

Valutazione degli investimenti

Evila Piva
Dipartimento di Ingegneria Gestionale
Politecnico di Milano
evila.piva@polimi.it

- Investimento: impiego di risorse finanziarie al fine di creare valore economico nel medio/lungo termine
- Esempi:
 - Es1: investo i miei risparmi nell'acquisto di una casa per affittarla Creazione di valore: aumento del "fatturato" → flusso positivo di denaro nel tempo (ogni mese ricevo il canone di affitto)
 - Es2: un'impresa investe in un macchinario che permette di ridurre i costi di produzione
 - Creazione di valore: riduzione dei costi e aumento degli utili
- Caratteristiche degli investimenti:
 - prevalenza di esborsi finanziari negli istanti iniziali
 - flussi finanziari netti positivi più concentrati negli istanti successivi
 - esistenza di un orizzonte temporale (tempo di vita utile)

L'investimento (2/2)

- Un'impresa può investire in:
 - 1. <u>attività reali</u> volte alla produzione di beni e servizi
 - Materiali: acquisto di un capannone, di un impianto,...
 - Immateriali: acquisto di un brevetto, di un software,...
 - 2. <u>attività finanziarie</u> → detenzione di titoli
 - Acquisto di partecipazioni (azioni di un'altra impresa)

Tipologie di investimento

- Espansione
- Sostituzione
- Automatizzazione
- Adozione di una nuova tecnologia
- Introduzione di nuovi prodotti/servizi

Valutazione degli investimenti

- Valutazione degli investimenti: verifica dell'impatto che un determinato investimento ha sulla struttura adottante (impresa, ma anche individuo o ente pubblico)
- Obiettivo della valutazione: generare informazione sufficiente per poter allocare le risorse
 - ai <u>soli</u> progetti che generano valore (cioè per cui la differenza tra benefici e costi dell'iniziativa è positiva)
 - ai progetti che generano <u>maggior</u> valore
- Problemi da risolvere in sede di valutazione degli investimenti:
 - Come valutare costi e benefici differiti?
 - Come tener conto di eventuali vincoli di budget?

Esistono due situazioni tipo

- Investimenti non obbligati: casi in cui l'impresa può o meno realizzare l'investimento
 - Tra le alternative vi è quella di non investire, il "caso base"
 - Le altre alternative sono analizzate in termini differenziali rispetto al caso base
- Investimenti obbligati: l'impresa può al più scegliere tra diverse alternative di investimento
 - "Caso base": una qualsiasi delle alternative di investimento

- Criteri di decisione: criteri che possono essere adottati per decidere
 - se sostenere o meno un investimento (criterio di accettazione)
 - quale sostenere tra investimenti tra loro mutuamente esclusivi (criterio di ordinamento)
- I criteri di decisione possono essere
 - <u>criteri deterministici</u>: quando valgono le seguenti ipotesi
 - gli investimenti sono tutti caratterizzati da un livello di rischio comparabile
 - gli investimenti non modificano la posizione di rischio dell'impresa
 - approcci pseudo-deterministici
 - approcci stocastici

- 1. Discounted Cash Flow (DCF): tengono conto della distribuzione nel tempo dei flussi di cassa
 - 1. Net Present Value (NPV) o Valore Attuale Netto (VAN)
 - Profitability Index (PI)
 - 3. Internal Rate of Return (IRR)
 - 4. Pay back attualizzato
- 2. Non Discounted Cash Flow (Non DCF): non tengono conto della distribuzione temporale dei flussi di cassa
 - 1. Pay back
 - 2. ROI

Net Present Value (NPV) o Valore Attuale Netto (VAN)

• Rappresenta l'<u>incremento di valore g</u>enerato dall'investimento:

NPV = valore generato – valore assorbito

ricavi addizionali
 generati dall'investimento

- costi dell'investimento
- NB: Entrano nella valutazione anche eventuali costi/benefici indiretti,
 l'impatto dell'investimento sulle attività già presenti nell'impresa
 - Costi eliminati grazie all'investimento → Ricavi differenziali
 - Riduzione dei ricavi per altri prodotti → Costi differenziali

