

When There is no Clear Answer; A Case Study of Classification Comparison

Amin Hosseiny Marani CSE 447; Spring 2020

Motivation

- Classification differs from model to model
 - Parameter selection
 - Different dataset
 - Random initialization
 - Train and test split

Methods

- Support Vector Machine
 - Easy to use
 - Fast to Train
- Convolutional Neural Networks
 - Flexible to new samples
 - Powerful for sparse learning
- XGBoost
 - Robust to noise
 - High Generalizability

Data

- MNIST
 - Hand-written digits
 - 6000 train & 2000 test
- lyer
 - Continues valued features
 - Highly imbalanced classes

Number of classes	samples	Samples per class	Lowest number of sample	Highest number of samples
10 (11 with noise)	517	47.00 (SD=39.51)	145 (class 2)	7 (class 5)

Table 1. Details of Iyer dataset.

SVM Performance

• Different datasets, different kernels, different performance!

Dataset	Sigmoid	RBF	Polynomial (deg. 4)
MNIST	77.59	97.92	96.98
Iyer	47.43	76.28	89.74

Table 2. SVM classification accuracy over two datasets with different kernels.

CNN Performance across MNIST

 Changing number of layers, number of filters, and number of units won't improve much!

CNN Performance across lyer

- Conv1D layer
- Highly dense layer

XGBoost

- Changing parameters won't affect much!
- High performance on both dataset

Dataset	Accuracy	AUC	Recall	Precision	F1
MNIST	96.15	97.53	95.45	94.11	94.08
Iyer	97.80	98.76	97.78	97.79	97.78

Table 3. XGBoost classification performance across two datasets

Ensemble Learning

Fig. 6. Comparison of different algorithms on lyer dataset. Black line over bar charts shows variance of models' performance.

Fig. 7. Comparison of different algorithms on MNIST dataset. Black line over bar charts shows variance of models' performance.

Dimension Reduction

Fig. 8. Comparison of applying PCA on different algorithms across lyer dataset.

Fig. 9. Comparison of applying PCA on different algorithms across MNIST dataset.

Discussion

- Data features
 - Dimension reduction can be a boost
 - Feature selection
 - PCA is not always a boost!
- Different datasets
 - No model is dominant on every dataset
 - Data distribution and model strength
- Accuracy is not everything
 - Speed
 - Generalizability
 - Ease of access
- Beyond performance!
 - Readability and Explainability
 - Linear relation

