Proof of Irrationality of π

Jonggeun Kim*†

October 4, 2022

Abstract

 π is known as a familiar irrational number. However, in the high school curriculum and undergraduate courses, we accept the fact that π is irrational without any proof. In this article, we review the three proofs of Ivan Niven, Lambert and Cartwright.

Contents

L	Introduction	1
2	Ivan Niven's proof	2
3	Lambert's proof	Ę
1	Cartwright's proof	8

1 Introduction

In 1761, Johann Heinrich Lambert¹ reported the first proof that the number π is irrational, in other words π cannot be expressed as a fraction $\frac{a}{b}$, where a and b are both non-zero integers. In 1873, Charles Hermite²³ found another proof which only uses basic calculus. Three simplifications of Hermite's proof are due to Mary Cartwright, Ivan Niven⁴, and Nicolas Bourbaki⁵. Another proof, which is a simplification of Lambert's proof, is due to Miklós Laczkovich⁶. Many of these are reductio ad absurdum.

^{*}MIMIC

[†]Sungkyunkwan University, Department of Natural Science, Suwon

¹Lambert, Johann Heinrich (1768), "Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques", in Berggren.

²Hermite, Charles (1873). "Extrait d'une lettre de Monsieur Ch. Hermite à Monsieur Paul Gordan". Journal für die reine und angewandte Mathematik. 76: 303–311.

³Hermite, Charles (1873). "Extrait d'une lettre de Mr. Ch. Hermite à Mr. Carl Borchardt". Journal für die reine und angewandte Mathematik. 76: 342–344.

⁴Niven, Ivan (1947), "A simple proof that π is irrational", Bulletin of the American Mathematical Society, vol. 53, no. 6, p. 509.

⁵Bourbaki, Nicolas (1949), Fonctions d'une variable réelle, chap. I–II–III, Actualités Scientifiques et Industrielles, vol. 1074, Hermann, pp. 137–138.

 $^{^6\}text{Laczkovich},$ Miklós (1997), "On Lambert's proof of the irrationality of π ", American Mathematical Monthly, vol. 104, no. 5, pp. 439–443.

2 Ivan Niven's proof

Lemma 2.1. $\lim_{n\to\infty}\frac{x^n}{n!}=0$ for all $x\in\mathbb{R},\ n\in\mathbb{N}$

Proof. Note that Taylor series of $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. By the ratio test,

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{x+1}{n+1} \right| = 0.$$

Therefore for any $x \in \mathbb{R}$, $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges, which means $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ for any $x \in \mathbb{R}$.

Suppose that π is rational, such that $\pi = \frac{a}{b}$. $(a, b \in \mathbb{Z}^+, a, b \text{ are rel. prime.})$

Definition 2.1. Let $f \in C^{2n+2}$ be

$$f(x) = \frac{x^n (a - bx)^n}{n!} \tag{1}$$

where $n \in \mathbb{N}$.

Definition 2.2. Let $F : \mathbb{R} \to \mathbb{R}$ be

$$F(x) = f(x) - f''(x) - \dots + (-1)^n f^{(2n)}(x)$$
(2)

where $n \in \mathbb{N}$.

In this section, f and F are used as defined above.

Lemma 2.2. $f(x) = f(\pi - x)$ for all $x \in \mathbb{R}$.

Proof.

$$f(x) = \frac{x^n (a - bx)^n}{n!} = \frac{x^n b^n (\frac{a}{b} - x)^n}{n!} = \frac{(\pi - x)^n (bx)^n}{n!}$$
$$bx = a - a + bx = a - b(\frac{a}{b} - x) = a - b(\pi - x)$$

$$f(x) = \frac{(\pi - x)^n (bx)^n}{n!} = \frac{(\pi - x)^n (a - b(\pi - x))^n}{n!} = f(\pi - x).$$

Therefore, $f(x) = f(\pi - x)$ for all $x \in \mathbb{R}$.

Also, since f(x) is a polynomial of degree 2n, f(x) can be expressed as

$$f(x) = \frac{x^n (a - bx)^n}{n!} = \frac{c_0}{n!} x^n + \frac{c_1}{n!} x^{n+1} + \dots + \frac{c_n}{n!} x^{2n},$$

where $c_n \in \mathbb{Z}$.

Lemma 2.3. $F(0) + F(\pi) \in \mathbb{Z}$

Proof.

Claim 1) $F(0) \in \mathbb{Z}$.

