Exercise Abbott 4.5.2: Provide an example of each of the following, or explain why the request is impossible,

1. A continuous function defined on an open interval with range equal to a closed interval

Solution:

Suppose a function sin(x) defined on the open interval $(0, 2\pi)$. Let $\epsilon > 0$. Now consider some $c \in (0, 2\pi)$ and let $\delta = \epsilon$. then for all $x \in (0, 2\pi)$, $|x - c| < \delta$ we get that,

$$|sin(x) - sin(c)| = |2cos(\frac{x+c}{2})sin(\frac{x+c}{2})|$$

$$\leq 2(1)|sin(\frac{x+c}{2})|$$

$$\leq 2(1)|\frac{x+c}{2}|$$

$$\leq |x+c|$$

$$< \delta$$

$$< \epsilon.$$

Now note that the range of sin(x) on the interval $(0, 2\pi)$ is [-1, 1] a closed interval.

2. A continuous function defined on a closed interval with a range equal to an open interval.

Solution:

Such a request is impossible. Note that a closed interval is a compact set, by Theorem 4.4.1 (Preservation of Compact Sets) we know that if the domain of a continuous function is compact then so is the range.

3. A continuous function defined on an open interval with range equal to an unbounded closed set different from \mathbb{R} .

Solution:

Consider the function f(x) = |tan(x)| defined by $f: (-\frac{pi}{2}, \frac{pi}{2}) \to \mathbb{R}$. Note that the range of f is $[0, \infty)$ which is an unbounded closed set different from \mathbb{R} .

4. A continuous function defined on all of $\mathbb R$ with a range equal to $\mathbb Q$

Solution:

Such a request is impossible. Suppose for the sake of contradiction that there exists a function f defined on all \mathbb{R} such that the range of f was equal to \mathbb{Q} . Consider some set $K \subseteq \mathbb{R}$ such that K = [a,b]. By Theorem 4.4.1 f(K) = [f(a), f(b)]. By the density of \mathbb{I} in \mathbb{R} there exists some $i \in \mathbb{I}$ such that $i \in f(K)$. Thus the range of f is not equal to \mathbb{Q} .

Exercise Abbott 4.5.5 (b): You may assume that you have found a sequence of nested intervals $I_k = [a_k, b_k]$ with $f(a_k) < 0$ and $f(b_k) \ge 0$ and $|I_{k+1}| = |I_k|/2$, where $|\cdot|$ denotes the length of the interval.

For those of you in Numerical Analysis, this proof of the IVT mirrors the bisection method for finding roots!

Proof. Consider the case where L = 0 and we suppose that f(a) < 0 < f(b). As described in the text we have constructed a series of nested intervals $I_k = [a_k, b_k]$ with $f(a_k) < 0$ and $f(b_k) \ge 0$ and $|I_{k+1}| = |I_k|/2$. By the Nested Interval Property we know that,

$$\bigcap_{n=0}^{\infty} I_n \neq \emptyset$$

Let $c \in \bigcap_{n=0}^{\infty} I_n$. Also note that by the NIP that the sequences $a_k \to c$, $b_k \to c$. Since f is continuous by the sequential criteria for continuity we know that $f(a_k) \to f(c)$ and $f(b_k) \to f(c)$. Recall that by the construction of our intervals I_k the inequality,

$$f(a_k) < 0 \le f(b_k),$$

holds for all $k \in \mathbb{N}$. Finally by the squeeze theorem we get that

$$f(c) \le 0 \le f(c)$$
,

and so f(c) = 0.

Exercise Abbott 4.4.3: Show that $f(x) = 1/x^2$ is uniformly continuous on the set $[1, \infty)$ but not on the set [0, 1]

Proof. Consider some function on $f:[1,\infty)\to\mathbb{R}$ defined by $f(x)=1/x^2$ and let $c\in[1,\infty)$. Consider the following,

$$|f(x) - f(c)| = \left| \frac{1}{x^2} - \frac{1}{c^2} \right| = \left| \frac{x^2 - c^2}{x^2 c^2} \right| = \frac{(x+c)|x-c|}{x^2 c^2}.$$

Note that on the domain of $[1, \infty)$, $\frac{(x+c)}{x^2c^2}$ is bounded above by 2 which gives us that,

$$|f(x) - f(c)| \le 2|x - c|.$$

Let $\epsilon > 0$. Choose $\delta = \epsilon/2$. Then, $|x - c| < \delta$ implies,

$$|f(x) - f(c)| \le 2|x - c| < 2\frac{\epsilon}{2} = \epsilon.$$

Proof. Consider some function on $f:(0,1] \to \mathbb{R}$ defined by $f(x) = 1/x^2$. Consider the sequences $x_n, y_n \in (0,1]$ where $x_n = \frac{1}{n}$ and $y_n = \frac{1}{n^2} - \frac{1}{n}$. Now consider the following sequence,

$$|x_n - y_n| = \frac{1}{n} - (\frac{1}{n^2} - \frac{1}{n}) = \frac{1}{n^2}.$$

Note that $|x_n - y_n| \to 0$. Now consider the function limit

$$|f(x_n) - f(y_n)| = \left| \frac{1}{\frac{1}{n^2}} - \frac{1}{(\frac{1}{n^2} - \frac{1}{n})^2} \right|$$

$$= \left| \frac{1}{\frac{1}{n^2}} - \frac{1}{\frac{1}{n^4} - \frac{2}{n^3} + \frac{1}{n^2}} \right|$$

$$= \left| n^2 - (n^4 - \frac{n^3}{2} + n^2) \right|$$

$$= \left| -n^4 + \frac{n^3}{2} \right|.$$

Clearly this limit is divergent, note that $|f(x_n) - f(y_n)| \ge \frac{1}{2}$ for all $n \ge 1$. Thus by the Theorem 4.4.5 (Sequential Criterion for Absence of Uniform Continuity) we know that f is not uniformly continuous on (0, 1]

Exercise Abbott 4.2.10: Introductory calculus courses typically refer to the right-hand limit of a function as the limit obtained by "letting x approach a form the right-hand side."

1. Give a proper definition in the style of Definition 4.2.1 for the right-hand and left-hand limit statements,

$$\lim_{x \to a^+} f(x) = L$$

$$\lim_{x \to a^{-}} f(x) = L$$

Solution:

Let $f: A \to \mathbb{R}$, and let c be a limit point of the domain A. We say that $\lim_{x\to a^+} f(x) =$

L provided that , for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < c - x < \delta$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

Similarly we sat that $\lim_{x\to a^-} f(x) = L$ provided that , for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < x - c < \delta$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

Prove that $\lim_{x\to a} f(x) = L$ if and only if both right and left-hand limits equal L

Proof. Suppose a function $f: A \to \mathbb{R}$ with the property that $\lim_{x\to a} f(x) = L$. By the definition of the Functional Limit we know that for all $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $0 < |x - c| < \delta$ we get that $|f(x) - L| < \epsilon$. Consider the case where x < c then we get the inequality $0 < x - c < \delta$ and therefore by definition $\lim_{x\to a^-} f(x) = L$. Now consider the case where x > c we get the inequality $0 < c - x < \delta$ and therefore by definition $\lim_{x\to a^+} f(x) = L$.

Suppose a function $f: A \to \mathbb{R}$ with the property that $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$. By definition this gives us that for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < c - x < \delta$ or $0 < x - c < \delta$ it follows that $|f(x) - L| < \epsilon$. Note that $0 < c - x < \delta$ or $0 < x - c < \delta$ implies that $0 < |x - c| < \delta$ thus by definition $\lim_{x \to a} f(x) = L$.