FCC TEST REPORT

FCC ID : ZBSWRM-XE

Applicant : Shenzhen New Element Medical Equipment Technology Development CO.,Ltd

Adress of Applicant: 4F,Building 422,Bagua 4th Road,Futian District,Shenzhen,China

Equipment Under Test (EUT):

Product description : Remote & Mobile ECG Monitoring System

Model No. : XYS.WRM-1E;XYS.WRM-2E

Standards : FCC 15 Subpart C Paragraph 15.247

Date of Test : Mar.09,2011

Test Engineer

: Olic Huang/Engineer Olic heavy : Philo Zhong/Manager Theb 2hong Reviewed By

PERPARED BY:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105,China

Tel:+86-755-27553488

Fax:+86-755-27553868

Contents

		Page
1		
2	2 CONTENTS	IARY
3	3 TEST SUMMARY	4
4	2 GENERAL DESCRIPTION OF E.U.T. 3 DETAILS OF E.U.T. 4 DESCRIPTION OF SUPPORT UNITS. 5 STANDARDS APPLICABLE FOR TESTING. 6 TEST FACILITY. 7 TEST LOCATION. EQUIPMENT USED DURING TEST. CONDUCTED EMISSION TEST. 1 TEST EQUIPMENT. 2 TEST PROCEDURE. 3 CONDUCTED TEST SETUP. 4 EUT OPERATING CONDITION. 5 CONDUCTED EMISSION ILMITS. 6 CONDUCTED EMISSION TEST DATA. RADIATION EMISSION TEST 1 TEST EQUIPMENT. 2 MEASUREMENT UNCERTAINTY. 3 TEST PROCEDURE 4 RADIATED TEST SETUP 5 SPECTRUM ANALYZER SETUP. 6 CORRECTED AMPLITUIDE & MARGIN CALCULATION. 7 SUMMARY OF TEST RESULTS. 8 EUT OPERATING CONDITION. 9 RADIATED EMISSIONS LIMIT ON PARAGRAPH 15.209. 10 RADIATED EMISSION DATA. 7.11.1 TEST mode: continuously recevie mode. 7.11.2 TEST mode: continuously transmit mode. ANTENNA REQUIREMENT. MAXIMUM PEAK OUTPUT POWER.	5
5	5 EQUIPMENT USED DURING TEST	7
6	6 CONDUCTED EMISSION TEST	10
	6.1 Test Equipment	10
	6.2 TEST PROCEDURE	10
	6.3 CONDUCTED TEST SETUP	11
	6.6 CONDUCTED EMISSION TEST DATA	12
7	RADIATION EMISSION TEST	13
	·	
	7.11.1 Test mode: continuously recevie mode	18
	7.11.2 Test mode: continuously transmit mode	22
8	3 ANTENNA REQUIREMENT	28
9	MAXIMUM PEAK OUTPUT POWER	28
16	10 HOPPING CHANNEL NUMBER	20

11 FF	REQUENCY SEPARATED	30
12 DV	WELL TIME	33
13 20	-DB BANDWIDTH	43
14 RA	ADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND	45
15 RI	F EXPOSURE TEST	47
16 PF	HOTOGRAPHS OF TESTING	49
17 PH	HOTOGRAPHS - CONSTRUCTIONAL DETAILS	50
17.1	EUT - Front View	50
17.2	EUT - BACK VIEW	50
17.3	PCB1 - Front View	51
17.4	PCB1 - BACK VIEW	51
17.5	PCB2 - Front View	
17.6	PCB2 - BACK VIEW	52
18 FC	CC ID LABEL	53

