A functorial excursion between linear logic and algebraic geometry

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université Paris Cité & INRIA

Resources in Computation
University College London \pm 21 \longrightarrow 23 September 2022

Starting point and motivating analogy

In algebraic geometry, there are two kinds of spaces:

- schemes which may be seen as commutative rings dualized into affine schemes and "glued together" in an appropriate way,
- bundles usually described as quasi-coherent modules over the structure sheaf of rings a specific scheme X.

Much progress has been made to design **sheaf models** of dependent and homotopy type theory. There, a type is interpreted as a **sheaf** or a **space**.

The position of linear logic is not entirely clear from that point of view. Could we understand linear logic as a **logic of bundles** on spaces?

The category Mod_R of modules

Every **symm. monoidal closed category** defines a model of linear logic.

Hence: the category \mathbf{Mod}_R of R-modules for a given commutative ring R.

Conjunction as tensor product:

 $M \otimes_R N$ as the abelian group $M \otimes N$ quotiented

Implication and hypothetical reasoning as linear hom:

 $M \multimap_R N$ as the abelian group of *R*-module homomorphisms.

Purpose of this talk: extend / adapt this interpretation to **presheaves of modules** over a **covariant presheaf** $X \in [Ring, Set]$ of commutative rings.

An axiomatic approach to abelian groups

We want to axiomatize the properties of the category $\mathscr{A} = \mathbf{Ab}$ of abelian groups and homomorphisms between them.

We suppose given a symmetric monoidal category

$$(\mathscr{A}, \otimes, 1)$$

where every reflexive pair

$$A \xrightarrow{f} B$$

has a coequalizer, preserved by the tensor product on each component.

Reflexive pairs

A **reflexive pair** in a category \mathscr{A} is a pair of maps

$$A \xrightarrow{f} B$$

such that there exists a common **section** of the two maps f and g

$$A \xrightarrow{f} B$$

in the sense that the equations hold:

$$f \circ s = id_B = g \circ s$$

Rings as commutative monoid objects

A **commutative ring** is an object $R \in \mathcal{A}$ equipped with two maps

$$m: R \otimes R \to R$$
 $e: 1 \to R$

$$e:1\to R$$

making the diagrams commute:

The category Ring of commutative rings

Given two rings R and S, a ring homomorphism

$$u : (R, m_R, e_R) \longrightarrow (S, m_S, e_S)$$

is a map of the category A

$$u : R \longrightarrow S$$

making the diagrams commute:

The category Ring of commutative rings

The category Ring is defined as the category

- \triangleright whose objects are the **commutative rings** of the category \mathscr{A} ,
- whose maps are the ring homomorphisms between them.

Note that the category Ring has finite sums defined by the tensor product.

The sum of two commutative rings R and S is the commutative ring $R \otimes S$ with multiplication map defined using the symmetry:

$$R \otimes S \otimes R \otimes S \xrightarrow{R \otimes \gamma_{R,S} \otimes S} R \otimes R \otimes S \otimes S \xrightarrow{m_R \otimes m_S} R \otimes S$$

and terminal object the monoidal unit 1 seen as a commutative ring.

The category Mod_R of modules over a ring R

Suppose given a commutative ring R.

An R-module is an object $M \in \mathscr{A}$ equipped with a map

act :
$$R \otimes M \longrightarrow M$$

making the diagrams below commute:

Equivalently, an *R*-module is an **Eilenberg-Moore algebra** for the monad

$$A \mapsto R \otimes A : \mathscr{A} \longrightarrow \mathscr{A}$$

induced by the commutative ring R in the category \mathscr{A} .

The category Mod_R of modules over a ring R

A R-module homomorphism between R-modules

$$f: (M, \operatorname{act}_M) \longrightarrow (N, \operatorname{act}_N)$$

is a map $f: M \to N$ making the diagram commute:

$$\begin{array}{ccc}
R \otimes M & \xrightarrow{R \otimes f} & R \otimes N \\
\text{act}_{M} \downarrow & & \downarrow \text{act}_{N} \\
M & \xrightarrow{f} & N
\end{array}$$

We write \mathbf{Mod}_R for the category:

- \triangleright whose objects are the *R*-modules,
- \triangleright whose maps are the R-module homomorphisms between them.

The category Mod of modules

A **module** is a pair (R, M) consisting of

- \triangleright a commutative ring R
- \triangleright an R-module $(M, \operatorname{act}_M)$

A module homomorphism

$$(u, f)$$
 : $(R, M) \rightarrow (S, N)$

is a pair consisting of

- \triangleright a ring homomorphism $u: R \rightarrow S$
- ▶ a map $f: M \to N$ making the diagram commute:

$$\begin{array}{ccc}
R \otimes M & \xrightarrow{u \otimes f} & S \otimes N \\
\text{act}_{M} \downarrow & & \downarrow \text{act}_{N} \\
M & \xrightarrow{f} & N
\end{array}$$

The category Mod of modules

The category **Mod** is defined as the category

- whose objects are the modules,
- whose maps are the module homomorphisms between them.

