Probability - Math 394/395/396 Notes

Brett Saiki

March 2022

This is a compilation of notes from the probability sequence, Math 394/395/396, at the University of Washington. Math 394 was taught by Alexander Giessing and borrows material from *Introduction to Probability*, 1982, by D. Anderson et. al. and A First Course in Probability, 10th edition, 2018 by S. Ross.

Contents

1	Intr	roduction
	1.1	Fundamental Concepts
	1.2	Laplace Distribution
	1.3	Probability and Set Theory
	1.4	Axioms of Probability Theory
2		nbinatorics
	2.1	Urn Models
	2.2	Discrete Probability Spaces
	2.3	Hypergeometric Distribution
	2.4	Binomial Distribution
	2.5	Multinomial Distribution
3	Ind	ependence and Conditional Events
	3.1	Independence

1 Introduction

1.1 Fundamental Concepts

Definition 1.1. An experiment is any activity or process whose outcome is subject to uncertainty.

Definition 1.2. An *sample space* of an experiment is the set of all possible outcomes of the experiment. We denote the sample space by Ω .

Definition 1.3. An *event*, A, is a subset of a sample space, Ω , that is, $A \subseteq \Omega$. Let $\omega \in \Omega$ be the outcome of an experiment. We say that the *event* A occurs if $\omega \in A$.

Definition 1.4. A *simple event* is a subset of the sample space that contains only one outcome.

1.2 Laplace Distribution

Definition 1.5. Let N give the number of simple events in an event. Suppose all outcomes of an experiment with finite sample space Ω are equally likely. Then, for all events $A \subseteq \Omega$,

$$\mathbb{P}(A) = \frac{N(A)}{N(\Omega)}.$$

We call \mathbb{P} the Laplace distribution (over Ω).

Lemma 1.6. The Laplace distributon \mathbb{P} over Ω has the following properties:

- (i) $\mathbb{P}(\Omega) = 1$.
- (ii) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ for disjoint events A and B.

1.3 Probability and Set Theory

Theorem 1.7 (DeMorgan's Law). For any events A and B we have

- (i) $(A \cup B)^c = A^c \cap B^c$,
- (ii) $(A \cap B)^c = A^c \cup B^c$.

Definition 1.8. Given $A_1, \ldots, A_n \subseteq \Omega$ we define

$$\bigcup_{k=1}^{n} A_k = A_1 \cup \dots \cup A_n = \{\omega \in \Omega \mid \exists k \in \{1, \dots, n\} : \omega \in A_k\},$$

$$\bigcap_{k=1}^{n} A_k = A_1 \cap \dots \cap A_n = \{\omega \in \Omega \mid \forall k \in \{1, \dots, n\} : \omega \in A_k\}.$$

Theorem 1.9. Given $A_1, \ldots, A_n \subseteq \Omega$,

(i)
$$\left(\bigcup_{k=1}^{n} A_k\right)^c = \bigcap_{k=1}^{n} A_k^c$$

(ii)
$$\left(\bigcap_{k=1}^{n} A_k\right)^c = \bigcup_{k=1}^{n} A_k^c$$

Definition 1.10. Let $(A_k)_{k=1}^{\infty}$ be a sequence of subsets in Ω and define

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \{ \omega \in \Omega \mid \exists n \ge 1 : \forall k \ge n : \omega \in A_k \},$$

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \{ \omega \in \Omega \mid \forall n \ge 1 : \exists k \ge n : \omega \in A_k \}.$$

1.4 Axioms of Probability Theory

Definition 1.11. Let Ω be a finite sample space and \mathcal{A} be the collection of all subsets of Ω . A probability measure on (Ω, \mathcal{A}) is a function \mathbb{P} from \mathcal{A} into the real numbers that satisfies

- (i) $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{A}$;
- (ii) $\mathbb{P}(\Omega) = 1$;
- (iii) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ for all pairwise disjoint $A, B \in \mathcal{A}$.

The number of $\mathbb{P}(A)$ is called the probability that event A occurs. These properties are called *non-negativity*, normalization, and additivity.