Il ruolo del tempo nel calcolo del NPV

 La generazione e l'assorbimento di valore in genere sono distribuiti in più istanti temporali e, soprattutto, in più esercizi

• È necessario attualizzare i ricavi e i costi tenendo conto del rischio

- Attualizzazione: calcolo del valore ad oggi di flussi di cassa futuri tenendo conto:
 - della riduzione del valore del denaro nel tempo
 Un euro oggi vale più di un euro domani
 - della naturale avversione al rischio dei soggetti razionali
 Un euro sicuro vale più di un euro soggetto a rischio
- Con l'attualizzazione viene calcolato il NPV considerando.
 - Tasso barriera = tasso minimo di rendimento richiesto dall'investimento
 - Costo opportunità del capitale = remunerazione a cui si rinuncia investendo nel progetto piuttosto che in un investimento certo (titoli di stato)

L'attualizzazione: un esempio

- Un'impresa vorrebbe acquistare un immobile oggi a 550.000 € sapendo che potrà rivenderlo tra un anno a 600.000 €: conviene?
- Sommare semplicemente costi e ritorni non sarebbe corretto data la loro diversa collocazione del tempo

- Supponiamo che investendo i 550.000 € in titoli di stato l'impresa otterrebbe un rendimento annuo del 10%
 - Tra un anno l'impresa avrebbe 550.000*(1+0,1) = 605.000 €
 - → all'impresa non conviene acquistare l'immobile, ma le conviene investire in titoli di stato!

NPV: somma algebrica dei NCF attualizzati associati all'investimento

• NPV =
$$\sum_{t=0}^{\infty} \frac{NCF(t)}{(1+k)^t}$$
 oppure NPV = $\sum_{t=0}^{T} \frac{NCF(t)}{(1+k)^t} + \frac{V_T}{(1+k)^T}$

• Se l'investimento è concentrato all'inizio:

NPV =
$$\sum_{t=1}^{T} \frac{CF(t)}{(1+k)^{t}} + \frac{V_{T}}{(1+k)^{T}} - I_{0}$$

- I₀: esborso iniziale
- T: orizzonte temporale (può essere infinito)
- k: tasso di attualizzazione (per la costruzione, si vedano le slide di approfondimento)
- CF(t): flussi finanziari differenziali legati all'investimento
- V_T: valore residuo (valore terminale)
- Criterio di accettazione: NPV≥0
 Criterio di ordinamento: preferisco A a B se NPV_A>NPV_B

DCF: NPV - Esempio (1/2)

- II CEO di un'azienda intende acquistare un nuovo impianto e si interroga sulla convenienza dell'investimento.
- L'investimento ha un orizzonte temporale di 4 anni e dovrebbe generare i flussi di cassa riportati in tabella

Anno	Flusso
0	Uscita di 1.000.000 € per acquisto impianto
1	Ricavi aggiuntivi di 390.000 €
2	Ricavi aggiuntivi di 325.000 €
3	Ricavi aggiuntivi di 340.000 €
4	Ricavi aggiuntivi di 150.000 €

- Il valore residuo dell'impianto dovrebbe essere di 200.000 €
- Si utilizzi un tasso di attualizzazione del 10%

DCF: NPV - Esempio (2/2)

SOLUZIONE

NPV =
$$-1.000.000 + 390.000/(1+0,10) + 325.000/(1+0,10)^2 + 340.000/(1+0,10)^3 + 150.000/(1+0,10)^4 + 200.000/(1+0,10)^4 =$$

= $-1.000.000 + 354.545 + 268.525 + 255.447 + 239.054 = 117.571$

NPV>0 → Conviene acquistare l'impianto!

Per stimare i NCF occorre:

- partire dal <u>Conto Economico</u>
- valutare i flussi <u>incrementali</u>: calcolare i flussi rispetto al caso base
- considerare solo i flussi <u>non affondati</u>
 - Flussi affondati: ricavi/costi che l'impresa otterrà/dovrà sostenere indipendentemente dalla realizzazione dell'investimento
- considerare solo i flussi <u>effettivamente monetizzabili</u>
- adottare una <u>logica finanziaria</u>: ricavi e costi rientrano nel calcolo dei NCF nel momento in cui si manifesta l'entrata/uscita monetaria, non l'evento economico

E gli ammortamenti?

