Teoria dei Grafi e Applicazioni alla Chimica

Francesco Pibiri Università degli studi di Cagliari

Corso di Laurea Triennale in Matematica Relatore di Tesi: Prof. Andrea Loi

26 Febbraio 2013

Teoria dei Grafi

Problema dei Ponti Koningsberg.

"E' possibile fare un giro a piedi della cittadina passando una ed una sola volta attraverso ciascun ponte e ritornando al punto di partenza ?"

Teoria dei Grafi Astratta:

 $\begin{aligned} &V_i = \{v_i || \ v_i vertici, \ i < \infty \} \\ &E_g = \{\{v_i, v_j\} \, || \forall v_i \in V_i \wedge \forall v_j \in V_j \} \\ &\text{Teoria dei Grafi Topologica:} \\ &V_i = \{v_i || \ v_i punti, \ i < \infty \} \\ &E_g = \{e_{ij} || e_{ij} \ spigolo \ che \ unisce \ v_i \ a \ v_j \} \end{aligned}$

Ovvero e_{ij} è un sottoinsieme chiuso e limitato di \mathbb{R} avente come punti di frontiera v_i e v_i .

Corrispondenza biunivoca tra i grafi della Teoria dei Grafi Astratta e i grafi della Teoria dei Grafi Topologica

Grafo Completo di n vertici K_n :

ha n vertici e una collezione di spigoli tali che ogni paia di vertici è unito da un singolo spigolo

Grafo Completo Bipartito di m + n vertici $K_{m,n}$:

Possono essere divisi in un insieme V_m di m vertici e in un insieme V_n di n vertici

- (i) Ciascuno spigolo unisce un vertice di V_m a un vertice di V_n
- (ii) Ogni paio di vertici $v \in V_m$ e $v' \in V_n$ è unito da un singolo spigolo

Definizione

Sia G un grafo. Per ciascun vertice $v \in V_g$, definiamo $grado\ di\ v$ il numero di spigoli incidenti a v, contandolo 2 volte se collega v a se stesso.

Definizione Sia G un grafo:

- Un cammino chiuso è un cammino che inizia e finisce con lo stesso vertice.
- Un cammino chiuso nel quale non si ripetono spigoli è chiamato circuito.
- Un circuito nel quale non si ripetono vertici (eccetto il primo e l'ultimo) viene chiamato ciclo.

Definizione

Sia G un grafo.

- Un cammino euleriano in G è un cammino che attraversa ogni spigolo in G esattamente una volta.
- Un circuito euleriano è un cammino euleriano chiuso in G.
- Diciamo che G è euleriano se contiene un circuito euleriano.

Definizione

Un grafo G si dice Connesso se $\forall u \in V_g, \forall v \in V_g \exists$ un cammino che collega u a v.

Grafo di Konigsberg K

Modellando i lembi di terra di Konigsberg come vertici e i loro ponti come spigoli

Nel 1734 Eulero trovò una C.N.S perchè un grafo possa contenere un Circuito o Cammino Euleriano

Teorema

Sia G un grafo connesso:

- (i) $\exists \mathsf{un} \; \mathit{Circuito} \; \mathit{Euleriano} \iff \mathsf{tutti} \; \mathsf{i} \; \mathsf{vertici} \; \mathsf{di} \; \mathit{V_g} \; \mathsf{hanno} \; \mathsf{grado} \; \mathsf{pari}$
- (ii) \exists un *Cammino Euleriano* ma non un Circuito Euleriano \iff G ha esattamente 2 vertici di grado dispari (ovvero il primo e l'ultimo).

Dimostrazione

(i) Condizione Necessaria: Se \exists un Circuito Euleriano C in G che attraversa una ed una sola volta tutti i vertici di $V_g \Rightarrow C$ "entra" ed "esce" in ogni vertice(tranne nel primo e nell'ultimo da cui esce all'inizio ed entra alla fine) senza mai passare nello stesso spigolo. Quindi tutti i vertici devono avere necessariamente grado pari.

Condizione sufficiente:

Per ipotesi ogni vertice v ha grado pari. Costruiamo un circuito euleriano.

Sia $v \in V_g$.

Usciamo da v attraverso uno spigolo, entrando in un altro vertice u di V_g . Poichè u ha grado pari, possiamo uscire da u con uno spigolo diverso da quello con cui siamo entrati.

