

Course No: MATH F113

Probability and Statistics

Sec 5.3: Statistics and Their Distributions

Sumanta Pasari

sumanta.pasari@pilani.bits-pilani.ac.in

Learning Objectives

- Concept of a statistic(s)
- Difference between statistic(s) and Statistics
- Concept of a random sample
- Distribution of sample statistic
- Concept of deriving sampling distribution
- In particular, distribution of the sample mean
- Concept of CLT (Central Limit Theorem)

What is Statistics?

- A discipline of science that pertains to the collection, analysis, interpretation, and presentation of data
- Science of *learning from data*
- Mathematical Statistics: application of Mathematics to Statistics
- In 18th century, "Statistics" designated to a systematic collection of demographic and economic data by states.
- Main concern is to collect, analyze, and present data in the context of uncertainty and decision making

Example 1: Election Forecast

Parties and coalitions		Pop	Seats			
ľ	arties and coantions	Votes	% ±pp		Won	+/-
	INC +	15,595,153	40.9%	▲4.59%	114	▲ 56
	BJP	15,642,980	41%	▼3.88%	109	▼ 56

innovate achieve lead

Example 2: Student Information

-					
	Age	Gender	Height (cm)	Weight (kg)	Nose length (mm)
1	20	M	165	62	40
2	21	F	152	56	44
3	20	F	158	62	42
4	21	F	(191)	54	40
5	19	М	167	65	41
6	20	F	159	60	43
7	18	М	(190)	(101)	47
8	19	М	182	95	46
9	20	М	170	81	44
10	21	М	172	74	41
11	22	F	170	55	42
12	19	М	178	75	45
13	20	F	157	55	40
14	21	М	169	70	48
15	20	М	164	63	45
16	19	М	174	67	44
17	18	F	154	56	(72)
18	21	F	156	58	47
19	19	М	171	59	42
20	19	F	151	(102)	45

Observe and Answer:

- 1. Any outliers present in this raw data?
- 2. Any relation between height and weight of students?
- 3. Do the female students have more nose-length?
- 4. What is the average height of male students?
- 5. Do the male students come from a rich family?
- 6. Are the female students more intelligent than male students? 6

- **1. Descriptive Statistics** consists of the collection, organization, summarization, and presentation of data.
 - process of describing data and trying to reach a conclusion
 - data and charts observed in general newspapers or articles
- 2. Inferential Statistics provides a scientific procedure to make inferences about a population based on sample.
 - generalizing from samples to populations, performing estimations and hypothesis testing, determining relationships among variables, and making predictions
 - ages of students of a class are 25, 24, 28, 29, 30, 25, 26, 25, 28, 25, and 25 years. Do the students (overall) follow a normal distribution?

innovate achieve lead

Population and Sample

- Population is a collection of all distinct individuals or objects or items under study; Size of population: N
- Sample is a portion (representative portion) of a population; Size of a sample: n
- Sampling: How to choose a sample? What are the desired criteria?
- To represent the population well, a sample should be randomly collected and adequately large.

Ex: Election forecast, lifetime of tube light, efficiency of a drug, campus placements

┸┸┸┸

Parameter and Statistic

- Parameter is a descriptive measure of some characteristics of the population. Parameter is usually unknown.
- Statistic is a descriptive measure obtained from a sample; It is a function of observations in a random sample.

 Suppose there are 2500 managers in a company. We would like to develop a profile of managers, with (a) their mean annual salary, (b) proportion of managers who completed company's management training program.suppose the population mean salary is known as $\mu = $51,800$ and population s.d. σ = \$4000, and 1500 managers have already completed the training program, i.e., population proportion p = 0.6.

Random Number Table

10097 32533	76520 13586	34673 54876	80959 09117	39292 74945
37542 04805	64894 74296	24805 24037	20636 10402	00822 91665
08422 68953	19645 09303	23209 02560	15953 34764	35080 33606
99019 02529	09376 70715	38311 31165	88676 74397	04436 27659
12807 99970	80157 36147	64032 36653	98951 16877	12171 76833
66065 74717	34072 76850	36697 36170	65813 39885	11199 29170
31060 10805	45571 82406	35303 42614	86799 07439	23403 09732
85269 77602	02051 65692	68665 74818	73053 85247	18623 88579
63573 32135	05325 47048	90553 57548	28468 28709	83491 25624
73796 45753	03529 64778	35808 34282	60935 20344	35273 88435
98520 17767	14905 68607	22109 40558	60970 93433	50500 73998
11805 05431	39808 27732	50725 68248	29405 24201	52775 67851
83452 99634	06288 98083	13746 70078	18475 40610	68711 77817
88685 40200	86507 58401	36766 67951	90364 76493	29609 11062
99594 67348	87517 64969	91826 08928	93785 61368	23478 34113
65481 17674	17468 50950	58047 76974	73039 57186	40218 16544
80124 35635	17727 08015	45318 22374	21115 78253	14385 53763
74350 99817	77402 77214	43236 00210	45521 64237	96286 02655
69916 26803	66252 29148	36936 87203	76621 13990	94400 56418
09893 20505	14225 68514	46427 56788	96297 78822	54382 14598

Random sample

 Recall previous example: once 30 managers are randomly selected, we calculate sample statistic (?).

