Artificial Intelligence CSC 361

Tutorial Informed Search

Question 1:Consider the search space of Figure 1, where state **a** is the initial state and **g** is the goal state. Table 1 gives a list of heuristic functions for this space.

1. For each function, tell whether it is admissible.

States	h1	h2	h3	h4	h5	h6
a	6	6	5	5	7	5
b	3	5	2	3	3	4
c	2	3	1	2	2	2
d	0	2	3	1	1	1
e	1	1	1	1	1	1
f	1	2	1	1	1	1
g	0	0	0	1	0	0

Table 1: Heuristics for the search space of Figure 1

Answer

- 1. Applying the definitions, we get:
- °Admissible functions: h1, h2, h6.

Question 2:

Use **h**₆ to Find:

- •the order of node expansion
- the final fringe
- othe solution path,
- •the solution cost

Using each of the following 2 strategies:

- °1. Greedy best first search
 - 2. A*

Greedy best-first

Tree Search				
the order of node expansion	a, c, d.			
the final fringe	{e, e, b}.			
the solution path,	(a, c, d, g)			
the solution cost	6 Fringe			

A)0+5

A - 7

0° F A C b

6=2+4

Tree Search				
the order of node expansion	a, c, d, b, e			
the final fringe	$\{c_6, g_6, e_7, f_7, d_8\}.$			
the solution found,	(a, c, d, g).			
the cost of the solution	6			

Question 2

- 1. Describe a heuristic function that will make A* search behave like uniform-cost search for a given cost function.
 - h = 0 for all nodes.
- 2. Describe a heuristic function that will make greedy search behave like breadth- first search
- The depth function.

تَعْرِج اللَّي عَنِرِي رَيْبِيًّ أَوْلِ