

Sorting Algorithms

Sc

Sorting methods

- Comparison based sorting
 - O(n²) methods
 - E.g., Insertion, bubble
 - Average time O(n log n) methods
 - E.g., quick sort
 - O(n logn) methods
 - E.g., Merge sort, heap sort
- Non-comparison based sorting
 - Integer sorting: linear time
 - E.g., Counting sort, bin sort
 - Radix sort, bucket sort
- Stable vs. non-stable sorting

Insertion sort: snapshot at a given iteration

Worst-case run-time complexity: $\Theta(n^2)$ When? Best-case run-time complexity: $\Theta(n)$ When?

Cpt S 223. School of EECS, WSU

The Divide and Conquer Technique

- Input: A problem of size n
- Recursive
- At each level of recursion:
 - (Divide)
 - Split the problem of size n into a fixed number of subproblems of smaller sizes, and solve each sub-problem recursively
 - (Conquer)
 - Merge the answers to the sub-problems

Two Divide & Conquer sorts

- Merge sort
 - Divide is trivial
 - Merge (i.e, conquer) does all the work
- Quick sort
 - Partition (i.e, Divide) does all the work
 - Merge (i.e, conquer) is trivial

Merge Sort

Main idea:

- Dividing is trivial
- Merging is non-trivial

Do you always need the temporary array B to store the output, or can you do this inplace?

Merge Sort : Analysis

Merge Sort takes $\Theta(n \mid g \mid n)$ time

Proof:

- Let T(n) be the time taken to merge sort n elements
- Time for each comparison operation=O(1)

Main observation: To merge two *sorted* arrays of size n/2, it takes n comparisons at most.

Therefore:

- T(n) = 2 T(n/2) + n
- Solving the above recurrence:

•
$$T(n) = 2 [2 T(n/2^2) + n/2] + n$$

= $2^2 T(n/2^2) + 2n$
... (k times)
= $2^k T(n/2^k) + kn$

- At $k = \lg n$, $T(n/2^k) = T(1) = 1$ (termination case)
- \blacksquare ==> T(n) = Θ (n lg n)

Main idea:

- Dividing ("partitioning") is non-trivial
- Merging is trivial

- Divide-and-conquer approach to sorting
- Like MergeSort, except
 - Don't divide the array in half
 - Partition the array based elements being less than or greater than some element of the array (the pivot)
 - i.e., divide phase does all the work; merge phase is trivial.
- Worst case running time O(N²)
- Average case running time O(N log N)
- Fastest generic sorting algorithm in practice
- Even faster if use simple sort (e.g., InsertionSort)
 when array becomes small

QuickSort Algorithm

QuickSort(Array: S)

- If size of S is 0 or 1, return
- 2. Pivot = Pick an élement v in S
- Q) What's the best way to pick this element? (arbitrary? Median? etc)
- Partition $S \{v\}$ into two disjoint groups

•
$$S1 = \{x \in (S - \{v\}) \mid x < v\}$$

$$S2 = \{x \in (S - \{v\}) \mid x > v\}$$

Return QuickSort(S1), followed by v, followed by QuickSort(S2)

QuickSort Example

Cpt S 223. School of EECS, WSU

QuickSort vs. MergeSort

- Main problem with quicksort:
 - QuickSort may end up dividing the input array into subproblems of size 1 and N-1 in the worst case, at every recursive step (unlike merge sort which always divides into two halves)
 - When can this happen?
 - Leading to O(N²) performance
 - =>Need to choose pivot wisely (but efficiently)
- MergeSort is typically implemented using a temporary array (for merge step)
 - QuickSort can partition the array "in place"
 Cpt S 223. School of EECS, WSU

Goal: A "good" pivot is one that creates two even sized partitions

Picking the Pivot

How about choosing the first element?

- What if array already or nearly sorted?
- Good for a randomly populated array

How about choosing a random element?

