

: Backward Formward PN1718887 Se NNWIN 7078 EBJ (3 V; E[N], Vy, y': M; (y, y') = exp(f(i, y, y', x) Tw) CAIR SHUE BALL JOHN MY JOHN BIRD M'Ci,y] -2 pron reez, nnie [Y[-1 nizing N P8 . הוא ההסתגרות שהתש באינקס ו הוא ני. כטת נמצא את א אפי איק שמגדיה האלאותריתם 63/1) yo - > y3 - 8 On"N : 627 1) 1968 C70 B. F CZHERIU CIZIZIUNG AU MUL CZ CHOSIGIA CUU N-EG. USDNO CICL SOCIA CONTRACTOR SOLD SOLD SOLD : Puleton peise for y; E Y: T[4, 4:] = M4(43, 4:) for k...N: for y: EY: T[K, y;] = \(\tag{Y} \tag{T[K-1, y;] } * Mr (y;, y;) Sum = E T [N, y:] = M, (y:, STOP) return Sum * IT M: (y:-1, y:)

					Ma Tex
, βδολί	. X م y م	75186 J	ein ne	F3N) 1	1166) (5
76.6 242	810,6 8251	X2 277	72186 631) Je1	71377
143 BARB 651	8101 E 8821	מקבולום).	הישרוץ	72165)	163Me
DND (61 PK)					
- 160 810'00					
	18 5155 PI				
	cosine - sim				
- Loca	30. GSDU	- CC 3 31 : -	.1	८२१७० ४१	2162
Yelations do	Chu + wolia	Dua di Marta	181 1201 - 1	neak	כ באנה
	116/12 161, 3				
	אלון ולה היה	>0 - = /	ICEN X	10 # 1 = 1	1 + 0 1
κε 1,000	וביבק וביבנ				
	ગુરાવધ લ્યુંજીત.	. द्रात्व ०	Sids Den	who	163411
	The state of the s				

Question 4

```
In [14]:
          from collections import defaultdict
          import pandas as pd
          import numpy as np
          from numpy.linalg import norm
          np.set printoptions(suppress=True)
          stop words = ['is', 'a', 'of', 'and']
          def co occurrence(sentences, window size):
              histogram = defaultdict(int)
              vocab = set()
              for sentence in sentences:
                  words = sentence.split(' ')
                  words = list(filter(lambda x: x not in stop words, words))
                  for i in range(len(words)):
                      word = words[i]
                      vocab.add(word)
                      rest window = words[i + 1 : i + 1 + window size]
                      for neighbor_word in rest window:
                          key = tuple(sorted([neighbor word, word]))
                          histogram[key] += 1
              vocab = sorted(vocab)
              df = pd.DataFrame(data=np.zeros((len(vocab), len(vocab)), dtype=np.int16)
                                index=vocab,
                                columns=vocab)
              for key, value in histogram.items():
                  df.at[key[0], key[1]] = value
                  df.at[key[1], key[0]] = value
              return df
```

1) Co-occurence matrix.

		Deep	Не	John	Mary	NLP	about	got	learning	likes	machine	\
Deep		0	0	0	0	0	0	0	1	0	0	
Не		0	0	0	0	0	0	0	0	1	0	
John		0	0	0	0	0	0	0	0	2	0	
Mary		0	0	0	0	0	0	0	0	1	0	
NLP		0	0	0	0	0	1	1	0	1	0	
about		0	0	0	0	1	0	0	0	0	0	
got		0	0	0	0	1	0	0	0	1	0	
learni	ng	1	0	0	0	0	0	0	0	0	2	
likes	_	0	1	2	1	1	0	1	0	0	1	
machin	е	0	0	0	0	0	0	0	2	1	0	
post		0	0	0	0	0	1	0	0	0	0	
subfie	ld	0	0	0	0	0	0	0	1	0	1	
wrote		0	0	1	0	0	0	0	0	0	0	

```
post subfield wrote
                         0
             0
                                 0
Deep
              0
                         0
                                 0
He
              0
                         0
John
                                 1
              0
                         0
                                 0
Mary
                         0
              0
                                0
NLP
                         0
                                0
about
              1
                         0
                                0
              0
got
                         1
                                0
learning
              0
likes
                         0
                                0
              0
                         1
                                 0
machine
              0
                         0
              0
                                 1
post
subfield
                         0
                                 0
              0
                         Λ
                                 Λ
wrote
              1
```

