期中押题预测卷

(考试范围:第十一~十三章)

姓名:	班级:	得分:
· – – – – – – – – – – – – – – – – – – –		

注意事项:

本试卷满分 120 分,考试时间 90 分钟,试题共 26 题.答卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.

- 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
- 1. (2022·广东惠州·八年级期中)在以下绿色食品、回收、节能、节水四个标志中,不是轴 对称图形的有()

- A. 1个
- B. 2个
- C. 3个
- D. 4个
- 2. (2022·四川绵阳八年级期中)下列说法正确的是()
- A. 三角形内部到三边距离相等的点是三边垂直平分线的交点
- B. 三条线段 a、b、c, 如果 a+b>c,则以这三条线段为边能够组成三角形
- C. 如果两个三角形有两边和其中一边上高分别相等,那么这两个三角形全等
- D. 若两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等
- 3. (2022 江苏苏州·八年级期中) 如图, 在 ΔABC 中, DE 是 AC 的垂直平分线, AC = 8cm,且 ΔABD 的周长为16cm,则 ΔABC 的周长为 ()

- A. 24 cm
- B. 21 cm
- C. 18 cm
- D. 16cm
- 4. (2022·云南·中考真题) 如图,OB 平分 $\angle AOC$,D、E、F分别是射线 OA、射线 OB、射线 OC 上的点,D、E、F与 O 点都不重合,连接 ED、EF 若添加下列条件中的某一个.就能使 $VDOE \cong VFOE$,你认为要添加的那个条件是(

A. OD=OE

B. *OE=OF*

C. $\angle ODE = \angle OED$ D. $\angle ODE = \angle OFE$

5.(2022·四川绵阳·八年级期中)如图, $\triangle ABC$ 是边长为 2 的等边三角形,点 P在 AB上,过点 P作 PE \bot AC,垂足为 E,延长 BC 到点 Q,使 CQ = PA,连接 PQ 交 AC 于点 D,则 DE 的长为(

A. 0.5

B. 0.9

C. 1

D. 1.25

6.(2022·广东·广州八年级阶段练习)如图,VABC的三边 $AC \setminus BC \setminus AB$ 的长分别是 8、12、16,点O是VABC三条角平分线的交点,则 $S_{\Delta OAB}:S_{\Delta OBC}:S_{\Delta OAC}$ 的值为()

A. 4:3:2

B. 1:2:3

C. 2:3:4

D. 3:4:5

7. (2022•江苏无锡·八年级期中) 如图, $\angle ACB = 90^{\circ}$,AC=BC. $AD \perp CE$, $BE \perp CE$,垂足分别是点 D、E.若 AD=6,BE=2,则 DE 的长是()

A. 2

B. 3

C. 4

D. 5

8. (2022 • 江苏盐城·八年级期中) 如图,在第 1 个 $\triangle A_IBC$ 中, $\angle B=30^\circ$, $A_IB=CB$;在边

 A_1B 上任取一点 D, 延长 CA_1 到 A_2 , 使 $A_1A_2 = A_1D$, 得到第 2 个 $\triangle A_1A_2D$; 在边 A_2D 上任取一点 E, 延长 A_1A_2 到 A_3 , 使 $A_2A_3 = A_2E$, 得到第 3 个 $\triangle A_2A_3E$, …按此做法继续下去,则第 2021 个三角形中以 A_{2021} 为顶点的底角度数是()

A.
$$(\frac{1}{2})^{2020} \cdot 75^{\circ}$$

B.
$$(\frac{1}{2})^{2020} 65^{\circ}$$

C.
$$(\frac{1}{2})^{2021} \cdot 75$$

D.
$$(\frac{1}{2})^{2021} \cdot 65^{\circ}$$

- 9.(2022·重庆·巴川初级中学校八年级期中)如图, $\triangle ABC$ 中, $\angle ABC$ 、 $\angle ACN$ 的角平分线 BD、CD 交于点 D,延长 BA、BC,作 $DE \bot AB$ 于 E, $DF \bot BC$ 于 F,点 P 在 BN 上, $\angle ADP + \angle ABC = 180^{\circ}$,则下列结论中正确的个数为(
- ①AD 平分 $\angle MAC$; ② S_{VDAB} : $S_{VDBC} = AB$: BC; ③若 $\angle BDC = 31^{\circ}$,则 $\angle DAM = 59^{\circ}$,④BP 2AE = AB.