- Good in practice if "truly random"
- Still possible to get some bad choices
- Requires execution of random number generator

Picking the Pivot

- Best choice of pivot
 - Median of array
 - But median is expensive to calculate

- Next strategy: Approximate the median
 - Estimate median as the median of any three elements

Median = median {first, middle, last}

Has been shown to reduce running time (comparisons) by 14%

pivot

How to write the partitioning code?

- Goal of partitioning:
 - i) Move all elements < pivot to the left of pivot
 - ii) Move all elements > pivot to the right of pivot
- Partitioning is conceptually straightforward, but easy to do inefficiently
- One bad way:
 - Do one pass to figure out how many elements should be on either side of pivot
 - Then create a temp array to copy elements relative to pivot

Partitioning strategy

A good strategy to do partition : do it in place

```
// Swap pivot with last element S[right]
i = left
                                                  OK to also swap with
j = (right - 1)
                                                  S[left] but then the
                                                  rest of the code
While (i < j) {
                                                  should change
    // advance i until first element > pivot
                                                  accordingly
    // decrement j until first element < pivot
                                       This is called
    // swap A[i] & A[j] (only if i<j)
                                       "in place" because
                                       all operations are done
                                       in place of the input
                                       array (i.e., without
Swap ( pivot , S[i] )
                      Cpt S 223. School of Cresting temp array)
```


Partitioning Strategy

An in place partitioning algorithm

```
Swap pivot with last element S[right]
```

```
■ i = left
```

```
• j = (right - 1)
```

```
■ while (i < j)</p>
```

```
• { i++; } until S[i] > pivot
```

```
■ { j--; } until S[j] < pivot
```

Swap (pivot , S[i])

Needs a few boundary case handling "Median of three" approach to picking the pivot:

=> compares the first, last and middle elements and pick the median of those three

Partitioning Example

Swap pivot with last element S[right] i = lefti = (right - 1)

Initial array

Swap pivot; initialize i and j

Move i and j inwards until conditions violated

After first swap

```
While (i < j) {
               { i++; } until S[i] > pivot
               { j--; } until S[j] < pivot
               If (i < j), then swap(S[i], S[j]
```

Cpt S 223. School of EECS, WSU

Partitioning Example (cont.)

After a few steps ...

Swap (pivot , S[i])

Handling Duplicates

What happens if all input elements are equal?

<u>Special case:</u> 66666666666666666

```
Current approach:
```

```
■ { i++; } until S[i] > pivot
• { j--; } until S[j] < pivot
```

- What will happen?
 - i will advance all the way to the right end
 - j will advance all the way to the left end
 - => pivot will remain in the right position, creating the left partition to contain N-1 elements and empty right partition
 - Worst case O(N²) performance

Handling Duplicates

- A better code
 - Don't skip elements equal to pivot
 - { i++; } until S[i] ≥ pivot
 - { j--; } until S[j] ≤ pivot

- Adds some unnecessary swaps
- But results in perfect partitioning for array of identical elements
 - Unlikely for input array, but more likely for recursive calls to QuickSort

Small Arrays

- When S is small, recursive calls become expensive (overheads)
- General strategy
 - When size < threshold, use a sort more efficient for small arrays (e.g., InsertionSort)
 - Good thresholds range from 5 to 20
 - Also avoids issue with finding median-of-three pivot for array of size 2 or less
 - Has been shown to reduce running time by 15%

4

QuickSort Implementation

```
/**
2  * Quicksort algorithm (driver).
3  */
4  template <typename Comparable>
5  void quicksort( vector<Comparable> & a )
6  {
7    quicksort( a, 0, a.size() - 1 );
8  }
left right
```