- In prima approssimazione non si considerano in quanto non rappresentano un'uscita monetaria
- <u>Se</u> esiste <u>imposizione fiscale</u> gli ammortamenti si considerano in quanto riducono l'utile e, quindi, le tasse

Stima dei NCF – Il ruolo dell'ammortamento Un'esempio (1/2)

- Si stima che l'acquisto di un nuovo macchinario nel 2018 nel corso del 2019 genererà:
 - un fatturato incrementale di 1.000.000 €
 - costi incrementali di 900.000 €
 - ammortamenti incrementali di 200.000 €
- L'aliquota fiscale è del 50% del risultato ante imposte
- Si valutino i NCF(2019) nel caso:
 - 1) risultato ante imposte dell'impresa al 2019 (caso base): 400.000 €
 - 2) risultato ante imposte dell'impresa al 2019 (caso base): 10.000 €

Stima dei NCF – Il ruolo dell'ammortamento Un'esempio (2/2)

SOLUZIONE

- NCF(2019) = fatturato incrementale costi incrementali imposte incrementali
- NCF (2019) = 1.000.000 900.000 0,5*(1.000.000 900.000 200.000) = 1.000.000 900.000 0,5*(-100.000) = 150.000 €
 Poiché l'impresa ha un risultato ante imposte positivo può sfruttare lo scudo fiscale degli ammortamenti
- 2) NCF (2019) = 1.000.000 900.000 = 100.000 €

 Essendo il risultato ante imposte già negativo, l'impresa non può sfruttare lo scudo fiscale

Approfondimento: Calcolo del tasso di attualizzazione k (1/3)

- I finanziatori associano ad ogni impresa un dato livello di rischio che dipende da:
 - tecnologie utilizzate
 - mercati serviti
 - Paesi in cui opera
 - leva finanziaria D/E
- In prima approssimazione, k è un dato per ciascuna impresa: ogni impresa valuta con il medesimo k tutti i possibili investimenti
- k dipende dalla struttura finanziaria dell'impresa esistono 2 logiche:
 - del capitale proprio
 - del capitale investito
- Si ipotizza che
 - i creditori chiedano un tasso di interesse *i* per il loro capitale di debito (oneri finanziari)
 - gli azionisti chiedano un rendimento s delle loro azioni

Approfondimento: Calcolo del tasso di attualizzazione k (2/3)

- Logica del capitale proprio: analisi dell'investimento da punto di vista dell'azionista
 - Tutti i flussi tra l'impresa e i finanziatori terzi rappresentano flussi finanziari per l'azionista

k è pari a s

Approfondimento: Calcolo del tasso di attualizzazione k (3/3)

- 2. Logica del capitale investito: considera tutti i finanziatori come parte di un unico sistema
 - I flussi tra l'impresa (azionisti) e i finanziatori terzi non vengono presi in considerazione

k è calcolato come media pesata di i e s

$$k = s^* \frac{E}{D + E} + i^* \frac{D}{D + E}$$

D: capitale di debito

E: capitale proprio

$$PI = \frac{\sum_{t=0}^{T} \frac{CF(t)}{(1+k)^{t}}}{\sum_{t=0}^{T} \frac{I(t)}{(1+k)^{t}}}$$

Criterio di accettazione: PI≥1

Criterio di ordinamento: preferisco A a B se Pl_A>Pl_B

$$PI = \frac{\sum_{t=0}^{T} \frac{NCF(t) + I(t)}{(1+k)^{t}}}{\sum_{t=0}^{T} \frac{I(t)}{(1+k)^{t}}} = \frac{NPV}{\sum_{t=0}^{T} \frac{I(t)}{(1+k)^{t}}} + 1$$

- Quando si valuta la convenienza di <u>un investimento</u> NPV e PI danno le <u>stesse indicazioni</u>
- Quando si confrontano <u>due (o più) investimenti</u> NPV e PI <u>possono</u> dare indicazioni <u>diverse</u>

- Investimenti non obbligati: confronto tra 2 alternative di investimento
- Flussi incrementali rispetto al caso base (di non investimento)

