Notas de Álgebra Linear

Carla Mendes

2015/2016

1. Matrizes

1.1 Conceitos básicos

São bastantes os contextos na área da matemática e suas aplicações em que o conceito de matriz se revelou ser fundamental. Por exemplo, para a representação e tratamento de informação que esteja dependente de parâmetros é frequente o recurso a matrizes.

Ao longo deste capítulo designamos por \mathbb{K} o conjunto dos números reais ou o conjunto dos números complexos; quando necessário indicaremos explicitamente se nos referimos ao conjunto \mathbb{R} dos números reais ou ao conjunto \mathbb{C} dos números complexos. Aos elementos de \mathbb{K} damos a designação de **escalares**.

Definição 1.1.1. Sejam $m, n \in \mathbb{N}$. Chama-se **matriz de ordem** $m \times n$ (lê-se ordem m por n) **sobre** \mathbb{K} a uma aplicação $A : \{1, \ldots, m\} \times \{1, \ldots, n\} \to \mathbb{K}$ definida por $A(i, j) = a_{ij}$ e que se representa por um quadro em que os mn elementos a_{ij} são dispostos em m filas horizontais e n filas verticais do seguinte modo

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1\,n-1} & a_{1\,n} \\ a_{21} & a_{22} & \cdots & a_{2\,n-1} & a_{2\,n} \\ a_{31} & a_{32} & \cdots & a_{3\,n-1} & a_{3\,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m-1\,1} & a_{m-1\,2} & \cdots & a_{m-1\,n-1} & a_{m-1\,n} \\ a_{m\,1} & a_{m\,2} & \cdots & a_{m\,n-1} & a_{m\,n} \end{bmatrix}.$$

Para cada $i \in \{1, ..., m\}$, chama-se **linha** i **da matriz** A ao elemento $(a_{i1}, ..., a_{in})$ de \mathbb{K}^n .

Para cada $j \in \{1, ..., n\}$, chama-se **coluna** j **da matriz** A ao elemento $(a_{1j}, ..., a_{mj})$ $de \mathbb{K}^m$.

Ao elemento a_{ij} de \mathbb{K} , $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$, chama-se entrada (i, j) ou elemento da posição (i, j) da matriz A.

O conjunto das matrizes de ordem $m \times n$ sobre \mathbb{K} representa-se por $\mathcal{M}_{m \times n}(\mathbb{K})$ e o conjunto de todas as matrizes sobre \mathbb{K} é representado por $\mathcal{M}(\mathbb{K})$.

Exemplo 1.1.2. A matriz $A = \begin{bmatrix} 1 & 0 \\ 3 & 4 \\ 1 & -1 \end{bmatrix}$ é uma matriz de ordem 3×2 sobre o

corpo \mathbb{R} , i.e. $A \in \mathcal{M}_{3\times 2}(\mathbb{R})$ (é claro que também temos $A \in \mathcal{M}_{3\times 2}(\mathbb{C})$). A linha 2 da matriz A é o elemento (3,4) de \mathbb{R}^2 . A coluna 2 da matriz A é o elemento (0,4,-1) de \mathbb{R}^3 . O elemento a_{22} (situado na linha 2 e coluna 2 da matriz) é o real 4.

Se
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, escreve-se abreviadamente $A = [a_{ij}]_{m \times n}$ ou $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ ou $A = [a_{ij}]_{\substack{i = 1, \dots, m \\ j = 1, \dots, n}}$. Quando o tipo da matriz for claro pelo contexto ou se não for importante para o estudo em questão, podemos escrever simplesmente $A = [a_{ij}]$.

Por vezes, representa-se a entrada (i, j) da matriz A por $A_{i,j}$.

Exemplo 1.1.3. Por $C = [c_{ij}]_{2\times 3}$, onde $c_{ij} = i^j$, para $i \in \{1, 2\}$ e $j \in \{1, 2, 3\}$, representa-se a matriz

 $\left[\begin{array}{ccc} 1 & 1^2 & 1^3 \\ 2 & 2^2 & 2^3 \end{array}\right].$

Definição 1.1.4. Sejam $m, n, p, q \in \mathbb{N}$. Diz-se que as matrizes $A = [a_{ij}]_{m \times n}$ e $B = [b_{ij}]_{p \times q}$ são **iguais**, e escreve-se A = B, se m = p, n = q e $a_{ij} = b_{ij}$, quaisquer que sejam $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$.

