

Algoritma Branch & Bound

Algoritma Branch & Bound (B&B)

- Digunakan untuk persoalan optimisasi → meminimalkan atau memaksimalkan suatu fungsi objektif, yang tidak melanggar batasan (constraints) persoalan
- B&B: BFS + least cost search
 - BFS murni: Simpul berikutnya yang akan diekspansi berdasarkan urutan pembangkitannya (FIFO)
- B&B:
 - Setiap simpul diberi sebuah nilai cost:
 ĉ(i) = nilai taksiran lintasan termurah ke simpul status tujuan yang melalui simpul status i.
 - Simpul berikutnya yang akan di-expand tidak lagi berdasarkan urutan pembangkitannya, tetapi simpul yang memiliki cost yang paling kecil (least cost search) – pada kasus minimasi.

Algoritma Global Branch & Bound

- 1. Masukkan simpul akar ke dalam antrian Q. Jika simpul akar adalah simpul solusi (goal node), maka solusi telah ditemukan. Stop.
- 2. Jika Q kosong, tidak ada solusi. Stop.
- 3. Jika Q tidak kosong, pilih dari antrian Q simpul i yang mempunyai nilai 'cost' ĉ (i) paling kecil. Jika terdapat beberapa simpul i yang memenuhi, pilih satu secara sembarang.
- 4. Jika simpul i adalah simpul solusi, berarti solusi sudah ditemukan, stop. Jika simpul i bukan simpul solusi, maka bangkitkan semua anakanaknya. Jika i tidak mempunyai anak, kembali ke langkah 2.
- 5. Untuk setiap anak j dari simpul i, hitung ĉ (j), dan masukkan semua anak-anak tersebut ke dalam Q.
- 6. Kembali ke langkah 2.

Permainan 15-Puzzle

1	3	4	15
2		5	12
7	6	11	14
8	9	10	13

1	2	3	4
5	60	7	8
9	10	11	12
13	14	15	

(a) Susunan awal

(b) Susunan akhir

- State berdasarkan ubin kosong (blank)
- Aksi: up, down, left, right

Pohon Ruang Status untuk 15-Puzzle

 Pohon ruang status B&B ketika jalur ke solusi sudah 'diketahui'

Cost dari Simpul Hidup (2)

- Pada umumnya, untuk kebanyakan persoalan, letak simpul solusi tidak diketahui.
- Cost setiap simpul umumnya berupa taksiran.

$$\hat{c}(i) = \hat{f}(i) + \hat{g}(i)$$

 $\hat{c}(i)$ = ongkos untuk simpul i

 $\hat{f}(i)$ = ongkos mencapai simpul i dari akar

 $\hat{g}(i)$ = ongkos mencapai simpul tujuan dari simpul i.

Cost simpul P pada 15-puzzle:

f(P) = adalah panjang lintasan dari simpul akar ke P

 $\hat{g}(P)$ = taksiran panjang lintasan terpendek dari P ke simpul solusi pada upapohon yang akarnya P.

Cost dari Simpul Hidup 15-Puzzle

 $\hat{g}(P)$ = jumlah ubin tidak kosong yang tidak terdapat pada susunan akhir

Pembentukan Pohon Ruang Status 15-Puzzle dengan Branch & Bound

Travelling Salesperson Problem

Persoalan: Diberikan n buah kota serta diketahui jarak antara setiap kota satu sama lain. Temukan perjalanan (tour) terpendek yang melalui setiap kota lainnya hanya sekali dan kembali lagi ke kota asal keberangkatan.

(n-1)! sirkuit hamilton

Pohon Ruang Status TSP 4 Simpul

A=1; B=2; C=3; D=4 Simpul awal=1

Solusi: 1-3-2-4-1 atau 1-4-2-3-1

Bobot=5+8+9+10=32

(lihat diktat: TSP-Brute Force hal 20)

TSP dengan B & B

Contoh lain TSP 5 simpul (matriks bobot/cost matrix):

$$\begin{bmatrix} \infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix}$$

Brute Force:

- 4!=24 sirkuit hamilton
- Solusi: 1-4-2-5-3-1
- Bobot: 10+6+2+7+3=28

Greedy:

