4 Ströme

4.1 Differentialformen und äußere Ableitung

Ziel: Integration über orientierte Flächen.

Definition

Sei $k \in \mathbb{R}$ und V ein n-dimensionaler reeller Vektorraum.

- (1) Eine Abbildung $\Phi: V^k \to \mathbb{R}$ heißt multilinear, falls Φ in jeder Komponente linear ist.
- (2) Eine Abbildung $\Phi: V^k \to \mathbb{R}$ heißt alternierend, falls Φ nur das Vorzeichen wechselt, wenn zwei Komponenten vertauscht werden:

$$\Phi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_k) = -\Phi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_k).$$

- (3) $\bigwedge^k V := \{(\Phi \colon V^k \to \mathbb{R}) : \Phi \text{ ist multilinear und alternierend}\}.$
- (4) $\bigwedge^k V$ wird in kanonischer Weise zu einem Vektorraum. Die Elemente von $\bigwedge^k V$ nennt man k-Kovektoren, falls $V = \mathbb{R}^n$. Ist $V = (\mathbb{R}^n)^*$, so werden die Elemente von $\bigwedge^k (\mathbb{R}^n)^* =: \bigwedge_k \mathbb{R}^n$ als k-Vektoren bezeichnet.

Bemerkungen: (1) $\bigwedge^1 \mathbb{R}^n = (\mathbb{R}^n)^*$

- (2) $\bigwedge_1 \mathbb{R}^n = ((\mathbb{R}^n)^*)^* = \mathbb{R}^n$ (mit der üblichen Identifikation).
- (3) Sei e_1, \ldots, e_n die Standardbasis des \mathbb{R}^n und e_1^*, \ldots, e_n^* die Dualbasis. Wir schreiben

$$\langle e_j^*, e_i \rangle \coloneqq e_j^*(e_i) = \delta_{ij}.$$

Statt e_j^* wird auch dx_j geschrieben.

(4) $\bigwedge^n \mathbb{R}^n$ sind gerade die Determinantenfunktionen.

Definition

Seien $\eta_1, \ldots, \eta_k \in \bigwedge^1 \mathbb{R}^n$. Dann wird

$$\eta_1 \wedge \ldots \wedge \eta_k \in \bigwedge^k \mathbb{R}^n$$

durch

$$(\eta_1 \wedge \ldots \wedge \eta_k)(v_1, \ldots, v_k) := \det(\langle \eta_i, v_j \rangle_{i,j=1,\ldots,k})$$

erklärt. Man beachte hierbei $\langle \eta_i, v_j \rangle \coloneqq \eta_i(v_j).$

Alternativ: Ist $\eta_i = \sum_{j=1}^n \eta_{ij} dx_j$, $\eta_{ij} \in \mathbb{R}$, i = 1, ..., k, so kann man auch

$$(\eta_1 \wedge \ldots \wedge \eta_k)(v_1, \ldots, v_k) := \det ((\eta_{ij}) \cdot (v_1 | \cdots | v_k))$$

erklären.

Ergänzung: Mit $\mathcal{T}^k(V) := \{(T \colon V^k \to \mathbb{R}) : T \text{ ist } k\text{-linear}\}$ bezeichnet man die Tensoren der Stufe k über dem Vektorraum V. Die Abbildung

$$\mathcal{T}^k(V) \otimes \mathcal{T}^l(V) \to \mathcal{T}^{k+l}(V)$$

 $(T,S) \mapsto T \otimes S$

ist erklärt durch

$$(T \otimes S)(u_1, \ldots, u_{k+l}) \coloneqq T(u_1, \ldots, u_k) \cdot S(u_{k+1}, \ldots, u_{k+l}).$$

Man bezeichnet $T \otimes S$ als das Tensorprodukt von T und S. Um für $p \in \mathbb{N}$ einen p-Tensor in einen alternierenden p-Tensor zu überführen, erklärt man die Abbildung

$$Alt: \mathcal{T}^p(V) \to \bigwedge^p V$$
$$T \mapsto Alt(T),$$

wobei

$$Alt(T)(v_1, \dots, v_p) := \frac{1}{p!} \cdot \sum_{\pi \in S_p} sgn(\pi) \cdot T(v_{\pi(1)}, \dots, v_{\pi(p)}).$$

Hier ist S_p die Menge aller Permutationen (Bijektionen) der Menge $\{1,\ldots,p\}$. Für $\omega\in\bigwedge^k\mathbb{R}^n$ und $\eta\in\bigwedge^l\mathbb{R}^n$ sei

$$\omega \wedge \eta := \frac{(k+l)!}{k! \cdot l!} \operatorname{Alt}(\omega \otimes \eta) \in \bigwedge^{k+l} \mathbb{R}^n.$$

Man stellt fest, dass dieses "Dachprodukt" assoziativ ist. Ferner gilt

$$\eta_1 \wedge \ldots \wedge \eta_k = k! \cdot \operatorname{Alt}(\eta_1 \otimes \ldots \otimes \eta_k).$$

In gleicher Weise erklären wir nun auch ein Dachprodukt für k-Vektoren.

Definition

Seien $v_1, \ldots, v_k \in \mathbb{R}^n$. Dann wird

$$v_1 \wedge \ldots \wedge v_k \in \bigwedge_k \mathbb{R}^n$$

durch

$$(v_1 \wedge \ldots \wedge v_k)(\eta_1, \ldots, \eta_k) := \det(\langle \eta_i, v_j \rangle_{i,j=1,\ldots,k})$$

erklärt, wobei $\eta_1, \ldots, \eta_k \in (\mathbb{R}^n)^*$.

Man kann zeigen, dass $\eta_1 \wedge \ldots \wedge \eta_k \in \bigwedge^k \mathbb{R}$ eine Linearform auf $\bigwedge_k \mathbb{R}^n$ ist, wenn man

$$(\eta_1 \wedge \ldots \wedge \eta_k)(v_1 \wedge \ldots \wedge v_k) \coloneqq (\eta_1 \wedge \ldots \wedge \eta_k)(v_1, \ldots, v_k)$$

für $v_1, \ldots, v_k \in \mathbb{R}^n$ erklärt. Die Wohldefiniertheit ist leicht einzusehen. Im Folgenden schreiben wir für $\omega \in \bigwedge^k \mathbb{R}^n$ und $\xi \in \bigwedge_k \mathbb{R}^n$

$$\langle \omega, \xi \rangle := \omega(\xi).$$

In gleicher Weise wird $v_1 \wedge \ldots \wedge v_k \in \bigwedge_k \mathbb{R}^n$ als Linearform auf $\bigwedge^k \mathbb{R}^n$ erklärt, indem man

$$(v_1 \wedge \ldots \wedge v_k)(\eta_1 \wedge \ldots \wedge \eta_k) := (v_1 \wedge \ldots \wedge v_k)(\eta_1, \ldots, \eta_k)$$

setzt. Auch hier ist die Wohldefiniertheit leicht zu bestätigen.

Man kann ferner nachweisen, dass

$$e_{i_1}^* \wedge \ldots \wedge e_{i_k}^*, \qquad 1 \leq i_1 < \cdots < i_k \leq n$$

eine Basis von $\bigwedge^k \mathbb{R}^n$ ist. Ebenso ist

$$e_{i_1} \wedge \ldots \wedge e_{i_k}, \qquad 1 \leq i_1 < \cdots < i_k \leq n$$

eine Basis von $\bigwedge_k \mathbb{R}^n$. Diese Basen sind zueinander dual in Bezug auf obige Deutung von k-Kovektoren als Linearformen auf k-Vektoren.

Notation: Sei

$$I_k^n := \{(i_1, \dots, i_k) \in \{1, \dots, n\}^k : 1 \le i_1 < \dots < i_k \le n\}.$$

Für $I \in I_k^n$ ist $e_I := e_{i_1} \wedge \ldots \wedge e_{i_k}$ und $dx_I := dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ und so weiter.

Bemerkungen: (1) Für $\sigma \in S_k$, $\eta_1, \ldots, \eta_k \in (\mathbb{R}^n)^* = \bigwedge^1 \mathbb{R}^n$ gilt

$$\eta_{\sigma(1)} \wedge \cdots \wedge \eta_{\sigma(k)} = \operatorname{sgn}(\sigma) \cdot \eta_1 \wedge \cdots \wedge \eta_k.$$

(2) Sei $\Phi \in \bigwedge^k \mathbb{R}^n$. Dann ist

$$\Phi = \sum_{1 \le i_1 < \dots < i_k \le n} \Phi_{(i_1, \dots, i_k)} dx_{i_1} \wedge \dots \wedge dx_{i_k} = \sum_{I \in I_k^n} \Phi_I \cdot dx_I.$$

Hierbei ist also $\Phi_I = \Phi(e_{i_1} \wedge \cdots \wedge e_{i_k}) = \Phi(e_I) \in \mathbb{R}$.

Definition

Sei $W \subset \mathbb{R}^n$ offen. Eine Abbildung $\Phi \colon W \to \bigwedge^k \mathbb{R}^n$ heißt Differentialform vom Grad k (kurz: k-Form). Die k-Form Φ ist von der Klasse \mathcal{C}^r , $r \geq 1$, falls $p \mapsto \Phi(p)(v_1, \ldots, v_k)$ von der Klasse \mathcal{C}^r ist für jede Wahl von $v_1, \ldots, v_k \in \mathbb{R}^n$.

(1) Die k-Form Φ ist von der Klasse \mathcal{C}^r genau dann, wenn Bemerkungen:

$$p \mapsto \Phi_I(p) := \Phi(p)_I = \langle \Phi(p), e_I \rangle = \langle \Phi(p), e_{i_1} \wedge \cdots \wedge e_{i_k} \rangle$$

von der Klasse C^r ist für alle $I \in I_k^n$.

(2) Die k-Form Φ lässt sich schreiben als

$$p \mapsto \Phi(p) = \sum_{I \in I_k^n} \Phi_I(p) dx_I$$

mit $\Phi_I(p) \in \mathbb{R}$.

Definition (Dachprodukt) Für $\Phi \in \bigwedge^k \mathbb{R}^n$ und $\eta \in \bigwedge^l \mathbb{R}^n$ wird $\Phi \wedge \eta \in \bigwedge^{k+l} \mathbb{R}^n$ in folgender Weise erklärt: Ist $\Phi =$ $\sum_{I \in I_i^n} \Phi_I dx_I$ und $\eta = \sum_{J \in I_i^n} \eta_J dx_J$, dann ist

$$\Phi \wedge \eta \coloneqq \sum_{I \in I_k^n, \, J \in I_l^n} \Phi_I \cdot \eta_J \underbrace{dx_I \wedge dx_J}_{dx_{i_1} \wedge \dots \wedge dx_{i_k} \wedge dx_{j_1} \wedge \dots \wedge dx_{j_l}}.$$

Eine "invariante Definition" kann mit Hilfe des Alt-Operators gegeben werden (s.o.).

Bemerkungen: (1) Assoziativgesetz: Für $\Phi \in \bigwedge^k \mathbb{R}^n$, $\eta \in \bigwedge^l \mathbb{R}^n$ und $\Theta \in \bigwedge^r \mathbb{R}^n$ gilt:

$$(\Phi \wedge \eta) \wedge \Theta = \Phi \wedge (\eta \wedge \Theta).$$

(2) Distributivgesetz: Für $\alpha_1, \alpha_2 \in \mathbb{R}$, $\Phi_1, \Phi_2 \in \bigwedge^k \mathbb{R}^n$ und $\eta \in \bigwedge^l \mathbb{R}^n$ gilt:

$$(\alpha_1 \Phi_1 + \alpha_2 \Phi_2) \wedge \eta = \alpha_1(\Phi_1 \wedge \eta) + \alpha_2(\Phi_2 \wedge \eta).$$

Ausblick:

• Sei $S \subset \mathbb{R}^n$ eine k-Fläche, das heißt es gibt eine offene Menge $U \subset \mathbb{R}^k$ und eine Abbildung $F \colon U \to \mathbb{R}^n$ der Klasse \mathcal{C}^r , $r \geq 1$, F ist injektiv, DF_x ist injektiv und S = F(U).

Die Fläche S wird "orientiert" durch die Orientierung von \mathbb{R}^k und durch F.

- Sei $W \subset \mathbb{R}^n$ offen mit $S \subset W$. Sei ferner Φ eine k-Form auf W, das heißt $\Phi(p) \in \bigwedge^k \mathbb{R}^n$ für $p \in W$.
- ullet Das Integral von Φ über S kann erklärt werden durch

$$\int_{S} \Phi := \int_{U} \left\langle \underbrace{\Phi \circ F(x)}_{\in \bigwedge^{k} \mathbb{R}^{n}}, \underbrace{\frac{\partial F}{\partial x_{1}}(x) \wedge \cdots \wedge \frac{\partial F}{\partial x_{k}}(x)}_{\in \bigwedge_{k} \mathbb{R}^{n}} \right\rangle \lambda^{k}(dx).$$

Man zeigt mit Hilfe des Transformationssatz für Gebietsintegrale, dass diese Defintion von der Wahl von F unabhängig ist.

