

Nowa teraz matura

MATEMATYKA

Poziom rozszerzony

- nowe typy zadań maturalnych
- optymalna liczba zadań
- zadania CKE
- odpowiedzi do zadań
- zestaw
 wzorów

Spis treści

Co znajdziesz w Zbiorze zadań maturalnych?	4			
Powtórzenie dział po dziale				
1. Liczby rzeczywiste i wyrażenia algebraiczne	8			
2. Funkcje. Funkcja liniowa	17			
3. Funkcja kwadratowa	25			
4. Wielomiany	35			
5. Funkcja wymierna	43			
6. Funkcja wykładnicza i funkcja logarytmiczna	52			
7. Trygonometria	61			
8. Ciągi	70			
9. Planimetria	83			
10. Geometria analityczna	97			
11. Stereometria	108			
12. Rachunek różniczkowy	118			
13. Rachunek prawdopodobieństwa i statystyka	128			
Odpowiedzi				
Powtórzenie dział po dziale	144			
Tablica wartości funkcji trygonometrycznych	174			
Zestaw wzorów				

Co znajdziesz w Zbiorze zadań maturalnych?

Zbiór zadań maturalnych "NOWA Teraz matura" do matematyki na poziomie rozszerzonym gwarantuje bardzo dobre przygotowanie do egzaminu z matematyki na obu poziomach. Zapewnia optymalny dobór i liczbę zadań. Dzięki zbiorowi zapoznasz się z różnymi typami poleceń zadań egzaminacyjnych. Rozwiązania do wszystkich zadań umieszczamy pod kodami QR – pozwolą one szybko sprawdzić, jak poradzić sobie z zadaniem, które sprawia ci problem. Część rozwiązań prezentujemy w postaci filmowej. Możesz skorzystać też z modeli rozwiązań zadań otwartych – znajdziesz je również pod kodami QR. Liczne odsyłacze zarówno do odpowiednich elementów zbioru oraz związanych z nim zasobów cyfrowych, jak i do innych publikacji, ułatwiają poruszanie się po zbiorze oraz korzystanie z dodatkowych pomocy.

Poniżej przedstawiamy poszczególne elementy układu treści w zbiorze, a także stosowane w nim oznaczenia.

Na początku publikacji znajdziesz kod dostępu do aplikacji app.nowaterazmatura.pl. Zarejestruj się tam, aktywuj kod i korzystaj z zasobów cyfrowych do serii "NOWA Teraz matura". Skanuj kody QR podczas pracy na urządzeniach mobilnych lub wpisuj kody literowo-cyfrowe do aplikacji podczas pracy przy komputerze.

3. Funkcja kwadratowa

Funkcją kwadratową lub trójmianem kwadratowym $f(x) = ax^2 + hx + c$

Każdy dział pierwszej części zbioru zaczyna się od **zwięzłego wstępu** teoretycznego. Wyróżniliśmy go niebieskim tłem.

Zestaw A. Zadania powtórzeniowe

Zadania w dziale są podzielone na trzy zestawy. W zestawie A znajdują się zadania ćwiczeniowe, często z kilkoma podpunktami, umożliwiające powtórzenie materiału.

Zestaw B. Przed maturą na poziomie podstawowym Zestaw B zawiera zadania zamknięte i otwarte. Przy każdym zadaniu podano liczbę punktów przyznawaną za poprawne rozwiązanie. Egzamin w nowej formule przewiduje dużą **różnorodność zadań zamkniętych**. Oprócz zadań wielokrotnego wyboru znajdują się tam zadania typu prawda/fałsz, zadania na dobieranie, na uzasadnianie oraz wiązki zadaniowe.

Zestaw C. Przed maturą na poziomie rozszerzonym Zestaw C to **wyłącznie zadania otwarte**. Na egzaminie na poziomie rozszerzonym wystąpi tylko taki rodzaj zadań. Ich rozwiązanie często wymaga złożonych i kilkuetapowych działań. W tym zestawie umieszczamy także zadania typu wiązka – jest to grupa zadań powiązanych ze sobą tematycznie.

CKE maj 2021 PP

(CKE maj 2021 PR)

Oznaczenie zadania, które wystąpiło na maturze w poprzednich latach lub w materiałach CKE i pasuje także do obecnych wymagań egzaminacyjnych dla poziomu podstawowego (PP) lub dla poziomu rozszerzonego (PR).

Odnośnik do publikacji CKE "Wybrane wzory matematyczne na egzamin maturalny z matematyki", z której można korzystać podczas egzaminów na obu poziomach. Warto tę publikację wydrukować i zaglądać do niej systematycznie, aby przyzwyczaić się do układu i zakresu prezentowanych w niej treści.

Youtuber MiedzianyFsor prezentuje rozwiązania zadań z poziomu podstawowego.

Rozwiązania zadań z poziomu rozszerzonego prezentuje youtuber Marcin, prowadzący kanał Matma z pasją.

Z lewej strony kodu QR jest umieszczony orientacyjny czas trwania filmu.

→ Odpowiedzi

Odsyłacz do krótkich **odpowiedzi**, które znajdują się w drugiej części zbioru.

Zestaw A – odpowiedzi Zestaw B – odpowiedzi Zestaw C – odpowiedzi

Druga część zbioru to *Odpowiedzi*. Dzięki krótkim odpowiedziom można szybko sprawdzić końcowy wynik każdego zadania.

Oznaczenie kodu QR umieszczonego w części *Odpowiedzi* kierującego do plików PDF z **pełnymi rozwiązaniami wszystkich zadań**.

Zestawy B i C – Modele rozwiązań zadań otwartych Kod: PHY9V8

app.nowaterazmatura.pl

Oznaczenie kodu QR umieszczonego w części *Odpowiedzi* kierującego do **modeli rozwiązań zadań otwartych z zestawów B i C.** Modele rozwiązań to skrótowe rozwiązania zadań podzielone na etapy, zgodnie z punktacją danego zadania. Możesz je porównać z własnymi pomysłami lub wykorzystać jako wskazówki.

Kratka na marginesie **zachęca do robienia własnych notatek**, dzięki którym zbiór nabierze indywidualnego charakteru.

Na marginesach znajdują się dopiski, które sugerują, że do rozwiązania zadania warto użyć kalkulatora (na maturze z matematyki można używać kalkulatora prostego) lub skorzystać z podanego wzoru matematycznego, rysunku czy pomysłu na rozwiązanie.

Aby pogłębić wiadomości teoretyczne i znaleźć przykładowe zadania związane z danym zagadnieniem, warto sięgnąć po vademecum z matematyki na poziomie rozszerzonym z serii "NOWA Teraz matura". Układy treści zbioru zadań maturalnych i vademecum są ze sobą ściśle skorelowane.

Osiągnięcie najwyższej formy przed egzaminem zapewnią arkusze maturalne z matematyki na poziomie rozszerzonym z serii "NOWA Teraz matura". Pracę z arkuszami polecamy na zakończenie przygotowań do matury, gdy całość powtórzenia będziesz mieć już za sobą.

Powtórzenie dział po dziale

Kod: GZ4ZYN app.nowaterazmatura.pl

1. Liczby rzeczywiste i wyrażenia algebraiczne

Potęga o wykładniku całkowitym

$$a^0 = 1$$
 dla $a \neq 0$

$$a^{-1} = \frac{1}{a} \quad \text{dla } a \neq 0$$

$$a^{-n} = \frac{1}{a^n}$$
 dla $a \neq 0$, $n \in \mathbb{N}$

Potęga o wykładniku wymiernym

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 dla $a \ge 0$, $n \in \mathbb{N}$, $n > 1$

$$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$$
 dla $a > 0$, $n \in \mathbb{N}$, $n > 1$, $m \in \mathbb{Z}$

Działania na potegach

Dla dowolnych liczb a, b > 0 i $x, y \in \mathbb{R}$:

$$a^x \cdot a^y = a^{x+y}$$

$$a^x \cdot b^x = (a \cdot b)^x$$

$$(a^x)^y = a^{x \cdot y}$$

$$\frac{a^x}{a^y} = a^{x-y}$$

$$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

Pierwiastek n-tego stopnia

Dla parzystej liczby
$$n \in \mathbb{N}_+$$
 i $a \ge 0$:

$$\sqrt[n]{a} = b$$
, gdy $b^n = a$

Dla nieparzystej liczby $n \in \mathbb{N}$, n > 1 i $a \in \mathbb{R}$: $\sqrt[n]{a} = b$, gdy $b^n = a$

Działania na pierwiastkach

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 dla $a, b \ge 0$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 dla $a \ge 0, b > 0$

$$\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$$
 dla $a, b \in \mathbb{R}$

$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}} \quad \text{dla } a \in \mathbb{R}, \ b \neq 0$$

Wzory skróconego mnożenia

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $(a-b)^2 = a^2 - 2ab + b^2$ $a^2 - b^2 = (a-b)(a+b)$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$a^2 - b^2 = (a - b)(a + b)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
 $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
 $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

Różnica n-tych potęg

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2} \cdot b + a^{n-3} \cdot b^{2} + \dots + a^{2} \cdot b^{n-3} + a \cdot b^{n-2} + b^{n-1})$$

Silnia

$$0! = 1$$
 oraz $n! = (n-1)! \cdot n$ dla $n \in \mathbb{N}_+$

Symbol Newtona

Dla $n, k \in \mathbb{N}$ takich, że $k \le n$:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{n}{0} = \binom{n}{n} = 1$$

w szczególności:
$$\binom{n}{0} = \binom{n}{n} = 1$$
 $\binom{n}{1} = \binom{n}{n-1} = n$

Wzór dwumianowy Newtona

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n$$

Wartość bezwzględna

Dla $a \in \mathbb{R}$:

$$|a| = \begin{cases} a & \text{dla } a \ge 0 \\ -a & \text{dla } a < 0 \end{cases}$$

