MACHINE LEARNING

Some notes on Statistical Learning Theory

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Giorgio Gambosi

a.a. 2024-2025

LEARNING ALGORITHMS AND ERM

Learning Algorithm A:

- ullet Takes a dataset ${\mathcal T}$ with pairs from ${\mathcal X} \times {\mathcal Y}$
- Returns a predictor $A_{\mathcal{T}}$ computing a function $h_{\mathcal{T}}: \mathcal{X} \mapsto \mathcal{Y}$

Hypothesis Class \mathcal{H} :

- The search space for selecting h_T
- Also known as the Inductive bias

EMPIRICAL RISK MINIMIZATION (ERM)

ERM Algorithm:

• Finds the predictor h_T minimizing the training error:

$$\textit{ERM}(\mathcal{T}) = h_{\mathcal{T}} = \mathop{\mathrm{argmin}}_h \overline{\mathcal{R}}_{\mathcal{T}}(h)$$

where

$$\overline{\mathcal{R}}_{\mathcal{T}}(h) = \frac{1}{|\mathcal{T}|} \sum_{(x,t) \in \mathcal{T}} L(h(x),t) = 0$$

• Requires the specification of \mathcal{H} :

$$\textit{ERM}(\mathcal{T},\mathcal{H}) = h_{\mathcal{T},\mathcal{H}} = \operatorname*{argmin}_{h \in \mathcal{H}} \overline{\mathcal{R}}_{\mathcal{T}}(h)$$

Key Question in Learning Theory:

• Over which hypothesis classes will a learning algorithm (e.g., ERM) result in limited risk for various training sets?

SKETCH OF THE SITUATION

Hypothesis Class \mathcal{H} , Realizability, and 0-1 loss

A bounded hypothesis class $\mathcal H$ ensures that overfitting does not occur if the dataset $\mathcal T$ is large enough.

• Realizability Assumption: There exists a predictor $h^* \in \mathcal{H}$ with no classification errors:

$$\mathcal{R}_{p_M,f}(h^*) = \underset{p_M,f}{\mathbb{E}} [L(h^*(\mathbf{x}),f(\mathbf{x}))] = \underset{p_M,f}{\mathbb{E}} [|\mathbf{x} \in \mathcal{X} : h^*(\mathbf{x}) \neq f(\mathbf{x})|] = 0$$

• h^* correctly classifies all elements in \mathcal{T} :

$$\overline{\mathcal{R}}_{\mathcal{T}}(h^*) = \frac{1}{|\mathcal{T}|} \sum_{(\mathbf{x},t) \in \mathcal{T}} L(h^*(\mathbf{x}),t) = \frac{|(\mathbf{x},t) \in \mathcal{T} : h^*(\mathbf{x}) \neq t|}{|\mathcal{T}|} = 0$$

EMPIRICAL RISK MINIMIZATION (ERM) AND REALIZABILITY

Under the realizability assumption, ERM returns an optimal predictor h_T on T:

$$\overline{\mathcal{R}}_{\mathcal{T}}(\mathbf{h}_{\mathcal{T}}) = 0$$

- ERM may return $h_T = h^*$, which would be optimal for all elements in \mathcal{X} .
- However, it is possible that $h_T \neq h^*$, meaning ERM performs optimally on T but may not generalize perfectly:

$$\mathcal{R}_{p_M,f}(h_{\mathcal{T}}) > 0$$

DEFINITIONS: BAD PREDICTORS AND BAD SETS

• A predictor $h \in \mathcal{H}$ is **bad** if it makes too many (expected) errors on \mathcal{X} :

$$\mathcal{R}_{p_M,f}(h) > \varepsilon$$

 A set X ⊂ X is bad if applying ERM on it could result in selecting a bad predictor, that is if there exists a predictor h_T such that:

$$\overline{\mathcal{R}}_{\mathcal{T}}(h) = 0$$
 but $\mathcal{R}_{p_M,f}(h_{\mathcal{T}}) > \varepsilon$

• If h_T is ideed the predictor returned by ERM, then \mathcal{X} is very bad.

