Nom: Correcteur: Note:

Soit $A\subset\mathbb{R}$ non vide et majoré. Soit $a\in\mathbb{R}$. Montrer la caractérisation de la borne supérieure :

$$a = \sup(A) \Leftrightarrow ((\forall x \in A, \ x \leqslant a) \ \text{et} \ (\forall \varepsilon > 0, \ \exists x \in A, \ a - \varepsilon < x)).$$

Énoncé du théorème de la division euclidienne.

Soit $(a,b) \in \mathbb{Z}^2 \setminus \{(0,0)\}$, soit d = PGCD(a,b) et $a',b' \in \mathbb{Z}$ vérifiant a = da' et b = db'. Énoncer le théorème de Bézout sur le couple (a,b). On donnera les deux versions. Que peut-on dire sur a' et b'? Le démontrer en utilisant le théorème de Bézout.

Donner les formules trigonométriques suivantes (pour $x, y, a, b \in \mathbb{R}$ tels que $\tan(a)$, $\tan(b)$ et $\tan(a+b)$ existent).

$$\tan(a+b) =$$

$$\cos(x) + \cos(y) =$$

$$\sin\left(\frac{\pi}{2} + x\right) =$$