Exemplo 1.1.5. As matrizes
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
 e $B = [b_{ij}]_{3\times 3}$, com $b_{ij} = \text{m.d.c.}(i, j)$ são duas matrizes iguais.

Definição 1.1.6. Sejam $m, n \in \mathbb{N}$. Uma matriz $A = [a_{ij}]_{m \times n}$ diz-se matriz nula de ordem $m \times n$, e representa-se por $\mathbf{0}_{m \times n}$ ou apenas por $\mathbf{0}$, se, para todo $i \in \{1, ..., m\}$ e para todo $j \in \{1, ..., n\}$, tem-se $a_{ij} = 0$.

Exemplo 1.1.7.
$$\mathbf{0}_{2\times3}=\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Definição 1.1.8. Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Diz-se que:

- $A \notin uma \ matriz \ linha \ se \ m = 1.$
- $A \notin uma \ matriz \ coluna \ se \ n = 1.$
- $A \notin uma \ matriz \ quadrada \ se \ m = n.$

Exemplo 1.1.9. A matriz $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ é uma matriz coluna (de ordem 3×1) e a matriz $B = \begin{bmatrix} 5 & 6 & 7 & 8 \end{bmatrix}$ é uma matriz linha (de ordem 1×4).

É usual representar matrizes coluna e matrizes linha por letras minúsculas, assim como é costume omitir o índice 1 que é comum a todos os elementos. Por exemplo,

$$x = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}$$
 e $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$

representam uma matriz linha de ordem 4 e uma matriz coluna de ordem 3, respectivamente.

O conjunto $\mathcal{M}_{n\times n}(\mathbb{K})$ das matrizes quadradas de ordem n também se representa por $\mathcal{M}_n(\mathbb{K})$. Uma matriz pertencente a $\mathcal{M}_n(\mathbb{K})$ diz-se uma matriz quadrada de ordem n ou, simplesmente, uma matriz de ordem n e pode representar-se por $A = [a_{ij}]_n$.

Definição 1.1.10. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}]_n$ uma matriz quadrada sobre \mathbb{K} . Os elementos a_{ii} , $i \in \{1, ..., n\}$, designam-se por **elementos principais de** A. Diz-se que os elementos $a_{11}, a_{22}, ..., a_{nn}$ se dispõem na **diagonal principal de** A e que os elementos $a_{1n}, a_{2n-1}, ..., a_{n1}$ se dispõem na **diagonal secundária** de A.

Exemplo 1.1.11. Os elementos principais da matriz

$$A = \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & -1 \\ -4 & 1 & 2 \end{bmatrix}$$

são -1, 0 e 2 e os elementos que se dispõem na sua diagonal secundária são 1, 0 e -4.

Definição 1.1.12. Seja $n \in \mathbb{N}$. Uma matriz quadrada $A = [a_{ij}]_n$ diz-se:

• triangular superior se, para todos $i, j \in \{1, ..., n\}$,

$$i > j \Longrightarrow a_{ij} = 0;$$

• triangular inferior se, para todos $i, j \in \{1, ..., n\}$,

$$i < j \Longrightarrow a_{ij} = 0;$$

• diagonal se é simultaneamente triangular superior e triangular inferior, i.e., se, para todos $i, j \in \{1, ..., n\}$,

$$i \neq j \Longrightarrow a_{ij} = 0.$$

Exemplo 1.1.13.
$$Sejam A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 4 & 5 \end{bmatrix} e C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

A matriz A é uma matriz triangular superior, B é uma matriz triangular inferior e C é uma matriz diagonal.

Uma matriz diagonal $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ pode representar-se abreviadamente por $A = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn})$.

Exemplo 1.1.14. No exemplo anterior, tem-se C = diag(1, 0, 2, 3).

