

Multimedia and Text Indexing

Multimedia Data Management

- The need to query and analyze vast amounts of multimedia data (i.e., images, sound tracks, video tracks) has increased in the recent years.
- Joint Research from Database Management, Computer Vision, Signal Processing and Pattern Recognition aims to solve problems related to multimedia data management.

- There are four major types of multimedia data: images, video sequences, sound tracks, and text.
- From the above, the easiest type to manage is text, since we can order, index, and search text using string management techniques, etc.
- Management of simple sounds is also possible by representing audio as signal sequences over different channels.
- Image retrieval has received a lot of attention in the last decade (CV and DBs). The main techniques can be extended and applied also for video retrieval.

Content-based Image Retrieval

- Images were traditionally managed by first annotating their contents and then using text-retrieval techniques to index them.
- However, with the increase of information in digital image format some drawbacks of this technique were revealed:
 - Manual annotation requires vast amount of labor
 - Different people may perceive differently the contents of an image; thus no objective keywords for search are defined
- A new research field was born in the 90's: *Content-based Image Retrieval* aims at indexing and retrieving images based on their *visual contents*.

Feature Extraction

- The basis of Content-based Image Retrieval is to extract and index some *visual features* of the images.
- There are general features (e.g., color, texture, shape, etc.) and domain-specific features (e.g., objects contained in the image).
 - Domain-specific feature extraction can vary with the application domain and is based on pattern recognition
 - On the other hand, general features can be used independently from the image domain.

Color Features

- To represent the color of an image compactly, a *color histogram* is used. Colors are partitioned to *k* groups according to their similarity and the *percentage* of each group in the image is measured.
- Images are transformed to *k*-dimensional points and a distance metric (e.g., Euclidean distance) is used to measure the similarity between them.

Using Transformations to Reduce Dimensionality

- In many cases the *embedded* dimensionality of a search problem is much lower than the actual dimensionality
- Some methods apply transformations on the data and approximate them with low-dimensional vectors
- The aim is to reduce dimensionality and at the same time maintain the data characteristics
- If d(a,b) is the distance between two objects a, b in real (high-dimensional) and d'(a',b') is their distance in the transformed low-dimensional space, we want d'(a',b')≤d(a,b).

Multimedia Indexing

Every indexing model must follow a retrieval semantics. The multimedia indexing model must support the similarity queries.

Two types similarity queries:

- range queries
 return documents similar more than a given threshold
- k nearest neighbour queries
 return the first k most similar documents

Metric Indexing

Feature vectors are indexed according to distances between each other.

As a dissimilarity measure, a distance function $d(O_i, O_j)$ is specified such that the metric axioms are satisfied:

$$d(O_{i'}O_{j}) = 0$$
 reflexivity $d(O_{i'}O_{j}) > 0$ positivity $d(O_{i'}O_{j}) = d(O_{j'}O_{i})$ symmetry $d(O_{i'}O_{k}) + d(O_{k'}O_{j}) \ge d(O_{i'}O_{j})$ triangular

inequality

Metric structures:

Main memory structures: cover-tree, vp-tree, mvp-tree

Disk-based structures: M-tree, Slim-tree

The M-tree

- Inherently dynamic structure
- Disk-oriented (fixed-size nodes)
- Built in a bottom-up fashion
 - Inspired by R-trees and B-trees
- All data in *leaf nodes*
- Internal nodes: pointers to subtrees and additional information

P. Zezula, G. Amato, V. Dohnal, M. Batko: Similarity Search: The Metric Space Approach

M-tree: Internal Node

- Internal node consists of an entry for each subtree
- Each entry consists of:
 - Pivot: p
 - Covering radius of the sub-tree: r^c
 - Distance from p to parent pivot p^p : $d(p,p^p)$
 - Pointer to sub-tree: ptr

$$\boxed{\langle p_1, r_1^c, d(p_1, p^p), ptr_1 \rangle \middle\langle p_2, r_2^c, d(p_2, p^p), ptr_2 \rangle \cdots \middle\langle p_m, r_m^c, d(p_m, p^p), ptr_m \rangle}$$

All objects in subtree ptr are within the distance r^c from p.

