Universal Semantic Parsing

School of Informatics
The University of Edinburgh

People

Mirella Lapata

Mark Steedman

People

Mirella Lapata

Mark Steedman

Oscar Täckström

Dipanjan Das

Tom Kwiatkowski

Michael Collins

Slav Petrov

Siva Reddy

kotini aratipandu tinindi monkey banana eat

kotini aratipandu tinindi monkey banana eat

Pixarni Disney 2006 lo konindi Pixar Disney 2006 in acquired

Homogeneous syntactic representation across languages

Treebanks in 40 languages

40 dependency labels

Dependencies lack a formal theory of semantics

This Talk

A Language-independent Semantic Interface for Dependencies

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Complex expression is the dependency tree

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Complex expression is the dependency tree

Constituent expressions are subtrees

Principle of Compositionality: the semantics of a complex expression is determined by the semantics of its constituent expressions and the rules used to combine them

Complex expression is the dependency tree

Constituent expressions are subtrees

Rules are the dependency labels

Existing Syntax-Semantics interfaces

CCG [Steedman, 2000; Bos et al., 2004]

HPSG [Copestake et al., 2001]

LFG [Dalrymple et al., 1995]

TAG [Joshi et al., 1995]

Disney	acquired	Pixar
\overline{NP}	$S \backslash NP/NP$	$\overline{}$ NP

Disney	acquired	Pixar
\overline{NP}	$\overline{S \backslash NP/NP}$	\overline{NP}
Disney	$\lambda y \lambda x \lambda e$. acquired(e) $\wedge \arg_1(e, x)$ $\wedge \arg_2(e, y)$	Pixar

Lambda Calculus

$$(\lambda x.M)N = M[x := N]$$

$$sum(2,3) = (\lambda x \lambda y. (+ x y))(2)(3)$$

$$= (\lambda y. (+ 2 y))(3)$$

$$= (+ 2 3)$$

$$= 5$$

$$\mathbf{TYPE}[\mathit{sum}] = \mathit{int} \to \mathit{int} \to \mathit{int}$$

$$\mathit{sum}(4, \mathit{sum}(2,3)) = 9$$

acquired	Pixar
$S \backslash NP/NP$	NP
$\lambda x \lambda e$. acquired(e)	Pixar
$\wedge \arg_1(e,x)$ $\wedge \arg_2(e,y)$	

Disney	acquired	Pixar
\overline{NP}	$\overline{S \backslash NP/NP}$	NP
Disney	$\begin{array}{c} \lambda y \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \\ \wedge \ \operatorname{arg}_2(e,y) \end{array}$	Pixar
	$S \backslash N$	\overline{P}

Disney	acquired	Pixar
\overline{NP}	$\overline{S \backslash NP/NP}$	NP
Disney	$ \begin{array}{c} \lambda y \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \\ \wedge \ \operatorname{arg}_2(e,y) \end{array} $	Pixar
	$S \setminus N$	\overline{P}
	$\begin{array}{c} \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \wedge \ \operatorname{arg}_2(e,\operatorname{Pixar}) \end{array}$	

Disney	acquired	Pixar	
\overline{NP}	$\overline{S \backslash NP/NP}$	$\overline{}$ NP	
Disney	$\begin{array}{c} \lambda y \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \\ \wedge \ \operatorname{arg}_2(e,y) \end{array}$	Pixar	
	$rac{S \backslash NP}{}$		
$\begin{array}{c} \lambda x \lambda e. \ \mathrm{acquired}(e) \\ \wedge \ \mathrm{arg}_1(e,x) \wedge \ \mathrm{arg}_2(e,\mathrm{Pixar}) \end{array}$			
S $\lambda e. \ \operatorname{acquired}(e) \wedge \operatorname{arg}_1(e, \operatorname{Disney}) \wedge \operatorname{arg}_2(e, \operatorname{Pixar})$			

