原子核物理

作者: 刘鑫

目录

1	绪论	
	1.1	物理的发展
	1.2	近现代物理的研究方向
	1.3	核科学的发展 1
2	原子	核的组成 3
	2.1	历程
	2.2	质子和中子的性质对比
	2.3	亚核子自由度
	2.4	夸克
	2.5	夸克禁闭
	2.6	轻子5
3	原子	核的静态性质
	3.1	原子核的电荷
	3.2	原子核的质量 6
	3.3	原子核的半径 7
	3.4	原子核的自旋 7
	3.5	原子核的磁矩 8
	3.6	原子核的电四极矩
	3.7	原子核的宇称
	3.8	原子核的统计性质
	3.9	原子核的同位旋 9

第一章 绪论

1.1 物理的发展

经典物理 19 世纪末之前 **近现代物理** 19 世纪末 20 世纪初 ~ 现在

1.2 近现代物理的研究方向

- 1. 宇观。星球 \rightarrow 星系 \rightarrow 宇宙
- 2. 微观。原子物理与粒子物理。
- 3. 各个层次之间的联系。大的物质由小的物质组成,小物质之间的联系、大物质与小物质之间的联系就是研究的方向。

1.3 核科学的发展

- 1. 1895 年,伦琴发现 X 射线,核科学的开端。(原理是核外电子在不同轨道之间跃迁,会释放出能量,这就是 X 射线)
- 2. 1896年,贝克勒尔发现了铀的天然放射性。(铀盐无论是否在太阳下曝晒,都能使胶片感光)
- 3. 1897年,汤姆逊发现电子。(做实验过程中发现有一种粒子在磁场中发生偏转,偏转的方向标明带负电)
- 4. 1898年,居里夫妇分离出放射性的钋和镭。(在贝克勒尔的基础上,发现铀矿石的放射性比铀盐中的放射性强度要强,然后分离出钋和镭)
- 5. 1898 年, 卢瑟福发现 α 、 β 射线。
- 1900年,维拉德发现γ射线。
- 7. 1905年,爱因斯坦提出相对论。
- 8. 1909 年,卢瑟福验证了 α 粒子就是氦原子核。(α 粒子打到玻璃管上,隔一段时间去检测,出现了氦,先猜测 α 粒子是氦原子核,从玻璃管上拿到电子,形成氦原子,后又验证了)
- 9. 1911年,卢瑟福用α粒子轰击金箔发现了原子核。(八千分之一的概率弹回来)
- 10. 1914年, 莫塞莱用 X 射线测定原子核的电荷。
- 11. 1919 年,卢瑟福首次实现人工核反应,发现质子。(用 α 粒子打 ^{14}N ,打出了一种粒子,命名为质子)
- 12. 1932年, 查德威克发现中子。
- 13. 1938 年, Hahn 和 strassman 发现重核裂变。
- 14. 1939年,建立了裂变的液滴模型。
- 15. 1942年,费米等实现受控的链式核反应。
- 16. 1945年, 第一颗原子弹爆炸。

高自旋的研究:给原子核一个能量,让其从基态到高自旋态,会展示出什么新的特征。(形状、属性...) 不可控核聚变是氢弹。

第二章 原子核的组成

2.1 历程

- 1. 电子的发现
- 2. 原子核的发现 \rightarrow 卢瑟福用 α 轰击金箔,有八千分之一的几率被反射。 \Rightarrow 正电荷和原子质量集中在原子中心。
- 3. 质子的发现 \rightarrow 用 α 粒子轰击 ^{14}N ,发现了质子。 $(\alpha + ^{14}_{7}N \Rightarrow ^{17}_{8}O + p)$
- 4. 早期原子核组成的想法及其碰到的困难
- 5. 中子的发现 $\alpha + {}^9 Be \Rightarrow {}^{12} C + n$,用 n 再打石蜡能出来质子,根据打出质子的能量,推测出不是射线,是中子(质量跟质子差不多)(不带电粒子的发现比较困难,因为电磁学知识已经完备,探测带电粒子比较简单)【中子穿透性强,寿命短 14.81 \min ,可以用来做中子弹】

