Theoretische Physik II Elektrodynamik

Vorlesung von Prof. Dr. Michael Thoss im Wintersemester 2018

Andréz Gockel Patrick Munnich Daniil Aktanka

23. November 2018

Inhaltsverzeichnis

1	Gru	andbegriffe	2	
2	Elektrostatik			
	2.1	Einführung	4	
	2.2	Integralsätze	Ē	
	2.3	Helmholtz-Zerlegung	6	
	2.4	Maxwell-Gleichungen der Elektrostatik	7	
	2.5	Elektrostatische Feldenergie	7	
	2.6	Einfache elektrostatische Probleme	8	
	2.7	Randwertprobleme der Elektrostatik	8	
	2.8	Incomplete/Unassigned	Ć	

Kapitel 1

Grundbegriffe

Ladung

diskrete Ladungsverteilung
$$Q = \sum_{i=1}^n q_i$$
 kontinuierliche Ladungsverteilung
$$Q = \int_V \rho(\boldsymbol{r}) \; \mathrm{d}^3 r$$
 Punktladung
$$\rho(\boldsymbol{r}) = q \delta(\boldsymbol{r} - \boldsymbol{r}_0)$$

$$n \; \mathrm{Punktladungen} \quad \rho(\boldsymbol{r}') = \sum_{j=1}^n q_j \, \delta(\boldsymbol{r}' - \boldsymbol{r}_j)$$

Coulomb'sches Gesetz

zwei Punktladungen
$$m{F}_{12} = rac{1}{4\pi\varepsilon_0} \, q_1 q_2 \, rac{m{r}_1 - m{r}_2}{|m{r}_1 - m{r}_2|^3} = -m{F}_{21}$$
 n Punktladungen $m{F}_1 = rac{1}{4\pi\varepsilon_0} \, q_1 \sum_{j=2}^n q_j \, rac{m{r} - m{r}_j}{|m{r} - m{r}_j|^3}$
Beziehung zur E-Feld $m{F}(m{r}) = q \, m{E}(m{r})$
Beziehung zur Potential $m{F}(m{r}) = -m{\nabla} \, q \, \varphi(m{r})$

Elektrisches Feld

im bel. Raumpunkt
$$\boldsymbol{E}(\boldsymbol{r}) = \frac{q}{4\pi\varepsilon_0} \frac{\boldsymbol{r} - \boldsymbol{r}_0}{|\boldsymbol{r} - \boldsymbol{r}_0|^3}$$
diskrete Ladungsverteilung $\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=2}^n q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}$
kontinuierliche Ladungsverteilung $\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \, \mathrm{d}^3r'$

$$\downarrow \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = -\nabla_r \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|}$$
Beziehung zur Potential $\boldsymbol{E}(\boldsymbol{r}) = -\nabla \varphi(\boldsymbol{r})$

$$\Longrightarrow \boldsymbol{\nabla} \times q \boldsymbol{E} = 0 \qquad \text{d.h., die Coulomb-Kraft ist konservativ}$$

Skalare Elektrische Potential

im bel. Raumpunkt kontinuierlich
$$\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} \,\mathrm{d}^3r'$$
 im bel. Raumpunkt diskret
$$\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^n \frac{q_j}{|\boldsymbol{r} - \boldsymbol{r}_j|}$$
 Spannung / Potentialdifferenz
$$U(\boldsymbol{r}, \boldsymbol{r}_0) = \varphi(\boldsymbol{r}) - \varphi(\boldsymbol{r}_0) = -\int_{\boldsymbol{r}_0}^{\boldsymbol{r}} \boldsymbol{E}(\boldsymbol{r}') \,\mathrm{d}\boldsymbol{r}'$$

Operator Nomenklatur

$$\operatorname{div} oldsymbol{A} = oldsymbol{
abla} \cdot oldsymbol{A} egin{array}{l} > 0 \,, & \operatorname{Quelle} \ = 0 \,, & \operatorname{quellenfrei} \ < 0 \,, & \operatorname{Senke} \end{array}$$
 $\operatorname{grad} oldsymbol{A} = oldsymbol{
abla} A$ $(eng. \, \operatorname{curl}) \quad \operatorname{rot} oldsymbol{A} = oldsymbol{
abla} imes oldsymbol{A} \qquad \operatorname{Wirbel}$