A. 1个

B. 2个

C. 3个

D. 4个

10. (2022·广东·梅州市七年级阶段练习) 如图, $\triangle ABC$ 中, $\angle ABC$ =45°, $CD \perp AB$ 于 D,BE 平分 $\angle ABC$,且 $BE \perp AC$ 于点 E,与 CD 相交于点 F, $DH \perp BC$ 于 H,交 BE 于 G,有下列结论: ①BH=DH; ②BD=CD; ③AD+CF=BD; ④CE= $\frac{1}{2}BF$. 其中正确的是 ()

A. 12

B. ①③

C. (1)(2)(3)

D. (1)(2)(3)(4)

- 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)
- 11. (2022·广西·八年级期中)如图, AD是VABC的中线,已知VABD的周长为25cm, AB

比 AC 长 6cm,则 VACD 的周长为_____ cm。

12. (2022 • 浙江杭州·八年级期中) 若等腰三角形的底边长为 6,则它的腰长 x 的取值范围是 ; 若等腰三角形的腰长为 6,则它的底边长 y 的取值范围是 .

13.(2022·重庆九龙坡·八年级期中)如图,在 $Rt\triangle ABC$ 中, $\angle C=90^\circ$,AC=12,BC=5,D在 AC上,将 $\triangle ADB$ 沿直线 BD 翻折后,点 A 落在点 E 处,如果 $AD\bot ED$,那么 $\triangle ABE$ 的面积是

14. (2022·河南三门峡·八年级期末)如图,在VABC中, DM, EN分别垂直平分AC和BC,交AB 于M, N两点. $\angle ACB$ = 135°, 则 $\angle MCN$ = 度.

15. (2022 • 江苏无锡·八年级期中) 如图, 在VABC中, 高 AD 和 BE 交于点 H, 且 DH=DC, 则 \angle ABC= 。

16. (2022 • 江苏·苏州八年级期中)等腰三角形的顶角与其一个底角的度数的比值 k称为这个等腰三角形的"特征值".若等腰 VABC 中, $\angle A=50^\circ$,则它的特征值 k= ______.
17. (2022·河南·驻马店八年级阶段练习)如图,VABC 中, AB=AC , $\angle BAC=48^\circ$, $\angle BAC$ 的平分线与线段 AB 的垂直平分线 OD 交于点 O.连接 OB 、 OC ,将 $\angle ACB$ 沿 EF (E 在 BC 上,F 在 AC 上)折叠,点 C 与点 O 恰好重合,则 $\angle OEC$ 为

18. (2022·绵阳·八年级期中)如图,在Rt 直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论: ①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论

三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)

19. (2022 • 江苏镇江·八年级期中)使用直尺与圆规完成下面作图,(**不写作法,保留作图痕迹**)

(1)在 AB 上找一点 P 使得 P 到 AC 和 BC 的距离相等;

(2)在射线 CP 上找一点 Q, 使得 QB = QC;

(3)若 BC=10,则点 Q 到边 AC 的距离为_____.

20. (2022·重庆·八年级期中) 如图, 在直角坐标系中, A (- 1, 5), B (- 3, 0), C (- 4, 3).

- (1) 在图中作出 $\triangle ABC$ 关于 y 轴对称的图形 $\triangle A_1B_1C_1$;
- (2) 写出点 C_1 的坐标;
- (3) 求△*ABC*的面积.

21. (2022·河北·八年级期中)【问题提出】

学习了三角形全等的判定方法(即"SAS"、"ASA"、"AAS"、"SSS")和直角三角形全等的判定方法(即"HL")后,我们继续对"两个三角形满足两边和其中一边的对角对应相等"的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为: 在 $\triangle ABC$ 和 $\triangle DEF$ 中,AC=DF,BC=EF, $\angle B=\angle E$,然后,对 $\angle B$ 进行分类,可分为" $\angle B$ 是直角、钝角、锐角"三种情况进行探究.