There is an obvious functor

$$\pi$$
: Mod \longrightarrow Ring

which transports every module (R, M) to its underlying commutative ring R.

For that reason, we find convenient to write

$$u: R \longrightarrow S \models f: M \longrightarrow N$$

for a module homomorphism $(u, f) : (R, M) \to (S, N)$.

The category Mod of modules

The notation

$$u: R \longrightarrow S \models f: M \longrightarrow N$$

is inspired by the intuition that every ring homomorphism

$$u : R \longrightarrow S$$

induces a **fiber** consisting of all the module homomorphisms of the form

$$(u, f) : (R, M) \longrightarrow (S, N)$$

equivalently, of all the maps $f: M \to N$ making the diagram commute:

$$\begin{array}{ccc}
R \otimes M & \xrightarrow{u \otimes f} & S \otimes N \\
\text{act}_{M} \downarrow & & \downarrow \text{act}_{N} \\
M & \xrightarrow{f} & N
\end{array}$$

Note that \mathbf{Mod}_R is the fiber of the identity map $id_R : R \to R$.

The Grothendieck bifibration $\pi : \mathbf{Mod} \to \mathbf{Ring}$

A well-known fact is that the functor

$$\pi$$
: Mod \longrightarrow Ring

defines a Grothendieck bifibration.

Every ring homorphism

$$u : R \longrightarrow S$$

induces a restriction/extension adjunction between the fiber categories:

$$\mathbf{Mod}_R \xrightarrow{\mathbf{ext}_u} \mathbf{Mod}_S$$

$$\leftarrow \mathbf{res}_u$$

The restriction of scalar functor

Every S-module (N, act_N) induces a R-module noted

$$\operatorname{res}_{u} N = (N, \operatorname{act}'_{N})$$

with same underlying object N as the original S-module, and with action

$$\operatorname{act}_N': R \otimes N \to N$$

defined as the composite:

$$\operatorname{act}_{N}' = R \otimes N \xrightarrow{u \otimes N} S \otimes N \xrightarrow{\operatorname{act}_{N}} N$$

The S-module (N, act_N) comes moreover with a module homomorphism

$$u: R \longrightarrow S \models id_N : \mathbf{res}_u N \longrightarrow N$$
 (1)

which is cartesian in the (original) sense of Grothendieck.

The extension of scalar functor

The restriction of scalar functor

$$\operatorname{res}_{u}:\operatorname{Mod}_{S}\longrightarrow\operatorname{Mod}_{R}$$

has a **left adjoint** noted

$$\mathbf{ext}_u : \mathbf{Mod}_R \longrightarrow \mathbf{Mod}_S$$

One way to construct the functor ext_u is to define the $R \otimes S$ -module

$$R \otimes_{\mathcal{U}} S$$

as the reflexive coequalizer of the diagram:

$$R \otimes R \otimes S \xrightarrow{m_R \otimes S} \xrightarrow{R \otimes e_R \otimes S} \xrightarrow{R \otimes S} R \otimes S$$

$$(R \otimes m_S) \circ (R \otimes u \otimes S)$$

The extension of scalar functor

Given three rings R, S_1 and S_2 , we define the **composition functor**

$$\circledast_R: \mathbf{Mod}_{S_1 \otimes R} \times \mathbf{Mod}_{R \otimes S_2} \longrightarrow \mathbf{Mod}_{S_1 \otimes S_2}$$

which transports a pair (M, N) consisting of $\begin{cases} a S_1 \otimes R \text{-module } M \\ a R \otimes S_2 \text{-module } N \end{cases}$

to the $S_1 \otimes S_2$ -module $M \otimes_R N$ defined as the reflexive coequalizer of

$$M \otimes R \otimes N \xrightarrow{\text{act}_{M} \otimes N} \xrightarrow{M \otimes e_{R} \otimes N} \xrightarrow{M \otimes N} M \otimes N$$

Here, the two maps $\operatorname{act}_M: M \otimes R \to M$ and $\operatorname{act}_N: R \otimes N \to N$ are deduced from the $S_1 \otimes R$ -module structure of M and $R \otimes S_2$ -module structure of N, by restriction of scalar along $R \to S_1 \otimes R$ and $R \to R \otimes S_2$.

