Predictive Analytics – Session 1

The Predictive Mindset Predicting with Regression

Associate Professor Ole Maneesoonthorn

Associate Professor in Econometrics and Statistics

Melbourne Business School

O.Maneesoonthorn@mbs.edu

What is your perception of

PREDICTIVE ANALYTICS?

fistory > future,
"Likelihood" > error

Predictive Analytics:

- Focus on the future "Predictive"
- ... by learning from the past "Analytics"
- For your business context

Example: What do loan lenders want?

Example: What do loan lenders want?

Actual Observation

Good loan

Good loan

False Positive

False Positive

Predicted Outcome

$$Accuracy = \frac{True\ Positive + True\ Negative}{Total}$$

False Negative

True Negative

Example: What do loan lenders want?

•	Who do they see?			Actual Observation	
				Good loan	Bad loan
		Predicted Outcome	Good loan	True Positive	False Positive
			Bad loan	False Negative	True Negative

$$Precision = rac{True\ Positive}{True\ Positive + False\ Positive}$$

Example: What about fraud detection?

		Actual Observation		
		Fraud	Not Fraud	
Predicted Outcome	Fraud	True Positive	False Positive	
	Not Fraud	False Negative	True Negative	

Example: What about fraud detection?

•	False negative more devastating			Actual Observation	
				Fraud	Not Fraud
			Fraud	True Positive	False Positive
		Predicted Outcome	Not Fraud	False Negative	True Negative

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

Key takeaway:

Assessment of predictions are context specific.

Make sure you use the measure of accuracy that is

appropriate to your context!

Discussions:

Does "good fit" imply "good prediction"?

• Is Prediction = Truth?

Good fit?

R-Square = 75%

Good prediction?

Better fit?

R-Square = 87%

Better prediction?

"All models are wrong...

but some are useful..."

George Box (1987)

Key takeaway:

Use of analytics outcome dictates the analytics process

Driver of Predictive Analytics

Good fit ≠ **Good prediction**

Prediction ≠ **Truth**

Business loss \neq **Statistical loss**

Key Questions

How large is the potential error from predictions?

How does prediction error impact our business?

 Are there other methods that returns smaller error? How do we compare them?

Quantifying potential error

• We know from the outset that **Prediction** ≠ **Truth**

How large is this potential error?

PREDICTION INTERVAL

Quantifying potential error

- The prediction interval: a range that we expect cover the truth with a given probability
- E.g. 95% prediction interval: we expect that the truth will be within this interval with 95% probability

Quantifying potential error

Quantifying potential error

- Small model error → small potential error
- The further away the input is from its centre → larger potential error
- Smaller sample size → larger potential error
- Narrower interval for a given probability level is preferred

But how do we know if the model/method generate accurate prediction?

- Split the data into training & test sets
- Both should have similar
 characteristics and representative of the population
- Training data use to build models
- Typically larger in size than the test data

- Use the model to construct from the training data
- Predict the observations using test set characteristics
- Compare the predictions to the actual realizations
- Error = Actual Prediction

Training vs test split

 For cross-sectional data, we need to make sure that the two samples are representative of population

Training vs test split

- For time series data, there is a natural sequence
- Data split by time

Time series predictions

- Long-horizon prediction
- Short-horizon real time prediction

Key takeaway:

The predictive assessment process should mimic the intended use as much as possible.

Evaluating predictive accuracy

- Various statistics available to measure predictive accuracy
- Computed over the test data
- E.g. Mean squared error

$$MSE = average(error^{2})$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (e_{i})^{2}$$

Where $e_i = Actual_i - Predicted_i$

Commonly reported measures of predictive accuracy:

- Root mean square error (RMSE)
- Mean absolute error (MAE)
- Mean absolute percentage error (MAPE)
- Mean absolute scaled error (MASE)

Smaller values are preferred!

Commonly reported measures of predictive accuracy:

Root mean square error (RMSE)

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (e_i)^2}$$

- In the same unit as the data
- Akin to the out-of-sample standard error of the regression
- Commonly used and reported metric
- Highly influenced by extreme values due to the power function

Commonly reported measures of predictive accuracy:

Mean absolute error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |e_i|$$

- In the same unit as the data
- Overcome the issue of extreme value domination in the MSE and RMSE

Commonly reported measures of predictive accuracy:

Mean absolute percentage error (MAPE)

$$MAPE = 100 \times \frac{1}{N} \sum_{i=1}^{N} \left| \frac{e_i}{Actual_i} \right|$$

- In percentage unit unit insensitive
- Measures how large the predictive error is relative to actual value
- Con: Undefined if "Actual" is zero, and gets "explosive" when "Actual" is close to zero
- Do not use if the data can the value of zero!

