Physics 3410 Homework #9 5 problems

Due by April 6

> 1**.**

If I take air (f = 5) at room temperature $(T_i = 300 \,\mathrm{K})$ and compress it adiabatically to a tenth of its initial value, what is its temperature T_f after the compression?

> 2.

Consider an engine which operates between room temperature $T_c = 300 \,\mathrm{K}$ and some hot reservoir T_h . What is the minimum value of T_h so that the engine can have an efficiency of 50%?

> 3.

Suppose a power plant produces 1 GW of electricity at 40% efficiency, taking in steam at a temperature of 500° C. The waste heat is expelled into the environment at 20° C. At what rate (in watts) is heat expelled into the environment?

> **4.**

The figure shows a heat engine which involves constant-pressure and constant-volume processes, where the pressure goes between some value P_1 and $3P_1$, and the volume goes between some value V_1 to $2V_1$. The engine uses air, which has f = 5.

- (a) Calculate the internal energy U at each of the four corners.
- (b) Calculate the work flow during each of the four processes.
- (c) Calculate the heat flow during each of the four processes.
- (d) Calculate the efficiency η of this engine.
- > 5.

Suppose that heat leaks into a typical kitchen refrigerator (without freezer) at an average rate of $400 \,\mathrm{W}$. What is the minimum amount of power it needs to draw from the wall? (Refrigerators generally keep food at $40^{\circ} \,\mathrm{F.}$)