The extension of scalar functor

The left adjoint functor

$$\mathbf{ext}_u : \mathbf{Mod}_R \longrightarrow \mathbf{Mod}_S$$

is defined as

$$\mathbf{ext}_{\mathcal{U}} : M \mapsto M \otimes_{\mathcal{R}} (R \otimes_{\mathcal{U}} S)$$

by applying the $R \otimes S$ -module

$$R \otimes_{\mathcal{U}} S$$

on the R-module M using the composition functor

$$\circledast_R : \mathbf{Mod}_R \times \mathbf{Mod}_{R \otimes S} \longrightarrow \mathbf{Mod}_S$$

An axiomatic approach to abelian groups (2)

From now on, we make the extra assumption that

the category \mathscr{A} is symmetric monoidal closed

and has all coreflexive equalizers.

The internal hom-object in \mathscr{A} is noted $\mathbf{Hom}(M, N)$.

The category Mod[⊕] of modules and retromorphisms

A module retromorphism

$$(u, f)$$
 : $(R, M) \rightarrow (S, N)$

is a pair consisting of

- \triangleright a ring homomorphism $u: R \to S$
- \triangleright a map $f: N \to M$ making the diagram commute:

The category Mod[⊕] of modules and retromorphisms

The category Mod[⊕] is defined as the category

- whose objects are the modules,
- whose maps are the module retromorphisms between them.

There is an obvious functor

$$\pi^{\ominus}$$
 : \mathbf{Mod}^{\ominus} \longrightarrow \mathbf{Ring}

which transports every module (R, M) to its underlying commutative ring R.

Note that the functor π^{\oplus} is a Grothendieck fibration, which coincides in fact with the **opposite** of the Grothendieck fibration π .

The Grothendieck bifibration $\pi^{\ominus}: \mathbf{Mod}^{\ominus} \to \mathbf{Ring}$

It turns out that the functor

$$\pi^{\ominus}$$
 : \mathbf{Mod}^{\ominus} \longrightarrow \mathbf{Ring}

defines in fact a Grothendieck bifibration.

The reason is that every ring homorphism

$$u : R \longrightarrow S$$

induces a restriction/coextension adjunction between fiber categories:

$$\mathbf{Mod}_{R}^{\oplus} \xrightarrow{\mathbf{coext}_{u}} \mathbf{Mod}_{S}^{\oplus}$$

$$\leftarrow \mathbf{res}_{u}$$

where the category $\mathbf{Mod}_{R}^{\oplus}$ is the opposite of the category \mathbf{Mod}_{R} .

The coextension of scalar functor

The restriction of scalar functor

$$\operatorname{res}_{u}:\operatorname{\mathsf{Mod}}_{S}^{\oplus}\longrightarrow\operatorname{\mathsf{Mod}}_{R}^{\ominus}$$

has a **left adjoint** noted

$$\operatorname{coext}_u : \operatorname{Mod}_R^{\oplus} \longrightarrow \operatorname{Mod}_S^{\ominus}$$

The functor \mathbf{coext}_u transports every R-module (M, \mathbf{act}_M) to the S-module

$$\mathbf{coext}_{u}(M) = [S, M]_{u}$$

defined as the coreflexive equalizer of the diagram:

$$\mathbf{Hom}(S,M) \xrightarrow{\mathbf{Hom}(u \otimes S, M) \circ \mathbf{Hom}(m_S, M)} \mathbf{Hom}(R \otimes S, ACt_M) \circ \mathbf{Hom}(R \otimes S, ACt_M) \circ \mathbf{Hom}(R \otimes S, ACt_M) \circ \mathbf{Hom}(R \otimes S, ACt_M)$$

The coextension of scalar functor

The coreflexive equalizer $\mathbf{coext}_u(M)$ provides an internal description in the category \mathscr{A} of the set of maps $f: S \to M$ making the diagram commute:

or equivalently, as the set of *R*-module homomorphisms $f : \mathbf{res}_{u}S \to M$.

The trifibration $\pi: \mathbf{Mod} \to \mathbf{Ring}$ of modules

Putting together all the constructions, every ring homomorphism

$$R \xrightarrow{u} S$$

induces three functors

$$\mathbf{Mod}_R \xrightarrow{\mathbf{res}_u} \mathbf{Mod}_S$$

$$\xrightarrow{\mathbf{ext}_u}$$

organized into a sequence of adjunctions

$$ext_u \dashv res_u \dashv coext_u$$

where extension of scalar ext_u is left adjoint, and coextension of scalar $coext_u$, right adjoint to restriction of scalar res_u .

Ringed categories

A ringed category is as a pair (\mathscr{C}, π) consisting of

- \triangleright a category \mathscr{C} ,
- hda functor $\pi: \mathscr{C} \to \mathbf{Ring}$ to the category of commutative rings.

