Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5252]-138

S.E. (E&TC/Elect.) (Second Semester) EXAMINATION, 2017 ANALOG COMMUNICATION

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
 - (iv) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
- 1. (a) Explain the need of modulation and the advantages of modulation. [6]
 - (b) For a standard AM transmitter has un-modulated power output of 100 W, when sinusoidally modulated signal the power increases to 132 W, the transmitter feeds a resistance load of 100 Ω .

Calculate:

- (i) Modulation index;
- (ii) Sketch the spectrum of AM signal with carrier 1 MHz and modulating frequency of 10 kHz.
- (iii) with trapezoidal method with practical modulation index calculate V_{max} and $V_{min.}$ [6]

P.T.O.

		· · · · · · · · · · · · · · · · · · ·
2.	(a)	Describe the square law modulator using mathematical
		expression. [6]
	(<i>b</i>)	A carrier wave of frequency of a 1 MHz is frequency modulated
		by a size wave of amplitude of 10 V and 15 kHz. The frequency
		sensitivity of modulator is 3 kHz/V. [6]
		(i) Determine the approximate bandwidth of FM using Carlson's rule.
		(ii) Repeat part (i) assuming amplitude of modulating wave is doubled.
		(iii) Repeat part (i) assuming frequency of modulating wave doubled.
		doubled.
3.	(a)	A radio receiver with 10 kHz bandwidth has noise figure of
		30 dB. Determine the signal power at the output of the receiver
		to achieve input signal of noise ratio of 30 dB. [6]
	(<i>b</i>)	Draw and explain the functional block diagram of FM
		superheterodyne receiver. [6]
		Or
4.	(a)	Draw the simple diode detector and explain the distortions
		that occur in it [6]
	(<i>b</i>)	Write a note on types of Noise. [6]
=	(~)	Emploin the newformance of EM in the success of Noise [7]
5.	(a)	Explain the performance of FM in the presence of Noise. [7]
	(<i>b</i>)	Derive performance of Baseband system in the presense of
		noise. [6]
0	()	Or
6.	(a)	Write a note on Angle thresholding. [6]
	(<i>b</i>)	Derive performance of AM in presence of noise considering
		receiver as envelop detector. [7]

- 7. (a) Define time limited and Band limited signals, also justify that time limited signals. Cannot be band limited. [6]
 - (b) Draw and explain functional block diagram of PCM encoder and decoder. [7]

Or

- 8. (a) State sampling theorem? With spectrum explain natural and flat top sampling. [7]
 - (b) Draw and explain with wave forms generation and Re-generation of PPM. [6]

[5252]-138

Strange in the strang