

Тамарин Вячеслав

5 января 2021 г.

Оглавление

1	Фун	кциональные последовательности и ряды	5
	1.1	Равномерная и поточечная сходимости	5
	1.2	Равномерные и поточечные сходимости рядов	8
	1.3	Свойства равномерно сходящихся функциональных последовательностей и рядов	11
	1.4	Степенные ряды	13
	1.5	Разложение элементарных функций в ряды Тейлора	17
2	Teo	рия меры и интегрирования	21
	2.1	Системы множеств	21
	2.2	Объем	23
	2.3	Мера и ее свойства	25
	2.4	Продолжение меры. Построение меры по внешней мере	28
	2.5	Продолжение меры. Построение внешней меры.	30
		2.5.1 Теорема о продолжении меры	31
	2.6	Единственность стандартного построения	32
	2.7	Определения и простейшие свойства меры Лебега в \mathbb{R}^n	34
	2.8	Регулярность меры Лебега	35
	2.9	Инвариантность меры Лебега при движении	39
	2.10	Изменение меры Лебега при линейном отображении	40

ОГЛАВЛЕНИЕ 4

Глава 1

Функциональные последовательности и ряды

Лекция 1: †

2 Sept

1.1 Равномерная и поточечная сходимости

Определение 1: Поточечная сходимость

Пусть определена последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$, и $f \colon E \to \mathbb{R}(\mathbb{C})$. Тогда говорят, что f_n сходится к f поточечно $(f_n \to f)$, если

$$\forall x \in E : \lim_{n \to \infty} f_n(x) = f(x).$$

То есть для любого $x \in E$ и любого $\varepsilon > 0$ существует $N_{(x,\varepsilon)}$ такое, что

$$\forall n > N : |f_n(x) - f(x)| < \varepsilon.$$

3амечание. Это определение можно обобщить куда угодно, где есть мера. В данном курсе под E обычно подразумевается подмножество \mathbb{R}^n .

Определение 2: Равномерная сходимость

Пусть определена последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$, и $f \colon E \to \mathbb{R}(\mathbb{C})$. Тогда говорят, что f_n сходится к f равномерно на E ($f_n \rightrightarrows f$), если для любого $\varepsilon > 0$ существует $N_{(\varepsilon)}$ такое,

$$\forall n > N \ \forall x \in E \colon |f_n(x) - f(x)| < \varepsilon.$$

Пример 1.1.1. Рассмотрим функции $f_n(x) = x^n$ на отрезке (0,1). Так как $\forall x \in (0,1)$: $x^n \to_{n \to \infty} 0$, $f_n \to f \equiv 0$. Но $f_n \not \rightrightarrows 0$, потому что, например, для $\varepsilon = \frac{1}{2}$ каким бы ни было N для всех n > N можно взять такое x рядом с единицей, что $|x^n - 0| > \frac{1}{2}$.

Утверждение. $f_n \rightrightarrows f$ на E равносильно тому, что

$$\sup_{x \in E} |f_n(x) - f(x)| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Pемарка. Если мы смотрим на множество непрерывных функций на компакте C(K), где норма

$$||f||_{C(K)} = \max_{x \in K} |f(x)|,$$

то из поточечной сходимости следует равномерная:

$$f_n \to f \Longrightarrow ||f_n - f|| \to 0 \Longleftrightarrow f_n \rightrightarrows f$$
 на K .

Аналогично будет с множеством ограниченных функций на $E(l^{\infty}(E))$ с нормой

$$||f||_{\infty} = \sup_{x \in E} |f(x)|.$$

Определение 3: Равномерная ограниченность

Последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$ называется равномерно ограниченной на E, если существует такое M, что

$$\forall x \in E \ \forall n \in \mathbb{N} \colon |f_n(x)| \leqslant M.$$

Пример 1.1.2. Пусть $f_n \in C(K)$. Тогда равномерная ограниченность $\{f_n\}$ равносильна ограниченности по норме, то есть все функции содержатся в некотором шаре с центром в нуле.

Свойства.

- 0. Из равномерной сходимости следует поточечная
- 1. Если для всех $x \in E$ выполнено

$$|f_n(x) - f(x)| \leqslant a_n,$$

где $\{a_n\}$ — последовательность, стремящаяся к нулю при $n \to \infty$, то f_n равномерно сходится κ f на E.

2. Если существует ε_0 и $x_n \in E$ для всех n такие, что

$$|f_n(x_n) - f(x_n)| \geqslant \varepsilon_0,$$

то f_n не сходится равномерно к f на E.

3. Пусть $\{f_n\} \rightrightarrows f$ на E и $\{g_n\}$ равномерно ограничена на E. Тогда $f_n g_n \rightrightarrows 0$.

$$\sup_{x \in E} |f_n(x)g_n(x)| \leqslant M_{g_n} \cdot \underbrace{\sup_{x \in E} |f_n(x)|}_{\to 0} \stackrel{n \to \infty}{\longrightarrow} 0.$$

4. **Критерий Коши**. Пусть $f_n: E \to \mathbb{R}(\mathbb{C})$. f_n равномерно сходится на E, согда¹ для любого положительного ε существует N, что

$$\forall n, m > N \ \forall x \in E \colon |f_n(x) - f_m(x)| < \varepsilon.$$

 $^{1}\mathrm{C}$ этого момента буду писать «согда» вместо «тогда и только тогда, когда», чтобы упростить формулировки

 $1 \Longrightarrow 2$ Запишем определение равномерной сходимости на E для $\frac{\varepsilon}{2}$:

$$\forall \varepsilon > 0 \ \exists N \colon \forall n > N \ \forall x \in E \quad |f_n(x) - f(n)| < \frac{\varepsilon}{2}.$$

Тогда для любых n, m > N

$$|f_m(x) - f(x)_n| \le$$

$$\le |f_m(x) - f(x)| + |f_n(x) - f(x)| \le$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $2 \Longrightarrow 1$ Из условия Коши получаем, что для всех $x \in E$ последовательность $f_n(x)$ фундаметальна. Следовательно, существует предел $f(x) \coloneqq \lim_{n \to \infty} f_n(x)$.

Устремим $m \to \infty$. Тогда

$$|f_n(x) - f(x)| \leqslant \varepsilon.$$

По определению равномерной сходимости получаем, что $f_n \rightrightarrows f$ на E.

- 5. Пусть E метрическое пространство. Рассмотрим последовательность непрерывных в точке $x \in E$ функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$. Если $f_n \rightrightarrows f$ на E, то f тоже непрерывна в точке a.
 - □ Проверим, что

$$\lim_{x \to a} f(x) = f(a).$$

A именно, для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что

$$\forall x \in E \quad \rho(x, a) < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon.$$

Используем равномерную сходимость: для любого $\varepsilon > 0$ существует N такое, что

$$\forall n > N \ \forall x \in E \quad |f_n(x) - f(x)| < \frac{\varepsilon}{3}.$$

Так как f_n непрерывна в точке a, можем записать определение для $\frac{\varepsilon}{3}$ и заодно взять n>N:

$$\exists \delta > 0 \colon \forall x \in E \quad \rho(x, a) < \delta \Longrightarrow |f_n(x) - f_n(a)| \leqslant \frac{\varepsilon}{3}.$$

Используем два полученых неравенства:

$$|f(x) - f(a)| \le$$

$$\le |f(x) - f_n(x)| +$$

$$+|f_n(x) - f_n(a)| +$$

$$+|f_n(a) - f_n(a)| <$$

$$< \frac{\varepsilon}{3} \cdot 3 = \varepsilon$$

- 6. **Теорема Стокса-Зайделя**. Пусть $f_n \in C(E)$. Если $f_n \rightrightarrows f$, то f непрерывна на E.
 - □ Следствие из 5[прошлого свойства].

1.2 Равномерные и поточечные сходимости рядов

Определение 4: Функционоальный ряд

Рассмотрим функции $u_n \colon E \to \mathbb{R}(\mathbb{C})$. Тогда

$$\sum_{n=1}^{\infty}u_{n}(x)$$
 — функциональный ряд,

$$S_n(x) = \sum_{k=1}^n u_k(x)$$
 — частичная сумма ряда.

Если S_n сходится к S поточечно, то говорят, что **ряд сходится поточечно**. Если S_n сходится к S равномерно, то говорят, что **ряд сходится равномерно**.

$$r_n = S(x) - S_n(x)$$
 — остаток ряда.

Замечание. Если рассматриваемые функции ограничены $(u_n \in C(K))$, то $\sum_{n=1}^{\infty} u_n$ — ряд в нормированном пространстве, поэтому сходимость в C(K) равносильна тому, что $||S_n - S||_{C(K)} \to 0$. Это в свою очередь равносильно тому, что S_n сходится равномерно к S на K.

Свойства.

- 1. $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E, согда $r_n \rightrightarrows 0$ на E.
- 2. **Критерий Коши**. $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E, согда для всех $\varepsilon > 0$ существует такое N, что

$$\forall m > N \ \forall p \in \mathbb{N} \ \forall x \in E : \left| \sum_{k=m+1}^{m+p} u_k(x) \right| = |S_{m+p} - S_m| < \varepsilon.$$

- 3. **Необходимое условие равномерной сходимости ряда**. Если $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на E, то u_n равномерно сходится κ 0.
 - \square По критерию Коши для p=1.
- 4. **Признак сравнения**. Пусть $u_n, v_n \colon E \to \mathbb{R}^2$ и для всех $x \in E$ выполнено неравенство $|u_n(x)| \leqslant v_n(x)$ Если $\sum_{n=1}^{\infty} v_n(x)$ сходится равномерно на E, то $\sum_{n=1}^{\infty} u_n(x)$ тоже сходится равномерно на E.
 - Обозначим частичные суммы

$$S_n(x) = \sum_{k=1}^n u_k(x), \quad C_n(x) = \sum_{k=1}^n v_k(x).$$

Заметим, что

$$|S_m(x) - S_n(x)| \le \sum_{k=n+1}^m v_k(x) \le |C_m(x) - C_n(x)|.$$

Так как $\sum_{n=1}^{\infty} v_n(x)$ равномерно сходится, можно воспользоваться критерием Коши и получить, что последний модуль меньше ε при m,n>N и $x\in E$. Тогда можем применить критерий Коши для $\sum_{n=1}^{\infty} u_n(x)$.

5. **Признак Вейерштрасса**. Пусть $u_n \colon E \to \mathbb{R}(\mathbb{C})$ и для всех $x \in E$ выполнено неравенство $|u_n(x)| \leqslant a_n$. Если сходится ряд $\sum_{n=1}^{\infty} a_n$, то ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно. \square Применить признак Коши.

²Здесь на лекции u_n, v_n были определены как $E \to \mathbb{R}(\mathbb{C})$, но случае \mathbb{C} не понятно сравнение комплексного и вещественного числа в следующем неравенстве

6. Если $\sum_{n=1}^{\infty} |u_n(x)|$ сходится равномерно, то и ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно.

......

......

- 7. **Признак Дирихле**. Пусть $u_n, v_n : E \to \mathbb{R}(\mathbb{C})$, обозначим $U_n(x) = \sum_{k=1}^n u_k(x)$. Если выполнены следующие условия, ряд $\sum_{n=1}^{\infty} u_n(x) v_n(x)$ сходится равномерно:
 - (a) ряд U_n равномерно ограничен на E, то есть $\exists M : \forall x \in E \ \forall n \ |U_n(x)| \leqslant M$;
 - (b) ряд v_n равномерно сходится к нулю $(v_n \rightrightarrows 0)$;
 - (c) для любого $x \in E$ последовательность $\{v_n(x)\}$ монотонна.
 - □ Воспользуемся преобразованием Абеля:

$$S_n(x) = \sum_{k=1}^n u_k(x)v_k(x) = U_n(x)v_n(x) + \sum_{k=1}^{n-1} U_k(x)(v_k(x) - v_{k+1}(x)).$$

Так как $U_n(x)$ равномерно ограничено, а $v_n(x)$ равномерно сходится к нулю, $U_n(x)v_n(x)$ тоже равномерно сходится к нулю. Теперь докажем, что второе слагаемое тоже равномерно сходится. Для этого достаточно проверить, что следующий ряд равномерно сходится

$$\sum_{k=1}^{\infty} |U_k(x)(v_k(x) - v_{k+1})|.$$

Oценим частичную сумму 3

$$\sum_{k=1}^{n-1} |U_k(x)(v_k(x) - v_{k+1}(x))| \le$$

$$\le \sum_{k=1}^{n-1} |U_k(x)| \cdot |v_k(x) - v_{k+1}(x)| \le$$

$$\le M \cdot \sum_{k=1}^{n-1} |v_k(x) - v_{k+1}(x)| =$$

$$= M \cdot |v_1(x) - v_n(x)|$$

Так как $v_n \rightrightarrows 0$, $|v_1(x) - v_n(x)| \underset{n \to \infty}{\longrightarrow} |v_1(x)|$. Значит, частичная сумма ряда стремится к $M \cdot |v_1(x)|$, следовательно⁴, второе слагаемое тоже равномерно сходится, а тогда и сумма равномерно сходится.