Typically, the category **Mod** defines a ringed category, with functor:

$$\pi$$
: Mod \longrightarrow Ring

The slice 2-category Cat/Ring has ringed categories as objects, fibrewise functors and natural transformations as 1-cells and 2-cells.

The 2-category Cat/Ring is cartesian, with cartesian product defined by the expected pullback above Ring.

Mod as a symmetric monoidal ringed category

The cartesian product of **Mod** with itself is computed by the pullback:

and comes equipped with a fibrewise tensor product

$$\otimes_{\operatorname{Mod}} : \operatorname{Mod} \times_{\operatorname{Ring}} \operatorname{Mod} \longrightarrow \operatorname{Mod}$$

which transports every pair of modules on the same ring R

$$(R,M)$$
 (R,N)

to the *R*-module $(R, M \otimes_R N)$ defined by their tensor product in **Mod**_{*R*}.

Mod as a symmetric monoidal ringed category

The functor ⊗_{Mod} transports every pair of module homomorphisms

$$u: R \longrightarrow S \models h_1: M_1 \longrightarrow N_1$$

$$u: R \longrightarrow S \models h_2: M_2 \longrightarrow N_2$$

above the same ring homomorphism $u: R \to S$ to the homomorphism

$$u: R \rightarrow S \models h_1 \otimes_u h_2 : M_1 \otimes_R M_2 \rightarrow N_1 \otimes_S N_2$$

where $h_1 \otimes_u h_2$ is the unique map making the diagram commute:

$$\begin{array}{c} M_{1} \otimes R \otimes M_{2} & \longrightarrow h_{1} \otimes u \otimes h_{2} \\ \text{act}_{M_{1}} \otimes M_{2} \downarrow \downarrow M_{1} \otimes \text{act}_{M_{2}} & \text{act}_{N_{1}} \otimes N_{2} \downarrow \downarrow N_{1} \otimes \text{act}_{N_{2}} \\ M_{1} \otimes M_{2} & \longrightarrow h_{1} \otimes h_{2} & \longrightarrow h_{1} \otimes N_{2} \\ \text{quotient map} \downarrow & \downarrow \text{quotient map} \\ M_{1} \otimes_{R} M_{2} & \longrightarrow h_{1} \otimes_{u} h_{2} & \longrightarrow h_{1} \otimes_{s} N_{2} \end{array}$$

Mod as a symmetric monoidal ringed category

In this way, the ring category

$$\pi$$
: Mod \longrightarrow Ring

defines a symmetric pseudomonoid in the 2-category Cat/Ring.

This is what we call a symmetric monoidal ringed category.

Note that the fibrewise unit of (\mathbf{Mod}, π) is defined as the functor

$$1_{\mathbf{Mod}} : \mathbf{Ring} \longrightarrow \mathbf{Mod}$$

which transports every commutative ring R into itself, seen as an R-module.

Functors of points and Ring-spaces

A Ring-space is defined as a covariant presheaf

$$X : \mathbf{Ring} \longrightarrow \mathbf{Set}$$

on the category Ring of commutative rings,

To every such Ring-space X, we associate its Grothendieck category

- \triangleright whose objects are the pairs (R, x) with $x \in X(R)$
- whose maps $u:(R,x)\to (S,y)$ are ring homomorphisms $u:R\to S$ transporting the element $x\in X(R)$ to the element $y\in X(S)$, in the sense that

$$X(u)(x) = y.$$

Functors of points and Ring-spaces

The category Points(X) comes equipped with a functor of point

$$\pi_X$$
: Points(X) \longrightarrow Ring

and thus defines a ringed category.

A map $f: X \to Y$ of Ring-spaces may be equivalently defined as a functor

$$f : \mathbf{Points}(X) \longrightarrow \mathbf{Points}(Y)$$

making the diagram commute:

$$\mathbf{Points}(X) \xrightarrow{f} \mathbf{Points}(Y)$$

$$\pi_X \longrightarrow \mathbf{Ring} \longleftarrow \pi_Y$$

thus defining a functor of ringed categories.

Presheaves of modules

A presheaf of modules M on a Ring-space

$$X : \mathbf{Ring} \longrightarrow \mathbf{Set}$$

or more simply, an \mathcal{O}_X -module M, consists of the following data:

- ⊳ for each point $(R, x) \in \mathbf{Points}(X)$, a module $M_x \in \mathbf{Mod}_R$ over the ring R,
- ⊳ for each map $u:(R,x) \to (S,y)$ in $\mathbf{Points}(X)$, a module homomorphism

$$u: R \longrightarrow S \models \theta(u,x): M_x \longrightarrow N_y$$

living over the ring homomorphism $u: R \to S$.

