53.1 0.0 0.7027 0.4735 -0.545.23 10.15 53.15 0.5362 0.0312 0.0230 0.9772 2.1240 1.3163 75.94 79.32 8 52.9 0.0 0.6998 0.4815 -0.90 5.10 10.26 52.91 0.5258 0.0777 0.0223 0.9783 2.1334 1.3205 75.44 77.88 -2.10 -3.26 53.8 0.4832 0.0 0.6855 4.12 12.36 53.24 0.5231 0.1052 0.0318 0.9713 2.1235 1.3369 71.27 74.11 10 55.0 0.5830 0.4847 2.98 0.0 13.78 55.00 0.5249 0.1205 0.0355 0.9576 2.1190 1.3468 59.01 11 55.3 0.0 0.6790 0.4993 -7.29 -1.1515.43 56.33 0.5264 0.1241 0.0381 0.9570 Z.1183 1.3573 V-1 V-2 VY-1 YY-2 10-1 V9-2 PHOAN-I PHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC DEGPEE SPAN DEGREE 1012.4 702.0 623.5 792.0 797.7 0.0 51.80 0.0439 66.31 27.487 4.593 679.5 753.8 974.6 679.5 517.7 52.21 55.15 0.0 0.0901 24.775 4.119 932.1 652.6 592.9 552.5 719.2 0.0 50.52 63.21 0.141021.354 3.744 573.4 850.4 573.4 521.8 671.5 0.0 44.75 55.82 0.2989 12.242 2,558 816.4 545.8 488.8 545.8 653.9 0.0 42.12 52.84 0.5025 3.574 0.346 41.95 819.8 555.9 487.0 555.9 659.4 0.0 53.28 0.5103 -0.705-0.837 7 823.9 569.2 494.0 569.2 659.4 0.0 42.51 54.38 0.6592 -2.762 -1.449 822.2 579.1 495.9 579.1 655.8 0.0 42.23 55.20 0.7197 -4.722 -2.102 811.9 584.7 421.5 584.7 653.6 0.0 41.54 54.75 0.8620 -11.049 -3.979 10 212.2 588.6 469.5 588.6 \$.588 40.32 -12-935 0.0 54.55 0.9101 -4.651 454.9 210.7 597.4 597.4 671.0 0.0 38.89 54.78 0.9571-15.198 -5.349NCORR MCOPS. WCORR. TO/TO P02/P01 P0/P0 EFF-P EFF-AD INLET INLET IMLET STACE STAGE STAGE STAGE KG/SEC RPM LBM/SEC 7 11843.10 152.00 63.93 1.3053 0.9710 2.1305 78.77

```
100 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
```

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 110 SPEED CODE 10 POINT NO 2

						to a constitution												
SI	. V-1	V-2	VM-1	VM-2	V0-1	VO-2	0-1	IJ-2	V'-1	V*-2	VO 1_1	V9'-2	RHOVM-	i pur	WM-2	EPSI-1	EPSI-2	
	M/SEC	M/SEC		M/SEC		M/SEC						M/SEC	KG/M2 S					
	146.1		146.1			245.9					-282.8						RADIAN	
2		303.9	157 2	101 7	ט.ט חח	235.2							133.23				0.5157	
	168 1	291.2	150 1	101.0	0.0						-300.9		140.98				0.4501	
- 1	100.1	251.3	100.1	171.6	0.0	219.6		341.0	360.2	229.8			148.13				0.3805	
						183.3	355.1	3/5.1	412.0		-365.1		161.33				0.1975	
						164.2			461.2		416.9		164.67				0.0202	
	197.0	214.4	19/.0			169.3			482.3		-440.2		164.51	124	.95 -	0.1159	-9.0583	
	197.1	210.5	19/.1	141.4		155.9			492.5	318.0	-451.3	-284.8	164.55	194	.36	0.1404	-0-0965	
8		213.1				153.5	452.4	450.1	502.6	331.4	-462.4	-295.5	164.45	194	.11 -	0.1690	-0.1323	
9	193.1	216.7	193.1	157.5	0.0	148.8	494.8	478.2	531.1	365.1	-494.8	-329.4	162.54				-0.2425	
10	191.0	213.9	191.0	150.9	0.0	151.5	504.9	487.6	539.8		-504.9		161.44				-0.2787	
11	183.8	206.7	123.8	137.7		154.2			548.1		-514.5		150.26				-0.3114	
							92.100		J 7051	202.4	-34.75	-376.50	100.20	100	-m/ m	0*2730	-0.5114	
SI	B-1	3-2	B*-1	B'-2	M-1	M-2	M'-1	M'-2	IHCS	INCM	DEV	TURN	D Esc	01505.0	Lock n	200	a	
		DEGREE				11-7	11 -1	11 -2					D FAL	OMEGA-8		P02/		EFF-P
1			62.40		0.4597		1 0016	0 5024			DEGREE			TOTAL	TOTAL			TOTAL
Ž				20.02	0.4397	0.0307	1.0010	0.5924	-2.58				0.5350	0.1793	0.0348			
				20.92	0.4954	0.0025	1.0/19	0.6266	-1.51	2.21				0.1361				93.13
3			62.03	33.89	0.5328	0.8451	1.1416	0.6558	-0.41	2.98				0.1995	0.0195	2.313	7 93.42	94.14
4		4/.1	62.36	48.39	0.6093	0.7252	1.3164	0.7433	0.45	2.74		13.97	0.4973	0.1002	0.0177	2.112	5 91.08	91.96
5			64.66		0.6320	0.6458	1.4776	0.8378	0.49	2.34	12.45	6.64	0.4699	0.1436	0.0233	1.988	3 84.21	25.66
6	0.0	48.2	65.82	62.09	0.5310	0.6098	1.5449	0.8705	0.68	2.41	11.79	3.73	0.4643	0.1260				
7	0.0		66.29		0.6312	0.5982	1.5775	0.9037	0.85	2.53	10.97	2.94			0.0254	1.933		
8	0.0	45.7	66.77	63.21	0.6305	0.6058	1.6097	0.9423	1.25	2.81	9.61	3.57			0.0240			
9	0.0	42.9	63.47	64.07	0.6177	0.6149	1.6987	1.0359	1.33	2.75	5.59	4.40			0.0211			
10	0.0	44.7	69.08	65.49	0.6105	0.6036	1 7251	1 0397	0.93	2.35	4.96			0.1784	0.0232			80.75
11	0.0	47.9	69.69		0.6029				0.64	1.98	5.30	1.77	0.4106					
			03.03	J	J. 000	2.3155	1+1500	1.0000	0.04	1.50	J.59	1.//	0.4100	U.Z133	0.0249	1.990	3 14.02	75.94
SL	V-1	V-2	VM-1	VM-2	V9-1	VO-2	U-1	11 2	111 1	tre a	100.0	110.5	Detorna					المستحدث
20						79-Z	D-1	U-Z	V'-1	V'-2	VO'-1	A35	PHOVM-	1 1419	4M-5		EPSI-2	
4	17320	1010 0	FIJSEL	FI/SEL	FI/SEL	TI/SEL	FI/SEC	FI/SEL	FI/SEL	FI/SEC	FI/SEL	FI/SEC	LBM/FT2SI			DEGREE	DEGREE	
1	479.3	1012.0				8.68	927.7	10//.1	1044.2	668.9	-927.7	-279.3	27.29	48	.20 2	29.367	29.548	0.0500
	515.7		515.7		0.0	775.0	987.2	1107.9	1113.8	710.4	-987.2	-332.9	28.87	59	.19 2	24.361	25.787	0.1999
3		955.4		627.4	0.0	720.5	1045.3	1138.6	1181.9	753.9-	-1045.3	-418.0	30.34	50	.87	9.643	21.804	9.1500
4		824.4		563.9	0.0	601.4	1197.9	1230.9	1351.7	845.1-	1197.9	-629.4	33.04	46	.42		11.314	
5	647.3	740.3	647.3		0.0	538.6	1367.8	1353.8	1513.3	950.5-	-13678	-815.2	33.72			3.284	1.156	
6	646.3		646.3		0.0	526.1	1444.4	1415.3	1582.4	7004.3-	1444.4	-889.2	33.69				-3.341	
7	646.6	690.5	646.6	463.8	0.0	511.6	1420 8	1446 N	1615.8	TM3 2-	1420 8	-034 A	33.70				-5.527	
8		699.1				503.5	1517 1	1476.7	1648.9	1007 %	1517 1	072.7	33.68					
9			633.6		0.0	100.0	1622 4	1550 0	1742.7	1107.0	1027 4	7773.2					-7.583	
10		701.8			0.0	107.2	1000.4	1500 7	1771 0	12000 -	-1065.4-	11007./	33.29				-13.894 (
11	610 =	678.2	510 E	451 O	9.U	431.C	1000.0	10331	1771.2	1200.6-	1050.5-	1102.5	33.06				-15.971 (
11				431.0	0.0	೨೮೨.8	1000.2	1030.5	1798.3	1212.0-	-1988*T.		32.82	37	.37 -1	8.095	-17.841 (0.9500
		C1/A1						1	JZ/101 F	'UZ/P01	EFF-AD	EFF-						
		BM/SEC	KG/SEC								ROTOR		R.					
		SOFT	SQM	San Par							*	%						
		39.14	190.99					. 1	.2730	2.0800	85.31	86.7	4					

100 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RURI NO 110 SPEED CODE 10 POINT NO 2 PHOVM-1 RHOVM-2 EPSI-1 EPSI-2 VM-2 70-1 VO-2 Y-1 V-2 VM-1 SL M/SEC KG/MZ SEC RADIAN RADIAN M/SEC KG/M2 SEC M/SEC M/SEC M/SEC M/SEC 258.14 0.4708 0.0851 -17.2 314.95 273.0 240.7 273.5 210.9 320.0 0.4215 0.0753 -18.9 -17.3 264.48 327.75 276.7 232.3 314.6 277.3 212.2 266.65 0.3636 0.0662 341.79 302.1 279.5 210.9 279.0 215.3 0.2159 0.0359 251.8 -11.0247.78 321.01 251.5 181.3 265.2 193.6 223.65 0.0605 -0.0074 -19.1285.41 225.3 163.7 226.1 175.7 240.1 -0.0290 -0.0292 -0.0759 -0.0400 -0.1167 -0.0509 -13.2 -17.6 207.61 203.37 217.58 219.2 160.5 278.14 229.7 219.6 164.3 277.90 225.9 219.7 164.4 219.0 156.4 -13.9284.02 224.1 154.3 224.5 170.6 230.1 8 235.11 -0.2155 -0.0787 292.01 -15.7236.7 234.9 182.4 234.4 159.8 228.96 285.83 -0.2420 -0.0332 233.5 154.3 -10.7233.7 179.0 236.3 10 -0.2735 -0.0369 157.4 0.8-216.82 276.23 232.5 230.2 171.3 230.0 TO/TO %EFF-A %EFF-P D-FAC OMEGA-B LOSS-P PO/PO TURK P02/ INCM DEV SL B-1 B-2 1-1 14-2 INCS STAGE STAGE TOT-STG TOT-STG P01 DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL DEGREE DEGREE 0.3707 0.3173 1.3972 70.70 73.37 -0.56 10.38 0.3254 0.3029 0.0252 0.8399 1.9990 54.41 -3.52 -3.5 0.9354 0.731650.9 0.0742 2.0565 1.3942 75.24 77.60 0.8663 0.05 8.15 53.16 0.9185 0.7947 -3.07-3.849.4 2.1220 84.29 82.55 0.9156 1.2907 7.35 50.53 0.2579 0.2120 0.0505 -1.370.2816 0.8065 4.74 47.0 -3.5 0.0243 85.80 88.05 7.51 5.22 0.0960 0.9689 2,0463 1.2618 -5.14 46.03 0.2313 0.7700 0.7268 -9.33 43.6 -2.5 1.2582 81.28 0.0699 47.25 0.2621 0.0188 0.9310 1.9470 0.6911 0.6471 -10.95-5.61 43.0 4.8 0.0138 0.9376 1.9139 1.2637 77.34 47.77 0.6255 0.2536 -3.4 0.6570 -9.47 -3.746.66 44.3 79.75 5.57 1.9119 1.2616 77.33 48.18 0.2504 0.0525 0.0148 0.9870 0.6263 -10.19-4.32 43.5 -4.6 0.6486 G.0599 80.31 0.0200 0.9323 1.9284 1.2634 78.42 -11.58 0.2370 0.6408 -5.59 6.71 45.78 -3.5 0.6581 42.2 1.9429 1.2717 76.97 79.01 0.1408 0.0420 0.9528 0.2209 -15.97-9.75 8.56 43.76 0.5752 0.6706 40.0 -3.8 0.0547 0.9529 1.9174 1.2826 0.0668 0.9451 1.2796 1.2923 72.39 74.73 0.1806 -10.81 11.19 43.80 0.2251 -17.0610 41.2 -2.6 0.6721 0.6540 67.63 0.2180 0.6593 -20.49-14.3514.45 45.12 0.2315 -2.00.6580 11 43.1 EPSI-2 RHOVM-2 PCT TE EPSI-1 VM-1 VM-2 VD-1 V)-2 RHOVM-1 V-2 SL V-1 DECREE FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAH DEGREE FT/SEC FT/SEC 26.976 24.152 20.831 54.51 0.0430 4.873 895.7 907.7 897.5 691.8 -55.5 52.87 1 1049.8 789.7 4.314 3.795 -62.1 -56.9 762.2 54.17 67.13 0.0901 695.2 1032.3 909.9 69.98 65.75 0.1410 0.2989 691.9 915.3 709.8 54.51 991.3 917.1 12.372 2.056 825.3 595.0 -36.150.75 826.1 635.1 870.2 0.5986 0.6103 59.07 3.456 -0.426 741.8 739.2 537.0 -62.745.81 576.6 787.9 -1.661 -1.675 56.95 539.2 719.1 526.7 -43.242.52 720.4 753.8 56.92 -4.347 -2.294 0.6598 720.7 718.4 513.9 -57.6 42.68 539.3 744.4 -5.687 -2.917 -45.7 0.7107 505.3 44.56 58.17 736.7 559.9 735.2 754.9 0.8520 494.9 505.2 59.81 -12.409-4.512 770.6 -51.4 48.15 598.3 768.9 776.5 -13.866 -5.056 -35.0 45.89 58.54 587.3 755.1 775.3 756.9 10 -15.669 -5.550 -26.4 55.57 0.9571 754.7 516.4 44.41 755.2 562.2 11 763.3 EFF-AD EFF-P WORR TO/TO PO2/PO1 PO/PO NCORR WCORR STAGE STAGE STAGE STAGE INLET INLET INLET KG/SEC LBM/SEC 1.2730 0.9514 1.9790 78.92 79.09 12464.70 174.49

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 110 SPEED CODE 10 POINT NO 8

	7.7														. 02	. •			
	SI	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	VO ! _1	VO '-2	RHOVM-	T DUE	WM-2	EDCT 1	EPSI-2	
	-	M/SEC	M/SEC	M/SEC									M/SEC	KG/M2 S					
	1								- · · · · ·									RADIAN	
	1	146.6	313.5	146.6								-284.0		132.74	,			0.5176	
	2	157.6		157.6								-302.2		140.33				0.4524	
	3	168.3		168.3				319.9				-319.9		147.30				0.3828	
			255.7				195.7			413.3		-366.7		160.37	221	.39 ().1384	0.1971	
		198.8	234.7				179.2					-418.7		164.46	204	.36 -0	1.0520	0.0204	
		198.9		198.9			175.0	442.1	433.2	484.8				164.50	192	.76 -0).1187	-0.0569	
	7	198.7	224.5	198.7	145.6	0.0	170.8	453.2	442.6	494.9	308.3	-453.2	-271.7	164.42	196	.95 -(1.1487	-0.0950	
	8	197.8	225.8	197.8	149.9	0.0	168.8	464.4	452.0	504.7		-464.4		164.00				-0.1325	
	9	191.9	224.2	191.9	148.9	0.0	167.5					-495.9		160.95				-0.2480	
	10	189.4		189.4			172.6		489.6			-507.0		159.65				-0.2840	
	11.		217.6				177.3					-516.7		158.47				-0.2040	
		10, 10		10, .0	. ILU.E	0.0	1,,,,	510.,	755.5	37340	373.0	-310.7	-321.0	130.77	103	- 33 -		-0.3147	
	SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M1-2	INCS	INCM	DEV	TURN	D EAC	OMEGA-B	1.000 0	P02/	WEEE A	¥655 0
			DEGREE			11-1	14-2	11 -1	11 -2					UTAL					
						0.6506		1 0015	0 5000			DEGREE		A = 511	TOTAL	TOTAL	P01		TOTAL
	1	0.0		62.40			0.9061			-2.67	1.42	10.41	40.05	0.5511		0.0249	2.467		
	2	0.0					0.8313				2.23	10.14		0.5371			2.445		
	3	0.0		62.10			0.8323				3.04		27.53	0.5387		0.0157			95.31
	4	0.0					0.7307			0.57	2.85	12.16			0.1032				92.20
.,	5	0.0		64.58			0.6646			0.41	2.26	11.58	7.44		0.1435	0.0230	2.1250	0 85.79	87.20
	6	0.0		65.71			0.6367			0.57	2.31	10.47	4.94	0.4988	0.1709	0.0256	2.095	2 82.31	84.04
	7	0.0	49.3	66.23	61.55	0.6340	0.6319	1.5790	0.8578	0.79	2.47	9.17	4.68	0.4813	0.1633	0.0242	2.098	6 82.71	84.41
	8	0.0	48.0	66.81	61.78	0.6311	0.6352	1.6100	0.9014	1.29	2.84	8.19	5.02	0.4670	0.1577	0.0234	2.117	5 83.07	84.75
	9	0.0	47.9	68.76	64.20	0.6106	0.6262	1.6949	0.9676	161	3.104	5.72	4.56		9.1789		2.1430		82.18
	10	0.0		69.38			0.6148			1.28	2.65	5.50			0.2172				78.50
	11	0.0	54.3	69.95	68.40	0.5949	0.5992	1.7458	0.9517	0.91	2.24	5.79		0.4689					74.90
	·					0003.3	3.0332	207 100	0.351,	0.51	1	20,73	1.00	0.7005	0.2333	0.0232	C.1C.11	- 16-13	174.30
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	V0 1-1	VO '-2	RHOVM-	1 RHO	VM-2	PS1-1	EPSI-2	PET TF
		FT/SEC	FT/SEC	FT/SEC	FT/SEC									LBM/FT2SI				DEGREE	
			1028.7				828.9			1048.5				27.19				29.654	
	2		1001.1		622.6		783.9							28.74				25.923	
		552.1		552.1		0.0	732.3	1049 7	1143 4	1125 0	728 8.	10/10 7	_411:1	30.17				21.935	
	4		8389	626.0	540.0	0.0				1356.1				32.85				11.292	
			770.1		497.2	0.0				1520.6				33.68					
		652.5	741.9		469.9	1 - 1 - 1											2.982	1.169 (
	5					0.0				1590.5				33.69				-3.259 (
	7	651.9		651.9		0.0				1623.7				33.67				-5.441 (
	8	649.1	740.8	649.1	491.9	0.0				1656.1				33.59				-7.594 (
	9		735.5	629.6	488.7		549.7							32.96				-14.212 (
			727,2	621.6	456.4		566.2							32.70	38			-15.272 (
	11				414.1	0.0	581.6	1695.4	1637.4	1803.3	1134.1-	1695.4-	1055.7	32.46	34			-18.030 (
		W	CI/AI	WC1/A1					TO	02/T01 F	PO2/PO1	EFF-AD	EFF-	P					
		L	BM/SEC	KG/SEC	X.							ROTOR		R					
			SQFT	SQM								*	*						
			39.03	190.44						.2939	2.1968	85.82		9					
														- -					

	100	PERCENT	DE2104	של מששאל	SIATUR PE	REORMANC	EJ			KUM	NO 110 SP	EED CODE	TO POIN	t un o			
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-		VM-2		EPSI-2					
		M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 S		2 SEC		RADIAN					
	1	323.6	258.2	208.7	258.2	247.3	3.3	261.83		.85	0.4725	0.0310					
	2	314.7	257.7	209.3	257.7	235.0	0.4	267.78		.35		0.0683					
	3	298.7	249.3	202.1	249.2	219.9	-6.7	261.37		.95		0.0580					
	4	267.8	218.4	185.0	218.2	193.6	-9.7	242.58		. 84		0.0288					
	5	247.0	200.6	170.4	200.3	178.7	-10.3	224.42	282	. 85	0.0513	-0.0107					
	6	239.0	194.6	162.5	194.3	175.2	-11.3	213.55	272	.03	-0.0281	-0.0304					
	7	238.1	196.3	165.3	196.0	171.3	-10.7	218.16	274	.70	-0.0570	-0.0398					
	8	240.0	201.7	169.7	201.5	169.8	-8.9	224.82	282	.07	-0.1014	-0.0496					
	9	241.8	208.7	172.2	208.6	169.7	-6.1	227.87	286	.31	-0.1996						
	10	241.7	208.7	166.2	208.6	175.5	-3.5	217.37		.52	-0.2288	-0.0863	200				
	11	240.5	207.2	158.4	207.2	180.9	-2.1	204.83		.22	-0.2667						
	- T					7 7 7			n en								
	SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	TO/TO	XEFF-A	XEFF-P
		DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
	1	52.0		0.9402	0.7275	-2.44	0.51	14.57	51.30	0.3697	0.2046	0.0471	0.9112	2.2481	1.3140	82.97	84.78
	2	50.1	0.1	0.9134	0.7287	-2.33	0.80	12.06	49.99	0.3484			0.9368		1.3051		88.81
	3	48.7			0.7061	-3.07	0.30	9.34	50.21	0.3394	0.0874	0.0209			1.2928		91.42
	4	46.7	-2.5	0.7691	0.6154	-6.29	-2.04	7.46		0.3710		0.0141			1.2781		89.85
	5	46.4	-3.0		0.5612	-7.58	-2.23	7.12		0.3925		0.0100	0-9897		1.2809		
	6	47.1	-3.3	0.6761		-6.66	-0.92	6.76	50.48	0.4028		0.0115	0.9892	2.0699	1.2865		82.53
	7	46.0	-3.1		0.5475	-7.74	-1.87	7.02	49.18	0.3032	0.0471	0.0133	0.9876	2.0753	1.2854	81.31	83.12
	8	45.1	-2.5	0.6788	0.5629	-8.75	-2.75	7.73		0.3751			0.9880	2.0943	1.2883		83.40
	9	44.9		0.6797		-11.08	-4.86	10.69		0.3559		0.0239			1.3038		79.82
	10	46.9	-0.9	0.6750	0.5764	-11.34	-5.10	12.84	47.86		0.1005	0.0304			1,3188		75.74
	11	49.3	-0.6	0.6574	0.5685	-14.32	-8.18	15.85			0.1272				1.3340		71.52
1		,,,,,	J. U	0.00,	0.000	1,,,,,					30-07-						
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-	1 RHC	VM-2	PCT TE	EPSI-1	EPSI-2				
		FT/SEC	FT/SEC	FT/SEC	FT/SEC			LBM/FT2S			SPAN	DEGREE	DEGREE				
	1	1061.7	847.3	684.7	847.2	811.4	10.8	53.63			0.0430	27.079	4.641				
	2	1032.6	845.6	686.8	845.6	771.1	1.4	54.84			0.0901	24.261	3.911				
	3	979.9	817.9	663.2	817.6	721.4	-21.8	53.53			0.1410	20.845	3.324				
	4	878.5	716.7	607.1	716.0	635.0	-31.9	49.68			0.2989	11.764	1.653				
	5	810.3	658.1	559.2	657.2	586.4	-33.9	45.96	57		0.5085	2.937	-0.611				
	6	784.1	638.5	533.3	637.4	574.8	-37.2	43.74	55		0.6103	-1.611	-1.740				
	7	781.1	644.1	542.3	643.2	562.2	-35.2	44.68			0.6598	-3.839	-2.280				
	8	787.6	661.8	556.8	661.2	557.0	-29.3	46.04			0.7107		-2.840				
	. 9	793.3	684.6	565.1	684.3	556.9	-20.0	46.67				-11.438					
	10	793.0	684.7	545.2	584.6	575.8	-11.4	44.52			0.9101	-13.110	4.947				
	11	789.1	679.7	519.8	679.7	593.7	-7.0	41.95			0.9571	-15.279	-5.497				
	11		NCORR	WCORR	WCORR	273.1	-/.0		P02/P01		EFF-AD		-3.43/				
				INLET	INLET			STAGE	FUCTEUT	STAGE	STAGE	STAGE					
			INLET	LBM/SEC				SIARE		SINGE	214PE	SINGE					
		1		173.90	78.87			1 2020	0.9740	2 1206		84.37					
				1/4 481	10.01			1./719	11. 7/411	/ 1.340	0/.0/	274-31					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 110 SPEED CODE 10 POINT NO 4

