

14.5 WLAN Evaluation For 5G

Table 14.5-1: OFDM mode specified maximum output power of WLAN antenna

802.11 mode	а	g	İ	n		ac			
Ch. BW(MHz)	20	20	20	40	20	40	80	160	
U-NII-1	Х		X	Х	Х	Х	Х		
U-NII-2A	Х		Χ	Х	Х	Х	Х		
U-NII-2C	Х		Х	Х	Х	Х	Х		
U-NII-3	Х		Х	Х	Х	Х	Х		
§ 15.247 (5.8 GHz)									

X: maximum(conducted) output power(mW), including tolerance, specified for production units

Table 14.5-2: Maximum output power specified of WLAN antenna

802.11 mode	а	g	ı	n		a	C	
Ch. BW(MHz)	20	20	20	40	20	40	80	160
U-NII-1	79		79	63	79	63	79	
U-NII-2A	100		100	63	100	63	79	
U-NII-2C	79		79	79	79	79	79	
U-NII-3	32		32	25	32	32	32	
§ 15.247 (5.8 GHz)								

- The maximum output power specified for production units is the same for all channels, modulations and data rates in each channel bandwidth configuration of the 802.11a/g/n/ac modes.
- The blue highlighted cells represent highest output configurations in each standalone or aggregated frequency band, with tune-up tolerance included.

Table 14.5-3: Maximum output power measured of WLAN antenna, for the applicable OFDM configurations according to the default power measurement procedures for selection initial test configurations

802.11 mode	а	n		ас			
BW(MHz)	20	20	40	20	40	80	
U-NII-1	36/40/44/48	36/40/44/48	38/46	36/40/44/48	38/46	42	
U-MII-1	77/75/69/66	Lower power	Lower power	Lower power	Lower power	Lower power	
U-NII-2A	52/56/60/ <mark>64</mark>	52/56/60/64	54/62	52/56/60/64	54/62	58	
U-MII-ZA	67/72/78/ <mark>85</mark>	Lower power	Lower power	Lower power	Lower power	Lower power	
U-NII-2C	100/104/108/112 75/68/62/62 116/132/136/140/144 64/56/49/44/42	100/104/108/112 116/132/136/140 Lower power	102/110/134 Lower power	100/104/108/112 116/132/136/140 Lower power	102/110/134 Lower power	106 Lower power	
U-NII-3	149/153/ <mark>157</mark> /161/165 25/25/<mark>26</mark>/25/24	149/153/157/161 /165 Lower power	151/159 Lower power	149/153/157/161 /165 Lower power	151/159 Lower power	155 Lower power	

Channels with measured maximum power within 0.25dB are considered to have the same measured output.
 Channels selected for initial test configuration are highlighted in yellow.

Table 14.5-4: Reported SAR of initial test configuration for Head

802.11 mode	а	n			ac	
BW(MHz)	20	20	40	20	40	80
U-NII-1	36/40/44/48 U-NII-2A exclusion applied	36/40/44/48	38/46	36/40/44/48	38/46	42
U-NII-2A	52/56/60/ <mark>64</mark> 0.04	52/56/60/64	54/62	52/56/60/64	54/62	58
U-NII-2C	100/104/108/112 116/132/136/140/144 0.02	100/104/108/112 116/132/136/140	102/110/118/ 126/134	100/104/108/112 116/132/136/140	102/110/134	106
U-NII-3	149/153/ <mark>157</mark> /161/165 0.05	149/153/157/161 /165	151/159	149/153/157/161 /165	151/159	155

U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is ≤ 1.2W/kg, SAR is not required for U-NII-1 band.

Table 14.5-5: Reported SAR of initial test configuration for Body

802.11 mode	а	n		ас			
BW(MHz)	20	20	40	20	40	80	
U-NII-1	36/40/44/48 U-NII-2A exclusion applied	36/40/44/48	38/46	36/40/44/48	38/46	42	
U-NII-2A	52/56/60/ <mark>64</mark> 0.59	52/56/60/64	54/62	52/56/60/64	54/62	58	
U-NII-2C	100/104/108/112 116/132/136/140/144 0.30	100/104/108/112 116/132/136/140	102/110/118/ 126/134	100/104/108/112 116/132/136/140	102/110/134	106	
U-NII-3	149/153/ <mark>157</mark> /161/165 0.41	149/153/157/161 /165	151/159	149/153/157/161 /165	151/159	155	

U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is ≤ 1.2W/kg, SAR is not required for U-NII-1 band.

