Bilinear accumulators

Verifiable Computation (VC)

server

data

Verification: \checkmark or \square

Correctness/completeness: $\Pr[\text{result} = f(\text{data}) \text{ and proof is honest and verification is } \checkmark] = 1$ Soundness/security: $\Pr[\text{result} \neq f(\text{data}) \text{ and verification is } \checkmark] \leq \frac{1}{2^{100}}$

Efficiency measures

Group and field

Group: under 1 operation •

- 1. Closure: For all a, b in G, the result of the operation, a b, is also in G
- 2. Associativity: For all a, b and c in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. Identity element: There exists an element e in G such that, for every element a in G, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique
- 4. Inverse element: For each a in G, there exists an element b in G, commonly denoted a-1 (or -a, if the operation is denoted "+"), such that $a \cdot b = b \cdot a = e$, where e is the identity element

Field: under 2 operations + and ×

- 1. F is an abelian group under + (abelian or commutative: $a \cdot b = b \cdot a$)
- 2. $F \{o\}$ (the set F without the additive identity o) is an abelian group under \times .

Generator

An element that generates all elements in the group by repeating the operation on itself (Cyclic group*)

$$Z_7^* = \{1,2,3,4,5,6\}$$

$$2^0 = 1$$
; $2^1 = 2$; $2^2 = 4$; $2^3 = 1$

$$3^{0}=1$$
; $3^{1}=3$; $3^{2}=2$; $3^{3}=6$; $3^{4}=4$; $3^{5}=5$; $3^{6}=1$

Discrete-log

 \mathbb{Z}_p^* has an alternative representation as the powers of g: $\{g, g^2, g^3, \dots, g^{p-1}\}$

Discrete-log: given $a \in Z_p^*$, find k s. t. $g^k = a$

Diffie-Hellman

 $\boldsymbol{\chi}$ y Z_p^* and generator g Alice **Bob** g^{x} g^{y} g^{xy}

Diffie-Hellman assumption: give Z_p^* , g, g^x , g^y , cannot compute g^{xy}

RSA

Publick key: N, e

Enc(m, pk): $c = m^e \mod N$

Dec (c, sk): $m = c^d \mod N$

Alice

RSA assumption: given N,e, $c = m^e$, cannot find m

- 1. Pick random large primes p,q, publish N = pq
- 2. Compute $\phi(N) = (p-1)(q-1)$
- 3. Pick random $e \in Z_{\phi(N)}^*$, publish e
- 4. Compute d as the inverse of e in $Z_{\phi(N)}^*$

 $e * d = 1 \mod \phi(N)$

d is the private key

RSA accumulators

- Public: N, generator *g*
- Private: p, q

- Elements must be primes
- Accumulate set $\{x_1, x_2, ... x_n\}$: digest = $g^{x_1 \cdot x_2 \cdot ... \cdot x_n} \mod N$
- Membership proof for x_i : $\pi_i = g^{x_1 \cdot \dots \cdot x_{i-1} \cdot x_{i+1} \cdot \dots \cdot x_n}$
- Verification: digest = π^{x_i}

Bilinear accumulator, prime field

• Idea 1: set $\{a_1, a_2, \dots a_n\}$, digest = $g^{a_1 \cdot a_2 \cdot \dots \cdot a_n} \mod p$?

Bilinear accumulator, prime field

Characteristic polynomial of set
$$A = \{a_1, a_2, ... a_n\}$$
:
 $(a_1+x)(a_2+x)(a_3+x)...(a_n+x) = \Pi_{a \in A}(a+x)$

Idea: replace variable x with a secret value s digest = $g^{\prod_{a \in A}(a+s)}$

Public key: $p, g, g^s, g^{s^2}, g^{s^3}, g^{s^4}, ..., g^{s^q}$

q-strong Diffie-Hellman assumption: given $p, g, g^s, g^{s^2}, g^{s^3}, g^{s^4}, \dots, g^{s^4}, \dots, g^{s^q}$, cannot compute c, h s. t. $h = g^{\frac{1}{s+c}}$

Membership proof

- Setup: digest = $g^{\prod_{a \in A}(a+s)}$ O(n) given s, O(n log n) given pk
- Membership proof for a_i : $\pi_i = g^{\prod_{a \in A \setminus \{a_i\}} (a+s)}$
- Verification: $\pi_i^{a_i+s} = \text{digest}$

• Security on q-strong Diffie-Hellman assumption given $p, g, g^s, g^{s^2}, g^{s^3}, g^{s^4}, \dots, g^{s^q}$, cannot compute c, h s. t. $h = g^{\frac{1}{s+c}}$

Assumptions

- Discrete-log
- Diffie-Hellman: given Z_p^* , g, g^x , g^y , cannot compute g^{xy}
- exponent q-strong Diffie-Hellman: $p,g,g^s,g^{s^2},g^{s^3},g^{s^4},\dots,g^{s^q},$ cannot compute $h=g^{s^{q+1}}$
- q-weak Diffie-Hellman: $p,g,g^s,g^{s^2},g^{s^3},g^{s^4},\dots,g^{s^q}$, cannot compute $h=g^{\frac{1}{s}}$
- q-strong Diffie-Hellman: $p,g,g^s,g^{s^2},g^{s^3},g^{s^4},\dots,g^{s^q}$, cannot compute c,h s. t. $h=g^{\frac{1}{s+c}}$

Public verifiability

S

Alice

Is element a_i in the set?

