Scilab Textbook Companion for Power Plant Engineering by P. K. Nag¹

Created by
Nittala Venkata Krishna
B.Tech
Mechanical Engineering
Sastra University
College Teacher
Peddavarapu Sreehari
Cross-Checked by
Sunil Singla

May 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Power Plant Engineering

Author: P. K. Nag

Publisher: Tata McGraw, New Delhi

Edition: 2

Year: 2001

ISBN: 0070435995

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Schab Codes	4
1	Introduction Economics of Power Generation	5
2	Analysis of Steam Cycles	22
3	Combined Cycle Power Generation	35
4	Fuels and combustion	47
5	Combustion Mechanism Combustion equipment and Firing Methods	67
6	Steam generators	73
7	Steam Turbines	85
8	Condenser Feedwater and Circulating water systems	117
9	Nuclear Power Plants	125
10	Hydroelecric power plant	134
11	Diesel engine and Gas Turbine Power Plants	151
12	Flywheel Energy storage	163

List of Scilab Codes

Exa 1.1	Load factor	5
Exa 1.2	Average load	6
Exa 1.3	Annual Revenue	7
Exa 1.4	Annual energy	8
Exa 1.5	Overall cost	9
Exa 1.6	Cost of power generation	10
Exa 1.7	Economic loading	11
Exa 1.8	Cost of power generation	12
Exa 1.9	Load factor and capacity factor	13
Exa 1.10	Load factor and capacity factor	14
Exa 1.11	Overall cost	16
Exa 1.12	Amount of money saved	17
Exa 1.13	Present worth of the payments	18
Exa 1.14	Increamental heat rate	18
Exa 1.15	Cost of electrical energy	19
Exa 2.1	Power output and efficiency	22
Exa 2.2	Mass flow rate	23
Exa 2.3	Optimum pressures and temperatures	25
Exa 2.4	Percentage of total electricity	26
Exa 2.5	Percentage of total heat absorption	27
Exa 2.6	Cycle efficiency	28
Exa 2.7	Steam condition	31
Exa 2.8	Steam generation capacity	32
Exa 2.9	Power developed	33
Exa 3.1	Efficiency of combined cycle	35
Exa 3.2	Rate of heat transfer	36
Exa 3.3	Mass flow rate	38
Exa 3.4	Power output and efficiency	39

Exa 3.5	Overall efficiency	42
Exa 3.6	Overall efficiency	43
Exa 3.7		43
Exa 3.8	Thermal efficiency	44
Exa 4.1	Mass flow rate	47
Exa 4.2		48
Exa 4.3	Air fuel ratio	49
Exa 4.4		50
Exa 4.5		53
Exa 4.6	Flue gas analysis	55
Exa 4.7		57
Exa 4.8		58
Exa 4.9		59
Exa 4.10		60
Exa 4.11	Volumetric composition	61
Exa 4.12		63
Exa 4.13	Thermal efficiency	64
Exa 5.1		67
Exa 5.2	Voidage of the bed	68
Exa 5.3		68
Exa 5.4		69
Exa 5.5	Rate of heat removed	70
Exa 5.6		71
Exa 6.1	Pressure head	73
Exa 6.2	Amount of water required	74
Exa 6.3		75
Exa 6.4	Steam generation rate	76
Exa 6.5		79
Exa 6.6	Number of coils needed	80
Exa 6.7		81
Exa 6.8		83
Exa 7.1		85
Exa 7.2		86
Exa 7.3	Throat and exit area	87
Exa 7.4		88
Exa 7.5		89
Exa 7.6		90
Exa 7.7		91

Exa 7.8	Exit area	93
Exa 7.9	Force Thrust and efficiency	94
Exa 7.10	Workdone and efficiency	95
Exa 7.11	Power developed	96
Exa 7.12	Thrust Power and efficiency	97
Exa 7.13	Thrust Power and efficiency	98
Exa 7.14	Workdone and efficiency	99
Exa 7.15	Power output and efficiency	100
Exa 7.16	Power developed	102
Exa 7.17	Power developed	103
Exa 7.18	Diagram power	103
Exa 7.19	Number of impulse stages	104
Exa 7.20	Height of blades	106
Exa 7.21	Mean diamter of wheel	106
Exa 7.22	Number of stages	108
Exa 7.23	Interstage pressures	109
Exa 7.25	Mean blade diameter	110
Exa 7.26	Height of blades	111
Exa 7.27	Intercasting steam condition	112
Exa 7.28	Efficiency	114
Exa 8.1	Rate of flow	117
Exa 8.2	Rate of flow	119
Exa 8.3	Temperature of water	121
Exa 8.4	Temperature of water	122
Exa 9.1	Mass defect and binding energy	125
Exa 9.2	Decay constant	126
Exa 9.3	Fuel consumption	126
Exa 9.4	Area required	127
Exa 9.5	Microscopic absorption	128
Exa 9.6	Microscopic absorption	128
Exa 9.7	Thermal neutron flux	129
Exa 9.8	Number of collisions	130
Exa 9.9	Rating of reactor	131
Exa 9.10	Specific energy release rate	132
Exa 9.11	Reactor power level	132
Exa 10.1	Efficiency of the runner	134
Exa 10.2	Number of jets	135
Exa 10.3	Diameter of jet	136

Exa 10.4	Specific speed
Exa 10.5	Velocity of jet
Exa 10.6	Head on the wheel
Exa 10.7	Outlet and inlet blade angles
Exa 10.8	The guide vane angle
Exa 10.9	Discharge of turbine
Exa 10.10	Blade angles
Exa 10.11	Speed and diameter
Exa 10.12	Specific speed
Exa 10.13	Number of turbines
Exa 10.14	Speed power and scale ratio
Exa 10.15	Speed and power
Exa 10.16	Efficiency
Exa 10.17	Least number of turbines
Exa 10.18	Power developed
Exa 10.19	Power developed
Exa 11.1	Net increase in brake power
Exa 11.2	Temperature of air
Exa 11.3	Energy balance sheet
Exa 11.4	Energy balance sheet
Exa 11.5	Blade angles
Exa 11.6	Impeller tip diameter
Exa 11.7	Workdone factor
Exa 11.8	Airfuel ratio
Exa 12.1	Compressed air temperature
Exa 12.2	Storage time

Chapter 1

Introduction Economics of Power Generation

Scilab code Exa 1.1 Load factor

```
1
   2 clf()
   3 clc
   4 clear
   5 //Input data
   6 C=30 // Capacity in MW
   7 M=70//Loads are taken above 70 MW
   8 t1=[0,6]//Time range in hours
   9 t2=[6,10] //Time range in hours
10 t3=[10,12] //Time range in hours
11 t4=[12,16] //Time range in hours
12 t5=[16,20]//Time range in hours
13 \text{ t6=[20,22]}//\text{Time range in hours}
14 t7=[22,24]//Time range in hours
15 L = [30,70,90,60,100,80,60] / Load in MW
16
17 // Calculations
18 E=((L(1)*(t1(2)-t1(1)))+(L(2)*(t2(2)-t2(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1)))+(L(3)*(t1(2)-t1(1))+(L(3)*(t1(2)-t1(1)))+(L(
                            t3(2)-t3(1))+(L(4)*(t4(2)-t4(1)))+(L(5)*(t5(2)-t4(1)))
```

```
t5(1))+(L(6)*(t6(2)-t6(1)))+(L(7)*(t7(2)-t7(1)))
      )//Energy generated in MWh
19 AL=(E/24)//Average load in MW
20 PL=\max(L(1),L(2),L(3),L(4),L(5),L(6),L(7))/Peak
      load in MW
21 LF=(AL/PL)//Load factor of the plant
22 \quad E1 = ((L(3)-M)*(t3(2)-t3(1)))+((L(5)-M)*(t5(2)-t5(1)))
      +((L(6)-M)*(t6(2)-t6(1)))/Energy generated if
      the load above 70 MW is supplied by a standby
      unit of 30 MW capacity in MWh
23 T=(t3(2)-t3(1))+(t5(2)-t5(1))+(t6(2)-t6(1))//Time
      during which the standby unit remains in
      operation in h
24 AL1=(E1/T)//Average load in MW
25 LF1=(AL1/C)/Load factor
26 U=(E1/(C*T))/Use factor
27
28 //Output
29 t = [0,0,6,6,10,10,12,12,16,16,20,20,22,22,24,24] //
      Time for plotting load curve in hours
30 \quad 1 = [0, 30, 30, 70, 70, 90, 90, 60, 60, 100, 100, 80, 80, 60, 60, 0]
      //Load for plotting load curve in MW
31 plot(t,1)//Load curve taking Time in hours on X-axis
       and Load in MW on Y- axis
32 xtitle('Load Curve', 'Time hours', 'Load MW');
33
34
35 printf('(a)Load factor of the plant is \%3.2 \,\mathrm{f} \setminus \mathrm{n(b)}
      Load factor of a standby equipment of %3.0 f
      capacity if it takes up all the loads above \%3.0 f
      MW is \%3.2 \, f \setminus n(c) Use factor is \%3.2 \, f', LF, C, M, LF1,
      U)
```

Scilab code Exa 1.2 Average load

```
1
2 clc
3 clear
4 //Input data
5 P=60//Peak load on power plant in MW
6 L=[30,20,10,14]//Loads having maximum demands in MW
7 C=80//Capacity of the power plant in MW
8 A=0.5//Annual load factor
9 Y=8760//Number of hours in a year of 365 days
10
11 // Calculations
12 AL=(P*A)//Average load in MW
13 E=(AL*1000*Y)/10<sup>6</sup>//Energy supplied per year in kWh
      *10^6
14 DF=(P/(L(1)+L(2)+L(3)+L(4)))/Demand factor
15 DIF = ((L(1)+L(2)+L(3)+L(4))/P)/Diversity factor
16
17 // Output
18 printf('(a) The average load on the power plant is
      %3.0 f MW \n(b) The energy supplied per year is %3
      .1 \text{ f } *10^6 \text{ kWh } \ln(c) \text{ Demand factor is } \%3.3 \text{ f } \ln(d)
      Diversity factor is %3.3 f', AL, E, DF, DIF)
```

Scilab code Exa 1.3 Annual Revenue

```
1
2 clc
3 clear
4 //Input data
5 C=210//Capacity of thermal power plant in MW
6 P=160//Maximum load in MW
7 L=0.6//Annual load factor
8 m=1//Coal consumption per kWh of energy generated
9 Rs=450//Cost of coal in Rs per tonne
10 Y=8760//Number of hours in a year of 365 days
```

```
11
12 // Calculations
13 AL=(L*P)// Average load in MW
14 E=(AL*Y)// Energy generated per year in MWh
15 CL=(E*1000)// Coal required per year in kg
16 CY=(E*Rs)// Cost of coal per year
17 CE=CL// Cost of energy sold in Rs
18 RY=(CE-CY)/10^7// Revenue earned by the power plant per year in Rs crore
19 CF=(AL/C)// Capacity factor
20
21 // Output
22 printf('(a) The annual revenue earned by the power plant is Rs %3.2 f crore \n(b) Capacity factor is %3.3 f', RY, CF)
```

Scilab code Exa 1.4 Annual energy

```
1
2 clc
3 clear
4 //Input data
5 L=0.75/Load factor
6 C=0.60//Capacity factor
7 U=0.65//Use\ factor
8 M=60//Maximum power demand in MW
9 Y=8760//Number of hours in a year of 365 days
10
11 // Calculations
12 A=(L*M)//Average load in MW
13 P=((A*1000)*Y)/10^6//Annual energy production in kWh
      *10^6
14 PC=(A/C)//Plant capacity in MW
15 R=(PC-M)//Reserve capacity in MW
16 HIO=(P*1000/(U*PC))/Hours in operation in hrs
```

Scilab code Exa 1.5 Overall cost

```
1
2 clc
3 clear
4 //Input data
5 D=500//Maximum demand in MW
6 L=0.7//Load factor
7 //1) Steam power plant 2) Hydroelectric power plant 3)
      Nuclear power plant
8 CC=[3,4,5]//Capital cost per MW installed in Rs.
      crore
9 I=[6,5,5]//Interest in percent
10 D=[6,4,5]//Depreciation in percent
11 OP=[30,5,15]//Operating cost (including fuel) per
12 TD=[2,3,2]//Transmission and distribution cost per
     kWh
13 Y=8760//Number of hours in a year of 365 days
14
15 // Calculations
16 //1) Steam power plant
17 CCX = (CC(1)*D*10^7) // Capital cost in Rs
18 IX = ((I(1)/100) * CCX) / Interest in Rs
19 DX = ((D(1)/100) * CCX) // Depreciation in Rs
20 AFCX=IX+DX//Annual fixed cost in Rs
```

```
21 EX=(L*D*1000*Y) //Energy generated per year in kWh
22 RX=(OP(1)+TD(1))//Running cost/kWh in paise
23 OX=((AFCX/EX)+(RX/100))*100//Overall cost/kWh in
      paise
24
25 //2) Hydroelectric Power plant
26 CCY=(CC(2)*D*10^7)//Capital cost in Rs
27 IY=((I(2)/100)*CCY)//Interest in Rs
28 DY=((D(2)/100)*CCY)/Depreciation in Rs
29 AFCY=IY+DY//Annual fixed cost in Rs
30 EY=(L*D*1000*Y)//Energy generated per year in kWh
31 RY=(OP(2)+TD(2))//Running cost/kWh in paise
32 OY = ((AFCY/EY) + (RY/100)) *100 // Overall cost/kWh in
      paise
33
34 //3) Nuclear power plant
35 CCZ = (CC(3)*D*10^7) / Capital cost in Rs
36 IZ=((I(3)/100)*CCZ)//Interest in Rs
37 DZ = ((D(3)/100)*CCZ)//Depreciation in Rs
38 AFCZ=IZ+DZ//Annual fixed cost in Rs
39 EZ=(L*D*1000*Y)//Energy generated per year in kWh
40 RZ=(OP(3)+TD(3))/Running cost/kWh in paise
41 OZ = ((AFCZ/EZ) + (RZ/100)) *100 // Overall cost/kWh in
      paise
42
43 // Output
44 printf('(i) Overall cost per kWh in Steam power plant
       is %3.0 f paise \n(ii) Overall cost per kWh in
      Hydroelectric power plant is %3.0f paise \n(iii)
      Overall cost per kWh in Nuclear power plant is \%3
      .0 f paise', OX, OY, OZ)
```

Scilab code Exa 1.6 Cost of power generation

```
2 clc
3 clear
4 //Input data
5 C=210 // Capacity in MW
6 ID=12//Interest and depreciation in percent
7 CC=18000//Capital cost/kW installed in Rs
8 L=0.6//Annual load factor
9 AC=0.54//Annual capacity factor
10 RC=(200*10^6)//Annual running charges in Rs
11 E=6//Energy consumed by power plant auxiliaries in
      percent
12 Y=8760//Number of hours in a year of 365 days
13
14 // Calculations
15 MD = (C/L) *AC//Maximum demand in MW
16 RSC=(C-MD)//Reserve Capacity in MW
17 AL=(L*MD)//Average load in MW
18 EP=(AL*1000*Y)//Energy produced per year in kWh
19 NE=((100-E)/100)*EP//Net energy delivered in kWh
20 AID=((ID/100)*CC*C*1000)//Annual interest and
      depreciation in Rs
21 T=(AID+RC)//Total annual cost in Rs
22 CP=(T/NE)*100//Cost of power generation in paise
23
24 // Output
25 printf('(a) The cost of power generation per kWh is
     \%3.0 f paise \n(b) The reserve capacity is \%3.0 f
     MW', CP, RSC)
```

Scilab code Exa 1.7 Economic loading

```
1
2 clc
3 clear
4 //Input data
```

```
5 L=200/The total load supplied by the plants in MW
6 //The incremental fuel costs for generating units a
      and b of power plant are given by
  //dFa/dPa = 0.065Pa + 25
8 //dFb/dPb = 0.08Pa + 20
10 // Calculations
11 //Solving two equations
12 / Pa+Pb=200
13 / 0.065 Pa + 25 = 0.08 Pb + 20
14 A=[1 1
15
      0.065 -0.08] // Coefficient matrix
16 B=[L
17
      (20-25)]//Constant matrix
18 X=inv(A)*B//Variable matrix
19 P=100//If load is shared equally then Pa=Pb=100MW
20 a = (((0.065*P^2)/2) + (25*P)) - (((0.065*X(1)^2)/2) + (25*X)
      (1)))//increase in fuel cost for unit a in Rs.
      per hour
21 b = (((0.08*P^2)/2) + (20*P)) - (((0.08*X(2)^2)/2) + (20*X)
      (2)))//increase in fuel cost for unit a in Rs.
      per hour
22 x=a+b//Net increase in fuel cost due to departure
      from economic distribution of load in Rs. per
      hour
23
24 // Output
25 printf('(a)The economic loading of two units when
      the total load supplied by the power plants is
      200 MW are \%3.2 \text{ f MW} and \%3.2 \text{ f MW} \text{ n(b)} The loss in
      fuel cost per hour if the load is equally shared
      by both units is Rs.\%3.2f per hour', X(1), X(2), x)
```

Scilab code Exa 1.8 Cost of power generation

```
1
2 clc
3 clear
4 //Input data
5 C=200//Installed capacity of the plant in MW
6 CC=400//Capital cost in Rs crores
7 ID=12//Rate of interest and depreciation in percent
8 AC=5//Annual cost of fuel, salaries and taxation in
     Rs. crores
9 L=0.5//Load factor
10 AL2=0.6//Raised Annual load
11 Y=8760//Number of hours in a year of 365 days
12
13 // Calculations
14 AvL=(C*L)//Average Load in MW
15 E=(AvL*1000*Y)//Energy generated per year in kWh
16 IDC = ((ID/100) *CC*10^7) / Interest and depreciation (
     fixed cost) in Rs
17 T = (IDC + (AC*10^7)) / Total annual cost in Rs
18 CP1=(T/E)*100//Cost per kWh in paise
19 AvL2=(C*AL2)//Average Load in MW
20 E2=(AvL2*1000*Y)//Energy generated per year in kWh
21 CP2=(T/E2)*100//Cost per kWh in paise
22 S=((CP1)-(CP2))/Saving in cost per kWh in paise
23 S1=ceil(S)//Rounding off to next higher integer
24
25 // Output
26 printf ('Cost of generation per kWh is %3.0 f paise \n
       Saving in cost per kWh if the annual load factor
       is raised to 60 percent is \%3.0 f paise', CP1, S1)
```

Scilab code Exa 1.9 Load factor and capacity factor

```
1 2 clc
```

```
3 clear
4 //Input data
5 C=300//Capacity of power plant in MW
6 MXD=240//Maximum demand in MW in a year
7 MND=180//Minimum demand in MW in a year
8 //Assuming the load duration curve shown in Figure
     E1.9 on page no 30 to be straight line
9 Y=8760//Number of hours in a year of 365 days
10
11 // Calculations
12 E=((MND*Y)+0.5*(MXD-MND)*Y)*1000//Energy supplied
     per year in kWh
13 AL=(E/Y)//Average load in kW
14 L=((AL/1000)/MXD)/Load factor
15 CF = ((AL/1000)*Y)/(C*Y)/Capacity factor
16
17 //Output
18 printf('(a) Load factor is %3.3 f \n(b) Capacity
     factor is %3.2 f', L, CF)
```

Scilab code Exa 1.10 Load factor and capacity factor

```
1
2 clf()
3 clc
4 clear
5 //Input data
6 t1x=[0,6]//Time range in hours
7 t2x=[6,12]//Time range in hours
8 t3=[12,14]//Time range in hours
9 t4=[14,18]//Time range in hours
10 t5=[18,24]//Time range in hours
11 L=[30,90,60,100,50]//Load in MW
12
13 //Calculations
```

```
14 \text{ t1} = [0, 6, 6, 12, 12, 14, 14, 18, 18, 24, 24] // \text{Time in hours}
              for Load curve
15 L1=[30,30,90,90,60,60,100,100,50,50,0] // Load in MW
              for Load curve
16 t2=[0,4,4,10,10,12,12,18,18,24,24]//Time in hours
              for Load duration curve
17 L2=[100,100,90,90,60,60,50,50,30,30,24]//Load in MW
              for Load duration curve
18 E=((L(1)*(t1x(2)-t1x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1))+(L(2)*(t2x(2)-t2x(1)))+(L(2)*(t2x(2)-t2x(1))+(L(2)*(t2x(2)-t2x(1))+(L(2)*(t2x(2)-t2x(1))+(L(2)*(t2x(2)-t2x(1)
              (3)*(t3(2)-t3(1)))+(L(4)*(t4(2)-t4(1)))+(L(5)*(t5))
              (2)-t5(1)))/Energy generated in MWh
19 AL=E/24//Average load in MW
20 MD = \max(L(1), L(2), L(3), L(4), L(5)) / Maximum demand in
             MW
21 LF = (AL/MD) / Load factor
22 Lx=[30,10]//Loads for selecting suitable generating
              units in MW
     tx=[24,18,10,4]//Time for selecting suitable
              generating units in hrs
24 PC = (Lx(1)*tx(4)+Lx(2)*1) / Plant capacity in MW
25 CF = (E/(PC*24))/(Capacity factor)
26
27 //Output
28 subplot (221)
29 plot(t1,L1)//Load curve taking Time in hrs on X-
              axis and Load in MW on Y- axis
30 xtitle('Load curve', 'Time hrs', 'Load MW')
31 subplot (222)
32 plot(t2,L2)//Load duration curve taking Time in hrs
              on X- axis and Load in MW on Y- axis
33 xtitle('Load duration curve', 'Time hrs', 'Load MW')
34 printf('(c)Suitable generating units to supply the
              load are \ni)One unit of %3.0 f MW will run for %3
              .0f hours\nii)One unit of %3.0f MW will run for
             %3.0 f hours \ niii ) One unit of %3.0 f MW will run
              for %3.0 f hours\niv)One unit of %3.0 f MW will run
                for \%3.0 f hours \ln \ln d Load factor is \%3.2 f \ln \ln e
              Capacity of the plant is %3.0 f MW and Capacity
```

```
factor is \%3.3 \, \text{f}', Lx(1), tx(1), Lx(1), tx(2), Lx(1), tx(3), Lx(2), tx(4), LF, PC, CF)
```

Scilab code Exa 1.11 Overall cost

```
1
2 clc
3 clear
4 //Input data
5 C=10//Capacity of generating unit in MW
6 MD=[6,3.6,0.4]//Maximum demand for domestic
     consumers, industrial consumers and street-
     lighting load respectively in MW
7 L=[0.2,0.5,0.3]/Load factor for domestic consumers,
      industrial consumers and street-lighting load
     respectively
8 CC=10000//Capital cost of the plant per kW in Rs
9 RC=3600000//Total rumming cost per year in Rs
10 AID=10//Annual interest and depreciation on capital
     cost in percent
11 Y=8760//Number of hours in a year of 365 days
12
13 // Calculations
14 E = ((MD(1)*L(1))+(MD(2)*L(2))+(MD(3)*L(3)))*Y*1000//
     Energy supplied per year to all three consumers
     in kWh
15 OC=(RC/E)//Operating charges per kWh in Rs
16 CCP=(C*1000*CC)//capital cost of the plant in Rs
17 FCY=((AID/100)*CCP)//Fixed charges per year in Rs
18 FCkW=(FCY/CC)//Fixed charges per kW in Rs
19 //a) For domestic consumers
20 TC1 = ((FCkW*MD(1)*1000) + (OC*MD(1)*L(1)*Y*1000)) / /
     Total chrges in Rs
21 OC1 = (TC1/(MD(1)*L(1)*Y*1000))*100//Overall cost per
     kWh in paise
```

```
22 //b) For industrial consumers
23 TC2 = ((FCkW*MD(2)*1000) + (OC*MD(2))*L(2)*Y*1000) //
       Total chrges in Rs
24 \text{ OC2} = (\text{TC2}/(\text{MD}(2) * \text{L}(2) * \text{Y} * 1000)) * 100 // \text{Overall cost per}
      kWh in paise
25 //c) For street-lighting load
26 \text{ TC3} = ((FCkW*MD(3)*1000) + (OC*MD(3))*L(3)*Y*1000) //
      Total chrges in Rs
  OC3 = (TC3/(MD(3)*L(3)*Y*1000))*100//Overall cost per
27
      kWh in paise
28
29 //Output
30 printf('Overall cost of energy per kWh for:\n(a)
      Domestic consumers is %3.0 f paise\n(b)Industrial
      consumers is \%3.0 f paise\n(c) Street-lighting load
        is \%3.0 \, \text{f} paise', OC1, OC2, OC3)
```

Scilab code Exa 1.12 Amount of money saved

```
1
2 clc
3 clear
4 //Input data
5 CC=(80*10^6)//Capital cost in Rs
6 L=30//Useful life in years
7 S=5//Salvage value of the capital cost in percent
8 i=0.06//Yearly rate of compound interest
9
10 //Calculations
11 A=((100-S)/100)*CC//Difference of capital cost and salvage value in Rs
12 P=((A*i)/((1+i)^L-1))//The amount of money to be saved annually in Rs
13
14 //Output
```

```
15 printf('The amount of money to be saved annually is Rs.\%3.0 f/-',P)
```

Scilab code Exa 1.13 Present worth of the payments

```
1
   2 clc
   3 clear
  4 //Input data
   5 i=4000//Initial investment in Rs crore
   6 Y=4//Period in years
   7 A=1200//Amount added in Rs crore
   8 B=400//Amount paid from 5th year onwards to the 12th
                            year in Rs crore
   9 a=5//5th year
10 b=12//12 th year
11 y=30//Period in years
12 C=600//Salvage value in Rs crore
13 I=0.1//Interest rate
14
15 // Calculations
16 X=(1/(1+I))/X value for calculations
17 PW = (i + (A*X^Y) + ((B/I)*X^b*((I+1)^b-1)) - ((B/I)*X^a*((I+1)^b-1)) - ((B/I)*X^a*((I+1)^b-1)) - ((B/I)*X^a*((I+1)^b-1)) - ((B/I)*X^b*((I+1)^b-1)) - ((B/I)*X^a*((I+1)^b-1)) - ((B/I)*X^a*((I+1)^b-1)) - ((B/I)*X^b*((I+1)^b-1)) - ((B/I)*X^a*((I+1)^b-1)) - ((B/I)*X^a*((B/I)^b-1)) - ((B/I)^b-1) - ((B/I)^b-
                       +1)^a-1))-(C*X^y))//Present worth of the payments
                            at the time of commissioning in Rs. crores
18
19 //Output
20 printf ('Present worth of the payments at the time of
                            commissioning is Rs. %3.2 f crores', PW)
```

Scilab code Exa 1.14 Increamental heat rate

```
2 clc
3 clear
4 //Input data
5 0=1000//Combined output of two units in MW
6 //Two coal generating units P and Q have the
      incremental heat rate defined by
  //(IR)P=0.4818*10^{-}-7.LP^{4}-0.9089*10^{-}-4.LP^{3}+
      0.6842*10^{-} - 1.LP^{2} - 0.2106*10.LP + 9860
  //(IR)R=0.9592*10^{-}-7.LQ^{4}-0.7811*10^{-}-4.LQ^{3}+
      0.2625*10^{-}-1.LQ^{2} - 0.2189*10.LQ + 9003
9
10 // Calculations
11 / LP + LQ = 1000
12 //By making (IR)P=(IR)Q and solving the above three
      equations by a numerical methos such as Newton-
      Raphson algorithm, we get
13 LP=732.5//\text{Heat} rate in MW
14 LQ=(O-LP)//Heat rate in MW
15 \text{ IR} = 0.4818 * 10^{-7} * \text{LP}^4 - 0.9089 * 10^{-4} * \text{LP}^3 +
      0.6842*10^-1*LP^2 - 0.2106*100*LP + 9860
16 \quad IR1 = 0.9592*10^{-7}*LQ^{4} - 0.7811*10^{-4}*LQ^{3} +
      0.2625*10^{-1}*LQ^{2} - 0.2189*10*LQ + 9003
17
18 //Output
19 printf ('Incremental heat transfer rate at which the
      combined output of the two units is %3.0 f MW is
      IR = (IR)P = (IR)Q = \%i kJ/kWh', 0, IR)
```

Scilab code Exa 1.15 Cost of electrical energy

```
1
2 clc
3 clear
4 //Input data
5 F=2700//Fixed cost of the thermal station per kW of
```

```
installed capacity per year in Rs,
6 F0=40//Fuel and operating costs per kWh generated in
      paise
7 L=[100,75,50,25]/Load\ factors
8 Y=8760//Number of hours in a year of 365 days
10 // Calculations
11 FC=(F/Y)*100//Fixed costs per kW per hour in paise
12 E1=(L(1)/100)//Energy produced in 1 hr with 1 kW
     plant in kWh
13 FOC1=(E1*F0)//Fuel and operating cost in paise
14 TC1=(FC+FOC1)//Total cost per hr in paise
15 C1=(TC1/E1)//Cost per kWh in paise
16 E2=(L(2)/100)/Energy produced in 1 hr with 1 kW
     plant in kWh
17 FOC2=(E2*F0)//Fuel and operating cost in paise
18 TC2=(FC+FOC2)//Total cost per hr in paise
19 C2=(TC2/E2)//Cost per kWh in paise
20 E3=(L(3)/100)//Energy produced in 1 hr with 1 kW
     plant in kWh
21 FOC3=(E3*FO)//Fuel and operating cost in paise
22 TC3=(FC+FOC3)//Total cost per hr in paise
23 C3=(TC3/E3)//Cost per kWh in paise
24 E4=(L(4)/100)//Energy produced in 1 hr with 1 kW
      plant in kWh
25 FOC4=(E4*F0)//Fuel and operating cost in paise
26 TC4=(FC+FOC4)//Total cost per hr in paise
27 C4=(TC4/E4)//Cost per kWh in paise
28
29 //Output
30 printf('
     nLoad
                 Energy produced
                                    Fixed cost
                                                  Fuel
                Total cost
     and
                               Cost per\nfactor
                                                    in 1
                                                    per
     hr with
                     per hr
                                 operating cost
               kWh\n(percent) 1kW plant(kWh)
                                                  (paise
     hr
               (paise)
                              (paise)
                                              (paise)\n
```

n%3.0 f	$\%3.0 \mathrm{~f}$		$\%3.0~\mathrm{f}$	
	%3.0 f	$\%3.0~\mathrm{f}$		%3.0 f\
n%3.0 f	$\%3.2~\mathrm{f}$		$\%3.0 \mathrm{~f}$	
	%3.0 f	$\%3.0 \mathrm{\ f}$		%3.0 f \
n%3.0 f	$\%3.2~\mathrm{f}$		$\%3.0 \mathrm{~f}$	
	%3.0 f	$\%3.0 \mathrm{~f}$		%3.0 f\
n%3.0 f	$\%3.2~\mathrm{f}$		%3.0 f	
	%3.0 f	$\%3.0 \mathrm{~f}$		%3.0 f\
n				

