Essence of Machine Learning (and Deep Learning)

Hoa M. Le
Data Science Lab, HUST
hoamle.github.io

L

Examples

- https://www.youtube.com/watch?v=BmkA1ZsG2 P4
- http://www.r2d3.us/visual-intro-to-machinelearning-part-1/

2

Machine Learning is about ...

... a computer program (machine) *learns* to do a task (problem) from experience (data)

• $learning \triangleq improved performance$ with more experience

- Tom Mitchell

predictive modelling with sample data

"heurestics" & statistical modelling

note 1: "heurestic" as in "intuitive, but not (yet!) rigorously proven by mathematical tools at some extend"

note 2: predictive modelling can also be in the form of rule-based systems, models in physics, etc

BUILD A MACHINE LEARNING SOLUTION

the Pipeline

4

Data sampling and Result interpretation are often neglected in a ML 101 course for brevity. However, remember that they are NOT disposable. They are also arguably 2 most important steps in the pipeline.

Đặt vấn đề

Question/ Hypothesis

Q.a. What are there in an abitrary photo?
Q.b. What is there in an abitrary photo?
Q.c. Is there any puppy an abitrary photo?

flower dog jet ground grass

Other questions:

- Where are the puppies in a photo?
- How confident can I assure that there is a cat a photo?
- For what reasons can I know that there is a cat in a photo?

- a. Multi-label Multi-class classification
- b. Standard Multi-class classification (single-label)
- c. Binary classification (single-class)

How representative the sample is => how generalisable the model is

Rule-of-thumbs: "garbage in, garbage out"

Misconception: "We are in big data era, data sampling is no longer a concern"

Big data ≠ sufficient data. Many domains (e.g. biomedicine, social sciences)
typically have small/tiny sample size in most of their problems. Even in computer
vision, there exist problems that do not readily have big data, e.g. humour
detection, lip-reading.

Graphics:

- http://www.asimovinstitute.org/neural-network-zoo/
- LDA (Blei's KDD 2011 tutorial)

The idea of Deep Learning is to incorporate feature extraction stage into the model, for which how the features are extracted is also *learnt from the data*.

The most valuable outputs from interpreting/analysing the results are better/new <u>insights</u> to the current problem, which motivates further improvements for that problem of interest, and/or novel approaches to related problems/domains. ⇒ driving force for developments

PRINCIPLES OF MODELLING

Statistical reasoning (*)

(*) A machine learning algorithm does not necessarily have a probabilistic interpretation, or developed from a statistical framework. Nevertheless, statistical reasoning provides a rigorous mathematical tool for estimation and inference to make optimal decision (e.g. prediction, action) under **uncertainty**, which is one of the ultimate objectives in ML.

17

Graphics:

- David Blei, KDD 2011
- https://lvdmaaten.github.io/tsne/examples/mnist_tsne.jpg

Graphics: cs231n, lecture 8

Modelling

PRINCIPLES OF MODELLING

1. Model structure - constructs relationships (stochastic and/or deterministic) between model elements: data, parameters, and hyperparameters.

Keywords: araphical model

2. Learning principle - defines a framework to estimate unknown parameters (and unobserved i.e. hidden/latent variables)

Keywords: Maximum Likelihood criterion, Bayesian inference, ++ others

3. Regularisation

Keywords: over-fitting, Bayesian inference, ++ others Relevant keywords: L2-regularisation (Ridge), L1-regularisation (LASSO)

 \Rightarrow ALGORITHM - implements 1 + 2 + 3 to train the model

Keywords: (stochastic) gradient descent, Expectation-Maximisation (EM), Variational Inference (VI), sampling-based inference methods

4. Model selection

Keywords: cross-validation

24

Ref: Shakir Mohamed's Deep Learning summer school, 2016

Graphics: 3Blue1Brown https://youtu.be/P2LTAUO1TdA

Lesson learned from "modelling a real-life problem" (Lecture 1)

"The purpose of computation is insight, not numbers."

-Richard Hamming

$$\begin{split} p(\mathbf{w} \mid \alpha, \beta) &= \frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \int \left(\prod_{i=1}^{k} \theta_{i}^{\alpha_{i}-1}\right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\theta_{i} \beta_{ij})^{w_{n}^{j}}\right) d\theta, \\ p(D \mid \alpha, \beta) &= \prod_{d=1}^{M} \int p(\theta_{d} \mid \alpha) \left(\prod_{n=1}^{m} \sum_{z_{dn}} p(z_{dn} \mid \theta_{d}) p(w_{dn} \mid z_{dn}, \beta)\right) d\theta_{d}. \end{split}$$

Graphics: 3Blue1Brown

https://youtu.be/Ip3X9LOh2dk?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&t=1

27

See more in "learning and inference tasks" (week 2-3)