Chapitre 8. Fonctions vectorielles

Plan du chapitre

1 Dérivation
1.1 Dérivabilité en un point
1.1.1 Vecteur dérivé. Développement limité d'ordre 1 en un point
1.1.2 Dérivée à droite, dérivée à gauche
1.1.3 Lien avec la dérivabilité des coordonnées
1.2 Fonctions dérivables sur un intervalle
1.3 Opérations sur les fonctions dérivablespage 4
1.3.1 Dérivée d'une combinaison linéaire
1.3.2 Dérivée de u ∘ f où u est linéaire
1.3.3 Dérivée de $B(f,g)$ où B est bilinéaire
1.3.4 Dérivée d'une composée
1.4 Applications de classe C^k page 6
2 Intégration
2.1 Intégration d'une fonction vectorielle sur un segment
2.2 Sommes de Riemann à pas constant
2.3 Propriétés de l'intégrale
2.3.1 Relation de Chaslespage 9
2.3.2 Linéaritépage 9
2.3.3 Inégalités
2.4 Primitives. Intégrale fonction de la borne supérieurepage 10
2.5 Formules de Taylor
3 Suites et séries de fonctions

Dans ce chapitre, on se propose de généraliser les notions de dérivation et d'intégration aux cas des fonctions définies sur un intervalle I de \mathbb{R} à valeurs dans un espace normé de dimension finie $(\mathsf{E}, \| \ \|)$. La plupart des résultats de ce chapitre seront utilisés principalement dans le chapitre « Equations différentielles linéaires ».

1 Dérivation

1.1 Dérivabilité en un point

1.1.1 Vecteur dérivé. Développement limité en un point

DÉFINITION 1. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace normé $(\mathbb{E}, \|\ \|)$ de dimension finie. Soit $\mathfrak a$ un point de I.

f est **dérivable** en a si et seulement si la fonction T: $t \mapsto \frac{1}{t-a}(f(t)-f(a))$ a une limite dans l'espace normé $(E, \| \ \|)$ quand t tend vers a.

Si f est dérivable en a, $\lim_{t\to a} \frac{1}{t-a} (f(t)-f(a))$ s'appelle le **vecteur dérivé** de l'application f en a et se note f'(a) ou $\frac{df}{dt}(a)$ ou Df(a).

 \Rightarrow Commentaire. Dans le cas où t « est » le temps, on pense f(t) comme un point de E en mouvement et on le note plutôt M(t) (interprétation cinématique). Le vecteur dérivé en a est alors le vecteur vitesse instantanée en a et se note plutôt $\frac{\overrightarrow{dM}}{dt}(a)$:

$$\frac{\overrightarrow{dM}}{dt}(\alpha) = \lim_{t \to \alpha} \frac{1}{t - \alpha} (M(t) - M(\alpha)).$$

DÉFINITION 2. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un espace normé $(E, \| \|)$ de dimension finie. Soit $\mathfrak a$ un point de I.

f admet un développement limité d'ordre 1 en α si et seulement si il existe un élément ℓ de E et une fonction ε définie sur un voisinage de 0 à valeurs dans E tels que, pour t au voisinage de 0,

$$f(\alpha + t) = f(\alpha) + t\ell + t\varepsilon(t)$$

et $\lim_{t\to 0} \varepsilon(t) = 0$.

L'expression $t\epsilon(t)$ peut encore se noter o(t). Par définition, $\lim_{t\to 0}\frac{1}{t}o(t)=0$. On dit alors que la fonction vectorielle o(t) est négligeable devant t en 0 ce qui signifie encore que $\|o(t)\|$ est négligeable devant t quand t tend vers 0.

o est l'initiale de « ordre de grandeur » et le fait que la lettre o soit minuscule est censé signifier que l'ordre de grandeur de la fonction de t notée $o(t) = f(a+t) - f(a) - t\ell$, est strictement plus petit que l'ordre de grandeur de t quand t tend vers 0.

On doit avoir conscience que t est un réel et que $\varepsilon(t)$ ou o(t) sont des vecteurs éléments de E.

En changeant les notations, un développement limité d'ordre 1 en α s'écrit aussi $f(t) = f(\alpha) + (t-\alpha)\ell + o(t-\alpha)$.

Dans ce cas, o(t-a) désigne une fonction de t négligeable devant t-a quand t tend vers a.

Dans l'égalité ci-dessus, f(t) ou f(a) sont pensés comme des points de E, alors que ℓ ou o(t-a) sont pensés comme des vecteurs éléments de E. On pourrait aussi écrire :

$$f(t) \underset{t \to a}{=} f(a) + (t - a) \overrightarrow{\ell} + \overrightarrow{o(t - a)}.$$

Le vecteur $(t-\alpha)$ $\overrightarrow{\ell}$ est une approximation à l'ordre 1 du vecteur $f(t)-f(\alpha)=\overrightarrow{f(\alpha)f(t)}$ quand t tend vers α .

Théorème 1. Un développement limité d'ordre 1 est unique en cas d'existence (plus précisément, ℓ est unique en cas d'existence).

f admet un développement limité d'ordre 1 en α si et seulement si f est dérivable en α .

Si f est dérivable en a, le développement limité d'ordre 1 de f en a est

$$f(t) \underset{t \to \alpha}{=} f(\alpha) + (t - \alpha)f'(\alpha) + o(t - \alpha).$$

DÉMONSTRATION. Si f admet un développement limité d'ordre 1 en \mathfrak{a} , il existe $\ell \in E$ et une fonction ε définie sur un voisinage de 0 à valeurs dans E telle que pour t au voisinage de 0, $f(a+t)=f(a)+t\ell+t\epsilon(t)$ et de plus $\lim_{t\to\infty}\epsilon(t)=0$.

 $\text{Mais alors, pour t au voisinage de 0 et distinct de 0, } \frac{f(\alpha+t)-f(\alpha)}{t} = \ell + \epsilon(t). \text{ Quand t tend vers 0, on obtient } \lim_{t \to 0} \frac{f(\alpha+t)-f(\alpha)}{t} = \ell.$ Ceci montre que f est dérivable en a et que $\ell = f'(a)$. En particulier, ℓ est uniquement défini.

