_ecture : Arrays 2

Agenda

find kin row and col wise sorted matrix

- fow with maximum number of 1's.

- Boundary print of matrix

____ Spiral order of a matrix

____Sum of all submatrices sum.

```
Qui Given a row and col wise sorted matrix.
     find out whether k is present or not. (***)
                        3
                                k=13 (true)
                  ı
                        13
       -5
            -2
   Ô
                                k=2 (true)
                        14
                  3
       -4
                                k=15 (fale)
                        18
                  6
            2
       -3
```

```
int findkinsorted Matrix (inti][] mat)

int n = mat length;

int m = mat[o]. length;

for(i=o; i'(n; i++) {

for(j=o; j'(m; j++) {

return true;

}

return false;

TC: O(n *m)
```

sc: o(1)

_	٥	1	2	3	
0	5	10	- 15	20	
1	6	12	18	24	
2	7 ←	rq	21	28	
3	8	16	2 4	<i>3</i> 2	
return false;					

k	=	13

	٥	1	2	3	
0	5	10	15	20	
ŀ	6	12 <	18 J	24	
2	٦	ry ,	21	28	
3	8	16	24	32	
return toue.					

K = 16

	٥	1	2	3
0	5	10	15	20
1	6	12	18	24
2	٦	гч	21	28 🗸
3	8	16	2 4	32

return true.

k = 32

```
boolean search (int[][] mat, intk) {
      int n = mat·length;
      int m = matio). length;
      int i° = 67
      int j = m-1;
       while( i° <n { } =0) {
              if (matlijyj) = = K) {
                   return true;
              if( mat(i)(j) < k) {
        else if (matli) (j) > k) {
  return false;
          T (: o(n)
           sc: 011)
```

Problem?

Given a binary sorted matrix of size n * n. find row with maximum number of 1.

Note. 1.) If two rows have maximum no. of 1 then return the row with lower idx.

2> Assume each row is sorted by values

	0	1	2
0	0	1	1
1	0	0	1
	0	1	l

ans = C

0	0	O	O
0	0	0	1
0	0	1	1
D	1	I	l

3rd row

Brute force:

TC: O(n*n)
sc: o(1)

	0	1	2	3	4	5
0	0	O	0	0	_ ←	- (1)
1	0	0 ←	_ 1 ←		1]
2	0	0	O	0	0	1
3	0	0	0	0	1	1
4	0 ←		1	1		1
ans = X & 7 4 5						

Algorithmic code

```
int maxonerRow(int[][] matrix)

n = matrlength;

i = 0;    j = n-1;

while(i'(n dl j?=0) {

    while(j>=0 ll mat[i][j] == 1) {

        j'--;

        anx = i;

    }

    return ans;
}

TC: O(n)
    SC: O(l)
```

Problem 3

Boundary level printing

Given matn, print boundary elements in clockwise direction.

	0	1	2	3	4
0	<u></u>	2	3	4	5
1	6	Т	8	9	10
2	11	12	13	14	15
3	16	רו	(8	19	20
4	21	22	23	24	25
	`				

_	outp	ut_			
1	2	3	4	5	
10	15	20	25	24	
23	22	21	16	(1	6

	0		2
0	<u> </u>	2	3
1	4	5	6
2	7	8	9

<u>0 u</u>	tput_			
1	2	3	6	9
8	7	4		

____ wrong (Repetition)

	0	1	2	3	4
0	1	2	3	4	5
ı	6	Т	8	9	10
2	11	12	13	14	1.5
3	16	רו	(8)	19	20
4	21	22	23	24	25

0=j	and	j° = 0

i	đ	
0	0 +1	(Yellow)
0	2 1+1	
0		j + 7
0	3 +1	2
0	4 (8to)	

$$i = 0$$
 and $j = 4$

0 4

1 4 (Red)

2 4 $i + 1$

3 4

4 4 (8 to p)

4 0 (stop)

H/W,

```
boundary Print (int[][] mat) {
               n = mat length;
               i = 0;
               j = 0;
            // oth row.
             for ( k = 0; K < n-1; K++) {
                  print (matli) (j);
                  j ++;
           // Last column.
            for ( k = 0; k < n-1; k++) {
                 print (matlissijs);
                 i°++;
          // Lost row.
          for(k=0; K(n-1; K++) {
               print (matli)(j));
        // first column
        for ( k = 0; K ( n-1; K++) {
              print (matli) (j));
               i --;
                      TC: O(n) + O(n) + O(n) + O(n) \simeq O(n)
                      sc: olv
Extend mat[n] (m].
```

Spiral order motrix

Given matn, print & piral order of matrix in clockwise direction.