Własności wartości bezwzględnej

Dla $a, b \in \mathbb{R}$:

$$|-a| = |a|$$
 $\sqrt{a^2} = |a|$ $|a-b| = |b-a|$

$$|a \cdot b| = |a| \cdot |b|$$
 $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$ dla $b \neq 0$

Zestaw A. Zadania powtórzeniowe

1. Oblicz.

a)
$$\left(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\right)^2$$

b)
$$\sqrt{2(2-2\sqrt{2})^2} + \sqrt{2(2+2\sqrt{2})^2}$$

2. Wykaż, że zachodzi równość.

a)
$$\sqrt{13-4\sqrt{3}}+\sqrt{4(7-4\sqrt{3})}=3$$

b)
$$\sqrt{9-4\sqrt{2}}+1=\frac{4}{\sqrt{2}}$$

c) $\sqrt{6-2\sqrt{5}}+2(\sqrt[4]{5}+1)=(1+\sqrt[4]{5})^2$

d)
$$\sqrt{11-6\sqrt{2}} + \sqrt{11+6\sqrt{2}} = 6$$

c) $\sqrt{13+4\sqrt{3}} - \sqrt{21-12\sqrt{3}}$

d) $\sqrt{33+20\sqrt{2}}-\sqrt{8\frac{1}{4}+2\sqrt{2}}$

d) $\frac{\sqrt{2}-1}{\sqrt{2}+1} - \sqrt[3]{\frac{5\sqrt{2}-7}{5\sqrt{2}+7}}$

c) $\left[\left(2\sqrt{2} - \sqrt{7} \right)^{\frac{1}{2}} + \left(2\sqrt{2} + \sqrt{7} \right)^{\frac{1}{2}} \right]^2$

3. Wykaż, że podana liczba jest wymierna.

a)
$$\sqrt{7-4\sqrt{3}} + \sqrt{12+6\sqrt{3}}$$

b)
$$\sqrt{11+6\sqrt{2}}-\sqrt{3-2\sqrt{2}}$$

a)
$$\frac{6}{3-2\sqrt{3}}$$

b)
$$\frac{\sqrt{6}}{2\sqrt{3}+\sqrt{2}}$$

c)
$$\frac{2}{\sqrt{2}+\sqrt{3}-1}$$

c)
$$\frac{2}{\sqrt{2} + \sqrt{3} - 1}$$
 d) $\frac{1}{\sqrt{3} + \sqrt{2} + 2}$

5. Usuń niewymierność z mianownika.

a)
$$\frac{3}{1+\sqrt[3]{2}}$$
 b) $\frac{1}{\sqrt[3]{3}-1}$

b)
$$\frac{1}{\sqrt[3]{3}-1}$$

c)
$$\frac{2}{2+\sqrt[3]{3}}$$

c)
$$\frac{2}{2+\sqrt[3]{3}}$$
 d) $\frac{1}{\sqrt[3]{3}-\sqrt[3]{2}}$

6. Uprość wyrażenie.

a)
$$\frac{x+y}{\sqrt{x^4+2x^3y+x^2y^2}}$$
, $x,y>0$

b)
$$\frac{x-y}{\sqrt{x}+\sqrt{y}}, \ x,y>0$$

c)
$$\frac{x-y}{\sqrt[3]{x}-\sqrt[3]{y}}, \ x\neq y$$

d)
$$\sqrt{2x+2\sqrt{2x-1}} - \sqrt{2x-2\sqrt{2x-1}}, \ x>1$$

→ Odpowiedzi

rozwiazanie

Kod: 6AK6TC app.nowaterazmatura.pl

POWTÓRZENIE DZIAŁ PO DZIALE

Trójkat Pascala

1 1 1

121

1331 14641 5 10 10 5 1

Kod: PFSSXA app.nowaterazmatura.pl 7. Wykaż, że dla x > 0 i y > 0 prawdziwa jest podana nierówność.

a)
$$2xy \le x^2 + y^2$$

b)
$$\frac{x+y}{2} \ge \sqrt{xy}$$
 c) $\frac{2x}{y} + \frac{y}{2x} \ge 2$

c)
$$\frac{2x}{y} + \frac{y}{2x} \geqslant 2$$

8. Oblicz.

a)
$$(1+\sqrt{3})^3$$

b)
$$(2+\sqrt{3})^{\frac{1}{2}}$$

c)
$$(3-\sqrt{2})$$

a)
$$(1+\sqrt{3})^3$$
 b) $(2+\sqrt{3})^3$ **c)** $(3-\sqrt{2})^3$ **d)** $(1-2\sqrt{3})^3$

9. Zapisz wyrażenie w postaci sumy algebraicznej.

a)
$$(x+1)^3 + (x+2)^3$$

c)
$$(2x-1)^3-(2x+1)^3$$

b)
$$(x-2)^3 + (x-3)^3$$

d)
$$(3x+2)^3-(3x-1)^3$$

10. Oblicz wartość wyrażenia dla $x = \sqrt[3]{3}$ i $y = 2\sqrt[3]{2}$.

a)
$$(x-y)(x^2 + xy + y^2)$$

c)
$$(3x+2y)(9x^2-6xy+4y^2)$$

b)
$$(2x - y)(4x^2 + 2xy + y^2)$$

c)
$$(3x+2y)(9x^2-6xy+4y^2)$$

d) $(2x+3y)(4x^2-6xy+9y^2)$

11. Wykaż prawdziwość wzoru.

a)
$$a^6 - 1 = (a - 1)(a^5 + a^4 + a^3 + a^2 + a + 1)$$

b)
$$a^6 - 1 = (a - 1)(a + 1)(a^4 + a^2 + 1)$$

12. Z sześcianu o krawędzi $\sqrt{3} + \sqrt{2}$ odcięto osiem narożników, które są sześcianami o krawędzi $\sqrt{3} - \sqrt{2}$. Oblicz:

- a) objętość otrzymanej bryły,
- b) pole powierzchni całkowitej otrzymanej bryły.

13. Oblicz.

a)
$$\binom{7}{0}$$

c)
$$\binom{7}{2}$$

e)
$$\binom{7}{4}$$

g)
$$\binom{7}{6}$$

b)
$$\binom{7}{1}$$

d)
$$\binom{7}{3}$$

$$\mathbf{f}$$
) $\binom{7}{5}$

h)
$$\binom{7}{7}$$

14. Udowodnij wzór dla $n, k \in \mathbb{N}, k \le n$.

$$\mathbf{a)} \ \binom{n}{k} = \binom{n}{n-k}$$

b)
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

15. W pewnym wierszu trójkąta Pascala występują kolejno liczby:

Zapisz dwa kolejne wiersze trójkąta Pascala.

16. Korzystając ze wzoru dwumianowego Newtona, zapisz wyrażenie w postaci sumy algebraicznej. c) $(a+b)^5$ e) $(a+b)^6$ g) $(a+b)^7$ d) $(a-b)^5$ f) $(a-b)^6$ h) $(a-b)^7$

a)
$$(a+b)^4$$

c)
$$(a+b)^5$$

e)
$$(a+b)^6$$

g)
$$(a+b)^7$$

b)
$$(a-b)^4$$

d)
$$(a-b)^5$$

f)
$$(a-b)^6$$

h)
$$(a-b)^7$$

17. Oblicz.

a)
$$(\sqrt{2}+1)^5$$
 b) $(\sqrt{2}-1)^5$ **c)** $(\sqrt{3}+2)^5$ **d)** $(\sqrt{3}-2)^5$

b)
$$(\sqrt{2}-1)^5$$

c)
$$(\sqrt{3}+2)^5$$

d)
$$(\sqrt{3}-2)^5$$

- **18.** Podaj współczynnik wielomianu w przy x^4 .
 - a) $w(x) = (2x+1)^5$
- **b)** $w(x) = (2x+3)^6$ **c)** $w(x) = (2x-1)^7$
- **19.** Podaj współczynnik wielomianu w przy x^{10} .
 - a) $w(x) = (x^3 x)^4$
- **b)** $w(x) = (x^3 + 2x^2)^5$ **c)** $w(x) = (x^2 + 2x)^6$
- **20.** Udowodnij, że suma:
 - a) trzech kolejnych liczb nieparzystych jest podzielna przez 3,
 - b) czterech kolejnych liczb podzielnych przez 4 jest podzielna przez 8,
 - c) pięciu kolejnych liczb podzielnych przez 3 jest podzielna przez 15.
- 21. Wykaż, że:
 - a) suma kwadratów dwóch kolejnych liczb naturalnych jest liczbą nieparzystą,
 - b) sześcian sumy dwóch kolejnych liczb nieparzystych jest podzielny przez 64.
- **22.** a) Udowodnij, że jeśli reszta z dzielenia liczby *n* przez 3 jest równa 2, to reszta z dzielenia liczby n^3 przez 9 jest równa 8.
 - b) Udowodnij, że jeśli reszta z dzielenia liczby n przez 5 jest równa 3, to reszta z dzielenia liczby n^3 przez 5 jest równa 2.
- 23. Dana jest liczba trzycyfrowa x. Liczba y powstaje z liczby x przez zamianę jej cyfry jedności z cyfrą setek. Wykaż, że różnica liczb x i y jest podzielna przez 9 oraz przez 11.
- 24. a) Przez jaką największą liczbę należy podzielić liczby 331 i 459, aby w obu przypadkach otrzymać resztę z dzielenia równa 11?
 - b) Przez jaką liczbę należy podzielić liczby 589 i 667, aby otrzymać reszty z dzielenia równe odpowiednio 1 i 7?
- **25.** Wyznacz wszystkie pary liczb:
 - a) naturalnych a i b, dla których $a^2 b^2 = 36$.
 - **b)** całkowitych *a* i *b*, dla których $a^2 b^2 = 15$.
- **26.** Wyznacz zbiory $A \cup B$, $A \cap B$.

$$A = \{x \in \mathbb{R}: |x - 1| = 1 - x\}, B = \{x \in \mathbb{R}: |2x - 1| = 2x - 1\}$$

