Efficient and Robust Estimation of Regression and Scale Parameters, with Outlier Detection

Harshit Kiran Saksham

HSL613

17-April-2025

Contents

- Introduction
- N − FLP Distribuiton
- N − FLP Estimators and Their Working
- Inference Using N FLP Estimators
- Outlier Detection
- Monte Carlo Simulation
- Data Tables for Comparisons
- Conclusion

Introduction

OLS Estimators

- OLS have minimum variance among all Linear and Unbiased estimators.
- OLS are quite sensitive to outliers.

Just for Motivation!!

Framework

- We assume that the errors have a new distribution with heavier tails than the normal distribution, namely N-FLP Distribution.
- We estimate the parameters using Weighted Least Square(WLS) estimators which is achieved by adapting the EM algorithm in our methodology.

N-FLP Distribution

The first step is to assume that the errors of the regression model have a *FLP*-contaminated normal distribution defined as

$$N - FLP(\omega, \mu, \sigma) = \omega N(\mu, \sigma^2) + (1 - \omega)FLP(\omega, \mu, \sigma)$$

where, the contaminating component is defined as Filtered Log Pareto(FLP) distribution.

 $0<\omega\leq 1$ is the proportion of normal observations,

 $\mu \in \mathbb{R}$ is location parameter,

 $\sigma > 0$ is the scale parameter.

N-FLP Distribution(Cont.)

The pdf of FLP distribution is given by

$$f_{FLP}\big(y\mid\omega,\mu,\sigma\big) = \begin{cases} 0 & \text{, if } |z| \leq \tau \text{ or } \omega = 1 \\ \frac{\omega}{\sigma(1-\omega)} \left[\varphi(\tau)\frac{\tau}{|z|} \left(\frac{\log\tau}{\log|z|}\right)^{\lambda+1} - \varphi(z)\right] & \text{, if } |z| > \tau \text{ and } \omega < 1 \end{cases}$$

where $z = \left(\frac{y-\mu}{\sigma}\right)$.

- Tail behaviour is controlled by $\lambda = \frac{2\omega}{(1-\rho\omega)}\varphi(\tau)\tau \log(\tau) > 0$ with $\rho = 2\Phi(\tau) 1$.
- ullet The outlier region is controlled by au>1.69901 defined as

$$au=g^{-1}(\omega)$$
 with $g(au)=\left(
ho+rac{2arphi(au) au log au}{(au^2-1)log au-1}
ight)^{-1}$

N-FLP Distribution(Cont.)

The pdf of the N-FLP Distribution is thus given as

$$f_{\textit{N-FLP}}\big(y \mid \omega, \mu, \sigma\big) = \begin{cases} \omega \sigma^{-1} \varphi(z) & \text{if } |z| \leq \tau \text{ or } \omega = 1, \\ \omega \sigma^{-1} \varphi(\tau) \frac{\tau}{|z|} \left(\frac{\log \tau}{\log |z|}\right)^{\lambda+1} & \text{if } |z| > \tau \text{ and } \omega < 1, \end{cases}$$

Mixture (purple) of a normal (red) and a FLP (blue)

Key Advantages of N-FLP Distribution

- It can adjust its shape depending on the number of outliers.
- For e.g., the tails of the distribution are heavier when $\omega=0.5$ compared to when $\omega\geq0.5$ and when $\omega=1$, the distribution is simply Gaussian Distribution.

Linear Regression: Vector Formulation

The classical linear regression model is given by:

$$y = X\beta + \epsilon$$
,

where:

- $\mathbf{y} \in \mathbb{R}^{n \times 1}$ is the response vector.
- $\mathbf{X} \in \mathbb{R}^{n \times p}$ is the design matrix with n observations and p predictors.
- $\beta \in \mathbb{R}^{p \times 1}$ is the vector of regression coefficients.
- $oldsymbol{\epsilon} \in \mathbb{R}^{n imes 1}$ is the error vector.
- Each observation is modeled as:

$$y_i = \mathbf{x_i}^T \boldsymbol{\beta} + \epsilon_i, \quad i = 1, \dots, n.$$

Error Assumptions for OLS

• Under OLS, the errors ϵ_i are assumed to follow normal distribution i.e.,

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2),$$

• In the robust approach, the error ϵ_i are assumed to follow the mixture model, i.e.,

$$\epsilon_i \sim \omega \mathcal{N}(0, \sigma^2) + (1 - \omega) \mathsf{FLP}(\omega, 0, \sigma),$$

where:

- With probability ω , ϵ_i is drawn from a normal distribution.
- With probability 1ω , ϵ_i is drawn from a FLP distribution, which accounts for outliers.