	Alternativa 1	Alternativa 2	
I ₀ (migliaia €)	100	400	
CF totali già attualizzati (migliaia €)	120	440	
NPV (migliaia €)	20	40	
PI	1,2	1,1	

- Criterio NPV: è preferibile l'alternativa 2 (NPV₂=40 > NPV₁=20)
 Criterio PI: è preferibile l'alternativa 1 (PI₁=1,2 > PI₂=1,1)
- Perché questa differenza?
 Perché PI è un criterio relativo mentre NPV è un criterio assoluto
- PI è da preferirsi rispetto a NPV in presenza di vincoli di budget

 Internal Rate of Return (IRR) o Tasso Interno di Rendimento (TIR): tasso di attualizzazione che rende uguale a zero NPV

$$\sum_{t=0}^{T} \frac{NCF(t)}{(1+IRR)^{t}} = 0$$

Criterio di accettazione: IRR≥k

Criterio di ordinamento: preferisco A a B se IRR_A>IRR_B

 Calcolare l'IRR significa risolvere un polinomio di grado T (T=orizzonte temporale considerato)...non sempre è possibile!

Quando si può usare il criterio IRR?

- TEOREMA DI CARTESIO: il numero di radici reali positive di un polinomio di grado n a coefficienti reali è minore o uguale del numero di variazioni di segno nella successione dei coefficienti
- Condizione sufficiente per l'esistenza di un'unica soluzione (e, dunque, per l'utilizzo del criterio IRR):
 - avere un'unica permutazione di segni nell'equazione di IRR
 - avere ritorni che coprono gli esborsi (altrimenti IRR<0)

- IRR e NPV portano a conclusioni discordanti quando le entrate anticipano le uscite
- ESEMPIO: investimento con esborso ritardato nel tempo: un'impresa acquista un macchinario nell'anno 0 ma lo paga nell'anno 1
 - Anno 0: ricavi derivanti dall'uso del macchinario pari a 1000 k€
 - Anno 1: ricavi derivanti dall'uso del macchinario pari a 300 k€, ma a fine anno l'impresa deve pagare 1500 k€ per il macchinario
 - NPV = $1000 + \frac{(300 1500)}{(1+k)}$ → funzione crescente di k
 - IRR: $1000 + \frac{(300 1500)}{(1 + IRR)} = 0 \rightarrow 1000 + 1000 IRR = 1200 \rightarrow IRR = 20\%$
 - Per IRR≥k (criterio di accettazione) NPV<0!
 Il criterio IRR porterebbe ad accettare investimenti con NPV<0

Quando le entrate anticipano le uscite il criterio IRR non è adatto

Due investimenti non obbligati alternativi generano i seguenti flussi incrementali

Anno	Alternativa A	Alternativa B	
0	0	0	
1	- 250.000 €	- 250.000 €	
2	130.000 €	200.000€	
3	130.000 €	200.000€	
4	200.000€	100.000 €	
5	200.000€	100.000 €	

 Valuto quale sia l'alternativa più conveniente adottando i criteri NPV (con k=10%) e IRR

Alternativa A		Alternativa B
NPV	238.623 €	218.673 €
IRR	48,1%	57,3%

- Criterio NPV: è preferibile l'alternativa A (NPV_A=238.623 > NPV_B=218.673)
 Criterio IRR: è preferibile l'alternativa B (IRR_B=57,3% > IRR_A=48,1%)
- Perché questa differenza?
 Perché esiste una diversa distribuzione temporale dei flussi di cassa
- IRR penalizza maggiormente gli investimenti con ritorni finanziari concentrati verso la fine dell'orizzonte temporale considerato

- Nella valutazione di investimenti alternativi IRR e NPV portano a conclusioni
 - discordanti quando k < F
 - identiche quando k > F
- F prende il nome di punto di Fisher