- **27.** Wyznacz zbiór $A \times B$, jeżeli $A = \left[-\sqrt{2} \cdot 0, 5^{-\frac{3}{2}}; 6 \right]$ i $B = \{x \in \mathbb{R}: |x 1| > 4\}$.
- **28.** Wykaż, że dla danych wartości *x* prawdziwa jest podana równość

a)
$$\frac{\sqrt{4x^2 + 16x + 16}}{x + 2} = 2 \text{ dla } x > -2$$

a)
$$\frac{\sqrt{4x^2 + 16x + 16}}{x + 2} = 2 \text{ dla } x > -2$$
 b) $\frac{\sqrt{36 - 24x + 4x^2 + |x - 3|}}{\sqrt{9 - 6x + x^2}} = 3 \text{ dla } x \neq 3$

- **29.** Rozwiaż równanie.
 - a) ||x|-1|=3
- **b)** ||x|+3|=1
- c) ||x+1|-3|=2

- **30.** Rozwiąż nierówność.
 - a) $|2x-4| \le 6$
- **b)** |x-3| > 4

c) |5 - |x|| > 3

Kod: HV4SJD app.nowaterazmatura.pl

app.nowaterazmatura.pl

→ Odpowiedzi

NWW I NWD

Film rozwiązanie

zadania

POWTÓRZENIE DZIAŁ PO DZIALE

Zestaw B. Przed maturą na poziomie podstawowym

W zadaniach 31-39 wybierz właściwą odpowiedź spośród podanych.

31. (0–1)

Dana jest piętnastocyfrowa liczba 21111111111111x2. Jeśli jest ona podzielna przez 12, to cyfra x jest

- **A.** 7
- **B.** 5
- **C.** 3
- **D.** 1

32. (0-1)

Dane są liczby $x = 2^3 \cdot 3^4 \cdot 7^2$ i $y = 2^5 \cdot 3^2 \cdot 5 \cdot 7^2$. Jeśli a jest najmniejszą wspólną wielokrotnością liczb x i y, b zaś – ich największym wspólnym dzielnikiem, to iloraz $\frac{a}{b}$ wynosi

- **A.** 360
- **B.** 180
- **C.** 90
- **D.** 45

33. (0–1) (CKE Informator 2021 PP)

Wartość wyrażenia 2021 : $\left(1 - \frac{1}{2022}\right) - \left(1 - \frac{2022}{2021}\right) : \frac{1}{2021}$ jest równa

A. 0

- **B.** 1
- **C.** 2021
- **D.** 2023

34. (0-1)

Liczba $\frac{0.4^2 : \left(1\frac{1}{4}\right)^{-1} - \left(\frac{5}{3}\right)^{-2}}{\left(3^{-1} + 2^{-1}\right) : 1 \ 2^2}$ jest równa

- **A.** $-\frac{2}{15}$ **B.** $-\frac{3}{5}$
- C. $\frac{2}{5}$
- D. $\frac{4}{15}$

35. (0-1) $a^{x} = a^{y}$, qdy x = y

Równość $\left(\frac{\sqrt{3}}{3}\right)^{-3}$: $\left(\frac{\sqrt{3}}{3}\right)^{-7}$ = 3^m jest prawdziwa dla

- **A.** m = -6 **B.** m = -4 **C.** m = -2 **D.** m = 4

Film rozwiązanie zadania

Kod: X9LCJ5 app.nowaterazmatura.pl

Kod: QAM41Y app.nowaterazmatura.pl

36. (0-1) Liczba $(3\sqrt{40} - 3\sqrt{160} + 2\sqrt{810}) : 2\sqrt{5}$ jest równa

- **A.** $12\sqrt{2}$
- **B.** $9\sqrt{2}$ **C.** $6\sqrt{2}$
- **D.** $3\sqrt{2}$

37. (0-1)

Wartość wyrażenia $x^2 - 4y^2$ dla $x = 2\sqrt{3} - 1$ i $y = \sqrt{3} - 1$ jest równa

- **A.** $4\sqrt{3}-3$ **B.** $3\sqrt{3}-3$ **C.** -3
- **D.** -6

38. (0-1)

Zaokrąglenie liczby $\sqrt[3]{1\frac{4}{5}}:\sqrt[3]{8\frac{1}{3}}$ do całości jest równe

- **A.** 1
- **B.** 2
- **C.** 3

D. 4

39. (0–1)

Ile procent liczby 6 stanowi 30% liczby 5?

- **A.** 20%
- **B.** 25%
- **C.** 36%
- **D.** 40%

1-x1=|x|

40. (0–2) (CKE Informator 2021 PP)

Dana jest liczba $x = a - (\sqrt{3} - \sqrt{2})^2$, gdzie a należy do zbioru liczb rzeczywistych. W rozwiązaniu zadania uwzględnij fakt, że liczby $\sqrt{3}$ oraz $\sqrt{2} \cdot \sqrt{3}$ są niewymierne.

Dokończ zdanie. Zaznacz dwie odpowiedzi, tak aby dla każdej z nich otrzymane zdanie było prawdziwe.

Liczba x jest wymierna dla

A.
$$a = 5$$

E.
$$a = -2\sqrt{6} + 12.5$$

B.
$$a = -\sqrt{3} + \sqrt{2}$$

F.
$$a = (\sqrt{2} - \sqrt{3})^2 - 2\sqrt{6}$$

C.
$$a = (\sqrt{2} - \sqrt{3})^2 + 0.3$$

G.
$$a = -\sqrt{6}$$

D.
$$a = 6$$

41. (0–1)

Dane jest wyrażenie $W=(a+2b)^2-(a-2b)^2$ określone dla dwóch dowolnych liczb rzeczywistych a i b.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Wyrażenie W można zapisać jako $W = 8ab$.	P	F
Dla $a = \sqrt{\sqrt{2} - 1}$ i $b = \sqrt{\sqrt{2} + 1}$ wyrażenie W ma wartość równą 8.	P	F

42. (0–1)

Dokończ zdanie tak, aby było prawdziwe. Wybierz odpowiedź A albo B oraz jej uzasadnienie 1., 2. albo 3.

Wyrażenie $\sqrt{x^2 - 10x + 25} - |5 - x|$ dla każdej liczby rzeczywistej x przyjmuje wartość

A.	nieujemną,		1.	$\sqrt{x^2 - 10x + 25} = 5 - x.$
	-	ponieważ dla każdej liczby rzeczywistej <i>x</i>	2.	$\sqrt{x^2 - 10x + 25} = 5 - x .$
В.	ujemną,		3.	$\sqrt{x^2 - 10x + 25} = x - 5.$

43. (0–2) (CKE Informator 2021 PP)

Dane są liczby $a = \sqrt{5} - 2$ oraz $b = \sqrt{5} + 2$. Oblicz wartość wyrażenia: $\frac{ab}{\sqrt{a} + \sqrt{b}} : \frac{\sqrt{a} - \sqrt{b}}{a - b}$

$$\frac{ab}{\sqrt{a}+\sqrt{b}}:\frac{\sqrt{a}-\sqrt{b}}{a-b}$$

dla podanych a i b.

44. (0-2)

Wiadomo, że $\frac{1}{a} + a = 14$. Oblicz wartość wyrażenia $\frac{1}{\sqrt{a}} + \sqrt{a}$.

45. (0–2) (CKE czerwiec 2019 PP)

Wykaż, że dla każdej liczby a > 0 i każdej liczby b > 0 prawdziwa jest nierówność:

$$\frac{1}{a} + \frac{1}{b} \geqslant \frac{4}{a+b}$$

POWTÓRZENIE DZIAŁ PO DZIALE

Kod: D6NZ6J app.nowaterazmatura.p

Film – rozwiązanie zadania

Kod: 5J9LR4 app.nowaterazmatura.pl

Film – rozwiązanie zadania

Kod: 3G3Z5W app.nowaterazmatura.pl

Film – rozwiązanie

Kod: DU92E7 app.nowaterazmatura.pl

Film – rozwiązanie zadania

Kod: AYCCYQ app.nowaterazmatura.p

app.nowaterazmatura.p

46. (0–2)

Udowodnij, że dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność:

$$2x^2 + 2y^2 - 2xy + 2x + 6y + 13 > 0$$

47. (0–2) (CKE czerwiec 2021 PP)

Wykaż, że dla wszystkich liczb rzeczywistych a, b i c takich, że $\frac{a+b}{2} > c$ i $\frac{b+c}{2} > a$, prawdziwa jest nierówność:

$$\frac{a+c}{2} < b$$

48. (0–2)

Wykaż, że dla dowolnej nieparzystej liczby naturalnej x liczba $2x^2 + 4x + 10$ jest podzielna przez 8.

49. (0–2) (CKE Informator 2021 PP)

Udowodnij, że dla każdej liczby naturalnej n liczba $20n^2 + 30n + 7$ przy dzieleniu przez 5 daje resztę 2.

50. (0–3) Wyrażenie $(x+3y)^2 - (x+3y)(3y-x) - (x-3y)^2 - y(6x-9y)$ doprowadź do prostszej

wyrazenie (x + 3y) - (x + 3y)(3y - x) - (x - 3y) - y(6x - 9y) doprowadz do prostszej postaci, a następnie sprawdź, czy jego wartość dla $x = -\sqrt{2}$ i $y = \frac{1}{3}$ jest liczbą ujemną.

51. (0–3) Dane są liczby $x = \frac{3^{11} + 27^4}{4 \cdot 9^4}$ i $y = \sqrt{\sqrt{4\sqrt{81}} + \sqrt{25\sqrt{16}} + \sqrt[3]{64}}$. Porównaj ze sobą liczby $2x^{-1}$ i y^{-2} .

