PROCEDIMENTOS PRÁTICOS – ATIVIDADE 1

Neste momento, todas as etapas serão listadas para a correta execução dos procedimentos práticos. Considerando a carga horária da aula prática, você pode replicar a caixa de procedimento/atividade quantas vezes for necessário.

Atividade proposta:

Análise do fluxo de potência em sistemas elétricos de potência.

Procedimentos para a realização da atividade:

O sistema a ser implementado é o da figura a seguir:

Figura 1: sistema 1 para implementação.

Fonte: elaborada pelo autor.

Passos a serem seguidos:

1) Criar o sistema utilizando o PowerWorld, com os parâmetros apresentados nas Tabelas 1, 2 e 3 e na Figura 1.

DESENHE O DIAGRAMA DO SEP REPRESENTADO PELAS TABELAS ABAIXO

Tabela 1: dados de entrada das barras.

BARRA	TIPO	Χ _G	V	Ângulo	P _G	Q _G	P_{L}	Q_L	Q_{Gmin}	Q _{Gmax}
		PU	PU	graus	PU	PU	PU	PU	PU	PU
1	Slack	0,1	1,0	0	-	-	0	0	-	-
2	P-Q	-	-	-	0	0	8,0	2,8	-	-
3	P-V	0,1	1,05	-	5,2	-	0,8	0,4	-2,8	6,5
4	P-Q	-	-	-	0	0	0	0	-	-
5	P-Q	-	-	-	0	0	0	0	-	-

Fonte: elaborada pelo autor.

Tabela 2: dados de entrada das linhas.

CONEXÃO	R	X	В	Max MVA	
	PU	PU	PU	PU	
2 – 4	0,009	0,1	1,72	6	
2 – 5	0,0045	0,5	0,88	12	
4 – 5	0,00225	0,025	0,44	3	

Fonte: elaborada pelo autor.

Tabela 3: dados de entrada dos transformadores de linha.

CONEXÃO	R	X	Max MVA	
	PU	PU	PU	
1 – 5	0,0015	0,02	6	
3 – 4	0,00075	0,01	10	

Fonte: elaborada pelo autor.

- 2) Execute a simulação utilizando a solução de fluxo de potência para computar as magnitudes e fases das tensões em todas as barras, os fluxos de potência real e reativo pelas linhas e também as potências real e reativa geradas e absorvidas pelos geradores e cargas.
- 3) Sabendo que as tensões nas barras devem permanecer entre 0,95pu e 1,05pu, identifique quais barras estão dentro da conformidade e quais estão em desacordo.
- 4) Acrescente um capacitor à barra 2 para regular o nível de tensão na barra. Para isso, encontre a quantidade necessária de potência reativa a ser injetada na rede para que a tensão na barra fique em conformidade com os limites.
- 5) Considerando os transformadores T1 e T2 como sendo de tap variável, mude a configuração dos taps (via tentativa e erro) até encontrar um ponto quase ótimo que garanta as tensões nas barras dentro dos limites aceitáveis.

RESULTADOS

Resultados da aula prática:

Deve-se gerar um relatório contendo todos os valores das tensões nas barras, além do fluxo de potência através de todos os elementos do SEP simulado. Além disso, o relatório deve conter o comentário sobre as tensões nas barras, enumerando as que estão fora de conformidade. O relatório deve conter também o resultado obtido através das técnicas de regulagem de tensão (capacitor e transformador de tap variável).