FCC TEST REPORT(Bluetooth)

for

Guoguang Electric Co.,Ltd.

2.1 Sound Bar System

Model Number: ESB205

FCC ID: 2AAP8ESB205

Prepared for : Guoguang Electric Co.,Ltd.

Address : No.8 Jinghu Road, Xinhua Street, Huadu Reg,

Guanzhou, China

Prepared by : Keyway Testing Technology Co., Ltd.

Address : Building 1, Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 15KWE072817F

Date of Test : Oct.12~15, 2015

Date of Report : Oct.16, 2015

TABLE OF CONTENTS

Test	t Report Declaration	Page
1.	TEST SUMMARY	4
2.	GENERAL PRODUCT INFORMATION	5
2.1	1. Product Function	5
2.2		
2.3	• • • • • • • • • • • • • • • • • • • •	
2.4	4. Independent Operation Modes	5
2.5		
2.6		
2.7		
3.		
3.1	Principle of Configuration Selection	8
3.2	J I	
3.3	: · · · · · · · · · · · · · · · · · · ·	
3.4	, , , , , , , , , , , , , , , , , , ,	
3.5		
3.6		
	MAXIMUM PEAK OUTPUT POWER	
4.		
	2. Test Procedure	
	3. Test setup	
_	EMISSION TEST RESULTS	
5.		
5.2		
_	20DB BANDWIDTH	
6.1		
6.2		
7.	FREQUENCY SEPARATION	
7.		
	2. Test setup	
8.	NUMBER OF HOPPING FREQUENCY	39
٠.	1. Limits	39
8.2	2. Test setup	39
9.	DWELL TIME	41
9.1	1. Limits	41
9.2	2. Test setup	41
10.	BAND EDGE COMPLIANCE TEST	48
10).1. Limits	48
10	0.2. Test setup	
	0.3.Test Procedure	
11.	ANTENNA REQUIREMENTS	57
11	I.1. Limits	57
11	I.2. Result	
12.	PHOTOGRAPHS OF TEST SET-UP	58
13.	PHOTOGRAPHS OF THE EUT	
. • .		

FCC ID: 2AAP8ESB205

Keyway Testing Technology Co., Ltd.

Applicant: Guoguang Electric Co.,Ltd.

Address:

No.8 Jinghu Road, Xinhua Street, Huadu Reg,

Guanzhou, China

Manufacturer: Guoguang Electric Co.,Ltd.

Address: No.8 Jinghu Road, Xinhua Street, Huadu Reg,

Guanzhou, China

E.U.T: 2.1 Sound Bar System

Model Number: ESB205

Trade Name: element Serial No.: -----

Date of Receipt: Oct.12, 2015 **Date of Test:** Oct.12~15, 2015

Test Specification: FCC Part 15, Subpart C Section 15.247: 2014

ANSI C63.10:2013

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Issue Date: Oct.16, 2015

Tested by: Reviewed by: Approved by:

Daisy Chen / Engineer Andy Gao / Supervisor

Other Aspects:

None.

Abbreviations: OK/P=passed fail/F=failed n.a/N=not applicable E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1. TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emissions	15.207	PASS
Radiated Emissions	15.205(a)/15.209	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Emissions from out of band	15.247(d)	PASS
Antenna Requirement	15.203	PASS

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	2.1 Sound Bar System
Model No.:	ESB205
Operation Frequency:	2402MHz ~2480MHz
Channel numbers:	79 Channels
Channel spacing	1MHz
Modulation technology:	BT(1Mbps): GFSK BT EDR(2Mbps): π/4-DQPSK BT EDR(3Mbps): 8-DPSK
Bit Rate of Transmitter	1Mbps/2Mbps/3Mbps
Antenna Type:	PCB
Antenna gain:	0dBi
Power supply:	AC 120V/60Hz
BT Version:	V3.0
HW:	M2-SB206-MAIN902051A0
SW:	M2-SB206-MAIN902051A0

2.3. Difference between Model Numbers

None.

2.4. Independent Operation Modes

The basic operation modes are:

2.4.1. EUT work continues TX mode and frequency as below:

Channel	Frequency	
Low	2402MHz	
Middle	2441MHz	
High	2480MHz	

2.5. Test Supporting System

None.