Definition (Äußeres Differential)

Sei $U \subset \mathbb{R}^n$ offen und $\Phi: U \to \bigwedge^k \mathbb{R}^n$ eine k-Form der Klasse \mathcal{C}^r mit r > 1.

(a) Ist k=0, so ist $\Phi=f$ eine Funktion und $d\Phi=df$ ist als 1-Form auf U erklärt durch $df(p)(v):=D_vf(p)$, das heißt

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$

denn

$$df(p)(v) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p) \cdot dx_i(v) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p) \cdot v_i = \langle \nabla f(p), v \rangle = D_v f(p).$$

(b) Ist $k \geq 1$ und $\Phi = f \cdot dx_I$ für ein $I \in I_k^n$, dann sei $d\Phi \coloneqq df \wedge dx_I$, das heißt $d\Phi(p) \in \bigwedge^{k+1} \mathbb{R}^n$ mit

$$d\Phi(p) = \underbrace{df(p)}_{\in \bigwedge^1 \mathbb{R}^n} \wedge \underbrace{dx_I}_{\in \bigwedge^k \mathbb{R}^n} \in \bigwedge^{k+1} \mathbb{R}^n.$$

(c) Sei $k \geq 1$ und $\Phi = \sum_{I \in I_k^n} \Phi_I dx_I$ allgemein. $d\Phi$ wird durch lineare Fortsetzung erklärt, das heißt

$$d\Phi := \sum_{I \in I_k^n} d(\Phi_I dx_I) = \sum_{I \in I_k^n} d\Phi_I \wedge dx_I.$$

Bemerkungen: Es gilt

$$\langle d\Phi(p), v_1 \wedge \dots \wedge v_{k+1} \rangle = \sum_{i=1}^{k+1} (-1)^{i-1} \langle D_{v_i} \Phi(p), v_1 \wedge \dots \wedge \mathcal{Y}_i \wedge \dots \wedge v_{k+1} \rangle.$$

Lemma 4.1

Seien Φ, Ψ jeweils k-Formen der Klasse $C^r, r \geq 1$, und Θ eine l-Form der Klasse $C^s, s \geq 1$. Dann gilt

(1)
$$d(\Phi + \Psi) = d\Phi + d\Psi$$

(2)
$$d(\Phi \wedge \Theta) = d\Phi \wedge \Theta + (-1)^k \cdot \Phi \wedge d\Theta$$
.

Beweis

(2) Seien $\Phi = f dx_I$, $\Theta = g dx_J$. Dann erhält man

$$d(\Phi \wedge \Theta) = d(f \cdot dx_I \wedge g \cdot dx_J) = d((f \cdot g) \cdot dx_I \wedge dx_J) = d(f \cdot g) \wedge dx_I \wedge dx_J$$

$$= (g \cdot df + f \cdot dg) \wedge dx_I \wedge dx_J$$

$$= g \cdot df \wedge dx_I \wedge dx_J + f \cdot dg \wedge dx_I \wedge dx_J$$

$$= (df \wedge dx_I) \wedge (g \cdot dx_J) + (-1)^k \cdot (f \cdot dx_I) \wedge (dg \wedge dx_J)$$

$$= d\Phi \wedge \Theta + (-1)^k \cdot \Phi \wedge d\Theta.$$

Lemma 4.2

Ist die k-Form $\Phi: U \to \bigwedge^k \mathbb{R}^n$ von der Klasse \mathcal{C}^r , $r \geq 2$, so gilt $dd\Phi = 0$ (als (k+2)-Form).

Beweis

Sei ohne Beschränkung der Allgemeinheit $\Phi = f \cdot dx_I, I \in I_k^n$. Dann gilt

$$d\Phi = df \wedge dx_I = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \cdot dx_i \wedge dx_I$$

und ferner

$$d(d\Phi) = d(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \cdot dx_{i} \wedge dx_{I})$$

$$= \sum_{i=1}^{n} d(\frac{\partial f}{\partial x_{i}} \cdot dx_{i} \wedge dx_{I})$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \cdot dx_{j} \wedge dx_{i} \wedge dx_{I})$$

$$= (\sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \cdot dx_{j} \wedge dx_{i}) \wedge dx_{I}$$

$$= \sum_{i < j} (\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \cdot dx_{j} \wedge dx_{i} + \underbrace{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}}_{\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}} \cdot \underbrace{dx_{i} \wedge dx_{j}}_{-dx_{j} \wedge dx_{i}}) \wedge dx_{I} = 0.$$

Bemerkung: Eine k-Form Φ mit $d\Phi = 0$ heißt geschlossen. Eine k-Form Φ, zu der es eine k-1-Form η gibt mit $d\eta = \Phi$ heißt exakt. Lemma 4.2 besagt, dass jede exakte Form geschlossen ist.

Frage: Gilt auch die Umkehrung? Das heißt: Ist eine geschlossene Form stets exakt?

Im Allgemeinen gilt dies nicht. Für ein einfach zusammenhängendes Gebiet $U \subset \mathbb{R}^n$ ist dies jedoch richtig (Lemma von Poincaré).

Ziele:

- Integration von Differetialformen
- Satz von Stokes (Spezialfall)

Definition

Sei $U \subset \mathbb{R}^n$ eine λ^n -messbare Menge und ω eine stetige n-Form auf U. Dann wird das Integral von ω über U erklärt durch

$$\int_{U} \omega := \int_{U} \langle \omega(x), e_1 \wedge \dots \wedge e_n \rangle \, \lambda^n(dx)$$

wobei das U im linken Integral als Menge mit Orientierung (durch die rechts verwendete geordnete Standardbasis) zu verstehen ist. So legt man auch fest, dass

$$\int_{-U} \omega := \int_{U} -\langle \omega(x), e_1 \wedge \cdots \wedge e_n \rangle \, \lambda^n(dx).$$

Niederdimensionale Mengen und Integration:

Beispiel

Sei $F = \{p\}$ eine 0-dimensionale Menge, sei ω eine 0-Form, das heißt eine Funktion $\omega \colon U \to \mathbb{R}$, $p \in U$. Dann wird erklärt

$$\int_{F} \omega := \omega(p) =: \delta_{p}(\omega).$$

Definition

Sei $n \geq 1$.

(1) Ein (n-1)-dimensionaler Quader F, der zur i-ten Koordinatenachse orthogonal ist, ist von der Form

$$F = [a_1, b_1] \times \cdots \times [a_i, b_i] \times \cdots \times [a_n, b_n]$$

mit $a_i = b_i$ und $a_j < b_j$ für $j \in \{1, \ldots, n\} \setminus \{i\}$.

(2) Orientierung von F durch den (n-1)-Vektor

$$\hat{e}_i := \bigwedge_{j \neq i} e_j := e_1 \wedge \cdots \wedge \mathscr{A} \wedge \cdots \wedge e_n.$$

(3) Integration einer (n-1)-Form ω über F. Sei $\omega \colon F \to \bigwedge^{n-1} \mathbb{R}^n$ stetig (oder λ^{n-1} -messbar). Dann sei

$$\int_{F} \omega := \int_{F} \langle \omega(x), \hat{e}_{i} \rangle \, \lambda^{n-1}(dx)$$

und

$$\int_{F} \omega := \int_{F} -\omega = \int_{F} -\langle \omega(x), \hat{e}_i \rangle \, \lambda^{n-1}(dx).$$

(4) Seien $\alpha_k \in \mathbb{R}$, F_k orientierte "Seitenflächen" von n-dimensionalen Quadern, $k \in \mathbb{N}$. Sei $\sum \alpha_k F_k$ eine formale, endliche Linearkombination. Sei ω eine (n-1)-Form auf $U \subset \mathbb{R}^n$, $F_k \subset U$. Dann sei

$$\int_{\sum \alpha_k F_k} \omega \coloneqq \sum \alpha_k \cdot \int_{F_k} \omega.$$

Definition (Orientierter Rand)

Sei $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ ein Quader mit $a_i < b_i$. Dann sei für $1 \le i \le n$

$$R_i^+ := [a_1, b_1] \times \cdots \times \{b_i\} \times \cdots \times [a_n, b_n],$$

$$R_i^- := [a_1, b_1] \times \cdots \times \{a_i\} \times \cdots \times [a_n, b_n]$$

und

$$\partial_o R := \sum_{i=1}^n (-1)^{i-1} (R_i^+ - R_i^-)$$

sei eine formale Linearkombination von Flächen.

Satz 4.3

Seien $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$, $a_i < b_i$ und φ eine (n-1)-Form der Klasse C^k mit $k \ge 1$, auf einer offenen Menge $U \subset \mathbb{R}^n$ mit $R \subset U$. Dann gilt

$$\int_{R} d\varphi = \int_{\partial_{o}R} \varphi.$$

Beweis

Sei zunächst $n=1, \varphi$ eine 0-form, das heißt eine Funktion auf U. Es gilt $d\varphi(x)=\varphi'(x)\cdot dx$. Nun gilt

$$\int_{\partial_{o}R} \varphi = \int_{\partial_{o}[a_{1},b_{1}]} \varphi = \int_{\{b\}-\{a\}} \varphi = \varphi(b) - \varphi(a)$$

und

$$\int_{R} d\varphi = \int_{[a,b]} \varphi'(x)dx = \int_{[a,b]} \langle \varphi'(x)dx_{1}, e_{1} \rangle \lambda^{1}(dx)$$

$$= \int_{a}^{b} \varphi'(x) \lambda^{1}(dx) = \varphi(b) - \varphi(a) = \int_{\partial_{a}R} \varphi,$$

wobei der Hauptsatz der Differential- und Integralrechnung verwendet wurde.

Sei nun $n \geq 2$. Dann hat φ eine Darstellung der Form

$$\varphi = \sum_{i=1}^{n} \varphi_i dx_1 \wedge \dots \wedge dx_i \wedge \dots \wedge dx_n.$$

Es genügt, zu zeigen, dass für $1 \le i \le n$ gilt:

$$\int_{R} d(\varphi_{i} \cdot dx_{1} \wedge \cdots \wedge dx_{i} \wedge \cdots \wedge dx_{n}) = \int_{\partial_{0}R} \varphi_{i} \cdot dx_{1} \wedge \cdots \wedge dx_{i} \wedge \cdots \wedge dx_{n}.$$

Zunächst ist

$$d(\varphi_i \cdot dx_1 \wedge \dots \wedge dx_i \wedge \dots \wedge dx_n) = \sum_{j=1}^n \frac{\partial \varphi_i}{\partial x_j} dx_j \wedge dx_1 \wedge \dots \wedge dx_i \wedge \dots \wedge dx_n$$
$$= (-1)^{i-1} \frac{\partial \varphi_i}{\partial x_i} dx_1 \wedge \dots \wedge dx_n.$$

Also

$$\begin{split} \int_{R} d(\varphi_{i} \cdot dx_{1} \wedge \dots \wedge dx_{i} \wedge \dots \wedge dx_{n}) &= (-1)^{i-1} \int_{R} \frac{\partial \varphi_{i}}{\partial x_{i}} dx_{1} \wedge \dots \wedge dx_{n} \\ &= (-1)^{i-1} \int_{R} \langle \frac{\partial \varphi_{i}}{\partial x_{i}} (x) dx_{1} \wedge \dots \wedge dx_{n}, e_{1} \wedge \dots \wedge e_{n} \rangle \, \lambda^{n}(dx) \\ &= (-1)^{i-1} \int_{R} \frac{\partial \varphi_{i}}{\partial x_{i}} (x) \, \lambda^{n}(dx) \\ &= (-1)^{i-1} \cdot \left(\int_{R_{i}^{+}} \varphi_{i} \, d\mathcal{H}^{n-1} - \int_{R_{i}^{-}} \varphi_{i} \, d\mathcal{H}^{n-1} \right), \end{split}$$

wobei der Satz von Fubini und der Hauptsatz der Differential- und Integralrechnung verwendet wurden.

Andererseits gilt

$$\begin{split} \int_{\partial_{o}R} \varphi_{i} \cdot dx_{1} \wedge \cdots \wedge dx_{i} \wedge \cdots \wedge dx_{n} \\ &= \sum_{j=1}^{n} (-1)^{j-1} \Big(\int_{R_{j}^{+}} \varphi_{i}(x) \cdot dx_{1} \wedge \cdots \wedge dx_{i} \wedge \cdots \wedge dx_{n} - \int_{R_{j}^{-}} \varphi_{i} \cdot dx_{1} \wedge \cdots \wedge dx_{i} \wedge \cdots \wedge dx_{n} \Big) \\ &= \sum_{j=1}^{n} (-1)^{j-1} \Big(\int_{R_{j}^{+}} \varphi_{i}(x) \underbrace{\langle dx_{1} \wedge \cdots \wedge dx_{i} \wedge \cdots \wedge dx_{n}, \hat{e}_{j} \rangle}_{= \left\{ 0, \quad \text{für } j \neq i \right.} \mathcal{H}^{n-1}(dx) \\ &= \left\{ 0, \quad \text{für } j \neq i \right. \\ &\left. 1, \quad \text{sonst} \right. \\ &\left. - \int_{R_{j}^{-}} \varphi_{i}(x) \langle dx_{1} \wedge \cdots \wedge dx_{i} \wedge \cdots \wedge dx_{n}, \hat{e}_{j} \rangle \mathcal{H}^{n-1}(dx) \Big) \\ &= (-1)^{i-1} \Big(\int_{R_{i}^{+}} \varphi_{i} d\mathcal{H}^{n-1} - \int_{R_{i}^{+}} \varphi_{i} d\mathcal{H}^{n-1} \Big). \end{split}$$

Dies zeigt die Gleichheit.