Réciproquement, supposons f est dérivable en a. On pose $\ell = f'(a)$ et pour t au voisinage de 0, on pose

Réciproquement, supposons f est dérivable en a. On pose
$$\ell = f'(a)$$
 et pour t au voisinage de 0, on pose
$$\epsilon(t) = \left\{ \begin{array}{l} \frac{f(a+t) - f(a)}{t} - \ell \text{ si } t \neq 0 \\ 0 \text{ si } t = 0 \end{array} \right. \text{ Pour t au voisinage de 0, on a } f(a+t) = f(a) + t\ell + t\epsilon(t) \text{ et de plus } \lim_{t \to 0} \epsilon(t) = 0. \text{ Donc, } f(a) + t\ell + t\epsilon(t) \text{ et de plus limite d'ordre 1 en a.}$$

Par exemple, considérons la fonction f définie sur \mathbb{R} à valeurs dans $\mathcal{M}_{2,1}(\mathbb{R})$, définie par : $\forall t \in \mathbb{R}$, $f(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$. f admet un développement limité d'ordre 1 en 0 :

$$f(t) \underset{t \to 0}{=} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \overrightarrow{o(t)}.$$

Théorème 2. Si f est dérivable en a, alors f est continue en a.

Si f est dérivable en a, on peut écrire pour t au voisinage de 0, $f(t) = f(a) + tf'(a) + t\epsilon(t)$ où de plus, $\lim_{t\to 0} \varepsilon(t) = 0$. En particulier, $\lim_{t\to a} f(t) = f(a)$ et donc f est continue en a.

Dérivée à droite, dérivée à gauche

DÉFINITION 3. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un espace normé $(\mathsf{E}, \|\ \|)$ de dimension finie. Soit a un point de I.

 $f \ \mathrm{est} \ \mathbf{d\acute{e}rivable} \ \mathbf{\grave{a}} \ \mathbf{droite} \ (\mathrm{resp.} \ \mathbf{\grave{a}} \ \mathbf{gauche}) \ \mathrm{en} \ \alpha \ \mathrm{si} \ \mathrm{et} \ \mathrm{seulement} \ \mathrm{si} \ \mathrm{la} \ \mathrm{fonction} \ T \ : \ t \mapsto \frac{1}{t-\alpha} \left(f(t) - f(\alpha) \right) \ \mathrm{a} \ \mathrm{une} \ \mathrm{limite}$ dans l'espace normé (E, || ||) quand t tend vers a par valeurs supérieures (resp. inférieures)

Si f est dérivable à droite en $\mathfrak a$ (resp. à gauche), $\lim_{\substack{t \to \mathfrak a \\ t > \mathfrak a}} \frac{1}{t-\mathfrak a} \left(f(t) - f(\mathfrak a) \right)$ (resp. $\lim_{\substack{t \to \mathfrak a \\ t < \mathfrak a}} \frac{1}{t-\mathfrak a} \left(f(t) - f(\mathfrak a) \right)$) s'appelle le **vecteur dérivé à droite** (resp. à gauche) de l'application f en $\mathfrak a$ et se note $f'_{\mathfrak a}(\mathfrak a)$ (resp. $f'_{\mathfrak g}(\mathfrak a)$).

On a immédiatement

Théorème 3. f est dérivable en $\mathfrak a$ si et seulement si f est dérivable à droite et à gauche en $\mathfrak a$ et $f_{\mathfrak a}'(\mathfrak a)=f_{\mathfrak a}'(\mathfrak a)$.

Dans ce cas, $f'(a) = f'_d(a) = f'_g(a)$.

1.1.3 Lien avec la dérivabilité des coordonnées

Théorème 4. Soit f une fonction définie sur un intervalle I de ℝ à valeurs dans un espace normé (E, || ||) de dimension finie. Soit $\mathfrak a$ un point de I. Soit $\mathscr B=(e_1,\ldots,e_n)$ une base de E. Pour $\mathfrak t\in I$, on pose

$$f(t) = f_1(t)e_1 + ... + f_n(t)e_n$$

où les f_k , $1 \le k \le n$, sont des fonctions de I dans \mathbb{K} .

f est dérivable en $\mathfrak a$ si et seulement si chaque $f_k,\, 1\leqslant k\leqslant n,$ est dérivable en $\mathfrak a.$ De plus, en cas de dérivabilité,

$$f'(a) = f'_1(a)e_1 + \ldots + f'_n(a)e_n.$$

DÉMONSTRATION. On sait que la fonction $t\mapsto \frac{1}{t-a}(f(t)-f(a))$ a une limite en a dans E si et seulement si chacune des fonctions $t \mapsto \frac{f_k(t) - f_k(\alpha)}{t - \alpha}$ a une limite en α et de plus, en cas d'existence,

$$\lim_{t\to a} \frac{1}{t-a} (f(t)-f(a)) = \lim_{t\to a} \frac{f_1(t)-f_1(a)}{t-a} e_1 + \ldots + \lim_{t\to a} \frac{f_n(t)-f_n(a)}{t-a} e_n,$$

ce qui démontre le théorème.

Par exemple, l'application $A: \mathbb{R} \to \mathcal{M}_2(\mathbb{R})$ est dérivable en chaque point de \mathbb{R} car chacune des quatre $t \mapsto \begin{pmatrix} \cos t & \sqrt{t^2 + 1} \\ e^{2t} & 1 \end{pmatrix}$

fonctions $t\mapsto\cos t,\ t\mapsto\sqrt{t^2+1},\ t\mapsto e^{2t}$ et $t\mapsto 1$ l'est et de plus, en pout réel t_0 ,

$$A^{\prime}\left(t_{0}\right)=\left(\begin{array}{cc}-\sin t_{0} & t_{0}/\sqrt{t_{0}^{2}+1}\\ 2e^{2t_{0}} & 0\end{array}\right).$$

De manière générale, une application du type $A: t\mapsto (\alpha_{i,j}(t))_{1\leqslant i,j\leqslant n}$ est dérivable sur un intervalle I de $\mathbb R$ si et seulement si chaque application composante $t\mapsto \alpha_{i,j}(t)$ est dérivable sur I et de plus, pour tout t de I, $A'(t)=\left(\alpha'_{i,j}(t)\right)_{1\leqslant i,j\leqslant n}$.

1.2 Fonctions dérivables sur un intervalle

DÉFINITION 4. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un espace normé $(E, \| \|)$ de dimension finie. Soit $\mathfrak a$ un point de I.

f est **dérivable sur** I si et seulement si f est dérivable en chaque réel a de I. Dans ce cas, la **fonction dérivée** de f, notée f', est la fonction définie sur I par

$$\forall \alpha \in I, f'(\alpha) = \lim_{t \to \alpha} \frac{1}{t - \alpha} (f(t) - f(\alpha)).$$

L'ensemble des fonctions dérivables sur I à valeurs dans E se note $\mathcal{D}^1(I,E)$.

Par exemple, si pour tout réel t, $A(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$, alors $A \in \mathcal{D}^1(\mathbb{R}, \mathcal{M}_2(\mathbb{R}))$ et pour tout réel t, $A'(t) = \begin{pmatrix} -\sin t & -\cos t \\ \cos t & -\sin t \end{pmatrix}$.