It can be easily seen that

$$F(0) = f(0) - f''(0) - \dots + (-1)^n f^{(2n)}(0).$$

by Eq. (2). Therefore, if $f^{(k)}(0) \in \mathbb{Z}$ for all $k \in \mathbb{N}$, $F(0) \in \mathbb{Z}$.

Case 1-1) For k < n,

$$f(x) = \frac{c_0}{n!}x^n + \frac{c_1}{n!}x^{n+1} + \dots + \frac{c_n}{n!}x^{2n}$$
$$f^{(k)}(x) = C_0x^{n-k} + C_1x^{n+1-k} + \dots + C_nx^{2n-k},$$

where $C_i = \frac{c_i}{n!} \prod_{i=1}^k (n+i+1-j)$ for $i \in \{0,1,2,\cdots,n\}$ and $j \in \{1,2,\cdots,k\}$.

$$\therefore f^{(k)}(x) = C_0 0^{n-k} + C_1 0^{n+1-k} + \dots + C_n 0^{2n-k} = 0.$$

Therefore, if k < n, $f^{(k)}(0) = 0$.

Case 1-2) For $n \le k \le 2n$,

$$f(x) = \frac{c_0}{n!}x^n + \frac{c_1}{n!}x^{n+1} + \dots + \frac{c_n}{n!}x^{2n}$$

$$f^{(k)}(x) = 0 + 0 + \dots + \frac{c_k}{n!}k! + \frac{c_k}{n!}(k+1)!x + \dots$$

$$f^{(k)}(0) = \frac{c_k}{n!}k!$$

Therefore, if $n \leq k \leq 2n$, $f^{(k)}(0) = \frac{c_k}{n!} k! \in \mathbb{Z}$.

Case 1-3) For k > 2n,

Since deg f(x) = 2n, it is trivial that $f^{(k)}(x) = 0$. Therefore, if k > 2n, $f^{(k)}(x) = 0 \in \mathbb{Z}$.

Summarizing the above discussion, it can be shown that $f^{(k)}(0) \in \mathbb{Z}$ for all $k \in \mathbb{N}$ and

$$f^{(k)}(x) = \begin{cases} 0, & \text{if } k < n, \\ \frac{c_k}{n!} k!, & \text{if } n \le k \le 2n, \\ 0, & \text{if } k > 2n. \end{cases}$$

Claim 2) $F(\pi) \in \mathbb{Z}$.

$$F(\pi) = f(\pi) - f''(\pi) - \dots + (-1)^n f^{(2n)}(\pi).$$

Therefore, If $f^{(k)}(\pi) \in \mathbb{Z}$ for all $k \in \mathbb{N}$, $F(\pi) \in \mathbb{Z}$.

By lemma 2.2 and the chain rule,

$$f^{(k)}(x) = (-1)^k f^{(k)}(\pi - x).$$

Substituting π to x in (2), we get

$$f^{(k)}(\pi) = (-1)^k f^{(k)}(0). \tag{3}$$

By Eq. (3) and the Claim 1, we get $f^{(k)}(\pi) \in \mathbb{Z}$ for all $k \in \mathbb{N}$.

From both cases, we prove that

$$F(0) + F(\pi) \in \mathbb{Z}$$
.

Lemma 2.4. $F(0) + F(\pi) = \int_0^{\pi} f(x) \sin x \, dx$.

Proof. By Eq. (2),

$$F''(x) = f''(x) - f^{(4)}(x) + f^{(6)}(x) - \dots + (-1)^{(n)} f^{(2n)}(x)$$

$$F(x) = f(x) - \{f''(x) - f^{(4)}(x) + f^{(6)}(x) - \dots + (-1)^{(2n)}(x)\}$$

$$= f(x) - F''(x)$$

$$f(x) = F(x) + F''(x).$$
(4)

Multiply $\sin x$ on both sides of Eq. (4), we get

$$f(x)\sin x = F(x)\sin x + F''(x)\sin x. \tag{5}$$

When we integrate both sides of Eq. (5) over $(0, \pi)$, we get the desired identity:

$$\int_0^{\pi} f(x) \sin x dx$$

$$= \int_0^{\pi} F(x) \sin x dx + \int_0^{\pi} F''(x) \sin x dx$$

$$= [-F(x) \cos x]_0^{\pi} + \int_0^{\pi} F'(x) \cos x dx$$

$$+ [F'(x) \cos x]_0^{\pi} - \int_0^{\pi} F'(x) \cos x dx$$

$$= F(0) + F(\pi).$$

Theorem 2.5 (Niven's Proof). π is irrational.

