Movement Control and Obstacle Avoidance of Hexapod (Group-2)

Naga Sreenivas M(10305079)(Project Leader) Krishna Teja V(10305029) Nikhil M(10305032)

Problem Statement

- Design of esterel interface for motion of Hexapod
- Hexabot detects an obstacle with proximity sensors and moves accordingly to avoid it.
- Requirements:
 - Proximity sensors
 - Hexapod

Final System

 We design an esterel interface for two levels of abstraction:

- Bot level abstraction
- Motor level abstraction

Final System(contd..)

- We design an esterel interface for Variety of Input and output signals like
 - FRONT_IR_VALUE(integer)
 - FRONT_LEFT_SHARP_VALUE
 - BUZZER_ON
 - LCD_DISPLAY_1
 - MOTOR_[ij](integer)
 - ROTATE_RIGHT(integer)
 - SERVO_CALIBARATION, etc,.

Final System(contd..)

- We write an esterel code for hexabot to detect obstacles and move accordingly to avoid them in **bot level abstraction**.
- Another eseterel code for forward motion and reverse motion of hexabot in motor level abstraction.

Challenges

- Uneven legs of Hexapod
- Size of obstacle
- Power
- Interruption of legs
- Distance of obstacle
- Controlling all motors

Test Data

- Testing the hexapod with different sized obstacles.
- Testing with multiple obstacles
 - At different places
 - Adjacent to each other
- Designed an arena to test all possible motions of hexabot

Future Scope

- Reusable Interface
- Can be used directly in places where bot needs to avoid obstacles automatically.

Thank You:)