52. (0–3)
Uporządkuj podane liczby w kolejności rosnącej.

$$a = \sqrt[3]{2\frac{10}{27} \cdot \left(\frac{4}{3}\right)^{-2}}, \ b = -0.5^2 \cdot \left(\frac{1}{3}\right)^{-1}, \ c = \sqrt[3]{-\left(\frac{8}{3\sqrt{3}}\right)^2}, \ d = \frac{0.3^{-1} \cdot 0.4^2}{2.5^{-1}}$$

53. (0–4)

Dwa równoległe boki kwadratu wydłużono o 25%, a pozostałe dwa – skrócono o p%. Powstał prostokąt, którego pole jest o 20% większe od pola kwadratu. Oblicz p.

54. (0–3)

Dane są zbiory $A = (-\infty; -2) \cup [3; \infty)$ oraz B = [-5; 3]. Wyznacz zbiory:

C – będący częścią wspólną zbiorów A i B,

D – będący różnicą zbiorów *B* i *A*.

Ile liczb postaci $\frac{k}{2}$, gdzie k jest liczbą całkowitą, należy do zbioru D?

55. (0–4)

Ile rozwiązań ma równanie $|x| + \sqrt{2} = 2 - m$ dla $m = \sqrt{2}$, a ile – dla $m = \frac{1}{2}$? Odpowiedź uzasadnij.

Zestaw C. Przed maturą na poziomie rozszerzonym

- **56.** (0-4) Wykaż, że liczba $\sqrt[3]{\sqrt{5}+2} - \sqrt[3]{\sqrt{5}-2}$ jest całkowita.
- **57.** (0–5) Wiadomo, że $|1+3a|+\sqrt{2} \leqslant \frac{2}{\sqrt{2}}$, $b=\sqrt{12-8\sqrt{2}}-\frac{1}{2}|5-4\sqrt{2}|$, $c=\sin 390^\circ+\cos 540^\circ$, $d = \sqrt{2}^{\log_2 \frac{1}{9}}$. Uporządkuj liczby a, b, c i d w kolejności rosnącej.
- **58.** Dane jest równanie |mx| + |m| = 4, w którym x jest niewiadomą i m jest różne od 0.
- **58.1.** (0-2) Udowodnij, że dla $m=2-\sqrt{2}$ suma kwadratów rozwiązań tego równania jest równa $34 + 24\sqrt{2}$.
- **58.2.** (0-2) Dla jakich wartości parametru *m* podane równanie ma dwa rozwiązania?
- **59.** (0-2) Wykaż, że dla dowolnej liczby $x \in \mathbb{R} \setminus \{0\}$ zachodzi nierówność $\frac{9x^4+1}{x^2} \ge 6$.
- **60.** (0-3) Wykaż, że dla dowolnych liczb rzeczywistych x i y prawdziwa jest nierówność: $(x+1)(x+2)+(y+1)(y+2)+1 \ge (x+2)(y+2)$
- **61.** (0–3) (CKE maj 2023 PR Liczby rzeczywiste x oraz y spełniają jednocześnie równanie x + y = 4 i nierówność $x^{3} - x^{2}y \le xy^{2} - y^{3}$. Wykaż, że x = 2 oraz y = 2.
- **62.** (0–2) Udowodnij, że dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność: $13x^2 - 8xy + 5y^2 \ge 0$
- **63.** (0-4) Udowodnij, że dla dowolnych liczb dodatnich a, b zachodzi nierówność:

64. (0–3) (CKE maj 2019 PR

$$\frac{2}{\frac{1}{a} + \frac{1}{b}} \leqslant \sqrt{\frac{a^2 + b^2}{2}}$$

Udowodnij, że dla dowolnych dodatnich liczb rzeczywistych x i y, takich że x < y, i dowolnej dodatniej liczby rzeczywistej a prawdziwa jest nierówność:

$$\frac{x+a}{y+a} + \frac{y}{x} > 2$$

→ Odpowiedzi s. 144

zadania

Film rozwiazanie zadania

Kod: A8CLYX app.nowaterazmatura.pl

Film rozwiązanie

Kod: AT8W32 app.nowaterazmatura.pl

POWTÓRZENIE DZIAŁ PO DZIALE

65. Wyrażenie $a^4 + 4b^4$ można rozłożyć na czynniki w następujący sposób:

$$a^{4} + 4b^{4} = a^{4} + 4a^{2}b^{2} + 4b^{4} - 4a^{2}b^{2} =$$

$$= (a^{2} + 2b^{2})^{2} - (2ab)^{2} = (a^{2} - 2ab + 2b^{2})(a^{2} + 2ab + 2b^{2})$$

65.1. (0-2)

Skorzystaj z powyższej procedury i rozłóż na czynniki wyrażenie $a^4 + b^4$.

65.2. (0-2)

Wykorzystaj rozkład wyrażenia a^4+4b^4 na czynniki i udowodnij, że liczba $3^{16}+2^{18}$ jest liczbą złożoną.

66. (0–3)

Udowodnij, że dla dowolnej liczby całkowitej k liczba $(k^2 - 1)(k^2 + 2k)$ jest podzielna przez 24.

67. (0–3)

Wykaż, że dla dowolnej liczby naturalnej k liczba $(k^3 + k^2)(k^2 + 3k + 2)(k + 2)$ jest podzielna przez 36.

68. (0–3)

Liczby a i b są dwiema kolejnymi liczbami naturalnymi, niepodzielnymi przez 3. Wykaż, że reszta z dzielenia przez 3 liczby $a^3 + b^2$ wynosi 2.

69. (0–3)

Liczby x i y są naturalne, parzyste oraz niepodzielne przez 4. Udowodnij, że liczba $x^3 + y^3$ jest podzielna przez 4.

70. (0–3)

Udowodnij, że jeżeli liczba naturalna n przy dzieleniu przez 3 daje resztę 2, to liczba postaci $n^3 + 2n^2 + 2n + 6$ przy dzieleniu przez 3 również daje resztę 2.

71. (0-3)

Wykaż, że iloczyn trzech kolejnych liczb naturalnych podzielnych przez 7 jest liczbą podzielną przez 2058.

72. (0–3) (CKE maj 2018 PR)

Udowodnij, że dla każdej liczby całkowitej k i dla każdej liczby całkowitej m liczba $k^3m - km^3$ jest podzielna przez 6.

73. (0–2) Rozwiąż nierówność $\binom{n}{3} - 2\binom{n-1}{2} \le 0$.

74. (0–2) Rozwiąż równanie $\binom{n}{2} + \binom{n+1}{2} = 64$.

75. (0–3) CKE Zbiór zadań PR

W rozwinięciu wyrażenia $(a+b)^n$ dla pewnego $n \in \mathbb{N}$ suma współczynników przy wyrazach $a^{n-2}b^2$ oraz $a^{n-1}b$ jest równa 66. Oblicz n.

2. Funkcje. Funkcja liniowa

Funkcją f ze zbioru X w zbiór Y ($f: X \rightarrow Y$) nazywamy przyporządkowanie każdemu elementowi $x \in X$ dokładnie jednego elementu $y \in Y$.

Zbiór X nazywamy dziedziną funkcji f, a jego elementy – argumentami funkcji f.

Zbiór wartości funkcji $f: X \to Y$ to zbiór tych wszystkich $y \in Y$, dla których istnieje taki argument $x \in X$, że f(x) = y.

Dziedzinę funkcji f oznaczamy przez D lub D_f , a zbiór wartości funkcji f – przez f(D) lub $f(D_f)$.

Miejscem zerowym funkcji $f: X \to \mathbb{R}$ nazywamy taki argument x, dla którego f(x) = 0.

Niech $X \subset \mathbb{R}$. Funkcję $f: X \to \mathbb{R}$ nazywamy:

• **rosnącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ spełniony jest warunek:

jeśli
$$x_1 < x_2$$
, to $f(x_1) < f(x_2)$

• **malejącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ spełniony jest warunek:

jeśli
$$x_1 < x_2$$
, to $f(x_1) > f(x_2)$

• **nierosnącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ spełniony jest warunek:

jeśli
$$x_1 < x_2$$
, to $f(x_1) \ge f(x_2)$

• **niemalejącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ spełniony jest warunek:

jeśli
$$x_1 < x_2$$
, to $f(x_1) \le f(x_2)$

• stałą w zbiorze X, jeśli istnieje taka liczba c, że dla dowolnego $x \in X$ zachodzi równość:

$$f(x) = c$$

Funkcję f nazywamy rosnącą (odpowiednio: malejącą, nierosnącą, niemalejącą, stałą), gdy jest ona rosnąca (odpowiednio: malejąca, nierosnąca, niemalejąca, stała) w swojej dziedzinie.

Funkcję, która jest rosnąca, malejąca, nierosnąca, niemalejąca lub stała, nazywamy **funkcją monotoniczną**.

Kod: GZ4ZYN app.nowaterazmatura.pl

POWTÓRZENIE DZIAŁ PO DZIALE

Funkcją liniową nazywamy funkcję określoną wzorem f(x) = ax + b dla $x \in \mathbb{R}$, gdzie a i b są stałymi.

Wykresem funkcji liniowej jest prosta. Liczbę a nazywamy współczynnikiem kierunkowym prostej y = ax + b.

Współczynnik kierunkowy prostej y = ax + b przechodzącej przez dwa różne punkty $A = (x_1, y_1)$ i $B = (x_2, y_2)$ takie, że $x_1 \neq x_2$, jest równy:

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

Funkcja liniowa określona wzorem f(x) = ax + b jest:

- rosnąca dla a > 0
- malejaca dla a < 0

Proste $y = a_1x + b_1$ i $y = a_2x + b_2$ są:

- **równoległe** wtedy i tylko wtedy, gdy $a_1 = a_2$
- **prostopadłe** wtedy i tylko wtedy, gdy $a_1 \cdot a_2 = -1$

Układ równań liniowych

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$

nazywamy:

- oznaczonym, gdy ma dokładnie jedno rozwiązanie,
- \bullet nie
oznaczonym, gdy ma nieskończenie wiele rozwiązań,
- sprzecznym, gdy nie ma rozwiązań.

