Find a basis of Col(k):

A
$$\sim$$
row
operations

(NullA)= NullB)

(NullA)= NullB)

(NullA)= CollB= Spon \(\begin{align*} \lambda & \collB \\ \delta & \collB \\ \dell & \collB \\ \delta & \collB \\ \delta & \collB \\ \delta & \co

Claim: Linear relations among the column vectors are preserved under vow operations:

Claim: {], -, Fix is a bass of CollB) (ai,) -- , aik) is a base of (ol(A) Pf: Assuming { \(\bar{l}_{i_1}, --, \bar{l}_{i_k} \) is a basis of CollB), we want to show: {\(\alpha_{i_1}, --, \alpha_{i_k} \) is a basis of CollA) · { ai, } lis Clail + -- + Chair = 0 (by previous Clasm) =) (CI), + --- 7 CK , = 3 ⇒ C1 = C2=--== C6=0. · Span { 2,,, -, 2, b} = (ol(A): (> a= < Span { a= , -- , a= } \forage \forage) (⇒ 45, 3 C1, ---, CK + 1R 81. 2 = Ca dig + - + Ck dik Since: Span (Br, , -, Br, Y = CollB); so tj. 3 Cm, -, CKER N. E = C1 /51 + ... - C1c /5/k. (by previous Class) $\vec{a}_{i} = c_{i}\vec{a}_{i} + \cdots + c_{k}\vec{a}_{ik}$ Span { ai, ---, ai, } = Col(A).

Thm: Suppose a vector space V admits a hasts of n vectors, then any basis of V also consists of n vectors.
Def: Such n is called the dimension of V., (dim(V))
· If V can't be spanned by finitely many vectors,
then V is infinite dimension, din(V) = too. The zero speck space {0} has dim {0} = 10.
Pf: Suprose B is a basis of V with in verters. Consider the word Trate mapping wirt. B:
V _ [73 } Rn linear, bijective.
· Suprose {\vec{W}_1,, \vec{W}_n,} more than n vector in V, consider {\vec{U}_1]_B,, [\vec{W}_n]_B,} \vec{V}_n
We proved last time that such set in IR" is lid.
80 3 C()) CK 4. E([M]B++ Ck [M]B = 0
[CIWI+ CKWK] & TIBB linear.
=> CIWIT CKWK = 0 Shee []B is injective.
To CIWIT CIKWK = 0 Stree [] p is injective.

· Suppose { \$\vec{7},--, \$\vec{7}k\} in V, k<n.

Consider {[Vi]B, --, [Vi]BB & Ri We proved last time that such set doesn't span R, 马克ER" St. 玄\$ Span {[幻]0, --, [见]2}. Stice [78 is surjective, 3 geV at. [g] = Z. Claim; y & Span { \$1,-, \$\sqrt{k}\$. Pf: Assume the contrary that of & Span { II, -, Ix} then 3 c1, -, Ck 4. = C1 1/4-4 Ck 1/2k => [] B = [C,] +-- Cx] B = C1 [3] B+ -- C1c(2) B ⇒ Ze Span {[Ji]B, -, [Ji]B]. Contradiction.

 $e_{\underline{i}\underline{q}}$ dim $\mathbb{R}^n = n$ $\dim \operatorname{Poly}_{\leq n} = n+1$ $(\{1, \times, --, \times'\})$ is a hasso)

din=2
din=1

 $\frac{A: m \times n}{\text{Nul}(A)} \leq \mathbb{R}^{n}, \quad \text{dim Nul}(A) = \# \text{ free variables}$ = n - # pivots dim Col(A) = # pivots $T_{A}: \mathbb{R}^{n} \to \mathbb{R}^{m} \quad \text{Nul}(A) = \ker(T_{A})$ $\text{Col}(A) = T_{m}(T_{A}) \quad \text{vank}(A)$

Rank-nullity theorem.

dIm NullA) + rank(A) = n (# of columns of A).

More generally, $T: V \rightarrow W$ linear map blu visi, $dim V < +\infty$ Then $dim V = dim \ker(T) + dim Im(T)$

Suppose $\{\vec{v}_1, \dots, \vec{v}_n\} \subseteq V$, Span $\{\vec{v}_1, \dots, \vec{v}_n\} = V$ Claim: \exists subset $\{\vec{v}_{i1}, \dots, \vec{v}_{ik}\}$ that gives a basis of V'(II spanning set theorem!) $\{\vec{v}_i\}_{i=1}^n, \vec{v}_i, \vec{v}_i$, \vec{v}_i ,

Q: True for infinite spanning cet?

(2) dim V 2+00. {\vec{v}_1,--,\vec{v}_n} live Claim: 3 \vec{v}_{n+1},-,\vec{v}_{n+k} \vec{v}_1. {\vec{v}_1,-,\vec{v}_n}_n,--,\vec{v}_{n+k}\vec{v}_1. \alpha \text{hars of V.} Then 3 Vinti eV at. Vines 4 Span Stilling Ton) # V.

Then 3 Vinti eV at. Vines 4 Span Stilling Ton)

Then dim W \(\) subspace of V, dim V \(\) + \(\).

Then dim W \(\) dim V \(\) = \(\)

pf: (1) If \(\) = \(\) \(\) then dim \(\) = 0 \(\) \(\)

O \(\) If \(\) Contains some nonzero vects, say \(\)