Salary	Training?	Salary	Training?	Salary	Training?
49094.3	Yes	45922.6	Yes	45120.9	Yes
53263.9	Yes	57268.4	No	51753.0	Yes
49643.5	Yes	55688.8	Yes	54391.8	No
49894.9	Yes	51564.7	No	50164.2	No
47621.6	No	56188.2	No	52973.6	No
55924.0	Yes	51766.0	Yes	50241.3	No
49092.3	Yes	52541.3	No	52793.6	No
51404.4	Yes	44980.0	Yes	50979.4	Yes
50957.7	Yes	51932.6	Yes	55860.9	Yes
55109.7	Yes	52973.0	Yes	57309.1	No

Sample Statistic

Recall previous example: once 30 managers are randomly selected,

we calculate **sample statistic (?)**.

Salary	Training?	Salary	Training?	Salary	Training?
49094.3	Yes	45922.6	Yes	45120.9	Yes
53263.9	Yes	57268.4	No	51753.0	Yes
49643.5	Yes	55688.8	Yes	54391.8	No
49894.9	Yes	51564.7	No	50164.2	No
47621.6	No	56188.2	No	52973.6	No
55924.0	Yes	51766.0	Yes	50241.3	No
49092.3	Yes	52541.3	No	52793.6	No
51404.4	Yes	44980.0	Yes	50979.4	Yes
50957.7	Yes	51932.6	Yes	55860.9	Yes
55109.7	Yes	52973.0	Yes	57309.1	No

From sample,

$$\bar{x} = \$51,814$$

$$s = $3,348$$

$$\bar{p} = \frac{19}{30} = 0.63$$

Actually,

$$\mu = $51800$$

$$\sigma = $4000$$

$$p = 0.60$$

Sampling Distributions

- Suppose we collect another random sample of size 30, and we found sample mean = \$ 52670, and sample proportion = 0.70
- Let us repeat this "random experiment" 500 times random variables come into picture.

Sample Number	Sample mean	Sample proportion
001	51814	0.63
002	52670	0.70
003	51780	0.67
004	51588	0.53
•••	•••	
•••	•••	•••
500	51752	0.50

Each X_1, X_2, \dots, X_n is a random variable (and, X_i are i.i.d), with mean μ and standard deviation σ .

So, how does \overline{X} behave?

What is the distribution of \bar{X} ?

What are the mean and s.d. of \overline{X} ?

Random Sample

- The random variables X_i constitute a random sample of size n if and only if,
 - 1) Random variables X_i are independent, and
 - 2) Random variables X_i are identically distributed, that is, each X_i has same distribution having pdf f(x), mean μ , and variance σ^2 . We say that X_i are i.i.d.
- Examples?

innovate achieve lead

Sample Statistic

- A **statistic** of a random sample $(X_1, ..., X_n)$ from population X is a function $H(X_1, ..., X_n)$ of the n-dim r.v. $(X_1, ..., X_n)$. For example,
 - (i) Sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - (ii) Sample variance,

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n-1)}$$

innovate achieve lea

Other Statistics

(iii) Sample minimum
$$X^{(1)} = Min_i \{X_i\}$$

(iv) Sample maximum
$$X^{(n)} = Max_i \{X_i\}$$

(v) Sample range
$$=X^{(n)} - X^{(1)} = Max_i \{X_i\} - Min_i \{X_i\}$$

(vi) Sample median =
$$\begin{cases} X^{\left(\frac{n+1}{2}\right)}; n \text{ odd} \\ \frac{X^{\left(\frac{n}{2}\right)} + X^{\left(\frac{n+1}{2}\right)}}{2}; n \text{ even} \end{cases}$$

Order Statistic: $X^{(1)}, X^{(2)}, \dots, X^{(n)}$ is called an ordered statistic.

Random Sample: Finite Population

- Suppose there are 2500 managers in a company. We would like to develop a profile of managers, with (a) their mean annual salary, (b) proportion of managers who completed company's management training program.
- Suppose there are 2000 oak trees in a managed small forest. We need to estimate tree diameter at breast height.

 How to choose n samples in each case? Random number table or any other computer programs?

Random Sample: Infinite Population

- Consider the population of 8 million school students in a certain state. Suppose, we are interested to determine μ , the unknown population mean distance from students' schools to their hometowns. Suppose, the sample mean from 100 students show a distance of 1.2 km.
- Suppose a tyre manufacturer is interested to test whether the new design provides increasing mileage.
 To estimate the mean useful life, the manufacturer choose a sample of 120 tires. Test result shows a sample mean of 36000 miles.

Other Examples

- Suppose you would like to select a random sample of 50 customers in a restaurant to complete a feedback survey – how to go ahead?
- In order to improve the facilities of an amusement park (e.g., Nicco Park, Kolkata), the manager wants to collect a sample of 50 persons.
- A quality control manager is concerned about the proper machine-filling of breakfast boxes, filled with 100 gm of cereals.
- Discuss, in each of the above examples, how to avoid selection bias.
- Infinite populations: customers entering a retail store, repeated experimental trials in a laboratory, number of trees in a forest, telephone calls arriving at a technical support centre
- For practical purposes, if n/N≤0.05 (at most 5% of the population is sampled), one may consider infinite population.

innovate achieve lead

Remarks

- (1) Here the sample of size n can be thought as ordered and with repetition allowed, i.e., an n-tuple $(x_1,...,x_n)$ represents an observed sample.
- (2) Let r.v. X with density $f_X(x)$ denote the population. The random sample of size n from (infinite) population X can be thought as the n-dimensional random variable $(X_1, ..., X_n)$ whose joint density is

$$f_{X_1...X_n}(x_1,...,x_n) = f_X(x_1)...f_X(x_n)$$

Remarks

(3) The random sample and its characteristics will be denoted by capital letters and a particular sample and its characteristics by corresponding small letters. This is in tune with the practice of denoting random variables by capital letters and its values by corresponding small letters. Thus a particular sample is a value $(x_1, ..., x_n)$ of the ndimensional r.v. $(X_1, ..., X_n)$, or equivalently, a point in n-dimensional space. The values $x_1, ..., x_n$ are also called observed values of X.