- 8. **Признак Лейбница**. Если выполнены следующие условия, то ряд $\sum_{n=1}^{\infty} (-1)^n v_n(x)$ равномерно сходится:
 - (a) $v_n \rightrightarrows 0$ на E;
 - (b) для любого $x \in E$, ряд $\{v_n(x)\}$ монотонный.

³В последнем переходе мы используем монотонность $v_k(x)$

⁴Например, по признаку сравнения

- \square Обозначим за $u_n(x) := (-1)^n$. Заметим, что ряд $U_n(x) = \sum_{k=1}^n u_k(x)$ ограничен, тогда по признаку Дирихле $\sum_{n=1}^\infty u_n(x) v_n(x)$ равномерно сходится.
- 9. **Признак Абеля**. Пусть $u_n, v_n \colon E \to \mathbb{R}(\mathbb{C})$. Если выполнены следующие условия, ряд $\sum_{n=1}^{\infty} u_n(x) v_n(x)$ сходится равномерно:
 - (a) ряд $\sum_{n=1}^{\infty} u_n$ равномерно сходится на E;
 - (b) ряд $\overline{v_n}$ равномерно ограничен;
 - (c) для любого $x \in E$ последовательность $\{v_n(x)\}$ монотонна.
 - \square Проверим критерий Коши, а именно: для любого $\varepsilon>0$ должно существовать число N такое, что

$$\forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E : \left| \sum_{k=n+1}^{n+p} u_k(x) v_k(x) \right| < \varepsilon.$$

Используем преобразование Абеля 5 :

$$\sum_{k=n+1}^{n+p} u_k(x)v_k(x) = \sum_{k=1}^{p} u_{n+k}(x) + v_{n+k}(x) =$$

$$= \left(U_{n+p}(x) - U_n(x)\right) \cdot v_{n+p}(x) + \sum_{k=1}^{p-1} \left(U_{n+k}(x) - U_n(x)\right) \cdot \left(v_{n+k}(x) - v_{n+k+1}(x)\right)$$

Так как v_n равномерно ограничено, а u_n равномерно сходится⁶:

$$\left(U_{n+p}(x)-U_n(x)\right)\cdot v_{n+p}(x)\leqslant |U_{n+p}(x)-U_n(x)|\cdot M<\varepsilon\cdot M.$$

Для второго слагаемого аналогично используем критерий Коши для u_n и монотонность v_n :

$$\sum_{k=1}^{p-1} (U_{n+k}(x) - U_n(x)) \cdot (v_{n+k}(x) - v_{n+k+1}) \leqslant$$

$$\leqslant \sum_{k=1}^{p-1} |U_{n+k}(x) - U_n(x)| \cdot |v_{n+k}(x) - v_{n+k+1}| \leqslant$$

$$\leqslant \varepsilon \cdot \sum_{k=1}^{p-1} |v_{n+k}(x) - v_{n+k+1}| \leqslant$$

$$\leqslant \varepsilon \cdot |v_{n+1}(x) - v_{n+p}(x)| \leqslant \varepsilon \cdot 2M$$

Итого, оценили сумму из критерия Коши через ε , поэтому можем им воспользоваться.

......

^{......}

⁵Для удобства сделаем, чтобы сумма начиналась с единицы. Из-за этого придется писать больше скобок.

⁶Поэтому можем использовать критерий Коши

Пример 1.2.1. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$. Обозначим $u_n(x) = \sin(nx)$ и $v_n(x) = \frac{1}{n}$. Последний равномерно сходится к нулю и монотонно убывает.

$$U_n(x) = \sum_{k=0}^n \sin(kx) = \\ = \operatorname{Im}\left(\sum_{k=0}^n e^{ikx}\right) = \operatorname{Im}\left(\frac{1 - e^{i(n+1)x}}{1 - e^{ix}}\right) = \\ = \operatorname{Im}\left(\frac{e^{ix \cdot \frac{n+1}{2}} \cdot \left(e^{ix \cdot \frac{n+1}{2}} - e^{-ix \cdot \frac{n+1}{2}}\right)}{e^{\frac{ix}{2}} - e^{-\frac{ix}{2}}}\right) = \\ = \operatorname{Im}\left(e^{\frac{ixn}{2}}\right) \cdot \frac{\sin\frac{n+1}{2}x}{\sin\frac{x}{2}} = \\ = \frac{\sin\frac{nx}{2} \cdot \sin\frac{n+1}{2}x}{\sin\frac{x}{2}}$$

Пример 1.2.2. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$ при $x \in (0,1)$. Обозначим $v_n(x) = \frac{x^n}{n}$. $v_n(x)$ монотонна для всех $x \in (0,1)$, так же $|v_n(x)| \leqslant \frac{1}{n}$, поэтому v_n равномерно сходится к нулю. По признаку Лейбница исходный ряд равномерно сходится.

1.3 Свойства равномерно сходящихся функциональных последовательностей и рядов

1. Перестановка предельных переходов. Пусть $f_n, f: E \to \mathbb{R}(\mathbb{C}), a$ — предельная точка E, f_n равномерно сходится к f на E и существует предел $\lim_{x\to a} f_n(x) = b_n$. Тогда пределы $\lim_{n\to\infty} b_n,$ $\lim_{x\to a} f(x)$ существуют и равны.

То есть

$$\lim_{n \to \infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} \lim_{n \to \infty} f_n(x).$$

(a) Проверим, что у b_n есть предел. Из критерия Коши для f_n следует, что для каждого $\varepsilon>0$ существует N, что

$$\forall n, m > N \ \forall x \in E : |f_n(x) - f_m(x)| < \varepsilon.$$

Устремим $x \to a$. Тогда $f_n(x) \to b_n$ и $f_m(x) \to b_m$. Из того, что

$$\forall \varepsilon > 0 \ \exists N \colon \forall n, m > N \quad |b_n - b_m| < \varepsilon,$$

следует, что последовательность $\{b_n\}$ фундаментальна. Поэтому предел b_n существует и $b\coloneqq\lim_{n\to\infty}b_n.$

(b) Определим функции

$$g_n(x) = \begin{cases} f_n(x) & x \neq a \\ b_n & x = a \end{cases}, \quad g(x) = \begin{cases} f(x) & x \neq a \\ b & x = a \end{cases}$$

Эти функции непрерывны в точке a. Кроме этого $g_n \rightrightarrows g$ на $E \cup \{a\}$, так как можно выбрать N из прошлого пункта.

(с) Используем свойство равномерной сходимости

$$b = \lim_{x \to a} g(x) = \lim_{x \to a} f(x).$$

Следствие 1. Если $f_n \colon [a,b] \to \mathbb{R}(\mathbb{C}), f_n \rightrightarrows f$ на (a,b) и f_n непрерывна, то $f_n \rightrightarrows f$ на [a,b]

Лекция 2: †

9 Sept

2. Перестановка суммирования и предельного перехода. Пусть $u_n : E \to \mathbb{R}(\mathbb{C}), a$ — предельная точка E и $\lim_{x\to a} u_n(x) = b_n$. Если $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E, то $\sum_{n=1}^{\infty} b_n$ сходится и

$$\sum_{n=1}^{\infty} \lim_{x \to a} u_n(x) = \lim_{x \to a} \sum_{n=1}^{\infty} u_n(x).$$

□ Обозначим частные суммы за

$$S_n(x) = \sum_{k=1}^n u_k(x)$$
$$B_n = \sum_{k=1}^n b_k$$

Тогда $\lim_{x\to a} S_n(x) = B_n$ и $S_n \rightrightarrows S$ на $E. S_n(x)$ — функции, поэтому можно применить свойство 1 и получить

$$\lim_{n \to \infty} \lim_{x \to a} S_n = \lim_{x \to a} \lim_{n \to \infty} S_n(x).$$

3. **Перестановка предела и суммы.** Пусть $f_n \in C[a,b]$ и $f_n \rightrightarrows f$ на [a,b] ⁷. Рассмотрим произвольную точку $c \in [a,b]$ и первообразную $\int_c^x f_n(t) dt$. Тогда

$$\int_{c}^{x} f_{n}(t)dt \Rightarrow \int_{c}^{x} f(t)dt \text{ Ha } [a,b].$$

В частности,

$$\int_{a}^{b} f_{n}(t)dt \to \int_{a}^{b} f(t)dt,$$
$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(t)dt = \int_{a}^{b} \lim_{n \to \infty} f_{n}(t)dt.$$

□ Посмотрим на разность

$$\left| \int_{c}^{x} f(t)dt - \int_{c}^{x} f_n(t)dt \right| \leqslant |c - x| \cdot \max_{t \in [c, x]} |f(t) - f_n(t)| \tag{1.3.1}$$

Расширив отрезок [c,x] до [a,b], получаем следующую оценку на 1.3.1

$$1.3.1 \leqslant (b-a) \cdot \max_{t \in [a,b]} |f_n(t) - f(t)| \stackrel{n \to \infty}{\longrightarrow} 0$$

$$(1.3.2)$$

Выражение в 1.3.2 не зависит от x, откуда и следует равномерная сходимость.

4. Перестановка дифференцирования и предельного перехода. Пусть $f_n \in C[a,b], f_n' \rightrightarrows g,$ $c \in [a,b]$ и $f_n(c) \stackrel{n \to \infty}{\longrightarrow}$. Тогда f_n равномерно сходится к f на [a,b] и f' = g. То есть

$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f'_n(x).$$

 \square Так как $f'_n \rightrightarrows g$, по прошлому свойству

$$\int_{c}^{x} f'_{n}(t)dt \Rightarrow \int_{c}^{x} g(t)dt.$$

Заметим, что

$$\int_{c}^{x} f'_{n}(t)dt = f_{n}(x) - f_{n}(c).$$

Поэтому

$$f_n(x) = \underbrace{f_n(c)}_{A} + \underbrace{\int_c^x f_n(t)dt}_{A} \Rightarrow A + \int_c^x g(t)dt.$$

 $^{^{7}}$ Из этих двух условий автоматически следует, что f непрерывна

Следствие 2 (Перестановка дифференцирования и суммирования). Пусть есть ряд $\sum_{n=1}^{\infty} u_n(x)$, $c \in [a,b], \sum_{n=1}^{\infty} u'_n(x)$ равномерно сходится и ряд $\sum_{n=1}^{\infty} u_n(c)$ сходится. Тогда ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно и

$$\left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x).$$

1.4 Степенные ряды

Определение 5: Степенной ряд

Ряд $\sum\limits_{n=0}^{\infty}a_{n}(z-z_{0})^{n},$ где $a_{n},\ z,\ z_{0}\in\mathbb{C},$ называется **степенным с центром в точке** $z_{0}.$

3амечание. С помощью переносов любой степенной ряд сводится к ряду с центром в нуле $\sum_{n=0}^{\infty} a_n z^n$.

Теорема 1.4.1. Пусть ряд $\sum\limits_{n=0}^{\infty}a_nz^n$ сходится в точке $z_0\in\mathbb{C}$. Тогда ряд $\sum\limits_{n=0}^{\infty}a_nz^n$ сходится при всех z, что $|z|<|z_0|$.

 a То есть для всех z внутри шара с центром в нуле и радиусом z_{0} .

