# Project Euler #240: Top Dice



This problem is a programming version of Problem 240 from projecteuler.net

There are 1111 ways in which five 6-sided dice (sides numbered 1 to 6) can be rolled so that the top three sum to 15. Some examples are:

$$D_1, D_2, D_3, D_4, D_5 = 4, 3, 6, 3, 5$$
  
 $D_1, D_2, D_3, D_4, D_5 = 4, 3, 3, 5, 6$   
 $D_1, D_2, D_3, D_4, D_5 = 3, 3, 3, 6, 6$   
 $D_1, D_2, D_3, D_4, D_5 = 6, 6, 3, 3, 3$ 

In how many ways can n d-sided dice (sides numbered 1 to d) be rolled so that the top m sum to s? Print your answer modulo  $10^9+7$ 

#### Input Format

The first and only line of each test file contains exactly  $m{4}$  integers separated by single spaces:  $m{n}$ ,  $m{d}$ ,  $m{m}$  and  $m{s}$  in this order.

#### Constraints

- $1 \le n \le 10000$
- $1 \le m \le 50$
- $m \leq n$
- $4 \le d \le 50$
- $m \le s \le m \times d$

#### **Output Format**

Print exactly one number which is the answer to the problem.

### Sample Input 0

5 6 3 15

## Sample Output 0

1111