	SL	V-1	V-2	VM-1	VM-2	V0-1	V0-2	U-1	U-2	V*-1	V*-2	V0 '-1	VO:-2	RHOVM-	1 PHO	NM-2	FPST_T	EPSI-2	
		M/SEC	M/SEC	M/SEC	M/SEC			M/SEC				M/SEC		KG/M2 S		2 SEC	RADIAN	RADIAN	
	1	144.4	312.8	144.4	180.3	0.0												4.55 5 50 100 100 100 100 100	
								, .,		317.4		-282.6		132.63			0.5124	0.5131	
		155.5	301.4	155.5	183.8							-300.7		140.48		- 70	0.4249	0.4456	
	. 3	166.4	288.4	166.4	181.8		223.8					-318.4		147.70		-21	0.3418	0.3769	
	4	188.6	254.9	188.5	158.6	0.0				410.8		-364.9		160.85	219	.17	0.1357	0.1954	
	5	196.5	237.1	196.5	147.4	0.0	185.8	416.7	412.4	460.7	270.3	-416.7	-226.6	165.00	204	.44	-0.0497	0.0209	
	6	197.0	230.7	197.0	142.8	0.0						-440.0		165.22				-0.0555	
		195.8		196.8			178.0					-451.1		165.14				-0.0934	
				195.8			176.2												
	9	189.3		189.3								-452.1		164.65				-0.1312	
	. •						177.8					-494.5		161.22				-0.2485	
		186.8					182.9		487.3			-504.6		159.88				-0.2850	
	11	184.8	222.2	184.8	120.9	0.0	186.5	514.3	495.7	546.5	332.9	-514.3	-310.2	158.74	167	.14	-0.3226	-0.3154	
100	SL:	B-1	B-2	B*-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B	1055-	P P02/	XEFF-A	TEFE-P
		DEGREE	DEGREE	DEGREE	DEGREE					DEGREE					TOTAL	TOTA		TOTAL	
	1	0.0				0.4547	0.9066	0 9001	0 5632	-2-43	1.66	9.74		0.5712					
. :	2	0.0		62.45			0.8734			-1.28	2.44			0.5518					
	3	0.0	51.1	62.25			0.8344												417 - 417
	_		7 - 5 -							-0.19	3.20		28.00		0.0513				97-09
	4	0.0		62.62			0.7299			0.72	3.00	12.31			0.1018				
	5	0.0	51.5	64.72			0.6724			0.56	2.41	11.34	7.82	0.5310	0.1462	0.0234	6 2.189	8 85.00	87.45
	б	0.0	51.5	65.81	60.04	0.6314	0.6510	1.5454	0.8120	0.67	2.41	9.74	5.77	0.5154	0.1655	0.025	3 2.173	9 83.45	85.15
	7	0.0	50.4	66.34	50.65	0.6309	0.6490	1.5776	0.8467	0.29	2.57	8.28	5.67	0.4993	0.1599	0.0244	4 2.183	6 83.69	85.37
	8	0.0	49.4	56.93			0.6502			1.41	2.97	7.49	5.85			0.023			
	9	0.0	50.6	68_95			0.6378			1.81	3.23	5.60	4.88	0.4757					81.24
	10	0.0	53.7				0.6255			1.47	2.85	5.67		0.4876		0.029			
	11	0.0	56.8	70.12															77.63
	±1.	U.U	20.0	10.12	00.33	U. 2590	0.6115	1.7434	0.3123	1.07	2.41	5.92	1.58	0.4944	0.2681	0.030	5 2.204	6 71.83	74.74
	_		10.00														and the second		
	SL		V-2	VM-I	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	VO'-1	V0 '-2	RHOVM-	L RHO	YM-2	EPSI-1	EPSI-2 F	PCT TE
		-1/SEC	FI/SEC	FI/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	C LBM/F	T2SEC	DEGREE	DEGREE	SPAN
		473.9		473.9	591.4	0.0	838.6	927.2	1076.5	1041.3	637.5	-927.2	-238.0	27.16	48.	. 88	29.358	29.398 0	0.0500
	2	510.3	989.0	510.3	603.1	0.0	783.8	985.6	1107.2	1110.8	684.4	-986.6	-323.5	28.77	50.	. 73	24.344	25.534 (1,1000
	3	546.0	946.2	546.0	595.6	0.0	734.3	1044.7	1138.0	1178.8				39.25		.84	19.585	21.595 0	
	4	618.8	836.2	618.8	520.4	0.0				1347.8				32.94	44.		7.773	11.195	
			778.1		483.6	0.0	60G 6	1767 1	1757 1	1511.5	206 17	1257 1	7/2 5	33.79					
			757.0	646.2	468.4	0.0				1581.6	000.3-	1443.5	743.3		41.		-2.847	1.198 0	
		645.7	755.1								344.K-	1443.0	-819.6	33.84	40.		-6.734	-3.182 0	
		T 7 (2)				0.0				1614.7				33.82	41.		-8.584	-5.349 0	
		642.5	757.4	642.5		0.0				1646.8				33.72	42.			-7.5140	
		621.1	750.2	621.1		0.0				1737.3				33.02	41.	.25 -	-16.283	-14.238 0	.8500
	10	613.0	741.1	613.0	434.7	0.0	600.2	1655.6	1598.9	1765.5	1089.2-	1655.6	-998.7	32.74	37.		17.734	-16.329 0	. 9000
	11	606.3	729.2	606.3	396.7	0.0				1792.9				32.51	34.			-18.073 0	
		W	C1/A1	WC1/AI						2/T01 P					~ /•				
			BM/SEC	KG/SEC					• •	_, -, -, -,		ROTOR							
			SQFT	SOM								**************************************	* **						
			38.89	189.79					1	.3052	2 2600	26 ₋ 06		-					
		•		102473			11 10			- 2000	L+ COU!	00.00	6/.5	,					

							AIRE	OIL AERODY	NAMIC S	VOAMMIS	DOTHE						
	100	PERCENT	DESTON	SPEED (S	STATING DE	DE CO MANO	F1	ore removi	mnuc .		NO 110 S	een rong	10 001	T 100 3			
		LICOLINI	DE31011	S 220 1.	7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in armit	,_,			AUN	NO 110 3	בבט כטטנ	TO LOTE	11 110 4			
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	DUI	2-MVC	EDCT 1	EPSI-2					
	JL	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE		12 SEC	RADIAN						
	1	321.8	247.3	202.4	247.2	250.1	4.2	261.62		3.63							
	2	310.1	242.6									0.0820					
				202.5	242.6	234.8	-0.2	266.88		9.56	0.4152	0.0700					
	3	297.1	233.6	199.2	233.5	220.4	-5.7	265.26	341	. 60	0.3579	0.0606					
	4	265.7	206.3	178.0	206.1	197.3	-8.3	240.34		5.80		0.0328					
	5	248.4	192.7	165.5	192.5	185.3	-8.0	224.46		. 70	0.0503	-0.0075					
	6	242.5	188.0	161.0	187.7	181.5	-10.1	218.55	275	5.53	-0.0267						
	7	242.5	190.2	164.3	190.0	178.6	-9.3	223.98		3.79	-0.0626						
	8	244.0	195.2	167.8	195.1	177.2	-7.1	229.40	285	5.87	-0.0941						
	9	245.3	202.2	166.5	202.1	180.1	-4.3	226.23	289	3.77	-0.1907	-0.0745					
	10	244.8	202.0	159.3	202.0	185.9	-1.6	213.91	284	. 70	-0.2229	-0.0849					
	11	243.8	201.0	152.4	201.0	190.3	-0.4	202.73		3.59		-0.0951					
	SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	TO/TO	XEFF-A	XEFF-P
		DEGREE	DEGREE			DEGREE	DEGREE		DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
	1	53.1	0.9	0.9372	0.6960	-1.37	1.59	14.81		0.4008	0.1908	0.0439	0.9176	2.3063	1.3189	84.60	86.29
	2	50.9	-0.1	0.3024	0.6852	-1.52	1.61	11.92	50.95	0.3879	0.1483	0.0348	0.9394	2.3183	1.3063	88.70	89.95
	3	49.1	-1.4	0.8633	0.6604	-2.66	0.72	9.46	50.50	0 7891	0.1159	0.0277		2.2988	1.2953	90.97	91.96
	4	48.4	-2.3	0.7645	0.5802	-4.62	-0.37	7.70	50.66	0.4154	0.0546	0.0138	0.9825	2.2085	1.2853	89.10	90.24
	5	48.3	-2.4	0.7073	0.5381	-5.71	-0.35	7.69	50.63	0.4329	0.0356	0.0096	0.9899	2.1652	1.2926	84.45	86.04
	6	48.4	-3.1	0.6875	0.5230	-5.38	0.36	7.02		0.4454		0.0055	0.9859	2.1424	1.2983	81.59	83.44
	7	47.4	-2.8	0.6873	0.5294	-6.39	-0.52	7.36		0.4364		0.0143	0.9838	2.1499		81.80	83.64
	8	46.6	-2.1	0.6906	0.5433	-7.21	-1.22	8.18	48 68	0.4182	0.0549	0.0158	0.9850	2.1677	1.3023	81.89	83.73
	ğ	47.5	-1.2	0.6383	0.5592	-8.48	-2.26	11.16	#0 66	0.4026	0.0777	0.0232	0.9789	2.1727	1.3234	76.79	79.15
Ţ.,	10	49.7	-0.5	0.6824	0.5552	-8.54	-2.30	13.33		0.4094		0.0232		2.1568			
	11	51.8	-0.1	0.6757	0.5352	-11.83	-5.69	16.31	50.17	0.4034	0.1173	0.0289	0.9745		1.3387	72.54	75.31
	**	71.0	-0.1	0.0737	0.3454	-11.00	-5.09	10.31	31.92	0.4167	0.11/3	0.0300	0.9091	2.1364	1.3528	68.67	71.78
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	מעמ	VM-2	PCT TE	EPSI-1	EPSI-2				
		FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE			SPAN						
		1055.8	811.3	664.2	811.2	820.7						DEGREE	DEGREE				
		1017.3					13.9	53.58			0.0430	26.753	4.695				
		074 0	796.0	664.3	796.0	770.5	-0.7	54.66	/1	-59	0.0901	23.790	4.011				
	3	974.8	766.3	653.7	766.1	723.1	-18.8	54.53			0.1410	20.505	3.470				
	4	871.9	676.8	584.0	676.2	647.4	-27.4	49.22	62	- 63	0.2989	11.925	1.878				
	5	814.9	632.3	542.8	631.7	607.8	-26.2	45.97	58	.31	0.5086	2.884	-0.429				
	6	795.9	616.7	528.1	615.8	595.4	-33.1	44.76	56	.43	0.6103	-1.529	-1.565				
	7	796.0	624.1	538.9	623.3	585.9	-30.4	45.87	57	.10	0.6598	-3.589	-2.105				
	8	800.5	640.4	550.4	640.0	581.3	-23.3	46.98	58	.55	0.7107	-5.393	-2.666				
	9	804.7	663.4	546.4	663.2	590.7	-14.0	46.33	59		0.8620	-10.927	-4.271				
	10	803.2	662.7	522.6	662.6	609.8	-5.3	43.82	58	.31	0.9101	-12.770	-4.865				
	11	799.8	659.5	500.0	659.5	624.3	-1.4	41.52			0.9571	-15.159	-5.449				
			CORR	WCORR	WCORR			TO/TO PO		PO/FO		EFF-P					
			INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
				LBM/SEC	KG/SEC						×	*					
		12	2467.10		78.59			1.3052 (3.9728	2.1995	82.21	84.59					

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 110 SPEED CODE 10 POINT NO 5

	TOO	FERCEN	. 00.310	J. L.C.D	Tirotoi	I I LIG IX	" MICE				110	. 150 220	. ~ ~~~	WOL 40 1	VI.11 110 D			
				1714 3	104 7	110. 3	10. 2	11. 3		17 5 1	WI 2	in i	100 1 2	RHOYM-1	RHOVM-2	EDCT 3	EPSI-2	
	2r	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V*-1		VO'-1						
	11.5	M/SEC		M/SEC	M/SEC	M/SEC	M/SEC				M/SEC	M/SEC	W/2FC	KG/M2 SE		: RADIAN		
	1	144.0	312.1	144.0	178.9	0.0	255.7	282.6				-282.6		132.43	237.25		0.5147	
	2	154.9	301.3	154.9	182.3	0.0	240.0	300.7				-300.7		140.17	245.91		9.4482	
	3	165.6	289.6	165.6	181.0	0.0	226.1	318.4	346.8	358.9	217.5	-318.4	-120.7	147.30	247.35		0.3791	
				187.3			203.5	364.9	374.9	410.2	231.9	-364.9	-171.4	160.32	215, 32	0.1378	0.1965	
				195.5				416.7				-416.7		164.64	204.39	-0.0456	0.0220	
		196.0			142.6					481.7				164.93	199.15	-0.1156		
				195.9						493.8				154.85	204.98	-0.1488		
								462.1				-462.1		164.33	209.95	-0.1943		
				194.9														
	9			188.3				494.5				-494.5		160.84	200.32	-0.2837		
	10			185.8						537.7		-504.6		159.49	183.86	-0.3088		
	11	183.8	225.5	183.8	120.5	0.0	190.6	514.2	496.7	546.1	328.9	-514.2	-305.1	158.34	167.64	-0.3222	-0.3153	
	SI	B-1	B-2	B'-1	B*-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEA	TURN	D FAC 0	MEGA-B LOS	5-P P02/	XEFF-A	XEFF-P
				DEGREE						DEGREE	DEGREE	DEGREE	DEGREE			TAL POL	TOTAL	TOTAL
	1	0.0	54.7	62.73		0.4530	0.9040	6.9980	0.5592		1.74			0.5749				
	2	0.0		62.56		0.4889						10.41			0.0757 0.0		5 95.79	
		_ 7.55		62.38	7	0.5244					3.32				0.0574 0.0			
	3	0.0				0.5981					3.17				0.1151 0.0			
	4.	0.0											14.0/	0.3703				
	5	0.0		64.84		0.6261					2.52	11.16			0.1487 0.0			
	6	0.0	52.1	65.90		0.6280					2.50	9.40	6.21		0.1689 0.0		9 83.39	
	7	0.0	50.9	66.43	60.24	0.6275	0.6570	1.5752	0.8355	0.99	2.67	7.86			0.1640 0.00			85.28
10	8	0.0	50.1	57.03	60.69	0.6240	0.6584	1.6059	0.8547	1.51	3.07	7.10			0.1637 0.0X		6 83.36	
	9	0.0	51.6	69.05	64.00	0.6013	0.6426	1.6398	0.9138	1.91	3.33	5.53			0.2039 0.03			80.93
	10	0.0	54.5	69.67	66.07	0.5930	0.6317	1.7157	0.9056	1.57	2.94	5.54			0.2415 0.0			77.53
	11	0.0	57.5	70.21		0.5859					2.50	5.72	1.88	0.5037	0.2720 0.0	312 2.238	35 71.84	74.81
	-										4							
	SI	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	11-2	V'-1	V1-2	۱_• nv	צם י-2	RHOVM-1	PHOYM-2	FPSI-1	EPSI-2	PCT TE
	JL	ET ICEC	ET ICEC	ET /CEC	ET ISEC	FT /SEC	ET /SEC	ET ISEC	FT /SEC	FT /SEC	FT /SEC	FTISEC	FT/SEC		C LBM/FT2SE			
				472.4		11/3LC	020 0	027 2	1076 5	1040.6	633 3	-027 2	-237 6	27.12	48.59	29.375	29.490	
										1109.8				28.71	50.36		25.677	
	2		988.7		598.0												21.720	
	3	543.2		543.2		The second second	741.9	1044.7	1137.9	1177.5	713.1	-1044.7	-330.0	30.17	50.66			
	4	614.7		614.7		0.0	66/.6	1197.2	1230.1	1345.8	/60.4	-1197.2	-502.5	32.84	44,22		11.258	
	5	641.4		641.4		0.0				1510.0				33.72	41.86	-2.669	1.258	
	6	643.2		643.2		0.0				1580.4				33.78	40.79	-6.623	-3.137	
	7	642.7	765.9	642.7	479.3	0.0	597.3	1479.9	1445.2	1613.5	974.0	-1479.9	-847.9	33.76	41.98	-8.523	-5.319	0.6500
	8	639.4		639.4		0.0	592.9	1516.2	1475.9	1645.5	1009.4-	-1516.2	-883.0	33.66	43.00	-10.562	-7.505	0.7000
	ğ			617.8						1736.1				32.94	41.03	-16.253	-14.249	0.8500
	10			609.7		0.0	617.7	1655 6	1598 A	1764.3	1075.4	1655 6	-985 1	32.67	37.66		-16.325	
				603.0			625.7	1697 2	1620 5	1791.8	1070 2	-1687 2-	1004 2	32.43	34.33		-18.063	
	11					0.0	065.4	T001.5							Q3434	100.02		
			C1/A1	WC1/AI						02/101	UCITUE							
				KG/SEC	•							ROTOR		. .				
			SQFT	SQM						* 77.05	9 901 1	*	%					
			38.73	189.02						1.3104	2.2811	85.66	5 87.2	1				

100	PERCENT	DESTON	SPEED (S	TATOR PE	REORMANO	E)	7E 7E110011		RUN	NO 110 S	EED CODE	10 POIN	T NO 5			
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	RHO	NM-2	EPSI-1	EPSI-2					
J.	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE									
1	320.8	241.2	200.6	241.2	250.3	4.0	259.94	345		0.4687	3180.0					
2	309.6	236.8	200.5	236.8	235.9	-0.3	264.88		.51		0.0698					
3	297.9	228.4	198.0	228.4	222.7	-5.8	265.17		.87	0.3598	0.0608					
4	266.9	202.0	175.3	201.9	201.3	-3.1	237.17	303	.14		0.0335					
5	249.7	188.9	164.4	188.8	188.0	-8.2	224.28		.87		-0.0066					
6	245.0	185.5	160.6	185.3	185.1	-9.5	219.27	275			-0.0263					
7	245.6	188.2	164.2	188.0	182.6	-8.6	225.21	279	.30	-0.0620						
8	247.1	193.3	167.5	193.2	181.7	-6.4	230.22	286	.59	-0.0932	-0.0455					
9	247.3	200.0	165.0	200.0	184.3	-2.9	225.40	290	.28	-0.1908	-0.0738					
10	247.3	200.3	158.2	200.3	190.1	-9.6	213.72		-99	-0.2232						
11	246.7	200.1	151.8	200.1	194.5	0.5	203.23	281	.13	-0.2546	-0.0949					
					4						3					
SL	B-1	B-2	M-1	M-S	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B		P02/	PO/PO		XEFF-A	
102	DEGREE	DEGREE			DEGREE	DEGREE		DEGREE		TOTAL	TOTAL	P01	STAGE		TOT-STG	
 ì	53.4				-1.08	1.87	14.77	52.46	0.4183	0.1799	0.0414	0.9227	2.3150	1.3190	85.06	86.70
2	51.3	-0.1			-1.08	2.04	11.90			0.1414	0.6331		2.3278	1.30//	88.78	90.02
3	49.6	-1.4		_C.6437	-2.16	1.21	9.42		0.4104			0.9559	2.3114		99.71	91.73
4	49.3	-2.3	0.7662		-3.63	0.62	7.73	21.02	0.43/0	0.0509	0.0129	0.9837	2.2258 2.1855	1.2937	88.39 84.45	89.62 86.06
5	48.9	-2.5			-5.12	0.24	7.57	D1.30	0.4544	0.0554	0.0154	0.9848		1.3940	81.45	83.35
6 7	49.1	-2.9	0.6932 0.6945	0.5144	-4.75 -5.74	0.99 0.13	7.17 7.55	51.99	0.4553	0.0554	0.0139	0.9826	2.1777		81.53	83.42
8	48.0 47.4		0.6978		-5.74 -6.44	-0.45	8.35	/C 27	0.4374	0.0592	0.0170	0.3020		1.3096	81.44	83.36
9	48.4	-1.9	9.6924		-7.56	-1.34	11.54	40.20	0.4374	0.0769	0.0230	n 0790	2.2004	1.3305	76.50	78.93
10	50.5	-0.2	0.6877		-7.71	-1.47	13.62			0.0940	0.0230	0.9745		1.3459	72.47	75.29
11	52.5	0.1	0.6822	0.5450	-11.11	-4.97	16.56			0.1135	0.0348	0.9696	2.1705	1 3603	68.81	71.97
**	26.5	0.1	0.000.	0.5150	11441	7,50	10-10	52.05	0. 11000		0.00.0	213334				7
SL	V-1	V-2	VM-1	VM-2	W-1	W-2	PHONM-1	RHŪ	WH-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC		FT/SEC	FT/SEC		LBMFT2SE			SPAN	DEGREE					
1	1052.4	791.4	658.3	791.3	821.1	13.0	53.24	70	. 84	0.0430	26.857	4.685				
2	1015.8	777.0	657.8	777.0	774.0	-0.9	54.25			0.0901	23.933	4.001				
3	977.5	749.5	649.5	749.3	730.5	-19.0	54.31			0.1410	20.612	3.481				
4	875.7	662.8	575.2	662.3	660.3	-26.5	48.57	62		0.2989	11.896	1.921				
5	819.3	619.9	539.4	619.3	616.7	-27.0	45.93			0.5086	2.819	-0.380				
6	804.0	608.7	526.8	607.9	607.3	-31.1	44.91			0.6103	-1.530	-1.506				
7	805.9	617.4	538.8	616.7	599.2	-28.1	46.13	57		0.6598		-2.044				
8	810.7	634.4	549.5	634.0	596.1	-21.1	47.15	58		0.7107	-5.339	-2.606				
9	811.5	656.2	541.4	656.2	604.6	-9.5	46.16	59			-10.931					
10	811.3	657.1	519.0	657.1	623.7	-1.8	43.77	58	.57	0.9101 0.9571	-12.786	4.833				
11	809.4	656.6	498.0	656.6	638.1	1.5	41.62				-15.161 EFF-P	-3.433				
		NCORR INLET	WCORR INLET	WCORR INLET			TO/TO PI	OC LAT	STAGE	STAGE	STAGE					
			LBMSEC				SINOL		317100	31HGC	Janut. ₹					
	1		172.60	78.28			1.3104	0774	2 5270	82.53	84.36					
	Δ.	L-TUC- UU	T15-40	10.LU			TENTER			-	with					

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUM NO 110 SPEED CODE 10 POINT NO 7

