Wydział	Dzien/godzina		Nr. zespołu
EiTI	Wtorek 8.15-11.00	2	
	Data: 29.11.2011		
Nazwisko i Imię	Ocena z przygotowania	Ocena ze sprawozdania	Ocena
1. Król Jakub			
2. Obszański Grzegorz			
3. Zawiśla Mateusz			
Prowadzący:		Podpis prowadzącego	
Jarosław Suszek			

1 Wstęp teoretyczny

1.1 Polaryzacja i prawo Malusa

Jeśli kierunek drgań wektorów natężenia pola elektrycznego i magnetycznego zmienia jest w danym punkcie stały, lub zmienia się w sposób ściśle określony, mówimy, że fala elektromagnetyczna jest spolaryzowana. Występują różne rodzaje polaryzacji: liniowe, kołowa lub eliptyczna.

Światło może zostać spolaryzowane za pomocą elementów przepuszczających światło o określonym kierunku polaryzacji, nazywanych *polaryzatorami*. Według *Prawa Malusa* natężenie światła przechodzącego przez polaryzator wynosi

$$I = I_0 \cos^2 \theta \tag{1}$$

gdzie I_0 a θ jest kątem, który tworzy kierunek polaryzacji z osią polaryzatora.

1.2 Prawo Snelliusa

Światło przechodzące między dwoma ośrodkami ulega załamaniu i odbiciu. Kąty załamania i odbicia są ściśle określone. Kat odbicia jest równy katowi padania, a kat załamania opisuje praw Snelliusa:

$$n_1 \sin \alpha = n_2 \sin \beta \tag{2}$$

Gdzie α jest kątem pdania jednego ośrodka, a n_1 jego współczynnikiem załamania, a β i n_2 są odpowiednio kątem załamania i współczynnikiem załamania drugiego ośrodka.

1.3 Kat Brewstera

Kiedy kąt załamania β będzie pod kątem 90° do kąta odbicia α_B nie występuje fala odbita. Kąt ten nazywamy kątem Brewstera i wyznaczamy go z warunku

$$\beta = 90^{\circ} - \alpha_B \tag{3}$$

A więc

$$n_1 \sin \alpha_B = n_2 \cos \alpha_B \tag{4}$$

$$\operatorname{tg}\alpha_B = \frac{n_2}{n_1} \tag{5}$$

1.4 Zjawisko całkowitego wewnętrznego odbicia

W momencie kiedy kąt fali po załamaniu (β) przekroczy 90° możemy zaobserwować zjawisko całkowitego odbicia. Zachodzi ono dla kątów padania większych od α_{GR} wyznaczanego za pomocą

$$\sin \alpha_{GR} = \frac{n_2}{n_1} \tag{6}$$

Kąt graniczny występuje więc, gdy $\frac{n_1}{n_2}>1$

2 Wykaz przyrządów i schemat pomiarowy

2.1 Wykaz przyrządów

- $\bullet\,$ amperomierz analogowy UM-110B
- \bullet dielektryk
- 2 polaryzatory
- laser
- goniometr

