组合优化 作业 - 6 + 7

姓名: 刘建东 学号: 201700130011

班级: 2017 级菁英班 日期: 2020 年 4 月 9 日

题目 1

用最速下降法求解以下问题,要求迭代进行三轮:

(1)
$$\min = \frac{1}{3}x_1^2 + \frac{1}{2}x_2^2$$
, 取初始点 $x^0 = (3,2)^T$;

(2)
$$\max = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$
, 取初始点 $x^0 = (1, 1)^T$.

解答: 最速下降法伪代码如下所示:

1
$$x^0$$
, $k = 0$
2 while $\| \nabla f(x^k) \| > \varepsilon$ do
3 $p^k = -\nabla f(x^k)$
4 $find \ t_k$, $satisfy \ f(x^k + t_k p^k) = \min_{t \ge 0} f(x^k + t p^k)$
5 $x^{k+1} = x^k + t_k p^k$, $k = k+1$
6 endwhile
7 return x^k

(1) $\nabla f(x) = (\frac{2}{3}x_1, x_2)^T$,具体迭代过程如下表所示:

k	x^k	$\nabla f(x^k)$	p_k	t_k
0	$(3,2)^{T}$	$(2,2)^{T}$	$(-2, -2)^T$	1.2
1	$(0.6, -0.4)^T$	$(0.4, -0.4)^T$	$(-0.4, 0.4)^T$	1.2
2	$(0.12, 0.08)^T$	$(0.08, 0.08)^T$	$(-0.08, -0.08)^T$	1.2
3	$(0.024, -0.016)^T$			

由此可知,迭代三轮后 $x = (0.024, -0.016)^T$, f = 0.00032。

(2) 首先我们对原函数进行一下变换,得到 min = $-4x_1 - 6x_2 + 2x_1^2 + 2x_1x_2 + 2x_2^2$,因此 $\nabla f(x) = (-4 + 4x_1 + 2x_2, -6 + 2x_1 + 4x_2)^T$,具体迭代过程如下表所示:

k	x^k	$\nabla f(x^k)$	p_k	t_k
0	$(1,1)^{T}$	$(2,0)^T$	$(-2,0)^T$	0.25
1	$(0.5, 1)^T$	$(0,-1)^T$	$(0,1)^{T}$	0.25
2	$(0.5, 1.25)^T$	$(0.5,0)^T$	$(-0.5,0)^T$	0.25
3	$(0.375, 1.25)^T$			

由此可知, 迭代三轮后 $x = (0.375, 1.25)^T$, f(x) = 4.65625.

题目 2

用 F-R 法求解:

$$\min(1-x_1)^2+2(x_2-x_1^2)^2$$
, 取初始点 $x^0=(0,0)^T$, $\varepsilon=10^{-6}$.

解答: F-R 法伪代码如下所示:

```
1 x^{0}, k = 0

2 while \| \nabla f(x^{0}) \| > \varepsilon do

3 p^{0} = -\nabla f(x^{0})

4 while true do

5 find t_{k}, satisfy f(x^{k} + t_{k}p^{k}) = \min_{t \geq 0} f(x^{k} + tp^{k})

6 x^{k+1} = x^{k} + t_{k}p^{k}

7 if \| \nabla f(x^{k+1}) \| \leq \varepsilon then return x^{k+1}

8 if k + 1 = n then x^{0} = x^{n}, break

9 \lambda_{k} = \frac{\| \nabla f(x^{k+1}) \|^{2}}{\| \nabla f(x^{k}) \|^{2}}, p^{k+1} = -\| \nabla f(x^{k+1}) \| + \lambda_{k}p^{k}

10 k = k + 1

11 endwhile

12 endwhile

13 return x^{0}
```

通过上述伪代码, 我们可以得到下述的求解过程。

$$\nabla f(x) = \begin{pmatrix} 8x_1^3 - 8x_1x_2 + 2x_1 - 2\\ 4x_2 - 4x_1^2 \end{pmatrix}$$

k			$\ \nabla f(x^k) \ $	p_k	t_k	λ^k
	$(0,0)^T$		2	$(2,0)^T$	0.25	0.25
1	$(0.5,0)^T$	$(0,-1)^T$	1	$(0.5,1)^T$	1	
2	$(1,1)^T$	$(0,0)^T$	0			