							Tr. 1 . 1 . 5							2022 20	1 WY 13 1 131	e .			
	SI	V-1	V-2	VM-1	¥24-2	VO-1	V7-2	U-1	IJ-2	V'-1	Wal o		عذا وعدد		J				
		MYSEC		M/SEC							¥1-2	ו-יפי			-1 PH	W-2	EPSI-1	EPSI-2	
								MISEC		M/SEC	W/2EC	MYSEC	MYSEC	KG/M2 !	SEC 25/1	Z TEC	PADTAN	RADIAN	
	1	141.5			178.2		~ ~ ~ ~ ~ ~			316.8	191.7	-283.4	-70.7	130.82		7.72		0.5712	
	2	152.3	301.9	152.3	179.3	0.0	242.8	391.6	338.4	337.8	203.2	-301.6	-95.6	133.55		. 62		0.4574	
	3	162.6	290.5	162.6	175.9	0.0				358.3	212 3	~310 S	_117 2	145.61					
	4	184.1	260 D	184.1	154 0		209.5		376 0	400 E	225 0	-212.3	-166.5	140.01		2.33		0.3365	
	5	192.5	242 5	192.5		0.0				493.0	220.0	-303.9	-100-5			.14	0.1376	0.1938	
							195.2		413.5	460.0	269.8	-417.8	-217.3	163.38	3 202	.23	-0.0497	0.0236	
	D	193.0		193.0	142.5		193.0	441.2	432.3	481.6	278.5	-441.2	-239.3	163.64				-0.0544	
	1			192.7		0.0	191.0	452.3	441.7	491.7	290.2	-452.3	-250 R	163.49				-0.0937	
	8	191.6	240.8	191.6	147.3	0.0	199.5	463_4	451.1	501 5	200 3	_463 A	-260.6	162.90		1470 ·	-U.1343	-0.0937	
	9	185.1	237.2	185.1	139 1	0.0	192.2	405 0	170 7		2100	495.9	207.1		1000 000 000			-0.1329	
	10	182 R	235 6	182.8	120 6		100 0	EUC U	475.5	529.3	319.0	-495.9	-281+1	159.37				-0.2505	
	îĭ						130.0	500.0	458.7	538.0	319.3	-596.0	-291.8	158.03	182	.45	-0.3095	-0.2858	
	11	100.0	233.1	180.8	119.8	0.0	200.6	515.7	498.1	546.5	320.3	-515.7	-297.5	156.88	166	.46	-0.3232	-0.3155	
																	3.442.45	V. U	
	SL	B-1	B-2	B'-1	B'-2	M-1	:4-2	M'-1	M'-2	INCS	INCM	DEA	TURN	D FAC	OVEGA-B	tince t	5 555		-
		DEG -	DEGREE	DEGREE	DEGREE							DEGREE	DECDEE	UINC				XEFF-A	
	1	0.0	55.2	63 16	21 51	0 4440	0.9062	0 0036	0 5527	7 03					TOTAL	TOTAL			TOTAL
	2	0.0	53.7	62.00	20 22	0.4701	0.8705	1 0500	0.555		2.18	9.5/	41.00	0.5802	0.1199			38 94.27	94.97
			23.7	02.30	40.26	0.4/91	0.8705	1.0029	0.5859	-0.75			34.76	0.5688	0.0372	0.017	2.481	1 95.22	95.78
	3	0.0		62.84	33.81	0.5134	0.8361	1.1311	0.6108	0.40	3.78	10.36	29.02	0.5660	0.0763	0.0140	9 2.433		
	4	0.0		63.25	47.49	0.5856	0.7396	1.3028	0.6452	1.35	3.63	11.69	15.77	0.5851	0.1260	0 022	7 2 200		
	. 5	0.0	53.5	65.24	56.39	0.6142	0.6855	1.4678	0-7342	1.07	292	10.83		0.5572	0.1626				41 M = 44 44
	6	0.0	53.3	66.31	59.00	0.6159	0.6721	1 5368	0 7002	1.17	2.90								and any about a white
	7	0.0			50 40	0 6140	0.6728	1 EC00	0.7002			8.71		0.5415	0.17%	0.9283	2.258		84.73
	8	0.0	51 0	67.46	50.00	0.0149	0.0/26	1.0000	0.8121	1.41	3.08	7.11		0.5274	0.1768	0.0279	2.275	3 82.86	84.71
	-			67.46	00.20	0.0111	0.6722	1.5994	0.8356	1.94	3.49	5.60	7.26	0.5195	0.1826	0.0285	2.290	3 82.05	84.01
	9	0.0		69.43	63.82	0.5890	0.6552	1.6840	0.8311	2.29	3.71	5.35	5.61	0.5099	0.2247	0 0315	2 306	0 77.28	· · · · · · · · · · · · · · · · · · ·
	10	0.0	56.3	70.03	65.78	0.5811	0.6464	1.7102	0.8760	1.93	3.30	5.26	4.25	0.5190	0 2576	0.002	2 202	W 77-60	· · · · · · ·
	11	0.0	59.1	70.57	68.07	0.5743	0.6353	1. 7358	0.8732	1.52	2.86	5.45		D E3E3	0.2070	0.0332	2-307	9 74.05	76.88
					1777		. +		0.0.02	1-50	2.00	3.43	2.50	0.5253	0.2011	0.9333	2-300	0 71.21	74.34
	SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	11 2	3/1 3	111 h	****							
					ET ISSE	EL 12.C	N1-C	0-1	U-2	Y*-1	V*-2	A11	10'-2	RHOVM-	L RHO	MM-2	EPSI-I	EPSI-2 F	CT TE
		17366	1000 6	FIZEC	FI/SEC	FI/SEC	FI/SEC	FI/SEC	FILSEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBWFT25	EC LEMF	T2 SEC	DECREE	DEGREE	SPAN
	1	404.4	TIC 2+0	404.4	204.	0.0	241.4	929.8	1079.5	1039.3	629.1	-929-8	-232.1	26.79			29.269	29,860 (
				499.6	538.3	0.0	796.7	989.4	1110.3	1108.4	666.7	-989 4	-313 6	28.38			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	26.204	
	3	533.6	953.4	533.6	580.5	0.0	756.3	1047.6	1141.1	1175.7	696 5-	1047.6	-384 B	29.82					
	4	604.1	853.0	604.1	505.3	0.0	687 3	7200 E	1222 6	1344.0	788 2	1200 6	-304.0						
		631.6	798.9	631.6	472.9	0.0	642.0	1270.0	1222-0	1344.0	744.2-	1200.5	-545.3	32.52		- 86	7.894	11.392 0	3000
		633.2	787.1				043.6	13/0.9	1356.8	1509.4	855.6-	1370.9	-713.0	33.46	41.	.42	-2.850	1.353 0	5.5000
	-		.,	633.2		0.0	633-3	1447.5	1418.4	1580.1	913.8-	1447.5	-725.1	33.51	41.	.05	-5.996	-3.119 0	6000
		632.3	788.9	632.3		0.0	626.5	1484.1	1449.2	1613.2	952.2-	1484.1	-822-7	33.48	42.		-8.854	-5.366 0	
		628.6		628.6	483.3	0.0	625.0	1520.5	1480.0	1645.3	982.1-	1520 5	-855 A	33.36					
	9	607.5	778.4	607.5	455.5	0.0	630.5	1627 N	1572 5	1736.7	1046 9	1627 0	0.52.0			75	10.000	-7.614 0	L NUMB
. 1	10	599.8		599.8		·	645 0	1660 7	1602 3	1765.3	1010,07	1001-0	-J96.U	32.54	40.			-14.352 0	
1.7						0.0	CEO A	1000-6	1003.3	1703.3	1097.4-	1000.7	-93/.5	32.37				-16.375 0	
			1/A1		202-0	0.0	טבט.ט :	1035-0	1034.1	1793.0	1651.0-	1692.0	-976.1	32.13	34.	.09 -	18.515 .	-18.078 0	.9500
				WC1/A1					TO	2/T01 P	02/P01	EFF-AD	EFF-	> .					
				KG/SEC						.3219 ;		POTOR	ROTO	R					
			SQFT	SQM								%	*	-					
		3	38.26	186.72					1	3219	2247	84.69	• 17	.					
				7.7.						+5613 (C C 11 3	0.03	00.3	•					

							OTT VEKOD.	ANUMIC 2	SUMMARY	PR1NI						
1	00 PERCE	WT DESIGN	i SPEED (S	STATOR PI	ERFOR MAN C	E)			RUN	NO 110 SI	PEED CODE	10 POI	IT NO 7			
	SL V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-	I RHO	DVM-2	FPST-1	EPSI-2					
	M/SEC			M/SEC	M/SEC	M/SEC	KG/M2 SE		12 SEC		RADIAN					
	1 321.			232.1	252.9	3.8	259.54		2.70	0.4762						
	2 309.6			226.0	238.8	-0.8	261.51		9.53	0.4273						
	3 298.3			218.0	227.0	-5.8	260.27	331	. 56		0.0607					
	4 269.	7 193.5	172.7	193.3	207.2	-6.9	235.19	297	7.04	0.2059	0.0367					
	5 253.	7 182.2	161.4	182.1	195.7	-6.5	221.90	278	3.87	0.0523	-0.0027					
	6 250.7			180.7	193.3	-7.4	ววก กว	27/	.87		-0.0222					
	7 251.9			183.7	191.6	-6.4	225.98 225.57	270	0.09		-0.0318					
							223.30	200	0.03							
	8 253.0			188.8	191.6	-4.2			5.85	-0.0890						
	9 253.0			195.5	194.6	-0.8	222.10		71		-0.0716					
1				196.4	€.000	1.7	212.00		5.75	-0.2232	-0.0827					
. 1	1 253.3	197.7	149.3	197.7	204.6	3.1	201.69	284	1.17	-0.2636	-0.0942					
														152		
	L B-1	8-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	1.00C_D	P02/	P0/P0	TO/TO	%EFF-A	VEEE D
J	DEGREE			د					שרי אכ							
					DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	F01	STAGE			TOT-STG
	1 54.0			0.6469	-0.50	2.46	14.77	53.04	0.4510			0.9274	2.3444	1.3218	85.67	
	2 52.3	-0.2		0.6312	-0.13	2.99	11.78	52.47	0.4454	0.1349	0.0316	0.9453	2.3443	1.3112	88.58	
	3 50.9	-i.5	0.8615	0.6094	-0.92	2.45	9.35	52.34	0.4502	0.1092	0.0261	0.9582	2.3299	1.3037	90.04	91.14
	4 50.6	-2.0	0.7705	0.5375	-2.40	1.85	7.98		0.4805	0.0579	0.0146	0.9813	2.2555	1.2986	87.64	88.96
	5 50.5			0.5028	-3.46	1.90	8.03				0.0)24		2.2253	1.3077	83.47	85.21
	6 50.4			0.4973	-3.37								2.2186			
						2.37	7.74	52.79				0.9823		1.3163	80.88	82.88
	7 49.5			0.5052	-4.25	1.62	8.17	51.52	0.4927		0.0195	0.9805	2.2295	1.3193	80.66	82.69
	8 49.3			0.5183	-4.55	1.44	8.99	50.52	0.4765		0.0185	0.9816		1.3251	80.08	
	9 50.5	-0.2	0.7026	0.5329	-5.41	0.81	12.11	50.77	0.4602	0.0811	0.0243	0.9772	2.2529	1.3479	75.11	77.75
1	0 52.4	0.5	0.6998	0.5324	-5.83	0.41	14.26	51.94	0.4641	0.0984	0.0298	0.9725	2.2436	1.3627	71.63	74.62
1	1 54.4			0.5332	-9.28	-3.13	17.31		0.4666		0.0342	0.9692			68.32	71.64
- 7		~.~	0,030	0.0000	3120	0.10	707	00.	000	01111.	0.0072	0.505		1.0.75	50002	
S	L V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	חעם	VM-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC			FT/SEC	FT/SEC		LBM/FT2SE			SPAN	DEGREE	DEGREE				
	1 1056.3			761.4	829.8	12.5	53.16			0.0430	27.284	4.613				
	2 1015.8			741.5	783.6	-2.5	53.56			0.0901	24.484	3.929				
	3 978.7	715.6	635.1	715.3	744.7	-19.0	53.31			0,1410	20.957	3.479				
	4 884.9	634.7	566.7	634.3	679.7	-22.6	48.17	60	. 84	0.2989	11.798	2.103				
	5 832.3			597.5	642.0	-21.3	45.45			0.5086	2.999	-0.153				
	822.6			593.0	634.1	-24.4	45.06			0.6103		-1.273				
							45.00	20	12		-3.261	1 020				
				602.9	628.7	-20.9	46.28			0.6598						*.
	830.0			519.3	628.6	-13.7	46.81			0.7107		-2.396				
!	9 829.9			641.4	638.6	-2.8	45.49				-10.961					
10	831.6	644.4	510.7	644.4	656.3	5.4	43.42				-12.788	-4.741				
1.				648.7	671.4	10.1	41.31				-15.100	-5.395				
·		NCORR	WCORR	WCORR			TO/TO P			EFF-AD						
		INLET	INLET	INLET			STAGE	,.01	STAGE	STAGE	STAGE					
		RPM					JINOL		JINOC							
			LBM/SEC	KG/SEC			1 2016	0.0707	0 0010	% 	%					
		12467.40	T/0.50	77.32			1.3219	U. 9/2/	2.2012	81.58	83.55		Here and the			

```
RUN NO 110 SPEED CODE 10 POINT NO 6
100 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
                                                                                                        IPSI-1 IPSI-2
                                                                                               SHCAW-S
                                                                      10'-1 10'-2
                                                                                   PHOVY-1
                                                         V*-1
                                                               V*-2
                                                   U-2
                                            IJ–¥
                                                                                                        PADIAN RADIAN
                                     V0-2
                                                                                  KG/M2 SEC KG/M2 SEC
                              70-1
                        411-2
                 VM-1
           V-2
                                                        M/SEC M/SEC M/SEC M/SEC
                                           M/SEC M/SEC
                                                                                                        0.5110 0.5232
                              M/SEC
                                     M/SEC
                 M/FEC
                       M/SEC
                                                                                              237.00
                                                                                    129.79
          M/SEC
                                                        315.3 189.5 -283.0 -63.8
    M/SEC.
                                                  328.5
                                           283.0
                                                                                                        0.4223 0.4632
                                0.0
                                     259.8
                                                                                               243.42
                       176.5
                 139.1
1 139.1
          314.1
                                                        336.3 201.7 -301.1 -94.3
                                                                                    137.55
                                                  337.9
                                                                                                        0.3494 0.3886
                                0.0 243.6
                                           301.1
                       178.3
                 149.7
                                    232.2 318.8 347.3 356.7 208.7 -318.8 -115.1
                                                                                    144.65
                                                                                               240.21
          301.9
   149.7
                                                                                                        0.1398 0.1995
                 159.9 174.0
                                0.0
                                                                                               212.45
                                                                                    158.11
          290.2
    159.9
                                                              222.4 -355.4 -162.8
                                                  375.4 497.9
                                    212.5 355.4
                                                                                                       -0.0490 0.0238
                181.4 151.5
                                0.0
                                                                                               202.53
          251.0
                                           417.2 412.9 458.5 256.4 -417.2 -213.0
                                                                                    153.08
    181.4
                                                                                                       -0.1205 -0.0545
                                0.9 199.9
                 190.2 142.8
                                                                                               200.12
                                                        480.1 273.2 -440.6 -234.2
           245.7
                                                                                    163.49
    190.2
                                                  431.7
                                0.0 197.5 440.6
                                                                                                       -0.1545 -0.0941
                 190.8 140.7
                                                                                               206.55
                                                         490.2 284.8 -451.7 -245.3
   199.8
           242.5
                                                                                    163.27
                                0.0 195.7 451.7 441.1
                                                                                                       -0.1897 -0.1336
          243.4 190.5 144.7
                                                                                               208.43
                                0.0 195.2 462.7 450.4 500.0 293.8 -462.7 -255.2
                                                                                    162.63
    190.5
                                                                                                        -0.2839 -0.2508
           243.5 189.5 145.6
                                                                                               195,57
    189.5
                                           495.2 478.6 528.0 313.1 -495.2 -281.7
                                                                                    159.23
                                0.0 195.8
                                                                                                       -0.3084 -0.2858
                 183.3 135.6
                                                                                               182.53
                                           505.3 487.9 536.7 314.4 -505.3 -287.2
                                                                                    157.93
           239.6
    133.3
                                                                                                       -0.3226 -0.3154
                                 0.0 209.7
                 181.1 128.0
                                                                                               167.20
                                     264.2 514.9 497.3 545.2 315.9 -514.9 -293.2
                                                                                    156.78
    181.1
           238.1
                                 0.0
                 179.1 117.6
    179.1
           235.6
                                                                                                           PO2/ XEFF-A XEFF-P
                                                                                   D FAC OMEGA-B LOSS-P
                                                                       DEV
                                                                           TURN
                                      M-2 M'-1 M'-2
                                                               INCH
                                                        INCS
                                                                                                                  TOTAL TOTAL
                                                                                                           POL
                                M-I
                 3'-1 3'-2
                                                        DEGREE DEGREE DEGREE
                                                                                            TOTAL
                                                                                                    TOTAL
            3-2
    B-1
 SL
                                                                                                   0.0243 2.5415 94.18 94.89
   DECREE DECREE DECREE DECREE
                                                                                   0.5363 0.1232
                                                                            42.35
                                                                2.54
                                                                       9.22
                       21.17 0.4358 0.9078 0.9399 0.5478
                                                        -1.56
                                                                                                   0.0169 2.4926
                                                                                                                  95.32 95.83
                                                                             35.26 0.5715 0.0859
            55.6 63.52
      0.0
                                                                      10.29
                        28.07 0.4714 0.8714 1.0588 0.5822
                                                                 3.33
                                                         -9.39
                                                                                                          2.4497 94.75 95.37
                                                                            29.42 0.5750 0.0852
                                                                                                   0.0166
            54.0 63.34
                       33.77 0.5952 0.8353 1267 0.6996
47.33 0.5771 0.7426 2930 0.6327
                                                                4.14 10.32
                                                          0.75
                                                                                                                  83.55
                                                                                                          2.3185
                                                                                           0.1342
                                                                                                   0.0242
            53.5 63.19
                                                                      11.53 16.24
                                                                                    0.5957
      0.0
                                                                3.95
                                                          1.57
                                                                                                                  84.95 85.53
                                                                                                          2.2360
            54.8 63.57
                                                                                           0.1575
                                                                                                   0.0276
                                                                              9.35
                                                                                   0.5574
      0.0
                       56.10 0.6073 0.6916 1.4640 0.7219
                                                                 3.15
                                                                      19.54
                                                          1.39
                                                                                                          2.2915 82.54 84.44
                                                                                           0.1867 0.0295
            54.4 65.47
                                                                       8.48
                                                                              7.74 0.5538
                                                                 3.11
                        58.77 0.6093 0.6789 1.5332 0.7659
                                                          1.38
                                                                                                          2.3115 82.45 84.38
                                                                                   0.5491 0.1845 0.0294
            54.3 65.52
       0.0
                                                                .3.28
                                                                              7.86
                                                                        5.81
            53.2 67.05 59.19 0.6025 0.6205 1.5653 0.7963
                                                          1.61
                                                                                                          2.3257 81.64 83.66
                                                                                           0.1904 0.0299
                                                                              7.67 0.5321
       2.0
                                                                        6.39
                                                                3.68
            52.9 67.65 59.98 0.6048 0.6791 1.5960 0.8195
                                                          2.13
                                                                                                          2.3418 75.90 79.46
                                                                                           0.2327 0.0326
                                                                              5.78 0.5226
       0.0
                                                                        5.34
                                                                 3.87
                 69.59 63.81 0.5837 0.6609 1.6813 0.8637
                                                          2.44
                                                                                                           2.3447 74.07 76.95
                                                                                           0.2615 0.0338
                                                                              4.47 0.5292
       0.0
                                                                        5.13
            57.1 70.18 65.71 0.5760 0.6527 1.7077 0.2620
                                                                 3.45
                                                                                   0.5343 0.2899 0.0337 2.3441 71.44 74.60
                                                          2.07
                                                                              2.75
       0.0
 10
                                                                 3.00
                                                                        5.35
                        67.96 0.5594 0.6420 1.7334 0.8697
                                                          1.65
                  70.71
 11
       0.0
                                                                                                         EPSI-1 EPSI-2 PCT TE
                                             U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1
                                                                                                PHOYM-2
    FT/SEC LBM/FT2SEC LBM/FT2SEC DEGREE
                                                                                                                 DEGREE SPAN
                                                                                                                 29.975 0.0530
                                 0.0 852.2 928.4 1077.9 1034.6 621.8 -928.4 -225.7
                                                                                                         24.195 26.369 0.1000
    455.5 1030.5 456.5 579.4
                                 0.0 799.2 937.9 1108.7 1103.3 661.8 -987.9 -309.5
                                                                                      28.17
                                                                                                 49.85
                                                                                                         19.505 22.268 0.1500
    491.2 990.4 491.2 524.9
                                                                                                 49.20
                                 0.0 761.9 1046.1 1139.5 1170.3 684.5-1045.1 -377.6
                                                                                      29.53
                                                                                                          8.011 11.429 0.3000
     524.8 952.1 524.8 571.0
                                 0.0 697.5 1198.8 1231.8 1338.4 729.7-1193.8 -534.3
                                                                                     32.33
                                                                                                 43.51
                                                                                                                 1.364 0.5000
                                                                                                          -2.897
     595.1 856.4 595.1 497.0
                                                                                     33.40
33.47
                                                                                                 41.48
                                 0.0 655.0 1368.9 1354.8 1304.4 841.4-1368.9 -693.8
                                                                                                                -3.131 0.6000
                                                                                                          -6.902
                  524.1 463.5
                                                                                                 49.99
     624.1 806.2
                                 0.0 647.9 1445.5 1416.3 1575.2 896.5-1445.5 -768.4
                                                                                                                -5.392 0.5590
                                                                                                          -2.256
                  625.0 461.7
                                                                                                 42.32
                                      642.2 1481.9 1447.1 1608.4 934.4-1481.9 -804.9
                                                                                     33.44
     625.0 795.6
                                                                                                         -10.870 -7.655 0.7309
                                  0.0
                  625.2 474.7
                                 0.0 649.4 1518.3 1477.9 1640.6 964.0-1518.3 -837.4
                                                                                      33.32
                                                                                                 42.59
     625.2 798.6
                                                                                                         -15.256 -14.369 0.8500
                  621.7 477.6
                                                                                                 49.98
                                                                                       32.61
            798.9
                                 0.0 645.8 1624.6 1570.2 1732.4 1627.3-1624.6 -924.3
     621.7
                                                                                                        -17.657 -15.373 0.9000
                  501.4 448.2
                                 0.0 658.6 1657.8 1600.9 1761.0 1031.6-1657.8 -942.3
                                                                                                 37.38
     601.4 786.1
                                                                                       32.35
                                                                                                         -18.485 -18.070 0.9500
                  594.0 419.8
                                                                                                 34.24
     594.0 781.1
                                 0.0 669.8 1689.5 1631.7 1788.8 1035.4-1689.5 -961.9
                                                                                       32.11
     587.6 773.1 587.6 385.0
                                                        T02/T01 P02/P01 EFF-AD EFF-P
          WC1/A1
                   WCI/AL
                                                                                20102
                                                                         POTOR
                  KS/SEC
          LBM/SEC
                                                                                  *
                     50%
           SOFT
                                                                                25.09
                                                       1.3281 2.3513
                                                                         84.34
                  185.30
           37.97
```

