Caratteristiche porte logiche e semplici circuiti logici

Gruppo 1G.BT Lorenzo Cavuoti, Francesco Sacco

3)

a)

Figura 1: Diagramma a Stati

- b) Indicheremo uno stato $S=Q_1Q_2$ dove Q_1 figura ?? è lo stato del primo flip flop, mentre Q_2 è lo stato del secondo flip-flop. In totale gli stati sono 3: 00,01,10,11 lo stato 11 è "in più", nel senso che quando il circuito è a regime gli stati che vengono attivati sono 00,01,10 come si può vedere in figura1.
 - c) La tabella di verità è la seguente

S_n	S_{n+1}
00	10
01	00
10	01
_11	01

d) Non essendoci ingressi il circuito è una macchina di Moore (uscite= $f(S_n)$).

$$(Q_1)_{n+1} = \overline{(Q_1)_n + (Q_2)_n}$$

 $(Q_2)_{n+1} = (Q_1)_n$

Figura 2: Schema circuitale del semaforo, V, G, R indicano rispettivamente i LED verde, giallo, rosso

e) Si implementato il circuito usando una macchina di Moore come spiegato sopra, lo schema circuitale è mostrato in figura 2. Usando le uscite \overline{Q} degli FF D-Latch siamo riusciti ad utilizzare solamente una porta AND nella parte combinatoria in quanto $(Q_1)_{n+1} = \overline{(Q_1)_n + (Q_2)_n} = \overline{(Q_1)_n} \overline{(Q_2)_n}$. ma che minchia di domanda è?

4)

e) Ecco la tabella di verità, uguale al punto 3

$\overline{S_n}$	S_{n+1}	OUT V/G
00	10	10
01	00	00
10	01	11
11	01	X

f) Le funzioni logiche sono uguali al punto 3:

$$(Q_1)_{n+1} = \overline{(Q_1)_n} \ \overline{(Q_2)_n}$$

$$(Q_2)_{n+1} = (Q_1)_n$$

 $^{^{1}\}mathrm{Una}$ risposta del cazzo a una domanda del cazzo

g) Abbiamo montato il circuito in figura 2 scegliendo R1, R2, R3 $\approx 330\Omega$ nominali e $V_{CC}=4.97\pm0.03\mathrm{V}$, infine si è inviato un clock a circa 1Hz. Si è verificato che il circuito funzioni come un semaforo, si è anche verificata la transizione dallo stato 11 allo stato 01 come previsto dalla teoria. Successivamente si è aumentata la frequenza di clock a $\approx 1\mathrm{kHz}$ e abbiamo visualizzato all'oscilloscopio i segnali all'ingresso dei LED verde e giallo (figure 3 e 4).

Figura 3: In basso segnale di clock, Figura 4: In basso segnale di clock, in alto segnale ingresso LED giallo in alto segnale ingresso LED verde