 Tempo di pay back (recupero) attualizzato (PB): tempo necessario affinché i flussi di cassa generati dall'investimento compensino il capitale versato

$$\sum_{\zeta=0}^{PB} \frac{NCF(\zeta)}{(1+k)^{\zeta}} = 0$$

$$NPV_{t}$$
L'investimento a questo stato di maturità distrugge valore

$$NPV_{t}$$

$$V_{t}$$

Criterio di accettazione: PB<valore soglia (fissato dall'impresa)
 Criterio di ordinamento: preferisco A a B se PB_A<PB_B

I flussi di cassa attualizzati di due investimenti alternativi sono:

	0	1	2	3	4
Alternativa A	- 2 mln €	2 mln €	0,3 mln €		
Alternativa B	- 2 mln €	1 mln €	1 mln €	0,3 mln €	0,3 mln €

• $PB_A=1$ anno

PB_B=2 anni

Criterio **PB**: è preferibile l'alternativa **A** (PB_A<PB_B)

• NPV_A= -2+2+0,3 = 0,3 mln €

 $NPV_B = -2+1+1+0,3+0,3 = 0,6 \text{ mIn } \in$

Criterio **NPV**: è preferibile l'alternativa **B** (NPV_B>NPV_A)

Criteri DCF: tempo di pay back attualizzato Pro e contro del criterio

- È un criterio cautelativo
- È utile come indicatore complementare a NPV:
 - NPV misura la redditività
 - PB misura la liquidità
- Pro: il criterio ben si applica in caso di bassa visibilità del futuro
- Contro: il criterio mal si applica:
 - agli investimenti strategici che richiedono tempi di attivazione lunghi
 - agli investimenti marginali

 Tempo di pay back (TPB): momento in cui i flussi di cassa generati dall'investimento coprono l'esborso iniziale

$$\sum_{\zeta=0}^{\text{TPB}} \text{NCF}(\zeta) = 0$$

- Criterio di accettazione: TPB<valore soglia (fissato dall'impresa)
 Criterio di ordinamento: preferisco A a B se TPB_A<TPB_B
- Pro e contro
 - Pro: semplicità
 - Contro: si sottostima il tempo necessario per il reale ripagamento
 - Il criterio presenta inoltre i vantaggi e svantaggi del tempo di pay back attualizzato

- ROI = $\frac{\text{risultato operativo medio}}{\text{investimento}}$
 - Il <u>risultato operativo medio</u> può essere calcolato come:
 - MON (Margine Operativo Netto) = Fatturato generato dall'investimento
 costi operativi generati dall'investimento
 - MOL (Margine Operativo Lordo) = MON + ammortamenti generati dall'investimento
 - L'<u>investimento</u> può essere calcolato:
 - come investimento iniziale
 - tenendo conto degli ammortamenti
- Criterio di accettazione: ROI>valore soglia (fissato dall'impresa)
 Criterio di ordinamento: preferisco A a B se ROI_A>ROI_B
- Contro
 - Si trascura l'aspetto finanziario
 - ROI è un criterio relativo che predilige investimenti più limitati

Analisi in condizioni di rischio

- Rischio di un investimento può assumere 3 diversi significati:
 - variabilità dei risultati futuri dell'investimento
 - 2. possibilità di scegliere un investimento che distruggerà valore
 - 3. possibilità di mettere in discussione la sopravvivenza dell'impresa
- In condizioni di rischio
 - è difficile prevedere i flussi di cassa futuri e il tasso di attualizzazione
 - NPV diventa:

NPV =
$$\sum_{t=0}^{T} \frac{NCF'(t)}{(1+i)^{t}}$$

con: NCF'(t): variabile casuale che esprime il valore di NCF in t i: tasso di attualizzazione *risk free*

Calcolo di NCF'(t) – scenario analysis (1/3)

- Partendo dall'analisi delle fonti di rischio
 - si individua un insieme di scenari possibili
 - a ciascuno scenario si associa la probabilità (stimata) che si verifichi
 - si stimano i possibili flussi di cassa futuri (valori attesi)
- ESEMPIO: nel valutare un progetto A il decisore individua tre scenari possibili
 - Scenario ottimistico (tutto va per il verso giusto)
 - Ritorno atteso anno 1: 1800 €
 - Probabilità di accadimento: 0,3
 - Scenario intermedio (qualcosa va storto)
 - Ritorno atteso anno 1: 1500 €
 - Probabilità di accadimento: 0,5
 - Scenario pessimistico (va tutto storto)
 - Ritorno atteso anno 1: 800 €
 - Probabilità di accadimento: 0,2