 \square Так как ряд сходится в точке $z_0, a_n z_0^n \stackrel{n \to \infty}{\longrightarrow} 0$, то есть $|a_n z_0^n| \leqslant M$. Тогда

$$\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{\infty} |a_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \leqslant M \cdot \sum_{n=0}^{\infty} \left| \frac{z}{z_0} \right|^n.$$

A такой ряд сходится, так как $\left|\frac{z}{z_0}\right| < 1$.

Следствие 3. Если ряд $\sum_{n=0}^{\infty} a_n z_0^n$ расходится, то для всех z, что $|z| > |z_0|$, степенной ряд $\sum_{n=0}^{\infty} a_n z^n$ расходится.

Определение 6: Радиус сходимости

Радиус сходимости R степенного ряда $\sum_{n=0}^{\infty} a_n z^n$ — такое число, что для всех $z\colon |z| < R$ ряд сходится, а для всех $z\colon |z| > R$ ряд расходится.

3амечание. R может быть равным нулю или бесконечности.

 $^{^{8}}$ Далее в утверждениях будет обычно фигурировать ряд с центром в нуле для упрощения рассуждений.

Теорема 1.4.2 (Формула Коши-Адамара). Радиус сходимости существует и равен

$$R_{cx} = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}}.$$

 \square Зафиксируем z.

$$q = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n z^n|} = |z| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}.$$

Если $|z| < R_{\rm cx},$ то q < 1, тогда по признаку Коши ряд сходится.

Если $|z| > R_{\rm cx}$, то q > 1, аналогично по признаку Коши ряд расходится.

Если $|z|=R_{\rm cx}$, то q=1, и в этом случае ничего сказать нельзя.

Упраженение. Придумать формулировку в стиле признака Даламбера, то есть

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Здесь, в отличии от верхнего предела в формуле Коши-Адамара, еще нужно доказать, что предел существует.

Пример 1.4.1. $\sum_{n=1}^{\infty} \frac{z^n}{n!}$, $n! \sim e^n$, поэтому $R_{\rm cx} = \infty$.

Пример 1.4.2. $\sum_{n=0}^{\infty} z^n n!$, $R_{cx} = 0$.

Пример 1.4.3. $\sum_{n=1}^{\infty} \frac{z^n}{n}$, $R_{cx} = 1$.

Теорема 1.4.3. Пусть R- радиус сходимости степенного ряда $\sum_{n=0}^{\infty} a_n z^n$. Рассмотрим 0 < r < R. Тогда в $\overline{B(0,r)}$ ряд сходится равномерно.

 \square Возьмем ряд $\sum_{n=0}^{\infty} |a_n| r^n$. Это сходящийся числовой ряд. Если взять ряд $\sum_{n=0}^{\infty} a_n z^n$ с произвольным z, то

$$\frac{\max}{B(0,r)}|a_n z^n| = |a_n|r^n.$$

Получили что, ряд максимумов сходится, из чего про признаку Вейерштрасса следует, что ряд сходится.

Следствие 4. Сумма степенного ряда непрерывна в шаре $B(0, R_{\rm cx})$, так как частичные суммы будут непрерывными функциями, которые равномерно сходятся, следовательно, сходятся к непрерывной функции.

Теорема 1.4.4 (Теорема Абеля). Рассмотрим ряд $\sum_{n=0}^{\infty} a_n z^n$, радиус сходимости равен R. Предположим, что в точке z есть сходимость. Тогда $\sum_{n=0}^{\infty} a_n x^n$ сходится на [0,R] равномерно. B частности,

$$\exists \lim_{x \to R^-} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n.$$

🛘 Докажем, что ряд сходится равномерно. Запишем следующее равенство:

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n.$$

По условию $\sum_{n=0}^{\infty} a_n R^n$ сходится равномерно (не зависит от x), а $\left(\frac{x}{R}\right)^n$ — монотонна и ограничена. Тогда по признаку Абеля ряд равномерно сходится на [0,R]

Пример 1.4.4. Разложим в ряд Тейлора

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \qquad \text{при } |x| < 1.$$

По признаку Абеля при |x|=1 ряд тоже сходится. Поэтому $R_{\rm cx}=1$, причем на самом радиусе ряд тоже сходится.

Лемма 1. Следующие ряды имеют одинаковые радиусы сходимости:

$$\sum_{n=0}^{\infty} a_n z^n, \quad \sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}, \quad \sum_{n=0}^{\infty} a_n n z^{n-1}.$$

 \square Заметим, что если x_n сходится, то⁹

$$\overline{\lim}_{n\to\infty} x_n y_n = \lim_{n\to\infty} x_n \overline{\lim}_{n\to\infty} y_n.$$

Теперь воспользуемся формулой Коши-Адамара. Обозначим за R_1, R_2, R_3 радиусы сходимости рядов из условия.

$$R_{2} = \frac{1}{\frac{\overline{\lim}}{n \to \infty}} \frac{1}{n+1} = \frac{1}{\left(\frac{\lim}{n \to \infty} \frac{n+1}{n+1}\right) \cdot \overline{\lim}} = \frac{1}{\left(\frac{\lim}{n \to \infty} \frac{n+1}{n+1}\right) \cdot \overline{\lim}} = \frac{1}{\frac{\overline{\lim}}{n \to \infty}} \frac{1}{\sqrt[n]{|a_{n}|}} = R_{1}$$

$$R_{3} = \frac{1}{\frac{\overline{\lim}}{n \to \infty}} \frac{n-1}{\sqrt[n]{|a_{n}|}} = \frac{1}{\left(\frac{\lim}{n \to \infty} \frac{n-1}{\sqrt[n]{n}}\right) \cdot \overline{\lim}} \frac{n-1}{n-1} = \frac{1}{\frac{\overline{\lim}}{n \to \infty}} \frac{1}{\sqrt[n]{|a_{n}|}} = R_{1}$$

.....

Теорема 1.4.5. Пусть есть вещественный степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, его радиус сходимость равен R. Тогда его можно проинтегрировать почленно для всех x, что $|x-x_0| < R$:

$$\int_{x_0}^x \sum_{n=0}^\infty a_n (t-x_0)^n dt = \sum_{n=0}^\infty \int_{x_0}^x a_n (t-x_0)^n dt = \sum_{n=0}^\infty a_n \frac{(x-x_0)^{n+1}}{n+1}.$$

 \square Пусть $r=|x-x_0|< R$. В $\overline{B(x_0,r)}$ ряд равномерно сходится. Рассмотрим его частные суммы $S_n(x)$. Так

 $^{^9}$ По определению верхнего предела это супремум частичных пределов последовательности, выберем такую $\{x_{k_i},y_{k_i}\}$. Мы знаем, что $x_{k_i}\to x$, поэтому $\lim_{i\to\infty}x_{k_i}y_{k_i}=x\lim_{i\to\infty}y_{k_i}$.

как $S_n(x) \rightrightarrows S$,

$$\int_{x_0}^{x} \sum_{n=0}^{\infty} a_n t^n dt = \int_{x_0}^{x} S(t) dt =$$

$$= \int_{x_0}^{x} \lim_{n \to \infty} S_n(t) dt = \lim_{n \to \infty} \int_{x_0}^{x} S_n(t) dt$$

Определение 7: Производная комплекснозначной функции

Пусть $E \subset \mathbb{C}, a$ — внутренняя точка $E, f \colon E \to \mathbb{C}.$ Производную в точке a можно определить двумя способами:

1. это такая функция

$$f'(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a}.$$

2. f дифференцируема в точке a, если существует такое $k \in \mathbb{C}$, что

$$f(z) = f(a) = k(z - a) + o_{z \to a}(z - a).$$

Замечание. Существование f'(a) равносильно тому, что f дифференцируема в точке a, и в этом случае k = f'(a).

Теорема 1.4.6. Рассмотрим ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, его радиус сходимости равен R, f(z) — сумма ряда внутри шара $B(z_0,R)$. Тогда при $z\colon |z-z_0|< R$ функция f дифференцируема сколько угодно раз, при этом

$$f^{(m)}(z) = \sum_{n=m}^{\infty} a_n \frac{n!}{(n-m)!} (z - z_0)^{n-m}.$$

 \square Опять скажем, что $z_0 = 0$. Достаточно доказать для m = 1, а далее по индукции. Пусть |z| < r < R. Запишем определение

$$f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} =$$

$$= \lim_{w \to z} \frac{\sum_{n=0}^{\infty} a_n w^n - \sum_{n=0}^{\infty} a_n z^n}{w - z} =$$

$$= \lim_{w \to z} \frac{\sum_{n=1}^{\infty} a_n (w^n - z^n)}{w - z} \stackrel{?}{=}$$

$$\stackrel{?}{=} \sum_{n=1}^{\infty} \lim_{w \to z} a_n \underbrace{(w^{n-1} + w^{n-2}z + \dots + z^{n-1})}_{\text{все стремятся к } z^{n-1}} =$$

$$= \sum_{n=1}^{\infty} a_n \cdot n \cdot z^{n-1}$$

Осталось доказать один переход. Если докажем равномерную сходимость ряда в $\overline{B(0,r)}$, то он будет верен. Обозначим

$$u_n(w) = a_n(w^{n-1} + w^{n-2}z + \dots + z^{n-1}).$$

Заметим, что

$$|u_n(w)| \le |a_n| \cdot (|w^{n-1}| + |w^{n-2}z| + \dots + |z^{n-1}|) \le |a_n| \cdot n \cdot r^{n-1}.$$

Так как $r^{n-1} \in \overline{B(0,R)}$, ряд $\sum_{n=1}^{\infty} |a_n| \cdot n \cdot r^{n-1}$ сходится. Тогда по признаку Вейерштрасса ряд $\sum_{n=1}^{\infty} u_n(w)$ сходится, следовательно можем переставить предел и суммирование.

Теорема 1.4.7 (О единственности разложения в степенной ряд). *Если* $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$

и сходится в круге $B(z_0,R)$, то коэффициенты задаются однозначно:

$$a_m = \frac{f^{(m)}(z_0)}{m!}.$$

По теореме 1.4.6 можем записать следующую формулу:

$$f^{(k)}(z) = \sum_{n=m}^{\infty} a_n \cdot \frac{n!}{(n-k)!} \cdot (z-z_0)^{n-k}.$$

Тогда

$$f^{(m)}(z_0) = a_m \cdot \frac{n!}{(n-m)!} = a_m m! \implies a_m = \frac{f^{(m)}(z_0)}{m!}.$$

Определение 8

Для бесконечно дифференцируемого в точке z_0 степенного ряда f имеет место формула Тейлора с центром в точке z_0 :

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^m.$$

Разложение элементарных функций в ряды Тейлора

Запишем разложения, которые нам уже известны

1. e^x

$$\forall x \in \mathbb{R}$$
 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$

 $2. \sin x$

$$\forall x \in \mathbb{R}$$
 $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$

 $3. \cos x$

$$\forall x \in \mathbb{R} \qquad \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

Пусть $z \in \mathbb{C}$. Определим $\exp z, \sin z, \cos z$ для комплексного числа как ряды из формул выше.

Упраженение.

$$e^{z_1+z_2}$$
 = $e^{z_1}e^{x_2}$
 $\cos(z_1+z_2)$ = $\cos z_1 \cos z_2 - \sin z_1 \sin z_2$
 $\sin(z_1+z_2)$ = $\sin z_1 \cos z_2 + \cos z_1 \sin x_2$
 $\sin^2 z + \cos^2 z$ = 1
 $(e^z)'$ = e^z
 $(\sin z)'$ = $\cos z$
 $(\cos z)'$ = $-\sin z$

Теорема 1.5.1 (Формула Эйлера).

$$e^{iz} = \cos z + i\sin z.$$

🛘 Честная подстановка. Можно перегруппировывать слагаемые в рядах, так как они абсолютно сходятся.

4.
$$\ln(1+x)$$

$$\ln(1+x) = x - \frac{x^2}{2} - \frac{x^3}{3} + \dots \qquad |x| < 1.$$

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x (1-t+t^2-\ldots) dt =$$
$$= \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt = \sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1}$$

Так как $1-t+t^2-t^3+\ldots$ — равномерно сходящийся ряд при |t|<1, можем интегрировать его почленно. Аналогично мы можем определить $\ln(1+z)$ для $z\in\mathbb{C}$, если |z|<1.

