10/581403

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年6月23日(23.06.2005)

PCT

(10) 国際公開番号 WO 2005/057070 A1

(51) 国際特許分類7:

F16L 9/02

(21) 国際出願番号:

PCT/JP2004/018858

(22) 国際出願日:

2004年12月10日(10.12.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-411285

2003年12月10日(10.12.2003)

(71) 出願人 (米国を除く全ての指定国について): JFE スチール株式会社 (JFE STEEL CORPORATION) [JP/JP]; 〒1000011 東京都千代田区内幸町二丁目2番 3号 Tokyo (JP).

(72) 発明者; および

- (75) 発明者/出願人 (米国についてのみ): 鈴木 信久 (SUZUKI, Nobuhisa) [JP/JP]; 〒2100855 神奈川県川 崎市川崎区南渡田町1番1号 JFE技研株式会社内 Kanagawa (JP). 正村 克身 (MASAMURA, Katsumi) [JP/JP]; 〒1000011 東京都千代田区内幸町二丁目2番 3号 JFEスチール株式会社 知的財産部内 Tokyo (JP).
- (74) 代理人: 落合 憲一郎 (OCHIAI, Kenichiro); 〒1000005 東京都千代田区丸の内一丁目1番2号 JFEテクノリ サーチ株式会社 特許出願部内 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,

/続葉有]

- (54) Title: METHOD OF DETERMINING STRAIN HARDENING CHARACTERISTICS OF LINE PIPE
- (54)発明の名称:ラインパイプの歪硬化特性決定方法

- A. CLIENT (PIPELINE FIRM) \$1. PROJECT SCALE (TRANSPORTATION AMOUNT:Q.
- TRANSPORTATION DISTANCE:L)
- 1. SYSTEM DESIGN B. OPERATION COST
- O OPERATION PRESSURE
- D. PIPE DIAMETER
 C. CONSTRUCTION COSTS
- D. PIPE DIAMETER 1.PIPE THICKNESS TS .MATERIAL GRADE (YIELD STRENGTH)
- J .DETERMINE TS, D, t, p (MINIMUM COSTS)
- 2 .STRUCTURE DESIGN A LAYING LINE SHAPE
- E .GROUND VIBRATION SIDEWISE FLOWING EARTHQUAKE FAULT F .STRUCTURE ANALYSI
- G MAXIMUM COMPRESSION STRAIN
- 3. REQUIRED LOCAL BUCKLING STRAIN IMPARTED TO PIPE (STEEL FIRM)
 S7. REQUIRED BUCKLING STRAIN (MAXIMUM COMPRESSION STRAIN <
- REQUIRED BUCKLING STRAIN)

 59. REQUIRED STRAIN HARDENING CHARACTERISTICS (REQUIRED BUCKLING STRAIN, D/1, FUNCTION OF STRAIN RANGE)
- S11. USE REQUIRED BUCKLING STRAIN AS CONDITIONS OF STRESS/STRAIN CURVE S13 PRODUCTION POSSIBLE?

- PE ORDERED I .PIPE DELIVERED
- S15. DETERMINE PIPE SPECIFICATIONS D, t, YS, TS, STRESS RATIO S17. LINE PIPE PRODUCTION D, t, YS, TS (SPECIFICATIONS OBSEVED)
- S19, PIPELINE LAYING
- S21. OPERATION STARTED (GAS TRANSPORTED)

(57) Abstract: A method of determining strain hardening characteristics of a pipe able to reduce costs with safety ensured. A pipe production method using this pipe strain hardening characteristics determining method, and a pipe and a pipeline produced by this pipe production method. The method of determining strain hardening characteristics of a pipe comprises the pipe condition setting step of setting the diameter D, pipe thickness t, and required compression local buckling strain ε_{req} of a pipe, the strain hardening characteristics

- SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正費受 領の際には再公開される。

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

acquiring step of determining the strain hardening characteristics in the vicinity of a buckling point of the pipe that satisfy the conditions set in the pipe condition setting step, and the step of using the above strain hardening characteristics as conditions to be satisfied by the stress/strain curve of the pipe.