Information Security Analysis and Audit

Project Review 2

Topic: DATA SECURE SMART HOME AUTOMATION SYSTEM

My task: Language Brain using deep learning

Name: Rajat gupta

Registration no: 18BIT0006

Slot: G1

Design of the system and Description

Ans:

DESIGN:

Entire model:

a) Langauge brain:

Figure 3: Architectu

b) Encryption

Figure 4: Architecture

c) Task Brain:

Figure 5: Architecture

Figure 6: Deep learning model

d) DOS:

Figure 7: Http Flood Attack

Figure 8: UDP Flood attack

Progression of a SYN flood.

Figure 9: SYN flood attack

DESCRIPTION:

1. Language Brain:

- The user feeds in his voice in the model.
- Preprocessing is done on the voice input in two steps:
 - 1. Resampling
 - 2. Removing shorter commands of less than 1 second
- Oversampling of data is done to get 70 percent balanced data
- Training of CNN model is done with different hyper tuning parameters and evaluated many times with different parameters to get better accuracy.
- After that prediction is done with many different parameter and best model is selected
- Last the model is tested and generation of confusion matrics are done to evaluate the model
- The converted text from the voice input is obtained as the output.

2. Encryption and Task brain:

- The text is then then preprocessed at the client side to convert it to a vector of length 186 by:
 - o Decapitalizing each sentence
 - o Removing Adjectives and punctuations
 - o Removing unnecessary words

- This vector of integers is then encrypted using public key and sent to the server where the task brain resides.
- After this the pre-processed encrypted dataset is oversampled to to get minimum of 70% balanced dataset.
- Then 10-Fold cross validation is used to get max accuracy with a fixed parameter.
- Also parameters are changed (Several times) and 10 fold cross validation is done again.
- At last the best model among all the models is taken and testing is done in that model.
- Finally, to evaluate the model F1-score, Precision, Recall and Accuracy along with confusion matrix is used.
- The trained model processes the input encrypted vector and returns an array of length 8.
- This new array is sent back to the client side.
- It is decrypted using private key and then the values are compared with a predefined dictionary of commands.
- The command with the highest probability is executed in the client side.

3) DOS attack prevention:

• We will be preventing some of the DOS attack on the server where our task brain is located so that the channel between the client and the server is secure.

Import the libraries

First, import all the necessary libraries into our notebook. LibROSA and SciPy are the Python libraries used for processing audio signals.

```
In [1]: import os
    import librosa
    import IPython.display as ipd
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.io import wavfile
    import warnings

warnings.filterwarnings("ignore")
```

Data Exploration and Visualization

Data Exploration and Visualization helps us to understand the data as well as preprocessing steps in a better way.

Visualization of Audio signal in time series domain

Now, we'll visualize the audio signal in the time series domain:

Sampling rate

Let us now look at the sampling rate of the audio signals:

Resampling

From the above, we can understand that the sampling rate of the signal is 16,000 Hz. Let us re-sample it to 8000 Hz since most of the speech-related frequencies are present at 8000 Hz:

Now, calculated the number of recordings for each voice command:

Duration of recordings

What's next? A look at the distribution of the duration of recordings:

Preprocessing the audio waves

In the data exploration part earlier, we have seen that the duration of a few recordings is less than 1 second and the sampling rate is too high. Here are the two steps:

- Resampling
- Removing shorter commands of less than 1 second

Convert the output labels to integer encoded:

```
In [12]: from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    y=le.fit_transform(all_label)
    classes= list(le.classes_)
```

Now, convert the integer encoded labels to a one-hot vector since it is a **multi-classification problem**:

```
In [13]: from keras.utils import np_utils y=np_utils.to_categorical(y, num_classes=len(labels))

Using TensorFlow backend.
```

Reshape the 2D array to 3D since the input to the conv1d must be a 3D array:

```
In [14]: all_wave = np.array(all_wave).reshape(-1,8000,1)
```

Split into train and validation set

Next, we will train the model on 80% of the data and validate on the remaining 20%:

