Grundzüge der Theoretischen Informatik 21.1.22

Markus Bläser Universität des Saarlandes Kapitel 25: Eine universelle Turingmaschine

Goedelisierung von Turingmaschinen

- \blacktriangleright k-Band-TM $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, Q_{acc})$
- o.B.d.A $Q = \{0, 1, ..., s\}$ und $\Gamma = \{0, 1, ..., \ell\}$, ℓ ist das Blank. Kodiere q durch bin(q) und γ durch $bin(\gamma)$.
- \blacktriangleright Kodiere $\delta(q, \gamma_1, \ldots, \gamma_k) = (q', \gamma'_1, \ldots, \gamma'_k, r_1, \ldots, r_k)$ durch

$$\begin{split} [\operatorname{bin}(q), \operatorname{bin}(\gamma_1), \dots, \operatorname{bin}(\gamma_k), \\ \operatorname{bin}(q'), \operatorname{bin}(\gamma_1'), \dots, \operatorname{bin}(\gamma_k'), \hat{r}_1, \dots, \hat{r}_k] \end{split}$$

wobei

$$\hat{r}_{\kappa} = \begin{cases} 00 & \text{if } r_{\kappa} = S \\ 10 & \text{if } r_{\kappa} = L \\ 01 & \text{if } r_{\kappa} = R \end{cases}$$

Falls $\delta(q, \gamma_1, \dots, \gamma_k)$ undefiniert ist, kodiere dies durch

$$[\operatorname{bin}(\mathfrak{q}), \operatorname{bin}(\gamma_1), \ldots, \operatorname{bin}(\gamma_k), \operatorname{bin}(s+1), \varepsilon, \ldots, \varepsilon, \varepsilon, \ldots, \varepsilon]$$

Gödelisierung (2)

Injektive Abbildung $g\ddot{o}d_{\mathit{TM}}$ von der Menge aller TM nach $\{0,1\}^*$:

Konkatenation von

- ▶ bin(k), die Anzahl der Bänder
- ightharpoonup bin(s + 1), die Größe von Q
- ightharpoonup bin($\ell+1$), die Größe von Γ
- ▶ die Kodierungen von $\delta(q, \gamma_1, ..., \gamma_k)$, $q \in Q$ und $\gamma_1, ..., \gamma_k \in \Gamma$, in lexikographischer Ordnung
- ightharpoonup bin(q₀), der Startzustand
- $ightharpoonup ext{bin}(| ext{Q}_{ ext{acc}}|)$, die Anzahl der akzeptierenden Zustände
- $lackbox{bin}(q),\ q\in Q_{\mathrm{acc}}$, in aufsteigender Reihenfolge

Eigenschaften:

- $ightharpoonup \gcd_{TM}$ ist injektiv, aber nicht bijektiv.
- ightharpoonup das Bild von $g\ddot{\text{od}}_{TM}$ ist entscheidbar (in Polyzeit)

Eine universelle Turingmaschine

- ightharpoonup Eine universelle TM U_{TM} hat eine feste Anzahl von Bänder, ein festes Arbeitsalphabet und eine feste Zustandsmenge.
- Eine zu simulierende TM M kann mehr Bänder, ein großes Arbeitsalphabet und mehr Zustände haben.
- $ightharpoonup U_{TM}$ speichert alle Bänder von M auf einem.
- Wenn die i-te Zelle der k Bänder die Symbole i₁,..., i_k enthalten, dann ist der i-te Block dieses Bandes

Die Blöcke werden durch \$ separiert.

Zu Beginn werden die Blöcke mit

$$\# bin(x_i) \# bin(\ell) \# \dots \# bin(\ell)$$

initialisiert (auf Eingabe $x = x_1 x_2 ... x_n$).

▶ Die Kopfpositionen von M werden durch * (statt #) markiert.

Sei M this reither draist and shis plak bestroits.
Davor void en adrit von M vi Zeit O(1gl·s(n)) rivuliet
O(lgl·s(n)) rivulat
Exilledat von Urm: O(1gl·s(n)·t(n))
Phylodol on UTn: Igl. S(n)
Goddsving von M

Kapitel 26: Zeit- und Platzhierarchien

Ein technisches Lemma

Lemma (26.1)

Seien $s_1, s_2, t_1, t_2 : \mathbb{N} \to \mathbb{N}$ mit $s_1 = o(s_2)$ und $t_1 = o(t_2)$. Sei $s_2(n) \ge \log n$ und $t_2(n) \ge (1 + \varepsilon)n$ für ein $\varepsilon > 0$. Sei s_2 platzund t_2 -zeitkonstruierbar.

- 1. Es gibt eine s_2 -platzbeschränkte DTM C_1 , so dass für jede s_1 -platzbeschränkte Einband DTM M $L(C_1) \neq L(M)$ gilt.
- 2. Es gibt eine t_2 -zeitbeschränkte DTM C_2 , so dass für jede t_1 -zeitbeschränkte Einband DTM M $L(C_2) \neq L(M)$ gilt.