QuickSort Implementation

```
/**
     * Return median of left, center, and right.
      * Order these and hide the pivot.
 3
 4
    template <typename Comparable>
    const Comparable & median3( vector<Comparable> & a, int left, int right )
 7
                                                        8 1 4 9 6 3 5 2 7 0
         int center = ( left + right ) / 2;
 8
                                                        L
                                                                  C
                                                                                R
         if( a[ center ] < a[ left ] )</pre>
10
             swap( a[ left ], a[ center ] );
                                                        6 1 4 9 8 3 5 2 7 0
         if( a[ right ] < a[ left ] )
11
                                                        L
                                                                  C
                                                                                \mathbf{R}
12
             swap( a[ left ], a[ right ] );
1.3
         if( a[ right ] < a[ center ] )</pre>
                                                        0 1 4 9 8
             swap( a[ center ], a[ right ] );
                                                                  C
14
                                                        L
                                                                                R
15
16
             // Place pivot at position right - 1
                                                        L
                                                                  C
                                                                                R
17
         swap( a[ center ], a[ right - 1 ] );
18
         return a[ right - 1 ];
                                                        0 1 4 9 7 3 5 2 6 8
19
                              Cpt S 223. School of EECS, WSU
                                                                  C
                                                                             P R
```

```
/**
 1
     * Internal quicksort method that makes recursive calls.
     * Uses median-of-three partitioning and a cutoff of 10.
     * a is an array of Comparable items.
     * left is the left-most index of the subarray.
     * right is the right-most index of the subarray.
     */
    template <typename Comparable>
    void guicksort( vector<Comparable> & a, int left, int right )
10
                                                                    Assign pivot as
11
        if( left + 10 <= right )
                                                                    median of 3
12
13
            Comparable pivot = median3( a, left, right );
14
15
                // Begin partitioning
                                                             partition based
16
            int i = left, j = right - 1;
                                                             on pivot
            for(;;)
17
18
19
                while( a[ ++i ] < pivot ) { }
                                                               Swap should be
                while( pivot < a[ --j ] ) { }
20
                                                               compiled inline.
21
                if(i < j)
22
                    swap( a[ i ], a[ j ] );
                else
23
24
                    break;
25
26
27
            swap( a[ i ], a[ right - 1 ] ); // Restore pivot
28
                                                                          Recursively sort
29
                                           // Sort small elements
            quicksort( a, left, i - 1);
                                                                          partitions
            quicksort( a, i + 1, right );
                                           // Sort large elements
30
31
32
        else // Do an insertion sort on the subarray
            insertionSort( a, left, right );
Cpt S 223. School of EECS, WSU
33
34
```


Analysis of QuickSort

- Let T(N) = time to quicksort N elements
- Let L = #elements in left partition
 => #elements in right partition = N-L-1
- Base: T(0) = T(1) = O(1)
- T(N) = T(L) + T(N L 1) + O(N)

Time to sort left partition

Time to sort right partition

Time for partitioning at current recursive step

Cpt S 223. School of EECS, WSU

Analysis of QuickSort

- Worst-case analysis
 - Pivot is the smallest element (L = 0)

$$T(N) = T(0) + T(N-1) + O(N)$$

$$= O(1) + T(N-1) + O(N)$$

$$= T(N-1) + O(N)$$

$$= T(N-2) + O(N-1) + O(N)$$

$$= T(N-3) + O(N-2) + O(N-1) + O(N)$$

$$= \sum_{i=1}^{N} O(i) = O(N^{2})$$

Analysis of QuickSort

Best-case analysis

Pivot is the median (sorted rank = N/2)

$$T(N) = T(N/2) + T(N/2) + O(N)$$
$$= 2T(N/2) + O(N)$$
$$= O(N \log N)$$

Average-case analysis

- Assuming each partition equally likely
- $T(N) = O(N \log N)$ How?

4

QuickSort: Avg Case Analysis

```
■ T(N) = T(L) + T(N-L-1) + O(N)

All partition sizes are equally likely

=> Avg T(L) = Avg T(N-L-1) = 1/N \sum_{j=0}^{N-1} T(j)

=> Avg T(N) = 2/N [\sum_{j=0}^{N-1} T(j)] + cN

=> N T(N) = 2 [\sum_{j=0}^{N-1} T(j)] + cN^2 => (1)

Substituting N by N-1 ...

=>(N-1) T(N-1) = 2 [\sum_{j=0}^{N-2} T(j)] + c(N-1)^2 => (2)

(1)-(2)

=> NT(N) - (N-1)T(N-1)

= 2 T(N-1) + c (2N-1)
```

4

Avg case analysis ...

