The Iterative extended Kalman filter

Sensor fusion & nonlinear filtering

Lars Hammarstrand

ITERATED EXTENDED KALMAN FILTERS

The Iterated EKF (IEKF)

- Once we have computed $\hat{\mathbf{x}}_{k|k}$ we have a better guess about \mathbf{x}_k
 - \rightsquigarrow we can linearize $\mathbf{h}(\mathbf{x}_k)$ around that point and update $p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$ using the new linearization and \mathbf{y}_k .

Note:

- we obtain an iterative algorithm that we can run until convergence,
- each update starts with the predicted density $\mathcal{N}(\mathbf{x}_k; \hat{\mathbf{x}}_{k|k-1}, \mathbf{P}_{k|k-1})$ to avoid using \mathbf{y}_k multiple times.

IEKF: REMARKS

IEKF - Gauss Newton search

• One can show that the IEKF solves

$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k}^{\mathsf{MAP}} = \arg\max_{\mathbf{x}_k} p(\mathbf{x}_k | \mathbf{y}_{1:k})$$

iteratively using a Gauss-Newton search.

EKF: THE UPDATE STEP

EKF update step - Example 2

• Prediction:

$$x_k | y_{1:k-1} \sim \mathcal{N}(3, 3.5^2)$$

• Measurement: $y_k = 2$

$$y_k = h(x_k) + r_k$$
$$h(x_k) = 0.01x_k^3$$
$$r_k \sim \mathcal{N}(0, 0.3)$$

• Find the posterior mean $\mathbb{E}\{x_k | y_{1:k}\}$ and the approximate posterior mean $\hat{x}_{k|k}$ given by EKF.

IEKF: REMARKS

IEKF - Gauss Newton search

· One can show that the IEKF solves

$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k}^{\mathsf{MAP}} = \arg\max_{\mathbf{x}_k} p(\mathbf{x}_k \big| \mathbf{y}_{1:k})$$

iteratively using a Gauss-Newton search.

Pros:

- the IEKF usually performs very well when the measurement noise is small (the MAP estimate is accurate then).
- the IEKF often converges in very few iterations.

Cons:

- posterior pdfs are often rather skewed
 the MAP estimate is far from the posterior mean.
- the IEKF may diverge (more robust alternatives exist).