^{&#}x27;,L(1),E1,FC,FOC1,TC1,C1,L(2),E2,FC,FOC2,TC2,C2,L(3),E3,FC,FOC3,TC3,C3,L(4),E4,FC,FOC4,TC4,C4)

Chapter 2

Analysis of Steam Cycles

Scilab code Exa 2.1 Power output and efficiency

```
1
2 clc
3 clear
4 //Input data
5 p1=40//Initial pressure of steam in bar
6 T1=500//Initial temperature of steam in degree C
7 m1=5500//Rate of steam in kg/h
8 p2=2//Pressure of steam after expansion in bar
9 n1=0.83//Isentropic efficiency
10 q=0.87//Quality
11 m2=2700//Mass flow rate in kg/h
12 p3=0.1//Pressure of steam after expansion in 1.p
     turbine in bar
13 n2=0.78//Isentropic efficiency
14
15 // Calculations
16 h1=3445.3//Enthalpy in kJ/kg
17 s1=7.0901//Entropy in kJ/kg.K which is 1.5301+x2s
     *5.5970
18 x2s = (5.5600/5.5970) / dryness fraction
19 h2s = (504.7 + (x2s * 2201.9)) / Enthalpy in kJ/kg
```

```
20 h2=h1-(n1*(h1-h2s))/Enthalpy in kJ/kg
21 h3=(504.7+(q*2201.9))//Enthalpy in kJ/kg
22 h4 = ((m2*h3+m1*h2)/(m1+m2))/Enthalpy in kJ/kg
23 x4 = (2183.78/2201.9) / dryness fraction
24 s4=(1.5301+x4*5.5970) //Entropy in kJ/kg.K
25 \text{ x5s=0.8574}//\text{dryness} fraction
26 h5s=(191.84+x5s*2392.5)//Enthalpy in kJ/kg
27 dh4h5=(n2*(h4-h5s))/Difference in enthalpy (h4-h5)
      in kJ/kg
28 h6=191.83//Enthalpy in kJ/kg
29 W1 = ((m1*(h1-h2)) + ((m1+m2)*dh4h5))/3600/Power output
       of the plant in kW
30 Q1=(m1*(h1-h6))/3600//Heat input in kW
31 n1=(W1/Q1)*100//Efficiency in percent
32 WT=(m1*(h1-h2))/3600//Power output without the
      geothermal heat supply in kW
33 Q2=(m1*(h1-h6))/3600//Heat input without the
      geothermal heat supply in kW
34 n2=(WT/Q2)*100//Efficiency of the cycle without the
      geothermal heat supply in percent
35
36 // Output
37 printf('(a) Power output of the cycle is \%3.1 f kW \n
      Efficiency of the cycle is \%3.1f percent \n\n (b)
      Without geothermal heat supply \n Power output of
       the cycle is %3.2 f kW \n Efficiency of the cycle
       is \%3.2 f percent', \$1, n1, \$T, n2)
```

Scilab code Exa 2.2 Mass flow rate

```
1
2 clc
3 clear
4 //Input data
5 p1=90//Initial pressure of steam in bar
```

```
6 T1=500//Initial temperature of steam in degree C
7 O = (500*1000) //Output in kW
8 T2=40//Condensation temperature in degree C
9 nhp=0.92//Efficiency of h.p turbine
10 nlp=0.9//Efficiency of l.p turbine
11 np=0.75//Isentropic efficiency of the pump
12 TTD=-1.6//Temperature in degree C
13
14 // Calculations
15 p2=(0.2*p1)//Optimum reheat pressure in bar
16 h1=3386.1//Enthalpy in kJ/kg
17 s1=6.6576//Entropy in kJ/kg.K
18 s2s=s1//Entropy in kJ/kg.K
19 h2s = 2915 / Enthalpy in kJ/kg
20 h3=3469.8//Enthalpy in kJ/kg
21 s3=7.4825//Entropy in kJ/kg.K
22 \text{ x4s} = (s3-0.5725) / 7.6845 / Dryness fraction
23 h4s = (167.57 + x4s * 2406.7) / Enthalpy in kJ/kg
24 h5=167.57//Enthalpy in kJ/kg
25 h7=883.42//Enthalpy in kJ/kg
26 Wps=(0.001008*p1*10)//Workdone by the pump in kJ/kg
27 h6s=176.64//Enthalpy in kJ/kg
28 dh1h2=(nhp*(h1-h2s))//Difference in enthalpy (h1-h2)
       in kJ/kg
29 h2=h1-dh1h2//Enthalpy in kJ/kg
30 dh3h4=(nlp*(h3-h4s))/Difference in enthalpy (h3-h4)
       in kJ/kg
31 \text{ h4=h3-dh3h4//Enthalpy in kJ/kg}
32 Wp = (Wps/np) / Workdone by the pump in kJ/kg
33 h6=(Wp+h5)/Enthalpy in kJ/kg
34 tsat=207.15//Saturation temperature at 18 bar in
      degree C
35 t9 = (tsat-TTD) / Temperature in degree C
36 \text{ h9} = 875 // \text{Enthalpy in kJ/kg}
37 \text{ m} = ((h9-h6)/(h2-h7))/Mass \text{ of steam in kg}
38 WT=(dh1h2+(1-m)*dh3h4)/Workdone by the turbine in
      kJ/kg
39 Wnet=(WT-Wp)//Net workdone in kJ/kg
```

Scilab code Exa 2.3 Optimum pressures and temperatures

```
1
2 clc
3 clear
4 //Input data
5 p1=70//Pressure at which an ideal seam power plant
     operates in bar
6 T1=550//Temperature at which an ideal seam power
     plant operates in degrees C
  p2=0.075//Pressure at which an ideal seam power
     plant operates in bar
9 // Calculations
10 TB=285.9//Saturation temperature at 70 bar in degree
11 TC=40.3//Saturation temperature at 0.075 bar in
     degree C
12 Tr = (TB - TC)/(7+1)//Temperature rise per heater for
     maximum cycle efficiency in degree C
13 t1=(TB-Tr)//Temperature at heater 1 in degree C
14 P1=4.33//Pressure at heater 1 in MPa
15 t2=(t1-Tr)//Temperature at heater 2 in degree C
16 P2=2.5318//Pressure at heater 2 in MPa
```

```
17 t3=(t2-Tr)//Temperature at heater 3 in degree C
18 P3=1.367//Pressure at heater 3 in MPa
19 t4=(t3-Tr)//Temperature at heater 4 in degree C
20 P4=0.6714//Pressure at heater 4 in MPa
21 t5=(t4-Tr)//Temperature at heater 5 in degree C
22 P5=0.2906//Pressure at heater 5 in MPa
23 t6=(t5-Tr)//Temperature at heater 6 in degree C
24 P6=0.108//Pressure at heater 6 in MPa
25 t7=(t6-Tr)//Temperature at heater 7 in degree C
26 P7=32.65//Pressure at heater 7 in kPa
27
28 //Output
29 printf ('The optimum pressure and temperature at
      different heaters are: \n Heater 1: t1 = \%3.1 f
      degree C and p1 = \%3.2 \text{ f MPa} \cdot \text{n} Heater 2: t2 = \%3.1
      f degree C and p2 = \%3.4 f MPa\n Heater 3: t3 = \%3
      .1f degree C and p3 = \%3.3 f MPa\n Heater 4: t4 =
      \%3.1 \text{ f degree C and p4} = \%3.4 \text{ f MPa\n Heater 5: t5}
      = \%3.1 \,\mathrm{f} degree C and p5 = \%3.4 \,\mathrm{f} MPa\n Heater 6:
      t6 = \%3.1 f degree C and p6 = \%3.3 f MPa\n Heater
      7: t7 = \%3.1 f
                      degree C and p7 = \%3.2 f \text{ kPa',t1,P1}
      ,t2,P2,t3,P3,t4,P4,t5,P5,t6,P6,t7,P7)
```

Scilab code Exa 2.4 Percentage of total electricity

```
1
2 clc
3 clear
4 //Input data
5 ng=0.97//Efficiency of electric generator
6 nt=0.95//Efficiency of turbine
7 nb=0.92//Efficiency of boiler
8 nc=0.42//Efficiency of cycle
9 no=0.33//Efficiency of overall plant
10
```

```
// Calculations
na=(no/(ng*nt*nb*nc))// Efficiency of auxiliaries
n=(1-na)*100// Percentage of total electricity
    generated which is consumed in running the
    auxiliaries

// Output
printf('Percentage of total electricity generated
    which is consumed in running the auxiliaries is
%3.2 f percent',n)
```

Scilab code Exa 2.5 Percentage of total heat absorption

```
1
2 clc
3 clear
4 //Input data
5 T1=140//Temperature with which feed water enters
     into economiser in degree C
6 T2=[25,250] // Temperature from air is preheated to in
      degree C
  P1=60 // Pressure with which steam leaves the drum in
     bar
8 x1=0.98//Dryness fraction
9 T3=450//Temperature with which steam leaves the
     superheater in degree C
10 cc=25.2//Calorific value of coal in MJ/kg
11 r=8.5//Rate of evaporation of steam per kg coal
12 wf=1//Mass of coal in kg
13 R=15//Air fuel ratio by mass
14 Cpa=1.005//Specific heat of air at constant pressure
      in kJ/kg.K
15 Cpw=4.2//Specific heat of water at constant pressure
      in kJ/kg.K
16
```

```
17 // Calculations
18 h1 = (T1 * Cpw) / Enthalpy in kJ/kg
19 hf=1213.35//Enthalpy in kJ/kg
20 h2=hf//Enthalpy in kJ/kg
21 hfg=1571//Enthalpy in kJ/kg
22 h4=3301.8//Enthalpy in kJ/kg
23 h3=(hf+x1*hfg)//Enthalpy in kJ/kg
24 n = ((r*(h4-h1))/(wf*cc*1000))*100//Efficiency
25 he=(r*(h2-h1))/wf*10^-3//Heat transfer in the
      economiser in MJ/kg
26 hb=(r*(h3-h2))/wf*10^-3//Heat transfer in the boiler
       in MJ/kg
27
  hs = (r*(h4-h3))/wf*10^-3//Heat transfer in the
      superheater in MJ/kg
  ha = (R*Cpa*(T2(2)-T2(1)))/wf*10^-3/Heat transfer in
      the air preheater in MJ/kg
  pe=((h2-h1)/(h4-h1))*100//Percentage of total heat
      absorbed in the economiser in percent
30 pb=((h3-h2)/(h4-h1))*100//Percentage of total heat
      absorbed in the boiler in percent
31 ps=((h4-h3)/(h4-h1))*100//Percentage of total heat
      absorbed in the superheater in percent
32
33 //Output
34 printf ('Efficiency of steam generator is %3.2 f
      percent \n\n Heat transfer per kg fuel in \n (i)
      economiser is \%3.4 \text{ f MJ/kg } \setminus \text{n (ii) boiler is } \%3.3 \text{ f}
      MJ/kg \setminus n (iii) superheater is \%3.3 f MJ/kg \setminus n (iv)
      air pre-heater is %3.3 f MJ/kg \n\n Percentage of
      total heat absorption taking place in \n (i)
      economiser is \%3.2 \,\mathrm{f} percent \n (ii) boiler is \%3.2
      f percent \n (iii) superheater is \%3.2 f percent',n
      , he, hb, hs, ha, pe, pb, ps)
```

Scilab code Exa 2.6 Cycle efficiency

```
1
2 clc
3 clear
4 //Input data
5 p1=150//Pressure of inlet steam in bar
6 T1=550//Temperature of steam in degree C
7 p2=20//Pressure after expansion in bar
8 T2=500//Reheat temperature in degree C
9 pc=0.075//Condenser pressure in bar
10 php=50//Pressure of steam in h.p turbine in bar
11 pip=[10,5,3]//Pressure of steam in i.p turbines in
12 plp=1.5//Pressure of steam in l.p turbine in bar
13 m=300*1000//Steam flow rate in kg/h
14
15 // Calculations
16 h1=3448.6//Enthalpy in kJ/kg
17 h4=3467.6//Enthalpy in kJ/kg
18 s1=6.5119//Entropy in kJ/kg.K
19 s2=s1//Entropy in kJ/kg.K
20 s3=s1//Entropy in kJ/kg.K
21 s4=7.4317//Entropy in kJ/kg.K
22 s5=s4//Entropy in kJ/kg.K
23 s6=s5//Entropy in kJ/kg.K
24 s7=s6//Entropy in kJ/kg.K
25 s8=s7//Entropy in kJ/kg.K
26 s9=s8//Entropy in kJ/kg.K
27 t2=370//Temperature in degree C
28 t3=245//Temperature in degree C
29 t5=400//Temperature in degree C
30 t6=300//Temperature in degree C
31 t7=225 // Temperature in degree C
32 t8=160//Temperature in degree C
33 h2=3112//Enthalpy in kJ/kg
34 \text{ h3} = 2890 // \text{Enthalpy in } \text{kJ/kg}
35 h5=3250//Enthalpy in kJ/kg
36 \text{ h6} = 3050 // \text{Enthalpy in } \text{kJ/kg}
37 \text{ h7} = 2930 // \text{Enthalpy in kJ/kg}
```

```
38 h8=2790//Enthalpy in kJ/kg
39 x9=(s9-0.5764)/7.6751//Dryness fraction
40 h9=168.79+x9*2406///Enthalpy in kJ/kg
41 h10=168.79 // Enthalpy in kJ/kg
42 h11=h10+0.001*pip(2)*100//Enthalpy in kJ/kg
43 h12=467.11//Enthalpy in kJ/kg
44 t14=111.37 // Temperature in degree C
45 h14=467//Enthalpy in kJ/kg
46 h13=h12//Enthalpy in kJ/kg
47 h14=h13//Enthalpy in kJ/kg
48 h15=h14//Enthalpy in kJ/kg
49 h16=561.47//Enthalpy in kJ/kg
50 \text{ h}17=\text{h}16//\text{Enthalpy in kJ/kg}
51 h18=640.23//Enthalpy in kJ/kg
52 \text{ h}19=\text{h}18+0.001*(\text{p}1-\text{pip}(2))*100//\text{Enthalpy in kJ/kg}
53 \text{ h} 20 = 762.8 // \text{Enthalpy in } \text{kJ/kg}
54 \text{ h21=h20//Enthalpy in kJ/kg}
55 \text{ h}22=1154.23//\text{Enthalpy in kJ/kg}
56 \text{ h}23=\text{h}22//\text{Enthalpy in kJ/kg}
57 \text{ m1} = ((h23-h21)/(h2-h22))/\text{Mass in kg}
58 m2 = ((h21-h19) - (m1*(h22-h20)))/(h5-h20)//Mass in kg
59 \text{ m3} = (((1-m1-m2)*(h18-h17))-((m1+m2)*(h20-h18)))/(h6-m3)
                      h18+h18-h17) // Mass in kg
60 \text{ m4} = ((1-\text{m1}-\text{m2}-\text{m3})*(\text{h17}-\text{h15}))/(\text{h7}-\text{h16})//\text{Mass in kg}
61 \text{ m5} = (((1-m1-m2-m3-m4)*(h14-h11))-(m4*(h16-h12)))/(h8-m5)
                      h12+h14-h11)/Mass in kg
62 \text{ WT} = (h1-h2) + (1-m1) * (h2-h3) + (1-m1) * (h4-h5) + (1-m1-m2) * (h4-h5) + (1-m
                     h5-h6)+(1-m1-m2-m3)*(h6-h7)+(1-m1-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m2-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h7-m3-m4)*(h
                      h8)+(1-m1-m2-m3-m4-m5)*(h8-h9)/Workdone by
                      turbine in kJ/kg
63 Wp=(0.5+14.5+0.15) //Workdone in kJ/kg
64 Wnet=(WT-Wp)//Net workdone in kJ/kg
65 Q1=(h1-h23)+(1-m1)*(h4-h3)//Heat supplied in kJ/kg
66 ncy=(Wnet/Q1)*100//Cycle efficiency in percent
67 t23=264//Temperature in degree C
68 sr = (3600/Wnet) / Steam rate in kJ/kWh
69 hr=((Q1/Wnet)*3600)//Heat rate in kJ/kWh
70 P = ((Wnet*m)/3600)/10^3//Power output in MW
```

```
71
72 //Output
73 printf('(a) The cycle efficiency is %3.2f percent \n
        (b) The feedwater temperature is %i degree C \n
        (c) The steam rate is %3.2f kJ/kWh \n (d) The
        heat rate is %3.0f kJ/kWh \n (e) The quality of
        steam at turbine exhaust is %3.4f \n (f) The
        power output is %3.2f MW',ncy,t23,sr,hr,x9,P)
```

Scilab code Exa 2.7 Steam condition

```
1
2 clc
3 clear
4 //Input data
5 m=10000//Mass flow rate of steam in kg/h
6 p=3//Pressure of steam in bar
7 \text{ P=} 1000 // \text{Power in kW}
8 n=0.7//Internal efficiency of turbine
9
10 // Calculations
11 dh=(P*3600)/m//Change in enthalpy in kJ/kg
12 h2=2725.3//Enthalpy in kJ/kg from Fig. E2.7
13 h1=dh+h2//Enthalpy in kJ/kg
14 dh1h2s=dh/n//Change in enthalpy in kJ/kg
15 h2s=h1-dh1h2s//Enthalpy in kJ/kg
16 x2s = (h2s - 561.47) / 2163.8 / Dryness fraction
17 s2s=1.6718+x2s*(6.999-1.6718)/Entropy in kJ/kg.K
18 s1=s2s//Entropy in kJ/kg.K
19 p1=37.3//Pressure in bar from Mollier diagram
20 t1=344//Temperature in degree C
21
22 //Output
23 printf ('The steam condition required at inlet of the
       turbine: \n Enthalpy is \%3.1 f kJ/kg \n Entropy
```

Scilab code Exa 2.8 Steam generation capacity

```
1
2 clc
3 clear
4 //Input data
5 Pl=5.6//Power load in MW
6 \text{ Hl}=1.163//\text{Heat load in MW}
7 p1=40//Pressure in bar
8 T1=500+273//Temperature in K
9 p2=0.06//Pressure in bar
10 p3=2//Pressure in bar
11 CV=25//Calorific value in MJ/kg
12 n=88//Boiler efficiency in percent
13 T=6//Temperature rise in degree C
14
15 // Calculations
16 h1=3445.3//Enthalpy in kJ/kg
17 s1=7.0901//Entropy in kJ/kg.K
18 s2=s1//Entropy in kJ/kg.K
19 s3=s1//Entropy in kJ/kg.K
20 \text{ x2=(s2-1.5301)/5.5970//Dryness fraction}
21 h2=2706.7/Enthalpy in kJ/kg
22 h26=2201.9//Difference in enthalpy in kJ/kg
23 w=(H1*10^3)/h26//Rate of steam extraction in kg/h
24 \text{ x3} = (s1 - 0.52) / 7.815 / Dryness fraction
25 h3=(149.79+x3*2416)/Enthalpy in kJ/kg
26 h4=149.79//Enthalpy in kJ/kg
27 \text{ ws} = ((P1*10^3+(w*(h2-h3)))/((h1-h2)+(h2-h3)))//Steam
      generation capacity in kg/s
28 ws1=(ws*3600)/1000//Steam generation capacity in t/h
29 h7=(504.7+(1.061*10^-3*(p1-p3)*100))//Enthalpy in kJ
```

```
/kg
30 h5=(149.79+(1.006*100*p1*10^-3))/Enthalpy in kJ/kg
31 Q1=(((ws-w)*(h1-h5))+(w*(h1-h7)))//Heat input in kW
32 \text{ wf} = ((Q1/1000)/((n/100)*CV))*(3600/1000)//Fuel
      burning rate in t/h
33 Q2=((ws-w)*(h3-h4))/Heat rejected to the condensor
      in kW
34 wc=(Q2/(4.187*T))/1000//Rate of flow of cooling
      water in m<sup>3</sup>/s
35
36 //Output
37 printf('(a) the steam generation capacity of the
      bolier is \%3.2 \text{ f} t/h \n (b) the heat input to the
      boiler is %3.1 f kW \n (c) the fuel burning rate
      of the bolier is \%3.3 \text{ f} t/h \n (d) the heat
      rejected to the condensor is \%3.0 f kW \n (e) the
      rate of flow of cooling water in the condensor is
       \%3.3 \, \text{f} \, \text{m}^3/\text{s}, ws1,Q1,wf,Q2,wc)
```

Scilab code Exa 2.9 Power developed

```
1
2 clc
3 clear
4 //Input data
5 m=21000//Steam rate in kg/h
6 p1=17//Pressure in bar
7 T1=230+273//Temperature in K
8 P=132.56//Power in kW
9 x2=0.957//Dryness fraction
10 p2=3.5//Pressure in bar
11 P1=1337.5//Power in l.p turbine in kW
12 p3=0.3//Pressure in bar
13 x3=0.912//Dryness fraction
14
```

```
15 // Calculations
16 h1=2869.7 // Enthalpy in kJ/kg
17 s1=6.5408//Entropy in kJ/kg.K
18 h2 = (870.44 + x2 * 1924.7) / Enthalpy in kJ/kg
19 h3=h2//Enthalpy in kJ/kg
20 h56=(P1*3600)/m//Difference in Enthalpy in kJ/kg
21 h6 = (289.23 + x3 * 2336.1) / Enthalpy in kJ/kg
22 h5=2649.04//Enthalpy in kJ/kg
23 s4s=s1//Entropy in kJ/kg.K
24 x4s = (s4s - 1.7275) / 5.2130 / Dryness fraction
25 h4s=584.33+x4s*2148.1//Enthalpy in kJ/kg
26 w=(P/(h1-h2))/Flow rate in kg/s
27 ws=(m/3600)//Steam flow rate in kg/s
28 h4=((ws*h5)-(w*h3))/(ws-w)/Enthalpy in kJ/kg
29 \text{ x4} = (\text{h4} - 584.33) / 2148.1 / Dryness fraction
30 W=(ws-w)*(h1-h4)//Power developed by h.p. turbine in
     kW
31 n=((h1-h4)/(h1-h4s))*100//Isentropic efficiency in
      percent
32
33 //Output
34 printf('(a) the steam quality at the exhaust of the
      h.p turbine is \%3.3 f \setminus n (b) the power developed
      by the h.p turbine is \%3.2 \text{ f kW } \setminus \text{n} (c) the
      isentropic efficiency of the h.p turbine is \%3.2 f
       percent', x4, W, n)
```

Chapter 3

Combined Cycle Power Generation

Scilab code Exa 3.1 Efficiency of combined cycle

```
1
2 clc
3 clear
4 //Input data
5 p=40//Pressure in bar
6 T1=400+273//Temperature in K
7 T2=40+273//Temperature in K
8 x
      = [10,515.5,72.23,363.0,0.1478,0.5167,80.9*10^-6,0.0333]
      //Property values from table p(bar), t(degree C),
      hf, hg(kJ/kg), sf, sg(kJ/kg.K), vf, vg(m^3/kg)
9 y
      = [0.2, 277.3, 38.35, 336.55, 0.0967, 0.6385, 77.4*10^-6, 1.163]
      //Property values from table p(bar), t(degree C),
      hf, hg(kJ/kg), sf, sg(kJ/kg.K), vf, vg(m^3/kg)
10
11 // Calculations
12 h1=3216//Enthalpy in kJ/kg
13 s1=6.7690//Entropy in kJ/kg.K
```

```
14 s2=s1//Entropy in kJ/kg.K
15 x2=(s2-0.5725)/(8.2570-0.5725)/Dryness fraction
16 h2=167.57+x2*2406.7/Enthalpy in kJ/kg
17 h3=167.57 // Enthalpy in kJ/kg
18 h4 = (167.57 + p*100*1.008*10^{-3}) / Enthalpy in kJ/kg
19 h5=1087.31//Enthalpy in kJ/kg
20 h6=2801.4//Enthalpy in kJ/kg
21 ha=x(4) // Enthalpy in kJ/kg
22 sa=x(6)//Entropy in kJ/kg.K
23 sb=sa//Entropy in kJ/kg.K
24 xb = (sb - y(5))/(y(6) - y(5))/Dryness fraction
25 hb=(y(3)+xb*(y(4)-y(3)))/Enthalpy in kJ/kg
26 hc=y(3)//Enthalpy in kJ/kg
27 hd=hc//Enthalpy in kJ/kg
28 m=(h6-h5)/(hb-hc)//Mass of mercury circulated per kg
29 Q1=m*(ha-hd)+(h1-h6)+(h5-h4)//Heat supplied in kJ/kg
30 Q2=(h2-h3)//Heat rejected in kJ/kg
31 nc=(1-(Q2/Q1))*100//Efficiency in percent
32
33 //Output
34 printf('(a) The amount of mercury circulated per kg
     of water is \%3.4 f kg \n (b) The efficiency of the
      combined cycle is %3.1f percent',m,nc)
```

Scilab code Exa 3.2 Rate of heat transfer

```
1
2 clc
3 clear
4 //Input data
5 m=5//Mass flow rate in kg/s
6 p1=40//Pressure in bar
7 T1=440+273//Temperature in K
8 p2=1.5//Pressure in bar
```

```
9 p3=1//Pressure in bar
10 T3=60+273//Temperature in K
11 p4=16//Pressure in bar
12 T4=100+273//Temperature in K
13 p5=9//Pressure in bar
14
15 // Calculations
16 h1=3307.1/\frac{\text{Enthalpy in kJ/kg}}{\text{Enthalpy in kJ/kg}}
17 s1=6.9041//Entropy in kJ/kg.K
18 s2=s1//Entropy in kJ/kg.K
19 h2=2570.8//Enthalpy in kJ/kg
20 h3=417.46//Enthalpy in kJ/kg
21 h6 = (251.13 + (1.0172 * 10^{-3}) * (p3 - 0.1994) * 100) / Enthalpy
       in kJ/kg
22 m3=(m/2)//Mass flow rate in kg/s
23 m6=m3//Mass flow rate in kg/s
24 h4=(m3*h3+m6*h6)/m//Enthalpy in kJ/kg
25 h5=(h4+(1.0291*10^-3)*(p1-p3)*100)//Enthalpy in kJ/
26 ha=241.58//Enthalpy in kJ/kg
27 sa=0.7656//Entropy in kJ/kg.K
28 sb=sa//Entropy in kJ/kg.K
29 hb=229.43//Enthalpy in kJ/kg
30 hc=71.93//Enthalpy in kJ/kg
31 hd=hc+(0.7914*10^-3*(p4-p5)*100)/Enthalpy in kJ/kg
32 Q1 = (m*(h1-h5))/1000//Heat supplied in kW
33 Wnets=(m*((h1-h2)-(h5-h4)))/Net workdone by steam
      in kW
34 mR12=(m3*(h2-h3))/(ha-hd)//Mass of R12 in kg/s
35 WnetR=(mR12*((ha-hb)-(hd-hc)))/Net workdone by R12
      in kW
36 T=Wnets+WnetR//Total output in kW
37 Qh=(m6*(h2-h6))/Heat rejected in kW
38
39 //Output
40 printf('(a) Rate of heat transfer in the steam
      generator is %3.3 f kW \n (b) The net power output
       of the binary cycle is %i kW \n (c) The rate of
```

