計算機方式論

第5章データ形式 - 固定小数点表現

1

①ビット(bit)

◆Oか1かの情報量しかもたない最小のデータ 単位。

Binary Digit の略

3

データ形式

- ◆計算機が直接処理するデータのレベル
- ①ビット(bit)
- ② ディジット(digit)
- ③文字(character)
- ④語(word)

2

②ディジット(digit)

- **♦0~9**の**10進数1桁**を表わすデータ。
- ◆1桁を表わすためには、**最低4ビット**必要。

コード		2進化	2.4.	5.4.	3余	5者	択2	2-5進
種類		10進符	2.1 符号	2.1 符号	り符号	符号		符号
重み		8421	2421	5421	非重み付き符号		5043210	
10	0	0000	0000	0000	0011	00110	11000	0100001
10	1	0001	0001	0001	0100	00011	00011	0100010
	2	0010	0010	0010	0101	00101	00101	0100100
進	3	0011	0011	0011	0110	01001	00110	0101000
	4	0100	0100	0100	0111	01010	01001	0110000
Ì	5	0101	1011	1000	1000	01100	01010	1000001
	6	0110	1100	1001	1001	10001	01100	1000010
数	7	0111	1101	1010	1010	10010	10001	1000100
Ì	8	1000	1110	1011	1011	10100	10010	1001000
Ì	9	1001	1111	1100	1100	11000	10100	1010000

③文字(character)

◆アルファベット、カナ文字など1文字を表現するデータ

通常6~8ビット

漢字などでは**2文字分**で漢字1文字を表現 **8ビットで1文字**を表現する計算機では、**バイト**(byte) とよぶ。

5

④語(word)

- ◆複数の文字を含み、1命令で処理されるデータの単位。
- ◆語の長さは、計算機によって様々であるが、 **8、16、18、24、32、36、48、60、64** ビットが多い。

6

データの種類

◆数値

固定小数点 1語整数 小数

浮動小数点(実数) $1\sim2$ 語

◆文字 1バイト,4文字/語(32ビット)

数値の表現

◆符号無しr進数表現(r進数表現) 整数部n桁、小数部m桁のr進数

r進数1桁: 2進数なら1ビット、10進数なら1ディジット

簡単に、X = x_{n-1}x_{n-2}····x₁x₀.x₋₁····x_{-m}と書く。

この表現Xの値N

 $N = x_{n-1}r^{n-1} + \dots + x_1r^1 + x_0r^0 + x_{-1}r^{-1} + x_{-2}r^{-2} + \dots + x_{-m}r^{-m}$ ただし、 $0 \le x_k < r$

値Nを(X)_rと書くことにする。

rを<mark>基数</mark>(radix)よび、r=<mark>2</mark>ならば、2進数表現、

r=10ならば、10進数表現とよぶ。Nは通常、10進数値である。

数値の表現例

- ◆ 整数部4桁、小数部3桁の2進数表示とその値。
- (a) **0110.101** $0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$ = 4+2+0.5+0.125 = 6.625簡単に、(0110.101)2 = 6.625
- (b) 1001.010 $1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}$ = 8+1+0.25 = 9.25

 $(1001.010)_2 = 9.25$

◆ 整数部3桁、小数部2桁の10進数表示とその値。

480.56 $4 \times 10^{2} + 8 \times 10^{1} + 0 \times 10^{0} + 5 \times 10^{-1} + 6 \times 10^{-2}$ = 400+80+0+0.5+0.06 = 480.56従って、 $(480.56)_{10}$ = 480.56 である。

