Wprowadzenie do Sztucznej Inteligencji Laboratorium 3

Minmax

1. Wprowadzenie

Minmax jest to algorytm poszukiwania strategii dla dwuosobowych gier deterministycznych z pełną informacją. Pozwala on wybrać ruchy w sposób optymalny, patrząc na d ruchów naprzód, zakładając, że przeciwnik gra optymalnie.

Alpha pruning jest ulepszeniem algorytmu minmax i pozwala ograniczyć liczbę odwiedzanych węzłów drzewa gry i zaoszczędzić czas i moc obliczeniową.

2. Zadanie

Należało zaimplementować grę w kółko i krzyżyk z komputerem przy wykorzystaniu obu algorytmów oraz przeprowadzić badania liczby odwiedzonych węzłów, czasu wykonania oraz głębokości drzewa dla obu algorytmów.

3. Implementacja

Plansza gry drukowana jest w terminalu, użytkownik musi wybrać pole, w którym chce wstawić "X" używając cyfr od 1-9. Komputer wykonuje ruchy "O" i drukuje wynik rozgrywki.

4. Wyniki

Wykres zależności czasu wykonania algorytmu dla pojedynczego ruchu w zależności od postępu w grze z i bez alpha pruningu:

Pomiar czasu wykonania algorytmów dla wybranego stanu:

Badany stan:

Minimax	Alpha-beta		
0.0165	0.00200		
0.0162	0.00114		
0.0159	0.00138		
0.0163	0.00151		
0.0156	0.00101		
0.0155	0.00200		
0.0158	0.00101		
0.0155	0.00051		
0.0158	0.00101		
0.0165	0.00128		
Wartość średnia:			
0.0156	0.00128		
Odchylenie standardowe:			
0.000383	0.000465		

Badanie liczby odwiedzonych węzłów i głębokości drzewa:

9 stanów początkowych

Minimax	Alpha-beta		
Odwiedzone węzły	Odwiedzone węzły	Średnia głębokość	
48437	2137	6.313	
55577	3849	6.447	
48437	2500	6.296	

55577		3304	6.366	
40721		1824	6.105	
55577		2964	6.311	
48437		2429	6.195	
55577		2961	6.277	
48437		3724	6.253	
Wartość średnia				
50753	2854.667		6.285	
Odchylenie standardowe				
5186.284	694.073		0.097	

3 stany środkowe

744	126	4.160
1	1	2.7
1097	265	4.477

5. Wnioski

Oba algorytmy pozwalają na osiągnięcie optymalnej strategii gry. Algorytm minmax jednakże potrzebuje do tego ponad 10 krotnie więcej czasu – szczególnie widoczne jest to dla początkowego stanu gry, gdy jest bardzo wiele węzłów do przeszukiwania. Wykres zależności czasu przeszukiwania od stanu gry pokazuje, że w dalszych etapach różnica czasu staje się niewielka – algorytm alfa-beta ma mniej węzłów do pominięcia.

Badanie liczby odwiedzonych węzłów pokazuje skąd wynika różnica w czasie wykonania algorytmów. Dla 9 początkowych stanów gry algorytm alfa beta odwiedza często 20 krotnie mniej węzłów.

Średnia głębokość przeszukiwania dla algorytmu alfa beta wyniosła około 6.3, co również pokazuje przewagę nad zwykłym algorytmem minmax, którego głębokość przeszukiwania zawsze wyniesie 9 (chyba, że natrafi wcześniej na stan końcowy gry).