Scilab code Exa 3.3 Mass flow rate

```
1
2 clc
3 clear
4 //Input data
5 rp=7.5//Pressure ratio
6 T1=15+273//Inlet air temperature in K
7 T3=750+273//Maximum temperature in K
8 T6=100+273//Temperature in K
9 p1=50//Pressure in bar
10 T7 = 600 + 273 / Temperature in K
11 p2=0.1//Pressure in bar
12 P=200 // Total power in MW
13 CV=43.3//calorific value in MJ/kg
14 cpg=1.11//Specific heat for gas in kJ/kg.K
15 g=1.33//Ratio of specific heats for gas
16 cpa=1.005//Specific heat for air in kJ/kg.K
17 g1=1.4//Ratio of specific heats for air
18
19 // Calculations
20 T2=(T1*rp^((g1-1)/g1))//Temperature in K
21 T4=(T3/rp^{(g-1)/g})/Temperature in K
22 ha=3670//Enthalpy in kJ/kg
23 hb=2305//Enthalpy in kJ/kg
24 hc=192//Enthalpy in kJ/kg
25 hd=hc//Enthalpy in kJ/kg
26 / \text{ma*cpg*}(T3-T6) = \text{ms*}(ha-hd)
27 / \text{ma*cpg*}(T3-T4) - \text{ma*cpa*}(T2-T1) + \text{ms*}(ha-hb) = P*1000
28 //Solving these two equations
29 A = [cpg*(T3-T6) (hd-ha)]
30
      cpg*(T3-T4)-cpa*(T2-T1) (ha-hb)]//Coefficient
```

```
matrix
31 B=[0
32
      (P*10^3)]//Constant matrix
33 X=inv(A)*B//Variable matrix
34 \text{ Wgt} = (\text{cpg}*(T3-T4)-\text{cpa}*(T2-T1))*X(1)*10^-3/Net
      workdone by Gas turbine in MW
35 Wst=(P-Wgt)//Net workdone by steam turbine in MW
36 Q1=(X(1)*cpg*(T3-T2+T3-T4))//Heat supplied in MW
37 nth=(P/(Q1*10^-3))*100//Thermal efficiency in
      percent
38 af = (CV*10^3)/(cpg*(T3-T2+T3-T4))//Air fuel ratio
39
40 //Output
41 printf('(a) The flow rate of air is \%3.2 \,\mathrm{f} kg/s and
      steam is \%3.2 f kg/s \n (b) The power outputs of
      the gas turbine is %3.2 f MW and steam turbine is
      \%3.2 \text{ f MW } \setminus \text{n (c)} The thermal efficiency of the
      combined plant is %3.0f percent \n (d) The air
      fuel ratio is \%3.1 \, \text{f}', X(1), X(2), Wgt, Wst, nth, af)
```

Scilab code Exa 3.4 Power output and efficiency

```
clc
clear
//Input data
p1=1//Pressure in bar
T1=25+273//Temperature in K
rp=8//Pressure ratio of compressor
Tm=900+273//Maximum temperature in K
pd=3//pressure drop in combustion chamber in percent
nc=0.88//Efficiency of compressor
tn=0.88//Efficiency of turbine
CV=44.43//Calorific value of fuel in MJ/kg
cpa=1.006//Specific heat of air in kJ/kg.K
```

```
14 cpg=1.148//Specific heat of gas in kJ/kg.K
15 g1=1.333//Specific heat ratio of gas
16 g=1.4//Specific heat ratio of air
17 T3=425+273//Temperature in K
18 p2=40//Pressure in bar
19 p3=0.04//Condensor pressure in bar
20 Th=170.4+273//Temperature of feed water to the HRSG
      in K
21 nst=0.82//Efficiency of steam turbine
22 pdh=5//Pressure drop in HRSG in kPa
23 m=29.235//Steam flow rate in kg/s
24 A=1.0401//si=1.0401+0.1728*(h/c)
25 B=0.1728//si=1.0401+0.1728*(h/c)
26
27 // Calculations
28 //Gas turbine plant
29 T2=(rp^{(g-1)/(g*nt)})*T1//Temperature in K
30 //Combustor
31 pc=((pd/100)*rp)//Pressure loss in bar
32 pcx=(rp-pc)//Pressure in bar
33 f = ((cpg*(Tm-T1))-(cpa*(T2-T1)))/((CV*10^3)-(cpa*(T2-T1)))
      T1)))//Fuel flow rate in kg/s
34 af = (1-f)/f//Air fuel ratio
35 / C8H18 + 12.5O2 -> 8CO2 + 9H2O
36 afc=(12.5*32)/(0.232*114)//Air fuel ratio for
      stoichiometric combustion
37 \text{ ea} = ((\text{af} - \text{afc})/\text{afc}) *100//\text{Excess} \text{ air in percent}
38 //Gas turbine
39 \text{ p4=p1+0.05}//\text{Pressure in bar}
40 T4=(Tm/(pcx/p4)^(((g1-1)*nt)/g1))/Temperature in K
41 //HRSG
42 T5=250+30/Temeprature in K
43 ha=3272//Enthalpy in kJ/kg
44 hf=1087.31//Enthalpy in kJ/kg
45 ws=(cpg*((T4-273)-T5))/(ha-hf)//Flow rate in kg/s
46 he=721.1//Enthalpy in kJ/kg
47 T6=(T4-273)-((ws*(ha-he))/cpg)//Temperature in
      degree C
```

```
48 //Power output
49 sa=6.853//Entropy in kJ/kg.K
50 sbs=sa//Entropy in kJ/kg.K
51 \text{ xbs} = (\text{sbs} - 0.4266) / 8.052 / Dryness fraction
52 hbs=(121.46+xbs*2432.9)/ENthalpy in kJ/kg
53 Wst=(m*(ha-hbs)*nst)//Workdone in kW
54 wg=(m/ws)//gas flow rate in kg/s
55 wa=(1-f)*wg//Air flow rate entering the compressor
      in kg/s
56 Wgt = (wg * cpg * (Tm - T4)) - (wa * cpa * (T2 - T1)) / Power output
      of gas turbine in kW
57 TO=Wst+Wgt//Total power output in kW
58 wf1=(f*wa)//Fuel mass flow rate in kg/s
59 wf=4.466//Rounding off of wf1 for exact answers
60 no=(TO/(wf*(CV*10^3)))*100//Overall efficiency of
      the combined plant in percent
61 ns=((ha-hbs)/(ha-he))*nst//Efficiency of steam plant
62 ngtp=(Wgt/(wf*(CV*10^3)))//Efficiency of the GT
63 xL = ((wg * cpg * (T6 - (T1 - 273))) / (wf * (CV * 10^3))) / Lost
      heat coefficient
64 nov=(ns+ngtp-ns*ngtp-ngtp*xL)//The overall
      efficiency
65 //Energy fluxes and irreversibilities
66 si=(A+B*((18*1)/(8*12)))/si for octane C8H18
67 dHo = (wf *CV *10^3) // Power in kW
68 dGo = (si*dHo) // Power in kW
69 TS = (dGo - dHo) / Power in kW
70 //Compressor
71 dS = (cpa * log(T2/T1)) - (((cpa * (g-1))/g) * log(rp)) //
      change in entropy in kJ/kg.K
72 Ic = (wa*T1*dS) / power in kW
73 Icx = ((wg*T1*((cpg*log(Tm/T1))-(((cpg*(g1-1))/g1)*log))
      (pcx))) - (wa*T1*((cpa*log(T2/T1))-(((cpa*(g-1))/g)
      )*log(rp))))+TS)//Compressor in kW
74 Icg = (-cpg * log (Tm/T4)) - (((cpg * (g1-1))/g1) * log (p4/pcx)
      )// Difference in entropy in kJ/kg.K
75 IGT = (Icg * T1 * wg) // Gas turbine in kW
```

```
76 se=2.046//Enntropy in kJ/kg.K
77 sae=(sa-se)//Difference in entropy in kJ/kg.K
78 s64 = (cpg * log ((T6 + 273)/T4)) - (((cpg * (g1 - 1))/g1) * log (p4)
      /p1))//Difference in entropy in kJ/kg.K
79 Ih=(T1*m*sae)+(wg*T1*s64)//For HRSG in kW
80 hb=(ha-(nst*(ha-hbs)))//Enthalpy in kJ/kg
81 xb = (hb-121.46)/2432.9/Dryness Fraction
82 sb=(0.4226+xb*8.052)/Entropy in kJ/kg.K
83 Ist=(m*(sb-sa)*T1) //For steam turbine in kW
84 Iexh = (wg * cpg * ((T6 - (T1 - 273)) - (T1 * log ((T6 + 273)/T1))))
      //For exhaust in kW
85 Tl=Icx+Icg+IGT+Ih+Ist+Iexh//Exergy losses in kW
86 T=Tl+Wgt+Wst//Total exergy output and exergy
      destruction in kW
  ee=((Wst+Wgt)/T)*100//Exergy efficiency in percent
87
88
89 // Output
90 printf('(a) Total power output is %3.2 f kW and
      overall efficiency is \%3.2f percent lost heat
      coefficient is %3.3 f\n Exergy efficiency is %3.0 f
       percent \n\n Input is \%3.0 f kW \n Total Output
      is %3.0 f kW \n Total losses is %3.0 f kW \n Exergy
       outut + exergy destruction = \%3.0 f kW which is
      1.3 percent gretter than the exergy input', TO, no,
      xL, ee, dGo, (Wgt+Wst), Tl, T)
```

Scilab code Exa 3.5 Overall efficiency

```
1
2 clc
3 clear
4 //Input data
5 n1=0.5//Efficiency of mercury
6 n2=0.4//Efficiency of steam
7 n3=0.25//Efficiency of composite cycle
```

```
8
9 // Calculations
10 n=(1-(1-n1)*(1-n2)*(1-n3))*100//Overall efficiency
    of the combined cycle in percent
11
12 //Output
13 printf('The overall efficiency of the combined cycle
    is %3.1f percent',n)
```

Scilab code Exa 3.6 Overall efficiency

```
1
2 clc
3 clear
4 //Input data
5 z=30//Percentage of total energy of fuel
6 n=40//Cycle efficiency in percent
7
8 //Calculations
9 on=((z/100)+(1-(z/100))*(n/100))*100//Overall
        efficiency in percent
10
11 //Output
12 printf('The overall efficiency of the combined plant
        is %3.0f percent',on)
```

Scilab code Exa 3.7 Power output and efficiency

```
1
2 clc
3 clear
4 //Input data
5 Tc=1250+273//Cathode temperature in K
```

```
6 Ta=500+273//Anode temperature in K
7 e=1.602*10^-19//Charge in coloumb
8 K=1.38*10^-23//Boltzmann constant in J/molecule.K
9 b=18//Constant
10
11 // Calculations
12 Va=((b*K*Ta)/e)//Voltage of anode in V
13 Vc=((b*K*Tc)/e)//Voltage of cathode in V
14 Vo=Vc-Va//Output voltage in V
15 Ja=(120*Ta^2*exp(-b))//Current density in Cathode in
      A/cm^2
16 Jc=(120*Tc^2*exp(-b))//Current density in Anode in A
     /\mathrm{cm}^2
17 P=Vo*(Jc-Ja)//Power output per unit area in /cm^2
18 nth=(((Tc-Ta)/Tc)*(b/(b+2)))*100//Thermal efficiency
       in percent
19
20 //Output
21 printf('(a) The output voltage is \%3.4 \,\mathrm{f} V \n (b) The
       current density in the cathode is \%3.3 f A/cm^2
      and anode is \%3.3\,\mathrm{f} A/cm^2 \n (c) Power output per
       unit area is %3.2 f W/cm^2 \n (d) Thermal
      efficiency is %3.1f percent', Vo, Jc, Ja, P, nth)
```

Scilab code Exa 3.8 Thermal efficiency

```
1
2 clc
3 clear
4 //Input data
5 P=100//Power in kW
6 V=115//Voltage in V
7 To=1500//Outer temperature in K
8 Te=1000//Exit temperature in K
9 Ta=350//Ambient temperature in K
```

```
10 nth=30//Thermal efficiency in percent
11 nge=92//Generator efficiency in percent
12 // Properties of thermoelectrons
13 a=0.0012//At 1250K in V/K
14 kp = 0.02 // In W/cm.K
15 kn = 0.03 // In W/cm.K
16 \, dp = 0.01 / In \, ohm.cm
17 \, dn = 0.012 / In \, ohm.cm
18 J=20 // Current density in A/cm<sup>2</sup>
19
20 // Calculations
21 \text{ zmax} = (a^2/(\text{sqrt}(\text{dp*kp}) + \text{sqrt}(\text{dn*kn}))^2) / Maximum
      value of figure of merit in K^-1
22 mo=sqrt(1+(zmax*((To+Te)/2)))/Optimum value of the
      resistance ratio
  nmax = (((To-Te)/To)*((mo-1)/(mo+(Te/To))))*100//
      Maximum thermal efficiency in percent
24 Vl=(a*(To-Te)*(mo/(mo+1)))/Voltage per couple in V
25 nc=(V/V1)//Number of couples in series
26 L = ((a*(To-Te))/((1+mo)*(dp+dn)))/J//Length in cm
27 A=((P*Te)/V)/J//Area in cm^2
28 I=(J*A)//Current in A
29 Vo=(a*(To-Te))//Voltage in V
30 \quad Q1 = ((a*I*To) - ((1/2)*(L/A)*I^2*(dp+dn)) + ((A/L)*(kp+kn))
      )*(To-Te)))/1000//Heat input to the
      thermoelectric generator in kW
31 Q2=((a*I*Te)+((A/L)*(kp+kn)*(To-Te))+P)/1000//Heat
      rejected at full load in kW
32 \quad Q1n = (((A/L)*(kp+kn)*(To-Te)))/1000//At \text{ no load heat}
      input in kW
33 Q2n=Q1n//At no load heat rejected in kW
34 \text{ no} = ((nmax/100) + (1 - (nmax/100)) * (nth/100) * (nge/100))
      *100//Overall efficiency in percent
35
36 // Output
37 printf('(a) The thermal efficiency of thermocouple
      generator is \%3.1f percent \n (b) The number of
      thermo couples in series is %i \n (c) The lenght
```

of the thermal elements is $\%3.3\,\mathrm{f}$ cm and area is $\%3.2\,\mathrm{f}$ cm^2 \n (d) The output open-circuit voltage is $\%3.1\,\mathrm{f}$ V \n (e) At full load: \n The heat input is $\%3.3\,\mathrm{f}$ kW \n The heat rejected is $\%3.3\,\mathrm{f}$ kW \n At no load: \n The heat input is $\%3.3\,\mathrm{f}$ kW \n The heat rejected is $\%3.3\,\mathrm{f}$ kW \n (f) The overall efficiency of the combined thermo-electric steam power plant is $\%3.2\,\mathrm{f}$ percent',nmax,nc,L,A,Vo,Q1,Q2,Q1n,Q2n,no)

Chapter 4

Fuels and combustion

Scilab code Exa 4.1 Mass flow rate

```
2 clc
3 clear
4 //Input data
5 C=84; //The mass of carbon present in the fuel in \%
6 H=10; //The mass of hydrogen present in the fuel in \%
7 S=3.2; //The mass of sulphur present in the fuel in \%
8 0=1.6; //The mass of oxygen present in the fuel in %
9 I=1.2; //The mass of incombustible in the fuel in \%
10 X=15.72; //The flue gas of combined CO2 and SO2 by
     volume in %
11 Og=1; //The flue gas of O2 by volume in %
12 Y=100; //Let us consider the fuel oil in kg
13 C1=12; // Molecular weight of Carbon
14 H1=2; // Molecular weight of hydrogen
15 S1=32; // Molecular weight of sulphur
16 O1=32; // Molecular weight of oxygen
17 Co2=44; // Molecular weight of carbondioxide
18 So2=64; // Molecular weight of sulphurdioxide
19 N1=28; // Molecular weight of nitrogen
20 H2O=18; // Molecular weight of water
```

```
21
22 // Calculations
23 b=C/C1; // Equating coefficients of the carbon from
      equation
24 g=H/H1; // Equating coefficients of the hydrogen from
      equation
25 d=S/S1; // Equating coefficients of the sulphur from
      the equation
26 e=(b+d)/(X/Og);//By volumetric analysis
27 \text{ x=b+d+e+(g/2)-(0/01); //Moles of oxygen are supplied}
      for combustion
28 f=3.76*x; //Equating coefficients of the nitrogen
      from equation
29 Mo=x*O1; //Mass of oxygen supplied in kg
30 Ma=Mo/0.232; //Mass of air supplied for 100 kg of
      fuel in kg
31 Wa=Ma/100; //Mass of air supplied for 1 kg fuel in kg
32 Wrh=\{(11.5*C)+(34.5*[(H)-(0/8)])+(4.3*S)\}/100;//
      Theoretical air required per kg of fuel in kg
33 E=[(Wa-Wrh)/Wrh]*100; //Percentage of excess air in \%
34 D = (b*Co2) + (d*So2) + (e*O1) + (f*N1); //Mass of dry flue
      gas formed for 100 kg fuel in kg
35 dfg=D/100; //Mass of dry flue gas formed per kg of
      fuel in kg
36 Mw=(g*H2O)/100; //Mass of water vapour formed per kg
      of fuel
37
38 //Output
39 printf('(a) Mass of air supplied WA = \%3.2 \,\mathrm{f} kg \n (b)
      ) Percentage excess air supplied = \%3.2 f
      percentage \n (c) mass of dry flue gas formed = \%3
      .2 f kg \ n (d) Mass of water vapour formed = \%3.2 f
       kg', Wa, E, dfg, Mw)
```

Scilab code Exa 4.2 Percentage of excess air

```
1
2 clc
3 clear
4 //Input data
5 CO2=11.5; // Percentage of carbondioxide present in
      combustion in %
6 02=2.7; // Percentage of oxygen present in the
      combustion in %
7 CO=0.7; // Percentage of carbonmonoxide present in the
       combuston in %
8
9 // Calculations
10 a=85.1/3.76; // Equating moles for nitrogen from the
      equation
11 x=(CO2+CO)/3; // Equating moles for carbon from the
      equation
12 b=[a-CO2-(CO/2)-O2]*2; // Equating moles for oxygen
     from the equation
13 y=a/x; // Moles of oxygen supplied for one mole of
     propane gas
14 z=5; // Theoretically 5 moles of oxygen are required
      for reacting
15 E=[(y-z)/z]*100;//The excess of air supplied in %
16
17 //Output
18 printf ('The percentage excess air used is = \%3.1 f
      percentage', E)
```

Scilab code Exa 4.3 Air fuel ratio

```
1
2 clc
3 clear
4 //Input data
5 CO2=12.1;//The amount of carbondioxide released from
```

```
the combustion in %
6 02=3.8; //The amount of oxygen released from the
     combustion in %
  CO=0.9; // The amount of carbon monoxide released from
     the combustion in %
8 MO=32; // Molecular weight of Oxygen
10 // Calculations
11 a=83.2/3.76; // Equating moles for nitrogen from the
     equation
12 b=(2*a)-(2*CO2)-(2*O2)-CO; // Equating moles for
     oxygen from the equation
13 x=CO2+CO; // Equating moles for carbon from the
      equation
14 y=2*b; // Equating moles for hydrogen from the
      equation
15 z=18.75; // Moles of Oxygen from the stoichiometric
     equation
16 z1=a; // Moles of Oxygen from the combustion equation
17 E=[(z_1-z)/z]*100; //Percentage of excess air in%
18 A=(a*MO)/0.232; // Actual air supplied per mole of
     C13H23
19 Mc=179; // Molecular weight of C13H23
20 Af=A/Mc; // Air fuel ratio during the test
21
22 //Output
23 printf('(a) The air fuel ratio during the test = \%3
      .2 f \ n \ (b) The excess or deficiency of air used =
      %3.0f Percentage of excess air used', Af, E)
```

Scilab code Exa 4.4 Power output and efficiency

```
1
2 clc
3 clear
```

- 4 //Input data
- 5 C=61; //The mass of carbon present in the coal according to coal analysis on mass basis in %
- 6 H=4;//The mass of hydrogen present in the coal according to coal analysis on mass basis in %
- 7 0=3;//The mass of oxygen present in the coal according to coal analysis on mass basis in %
- 8 N=2;//The mass of nitrogen present in the coal according to coal analysis on mass basis in %
- 9 S=1;//The mass of sulphur present in the coal according to coal analysis on mass basis in %
- 10 M=4; //The mass of moisture present in the coal according to coal analysis on mass basis in %
- 11 A=25; // The mass of ash present in the coal according to coal analysis on mass basis in %
- 12 HHV=24.3; //The high heating value of the coal i.e energy released by complete combustion of 1 kg fuel in MJ/kg
- 13 CO2=12; //The amount of carbondioxide by volume according to dry flue gas analysis in %
- 14 CO=1.5; // The amount of carbon monoxide by volume according to dry flue gas analysis in %
- 15 02=7; //The amount of oxygen by volume according to dry flue gas analysis in %
- 16 N2=79.5; //The amount of nitrogen by volume according to dry flue gas analysis in %
- 17 Te=170; // Exhaust gas temperature in degree centigrade
- 18 L=0.03; // Energy loss other than dry exhaust loss and incomplete combustion is 3% of HHV
- 19 R=150; //Steam generation rate in t/h
- 20 Po=100; //Steam condition at boiler outlet in bar
- 21 To=500; //Steam condition at boiler outlet in degree centigrade
- 22 Ti=160; // Feed water inlet temperature in degree centigrade
- 23 HCO2=33083; //Heat of reaction in kJ/kg carbon
- 24 HCO=9500; // Heat of reaction in kJ/kg carbon

```
25 cp=1.05; //Heat capacity of dry flue gas (dfg) in kJ/
26 Ta=30; //The ambient temperature of air in degree
      centigrade
27 Mc=44; // Molecular weight of Carbondioxide
28 Mco=28; // Molecular weight of carbonmonoxide
29 Mo=32; // Molecular weight of oxygen
30 Mn=28; // Molecular weight of nitrogen
31 Mx=12; // Molecular weight of carbon
32 h1=3373.7; //Enthalpy at 100 bar and 500 degree
      centigrade in kJ/kg
33 hf=675.55; //Enthalpy at 160 degree centigrade in kJ/
34 hg=2724.7; // Enthalpy at 100 bar in kJ/kg
35
36 // Calculations
37 \text{ Mdfg} = ([(C/100)*[(Mc*(CO2/100))+(Mco*(CO/100))+(Mo*(CO/100))]
     N2/100))]]/[Mx*[(C02/100)+(C0/100)]]);//Mass of
      dry flue gas produced per kg of fuel in kg
38 Ed=Mdfg*cp*(Te-Ta); //Energy loss due to dry exhaust
      gas in kJ/kg fuel
  //Since Mdfg is 11.73kg through sciab calculation,
      there is a variation in Ed value and Ei value
40 Ei = [(Mdfg)*(HCO2-HCO)*(Mx/Mco)]*[(Mco*(CO/100))/[(Mc
      *(CO2/100))+(Mco*(CO/100))+(Mo*(O2/100))+(Mco*(N2))
      /100))]]; // Energy loss due to incomplete
      combustion in kJ/kg fuel
41 El=L*HHV; //Energy loss other than dry exhaust loss
     and incomplete combustion loss in MJ/kg fuel
42 TEl=(Ed/1000)+(Ei/1000)+El;//Total energy loss in MJ
     /kg fuel
43 Be=[(HHV-TE1)/(HHV)]*100;//Boiler efficiency in \%
44 Wf = ([(R*1000)*(h1-hf)]/((Be/100)*HHV*1000))/3600; //
     The fuel burning rate in kg/s
45 \text{ Wth} = (11.5*(C/100)) + (34.5*[(H/100) - (D/800)]) + (4.3*(S))
      /100)); // Thearetical air required per kg of fuel
      in kg
46 WA = [[(3.04*(N2/100)*(C/100))]/[(CO2/100)+(CO/100)]
```

```
]]-[(N/100)*(1/0.768)];//Actual air supplied per
      kg of fuel in kg
47 per=[(WA-Wth)/Wth]*100;//Percentage excess air used
      in %
   pea=[(h1-hg)/(h1-hf)]*100;//Percentage of energy
       absorbed in the superheater
49
50 //Output
51 printf('(a) The amount of dry flue gas produced per
      kg fuel = \%3.2 \, \text{f} kg \n (b) The dry exhaust loss =
      \%3.1 \,\mathrm{f} kJ/kg fuel and incomplete combustion loss
      per kg fuel = \%3.2 \, \text{f kJ/kg} fuel \n (c)The boiler
       efficiency = \%3.2 \,\mathrm{f} percentage \n (d) THe fuel
      burning rate = \%3.3 \, \text{f} \, \text{kg/s} \, \text{n} (e) The percentage of
        excess air used = \%3.2 \,\mathrm{f} percentage \n (f) The
      percentage of energy absorbed in the superheater
      = \%3.2 \,\mathrm{f} \,\mathrm{percentage}', Mdfg, Ed, Ei, Be, Wf, per, pea)
```

Scilab code Exa 4.5 Total volume of combustion

```
clc
clear
//Input data
C=83.7; //The amount of carbon present in the fuel
    oil according to ultimate analysis of a fuel oil
    in %
H=12.7; //The amount of hydrogen present in the fuel
    oil according to ultimate analysis of a fuel oil
    in %
C=1.2; //The amount of oxygen present in the fuel oil
    according to ultimate analysis of a fuel oil in
%
N=1.7; //The amount of nitrogen present in the fuel
    oil according to ultimate analysis of a fuel oil
```

```
9 S=0.7; //The amount of sulphur present in the fuel
      oil according to ultimate analysis of a fuel oil
     in %
10 td=27; //The dry bulb temperature of combustion air
     in degree centigrade
11 tw=21; //The wet bulb temperature of combustion air
     in degree centigrade
12 E=0.3; // Excess air and assuming complete combustion
     in %
13 t=200; // Temperature to find total volume of
     combustion products in degree centigrade
14 p=1.013; // Pressure to find total volume of
     combustion procucts in bar
15
16 // Calculations
17 Wth=(11.5*(C/100))+[34.5*((H/100)-(0/100)*(1/8))
     ]+(4.3*(S/100));//Theoretical air required per kg
       of fuel in kg
18 WA=(1+E)*Wth; // Actual air required per kg of fuel in
      kg/kg fuel
19 sh=0.0132; // Specific humidity at DBT and WBT in kg
     moisture/kg dry air
20 W=WA*sh; // Water vapour entering with air per kg fuel
       in kg vap/kg fuel
21 Tw=(9*(H/100))+WA; // Total water vapour formed per kg
       fuel in kg
22 CO2=(44/12)*(C/100);//mass of carbondioxide gas per
     kg of fuel
23 O2=0.232*E*Wth; //Mass of oxygen gas per kg of fuel
24 \text{ N2=0.768*(1+E)*Wth+(N/100);}/\text{Mass of nitrogen gas}
      per kg of fuel
25 \text{ SO2} = (64/32)*(S/100); //Mass of nitrogen gas per kg of
       fuel
26 H2O=1.383; //Mass of water per kg of fuel
M = (C02/44) + (02/32) + (N2/28) + (S02/64) + (H20/18); //Moles
       of combustion gases formed per kg fuel
28 VG=M*22.4*[(273+t)/273]*(1.013/1.013);/Volume of
```

in %

```
flue gases at 200 degree centigrade and 1.013 bar
       per kg fuel
29 CO21 = ((CO2/44)/[(CO2/44)+(O2/32)+(N2/28)])*100; //
      Composition of dry flue gas CO2 by volume
30 021 = ((02/32)/[(02/44)+(02/32)+(N2/28)])*100;//
      Composition of dry flue gas O2 by volume
31 N21 = ((N2/28)/[(CO2/44)+(O2/32)+(N2/28)])*100;//
      Composition of dry flue gas N2 by volume
32
33 //Output
34 printf('(a)The total volume of combustion products
      at 200 degee centigrade and 1.013 bar = \%3.2 \,\mathrm{f}\,\mathrm{m}^3
       \n (b) The dry flue gas analysis based on
      carbondioxide, oxygen and nitrogen is \n
      Carbondioxide = \%3.2 f percent \n Oxygen = \%3.2 f
      percent \  Nitrogen = \%3.2 \,f percent', VG, CO21, O21,
      N21)
```

Scilab code Exa 4.6 Flue gas analysis

```
clc
clear
//Input data
C2H6=22.6;//The amount of gas present in the fuel
    gas according to volumetric analysis of fuel gas
    by volume in %
CH4=73.6;//The amount of gas present in the fuel gas
    according to volumetric analysis of fuel gas by
    volume in %
CO2=2.4;//The amount of gas present in the fuel gas
    according to volumetric analysis of fuel gas by
    volume in %
N2=1.4;//The amount of gas present in the fuel gas
    according to volumetric analysis of fuel gas by
```

```
volume in %
9 E=0.25; // Assuming combustion air to be dry and in
10 t=260; //The temperature for the total gas volume for
       complete combustion in degree centigrade
11 p=1.013; //The pressure for the total gas volume for
      complete combustion in bar
12 Mch=30; // Molecular weight of C2H6
13 Mc=16; // Molecular weight of CH4
14 Mco=44; // Molecular weight of CO2
15 Mn=28; // Molecular weight of N2
16 Mo=32; // Molecular weight of O2
17 Mh=18; // Molecular weight of H2O
18
19 // Calculations
20 x=100; //Assuming 100 moles of fuel gas
21 Mf = [(C2H6/100)*Mch] + [(CH4/100)*Mc] + [(N2/100)*Mn] + [(
      CO2/100) *Mco]; // Molecular weight of fuel gas
22 Ma = [(226.3*(Mo+(3.76*Mn))*(1+E))]/28.96; //Moles of
      air supplied
23 Mc=1440; // Moles of combustion gas from the equation
24 Mr=x+Ma+Mc; //Total reaction molecules
25 Mwc = [(121.2*Mco) + (215*Mh) + (56.6*Mo) + (1065.4*Mn)]/Mc;
      //Molecular weight of combustion gas in kg/kgmol
26 Mt=Mc/(x*20); // Total number of moles of combustion
      gas per kg fuel gas
27 \text{ VG=Mt}*22.4*[(273+t)/273]; // \text{Volume of combustion}
      products per kg fuel gas
  C021 = (121.2/(121.2+56.6+1065.4))*100; //Gas analysis
      of CO<sub>2</sub> by volume
29 021 = (56.6/1243.2) *100; //Gas analysis of O2 by volume
30 N2=(1065.4/1243.2)*100; //Gas analysis of N2 by
      volume
31
32 // Output
33 printf('(a)The molecular weight of the combustion
      products M = \%3.2 f \text{ kg/kg mol } \text{n} (b) The total gas
       volume for complete combustion at 260 degree
```

```
centigrade and 1.013 bar is \%3.2\,\mathrm{f} m^3/kg fuel \n (c)The dry flue gas analysis on \n carbondioxide = \%3.1\,\mathrm{f} percent \n oxygen = \%3.1\,\mathrm{f} percent \n nitrogen = \%3.1\,\mathrm{f} percent ', Mwc, VG, CO21, O21, N2)
```