Definition 1.12. A collection \mathcal{A} of subsets of Ω is called a σ -algebra if it satisfies the following conditions:

- (i) $\emptyset \in \mathcal{A}$;
- (ii) if $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$;
- (iii) if $A_1, A_2, \ldots \in \mathcal{A}$, then $\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$.

Properties (ii) and (iii) are called closed under complement and countable additivity.

Theorem 1.13. The smallest σ -algebra associated with Ω is $\mathcal{A} = \{\emptyset, \Omega\}$.

Theorem 1.14. If Ω is finite, then the power set 2^{Ω} is a σ -algebra.

Theorem 1.15. If A is any subset of Ω , then $\mathcal{A} = \{\emptyset, A, A^c, \Omega\}$ is a σ -algebra.

Definition 1.16. Let Ω be a sample space and \mathcal{A} be a σ -algebra on Ω . A probability measure on (Ω, \mathcal{A}) is a function \mathbb{P} from \mathcal{A} into the real numbers that satisfies

- (i) $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{A}$;
- (ii) $\mathbb{P}(\Omega) = 1$;
- (iii) if $A_1, A_2, \ldots \in \mathcal{A}$ is a collection of pairwise disjoint events, in that $A_j \cap A_k = \emptyset$ for all pairs j, k satisfying $j \neq k$, then

$$\mathbb{P}\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mathbb{P}(A_k).$$

The triplet $(\Omega, \mathcal{A}, \mathbb{P})$ is called a *probability space*.

Lemma 1.17. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A, B \subseteq \Omega$.

- (i) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$;
- (ii) if $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(A) + \mathbb{P}(B \setminus A) = \mathbb{P}(B)$;
- (iii) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

Lemma 1.18 (Inclusion-Exclusion Formula). For any events A_1, \ldots, A_n we have

$$\mathbb{P}(A_1 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 \le \dots \le i_k \le n} \mathbb{P}(A_1 \cap \dots \cap A_k).$$

For n = 2, this equation simplifies to (iii) of Lemma 1.17.

Theorem 1.19. Let A_1, A_2, \cdots be an increasing sequence of events, i.e. $A_1 \subset A_2 \subset A_3 \subset \cdots$, then

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \bigcup_{k=1}^{\infty} \mathbb{P}(A_k).$$

Let B_1, B_2, \cdots be an decreasing sequence of events, i.e. $B_1 \supset B_2 \supset B_3 \supset \cdots$, then

$$\lim_{n\to\infty} \mathbb{P}(B_n) = \bigcap_{k=1}^{\infty} \mathbb{P}(B_k).$$

2 Combinatorics

2.1 Urn Models

Definition 2.1 (Falling Factorial). For $r \in \mathbb{R}$ and $k \in \mathbb{N}$ we define $(r)_k$, "r falling k", as

$$(r)_k = r \cdot (r-1) \cdots (r-k+1).$$

Definition 2.2 (Factorial). For $n \in \mathbb{N}$ we define n!, "n factorial", as

$$n! = \begin{cases} n \cdot (n-1) \cdots 2 \cdot 1 & \text{for } n > 1, \\ 1 & \text{for } n = 0. \end{cases}$$

Definition 2.3 (Binomial Coefficient).

For $r \in \mathbb{R}$ and $n \in \mathbb{N}$ we define binomial coefficient $\binom{r}{n}$, "r choose n" as

$$\binom{r}{n} = \frac{r \cdot (r-1) \cdots (r-n+1)}{n!} = \frac{r!}{n!(r-n)!}.$$

For $r \in \mathbb{R}$ and $n \in \mathbb{Z}$, $n \geq 0$ we define the binomial coefficient $\binom{r}{n}$ as

$$\binom{r}{n} = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{if } n < 0. \end{cases}$$

Theorem 2.4 (Vandermonde's identity). For non-negative integers $m, n, r, k \in \mathbb{N}_0$,

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}.$$

Definition 2.5 (Urn Model of Laplace experiments). Consider an urn with n balls which are labeled $1, \ldots, n$. An urn model is an experiment in which k times a ball is drawn at random from the urn and its number is noted.