Definição 1.1.15. Sejam $n \in \mathbb{N}$. Uma matriz diagonal em que todos os elementos diagonais são iguais diz-se uma **matriz escalar**. À matriz escalar de ordem n em que todos os elementos diagonais são iguais a 1 dá-se a designação de **matriz** identidade de ordem n, e representa-se por I_n .

Para $i, j \in \{1, \ldots, n\}$, tem-se

$$(I_n)_{ij} = \begin{cases} 1 & \text{se } i = j; \\ 0 & \text{se } i \neq j. \end{cases}$$

Abreviadamente, escreve-se $(I_n)_{ij} = \delta_{ij}$ onde δ_{ij} se designa por **símbolo de Kronecker** e $\delta_{ij} = 1$ se i = j e $\delta_{ij} = 0$ se $i \neq j$.

Exemplo 1.1.16.
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

1.2 Operações com matrizes

Nesta secção apresentamos várias operações envolvendo matrizes: adição de matrizes, multiplicação de um escalar por uma matriz e multiplicação de matrizes.

Comecemos pela definição da operação de adição de matrizes.

Definição 1.2.1. Sejam $m, n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **matriz soma de** A **e** B, e representa-se por A + B, à matriz cuja entrada (i, j) é o elemento $A_{ij} + B_{ij}$, i.e.,

$$(A+B)_{ij} = A_{ij} + B_{ij}, i \in \{1, ..., m\}, j \in \{1, ..., n\}.$$

Exemplo 1.2.2. Se
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 & 0 & 4 \\ 2 & -1 & 3 \end{bmatrix}$ então

$$A + B = \begin{bmatrix} 1+3 & 2+0 & 3+4 \\ 2+2 & 1+(-1) & 0+3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 7 \\ 4 & 0 & 3 \end{bmatrix}.$$

Proposição 1.2.3. Sejam $m, n \in \mathbb{N}$ e $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então,

- i) A + B = B + A; (comutatividade da adição em $\mathcal{M}_{m \times n}(\mathbb{K})$)
- ii) A + (B + C) = (A + B) + C; (associatividade em $\mathcal{M}_{m \times n}(\mathbb{K})$)
- iii) $\mathbf{0}_{m \times n} + A = A = A + \mathbf{0}_{m \times n};$ $(\mathbf{0}_{m \times n} \text{ elemento neutro da adição em } \mathcal{M}_{m \times n}(\mathbb{K}))$
- iv) existe uma matriz A' tal que $A + A' = \mathbf{0}_{m \times n} = A' + A$. (existência de oposto, para a adição, de qualquer $A \in \mathcal{M}_{m \times n}(\mathbb{K})$)

Demonstração: Demonstramos as propriedades i) e iv), deixando a ii) e a iii) como exercício.

i) Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então $A + B, B + A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e, para todo $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$,

$$(A+B)_{ij} = A_{ij} + B_{ij} \quad e$$

$$(B+A)_{ij} = B_{ij} + A_{ij}.$$

Como a adição em \mathbb{K} é comutativa, temos $(A+B)_{ij}=(B+A)_{ij}$, pelo que A+B=B+A.

iv) Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e seja A' a matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ tal que $A'_{ij} = -A_{ij}$. Então $A + A' \in \mathcal{M}_{m \times n}(\mathbb{K})$ e, para todo $i \in \{1, \dots, m\}$ e $j \in \{1, \dots, n\}$, temos

$$(A + A')_{ij} = A_{ij} + A'_{ij} = A_{ij} + (-A_{ij}) = 0.$$

Logo $A + A' = \mathbf{0}_{m \times n}$. Por i) temos $A' + A = \mathbf{0}_{m \times n}$. \square

Observação:

- Atendendo à associatividade da adição em $\mathcal{M}_{m \times n}(\mathbb{K})$ podemos escrever, sem ambiguidade, A + B + C.
- A matriz A' da proposição anterior representa-se por -A.
- Dadas duas matrizes A e B com a mesma ordem, representa-se por A B a soma de matrizes A + (-B).