補数

◆n+m桁のr進数Xの値 N(=(X),)に対して、

NO(r-1)の補数 $\overline{N} = (r^n - r^{-m}) - N$ この値のr進数表現を \overline{X} と書く

すなわち、 $\overline{\overline{N}} = (\overline{\overline{X}})_{m}$

 $N \mathcal{O}_{\mathbf{r}}$ の補数 $N = r^{\mathbf{n}} - N$

この値のrit数表現をXと書く

 $txb5, N = (X)_r$

このとき、次の関係が成立。

 $N = \overline{N} + r^{-m}$ rの補数は(r-1)の補数の末桁に1を加えたもの

 $(X)_r = (\overline{\overline{X}})_r + r^{-m}$

 $\overline{(N)} = N$

rの補数のrの補数は元の数

 $\overline{(\overline{\overline{N}})} = N$

(r-1)の補数の(r-1)の補数は元の数

補数の補数

 \bullet $\overline{(\overline{N})} = N$ を証明。ここで、 $\overline{N} = (r^n - N)$

$$\overline{(\overline{N})} = r^n - \overline{N} = r^n - (r^n - N) = N$$

 \bullet $\overline{(\overline{N})} = N$ を証明。ここで、 $\overline{\overline{N}} = (r^n - r^{-m}) - N$

$$\overline{\overline{(\overline{N})}} = (r^{n} - r^{-m}) - \overline{\overline{N}}
= (r^{n} - r^{-m}) - ((r^{n} - r^{-m}) - N) = N$$

11

Nとその(r-1)の補数との関係

◆ n+m桁のr進数Xの値 Nに対して、N+ \overline{N} = $(r^n - r^{-m})$

 $\overline{\overline{X}} | r-1-x_{n-1}| \cdots | r-1-x_0| | r-1-x_{-1}| \cdots | r-1-x_{-m+1}| r-1-x_{-m}|$

rn-r-m r-1 r−1

◆ 基数2のとき、Nの1の補数の各桁は、1-(Nの桁)なので1-0反転

2進数とその補数の例

[例]整数部4桁、小数部3桁の2進数

0110.101 値6.625

1の補数=2⁴-2⁻³-6.625=**9.25**

0110.101を1-0反転すると、1001.010で値は9.25。

2の補数=24-6.625=9.375

1の補数の2進数表現の末桁に1を加えると、

1001.010+0.001より、1001.011で、値は9.375。

1001.010 値9.25

1の補数=2⁴-2⁻³-9.25=**6.625**

1001.010を1-0反転すると、0110.101で値は6.625。

2の補数=2⁴-9.25=**6.75**

1の補数の2進数表現の末桁に1を加えると、

0110.101+0.001より、0110.110で、値は6.75。

10進数とその補数の例

[例]整数部3桁、小数部2桁の10進数480.56(値480.56)

9の補数 = (103-10-2)-480.56

= 999.99-480.56

 $= 519.43 \Leftrightarrow 480.56$

各桁は、9-(元の10進数の桁)

10の補数= 10³-480.56

= 1000.00 - 480.56

 $= 519.44 \Leftrightarrow 519.43+0.01$

(Nの9の補数の末桁)に1を加える

基数2の整数型コンピュータの補数

★2進数表現が主流のため、基数は2とする。 小数点は一番右に置くことが多い、すなわち、m=0 (⇒整数形コンピュータ)

n桁の2進数表現Xの値(X)₂=Nに対して、

NO1の補数 $\overline{N} = (2^n - 1) - N$

 $N+\overline{\overline{N}}=2^n-1$ $(\mathsf{X})_2$ の1の補数 $\left(\overline{\mathsf{X}}\right)_2=(2^n-1)-(\mathsf{X})_2\left|(\mathsf{X})_2+\left(\overline{\overline{\mathsf{X}}}\right)_2=(11\cdots1)_2\right|$

Nの**2**の補数 $\overline{N} = 2^n - N$ $(X)_2$ の**2**の補数 $(\bar{X})_2 = 2^n - (X)_2$

 $\overline{N} = \overline{\overline{N}} + 1$ $\left| \left(\overline{X} \right)_2 \right| = \left(\overline{\overline{X}} \right)_2 + (0 \cdots 01)_2$

基数2の補数の例1

```
[例]整数部4桁、小数部0桁の2進数0101(値5) 1の補数= (2^4-2^0)-5 = (16-1)-5 = (1111)_2-(0101)_2 = (1010)_2 \Leftrightarrow 各桁1-0反転 = 10 値は10、2進数は1010 2の補数= 2^4-5 = 16-5 = (10000)_2-(0101)_2 = (1111)_2-(0101)_2+1 = (1011)_2 \Leftrightarrow 1 の補数+1 = 11  値は11、2進数は1011
```