原子核的符号表示: ${}^{A}_{z}X_{n}$, z 是质子数, A 是核子数, N 为中子数

2.2 质子和中子的性质对比

- 1. 中子比质子质量大一点点 $938 MeV/c^2$ $939 MeV/c^2$
- 2. 统计性规律都是费米子
- 3. 质子寿命非常长, 10³¹year, 中子很短, 14.81min。
- 4. 随之探测技术发展,中子带一点点负电 $(-0.4\pm1.1)*10^{-23}e$ (质子带 $1\pm10^{-21}e$,中子带电比质子小两个数量级),可以认为不带电。

性质	质子	中子
质量 m	938.27231(28)MeV/c ²	939.56563(28)MeV/c ²
自旋 s	ħ/2	ħ/2
统计性	F-D统计	F-D统计
同位旋 (t,tz)	(1/2, 1/2)	(1/2, -1/2)
平均寿命⊤	>10 ³¹ a	888.6 ± 3.5 s(≈14.81min)
电荷 Q	$1 \pm 10^{-21} e$	$(-0.4 \pm 1.1) \times 10^{-23} e$
电荷方均半径1) <r2e></r2e>	0.648(18) fm ²	-0.130(11) fm ²
磁矩 u	2.792847386(63) u _N	-1.91304275(45) u _N
磁矩的方均根半径< r^2_m >1/2	0.80 ± 0.03 fm	0.79 ± 0.15 fm

图 2.1: 质子与中子的对比。

2.3 亚核子自由度

实验猜想原子核内部质子中子是怎么分布的:参考卢瑟福 α 散射实验,使用小的 α 粒子打大的金箔,根据 α 粒子的散射情况,猜测原子的结构;这里使用电子打原子核,根据电子的散射情况,猜测原子核的结构。(这种实验方法叫电子散射)

如图 2.2 所示,横坐标可以理解为距离质子/中子中心的距离,纵坐标表示电荷量。通过这个图,可以猜测出质子/中子并不是最小微粒,因为电荷分布不均匀。

图 2.2: 质子和中子电荷分布示意图。

电子散射: 用电子轰击原子核,来推测原子核内部结构。

质子和中子电荷分布示意图:表明质子和中子并不是最微观的粒子。

2.4 夸克

质子和中子由夸克组成,总共有6种夸克:上夸克(up)、下夸克(down)、顶夸克(top)、底夸克(bottom)、 粲夸克(charm)、奇异夸克(strange)。其中 up/top/charm 带三分之二的正电荷, dowm/bottom/strange 带三分之一的负电荷。

质子和中子是费米子, 夸克也是费米子, 自旋是半整数。

质子由三个夸克组成, uud(两个 up, 一个 down)

中子由三个夸克组成, ddu(两个 down, 一个 up)

2.5 夸克禁闭

带色的粒子不能单独存在, 夸克总是和别的夸克禁闭在一起而形成色中性的强子。

强子中的夸克疯狂的交换胶子进行强作用,他们存在于由胶子组成的色场中: 当胶子场获得足够能量时,就会折断成一对夸克-反夸克。

夸克禁闭问题至今还没有完全解决清楚。

遗留问题:核子质量大约是电子 1800 倍,而核子由三个夸克组成,则电子不是由夸克组成,猜想还有比夸克更小的粒子。

2.6 轻子

总共 6 种轻子: e(电子)、 $\tau(\tau 子)$ 、 $\mu(\mu 子)$ 、Ve(电子中微子)、 $V\tau(\tau 子中微子)$ 、 $V\mu(\mu 子中微子)$ 。 宇宙射线就是 μ 子。

粒子物理标准模型: 6种夸克+6种轻子+传递力的粒子。

原子核物理模型:无统一模型,不同的原子核适用不同的模型。

第三章 原子核的静态性质

原子核物理学是研究原子核性质、结构和转化的科学。

• 静态性质包括: 原子核的半径、质量、自旋、磁矩、电四极矩、字称、统计性、同位旋

• 动态性质包括: 衰变寿命、分质比

3.1 原子核的电荷

3.1.1 电荷

原子核带正电, 电子带负电, 正负电荷相抵消, 原子对外不带电。

3.1.2 测量电荷数 Z

使用莫塞莱定律,测量原子特征 \mathbf{X} 射线的波长 λ ,根据 $c=v\lambda$,求出频率 v,然后根据 $\sqrt{v}=AZ-B$ (其中 \mathbf{A} 、 \mathbf{B} 为常数),求出 \mathbf{Z} 。