3 Test Summary

Test Items	Test Requirement	Test Method	Limit / Severity	Result
Maximum peak output power	FCC 15.247	ANSI C63.4: 2003	30dBm	PASS
Restricted Band	FCC 15.247	ANSI C63.4: 2003	Note	PASS
Dwell time	FCC 15.247	ANSI C63.4: 2003	Maximum:0.4 s	PASS
Channel separation	FCC 15.247	ANSI C63.4: 2003	Channel separation at least 1MHz	PASS
Hopping channel No.	FCC 15.247	ANSI C63.4: 2003	Total 79 channels	PASS
20-dB Bandwidth	FCC 15.247	ANSI C63.4: 2003	Note	PASS
RF Exposure Test	FCC 15.247	ANSI C63.4: 2003	Note	PASS
Mains Terminal Disturbance Voltage, 150kHz to 30MHz	FCC 15.247	ANSI C63.4: 2003	N/A	N/A
Radiation Emission, 30MHz to 25GHz	FCC 15.247	ANSI C63.4: 2003	N/A	PASS

Note: denote that for more details of the EUT, please refer to the relating test items as below.

Remark : the methods of measurement in all the test items were according to the FCC Public Notice DA 00-705.

4 General Information

4.1Client Information

Applicant: Shenzhen New Element Medical Equipment

Technology Development CO.,Ltd.

Address: 4F,Building 422,Bagua 4th Road,Futian District,Shenzhen,China

Manufacturer: Shenzhen New Element Medical Equipment

Technology Development CO.,Ltd.

Address: 4F, Building 422, Bagua 4th Road, Futian District, Shenzhen, China

4.2General Description of E.U.T.

Product description: Remote & Mobile ECG Monitoring System

Model No.: XYS.WRM-1E;XYS.WRM-2E

Remark: two models are the same PCB except the appearance difference.

4.3Details of E.U.T.

Power Supply: DC 3.7V,900mAh 3.3Wh

Modulation: FHSS

Frequency Range: 2402MHz to 2480MHz

Channel Separation: 1MHz

4.4Description of Support Units

The EUT has been tested as an independent unit.

4.5Standards Applicable for Testing

The customer requested FCC tests for a Remote & Mobile ECG Monitoring System. The standards used were FCC 15 Paragraph 15.247,Paragraph 15.205, Paragraph 15.207,Paragraph 15.209, Paragraph 15.31,Paragraph 15.33, Paragraph 15.35.

FCC ID: ZBSWRM-XE

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• IC – Registration No.:7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration IC7760A,Aug. 03,2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, June 24, 2008. compliance

4.7 Test Location

All Emissions testswere performed at:-

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen518105, China.

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug- 03-10	Aug- 02-11	Wws200 81596	±1dB
Trilog Broadband Antenne 30-3000 MHz	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug- 03-10	Aug- 02-11		±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug- 03-10	Aug- 02-11		f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug- 03-10	Aug- 02-11		±1.2dB
10m Coaxial Cable with N-male Connectors usable up to 25GHz,	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug- 03-10	Aug- 02-11		-
Ohm Coaxial Cable with N- plug,indivi dual length,usab le up to 3(5)GHz, Connector	SCHWARZB ECK MESS- ELEKTROM / AK 9513				Aug- 03-10	Aug- 02-11		
Positioning Controller	C&C LAB/ CC-C-IF				N/A	N/A		
Color Monitor	SUNSPO/ SP-14C				N/A	N/A		
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug- 03-10	Aug- 02-11	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	KH3931		9k-1GHz	Aug- 03-10	Aug- 02-11		
Two-Line V-Network	ROHDE&SC HWARZ/	100115	W2005002	50Ω/50μΗ	Aug-	Aug- 02-11	Wws200 80941	±10%