9

Disney	acquired	Pixar
\overline{NP}	$S\NP/NP$	\overline{NP}
Disney	$\begin{array}{c} \lambda y \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \\ \wedge \ \operatorname{arg}_2(e,y) \end{array}$	Pixar
	$\frac{S \backslash NP}{\lambda x \lambda e. \ \text{acquired}(e)}$	
$-\frac{\wedge \operatorname{arg}_1(e,x) \wedge \operatorname{arg}_2(e,\operatorname{Pixar})}{G} < -\frac{\operatorname{arg}_1(e,x) \wedge \operatorname{arg}_2(e,x)}{G} < -\frac{\operatorname{arg}_1(e,x) \wedge \operatorname{arg}_2(e,x$		
λe . acc	quired $(e) \land \arg_1(e, Disn)$	$ney) \land arg_2(e,Pixar)$

Typing and Combinator Rules allow Synchronous Syntax-Semantics interface

Why from dependencies?

Easy to annotate

Treebanks in many languages

Very accurate parsers

[Andor et al., 2016, Dyer et al., 2015, Chen & Manning, 2014]

Friendly to read

Outline

Universal Semantic Parsing

Application task: Freebase Question Answering

Results on English, German, and Spanish

Reddy, Täckström, Collins, Kwiatkowski, Das, Steedman, Lapata (TACL 2016)

Reddy, Lapata, Steedman (TACL 2014)

Universal Semantic Parsing

Goals

- 1. Dependencies to logical forms
- Compositional
- 3. Language-agnostic conversion
 - Dependency labels and postags dictate the semantics
 - No token-specific semantics

Logical Forms

Semantic Parsing [Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005]

Simplification [Narayan & Gardent, 2014]

Paraphrasing [Pavlick et al., 2015]

Information Extraction [Rocktäschel et al., 2015]

Summarization [Liu et al., 2015]

$$\lambda x$$
. $\exists yz$. $\operatorname{located}(z_e) \wedge \operatorname{Pixar}(x_a) \wedge \operatorname{CA}(y_a) \wedge \operatorname{company}(x_a) \wedge \operatorname{arg}_2(z_e, x_a) \wedge \operatorname{arg}_{\operatorname{in}}(z_e, y_a)$

Compositional

 $\lambda x. \exists yz. \mathsf{company}(x_a) \land \mathsf{located}(z_e) \land \mathsf{CA}(y_a) \land \mathsf{arg}_2(z_e, x_a) \land \mathsf{arg}_{\mathsf{in}}(z_e, y_a)$

$$\lambda x. \exists yz. \operatorname{located}(z_e) \wedge \operatorname{Pixar}(x_a) \wedge \operatorname{CA}(y_a) \wedge \operatorname{company}(x_a) \wedge \operatorname{arg}_2(z_e, x_a) \wedge \operatorname{arg}_{\operatorname{in}}(z_e, y_a)$$

Binarization

$$\lambda z. \exists xy. \text{acquired}(z_e) \land \text{Pixar}(y_a) \land \text{Disney}(x_a) \land \\ \arg_1(z_e, x_a) \land \arg_2(z_e, y_a)$$

Binarization

Dependency labels drive the composition

Binarization

Binarization

(dobj acquired Pixar)

Binarization

(dobj acquired Pixar)

Binarization

(nsubj (dobj acquired Pixar) Disney)

Binarization

(nsubj (dobj acquired Pixar) Disney)

Binarization

(nsubj (dobj acquired Pixar) Disney)

$$\lambda z. \exists xy. \text{acquired}(z_e) \land \text{Pixar}(y_a) \land \text{Disney}(x_a) \land \\ \arg_1(z_e, x_a) \land \arg_2(z_e, y_a)$$

Substitution

Lambda Calculus Basic Types

- Individuals: Ind (also denoted by .a)
- Events: Event (also denoted by ._e)
- Truth values: Bool