Adapted from Demazure-Gabriel (1970) and Kontsevich-Rosenberg (2004).

Presheaves of modules

The map θ is required to satisfy the following functorial properties:

1. first of all, the identity on the point (R, x) in the category **Points**(X) is transported to the identity map on the associated R-module:

$$id_R \models \theta(id_{(R,x)}) = id_{M_x}$$

2. then, given two maps

$$(u, x) : (R, x) \to (S, y) \qquad (v, y) : (S, y) \to (T, z)$$

in the category Points(X), one has:

$$v \circ u \models \theta((v, y) \circ (u, x)) = \theta(v, y) \circ \theta(u, x)$$

where composition is computed in the ringed category $\mathbf{Points}(X) \to \mathbf{Ring}$.

Presheaves of modules

In the sequel, we will use the following equivalent formulation:

Proposition. An \mathcal{O}_X -module M is the same thing as a functor

$$M : \mathbf{Points}(X) \longrightarrow \mathbf{Mod}$$

making the diagram below commute:

Note that Kontsevich and Rosenberg (2004) use this specific formulation of presheaves of modules in their work on noncommutative geometry.

The structure presheaf of modules

Every Ring-space

$$X : \mathbf{Ring} \longrightarrow \mathbf{Set}$$

comes equipped with a specific presheaf of module, called the **structure presheaf of modules**, and defined as the composite

$$\mathscr{O}_X : \operatorname{Points}(X) \xrightarrow{\pi_X} \operatorname{Ring} \xrightarrow{\mathscr{O}} \operatorname{Mod}$$

where the functor

$$\mathcal{O} = 1_{\mathbf{Mod}} : \mathbf{Ring} \to \mathbf{Mod}$$

denotes the section of $\pi : \mathbf{Mod} \to \mathbf{Ring}$ which transports every commutative ring R to itself, seen as an R-module.

The category PshMod of presheaves of modules and forward morphisms

A forward morphism between presheaves of modules

$$(f,\varphi)$$
 : $(X,M) \longrightarrow (Y,N)$

is a morphism (= natural transformation) of Ring-spaces $f: X \to Y$ together with a natural transformation

The category PshMod of presheaves of modules and forward morphisms

The natural transformation φ is also required to be vertical (or fibrewise) above **Ring**, in the sense that the natural transformation

coincides with the identity natural transformation from π_X to $\pi_Y \circ f$.

The category PshMod of presheaves of modules and forward morphisms

There is an obvious functor

$$p : PshMod \longrightarrow [Ring, Set]$$

which transports every presheaf of modules (X, M) to its underlying Ringspace X, and every forward morphism $(f, \varphi) : (X, M) \to (Y, N)$ to its underlying morphism $f : X \to Y$ between Ring-spaces.

We thus find convenient to write

$$f: X \longrightarrow Y \models \varphi: M \longrightarrow N$$

for a forward morphism between presheaves of modules

$$(f, \varphi) : (X, M) \to (Y, N)$$

The functor **p** is a Grothendieck fibration

Every morphism $f: X \to Y$ of Ring-spaces X and Y induces a functor

$$f^*$$
: $\mathbf{PshMod}_{Y} \longrightarrow \mathbf{PshMod}_{X}$

which transports every \mathcal{O}_Y -module N into the \mathcal{O}_X -module $N \circ \mathbf{Points}(f)$ obtained by precomposition with the functor $\mathbf{Points}(f)$, as depicted below:

An axiomatic approach to abelian groups (3)

Here, we make the extra assumption that

the category Ring

as well as

every category \mathbf{Mod}_R associated to a commutative ring R has all small colimits.

The property holds in the case of the category $\mathscr{A} = \mathbf{Ab}$ of abelian groups.

The functor p is a Grothendieck bifibration

In that case, it turns out that the functor

$$p : PshMod \longrightarrow [Ring, Set]$$

is also a Grothendieck bifibration, but for less immediate reasons.

