

Under the Hood of DANE Mismanagement in SMTP

<u>Hyeonmin Lee</u>, Md. Ishtiaq Ashiq, Moritz Müller, Roland van Rijswijk-Deij, Taekyoung "Ted" Kwon, Taejoong Chung

Seoul National University, SIDN, University of Twente & NLnet Labs, Virginia Tech

UNIVERSITY OF TWENTE.

Key Findings

• DANE* is an Internet security protocol that is proposed to enable authentication of communication peers without relying on Certificate Authorities (CAs)

*DNS-based Authentication of Named Entities (DANE)

Why?

30%

(self-hosted) SMTP servers managed by domain owners support DANE incorrectly

90%

SMTP servers
Incorrectly rollover
their keys

- In the current Public Key Infrastructure (PKI) model,
 - Certificates Authorities (CAs) can issue certificates to any domain name

- In the current Public Key Infrastructure (PKI) model,
 - Certificates Authorities (CAs) can issue certificates to any domain name

• Several CAs were compromised and mis-issued fraudulent certificates

^[1] BBC. (Sep 2011). "Fake DigiNotar web certificate risk to Iranians"

^[2] Lance Whitney. CNET. (Sep 2011). "Comodohacker: I can issue fake Windows updates"

- In the current Public Key Infrastructure (PKI) model,
 - Certificates Authorities (CAs) can issue certificates to any domain name

• Several CAs were compromised and mis-issued fraudulent certificates

[1] BBC. (Sep 2011). "Fake DigiNotar web certificate risk to Iranians"

[2] Lance Whitney. CNET. (Sep 2011). "Comodohacker: I can issue fake Windows updates"

Mitigations have been proposed

CT (Certificate Transparency)

All certificates issued by CAs are publicly logged for monitoring

DNS CAA
(Certification Authority Authorization)

Domain name owners **specify** (CAs) that issue certificates for their domains

They still work based on CAs...

DNS-based Authentication of Named Entities (DANE)

[RFC 6698]

The DNS-Based Authentication of Name Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA, Aug 2012

DNA-Based Authentication of Named Entities (DANE)

- DANE has been proposed to bind certificates (public keys) to domain names without relying on CAs
- How?
 - A domain publishes its certificate information as a DNS record **TLSA record**

DNA-Based Authentication of Named Entities (DANE)

- DANE has been proposed to bind certificates (public keys) to domain names without relying on CAs
- How?
 - A domain publishes its certificate information as a DNS record **TLSA record**
 - A domain has to support Domain Name System Security Extensions (DNSSEC) to guarantee the integrity of TLSA record

How to deploy DANE?

Necessary: DNSSEC support

- **DNSKEY** record: public key used in DNSSEC
- **RRSIG** record: a signature of DNS records
- DS record: a hash of the DNSKEY

^{*}More information about DNSSEC support is in the paper

DANE Validation Process

DANE Validation Process

- Simple Mail Transfer Protocol (SMTP) is a communication protocol for electronic mail transmission
 - → No security features in its initial design

- Simple Mail Transfer Protocol (SMTP) is a communication protocol for electronic mail transmission
 - → No security features in its initial design
 - → **STARTTLS** is used to support opportunistic TLS

- Simple Mail Transfer Protocol (SMTP) is a communication protocol for electronic mail transmission
 - → No security features in its initial design
 - → **STARTTLS** is used to support opportunistic TLS
 - → **STARTTLS** is vulnerable to **downgrade attacks**

DNS (DNSSEC) STARTTLS downgrade attacks root zone *example.com* zone .com zone can be mitigated using DANE example.com root .com **DNSKEY DNSKEY DNSKEY RRSIG** RRSIG RRSIG example.com example.com .com DS DS **TLSA** RRSIG RRSIG RRSIG <u>===</u> Authoritative **DNS** server 1. Fetch TLSA records (example.com) **DNS Resolver Explicit signal** of TLS support **SMTP Server SMTP Client** (example.com)

How DANE is Deployed?

- Our previous work on *USENIX Security 2020*
 - Lee et al. "A Longitudinal and comprehensive Study of the DANE Ecosystem in Email"
 - Scan TLSA, MX records for 2 years (Oct 2017 ~ Oct 2019)

• The deployment rate is low.. but *increasing*!

- .nl and .se show high deployment
 - → Due to financial incentives from registries

How DANE is Deployed?

• Are they correct?

