# Unit 3

**Relations** 

Albert Sung

#### The Prisoner Hat Riddle



- $\square$  There is a line of *n* prisoners,  $P_1$ ,  $P_2$ , ...  $P_n$ .
- Each wears a white or a black hat randomly.
- Each one can see the hats of the prisoners in front of him, but cannot see his own hat (or the hat of anyone behind him).
- $\square$  Everyone has to guess and call out the color of his own hat starting from  $P_1$ , then  $P_2$ , and so on.
- Prisoners who call out incorrectly will be shot.
- □ **Problem:** Find a strategy that would guarantee that *at most one prisoner* is shot.

#### The Prisoner Hat Riddle

□ https://www.youtube.com/watch?v=N5vJSNXPEwA&t=3s (4.5 min)



# Outline of Unit 3

- □ 3.1 Definition of Relations
- □ 3.2 Properties of Relations
- □ 3.3 Equivalence Relations
- □ 3.4 Partial Orders

# **Unit 3.1**

**Definition of Relations** 

#### What is a Relation?

- $\square$  A binary relation R from a set A to a set B is a subset of the Cartesian product  $A \times B$ .
- □ In particular, a binary relation R on a set A is a subset of  $A^2$ .
  - $\circ$  (This is the special case when A = B.)
- Given  $(x, y) \in A \times B$ , x is related to y,  $x \in R$   $y \leftrightarrow (x, y) \in R$ .

Two different ways to represent a relation.

 Relation is the fundamental notion underlying relational databases and their query languages.

# **Examples**

#### Marriage in HK



- Let *M* and *F* be the sets of all men and all women in HK, respectively.
- $\square$   $R_{\text{marriage}} \subseteq M \times F$
- $\square$   $(x,y) \in R_{\text{marriage}}$  iff x is a husband of y.

#### **Less-Than on** $\mathbb{R}$



- $\square$   $R_{less} \subseteq \mathbb{R}^2$
- $\square$   $(x, y) \in R_{less}$  iff x < y.

#### Functions and Relations

- ☐ Functions are a special class of relations:
  - $\circ f(x) = y$  means xRy.
  - For each x, there exists one and only one y such that xRy.
- All functions are relations but not all relations are functions.



#### Inverse of a Relation

- $\square$  Let *R* be a relation from *A* to *B*.
- □ The inverse relation  $R^{-1}$  from B to A is defined as follows:

$$R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}$$

Just flip over the ordered pair.

Classwork:

What is the inverse relation of

- i. the marriage relation?
- ii. the less-than relation?

#### Composition of Relations

□ Given  $R \subseteq A \times B$  and  $S \subseteq B \times C$ , the composition of R with S, written  $S \circ R$ , is defined by

 $a(S \circ R) c \text{ iff } \exists b \in B, aRb \land bSc.$ 

 $\square S \circ R$  may be read as "S circle R".

# **Illustration**



3-11

#### Classwork

Let xFy be the relation "x is the father of y". Let xSy be the relation "x is a sister of y".

- a) What is  $x(F \circ F)y$ ?
- b) What is  $x(F \circ S)y$ ?

# k-ary Relations

- □ In general, a k-ary relation R is a subset of the Cartesian product  $A_1 \times A_2 \times \cdots \times A_k$ .
- $\square k = 2$ : binary relation
  - Focus of this unit (except the next section).
- $\square k = 3$ : ternary relation
  - Example of a ternary relation:
    - (HKID, Name, Date of Birth) on HK Population
- $\square k = 1$ : unary relation
  - The same as subset.

## Three Examples

- 1) The set of prime numbers is a unary relation on  $Z_+$ .
- The set of twin prime pairs is a binary relation on  $\mathbb{Z}_{+}^{2}$ .
  - (a, b) is a twin prime pair if both a and b are primes and b a = 2.
    - e.g. (3, 5), (5, 7), (11,13) are twin prime pairs.
- 3) The set  $\{(a, b, c) \in Z_+^3 : c^2 = a^2 + b^2\}$  is a ternary relation on  $Z_+^3$ .
  - An element of this set is called a Pythagorean triple.

# **Unit 3.2**

**Properties of Relations** 

# **Reflexivity**

■ A relation *R* on a set *A* is reflexive if every element of *A* is related to itself:

$$\forall x \in A, xRx$$

- $\square$  Example: Equal on  $\mathbb R$ 
  - The equal relation is reflexive because  $\forall x \in \mathbb{R}, x = x$ .



## **Symmetry**

■ A relation *R* on a set *A* is symmetric if

$$\forall x, y \in A, xRy \longrightarrow yRx$$

- Example: Same Parity
  - Define a relation P on  $\mathbb{Z}$  as  $m P n \leftrightarrow m n$  is even
  - $\circ$  *P* is symmetric because  $mPn \rightarrow nPm$ .