Beweis

- Sei g die Gödelnummer einer Einband-DTM M.
- Wir können M in Zeit $O(|g| \cdot t(n))$ und Platz $O(|g| \cdot s(n))$ simulieren.
- ▶ Das i-te Symbol von M wird durch bin(i) (feste Länge) repräsentiert.
- Die Position des Kopfes von M muss nicht gespeichert werden.
- Die Simulation erfolgt Schritt für Schritt.

Konstruktion von C₁

Eingabe: $x \in \{0, 1\}^*$, interpretiert als [g, y] mit $g \in \operatorname{im} \operatorname{g\"{o}d}_{TM}$.

- 1. Falls x nicht diese Form hat, verwerfe.
- 2. Markiere $s_2(|x|)$ Symbole links und rechts der Zelle 0 auf dem ersten Band.
- 3. Simuliere $M := \operatorname{g\"{o}d}_{TM}^{-1}(g)$ auf x auf dem ersten Band.
- 4. Zähle die Schritte auf einem Extraband.
- 5. Falls die Simulation den markierten Platz verlässt, verwerfe.
- 6. Wenn mehr als $3^{s_2(|x|)}$ Schritte simuliert wurden, dann halte und verwerfe. Arzen ve
- 7. Akzeptiere, falls M verwirft. Sonst verwerfe.

Bot. for side 5,- plans besidering Erisand-DTM M
gilt es ere Engele x= [g,y], so dess sich C,
and [5.y] anders restrict als M.
(= god - (n))
1. Sei xeL(Ca)
Days vird die Girulation von M beendet
and Moverift x (7) oder Moulet
net als 3 sz(1x1) viele 8 svite. (6)
In ester Fall soid our laby.
. 0

2. Fall: X& L(Ca) Davis relaint M der narrater Plats order M rill und are. In Eveler Fall and vir lehig. Der enste Fall karr nicht einheben falls × lung gerng ist, derr verr M 5, - platabestrait it, deur bruitt de Simulation 191.5, (1x11 v & Sz(1x1) Pulls IX grafs Co vot Sz-plansbes Araint da de Sur und de ziller in Sz((x1) Plutz recliniet verden []

Hierarchiesätze

Theorem (26.2 Deterministischer Platzhierarchiesatz)

Seien $s_2(n) \geq \log n$ platzkonstruierbar und $s_1(n) = \mathrm{o}(s_2(n)).$ Dann gilt

 $\mathsf{DSpace}(s_1) \subsetneq \mathsf{DSpace}(s_2).$

t, log t, = 0 (b2)

Theorem (26.3 Deterministischer Zeithierarchiesatz)

Seien t_2 zeitkonstruierbar und $t_1^2 = o(t_2)$. Dann gilt

 $\mathsf{DTime}(\mathsf{t}_1) \subsetneq \mathsf{DTime}(\mathsf{t}_2)$.

Weitere Hierarchiesätze (ohne Beweis)

Theorem (26.6, Fürer)

Seien $k \geq 2$, t_2 zeitkonstruierbar und $t_1 = \mathrm{o}(t_2)$. Dann gilt:

 $\mathsf{DTime}_k(t_1) \subsetneq \mathsf{DTime}_k(t_2)$.

Theorem (26.7, Borodins Lückensatz)

Seien f eine rekursive Funktion $\mathbb{N} \to \mathbb{N}$ mit $f(n) \geq n$ für alle n. Dann gibt es totale rekursive Funktionen $s,t:\mathbb{N} \to \mathbb{N}$ mit $s(n) \geq n$ und $t(n) \geq n$, so dass

$$\mathsf{DTime}(\mathsf{f}(\mathsf{t}(\mathsf{n}))) = \mathsf{DTime}(\mathsf{t}(\mathsf{n})),$$

 $\mathsf{DSpace}(\mathsf{f}(s(\mathsf{n}))) = \mathsf{DSpace}(s(\mathsf{n})).$

Die Schranke war nicht zeitkonstruierbar...

Kapitel V: Beweis des Cook–Karp–Levin-Theorems (Skizze)

Reduktionsschema

▶ Gegeben: NTM M und $x \in \Sigma^*$

• Gesucht: Formel $\phi_{M,x}$ in CNF

ightharpoonup Eigenschaft: M akzeptiert $x \iff \varphi_{M,x}$ ist erfüllbar

Boolesche Schaltkreise

Unbeirrbare Turingmaschinen

Definition (V.3)

Eine TM heißt *unbeirrbar*, falls die Kopfbewegungen die gleichen sind für alle Eingaben der Länge \mathfrak{n} . (Insbesondere macht sie die gleiche Anzahl von Schritten.)

Lemma (V.4)

Sei t zeitkonstruierbar. Für jede t-zeitbeschränkte DTM M gibt es eine unbeirrbare $O(t^2)$ -zeitbeschränkte Einband-DTM S mit L(M) = L(S).

