Grundlagen der Regelungstechnik Kapitel 3: Laplace-Transformation und Übertragungsfunktion

Tom Huck

DHBW Karlsruhe

WS 2025

Hinweis zum Urheberrecht

Dieser Foliensatz enthält ggf. fremde Abbildungen die zum Zwecke der Lehre wiederverwendet werden. Die Verwendung dieser Inhalte geschieht mit Zustimmung der jeweiligen Rechteinhaber oder unter der Ausnahmeregelung für Unterricht und Lehre gemäß §60a UrHRG. Fremde Abbildungen sind mit einer Quellenangabe gekennzeichnet.

Frage

Welche Methoden zur mathematischen Beschreibung von Regelstrecken haben Sie bisher kennengelernt?

Bisherige Beschreibungsformen

Sie haben bisher gelernt...

- Wie man Regelstrecken mittels Sprung- und Impulsantwort beschreibt
- Wie man Regelstrecken mittels Differentialgleichungen beschreibt und
- Wie man Regelstrecken grafisch (mittels Srukturdiagramm) beschreibt

Diese Beschreibungsformen haben aber gewisse Nachteile!

Warum eine weitere Beschreibungsform?

Nachteil: Bestimmte Operationen sind mathematisch umständlich.

Beispiel: Eine Regelstrecke besteht aus zwei hintereinandergeschalteten Systemen f und g, von denen jedes mit einer Differentialgleichung beschrieben wird.

$$f: \ddot{y} = -2\dot{y} - y + 2x$$
$$g: \dot{x} = -x + u$$

Frage: Wie kann das Gesamtsystem aus g und h beschrieben werden?

Warum eine weitere Beschreibungsform?

Auch wenn f und g mittels Sprungantwort beschrieben werden, ist die Berechnung relativ umständlich (zumindest für händische Rechnungen). Hier wäre die Faltung anzuwenden (s. Kapitel 1):

$$f * g = \int_{-\infty}^{\infty} f(\tau) \cdot g(x - \tau) d\tau \tag{1}$$

Eine handlichere Beschreibungsform wird benötigt!

Die Laplace-Transformation \mathcal{L} (1)

Die Laplace-Transformation $\mathcal L$ verwandelt DGLn in algebraische (d.h. "normale") Gleichungen, mit denen sich leichter rechnen lässt.

Definition der Laplace-Transformation für ein Signal x(t):

$$\mathcal{L}(x(t)) = \int_0^\infty x(t) \cdot e^{-st} dt = X(s)$$
 (2)

Wichtig: t wird "herausintegriert", übrig bleibt nur die sog. Laplace-Variable s, daher wird das Ergebnis als X(s) notiert.

Die Laplace-Transformation \mathcal{L} (2)

Nützliche Eigenschaft: Was passiert bei Integration bzw. Differentiation des Signals?

	Ursprüngliches Signal	Laplace-Transformierte
Differentiation	$\dot{x}(t)$	$s \cdot X(s) - x(0)$
Integration	$\int x(t)dt$	$\frac{1}{s}X(s)$

Hinweise:

- Wir vernachlässigen i.d.R. den Anfangswert x(0), d.h. $\mathcal{L}(\dot{x}(t)) = s \cdot X(s)$.
- Für n-fache Ableitungen gilt dann entsprechend $\mathcal{L}\left(\frac{d^n}{dt^n}X(t)\right)=s^nX(s).$

Frage: Erkennen Sie bereits, warum diese Eigenschaft für uns so nützlich ist?

Von der DGL zur Algebraischen Gleichung (1)

Die Eigenschaften der Laplace-Transformation bzgl. Integration und Differentiation erlauben es, aus einer DGL eine algebraische (d.h. "normale") Gleichung zu machen, in der keine Ableitungen mehr vorkommen.

Hierzu werden die Funktionen in der DGL Laplace-Transformiert, in dem man für die Funktion x(t) die Transformierte X(s) einsetzt, für die erste Ableitung sX(s), für die zweite Ableitung $s^2X(s)$, für die n—te Ableitung $x^nX(s)$, usw.

Aufgabe: Führen Sie hier eine Laplace-Transformation durch:

$$\ddot{x} = -\dot{x} - 2x \tag{3}$$

Laplace-Korrespondenztabellen

Um sich bei komplizierteren Ausdrücken die händische Transformation zu sparen, gibt es in der Literatur sogenannte *Korrespondenztabellen*, in denen man die Transformationen direkt Nachschlagen kann. Auszug aus einer Korrespondenztabelle (Beispiel, nicht vollst.):

$\overline{f(t) = f(kT)}$	$L\{f(t)\}$	$Z\{f(kT)\}$	
$\overline{\operatorname{Impuls}\delta(t)}$	1	1	(1)
${\rm Sprungfunktion}\sigma(t)$	$\frac{1}{s}$	$\frac{z}{z-1}$	(2)
t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	(3)
t^2	$\frac{2}{s^3}$	$\frac{T^2z\cdot(z+1)}{(z-1)^3}$	(4)
t^3	$\frac{6}{s^4}$	$\frac{T^3z \cdot (z^2 + 4z + 1)}{(z-1)^4}$	(5)
t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} \frac{\partial^n}{\partial a^n} \left\{ \frac{z}{z - e^{aT}} \right\}$	(6)