- NB. Le probabilità devono sommare a 1
 Nell'esempio: 0,3 (probabilità di accadimento di scenario A) + 0,5 (probabilità di accadimento di scenario B) + 0,2 (probabilità di accadimento di scenario C) = 1
- Si calcola NCF'(1), il net cash flow nell'anno 1, come media
 ponderata dei ritorni nei diversi scenari con pesi uguali alle probabilità
 di accadimento degli scenari
 Ritorno atteso = (1800*0,3 + 1500*0,5 + 800*0,2) =1450 €
- In generale:

$$NCF'(t) = \sum_{i=1}^{N} p_i^* NCF_i(t)$$

- p_i: probabilità che lo scenario i si verifichi
- NCF_i(t): flusso di cassa nello scenario i
- N: numero di possibili scenari

Calcolo di NCF'(t) – scenario analysis (3/3)

- Non sempre è possibile calcolare NCF'(t) come media ponderata con le probabilità perché risulta difficile individuare
 - tutti i possibili scenari
 - le loro probabilità di accadimento

per problemi di

- razionalità limitata
- costi superiori ai benefici
- A seconda del criterio di decisione si distingue tra
 - approcci pseudo-deterministici: NPV viene sostituito da una grandezza deterministica "equivalente"
 - approcci stocastici: NPV viene trattato come una variabile casuale a tutti gli effetti e si applicano ad esso i criteri usati per le variabili stocastiche (si vedano le slide di approfondimento)

Approcci pseudo-deterministici: CE

• Equivalente certo (CE): si sostituiscono ai flussi finanziari netti degli investimenti delle grandezze equivalenti "certe"

$$CE = \sum_{t=0}^{T} \frac{\alpha(t)^*E(NCF'(t))}{(1+i)^t}$$

dove:

- NCF'(t) = α *E(NCF'(t))
- E(NCF'(t)): valore atteso di NCF'(t)
- α(t): coefficiente di certezza
- Criterio di accettazione: CE≥0

Criterio di ordinamento: preferisco A a B se CE_A>CE_B

Il coefficiente di certezza α(t)

- Valore tra 0 e 1 definito dal decisore in funzione di:
 - caratteristiche dell'investimento
 - propensione al rischio del decisore
- Valore tale da rendere equivalente per il decisore:
 - Ricevere <u>sicuramente</u> al tempo t il flusso di cassa α(t)*E(NCF'(t)) < E(NCF'(t))
 - Prevedere di ricevere al tempo t il flusso di cassa E(NCF'(t)) ma con un certo rischio sulla sua consistenza effettiva

Approcci pseudo-deterministici: RAR

 Risk Adjusted Rate (RAR): il tasso di attualizzazione viene modificato in funzione del rischio

RAR=
$$\sum_{t=0}^{T} \frac{E(NCF'(t))}{(1+k')^{t}}$$

dove

k': tasso di attualizzazione specifico del singolo investimento

$$k' = i + a + d = k + d$$

- i: tasso risk free
- a: premio di rischio relativo al rischio medio dell'impresa (sempre >0)
- d: premio di rischio specifico dell'investimento (può essere positivo o negativo)
- Criterio di accettazione: RAR≥0
 - Criterio di ordinamento: preferisco A a B se RAR_A>RAR_B

Approcci pseudo-deterministici: confronto tra CE e RAR

- RAR
 - Pro: richiede la stima di un numero inferiore di parametri
 - Contro: penalizza in modo molto pesante i NCF più lontani nel tempo e quindi poco si addice agli investimenti caratterizzati da forte incertezza nei primi periodi
 - Es: lancio di un nuovo prodotto
- Quando utilizzare CE e quando RAR?
 - CE: investimenti in cui il rischio non subisce una costante amplificazione nel tempo
 - RAR: altri casi

