House Prices -Advanced Regression Techniques

David Muñoz Paco Sangorrín

El reto

El reto es predecir el precio de venta final de las viviendas.

Esta información se almacena en la columna SalePrice, es

decir esta es nuestra variable objetivo.

El reto

Con **79 variables explicativas** que describen (casi) todos los aspectos de las viviendas residenciales de Ames (lowa), esta competición te reta a predecir el precio final de cada vivienda.

Estamos ante un claro caso de **técnicas avanzadas de regresión** en la que hay que **analizar bien las variables** para quedarnos con aquellas que realmente son las relevantes. Una vez seleccionadas **aplicaremos diversas modelos de regresión ajustando sus hiperparámetros** para determinar cuál es el que mejor predice el precio de la vivienda.

Exploración de variables

Exploración de variables: Objetivo

Tomamos el logaritmo en SalePrice para que su distribución se asemeje lo más posible a una distribución normal

En el mapa de calor vemos que la mayoría de correlaciones son nulas o positivas entre las variables, habiendo pocas con correlación negativa, por lo que, en general, cuando una variable sube, la otra también (correlación positiva) o son independientes (correlación nulas).

Vemos correlaciones fuertes en:

YearBuilt - GarageYrBlt

En el mapa de calor vemos que la mayoría de correlaciones son nulas o positivas entre las variables, habiendo pocas con correlación negativa, por lo que, en general, cuando una variable sube, la otra también (correlación positiva) o son independientes (correlación nulas).

- YearBuilt GarageYrBlt
- GarageCars GarageArea

En el mapa de calor vemos que la mayoría de correlaciones son nulas o positivas entre las variables, habiendo pocas con correlación negativa, por lo que, en general, cuando una variable sube, la otra también (correlación positiva) o son independientes (correlación nulas).

- YearBuilt GarageYrBlt
- GarageCars GarageArea
- TotRmsAbvGrd GrLivArea

En el mapa de calor vemos que la mayoría de correlaciones son nulas o positivas entre las variables, habiendo pocas con correlación negativa, por lo que, en general, cuando una variable sube, la otra también (correlación positiva) o son independientes (correlación nulas).

- YearBuilt GarageYrBlt
- GarageCars GarageArea
- TotRmsAbvGrd GrLivArea
- TotalBsmtSF 1stFlrSF

En el mapa de calor vemos que la mayoría de correlaciones son nulas o positivas entre las variables, habiendo pocas con correlación negativa, por lo que, en general, cuando una variable sube, la otra también (correlación positiva) o son independientes (correlación nulas).

- YearBuilt GarageYrBlt
- GarageCars GarageArea
- TotRmsAbvGrd GrLivArea
- TotalBsmtSF 1stFlrSF
- SalePrice GrLivArea

Exploración de variables. Numéricas: Valores perdidos

- En LotFrontage (Linear feet of street connected to property) cambiamos los NaN por 0, porque entendemos que hay distancia cero.
- La variable **GarageYrBuilt**, al tener valores perdidos y estar muy correlacionada con YearBuilt (0.83) que tiene todos los valores, la descartamos.
- MasVnrArea (Masonry veneer area in square feet). Los 8 valores perdidos los ponemos a 0.
 La distribución parece cuadrar con los que tienen valor 0.

Exploración de variables: Categóricas. Valores nulos.

- **PoolQC**: Es que no hay piscina.
- MiscFeature: Significa que no hay ninguna otra feature extra en la casa por lo que ponemos un None.
- Alley: Significa que no hay Alley Access.
- Fence: No hay valla
- MasVnrType: No hay tipo de revestimiento de mampostería
- **FireplaceQu**: No hay chimenea.
- GarageType, GarageCond, GarageQual, GarageFinish: No hay garage ni nada de las variables asociadas al garage.
- BsmtExposure, BsmtQual, BsmtFinType1, BsmtFinType2, BsmtCond: No basement
- Electrical: El valor perdido es perdido de verdad. El valor para log(SalePrice) es de 12.02, muy cerca de la media de la categoría 'SBrkr', por lo que lo ponemos ahí.

