Week 1 HW 2: Using Overfitting to evaluate Models

Khoi Duong CS550 Prof. Chang 1/31/2023

Table of content

- 1. Explain and understand the problem
- 2. Distribute sample data by 3 phases (Training, Validation, and Test phases)
- 3. Define the formulas for Linear Regression & Nonlinear Regression Models
- 4. Fill out the table for Training & Validation Phases
- 5. Calculate the MSE (Mean Squared Error)
- 6. Compare the 2 Models to see which one has more serious overfitting issue
- 7. Fill test phase data
- 8. Conclusion
- 9. References

1. Explain and understand the problem

For this exercise, given a dataset, we have to compare the two regression models: Linear Regression and Nonlinear Regression to see which one has more serious overfitting issue. In order to do this, first, we have to distribute the sample data by 3 phases (Training Phase: 50%, Validation Phase: 25%, and Test Phase: 25%). Then, we have to determine the equation of the 2 Regression Models. Next, we fill different values of y into the data table. After filling up the table, we have to calculate the MSE and compare the overfitting issue.

2. Distribute sample data by 3 phases (Training, Validation, and Test phases)

Following to the given problem, the training, validation, and test phases will have the following values:

x	у
1	1.8
2	2.4
3.3	2.3
4.3	3.8
5.3	5.3
1.4	1.5
2.5	2.2
2.8	3.8
4.1	4.0
5.1	5.4

x	у
1.5	1.7
2.9	2.7
3.7	2.5
4.7	2.8
5.1	5.5

x	
1.4	
2.5	
3.6	
4.5	
5.4	

Validation Phase

Test Phase

Training Phase

3. Define the formulas for Linear Regression & Nonlinear Regression Models

Model 1: Linear Regression

Number of values: N = 10

We have the following table:

X value	Y value	X * Y	X * X
1	1.8	1.8	1
2	2.4	4.8	4
3.3	2.3	7.59	10.89
4.3	3.8	16.34	18.49
5.3	5.3	28.09	28.09
1.4	1.5	2.1	1.96
2.5	2.2	5.5	6.25
2.8	3.8	10.64	7.84
4.1	4.0	16.4	16.81
5.1	5.4	27.54	26.01

Calculating the total:

$$\sum X = 31.8$$
, $\sum Y = 32.5$, $\sum XY = 120.8$, $\sum X^2 = 121.34$

We have the equation for linear regression: y = a + bx

Slope (b) =
$$\frac{N * \sum XY - (\sum X)(\sum Y)}{N * \sum X^2 - (\sum X)^2} = \frac{10*120.8 - (31.8)(32.5)}{10*121.34 - (31.8)^2} = \frac{174.5}{202.16} \approx 0.863$$

Intercept (a) =
$$\frac{\sum Y - b^* \sum X}{N} = \frac{32.5 - 0.863^* 31.8}{10} = \frac{5.05}{10} = 0.505$$

Therefore, we have the regression formula: y = 0.505 + 0.863x

Model 2: Non-linear Regression

Number of values: N = 10

X Values	<u>X</u> Values	Y Values	
1	1	1.8	
2	4	2.4	
3.3	10.89	2.3	
4.3	18.49	3.8	
5.3	28.09	5.3	
1.4	1.96	1.5	
2.5	6.25	2.2	
2.8	7.84	3.8	
4.1	16.81	4	
5.1	26.01	5.4	

We have the following table:

<u>X</u> value	Y value	<u>x</u> * Y	<u>X</u> * <u>X</u>
1	1.8	1.8	1
4	2.4	9.6	16
10.89	2.3	25.047	118.5921
18.49	3.8	70.262	341.8801
28.09	5.3	148.877	789.0481
1.96	1.5	2.94	3.8416
6.25	2.2	13.75	39.0625
7.84	3.8	29.792	61.4656
16.81	4.0	67.24	282.5761
26.01	5.4	140.454	676.5201

Calculating the total:

$$\sum X = 121.34$$
, $\sum Y = 32.5$, $\sum XY = 509.762$, $\sum X^2 = 2329.9862$

We have the equation for non-linear regression: $y = a + bx^2$

Slope (b) =
$$\frac{N * \sum XY - (\sum X)(\sum Y)}{N * \sum X^2 - (\sum X)^2} = \frac{10*509.762 - (121.34)(32.5)}{10*2329.9862 - (121.34)^2} = \frac{1154.07}{8576.47} \approx 0.135$$

Intercept (a) = $\frac{\sum Y - b^* \sum X}{N} = \frac{32.5 - 0.135^* 121.34}{10} = \frac{16.17}{10} = 1.617$