Model Architecture for this problem

We will build the speech-to-text model using conv1d. Conv1d is a convolutional neural network which performs the convolution along only one dimension.

```
In [16]: from keras.layers import Dense, Dropout, Flatten, Conv1D, Input, MaxPooling1D
           from keras.models import Model
from keras.callbacks import EarlyStopping, ModelCheckpoint
           from keras import backend as K
K.clear_session()
           inputs = Input(shape=(8000,1))
           #First Conv1D Layer
           conv = Conv1D(8,1, padding='valid', activation='relu', strides=1)(inputs)
conv = MaxPooling1D(3)(conv)
           conv = Dropout(0.3)(conv)
           conv = Conv1D(16, 11, padding='valid', activation='relu', strides=1)(conv)
conv = MaxPooling1D(3)(conv)
           conv = Dropout(0.3)(conv)
           #Third Conv1D Layer
conv = Conv1D(32, 9, padding='valid', activation='relu', strides=1)(conv)
conv = MaxPooling1D(3)(conv)
conv = Dropout(0.3)(conv)
           #Fourth Conv1D Layer
           conv = Conv1D(64, 7, padding='valid', activation='relu', strides=1)(conv)
conv = MaxPooling1D(3)(conv)
           conv = Dropout(0.3)(conv)
           #Flatten Layer
conv = Flatten()(conv)
           WDense Layer 1
           conv = Dense(256, activation='relu')(conv)
conv = Dropout(0.3)(conv)
           #Dense Layer 2
conv = Dense(128, activation='relu')(conv)
           conv = Dropout(0.3)(conv)
           outputs = Dense(len(labels), activation='softmax')(conv)
           model = Model(inputs, outputs)
           model.summary()
           Layer (type)
                                                Output Shape
                                                                                 Param #
           input_1 (InputLayer)
                                            (None, 8000, 1)
                                                                                0
```

Layer (type)	Output		Param #
input_1 (InputLayer)		8000, 1)	0
conv1d_1 (Conv1D)	(None,	7988, 8)	112
max_pooling1d_1 (MaxPooling1	(None,	2662, 8)	0
dropout_1 (Dropout)	(None,	2662, 8)	0
conv1d_2 (Conv1D)	(None,	2652, 16)	1424
max_pooling1d_2 (MaxPooling1	(None,	884, 16)	0
dropout_2 (Dropout)	(None,	884, 16)	0
conv1d_3 (Conv1D)	(None,	876, 32)	4640
max_pooling1d_3 (MaxPooling1	(None,	292, 32)	0
dropout_3 (Dropout)	(None,	292, 32)	0
conv1d_4 (Conv1D)	(None,	286, 64)	14400
max_pooling1d_4 (MaxPooling1	(None,	95, 64)	0
dropout_4 (Dropout)	(None,	95, 64)	0
flatten_1 (Flatten)	(None,	6080)	0
dense_1 (Dense)	(None,	256)	1556736
dropout_5 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	128)	32896
dropout_6 (Dropout)	(None,	128)	0
dense_3 (Dense)	(None,		1290
dropout_6 (Dropout)	(None,	128)	0 1290

Define the loss function to be categorical cross-entropy since it is a multi-classification problem:

```
In [17]: model.compile(loss="categorical_crossentropy",optimizer="adam",metrics=["accuracy"])
```

Early stopping and model checkpoints are the callbacks to stop training the neural network at the right time and to save the best model after every epoch:

```
In [18]: es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10, min_delta=0.0001)
mc = ModelCheckpoint('best_model.hdf5', monitor='val_acc', verbose=1, save_best_only=True, mode='max')
```

train the model on a batch size of 32 and evaluate the performance on the holdout set:

Diagnostic plot

I'm going to lean on visualization again to understand the performance of the model over a period of time:

Loading the best model

```
In [21]: from keras.models import load_model
model=load_model('best_model.hdf5')
```

Make predictions on the validation data: