MATH455 HOMEWORK 0 DUE FRIDAY, JANUARY 17

Recall the truth tables for the following logical connectives.

p	q	$p \wedge q$
t	t	t
t	f	f
f	t	f
f	f	f

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline t & t & t \\ t & f & t \\ f & f & f \end{array}$$

$$\begin{array}{c|c}
p & \neg p \\
\hline
t & f \\
f & t
\end{array}$$

Definition. A set S of logical connectives is universal if for any finite n and any function $f: \{t, f\}^n \to \{t, f\}$ there is an expression $E(p_1, \ldots, p_n)$ using the propositional variables p_1, \ldots, p_n and connectives from S so that $E(p_1, \ldots, p_n) = f(p_1, \ldots, p_n)$ for any assignment of truth values to the propositional variables.

Exercise 1. Show that $\{\land, \lor, \neg\}$ is universal.

Exercise 2. Which of $\{\land,\lor\}$, $\{\land,\neg\}$, and $\{\lor,\neg\}$ are universal? Justify your answers.

Exercise 3. Consider the following logical connective, defined according to the following truth table.

$$\begin{array}{c|cccc} p & q & p \uparrow q \\ \hline t & t & f \\ t & f & t \\ f & t & t \\ f & f & t \\ \end{array}$$

Show that $\{\uparrow\}$ is universal. [Hint: by Exercise 1 it is enough to show that $p \land q$, $p \lor q$, and $\neg p$ can all be expressed just using \uparrow . (Why?)]

Exercise 4. Consider the following logical connective, defined according to the following truth table.

1

p	q	$p\downarrow q$
t	t	f
t	f	f
f	t	f
f	f	t

Show that $\{\downarrow\}$ is universal.