Proof. With some algebraic manipulations we get the following inequality.

$$(\pi - x)bx = -b(x^2 - \pi x)$$

$$= -b\left(x - \frac{\pi}{2}\right)^2 + \frac{b\pi^2}{4}$$

$$= -b\left(x - \frac{\pi}{2}\right)^2 + \frac{a\pi}{4} \le \frac{a\pi}{4}.$$

By the above inequality, we can show that

$$0 < (\pi - x)(bx) \le \frac{a\pi}{4},$$

$$0 < \frac{(\pi - x)^n (bx)^n}{n!} \le \frac{\pi}{n!} \left(\frac{a\pi}{4}\right)^n,$$

$$0 < f(x) \le \frac{\pi}{n!} \left(\frac{a\pi}{4}\right)^n.$$
(6)

for $x \in (0, \pi)$.

For $x \in (0, \pi)$, $0 < \sin x < 1$. Using this fact with Eq. (6), this leads

$$0 < f(x) \sin x < \frac{1}{n!} \left(\frac{a\pi}{4}\right)^n, 0 < \int_0^{\pi} f(x) \sin x \, dx < \int_0^{\pi} \frac{1}{n!} \left(\frac{a\pi}{4}\right)^n dx = \frac{\pi}{n!} \left(\frac{a\pi}{4}\right)^n.$$

Let $a_n = \frac{\pi}{n!} \left(\frac{a\pi}{4}\right)^n$. We can see that

$$\lim_{n \to \infty} a_n = 0$$

by lemma 2.1 or by the monotone convergence theorem.

Hence, for sufficiently large n,

$$\frac{\pi}{n!} \left(\frac{a\pi}{4} \right)^n < 1.$$

By two inequalities we stated above, we show that

$$0 < \int_0^{\pi} f(x) \sin x \, dx < \frac{\pi}{n!} \left(\frac{a\pi}{4}\right)^n < 1. \tag{7}$$

The Eq. (7) contradicts with lemma 2.3 and 2.4 because there is no integer between 0 and 1. Therefore, π is irrational.

3 Lambert's proof

Definition 3.1. A finite continued fraction is an expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_n}}},$$

where $a_0 \in \mathbb{R}, a_k \in \mathbb{R}^+$ for $k \in \{1, 2, ..., n\}$. The continued fraction is called simple if $a_0, a_1, ..., a_n \in \mathbb{Z}$.

Lemma 3.1. Every irrational number can be written as a infinite continued fraction.

Proof.

Claim 1) Every finite simple continued fraction can be written as a rational number

We will prove it using mathematical induction. For n = 1, we have

$$[a_0; a_1] = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_0},$$

which is rational. Now, we assume that for the positive integer k the simple continued fraction $[a_0; a_1, a_2, \ldots, a_k]$ is rational whenever $a_0 \in \mathbb{Z}, a_i \in \mathbb{Z}^+$ for $i \in \{1, 2, \ldots, k\}$. Let $a_0 \in \mathbb{Z}, a_i \in \mathbb{Z}^+$ for $i \in \{1, 2, \ldots, k+1\}$. Note that

$$[a_0; a_1, \dots, a_{k+1}] = a_0 + \frac{1}{[a_1; a_2, \dots, a_k, a_{k+1}]}.$$

By the induction hypothesis, $[a_1; a_2, \ldots, a_k, a_{k+1}]$ is rational; hence, there are integers r and s, with $s \neq 0$, such that this continued fraction equals r/s. Then

$$[a_1; a_2, \dots, a_k, a_{k+1}] = a_0 + \frac{1}{r/s} = \frac{a_0 r + s}{r},$$

which is again a rational number.

Claim 2) Every irrational number can be written as a *infinite continued* fraction.

The contrapositive of Claim 1 is Claim 2. Therefore, every irrational number can be written as a infinite continued fraction. \Box

can be written as a infinite continued fraction Lemma 3.2.
$$\tan(x) = \frac{x}{1 - \frac{x^2}{1 -$$

for $x \in \mathbb{R}$.