Im vorangehenden Beweis ist die Fallunterscheidung n=1 bzw. $n\geq 2$ nicht zwingend erforderlich. Der Fall n=1 kann dem Fall $n\geq 2$ untergeordnet werden.

Spezialfall: Divergenzsatz/Satz von Gauß-Green.

Sei $U \subset \mathbb{R}^n$ offen, $V: U \to \mathbb{R}^n$ ein Vektorfeld. Setze $V_i(x) := \langle V(x), e_i \rangle$, $x \in U$. Sei V von der Klasse C^r , $r \geq 1$. Die Divergenz von V ist

$$\operatorname{div}(V)(x) := \sum_{i=1}^{n} \frac{\partial V_i}{\partial x_i}(x).$$

Ist φ eine (n-1)-Form auf \mathbb{R}^n mit einer Darstellung der Form

$$\varphi = \sum_{i=1}^{n} \varphi_i \cdot dx_1 \wedge \dots \wedge dx_i \wedge \dots \wedge dx_n,$$

so setzt man

$$V(x) := \sum_{i=1}^{n} (-1)^{i-1} \varphi_i \cdot e_i = \begin{pmatrix} \varphi_1 \\ -\varphi_2 \\ \varphi_3 \\ \vdots \\ (-1)^{n-1} \varphi_n \end{pmatrix}.$$

Dann gilt

$$d\varphi = \left(\sum_{i=1}^{n} (-1)^{i-1} \frac{\partial \varphi_i}{\partial x_i}\right) \cdot dx_1 \wedge \dots \wedge dx_n$$
$$= \left(\operatorname{div}(V)(x)\right) \cdot dx_1 \wedge \dots \wedge dx_n.$$

Bezeichnet nun n den äußeren Normaleneinheitsvektor von R in ∂R , so folgt:

Korollar 4.4

Für ein \mathcal{C}^1 -Vektorfeld auf einer Umgebung von R gilt

$$\int_{R} \operatorname{div}(V) \, d\mathcal{H}^{n} = \int_{\partial R} \langle V, n \rangle \, d\mathcal{H}^{n-1}.$$

Zurückholen von Formen: Sei $U \subset \mathbb{R}^n$ offen, $F \colon U \to \mathbb{R}^m$ von der Klasse \mathcal{C}^k mit $k \geq 1$. Sei $x \in U$ und sei φ eine in F(x) erklärte r-Form. dann wird eine r-Form $(F^{\#}\varphi)(x)$ erklärt als r-Kovektor durch:

$$(F^{\#}\varphi)(x)(v_1,\ldots,v_r) := \varphi(F(x))(DF_x(v_1),\ldots,DF_x(v_r)).$$

Im Spezialfall r=0 ist φ eine Funktion und

$$(F^{\#}\varphi)(x) = \varphi(F(x)) = (\varphi \circ F)(x).$$

Bemerkungen: (1) Ist φ von der Klasse \mathcal{C}^k , $k \geq 0$, und F von der Klasse \mathcal{C}^{k+1} , so ist $F^{\#}\varphi$ von der Klasse \mathcal{C}^k .

- (2) $F^{\#}\varphi(x)$ kann als lineare Abbildung $\bigwedge_r \mathbb{R}^n \to \mathbb{R}$ aufgefasst werden.
- (3) Sei $L: V \to W$ linear. Dann wird durch

$$\bigwedge_{r} L \colon \bigwedge_{r} V \to \bigwedge_{r} W$$
$$v_{1} \wedge \dots \wedge v_{r} \mapsto L(v_{1}) \wedge \dots \wedge L(v_{r})$$

eine lineare Abbildung erklärt.

(4)
$$(F^{\#}\varphi)(x)(v_1 \wedge \cdots \wedge v_r) = (\varphi \circ F)(x)(\bigwedge_r DF_x(v_1 \wedge \cdots \wedge v_r)).$$

Wir haben nun vier Operationen für Formen $(\land, d, f^{\#}, +)$, für die nun Rechenregeln angegeben werden:

Lemma 4.5

Seien $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$, $W \subset \mathbb{R}^l$ offene Mengen. Seien $f \colon U \to V$, $g \colon V \to W$ Abbildungen der Klasse \mathcal{C}^r , $r \geq 1$. Für k-Formen φ , ω auf V, eine k-Form η auf V und eine k-Form ζ auf V gelten die folgenden Aussagen:

- $(1) f^{\#}(\omega + \varphi) = f^{\#}\omega + f^{\#}\varphi,$
- (2) $f^{\#}(\varphi \wedge \eta) = (f^{\#}\varphi) \wedge (f^{\#}\eta),$
- (3) $d(f^{\#}\omega) = f^{\#}(d\omega),$
- (4) $(g \circ f)^{\#} \zeta = f^{\#}(g^{\#}(\zeta)).$

Beweis

Die Aussagen (1), (2), (4) folgen leicht aus den Definitionen (Übung). Zum Nachweis von (3) sei zunächst k=0 und daher ω eine Funktion auf V. Dann gilt $f^{\#}\omega=\omega\circ f$. Für $v\in\mathbb{R}^n$ gilt

$$d(f^{\#}\omega)_x(v) = d(\omega \circ f)_x(v) = D(\omega \circ f)_x(v) = D\omega_{f(x)}(Df_x(v)) = d\omega_{f(x)}(Df_x(v)) = (f^{\#}d\omega)_x(v),$$

und damit die Behauptung im Fall k=0. Sei nun k=1 und $\omega=d\xi$ mit einer 0-Form ξ auf V. Dann gilt

$$d(f^{\#}\omega) = d(f^{\#}d\xi) = d(d(f^{\#}\xi)) = 0 = f^{\#}(dd\xi) = f^{\#}(d\omega).$$

Die Aussage (3) folgt nun wegen (1) und (2) daraus, dass jede "einfache" k-Form äußeres Produkt einer 0-Form und äußeren Ableitungen von 0-Formen ist.

Definition

Seien R ein Quader in \mathbb{R}^n , $U \subset \mathbb{R}^n$ offen mit $R \subset U$. Sei $F \colon U \to \mathbb{R}^m$ von der Klasse \mathcal{C}^k mit $k \geq 1$, injektiv und DF_x injektiv für $x \in U$. Dann ist F(R) eine n-dimensionale Fläche in \mathbb{R}^m , die mit $F_\# R$ bezeichnet wird. Formal erklärt man für $\alpha_i \in \mathbb{R}$ und Quader R_i in \mathbb{R}^n

$$F_{\#}(\sum_{i} \alpha_{i} R_{i}) := \sum_{i} \alpha_{i} F_{\#} R_{i}.$$

Ist ω eine n-Form auf einer Umgebung von F(R) in \mathbb{R}^m , so sei

$$\int_{F_{\#}R} \omega := \int_{R} \langle \omega \circ F(x), \underbrace{\frac{\partial F}{\partial x_{1}}(x) \wedge \cdots \wedge \frac{\partial F}{\partial x_{n}}(x) \rangle}_{=DF_{x}(e_{1})} \lambda^{n}(dx)$$

$$= \int_{R} \underbrace{\langle \omega \circ F(x), \bigwedge_{n} DF_{x}(e_{1} \wedge \cdots \wedge e_{n}) \rangle}_{\langle (F^{\#}\omega)_{x}, e_{1} \wedge \cdots \wedge e_{n} \rangle} \lambda^{n}(dx)$$

$$= \int_{R} F^{\#}\omega$$

und analog für formale Linearkombination von Quadern.

Definition

Für einen Quader R in \mathbb{R}^n (und analog für formale Linearkombination) erklärt man

$$\partial_o F_\# R := \sum_{i=1}^n (-1)^{i-1} (F_\# R_i^+ - F_\# R_i^-) = F_\# \partial_0 R.$$

Satz 4.6

Sei $R \subset \mathbb{R}^n$ ein Quader in \mathbb{R}^n , $U \subset \mathbb{R}^n$ offen mit $R \subset U$, $F \colon U \to \mathbb{R}^m$ sei \mathcal{C}^k mit $k \geq 1$, injektiv und DF_x injektiv für $x \in U$. Sei ω eine (n-1)-Form auf einer Umgebung von F(R) in \mathbb{R}^m von der Klasse \mathcal{C}^2 . Dann gilt:

$$\int_{F_{\#}R} d\omega = \int_{\partial_{\alpha}F_{\#}R} \omega.$$

Beweis

Man erhält

$$\int_{F_{\#}R} d\omega = \int_{R} F^{\#}(d\omega) = \int_{R} d(F^{\#}\omega) = \int_{\partial_{o}R} F^{\#}\omega = \int_{F_{\#}\partial_{o}R} \omega = \int_{\partial_{0}F_{\#}R} \omega.$$

4.2 Grundlagen und Beispiele

Wir definieren im Folgenden eine Topologie auf Differentialformen und Strömen.

Sei $U \subset \mathbb{R}^n$ offen und

$$\mathcal{E}^k(U) := \{ (\varphi \colon U \to \bigwedge^k \mathbb{R}^n) : \varphi \text{ ist von der Klasse } \mathcal{C}^{\infty} \}.$$

Definiere zu $i \in \mathbb{N}_0$ und $K \subset U$, K kompakt, eine Seminorm ν_K^i auf $\mathcal{E}^k(U)$ durch

$$\nu_K^i(\varphi) := \sup\{\|D^j \varphi(x)\| : 0 \le j \le i, x \in K\}.$$

Es sei

$$\mathcal{O}(\varphi, i, K, \varepsilon) \coloneqq \{ \psi \in \mathcal{E}^k(U) : \nu_K^i(\varphi - \psi) < \varepsilon \}$$

für $i \in \mathbb{N}_0$, $K \subset U$ kompakt, $\varepsilon > 0$ $\varphi \in \mathcal{E}^k(U)$. Diese Mengen bilden eine Subbasis einer Topologie \mathcal{O} auf $\mathcal{E}^k(U)$. Dann ist $(\mathcal{E}^k(U), \mathcal{O})$ ein topologischer Raum (genauer: ein lokal konvexer, Hausdorffscher, topologischer Vektorraum; vgl. Walter Rudin, Functional Analysis, Seite 7).

Definition

Es sei

$$\mathcal{E}_k(U) := \{ (T : \mathcal{E}^k(U) \to \mathbb{R}) : T \text{ ist linear und stetig} \}.$$

Zu $\varphi \in \mathcal{E}^k(U)$, $a, b \in \mathbb{R}$, a < b sei

$$\mathcal{O}'(\varphi, a, b) := \{ T \in \mathcal{E}_k(U) : a < T(\varphi) < b \}.$$

Auf $\mathcal{E}_k(U)$ wird die "schwache Topologie" betrachtet, das heißt $\mathcal{O}'(\varphi, a, b)$, $a, b \in \mathbb{R}$, a < b, $\varphi \in \mathcal{E}^k(U)$ bilden eine Subbasis dieser Topologie.

Definition (Träger)

Für $\varphi \in \mathcal{E}^k(U)$ sei

$$\operatorname{supp}(\varphi) := U \setminus \bigcup \{W \subset U : W \text{ offen, } \varphi|_W = 0\}.$$

Für $T \in \mathcal{E}_k(U)$ sei

$$\operatorname{spt}(T) \coloneqq U \setminus \bigcup \{W \subset U : W \text{ offen, } T(\varphi) = 0 \text{ für alle } \varphi \in \mathcal{E}^k(U) \text{ mit } \operatorname{supp}(\varphi) \subset W\}.$$

Lemma 4.7

(a) Zu $T \in \mathcal{E}_k(U)$ gibt es M > 0, $i \in \mathbb{N}_0$ und $K \subset U$ kompakt, so dass gilt:

$$T(\varphi) \leq M \cdot \nu_K^i(\varphi)$$

für alle $\varphi \in \mathcal{E}^k(U)$.

(b) Seien $T_i, T \in \mathcal{E}_k(U)$, $i \in \mathbb{N}$, und $T_i \stackrel{s}{\rightharpoonup} T$ für $i \to \infty$. Dann existiert $K \subset U$, K kompakt, mit $\operatorname{spt}(T_i)$, $\operatorname{spt}(T) \subset K$ für $i \in \mathbb{N}$.

