Teoria da Informação (#4)

Classes de códigos, desigualdade de Kraft, código óptimo, Shannon-Fano, Huffman, Huffman adaptativo

Miguel Barão

O que é um código?

Código

Singular e não singular Univocamente descodificável Instantaneo

Classes de códigos

Códigos instantaneos

Desigualdade de Kraft Códigos óptimos Shannon-Fano Grupos de símbolos Penalização em L(C)

Huffman

O que é um código?

Definição (Código)

Um código é uma aplicação $\mathcal{C}:\mathcal{X}\to\mathcal{D}^*$, em que

- \blacksquare \mathcal{X} é um alfabeto
- lacksquare \mathcal{D}^* é o conjunto das strings finitas de símbolos de um alfabeto \mathcal{D}

O que é um código?

Definição (Código)

Um código é uma aplicação $\mathcal{C}:\mathcal{X}\to\mathcal{D}^*$, em que

- \mathbf{Z} é um alfabeto
- lacksquare é o conjunto das strings finitas de símbolos de um alfabeto $\mathcal D$
- $\mathbf{C}(x)$ é a palavra de código correspondente a x
- I(x) é o comprimento da palavra de código C(x)
- *L*(*C*) é o comprimento médio do código *C*

Definição (Código)

Um código é uma aplicação $\mathcal{C}:\mathcal{X}\to\mathcal{D}^*$, em que

- \blacksquare \mathcal{X} é um alfabeto
- lacksquare \mathcal{D}^* é o conjunto das strings finitas de símbolos de um alfabeto \mathcal{D}
- C(x) é a palavra de código correspondente a x
- I(x) é o comprimento da palavra de código C(x)
- *L*(*C*) é o comprimento médio do código *C*

Exemplo

X	p(x)	C(x)	I(x)	$L(C) = \sum p(x)I(x)$
Α	0.4	00	2	
В	0.3	101	3	x∈X
C	0.3	110	3	= 2.6 bits

Que propriedades deve um código satisfazer?

Definição (Código não singular)

Um código é n $\tilde{\text{no}}$ singular se símbolos diferentes têm palavras de código diferentes, i.e.

$$x_i \neq x_j \quad \Rightarrow \quad C(x_i) \neq C(x_j)$$

Definição (Código não singular)

Um código é não singular se símbolos diferentes têm palavras de código diferentes, *i.e.*

$$x_i \neq x_j \Rightarrow C(x_i) \neq C(x_j)$$

Só garante a descodificação de símbolos isolados.

Exemplo

O código

$$\begin{array}{c|c} x & C(x) \\ \hline A & 0 \\ B & 00 \end{array}$$

é um código não singular. No entanto a string "ABBA", codificada como "000000", não é descodificável univocamente.

Código univocamente descodificável

Definição (Extensão de um código)

A extensão C^* de um código C é um novo código que codifica uma sequência de símbolos usando a sequência das respectivas palavras de código:

$$C^*(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n)$$

Definição (Extensão de um código)

A extensão C^* de um código C é um novo código que codifica uma sequência de símbolos usando a sequência das respectivas palavras de código:

$$C^*(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n)$$

Definição (Código univocamente descodificável)

Um código é univocamente descodificável se a sua extensão é não singular.

I.e., cada string pode apenas ter sido gerada por uma única mensagem.

Código univocamente descodificável

Exemplo

$$\begin{array}{c|cccc} x & C(x) \\ \hline A & 001 \\ B & 00 \\ C & 11 \\ D & 110 \\ \end{array}$$

- É univocamente descodificável.
- Pode ser necessário analisar toda a sequência para descodificar o primeiro símbolo.
- Não é praticável quando a string é grande ou quando não termina (ex: streaming de radio pela internet).

Exemplo

Descodifique a string:

001111111111111100000001

Código instantaneo (ou de prefixo)

Definição (Código instantaneo)

Diz-se que um código C é um código instantaneo ou código de prefixo se nenhuma palavra de código é prefixo de outra.

Um código instantaneo pode ser descodificado sem referência às palavras de código futuras.

Código instantaneo (ou de prefixo)

Definição (Código instantaneo)

Diz-se que um código C é um código instantaneo ou código de prefixo se nenhuma palavra de código é prefixo de outra.

