

TD n°3 - Traduction Dirigée par la Syntaxe

Exercice 1. Expressions parenthésées

Soit la grammaire $\mathcal{G}=\{V,T,P,L\}$ avec $V=\{L,S\},$ $T=\{\mathbf{a},(,)\}$ et P l'ensemble des productions suivant :

$$\begin{array}{ccc} L & \rightarrow & (S) \mid \mathbf{a} \\ S & \rightarrow & LS \mid \varepsilon \end{array}$$

 ${f Q}$ 1. Soit la définition dirigée par la syntaxe suivante :

Productions			Règles sémantiques
L	\rightarrow	(S)	L.nb = S.nb
L	\rightarrow	a	L.nb = 1
S	\rightarrow	$L S_1$	$S.nb = L.nb + S_1.nb$
S	\rightarrow	ε	S.nb = 0

- Q 1.1. Définissez complètement l'attribut nb utilisé dans cette DDS : attribut synthétisé ou hérité, type de valeur (entier, réel, caractère, booléen, ...), symbole(s) de la grammaire associé(s) et rôle.
 - Q 1.2. Construisez un arbre d'analyse décoré pour la phrase ((a)a).

 \mathbf{Q} 2. L'expression $(((\mathbf{a}))(\mathbf{a}))$ dont l'arbre d'analyse est représenté ci-dessous contient 2 atomes et est de profondeur 3.

- Q 2.1. Complétez la DDS ci-dessus pour calculer la profondeur d'une expression parenthésée.
- ${\bf Q}$ 2.2. Quel type d'attribut avez-vous utilisé? Quel est le type de la DDS construite? La DDS est-elle évaluable par un parcours postfixe?

Exercice 2. Expressions arithmétiques à la LISP

Soit la grammaire $\mathcal G$ définie par l'ensemble des productions suivant :

$$\begin{array}{ccc} E & \rightarrow & \mathbf{ent} \mid (\ Op\ E\ E\ El\) \\ El & \rightarrow & E\ El\mid \varepsilon \\ Op & \rightarrow & +\mid \times \end{array}$$

avec \mathbf{ent} , terminal désignant l'ensemble des entiers. Cette grammaire est $\mathrm{LL}(1)$ et génère l'ensemble des expressions définies par :

- Un entier est une expression.
- $-(+e_1 e_2 \dots e_n)$ et $(\times e_1 e_2 \dots e_n)$ sont des expressions si e_1, e_2, \dots, e_n sont des expressions $(n \ge 2)$.

Exemple: $(\times (+ 2 13 7 3) (+ 4 5))$ est une expression.

Q 1. Concevez un STDS pour afficher les expressions en notation infixée.

Exemples:
$$(+ (\times 45) 32) \Rightarrow ((4 \times 5) + 3 + 2) \\ (+ 123) \Rightarrow (1 + 2 + 3)$$

 ${f Q}$ 2. Concevez un STDS pour afficher la valeur des expressions reconnues par la grammaire de la première question.

$$\begin{array}{cccc} \textit{Exemples}: & (+~(\times~4~5)~3~2) & \Rightarrow & 25 \\ & (+~1~2~3) & \Rightarrow & 6 \end{array}$$

Exercice 3. Entiers signés

Soit la grammaire $G = \langle V, T, P, Entier \rangle$ avec $V = \{Entier, Signe, Liste\}$, $T = \{+, -, Chiffre\}$, P l'ensemble des productions suivantes :

$$\begin{array}{lll} Entier & \rightarrow & Signe \ Liste \\ Signe & \rightarrow & + \mid - \\ Liste & \rightarrow & Liste \ \mathbf{Chiffre} \mid \ \mathbf{Chiffre} \end{array}$$

et le terminal **Chiffre** désignant les chiffres de 0 à 9. Cette grammaire reconnaît tous les entiers signés : $+12, -3453, +3, \dots$

Soit la définition dirigée par la syntaxe suivante :

Prod	luctions	Règles sémantiques
\rightarrow	Signe Liste	Liste.p = 0
		$\underline{\text{Si}} (Signe.neg) \underline{\text{Alors}} Entier.val = -Liste.val$
		$\underline{\text{Sinon}} \ Entier.val = Liste.val$
		<u>FSi</u>
\rightarrow	+	Signe.neg = FAUX
\rightarrow	_	Signe.neg = VRAI
\rightarrow	$Liste_1$ Chiffre	$Liste_1.p = Liste.p + 1$
		$Liste.val = Liste_1.val + $ Chiffre $.vallex \times 10^{Liste.p}$
\rightarrow	Chiffre	$Liste.val = \mathbf{Chiffre}.vallex \times 10^{Liste.p}$
	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	-

- Q 1. Construisez l'arbre d'analyse décoré pour l'entier suivant : -8106
- **Q 2.** Définissez complètement les attributs p, neg, val et vallex utilisés dans la définition dirigée par la syntaxe ci-dessus : attribut synthétisé ou hérité, type de valeur (entier, réel, caractère, booléen, ...), symbole(s) de la grammaire associé(s) et rôle.

2

 ${f Q}$ 3. Transformez la définition dirigée par la syntaxe en schéma de traduction dirigé par la syntaxe.

Exercice 4. Occurrences consécutives - Version 1

Soit \mathcal{L} le langage dénoté par l'expression régulière $(\mathbf{a} \mid \mathbf{b})(\mathbf{ba} \mid \mathbf{aa} \mid \mathbf{ab})^*$. Ce langage est dénoté par la grammaire $\mathcal{G} = \{Va, Te, P, S\}$ avec $Va = \{S, T\}$, $Te = \{\mathbf{a}, \mathbf{b}\}$ et P l'ensemble des productions suivantes :

$$\begin{array}{ccc} S & \rightarrow & \mathbf{a}T \mid \mathbf{b}T \\ T & \rightarrow & \mathbf{b}\mathbf{a}T \mid \mathbf{a}\mathbf{a}T \mid \mathbf{a}\mathbf{b}T \mid \varepsilon \end{array}$$

- Q 1. Construire l'arbre syntaxique pour l'expression aaabaabba.
- ${f Q}$ 2. Concevoir une DDS pour calculer le nombre maximum de ${f a}$ consécutifs contenus dans les phrases du langage ${\cal L}$ en utilisant les attributs suivants :
 - -nba, attribut hérité, associé au non-terminal T: Entier Nombre courant de ${\bf a}$ consécutifs
 - $-\ nbaMT,$ attribut hérité, associé au non-terminal T : Entier Nombre maximum de ${\bf a}$ consécutifs à gauche de T
 - $-\ nbaM,$ attribut synthétisé, associé aux non-terminaux S et T : Entier Nombre maximum de a consécutifs dans la phrase
- Q 3. Construire l'arbre syntaxique décoré pour l'expression aaabaabba.
- Q 4. Transformer la DDS précédente en STDS.

Exercice 5. Occurrences consécutives - Version 2

Le langage \mathcal{L} de l'exercice précédent est également par la grammaire $\mathcal{G}' = \{Va', Te, P, D\}$ avec $Va' = \{D, S\}$, $Te = \{\mathbf{a}, \mathbf{b}\}$ et P l'ensemble des productions suivantes :

$$\begin{array}{ccc} D & \rightarrow & S \\ S & \rightarrow & S\mathbf{ba} \mid S\mathbf{aa} \mid S\mathbf{ab} \mid \mathbf{a} \mid \mathbf{b} \end{array}$$

Répondez aux mêmes questions que dans l'exercice précédent (pour la question 2, vous définirez vos propres attributs et vous n'utiliserez que des attributs synthétisés).