

IMD0033 - Probabilidade Aula 12 - Amostragem de Dados

Ivanovitch Silva Abril, 2019

Agenda

- Solving problems with statistics
- Population and sampling
- Sampling error
- Simple random sampling (SRS)
- Stratified sampling
- Clustering sampling

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1

Ou

git pull

PREVIOUSLY ON...

- Perform basic data analysis
- Data visualization
- Fundamental statistical metrics like the mean or the median, and we plotted histograms, bar graphs or line plots.

Go much deeper into the theory

Id	Name	Salary	 Gender		
1	Mary Ann	\$35 000	 Female		
2	Marc Downey	\$55 000	 Male		
 51	 Juliet Ali	\$45 000	 Female		
 317	 Jane Ace	\$95 000	 Female		

Understand how the data is structured and measured

170 147 Male Female

Data source

Visualize the patterns

Gender	Frequency
Male	147
Female	170

Organize the data in comprehensible forms to find patterns

Solving problems with Statistics

Id	Name	Salary (\$ / year)	Unexpect days of	1 210 21 1/0	rk Extra hours worked		
1 2	Macy Davidson Jake Pugh	56000 29000	6 0	Seldom Often	26 0		
3 4	Draven Whitaker Izabella Pratt	43000 35000	Id	Name	Department	Salary (\$ / year)	 Age
5 6 7	Gerardo Baker Milo Norton Fiona Benson	25000 50000 60000	1 2 3	Alec Sullivan Agustin Wang Jocelyn Pruitt	IT PR Marketing	42000 35000 41000	 26 31 32
		W. C.	 72	 Lainey Smith	 IT	 27000	 21
			231	 Lexi Wilcox	IT	 85000	 57

Id	Name	Department	Salary (\$ / year)	 Age
1	Alec Sullivan	IT	42000	 26
2	Agustin Wang	PR	35000	 31
3	Jocelyn Pruitt	Marketing	41000	 32
72	Lainey Smith	IT	27000	 21
	••••	****		
231	Lexi Wilcox	IT	85000	 57

Solving problems with statistics

- 1. You run an international company with over 50000 employees.
- 2. Now you want to determine whether the employees have been impacted negatively in any significant way.

Population and Sampling

Population (>50000 1)

Whether a set of data is a sample or a population depends on the question we're trying to answer.

Population and Sampling

If we tried to find out whether people at international companies are satisfied at work

satisfied at work?

Are people working at international companies satisified at work?

Population and Sampling

You'll often see this terminology used interchangeably: sample unit, sample point, sample individual, or sample observation.

Sampling error

For instance, let's say we know that the average salary in our company is **U\$ 34500**, and the **proportion of women is 60%**.

Sample 1

Average salary = \$31000

Proportion of women = 70%

Sample 2

Average salary = \$35000

Proportion of women = 61%

Population

Sampling

sampling error = parameters - statistics

Dataset

	Name	Team	Pos	Height	Weight	вмі	Birth_Place	Birthdate	Age	College	Experience	Games Played	MIN	FGM	FGA
0	Aerial Powers	DAL	F	183	71.0	21.200991	US	January 17, 1994	23	Michigan State	2	8	173	30	85
1	Alana Beard	LA	G/F	185	73.0	21.329438	US	May 14, 1982	35	Duke	12	30	947	90	177
2	Alex Bentley	CON	G	170	69.0	23.875433	US	October 27, 1990	26	Penn State	4	26	617	82	218
3	Alex Montgomery	SAN	G/F	185	84.0	24.543462	US	December 11, 1988	28	Georgia Tech	6	31	721	75	195
4	Alexis Jones	MIN	G	175	78.0	25.469388	US	August 5, 1994	23	Baylor	R	24	137	16	50

Simple Random Sampling (SRS)

Simple Random Sampling

1	2	3	_
4	5	6	

Population

Series.sample(2, random_state = 1)

Discrepancy between parameter and statistics

The Importance of Sample Size

Simple random sampling is not a reliable sampling method when the sample size is small.

Stratified Sampling

Abbreviation	Full name
F	Forward
G	Guard
С	Center
G/F	Guard/Forward
F/C	Forward/Center

Stratified Sampling (SRS problem)

The downside of simple random sampling is that it can **leave out** individuals playing in a certain position on the field

Population (25 players)

Sample (10 players)

Stratified Sampling (solution)

Proportional Stratified Sampling

(12.0, 22.0]

(1.969, 12.0]

```
1 wnba['Games Played'].value counts()
       30
      25
30
28
      10
22
26
18
16
15
19
```

```
wnba['Games Played'].value counts(bins=3)
 (22.0, 32.0]
                    104
 (12.0, 22.0)
                     26
 (1.969, 12.0)
                     13
  1 wnba['Games Played'].value counts(bins=3,
                                   normalize=True)
(22.0, 32.0]
                 0.727273
```

72.72% players who played more than 23 games

0.181818

0.090909

Proportional Stratified Sampling

Proportional Stratified Sampling (solution)

Proportional Stratified Sampling (solution)

Stratified by Games Played

Choosing right strata

Choosing right strata

Minimize the variability within each stratum.

Maximize the variability between strata.

The stratification criterion should be strongly correlated with the property you're trying to measure.

Cluster Sampling

Sampling in Data Science

e-commerce

- 1. Company that has a table in a database with more than 10 million rows of online transactions.
- 2. The marketing team asks you to analyze the data and find categories of customers with a low buying rate, so that they can target their marketing campaigns at the right people
- Instead of working with more than 10 million rows at each step of your analysis, you can save a lot of code running time by sampling several hundred rows

Sampling in Data Science

- 1. It could be that you need to collect data from an API that either has usage limit, or is not free.
- In this case, you are more or less forced to sample. Knowing how and what to sample can be of great use.

Sampling in Data Science

- Another common use case of sampling is when the data is scattered across different locations (different websites, different databases, different companies, etc.).
- 2. As we've discussed in the previous screen, cluster sampling would be a great choice in such a scenario.

Descriptive & Inferential Statistics

Next Steps

ld	Name	Salary	 Gender		
1	Mary Ann	\$35 000	 Female		
2	Marc Downey	\$55 000	 Male		
 51	 Juliet Ali	\$45 000	 Female		
 317	 Jane Ace	\$95 000	 Female		

Understand how the data is structured and measured

170 147 Male Female

Visualize the patterns

Gender	Frequency
Male	147
Female	170

Organize the data in comprehensible forms to find patterns