*m* and *n* are of the same parity if they are both odd or both even.

## **Transitivity**

■ A relation *R* on a set *A* is transitive if

$$\forall x, y, z \in A, (xRy \land yRz) \longrightarrow xRz$$

- $\square$  Example: Less than on  $\mathbb R$ 
  - The less-than relation is transitive because

x < y and y < z implies x < z.



How come?

## **Antisymmetry**

■ A relation *R* on a set *A* is antisymmetric if

$$\forall x, y \in A, (xRy \land yRx) \longrightarrow x = y$$

- □ Example: Less than or equal to
  - O Define a relation P on Z as  $m P n \leftrightarrow m < n$
  - P is antisymmetric because if  $m \le n$  and  $n \le m$ , then m = n.



#### Classwork

- $\square$  Consider the subset relation  $\subseteq$  on sets.
- a) Is it reflexive?
- b) Is it symmetric?
- c) Is it transitive?
- d) Is it antisymmetric?

# **Unit 3.3**

**Equivalence Relations** 

## **Equivalence Relation**

- $\square$  A relation R on a set A is an equivalence relation if R is reflexive, symmetric, and transitive.
- Example: Parallel Lines
  - Let *A* be the set of all straight lines in elementary geometry.
  - $oldsymbol{o}$   $l_1 R_{\text{parallel}} l_2 \leftrightarrow l_1 \parallel l_2$
  - $\circ$  It can be verified that  $R_{\text{parallel}}$  is an equivalence relation.

#### Classwork

Let *R* be the relation on  $Z^2$  defined by (a,b) R (m,n) iff ab = mn.

□ Is *R* an equivalence relation?

## Example: Congruence Modulo n

■ **Definition**: Two numbers a and b are congruent modulo n if they have the same remainder when divided by n. We write  $a \equiv b \pmod{n}$ .

Is it an equivalence relation?

- Note the following:
  - o  $a \equiv b \pmod{n}$  iff a b is divisible by n.
  - $oldsymbol{o} a \equiv a + kn \pmod{n}$  for all integer k.
  - In particular, if r is the remainder when a is divided by n, then  $a \equiv r \pmod{n}$ .

#### Check the three conditions...

- 1) Reflexive
  - o  $a \equiv a \pmod{n}$ .
- 2) Symmetric
  - o If  $a \equiv b \pmod{n}$ , then  $b \equiv a \pmod{n}$ .
- 3) Transitive
  - o If  $a \equiv b \pmod{n}$ ,  $b \equiv c \pmod{n}$ , then  $a \equiv c \pmod{n}$ .
- Equivalence relation characterizes the similarity between objects; two objects are "equal" in some sense.
  - In this example, related objects have the same remainder when divided by n.

## **Equivalence Class**

- $\square$  Let R be an equivalence relation on A.
- □ For each  $a \in A$ , the equivalence class of a is defined as

$$[a] = \{x \in A \mid xRa\}.$$

Why not aRx?

- Note: it is a subset of *A*.
- Example: Congruence Modulo 3 on Z

$$\circ$$
 [0] = {..., -6, -3, 0, 3, 6, ...}

$$\circ$$
 [1] = {..., -5, -2, 1, 4, 7,...}

$$\circ$$
 [2] = ?

$$\circ$$
 [3] = ?

# **Example: Fractions**

- $\square$  Let  $F \triangleq \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$ .
- □ Define *R* on *F* by  $\frac{a}{b}R\frac{c}{d}$  iff ad = bc.
- □ It is easy to check that R is an equivalence relation.
- ☐ The equivalence classes include, for example,

$$\left[\frac{1}{1}\right] = \left\{\frac{1}{1}, \frac{2}{2}, \frac{3}{3}, \dots\right\}, \left[\frac{1}{2}\right] = \left\{\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \dots\right\}, \left[\frac{2}{3}\right] = \left\{\frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \dots\right\}.$$

- ☐ They are called rational numbers.
- □ The set of all the equivalence classes (i.e., rational numbers) is denoted by Q.

# Property 1: Nothing is Left Out

□ Property 1: Given an equivalence relation on A, every element of A belongs to some equivalent class, i.e.,

$$\forall x \in A, \exists y \in A, x \in [y]$$

- □ Proof:
  - $\bigcirc$  Due to reflexivity,  $\forall x \in A, x \in [x]$ .

Q.E.D.