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
	ENV216				03-10			
Absorbing Clamp	ROHDE&SC HWARZ/ MDS-21	100205	W2005003	impandance50 Ω loss : 17 dB	Aug- 03-10	Aug- 02-11	Wws200 80943	±1dB
10m 50 Ohm Coaxial Cable with N- plug,indivi dual length,usab le up to 3(5)GHz, Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9514				Aug- 03-10	Aug- 02-11		
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0- 300V Freq_range: 10-80Hz	Aug- 03-10	Aug- 02-11	Wwd200 81185	Voltage distinguish:0 .025% Power_freq
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0-300V Power_freq: 10-80Hz				distinguish:0 .02Hz
Electrostati c Discharge Simulator	Em Test AG/Switzerla nd/DITO	V07451 03094	W2008005	Contact discharge: 500V-10KV Air diacharge: 500V-16.5KV	Aug- 03-10	Aug- 02-11	Wwc200 82400	7.5A current will be changed in V _m =1.5V
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: - 60 dBm- +10dBm	Aug- 03-10	Aug- 02-11	Wws200 81890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug- 03-10	Aug- 02-11	Wwc200 82396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range: 0.15-1000 MHz	Aug- 03-10	Aug- 02-11	Wwc200 82397	0.3-400 MHz: ±4dB Other freq: ±5dB

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365			Aug- 03-10	Aug- 02-11	Wws200 81597	
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V- 4.4KV Pulse current: 100A-2.2KA	Aug- 03-10	Aug- 02-11	Wwc200 82401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311			Aug- 03-10	Aug- 02-11	Wwc200 82398	-
Signal and Data Line Coupling Network	SCHAFFNE R/ CDN 117	25627	W2008011	1.2/50μS	Aug- 03-10	Aug- 02-11	Wwc200 82399	-
AC Power Supply	TONGYUN/ DTDGC-4				Aug- 03-10	Aug- 02-11	Wws200 80944	-
Exposure Level Tester ELT-400	Narda Safety TEST Solutions/230 4/03	M-0155	w2008022	Test freq range: 1— 400kHz	Aug	A	W4200	Test uncertainly: 1 — 120kHz:±1. 83%, 120 kHz-400 kHz: ±4.06%
Magnetic Field Probe 100cm ²	Narda Safety TEST Solutions/230 0/90.10	M-1070	w2008021	Test freq range: 1— 400kHz		Aug- 02-11	Wwd200 81191	Test uncertainly: 1Hz-10Hz: ±16.2%, 10Hz - 120kHz:±2. 2%, 120 kHz-400 kHz: ±4.7%
Active Loop Antenna 10kHz- 30MHz	Beijing Dazhi / ZN30900A	-	-	10kHz- 30MHz	Aug- 03-10	Aug- 02-11		±1dB

6 Conducted Emission Test

Test Requirement: FCC Part15 Paragraph 15.207

Test Method: Based on FCC Part15 Paragraph 15.207

Test Date: -----

Frequency Range: 150kHz to 30MHz

Class B

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

Average Limit

6.1Test Equipment

Please refer to Section 5 this report.

6.2Test Procedure

- 1. The EUT was connected with signal generator and placed on a table.
- 2. The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.
- 3. The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.3 Conducted Test Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.207 limits.

6.4EUT Operating Condition

Operating condition is according to ANSI C63.4:2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

6.5Conducted Emission Limits

 $66\text{-}56~dB\mu V$ between 0.15MHz~&~0.5MHz $56~dB\mu V$ between 0.5MHz~&~5MHz $60~dB\mu V$ between 5MHz~&~30MHz

Note: In the above limits, the tighter limit applies at the band edges.

6.6 Conducted Emission Test Data

Own to the EUT used the battery to work, so the test items of conduction did not performed in the test report.

7 Radiation Emission Test

Test Requirement: FCC Part15 Paragraph 15.247
Test Method: Based on ANSI C63.4: 2003

Test Date: Mar.09,2011

Frequency Range: 30MHz to 25GHz

Measurement Distance: 3m

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

7.1Test Equipment

Please refer to Section 5 this report.

7.2Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on ANSI C63.4:2003, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at WALTEK SERVICES EMC Lab is ±/-5 03 dB

7.3Test Procedure

- 1. New battery was installed in the equipment under test for radiated emissions test.
- 2. This is a handhold device, The radiation emission should be tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 3. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
- 4. All data was recorded in the peak and average detection mode.
- 5. The EUT was under continuously transmit mode which control by the program during the final qualification test and the configuration was used to represent the worst case results.