STUDYING BAD SETS AND DATASET SIZE

We want to study how many examples are necessary to ensure that the probability of a bad dataset is small, for example less than a given $\delta \in (0,1)$

$$\mathop{\mathbb{P}}_{\mathcal{T}\sim p^n}\left[\,\exists \tilde{\pmb{h}}\;\mathsf{bad}:\overline{\mathcal{R}}_{\mathcal{T}}(\tilde{\pmb{h}})=0\,\right]\leq \delta$$

• This holds if:

$$\delta \geq |\mathcal{H}|e^{-\varepsilon n}$$

• Which implies:

$$n \geq \frac{1}{\varepsilon} \ln \frac{|\mathcal{H}|}{\delta}$$

That is, if n is greater than this bound, ERM returns with probability at least $1-\delta$ a predictor with makes an expected fraction of errors smaller than ε .

IMPLICATIONS OF DATASET SIZE n

- The probability of a bad dataset decreases as *n* increases.
- *n* must increase (logarithmically) if:
 - The size of \mathcal{H} increases.
 - The definition of a bad predictor is made stricter (smaller ε).

PAC LEARNING

Probably Approximately Correct (PAC) Learning applies to binary classification problems with 0-1 loss as a measure of error.

- A hypothesis class \mathcal{H} is PAC learnable if there exists a learning algorithm \mathcal{A} that, with high probability, returns a predictor with low risk, if it may access enough training examples.
- that is, given $\varepsilon, \delta \in (0,1)$, \mathcal{A} returns a predictor with risk $R_{p_M,f}(h_T) \leq \varepsilon$, with probability at least 1δ , given enough training examples.

PAC LEARNABILITY DEFINITION

Definition (PAC Learnability)

A hypothesis class $\mathcal H$ is PAC learnable if there exists a function $m_{\mathcal H}(\varepsilon,\delta)$ and a learning algorithm $\mathcal A$ such that:

- For every distribution p_M over \mathcal{X} and every function f, under the realizability assumption $(\mathcal{R}_{p_M,f}(h^*)=0)$,
- For a training set \mathcal{T} of size $n \geq m_{\mathcal{H}}(\varepsilon, \delta)$,
- \mathcal{A} returns a predictor $h_{\mathcal{T}}$ with probability at least 1δ that has risk $R_{p_{M},f}(h_{\mathcal{T}}) \leq \varepsilon$.

ACCURACY AND CONFIDENCE PARAMETERS

- Accuracy parameter ɛ: Determines how close the output predictor is to the optimal one ("approximately correct").
- Confidence parameter δ : Indicates the likelihood that the predictor meets the accuracy requirement ("probably correct").

SAMPLE COMPLEXITY IN PAC LEARNING

The sample complexity $m_{\mathcal{H}}(\varepsilon, \delta)$ defines the minimum number of examples required to ensure that an approximately correct (with risk less than ε) predictor is probably (with probability greater than $1-\delta$) selected.

• For finite \mathcal{H} , the sample complexity is upper bounded by the previously obtained value:

$$m_{\mathcal{H}}(\varepsilon, \delta) \leq \left\lceil \frac{1}{\varepsilon} \ln \frac{|\mathcal{H}|}{\delta} \right\rceil$$

EXTENDING PAC LEARNABILITY: PROBABILISTIC FRAMEWORK

In the probabilistic setting, target values t and inputs x are related by a conditional distribution $p_{\mathcal{C}}(x,t)$. The goal is to minimize the expected risk, that is finding the predictor h^* such that:

$$h^*(\mathbf{x}) = \operatorname*{argmin}_{y \in \mathcal{Y}} \mathcal{R}_p(y, \mathbf{x}) = \operatorname*{argmin}_{y \in \mathcal{Y}} \ \underset{t \sim p_C(\cdot \mid \mathbf{x})}{\mathbb{E}} \left[\ L(y, t) \ \right] = \operatorname*{argmin}_{y \in \{0, 1\}} p_C(t = y \mid \mathbf{x})$$

- h* is called the Bayes predictor, h_{Bayes}
- However, h_{Baves} requires knowledge of $p_C(t|\mathbf{x})$, which is unknown by hypothesis

AGNOSTIC PAC LEARNING DEFINITION

In the agnostic setting, the goal is to return a predictor with risk close to the best possible within \mathcal{H} :