Scilab code Exa 4.7 Air leakage

```
1
2 clc
3 clear
4 //Input data
5 CO21=9.7; // Carbondioxide gas analysis before the air
       preheater
6 CO22=9.2; // Carbondioxide gas analysis after the air
      preheater
7 021=4.0; //Oxygen gas analysis before the air
      preheater
8 022=4.9; //Oxygen gas analysis after the air
      preheater
9 N21=86.3; // Nitrogen gas analysis before the air
      preheater
10 N22=85.9; // Nitrogen gas analysis after the air
      preheater
11 C=72; //The coal used shows the carbon percentage by
      mass in %
12
13 // Calculations
14 W1 = [(3.04) * (N21/100) * (C/100)]/[(CO21/100)]; //Before
      air preheater in kg air/kg fuel
15 W2 = [(3.04) * (N22/100) * (C/100)]/[(C022/100)]; // After
      air preheater in kg air/kg fuel
16 A=W2-W1; // Air leakage in kg air/kg fuel
17
18 //Output
19 printf ('The air leakage into the air preheater per
```

Scilab code Exa 4.8 Height of stack and diameter of base

```
1
2 clc
3 clear
4 //Input data
5 n=6; //Total lancashire boilers in a textile factory
6 Ws=6; //Each boiler supplying steam in t/h
7 p=16; // Pressure at which steam is supplied in bar
8 t=250; // Temperature at which steam is supplied in
      degree centigrade
9 CV=43960; // Calorific value of the fuel oil in kJ/kg
10 no=75; // Overall efficiency of the boiler in \%
11 a=16; //The amount of air required for efficient
      burning of the fuel inkg
12 H=20; // Drought of water gauge required at the base
      of chimney in mm
13 tf=320; //The flue gases leave the boiler in degree
      centigrade
14 ts=300; //The average temperature of the gases in the
       stack in degree centigrade
15 ta=30; //The atmospheric temperature in degree
      centigrade
16 R=0.287; //Real Gas constant in kJ/kgK
17 h1=2919.2; //enthalpy at the entrance of the boiler
     in kJ/kgK
18 hf=125.8; // Enthalpy at the feed in kJ/kgK
19 pi=3.1412; // Mathematical constant
20 g=9.81; // gravitational fore constant in m/s^2
21 P=1.013; // Atmospheric pressure in bar
22
23 // Calculations
24 \text{ H1} = [(H*R*(273+ta)*(273+ts))]/[P*100*[(273+ts)-(273+ts)]
```

Scilab code Exa 4.9 Motor capacity

```
1
2 clc
3 clear
4 //Input data
5 Wf=10; // Coal rate in t/h
6 C=78; //The mass of carbon present in the coal
     according to coal analysis on mass basis in %
  H=3; //The mass of hydrogen present in the coal
     according to coal analysis on mass basis in %
  0=3; //The mass of oxygen present in the coal
     according to coal analysis on mass basis in %
9 S=1; //The mass of sulphur present in the coal
     according to coal analysis on mass basis in \%
10 M=7; //The mass of moisture present in the coal
     according to coal analysis on mass basis in %
11 A=8; //The mass of ash present in the coal according
     to coal analysis on mass basis in %
12 E=0.3; // Excess air in percentage
13 p=180; //Plenum chamber pressure in mm water gauge
14 nm=0.6; // Mechanical efficiency of the fan
15 ta=30; //Room temperature in degree centigrade
```

```
16 R=0.287; //Real gas constant
17 P=101.325; // Atmospheric pressure in kPa
18 g=9.812; // gravitational force constant m/s^2
19
20 // Calculations
21 Wth=(11.5*(C/100))+(34.5*[(H/100)-(D/(8*100))])
      +(4.3*(S/100)); // Theoretical air required per kg
      fuel in kg air/kg fuel
22 WA=Wth*(1+0.3); // Actual air required per kg fuel in
      kg air/kg fuel
23 Va=(R*(273+ta))/P;//Volume flow rate of air in m<sup>3</sup>/
24 FD=((WA*Wf*1000*Va*p*g)/(3600*nm))/1000;//FD fan
      motor capacity in kW
25
26 // Output
27 printf ('The required motor capacity needed for the
     FD fan is \%3.2 \text{ f kW}, FD)
```

Scilab code Exa 4.10 Motor capacity

```
1
2 clc
3 clear
4 //Input data
5 tg=180; //The gas temperature in degree centigrade
6 p=250; //The draught produced by the ID fan in mm
7 nf=0.52; //The efficiency of the fan
8 Va=0.858; //Volume flow rate of air in m^3/kg
9 g=9.812; //gravitational force constant in m/s^2
10 Wf=10; //Coal rate in t/h
11 Wa=12.9; //Actual air required per kg fuel in kg air/kg fuel
12 ta=30; //Room temperature in degree centigrade
13
```

Scilab code Exa 4.11 Volumetric composition

```
1
2 clc
3 clear
4 //Input data
5 CO2=13.2; //The volume of carbondioxide present in
     the partial analysis of dry flue gas in %
6 02=3.2; //The volume of oxygen present in the partial
      analysis of dry flue gas in %
7 C=88; //The mass of carbon present in the coal
     according to coal analysis on mass basis in \%
  H=4.4; //The mass of hydrogen present in the coal
     according to coal analysis on mass basis in %
  A=7.6; //The mass of ash present in the coal
     according to coal analysis on mass basis in \%
10 M=0; // Moisture present in the fuel was nil
11 Mc=12; // Molecular weight of the carbon
12 Mh=2; // Molecular weight of the hydrogen
13 Mo=32; // Molecular weight of the oxygen
14 Mho=18; // Molecular weight of water
15 p=101.325; // Atmospheric pressure in kPa
16
```

```
17 // Calculations
18 c=C/Mc; //Equating coefficients of the carbon from
      the equation
19 g=H/Mh; // Equating coefficients of the hydrogen from
      the equation
20 x = (CO2/100)/(O2/100); //From dry fuel gas analysis (
      dfg)
21 \quad d = [[(CO2/100)*(47.5)] - 7.333]/[[(CO2/100)*(3.032)]
     ]-1]; // Coefficient of the carbon monoxide in the
      equations product side
22 b=c-d; // Coefficient of the carbondioxide in the
      equation product side
23 a=10.21-(0.742*d); // Coefficient of the oxygen in the
       reactant side of the equation
24 e=b/x;//Coefficient of the oxygen in the product
      side of the equation
25 f=3.76*a; //Equating coefficients of the nitrogen
     from the equation
26 ma=(a*Mo)/0.232;//Mass of air supplied for 100 \text{ kg}
      coal in kg
27 ma1=ma/100; //Mass of air supplied per kg coal in kg
28 T=b+d+e+f; // Total number of moles of dry flue gas (
      dfg)
29 CO21=(b/T)*100; // Carbondioxide by volume in
      percentage
30 O21=(e/T)*100; //Oxygen by volume in percentage
31 CO1=(d/T)*100; // Carbonmonoxide by volume in
      percentage
32 N21=(f/T)*100; // Nitrogen by volume in percentage
33 Mwv=(g*Mho)/100; //Mass of watervapour formed per kg
      coal in kg
34 Mf = (g)/(b+d+e+f+g); //Mole fraction of water vapour
      in flue gas
35 P=Mf*p; // Partial pressure of water vapour in kPa
36 D=32.9; //Dew point temperature from steam tables in
      degree centigrade
37
38 //Output
```

39 printf('(a) The complete volumetric composition of the dry flue gas is \n Carbondioxide by volume = \%3.2 f percentage \n Oxygen by volume = \%3.2 f percentage \n Carbonmonoxide by volume = \%3.2 f percentage \n Nitrogen by volume = \%3.2 f percentage \n (b) The actual amount of air supplied per kg coal = \%3.2 f kg \n (c) Mass of water vapour formed per kg coal = \%3.2 f kg \n (d) The dew point temperature of the flue gas = \%3.2 f degree centigrade ',CO21,O21,CO1,N21,ma1,Mwv,D)

Scilab code Exa 4.12 Height of gas plume

```
1
2 clc
3 clear
4 //Input data
5 H=200; // Height of the stack in m
6 D=4;//Diameter of the stack in m
7 m=1000; //Mass flow rate of gas in kg/s
8 Ts=100; // Stack exit gas temperature in degree
     centigrade
9 Ta=5; // Ambient air temperature in degree centigrade
10 Vw=50; //Wind velocity in Km/h
11 Cp=1.005; // Specific heat of the gas in kJ/kgK
12 pi=3.142; // Mathematical constant the value of pi
13
14 // Calculations
15 Vw1 = (50*1000)/(60*60); //Wind velocity in m/s
16 Qe=m*Cp*(Ts-Ta); // Heat emission from plume in kW
17 Qe1=Qe/1000; //Heat emission from the plume in MW
18 p=(101.325)/(0.287*373); //Density of the gas in kg/m
      ^3
19 A=(pi*D^2)/4; // Area of the stack in m^2
20 Vs=m/(p*A); //Stack gas exict velocity in m/s
```

Scilab code Exa 4.13 Thermal efficiency

```
1
2 clc
3 clear
4 //Input data
5 CV=20; // Calorific value of the fuel in MJ/kg
6 C=65; //The amount of carbon present in the fuel
      according to gravimetric analysis in %
7 H=25; //The amount of hydrogen present in the fuel
      according to gravimetric analysis in %
  0=10; //The amount of oxygen present in the fuel
      according to gravimetric analysis in %
  p1=1; // Pressure at the inlet of the compressor in
10 t1=27; // Temperature at the inlet of the compressor
     in degree centigrade
11 p2=4; //The pressure which compressor compresses it
      isentropically in bar
12 Re=78; //The regenerator effectiveness in %
13 CO2=6; // The amount of carbondioxide according to the
       analysis of dry exhaust gas in %
14 CO=1.5; //The amount of carbonmonoxide according to
     the analysis of dry exhaust gas in %
15 Cp=1.005; // Specific heat capacity of the air in kJ/
     kgK
16 i=1.44; // Isentropic index for the air
17 Cp1=1.15; // Specific heat capacity of the air in kJ/
```

```
kgK
18 i1=1.33; // Isentropic index for the combustion
      products
19 Mc=12; // Molecular weight of the carbon
20 Mh=2; // Molecular weight of the hydrogen
21 Mo=32; // Molecular weight of the oxygen
22 Mho=18; // Molecular weight of water
23 T0=288; //Datum temperature in K (Assumed)
24
25 // Calculations
26 h = (C/100)/(Mc); //Equating coefficients of the carbon
       from the equation
27
  e=(H/100)/Mh;//Equating coefficients of the hydrogen
       from the equation
  y=(CO/100)/(CO2/100);//From dry exhaust gas analysis
       for solving
  a=h/(1+y); // The coefficient of the carbondioxide in
29
      the product side of the equation
30 b=h-a;//The coefficient of the carbonmonoxide in the
       product side of the equation
31 z=b/(CO/100);//The sum of coefficients of the
      product side of the equation
32 \text{ x=z-(b/2)+(e/2);}//\text{Mol of air supplied in kmol}
33 wa=x*28.96; // Air supplied in kg/kg fuel
34 wf=1; // Assuming 1 kg of fuel supplied
35 \text{ T2}=(t1+273)*(p2/p1)^((i-1)/i); // Temperature at the
      outlet of the compressor in K
36 T3=[[(wa*Cp*(T2-T0))+(wf*CV*1000)]/[(wa+wf)*(Cp1)]]+
     TO; //Maximum temperature of the cycle in K
  T4=T3/[(4)^{((i1-1)/i1)}];//Temperature at point of
      the cycle in K
38
  T5 = [(Re/100)*(T4-T2)]+T2; //Temperature at point of
      the cycle in K
39 Wc=wa*Cp*(T2-(t1+273)); //Work done by the compressor
40 Wt=23.54*Cp1*(T3-T4); //Work done by the turbine in
41 Q1=23.54*Cp1*(T3-T5); // Total work done by the system
```

```
in kW
42 nc=(Wt-Wc)/Q1;//Efficiency of the cycle
43 nc1=nc*100;//Efficiency of the cycle in %
44 spc=3600/(Wt-Wc);//Specific fuel consumption in kg/kWh

45
46 //Output
47 printf('(a) The maximum temperature of the cycle T3
= %3.0 f K \n (b)Thermal efficiency of the plant =
%3.3 f or %3.2 f percentage\n (c) Specific fuel
consumption = %3.3 f kg/kWh ',T3,nc,nc1,spc)
```

Chapter 5

Combustion Mechanism Combustion equipment and Firing Methods

Scilab code Exa 5.1 Total surface area

```
1
2 clc
3 clear
4 //Input data
5 Vs=2500; //The mass of a bed of solid particles in kg
6 p=2650; //The density of the solid in kg/m^3
7 d=800*10^-6; //The mean particle size in m
8 s=0.84; //The sphericity of the particle
9
10 // Calculations
11 As=(6*Vs)/(p*d*s);//The total surface area of the
      particles in the bed
12
13 //Output
14 printf(' The total surface area of the particles in
      the bed As = \%3.0 \,\mathrm{f} \,\mathrm{m}^2, As)
```

Scilab code Exa 5.2 Voidage of the bed

```
1
2 clc
3 clear
4 //Input data
5 d=427*10^-6; //The mean particle size in m
6 pg=1.21; //The density of air in kg/m<sup>3</sup>
7 v=1.82*10^-5; //The viscosity of air in kg/ms
8 pl=1620; //The density of the loosely packed bed in
      kg/m^3
9 ps=2780; //The density of the solids in kg/m<sup>3</sup>
10 c1=27.2; // (Grace, 1982) constant value.
11 c2=0.0408; // (Grace, 1982) constant value
12 g=9.812; // Gravitational forc constant in m/s^2
13
14 // Calculations
15 E=1-(pl/ps); //The voidage of the bed
16 Ar=[(pg)*(ps-pg)*g*(d^3)]/v^2;//Archimedes number
17 Re=[c1^2+(c2*Ar)]^(0.5)-c1;//Reynolds number
18 Umf=Re*v/(pg*d);//Minimum superficial velocity in m/
      S
19
20 //Output
21 printf('(a) The voidage of the bed = \%3.3 \,\mathrm{f} \, \ln \,(b)
      The minimum fluidization velocity Umf = \%3.3 f m/s
       ', E, Umf)
```

Scilab code Exa 5.3 Sphericity of particles

```
1 2 clc
```

```
3 clear
4 //Input data
5 d=427*10^-6; //The mean particle size in m
6 pg=1.21; //The density of air in kg/m<sup>3</sup>
7 v=1.82*10^-5; //The viscosity of air in kg/ms
8 Umf=0.14; //Minimum superficial velocity in m/s
9 Ar=7753; // Archimedes number from previous example
      problem
10
11 // Calculations
12 Re=(Umf*pg*d)/v;//Reynolds number
13 function[f] = F(x); //function definition
14
       f = 7753*x^2 - 381.1*x - 4793;
15 endfunction
16 x = 100; //Initial guss
17 function[z] = D(x) // Derivative
       z = 3 * x^2 - 3;
18
19 endfunction
20 y = fsolve(x,F,D);
21
22 // Output
23 printf ('The sphericity of particles is = \%3.3 \,\mathrm{f}',y)
```

Scilab code Exa 5.4 Flow rate of limestone

```
9 C=3;//The calcium sulphur ratio
10 Ca=85; //The amount of calcium carbonate in the
      limestone in %
11 CaCO3=100; //The molecular weight of CaCO3
12
13 // Calculations
14 Cb=0/(n*H);//Coal burning rate in kg/s
15 Cb1=Cb*3600; // Coal burning rate in kg/h
16 Sf = (Cb1*(S/100))/32; //Flow rate of sulphur in Kmol/h
17 Cf=Sf*C; //The flow rate of calcium in Kmol/h
18 Caf=Cf*CaCO3; //Mass flow rate of CaCO3 in kg/h
19 L=Caf/(Ca/100); // Mass flow rate of limestone in kg/h
20
21 //Output
22 printf ('The required flow rate of limestone is %3.1 f
      kg/h ',L)
```

Scilab code Exa 5.5 Rate of heat removed

```
1
2 clc
3 clear
4 //Input data
5 CV=24; //The calorific value of the fuel in MJ/kg
6 C=0.65; //The amount of calorific value released in
     the bed in %
7 to=850; // Temperature at which products leave in
     degree centigrade
8 ti=30; //The inlet temperature in degree centigrade
9 tb=850; //The bed temperature in degree centigrade
10 A=14.5; //The air fuel ratio by mass
11 Cp=1.035; //The specific heat of the products leaving
      the bed surface in kJ/kgK
12 B=7000; //The burning rate of coal in kg/h
13
```

```
// Calculations
| H=(C*CV*1000) -(A*Cp*(to-ti)); // Heat removal from the bed per kg fuel in kJ/kg fuel
| Hr=(H*B)/3600; // Rate of heat removal from the bed in kW
| Hb=(B/3600)*(1-C)*CV*1000; // The rate of heat removal from the above bed zone in kW
| // Output |
| printf('(a) The rate of heat removal from the bed = %3.0 f kW \n (b) The rate of heat removal from the above bed zone = %3.0 f kW ', Hr, Hb)
```

Scilab code Exa 5.6 Platform area

```
1
2 clc
3 clear
4 //Input data
5 tb=850; //The bed temperature in degree centigrade
6 CV=25; //The calorific value of the fuel in MJ/kg
7 A=9.5; //The stoichiometric air fuel ratio by mass
8 E=20; //The amount of excess air used in \%
9 F=4.8; //The total fueling rate in MW
10 p=0.3145; //The density of air at bed temperature in
      kg/m^3
11 f=2; //The firing rate in MW/m<sup>2</sup>
12 v=2.7; //The fluidizing velocity in m/s
13
14 // Calculations
15 P=F/f; // Planform area in m<sup>2</sup>
16 m = (F*1000)/(CV*1000); //Fuel burning rate in kg/s
17 ma=A*(1+(E/100))*m; //Mass flow rate of air in kg/s
18 Pa=ma/(p*v); // Planform area in m^2
19
```

```
20 //Output  
21 printf('(a) The planform area = \%3.1\,\mathrm{f\ m^2\ n\ (b)}  
Fuel burning rate = \%3.3\,\mathrm{f\ kg/s\ n\ Air\ flow}  
rate = \%3.4\,\mathrm{f\ kg/s\ n\ Planform\ area} = <math>\%3.2\,\mathrm{f\ m^2} ',P,m,ma,Pa)
```

Chapter 6

Steam generators

Scilab code Exa 6.1 Pressure head

```
1
2 clc
3 clear
4 //Input data
5 H=18; //The length of furnace wall riser in m
6 0=76.2; //The outer diameter of the furnace wall
      riser in mm
  T=6.1; //The thickness of the furnace wall riser in
8 P=80;//Pressure at which saturated water is recieved
9 V=1.5; //The velocity of the saturated water in m/s
10 CR=12.5; // Assuming circulation ratio
11 S=1.2; // Assuming slip ratio
12 g=9.81; // Gravitational force constant in m/s<sup>2</sup>
13 pi=3.142; // Mathematical constant
14
15 // Calculations
16 xt=1/CR; //The quality of steam at the top of the
17 vf=0.001384; // Specific volume of saturated liquid at
```

```
80 bar in m^3/kg
18 vfg=0.02214; // Specific volume of Evaporation gas at
      80 bar in m^3/kg
19 vg=0.02352; // Specific volume of saturated gas at 80
      bar in m<sup>3</sup>/kg
20 pf=1/vf;//Density of the saturated liquid at 80 bar
      in kg/m^3
21 vt=vf+(xt*vfg); // Specific volume of the steam at the
       top of the riser in m<sup>3</sup>/kg
22 pt=1/vt; // Density of steam at the top of the riser
      in kg/m^3
23 pm=(pt+pf)/2; //Mean density in kg/m<sup>3</sup>
24 Ph=[H*g*(pf-pm)]/1000;//The pressure head developed
      in kPa
25 C=(vf/vg)*S;//The part of calculation for the void
      fraction
26 VF=1/[1+((1-xt)*C)/xt];//The void fraction at riser
      exit
27 hfg=1441.3; //Enthalpy of the evaporation in kJ/kg
28 di=0-12.2; //Inner diameter of the furnace wall riser
       in mm
29 A=(pi*di^2)/4; //Inner area in m^2
30 w=pf*A*V; //Mass flow rate of saturated water
      entering the riser in kg/s
31 ws=xt*w; //The rate of steam formation in the riser
      tube in kg/s
32 h=[(ws*hfg)/(0*H)]/1000;//Heat transfer rate per
      unit projected area in kW/m<sup>2</sup>
33
34 //output
35 printf('(a) The pressure head developed = \%3.1f kPa
      \n (b) The void fraction at riser exit = \%3.4 \,\mathrm{f} \n
      (c) The heat transfer rate per unit projected
      area = \%3.1 f kW/m^2, Ph, VF, h)
```

Scilab code Exa 6.2 Amount of water required

```
1
2 clc
3 clear
4 //Input data
5 t=60; //The temperature of water while supplying it
      to desuperheater in degree centigrade
6 ws=200; //The amount of steam carrying in a steam
      line in t/h
7 p=35; //The pressure of steam in bar
  ts=400; //The temperature to be maintained by the
      steam in degree centigrade
9 to=450; //The outlet temperature of the steam from
      boiler in degree centigrade
10 h1=3337.2; //The enthalpy of steam at 450 degree C in
       kJ/kg
11 h2=252; //The enthalpy of water at 60 degree C in kJ/
12 h3=3222.3; //The enthalpy of steam at 400 degree C in
       kJ/kg
13
14 // Calculations
15 w=(ws*(h1-h3))/(h3-h2);//Mass flow rate of water in
16 w1=w*(1000/3600); //Mass flow rate of water in kg/s
17
18 //Output
19 printf ('The amount of water that must be sprayed is
      \%3.3 \, \text{f} \, \text{t/h} or \%3.3 \, \text{f} \, \text{kg/s}, w, w1)
```

Scilab code Exa 6.3 Pressure head

```
1 2 clc
```

```
3 clear
4 //Input data
5 H=15; //The high of downcomer riser circuit in m
6 P=160; //The pressure at which downcomer riser
      circuit operates in bar
7 xe=0.5; //The exit quality of the steam
8 S=1.2; // Slip factor
9 vf=0.001711; // Specific volume of saturated liquid in
       m^3/kg
10 vg=0.009306; // Specific volume of saturated gas in m
      ^3/\mathrm{kg}
11 g=9.806; // Gravitational force constant in m/s<sup>2</sup>
12
13 // Calculations
14 C=S*(vf/vg); //The part of calculation for the void
      fraction
15 VF=1/[1+((1-xe)*C)/xe];//The void fraction at riser
      exit
16 pf=1/vf; // Density of the saturated liquid in kg/m<sup>3</sup>
17 pg=1/vg; // Density of the saturated gas in kg/m<sup>3</sup>
18 pm=pf-[[(pf-pg)/(1-C)]*[1-{(1/((VF)*(1-C)))-1}*log
      (1/(1-(VF*(1-C))))];//The average mixture
      density in the riser in kg/m<sup>3</sup>
19 P1=g*(pf-pm)*H;//Pressure head developed due to
      natural circulation in N/m<sup>2</sup>
20 P2=P1/1000; //ressure head developed due to natural
      circulation in kPa
21
22 //Output
23 printf ('The pressure head developed due to natural
      circulation is %3.0 f N/m<sup>2</sup> or
                                         %3.3 f kPa',P1,P2)
```

Scilab code Exa 6.4 Steam generation rate

```
2 clc
3 clear
4 //Input data
5 W=120; //The amount of electricity produced in the
     power plant in MW
6 po=100; //The pressure of the steam at the outlet of
      boiler in bar
7 to=500; //The temperature of steam at the outlet of
      boiler in degree centigrade
8 p=0.1; //The condenser pressure in bar
9 nb=0.9; //The efficiency of the boiler
10 CV=25.7; //The calorific value of the coal in MJ/kg
11 ti=160; //The feed water temperature at boiler inlet
     in degree centigrade
12 H=40; //The high of the risers in the furnace wall in
13 xt=0.08; //The quality of the steam at the top of the
       riser
14 v=2; //The exit velocity of the riser and entering
     the drum in m/s
15 Do=60; //The outer diameter of the risers in mm
16 T=3; //The thickness of the wall in mm
17 pi=3.142; // Mathematical constant
18 g=9.806; // Gravitational force constant in m/s<sup>2</sup>
19
20 // Calculations
21 h1=3374.8; //Enthalpy at point 1 in kJ/kg
22 s1=6.6011; // Entropy at point 1 in kJ/kgK
23 sf=0.6479; //Entropy of the saturated liquid at point
      1 in kJ/kgK
24 sg=7.5055; //Entropy of the Saturated vapour at point
      1 in kJ/kgK
25 x2=(s1-sf)/sg;//The quality of the steam
26 h2=191.46+(x2*2393.29); // Enthalpy at point 2 in kJ/
27 h3=191.46; //Enthalpy at point 3 in kJ/kg
28 h5=675.5; //Enthalpy at point 5 in kJ/kg
29 ws=(W*1000)/(h1-h2);//Mass flow rate of steam in kg/
```

```
30 wf = (ws*(h1-h5))/(nb*CV*1000); //Mass flow rate of
      fuel in kg/s
31 E=ws/wf; // Evaporation factor
32 vf=0.0014523; //The specific volume of saturated
      liquid in m<sup>3</sup>/kg
33 vg=0.0165884; //The specific volume of saturated
      vapour in m<sup>3</sup>/kg
34 vt=vf+(xt*vg); //Specific volume at the top in m^3/kg
35 pt=1/vt; // Density of the steam at the top in kg/m<sup>3</sup>
36 pf=1/vf; //The density of the steam in kg/m^3
37 pm=(pf+pt)/2;//The average mixture density in kg/m<sup>3</sup>
38 H1=[g*H*(pf-pm)]/10^5; // Pressure head available for
      natural circulation in bar
39 CR=1/xt; // Circulation ratio
40 di=(Do-(2*T))/1000;//The inner diameter of the riser
        in m
41 A=(pi*di^2)/4;//Area for the inner diameter in m^2
42 w=(A*pt*v*xt); //The rate of steam formation in the
      riser in kg/s
43 Nr=ceil(ws)/w;//The number of risers
44 hfg=1319.8; //Enthalpy of the evaporation in kJ/kg
45 Ha=(w*hfg)/((Do/1000)*H);//Heat absorption rate per
      unit projected area of the riser in kW/m<sup>2</sup>
46
47 // Output
48 printf('(a)The steam generation rate = \%3.3 \,\mathrm{f} \,\mathrm{kg/s} \,\mathrm{n}
        (b) The fuel burning rate = \%3.3 \,\mathrm{f} \,\mathrm{kg/s} \,\mathrm{n} (c)
      The evaporation factor = \%3.2 \,\mathrm{f} \, \ln \,(\mathrm{d}) The
      pressure head available for natural circulation =
       \%3.4 \,\mathrm{f} bar \n (e) The circulation ratio = \%3.1 \,\mathrm{f} \
      n (f) The number of risers required = \%3.0 \,\mathrm{f} \, \mathrm{n} (g)
       The heat absorbtion rate per unit projected area
        of the riser = \%3.2 \text{ f kW/m}^2, ws, wf, E, H1, CR, Nr, Ha
      )
```

Scilab code Exa 6.5 Blowdown

```
1
2 clc
3 clear
4 //Input data
5 ws=64; //The steam flow rate in kg/s
6 p=60; //The pressure at which steam leaves the boiler
       in bar
7 m=0.02; // Moisture contant in the steam
8 wf=62; //The feedwater flow rate in kg/s
9 Pf=3; //concentration of feedwater in ppm
10 wm=2; //The flow rate of makeup water
11 Pm=50; //concentration of makeup water in ppm
12 Ps=5; //Leaving the drum water in ppm
13 Pw=1000; //The concentration in the drum water in ppm
14 mf=7; //The fuel burning rate in kg/m
15 CV=23; //The heating value in MJ/kg
16 ta=30; //The room temperature in degree centigrade
17 hf=1213.35; //Enthalpy of saturated liquid at 60 bar
      in kJ/kg
18 ha=125.79; //Enthalpy at ambient temperature in kJ/kg
19
20 // Calculations
21 BD=[(wf*Pf)+(wm*Pm)-(m*ws*Ps)]/1000;//The rate of
      blowdown in kg/s
22 E = [(BD*(hf-ha))/(mf*CV*1000)]*100; //The energy loss
      in blowdown in percentage
23 S=m*ws*Ps*10^-6*3600*24; //Scale deposition in
      superheater tubes
24
25 // Output
26 printf('(a) The blowdown required = \%3.4 \,\mathrm{f} \,\mathrm{kg/s} \,\mathrm{n} (b)
       Heat loss in blowdown as a percentage of total
```

heat released in the furnace = %3.2f percentage \n (c) The deposition of scale in superheater tube = %3.3f kg/day ',BD,E,S)

