Problem Set 10

- 1. Given NBA A_1, A_2 , construct an NBA A_3 such that $L(A_3) = L(A_1) \cap L(A_2)$.
- 2. Consider an ω -automaton $(Q, \Sigma, \delta, q_0, Acc)$, and let $\mathcal{G} \subseteq 2^Q$ be a set of good states. An ω -word α is said to be accepted iff there is a run ρ of α such that $Inf(\rho) \in \mathcal{G}$. $\delta: Q \times \Sigma \to 2^Q$ is the transition function.
 - Construct a deterministic ω -automata with this acceptance condition that captures the language "Finitely many b's".
 - Show that ω -automata with this acceptance condition captures ω -regular languages.
 - How do you complement a deterministic ω -automata with this acceptance condition?
- 3. Prove or disprove : A finite set of infinite words is ω -regular.
- 4. Give an example of a language accepted by an NBA, but which cannot be written in LTL.