Definition (Agnostic PAC Learnability)

A hypothesis class $\mathcal H$ is agnostic PAC learnable if for every $\varepsilon,\delta\in(0,1)$, there exists a function $m_{\mathcal H}(\varepsilon,\delta)$ and an algorithm that, given $n\geq m_{\mathcal H}(\varepsilon,\delta)$ training examples, returns a predictor h such that:

$$\mathcal{R}_p(h^*) \leq \mathcal{R}_p(h) \leq \mathcal{R}_p(h^*) + \varepsilon$$

with probability at least $1-\delta$, where $R_p(h)=\mathbb{E}_{(\mathbf{x},t)\sim p}[|h(\mathbf{x})\neq t|)]$ and h^* is the best predictor in \mathcal{H} .

GENERALIZING TO GENERAL LOSS FUNCTIONS

Agnostic PAC Learnability can be extended to general loss functions:

Definition (Agnostic PAC Learnability for General Loss Functions)

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a loss function l if, for every $\varepsilon, \delta \in (0,1)$, the algorithm returns a predictor h such that:

$$R_p(h^*) \leq R_p(h) \leq R_p(h^*) + \varepsilon$$

with probability at least $1 - \delta$, where $R_p(h) = \mathbb{E}_{(x,t) \sim p}[l(h(x),t)]$ and h^* is the best predictor in \mathcal{H} .

EMPIRICAL RISK, TRUE RISK, AND REPRESENTATIVE SETS

ERM selects a predictor $h_{\mathcal{T}}$ that minimizes the empirical risk $\overline{\mathcal{R}}_{\mathcal{T}}(h)$ on the training set \mathcal{T} . It should closely approximate the true risk across the entire hypothesis class for ERM to be effective. This is a property of \mathcal{T} :

Definition (ε -representative sample)

A training set \mathcal{T} is ε -representative if:

$$\forall h \in \mathcal{H}, |\overline{\mathcal{R}}_{\mathcal{T}}(h) - \mathcal{R}_p(h)| \leq \varepsilon$$

ERM AND APPROXIMATION QUALITY

If $\mathcal T$ is $\frac{\varepsilon}{2}$ -representative, the predictor returned by ERM satisfies:

$$\mathcal{R}_p(h_{\mathcal{T}}) \leq \mathcal{R}_p(h^*) + \varepsilon$$

This guarantees that the ERM predictor is close to the best predictor in \mathcal{H} , with only a small error margin.

ENSURING ERM'S EFFECTIVENESS: UNIFORM CONVERGENCE

Definition (Uniform Convergence)

A hypothesis class $\mathcal H$ has the uniform convergence property if there exists a function $m_{\mathcal H}^{UC}(\varepsilon,\delta)$ such that for all $\varepsilon,\delta\in(0,1)$, and any distribution $p(\mathbf x,t)$, a training set $\mathcal T$ of size $n\geq m_{\mathcal H}^{UC}(\varepsilon,\delta)$ is ε -representative with probability $1-\delta$.

SAMPLE COMPLEXITY FOR UNIFORM CONVERGENCE

The sample complexity $m_{\mathcal{H}}^{\textit{UC}}(\varepsilon, \delta)$ for finite hypothesis classes is given by:

$$m_{\mathcal{H}}^{\mathsf{UC}}(arepsilon, \delta) \leq \left\lceil rac{1}{2arepsilon^2} \ln rac{2|\mathcal{H}|}{\delta}
ight
ceil$$

Thus, \mathcal{H} is PAC learnable using the ERM algorithm with sample complexity:

$$m_{\mathcal{H}}(\varepsilon, \delta) \leq \left\lceil \frac{1}{\varepsilon^2} \ln \frac{2|\mathcal{H}|}{\delta} \right\rceil$$

FINITE VS. INFINITE CLASSES

- Finite hypothesis classes are PAC learnable via ERM with logarithmic sample complexity.
- For infinite hypothesis classes, discretization can give a rough sample complexity estimate.

GENERALIZING TO INFINITE HYPOTHESIS CLASSES

For a hypothesis class parameterized by *d* real-valued parameters, the effective size in practice is constrained by floating-point precision:

$$|\mathcal{H}| \approx 2^{64d}$$

Thus, the sample complexity is approximately:

$$\frac{128\mathbf{d} + 2\ln\frac{2}{\delta}}{\varepsilon^2}$$

What about if we do not rely on discretization?