2.2 Schemat pomiarowy

3 Zadanie 1.

3.1 Wyniki pomiarów

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ı	ı	I	I	l.	I	
10 32 10mA 0,2mA 6,4 0,1702 4 15 30 10mA 0,2mA 6 0,1702 4 20 30 10mA 0,2mA 6 0,1702 4 25 30 10mA 0,2mA 5,6 0,1702 4 30 28 10mA 0,2mA 5,6 0,1702 4 35 28 10mA 0,2mA 5,6 0,1702 4 40 26 10mA 0,2mA 5,2 0,1702 4 45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 3,6 0,1702 4 60 18 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 80	$\alpha_w[^{\circ}]$	I	zakres	1 działka	wynik	u(I)	$u(\Theta)[^{\circ}]$
15 30 10mA 0,2mA 6 0,1702 4 20 30 10mA 0,2mA 6 0,1702 4 25 30 10mA 0,2mA 5,6 0,1702 4 30 28 10mA 0,2mA 5,6 0,1702 4 35 28 10mA 0,2mA 5,6 0,1702 4 40 26 10mA 0,2mA 5,2 0,1702 4 45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 4,0 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 1,6 0,1702 4 80	5	30	10mA	0,2mA	6	0,1702	4
20 30 10mA 0,2mA 6 0,1702 4 25 30 10mA 0,2mA 6 0,1702 4 30 28 10mA 0,2mA 5,6 0,1702 4 35 28 10mA 0,2mA 5,6 0,1702 4 40 26 10mA 0,2mA 5,2 0,1702 4 45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,0 0,1702 4 50 22 10mA 0,2mA 4,0 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85	10	32	10mA	0,2mA	6,4	0,1702	4
25 30 10mA 0,2mA 6 0,1702 4 30 28 10mA 0,2mA 5,6 0,1702 4 35 28 10mA 0,2mA 5,6 0,1702 4 40 26 10mA 0,2mA 5,2 0,1702 4 45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 4,0 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,075 0,621 4 90	15	30	10mA	0,2mA	6	0,1702	4
30 28 10mA 0,2mA 5,6 0,1702 4 35 28 10mA 0,2mA 5,6 0,1702 4 40 26 10mA 0,2mA 5,2 0,1702 4 45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 3,6 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 80 6 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,22 0,621 4 90	20	30	10mA	$0.2 \mathrm{mA}$	6	0,1702	4
35 28 10mA 0,2mA 5,6 0,1702 4 40 26 10mA 0,2mA 5,2 0,1702 4 45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 3,6 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 100	25	30	10mA	$0.2 \mathrm{mA}$	6	0,1702	4
40 26 10mA 0,2mA 5,2 0,1702 4 45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 3,6 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 <td>30</td> <td>28</td> <td>10mA</td> <td>$0.2 \mathrm{mA}$</td> <td>5,6</td> <td>0,1702</td> <td>4</td>	30	28	10mA	$0.2 \mathrm{mA}$	5,6	0,1702	4
45 24 10mA 0,2mA 4,8 0,1702 4 50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 4,0 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,0575 0,281 4 1	35	28	10mA	$0.2 \mathrm{mA}$	5,6	0,1702	4
50 22 10mA 0,2mA 4,4 0,1702 4 55 20 10mA 0,2mA 4,0 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,02 0,281 4 100 4 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 12	40	26	10mA	$0.2 \mathrm{mA}$	5,2	0,1702	4
55 20 10mA 0,2mA 4,0 0,1702 4 60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 <td< td=""><td>45</td><td>24</td><td>10mA</td><td>$0.2 \mathrm{mA}$</td><td>4,8</td><td>0,1702</td><td>4</td></td<>	45	24	10mA	$0.2 \mathrm{mA}$	4,8	0,1702	4
60 18 10mA 0,2mA 3,6 0,1702 4 65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,0575 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4	50	22	10mA	$0.2 \mathrm{mA}$	4,4	0,1702	4
65 16 10mA 0,2mA 3,2 0,1702 4 70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,0575 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,575 0,621 4	55	20	10mA	$0.2 \mathrm{mA}$	4,0	0,1702	4
70 10 10mA 0,2mA 2,0 0,1702 4 75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,02 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,575 0,621 4	60	18	10mA	$0.2 \mathrm{mA}$	3,6	0,1702	4
75 8 10mA 0,2mA 1,6 0,1702 4 80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,02 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,0575 0,621 4 115 5 3mA 0,05mA 0,42 0,621 4 120 8,5 3mA 0,05mA 0,575 0,621 4 <tr< td=""><td>65</td><td>16</td><td>10mA</td><td>$0.2 \mathrm{mA}$</td><td>3,2</td><td>0,1702</td><td>4</td></tr<>	65	16	10mA	$0.2 \mathrm{mA}$	3,2	0,1702	4
80 6 10mA 0,2mA 1,2 0,1702 4 85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,02 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4	70	10	10mA	$0.2 \mathrm{mA}$	2,0	0,1702	4
85 4 3mA 0,05mA 0,2 0,621 4 90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,02 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4 <td>75</td> <td>8</td> <td>10mA</td> <td>$0.2 \mathrm{mA}$</td> <td>1,6</td> <td>0,1702</td> <td>4</td>	75	8	10mA	$0.2 \mathrm{mA}$	1,6	0,1702	4
90 1,5 3mA 0,05mA 0,075 0,621 4 95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,02 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	80	6	10mA	$0.2 \mathrm{mA}$	1,2	0,1702	4
95 7 0,3mA 0,005mA 0,035 0,281 4 100 4 0,3mA 0,005mA 0,02 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	85	4	$3 \mathrm{mA}$	$0.05 \mathrm{mA}$	0,2	0,621	4
100 4 0,3mA 0,005mA 0,02 0,281 4 105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	90	1,5	$3 \mathrm{mA}$	$0.05 \mathrm{mA}$	0,075	0,621	4
105 11,5 0,3mA 0,005mA 0,0575 0,281 4 110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	95	7	0,3mA	0,005mA	0,035	0,281	4
110 3 3mA 0,05mA 0,15 0,621 4 115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	100	4	0,3mA	0,005mA	0,02	0,281	4
115 5 3mA 0,05mA 0,25 0,621 4 120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	105	11,5	0,3mA	0,005mA	0,0575	0,281	4
120 8,5 3mA 0,05mA 0,42 0,621 4 125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	110	3	3mA	$0.05 \mathrm{mA}$	0,15	0,621	4
125 11,5 3mA 0,05mA 0,575 0,621 4 130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	115	5	3mA	$0.05 \mathrm{mA}$	0,25	0,621	4
130 15 3mA 0,05mA 0,75 0,621 4 135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	120	8,5	3mA	0,05mA	0,42	0,621	4
135 18 3mA 0,05mA 0,9 0,621 4 140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	125	11,5	3mA	0,05mA	0,575	0,621	4
140 21 3mA 0,05mA 1,05 0,621 4 145 23,5 3mA 0,05mA 1,175 0,621 4	130	15	3mA	0,05mA	0,75	0,621	4
145 23,5 3mA 0,05mA 1,175 0,621 4	135	18	3mA	0,05mA	0,9	0,621	4
	140	21	3mA	0,05mA	1,05	0,621	4
150 25,5 3mA 0,05mA 1,275 0,621 4	145	23,5	3mA	0,05mA	1,175	0,621	4
	150	25,5	3mA	0,05mA	1,275	0,621	4