Um código instantaneo pode ser descodificado sem referência às palavras de código futuras.

Exemplo		
		A string
	C(x)	0100110111001
Α	01	/ :
В	001	é imediatamente reconhecida como
C	111	01,001,10,111,001
D	10	02,002,20,222,002
		ou seja ABDCB

Exemplos de códigos

E	Exemplo				
	X	Singular	Não singular	Univ. descod.	Instantaneo
	Α	0	0	10	00
	В	0	00	00	10
	C	1	000	11	111
	D	1	0000	110	110

Como construir um código instantaneo?

Um código instantaneo pode ser construído desenhando uma árvore e seleccionando como palavras de código o caminho desde a raiz até às folhas.

X	C(x)
Α	00
В	010
C	011
D	1

Os símbolos estão nas folhas da árvore

Repare que a restrição "nenhuma palavra de código é prefixo de outra" obriga a que nenhum símbolo possa ser definido num nó da árvore.

Construção de códigos instantaneos

Dados os comprimentos I(x) das palavras de código, será que existe um código instantaneo que satisfaz esses comprimentos?

Teorema (Desigualdade de Kraft)

 \acute{E} possível construir um código instantaneo com palavras de código de comprimento I(x) se e só se

$$\sum_{x \in \mathcal{X}} 2^{-l(x)} \le 1.$$

Desigualdade de Kraft

Demonstração.

■ Seja I_{max} o tamanho da maior palavra de código.

Demonstração.

- lacksquare Seja I_{\max} o tamanho da maior palavra de código.
- Qualquer palavra de código de comprimento I(x) é prefixo de $2^{l_{\max}-I(x)}$ palavras (não usadas) no nível l_{\max} .

Demonstração.

- Seja I_{max} o tamanho da maior palavra de código.
- Qualquer palavra de código de comprimento I(x) é prefixo de $2^{l_{max}-I(x)}$ palavras (não usadas) no nível l_{max} .

■ Podem existir até 2^lmax palavras de código no nível l_{max}. Então

$$\sum_{x \in \mathcal{X}} 2^{l_{\mathsf{max}} - l(x)} \leq 2^{l_{\mathsf{max}}} \qquad \Leftrightarrow \qquad \sum_{x \in \mathcal{X}} 2^{-l(x)} \leq 1.$$

12/ 27

Códigos óptimos

- Considera-se o conjunto de todos os códigos instantaneos (i.e., satisfazem a desigualdade de Kraft).
- Códigos diferentes têm comprimentos médios diferentes.

Problema

Qual o código C que tem o menor comprimento médio L(C)?

Códigos óptimos

- Considera-se o conjunto de todos os códigos instantaneos (i.e., satisfazem a desigualdade de Kraft).
- Códigos diferentes têm comprimentos médios diferentes.

Problema

Qual o código C que tem o menor comprimento médio L(C)?

- Sabemos construir um código instantaneo desenhando uma árvore.
- Falta saber que posição cada símbolo ocupa na árvore.
- Um código óptimo pode ser obtido calculando os comprimentos óptimos I(x) das palavras de código.
 - Os símbolos mais frequentes devem ter comprimentos menores.
 - **E**xistem vários códigos possíveis para os mesmos comprimentos I(x).

Problema

Minimizar L(C) com a restrição do código resultante ser um código instantaneo.

■ Funcional a optimizar:

$$L(C) = \sum_{x} p(x) I(x).$$

■ Restrição:

$$\sum_{x} 2^{-I(x)} \leq 1.$$

Usando o método dos multiplicadores de Lagrange obtém-se o funcional modificado:

$$J = \sum_{x} p(x)I(x) + \lambda \left(\underbrace{\sum_{x} 2^{-I(x)} - 1}_{\text{restricão}} \right).$$

Derivando J em ordem aos comprimentos I(x) e ao multiplicador de Lagrange λ , e igualando a zero, obtêm-se os pontos de estacionariedade

$$\frac{\partial J}{\partial I(x_j)} = p(x_j) - \lambda 2^{-I(x_j)} \log_e 2 = 0 \tag{1}$$

$$\frac{\partial J}{\partial \lambda} = \sum_{x} 2^{-l(x)} - 1 = 0 \tag{2}$$

Da equação (1) resulta que

$$I(x_j) = -\log_2 p(x_j) + \log_2(\lambda \log_e 2)$$
(3)