For every morphism $f: X \to Y$ between Ring-spaces, the functor

$$f^*$$
: $\mathbf{PshMod}_{Y} \longrightarrow \mathbf{PshMod}_{X}$

has a left adjoint

$$\exists_f : \mathbf{PshMod}_X \longrightarrow \mathbf{PshMod}_Y$$

The functor p is a Grothendieck bifibration

It is worth noting that the \mathcal{O}_Y -module $\exists_f(M)$ can be directly described with an explicit formula:

$$\exists_f(M) : y \in Y(R) \mapsto \bigoplus_{\{x \in X(R), fx = y\}} M_x \in \mathbf{Mod}_R.$$

The adjunction $\exists_f \dashv f^*$ gives rise to a sequence of natural bijections, which can be formulated in the type-theoretic fashion of PAM-Zeilberger (2015)

$$\frac{id_X: X \to X \models M \to f^*(N)}{f: X \to Y \models M \to N}$$
$$\frac{id_Y: Y \to Y \models \exists_f(M) \to N}{id_Y: Y \to Y \models \exists_f(M) \to N}$$

The category PshMod[⊕] of presheaf of modules and backward morphisms

A backward morphism between presheaves of modules

$$(f,\psi)$$
 : $(X,M) \longrightarrow (Y,N)$

is a morphism (= natural transformation) of Ring-spaces $f: X \to Y$ together with a natural transformation

The category PshMod[⊕] of presheaf of modules and backward morphisms

One requires moreover that ψ is vertical in the sense that the diagram below commutes:

The category PshMod[→] of presheaf of modules and backward morphisms

The category PshMod[→] has presheaves of modules as objects, and backward morphism as morphisms. There is an obvious functor

$$p^{\ominus}$$
 : $PshMod^{\ominus}$ \longrightarrow $[Ring, Set]$

We thus find convenient to write

$$f: X \longrightarrow Y \models^{op} \psi : M \longrightarrow N$$

for such a backward morphism $(f, \psi) : (X, M) \to (Y, N)$ between presheaves of modules.

An axiomatic approach to abelian groups (4)

Here, we make the extra assumption that

the category Ring

as well as

every category \mathbf{Mod}_R associated to a commutative ring R has **all small limits**.

The property holds in the case of the category $\mathcal{A} = \mathbf{Ab}$ of abelian groups.

The functor p[⊕] is a Grothendieck bifibration

As the opposite of the fibration p, the functor

$$p^{\ominus}$$
: PshMod $^{\ominus}$ \longrightarrow [Ring, Set]

is also a Grothendieck fibration with the opposite functor

$$(f^*)^{op}$$
 : $\mathbf{PshMod}_{Y}^{op} \longrightarrow \mathbf{PshMod}_{X}^{op}$

as pullback functor associated to a morphism $f: X \to Y$ of Ring-spaces.

Fact. There is a **functor**

$$\forall_f : \mathbf{PshMod}_X \longrightarrow \mathbf{PshMod}_Y.$$

right adjoint to the functor f^* .

By duality, the functor $(\forall_f)^{op}$ is left adjoint to the functor $(f^*)^{op}$.

The functor p is a Grothendieck trifibration

The adjunction $f^* \dashv \forall_f$ gives rise to a sequence of natural bijections, formulated below in the type-theoretic fashion:

$$\frac{id_X: X \to X \models^{op} M \to f^*(N)}{f: X \to Y \models^{op} M \to N}$$
$$\frac{id_Y: Y \to Y \models^{op} \forall_f(M) \to N}{id_Y: Y \to Y \models^{op} \forall_f(M) \to N}$$

In summary, every morphism $f: X \to Y$ between Ring-spaces X and Y induces three functors

$$\begin{array}{c} \mathbf{PshMod}_X & \xrightarrow{\forall_f} \\ & \xrightarrow{\exists_f} \end{array} \quad \mathbf{PshMod}_Y$$

organized into a sequence of adjunctions

$$\exists_f \dashv f^* \dashv \forall_f$$
.

The category PshMod is symmetric monoidal closed above the cartesian closed category [Ring, Set]

The presheaf category [Ring, Set] of Ring-spaces is cartesian closed.

We exhibit a **symmetric monoidal closed structure** on **PshMod** designed in such a way that the functor

$$p : PshMod \longrightarrow [Ring, Set]$$

is symmetric monoidal closed.

The cartesian structure on [Ring, Set]

Suppose given a pair of Ring-spaces

$$X, Y : \mathbf{Ring} \longrightarrow \mathbf{Set}$$

and a pair of presheaves of modules M and N over them:

$$M \in \mathbf{PshMod}_X$$
 $N \in \mathbf{PshMod}_Y$.

The cartesian product $X \times Y$ of Ring-spaces is defined pointwise:

$$X \times Y$$
 : $R \mapsto X(R) \times Y(R)$.

The monoidal structure on PshMod

The tensor product

$$M \otimes N \in \mathbf{PshMod}_{X \times Y}$$

is defined using the isomorphism:

$$Points(X \times Y) \cong Points(X) \times_{Ring} Points(Y)$$

as the presheaf of modules

$$\mathbf{Points}(X \times Y) \xrightarrow{(M,N)} \mathbf{Mod} \times_{\mathbf{Ring}} \mathbf{Mod} \xrightarrow{\otimes} \mathbf{Mod}$$

where the functor (M, N) is defined by universality of the pullback.