3.2 Wykres

3.3 Wnioski

Różnice pomiędzy wynikami pomiarów a przewidywaniami teoretycznymi mogą być spowodowane występowaniem w obwodzie włączonej lampki oświetlającej biurko. Jednakowoż wyniki są podobne do przewidywań, co potwierdza prawo Malusa.

4 Zadanie 2.

4.1 Wyniki pomiarów

$\alpha[\circ]$	β [°]	$u(\beta)[^{\circ}]$	$\sin(a)$	$u(\sin(a))$	$\sin(b)$	$u(\sin(b))$
10	6	1	0,1736	0,0175	0,1045	0,0175
15	9	1	0,2588	0,0175	0,1564	0,0175
20	13	1	0,3420	0,0175	0,2250	0,0175
25	16	1	0,4226	0,0175	0,2756	0,0175
30	19	1	0,5000	0,0175	0,3256	0,0175
35	22	1	0,5736	0,0175	0,3746	0,0175
40	25	1	0,6428	0,0175	0,4226	0,0175
45	28	1	0,7071	0,0175	0,4695	0,0175
50	30	1	0,7660	0,0175	0,5000	0,0175
55	32	1	0,8192	0,0175	0,5299	0,0175
60	34	2	0,8660	0,0349	0,5592	0,0349
65	36	2	0,9063	0,0349	0,5878	0,0349
70	37	3	0,9397	0,0523	0,6018	0,0523
75	38	3	0,9659	0,0523	0,6157	0,0523
80	37	4	0,9848	0,0698	0,6018	0,0698