Table 14.5-6: SAR Values (WLAN - Head) - 802.11a 6Mbps

Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
-		Side	Position	No.	Power	_	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
5320	64	Left	Touch	1	19.27	20	0.011	0.01	0.032	0.04	0.03
5320	64	Left	Tilt	/	19.27	20	0.010	0.01	0.027	0.03	0.00
5320	64	Right	Touch	/	19.27	20	0.003	<0.01	0.012	0.01	0.00
5320	64	Right	Tilt	/	19.27	20	0.009	0.01	0.029	0.03	0.07
5500	100	Left	Touch	/	18.77	19	0.005	0.01	0.017	0.02	0.00
5500	100	Left	Tilt	/	18.77	19	0	<0.01	0.006	0.01	0.06
5500	100	Right	Touch	/	18.77	19	0	<0.01	0.003	<0.01	0.00
5500	100	Right	Tilt	/	18.77	19	0	<0.01	0.004	<0.01	0.00
5785	157	Left	Touch	Fig.37	14.12	15	0.013	0.02	0.038	0.05	0.00
5785	157	Left	Tilt	/	14.12	15	0.004	0.01	0.017	0.02	0.00
5785	157	Right	Touch	/	14.12	15	0	<0.01	0	<0.01	0.00
5785	157	Right	Tilt	/	14.12	15	0	<0.01	0.003	<0.01	0.05
5785	157	Left	Touch	B2	14.12	15	0.003	<0.01	0.014	0.02	0.08

Table 14.5-7: SAR Values (WLAN - Body) - 802.11a 6Mbps

Frequ	ency	Test	D	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Position	(mm)	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
5320	64	Front	10	/	19.27	20	0.003	<0.01	0.012	0.01	0.08
5320	64	Rear	10	Fig.38	19.27	20	0.182	0.22	0.489	0.58	0.05
5320	64	Right	10	/	19.27	20	0.064	80.0	0.153	0.18	0.01
5320	64	Тор	10	/	19.27	20	0.025	0.03	0.058	0.07	0.00
5500	100	Front	10	/	18.77	19	0	<0.01	0	<0.01	0.06
5500	100	Rear	10	/	18.77	19	0.097	0.10	0.272	0.29	0.07
5500	100	Right	10	/	18.77	19	0.040	0.04	0.097	0.10	0.04
5500	100	Тор	10	/	18.77	19	0.014	0.01	0.037	0.04	0.04
5785	157	Front	10	/	14.12	15	0	<0.01	0	<0.01	0.00
5785	157	Rear	10	/	14.12	15	0.108	0.13	0.327	0.40	0.02
5785	157	Right	10	/	14.12	15	0.058	0.07	0.151	0.18	0.09
5785	157	Тор	10	/	14.12	15	0.009	0.01	0.030	0.04	0.00
5320	64	Rear	10	B2	19.27	20	0.158	0.19	0.394	0.47	0.04

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.5-8: SAR Values (WLAN - Head) – 802.11a 6Mbps (Scaled Reported SAR)

Frequ	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported
MHz	Ch.	Side	Position	factor	duty factor	(1g) (W/kg)	SAR (1g) (W/kg)
5320	64	Left	Touch	98.28%	100%	0.04	0.04
5500	100	Left	Touch	98.28%	100%	0.02	0.02
5785	157	Left	Touch	98.28%	100%	0.05	0.05

Table 14.5-9: SAR Values (WLAN - Body) – 802.11a 6Mbps (Scaled Reported SAR)

Frequ	ency	Test	D	Actual	maximum	Reported SAR	Scaled reported
MHz	Ch.	Position	(mm)	duty factor	duty factor	(1g) (W/kg)	SAR (1g) (W/kg)
5320	64	Rear	10	98.28%	100%	0.58	0.59
5500	100	Rear	10	98.28%	100%	0.29	0.30
5785	157	Rear	10	98.28%	100%	0.40	0.41

Picture 14.2 The plot of duty factor for U-NII-2A

Picture 14.3 The plot of duty factor for U-NII-2C

Picture 14.4 The plot of duty factor for U-NII-3

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body PCS1900 (1g)

Fred	luency	Toot	Specing	Original	First	The	Second
Ch.	MHz	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
661	1880	Bottom	10	0.875	0.869	1.01	1

Table 15.2: SAR Measurement Variability for Body W1700 (1g)

Fred	luency	Toot	Spacing	Original	First	The	Second
Ch.	MHz	Test Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1738	1752.6	Bottom	10	1.05	1.04	1.01	/

Table 15.3: SAR Measurement Variability for Body W1900 (1g)

Freq	luency	Toot	Specina	Original	First	The	Second
Ch.	MHz	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
9800	1880	Bottom	10	1.16	1.12	1.04	1

Table 15.4: SAR Measurement Variability for Body LTE B2 (1g)

Frequ	ency		Test	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	AR Repeated //kg) SAR (W/kg)		Repeated SAR (W/kg)
19100	1900	1RB_Low	Bottom	10	1.15	1.14	1.01	1

