

NHMW Workshop IV

De novo genome assembly

Martin Kapun & Andreas Kroh

Program for today

Concepts

- The basics of NGS
- Types of assembly algorithms
- Assembly workflow
- Quality control

Program for today

Concepts

- The basics of NGS
- Types of assembly algorithms
- Assembly workflow
- Quality control

Hands-on

- Raw data QC
- Estimating the genome size
- Assembly with SPAdes and Flye
- Assembly QC

A genome assembly is an attempt to accurately represent an entire genome sequence from a large set of short DNA sequences.

A genome assembly is **an attempt** to accurately represent an entire genome sequence from a large set of short DNA sequences.

A genome assembly is an attempt to accurately represent an entire genome sequence from a large set of short DNA sequences.

A genome assembly is an attempt to accurately represent an entire genome sequence from a large set of short DNA sequences.

A genome assembly is an attempt to accurately represent an entire genome sequence from a large set of **short** DNA sequences.

A genome assembly is an attempt to accurately represent an entire genome sequence from a large set of short DNA sequences.

It's a bit like trying to do the hardest jigsaw puzzle you can imagine!

New Sequencing technologies

Genome-size variation

The Holy Bible: c. 3.5 million characters (excl. spaces) x 500,000 (!)

GAATTCTTCAGGTAGCTTCCTAGGGTTTCCAAGGCAATACAA

AGGTAGCTTCCTAGGGTTTCCAAGGCAATACAAGAAGAATTTT

TTCTTCAGGTAGCTTCCTAGGGTTTCCAAGG

Problem:

numerous fragments of the same genomic region exist

Benefit:

numerous fragments of the same genomic region exist

What to do with these data?

Reference guided assembly (read mapping/resequencing)

And God said, Let there be light And there was light. And God saw the light, that it was good

said, Let there be

Let there be plight

light. And there was light. And

Let there be light. And there was light. And God saw

was light. And God saw the

De-novo assembly

and the gathering together

the gathering together of

gathering together of the

together of the waters

of the waters he called

And God called the firmament Heaven

God saw the light, that it was

that it was good.

And God said, Let the earth

And God said, Let there be

And God called the dry

And God saw that it was good.

And God saw

he called Seas. And God

and the gathering together of the waters hecalled Seas. And God saw that it was good.

Read types

Single-End vs. Paired-End

Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance between each paired read is known, alignment algorithms can use this information to map the reads over repetitive regions more precisely. This results in much better alignment of the reads, especially across difficult-to-sequence, repetitive regions of the genome.

Read types

Single-End vs. Paired-End

Read types

Single-End vs. Paired-End vs. Single Molecule

Oxford Nanopore

Pacific Biosciences

Raw data

- (FASTA)
- FASTQ

Phred Quality Scores

```
...........
    .....
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
                                      104
                                                   126
      Phred+33, raw reads typically (0, 40)
S - Sanger
        Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


Phred Quality Scores

Table 1: Quality Scores and Base Calling Accuracy

Probability of Incorrect Base Call	Base Call Accuracy
1 in 10	90%
1 in 100	99%
1 in 1,000	99.9%
1 in 10,000	99.99%
1 in 100,000	99.999%
	1 in 100 1 in 1,000 1 in 10,000

Data Quality

Short reads

150 bp □ 250 bp

Data Quality

Short reads

Quality trimming (removal of low qual bases; adapters)

Long reads

< 200,000bp

(1) Overlap-consensus-layout (OCL) method

• e.g. Flye assembler (long reads)

(1) Overlap-consensus-layout (OCL) method

• e.g. Flye assembler (long reads)

(2) de-Bruijn-graph based method

e.g. SPAdes assembler (short reads)

K-mer

The term k-mer refers to all the possible substrings of length k that are contained in a string

ATGGAAGTCGATGGAAG

of overlapping k-mers = s - k + 1

s = sequence length k = k-mer length

(2) de-Bruijn-graph based method

e.g. SPAdes assembler (short reads)

(2) de-Bruijn-graph based method

e.g. SPAdes assembler (short reads)

(2) de-Bruijn-graph based method

e.g. SPAdes assembler (short reads)

Fig. S1. A small subgraph of the A-Bruijn graph constructed from 76 (15,8)-mers appearing in segments of 55 reads covering a short 100-nucleotide region (starting at position 2,100,000 in *E. coli* genome). Three out of 55 read-paths are highlighted in blue, red, and green.

Assembled sequences

Assembled sequences

K-mers revisited

A relationship between k-mers and genome-size

For sequences > 1mb:

unique k-mers ~ sequence length

Genomesize ~ #unique k-mers/coverage

BUT, Read Error, Repeats & Heterozygosity!!

K-mers revisited

K-mer, Read Error, Repeats & Heterozygosity

K-mers revisited

Model-based estimate of genome-size with Genomescope

Assembly QC metrics

Standard Metrics (QUAST):

Longest Contig; longest Scaffold; N50; #contigs/scaffolds; (threshold)

- light/dark blue: AT/GC content [%]
- light orange: N90 [y-axis: length]
- dark orange: N50 [y-axis: length]
- dark grey: [y-axis: scaffold lengths]
- light grey: [count of scaffolds]

Assembly QC metrics

Benchmarking Universal Single-Copy Orthologue (BUSCO)

 Estimate assembly quality based on presence of conserved single copy genes.

Assembly QC metrics

BLOBtools

- Combines various assembly-QC analyses
 - BLAST -> similarity of contigs to taxa
 - MAPPING -> coverage variation
 - BUSCO

Hands on...

https://github.com/nhmvienna/Workshop_IV_De NovoAssembly

Thank you!!!

