Espaces vectoriels normés

Jérémy Meynier

Exercice 1

Soit $(a, b) \in \mathbb{R}^2$ et f, g deux fonctions continues sur [a, b]. On suppose que $\forall x \in [a, b], f(x) > g(x)$. Montrer qu'il existe $\lambda \in \mathbb{R}^{+*}$ tel que $\forall x \in [a, b], f(x) > g(x) + \lambda$

Exercice 2

Soit E un espace vectoriel normé, et a_1, \ldots, a_n des éléments de E.

Montrer que
$$\{x \in E, \prod_{k=1}^{n} ||x - a_k|| = 1\}$$
 est fermé borné dans E

Exercice 3

On considère dans
$$\mathbb{R}^3$$
 la suite $(Z_n)_{n \in \mathbb{N}}$ définie par $Z_0 = (U_0, V_0, W_0) \in \mathbb{R}^3$ et $\forall n \in \mathbb{N}$,
$$\begin{cases} U_{n+1} = \frac{1}{3}U_n + \frac{1}{6}W_n + \frac{1}{2} \\ V_{n+1} = \frac{1}{3}U_n + \frac{1}{6}V_n + \frac{1}{3}W_n \end{cases} \quad \text{et } Z_n = (U_n, V_n, W_n) \\ W_{n+1} = \frac{1}{3}U_n + \frac{1}{3}V_n + \frac{1}{6}W_n - \frac{7}{6} \end{cases}$$

- 1. Montrer que (Z_n) vérifie une relation matricielle de la forme $Z_{n+1} = AZ_n + B$
- 2. Montrer que $\exists k \in]0,1[/ \forall X \in \mathbb{R}^3, ||AX||_{\infty} \leq k||X||_{\infty}$
- 3. Montrer que X = AX + B a une solution L dans \mathbb{R}^3 , puis montrer que (Z_n) converge après avoir majoré $||Z_n - L||_{\infty}$ à l'aide de $||Z_0 - L||_{\infty}$, de k et n

Exercice 4

Soit A un convexe d'un \mathbb{K} -espace vectoriel E et $n\in\mathbb{N}/$ $n\geq 2$. Montrer que si x_1,\cdots,x_n sont dans A et si $\lambda_1, \dots, \lambda_n$ sont des réels positifs tels que $\sum_{k=1}^n \lambda_k = 1$, alors $\sum_{k=1}^n \lambda_k x_k \in A$

Exercice 5

Soient $A, B \in M_p(\mathbb{K})$ et (A_n) une suite de $GL_p(\mathbb{K})$ tel que $\lim_{n \to \infty} A_n = A$ et $\lim_{n \to \infty} A_n^{-1} = B$. Montrer que A est inversible et que $A^{-1} = B$. On admettra que pour la norme $||A|| = \sqrt{\text{Tr}(A^T A)}$ $||AB|| \le ||A|| ||B||$

Jérémy Meynier 2

Exercice 6

Montrer que $GL_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$.