Another Example (from textbook)

• Suppose that material strength for a randomly selected specimen of a particular type has a Weibull distribution with parameter values $\alpha = 2$ (shape) and $\beta = 5$ (scale). The corresponding density curve is shown in below figure.

The Weibull density curve

cont'd

Using the formulas,

- $E(X) = e^{\mu + \sigma^2/2}$ and $V(X) = e^{2\mu + \sigma^2} \cdot (e^{\sigma^2} 1)$
- where $\mu = \beta \Gamma \left(1 + \frac{1}{\alpha} \right)$ and $\sigma^2 = \beta^2 \left\{ \Gamma \left(1 + \frac{2}{\alpha} \right) \left[\Gamma \left(1 + \frac{1}{\alpha} \right) \right]^2 \right\}$

$$\mu = E(x) = 4.4311$$
 and $\sigma^2 = V(X) = 5.365$, $\sigma = 2.316$

• We used statistical software to generate six different samples, each with n = 10, from this distribution (material strengths for six different groups of ten specimens each).

cont'd

The results appear in the table below.

Sample	1	2	3	4	5	6
1	6.1171	5.07611	3.46710	1.55601	3.12372	8.93795
2	4.1600	6.79279	2.71938	4.56941	6.09685	3.92487
3	3.1950	4.43259	5.88129	4.79870	3.41181	8.76202
4	0.6694	8.55752	5.14915	2.49759	1.65409	7.05569
5	1.8552	6.82487	4.99635	2.33267	2.29512	2.30932
6	5.2316	7.39958	5.86887	4.01295	2.12583	5.94195
7	2.7609	2.14755	6.05918	9.08845	3.20938	6.74166
8	10.2185	8.50628	1.80119	3.25728	3.23209	1.75468
9	5.2438	5.49510	4.21994	3.70132	6.84426	4.91827
10	4.5590	4.04525	2.12934	5.50134	4.20694	7.26081
$\overline{\mathcal{X}}$	4.401	5.928	4.229	4.132	3.620	5.761
$\widetilde{\mathcal{X}}$	4.360	6.144	4.608	3.857	3.221	6.342
S	2.642	2.062	1.611	2.124	1.678	2.496

Samples from the Weibull Distribution

cont'd

- Followed by the values of the sample mean, sample median, and sample standard deviation for each sample. Notice first that the ten observations in any particular sample are all different from those in any other sample.
- Second, the six values of the sample mean are all different from one another, as are the six values of the sample median and the six values of the sample standard deviation.

cont'd

- Furthermore, the value of the sample mean from any particular sample can be regarded as a *point estimate* ("point" because it is a single number, corresponding to a single point on the number line) of the population mean μ , whose value is known to be 4.4311.
- None of the estimates from these six samples is identical to what is being estimated.
- The estimates from the second and sixth samples are much too large, whereas the fifth sample gives a substantial underestimate.

cont'd

- Similarly, the sample standard deviation gives a point estimate of the population standard deviation. All six of the resulting estimates are in error by at least a small amount.
- In summary, the values of the individual sample observations vary from sample to sample, so will in general the value of any quantity computed from sample data, and the value of a sample characteristic used as an estimate of the corresponding population characteristic will virtually never coincide with what is being estimated.

innovate achieve lead

What is an outlier?

- What is an outlier?
- Why does it occur?
- Is it really an outlier?
- How to detect?
- What to do then?

(Out of present syllabus)

innovate achieve lead

Let's Watch...

https://www.youtube.com/watch?v=jihVhB TXeU

innovate achieve

Some Properties

If X_1, X_2, \dots, X_n is a random sample (that is, X_i are i.i.d), with mean μ and standard deviation σ , then

(i)
$$E(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^n E(X_i) = n\mu$$
 (true, without independent)

(ii)
$$\operatorname{Var}(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^n \operatorname{Var}(X_i) = n\sigma^2$$
 (as, $\operatorname{cov}(X_i, X_j) = 0, i \neq j$)

(iii)
$$E(X_1X_2\cdots X_n) = \lceil E(X_i) \rceil^n = \mu^n$$

(iv) Joint pdf
$$f_{X_1 X_2 \cdots X_n}(x_1, x_2, \cdots x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \cdots f_{X_n}(x_n)$$

(v) Joint cdf
$$F_{X_1X_2...X_n}(x_1, x_2, ...x_n) = F_{X_1}(x_1)F_{X_2}(x_2)...F_{X_n}(x_n)$$

So, how does \overline{X} behave? What is the distribution of \overline{X} ?

What are the mean and standard deviation of \overline{X} ?