Definição 1.2.4. Sejam $m, n \in \mathbb{N}$, $\alpha \in \mathbb{K}$ e $A = [a_{ij}]_{m \times n} \in \mathcal{M}_{m,n}(\mathbb{K})$. Chamase **produto do escalar** α **pela matriz** A, e representa-se por αA , a matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ cujo elemento (i, j) é αA_{ij} , i.e.,

$$(\alpha A)_{ij} = \alpha A_{ij}, i \in \{1, ..., m\}, j \in \{1, ..., n\}.$$

Exemplo 1.2.5. Se
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 0 & -1 & 3 \end{bmatrix}$$
 então $2A = \begin{bmatrix} 2 & 4 & 6 & 8 \\ 4 & 0 & -2 & 6 \end{bmatrix}$.

Proposição 1.2.6. Sejam $m, n \in \mathbb{N}$, $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ $e \alpha, \beta \in \mathbb{K}$. Então,

- $i) (\alpha \beta) A = \alpha (\beta A).$
- $ii) (\alpha + \beta) A = \alpha A + \beta A.$
- $iii) \ \alpha (A+B) = \alpha A + \alpha B.$
- $iv) 0A = \mathbf{0}_{m \times n}$.
- v) 1A = A.
- $vi) \ (-\alpha A) = \alpha(-A) = -(\alpha A).$

Demonstração: Demonstramos a propriedade i), deixando a prova das restantes propriedades como exercício.

i) Sejam $\alpha, \beta \in \mathbb{K}$ e $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Então $(\alpha\beta)A \in \mathcal{M}_{m,n}(\mathbb{K})$ e, uma vez que $(\beta A) \in \mathcal{M}_{m,n}(\mathbb{K})$, também temos $\alpha(\beta A) \in \mathcal{M}_{m,n}(\mathbb{K})$. Por outro lado, para todo $i \in \{1, \ldots, m\}$ e $j \in \{1, \ldots, n\}$, tem-se

$$((\alpha\beta)A)_{ij} = (\alpha\beta)A_{ij}$$
 e
$$(\alpha(\beta A))_{ij} = \alpha(\beta A)_{ij} = \alpha(\beta A_{ij}).$$

Então, uma vez que o produto de elementos de \mathbb{K} é associativo, tem-se $((\alpha\beta)A)_{ij} = (\alpha(\beta A))_{ij}$, para todo $i \in \{1,...,m\}, j \in \{1,...,n\}$, e portanto, $(\alpha\beta)A = \alpha(\beta A).\square$

Observação: A matriz A' da proposição 1.3.3 é a matriz (-1)A e, tal como já referimos, escrevemos -A para representar esta matriz.

Definição 1.2.7. Sejam $m, n, p \in \mathbb{N}$, $A \in \mathcal{M}_{m \times p}(\mathbb{K})$ e $B \in \mathcal{M}_{p \times n}(\mathbb{K})$. Designa-se por **produto de** A **por** B, e representa-se por AB, a matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ tal que, para cada $i \in \{1, ..., m\}$ e para cada $j \in \{1, ..., n\}$,

$$(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$$
$$= A_{i1} B_{1j} + A_{i2} B_{2j} + \dots + A_{i p-1} B_{p-1 j} + A_{ip} B_{pj}.$$

Exemplo 1.2.8. Sejam
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix}$. Então,

Observe-se que a matriz resultante é uma matriz 2×3 (tem o mesmo número de linhas da matriz A e o mesmo número de colunas da matriz B).

Contrariamente ao que sucede com a adição de matrizes, a multiplicação de matrizes não é, em geral, comutativa, tal como se pode constatar nos exemplos que a seguir se apresentam.

Exemplo 1.2.9. Considerando as matrizes A e B do exemplo anterior, concluímos que BA não está definido, pois o número de colunas de B não coincide com o número de linhas de A.

Exemplo 1.2.10. Sejam
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 $e \ B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$. Então,
$$AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \neq \begin{bmatrix} 23 & 34 \\ 31 & 46 \end{bmatrix} = BA.$$

Definição 1.2.11. Sejam $n \in \mathbb{N}$ e A e B duas matrizes quadradas de ordem n. Diz-se que as matrizes A e B são **comutáveis** ou **permutáveis** se AB = BA.

Embora o produto de matrizes não seja comutativo, existem outras propriedades que se prova serem válidas relativamente a esta operação.