The monoidal structure on PshMod

The unit of the tensor product is the structure presheaf of modules

$$(\operatorname{Spec} \mathbb{Z}, \mathscr{O}_{\operatorname{Spec} \mathbb{Z}}) : (R, *_R) \mapsto R \in \mathbf{Mod}_R$$

on the terminal object $\operatorname{Spec} \mathbb{Z}$ of the category [Ring, Set].

Here, $*_R$ denotes the unique element of the singleton set $\operatorname{Spec} \mathbb{Z}(R)$.

The internal hom $X \Rightarrow Y$ in [Ring, Set] is the covariant presheaf

$$X \Rightarrow Y$$
: Ring \longrightarrow Set

which associates to every commutative ring R the set

$$X \Rightarrow Y : R \mapsto ([\mathbf{Ring}, \mathbf{Set}]/\mathbf{y}_R)(\mathbf{y}_R \times X, \mathbf{y}_R \times Y)$$

of natural transformations f making the diagram commute:

$$\mathbf{y}_{R} \times X \xrightarrow{f} \mathbf{y}_{R} \times Y$$

$$\pi_{R,X} \xrightarrow{\mathbf{y}_{R}} \pi_{R,Y}$$

Here,

$$\mathbf{y}_R \in [\mathbf{Ring}, \mathbf{Set}]$$

denotes the Yoneda presheaf

$$\mathbf{y}_R : S \mapsto \mathbf{Ring}(R,S) : \mathbf{Ring} \longrightarrow \mathbf{Set}$$

generated by the commutative ring R, while

$$\pi_{R,X} : \mathbf{y}_R \times X \longrightarrow \mathbf{y}_R$$

$$\pi_{R,Y} : \mathbf{y}_R \times Y \longrightarrow \mathbf{y}_S$$

denote the first projections in the cartesian category [Ring, Set].

The presheaf of modules

$$M \multimap N \in \mathbf{PshMod}_{(X \Longrightarrow Y)}$$

is constructed in the following way. To every element

$$f \in (X \Rightarrow Y)(R)$$

we associate the R-module

$$(M \multimap N)_f$$

consisting of all natural transformations φ making the diagram commute:

The R-module

$$(M \multimap N)_f \in \mathbf{Mod}_R$$

associated to the map of Ring-space

$$f : \mathbf{y}_R \times X \longrightarrow \mathbf{y}_R \times Y$$

can be computed using the end formula

$$(M \multimap N)_f = \int_{(u:R \to S, x \in X(S)) \in \mathbf{Points}(\mathbf{y}_R \times X)} \mathbf{res}_u ([M_x, N_{f(x,u)}]_S)$$

in the category \mathbf{Mod}_R .

Main result of the talk

Theorem. The tensor product

$$M, N \mapsto M \otimes N$$

and the implication just defined

$$M, N \mapsto M \multimap N$$

equip PshMod with the structure of a symmetric monoidal category.

This structure is moreover transported by the functor

$$p : PshMod \longrightarrow [Ring, Set]$$

to the cartesian closed structure of [Ring, Set] in the sense that

$$\mathbf{p}(M \otimes N) = X \times Y$$
 $\mathbf{p}(M \multimap N) = X \Rightarrow Y$

for the Ring-spaces X = p(M) and Y = p(N).

Application: $PshMod_X$ is a smcc

We establish that the category $PshMod_X$ associated to a Ring-space

$$X : \mathbf{Ring} \longrightarrow \mathbf{Set}$$

is **symmetric monoidal closed**. The tensor product $M \otimes_X N$ of a pair of \mathcal{O}_X -modules M, N is defined as

$$M \otimes_X N := \Delta^*(M \otimes N)$$

where we use the notation

$$\Delta : X \longrightarrow X \times X$$

for the diagonal map induced by the cartesian structure of the presheaf category [Ring, Set]. The tensorial unit is defined as the structure presheaf of modules \mathcal{O}_X associated to the Ring-space X.

Application: $PshMod_X$ is a smcc

The internal hom $M \multimap_X N$ of a pair of \mathscr{O}_X -modules M, N is defined as

$$M \multimap_X N := curry^*(M \multimap \forall_{\Delta}(N))$$

where

$$curry : X \longrightarrow X \Rightarrow (X \times X)$$

is the map obtained by currifying the identity map

$$id_{X\times X}$$
 : $X\times X\longrightarrow X\times X$

on the second component *X*. One obtains that

Proposition. The category \mathbf{PshMod}_X equipped with \otimes_X and \multimap_X defines a symmetric monoidal closed category.