Substitution

Lambda Expression for words

$$VERB \Rightarrow \lambda x. \operatorname{word}(x_e), e.g., \operatorname{acquired} \Rightarrow \lambda x. \operatorname{acquired}(x_e)$$

 $PROPN \Rightarrow \lambda x. \operatorname{word}(x_a), e.g., \operatorname{Pixar} \Rightarrow \lambda x. \operatorname{Pixar}(x_a)$

Substitution

Lambda Expression for dependency labels

$$\text{dobj} \Rightarrow \lambda f \ \lambda g \ \lambda z \ . \ \exists x \ . \ f(z) \ \land \ g(x) \ \land \ arg_2(z_e, x_a)$$

Substitution

(nsubj (dobj acquired Pixar) Disney)

$$\lambda f \lambda g \lambda z$$
. $\exists x$. \longrightarrow λx . Disney(x_a)
 $f(z) \wedge g(x) \wedge \lambda z$. $\exists y$. acquired(z_e) \wedge Pixar(y_a)
 $\arg_1(z_e, x_a) \wedge \arg_2(z_e, y_a)$

$$\begin{array}{cccc} (\textbf{nsubj} & (\textbf{dobj acquired Pixar}) & \textbf{Disney}) \\ \lambda f \lambda g \lambda z. \; \exists x. & & & & \\ f(z) \wedge g(x) \wedge & \lambda z. \; \exists y. \; \text{acquired}(z_e) \wedge \text{Pixar}(y_a) \\ \arg_1(z_e, x_a) & & \wedge \arg_2(z_e, y_a) \end{array}$$

$$\lambda g \lambda z. \exists xy. \text{acquired}(z_e) \land \text{Pixar}(y_a) \land g(x) \land \\ \arg_1(z_e, x_a) \land \arg_2(z_e, y_a)$$

(dobj

Composition

(nsubj

acquired

 $\arg_1(z_e, x_a) \wedge \arg_2(z_e, y_a)$

Pixar)

$$\lambda f \lambda g \lambda z. \exists x. \qquad \lambda x. \text{Disney}(x_a)$$

$$f(z) \wedge g(x) \wedge \lambda z. \exists y. \text{acquired}(z_e) \wedge \text{Pixar}(y_a)$$

$$\arg_1(z_e, x_a) \qquad \wedge \arg_2(z_e, y_a)$$

$$\lambda g \lambda z. \exists xy. \text{acquired}(z_e) \wedge \text{Pixar}(y_a) \wedge \gcd(x) \wedge \arg_1(z_e, x_a) \wedge \arg_2(z_e, y_a)$$

$$\lambda z. \exists xy. \text{acquired}(z_e) \wedge \text{Pixar}(y_a) \wedge \text{Disney}(x_a) \wedge \gcd(x_a) \wedge \gcd(x_a) \wedge \gcd(x_a) \wedge \gcd(x_a)$$

Disney)

Composition

(nsubj (dobj acquired Pixar) Disney)

 $\lambda z. \exists xy. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{Disney}(x_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)$

$$appos = \lambda f \lambda g \lambda x. f(x) \wedge g(x)$$

$$amod = \lambda f \lambda g \lambda x. \, \exists z. f(x) \land g(z) \land \\ \mathsf{amod}^i(z_e, x_a)$$

$$appos = \lambda f \lambda g \lambda x. f(x) \wedge g(x)$$

$$amod = \lambda f \lambda g \lambda x. \exists z. f(x) \land g(z) \land amod^{i}(z_{e}, x_{a})$$

$$conj = \lambda f \lambda g \lambda z. \exists xy. f(x) \land g(y) \land coord(z, x, y)$$

Enhancement

Long-distance, Language-specific phenomenon, Quantifiers

Dependency Graphs to Logical Forms

Dependency Graphs to Logical Forms

Substitution Expressions

```
BIND = \lambda f \lambda g \lambda x. f(x) \wedge g(x)

xcomp = \lambda f g x. \exists y. f(x) \wedge g(y) \wedge \text{xcomp}(x_e, y_e)

\omega = \lambda x. EQ(x, \omega)
```

Final Expression:

$$\lambda z$$
. $\exists xyw$. wants $(z_e) \land \text{Anna}(x_a) \land \arg_1(z_e, x_a)$
 $\land \text{marry}(y_e) \land \text{xcomp}(z_e, y_e) \land \arg_1(y_e, x_a)$
 $\land \text{Kristoff}(w_a) \land \arg_2(y_e, w_a)$.