10	O PERCEN	r design	SPEED (S	STATOR PE	RFORMANO		EIC /2::051			NO 110 S	PEED CODE	10 POIN	T NO 6			
SL	V-1	V-2	VM-1	VM-2	V 0-1	VO-2	RHOVM-1		NM-2	FPST_1	EPSI-2					
J.	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC		KG/M2 SE			RADIAN						
1		225.1	196.8	2251	254.4	2.8		339		0.4785						
2		219.2	195.2	219.2	239.5	-1.4			.42	0.4395						
3		211.9	190.1	211.8	228.6	-6.3		328	21	0.3680	0.0613					
4		187.9	169.6	187.8	210.2	-5.2		294			0.0382					
5		178.0	159.6	177.9	199.4	-5.4		277			-0.0009					
ē		177.6	157.6	177.5	197.8	-5.4	219.55	274		-0.0208						
7		181.2	161.7	181.2	195.4	-5.4	226.13	280		-0.0559						
á		185.0	163.2	185.9	195.3	-3.1	228.39	285		-0.0884						
ğ		192.2	158.9	192.2	199.4	0.1		289	on .		-0.0708					
10		193.5	153.7	193.5	204.0	2.4		283	n	-0.2242						
11		195.7	147.8	195.7	208.3	4.1	202.51	287		-0.2639						
• • • •	L.J1	1,5.,	117.0	130.1	20010	701	EUC. UL	20,		9.2032	-0.000					
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	T9/T9	%EFF-A	XEFF-P
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
1	54.5	0.7	0.9334	0.6252	0.02	2,98	14.56			0.1705				1.3243	85.53	87.15
2	52.7	-9.4	0.8952	0.6113	0.25	3.37	11.62	53.02	0.4680	0.1352	0.0317	0.9452	2.3559	1.3129	88.70	89.97
3	51.6	-1.7	0.8587	0.5912	-0.19	3.19	9.16	53.27	0.4715	0.1026	0.0245	0.9608	2.3444	1.3055	89.95	91.08
4 5	51.5		0.7715		-1.49	2.76	8.13	53.36	0.5943	0.0591	0.0149	0.9808	2.2735	1.3935	87.19	88.58
5	51.4		0.7217		-2.61	2.74	8.32			0.0545					83.06	24.26
6	51.4		0.7108		-2.37	3.37			0.5234			0.9807			80.41	82.49
7			0.7143		-3.25	2.62	8.44	52.25	0.5122	2 0.0723	0.0205	0.9792		1.3276	80.15	82.27
а	50.3		0.7152		-3.52	2.47	9.29		0.4964			0.9800			79.57	21.77
9			0.7973		-4.26	1.96	12.37			0.0887					74.54	77.28
10			0.7048		-4.94	1.30	14.47			0.1038		0.9707			71.49	74.55
11			0.7008		-3.52	-2.38	17.60								68.54	71.90
SL	V-1	V-2	VM-1	VM-2	V9-1	VO-2	RHOVM-1			PCT TE		EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	C LBM/F		SPAN		DEGREE				
1		738.5	645.9	738.5	834.7	9.3	53.04			0.0430	27.414	4.508				
2	1013.9	719.1	640.5	719.1	726.0	-4.5		68		0.0901	24.674	3.937				
3		695.3	623.6	695.0	759.1	-20.8		67	.34	0.1410	21.085	3.513				
4	886.4	616.6	556.6	616.3	589.8	-20.3	47.79	60		0.2939	11.730	2.126				
5		583.9	523.6	583.6	654.2	-17.8	45.46			0.5086	3.042	-0.049				
6	829.7	582.7	517.2	582.3	648.8	-21.1	44.99	56	.28	0.6103	-1.192	-1.171				
7		594.7	530.5	594.4	644.5	-17.8	46.31	57		0.6598	-3.200	-1.728				
8	837.6	610.2	535.4	610.1	644.1	-10.3	45.78	58	.72	0.7107	-5.065	-2.314				
9	835.5	530.5	521.3	630.5	654.2	0.2	45.27	59	.37	0.8620	-11.029	-4.059				
10	238.2	635.0	504.4	634.9	669.5	7.7		58	.99	0.9101	-12.846	-4.704				
11		642.2	484.9	542.1	683.4	13,3	41.48	52		0.9571	-15.119	-5.377				
		NCORR	WCORR	WCORR			TO/TO P		PO/PO	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
			LBM/SEC							₹	*					
	1	2467.59	169.20	76.73			1.3281	0.9718	2.2850	81.18	83.22					

								AIRFO	IL AERO	DYNAMIC						100			
_ 1	100	PERCEN	IT DESIG	IN SPEEL) (ROTO	R PERFO	RMANCE)				RU	N NO 110) SPEED	CODE 10	POINT NO	10			
	~1	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	VO'-1	1012	RHOVM-	1 DO)VM-2	EPSI-1	EPSI-2	
•	SL	M/SEC	M/SEC	M/SEC				M/SEC				M/SEC		KG/M2 S		12 SEC	RADIAN		
	1	134.4	316.1	134.4	174.8			284.4				-284.4	-56.8	126.65		. 85		0.5192	
	2	144.3	299.9	144.3	167.6			302.7				-302.7		134.15		3.79	0.4224		
			291.9				238.3			355.5		-320.5		141.10		.30	0.3410		
			266.4				221.8			406.3		-367.3		154.31		.82	0.1388		
	5		254.1									-419.4		159.01			-0.0468		
	6	182.2		182.2			212.4		433.9			-442.8		159.37			-0.1180		
	7	182.0	253.9	182.0	140.3	0.0	211.6	454.0	443.3	489.1	270.9	-454.0	-231.7	159.25	201	.19	-0.1524	-0.0926	
	8	181.1					210.9					-465.1		158.69			-0.1874		
			248.4									- 497.7		155.50			-0.2795		
			247.0				213.4		490.5			-507.9		154.30			-0.3037		
1	1	172.0	244.4	172.0	116.3	0.0	215.0	517.6	499.9	545.4	307.7	-517.6	-284.9	153.19	157	. 83	-0.3192	-0.3140	
	L	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D EAC	OMEGA-B	1.000.1	0 0027	XEFF-A	WEEE D
			DEGREE				11-2	M -1	M -2			DEGREE		DIFAL	TOTAL	TOTAL			TOTAL
	1	0.0		64.42			0.9079	0 9808	0.5374		3.43		43.65	0.5962		0.0258			
	2	0.0		64.30			0.8579			0.57	4.29			0.6074	0.1350				
	3	0.0	55.0	64.19			0.8335					10.10	30.65	0.5980	0.1120				94.05
	4	0.0		64.64			0.7516			2.74	5,,02		17.90	0.6203	0.1579				
	5	0.0	57.1	66.56			0.7077			2.39	4.24		10.97		0.2015	0.033			84.64
	6	0.0	56.8	67.56	57.88	0.5767	0.7012	1.5155	0.7223	2.43	4.16	7.58	9.69	0.5881	0.2185	0.035		7 80.59	82.77
J	7	0.0	56.2	68.08	58.53	0.5760	0.7015	1.5478	0.7484	2.63	4.31	6.15		0.5775	0.2208	0.0358	3 2.388	80.08	82.34
	8	0.0	56.1	68.64			0.6977			3.12	4.68	5.99		0.5698	0.2270				
	9	0.0	57.7	70.43			0.6771			3.29	4.71	5.27	6.69	0.5545	0.2596	0.036			78.18
	0	0.0	59.4	70.97			0.6700			2.87	4.25	4.99		0.5562					76.38
1	.1	0.0	61.4	71.49	67.61	0.5425	0.6596	1.7199	0.8304	2.44	3.78	4.59	3.88	0.5555	0.2994	0.0354	2.429	5 71.46	74.74
•	L	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	VO '-1	Vn2	RHOVM-	1 RHO	VM-2	FPST_1	EPSI-2	PCT TF
														LBM/FT2S				DEGREE	
			1037.2		573.4							-933.2		25.94		.30		29.746 (
		473.3	984.0	473.3	549.9	0.0						-993.0		27.48		.86		25.995 (
	3	504.9	957.7	504.9	553.0	0.0	782.0	1051.5	1145.3	1166.4	661.7	-1051.5	-363.4	28.90				21.966 (
	4	570.3		570.3	484.4	0.0						-1205.0		31.60		.56		11.349 (
			833.7			0.0						-1375.9		32.57		.14	-2.683	1.389 (
	- 0	\$97.9		597.9	452.1							-1452.9		32.64		.32		-3.069 (
	7		832.9			0.0						-1489.5		32.61				-5.304 (
	8	594.1	830.8	594.1	459.6							-1526.1		32.50				-7.535 (
•			814.9	576.6 570.3								-1633.0		31.85				-14.215 (
	0	570.3 564.4	810.5		381.6	0.0						-1666.3 -1698.2		31.60 31.37				-16.236 (-17.988 (
	1		C1/A1	WC1/A1		0.0	205.4	1030.2				-1098.2 EFF-AD			34	.3/	-10.620	-17.300 (J. 3000
			BM/SEC	KG/SEC					•	OL/ IOL I	02710#	ROTOR		The second second					
			SOFT	SQM								%	* ************************************	7					
			36.71	179.16	,					1.3447	2.4035	82.61		9					
	10.0																		

100	PERCENT	DES IGN	SPEED (S	STATOR PE	ERF ORM ANO	AIRF(E)	OIL AEROD	YNAMIC S		PRINT NO 110 SI	PEED CODE	10 POI	IT NO 10			
SL 1 2 3 4 5 6 7 8 9 10 11	V-1 M/SEC 322.4 305.8 297.9 274.2 262.7 263.9 264.1 262.7 263.3 262.9	Y-2 M/SEC 209.1 202.8 196.8 174.3 168.6 172.3 176.5 180.6 184.8 187.2	VM-1 M/SEC 193.4 183.7 183.5 164.5 153.9 154.0 156.8 157.3 153.0	VM-2 M/SEC 209-1 202-8 196-7 174-3 168-5 172-3 176-5 180-6 184-8 187-1 191-1	VO-1 M/SEC 257.9 244.5	VO-2 M/SEC 2.7 -2.5 -6.9 -3.6 -4.3 -3.8 -3.1 -1.5 3.9 6.4 7.4	RHOVM- KG/M2 S 256.85 247.17 250.45 227.74 215.14 216.00 220.47 221.53 215.18 208.94 202.12	EC KG/N 327 321 315 280 259 273 279 284 285	NM-2 12 SEC 7-15 -73 6-05 1-38 1-05 1-13 1-11 1-70 1-70 1-74 1-64	EPSI-1 RADIAN 0.4759 0.4254 0.3641 0.2093	EPSI-2 RADIAN 0.0831 0.0728 0.0654 0.0438 0.0956 -0.0150 -0.0255 -0.0366 -0.0593 -0.0808					
SL 1 2 3 4 5 6 7 8 9 10	B-1 DEGREE 55.3 54.8 53.2 53.5 54.2 54.1 53.6 53.4 54.6 55.8 57.0	-0.7 -2.0 -1.2 -1.4 -1.3 -1.0 -0.5	0.8529 0.7759 0.7342 0.7300 0.7321 0.7307	M-2 0.5748 0.5583 0.5419 0.4768 0.4571 0.4653 0.4760 0.4865 0.4942 0.4988 0.5077	INCS DEGREE 0.83 2.40 1.46 0.56 0.20 0.29 -0.24 -0.36 -1.33 -2.47 -6.62	INCM DEGREE 3.78 5.53 4.84 5.56 6.02 5.63 5.64 4.89 3.77 -0.48	DEV DEGREE 14.58 11.28 8.83 8.82 8.62 8.62 8.62 9.16 9.74 13.55 15.72 18.60	55.20 54.71 55.62 55.36 54.54 53.97 53.41 53.84	D-FAC 0.5279 0.5213 0.5289 0.5674 0.5815 0.5738 0.5621 0.5492 0.5372 0.5331 0.5234	TOTAL 0.1670 0.1040 0.0948 0.0701 0.0699 0.0201 0.0237 0.0239 0.1171 0.1294	LOSS-P TOTAL 0.0385 0.0244 0.0227 0.0177 0.0189 0.0223 0.0237 0.0241 0.0350 0.0392 0.0393	P02/ P01 0.9226 0.9590 0.9641 0.9770 0.9789 0.9749 0.9749 0.9658 0.9624 0.9630	PO/PO STAGE 2,3715 2,3674 2,3612 2,3003 2,2942 2,3089 2,3245 2,3385 2,3361 2,3354 2,3395	TO/TO STAGE 1.3271 1.3176 1.3128 1.3146 1.3327 1.3456 1.3515 1.3577 1.3798 1.3917 1.4033	85.56 87.91 83.96 85.44 80.49 78.15	*EFF-P 10T-ST6 87.19 89.27 90.20 87.03 82.60 80.54 80.00 79.36 75.28 73.29 71.62
1 2 3 4 5 6 7 8 9 10	1057.7 1003.4 977.3 899.5 862.0 861.8 866.0 866.4 861.9 863.8 862.6		634.6 602.7 602.0 539.7 505.0 505.4 514.4 516.1 502.0 489.7 475.7 WCORR INLET	VM-2 FT/SEC 686.1 665.2 645.2 571.9 552.9 565.2 579.0 592.6 606.3 614.0 627.0 WCORR INLET KG/SEC 74.20	V9-1 FT/SEC 846.2 802.2 769.8 719.6 698.6 698.1 696.6 695.9 700.6 711.6 719.6	V0-2 FT/SEC 9.0 -8.3 -22.5 -11.8 -13.9 -12.6 -10.0 -5.4 12.7 21.0 24.1	RHOVM-1 LBM/FT2 SD 52.60 50.62 51.29 46.64 44.06 44.24 45.15 45.37 44.07 42.79 41.40 T0/T0 F STAGE	EC LBM/F 67 65 64 57 55 57 58 58 58 59 902 /P01	T2SEC .00 .89 .52 .42 .10 .94 .16 .31 .43 .52 .12 PO/PO STAGE).9101).9571 EFF-AD	EPSI-1 DEGREE 27.268 24.375 20.863 11.993 3.270 -0.992 -3.000 -4.890 -11.076 -12.993 -15.265 EFF-P STAGE	EPSI-2 DEGREE 4.760 4.170 3.750 2.508 0.323 -0.857 -1.459 -2.099 -3.968 -4.630 -5.328				

105	PERCE	VT DESIG	N SPEED	(ROTO	R PERFO	RMANCE)					NO 11	1 SPEED	CODE 5	POINT NO	1				
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1		V'-1	V'-2	V0 '-1	VO '-2	RHOVM-	1 RHO	VM-2	EPSI-1	EPSI-2		
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC				M/SEC			KG/M2 S				RADIAN		
	154.3		154.3	194.3	0.0					214.6			135.07			0.5129			
2	166.4			199.9		250.9			361.3				142.92			0.4261			
3		313.6		202.7					383.6				150.19			0.3440			
4		271.0		184.7		198.3			439.2				163.44			0.1302			
5		231.2				173.1			491.1				165.89			0.0632			
6		223.1		145.9		168.7		459.8 469.8				-291.1	165.65			0.1175 0.1400			
7 8		219.6		145.6		164.4 161.0				338.3 353.5			165.71 165.63			0.1668			
9		227.1							565.6				163.81				-0.2430		
10		224.8							575.9				162.74				-0.2788		
11		217.8				162.6			583.7				161.56			0.3148			
7					2 4 EEE														
	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCH	DEV	TURN	D FAC	OMEGA-B	LOSS-P	P02/	XEFF-A	XEFF-P	
1 2 1		DEGREE			Magail.		£ 5.25			DEGREE				TOTAL	TOTAL			TOTAL	
1	0.0								-2.46			37.68		0.2345					
2	0.0					0.9109					10.94		0.5343						
3	0.0					0.8898				3.09	9.60			0.1510					
4	0.0					0.7651				2.71	11.94	14.58 4.75	0.5028 0.4779	0.1331				89.67 81.15	
5 6	0.0		65.98			0.6457				2.58	12.88	2.81	0.4639						
7	0.0					0.6098				2.68	11.89	2.18		0.2159					
8	0.0					0.6167					10.51						9 77.32		
9	0.0					0.6295				2.88	6-22	3.90		0.1831					
10	0.0					0.6196			1.11	2.49	5.48	3.21	0.4012	0.2086	0.0266	2.077	3 75.70		
11	0.0	48.0	69.83	68.26	0.6296	0.5963	1.8405	1.0809	0.79	2.12	5.65	1.57	0.4075	0.2400	0.0276	2.0556	72.02	74.67	
			The 3	11112 0	.m. 1						10.1.1	101.0	DUGUA	• nun		CDC 4	FRCT A	not tr	
	V-I	V-2		VM-2	VO-1	V0-2	U-1	U-2	V'-1	TT ISEC	AnT	VU '-Z	RHOVM- LBM/FT2S			EPSI-1 Degree	EPSI-2 DEGREE		
1		1061.8		637.5					1111.0				27.66			29.387	29.665		
2		1052.5							1185.5				29.27				25.965		
3		1028.8		665.1	0.0				1258.5				30.76				21.986		
4		889.3		606.2	0.0				1441.1				33.47				11.389		
5	685.5	758.6	685.5	502.9	0.0	567.9	1458.1	1443.1	1611.2	1009.4-	1458.1	-875.2	33.98	39	.67	-3.624	1.252		
6	683.8			478.8	0.0				1684.7				33, 93	37			-3.309		
7	684.2		684.2						1720.4				33.94				-5.528		
8	683.6		683.6	501.0					1755.7				33.92				-7.611		
9	670.6		670.6						1855.9				33.55				-13.923		
10	663.2	737.4	663.2						1886.2				33.33				-15.974		
11		714.5	WCI/AI						1915.1 02/T01		1/99.6	-1204./) EFF-	33.09	38	.18 -	10.03/	-17.828	טעכצ יט	
		IC1/A1 .BM/SEC	KG/SEC					11	יבי וטד ו	OC LUIT	ROTOR								
		SOFT	SOM								* * * * * * * * * * * * * * * * * * *	* KUTU							
		40.24	196.36						02/T01 I 1.2997	2.1626	82.25								

105 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 5 POINT NO 1 V-1 V-2 VM-1 VM-2 V0-2 VO-1 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC M/SEC M/SEC RADIAN RADIAN 335.6 290.0 220.2 289.2 0.4730 0.0841 0.4250 0.0745 0.3680 0.0662 253.3 -21.2 261.37 320.78 268.60 274.56 258.23 216.57 207.16 326.83 345.33 331.9 289.7 222.1 288.3 246.7 -29.2 296.0 271.3 235.7 196.3 324.9 223.6 -24.8 295.0 0.3680 0.0662 0.2260 0.0373 0.0703 -0.0073 -0.0269 -0.0294 -0.0759 -0.0402 -0.1183 -0.0510 -0.2198 -0.0786 285.5 270.0 207.4 -26.8 333.31 231.9 226.7 246.8 232.7 176.4 172.5 -20.3 287.43 239.4 227.0 169.6 168.9 -12.8278.87 226.8 231.5 243.5 227.3 -15.8 -18.3 208.45 218.45 236.8 170.1 164.8 278.99 239.8 248.0 232.2 244.1 176.9 161.8 284.72 190.0 -17.7 237.37 159.3 293.70 10 248.1 243.6 186.9 243.2 -13.4 231.57 -0.2448 -0.0882 -0.2750 -0.0968 163.2 287.92 239.7 11 244.7 179.8 239.3 165.9 -14.6220.45 277.80 SL B-1 E-2 M-1 M-2 D-FAC OMEGA-B LOSS-P INCS INCM DEV TURN P02/ P0/P0 TO/TO %EFF-A %EFF-P DEGREE -0.31 DEGREE DEGREE DEGREE DEGREE 9.82 DEGREE TOTAL TOTAL P01 STAGE TOT-STG TOT-STG STAGE 51.2 -3.27 -4.0 0.9602 0.8111 0.3199 0.3719 0.0854 0.8336 0.3185 0.3539 0.0826 0.8443 2.0582 1.3338 55.22 68. č0 -5.6 0.9479 0.51 -0.54 -4.78 6.35 6.13 49.8 0.8105 -2.61 2.1021 1.3332 70.91 -4.7 0.9272 0.8326 -5.6 0.8112 0.7658 -5.0 0.6932 0.6-03 47.9 -3.91 2.1955 1.3272 76.98 79.35 85.25 -9.03 43.9 0.0285 0.0150 4.36 49.59 0.2462 0.1132 0.9601 2.1512 1.2927 83.59 44.4 -9.55 -4.19 49.41 0.2669 5.07 1.9870 1.9585 0.0555 0.9848 77.13 -3.18 -3.78 44.9 -3.2 0.6691 0.6316 -8.92 6.88 48.10 0.2623 0.0532 0.0148 0.9863 1.2865 73.90 76.22 0.6330 44.1 -4.0 0.6616 -9.65 6.16 48.13 0.2573 0.2499 0.0162 0.0574 0.9854 76.62 77.50 1.9570 1.2845 74.34 42.6 -4.5 0.6706 0.6477 -11.26 0.6806 -15.58 -5.26 -9.36 5.74 47.07 1.2850 0.0751 0.0215 0.9804 1.9741 75.27 40.4 -4.1 0.6924 8.24 0.0454 44.47 0.2321 0.1520 0.9583 1.9931 1.2964 73.50 41.6 -3.1 0.6894 0.6754 -16.68 -10.44 10.65 44.71 0.2369 1.9686 1.3088 0.1908 0.0577 0.9481 69.16 71.92 11 43.3 -3.4 0.6761 -20.34 0.6611 -14.2012.98 46.74 0.2492 0.2320 0.0710 0.9389 1.9278 1.3183 64.81 67.85 VM-2 VO-1 VO-2 RHOVM-1 RHOVM-2 FT/SEC FT/SEC FT/SEC LBM/FT2/SEC LBM/FT2/SEC SL V-1 V-2 VM-1 RHOVM-2 EPSI-1 EPSI-2 DEGREE DEGREE PCT TE FT/SEC FT/SEC 951.5 722.5 FT/SEC SPAN 1101.2 -69.5 -95.6 53.53 55.01 949.0 831.0 27.101 4.821 24.349 4.266 21.085 3.794 65.70 0.0430 809.3 1089.0 950.7 728.6 945.8 66.94 0.0901 1066.1 971.3 967.9 773.4 643.9 566.1 -81.4 -88.1 -66.5 56.23 52.89 44.36 70.73 68.27 3 733.7 0.1410 936.9 890.1 680.5 885.7 12.949 2.139 4.025 -0.421 0.2989 763.6 744.9 809.7 578.9 760.7 0.5086 0.5103 58.87 42.43 42.69 44.74 48.61 -1.544 -1.685 -4.351 -2.304 -6.779 -2.923 -12.591 -4.502 -14.024 -5.051 -15.758 -5.549 785.5 556.6 -41.8 743.7 554.3 57.11 777.0 745.8 558.0 744.0 540.7 -51.9 0.6598 0.7107 57.14 762.0 580.5 786.7 -60.1 -58.0 759.6 530.9 58.31 801.0 799.2 786.5 522.5 535.3 623.5 613.3 813.5 798.9 60.15 0.8620 814.1 802.7 10 797.9 0.9101 -44.1 47.43 58.97 45.15 589.9 785.0 544.4 -47.9 56.90 0.9571 NCORR WCORR INLET T0/T0 P02/P01 P0/P0 STAGE STAGE 1.2997 0.9435 2.0403 WCORR EFF-AD EFF-P STAGE STAGE INLET INLET LBM/SEC KG/SEC RPM % % 13081.70 179.30 81.32 75.40 77.71

12:3 1

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 111 SPEED CODE 5 POINT NO 2 105 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)

SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V*-1	V'-2	V0 -1	V0'-2	RHOVM-	T PHI	OVM-2	FPST_1	EPSI-2		
		M/SEC		M/SEC	~~ -				_										
											M/SEC		KG/M2 S		M2 SEC		RADIAN		
L	155.8	331.1		199.8	0.0						-302.0		135.75		3.54	0.5118	0.5140		
2	167.9	323.9	167.9	202.3	0.0	253.0	321.3	360.6	362.6	229.1	-321.3	-107.7	143.56	25	5.21	0.4245	0.4466		
3	179.9		179.9		0.0	238.8	340.2	370.6	384.9	241_0	-340.2	-131.8	150.71		7.75		0.3788		
4	204.4	270.1		181.9	0.0				440.3		-389.9		163.47		5.39		0.1962		
5	208.9		208.9			178.5							165.54						
																	0.0189		
	208.4	223.6				171.7							165.30			-0.1164			
7	208.5	220.9	208.6	144.6	0.0	167.0	482.0	470.7	525.2	336.3	-482.0	-303.6	165.38	184	.43	-0.1390	-0.0976		
8	208.3	223.8	208.3	152.8	0.0	163.5	493.8	480.7	536.0	352.1	-493.8	-317.2	165.28	196	5.73	-0.1675	-0.1327		
g	203.6		203.6			158.0					-528.4		163.12				-0.2428		
10	201.1		201.1			161.7			575.5				161.91			-0.3003			
11	198.6	215.1	198.6	13/.4	0.0	165.5	549.5	530.7	584.3	390.2	-549.5	-365.2	160.71	17	7.56	-0.3191	-0.3127		
				4.20	Section 1999														
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M*-1	M' -2	INCS	INCM	DEV	TURH	D FAC	OMEGA-B	LOSS-	P P02/	/ %EFF-A	ZEFF-P	
	DEGREE	DEGREE	DEGREE	DEGREE					DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTA	L P01	TOTAL	TOTAL	
1	0.0	T2 6	62.42	23.21	0.4831	0.9407	1_0538	0.6128			11.27		0.5367						
Ž	0.0		62.21			0.9188				2.19	10.28			0.1536					
3	0.0		61.97																
						0.8857					9.90	28.62			0.025				
4	0.0	47.9				0.7607			0.36	2.64	12.28			0.1275	0.022				
5	0.0	49.7	64.86	59.93	0.6603	0.6513	1.5546	0.2418	0.59	2.54	14.37	4.92	0.4928	0.2018	0.029	9 2:257	75 79.07	81.06	
6	0.0	49.9	66.02	63.43	0.6585	0.6195	1.6252	0.8933	88.0	2.62	13.14	2.59	0.4728	0.2182	0.029	9 2.018	6 76.38	78.57	
7	0.0	48.8	66.48	64.30	0.6591	0.6118	1.6598	0.9313	1.04	2.71	11.92			0.2103	0.028	4 2.017	74 76.78	78.93	
8	0.0					0.6205			1.44	2.99	10.38			0.1922	0.026				
9	0.0		68.74			0.6280			1.60	3.02									
											6.37			0.1734	0.023				
10	0.0		69.39			0.6152			1.28	2.156	5.85			0.2048	0.025			78.57	
1	0.0	50.0	69.99	69.20	0.6252	0.5864	1.8393	1.0640	0.94	2.28	6.59	0.79	0.4176	0.2471	0.027	2 2.067	75 71.42	74.14	
SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	V1-2	VO '-1	VO'-2	RHOVM-1	L RHC	WM-2	EPSI-1	EPSI-2	PCT TE	
	FT/SEC F	FT/SEC	FT/SEC	FT/SEC	FT /SFC	FT /SFC	FT/SFC	FT /SFC	FT /SFC	FT/SEC	FT/SFC	FT/SFC	LBM/FT2SI			DEGREE			
	511.1					866.1							27.80		.90		29,450		
2	550.9																		
						829.9					1054.3		29,40		.27		25.591		
3	590.2			662.0	0.0				1262.8				30.87		.79		21.704		
4	670.6	886.3	670.6	596.9	0.0	655.2	1279.4	1314.5	1444.5	889.3-	-1279.4	-659.3	33,48	48	3.21	7.198	11.240	0.3000	
5	685.4	768.2	685.4	496.6	0.0	586.1	1460.8	1445.8	1613.6	992.8-	1460.8	-859.7	33.90	39	.40	-3.699	1.084	0.5000	
6		733.7	683 7	470 0	0.0				1687.3				33.86		.24	-6.671	-3.431		
7			684.3		0.0				1723.1				33.87		. 77	-7.964			
																	-5.594		
8	683.5		683.5	501.4	0.0				1758.5				33.85		. 29		-7.602		
9	668.1		668.1	534.8	0.0				1858.0				33.41	43	.77	-15.415	-13.909 (0.8500	
10	659.8	734.3	659.8	507.7	0.0	530.4	1769.2	1708.5	1888.2	1282.8-	1769.2-	1178.0	33.16	(i) 41	. 34	-17.207	-16.038 (9000	
11	651.7	705.7	651.7	450.8	0.0				1917.2				32.92				-17.918		
			WC1/A1									EFF-			- -		********		
			KG/SEC						/ I	257, 47	ROTOR								
		SOFT	SOM										r.						
											*	*	_						
		10.26	196.47]	1.3034	2.19/6	83.14	84.8	ಕ						