INDUCTIVE BIAS AND HYPOTHESIS CLASS

- ullet Choosing a hypothesis class ${\cal H}$ incorporates prior knowledge about the data.
- ullet This prior knowledge reflects the belief that ${\cal H}$ contains a low-risk predictor.

A universal learner would find a low-risk hypothesis for any distribution *p*.

NO-FREE-LUNCH THEOREM

No universal learner exists.

Theorem (No-Free-Lunch)

Let $\mathcal A$ be a learning algorithm over domain $\mathcal X$, and $n<\frac{|\mathcal X|}{2}$. There exists a distribution $\overline p_{\mathcal A}$ such that:

- 1. There exists a predictor $h^*: \mathcal{X} \mapsto \{0,1\}$ with $R_{\overline{p}_{\mathcal{A}}}(h^*) = 0$ (that is the realizability assumption holds on $\mathcal{X} \mapsto \{0,1\}$ if pairs are distributed according to $\overline{p}_{\mathcal{A}}$).
- 2. With probability at least 1/7 over the choice of a dataset $\mathcal T$ of size n of i.i.d. pairs, each sampled according to $\overline{p}_{\mathcal A}$, we have that $R_{\overline{p}_{\mathcal A}}(h_{\mathcal A,\mathcal T}) \geq 1/8$, where $h_{\mathcal A,\mathcal T}$ is the predictor returned by $\mathcal A$ when applied on $\mathcal T$.

IMPLICATIONS OF NO-FREE-LUNCH

- For every learner, there exists a task (a distribution on $\mathcal{X} \times \mathcal{Y}$) on which it fails, even though that task can be successfully learned by another learner.
- Let us consider the hypothesis class $\mathcal F$ of all the functions f from an infinite-size $\mathcal X$ to $\{0,1\}$. This class represents lack of prior knowledge: every possible function from $\mathcal X$ to $\mathcal Y=\{0,1\}$ is considered. According to the No Free Lunch theorem, any learning algorithm that chooses a predictor from hypotheses in $\mathcal F$, and in particular the ERM algorithm, will fail on some learning task. Therefore, the absence of prior knowledge results in the class $\mathcal F$ that is not PAC learnable.
- If we do not restrict ourselves to a subset of all functions from X to {0,1} (i.e. choose a hypothesis space), there will always be a probability distribution \(\overline{p}\) that makes any learning algorithm return a "bad" predictor with high probability, even though there exists one with zero error. This implies that no algorithm will be able to PAC-learn this target function.
- Choosing a suitable hypothesis class is crucial for learning a given function. This way we restrict ourselves to a subset of all possible functions from \mathcal{X} $\{0,1\}$, which helps us avoiding unfavourable distributions and might allow us to find a low-error hypothesis with high probability.

BIAS-COMPLEXITY TRADEOFF

- The chosen hypothesis class might exclude the best possible predictor.
- But we could find an approximation in the hypothesis class.
- However, this best approximation might be a poor predictor for the true target.
- This tradeoff is referred to as the Bias-Complexity Tradeoff.

RISK DECOMPOSITION

$$\mathcal{R}_p(h_{\mathcal{T}}) - \mathcal{R}_p(h_{\mathsf{Bayes}}) = \underbrace{(\mathcal{R}_p(h_{\mathcal{T}}) - \mathcal{R}_p(h^*)}_{\text{estimation error}} + \underbrace{(\mathcal{R}_p(h^*) - \mathcal{R}_p(h_{\mathsf{Bayes}}))}_{\text{approximation error}} = \varepsilon_{\mathsf{V}} + \varepsilon_{\mathsf{B}}$$

- h^* : Best predictor in \mathcal{H}
- h_{Bayes}: Absolute best predictor for the task

APPROXIMATION ERROR

- ϵ_B : it is a function of the minimum risk achievable by any $h \in \mathcal{H}$.
- ullet It is a property of the hypothesis class ${\cal H}$ with respect to the prediction task.
- It is independent from the training set.
- This is referred to as bias.