5. $\operatorname{arctg} x$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

$$\operatorname{arctg} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt =$$
$$= \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}$$

Формула верна внутри круга |t| < 1 для равномерной сходимости.

6. $(1+x)^p$

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2}x^2 + \dots = \sum_{n=0}^{\infty} \frac{p(p-1)\dots(p-n+1)}{n!}x^n.$$

Докажем, что радиус сходимости равен 1. Обозначим

$$S(x) = \sum_{n=0}^{\infty} \frac{p(p-1)\dots(n-p+1)}{n!} x^n, \qquad f(x) = \frac{S(x)}{(1+x)^p}, \quad x \in (-1,1).$$

Поступим хитро: докажем, что $f(x) \equiv 1$. Заметим, что f(0) = 1. Тогда достаточно проверить, что f'(x) = 0 для всех $x \colon |x| < 1$.

$$f(x) = S(x)(1+x)^{-p}$$

$$f'(x) = S'(x)(1+x)^{-p} - pS(x)(1+x)^{-p-1} =$$

$$= (1+x)^{-p-1} \left(S'(x)(1-x) - pS(x)\right)$$

Проверим, что (S'(x)(1+x) - pS(x)) = 0.

$$\frac{p \cdot S(x)}{p \cdot S(x)} = \sum_{n=0}^{\infty} \frac{p(p-1) \dots (n-p+1)}{n!} x^n \cdot \mathbf{p}$$

$$(1+x) \cdot S'(x) = \sum_{n=1}^{\infty} \frac{p(p-1) \dots (n-p+1)}{(n-1)!} x^{n-1} \cdot (1+x) =$$

$$= \sum_{n=1}^{\infty} \frac{p(p-1) \dots (n-p+1)}{(n-1)!} (x^{n-1} + x^n)$$

Теперь заметим, что

$$p \cdot \frac{p(p-1)\dots(n-p+1)}{n!} = \frac{p(p-1)\dots(n-p+1)}{(n+1)!} + \frac{p(p-1)\dots(n-p)}{n!}.$$

Поэтому коэффициенты при x^k будут одинаковыми, следовательно, разность равна нулю.

7. Частный случай для $p = -\frac{1}{2}$

$$\frac{p(p-1)\dots(n-p+1)}{n!} = \frac{\left(-\frac{1}{2}\right)\cdot\left(-\frac{3}{2}\right)\cdot\dots\cdot\left(-\frac{2n-1}{2}\right)}{n!} = (-1)^n \frac{(2n-1)!!}{2^n\cdot n!} = (-1)^n \frac{(2n-1)!!}{(2n)!!}.$$

8. $\arcsin x$

$$\arcsin x = \int_0^x \frac{dt}{\sqrt{1-t^2}} = \int_0^x \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!} (-t^2)^n dt = \sum_{n=0}^\infty \frac{(2n-1)!!}{(2n)!!} \cdot \frac{x^{2n+1}}{2n+1}.$$

Глава 2

Теория меры и интегрирования

Лекция 3: †

16 Sept

Системы множеств 2.1

Определение 10: Алгебра подмножеств

Пусть T — произвольное множество, 2^T — система подмножеств. $\mathfrak{A}\subset 2^T$ — алгебра подмножеств, если

- $\begin{array}{ll} \text{(i)} & \varnothing \in \mathfrak{A} \\ \text{(ii)} & A,B \in \mathfrak{A} \Longrightarrow A \cap B \in \mathfrak{A} \\ \text{(iii)} & A \in \mathfrak{A} \Longrightarrow T \setminus A \in \mathfrak{A} \end{array}$

Свойства.

- 1. $T \in \mathfrak{A}$
- 2. $A, B \in \mathfrak{A} \Longrightarrow A \setminus B = A \cap (T \setminus B) \in \mathfrak{A}$
- 3. $A, B \in \mathfrak{A} \Longrightarrow A \cup B = T \setminus ((T \setminus A) \cap (T \setminus B)) \in \mathfrak{A}$
- 4. $A_j \in \mathfrak{A}, \ j = 1, \dots n \Longrightarrow \bigcup_{j=1}^n A_j \in \mathfrak{A}, \ \bigcap_{j=1}^n A_j \in \mathfrak{A}$

Определение 11: σ -алгебра

Определение 11.
$$\sigma$$
-алгебра $\mathfrak{A}\subset 2^T-\sigma$ -алгебра, если \mathfrak{A} – алгебра и (ii σ) $\forall A_j\in\mathfrak{A},\ j\in\mathbb{N}\colon \bigcap_{j=1}^\infty A_j\in\mathfrak{A}$

Замечание. $\forall A_j \in \mathfrak{A}, \ j \in \mathbb{N} \Longrightarrow \bigcup_{j=1}^{\infty} A_j \in \mathfrak{A}$

Пример 2.1.1.

- 1. $2^T = \mathfrak{A}$
- 2. $\{\varnothing, T\} = \mathfrak{A}$

Теорема 2.1.1. Пусть T произвольное множество и $\mathcal{E} \subset 2^T$ — какая-то система подмножеств. Тогда существует минимальная по включению σ -алгебра, содержащая \mathcal{E} .

Определение 12: Борелевская оболочка

 σ -алгебра из прошлой теоремы называется **борелевской оболочкой**. Обозначается $\mathfrak{B}(\mathcal{E})$

Определение 13

Рассмотрим топологическое пространство (T,τ) $(\tau-$ система отрытых множеств). Тогда $\mathfrak{B}(\tau)$ — **борелевская** σ -алгебра в T. Обозначается $\mathfrak{B}(T)$.

Определение 14: Полукольцо

Набор подмножеств $\mathcal{P} \subset 2^T$ называется **полукольцом**, если выполнены следующие аксиомы:

- (i) $\varnothing \in \mathcal{P}$
- (ii) $P_1, P_2 \in \mathcal{P} \Longrightarrow P_1 \cap P_2 \in \mathcal{P}$
- (iii) $P_1,P_2\in\mathcal{P}\Longrightarrow P_1\setminus P_2=\coprod_{j=1}^NQ_j$, где $Q_j\in\mathcal{P}$ и Q_j дизъюнктны.

Пример 2.1.2.
$$T = \mathbb{R}, \mathcal{P} = \{[a, b)\}$$

Теорема 2.1.2 (о свойствах полукольца). Пусть $\mathcal{P}-$ полукольцо, $P,P_1,\ldots P_n\in\mathcal{P}.$ Тогда

- 1. $P\setminus \bigcup_{j=1}^n P_j=\coprod_{j=1}^N Q_j$, где $Q_j\in \mathcal{P}$ и Q_j дизтонктны;
- 2. $\bigcup_{j=1}^{n} P_j = \bigcup_{k=1}^{n} \bigsqcup_{j=1}^{m_k} Q_{k_j}$, где $Q_{k_j} \in \mathcal{P}$, Q_{k_j} дизъюнктны $u \; \forall j \colon Q_{k_j} \subset P_k$;
- 3. в предыдущем пункте можно заменить n на ∞ .
- 1. Очевидно

2. Заметим, что

$$\bigcup_{j=1}^{n} P_{j} = \underbrace{P_{1}}_{\in \mathcal{P}} \cup \underbrace{(P_{2} \setminus P_{1})}_{Q_{j}} \cup \underbrace{(P_{3} \setminus (P_{1} \cup P_{2}))}_{Q_{j}} \cup \dots$$

При этом все полученные множества дизъюнктны.

3. В предыдущем пункте мы не пользовались конечностью объединения.

2.2. ОБЪЕМ 23

Пример 2.1.3 (Важный пример: полукольцо ячеек в \mathbb{R}^n и полукольцо диодических ячеек в \mathbb{R}^n). Первое обозначается \mathcal{P}^n , второе — \mathcal{P}^n_d .

Рассмотрим два вектора

$$a = (a_1, \dots a_n), \quad \forall i \colon b_i \geqslant a_i$$
$$b = (b_1, \dots b_n)$$

Тогда $[a,b)=\{x\in\mathbb{R}^n\mid \forall j\colon a_j\leqslant x< b_j\}=\prod [a_j,b_j)$ — ячейка.

Ячейка называется **кубической**, если $\forall j, k \colon |a_j - b_j| = |a_k - b_k|$.

Возьмем $e=(1,\ldots 1)$ и $\overline{k}=(k_1,\ldots k_n),\ k_j\in\mathbb{Z},\ \overline{k}\in\mathbb{Z}^n.\ [\overline{k},\overline{k}+e)$ — кубик с целочисленными координатами. Такие ячейки назовем **ячейками ранга I**. Они покрывают все \mathbb{R}^n и дизъюнктны.

Такие ячейки можно разбить на 2^n меньших ячеек второго ранга: $\left[\frac{\overline{k}}{2}, \frac{\overline{k}+e}{2}\right)$. Аналогично можно продолжить до ранга S+1: $\left[\frac{\overline{k}}{2^S}, \frac{\overline{k}+e}{2^S}\right)$.

Свойства.

- внутри ранга ячейки не пересекаются
- ячейки разных рангов либо не пересекаются, либо одна содержится в другой
- ullet если Q- ячейка ранга $k,\,Q'-$ ячейка ранга $k+1,\,$ то $Q\setminus Q'-$ объединение ячеек ранга k+1

 \mathcal{P}_d' — множество всех ячеек $\left\lceil \frac{\overline{k}}{2^S}, \frac{\overline{k}+e}{2^S} \right)$, для $s=0,1,\ldots d$ и $\overline{k} \in \mathbb{Z}^n$.

Теорема 2.1.3. \mathcal{P}^n и \mathcal{P}^n_d — полукольца.

Теорема 2.1.4. Для любого открытого непустого $\varnothing \neq G \subset \mathbb{R}^n$ существует счетный набор $P_k \in \mathcal{P}_d^{na}$ такой, что

$$\bigcup_{k=1}^{\infty} P_k = G.$$

 \square Рассмотрим точку $x \in G$ и шар $B(x,r) \subset G$. Тогда существует такая ячейка S, что существует P_x ранга S, что $x \in P_x \subset B(x,r)$ (просто берем диаметр ячейки менее x).

Всего ячеек счетное число, поэтому в покрытии тоже будет счетное, при этом $\bigcup_{x \in G} P_x = G$.

.....

2.2 Объем

Определение 15: Объем

Рассмотрим множество T, полукольцо $\mathcal{P}\subset 2^T$. Тогда $\mu\colon\mathcal{P}\to\mathbb{R}\cup\{+\infty\}$ — объем, если

(i) $\mu \geqslant 0$

 $^{{}^}a$ Можно считать, что P_k не пересекаются

2.2. ОБЪЕМ 24

- (ii) $\mu(\varnothing) = 0$
- (iii) μ конечноаддитивна:

$$P, P_1, \dots P_k \in \mathcal{P}, \ \bigsqcup_{j=1}^k P_j = P \Longrightarrow \mu(P) = \sum_{j=1}^k \mu(P_j).$$

Пример 2.2.1. $\mathcal{P} = \mathcal{P}^1 = \{[a,b)\}, \, \mu([a,b)) = b - a.$

Пример 2.2.2. $g: \mathbb{R} \to \mathbb{R}, g$ монотонно возрастает. Тогда $\nu_q([a,b)) = g(b) - g(a)$ — тоже объем.

Пример 2.2.3. \mathcal{P} — множества на плоскости, которые либо ограничены, либо дополнение ограничено.

$$\mu_1(A)=egin{cases} 1 & A$$
 неограничено $0 & A$ ограничено $0 & A$ ограничено $0 & A$ ограничено

Пример 2.2.4 (классический объем в \mathbb{R}^n). Рассмотрим \mathcal{P}^n , $P = \prod_{k=1}^n [a_k, b_k)$, где $\lambda_n(P) = \prod_{k=1}^n (b_k - a_k)$. Упраженение. Проверить, что это объем.

Теорема 2.2.1 (о свойствах объема). Рассмотрим полукольцо \mathcal{P} , μ — объем на \mathcal{P} . P, P_1 , . . . $P_n \in \mathcal{P}$.