Produktformeln

f, g sind skalare Felder, \mathbf{F}, \mathbf{G} sind vektor Felder:

$$\nabla(fg) = f\nabla(g) + g\nabla(f)$$

$$\nabla \cdot (fG) = f\nabla \cdot (G) + G \cdot \nabla(f)$$

$$\nabla(F \times G) = G \cdot \nabla \times (F) - F \cdot \nabla \times (G)$$

$$\nabla \times (fG) = f\nabla \times (G) - G \times \nabla$$

Identitäten

$$egin{aligned} oldsymbol{
abla} imes (oldsymbol{
abla} F) &= oldsymbol{
abla} (oldsymbol{
abla} \cdot (oldsymbol{
abla} F) &= oldsymbol{0} \ oldsymbol{
abla} \cdot (oldsymbol{
abla} \times F) &= 0 \ oldsymbol{
abla} imes (oldsymbol{a} imes oldsymbol{
abla} f - oldsymbol{
abla} (oldsymbol{a} \cdot oldsymbol{
abla} f) \end{aligned}$$

Gradienten eines skalaren Feldes

$$\mathbf{\nabla} g(\mathbf{r}) = \sum_{i} \mathbf{e}_{i} \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial u_{i}}\right|} \frac{\partial}{\partial u_{i}} g(\mathbf{r})$$

Kugelkoordinaten

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \theta \cos \varphi \\ r \sin \theta \sin \varphi \\ r \cos \theta \end{pmatrix}, \qquad \int_{-\infty}^{+\infty} f(\mathbf{r}) \, d\mathbf{r} = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} f(r, \theta, \varphi) r^{2} \sin \theta \, dr d\theta d\varphi$$

wobei:

$$r\in\left[0\,,\,\infty\right),\quad\Theta\in\left[0\,,\,\pi\right],\quad\varphi\in\left[0\,,\,2\pi\right)$$

Kapitel 2

Elektrostatik

2.1 Einführung

Dirac'sche Delta-Funktion

Definition

$$\int_{V} \delta(\mathbf{r} - \mathbf{r}_{0}) d^{3}\mathbf{r} := \begin{cases} 1, & r_{0} \in V \\ 0, & \text{sonst} \end{cases}$$
$$\delta(\mathbf{r} - \mathbf{r}_{0}) = 0 \quad \forall \mathbf{r} \neq \mathbf{r}_{0}$$

Bemerkung: Die δ -Funktion ist keine Funktion im üblichen mathematischen Sinne. Man bezeichnet sie deshalb als **uneigentliche Funktion** oder als **Distribution**. Heuristisch:

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$$
$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1$$

Formeln

$$\int_a^b f(x) \, \delta(x - x_0) \, dx = \begin{cases} f(x_0) \,, & a < x_0 < b \\ \frac{1}{2} f(x_0) \,, & x_0 = a \lor b \\ 0 & \text{sonst} \end{cases}$$

$$\text{``} f(x) \, \delta'(x - x_0) = -f'(x) \, \delta(x - x_0) \, \text{``} \qquad \text{(heuristisch)}$$

$$\delta(x - x_0) = \frac{d}{dx} \Theta(x - x_0) \qquad \text{(Θ sei die Stufenfunktion)}$$

$$\delta(r - r') = -\frac{1}{4\pi} \Delta \frac{1}{|r - r'|}$$

Mehrdimensionale Delta-Funktion

Kartesisch (x,y,z)
$$\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \delta(x-x_0)\,\delta(y-y_0)\,\delta(z-z_0)$$
Kugel (r, \theta, \varphi)
$$\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \frac{1}{r_0^2\sin\theta_0}\,\delta(r-r_0)\,\delta(\theta-\theta_0)\,\delta(\varphi-\varphi_0)$$
Zylinder (\rho, \phi, z)
$$\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \frac{1}{\rho_0}\,\delta(\rho-\rho_0)\,\delta(\varphi-\varphi_0)\,\delta(z-z_0)$$

2.2 Integralsätze

Einleitung: Fluss

Definition Sei $a(r) = (a_1(r), a_2(r), a_3(r))$ ein Vektorfeld, V ein Volumen und S(V) die Oberfläche. Dann heisst $\Phi_S(a)$ der Fluss (eng. flux) von a(r) durch die Fläche S wenn es gilt:

$$\Phi_S(oldsymbol{a}) \, = \, \int_S oldsymbol{a}(oldsymbol{r}) \, \mathrm{d}oldsymbol{f}$$