- Solusi: 1-4-5-2-3-1
- Bobot: 10+3+4+16+3=36

B&B-TSP dgn Reduced Cost Matrix

$$X_0 = X_5 = 1$$

Cost dari Simpul Hidup TSP

- 1. Matriks ongkos-tereduksi (reduced cost matrix) dari graf
 - Sebuah matriks dikatakan tereduksi jika setiap kolom dan barisnya mengandung paling sedikit satu buah nol dan semua elemen lainnya nonnegatif.
 - <u>Batas (bound)</u>: Jumlah total elemen pengurang dari semua baris dan kolom merupakan batas bawah dari total bobot minimum tur. (hal 159)
- 2. Bobot minimum tur lengkap

Reduced Cost Matrix: Contoh

R

∞	20	30	10	11
15	∞	16	4	2
3	5	∞	10 4 2	4
19		18	∞	3
16	4	7	16	∞

Reduksi baris dan kolom

∞	10	17	0	1
12	∞	11	2	0
0	3	17 11 ∞ 12 0	0	2
15	3	12	∞	0
11	0	0	12	∞

Setiap kolom dan barisnya mengandung paling sedikit satu buah nol dan semua elemen lainnya non-negatif

Reduced Cost Matrix

$$\begin{bmatrix} \infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix} \begin{bmatrix} R_1 - 10 \\ R_2 - 2 \\ R_3 - 2 \\ R_4 - 3 \\ R_4 - 3 \\ R_5 - 4 \end{bmatrix} \begin{bmatrix} \infty & 10 & 20 & 0 & 1 \\ 13 & \infty & 14 & 2 & 0 \\ 14 & 3 & \infty & 0 & 2 \\ 16 & 3 & 15 & \infty & 0 \\ 12 & 0 & 3 & 12 & \infty \end{bmatrix}$$

$$\begin{bmatrix} \infty & 10 & 20 & 0 & 1 \\ 13 & \infty & 14 & 2 & 0 \\ 1 & 3 & \infty & 0 & 2 \\ 16 & 3 & 15 & \infty & 0 \\ 12 & 0 & 3 & 12 & \infty \end{bmatrix} \begin{bmatrix} \infty & 10 & 17 & 0 & 1 \\ 12 & \infty & 11 & 2 & 0 \\ 0 & 3 & \infty & 0 & 2 \\ -1 & 0 & 3 & \infty & 0 & 2 \\ 15 & 3 & 12 & \infty & 0 \\ 11 & 0 & 0 & 12 & \infty \end{bmatrix} = A$$

Total semua pengurang = 10 + 2 + 2 + 3 + 4 + 1 + 3 = 25 Cost simpul akar

B&B-TSP dgn Reduced Cost Matrix

Misalkan:

- A: matriks tereduksi untuk simpul R.
- S: anak dari simpul R sehingga sisi (R, S) pada pohon ruang status berkoresponden dengan sisi (i, j) pada perjalanan.
- Jika S bukan simpul daun, maka matriks bobot tereduksi untuk simpul S dapat dihitung sebagai berikut:
 - (a) ubah semua nilai pada baris i dan kolom j menjadi ∞. Ini untuk mencegah agar tidak ada lintasan yang keluar dari simpul i atau masuk pada simpul j;
 - (b) ubah A(j, 1) menjadi ∞ . Ini untuk mencegah penggunaan sisi (j, 1);
 - (c) reduksi kembali semua baris dan kolom pada matriks A kecuali untuk elemen
 ∞.
 - Jika r adalah total semua pengurang, maka nilai batas untuk simpul S adalah:

$$\hat{c}(S) = \hat{c}(R) + A(i, j) + r$$

Hasil reduksi ini menghasilkan matriks B.

B&B-TSP dgn Reduced Cost Matrix (1)

Misalkan:

A: matriks tereduksi untuk simpul R.