N-FLP Estimators

The N-FLP estimators are given by

$$\hat{\omega} = \frac{1}{n} \sum_{i=1}^{n} \hat{\pi}_{i},$$

$$\hat{\beta} = \left(\mathbf{x}^{T} \mathbf{D}_{\hat{\pi}} \mathbf{x}\right)^{-1} \mathbf{x}^{T} \mathbf{D}_{\hat{\pi}} \mathbf{y} \text{ and}$$

$$\hat{\sigma}^{2} = \frac{1}{\left(\sum_{i=1}^{n} \hat{\pi}_{i} - \rho\right)} \sum_{i=1}^{n} \hat{\pi}_{i} \left(y_{i} - \mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}\right)^{2},$$

with

$$\hat{\pi}_{i} \equiv \pi_{\hat{\omega}}(r_{i}) = \frac{\hat{\omega}f_{\mathcal{N}}(y_{i} \mid \mathbf{x}_{i}^{T}\hat{\boldsymbol{\beta}}, \hat{\sigma})}{f_{\mathcal{N}-\mathcal{F}\mathcal{LP}}(y_{i} \mid \hat{\omega}, \mathbf{x}_{i}^{T}\hat{\boldsymbol{\beta}}, \hat{\sigma})} = \frac{\hat{\omega}f_{\mathcal{N}}(r_{i} \mid 0, 1)}{f_{\mathcal{N}-\mathcal{F}\mathcal{LP}}(r_{i} \mid \hat{\omega}, 0, 1)},$$

where

$$r_i = \frac{y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}}{\hat{\sigma}}, \quad \mathbf{D}_{\hat{\pi}} := \operatorname{diag}(\hat{\pi}_1, \dots, \hat{\pi}_n), \quad \text{and}$$

 $\mathbf{x} := (\mathbf{x}_1, \dots, \mathbf{x}_n)^T, \quad \mathbf{y} := (y_1, \dots, y_n)^T.$

E-Step: Parameter Updates

• Given current parameters $\theta^{(t)} = (\omega^{(t)}, \beta^{(t)}, \sigma^{(t)})$, for each i compute:

$$\pi_{i}^{(t)} = \frac{\omega^{(t)} f_{N} \left(y_{i} \mid x_{i}^{T} \beta^{(t)}, \sigma^{(t)} \right)}{f_{N-FLP} \left(y_{i} \mid x_{i}^{T} \beta^{(t)}, \sigma^{(t)} \right)},$$

where:

$$f_{N-FLP}\left(y_{i}\mid x_{i}^{T}\beta^{(t)}, \sigma^{(t)}\right) = \omega^{(t)} f_{N}\left(y_{i}\mid x_{i}^{T}\beta^{(t)}, \sigma^{(t)}\right) +$$

$$\left(1-\omega^{(t)}\right) f_{FLP}\left(y_{i}\mid \omega^{(t)}, x_{i}^{T}\beta^{(t)}, \sigma^{(t)}\right)$$

• Here, $f_N(\cdot)$ is the normal density and each $\pi_i^{(t)} \in \mathbb{R}^{n \times 1}$.

M-Step: Parameter Updates

• Update the mixture weight:

$$\omega^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \pi_i^{(t)} \in \mathbb{R}.$$

Update the regression coefficients using weighted least squares:

$$\beta^{(t+1)} = \left(X^T D_{\pi}^{(t)} X\right)^{-1} X^T D_{\pi}^{(t)} y \quad \in \mathbb{R}^{p \times 1},$$

where $D_{\pi}^{(t)}$ is an $n \times n$ diagonal matrix with diagonal entries $\pi_i^{(t)}$.

