Applying Big-Oh notation

William Hendrix

Today

- Review
- Big-Oh practice
- Big-Oh motivation
- Applying Big-Oh
- Recurrences

Formal definitions

f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$.

 $f(n) = \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

 $f(n) = \Theta(g(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

- Analogy: O, Ω , and Θ act like \leq , \geq , and =
- Most algorithms we discuss will belong to a few classes: $O(1) \ll O(\lg n) \ll O(n) \ll O(n \lg n) \ll O(n^2) \ll O(n^3) \ll O(2^n) \ll O(n!)$

Properties of Big-Oh notation

Transitivity

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n)) \rightarrow f(n) = O(h(n))$
 $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \rightarrow f(n) = \Omega(h(n))$
 $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \rightarrow f(n) = \Theta(h(n))$

Equivalence rules

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

$$f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \Leftrightarrow f(n) = \Theta(f(n))$$

Reflexivity and symmetry

$$f(n) = O(f(n)), f(n) = \Omega(f(n)), \text{ and } f(n) = \Theta(f(n))$$

 $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

All three ignore constant coefficients

$$\forall x > 0, xf(n) = O(f(n)), xf(n) = \Omega(f(n)), \text{ and } xf(n) = \Theta(f(n))$$

Only the largest term matters

$$f(n) = O(g(n)) \rightarrow O(f(n) + g(n)) = O(g(n))$$

$$f(n) = O(g(n)) \rightarrow \Omega(f(n) + g(n)) = \Omega(g(n))$$

$$f(n) = O(g(n)) \rightarrow \Theta(f(n) + g(n)) = \Theta(g(n))$$

Another important property

- Envelopment
 - Addition

$$\begin{aligned} O(f(n)) + O(g(n)) &= O(f(n) + g(n)) \\ \Omega(f(n)) + \Omega(g(n)) &= \Omega(f(n) + g(n)) \\ \Theta(f(n)) + \Theta(g(n)) &= \Theta(f(n) + g(n)) \end{aligned}$$

- Multiplication

$$\begin{split} O(f(n))O(g(n)) &= O(f(n)g(n)) \\ \Omega(f(n))\Omega(g(n)) &= \Omega(f(n)g(n)) \\ \Theta(f(n))\Theta(g(n)) &= \Theta(f(n)g(n)) \end{split}$$

• Informally, you can move sums and products inside Big-Oh

Logarithms review

• **Logarithm:** inverse exponential function

$$y = \ln x \Leftrightarrow x = e^y$$

- Natural log (ln): inverse of e^x
- Logarithms of other base: $\log_b(x)$
 - $-\log_2(x)$ is very common in algorithms
- Computing logs of other bases

$$-\log_b(x) = \frac{\ln x}{\ln b}$$

- All logs are *scalar multiples* of one another

Log vs. exp

Log properties

Base 2
$$\rightarrow$$
 $\lg(ab) = \lg(a) + \lg(b)$

$$\lg(a^b) = b\lg(a)$$

$$\sum_{i=1}^{n} \frac{1}{i} = \Theta(\lg n)$$

$$\lg(n!) = O(n \lg n)$$

Because

$$2^A 2^B = 2^{A+B}$$

$$\left(2^A\right)^b = 2^{Ab}$$

$$\int_{1}^{n} \frac{1}{x} dx = \ln n$$

Properties 1 above

Justification of Big-Oh

• Algorithm runtime with c=1, running at 1 GHz:

n=	$\lg(n)$	n	$n \lg(n)$	n^2	n^3	2^n	n!
10	3 ns	10 ns	33 ns	100 ns	1 μs	1 μs	3.6 ms
20	4 ns	20 ns	86 ns	400 ns	8 μs	1 ms	77 yrs
30	5 ns	30 ns	147 ns	900 ns	27 μs	1 S	
40	5 ns	40 ns	213 ns	1.6 μs	64 μs	18.3 min	
50	6 ns	50 ns	282 ns	2.5 μs	125 μs	13 days	
100	7 ns	100 ns	664 ns	10 μs	1 ms		
1,000	10 ns	1 μs	9.97 μs	1 ms	1 S		
1,000,000	20 ns	1 ms	19.9 ms	16.7 min	31.7 yrs		
1,000,000,000	30 ns	1 S	29.9 s	31.7 yrs			

Justification of Big-Oh

• Algorithm runtime with c=1, running at 1 GHz:

n=	$\lg(n)$	n	$n \lg(n)$	n^2	n^3	2 ⁿ	n!
10	3 ns	10 ns	33 ns	100 ns	1 μs	1 μs	3.6 ms
20	4 ns	20 ns	86 ns	400 ns	8 μs	1 ms	77 yrs
30	5 ns	30 ns	147 ns	900 ns	27 μs	1 S	
40	5 ns	40 ns	213 ns	1.6 μs	64 μs	18.3 min	
50	6 ns	50 ns	282 ns	2.5 μs	125 μs	13 days	
100	7 ns	100 ns	664 ns	10 μs	1 ms		
1,000	10 ns	1 μs	9.97 μs	1 ms	1 S		
1,000,000	20 ns	1 ms	19.9 ms	16.7 min	31.7 yrs		
1,000,000,000	30 ns	1 S	29.9 s	31.7 yrs			

"Fails" at: Never! trillions millions 10k 40ish 16ish

Lesson: on large data, coefficients are not likely to matter

Analysis of Big-Oh

Pros

- Provides a useful summary of the growth rate of the complexity
- Growth rate is very important
- Compact
- Simple: eight classes cover most useful algorithms

Cons

- Ignores contributions from coefficients and lower-order terms
- Doesn't rank algorithms with same growth rate
- Doesn't rank algorithms on small inputs
- Some of the "best" algorithms have very large coefficients, making them impractical for many purposes

Proving Big-Oh

f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$.