1.3 Opérations sur les fonctions dérivables

1.3.1 Dérivée d'une combinaison linéaire

Théorème 5.

 \bullet Soient f et g deux fonctions définies sur un intervalle I de $\mathbb R$ à valeurs dans un espace normé $(\mathsf E, \|\ \|)$ de dimension finie.

Si f et g sont dérivables sur I, alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, $\lambda f + \mu g$ est dérivable sur I et de plus,

$$(\lambda f + \mu g)' = \lambda f' + \mu g'.$$

• $\mathcal{D}^1(I, E)$ est un sous-espace vectoriel de l'espace $(E^I, +, .)$.

DÉMONSTRATION.

 $\bullet \ \mathrm{Soient} \ (f,g) \in \left(\mathscr{D}^1(I,E) \right)^2 \ \mathrm{et} \ (\lambda,\mu) \in \mathbb{K}^2. \ \mathrm{Pour \ tout} \ \mathfrak{a} \ \mathrm{de} \ I \ \mathrm{et} \ \mathrm{tout} \ t \ \mathrm{de} \ I \setminus \{\mathfrak{a}\},$

$$\frac{1}{t-\alpha}((\lambda f \mu g)(t)-(\lambda f + \mu g)(\alpha)) = \lambda \frac{1}{t-\alpha}(f(t)-f(\alpha)) + \mu \frac{1}{t-\alpha}(g(t)-g(\alpha)).$$

Donc, $\frac{1}{t-a}((\lambda f \mu g)(t) - (\lambda f + \mu g)(a))$ tend vers $\lambda f'(a) + \mu g'(a)$ quand t tend vers a. Ceci montre que $\lambda f + \mu g$ est dérivable en tout a de i et donc est dérivable sur I et que $(\lambda f + \mu g)' = \lambda f' + \mu g'$.

• La fonction nulle est dans $\mathcal{D}^1(I,E)$ et $\mathcal{D}^1(I,E)$ est stable par combinaison linéaire d'après ce qui précède. Donc, $\mathcal{D}^1(I,E)$ est un sous-espace vectoriel de l'espace $(E^I,+,.)$.

1.3.2 Dérivée de u o f où u est linéaire

Théorème 6. Soient f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un espace normé $(E, \| \|_E)$ de dimension finie et \mathfrak{u} une application linéaire de E vers un \mathbb{K} -espace vectoriel normé $(F, \| \|_F)$ de dimension quelconque.

Si f est dérivable sur I, alors $\mathfrak{u} \circ \mathfrak{f}$ est dérivable sur I et $(\mathfrak{u} \circ \mathfrak{f})' = \mathfrak{u} \circ \mathfrak{f}'$.

DÉMONSTRATION. Soit a un I. Pour tout t de $I \setminus \{a\}$, puisque u est linéaire,

$$\frac{1}{t-\alpha}(u\circ f(t)-u\circ f(\alpha))=u\left(\frac{1}{t-\alpha}(f(t)-f(\alpha))\right).$$

Quand t tend vers a, $\frac{1}{t-a}(f(t)-f(a))$ tend vers le vecteur f'(a). D'autre part, puisque E est de dimension finie, on sait que l'application linéaire u est continue sur E et en particulier en a (théorème 82, page 40, du chapitre « Topologie des espaces vectoriels normés »). On en déduit que u $\left(\frac{1}{t-a}(f(t)-f(a))\right)$ tend vers u(f'(a)) quand t tend vers a ce qui démontre le résultat.

1.3.3 Dérivée de B(f, g) où B est bilinéaire

Théorème 7. Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} à valeurs dans des espaces normés de dimension finie $(E_1, \| \|_1)$ et $(E_2, \| \|_2)$ respectivement. Soit B une application de $E_1 \times E_2$ dans un espace vectoriel normé (F, N), bilinéaire sur $E_1 \times E_2$.

Si f et q sont dérivables sur I, alors B(f, q) est dérivable sur I et

$$(B(f,g))' = B(f',g) + B(f,g').$$

Démonstration. Soit $a \in I$. Pour tout t de $I \setminus \{a\}$,

$$\begin{split} \frac{1}{t-a}((B(f,g))(t)-(B(f,g))(\alpha)) &= \frac{1}{t-a}(B(f(t),g(t))-B(f(\alpha),g(\alpha))) \\ &= \frac{1}{t-a}[B(f(t),g(t))-B(f(\alpha),g(t))] + \frac{1}{t-a}[B(f(\alpha),g(t))-B(f(\alpha),g(\alpha))] \\ &= B\left(\frac{1}{t-a}(f(t)-f(\alpha),g(t))\right) + B\left(f(\alpha),\frac{1}{t-a}(g(t)-g(\alpha))\right) \ (*). \end{split}$$

g est dérivable sur I et en particulier continue en \mathfrak{a} . Donc, g(t) tend vers $g(\mathfrak{a})$ quand t tend vers \mathfrak{a} . D'autre part, E_1 et E_2 sont de dimension finie et on sait alors que B est continue sur $E_1 \times E_2$. Quand t tend vers \mathfrak{a} , l'expression (*) tend vers $B(f'(\mathfrak{a}), g(\mathfrak{a})) + B(f(\mathfrak{a}), g'(\mathfrak{a}))$ ce qui démontre le résultat.

On détaille trois situations particulières importantes contenues dans le théorème précédent.

On généralise immédiatement par récurrence le théorème 7

Théorème 8. Soient $p \in \mathbb{N}^*$ puis f_1, \ldots, f_p, p fonctions définies sur un intervalle I de \mathbb{R} à valeurs dans des espaces normés de dimension finie $(E_1, \|\ \|_1), \ldots, (E_p, \|\ \|_p)$ respectivement. Soit M une application de $E_1 \times \ldots \times E_p$ dans un espace vectoriel normé (F, N), p-linéaire sur $E_1 \times \ldots \times E_p$.