Proposição 1.2.12. Sejam $A, B \in C$ matrizes $e \alpha, \beta \in \mathbb{K}$. Então, sempre que as seguintes operações estejam definidas, tem-se que:

$$i) \ (AB) \ C = A \ (BC) \ ; \ (associatividade \ da \ multiplicação)$$

- ii) A(B+C) = AB + AC; (distributividade, à esquerda, da multiplicação em relação à adição)
- iii) (A+B)C = AC + BC; (distributividade, à direita, da multiplicação em relação à adição)

$$iv)$$
 $\alpha(AB) = (\alpha A)B = A(\alpha B).$

Demonstração: Exercício. \square

Observação: Sejam A, B e C matrizes tais que os produtos (AB)C e A(BC) estão definidos. Então, atendendo à associatividade da multiplicação, podemos escrever ABC para representar qualquer um dos produtos indicados.

Proposição 1.2.13. Sejam $m, n \in \mathbb{N}$ e A uma matriz de ordem $m \times n$. Então,

- i) $AI_n = A;$
- $ii) I_m A = A;$
- iii) se m=n, $I_nA=AI_n=A$.

Demonstração: Exercício. \square

Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Atendendo à definição de multiplicação de matrizes, é simples concluir que a multiplicação de A por A está definida se, e só se, m = n. Consideremos então a seguinte definição.

Definição 1.2.14. Sejam $n \in \mathbb{K}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Chamamos potência de expoente k de A, com $k \in \mathbb{N}_0$, à matriz de $\mathcal{M}_n(\mathbb{K})$, que representamos por A^k , definida por

 $A^k = \left\{ \begin{array}{cc} I_n & se \ k = 0 \\ A^{k-1}A & se \ k \in \mathbb{N} \end{array} \right..$

Proposição 1.2.15. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ $e \ k, l \in \mathbb{N}_0$. Então

- $i) A^k A^l = A^{k+l}.$
- $ii) (A^k)^l = A^{kl}.$

1.3 Matrizes invertíveis

Definição 1.3.1. Seja $n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ diz-se **invertível** (ou **regular** ou **não singular**) se existe uma matriz $X \in \mathcal{M}_n(\mathbb{K})$ tal que $AX = XA = I_n$.

Exemplo 1.3.2. A matriz $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ é invertível, pois existe $X = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$ tal que

$$AX = \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} -1 & 2 \\ 1 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \ e \ AX = \left[\begin{array}{cc} -1 & 2 \\ 1 & -1 \end{array}\right] \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Proposição 1.3.3. Seja $n \in \mathbb{N}$. Se $A \in \mathcal{M}_n(\mathbb{K})$ é uma matriz invertível, então existe uma e uma só matriz $A' \in \mathcal{M}_n(\mathbb{K})$ tal que $AA' = I_n = A'A$.

Demonstração: Sejam X e Y matrizes de $\mathcal{M}_n(\mathbb{K})$ tais que $AX = XA = I_n$ e $AY = YA = I_n$. Então

$$X = XI_n = X(AY) = (XA)Y = I_nY = Y.$$

Definição 1.3.4. Seja $A \in \mathcal{M}_n(\mathbb{K})$ uma matriz invertível. A única matriz $A' \in \mathcal{M}_n(\mathbb{K})$ tal que $A'A = I_n = AA'$ designa-se por matriz inversa de A e representa-se por A^{-1} .

Exemplo 1.3.5. Seja $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$. Do exemplo 1.3.2 sabe-se que A é invertível e tem-se $A^{-1} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}.$

Tal como se pode verificar no exemplo seguinte, nem toda a matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ é invertível.

Exemplo 1.3.6. A matriz $A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$ não admite inversa. Com efeito, se admitirmos que existe $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tal que $AX = XA = I_2$, tem-se

$$AX = \left[\begin{array}{cc} a+c & b+d \\ -a-c & -b-d \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} a-b & a-b \\ c-d & c-d \end{array} \right] = XA,$$

pelo que 0 = c - d = 1. (contradição).

Definição 1.3.7. Uma matriz quadrada que não admite inversa diz-se uma matriz singular ou não invertível.