Geschlossene Fläche Das Oberflächenintegral über eine geschlossene Fläche wird durch ein spezielles Integralzeichen symbolisiert:

$$\Phi_S(oldsymbol{a}) \, = \, \oint_S oldsymbol{a}(oldsymbol{r}) \, \mathrm{d}oldsymbol{f}$$

Satz von Stokes

Bedeutung Ganz allgemein gesagt handelt es sich um einen sehr grundlegenden Satz über die Integration von Differentialformen. Es geht darum, n-dimensionale Volumenintegrale über das Innere in (n-1)-dimensionale Randintegrale über die Oberfläche des Volumenstücks umzuwandeln. Für uns sind die Spezialfälle am wichtigsten, bei denen der Gauß'sche Satz und der Kelvin-Stokes'sche Satz (Rotationssatz).

Rotationssatz (auch Klassische Integralsatz von Stokes)

Seien $\boldsymbol{a}(\boldsymbol{r})$ ein hinreichend oft differenzierbares Vektorfeld und F eine Fläche mit dem Rand $C(F) = \delta F$. Dann gilt:

$$\int_{F} \mathbf{\nabla} imes \mathbf{a} \; \mathrm{d}\mathbf{f} = \int_{\partial F} \mathbf{a} \; \mathrm{d}\mathbf{r}$$

Gauß'sche Satz

(eng. Divergence Theorem)

Definition Der elektrische Nettofluss Φ durch eine hypothetische geschlossene Oberfläche S ist gleich $\frac{1}{\varepsilon_0}$ mal die elektrische Nettoladung Q innerhalb dieser geschlossenen Oberfläche.

Integrale Form

$$\Phi = \oint_{\mathcal{E}} \mathbf{E} \, \mathrm{d}\mathbf{f} = \frac{Q}{\varepsilon_0}$$

Wobei Q die Gesamtladung innerhalb V ist.

Differentielle Form

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$$

Wobei ρ die Gesamtladungsdichte (pro Einheit Volumen) ist.

Beziehung

$$\int_V \boldsymbol{\nabla} \cdot \boldsymbol{E} \; \mathrm{d}^3 r = \oint_S \boldsymbol{E} \; \mathrm{d} \boldsymbol{f}$$

Greensche Sätze

Die Green'sche Sätze (Identitäten) lassen sich aus Anwendungen des Gauß'schen Satzes ableiten. Hierfür wurde die folgende Definition der Normalableitung benutzt.

Normalableitung

Sei ψ ein mindestens zweimal stetig differenzierbares, skalares Feld auf einer Fläche S(V). Sei n(r) eine (ortsabhängige) Flächennormale. Dann gilt:

$$\nabla \psi \cdot \boldsymbol{n} \equiv \frac{\partial \psi}{\partial n}$$

1. Green'sche Identität

$$\int_{V} (\varphi \Delta \psi + (\nabla \psi \cdot \nabla \varphi)) d^{3}r = \oint_{S} \varphi \frac{\partial \psi}{\partial n} df$$

Wobei φ und ψ Skalarfunktionnen sind, angennomen sei φ einfach und ψ zweifach stetig differenzierbar.

2. Green'sche Identität

$$\int_{V} (\varphi \Delta \psi - \psi \Delta \varphi) \, \mathrm{d}^{3} r = \oint_{S} \left(\varphi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \varphi}{\partial n} \right) \, \mathrm{d}^{3} f$$

Wobei φ und ψ beide zweifach stetig differenzierbar sind.

Bemerkung: Die beiden obengenannent Green'schen Identitäten sind Speziallfällen und gelten nur unter Bedinungen.

2.3 Helmholtz-Zerlegung

Bedeutung

Zusammengefasst besagen der Satz, dass unter gewissen Voraussetzungen jedes Vektorfeld $\boldsymbol{a}(\boldsymbol{r})$ eindeutig durch sein Quellenfeld $\nabla \cdot \boldsymbol{a}(\boldsymbol{r})$ und sein Wirbelfeld $\nabla \times \boldsymbol{a}(\boldsymbol{r})$ bestimmt ist. Oder anders ausgedrückt: (fast) jedes Vektorfeld lässt sich eindeutig als Summe eines wirbelfreien und eines quellenfreien Anteils darstellen.

