21:640:238 **Foundations of Modern Math**

Summer 2016

Test #2

Thursday, June 23 2016

NAME:	

Please write clearly and properly.

Problem	Grade
1	
2	
3	
4	
5	
6	
Total	

Summer 2016

Problem 1. Prove that: $\forall n \in \mathbb{Z}$ n is odd if and only if n^3 is odd.				

21:640:238 **Foundations of Modern Math**

Summer 2016

Problem 2. Consider the statement P: "For any integers d, a and b, if d divides a or d divides b, then d divides the product ab".

) Rewrite	Rewrite the statement <i>P</i> using mathematical symbols only.				
) Prove tl	he statement	Р.			

Problem 3. Prove	e: For any two se	ts A and B , $A \cup B =$	$A \cap B$ if and only if $A = B$.
-------------------------	-------------------	-------------------------------	-------------------------------------

Summer 2016

Kewitte tills	theorem using	only mathem	atical symbol	S.	
Write a proo	f of this theorer	n.			

21:640:238 **Foundations of Modern Math**

Summer 2016

Problem 5. Write a proof by contradiction for each of the following statements:

(1)	There is no greatest even integer.
(2)	Let x be a nonnegative real number. If $x < y$ for any positive real number y , then
(2)	x = 0.

Summer 2016

int: For the induction	step, you may	want to observe	$e that 4^{n+1} + 5 =$	$4(4^n + 5) - 1$