MATH355 2017-09-22

DIMENSION IS SERIOUSLY USEFUL

Recall that the dimension of V is the number of vectors in any basis.

Example 1. dim $\mathbf{R}^2 = 2$. Indeed $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is a basis, and it is made up of two vectors.

Example 2. dim $\mathbf{R}^n = \mathbf{n}$. Indeed, $\vec{e}_1, \dots, \vec{e}_n$ is a basis (this is called the *standard* basis or the *canonical* basis).

Example 3. dim $P_{\leq 3} = 4$. Recall $P_{\leq 3} = \{a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_i \in \mathbf{R}\}$. A basis consists of $\{1, x, x^2, x^3\}$ (why?).

Example 4. dim $P_{\leq n} = n + 1$. Indeed a basis is given by $\{1, x, x^2, \dots, x^n\}$.

Example 5. What is dim $M_{3\times2}$? Recall that

$$M_{3\times 2} = \left\{ \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \middle| a, b, c, d, e, f \in \mathbf{R} \right\}.$$
A basis is given by
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$
Why?

Example 6. In general, $\dim M_{m \times n} = mn$.

Date: John Calabrese, September 23, 2017.

I

It is a good exercise to try and prove the following facts (see also the textbook).

Fact 7. Any set of linearly independent vectors can be extended to a basis.

Example 8. Suppose $\vec{u}, \vec{v}, \vec{w} \in \mathbf{R}^5$ are linearly independent. Then we can always find $\vec{s}, \vec{t} \in \mathbf{R}^5$ such that $\vec{u}, \vec{v}, \vec{w}, \vec{s}, \vec{t}$.

Fact 9. Any spanning set can be shrunk to a basis.

Example 10. Take
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \vec{v}_4 = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$$
. Check that Span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\} = \mathbf{R}^3$. But $\vec{v}_1, \dots, \vec{v}_4$ is *not* a basis. (why?) However $\vec{v}_1, \vec{v}_3, \vec{v}_4$ is a basis, and so is $\vec{v}_2, \vec{v}_3, \vec{v}_4$ (why?).

Fact II. If W < V is a subspace, then dim $W \le \dim V$.

Write $k = \dim W$, and $n = \dim V$. The Fact above says that $0 \le k \le n$. It's useful to see the extreme cases.

dim
$$W = 0$$
 if and only if $W = \{\vec{0}\}\$
dim $W = n$ if and only if $W = V$

The following result is extremely important.

Lemma 12. Say dim
$$V=n$$
, say $\vec{v}_1,\ldots,\vec{v}_n\in V$. Then $\vec{v}_1,\ldots,\vec{v}_n$ are linearly independent

if and only if

Span
$$\{\vec{v}_1,\ldots,\vec{v}_n\} = V$$
.

Concretely, this means that (*once you know the dimension!*) to check a set of vectors is a basis you only need to check one of the two conditions.

Corollary 13. Say dim
$$V = n$$
, say $\vec{v}_1, \dots, \vec{v}_n \in V$.
If $\vec{v}_1, \dots, \vec{v}_n$ are linearly independent, then they form a basis.
If $\operatorname{Span}\{\vec{v}_1, \dots, \vec{v}_n\} = V$, then they form a basis.

3

Example 14. Are $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $1\vec{2}1$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ a basis for \mathbb{R}^3 ? Well, dim $\mathbb{R}^3 = 3$ so it suffices to check whether they are linearly independent.

$$x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} x + y + z \\ x + 2y \\ x + y - z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Write the matrix corresponding to the system of equations

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$

whose echelon form is

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \end{pmatrix}$$

so the only solution is the trivial solution, hence the three vectors are linear independent. By the Lemma, we deduce they form a basis of \mathbb{R}^3 .

Once again: we had to know beforehand that dim $\mathbb{R}^3 = 3!$

Example 15. Are $\binom{1}{-1}$, $\binom{2}{2}$, $\binom{-3}{4}$ linearly independent? Of course not! Why? If they were, this would mean that dim $\mathbb{R}^2 \ge 3$, but dim $\mathbb{R}^2 = 2$!

Let us generalize the previous example and state it as a fact.

Fact 16. Say dim V = n, say $\vec{w}_1, \dots, \vec{w}_k$ are linearly independent vectors. Then $k \le n$.

We now want to relate what we've learned so far, to systems of linear equations. Say

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

is a homogeneous system of equations. First off,

Sol $< \mathbb{R}^n$ is a subspace.

Notice that n is the number of variables x_1, \ldots, x_n . But what is the dimension of Sol?

dim Sol = number of free variables

4

Example 17. Consider the system

$$\begin{cases}
-3x + 6y + z + s = 0 \\
5z - 5s + 3t = 0 \\
6s = 0
\end{cases}$$

With corresponding matrix

$$\begin{pmatrix}
-3 & 6 & 1 & 1 & 0 \\
0 & 0 & 5 & -5 & 3 \\
0 & 0 & 0 & 6 & 0
\end{pmatrix}$$

which is conveniently already in echelon form. Observe, x, y, s are leading variables, therefore y, t are free. Hence, dim Sol = 2.

Example 18. Continuing from the example above, let us write a basis for Sol. First, we need to describe it.

$$Sol = \left\{ \begin{pmatrix} 2y - \frac{1}{5}t \\ y \\ -\frac{3}{5}t \\ t \\ 0 \end{pmatrix} \middle| y, t \in \mathbf{R} \right\}$$
$$= \left\{ y \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{1}{5} \\ 0 \\ -\frac{3}{5} \\ 1 \\ 0 \end{pmatrix} \middle| y, t \in \mathbf{R} \right\}$$

How do you know that a basis for Sol is given by

$$\begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{1}{5} \\ 0 \\ -\frac{3}{5} \\ 1 \\ 0 \end{pmatrix}$$
?