• Update the scale parameter:

$$\sigma^{(t+1)2} = \frac{1}{\left(\sum_{i=1}^{n} \pi_i^{(t)} - p\right)} \sum_{i=1}^{n} \pi_i^{(t)} \left(y_i - x_i^T \beta^{(t+1)}\right)^2,$$

so that $\sigma^{(t+1)} \in \mathbb{R}_{>0}$.

Iteration and Convergence

• **Iterate:** Alternate between the E-step and M-step until:

$$\|\theta^{(t+1)} - \theta^{(t)}\| < \epsilon,$$

where $\theta^{(t)} = (\omega^{(t)}, \beta^{(t)}, \sigma^{(t)})$.

• **Convergence:** If change in each parameter is less than the threshold, convergence has been reached and final estimates are :

$$\hat{\omega} \in \mathbb{R}, \quad \hat{\beta} \in \mathbb{R}^{p \times 1}, \quad \hat{\sigma} \in \mathbb{R}_{>0}.$$

ullet If multiple solutions are produced, select the one with the smallest $\hat{\sigma}$.

First Estimation Method: MLE for Mixture Model

Model:

$$y_i \sim \omega \mathcal{N}(\mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2) + (1 - \omega) \mathcal{F} \mathcal{L} \mathcal{P}(\omega, \mathbf{x}_i^T \boldsymbol{\beta}, \sigma)$$

Issue: Both the normal and FLP (outlier) components share the same parameters β and σ .

Why this is problematic:

 Outliers (modeled by FLP) are not trustworthy — they should not influence core parameter estimation.

"In-Between" Solution: Smarter Simplicity

Steps:

- Stimate Parameters via EM (Expectation Maximization):
 - Use only the clean/normal component
 - Obtain estimates:

$$\hat{\omega}$$
, $\hat{\beta}$, $\hat{\sigma}$

- Apply These Estimates to the FLP Component:
 - Instead of estimating $\omega_0, \beta_0, \sigma_0$ separately,
 - Simply set:

$$\hat{\omega}_0 = \hat{\omega}, \quad \hat{\beta}_0 = \hat{\beta}, \quad \hat{\sigma}_0 = \hat{\sigma}$$

Resulting Model:

$$y_i \sim \hat{\omega} \cdot \mathcal{N}(x_i^{\top} \hat{\beta}, \hat{\sigma}^2) + (1 - \hat{\omega}) \cdot \text{FLP}(\hat{\omega}, x_i^{\top} \hat{\beta}, \hat{\sigma})$$

Why This Works

No extra parameters are introduced — keeping the model smooth, symmetric, and less prone to overfitting.

Robust Inference Using N-FLP Estimators

Once we obtain the N-FLP estimates of $\hat{\omega}, \hat{\beta}, \hat{\sigma}$; we follow the steps given below for robust inference:

• We define a random vector $\mathbf{v} = (v_1, \dots, v_n)^T$ of n independent latent binomial variables defined as:

$$v_i = \begin{cases} 1, & \text{if observation originates from the normal component,} \\ 0, & \text{if observation originates from the FLP component.} \end{cases}$$

- ullet We first assume ullet to be known and proceed with inference using the normal observations only.
- Secondly, the latent variables v_i are estimated by $\hat{\pi}_i$.

Robust Inference Using N-FLP Estimators(Cont.)

Notice that, calculation of $\hat{\omega}, \hat{\beta}$ and $\hat{\sigma}$ with OLS estimators on the normal observations only is done by:

$$\bullet \ \hat{\boldsymbol{\beta}} | \mathbf{v} = (\mathbf{x}^T \mathbf{D}_{\mathbf{v}} \mathbf{x})^{-1} \mathbf{x}^T \mathbf{D}_{\mathbf{v}} \mathbf{y}$$

