Data Shunt: Collaboration of Small and Large Models for Lower Costs and Better Performance

Dong Chen¹, Yueting Zhuang^{1,*}, Shuo Zhang¹, Jinfeng Liu², Su Dong², Siliang Tang¹

¹Zhejiang University, ²Ant Group

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Xincao Xu

Shenzhen Institute for Advanced Study, UESTC

September 5, 2024

Yueting Zhuang Professor | Doctoral supervisor Former Dean of College of CS Zhejiang University

Research Interests

- Artificial Intelligence
- Cross-media Computing
- Multimedia Retrieval

Awards and Honors

- Distinguished Young Scholars
- "Chang Jiang Scholars Program" Professor
- Fellow of Chinese Association for Artificial Intelligence (CAAI)
- Fellow of China Society of Image and Graphics

- Introduction
- Methodology
- **Experiments**
- Conclusion

- Introduction

Advantages of Pretrained Large Models (PLMs)

Growing attention on PLMs due to their versatility across tasks

- Outstanding Performance: LLMs like GPT show exceptional ability in text-related tasks
- Multimodal Capabilities: Models like Flamingo and BLIP-2 expand LLMs to handle vision tasks
- Widespread Applications: Models like ChatGPT are transforming fields like coding, education, and healthcare

Picture Source: Yang, Jingfeng, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. "Harnessing the power of Ilms in practice: A survey on chatgpt and beyond." ACM Transactions on Knowledge Discovery from Data 18, no. 6 (2024): 1-32.

Large Model

- High computational demand
- Impractical for deployment on many devices
- Costly interface access
- Higher accuracy on general tasks
- Greater overhead for deployment and switching

Small Model

- Lower computational demand
- Easily deployable on resource-constrained devices
- More affordable access
- May outperform large models on specific data distributions
- Less overhead, faster switching

Easy Samples

- Small models fit well, representing the majority of training data
- Small models are efficient for these samples
- Less computational cost with small models
- Risk of overfitting on limited datasets

Hard Samples

- Large models handle challenges, e.g., long-tail distributions, boundary cases
- Large models offer higher accuracy on difficult data
- Higher computational demand, but necessary for complex cases
- Better generalization to out-of-distribution and challenging inputs

Question

How can a collaborative paradigm be introduced to reduce large model calls and enhance performance?

Innovative Methods: Data Shunt Collaborative Paradigm

- Upper: Only use large models to support their applications
- Lower: Decrease costs with collaboration of large and small models

Data Routing Based on Confidence

 Small models determine if data should be processed by large models or handled independently

Prompt Pruning

 Utilizes small models to refine prompts for large models, improving prediction accuracy

2-Stage Confidence Distillation

 Enables small models to learn iteratively from large models, mitigating catastrophic forgetting

- Introduction
- Methodology
- Experiments
- Conclusion

Determine the shunt threshold by evaluating small models confidence with training set

Hard Examples

- Challenging for small models
- Deviating from main data distributions
- Lying at category boundaries

Easy Examples

- Majority of training data
- Fitting well with small models
- Being easier to learn and predict

- Identify small model strengths
- Introduce prompt pruning
- Craft prompts using small models
- Refine large model predictions

Large Models for Small Models, Confidence Distillation

- Establish two small model versions
- Specific and learnable small models
- Confidence-based distillation
- Balance knowledge acquisition

Prediction Confidence Computation

• Subjecting the output of a trained small model F_{small} to a softmax operation for a given input x

$$C_s = \frac{e^{z_i}}{\sum e^{z_d}}, \quad z_i \in F_s(x)$$
 (1)

- ullet where $F_s(x)$ represents the output (logits) of the small model F_{small} for input x
- z_i is one of the logits, corresponding to a possible class (e.g., "cat", "dog", etc.)

Enhancing Large Model Predictions with Small Model Confidence

- Small model excels at distinguishing specific classes (e.g., cats).
- Unable to recognize other animals (e.g., dogs, tigers), but confidently identifies them as not cats (low confidence).
- Use small model predictions to guide large models by refining their prediction space.
- Improves large model performance through enhanced focus on relevant categories.