Definition 2.6 (Urn Model I, "Ordered Sampling with Replacement"). Draw k times from an urn with n balls. The number and the order of the ball are noted and the ball is put back into the urn. The

outcome is $\omega = (a_1, \dots, a_k)$ where a_i is the number of the *i*th draw (i.e. a *k*-tuple with values $\{1, \dots, n\}$). The sample space is

$$\Omega_I = \{(a_1, \dots, a_k) \mid a_1, \dots, a_k \in \{1, \dots, n\}\}.$$

(i.e. all possible k-tuples with values in $\{1, \ldots, n\}$).

Lemma 2.7. The cardinality of the set Ω_I is $|\Omega_I| = n^k$.

Definition 2.8 (Urn Model II, "Ordered Sampling without Replacement"). Draw k times from an urn with n balls. The number and the order of the ball are noted and the ball is not returned to the urn. The outcome is $\omega = (a_1, \ldots, a_k)$ where a_i is the number of the ith draw (i.e. an arrangement of k elements of $\{1, \ldots, n\}$). The sample space is

$$\Omega_{II} = \{(a_1, \dots, a_k) \mid a_1, \dots, a_k \in \{1, \dots, n\}, a_i \neq a_j \text{ for } i \neq j\}.$$

Lemma 2.9. The cardinality of the set Ω_{II} is $|\Omega_{II}| = (n)_k = n \cdot (n-1) \cdots (n-k+1)$.

Definition 2.10 (Urn Model III, "Unordered Sampling without Replacement"). Draw k times from an urn with n balls. The number of the ball is noted but not the order, and the ball is not returned to the urn. The outcome is $\omega = (a_1, \ldots, a_k)$ (i.e. subsets of $\{1, \ldots, n\}$ of size k). The sample space is

$$\Omega_{III} = \{ \omega \subseteq \{1, \dots, n\} \mid |\omega| = k \}$$

(i.e. all possible subsets of $\{1, \ldots, n\}$ of size k).

Lemma 2.11. The cardinality of the set Ω_{III} is

$$|\Omega_{III}| = \binom{n}{k} = \frac{(n)_k}{k!} = \frac{n \cdots (n-1) \cdots (n-k+1)}{k!}.$$

Definition 2.12 (Urn Model IV, "Unordered Sampling with Replacement"). Draw k times from an urn with n balls. The number of the ball is noted but not the order, and the ball is returned to the urn. The outcome is $\omega = (k_1, \ldots, k_n)$ where k_i denotes how often the ith ball was drawn (i.e. a tuple whose values sum up to k). The sample space is

$$\Omega_{IV} = \{(k_1, \dots, k_n) \mid k_i \in \mathbb{N}_0, k_1 + \dots + k_n = k\}.$$

Lemma 2.13. The cardinality of the set Ω_{IV} is

$$|\Omega_{IV}| = {k+n-1 \choose n-1} = {k+n-1 \choose k}.$$

2.2 Discrete Probability Spaces

Definition 2.14. A probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is called *discrete* if there exists a finite or countable infinite subset $D \subseteq \Omega$ such that $\mathbb{P}(D) = 1$. The associated probability measure is also called *discrete*.

Lemma 2.15. Any discrete probability measure, \mathbb{P} satisfies

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}),$$

that is, a discrete probability measure \mathbb{P} is fully characterized by its values on simple events.

Lemma 2.16. Let $p: \Omega \to \mathbb{R}$ be a function that satisfies the following:

- (i) $p(\omega) = 0$, except for countable many $\omega \in \Omega$,
- (ii) $p(\omega) \geq 0$ for all $\omega \in \Omega$,
- (iii) $\sum_{\omega \in \Omega} p(\omega) = 1$.

Then p is a probability measure on (Ω, \mathcal{A}) and we call p the probability (mass) function.

Definition 2.17 (Urn Model with Colored Balls). Consider an urn with n balls which are labeled $1, \ldots, N$ with balls $\{1, \ldots, R\}$ being one color and $\{R+1, \ldots, N\}$ being another color. We draw n times a ball at random from the urn and note its number and/or color.