- -NT(N) = (N+1)T(N-1) + c (2N-1)
- $T(N)/(N+1) \approx T(N-1)/N + c2/(N+1)$
- Telescope, by substituting N with N-1, N-2, N-3, .. 2
- ...
- $T(N) = O(N \log N)$

Comparison Sorting

Sort	Worst Case	Average Case	Best Case	Comments
InsertionSort	Θ(N ²)	Θ(N ²)	Θ(N)	Fast for small N
MergeSort	Θ(N log N)	Θ(N log N)	Θ(N log N)	Requires memory
HeapSort	Θ(N log N)	Θ(N log N)	Θ(N log N)	Large constants
QuickSort	$\Theta(N^2)$	Θ(N log N)	Θ(N log N)	Small constants

Comparison Sorting

N	Insertion Sort $O(N^2)$	Shellsort $O(N^{7/6})$ (?)	Heapsort O(N log N)	Quicksort O(N log N)	Quicksort (opt.) O(N log N)
10	0.000001	0.000002	0.000003	0.000002	0.000002
100	0.000106	0.000039	0.000052	0.000025	0.000023
1000	0.011240	0.000678	0.000750	0.000365	0.000316
10000	1.047	0.009782	0.010215	0.004612	0.004129
100000	110.492	0.13438	0.139542	0.058481	0.052790
1000000	NA	1.6777	1.7967	0.6842	0.6154

Good sorting applets

- http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
- http://math.hws.edu/TMCM/java/xSortLab/

Sorting benchmark: http://sortbenchmark.org/

Lower Bound on Sorting

What is the best we can do on comparison based sorting?

- Best worst-case sorting algorithm (so far) is O(N log N)
 - Can we do better?
- Can we prove a lower bound on the sorting problem, independent of the algorithm?
 - For comparison sorting, no, we can't do better than O(N log N)
 - Can show lower bound of Ω(N log N)

Proving lower bound on sorting using "Decision Trees"

A decision tree is a binary tree where:

- Each node
 - lists all left-out open possibilities (for deciding)
- Path of each node
 - represents a decided sorted prefix of elements
- Each branch
 - represents an outcome of a particular comparison
- Each leaf
 - represents a particular ordering of the original array elements

Decision Tree for Sorting

- The logic of any sorting algorithm that uses comparisons can be represented by a decision tree
- In the worst case, the number of comparisons used by the algorithm equals the HEIGHT OF THE DECISION TREE
- In the average case, the number of comparisons is the average of the depths of all leaves
- There are N! different orderings of N elements

 Cpt S 223. School of EECS, WSU

Lower Bound for Comparison Sorting

Lemma: A binary tree with L leaves must have depth at least ceil(lg L)

Sorting's decision tree has N! leaves

Theorem: Any comparison sort may require at least $\lceil \log(N!) \rceil$ comparisons in the worst case

Theorem: Any comparison sort requires $\Omega(N \log N)$ comparisons

Proof (uses Stirling's approximation)

$$N! \approx \sqrt{2\pi N} (N/e)^{N} (1 + \Theta(1/N))$$

$$N! > (N/e)^{N}$$

$$\log(N!) > N \log N - N \log e = \Theta(N \log N)$$

$$\log(N!) > \Theta(N \log N)$$

$$\therefore \log(N!) = \Omega(N \log N)$$
Cpt S 223. School of EECS, WSU

Implications of the sorting lower bound theorem

- Comparison based sorting cannot be achieved in less than (n lg n) steps
 - => Merge sort, Heap sort are optimal
 - => Quick sort is not optimal but pretty good as optimal in practice
 - => Insertion sort, bubble sort are clearly suboptimal, even in practice

Non comparison based sorting

Integer sorting
e.g., Counting sort
Bucket sort
Radix sort

Integer Sorting

- Some input properties allow to eliminate the need for comparison
 - E.g., sorting an employee database by age of employees