Układ oznaczony – proste opisane równaniami tego układu przecinają się w jednym punkcie.

Układ nieoznaczony – oba równania opisują tę samą prostą.

Układ sprzeczny – proste opisane równaniami tego układu są równoległe i się nie pokrywają.

Zestaw A. Zadania powtórzeniowe

1. Wyznacz dziedzinę funkcji.

a)
$$f(x) = \sqrt{4 - x} \cdot \sqrt{x + 1}$$

c)
$$f(x) = \sqrt{-x} - \sqrt{2-x}$$

b)
$$f(x) = \frac{\sqrt{x-1}}{x^2-2} + \frac{1}{x^2-9}$$

d)
$$f(x) = \frac{\sqrt{3-0.5x}}{\sqrt{4+x}} - \frac{3}{|x|-3}$$

2. Wyznacz dziedzinę i miejsca zerowe funkcji.

a)
$$f(x) = \sqrt{3-x} - 3\sqrt{x+1}$$

b)
$$f(x) = \frac{1}{\sqrt{x^2 - 4\sqrt{2}x + 8}} - \frac{1}{2\sqrt{2}}$$

3. Dana jest funkcja f(x) = x - |x|. Zapisz wzór funkcji g i naszkicuj jej wykres.

a)
$$g(x) = f(x+1)$$

a)
$$g(x) = f(x+1)$$
 c) $g(x) = -f(x) + 2$ e) $g(x) = |f(x)|$

e)
$$g(x) = |f(x)|$$

b)
$$g(x) = f(-x)$$

b)
$$g(x) = f(-x)$$
 d) $g(x) = -f(-x)$ **f**) $g(x) = f(|x|)$

f)
$$g(x) = f(|x|)$$

4. Funkcja f określona w przedziale [-6; 6] dana jest wzorem:

$$f(x) = \begin{cases} 4 & \text{dla } x \in [-6; -3] \\ 1 - x & \text{dla } x \in (-3; 3) \\ x - 5 & \text{dla } x \in [3; 6] \end{cases}$$

Narysuj wykres funkcji h(x) = f(1-x) i określ jej dziedzinę.

5. Narysuj wykresy funkcji f oraz g(x) = f(x-2).

$$a) f(x) = \frac{|x|}{x}$$

b)
$$f(x) = x - 2\sqrt{x^2}$$

c)
$$f(x) = ||x| - 2|$$

6. Wyznacz wzór funkcji liniowej f, która dla każdej liczby rzeczywistej x spełnia warunek:

a)
$$f(x+1) = 2x-3$$
,

b)
$$f(-x+3) = x+5$$
,

c)
$$f(2x-4) = x-3$$
.

7. Dla jakich wartości parametru m rozwiązaniem układu równań jest para liczb (x, y)spełniająca nierówność $x + y \ge 1$?

$$\begin{cases} x + my = 2 \\ mx - y = 4 \end{cases}$$

b)
$$\begin{cases} 2x + y = m + 1 \\ 6x - 3y = m - 2 \end{cases}$$
 c)
$$\begin{cases} my - 9x = -4 \\ mx - y = m \end{cases}$$

c)
$$\begin{cases} my - 9x = -4 \\ mx - y = m \end{cases}$$

- 8. a) Miejsca zerowe dwóch funkcji liniowych są liczbami przeciwnymi. Wykresy tych funkcji przecinają się w punkcie (2,4) i wraz z osią x ograniczają trójkąt o polu 12. Wyznacz wzory tych funkcji.
 - b) Miejsca zerowe dwóch funkcji liniowych są liczbami odwrotnymi. Wykresy tych funkcji przecinają się w punkcie (0,3) i wraz z osią x ograniczają trójkąt o polu 4. Wyznacz wzory tych funkcji.
- **9.** Wyznacz zbiór wartości funkcji f(x) = 2x + 1, jeśli jej dziedziną jest zbiór tych liczb rzeczywistych x, które spełniają podaną nierówność.

a)
$$(2x-3)(3+2x) \le (2x-1)^2$$

c)
$$(3x+5)^2 < 9(x-2)^2$$

b)
$$(2\sqrt{3}-x)^2 \ge (x-3\sqrt{3})^2$$

d)
$$3 < -4(3-x)^2 - (2x+3)(3-2x)$$

→ Odpowiedzi

Film rozwiązanie zadania

Kod: LPYY1T app.nowaterazmatura.pl

Film rozwiązanie zadania

Kod: QGF9C9 app.nowaterazmatura.pl

POWTÓRZENIE DZIAŁ PO DZIALE

10. Wyznacz miejsce zerowe funkcji f(x) = -2x + b, jeśli liczba b spełnia podane równanie.

a)
$$(\sqrt{2}-b)^2-(b-2\sqrt{2})^2=-6$$

b)
$$\left(\frac{1}{2}b+2\right)\left(2-\frac{1}{2}b\right)+\left(1+\frac{1}{2}b\right)^2=0$$

11. Wyznacz liczbę rozwiązań równania w zależności od parametru a.

a)
$$1 + 4x = 6a - x$$

c)
$$(4x-1)a = 3a + xa$$

e)
$$2x - a = ax + 1$$

b)
$$3x - 1 = a + 2 - ax$$

d)
$$3x + 2a = 3 + 6ax$$
 f) $a^2x - 2 = 4x + a$

f)
$$a^2x - 2 = 4x + a$$

12. Rozwiąż układ równań.

a)
$$\begin{cases} 3x + 2y = 3 \\ y + x = \frac{3(1-x) + 4}{2} \end{cases}$$

a)
$$\begin{cases} 3x + 2y = 3 \\ y + x = \frac{3(1-x) + 4}{2} \end{cases}$$
 b)
$$\begin{cases} \frac{x - y - 2}{2} - \frac{x + y}{4} = 1 \\ \frac{2x + y - 1}{3} - \frac{x + y}{2} = 0 \end{cases}$$
 c)
$$\begin{cases} \frac{y + 6}{3} + \frac{x}{4} = 5 - 2x \\ \frac{2y - 3x}{4} = \frac{2}{3}y - 1 \end{cases}$$

c)
$$\begin{cases} \frac{y+6}{3} + \frac{x}{4} = 5 - 2x \\ \frac{2y-3x}{4} = \frac{2}{3}y - 1 \end{cases}$$

13. Rozwiąż równanie.

a)
$$||x-2|+x|=4$$

b)
$$|x-1|+|x|=2$$

c)
$$|2x+2|+3x=|x|+2$$

14. Rozwiaż nierówność.

a)
$$|x - |x|| > 3$$

c)
$$|x-2|-|x|<4$$

e)
$$|x+3|-|x-1|>1$$

b)
$$||x+1|-x| \le 2$$

d)
$$|x+5|-|x-2| \le 3$$

15. Rozwiaż równanie.

a)
$$3\sqrt{x^2-6x+9} + \sqrt{x^2+10x+25} = 10$$

a)
$$3\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=10$$
 b) $3\sqrt{x^2+8x+16}+\sqrt{36-36x+9x^2}=18$

16. Rozwiaż nierówność.

a)
$$\sqrt{x^2 - 4x + 4} + \sqrt{4x^2 + 4x + 1} < 4 - x$$
 b) $2\sqrt{x^2 + 2x + 1} > x + 4$

b)
$$2\sqrt{x^2+2x+1} > x+4$$

17. Narysuj wykres funkcji f i określ liczbę rozwiązań równania f(x) = m w zależności od parametru m.

a)
$$f(x) = |x| - |x - 1|$$

c)
$$f(x) = \sqrt{x^2} + \sqrt{x^2 - 6x + 9}$$

b)
$$f(x) = |x+2| + |x-2|$$

d)
$$f(x) = ||x-1|-3||$$

Film rozwiązanie

zadania

Kod: B48A6Q

app.nowaterazmatura.pl

Kod: 3H8ZMS app.nowaterazmatura.pl **18.** Boki trójkąta są zawarte w prostych 4x - 3y + 6 = 0, 3x + 4y - 8 = 0 oraz 7x + y - 27 = 0. Wykaż, że trójkąt ten jest prostokątny. Wyznacz współrzędne jego wierzchołków.

→ Odpowiedzi

Zestaw B. Przed maturą na poziomie podstawowym

W zadaniach 19-27 wybierz właściwa odpowiedź spośród podanych.

19. (0–1) (CKE maj 2021 PP)

Na poniższym rysunku przedstawiono wykres funkcji f określonej w zbiorze [-6;5].

Funkcja g jest określona wzorem g(x) = f(x) - 2 dla $x \in [-6; 5]$. Wskaż zdanie prawdziwe.

- **A.** Liczba f(2) + g(2) jest równa –2.
- **B.** Zbiory wartości funkcji *f* i *g* są równe.
- C. Funkcje f i g mają te same miejsca zerowe.
- **D.** Punkt P = (0, -2) należy do wykresów funkcji f i g.