Si $f_1,\,\ldots,\,f_p$ sont dérivables sur I, alors $M\left(f_1,\ldots,f_p\right)$ est dérivable sur I et

$$(M(f_1,...,f_p))' = \sum_{k=1}^p M(f_1,...,f_{k-1},f'_k,f_{k+1},...,f_p).$$

On retrouve en particulier la dérivée d'un déterminant : si pour $x \in I$, $\Delta(x) = \det(\alpha_{i,j}(x))_{1 \le i,j \le n} = \det(C_1(x), \dots, C_n(x))$ (où C_1, \dots, C_n , sont les colonnes de la matrice), alors pour tout x de I,

$$\Delta'(x) = \sum_{k=1}^{n} M(C_1(x), \dots, C_{k-1}(x), C'_k(x), C_{k+1}(x), \dots, C_n(x)),$$

ou aussi, si pour $x \in I$, $\Delta(x) = \det_{\mathbb{B}} (u_1(x), \dots, u_n(x))$, alors

$$\Delta'(x) = \sum_{k=1}^n \det_\mathbb{B} \left(u_1(x), \ldots, u_{k-1}(x), u_k'(x), u_{k+1}(x), \ldots, u_n(x) \right).$$

1.3.4 Dérivée d'une composée

Théorème 9. Soient f une fonctions définie sur un intervalle I de \mathbb{R} à valeurs dans un intervalle J de \mathbb{R} et g une fonction définie sur J à valeurs dans un \mathbb{R} -espace vectoriel normé $(E, \| \ \|)$ de dimension finie.

Si f est dérivable sur I et g est dérivable sur J, alors $g \circ f$ est dérivable sur I et $(g \circ f)' = f' \cdot (g' \circ f)$ (le . est la loi externe de E).

DÉMONSTRATION. Il suffit de fixer une base \mathcal{B} de E et d'appliquer le théorème de dérivation des fonctions composées, déjà connu pour les fonctions à valeurs réelles, à chacune des fonctions coordonnées.

1.4 Applications de classe C^k

DÉFINITION 5. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé $(\mathsf{E}, \| \ \|)$ de dimension finie.

f est de classe C^1 sur I si et seulement si f est dérivable sur I et f' est continue sur I. On note $C^1(I, E)$ l'ensemble des fonctions de classe C^1 sur I à valeurs dans E.

On a immédiatement

Théorème 10. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé $(\mathbb{E}, \| \|)$ de dimension finie. Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de \mathbb{E} . Pour tout t de \mathbb{I} , on pose $f(t) = f_1(t)e_1 + \ldots + f_n(t)e_n$.

f est de classe C^1 sur I si et seulement si chaque $f_k,\, 1\leqslant k\leqslant n,$ est de classe C^1 sur I.

Ensuite,

Théorème 11. Soit (E, || ||) un K-espace vectoriel normé de dimension finie.

 $C^{1}(I, E)$ est un sous-espace vectoriel de l'espace vectoriel $(D^{1}(I, E), +, .)$.

DÉMONSTRATION. Puisqu'une fonction de classe C^1 sur I est en particulier dérivable sur I, $C^1(I, E) \subset D^1(I, E)$.

Ensuite, la fonction nulle est dans $C^1(I,E)$. Enfin, si $(f,g) \in \left(C^1(I,E)\right)^2$ et $(\lambda,\mu) \in \mathbb{K}^2$, alors $\lambda f + \mu g$ est dérivable sur I en tant que combinaison linéaire de fonctions dérivables sur I et sa dérivée, à savoir $(\lambda f + \mu g)' = \lambda f' + \mu g'$, est continue sur I en tant que combinaison linéaire de fonctions continues sur I.

On a montré que $C^1(I,E)$ est un sous-espace vectoriel de l'espace vectoriel $(D^1(I,E),+,.)$.

Ainsi, $C^1(I,E) \subset D^1(I,E) \subset C^0(I,E)$. Rappelons des exemples fournis en maths sup montrant que ces inclusions sont strictes dans le cas de fonctions de \mathbb{R} dans \mathbb{R} .

La fonction $f_{\alpha}: x \mapsto |x-\alpha|, \alpha \in \mathbb{R}$, fournit un exemple de fonction continue sur un intervalle I tel que $\alpha \in I$, à valeurs dans \mathbb{R} ou \mathbb{C} , qui n'est pas dérivable sur I. Si maintenant, E est un \mathbb{K} -espace vectoriel de dimension finie et (e_1, \ldots, e_n) est une base de E, la fonction $f: x \mapsto |x-\alpha|e_1$ fournit un exemple de fonction continue sur I et non dérivable sur I à valeurs dans E. Donc, $D^1(I,E) \subset C^0(I,E)$.

Considérons la fonction $g: x \mapsto \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$. Cette fonction est continue en 0 et donc sur $\mathbb R$ car pour tout

 $x \neq 0$, $|g(x)| \leqslant x^2$. Cette fonction est dérivable en 0 et g'(0) = 0 (car $g(x) \underset{x \to 0}{=} x \times x \sin\left(\frac{1}{x}\right) \underset{x \to 0}{=} o(x)$) et finalement dérivable sur $\mathbb R$:

$$\forall x \in \mathbb{R}, \ g'(x) = \left\{ \begin{array}{l} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \ \text{si} \ x \neq 0 \\ 0 \ \text{si} \ x = 0 \end{array} \right..$$

Enfin, g' n'est pas continue en 0 car n'a pas de limite en 0 et donc g n'est pas de classe C^1 sur \mathbb{R} . En procédant comme précédemment, on en déduit un exemple de fonction de I dans \mathbb{E} qui dérivable sur I sans être de classe C^1 sur I. Finalement,

$$C^1(I,E) \underset{\neq}{\subset} D^1(I,E) \underset{\neq}{\subset} C^0(I,E).$$

Soit alors une fonction f de classe C^1 sur I à valeurs dans E. La fonction f' est définie et continue sur I. Si la fonction f' est dérivable sur I, on dit que f est deux fois dérivable sur I et sa dérivée seconde est la dérivée de sa dérivée première : f'' = (f')'. Si de plus, la dérivée seconde est continue sur I, on dit que f est de classe C^2 sur I. Plus généralement, on définit par récurrence les dérivées successives de f en cas d'existence :

DÉFINITION 6. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé $(\mathsf{E}, \| \ \|)$ de dimension finie.

Pour tout $n \ge 2$, f est n fois dérivable sur I si et seulement si f est n-1 fois dérivable sur I et la dérivée n-1 ème de f est dérivable sur I.

En cas d'existence, la dérivée $\mathfrak n$ ème de $\mathfrak f$ est la dérivée de la dérivée $\mathfrak n-1$ -ème de $\mathfrak f$:

$$f^{(0)} = f \ \mathrm{et} \ \forall n \in \mathbb{N}^*, \ f^{(n)} = \left(f^{(n-1)}\right)'.$$

Notation. Pour $n \in \mathbb{N}^*$, l'ensemble des fonctions n fois dérivables sur I à valeurs dans E se note $D^n(I, E)$.

On obtient facilement:

Théorème 12. Soit I un intervalle de \mathbb{R} puis $(E, \| \|)$ un \mathbb{K} -espace vectoriel normé de dimension finie.