由此可知, 迭代三轮后 $x = (1,1)^T$, f(x) = 0。

题目 3

写出下列问题的 K-T 条件:

(1)

$$\begin{cases} \min & (x_1 - 3)^2 + (x_2 - 2)^2 \\ s.t. & x_1^2 + x_2^2 - 5 \le 0 \\ & x_1 + 2x_2 - 4 = 0 \\ & x_1, x_2 \ge 0 \end{cases}$$

(2)

$$\begin{cases} \min & -(x_1+1)^2 - (x_2+1)^2 \\ s.t. & x_1^2 + x_2^2 - 2 \le 0 \\ & x_2 - 1 \le 0 \end{cases}$$

解答:

$$\begin{cases} \min & f(x) \\ s.t. & g_i(x) \le 0, \ i = 1, ..., p \ , \ I = \{1, ..., p\}, \ J = \{1, ..., q\} \\ & h_j(x) = 0, \ j = 1, ..., q \end{cases}$$

上述式子的 K-T 条件如下:

$$\begin{cases} \nabla f(x^*) + \sum_{i \in I} \lambda_i^* \nabla g_i(x^*) + \sum_{j \in J} u_j^* \nabla h_j(x^*) = 0 \\ \lambda_i^* g_i(x^*) = 0, \ i \in I \\ \lambda_i^* \ge 0, \ i \in I \\ z + c < a + x + b + y \end{cases} \mathbf{X}$$

根据上述公式, 我们可以得到此题的 K-T 条件。

(1)

$$\begin{cases} 2(x_1 - 3) + 2\lambda_1 x_1 - \lambda_2 + u_1 = 0 \\ 2(x_2 - 2) + 2\lambda_1 x_2 - \lambda_3 + 2u_1 = 0 \\ \lambda_1 (x_1^2 + x_2^2 - 5) = 0 \\ \lambda_2 x_1 = 0 \\ \lambda_3 x_2 = 0 \\ \lambda_1, \ \lambda_2, \ \lambda_3 \ge 0 \end{cases}$$

(2)

$$\begin{cases}
-2(x_1+1) + 2\lambda_1 x_1 = 0 \\
-2(x_2+1) + 2\lambda_1 x_2 + \lambda_2 = 0 \\
\lambda_1(x_1^2 + x_2^2 - 2) = 0 \\
\lambda_2(x_2 - 1) = 0 \\
\lambda_1, \ \lambda_2 \ge 0
\end{cases}$$

题目 4

用 Wolfe 法求以下问题:

$$\begin{cases} \min & f(x_1, x_2) = 2x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 6x_2 \\ s.t. & x_1 + x_2 \le 2 \\ & x_1 + 5x_2 \le 5 \\ & x_j \ge 0, \ j = 1, 2 \end{cases}$$

$$\mathbb{R} x^0 = (0,0)^T, \varepsilon = 10^{-6}.$$

解答: 首先将上述问题转化为标准式。

$$\begin{cases} \min & f(x_1, x_2) = 2x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 6x_2 \\ s.t. & x_1 + x_2 + x_3 = 2 \\ & x_1 + 5x_2 + x_4 = 5 \\ & x_j \ge 0, \ j = 1, 2, 3, 4 \end{cases}$$

用 Wolfe 法求该问题的过程如下所示。

k	x^k	I_B^k	p_N^k	p_B^k	t_k
0	$(0,0,2,5)^T$	$\{3, 4\}$	$(4,6)^{T}$	$(-10, -34)^T$	$\frac{5}{34}$
1	$(\frac{10}{17}, \frac{15}{17}, \frac{9}{17}, 0)^T$	$\{1, 2\}$	$(-\frac{513}{289},0)^T$	$\left(\frac{2565}{1156}, \frac{-513}{1156}\right)^T$	$\frac{68}{279}$
2	$\left(\frac{35}{31}, \frac{24}{31}, \frac{3}{31}, 0\right)^T$	$\{1, 2\}$	$(0,0)^{T}$	$(0,0)^T$	