20. (0-1)

Na rysunku przedstawiono wykres funkcji f. Funkcja g dana jest wzorem:

$$g(x) = f(x) + b$$

dla pewnego parametru b. Zbiorem wartości funkcji g jest przedział [-12; -8], jeśli

A.
$$b = -8$$

C.
$$b = -11$$

B.
$$b = -10$$

D.
$$b = -12$$

21. (0-1)

Jeśli funkcja f jest malejąca, to spełniona jest nierówność

A.
$$f(1-\sqrt{3}) < f(\sqrt{2}-2)$$

C.
$$f(2-\sqrt{2}) > f(1-\sqrt{3})$$

D. $f(2-\sqrt{2}) > f(\sqrt{3}-1)$

B.
$$f(2-\sqrt{2}) > f(\sqrt{2}-2)$$

D.
$$f(2-\sqrt{2}) > f(\sqrt{3}-1)$$

22. (0–1)

Funkcja f przyjmuje wartości ujemne w przedziale (-3;1). Wynika stąd, że funkcja g(x) = f(x-5) przyjmuje wartość ujemną dla

A.
$$x = -5$$

B.
$$x = -3$$
 C. $x = 1$ **D.** $x = 4$

$$\mathbf{C}$$
. $\mathbf{x} = 1$

D.
$$x = 4$$

23. (0–1) (CKE maj 2022 PP)

Miejscem zerowym funkcji liniowej f określonej wzorem $f(x) = -\frac{1}{3}(x+3) + 5$ jest liczba

B.
$$\frac{9}{2}$$

POWTÓRZENIE DZIAŁ PO DZIALE

24. (0–1) (CKE czerwiec 2019 PP)

Funkcja f jest określona dla każdej liczby rzeczywistej x wzorem $f(x) = (m\sqrt{5} - 1)x + 3$. Ta funkcja jest rosnąca dla każdej liczby *m* spełniającej warunek

A.
$$m > \frac{1}{\sqrt{5}}$$

B.
$$m > 1 - \sqrt{5}$$

B.
$$m > 1 - \sqrt{5}$$
 C. $m < \sqrt{5} - 1$ **D.** $m < \frac{1}{\sqrt{5}}$

D.
$$m < \frac{1}{\sqrt{5}}$$

25. (0–1) (CKE maj 2021 PP)

Proste o równaniach y = 3x - 5 oraz $y = \frac{m-3}{2}x + \frac{9}{2}$ są równoległe, gdy

A.
$$m = 1$$

B.
$$m = 3$$
 C. $m = 6$

C.
$$m = 6$$

D.
$$m = 9$$

26. (0-1) (CKE maj 2019 PP)

Para liczb x = 2 i y = 2 jest rozwiązaniem układu równań $\begin{cases} ax + y = 4 \\ -2x + 3y = 2a \end{cases}$ dla

A.
$$a = -1$$
 B. $a = 1$ **C.** $a = -2$ **D.** $a = 2$

B.
$$a = 1$$

C.
$$a = -2$$

D.
$$a = 2$$

27. (0–1)

Wykres funkcji $f(x) = x^2$ przesunięto o 2 jednostki w prawo, a następnie otrzymany wykres przesunięto o 3 jednostki do góry. Uzyskano w ten sposób wykres funkcji g, której wzór to

A.
$$g(x) = x^2 - 4x + 7$$

C.
$$g(x) = x^2 + 4x + 1$$

B.
$$g(x) = x^2 - 4x + 1$$

C.
$$g(x) = x^2 + 4x + 1$$

D. $g(x) = x^2 + 4x + 7$

28. (0–2) (CKE maj 2023 PP)

Dany jest prostokąt o bokach długości a i b, gdzie a > b. Obwód tego prostokąta jest równy 30. Jeden z boków prostokąta jest o 5 krótszy od drugiego.

Uzupełnij zdanie. Wybierz dwie właściwe odpowiedzi spośród oznaczonych literami A-F i wpisz te litery w wykropkowanych miejscach.

Zależności między długościami boków tego prostokąta zapisano w układach równań oznaczonych literami: oraz

$$\mathbf{A.} \quad \begin{cases} 2ab = 30 \\ a - b = 5 \end{cases}$$

C.
$$\begin{cases} 2(a+b) = 30 \\ b = a - 5 \end{cases}$$
D.
$$\begin{cases} 2a + 2b = 30 \\ b = 5a \end{cases}$$

E.
$$\begin{cases} 2a + 2b = 30 \\ a - b = 5 \end{cases}$$
F.
$$\begin{cases} a + b = 30 \\ a = b + 5 \end{cases}$$

$$\mathbf{B.} \quad \begin{cases} 2a+b=30\\ a=5b \end{cases}$$

D.
$$\begin{cases} 2a + 2b = 30 \\ b = 5a \end{cases}$$

F.
$$\begin{cases} a + b = 30 \\ a = b + 5 \end{cases}$$

29. (0–1)

Dane są funkcje liniowe f(x) = 2x - 1 oraz g(x) = -2x - 2.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Wykresy funkcji f i g przecinają się w punkcie leżącym w III ćwiartce układu współrzędnych.	P	F
Wykresy funkcji f i g są prostymi prostopadłymi.	P	F

30. (0-1)

Dana jest funkcja liniowa f(x) = (2m-2)x - (m+1)x + 6.

Dokończ zdanie tak, aby było prawdziwe. Wybierz odpowiedź A, B albo C oraz jej uzasadnienie 1., 2. albo 3.

Funkcja f jest stała dla

A.	m = -1,		1.	wartość wyrażenia $2m-2$ wynosi 0.
В.	m=1,	ponieważ	2.	wartość wyrażenia $m-3$ wynosi 0.
C.	m=3,		3.	wartość wyrażenia $m+1$ wynosi 0.

31. (CKE Informator 2021 PP)

Dana jest funkcja y = f(x), której wykres przedstawiono w kartezjańskim układzie współrzędnych (x, y) na rysunku obok.

Ta funkcja jest określona dla każdej liczby rzeczywistej $x \in [-5, 8]$.

31.1. (0–1)

Zapisz w miejscu wykropkowanym poniżej zbiór rozwiązań nierówności f(x) > 2.

31.2. (0-1)

Zapisz w miejscu wykropkowanym poniżej maksymalny przedział lub maksymalne przedziały, w których funkcja f jest malejąca.

32. (0–4)

Z wykresu funkcji f na rysunku obok odczytaj:

- a) dziedzinę tej funkcji,
- b) zbiór wartości funkcji,
- c) rozwiązanie równania f(x) = 2,
- **d**) zbiór rozwiązań nierówności $f(x) \ge -1$.

33. (0-4)

Dane są proste $k: y = -\frac{4}{3}x + 5$, $l: y = \frac{4}{3}x + 5$. Napisz równanie prostej m przechodzącej przez punkt (0, -3), równoległej do prostej k. Oblicz pole figury ograniczonej prostymi li m oraz osią y.

34. (0-4)

Dana jest funkcja f(x) = (2 - a)x + 4. Wyznacz a, jeśli wiadomo, że:

- a) punkt A = (-2, 6) należy do wykresu funkcji f,
- **b)** wykresy funkcji f oraz g(x) = -2x + 2 przecinają oś x w tym samym punkcie.

Kod: 3RPEUM app.nowaterazmatura.pl

rozwiązanie

Kod: H7D1D7 app.nowaterazmatura.pl

Film rozwiazanie zadania

Kod: WTYV7M app.nowaterazmatura.pl

rozwiązanie zadania

Kod: J7Q4UH app.nowaterazmatura.pl → Odpowiedzi

POWTÓRZENIE DZIAŁ PO DZIALE

Zestaw C. Przed maturą na poziomie rozszerzonym

35. (0–3)

Dla jakiej wartości parametru m rozwiązaniem równania |x-1|=m+2 jest para liczb o przeciwnych znakach?

36. (0–3)

Naszkicuj wykresy dwóch funkcji: f oraz g(x) = f(x-1), jeżeli wiadomo, że:

$$f(x) = \begin{cases} -\frac{1}{2}x - 1 & \text{dla } x \le -1\\ \frac{1}{2}x^2 & \text{dla } x > -1 \end{cases}$$

Z wykresu odczytaj rozwiązanie nierówności $g(x) \ge 0$.

37. (0–4)

Dla jakich wartości parametru m proste (m+1)x - my - 4 = 0 i 3x + (2-m)y - 6m = 0 przecinają się w punkcie leżącym na osi x?

38. (0–4)

Dana jest funkcja f(x) = |x+4| - |x-2|, gdzie $x \in \mathbb{R}$.

- a) Narysuj wykres tej funkcji i podaj jej miejsca zerowe.
- b) Określ liczbę rozwiązań równania f(x) = m w zależności od parametru m.

39. (0–4)

Dane są funkcje liniowe f(x) = 2x + m oraz $g(x) = \frac{1}{3}x - 2$. Oblicz, dla jakich wartości parametru m wykresy funkcji f i g mają dokładnie jeden punkt wspólny o pierwszej współrzędnej dodatniej, a drugiej ujemnej.

40. (0–5)

Rozwiaż nierówność $|x-2| + \sqrt{x^2 + 2x + 1} < 5$.

41. (0-5)

Rozwiąż nierówność $|x + \cos 60^{\circ}| + |x - \operatorname{tg} 45^{\circ}| \ge 4$.

42. (0–4) (CKE maj 2023 PR

Rozwiąż nierówność

$$\sqrt{x^2+4x+4} < \frac{25}{3} - \sqrt{x^2-6x+9}$$

Wskazówka: skorzystaj z tego, że $\sqrt{a^2} = |a|$ dla każdej liczby rzeczywistej a.

