Contents

Cha	apter 17 - Temperature and Heat	1
1.1	17.3	1
1.2	17.5	2
Lin	ear Thermal Expansion	2
2.1	Expanding Holes and Volume Expansion	2
2.2	17.11	2
2.3	17.15	3
2.4	17.16	3
2.5	17.19	3
The	ermal Expansion of Water	4
3.1	Thermal Stress	4
3.2	17.22	4
Qua	antity of Heat	5
4.1	17.29	5
4.2		5
4.3		6
4.4	17.33	6
	1.1 1.2 Line 2.1 2.2 2.3 2.4 2.5 The 3.1 3.2 Qua 4.1 4.2 4.3	Linear Thermal Expansion 2.1 Expanding Holes and Volume Expansion 2.2 17.11 2.3 17.15 2.4 17.16 2.5 17.19 Thermal Expansion of Water 3.1 Thermal Stress 3.2 17.22 Quantity of Heat 4.1 17.29 4.2 17.25 4.3 17.31

1 Chapter 17 - Temperature and Heat

To convert Celsius to Fahrenheit:

$$T_F = \frac{9}{5}T_C + 32^{\circ} \tag{1}$$

To convert Fahrenheit to Celsius:

$$T_C = \frac{5}{9}(T_F - 32^\circ) \tag{2}$$

To convert from Celsius to Kelvin:

$$T_K = T_C + 273.15 (3)$$

1.1 17.3

(a)

$$T_{F_0} = -4.0^{\circ}$$

 $T_{F_1} = 45.0^{\circ}$

$$\Delta T_F = T_{F_1} - T_{F_0}$$

 $\Delta T_F = 45.0^{\circ} - -4.0^{\circ}$
 $\Delta T_F = 49.0^{\circ}$

$$(100)\Delta T_F = (180)T_C$$

 $T_C = 27.2 \,^{\circ}\text{C}$

1.2 17.5

$$\Delta T_K = 10.0\,\mathrm{K}$$

(a)

$$T_{F_1} = \frac{9}{5}(10.0\,^{\circ}\text{C} + 32.0^{\circ})$$

 $T_{F_1} = 18.0^{\circ}$

$$T_{F_0} = \frac{9}{5}(0 + 32.0^{\circ})$$

 $T_{F_0} = 57.6^{\circ}$

$$T_F = T_{F_1} - T_{F_0}$$

 $T_F = 18.0^{\circ}$

2 Linear Thermal Expansion

$$\Delta L = \alpha L_0 \Delta T \tag{4}$$

2.1 Expanding Holes and Volume Expansion

$$\Delta V = \beta V_0 \Delta T, \quad \beta = 3\alpha \tag{5}$$

2.2 17.11

$$L_0 = 1410 \,\mathrm{m}$$

 $T_0 = -5.0 \,^{\circ}\mathrm{C}$
 $T_1 = 18.0 \,^{\circ}\mathrm{C}$
 $\alpha_{steel} = 1.2 \times 10^{-5} \,^{\circ}\mathrm{C}^{-1}$
 $\Delta L = ?$

$$\Delta L = L_0 \alpha \Delta T$$

 $\Delta L = (1410 \,\mathrm{m})(1.2 \times 10^{-5} \,\mathrm{^{\circ}C}^{-1})(18.0 \,\mathrm{^{\circ}C} - (-5.0 \,\mathrm{^{\circ}C})$
 $\Delta L = 0.389 \,16 \,\mathrm{m}$

