MTH301: Analysis I

Abhimanyu Sethia 190023 sethia@iitk.ac.in

Assignment 2

Question 3

Given: function $f:[0,\infty)\to [0,\infty)$ is increasing and f(0)=0 and $f(x)>0 \forall x>0$ **To show**: Each of the following conditions

(i) f has a second derivative satisfying $f'' \leq 0$ i.e.

$$f''(x) \le 0 \forall x \tag{1}$$

(ii) f has a decreasing first derivative i.e.

$$f'(x) \le f'(y) \forall x > y \ge 0 \tag{2}$$

(iii) f(x)/x is decreasing for x > 0 i.e.

$$\frac{f(x)}{x} \le \frac{f(y)}{y} \forall x > y > 0 \tag{3}$$

is sufficient to ensure that

$$f(x+y) < f(x) + f(y) \forall x, y > 0 \tag{4}$$

Proof:

It is sufficient to prove that $(1) \implies (2) \implies (3) \implies (4)$

- (i) To Prove: (1) \Longrightarrow (2) According to the Mean Value Theorem, $\forall x, y \text{ s.t. } y > x \geq 0, \exists c \in (x, y) \text{ s.t. } f''(c) = \frac{f'(y) - f'(x)}{y - x}$ But $f''(c) \leq 0$ (from (1)) $\Longrightarrow \frac{f'(y) - f'(x)}{y - x} \leq 0$ $\Longrightarrow f'(y) \leq f'(x)$ (since y - x > 0)
- (ii) To Prove: (2) \Longrightarrow (3) According to Mean Value Theorem, $\forall x > 0, \ \exists c \in (0, x) \text{ s.t. } f'(c) = \frac{f(x) f(0)}{x 0} = \frac{f(x)}{x}$ To prove that $\frac{f(x)}{x}$ is decreasing, it suffices to show that $\frac{d(f(x)/x)}{dx} \leq 0 \ \forall x > 0$ Now, $\frac{d(f(x)/x)}{dx} = \frac{xf'(x) f(x)}{x^2} = \frac{f'(x) \frac{f(x)}{x}}{x} = \frac{f'(x) f'(c)}{x}$ Since $c \in (0, x)$ and f' is decreasing, $f'(c) \geq f'(x)$ $\Longrightarrow \frac{d(f(x)/x)}{dx} \leq 0$

(iii) To Prove: (3)
$$\Longrightarrow$$
 (4)
Since $\frac{f(x)}{x}$ is decreasing,
we have $\frac{f(x)}{x} \ge \frac{f(x+y)}{x+y}$ and $\frac{f(y)}{y} \ge \frac{f(x+y)}{x+y} \ \forall x, y \ge 0$
 $\Longrightarrow f(x) \ge \frac{xf(x+y)}{x+y}$ and $f(y) \ge \frac{yf(x+y)}{x+y} \ \forall x, y \ge 0$
By adding the two we get, $f(x) + f(y) \ge f(x+y) \ \forall x, y \ge 0$

Hence, proved.