m ≠ -1

Kod: XDGZWM app.nowaterazmatura.pl

Film – rozwiązanie

zadania

Kod: QYCKJ4 app.nowaterazmatura.pl

Odpowiedzi

Powtórzenie dział po dziale

1. Liczby rzeczywiste i wyrażenie algebraiczne

Rozwiązania zadań – zestaw A

Kod: PGGMYW app.nowaterazmatura.p

Zestaw A – odpowiedzi

- **1.** a) 6 b) 8 c) $4\sqrt{2} + 2$ d) 0
- **4.** a) $-2(3+2\sqrt{3})$ b) $\frac{3\sqrt{2}-\sqrt{3}}{5}$
 - c) $\frac{\sqrt{6} + \sqrt{2} 2}{2}$ d) $\frac{2 + 5\sqrt{2} + 3\sqrt{3} 4\sqrt{6}}{23}$
- **5.** a) $1 \sqrt[3]{2} + \sqrt[3]{4}$ b) $\frac{1}{2} (\sqrt[3]{9} + \sqrt[3]{3} + 1)$
 - c) $\frac{2}{11} \left(4 2\sqrt[3]{3} + \sqrt[3]{9} \right)$
 - **d)** $\sqrt[3]{9} + \sqrt[3]{6} + \sqrt[3]{4}$
- **6.** a) $\frac{1}{x}$ b) $\sqrt{x} \sqrt{y}$
 - c) $\sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2}$ d) 2
- **8.** a) $10 + 6\sqrt{3}$ b) $26 + 15\sqrt{3}$
 - c) $45 29\sqrt{2}$ d) $37 30\sqrt{3}$
- **9.** a) $2x^3 + 9x^2 + 15x + 9$
 - **b)** $2x^3 15x^2 + 39x 35$
 - c) $-24x^2 2$
 - **d)** $81x^2 + 27x + 9$
- **10.** a) -13 b) 8 c) 209 d) 456
- **12.** a) $99\sqrt{2} 63\sqrt{3}$ b) $30 + 12\sqrt{6}$
- **13.** a) 1 b) 7 c) 21 d) 35
 - **e)** 35 **f)** 21 **g)** 7 **h)** 1
- **15.** 1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1
- **16. a)** $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
 - **b)** $a^4 4a^3b + 6a^2b^2 4ab^3 + b^4$
 - c) $a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$
 - **d)** $a^5 5a^4b + 10a^3b^2 10a^2b^3 + 5ab^4 b^5$
 - e) $a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$
 - f) $a^6 6a^5b + 15a^4b^2 20a^3b^3 + 15a^2b^4 +$ $-6ab^5 + b^6$
 - **g)** $a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b^7$
 - **h)** $a^7 7a^6b + 21a^5b^2 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 b^7$

Rozwiązania

Kod: QR6646

ann nowaterazmatura ni

zadań – zestaw B

Kod: YXR35Y app.nowaterazmatura.pl

Zestawy B i C – Modele rozwiązań zadań otwartych Kod: PHY9V8 app.nowaterazmatura.pl

- **17.** a) $29\sqrt{2} + 41$ b) $29\sqrt{2} 41$ c) $209\sqrt{3} + 362$ d) $209\sqrt{3} 362$
- **18.** a) 80 b) 2160 c) -560
- **19.** a) -4 b) 32 c) 60
- **24. a)** 64 **b)** 12
- **25.** a) a = 6, b = 0 lub a = 10, b = 8b) a = -8, b = -7 lub a = -8, b = 7 lub a = -4, b = 1 lub a = 4, b = -1 lub a = 4, b = 1 lub a = 8, b = -7 lub a = 8, b = 7
- **26.** $A \cup B = \mathbb{R}, A \cap B = \left[\frac{1}{2}; 1\right]$
- **27.** $A \setminus B = [-3; 5]$
- **29.** a) $x \in \{-4, 4\}$ b) brak rozwiązań c) $x \in \{-6, -2, 0, 4\}$
- **30.** a) $x \in [-1; 5]$
 - **b)** $x \in (-\infty; -1) \cup (7; \infty)$
 - c) $x \in (-\infty; -8) \cup (-2; 2) \cup (8; \infty)$

Zestaw B – odpowiedzi

- **31.** B **32.** B **33.** D **34.** A **35.** C **36.** C **37.** A
- **38.** A **39.** B **40.** CE **41.** PP **42.** A2
- **43.** 1
- **44.** 4
- **50.** jest liczbą ujemną
- **51.** $2x^{-1} > y^{-2}$
- **52.** c < b < a < d
- **53.** p = 4
- **54.** $C = [-5, -2) \cup \{3\},$ D = [-2, 3); dziesięć liczb
- **55.** 0 rozwiązań dla $m = \sqrt{2}$, 2 rozwiązania dla $m = \frac{1}{2}$

Zestaw C - odpowiedzi

- **57.** c < a < d < b
- **58.2.** $m \in (-4;4) \setminus \{0\}$
- **65.1.** $(a^2 \sqrt{2}ab + b^2)(a^2 + \sqrt{2}ab + b^2)$
- **73.** $n \in \{3, 4, 5, 6\}$
- **74.** n = 8
- **75.** n = 11

2. Funkcje. Funkcja liniowa

Zestaw A – odpowiedzi

- **1.** a) [-1;4] b) $[1;\sqrt{2}) \cup (\sqrt{2};3) \cup (3;\infty)$
 - c) $(-\infty;0]$ d) $(-4;-3) \cup (-3;3) \cup (3;6]$
- **2.** a) $D = [-1; 3], x = -\frac{3}{5}$
 - **b)** $D = \mathbb{R} \setminus \{2\sqrt{2}\}, x = 0, x = 4\sqrt{2}$
- **3.** a) g(x) = x + 1 |x + 1|

b) g(x) = -x - |x|

c) g(x) = |x| - x + 2

d) g(x) = |x| + x

e) g(x) = |x - |x||

 $\mathbf{f)} \ g(x) = 0$

4. $D_h = [-5;7]$

Rozwiązania zadań – zestaw A

app.nowaterazmatura.pl

5. a)

b)

c)

- **6.** a) f(x) = 2x 5
 - **b)** f(x) = -x + 8
 - c) $f(x) = \frac{1}{2}x 1$
- **7.** a) $m \in [3 \sqrt{6}; 3 + \sqrt{6}]$
 - **b)** $m \in \left[\frac{1}{8}; \infty\right)$
 - c) $m \in (-3; -1] \cup (3; \infty)$
- **8.** a) $y = \frac{4}{5}x + \frac{12}{5}$, y = -4x + 12
 - **b)** y = x + 3 i y = 9x + 3

lub y = -x + 3 i y = -9x + 3

- **9.** a) $(-\infty; 6]$ b) $[5\sqrt{3} + 1; \infty)$
- c) $(-\infty; \frac{4}{3})$ d) $(5; \infty)$ **10.** a) 0 b) -2,5
- **11.** a) 1 rozwiązanie dla $a \in \mathbb{R}$
 - **b)** 1 rozwiązanie dla $a \neq -3$, nieskończenie wiele rozwiązań dla a = -3
 - c) 1 rozwiązanie dla a ≠ 0,
 nieskończenie wiele rozwiązań dla a = 0
 - **d**) 0 rozwiązań dla $a = \frac{1}{2}$, 1 rozwiązanie dla $a \neq \frac{1}{2}$
 - e) 0 rozwiązań dla a = 2,
 - 1 rozwiązanie dla $a \neq 2$
 - **f)** 0 rozwiązań dla a = 2,
 - 1 rozwiązanie dla $a \in \mathbb{R} \setminus \{-2, 2\}$, nieskończenie wiele rozwiązań dla a = -2
- **12.** a) x = 2, $y = -\frac{3}{2}$
 - **b)** x = -1, y = -3
 - **c)** $x = \frac{4}{3}, y = 0$
- **13.** a) x = 3 b) $x \in \left\{-\frac{1}{2}, \frac{3}{2}\right\}$ c) x = 0
- **14.** a) $x \in (-\infty; -\frac{3}{2})$ b) $x \in [-\frac{3}{2}; \infty)$
 - c) $x \in \mathbb{R}$
 - **d)** $x \in (-\infty; 0]$
 - e) $x \in \left(-\frac{1}{2}; \infty\right)$ f) $x \in \left(-\infty; -\frac{2}{3}\right]$
- **15.** a) x = 2, $x = \frac{7}{2}$
 - **b)** $x \in [-4; 2]$
- **16.** a) $x \in \left(-\frac{3}{2}; \frac{1}{2}\right)$
 - **b)** $x \in (-\infty; -2) \cup (2; \infty)$
- **17. a)** 0 rozwiązań dla $m \in (-\infty; -1) \cup (1; \infty)$, 1 rozwiązanie dla $m \in (-1; 1)$, nieskończenie wiele rozwiązań dla $m \in \{-1, 1\}$

- **b**) 0 rozwiązań dla $m \in (-\infty; 4)$,
- 2 rozwiązania dla $m\in \big(4;\infty\big),$

nieskończenie wiele rozwiązań dla m=4

- c) 0 rozwiązań dla $m \in (-\infty; 3)$,
- 2 rozwiązania dla $m \in (3; \infty)$,

nieskończenie wiele rozwiązań dla m = 3

- **d**) 0 rozwiązań dla $m \in (-\infty; 0)$,
- 2 rozwiązania dla $m \in \{0\} \cup (3; \infty)$,
- 3 rozwiązania dla m = 3,
- 4 rozwiązania dla $m \in (0;3)$

18. (0,2), (4,-1), (3,6)

Zestaw B – odpowiedzi

- 19. A 20. C 21. D 22. D 23. D 24. A 25. D
- **26.** B **27.** A **28.** CE **29.** PF **30.** C2
- **31.1.** $x \in [-5; -1) \cup (7; 8]$
- **31.2.** [-3;3]
- **32.** a) $[-5;0] \cup [1;6]$
 - **b)** [-2;3]
 - c) x = -1, x = 2
 - **d)** $[-5;0] \cup [1;5]$
- **33.** $y = -\frac{4}{3}x 3$, P = 12
- **34.** a) a = 3 b) a = 6

app.nowaterazmatura.p

Zestaw C – odpowiedzi

35.
$$m \in (-1, \infty)$$

36.
$$x \in (-\infty; -1] \cup (0; \infty)$$

37.
$$m = -2$$
 lub $m = 1$

38. a)
$$x = -1$$

b) 0 rozwiązań dla $m \in (-\infty; -6) \cup (6; \infty)$, 1 rozwiązanie dla $m \in (-6, 6)$, nieskończenie wiele rozwiązań dla $m \in \{-6, 6\}$

39.
$$m \in (-12; -2)$$

40.
$$x \in (-2;3)$$

41.
$$x \in \left(-\infty; -1\frac{3}{4}\right] \cup \left[2\frac{1}{4}; \infty\right)$$