Note que pode suceder que para $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ exista $B \in \mathcal{M}_{n \times m}(\mathbb{K})$ tal que $AB = I_m$ e $BA \neq I_n$. Contudo, se m = n prova-se que sempre que $AB = I_n$ também se tem $BA = I_n$. Com os conceitos e resultados apresentados anteriormente ainda não é possível apresentar uma prova desta afirmação, porém pode-se estabelecer os dois resultados seguintes.

Proposição 1.3.8. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ uma matriz invertível e $A' \in \mathcal{M}_n(\mathbb{K})$ tal que $A'A = I_n$ (respectivamente $AA' = I_n$). Então $A' = A^{-1}$ e, portanto, $AA' = I_n$ (respectivamente $A'A = I_n$).

Demonstração: Seja $n \in \mathbb{N}$ e suponhamos que A é uma matriz invertível de ordem n e que A' é uma matriz quadrada de ordem n tal que $A'A = I_n$. Então,

$$A'A = I_n \Rightarrow A'AA^{-1} = I_nA^{-1} \Rightarrow A'I_n = A^{-1} \Rightarrow A' = A^{-1},$$

e, portanto, $AA' = I_n.\square$

Proposição 1.3.9. Sejam $n \in \mathbb{N}$ e $A, B, C \in \mathcal{M}_{n \times n}(\mathbb{K})$. Se $AB = I_n$ e $CA = I_n$, então B = C, A é invertível e $A^{-1} = B = C$.

Demonstração. Tem-se $AB = I_n$ e $CA = I_n$. Logo $C = CI_n = C(AB) = (CA)B = I_nB = B$. Logo A é invertível e da Proposição 1.3.3 segue que $A^{-1} = B$.

Proposição 1.3.10. Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$ matrizes invertíveis. Então:

- i) A^{-1} é invertível $e(A^{-1})^{-1} = A$.
- ii) $AB \in invertivel\ e\ (AB)^{-1} = B^{-1}A^{-1}$.

Demonstração: i) Imediata pela própria definição de matriz invertível.

ii) Como

$$(AB) (B^{-1}A^{-1}) = A (BB^{-1}) A^{-1} = AI_n A^{-1} = AA^{-1} = I_n$$

е

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n$$

temos que a inversa de AB existe e é $B^{-1}A^{-1}$. \square

1.4 Transposta e transconjugada de uma matriz

Definição 1.4.1. Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **transposta de** A, e representa-se por A^T , à matriz de $\mathcal{M}_{n \times m}(\mathbb{K})$ tal que, para cada $i \in \{1, ..., n\}$ e $j \in \{1, ..., m\}$, $(A^T)_{ij} = A_{ji}$.

Exemplo 1.4.2. Se
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
, então $A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

Proposição 1.4.3. Sejam A e B matrizes sobre \mathbb{K} e $\alpha \in \mathbb{K}$. Então, sempre que as operações seguintes estejam definidas, tem-se que

$$i) \left(A^T\right)^T = A;$$

ii)
$$(A + B)^T = A^T + B^T$$
;

$$iii) (\alpha A)^T = \alpha A^T$$

$$iv) (AB)^T = B^T A^T;$$

$$v) (A^{-1})^T = (A^T)^{-1}.$$

Demonstração: Demonstramos as propriedades iv) e v).

iv) Sejam $m,n,p\in\mathbb{N}$ e $A=[a_{ij}]_{m\times p}$ e $B=[b_{ij}]_{p\times n}$.

Por um lado, $AB = [c_{ij}]_{m \times n}$ onde, para cada $i \in \{1, 2, ..., m\}$ e para cada $j \in \{1, ..., n\}$,

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip-1}b_{p-1j} + a_{ip}b_{pj}.$$

Logo, $(AB)^T = [d_{ij}]_{n \times m}$ onde, para cada $i \in \{1, ..., n\}$ e para cada $j \in \{1, ..., m\}$,

$$d_{ij} = c_{ji} = a_{j1}b_{1i} + a_{j2}b_{2i} + \dots + a_{jp-1}b_{p-1i} + a_{jp}b_{pi}.$$