7.4Radiated Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.209 limits and Paragraph 15.247 limits.

7.5 Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.247 Rules, the system was tested to 25000 MHz. Below 1GHz

Start Frequency	30 MHz
Stop Frequency	1000 MHz
Sweep Speed Auto	
IF Bandwidth	120 kHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	1000 MHz
Stop Frequency	25000MHz
Sweep Speed Auto	
IF Bandwidth	120 kHz
Video Bandwidth	1MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.6Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

7.7 Summary of Test Results

According to the data in section 7.11, the EUT complied with the FCC Part15 Paragraph 15.247 standards.

7.8 EUT Operating Condition

The same as section 6.4 of this report.

Let the EUT work in test mode and test it.

7.9 Radiated Emissions Limit on Paragraph 15.209

Frequency(MHZ)	Distance(m)	Field strength(dBuV/m)		
30-88	3	40.0		
88-216	3	43.5		
216-960	3	46.0		
Above 960	3	54.0		

Note:

- (1) RF Voltage(dBuV)=20 log RF Voltage(uV)
- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna.
- (4)The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- (5)Above 1GHz, mark a Peak and average measurements for all emissions,Limit for peak is 74dBuV/m,According to Part15.35(b) and average is 54dBuV/m.

7.10 Radiated Emissions Test Result

Formula of conversion factors:the field strength at 3m was egtablished by adding The meter reading of the spectrum analyzer (which is set to read in units of dBuV/m) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

Example:

Freq(MHz) Meter Reading +ACF=FS

33 20dBuV+10.36dB=30.36dBuV/m @3m

7.11 Radiated Emission Data

A. Test Item: Radiated Emission Data

Test Voltage: Battery 3.7V

Test Mode: CTX and CRX On

Temperature: 25.5 °C Humidity: 51%RH Test Result: PASS

7.11.1 Test mode: continuously recevie mode.

Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the low Channel, so the data show was the low channel only.

Test frequency: 30-1000MHz radiation test data:

Vertical

Horizontal

Test frequency: Above 1GHz radiation test data:

Remark: above 18GHz, the test signal below the noise level, so the data was not perfromed.

Vertical

Horizontal

7.11.2 Test mode: continuously transmit mode.

Test frequency :30-1000MHz radiation test data:

Vertical:

Horizontal:

Test frequency above 1GHz test data record:

And the below is the Fundamental and Harmonic .

Frequenc y (MHz)	Detect or	Antenna Polarizat ion	Emission Level (dBuV/m)	FCC Part15 Subpart C Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)	
Low frequency								
2402.00	AV	Vertical	91.58	1	(Fund.)	1.0	80	
4804.00	AV	Vertical	37.85	54.00	16.15	1.1	110	
7206.00	AV	Vertical	35.22	54.00	18.78	1.0	130	
9608.00	AV	Vertical	32.34	54.00	21.66	1.1	60	
12010.00	AV	Vertical	31.55	54.00	22.45	1.1	60	
14412.00	AV	Vertical	30.12	54.00	23.88	1.0	160	
16814.00	AV	Vertical	30.61	54.00	23.39	1.1	10	
19216.00	AV	Vertical	30.13	54.00	23.87	1.0	110	
21618.00	AV	Vertical	30.24	54.00	23.76	1.0	10	
24020.00	AV	Vertical	28.21	54.00	25.79	1.1	10	
2402.00	AV	Horizontal	89.65		(Fund.)	1.0	90	
4804.00	AV	Horizontal	36.54	54.00	17.46	1.2	30	
7206.00	AV	Horizontal	35.21	54.00	18.79	1.0	90	
9608.00	AV	Horizontal	32.34	54.00	21.66	1.1	160	
12010.00	AV	Horizontal	33.00	54.00	21.00	1.1	190	
14412.00	AV	Horizontal	32.42	54.00	21.58	1.1	10	
16814.00	AV	Horizontal	31.17	54.00	22.83	1.0	10	
19216.00	AV	Horizontal	30.30	54.00	23.70	1.0	10	
21618.00	AV	Horizontal	32.77	54.00	21.23	1.1	90	
24020.00	AV	Horizontal	30.22	54.00	23.78	1.0	30	
2402.00	PK	Vertical	104.26		(Fund.)	1.2	90	
4804.00	PK	Vertical	46.58	74.00	27.42	1.0	10	
7206.00	PK	Vertical	43.66	74.00	30.34	1.1	10	
9608.00	PK	Vertical	39.65	74.00	34.35	1.1	90	
12010.00	PK	Vertical	35.56	74.00	38.44	1.1	30	
14412.00	PK	Vertical	34.45	74.00	39.55	1.0	90	
16814.00	PK	Vertical	33.54	74.00	40.46	1.0	45	
19216.00	PK	Vertical	32.63	74.00	41.37	1.1	20	