1) Soient f et g deux fonctions définies sur I à valeurs dans E et soit $n \in \mathbb{N}^*$. Si f et g sont n fois dérivables sur I, alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, $\lambda f + \mu g$ est n fois dérivable sur I et de plus

$$(\lambda f + \mu g)^{(n)} = \lambda f^{(n)} + \mu g^{(n)}.$$

2) $\forall n \in \mathbb{N}^*$, $D^n(I, E)$ est un sous-espace vectoriel de $(E^I, +, .)$.

Par définition, quand f est n fois dérivable sur I, $f^{(n-1)}$ est dérivable sur I et en particulier continue sur I. Par contre, $f^{(n)}$ n'est pas nécessairement continue sur I. D'où la définition :

DÉFINITION 7. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé $(\mathsf{E}, \| \ \|)$ de dimension finie.

f est de classe C^n sur I si et seulement si f est n fois dérivable sur I et $f^{(n)}$ est continue sur I.

Notation. Pour $n \in \mathbb{N}$, l'ensemble des fonctions de classe C^n sur I à valeurs dans E se note $C^n(I, E)$.

Il est clair que

Théorème 13. $\forall n \in \mathbb{N}, C^n(I,E)$ est un sous-espace vectoriel de $(D^{n+1}(I,E),+,.)$ et $\forall n \in \mathbb{N}^*, D^n(I,E)$ est un sous-espace vectoriel de $(C^n(I,E),+,.)$.

DÉFINITION 8. Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé $(\mathsf{E}, \| \ \|)$ de dimension finie.

f est de classe C^{∞} sur I si et seulement si pour tout $n \in \mathbb{N}^*$, f est n fois dérivable sur I.

Notation. L'ensemble des fonctions de classe C^{∞} sur I à valeurs dans E se note $C^{\infty}(I,E)$.

On a immédiatement

Théorème 14.

$$C^{\infty}(I,\mathsf{E}) = \bigcap_{\mathfrak{n} \in \mathbb{N}^*} D^{\mathfrak{n}}(I,\mathsf{E}) = \bigcap_{\mathfrak{n} \in \mathbb{N}} C^{\mathfrak{n}}(I,\mathsf{E}).$$

 $\forall n \in \mathbb{N}^*, C^{\infty}(I, E)$ est un sous-espace vectoriel de $(D^n(I, E), +, .)$ et $\forall n \in \mathbb{N}, C^{\infty}(I, E)$ est un sous-espace vectoriel de $(C^n(I, E), +, .)$.

Reprenons les fonctions f_{α} et g de la page précédente. Ces fonctions sont continues sur un certain intervalle I. Elles admettent des primitives sur I. Ces primitives fournissent des exemples de fonctions de classe C^1 qui ne sont pas deux fois dérivables ou de fonctions deux fois dérivables qui ne sont pas de classe C^2 . Plus généralement, en considérant des primitives itérées de ces fonctions, on obtient

$$\forall n\geqslant 1,\ C^{\infty}(I,E)\underset{\neq}{\subset}C^{n}(I,E)\underset{\neq}{\subset}D^{n}(I,E)\underset{\neq}{\subset}C^{n-1}(I,E),$$

$$C^{\infty}(I,E) \underset{\neq}{\subset} \ldots \underset{\neq}{\subset} D^3(I,E) \underset{\neq}{\subset} C^2(I,E) \underset{\neq}{\subset} D^2(I,E) \underset{\neq}{\subset} C^1(I,E) \underset{\neq}{\subset} D^1(I,E) \underset{\neq}{\subset} C^0(I,E).$$

2 Intégration

2.1 Intégration d'une fonction vectorielle sur un segment

On définit l'intégrale d'une fonction continue sur un segment [a,b] de \mathbb{R} à valeurs dans un espace vectoriel normé de dimension finie E à partir des intégrales sur [a,b] fonctions coordonnées dans une base fixée. Mais, on doit d'abord prendre quelques précautions :

Théorème 15. Soient [a,b] un segment de \mathbb{R} et $(E,\|\ \|)$ un \mathbb{K} -espace vectoriel normé de dimension finie. Soient $\mathscr{B} = (e_1, \ldots, e_n)$ et $\mathscr{B}' = (e'_1, \ldots, e'_n)$ deux bases de E.

Soit f une fonction continue sur [a,b] à valeurs dans E. Pour $t \in [a,b]$, on pose $f(t) = \sum_{i=1}^n x_i(t)e_i = \sum_{i=1}^n y_i(t)e_i'$ où les x_i et les y_i , $1 \le i \le n$, sont des fonctions de [a,b] dans \mathbb{K} . Alors,

$$\sum_{i=1}^n \left(\int_{\alpha}^b x_i(t) \ dt \right) e_i = \sum_{i=1}^n \left(\int_{\alpha}^b y_i(t) \ dt \right) e_i'.$$

DÉMONSTRATION. Soit $P = (p_{i,j})_{1 \le i,j \le n}$ la matrice de passage de \mathscr{B} à \mathscr{B}' . On a donc $\forall j \in [\![1,n]\!]$, $e'_j = \sum_{i=1}^n p_{i,j} e_i$ et d'autre part, on sait que $\forall i \in [\![1,n]\!]$, $x_i = \sum_{j=1}^n p_{i,j} y_j$. Par suite,

$$\begin{split} \sum_{i=1}^{n} \left(\int_{\alpha}^{b} x_{i}(t) \ dt \right) e_{i} &= \sum_{i=1}^{n} \left(\int_{\alpha}^{b} \left(\sum_{j=1}^{n} p_{i,j} y_{j}(t) \right) dt \right) e_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} p_{i,j} \int_{\alpha}^{b} y_{j}(t) \ dt \right) e_{i} \\ &= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(p_{i,j} \int_{\alpha}^{b} y_{j}(t) \ dt \right) e_{i} \right) = \sum_{j=1}^{n} \int_{\alpha}^{b} y_{j}(t) \ dt \left(\sum_{i=1}^{n} p_{i,j} e_{i} \right) \\ &= \sum_{j=1}^{n} \left(\int_{\alpha}^{b} y_{j}(t) \ dt \right) e'_{j} \end{split}$$

ce qui démontre le théorème.

On peut donc poser

DÉFINITION 9. Soit f une fonction définie sur un segment [a,b] de \mathbb{R} à valeurs dans un espace vectoriel normé $(E,\|\|)$ de dimension finie, continue sur I. Soit $\mathscr{B}=(e_1,\ldots,e_n)$ une base de E. Pour $t\in[a,b]$, on pose $f(t)=\sum_{i=1}^n f_i(t)e_i$ où les $f_i,1\leqslant i\leqslant n$, sont des fonctions définies (et continues) sur [a,b] à valeurs dans \mathbb{K} .

