1° semestre

Trabalho nº1 Resolução

- 1. Num passeio aleatório simétrico (em cada passo o jogador lança uma moeda equilibrada e ganha ou perde $1 \in$ conforme sai cara ou coroa), representando a fortuna do jogador ao longo dos passos por S_1, S_2, S_3, \ldots , partindo de uma fortuna inicial $S_0 = 0$, estime, para n = 10, 20, 50, por meio de simulação (com 10^5 réplicas) a probabilidade de
 - (i) retorno à origem (i.e., empate) no instante 2n

A probabilidade exacta de retorno à origem é fácil de obter, pois é a probabilidade de em 2n lançamentos de uma moeda equilibrada saírem n caras. Logo, é dada por $u_{2n} = P(X = n) = \binom{2n}{n} 2^{-2n}$, sendo $X \frown bi(2n, 0.5)$. Note-se que $u_{2n} \sim \frac{1}{\sqrt{n\pi}}$, quando $n \to +\infty$. Para n = 10, 20, 50, temos $u_{2n} = 0.1762, 0.1254, 0.07959$:

```
dbinom(c(10,20,50), c(20,40,100), p = 0.5)
[1] 0.17619705 0.12537069 0.07958924
```

Portanto, as estimativas das probabilidades de retorno à origem no instante 2n, a obter por simulação, serão valores próximos das verdadeiras probabilidades acima calculadas. Ver a simulação na alínea seguinte.

(ii) não haver retorno à origem durante os primeiros 2n passos¹

As simulações deverão dar resultados semelhantes nas alíneas (i) e (ii) 2 , e podem obter-se conforme segue, usando a sugestão dada:

```
n <- 20 ; r <- 100000 ; fim <- 0 ; produto <- 0
for (i in 1:r) { x <- sample(c(-1,1), 2*n, replace=T);
    s <- cumsum(x); fim[i] <- s[2*n]; produto[i] <- prod(s) }
sum(fim==0)/r
# (i) resultado: 0.17604 (n=10), 0.12538 (n=20) e 0.07903 (n=50)
sum(produto!=0)/r
# (ii) resultado: 0.17732 (n=10), 0.12546 (n=20) e 0.08018 (n=50)</pre>
```

Constata-se que os valores obtidos para (i) e (ii) são de facto muito semelhantes.

¹Note que "não haver retornos nos primeiros n passos" equivale a ter $S_1 S_2 \dots S_n \neq 0$.

²A probabilidade exacta é a mesma da alínea anterior, u_{2n} (mas não é tão fácil de provar).

(iii) o último empate ocorrer na primeira [segunda] metade do jogo, ou seja, estritamente antes do instante n [estritamente depois do instante n], num passeio com 2n passos.

As estimativas devem ser próximas uma da outra³, levando a conjecturar que os dois acontecimentos são equprováveis. A resolução segue adiante em conjunto com o gráfico pedido, pois a partir das estimativas das probabilidades de "o último empate ocorrer no instante 2k", basta somar os valores para k < n e para k > n, para obter as que se pedem aqui. Os resultados obtidos para as estimativas da probabilidade de o último empate ocorrer na 1ª metade [2ª metade] do jogo e no meio (no instante n), num passeio com 2n passos, foram os seguintes:

n	1 ^a metade	2 ^a metade	meio
10	0.47056	0.46901	0.06043
20	0.48616	0.48313	0.03071
50	0.49291	0.49513	0.01196

Elabore um gráfico com a probabilidade (estimada) de o último empate ocorrer na jogada 2k, no caso n=20 (i.e, em 40 jogos), em função de k ($k=0,1,2,\ldots,20$).

O gráfico e as estimativas das probabilidades para (iii) podem obter-se como segue:

```
n \leftarrow 20; r \leftarrow 100000; ult \leftarrow 0
for (i in 1:r)
     { x \leftarrow sample(c(-1,1),2*n,replace=T);
       s \leftarrow c(0, cumsum(x)); ult[i] \leftarrow max(which(s==0))-1
u \leftarrow table(ult); names(u) \leftarrow 0:20
## gráfico pedido:
plot(u/r, ylim = c(0,127), xlab = "k", ylab = ..., ...)
## (iii) probabilidade de último empate na 1ª metade (antes de n):
sum(ult<n)/r</pre>
 [1] 0.48616
## (iii) probabilidade de último empate na 2ª metade (depois de n):
sum(ult>n)/r
 [1] 0.48313
## e a probabilidade de último empate ocorrer no passo n:
sum(ult==n)/r
 [1] 0.03071
```

³Estes dois acontecimentos são de facto equiprováveis

probabilidade (estimada) de 'último empate no passo 2k'

Figura 1: Probabilidade (estimada) de o último empate ocorrer no passo $2k, k = 0, 1, \dots, 20$, em 40 passos

Finalmente, comente os resultados obtidos.

Os resultados em (i) e (ii) levam a crer que as probabilidades pedidas são iguais, para n fixo (logo, iguais a u_{2n}) e tem-se $u_{2n} \to 0$ quando $n \to +\infty$. As duas probabilidades em (iii) também parecem ser iguais, e aproximam-se de 0.5 quando n aumenta (em 50% dos casos, a fortuna do jogador não se anula nem muda de sinal durante a 2^a metade do jogo!). O gráfico sugere probabilidade simétrica em torno de k = 10, sendo decrescente à esquerda deste valor e crescente à direita. Os valores mais prováveis são os dos extremos, i.e., de o último empate ocorrer na jogada 0 [na 40], dados por $u_{40} = 0.1254$; o valor menos provável será para a jogada 20, dado por $(u_{20})^2 = 0.03105$ (pois é a probablidade de haver retorno no instante 20 e de nos seguintes 20 passos não haver retornos).

2. Dada uma v.a. X com distribuição $Poisson(\lambda)$, calcule o valor médio da v.a. $\frac{1}{1+X}$. Particularize para $\lambda = 1$. Comente os resultados obtidos.

Para uma v.a. X, discreta, com fmp $p_i = P(X = x_i)$, o valor médio de h(X) é dado por $E(h(X)) = \sum_i h(x_i) p_i$, desde que esta série convirja absolutamente. No caso presente, $h(X) = \frac{1}{1+X} \mod X \frown Poisson(\lambda)$, a série é de termos positivos e é convergente:

$$E\left(\frac{1}{1+X}\right) = \sum_{i \geq 0} \frac{1}{1+i} e^{-\lambda} \frac{\lambda^i}{i!} = \frac{e^{-\lambda}}{\lambda} \sum_{i \geq 0} \frac{\lambda^{i+1}}{(i+1)!} = \frac{e^{-\lambda}}{\lambda} \sum_{j \geq 1} \frac{\lambda^j}{j!} = \frac{e^{-\lambda}}{\lambda} (e^{\lambda} - 1) = \frac{1 - e^{-\lambda}}{\lambda}.$$

No caso $\lambda=1$ temos $E\left(\frac{1}{1+X}\right)=1-e^{-1}\approx 0.6321.^4$ E como $\frac{1}{1+E(X)}=\frac{1}{2}$, conclui-se que em geral não é válida a fórmula E(h(X))=h(E(X)). Recorde-se no entanto que no caso particular h(X)=a+bX, a fórmula é válida.

⁴Este valor podia ter sido estimado por simulação, executando mean(1/(1+rpois(10⁷,1)))