UDepLambda

lambda expression composition

 $\exists z. \text{company}(\text{Pixar}) \land \text{located}(z_e) \land \text{arg}_2(z_e, \text{Pixar}) \land \text{arg}_{\text{in}}(z_e, \text{CA})$

UDepLambda in a nutshell

Dependency tree is a series of compositions

Dependency label defines the composition function

Each function takes two typed-semantic sub-expressions

Returns typed-semantics of the larger expression

Freebase Semantic Parsing using UDepLambda

Freebase Semantic Parsing

[Berant et al., 2013, Kwiatkowski et al., 2013]

Who is the director of Titanic?

Answer

{James Cameron}

Titanic

1997 · Drama film/Romance · 3h 30m

7.7/10 · IMDb 88% · Rotten Tomatoes

James Cameron's "Titanic" is an epic, action-packed romance set against the ill-fated maiden voyage of the R.M.S. Titanic: the pride and joy of the White Star Line and, at the time, the larg... More

Initial release: November 18, 1997 (London)

Director: James Cameron

Featured song: My Heart Will Go On

Cast

Leonardo DiCaprio Winslet Jack Dawson

Rukator

Rose DeWitt

Billy Zane Caledon

Gloria Stuart Rose DeWitt

Molly Brown

Freebase Semantic Parsing

[Berant et al., 2013, Kwiatkowski et al., 2013]

Question

Who is the director of Titanic?

Grounded Logical Form λx . $\exists e$. film director(x) \land film.directed_by(e) \land arg2(y,x) \land arg1(e, Titanic)

Answer

{James Cameron}

Titanic

1997 · Drama film/Romance · 3h 30m

7.7/10 · IMDb 88% · Rotten Tomatoes

James Cameron's "Titanic" is an epic, action-packed romance set against the ill-fated maiden voyage of the R.M.S. Titanic; the pride and joy of the White Star Line and, at the time, the larg... More

Initial release: November 18, 1997 (London)

Director: James Cameron

Featured song: My Heart Will Go On

Cast

Leonardo DiCaprio Jack Dawson

Winslet Rose DeWitt Bukater

Billy Zane Caledon Hockley

Gloria Stuart Rose DeWitt

Kathy Bate Molly Brown

End-to-End Semantic Parsing

[Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005; Kwiatkowski et al., 2010; Liang et al., 2011; Artzi & Zettlemoyer, 2011; Krishnamurthy & Mitchell, 2012; Berant et al., 2013; Pasupat & Liang, 2015; Yih et al., 2015]

Grammar learning problem

Question

Who is the director of Titanic?

Grounded Logical Form

 $\lambda x. \exists e. \text{ film.director}(x) \land \\ \text{film.directed_by}(e) \land \\ \text{arg1}(e, \text{Titanic}) \land \text{arg2}(e, x)$

End-to-End Semantic Parsing

[Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005; Kwiatkowski et al., 2010; Liang et al., 2011; Artzi & Zettlemoyer, 2011; Krishnamurthy & Mitchell, 2012; Berant et al., 2013; Pasupat & Liang, 2015; Yih et al., 2015]

Grammar learning problem

- ▶ director $\rightarrow N : \lambda x$. film.director(x)
- $\begin{array}{l} \bullet \quad \text{of} \rightarrow (NP \backslash NP)/NP: \\ \lambda f \lambda g \lambda x. \exists y \exists e. f(y) \land g(x) \land \\ \text{film.directed_by}(e) \land \\ \text{arg1}(e,y) \land \text{arg2}(e,x) \end{array}$

Question

Who is the director of Titanic?