Scilab code Exa 6.6 Number of coils needed

```
1
2 clc
3 clear
4 //Input data
5 ws=600; //Mass flow rate of feedwater in kg/s
6 p=140; //The inlet pressure of the feedwater in bar
7 t=170; //The inlet temperature of the feedwater in
     degree centigrade
8 wg=1250; //The mass flow rate of flue gases in kg/s
9 tg2=450; //The temperature at which flue gases leave
     the economisers coils in degree centigrade
10 Vf=12; //The velocity of the flue gas in m/s
11 Vw=1.2; //The velocity of the water leaving the coil
     in m/s
12 Do=0.07; //The outer diameter of the tube in m
13 Di=0.06; //The inner diameter of the tube in m
14 U=70; //The overall heat transfer coefficient in W/m
15 Cp=1.12; //The specific heat capacity of the flue
      gases in kJ/kgK
16 V=0.08; //The vertical pitch of the coil in m
17 B=4.8; //The width of the duct in m
18 C=0.005; //The clearence on the both sides of the
     duct in m
19 pi=3.142; // Mathematical constant
20
21 // Calculations
22 hf=1571.1; //The enthalpy of the saturated liquid at
     140 bar in kJ/Kg
```

```
23 ts=336.75; //The saturated temperature at 140 bar in
      degree centigrade
24 vf=0.001611;//The specific volume of the saturated
      liquid at 140 bar in m<sup>3</sup>/kg
  hf1=719.21; //The enthalpy of the saturated liquid at
       170 degree C in kJ/kg
  vf1=0.001114; //The specific volume of the saturated
      liquid at 170 degree C in m<sup>3</sup>/kg
27 tg1=[(ws*(hf-hf1))/(wg*Cp)]+tg2;//The temperature at
       which flue gases enters the economisers coils in
       degree centigrade
28 \text{ t1m} = (478.25-280)/(\log(478.25/280)); //\text{The mean}
      temperature for inlet and exit temperature in
      degree centigrade
29 Q=ws*(hf-hf1);//The rate of heat transfer in the
      economiser in kW
30 Ao=[Q/(U*t1m)]*10^3; //The outer area in m^2
31 n = [(ws*(vf/Vw)*(4/pi)*(1/Di^2))]; //The number of
      coils needed in the economiser
32 l=Ao/(n*pi*Do);//The length of one coil in m
33 nt=1/(B-(2*C)); //The number of turns in on ecoil
34 VH=nt*V; //The vertical height of the duct occupied
      by the economiser coils
35
36 //Output
37 printf('(a) The number of coils needed in the
      economiser = \%3.0 \,\mathrm{f} \, \ln \,(b) The length of one coil
      = \%3.1 \,\mathrm{f} \,\mathrm{m} \,\mathrm{n} \,\mathrm{(c)} The verticle height of the duct
      occupied by the economiser coils = \%3.2 \,\mathrm{f} m ',n,1,
      VH)
```

Scilab code Exa 6.7 Number of tubes and the length

```
1 2 clc
```

```
3 clear
4 //Input data
5 tg2=160; //The temperature to which the flue gases
      are cooled in degree centigrade
6 ta1=35; //The ambient temperature of the air in
      degree centigrade
7 wa=1167; //The mass flow rate of air in kg/s
8 Vg=13; //The inlet velocity of the flue gases in m/s
9 U=30; //The overall heat transfer coefficient in W/m
10 Cpg=1.10; //The specific heat of the flue gas in kJ/
     kgK
11 Cpa=1.005; //The specific heat of the air in kJ/kgK
12 R=0.287; //Real gas constant in kJ/kgK
13 wg=1250; //The mass flow rate of gas in kg/s
14 tg1=450; //The temperature at the inlet of flue gas
     in degree centigrade
15 P=101.325; // Atmospheric temperature in kPa
16 pi=3.1414; // Mathematical constant
17 Di=0.06; //The inner diameter of the tube in m
18 Do=0.065; //The outer diameter of the tube in m
19
20 // Calculations
21 vg1=(R*(273+tg1))/P;//Specific volume of the gas in
     m^3/kg
22 ta2 = [(wg*Cpg*(tg1-tg2))/(wa*Cpa)]+ta1;//The
     temperature of the heated air in degree
     centigrade
  t1m = (75-125)/log(75/125); //The mean temperature of
     the inlet and exit temperature in degree
     centigrade
24 Q=wg*Cpg*(tg1-tg2); //The rate of heat transfer in
     the economiser in kW
25 Ao=[Q/(U*t1m)]*10^3;//The outer area in m^2
26 n = [(wg*(vg1/Vg)*(4/pi)*(1/Di^2))]; //The number of
      coils needed in the economiser
27 l=Ao/(n*pi*Do);//The length of one coil in m
28
```

```
29 //Output 30 printf('(a)The length of the tubes = \%3.2 \text{ fm/n} (b) The number of tubes = \%3.0 \text{ f} ',1,n)
```

Scilab code Exa 6.8 Number of coils needed

```
1
2 clc
3 clear
4 //Input data
5 di=0.05; // The inner diameter of the superheater coil
6 T=0.005; //The thickness of the coil in m
7 p=60; //The pressure of the steam at the exit in bar
8 t=500; //The temperature of the steam at the exit in
      degree centigrade
9 V2=10; //The velocity of the steam at the exit in m/s
10 ws=80; //The mass flow rate of steam in kg/s
11 H=140; //The heat flux in the super heated coils in
     kW/m^2
12 pi=3.142; // Mathematical constant
13 Do=0.06; //The outer diameter of the tube in m
14
15 // Calculations
16 h1=2784.3; //The enthalpy of the saturated gas at 60
     bar in kJ/kg
17 h2=3422.2;//The enthalpy of the saturated gas at 500
       degreeC in kJ/kg
18 v2=0.05665; //The specific volume of gas at 500
      degreeC in m<sup>3</sup>/kg
19 Q=ws*(h2-h1);//Heat absorption rate in superheater
      coil in kW
20 Ao=Q/H; // Surface area required in m<sup>2</sup>
21 n = [(ws*(v2/V2)*(4/pi)*(1/di^2))]; //The number of
      coils needed in the economiser
```

Chapter 7

Steam Turbines

Scilab code Exa 7.1 Maximum area

```
1
2 clc
3 clear
4 //Input data
5 p1=10//Initial pressure in bar
6 T1=300+273//Initial temperature in K
7 p2=2//Final pressure in bar
8 m=1//Mass flow rate of steam in kg/s
9
10 // Calculations
11 px=(0.546*p1)//Critical pressure in bar
12 ho=3052.2//Enthalpy in kJ/kg
13 so=7.1229//\rm Entropy in \rm kJ/kg.K
14 sx=so//Entropy in kJ/kg.K
15 hx = 2905.9 // Enthalpy in kJ/kg
16 vx=0.4125//Specific volume in m^3/kg
17 Vx = (44.72 * sqrt(ho-hx)) // Critical velocity in m/s
18 Ax = (vx/Vx) *10^4//Minimum area of the nozzle in sq.cm
19
20 //Output
21 printf ('Minimum area of the nozzles is %3.3f sq.cm',
```

Scilab code Exa 7.2 Minimum area

```
1
2 clc
3 clear
4 //Input data
5 p1=10//Initial pressure in bar
6 T1=300+273//Initial temperature in K
7 p2=1//Final pressure in bar
8 x=0.15//Friction loss of the isentropic enthalpy
      drop
9 ms=1//Steam flow rate in kg/s
10 d=25//Exit diameter of the nozzles in mm
11
12 // Calculations
13 px=(0.546*p1)//Critical pressure in bar
14 h1=3052.2//Enthalpy in kJ/kg
15 s1=7.1276//Entropy in kJ/kg
16 s2s=s1//Entropy in kJ/kg
17 h2s=2916.2//Enthalpy in kJ/kg
18 Vx = (44.72*sqrt(h1-h2s)) // Critical velocity in m/s
19 h3s=2605//Enthalpy in kJ/kg
20 V1 = (44.72 * sqrt ((h1-h2s) + (0.85 * (h2s-h3s)))) / Velocity
       in m/s
21 s3s=s1//Entropy in kJ/kg
22 \text{ x3s} = (\text{s3s} - 1.3025) / 6.0579 / Dryness fraction
23 h3s = (417.46 + (x3s * 2258.01)) / Enthalpy in kJ/kg
24 h2s3 = ((1-x)*(h2s-h3s)) / Enthalpy in kJ/kg
25 h3=h2s-h2s3//Enthalpy in kJ/kg
26 \text{ x3} = (\text{h3} - 417.46) / 2258.01 / Dryness fraction
27 \text{ v3} = (0.001043 + (x3*1.694)) // \text{Specific volume in m}^3/\text{kg}
28 v2s=0.416//Specific volume in m^3/kg
29 vx=v2s//Specific volume in m^3/kg
```

Scilab code Exa 7.3 Throat and exit area

```
1
2 clc
3 clear
4 //Input data
5 p1=7.8//Pressure in bar
6 t1=180+273//Temperature in K
7 p2=1.03//pressure in bar
8 m=3.6/flow rate of air in kg/s
9 g=1.4//Ratio of specific heats
10 R=287 // Characteristic gas constant in J/kg.K
11 cp=1.005//Specific heat in kJ/kg.K
12
13 // Calculations
14 pxpo=(2/(g+1))^(g/(g-1))/Ratio of pressure
15 px=pxpo*p1//Critical pressure in bar
16 txto=(2/(g+1))//Ratio of temperatures
17 tx=t1*txto//Critical temperature in K
18 vx=(R*tx)/(px*10^5)//Critical specific volume in m
      ^3/kg
19 Vx=sqrt(g*R*tx)//Critical velocity in m/s
20 Ax=((m*vx)/Vx)*10^6//Critical area in mm^2
21 tot1=(p1/p2)^((g-1)/g)/Ratio of temperatures
22 t1i=t1/tot1//Temperature in K
23 v1=(R*t1i)/(p2*10^5)//Specific volume in m^3/kg
V1=44.72*sqrt(cp*(t1-t1i))/Velocity in m/s
```

```
25 A1=((m*v1)/V1)*10^6//Area in mm^2
26
27 //Output
28 printf('Area of throat is %3.0 f mm^2 \n Exit area is %i mm^2', Ax, A1)
```

Scilab code Exa 7.4 Throat and exit area

```
1
2 clc
3 clear
4 //Input data
5 p1=3.8//pressure in bar
6 T1=450+273//Tempereture in K
7 p2=1//pressure in bar
8 \text{ m=16//Flow rate in kg/s}
9 Cd=0.98//coefficient of discharge
10 nv=0.93//nozzile effeciency
11 cp=1.11//Specific heat in kJ/kg.K
12 g=1.333//Ratio of specific heats
13
14 // Calculations
15 pxpo = (2/(g+1))^{(g/(g-1))} / Pressure ratio
16 px=pxpo*p1//Critical pressure in bar
17 TxTo=2/(g+1)//Temperature ratio
18 Tx=T1*TxTo//Critical temperature in K
19 Vx=44.72*sqrt(cp*(T1-Tx))//critical velocity in m/s
20 R=(cp*(g-1)*1000)/g//Characteristic gas constant in
     J/kg.K
  vx=(R*Tx)/(px*10^5)//Critical specific volume in m
      ^3/\mathrm{kg}
22 ws=(m/Cd)//Mass flow rate in kg/s
23 Ax = (ws * vx) / Vx / / Critical area in m^2
24 T1sTo=(p2/p1)^{(g-1)/g}/Temperature ratio
25 T1s=T1*T1sTo//Temperature in K
```

```
26  T1i=(T1-(nv*(T1-T1s)))//Temperature in K
27  v1=(R*T1i)/(p2*10^5)//Specific volume in m^3/kg
28  V1=44.72*sqrt(cp*(T1-T1i))//Velocity in m/s
29  A1=(ws*v1)/V1//Area in m^2
30
31  //Output
32  printf('Throat raea is %3.4 f m^2 \n Exit arae is %3 .4 f m^2', Ax, A1)
```

Scilab code Exa 7.5 Throat and exit area

```
1
2 clc
3 clear
4 //Input data
5 p1=20//pressure in bar
6 \text{ T1}=300+273//\text{Tempereture in K}
7 p2=3//pressure in bar
8 \text{ m=0.3//Flow rate in kg/s}
9 n=1.3//Adiabatic constant
10 Cd=0.98//Coefficient of discharge
11 Cv=0.92//Coefficient of velocity
12
13 // Calculations
14 vo=0.1255//Specific volume in m^3/kg
15 px=(0.546*p1)//Critical pressure in bar
16 vx=(p1/px)^(1/n)*vo//Critical specific volume in m
17 Vx=sqrt(n*px*10^5*vx)//Critical velocity in m/s
18 Ax = ((m*vx)/Vx)*10^6//Critical area in m^2
19 v1vo = (p1/p2)^(1/n) / Ratio of specific volumes
20 v1=(vo*v1vo)//Specific volume in m^3/kg
21 V1 = sqrt(2*((n/(n-1))*10^5*((p1*vo)-(p2*v1)))) / 
      Velocity in m/s
22 A1=((m*v1)/V1)*10^6/Area in mm^2
```

```
23 ho=3050//Enthalpy in kJ/kg
24 hx = 2920 / Enthalpy in kJ/kg
25 h1s=2650//Enthalpy in kJ/kg
26 ws=(m/Cd)//Flow rate in kg/s
27 Vsx=44.72*sqrt(ho-hx)//Velocity in m/s
28 V1s=44.72*sqrt(ho-h1s)/Velocity in m/s
29 Vo1=(V1s*Cv)//Velocity in m/s
30 hoh1=(V1/44.72)^2/Change in enthalpy in kJ/kg
31 h1=ho-hoh1//Enthalpy in kJ/kg
32 \text{ x1=(h1-561.47)/2163.8//Dryness fraction}
33 vo1=(0.001073+(x1*0.6047))/Specific volume in m<sup>3</sup>/
      kg
34 Ao1=((ws*vo1)/Vo1)*10^6//Exit nozzle area in mm^2
35 Vox=(Vsx*Cv)//Velocity in m/s
36 hohx=(Vox/44.72)^2/Change in enthalpy in kJ/kg
37 hox=(ho-hohx)//Enthalpy in kJ/kg
38 vox=0.22//Specific volume in m^3/kg
39 Aox=((ws*vox)/Vox)*10^6//Critical area in m^2
40
41 // Output
42 printf('(a) Area of throat is \%3.1 f mm^2 \n Exit
      area is %3.1 f mm<sup>2</sup> \n\n (b) Area of throat is %3
      .1 \text{ f mm}^2 \text{ } \text{ } \text{Exit area is } \%3.1 \text{ f mm}^2 \text{'}, \text{Ax, A1, Aox,}
      Ao1)
43 //In textbook, Aol is given wrong.
```

Scilab code Exa 7.6 Mass flow rate

```
1
2 clc
3 clear
4 //Input data
5 p1=5//Pressure of steam in bar
6 V=100//Velocity in m/s
7 p2=1.5//Exit pressure in bar
```

```
8 At=1280//Throat area in mm<sup>2</sup>
9 Ae=1600//Exit area in mm^2
10 rp=0.58//Critical pressure ratio
11
12 // Calculations
13 ho=2749//Enthalpy in kJ/kg
14 so=6.822//Entropy in kJ/kg.K
15 px=(rp*p1)//Critical pressure in bar
16 sx=so//Entropy in kJ/kg.K
17 xx = (sx - 1.660) / 5.344 / Dryness fraction
18 hx = (556 + (xx*2168)) / Enthalpy in kJ/kg
19 Vx = sqrt(((ho + ((V^2*10^-3))/2) - hx)*(2/10^-3))//
      Velocity in m/s
20 vx=(xx*0.6253) // Specific volume in m<sup>3</sup>/kg
21 w=(At*10^-6*Vx)/vx//Mass flow rate in kg/s
22 s1s=sx//Entropy in kJ/kg.K
23 x1s = (so - 1.434) / 5.789 / Dryness fraction
24 h1s=(467+x1s*2226)//ENthalpy in kJ/kg
25 z=((Vx^2*10^-3)/2)-hx//z value
26 //By iteratio scheme
27 \text{ x1=0.932//Dryness fraction}
28 v1=1.080//Specific volume in m^3/kg
29 h1=2542//Enthalpy in kJ/kg
30 V1=652.2//Velocity in m/s
31 nn=((hx-h1)/(hx-h1s))/Nozzle efficiency
32
33 //Output
34 printf ('Mass flow rate is \%3.3 f kg/s \n Nozzle
      efficiency is %3.3 f', w, nn)
```

Scilab code Exa 7.7 Exit area

```
1
2 clc
3 clear
```

```
4 //Input data
5 p1=5//Pressure in bar
6 T1 = 200 + 273 / Temperature in K
7 p2=2//Pressure in bar
8 m=0.3//Mass flow rate in kg/s
9 n=1.3//Adiabatic index
10
11 // Calculations
12 vo=0.4249 // Specific volume in m<sup>3</sup>/kg
13 ho=2855.4//Enthalpy in kJ/kg
14 so=7.0592//Entropy in kJ/kg.K
15 \text{ x} 1 = 0.972 // \text{Dryness fraction}
16 h1=(504.7+x1*2201.9) // Enthalpy in kJ/kg
17 v1=x1*0.8857//Specific volume in m^3/kg
18 V1=44.72*sqrt(ho-h1)/Velocity in m/s
19 A1=((m*v1)/V1)*10^6/Area in mm^2
20 rp=(p1/p2)^(1/n)//Specific volume ratio
21 vR=(vo*rp)//Specific volume in m^3/kg
22 \text{ VR} = \text{sqrt} (2*((n/(n-1))*(p1*vo-p2*vR)*10^5)) // \text{Velocity}
      in m/s
23 AR = ((m*vR)/VR)*10^6/Area in mm^2
24 TR=T1/(p1/p2)^((n-1)/n)//Temperature in K
25 tR=(TR-273)//Temperature in degree C
26 ts=120.23//Saturation temperature at pressure p1 in
      degree C
27 ds=ts-tR//Degree of subcooling in degree C
28 ps=1.4327//Saturation pressure at tR in bar
29 dsu=(p2/ps)//Degree of supersaturation
30
31 //Output
32 printf('(a) Exit area when the flow is in
      equilibrium throughout is \%3.0 f mm^2 \n (b) Exit
      area when the flow is supersaturated is \%3.1f mm
      ^2 \n (i) The degree of supercooling is \%3.2\,\mathrm{f}
      degree C \n (ii) The degree of supersaturation is
       \%3.3\,\mathrm{f} ', A1 , AR , ds , dsu)
```

Scilab code Exa 7.8 Exit area

```
1
2 clc
3 clear
4 //Input data
5 p1=5//Pressure in bar
6 T1=200//Temperature in degree C
7 p2=2//Pressure in bar
8 m=0.3//Mass flow rate in kg/s
9 n=1.3//Adiabatic index
10 nn=0.92//Nozzle efficiency
11 cp=1.925//mean specific heat in kJ/kg.K
12 x = [2.308, 1943] / pv * 10^3 = 2.308(h-1943)
13
14 // Calculations
15 vo=0.4249//Specific volume in m^3/kg
16 ho=2855.4//Enthalpy in kJ/kg
17 so=7.0592//Entropy in kJ/kg.K
18 \text{ x} 1 = 0.972 // \text{Dryness fraction}
19 h1 = (504.7 + x1 * 2201.9) // Enthalpy in kJ/kg
20 v1=x1*0.8857//Specific volume in m^3/kg
21 V1=44.72*sqrt(ho-h1)/Velocity in m/s
22 h=ho-h1//Change in enthalpy in kJ/kg
23 hog=nn*h//Change in enthalpy in kJ/kg
VQ=44.72*sqrt(hoq)/Velocity in m/s
25 toq=(hoq/cp)//Temperature difference in degree C
26 tQ=(T1-toq)//Temperature in degree C
27 TQ=tQ+273//Temperature in K
28 vQ = ((p1*100*vo)/(T1+273))*(TQ/T1)//Specific volume)
      in m<sup>3</sup>/kg
29 A1=((m*vQ)/VQ)*10^6/Area in mm^2
30 vQ = (x(1) * (ho - hoq - x(2))) / (10^3 * p2) / Specific volume
      in m<sup>3</sup>/kg
```

Scilab code Exa 7.9 Force Thrust and efficiency

```
1
2 clc
3 clear
4 //Input data
5 V1=1000//Speed in m/s
6 Vb=400//Peripheral velocity in m/s
7 a=20//Nozzle angle in degree
8 \text{ m=0.75//Mass flow in kg/s}
9 f=80//Percentage reduction of relative velocity
10
11 // Calculations
12 b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Blade
      angle in degree
13 V=342//Velocity from E7.9 in m/s
14 Vr1=V/sind(b1)//Velocity in m/s
15 dVw = (2*Vr1*cosd(b1)) / Velocity in m/s
16 Pt=(m*dVw)//Tangential thrust in N
17 WD=(Pt*Vb)/1000//Diagram power in kW
18 nD = (WD/(0.5*m*V1^2*10^-3))*100/Diagram efficiency
     in percent
19 Pa=0//Axial thrust in N
20 Vr2=(f/100)*Vr1//Velocity in m/s
21 Pa2=m*sind(b1)*(Vr1-Vr2)//Axial thrust in N
22 WD2=(m*(Vr1+Vr2)*cosd(b1)*Vb)/1000//Diagram power in
      kW
23 nD2 = (WD2/(0.5*m*V1^2*10^-3))*100/Diagram efficiency
      in percent
```

Scilab code Exa 7.10 Workdone and efficiency

```
1
2 clc
3 clear
4 //Input data
5 a=20//Nozzle angle in degrees
6 b2=30//Blade exit angle in degrees
7 Vb=130//Mean blade speed in m/s
8 V1=330//Velocity of steam in m/s
9 f=0.8//Friction factor
10 nn=0.85//Nozzle efficiency
11 p1=20 // Pressure in bar
12 T1=250+273//Temperature in K
13 p2=0.07//Pressure in bar
14 rf=1.06//Reheat factor
15
16 // Calculations
17 b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Blade
      angle in degrees
18 Vr1=((V1*sind(a))/sind(b1))/Velocity in m/s
19 Vr2=(f*Vr1)/Velocity in m/s
20 dVw = (Vr1 * cosd(b1)) + (Vr2 * cosd(b2)) / Vecoity in m/s
21 WD=(dVw*Vb)/1000//Workdone in kJ/kg
22 nb1 = ((2*dVw*Vb)/V1^2)*100//Efficiency in percent
```

```
23  nst=(nn*nb1) // Efficiency in percent
24  nin=(nst*rf)*100 // Efficiency in percent
25  h1=2902.3 // Enthalpy in kJ/kg
26  s1=6.5466 // Entropy in kJ/kg.K
27  x2s=(s1-0.5582) /7.7198 // Dryness fraction
28  h2s=(163.16+x2s*2409.54) // Enthalpy in kJ/kg
29  h12=(0.7041*(h1-h2s)) // Change in enthalpy in kJ/kg
30  n=ceil(h12/WD) // Number of stages
31
32  // Output
33  printf('(a) Work done in the stage per kg of steam
    is %3.2 f kJ/kg \n Stage efficiency is %3.1 f
    percent \n\n (b) Number of stages are %3.0 f', WD,
    nst,n)
```

Scilab code Exa 7.11 Power developed

```
1
2 clc
3 clear
4 //Input data
5 d=800//Diameter in mm
6 N=3000//Speed in rpm
7 V1=300//Velocity in m/s
8 a=20//Nozzle angle in degrees
9 f=0.86//Frictional factor
10 T=140//Axial thrust in N
11
12 // Calculations
13 Vb = ((3.14*(d/1000)*N)/60) / Velocity in m/s
14 b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Blade
     angle in degrees
15 b2=b1//Blade angle in degrees
16 Vr1=(V1*sind(a))/sind(b1)//Velocity in m/s
17 Vr2=f*Vr1//Velocity in m/s
```

Scilab code Exa 7.12 Thrust Power and efficiency

```
1
2 clc
3 clear
4 //Input data
5 p1=15//Pressure in bar
6 T1=300+273//Temperature in K
7 p2=10//Pressure in bar
8 \text{ nn=95//Nozzle efficiency in percent}
9 a=20//Nozzle angle in degrees
10 x=5//The blade exit angle is 5 degrees less than the
      inlet angle
11 f=0.9//Friction factor
12 m=1350//Steam flow rate in kg/h
13
14 // Calculations
15 h1=3038.9//Enthalpy in kJ/kg
16 s1=6.9224//Entropy in kJ/kg.K
17 s2=s1//Entropy in kJ/kg.K
18 t2s=250 // Temperature in degree C
19 h2s=2943.1//Enthalpy in kJ/kg
20 V1=44.72*sqrt((nn/100)*(h1-h2s))/Velocity in m/s
21 Vb=V1*(cosd(a)/2)/Velocity in m/s
22 \text{ b1=atand}((V1*sind(a))/((V1*cosd(a))-Vb))/Blade
      angle in degrees
```

```
23 b2=b1-x//Blade angle in degrees
24 Vr1=((V1*sind(a))/sind(b1))/Velocity in m/s
25 Vr2=(f*Vr1)/Velocity in m/s
26 dVw = (Vr1 * cosd(b1)) + (Vr2 * cosd(b2)) / Velocity in m/s
27 dVa=(Vr1*sind(b1))-(Vr2*sind(b2))/Velocity in m/s
28 Pa=(m/3600)*dVa//Axial thrust in N
29 Pt=(m/3600)*dVw//Tangential thrust in N
30 WD=(Pt*Vb*10^-3)//Diagram Power in kW
dn = ((WD*1000)/((1/2)*(m/3600)*V1^2))*100//Diagram
      efficiency in percent
32
33 //Output
34 printf('(a) Axial thrust is %3.2 f N \n Tangential
      thrust is %3.2 f N \n\n (b) Diagram Power is %3.3 f
      kW \n\n (c) Diagram Efficiency is \%3.1f percent'
      ,Pa,Pt,WD,dn)
```

Scilab code Exa 7.13 Thrust Power and efficiency

```
1
2 clc
3 clear
4 //Input data
5 V1=600//Velocity in m/s
6 a=16//Nozzle angle in degrees
7 Vb=120//Mean blade angle in degrees
8 b2=18//Exit angle in degrees
9 aa1=22//Exit angle in degrees
10 b4=36 // Exit angle in degrees
11 m=5//Steam flow rate in kg/s
12 f=0.85//Friction coefficient
13
14 // Calculations
15 b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Exit angle
       in degrees
```

```
16 Vr1=((V1*sind(a))/sind(b1))/Velocity in m/s
17 Vr2=(f*Vr1)/Velocity in m/s
18 a1=atand((Vr2*sind(b2))/((Vr2*cosd(b2))-Vb))//Angle
      in degrees
19 V2=((Vr2*sind(b2))/sind(a1))/(Velocity in m/s)
20 V3=(f*V2)/Velocity in m/s
21 dVw1 = (Vr1 * cosd(b1)) + (Vr2 * cosd(b2)) / Velocity in m/s
22 dVa1 = (V1*sind(a)) - (V2*sind(a1)) / Velocity in m/s
23 b3=atand((V3*sind(aa1))/((V3*cosd(aa1))-Vb))//Angle
      in degrees
Vr3=((V3*sind(aa1))/sind(b3))/Velocity in m/s
25 Vr4=(f*Vr3)//velocity in m/s
dVw2 = (Vr3*cosd(b3)) + (Vr4*cosd(b4)) / Velocity in m/s
27 \text{ dVa2} = (\text{V3} * \text{sind(aa1)}) - (\text{Vr4} * \text{sind(b4)}) / / \text{Velocity in m/s}
28 udVw=(dVw1+dVw2)//Total velocity in m/s
29 udVa=(dVa1+dVa2)//Total velocity in m/s
30 Pt=(m*udVw*10^-3)/tangential thrust in kN
31 Pa=(m*udVa*10^-3)//Axial thrust in kN
32 WD=(Pt*Vb)//Power developed in kW
33 nd=((2*udVw*Vb)/V1^2)*100/Diagram efficiency in
      percent
34
35 //Output
36 printf('(a) the tangential thrust is \%3.3 \text{ f kW} \setminus \text{n (b)}
       Axial thrust is \%3.2 f kN \n (c) Power developed
      is %3.2 f kW \n (d) Diagram efficiency is %3.2 f
      percent', Pt, Pa, WD, nd)
```

Scilab code Exa 7.14 Workdone and efficiency

```
1
2 clc
3 clear
4 //Input data
5 a=17//Nozzle angle in degrees
```

```
6 Vb=125//Blade velocity in m/s
7 b2=22//Blade angle n degrees
8 a1=26//Blade angle n degrees
9 b4=30//Blade angle n degrees
10 f=0.9//Friction factor
11 a2=90//Axial angle in degrees
12
13 // Calculations
14 dVw=1040//Velocity in m/s from Velocity triangles
     Fig. E.7.14
15 V1=575//Velocity in m/s from Velocity triangles Fig.
      E.7.14
16 V4=75 // Velocity of steam exiting stage in m/s from
      Velocity triangles Fig. E.7.14
17 WD=(dVw*Vb)/1000//Diagram work in kJ/kg
18 nd=((WD*1000)/((1/2)*V1^2))*100//Diagram efficiency
     in percent
19
20 //Output
21 printf('(a) Absolute velocity of steam leaving the
      stage is %3.0 f m/s \n (b) the diagram work is %3
      .0 f kJ/kg \ n (c) the diagram efficiency is \%3.2 f
     percent', V4, WD, nd)
```

