1.

$$8M = 2^3 * 20^{20}$$

= 2^{23} words
 $64K = 2^6 * 2^{10}$
= 2^{16} words

a)

block size =
$$32 = 2^5$$
 words frames in cache = $\frac{2^{16}}{2^5}$ = $2^{11} = 11$ bits for block frame #

TAG	BlockFrame #	Offset
7 bits	11 bits	5 bits

b)

23 bits		
TAG	Offset	
23 - m bits	m bits	

c)

number of BF's =
$$\frac{2^{16}}{2^6}$$

= 2^{10}
number of sets = $\frac{\text{number of BF's}}{\text{set size}}$
= $\frac{2^{10}}{2^2}$
= 2^8

23 bits				
TAG	Set #	Offset		
9 bits	8 bits	6 bits		

BF's in cache = 8
=
$$2^3$$

BF offset = 16
= 2^4
address size = $2^4 * 2^6$
= 2^{10}

a)

10 bits		
TAG	BF #	Offset
10 - 3 - 4 = 3 bits	3 bits	4 bits

b)

0x37A = 1101111010 since we have tag 110 in frame 7 we know that this word will be in cache because the block 110111 is in cache.

c)

0x22C = 1000101100 since we have tag 100 in frame 2 we know that this word will be in cache because the block 100010 is in cache.

c)

0x1B9 = 0110111001 since we have tag 010 in frame 3 we know that this word will not be in cache because the block 011011 is not in cache.

3.

number of BF's = 8
=
$$2^3$$

number of sets = $\frac{\text{number of BF's}}{\text{set size}}$
= $\frac{2^3}{2^1}$
= 2^2

a)

10 bits		
TAG	Set #	Offset
10 - 2 - 4 = 4 bits	2 bits	4 bits

b)

0x37A = 1101111010 since we have tag 1101 in a set 3 spot we know that this word will be in cache because the block 110111 is in cache.

c)

0x22C = 1000101100 since we have tag 1000 in a set 2 spot we know that this word will be in cache because the block 100010 is in cache.

c)

0x1B9 = 0110111001 since we have tag 0110 in a set 3 spot we know that this word will be in cache because the block 011011 is in cache.

4.

 $1M = 2^{20}$ words/address size $4K = 2^2 * 2^{10} = 2^{12}$ words/cache sizeBF's in cache $= \frac{2^{12}}{2^4} = 2^8$

a)

20 bits		
TAG	BF #	Offset
20 - 8 - 4 = 8 bits	8 bits	4 bits