Auszug aus: http://www2.hs-esslingen.de/~mohr/mathematik/me2/LT_Tabelle.pdf

Laplace-Übertragungsfunktion (1)

Betrachtet man nun ein System mit Eingangsgröße u(t) und Ausgangsgröße y(t), so kann mittels der Laplace-Transformation die sogenannte Laplace-Übertragungsfunktion aufgestellt werden. Diese ist definiert wie folgt:

$$G(s) = \frac{Y(s)}{U(s)} \tag{4}$$

Wobei Y(s) die Laplace-Transformierte der Ausgangsgröße und U(s) die Laplace-Transformierte der Eingangsgröße ist¹.

Frage: Wie lautet die Übertragungsfunktion des Systems, welches durch die folgende DGL beschrieben wird?

$$\ddot{y} = -\dot{y} - 2y + u \tag{5}$$

¹Es ist üblich, *U* für den Eingang und Y für den Ausgang zu verwenden. Je nach Kontext können die Namen aber auch andere sein! Schauen Sie daher immer genau hin, was Eingangs- und was Ausgangsgröße ist!

Laplace-Übertragungsfunktion (2)

Frage: Wie lautet die Übertragungsfunktion des Systems, welches durch die folgende DGL beschrieben wird?

$$\ddot{y} = -\dot{y} - 2y + u \tag{6}$$

Schritt 1: Laplace-Transformierte für x, u, und deren Ableitungen einsetzen:

$$s^{2}Y(s) = -sY(s) - 2Y(s) + U(s)$$
 (7)

Schritt 2: Auf die Form Y(s)/U(s) bringen:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^2 + s + 2} \tag{8}$$

Laplace-Übertragungsfunktion (3)

Die allgemeine Form der Übertragungsfunktion lautet:

$$G(s) = \frac{Z(s)}{N(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_2 s^2 + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_2 s^2 + a_1 s + a_0}$$
(9)

Hierbei heißt Z(s) Zählerpolynom und N(s) Nennerpolynom der Übertragungsfunktion. b_i und a_i sind die Koeffizienten des Zählerbzw. Nennerpolynoms. Der jeweils größte Exponent m bzw. n ist der Grad des Zähler-bzw. Nennerpolynoms.

Im Allgemeinen gilt: $n \ge m$. n ist somit der Grad des Gesamtsystems.

Bedeutung der Laplace-Übertragungsfunktion

Warum ist die Übertragungsfunktion für uns wichtig?

Anhand der Übertragungsfunktion lassen sich:

- Frequenz- und Amplitudengang des Systems bestimmen (nachfolgend).
- Wichtige Systemeigenschaften, wie z.B. Stabilität des Systems, bestimmen.
- Regler auslegen.

Reihenschaltung von Systemen

Ein weiterer Vorteil von Übertragungsfunktionen ist, dass sich Reihen- und Parallelschaltung sowie Rückkopplungen von Systemen leicht berechnen lassen:

Die Reihenschaltung zweier Systeme wird wie folgt berechnet:

$$G_3(s) = G_1(s) \cdot G_2(s)$$

Parallelschaltung von Systemen

Die Parallelschaltung zweier Systeme wird wie folgt berechnet:

$$G_3(s) = G_1(s) + G_2(s)$$

Rückkopplung (geschlossener Regelkreis)

Die negative Rückkopplung eines Systems wird wie folgt berechnet:

$$F_G(s) = \frac{F_O(s)}{1 + F_O(s)}$$

Hinweis: Die Formel für die Rückkopplung ist wichtig, um aus der Übertragungsfunktion des offenen Regelkreises $F_O(s)$ die des geschlossenen Regelkreises $F_G(s)$ zu berechnen.

Pole und Nullstellen

Nullstellen des Zählerpolynoms nennt man **Nullstellen**. Die Nullstellen des Nennerpolynoms nennt man hingegen **Pole** des Systems.

Für die Analyse des Systemverhaltens sind insbesondere die Pole wichtig, da sie etwas über die Stabilität des Systems aussagen (hierzu später mehr).

Achtung: Bei der Pol- bzw. Nullstellenberechnung erhalten Sie u.U. komplexe Zahlen als Ergebnis!

Pole und Nullstellen

Aufgabe: Berechen Sie die Pole und Nullstellen der folgenden Systeme:

$$G_1(s) = \frac{s+2}{s^2 - 5s + 4} \tag{10}$$

$$G_2(s) = \frac{1}{s^2 + 2s} \tag{11}$$

$$G_3(s) = \frac{s^2 - s - 2}{s^3 - 2s^2 - s + 2} \tag{12}$$

Lösungshinweis zu $G_3(s)$: Eine der Polstellen liegt bei s=-1. Polynomdivision verwenden.

