(a) Since $\mathbf{Merge}(L_1,\ L_2)$ takes $O(\frac{n}{3}+\frac{n}{3})=O(n)$ running time. The new array merged is of length $\frac{n}{3}+\frac{n}{3}=\frac{2n}{3}$. Thus $\mathbf{Merge}(L_0,\ Merge(L_1,\ L_2))$ takes $O(\frac{n}{3}+\frac{2n}{3})+O(n)=O(n)$ running time.

(b)
$$T(n)=3T(rac{n}{3})+\Theta(n)$$

(c) According to the **Master Theorem**, $T(n)=3T(\frac{n}{3})+\Theta(n^1)$, $1=log_33$. Thus we have $T(n)=\Theta(n\;log\;n)=O(n\;log\;n)$

P2

Assume the DP-state $c[i,\ j]$ represent the LCS between the first i characters in S_1 and the first j characters in S_2 . We have:

$$c[i,\ j] = egin{cases} x = 0 & if\ i = 0\ or\ j = 0 \ c[i-1,\ j-1] + 1 & if\ i,\ j > 0\ and\ S_{1,i} = S_{2,j} \ max(c[i,\ j-1],\ c[i-1,\ j]) & if\ i,\ j > 0\ and\ S_{1,i}
eq S_{2,j} \end{cases}$$

The result is:

From the result, we can see that the **LCS** between S_1 and S_2 is "quaity", whose length is 6.

P3

 $O(n \log n)$ Algorithm:

We sort all the passenger's information with end_i ascending. According to their end_i , we can put the i_{th} person's information i in the set P_{end_i} . Note that we specially deal with passengers whose $start_i = end_i$. We do not put them in any set, but add their tip_i to S_{end_i} , which means we can obtain all their tips when we are available at end_i .

Formally speaking.

$$P_i = \{x: end_x = i \ \land \ start_x
eq end_x\}, \ S_i = \sum_{x \in \{x: end_x = i \ \land \ start_x = end_x\}} tip_x$$

We defined the DP-state function f_i represent the maximum number of dollars we can get when we are at point i with no passenger on the taxi (There can be a passenger drop off at point i).

$$f_i = egin{cases} 0 & if \ i = 0 \ max(f_{i-1}, \ MAX_{p \in P_i}(f_{start_p} + (i - start_p) + tip_p)) & if \ i
eq 0 \end{cases} + S_i$$

Note that $MAX_{p \in P_i}$ means we choose the max value for the result of all p in the set P_i .

O(n) solution:

We can find that because the range of $start_i$ and end_i are within $1 \sim n$. So we do not need to sort in our previous solution. We can directly divide all the information of passengers in corresponding set.

P4

Algorithm:

First, for all the rectangles, we assumed that their length l_i are larger or equal to their width w_i . (If not, we can swap their length and width).

Sort all the rectangles with their **length** in ascending order.

We have the DP-state function F_i means the maximal number of rectangles ending with i_{th} rectangles.

$$F_i = egin{cases} 0 & if \ i = 0 \ 1 & if \ i = 1 \ max_{0 \leq j < i, \ w_j < w_i, \ l_j < l_i} \{F_j + 1\} & if \ i > 1 \end{cases}$$

And the final answer is $max\{F_i\}$

Proof:

For the first step we swap the length and width for $w_i>l_i$. It can be proved that if a solution have a rectangle with $w_i>l_i$. The rectangle contains i is k, the rectangle be contained by i is j. We have $l_k>w_i>l_j,\ w_k>l_i>w_j$.

Since $l_k > w_i > l_i > w_j$, $l_j < w_i < l_i < w_k$, we have $l_k > l_i > l_j$, $w_k > w_i > w_j$. So, if we do rotate, we cannot find a better solution.

And for the second step, we sorted their l_i in ascending order. When we perform DP later, we have consider all the F_j whose $l_j < l_i$. Thus the correctness can be ensured.

Complexity:

For the first part we need to check each rectangle with complexity O(n)

For the next sorting part the complexity is $O(n \log n)$

And the DP part we need check all the previous j for each i. Thus the complexity is $\mathrm{O}(n^2)$

The total complexity is $\mathrm{O}(n)+\mathrm{O}(n\log n)+\mathrm{O}(n^2)=\mathrm{O}(n^2)$