105 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 5 POINT NO 2 VO-2 M/SEC -3.5 V-2 M/SEC VM-1 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 V-1 VM-2 **VO-1** M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN RADIAN RADIAN 0.4704 0.0831 0.4205 0.0719 0.3659 0.0610 0.2257 0.0288 0.0651 -0.0131 -0.6323 -0.0338 -0.0798 -0.0440 -0.1189 -0.0544 -0.2115 -0.0804 -0.2360 -0.0894 -0.2693 -0.0974 271.51 275.08 276.53 256.61 343.0 290.7 225.6 290.7 258.4 345.21 290.5 -2.2 224.6 290.5 248.7 335.1 353.57 324.0 289.8 222.8 289.8 235.2 -6.1362.50 253.6 -14.1 327.97 284.3 204.4 253.2 197.6 214.93 205.02 208.31 248.9 217.4 173.8 217.0 178.1 -13.3 279.79 -12.9 239.0 211.1 166.1 210.7 171.9 270.23 237.1 213.3 212.9 167.4 -13.0 273.37 167.9 -13.0 208.31 -11.9 220.03 -7.7 237.61 -5.3 229.43 -4.8 212.54 -11.9 240.7 220.2 175.9 219.9 164.3 282.58 289.98 284.01 246.8 229.6 187.8 229.4 160.0 164.5 246.2 228.9 228.9 183.2 11 241.2 224.3 172.1 224.3 168.9 272.50 SL B-1 B-2 M-1 M-2 INCS INCM DEV TURN D-FAC OMEGA-B LOSS-P P02/ PO/PO TO/TO XEFF-A XEFF-P DEGREE 13.20 DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 STAGE STAGE TOT-STG TOT-STG -3.43-0.4751.0 -0.70.9810 0.8099 51.68 0.3232 0.2947 0.0578 0.8645 2.2186 1.3402 75.12 77.71 0.37 -0.52 -4.17 -2.86 -2.75 0.2485 1.3353 49.7 -0.4 0.9562 0.8109 11.54 50.10 0.3036 0.0583 0.8895 2.2672 78.55 80.84 -1.2 0.9231 -3.2 0.8055 -3.5 0.6961 0.8125 49.08 0.2779 1.3250 1.2938 47.9 -3.899.65 0.1699 0.0406 0.9281 2.3145 85.18 83.35 -8.41 -8.22 -7.82 0.7094 0.6013 6.84 47.73 0.2897 0.0856 0.0216 0.9704 2.1813 44.6 84.96 86.50 49.25 45.8 6.56 0.3304 0.0425 0.0115 0.9884 2.0275 1.2897 79.36 77.24 -2.08 -2.95 0.3302 0.3175 1.2908 1.2888 77.45 -3.5 0.6657 0.5823 6.59 46.0 49.49 0.0339 0.0094 0.9914 1.9976 75.18 0.5893 0.6605 45.0 -3.5 -8.83 6.66 48.46 0.0354 0.0100 0.9910 2.0044 78.31 76.12 -4.66 0.0139 0.9873 2.0299 1.2892 0.0357 0.9676 2.0392 1.2975 1.2892 46.26 0.2997 79.61 43.2 -3.10.6715 0.6096 -10.65 7.16 0.0484 -15.16 0.6875 0.6354 -8-94 40.8 -1.9 10.45 42.68 0.2762 0.1192 75.89 78.15 73.99 -15.94 -18.62 -9.70 43.63 0.2822 0.1456 0.0441 0.9611 2.0166 1.3111 46.23 0.2939 0.1719 0.0527 0.9561 1.9746 1.3238 0.6300 12.47 10 42.3 -1.3 0.6821 -12.48 15.20 45.0 0.6132 11 -1.20.6632 59.28 V-1 RHOVM-1 V-2 VM-1 VM-2 VO-1 V0-2 RHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC 847.7 DEGREE FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE DEGREE 26.952 4.763 24.094 4.117 20.965 3.495 12.934 1.648 3.733 -0.753 -1.849 -1.939 -4.573 -2.523 -6.811 -3.117 -12.119 -4.606 0.0430 0.0901 0.1410 0.2989 0.5086 0.6103 -11.4 -7.4 953.7 55.63 1125.4 953.7 740.2 70.70 56.34 56.64 52.56 953.1 950.8 1099.4 953.1 951.0 736.8 816.0 72.41 771.8 648.5 584.4 -20.1 -46.2 730.9 74.24 1062.9 832.1 713.3 932.9 670.6 830.8 67.17 -43.6 -42.4 -42.7 712.0 44.02 41.99 816.5 570.3 57.30 691.2 564.0 692.5 784.3 545.0 55.35 42.66 45.06 549.4 539.2 55.99 0.6598 0.7107 778.0 699.7 550.9 698.4 -39.2 722.4 577.2 789.9 721.3 57.87 809.7 753.2 616.3 752.7 525.1 -25.2 48.66 59.39 0.8620 -12.119 -13.524 -5.123 539.7 -17.3 58.17 0.9101 46.99 807.8 751.1 601.1 750.9 10 735.8 WCORR INLET .9571 -15.457 EFF-AD EFF-P 791.3 735.9 564.8 554.2 -15.943.53 0.9571 55.81 WCORR TO/TO P02/P01 P0/P0 NCORR INLET INLET STAGE STAGE STAGE STAGE RPM LBM/SEC KG/SEC 13090.20 179.40 81.36 1.3034 0.9584 2.1062 × %

78.16

80.30

```
105 PERCENT DESIGN SPEED (ROTOR PERFORMANCE)
```

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 111 SPEED CODE 5 POINT NO 3

			4 1 1 2 2 3 2															
CI	W 1	11.2	1144 7	1/14 2	MO 1	tin. n	U-1	U-2	V'-1	V*-2	101 1	VO'-2	RHOVM-	חנום י	VM-2	COCT 1	EPSI-2	
SL	V-1	V-2	VM-1	VM-2	V0-1	V0-2												
	M/SEC		M/SEC		M/SEC	M/SEC	M/SEC					M/SEC	KG/M2 S		2 SEC		RADIAN	
1	155.9	333.2	155.9	199.2	0.0	267.1	302.1	350.8	340.0	215.1	-302.1	-83.7	135.65	253	-96	0.5112	0.5144	
2	168.0	324.6	168.0	200.1	กก	255.5	321.5	350.8	362.8	226.1	-321.5	-105_3	143.45	258	.56	0.4231	0.4473	
3	179.9			196.1					385.1		-340.4		150.55	256			0.3797	
		310.5				240.7												
4	204.2	270.8	204.2	173.6	0.0	207.8	390.1	400.9	440.4	259.6	-390.1	-193.1	163.19	229	.44	0.1270	0.1960	
5	210.3	242.2	210.3	150.6	0.0	189.7	445.5	440.9	492.6	292.9	-445.5	-251.2	165.95	197	- 62	-0.0606	0. 01 90	
6	210.1		210.1	143.2		182.6		460.9			470.4		165.85	187		-0.1191		
															77 17			
7	210.0		210.0	147.3		178.6		470.9			-482.3		165.84	194		-0.1466		
- 8	209.3	234.3	209.3	155.2	0.0	175.5	494.1	481.0	536.6	342.6	-494.1	-305.4	165.48	206	.52	-0.1794	-0.1319	
9	202.5	232.5	202.5	155.4	0.0	172.9	528.7	511.0	566.2	372.1	-528.7	-338-1	162.36	208	.22	-0.2819	-0.2472	
10	199.6		199.6	143.9		177.6	539.5	521.0			+539.5		161.00	191		-0.3100		
2 .																		
11	197.3	222.0	19/.3	126.9	0.0	182.2	549.8	531.0	584.1	3/1.2	-549.8	-348.8	159.83	166	.96	-0.3240	-0.3156	
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	GMEGA-B	LOSS-	P PO2/	%EFF-A	XEFF-P
	DEGREE	DEGREE	DEGREE	DEGREE					DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTA	L P01	TOTAL	TOTAL
			62.41		0.4832	O DAEA	ז מבשב	0 6122		1.42	10.63	39.83	0.5447		0.026		4	
1	0.0																	
2	0.0	52.0	62.18		0.5227				-1.55	2.17				0.1142	0.022			*
3	0.0	51.0	61.96	33.77	0.5620	0.8770	1.2026	0.6647	-0.48	2.90	10.32	28.19	0.5465	0.1051	0.020	5 2.544	3 93.27	94.09
4	0.0	50.4	62.30	48 28	0.6438	0 7581	1 3880	0 7270	0.39	2.68	12.48	14 02	0.5420	0.1293	0.022			90.28
	1 1 7 7 7 1	51.5			0.6646				0.55	2.40	13.44			0.1900	0.028			- 10 (4.74)
5	0.0		64.72			. 9.72												
6	0.0	51.7	65.86		0.6638				0.73	2.46	12.28	3.29		0.2052	0.028			
7	0.0	50.2	66.36	63.01	0.6636	0.6377	1.6620	0.9018	0.92	2.60	10.63	3.36	0.4802	0.1958	0.027	6 2.155	6 79.46	81.53
8	0.0	48.1	66.92	62 75	0.6609	0 6458	1 6948	0 9442	1.40	2.96	9.16			0.1315	0.026	2.184	7 80.69	82.67
g	7.5		68.93		0.6378				1.79	3.21	6.50	3.96		0.1957	0.026			
- T	0.0				- 10 1													
10	0.0	50.6	69.59		0.5281				1.49	2.96	6.46	2.61	0.4477			7 2.198		76.93
11	0.0	54.9	70.15	69.85	0.6201	0.5985	1.8361	1.0006	1.11	2.44	7.23	0.31	0.4592	0.2754	0.029	5 2.173	8 69.93	72.98
SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	VI_2	ו_ימע	Vn 1_2	RHOVM-	าหต	VM-2	EPSI-1	EPSI-2 I	OCT TE
													LBM/FT2S			DEGREE	DEGREE	
1	511.6		511.6	653.6	0.0				1115.6		-991.4		27.78		.01	29.290	29.476	
2	551.4	1064.9	551.4	656.5	0.0	838.4	1054.9	1183.8	1190.3	741.8	-1054.9	-345.4	29.38	52	.96	24.240	25.628 (0.1000
3	590.4	1018.6	590.4	643.3	0.0	789 R	1117.0	1216.7	1263.4	772.1-	1117.0	-426.9	30.83	52	.45	19.423	21.758 (0.1500
-	670.1		670.1	569.6		681.7					1280.1		33.42		.99		11.229	
4																		
- 5	690.0	794.7	690.0	494.1	5.0				1616.3				33 9		.47	-3.472	1.091	
6	689.3	761.3	689.3	469_7	0.0	599.1	1543.4	1512.3	1690.4	1026.9	-1543.4	-913.2	33.97	38	.49	-6.825	-3.330 (0.6000
7	689.2	759.5	689.2	483.3	0.0				1725.9				33.96	39	. 81	-8.397	-5.472 (0.6500
8		768.7	686.6	509.2					1760.5				33.89				-7.560 (
-	686.6				0.0													
9	664.3	762.9	664.3	510.0	0.0				1857.5				33.25		F . 1 **		-14.163 (
10	655.0	750.1	655.0	472.3	0.0	582.8	1770.1	1709.4	1887.4	1221.6-	-1770.1-	-1126.7	32.97	39	.16	-17.762	-16.302 (0.9000
11	647.3		647.3		0.0				1916.6				32.73	34	.20	-18.566	-18.084	0.9500
		C1/A1	WC1/A1		0.0	421.1	230 740		02/T01 F					~ .				
								- 10	ICTIOT 1	OFILOT								
		BM/SEC	KG/SEC								ROTOR		IK .					
		SQFT	SOM								* %	70						
		40.24	196.36					1	L.3197	2.2953	83.79	85.5	.5					

105 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 111 SPEED CODE 5 POINT NO 3 V-1 V-2 VM-1 VM-2 VO-1 VO-2 RHOVI-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN 223.7 344.0 278.1 261.4 251.3 278.1 1.5 276.81 364.99 0.4715 0.0811 221.2 216.1 334.8 277.3 277.3 278.36 275.08 2.7 371.91 0.4219 0.0680 320.8 270.0 270.0 237.1 -0.1369.39 0.3669 0.0560 283.4 230.4 205.6 195.2 230.2 -10.1 -11.3 251.09 218.98 320.49 0.2186 0.0237 255.0 199.4 171.0 199.1 189.1 182.8 179.1 176.4 274.47 0.0581 -0.0147 -0.0289 -0.0332 6 245.4 193.7 163.7 193.3 -12.3 -11.7 209.70 265.27 198.2 168.0 245.5 197.9 -0.0698 -0.0423 -0.1034 -0.0518 -0.1952 -0.0778 -0.2238 -0.0873 216.36 271.91 248.9 206.8 206.6 175.6 227.63 232.11 219.89 -9.2 284.35 250.4 213.6 179.0 175.1 213.5 -6.3288.40 249.1 10 212.5 171.7 212.4 180.5 -4.2 281.91 245.6 209.4 160.6 209.4 185.9 -2.7 202.78 272.38 -0.2638 -0.0964 SL B-1 B-2 M-1M-2 INCS INCM TURN D-FAC DEV OMEGA-8 LOSS-P P02/ DEGREE PO/PO TO/TO XEFF-A ZEFF-P DEGREE DEGREE 0.11 DEGREE DEGREE DEGREE TOTAL TOTAL P01 STAGE STAGE TOT-STG TOT-STG -2.84 -2.02 51.6 0.3 0.9821 0.7689 14.17 12.51 51.30 0.3596 0.2123 0.0489 0.9023 2.3918 1.3437 50.4 0.5 0.9530 0.7681 82.28 84.29 1.11 49.86 0.3384 0.1590 2.4327 1.3377 0.0373 0.9297 0. 74 94 0. 63 55 0. 5439 49.0 -0.0 0.9108 85.59 -2.78 0.60 49.02 0.3260 0.0996 10.82 0.0238 0.9588 2.4288 88.39 -2.5 0.7980 -3.2 0.7091 1.3264 47.0 89.73 -6.017.50 49.47 0.3708 0.0606 51.17 0.4266 0.0647 51.80 0.4315 0.0623 -1.76 0.0153 2.2636 0.9796 5 1.3051 96.13 47.9 87.62 -6.05 -0.69 6.82 0.0175 0.9818 2.1347 1.3074 2.1090 1.3091 48.1 -3.7 0.6792 0.5273 78.63 80.30 -5.65 0.08 6.45 0.0623 0.9835 2.1090 0.9837 2.1257 0.0173 7 46.9 -3.4 0.6798 0.5403 0.5647 76.88 79.15 -6.94 -8.61 -1.06 50.23 47.74 6.78 0.4144 0.9837 2.1257 1.3088 0.9857 2.1590 1.3102 0.0611 0.0173 77.84 8 45.2 -2.5 0.6897 80.04 7.73 -2.61 0.3859 0.0523 0.0150 81.36 g 44.6 79.26 -1.7 0.6901 0.5812 -5.11 -11.33 10.68 46.29 0.3662 0.0834 0.0249 2.1610 1.3246 2.1393 1.3396 0.9773 0.5745 0.5622 75.85 78.29 10 46.7 -1.1 0.6819 -5.27 -7.82 -11.51 12.57 47.85 0.3745 0.1006 0.0305 0.9731 -0.7 0.6673 49.7 71.45 74.29 -13.9615.70 50.40 0.3863 0.1174 0.0360 0.9697 2.1076 1.3552 V-1 V-2 VM-1 VM-2 VO-1 VO-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 DEGREE DEGREE PCT TE FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC 5.1 56.69 74.75 SPAN 912.6 909.7 1128.8 733.9 912.6 857.7 74.75 0.0430 4.646 27.018 1098.4 725.8 708.9 909.7 8.8 -0.3 57.01 56.34 51.42 824.5 0.0901 0.1410 76.17 24.173 3.895 886.0 1052.6 886.0 778.1 75.65 21.020 3.210 640.3 561.1 -33.2 -37.0 -40.5 -38.3 -30.1 -20.7 930.0 756.0 755.3 674.5 65.64 0.2989 12.524 1.355 654.2 635.6 836.6 653.1 634.3 620.6 599.7 44.85 42.95 56.21 0.5086 3.329 -0.842 537.1 551.1 805.0 54.33 0.6103 -1.655 -1.901 650.4 805.6 587.5 44.31 46.62 47.54 45.04 649.3 55.69 0.6598 -4.000 -2.421 576.1 587.4 816.7 678.5 677.8 578.9 0.7107 58.24 -5.927 -2.969 9 821.6 700.8 574.5 700.5 59.07 0.8620 0.9101 -11.183 -4.460 697.1 563.4 526.9 10 817.3 697.0 592.1 -13.6 57.74 55.79 -12.822 -5.005 11 805.9 687.1 687.0 609.8 -8.9 41.53 0.9571 -15.116 HCORR NCORR WCORR TO/TO P02/P01 PG/P0 EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE STAGE LBM/SEC KG/SEC RPM

1.3197 0.9690 2.2241

Z

80.24

%

13086.70 179.30

81.32

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SEED CODE 5 POINT NO 4

ا ا ئەمىنى	SL	V-1	V-2	VM-1	VM-2	VO-1	VO -2	U-1	U-2	V'-1	V'-2	VO '-1	VO '-2	RHOVM-	1 PHO	VM-2	EPSI-1	EPSI-2		
		N/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 ST	EC KG/M	2 SEC	RADIAN	RADIAN		
	1	155.6	333.5	155.6	194.8	0.0	270.6	302.6		340.2		-302.6		135.17	251	. 84	0.5119	0.5152		
	2	167.6	323.6		195.2	0.0	258.1	321.9	361.3	363.0	220.8	-321.9	-103.2	142.95	256	.01	0.4242	0.4484		
	3	179.5		179.5	190.8	0.0		340.9		385.3		-340.9		150.06		.11	0.3497	0.3806		
	4	204.3	273.5	204.3	170.2	G.0	214.2	390.7	401.4	440.9	253.0	-390.7	-187.2	162.97	229	.05	0.1305	0.1967		
	5	211.4	247.2	211.4	148.4	0.0	197.7	446.1	441.5	493.6	285.4	-446.1	-243.8	166.16	199	.09 -	0.0594	0.0215		
	6		240.1	211.3	143.7	0.0	192.4	471.0	461.5	516.3	305.1	-471.0	-269.2	166.14	192	.92 -	-0.1223	-0.0546		
	7	211.1			150.3						320.4	-482.9	-283.0	166.03	203		0.1536			
	8	209.8	243.4	209.8	156.9	0.0	186.1	494.8	481.6	537.4	334.6	-494.8	-295.5	165.48	213	.32 -	-0.1895	-0.1305		
	9	201.4	239.0	201.4	150.4	0.0	185.8	529.4	511.7	566.4	358.9	-529.4	-325.8	161.60		.03 ·	-0.2935	-0.2502		
	10	198.3	234.7	198.3	135.3	0.0	191.8	540.2		575.5	355.6	-540.2	-329.9	160.09	181	-53 •	-0.3192	-0.2877		
	11	196.0	229.5		118.8	6.0	195.3	550.6	531.7	584.4	355.8	-550.6	-335.4	158.95	158	.06	-0.3290	-0.3177		
		B-1	B-2	B*-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEA	TURN	D FAC					XEFF-P	
			DEGREE									DECREE			TOTAL	TOTAL			TOTAL	
	1	0.0		62.50			0.9434			-2.58	1.51			0.5625						
	2	0.0		62.28			0.9134			-1.44	2.27		34.36		0.1013					
	3	0.0	,	62.06			0.8700			-0.38	3.00		27.94		0.0935			T T T T T T T T T T T T T T T T T T T		
	4	0.0					0.7629			0.43	2.71				0.1215					
	5	0.0	53.0	64.64			0.6810			0.47	2.32	13.04	6.03		0.1830					
	6	0.0		65.78			0.6582			0.64	2.37	11.40			0.1998				.,	
	7	0.0		66.31			0.6612			0.87	2.55	9.37	4.56		0.1881				Married Married Co.	
	8	0.0	49.5	66.93			0.6673			1.41	2.97	8.11	5.23		0.1790					
	.9	0.0					0.6490			1.99	3.41	6.44			0.2153					
	10	0.0	54.5	69.80			0.6317			1.69	3.07	6.93	2.34		0.2602				11 // - 11 //	
	11	0.0	58.6	70.32	10.34	0.0101	0.6128	1.8338	U. 95UZ	1.28	2.61	7.73	-0.02	0.4936	0.2985	0.0316	. Z.204:	5 68.77	72.09	
	SL	V-1	V-2	VM-1	VM-2	VO-1	W0-2	U-1	11_2	V'-1	V1-5	W3 *_1	WD 12	RHOVM-	T DUM	VM-2	FP\$1_1	EPSI-2	DET TE	
														LBM/FT2SI			DEGREE	DEGREE		
	1		1094.1	510.4	639.2		888.0					-992.7		27.68			29.328	29.521		
	2		1061.7	550.0	640.4	0.0			1185.4			1056.3		29.28		.43	T	25.694		
	3		1013.8	589.1	626.0	0.0			1218.3			1118.5		30.73				21.804		
			897.5	670.3	558.3	0.0			1317.0			1281.8		33.38		. 91		11.270		
	5		811.2			0.0				1619.6				34.03		.77	-3.404	1.233		
	6	693.3	787.8		471.5	0.0				1693.9				34.03		.51		-3.131		
	7	692.5	791.2	10 100 100	493.2	0.0				1729.2				34.00		.60		-5.279		
	8	688.4	798.7	688.4		0.0				1763.2				33.89				-7.475		
	9	660.8		660.8		0.0				1858.4				33.10			-16-814	-14.336	0.8500	
	10	650.7	770.0	650.7	443.8	0.0				1888.1				32.79	37	.18 -	18.288 -	-16.486	0.9000	
	11			643.1			644.2							32.55			-18.851 -	-18.202	0.9500	
	- 17		C1/A1	WC1/AL						02/T01 F									•	
		L	BM/SEC	KG/SEC								ROTOR	ROTO	P.						
			SQFT	SQM		Service S						*	*							
	1		40.17	196.03						.3333	2.3753	84.07	7 85.8	7						