FCC ID: 2AAP8ESB205

2.6. Test Facilities

Lab Qualifications: 944 Shielded Room built by ETS-Lindgren, USA

Date of completion: March 28, 2011

966 Chamber built by ETS-Lindgren, USA

Date of completion: March 28, 2011

Certificated by TUV Rheinland, Germany.

Registration No.: UA 50207153 Date of registration: July 13, 2011

Certificated by UL, USA Registration No.: 100567-237

Date of registration: September 1, 2011

Certificated by Intertek

Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011

Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

Name of Firm : Keyway Testing Technology Co., Ltd.

Site Location : Building 1, Baishun Industrial Zone, Zhangmutou

Town, Dongguan, Guangdong, China

FCC ID: 2AAP8ESB205

2.7. List of Test and Measurement Instruments

2.7.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 27,15	Apr. 27,16
Artificial Mains Network	Rohde&Schwarz	ENV216	101315	Apr. 27,15	Apr. 27,16
Artificial Mains Network (AUX)	Rohde&Schwarz	ENV216	101314	Apr. 27,15	Apr. 27,16
RF Cable	FUJIKURA	3D-2W	944 Cable	Apr. 27,15	Apr. 27,16

2.7.2. For radiated emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 27,15	Apr. 27,16
Bilog Antenna	ETS-LINDGREN	3142D	00135452	Apr. 27,15	Apr. 27,16
Loop Antenna	ARA	PLA-1030/B	1029	Apr. 22,15	Apr. 22,16
Spectrum Analyzer	Agilent	8593E	3911A04271	Apr. 27,15	Apr. 27,16
3m Semi-anechoic Chamber	ETS-LINDGREN	966	KW01	Apr. 27,15	Apr. 27,16
Signal Amplifier	SONOMA	310	187303	Apr. 27,15	Apr. 27,16
RF Cable (9kHz~1GHz)	IMRO	IMRO-400	966 Cable 1#	Apr. 27,15	Apr. 27,16
MULTI-DEVICE Controller	ETS-LINDGREN	2090	126913	Apr. 27,15	Apr. 27,16
Antenna Holder	ETS-LINDGREN	2070B	00109601	Apr. 27,15	Apr. 27,16
Horn Antenna	DAZE	ZN30701	11003	N/A	N/A
Signal Amplifier	DAZE	ZN3380C	11001	Apr. 27,15	Apr. 27,16
RF Cable (1G~25GHz)	IMRO	IMRO-401	966 Cable 1#	Apr. 27,15	Apr. 27,16
MULTI-DEVICE Controller	ETS-LINDGREN	2090	126913	Apr. 27,15	Apr. 27,16
Antenna Holder	ETS-LINDGREN	2070B	00109601	Apr. 27,15	Apr. 27,16
temporary antenna connector	ATM	R-00	3567	Oct. 08,15	Nov. 07,15

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3. TEST SET-UP AND OPERATION MODES

3.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

3.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

(EUT: 2.1 Sound Bar System)

3.3. Test Operation Mode and Test Software

We can use a Test Software on PC control the EUT working on different channel and packet size by programmer.

3.4. Special Accessories and Auxiliary Equipment None.

3.5. Countermeasures to Achieve EMC Compliance None.

3.6. Test Environment:

Ambient conditions in the test laboratory:

Items	Actual	
Temperature (°ℂ)	21~23	
Humidity (%RH)	50~65	

4. MAXIMUM PEAK OUTPUT POWER

4.1. Limits

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Frequency Range (MHz)	Result			
15.247 (b)(i)	Peak Output Power	0.125 w or 20.96dBm	2400-2483.5	PASS		

4.2. Test Procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW > the 20 dB bandwidth of the emission being measured
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel VBW ≥ RBW
 Sweep = auto

Detector function = peak

Trace = max hold

4.3. Test setup

Test data:

1Mbps						
Test Channel	Frequency	Peak Output Power	LIMIT			
Test Charmer	(MHz)	(dBm)	(dBm)			
CH00	2402	-3.550	30			
CH39	2441	-3.132	30			
CH78	2480	-3.190	30			
		2Mbps				
CH00	2402	-4.596	20.96			
CH39	2441	-4.08	20.96			
CH78	2480	-3.987	20.96			
	3Mbps					
CH00	2402	-4.363	20.96			
CH39	2441	-3.851	20.96			
CH78	2480	-3.657	20.96			

5. EMISSION TEST RESULTS

5.1. Conducted Emission at the Mains Terminals Test

5.1.1. Limit 15.207 limits

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)	
	Quasi-peak	Average
0.15-0.5 0.5-5	66 to 56 56	56 to 46 46
5-30	60	50

5.1.2. Test Setup

The EUT was put on a wooden table which was 0.8 m high above the ground and connected to the AC mains through the Artificial Mains Network (AMN). Where the mains cable supplied by the manufacture was longer than 0.8 m, the excess was folded back and forth parallel to the cable at the center so as to form a bundle no longer than 0.4 m.

The EUT was kept 0.4 m from any other earthed conducting surface. Both sides of AC line were checked to find out the maximum conducted emission levels according to the test procedure during the conducted emission test.

The frequency range from 150 kHz to 30 MHz was investigated.

The bandwidth of the test receiver was set at 9 kHz.

Pretest for all mode, The test data of the worst case condition(s) was reported on the following page.

The test voltage was AC 120V/60Hz.

5.1.3. Test result

	(2)	12 141	Limit		1261 18
	Freq	Level	Line	Limit	Remark
-	MHz	dBuV	dBuV	dB	
1	0.155	29.27	55.74	-26.47	Average
2	0.155	43.56	65.74	-22.18	QP
3	0.195	24.62	53.80	-29.18	Average
4	0.195	34.10	63.80	-29.70	QP
5	0.246	20.72	51.91	-31.19	Average
6	0.246	28.60	61.91	-33.31	QP
7	0.320	21.76	49.71	-27.95	Average
8	0.320	23.40	59.71	-36.31	QP
9	0.564	15.81	46.00	-30.19	Average
10	0.564	22.60	56.00	-33.40	QP
11	0.928	18.16	46.00	-27.84	Average
12	0.928	19.80	56.00	-36.20	OP

	Freq	Level	Limit Line	100 SE SE	Remark
· ·	MHz	dBuV	dBuV	——dB	-
1	0.165	27.61	55.21	-27.60	Average
2	0.165	42.26	65.21	-22.95	QP
3	0.190	21.36	54.02	-32.66	Average
4	0.190	35.20	64.02	-28.82	QP
5	0.235	19.73	52.26	-32.53	Average
6	0.235	32.60	62.26	-29.66	QP
7	0.320	25.04	49.71	-24.67	Average
8	0.320	30.40	59.71	-29.31	QP
9	0.549	19.19	46.00	-26.81	Average
10	0.549	26.40	56.00	-29.60	QP
11	0.928	18.62	46.00	-27.38	Average
12	0.928	20.50	56.00	-35.50	QP

Note: Mode 1Mbps middle channel is the worst mode. the worst data was show in the report.

5.2. Radiated Emission Test

5.2.1. Limit 15.209 limits

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMI	
MHz	Meters	$\mu V/m$	dB(μV)/m
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV	/)/m (Peak)
		54.0 dB(μV	V)/m (Average)

5.2.2. Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

5.2.3. Test setup

The EUT was placed on a turn table which was 0.8 m for below 1GHz above the ground and 1.5m for above 1GHz. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissionsat the specified measurement distance, while keeping the measurement antenna aimed at the source ofemissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiationpattern of the emission and staying aimed at the emission source for receiving the maximum signal. Thefinal measurement antenna elevation shall be that which maximizes the emissions. The measurementantenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 mabove the ground or reference ground plane.

The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector.

The bandwidth of the EMI test receiver is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz, the EUT was placed on a turn table which was 1.5 m above the ground. for all test, used peak detector.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Notes: 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading-Preamp Factor.