$2.3 \quad 17.15$

$$T_{0} = 20.0 \,^{\circ}\text{C}$$

$$\beta_{copper} = 5.1 \times 10^{-5} \,^{\circ}\text{C}^{-1}$$

$$V_{1} = (0.0015)V_{0}$$

$$\Delta V = V_{0}\beta\Delta T$$

$$\Delta T = \frac{\Delta V}{V_{0}\beta}$$

$$\Delta T = \frac{(0.0015)V_{0}}{V_{0}\beta}$$

$$\Delta T = \frac{0.0015}{5.1 \times 10^{-5} \,^{\circ}\text{C}^{-1}}$$

$$\Delta T = 29.4118 \,^{\circ}\text{C}$$

2.4 17.16

$$d = 55.0 \, \mathrm{m}$$

$$T_{winter} = -15 \, ^{\circ}\mathrm{C}$$

$$T_{summer} = 35 \, ^{\circ}\mathrm{C}$$

$$\beta_{aluminum} = 7.2 \times 10^{-5} \, ^{\circ}\mathrm{C}^{-1}$$

$$\Delta V = ?$$

$$\Delta V = V_0 \beta \Delta T$$

$$\Delta V = \left(\frac{2}{3} \pi \frac{55.0 \text{ m}}{2}\right) (7.2 \times 10^{-5} \, ^{\circ}\text{C}^{-1}) (35 \, ^{\circ}\text{C} - (-15 \, ^{\circ}\text{C}))$$

$$\Delta V = 156.805 \, \text{m}^3$$

2.5 17.19

$$d = 1.35 \,\mathrm{cm} = 0.0135 \,\mathrm{m}$$

$$T_0 = 25.0 \,^{\circ}\mathrm{C}$$

$$\alpha_{steel} = 1.2 \times 10^{-5} \,^{\circ}\mathrm{C}^{-1}$$

(a)
$$A_0 = \pi r^2$$

$$A_0 = \pi \left(\frac{0.0135\,\mathrm{m}}{2}\right)^2$$

$$A_0 = 0.001\,43\,\mathrm{m}^2$$

$$\Delta A = 2\alpha A_0 \Delta T$$

$$\Delta A = 2(1.2 \times 10^{-5} \, {}^{\circ}\text{C}^{-1})(0.001 \, 43 \, \text{m}^2)(175 \, {}^{\circ}\text{C} - 25.0 \, {}^{\circ}\text{C})$$

$$\Delta A = 5.148 \times 10^{-6} \, \text{m}^2$$

$$A = A_0 + \Delta A$$

$$A = 0.001 \, 43 \, \text{m}^2 + 5.148 \times 10^{-6} \, \text{m}^2$$

$$A = 0.001 \, 435 \, \text{m}^2$$

3 Thermal Expansion of Water

3.1 Thermal Stress

$$\frac{F}{A} = -Y\alpha\Delta T\tag{6}$$

$3.2 \quad 17.22$

$$L_0 = 185 \,\mathrm{cm} = 1.85 \,\mathrm{m}$$

 $d = 1.60 \,\mathrm{cm} = 0.016 \,\mathrm{m}$
 $T_0 = 120.0 \,^{\circ}\mathrm{C}$
 $T_1 = 10.0 \,^{\circ}\mathrm{C}$
 $Y_{brass} = 9.0 \times 10^{10} \,\mathrm{Pa}$
 $\alpha_{brass} = 2.0 \times 10^{-5} \,^{\circ}\mathrm{C}^{-1}$
 $F = ?$

$$\begin{split} \frac{F}{A} &= -Y\alpha\Delta T\\ F &= -AY\alpha\Delta T\\ F &= -\left(\pi\left(\frac{0.016\,\mathrm{m}}{2}\right)^2\right)(9.0\times10^{10}\,\mathrm{Pa})(2.0\times10^{-5}\,^{\circ}\mathrm{C}^{-1})(10.0\,^{\circ}\mathrm{C}-120.0\,^{\circ}\mathrm{C})\\ F &= 39\,810.3\,\mathrm{N} \end{split}$$

$$F_0 = F_1 = \frac{F}{2} = \frac{39810.3 \,\mathrm{N}}{2} = 19905.1 \,\mathrm{N}$$

4 Quantity of Heat

The quantity of heat Q required to increase the temperature of a mass m of a certain material by ΔT is:

$$Q = mc\Delta T \tag{7}$$

$$1 \text{ cal} = 4.186 \text{ J}$$
 (8)

Specific heat is found by:

$$dQ = mcdT$$

$$c = \frac{1}{m} \frac{dQ}{dT}$$
(9)

