Name: Student ID:

Analog Electronics

Homework #3

Due date: 29/5/2020

Problem 1:

Assuming that the op amp in Figure 1 has infinite input resistance and zero output resistance, what is β ? If A = 900, what is the closed-loop voltage gain? What is the amount of feedback (in dB)? For Vs = 1.5 V, find Vo and Vi. If A decreases by 15%, what is the corresponding percentage decrease in A_f ?

Figure 1

Problem 2:

A capacitively coupled amplifier has a midband gain of 900 V/V, a single high-frequency pole at 20 kHz, and a single low-frequency pole at 200 Hz. Negative feedback is employed so that the midband gain is reduced to 20. What are the upper and lower 3-dB frequencies of the closed-loop gain?

Problem 3:

For the feedback transconductance amplifier of Figure 2 derive expressions for A, β , $A\beta$, A_f , R_o , and R_{of} . Evaluate A_f and R_{of} for the case of $g_{m1}=g_{m2}=5$ mA/V, $R_D=30$ $k\Omega$, $r_{o2}=30$ $k\Omega$, $R_F=200$ Ω , and $R_L=1.5$ $k\Omega$. For simplicity, neglect r_{o1} and take r_{o2} into account only when calculating output resistances

Figure 2

Hint: Refer to example 11.7 in the textbook