Table 15.5: SAR Measurement Variability for Body LTE B4 (1g)

Frequ	ency		Toct	Spacing	Original	First	The	Second	
Ch.	MHz	Mode	Test Position	Spacing SAR Repeated		sition (mm) SAR Repeated Ratio			Repeated SAR (W/kg)
20300	1745	100RB	Bottom	10	1.03	1.03	1.00	1	

Table 15.6: SAR Measurement Variability for Body LTE B7 (1g)

Frequ	ency		Toot	Spacing	Original	First	The	Second
Ch.	MHz	Mode	Test Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
21110	2535	1RB_Low	Bottom	10	1.08	1.06	1.02	/

Table 15.7: SAR Measurement Variability for Body LTE B38 (1g)

Frequ	ency		Toot	Specing	Original	First	The	Second
Ch.	MHz	Mode	Test Spacing (mm)		SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
38000	2595	1RB_Mid	Bottom	10	1.07	1.05	1.02	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)								<u>) </u>		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	d					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
		I.	Phan	tom and set-u	p	I.	I.	I.	l.	•
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

				Т		_	T	Т	1	ı
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					19.1	18.9	
16.	2 Measurement Ui	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	d					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	anded uncertainty fidence interval of	i	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
			Test	sample related	d					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	&
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8
			Test	sample related	d					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder	A	3.4	N	1	1	1	3.4	3.4	5

©Copyright. All rights reserved by CTTL.

	uncertainty									
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
_	anded uncertainty fidence interval of	i	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 13, 2017	One year
02	Power meter	NRVD	102196	March 02 2016	One year
03	Power sensor	NRV-Z5	100596	March 03,2016	One year
04	Signal Generator	E4438C	MY49071430	January 13,2017	One Year
05	Amplifier	60S1G4	0331848	No Calibration R	equested
06	BTS	E5515C	MY50263375	January 16, 2017	One year
07	BTS	CMW500	129942	March 03, 2016	One year
08	E-field Probe	SPEAG EX3DV4	7307	February 19, 2016	One year
09	E-field Probe	SPEAG EX3DV4	3846	January 13, 2017	One year
10	DAE	SPEAG DAE4	1331	January 19, 2017	One year
11	Dipole Validation Kit	SPEAG D750V3	1017	July 20,2016	One year
12	Dipole Validation Kit	SPEAG D835V2	4d069	July 20,2016	One year
13	Dipole Validation Kit	SPEAG D1750V2	1003	July 21,2016	One year
14	Dipole Validation Kit	SPEAG D1900V2	5d101	July 28,2016	One year
15	Dipole Validation Kit	SPEAG D2300V2	1018	July 25,2016	One year
16	Dipole Validation Kit	SPEAG D2450V2	853	July 25,2016	One year
17	Dipole Validation Kit	SPEAG D2600V2	1012	July 25,2016	One year
18	Dipole Validation Kit	SPEAG D5GHzV2	1060	July 27,2016	One year

END OF REPORT BODY

ANNEX A Graph Results

850 Left Cheek High – antenna1

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.917$ mho/m; $\epsilon r = 41.52$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(10.01, 10.01, 10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.384 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.125 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.545 W/kg

SAR(1 g) = 0.369 W/kg; SAR(10 g) = 0.265 W/kg

Maximum value of SAR (measured) = 0.373 W/kg

Fig.1 850MHz

Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Left High – antenna1

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.976$ mho/m; $\epsilon r = 56.07$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (131x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.518 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.63 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.641 W/kg

SAR(1 g) = 0.455 W/kg; SAR(10 g) = 0.312 W/kg

Maximum value of SAR (measured) = 0.485 W/kg

Fig.2 850 MHz

Fig. 2-1 Z-Scan at power reference point (850 MHz)

850 Right Cheek High – antenna2

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.917$ mho/m; $\epsilon r = 41.52$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(10.01, 10.01, 10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.346 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.170 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.414 W/kg

SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.238 W/kg

Maximum value of SAR (measured) = 0.352 W/kg

Fig.3 850MHz

Fig. 3-1 Z-Scan at power reference point (850 MHz)

850 Body Right High – antenna2

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.976$ mho/m; $\epsilon r = 56.07$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.492 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.30 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.608 W/kg

SAR(1 g) = 0.426 W/kg; SAR(10 g) = 0.294 W/kg

Maximum value of SAR (measured) = 0.486 W/kg

Fig.4 850 MHz

Fig. 4-1 Z-Scan at power reference point (850 MHz)

1900 Right Cheek Low

Date: 2017-1-15

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.409$ mho/m; $\epsilon r = 40.86$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GRPS Frequency: 1850.2 MHz Duty Cycle: 1:4

Probe: EX3DV4– SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.301 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.262 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.299 W/kg