$4.1 \quad 17.29$

$$w = 28.4 \,\mathrm{N}$$

 $Q = 1.25 \times 10^4 \,\mathrm{J}$
 $\Delta T = 18.0 \,^{\circ}\mathrm{C}$
 $c = ?$

$$\begin{split} Q &= mc\Delta T \\ c &= \frac{Q}{\frac{w}{g}\Delta T} \\ c &= \frac{1.25\times10^4\,\mathrm{J}}{\left(\frac{28.4\,\mathrm{N}}{9.80\,\mathrm{m\,s^{-2}}}\right)\left(18.0\,^\circ\mathrm{C}\right)} \\ c &= 239.632\,\mathrm{J\,kg}^{-1}\,\mathrm{K} \end{split}$$

$4.2 \quad 17.25$

$$m_{kettle} = 1.10 \,\mathrm{kg}$$
 $m_{water} = 1.80 \,\mathrm{kg}$ $T_0 = 20.0 \,^{\circ}\mathrm{C}$ $T_1 = 85.0 \,^{\circ}\mathrm{C}$ $c_{aluminum} = 910 \,\mathrm{J \, kg^{-1} \, K}$ $c_{water} = 4190 \,\mathrm{J \, kg^{-1} \, K}$ $Q = ?$

$$Q_{water} = m_{water} c_{water} \Delta T$$

 $Q_{water} = (1.80 \text{ kg})(4190 \text{ J kg}^{-1} \text{ K})(85.0 \,^{\circ}\text{C} - 20.0 \,^{\circ}\text{C})$
 $Q_{water} = 490 \, 230 \text{ J}$

$$Q_{aluminum} = m_{aluminum} c_{aluminum} \Delta T$$

$$Q_{aluminum} = (1.10 \text{ kg})(910 \text{ J kg}^{-1} \text{ K})(85.0 \text{ °C} - 20.0 \text{ °C})$$

$$Q_{aluminum} = 65065 \text{ J}$$

$$Q = Q_{water} + Q_{aluminum}$$

$$Q = Q_{water} + Q_{aluminum}$$

 $Q = 490 \, 230 \, \text{J} + 65 \, 065 \, \text{J}$
 $Q = 555 \, 295 \, \text{J}$

4.3 17.31

$$y_1 = 225 \,\mathrm{m}$$

 $m = 1.00 \,\mathrm{L}$
 $y_0 = 0$
 $c_{water} = 4190 \,\mathrm{J \, kg^{-1} \, K}$
 $\Delta T = ?$

$$U = Q$$

$$mgy_1 = mc\Delta T$$

$$\Delta T = \frac{gy_1}{c}$$

$$\Delta T = \frac{(9.80 \,\mathrm{m \, s^{-2}})(225 \,\mathrm{m})}{4190 \,\mathrm{J \, kg^{-1} \, K}}$$

$$\Delta T = 0.5262 \,\mathrm{^{\circ}C}$$

4.4 17.33

$$\begin{split} m_{bullet} &= 15.0\,\mathrm{g} = 0.015\,\mathrm{kg} \\ v_0 &= 865\,\mathrm{m\,s^{-1}} \\ m_{water} &= 13.5\,\mathrm{kg} \\ v_1 &= 534\,\mathrm{m\,s^{-1}} \\ c_{water} &= 4190\,\mathrm{J\,kg^{-1}\,K} \\ \Delta T &= ? \end{split}$$

$$E_0 = E_1$$

$$\frac{1}{2}m_{bullet}v_0^2 = \frac{1}{2}m_{bullet}v_1^2 + m_{water}c_{water}\Delta T$$

$$\Delta T = \frac{m_{bullet}(v_0^2 - v_1^2)}{2m_{water}c_{water}}$$

$$\Delta T = \frac{(0.015\,\mathrm{kg}\left[(865\,\mathrm{m\,s^{-1}})^2 - (534\,\mathrm{m\,s^{-1}})^2\right])}{2(13.5\,\mathrm{kg})(4190\,\mathrm{J\,kg^{-1}\,K})}$$

$$\Delta T = 0.613\,99\,^{\circ}\mathrm{C}$$