4.2 Wykres

4.3 Obliczenia

Szukaną wartość otrzymujemy stosując Metodę Najmniejszych Kwadratów minimalizując funkcję

$$f(a,b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2$$
 (7)

$$n_2 = \frac{\sin \alpha}{\sin \beta} = \text{współczynnik kierunkowy prostej } + u(n_2) = 1,561 \pm 0,028$$
 (8)

Ostatecznie

$$n_2 = 1,561 \pm 0,028 \tag{9}$$

5 Zadanie 3. - badanie kąta Brewstera

5.1 Wyniki pomiarów

$$\alpha_{\beta} = 57^{\circ} \tag{10}$$

$$\beta = 33^{\circ} \tag{11}$$

$$\alpha_{\beta} + \beta = 90^{\circ} \tag{12}$$

5.2 Obliczenia

$$n_2 = \operatorname{tg} \alpha_{\beta} \tag{13}$$

$$n_2 = \lg 57^\circ = 1,5398 \tag{14}$$

$$u(n_2) = \left| \frac{u(\alpha_\beta)}{\cos^2 \alpha_\beta} \right| = 0,117 \tag{15}$$

Ostatecznie

$$n_2 = 1,54 \pm 0,12 \tag{16}$$

6 Zadanie 4.

6.1 Wyniki pomiarów

$$\alpha_{qr} = 43^{\circ} \pm 5^{\circ} \tag{17}$$

6.2 Obliczenia

$$n_2 = \frac{1}{\sin \alpha_{gr}} = 1,466279 \tag{18}$$

$$u(n_2) = \left| \frac{-\cos \alpha_{gr}}{\sin^2 \alpha_{gr}} \cdot u(\alpha_{gr}) \right| = 0,14$$
(19)

Ostatecznie

$$n_2 = 1.46 \pm 0,14 \tag{20}$$

7 Wnioski

Ćwiczenie laboratoryjne miało na celu badanie zjawisk optycznych. Tematem przewodnim wykonywanych zadań była obserwacja odbicia światła od powierzchni dielektryka. Przeprowadzone doświadczenia pozwoliły nam pogłębić swoją wiedzę i poszerzyć horyzonty, potwierdzając prawa Malusa i Snelliusa, które stały się dla nas jasne po wcześniejszym wstępie teoretycznym.

Pomiary dały nam satysfakcjonujące wyniki, zgodne z przewidywaniami postawionymi dzięki teoretycznym przesłankom. Niecałkowita zbieżność widoczna w zestawieniu powyższych danych może mieć podstawy w wielorakich czynnikach zewnętrznych, do których mogą należeć na przykład wpływ urządzeń laboratoryjnych niebędących częścią badanych układów (takich jak lampka oświetlająca stół), bądź niedokładnośc odczytu z urządzeń pomiarowych.

Doświadenia, które miały miejsce w Centralnym Laboratorium Fizycznym miały na celu także wyznaczenie $kata\ Brewstera$, dla którego odbita wiązka światła zanika i ustępuje miejsca efektowi wewnętrznego odbicia.

Wszystkie powyższe działania prowadziły jednak do innego szerzej zdefiniowanego celu, który przyświecał nam przez cały czas pracy, a mianowicie znalezienia współczynnika załamania światła badanego dielektryka. Udało nam się wyznaczyć tę wartość na trzy sposoby, z których najdokładniejszy okazał się ten wykorzystujący metodę Snelliusa.