- 2. Measurement Uncertainty: ±3.2 dB at a level of confidence of 95%.
- 3. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 4. For emissions below 1GHz, pretest for all mode, The test data of the worst case condition(s) was reported on the following pages.
- 5: we pretest 3 packages DH1, DH3, DH5, package DH5 is largest; we are testing DH5 in the report.
- 6:We pretest all modulation, The worst was GFSK, the worst data was show in the report.

Radiated Emission Test-Up Frequency Below 30MHz

Below 1GHz

Above 1GHz

Below 30MHz

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Below 1GHz Vertical

		Freq	Preamp Factor		Cable Loss		Limit Line		Remark
		MHz	dB	dBuV	dB	dBuV/m	dBuV/m	dB	·
1		37.76	31.36	46.74	0.56	30.16	40.00	-9.84	QP
2		70.74	31.32	52.35	0.85	29.42	40.00	-10.58	QP
3		86.26	31.35	55.65	0.94	33.93	40.00	-6.07	QP
4	1	105.66	31.33	58.75	1.03	37.88	43.50	-5.62	QP
5		136.70	31.20	52.12	1.12	30.41	43.50	-13.09	QP
6		396.66	30.63	42.65	2.37	30.67	46.00	-15.33	QP

Note: Mode 1Mbps(low CH) is the worst mode.

ABOVE 1G

Frequency (MHz)	Reading (dBµV)	Factor (dB)	Corrected Amplitude (dBµV/m)	Limit(dBµV/m)	Margin (dB)	Remark	Polar (H/V)
			low chann	el(2402MHz)			
4804.000	45.46	10.12	55.58	74	-18.42	Pk	Vertical
4804.000	34.23	10.12	44.35	54	-9.65	AV	Vertical
7206.000	43.41	12.05	55.46	74	-18.54	Pk	Vertical
7206.000	32.25	12.05	44.30	54	-9.70	AV	Vertical
4804.000	47.25	10.12	57.37	74	-16.63	Pk	Horizontal
4804.000	35.12	10.12	45.24	54	-8.76	AV	Horizontal
7206.000	46.55	12.05	58.6	74	-15.4	Pk	Horizontal
7206.000	33.52	12.05	45.57	54	-8.43	AV	Horizontal
Middle channel(2441MHz)							
4882.000	52.15	10.42	62.57	74	-11.43	Pk	Vertical
4882.000	36.33	10.42	46.75	54	-7.25	AV	Vertical
7323.000	45.37	12.81	58.18	74	-15.82	Pk	Vertical
7323.000	33.16	12.81	45.97	54	-8.03	AV	Vertical
4882.000	54.54	10.42	64.96	74	-9.04	Pk	Horizontal
4882.000	35.12	10.42	45.54	54	-8.46	AV	Horizontal
7323.000	48.28	12.81	61.09	74	-12.91	Pk	Horizontal
7323.000	34.13	12.81	46.94	54	-7.06	AV	Horizontal
			High chanı	nel(2480MHz)			
4960.000	46.32	10.48	56.8	74	-17.2	Pk	Vertical
4960.000	35.24	10.48	45.72	54	- 8.28	AV	Vertical
7440.000	46.55	12.87	59.42	74	-14.58	Pk	Vertical
7440.000	35.64	12.87	48.51	54	- 5.49	AV	Vertical
4960.000	45.64	10.48	56.12	74	-17.88	Pk	Horizontal
4960.000	36.24	10.48	46.72	54	-7.28	AV	Horizontal
7440.000	43.56	12.87	56.43	74	-17.57	Pk	Horizontal
7440.000	35.32	12.87	48.19	54	-5.81	AV	Horizontal

Note: Mode 1Mbps is the worst mode.