Therefore, we have the regression formula: $y = 1.617 + 0.135x^2$

The equations for 2 Regression Models

Model 1: Linear Regression

$$y = 0.505 + 0.836x$$

Model 2: Non-linear Regression

$$y = 1.617 + 0.135x^2$$

4. Fill out the table for training and validation phases

Real Data Set 1: 50% of the co		Model 1: Linear Regression	Model 2: Non- Linear Regression
x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$
1	1.8	1.368	1.752
2	2.4	2.231	2.157
3.3	2.3	3.3529	3.08715
4.3	3.8	4.2159	4.11315
5.3	5.3	5.0789	5.40915
1.4	1.5	1.7132	1.8816
2.5	2.2	2.6625	2.46075
2.8	3.8	2.9214	2.6754
4.1	4	4.0433	3.88635
5.1	5.4	4.9063	5.12835

	Real Data Set 2: Validation Phase 25% of the collected data		Model 2: Non- Linear Regression
x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$
1.5	1.8	1.7995	1.92075
2.9	2.4	3.0077	2.75235
3.7	2.3	3.6981	3.46515
4.7	3.8	4.5611	4.59915
5.1	5.3	4.9063	5.12835
X	X	X	Х
X	X	X	X
X	X	X	X
X	X	X	X
X	X	X	X

5. Calculate the MSE (Mean Squared Error) & Fill Test Phase

	: Training Phase ollected data	Model 1: Linear Regression	Distance
X	У	ŷ=a1 + b1 * x	(ŷ-y)^2
1	1.8	1.368	0.186624
2	2.4	2.231	0.028561
3.3	2.3	3.3529	1.10859841
4.3	3.8	4.2159	0.17297281
5.3	5.3	5.0789	0.04888521
1.4	1.5	1.7132	0.04545424
2.5	2.2	2.6625	0.21390625
2.8	3.8	2.9214	0.77193796
4.1	4	4.0433	0.00187489
5.1	5.4	4.9063	0.24373969
		Total	2.82255446
		MSE	0.282255446

Training Phase

Model 1: Linear Regression

MSE = 0.282

Real Data Set 2: 25% of the co		Model 1: Linear Regression	Distance
X	у	ŷ=a1 + b1 * x	(ŷ-y)^2
1.5	1.8	1.7995	0.00000025
2.9	2.4	3.0077	0.36929929
3.7	2.3	3.6981	1.95468361
4.7	3.8	4.5611	0.57927321
5.1	5.3	4.9063	0.15499969
X	X	X	X
X	X	X	X
X	X	Х	X
X	X	Х	X
X	X	Х	Х
		Total	3.05825605
		MSE	0.305825605

Validation Phase

Model 1: Linear

Regression

MSE = 0.306

	: Training Phase ollected data	Model 2: Non- Linear Regression	Distance
х	у	ŷ=a2 + b2 * x^2	(ŷ-y)^2
1	1.8	1.752	0.002304
2	2.4	2.157	0.059049
3.3	2.3	3.08715	0.6196051225
4.3	3.8	4.11315	0.0980629225
5.3	5.3	5.40915	0.0119137225
1.4	1.5	1.8816	0.14561856
2.5	2.2	2.46075	0.0679905625
2.8	3.8	2.6754	1.26472516
4.1	4	3.88635	0.0129163225
5.1	5.4	5.12835	0.0737937225
		Total	2.355979095
		MSE	0.2355979095

Training Phase

• Model 2: Non-linear Regression

MSE = 0.236

	Validation Phase ollected data	Model 1: Linear Regression	Distance
X	у	ŷ=a1 + b1 * x	(ŷ-y)^2
1.5	1.8	1.92075	0.0145805625
2.9	2.4	2.75235	0.1241505225
3.7	2.3	3.46515	1.357574523
4.7	3.8	4.59915	0.6386407225
5.1	5.3	5.12835	0.0294637225
X	X	Х	X
X	X	Х	Х
X	X	Х	X
X	X	Х	X
X	X	Х	Х
		Total	2.164410053
		MSE	0.2164410053

Validation Phase

 Model 2: Non-linear Regression
MSE = 0.216

6. Compare the 2 Models to see which one has more serious overfitting issue

- Model 1: 0.306/0.282 = 1.084
- Model 2: 0.236/0.216 = 1.089
- Compare Model 1 and Model 2: Model 1 is the better model since 1.084 < 1.089

7. Fill test phase data

Real Data Set 2: 25% of the collected data	The better model (Model 1) selected from Validation phase
x	ŷ=a1 + b1 * x
1.4	1.7132
2.5	2.6625
3.6	3.6118
4.5	4.3885
5.4	5.1652
Х	Х
X	X
X	Х
Х	Х
Х	X

8. Conclusion

Model 1 is the better model, this means that Model 2 has more serious overfitting issues since the quotient of the 2 MSE between validation & training data. Thus, for the test phase, we will use the Model 1 to calculate the value of y to get the best and closest estimated value.

9. Reference

Thangarani Prabhu - TA, Summer 2018

Use Overfitting to evaluate different Models

R and Linear/Non-Linear Regression - Lena Lee, Fall 2015