	0	1	2	3	4	5
O	1	2	3	4	5	6
1	1	8	9	10	11	12
2	13	14	15	16	ın	18
3	19	20	721	22	23	24
4	2.5	26	27	28	29	30
5	3)	32	33	34	35	36

°	output	(k) [00
I	1	3 (n-3)
2	2	1 (n-5)

	0	1	2	3	4	5
0	1	2	3	4	5	6
1	٦	8	9	10	41	12
2	13	14	15	16	17	18
3	19	20	21	22	2 3	2 4
4	25	26	27	2.8	2 9	30
5	31	32	33	34	35	36

	0	1	2	3	4
0	1	2	3	4	5
1	1 6	Т	8	9	10
2	11	12	13	14	15
3	16	רו	(8	19	20 🗸
4	21	22	23	24	25

i
$$\int K(Loop print)$$

0 4 (n-v)

1 2 (n-3)

2 2 0 (n-5)

if (loop print == 0) (

print (motli) (j)).

Algori°thmic code

```
spiralorder (intl) () mat) {
void
         n = mat length;
         i^{\circ}=0; j^{\circ}=0; loopprint = n-1;
         while ( loop Print >=0)
                   if (100pprint ==0) {
                         print (matlidly);
                         break;
                  // oth row.
                              Loopprint
                  for(k=0; K( , K++) {
                       print ( matlidg);
                       j++;
                 // Last column.
                 for(k=0; K( 100, pprint (
                     print ( matligg);
                      i°++;
                // Last row.
                    k-n' " looppnut
                for(k=0; k(; k++) {
                     print( mat(i)(j));
               // fi°rot column
               for(k=0; K( 100 p Print ( k++) (
                   print (matrilli)
                    ů --;
                                          TC: 0(n2)
             1++5
            j.++;
                                           SC: 0(1)
            100 print -= 2:
                                  Break: 8:43-8:53
```

Submotrices and its identification

Subarray is continuous and ordered part of array Submatrix is 11 11 11 11 11 matrix.

	0	1	2	3	4
0	1	2	3	4	5
1	6	Т	8	9	10
2	П	12	13	,14	15
3	16	רו	(8)	19_	20
4	21	22	23	24	2 <i>5</i>

Lubmatrices

1 2 3 4

Problem 5 Sum of all submatrices sum

Gi'ven mat[n][m], determine sum of all the possible submatrices.

		D	1	2
	0	4	9	6
mat[][]	1	5	-1	2

submatrices

[4]	=	4

$$[q] = q$$

$$[6] = 6$$

$$[s] = 5$$

$$[496] = 4+9+6$$

$$\begin{bmatrix} 4 & 9 \\ 5 & -1 \end{bmatrix} = 4 + 5 9 = 1$$

$$\begin{bmatrix} 9 & 6 \\ -1 & 2 \end{bmatrix} = 9 + 6 + 1 + 2$$

$$\begin{bmatrix} 4 \\ 5 \end{bmatrix} = 4 + 5$$

$$\begin{bmatrix} q \\ -1 \end{bmatrix} = \begin{bmatrix} q -1 \end{bmatrix}$$

$$\left(\begin{array}{c} 6 \\ 2 \end{array}\right) = 6 + 2$$

$$[-1 2] = -1 + 2 [5 - 1] = -1 + 2$$

$$gum = 4 * 6 + 9 * 8 + 6 * 6 + (-1) * 8 + 9 * 6 + 5 * 6$$

		D	1	2
	0	4	9	6
nat[][]	1	5	- 1	2

challenge find the occurence.

Occurence =
$$x * y$$

$$h[w: x = ?] \qquad (i+1) * (j+1)$$

```
int total aubmatrices sum(mat()()) {
    total = 0;
    n = mat length;
    m = mat(0) length;
    for(i=0; i<n; i+1) {
        for(j=0; j<m; j+1) {
            x = (i+1) * (j+1);
            y = (n-i) * (m-j);
            total + = mat(i)(j) * x * y;
        }
    }
    return total;
}</pre>
```