Von Turingmaschinen zu Schaltkreisen

- $M = (Q, \Sigma, \Gamma, \delta, q_0, Q_{acc}),$ unbeirrbar.
- $Q \subseteq \{0,1\}^d$ für ein festes d, $q_0 = 0 \dots 0$.
- $\Gamma \subseteq \{0,1\}^c$ für ein festes c.
- $\Sigma = \{0, 1\}, 0 \text{ entspricht } 0...0 \text{ und } 1 \text{ entspricht } 1...1$
- ► Schaltkreis D D: $\{0,1\}^d \times \{0,1\}^c \rightarrow \{0,1\}^d \times \{0,1\}^c$ berechnet δ (ohne Richtung).

Beispiel:

- ► Eingabe 010
- $Q = \{0, 1\}^3$
- $\Gamma = \{0, 1\}^2$

Der Beweis

CSAT

Gegeben: (Kodierung eines) Booleschen Schaltkreises C.

Frage: Gibt es ein $\xi \in \{0,1\}^*$ mit $C(\xi) = 1$?

Theorem (V.6)

CSAT ist NP-schwer.

Lemma

 $CSAT \leq_P SAT$.

Kapitel 27: Mehr zu NP

NP und co-NP

ightharpoonup co-NP = {L | $\bar{L} \in NP$ }

reguline Ashort => P+NP ightharpoonup Frage: NP = co-NP?

ightharpoonup UNSAT: Gegeben eine Formel ϕ in CNF, ist ϕ unerfüllbar?

TAUT: Gegeben φ in DNF, erfüllt jede Belegung φ?

Lemma

TAUT und UNSAT sind co-NP-vollständig.

Theorem

Falls co-NP ein NP-vollständiges Problem enthält, dann ist NP = co-NP.

FACTOR: Gegeben x und c in binär, hat x einen Teiler b mit 2 < b < c?

► FACTOR \in NP \cap co NP

Selbstreduzierbarkeit

TSP: Gegeben ein kantengewichteter Graph G, Schranke b

Entscheidungsproblem: Gibt es eine Tour der Länge \le b?

Berechnungsproblem: Wie lang ist die kürzeste Tour?

Konstruktionsproblem: Gib eine Tour minimaler Länge aus!

Beobachtung:

P = NP gibt einen effizienten Algorithmus für das
Entscheidungsproblem.

Aber: wir wollen das Konstruktionsproblem lösen!

Hilfe! Mein Problem ist NP-schwer

- Exakte Algorithmen mit eponentieller Worst-Case-Laufzeit, aber akzeptabler Laufzeit auf vielen Eingaben, z.B. Sat-Solver
- Heuristiken, die keine optimale Lösung finden, aber eine akzeptable.

Zwei Methoden, bei denen man etwas beweisen kann:

- ► Approximationsalgorithmen
- Parametrisierte Algorithmen

Approximationsalgorithmen

Theorem

Falls es eine Polynomialzeit-DTM A gibt, die gegeben $G = (V, (\frac{V}{2}), w)$ eine Hamiltonsche Tour H mit

$$w(H) < 2^{p(n)} \cdot \mathrm{OPT}(G)$$
 Long ever ophicals Har. Tour

ausgibt für ein Polynom \mathfrak{p} , dann gilt P = NP.

Metrisches TSP: w erfüllt die Dreiecksungleichung

Approximationsalgorithmus: 1. Sei T ein MST von G.

- 2. Ordne die Knoten nach den Besuchszeiten einer DFS.
- 3. Die Hamiltonsche Tour hat Länge $\leq 2 \cdot \mathrm{OPT}(\mathsf{G})$.

Parametrisierte Algorithmen

Vertex-Cover:

▶ Jeder Vertex-Cover muss v oder alle Nachbarn N(v) von v enthalten.

Gegeben (G, k), gibt es einen Vertex-Cover der Größe $\leq k$? Binärer Suchbaum:

- 1. Falls k < 0, gebe nein zurück.
- 2. Gebe ja zurück, falls der Graph keine Kanten hat.
- 3. Gebe nein zurück, wenn k = 0.
- 4. Fahre rekursiv fort auf $(G \{v\}, k 1)$ und $(G N(v), k \deg(v))$.
- 5. Falls ein rekursiver Aufruf ja ausgibt, gebe ja zurück. Sonst nein.

Laufzeit: $O(2^k \operatorname{poly}(n))$

Starke NP-Härte und pseudopolynomielle Algorithmen

Zahlprobleme: Eingaben sind Tupel von Zahlen

Definition

Ein Zahlproblem ist *stark* NP-*schwer*, falls es NP-schwer ist, wenn die Zahlen unär kodiert werden.

- Subset-Sum und Partition haben pseudopolynomielle Algorithmen
- pseudopolynomiell: Laufzeit polynomiell in der Größe der Zahlen, nicht in der Länge der Binärdarstellung.

Theorem

Falls ein stark NP-schweres Zahlproblem L einen pseudopolynomiellen Algorithmus hat, dann P = NP.