21618.00	PK	Vertical	31.85	74.00	42.15	1.0	160
24020.00	PK	Vertical	28.96	74.00	45.04	1.0	10
2402.00	PK	Horizontal	100.36		(Fund.)	1.0	10
4804.00	PK	Horizontal	45.63	74.00	28.37	1.2	10
7206.00	PK	Horizontal	42.66	74.00	31.34	1.1	90
9608.00	PK	Horizontal	41.25	74.00	32.75	1.0	30
12010.00	PK	Horizontal	39.36	74.00	34.64	1.0	90
14412.00	PK	Horizontal	37.44	74.00	36.56	1.1	160
16814.00	PK	Horizontal	34.47	74.00	39.53	1.0	190
19216.00	PK	Horizontal	38.54	74.00	35.46	1.1	30
21618.00	PK	Horizontal	34.21	74.00	39.79	1.1	10
24020.00	PK	Horizontal	30.33	74.00	43.67	1.0	40
		.	Mi	ddle frequency			
2441.00	AV	Vertical	92.68		(Fund.)	1.1	10
4882.00	AV	Vertical	36.87	54.00	17.13	1.1	40
7323.00	AV	Vertical	36.88	54.00	17.12	1.0	80
9764.00	AV	Vertical	35.23	54.00	18.77	1.0	180
12205.00	AV	Vertical	33.58	54.00	20.42	1.1	40
14646.00	AV	Vertical	32.01	54.00	21.99	1.2	90
17087.00	AV	Vertical	31.22	54.00	22.78	1.0	150
19528.00	AV	Vertical	30.25	54.00	23.75	1.1	40
21969.00	AV	Vertical	30.28	54.00	23.72	1.1	10
24410.00	AV	Vertical	29.57	54.00	25.43	1.1	40
2441.00	AV	Horizontal	89.54		(Fund.)	1.1	80
4882.00	AV	Horizontal	36.99	54.00	17.01	1.0	180
7323.00	AV	Horizontal	34.13	54.00	19.87	1.0	10
9764.00	AV	Horizontal	33.87	54.00	20.13	1.1	40
12205.00	AV	Horizontal	31.87	54.00	22.13	1.2	80
14646.00	AV	Horizontal	30.25	54.00	23.75	1.1	180
17087.00	AV	Horizontal	29.25	54.00	24.75	1.1	40
19528.00	AV	Horizontal	29.88	54.00	24.12	1.0	90
21969.00	AV	Horizontal	29.58	54.00	24.42	1.1	150
24410.00	AV	Horizontal	28.89	54.00	25.11	1.1	40
2441.00	PK	Vertical	103.98		(Fund.)	1.0	110