Exploración de variables: Categóricas. Test ANOVA

- Observamos que al aplicar el Test ANOVA las variables menos informativas
 - Utilities
 - Mosold
 - LandSlope

Exploración de variables: Categóricas

 Distribución porcentual de las categorías de cada variable categórica

Exploración de variables: Categóricas. Conclusiones

- **Utilities**: Está súper descompensada. La descartamos
- MoSold: No se presentan diferencias significativas entre las categorías con SalePrice
- LandSlope: No se presentan diferencias significativas entre las categorías con SalePrice y está muy descompensada. La descartamos.
- Street: Muy descompensada. La descartamos.
- Condition2: Muy descompensada. El 99% es una categoría. La descartamos.
- **PoolQC**: Muy descompensada. La descartamos.
- **MiscFeature**: Muy descompensada. La descartamos.
- RoofMatl: Muy descompensada. La descartamos.
- Functional: Muy descompensada. La descartamos.
- LotConfig: Probaremos a hacer solo dos categorias
- Las variables MSSubClass, OverallCond, OverallQual las consideraremos numéricas en lugar de categóricas.

Exploración de variables: Outliers

 Hay claramente dos outliers en las variables GrLivArea, Total BsmtSF, 1stFlrSF y BsmtFinSF1

Modelos probados

Modelos: Regresión lineal

TRAIN RMSE: 0.0925147803759712

TEST RMSE: 0.12230550765589478

El modelo es consistente entre entrenamiento y test

Modelos: XGBoost

Mejores hiperparámetros

'learning_rate': 0.03, 'max_depth': 15, 'n_estimators': 250, 'subsample': 0.6, 'tree_method': 'hist'

Modelos: XGBoost

- TRAIN RMSE: 0.0107338998173822
- TEST RMSE: 0.11962607863350601

Se aprecia un claro overfitting.

Modelos: Random Forest

Mejores hiperparámetros

'random_state': 42, 'criterion': 'squared_error', 'max_depth': None, 'max_features': None, 'n estimators': 200

Modelos: Random Forest

- TRAIN RMSE: 0.0999023163879834
- TEST RMSE: 0.14070783357538005

Ya no hay tanto overfitting.

Modelos: Regularización Lasso (L1)

$$\vec{\hat{\beta}} = \min_{\vec{\beta}} \left[(\vec{y} - X \vec{\beta})^T (\vec{y} - X \vec{\beta}) + \alpha ||\vec{\beta}||_1 \right]$$

Mejores hiperparámetros

Mejor $\alpha = 0.0005$

Ha seleccionado 113 variables y ha eliminado las restantes 144 variables

Modelos: Regularización Lasso (L1)

- TRAIN RMSE: 0.1006519060165124
- TEST RMSE: 0.11037112866301352

El modelo es consistente entre entrenamiento y test

Modelos: Regularización Ridge (L2)

$$\vec{\hat{\beta}} = \min_{\vec{\beta}} \left[(\vec{y} - X \vec{\beta})^T (\vec{y} - X \vec{\beta}) + \alpha ||\vec{\beta}||_2 \right]$$

Mejores hiperparámetros

Mejor α = 20

Modelos: Regularización Ridge (L2)

TRAIN RMSE: 0.10086999337588502

TEST RMSE: 0.1122128126862731

El modelo es consistente entre entrenamiento y test

Modelos: Regularización ElasticNet (L1 y L2)

$\vec{\hat{\beta}} = \min_{\vec{\beta}} \left[(\vec{y} - X\vec{\beta})^T (\vec{y} - X\vec{\beta}) + \alpha \left(L_1 ||\vec{\beta}||_1 + (1 - L_1)||\vec{\beta}||_2 \right) \right]$

Mejores hiperparámetros

$$\alpha$$
= 0.001 L1 = 0.55

Modelos: Regularización ElasticNet (L1 y L2)

- TRAIN RMSE: 0.10145996319218037
- TEST RMSE: 0.11029365392796532

El modelo es consistente entre entrenamiento y test

Modelos: Ensemble

Estimadores:

- XGB
- Random Forest
- Ridge
- ElasticNet

Estimador final:

- XGB
- TRAIN RMSE: 0.08591334045444235
- TEST RMSE: 0.12567562743883187

Comparativa de modelos

Modelos: Comparativa

Validación cruzada 5-fold en dataset de entrenamiento en azul

Score en dataset de test en rojo

Modelo final escogido

Modelo final escogido

0.13327

Seleccionamos el modelo Ridge (Ri). Tiene el promedio parecido a Ls y EN pero su dispersión es menor.

Tabla