【深入探究】

第一种情况: 当 $\angle B$ 是直角时, $\triangle ABC \cong \triangle DEF$.

第二种情况: 当 $\angle B$ 是钝角时, $\triangle ABC \cong \triangle DEF$.

(2) 如图②,在 $\triangle ABC$ 和 $\triangle DEF$,AC=DF,BC=EF, $\angle B=\angle E$,且 $\angle B$ 、 $\angle E$ 都是钝角,求证: $\triangle ABC \cong \triangle DEF$.

第三种情况: 当 $\angle B$ 是锐角时, $\triangle ABC$ 和 $\triangle DEF$ 不一定全等.

- (3) 在 $\triangle ABC$ 和 $\triangle DEF$,AC=DF,BC=EF, $\angle B=\angle E$,且 $\angle B$ 、 $\angle E$ 都是锐角,请你用尺规在图③中作出 $\triangle DEF$,使 $\triangle DEF$ 和 $\triangle ABC$ 不全等. (不写作法,保留作图痕迹)
- (4) $\angle B$ 还要满足什么条件,就可以使 $\triangle ABC$ ≌ $\triangle DEF$?请直接写出结论:在 $\triangle ABC$ 和 $\triangle DEF$

22. (2022·江苏·八年级阶段练习) 如图,AC平分 $\angle BAD$, $CE \bot AB$ 于 E, $CF \bot AD$ 于 F,且 BC = DC.

(1)证明: *BE=DF*.

(2)连接 EF,则 AC、EF 之间有何关系.

23. (2022·四川·广汉八年级期中) 如图 1 所示,等腰直角三角形 ABC 中, $\angle BAC$ = 90°, AB = AC,直线 MN 经过点 A, $BD \perp MN$ 于点 D, $CE \perp MN$ 于点 E.

(1) 求证: $\angle ABD = \angle CAE$; (2) 求证: DE = BD + CE;

(3) 当直线 MN 运动到如图 2 所示位置时,其余条件不变,直接写出线段 DE 、BD 、CE 之间的数量关系.

24. (2022 • 江苏淮安·八年级期中) 如图,在 $\triangle ABC$ 中, $\angle BAC$ =120°,AB=AC,点 D 在 BC 上,且 BD=BA,点 E 在 BC 的延长线上,且 CE=CA.

(1)试求 $\angle DAE$ 的度数. (2)如果把题中"AB=AC"的条件去掉,其余条件不变,试求 $\angle DAE$ 的度数.

(3)若将已知条件" $\angle BAC$ =120°"改为 $\angle BAC$ = α °,其它条件与(2)相同,请直接写出 $\angle DAE$

25. (2022·重庆市渝北区八年级期中) 在VABC中,AB = AC, $E \neq BC$ 中点,G,H 分别为射线 BA,AC 上一点,且满足 $\angle GEH + \angle BAC = 180$ °

(1)如图 1,若 $\angle B=45^\circ$,且 G,H 分别在线段 BA,AC 上,CH=2,求线段 AG 的长度; (2)如图 2,连接 AE 并延长至点 D,使 DE=AE,过点 E 作 $EF \perp BD$ 于点 F,当点 G 在线段 BA 的延长线上,点 H 在 AC 延长线上时,求证: 2BF+CH=BG

26. (2022·重庆巴南·八年级期末) 已知点 D 在 $\triangle ABC$ 外, $\angle BAC$ = 90°, AB = AC ,射线 BD 与 $\triangle ABC$ 的边 AC 交于点 H, $AE \perp BD$,垂足为 E, $\angle ABD$ = $\angle ACD$.

(1)如图 1, 求证: 2DE+DC=BD;

(2)如图 2,已知 $\angle ABE = 25^\circ$, BE = 4,点 F 在线段 BC,且 BE = BF,点 M,N 分别是射线 BC、BD 上的动点. 在点 M,N 运动的过程中,请判断式子 EM + MN + NF 的值是否存在最小值,若存在,请直接写出这个最小值,若不存在,写出你的理由.