2) Singular Value Decomposition and eigenvalues.

```
In [16]:
                                                        co occurrence matrix = co occurrence df.to numpy()
                                                        u, s, v = np.linalg.svd(co occurrence matrix)
                                                        print(u, "\n\n", s, "\n\n", v, "\n\n")
                                                        print("eigenvalues:", s**2)
                                                     \lceil \lceil -0.09525618 -0.078084 -0.20409309 -0.30660432 0.10840231 0.06262278 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.0980808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09808 -0.09
                                                     0986875 0.11843932 -0.22723703 0.01384834 0.69775862 -0.52978814 0.
                                                          [-0.16408222 - 0.20187228 \ 0.11351611 \ 0.08518163 - 0.11456372 - 0.16601357 \ 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518163 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0.08518164 - 0
                                                     282392 -0.14589432 -0.11169003 -0.22682727 -0.28939733 -0.44915337 -0.7071067
                                                         5395368 0.19533118 -0.1045044 0.41073465 0.18797743 0.17719595 0.
                                                          \lceil -0.16408222 -0.20187228 \ 0.11351611 \ 0.08518163 -0.11456372 -0.16601357 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.11456372 \ 0.08518163 -0.14
                                                     282392 -0.14589432 -0.11169003 -0.22682727 -0.28939733 -0.44915337 0.7071067
                                                         [-0.25987227 -0.18258385 \ 0.23872932 \ 0.1509113 \ 0.43876455 \ 0.17183454 -0.5872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.18258385 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872932 \ 0.23872929 \ 0.23872929 \ 0.23872929 \ 0.23872929 \ 0.2387299 \ 0.2387
                                                     2683758 -0.50615785 -0.14151891 0.12692599 0.11614814 0.11806938 -0.
                                                         [-0.09294414 \quad 0.08314097 \quad 0.1288352 \quad -0.15246158 \quad -0.53761061 \quad 0.54461547 \quad -0.2
                                                     9465061 \quad 0.09041336 \quad -0.04576066 \quad 0.43260971 \quad -0.19017074 \quad -0.19639523 \quad 0.
                                                          [-0.2390606 -0.14409564 0.2034698]
                                                                                                                                                                                                                                                                         0.01369787 -0.37933497 -0.04890169 -0.3
                                                     9549232 0.3097711 0.06910896 -0.56527546 0.27380553 0.28732963 -0.
                                                          [-0.33015435 \quad 0.24675851 \quad -0.54164539 \quad 0.64728074 \quad -0.17963842 \quad 0.09188441 \quad -0.09188441 \quad -0.091844141 \quad -0.0918844141 \quad -0.0918844141 \quad -0.09188441 \quad -0.09188441
                                                     122701 \quad -0.13156362 \quad 0.17786789 \quad -0.00519345 \quad 0.14389729 \quad -0.08493307 \quad -0.
                                                         [-0.56870279 \quad 0.6379502 \quad 0.30126193 \quad -0.17982925 \quad 0.18984878 \quad -0.24358643
                                                     3511061 0.16206091 0.08742444 0.08506553 -0.0596818 -0.07200609 0.
                                                         [-0.4167716 \quad -0.37042327 \quad -0.43305827 \quad -0.4935293 \quad 0.05791577 \quad 0.00357016
                                                     0159817 -0.08250592  0.43636806  0.03863315 -0.19942192  0.12697215 -0.
                                                         [-0.06226861 - 0.08015554 \ 0.10318815 \ 0.17095449 \ 0.45213457 \ 0.6272624
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.1
                                                     6049
                                                                                               0.40572576 0.17733768 - 0.28916475 - 0.15536665 - 0.14955451 0.
                                                          [-0.21550319 \quad 0.03913235 \quad -0.36727033 \quad -0.07282907 \quad 0.0734532
                                                                                                                                                                                                                                                                                                                                                                                                                            0.06505598 - 0.0
                                                     0858336  0.19271476  -0.7847237  -0.08916697  -0.26923915  0.26222778  -0.
                                                         [-0.12287652 \quad 0.17016396 \quad 0.14501723 \quad -0.20844511 \quad -0.21164226 \quad 0.37574669 \quad 0.4
                                                     9419245 -0.54109773 -0.09304894 -0.32416617 0.1581298 0.17241938 -0.