Incorporating Predictions into the Prompts

• To refine the prediction space and enhance the performance

Example

A prompt of PP for image classification task: "This is a photo of a label with probability C_s "

PP uses small model confidence as prior knowledge in prompts. Soft Prompt

- Adds probability to classes small models excel in.
- Large models ignore irrelevant classes, improving accuracy.

Hard Prompt

- Directly removes classes small models excel in.
- Reduces prediction space, increasing accuracy for large models.

Theoretical Analysis of Soft Prompts Enhancing Large Model Performance

- X: Variable of input data
- Y: Variable of small model prediction
- Entropy: To quantify the lower bound of model capability, the lower is better
- \bullet H(X): Entropy of the input data
- H(Y): Entropy of the prediction
- $H(X|Y) = H(\hat{X})$: Entropy of the input data with soft prompt

$$H(X) - H(\hat{X}) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)}$$

$$\geq \left[\sum_{x \in X} \sum_{y \in Y} p(x, y) \right] \log_2 \frac{\sum_{x \in X} \sum_{y \in Y} p(x, y)}{\sum_{x \in X} \sum_{y \in Y} p(x)p(y)} = 0$$
(2)

Definition of Entropy

• For a random variable X, its entropy H(X) is a measure of uncertainty

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$
 (3)

• For another random variable Y, the entropy H(Y) is

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y) \tag{4}$$

• The joint entropy H(X, Y), which quantifies the uncertainty of both X and Y together

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$
 (5)

Definition of Conditional Entropy

• Conditional entropy H(X|Y) represents the uncertainty of X given Y

$$H(X|Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x|y)$$
(6)

• Using the relationship between joint and conditional probabilities, p(x,y) = p(y)p(x|y)

$$H(X|Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 \frac{p(x,y)}{p(y)}$$

$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y) + \sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y)$$

$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y) + \sum_{y \in Y} p(y) \log_2 p(y)$$

$$= H(X,Y) - H(Y)$$
(7)

Deriving the Entropy Difference

$$H(X) - H(\hat{X}) = H(X) - H(X|Y)$$

$$= H(X) - (H(X,Y) - H(Y))$$

$$= H(X) + H(Y) - H(X,Y)$$

$$= -\sum_{x \in X} p(x) \log_2 p(x) - \sum_{y \in Y} p(y) \log_2 p(y) + \sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x) - \sum_{y \in Y} \sum_{x \in X} p(x,y) \log_2 p(y)$$

$$+ \sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

$$= \sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

Data Shunt: Collaboration of Small and Large Models for Lower Costs and Better Performance

(8)

Definition of Kullback-Leibler (KL) Divergence

• KL divergence KL(P,Q) is a measure of the "distance" between two probability distributions P and Q

$$KL(P,Q) = \sum_{x} p(x) \log_2 \frac{p(x)}{q(x)}$$
(9)

• KL divergence between the joint distribution p(x, y) and the product of the marginal distributions p(x)p(y)

$$KL(p(x,y), p(x)p(y)) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$
 (10)

• KL divergence is always non-negative based on Jensen's Inequality and equals zero only when p(x, y) = p(x)p(y), which means X and Y are independent

$$H(X) - H(\hat{X}) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)} \ge 0$$
 (11)

Theoretical Analysis of Hard Prompts Enhancing Large Model Performance

Entropy of the prediction for large model

$$H(C_i) = -\sum_{i=1}^{N} c_i \log c_i$$
 (12)

- where *N* is the number of possible candidates (e.g., classes, categories).
- c_i represents the probability of the *i*-th candidate in C_i
- \bullet C_l denotes the set of candidate classes for large model predictions
- The sum of all probabilities must equal 1

$$\sum_{i=1}^{N} c_i - 1 = 0 \tag{13}$$

 A classic setup for using the Lagrange multiplier method to find the maximum entropy

Setting Up the Lagrange Multiplier

 Lagrange function G is formulated to include both the entropy function and the constraint

$$G(c_1, c_2, \dots, c_N, \lambda) = -\sum_{i=1}^{N} c_i \log c_i + \lambda \left(\sum_{i=1}^{N} c_i - 1\right)$$
 (14)

- ullet where λ is the Lagrange multiplier
- The first term represents the entropy to be maximized.
- The second term enforces the constraint $\sum_{i=1}^{N} c_i = 1$.

