Probability Theory Exercise 4

Issued: 2020/11/5 Due: 2020/11/19

1. (i) Let $X \sim \operatorname{Ca}(t)$ be a Cauchy random variable with parameter t > 0. It has PDF

$$f_X(x) = \frac{1}{\pi} \frac{t}{t^2 + x^2}, \quad \forall x \in \mathbb{R}.$$

Calculate the moment generating function $M_X(s)$ for all $s \in \mathbb{R}$.

- (ii) Does there exist a random variable X such that $|\mathbb{E}[X^k]| < \infty$ for all integers $k \ge 1$ but the moment generating function $M_X(s) = \infty$ for all $s \ne 0$? If your answer is yes, give such an example. If your answer is no, prove your conclusion.
- 2. Suppose that X is a nonnegative random variable and that $M_X(s) < \infty$ for all $s \in (-\infty, a]$, where a > 0 is a positive number.
- (a) Show that $\mathbb{E}\left[X^k\right] < \infty$, for every positive integer k
- (b) Show that $\mathbb{E}\left[X^k e^{sX}\right] < \infty$, for every positive integer k and every s < a
- (c) Show that $\left(e^{hX}-1\right)/h \leq Xe^{hX}$
- (d) Use the Dominated Convergence Theorem to show that

$$\mathbb{E}[X] = \mathbb{E}\left[\lim_{h\downarrow 0} \frac{e^{hX} - 1}{h}\right] = \lim_{h\downarrow 0} \frac{\mathbb{E}\left[e^{hX}\right] - 1}{h}$$

- 3. Let $X \sim N(0, \sigma^2)$ be a Gaussian random variable. Prove that the limit $\lim_{x\to\infty} xe^{x^2/(2\sigma^2)}P(X \ge x)$ exists, and find the limit.
- 4. (i) Let X_1, X_2, \ldots, X_n be i.i.d. **continuous** random variables. Find the probability $P(\min(X_1, \ldots, X_n) = X_1)$.
- (ii) Let X_1, X_2, \ldots, X_n be i.i.d. Bernoulli(p) random variables. Find the probability $P(\min(X_1, \ldots, X_n) = X_1)$.
- (iii) Let X_1, X_2, \dots, X_n be independent random variables. Suppose that the distribution of X_i is exponential distribution with parameter $\lambda_i > 0$. Find the probability $P(\min(X_1, \dots, X_n) = X_1)$.
- 5. Let X_1, \ldots, X_n be n i.i.d. standard Gaussian random variables. Let $X = \max(X_1, \ldots, X_n)$. Prove that there exists a constant β_0 such that $\lim_{n\to\infty} P(X \ge \beta\sqrt{\log(n)}) = 0$ if $\beta > \beta_0$; and $\lim_{n\to\infty} P(X \ge \beta\sqrt{\log(n)}) = 1$ if $\beta < \beta_0$. Also find the value of β_0 . What is $\lim_{n\to\infty} P(X \ge \beta\sqrt{\log(n)})$ when $\beta = \beta_0$? (Hint: Use the conclusion of Problem 3.)
- 6. Consider a branching process whose offspring distribution has expectation μ and variance σ^2 (see the definition of branching process and offspring distribution in the lecture slides). For $n=0,1,2,\ldots$, let X_n be the number of individuals in the nth generation. Assume that $X_0=1$. What is $\mathrm{Var}(X_n)$? Please express it in terms of n,μ and σ^2 .