Dual LDO Regulator with Reset Function

General Description

The RT9006A/B is an efficient, precise dual-channel CMOS LDO regulator optimized for ultra-low-quiescent applications. Regulators output1 and output2 are capable of sourcing 300mA and 500mA of output current.

The RT9006' s performance is optimized for CD/DVD-ROM and CD/RW a supply applications.

as low as $1\mu\text{F}$, including current limit, thermal shutdown protection, fast transient response, low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. The RT9006A/B contains a reset circuit to detect VOUT2 voltage.

The RT9006A/B regulators are available in used SOP-8 (Exposed Pad) surface mount package.

Ordering Information

Note:

Richtek Pb-free and Green products are :

- ▶RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶Suitable for use in SnPb or Pb-free soldering processes.
- ▶100% matte tin (Sn) plating.

Features

- Low Quiescent Current (Typically 70μA)
- Wide Operating Voltage Ranges: 2.8V to 5.5V for RT9006A
- Wide Operating Voltage Ranges: 2.5V to 5.5V for RT9006B
- Ultra-Fast Transient Response
- Tight Load and Line Regulation
- Current Limiting Protection
- Thermal Shutdown Protection
- Only low-ESR Ceramic Capacitors Required for Stability
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- CD/DVD-ROM, CD/RW
- Wireless LAN Card/Keyboard/Mouse
- Battery-Powered Equipment
- XDSL Router

Pin Configurations

VOUT1 8 GND VIN1 GND 7 GND 6 RST VOUT2 4 5 CT

SOP-8 (Exposed Pad)

Typical Application Circuit

Functional Pin Description

·	Pin No.	Pin Name	Pin Function
	1	VOUT1	Channel 1 Output Voltage
	2	VIN1	Channel 1 Supply Voltage
	3	VIN2	Channel 2 Supply Voltage
	4	VOUT2	Channel 2 Output Voltage
	5	СТ	RESET Delay Capacitor
	6	RST	Detect VOUT2 Output Voltage
	7, 8	GND	Common Ground
www.DataShe	et4U.com Exposed Pad (9)	GND	The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Function Block Diagram

RESET Waveform

Absolute Maximum Ratings (Note 1)

• Input Voltage, V _{IN1} , V _{IN2}	- 6V
 Power Dissipation, P_D @ T_A = 25°C 	
SOP-8 (Exposed Pad)	- 1.33W
Package Thermal Resistance (Note 4)	
SOP-8 (Exposed Pad), θ_{JA}	- 75°C/W
SOP-8 (Exposed Pad), θ_{JC}	- 28°C/W
• Junction Temperature	- 150°C
• Lead Temperature (Soldering, 10 sec.)	- 260°C
Storage Temperature Range	- –65°C to 150°C
• ESD Susceptibility (Note 2)	
HBM (Human Body Mode)	- 2kV
MM (Machine Mode)	- 200V
Recommended Operating Conditions (Note 3)	

ullet Input Voltage, $V_{IN1},\,V_{IN2}$ ------ 2.8V to 5.5V

Electrical Characteristics

 $(V_{IN1}=V_{IN2}=5V,~C1=C2=1\mu F,~C3=C4=1\mu F~(Ceramic),~T_A=25^{\circ}C,~unless~otherwise~specified)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Regulator 1							
Output Voltage Accuracy	V _{OUT1}	I _{OUT1} = 30mA (RT9006A)	1.773	1.8	1.827	V	
Output Voltage Accuracy		I _{OUT1} = 30mA (RT9006B)	1.478	1.5	1.523		
Output Voltage Temperature Coefficient		I _{OUT1} = 200mA (Note5)		1	80	ppm/°C	
Load Regulation	ΔV_{LOAD1}	1mA < I _{OUT1} <100mA		5	30	mV	
Line Regulation	V _{LINE1}	V _{IN1} = 2.8V to 5.5V, I _{OUT1} = 30mA (RT9006A) V _{IN1} = 2.5V to 5.5V, I _{OUT1} = 30mA (RT9006B)	1	0.1	0.2	%/V	
Power Supply Rejection Rate	PSRR1	f = 100Hz, I _{OUT1} = 100mA		-60		dB	
Current Limit	I _{LIM1}	$V_{IN1} = 5.0V$, V_{OUT1} short to GND	400	ŀ	600	mA	
Quiescent Current	I _{Q1}	I _{OUT1} = 0A		30		mA	
Thermal Shutdown Protection	T _{SD1}			170		°C	
Thermal Shutdown Hysteresis	T _{SD1}			40		°C	
Regulator 2							
Output Voltage Accuracy	V _{OUT2}	$I_{OUT2} = 30mA$	3.25	3.3	3.35	V	
Output Voltage Temperature Coefficient		I _{OUT2} = 200mA (Note5)			80	ppm/°C	

