Student Name

Teacher (circle one)

JOR VNA

Homegroup

MATHEMATICAL METHODS (CAS) UNIT 1 EXAMINATION 1

Wednesday November 2nd 2016

Reading Time: 1:00 – 1:15pm (15 minutes) Writing time: 1:15 - 2:15pm (1 hour)

Instructions to students

This exam consists of 17 questions.

All questions should be answered in the spaces provided.

There are 65 marks available in this examination.

A decimal approximation will not be accepted if an exact answer is required.

Where more than one mark is allocated to a question working must be shown.

Students may not bring any notes or any calculators into this exam.

Diagrams in this exam are not to scale except where otherwise stated.

FORMULAS

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

$$Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$$

$$"C_r = \frac{n!}{(n-r)!r!}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Newton's Iterative formula for approximating roots of a polynomial:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

1) Given
$$A = \begin{bmatrix} -2 & 4 \\ -6 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 0 \\ -2 & 7 \end{bmatrix}$, calculate the following:

a)
$$B-2A$$

$$= \begin{bmatrix} 5 & 0 \\ -2 & 7 \end{bmatrix} - \begin{bmatrix} -4 & 8 \\ -12 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -8 \\ 10 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} -19 & 28 \\ -32 & 7 \end{bmatrix}$$

(2 + 2 = 4 marks)

2) Consider the set of simultaneous equations:

$$5x - 6y = 21$$
$$x - 2y = 5$$

a Write the set of equations as a matrix equation.

$$\begin{bmatrix} 5 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 7 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

b Use a matrix method to solve the equations and hence determine the values of x and y.

$$\begin{bmatrix}
 z \\
 3
 \end{bmatrix} = \begin{bmatrix}
 5 - 6
 \end{bmatrix} \begin{bmatrix}
 21 \\
 5
 \end{bmatrix}
 = \begin{bmatrix}
 -10 + 6
 \end{bmatrix} \begin{bmatrix}
 -12 \\
 -15
 \end{bmatrix} \begin{bmatrix}
 21 \\
 5
 \end{bmatrix}
 = \begin{bmatrix}
 21 \\
 5
 \end{bmatrix}
 = \begin{bmatrix}
 21 \\
 -10 + 6
 \end{bmatrix} \begin{bmatrix}
 21 \\
 -15
 \end{bmatrix}
 = \begin{bmatrix}
 21 \\
 5
 \end{bmatrix}
 = \begin{bmatrix}
 21 \\
 4
 \end{bmatrix}
 = \begin{bmatrix}
 3 \\
 \end{bmatrix}
 = \begin{bmatrix}
 \end{bmatrix}$$

(1 + 3 = 4 marks)

- a) Calculate the coordinates of the image of the point
- (17,-5) under the translation defined by $T = \begin{bmatrix} -8 \\ 9 \end{bmatrix}$.

$$\begin{bmatrix} x' \\ 5' \end{bmatrix} = \begin{bmatrix} 17 \\ -5 \end{bmatrix} + \begin{bmatrix} -8 \\ 9 \end{bmatrix}$$

$$= \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$

 \Rightarrow (9,4)

b) Calculate the coordinates of the image of the point (6,-13) under the linear transformation defined by the matrix

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

$$=$$
 $(x', y') = (6, 73)$

c) Describe the transformation defined by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. (See part b) above)

(2+2+1=5 marks)

4) Find the exact values of

b)
$$\tan \frac{2\pi}{3}$$

c)
$$\cos\left(-\frac{\pi}{6}\right)$$

(3 marks)

5) Solve the following equation $2 \sin x = \sqrt{3}, -2\pi \le x \le 2\pi$

a) What is the period and the amplitude of the graph of $y = -4\cos 2x$? 6)

b) Sketch the graph, showing one complete cycle. Clearly label key points.

(2 + 3 = 5 marks)

Part of the graph of the function $f: R \to R, f(x) = (x-2)^2 + 1$ is shown below. 7)

a) Find the average rate of change of y = f(x) with respect to x, between x = 0 and x = 3.