- 1. (монотонность) $P' \subset P \Longrightarrow \mu(P') \leqslant \mu(P)$
- 2. (усиленная монотонность) $P_k \partial u$ в тонктны,

$$\bigsqcup_{k=1}^{n} P_k \subset P \Longrightarrow \sum_{k=1}^{n} \mu(P_k) \leqslant \mu(P).$$

3. $(конечная полуаддитивность)^a$

$$P \subset \bigcup_{k=1}^{n} P_k \Longrightarrow \mu(P) \leqslant \sum_{k=1}^{\infty} \mu(P_k).$$

1. Если $P\subset P',$ то $P\setminus P'=\bigsqcup_{k=1}^n Q_k,$ где $Q_k\in \mathcal{P}$ и Q_k дизъюнктны.

Тогда $P = P' \cup \bigsqcup_{k=1}^{n} Q_k$.

$$\mu(P) = \mu(P') + \sum_{k=1}^{n} \mu(Q_k) \geqslant \mu(P').$$

2. $P \setminus \bigsqcup_{k=1}^n P_k = \bigsqcup_{j=1}^N Q_j$, где $Q_j \in \mathcal{P}$ и Q_j дизъюнктны.

Тогда $P = \bigsqcup_{k=1}^{n} P_k \cup \bigsqcup_{j=1}^{N} Q_j$. Следовательно,

$$\mu(P) = \sum_{k=1}^{n} \mu(P_k) + \sum_{j=1}^{N} (Q_j) \geqslant \sum_{k=1}^{n} \mu(P_k).$$

 $[^]a$ Здесь не предполагается, что $\bigcup_{k=1}^n P_k \in \mathcal{P}$

3. Пусть $P \cap P_k = P_k' \in \mathcal{P}$. Тогда $P = \bigcup_{k=1}^n P_k' = \bigcup_{k=1}^n \bigcup_{j=1}^{m_k} Q_{k_j}$ — дизъюнктны.

$$\mu(P) = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu(Q_{k_j}) \stackrel{\text{no}}{\leqslant} \sum_{k=1}^{n} \mu(P_k') \leqslant \sum_{k=1}^{n} \mu(P_k).$$

Замечание. Если \mathcal{P} — алгебра, то по аксиоме (iii) можно проверять только для двух множеств, а далее по индукции.

Замечание. Если \mathcal{P} — алгебра, $A, B \in \mathcal{P}$, $B \subset A$, то

$$\mu(B) < +\infty \Longrightarrow \mu(A \setminus B) = \mu(A) - \mu(B).$$

......

.....

2.3 Мера и ее свойства

Определение 16: Мера

Пусть $\mathcal{P}-$ полукольцо, $\mu-$ объем на $\mathcal{P}.$ μ называется **мерой**, если μ счетно-аддитивен:

$$P,P_k\in\mathcal{P},\ P_k$$
 — дизъюнктны, $\bigsqcup_{k=1}^{\infty}P_k=P\Longrightarrow \mu(P)=\sum_{k=1}^{\infty}\mu(P_k).$

 a Сумма в этом ряду не зависит от порядка, так как он положительный.

Пример 2.3.1.

- Классический объем λ_n в \mathbb{R}^n (докажем позже)
- $\nu_g([a,b)) = g(b) g(a)$ $g \nearrow$ и непрерывна слева $\Longrightarrow \nu_g$ мера (Упражнение)

Теорема 2.3.1 (о счетной полуаддитивности меры). Пусть \mathcal{P} — полукольцо, μ — объем на \mathcal{P} . Тогда μ — мера, согда для любых $P, P_k \in \mathcal{P}$

$$P \subset \bigcup_{k=1}^{\infty} P_k \Longrightarrow \mu(P) \leqslant \sum_{k=1}^{\infty} \mu(P_k).$$

 $\boxed{1\Longrightarrow 2}$ $P_k'=P_k\cap P,\,P=igcup_{k=1}^\infty P_k'=igcup_{k=1}^\inftyigcup_{j=1}^{m_k}Q_{k_j},$ где Q_{k_j} — дизъюнктны. Тогда

$$\mu(P) = \sum_{k=0}^{\infty} \sum_{j=1}^{m_k} \underbrace{\mu(Q_{k_j})}_{\leqslant \mu(P_k) \leqslant \mu(P_k)} \leqslant \sum_{k=1}^{\infty} \mu(P_k).$$

 $\boxed{2\Longrightarrow 1}$ Пусть $Q,Q_j\in\mathcal{P},\,Q_j$ — дизъюнктны и $Q=\bigcup_{j=1}^\infty Q_j.$

Из полуаддитивности следует, что $\mu(Q)\leqslant \sum_{j=1}^\infty \mu(Q_j)$. Теперь заметим, что

$$\bigcup_{j=1}^n Q_j \subset Q \Longrightarrow \sum_{j=1}^n \mu(Q_j) \leqslant \mu(Q).$$

Следовательно,

$$\sum_{j=1}^{\infty} \mu(Q_j) \leqslant \mu(Q).$$

Теорема 2.3.2 (о нерпрерывности меры снизу). Пусть $\mathfrak{A}-$ алгебра, $\mu-$ объем на $\mathfrak{A}.$ $\mu-$ мера, согда для всех $A_k \in \mathfrak{A}$ таких, что $A_1 \subset A_2 \subset \dots$ верно следующее свойство^а

$$\bigcup_{k=1}^{\infty} A_k = A \Longrightarrow \mu(A_k) \xrightarrow[k \to \infty]{} \mu(A).$$

 $1 \Longrightarrow 2$ Рассмотрим новую систему дизъюнктных множеств из \mathfrak{A} :

$$A'_1 = A_1, \ A'_2 = A_2 \setminus A_1, \ A'_3 = A_3 \setminus (A_1 \cup A_2), \dots$$

Заметим, что

$$\bigcup_{j=1}^{\infty} A'_j = \bigcup_{j=1}^{\infty} A_j = A, \quad A_n = \bigcup_{j=1}^{n} A'_n.$$

Так как A'_{i} дизъюнктны,

$$\mu(A) = \sum_{j=1}^{\infty} \mu(A'_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(A'_j) = \lim_{n \to \infty} \mu(A_n).$$

 $\boxed{2\Longrightarrow 1}$ Пусть $A=\bigcup\limits_{j=1}^{\infty}B_{j}$, где B_{j} дизъюнктны. Рассмотрим такие $A_{k}=\bigcup\limits_{j=1}^{k}B_{j}$. Так как $A=\bigcup\limits_{k=1}^{\infty}A_{k}$,

$$\mu(A_k) \xrightarrow[k\to\infty]{} \mu(A).$$

Из конечной аддитивности объема следует, что

$$\mu(A_k) = \sum_{j=1}^k \mu(B_j) \xrightarrow[k \to \infty]{} \sum_{j=1}^\infty \mu(B_j) = \mu(A).$$

Значит, μ — мера.

 $[^]a$ 9то свойство называется «непрерывностью меры снизу»

Определение 17: Конечный объем

Рассмотрим множество T, полукольцо $\mathcal P$ и объем μ на $\mathcal P$. Тогда μ называется конечным объемом, если $\mu(T)<\infty$.

Теорема 2.3.3 (о непрерывности меры сверху). Пусть $\mathfrak A -$ алгебра, $\mu -$ конечный объем на $\mathfrak A$. Тогда следующие утверждения эквивалентны:

- (i) $\mu Mepa$
- (ii) для всех $A_k \in \mathfrak{A}$ выполнено^a

$$A_{k+1} \subset A_k, \ A = \bigcap_{k=1}^{\infty} A_k \in \mathfrak{A} \Longrightarrow \mu(A_k) \underset{k \to \infty}{\longrightarrow} \mu(A).$$

(iii) для всех $A_k \in \mathfrak{A}$ выполнено

$$A_{k+1} \subset A_k, \ \varnothing = \bigcap_{k=1}^{\infty} A_k \Longrightarrow \mu(A_k) \underset{k \to \infty}{\longrightarrow} 0.$$

 $(i)\Longrightarrow (ii)$ Пусть $B_k=A_k\setminus A_{k+1},$ тогда $A_1=A\cup \bigcup\limits_{j=1}^\infty B_j$ и B_j дизъюнктны. Следовательно,

$$\mu(A_1) = \mu(A) + \sum_{j=1}^{\infty} \mu(B_j) = \mu(A) + \lim_{n \to \infty} \underbrace{\sum_{j=1}^{\infty} \mu(B_j)}_{\mu(A_1) - \mu(A_{n+1})}$$

$$\underbrace{\mu(A_1)}_{\text{конечно}} = \mu(A) + \mu(A_1) - \lim_{n \to \infty} \mu(A_{n+1})$$

$$\mu(A) = \lim_{n \to \infty} \mu(A_{n+1})$$

 $(ii) \Longrightarrow (iii)$ Очевидно

 $(iii)\Longrightarrow (i)$ Пусть $A=igcup_{j=1}^{\infty}B_j$, где B_j дизъюнктны и $B_j,A\in\mathfrak{A}$. Проверим счетную аддитивность. Рассмотрим

$$A_k = B_{k+1} \cup B_{k+2} \cup \ldots = A \setminus B_1 \setminus B_2 \setminus \ldots \in \mathfrak{A}.$$

Поэтому, $\bigcap_{k=1}^{\infty} A_k = \infty$. Следовательно,

$$= \mu(A_k) \underset{k \to \infty}{\longrightarrow} 0$$

$$= \mu\left(A \setminus \bigcup_{j=1}^k B_j\right) = \mu(A) - \sum_{j=1}^k \mu(B_j) \underset{k \to \infty}{\longrightarrow} \mu(A) - \sum_{j=1}^\infty \nu(B_j)$$

Получили, что $\mu(A) = \sum_{j=0}^{\infty} \mu(B_j)$, значит, μ — мера.

......

 $^{^{}a}$ Это и называется непрерывностью меры сверху

.....

2.4 Продолжение меры. Построение меры по внешней мере.

Определение 18: Внешняя мера

T — произвольное множество, $\tau \colon 2^T \to \mathbb{R} \cup \{+\infty\}$. τ — внешняя мера, если

- (i) $\tau \geqslant 0$
- (ii) $\tau(\varnothing) = 0$
- (ііі) (счетная полуаддитивность)

$$E \subset \bigcup_{k=1}^{\infty} E_k \Longrightarrow \tau(E) \leqslant \sum_{k=1}^{\infty} \tau(E_k).$$

 $3 амечание. \ au$ конечно полуаддитивна.

Замечание. τ монотонна: $E_1 \subset E_2 \Longrightarrow \tau(E_1) \leqslant \tau(E_2)$

Определение 19: au-измеримо

Пусть τ — внешняя мера на T. Множество $A-\tau$ -измеримо, если для любого $E\subset T^a$

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A). \tag{2.4.1}$$

Теорема 2.4.1. Пусть τ — внешняя мера, \mathfrak{A}_{τ} — система τ -измеримых множеств. Тогда \mathfrak{A}_{τ} — σ -алгебра и $\tau \mid_{\mathfrak{A}_{\tau}}$ — мера.

 $0. \ \varnothing \in \mathfrak{A}_{\tau}$

1. Докажем, что $A \in \mathfrak{A}_{\tau} \Longrightarrow T \setminus A \in \mathfrak{A}_{\tau}$ Заметим, что

$$E \setminus A = E \cap (T \setminus A)$$
 $E \setminus (T \setminus A) = E \cap A$.

По определению τ -измеримости 2.4.1 для всех $E \subset T$

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A) = \tau(E \setminus (T \setminus A)) + \tau(E \cap (T \setminus A)).$$

Следовательно, $T \setminus A \in \mathfrak{A}_{\tau}$.

2. Докажем, что $A, B \in \mathfrak{A}_{\tau} \Longrightarrow A \cup B \in \mathfrak{A}_{\tau}$. Рассмотрим произвольное множество $E \subset T$. Запишем для него условие 2.4.1 для A

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A) =$$

$$= \tau(E \cap A) + \tau((E \setminus A) \cap B) + \tau((E \setminus A) \setminus B) =$$

$$= (\tau(E \cap A) + \tau((E \setminus A) \cap B)) + \tau(E \setminus (A \cup B)) \ge$$

$$\ge \tau(E \cap (A \cup B)) + \tau(E \setminus (A \cup B))$$

Так как неравенство в обратную сторону верно всегда, $A \cap B \in \mathfrak{A}_{\tau}$.