                                                     11
                                                          [3.46596239 3.16016742 2.65391343 2.11112724 1.65714573 1.46726817 1.24332876
                                                     1.11081033 0.78274168 0.37502339 0.2062279 0.16031515 0.
```

```
4409564 -0.24675851 -0.6379502
                                                                                                                      0.37042327 0.08015554 -0.03913235 -0.1701639
  [-0.20409309 \quad 0.11351611 \quad 0.28167501 \quad 0.11351611 \quad 0.23872932 \quad 0.1288352
                                                                                                                                                                                                                                                                                            0.2
034698 - 0.54164539 0.30126193 - 0.43305827 0.10318815 - 0.36727033 0.1450172
31
  [0.30660432 - 0.08518163 - 0.26909965 - 0.08518163 - 0.1509113
                                                                                                                                                                                                                                          0.15246158 - 0.0
1369787 - 0.64728074 0.17982925 0.4935293 - 0.17095449 0.07282907 0.2084451
1.1
  [-0.10840231 \quad 0.11456372 \quad 0.1014125 \quad 0.11456372 \quad -0.43876455 \quad 0.53761061 \quad 0.3
7933497 0.17963842 -0.18984878 -0.05791577 -0.45213457 -0.0734532 0.2116422
  [ 0.06262278 -0.16601357 -0.07594124 -0.16601357  0.17183454  0.54461547 -0.0  ]
4890169 0.09188441 -0.24358643 0.00357016 0.6272624 0.06505598 0.3757466
  [-0.00986875 \quad 0.0282392 \quad 0.45395368 \quad 0.0282392 \quad -0.52683758 \quad -0.29465061 \quad -0.3
9549232 -0.0122701 0.03511061 0.00159817 0.16049 -0.00858336 0.4941924
   \lceil -0.11843932 \quad 0.14589432 \quad -0.19533118 \quad 0.14589432 \quad 0.50615785 \quad -0.09041336 \quad -0.3889432 \quad -0.19533118 \quad -0.14589432 \quad -0.1953118 \quad -0.14589432 \quad -0.19533118 \quad -0.14589432 \quad -0.105894118 \quad -0.145894118 \quad -0.14589418 \quad -0.145894118 \quad -0.145894118 \quad -0.145894118 \quad -0.145894118 \quad 
097711 0.13156362 -0.16206091 0.08250592 -0.40572576 -0.19271476 0.5410977
  [ 0.22723703  0.11169003  0.1045044
                                                                                                                                             0.11169003 0.14151891 0.04576066 -0.0
6910896 \, \, -0.17786789 \, \, -0.08742444 \, \, -0.43636806 \, \, -0.17733768 \quad 0.7847237 \quad \, 0.0930489
   [-0.01384834 \quad 0.22682727 \quad -0.41073465 \quad 0.22682727 \quad -0.12692599 \quad -0.43260971 \quad 0.58682727 \quad -0.12692727 \quad -0.12692727 \quad -0.12692729 \quad -0.12692727 \quad -0.12692777 \quad -0.1267777 \quad -0.1267777 \quad -0.1267777 \quad -0.1267777 \quad -0.1267777 \quad -0.1267777 \quad -0.12677777
6527546 \quad 0.00519345 \quad -0.08506553 \quad -0.03863315 \quad 0.28916475 \quad 0.08916697 \quad 0.3241661
  [ \ 0.69775862 \ -0.28939733 \ \ 0.18797743 \ -0.28939733 \ \ 0.11614814 \ -0.19017074 \ \ 0.28939733 \ ]
7380553 \quad 0.14389729 \quad -0.0596818 \quad -0.19942192 \quad -0.15536665 \quad -0.26923915 \quad 0.1581298
   8732963 \ -0.08493307 \ -0.07200609 \ \ 0.12697215 \ -0.14955451 \ \ 0.26222778 \ \ 0.1724193
  [-0.
                                                    -0.70710678 0.
                                                                                                                                                   0.70710678 0.
                                                                                                                                                                                                                                              0.
                                                                                                                                                                                                                                                                                             0.
                                                                                            0.
-0.
                                             -0.
                                                                                                                                        -0.
                                                                                                                                                                                        0.
                                                                                                                                                                                                                                        0.
                                                                                                                                                                                                                                                                              ]]
eigenvalues: [12.01289529 9.98665815 7.0432565 4.45685823 2.74613196 2.1
5287589 1.54586641 1.2338996 0.61268454 0.14064255 0.04252995 0.0257009
5 0.
```

