本科试题(四)

一、选择题(每小题2分,共20分。)

1. 逻辑函数 $F = A\overline{B} + \overline{B}DEG + \overline{A}\overline{B} + B$ 的最简式为 ()。

A. $F = \overline{B}$ B. F=B C. F=0 D. F=1

2. 逻辑函数 F (ABC) =A⊙C 的最小项标准式为 ()。

A. $F = \sum (0, 3)$ B. $\mathbf{F} = \overline{\mathbf{A}} \mathbf{C} + \mathbf{A} \overline{\mathbf{C}}$ C. $F = m_0 + m_2 + m_5 + m_7$ D. $F = \sum (0, 1, 6, 7)$

3. 八进制数(573.4)。的十六进制数是()。

A. $(17C. 4)_{16}$ B. $(16B. 4)_{16}$ C. $(17B. 8)_{16}$ D. $(17B. 5)_{16}$

4. 在下列电路中,不是组合逻辑电路的是()。

A. 编码器 B. 锁存器 C. 全加器 D. 比较器

5. 八路数据分配器, 其数据输入端有() 个。

A. 1 B. 2 C. 3 D. 8

6. n个触发器构成的扭环计数器中,无效状态有()个。

A. n B. 2n C. 2^{n-1} D. $2^{n}-2n$

7. 构成数字系统必不可少的逻辑执行部件为()。

A. 控制器 B. 计数器 C. 基本子系统 D. 逻辑门

8. 电路如图 1 所示,其中完成 $Q^{n+l} = \overline{Q^n} + A$ 电路是 ()。

- 9. 使用 256×4 位 EPROM 芯片构成 2K×32 位存储器, 共需 EPROM 芯片 () 片。
 - A. 64
- B. 32

- C. 48
- D. 16
- 10. PAL 是一种 的可编程逻辑器件。()
- A. 与阵列可编程、或阵列固定 B. 与阵列固定、或阵列可编程
- C. 与、或阵列固定 D. 与、或阵列都可编程

二、简答题(每小题5分,共10分)

- 1. 描述米里型和摩尔型时序电路的定义。
- 2. 比较定序型控制器和计数型控制器的特点。

三、简单分析题(每小题5分,共10分)

1. 分析图 2 所示逻辑电路的功能。

2.一个由 3:8 译码器构成的逻辑电路如图 3 所示,写出函数 F 的最小项表达式。

四、组合电路设计(10分)

设 A、B、C 为保密锁的 3 个按键, 当 A 键单独按下时,锁既不打开也不报警;只有当 A、B、C 或者 A、B 或者 A、C 分别同时按下时,锁才能被打开,当不符合上述组合状态时,将发出报警信息,请设计此保密锁的逻辑电路。

- 1、列真值表。
- 2、求最简逻辑表达式。(卡诺图)
- 3、 画出用与非门实现的电路图。

六、时序电路设计(12分)

某计数器的输出波形如图 4 所示。

- ① 试确定该计数器的计数循环中有几个状态?
- ② 列出状态转移真值表、画出状态转移图。
- ③ 若使用 D 触发器,写出激励方程表达式。
- ④ 画出计数器电路图。

七、硬件描述语言设计(14分)

一位十进制计数器七段数字显示系统如图 5 所示。计数器是 8421BCD 码同步计数器, 其输出 $Q_0^*Q_0$ 作为七段译码器的输入,译码器的输出送到七段发光二极 管显示器,它能显示 0,1,2, … 9 十个字符。采用 VHDL 语言设计一位十进制计数器和 七段译码器,写出完整的设计源程序。

8421BCD 七段显示译码真值表											
Q_3	Q_2	Q_1	Q_0	a	b	c	d	³ e	f	g	显
											示
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
Λ	Λ	1	Λ	1	1	Λ	1	1	Λ	1	2

八、小型控制器设计(14分)

有一个数字比较系统,它能连续对两个八位二进制数据进行比较,操作过程如下: 先将两个数存入寄存器 A 和寄存器 B,然后进行比较,最后将大数移入寄存器 B 中。其方框图如图 6 所示。其中 Y 为输入数据,LDA 和 LDB 为打入控制信号,COMP 是三态门使能控制信号,X 是比较器输出信号。假设状态发生变化在 T_1 节拍时间,打入寄存器操作发生在 T_2 节拍时间,状态周期 $T=T_1+T_2$ 。

- ① 画出 ASM 流程图。
- ② 列出状态转移真值表
- ③ 设计多路选择器型控制器电路。

图 6