•
$$\hat{\sigma}^2 | \mathbf{v} = \frac{1}{(\sum_{i=1}^n v_i - p)} \sum_{i=1}^n v_i (y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}})^2$$

where,
$$\mathbf{D}_{\mathbf{v}} = diag(v_1, \dots, v_n)$$

and the MLE of ω is $\omega | \mathbf{v} = \frac{1}{n} \sum_{i=1}^{n} v_i$

$$\mathsf{Var}(\hat{\beta} \mid \mathbf{v}) = (\mathbf{x}^T \mathbf{D}_{\mathbf{v}} \mathbf{x})^{-1} \mathbf{x}^T \mathsf{Var}(\mathbf{D}_{\mathbf{v}} \mathbf{y} \mid \mathbf{v}) \mathbf{x} (\mathbf{x}^T \mathbf{D}_{\mathbf{v}} \mathbf{x})^{-1} = \sigma^2 (\mathbf{x}^T \mathbf{D}_{\mathbf{v}} \mathbf{x})^{-1},$$

Since

$$\mathbf{D}_{\mathbf{v}}\mathbf{y} \mid \mathbf{v} \stackrel{\mathcal{L}}{\sim} \mathcal{N}_{n}(\mathbf{D}_{\mathbf{v}}\mathbf{x}\beta, \sigma^{2}\mathbf{D}_{\mathbf{v}}).$$

The robust estimation of $Var(\hat{\beta}) = \sigma^2(\mathbf{x}^T \mathbf{D}_{\hat{\pi}} \mathbf{x})^{-1}$

$1-\alpha$ confidence intervals

we obtain $\hat{\boldsymbol{\beta}} \overset{\mathcal{L}}{\approx} \mathcal{N}_{p}(\boldsymbol{\beta}, \sigma^{2}(\mathbf{x}^{T}\mathbf{D}_{\hat{\pi}}\mathbf{x})^{-1})$ and

$$rac{\hat{eta}_j - eta_j}{\hat{\sigma} \sqrt{[(\mathbf{x}^T \mathbf{D}_{\hat{\pi}} \mathbf{x})^{-1}]_{j,j}}} \overset{\mathcal{L}}{\sim} t_{\hat{\omega}n-p} \quad ext{for } j=1,\ldots,p, \quad ext{and}$$

$$\frac{(\hat{\omega}n-p)\hat{\sigma}^2}{\sigma^2} \stackrel{\mathcal{L}}{\approx} \chi^2_{\hat{\omega}n-p},$$

The robust 1-lpha confidence intervals for the parameters are given by

$$eta_j \in \hat{eta}_j \pm t_{lpha/2;\hat{\omega}n-p} \, \hat{\sigma} \sqrt{[(\mathbf{x}^T \mathbf{D}_{\hat{\pi}} \mathbf{x})^{-1}]_{j,j}} \quad ext{and}$$

$$\frac{(\hat{\omega}n-p)\hat{\sigma}^2}{\chi^2_{lpha/2;\hat{\omega}n-p}} \leq \sigma^2 \leq \frac{(\hat{\omega}n-p)\hat{\sigma}^2}{\chi^2_{1-lpha/2;\hat{\omega}n-p}}$$

R^2 and Adjusted \bar{R}^2

$$R^2 = 1 - \frac{(\hat{\omega}n - p)\hat{\sigma}^2}{SSY}$$
 and $\bar{R}^2 = 1 - \frac{\hat{\sigma}^2}{SSY/(\hat{\omega}n - 1)}$,

where

$$SSY = \sum_{i=1}^{n} \hat{\pi}_{i} \left(y_{i} - \frac{\sum_{i=1}^{n} \hat{\pi}_{i} y_{i}}{\sum_{i=1}^{n} \hat{\pi}_{i}} \right)^{2}.$$

Outlier Detection

• The probability that an observation is *non-outlying* is given by:

$$\hat{\pi}_i = \frac{\hat{\omega} f_N(y_i | x_i^T \hat{\beta}, \hat{\sigma})}{f_{N-FLP}(y_i | x_i^T \hat{\beta}, \hat{\sigma})}$$

- An observation is flagged as an outlier if $\hat{\pi}_i < 0.5$.
- An adaptive threshold $\pi_{\odot}^{-1}(0.5)$ is used instead of a fixed cutoff.