To be continued

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Load Regulation	ΔV_{LOAD2}	1mA < I _{OUT2} < 100mA		5	30	mV	
Drang, sk Valkana	V _{DROP2_1}	$I_{OUT2} = 30mA$		50	90	mV	
Dropout Voltage	V _{DROP2_2}	I _{OUT2} = 100mA		150	200		
Quiescent Current	I _{Q2}	I _{OUT2} = 0A		40		mA	
Line Regulation	ΔV_{LINE2}	$V_{IN2} = 4.3V \text{ to } 5.5V,$ $I_{OUT2} = 30\text{mA}$	-1	0.1	0.2	%/V	
Power Supply Rejection Rate	PSRR2	f = 100Hz, I _{OUT2} = 100mA		-60	-	dB	
Current Limit	I _{LIM2}	$V_{IN2} = 5.0V$, V_{OUT2} short to GND	500	1	700	mA	
Thermal Shutdown Protection	T _{SD2}			170		°C	
Thermal Shutdown Hysteresis	ΔT_{SD2}			40		°C	
Detector							
Detect Falling Voltage	V_{DF}		2.744	2.8	2.856	V	
Hysteresis	ΔV_{HYS}			-	140	mV	
Sink Current	IRST	$V_{\overline{RST}} = 0.5V, V_{IN2} = 5.0V$	7.0	12.0		mA	
CT Source Current	I _{CT}		2.1	2.6	3.1	uA	

- **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. Devices are ESD sensitive. Handling precaution recommended.
- Note 3. The device is not guaranteed to function outside its operating conditions.
- Note 4. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a high effective thermal conductivity test board (4 Layers, 2S2P) of JEDEC 51-7 thermal measurement standard. The case point of θ_{JC} is on the expose pad for SOP-8 (Exposed Pad) package.
- Note 5. Guaranteed by design.

Typical Operating Characteristics

C1 = C2 = 1uF(X7R), C3 = C4 = 1uF(X7R), $R_{\overline{RST}} = 100k\Omega$, unless otherwise specified.

Application Information

Detector Delay Time

The delay time (T_d) of Reset signal from V_{OUT2} can be calculated from the formula :

$$T_d = CCT \times \frac{0.8 \times V_{IN2}}{ICT}$$

 V_{IN2} is the input voltage of channel 2 and the $I_{\text{CT}}(2.6\text{uA.Typ.})$ is the CT pin sourcing current. C_{CT} is the capacitance of the external capacitor from CT pin to GND.

Current limit

The RT9006 contains two independent current limiters, which monitors and controls the pass transistor's gate voltage, limiting the output current to a certain level. The typical current limit level of channel 1 and channel 2 is 450mA and 600mA respectively.

Thermal Consideration

For continued operation, do not exceed absolute maximum operation junction temperature 125°C. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

Where

 $T_{J(MAX)}$: The maximum operation junction temperature 125°C.

T_A: The operated ambient temperature.

 θ_{JA} : The junction to ambient thermal resistance.

The junction to ambient thermal resistance for SOP-8 (Exposed Pad) package is 75° C/W on the standard JEDEC 51-7 (4 layers, 2S2P) thermal test board. The copper thickness is 2oz. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated by following formula :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / 75^{\circ}C/W = 1.33W \{SOP-8 (Exposed Pad) packages\}$

The maximum power dissipation depends on operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance θ_{JA} . For SOP-8 (Exposed Pad) packages, the Figure 1 of de-rating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

Figure 1. Derating Curves for SOP-8 (Exposed Pad)

Package

PCB Layout Considerations

The thermal resistance θ_{JA} of SOP-8 (Exposed Pad) is determined by the package design and the PCB design. However, the package design had been designed. If possible, it's useful to increase thermal performance by the PCB design. The thermal resistance θ_{JA} can be decreased by adding a copper under the exposed pad of SOP-8 (Exposed Pad) package.

As shown in Figure 2, the amount of copper area to which the SOP-8 (Exposed Pad) is mounted affects thermal performance. When mounted to the standard SOP-8 (Exposed Pad) pad (Figure 2.a), θ_{JA} is 75°C/W. Adding copper area of pad under the SOP-8 (Exposed Pad) (Figure 2.b) reduces the θ_{JA} to 64°C/W. Even further, increasing the copper area of pad to 70mm² (Figure 2.e) reduces the θ_{JA} to 49°C/W.

(a). Minimum Footprint, $\theta_{JA} = 75^{\circ}\text{C/W}$

(b). Copper Area = $10mm^2$, $\theta_{JA} = 64$ °C/W

(c). Copper Area = 30mm^2 , $\theta_{JA} = 54^{\circ}\text{C/W}$

(d). Copper Area = 50mm^2 , $\theta_{JA} = 51^{\circ}\text{C/W}$

(e). Copper Area = 70mm^2 , $\theta_{JA} = 49^{\circ} \text{C/W}$

Figure 2. Thermal Resistance vs. Copper Area Layout Design

Outline Information

Symbol		Dimensions	n Millimeters	Dimensions In Inches			
		Min	Max	Min	Max		
А		4.801	5.004	0.189	0.197		
В		3.810	4.000	0.150	0.157		
С		1.346	1.753	0.053	0.069		
D		0.330	0.510	0.013	0.020		
F		1.194	1.346	0.047	0.053		
Н		0.170	0.254	0.007	0.010		
I		0.000	0.152	0.000	0.006		
J		5.791	6.200	0.228	0.244		
М		0.406	1.270	0.016	0.050		
Ontino 4	Χ	2.000	2.300	0.079	0.091		
Option 1	Υ	2.000	2.300	0.079	0.091		
0-40	Χ	2.100	2.500	0.083	0.098		
Option 2	Υ	3.000	3.500	0.118	0.138		

8-Lead SOP (Exposed Pad) Plastic Package

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

8F, No. 137, Lane 235, Paochiao Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)89191466 Fax: (8862)89191465

Email: marketing@richtek.com