SAR(1 g) = 0.193 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 0.224 W/kg

Fig.5 1900 MHz

Fig. 5-1 Z-Scan at power reference point (1900 MHz)

1900 Body Bottom Middle

Date: 2017-1-15

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.535 \text{ mho/m}$; $\epsilon r = 52.23$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4– SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.14 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.76 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.875 W/kg; SAR(10 g) = 0.466 W/kg

Maximum value of SAR (measured) = 1.10 W/kg

Fig.6 1900 MHz

Fig. 6-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Left Cheek Low – antenna1

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.896$ mho/m; $\epsilon r = 41.765$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7307ConvF(10.01, 10.01, 10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.363 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.746 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.420 W/kg

SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.240 W/kg

Maximum value of SAR (measured) = 0.350 W/kg

Fig.7 WCDMA 850

Fig. 7-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Left High – antenna1

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.973$ mho/m; $\epsilon r = 56.076$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.455 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.10 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.394 W/kg; SAR(10 g) = 0.267 W/kg

Maximum value of SAR (measured) = 0.457 W/kg

Fig.8 WCDMA 850

Fig. 8-1 Z-Scan at power reference point (WCDMA850)

WCDMA 850 Right Cheek Middle – antenna2

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.926$ mho/m; $\epsilon r = 42.115$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7307ConvF(10.01, 10.01, 10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.303 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.770 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.301 W/kg; SAR(10 g) = 0.218 W/kg

Maximum value of SAR (measured) = 0.310 W/kg

Fig.9 WCDMA 850

Fig. 9-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Right High – antenna2

Date: 2017-1-13

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.973$ mho/m; $\epsilon r = 56.076$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.347 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.66 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.427 W/kg

SAR(1 g) = 0.300 W/kg; SAR(10 g) = 0.206 W/kg

Maximum value of SAR (measured) = 0.345 W/kg

Fig.10 WCDMA 850

Fig. 10-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Right Cheek Low

Date: 2017-1-14

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.3$ mho/m; $\epsilon r = 40.577$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1750 Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7307 ConvF(8.37, 8.37, 8.37)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.529 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.132 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.655 W/kg

SAR(1 g) = 0.431 W/kg; SAR(10 g) = 0.276 W/kg

Maximum value of SAR (measured) = 0.496 W/kg

Fig.11 WCDMA1700

Fig. 11-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Bottom High

Date: 2017-1-14

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.514 \text{ mho/m}$; $\epsilon r = 53.418$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN7307 ConvF(8.18, 8.18, 8.18)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.08 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.536 W/kg

Maximum value of SAR (measured) = 1.19 W/kg

Fig.12 WCDMA1700

Fig. 12-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1900 Right Cheek Low

Date: 2017-1-15

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.432$ mho/m; $\epsilon r = 41.276$; $\rho = 1.432$ mho/m; $\epsilon r = 41.276$; $\epsilon r = 41.276$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.307 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.624 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.391 W/kg

SAR(1 g) = 0.269 W/kg; SAR(10 g) = 0.183 W/kg

Maximum value of SAR (measured) = 0.305 W/kg

Fig.13 WCDMA1900

Fig. 13-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Bottom High

Date: 2017-1-15

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.551$ mho/m; $\epsilon r = 52.5$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.54 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.50 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.598 W/kg

Maximum value of SAR (measured) = 1.43 W/kg

Fig.14 WCDMA1900

Fig. 14-1 Z-Scan at power reference point (WCDMA1900)

LTE Band2 Right Cheek High with QPSK_20M_1RB_Low

Date: 2017-1-15

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.421 \text{. mho/m}$; $\epsilon r = 40.81$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.204 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.581 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.279 W/kg

SAR(1 g) = 0.178 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 0.208 W/kg

Fig.15 LTE Band2

Fig. 15-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Bottom High with QPSK_20M_1RB_Low

Date: 2017-1-15

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.517 \text{ mho/m}$; $\epsilon r = 52.21$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.56 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.95 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.590 W/kg

Maximum value of SAR (measured) = 1.42 W/kg

Fig.16 LTE Band2

Fig. 16-1 Z-Scan at power reference point (LTE Band2)

LTE Band4 Right Cheek High with QPSK_20M_1RB_Low

Date: 2017-1-14

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used f = 1745 MHz; σ = 1.329 mho/m; ϵ r = 40.287; ρ = 1000 kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1745MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.37, 8.37, 8.37)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.461 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.143 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.484 W/kg

SAR(1 g) = 0.320 W/kg; SAR(10 g) = 0.212 W/kg

Maximum value of SAR (measured) = 0.369 W/kg

Fig.17 LTE Band4

Fig. 17-1 Z-Scan at power reference point (LTE Band4)