42.
$$x \in \left(-\frac{11}{3}; \frac{14}{3}\right)$$

Rozwiązania zadań – zestaw C

Kod: UUDTAR app.nowaterazmatura.pl

Zestaw B i C - Modele rozwiązań zadań otwartych Kod: E37X5S

Funkcje trygonometryczne kąta ostrego

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$tg \alpha = \frac{a}{b}$$

Funkcje trygonometryczne dowolnego kąta

•
$$r = |OP| = \sqrt{x_P^2 + y_P^2}$$

$$\sin \alpha = \frac{y_p}{r}, \quad \cos \alpha = \frac{x_p}{r}, \quad \operatorname{tg} \alpha = \frac{y_p}{x_p}$$
• $\sin^2 \alpha + \cos^2 \alpha = 1$

•
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

•
$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}, \ \alpha \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$

Wartości funkcji trygonometrycznych dla niektórych kątów

α	0°	30°	45°	60°	90°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nie istnieje

Wykresy funkcji trygonometrycznych

Wybrane wzory redukcyjne

- $\sin(90^{\circ} \alpha) = \cos \alpha$
- $\sin(90^\circ + \alpha) = \cos\alpha$
- $\cos(90^{\circ} \alpha) = \sin \alpha$
- $\cos(90^{\circ} + \alpha) = -\sin \alpha$
- $\sin(180^{\circ} \alpha) = \sin \alpha$
- $\sin(180^{\circ} + \alpha) = -\sin \alpha$
- $\cos(180^{\circ} \alpha) = -\cos\alpha$
- $\cos(180^{\circ} + \alpha) = -\cos\alpha$
- $tg(180^{\circ} \alpha) = -tg\alpha$
- $tg(180^{\circ} + \alpha) = tg \alpha$

Wzory trygonometryczne

- $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$
- $\sin(\alpha \beta) = \sin\alpha\cos\beta \cos\alpha\sin\beta$
- $\cos(\alpha + \beta) = \cos\alpha\cos\beta \sin\alpha\sin\beta$
- $\cos(\alpha \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$
- $\sin 2\alpha = 2\sin \alpha\cos \alpha$
- $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1 = 1 2\sin^2 \alpha$ $\operatorname{tg}(\alpha + \beta) = \frac{\operatorname{tg}\alpha + \operatorname{tg}\beta}{1 \operatorname{tg}\alpha \operatorname{tg}\beta}$, $\operatorname{tg}(\alpha \beta) = \frac{\operatorname{tg}\alpha \operatorname{tg}\beta}{1 + \operatorname{tg}\alpha \operatorname{tg}\beta}$ $\operatorname{tg} 2\alpha = \frac{2\operatorname{tg}\alpha}{1 \operatorname{tg}^2\alpha}$

Ciąg arytmetyczny

- $a_n = a_1 + (n-1)r$, $a_n = \frac{a_{n-1} + a_{n+1}}{2}$ dla $n \ge 2$ $S_n = \frac{a_1 + a_n}{2} \cdot n$, $S_n = \frac{2a_1 + (n-1)r}{2} \cdot n$

Ciąg geometryczny

- $a_{n+1} = a_n \cdot q$
- $a_n = a_1 \cdot q^{n-1}$, $a_n^2 = a_{n-1} \cdot a_{n+1}$ dla $n \ge 2$
- $S_n = a_1 \cdot \frac{1 q^n}{1 q}$, gdy $q \neq 1$, $S_n = n \cdot a_1$, gdy q = 1
- Jeśli $|q| \le 1$, to suma szeregu geometrycznego: $S = \frac{a_1}{1-a}$.

Pochodne niektórych funkcji

f(x) = c	f'(x)=0
$f(x) = ax^2 + bx + c$	f'(x) = 2ax + b
$f(x) = \frac{1}{x}, D = \mathbb{R} \setminus \{0\}$	$f'(x) = -\frac{1}{x^2}, D' = \mathbb{R} \setminus \{0\}$
$f(x) = \sqrt{x}, D = [0; \infty)$	$f'(x) = \frac{1}{2\sqrt{x}}, D' = (0, \infty)$
$f(x) = x^k, k \neq 0, k \neq 1$	$f'(x) = kx^{k-1}$

Działania na pochodnych

- $(c \cdot f(x))' = c \cdot f'(x)$ dla $c \in \mathbb{R}$
- $(f(x) \pm g(x))' = f'(x) \pm g'(x)$
- $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{\left(g(x)\right)^2}$ dla $g(x) \neq 0$
- $|g(f(x))| = g'(f(x)) \cdot f'(x)$

Równanie stycznej

Jeśli funkcja f ma pochodną w x_0 , to styczna do wykresu funkcji f w punkcie $(x_0, f(x_0))$ ma równanie:

$$y = ax + b$$
, gdzie $a = f'(x_0)$

Silnia. Symbol Newtona. Dwumian Newtona

- 0! = 1, $n! = 1 \cdot 2 \cdot ... \cdot n$ dla $n \in \mathbb{N}_{+}$
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ dla $n, k \in \mathbb{N}$ i $k \le n$
- $\binom{n}{k} = \binom{n}{n-k}$, $\binom{n}{0} = \binom{n}{n} = 1$, $\binom{n}{1} = \binom{n}{n-1} = n$
- $(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b^1 + \dots + \binom{n}{1}a^{n-k}b^k + \dots + \binom{n}{n}b^n$

Kombinatoryka

- Liczba k-elementowych wariacji z powtórzeniami zbioru n-elementowego: n^k
- Liczba k-elementowych wariacji bez powtórzeń zbioru *n*-elementowego $(1 \le k \le n)$: $\frac{n!}{(n-k)!}$
- Liczba permutacji zbioru *n*-elementowego: *n*!
- Liczba k-elementowych kombinacji (podzbiorów) zbioru *n*-elementowego $(0 \le k \le n)$: $\binom{n}{k}$

Rachunek prawdopodobieństwa

- Klasyczna definicja prawdopodobieństwa Niech $A \subset \Omega$. Jeśli wszystkie zdarzenia elementarne są jednakowo prawdopodobne, to $P(A) = \frac{|A|}{|\Omega|}$
- Własności prawdopodobieństwa Dla $A, B \subset \Omega$: $P(\emptyset) = 0, P(\Omega) = 1, 0 \le P(A) \le 1,$ $P(A') = 1 - P(A), P(A) \leq P(B) \text{ dla } A \subset B,$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
- Prawdopodobieństwo warunkowe Dla $A, B \subset \Omega, P(B) > 0$: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- Prawdopodobieństwo całkowite Niech $A, B_1, ..., B_n \subset \Omega$. Jeśli $B_i \cap B_j = \emptyset$ dla $i \neq j$, $B_1 \cup ... \cup B_n = \Omega$ oraz $P(B_i) > 0$ dla $1 \le i \le n$, to $P(A) = P(A \mid B_1) \cdot P(B_1) + ... + P(A \mid B_n) \cdot P(B_n).$
- Wzór Bayesa Jeżeli zdarzenia $B_1, B_2, B_3, ..., B_n \subset \Omega$ tworzą układ zupełny, $A \subset \Omega$ i $A \neq \emptyset$, to dla dowolnego $1 \leq i \leq n$ prawdziwa jest zależność: $P(B_i|A) = \frac{P(A|B_i) \cdot P(B_i)}{P(A)}$
- Schemat Bernoulliego Prawdopodobieństwo uzyskania k sukcesów w schemacie n prób Bernoulliego: $P_n(k) = \binom{n}{k} p^k q^{n-k}$ dla k = 0, 1, 2, ..., n,gdzie p jest prawdopodobieństwem sukcesu, a q = 1 - p jest prawdopodobieństwem porażki w pojedynczej próbie.

Parametry statystyczne

- Dominanta zestawu danych to wartość występująca najczęściej, ale więcej niż raz.
- **Mediana** uporządkowanego zestawu *n* liczb to wyraz środkowy (dla n nieparzystych) lub średnia arytmetyczna dwóch wyrazów środkowych (dla n parzystych).

Trójkąty i czworokąty

p – połowa obwodu R – promień okręgu opisanego na trójkącie r – promień okręgu

wpisanego w trójkat

Trójkąt

$$P = \frac{1}{2}ah$$

$$P = \frac{1}{2}ab\sin\alpha$$

$$P = \frac{abc}{4R}$$

$$P = pr$$

$$P = \sqrt{p(p-a)(p-b)(p-c)}$$

Trójkat równoboczny

$$P = \frac{a^2 \sqrt{3}}{4} \qquad h = \frac{a\sqrt{3}}{2}$$
$$R = \frac{2}{3}h \qquad r = \frac{1}{3}h$$

Równoległobok

Trapez

$$P = \frac{a+b}{2} \cdot h$$

Deltoid

$$P = \frac{|AC| \cdot |BD|}{2}$$

Graniastosłup i ostrosłup

Graniastosłup

Bryły podobne

Jeżeli bryła F_1 o polu powierzchni całkowitej P_1 i objętości V_1 jest podobna w skali k do bryły F_2 o polu powierzchni całkowitej P_2 i objętości V_2 , to:

$$\frac{P_1}{P_2} = k^2 \text{ oraz } \frac{V_1}{V_2} = k^3$$

I wiesz, jak zdać maturę

VADEMECUM

powtarzanie wiadomości połączone z rozwiązywaniem zadań różnego typu

ZBIÓR ZADAŃ MATURALNYCH ćwiczenie rozwiązywania zadań maturalnych oraz zadań CKE

ÓR ZADAŃ MATURALNYCH

Nowa

MATEMATYKA

ARKUSZE MATURALNE

rozwiązywanie arkuszy maturalnych dopasowanych do nowej matury

CYFROWE WSPOMAGANIE NAUKI

- APLIKACJA materiały cyfrowe zintegrowane z Vademecum, Zbiorem zadań maturalnych i Arkuszami maturalnymi, ułatwiające przygotowania do egzaminu app.nowaterazmatura.pl
- SERWIS MATURALNY wszystkie niezbędne informacje o maturze nowaterazmatura.pl

Nowa Era Sp. z o.o.

www.nowaera.pl

nowaera@nowaera.pl