3. Проверим конечную аддитивность τ на \mathfrak{A}_{τ} . Хотим доказать, что для дизъюнктных $A, B \in \mathfrak{A}_{\tau}$ выполнено

$$\tau(A) + \tau(B) = \tau(A \cap B).$$

Заметим, что для всех E

$$(E \cap (A \cup B)) \cap A = E \cap A$$
$$(E \cap (A \cup B)) \setminus A = E \cap B$$

 $[^]a\mathrm{B}$ этом неравенстве знак \leqslant есть всегда

Подставим в условие τ -измеримости 2.4.1

$$\tau(E \cap (A \cup B)) = \tau(E \cap A) + \tau(E \cap B).$$

Теперь подставим в качестве E=T

$$\tau(A \cup B) = \tau(A) + \tau(B).$$

4. Проверим, что $\mathfrak{A}_{\tau}-\sigma$ -алгебра. Для этого осталось доказать, что

$$\forall A_j \in \mathfrak{A}_{\tau} \colon \bigcup_{j=1}^{\infty} A_j \in \mathfrak{A}_{\tau}.$$

Обозначим $A = \bigcup_{j=1}^{\infty} A_j$.

(a) Пусть все A_i дизъюнктны. Для всех E верно

$$\tau(E) = \tau \Big(E \cap \bigcup_{j=1}^{n} A_j \Big) + \tau \Big(E \setminus \bigcup_{j=1}^{n} A_j \Big) =$$

Воспользуемся конечной аддитивностью и тем, что $E \setminus A \subseteq E \setminus \bigcup_{j=1}^n A_j$:

$$= \sum_{j=1}^{n} \tau(E \cap A_j) + \tau \Big(E \setminus \bigcup_{j=1}^{n} A_j \Big) \geqslant \sum_{j=1}^{n} \tau(E \cap A_j) + \tau(E \setminus A).$$

Устремим $n \to \infty$ и воспользуемся счетной аддитивностью для дизъюнктных множеств:

$$\tau(E) \geqslant \sum_{j=1}^{\infty} \tau(E \cap A_j) + \tau(E \setminus A) \geqslant$$
$$\geqslant \tau\left(\bigcup_{j=1}^{\infty} (E \cap A_j)\right) + \tau(E \setminus A) \geqslant$$
$$\geqslant \tau(E \cap A) + \tau(E \setminus A) = \tau(E)$$

Следовательно, $A \in \mathfrak{A}_{\tau}$.

(b) Если A_j не дизъюнктны, рассмотрим новые A'_i :

$$A_j' = A_j \setminus \bigcup_{k=1}^{j-1} A_k.$$

 A'_{j} дизъюнктны и измеримы, при этом их объединение равно A. Тогда по первому пункту A измеримо.

 $\mu = \tau \mid_{\mathfrak{A}_{\tau}}$, при этом известно, что $\tau \mid_{\mathfrak{A}_{\tau}}$ — объем и τ полудаддитивна. По теореме о счетной полуаддитивности, τ — мера.

Лекция 4: †

23 Sept

Определение 20: Полная мера

Пусть μ — мера на полукольце \mathcal{P} . Мера называется **полной**, если

$$e \in \mathcal{P}, \ \mu(e) = 0 \Longrightarrow \forall e' \subset e \colon e' \in \mathcal{P}.$$

Следствие 5 (Ключевое свойство построения меры). $\tau|_{\mathfrak{A}_{\tau}}$ — полная мера.

 \square Рассмотрим $e \in \mathfrak{A}_{\tau}$ и $e' \subset e$, причем $\tau(e) = 0$. Хотим доказать, что $e' \in \mathfrak{A}_{\tau}$. Хотим проверить такое равенство для всех $E \in T$:

$$\tau(E) = \tau(E \cap e') + \tau(E \setminus e').$$

По монотонности меры, $\tau(E) \geqslant \tau(E \setminus e')$. Так как $E \cap e' \subset E \cap e \subset e$,

$$0 \leqslant \tau(E \cap e') \leqslant \tau(e) = 0.$$

Следовательно, верно неравенство

$$\tau(E) \geqslant \tau(E \cap e') + \tau(E \setminus e').$$

А в другую сторону это неравенство верно всегда в силу полуаддитивности внешней меры.

.....

......

2.5 Продолжение меры. Построение внешней меры.

Обозначение. Рассмотрим полукольцо \mathcal{P} и μ_0 — меру на нем. Пусть

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu_0(P_j) \mid E \subset \bigcup_{j=1}^{\infty} P_j, \ P_j \in \mathcal{P} \right\}.$$

Если E нельзя покрыть счетным набором P_i , будем считать $\mu^*(E) = +\infty$.

Теорема 2.5.1. μ^* — внешняя мера $u \mu^*|_{\mathcal{P}} = \mu_0$.

- 1. $E \in \mathcal{P} \stackrel{?}{\Longrightarrow} \mu^*(E) = \mu_0(E)$. Нужно проверить неравенство в две стороны.
 - Возьмем покрытие $\{E,\varnothing,\varnothing,\ldots\}$. Тогда $\mu^*(E)\leqslant \mu_0(E)+0.$
 - $\boxed{\geqslant}$ По теореме о счетной полуаддитивности меры, если $E\subset\bigcup_{j=1}^\infty P_j,\ P_j\in\mathcal{P},$ то $\mu_0(E)\leqslant\sum_{j=1}^\infty\mu_0(P_j)\leqslant\inf\sum_{j=1}^\infty\mu_0(P_j).$

В частности, $\mu^*(\emptyset) = 0$.

2. Первые дыва условия внешней меры очевидны: $\mu^*(\varnothing) = 0$ и $\mu^* \geqslant 0$. Проверим счетную полуаддитивность μ^* , то есть докажем, что

$$E \subset \bigcup_{j=1}^{\infty} E_n \Longrightarrow \mu^*(E) \leqslant \sum_{n=1}^{\infty} \mu^*(E_n).$$

Каждое множество нужно оценить с некоторой точностью разбиения, а потом устремить разницу к нулю.

Если сумма $\sum_{n=1}^{\infty} \mu^*(E_n) = +\infty$, то неравенство автоматически выполнено. Предположим, что $\sum_{n=1}^{\infty} \mu^*(E_n)$ конечна.

Тогда существует такое покрытие $\{P_i^{(n)}\}$, что ошибка не большая для фиксированного $\varepsilon > 0$:

$$E_n \subset \bigcup_{j=1}^{\infty} P_j^{(n)}, \quad \sum_{j=1}^{\infty} \mu_0(P_j^{(n)}) \leqslant \mu^*(E_n) + \frac{\varepsilon}{2^n}.$$

Далее запишем для E

$$E \subset \bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{\infty} P_j(n).$$

Так как μ^* — это инфимум, можно немного отступить, то есть взять покрытие, отстающее на $\varepsilon \cdot 2^{-n}$ и перейти к следующему неравенству

$$\mu^*(E) \leqslant \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \mu_0(P_j^{(n)}) \leqslant \sum_{n=1}^{\infty} \mu^*(E_n) + \frac{\varepsilon}{2^n} =$$
$$= \sum_{n=1}^{\infty} \mu^*(E_n) + \varepsilon \cdot \sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \mu^*(E_n) + \varepsilon$$

Теперь устремим $\varepsilon \to 0$ и получим

$$\mu^*(E) \leqslant \sum_{n=1}^{\infty} \mu^*(E_n).$$

2.5.1 Теорема о продолжении меры

Теорема 2.5.2 (Теорема о продолжении меры). Пусть μ_0 — мера на полукольце \mathcal{P} , μ^* — внешняя мера, построенная ранее. По ней построена σ -алгебра \mathfrak{A}_{μ^*} измеримых по μ^* множеств. Тогда $\mathcal{P} \subset \mathfrak{A}_{\mu^*}{}^a$ и $\mu^*|_{\mathfrak{A}_{\mu^*}}$ — продолжение меры μ_0 .

 \square Хотим проверить, что если $P \in \mathcal{P}$, то $P \in \mathfrak{A}_{u^*}$ (измеримо), то есть

$$\forall E \in T \colon \mu^*(E) = \mu^*(E \cap P) + \mu^*(E \setminus P).$$

 $E\in\mathcal{P}$ Воспользуемся главной аксиомой полукольца: $E\setminus P=\bigsqcup_{j=1}^N Q_j,$ где $Q_j\in\mathcal{P}$ и дизъюнктны. Тогда

 $E = \underbrace{(P \cap E)}_{\in \mathcal{P}} \cup \bigsqcup_{j=1}^{N} Q_{j}$, причем это объединение дизъюнктное. Теперь заметим, что для μ_{0} есть конечная

аддитивность, а μ^* совпадает с μ на элементах кольца, и поэтому

$$\mu^*(E) = \mu_0(E) = \mu_0(P \cap E) + \mu_0\left(\bigsqcup_{j=1}^N G_j\right) =$$
$$= \mu^*(P \cap E) + \sum_{j=1}^N \mu^*(Q_j)$$

Так как μ^* полуаддитивна, $\sum_{j=1}^N \mu^*(Q_j) \geqslant \mu^*\Big(\bigcup_{j=1}^N Q_j\Big) = \mu^*(E\setminus P)$. Тогда

$$\mu^*(E) \geqslant \mu^*(P \cap E) + \mu^*(E \setminus P).$$

 $^{^{}a}$ Это содержательная часть

Е произвольное Если $\mu^*(E) = +\infty$, то неравенство сразу верно, поэтому будем считать, что $\mu^*(E) < +\infty$. Воспользуемся этим и приблизим с точностью до любого ε к объединению элементов полукольца.

Зафиксируем $\varepsilon > 0$ и построим такие $P_j \in \mathcal{P}$, что $E \subset \bigcup_{j=1}^{\infty} P_j$, при этом

$$\sum_{i=1}^{\infty} \leqslant \mu^*(E) + \varepsilon.$$

Так как $P_j \in \mathcal{P}$:

$$\mu_0(P_j) = \mu^*(P_j) \geqslant \mu^*(P_j \cap P) + \mu^*(P_j \setminus E).$$

Тогда

$$\mu^{*}(E) + \varepsilon \geqslant \sum_{j=1}^{\infty} \mu^{*}(P_{j}) \geqslant \sum_{j=1}^{\infty} \mu^{*}(P_{j} \cap P) + \sum_{j=0}^{\infty} \mu^{*}(P_{j} \setminus P) \geqslant$$
$$\geqslant \mu^{*}\left(\left(\bigcup_{j=1}^{\infty} P_{j}\right) \cap P\right) + \mu^{*}\left(\left(\bigcup_{j=1}^{\infty} P_{j}\right) \setminus P\right) \underset{\varepsilon \to 0}{\geqslant}$$
$$\geqslant \mu^{*}(E \cap P) + \mu^{*}(E \setminus P)$$

Определение 21: Стандартное продолжение (продолжение Каратеодори)

 $\mu=\mu^*\mid_{\mathfrak{A}_{\mu^*}}-$ стандартное продолжение или продолжение Каратеодори меры μ_0 с полукольца $\mathcal{P}.$

Замечание.

- 1. μ полная мера, так как сужение тоже полная мера.
- 2. Повторное продолжение бессмысленно.

Упражнение. Проверить, что внешняя мера получится такой же.

3.
$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \mu(P_j) \mid A \subset \bigcup_{j=1}^{\infty} P_j, P_j \in \mathcal{P} \right\}$$

2.6 Единственность стандартного построения

Определение 22: σ -конечность объема и меры

Пусть $\mathcal{P}-$ полукольцо на $2^T,\,\mu-$ объем или мера. Тогда μ называется σ -конечным(ой), если

существуют такие $P_j \in \mathcal{P}, \ \mu(P_j) < +\infty$, что

$$T \subset \bigcup_{j=1}^{\infty} P_j$$
.