0.20187228 0.45759106 0.20187228 0.18258385 -0.08314097 0.1

3) Reduced matrix.

clipped size = int(0.3 * s.shape[0])

In [17]:

521

[0.078084

```
u_tag = u[:, :clipped_size]
s_tag = np.diag(s[:clipped_size])
v tag = v[:clipped size, :]
x tag = np.matmul(np.matmul(u tag, s tag), v tag)
print(x tag)
[ ] 0.12272743 - 0.05712672 - 0.14543279 - 0.05712672 - 0.08856279 - 0.01858134 - 0.0 ]
6683841 0.46327138 0.1820022 0.28075788 -0.0551122 0.27973583 0.0040097
[-0.05712672 \ -0.00127236 \ -0.00027247 \ -0.00127236 \ \ 0.10323074 \ \ 0.14471053 \ \ 0.10323074]
053263
      21
4501427 0.36801412 1.86444865 -0.33413496 0.03970333 0.05363304 0.5093334
[-0.05712672 -0.00127236 -0.00027247 -0.00127236 0.10323074 0.14471053 0.1
053263
      0.1820022 0.82116207 -0.1297564 0.01536375 0.03687718 0.2221245
6109289 \quad 0.09658246 \quad 1.07119889 \quad -0.11271466 \quad 0.07521302 \quad -0.0160058 \quad 0.3007377
7]
[-0.01858134 \quad 0.14471053 \quad 0.33367263 \quad 0.14471053 \quad 0.21331318 \quad 0.0521477
                                                                  0.1
8444068 - 0.14367498 \quad 0.11859449 \quad 0.08351377 \quad 0.07640111 - 0.06643536 \quad 0.0444587
```

```
1
    [-0.06683841 \quad 0.1053263 \quad 0.24501427 \quad 0.1053263 \quad 0.26109289 \quad 0.18444068 \quad 0.26109289 \quad 0.26109299 \quad 0.26109299 \quad 0.26109299 \quad 0.26109299 \quad 0.2610999 \quad 0.26109999 \quad 0.2610999 \quad 0.26109999 \quad 0.2610999 \quad 0.261099
4233526 0.09343942 0.92439281 -0.05719942 0.07081478 -0.00194264 0.2576073
   [ 0.46327138  0.1820022  0.36801412  0.1820022  0.09658246 -0.14367498  0.0
9343942 \quad 0.96397902 \quad -0.27976235 \quad 1.3882808 \quad -0.01457163 \quad 0.74402926 \quad -0.2005449
    2439281 -0.27976235 0.07571096 1.22204366 0.36683505 0.0522458 0.0150912
    [0.28075788 - 0.1297564 - 0.33413496 - 0.1297564 - 0.11271466 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.08351377 - 0.0835177 - 0.0835177 - 0.0835177 - 0.0835177 - 0.0835177 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.083517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 - 0.08517 
5719942 1.3882808 1.22204366 0.66612889 -0.12247618 0.77920931 0.2100226
    \lceil -0.0551122 \quad 0.01536375 \quad 0.03970333 \quad 0.01536375 \quad 0.07521302 \quad 0.07640111 \quad 0.0
7081478 - 0.01457163 \quad 0.36683505 - 0.12247618 \quad 0.02139338 - 0.04415541 \quad 0.1093359
   [0.27973583 \quad 0.03687718 \quad 0.05363304 \quad 0.03687718 \quad -0.0160058 \quad -0.06643536 \quad -0.0
0.194264 \quad 0.74402926 \quad 0.0522458 \quad 0.77920931 \quad -0.04415541 \quad 0.51410537 \quad -0.0706124
    [\ 0.00400971\ 0.22212452\ 0.50933345\ 0.22212452\ 0.30073777\ 0.0444587
5760739 -0.20054499 0.01509128 0.21002261 0.10933598 -0.07061245 0.0166380
1]]
```

One practical advantage is that we need much less numbers to express the co-occurence matrix (it's like JPEG compression in a way - we take x% of the crucial frequencies). The real advantage, however, is the reduced dimension, which means it's easier to work with our data (e.g. visualize, compute) and our data gets much more "smooth", it's continous rather than discrete.

4) Cosine similarity.

Now we're in the latent space (looking at U'), every word is described by only 3 features.

```
def cosine_similarity(a, b):
    return np.dot(a, b) / (norm(a) * norm(b))

john_vector = u_tag[2]
he_vector = u_tag[1]
subfield_vector = u_tag[11]
deep_vector = u_tag[0]
machine_vector = u_tag[9]

print("John-he:", cosine_similarity(john_vector, he_vector))
print("John-subfield:", cosine_similarity(john_vector, subfield_vector))
print("Deep-machine:", cosine_similarity(deep_vector, machine_vector))
```

John-he: 0.999241482928557 John-subfield: -0.15497560206457914 Deep-machine: 0.9329156098788491

As we can see, our toy model captures the semantic similarity to some extent. Since our dataset is so small, it might not make any sense, but we used the words John and He interchangeably and our model learned it! This is exciting.

On the other hand, our model knows that the words John and Subfield are not related because they are really far away from each other in our dataset - there are only few other words connecting them.

6) Cosine similarity - special case.

```
In [21]: wrote_vector = u_tag[12]
    post_vector = u_tag[10]
    likes_vector = u_tag[8]
```

```
print("wrote-post:", cosine_similarity(wrote_vector, post_vector))
print("likes-likes:", cosine_similarity(likes_vector, likes_vector))
```

wrote-post: 0.243076522917071
likes-likes: 1.0

It might be a problem since these words are semantically-related. Maybe we can add more examples with these words so the smoothing introduced with the dimension reduction process won't butch it.

7) We would expect these two words to have a similarity of 1, because they are the same, but our model turns out to outsmart us - we used these 2 words with 2 different semantic meanings! So we're losing data here (it feels like quantization). Maybe, we can use a POS tagged corpus (where milenial likes is a noun), and define an entity also by it's tag. This way we will be able to differentiate between the two meanings.

Created with Jupyter using vscode. Not everything in 2020 sucks.