Regression Analysis

Linear Regression

Linear Regression is a process where there exists a linear relationship between independent variable X and dependent variable Y

$$y=f(X)$$

 \mathbf{W} here

X =Independent Variable or features

y =Dependent variable or target.

ż Experience in years

20000 -

Ó

Salary in \$	Experience in Years
20000	0
40000	1
60000	2
80000	3
100000	4

For the Salary dataset

$$Salary = f(Experience)$$

$$y = mX + b$$

$$y = wX + w_0$$

$$y=w_0+wX$$
 \longrightarrow Standard Regression Equation

Where

$$w_0 = \text{Bias}.$$

w =weight associated with X

Simple Linear Regression

Simple Linear Regression

Salary in \$	Experience in Years
20000	0
40000	1
60000	2
80000	3
100000	4

Salary Dataset

$$y = w_0 + wX$$

Where

$$w_0 = \text{Bias.}$$

 $w = \text{weight associated with } X$

Multiple Linear Regression

Multiple Linear Regression

Salary in \$	Experience in Years X_1	Years of Education X_2
20000	0	16
40000	1	16
60000	2	16
100000	3	18
140000	4	18

$$y = w_0 + w_1 X_1 + w_2 X_2$$

Where

 $w_0 = \text{Bias}.$

 w_1 = weight associated with X_1

 w_2 = weight associated with X_2

Evaluation Metrics For Regression

Evaluation Metrics

- Root Mean Square Error
- Mean Absolute Error
- \bullet R^2

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - y_{pred})^2}$$

RMSE tells us how far apart the predicted values are from the observed values in a dataset, on average. The lower the RMSE, the better a model fits a dataset

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y - y_{pred}|$$

 R^2

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum_{i=1}^{n} (y - y_{pred})^{2}}{\sum_{i=1}^{n} (y - y_{mean})^{2}}$$

This value ranges from 0 to 1.

The higher the R2 value, the better a model fits a dataset.

 R^2 will be negative if the model prediction is bad i.e the sum of square error is large as compare to sum of total error.

Thank You!

Thank You!