Scilab code Exa 7.15 Power output and efficiency

```
1
2 clc
3 clear
4 //Input data
5 p1=35//Pressure in bar
6 T1=350+273//Temperature in K
7 p2=0.07//Pressure in bar
8 x=1/4//Fraction of drop in isentropic enthalpy
9 a=20//Nozzle angle in degrees
```

```
10 nn=88//Nozzle efficiency in percent
11 y=0.2//Velocity ratio
12 b2=30//Exit blade angle in degrees
13 b4=30//Exit blade angle in degrees
14 f=0.9//Friction coefficienct
15 in=75//Internal efficiency of the turbine in percent
16
17 // Calculations
18 h1=3106.4//Enthalpy in kJ/kg
19 s1=6.6643//Entropy in kJ/kg.K
20 x2s = (s1 - 0.5582) / 7.7198 / dryness fraction
21 h2s = (163.16 + x2s * 2409.54) / Enthalpy in kJ/kg
22 dh=(h1-h2s)//Change in enthalpy in kJ/kg
23 h13s=x*dh//Change in enthalpy in kJ/kg
24 h13=(nn/100)*h13s//Change in enthalpy in kJ/kg
25 V1=(44.72*sqrt(h13))/Velocity in m/s
26 Vb = (y*V1) / Velocity in m/s
27 b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Angle in
      degrees
28 Vr1=((V1*sind(a))/sind(b1))/Velocity in m/s
29 Vr2=(f*Vr1)//Velocity in m/s
30 dVw1 = (Vr1 * cosd(b1)) + (Vr2 * cosd(b2)) / Velocity in m/s
31 V2=sqrt((Vr2*sind(b2))^2+((Vr2*cosd(b2))-Vb)^2)/
      Velocity in m/s
32 \text{ V3=f*V2//Velocity in m/s}
33 b3=atand((V3*sind(b2))/((V3*cosd(b2))-Vb))//Angle in
       degrees
34 \text{ Vr3}=((\text{V3}*\text{sind}(\text{b2}))/\text{sind}(\text{b3}))/\text{Velocity in m/s}
35 \text{ Vr4=f*Vr3//Velocity in m/s}
36 \text{ dVw2} = (\text{Vr3} * \text{cosd(b3)}) + (\text{Vr4} * \text{cosd(b4)}) / / \text{Velocity in m/s}
37 \text{ dVw} = (\text{dVw1} + \text{dVw2}) // \text{Velocity in m/s}
38 nb1 = ((2*dVw*Vb)/V1^2)*100//Efficiency in percent
39 ns=(nn*nb1)/100//Efficiency in percent
40 ht=(in/100)*dh//Total change in enthalpy in kJ/kg
41 hc=(ns/100)*h13s//Total change in enthalpy in kJ/kg
42 pp=(hc/ht)*100//Percentage of enthalpy
43
44 // Output
```

```
45 printf('Efficiency of first stage is %3.2f percent \
n Percentage of the total power developed by the turbine is %3.2f percent',ns,pp)
```

Scilab code Exa 7.16 Power developed

```
1
2 clc
3 clear
4 //Input data
5 R=50//Percentage of reaction
6 b1=35//Angle in degrees
7 q=b1//Angle in degrees
8 b2=20//Angle in degrees
9 a=b2//Angle in degrees
10 N=1500/Speed in rpm
11 d=0.67//Mean diameter in m
12 p=1.5//Pressure in bar
13 x=0.96//Dryness fraction
14 w=3.6//Flow rate in kg/s
15
16 // Calculations
17 Vb = (3.14*d*N)/60//Velocity in m/s
18 V1=(Vb*(sind(180-b1)/sind(b1-b2)))//Veocity in m/s
19 Vr1=(Vb*(sind(b2)/sind(b1-b2)))/(Velocity in m/s)
20 dVw = (V1 * cosd(a)) + (Vr1 * cosd(q)) / Velocity in m/s
21 v1=(0.001052+x*1.15937) // Specific volume in m^3/kg
22 hb=((w*v1)/(3.14*d*V1*sind(a)))*1000//Required
      height in mm
23 P=(w*dVw*Vb)/1000//Power developed in kW
24
25 // Output
26 printf('(a) the required height of blading is \%3.1 f
     mm \n (b) the power developed by the ring is \%3.3
     f kW', hb, P)
```

Scilab code Exa 7.17 Power developed

```
1
2 clc
3 clear
4 //Input data
5 N=400//Speed in rpm
6 \text{ P=5//Power in MW}
7 m=6//Flow rate in kg/kWh
8 b2=20//Blade angle in degrees
9 a=b2//Angle in degrees
10 x=1.35//Velocity ratio
11 p=1.2//Pressure in bar
12 \times 1 = 0.95 / Steam quality
13 Dh=12//Ratio of Dm and hb
14
15 // Calculations
16 w = (m*P*1000)/3600//Mass flow rate in kg/s
17 v1=(0.0010468+x1*1.454) // Specific volume in m<sup>3</sup>/kg
18 hb = ((w*v1)/(Dh*3.14*x*((Dh*N)/60)*3.14*sind(a)))
      ^(1/3) *1000 // Blade height in mm
19 Vb = ((3.14*Dh*(hb/1000)*N)/60) / velocity in m/s
20 V1 = (x*Vb) / Velocity in m/s
21 dVw = ((2*V1*cosd(a))-Vb)/velocity in m/s
22 WD=(w*dVw*Vb*10^-3)//Diagram power in kW
23
24 // Output
25 printf('(a) Blade height is \%3.0 \,\mathrm{f} \,\mathrm{mm} \,\mathrm{n} \,\mathrm{(b)} the
      diagram power is %3.2 f kW', hb, WD)
```

Scilab code Exa 7.18 Diagram power

```
1
2 clc
3 clear
4 //Input data
5 N=3000//Speed in rpm
6 Vb=100//Mean blade speed in m/s
7 \text{ x=0.56//Velocity ratio}
8 a=20//Blade angle in degrees
9 b2=a//Blade angle in degrees
10 v=0.65//Specific volume in m^3/kg
11 h=25//Mean height in mm
12 n=5//Number of pairs of blades
13
14 // Calculations
15 V1 = (Vb/x) / Velocity in m/s
16 Vr2=V1//Velocity in m/s
17 Dm = (Vb*60) / (3.14*N) / Diameter in m
18 w = ((3.14*Dm*h*V1*sind(a))/v)/1000/Mass flow rate in
       kg/s
19 ws = (w*3600) //Mass flow rate in kg/hr
20 b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Blade
      angle in degrees
21 Vr1=((V1*sind(a))/sind(b1))/Velocity in m/s
22 dhmb = (1/2)*(Vr2^2-Vr1^2)/1000//Change in enthalpy in
       kJ/kg
23 dsta=(2*dhmb)//Change in enthalpy of stage in kJ/kg
24 dsta5=(n*dsta)//Total Change in enthalpy of stage in
       kJ/kg
25 Dp=(w*dsta5)//Diagram power in kW
26
27 //Output
28 printf ('Mass flow rate of steam is \%3.3 f kg/s \n
      Useful enthalpy drop is \%3.2 f kJ/kg \n The
      diagram power is %3.1 f kW', w, dsta5, Dp)
```

Scilab code Exa 7.19 Number of impulse stages

```
1
2 clc
3 clear
4 //Input data
5 \text{ P=8//Power in MW}
6 N=5000//Speed in rpm
7 p=40//pressure in bar
8 T=500//Temperature in degree C
9 p2=0.1//Pressure in bar
10 in=0.85//Internal efficiency of turbine
11 nm=0.96//Mechanical efficiency
12 nn=0.92//Nozzle efficiency
13 a=15//Nozzle angle in degrees
14 Vb=300//Blade velocity in m/s
15
16 // Calculations
17 V1 = (2*Vb)/cosd(a)//Velocity in m/s
18 dh=((V1/44.72)^2/nn)//Change in enthalpy in kJ/kg
19 h1=3445.3//Enthalpy in kJ/kg
20 s1=7.0901//Entropy in kJ/kg.K
21 s2=s1//Entropy in kJ/kg.K
22 \text{ x2=(s2-0.6493)}/7.5009//Dryness fraction}
23 h2s=(191.83+x2*2392.8)/\frac{\text{Enthalpy in kJ/kg}}{\text{Enthalpy in kJ/kg}}
24 h12s=(h1-h2s)//Change in enthalpy in kJ/kg
25 n=(h12s/dh)//Number of stages
26 w=((P*1000)/(in*nm))/h12s//Mass flow rate in kg/s
27 h13=(nn*dh)//Change in enthalpy in kJ/kg
28 h3=h1-h13//Enthalpy in kJ/kg
29 v3=0.17//Specific volume in m^3/kg
30 A = (w * v3) / V1 / Area in m^2
31 hm=(A/(((Vb*60)/N)*sind(a)))*1000//Height in mm
32
33 //Output
34 printf('(a) the number of impulse stages are\%3.0 \,\mathrm{f} \, \backslash \mathrm{n}
       (b) the nozzle height is %3.1 f mm', n, hm)
```

Scilab code Exa 7.20 Height of blades

```
1
2 clc
3 clear
4 //Input data
5 p=1.5//Pressure in bar
6 x1=0.9//Dryness fraction
7 m=7//Steam flow rate in kg/s
8 N=3000//Turbine speed in rpm
9 x=0.7//Velocity ratio
10 y=0.75//Velocity ratio
11 a=20//Exit angle in degrees
12 b2=a//Angle in degrees
13 hx=1/10//Fraction of height
14
15 // Calculations
16 v=0.001052+x1*1.15937//Specific volume in m^3/kg
17 Dm = ((m*v*60)/(3.14*hx*y*3.14*N))^(1/3)/Diameter in
18 hb=Dm*1000*hx//Height in mm
19 Vb = (3.14*Dm*N)/60//Velocity in m/s
20 dVw = ((2*x*Vb*cosd(a)/sind(a))-Vb)//Velocity in m/s
21 P=(m*dVw*Vb)/1000//Power developed in kW
22
23 // Output
24 printf ('Height of the moving blades at exit is \%3.1 f
      mm \n Power developed in the blade row is \%3.2 f
     kW', hb, P)
```

Scilab code Exa 7.21 Mean diamter of wheel

```
1
2 clc
3 clear
4 //Input data
5 p=40//Pressure in bar
6 T=500//Temperature in degree C
7 p1=0.1//Pressure in bar
8 a=16//Nozzle angle in degrees
9 N=3000/Speed in rpm
10
11 // Calculations
12 h1=3445.3//Enthalpy in kJ/kg
13 s1=7.0901//Entropy in kJ/kg.K
14 s2=s1//Entropy in kJ/kg.K
15 x2s = (s2 - 0.6493) / 7.5009 / Dryness fraction
16 h2s = (191.83 + x2s * 2392.8) / Enthalpy in kJ/kg
17 V1 = 44.72 * sqrt(h1 - h2s) / Velocity in m/s
18 Vb=V1*(cosd(a)/2)/Velocity in m/s
19 Dm = (Vb*60) / (3.14*N) / Diameter in m
20 V2=44.72*sqrt((h1-h2s)/2)/Velocity in m/s
21 Vb2=V2*cosd(a)//Velocity in m/s
22 Dm2 = (Vb2*60)/(3.14*N)/Diameter in m
23 V3=44.72*sqrt((h1-h2s)/4)/Velocity in m/s
24 Vb3=V3*(cosd(a)/2)/Velocity in m/s
25 Dm3=(Vb3*60)/(3.14*N)//Diameter in m
26 V4 = 44.72 * sqrt(h1 - h2s) / Velocity in m/s
27 Vb4=V4*(cosd(a)/4)/Velocity in m/s
28 Dm4 = (Vb4*60)/(3.14*N)/Diameter in m
29 V5=44.72*sqrt((h1-h2s)/(2*4))/Velocity in m/s
30 Vb5=V5*cosd(a)//Velocity in m/s
31 Dm5 = (Vb5*60)/(3.14*N)/Diameter in m
32
33 //Output
34 printf('The mean diameter of the wheel if the
      turbine were of \n (a) single impulse stage is \%3
      .2 \text{ fm} \setminus n (b) single 50 percent reaction stage is
     %3.1 f m \n (c) four pressure (or Rateau) stages
      is %3.2 f m \n (d) one two-row Curtis stage is %3
```

```
.3 f m \n (e) four stage 50 percent reaction stages is \%3.2 f m', Dm, Dm2, Dm3, Dm4, Dm5)
```

Scilab code Exa 7.22 Number of stages

```
1
2 clc
3 clear
4 //Input data
5 p=150//Pressure in bar
6 T=600//Temperature in degree C
7 Vb=300//Velocity in m/s
8 nn=95//Nozzle efficiency in percent
9 a=15//Nozzle angle in degrees
10 a1=25//Angle in degrees
11
12 // Calculations
13 h1=3582.3/\frac{\text{Enthalpy in kJ/Kg}}{\text{Enthalpy in kJ/Kg}}
14 s1=6.6776//Entropy in kJ/kg.K
15 s2=s1//Entropy in kJ/kg.K
16 x2s = (s2 - 0.6493) / 7.5009 / Dryness fraction
17 h2s = (191.83 + x2s * 2392.8) / Enthalpy in kJ/kg
18 h12s=(h1-h2s)//Difference in enthalpy in kJ/kg
19 V1=(Vb*2)/cosd(a)//Velocity in m/s
20 dhs=(V1/44.72)^2/(nn/100)/Change in enthalpy in kJ/
      kg
21 n1=ceil(h12s/dhs)//Number of stages
22 V2 = (Vb/cosd(a1)) / Velocity in m/s
23 dhs2=(V2/44.72)^2/(nn/(2*100))/Change in enthalpy
      in kJ/kg
24 n2=h12s/dhs2//Number of stages
25 V3=(Vb*4)/cosd(a)//Velocity in m/s
26 dhs3=(V3/44.72)^2/(nn/100)//Change in enthalpy in kJ
27 dhhs3=(h12s-dhs3)//Change in enthalpy in kJ/kg
```

```
28 n3=dhhs3/dhs//Number of stages
29 n4=dhhs3/dhs2//Number of stages
30
31 //Output
32 printf('Number of stages required in \n (a) all
    simple impulse stages are %3.0 f \n (b) all 50
    percent reaction stages are %3.0 f \n (c) a 2-row
    Cutris stage follwed by simple impulse stages are
    %3.0 f \n (d) a 2-row Cutris stage followed by 50
    percent reaction stages are %3.0 f',n1,n2,n3,n4)
```

Scilab code Exa 7.23 Interstage pressures

```
1
2 clc
3 clear
4 //Input data
5 p1=20//Pressure in bar
6 T=400//Temperature in degree C
7 p2=0.1//Pressure in bar
8 n=4//Number of stages
9 ns=75//Stage efficiency in percent
10
11 // Calculations
12 h16s = (3250-2282) / Change in enthalpy in kJ/kg
13 h12s=(h16s/n)//Change in enthalpy in kJ/kg
14 p=[8,2.6,0.6]//pressures in bar from Mollier chart
15 h12=(ns/100)*h12s//Change in enthalpy in kJ/kg
16 h23s = (3060-2800) / Change in enthalpy in kJ/kg
17 h23=(ns/100)*h23s//Change in enthalpy in kJ/kg
18 h34s = (2870-2605) //Change in enthalpy in kJ/kg
19 h34=(ns/100)*h34s//Change in enthalpy in kJ/kg
20 h45s=(2680-2410) //Change in enthalpy in kJ/kg
21 h45=(ns/100)*h45s//Change in enthalpy in kJ/kg
22 h5=2470//Enthalpy in kJ/kg
```

```
23 rf=(h12s+h23s+h34s+h45s)/h16s//Reheat factor
24 nth=((h12+h23+h34+h45)/h16s)*100//Internal
    efficiency in percent
25 nin=(ns*rf)//Internal efficiency in percent
26
27 //Output
28 printf('The interstage pressures are %i bar, %3.1f
    bar, %3.1f bar \n The reheat factor is %3.3f \n
    The turbine internal efficiency is %3.1f percent'
    ,p(1),p(2),p(3),rf,nin)
```

Scilab code Exa 7.25 Mean blade diameter

```
1
2 clc
3 clear
4 //Input data
5 n=20//Number of stages
6 \text{ P=}12//\text{Power in MW}
7 p=15//Pressure in bar
8 T=350//Temperature in degree C
9 p1=0.14//Pressure in bar
10 ns=75//Stage efficiency in percent
11 rf=1.04//Reheat factor
12 p2=1//Pressure in bar
13 a=20//Angle in degrees
14 v=0.7//Velocity ratio
15 h=1/12//Blade height in terms of mean blade diameter
16
17 // Calculations
18 nint=(ns/100)*rf//Internal efficiency
19 dhs=855//Enthalpy in kJ/kg
20 dha=ceil(nint*dhs)//Actual enthalpy change in kJ/kg
21 w=(P*1000)/dha//Mass flow rate in kg/s
22 Vb = (sqrt((dha/n)/((((2/v)*cosd(a))-1)*10^-3)))//
```

```
Velocity in m/s//

vg=1.694//Specific volume in m^3/kg

Dm=sqrt((w*vg)/(3.14*h*(Vb/v)*sind(a)))//Diameter in m

N=((Vb*60)/(3.14*Dm))//Speed in rpm

//Output

rintf('(a) the flow rate of steam required is %3.2f kg/s \n (b) the mean blade diameter is %3.3f m \n (c) the speed of the rotor is %3.0f rpm',w,Dm,N)

//In textbook, Vb is given wrong as 141.4 m/s instead of 140.6 m/s. Hence the answers are different.
```

Scilab code Exa 7.26 Height of blades

```
1
2
3 clc
4 clear
5 //Input data
6 V1=600//Velocity in m/s
7 Vb=120//Mean blade velocity in m/s
8 a=16//Nozzle angle in degrees
9 b=[18,21,35]//Exit angles in degrees
10 m=5//Steam flow rate in kg/s
11 h=25//Nozzle height in mm
12 v=0.375//Specific volume in m^3/kg
13 p=25 // Pitch in mm
14 t=0.5//Thickness in mm
15 \text{ kb=0.9}/\text{Constant}
16
17 // Calculations
18 l = ((m*v)/(sind(a)*V1*(h/1000)*kb))/Length of the
```

```
nozzle arc in m //Length of the nozzle arc is
      calculated wrong as 0.454m instead of 0.5 m
19 b1= atand((V1*sind(a))/((V1*cosd(a))-Vb))//Angle in
     degrees
20 Vr1=((V1*sind(a))/sind(b1))/Velocity in m/s
21 Vr2=kb*Vr1//Velocity in m/s
22 V2=sqrt(Vr2^2+Vb^2-2*Vr2*Vb*cosd(b(1)))/Velocity in
      m/s
23 V3=291//Velocity in m/s
24 b3 = atand((V3*sind(b(2)))/((V3*cosd(b(2)))-Vb))//
     Angle in degrees
25 Vr3=((V3*sind(b(2)))/sind(b3))/Velocity in m/s
26 Vr4=(Vr3*kb)//Velocity in m/s
27 hb1 = ((m*v*(h/1000))/(1*((p/1000)*sind(b(1))-(t/1000))
     )*Vr2))*1000//Height in mm
  hn = ((m*v*(h/1000))/(1*((p/1000)*sind(b(2))-(t/1000))
     *V3))*1000//Height in mm
  hb2=((m*v*(h/1000))/(1*((h/1000)*sind(b(3))-(t/1000)
     )*Vr4))*1000//Height in mm
30
31 // Output
32 printf('Blade heights at the exit of each row: \n
      First row of moving blades is \%3.1 f mm \n Fixed
     row of guide blades is %3.1f mm \n Second row of
     moving blades is %3.1 f mm', hb1, hn, hb2)
```

Scilab code Exa 7.27 Intercasting steam condition

```
1
2 clc
3 clear
4 //Input data
5 P=200//Power in MW
6 p=180//Pressure in bar
7 T=550//Temperature in degree C
```

```
8 \text{ P1=600}//\text{Power in MW}
9 p1=300//Pressure in bar
10 T1=580 // Temperature in degree C
11 nt=90 // Turbine efficiency in percent
12
13 // Calculations
14 h1=3430//Enthalpy in kJ/kg
15 h2s = 3040 / Enthalpy in kJ/kg
16 h12s = (h1-h2s) / Enthalpy in kJ/kg
17 h12=(nt/100)*h12s//Enthalpy in kJ/kg
18 h2=3070//Enthalpy in kJ/kg
19 v2=0.06//Specific volume in m^3/kg
20 h4=3560/Enthalpy in kJ/kg
21 h3s=2000//Enthalpy in kJ/kg
22 h13s=(h1-h3s)//Enthalpy in kJ/kg
23 h13=(nt/100)*h13s//Enthalpy in kJ/kg
24 w=(P*10^3)/h13//Mass flow rate in kg/s
25 Vbm=350//Velocity in m/s
26 \text{ N}=3000//\text{Speed} in rpm
27 a=25//Angle in degrees
28 Dm = (Vbm * 60) / (3.14 * N) / Diameter in m
29 hD=0.3//Assuming (hb/Dm)max
30 hb=(hD*Dm)//Height in m
31 Ab=(3.14*Dm*hb*0.9*sind(a))//Flow area in m^2
32 V1 = (Vbm/cosd(a)) / Velocity in m/s
33 Vo=(Ab*V1)//Volume flow rate in m^3/s
34 v = (Vo/w) / Specific volume in m<sup>3</sup>/kg
35 h5s=2456//Enthalpy in kJ/kg
36 \text{ p5=0.36}//\text{Pressure in bar}
37 h45s = (h4-h5s) / Enthalpy in kJ/kg
38 h45=(nt/100)*h45s//Enthalpy in kJ/kg
39 h5=h4-h45//Enthalpy in kJ/kg
40 \text{ x}5=0.952//\text{Dryness fraction}
41 h56s = (h5-2340) // Enthalpy in kJ/kg
42 h56=(nt/100)*h56s//Enthalpy in kJ/kg
43 h6=h5-h56/Enthalpy in kJ/kg
44 v6=18//Specific volume in m^3/kg
45 mm = (Vo/v6) // Maximum mass flow that one stage can
```

```
accommodate in kg/s
46 np=(w/mm)//Number of parallel exhausts
47 rp=(p1/4)//Reheat pressure in bar
48 xh1=3410/Enthalpy in kJ/kg
49 xh2s=3015//Enthalpy in kJ/kg
50 xh12s=xh1-xh2s//Enthalpy in kJ/kg
51 xh12=(nt/100)*xh12s//Enthalpy in kJ/kg
52 \text{ xv2=0.035}//\text{Specific volume in } \text{m}^3/\text{kg}
53 \text{ xh4} = 3060 // \text{Enthalpy in kJ/kg}
54 xh3s=1960/Enthalpy in kJ/kg
55 \text{ xh} 13s = \text{xh} 1 - \text{xh} 3s // \text{Enthalpy in } kJ/kg
56 xh3=(xh1-xh13s)/Enthalpy in kJ/kg
57 xw = (P1*10^3)/xh13s//Mass flow rate in kg/s
58 xvm=(Vo/xw)//Maximum specific volume in m<sup>3</sup>/kg
59 Vf = (xw*xv2) / Volume flow rate in m^3/s
60 \text{ xh5s} = 2300 // \text{Enthalpy in kJ/kg}
61 \text{ xh45s} = \text{xh4-xh5s} / \text{Enthalpy in kJ/kg}
62 xh45=(nt/100)*xh45s//Enthalpy in kJ/kg
63 \text{ xh5} = \text{xh4} - \text{xh45s} / \text{Enthalpy in kJ/kg}
64 \text{ xv5}=1.25/\text{Specific volume in } \text{m}^3/\text{kg}
65 \text{ xx5=0.86//Dryness fraction}
66 \text{ xh6s} = 2050 // \text{Enthalpy in } \text{kJ/kg}
67 \text{ xh}56s = \text{xh}5 - \text{xh}6s / \text{Enthalpy in kJ/kg}
68 xh56=(nt/100)*xh56s//Enthalpy in kJ/kg
69 xh6 = (xh5 - xh56) / Enthalpy in kJ/kg
70 xv6=12//Specific volume in m^3/kg
71 \text{ xx6=0.792//Dryness fraction}
72 xmm = (Vo/xv6) / Maximum mass flow in kJ/kg
73 xnp=ceil(xw/xmm)//Number of parallel exhausts
74
75 //Output
76 printf('Number of parallel exhausts in : \n (a)
       condition a are %i \n (b) condition b are %i', np,
       xnp)
```

Scilab code Exa 7.28 Efficiency

```
1
2 clc
3 clear
4 //Input data
5 \text{ P=} 100 // \text{Power in MW}
6 T=550//temperature in degree C
7 p=0.1//Pressure in bar
8 m=500000//Mass flow rate in kg/h at rated load
9 mo=25000//Mass flow rate in kg/h at zero load
10 x = [1/4, 1/2, 3/4, 1] / Fraction of load
11
12 // Calculations
13 b=(m-mo)/(P*10^3)//Steam rate in kg/kWh
14 y1=(x(1)*(P*10^3))/For one-fourth load
15 s1=(mo/y1)+b//Steam rate in kg/kWh
16 y2=(x(2)*(P*10^3))/For one-fourth load
17 s2=(mo/y2)+b//Steam rate in kg/kWh
18 y3=(x(3)*(P*10^3))//For one-fourth load
19 s3=(mo/y3)+b//Steam rate in kg/kWh
20 y4=(x(4)*(P*10^3))//For one-fourth load
21 s4=(mo/y4)+b//Steam rate in kg/kWh
22 \text{ h1}=3511//\text{Enthalpy in kJ/kg}
23 xs1=6.8142//Entropy in kJ/kg.K
24 xs2=xs1//Entropy in kJ/kg.K
25 \text{ x2s} = (\text{xs2} - 0.6493) / 7.5009 / Dryness fraction
26 h2s=191.83+x2s*2392.8//Enthalpy in kJ/kg
27 \text{ nR} = ((h1-h2s)/(h1-191.83))*100//Rankine efficiency in
       percent
  nac = ((P*10^3*3600)/(m*(h1-191.83)))*100//Actual
      efficiency in percent
29 nTG = ((P*10^3*3600)/(m*(h1-h2s)))*100//Turbogenerator
       efficiency in percent
30
31 //Output
32 printf('(a) Steam rate at: \n One-fourth load is \%3
      .2 f kg/kWh \n Half load is %3.2 f kg/kWh \n Three-
```

fourth load is %3.2 f kg/kWh \n Full load is %3.1 f kg/kWh \n\n (b) Rankine cycle efficiency is %3.1 f percent \n (c) Actual efficiency at full load is %3.1 f percent \n (d) The turbogenerator efficiency at full load is %3.1 f percent',s1,s2, s3,s4,nR,nac,nTG)

Chapter 8

Condenser Feedwater and Circulating water systems

Scilab code Exa 8.1 Rate of flow

```
1
2 clc
3 clear
4 //Input data
5 ws=250; //The amount of steam received by the surface
      condenser in t/h
6 tsat=40; //The saturated temperature in degree
      centigrade
7 m=12; //The amount of moisture present in the steam
     in percentage
8 tc1=32; //The inlet temperature of cooling water in
      degree centigrade
9 tc2=38; //The outlet temperature of cooling water in
      degree centigrade
10 p=0.078; //The pressure inside the condenser in bar
11 V=1.8; //velocity of circulating water in m/s
12 do=0.0254; //The outer diameter of the condenser
     tubes in m
13 T=0.00125; //The thickness of the condenser tubes in
```

```
14 pi=3.141; // Mathematical constant of pi
15 U=2.6; //The overall heat transfer coefficient in kW/
     m^2K
16 Cpc=4.187; //The specific heat of water in kJ/kgK
17 R=0.287; //Real gas constant in kJ/kgK
18 P=1000; //The density of water in kg/m<sup>3</sup>
19
20 // Calculations
21 x2=0.88; //The quality of the steam
22 hfg=2407; //The enthalpy of evaporation at 40 degreeC
       in kJ/kg
23 h=x2*hfg; //The change in enthalpy in kJ/kg
24 di=do-(2*T); //The inner diameter of the condenser
      tubes in m
  wc = [[(ws*1000)/3600]*h]/(Cpc*(tc2-tc1)); //Mass flow
      rate of water in kg/s
26 psat=0.07375; //The saturated pressure at 40 degree
      centigrade in bar
27 pair=(p-psat)*100;//The pressure of air in kPa
28 vf=0.001008; // Specific volume of saturated liquid in
      m^3/kg
29 vfg=19.544; // Specific volume of vapour in m<sup>3</sup>/kg
30 v2=vf+(x2*vfg); // Specific volume at 40 degree
      centigrade in m<sup>3</sup>/kg
31 wair=[pair*[(ws*1000)/3600]*v2]/(R*(tsat+273));//
      Mass flow rate of air in kg/s
32 \text{ t1m} = (8-2)/\log(8/2); //\text{The mean temperature in degree}
      centigrade
33 Ao=[[(ws*1000)/3600]*h]/(U*t1m);//The area of the
      tubes in m<sup>2</sup>
34 \text{ n=(wc*(4/pi)*(1/di^2)*(1/(P*V)));} //\text{The number of}
      tubes
35 l=Ao/(pi*do*n);//Yhe length of tubes in m
36
37 //Output
38 printf('(a) The rate of flow of cooling water = \%3.1
      f kg/s \n (b) The rate of air leakage into the
```

```
condenser shell = \%3.3 \, f \, kg/s \, n \, (c) The length of tubes = \%3.2 \, f \, m \, n \, (d) The number of tubes = \%3.0 \, f \, n \, m \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes = \%3.0 \, f \, n \, m The number of tubes =
```