Ang change =
$$\frac{32-31}{202-20}$$

= $\frac{32-5}{3-0}$

b) Find the instantaneous rate of change of
$$y = f(x)$$
 with respect to x at the point where $x = 5$.

$$f(x) = x^{2} - 4x + 4 + 1$$

 $f'(x)^{4} = 2x - 4$
 $f'(x) = 2x - 4$
 $f'(x) = 10 - 4$

(2 + 2 = 4 marks)

8) Find, using first principles, the derivative of
$$y = x^2 + 5x + 1$$

$$\frac{d^{3}}{dx^{2}} = \lim_{h \to 0} \frac{(x+h)^{2} + 5(x+h) + 1 - x^{2} - 5x - 1}{h}$$

$$= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} + 5x + 5h - x^{2} - 5x}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} + 5h}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} + 5h}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} + 5h}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} + 5h}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} + 5h}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} + 5h}{h}$$

(3 marks)

9) If
$$f(x) = x^{2}(3x^{2} - x) + 7$$
, find $f'(-1)$.

$$f(x) = 3x^{4} - x^{3} + 7$$

$$f'(x) = 12x^{3} - 3x^{2}$$

$$f'(-1) = 12(-1)^{3} - 3(-1)^{2}$$

$$= -12 - 3$$

(3 marks)

10) Find the derivatives of	indices	
-----------------------------	---------	--

10) I ma the derivatives of	
a) $y = \frac{7x^2 - 2x}{x}$	$f(x) = \frac{4}{3x^4}$
= 7x-2	= = = = = = = = = = = = = = = = = = = =
⇒ 7 = 7	$=\int f(x) = \frac{16}{3}x$

(2 + 2 = 4 marks)

11) Simplify

a)
$$\int (5x^3 + 3x^2 + 2)dx$$

$$= \int x^4 + x^3 + 2x + c$$
b)
$$\int \sqrt[3]{x^2} dx$$

$$= \int x^{\frac{2}{3}} dx$$

$$= \frac{3}{5} x^{\frac{5}{3}} + c$$

$$= \frac{3}{5} x^{\frac{5}{3}} + c$$

12) Find
$$\lim_{x\to 2} \frac{x^2 + 3x - 10}{x^2 - 4}$$

$$= \lim_{x\to 2} \frac{(x+5)(x-2)}{(x+2)(x-2)}$$

$$= \lim_{x\to 2} \frac{x^2 + 3x - 10}{(x+2)(x-2)}$$

- 13) A particle moves in a straight line such that its displacement, x metres, from a fixed origin at time tseconds is modelled by $x = t^2 - 6t + 8, t \ge 0$.
- Identify its initial position.

Show, using calculus, that the particle is momentarily at rest at t = 3 seconds.

$$V = 2t - 6$$
 at rest = $V = 0$
 $V = 0$ 0 = 2t - 6
 $6 = 26$

14) Use this Venn Diagram to find the following probabilities:

$\frac{12}{40} = \frac{3}{10}$ $\frac{9}{21}$ $\frac{11+8+9}{40} = \frac{28}{70} = \frac{7}{10}$	a)	$Pr(B' \cap A)$	b) Pr(<i>B</i> <i>A</i>)	c)	$Pr(A' \cup B)$		
		3		I	902	7 RTO 1	= 70	

(3 marks)

15) If
$$Pr(B) = 0.42$$
, $Pr(A' \cap B) = 0.16$ and $Pr(A') = 0.51$,

a) complete this probability table

	В	B'	
A	0.26	0.23	0.49
Α'	0.16	0.35	0.51
	0.42	0.58	1

b) Find $Pr(A \cap B')$

c) Find
$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

= 0.49 + 0.42 - 0.26
= 0.65

d) Find
$$Pr(A'|B) = 0.65$$

$$0.65$$

$$0.16$$

$$0.16$$

$$0.42$$

$$(2+1+1+2=6 \text{ marks})$$

16) Mr Oates needs two students to take some parents on a school tour. He chooses them randomly from a group of ten that were standing near his office. How many different groups of two could he choose?

$$10C_{2} = \frac{10!}{2!48!}$$

$$= \frac{10 \times 9}{2 \times 1}$$

$$= \frac{9}{2}$$

$$= 4.5$$

2 marks

a) Define an iterative formula using Newton's Method for the function
$$f(x) = 6x^3 + 4x - 3$$
.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} + \frac{f'(x_n)}{f'(x_n)} = \frac{6x^3 + 4x - 3}{18x^3 + 4x}$$
So
$$x_{n+1} = x_n - \frac{6x^3 + 4x - 3}{18x^3 + 4x}$$

b) Use this to calculate the value of x_1 when $x_0 = 1$. Give your answer as an exact value.

$$X_0 = 1$$
, then $X_0 = X_0 = \frac{6 \times 6 + 4 \times 603}{16 \times 2 + 6}$

$$= 1 = \frac{6 \times 6 + 4 \times 63}{18 \times 6}$$

$$= 1 = \frac{7}{22}$$

(2 + 1 = 3 marks)