L'intégrale de f sur le segment [a,b] est l'élément de E, noté $\int_a^b f(t) \ dt$, défini par

$$\int_a^b f(t) dt = \sum_{i=1}^n \left(\int_a^b f_i(t) dt \right) e_i.$$

(Ce vecteur ne dépend pas du choix d'une base de E).

 $\text{Par exemple, si f est la fonction définie sur } \mathbb{R} \text{ définie par : } \forall t \in \mathbb{R}, \ f(t) = \left(\begin{array}{c} \cos t \\ \sin t \end{array} \right) \ (\text{f est valeurs dans } \mathcal{M}_{2,1}(\mathbb{R})), \ \text{alors}$

$$\int_0^{\pi/2} f(t) dt = \begin{pmatrix} \int_0^{\pi/2} \cos t dt \\ \int_0^{\pi/2} \sin t dt \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

2.2 Sommes de RIEMANN à pas constant

On se donne une application f définie et continue sur un segment [a,b] de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie $(E,\|\ \|)$. Pour $n\in\mathbb{N}^*$ puis $k\in[0,n]$, on pose $t_k=a+k\frac{b-a}{n}$. (t_0,\ldots,t_n) est une subdivision du segment [a,b] à pas contant : $a=t_0< t_1\ldots < t_n=b$ et pour tout $k\in[0,n-1]$, $t_{k+1}-t_k=\frac{b-a}{n}$. On définit alors la somme de RIEMANN à pas constant :

$$S_n(f) = \sum_{k=0}^{n-1} (t_{k+1} - t_k) f(t_k) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right).$$

En appliquant le résultat déjà connu pour les fonctions à valeurs dans $\mathbb R$ ou $\mathbb C$ aux fonctions coordonnées de f dans une base donnée, on obtient immédiatement

$$\textbf{Th\'eor\`eme 16.} \text{ La suite } (S_{\mathfrak{n}}(f))_{\mathfrak{n} \in \mathbb{N}^*} \text{ converge dans } (E, \|\ \|) \text{ et } \lim_{\mathfrak{n} \to +\infty} S_{\mathfrak{n}}(f) = \int_{\mathfrak{a}}^{b} f(t) \ dt.$$

2.3 Propriétés de l'intégrale

2.3.1 Relation de Chasles

Si f est définie et continue sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie $(E, \| \ \|)$, pour $(a,b) \in I^2$ tel que $a \leqslant b$, on pose par convention $\int_b^a f(t) \ dt = -\int_a^b f(t) \ dt$. En appliquant aux fonctions coordonnées de f dans une base donnée, le résultat déjà connu pour les fonctions à valeurs dans \mathbb{R} ou \mathbb{C} , on obtient

Théorème 17. (relation de Chasles)

Soit f une application définie et continue sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie $(\mathsf{E}, \|\ \|)$.

$$\mathrm{Pour} \ \mathrm{tout} \ (\alpha,b,c) \in \mathrm{I}^3, \int_{\alpha}^b f(t) \ dt = \int_{\alpha}^c f(t) \ dt + \int_{c}^b f(t) \ dt.$$

2.3.2 Linéarité

Toujours à partir du résultat connu pour les fonctions à valeurs dans \mathbb{R} ou \mathbb{C} , on obtient immédiatement

Théorème 18. (linéarité de l'intégrale)

Soient f et g deux applications définies et continues sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie $(\mathsf{E}, \|\ \|)$.

$$\mathrm{Pour} \ \mathrm{tout} \ (\alpha,b) \in I^2 \ \mathrm{et} \ \mathrm{tout} \ (\lambda,\mu) \in \mathbb{K}^2, \\ \int_{\alpha}^{b} (\lambda f(t) + \mu g(t)) \ dt = \lambda \int_{\alpha}^{b} f(t) \ dt + \mu \int_{\alpha}^{b} g(t) \ dt.$$

2.3.3 Inégalités

Théorème 19. Soit f une application définie et continue sur un segment [a,b] de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie $(E,\|\ \|)$.

Alors,
$$\left\| \int_{\alpha}^{b} f(t) dt \right\| \le \int_{\alpha}^{b} \|f(t)\| dt$$
.

Démonstration. Pour $n \in \mathbb{N}^*$, on pose $S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(t_k)$ où pour tout $k \in [0,n]$, $t_k = a + k \frac{b-a}{n}$. D'après l'inégalité triangulaire,

$$\forall n \in \mathbb{N}^*, \ \|S_n(f)\| \leqslant \frac{b-a}{n} \sum_{k=0}^{n-1} \|f(t_k)\| \quad (*).$$

D'après le théorème 16, page 9, $\lim_{n\to\infty} S_n(f) = \int_0^b f(t) dt \in E$. De plus, on sait que l'application $(E, \| \ \|) \to (\mathbb{R}, \| \ \|)$ est continue

sur l'espace vectoriel normé (E, || ||) (voir chapitre « Topologie des espaces vectoriels normés »). Donc,

$$\lim_{n \to +\infty} \|S_n(f)\| = \left\| \int_{\alpha}^b f(t) \ dt \right\|.$$

D'autre part, l'application « $\| \| \circ f \|$ est continue sur le segment [a, b] à valeurs dans \mathbb{R} et donc

$$\lim_{n \rightarrow +\infty} \frac{b-\alpha}{n} \sum_{k=0}^{n-1} \left\| f\left(t_{k}\right) \right\| = \int_{\alpha}^{b} \left\| f(t) \right\| \, dt.$$

Quand n tend vers $+\infty$ dans (*), on obtient $\left\| \int_a^b f(t) \ dt \right\| \leqslant \int_a^b \|f(t)\| \ dt.$

Théorème 20. (inégalité de la moyenne).

Soit f une application définie et continue sur un segment [a, b] de R à valeurs dans un K-espace vectoriel normé de dimension finie (E, || ||).

$$\mathrm{Alors}, \ \left\| \int_{\mathfrak{a}}^{b} f(t) \ dt \right\| \leqslant (b-\mathfrak{a}) \|f\|_{\infty}^{[\mathfrak{a},b]} \ \mathrm{où \ on \ a \ pos\'e} \ \|f\|_{\infty}^{[\mathfrak{a},b]} = \mathrm{Sup} \, \|\|f(x)\|, \ x \in [\mathfrak{a},b] \}.$$

DÉMONSTRATION. Puisque la fonction f est continue sur le segment [a,b], le nombre $||f||_{\infty,[a,b]}$ existe dans \mathbb{R} . Ensuite,

$$\left\| \int_{\alpha}^{b} f(t) \ dt \right\| \leqslant \int_{\alpha}^{b} \|f(t)\| \ dt \leqslant \int_{\alpha}^{b} \|f\|_{\infty}^{[\alpha,b]} \ dt = (b-\alpha)\|f\|_{\infty}^{[\alpha,b]}.$$

Primitives. Intégrale fonction de la borne supérieure

Les résultats déjà connu pour les fonctions à valeurs dans $\mathbb R$ ou $\mathbb C$ se généralisent immédiatement aux fonctions à valeurs dans un espace vectoriel normé de dimension finie en appliquant le cours de maths sup aux « fonctions coordonnées » dans une base donnée. On se contente de donner les définitions et les théorèmes usuels sans démonstration

DÉFINITION 10. Soit f une application définie sur un intervalle I de $\mathbb R$ à valeurs dans un $\mathbb K$ -espace vectoriel normé de dimension finie (E, || ||).