Possiamo ripetere il procedimento senza mai passare 2 volte sullo stesso spigolo e, poichè il grafo è finito, prima o poi torneremo sul vertice v.

Abbiamo cosi costruito un ciclo, che non è necessariamente euleriano, poichè potremmo non aver attraversato tutti gli spigoli del grafo.

Allora consideriamo il grafo G/da G ottenuto cancellando gli spigoli del ciclo. Se tutti i vertici di G/hanno grado zero allora il ciclo costruito è euleriano.

Altrimenti consideriamo un vertice v appartenente al ciclo rimosso che abbia ancora grado positivo. Tale vertice deve esistere poichè G è connesso.

Ripetiamo il procedimento sul grafo *G*/a partire dal vertice *v*/. Otteniamo un nuovo ciclo che interseca il precedente nel vertice *v*/.

Iterando il procedimento, prima o poi tutti gli spigoli verranno usati, ottenendo così un ciclo euleriano.

Il Grafo di Konigsberg K ha 4 vertici di grado dispari, segue che Non si può avere nè un Circuito Euleriano nè un Cammino Fuleriano.

Non è possibile attraversare tutti e 7 i ponti di Konigsberg esattamente una sola volta.

Un' Applicazione della Teoria dei Grafi alla Chimica

- Studiare le proprietà chimico-fisiche di una molecola tramite l'utilizzo della Teoria dei Grafi.
- Le strutture chimiche avranno una struttura di Grafo.
- Gli atomi e le molecole come vertici di un Grafo e i loro legami come spigoli.
- Presenteremo una classe particolare di Idrocarburi, gli Alcani.

Definizione

Sia G un grafo:

- Per i vertici v e v/in G, definiamo distanza di v da v/come il minore numero di spigoli in un cammino.
- L'Indice di Wiener W(G) di G è la somma delle distanze tra ciascuna coppia di vertici di G.

Applichiamo l'Indice di Wiener agli Alcani.

Gli Alcani sono molecole a base di Carbonio C e Idrogeno H. Esitono Alcani a catena lineare e Alcani a catena ramificata. Gli Alcani più semplici sono il Metano, l'Etano e il Propano.

Da una particolare classe di Alcani a catena lineare, si possono creare alcani a catena ramificata inserendo un Carbonio tra un Carbonio e un Idrogeno della catena originale.

Da una molecola di Propano si possono ottenere 2 tipi di alcani a 4 atomi di Carbonio.

Da una molecola di Propano si possono ottenere 2 tipi di alcani a 4 atomi di Carbonio.

Sempre dal Propano si possono ottenere 3 tipi di alcani a 5 atomi di Carbonio.

Si possono modellare gli Alcani in modo tale che ad ogni atomo di Carbonio corrisponda un *vertice* e ad ogni legame tra atomi di Carbonio uno *spigolo*.

In questo modo otteniamo il Grafo corrispondente ad ogni molecola di Alcani.

Osserviamo per ogni Alcano il suo *Indice di Wiener WI* e il suo relativo *Punto di ebollizione* in Kelvin BP(K).

Name	WI	BP (K)
ethane	1	184
propane	4	233
n-butane	10	272
2-methylpropane	9	261
n-pentane	20	309
2-methylbutane	18	301
2,2-dimethylpropane	16	283
n-hexane	35	342
2-methylpentane	32	333
3-methylpentane	31	336

29	331
28	323
56	371
52	363
50	365
46	352
44	359
46	363
48	354
48	366
42	354
	28 56 52 50 46 44 46 48 48

Una proprietà quantitativa di un modello matematico è strettamente legata ad una proprietà fisica della molecola stessa. Stretta correlazione tra WI e BP(K)

La relazione tra WI e BP(K) può essere approssimata da una curva crescente.

Adattando un'equazione di potenza $B=\alpha W^{\beta}$ all' *Indice di Wiener* W e al *Punto di ebollizione* B, si ottiene l'equazione approssimata $B=181W^{0,1775}$

L'Ottano è un alcano a catena lineare con 8 atomi di Carbonio. Il suo $W\!I$ è 84. Utilizzando l' equazione di potenza si ottiene B=397K.

Molto vicino al suo effettivo BP(K) = 399K.

- "La molecola si comporterà come previsto?"
- "La molecola avrà tossicità minima?"