LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING FLERDIMENSIONELL ANALYS 2016-01-12 kl 8–13

SVAR och ANVISNINGAR

1. Eftersom $D = \{(x, y); x \le y \le 4 - x, 0 \le x \le 2\}$, så gäller att

$$\iint_{D} (x^{2} + xy) \, dx dy = \int_{0}^{2} \left(\int_{x}^{4-x} (x^{2} + xy) \, dy \right) dx$$

$$= \int_{0}^{2} \left[x^{2}y + \frac{1}{2}xy^{2} \right]_{y=x}^{y=4-x} dx$$

$$= \int_{0}^{2} x^{2}(4-x) + \frac{1}{2}x(4-x)^{2} - x^{3} - \frac{1}{2}x^{3} \, dx$$

$$= \int_{0}^{2} 8x - 2x^{3} \, dx = \left[4x^{2} - \frac{1}{2}x^{4} \right]_{0}^{2} = 8.$$

2. Om $f(x,y) = g(u,v) = g(x,y-x^2)$, så ger kedjeregeln att

$$f'_x = g'_u \cdot 1 + g'_v \cdot (-2x)$$
 och $f'_y = g'_u \cdot 0 + g'_v \cdot 1$.

Ekvationen $f'_x + 2x f'_y = x$ kan alltså skrivas

$$g'_{u} - 2xg'_{v} + 2xg'_{v} = u$$
, dvs. $g'_{u} = u$.

Den allmänna lösningen är $g(u,v)=u^2/2+\varphi(v)$, där φ är en godtycklig deriverbar funktion av en variabel. Återgång till x och y ger att

$$f(x,y) = \frac{1}{2}x^2 + \varphi(y - x^2).$$

Randvillkoret $f(x,0)=x^2$ innebär att $x^2/2+\varphi(-x^2)=x^2$, dvs. $\varphi(-x^2)=x^2/2$. Så $\varphi(t)=-t/2$ (för $t\leq 0$) och lösningen

$$f(x,y) = \frac{1}{2}x^2 - \frac{1}{2}(y - x^2) = x^2 - \frac{1}{2}y$$

uppfyller det givna randvillkoret.

3. Konen skär paraboloiden då $\sqrt{x^2+y^2}=6-(x^2+y^2)$. Eftersom $t^2+t-6=(t-2)(t+3)$, så gäller att

$$x^{2} + y^{2} + \sqrt{x^{2} + y^{2}} = 6 \iff \sqrt{x^{2} + y^{2}} = 2.$$

Vidare är $\sqrt{x^2+y^2} < 6-(x^2+y^2)$ för $\sqrt{x^2+y^2} < 2$. Kroppens volym ges därför av

$$V = \iint_{D} \left(6 - (x^2 + y^2) - \sqrt{x^2 + y^2} \right) dx dy,$$

där $D = \{(x,y); x^2 + y^2 \le 4\}$. Övergång till polära koordinater ger att

$$V = \int_0^{2\pi} \left(\int_0^2 (6 - r^2 - r)r \, dr \right) d\theta = 2\pi \left[3r^2 - \frac{1}{3}r^3 - \frac{1}{4}r^4 \right]_0^2 = \frac{32}{3}\pi.$$

1

4. a) Kurvan γ kan parametriseras enligt

$$r(t) = (2\cos t, 2\sin t), \quad t \in [0, \pi/2].$$

Eftersom $\mathbf{r}'(t) = (-2\sin t, 2\cos t)$, så gäller att

$$\int_{\gamma} -y \, dx + x \, dy = \int_{0}^{\pi/2} -2\sin t \cdot (-2\sin t) + 2\cos t \cdot 2\cos t \, dt = 4 \int_{0}^{\pi/2} dt = \frac{2\pi}{2\pi}.$$

b) Funktionen $U(x,y)=2\sqrt{x+y^2}$ är en potential till vektorfältet

$$(P,Q) = \left(\frac{1}{\sqrt{x+y^2}}, \frac{2y}{\sqrt{x+y^2}}\right)$$

i området $\Omega = \{(x, y); x > -y^2\}$. Ty

$$U'_x = \frac{2}{2\sqrt{x+y^2}} = \frac{1}{\sqrt{x+y^2}} = P \text{ och } U'_y = \frac{2 \cdot 2y}{2\sqrt{x+y^2}} = \frac{2y}{\sqrt{x+y^2}} = Q.$$