Implementation

- Due to the non-convex nature of the robust estimation problem, we use Iterative Algorithm by using multiple initial values to select the best solution
- **Initialization:** Use ordinary least squares (OLS) estimates as starting values.
- **Perturbation:** For additional runs, perturb the initial β values:

$$\beta_{\text{start}} = \beta_{\text{OLS}} + \text{noise},$$

where the noise $\sim \mathcal{N}(\cdot)$.

- **Selection:** From all runs, consider only solutions with $\omega > 0.5$.
- **Best Solution:** Select the solution with the smallest σ .

Monte Carlo Simulations

- To compare the model statistically, the author proposes the following Monte Carlo simulation design:
 - Evaluate the efficiency of the estimator under normality (no contamination)
 - Evaluate robustness under contamination

Efficiency Under Normality (Uncontaminated Model)

• The linear regression model studied in this section is:

$$y = \beta_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \varepsilon,$$

where $\varepsilon \sim N(0, \sigma^2)$, with p = 2 (simple linear regression) and p = 5.

- Simulation Setup:
 - Dimensions: p = 2 (simple regression) and p = 5.
 - True parameters: $\beta_1=\beta_2=\cdots=\beta_p=0$, $\sigma=1.$
 - Explanatory variables: $x_{ij} \sim \mathcal{N}(0,1)$ independently for $j=2,\ldots,p$.
 - Sample sizes: n = 50, 100, 200, 500.
 - Runs: 100,000 Monte Carlo samples per setting.

Metrics

- **Efficiency** measures the variance loss relative to OLS under a normal error model $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Relative efficiency (RE) is defined as:

$$\mathsf{RE}(\hat{\theta}) = \left(\frac{\mathbb{E}[D_{\hat{\theta}_{\mathsf{OLS}}}(\theta)]}{\mathbb{E}[D_{\hat{\theta}}(\theta)]}\right)^2,$$

where $D_{\hat{\theta}}(\theta)$ is a distance metric from the true parameter θ .

• For regression coefficients:

$$D_{\hat{\beta}}(\beta) = \frac{1}{\sigma} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i^T \hat{\beta} - x_i^T \beta)^2}$$

• For the scale parameter:

$$D_{\hat{\sigma}}(\sigma) = \left| \log \left(rac{\hat{\sigma}}{\sigma}
ight)
ight|.$$

Relative Efficiency for uncontaminated models

Table: Averaged over *n*'s

Model	$p=2, \hat{\beta}$	$p=2, \hat{\sigma}$	$p=5, \hat{\beta}$	$p=5, \hat{\sigma}$
OLS	1.000	1.000	1.000	1.000
N-FLP	0.992	0.928	0.990	0.920
MM	0.946	0.535	0.943	0.505
M	0.944	0.366	0.939	0.334
REWLS	0.899	0.502	0.851	0.450
S	0.293	0.535	0.281	0.506
LMS	0.137	0.207	0.141	0.190
LTS	0.126	0.305	0.136	0.256

Robustness in the Presence of Outliers

- We compare the models with contaminated data.
- The Base Model remains unchanged:

$$y = \beta_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \epsilon,$$

with
$$\beta_1 = \beta_2 = \cdots = \beta_p = 0$$
 and $\sigma = 1$.

- Explanatory variables: $x_i \sim N(0,1)$.
- Errors generated from N(0,1).

Contamination

Contamination is introduced by replacing 10% or 20% of randomly chosen observations with outliers (x_{io}, y_{io}) :

- Low-leverage: $x_{2o} \sim N(1,1)$, $y_o \sim N(\mu_0,1)$.
- **High-leverage:** $x_{2o} \sim N(10, 1)$, $y_o \sim N(\mu_0, 1)$.
- Mixed:
 - 60% High-leverage: $x_{2o} \sim \mathcal{N}(10, 1)$, $y_o \sim \mathcal{N}(\mu_0, 1)$
 - 40% Low-leverage: $x_{2o} \sim \mathcal{N}(1,1)$, $y_o \sim \mathcal{N}(-\mu_0,1)$
- μ_0 varied in $[0, \mu_{\text{max}}]$.

Impacts

Low-leverage outliers affect the intercept, High-leverage ones distort both slope and intercept, and mixed outliers create conflicting influences. Adjusting outlier severity ensures methods are resilient for hard as well as easy to detect distortions.