Simpul awal
$$(R) = 1$$

R
$$\begin{bmatrix} \infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix}$$
R1-10; R2-2; R3-2; R4-3; R5-4;
$$\begin{bmatrix} \infty & 10 & 17 & 0 & 1 \\ 12 & \infty & 11 & 2 & 0 \\ 0 & 3 & \infty & 0 & 2 \\ 15 & 3 & 12 & \infty & 0 \\ 11 & 0 & 0 & 12 & \infty \end{bmatrix}$$

S: anak dari simpul R sehingga sisi (R, S) pada pohon ruang status berkoresponden dengan sisi (i, j) pada perjalanan.

$$S \in \{2,3,4,5\}$$

B&B-TSP dgn Reduced Cost Matrix (2)

- A: matriks tereduksi R; S: anak dari simpul R
- Jika S bukan simpul daun, maka matriks bobot tereduksi untuk simpul S dapat dihitung sebagai berikut (dari slide 32):
 - (a) ubah semua nilai pada baris i dan kolom j menjadi ∞. Ini untuk mencegah agar tidak ada lintasan yang keluar dari simpul i atau masuk pada simpul j;
 - (b) ubah A(j, 1) menjadi ∞ . Ini untuk mencegah penggunaan sisi (j, 1)
 - (c) reduksi kembali semua baris dan kolom pada matriks A kecuali untuk elemen ∞ .

Contoh: R=1; S=2 (bukan daun)

Taksiran Cost dgn Reduced Cost Matrix

$$\hat{c}(S) = \hat{c}(R) + A(i, j) + r$$

ĉ(S):

- (a) bobot perjalanan dari akar ke S (jika S daun)
- (b) Bobot perjalanan minimum yang melalui simpul S (jika S bukan daun)

 $\hat{c}(akar) = r$

bobot perjalanan minimum yang melalui $\hat{c}(S) =$ simpul S (simpul di pohon ruang status)

 $\hat{c}(R)$ = bobot perjalanan minimum yang melalui simpul R, yang dalam hal ini R adalah orangtua dari S.

A(i, j) = bobot sisi (i, j) pada graf G yang berkoresponden dengan sisi (R, S) pada pohon ruang status.

r = jumlah semua pengurang pada proses memperolehmatriks tereduksi untuk simpul S.

$$\begin{bmatrix} \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 11 & 2 & 0 \\ 0 & \infty & \infty & 0 & 2 \\ 15 & \infty & 12 & \infty & 0 \\ 11 & \infty & 0 & 12 & \infty \end{bmatrix} \hat{c}(2) = \hat{c}(1) + A(1,2) + r = 25 + 10 + 0 = 35$$

$$\hat{c}(2) = \hat{c}(1) + A(1,2) + r = 25 + 10 + 0 = 35$$

$$\hat{c}(1) = 25$$

$$\begin{bmatrix} \infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty \end{bmatrix}$$

$$R=1$$

$$\begin{bmatrix} \infty & 10 & 17 & 0 & 1 \\ 12 & \infty & 11 & 2 & 0 \\ 0 & 3 & \infty & 0 & 2 \\ 15 & 3 & 12 & \infty & 0 \\ 11 & 0 & 0 & 12 & \infty \end{bmatrix}$$

Α

$$\begin{bmatrix} \infty & \infty & \infty & \infty & \infty \\ 12 & \infty & 11 & \infty & 0 \\ 0 & 3 & \infty & \infty & 2 \\ \infty & 3 & 12 & \infty & 0 \\ 11 & 0 & 0 & \infty & \infty \end{bmatrix}$$

S=4

Sisi (1,4) yang sedang diperiksa, maka:

$$\hat{c}(4) = \hat{c}(1) + A(1,4) + r = 25 + 0 + 0 = 25$$

B&B-TSP dgn Reduced Cost Matrix

Simpul-E=1 \rightarrow Simpul hidup={4,5,2,3}

B&B-TSP dgn Reduced Cost Matrix

 $\hat{c}(8) = \hat{c}(4) + B(4,5) + r = 25 + 0 + 11 = 36$

B&B-TSP dgn Reduced Cost Matrix

 $\hat{c}(9) = \hat{c}(6) + C(2,3) + r = 28 + 11 + 13 = 52$

 $\hat{c}(11) = 28$

B&B-TSP dgn Reduced Cost Matrix

Simpul-E	Simpul Hidup
1	4,5,2,3
4	6,5,2,8,7,3
6	10,5,2,8,7,9,3
10	11,5,2,8,7,9,3
11	daun

Semua simpul hidup yang nilainya lebih besar dari 28 dibunuh (B) karena tidak mungkin lagi menghasilkan perjalanan dengan bobot < 28.