ESTIMATION ERROR

- ϵ_V : it is the difference between the minimum risk achievable in \mathcal{H} and the risk of the best predictor in \mathcal{H} obtained by considering the training set.
- Related to how well ERM estimates the best predictor based on the given training set.
- Reflects how much a predictor from a random training set may perform worse than the best possible predictor.
- Its expectation with respect to all possible training sets is a measure of how much a predictor derived from a random training set may result in poorer performances with respect to the best possible one. This is called variance

BIAS-VARIANCE TRADEOFF IN HYPOTHESIS CLASS ${\cal H}$.

- The choice of hypothesis class \mathcal{H} is subject to a bias-variance tradeoff.
- Higher bias tends to induce lower variance, and vice versa.

Estimation and approximation error illustration.

HIGH BIAS AND LOW VARIANCE: UNDERFITTING

- Predictors from different training sets behave similarly with low variance.
- All predictors perform poorly (high bias), as \mathcal{H} is too poor for the task.
- This results in underfitting.

LOW BIAS AND HIGH VARIANCE: OVERFITTING

- ullet contains many predictors, including a good one (low bias).
- Predictors can vary significantly across training sets (high variance).
- While a good performance may be achieved on the training set, the predictor might behave poorly on new data, leading to overfitting.

LARGE HYPOTHESIS SPACE AND OVERFITTING

- ullet A large ${\cal H}$ may contain complex functions, making the approximation error small.
- The Bayes classifier might even be contained in \mathcal{H} or closely approximated.
- However, the estimation error increases, leading to overfitting.

Bias and variance illustration.

SMALL HYPOTHESIS SPACE AND UNDERFITTING

- ullet A small hypothesis class ${\cal H}$ results in a large approximation error.
- However, the estimation error is small, leading to underfitting.

Bias and variance vs model complexity.

LEARNING THEORY: BALANCING \mathcal{H}

- ullet Learning theory studies how rich we can make ${\cal H}$ while maintaining a reasonable estimation error.
- Good predictor classes should have low approximation error and moderate estimation error.
- Practical approaches focus on balancing bias and variance.

MODEL SELECTION

- In practice, predictors are defined by specific hyper-parameters and types.
- The process of selecting the right type of predictor and hyper-parameters is called model selection.
- Learning algorithms like ERM help select the best predictor from the defined class.

HYPOTHESIS CLASSES AND SET SHATTERING

Finiteness is sufficient but not necessary for learnability. We wish to define a more general and useful measure of complexity,

Given a subset $C = \{c_1, ..., c_m\} \subset \mathcal{X}$ of \mathcal{X} , we define the *restriction* of \mathcal{H} to C as the set of functions $f: C \mapsto \{0,1\}$ that can be derived from predictors in \mathcal{H} (i.e., such that for each $f \in C$ there exists a predictor $h \in \mathcal{H}$ for which $f(c_i) = h(c_i), i = 1, ..., m$). If we describe each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$, we can formally write it as

$$\mathcal{H}_{C} = \{(h(c_{1}), ...h(c_{m})) : h \in \mathcal{H}\}.$$

This means that for every binary labeling of the elements of C (and thus for every possible binary classification task on C), there exists a predictor in $\mathcal H$ that separates the two classes, in the sense that it correctly predicts the target values of each element c_i . In this case, we say that $\mathcal H$ shatters C.

THE VAPNIK-ČERVONENKIS DIMENSION

The VC-Dimension VCdim(\mathcal{H}) of a class \mathcal{H} is the size of the largest subset of \mathcal{X} which is shattered by \mathcal{H} .

The motivation behind this definition is the following. From the No-Free-Lunch theorem, we know that the set of all functions from a domain to $\{0,1\}$ is not PAC-learnable. However, the proof of this statement is based on the assumption that we are considering all possible functions: it is reasonable to assume that introducing limitations on the hypothesis class might bring advantages.

Example: Threshold Functions $\mathcal{H}^{\mathsf{THR}}$

- $VCdim(\mathcal{H}^{thr}) = 1$: Only 1 point can be shattered.
- For $C = \{c_1, c_2\}$ with $c_1 \le c_2$, $\mathcal{H}^{\mathsf{thr}}$ cannot shatter C.