2.3 Hypergeometric Distribution

Definition 2.18 (Hypergeometric Distribution). Under the urn model with colored balls, draw n balls at once from the urn. Consider the event E_r where exactly r balls are the first color, then

$$E_r = \{A \subseteq \{1, \dots, N\} : |A| = n, |A \cap \{1, \dots, R\}| = r, |A \cap \{R+1, \dots, N\}| = n-r\},\$$

and

$$\Omega = \{ \omega \subset \{1, \dots, N\} : |\omega| = n \}.$$

Lemma 2.19. Define the probability mass function of the hypergeometric distribution as

$$p(r) = \frac{\binom{R}{r}\binom{N-R}{n-r}}{\binom{N}{n}}$$
 for $r \in \{0, 1, \dots, n\}$.

Then $\mathbb{P}(E_r) = p(r)$.

2.4 Binomial Distribution

Definition 2.20 (Binomial Distribution). Under the urn model with colored balls, draw n times from the urn with replacement. Consider the event E_r where exactly r balls are the first color, then

$$E_r = \{(a_1, \dots, a_n) : |\{i : a_i \in \{1, \dots, R\}\}\}| = r\},\$$

and

$$\Omega = \{(a_1, \dots, a_n) : a_1, \dots, a_n \in \{1, \dots, N\}\}.$$

Lemma 2.21. Define the probability mass function of the binomial distribution as

$$p(r) = {n \choose r} \left(\frac{R}{N}\right) \left(1 - \frac{R}{N}\right)^{n-r}$$
 for $r \in \{0, 1, \dots, n\}$.

Then $\mathbb{P}(E_r) = p(r)$.

2.5 Multinomial Distribution

Definition 2.22 (Urn Model With Many Colored Balls). Consider an urn with N balls which are labeled $1, \ldots, N$ with the first N_1 balls of color 1, the second N_2 balls of color 2, ..., the last N_r balls of color r. We draw n times a ball at random from the urn and its number and/or color is noted.

Lemma 2.23. The number of possible ways in which a set A with cardinality |A| = k can be partitioned into n subsets A_1, \ldots, A_n with cardinalities k_1, \ldots, k_n such that $k_1 + \ldots + k_n = n$ is given by

$$\frac{k!}{k_1!\cdots k_n!}.$$

Definition 2.24. For $k, k_1, \ldots, k_n \in \mathbb{Z}$ we define multinomial coefficient as

$$\binom{k}{k_1, \dots, k_n} = \begin{cases} \frac{k!}{k_1! \dots k_n!} & \text{if } k_1 \ge 0, \text{ and and } \sum_{i=1}^n k_i = k, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 2.25 (Multinomial Distribution). Under the urn model with many colored balls, draw n balls with r colors with replacement. Consider the event E_r where exactly r balls are of one color can be written as

$$E_{n_1,\ldots,n_r} = \{(a_1,\ldots,a_n) : |\{i: a_i \in \{N_{k-1}+1,\ldots,N_k\}\}| = n_k, k \in \{1,\ldots,r\}\},\$$

where $N_0 = 0, N_1 + \cdots + N_r = N$ and $n_1 + \cdots + n_r = n$, and

$$\Omega = \{(a_1, \dots, a_n) : a_1, \dots, a_n \in \{1, \dots, N\}\}.$$

Lemma 2.26. Define the probability mass function of the multinomial distribution as

$$p(n_1, \dots, n_r) = \binom{n}{n_1, \dots, n_r} \prod_{k=1}^r \left(\frac{N_k}{N}\right)^{n_k},$$

for $n_1, \ldots, n_r \in \mathbb{N}_0$ and $n_1 + \cdots + n_r = n$. Then $\mathbb{P}(E_{n_1, \ldots, n_r}) = p(n_1, \ldots, n_r)$.

3 Independence and Conditional Events

3.1 Independence

Definition 3.1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability triple. Two events A and B on (Ω, \mathcal{AP}) are called *indepedent* if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Definition 3.2. The events A_1, \ldots, A_n are called *independent* if for each $k \in \{1, \ldots, n\}$ and each collection of indices $1 \le i_1 < \ldots < i_k \le n$

$$\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \cdots \mathbb{P}(A_{i_k}).$$

Lemma 3.3. Let A_1, \ldots, A_n be independent events. Consider events B_1, \ldots, B_n such that

$$B_i = A_i$$
 or $B_i = A_i^c$.

Then the events B_1, \ldots, B_n are indepedent.