Mean and Variance of Sample

Mean

Ex.1. If X_1, X_2, \dots, X_n is a random sample, each X_i having mean μ and standard deviation σ , then

(i)
$$\mu_{\bar{X}} = E(\bar{X}) = \mu$$
 (ii) $\sigma_{\bar{X}}^2 = Var(\bar{X}) = \frac{\sigma^2}{n}$

Proof. (i)
$$E(\bar{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right) = \frac{1}{n} \sum_{i=1}^n E(X_i) = \frac{n\mu}{n} = \mu$$

(ii)
$$\operatorname{Var}\left(\overline{X}\right) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right) = \frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) \quad \left(\operatorname{as, Var}\left(aX\right) = a^{2} \operatorname{Var}\left(X\right)\right)$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) \quad (\text{as}, X_1, X_2, \dots, X_n \text{ are independent}) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Comments

- From this theorem, it follows that larger the sample size, sample mean can be expected to lie closer to the population mean.
- Thus choosing large sample makes estimation more reliable.
- But how large is large? What should be desired sample size to carry out inferential statistics?

Sample Variance

Recall sample variance,

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n-1)}$$

Then,

$$E(S^2) = \sigma_X^2$$

Proof: to be discussed in class!!

Problem Solving

Ex.2. Let X_1, X_2, \dots, X_{25} be a random sample from the distribution of X having mean 10 and variance 50. Find the mean and standard deviation of (i) $a\overline{X} + 5$ (ii) $7\overline{X} + 5a$, a is a scalar.

Sol.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{25} \sum_{i=1}^{25} X_i,$$

$$E(\overline{X}) = \mu = 10$$

$$\operatorname{Var}\left(\overline{X}\right) = \frac{\sigma^2}{n} = \frac{50}{25} = 2$$

(i)
$$\mu_{a\bar{X}+5} = E(a\bar{X}+5) = aE(\bar{X})+5=10a+5$$

$$\sigma_{a\bar{X}+5}^2 = \operatorname{Var}\left(a\bar{X}+5\right) = a^2 \operatorname{Var}\left(\bar{X}\right) = 2a^2 \Rightarrow \sigma_{a\bar{X}+5} = |a|\sqrt{2}$$

Problem Solving

HW.1. Let the mean and variance of a sample mean are 5 and 2, respectively. If the random sample X_1, X_2, \dots, X_n comes from a distribution of X having variance 10, find the mean of X_i and the sample size n.

HW.2. Let the mean and standard deviation of a sample mean are 10 and 2, respectively. If the random sample X_1, X_2, \dots, X_n comes from a distribution of X having variance 60, find the sample size n. (Sol. n = 15?)

HW3. Let X_1, X_2, \dots, X_n be a random sample from the distribution of X having mean 10 and variance 50. Find the minimum number of sample size n, such that variance of $3\overline{X}$ becomes less than 5.

HW4. Let X_1, X_2, \dots, X_n be a random sample from the distribution of X having mean 10 and variance 50. Find the minimum number of sample size n, such that the standard deviation of $8\overline{X}$ becomes less than 10.

HW5. A random sample of size 5 provides the following observations on X (height of students, in cm) and Y (weight of students, in kg).

 X_{obs} : 185 175 165 170 156 Y_{obs} : 69 67 61 64 56

and weight. Can we compare the standard deviations of height and weight?

(b) Is there a (linear) relationship between observed height and weight data? (wait, sample covariance/correlation will be discussed later!)

(a) Calculate sample means and sample standard deviations of height

HW6. Analyze the datset in Example 2. Find observed values of sample mean, sample variance, sample maximum, sample minimum, sample median, sample range for height, weight, and nose lengths.

HW7. A random sample of size 9 yields the following observations on the random variable X, the coal consumption in millions of tons by electric utilities for a given year:

406 395 400 450 390 410 415 401 408

Find the observed value of the sample mean, sample median, and sample standard deviation.

Ex. 37 from textbook (page 222)

A particular brand of dishwasher soap is sold in three sizes: 25 oz, 40 oz, and 65 oz. Twenty percent of all purchasers select a 25-oz box, 50% select a 40-oz box, and the remaining 30% choose a 65-oz box. Let X_1 and X_2 denote the package sizes selected by two independently selected purchasers.

- a. Determine the sampling distribution of \bar{X} , calculate $E(\bar{X})$, and compare to μ .
- b. Calculate $P(\bar{X} \le 42)$.
- c. Determine the sampling distribution of the sample variance S^2 , calculate $E(S^2)$, and compare to σ^2 .
- d. Obtain the distribution of sample range R.

Solution of Ex. 37

The joint pmf of X_1 and X_2 is presented below. Each joint probability is calculated using the independence of X_1 and X_2 ; e.g., $p(25, 25) = P(X_1 = 25) \cdot P(X_2 = 25) = (.2)(.2) = .04$.

			\mathbf{x}_1		
	$p(x_1, x_2)$	25	40	65	
	25	.04	10	.06	.2
\mathbf{x}_{2}	40	.10	.25	.15	.5
•	65	.06	.15	.09	.3
	•	.2	.5	3	<u> </u>

a. For each coordinate in the table above, calculate \(\overline{x}\). The six possible resulting \(\overline{x}\) values and their corresponding probabilities appear in the accompanying pmf table.