Test Metrics

Performance Metrics:

• For β , $\mathbb{E}[D_{\hat{\beta}}(\beta)]$ where $D_{\beta}(\hat{\beta})$ is calculated as before:

$$D_{\beta}(\hat{\beta}) = \frac{1}{\sigma} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(x_i^T \hat{\beta} - x_i^T \beta \right)^2}.$$

• Similarly for σ , $\mathbb{E}[D_{\hat{\sigma}}(\sigma)]$ where $D_{\sigma}(\hat{\sigma})$:

$$D_{\sigma}(\hat{\sigma}) = \left|\log\left(rac{\hat{\sigma}}{\sigma}
ight)
ight|.$$

Average Deviation from Best Estimate

Table: Average deviation from the best estimate

Model	Avg Deviation (Beta)	Avg Deviation (Sigma)	
N-FLP	0.020	0.009	
REWLS	0.044	0.066	
MM	0.071	0.077	
S	0.107	0.078	
LTS	0.226	0.027	
LMS	0.250	0.067	
M	0.601	0.200	
OLS	0.936	0.515	

Efficiency vs. Robustness Trade-off

We now quantify the trade-off between efficiency (under normality) and robustness (under contamination).

- Premium: Represents the cost of using a robust estimator instead of the OLS estimator in the absence of outliers.
- **Protection**: Represents the gain in the presence of outliers when using a robust estimator.
- Ideal estimators have low Premium and high Protection (top-left corner of Protection-Premium plot).

RESULTS

For the sample size of 50 we can plot:

Economic Interpretations

- To gain economic interpretations from our model we fit the Mincer Earning's Function on a real world dataset.
- The canonical semi-logarithmic form is:

$$ln(Y_i) = \beta_0 + \beta_1 S_i + \beta_2 X_i + \beta_3 X_i^2 + \epsilon_i$$

where:

- In(Y_i) is the natural logarithm of wage income of individual i (INCWAGE)
- S_i is the years of education for individual i (EDUC).
- X_i is the potential experience for individual i (Exp).
- X_i^2 is experience squared (Exp2).
- ϵ_i is the error term
- $\beta_o = In(Y_o)$ where Y_o is the earnings of someone with no education and no experience.

Dataset

- DataSet: Integrated Public Use Microdata Series (IPUMS) USA dataset 2019 with the following variables
 - AGE: Age of the individual.
 - EDUC: Years of education completed.
 - INCWAGE: Income from wages and salaries.
- **Sampling:** The dataset is quite large, to maintain computational feasibility, we draw a random sample comprising 20% of the original data. (seed = 613 for reproducibility). This results in a dataset with approximately 320,000 observations.
- For labor market experience (EXP), we use the proxy EXP = AGE -EDUC
- Data Cleaning:
 - Individuals with zero reported wage income (INCWAGE = 0) are excluded, as the Mincer model uses the logarithm of wages.
 - Observations with missing values in any of the key variables (AGE, EDUC, INCWAGE) are removed via listwise deletion.

Estimated Coefficient Vectors $\hat{\beta}$

The estimated parameter vector $\hat{\boldsymbol{\beta}} = [\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3]^T$ corresponds to [INTERCEPT, EDUC, EXP, EXP2].

OLS Results:

$$\hat{\boldsymbol{\beta}}_{OLS} = \begin{pmatrix} 6.61114612\\ 0.13616902\\ 0.12645805\\ -0.00173565 \end{pmatrix}$$

NFLP Results:

$$\hat{\boldsymbol{\beta}}_{\textit{NFLP}} = \begin{pmatrix} 6.67985607 \\ 0.14408746 \\ 0.12249732 \\ -0.00168146 \end{pmatrix}$$

Intercept term: (OLS, NFLP): (6.61114612, 6.67985607) \rightarrow estimated Y_o : (743.33, 796.20)

NFLP Results

- For NFLP we get $\omega=0.9564$, so the algorithm detects almost 5% observations as outliers
- The NFLP method also provides an associated value π_i for each observation i, this is the estimated probability that i^{th} observation has a normal error term.
- Distribution of π_i Values:

Outlier Filtering

- Outlier Filtering Strategy: We want to explore the economic characteristics of potential outliers identified by NFLP.
 - Define a threshold $\tau \in [0,1]$.
 - Observations with $\pi_i < \tau$ are classified as "Outliers".
 - Observations with $\pi_i = 1$ are classified as "Normal".
 - By varying τ , we can examine groups of observations with different extremities according to the NFLP metric.
 - The thresholds considered are $\tau \in \{1.0, 0.75, 0.50, 0.25, 0.01\}$.