基数2の補数の例2

```
[例]整数部4桁、小数部0桁の2進数1011(値11)
1の補数= (2^4-1)-11
= (16-1)-11
= (0100)_2
= 4 値は4、2進数は0100
2の補数= 2^4-11
= 16-11
= (10000)_2-(1011)_2
= (1111)_2-(1011_2)+1
= (0101)_2
= 5 値は5、2進数は0101
```

負の整数の表現

17

- ◆数の正負を表わすため、先頭を符号のための1桁と した符号付きr進数表現Xの表す正数・負数を考える。
- ◆ 2進数表現が主流のため、基数は2とする。 小数点は一番右に置く整数型コンピュータを扱う。

```
n析

符号付き

r進数表示

○で正

r-1で負 nビット

符号付き

2進数表現X

符号 2進数表示

○で正

1で負
```

正の整数は符号ビットO

◆正の整数は、符号ビットがO。 2進数表現 $X = Ox_{n-2} \cdots x_i \cdots x_0$. の値 $\sum_{i=0}^{n-2} x_i 2^i$ が符号を考慮した2進数の値。

正の符号付き2進数表現 $X = 0 x_{n-2} \cdot \cdot x_0$.

```
X <u>000・・00</u> <u>000・・01</u> ··· <u>011・・10</u> <u>011・・11</u> 符号無し 2進数X 0 1 ··· 2<sup>n-1</sup>-2 2<sup>n-1</sup>-1 の値(X)<sub>2</sub> 符号を考慮 0 1 ··· 2<sup>n-1</sup>-2 2<sup>n-1</sup>-1
```

負の整数は符号ビット1

◆ 負の整数は、符号ビットが1。

2進数表現 $X = 1x_{r-2} \cdot \cdot \cdot x_0$. がどのような**負の整数**を表すかは、3通りの表現法、符号と絶対値、1の補数、2の補数があり、それらの表す符号を考慮した値を $(X)_{SM}$ 、 $(X)_{rC}$ 、 $(X)_{rC}$ と表記、正の整数を表す場合も同じ表記を用いる)。

負の符号付き2進数表現 $X = 1 \times_{n-2} \cdot \cdot \times_{0}$.

負の整数の表現-符号と絶対値表現の例

[例]4桁の符号付き2進数 X=1101

下位3ビット101の値が5なので、

-5を表す

23

21

負の整数の表現-符号と絶対値表現

◆ 符号ビットがOなら正、1なら負の整数を表し、 大きさは下位n-1ビットの2進数x_{n-2}・・・x_nの値。 符号と絶対値による符号を考慮したXの表す値を(X)swと表記。 正の場合、**2進数X=0**x_{n-2}・・・x₀の値、即ち、(**X**)_{SM}=(**X**)₂ **負**の場合、**2進数X=1**x_{n-2}・・・x₀に対し、(X)_{SM}=-(x_{n-2}・・・x₀)₂ 符号と絶対値による 負の符号付き2進数Xの値 $(X)_{SM} = -\sum_{i=0}^{n-2} x_i 2^i$ 100...00 100...01 111...10 111...11 符号無し 2ⁿ⁻¹+1 ···· 2進数X 2n-1 の値(X)₂ 符号を考慮した 🚭 -1 \cdots $-(2^{n-1}-2)$ $-(2^{n-1}-1)$ Xの値(X)_{SM} +0と-0の2つのゼロがある

負の整数の表現-1の補数表現

◆ 符号付き2進数表現Xの符号ビットがOなら正、 1なら負の整数を表し、1の補数による符号を考慮したXの 表す値を(X)はと表記。

正の場合、2進数 $X=0x_{n-2}\cdots x_0$ の値、即ち、 $(X)_{1C}=(X)_2$ 負の場合、2進数 $X=1x_{n-2}\cdots x_0$ の1の補数の値を負としたもの。 $(X)_{1C}=-(\overline{X})_2=-(0x_{n-2}\cdots x_0)_2$ ここで、 $x_i=1-x_i$ 1の補数による負の符号付き 2進数Xの値 $(X)_{1C}=-\sum_{i=0}^{n-2}x_i2^i=-2^{n-1}+1+\sum_{i=0}^{n-2}x_i2^i$

