UNIVERSIDAD DE COSTA RICA

ESCUELA DE INGENIERÍA ELÉCTRICA IE-623 MICROPROCESADORES

TAREA #1

- 1) Para el MCU MC9S12DG256 construya tres tablas: una tabla para todos los posibles valores para cada uno de los bits de INITREG, otra con los valores posibles para cada uno de los bits de INITRM y la última con los valores posibles de los bits INITEE para este MCU. Incluya dos columnas en cada tabla donde muestre la dirección de inicio y la dirección de fin del espacio direccionable de cada una de las memorias, según los valores asignados a los bits de los respectivos registros de configuración.
- 2) Considere el siguiente segmento de programa:

Ldd #\$FE3D Ldx #\$1030 Ldab #\$10 Std b,X Bset b,X,\$55 Bclr a,X,\$37

- a. Luego de que este programa es ejecutado, cuáles son los números que quedan en las posiciones de memoria modificadas por BSet y BClr. Considere que el contenido original de la posición para BClr es \$E5. Cuáles son las direcciones efectivas de esas posiciones de memoria.
- b. Determine cuántos ciclos de máquina requiere la ejecución de este programa.
- c. Si el reloj del sistema (sysclk) es de 48 MHz, determine cuánto tiempo toma ejecutar este programa.
- 3) Escriba el código de programa en ensamblador para un 9S12 por separado para cada uno de los siguientes requerimientos:
- a) Cuente el número de ceros contenidos en el Word de las posiciones de memoria cuya dirección efectiva es Y+\$20, donde Y es el registro índice del modelo de programación. Salve el resultado en la dirección de memoria Y+\$EE10.
- b) Escriba un programa que niegue (toggle) los bits pares y borre los bits impares de la localización de memoria \$2087.
- 4) Se tiene un conjunto de N<200 valores de 1 byte con signo almacenados en la memoria RAM, a partir de la posición DATOS. Escriba un programa en lenguaje ensamblador para el S12 que copie los valores que sean mayores de -50 a las localizaciones de memoria a partir de la posición MAYORES. Utilice direccionamiento indexado de post incremento tanto para el análisis de los datos como para su movimiento.

UNIVERSIDAD DE COSTA RICA

ESCUELA DE INGENIERÍA ELÉCTRICA IE-623 MICROPROCESADORES

- 5) Repita el ejercicio #4 utilizando direccionamiento indexado por acumulador. Observación: Note que en este caso el valor de los punteros permanece inalterado luego de la ejecución del programa.
- 6) En un sector de memoria que inicia en la posición DATOS_NODOS se tiene almacenada la información de N nodos de comunicaciones, donde N es una variable menor que 250. La información almacenada es:
 - i. Número de modelo
 - ii. Número de serie
 - iii. Baud Rate
 - iv. Troughput.

Todos estos son registros son de tamaño Word y los datos están en binario. Los datos se encuentran almacenados en la memoria en el siguiente orden: primero los N Números de Modelos, luego los N Números de Serie, seguidamente los N valores del Baud Rate y finalmente los N valores del Troughput. Se debe hacer un programa que pase esta información a otro sector de memoria a partir de la posición ORDEN donde aparecerán los datos ordenados ascendentemente para cada nodo, de la siguiente manera:

- a. Si el Número de Modelo es par se debe almacenar en el orden: Número de Modelo, Número de Serie, Baud Rate y Troughput.
- b. Si el Número de Modelo es impar se debe almacenar en el orden: Número de Serie, Baud Rate, Troughput y Número de Modelo.

Escriba el código del programa en lenguaje ensamblador del S12 que realice esta tarea. Para el barrido de los DATOS_NODOS utilice direccionamiento indexado con el acumulador B y para el traslado de los datos utilice direccionamiento indexado de post incremento/decremento, según corresponda (Modelo par o impar).