Chapitre 9 : fonctions du second degré Seconde 11

1 Étude de la fonction carré

Nous allons étudier la **fonction carré** définie sur $\mathbb R$ comme :

$$f: x \mapsto x^2$$
.

On peut aussi dire que pour tout nombre réel x, $f(x) = x^2$.

1.1 Courbe représentative

FIGURE 1 – Courbe représentative de la fonction carré dans un repère orthonormé.

Remarque : La courbe représentative de la fonction carré est une parabole.

Symétrie : On a, pour tout nombre réel $(-x)^2 =$. Donc les points $M(x;x^2)$ et $M'(x;(-x)^2)$ sont .

1.2 Signe et variation

Proposition 1 *Quel que soit* $x \in \mathbb{R}$, x^2 *est positif.*

Proposition 2 Sur $[0; +\infty[$ la fonction carré est strictement croissante, c'est à dire que, pour tout $0 \ge a < b, a^2 < b^2$.

Sur] $-\infty$; 0] la fonction carré est strictement décroissante, c'est à dire que, pour tout $a < b \le 0$, $a^2 > b^2$.

On synthétise ces informations dans le tableau de variation suivant :

1.3 Comparer des carrés

Enonçons une conséquence des variations de la fonction carré.

Théorème 1 $Si \ 0 \le a < b$, $alors \ a^2 < b^2$.

$$Si \ 0 \ge a > b \ alors \ a^2 < b^2.$$

Remarque : Pour se rappeler du théorème on raisonne directement sur le tableau de variation ou la courbe représentative. Exemple dans le cas $a < b \le 0$

Exemples: Comparer les carrés des nombres suivants sans calculatrice

- 1. 2 et 4.
- 2. -1 et -2.
- 3. $10^{45} 27$ et $10^{46} 27$.
- 4. $-11 10^{-44}$ et $-11 10^{-43}$.

1.4 Utiliser la courbe pour résoudre une inéquation

Nous nous intéressons ici à la résolution de l'inéquation :

$$x^2 \le 4$$
.

2

Utiliser la courbe pour résoudre une inéquation (version enseignant)

Nous nous intéressons ici à la résolution de l'inéquation :

Méthode : On cherche tous les points de la parabole dont l'ordonnée est inférieure ou égale à 4. Pour cela on trace la droite d: y = 4. Elle coupe la parabole en deux points de coordonnées (2;4) et (-2;4). On relève les abscisses des points de la parabole qui sont **en dessous** de la droite. Et on en déduit :

$$\mathcal{S} = [-2; 2].$$

A l'aide de la représentation graphique ci-dessous, résoudre l'inéquation suivante :

1.
$$x^2 \ge 2$$
.

1.5 Résoudre des équations à l'aide de la fonction carré

Théorème 2 Soit k un nombre réel. On considère l'équation

$$x^2 = k$$
.

Cette équation a :

- 0 solution si k < 0, $S = \emptyset$.
- 2 solutions si k > 0, $S = \{-\sqrt{k}; \sqrt{k}\}.$
- 1 solution si k = 0, $S = \{0\}$.

Exemples : Résoudre dans $\mathbb R$ les équations

- $-x^2 = 4$.
- $-x^2 = 2.$

2 Fonctions polynômes du second degré

2.1 Généralités

Définition 1 Une fonction polynôme du second degré est une fonction définie pour tout x de \mathbb{R} par une expression du type $f(x) = ax^2 + bx + c$ où a, b et c sont des nombres réels, et $a \neq 0$.

Exemples:

Dire si les fonctions suivantes sont ou non des fonctions polynômes du second degré, et, si c'est le cas, préciser les valeurs de a, b, c:

$$-- f(x) = 5x^2 + 3x + 2.$$

$$-h(x) = x^2 - 2x + 1.$$

$$- i(x) = 3x - 8.$$

$$--j(x) = 3x^2.$$

$$--k(x) = (x-1)(2x+2).$$

$$-l(x) = 2(x-1)^2 + 2.$$

2.2 Représentation graphique

Remarque : La courbe représentative d'un polynôme du second degré est une symétrique par rapport à la droite d'équation .

2.3 Sens de variation

x	$-\infty$	+∞
f		

Cas a > 0, f admet un minimum sur \mathbb{R} atteint en

x	$-\infty$	+∞
f		

Cas a < 0, f admet un maximum sur \mathbb{R} atteint en

2.4 Forme développée, forme canonique, forme factorisée

Définition 2 On dit qu'une fonction polynôme du second degré f est sous la forme :

- 1. développée si $f(x) = ax^2 + bx + c$.
- 2. canonique si $f(x) = a(x \alpha)^2 + \beta$.
- 3. factorisée si $f(x) = a(x x_1)(x x_2)$.

Exemple : Vérifier que la forme canonique de $f(x) = 3x^2 + 3x - 6$ est donnée par $3(x + \frac{1}{2})^2 - \frac{27}{4}$ et que la forme factorisée est donnée par 3(x - 1)(x + 2).

Proposition 3 *Une fonction polynôme du second degré admet toujours une forme canonique. De plus les coefficients* α *et* β *sont liés à ceux de la forme développée :*

$$-\alpha = \frac{-b}{2a}.$$

$$-\beta = f(\frac{-b}{2a}) = \frac{-b^2}{4a} + c.$$