Wir betrachten jetzt Teilmengen von $\mathcal{E}^k(U)$. Sei hierzu $K \subset U$ kompakt und

$$\mathcal{D}_K^k(U) := \{ \varphi \in \mathcal{E}^k(U) : \operatorname{supp}(\varphi) \subset K \} \subset \mathcal{E}^k(U),$$

$$\mathcal{D}^k(U) \coloneqq \bigcup \{\mathcal{D}^k_K(U) : K \subset U \text{ kompakt}\}.$$

Auf $\mathcal{D}^k(U)$ wird die feinste Topologie betrachtet, für die alle Inklusionsabbildungen

$$i_K \colon \mathcal{D}_K^k(U) \to \mathcal{D}^k(U), \qquad \varphi \mapsto \varphi$$

stetig sind. Das heißt, $W \subset \mathcal{D}^k(U)$ ist offen genau dann, wenn $W \cap \mathcal{D}_K^k(U)$ offen ist in der Spurtopologie von $\mathcal{E}^k(U)$ auf $\mathcal{D}_K^k(U)$ für alle kompakten Teilmengen $K \subset U$.

Definition

Es sei

$$\mathcal{D}_k(U) := \{ (T : \mathcal{D}^k(U) \to \mathbb{R}) : T \text{ linear und stetig} \}.$$

Auf $\mathcal{D}_k(U)$ wird durch die Subbasis

$$\{T \in \mathcal{D}_k(U) : a < T(\varphi) < b\}$$

für $a, b \in \mathbb{R}$, a < b, $\varphi \in \mathcal{D}^k(U)$ eine Topologie festgelegt.

Bemerkungen: • Jedes $\varphi \in \mathcal{D}^k(U)$ hat kompakten Träger.

- $T \in D_k(U)$ hat im Allgemeinen keinen kompakten Träger.
- $\mathcal{D}^k(U) \subset \mathcal{E}^k(U)$, $\mathcal{E}_k(U) \subset \mathcal{D}_k(U)$. Dies folgt etwa aus dem nachfolgenden Lemma 4.9.

Lemma 4.8

Seien $\varphi_i, \varphi \in \mathcal{D}^k(U), i \in \mathbb{N}$. Es gilt

$$\varphi_i \to \varphi$$
 für $i \to \infty$

genau dann, wenn es eine kompakte Menge $K \subset U$ gibt, so dass $\operatorname{supp}(\varphi_i)$, $\operatorname{supp}(\varphi) \subset K$ für $i \in \mathbb{N}$ und für alle $j \in \mathbb{N}_0$ gilt $\|D_j(\varphi_i - \varphi)\| \to 0$ für $i \to \infty$.

Lemma 4.9

Sei $T: \mathcal{D}^k(U) \to \mathbb{R}$ linear. Genau dann ist $T \in \mathcal{D}_k(U)$, wenn es zu jeder kompakten Menge $K \subset U$ ein $i \in \mathbb{N}_0$ und M > 0 gibt mit

$$T(\varphi) \leq M \cdot \nu_K^i(\varphi)$$
 für alle $\varphi \in \mathcal{D}_K^k(U)$.

Definition

- Die Elemente von $\mathcal{D}_k(U)$ heißen k-dimensionale Ströme auf U. (k=0): Distributionen).
- Die Elemente von $\mathcal{E}_k(U)$ heißen k-dimensionale Ströme auf U mit kompaktem Träger.

Beispiele

(1) Sei $g: \mathbb{R} \to \mathbb{R}$ stetig. $S_g \in \mathcal{D}_0(\mathbb{R})$ wird erklärt durch

$$S_g(f) := \int_{\mathbb{R}} g(x)f(x) dx \text{ für } f \in \mathcal{D}^0(\mathbb{R}).$$

Zum Nachweis sei $f \in \mathcal{D}^0_K(\mathbb{R}), K \subset U$ kompakt. Wegen

$$|S_g(f)| = |\int_{\mathbb{R}} g(x)f(x) d(x)| \le \int_{R} |g(x)| \underbrace{|f(g)|}_{\le \nu_k^0(f)} dx \le \nu_K^0(f) \cdot \underbrace{\int_{K} |g(x)| dx}_{=:M}$$

und Lemma 4.9 ist dies ein Strom.

- (2) Sei $a \in \mathbb{R}$, $\delta_a(f) := f(a)$ für $f \in \mathcal{D}^0(\mathbb{R})$. Es ist $\delta_a \in \mathcal{E}_0(\mathbb{R})$.
- (3) Sei $a \in \mathbb{R}$, T(f) := f'(a) für $f \in \mathcal{D}^0(\mathbb{R})$. Es ist $T \in \mathcal{E}_0(\mathbb{R})$.
- (4) Sei $a < b, a, b \in \mathbb{R}$. $[a, b] \in \mathcal{D}_1(\mathbb{R})$ ist gegeben durch

$$\llbracket a, b \rrbracket (f(x)dx) \coloneqq \int_a^b f(x)dx \text{ für } f(x)dx \in \mathcal{D}^1(\mathbb{R}).$$

(5) Sei $M \subset \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit. Ist M orientierbar, dann gibt es ein stetiges k-Vektorfeld $x \mapsto (\xi_1 \wedge \cdots \wedge \xi_k)_x \in T_x M$, für $x \in M$, mit der Eigenschaft $\|(\xi_1 \wedge \cdots \wedge \xi_k)_x\| = 1$ für alle $x \in M$. (Die Existenz eines solchen stetigen k-Vektorfeldes ist äquivalent zur Orientierbarkeit von M; vgl. den Anhang, Abschnitt 5.4.) Dann ist $[\![M]\!] \in \mathcal{D}_k(\mathbb{R})$ erklärt durch

$$\llbracket M \rrbracket(\omega) := \int_M \omega := \int_M \langle \omega(x), (\xi_1 \wedge \dots \wedge \xi_k)_x \rangle \, \mathscr{H}^k(dx) \text{ für } \omega \in \mathcal{D}^k(\mathbb{R}^n).$$

(6) Sei $\xi \in \mathcal{E}^{n-k}(U)$, $U \subset \mathbb{R}^n$ offen, $0 \le k \le n$. Dann sei $T_\xi \in \mathcal{D}_k(U)$ erklärt durch

$$T_{\xi}(\omega) := \int_{U} \omega \wedge \xi = \int_{U} \langle \omega \wedge \xi, e_1 \wedge \cdots \wedge e_n \rangle \text{ für } \omega \in \mathcal{D}^k(U).$$

(7) Sei $T \in \mathcal{D}_k(U), \ \psi \in \mathcal{E}^m(U), \ m \leq k$. Dann ist $T \mid \psi \in \mathcal{D}_{k-m}(U)$ erklärt durch

$$(T|\psi)(\omega) := T(\psi \wedge \omega) \text{ für } \omega \in \mathcal{D}^{k-m}(U).$$

Definition (Rand eines Stroms)

Sei $U \subset \mathbb{R}^n$ offen und $T \in \mathcal{D}_k(U)$. Für $k \geq 1$ ist der Rand ∂T von T erklärt durch $\partial T \in \mathcal{D}_{k-1}(U)$ mit

$$\partial T(\omega) \coloneqq T(d\omega)$$

für $\omega \in \mathcal{D}^{k-1}(U)$.

Beispiele

(1) $a, b \in \mathbb{R}, a < b$:

$$\partial([[a,b]])(f) = [[a,b]](df) = [[a,b]](f'(x)dx) = \int_a^b f'(x)dx = f(b) - f(a) = (\delta_b - \delta_a)(f)$$

Also ist $\partial [a, b] = \delta_b - \delta_a$.

(2) Sei $g \in \mathcal{C}^{\infty}(\mathbb{R})$. Dann ist $T_g \in \mathcal{D}_1(\mathbb{R})$ erklärt durch

$$T_g(\omega(x)dx) := \int_{\mathbb{R}} g(x)\omega(x)dx.$$

Ferner sei $S_g \in \mathcal{D}_0(\mathbb{R})$ wie im vorigen Beispiel. Dann folgt

$$\partial T_g(f) = T_g(df) = T_g(f'(x)dx) = \int_{\mathbb{R}} g(x)f'(x)dx = -\int_{\mathbb{R}} g'(x)f(x)dx = -S_{g'}(f) = S_{-g'}(f)$$

Also ist $\partial T_g = S_{-q'}$.

- (3) Sei in (2) nun gnur noch stetig, etwa g(x) = |x|. Dann ist $\partial T_g = S_{-\operatorname{sgn}}$
- (4) Sei M eine orientierte, kompakte k-dimensionale Untermannigfaltigkeit von \mathbb{R}^n mit Rand ∂M und $[\![M]\!] \in \mathcal{D}_k(\mathbb{R})$ der induzierte Strom. Mit dem Satz von Stokes folgt: Für $\eta \in \mathcal{D}^{k-1}(U)$ gilt

$$\partial \llbracket M \rrbracket(\eta) = \llbracket M \rrbracket(d\eta) = \int_M d\eta = \int_{\partial M} \eta = \llbracket \partial M \rrbracket(\eta)$$

also gilt $\partial \llbracket M \rrbracket = \llbracket \partial M \rrbracket$.

(5) Sei $k \geq j+1, \, \xi \in \mathcal{E}^j(U), \, T \in \mathcal{D}_k(U) \text{ und } \omega \in \mathcal{D}^{k-j-1}(U)$. Es ist

$$\partial (T \lfloor \xi)(\omega) = T \lfloor \xi(d\omega) = T(\xi \wedge d\omega)$$

$$= T((-1)^{j} d(\xi \wedge \omega) + (-1)^{j-1} d\xi \wedge \omega)$$

$$= (-1)^{j} T(d(\xi \wedge \omega)) + (-1)^{j-1} T(d\xi \wedge \omega)$$

$$= (-1)^{j} \partial T(\xi \wedge \omega) + (-1)^{j-1} (T \lfloor d\xi)(\omega)$$

$$= (-1)^{j} ((\partial T) | \xi)(\omega) + (-1)^{j-1} (T | d\xi)(\omega),$$

also gilt

$$\partial (T \lfloor \xi) = (-1)^{j} ((\partial T) \lfloor \xi) + (-1)^{j-1} (T \lfloor d\xi)$$

und somit

$$(\partial T)\lfloor \xi = T \lfloor (d\xi) + (-1)^j \partial (T \lfloor \xi).$$

(6) $\partial \partial T = 0$, für $T \in \mathcal{D}_k(U)$ mit $k \ge 2$, da $\partial \partial T(\omega) = \partial T(d\omega) = T(dd\omega) = T(0) = 0$.

Definition (Masse von Differentialformen und Strömen)

• Euklidische Masse von Differentialformen $\omega \in \mathcal{D}^k(U)$ in $x \in U$:

$$|\omega(x)| := \left(\sum_{I \in I^n} \omega_I(x)^2\right)^{\frac{1}{2}}$$

• Komasse von $\omega(x)$:

$$\|\omega(x)\| := \sup \{\omega(x)(v_1 \wedge \cdots \wedge v_k) : v_i \in \mathbb{R}^n, \|v_i\| \le 1\}$$

• Euklidische Masse eines Stromes $T \in \mathcal{D}_k(U)$:

$$\underline{\mathbf{M}}(T) \coloneqq \sup\{T(\omega) : |\omega(x)| \le 1 \ \forall x \in U\}$$

• Masse von T:

$$\mathbf{M}(T) := \sup\{T(\omega) : \|\omega(x)\| \le 1 \ \forall x \in U\}$$

Wegen

$$|\omega(x)| \ge ||\omega(x)|| \ge \binom{n}{k}^{-\frac{1}{2}} \cdot |\omega(x)|$$

folgt

$$\binom{n}{k}^{-1/2} \cdot \mathbf{M}(T) \leq \underline{\mathbf{M}}(T) \leq \cdot \mathbf{M}(T)$$

mit einer Konstanten c, die nur von n abhängt.

Beispiel

Ist $T = [\![M]\!]$, M eine orientierbare, kompakte, k-dimensionale Untermannigfaltigkeit von \mathbb{R}^n , so gilt

$$\mathbf{M}(T) = \sup \{ \int_{M} \omega : \|\omega(x)\| \le 1 \ \forall x \in U \}$$

$$= \sup \{ \int_{M} \underbrace{\langle \omega(x), \xi(x) \rangle}_{\le \|\omega(x)\| \cdot \|\xi(x)\| \le 1} \mathcal{H}^{k}(dx) : \|\omega(x)\| \le 1 \ \forall x \in U \}$$

$$\le \mathcal{H}^{k}(M).$$

Man kann zeigen, dass hier sogar Gleichheit gilt.

Definition

Eine Folge $T_i \in \mathcal{D}_k(U)$ konvergiert in der Massenorm gegen ein $T \in \mathcal{D}_k(U)$, falls $\mathbf{M}(T_i - T) \to 0$ für $i \to \infty$.