Proof in a nutshell

$$id_{X}: X \to X \models (M \otimes_{X} N) \to P$$

$$id_{X}: X \to X \models^{op} P \to \Delta^{*}(M \otimes N) \to P$$

$$id_{X}: X \to X \models^{op} P \to \Delta^{*}(M \otimes N)$$

$$\Delta: X \to X \times X \models^{op} P \to M \otimes N$$

$$id_{X \times X}: X \times X \to X \times X \models^{op} \forall_{\Delta}(P) \to M \otimes N$$

$$id_{X \times X}: X \times X \to X \times X \models M \otimes N \to \forall_{\Delta}(P)$$

$$curry: X \to X \Rightarrow (X \times X) \models N \to M \to \forall_{\Delta}(P)$$

$$id_{X}: X \to X \models N \to curry^{*}(M \to \forall_{\Delta}(P))$$

$$id_{X}: X \to X \models N \to (M \to_{X} P)$$

Sequence of natural bijections establishing that the functor

$$M \otimes_X - : \mathbf{PshMod}_X \longrightarrow \mathbf{PshMod}_X$$

is left adjoint to the functor

$$M \multimap_X - : \mathbf{PshMod}_X \longrightarrow \mathbf{PshMod}_X$$

for any presheaf of modules $M \in \mathbf{PshMod}_X$.

Application: change-of-basis functors

Moreover, given a morphism $X \to Y$ in [Ring, Set] and two \mathcal{O}_Y -modules M and N, the fact that $\Delta_Y \circ f = (f \times f) \circ \Delta_X$ and the isomorphism

$$(f \times f)^*(M \otimes N) \cong f^*(M) \otimes f^*(N)$$

imply that

$$f^*: \mathbf{PshMod}_Y \longrightarrow \mathbf{PshMod}_X$$

defines a **strongly monoidal functor**, in the sense that there exists a family of isomorphisms

$$m_{X,M,Y,N}: f^*(M) \otimes_X f^*(N) \xrightarrow{\sim} f^*(M \otimes_Y N)$$

 $m_{X,Y}: \mathscr{O}_X \xrightarrow{\sim} f^*(\mathscr{O}_Y)$

making the expected coherence diagrams commute.

Application: change-of-basis functors

From this follows that

- \triangleright the right adjoint functor \forall_f is lax symmetric monoidal;
- \triangleright the adjunction $f^* \dashv \forall_f$ is lax symmetric monoidal;
- \triangleright the left adjoint functor \exists_f is oplax symmetric monoidal;
- \triangleright the adjunction $\exists_f \dashv f^*$ is oplax symmetric monoidal.

In particular, the two functors \forall_f and \exists_f come with families of maps:

$$\forall_f(M) \otimes_N \forall_f(Y) \longrightarrow \forall_f(M \otimes_X N) \qquad \mathscr{O}_Y \longrightarrow \forall_f(\mathscr{O}_X)$$
$$\exists_f(M \otimes_X N) \longrightarrow \exists_f(M) \otimes_Y \exists_f(N) \qquad \exists_f(\mathscr{O}_X) \longrightarrow \mathscr{O}_Y$$

parametrized by \mathcal{O}_X -modules M and N.

What we did not speak about here

the Sweedler dual construction of a free commutative coalgebra

the induced construction of an linear-non-linear adjunction

defining an **exponential modality** $A \mapsto !A$ for linear logic.

Conclusion and future directions

- work with sheaves and schemes instead of general presheaves,
- understand the structure of the inclusion functor

$$\operatorname{\mathsf{qcMod}}_X \longrightarrow \operatorname{\mathsf{PshMod}}_X$$

from the category $qcMod_X$ of quasi-coherent modules.

shift to derived categories and clarify the connection

linear logic

→ Grothendieck-Verdier duality

explore the connection to dependent and homotopy type theory.

Thank you!

This condition may be expanded using the notation $f(u, x) = (u, \tilde{f}(u, x))$.

Such a natural transformation φ is a family of module homomorphisms

$$id_S : S \longrightarrow S \models \varphi_{u,x} : M_x \longrightarrow N_{\tilde{f}(u,x)}$$

for $u: R \to S$ and $x \in X(S)$, natural in u and x in the sense that the diagram

$$M_{\chi} \xrightarrow{\varphi_{u,\chi}} N_{\tilde{f}(u,\chi)}$$

$$M_{v} \downarrow \qquad \qquad \downarrow N_{\tilde{f}(v,v)}$$

$$M_{\chi'} \xrightarrow{\varphi_{v \circ u,\chi'}} N_{\tilde{f}(v \circ u,\chi')}$$

commutes for every ring homomorphism $v: S \to S'$ with X(v)(x) = x'.