 $digest = g^{\prod_{a \in A}(a+s)}$

Verification: $\pi_i^{a_i+s} = \text{digest}$

 $p, g, g^{s}, g^{s^{2}}, g^{s^{3}}, g^{s^{4}}, ..., g^{s^{q}}$ **Bob**

Solution: bilinear group

• (p, G, g, G_T, e) :

• G and G_T are both multiplicative cyclic group of order p, g is the generator of G. G:base group, G_T target group

• Pairing: $e(P^a, Q^b) = e(P, Q)^{ab} : G \times G \to G_T$ I.e., $e(g^a, g^b) = e(g, g)^{ab}$

Bilinear map

S

Alice

Is element a_i in the set?

$$digest = g^{\Pi_{a \in A}(a+s)}$$

Verification: $e(\text{digest}, g) = e(\pi_i, g^s \cdot g^{a_i})$

 $(p,g,G,e,G_T),$ $g^s,g^{s^2},g^{s^3},g^{s^4},...,g^{s^q}$ **Bob**

$$\pi_i = g^{\Pi_{a \in A \setminus \{a_i\}}(a+s)}$$

Bilinear map

 Security relies on q-strong bilinear Diffie-Hellman assumption:

given
$$(p, G, g, e, G_T)$$
, g^s , g^{s^2} , g^{s^3} , g^{s^4} , ..., g^{s^q} , cannot compute c , h s. t. $h = e(g, g)^{\frac{1}{s+c}}$

• Applies to subset $A \subset B$

Elliptic curve

 $y^2 = x^3 + ax + b$

Non-membership

- Extended Euclidean algorithm for polynomials
 - If p(x) and q(x) has no common root
 - Find p(x)a(x) + q(x)b(x) = 1 in O(n log² n loglog n)

- If $p(x) = a_i + x$, $q(x) = \prod_{a \in A} (a + x)$, find a(x), b(x), set $\pi = g^{a(s)}$, $g^{b(s)}$
- Verification: $e(g^{a_i+s}, \pi_1)e(\text{digest}, \pi_2) = e(g, g)$

Intersection is empty

- Extended Euclidean algorithm for polynomials
 - If p(x) and q(x) has no common root
 - Find p(x)a(x) + q(x)b(x) = 1 in O(n log² n loglog n)

- If $p(x) = \prod_{a \in A} (a + x)$ $q(x) = \prod_{a \in B} (a + x)$, find a(x), b(x), set $\pi = g^{a(s)}$, $g^{b(s)}$
- Verification: $e(\text{digest}_A, \pi_1)e(\text{digest}_B, \pi_2) = e(g, g)$

RSA Non-membership proofs

- x is not in the set, then x and $u = x_1 \cdot ... \cdot x_n$ are co-prime
- Extended Euclidean algorithm: find ax + bu = 1
- Proof $a, d = g^b$
- Verification: $\delta^a d^x = g$

Cannot be generalized to two sets!!

Set intersection

• $I = A \cap B \iff 1. I \subset A, I \subset B \text{ and } 2. (A - I) \cap (B - I) = \emptyset$

• Proof:

- 1. $\pi_A = g^{\prod_{a \in A-I}(a+s)}, \pi_B = g^{\prod_{a \in B-I}(a+s)}$
- 2. p(x)a(x) + q(x)b(x) = 1, $p(x) = \prod_{a \in A-I}(a+x)$ $q(x) = \prod_{a \in B-I}(a+x)$, $\pi_1, \pi_2 = g^{a(s)}, g^{b(s)}$

• Verification:

- 1. $e(\operatorname{digest}_{A}, g) = e(g^{\prod_{a \in I}(a+s)}, \pi_{A}), e(\operatorname{digest}_{B}, g) = e(g^{\prod_{a \in I}(a+s)}, \pi_{B})$
- 2. $e(\pi_A, \pi_1)e(\pi_B, \pi_2) = e(g, g)$

Complexity

- Local storage, size of accumulator: O(1)
- Setup: O(n log n)
- Prover time: O(1) with O(n) storage, or O(n log n)
- Proof size: O(1)
- Verification time: O(1)
- Update: add O(1), delete O(1) with secret key; O(n) without secret key for both
- Update proof: add O(1), delete O(1) both with new digest
- Set operations: prover (n log² n loglog n), proof size O(1), verification time O(1)