Partial Differentiation

Differentiation with respect to c_i

$$\frac{\partial G}{\partial c_i} = -\log c_i - 1 + \lambda \tag{15}$$

ullet Differentiation with respect to λ

$$\frac{\partial G}{\partial \lambda} = \sum_{i=1}^{N} c_i - 1 \tag{16}$$

Solving for c_i

• By setting $\frac{\partial \mathcal{G}}{\partial c_i}=0$ and $\frac{\partial \mathcal{G}}{\partial \lambda}=0$

$$\begin{cases} \frac{\partial G}{\partial c_i} = -\log c_i - 1 + \lambda = 0\\ \frac{\partial G}{\partial \lambda} = \sum_{i=1}^{N} c_i - 1 = 0 \end{cases}$$
 (17)

• Since c_i is the same for all i, we can express the probabilities $c_1 = c_2 = \cdots = c_N$

$$\begin{cases} c_i = e^{\lambda - 1} \\ c_i = \frac{1}{N} \end{cases} \rightarrow c_i = \frac{1}{N}$$
 (18)

Maximum Entropy for Large Models

- Substituting $c_i = \frac{1}{N}$ into the entropy formula
- Maximum entropy occurs when all N candidates are equally probable

$$H(C_l) = -\sum_{i=1}^{N} \frac{1}{N} \log \frac{1}{N} = \log N$$
 (19)

Performing Hard Prompt with Fewer Candidates

• When applying a hard prompt, the number of candidates reduces to M < N

$$H(\hat{C}_l) = \log M \tag{20}$$

• Since M < N

$$\log M < \log N \to H(\hat{C}_l) < H(C_l) \tag{21}$$

- When the number of candidates is reduced due to the hard prompt, the new entropy $H(\hat{C}_l)$ is lower
- The model has less uncertainty in its predictions
- The lower bound on the large models performance increases

Large Models for Small Models, 2-Stage Confidence Distillation (2CD)

Key Idea

- Large models help small models by distilling knowledge that small models lack
- Expanding small model knowledge reduces the need to invoke large models

Issues

- Small models may forget original distributions after distillation
- Large models can degrade small models performance if incorrect knowledge is distilled

Large Models for Small Models, Confidence Distillation

Solution: 2-Stage Confidence Distillation (2CD)

- Maintain original small models (specific small models) without large model influence
- Create duplicated small models (learnable small models) to receive knowledge
- Learnable small models learn from both large and specific small models
- High confidence in large models = Learnable small models acquire knowledge
- High confidence in specific small models = Learnable small models prioritize them to avoid incorrect knowledge

Large Models for Small Models, Confidence Distillation

Compute Small Model Output

- ullet Given input data x, the confidence C_{s1} is computed from the specific small model
- ullet When it is lower than shunt threshold $\mathcal{C}_{s1} < \delta$

Compute Large Model Prediction

• Prediction confidence C_l from the large model $F_l(x)$

$$C_{l} = \frac{e^{z_{l}}}{\sum e^{z_{d}}}, \quad z_{i} \in F_{l}(x)$$
 (22)

• where z_i is the output of the large model for the input x

(部) (事) (事) (事) (事) (の) (の)

Large Models for Small Models, Confidence Distillation

Stage 1 Knowledge Distillation

- ullet When the prediction confidence C_l is greater than the threshold δ
- Loss function L_{ls} is defined using the KL divergence

$$L_{ls} = KL(F_{s2}(x), C_l)$$
 (23)

Stage 2 Knowledge Distillation

- To mitigate the impact of distorted knowledge from the large model
- ullet Select samples where $C_{s1}>\delta$ to perform knowledge distillation

$$L_{s1s2} = KL(F_{s2}(x), C_{s1})$$
 (24)

Iterative Process

- Stage 1 and Stage 2 Knowledge Distillations are performed iteratively
- Creating a loop for continuous training and optimization of the small model's performance