X	25	32.5	40	45	52.5	65
$p(\overline{x})$.04	.20	.25	.12	.30	.09

From the table, $E(\overline{X}) = (25)(.04) + 32.5(.20) + ... + 65(.09) = 44.5$. From the original pmf, $\mu = 25(.2) + 40(.5) + 65(.3) = 44.5$. So, $E(\overline{X}) = \mu$.

b. For each coordinate in the joint pmf table above, calculate $s^2 = \frac{1}{2-1} \sum_{i=1}^{2} (x_i - \overline{x})^2$. The four possible resulting s^2 values and their corresponding probabilities appear in the accompanying pmf table.

$$\frac{s^2}{p(s^2)}$$
 0 112.5 312.5 800 $p(s^2)$.38 .20 .30 .12

From the table, $E(S^2) = 0(.38) + ... + 800(.12) = 212.25$. From the original pmf, $\sigma^2 = (25 - 44.5)^2(.2) + (40 - 44.5)^2(.5) + (65 - 44.5)^2(.3) = 212.25$. So, $E(S^2) = \sigma^2$.

 Probability rules can be used to obtain the distribution of a statistic provided that it is a "simple (nice?)" function of the X_i's and either there are relatively few different X values in the population or else the population distribution has a "nice" form.

Let us consider an example.

- A certain brand of MP3 player comes in three configurations: a model with 2 GB of memory, costing \$80, a 4 GB model priced at \$100, and an 8 GB version with a price tag of \$120.
- If 20% of all purchasers choose the 2 GB model, 30% choose the 4 GB model, and 50% choose the 8 GB model, then the probability distribution of the cost X of a single randomly selected MP3 player purchase is given by

•
$$\frac{x}{p(x)} \mid \frac{80 - 100 - 120}{.2 - .3 - .5}$$
 with $\mu = 106$, $\sigma^2 = 244$ (....5.2)

cont'd

• Suppose on a particular day only two MP3 players are sold. Let X_1 = the revenue from the first sale and X_2 the revenue from the second.

• Suppose that X_1 and X_2 are independent, each with the probability distribution shown in (5.2) [so that X_1 and X_2 constitute a random sample from the distribution (mentioned above)].

cont'd

Table 5.2 lists possible (x_1, x_2) pairs, the probability of each [computed using (5.2) and the assumption of independence], and the resulting \bar{x} and s^2 values. [Note that if n = 2, $s^2 = (x_1 - \bar{x})^2(x_2 - \bar{x})^2$.]

x_1	x_2	$p(x_1, x_2)$	\overline{x}	s^2
80	80	.04	80	0
80	100	.06	90	200
80	120	.10	100	800
100	80	.06	90	200
100	100	.09	100	0
100	120	.15	110	200
120	80	.10	100	800
120	100	.15	110	200
120	120	.25	120	0

Outcomes, Probabilities, and Values of x and s^2 for Example 20

cont'd

- Now to obtain the probability distribution of \overline{X} , the sample average revenue per sale, we must consider each possible value \overline{x} and compute its probability. For example, \overline{x} = 100 occurs three times in the table with probabilities .10, .09, and .10, so
- $P_{\bar{x}}(100) = P(\bar{X}=100) = .10 + .09 + .10 = .29$
- Similarly,
- $p_{S2}(800) = P(S^2 = 800) = P[(X_1 = 80, X_2 = 120) \text{ or } (X_1 = 120, X_2 = 80)]$
- = .10 + .10 = .20

cont'd

• The complete sampling distributions of \overline{X} and S^2 appear in (5.3) and (5.4).

$\overline{\chi}$	80	90	100	110	120	(5.3)
$p_{\overline{v}}(\overline{x})$.04	.12	.29	.30	.25	, ,

$$\frac{s^2}{pS^2(s^2)} = \frac{0}{.38} = \frac{200}{.42} = \frac{800}{.20}$$
 (5.4)

cont'd

Figure 5.7 pictures a probability histogram for both the original distribution (5.2) and the \overline{X} distribution (5.3). The figure suggests first that the mean (expected value) of the distribution \overline{X} is equal to the mean 106 of the original distribution, since both histograms appear to be centered at the same place.

Probability histograms for the underlying distribution and \bar{x} distribution in Example 20

Figure 5.7

achieve

innovate

lead

cont'd

Example 3

From (5.3),

$$\mu_{\overline{X}} = E(\overline{X}) = \sum \overline{x} p_{\overline{X}}(\overline{x})$$

$$= (80)(.04) + ... + (120)(.25) = 106 = \mu$$

Second, it appears that the \overline{X} distribution has smaller spread (variability) than the original distribution, since probability mass has moved in toward the mean. Again from (5.3),

$$\sigma_{\overline{X}}^2 = V(\overline{X}) = \sum_{\overline{X}} \bar{x}^2 \cdot p_{\overline{X}}(\overline{x}) - \mu_{\overline{X}}^2$$

$$= (80^2)(.04) + \cdots + (120^2)(.25) - (106)^2$$

$$= 122 = \frac{244}{2} = \frac{\sigma^2}{2}$$

cont'd

The variance of \overline{X} is precisely half that of the original variance (because n = 2). Using (5.4), the mean value of \mathbb{S}^2 is

$$\mu S^2 = E(S^2) = \sum S^2 \cdot p_S^2(s^2)$$

$$= (0)(.38) + (200)(.42) + (800)(.20) + 244 = \sigma^2$$

That is, the \overline{X} sampling distribution is centered at the population mean μ , and the S^2 sampling distribution is centered at the population variance σ^2 .

