CONCOURS EXTERNE POUR LE RECRUTEMENT D'ÉLÈVES ADMINISTRATEURS

et

CONCOURS D'ENTRÉE À L'ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ADMINISTRATION ÉCONOMIQUE (Option Économie)

La clarté et la rigueur des raisonnements, ainsi que la qualité de la rédaçtion (présentation, lisibilité, orthographe) seront des éléments importants d'appréciation des copies.

Il est notamment demandé aux candidats d'encadrer les résultats obtenus et de faire apparaître clairement les théorèmes utilisés et les points clés de leurs réponses.

En particulier pour les questions dont l'énoncé fournit la réponse, le détail des calculs ou des justifications doit figurer explicitement sur la copie.

AVERTISSEMENT: Il est rappelé à tous les candidats que le programme officiel de l'épreuve est le programme de Mathématiques des classes préparatoires au concours d'admission du groupe Sciences sociales (B/L) de la section des lettres de l'École normale supérieure, dites « Khagnes S ».

Toute résolution faisant appel à des résultats ne figurant pas explicitement à ce programme sera rejetée.

La durée de l'épreuve est de 4 heures. Le candidat devra traiter les deux problèmes, qui sont indépendants.

PROBLÈME - I

 $\mathcal{M}_2(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées de taille 2 à coefficients réels.

1° a) Montrer que l'ensemble

$$\mathcal{C} = \left\{ M(a,b) = \left(egin{array}{cc} a & -b \ b & a \end{array}
ight) \; , \; (a,b) \in \mathbb{R}^2
ight\}$$

est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.

Préciser sa dimension et en donner une base.

On considère l'application

$$\Phi: \quad C \longrightarrow \quad C$$

$$z = a + ib \longrightarrow M(a,b) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

où a et b désignent respectivement les parties réelle et imaginaire du nombre complexe z.

b) Montrer que, pour tous nombres complexes z et z' de \mathbb{C} , on a

$$\Phi(z+z') = \Phi(z) + \Phi(z')$$

$$\Phi(z \times z') = \Phi(z) \times \Phi(z').$$

En déduire que

$$(\forall z \in \mathbb{C}) (\forall p \in \mathbb{N}) \qquad \Phi(z^p) = [\Phi(z)]^p.$$

- c) L'application Φ est-elle un isomorphisme d'espaces vectoriels?
- **2°** a) Soit $\theta \in [0, 2\pi[$ et A la matrice

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} .$$

Pour $k \in \mathbb{N}$, calculer A^k . Le résultat obtenu est-il encore valable pour $k \in \mathbb{Z}$?

b) Soit $p \in \mathbb{N}^*$. Déterminer une matrice $M \in \mathcal{M}_2(\mathbb{R})$ telle que

$$M^p = J$$
, où $J = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$.

3° On considère l'application

$$f: \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P(X) & \longrightarrow & (1+X^2)P''(X) - 2XP'(X) \,. \end{array}$$

Soit $n \in \mathbb{N}^*$ et $E_n = \mathbb{R}_n[X]$ le sous-espace vectoriel de $\mathbb{R}[X]$ constitué des polynômes à coefficients réels de degré inférieur ou égal à n.

- a) Justifier que, pour tout $n \in \mathbb{N}^*$, la restriction f_n de f à E_n est un endomorphisme de E_n .
- **b**) Déterminer le noyau de f_n . Préciser sa dimension.
- c) Déterminer les valeurs propres de f_n et préciser leur multiplicité.
- **d**) L'endomorphisme f_n est-il diagonalisable?
- e) Soit $p \in \mathbb{N}^*$ un entier fixé. Déterminer un endomorphisme g_n de E_n tel que

$$g_n^p = g_n \circ g_n \circ \ldots \circ g_n = f_n$$

 $(g_n \text{ est composé } p \text{ fois})$. On pourra utiliser la question 2° . b).