6.20DB BANDWIDTH

6.1. Limits

According to FCC Section 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth(10*log1%=20dB)taking the RF output power

6.2. Test setup

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, During the measurement, the Bluetooth module of the EUT is activated and controlled by the software.
- 2. Set the spectrum analyzer:

Span: approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel RBW ≥1% of the 20dB bandwidth

VBW ≥ RBW

Sweep=auto

Detector function=peak

Trace=max hold

EUT	SPECTRUM
	ANALYZER

Test data:

EUT:	2.1 Sound Bar System	Model Name :	ESB205
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	AC 120V
Test Mode :	CH00 / CH39 /C78 (1Mbps)		

Frequency	20dB Bandwidth (kHz)	Result
2402 MHz	872.067	PASS
2441 MHz	866.957	PASS
2480 MHz	886.913	PASS

Test plot as follows:

Page 26 of 71

EUT:	2.1 Sound Bar System	Model Name :	ESB205
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	AC 120V
Test Mode :	CH00 / CH39 /C78 (2Mbps)		

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.212	PASS
2441 MHz	1.203	PASS
2480 MHz	1.219	PASS

EUT:	2.1 Sound Bar System	Model Name :	ESB205
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	AC 120V
Test Mode :	CH00 / CH39 /CH78(3Mbps)		

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.211	PASS
2441 MHz	1.228	PASS
2480 MHz	1.215	PASS

7. FREQUENCY SEPARATION

7.1. Limits

According to FCC Section 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

7.2. Test setup

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, During the measurement, the Bluetooth module of the EUT is activated and controlled by the software, and is set to operate under test mode.
- 2. Set the spectrum analyzer:

Span: wide enough to capture the peaks of two adjacent channels

RBW ≥1% of the span(30KHz)

 $VBW \ge RBW(100KHz)$

Sweep=auto

Detector function=peak

Trace=max hold

Test data:

EUT:	2.1 Sound Bar System	Model Name :	ESB205
Temperature :	24 ℃	Relative Humidity:	58%
Pressure :	1010hPa	Test Voltage :	AC 120V
Test Mode :	CH00 / CH39 /CH78(1Mbps)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.000	Complies
2441 MHz	1.005	Complies
2480 MHz	1.005	Complies

Ch. Separation Limits: > 20dB bandwidth

Test plot as follows:

EUT:	2.1 Sound Bar System	Model Name :	ESB205
Temperature :	24 ℃	Relative Humidity :	58%
Pressure :	1010 hPa	Test Voltage :	AC 120V
Test Mode :	CH00 / CH39 /CH78 (2Mbps)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.006	Complies
2441 MHz	1.000	Complies
2480 MHz	1.000	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth

EUT:	2.1 Sound Bar System	Model Name :	ESB205
Temperature :	24 ℃	Relative Humidity :	58%
Pressure :	1010 hPa	Test Voltage :	AC 120V
Test Mode :	CH00 / CH39 /CH78(3Mbps)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.000	Complies
2441 MHz	1.013	Complies
2480 MHz	1.000	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth

FCC ID: 2AAP8ESB205

8. NUMBER OF HOPPING FREQUENCY

8.1. Limits

According to FCC Section 15.247(a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

8.2. Test setup

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, During the measurement, the Bluetooth module of the EUT is activated and controlled by the software, and is set to operate under test mode.
- 2. Set the spectrum analyzer:

Span: the frequency band of operation

RBW =100KHz

VBW=300KHz

Sweep=auto

Detector function=peak

Trace=max hold

Test data:

Measured channel numbers	Limit	Result	
79	>15	PASS	

Test plot as follows:

NOTE: GFSK is the worst. the worst data was show in the report.

9. DWELL TIME

9.1. Limits

According to FCC Section 15.247(a)(1)(iii), Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

9.2. Test setup

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, During the measurement, the Bluetooth module of the EUT is activated and controlled by the software, and is set to operate under test mode power.

2. Set the spectrum analyzer:

Span= 0Hz,RBW =1000 kHz, VBW = 3000 kHz

Use a video trigger with the trigger level set to enable triggering only on full pulses.

Detector function=peak, Sweep Time is more than once pulse time.

Set the EUT for DH5, DH3 and DH1 packet transmitting

Measure the maximum time duration of one single pulse.