Approfondimento: analisi di sensitività

- Analisi aggiuntiva utilizzata per la valutazione di investimenti in presenza di rischio
- Obiettivo:
 - individuare le variabili "critiche", cioè quelle le cui variazioni hanno effetti più significativi sul NPV
 - ripetere più volte la stima del NPV assegnando di volta in volta nuovi valori alle variabili di interesse
- Quali variabili possono essere considerate "critiche"?
 - Occorre considerare la caratteristiche dello specifico progetto
 - Criterio generale: considerare critiche le variabili per cui una variazione (positiva o negativa) del 1% dà luogo a una variazione del 5% del valore del NPV
- Passi per realizzare l'analisi: si vedano le slide di approfondimento

Approfondimento: analisi di sensitività Passi per realizzare un'analisi di sensitività (1/3)

1. Raggruppare tutte le variabili considerate per il calcolo del NPV (o di altri indicatori) in categorie omogenee

Variabili	Categorie
- Cambiamenti nel costo unitario dell'energia (costo a KW)	Dinamiche di prezzo
- Cambiamenti nel costo unitario delle materie prime	
- Cambiamenti nei salari	
- Tasso di crescita demografica	Dinamiche di domanda
- Tempo necessario per la lavorazione di una unità di prodotto	Produttività
- Quantità di materie prime per unità di prodotto	

- 2. Considerare per quanto possibile solo variabili indipendenti
 - Esempio: relazione tra tempo di produzione e quantità di materie prime usate

Approfondimento: analisi di sensitività Passi per realizzare un'analisi di sensitività (2/3)

3. Analisi qualitativa preliminare per selezionare le variabili più elastiche e realizzazione delle analisi successive per le sole variabili più elastiche

Variabili	Elasticità		
	Alta	Dubbia	Bassa
- Cambiamenti nel costo unitario dell'energia (costo a KW)			Х
- Cambiamenti nel costo unitario delle materie prime			X
- Cambiamenti nei salari		X	
- Tasso di crescita demografica			X
- Tempo necessario per la lavorazione di una unità di prodotto	X		
- Quantità di materie prime per unità di prodotto		X	

Approfondimento: analisi di sensitività Passi per realizzare un'analisi di sensitività (3/3)

4. Ricalcolare NPV assegnando di volta in volta nuovi valori alle variabili di interesse

APPROFONDIMENTI (NON RICHIESTI PER ESAME)

- Perpetuity:
 - investimento iniziale
 - flussi di cassa annuali non variano nel tempo

$$NPV = -I_0 + \frac{C}{(1+k)} + \frac{C}{(1+k)^2} + \frac{C}{(1+k)^3} + \dots = -I_0 + \frac{C}{k}$$

Esempio: $I_0 = 15.000$ € CF = 1.000 € k = 5% NPV = -15.000 + 1.000/0,05 = 5.000 €

Perpetuity con tasso di crescita g costante

$$NPV = -I_0 + \frac{C_1}{(1+k)} + \frac{C_1(1+g)}{(1+k)^2} + \frac{C_1(1+g)^2}{(1+k)^3} + \dots = -I_0 + \frac{C_1}{k-g}$$

1. *E(NPV)*: net present value atteso, somma dei valori attesi delle singole variabili componenti

$$E(NPV) = \sum_{t=0}^{T} \frac{E(NCF'(t))}{(1+i)^{t}}$$

- Indicatori di rischio
 - Indicatori associati a variabilità risultati
 - Varianza del NPV: σ²_{NPV} = E[(NPV E(NPV))²]
 - Deviazione standard del NPV: $\sigma_{NPV} = \sqrt{\sigma_{NPV}^2}$
 - Coefficiente di dispersione del NPV: Cd = σ_{NPV} /E(NPV)
 - Indicatori associati a possibilità di errore
 - Valore assunto da funzione di distribuzione F(NPV) per NPV=0
 - Indicatori associati a possibilità di mettere in discussione sopravvivenza impresa
 - Minimo di F(NPV)

Approccio stocastico (2/2)

- Si noti che l'approccio stocastico:
 - associa a un investimento più indicatori di prestazione
 - impone di prendere decisioni multi-obiettivo
- Per utilizzare questo approccio in fase di decisione si può ricorrere a:
 - dominanza stocastica
 - teoria dell'utilità