*Lee et al. "A Longitudinal and comprehensive Study of the DANE Ecosystem in Email", USENIX Security '20

DNSSEC

STARTTLS

85% of TLSA records are signed (i.e., have RRSIG)

20% of them do not have DS

RRSIG record is published

DS record is published

Certificates can be fetched

99.7% supports STARTTLS

0.55% of TLSA records have incorrect DNSSEC chain

DNSSEC chain is valid (e.g., Records are not expired) Certificates are consistent with TLSA records

4% of certificates are not matched with their TLSA records

Why?

→ Motivation of our USENIX Security '22 paper

Under the Hood of DANE Mismanagement in SMTP

Why do domains fail to support DANE correctly?

- USENIX Security 2022 -

Entities in DANE Management

Entities in DANE Management

In the DANE Ecosystem,

Each server can be self-hosted or outsourced

Self-hosted

Domain administrators manage

DNS servers and SMTP servers coherently by themselves

Domain administrators outsource

DNS servers or SMTP servers

Entities in DANE Management

The quality of DANE management can be different depending on "who" manages server?

Each server can be self-hosted or outsourced

Self-hosted

Domain administrators manage

DNS servers and SMTP servers coherently by themselves

Domain administrators outsource

DNS servers or SMTP servers

Managing Case Classification

• 3 cases of DANE management

Dataset

All second-level domains under .com, .net, .org, and .se

July 2019 ~ February 2021 Daily and Hourly scan

^{*}Details of methodology for determining managing entities are in the paper

Managing Entities and Management Qualities

 The ratios of domains that support DANE incorrectly in SSDO, SSDS are much higher than SO

Self-hosting SMTP servers are more error-prone

Let's focus on SMTP Self-hosting cases (SSDO and SSDS)

*SO: SMTP Outsourcing

SSDO: SMTP Self-hosting, DNS Outsourcing

SSDS: SMTP Self-hosting, DNS Self-hosting

Why TLSA Validations Fail?

• 2 failure reasons: (1) DNSSEC failure & (2) Mismatch of certificates and TLSA records

DNSSEC Failure

- The **dominant reason** of validation failures
 - →99% of DNSSEC failures are due to **missing DS records**

Mismatch

• 16~23% of SMTP servers have certificates that are not matched with their TLSA records

*SSDO: SMTP Self-hosting, DNS Outsourcing SSDS: SMTP Self-hosting, DNS Self-hosting

Why Mismatches Happen?

- Are the mismatched TLSA records valid before?
 - Checked the percentage of TLSA records that are mismatched with certificates at the time of the scan, but can be matched with certificates used before

- The percentage increases continuously
 - → Certificates are changed but the corresponding TLSA records are not updated timely

Incorrect Key Rollover

DANE Key Rollover

- Key rollover? Update of public and private key pairs
- Correct key rollover?
 - → An SMTP server must **publish the new TLSA record** to a DNS server in advance, at least 2 TTLs before (to consider DNS cache)

Case	SMTP servers		Domains	
	Total	Incorrect Rollover	Total	Incorrect Rollover
SO	277	255 (92%)	54,052	34,056 (63%)
SSDO	275	240 (87%)	278	242 (87%)
SSDS	594	544 (92%)	585	546 (93%)

90% of SMTP servers conduct rollovers incorrectly

Why Servers Conduct Rollovers..?

Actually, DANE does not require a key rollover

when using *DANE-TA* or *DANE-EE* usages - DANE RFC (99% of SMTP servers use *DANE-TA* or *DANE-EE*)

In our data

Automated CAs

87% of certificates are issued by *Let's Encrypt* and *Sectigo*

Is there any problem?

Side effect Enforce key rollovers..

Incorrect Rollovers and Let's Encrypt

- DANE-TA usage allows domains publish *TA's certificate as a TLSA record
- *TA: Trust Anchor

Usually, TA's certificate is not changed often (compared to leaf certificates)

- 1. Incorrect rollover ratios are **lower than other usages** when using *DANE-TA*
- 2. The **explosion** from October 2020
 - → Let's Encrypt (LE) introduced the new intermediate certificate (from X3 to R3)
 - →SMTP servers **failed to respond properly**; do not rollover their TLSA records correctly

Conclusion

- Investigated why domains fail to manage DANE correctly
- Revealed reasons for mismanagement
 - 1) DNSSEC issues: *missing DS records* in parent zones
 - 2) Mismatches of TLSA and certificates: key changes due to automatic certificate reissuance of CAs
- Other findings please refer our paper
 - Confirmed that SMTP servers use CA-issued certificates to consider compatibility with others
 - Implemented an automatic key rollover script to support DANE management

[Datasets & source code]

https://dane-study.github.io/

Thank you!

Any questions?

Hyeonmin Lee min0921110@gmail.com