Por outro lado, como $A^T = [e_{ij}]_{n \times m}$ e $B^T = [f_{ij}]_{n \times p}$, onde

$$e_{ij} = a_{ji}$$
 e $f_{ij} = b_{ji}$,

temos que $B^TA^T = [x_{ij}]_{n \times m}$ onde, para cada $i \in \{1, ..., n\}$ e para cada $j \in \{1, ..., m\}$,

$$x_{ij} = f_{i1}e_{1j} + f_{i2}e_{2j} + \dots + f_{ip-1}e_{p-1j} + f_{ip}e_{pj}$$

$$= b_{1i}a_{j1} + b_{2i}a_{j2} + \dots + b_{p-1i}a_{jp-1} + b_{pi}a_{jp}$$

$$= a_{j1}b_{1i} + a_{j2}b_{2i} + \dots + a_{jp-1}b_{p-1i} + a_{jp}b_{pi},$$

pelo que $d_{ij} = x_{ij}$, para cada $i \in \{1, ..., n\}$ e para cada $j \in \{1, ..., m\}$. Logo, $(AB)^T = B^T A^T$.

v) Pela alínea anterior temos que

$$(A^{-1})^T A^T = (AA^{-1})^T = (I_n)^T = I_n$$

е

$$A^{T} (A^{-1})^{T} = (A^{-1}A)^{T} = (I_{n})^{T} = I_{n}.$$

Logo, pela definição de inversa de uma matriz, concluímos que $\left(A^T\right)^{-1}=\left(A^{-1}\right)^T$. \square

Definição 1.4.4. Uma matriz quadrada A diz-se:

- i) simétrica se $A = A^T$;
- ii) antissimétrica se $A = -A^T$.

Exemplo 1.4.5. A matriz $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ é uma matriz simétrica.

Proposição 1.4.6. Seja A uma matriz simétrica e invertível. Então A^{-1} é uma matriz simétrica.

Demonstração: Se A é uma matriz simétrica, temos que $A^T = A$. Então,

$$(A^{-1})^T = (A^T)^{-1} = A^{-1},$$

pelo que A^{-1} é uma matriz simétrica. \square

Definição 1.4.7. Seja $n \in \mathbb{N}$. Uma matriz quadrada A de ordem n diz-se ortogonal se

$$AA^T = A^T A = I_n.$$

Se A é uma matriz ortogonal, então A é uma matriz invertível e $A^{-1} = A^{T}$.

Exemplo 1.4.8. A matriz $A = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ é uma matriz ortogonal, pois

$$AA^{T} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}$$

е

$$A^{T}A = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}.$$

Proposição 1.4.9. Seja A uma matriz ortogonal. Então, A^{-1} é também uma matriz ortogonal.

Demonstração: Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A é uma matriz ortogonal, temos que

$$AA^T = A^T A = I_n.$$

Então,

$$A^{-1}(A^{-1})^T = A^{-1}(A^T)^{-1} = (A^T A)^{-1} = I_n^{-1} = I_n$$

е

$$(A^{-1})^T A^{-1} = (A^T)^{-1} A^{-1} = (AA^T)^{-1} = I_n^{-1} = I_n,$$

pelo que A^{-1} é também uma matriz ortogonal. \square

Definição 1.4.10. Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **conjugada de** A, e representa-se por \overline{A} , à matriz de $\mathcal{M}_{m \times n}(\mathbb{K})$ tal que, para cada $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$, $(\overline{A})_{ij} = \overline{A_{ij}}$. Define-se a **transconjugada** de A, e representa-se por A^* , como sendo a transposta da conjugada de A.

Proposição 1.4.11. Sejam A e B matrizes sobre \mathbb{K} e $\alpha \in \mathbb{K}$. Então, sempre que as operações seguintes estejam definidas, tem-se que

- $i) (A^*)^* = A;$
- $(A+B)^* = A^* + B^*;$
- $iii) (\alpha A)^* = \overline{\alpha} A^*;$
- $(AB)^* = B^*A^*;$
- v) $(A^k)^* = (A^*)^k$, onde $k \in \mathbb{N}$.

Definição 1.4.12. Seja $n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ diz-se **hermítica** se $A^* = A$.

Definição 1.4.13. Seja $n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ diz-se unitária se $AA^* = I_n = A^*A$.