4882.00	PK	Vertical	47.88	74.00	26.12	1.1	10
7323.00	PK	Vertical	43.85	74.00	30.15	1.0	40
9764.00	PK	Vertical	38.54	74.00	35.46	1.1	90
12205.00	PK	Vertical	36.98	74.00	37.02	1.0	80
14646.00	PK	Vertical	36.17	74.00	38.83	1.2	40
17087.00	PK	Vertical	32.03	74.00	41.97	1.0	10
19528.00	PK	Vertical	31.25	74.00	43.75	1.0	40
21969.00	PK	Vertical	30.85	74.00	43.15	1.0	80
24410.00	PK	Vertical	30.57	74.00	43.43	1.1	180
2441.00	PK	Horizontal	102.63		(Fund.)	1.0	150
4882.00	PK	Horizontal	45.87	74.00	28.13	1.1	40
7323.00	PK	Horizontal	43.63	74.00	30.37	1.1	90
9764.00	PK	Horizontal	42.14	74.00	31.86	1.0	150
12205.00	PK	Horizontal	39.36	74.00	34.64	1.1	40
14646.00	PK	Horizontal	37.44	74.00	36.56	1.1	10
17087.00	PK	Horizontal	34.46	74.00	39.54	1.1	40
19528.00	PK	Horizontal	38.54	74.00	35.46	1.0	80
21969.00	PK	Horizontal	34.58	74.00	39.42	1.1	180
24410.00	PK	Horizontal	31.56	74.00	42.43	1.2	150
			Н	ligh frequency			
2480.00	AV	Vertical	92.69		(Fund.)	1.0	160
4960.00	AV	Vertical	41.25	54.00	12.75	1.1	90
7440.00	AV	Vertical	38.96	54.00	15.04	1.0	120
9920.00	AV	Vertical	35.62	54.00	18.38	1.1	50
12400.00	AV	Vertical	32.63	54.00	21.37	1.0	180
14880.00	AV	Vertical	31.01	54.00	22.99	1.0	160
17360.00	AV	Vertical	30.98	54.00	23.02	1.1	90
19840.00	AV	Vertical	30.67	54.00	23.33	1.0	160
22320.00	AV	Vertical	29.63	54.00	24.34	1.0	90
24800.00	AV	Vertical	28.58	54.00	25.42	1.1	120
2480.00	AV	Horizontal	89.32		(Fund.)	1.1	50
4960.00	AV	Horizontal	37.58	54.00	16.42	1.1	180
7440.00	AV	Horizontal	36.28	54.00	17.72	1.0	160
9920.00	AV	Horizontal	34.25	54.00	19.75	1.0	150

					,		
12400.00	AV	Horizontal	32.87	54.00	21.13	1.1	150
14880.00	AV	Horizonta	32.63	54.00	21.37	1.2	20
17360.00	AV	Horizontal	30.74	54.00	23.26	1.1	80
19840.00	AV	Horizontal	32.01	54.00	21.99	1.1	60
22320.00	AV	Horizontal	31.53	54.00	22.47	1.0	90
24800.00	AV	Horizontal	29.63	54.00	24.37	1.0	80
2480.00	PK	Vertical	104.23		(Fund.)	1.1	30
4960.00	PK	Vertical	47.85	74.00	26.15	1.1	160
7440.00	PK	Vertical	46.31	74.00	28.69	1.0	80
9920.00	PK	Vertical	42.36	74.00	36.58	1.1	60
12400.00	PK	Vertical	40.36	74.00	33.64	1.1	90
14880.00	PK	Vertical	37.26	74.00	36.74	1.1	130
17360.00	PK	Vertical	33.21	74.00	40.79	1.0	160
19840.00	PK	Vertical	32.55	74.00	41.45	1.1	150
22320.00	PK	Vertical	32.58	74.00	41.42	1.0	140
24800.00	PK	Vertical	30.87	74.00	43.13	1.0	135
2480.00	PK	Horizontal	92.55		(Fund.)	1.1	80
4960.00	PK	Horizontal	45.69	74.00	28.31	1.0	60
7440.00	PK	Horizontal	43.55	74.00	30.45	1.1	90
9920.00	PK	Horizontal	38.96	74.00	35.04	1.0	160
12400.00	PK	Horizontal	37.25	74.00	36.75	1.0	150
14880.00	PK	Horizontal	36.36	74.00	37.64	1.0	140
17360.00	PK	Horizontal	34.26	74.00	39.74	1.1	135
19840.00	PK	Horizontal	33.01	74.00	40.99	1.1	80
22320.00	PK	Horizontal	32.05	74.00	41.95	1.1	60
24800.00	PK	Horizontal	32.33	74.00	41.67	1.1	90