Comparison: Outlier Group Sizes (N_{Outliers})

Threshold (au)	$N_{\rm Outliers}$	Percentage (%)
1.00	58,131	18.27
0.75	17,616	5.54
0.50	13,518	4.25
0.25	9,883	3.11
0.01	3,813	1.20

Population: 318,084

Comparison: Mean Characteristics $(X_{OUTLIER})$

Threshold (au)	ī	EDUC	EXP	EXP ²
1.00	1.00	13.52	29.58	1168.98
0.75	1.00	13.14	30.80	1309.07
0.50	1.00	13.17	31.11	1331.50
0.25	1.00	13.26	31.51	1350.93
0.01	1.00	13.70	32.94	1408.62
Population	1.00	13.83	29.24	1094.55

Comparison: Log-Wage (youtlier) Distribution

Threshold (au)	Mean y _{OUT}	Median y _{OUT}	
1.00	9.347 (11,464.37)	9.547 (14,002.62)	
0.75	7.563 (1,925.61)	7.244 (1,399.68)	
0.50	7.213 (1,356.95)	6.908 (1,000.24)	
0.25	6.841 (935.42)	6.685 (800.31)	
0.01	5.945 (381.83)	5.991 (399.81)	
Population	10.29 (29,436.77)	10.55 (38,177.43)	

$\mathsf{Tau} = 1.0$

Effect of Outlier Extremity

- For a sample of 1000 observations, we contaminate 10% as outliers of varying extremity.
- For this we source the outliers and normal observations from the following indices:

$$\mathcal{I}_{\mathsf{out}}(au) := \{ i \mid \pi_i < \tau \},$$
 $\mathcal{I}_{\mathsf{norm}} := \{ i \mid \pi_i = 1 \}.$ $\tau \in \{1, 0.75, 0.5, 0.25, 0.01 \}.$

Error metric (SSE):

$$SSE(\hat{\beta}, \beta) = \sum_{j=1}^{p} (\hat{\beta}_j - \beta_j)^2$$

Metrics

• For each threshold τ , compute mean SSE over 500 iterations:

$$\overline{\text{SSE}}_{\text{OLS}}(\tau) = \frac{1}{500} \sum_{i=1}^{500} \text{SSE} \left(\hat{\beta}_{\text{OLS}}^{(i)}, \beta \right)$$

$$\overline{\mathrm{SSE}}_{\mathsf{NFLP}}(\tau) = \frac{1}{500} \sum_{i=1}^{500} \mathrm{SSE}\left(\hat{\beta}_{\mathsf{NFLP}}^{(i)}, \beta\right)$$

Results

Effect of Outlier Population

- We take a sample of 1000 observations with varying outlier percentage p over set $\{10, 15, \dots, 40, 45\}$
- These outliers are sourced from

$$\mathcal{I}_{\mathsf{out}} := \{ i \mid \pi_i < 0.1 \}$$

• For each p, mean SSE over 500 iterations:

$$\overline{\text{SSE}}_{\text{OLS}}(p) = \frac{1}{500} \sum_{i=1}^{500} \text{SSE} \left(\hat{\beta}_{\text{OLS}}^{(i)}, \beta \right)$$

$$\overline{\text{SSE}}_{\mathsf{NFLP}}(p) = \frac{1}{500} \sum_{i=1}^{500} \text{SSE}\left(\hat{\beta}_{\mathsf{NFLP}}^{(i)}, \beta\right)$$

Results

References I

Desgagné, A. (2021). Efficient and robust estimation of regression and scale parameters, with outlier detection. Computational Statistics and Data Analysis, 155, 107114.