X 射线的由来:对于原子来说,核外电子在不同轨道运动,轨道之间有固定的能量差,给核外电子一个能量,电子会被激发到其他轨道上,在它退激发的过程中,就会释放出电磁波,这个电磁波就是 **X** 射线。

3.1.3 核素图

纵坐标表示质子数 Z, 横坐标表示中子数 N。

稳定核素(β 稳定线上的)大约 300 个,实验室合成出来的 3000 个,理论上预言 6000-8000 个。

3.2 原子核的质量

3.2.1 质量

碳单位: 原子的质量太小, 为了方便计算, 将 ^{12}C 质量的 $\frac{1}{12}$ 作为 1u(实际质量值为 $1.661e^{-27}kg$), 其他原子的相对质量就是其原子质量与 1u 的比值, 如 ^{16}O 的相对原子质量为 16($2.657e^{-26}/1.661e^{-27}=16$)。

质能方程: $E = Mc^2$, 1u = 931.448MeV(1 质量数对应的能量为 931.448 兆电子伏)。

• 质子静止质量: 938.280MeV/c²

• 中子静止质量: 939.573MeV/c²

• 电子静止质量: 511.003keV/c²

3.2.2 测量质量

- 1. 用质谱仪(针对稳定核好用)
- 2. 飞行时间法

3. 用核反应精确测定

测出原子核质量之后,可以知道原子核能量,根据原子核能量 = 质子能量 + 中子能量 + 结合能(释放出来),可以算出结合能。知道了结合能,就能知道给原子核多少能量,它可以分开。结合能的意义就是原子核结合的紧密程度。

3.3 原子核的半径

3.3.1 半径

半径 $10^{-15}m$, 也可以说 1fm

3.3.2 测量半径

可以 电子或 质子/中子去打原子核,根据反应截面,得出半径。

- 用电子打时,依据时电磁相互作用,测的是电荷分布半径。
- 用质子/中子去打时,依据时强相互作用(核力),测的是核力作用半径。

核力作用半径更大一些。可以理解为: 电荷分布半径是依据质子与电子的电磁作用, 核力作用半径是依据核子之间的相互作用, 加上了中子, 表现的更大一些。

半径与质量数的 1/3 成正比 $\mathbb{I} R \propto A^{1/3} \mathbb{I}$

核力作用半径 $R \approx (1.40 \pm 0.10) A^{1/3} fm$

电荷分布半径 $R \approx (1.20 \pm 0.30) A^{1/3} fm$

根据 $V = \frac{4}{3}\pi R^3$,则 $R \propto A$,可推出,原子核具有不可压缩性(后来被推翻,发现了晕核)。 根据 $\rho = \frac{A}{V}$,可以算出原子核的密度,密度特别大(每立方厘米有亿吨重)。(中子星-全是核子)

3.3.3 总结

- 1. 有两种半径:核力作用半径、电荷分布半径。核力作用半径稍微大一点。
- 2. 半径与质量数的三分之一成正比,体积与质量数成正比。

3.4 原子核的自旋

3.4.1 自旋

电子的自旋是 1/2 , 自旋跟角动量对应。

电子的角动量是自旋角动量和轨道角动量耦合得到的。

拓展到原子核:

核子的角动量=核子的自旋+轨道角动量。

原子核的角动量 = 所有核子的角动量的耦合。

3.4.2 测量自旋

测量电子的自旋用的是原子光谱的精细结构。

 \mathbf{F} 、 \mathbf{i} 和 \mathbf{j} 分别是原子的总角动量、原子核的总角动量和电子的总角动量。 $\mathbf{F}=\mathbf{i}+\mathbf{j}$, $\mathbf{i}+\mathbf{j}-\mathbf{1}$,...,|i-j| 原子核的总角动量很小,在精细结构中,可以将其忽略。在超精细结构中,不能忽略其影响。但在 钠发黄光的能谱中,它只影响了 \mathbf{s} 轨道。