In symbols:

$$f(n) = O(n) \Leftrightarrow \exists c > 0, \exists n_0 > 0, \forall n \ge n_0, f(n) \le cg(n)$$

- To prove existence, we generally *find* the variable values that satisfy the equation
 - How big does multiple of g(n) need to be?
 - When does g(n) pass f(n)?

Basic strategy

- Write out assumptions
- Think about what properties might apply, or what you know about functions (draw a picture!)
- Manipulate until you get to the form

$$f(n) \le (\underline{\hspace{1cm}})g(n), \forall n \ge (\underline{\hspace{1cm}})$$

 $f(n) \le (\underline{\hspace{1cm}})g(n), \forall n \ge (\underline{\hspace{1cm}})$ - Let $c = \underline{\hspace{1cm}}$ and $n_0 = \underline{\hspace{1cm}}$ and conclude proof

Big-Oh example

• Prove that $n = O(n^2)$.

Goal:
$$n \leq (\underline{\hspace{1cm}}) n^2, \forall n \geq (\underline{\hspace{1cm}})$$

Big-Oh example

• Prove that $n = O(n^2)$.

$$1 \le n, \forall n \ge 1$$

$$n \le n^2, \forall n \ge 1$$

$$n \le (1)n^2, \forall n \ge (1)$$

$$Goal: n \le (\underline{\hspace{1cm}})n^2, \forall n \ge (\underline{\hspace{1cm}})$$

Obviously true!

Divide by n on both sides

Hypothesis: $c = 1, n_0 = 1$

Proof. Note that $1 \le n$ for all $n \ge 1$.

Since $n \ge 1$, we can multiply both sides by n: $n \le n^2$, for all $n \ge 1$.

Let c = 1 and $n_0 = 1$.

So, $n \le cn^2$, for all $n \ge n_0$.

Since there are positive constants c and n_0 such that $n \le cn^2$ for all $n \ge n_0$, $n = O(n^2)$.

More complex example

• Prove that $n = O(n^k)$, for all $k \ge 1$. Induction keywords! Proof sketch: $(n = O(n^1))$ Reflexive property $(n = O(n^2))$ Previous proof $(n = O(n^k) \to n = O(n^{k+1}))$ $n < cn^k, \forall n > n_0$ Show: $n \leq (\underline{\hspace{1cm}}) n^{k+1}, \forall n \geq (\underline{\hspace{1cm}})$ Since $n \geq 1$, multiply RHS by n $n < cn^{k+1}, \forall n > n_0$

Back to our earlier example...

```
data: an array of integers to find the min
n: the number of values in data
```

Min algorithm:

```
min = 1
for i = 2 to n

if data[i] < data[min]
min = i
min = i
end
end
return min</pre>
```

Worst case: O(n)

Don't need to count instructions!

Other algorithm: $O(n\lg(n))$

Conclusion: Our algorithm is better for sufficiently large *n*.

Ops per line Times executed

•••

Total ops: $\leq 7(n-1) + 2 = 7n - 5$

Question: is this better or worse than an algorithm that takes at most $2n \ln n - 5n + 10$ ops?

Better unless n < 396

Algorithm analysis

- Identify loops and function calls
 - Everything else is O(1)
- For loops:
 - Estimate loop body running time, O(f(n, i))
 - Estimate number of iterations, O(g(n))
 - Actual time taken: $O\left(\sum_{i=1}^{g(n)} f(n,i)\right)$
 - Rough estimate: $O(g(n) \max_{i} \{f(n, i)\})$
- Instructions in sequence: add up the complexity
 - Blocks of O(1) instructions: O(1) time
 - Overall complexity: largest loop or function call complexity
- Analyze helper functions separately
- Recursive functions: set up a recurrence and solve

Loop example

• **Algorithm:** Selection Sort

```
Input:
    data: an array of integers to sort
    n: the number of values in data
    Output: permutation of data such that data[1] ≤ ... ≤ data[n]
    Pseudocode:
        for i = 1 to n
            Let m be the location of the min value in the array data[i..n]
            Swap data[i] and data[m]
            end
            return data
```

Loop example solution

• Selection Sort is $O(n^2)$.

Proof. Note that the **for** loop in lines 1–4 will iterate n times. On iteration i, line 2 calls the min function on data[i..n]. As we have already proven, min takes O(k) time, where k is the size of the input array. Since data[i..n] has length n-i+1, this call will take O(n-i+1) time. Line 3 can be solved with three assignment statements, which will take O(1) time. Thus, iteration i of the loop will take O(n-i+1) + O(1) = O(n-i) time. In total, the loop will take $O(\sum_{i=1}^{n} n - i) = (n-1) + (n-2) + \dots + 1 + 0$ time. This sum equals $\sum_{i=1}^{n-1} i$, which is $O(n^2)$. Since the **for** loop takes $O(n^2)$ time total and the **return** statement in line 5 takes O(1) time, the total time for Selection Sort is $O(n^2) + O(1) = O(n^2)$.

Review: recurrences

Linear nonhomogeneous recurrences with constant coefficients

$$T(n) = c_1 T(n-1) + c_2 T(n-2) + \ldots + c_k T(n-k) + f(n)s^n$$

1. Write down the characteristic polynomial

Coming up

- Finish Big-Oh
- Data structures
- Homework 4 is due tonight
- **Homework 5** is due Thursday
- Recommended readings: Chapter 2
- **Practice problems:** Any from section 2.10 (p. 57)