EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul scolar 2023 - 2024

Matematică

Model

BAREM DE EVALUARE SI DE NOTARE

Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	b)	5p
2.	c)	5p
3.	b)	5p
4.	d)	5 p
5.	a)	5p
6.	b)	5p

SUBIECTUL al II-lea

(30 de puncte)

1.	a)	5p
2.	d)	5p
3.	b)	5p
4.	c)	5p
5.	b)	5p
6.	c)	5p

SUBIECTUL al III-lea

(30 de puncte)

1.	a) $\frac{30}{100} \left(x - \frac{20}{100} \cdot x \right) = \frac{24x}{100}$ este suma cheltuită de Mihai în a doua zi, unde x reprezintă întreaga	1p
	sumă de bani	
	$\frac{24x}{100} < \frac{25x}{100} = \frac{1}{4} \cdot x$, de unde obținem că Mihai nu a cheltuit în a doua zi un sfert din întreaga sumă	1p
	de bani	
	b) $\frac{x}{5} + \frac{6x}{25} + \left(\frac{6x}{25} + 20\right) + 44 = x$	1p
	$\frac{17x}{25} + 64 = x$	1p
	x = 200 de lei	1p
2.	a) $\frac{x}{9+3x} - \frac{2}{x+3} + \frac{3}{x^2+3x} = \frac{x}{3(x+3)} - \frac{2}{x+3} + \frac{3}{x(x+3)} =$	1p
	a) $\frac{x}{9+3x} - \frac{2}{x+3} + \frac{3}{x^2+3x} = \frac{x}{3(x+3)} - \frac{2}{x+3} + \frac{3}{x(x+3)} =$ $= \frac{x^2 - 6x + 9}{3x(x+3)} = \frac{(x-3)^2}{3x(x+3)}, \text{ pentru orice număr real } x, x \neq -3 \text{ și } x \neq 0$	1p

	b) $\frac{x}{3} + \frac{3}{x} - 2 = \frac{x^2 + 9 - 6x}{3x} = \frac{(x - 3)^2}{3x}$	1p
	$E(x) = \frac{(x-3)^2}{3x(x+3)} \cdot \frac{3x}{(x-3)^2} = \frac{1}{x+3}$, pentru orice număr real $x, x \neq -3, x \neq 0, x \neq 3$	1p
	$5 \cdot E(n) = \frac{5}{n+3}$ este număr natural, deci $n+3=1$ sau $n+3=5$ și, cum n este număr natural, obținem $n=2$	1p
3.	a) $f(-2) = 0$	1p
	$2023 \cdot f(-2) = 2023 \cdot 0 = 0$	1p
	b) $A(-2,0)$ și $B(0,2)$ sunt punctele de intersecție a graficului funcției f cu axele Ox , respectiv Oy	1p
	În triunghiul dreptunghic isoscel AOB , OM mediană, deci OM bisectoare $\Rightarrow \angle MOB = 45^{\circ}$	1p
	$NP \perp Ox$, $P \in Ox \Rightarrow P(3,0)$, iar $\angle MON = \angle MOB + \angle BOP + \angle PON = 45^{\circ} + 90^{\circ} + 45^{\circ} = 180^{\circ}$,	
	de unde rezultă că punctele N , O și M sunt coliniare	1p
4.	a) În triunghiul dreptunghic ABC , $AC = \sqrt{AB^2 + BC^2} = \sqrt{12^2 + 9^2} = \sqrt{12^2 + 9^2}$	1p
	$= \sqrt{225} = 15 \text{ cm}$	1p
	b) $QN \parallel AB \parallel CD$, $PM \parallel BC \parallel AD$ şi $\angle QAM = \angle PCN = 90^{\circ}$, deci $AMEQ$ şi $CNEP$ sunt	
	dreptunghiuri	1p
	$PC \parallel AM \implies \Delta PEC \sim \Delta MEA \implies \frac{PE}{ME} = \frac{PC}{AM} = \frac{EC}{EA} = \frac{1}{2}$	1p
	$ME AM EA 2$ $ME = 2 \cdot PE , AM = 2 \cdot PC \Rightarrow A_{AMEQ} = AM \cdot ME = 4 \cdot PC \cdot PE = 4 \cdot A_{CNEP}$	1
		1p
5.	a) În triunghiul dreptunghic ABC , $AC = \sqrt{AB^2 + BC^2} = 4\sqrt{2}$ cm	1p
	$P_{\Delta ABC} = AB + AC + BC = 2\sqrt{2} + 4\sqrt{2} + 2\sqrt{6} = 2\sqrt{2}(3 + \sqrt{3})$ cm	1p
	b) EM mediană în triunghiul dreptunghic isoscel $AEB \Rightarrow EM = \frac{AB}{2} = \sqrt{2} \text{ cm}$, BE bisectoarea $\angle ABC$, $EM \perp AB$, $M \in AB$ și $EN \perp BC$, $N \in BC$, de unde obținem $EM = EN = \sqrt{2} \text{ cm}$	1p
		1p
	$\mathcal{A}_{\Delta AEC} = \mathcal{A}_{\Delta ABC} - \mathcal{A}_{\Delta AEB} - \mathcal{A}_{\Delta BEC} = \frac{AB \cdot BC}{2} - \frac{AB \cdot EM}{2} - \frac{BC \cdot EN}{2} = 2(\sqrt{3} - 1) \text{cm}^2$ $\mathcal{A}_{\Delta AEC} = \frac{AC \cdot EP}{2} \text{, unde } EP \perp AC, P \in AC \text{, de unde } EP = \frac{\sqrt{3} - 1}{\sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{2} \text{ cm}$	1p
6.	a) $\mathcal{A}_t = 2 \cdot (AB \cdot AA' + BC \cdot AA' + AB \cdot BC) = 2 \cdot (16 + 8 + 8) =$	1p
	$= 2 \cdot 32 = 64 \mathrm{cm}^2$	1p
	b) $\Delta B'C'D' \equiv \Delta B'C'C \Rightarrow B'D' = B'C$	1p
	În triunghiul $B'C'D'$ dreptunghic, $B'N = \frac{B'C'^2}{B'D'}$ și în triunghiul $B'C'C$ dreptunghic,	1p
	$B'P = \frac{B'C'^2}{B'C}$, de unde $B'N = B'P$	_ r
	În triunghiul $B'D'C$, $\frac{B'N}{B'D'} = \frac{B'P}{B'C} \Rightarrow NP \parallel D'C$, $D'C \subset (ACD') \Rightarrow NP \parallel (ACD')$	1p