Epidemic Modeling Basics

Deterministic Compartmental Models

Models have three basic components

■ Elements – "actors" in the model

■ **States** – attributes of system elements

Transitions – rates of movement between states

All models, simple and complex, have these same building blocks

Model component 1: Elements

Elements can be:

- Persons
- Animals
- Environmental reservoirs (water, soil)
- Vectors (e.g., mosquitoes)
- Pathogens

Example: Measles transmission requires people

Brief digression...

Hosts and pathogens: do we need to represent both as elements in the system?

- This week, we won't (focus is on "between-host" dynamics)
 In a simple model we represent the pathogen via the effect on the host
 - Susceptible / Infected / Recovered with immunity
 - Duration of infection (influences recovery time)
 - Stage of infection (may influence infectivity or activity)
- But, we can (by adding "within-host dynamics")
 - Explicitly govern pathogen reproduction and vital dynamics
 - Allow the pathogen to evolve

Model component 2: States

States – attributes of elements. For example:

- Host states
 - Infection status (Susceptible, Infected, Recovered...)
 - Demographic characteristics (male, female, ...)
- Pathogen states
 - life cycle stage (e.g., larvae, reproductive adult, ...)

Example: A simple measles model will have three host states:

susceptible (S)

infected (I)

recovered w/ immunity (R)

Model component 3: Transitions

Transitions – movement between states

- Deterministic: fixed rate of transition between states.
 - Uses a population mean rate to govern process of movement
- **Stochastic**: *probability* that an element transitions between states.
 - Uses a full probability distribution of rates to govern the process of movement.

Example: The simple measles model has two transitions:

Model component 3: Transitions

 Transitions can also come in from outside the model, or move out of the model

NME Workshop

Key transition: Infection

Many different modes of transmission:

STD/HIV:	direct body fluid contact (sex, needles, MTC)
Measles, Influenza:	respiratory, air-borne
Diarrheal diseases:	fecal-oral
Malaria:	vector-borne (mosquitoes)
Schistosomiasis:	water and vector-borne
Cholera:	water and food-borne

We're going to focus on direct, person-to-person transmission, because this is where contact networks matter most

NME Workshop

Deterministic compartmental models

- A form of dynamic modeling in which people are represented only in terms of the aggregate count present in each state ("compartment")
- Within each compartment, people are homogeneous
- Transitions ("flows") are also represented in terms of number of people moving along them at any time point

Deterministic compartmental models

- May be discrete time or continuous time
 - We will focus on discrete time in the presentation
 - Most published models, and most packages (including EpiModel) solve in continuous time
- Compartmental models are usually deterministic one will get the exact same results from a model each time one runs it
- Measures are of EXPECTED counts (across an infinite number of stochastic runs)
- This means compartments and transitions do not have to represent whole numbers of people

Here R stands for:

- Recovered with immunity
- Also sometimes called "removed" in the literature but be careful.
 - *Removed* from the infection process
 - *Not removed* from the contact process

New infections per unit time (incidence)
What is a reasonable expression for this quantity?


```
t = time s(t) = expected number of susceptible people at time t i(t) = expected number of infected people at time t r(t) = expected number of recovered people at time t \alpha = act rate per unit time t = prob. of transmission given S-I act \rho = recovery rate
```

A new infection requires: a susceptible person to have an act with an infected person and for infection to transmit because of that act

```
t = time

s(t) = expected number of susceptible people at time t

i(t) = expected number of infected people at time t
```

Expected incidence at time t =

A new infection requires: a susceptible person to have an act with an infected person and for infection to transmit because of that act

```
t = time

s(t) = expected number of susceptible people at time t

i(t) = expected number of infected people at time t
```

Expected incidence at time t = s(t)

```
t = time

s(t) = expected number of susceptible people at time t

i(t) = expected number of infected people at time t

\alpha = act rate per unit time
```

```
Expected incidence at time t = s(t)\alpha
```

```
t = time

s(t) = expected number of susceptible people at time t

i(t) = expected number of infected people at time t

\alpha = act rate per unit time
```

Expected incidence at time
$$t = s(t)\alpha \frac{i(t)}{s(t)+i(t)+r(t)}$$

```
t = time s(t) = expected number of susceptible people at time t i(t) = expected number of infected people at time t \alpha = act rate per unit time t = "transmissibility" = prob. of transmission given S-I act
```