Class Notes: Functions of Random Variables

Theorem 1: Let X and Y be random variables with moment generating functions $m_{\chi}(t)$ and $m_{\gamma}(t)$, respectively. If $m_{\chi}(t) = m_{\gamma}(t)$ for all t in some open interval about 0, then X and Y have the same distribution. (Proof is out of syllabus)

Theorem 2: Let X_1 and X_2 be independent random variables with moment generating functions $m_{X_1}(t)$ and $m_{X_2}(t)$, respectively. Let $Y = X_1 + X_2$. The moment generating function for Y is given by:

$$m_{\gamma}(t) = m_{\chi_1}(t)$$
. $m_{\chi_2}(t)$ (proof: trivial)

Ex 4: (Distribution of the sum of independent normally distributed random variables)

Let X_1 , X_2 , X_3 ,..., X_n be independent normal random variables with means μ_1 , μ_2 , μ_3 ,..., μ_n and variances σ_1^2 , σ_2^2 , σ_3^2 ,..., σ_n^2 respectively.

Let $Y = X_1 + X_2 + X_3 + ... + X_n$. Note that the moment generating function for X_i is given by:

$$m_{X_i}(t) = e^{(\mu_i t + (\sigma^2_i t^2/2))}$$
 $i = 1,2,3,...,n$

and the moment generating function for Y is (why?)

$$m_{Y}(t) = \prod_{i=1}^{n} m_{X_{i}}(t) = \exp\left[\left(\sum_{i=1}^{n} \mu_{i}\right) t + \left(\sum_{i=1}^{n} \sigma_{i}^{2}\right) \frac{t^{2}}{2}\right]$$

The function on the right is nothing but the moment generating function for a <u>normal random variable Y</u> with mean $\mu = \sum_{i=1}^{n} \mu_i$ and variance $\sigma^2 = \sum_{i=1}^{n} \sigma_i^2$

Theorem 3:

Let X be a random variable with moment generating function $m_x(t)$. Let $Y = \alpha + \beta X$. The moment generating function for Y is

$$m_{y}(t) = e^{\alpha t} m_{x}(\beta t)$$

Theorem 4: (Distribution of \overline{X} -normal population)

Let X_1 , X_2 , X_3 ,..., X_n be a random sample of size 'n' from a normal distribution with mean μ and variance σ^2 .

Then \overline{X} is normally distributed with mean μ and variance σ^2/n .

innovate achieve

HW 8 (Distribution of a sum of

independent random variables)

Let $X_1, X_2, X_3, ..., X_n$ be a collection of independent random variables with moment generating functions $m_{X_i}(t)$ (i=1,2,3,....,n, respectively). Let a_0 , a_1 , a_2 ,...., a_n be real numbers, and let

$$Y = a_0 + a_1 X_1 + a_2 X_2 + ... + a_n X_n$$
.

Show that the moment generating function for Y is given by

$$m_{Y}(t) = e^{a_0 t} \prod_{i=1}^{n} m_{X_i}(a_i t)$$

HW 9 (Distribution of a linear combination of interest achieve leading independent normally distributed random variables)

Let $X_1, X_2, X_3,, X_n$ be independent normal random variables with means μ_i and σ_i^2 (i=1,2,3,...,n, respectively). Let a_0 , a_1 , a_2 ,...., a_n be real numbers, and let

$$Y = a_0 + a_1 X_1 + a_2 X_2 + ... + a_n X_n$$

Show that Y is normal with mean

$$\mu = a_0 + \sum_{i=1}^{n} a_i \mu_i$$
, and variance

$$\sigma^2 = \sum_{i=1}^{n} a_i^2 \sigma_i^2$$
.

HW 10 (Distribution of a sum of

independent chi-squared random variables)

Let $X_1, X_2, X_3,, X_n$ be independent chi-squared random variables with $\gamma_1, \gamma_2, \gamma_3, ..., \gamma_n$ degrees of freedom, respectively.

Let
$$Y=X_1+X_2...+X_n$$
.

Show that Y is a chi-squared random variable with degrees of freedom where $\gamma = \sum_i \gamma_i$

Homework

HW 11. Let $X_1, X_2, X_3,, X_{100}$ be a random sample of size 100 from gamma distribution with $\alpha=5$ and $\beta=3$.

- (a) Find the mgf of $Y = \sum_{i=1}^{100} X_i$
- (b) What is the distribution of Y?
- (c) Find the mgf of $\overline{X} = Y/n$
- (d) What is the distribution of \overline{X} ?

Central Limit Theorem (CLT)

- Regardless of the population distribution model, as the sample size increases, the sample mean tends to be normally distributed around the population mean, and its standard deviation shrinks as n increases.
- Two conditions must be satisfied to apply CLT (a) samples must be i.i.d. (b) sample size must be large enough (usually, n ≥ 30, but depends on problem!)

Let X_1, X_2, \cdots, X_n be a random sample (that is, X_i are i.i.d) of size n from a distribution with mean μ and variance σ^2 . Then for large n, sample mean \overline{X} is approximately normal with mean μ and variance σ^2/n ; $\overline{X} \to N\left(\mu, \sigma/\sqrt{n}\right)$

Furthermore, for large
$$n$$
, the random variable $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \to N(0,1)$.

innovate achieve lead

CLT: Examples

• A certain brand of tires has a mean life of 25,000 km with a s.d. of 1600 km. What is the probability that the mean life of 64 tires is less than 24,600 km?