Commonly reported measures of predictive accuracy:

Mean absolute scaled error (MASE)

$$MASE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{e_i}{BE} \right|$$

where
$$BE = \frac{1}{N} \sum_{i=1}^{N} |Actual_i - Naive|$$

- Measures how well a method predicts relative to the naïve prediction
- For cross sectional data, the naïve method is the sample mean

Commonly reported measures of predictive accuracy:

Mean absolute scaled error (MASE)

$$MASE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{e_i}{BE} \right|$$

- Benchmark value for MASE is 1.
- MASE = 1: your method is doing as good as the naïve
- MASE > 1: your method is doing worse than the naïve
- MASE < 1: your method is doing better than the naïve ← PREFERRED!

Evaluating predictive accuracy

- Note that these are statistical metrics
- That is, they are simply measure of distances (or relative distances)
- In many cases, there will be conflicts across these measures
- The impact of prediction errors on the business may not be captured accurately
- Consider defining user-specific loss functions of prediction errors

Evaluating predictive accuracy

- Example: predicting demand impacts has certain implications on inventory management.
- Would overpredicting have the same consequence as underpredicting

demand? Costs Overprodiction - handling /storage
- Credits

Larger or Uniter Scles cost/loss of profit
conserver exp/ goodul.

Evaluating predictive accuracy

- Example: predicting real estate prices.
- What would be the consequence of errors for a banker using the predicted price to assess loan collateral?
- What would be the consequence of errors for a <u>real estate agent</u> using the predicted price to propose an advertise price?

Key takeaway:

Ultimately, we pick methods that minimizes collective error/user-specific loss over the test data

Predicting with Regression

• The multiple linear regression – how do we predict?

$$Y = c + b_1 X_1 + b_2 X_2 + \dots + b_k X_k + error$$

Form an expectation!

$$\hat{Y} = E(Y|X_1, X_2, ..., X_k) = c + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$

• Because the error is always present, $actual \neq prediction$

Predicting with Regression

Quantifying potential error

Predicting with Regression

The multiple linear regression – the prediction

$$\hat{Y} = E(Y|X_1, X_2, ..., X_k) = c + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$

Quantifying the uncertainty – the 95% prediction interval

$$LowerBound = \hat{Y} - 1.96(Prediction\ Error)$$

$$UpperBound = \hat{Y} + 1.96(Prediction\ Error)$$

 The model indicates that there is a 95% probability that the actual value will be between the lower bound and the upper bound

Regression example

- Goal: Construct a predictive model for property prices (Real Estate data)
- Let's compare
 - Multiple linear regression model
 - Stepwise regression
 - Nonlinear regression with quadratic and interactions
- Real Estate Prices with Regression page

Regression example

- Goal: Construct a predictive model for property prices (Real Estate data)
- What do the statistical metrics say?

	RMSE	MAE	MAPE	MASE
Linear	296.337	185.768	13.885	0.592
Stepwise	295.628	186.304	13.940	0.593
Nonlinear	280.542	175.747	13.387	0.560

Green is best

Regression example

- What if you are a banker? How do the models compare if we value a conservative prediction more than an overestimate? (as lenders!)
- Give double the weight to errors from overestimation

	Banker		
Linear	259.730		
Stepwise	260.297		
Nonlinear	245.350		

Green is best

Regression example

- What if you are a real estate agent?
 - Low: error is within 10% of actual price.
 - Medium: error is within between 10% and 30% of actual price.
 - High: error is greater than 30% of actual price.
- The medium level errors are penalized 5 times greater than the low level error.
- The high level errors are penalized 10 times greater.

Regression example

- What if you are a real estate agent?
- Loss function a bit more complex...

	RE Agent		
Linear	75.437		
Stepwise	77.586		
Nonlinear	80.461		

Green is best

Regression example

- Goal: Construct a predictive model for property prices (Real Estate data)
- Collating all statistics

	RMSE	MAE	MAPE	MASE	Banker	RE Agent
Linear	296.337	185.768	13.885	0.592	259.730	75.437
Stepwise	295.628	186.304	13.940	0.593	260.297	77.586
Nonlinear	280.542	175.747	13.387	0.560	245.350	80.461

Green is best

Predictive Analytics Session 1

Key takeaway:

Predictive assessments are useful only when the analytics address the context of the predictive outcome.