M-tree: Leaf Node

- leaf node contains data entries
- each entry consists of pairs:
 - object (its identifier): o
 - distance between o and its parent pivot: $d(o,o^p)$

$$|\langle o_1, d(o_1, o^p) \rangle| \langle o_2, d(o_2, o^p) \rangle \cdots |\langle o_m, d(o_m, o^p) \rangle|$$

M-tree: Insert

- Insert a new object o_N :
- recursively descend the tree to locate the *most suitable leaf* for o_N
- in each step enter the subtree with pivot p for which:
 - no enlargement of radius r^c needed, i.e., $d(o_N, p) \le r^c$
 - in case of ties, choose one with p nearest to o_N
 - minimize the enlargement of r^c

M-tree: Insert (cont.)

- when reaching leaf node N then:
 - if N is not full then store o_N in N
 - else **Split**($N_{r}o_{N}$).

M-tree: Split

Split($N_{r}o_{N}$):

- Let S be the set containing all entries of N and ON
- Select pivots p_1 and p_2 from S
- Partition S to S_1 and S_2 according to p_1 and p_2
- Store S₁ in N and S₂ in a new allocated node N'
- If N is root
 - Allocate a new root and store entries for p_1 , p_2 there
- else (let N^p and p^p be the parent node and parent pivot of N)
 - Replace entry p^p with p_1
 - If N^p is full, then **Split**(N^p, p_2)
 - else store p₂ in node N^p

M-tree: Pivot Selection

- Several pivots selection policies
 - **RANDOM** select pivots p_1 , p_2 randomly
 - m_RAD select p_1 , p_2 with minimum $(r_1^c + r_2^c)$
 - mM_RAD select p_1 , p_2 with minimum $max(r_1^c, r_2^c)$
 - **M_LB_DIST** let $p_1 = p^p$ and $p_2 = o_i / \max_i \{ d(o_i, p^p) \}$
 - Uses the pre-computed distances only
- Two versions (for most of the policies):
 - Confirmed reuse the original pivot p^p and select only one
 - Unconfirmed select two pivots (notation: RANDOM_2)
- In the following, the mM_RAD_2 policy is used.

Partition S to S_1 and S_2 according to p_1 and p_2

- Unbalanced
 - Generalized hyperplane

- Balanced
 - Larger covering radii
 - Worse than unbalanced one

M-tree: Range Search

Given R(q,r):

- Traverse the tree in a depth-first manner
- In an internal node, for each entry $\langle p, r^c, d(p, p^p), ptr \rangle$
 - Prune the subtree if $\frac{d(q,p^p) d(p,p^p)}{-r^c > r}$
 - Application of the pivot-pivot constraint

- Prune the subtree if $d(q,p) r^c > r$
- Application of the range-pivot constraint

All non-pruned entries are searched recursively.

M-tree: Range Search in Leaf Nodes

- In a leaf node, for each entry \(\langle o, d(o, o^p) \rangle\)
 - Ignore entry if $d(q,o^p) d(o,o^p)/>r$
 - else compute d(q,o) and check $d(q,o) \leq r$
 - Application of the object-pivot constraint

M-tree: *k-NN* Search

Given k-NN(q):

- Based on a priority queue and the pruning mechanisms applied in the range search.
- Priority queue:
 - Stores pointers to sub-trees where qualifying objects can be found.
 - Considering an entry $E = \langle p, r^c, d(p, p^p), ptr \rangle$, the pair $\langle ptr, d_{min}(E) \rangle$ is stored.
 - $d_{min}(E) = max \{ d(p,q) r^c, 0 \}$
- Range pruning: instead of fixed radius r, use the distance to the k-th current nearest neighbor.

Text Retrieval (Information retrieval)

- Given a database of documents, find documents containing "data", "retrieval"
- Applications:
 - Web
 - law + patent offices
 - digital libraries
 - information filtering

Problem - Motivation

- - Types of queries:
 - boolean ('data' AND 'retrieval' AND NOT ...)
 - additional features ('data' ADJACENT 'retrieval')
 - keyword queries ('data', 'retrieval')
 - How to search a large collection of documents?

A: mainly, the postings lists

- how to organize dictionary?
- stemming Y/N?
 - Keep only the root of each word ex. inverted, inversion → invert
- insertions?