Une **primitive** de la fonction f sur l'intervalle I est une fonction F, définie et dérivable sur I à valeurs dans E telle que

Théorème 21. Soit f une application définie et continue sur un intervalle I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie (E, || ||).

- 1) Soit $x_0 \in I$. La fonction $F: x \mapsto \int_{x_0}^x f(t) dt$ est une primitive de la fonction f sur I (c'est-à-dire F est dérivable sur I et F' = f). En particulier, la fonction f admet au moins une primitive sur I.
- 2) f admet une infinité de primitives sur I. Si F est une primitive de f sur I, les primitives de f sur I sont les fonctions $x \mapsto F(x) + C$ où C est un élément donné de E. Deux primitives données de f sur I diffèrent d'une constante.
- 3) Pour tout $(x_0, y_0) \in I \times E$, il existe une primitive de f sur I et une seule prenant la valeur y_0 en x_0 à savoir la fonction

$$x \mapsto y_0 + \int_{x_0}^x f(t) dt$$
.

En particulier, la fonction $F: x \mapsto \int_{x_0}^x f(t) dt$ est **la** primitive de f sur I s'annulant en x_0 .

Une conséquence du théorème 21 est que l'intégrale sur un segment d'une fonction continue sur ce segment peut se calculer à l'aide d'une primitive :

Théorème 22.

- 1) Soit f une application de classe C^1 sur un segment [a,b] de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie $(E,\|\ \|)$. Alors, $\int_a^b f'(t)\ dt = f(b) f(a)$.
- 2) Soit f une application définie et continue sur un segment [a,b] de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé de dimension finie $(E,\|\ \|)$.

$$\mathrm{Alors}, \int_{\mathfrak{a}}^{\mathfrak{b}} f(t) \ dt = \left[F(t) \right]_{\mathfrak{a}}^{\mathfrak{b}} = F(\mathfrak{b}) - F(\mathfrak{a}) \ \text{où } F \ \mathrm{est} \ \mathrm{une} \ \mathrm{primitive} \ \mathrm{quelconque} \ \mathrm{de} \ \mathrm{la} \ \mathrm{fonction} \ f \ \mathrm{sur} \ \mathrm{I}.$$

On en déduit encore l'inégalité des accroissements finis pour les fonctions de classe C^1 sur un intervalle I de $\mathbb R$ à valeurs dans un $\mathbb K$ -espace vectoriel normé de dimension finie $(E, \|\ \|)$:

Théorème 23. (inégalité des accroissements finis)

Soit f une fonction de classe C^1 sur un intervalle I de $\mathbb R$ à valeurs dans un $\mathbb K$ -espace vectoriel normé de dimension finie $(E, \|\ \|)$. S'il existe un réel positif k tel que pour tout t de I, $\|f'(t)\| \leq k$, alors

$$\forall (a,b) \in I^2, \|f(b) - f(a)\| \leqslant k|b - a|.$$

Démonstration. Si $a \leq b$,

$$\|f(b) - f(a)\| = \left\| \int_a^b f'(t) \ dt \right\| \leqslant \int_a^b \|f'(t)\| \ dt \leqslant \int_a^b k \ dt = k(b - a)$$

et si $\alpha>b,$ on échange les rôles de α et b en tenant compte de $\int_{\alpha}^{b}=-\int_{b}^{\alpha}.$

2.5 Formules de Taylor

On commence par la formule de TAYLOR-LAPLACE dite formule de TAYLOR avec reste intégral. Encore une fois, la généralisation de la formule de maths sup est immédiate en l'appliquant aux « fonctions coordonnées » :

Théorème 24. (formule de TAYLOR-LAPLACE)

Soient [a, b] un segment de \mathbb{R} et $(E, \| \|)$ un \mathbb{K} -espace vectoriel normé de dimension finie.

Soient $n \in \mathbb{N}$ puis $f \in C^{n+1}([a,b], E)$. Alors

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^n}{n!} f^{(n+1)}t dt.$$

On en déduit l'inégalité de Taylor-Lagrange à l'ordre $\mathfrak n$ pour les fonctions de classe $\mathbb C^{\mathfrak n+1}$:

Théorème 25. (inégalité de TAYLOR-LAGRANGE)

Soient [a, b] un segment de \mathbb{R} et $(E, \| \|)$ un \mathbb{K} -espace vectoriel normé de dimension finie.

Soient $n \in \mathbb{N}$ puis $f \in C^{n+1}([a,b], E)$. Alors

$$\left\| f(b) - \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) \right\| \leqslant \frac{(b-a)^{n+1} M_{n+1}}{(n+1)!},$$

$$\text{où } M_{n+1} = \big\| f^{(n+1)} \big\|_{\infty}^{[\mathfrak{a}, \mathfrak{b}]} = \sup \big\{ \big\| f^{(n+1)}(\mathfrak{t}) \big\| \, , \, \, \mathfrak{t} \in [\mathfrak{a}, \mathfrak{b}] \big\}.$$

On en déduit encore la formule de Taylor-Young à l'ordre $\mathfrak n$ en $\mathfrak x_0$ pour les fonctions de classe $\mathbb C^{n+1}$ et on admet sa généralisation aux fonctions seulement $\mathfrak n$ fois dérivable en $\mathfrak x_0$:

Théorème 26. (formule de TAYLOR-YOUNG)

Soit f une fonction définie sur un intervalle I de $\mathbb R$ et à valeurs dans un $\mathbb K$ -espace vectoriel normé de dimension finie $(E, \|\ \|)$. Soit $x_0 \in I$.

Si f est n fois dérivable en x_0 , alors

$$f(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) + o((x-x_0)^n),$$

où $x \mapsto o\left((x-x_0)^n\right)$ est une fonction de I dans E vérifiant $\lim_{x \to x_0} \frac{1}{(x-x_0)^n} o\left((x-x_0)^n\right) = 0$ ou encore $o\left((x-x_0)^n\right) = (x-x_0)^n \varepsilon(x)$ avec $\lim_{x \to x_0} \varepsilon(x) = 0$.