Bemerkung: • Ist $\mathbf{M}(0) = 0$, so gilt T = 0.

• Gilt $T_i \to T$ in der Massenorm, so gilt $T_i \stackrel{s}{\rightharpoonup} T$, denn:

Sei $T_j \to 0$ in der Massenorm für $j \to \infty$, das heißt $\mathbf{M}(T_j) \to 0$. Für $\omega \in \mathcal{D}^k(U)$ gilt:

$$|T_j(\omega)| \le \mathbf{M}(T_j) \cdot \sup_{x \in U} \|\omega(x)\| \to 0$$

also $T_j(\omega) \stackrel{s}{\rightharpoonup} 0$ für $j \to \infty$.

Die Umkehrung gilt im Allgemeinen nicht: Seien $T_j = \delta_j \in \mathcal{D}_0(\mathbb{R}), j \in \mathbb{N}$. Dann gilt $\mathbf{M}(T_j) = 1$, aber $T_j \stackrel{s}{\rightharpoonup} 0$, da $T_j(f) \to 0$ für $j \to \infty$ und $f \in \mathcal{D}^0(\mathbb{R})$.

Lemma 4.10

Seien $T_j, T \in \mathcal{D}_k(U), j \in \mathbb{N}$ und $T_j \stackrel{s}{\rightharpoonup} T$ für $j \to \infty$. Dann gilt

$$\mathbf{M}(T) \leq \liminf_{j \to \infty} \mathbf{M}(T_j).$$

Beweis

Sei $\mathbf{M}(T) < \infty$. Sei $\varepsilon > 0$. Dann existiert $\omega \in \mathcal{D}^k(U)$ mit $\|\omega(x)\| \le 1$ für alle $x \in U$ und $T(\omega) \ge \mathbf{M}(T) - \varepsilon$. Daher folgt:

$$\liminf_{j\to\infty} \mathbf{M}(T_j) \ge \liminf_{j\to\infty} T_j(\omega) = T(\omega) \ge \mathbf{M}(T) - \varepsilon$$

also $\mathbf{M}(T) \leq \liminf_{j \to \infty} \mathbf{M}(T_j)$.

Sei $\mathbf{M}(T) = \infty$. Dann existiert zu $m \in \mathbb{N}$ ein ω wie oben mit $T(\omega) \geq m$. Weiter wie oben.

Beispiel

Ströme mit minimaler Masse

$$T = [B^2] \in \mathcal{D}_2(\mathbb{R}^2), \text{ d.h. } T(\omega) = \int_B \langle \omega(x), e_1 \wedge e_2 \rangle \mathcal{H}^2(dx), \ \omega \in \mathcal{D}^2(\mathbb{R}^2).$$

Frage: Hat T minimale Masse unter allen 2-Strömen $S \in \mathcal{D}_2(\mathbb{R}^2)$ mit $\partial S = \partial T = [\![\partial B^2]\!]$.

<++>

Lemma 4.11

Sei $T \in \mathcal{D}_n(U)$, $U \subset \mathbb{R}^n$ offen und $\mathbf{M}(T) < \infty$. Es gebe ein $\Omega = d\varphi \in \mathcal{D}^n(U)$ mit $\|\Omega\| \le 1$ und $\mathbf{M}(T) = T(\Omega)$. Dann gilt für alle $S \in \mathcal{D}_n(U)$ mit $\partial S = \partial T$:

$$\mathbf{M}(T) \leq \mathbf{M}(S)$$
.

Beweis

$$\mathbf{M}(T) = T(\Omega) = T(d\varphi) = \partial T(\varphi) = \partial S(\varphi) = S(d\varphi) = S(\Omega) \le \mathbf{M}(S).$$

Zurück zum Beispiel: Sei $\Omega := dx_1 \wedge dx_2 \in \mathcal{D}_2(\mathbb{R}^2)$. Dann ist $\|\Omega\| = 1$ und

$$T(\Omega) = \int_{B^2} \underbrace{\langle dx_1 \wedge dx_2, e_1 \wedge e_2 \rangle}_{=1} \mathscr{H}^2(dx) = \mathscr{H}^2(B^2) = \mathbf{M}(T),$$

da

$$T(\omega) = \int_{B^2} \underbrace{\langle \omega, e_1 \wedge e_2 \rangle}_{<\|\omega\| \cdot \|e_1 \wedge e_2\|} d\mathcal{H}^2.$$

Ferner gilt für $\varphi(x) = \frac{1}{2}(x_1dx_2 - x_2dx_1)$ gerade $d\varphi_x = \frac{1}{2} \cdot (dx_1 \wedge dx_2 - dx_2 \wedge dx_1) = \Omega$. Mit obigem Lemma folgt, dass T minimierend ist. Zur Berechnung von ∂T betrachten wir

 $\eta = \eta_1 dx_1 + \eta_2 dx_2 \in \mathcal{D}^1(\mathbb{R}^2).$

$$\partial T(\eta) = T(d\eta) = T(\frac{\partial \eta_1}{\partial x_2} dx_2 \wedge dx_1 + \frac{\partial \eta_2}{\partial x_1} dx_1 \wedge dx_2)$$

$$= T((\frac{\partial \eta_2}{\partial x_1} - \frac{\partial \eta_1}{\partial x_2}) dx_1 \wedge dx_2)$$

$$= \int_{B^2} (\frac{\partial \eta_2}{\partial x_1} - \frac{\partial \eta_1}{\partial x_2}) \mathcal{H}^2(dx)$$

$$= \int_{B^2} \div \begin{pmatrix} \eta_2 \\ -\eta_1 \end{pmatrix} \mathcal{H}^2(dx)$$

$$= \int_{S^1} \underbrace{\langle \begin{pmatrix} \eta_2 \\ -\eta_1 \end{pmatrix} (x), x \rangle}_{=\eta_2(x) \cdot x_1 - \eta_1(x) x_2} \mathcal{H}^1(dx)$$

$$= \int_{S^1} \langle \eta_1 dx_1 + \eta_2 dx_2, \underbrace{-x_2 e_1 + x_1 e_2}_{\xi \in T_x S^1} \rangle \mathcal{H}^1(dx)$$

$$= \int_{S^1} \langle \eta, \xi \rangle d\mathcal{H}^1$$

$$= [S^1](\eta).$$

4.3 Ströme mit lokalendlicher Masse

Für Ströme mit lokalendlicher Masse liefert der Rieszsche Darstellungssatz eine "explizite" Integraldarstellung. Dazu sei

$$\mathbf{M}_k(U) := \{ T \in \mathcal{D}_k(U) : \mathbf{M}(T) < \infty \}$$

die Menge der Ströme endlicher Masse und

$$\mathbf{N}_k(U) := \{ T \in \mathcal{D}_k(U) : \mathbf{M}(T) < \infty \text{ und } \mathbf{M}(\partial T) < \infty \}$$

die Menge der normalen Ströme.

Beispiel

 $T \in \mathcal{D}_1(\mathbb{R})$ mit $T(\omega(x) dx) := \omega(0)$. Dann ist $\|\omega(x) dx\| = |\omega(x)|$ und daher $\mathbf{M}(T) = 1$. Aber $\partial T(f) = T(df) = T(f'(x) dx) = f'(0)$ für $f \in \mathcal{D}^0(\mathbb{R})$ und somit $\mathbf{M}(\partial T) = \infty$.

Lokalisierung: Sei $V \subset U \subset \mathbb{R}^n$, V und U offen, $T \in \mathcal{D}_k(U)$. Es sei

$$\underline{\mathbf{M}}_{V}(T) \coloneqq \sup\{T(\omega) : |\omega(x)| \le 1 \ \forall x \in U, \ \operatorname{supp}(\omega) \subset V\}$$

und

$$\mathbf{M}_V(T) := \sup\{T(\omega) : \|\omega(x)\| \le 1 \ \forall x \in U, \ \operatorname{supp}(\omega) \subset V\}.$$

Weiter seien definiert:

$$\underline{\mathbf{M}}_{k,loc}(U) \coloneqq \{T \in \mathcal{D}_k(U) : \underline{\mathbf{M}}_V(T) < \infty \ \forall V \subset U, \ V \ \text{offen, } \bar{V} \ \text{kompakt in } U\}$$

$$\mathbf{M}_{k,loc}(U) \coloneqq \{T \in \mathcal{D}_k(U) : \mathbf{M}_V(T) < \infty \ \forall V \subset U, V \text{ offen, } \bar{V} \text{ kompakt in } U\}$$

$$\underline{\mathbf{N}}_{k,loc}(U) \coloneqq \{T \in \mathcal{D}_k(U) : \underline{\mathbf{N}}_V(T) < \infty, \underline{\mathbf{N}}_V(\partial T) < \infty \ \forall V \subset U, V \text{ offen, } \overline{V} \text{ kompakt in } U\}$$

$$\mathbf{N}_{k,loc}(U) := \{ T \in \mathcal{D}_k(U) : \mathbf{N}_V(T) < \infty, \ \mathbf{N}_V(\partial T) < \infty \ \forall V \subset U, \ V \text{ offen, } \overline{V} \text{ kompakt in } U \}.$$

Satz 4.12

Seien $U \subset \mathbb{R}^n$ offen und $T_i \in \mathcal{D}_k(U)$, $i \in \mathbb{N}$, mit

$$\sup_{i\in\mathbb{N}}\mathbf{M}_V(T_i)<\infty\quad \text{ für alle }V\subset U\text{ offen },\bar{V}\text{ kompakt },\bar{V}\subset U.$$

Dann gibt es eine Teilfolge $(T_{n_i})_{i\in\mathbb{N}}$ und $T\in\mathcal{D}_k(U)$ mit $T_{n_i}\stackrel{s}{\rightharpoonup} T$ für $i\to\infty$.

Beweis (Skizze)

Verwende, dass Ströme stetige, lineare Funktionale auf $\mathcal{D}^k(U)$ (topologischer Vektorraum) sind. Jetzt kann man lokal den Satz von Banach-Alaoglu anwenden, der die Auswahl einer lokal schwach* konvergenten Teilfolge erlaubt. Diagonalargument.

Sei $U \subset \mathbb{R}^n$ offen und sei μ ein borelreguläres Maß auf U mit $\mu(K) < \infty$ für $K \subset \mathbb{R}^n$ kompakt (Radonmaß). Sei $\xi : U \to \mathbb{R}^m$ eine μ -messbare Abbildung und $\|\xi\| = 1$ μ -fast-überall. Dann wird durch

$$L(f) := \int_{U} \langle f(x), \xi(x) \rangle \mu(dx), \quad f \in \mathcal{C}_{c}(U, \mathbb{R}^{n})$$

ein lineares Funktional $L: \mathcal{C}_c(U, \mathbb{R}^m) \to \mathbb{R}$ erklärt. Es gilt

$$|L(f)| \le \int_{U} |\langle f(x), \xi(x) \rangle| \mu(dx) \le \mu(K) < \infty$$

falls $f \in \mathcal{C}_c(U, \mathbb{R}^m)$, supp $(f) \subset K$, $K \subset U$ kompakt, $||f|| \leq 1$. In dieser Situation gilt

$$\sup\{L(f): f \in \mathcal{C}_c(U, \mathbb{R}^m), ||f|| \le 1, \sup\{f\} \subset K\} < \infty$$

für alle $K \subset U$, K kompakt.

Satz 4.13 (Riesz)

Sei $L: \mathcal{C}_c(U, \mathbb{R}^m) \to \mathbb{R}, U \subset \mathbb{R}^n$ offen, ein lineares Funktional, das

$$\sup\{L(f): f \in \mathcal{C}_c(U,\mathbb{R}^m), ||f|| \le 1, \sup\{f\} \subset K\} < \infty$$

erfüllt. Dann existiert ein Radonmaß μ auf U und eine μ -messbare Abbildung $\xi:U\to\mathbb{R}^m$ mit $\|\xi(x)\|=1$ für μ -fast-alle $x\in U$ und

$$L(f) = \int_{U} \langle f(x), \xi(x) \rangle \mu(dx), \quad f \in \mathcal{C}_{c}(U, \mathbb{R}^{m}).$$

Ferner gilt für $V \subset U$ offen:

$$\mu(V) = \sup\{L(f) : f \in \mathcal{C}_c(U, \mathbb{R}^m), \, \operatorname{supp}(f) \subset V, \, ||f|| \le 1\}.$$

Beweis

Siehe L. Simon, Lecture Notes of the ANU, Canberra, GMT.

Als Folge erhält man für Ströme lokalendlicher Masse.