- A hawker sells dolls at various prices with a mean of Rs.700 and s.d. of Rs. 250. Selling prices of a random sample of 60 dolls are observed. What is the probability that he earns Rs. 45000 or more by selling those 60 dolls?
- Can we find the distribution of sample mean (annual salary) of the managers?

Knowing,
$$\mu_{\bar{x}} = 51800$$
 and $\sigma_{\bar{x}} = 730.3$,

(i)
$$P(51,300 < \overline{X} < 52,300) = ?$$

(ii)
$$P(51,000 < \overline{X} < 52,000) = ?$$

innovate achieve lead

Central Limit Theorem (CLT)

- Randomization we assume that samples constitute a random sample
 (i.i.d.) from the population.
- Large enough sample size how large is large?
 - If the population is **normal**, then the sampling distribution \bar{X} will also be normal, no matter what is the sample size.
 - If the population is approximately **symmetric**, the distribution becomes approximately normal for relatively small values of *n*.
 - When the population is **skewed**, the sample size must be **at least 30** before the sampling distribution of \bar{X} becomes approximately normal.

lead

CLT: Step by Step

Step 1: Identify parts of the problem. Your question should state:

- The mean (average or μ)
- The standard deviation (σ)
- The sample size (n)

Step 2: Find X and express the problem in terms of "greater than" or "less than" the sample mean \overline{X} .

Step 3: Use CLT to find the distribution of \bar{X} and $\bar{X} \to N\left(\mu, \sigma/\sqrt{n}\right)$ Step 4: Convert the normal variate \bar{X} to a standard normal variate $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$

Now you may draw a graph, centre with the 0 (mean of Z) and shade the appropriate area to find the required probability.

innovate achieve

Problem Solving

HW12. A certain brand of tyres has a mean life of 25,000 km with a s.d. of 1600 km. What is the probability that the mean life of 64 tyres is less than 24,600 km? **Sol.**

- Step 1: Here X_1, X_2, \dots, X_{64} constitute a random sample, and it is given that
- $E(X_i) = 25,000$ and $\sigma_{X_i} = 1600$.
- Step 2: $\overline{X} = \frac{1}{64} \sum_{i=1}^{64} X_i$ and our interest is to find out $P(\overline{X} < 24600)$.
- Step 3: As we have a random sample of size 64 (sufficiently large *n*), we can use CLT

to find the distribution of
$$\bar{X}$$
, that is, $\bar{X} \sim N\left(25000, \frac{1600}{\sqrt{64}}\right) \Rightarrow \bar{X} \sim N\left(25000, 200\right)$

Step 4:
$$P(\bar{X} < 24600) = P\left(\frac{\bar{X} - 25000}{200} < \frac{24600 - 25000}{200}\right)$$

$$= P(Z < -2) = 0.0228$$
 (using standard normal cdf table)

Standard Normal Cumulative Probability Table

Cumulative probabilities for POSITIVE z-values are shown in the following table:

Cumulative probabilities for NEGATIVE z-values are s	shown in the following table:
--	-------------------------------

Standard Normal Cumulative Probability Table

Cumulativ	e probabilit	ties for NE	GATIVE z-v	alues are s	shown in th	ne following	table:				z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
									-		0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005											
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	8000.0	0.0008	0.0007	0.0007	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010		0.0045	0.0050	0.0005	0.7040	0.7054	0.7000	0.7400	0.7457	0.7400	0.7004
											0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048											
											1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
-2.1	8.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183											
											1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559		0.07.10	0.01.10	0.0120	0.0102	0.0100	0.0111	0.01.00	0.0100	0.0101	0.0101
											2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379	2.4	0.3310	0.5520	0.5522	0.5525	0.5521	0.3323	0.3351	0.5552	0.5554	0.3330
											2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148							0.9978				
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451	2.8	0.9974	0.9975	0.9976	0.9977	0.9977		0.9979	0.9979	0.9980	0.9981
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
											2.0	0.0007	0.0007	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

HW13. A hawker sells dolls at varying prices with a mean of Rs.700 and s.d. of Rs. 250.

Selling prices of a random sample of 60 dolls are observed. What is the probability that he earns Rs. 45000 or more by selling those 60 dolls?

Step 1: Here X_1, X_2, \dots, X_{60} constitute a random sample, and it is given that

$$E(X_i) = 700$$
 and $\sigma_{X_i} = 250$.

Step 2:
$$\overline{X} = \frac{1}{60} \sum_{i=1}^{60} X_i$$
 and our aim is to find out $P\left(\sum_{i=1}^{60} X_i > 45000\right)$ i.e., $P\left(\overline{X} > 750\right)$.

Step 3: As we have a random sample of size 60 (sufficiently large n), we can use CLT

to find the distribution of
$$\overline{X}$$
, that is, $\overline{X} \sim N\left(700, \frac{250}{\sqrt{60}}\right) \Rightarrow \overline{X} \sim N\left(700, 32.27\right)$

Step 4:
$$P(\bar{X} > 750) = P\left(\frac{\bar{X} - 700}{32.27} > \frac{750 - 700}{32.27}\right) = P(Z > 1.55)$$

= $P(Z < -1.55) = 0.0606$ (using standard normal cdf table)

HW14. A population of 30 year – old males has a mean salary of Rs. 75000 with a standard deviation of Rs. 10000. If a sample of 100 men is taken, what is the probability that their mean salary will be less than Rs. 77500?

