SQL For Data Science – Week One: Basics and Retrieving Data with SQL

Objectives

- Distinguish between use of SQL for data science applications and SQL for more common data management operations.
- Use an Entity Relationship diagram, describing the data elements, their relationships, and inter-dependencies and determine if the existent data is sufficient to address a business question.
- Retrieve one or more columns of data from a table that relates to the research topic.
- Identify a subset of data needed from a column or set of columns and write an SQL query to limit to those results.
- Create an analysis environment and use INSERT to put data into a table.
- Add effective comments in your queries so that one, you can remember what you're doing, and two, so others can review your work.

What is SQL anyway?

- SQL Structured Query Language for relational database management and data manipulation
- Standard language for data manipulation
 - $\circ\quad$ Used to query, insert, update, and modify data
- Non-procedural language
 - Cannon write complete applications
- Three purposes
 - o Read/Retrieve Data
 - Write Data
 - Update Data

Data Models: Thinking about your data

- What is the problem you are trying to solve?
- Understand your data
 - Know the business process
 - Know the business rules
 - Understand the structure of your data
- Database
 - A container to store organized data/ a set of related information
- Tables
 - A structure list of data or a specific type
- Column
 - A single field in a table
- Row
 - A single record

Evolution of Data Models

- Organizes and structures information into multiple, related columns
- Can represent a business process or show relationships between business processes

Types of Data Models

- Prediction models
- Data relational models

NoSQL

- Not Only SQL
- A mechanism for storage and retrieval of unstructured data modeled by means other than tabular relations in relational databases

Relational vs Transactional Models

- Relational
 - Allows for easy querying and data manipulation in an easy, logical and intuitive way
- Operational Database
 - o E.g. Insurance claims within a healthcare database
 - May need to be changed for relational model for analysis

Building Blocks

- Entity
 - An event/thing/person
- Attribute
 - A characteristic of an entity
- Relationship
 - Describes association among entities
- ER diagrams
 - https://www.smartdraw.com/entity-relationship-diagram/
- Primary Key
 - o Column(s) that uniquely identify every row in table
- Foreign Key
 - Column(s) that can be used together to identify a single row in another table
- Basic Notation
 - o 1:M
 - One to many
 - Painter can paint many walls
 - M:N
 - Many to Many
 - Employees can learn many skills
 - 0 1:1

- One to one
- A manager manages one store
- Three types of notation
 - Chen notation
 - Use 1 and M
 - Crow's foot
 - Uses crows feet for many and crow's feet for one
 - UML Class Diagram Notation
 - Use * for Many

Select Statement

- SELECT prod name FROM Products;
- SELECT * FROM Products
 - Selects all columns
- SELECT * FROM Products LIMIT 10;
 - How to limit results
 - Syntax changes across databases

Creating Tables

- When to create new tables
 - Create dashboards
 - Visualize in other tools
 - Use tables to make models
 - Extract data from other sources
- CREATE TABLE SHOES (ID char (10) PRIMARY KEY, BRAND char(10) NOT NULL);
- Primary keys cannot be null
- Null values are not empty strings
- Null values are the absence of everything

Insert into Tables

INSERT INTO SHOES (Id, Brand)
VALUES ('123343', 'Gucci');

Temporary Tables

- Will be deleted when current session is terminated
- Helpful for complex gueries using subsets and joins
- Faster than creating a real table
- Statement
 - CREATE TEMPORARY TABLE Sandals AS (SELECT * from shoes where shoe type = 'sandles');
- Research how to update and delete tables

Adding Comments in SQL

- Single line
 - o
- Whole section
 - o /* blah blah */

Star Schema vs Snowflake Schema

- Star Schema
 - Dimension tables are not normalized
 - Used in data marts
 - Subsets of data warehouses
- Snowflake
 - Dimensions are normalized
 - Used in data warehouses
 - Process of normalizing dimension tables is called snowflaking
 - Use less space
 - o Fewer redundant
 - Can require more complex queries
 - Normalization requires deeper digs to get information
- How can we speed up reporting
 - Aggregations
 - Build a central storage area for all company's aggregated data, not just sales data

SQL vs NoSQL

- SQL
 - Fixed Schemas
 - Scaling is vertical
 - Bigger servers
 - Data Structure isn't changing
- NoSQL
 - Schemas are dynamic
 - Horizontal
 - Across servers
 - o High throughput to handle viral data
 - NOT ACID complient