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 5 POINT NO 4

```
SL
      V-1
               V-2
                       VM-1
                                VM-2
                                        W-1
                                                 VO-2
                                                         RHOYM-I
                                                                     RHIJVM-2
                                                                                  EPSI-1 EPSI-2
      MYSEC
              M/SEC
                       M/SEC
                                M/SEC
                                        M/SEC
                                                 M/SEC
                                                        KG/M2 SEC KG/M2 SEC
                                                                                  RADIAN RADIAN
                                                  5.0 274.84
2.5 275.95
-1.3 272.22
-6.8 250.44
-9.3 219.93
-10.0 213.63
              265.6
      343.3
                       218.4
                                265.6
                                        264.9
                                                                     367.83
                                                                                  0.4718 0.0905
      333.0
              263.0
                       215.5
                                262.9
                                        253.8
                                                                     371.44
                                                                                  0.4218 0.0673
      318.5
              253.7
                       210.0
                                        239.4
                                253.7
                                                                     364.28
                                                                                  0.3656 0.0559
      285.0
              218.0
                                        211.8
                       190.7
                                217.9
                                                                                  0.2159 0.0257
                                                                     316.91
      258.8
              190.8
                       167.7
                               190.5
                                        197.1
                                                                                 0.0604 -0.0117
-0.0210 -0.0299
                                                                     274.27
      252.1
              186.6
                       162.8
                               186.3
                                        192.6
                                                 -10.0
                                                                     266.59
      253.7
              192.1
                       169.0
                                                         223.24
                                                                                -0.0578 -0.0388
-0.0884 -0.0481
-0.1800 -0.0752
-0.2124 -0.0854
                               191.9
                                        189.1
                                                  -8.6
                                                                     275.10
              199.9
      256.5
                       175.5
                               199.8
                                                        232.79
                                        187.0
                                                  -5.5
                                                                     286.64
     255.6
253.7
                                                        227.87
211.27
              204.7
                       173.1
                                        188.0
                               204.7
                                                  -5.3
                                                                     287.54
              202.9
                                        194.6
                       162.8
                               202.9
                                                  -3.6
                                                                     279.84
     251.3
                                                        194.51
              200.7
                       151.9
                               200.7
                                        200.2
                                                  -0.9
                                                                     271.60
                                                                                 -0.2577 -0.0955
SL
      B-1
               B-2
                       M-1
                                M-2
                                        INCS
                                                 INCM
                                                          DEV
                                                                         D-FAC OMEGA-B LOSS-P
                                                                  TURN
                                                                                                    P02/
                                                                                                           P0/P0
                                                                                                                    TO/TO
                                                                                                                          ZEFF-A ZEFF-P
     DEGREE
             DEGREE
                                       DEGREE
                                               DEGREE
                                                        DEGREE
                                                                 DEGREE
                                                                                  TOTAL
                                                                                           TOTAL
                                                                                                    P01
                                                                                                            STAGE
                                                                                                                    STAGE TOT-STG TOT-STG
       52.6
                1.0
                     0.9764 0.7284
                                        -1.80
                                                 1.15
                                                         14.91
                                                                  51.60
                                                                                 0.1851 0.0426
                                                                         0.3942
                                                                                                   0.9155
                                                                                                           2,4690
                                                                                                                    1.3478
                                                                                                                              84.65
       51.4
                0.5
                     0.9443
                             0.7225
                                        -1.01
                                                 2.12
                                                         12.49
                                                                  50.89
                                                                         0.3790
                                                                                 0.1374
                                                                                          0.0322
                                                                                                   0.9401
                                                                                                           2,4948
                                                                                                                    1.3405
                                                                                                                              37.62
                                                                                                                                      89.10
       50.1
                     0.9008 0.6979
               -0.3
                                        -1.71
                                                 1.66
                                                         10.55
                                                                  50.35
                                                                         0.3750
                                                                                 0.0909 0.0217
                                                                                                  0.9630
                                                                                                           2.4750
                                                                                                                    1.3292
                                                                                                                              89.71
                                                                                                                                      90.93
      48.5
               -1.8
                     0.7989
                             0.5958
                                                -0.26
                                        -4.50
                                                          3.22
                                                                  50.26
                                                                         0.4220
                                                                                          0.0165
                                                                                 0.0653
                                                                                                  0.9779
                                                                                                           2.3327
                                                                                                                    1.3147
                                                                                                                              86.97
                                                                                                                                      88.42
      49.7
                     0.7160
                                        -4.31
                                                 1.04
               -2.8
                             0.5158
                                                          7.28
                                                                 52.45
                                                                         0.4764
                                                                                  0.0658
                                                                                         0.0178
                                                                                                  0.9811
                                                                                                           2.2240
                                                                                                                    1.3205
                                                                                                                              80.0E
                                                                                                                                      82.11
      49.8
                             0.5030
               -3.1
                     0.6942
                                        -4.01
                                                 1.72
                                                          7.03
                                                                 52-85
                                                                         0.4843
                                                                                 0.0751
                                                                                         0.0209
                                                                                                  0.9794
                                                                                                           2.2049
                                                                                                                    1.3255
                                                                                                                                      80.14
      48.2
                    0.6987
               -2.6
                             0.5186
                                        -5.58
                                                 0.29
                                                          7.58
                                                                 50.78
                                                                        0.4649
                                                                                 0.0750
                                                                                         0.0212 0.9791
                                                                                                           2.2263
                                                                                                                    1.3258
                                                                                                                              78.23
                                                                                                                                      81.05
 8
      46.8
                    0.7054
               -1.5
                             0.5402
                                        -6.95
                                                -0.97
                                                         8.69
                                                                 48.41
                                                                         0.4378
                                                                                 0.0640
                                                                                          0.0184
                                                                                                  0.9919
                                                                                                           2.2568
                                                                                                                                      81.86
 9
      47.5
               -1.5
                    0.6981
                             0.5499
                                        -8.40
                                                -2.13
                                                        10.90
                                                                 48.99
                                                                         0-4275
                                                                                 0.0759
                                                                                          0.0227 0.9789
                                                                                                           2.2531
                                                                                                                    1.3475
                                                                                                                                      77.77
                                                                                                                              75.13
10
      50.3
               -1.0 0.6876
                             0.5412
                                       -7.93
                                                -1.69
                                                         12.77
                                                                 51.34 0.4396
                                                                                 0.0885
                                                                                         0.0268
                                                                                                  0.9760
                                                                                                           2.2301 1.3646
                                                                                                                              70.50
                                                                                                                                      73.68
11
      53.2
               -0.2 0.6759
                             0.5315
                                      -10.38
                                                4.24
                                                        16.18
                                                                 53.49 0.4500 C.1021
                                                                                         0.0313 0.9731
                                                                                                           2.2042 1.3815
SL
      V-1
               V-2
                      VM-1
                               VM-2
                                       VO-1
                                                VO-2
                                                         RHOVM-1
                                                                    RHOVM-2
                                                                               PET TE
                                                                                          EPSI-1 EPSI-2
    FT/SEC
            FT/SEC
                    FT/SEC
                             FT/SEC
                                               FT/SEC LBM/FT2SEC LBM/FT2SEC
                                      FT/SEC
                                                                               SPAN
                                                                                          DEGREE DEGREE
    1126.4
              871.5
                      716.5
                               871.4
                                       869.2
                                                 16.5
                                                         56.29
                                                                                         27.033
                                                                     75.33
                                                                               0.0430
                                                                                                  4.614
    1092.4
                                                                                         24.170 3.855
20.947 3.204
12.371 1.471
3.463 -0.672
-1.204 -1.715
              852.7
                      707.0
                               862.7
                                                         56.52
55.75
                                       832.7
                                                 8.0
                                                                      76.07
                                                                               0.0901
    1044.9
              832.4
                      688.9
                               832.4
                                       785.6
                                                 -4.2
                                                                               0.1410
                                                                     74.51
     935.1
              715.4
                      625.6
                               715.0
                                       695.1
                                                         51.29
                                                -22.4
                                                                     64.91
                                                                               0.2939
     849.1
              625.9
                               625.
611.3
                      550.2
                                       646.8
                                                -30.4
                                                         45.04
                                                                     56,17
                                                                               0.5086
     827.2
             612.2
                      534.0
                                       631.8
                                                -32.7
                                                         43.75
                                                                     54.60
                                                                               0.6103
     832.3
              630.3
                                       620.5
                      554.7
                               629.7
                                               -28.3
                                                         45.72
                                                                     56.34
                                                                                         -3.310 -2.223
                                                                               0.6598
     841.5
             655.9
                      575.7
                               655.6
                                       613.7
                                                -18.0
                                                         47.68
                                                                     58,71
                                                                               0.7107
                                                                                          -5.064
                                                                                                  -2.758
     838.6
             671.8
                      567.9
                               671.5
                                       616.9
                                               -17.2
                                                         46.67
                                                                     58,89
                                                                               0.8620
                                                                                        -10.315 -4.308
10
     832.5
                                       638.5
656.8
             665.8
                      534.3
                               665.7
                                                         43.27
                                                -11.9
                                                                               0.9101
                                                                     57.31
                                                                                        -12-169 -4.891
     824.4
             658.5
                             658.5
WCORR
                     498.2
                                                -2.9
                                                                                        -14.768 -5.469
                                                         39.84
                                                                     55.63
                                                                               0.9571
                     WCORR
           NCORR
                                                       TO/TO PO2/PO1 PO/PO
                                                                                 EFF-AD EFF-P
           INLET
                     INLET
                             INLET
                                                       STAGE
                                                                         STAGE
                                                                                  STAGE STAGE
                   LBM/SEC KG/SEC
            RPM
                                                                                    ×
                                                                                           *
                                           1.3333 0.9704 2.3050
          13089.40 179.00
                             81.18
                                                                                  80.80
                                                                                          82.89
```

AIRFOIL AERODYNAMIC SUMMARY PRINT RUM NO 111 SPEED CODE 5 POINT NO 5

SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	W'-1	VO'-2	RHOYM-	l em	04M-5	EPSI-1	EPSI-2	
	M/SEC	M/SEC	M/SEC	M/SEC		M/SEC	M/SEC	M/SEC	M/SEC		M/SEC		KG/NZ SI	EC KG/N	12 SEC	RADIAN	RADIAN	
1		333.7	155.0		0.0		302.7	351.5			-302.7		134.78		7. 74	0.5114	120 2 (1 80	
								361.5			-322.1		142.56		0.61	0.4237		
2		322.5	167.0		0.0						-341.1		142.56		8.17	0.4237		
್ತ	178.9			184.8				371.5					162.80		3.62	0.1346		
4		276.4		167.0	0.0				- 10, 44		-390.9							
. 5		252_8		147.4	0.0				494.2		-446.3		166.49			-0.0565		
6	212.2	247.6	212.2	144.8	0.0	200.9	471.3	461.8		298.4	471.3	-260.9	166.54			-0.1235		
7	211.8	249.6	211.8	152.1	0.0	197.9	483.2	471.8	527.6	313.4	-483.2	-274.0	166.35	21(0.30	-0.1576	-0.0919	
- 8	210.2	251.6	210.2	156.8	0.0	195.8	495.0	481.9	537.8	325.4	495.0	-285.1	165.66	21	7.65	-0.1952	-0.1310	
9	200.9	246.9	200.9		0.0	199.9	529.7	512.0		344.0	-529.7	-312.0	161.34	19	9.71	-0.2987	-0.2521	
10			197.7		0.0					342.1	-540.5	-316.5	159.78	170	5.95	-0.3229	-0.2892	
11		238.8			0.0			532.0			-550.9		158.64		1.83	-0.3310	-0.3185	
	1,00 - 1	1.00.0	21 200 0 1	11.710	0.0	2050.		35240	00,45	D 12.00								
SŁ	8-1	B-2	B*-1	8'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	NFGLR	1.025.1	P P02/	ZEFF-A	TEFE-P
- JE					11-1	IT-L	M -1	11 -2			DEGREE		D Inc.	TOTAL	TOTA			TOTAL
		DEGREE			0.4704	0.083.0	1 0500	0 5770		1.61		40.72	0.5823	0.1229				
1	0.0	55.1				0.9418					10.21			0.1047				
2		54.2				0.9078			-1.35									
3		53.3	62.17			0.8633			-0.27		11.01			0.0934				
4	0.0	53.1				0.7688			0.50		11.78			0.1172				
5	0.0	54.3	64.56			0.6940			0.39	2.25	12.44	6.56		0.1751				
6	0.0	54.0	65.70			0.6765			0.57	2.30		4.95	0.5393	0.1919		7 2.354		
7	0.0	52.1	66.27	60.69	0.6686	0.6816	1.6655	0.8559	0.82	2.50	8.31	5.58	0.5202	0.1820		7 2.381		
8	0.0	51.1	66.93	60.86	0.6631	0.6863	1.6967	0.8375	1.41	2.97	7.26	6.07		0.1811				
9	0.0	53.7	69.22	64.78	0.6313	0.5651	1.7804	0.9266	2.08	3.50	6.30	4.44	0.5032	0.2357	0.031	9 2.406	3 76.08	78.81
10	0.0	57.4	69.89	67.48	0.6205	0.6490	1.8066	0.9136	1.78	3.16	6.95	2.41	0.5161	0.2772	0.033	3 2.390	0 71.98	75.15
11	0.0	61.2	70.40	70.33	0.6128	0.6331	1.8330	0.9068	1.36	2.69	7.72	0.07	0.5243	0.3116	0.032	5 2.376	6 68.70	72.21
SL	V-1	V-2	V25-1	VM-2	VO-1	VO-2	· U-ī	U-2	V'-1	V'-2	VO '-1	VO*-2	RHOVM-	I RH	0VM-2	EPSI-1	EPSI-2	PCT TE
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2S	EC LBM/I	FTZSEC	DEGREE	DEGREE	SPAN
1		1094.9		622.5	0.0						-993.2		27.60		0.74	29.304	29.553	0.0500
2	548.0	1058.0	548.0	620.3	0.0	857.1	1056.9	1186.0	1190.5	702.1	-1056.9	-328.9	29.20	5	1.33	24.275	25.725	0.1000
3		1008.7		606.4	0.0				1263.6		-1119.1		30.65		0.83	19,559	21.766	0.1500
4	669.1	907.0	669.1	548.0	0.0				1446.5		-1282.5		33.34		6.82	7.713	11.225	0.3000
5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		696.0	483.5	0.0				1621.4		-1464.4		34.10		1.37	-3.238	1.245	
6	11111	812.5	696.3	475.2	0.0						-1546.3		34.11		0.76	-7.073	-3.085	
			694.9								-1585.3		34.07		3.07	-9.027	-5.264	
7			689.7		0.0								33.93				-7.506	
8					0.0						-1624.2							
9				475.6	0.0						-1738.0-		33.04		.,		-14.444	
10		797.3	648.6		0.0	6/4.2	1//3.5	1/12.7	1888.3	1122.3	-1773.5-	-1038.5	32.72				-16.568	
11		783.5		375.1	0.0	587.9	1807.4				-1807.4-		32.49	3.	1.71	-18.958	-18.250	ひこりかび
		CI/AI	WC1/A					T	02/101	PU2/PU1	EFF-AC							
	T. L	.BM/SEC	KG/SE	C							ROTOR	ROTO	R					
		SQFT	SQM								*	*						
		40.13	195.8	L					1.3473	2.4552	84.19	85.0)4					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 5 POINT NO 5

					1.0			IL AEKODI	MARITO 2				E BOTAS				
	105	PERCENT	DESIGN .	SPEED (S	TATOR PE	RF OR MANCE	Ξ)			RUN	NO 111 SP	EED CODE	5 POIN	i NU 5			
															*		
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	PHOVM-1		VM-2		EPSI-2					
		M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE		2 SEC	PADIAN	RADIAN					
	1	342.3	250.1	212.0	250.1	268.7	5.7	270.52	362	.26	0.4713	0.0809					
	2	330.7	246.0	208.3	246.0	256.9	2.5	270.43	362		0.4201	0.0683					
	3	315.8	236.5	202.9	236.5	241.9	-2.6	267.06	353	. 80	0.3611	0.0582					
	4	286.7	207.2	186.3	207.2	217.8	-4.9	249.46	313	.32	0.2089	0.0302					
	5	263.3	184.8	165.5	184.6	204.8	-8.3	222.21	276		0.0578	-0.0070					
	6	258.6	181.3	162.	181.1	201.1	-9.7	218.87	269		-0.0185						
	7	261.0	187.0	169.6	186.9	198.5	-7.0	229.45	278		-0.0520						
	8	263.7	194.2	174.4	194.2	197.8	-3.6	236.51	288		-0.0805						
					199.5	202.2	-3.2	224.45	289		-0.1730						
	.9	262.7	199.5	167.7					283		-0.2075						
	10	261.1	198.5	157.1	198.5	208.5	-1.0	207.55									
	11	259.3	198.3	146.9	198.3	213.7	0.9	191.93	278	.35	-0.2547	-0,0942					
												. ncc n	D00 /	DG 100	TO /70	ATTE A	wree o
	SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO		ZEFF-A	
174		DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE			TOT-STG
	1	53.8	1.3	0.9705	0.6803	-0.61	2.34	15.13		0.4395		0.0404		2.5133	1.3527	85.34	87.10
	2	52.7	0.6	0.9349	0.6703	0.25	3.38	12.54		0.4283			0.9432		1.3446	87.95	89.40
	3	51.3	-0.6	0.8904	0.6452	-0.51	2.86	10.22	51.89	0.4284	0.0904		0.9638	2.5040	1.3331	89.98	91.18
	4	49.9	-1.3	0.8008	0.5621	-3.10	1.14	8.65	51.22	0.4685	0.0687	0.0174	0.9765	2.3988	1.3240	87.61	89.02
	5	51.1	-2.6	0.7258	0.4962	-2.87	2.48	7.49		0.5161		0.0181	0.9802	2.3136	1.3329	81.31	83.35
	6	51.0		0.7094	0.4852	-2.78	2.95	7.04		0.5266		0.0236	0.9759	2.2979	1.3398	78.92	81.21
	7	49.5	-2.1	0.7161	0.5008	-4.31	1.56	8.02	51 61	0.5073	0.0893		0.9742	2.3202	1.3417	79.52	
	8	48.6	-1.1	0. 7225	0.5201	-5.21	0.78	9.21	49.65	0.4836	0.0811	0.0233	0.9762		1466	79.62	
	4 5 4		-0.9	0.7225	0.5298	-5.48	0.74	11.44		0.4764		0.0257	0.9753		1.3723	74.12	76.99
	9	50.5		0.7110				13.50		0.4848		0.0281	0.9739	2.3303	1 3893	70.17	
	10	53.2	-0.3	0.7019	0.5237	-5.06	1.18		33.40 EE 61	0.4040	0.0320		0.9733	2.3303	1 4066	66.54	70.18
	11	55.9	0.3	0.6925	0.5198	-7.74	-1.60	16.70	22.01	0.4500	0.0973	0.0233	0.3/33	2.3141	1.4000	00.54	70.10
								D.101744 3	500	X P. A.	DOT TO	CDCT 3	COCK A				
	SL	V-1	V-2	VM-1	₹M-2	VO-1	V0-2	RHOVM-1			PCT TE	EPSI-1	EPSI-2				
		FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SI			SPAN	DEGREE	DEGREE				
	1	1123.0	820.7	695.7	820.5	881.6	18.8	55.41			0.0430	27.003	4.636				
	2	1085.2	807.2	683.5	807.2	842.9	8.3	55.39			0.0901	24.072	3.915				
	3	1036.1	775.9	665.9	775.9	793.8	-8.6	54.70			0.1410	20.689	3.332				
	4	940.6	680.0	611.4	679.8	714.7	-16.1	51.09	64	.17	0.2989	11.971	1.731				
	5	863.9	606.2	543.0	605.6	672.0	-27.3	45.51	56	. 61	0.5085	3.313	-0.402				
	6	848.6	594.9	533.7	594.1		-31.8	44.83		.16	0.6103	-1.058	-1.445				
٠.	7	856.5	613.6	556.4	613.1		-22.8	46.99	56		0.6598	-2.979	-1.950				
	8	855.2	637.2	572.2	637.1	648.9	-11.7	48.44		.14	0.7107	-4.612					
	9	861.8	654.5	550.2	654.4	663.3	-10.6	45.97	50		0.8620	-9.911	-4.120				
	10	856.5	651.4	515.6	651.4	683.9	-3.3	42.51		.06	0.9101		-4.747				
li.								39.31			0.9571	-14.596	-5.400				
	11	850.8	650.8	482.1	650.8	701.1	3.1	39.31 TO (TO					-5.400		13		
			NCORR	WCORR	WCORR			TO/TO	ハルノアリエ		EFF-AD						
	The state of		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
				LBM/SEC	KG/SEC						%	%					
		1	3092.60	178.80	81.09			1.3473	0.9694	2.3802	80.91	83.07					