A Period Time = (channel number)*0.4

DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)
DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)
DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

Test data:

Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
		(ms)	(s)	(s)
DH1	2441 MHz	0.48	0.15	0.4
2DH1	2441 MHz	0.48	0.15	0.4
3DH1	2441 MHz	0.46	0.15	0.4

Test plot as follows as below:

Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
		(ms)	(s)	(s)
DH3	2441 MHz	1.71	0.27	0.4
2DH3	2441 MHz	1.73	0.28	0.4
3DH3	2441 MHz	1.71	0.27	0.4

Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
		(ms)	(s)	(s)
DH5	2441 MHz	2.95	0.31	0.4
2DH5	2441 MHz	2.96	0.32	0.4
3DH5	2441 MHz	2.96	0.32	0.4

Signal Track

Scale Type

10. BAND EDGE COMPLIANCE TEST

10.1. Limits

According to FCC Section 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement

10.2. Test setup

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

10.3.Test Procedure

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

For radiated test

- f) The EUT was placed on a turn table which was 1.5 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.
- g) The bandwidth of the Spectrum's setting.
- h) For the radiated test of band-edge above 1GHz:
- i) Restricted band: RBW=1MHz, VBW=3MHz
- j) Non-restricted band: RBW=100kHz, VBW=300kHz
- k) For all tests, it used peak detector.

Test plot as follows:

For radiated test as follows:

	Frequency (MHz)	Antenna polarization	Emission (dBuV/m)	Band ed (dBu)	-	Result
		(H/V)	PK	PK	AV	Pass
	•	1M		•		
	2400	Н	51.09	74.00	54.00	Pass
Hopping	2400	V	51.12	74.00	54.00	Pass
Поррінд	2483.5	Н	51.31	74.00	54.00	Pass
	2483.5	V	50.45	74.00	54.00	Pass
	2400	Н	52.52	74.00	54.00	Pass
Unhonning	2400	V	53.21	74.00	54.00	Pass
Unhopping	2483.5	Н	51.35	74.00	54.00	Pass
	2483.5	V	52.16	74.00	54.00	Pass
		2M				
	2400	Н	52.12	74.00	54.00	Pass
I I a se a tra se	2400	V	51.14	74.00	54.00	Pass
Hopping	2483.5	Н	51.54	74.00	54.00	Pass
	2483.5	V	52.22	74.00	54.00	Pass
	2400	Н	52.21	74.00	54.00	Pass
Hali and bar	2400	V	53.56	74.00	54.00	Pass
Unhopping	2483.5	Н	52.15	74.00	54.00	Pass
	2483.5	V	52.13	74.00	54.00	Pass
		3M	<u>l</u>	1		
	2400	Н	51.23	74.00	54.00	Pass
I I amount	2400	V	50.11	74.00	54.00	Pass
Hopping	2483.5	Н	50.32	74.00	54.00	Pass
	2483.5	V	50.23	74.00	54.00	Pass
	2400	Н	51.21	74.00	54.00	Pass
	2400	V	53.04	74.00	54.00	Pass
Unhopping	2483.5	Н	51.38	74.00	54.00	Pass
	2483.5	V	52.23	74.00	54.00	Pass

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

Page 49 of 71

For conducted test:

Frequency Band MHz	Delta Peak to band emission (dBc)	> Limit (dBc)	Result			
	GFSK Non-hopp	ing				
2400	43.78	20	Pass			
2483.5	55.25	20	Pass			
	π/4-DQPSK Non-ho	ppping				
2400	46.39	20	Pass			
2483.5	53.44	20	Pass			
	8DPSK Non-hopping					
2400	45.51	20	Pass			
2483.5 53.00		20	Pass			
GFSK hopping						
2400	47.96	20	Pass			
2483.5 51.32		20	Pass			
π/4-DQPSK hopping						
2400 47.19		20	Pass			
2483.5 53.28		20	Pass			
8DPSK hopping						
2400	47.80	20	Pass			
2483.5 51.71		20	Pass			

BDR mode (GFSK): Band Edge-Right Side

NOTE: Hopping enabled and disabled have evaluated, and the worstest data was reported

11. ANTENNA REQUIREMENTS

11.1.Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2. Result

The antennas used for this product are Permanently fixed antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0.0dBi.

12. PHOTOGRAPHS OF TEST SET-UP

Conducted Emission at the Mains Terminals Test

Radiated Emission Test

13. PHOTOGRAPHS OF THE EUT

-----End-----