- how to organize dictionary?
 - B-tree, hashing, TRIEs, PATRICIA trees, ...
- stemming Y/N?
- insertions?

postings list — more Zipf distr.: eg., rank-frequency plot of 'Bible'

- postings lists
 - Cutting+Pedersen
 - (keep first 4 in B-tree leaves)
 - how to allocate space: [Faloutsos+92]
 - geometric progression
 - compression (Elias codes) [Zobel+] down to 2% overhead!
 - Conclusions: needs space overhead (2%-300%), but it is the fastest

Text - Detailed outline

- Text databases
 - problem
 - inversion
 - signature files (a.k.a. Bloom Filters)
 - Vector model and clustering
 - information filtering and LSI

Vector Space Model and Clustering

- Keyword (free-text) queries (vs Boolean)
- each document: -> vector (HOW?)
- each query: -> vector
- search for 'similar' vectors

Vector Space Model and Clustering

 main idea: each document is a vector of size d: d is the number of different terms in the database

document

Document Vectors

Documents are represented as "bags of words"

OR as vectors.

- A vector is like an array of floating points
- Has direction and magnitude
- Each vector holds a place for every term in the collection
- Therefore, most vectors are sparse

Document Vectors One location for each word.

	nova	galaxy	heat	h' wood	film	role	diet	fur
A	10	5	3					

"Nova" occurs 10 times in text A
"Galaxy" occurs 5 times in text A
"Heat" occurs 3 times in text A
(Blank means 0 occurrences.)

Document Vectors One location for each word.

Document Vectors

Document ids

	nova	galaxy	heat	h' wood	film	role	diet	fur
A	10	5	3					
В	5	10						
C				10	8	7		
D				9	10	5		
E							10	10
F							9	10
G	5		7			9		
Н		6	10		2	8		
I				7	5		1	3

4

We Can Plot the Vectors

Diet

Assigning Weights to Terms

- Binary Weights
- Raw term frequency
- tf x idf
 - Recall the Zipf distribution
 - Want to weight terms highly if they are
 - frequent in relevant documents ... BUT
 - infrequent in the collection as a whole

Binary Weights

 Only the presence (1) or absence (0) of a term is included in the vector

docs	<i>t1</i>	<i>t</i> 2	<i>t</i> 3
D1	1	0	1
D2	1	0	0
D3	0	1	1
D4	1	0	0
D5	1	1	1
D6	1	1	0
D7	0	1	0
D8	0	1	0
D9	0	0	1
D10	0	1	1
D11	1	0	1

Raw Term Weights

 The frequency of occurrence for the term in each document is included in the vector

docs	<i>t1</i>	t2	<i>t3</i>
D1	2	0	3
D2	1	0	0
D3	0	4	7
D4	3	0	0
D5	1	6	3
D6	3	5	0
D7	0	8	0
D8	0	10	0
D9	0	0	1
D10	0	3	5
D11	4	0	1

Assigning Weights

- tf x idf measure:
 - term frequency (tf)
 - inverse document frequency (idf) -- a way to deal with the problems of the Zipf distribution
- Goal: assign a tf * idf weight to each term in each document

tf x idf

$$w_{ik} = tf_{ik} * \log(N/n_k)$$

 $T_k = \text{term } k$ $tf_{ik} = \text{frequency of term } T_k \text{ in document } D_i$ $idf_k = \text{inverse document frequency of term } T_k \text{ in } C$ N = total number of documents in the collection C $n_k = \text{the number of documents in } C \text{ that contain } T_k$

$$idf_k = \log\left(\frac{N}{n_k}\right)$$

Inverse Document Frequency

 IDF provides high values for rare words and low values for common words

For a collection of 10000 documents

$$\log\left(\frac{10000}{10000}\right) = 0$$

$$\log\left(\frac{10000}{5000}\right) = 0.301$$

$$\log\left(\frac{10000}{20}\right) = 2.698$$

$$\log\left(\frac{10000}{1}\right) = 4$$

Similarity Measures for document vectors (seen as sets)

$$Q \cap D$$

Simple matching (coordination level match)

$$2\frac{|Q \cap D|}{|Q| + |D|}$$

Dice's Coefficient

$$\frac{|Q \cap D|}{|Q \cup D|}$$

Jaccard's Coefficient

$$\frac{|Q \cap D|}{|Q|^{\frac{1}{2}} \times |D|^{\frac{1}{2}}}$$

Cosine Coefficient

$$\frac{|Q\cap D|}{\min(|Q|,|D|)}$$

Overlap Coefficient

tf x idf normalization

- Normalize the term weights (so longer documents are not unfairly given more weight)
 - normalize usually means force all values to fall within a certain range, usually between 0 and 1, inclusive.