Теорема 2.6.1. Пусть μ — стандартное продолжение μ_0 с \mathcal{P} на \mathfrak{A} , а ν — какое-то продолжение μ_0 с \mathcal{P} на \mathfrak{A}' . Тогда

- 1. для всех $A \in \mathfrak{A} \cap \mathfrak{A}'$: $\nu(A) \leqslant \mu(A)$, более того, если $\mu(A) < +\infty$, то $\nu(A) = \mu(A)$
- 2. если $\mu_0 \sigma$ -конечная мера, то $\mu = \nu$ на $\mathfrak{A} \cap \mathfrak{A}'$

B частности, σ -конечная мера единственным образом продолжается на $\mathfrak{B}(\mathcal{P})^a$.

1. $\[1 \]$ Проверим неравенство. Если $\mu(A) = \infty$, оно сразу выполнено.

Иначе A покрывается счетным набором: $A \subset \bigcup_{j=1}^{\infty} P_j, \ P_j \in \mathcal{P}$, следовательно,

$$\nu(A) \leqslant \sum_{j=1}^{\infty} \nu(P_j) \underset{\nu \text{ — продолжение } \mu_0}{=} \sum_{j=1}^{\infty} \mu_0(P_j).$$

Перейдем к inf:

$$\nu(A) \le \inf \sum_{i=1}^{\infty} \mu_0 = \mu^*(A) = \mu(A).$$

[2] Докажем техническое утверждение. Пусть $P \in \mathcal{P}$ и $\mu(P) = \nu(P) < \infty$. Докажем, что $\nu(P \cap A) = \mu(P \cap A)$. Предположим, что $\nu(P \cap A) < \mu(P \cap A)$.

$$\mu(P) = \nu(P) = \nu(P \cap A) + \nu(P \setminus A) < \mu(P \cap A) + \mu(P \setminus A) = \mu(P)$$

Противоречие.

 $\boxed{3}$ Пусть $\mu(A)<\infty$, тогда существуют такие $P_j\in P$, что $A\subset \bigsqcup_{j=1}^\infty P_j^{-1}$, где $\mu(P_j)=\mu_0(P_j)<\infty$. Тогда из счетной аддитивности ν

$$\nu(A) = \sum_{j=1}^{\infty} \nu(P_j \cap A) = \sum_{\text{no } 2}^{\infty} \sum_{j=1}^{\infty} \mu(P_j \cap A) = \mu(A).$$

Доказали первый пункт.

2. Пусть мера σ -конечна. Тогда все пространство можно представить в виде объединения конечных объемов и применить подпункт 3 из пункта 1 доказательства.

$$\mu_0-\sigma$$
-конечна $\Longrightarrow T=igsqcup_{j=1}^\infty P_j,\ P_j$ дизъюнктны, $\mu(P_j)<\infty.$

 1 Можно всегда считать объединение дизъюнктным, так как можно заменить на него по стратегии, использованной ранее

 $^{^{}a}$ Это борелевская оболочка

......

2.7 Определения и простейшие свойства меры Лебега в \mathbb{R}^n

На полукольце ячеек \mathcal{P}^n и диодическом полукольце ячеек \mathcal{P}^n_d мы определили классический объем $\lambda_n = \lambda$.

Теорема 2.7.1. Классический объем $\lambda - \sigma$ -конечная мера на \mathcal{P}^n .

 \Box σ -конечность очевидна — подойдет покрытие единичными кубами. Докажем, что это мера. Для этого можно доказать счетную полуаддитивность, то есть

$$P \subset \bigcup_{j=1}^{\infty} P_j \Longrightarrow \lambda(P) \leqslant \sum_{j=1}^{\infty} \lambda(P_j).$$

Пусть P = [a, b) и $P_j = [a_j, b_j)$. Зафиксируем $\varepsilon > 0$, расширим один отрезок, а второй наоборот сузим.

Пусть $b' \in [a,b), \ P' = [a,b'] \subset P \colon \lambda([a,b)) - \lambda([a,b']) < \varepsilon.$

Еще возьмем $a_i' < a_j$, $P_j \subset (a_i', b_j)$: $\lambda((a_i', b_j)) - \lambda([a_j, b_j)) < \frac{\varepsilon}{2^j}$.

Заметим, что

$$P' \subset P \subset \bigcup_{j=1}^{\infty} P'_j$$
.

Так как P'_i открытые, а P' компактно, существует конечное подпокрытие

$$\exists j_k \colon P' = [a, b') \subset \bigcup_{k=1}^N P'_{j_k} \subset \bigcup_{k=1}^N [a_{j_k}, b_{j_k}).$$

Так как μ конечно полуаддитивна,

$$\sum_{k=1}^{N} \lambda([a'_{j_k}, b_{j_k})) \geqslant \lambda([a, b')) \geqslant \lambda([a, b)) - \varepsilon.$$

$$\sum_{k=1}^N \lambda([a'_{j_k},b_{j_k})) \leqslant \sum_{j=1}^\infty \lambda([a'_j,b_j)) \leqslant \sum_{j=1}^\infty \lambda([a_j,b_j)) + \frac{\varepsilon}{2^j}.$$

Итого,

$$\sum_{j=1}^{\infty} \lambda(P_j) + \varepsilon \geqslant \lambda(P) - \varepsilon.$$

Устремим $\varepsilon \to 0$ и получим требуемое неравенство.

Определение 23: Мера Лебега

Мера Лебега — стандартное продолжение классического объема. \mathfrak{A}^n — получающаяся σ -алгебра — множества **измеримые по Лебегу**.

Упражение. Продолжения с \mathcal{P}^n и \mathcal{P}^n_d совпадают.

Свойства.

 $\fbox{1}$ Все открытые множества измеримы. Более того, если G открыто и $G \neq \varnothing$, то $\lambda(G) > 0$.

- Все замкнутые множества измеримы (дополнение к открытому). $\lambda(\{a\}) = 0$.
- |3| Если A измеримо и ограничено, то $\lambda(A)<\infty$ (можно ограничить параллелепипедом).
- 4 Если E_k измеримо и $\lambda(E_k) = 0$, то $\lambda(\bigcup_{k=1}^{\infty} E_k) = 0$.
- |5| Если E- счетное множество, то $\lambda(E)=0.$
- $\lfloor 6 \rfloor$ Если E множество и для всех arepsilon > 0 $\exists E \subset E_arepsilon$ измеримое и $\lambda(E_arepsilon) < arepsilon$, то E измеримо и
 - \square Построим последовательность $E_n\colon \lambda(E_n)<rac{1}{n}$. Можно считать, что $E_n\supset E_{n+1}\supset\dots$ Тогда $E \subset \bigcap_{n=1}^{\infty} E_n$. По непрерывности сверху

$$\lambda\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \lambda(E_n).$$

Так как λ полная, предел равен нулю, E измеримо и $\lambda(E) = 0$.

7 Рассмотрим \mathbb{R}^n и гиперплоскость $H_k = \{x_k = 0\}$. $\lambda(H_k) = 0$.

$$H_k = \bigcup_{j=1}^{\infty} Q_j, \ Q_j = \{x \in \mathbb{R}^n \mid x_k = 0, |x_l| < j \ npu \ k \neq l\}.$$

Запихнем в маленький параллелепипед:

$$P_{\varepsilon} = [-j, j) \times \ldots \times \underbrace{[-\varepsilon, \varepsilon)}_{k} \times \ldots \times [-j, j).$$

$$\lambda(P_k) = (2j)^{n-1} \cdot 2\varepsilon \xrightarrow[\varepsilon \to 0]{} 0.$$

- $B \mathbb{R}$ континуальное множество меры 0- канторово множество.
- Упражнение. Существует неизмеримое множество.

2.8 Регулярность меры Лебега

Определение 24: Регулярная мера

Рассмотрим топологическое пространство $T,\mathfrak{A}\subset\mathfrak{B}(T),\mu$ — мера на $\mathfrak{A}.$ μ называется **регуляр**ной, если

- $\begin{array}{ll} \text{(i)} \ \forall A \in \mathfrak{A}\colon & \mu(A) = \inf\{\mu(G) \mid G \text{ открыто, } A \subset G\} \\ \text{(ii)} \ \forall A \in \mathfrak{A}\colon & \mu(A) = \sup\{\mu(F) \mid F \text{ замкнуто, } A \supset F\} \end{array}$

Упраженение. Если $\mu(T) \leqslant \infty$, то из (i) следует (ii).

Лемма 2. Для регулярности меры достаточно выполнения одного из двух свойств:

- (a) $\forall \varepsilon > 0 \ \forall A \in \mathfrak{A} \ \exists \ omкрытое \ G \colon \quad A \subset G, \ \mu(G \setminus A) < \varepsilon$ (b) $\forall \varepsilon > 0 \ \forall A \in \mathfrak{A} \ \exists \ замкнутое \ F \colon \quad A \supset F \ \mu(A \setminus F) < \varepsilon$

- $(a) \iff (b)$ (a) для A равносильно (b) для $T \setminus A$
- $(a) \Longrightarrow (i)$ Очевидно

Теорема 2.8.1. Мера Лебега регулярна.

- Проверим условие (а) из прошлой леммы.
 - 1. Пусть $\lambda(A) < \infty$. Зафиксируем $\varepsilon > 0$. Тогда существуют такие $P_j \in \mathcal{P}^n$, что

$$\bigcup_{j=1}^{\infty} P_j \supset A, \quad \lambda(P_j) \geqslant \sum_{j=1}^{\infty} \lambda(P_J) - \frac{\varepsilon}{2}.$$

Немного расширим ячейки, чтобы они стали открытыми множествами. Пусть $P_j = [a_j, b_j)$, построим $P_j \subset P_j'(a_j',b_j)$, при этом $\mu(P_j') - \mu(P_j) < \frac{\varepsilon}{2^{j+1}}$.

Теперь
$$G = \bigcup_{j=1}^{\infty} P'_j \supset A$$
 и

$$\lambda(G \setminus A) = \lambda(G) - \lambda(A) \leqslant \sum_{j=1}^{\infty} \lambda(P'_j) - \sum_{j=1}^{\infty} \lambda(P_j) + \frac{\varepsilon}{2} < \varepsilon.$$

2. Если $\mu(A)=\infty$, то можем представить $\mathbb{R}^n=\bigsqcup_{j=1}^\infty Q_j$, где Q_j — дизъюнктные ячейки из \mathcal{P}^n . Тогда можем воспользовался σ -конечностью: представим A так

$$A = \bigcup_{j=1}^{\infty} \underbrace{(Q_j \cap A)}_{\text{все конечны по мере}}.$$

Каждое из $(Q_j \cap A)$ можем приблизить каким-то открытым множеством $G_j \colon G_j \cap A \subset G_j$ и $\lambda(G_j \setminus (Q_j \cap A))$ $A)) < \frac{\varepsilon}{2^j}.$

Тогда возьмем $G=\bigcup_{j=1}^{\infty}G_{j}\supset A,$ поэтому $\lambda(G)-\lambda(A)<\varepsilon.$

Следствие 6. Если E измеримо по Лебегу, то существуют компактные множество K_j такие, что

$$E = \bigcup_{j=1}^{\infty} K_j \cup e, \quad \lambda(e) = 0.$$

Рассмотрим замкнутые $F_j \subset E$, что $\lambda(E \setminus F_j) \xrightarrow[j \to \infty]{} 0$ и $F_j \subset F_{j+1} \subset \dots$

Построим из F_j компакты: $K_j = F_j \cap \overline{B(0,j)}$.

Paccmotpum e:

$$e = E \setminus \bigcup_{j=1}^{\infty} F_j = E \setminus \bigcup_{j=1}^{\infty} K_j.$$

Тогда

$$E = \bigcup_{j=1}^{\infty} K_j \cup e.$$

Проверим, что $\lambda(e) = 0$.

$$\lambda(e) \leqslant \lambda(E \setminus F_j) \xrightarrow[j \to \infty]{} 0.$$

Значит, e измеримо и $\lambda(e) = 0$.

Следствие 7. Если E измеримо, то существуют открытые G_j и измеримое e', что $\lambda(e') = 0$ и

$$E = \bigcap_{j=1}^{\infty} G_j \setminus e'.$$

Теорема 2.8.2 (Ключевой момент. Почему интеграл Лебега удобнее Римана). Пусть G- открытое в \mathbb{R}^n , $f: G \to \mathbb{R}^n$, f непрерывно дифференцируема в G.