Proof. Using Maclaurin series, tanx can be expressed as

$$\begin{split} \tan x &= \frac{\sin x}{\cos x} = \frac{x - \frac{x^3}{31} + \frac{x^5}{51} - \frac{x^7}{71} + \cdots}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots} = \frac{x}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots} = \frac{x}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots} = \frac{x}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots} = \frac{x}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots} = \frac{x}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots} = \frac{x}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots} + (1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots) + (1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots)}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{5!} + \frac{x^4}{5!}}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{5!} + \frac{x^6}{5!} + \cdots}}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{5!} + \frac{x^6}{5!} + \frac{x^6}{5!} + \cdots}}}} = \frac{x}{1 - \frac{x^2}{3!} + \frac{x^6}{5!} - \frac{x^6}{5!}$$

. . .

Repeating this procedure, we can prove that

$$\tan(x) = \frac{x}{1 - \frac{x^2}{3 - \frac{x^2}{5 - \frac{x^2}{7 - \ddots}}}},$$

for $x \in \mathbb{R}$.

Lemma 3.3. If x is rational, $\tan x$ is irrational.

Proof. Let $x = \frac{p}{q}$, such that $p, q \in \mathbb{Z}$, p, q are rel. prime.

$$\tan x = \frac{\binom{p}{q}}{1 - \frac{\binom{p}{q}^2}{3 - \frac{\binom{p}{q}^2}{5 - \frac{\binom{p}{q}^2}{7 - \ddots}}}}$$

 $\therefore \tan(\frac{p}{q})$ is an infinite continued fraction. Therefore, by Theorem 3.2., if x is a rational number, $\tan x$ is irrational.

Theorem 3.4 (Lambert's Proof). π is irrational.

Suppose that π is a rational number. Then, $\frac{\pi}{4}$ is also a rational number. Put $x = \frac{\pi}{4}$ into $\tan x$,

$$\tan\frac{\pi}{4} = 1.$$

However, it contradicts with lemma 3.3 Therefore, π is irrational.

4 Cartwright's proof

Define $I_n: \mathbb{R} \to \mathbb{R}$ as $I_n(x) = \int_{-1}^1 (1-z^2)^n \cos(xz) dz$, where n is a non-negative integer.

Lemma 4.1. For $n \le 2$, $x^2 I_n(x) = 2n(2n-1)I_{n-1}(x) - 4n(n-1)I_{n-2}(x)$.

Proof.

$$I_n(x) = \int_{-1}^{1} (1 - z^2)^n \cos(xz) dz = \left[\frac{(1 - z^2)^n \sin(xz)}{x} \right]_{-1}^{1} + \int_{-1}^{1} \frac{2nz(1 - z^2)^{n-1} \sin(xz)}{x} dz$$

$$= 2n \int_{-1}^{1} \frac{2nz(1 - z^2)^{n-1} \sin(xz)}{x} dz$$

$$= -2n \left[\frac{(1 - z^2)^{n-1} \cos(xz)}{x} \right]_{-1}^{1} + 2n \int_{-1}^{1} \frac{\{(1 - z^2)^{n-1} - 2(n-1)z^2(1 - z^2)^{n-2}\} \cos(xz)}{x^2} dz$$

$$= \frac{2n}{x^2} \int_{-1}^{1} \{(1 - z^2)^{n-1} - 2(n-1)z^2(1 - z^2)^{n-2}\} \cos(xz) dz$$

$$= \frac{2n}{x^2} \int_{-1}^{1} (1 - z^2)^{n-1} \cos(xz) dz - \frac{2n(n-1)}{x^2} \int_{-1}^{1} 2z^2(1 - z^2)^{n-2} \cos(xz) dz.$$

$$\therefore I_n(x) = \frac{2n}{x} I_{n-1}(x) - \frac{4n(n-1)}{x^2} \int_{-1}^{1} z^2(1 - z^2)^{n-2} \cos(xz) dz.$$

On the other hand,

$$I_{n-1}(x) - I_{n-2}(x) = \int_{-1}^{1} (1 - z^2)^{n-1} \cos(xz) dz - \int_{-1}^{1} (1 - z^2)^{n-2} \cos(xz) dz$$
$$= \int_{-1}^{1} (1 - z^2)^{n-2} (1 - z^2 - 1) \cos(xz) dz$$
$$= -\int_{-1}^{1} z^2 (1 - z^2)^{n-2} \cos(xz) dz.$$

$$\therefore I_n(x) = \frac{2n}{x} I_{n-1}(x) + \frac{4n(n-1)}{x^2} \left\{ I_{n-1}(x) - I_{n-2}(x) \right\}$$
$$= \frac{2n(2n-1)}{x^2} I_{n-1}(x) - \frac{4n(n-1)}{x^2} I_{n-2}(x).$$

Therefore, For $n \le 2$, $x^2 I_n(x) = 2n(2n-1)I_{n-1}(x) - 4n(n-1)I_{n-2}(x)$.