Experiments •000000

- Introduction
- 2 Methodology
- Seriments
- Conclusion

Settings

Three Experimental Setups

Modality	Large Model	Small Models	Task	Dataset
Language	ChatGPT	TextCNN, LSTM,	Sentiment Analysis	Amazon Product
		Fine-tuned BERT		Data
Vision	CLIP	ResNet-32	Long-tailed Image	CIFAR-100-LT
			Classification	
Multimodality	BLIP-2	ResNet-101 (encoder)	Image Caption Genera-	Microsoft COCO
	(1.1B)	+ LSTM (decoder)	tion	

Dataset

- Amazon Product Data: 20 categories of product comments with positive or negative sentiment labels
 - Dataset split: a) Training set: 2,504,958 samples b) Validation set: 277,508 samples c) Testing set: 309,186 samples
- CIFAR-100-LT: 100 categories of color images, with each category comprising 600 images of size 32×32 pixels, totaling 60,000 images
- Microsoft COCO: 82,783 images with captions

Data Shunt for Language Modality

Evaluation Metrics: Accuracy and Query (Sample proportion processed by ChatGPT)

Category	Small 1	Large	DS	Category	Small 1	Large	DS
Games	84.34%	96.22%	96.13% 88.88%	Clothing	85.34%	96.89%	94.28% 84.61%
Kindle	89.05%	95.65%	95.83% 75.88%	Beauty	85.37%	97.20%	94.33% 86.99%
Baby	88.63%	96.41%	95.93% 88.99%	Video	85.37%	92.54%	94.32% 87.28%
Movies	85.37%	93.42%	94.23% 87.68%	Lawn	85.36%	89.36%	94.32% 94.47%
Electronics	85.24%	95.41%	94.67% 88.44%	Home	85.39%	96.28%	94.39% 88.10%
Office	85.23%	95.45%	94.68% 92.12%	Toys	85.41%	96.74%	94.40% 87.80%
CDs	84.68%	95.87%	94.86% 91.99%	Grocery	85.43%	96.73%	94.42% 89.80%
Books	85.26%	93.66%	94.20% 81.88%	Automotive	85.42%	94.69%	94.42% 90.34%
Sports	85.26%	95.06%	94.21% 89.00%	Tools	85.41%	94.49%	94.43% 90.58%
Health	85.24%	95.04%	94.23% 89.49%	Pet Supplies	85.40%	94.03%	94.42% 90.84%
Overall		85.40%, L	arge: 94.43%, DS: 94.42%	Query		0%, Large	: 100%, DS: 84.97%
Category	Small 2	Large	DS	Category	Small 2	Large	DS
Games	85.29%	96.22%	96.13% 84.01%	Clothing	86.13%	96.89%	94.31% 74.78%
Kindle	89.74%	95.65%	95.85% 71.73%	Beauty	86.17%	97.20%	94.36% 81.93%
Baby	89.33%	96.41%	95.95% 82.56%	Video	86.18%	92.54%	94.35% 78.15%
Movies	86.27%	93.42%	94.25% 80.82%	Lawn	86.17%	89.36%	94.35% 90.64%
Electronics	86.28%	95.41%	94.69% 83.57%	Home	86.21%	96.28%	94.41% 81.93%
Office	86.26%	95.45%	94.69% 89.14%	Toys	86.22%	96.74%	94.43% 81.05%
CDs	85.70%	95.87%	94.88% 87.78%	Grocery	86.24%	96.73%	94.45% 84.16%
Books	86.05%	93.66%	94.23% 77.59%	Automotive	86.24%	94.69%	94.45% 87.44%
Sports	86.05%	95.06%	94.24% 82.66%	Tools	86.23%	94.49%	94.45% 86.58%
Health	86.03%	95.04%	94.26% 85.12%	Pet Supplies	86.21%	94.03%	94.45% 86.26%
Overall		12: 86.21%, Large: 94.43%, DS: 94.44%		Query	Small 2: 0%, Large: 100%, DS: 80.00%		
Category	Small 3	Large	DS	Category	Small 3	Large	DS
Games	90.39%	96.22%	96.15% 36.25%	Clothing	95.63%	96.89%	97.45% 31.10%
Kindle	95.89%	95.65%	97.38% 20.67%	Beauty	92.90%	97.20%	97.24% 30.39%
Baby	92.81%	96.41%	96.26% 32.90%	Video	92.67%	92.54%	96.27% 25.32%
Movies	90.57%	93.42%	94.86% 31.76%	Lawn	84.26%	89.36%	90.63% 48.93%
Electronics	91.76%	95.41%	96.11% 39.56%	Home	93.12%	96.28%	96.73% 33.89%
Office	90.72%	95.45%	95.10% 44.31%	Toys	92.22%	96.74%	96.38% 31.34%
CDs	88.57%	95.87%	95.50% 36.92%	Grocery	92.50%	96.73%	96.66% 32.28%
Books	91.98%	93.66%	95.37% 27.91%	Automotive	91.30%	94.69%	94.69% 33.33%
Sports	93.11%	95.06%	96.02% 34.83%	Tools	91.62%	94.49%	95.38% 37.87%
Health	91.73%	95.04%	95.71% 34.35%	Pet Supplies	91.02%	94.03%	95.02% 38.96%
Overall	Small 3:	91.79%, L:	arge: 94.43%, DS: 95.64%	Query	Small 3:	0%, Large:	100%, DS: 31.18%