Grounded Logical Form

 $\lambda x. \exists e. \text{ film.director}(x) \land \\ \text{film.directed_by}(e) \land \\ \text{arg1}(e, \text{Titanic}) \land \text{arg2}(e, x)$

Intermediate Semantic Parsing

[Kwiatkowski et al., 2013; Reddy et al., 2014; Choi et al., 2015; Artzi et al., 2015]

Language to ungrounded logical form

Ungrounded logical form to grounded logical form

Question

Who is the director of Titanic?

Ungrounded Logical Form

$$\lambda x. \mathsf{TARGET}(x_a) \wedge \mathsf{director}(x_a) \wedge \\ \mathsf{director_event}(x_e) \wedge \\ \mathsf{arg0}(x_e, x_a) \wedge \mathsf{arg.of}(x_e, \mathsf{Titanic})$$

Grounded Logical Form

$$\lambda x. \exists e. \text{ film.director}(x) \land \\ \text{film.directed_by}(e) \land \\ \text{arg2}(e,x) \land \text{arg1}(e,\text{Titanic})$$

Freebase Semantic Parsing: Task Setting

Training Data: Question and Answer Pairs

Evaluation: Question Answering on Freebase

Resources: Dependency Parser, UDepLambda

Hypothesis: UDepLambda logical forms are useful

Logical Form to Ungrounded Graph

Cameron directed Titanic in 1997 $\lambda e. \text{directed.arg1}(e, \text{Cameron}) \land \text{directed.arg2}(e, \text{Titanic}) \land \\ \text{directed.in}(e, 1997)$

Titanic

Cameron

1997

Logical Form to Ungrounded Graph

Cameron directed Titanic in 1997 λe .directed.arg1(e,Cameron) \wedge directed.arg2(e,Titanic) \wedge directed.in(e,1997)

Logical Form to Ungrounded Graph

Cameron directed Titanic in 1997

Graph Matching

 $directed.arg2(e, Titanic) \land directed.in(e, 1997)$

Ungrounded Graph

film.directed by film.initial_release film.directed.by film.initial_rel _date.arg2 film.directed_by.arg $2(m, CAMERON) \land$ film.directed_by.arg1(m, TITANIC) \land

film.initial_release_date.arg1(n, TITANIC) \land film.initial_release_date.arg2(n, 1997)

Grounded Graph

Graph Matching

 $\operatorname{directed.arg1}(e, \operatorname{Cameron}) \land \operatorname{directed.arg2}(e, \operatorname{Titanic}) \land \operatorname{directed.in}(e, 1997)$

Ungrounded Graph

Grounded Graph

Graph Matching

 $\frac{\text{directed.arg1}(e, \text{Cameron}) \land}{\text{directed.arg2}(e, \text{Titanic}) \land \text{directed.in}(e, 1997)}$

Ungrounded Graph

 $\begin{array}{l} {\rm film.directed_by.arg2}(m,{\rm CAMERON}) \; \land \\ {\rm film.directed_by.arg1}(m,{\rm TITANIC}) \; \land \\ {\rm film.initial_release.date.arg1}(n,{\rm TITANIC}) \; \land \\ {\rm film.initial_release.date.arg2}(n,{\rm 1997}) \end{array}$

Grounded Graph

What is the name of the director of Titanic?

Ungrounded graph

Grounded graph

What is the name of the director of Titanic?

Ungrounded graph

Grounded graph

What is the name of the director of Titanic?

Ungrounded graph

Grounded graph

Paraphrasing is an alternative[†]

[†]Narayan, Reddy, Cohen (INLG 2016)

What is the name of the director of Titanic?