3 Suites et séries de fonctions

Le cours sur les suites et séries de fonctions à valeurs dans \mathbb{R} ou \mathbb{C} (chapitre 6, « Suites et séries de fonctions ») se généralise aux suites et séries de fonctions à valeurs un \mathbb{K} -espace vectoriel normé de dimension finie. On ne détaille que très peu cette généralisation.

DÉFINITION 11. (convergence simple d'une suite de fonctions)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions, toutes définies sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{K} -espace vectoriel normé de dimension finie $(E, \| \|)$.

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I si et seulement si, pour tout t de I, la suite de vecteurs $(f_n(t))_{n\in\mathbb{N}}$ converge dans E. Dans ce cas, on peut définir une fonction f sur I par :

$$\forall t \in I, \ f(t) = \lim_{n \to +\infty} f_n(t)$$

et on dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction f sur I.

Avec des ε , cela donne : la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur I si et seulement si

$$\forall \epsilon>0, \; \forall t\in I, \; \exists n_0\in \mathbb{N}/ \; \forall n\in \mathbb{N} \; \left(n\geqslant n_0\Rightarrow \|f_n(t)-f(t)\|\leqslant \epsilon\right).$$

Définition 12. (convergence uniforme d'une suite de fonctions)

Soient I un intervalle de \mathbb{R} et $(\mathsf{E}, \|\ \|)$ un \mathbb{K} -espace vectoriel normé de dimension finie.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions, toutes définies sur I à valeurs dans E et soit f une fonction définie sur I à valeurs dans E

La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I si et seulement si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} / \forall t \in I, \forall n \in \mathbb{N} \ (n \geqslant n_0 \Rightarrow ||f(t) - f_n(t)|| \leqslant \varepsilon).$$

Il revient au même de dire que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I si et seulement si la suite $(\|f-f_n\|_{\infty})_{n\in\mathbb{N}}$ est définie à partir d'un certain rang et tend vers 0 quand n tend vers $+\infty$ (où $\forall n \in \mathbb{N}, \ \|f-f_n\|_{\infty} = \sup\{\|f(t)-f_n(t)\|, \ t \in I\}$).

Théorème 27. La convergence uniforme entraîne la convergence simple.

DÉFINITION 13. (convergence simple, convergence uniforme, convergence absolue, convergence normale d'une série de fonctions)

Soient I un intervalle de \mathbb{R} et $(\mathsf{E}, \| \|)$ un \mathbb{K} -espace vectoriel normé de dimension finie.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions, toutes définies sur I à valeurs dans E et soit f une fonction définie sur I à valeurs dans E.

- 1) La série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge simplement vers f sur I si et seulement si pour tout $t \in I$, la série de vecteurs de terme général $f_n(t)$, $n \in \mathbb{N}$, converge vers f(t). Dans ce cas, on pose $f_n = \sum_{n=0}^{+\infty} f_n$.
- 2) La série de fonctions de terme général f_n , $n \in \mathbb{N}$, **converge absolument** vers f sur I si et seulement si si pour tout $t \in I$, la série numérique de terme général $||f_n(t)||$, $n \in \mathbb{N}$, converge.
- 3) La série de fonctions de terme général f_n , $n \in \mathbb{N}$, **converge unformément** vers f sur I si et seulement si la suite de fonctions $(S_n)_{n \in \mathbb{N}} = \left(\sum_{k=0}^n f_k\right)_{n \in \mathbb{N}}$ converge uniformément vers f sur I.
- 4) La série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement vers f sur I si et seulement si la la série numérique de terme général $\|f_n\|_{\infty}$, $n \in \mathbb{N}$, converge (où pour tout $n \in \mathbb{N}$, $\|f_n\|_{\infty} = \sup\{\|f_n(t)\|, t \in I\}$).
- ⇒ Commentaire. La convergence absolue mérite d'être détaillée. Quand on généralise cette notion aux fonctions à valeurs dans un espace normé $(E, \| \|)$, la valeur absolue $\| \|$ est remplacée par la norme $\| \| \|$ dans E et on parle toujours de convergence absolue et pas de convergence normale. Il faut bien faire la distinction entre $\| f(t) \|$ qui est la norme d'un vecteur f(t) de E (ce qui généralise la valeur absolue dans $\mathbb R$ ou $\mathbb C$) et $\| f \|_\infty$ qui est la norme d'une fonction (bornée sur I), norme qui permet d'étudier la convergence normale.

Considérons par exemple une fonction matricielle $I \to \mathscr{M}_n(\mathbb{K})$. Soit $\| \|$ une norme sous-multiplicative sur $\mathscr{M}_n(\mathbb{K})$. $t \mapsto A(t)$

La convergence absolue de la série de fonctions de terme général $t\mapsto \frac{1}{p!}(A(t))^p,\ p\in\mathbb{N}$, est la convergence de la série numérique de terme général $\left\|\frac{1}{p!}(A(t))^p\right\|,\ p\in\mathbb{N}$, pour chaque t de I. Cette convergence absolue est assurée par le fait que pour tout t de I et tout p de $\mathbb{N},\ \left\|\frac{1}{p!}(A(t))^p\right\|\leqslant \frac{1}{p!}\|A(t)\|^p$ (puisque $\|$ $\|$ est sous-multiplicative) qui est le terme général d'une série numérique convergente (de somme $e^{\|A(t)\|}$). Ceci nous permmettra dans quelques chapitres de définir la fonction $t\mapsto e^{A(t)}$.

La convergence normale sur I de la série de fonctions de terme général $t \mapsto \frac{1}{p!}(A(t))^p$, $p \in \mathbb{N}$, est la convergence de la série numérique de terme général $\frac{1}{p!} \|A^p\|_{\infty}$, $p \in \mathbb{N}$, où $\|A^p\|_{\infty} = \sup\{\|(A(t))^p\|, t \in I\}$. Ceci nous permettra par exemple de parler de la continuité de la fonction $t \mapsto e^{A(t)}$ le moment venu.

Théorème 28. La convergence normale entraı̂ne la convergence uniforme et la convergence absolue. La convergence uniforme ou la convergence absolue entraı̂ne la convergence simple. On résume ces implications avec le graphique :

Toute implication non écrite est fausse.

Sinon, on démontre rapidement que les théorèmes usuels sur la continuité, la dérivabilité ou l'intégrabilité (et l'intégration) de la fonction limite se généralise à l'identique de ce qui est déjà connu pour les suites ou séries de fonctions à valeurs dans \mathbb{K} .