▶ 4 = ▶ = *)4(*

Data Shunt for Vision Modality

	Small	Large	DS
Head	70.25%	60.00%	71.99%
Med	46.61%	57.28%	$\boldsymbol{59.91\%}$
Tail	29.28%	57.19%	57.61 %
Overall Accuracy	48.84%	58.18%	63.25%
Query Proportion	0%	100%	66.10%

Evaluation Metrics

- Accuracy: Image classification accuracy
- Query: Sample proportion processed by CLIP

Three Regions

- Head Region: Categories with a large number of samples
- Medium Region: Categories with a moderate number of samples
- Tail Region: Categories with very few samples

Compared to the large model, **Overall accuracy**: $5.07\% \uparrow$, **Cost**: $\approx 33\% \downarrow$

Data Shunt for Multimodality

	Small	Large	DS
BLEU-1	72.92	73.27	74.95
BLEU-2	55.73	60.04	60.43
BLEU-3	41.20	46.99	46.85
BLEU-4	30.28	36.11	35.82
Mean	50.03	54.10	54.52
Query Proportion	0%	100%	65.36%

Evaluation Metrics

- N-gram BLEU: Quality of machine-generated text
- N-gram: Continuous sequence of *n* items
- Unigram (1-gram): The | Bigram (2-gram): The cat | Trigram (3-gram): The cat sits
- Query: Sample proportion processed by BLIP-2 (1.1B)

Improve in the average BLEU score, while solely 65.36% of the data is computed by the large model

	DS	DS-2CD	DS-PP-2CD
Head	71.99%	71.21%	71.54%
Med	59.91 %	58.69%	59.76%
Tail	57.61%	56.17%	53.31%
Overall Accuracy	63.25%	62.11%	61.63%
Query Proportion	$\boldsymbol{66.10\%}$	67.48%	67.48%

Comparison Algorithm

- DS-2CD: DS without 2-Stage Confidence Distillation
- DS-PP-2CD: DS without Prompt Pruning and 2-Stage Confidence Distillation

Insight

- Both PP and 2CD have a positive impact on the proposed method
- 2CD further reduces the number of large model calls, as small models learn more data distributions
- PP primarily benefits tail data by reducing candidate classes, aligning with the idea that small models assist large models through prior knowledge

Hyperparameter Analysis

- Solid line: Accuracy of DS
- Dotted line: Proportion of query
- Bold dot: DS achieves better performance

Shunt Threshold

- \bullet The confidence of a sample is larger than $\delta \to \mathsf{Solely}$ be processed by small models
- Otherwise, processed by large models

Insight

- DS with three different small models (TextCNN, LSTM, fine-tuned BERT) can all surpass the large model
- Better-performing small models allow a wider range for δ

- Conclusion

Conclusion

Proposed Solution

- Data Shunt: Collaborative paradigm for large and small models
- Input is processed by small models first, then passed to large models based on confidence levels
- Prompt Pruning (PP): Small models refine the prediction space for large models
- 2-Stage Confidence Distillation (2CD): Large models help small models learn unfamiliar distributions

Experimental Result

Improves performance and reduces the frequency of querying large models across diverse modalities and tasks

Thanks!

Q&A