Scilab code Exa 8.2 Rate of flow

```
1
2 clc
3 clear
4 //Input data
5 ws=20; //The amount of dry saturated steam received
     by a surface condencer in t/h
  tsh=40; //The temperature of dry saturated steam in
      degree centigrade
7 wa=(0.35/1000); //The mass flow rate of air per 1000
     kg of steam in kg
8 tc=38; //The temperature at which condensate leaves
      the temperature in degree centigrade
  tm=10; //The temperature at which makeup water is
      supplied in degree centigrade
10 tc1=32; //The inlet temperature of cooling water in
      degree centigrade
11 tc2=38; //The outlet temperature of cooling water in
      degree centigrade
12 tas=27; //The temperature of air along with steam in
      degree centigrade
13 psat=0.07384; //The saturated pressure at 40 degree C
14 vg=19.52; //The specific volume at 40 degree C in m
      ^{3}/\mathrm{kg}
15 R=0.287; //Real gas constant in kJ/kgK
16 Cpc=4.187; //The specific heat of water in kJ/kgK
17 Cp=1.005; //The specific heat of air in kJ/kgK
18
19 // Calculations
```

```
20 pair=[(wa*R*(tsh+273)*1000)/vg]*10^-5; //The pressure
       of air in bar
21 psat1=0.06624; //The saturated pressure at 38 degree
     C in bar
22 vg1=21.63; //The specific volume at 38 degree C in m
23 pair1=psat-psat1;//The pressure of air in bar
24 wa1=(ws*1000)*wa; //Mass of air removed per hour in
  V1 = ((wa1*R*(273+tc2)*1000))/(pair1*10^5); //Volume of
       air remove per hour
  ws1=V1/vg1; //The mass of steam accompanying air in
     kg/h
  psat2=0.03564; //The saturated pressure at 27 degree
     C in bar
28 vg2=38.81; //The specific volume at 27 degree C in m
      ^3/\mathrm{kg}
29 pair2=psat-psat2;//The pressure of air in bar
30 V2=(wa1*R*1000*(tas+273))/(pair2*10^5);//Volume of
      air removed per hr in m<sup>3</sup>/hr
31 ws2=V2/vg2;//The mass of steam accompanying air in
     kg/h
32 ws3=ws1-ws2; // Saving mass of steam by using seperate
       extraction in kg/hr
33 Q3=[ws3*Cpc*(tc-tm)]/3600; //Saving in heat supply in
      the boiler in kW
34 V = [(V1 - V2)/V1] * 100; // Percentage reduction in air
      ejector load in %
35 hc=159.3; //Enthalpy at 38 degree C in kJ/kg
36 hs1=2574.3; //Enthalpy at 40 degree C in kJ/kg
37 hs2=2550.3; //Enthalpy at 27 degree C in kJ/kg
38 Q2=[[(ws*1000)*(hs1-hc)]-[(wa1*(Cp*(tsh-tas)))]-(ws3)
      *hs2)]/3600;//The amount of heat in kW
39 wc=Q2/(Cpc*(tc2-tc1));//The mass flow rate of water
      in kg/s
40
41 //Output
42 printf('(a) The rate of saving of condensate and the
```

rate of saving in the heat supply in the boiler due to seperate air extraction pump = $\%3.3\,\mathrm{f\ kW}$ \n (b) The percentage reduction in air ejector load due to this seperate air extraction method = %3.1 f percent \n (c) The rate of cooling water flow = $\%3.0\,\mathrm{f\ kg/s}$, \quad \quad

Scilab code Exa 8.3 Temperature of water

```
1
2 clc
3 clear
4 //Input data
5 tw3=30; //The inlet temperature of water in degree
      centigrade
6 wc=1.15; //Mass flow rate of cooling water in kg per
     kg air
7 tdb1=20; //The dry bulb temperature of air in degree
      centigrade
8 R1=60; // Relative humidity of air while entering in
     percentage
9 tdb2=28; //The dry bulb temperature while leaving in
      degree centigrade
10 R2=90; // Relative humidity of air while leaving in
     percentage
11 tm=20; //The temperature of makeup water in degree
     centigrade
12 Cpc=4.187; //The specific heat of water in kJ/kgK
13 G=1; //Mass flow rate of dry air in kg/s
14
15 // Calculations
16 twb1=15.2; // from psychrometric chart The wet bulb
     temperature while entering in degree centigrade
17 twb2=26.7; // from psychrometric chart The wet bulb
     temperature while leaving in degree centigrade
```

```
18 h1=43; //The enthalpy from chart for dry air in kJ/kg
       dry air
19 h2=83.5; //The enthalpy from chart in kJ/kg dry air
20 W1=0.0088; // Humidity in kg water vapour/kg dry air
21 W2=0.0213; // Humidity in kg water vapour/kg dry air
22 hw3=125.8; //Enthalpy of water entering the tower in
      kJ/kg
23 hw=84; //Enthalpy of makeup water in kJ/kg
24 hwc=[(G/wc)*[(h2-h1)-(W2-W1)*hw]]; //The change in
      enthalpy of water in kJ/kg
25 tw4=tw3-(hwc/Cpc); //The exit temperature of water in
       degree centigrade
26
  ta=tw4-twb1; //The approach temperature in degree
      centigrade
  tr=tw3-tw4; //The range temperature in degree
      centigrade
28 x=G*(W2-W1); //Fraction of water evaporated in kg/kg
      dry air
29
30 //Output
31 printf('(a) The temperature of water leaving the
      tower = \%3.1 f degree centigrade \n (b) The
      fraction of water evaporated = \%3.4 \,\mathrm{f} \,\mathrm{kg/kg} \,\mathrm{dry}
      air \n (c) The approach of the cooling tower = \%3
      .1f degree centigrade \n
                                 The Range of the
      cooling tower = \%3.1 f degree centigrade ', tw4, x,
      ta,tr)
```

Scilab code Exa 8.4 Temperature of water

```
1
2 clc
3 clear
4 //Input data
5 tw3=45; //The temperature of warm water in degree
```

```
centigrade
6 wc1=6; //The cooling water inflow in kg/s
7 V=10; //volume flow of ID fan in m^3/s
8 Ws=4.90; //Heat absorbed by air in kW
9 ti=20; //The temperature of air entering the tower in
       degree centigrade
10 R=60; //The relative humidity in percentage
11 to=26; //The temperature of air leaving the tower in
      degree centigrade
12 p=1.013; //The constant pressure throughout the tower
       in bar
13 r=0.287; //Real gas constant in kJ/kgK
14 Cpc=4.187; //The specific heat of water in kJ/kgK
15 Cp=1.005; //The specific heat of air in kJ/kgK
16
17 // Calculations
18 ps=0.0234; //The pressure at 20 degreec in bar
19 ps1=(R/100)*ps;//The pressure of water vapour in bar
20 pa1=p-ps1;//The pressure of air in bar
21 G1=(pa1)/(r*10^-3*(ti+273)); //The mass flow rate of
     dry air in kg/s
22 \text{ w1=(ps1*10^5*V)/(0.4619*10^3*(ti+273));//Mass flow}
     rate of vopour in kg/s
23 W1=w1/G1; // Moisture flow in kg vap/kg dry air
24 ps2=0.0336; //The pressure at 26 degree C at exit in
     bar
25 pw2=0.0336; //The pressure of water vapour at 26
      degree C at exit in bar
26 W2=(0.622)*(pw2/(1-pw2)); // oisture flow in kg vap/kg
       dry air
27 G2=G1; //The mass flow rate of dry air in kg/s
28 w2=W2*G2; // Moisture flow at exit in kg/s
29 wm=w2-w1;//Makeup water required in kg/s
30 wc2=wc1-wm; //The cooling water outflow in kg/s
31 hw3=Cpc*tw3; //The enthalpy of warm water in kJ/kg
32 hg=2538.1; //The enthalpy of gas at 20 degree C in kJ
     /kg
33 tsat=12; //The saturation temperature in degree
```

Chapter 9

Nuclear Power Plants

Scilab code Exa 9.1 Mass defect and binding energy

```
1
2 clc
3 clear
4 //Input data
5 mp=1.007277; // Atomic Mass of proton in amu
6 mn=1.008665; // Atomic Mass of neutron in amu
7 me=0.00055; // Atomic Mass of electron in amu
8 mo=15.99491; // Atomic Mass of oxygen in amu
9 np=8;//Number of protons in oxygen
10 ne=8; //Number of electrons in oxygen
11 nn=8; //Number of neutrons in oxygen
12 a=931; //One amu in MeV
13 No=16; //Number of nucleons in oxygen
14
15 // Calculations
16 m=(np*mp)+(ne*me)+(nn*mn)-mo; //The mass defect in
17 B=m*a; //Binding energy in MeV
18 Bn=B/No; //Binding energy per nucleon
19
20 //Output
```

21 printf('The mass defect = $\%3.5 \, \text{f}$ amu \n The binding energy per nucleon = $\%3.2 \, \text{f}$ MeV ',m,Bn)

Scilab code Exa 9.2 Decay constant

```
1
2 clc
3 clear
4 //Input data
5 amr=226.095; // Atomic mass of radium in amu
6 AC=6.023*10^23; // Avogadro constant in molecules/g.
7 h=1620; // Half life of radium in years
8
9 // Calculations
10 D=(0.6931/(h*365*24*3600)); //The decay constant in
      1/s
11 Na=AC/amr; // Number of atoms per gram of radium
12 Ao=D*Na;//Initial activity in dis/s
13
14 //Output
15 disp(D, "The decay constant (in s^-1) = ");
16 disp(Ao,"The initial activity of 1 g of radium 226
     in dis/s) = ");
```

Scilab code Exa 9.3 Fuel consumption

```
1
2 clc
3 clear
4 //Input data
5 F=190; //Each fission of U-235 yeilds in MeV
```

```
6 a=85; // Assuming the Neutrons absorbed by U-235 cause
       fission in percentage
7 b=15; //Non fission capture to produce an isotope U
     -236 in percentage
8 Q=3000; //The amount of thermal power produced in MW
10 // Calculations
11 E=F*1.60*10^-13; //Each fission yields a useful
      energy in J
12 N=1/E; // Number of fissions required
13 B = [(10^6) * (N*86400)]/(a/100); //One day operation of
     a reactor the number of U-235 nuclei burned is in
       absorptions per day
14 M=(B*235)/(6.023*10^23);//Mass of U-235 consumed to
      produce one MW power in g/day
15 M1=M*3; // Mass of U-235 consumed to produce 3000 MW
     power in g/day
16
17 // Output
18 printf ('The fuel consumed of U-235 per day = \%3.1 \,\mathrm{f} g
     /day ',M1)
```

Scilab code Exa 9.4 Area required

```
1
2 clc
3 clear
4 //Input data
5 sa1=10;//Cross section of nucleus in barns
6 N=2200;//Neutrons in m/s
7 En1=0.1;//Kinetic energy of neutrons increases in eV
8 En2=0.02525;//Kinetic energy of neutron in eV
9
// Calculations
11 sa2=sa1/[(En1/En2)^0.5];//The cross section of
```

```
neutrons in barns

12

13 //Output

14 printf('The cross section of neutrons = %3.2f barns ',sa2)
```

Scilab code Exa 9.5 Microscopic absorption

```
1
2 clc
3 clear
4 //Input data
5 U1=99.285; //Uranium consists of U-238 in percentage
6 U2=0.715; //Uranium consists of U-235 in Percentage
7 E=0.025; //The energy of neutrons in eV
8 sc=2.72; // Capture cross section for U-238 in barns
9 sf=0; // fission cross section for U-238 in barns
10 sc1=101; // Capture cross section for U-235 in barns
11 sf1=579; // fission cross section for U-235 in barns
12
13 // Calculations
14 sa=(U1/100)*(sc+sf)+(U2/100)*(sc1+sf1);//The
      microscopic absorption cross section of natural
     uranium in barns
15
16 // Output
17 printf ("The microscopic absorption cross section of
      natural uranium = \%3.1 f barns ', sa)
```

Scilab code Exa 9.6 Microscopic absorption

```
1 2 clc
```

```
3 clear
4 //Input data
5 p=1;//The density of water in g/cm<sup>3</sup>
6 sch=0.332; //The microscopic capture cross section of
       hydrogen in barn
7 sco=0.0002; //The microscopic capture cross section
      of oxygen in barn
8
9 // Calculations
10 N = (6.023*10^23)*p/18; //Number of molecules of water
      per cm<sup>3</sup>
11 scw = (2*N*sch*10^-24) + (N*sco*10^-24); //The
      microscopic capture cross section of water in cm
      ^{-1}
12
13 //output
14 printf ('The microscopic capture cross section of
      water = \%3.4 \, \text{f} \, \text{cm}^--1 ',scw)
```

Scilab code Exa 9.7 Thermal neutron flux

```
1
2 clc
3 clear
4 //Input data
5 m=230;//The amount of boron piece in g
6 mw=10;//The molecular weight of boron
7 R=9.57*10^13;//Reaction rate in cm^-3s^-1
8 d=2.3;//Density of boron in g/cm^3
9 sa=755;//Absorbption cross section in barns
10 ss=4;//Elastic scattering cross section in barns
11
12 //Calculations
13 st=sa+ss;//The total cross section in barns
14 N=(d*6.023*10^23)/mw;//The number density of
```

```
neutrons in cm^-3
15 S=N*st*10^-24; //Number density of neutrons for total
    in cm^-1
16 F=R/S; //Neutron flux in cm^-2s^-1
17 L=1/S; //Average distance a neutron travels before it
    is absorbed in cm
18
19 //Output
20 disp(F,"The thermal neutron flux (in cm^-2s^-1) = ")
    ;
21 disp(L,"The average distance that a neutron travels
    before it is absorbed (in cm) = ");
```

Scilab code Exa 9.8 Number of collisions

```
1
2 clc
3 clear
4 //Input data
5 Eni=4.8; //The energy of the newly born electron in
6 Enf=0.025; //The energy of the electron after slow
     down in eV
7 A=12; //The mass number of the graphite (carbon)
9 // Calculations
10 L=1-[[(A-1)^2/(2*A)]*\log((A+1)/(A-1))];//The
      logarithmic energy decrement
11 n=(log(Eni*10^6/Enf))/L;//The number of collisions
      required to slowdown the neutron
12
13 // Output
14 printf ('The logarithmic energy decrement
      representing the neutron energy loss per elastic
      collision = \%3.3 \,\mathrm{f} \n The number of collisions
```

Scilab code Exa 9.9 Rating of reactor

```
1
2 clc
3 clear
4 //Input data
5 f=100; //The reactor is fuelled of natural uranium in
       tonnes
6 A=238.05; //The atomic mass of natural uranium
7 F=10^13; //The average thermal neutron flux in
      neutrons/cm<sup>2</sup>s
8 A1=235.04; //The atomic mass of U-235
9 sf=579; //The fission cross section of U-235 in barns
10 sc=101; //The capture cross section of U-235 in barns
11 E=200; //The energy released per fission in MeV
12 P=0.715; //U-235 in natural uranium in percentage
13 N=2200; //The average thermal neutron in m/s
14
15 // Calculations
16 n = [(f*1000)*6.023*10^26*(P/100)]/A; //The number of U
      -235 atoms in the reactor in atoms
17 R=(sf*10^-24)*F*n; //The rate of fission in the
      reactor in fissions/s
18 T=R*E*1.602*10^-19; //Thermal power of the reactor in
      MW
19 Rr=T/f; // Rating the reactor MW/tonne
20 Rc=[[(R*A1*60*60*24)]/(6.023*10^26)];//The rate of
      consumption of U-235 by fission in kg/day
21 Rcc=Rc*1000; //The rate of consumption of U-235 by
      fission in g/day
22
23 //Output
24 printf('(a) The rating of the reactor = \%3.2 \text{ f MW}/
```

```
tonne \n (b) The rate of consumption of U-235 per day = \%3.3 \, \text{f} \, \text{kg/day} (or) \%3.0 \, \text{f} \, \text{g/day} ', Rr, Rc, Rcc)
```

Scilab code Exa 9.10 Specific energy release rate

```
1
2 clc
3 clear
4 //Input data
5 f=3.5; //Mass fraction of U-235 in the fuel in
      percentage
6 G=180; //Energy per fission in Mev
7 F=10^13; //The neutron flux in neutrons/cm^2s
8 sf=577; // Fission cross section of U-235 in barns
9 M=1.602*10^-13; //One MeV in J
10
11 // Calculations
12 N=2.372*(f/100)*10^22; //The fuel density for a
      uranium oxide fuel in nuclei/cm<sup>3</sup>
13 q=G*N*sf*10^-24*F; //The rate of energy release in
      MeV/cm^3s
14 qg=q*M; //The rate of energy release in W/cm<sup>3</sup>
15
16 //Output
17 printf ('The specific energy release rate for a light
       water uranium reactor = \%3.2 \,\mathrm{f} \,\mathrm{W/cm}^3',qg)
```

Scilab code Exa 9.11 Reactor power level

```
1
2 clc
3 clear
4 //Input data
```

```
5 P=1;//The operating power of a reactor in W
6 K=1.0015;//The effective multiplication factor of
    Reactor becomes suppercritical
7 t=0.0001;//The average neutron life in s
8 t1=1.0001;//Neutron life time in s
9
10 //Calculations
11 d=(K-1)/K;//The reactivity
12 Z=(d*P)/t;//The number of neutrons
13 n=exp(Z)/10^6;//Neutron density * 10^6
14
15 //Output
16 printf('The reactor power level at the end of 1s is
%3.3 f MW',n)
```

Chapter 10

Hydroelecric power plant

Scilab code Exa 10.1 Efficiency of the runner

```
1
2 clc
3 clear
4 //Input data
5 P=4000//Power in kW
6 N=400/Speed in r.p.m
7 h=200//\text{Head} in m
8 e=90//Efficiency in percent
9 d=1.5//Diameter in m
10 vd=10//Percentage decrease in velocity
11 a=165//Angle with which jet is deflected in degrees
12
13 // Calculations
14 V1 = sqrt(2*9.81*h*(e/100)) / Velocity in m/s
15 Vb = (3.14*d*N)/60//Velocity in m/s
16 nn = ((2*(1-((e/100)*cosd(a)))*(V1-Vb)*Vb)/V1^2)*100//
      Efficiency in percent
17 p=(P/(nn/100))/Power developed in kW
18 pj=(p/2)//Power developed per jet in kW
19 dx = sqrt((pj*8)/(3.14*V1^3))/Diameter of each jet in
```

```
20
21 //Output
22 printf('(a) the efficiency of the runner is %3.2f
    percent \n (b) the diameter of each jet is %3.4f
    m',nn,dx)
```

Scilab code Exa 10.2 Number of jets

```
1
2 clc
3 clear
4 //Input data
5 P=6000//Power in kW
6 h=300//Net head availabe in m
7 N=550/Speed in r.p.m
8 rd=(1/10)//Ratio of jet diameter to wheel diameter
9 nh=0.85//Hydraulic efficiency
10 Cv=0.98 // Coefficient of velocity
11 f=0.46//Speed ratio
12 d=1000 // Density in kg/m^3
13
14 // Calculations
15 V1=Cv*\operatorname{sqrt}(2*9.81*h)/\operatorname{Velocity} in m/s
16 Vb=f*sqrt(2*9.81*h)/Velocity in m/s
17 Q=((P*10^3)/(nh*d*9.81*h))/Discharge in m^3/s
18 D=((Vb*60)/(3.14*N))/Diameter in m
19 d=(D/10)/Diameter of jet in m
20 n = (Q/((V1*(3.14/4)*d^2)))/Number of jets
21
22 //Output
23 printf('(a) the number of jets are \%3.0 \,\mathrm{f} \, \ln \,(b)
      diameter of each jet is %3.3 f m \n (c) diameter
      of the wheel is %3.2 f m \n (d) the quantity of
      water required is \%3.1 \, \text{f m}^3/\text{s}', \text{n,d,D,Q}
```

Scilab code Exa 10.3 Diameter of jet

```
1
2 clc
3 clear
4 //Input data
5 P=10//Capacity in MW
6 h=500//Head in m
7 Ns=10//Specific speed of the turbine
8 on=80//Overall efficiency in percent
9 Cv=0.98//Coefficient of velocity
10 x=0.46//Speed of the bucket wheel to the velocity of
11 da=1000//Density in kg/m^3
12
13 // Calculations
14 N=(Ns*h^(5/4))/sqrt(P*10^3)/Speed in r.p.m
15 V = (Cv * sqrt (2*9.81*h)) / Velocity in m/s
16 Vb = (x*V) / Speed of bucket wheel in m/s
17 D = ((60*Vb)/(3.14*N))/Diameter in m
18 d=sqrt((P*10^6)/((on/100)*(3.14/4)*da*V*9.81*h))//
     Diameter in m
19
20 // Output
21 printf('Diameter of jet is %3.3fm \n Diameter of
     bucket wheel is %3.2 f m',d,D)
```

Scilab code Exa 10.4 Specific speed

```
1
2 clc
3 clear
```

```
4 //Input data
5 Cv=0.97//Coefficient of velocity
6 f=0.45//Friction coefficient
7 h=0.85//Head in m
8 d=1000//Density in kg/m^3
9 n=1//For a single jet turbine
10
11 // Calculations
12 Ns = ((60/3.14) * (f*sqrt(2*9.8)) * sqrt(n*(3.14/4) * Cv*
      sqrt(2*9.8)*9.8*h))//Specific speed in terms of d
      /D
13
14 //Output
15 printf ('The specific speed of a single jet Pelton
      wheel is about %3.0 f (d/D) where d and D
      represent the jet and bucket wheel diameters
      respectively', Ns)
```

Scilab code Exa 10.5 Velocity of jet

```
1
2 clc
3 clear
4 //Input data
5 n=4//Number of jets
6 d=60//Diameter of each jet in mm
7 a=165//Angle in degrees
8 v=45//Speed of the bucket wheel in m/s
9 de=1000//Density in kg/m^3
10
11 //Calculations
12 v1=(2*v)//Jet velocity in m/s
13 Q=(3.14/4)*(d/1000)^2*v1//Discharge in m^3/s
14 P=(1-cosd(a))*(v1^2/4)*Q*de*10^-3//Power developed in kW
```

Scilab code Exa 10.6 Head on the wheel

```
1
2 clc
3 clear
4 //Input data
5 v=20//Peripheral velocity in m/s
6 vw=17//Velocity of whirl in m/s
7 vr=2//Radial velocity in m/s
8 Q=0.7//Flow in m^3/s
9 hn=80//Hydraulic efficiency in percent
10 d=1000/Density in kg/m^3
11
12 // Calculations
13 H=((vw*v)/(9.81*(hn/100)))//Head on the wheel in m
14 P=(d*Q*9.81*H*(hn/100)*10^-3)/Power generated in kW
15 al=180-atand(vr/vw)//Angle of guide vanes in degrees
16 bl=atand(vr/(v-vw))//Inlet blade angle in degrees
17
18 //Output
19 printf ('Head on the wheel is \%3.1 \,\mathrm{f} m \n The power
     generated by the turbine is %3.0 f kW \n Eit angle
       of guide vanes is \%3.2f degrees and Inlet blade
     angle is %3.1f degrees', H,P,al,bl)
```

Scilab code Exa 10.7 Outlet and inlet blade angles

```
1
2 clc
3 clear
4 //Input data
5 od=1.5//Outer diameter in m
6 id=0.75//Inner diameter in m
7 h=150//\text{Head in m}
8 \text{ P=}14000 // \text{Power in kW}
9 Ns=120//Specific speed
10 vw2=0//Velocity in m/s
11 a=(11+(20/60))//Angle in degrees
12 hn=92//Hydraulic efficiency in percent
13
14 // Calculations
15 N=(Ns*h^(5/4))/sqrt(P)/Speed in rpm
16 vb1=(3.14*od*N)/60//velocity in m/s
17 vw1 = (((hn/100)*9.81*h)/vb1)/velocity in m/s
18 vf1=(tand(a)*vw1)/Velocity in m/s
19 vf2=vf1//Velocity in m/s
20 b1=atand(vf1/(vb1-vw1))//Angle in degrees
21 b1x = (b1 - int(b1)) *60 / For output
22 vb2=(vb1/2)/Velocity in m/s
23 b2=atand(vf1/(vb2-vw2))//Angle in degrees
24 b2x = (b2 - int(b2)) *60 / For output
25
26 //Output
27 printf('Inlet blade angle is %3.0f degrees %3.0f
      minutes \n Outlet blade angle is \%3.0f degrees \%3
      .0 f minute', b1, b1x, b2, b2x)
```

Scilab code Exa 10.8 The guide vane angle

```
1
2 clc
3 clear
4 //Input data
5 h=70//net head in m
6 N=700/speed in rpm
7 o=85//over all efficiency in %
8 \text{ P=350//shaft power in kW}
9 he=92//hydraulic efficiency in %
10 fr = .22 // flow ratio
11 b=.1//breadth ratio
12 s=2//outer diameter in terms of inner diametre
13 // Calculations
14 vf1=fr*sqrt(2*9.81*h)/velocity in m/s
15 q=(P/(9.81*h*(o/100)))/discharge in m^3/s
16 d1 = sqrt(q/(.94*b*vf1*3.14))/diameter in metre
17 b1=d1*b//breadth in metre
18 d2=d1/2//diametre in metre
19 vb1=(3.14*d1*N)/60//velocity in m/s
20 vw1 = ((he/100)*9.81*h)/vb1//velcity in m/s
21 a=atand(vf1/vw1)//angle in degrees
22 bet=atand(vf1/(vw1-vb1))//angle in degrees
23 vb2=(d2/d1)*vb1//velocity in m/s
24 bet2=atand(vf1/vb2)//angle in degrees
25
26 // Output
27 printf('(a)the guide vane angle is \%3.1f degrees \n
      (b) the runner vane angle at inlet is \%3.1 f
      degrees and outlet is \%3.2f degrees \n (c) the
      diametres of the runner at inlet is \%3.1f metre
      and outlet is \%3.2 f metre\n (d)the width of the
      wheel at inlet is \%3.2 f metre', a, bet, bet2, d1, d2,
     b1)
```

Scilab code Exa 10.9 Discharge of turbine

```
1
2 clc
3 clear
4 //Input data
5 \text{ n=4//Number of units}
6 \text{ P=70000}//\text{Power in kVA}
7 f=50//Frequency in Hz
8 p=10//No. of pair of poles
9 h=505//Gross head in m
10 tn=94 // Transmission efficiency in percent
11 po=260//Power in MW
12 e=91 // Efficiency in percent
13 nn=0.98//Nozzle efficiency
14 Cv=0.98//Coefficient of velocity
15 x=0.48/Vb=0.48 V
16 dd=25//Nozzle diameter is 25% bigger than jet
      diameter
17 a=165//Angle of buckets in degrees
18 de=99.75//Discharge efficiency in percent
19
20 // Calculations
21 N=(120*f)/(p*2)//Synchronous speed in r.p.m
22 nh = ((tn/100)*h) / Net head in m
23 pt=(po*10^3)/n//Power developed per turbine in kW
24 ip=(pt/(e/100))//Input water power in kW
25 Q=(ip/(9.81*nh))//Discharge in m^3/s
26 Qj = (Q/n) // Discharge per jet in m^3/s
27 V1=Cv*sqrt(2*9.81*nh)//Velocity in m/s
28 d=sqrt((4/3.14)*(Qj/V1))/Diameter of jet in m
29 nd=(1+(dd/100))*d//Nozzle tip diameter in m
30 Vb = (x*V1) / Velocity in m/s
31 D=((Vb*60)/(3.14*N))//Pitch circle diameter of the
```

```
wheel in m
32 Ns=((N*sqrt(po*10^3))/nh^(5/4))/Specific speed
33 \text{ jr=(D/d)//Jet ratio}
34 nob=(jr/2)+15/Number of buckets
35 nobb=ceil(nob)//Rounding off to next integer
36 \ W=((V1-Vb)*(1-(nn*cosd(a)))*Vb)/9.81//Workdone per
      kg in kg.m/kg
37 nth=((W/nh)*de)//Hydraulic efficiency in percent
38
39 //Output
40 printf('(a) the discharge of the turbine is \%3.2 f m
      ^3/s \  (b) the jet diameter is \%3.3 \,f m \n (c)
      the nozzle tip diameter is \%3.3 f m \n (d) the
      pitch circle diameter of the wheel is \%3.2 f m \n
      (e) the specific speed is \%3.2 \,\mathrm{f} \, \mathrm{n} (f) the number
       of buckets on the wheel are \%3.0 f \n (g) the
      workdone per kg of water on the wheel is \%3.2 f kg
      .m/kg \ n \ (h) the hydraulic efficiency is \%3.0 f
      percent', Q, d, nd, D, Ns, nobb, W, nth)
```

Scilab code Exa 10.10 Blade angles

```
1
2 clc
3 clear
4 //Input data
5 gh=35//Gross head in m
6 md=2//Mean diameter in m
7 N=145//Speed in rpm
8 a=30//Angle in degrees
9 oa=28//Outlet angle in degrees
10 x=7//Percentage of gross head lost
11 y=8//Reduction in relative velocity in percent
12
13 //Calculations
```

```
14 H=((100-x)/100)*gh//Net haed in m
15 V1=sqrt(2*9.81*H)//Velocity in m/s
16 Vb=(3.14*md*N)/60//Velocity in m/s
17 b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Angle in degrees
18 Vr1=((V1*sind(a))/sind(b1))//Velocity in m/s
19 Vr2=((100-y)/100)*Vr1//Velocity in m/s
20 Vw1=(V1*cosd(a))//Velocity in m/s
21 Vw2=(Vb-(Vr2*cosd(oa)))//Velocity in m/s
22 E=((Vb*(Vw1-Vw2))/9.81)//Workdone in kg.m/kg
23 nb=(E/gh)*100//Hydraulic efficiency in percent
24
25 //Output
26 printf('Blade angle at inlet is %3.0f degrees \n Hydraulic efficiency is %3.0f percent',b1,nb)
```

