Materials 22 - GMM of simple anchoring function

Laura Gáti

March 25, 2020

Overview

1 Specifications of anchoring function and estimation 1
2 Estimation issues 2
3 Robustness to different filters 2
4 Estimates 3

1 Specifications of anchoring function and estimation

• Anchoring function

$$k_t = k_{t+1} + \frac{1}{(d\ fe)^2} \tag{1}$$

Agents update their PLM using the inverse gain k_t^{-1} . Thus the bigger $\frac{1}{(d f e)^2}$, the more the gain is decreasing. Higher forecast errors f e or a higher d means closer to constant gains. I tried the inverse formulation with $h_t \equiv k_t^{-1}$ and

$$h_t = h_{t-1} + (d f e_{t-1})^2 (2)$$

but it always led to explosive simulations.

• Target: I gather the time series of inflation, output gap and federal funds rate, filter them, and compute empirical autocovariances:

$$ac^{data}(h) \equiv cov(y_t, y_{t-h})$$
 (3)

for h = 0, ..., K, selecting K = 4. I gather these autocovariances for the three variables in the matrix AC. The target then is $ac^{data} \equiv \text{vec}(AC)$ (a $n_y(K+1) \times 1$ vector, i.e. 15×1). Thus the

objective function can be written as:

$$J \equiv (ac^{data} - ac^{model})'W^{-1}(ac^{data} - ac^{model})$$
(4)

• Initial $d_0 = 10$.

2 Estimation issues

• W: Ideally I'd want to use a weighting matrix with the estimated variances of the target moments on the diagonal:

$$W = \begin{pmatrix} \hat{\sigma}_{ac(\pi,0)}^2 & 0 & \dots & 0 \\ 0 & \hat{\sigma}_{ac(x,0)}^2 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & 0 & \hat{\sigma}_{ac(i,K)}^2 \end{pmatrix}$$
 (5)

Since I don't fit the data to a time series process, I create bootstrapped samples from the original (filtered) data. This however results in tiny bootstrapped variances, so W^{-1} is huge.

3 Robustness to different filters

Figure 1: Cyclical component of inflation filtered using different methods

(c) Baxter-King, (6,32) quarters, truncation at 12 lags

4 Estimates

Figure 2: Inverse gain for \hat{d} for the different filters

(c) Baxter-King, (6,32) quarters, truncation at $12~\mathrm{lags}$

Table 1: \hat{d}

	W = I	$W = \operatorname{diag}(\hat{\sigma}_{ac(0)}, \dots, \hat{\sigma}_{ac(K)})$
HP	77.7899	10
Hamilton	32.1649	10
BK	90.3929	10