Satz 4.14

Sei $U \subset \mathbb{R}^n$ offen und $T \in \mathcal{D}_k(U)$. Dann sind äquivalent:

- (1) $T \in \mathbf{M}_{k,loc}(U)$.
- (2) Es gibt ein Radonmaß μ_T auf U und eine μ_T -messbare Abbildung $\xi: U \to \bigwedge_k \mathbb{R}^n$ mit $|\xi(x)| = 1$ für μ_T -fast-alle $x \in U$, so dass gilt:

$$T(\omega) = \int \langle \omega(x), \xi(x) \rangle \mu_T(dx), \quad \omega \in \mathcal{D}^k(U).$$

Hierbei ist für $V \subset U$ offen:

$$\mu_T(V) = \sup\{T(\omega) : \omega \in \mathcal{D}^k(U), \forall x \in U : |\omega(x)| \le 1, \sup\{\omega\} \subset V\} = \underline{\mathbf{M}}_V(T).$$

Bemerkung: (1) In der Situation des Satzes sagt man, dass T als Integral darstellbar ist.

(2) Auf $\bigwedge^k \mathbb{R}^n$ gibt es die euklidische Norm $|\cdot|$, sowie die Komassen-Norm $||\cdot||$. Ferner existiert auf $\bigwedge_k \mathbb{R}^n$ neben der euklidischen Norm $|\cdot|$ die Masse-Norm $||\cdot||$:

$$\|\xi\| \coloneqq \sup\{\langle \omega, \xi \rangle : \omega \in \bigwedge^k \mathbb{R}^n, \|\omega\| \le 1\}$$

Zusammenhänge:

$$|\omega| \ge ||\omega|| \ge {n \choose k}^{-\frac{1}{2}} \cdot |\omega|, \qquad \omega \in \bigwedge^k \mathbb{R}^n,$$

 $\|\omega\| = |\omega|$ für einen einfachen Kovektor ω . Hierbei nennt man $\omega \in \bigwedge^k \mathbb{R}^n$ einfach, falls es $\eta_1, \dots, \eta_k \in \bigwedge^1 \mathbb{R}^n$ gibt mit $\omega = \eta_1 \wedge \dots \wedge \eta_k$. Es gilt nun

$$|\xi| \le \|\xi\| \le \binom{n}{k}^{\frac{1}{2}} |\xi|, \qquad , \xi \in \bigwedge_k \mathbb{R}^n, \qquad \text{und } \|\xi\| = |\xi|$$

für ξ einfach. Für die Verknüpfung mit dem äußeren Produkt gilt dann

$$\|\xi \wedge \eta\| \le \|\xi\| \cdot \|\eta\|, \ \|\varphi \wedge \omega\| \le \binom{p+q}{p} \|\varphi\| \cdot \|\omega\|,$$

 $\xi \in \bigwedge_p \mathbb{R}^n, \, \eta \in \bigwedge_q \mathbb{R}^n, \, \varphi \in \bigwedge^p \mathbb{R}^n, \, \omega \in \bigwedge^q \mathbb{R}^n.$

$$|\langle \varphi, \xi \rangle| \le ||\varphi|| \cdot ||\xi||$$

für $\varphi \in \bigwedge^p \mathbb{R}^n$, $\xi \in \bigwedge_p \mathbb{R}^n$.

(3) Im vorangehenden Satz setzt man $\overrightarrow{T}(x) \coloneqq \frac{\xi(x)}{\|\xi(x)\|}$ und $\|T\| \coloneqq \|\xi\| \cdot \mu_T$, wobei

$$||T||(M) = \int \mathbb{1}_M(x) ||\xi(x)|| \mu_T(dx)$$

und erhält so:

$$T(\omega) = \int_{U} \langle \omega(x), \overrightarrow{T}(x) \rangle \|T\|(dx)$$

mit $\|\overrightarrow{T}\| = 1$, $\|T\|$ -fast-überall auf U, $\|T\|(V) = \sup\{T(\omega : \omega \in \mathcal{D}^k(U), \|\omega(x)\| \le 1 \text{ für } x \in U, \sup \{\omega\} \subset V\}$, sowie $\mathbf{M}_V(T) = \|T\|(V)$.

(4) Ist T durch ein Integral darstellbar, so erklärt man für $A \subset U$, A Borelsch:

$$(T \lfloor A)(\omega) := \int_A \langle \omega, \overrightarrow{T} \rangle d\|T\|$$

oder für eine beschränkte Borelfunktion $f: U \to \mathbb{R}$:

$$(T \lfloor f)(\omega) := \int_{U} f \cdot \langle \omega, \overrightarrow{T} \rangle d\|T\|.$$

4.4 Produkt, Push-forward und Homotopieformel

Produkt von Strömen. Seien $U_1 \subset \mathbb{R}^{n_1}$, $U_2 \subset \mathbb{R}^{n_2}$ offen und $S \in \mathcal{D}_{m_1}(U_1)$, $T \in \mathcal{D}_{m_2}(U_2)$ Ströme. Im Folgenden sind x_1, \ldots, x_{n_1} Koordinaten von $\mathbb{R}^{n_1} \subset \mathbb{R}^{n_1+n_2}$ und y_1, \ldots, y_{n_2} sind Koordinaten (bzw. Koordinatenfunktionen) von $\mathbb{R}^{n_2} \subset \mathbb{R}^{n_1+n_2}$ (mit naheliegenden Identifikationen).

Sei $\omega \in \mathcal{D}^{m_1+m_2}(U_1 \times U_2)$. Dann kann man ω in der Form

$$\omega = \sum_{\alpha,\beta} \omega_{\alpha\beta}(x,y) dx_{\alpha} \wedge dy_{\beta}$$

$$|\alpha| + |\beta| = m_1 + m_2$$

geschrieben werden.

Definition

Mit obiger Notation setzen wir

$$S \times T(\omega) \coloneqq \sum_{\substack{\alpha,\beta \\ |\alpha| = m_1 \\ |\beta| = m_2}} S_x(T_y(\omega_{\alpha\beta}(x, y)dy_\beta)dx_\alpha).$$

Man kann sich leicht überlegen, dass diese Definition korrekt ist, das heißt etwa, dass das Argument von S im Definitionsbereich von S ist und $S \times T \in \mathcal{D}_{m_1+m_2}(U_1 \times U_2)$ wieder ein Strom ist.

Satz 4.15

Seien $S \in \mathcal{D}_{m_1}(U_1)$ und $T \in \mathcal{D}_{m_2}(U_2)$ Ströme.

(1) Seien $p: \mathbb{R}^{m_1+m_2} \to \mathbb{R}^{m_1}$, $(x,y) \mapsto x$ und $q: \mathbb{R}^{m_1+m_2} \to \mathbb{R}^{m_2}$, $(x,y) \mapsto y$ die Projektionsabbildungen. Seien $\varphi \in \mathcal{D}^k(U_1)$, $\eta \in \mathcal{D}^{m_1+m_2-k}(U_2)$. Dann gilt:

$$S \times T(p^{\#}\varphi \wedge q^{\#}\eta) = \begin{cases} S(\varphi) \cdot T(\eta), & k = m_1, \\ 0, & k \neq m_1 \end{cases}$$

und für

$$\omega = \sum_{\alpha,\beta} \omega_{\alpha}(x)\omega_{\beta}(y)dx_{\alpha} \wedge dy_{\beta} = \left(\underbrace{\sum_{\alpha} \omega_{\alpha}(x)dx_{\alpha}}_{:=\omega_{1}(x)}\right) \wedge \left(\underbrace{\sum_{\beta} \omega_{\beta}(y)dy_{\beta}}_{:=\omega_{2}(y)}\right)$$

gilt

$$S \times T(\omega) = S(\omega_1) \cdot T(\omega_2).$$

- (2) $\operatorname{spt}(S \times T) = \operatorname{spt}(S) \times \operatorname{spt}(T)$.
- (3) $\partial (S \times T) = \partial S \times T + (-1)^{m_1} S \times \partial T$.
- (4) Seien $P: \mathbb{R}^{n_1} \to \mathbb{R}^{n_1+n_2}$, $x \mapsto (x,0)$, $Q: \mathbb{R}^{n_2} \to \mathbb{R}^{n_1+n_2}$, $y \mapsto (0,y)$. Haben S und T lokalendliche Massen, so auch $S \times T$ und

$$S \times T(\cdot) = \int \langle \cdot, (\bigwedge_{m_1} P) \overrightarrow{S} \wedge (\bigwedge_{m_2} Q) \overrightarrow{T} \rangle d(\|S\| \otimes \|T\|)$$

Beweis

(3) Sei $\omega = \omega_{\alpha\beta}(x,y)dx_{\alpha} \wedge dy_{\beta} \in \mathcal{D}^{m_1+m_2-1}(U_1 \times U_2)$. Dann ist

$$d\omega = \sum_{i=1}^{n_1} \frac{\partial \omega_{\alpha\beta}}{\partial x_i} dx_i \wedge dx_\alpha \wedge dy_\beta + \sum_{j=1}^{n_2} \frac{\partial \omega_{\alpha\beta}}{\partial y_j} dy_j \wedge dx_\alpha \wedge dy_\beta.$$

Hiermit folgt

$$\begin{split} \partial(S\times T)(\omega) &= S\times T(dw) \\ &= S(\sum_{i=1}^{n_1} T(\frac{\partial\omega_{\alpha\beta}}{\partial x_i}dy_\beta)dx_i\wedge dx_\alpha) + (-1)^{|\alpha|}S(T(\sum_{j=1}^{n_2} \frac{\partial\omega_{\alpha\beta}}{\partial y_j}dy_j\wedge dy_\beta)dx_\alpha) \\ &= S(d_x(T(\omega_{\alpha\beta}dy_\beta)dx_\alpha)) + (-1)^{|\alpha|}S(T(d_y(\omega_{\alpha\beta}dy_\beta)dx_\alpha)) \\ &= \partial S(T(\omega_{\alpha\beta}dy_\beta)dx_\alpha)) + (-1)^{m_1}S(\partial T(\omega_{\alpha\beta}dy_\beta)dx_\alpha) \\ &= \partial S\times T(\omega_{\alpha\beta}(x,y)dx_\alpha\wedge dy_\beta) + (-1)^{m_1}(S\times\partial T)(\omega_{\alpha\beta}(x,y)dx_\alpha\wedge dy_\beta) \\ &= (\partial S\times T + (-1)^{m_1}(S\times\partial T))(\omega). \end{split}$$

(4) Sei $\omega = \omega_{\alpha\beta}(x,y)dx_{\alpha} \wedge dy_{\beta} \in \mathcal{D}^{m_1+m_2}(U_1 \times U_2)$. Die Voraussetzung besagt, dass

$$S = \int_{U_1} \langle \cdot, \overrightarrow{S} \rangle d \|S\|$$

und

$$T = \int_{U_2} \langle \cdot, \overrightarrow{T} \rangle d \|T\|.$$

Es folgt

$$\begin{split} S \times T(\omega) &= S_x(T_y(\omega_{\alpha\beta}dy_\beta)dx_\alpha) \\ &= \int \langle T(\omega_{\alpha\beta}dy_\beta)dx_\alpha, \overrightarrow{S} \rangle d\|S\| \\ &= \int T(\omega_{\alpha\beta}dy_\beta)\langle dx_\alpha, \overrightarrow{S} \rangle d\|S\| \\ &= \int_{U_1} \int_{U_2} \langle \omega_{\alpha\beta}dy_\beta, \overrightarrow{T} \rangle d\|T\| \langle dx_\alpha, \overrightarrow{S} \rangle d\|S\| \\ &= \int_{U_1 \times U_2} \langle \omega_{\alpha\beta}(x,y)dy_\beta, \overrightarrow{T}(y) \rangle \langle dx_\alpha, \overrightarrow{S}(x) \rangle d(\|S\| \otimes \|T\|) \\ &= \int_{U_1 \times U_2} \langle \omega_{\alpha\beta}(x,y)dx_\alpha \wedge dy_\beta, (\bigwedge_{n_1} P) \overrightarrow{S}(x) \wedge (\bigwedge_{n_2} Q) \overrightarrow{T}(y) \rangle d(\|S\| \otimes \|T\|). \blacksquare \end{split}$$

Fazit: Es gilt insbesondere

$$||S \times T|| = ||S|| \otimes ||T|, \qquad \overrightarrow{S \times T} = (\bigwedge_{n_1} P) \overrightarrow{S} \wedge (\bigwedge_{n_2} Q) \overrightarrow{T}.$$

Beispiel

Ist T durch ein Integral darstellbar, so auch $[0,1] \times T$ mit $||[0,1] \times T|| = \lambda^1_{[0,1]} \otimes ||T||$ und $\overline{[0,1] \times T} = e_1 \wedge \overrightarrow{T}$ (hier wurden die Einbettungsabbildungen weggelassen).

Bild eines Stromes. Seien $U \subset \mathbb{R}^n$ offen und $V \subset \mathbb{R}^m$ offen. Ferner seien $T \in \mathcal{D}_k(U)$ und $f \colon U \to V$ eine \mathcal{C}^{∞} -Abbildung. Voraussetzung: $f|_{\operatorname{spt}(T)}$ sei eigentlich (das heißt, für $K \subset V$, K kompakt sei $f^{-1}(K) \cap \operatorname{spt}(T) \subset U$ stets kompakt).