- 1. Если $E \subset G$, то f(E) измеримо.
- 2. Ecsu $\lambda(E) = 0$, mo $\lambda(f(E)) = 0$.

Лекция 5: †

30 Sept

Теорема 2.8.3 (О сосхранении измеримости при гладком отображении). Пусть $G \subset \mathbb{R}^m$ и G- открытое, $C^1(G) \ni \Phi \colon G \to \mathbb{R}^m$ — гладкая функция на G. Тогда

- (1) если $e \subset G$ и $\lambda(e) = 0$, то $\Phi(e) \in \Omega_m$ и $\lambda(\Phi(e)) = 0$;
- (2) $ecnu E \subset G \ u E \in \Omega_m, \ mo \ \Phi(E) \in \Omega_m,$

где Ω_m — семейство измеримых по Лебегу множеств.

 $1 \Longrightarrow 2$ Представим $E = e \cup \bigcap_{n=1}^{\infty} K_n$, где K_n — компактны и $\lambda(e) = 0$. Так как Φ гладкая, она переводит компакт в компакт.

$$\Phi(E) = \Phi(e) \cap \bigcap_{n=1}^{\infty} \Phi(K_n).$$

 $\stackrel{\sim}{\underset{n=1}{\bigsqcup}}\Phi(K_n)$ — объединение замкнутых, следовательно, само является замкнутым, а поэтому измеримо по Лебегу. По первому пункту $\Phi(e)$ измеримо. А тогда и $\Phi(E)$ измеримо.

Пусть $\lambda(e) = 0$.

1. Рассмотрим случай, когда e входит в G внутри некоторой ячейки. $e \subset P \subset \overline{P} \subset G$, где P- ячейка, поэтому $\overline{P}-$ компакт.

По теореме о конечном приращении $\Phi|_{\overline{P}}$ — липшицево, то есть²

$$\exists c \colon \forall x, y \in \overline{P} \quad \|\Phi(x) - \Phi(y)\| \leqslant c \cdot \|x - y\|.$$

Воспользуемся регулярностью меры Лебега: зафиксируем $\varepsilon > 0$. Тогда существует открытое g, что

$$e \subset g \subset G$$
 и $\lambda(g) < \varepsilon$.

Теперь представим g в виде объединения дизъюнктных ячеек: $g = \bigsqcup_{j=1}^{\infty} Q_j$. Обозначим ребро ячейки Q_j за h_j и перепишем условие $\lambda(g) < \varepsilon$, используя счетную аддитивность:

$$\lambda(g) = \sum_{j=1}^{\infty} h_j^m < \varepsilon.$$

 $^{^2}$ Здесь под нормой подразумевается евклидова норма, то есть просто модуль. В качестве константы c достаточно взять максимум дифференциала на \overline{P} .

Заметим, что diam $Q_j = h_j \sqrt{m}$. Так как Φ липшицево, diam $\Phi(Q_j) \leqslant c \cdot h_j \sqrt{m}$. Тогда $\Phi(Q_j)$ можно погрузить в ячейку Q_j' :

$$\Phi(Q_j)\subset Q_j',\quad h_j'\leqslant 2ch_j\sqrt{m}$$

$$\lambda(Q_j')\leqslant\underbrace{(2c\sqrt{m})^m}_{\text{не зависит от номера ячейки}}(h_j)^m$$

Мы знаем, что

$$\Phi(e) \subset \Phi(g) \subset \bigsqcup_{j=1}^{\infty} \Phi(Q_j) \subset \bigsqcup_{j=1}^{\infty} Q'_j.$$

При этом

$$\sum_{j=1}^{\infty} \lambda(Q_j') \leqslant (2c\sqrt{m})^m \cdot \sum_{j=1}^{\infty} (h_j)^m < (2c\sqrt{m})^m \cdot \varepsilon.$$

Следовательно, $\Phi(e)$ можно покрыть множеством сколь угодно малой меры. Тогда $\Phi(e)$ измеримо и $\lambda(\Phi(e))=0$.

Рис. 2.1: Отображение Q_i

2. Если e не помещается в диадическую ячейку: $e \subset G$. Так как G открыто, каждая точка входит с некоторой окрестностью B, для можно найти некоторою ячейку P_j , что точка принадлежит P_j , а $\overline{P_j} \subset B \subset G$.

Поэтому

$$G = igcup_{j=1}^\infty P_j, \quad P_j -$$
ячейки, $\overline{P_j} \subset G.$

Тогда можем рассмотреть $e_j=e\cap P_j\subset P_j\subset G$. В этом случае $\lambda(e\cap P_j)\leqslant \lambda(e)=0$ и $e\cap P_j\subset P_j\subset \overline{P_j}\subset G$.

Можно применить первый пункт и получить, что

$$\Phi(e \cap P_j)$$
 измеримо и $\lambda(\Phi(e \cap P_j)) = 0.$

Просуммируем: $e = \bigsqcup_{j=1}^{\infty} (e \cap P_j)$ и

$$\Phi(e) = \bigcup_{j=1}^{\infty} \Phi(e \cap P_j) \Longrightarrow \lambda(\Phi(e)) \leqslant \sum_{j=1}^{\infty} \lambda(\Phi(e \cap P_j)) = 0.$$

Ремарка. На самом деле гладкость не нужна, а достаточно локальной липшицевости.

Ремарка. Подпространство меньшей размерности, чем объемлющая, имеет меру нуль.

Следствие 8. Возьмем открытое $G \subset \mathbb{R}^m$ и функцию $f: G \to \mathbb{R}, f \in C^1(G)$.

$$\Gamma_f = \{(x, f(x) \mid x \in G\} \subset \mathbb{R}^{m+1}.$$

Тогда $\lambda_{m+1}(\Gamma_f) = 0$.

 \square Рассмотрим множество $G \times \{0\}$. $\lambda_{m+1}(G \times \{0\}) = 0$, так как для любого покрытия параллелепипедами можно сколь угодно уменьшить объем (уменьшаем последнюю сторону, а это можно делать, так как покрыть нужно точку 0). Теперь возьмем $\Phi(x,0) = (x,f(x))$. По доказанной теореме $\lambda_{m+1}(\Gamma_f) = 0$.

Задача. Измеримость не сохраняется при непрерывном отображении. Привести пример. Намек на решение: канторова лестница.

......

.....

2.9 Инвариантность меры Лебега при движении

Теорема 2.9.1 (Инвариантность при сдвиге). *Рассмотрим* $v \in \mathbb{R}^m$ $u E \in \mathfrak{A}_m$. *Тогда* $v + E = \{v + x \mid x \in E\}$ тоже измеримо и $\lambda(v + E) = \lambda(E)$.

Так как сдвиг — липшицево отображение с коэффициентом 1, по прошлой теореме 2.8.3, v+E измеримо. Определим $\mu(E)=\lambda(v+E)$. μ — мера на $\mathfrak A$, так как множества измеримы по λ , согда они измеримы по μ .

Тогда для ячейки $P \in \mathcal{P}_m$ верно $\mu(P) = \lambda(v+P) = \lambda(P)$.

Так как λ — стандартное продолжение объема на ячейках, а μ — продолжение Каратеодори, причем они совпадают на полукольце, то по единственности стандартного продолжения они совпадают на \mathfrak{A}_m . Следовательно, $\lambda(E) = \lambda(v+E)$.

Теорема 2.9.2. Пусть μ — инвариантная относительно сдвига (то есть $\forall E \in \mathfrak{A}_m \ \forall v \colon \mu(v + E) = \mu(E)$) мера на \mathfrak{A}_m .

Дополнительно потребуем, что μ конечна на всех ограниченных измеряемых множествах (достаточно потребовать для ячеек).

Тогда существует такое $k \in [0, +\infty)$, что $\mu = k\lambda$, то есть

$$\forall E \in \mathfrak{A}_m \colon \mu(E) = k\lambda(E).$$

 \square Рассмотрим $Q=[0,1]^m.$ Пусть $k=\mu(Q)$ и $\widetilde{\mu}=\frac{\mu}{k}.$ Тогда $\widetilde{\mu}(Q)=1=\lambda(Q).$

Так как $\widetilde{\mu}$ инвариантно относительно сдвигов, $\widetilde{\mu} = \lambda$ на диадических ячейках \mathcal{P}_m^d (для \mathcal{P}_m^1 уже знаем, для большего d можем раздробить ячейку на меньшие и сдвинуть туда меньшую).

Следовательно, $\widetilde{\mu} = \lambda$ на \mathfrak{A}_m .

Теорема 2.9.3 (Об инвариантности относительно вращения). Пусть $U: \mathbb{R}^m \to \mathbb{R}^m$ — ортогональное преобразование. Тогда, если E измеримо, то U(E) тоже измеримо, причем $\lambda(U(E)) =$

 $\lambda(E)$.

 \square Так как U липшицево, U(E) измеримо. Пусть $\mu(E) = \lambda(U(E))$ — тоже мера на \mathfrak{A}_m (все аксиомы просто наследуются). Притом μ точно конечна на всех ограниченных множествах.

Проверим инвариантность относительно сдвига

$$v \in \mathbb{R}^m$$
: $\mu(v+E) = \lambda(U(v+E)) = \lambda(Uv+U(E)) = \lambda(U(E)) = \mu(E)$.

Тогда существует такое k, что $\mu = k \cdot \lambda$.

Но на единичном шаре B

$$\mu(B) = \lambda(U(B)) = \lambda(B) \Longrightarrow k = 1.$$

Получаем, что λ инвариантно относительно поворота.

Следствие 9. Мера Лебега инвариантна относительно движений.

Упраженение.

- 1. Как меняется мера при проекции?
- 2. Как меняется мера при других преобразованиях, например, гомотетии?

.....

.....

2.10 Изменение меры Лебега при линейном отображении

Лемма 3. Пусть $L: \mathbb{R}^m \to \mathbb{R}^m$. Тогда существуют ортонормированные базисы $\{g_j\}_{j=1}^m$ и $\{e_j\}_{j=1}^m$ и $s_j > 0$ такие, что

$$Lx = \sum_{j=1}^{m} s_j \langle x, g_j \rangle e_j \quad \forall x \in \mathbb{R}^m,$$

 $npu\ {\it этом}\ |{
m det}\ L|=\prod_{j=1}^m s_j.\ {\it Это}\ {\it называется}\ {\it полярным}\ {\it разложением}\ {\it оператора}.$

 \square Рассмотрим L^* — сопряженный оператор и $A=LL^*$ — самосопряженный оператор. Так как L определено на \mathbb{R}^m , матрица A будет вещественной, а поэтому еще и симметричной. У симметричной матрицы можем взять ортонормированный базис из собственных векторов $\{g_j\}_{j=1}^m$.

Пусть g_j — собственный вектор собственного числа λ_j .

$$\lambda_j \underbrace{\langle g_j, g_j \rangle}_{=1} = \langle Ag_j, g_j \rangle = \langle LL^*g_j, g_j \rangle = \langle L^*g_j, L^*g_j \rangle \geqslant 0 \Longrightarrow \lambda_j \geqslant 0.$$

Пусть $s_j = \sqrt{\lambda_j}$. Тогда $x \in \mathbb{R}^m$ представим в виде $\sum_{j=1}^m \langle x, g_j \rangle g_j$. Тогда

$$Lx = \sum_{j=1}^{m} \langle x, g_j \rangle \underbrace{Lg_j}_{s_j e_j}.$$

Поэтому $\{e_j\} = \{\frac{Lg_j}{s_j}\}$ — базис. Докажем, что он ортонормированный.

$$s_k s_n \langle e_k, e_n \rangle = \langle Le_k, Le_n \rangle = \langle L^* Lg_k, g_n \rangle = \langle \lambda_k g_k, g_n \rangle s_k^2 \delta_{k,n}$$

$$\delta_{k,n} = \begin{cases} 0 & k \neq n \\ 1 & k = n \end{cases}$$

Докажем утверждение про определитель:

$$\det A = \prod_{j=1}^{m} \lambda_j = \left(\prod_{j=1}^{m} s_j\right)^2.$$

С другой стороны,

$$\det A = \det L \cdot \det L^* = (\det L)^2.$$