COM2109 Automata

Robert Hierons

Based on the work of Mike Stannett, Lucia Specia, M.S. Moorthy and Costas Busch

Revision: DFA, NFA, and Regular Languages

For a DFA
$$M=(Q,\Sigma,\delta,q_0,F)$$

Language accepted by M:

$$L(M) = \left\{ w \in \Sigma^* : \hat{\delta}(q_0, w) \in F \right\}$$

$$q_0 \qquad \qquad q' \in F$$

Scanning the Input

Input finished

To accept a string:

all the input string is scanned and the last state is an accepting state

To reject a string:

all the input string is scanned and the last state is not an accepting state

Language Accepted: $L = \{a^nb : n \ge 0\}$

Non-Deterministic Finite Automata

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

First Choice

First Choice

First Choice

All input is consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA accepts a string: if there is at least one computation of the NFA that accepts the string

i.e., all the input string is processed and the automaton is in an accepting state

An NFA rejects a string:

if there is **no** computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

· The input cannot be consumed

Epsilon (Lambda) Transitions

 $\begin{bmatrix} a & a \end{bmatrix}$

input tape head does not move

all input is consumed

String aa is accepted

NFAs are interesting because they can be more concise than DFAs

Language: 1 in the third position from the end

Summary: DFA vs NFA

- DFA: every state always has exactly one exiting transition arrow for each symbol of the alphabet
 - NFA: states can have 0, 1 or n exiting arrows
 - NFA: can have empty transitions
 - NFA: from a given state, if a given symbol x is read, exiting transitions to more than one state are possible

Non-determinism: behaviour is "not determined"

DFA or NFA?

Each has benefits:

NFA can be more concise (exponentially so).

It is easier to define some operations on DFA (eg complement, intersection).

Remember - if we have a DFA (NFA) we can convert this into an equivalent NFA (DFA)

Regular Expressions

Recursive Definition

Primitive regular expressions: \emptyset , ε , α

Given regular expressions r_1 and r_2

COM2109, W3

Language defined

Primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\varepsilon) = \{\varepsilon\}$$

$$L(a) = \{a\}$$

Language defined (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L((r_1)) = L(r_1)$$

COM2109, W3

Regular Languages

Regular Languages

A language is a set of strings/words

A language L is a regular language if there exists a DFA M that accepts L

Equivalent definitions

We have seen that every NFA can be converted into an equivalent DFA.

Thus: a language L is a regular language if and only if there exists an NFA M that accepts L

In addition: a language L is a regular language if and only if there exists a regular expression r that accepts L