Aussage des Theorems

Sei F ein zweifach stetig differenzierbares Vektorfeld über ein beschränktes Gebiet im \mathbb{R}^3 und S eine Oberfläche welche dieses Gebiet umschliesst. Dann kann F in eine curl-freie Komponente und eine divergenzfreie Komponente zerlegt werden:

$$F = -\nabla \Phi + \nabla \times A$$

Wobei die beiden einander ergänzenden Potentiale Φ und A lassen sich durch die folgenden Integrale aus dem Feld F, über das die Felder enthaltende Volumen V, gewinnen:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi} \int_{V} \frac{\mathbf{\nabla}' \cdot \mathbf{F}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, dV' \qquad \mathbf{A}(\mathbf{r}) = \frac{1}{4\pi} \int_{V} \frac{\mathbf{\nabla}' \times \mathbf{F}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, dV'$$

Schlussfolgerungen

- Ein wirbelfreies Feld ($\nabla \times a = 0$) ist ein Gradientenfeld.
- Ein quellenfreies Feld $(\nabla \cdot a = 0)$ ist ein Rotationsfeld.

2.4 Maxwell-Gleichungen der Elektrostatik

Differenzielle Darstellung

physikalischer Gauß'scher Satz
$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$$

Faraday'sche Induktionsgesetz $\nabla \times \boldsymbol{E} = 0$

Integrale Darstellung

physikalischer Gauß'scher Satz
$$\int_{S} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{f} = \frac{1}{\varepsilon_{0}} q(V)$$
 Faraday'sche Induktionsgesetz
$$\int_{\partial F} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{r} = 0$$

Poisson Gleichung (Einführung)

Durch die Einführung des skalaren Potentials $\phi(r)$ lassen sich die beiden Maxwell-Gleichungen zusammenfassen zur so gennanten Poisson-Gleichung.

$$\Delta \varphi(\boldsymbol{r}) \, = \, \frac{1}{arepsilon_0} \, \rho(\boldsymbol{r})$$

Die Lösung dieser linearen, inhomogenen, partiellen Differenzialgleichung 2. Ordnung bezeichnet man als das Grundproblem der Elektrostatik. Ist der Raumbereich ladungsfrei, dann bekommt man die Laplace-Gleichung:

$$\Delta\varphi(\mathbf{r}) = 0$$

Die allgemeine Lösung der Poisson-Gleichung lässt sich als Summe einer speziellen Lösung der Poisson-Gleichung und der allgemeinen Lösung der Laplace-Gleichung darstellen.

2.5 Elektrostatische Feldenergie

Definition

Die Energie einer auf einen endlichen Raumbereich beschränkten Ladungskonfiguration $\rho(r)$ entspricht der Arbeit, die notwendig ist, um Ladungen aus dem Unendlichen ($\varphi(\infty) = 0$) zu dieser Konfiguration zusammenzuziehen.

Formeln

$$\begin{array}{ll} \text{diskret} & W = \frac{1}{4\pi\varepsilon_0}\sum_{i=2}^N\sum_{j=1}^{i-1}\frac{q_iq_j}{|\boldsymbol{r}_i-\boldsymbol{r}_j|} = \frac{1}{8\pi\varepsilon_0}\sum_{\substack{i,j=1\\i\neq j}}^N\frac{q_iq_j}{|\boldsymbol{r}_i-\boldsymbol{r}_j|} \\ \text{kontinuierlich} & W = \frac{1}{8\pi\varepsilon_0}\int\int\frac{\rho(\boldsymbol{r})\rho(\boldsymbol{r}')}{|\boldsymbol{r}_i-\boldsymbol{r}_j|}\,\mathrm{d}^3r\,\mathrm{d}^3r' = \frac{1}{2}\int\rho(\boldsymbol{r})\varphi(\boldsymbol{r})\,\mathrm{d}^3r \\ & W = \frac{\varepsilon_0}{2}\int|\boldsymbol{E}(\boldsymbol{r})|^2\,\mathrm{d}^3r \end{array}$$
 Energiedichte
$$w = \frac{\varepsilon_0}{2}|\boldsymbol{E}(\boldsymbol{r})|^3$$

2.6 Einfache elektrostatische Probleme

Methode der Spiegelladungen

(eng. Method of Image Charges)

Beschreibung Die Spiegelladung (oder Bildladung) ist eine gedankliche Hilfsstütze, um das Verhalten einer Ladung Q vor einem leitenden Körper im Abstand R zu veranschaulichen. Beim Fall eines Leiters wird die gesamte influenzierte Ladung dafür anschaulich zu einer Punktladung zusammengefasst. Aus Symmetriegründen wird diese Punktladung als Spiegelladung bezeichnet.