Ungrounded graph

Grounded graph

$$(\hat{g}, \hat{u}) = \arg\max_{g, u} \Phi(g, u, q, KB) \cdot \theta$$
Feature Function

$$(\hat{g}, \hat{u}) = \arg\max_{g,u} \Phi(g, u, q, KB) \cdot \theta$$

Grounded Graph

$$(\hat{g}, \hat{u}) = \arg\max_{g,u} \Phi(g, u, q, \mathit{KB}) \cdot \theta$$
 Ungrounded Graph

$$(\hat{g}, \hat{u}) = \arg\max_{g, u} \Phi(g, u, q, KB) \cdot \theta$$
Question

$$(\hat{g}, \hat{u}) = \arg\max_{g, u} \Phi(g, u, q, KB) \cdot \theta$$
Weight Vector

Structured Perceptron: Ranks grounded and ungrounded graph pairs

$$(\hat{g}, \hat{u}) = \arg\max_{g,u} \Phi(g, u, q, KB) \cdot \theta$$
Weight Vector

Training: Use gold graph to update weights

$$\theta \leftarrow \theta + \Phi(g^+, u^+, q, KB) - \Phi(\hat{g}, \hat{u}, q, KB)$$

- ★ We do not have access to gold graphs
- * Access only to the answers rather than the query
- ★ Solution: use a surrogate gold graph

- ★ We do not have access to gold graphs
- * Access only to the answers rather than the query
- ★ Solution: use a surrogate gold graph

Surrogate Gold Graph:

$$(g^+, u^+) = \underset{(g, u) \in O(q)}{\operatorname{arg\,max}} \Phi(g, u, q, KB) \cdot \theta^t$$
Oracle Graphs

Experimental Setup: UD

69 lambda calculus formulae

WebQuestions in English, German, and Spanish

BiLSTM Parser [Kipperwiser and Goldberg (2016)]

English: 81.8

German: 74.7

Spanish: 82.2

Baselines

SIMPLEGRAPH: All entities connected to a single event bag of words

DEPTREE: Transduce a dependency tree to target graph

Results on Multilingual WebQuestions

English

Results on WebQuestions

Results on WebQuestions

Results on Multilingual WebQuestions

German

Results on Multilingual WebQuestions

Spanish

Comparison with CCG

Disney	acquired	Pixar
\overline{NP}	$\overline{S \backslash NP/NP}$	\overline{NP}
Disney	$\begin{array}{c} \lambda y \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \\ \wedge \ \operatorname{arg}_2(e,y) \end{array}$	Pixar >>
	$Sackslash N$ $\lambda x \lambda e. ext{ acqu} \ \wedge ext{ arg}_1(e,x) \wedge a$	uired(e)
λe . acc	$\frac{S}{\text{quired}(e) \land \arg_1(e, \text{Disner})}$	<

Comparison with CCG

CCG	UDepLambda
Lexicalized semantics	Simple lexical semantics
$\begin{array}{l} S\backslashNP/NP: \ \lambda y \lambda x \lambda e. \ acquired(e) \land arg_1(e,x) \land \\ arg_2(e,y) \end{array}$	λx . acquired (x_e)
Words drive composition	Dependencies drive composition
Language specific types	Universal

Limitations

Context-sensitive semantics of dependency labels, e.g., *nsubj* could mean either agent or patient

- John broke the window
- The window broke

Delexicalized context is not sufficient, e.g., quantifiers vs determiners

(Fancellu et al. 2017, Reddy et al. 2017)

Higher-order type system

Fine-grained dependency labels

Fancellu et al. 2017, Reddy et al. 2017

Type System

everybody =
$$\lambda x$$
.everybody(x_a) [Old Type]
= λf . $\forall x$. person(x) $\rightarrow f(x)$ [New Type]

wants =
$$\lambda x$$
. wants (x_e) [Old Type]
= λf . $\exists x$. wants $(x_e) \land f(x)$ [New Type]