If $J_n(x) = x^{2n+1}I_n(x)$, then this becomes

$$J_n(x) = 2n(2n-1)J_{n-1}(x) - 4n(n-1)x^2J_{n-2}(x).$$

for $n \geq 2$. Furthermore,

$$J_0(x) = 2\sin x, J_1(x) = -4x\cos x + 4\sin x.$$

Lemma 4.2. For $n \in \mathbb{Z}^+$, $J_n(x) = n!(P_n(x)\cos x + Q_n(x)\sin x)$, where $P_n(x)$, $Q_n(x)$ are polynomials of degree $\leq n$ with integer coefficients (depending on n).

Proof. We will prove the statement by mathematical induction. For n=0 and n=1, we already proved them previously. Now, we assume that for the positive integers $1, 2, \ldots, k$,

$$J_k(x) = k!(P_k(x)\cos x + Q_k(x)\sin x).$$

Note that

$$J_n(x) = 2n(2n-1)J_{n-1}(x) - 4n(n-1)x^2J_{n-2}(x).$$

$$J_{k+1}(x) = 2(k+1)(2k+1)J_k(x) - 4k(k+1)x^2J_{k-1}(x)$$

$$= 2(k+1)(2k+1)k!(P_k(x)\cos x + Q_k(x)\sin x)$$

$$- 4k(k+1)x^2(k-1)!(P_{k-1}(x)\cos x + Q_{k-1}(x)\sin x)$$

$$= (k+1)!\{(2(2k+1)P_k(x) - 4x^2P_{k-1}(x))\cos x + (2(2k+1)Q_k(x) - 4x^2Q_{k-1}(x))\sin x\}.$$

Let $P_{k+1} = 2(2k+1)P_k(x) - 4x^2P_{k-1}(x)$, $Q_{k+1} = 2(2k+1)Q_k(x) - 4x^2Q_{k-1}(x)$. By the induction hypothesis, $P_{k+1}(x)$, Q_{k+1} are polynomials of degree $\leq n$, and with integer coefficients. Therefore, by mathematical induction, for all $n \in \mathbb{Z}^+$,

$$J_n(x) = n!(P_n(x)\cos x + Q_n(x)\sin x),$$

where $P_n(x)$, $Q_n(x)$ are polynomials of degree $\leq n$, and with integer coefficients.

Theorem 4.3 (Cartwright's Proof). π is irrational.

Suppose that π is rational. Then, $\frac{\pi}{2}$ is also rational and can be expressed as $\frac{a}{b}$ such that $a, b \in \mathbb{Z}^+$, a,b are rel. prime. Note that

$$x^{2n+1}I_n(x) = n!(P_n(x)\cos x + Q_n(x)\sin x).$$
 (8)

In (1), take $x = \frac{\pi}{2}$.

$$\begin{split} & \left(\frac{a}{b}\right)^{2n+1} I_n\left(\frac{\pi}{2}\right) = n! \cdot P_n\left(\frac{\pi}{2}\right). \\ \Rightarrow & \frac{a^{2n+1}}{n!} I_n\left(\frac{\pi}{2}\right) = P_n\left(\frac{\pi}{2}\right) \cdot b^{2n+1}. \end{split}$$

The right side is an integer, so is the left side. However, $0 < I_n\left(\frac{\pi}{2}\right) \le 2$ since for $z \in (-1,1)$,

$$0 < (1 - z^2)^n \le 1, 0 < \cos\left(\frac{\pi}{2}y\right) \le 1.$$

$$0 < (1 - z^2)^n \cos\left(\frac{\pi}{2}y\right) \le 1$$

$$\Rightarrow 0 < \int_{-1}^{1} (1 - z^2)^n \cos\left(\frac{\pi}{2}y\right) \le 1$$

$$\Rightarrow 0 < I_n\left(\frac{\pi}{2}\right) \le 2.$$

On the other hand,

$$\lim_{n \to \infty} \frac{a^{2n+1}}{n!} = 0.$$

Hence, for sufficiently large n,

$$0 < \frac{a^{2n+1}I_n\left(\frac{\pi}{2}\right)}{n!} < 1.$$

That is, we could find an integer between 0 and 1. It contradicts with the assumption that π is rational. Therefore, π is irrational.