HW15. A certain group of welfare recipients receives pension benefits of Rs. 45000 per month with a standard deviation of Rs. 7500. If a random sample of 25 people is taken, what is the probability that their mean pension benefit will be greater than Rs. 47000 or less than Rs. 43000 per month?

HW16. A certain population of dogs weigh an average of 5 kg, with a standard deviation of 2 kg. If 40 dogs are chosen at random, what is the probability they have an average weight of greater than 6.0 kg or less than 4.5 kg?

HW 17. Suppose the weights of a certain type of FedEx freight boxes follow a distribution with mean 206 pounds and standard deviation 21 pounds. If 49 such FedEx freight boxes are chosen at random, what is the probability that their combined weight lies between 9800 pounds and 10241 pounds? (Ans: 0.8185?)

HW 18. Phone bills for residents of a city have a mean of Rs. 850 and a standard deviation of Rs. 144. If a random sample of 36 phone bills is drawn from this population, what is the probability that the mean bill will lie between Rs. 800 and Rs. 875? (Ans: 0.8320?)

innovate achieve I

Problem Solving

HW19. Human pregnancies follow a normal distribution with mean of 268 days and s.d. of 11 days. We study the mean pregnancy length of 70 women (call this random variable as sample mean \overline{X}). What is the expected value and s.d. of this statistic?

Sol. Step $1: X_1, X_2, \dots, X_{70}$ constitute a random sample of size 70, and $X_i \sim N(268,11)$

Step 2: Here
$$\overline{X} = \frac{1}{70} \sum_{i=1}^{70} X_i$$
 and our interest is to find out $E(\overline{X})$ and s.d. of \overline{X} .

Step 3: Each sample follows normal distribution, so is their mean. Using CLT,

$$\bar{X} \sim N\left(268, \frac{11}{\sqrt{70}}\right)$$
. So $E(\bar{X}) = 268$ and $\sigma_{\bar{X}} = \frac{11}{\sqrt{70}} = 1.314$.

Note. If X_1, X_2, \dots, X_{70} is just a random sample with $E(X_i) = 268$ and $\sigma_{X_i} = 11$, we can use CLT to find mean and s.d. of \overline{X} .

innovate achieve lead

Textbook Problems

Q 37: Already discussed

Q 46:

The inside diameter of a randomly selected piston ring is a random variable with mean value 12 cm and standard deviation 0.04 cm.

- **a.** If \overline{X} is the sample mean diameter for a random sample of n=16 rings, where is the sampling distribution of \overline{X} centered, and what is the standard deviation of the \overline{X} distribution?
- **b.** Answer the questions posed in part (a) for a sample size of n = 64 rings.

Textbook Problems

Q 47:

Refer to Exercise 46. Suppose the distribution of diameter is normal.

- **a.** Calculate $P(11.99 \le \bar{X} \le 12.01)$ when n = 16.
- **b.** How likely is it that the sample mean diameter exceeds 12.01 when n = 25?

innovate achieve lead

Textbook Problems

- **Q 59.** Let X_1 , X_2 , and X_3 represent the times necessary to perform three successive repair tasks at a certain service facility. Suppose they are independent, normal rv's with expected values μ_1 , μ_2 , and μ_3 and variances σ_1^2 , σ_2^2 , and σ_3^2 respectively.
 - **a.** If $\mu_1 = \mu_2 = \mu_3 = 60$ and $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 15$, calculate $P(T_0 \le 200)$ and $P(150 \le T_0 \le 200)$. **b.** Using the μ_i 's and σ_i 's given in part (a), calculate both $P(55 \le \overline{X})$ and $P(58 \le \overline{X} \le 62)$.
 - c. Using the μ_i 's and σ_i 's given in part (a), calculate $P(-10 \le X_1 0.5X_2 0.5X_3 \le 5)$.

lead

Textbook Problems

Q 59.

- **d.** If $\mu_1 = 40$, $\mu_2 = 50$, $\mu_3 = 60$, $\sigma_1^2 = 10$, $\sigma_2^2 = 12$ and $\sigma_3^2 = 14$, calculate $P(X_1 + X_2 + X_3 \le 160)$
- **d.** If $\mu_1 = 40$, $\mu_2 = 50$, $\mu_3 = 60$, $\sigma_1^2 = 10$, $\sigma_2^2 = 12$ and $\sigma_3^2 = 14$, calculate $P(X_1 + X_2 \ge 2X_3)$.

innovate achieve lead

Textbook Problems

- **Q** 75. (a) Let X_1 and X_2 be two chi-square independent random variables with parameters v_1 and v_2 , respectively. Let Y = X1 + X2. Find the distribution of Y.
- (b) If Z is a standard normal rv, then Z^2 has a chisquared distribution with v = 1. Let Z_1, Z_2, \ldots, Z_n be n independent standard normal rv's. What is the distribution of $Z_1^2 + Z_2^2 + \ldots + Z_n^2$? Justify your answer.
- (c) Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 .

What is the distribution of the sum

$$Y = \sum_{i=1}^{n} [(X_i - \mu)/\sigma]^2$$
?