Eftersom γ ligger i Ω , så följer att

$$\int_{\gamma} \frac{1}{\sqrt{x+y^2}} dx + \frac{2y}{\sqrt{x+y^2}} dy = U(0,2) - U(2,0) = 2 \cdot 2 - 2 \cdot \sqrt{2} = 4 - 2\sqrt{2}.$$

- 5. a) Vi ser att $4 \cdot 3 + 2 + 2 = 16$ och $3^2 = 2^2 + 2^2 + 1$. Så punkten P ligger på σ .
 - b) Hyperboloiden är en nivåyta till funktionen $f(x, y, z) = x^2 + y^2 z^2$. Det gäller att grad f = (2x, 2y, -2z), speciellt grad f(2, 2, 3) = (4, 4, -6).

Så vektorn (2,2,-3) är en normalvektor till hyperboloiden i punkten P och tangentplanet ges därför av

$$2(x-2) + 2(y-2) - 3(z-3) = 0$$
, dvs. $2x + 2y - 3z = -1$.

c) Tangenten till σ i punkten P är en linje i planet 4z+x+y=16 och även en linje i tangentplanet til hyperboloiden i punkten P. Så tangentriktningen är vinkelrät mot både

$$n_1 = (1, 1, 4)$$
, planets normal

och

 $n_2 = (2, 2, -3)$, hyperboloidens normal i punkten P.

Vi ser direkt¹ att om $\mathbf{v} = (1, -1, 0)$, så är

$$\boldsymbol{v} \perp \boldsymbol{n}_1$$
 och $\boldsymbol{v} \perp \boldsymbol{n}_2$.

Tangenten ges alltså av

$$(x, y, z) = P + t\mathbf{v} = (2, 2, 3) + t(1, -1, 0), \quad t \in \mathbb{R}.$$

¹Alternativt kan man visa att $n_1 \times n_2 = (-11, 11, 0)$.

6. Det gäller att

$$g'_x = \frac{1 + x^2 + y^2 - (x+y) \cdot 2x}{(1 + x^2 + y^2)^2} = \frac{1 - x^2 + y^2 - 2xy}{(1 + x^2 + y^2)^2}$$

och

$$g_y' = \frac{1 + x^2 - y^2 - 2xy}{(1 + x^2 + y^2)^2}.$$

Så

$$\operatorname{grad} g(x,y) = (0,0) \iff 1 - x^2 + y^2 - 2xy = 0 = 1 + x^2 - y^2 - 2xy$$
$$\iff x^2 = y^2 \text{ och } 2xy = 1$$
$$\iff x = \pm y \text{ och } xy = 1/2.$$

Punkterna $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ och $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ är alltså de enda stationära punkter till g på \mathbb{R}^2 . Notera att

$$g\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}} \text{ och } g\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}.$$

Med bytet

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

får vi att

$$|g(x,y)| = \frac{|r\cos\theta + r\sin\theta|}{1 + r^2} \le \frac{2r}{1 + r^2}.$$

Speciellt är

$$|g(x,y)| \le \frac{1}{2} \text{ då } r = \sqrt{x^2 + y^2} \ge 4.$$

Eftersom $\frac{1}{2} < \frac{1}{\sqrt{2}}$, så antar g varken sitt största eller minsta värde (om dessa existerar) på området $x^2 + y^2 \ge 16$. Vi vet dock att g har både ett största och ett minsta värde på den kompakta mängden $x^2 + y^2 \le 16$. Våra tidigare undersökningar visar att största värdet är $\frac{1}{\sqrt{2}}$ och att minsta värdet är $-\frac{1}{\sqrt{2}}$. Dessa två värden är alltså största och minsta värde av g på \mathbb{R}^2 .

Eftersom punkten $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ ligger i området $H = \{(x, y); y < -x\}$, så blir $-\frac{1}{\sqrt{2}}$ även minsta värdet av g i H. Men g saknar ett största värde i H. Ty g(x, y) < 0 då y < -x och

$$g(x,x) = \frac{2x}{1+2x^2} \to 0 \text{ då } x \to \infty.$$