Scilab code Exa 10.11 Speed and diameter

```
1
2 clc
3 clear
4 //Input data
5 P=10000/Power in kW
6 h=12//\text{Head} in m
7 Nr=2//Speed ratio
8 Fr=0.65//Flow ratio
9 x=0.3//Diameter of hub is 0.3 times the eternal
      diameter of the vane
10 on=94//Overall efficiency in percent
11
12 // Calculations
13 Q=(P/(9.81*h*(on/100)))/Discharge in m^3/s
14 Vr1 = (Fr * sqrt (2*9.81*h)) / Velocity in m/s
15 Ab = (Q/Vr1) / Area of flow in m^2
16 D=sqrt(((Ab*4)/3.14)/(1-x^2))/Diameter of runner in
```

Scilab code Exa 10.12 Specific speed

```
1
2 clc
3 clear
4 //Input data
5 P=10000 // Power in kW
6 h=25//Head in m. In textbook it is given wrong as 2
7 N=135//Speed in rpm
  h1=20//Head in m
9
10 // Calculations
11 Ns = ((N*sqrt(P))/h^(5/4))/Specific speed
12 N1 = sqrt(h1/h) * N / / Speed in rpm
13 P2=P/(h/h1)^(3/2)/Power in kW
14
15 //Output
16 printf('Specific speed is %3.1f \n Normal speed is
     %3.1 f rpm \n Output under a head of %i m is %3.0 f
      kW', Ns, N1, h1, P2)
```

Scilab code Exa 10.13 Number of turbines

```
1
2 clc
3 clear
4 //Input data
5 Q=175//Discharge in m^3/s
6 h=18//Head in meter
7 N=150//Speed in rpm
8 oe=82//Overall efficiency in percent
9 Ns1=460//Maximum specific speed
10 Ns2=350//Maximum specific speed
11 d=1000//Density in kg/m^3
12
13 // Calculations
14 P=(d*Q*9.81*h*(oe/100)*10^-3)/power in kW
15 P1 = ((Ns1*h^(5/4))/N)^2/Power in kW
16 n1=P/P1//No. of turbains
17 P2 = ((Ns2*h^(5/4))/N)^2/Power in kW
18 n2=ceil(P/P2)/No.of turbains
19
20 //Output
21 printf ('The number of turbines in \n (a) Francis
     turbine are %3.0 f \n (b) Kaplan turbine are %i', n1
      ,n2)
```

Scilab code Exa 10.14 Speed power and scale ratio

```
1
2 clc
3 clear
4 //Input data
```

```
5 Ns=210//Specific speed
6 \text{ P=30//Power in MW}
7 N=180//Speed in rpm
8 Q=0.6//Discharge in m^3/s
9 h=4.5//\text{Head} in m
10 e=88 // Efficiency in percent
11 d=1000//Density in kg/m^3
12
13 // Calculations
14 Pm = (d*Q*9.81*h*(e/100)*10^-3) / Power in kW
15 Nm = (Ns*h^(5/4))/sqrt(Pm)//Speed in rpm
16 Hp = ((N*sqrt(P*1000))/Ns)^(4/5)/Head in m
17 Dpm = (Nm/N) * sqrt(Hp/h) // Scale ratio
18 Qp = (P*10^6)/(d*9.81*Hp*(e/100))/Discharge in m^3/s
19
20
  //Output
21 printf('Speed is %3.0 f rpm \n Power is %3.3 f kW \n
      Scale ratio is %3.3 f \n Flow through the turbine
      is \%3.1 \, \text{f m}^3/\text{s}, Nm, Pm, Dpm, Qp)
```

Scilab code Exa 10.15 Speed and power

```
1
2 clc
3 clear
4 //Input data
5 x=1/5//Scale model
6 h=1.5//Head in m
7 P=5//Power in kW
8 N=450//Speed in rpm
9 h1=30//Head in m
10
11 //Calculations
12 N1=(x*N)/sqrt(h/h1)//Speed in rpm
13 Ns=(N*sqrt(P))/h^(5/4)//Specific speed
```

Scilab code Exa 10.16 Efficiency

```
1
2 clc
3 clear
4 //Input data
5 h=19//Head in m
6 Q=3//Flow rate in m^3/s
7 N=600//Speed in rpm
8 h1=5//Head in m
9
10 //Calculations
11 N1=N/sqrt(h/h1)//Speed in rpm
12 Q1=Q/sqrt(h/h1)//Discharge in m^3/s
13
14 //Output
15 printf('Speed of the turbine is %3.1 f rpm \n Maximum flow rate is %3.1 f m^3/s',N1,Q1)
```

Scilab code Exa 10.17 Least number of turbines

```
1
2 clc
3 clear
4 //Input data
5 Q=350//Discharge in m^3/s
6 h=30//Head in m
```

```
7 e=87//Turbine efficiency in percent
8 f=50//Frequency in Hz
9 p=24//Number of poles
10 Ns1=300//Specific speed
11 Ns2=820 // Specific speed
12 d=1000/Dnsity of water in kg/m^3
13
14 // Calculations
15 N=(120*f)/p//Speed in rpm
16 \text{ P=d*Q*9.81*h*(e/100)*10^-3//Power in kW}
17 P1=((Ns1*h^(5/4))/N)^2/Power in kW
18 n1=P/P1//No.of turbines
19 P2 = ((Ns2*h^(5/4))/N)^2/Power in kW
20 n2=ceil(P/P2)/No.of turbines
21
22 //Output
23 printf ('Least number of machines required if using \
      n (a) Francis turbines are %3.0 f \n (b) Kaplan
      turbines are \%3.0 \,\mathrm{f}',n1,n2)
```

Scilab code Exa 10.18 Power developed

```
1
2 clc
3 clear
4 //Input data
5 h=27//Head in m
6 A=430//Area in sq.km
7 R=150//Rainfall in cm/year
8 pr=65//Percentage of rainfall utilised
9 pe=95//Penstock efficiency in percent
10 te=80//Turbine efficiency in percent
11 ge=86//Generator efficiency in percent
12 lf=0.45//Load factor
13 d=1000//Density of water in kg/m^3
```

```
14
15  // Calculations
16  Q=A*10^6*(R/100)*(pr/100) // Discharge in m^3 per year
17  Qs=(Q/(365*24*3600)) // Quantity of water per second in m^3
18  P=(pe/100)*(te/100)*(ge/100)*d*Qs*9.81*h*10^-3// Power in kW
19  plc=(P/lf) // Peak load capacity in kW
20  C=(plc/(2*(ge/100))) // Capacity of each unit in kW
21
22  // Output
23  printf('(a) Power developed is %3.0 f kW \n (b) As the available head is low, Kaplan turbines are suggested.\n Two turbines each of 3000kW capacity may be installed.',P)
```

Scilab code Exa 10.19 Power developed

```
1
2 clc
3 clear
4 //Input data
5 q = [30, 25, 20, 0, 010, 50, 80, 100, 110, 65, 45, 30] / Mean
      discharge in millions of cu.m per month
      respectively
6 h=90//Head in m
7 n=86//Overall efficiency in percent
9 // Calculations
10 Qm = (q(1)+q(2)+q(3)+q(4)+q(5)+q(6)+q(7)+q(8)+q(9)+q
      (10)+q(11)+q(12))/12//Mean discharge in millions
     m^3/s
11 Q
      =[30,30,25,25,20,20,0,0,10,10,50,50,80,80,100,100,110,110,65,65,4
      //Discharge (million m<sup>3</sup>/month) on y-axis
```

```
12 y
      = [0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12]
      //Months on x-ais
13 D = [110, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 10, 0] //
      Discharge per month in million m<sup>3</sup>
14 pt
      = [8.3, 16.7, 25, 25, 25, 33.3, 41.7, 50, 66.7, 75, 83.3, 91.7, 100]
      //Percentage time
15 Po = ((Qm*10^6*9.81*h*(n/100))/(30*24*3600*1000))//
      Power developed in MW
16
17 //Output
18 subplot (121)
19 plot(y,Q)//Graph Discharge (million m<sup>3</sup>/month) vs
      Month
20 xtitle ('Discharge (million m<sup>3</sup>/month) vs Month','
      Months', 'Discharge (million m<sup>3</sup>/month)')
21 subplot (122)
22 plot(pt,D)//Graph percentage time vs Discharge(
      million m<sup>3</sup>/month)
23 xtitle ('percentage time vs Discharge (million m<sup>3</sup>/
      month)', 'percentage time', 'Discharge (million m^3/
      month)')
24 printf ('Power developed is %3.2 f MW', Po)
```

Chapter 11

Diesel engine and Gas Turbine Power Plants

Scilab code Exa 11.1 Net increase in brake power

```
1
2 clc
3 clear
4 //Input data
5 C=3.5//Capacity in litres
6 P=13.1//Indicated power in kW/m<sup>3</sup>
7 N=3600//Speed in rpm
8 ve=82//Volumetric efficiency in percent
9 p1=1.013//Pressure in bar
10 T1=25+273//Temperature in K
11 rp=1.75//Pressure ratio
12 ie=70//Isentropic efficiency in percent
13 me=80//Mechanical efficiency in percent
14 g=1.4//Ratio of specific heats
15 R=0.287 // Gas constant in kJ/kg.K
16 Cp=1.005//Specific heat in kJ/kg.K
17
18 // Calculations
19 EC = (C/1000) / Engine capacity in m^3
```

```
20 Vs = (N/2) *EC//Swept volume in m^3
21 Vui=(ve/100)*Vs//Unsupercharged induced volume in m
      ^3/\min
22 dp=(rp*p1)//Blower delivery pressure in bar
23 T2sT1=(rp)^{(g-1)/g}/Ratio of temperatures
24 T2s = (T2sT1*T1) / Temperature in K
25 dT21=(T2s-T1)/(ie/100)//Difference in temperature in
      \mathbf{K}
26 T2=dT21+T1//Temperature in K
27 EV=(Vs*dp*T1)/(p1*T2)//Equivalent volume in m^3/min
28 iiv=EV-Vui//Increase in induced volume in m^3/min
29 iip=(P*iiv)//Increase in indicated power in kW
30 iipi=((dp-p1)*100*Vs)/60//Increase in induced power
     due to increase in induction pressure in kW
31 tiip=iip+iipi//Total increase in indicated power in
32 tibp=tiip*(me/100)//Total increase in brake power in
33 ma=(dp*100*Vs)/(60*R*T2)//Mass of air in kg/s
34 WI=(ma*Cp*(T2-T1))//Work input to heater in kW
35 Pb=(WI/(me/100))//Power required in kW
36 NI=tibp-Pb//Net increase in brake power in kW
37
38 //Output
39 printf('Net increase in brake power is %3.2f kW',NI)
```

Scilab code Exa 11.2 Temperature of air

```
1
2 clc
3 clear
4 //Input data
5 p1=0.97//Pressure in bar
6 t1=30+273//Temperature in K
7 p2=2.1//Pressure in bar
```

```
8 af=18//Air fuel ratio
9 t3=580+273//Temperature in K
10 p3=1.9//Pressure in bar
11 p4=1.06//Pressure in bar
12 iec=0.75//Isentropic efficiency of compressor
13 iet=0.85//Isentropic efficiency of turbine
14 cpa=1.01//Specific heat for air in kJ/kg.K
15 ga=1.4//Ratio of specific heats
16 cpex=1.15//Specific heat in kJ/kg.K
17 gex=1.33//Ratio of specific heats
18
19 // Calculations
20 t2s=t1*(p2/p1)^((ga-1)/ga)/Tempeature in K
21 t21=(t2s-t1)/iec//Temperature in K
22 t2=t21+t1//Temperature in K
23 T2=t2-273//Temperature in degree C
24 t3t4s = (p3/p4)^{((gex-1)/gex)/Ratio of temperatures}
25 t4s=(t3/t3t4s)//Temperature in K
26 \text{ t4=t3-((t3-t4s)*iet)//Temperature in } K
27 T4=t4-273//Temperature in degree C
28 mp = (((cpex*(1+(1/af))*(t3-t4))-(cpa*(t2-t1)))/(cpex)
      *(1+(1/af))*(t3-t4)))*100//Percentage of
      mechanical power loss
29
30 //Output
31 printf('(a) the temperature of air leaving the
      compressor is \%3.2 \,\mathrm{f} degree C \n (b) the
      temperature of gases leaving the turbine is \%3.2 f
       degree C \n (c) the mechanical power loss in the
       turbocharger as a percentage of the power
      generated in the turbine is \%3.2 f percent', T2, T4,
     mp)
```

Scilab code Exa 11.3 Energy balance sheet

```
1
2 clc
3 clear
4 //Input data
5 a=215//Current in A
6 \text{ v=210//Voltage in V}
7 e=85//Efficiency in percent
8 q=11.8//Quantity of fuel supplied in kg/h
9 cv=43//Calorific value in MJ/kg
10 af=18//Air fuel ratio
11 w=560//Water in litres/h
12 tw=38//Temeparature in degree C
13 te=97 // Temeparature in degree C
14 cp=1.04//Specific heat in kJ/kg.K
15 ta=30//Temeparature in degree C
16 1=32//Percentage lost
17 sw=4.187//Specific heat in kJ/kg.K
18
19 // Calculations
20 P=(a*v)/1000//Power in kW
21 BP=(P/(e/100))/Brake power in kW
22 E=(q/3600)*cv*1000//Energy supplied in kW
23 mg = (q/3600) * (1+af) //Rate of gases in kg/s
24 he=(mg*cp*(te-ta))+((w/3600)*sw*tw)//Heat carried
     away by exhaust gases in kW
25 hj=(1/100)*E//Heat lost to jacket cooling water in
     kW
26 pBP=(BP/E) *100/Percentage
27 pE=(E/E)*100//Percentage
28 phe=(he/E)*100//Percenatge
29 phj=(hj/E)*100//Percenatge
30
31 // Output
32 printf('
                                        ENERGY BALANCE
     SHEET \n
                                                     (in
                     (in percent)\n 1. Brake power
     kW)
                                     \%3.2 \text{ f}
```

Scilab code Exa 11.4 Energy balance sheet

```
1
2 clc
3 clear
4 //Input data
5 t=20 // Trial time in minutes
6 NL=680//Net brake load in N
7 mep=3//Mean effective pressure in bar
8 N=360/Speed in rpm
9 Fc=1.56//Fuel consumption in kg
10 cw=160//Cooling water in kg
11 Tw=32//Temperature of water at inlet in degree C
12 Wo=57//Water outlet temperature in degree C
13 = 30 // Air in kg
14 Ta=27//Room temperature in degree C
15 Te=310//Exhaust gas temperature in degree C
16 d=210/Bore in mm
17 1=290 // Stroke in mm
18 bd=1//Brake diameter in m
19 cv=44 // Calorific value in MJ/kg
20 st=1.3//Steam formed in kg per kg fuel in the
     exhaust
21 cp=2.093//Specific heat of steam in exhaust in kJ/kg
     . K
```

```
22 cpx=1.01//Specific heat of dry exhaust gases in kJ/
      kg.K
23 cpw=4.187 // Specific heat of water in kJ/kg.K
24
25 // Calculations
26 \text{ ip} = (\text{mep} * 100 * (1/1000) * (3.14/4) * (d/1000) ^2 * N) / 60 / /
      Indicated Power in kW
27 \text{ bp} = ((2*3.14*N*(NL*(1/2)))/60)/1000//Brake power in
28 nm=(bp/ip)*100//Mechanical efficiency in percent
29 qs=(Fc*cv*10^3)//Heat supplied in kJ
30 qip=(ip*t*60)//Heat equivalent of ip in kJ
31 qcw=(cw*cpw*(Wo-Tw))//Heat carried away by cooling
      water in kJ
32 tm=(Fc*a)//Toatl mass of exhaust gas in kg
33 ms=(st*Fc)//Mass of steam formed in kg
34 mde=(tm-ms)//Mass of dry exhaust gas in kg
35 Ed=(mde*cpx*(Te-Ta))//Energy carried away by dry
      exhaust gases in kJ
36 Es=(ms*((cpw*(100-Ta))+2257.9+(cp*(Te-100))))/
      Energy carried away by steam in kJ
  TE=(Ed+Es)//Total energy carried away by exhaust
37
      gases in kJ
38 ue=(qs-(qip+qcw+TE))//Unaccounted energy in kJ
39 pqip=(qip/qs)*100//Percentage
40 pqcw=(qcw/qs)*100//Percentage
41 pTE=(TE/qs)*100/Percentage
42 pue=(ue/qs)*100//Percentage
43
44 //Output
45 printf ('Indicated power is %3.2 f kW \n Brake power
      is \%3.3 \text{ f kW } \setminus n \setminus n
      ENERGY BALANCE SHEET \n
                          (in percent)\n 1. Energy
      in kJ)
                                               \%3.0 \text{ f}
      equivalent in ip
                        %3.2 f \n 2. Energy carried away
                                \%3.0 \text{ f}
                                                         \%3
      by cooling water
```

```
.2 f \n 3. Energy carried away by exhaust gases \%3.0\,\mathrm{f} \%3.2\,\mathrm{f} \n 4. Unaccounted for energy loss \%3.0\,\mathrm{f} Total \%3.0\,\mathrm{f} \%3.2\,\mathrm{f} \n Total \%3.0\,\mathrm{f} \%3.2\,\mathrm{f} \n,pTE,ue,pue,qs,(pqip+pqcw+pTE+pue))
```

Scilab code Exa 11.5 Blade angles

```
1
2 clc
3 clear
4 //Input data
5 Vbm=360//Blade velocity in m/s
6 b1=20//Blade angle at inlet in degrees
7 a2=b1//Angle in degrees
8 b2=52//Blade angle at exit in degrees
9 a1=b2//Angle in degrees
10 R=50//Degree of reaction in percent
11 dm=0.45//Mean diameter of the blade in m
12 bh=0.08//Mean blade height in m
13
14 // Calculations
15 Vf = (Vbm/(tand(b2)-tand(b1)))/(Velocity in m/s)
16 rt=(dm/2)+(bh/2)/Mean radius in m
17 Vbt=(Vbm*(rt/(dm/2)))//Velocity in m/s
18 Vw1m=Vf*tand(a1)/Velocity in m/s
19 Vw1t = (Vw1m*((dm/2)/rt))/Velocity in m/s
20 dVw1 = (Vf*(tand(b1)+tand(b2))*Vbm)/Vbt//Velocity in m
21 rr=(dm/2)-(bh/2)/Radius in m
22 Vbr = (Vbm * (rr/(dm/2))) / Velocity in m/s
23 Vw1r = (Vw1m*((dm/2)/rr))/Velocity in m/s
24 \text{ Vr2=Vf/cosd(b2)//Velocity in m/s}
```

```
25 dVwr = ((Vw1m + ((Vr2*sind(b2)) - Vbm))*Vbm)/Vbr//Velocity
       in m/s
26 alr=atand(Vw1r/Vf)//Angle in degrees
27 a2r=atand((dVwr-Vw1r)/Vf)//Angle in degrees
28 b1r=atand((Vw1r-Vbr)/Vf)//Angle in degrees
29 b2r=atand((Vbr+(Vf*tand(a2r)))/Vf)//Angle in degrees
30 alt=atand(Vwlt/Vf)//Angle in degrees
31 a2t=atand((dVw1-Vw1t)/Vf)//Angle in degrees
32 b1t=atand((Vw1t-Vbt)/Vf)//Angle in degrees
33 b2t=atand((Vbt+(Vf*tand(a2t)))/Vf)//Angle in degrees
34 \text{ Rt} = ((Vf*(tand(b2t)-tand(b1t)))/(2*Vbt))*100//Degree
      of reaction at the tip in percent
  Rr = ((Vf*(tand(b2r)-tand(b1r)))/(2*Vbr))*100//Degree
      of reaction at the root in percent
36
37 // Output
38 printf('(a) The flow velocity is \%3.0 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n} (b) The
       blade angles at the tip are : \n Fixed blades (
      root) are %3.2f degrees and %3.2f degrees \n
      Moving blades (root) are %3.2f degrees and %3.2f
      degrees \n Fixed blades (tip) are \%3.2f degrees
      and %3.2f degrees \n Moving blades (tip) are %3.2
      f degrees and %3.2f degrees \n (c) The degree of
      reaction at : \n the tip is \%3.0 \, f percent \n the
      root is %3.0 f percent', Vf, a1r, a2r, b1r, b2r, a1t, a2t
      ,b1t,b2t,Rt,Rr)
```

Scilab code Exa 11.6 Impeller tip diameter

```
1
2 clc
3 clear
4 //Input data
5 N=16000//Speed in rpm
6 T1=17+273//Temperature in K
```

```
7 rp=4//Pressure ratio
8 in=82//Isentropic efficiency in percent
9 s=0.85//Slip factor
10 a=20 // Angle in degrees
11 d=200//Diameter in mm
12 V=120//Velocity in m/s
13 cp=1.005//Specific heat in kJ/kg.K
14 g=1.4//Ratio of specific heats
15
16 // Calculations
17 T2sT1=(rp)^{(g-1)/g}/Temperature ratio
18 T2s=T1*T2sT1//Temeprature in K
19 dTs=(T2s-T1)//Temperature difference in K
20 \text{ dT=dTs/(in/100)}//\text{Temperature difference in K}
21 Wc=(cp*dT)//Power input in kJ/kg
22 Vb1 = (3.14*(d/1000)*N)/60//Velocity in m/s
23 Vw1=(V*sind(a))//Pre-whirl velocity in m/s
24 Vb2=sqrt(((Wc*1000)+(Vb1*Vw1))/s)//Velocity in m/s
d2 = ((Vb2*60)/(3.14*N))*1000//Tip diameter in mm
26
27 // Output
28 printf('Impeller tip diameter is \%3.0 f mm', d2)
```

Scilab code Exa 11.7 Workdone factor

```
1
2 clc
3 clear
4 //Input data
5 T1=25+273//Temperature in K
6 rp=6//Pressure ratio
7 Vb=220//Mean velocity in m/s
8 b1=45//Angle in degrees
9 a2=b1//Angle in degrees
10 b2=15//Angle in degrees
```

```
11 a1=b2//Angle in degrees
12 R=50//Degree of reaction in percent
13 n=10//Number of stages
14 in=83//Isentropic efficiency in percent
15 cp=1.005//Specific heat in kJ/kg.K
16 g=1.4//Ratio of specific heats
17
18 // Calculations
19 V1=(Vb/(sind(b2)+(cosd(a1)*tand(a2))))/(Velocity in
20 V2=(V1*cosd(b2))/cosd(b1)//Velocity in m/s
21 dVw = (V2*sind(a2)) - (V1*sind(a1)) / Velocity in m/s.
      Textbook answer is wrong. Correct answer is 127 m
      /s
22 T2sT1=rp^{(g-1)/g}/Temperature ratio
23 T2s = (T2sT1*T1) / Temperature in K
24 dTs=(T2s-T1)//Temperature difference in K
dT = (dTs/(in/100)) / Temperature difference in K
26 W=(cp*dT)//Workdone in kJ/kg
27 \text{ w} = (\text{W} * 10^3) / (\text{Vb} * \text{dVw} * \text{n}) / / \text{Work done factor}
28
29 //Output
30 printf ('Workdone factor of the compressor is \%3.2 f',
      w)
```

Scilab code Exa 11.8 Airfuel ratio

```
1
2 clc
3 clear
4 //Input data
5 p1=1//Pressure in bar
6 T1=20+273//Temperature in K
7 Tm=900+273//Maximum temperature in K
8 rp=6//Pressure ratio
```

```
9 e=0.7//Effectiveness of regenerator
10 ma=210//Rate of air flow in kg/s
11 CV = 40800 / Calorific value in kJ/kg
12 ic=0.82//Isentropic efficiencies of both the
     compressors
13 it=0.92//Isentropic efficiencies of both the turbine
14 cn=0.95//Combustion efficiency
15 mn=0.96//Mechanical efficiency
16 gn=0.95//Generator efficiency
17 cp=1.005//Specific heat of air in kJ/kg.K
18 cpg=1.08//Specific heat of gas in kJ/kg.K
19 g1=1.4//Ratio of specific heats for air
20 g=1.33//Ratio of specific heats for gas
21
22 // Calculations
23 pi=sqrt(p1*rp)//Intermediate pressure in bar
24 T2sT1=(pi/p1)^{(g1-1)/g1}/Temperature ratio
25 T2s=(T2sT1*T1)//temperature in K
26 T2=((T2s-T1)/ic)+T1//Temperature in K
27 T4s=(T1*(rp/pi)^((g1-1)/g1))/Temperature in K
28 T4=((T4s-T1)/ic)+T1//Temperature in K
29 T7s=(Tm/(rp/p1)^((g-1)/g))//Temperature in K
30 T7=Tm-(it*(Tm-T7s))//Temperature in K
31 T5 = (e*(T7-T4)) + T4//Temperature in K
32 \text{ mf} = 1/((cp*(Tm-T5))/((CV*cn)-(cp*(Tm-T5))))//Air fuel
      ratio
33 Wgt = ((1+(1/mf))*cpg*(Tm-T7))/Workdone by turbine in
      kJ/kg of air
34 Wc = (cp*((T2-T1)+(T4-T1)))/Workdone by compressor in
      kJ/kg of air
35 Wnet=(Wgt-Wc)//Net workdone in kJ/kg of air
36 Q=(CV*cn)/mf//Heat supplied in kJ/kg of air
37 ncy=(Wnet/Q)*100//Cycle efficiency in percent
38 PO=(Wnet*ma*mn*gn)/10^3//Power output in MW
39 Fc=(ma*3600*(1/mf))/Fuel consumption per hour in kg
40 SFC=(Fc/(P0*10^3))//Specific fuel consumption in kg/
     kW. h
41
```

42 // Output

43 printf('(a) the air fuel ratio is %3.2 f \n (b) the cycle efficiency is %3.1 f percent \n (c) the power supplied by the plant is %3.0 f MW \n (d) the specific fuel consumption of the plant is %3.3 f kg/kW.h and the fuel consumption per hour is %3.2 f kg', mf, ncy, PO, SFC, Fc)

Chapter 12

Flywheel Energy storage

Scilab code Exa 12.1 Compressed air temperature

```
1
2 clc
3 clear
4 //Input data
5 V=64000//Volume in m^3
6 Q=8300//Discharge in m^3/hr
7 p1=1//Pressure in bar
8 T1=20+273//Temperature in K
9 p2=100//Pressure in bar
10 pn=70//Polytropic efficiency in percent
11 pt=60//Peaking turbine efficiency in percent
12 g=1.4//Ratio of specific heats
13 cp=1.005//Specific heat in kJ/kg.K
14 R=0.287 // Gas constant in kJ/kg.K
15
16 // Calculations
17 T2sT1=(p2/p1)^((g-1)/g)/Temperature ratio
18 T2s = (T1 * T2sT1) / Temperature in K
19 T21=(T2s-T1)/(pn/100)//Difference in Temperatures in
20 T2=(T21+T1)-273//Temperature in degree C
```

```
v=(R*T1)/(p2*100)//Specific volume in m^3/kg
mf=(Q/(v*3600))//Mass flow rate in kg/s
E=(mf*cp*T21)/1000//Rate of energy storage in MW
t=(V/Q)//Storage time in hour
tE=(E*t)//Total energy storage in MWh
Ed=(tE*(pt/100))//Total energy delivered by the peaking turbine in MWh

//Output
printf('(a) the compressed sir temperature is %3.0f degree C \n (b) the storage time is %3.2f hour \n (c) the total energy storage is %3.0 f MWh \n (d) the total energy delivered by the peaking turbine is %3.0 f MWh', T2,t,tE,Ed)
```

Scilab code Exa 12.2 Storage time

```
1
2 clc
3 clear
4 //Input data
5 V = 175000 / Volume in m^3
6 d=4//Diameter in m
7 U=1.5//Overall heat transfer coefficient in W/m<sup>2</sup>.K
8 p2=2//Pressure in bar
9 p1=20//Pressure in bar
10 Ta=20//Ambient temperature in degree C
11 cp=4.35//Specific heta of water in kJ/kg.K
12 e=96 // Efficiency in percent
13 ppe=25//Peaking plant efficiency in percent
14
15 // Calculations
16 //At 20 bar
17 T1=212.37//Saturation temperature in degree C
18 hf1=908.5//Enthalpy in kJ/kg
```

```
19 vf1=0.0011766//Specific volume in m^3/kg
20 //At 2 bar
21 T2=120.23//Saturation temperature in degree C
22 hf2=504.8//Enthalpy in kJ/kg
23 vf2=0.0010605//Specific volume in m^3/kg
24 ad=(1/2)*((1/vf1)+(1/vf2))/Average density of water
       in kg/m^3
25 tc=(d*ad*cp*1000)/(4*U*3600)//Time constant in h
26 \text{ ts} = (\log(1/(1-((e/100)))/((T1-Ta)/(T1-T2))))))*tc
      //Storage time in h
27 m=(V/vf1)//Mass of water needed in kg
28 E=(m*(hf1-hf2))/(3600*10^3)//Total energy stored in
29 Ed=(E*(e/100)*(ppe/100))/\frac{\text{Energy delivered in MWh}}{\text{Energy delivered}}
30
31 // Output
32 printf('(a) the storage time is \%3.3 \,\mathrm{f} h \n (b) the
      total energy stored in the accumulator is \%3.1f
     MWh \n (c) the total energy that can be delivered
       by the peaking turbine is \%3.2 f MWh', ts, E, Ed)
```