Beispiel

Seien $f: U := (0, \infty) \to V := \mathbb{R}$ und $T := [0, b] \in \mathcal{D}_0(U)$ für b > 0. Dann ist

$$f^{-1}([0,b]) \cap \operatorname{spt}(T) = (0,b] \cap [0,b] = (0,b] \subset U$$

nicht kompakt.

Definition

Seien f und T wie oben. Sei $\omega \in \mathcal{D}^k(V)$. Sei $\gamma \in \mathcal{D}_0(U)$ mit

$$\operatorname{spt}(T) \cap \underbrace{\sup(f^{\#}\omega)}_{\subset f^{-1}(\operatorname{supp}(\omega))} \subset \{\gamma = 1\}^{o}.$$

Dann setzt man

$$(f_{\#}T)(\omega) := T(\gamma \wedge f^{\#}\omega).$$

Bemerkungen: (i) $\operatorname{supp}(f^{\#}\omega) \subset f^{-1}(\operatorname{supp}(\omega))$ und $\operatorname{supp}(\omega) \subset V$ ist kompakt, das heißt $\operatorname{spt}(T) \cap \operatorname{supp}(f^{\#}\omega) \subset \operatorname{spt}(T) \cap f^{-1}(\operatorname{supp}(\omega))$. Dabei ist $\operatorname{spt}(T) \cap f^{-1}(\operatorname{supp}(\omega))$ kompakt und $\operatorname{spt}(T) \cap \operatorname{supp}(f^{\#}\omega)$ abgeschlossen und damit auch kompakt.

- (ii) Auf die Einführung von γ kann man im Allgemeinen nicht verzichten, da supp $(f^{\#}\omega)$ nicht kompakt sein muss.
- (iii) Die Definition von $(f_{\#}T)(\omega)$ ist von der konkreten Wahl von γ unabhängig. Seien nämlich γ_1, γ_2 wie oben. Es ist

$$\operatorname{supp}((\gamma_1 - \gamma_2) \wedge f^{\#}\omega) \cap \operatorname{spt}(T) = \emptyset.$$

Daraus folgt mittels einer Zerlegung der Eins

$$T((\gamma_1 - \gamma_2) \wedge f^{\#}\omega) = 0.$$

Dies schließlich ergibt

$$T(\gamma_1 \wedge f^{\#}\omega) = T(\gamma_2 \wedge f^{\#}\omega).$$

(iv) Manchmal geht es auch ohne γ .

Lemma 4.16

Seien $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ offen, $T \in \mathcal{D}_k(U)$, $f \colon U \to V$ von der Klasse \mathcal{C}^{∞} , wobei $f|_{\operatorname{spt}(T)}$ eigentlich ist. Dann gilt

- (1) $\operatorname{spt}(f_{\#}T) \subset f(\operatorname{spt}(T))$
- (2) $\partial (f_{\#}T) = f_{\#}(\partial T)$.
- (3) Ist T durch ein Integral darstellbar, so gilt das auch für $f_{\#}T$ und

$$||f_{\#}T|| \le f_{\#} (||T|| \lfloor ||(\bigwedge_{m} Df)\overrightarrow{T}||).$$

Hierbei ist für eine messbare Menge $A\subset V$ die rechte Seite erklärt durch

$$f_{\#}(\|T\|\|\|(\bigwedge_{m} Df)\overrightarrow{T}\|)(A) = \int_{f^{-1}(A)} \|\bigwedge_{m} Df_{x}\overrightarrow{T}(x)\| \|T\|(dx).$$

Satz 4.17 (Homotopieformel)

Seien $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ offen, seien $f, g \colon U \to V$ von der Klasse \mathcal{C}^{∞} und $h \colon [0,1] \times U \to V$ von der Klasse \mathcal{C}^{∞} mit $h(0,\cdot) = f$ und $h(1,\cdot) = g$. Sei $T \in \mathcal{D}_k(U)$ und $h|_{[0,1] \times \operatorname{spt}(T)}$ sei eigentlich. Dann gilt

$$g_{\#}T - f_{\#}T = h_{\#}([0,1] \times \partial T) + \partial h_{\#}([0,1] \times T),$$

wobei für k=0 der erste Term in der Summe entfällt.

Beweis

Wegen $\operatorname{spt}([0,1] \times T) = [0,1] \times \operatorname{spt}(T)$ und $\operatorname{spt}(\partial T) \subset \operatorname{spt}(T)$ und nach Voraussetzung sind alle

Ströme erklärt. Nun gilt:

$$\begin{split} \partial h_{\#}(\llbracket 0,1\rrbracket \times T) &= h_{\#}\partial(\llbracket 0,1\rrbracket \times T) \\ &= h_{\#}(\partial\llbracket 0,1\rrbracket \times T + (-1)^{1}\llbracket 0,1\rrbracket \times \partial T) \\ &= h_{\#}((\delta_{1}-\delta_{0}) \times T - \llbracket 0,1\rrbracket \times \partial T) \\ &= h_{\#}(\delta_{1} \times T) - h_{\#}(\delta_{0} \times T) - h_{\#}(\llbracket 0,1\rrbracket \times \partial T) \\ &= g_{\#}T - f_{\#}T - h_{\#}(\llbracket 0,1\rrbracket \times \partial T). \end{split}$$

Sei für den letzten Schritt $\tau: U \to \mathbb{R} \times U$, $x \mapsto (0, x)$. Dann ist $\delta_0 \times T = \tau_\# T$. In der Tat:

$$\delta_0 \times T(\omega(t, x)dx) = \delta_0(T(\omega(t, x)dx)) = T(\omega(0, x)dx)$$

und

$$\tau_{\#}T(\omega(t,x)dx) = T(\gamma \wedge \tau^{\#}(\omega(t,x)dx)) = T(\gamma \wedge \omega(0,x)dx) = T(\omega(0,x)dx).$$

Hiermit folgt

$$h_{\#}(\delta_0 \times T) = h_{\#}(\tau_{\#}T) = (h \circ \tau)_{\#}T = f_{\#}T.$$

Die hierbei benutzte Eigenschaft $h_{\#} \circ \tau_{\#} = (h \circ \tau)_{\#}$ ist leicht einzusehen.

Beispiel

Sei $T \in \mathcal{D}_k(\mathbb{R}^n)$ mit $\partial T = 0$, spt(T) kompakt, $k \geq 1$. Nach der Homotopieformel gilt

$$g_{\#}T - f_{\#}T = \partial h_{\#}([0,1] \times T) + 0.$$

Ist spezieller: g(x) := x, f(x) := 0, so gilt $g_{\#}T = T$, $f_{\#}T = 0$ und somit:

$$T = \partial \underbrace{h_{\#}(\llbracket 0,1 \rrbracket \times T)}_{\in \mathcal{D}_{k+1}(\mathbb{R}^n)}.$$

Korollar 4.18

Seien die Voraussetzungen wie in Satz 4.17.

(a) Ist T durch ein Integral darstellbar, so gilt mit der affinen Homotopie $h(t,x)=(1-t)\cdot f(x)+t\cdot g(x)$:

$$\mathbf{M}(h_{\#}([0,1] \times T)) \le ||T|| (|g-f| \cdot \max\{||Df||^k, ||Dg||^k\}).$$

(b) Ist $\mathbf{M}(T) < \infty$ und h wie in (a), so gilt

$$\mathbf{M}(h_{\#}([0,1] \times T)) \le \sup_{\text{spt}(T)} |g - f| \cdot \sup_{\text{spt}(T)} \{ ||Df||^k, ||Dg||^k \} \cdot \mathbf{M}(T).$$

Beweis

Für $\psi \in \mathcal{D}^{k+1}(V)$ folgt:

$$h_{\#}(\llbracket 0,1\rrbracket \times T)(\psi) = \int_{(0,1)\times U} \langle e_{1} \wedge \overrightarrow{T}, h^{\#}\psi \rangle \left(\lambda^{1} \otimes \lVert T \rVert\right) (d(t,x))$$

$$= \int_{(0,1)\times U} \langle \psi(h(t,x)), \underbrace{\bigwedge_{k+1} Dh_{(t,x)}(e_{1} \wedge \overrightarrow{T})}_{=(g(x)-f(x))\wedge \underbrace{\bigwedge_{k} D_{x}h_{(t,x)}}_{=(1-t)Df_{x}(\overrightarrow{T})+t\cdot Dg_{x}(\overrightarrow{T})} (\lambda^{1} \otimes \lVert T \rVert) (d(t,x))$$

$$= \int_{(0,1)\times U} \lVert \psi(h(t,x)) \rVert \cdot \left((1-t)\lVert Df_{x}\rVert^{k} + t \cdot \lVert Dg_{x}\rVert^{k}\right) (\lambda^{1} \otimes \lVert T \rVert) (d(t,x)). \blacksquare$$

Anwendung: Sei U sternförmig in \mathbb{R}^n bezüglich $u \in U$. Betrachte: $g(x) \coloneqq x, f(x) \coloneqq u, x \in U$, $h(t,x) \coloneqq (1-t) \cdot u + t \cdot x$. Für $\psi \in \mathcal{D}^k(U)$ ist $f^\#\psi = 0$ $(k \ge 1)$ und $g^\#\psi = \psi$. Wir betrachten den speziellen Strom

$$T(\beta) := \langle \beta, \eta \rangle, \quad \beta \in \mathcal{D}^k(U),$$

wobei $\eta: U \to \bigwedge_k \mathbb{R}^n$ fest gewählt ist mit kompaktem Träger in U und von der Klasse \mathcal{C}^{∞} .

Dann gilt:

$$g_{\#}T(\psi) = T(\gamma \wedge g^{\#}\psi) = T(\gamma \wedge \psi) = \langle \gamma \wedge \psi, \eta \rangle = \langle \psi, \eta \rangle$$

$$f_{\#}T(\psi) = 0$$

$$h_{\#}([0,1] \times \partial T)(\psi) = [0,1] \times \partial T(h^{\#}\psi) = \partial T((h^{\#}\psi)_{[0,1]}) = T(d((h^{\#}\psi)_{[0,1]}))$$

$$\partial h_{\#}([0,1] \times T)(\psi) = h_{\#}([0,1] \times T)(d\psi) = \dots$$

Ist $d\psi = 0$, so erhält man aus der Homotopieformel für Ströme:

$$\langle \psi, \eta \rangle = T \left(d((h^{\#}\psi)_{\llbracket 0, 1 \rrbracket}) \right) + 0$$

und damit

$$\langle \psi, \eta \rangle = \langle d((h^{\#}\psi)_{\llbracket 0, 1 \rrbracket}), \eta \rangle.$$

Dies zeigt

$$\varphi = d((h^{\#}\psi)_{\llbracket 0,1\rrbracket}).$$

Also ist ψ exakt. Dies ist ein Beweis des Lemmas von Poincaré.

Bild eines Stromes unter einer Lipschitzabbildung. Seien $U \subset \mathbb{R}^n$ offen, $T \in \mathbf{N}_{k,\mathrm{loc}}(U)$ und sei $f \colon U \to V$ Lipschitz sowie $f|_{\mathrm{spt}(T)}$ eigentlich. Zu f gibt es eine Folge $(f_i)_{i \in \mathbb{N}}$ von \mathcal{C}^{∞} -Abbildungen von U nach V mit einer globalen Schranke für die Lipschitzkonstante, wobei $f_i \to f$ gleichmäßig konvergiert. Mit der Homotopieformel sieht man nun

$$\left| (f_{i\#}T)(\omega) - (f_{j\#}T)(\omega) \right| \le c \cdot \sup_{f^{-1}(K) \cap \operatorname{spt}(T)} |f_i - f_j|,$$

falls $K \subset V$, K kompakt und $\operatorname{supp}(\omega) \subset K^o$. Folglich ist $(f_{i\#}T)(\omega)$ eine Cauchyfolge reeller Zahlen, und es existiert also

$$(f_{\#}T)(\omega) := \lim_{i \to \infty} (f_{i\#}T)(\omega).$$

Man kann zeigen:

- $f_{\#}T \in \mathbf{N}_{k,loc}(V)$.
- Die Definition ist von der Wahl der Folge unabhängig.
- $\partial f_{\#}T = f_{\#}\partial T$.
- $\operatorname{spt}(f_{\#}T) \subset f(\operatorname{spt}(T)).$

4.5 Rektifizierbare Ströme

Definition

- (a) Sei $U \subset \mathbb{R}^n$. Ein Strom $T \in \mathcal{D}_k(U)$ heißt rektifizierbar, falls es
 - eine \mathscr{H}^k -messbare, abzählbar k-rektifizierbare Menge $M \subset \mathbb{R}^n$ mit $\mathscr{H}^k(M \cap K) < \infty$ für $K \subset U$, K kompakt,
 - eine \mathscr{H}^k -messbare Abbildung $\xi \colon M \to \bigwedge_k \mathbb{R}^n$ mit $\|\xi\| = 1$ \mathscr{H}^k -fast-überall auf M und $\xi = v_1 \wedge \cdots \wedge v_k$ mit $v_i(x) \in \bigwedge_k T_x M$ für \mathscr{H}^k -fast-alle $x \in M$,
 - eine \mathscr{H}^k -messbare Funktion $\theta \colon M \to [0, \infty]$

gibt, so dass gilt

$$T(\omega) = \int_{M} \langle \omega, \xi \rangle \theta \, d\mathcal{H}^{k}.$$

- (b) Ist θ sogar ganzzahlig, so heißt ein solcher Strom T ganzzahlig rektifizierbar. Die Menge der ganzzahlig rektifizierbaren Ströme wird mit $\mathcal{R}_k(U)$ bezeichnet.
- (c) T heißt integraler Strom, falls T und ∂T ganzzahlig rektifizierbare Ströme sind. Die Menge der integralen Ströme wird mit $\mathcal{I}_k(U)$ bezeichnet.

