Name: Prathibha Pillai

Inventory management system <u>Project</u>

Database management system

What is container inventory management?

Container inventory and Management is an act of keeping track of each container a company (container lines) owns in various. It involves maintaining a list of number of containers at various location, their occupancy, their conditions etc. Container management system is a vital aspect of running a successful Container logistics operation facilitating best-in-class container utilization and lowest cost operations.

Container inventory is essential to make informed decisions and planning of the utilization of each container in the most cost-effective manner, as the constant utilization and movement of these containers is vital to maintain a profitable business.

So, Container Management System is not only just a tracking system; it is a full function solution that addresses all container inventory management, movements, and maintenance.

Objective of this project

- This project is about inventory management
- We can keep track of the whereabouts of the containers
- We can closely administer the utilization of each container and ensure maximum optimization is maintained
- We can keep track of maintenance requirement of each container
- We can see how many containers each location has, and in which locations the containers are available for utilization
- Data on which container are to follow FIFO or LIFO is also mentioned to make informed decisions

Overview of the database

Structure of the tables

Container information (cont_info)

Syntax;

```
    create table cont_info (
        sr_no int,
        cont_no varchar (11) PRIMARY KEY,
        cont_type varchar(5) not null,
        FIFO char (3) not null,
        LIFO char (3) not null,
        DAMAGE char (10)
        );
```

describe cont_info;

Output;

Container status (cont_status)

Syntax;

```
    create table cont_status(
        sr_no int unique key,
        cont_no varchar (11) PRIMARY KEY,
        cont_type varchar(5) not null,
        damage varchar(15)
        );
```

describe cont_status;

Output;

Location

Syntax;

- create table location(
 sr_no int unique key,
 cont_no varchar (11) PRIMARY KEY,
 cont_type varchar(5) not null,
 location char(10) not null
);
- describe location;

Output;

Bookings

Syntax;

create table bookings(
 sr_no int unique key,
 cont_no varchar (11) PRIMARY KEY,
 cont_type varchar(5) not null,
 booked_for char(10) not null,
 d_date int(10) date

);

• **describe** bookings;

Output;

Changes made to the structure and records of the tables

- The damage column in cont_info table is not required as we have a separate table to asses the container's condition. So, to drop the column the following query is used;
 - alter table cont_info drop damage;
- To add a foreign key after the table has been created
 - alter table bookings add foreign key (sr_no) references location (sr_no);
- To change the structure of a column;
 - alter table bookings modify booked_for char(10) default null;
 - alter table cont_status alter damage set default "no damage";
- To update the records in a table;
 - update cont_status set damage="under repair" where sr_no=
 10;
- use of various operators;
 - select cont_no, sr_no, cont_type from cont_info where cont_type="40'DV";
 - select sr_no, cont_no, cont_type from location where
 cont_type="40'DV" and location= "Bahrain"; (and operator)
 - select sr_no, cont_no, cont_type from bookings where booked_for="Dammam" or booked_for="Jebel Ali"; (or operator)
 - select * from bookings where d_date between '2023-08-25'
 and '2023-08-30'; (range operator)
- To count records in a table;
 - select count(*) from cont_info;
 - select count(cont_type) from cont_info group by cont_type; (group by)

JOINS

✓ **Inner join** applied on tables cont_info and cont_status

Syntax;

select * from cont_info join cont_status on cont_info.cont_no=
cont_status.cont_no;

Output;

✓ **Right join** applied on location and bookings tables to fetch the current location and for which location the containers are booked for with their departure dates

Syntax;

select lo.cont_no, lo.cont_type, lo.location, bo.booked_for, bo.d_date **from** location lo

right join bookings bo on lo.sr no = bo.sr no;

✓ **Left join** applied on cont_info and cont_status to fetch details on damaged containers and which containers come under FIFO or LIFO inventory valuation method

Syntax;

select ci.cont_no, ci.cont_type, ci.FIFO, ci.LIFO, cs.damage **from** cont_info ci **left join** cont_status cs **on** ci.sr_no = cs.sr_no;

output; Export: Wrap Cell Content: \$\overline{A}\$ cont_no cont_type **FIFO** LIFO damage BEAU5223410 40'DV YES NO Under repair BSIU9424732 40'DV YES NO Under repair MRKU2944132 20'DV NO YES MRKU3622418 20'DV YES NO MRKU4597080 20'DV YES NO MRKU4929184 40'DV YES NO NO MRKU4976376 20'DV YES under repair cont status 117 Result 132 ×

✓ **Left outer join** applied on location and bookings to fetch the date at which each container would depart from its respective current location

Syntax;

select location.cont_no, location.cont_type, location.location, bookings.d_date **from** location **left outer join** bookings **on** location.sr_no=bookings.sr_no **order by** location.cont_no;

✓ **Right outer join** is used to fetch the current location and location for with the container is booked for

Syntax;

select location.cont_no, location.cont_type, location.location, bookings.booked_for

from location **right outer join** bookings **on** location.sr_no=bookings.sr_no **order by** location.cont_no;

output;

✓ **Cross join** is used on location and bookings to fetch all the records in location and departure date from respective tables

Syntax;

select location.cont_no, location.location, bookings.d_date **from** location **cross join** bookings;

Views

• Views table high cube created to display all the 40 high cube containers in circulation

Syntax;

create view high_cube as select cont_type, location from location where
cont_type="40'dv";

select * from high_cube;

output;

 Views table FIFO created to display all the containers handled in FIFO method

Syntax;

create view FIFO as select sr_no, cont_no, cont_type from cont_info
where FIFO='yes';

select * from FIFO;

 View table movement created with tables location and bookings to understand the movement of the containers

Syntax;

create view movement **as select** location.sr_no, location.cont_no, location.cont_type, location.location, bookings.booked_for, d_date **from** location, bookings;

select * from movement;

Sub-query

• Sub-query to fetch 20'DV containers departing between 29-08-2023 and 02-09-2023

Syntax;

select * **from** bookings **where** sr_no **in**(select sr_no **from** location where cont_type="20'DV") **having** d_date **between** '2023-08-29' **and** '2023-09-02';

 Sub-query to fetch 40'dv containers that are under repair from tables cont_info and cont_status

Syntax;

select * **from** cont_status where sr_no **in**(select sr_no from cont_info **where** cont_type="40'DV") **having** damage='under repair';