怎么测量核自旋

- 如果 $I \le J$,就有 2I+1 个 F 值(即能级分裂为 2I+1 个能级),数原子光谱中超精细结构的数目即可求得 I。
- 如果 $I \geq J$,那么能级分裂为 2J+1 个,显然无法由数亚能级数目来确定 I。F=I+J, I+J-1, …亚谱线的相邻间距满足 $\Delta E_1: \Delta E_2: \Delta E_3: \dots = (I+J): (I+J-1): (I+J-2): \dots$

偶偶核 Z/N 都是偶数基态自旋是 0

奇A核 Z/N 一个是偶数基态自旋是半整数

奇奇核 Z/N 都是奇数基态自旋是整数

质子存在两两抱对的现象,中子也是。稳定核一般是偶偶核,或者奇 A 核。偶偶核更稳定。

3.5 原子核的磁矩

3.5.1 磁矩

 $\mu_1 = g_1 \mu_N I$, 其中 μ_1 为磁矩, g_1 为 g 因子, μ_N 为核磁子, I 为自旋。

3.5.2 测量磁矩

核磁共振。

偶偶核的磁矩为 0,使用奇 A 核,如医疗上核磁共振是探究 1_1H_0 在人体的分布情况,核磁共振没有辐射。

3.6 原子核的电四极矩

原子核大多都不是标准的球型,有许多是椭球形(还有三轴形变等...),用电四极矩来描述椭球形的原子核。

将椭球形放到坐标轴中,两个相等的边为 a、b,另一个与前两者不相等的为 c。a=b<c 为长椭球, a=b>c 为扁椭球。

$$Q = \frac{2}{5}Z(c^2 - a^2)$$

• 当 c=a 时, Q=0, 即球形核的电四极矩为零。

- 当 c>a 时, Q>0, 即长椭球形原子核具有正的电四极矩。
- 当 c<a 时, Q<0, 即扁椭球形原子核具有负的电四极矩。

Q 值随质量数 A 作正负交替的变化,当 Z 或 N 的数值等于幻数 (2,8,20,28,50,82,126) 时,Q 约等于 0, 而双幻核时 Q 等于 0,这反应了原子核结构的壳层特性。

19<A<28, 150<A<190, A>220 三个区为变形核区,变形核有明显的核子集体运动的规律。

3.7 原子核的宇称

概念: 宇称的概念是微观世界中所特有的,它是微观体系在空间反演变换下具有对称性时,所相应的守恒量。

对于 K=+1 的情形,即 $\varphi(-x)=\varphi(x)$,我们称这样波函数具有正(偶)宇称。 对于 K=-1 的情形,即 $\varphi(-x)=-\varphi(x)$,我们称这样波函数具有负(奇)宇称。

特性

- 所有原子核都有确定的字称, 这是由强相互作用的性质决定的, 有一些基本粒子没有确定的字称.
- 原子核状态的字称是正还是负,取决于组成原子核的 A 个核子的轨道量子数之和
- 只有当原子核与其他核(或其他粒子)相互作用而改变状态时,该原子核的宇称才会改变,但是,包括原子核和其他核(或其他粒子)在内的整个体系,其宇称在变化前后是守恒的.
- 宇称在弱相互作用过程中不守恒。

自旋字称 = I^{π} 。例: ^{40}K 基态的自旋为 4,字称为负,则表示为 4^{-}

3.8 原子核的统计性质

费米子: 自旋是半整数 玻色子: 自旋是整数

质子、中子、电子都是费米子。

由奇数个费米子组成的粒子仍是费米子,由偶数个费米子组成的粒子则为玻色子;由无论是奇数还是偶数个玻色子组成的粒子总是玻色子。所以:奇 A 核是费米子;偶 A 核是玻色子。

3.9 原子核的同位旋

质子的同位旋是 $\frac{1}{2}$,中子的同位旋是 $-\frac{1}{2}$,总的同位旋是所有质子中子同位旋的矢量和。

同位旋 $T_3 = \frac{1}{2}(Z - N)$

同位旋量子数 T 满足: $\frac{1}{2}|Z-N| \le T \le \frac{1}{2}(Z+N)$