# **Property 2: No Partial Overlapping**

Property 2: Given an equivalence relation,

$$\forall x, y \in A, [x] \cap [y] = \Phi \text{ or } [x] = [y].$$
disjoint equal

- - Suppose  $[x] \cap [y] \neq \Phi$ . We want to show [x] = [y].
  - $\circ$  Let *c* belongs to both [x] and [y].
    - i.e., cRx and cRy (c exists because [x] and [y] are assumed non-disjoint.)
  - $\circ$  Take any element a from [x]. Then aRc.
  - $\circ$  By transitivity, aRc and  $cRy \Rightarrow aRy$
  - $\bigcirc$  By definition,  $aRy \Rightarrow a \in [y]$ .
  - $\bigcirc$  Therefore,  $[x] \subseteq [y]$ .
  - $\circ$  Similarly, we can show that  $[y] \subseteq [x]$ .

show two sets are equal?

How to

#### Partition of the set A

- Combining the two properties, the collection of all equivalence classes form a partition of A.
  - Note: A can be an infinite set.
- $\square$  Example: mod 7 on  $\{1, 2, ..., 31\}$ .

$$\circ$$
 [4] = {4, 11, 18, 25} (Sun)

$$\circ$$
 [3] = {3, 10, 17, 24, 31} (Sat)



Seven equivalence classes

#### Classwork

Consider the relation R on the set of integers, where xRy iff x-y is a multiple of 2.

- a) Is *R* an equivalence relation?
  - reflexive?
  - ii. symmetric?
  - iii. transitive?
- b) If so, what are the equivalence classes?

## **Example: Parity Relation**

- Let  $\{0, 1\}^n$  be the set of all binary sequences of length n.
- Let  $R_{\text{parity}}$  be the relation on  $\{0, 1\}^n$  such that  $xR_{\text{parity}}y$  iff the numbers of 1's in x and and in y are both odd or both even.
- □ For example, let n = 3. Then,  $(111,010) \in R_{\text{parity}}$ , since both binary sequences have an odd number of ones.
- $lue{}$  It is easy to verify that  $R_{\text{parity}}$  is an equivalence relation.

#### **Example: Parity Relation**

- Two equivalence classes:
  - [00000...000] (all zero)
  - [00000...001] (only the last bit is 1)



Strategy: The last person declares which equivalence class he sees.

# **Unit 3.4**

Partial Orders

#### Partial Orders

■ A relation *R* on a set *A* is a partial order if *R* is reflexive, antisymmetric, and transitive.

#### Example:

- $\bigcirc$  Let *R* be the "divides" relation on  $\mathbb{Z}_+$ .
- $\bigcirc$  In other words,  $aRb \leftrightarrow a|b$  (which means a divides b).
- Reflexive: *a* always divides itself.
- Antisymmetric: if a|b and b|a, then a=b.
- Transitive: if a|b and b|c, then a|c.

#### Example: Less Than or Equal to

- $\square$  It is easy to show that "less than or equal to" (over Z, Q or R) is a partial order.
  - $\bigcirc$  Reflexive:  $a \leq a$
  - Antisymmetric:  $(a \le b) \land (b \le a) \rightarrow (a = b)$
  - Transitive:  $(a \le b) \land (b \le c) \rightarrow (a \le c)$
- $\square$  A partial order *R* is often denoted by  $\leq$ .
  - $\circ$  i.e., aRb is denoted by  $a \leq b$ .

## Classwork: Prefix of a String

- $\square$  Consider the English alphabet,  $\Sigma = \{a, b, c, ..., z\}$ .
- $\square$  A string over  $\Sigma$  is a sequence of letters in  $\Sigma$ .
  - e.g. "information" is a string.
- $\square$  A string x is a prefix of a string y if y = xv, for some string v.
  - e.g. "info" is a prefix of "information"
- ☐ Is "prefix" a partial order?
  - Reflexive?
  - Antisymmetric?
  - Transitive?

#### **Greatest and Maximal Elements**

- □ An element a is called the greatest element if  $x \le a$  for all  $x \in A$ .
  - $\bigcirc$  Here  $x \leq a$  means xRa.
- An element a is called a maximal element if there is no  $x \in A$  such that  $a \le x$  and  $a \ne x$ .

Least elements and minimal elements can be defined similarly.

It is larger than any others.

No one is larger than it.



# Classwork: Integer Grid

- □ Consider the partial order  $(x_1, y_1) \le (x_2, y_2)$  iff  $x_1 \le x_2$  and  $y_1 \le y_2$ .
- What are the greatest element and maximal element in each of the following cases?



## Recommended Reading



□ Chapter 8, S. S. Epp, *Discrete Mathematics with Applications*, 4<sup>th</sup>

ed., Brooks Cole, 2010.



□ Chapters 11-13, B. Khoussainov and N. Khoussainova, *Lectures on Discrete Mathematics for Computer Science*, World Scientific, 2012.