Lab 1 - Data visualization

Alex LaTrenta

Load Packages

```
library(tidyverse)
```

Warning in system("timedatectl", intern = TRUE): running command 'timedatectl' had status 1

Exercise 1

(Type your answer to Exercise 1 here. Add code chunks as needed. Don't forget to label your code chunk. Do not use spaces in code chunk labels.)

Problem 1:

The graph is very right-skewed with most counties having a population density significantly lower than 25,000 in the low thousands. There are some outliers with medium (\sim 60,000) and large (\sim 85,000) population densities which appear as thin bars on the graph's x axis.

Exercise 2

Exercise 3

Describe what you observe in the plot from the previous exercise. In your description, include similarities and differences in the patterns across states.

Across most midwestern states, there is a negative linear relationship between the % of people under the poverty line and the % of people with college degrees. This implies that low rates of college degrees may be associated with higher levels of poverty. All states have a large amount of counties with the % College Degrees and % poverty between 10 to 20. OH and MI tend to have outlier counties with low % college degrees and high % poverty despite much variation. WI and IN tend to have more counties with high % college degrees and low % poverty. IL has outlier countries with both of the described characteristics.

Exercise 4

```
y = "% of People Below Poverty",
title = "Rates of Poverty vs. College Degrees in Midwestern States")
```

Rates of Poverty vs. College Degrees in Midwestern States

I prefer this plot more because it is easier to visualize the differences between the states when they are separated in a grid. Furthermore, the linear format better summarizes the exact linear trends between the two variables which is visably clearer than a mass of dots. ## Exercise 5

Exercise 6

Exercise 7

[`]geom_smooth()` using method = 'loess' and formula 'y ~ x'