Week 8

Applications of the Sylow Theorems

8.1 Sylow III and Examples

11/14:

- Last time:
 - Sylow I: p-Sylow subgroups exist.
 - Sylow II: p-Sylow subgroups are unique up to conjugation. Moreover, if $Q \subset G$ is a p-group, then $Q \subset gPg^{-1}$ with the same g.
 - We proved Sylow II by taking $H \subset G$, and separately taking $P \subset G$ to be p-Sylow. In this case, there exists $g \in G$ such that $H \cap gPg^{-1}$ is a p-Sylow of H. If H = Q, then $Q \cap gPg^{-1} = Q$.
 - More on this??
- Alternate proof of Sylow II.

Proof. We attack the first claim (equality for p-Sylows) in three steps; we will not prove the second claim (containment for p-groups) herein. Step 1 defines a useful group action, allowing us to apply relevant theorems from that domain later on. Step 2 proves the existence of a fixed point of said group action, which will be intimately related to the final element g by which we conjugate P to make it equal Q. Step 3 relates this element g to the desired result. Let's begin.

Let X denote the set of all p-Sylows of G. By Sylow I, X is nonempty. Thus, we may choose $P, Q \in X$ (note that P, Q are not necessarily distinct). Define $G \subset G/P$ by left multiplication. Restrict the group action to Q (i.e., restrict the function $\cdot : G \times G/P \to G/P$ to $Q \times G/P$).

Since $|G| = p^n k$ and $|P| = p^n$, we have that gcd(|G/P|, p) = 1. Thus, |G/P| is not divisible by p, so $|G/P| \mod p \not\equiv 0 \mod p$. Additionally, since Q is a p-group (by definition as a p-Sylow), we have from the proposition in Lecture 7.2 that $Fixed(G/P) \equiv |G/P| \mod p$. This combined with the previous result reveals that Fixed(G/P) is nonempty. As such, we may choose $gP \in Fixed(G/P)$.

By definition, Q stabilizes qP, i.e.,

$$QgP = gP$$
$$g^{-1}QgP = P$$

where the latter equation above is a simple rearrangement of the first, but can be interpreted to mean that $g^{-1}Qg$ stabilizes P. Thus, if $g^{-1}qg \in g^{-1}Qg$, we have $(g^{-1}qg)p_1 = p_i$ for some $i = 1, \ldots, p^n$, and hence $q = g(p_ip_1^{-1})g^{-1} \in gPg^{-1}$. Therefore, $Q \subset gPg^{-1}$. Since |P| = |Q|, we additionally have that $Q = gPg^{-1}$, as desired.

• Sylow III. The first is existence, the second is uniqueness, and then there's this one (divisibility and congruence).

- Theorem (Sylow III divisibility and congruence): Let P be a p-Sylow, and let n_p denote the number of p-Sylows of G. Then
 - 1. Let $N = N_G(P)$. Then $n_p = |G|/|N| = [G:N]$. In particular, n_p divides |G|.

Proof. To prove a claim which expresses |G| in terms of the product of two other numbers, we should think about using the Orbit-Stabilizer theorem. To do so, we need a group action. In particular, a group action by conjugation could be useful because we have a normalizer involved. With this motivation mentioned, let's begin.

Let X be the set of p-Sylows of G. Define $G \subset X$ by conjugation. By the Orbit-Stabilizer theorem,

$$|\operatorname{Stab}_G(P)| \cdot |\operatorname{Orb}(P)| = |G|$$

Since the group action is by conjugation, we have by the definition of the stabilizer and the normalizer that

$$Stab_G(P) = \{g \in G \mid gPg^{-1} = P\} = N_G(P) = N$$

According to Sylow II, every p-Sylow (every element of X) is conjugate to every other via some element of G. Thus, since our group action is conjugation, the group action is transitive and Orb(P) = X. Thus,

$$|\operatorname{Orb}(P)| = |X| = n_p$$

Therefore, substituting the previous two results into the preceding one, we have that

$$|N| \cdot n_p = |G|$$
$$n_p = |G|/|N| = [G:N]$$

as desired. \Box

2. $n_p \equiv 1 \mod p$.

Proof. Congruence should make us think, "fixed points." In this argument, we will pick up where we left off, using the same group action defined in the proof of part 1 to express the claim in the language of fixed points. We will then deduce that this latter claim is true, proving the original claim. Let's begin.

Restrict the action from part 1 to P. This may mean that $P \subset X$ is no longer transitive, but this will not cause any issues. Moving on, we know by the closure of subgroups that $gPg^{-1} = P$ for any $g \in P$; thus, P is a fixed point of $P \subset X$. It follows by the proposition from Lecture 7.2 that $\operatorname{Fixed}_P(X) \equiv |X| \mod p$, and hence $n_p = |X| \equiv \operatorname{Fixed}_P(X) \mod p$. Thus, we are done if we can show that $\operatorname{Fixed}_P(X) = 1$, i.e., that P is the only fixed point of X under $P \subset X$.

