Du Formalisme de Dirac

1 Strucutre de \mathfrak{F} :

On désigne par \mathfrak{F} l'ensemble des fonctions d'onde de carré sommable. Une fonction est dite de carré sommable si $\int_{-\infty}^{+\infty} f(t)dt$ existe et est fini. \mathfrak{F} est un espace vectoriel.

Soient $\varphi, \psi \in \mathfrak{F}$, on définit le produit scalaire de la façon suivante : $(\varphi, \psi) = \int d^3r \varphi^* \psi$ Le produit scalaire sur \mathfrak{F} est antilinéaire par rapport à le deuxième variable, définie positive.

2 Opérateurs Linéaires :

Un opérateur linéaire est un objet qui, à toute fonction d'onde $\psi \in \mathfrak{F}$, associe une autre fonction $\psi' \in \mathfrak{F}$. Soit A un opérateur linéaire, on note $A\psi(r) = \psi'(r)$. Un opérateur linéaire satisfait les propriétés de linéarités.

Exemples: l'opérateur parité
$$\Pi \psi(x,y,z) = \psi(-x,-y,-z)$$
, l'operateur dérivée $D_x \psi(x,y,z) = \frac{\partial \psi}{\partial x}$

On définit le produit d'opérateurs de la façon suivante : $(AB)\psi(r) = A[B\psi(r)]$

3 Base Orthonormée:

Soit $\{u_i(r) \in \mathfrak{F}\}\$ une base de \mathfrak{F} . Cette base est dite orthonormée si $(u_i, u_j) = \delta_{i,j}$ ou δ désigne le symbole de Kroenecker.

4 Espace des états \mathcal{E} :

On définit \mathcal{E} l'espec des états d'un système en associant un vecteur $|\psi\rangle \in \mathcal{E}$ à toute fonction d'onde $\psi(r)$. Attention : $|\psi\rangle$ ne dépend plus de r.

5 Espace dual \mathcal{E}^* :

Une fonctionnelle linéaire est une opération linéaire χ linéaire qui à tout vecteur $|\psi\rangle \in \mathcal{E}$ associe un nombre complexe. L'ensemble des fonctionnelles linéaires est un espace vectoriel, appelé espace dual et noté \mathcal{E}^* . Les éléments de \mathcal{E}^* sont notés $\langle \chi |$. Soit $|\psi\rangle \in \mathcal{E}$ et $\langle \varphi | \in \mathcal{E}^*$, $\varphi(|\psi\rangle) = \langle \varphi | \psi \rangle$. Dans \mathcal{E} , le produit scalaire est une forme antilinéaire définie positive.

6 Notation $|\psi\rangle\langle\varphi|$:

Soient $|\psi\rangle \in \mathcal{E}$ et $\langle \varphi| \in \mathcal{E}^*$. Considérons de plus $|\chi\rangle \in \mathcal{E}$. Alors $|\psi\rangle \langle \varphi|\chi\rangle \in \mathcal{E}$. L'objet $|\psi\rangle \langle \varphi|$ associe donc un vecteur de \mathcal{E} à un autre vecteur de \mathcal{E} . Cet objet est donc un opérateur linéaire.