Type System

nsubj = λfgx . $\exists y. f(x) \land g(y) \land \arg_1(x_e, y_a)$ [Old] nsubj:univ = λPQf . $Q(\lambda y. P(\lambda x. f(x) \land \arg_1(x_e, y_a)))$ [New]

dobj =
$$\lambda fgx$$
. $\exists y. f(x) \land g(y) \land \arg_2(x_e, y_a)$ [Old]
= λPQf . $P(\lambda x. f(x) \land Q(\lambda y. \arg_2(x_e, y_a)))$ [New]

Type System

nsubj =
$$\lambda fgx$$
. $\exists y. f(x) \land g(y) \land \arg_1(x_e, y_a)$ [Old] nsubj:univ = λPQf . $Q(\lambda y. P(\lambda x. f(x) \land \arg_1(x_e, y_a)))$ [New]

dobj =
$$\lambda fgx$$
. $\exists y. f(x) \land g(y) \land \arg_2(x_e, y_a)$ [Old]
= λPQf . $P(\lambda x. f(x) \land Q(\lambda y. \arg_2(x_e, y_a)))$ [New]

Old Expression:

(3)
$$\lambda z$$
. $\exists xyw$. wants $(z_e) \land \text{everybody}(x_a) \land \arg_1(z_e, x_a)$
 $\land \text{buy}(y_e) \land \text{xcomp}(z_e, y_e) \land \arg_1(y_e, x_a)$
 $\land \arg_1(x_e, y_a) \land \text{house}(w_a) \land \arg_2(y_e, w_a)$.

New Expression:

(6)
$$\lambda f. \forall x . \operatorname{person}(x_a) \rightarrow [\exists z y w. f(z) \land \operatorname{wants}(z_e) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{buy}(y_e) \land \operatorname{xcomp}(z_e, y_e) \land \operatorname{house}(w_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, w_a)].$$

UDepLambda: Present

Compositional Typed Semantics using Lambda Calculus

UDepLambda: Towards ...

Compositional Typed Semantics using Lambda Calculus
Richer composition functions e.g. neural networks
Pipelined vs. Synchronous Syntax-Semantics

UDepLambda: Present

Compositional Typed Semantics using Lambda Calculus
Richer composition functions e.g. neural networks
Pipelined vs. Synchronous Syntax-Semantics

Two universal types

UDepLambda: Towards ...

Compositional Typed Semantics using Lambda Calculus

Richer composition functions e.g. neural networks Pipelined vs. Synchronous Syntax-Semantics

Two universal types

Richer universal types

UDepLambda: Present

Compositional Typed Semantics using Lambda Calculus

Two universal types

Richer universal types

Output: General-purpose logical forms

UDepLambda: Towards ...

Compositional Typed Semantics using Lambda Calculus

Two universal types

Richer universal types

Output: General-purpose logical forms

Any target representation

Summary

Compositional Typed Semantic interface for Dependencies

Universal Semantic Parsing

Freebase Semantic Parsing using Logical Forms

Demo at

https://sivareddy.in/udeplambda.html
Thank You!

All constituents are of the same lambda expression type

TYPE[acquired] = TYPE[Pixar] = TYPE[(dobj acquired Pixar)]

All **words** have a *lambda expression* of type η

- ► TYPE[acquired] = η
- ► **TYPE**[Pixar] = η

All **constituents** have a *lambda expression* of type η

- TYPE[acquired] = η
- ▶ **TYPE**[Pixar] = η
- TYPE[(dobj acquired Pixar)] = η

All **constituents** have a *lambda expression* of type η

- TYPE[acquired] = η
- ► **TYPE**[Pixar] = η
- ► TYPE[(dobj acquired Pixar)] = η
- \implies TYPE[dobj] = $\eta \rightarrow \eta \rightarrow \eta$

Lambda Expression for words

acquired
$$\Rightarrow \lambda x_e$$
. acquired (x_e)
Pixar $\Rightarrow \lambda x_a$. Pixar (x_a)