Let $Q \in \operatorname{Fixed}_P(X)$ be arbitrary; we seek to prove that Q = P. Define $N := N_G(Q)$. By definition, $Q \subset N$. Additionally, $P \subset N$: Since $Q \in \operatorname{Fixed}_P(X)$, $gQg^{-1} = g \cdot Q = Q$ for all $g \in P$. Hence P, Q are both p-Sylows of N (the order of p dividing |N| certainly [by Lagrange's Theorem] divides the order of p dividing |G|). By Sylow II, any two p-Sylows are conjugate, so there exists $n \in N$ such that $nQn^{-1} = P$. Additionally, since $Q \triangleleft N$ by HW4 Q3c, we have that $nQn^{-1} = Q$. Therefore, by transitivity, P = Q, as desired.

- We are now done with proving the Sylow theorems. Make sure you have nice copies written out!
 - Perhaps before the final, I should take all important proofs from the quarter and make "proof outlines" in my review sheet, giving the tricks and motivation in as concise a format as possible but still allowing me to deduce the rest of the proof for myself. This could be a great exercise!
- The arguments that we've used thus far in this class are mostly combinatorical with a bit of number theory sprinkled in.
- Before going into applications of the Sylow theorems, we present an example that's good to keep in mind.

- Let $G = S_p$ for some $p \in \mathbb{N}$ prime.
 - S I: Yes, G has a p-Sylow, namely $P = \langle (1, 2, \dots, p) \rangle$.
 - S II: Any p-cycles are conjugate to one another.
 - Intuitive derivation of the value of n_p : n_p is the number of elements of order $p^{[1]}$ divided by $p-1^{[2]}$. Thus,

$$n_p = \frac{p!}{p(p-1)} = (p-2)!$$

- $S III: (p-2)! \equiv 1 \mod p.$
 - We obtain a related statement from Wilson's theorem: $(p-1)! \equiv -1 \mod p$.
- S III: $|N| = |N_G(P)| = p(p-1)$.
- This result combined with $P \triangleleft N$: |N/P| = p 1.
- Theorem (Wilson's theorem): A natural number p > 1 is prime iff

$$(p-1)! \equiv -1 \mod p$$

• Affine group (of order p): The following group, which consists of permutations given by affine maps. Denoted by Aff_p. Given by

$$\operatorname{Aff}_p = S_{\mathbb{Z}/p\mathbb{Z}}$$

- We send $x \in \mathbb{Z}/p\mathbb{Z}$ to $ax + b \in \mathbb{Z}/p\mathbb{Z}$.
- Injective:

$$ax + b = ay + b$$
$$a(x - y) \equiv 0 \mod p$$
$$x = y$$

- We also need to check that Aff_p is actually a subgroup. The group operation...
- An affine map is the sum of a linear transformation and a translation. Thus,

$$A(ax+b) + B = Aax + Ab + B$$

so

$$(a,b)(A,B) = (aA, Ab + B)$$

- We claim that $P = \langle X \to X + 1 \rangle$ is a subgroup??
- In particular, $P \triangleleft \mathrm{Aff}_p \leq N$.
- Thus, Aff_p = $N_{S_n}(\langle (1,2,\ldots,p)\rangle)$. This is a nice new group to have.
- We have $P: \mathrm{Aff}_p \to (\mathbb{Z}/p\mathbb{Z})^*$ defined by $\langle x \mapsto x + b \rangle$. $x \mapsto ax + b$ goes to a in the codomain, Ax + B maps to A, and $aAx + \cdots$ maps to aA.
- Remark: If q|p-1 is prime, then $(\mathbb{Z}/p\mathbb{Z})^*$ has an element of order q (Sylow). Call it σ . Then $\langle \sigma \rangle \leq (\mathbb{Z}/p\mathbb{Z})^*$.
- Theorem: Let p, q be primes such that p > q. Then either...
 - 1. $p \equiv 1 \mod q$ and there exists a nonabelian group of order pq that is a subset of Aff_p.
 - 2. $p \not\equiv 1 \mod q$ and all groups of order pq are isomorphic to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}$.

¹Recall that this is p!/p, since there are p options for the first entry, p-1 for the second, on and on down to 1, but there are also p ways to write said element.

²Each p-Sylow P contains p-1 distinct p-cycles.

Proof. ...

- Misc notes: According to S III...
 - -|G|=pq and $n_p\equiv 1\mod p$. Either $n_p=1$ or $n_p=q\equiv 1\mod p$, implying q>p, a contradiction.
 - Alternatively, $G \cong P_p \times P_q$. $n_q = 1$ or $n_q = p$. If $p \not\equiv 1 \mod q$, then $n_q = 1$. We end up with $P_p \unlhd G$ and $P_q \unlhd G$, which implies that $P_p \cap P_q = \{e\}$. Therefore, P_p and P_q commute.
- First example: 15; the first composite number for which p, q > 2 (and thus the structure is not covered by our previous analysis).
- We still haven't completely classified groups of order pq; sometimes there's one, sometimes there's more. We will look at these groups in greater detail next lecture.