X $\frac{100\cdots00}{2^{n-1}}$ $\frac{100\cdots01}{2^{n-1}+1}$ \cdots $\frac{111\cdots10}{2^{n-2}}$ $\frac{111\cdots11}{2^{n-1}}$ (X)₁₀ $\frac{1}{2^{n-1}-1}$ $\frac{1}{2^{n-1}-2}$ \cdots $\frac{1}{2^{n-2}}$ $\frac{1}{2^{n-1}-1}$

+0と**-0**の**2つのゼロ**がある

負数の表現-1の補数表現の例

〔例〕4桁の<mark>符号付き</mark>2進数 X=1101

Xの値が13なので、その1の補数24-1-13=2 または、 $\left(\overline{1101}\right)_2$ = $\left(0010\right)_2$ =2 従って、-2を表す。

25

負数の表現-2の補数表現の例

[例]4桁の符号付き2進数 X=1101

Xの値が13なので、その**2の補数**2⁴-13=3 または、(1101)₂=(0011)₂=3 従って、-3を表す。

27

負の整数の表現-2の補数表現

◆ 符号付き2進数表現Xの符号ビットがOなら正、

1なら負の整数を表し、2の補数による符号を考慮したXの表す値を(X)っと表記。

正の場合、2進数X=0x_{n-2}・・・x₀の値、即ち、(X)_{2C}=(X)₂

負の場合、2進数 $X=1x_{n-2}\cdots x_0$ の2の補数の値を負としたも

 $\mathcal{O}_{\circ} (X)_{2C} = -(X)_2 = -(0x_{n-2} \cdots x_0 + 1)_2 \ \text{TT}, x_i = 1 - x_i$

2の補数による負の符号付き

2進数Xの値 $(X)_{2C} = -(\sum_{i=0}^{n-2} \bar{x}_i 2^i + 1) = -2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$

 $X \qquad \underline{100\cdots00} \quad \underline{100\cdots01} \quad \cdots \quad \underline{111\cdots10} \quad \underline{111\cdots11}$

 $(X)_2$ 2^{n-1} $2^{n-1}+1$ $2^{n}-2$ $2^{n}-1$

 $(X)_{2C}$ -2^{n-1} $-(2^{n-1}-1)$ -2 -1

26

負数の表現-まとめ

- ◆nビットの2進数表現で**負の整数**を表す場合、
- ①**符号と絶対値表現**では、 表す値の範囲は、-(2ⁿ⁻¹-1)~(2ⁿ⁻¹-1)。

+0= $(00\cdots0)_2$ と $-0=(10\cdots0)_2$ の2つのゼロがある。

②1の補数表現では、

表す値の範囲は、-(2ⁿ⁻¹-1)~(2ⁿ⁻¹-1)。 +0=(00…0)。と-0=(11…1)。の2つのゼロがある。

③2の補数表現では、

表す値の範囲は、-2ⁿ⁻¹~(2ⁿ⁻¹-1)。 =(10···0)₂ =(01···1)₂

ゼロの表現は1個(00…0)2。

28

2進数4ビット(n=4,m=0)の表す整数値											
10進数	符号と絶対値	1の補数	2の補数								
7	0 1 1 1	0 1 1 1	0 1 1 1								
6	0 1 1 0	0 1 1 0	0 1 1 0								
5	0 1 0 1	0 1 0 1	0 1 0 1								
4	0 1 0 0	0 1 0 0	0 1 0 0								
3	0 0 1 1	0 0 1 1	0 0 1 1								
2	0 0 1 0	0 0 1 0	0 0 1 0								
1	0 0 0 1	0 0 0 1	0 0 0 0								
+0	0 0 0 0	0 0 0 0	0 0 0 0								
-0	1 0 0 0	1 1 1 1									
-1	1 0 0 1	1 1 1 0	1 1 1 1								
-2	1 0 1 0	1 1 0 1	1 1 1 0								
-3	1 0 1 1	1 1 0 0	1 1 0 1								
-4	1 1 0 0	1 0 1 1	1 1 0 0								
-5	1 1 0 1	1 0 1 0	1 0 1 1								
-6	1 1 1 0	1 0 0 1	1 0 1 0								
-7	1 1 1 1	1 0 0 0	1 0 0 1								
-8			1 0 0 0	29							