 $\parallel p^2 \parallel = 0 \le 10^{-6}$,因此 $x^2 = (\frac{35}{31}, \frac{24}{31}, \frac{3}{31}, 0)^T$ 为初始问题的 K-T 点,由于该问题显然是一个凸规划,因此所求得的 x^2 为其整体最优解,愿问题的整体最优解为 $x^* = (\frac{35}{31}, \frac{24}{31})^T$ 。

题目 5

用罚函数法求解问题:

$$\begin{cases} \min & (x-1)^2 \\ s.t. & 2-x \le 0 \end{cases}$$

- (1) 写出 $c_k = 0, 1, 10$ 时相应的增广目标函数;
- (2) 取 $c_k = k 1(k = 1, 2)$, 求出近似最优解的迭代点列;
- (3) 利用(2) 求问题的最优解。

解答:

(1)
$$\begin{cases} \min & f(x) \\ s.t. & g_i(x) \le 0, \ i = 1, ..., p \\ & h_j(x) = 0, \ j = 1, ..., q \end{cases}$$

上述式子对应的增广目标函数如下:

$$p_{c_k}(x) = c_k \sum_{i=1}^{p} [\max(g_i(x), 0)]^2 + \frac{c_k}{2} \sum_{j=1}^{q} [h_j(x)]^2$$
$$F_{c_k}(x) = f(x) + p_{c_k}(x)$$

由此我们得到本题所对应的增广目标函数。

$$F_{c_k} = \begin{cases} (x-1)^2 + c_k (2-x)^2, & x < 2, \\ (x-1)^2, & x \ge 2. \end{cases}$$

·
$$c_k = 0$$
, $\mathbb{M} F(x) = x^2 - 2x + 1$.

·
$$c_k = 1$$
, $\mathbb{M} F(x) = \begin{cases} 2x^2 - 6x + 5, & x < 2, \\ x^2 - 2x + 1, & x \ge 2. \end{cases}$

·
$$c_k = 10$$
, \emptyset $F(x) = \begin{cases} 11x^2 - 42x + 41, & x < 2, \\ x^2 - 2x + 1, & x \ge 2. \end{cases}$

(2)

$$F'_{c_k} = \begin{cases} 2(x-1) + 2c_k(x-2), & x < 2, \\ 2(x-1), & x \ge 2. \end{cases}$$

 $c_k = k - 1$, $F'_{c_k}(x) = 0$, 代入上述式子即可得到 $x^k = 2 - \frac{1}{k}$, k = 1, 2.

(3) 由 (2) 不难发现, $k \to \infty x^k = 2$, 因此该问题最优解为 $x^* = 2$ 。

题目 6

用对数形式的障碍函数法求解问题:

$$\begin{cases} \min & x_1 + 2x_2 \\ s.t. & x_1^2 - x_2 \le 0 \\ & x_1 \ge 0 \end{cases}$$

解答: 令 $d_k = \frac{1}{5k}$, $B_{d_k}(x) = -d_k ln(x_2 - x_1^2) - d_k lnx_1$, 即可得到如下式子:

$$F_{d_k}(x) = f(x) + B_{d_x}(x) = x_1 + 2x_2 - \frac{\ln(x_2 - x_1^2)}{5k} - \frac{\ln x_1}{5k}$$

接下来我们求 $\min F_{d_k}(x)$, 即求解下述式子:

$$\begin{cases} \frac{\partial F_{d_k}(x)}{\partial x_1} = 0 \\ \frac{\partial F_{d_k}(x)}{\partial x_2} = 0 \end{cases} \Rightarrow \begin{cases} 1 + \frac{2x_1}{5k(x_2 - x_1^2)} - \frac{1}{5kx_1} = 0 \\ 2 - \frac{1}{5k(x_2 - x_1^2)} = 0 \end{cases}$$

求解上述式子即可得到下述结果:

$$x_1 = \frac{-1 + \sqrt{1 + \frac{16}{5k}}}{8}, \ x_1' = \frac{-1 - \sqrt{1 + \frac{16}{5k}}}{8}$$

当 $k \to \infty$ 时, $x_1 \to 0$, $x_1' \to -\frac{1}{4}$,而 $x_1 \ge 0$,因此 $x_1 = 0$, $x_2 = 0$,即最优解为 $x^* = (0,0)^T$ 。