Karena tidak ada lagi simpul hidup di dalam pohon ruang status, maka X = (1, 4, 2, 5, 3, 1) menjadi solusi persoalan TSP di atas dengan bobot 28.

Masih tentang TSP

 Akan ditunjukkan pendekatan heuristik lain dalam menentukan nilai bound (cost) untuk setiap simpul di dalam poho ruang status.

Amati bahwa :

bobot tur lengkap = $1/2 \sum_{i=1}^{n}$ bobot sisi i_1 + bobot sisi i_2

• sisi i_1 dan sisi i_2 adalah dua sisi yang bersisian dengan simpul i di dalam tur lengkap.

• Contoh:

• Tur lengkap a, c, d, b, a bobotnya:

- $M \equiv cost$ = bobot minimum tur lengkap $\geq 1/2 \sum bobot sisi i_1 + bobot sisi i_2$
- Yang dalam hal ini, sisi i_1 dan sisi i_2 adalah sisi yang bersisian dengan simpul i dengan bobot minimum.
- M dapat digunakan sebagai fungsi pembatas (bound) untuk menghitung cost setiap simpul di dalam pohon

Contoh: TSP dengan simpul asal = a

- Solusi dinyatakan sebagai $I = (a, i_1, i_2, i_3, a)$, yang dalam hal ini i_1, i_2 , dan i_3 adalah simpul lainnya.
- Cost untuk simpul akar (simpul 1)
 cost ≥ 1/2 [(5+10) + (9+8) + (9+10) + (8+5)]
 ≥ 32

$$\begin{array}{c}
i_2 = b \\
1 & i_2 = c \\
i_2 = d \\
4
\end{array}$$

$$cost \ge 1/2 [(12+5) + (12+8) + (9+10) + (8+5)]$$

 $\ge 34,5$

$$cost \ge 1/2 [(10+5) + (9+8) + (10+9) + (8+5)]$$

 ≥ 32

$$cost \ge 1/2 [(5+10) + (9+8) + (10+9) + (8+5)]$$

 ≥ 32

Pohon ruang status yang sudah terbentuk:

Pohon ruang status yang sudah terbentuk:

• Pohon ruang status yang terbentuk:

• Solusi pertama: Tur a, c, b, d, a dengan bobot 32 (the best solution so far). Bunuh semua simpul dengan cost > 32. (ditandai dengan B)

Cost simpul $8 \ge \frac{1}{2}[(5+10)+(8+9)+(9+10)+(5+8)] = 32$ Cost simpul $9 \ge \frac{1}{2}[(5+10)+(8+9)+(15+9)+(5+15)] = 38$

• Cost simpul $10 \ge \frac{1}{2}[(5+10)+(9+8)+(9+10)+(5+8)] = 32$

• Solusi ke-2: tur a, d, b, c, a dengan bobot 32

The best solution so far tidak berubah

 Tidak ada lagi simpul hidup di dalam pohon ruang status, maka the best solution so far menjadi solusi final.

• Solusi *TSP* tersebut adalah tur a, c, b, d, a dengan bobot = 32.

Soal Latihan

Persoalan: Misalkan terdapat n orang dan n buah pekerjaan (job). Setiap orang akan di*assign* dengan sebuah pekerjaan. Penugasan orang ke-i dengan pekerjaan ke-j membutuhkan biaya sebesar c(i, j). Bagiamana melakukan penugasan sehingga total biaya penugasan adalah seminimal mungkin? Misalkan instansiasi persoalan dinyatakan sebagai matriks C sebagai berikut:

$$C = \begin{bmatrix} Job1 & Job2 & Job3 & Job4 \\ 9 & 2 & 7 & 8 & Orang a \\ 6 & 4 & 3 & 7 & Orang b \\ 5 & 8 & 1 & 4 & Orang c \\ 7 & 6 & 9 & 4 & Orang d \end{bmatrix}$$

Selesaikan persoalan ini dengan algoritma *branch and bound*. Di dalam menjawab persoalan ini tentukan cara menghitung fungsi *bound*. Lalu gambarkan pohon ruang status yang terbentuk selama pencarian solusi.