Bemerkungen: (1) Übersicht:

$$\mathcal{I}_k(U) \subset \mathcal{R}_k(U)$$
 $\cap \cap$
 $\mathbf{N}_{k,loc}(U) \subset \mathbf{M}_{k,loc}(U)$

(2) Sei $T \in \mathcal{R}_k(U)$ und sei θ auf M integrierbar. Dann ist

$$\mathbf{M}(T) = \int_{M} \theta \, d\mathcal{H}^{k}.$$

(3) $\mathcal{I}_k(U) \subset \mathcal{R}_k(U) \cap \mathbf{N}_{k,loc}(U)$. Gilt "⊃"? Die positive Antwort wird nachfolgenden als Satz formuliert (Randrektifizierbarkeit).

Beispiele

(1) Sei $M \subset \mathbb{R}^n$ eine kompakte k-dimensionale Mannigfaltigkeit. Dann gilt

$$[\![M]\!] \in \mathcal{R}_k(\mathbb{R}^n).$$

(2) Sei M wie in (1) und $\mathcal{H}^{k-1}(\partial M) < \infty$. Dann gilt

$$[M] \in \mathcal{I}_k(\mathbb{R}^n),$$

denn $\partial \llbracket M \rrbracket = \llbracket \partial M \rrbracket$.

(3) $\tilde{T} \in \mathcal{D}_1(\mathbb{R}^2)$ sei definiert durch

$$\tilde{T}(\omega_1 dx + \omega_2 dy) := \int_0^1 \omega_2(s, 0) ds.$$

Dann ist \tilde{T} nicht 1-rektifizierbar. Aber

$$T(\omega_1 dx + \omega_2 dy) := \int_0^1 \omega_1(s, 0) ds$$

ist 1-rektifizierbar.

(4) Es ist

$$T_j := \sum_{i=1}^j \left[\left\{ -\frac{i}{j} \right\} \times [0, \frac{1}{j}] \right] \in \mathcal{R}_1(\mathbb{R}^2) \cap \mathbf{N}_1(\mathbb{R}^2).$$

Es gilt $\mathbf{M}(T_j) = 1$, $\mathbf{M}(\partial T_j) = 2j$, $T_j \stackrel{s}{\rightharpoonup} \tilde{T}$ für $j \to \infty$. Wir erhalten so eine Folge integraler Ströme, deren schwacher Limes nicht rektifizierbar ist.

Satz 4.19

- (1) (Randrektifizierbarkeit) Sei $T \in \mathcal{R}_k(U)$ und $\mathbf{M}_V(\partial T) < \infty$ für alle $V \subset U$ mit V offen, so dass \bar{V} kompakte Teilmenge von U ist. Dann ist $T \in \mathcal{I}_k(U)$.
- (2) (Closure Theorem) Seien $T_j \in \mathcal{R}_k(U), j \in \mathbb{N}$, und

$$\sup_{j \in \mathbb{N}} (\mathbf{M}_V(T_j) + \mathbf{M}_V(\partial T_j)) < C_V < \infty$$

für alle $V \subset U$ mit V offen, so dass \bar{V} eine kompakte Teilmenge von U ist. Gilt $T_j \stackrel{s}{\rightharpoonup} T \in \mathcal{D}_k(U)$ für $j \to \infty$, so ist $T \in \mathcal{R}_k(U)$.

(3) (Kompaktheitssatz) Seien T_j wie in (2). Dann gibt es eine Teilfolge $T_{j'}$ von T_j und $T \in \mathcal{R}_k(U)$ mit $T_{j'} \stackrel{s}{\rightharpoonup} T$.

Beweis

Idee: Simultaner Beweis von (1) und (2)/(3) durch vollständige Induktion über k. Aus (2)/(3) für k-1 und dem Deformationssatz folgt (1) für k. Ferner geht das Konzept "Schnitt eines Stroms" ein.

Polyedrische Ströme Sei $\varepsilon > 0$. Dann ist $[0, \varepsilon]^n + \varepsilon \cdot z$, $z \in \mathbb{Z}^n$ ein kompakter ε -Würfel. Ein k-dimensionaler ε -Würfel ist erklärt als das relative Innere einer k-dimensionalen Seite eines solchen ε -Würfels.

Definition

Ein k-dimensionaler polyedrischer Strom in \mathbb{R}^n der Seitenlänge ε ist ein Strom der Form

$$P := \sum_Q a_Q [\![Q]\!],$$

wobei Q ein k-dimensionaler ε -Würfel ist. Ein solcher Strom heißt ganzzahlig polyedrischer, falls $a_Q \in \mathbb{Z}$.

Bemerkungen: (1) $\mathbf{M}(P) = \sum_{Q} |a_{Q}| \varepsilon^{k}$

(2) $\mathbf{M}(\partial P) \leq 2^k \mathbf{M}(P)$. ∂P ist stets polyedrisch.

Satz 4.20 (Deformationssatz)

Es gibt eine Konstante c=c(n), so dass für jedes $T\in \mathbf{N}_k(\mathbb{R}^n)$ und jedes $\varepsilon>0$ ein k-dimensionaler polyedrischer Strom P existiert und ferner $R\in \mathbf{N}_{k+1}(\mathbb{R}^n)$ und $S\in \mathbf{M}_k(\mathbb{R}^n)$ existieren, so dass gilt

$$T = P + \partial R + S$$

mit

- (1) $\mathbf{M}(P) \le c \cdot \mathbf{M}(T), \ \mathbf{M}(\partial P) \le c \cdot \mathbf{M}(\partial T),$
- (2) $\mathbf{M}(R) \le c \cdot \varepsilon \cdot \mathbf{M}(T), \ \mathbf{M}(S) \le c \cdot \varepsilon \cdot \mathbf{M}(\partial T),$
- (3) $\mathbf{M}(\partial R) \leq c \cdot (\mathbf{M}(T) + \varepsilon \cdot \mathbf{M}(\partial T)),$
- (4) $\operatorname{spt}(P), \operatorname{spt}(R) \subset \operatorname{spt}(T)_{\delta(\varepsilon)}$ und $\operatorname{spt}(\partial P), \operatorname{spt}(\partial R) \subset \operatorname{spt}(\partial T)_{\delta(\varepsilon)}$ mit $\delta(\varepsilon) \to 0$ für $\varepsilon \to 0$.
- (5) Ist $T \in \mathcal{R}_k(\mathbb{R}^n)$, so können P, R als rektifizierbare Ströme gewählt werden. Ist $T \in \mathcal{I}_k(\mathbb{R}^n)$, so kann auch S als rektifizierbarer Strom gewählt werden.

Wir formulieren noch einige Anwendungen:

Satz 4.21 (Schwache Polyedrische Approximation)

Sei $T \in \mathcal{R}_k(\mathbb{R}^n) \cap \mathbf{N}_k(\mathbb{R}^n)$. Dann gibt es eine Folge P_i von polyedrischen Strömen mit $P_i \stackrel{s}{\rightharpoonup} T$, wobei die Massen der P_i uniform beschränkt sind.

Beweis

Wähle $\epsilon_i := 1/i$ im Deformationssatz. Dann gibt es Ströme P_i, R_i, S_i mit den im Deformationssatz beschriebenen Eigenschaften. Wegen (1) sind die Massen von P_i und ∂P_i uniform beschränkt. Aus $\mathbf{M}(R_i) \leq c \cdot \epsilon_i \mathbf{M}(T) \to 0$ folgt $R_i \stackrel{s}{\rightharpoonup} 0$ und daher auch $\partial R_i \stackrel{s}{\rightharpoonup} 0$. Wegen $\mathbf{M}(S_i) \leq c \cdot \epsilon_i \mathbf{M}(\partial T) \to 0$ folgt $S_i \stackrel{s}{\rightharpoonup} 0$. Insgesamt ist also $\partial R_i + S_i \stackrel{s}{\rightharpoonup} 0$ und daher $P_i \stackrel{s}{\rightharpoonup} T$.

Sei $T \in \mathcal{D}_k(\mathbb{R}^n)$, $1 \le k \le n-1$ und $\operatorname{spt}(T)$ kompakt.

Gibt es $S \in \mathcal{D}_{k+1}(\mathbb{R}^n)$ mit $\partial S = T$? Notwendige Bedingung: $\partial T = 0$. Diese Bedingung ist auch hinreichend, wie wir schon gesehen haben.

Isoperimetrisches Problem: Finde eine Massenschranke für die "Füllung S" von T.

Satz 4.22 (Isoperimetrische Ungleichung)

Sei $T \in \mathcal{R}_k(\mathbb{R}^n)$, $\partial T = 0$, $\operatorname{spt}(T)$ kompakt. Dann gibt es ein $R \in \mathcal{R}_{k+1}(\mathbb{R}^n)$ mit $\operatorname{spt}(R)$ kompakt, $\partial R = T$ und

$$\mathbf{M}(R) \le c \cdot \mathbf{M}(T)^{\frac{k+1}{k}}$$

mit c = c(n).

Beweis

Sei o.B.d.A. $\mathbf{M}(T) \neq 0$. Setze $\epsilon := (2c\mathbf{M}(T)^{1/k}$, wobei c wie im Deformationssatz gewählt wird. Zu T seien P, R, S wie im Deformationssatz gewählt. Wegen (2) und der Voraussetzung folgt S = 0. Weiterhin gilt

$$\mathbf{M}(P) \le c\mathbf{M}(T) = \frac{1}{2}\epsilon^k < \epsilon^k,$$

und daher ist $\mathbf{M}(P) = 0$, das heißt P = 0. Somit ist $P = \partial R$ und

$$\mathbf{M}(R) \le c\epsilon \mathbf{M}(T) = c(2c\mathbf{M}(T))^{1/k} \mathbf{M}(T) = c'\mathbf{M}(T)^{\frac{k+1}{k}}.$$

Zusammen ergibt dies die Behauptung.

Schließlich ergeben die zur Verfügung stehenden Sätze auch einen raschen Beweis für eine Lösung des Plateauschen Problems in der Kategorie der Ströme.

Satz 4.23 (Plateau Problem)

Sei $T \in \mathcal{I}_k(\mathbb{R}^n)$, $\partial T = 0$, $\operatorname{spt}(T)$ kompakt. Dann existiert $S \in \mathcal{I}_{k+1}(\mathbb{R}^n)$ mit $\partial S = T$, $\operatorname{spt}(S)$ kompakt und

$$\mathbf{M}(S) = \inf{\{\mathbf{M}(R) : R \in \mathcal{I}_{k+1}(\mathbb{R}^n), \partial R = T\}}.$$

Beweis

Zu T existiert ein $R \in \mathcal{R}_{k+1}(\mathbb{R}^n)$ mit $T = \partial R$ und $\operatorname{spt}(R)$ kompakt (vgl. den Beweis der isoperimetrischen Ungleichung). Da T lokalendliche Masse hat, gilt dies auch für ∂R , so dass der Randrektifizierbarkeitssatz ergibt, dass $R \in \mathcal{I}_{k+1}(\mathbb{R}^n)$. Damit ist klar, dass sich das Infimum über eine nichtleere Menge erstreckt. Sei R_i , $i \in \mathbb{N}$ eine minimierende Folge. Wegen $\partial R_i = T$ ist die Voraussetzung des Kompaktheitssatzes erfüllt. Es existiert somit ein $S \in \mathcal{R}_{k+1}(\mathbb{R}^n)$ mit $T = \partial R_i \stackrel{s}{\rightharpoonup} \partial S$, also $T = \partial S$. Eine erneute Anwendung des Randrektifizierbarkeitssatzes zeigt sogar $S \in \mathcal{I}_{k+1}(\mathbb{R}^n)$. Wegen der Unterhalbstetigkeit der Masse ist auch $\mathbf{M}(S)$ gleich dem Infimum. Durch die Projektion $\pi_{\#}(R_i)$ der Ströme einer minimierenden Folge auf die abgeschlossene, konvexe Hülle von $\operatorname{spt}(T)$ erreicht man, dass auch $\operatorname{spt}(S)$ kompakt ist.