DE MORGAN'S THEOREMS

http://www.tutorialspoint.com/computer logical organization/demorgan theroems.htmCopyright © tutorialspoint.com

De Morgan has suggested two theorems which are extremely useful in Boolean Algebra. The two theorems are discussed below.

Theorem 1

$$\overline{A.B} = \overline{A} + \overline{B}$$

NAND = Bubbled OR

- The left hand side *LHS* of this theorem represents a NAND gate with inputs A and B, whereas the right hand side *RHS* of the theorem represents an OR gate with inverted inputs.
- This OR gate is called as **Bubbled OR**.

Table showing verification of the De Morgan's first theorem -

Α	В	AB	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Theorem 2

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

• The LHS of this theorem represents a NOR gate with inputs A and B, whereas the RHS represents an AND gate with inverted inputs.

• This AND gate is called as **Bubbled AND**.

 $NOR \equiv Bubbled AND$

Bubbled AND

Table showing verification of the De Morgan's second theorem -

A	В	A+B	Ā	B	Ā.B
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

Loading [MathJax]/jax/output/HTML-CSS/jax.js