USA - Zkouška - 22.6.2023

Příklad 1:

Sledovali jsme věk dožití otce a jeho nejstaršího syna. Otestujte na hladině významnosti 5%, zda došlo k prodloužení života syna alespoň o 2 roky.

Otec:

[71, 72, 74, 76, 77, 78, 71, 72, 73, 75, 77, 64, 49, 52, 63, 65, 68, 71, 72, 75, 84, 81, 79, 76, 73, 75, 79, 82]

Syn:

[72, 74, 77, 69, 78, 82, 84, 78, 79, 79, 77, 68, 59, 72, 81, 68, 69, 73, 76, 78, 86, 87, 88, 91, 83, 87, 88, 93]

Uveďte hypotézy, postup, výsledky a závěr z výpočtů.

Příklad 2:

Oko se hraje s mariášovými kartami. Přičemž se spodek a filek počítá za jeden bod, král za dva body, sedma za 7, osma za 8, devítka za 9 a desítka za 10 bodů. Eso je za 11 bodů.

Hráč obdrží dvě karty a sečte si počet bodů. Cílem hry je obdržet v součtu 21 bodů. Pokud si po obdržení 2 karet myslí, že má málo bodů, může si požádat o další kartu. (předpokládejte, že žádnou kartu nelze vyměňovat)

Jaká je pravděpodobnost, že:

- a) Při obdržení dvou karet bude mít v součtu 21 nebo 22 bodů.
- b) Jestliže hráč po obdržení dvou karet neměl 21 nebo 22 bodů, vyžádal si další kartu. Jaká je pravděpodobnost, že po obdržení třetí karty je součet bodů tří karet 21 bodů.

Příklad 3:

Na kolejích TUL v Kulečníku u Hrocha každý čtvrtek sedává pět kamarádů, kteří hrají společenskou hru 4 krále.

Každý z hráčů si sedne na svoje místo (označím je 1 až 5), které je po celý večer neměnné. Hraje se s mariášovými kartami. Hráč na pozici 1 zamíchá balíček a vezme si horní kartu a otočí ji, hráč na pozici 2 si vezme další a také ji otočí. Balíček takto koluje pořád dokola. Karty se nevrací.

Cílem hry je: ten, kdo vytáhne prvního krále, vybírá prvního panáka. Ten, kdo vytáhne druhého krále, vybírá druhého panáka. Hráč s třetím králem oba panáky vypije a hráč s čtvrtým vše zaplatí.

Vypočtěte pravděpodobnost:

- a) Hráč na první pozici vybere prvního panáka, druhého panáka, vypije oba a ještě zaplatí.
- b) Hráč na třetí pozici vypije oba panáky
- c) Hra bude ukončena do 7. tahu (tzn. Kdyby to bylo v pátém tahu budou vytaženy v prvních čtyřech tazích 3 krále a pátý tah bude čtvrtý král)

Příklad 4:

U řidičů byl zjišťován reakční čas [s] podle doby strávené na pracovišti.

0 hodin	[0.45, 0.51, 0.54, 0.56, 0.62, 0.67, 0.71, 0.74]
1 hodina	[0.48, 0.49, 0.54, 0.57, 0.62, 0.65, 0.67, 0.71, 0.78, 0.82]
2 hodiny	[0.56, 0, 62, 0.65, 0.67, 0.72, 0.78, 0.82, 0.84, 0.87, 0.91]
4 hodiny	[0.56,0.58,0.64,0.67,0.71,0.83,0.85,0.89]
6 hodin	[0.47,0.51,0.54,0.56,0.58,0.62,0.67,0.71,0.75,0.78]
8 hodin	[0.56, 0.57, 0.61, 0.64, 0.67, 0.69, 0.76, 0.82, 0.85]

Otestujte na hladině významnosti 1%, zda střední hodnota / medián je u jednotlivých souborů shodný. Užijte vhodného testu dle výsledků předpokladů.

Otestujte na hladině významnosti 5%, zda reakční čas je po 8 hodinách vyšší než při nástupu do práce. (Uvažujte pouze tyto dva vektory)

Příklad 5:

Máte doby do poruchy výrobku.

T = [32, 36, 43, 47, 52, 56, 61, 67, 72, 78, 84, 89, 103, 107, 112, 121, 145, 167, 181, 189, 194, 203, 209, 212, 216, 223, 227, 234, 241, 248, 255, 261, 267, 273, 279, 285, 291, 294, 297, 303, 305, 309, 313, 317, 321, 324]

- a) Otestuje přesným testem, zda data jsou z Weibullova rozdělení.
- b) Zjistěte parametry a intervalové odhady parametrů Weibullova rozdělení (i v případě, že v bodě a) zavrhnete, že data jsou z W.r.). Rozhodněte na hladině významnosti 5%, zda data komponenta degraduje.
- c) Otestujte na hladině významnosti 5%, zda data by mohla být z normálního rozdělení.