8 Antenna Requirement.

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent antenna, fulfill the requirement of this section

9 Maximum Peak Output Power

Test Requirement: FCC Part15 Paragraph 15.247
Test Method: Based on ANSI C63.4: 2003

Test Date: Mar.09,2011

Test mode: Compliance test in the worse case: Tx Lower/Tx Middle/Tx

Upper

Requirements: Regulation 15.247(b) The limit of Maximum Peak Output

Power Measurement is 1W(30dBm)

Test procedure:

The following test procedure as below:

The transmitter output (antenna port) was connected to the spectrum analyzer.EUT and its simulators are placed on a table, let EUT working in test mode, then test it.

The bandwidth of the fundamental frequency was measured with the spectrum analyser using 100kHz RBW and 100kHz VBW.

Test Result: The unit does meet the FCC requirements.

Test Channel	Fundamental Frequency(MHz)	Output Power (mW)	Limit (W)	Power output level
Lower	2402	6.98	1	conducted
Middle	2441	6.98	1	conducted
Upper	2480	7.65	1	conducted

10 Hopping Channel Number

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: Mar.09,2011

Test mode: The EUT work in test mode(Tx) and test it

Requirements: Regulation 15.247(b) For frequency hopping systems operating

In the 2400-2483.5MHz band employing at least 15 hopping

channels.

Test result: The total number of channels would be 79 channels.

The unit does meet the FCC requirements.

Please refer the graph as below:

11 Frequency Separated

The requirements in this clause are only applicable to equipment using frequency hopping spread spectrum (FHSS) modulation.

Channel Separated

Definition: A hopping channel is any of the centre frequencies defined within the hopping sequence of a FHSS system.

Limit: Non-adaptive frequency hopping system shall make use of non-overlapping channels separated by the channel bandwidth as measured at 20dB below peak power.

The hopping channels defined within a hopping sequence shall be at least 1MHz apart(channel separation)

Operating Environment:

Temperature: 25.50 °C Humidity: 51 % RH Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

Test Result: PASS

Test Channel	Channel Separation	PASS/FAIL	
Lower Channels	1MHz	Pass	
Middle Channels	1MHz	Pass	
Upper Channels	1MHz	Pass	

Please refer to the below photos for more details

Lower Channel

Middle Channel

Upper Channel

1

12 Dwell time

The dwell time is the time spent at a particular frequency during any single hop.

Limit: the maximum dwell time shall be less than 0.4s.

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

11.2 Test Procedure

The EUT output antenna port was connected to the spectrum analyzer. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz, and the frequency span to 0 Hz, measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting.

DH5 Packet permit maximum 1600/79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So,the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)
DH5	1600/79/6*31.6*(MkrDelta)/1000
DH3	1600/79/4*31.6*(MkrDelta)/1000
DH1	1600/79/2*31.6*(MkrDelta)/1000

Note: Mkr Delta is once pulse time.

11.3 Test Result: PASS

Please refer to the below photos for more details.

Lower Channel 2402MHz DH5 test result record

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH5	2402 MHz	3.470	0.350	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Lower Channel 2402 MHz DH5 Test Plots

Lower Channel 2402MHz DH3 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH3	2402 MHz	2.043	0.328	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Lower Channel 2402 MHz DH3 Test Plots

Lower Channel 2402MHz DH1 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH1	2402 MHz	0.790	0.253	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Lower Channel 2402 MHz DH1 Test Plots

Middle Channel 2441MHz DH5 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)		
DH5	2441 MHz	3.308		

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Middle Channel 2441 MHz DH5 Test Plots