AIRFOIL AERODYMAMIC SUMMARY PRINT
RUN NO 111 SPEED CODE 5 POINT NO 19

105	PERCENT	DESIGN	SPEED	(ROTOR	PERFOR	MANCE)				KUN	NU III	SPECO	CODE 3 1	01111 110				
							U-1	U-2	V'-1	V'-2	V0:-1	vo '-2	RHOVM-1	RHON	M-2	PSI-1		
	V-1		VM-1	VM-2	V0-1	VO-2		M/SEC	MISEC		M/SEC	M/SEC	KG/M2 SE	C KG/M2			RADIAN	
				M/SEC			M/SEC	359.8	338.2	104 8	-302.2	-72.0	133.49	239.	.35 ().5117	0.5237	
1	151.8			180.9	0.0	278.8	302.2	360.9	360.7	203.2	-321 5	-94.2	141.20	242.			0.4612	
2	163.4	321.7	163.4	180.0		266.6	321.5		382.7	205.2	-340.5		148.21	230.	.14	0.3448	0.3884	
3	174.7		174.7	169.5		255.5	340.5	3/0.9	438.7	202.0	-390.2 ·	150.3	162.14	223.	.81	0.1495	0.2018	
4	200.4 2	281.2		159.5	272	231.5	390.2	400.9	430.7	252.0	-550+E -	_220 Q	167.65	211		0.0466	0.0266	
5	212.4	265.6	212.4	148.7		220.1			493.6	200.3	-470.5	244 7	167.87	212		0.1230 -	0.0516	
6	212.9 2	262.1	212.9	148.1	0.0	215.2	470.5	461.0	516.4	200.1	-410-3	255 0	167.59	220	06 4	0.1600 -	0.0915	
	212.3	263.4	212.3	153.3	0.0	214.2	482.3	4/1.0	527.0	299.1	-482.3	-230.0	166.76	221		0.1982 -	0.1322	
8		263.9	210.4	153.5	0.0	214.7	494.2	481.0	537.1	307.4	-4 99.2 ·	-200.3		197		0.2969 -		
	200.9		200.9	138.1	0.0	220.2	528.8	511.1	565.6	321.9	-52 . 8	-290.0	162.37	179		0.3206 -		
	197.8	257.8	197.8	126.0	0.0	224.9	539.6	521.1	574.7	321.8	-539.6	-29b.1	160.84			0.3310 -		
	195.4	255.1	105 4	112.9	0.0	228.8	549.9	531.1	583.6	322.7	-549.9	-362.3	159.66	159	-92 -	0.3310 -	0.5103	
11	153.9	233.1	100.4									-			* OCC D	D02 /	%EFF-A	VCCC D
Ct	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC		F022-5			TOTAL
SL	DEGREE D								DEGREE	DEGREE	DEIGREE	DEGREE	1	TOTAL	TOTAL			94.12
		56.9	ES UL	21 50	0.4700	0.9369	1.0470	0.5489	-2.04	2.06	9.65	41 45	0.6113	0.1452	0.0286	2.7504		94.12
1	0.0	56.2		27 22	0.5077	0.9042	1.1206	0.5711	-0.88	2.84	10.04	35.02	0.6106	0.1262	0.0248	2.7134		
2	0.0	56.7		27 53	0.5077	0.8573	1.1934	0.5732	0.26	3.65	11.08	28.17	0.6270	0.1435	0.02//	2.6330		
3	0.0			AC 00	0.5770	0.7795	1 3810	0.6449	0.91	3.20	11.18	15.84	0.6107	0.1309	0.0238			91.44
4	0.0	55.7		40.50	0.6720	0.7269	1 5616	0.7288	0.31	2.17	10.44	8.48		0.1691	0.0280			
5	0.0		64.48	20.01	0.0720	0.7236	1 63/12	0.7289	0.45	2.19	8.29	7.00	0.5713	0.1827	0.0292	2.5470		85.58
6	0.0	55.3		58.59	0.0/30	0.7163	1 6671	0.7733	0.75	2.42	6.49	7.32		0.1790	0.0288	2.5736		
7	0.0		66.19	58.8/	0.0/15	0.7103	1 6077	0.0133	1.37	2.92	5.12	7.18		0.1903	0.0302	2.590		
8	0.0	54.1	66.89	59./1	0.0050	0.7153	1 7011	0.0001		3.45	5.82	4.88		0.2534	0.0349			
9	0.0			64.29	0.6326	0.6942	1.7011	0.0000	1.73	3.10	6.17	3.13	0.5609	0.2863	0.0356		72.82	76.16
10	0.0	60.4	69.83	66.70	0.6220	0.6835	1.8073	0.0333		2.66	6.76	1.00		0.3158	0.0345	2.595	3 70.15	73.81
11	0.0	63.6	70.37	69.37	0.6141	0.6718	1.8336	0.0497	1.34	2.00	0.70	1.00	0.000					
				1 1949 24			** *	0-2	V'-1	VI-2	VD 1_1	Vn 1-2	RHOVE-		IVM-2	EPSI-1	EPSI-2	
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	ET ICEC	ET ISEC	FT /SEC	FT /SEC	LBM/FT2S 27.34	EC LBM/F	TZSEC	DEGREE	DEGREE	
	FT/SEC F	T/SEC I	FT/SEC	FT/SEC	FI /SEC	FI/SEC	FI/SEC	71/3EU	1109.5	11/250	_001 5	-236 3	27.34	49	.02	29.319	30.007	
1	498.0 1	090.6	498.0	593.7	0.0	914.8	991.5	1101.1	1183.4	566 7	1055 0	-309 1			.59	24.28%	26.422	0.1006
2	536.2 1	055.6	536.2		0.0	8/4.9	1055.0	1184.0	1103.4	572.5	1117 1	-378 A			7.13	19.755	22.251	0.1500
3	573.3 1	1006.0	573.3	556.1	0.0	838.4	111/.1	1210.0	1255.6	762.0	1200.2	555 6			. 84	8.568	11.565	0.3000
4	657.6	922.6	657.6	523.4	0.0	759.8	1280.2	1315.4	1439.2	/03.3	1461 0	728 0			3.40	-2.670	1.526	0.5000
5	696.9	871.3	696.9	487.8	0.0	722.0	1461.8	1446.8	1619.4	8/3.0	-1401.0	902.0			3.48	-7.045	-2.956	0.6000
б		860.0	698.6	486.0	0.0	709.5	1543.6	1512.5	1694.3	938.6	-1343.0	202.0			5.25	-9.170	-5.242	0.6500
7		864.3	696.4	503.1	0.0	702.8	1582.5	1545.3	1729.0	981.3	-1582.5	-542.0			5.34	11 358	-7.577	0.7000
8	690.3	865.8	690.3	503.5	0.0	704.4	1621.3	1578.2	1762.1	1008.5	-1021.3	-0/3.8).51	17 012	-14.457	0.8500
9	659.1			453.1	0.0	722.6	1734.9	1676.8	1855.9	1056.3	-1/34.9	-954.2	33.25		5.73	10 360	-16.500	n. 9000
10		845.8	648.9		0.0	738.0	1770.3	1709.6	1885.5	1055.9	-1770.3	-9/1./	32.94			10.067	-18.157	0.9500
11				370.3	0.0	750.7	1804.2	1742.5	1914.7	7ء1G58	-1804.2	-991.6	32.10	. 3	2.75	-10-20/	-10-171	J. JJ00
11		C1/A1	WC1/A					1	02/T01	P02/P01	EFF-A	U EFF	-P					
		BM/SEC	KG/SE					1 Na			ROTO							
		SOFT	SOM								%							
4 E.		39.95	194.9						1.3724	2.5929	83.9	4 85.	93					
		ور و ری	7.0															

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 5 POINT NO 10

105	PERCENT	DESIGN	SPEED (S	STATOR PE	ERFORMANO	E)			RUN	NO 111 SP	EED CODE	5 POIN	T NO 10			
SL 1 2 3 4 5 6 7 8 9 10 11	V-1 M/SEC 338.9 328.1 313.1 289.6 274.7 271.9 273.8 275.1 274.8 274.7 274.3	V-2 M/SEC 216.8 212.0 206.2 186.0 178.4 178.0 181.3 187.1 194.0 195.3 198.3	VM-1 M/SEC 200.9 197.3 126.3 177.3 165.2 164.5 169.7 170.5 160.7 152.8 144.5	VM-2 M/SEC 216.7 212.0 206.2 125.9 178.4 177.8 181.1 187.0 194.0 195.2 198.2	V0-1 M/SEC 273.0 262.2 251.6 229.0 219.5 216.5 214.9 215.8 222.9 228.2 233.1	VO-2 M/SEC 3.3 -1.8 -5.8 -4.1 -4.8 -8.3 -7.6 -4.4 2.3 5.2 7.0	RHOVM- KG/M2 S 261.14 261.33 249.12 244.14 231.08 231.23 239.56 240.57 223.77 210.77 197.58	EC KG/N 338 324 326 300 285 283 288 296 299	NM-2 42 SEC 3.11 3.95 3.95 3.89 3.19 3.19 3.52 3.50 -21 7.18	RADIAN 0.4785 0.4303 0.3635 0.1956	-0.0269 -0.0368 -0.0682 -0.0803					
SL 1 2 3 4 5 6 7 8 9 10 11	B-1 DEGREE 55.8 54.8 54.7 52.6 53.1 52.8 51.7 51.7 54.3 56.4 58.6	-0.5 -1.6 -1.3 -1.5 -2.7 -2.4 -1.3 0.7 1.5	M-1 0.9585 0.9251 0.8780 0.8058 0.7546 0.7431 0.7476 0.7487 0.7379 0.7329 0.7273	0.5702 0.5549 0.4929 0.4750 0.4721 0.4206 0.4952	IMCS DEGREE 1.37 2.41 2.95 -0.39 -0.91 -1.04 -2.10 -2.12 -1.60 -1.86 -5.04	INCM DEGREE 4.33 5.54 6.32 3.86 4.45 4.70 3.77 3.87 4.62 4.38 1.10	DEV DEGREE 14.71 11.50 9.27 8.73 8.54 7.43 7.74 8.92 13.03 15.28 18.42	55.30 56.30 53.86 54.59 55.43 54.11 53.02 53.66 54.90	0.5379 0.5371 0.5330 0.5585 0.5709 0.5763 0.5671 0.5494 0.5355 0.5365	0.1389 0.0800 0.0708 0.0741 0.0894 0.0983 0.0946 0.1016 0.1087	LOSS-P TOTAL 0.0376 0.0326 0.0191 0.0179 0.0200 0.0249 0.0278 0.0272 0.0304 0.0329 0.0331	0.9410 0.9685 0.9754 0.9767 0.9725 0.9697 0.9691 0.9673	2.5539 2.5493 2.4946 2.4776 2.4757 2.4891 2.5113 2.530 2.5137	STAGE 1.3592 1.3534 1.3479 1.3409 1.3563 1.3655 1.3692 1.3763 1.4098 1.4259	*EFF-A TOT-STG 85.31 86.87 83.04 87.48 83.00 80.83 80.55 79.80 73.66 70.66 67.76	
SL 1 2 3 4 5 6 7 8 9 10 11	1112.0 1076.6 1027.2 950.2 901.3 892.1 898.3 902.5 901.5 901.2 899.9	V-2 FT/SEC 711.2 695.5 676.6 610.1 585.4 584.0 594.8 613.8 636.4 640.7 650.7 NCORR INLET RPM 3092.20	659.0 647.5 611.3 581.6 542.0 539.7 556.7 559.4 527.3 501.4 474.0 WCORR INLET LBM/SEC	VM-2 FT/SEC 711.1 695.5 676.4 610.0 585.2 583.4 594.3 613.6 636.4 650.3 WCORR INLET KG/SEC 80.73	VO-1 FT/SEC 895.6 260.1 225.5 751.4 720.1 710.3 705.1 708.2 731.2 748.8 765.0	VO-2 FT/SEC 10.9 -5.8 -18.9 -13.6 -15.6 -27.2 -25.1 -14.4 7.5 16.9 23.0	RHOVM-1 LBM/FT2SI 53.48 53.52 51.02 50.00 47.33 47.36 49.06 49.27 45.83 43.17 40.47 TO/TO I STAGE	EC LBM/F 69 68 67 61 58 59 60 61 60 60 902/P01	T2SEC 1.25 1.57 1.46 1.55 1.00 1.02 1.73 1.34 1.27 1.26 P0/P0 STAGE	0.9571 EFF-AD	DEGREE 27.418 24.655 20.826 11.206 2.993 -0.908 -2.707 -4.362 -9.995 -11.892 -14.464					

RUN NO 111 SPEED CODE 5 POINT NO 8

```
EPSI-1 EPSI-2
                                                        V*-1
                                                              V'-2 VO'-1 VO'-2
                                                                                   RHOVK-1
                                                                                              RHOVM-2
                                            U-1
                                                  U-2
SL V-1
           V-2
                 VM-1
                       VM-2
                              VO-1
                                    VD-2
                                                                                 KG/MZ SEC KG/MZ SEC
                                          M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC
                                                                                                       RADIAN RADIAN
   M/SEC
                             M/SEC M/SEC
          M/SEC
                M/SEC
                       M/SEC
                                                              194.0 -302.6 -71.3
                                                                                   133.09
                                                                                             237.28
                                                                                                       0.5120 0.5237
                                                        338.6
                                           302.6 351.3
  151.9
          333.1
                151.9
                       180.4
                               0.0
                                    280.0
                                                                                              236.06
                                                                                                       0.4249 0.4611
                                                                                   140.78
                                0.0 267.8
                                           322.0
                                                 361.4
                                                        361.2
                                                              200_0 -322_0 -93_6
2 163.5
          320.8
                163.5
                      176.7
                                                                                                       0.3462 0.3883
                                                        383.2 206.9 -341.0 -115.7
                                                                                   147.81
                                                                                             232.20
                                           341.0
                                                 371.4
                174.9
                       171.5
                                0.0
                                    255.7
   174.9
         307.9
                                                                                             222.91
                                                                                                       0.1497 0.2022
                                                                                   161.78
                                0.0 233.3 390.7
                                                 401.5 439.3
                                                              231.8 -390.7 -168.2
   200.8
         282.7
                200.8
                       159.6
                                                                                                      -0.0456 0.0274
                                    221.6
                                          446.2 441.6 494.3
                                                              265.4 -446.2 -220.0
                                                                                   167.29
                                                                                             210.72
                                0.0
   212.8
         266.7
                212.8
                       148.4
                                                              286.1 -471.1 -244.4
                                                                                   167.56
                                                                                             212.48
                                                                                                      -0.1221 -0.0508
                                                        51.7.2
                                0.0 217.2
                                          471.1
                                                 451.6
   213.5 263.2
                213.5
                       148.7
                                                                                              221.44
                                                                                                      -0.1596 -0.0907
                                           483.0 471.7 527.8
                                                              299 2 -483.0 -256.5
                                                                                   157.29
                                0.0 215.2
   212.8 264.7
                212.8
                      154.1
                                           494.9 481.7 537.9 307.3 -494.9 -265.8
                                                                                   166.47
                                                                                              221.95
                                                                                                      -0.1982 -0.1315
                                0.0 215.9
8
   210.9 265.4
                210.9
                       154.3
                                                                                              197.80
                                                                                                      -0.2981 -0.2518
                                0.0 222.0
                                           529.5
                                                 511.8
                                                        566.5
                                                              321.2 -529.5 -289.8
                                                                                   162.03
                201.3
                       138.6
   201.3
         261.7
                                                                                                      -0.3220 -0.2877
                                                              320.8 -540.3 -295.1
                                                                                   160.48
                                                                                              178.65
                                                 521.8
                                                        575.5
                198.1 125.9
                                0.0 226.8
                                           540.3
10 198.1
         259.4
                                                                                              158.13
                                                                                                      -0.3324 -0.3168
                                                                                   159.28
                                    230.7
                                           550.7
                                                 531.8
                                                        584.4
                                                              321.3 -550.7 -301.1
                195.7
                      112.0
                                0.0
   195.7
          256.5
                                                                                  D FAC OMEGA-B LOSS-P PO2/ XEFF-A XEFF-P
                                                                      DEV TURN
           B-2 B'-1 B'-2
                               M-1
                                   M-2 M'-1 M'-2 INCS
                                                              INCM
SL
    B-1
                                                       DEGREE DEGREE DEGREE
                                                                                          TOTAL
                                                                                                  TOTAL
                                                                                                         P01
                                                                                                                 TOTAL TOTAL
   DEGREE DEGREE DEGREE
                                                                                  0.6148 0.1519 0.0299 2.7483 92.93 93.86
                                                                      9.52 41.59
                63.06 21.47 0.4695 0.9370 1.0466 0.5456 -2.02
                                                               2.07
           57.1
                                                                            34.77 0.6206 0.1429 0.0281
                                                                                                         2.6973
                                                                                                                92-47 93-44
                       28.11 0.5072 0.8992 1.1202 0.5604
                                                       -0.25
                                                               2.86
                                                                     10.32
           56.8
                62.88
     0.0
                                                                                                                91.88 92.91
                                                                            28.43 0.6224 0.1374 0.0265
                                                                                                         2.5400
                                                               3.67 10.84
                       34.29 0.5446 0.8600 1.1931 0.5778
                                                         0.28
     0.0
           56.4
                 62.72
                                                                                          0.1342 0.0245
                                                                                                         2.5657
                                                                                                                 90.03 91.26
                       46.77 0.6311 0.7821 1.3808 0.6414
                                                         0.90
                                                               3.19 10.97
                                                                            15.04
                                                                                  0.6142
     0.0
           55.9
                62.81
                                                                                                         2.5428
                                                                                                                 85.26 87.05
                                                               2.15 10.37
                                                                             8.53
                                                                                  0.5929
                                                                                          0.1719
                                                                                                 0.0285
                       55.94 0.6722 0.7285 1.5614 0.7249
                                                         0.30
     0.0
           56.1
                64.47
                                                                                                         2.5544
                                                                                                                 83.66 85.65
                                                               2.16
                                                                             7.11 0.5725
                                                                                          0.1824
                                                                                                 0.0292
                       58.45 0.6744 0.7155 1.6342 0.7776
                                                         0.43
                                                                      8.16
                65.56
     0.0
           55.4
                                                                                                 0.0288
                                                                                                         2.5823
                                                                                                                83.73 85.74
                       58, 71 0, 6723 0, 7186 1, 6572 0, 8122
                                                         0.72
                                                               2,39
                                                                      5.33
                                                                             7.45
                                                                                  0.5571
                                                                                          0.1785
                66.16
     0.0
           54.1
                                                                                          0.1902 0.0303
                                                                                                         2.6011 82.44 84.61
                       59.52 0.6658 0.7180 1.6979 0.8314
                                                         1.34
                                                               2.90
                                                                      5.93
                                                                             7.34
                                                                                  0.5524
                66.86
     0.0
           54.1
                                                                                                         2.6119 75.84 78.83
                                                                             5.04
                                                                                          0.2551 0.0353
                       64.13 0.6328 0.6974 1.7809 0.8560
                                                         2.03
                                                               3.45
                                                                      5.66
                                                                                  0.5555
     0.0
           57.7
                69.17
                                                                                                         2,6081 72,70 76,07
                                                                             3.21
                                                                                  0.5643
                                                                                          0.2885 0.0359
                       66.63 0.6221 0.6862 1.8070 0.8487
                                                         1.73
                                                               3.10
                                                                      6.10
10
     0.0
           60.6
                69.83
                                                                                          0.3187 0.0348
                                                                                                        2.6037 69.96 73.66
                       69.43 0.6140 0.6738 1.8333 0.8440
                                                         1.33
                                                               2.66
                                                                      5.82
                                                                             0.94
                                                                                  0.5707
11
     0.0
           63.9
                70.37
                                                                                                       EPSI-1 EPSI-2 PCT TE
                                                                                              RHOVM-2
                                            U-1 U-2 V'-1 V'-2 VO'-1 VO'-2
                                                                                   RHOVM-1
                                    V0-2
    V-1
           V-2
                 VM-1
                       VM-2
                              V0-1
  FT/SEC LBM/FTZSEC LBM/FTZSEC DEGREE SPAN
                                                                                                       29.333 30.005 0.0500
                                0.0 918.7 992.9 1152.7 1111.0 636.4 -992.9 -234.0
                                                                                   27.26
                                                                                               48.60
   498.4 1092.8 498.4
                       591.8
                                0.0 878.6 1056.5 1185.6 1184.9 656.1-1056.5 -307.0
                                                                                    28.83
                                                                                               48.35
                                                                                                       24.343 26.421 0.1000
   536.6 1052.7
                536.6
                       579.8
                                                                                                       19.838 22.248 0.1500
                                                                                    30.27
                                                                                               47.56
                                0.0 839.0 1118.7 1218.5 1257.3 678.8-1118.7 -379.5
   574.0 1010.3
                574.0
                       562.8
                                                                                                        8.579 11.587 0.3000
                                0.0 765.5 1282.0 1317.3 1441.4 760.6-1282.0 -551.7
                                                                                    33.13
                                                                                               45.65
                658.8 523.6
   658.8 927.5
                                                                                                              1.568 0.5000
                                                                                   34.26
                                                                                               43.16
                                                                                                       -2.615
                                0.0 727.1 1463.9 1448.8 1621.9 870.7-1463.9 -721.8
   698.3
          875.1
                 698.3
                       487.1
                                                                                                       -6.998 -2.912 0.6000
                                                                                    34.32
                                                                                               43.52
                                    712.7 1545.8 1514.6 1697.1 938.7-1545.8 -801.9
                                0.0
    700.3
          863.7
                 700.3
                       487.9
                                0.0 706.1 1584.8 1547.5 1731.8 981.7-1584.8 -841.4
                                                                                               45.35
                                                                                                       -9.142 -5.199 0.6500
                                                                                    34.26
                       505.6
   698.3
          868.5
                 598.3
                                                                                               45.46
                                                                                                      -11.355 -7.535 0.7000
                                                                                    34.10
                                0.0 708.4 1623.6 1580.4 1765.0 1008.3-1623.6 -872.0
          870.7
                 692.1
                       506.3
   692.1
                                                                                                      -17.080 -14.429 0.8560
                                                                                    33.18
                                                                                               40.51
                                0.0 728.4 1737.4 1679.2 1858.7 1053.9-1737.4 -950.8
          858.6
                660.5 454.6
   660.5
                                                                                                      -18.451 -16.484 0.9000
                                                                                   32.87
                                                                                               36.59
                                0.0 744.0 1772.9 1712.1 1888.3 1052.6-1772.9 -968.1
                 650.1 413.2
   650.1 851.1
                                                                                                      -19.046 -18.150 0.9500
                                0.0 757.0 1806.7 1745.0 1917.5 1054.1-1806.7 -987.9
                                                                                    32.62
                                                                                               32.39
11 642.2 841.5
                642.2 367.6
                                              T02/T01 P02/P01 EFF-AD EFF-P
                 WC1/AL
        WC1/A1
                                                                      ROTOR ROTOR
        LBM/SEC
                KG/SEC
                                                                                %
                   SOM
         SOFT
                                                     1.3739 2.5994
                                                                      83.84
                                                                              85.85
                 194.93
         39.95
```

	105	DEDCEM	r DESIGN	SDEED /S	TATAD DE	DE OD MANO		JIL AERUDYN	AMIC SU	HYARMINI Milita	'KINI 10 111 SP	EED CODE	5 POIN	T NO R			
	TOO	PERCENT	neo tou	SPECU (S	DIMIUN TE	.nr unimili	L)		All The A	KON	10 111 3	LLU CODE	5 , 01,11	. 110 0			
	SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	RHOVM-1	RHOV	IM-2	EPSI-1	EPSI-2					
	3-	M/SEC		M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SEC			RADIAN	RADIAN					
	1	339.5	216.2	200.3	216.2	274.1	3.3	259.09	337.		0.4782	0.0809					
	2	327.1	210.6	194.1	210.6	263.3	-2.6	255.38	332.	10	0.4292						
	3	314.3	205.2	188.2	205.1	251.8	-6.3	250.85	327.		0.3620	0.0622					
	4	291.0	185.4	177.4	185.3	230.8	-3.5	243.21	298.		0.1964	0.0392					
	5	275.8	178.6	165.0	178.5	221.0	-4.1	229.96	285.		0.0523	0.0015					
	6	273.0	178.2	165.1	178.0	217.5	-8.6	231.34	283.		-0.0159						
	7	275.1	181.5	170.4	181.3	215.9	-7.5	239.93	288.		-0.0470						
	8	276.5	187.4	171.3	187.3	217.1	-4.1	241.01	296.		-0.0754	-0.0368					
	9	276.5	194.2	161.2	194.2	224.6	1.8	223.70	299.		-0.1723						
	10	276.2	195.4	152.9	195.3	230.0	5.0	210.20	296.		-0.2054						
	11	275.6	198.3	144.0	198.1	235.1	7.6	196.14	296.		-0.2504						
	IT	2/3.0	130.3	144.0	130.1	233.1	7.0	130.14	430.	.40	-0.2304	-0.0333					
	SŁ	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	TO/TO	%EFF-A	¥FFF-P
	3-	DEGREE	DEGREE			DEGREE	DEGREE		EGREE	5	TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
	1	56.0		0.9583	0.5798	1.55	4.51			0.5409		0.0360	0.9303	2.5568	1.3600		87.16
	2	55.4	-0.7	0.9197	0.5650	2.95	6,08			0.5413	0.1251	0.0293	0.9474	2.5550	1.3541	86.73	88.35
	3	54.5	-1.7	0.8806	0.5512	2.68	6.05	9.10	56.20	0.5386	0.0827		0.9673	2.5527	1.3475		89.71
	4	52.8	-1.1	0.8082	0.4960	-0.19	4.06			0.5637	0.0729	0.0184	0.9746	2.4993	1.3428	87.20	88.72
	5	53.3	-1.3	0.7561	0.4742	-0.69	4.66			0.5731		0.0192	0.9776	2.4859	1.3581	82.93	84.95
	6	52.8	-2.8	0.7449	0.4716	-1.01	4.73			0.5787	0.0870	0.0243	0.9732		1.3665	80.95	83.21
	7	51.7	-2.4	0.7497	0.4801	-2.09	3.78		54.08	0.5693	0.0968	0.0274	0.9700	2.4977	1.3701	80.68	82.98
	8	51.7	-1.2	0.7514	0.4950	-2.10	3.90	9.02	52.95	0.5515	0.0945		0.9705		1.3781	79.87	82.29
	9	54.4	0.5	0.7314	0.5075	-1.49	4.73			0.5398	0.1034	0.0309	0.9684	2.5287	1.4122		76.72
	10	56.6	1.4	0.7355	0.5077	-1.69	4.55		55.12	0.5408	0.1102	0.0334	0.9667		1.4283	70.53	74.05
	11	58.9	2.2	0.7292	0.5123	-4.76	1.38			0.5367	0.1084	0.0332	0.9677		1.4464	67.59	71.45
	11	20.3	4.6	0.1636	0.5123	-4.70	1.50	10.00	30.03	0.5507	0.1001	0.0552	0.2077	C.JCOI	1. 1701	005	, 4.0
	SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	RHOV	/M-2 F	CT TE	EPSI-1	EPSI-2				
		FT/SEC		FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SEC			SPAN	DEGREE	DEGREE				
	1	1113.9	709.5	657.2	709.4	899.4	10.8	53.06	69.		0.0430	27.401	4.635				
	2	1073.3	690.9	637.0	690.8	863.9	-8.7	52.30	68.		0.0901	24.591	3.971				
Ż.	3	1031.3	673.3	617.4	673.0	826.1	-20.8	51.38	67.		0.1410	20.742	3.561				
	4	954.9	608.1	581.9	608.0	757.1	-11.3	49.81	61.		2989	11.254	2.246		100		
	5	905.0	585.8	541.5	585.7	725.1	-13.6	47.10	58.	51	0.5086	2.999	0.087				
	6	895.8		541.6	583.9	713.5	-28.2	47.38	58.		0.6103	-0.909	-1.006				
	7	902.5	595.4	559.1	594.9	708.4	-24.7	49.14	59.		0.6598		-1.539				
	8	907.3	614.8	562.1	614.7	712.2	-13.4	49.36	60.		0.7107	-4.322	-2.107				
	9	907.1	637.2	528.9	637.2	736.9	6.0	45.81	61.		0.8620	-9.873	-3.912				
	10	906.3	641.1	501.8	640.9	754.7	16.4	43.05	60.			-11.766	-4.605				
	11	904.4	650.6	472.4	650.1	771.2	25.0	40.17	60.			~14.345	-5.359				
	7.1	304.4	NCORR	WCORR	WCOPR	//1.2	23.0	TO/TO PO			EFF-AD		-3.333				
	=		INLET	INLET	INLET			STAGE	CALOX	STAGE		STAGE					
				LBM/SEC	KG/SEC			JINUL		SIMUL	31AGE	31NGC					
			13089.40		80.73			1.3739 0	9691	2 5165	80.61	82 . 93					
			12003.40	1/0.00	00.75			1.3/33 0	. 3001	5* 3T 02	00.01	02.33					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 111 SPEED CODE 5 POINT NO 6

