CAIXA SEGURADORA

Visual Age to .NET Migration

Análise Abrangente & Planejamento

Cliente: Caixa Seguradora

Sistema Legado: IBM VisualAge EZEE SIWEA

Tecnologia Alvo: .NET 9 + React 19 **Investimento Total:** R\$ 222.812,50

Pontos de Função: 225 AFP

Prazo: 12 semanas **Data:** 23/10/2025

1. Sumário Executivo

1.1 Contexto do Projeto

Este documento apresenta a análise abrangente e o planejamento detalhado para a migração do sistema legado IBM VisualAge EZEE Claims Indemnity Payment Authorization System (SIWEA) para uma arquitetura moderna baseada em .NET 9 e React 19. O sistema SIWEA atualmente processa solicitações de autorização de pagamento de sinistros de seguros, integrando-se com múltiplos sistemas externos (CNOUA, SIPUA, SIMDA) e gerenciando 13 entidades de banco de dados legadas.

1.2 Drivers de Negócio

Driver	Impacto Esperado
Redução de Custos de Mainframe	R\$ 30.000/ano em licenciamento IBM
Melhoria de Produtividade	20% ganho de eficiência com ferramentas moderna
Time-to-Market	Ciclo de desenvolvimento reduzido de 6 para 2 me
Redução de Débito Técnico	Código moderno e manutenível com Clean Archite

1.3 Abordagem da Solução

Backend: ASP.NET Core 9.0 com Clean Architecture (API, Core, Infrastructure)

Frontend: React 19 com TypeScript, Vite, React Router

Banco de Dados: Entity Framework Core 9 com abordagem database-first

Integrações: Manutenção de contratos SOAP existentes + novos endpoints REST

Cloud: Deployment em Azure App Service com SQL Database

Metodologia: MIGRAI (Modernization, Intelligence, Gradual, Resilience, Automation,

Integration)

4. Análise de Pontos de Função

Esta análise utiliza a metodologia IFPUG 4.3.1 (International Function Point Users Group) para calcular os Pontos de Função Ajustados (AFP) do projeto de migração. A metodologia considera cinco tipos de componentes funcionais e aplica fatores de ajuste baseados em 14 Características Gerais do Sistema (GSC).

4.1 Breakdown de Componentes

Tipo	Quantidade	Complexidade	FP Unitário	FP Total
External Inputs (EI)	1	Média	4	4
External Outputs (EO)	0	-	5	0
External Inquiries (EQ)	3	Média	4	12
Internal Logical Files (ILF)	17	Média	10	170
External Interface Files (EIF)	3	Baixa	7	21
			UFP Total	199

4.2 Fator de Ajuste de Valor (VAF)

O VAF é calculado com base em 14 Características Gerais do Sistema, cada uma pontuada de 0 a 5 conforme o grau de influência:

Fórmula: $VAF = 0.65 + (0.01 \times soma dos graus de influência)$

Soma GSC: 48 pontos

VAF Calculado: $0.65 + (0.01 \times 48) = 1.13$

4.3 Pontos de Função Ajustados

AFP = UFP × VAF AFP = 199 × 1.13 AFP = 225 pontos

5. Linha do Tempo do Projeto

O projeto está estruturado em 12 semanas divididas em 6 fases de desenvolvimento (8 semanas) e 1 fase de homologação (4 semanas), com 8 milestones principais.

Fase	Semanas	Duração	Deliverables
Fase 0: Research	Semana 1	5 dias	Decisões de arquitetura, research.md
Fase 1: Foundation	Semanas 2-3	10 dias	Scaffolding, DbContext, repositories
Fase 2: Core Logic	Semanas 4-5	10 dias	Services, 42 business rules, testes
Fase 3: API Layer	Semana 6	5 dias	Controllers REST/SOAP, external clients
Fase 4: Frontend	Semana 7	5 dias	React components, Site.css integration
Fase 5: Testing	Semana 8	5 dias	E2E, parity tests, performance
Fase 6: Homologação	Semanas 9-12	20 dias	UAT, parallel operation, go-live

6. Metodologia MIGRAI

MIGRAI é um framework proprietário para modernização de sistemas legados assistida por Inteligência Artificial, estruturado em seis princípios fundamentais.

6.1 Modernization

Migração para stack tecnológico moderno (.NET 9, React 19, Azure cloud) mantendo 100% da lógica de negócio.

6.2 Intelligence

Uso de LLMs (Claude 3.5 Sonnet) para geração automática de código ESQL \rightarrow C# com 95%+ de acurácia.

6.3 Gradual Migration

Rollout faseado por user story (P1→P6), feature toggles, operação paralela mínima de 2 semanas.

6.4 Resilience

Políticas Polly com retry exponencial, circuit breakers, fallback mechanisms, tratamento robusto de exceções.

6.5 Automation

Pipeline CI/CD GitHub Actions, testes automatizados (unit/integration/E2E), deployment automatizado.

6.6 Integration

Manutenção de contratos SOAP legados, novos endpoints REST, zero mudanças no schema de banco de dados.

7. Orçamento e Análise de ROI

7.1 Breakdown de Custos

Categoria	Cálculo	Valor (R\$)
Desenvolvimento	225 AFP x R\$ 750/FP	168.750,00
Infraestrutura Azure	App Service + SQL + Monitoring	15.500,00
Treinamento	MIGRAI + .NET 9 para equipe	5.000,00
Licenças & Ferramentas	Visual Studio + Azure DevOps	4.500,00
Subtotal		193.750,00
Contingência (15%)	15% do subtotal	29.062,50
INVESTIMENTO TOTAL		222.812,50

7.2 Projeção de ROI

Economia Anual Projetada:

• Redução de custos de mainframe: R\$ 30.000/ano

• Ganho de produtividade (20%): R\$ 40.000/ano

• Redução de custos de treinamento: R\$ 15.000/ano

• Proteção de receita (99.9% SLA): R\$ 10.000/ano

Total Economia Anual: R\$ 95.000/ano

Período de Payback: R\$ 222.812,50 ÷ R\$ 95.000 = 2.3 anos

Valor Líquido em 5 anos: (R\$ 95.000×5) - R\$ 222.812,50 =R\$ 252.187,50

10. Apêndices

Apêndice A: Glossário de Termos Técnicos

Termo	Definição
AFP	Adjusted Function Points - Pontos de Função Ajustados
CICS	Customer Information Control System - Plataforma IBM mainframe
Clean Architecture	Padrão arquitetural com separação em camadas (API, Core, Infrastructure)
ESQL	Extended SQL - Linguagem para stored procedures IBM
IFPUG	International Function Point Users Group - Metodologia de contagem de PF
MIGRAI	Framework para modernização de sistemas legados com IA
SIWEA	Sistema de Autorização de Pagamento de Indenizações de Sinistros
UFP	Unadjusted Function Points - Pontos de Função Não Ajustados
VAF	Value Adjustment Factor - Fator de Ajuste de Valor

Apêndice D: Histórico de Versões

Ve	ersão	Data	Autor	Alterações
1.0)	23/10/2025	Equipe MIGRAI	Versão inicial do documento