EXAMPLE: AXIS-ALIGNED RECTANGLES $\mathcal{H}^{\mathsf{RECT}}$

• $VCdim(\mathcal{H}^{rect}) = 4$: 4 points can be shattered.

Shattering a set of 4 points with axis-aligned rectangles.

EXAMPLE: AXIS-ALIGNED RECTANGLES $\mathcal{H}^{\mathsf{RECT}}$

• For any set of 5 points, there is always one point inside the bounding box, so 5 points cannot be shattered.

The impossibility of shattering a set of 5 elements using axis-aligned rectangles.

EXAMPLE: INTERVALS ON \mathbb{R} $\mathcal{H}^{\mathsf{INT}}$

- $VCdim(\mathcal{H}^{int}) = 2$: Only sets of 2 points can be shattered.
- For $C = \{c_1, c_2, c_3\}$, the labeling (1, 0, 1) cannot be obtained.

Shattering a 2-element set using intervals.

FINITE HYPOTHESIS CLASSES $\mathcal{H}^{\mathsf{FIN}}$

- In general, in order to shatter a set C we need $2^{|C|}$ predictors.
- For a finite class \mathcal{H}^{fin} , $|\mathcal{H}^{fin}_{c}| \leq |\mathcal{H}^{fin}|$
- ullet C cannot be shattered by $\mathcal{H}^{\mathrm{fin}}$ if $|\mathcal{H}^{\mathrm{fin}}| < 2^{|\mathsf{C}|}$
- Then, $VCdim(\mathcal{H}^{fin}) \leq \log_2 |\mathcal{H}|$
- Example: Threshold functions with large k, where $VCdim(\mathcal{H}) = 1$ but $|\mathcal{H}| = k$.

The PAC learnability of finite classes then derives from the more general property PAC learnability of classes with finite VC-dimension.

FINITE HYPOTHESIS CLASSES $\mathcal{H}^{\mathsf{FIN}}$

However, note that the VC-dimension of a finite class \mathcal{H}^{fin} can be significantly smaller than $\log_2(|\mathcal{H}^{\text{fin}}|)$. For example, let $\mathcal{X}=\{1,\ldots,k\}$ for some integer k, and consider the class of threshold functions on \mathcal{H} . Then, $|\mathcal{H}|=k$ but $\mathrm{VCdim}(\mathcal{H})=1$. Since k can be arbitrarily large, the difference between $\log_2(|\mathcal{H}|)$ and $\mathrm{VCdim}(\mathcal{H})$ can be arbitrarily large.

FUNDAMENTAL THEOREM OF STATISTICAL LEARNING

Let \mathcal{H} be a class of hypotheses $h: \mathcal{X} \to \{0,1\}$ for binary classification, and let the 0-1 loss be the considered cost function. Then, the following statements are equivalent:

- 1. \mathcal{H} has a finite VC-dimension.
- 2. \mathcal{H} is agnostic PAC-learnable, and there exist constants $c_1 < c_2$ such that its sample complexity $m_{\mathcal{H}}(\varepsilon, \delta)$ is upper and lower bounded as

$$\frac{\mathsf{c}_1}{\varepsilon^2} \left(d + \ln \frac{1}{\delta} \right) \le m_{\mathcal{H}}(\varepsilon, \delta) \le \frac{\mathsf{c}_2}{\varepsilon^2} \left(d + \ln \frac{1}{\delta} \right)$$

Moreover, this property holds also when ERM is applied (that is, it is a successful agnostic PAC-learning algorithm for \mathcal{H}).

3. \mathcal{H} is PAC-learnable, and its sample complexity $m_{\mathcal{H}}(\varepsilon, \delta)$ is upper and lower bounded as

$$\frac{\mathsf{c}_1}{\varepsilon}\left(\mathsf{d}+\ln\frac{1}{\delta}\right) \leq m_{\mathcal{H}}(\varepsilon,\delta) \leq \frac{\mathsf{c}_2}{\varepsilon}\left(\mathsf{d}+\ln\frac{1}{\delta}\right)$$

Moreover, this property holds also when ERM is applied (that is, it is a successful PAC-learner for \mathcal{H}).