Lambda Expression for words

$$\begin{array}{ll} \operatorname{acquired} \Rightarrow \lambda x_e. \operatorname{acquired}(x_e) & \Rightarrow \mathsf{TYPE} = \mathbf{Event} \to \mathbf{Bool} \\ \operatorname{Pixar} \Rightarrow \lambda x_a. \operatorname{Pixar}(x_a) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \to \mathbf{Bool} \end{array}$$

Here **TYPE**[acquired] \neq **TYPE**[Pixar] \times

Lambda Expression for dependency labels

$$\text{dobj} \Rightarrow \lambda f \ \lambda g \ \lambda z \, . \, \, \exists x \, . \, \, f(z) \quad \wedge \quad g(x) \quad \wedge \quad arg_2(z_e, x_a)$$

Lambda Expression for dependency labels

$$\text{dobj} \Rightarrow \lambda f \ \lambda g \ \lambda z \, . \, \, \exists x \, . \, \, f(z) \quad \wedge \quad g(x) \quad \wedge \quad arg_2(z_e, x_a)$$

This operation mirrors the tree structure

Lambda Expression for words

```
\operatorname{acquired} \Rightarrow \lambda \mathbf{x_a} x_e. \operatorname{acquired}(x_e)
```

 $Pixar \Rightarrow \lambda x_a \mathbf{x_e}$. $Pixar(x_a)$

Lambda Expression for words

```
\begin{array}{ll} \operatorname{acquired} \Rightarrow \lambda \mathbf{x_a} x_e. \operatorname{acquired}(x_e) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \times \mathbf{Event} \to \mathbf{Bool} \\ \operatorname{Pixar} \Rightarrow \lambda x_a \mathbf{x_e}. \operatorname{Pixar}(x_a) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \times \mathbf{Event} \to \mathbf{Bool} \end{array}
```

Here $\eta = \text{TYPE}[\text{acquired}] = \text{TYPE}[\text{Pixar}] \checkmark$

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_l and) d_50) Eminem)

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_l and) d_50) Eminem)

Substitution:

$$conj-vp \Rightarrow \lambda fgx. \exists yz. f(y) \land g(z) \land coord(x,y,z)$$

Logical Expression:

$$\lambda w$$
. $\exists xyz$. Eminem $(x_a) \wedge \text{coord}(w, y, z)$
 $\wedge \arg_1(w_e, x_a) \wedge \text{s_to_I}(y) \wedge \text{d_50}(z)$

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_l and) d_50) Eminem)

Substitution:

$$conj-vp \Rightarrow \lambda fgx. \exists yz. f(y) \land g(z) \land coord(x,y,z)$$

Logical Expression:

$$\lambda w. \exists xyz. \text{ Eminem}(x_a) \wedge \text{coord}(w, y, z)$$

 $\wedge \arg_1(w_e, x_a) \wedge \text{s_to_I}(y) \wedge \text{d_50}(z)$

Post processing:

$$\lambda e. \exists xyz. \text{Eminem}(x_a) \land \arg_1(y_e, x_a) \land \arg_1(z_e, x_a) \land s_\text{to_I}(y) \land d_50(z)$$

Graph Transformation: CONTRACT operation

What language do the people in Ghana speak?

Ungrounded graph

Grounded graph

Graph Mismatch: EXPAND operation

What to do Washington DC December?

Before EXPAND

▶ λz . $\exists xyw$. TARGET $(x_a) \land do(z_e) \land arg_1(z_e, x_a) \land$ Washington_DC $(y_a) \land$ December (w_a)

After EXPAND

▶ λz . $\exists xyw$. TARGET $(x_a) \land \operatorname{do}(z_e) \land \operatorname{arg}_1(z_e, x_a) \land$ Washington_DC $(y_a) \land \operatorname{dep}(z_e, y_a) \land \operatorname{December}(w_a) \land \operatorname{dep}(z_e, w_a)$