Counting Sort

- Given array A[1..N], where $1 \le A[i] \le M$
- Create array C of size M, where C[i] is the number of i's in A
- Use C to place elements into new sorted array B
- Running time $\Theta(N+M) = \Theta(N)$ if $M = \Theta(N)$

Counting Sort: Example

Input A:

(all elements in input between 0 and 3)

Count array C:

Output sorted array:

Time =
$$O(N + M)$$

If
$$(M < N)$$
, Time = $O(N)$

N = 10

M=4

Stable vs. nonstable sorting

 A "stable" sorting method is one which preserves the original input order among duplicates in the output

Input:

Output:

How to make counting sort "stable"? (one approach)

But this algorithm is NOT in-place!

Can we make counting sort in place?

(i.e., without using another array or linked list)

Cpt S 223. School of EECS, WSU

How to make counting sort in place?

```
void CountingSort_InPlace(vector a, int n) {
    1. First construct Count array C s.t C[i] stores the last index in the bin corresponding to key i, where the next instance of i should be written to. Then do the following:

i=0;
while(i<n) {
    e=A[i];
    if c[e] has gone below range, then continue after i++;
    if(i==c[e]) i++;
    tmp = A[c[e]];
    A[c[e]--] = e;
    A[i] = tmp;
}

Note: This code has to keep track of the valid range for each key
}</pre>
```


Bucket sort

- Assume N elements of A uniformly distributed over the range [0,1]
- Create M equal-sized buckets over [0,1], s.t., M≤N
- Add each element of A into appropriate bucket
- Sort each bucket internally
 - Can use recursion here, or
 - Can use something like InsertionSort
- Return concatentation of buckets
- Average case running time Θ(N)
 - assuming each bucket will contain Θ(1) elements

- Radix sort achieves stable sorting
- To sort each column, use counting sort (O(n))
 To sort k columns, O(nk) time

Radix Sort

- Sort N numbers, each with k bits
- E.g, input {4, 1, 0, 10, 5, 6, 1, 8}

External Sorting

- What if the number of elements N we wish to sort do not fit in memory?
- Obviously, our existing sort algorithms are inefficient
 - Each comparison potentially requires a disk access
- Once again, we want to minimize disk accesses

External MergeSort

- N = number of elements in array A[1..N] to be sorted
- M = number of elements that fit in memory at any given time
- $K = \lceil N/M \rceil$

External MergeSort

O(M log M)

- Approach
 - Read in M amount of A, sort it using local sorting (e.g., quicksort), and write it back to disk

O(KM log M)

Repeat above K times until all of A processed

- 3. Create K input buffers and 1 output buffer, each of size M/(K+1)
- 4. Perform a <u>K-way merge</u>:

O(N log k)

- 1. Update input buffers one disk-page at a time
- 2. Write output buffer one disk-page at a time

How?

Cpt S 223. School of EECS, WSU

K-way merge

Q) How to merge k sorted arrays of total size N in O(N Ig k) time?

For external merge sort:

In memory: r = M/(k+1) and $\sum_{i=0}^k |L_i| = M$ sorted

Merge & sort ????

K-way merge – a simple algo

Sum of sorted list lengths = N (= kr)

Q) What is the problem with this approach?

- k-1 stages
- Total time

=
$$2r + 3r + 4r + 5r + ... + kr$$

= $O(k^2r)$
= $O(Nk)$

 Even worse, if individual input arrays are of variable sizes

We can do better than this! Cpt S 223. School of EECS, WSU

K-way merge – a better algo

4

External MergeSort

Computational time T(N,M):

```
= O(K*M log M) + O(N log K)
```

- = O((N/M)*M log M)+O(N log K)
- $= O(N \log M + N \log K)$
- $= O(N \log M)$
- Disk accesses (all sequential)
 - P = page size
 - Accesses = O(N/P)

Sorting: Summary

- Need for sorting is ubiquitous in software
- Optimizing the sort algorithm to the domain is essential
- Good general-purpose algorithms available
 - QuickSort
- Optimizations continue...
 - Sort benchmarks

http://sortbenchmark.org/
http://research.microsoft.com/barc/sortbenchmark