Grundlagen (freiwillig) Wird ein leitender Körper in ein äußeres elektrisches Feld gebracht, so stehen meistens zu Beginn die Feldlinien noch nicht senkrecht auf der Oberfläche. Dies führt zu Potentialunterschieden entlang der Oberfläche, welche die frei beweglichen Elektronen dazu bringen sich so zu verschieben, dass die Feldlinien senkrecht auf die Oberfläche treffen (äußere elektrische Felder nehmen innerhalb leitender Körper exponentiell mit der Zeit ab). Da das äußere elektrische Feld auch Potentialunterschiede im Körper verursacht, bewegen sich die Elektronen innerhalb des Körpers so, dass dort überall das gleiche Potential herrscht. Theoretisch führt das demzufolge zu Oberflächenladungsdichten. Mikroskopisch nah betrachtet halten die Elektronen zueinander einen Abstand und deshalb befinden sich die Influenzladungen immer nur sehr nahe an der Oberfläche, sind aber keine echten Oberflächenladungen.

Da die elektrischen Feldlinien senkrecht auf der Oberfläche stehen, verändert der leitende Körper das elektrische Feld so, dass seine Oberfläche mit einer Äquipotentialfläche übereinstimmt. Zur mathematischen Behandlung wird demzufolge zu dem vorhandenen äußeren elektrischen Feld ein zweites elektrisches Feld eingeführt mit der Randbedingung, dass das superponierte Feld senkrecht auf der Oberfläche steht. Dies ist gleichbedeutend mit der Forderung, dass das elektrische Potential an der Oberfläche überall konstant, der Einfachheit halber gleich 0 ist.

Punktladung und die ungeladene Metallkugel Sein r und r' die Abstände zur realenund Spiegelladung, mit Koorinatenursprung im Zentrum des Kugels mit Radius R. Dann liegen die beide Ladungen auf einer Gerade, wobei (mittels Kreisspiegelung) gilt:

$$r' = \frac{R^2}{r}$$
$$q' = q \frac{R}{r}$$

Bem. Die Platzierung elektrischer Ladungen sollte irrelevant sein.

2.7 Randwertprobleme der Elektrostatik

Formulierung des Problems

Ziel ist es, die Poisson-Gleichung zu lösen - das Grundproblem der Elektrostatik.

Definition

Gegeben: $\rho(\mathbf{r}')$ in einem gewissen Raumbereich V, φ oder $\frac{\partial \varphi}{\partial n} = -\mathbf{E} \cdot \mathbf{n}$

Gesucht: Das skalare Potential $\varphi(r)$ in allen Punkten r des interessierenden Raumbereichs V.

${\bf 2.8}\quad {\bf Incomplete/Unassigned}$

$$\begin{split} \boldsymbol{\nabla} \frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} &= -\boldsymbol{\nabla}' \frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} \\ \int_a^b u(x)v'(x)\mathrm{d}x &= [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)\mathrm{d}x \\ \text{Dirichlet Randwert problem} \qquad \Delta_r \mathcal{G}(\boldsymbol{r},\boldsymbol{r}') &= -\frac{1}{\varepsilon_0}\delta(\boldsymbol{r}-\boldsymbol{r}') \\ \mathcal{G}(\boldsymbol{r},\boldsymbol{r}') &= \frac{1}{q}\Phi(\boldsymbol{r}) \\ \text{Poisson-Gleichung} \qquad \Delta\Phi(\boldsymbol{r}) &= -\frac{1}{\varepsilon_0}\rho(\boldsymbol{r}) \\ H(x) &\coloneqq \int_{-\infty}^x \delta(s)\mathrm{d}s = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases} \end{split}$$

Literaturverzeichnis

[1] OnlineMathe das mathe-forum Elektrisches Potential einer homogen geladenen Kugel https://www.onlinemathe.de/forum/Potential-einer-homogen-geladenen-Kugel