Expected incidence at time
$$t = s(t)\alpha \frac{i(t)}{s(t)+i(t)+r(t)} \tau$$

```
t = time

s(t) = expected number of susceptible people at time t

i(t) = expected number of infected people at time t

\alpha = act rate per unit time

\tau = "transmissibility" = prob. of transmission given S-I act

n(t) = total population = s(t) + i(t) + r(t)
```

Expected incidence at time
$$t = s(t)\alpha \frac{i(t)}{s(t)+i(t)+r(t)}\tau$$

= $s(t)\alpha \frac{i(t)}{n(t)}\tau$

A new infection requires: a susceptible person to have an act with an infected person and for infection to transmit because of that act

```
t = time

s(t) = expected number of susceptible people at time t

i(t) = expected number of infected people at time t

\alpha = act rate per unit time

\tau = "transmissibility" = prob. of transmission given S-I act

n(t) = total population = s(t) + i(t) = n
```

Expected incidence at time
$$t=s(t)\alpha\frac{i(t)}{s(t)+i(t)+r(t)}\tau$$

$$=s(t)\alpha\frac{i(t)}{n(t)}\tau$$

$$=s(t)\alpha\frac{i(t)}{n(t)}\tau$$

Careful: only for a "closed" population can the time subscript be dropped for *n*

New recoveries per unit time What is a reasonable expression for this quantity?


```
t = time
```

s(t) = expected number of susceptible people at time t

i(t) = expected number of infected people at time t

r(t) = expected number of recovered people at time t

 α = act rate per unit time

 τ = prob. of transmission given S-I act

 ρ = recovery rate

- Much simpler process: expected number of recoveries at time t equals $\rho i(t)$
- Reminder: Expected incidence at time $t = s(t)\alpha \frac{i(t)}{n}\tau$
- How do we turn this into a system of equations?

Add in a set of initial conditions:

and a set of parameter values

$$s(0) = 999$$
, $i(0) = 1$, $r(0) = 0$
 $\alpha = 0.6$, $\tau = 0.3$, $\rho = 0.1$

And one has the full trajectory of each state over time:

What happens on Day 62? Why?

Brief digression: contacts and acts

- The epi modeling literature typically uses the term "contact" so why do we use "act"?
- Because "contact" is an ambiguous word in this context
 - E.g. think of sexual activity when we say "# of contacts per year"
 - Does it mean number of sex acts?
 - Or numbers of different partners?
- To be explicit, we will make the distinction between "acts" and "partners" throughout this workshop
- This distinction matters for disease dynamics <u>when there are repeated acts with</u> the same person

NME Workshop 23

Brief digression: contacts and acts

If multiple acts occur within partnerships, DCMs take one of two forms.

- 1. Define a contact as an act. Model each act as a separate independent event, ignoring the persistent nature of the partnerships
- 2. Define a contact as a partnership. Compress all of the acts over the partnership into a single instance in time
- We'll return to this later today

- Relationship between duration and recovery rate
 - Imagine a disease with a constant recovery rate of 0.2.
 - I.e., on Day 1 of infection, you have a 20% probability of recovering.
 - If you don't recover on Day 1, you have a 20% probability of recovering on Day 2. Etc.

Now, imagine 100 people who start out infected on the same day.

How many recover after being	; infected 1 day?
--	-------------------

What is the mean (expected) duration spent infected?

80*0.2 = 16
64*0.2 = 12.8
Geometric
1/0.2 = 5 days

100*0.2 = 20

Geometric	
Parameters	$0 success probability (real)$
Support	$k \in \{1, 2, 3, \ldots\}$
Probability mass function (pmf)	$(1-p)^{k-1}p$
Cumulative distribution function (CDF)	$1 - (1 - p)^k$
Mean	1
	\overline{p}

DCMs: R₀

- R_o = the number of secondary infections stemming directly from the first infected case in a susceptible population that is, one that has not experienced the disease before
 - = duration infected x acts per time step x transmission per act = $\tau \alpha D$
 - = $\tau \alpha / \rho$ (for the basic SIR model)
- R_0 tells whether an epidemic is likely to occur or not:
 - $R_0 > 1$: one infected individual will on average infect >1 person total. In a deterministic model, the disease will grow
 - R_0 < 1: one infected individual will on average infect < 1 person total. In a deterministic model, the disease will fade away
 - $R_0 = 1$: we are right on the threshold between an epidemic and not. In a deterministic model, the disease will putter along