Fermat + Coq: FLT from Global Normalization at Base 2 (GN(2))

We present a global-normalization (explicit-base) reading of G. L. Dedenko's manuscript. The single hypothesis is the $\mathbf{GN(2)}$ postulate: for any putative counterexample in natural numbers to Fermat's equation

$$x^n + y^n = z^n \qquad (n > 2),$$

one must have the coverage equality

$$2^n = 2 \cdot n.$$

Together with the elementary growth fact $2^n > 2 \cdot n$ for all $n \ge 3$, this immediately yields a contradiction, hence Fermat's Last Theorem (FLT).

What is formalized in Coq.

• GN(2) is encoded directly over naturals:

$$\forall n > 2, x, y, z \in \mathbb{N}, \quad x^n + y^n = z^n \Rightarrow 2^n = 2 \cdot n.$$

- Using elementary growth lemmas, Coq proves that $2^n = 2 \cdot n$ forces $n \in \{1,2\}$ (pow_eq_linear_positive); thus no solutions exist for n > 2 (FLT_from_GN2).
- A convenient real "wrapper" uses the predicate pow 2 n = 2 * INR n and bridge lemmas (covers_two_nat, INR_two_mul_nat) to recover $2^n = 2 \cdot n$ over N (GN2_R_implies_GN2). This yields fermat_last_theorem_from_GN2_R.
- Parity constraints stemming from the standard parametrization $(z := m^n + p^n, x := m^n p^n)$ are proved separately for completeness (sum_diff_from_parameters_R/Z, parity_condition_Z) and are *not* needed in the final step.

Motivation vs. proof. The discussion of $f(n) = (2n)^{1/n}$ motivates the *form* of the normalization (explicit base 2), but it is *not* used inside the core proof of the conditional implication $GN(2) \Rightarrow FLT$.

Repository (code and PDFs): github.com/Gendalf71/FLT-Coq

Figure 1: Formal pipeline: $GN(2) \Rightarrow FLT$ (Coq).

The package includes:

- FLT.v: Coq development (no Admitted); proofs compile.
- A reasoning flowchart (figure above).
- Explanatory PDFs (EN/RU), updated to the GN(2) reading.

Further reading:

- Reconstruction of Fermat's Proof (ResearchGate) RU
- Formalization & discussion EN