https://ejudge.algocourses.ru

Submit a solution for J-Ha Байкал!

Time limit: 2 s

Real time limit: 5 s

Memory limit: 256M

Problem J: На Байкал!

Небезизвестный герой наших спортивных приключений Артём решил бросить качалку на некоторое время и скинуть с себя оковы титула Босса качалки, ведь у него настал сезон отдыха на самом чистом озере мира — Байкале. Это озеро, как известно, необъятно большое, поэтому будучи ученым в математике качков, Артём решил поделить озеро на прямоугольные сетки с n строками и m столбцами. Каждая ячейка в соответствии с её положением обозначается (i, j), где i — индекс строки, а j — индекс столбца. Глубина Байкала в ячейке (i, j) обозначается аi, j.

Однако по приезде Артём узнал один неприятный факт. До него в этом озере уже купались химические качки, и они под весом своих мышц простонапросто тонули в озере Байкал, поэтому качки не придумали ничего лучше, как проложить из камней путь, по которому они могут идти, находясь в озере, но и не плавая в нем. Путь качков, состоящий из n+m-1 ячеек, начинающийся в левом верхнем углу (1,1) и заканчивающийся в правом нижнем углу (n,m) имел глубину 0, чтоб они не тонули. Иными словами, для каждой ячейки (i,j) вдоль этого пути глубина $a_{i,j}$ была установлена равной 0. Каждая ячейка пути находится либо на одну ячейку ниже предыдущей (i,i), либо на одну ячейку правее (i).

В путеводителю по Байкалу Артём читал про великий баланс глубин озера – все строки и столбцы прямоугольной сетки имели одинаковую сумму глубин. Более формально, существует целое число х такое, что $\sum_{j=1}^m a_{i,j} = x$ для всех $1 \le i \le n$, и $\sum_{j=1}^m a_{i,j} = x$ для всех $1 \le j \le m$.

Артём решил вернуть баланс на Байкале, но — увы и ах! — Артём силён только в математике качков, поэтому настоятельно просим вам помочь нашему герою: необходимо назначить новые глубины ячейкам на пути таким образом, чтобы вышеупомянутый великий баланс глубин был восстановлен. В путеводителе по Байкалу было доказано, что решение всегда существует. Если существует несколько решений, удовлетворяющих великому балансу глубин, выведите любое из них.

Input format

Каждый тест состоит из нескольких наборов входных данных. В первой строке находится одно целое число t ($1 \le t \le 10^4$) — количество наборов входных данных. Далее следует описание наборов входных данных.

Первая строка каждого набора входных данных содержит два целых числа n и m ($2 \le n, m \le 1000$) — количество строк и столбцов в таблице.

Вторая строка каждого набора входных данных содержит строку s длины n+m-2 ($s_i = D$ или $s_i = R$) — шаги, которые путь выполняет от (1,1) до (n,m). Символ D представляет собой шаг вниз, а R представляет шаг вправо.

В і-й из следующих п строк содержится по m целых чисел $a_{i,1}, a_{i,2}, \cdots, a_{i,m}$ ($-10^6 \le a_{i,j} \le 10^6$) — глубина ячеек сетки. Гарантируется, что если ячейка (i,j) лежит на пути, то $a_{i,j}=0$.

Гарантируется, что сумма значений $n\cdot m$ по всем наборам входных данных не превосходит 10^6

Output format

Для каждого набора входных данных выведите n строк по m целых чисел, представляющих восстановленную сетку глубин $b_{i,j}$. Глубины должны удовлетворять $-10^{15} \le b_{i,j} \le 10^{15}$, и дополнительно $a_{i,j} = b_{i,j}$, если (i,j) не находится на пути. Если существует несколько решений, выведите любое из них.

Examples

Input

```
3 3
DRRD
0 2 3
0 0 0
3 1 0
4 5
DRRRRDD
0 1 0 2 3
0 0 0 0 0
-1 0 -3 -3 0
0 0 0 -1 0
2 3
RRD
0 0 0
0 1 0
5 5
DDDDRRRR
0 25 2 9 11
0 6 13 20 22
0 17 24 1 8
0 3 10 12 19
0 0 0 0 0
```

Output

```
-5 2 3
2 -3 1
3 1 -4
-6 1 0 2 3
7 -1 3 2 -11
-1 0 -3 -3 7
0 0 0 -1 1
0 -1 1
0 1 -1
-47 25 2 9 11
-61 6 13 20 22
-50 17 24 1 8
-44 3 10 12 19
202 -51 -49 -42 -60
```