PROBLÈME - II

Partie A

Pour $x \in \mathbb{R}$, on pose

$$L(x) = \int_0^{+\infty} t^x e^{-t} dt.$$

- 1° a) Déterminer le domaine de définition D de L.
 - **b**) Prouver que, pour tout $x \in D$, L(x+1) = (x+1)L(x).
 - c) Calculer L(n) pour $n \in \mathbb{N}$.
- 2° Prouver que, pour tous x > 0 et $\alpha \in]0,1[$, on a

$$\int_{x(1-\alpha)}^{x(1+\alpha)} t^x e^{-t} dt = \left(\frac{x}{e}\right)^x \int_{-\alpha x}^{+\alpha x} \left(1 + \frac{u}{x}\right)^x e^{-u} du. \tag{1}$$

- 3° a) Rappeler la valeur de l'intégrale $I = \int_{-\infty}^{+\infty} e^{-t^2} dt$.
 - **b**) Soit $\alpha > 0$ et $\beta > 0$. Prouver que

$$\lim_{x \to +\infty} \left(\frac{1}{\sqrt{2\pi x}} \int_{-\alpha x}^{+\alpha x} e^{-\beta \frac{x^2}{2x}} du \right) = \frac{1}{\sqrt{\beta}}.$$
 (2)

4° a) Prouver que, pour tout $\varepsilon \in]0,1[$, il existe un réel $\alpha_0 \in]0,1[$ tel que, pour tout v vérifiant $|v| < \alpha_0$, on ait

$$-\frac{v^2}{2}(1+\varepsilon) \leqslant \ln(1+v) - v \leqslant -\frac{v^2}{2}(1-\varepsilon).$$

Mathématiques I [m00ie_e] 3/3

b) Pour ε et α_0 ainsi choisis, en déduire que, pour x>0 et u vérifiant $|u|<\alpha_0\,x$, on a

$$e^{-\frac{u^2}{2x}(1+\varepsilon)} \leqslant \left(1 + \frac{u}{x}\right)^x e^{-u} \leqslant e^{-\frac{u^2}{2x}(1-\varepsilon)}. \tag{3}$$

Soit f, g_1 et g_2 trois fonctions continues sur R. On suppose que les fonctions g_1 et g_2 admettent en $+\infty$ une limite (finie) qu'on notera respectivement l_1 et l_2 et qu'il existe $X_0 > 0$ tel que, pour tout $x > X_0$, $g_1(x) \le f(x) \le g_2(x)$.

Prouver que, pour tout $\varepsilon > 0$, il existe $A \in \mathbb{R}$ tel que

$$(\forall x > A) \qquad l_1 - \varepsilon \leqslant f(x) \leqslant l_2 + \varepsilon. \tag{4}$$

b) Prouver l'existence de $h_0 \in]0,1[$ tel que, pour tout h vérifiant $|h| < h_0$, on ait

$$\left|\frac{1}{\sqrt{1+h}} - 1\right| \leqslant |h| \ . \tag{5}$$

c) Soit $\varepsilon \in]0, h_0[$, α_0 associé à ε comme à la question $A.4^{\circ}.a)$ et $\alpha \in]0, \alpha_0[$. Prouver qu'il existe B > 0 tel que, pour tout x > B, on ait

$$1 - 2\varepsilon \leqslant \frac{1}{\sqrt{2\pi x}} \int_{-\alpha x}^{+\alpha x} \left(1 + \frac{u}{x}\right)^x e^{-u} du \leqslant 1 + 2\varepsilon. \tag{6}$$

(On pourra utiliser entre autres la question A.3°.b).)

Partie B

- 1° Pour x > 0, on pose $s(x) = \left(\frac{x}{e}\right)^x \sqrt{2\pi x}$.
 - a) Pour x > 0, on note ψ_x la fonction définie par $\psi_x(t) = t^x e^{-t}$. Étudier les variations de la fonction ψ_x sur \mathbb{R}^+ .
 - b) Justifier que, pour tout α vérifiant $0 < \alpha < 1$, on a

$$0 < (1-\alpha)e^{\alpha} < 1$$
 et $0 < (1+\alpha)e^{-\alpha} < 1$.

c) Prouver que, pour tout α tel que $0 < \alpha < 1$, l'intégrale

$$J_1(x) = \frac{1}{s(x)} \int_0^{x(1-\alpha)} t^x e^{-t} dt$$

tend vers 0 lorsque x tend vers $+\infty$. (On pourra utiliser les variations de ψ_x sur $[0, x(1-\alpha)]$.)

d) Prouver pareillement que, pour tout α tel que $0 < \alpha < 1$, l'intégrale

$$J_2(x) = \frac{1}{s(x)} \int_{x(1+\alpha)}^{+\infty} t^{x+2} e^{-t} \frac{dt}{t^2}$$

tend vers 0 lorsque x tend vers $+\infty$.

2° a) Montrer enfin que, pour x tendant vers $+\infty$, on a

$$L(x) \sim \left(\frac{x}{e}\right)^x \sqrt{2\pi x}. \tag{7}$$

b) En déduire un équivalent de n!.