Well, it's two vectors which span a two dimensional subspaces, hence they must be linearly independent, by Fact 12!

Proofs

In class, we did not have time to explain why the Facts listed above are true. I recommend you give it a shot on your own, before reading below.

Before we begin, recall the following fact mentioned a while ago.

Fact 19. Suppose $\vec{v}_1, \ldots, \vec{v}_k$ are linearly independent. Let $\vec{v}_{k+1} \in V$. Then $\vec{v}_1, \ldots, \vec{v}_{k+1}$ are linearly independent if and only if $\vec{v}_{k+1} \notin Span\{\vec{v}_1, \ldots, \vec{v}_k\}$.

Proof. Suppose $\vec{v}_1, \ldots, \vec{v}_{k+1}$ are linearly independent. If you wrote $\vec{v}_{k+1} = \sum_{i=1}^k \alpha_i \vec{v}_i$, then $\vec{0} = \left(\sum_{i=1}^k \alpha_i \vec{v}_i\right) - \vec{v}_{k+1}$. By linear independence, we must have that all coefficients are zero: so $\alpha_i = 0$ for all i, but also -1 = 0. Which is absurd.

Conversely, assume $\vec{v}_{k+1} \notin Span\{\vec{v}_1,\ldots,\vec{v}_k\}$. Suppose $\sum_{i=1}^{k+1} \alpha_i \vec{v}_i = \vec{0}$. Then $-\alpha_{k+1} \vec{v}_{k+1} = \sum_{i=1}^k \alpha_i \vec{v}_i$. If $\alpha_{k+1} = 0$, then $\alpha_i = 0$ for all i, by linear independence. If $\alpha_{k+1} \neq 0$, then $\vec{v}_{k+1} = \sum_{i=1}^k -\frac{\alpha_i}{\alpha_{k+1}} \vec{v}_i$. But then $\vec{v}_{k+1} \in Span\{\vec{v}_1,\ldots,\vec{v}_k\}$, which contradicts our assumption. \square

OK, let's move on to proving the other stuff. The first two proofs are more "proof-sketches" than rigorous proofs, but I think they convey better the idea of why things work.

Proof of Fact 7. We will give an algorithm to extended bases.

Step 1. Suppose $\vec{v}_1, \dots, \vec{v}_k \in V$ are linearly independent. Let $W \coloneqq Span\{\vec{v}_1, \dots, \vec{v}_k\}$.

Step 2. If W = V, then they were a basis to begin with.

If not, $W \subsetneq V$, and there must be $\vec{v}_{k+1} \notin W$. Since \vec{v}_{k+1} does not belong to the span of the first k vectors, $\vec{v}_1, \dots, \vec{v}_{k+1}$ are all linearly independent (by Fact 19 above).

Start over from Step 1, but now with one more vector.

The process terminates since V is assumed to be finite-dimensional to begin with. \Box

Proof of Fact 9. Let $S \subset V$ with Span S = V. If all vectors $\vec{v} \in S$ are zero, then $V = \{\vec{0}\}$ and we are done.

If not, pick $\vec{v}_1 \in S$, $\vec{v}_1 \neq 0$. If Span $\{\vec{v}_1\} = V$ we are done.

If not, there must be $\vec{v}_2 \in S$, with \vec{v}_1, \vec{v}_2 linearly independent. Indeed, if such \vec{v}_2 did not exist, this means all $\vec{v} \in S$ belong to Span $\{\vec{v}_1\}$. [why?]. But so Span $\{\vec{v}_1\} \supset Span\{S\} = V$, which is a contradiction.

If now Span $\{\vec{v}_1, \vec{v}_2\} = V$ we are done. If not, there must be $\vec{v}_3 \in S$ with $\vec{v}_1, \vec{v}_2, \vec{v}_3$ linearly independent. Indeed, if this weren't the case, then all other \vec{v} would belong to Span $\{\vec{v}_1, \vec{v}_2\}$. This means Span $\{\vec{v}_1, \vec{v}_2\} \supset$ Span S = V. Contradiction.

If now Span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = V$ we are done. If not, there must be $\vec{v}_4 \in S$ with...

The process terminates as V is assumed to be finite-dimensional.

Proof of Fact 11. Let W < V be a subspace. Let $n = \dim V$, $k = \dim W$. By definition of dimension, there is a basis of W made up of $\vec{w}_1, \ldots, \vec{w}_k$. But these vectors are linearly independent, so we may complete them to a basis of V. Since we are adding vectors to the list, this means $\dim V \ge k$.

Proof of the Box below Fact 11. Recall that if $\vec{v} \in W$, then $\{\vec{v}\}$ is linearly independent if and only if $\vec{v} \neq 0$. If dim W = 0, it means that no vector is linearly independent (otherwise dim $W \geq 1$). Hence, all vectors are zero.

Suppose dim $W = \dim V$. If $W \subseteq V$, there must be $\vec{v} \notin W$. Pick a basis $\vec{w}_1, \dots, \vec{w}_n$ of W. Since $\vec{v} \notin W = \operatorname{Span}\{\vec{w}_1, \dots, \vec{w}_n\}$, this implies $\vec{w}_1, \dots, \vec{w}_n, \vec{v}$ are linearly independent. This means dim $V > n = \dim W$. Contradiction.

I will leave the proof of Lemma 12 and Fact 16 as an exercise. Corollary 13 is obvious, once you know Lemma 12.