																	•		
	12	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V1-2	V0 '-1	VO:-2	RHOVM-	L RHO	/M-2	EPSI-1	EPSI-2	
	JL	M/SEC	M/SEC	M/SEC								M/SEC		KG/M2 S			RADIAN	RADIAN	
		154.3	333.3	154.3	184.7					3397		-302.7		134.53	242.		0.5118	0.5178	
23	2	166.1	321.0		183.2		263.6			362.3		-322.0		142.15	244.		0.4242	0.4524	
	3	177.6	307.0	177.6	177.0	0.0	250.8	341.0	371.4	384.5	214.2	-341.0	-120.6	149.13	238.	.89	0.3435	0.3819	
	4	202.9	279.0	202.5	162.9	0.0	226.5	390.8	401.5	440.3	239.1	-390.8	-175.0	162.54	225.	.80	0.1432	0.1981	
	5	213.3	260.9		149.0				441.6			-446.2		167.23	208.	56	0.0498	0.0246	
			256.4		147.3	0.0		471.2		517.4		-471.2		167.40	206		0.1226		
100	υ					1, 1777													
	1	213.1	258.1		153.4	0.0			471.7			-483.1		167.16	216.		0.1590		
	8		259.5			0.0		494.9	481.7			494.9		166.37	220.		0.1977		
	9	201.4	255.0	201.4	140.7	0.0	212.6	529.6	511.8	566.6	330.6	-529.6	-299.2	161.83	197.	.41 -	0.3001	-0.2523	
4	10	198.2	251.6	198.2	126.3	0.0	217.6	540.4	521.9	575.6	329.5	-540.4	-304.3	160.25	175.	.82 -	0.3234	-0.2890	
			248.5			0.0					330.0			159.10	155.	64 -	0.3315	-0.3182	
4.	••	133.3	270.5	133.3		0.0	LL1.0	550.7	331.3	30123	550.0	330.7	210.0	103.10	155,		0.0020	0.0102	
	C1	B-1	0.0	01.1	פוס	м 1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	NME'CA D	LOSS-F	0027	XEFF-A	ALCE D
			B-2		B'-2	M-1	m-2	M -T	m -Z					D FAC					
			DEGREE								DEGREE				TOTAL	TOTAL			TOTAL
	1	0.0	56.1				0.9390			-2.38		9.70	41.04	0.6001		0.0265			
	2	0.0	55.3				0.9018			-1.21		10.42		0.5991		0.0229			
	3	0.0	55.0	62.35	34.50	0.5534	0.8594	1.1980	0.5996	-0.09	3.30	11.05		0.6034			2.622		
	4	0.0	54.5	62.54	47.31	0.6383	0.7738	1.3852	0.6632	0.64	2,92	11.50	15.23	0.5963	0.1224	0.0221	2.516	7 90.58	91.71
	5	0.0	55.1	64.43			0.7144			0.26	2.11	11.16	7.71		0.1701	0.0276	2.465	7 84.93	86.70
	6	0.0	54.7	65.54			0.6985			0.41	2.14	9.16	6.09		0.1853	0.0288			
	7	0.0	53.2				0.7026			0.69	2.36	7.19	6.56			0.0282			85.17
	-															0.0290			84.52
	8	0.0	52.7				0.7046			1.31	2.86	6.46							
	9	0.0					0.6824			2.03	3.45	6.04		0.5340			2.516		78.59
	LO .	0.0	59.6				0.6681			1.73	3.11	6.69		0.5445		0.0348			75.43
	L 1 , '	0.0	62.9	70.36	69.93	0.6145	0.6554	1.8337	0.8702	1.31	2.65	7.32	0.43	0.5512	0.3174	0.0338	3 2.498	69.25	72.88
		V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	VO -1	VO'-2	RHOVM-1			EPSI-1	EPSI-2	PCT TE
	ı	T/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SI	EC LBM/FT	T2SEC	DEGREE	DEGREE	SPAN
			1093.5	506.4		0.0					652.9			27.55	49.		29.324	29.668	0.0500
			1053.2		601.1						681.5-			29.11	50.			25.922	
	3		1007.2	582.6	580.7	0.0					702.7-			30.54	48.			21.882	
10																			
	4		915.3	665.8	534.5	1.0					784.5			33.29	46.			11.350	
		699.8	855.9	699.8		0.0					892.4-			34.25	42.		-2.852	1.411	
	6	701.1	841.3	701.1	483.2	0.0					957.1-			34.28	42.			-2.957	
	7	699.3	846.8	699.3	503.3	0.0	681.0	1584.9	1547.7	1732.4	1002.2-	1584.9	-866.7	34.24	44.	.40	-9.108	-5.181	0.6500
	8	693.3	851.3	693.3	511.6	0.0	680.4	1623.8	1580.6	1755.7	1035.4-	-1623.8	-900.2	34.07	45.	.23 -	11.327	-7.480	0.7000
	9	660.9	836.5	660.9	461.5	0.0					1084.8-			33.14	40.	43 -	17.192 -	-14.457	0.8500
٠,		650.3	825.4		414.4	0.0	713 0	1773 1	1712 3	1888 =	1081.0-	1777 1	-998 A	32.82	36.			-16.559	
		642.7		642.7							1082.7-			32.59	31.			-18.230	
. 1	1			WC1/A1		0.0	161.6	1001.0							31.	.90 -	10.334 -	-10.230	0. 3500
			C1/A1							16/1UI	P02/P01								
			BM/SEC	KG/SEC								ROTOR		IK					
			SOFT	SQM								%	*	_					
			40.08	195.59						.3616	2.5340	84.06	85.9	9					

109	PERCENT	DESIGN	SPEED (STATOR PE	ERFORMANI		ore nemocin	mine su	RUN I	10 111 SP	EED CODE	5 POIN	т но б			
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	RHOVI		FPS1_1	EPSI-2					
J.	M/SEC	M/SEC		M/SEC	M/SEC	M/SEC				RADIAN						
1	340.7	231.5		231.5	271.5	4.5		350.3			0.0814					
2	328.2	226.3	—	226.3	259.1	0.3	253.82	347.			0.0696					
3	314.3	218.3		218.3	246.9	-4.2		339.1			0.0608					
4	288.2	195.5		195.4	224.0	-4.2	246.35	307.0	39		0.0347					
5	270.5	181.7		181.6	213.5	-5.1		282.8			-0.0027					
- 6	266.6	179.1		178.9	210.1	-9.0		276.		-0.0160						
7	268.9	183.1		183.0	208.2	-7.0	235.42	282.8		-0.0474						
8	270.9	189.6	173.0	189.6	208.4	-3.9		292.3	31	-0.0750	-0.0396					
9	270.1	195.7		195.7	215.0	-0.7	223.01	294.0		-0.1696						
10	268.9	195.6	153.6	195.6	220.7	2.1		289.4		-0.2051						
11	268.2	197.4	144.6	197.3	225.9	4.3	193.11	287.3		-0.2529						
SL	B-1	B-2	M-1	M-2	INCS	INCM		TURN [D-FAIC	OMEGA-B		P02/	PO/PO	TO/TO	zeff-A	%EFF-P
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE D	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE		TOT-STG
1	55.0	1.1	0.9636	0.6247	0.51	3.47			0.4946	0.1629		0.9270	2.5427	1.3565	85.65	87.40
2	53.9	0.1	0.9253	0.6117	1.44	4.57		53.79			0.0291	0.9475	2.5467	1.3482	87.86	89.34
3	53.0		0.8829	0.5903	1.24	4.61			0.4903	0.0844	0.0202	0.9666	2.5305	1.3406	89.12	90.43
4	51.4	-1.2		0.5265	-1.60	2.64).51 B5		0.0156		2.4609		87.97	89.38
5	52.1		0.7437	0.4850	-1.83	3.53			5461	0.0654		0.9800	2.4150	1.3465	82.61	84.61
6 7	52.0 50.7	- <u>₹</u> .9 -2.2		0.4764 0.4870	-1.81	3.93			.5580	0.0861	0.0240	0.9743	2.4031	1.3547	80.20	82.46
8	50.3	-1.2		0.5038	-3.05 -3.52	2.82 2.48	7.96 9.09	52.93 C	5454	0.0949	0.0268	0.9/15	2.4188	1.3579	80.15	82.43
9	52.9	-0.2		0.5147	-3.07	3.15		53.07		0.0930	0.0238		2.4481		79.74	82.10
10	55.4	0.6			-2.90	3.34		54.76).5207		0.0276			1.4114	73.71 70.30	76.76 73.73
11	57.8	1.2		0.5129	-5.87	0.27		56.53		0.0986	0.02.50	0.9717	2.4334	1 4203	67.10	70.88
	57.0	***	0.7166	0.5125	9.07	0.27	12.05	30:33 0	J. JLUT	0.0500	0.0352	0.3/1/	2.4204	1.4233	07.10	70.00
SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	RHOVM-1	RHOVM	1-2 P	CT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC		FT/SEC	FT/SEC	FT/SEC	LBM/FT2SEC			SPAN	DEGREE	DEGREE				
1	1117.7	759.6	674.9	759.4	891.0	14.9	54.24	71.7		.0430	27.072	4.665				
2	1076.7	742.6	660.7	742.6	850.2	0.9	54.03	71.2	23 0	.0901	24.170	3.986				
3	1031.1	716.3	637.7	716.2	810.2	-13.9	52. <i>7</i> 9	69.4		.1410	20.583	3.482				
4	945.6	641.4	594.9	641.2	734.9	-13.9	50.45	62.8		.2989	11.501	1.990				
5	887.6	596.1	545.1	595.8	700.5	-16.8	46.70	57.9		.5086	3.110	-0.154				
6	874.9	587.7	538.6	587.0	689.4	-29.4	46.31	56.6		.6103	-0.916					
7	882.1	600.9	558.1	600.4	683.1	-23.0	48.22	57.9	3 0	.6598	-2.715	-1.725				
8	888.8	622.1	567.7	622.0	683.9	-12.7	49.08	59.8	37 0	.7107	-4.298	-2.270				
9	886.1	642.0	536.3	642.0	705.4	-2.3	45.67	50.2	2 0	.8620	-9.718					
10	882.2	641.7	503.9	641.7	724.1	5.7	42.43	59.2			-11.753					
11	879.9	647.6 VCORR	474.3 WCORR	647.4	741.1	14.0	39.55	58.8			-14.490	-5.355				
		INLET	INLET	WCORR INLET			TO/TO PO		TAGE	EFF-AD					5	
		RPM	LBM/SEC	KG/SEC			SINGC	3	INOC	STAGE %	STAGE %					
	1.		178.60	81.00			1.3616 0	9690 2	4579	80.94	83.16					
	ı.		110.00	01.00			TANDARD OF	2 5000		00.71	00.10					

DATA TAKEN PRIOR TO DETERIORATION

AIRFOIL AERODYNAMIC SUMMARY PRINT 100 PERCENT DESIGN SPEED (ROTOR PERFORMANCE) RUN NO 101 SPEED CODE 10 POINT NO 8 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 V-1 V-2 VM-1 VM-2 VO-1 V0-2 U-1 PHOVM-2 EPSI-1 EPSI-2 M/SEC H/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN 0.5123 0.5167 148.3 148.3 319.9 183.1 0.0 262.3 288.4 334.8 324.3 196.9 -288.4 -72.5 130.45 231.40 209.0 -306.9 -100.3 0.4254 0.4508 159.4 305.3 159.4 183.4 0.0 244.1 306.9 344.4 345.8 137.96 235.65 220.9 -324.9 -126.2 0.3450 0.3798 170.3 291.1 170.3 181.3 0.0 227.7 324.9 353.9 366.9 144.89 236.24 244.9 -372.4 -180.2 0.1421 0.1955 193.8 202.4 372.4 382.6 419.8 158.15 220.61 193.8 261.6 165.8 0.0 202.2 243.7 202.2 152.5 0.0 190.0 425.2 420.8 470.8 276.6 -425.2 -230.8 162.32 203.45 -0.0516 0.0198 -0.1195 -0.0567 143.4 449.0 439.9 492.4 291.6 -449.0 -253.9 162.31 191.02 202.1 234.9 202.1 0.0 186.1 162.21 -0.1493 -D.0943 303.8 -450.3 -267.3 502.6 193.19 201.9 232.5 201.9 144.5 0.0 182.2 460.3 449.5 201.0 233.2 201.0 149.6 0.0 178.8 471.6 459.0 512.7 317.7 -471.6 -280.2 161.79 201.45 -0.1821 -0.1317 344.2 -504.6 -309.6 158.55 203.52 -0.2832 -0.2491 194.6 233.1 194.6 150.4 0.0 178.1 504.6 487.7 540.8 339.4 -514.9 -310.6 157.17 -0.3106 -0.2857 191.9 231.5 191.9 136.9 514.9 497.3 549.5 183.13 0.0 186.7 -0.3242 -0.3158 189.7 122.6 524.8 506.8 558.0 338.2 -524.8 -315.2 155.99 162.75 189.7 227.5 0.0 191.6 D FAC OMEGA-B LOSS-P 14'-2 DEV TURN P02/ XEFF-A XEFF-P B-1 B-2 B'-1 B'-2 M - 111-2 M'-1 INCS INCM DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL POI TOTAL TOTAL 0.5767 0.1306 54.8 62.51 21.42 0.4571 0.9077 0.9997 0.5587 -2.57 1.52 9.47 41.09 0.0257 2.5086 93.69 94.44 0.0 0.0948 95.32 62.36 28.77 0.4930 0.8652 1.0695 0.5924 -1.372.35 10.98 33.59 0.5624 0.0185 2.4428 94.70 27.15 35.05 0.5286 0.8239 1.1386 0.6252 11.60 0.5506 0.0706 0.0135 2.3796 95.49 96.00 -0.233.16 0.0 51.7 62.21 47.62 0.6064 0.7347 1.3138 0.6878 0.0853 0.0153 2.2633 92.95 93.71 0.0 50.9 62.49 0.58 2.87 11.82 14.86 0.5477 56.48 0.6347 0.6769 1.4783 0.7685 60.31 0.6347 0.6487 1.5461 0.8051 2.23 0.1400 0.0229 2.2018 86.61 88.00 64.55 0.38 10.92 8.07 0.5304 84.74 0.55 10.02 5.38 0.5208 0.1701 0.0258 2.1722 0.0 52.1 65.69 61.34 0.6340 0.6415 1.5781 0.8381 2.1725 84.70 51.3 0.78 2.46 8.96 4.88 0.5052 0.1669 0.0249 82.96 0.0 66.22 61.58 0.6310 0.6431 1.6090 0.8764 1.28 2.83 7..98 5.22 0.4866 0.1564 0.0234 2.1900 83.76 85.43 0.0 49.7 65.80 63.76 0.6091 0.6384 1.6931 0.9427 0.0250 82.93 1.67 3.09 5.29 5.05 0.4655 0.1780 2.2248 80.93 49.4 68.81 65.93 0.6001 0.6282 1.7186 0.9209 1.36 0.2312 0.0296 2.2219 75.59 10 0.0 53.4 69.46 2.73 5.40 3.53 0.4868 0.98 0.4981 0.2697 0.0306 2.2103 71.73 74.66 57.2 70.02 68.57 0.5926 0.6126 1.7437 0.9109 2.31 5.96 1.45 V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 PCT TE FT/SEC LBM/FT2SEC LBM/FT2SEC DEGREE DEGREE SPAN 29.351 29.606 0.0500 0.0 860.7 946.2 1098.5 1063.9 646.0 -946.2 -237.8 47.39 486.5 1049.6 486.5 600.7 25.72 24.375 25.828 0.1000 800.7 1006.8 1129.9 1134.5 685.8-1006.8 -329.1 28.25 48.26 522.9 1001.6 522.9 601.7 0.0 747.1 1066.1 1161.2 1203.5 724.7-1066.1 -414.1 29.67 48.38 19.764 21.763 0.1500 558.8 955.0 558.8 594.8 0.0 664.0 1221.8 1255.3 1377.3 803.5-1221.8 -591.3 8.140 11.202 0.3000 635.8 858.3 635.8 543.9 0.0 32.39 45.18 907.6-1395.0 -757.2 1.136 0.5000 623.5 1395.0 1380.7 1544.7 33.24 41.67 -2.955 663.3 799.5 663.3 500.5 0.0 610.5 1473.1 1443.4 1615.5 956.7-1473.1 -832.9 33.24 39.12 -6.847 -3.251 0.6000 663.2 770.8 563.2 470.7 0.0 662.5 474.0 597.9 1510.2 1474.8 1649.2 996.8-1510.2 -876.9 33.22 39.57 -8.555 -5.404 0.6500 662.5 763.0 0.0 33.14 -10.432 -7.544 0.7000 765.0 659.6 491.0 586.6 1547.3 1506.1 1682.0 1042.4-1547.3 -919.5 41.26 659.6 0.0 0.0 584.3 1655.7 1600.2 1774.5 1129.4-1655.7-1015.9 0.0 612.6 1689.5 1631.6 1803.0 1113.6-1689.5-1019.0 32.47 -16.226 -14.272 0.8500 638.3 764.8 638.3 493.4 41.68 759.7 32.19 37.51 -17.793 -16.369 0.9000 629.6 629.6 449.3 0.0 628.6 1721.8 1662.9 1830.8 1109.8-1721.8-1034.3 -18.575 -18.096 0.9500 31.95 33.33 622.3 746.4 622.3 402.4 TO2/TO1 PO2/PO1 EFF-AD EFF-P WC1/A1 WC1/A1 LBM/SEC KG/SEC ROTOR ROTOR SOM * 1 SQFT 38.98 1.3036 2.2591 86.34 87.80 190.22

DATA TAKEN PRIOR TO DETERIORATION

AIRFOIL AERODYNAMIC SUMMARY PRINT

100 PERCENT DESIGN SPEED (STATOR PERFORMANCE) RUN NO 101 SPEED CODE 10 POINT NO 8 SŁ V-1 V-2 VM-1 VM-2 VO-1 V0-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC 251.0 M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN 0.4703 0.0808 0.4184 0.0679 329.0 205.7 251.0 256.8 0.0 253.84 340.18 0.0 254.88 0.0 254.46 0.0 240.86 314.1 247.2 202.7 247.2 240.0 342.86 224.2 200.2 189.5 300.1 237.5 199.5 237.5 334.64 0.3556 0.0584 211.3 197.8 272.8 185.3 211.3 0.1999 0.0314 0.0513 -0.0077 301.87 0.0 222.76 0.0 211.17 255.1 170.8 197.8 281.13 -0.0261 -0.0279 -0.0647 -0.0376 -0.0989 -0.0475 -0.1936 -0.0745 186.3 182.7 179.7 247.0 191.8 162.2 191.8 270.17 192.4 196.5 163.8 169.0 0.0 214.04 0.0 221.98 270.91 276.70 245.4 192.4 8 246.6 195.5 0.0 227.15 0.0 211.90 9 250.0 206.2 173.1 206.2 180.4 285.25 164.1 155.1 189.8 195.5 10 250.9 207.2 207.2 -0.2226 -0.0848 -0.2629 -0.0952 280.88 11 249.5 206.2 206.2 0.0 198.01 274.30 SL B-1 B-2 INCS DEGREE DEV DEGREE M-1M-2 INCM TURN D-FAC OMEGA-B LOSS-P P02/ PO/PO TO/TO XEFF-A XEFF-P DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 STAGE STAGE TOT-STG TOT-STG 53.4 13.86 11.97 53.42 0.4098 1 0.0 0.9380 0.6911 -1.031.92 0.1842 0.0424 2.3060 0.9204 1.3200 84.23 2.22 -0.90 -2.22 51.5 0.0 0.8942 0.6836 51.51 0.3842 0.1155 0.0271 0.9534 2.3238 1.3058 39.07 90.28 0.0 0.8531 0.6579 0.0 0.7697 0.5826 49.6 10.84 49.56 0.3799 0.0809 0.0193 2.3016 1.2935 91.60 0.9696 47.6 -5.41 -1.1610.00 47.57 0.4068 0.0594 0.0150 0.9808 2.2166 1.2830 90.21 91.23 48.0 0.0 0.7117 0.5410 48.01 0.4239 0.0407 -5.96 -0.61 10.07 0.0110 0.9884 2.1732 1.2927 84.83 86.38 б 49.0 0.0 0.6850 10.10 48.95 0.5222 -4.85 0.89 0.4339 0.0433 0.0121 0.9884 2.1450 1.2993 81.38 83.25 0.0 0.6800 0.5239 0.0 0.6837 0.5356 7 48.1 -5.55 0.23 10.15 48.14 0.4280 0.0495 0.0140 0.9868 2.1456 1.2990 8 46.8 46.81 0.4141 0.0542 0.0156 0.9854 46.42 0.3933 0.0797 0.0239 0.9783 -7.00-1.00 10.26 2.1593 1.2997 82.06 83.88 0.0 0.6889 0.5598 9 46.4 12.36 -9.52 -3.30 2.1762 1.3167 78.55 80.73 10 49.5 0.0 0.6853 0.5581 -8.79 -2.55 13.78 49.47 0.4051 0.0973 0.0295 0.9738 2.1639 1.3373 73.15 75.86 11 52.0 0.6770 0.5518 0.0 -11.58 -5.44 16.43 52.05 0.4172 0.1165 0.0357 0.9692 2.1425 1.3541 V-1 SL V-2 VM-1 VM-2 VO-1 V0-2 RHOVM-1 RHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 674.8 1079.4 823.6 823.6 842.5 0.0 51.99 69.67 0.0430 26.948 4.628 1030.7 787.4 735.7 656.7 0.0 52.20 52.12 49.33 811.0 665.1 811.0 70.22 0.0901 0.1410 23.973 3.890 779.3 693.2 654.4 608.1 779.3 693.2 984.6 68-54 20.373 3.344 895.0 0.0 61.83 0.2989 11.452 1.797 45.62 43.25 837.0 649.0 560.3 649.0 621.8 57.58 0.0 0.5086 2.938 -0.442 810.5 629.2 532.2 611.2 55.33 6 629.2 0.0 0.6103 -1.495 -1.596 7 805.1 631.1 537.3 631.1 599.5 0.0 43.84 55.48 -3.709 -2.157 0.6598 809.2 0.0 45.46 0.0 46.52 0.0 43.40 8 644.6 554.3 644.6 589.6 0.0 56.67 0.7107 -5.667 -2.722 -11.093 -4.270 568.0 538.3 508.9 591.9 9 820.4 676.4 676.4 58.42 0.8620 679.7 10 823.1 679.7 622-8 57.53 0.9101 -12.752 -4.859 0.0 40.55 11 818.7 676.6 676.6 -15.065 -5.454 641.4 56.18 0.9571 TO/TO PO2/PO1 PO/PO EFF-AD EFF-P STAGE STAGE STAGE STAGE NCORR WCORR **WCORR** INLET INLET INLET LBM/SEC KG/SEC RPM 1.3036 0.9750 2.2027 83.35 % 12456.19 173.70 78.78 85.08