$$w_{ik} = \frac{tf_{ik} \log(N/n_k)}{\sqrt{\sum_{k=1}^{t} (tf_{ik})^2 [\log(N/n_k)]^2}}$$

Vector space similarity (use the weights to compare the documents)

Now, the similarity of two documents is:

$$sim(D_i, D_j) = \sum_{k=1}^t w_{ik} * w_{jk}$$

This is also called the cosine, or normalized inner product.

Computing Similarity Scores

Vector Space with Term Weights and Cosine Matching

$$\begin{aligned} & D_{i} = (d_{i1}, w_{di1}; d_{i2}, w_{di2}; \dots; d_{it}, w_{dit}) \\ & Q = (q_{i1}, w_{qi1}; q_{i2}, w_{qi2}; \dots; q_{it}, w_{qit}) \\ & sim(Q, D_{i}) = \frac{\sum_{j=1}^{t} w_{q_{j}} w_{d_{ij}}}{\sqrt{\sum_{j=1}^{t} (w_{q_{j}})^{2} \sum_{j=1}^{t} (w_{d_{ij}})^{2}}} \\ & sim(Q, D2) = \frac{(0.4 \cdot 0.2) + (0.8 \cdot 0.7)}{\sqrt{[(0.4)^{2} + (0.8)^{2}] \cdot [(0.2)^{2} + (0.7)^{2}]}} \\ & = \frac{0.64}{\sqrt{0.42}} = 0.98 \\ & sim(Q, D_{1}) = \frac{.56}{\sqrt{0.58}} = 0.74 \end{aligned}$$

Text - Detailed outline

- Text databases
 - problem
 - full text scanning
 - inversion
 - signature files (a.k.a. Bloom Filters)
 - Vector model and clustering

information filtering and LSI

- [Foltz+,' 92] Goal:
 - users specify interests (= keywords)
 - system alerts them, on suitable newsdocuments
- Major contribution: LSI = Latent Semantic Indexing
 - latent ('hidden') concepts

I I

Information Filtering + LSI

Main idea

- map each document into some 'concepts'
- map each term into some 'concepts'
- 'Concept': ~ a set of terms, with weights, e.g.
 - "data" (0.8), "system" (0.5), "retrieval" (0.6) ->
 DBMS_concept

Pictorially: term-document matrix (BEFORE)

	'data'	'system'	'retrieval'	'lung'	'ear'
TR1	1	1	1		
TR2	1	1	1		
TR3				1	1
TR4				1	1

Pictorially: concept-document matrix and...

	'DBMS-	'medical-
	concept'	concept'
TR1	1	
TR2	1	
TR3		1
TR4		1

... and concept-term matrix

	'DBMS-	'medical-
	concept'	concept'
data	1	
system	1	
retrieval	1	
lung		1
ear		1

Q: How to search, eg., for 'system'?

A: find the corresponding concept(s); and the corresponding documents

	'DBMS-	'medical-
	concept'	concept'
data	1	
system	1 🛉	
retrieval	1	
lung		1
ear		1

	'DBMS-	'medical-
	concept'	concept'
TR1	1	
TR2	1	
TR3		1
TR4		1

A: find the corresponding concept(s); and the corresponding documents

	'DBMS-	'medical-
	concept'	concept'
data	1	
system	1 🛉	
retrieval	1	
lung		1
ear		1

	'DBMS-	'medical-
	concept'	concept'
TR1	1 📥	
TR2	1 -	
TR3		1
TR4		1

Thus it works like an (automatically constructed) thesaurus:

we may retrieve documents that DON'T have the term 'system', but they contain almost everything else ('data', 'retrieval')