Middle Channel 2441MHz DH3 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH3	2441 MHz	2.044	0.327	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Middle Channel 2441 MHz DH3 Test Plots

Middle Channel 2441MHz DH1 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)		
DH1	2441 MHz	0.784	0.251	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Middle Channel 2441 MHz DH1 Test Plots

Upper Channel 2480 MHz DH5 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH5	2480 MHz	3.314	0.352	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Upper Channel 2480 MHz DH5 Test Plots

Upper Channel 2480 MHz DH3 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)		
DH3	2480 MHz	2.050	0.328	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Upper Channel 2480 MHz DH3 Test Plots

Upper Channel 2480 MHz DH1 test result record

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH1	2480 MHz	0.784	0.251	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Upper Channel 2480 MHz DH1 Test Plots

13 20-dB Bandwidth

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: Mar.09,2011

Test mode: The EUT work in test mode(Tx) and test it

Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

Test Result

Please refer the graph as below:

Lower Channel 2402MHz

Middle Channel 2441MHz

Upper Channel 2480MHz

14 Radiated spurious emissions into adjacent restricted band

Test Requirement: FCC Part15 Paragraph 15.205

Test Method: Based on FCC Part 15 Paragraph 15.247

Test Date: Mar.09,2011

Requirements: The EUT work in test mode(Tx) and test it

Requiments:

emissions that fall in the restricted bands(15.205). Above 1000MHz, compliance with the emissions limits in section 15.209 shall be demonstrated based on the average value of the measured emissions, The provisions in section 15.35 apply to these measurements.

Test procedure:

An in band field strength measurement of the fundamental emission using the RBW and detector function required by C63.4-2003 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted band is presented below.

Remark: the worse case was the Horizontal position, so the data show was the Horizontal position only.

Lower bandedge/ restricted band

Upper Bandedge/ Restricted Band

15 RF Exposure Test

Test Requirement: FCC Part 2 Subpart J

Test Method: Based on FCC Part 15 Paragraph 15.247

Test Date: Mar.09,2011

Requirements: The EUT work in test mode(Tx) and test it

Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

 $\mathbf{P} = \text{Peak RF output power (W)}$

G = EUT Antenna numeric gain (numeric)

 $\mathbf{d} =$ Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
0	1	4.99	6.98	0.00139	1	Complies
0	1	4.99	6.98	0.00139	1	Complies
0	1	5.82	7.65	0.00152	1	Complies

16 Photographs of Testing

Radiation Emission Test View For 30MHz-1000MHz

Radiation Emission Test View For 1GHz-25GHz

17 Photographs - Constructional Details

EUT - Front View 17.1

17.2 **EUT - Back View**

17.3 PCB1 - Front View

PCB1 - Back View 17.4

17.5 PCB2 - Front View

17.6 PCB2 - Back View

18 FCC ID Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation.

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT
EUT Bottom View/proposed FCC Mark Location

FCC ID: ZBSWRM-XE
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions (1) this device may not unus harmful interference that may cause undested operation

The first Court of the following two conditions (1) this device may not unus interference received, including interference that may cause unusured operation

The first Court of the following two conditions (1) this device may not unusured operation

The first Court of the following two conditions (1) this device may not unusured operation

The first Court of the following two conditions (1) this device may not unusured operation (2) the device may not unusured to the following two conditions (1) this device may not unusured to the following two conditions (1) this device may not unusured to the following two conditions (1) this device may not unusured to the following two conditions (1) this device may not unusured to the following two conditions (1) this device may not unusured to the following two conditions (1) this device on many not unusured to the following two conditions (1) this device on many not unusured to the following two conditions (1) this device on many not unusured to the following two conditions (1) this device on many not unusured to the following two conditions (1) this device on many not unusured to the following two conditions (1) this device on many not unusured to the following two conditions (1) this device on many not unusured to the following two conditions (1) the device on many not unusured to the following two conditions (1) the following two condi

Ref No.: WT11020559-S-E-F