Pol- und Nullstellendiagramm

- Zur grafischen Darstellung trägt man Pole und Nullstellen in ein Diagramm der komplexen Zahlenebene ein (x-Achse: Realteil, y-Achse: Imaginärteil).
- Dabei ist es üblich, Nullstellen durch Kreise und Pole durch Kreuze zu kennzeichnen.
- Man nennt dieses Diagramm
 Pol-Nullstellen Diagramm

Figure: Pol-Nullstellen Diagramm^a

^aBildquelle: Hochschule Karlsruhe - Systemtheorie Online (https://www.eit.hs-karlsruhe.de/mesysto/)

Pol- und Nullstellendiagramm

Aufgabe: Erstellen Sie jeweils ein Pol-Nullstellen-Diagramm der Systeme G_1 , G_2 und G_3 (Gl. (10)-(12))

Amplituden- und Phasengang (1)

Schickt man ein Signal durch eine Regelstrecke, so erfährt es eine Verstärkung und einen Phasenversatz. Verstärkung und Phasenversatz variieren mit der Frequenz des Signals.

Figure: Blau: Eingangssignal, Rot: Ausgangssignal mit Amplituden- und Phasenänderung.

Bildquelle: Prof. Thomas Längle, Vorlesung Echtzeitsysteme, KIT, Sommersemester 2022

Amplituden- und Phasengang (2)

Den frequenzabhängigen Verlauf der Verstärkung bezeichnet man als Amplitudengang, den des Phasenversatzes als Phasengang. Berechnen kann man Amplituden- und Phasengang, indem man in der Übertragungsfunktion für die Laplace Variable $s=j\omega$ einsetzt (j: imaginäre Zahl).

- Amplitudengang entspricht Betrag der komplexen Übertragungsfunktion: $|G(j\omega)|$
- Phasengang entspricht Phase der komplexen Übertragungsfunktion: $\angle G(j\omega)$

Bode-Diagramm

Trägt man Amplituden- und Phasengang untereinander auf einer logarithmischen Skala auf, spricht man von einem Bode-Diagramm.

Bildquelle: Prof. Thomas Längle, Vorlesung Echtzeitsysteme, KIT, Sommersemester 2022

Ortskurve

Trägt man für jede Frequenz Amplitude und Phase als Zeiger in die komplexe Zahlenebene ein und verbindet jeweils die Endpunkte der Zeiger, so nennt man das entstehende Diagramm Ortskurve.

Bildquelle: Prof. Thomas Längle, Vorlesung Echtzeitsysteme, KIT, Sommersemester 2022

Übertragungsfunktionen in Matlab

In Matlab lassen sich Übertragungsfunktionen schnell und einfach analysieren. Dazu wird die *Control System Toolbox* benötigt.

Eine Übertragungsfunktion definiert man wie folgt:

Dabei enthält der erste Vektor die Koeffizienten des Zählerpolynoms und der zweite Vektor die Koeffizienten des Nennerpolynoms. In diesem Beispiel würde also die folgende Übertragungsfunktion definiert:

$$G(s) = \frac{s+2}{s^2+2s+3}$$

Übertragungsfunktionen in Matlab

Auf die Übertragungsfunktion lassen sich folgende Operationen anwenden:

- ▶ pole(G) berechnet die Pole der Übertragungsfunktion.
- ▶ zero(G) berechnet die NulsItellen der Übertragungsfunktion.
- ► G3=series(G1,G2) berechnet die Reihenschaltung zweier Übertragungsfunktionen. (Alternativ auch: G3=G1*G2)
- ► G3=parallel(G1,G2) berechnet die Parallelschaltung zweier Übertragungsfunktionen. (Alternativ auch: G3=G1+G2)
- G2=feedback(G1,k) Berechnet den geschlossenen Kreis (d.h. negative Rückkopplung von G1) mit Verstärkungsfaktor k.
- step(G) zeichnet die Sprungantwort von G
- bode(G) zeichnet das Bode-Diagramm von G
- nyquist(G) zeichnet die Ortskurve von G

Übertragungsfunktionen in Matlab

Aufgabe: Überprüfen Sie Ihre Berechnungen von Pol- und Nullstellen der Systeme G_1 , G_2 und G_3 (Gl. (10)-(12)) mit Hilfe von Matlab.

Übung: Elektrisches Antriebssystem

Aufgabe: Betrachten Sie noch einmal das elektrische Antriebssystem aus Kapitel 1. Stellen Sie zunächst händisch die Übertragungsfunktionen auf für:

Elektrisches Teilsystem

$$di/dt = \frac{1}{L} \cdot u - \frac{R}{L} \cdot i \tag{13}$$

Mechanisches Teilsystem

$$\dot{\omega} = \frac{1}{J}(K \cdot i - r \cdot \omega) = \frac{K}{J} \cdot i - \frac{r}{J} \cdot \omega \tag{14}$$

► Gesamtsystem (mit Rückkopplung der Winkelgeschwindigkeit) $-\Phi \cdot \omega$ auf den Eingang u)

Übung: Elektrisches Antriebssystem

Lösung: s. Tafelanschrieb