Substituindo (3) em (2), e resolvendo em ordem a λ , obtém-se $\lambda=1/\log 2$. Substituindo este λ em (3) obtém-se finalmente

$$I(x_j) = -\log_2 p(x_j). \tag{4}$$

■ Se p(x) é uma potência negativa de 2, então

$$L(C) = \sum_{x} p(x)I(x) = \sum_{x} p(x)(-\log p(x)) = H(X).$$

- Se as probabilidades p(x) não são potências negativas de 2, então os comprimentos $I(x) = -\log_2(p(x))$ não são números inteiros.
 - ▶ Nesse caso podem usar-se comprimentos imediatamente superiores

$$I(x) = \lceil -\log_2 p(x) \rceil.$$

- Estes novos comprimentos satisfazem a desigualdade de Kraft.
- O comprimento médio satisfaz

$$H(X) \le L(C) < H(X) + 1.$$

O código obtido chama-se código de Shannon-Fano e é subóptimo.

Exemplo

Uma fonte sem memória gera símbolos do alfabeto $\mathcal{X} = \{A, B, C\}$ com probabilidadades $\{0.25, 0.25, 0.5\}$, respectivamente.

O código Shannon-Fano é:

$$L(C) = 1.5 \text{ bits}$$

 $H(X) = 1.5 \text{ bits}$
 $1.5 \le L(C) < 2.5$

O código é óptimo.

Exemplos de códigos Shannon-Fano

Exemplo

Uma fonte sem memória gera símbolos do alfabeto $\mathcal{X} = \{A, B, C, D\}$ com probabilidadades $\{0.1, 0.2, 0.3, 0.4\}$, respectivamente.

O código Shannon-Fano é:

X	p(x)	$-\log p(x)$	I(x)	C(x)
Α	0.1	3.3219	4	0000
В	0.2	2.3219	3	001
C	0.3	1.7370	2	01
D	0.4	1.3219	2	10

$$L(C) = 2.4 \text{ bits}$$

 $H(X) = 1.8464 \text{ bits}$
 $1.8464 \le L(C) < 2.8464$

O código não é óptimo.

Exemplo

Uma fonte sem memória gera símbolos do alfabeto $\mathcal{X} = \{A, B, C, D\}$ com probabilidadades $\{0.1, 0.2, 0.3, 0.4\}$.

É possível construir um código de Shannon-Fano com comprimento médio mais perto de H(X) do que o obtido no exemplo anterior.

Para o efeito, agrupam-se vários símbolos e constrói-se um código para esses grupos (que são os "novos" símbolos).

y	p(y)	I(y)
AA	0.01	7
AB	0.02	6
AC	0.03	6
AD	0.04	5
BA	0.02	6
BB	0.04	5
:	:	
DD	0.16	3

$$L(C) = \frac{\sum_{y} p(y)I(y)}{2} = 2.155 \text{ bits}$$

Agrupando 2 símbolos obtém-se um comprimento médio

$$H(X) \leq L(C) < H(X) + \frac{1}{2}$$

Código de Shannon-Fano sobre grupos de símbolos

Agrupando n símbolos para formar "novos" símbolos, obtém-se um comprimento médio no intervalo

$$H(X_1, \dots, X_n) \leq \underbrace{E[I(X_1, \dots, X_n)]}_{\text{comprimento médio}} < H(X_1, \dots, X_n) + 1$$

Código de Shannon-Fano sobre grupos de símbolos

Agrupando n símbolos para formar "novos" símbolos, obtém-se um comprimento médio no intervalo

$$H(X_1, \dots, X_n) \leq \underbrace{E[I(X_1, \dots, X_n)]}_{\text{comprimento médio}} < H(X_1, \dots, X_n) + 1$$

Como os símbolos são i.i.d. (fonte sem memória):

$$H(X_1,\ldots,X_n)=nH(X).$$

Agrupando n símbolos para formar "novos" símbolos, obtém-se um comprimento médio no intervalo

$$H(X_1, \dots, X_n) \leq \underbrace{E[I(X_1, \dots, X_n)]}_{\text{comprimento médio}} < H(X_1, \dots, X_n) + 1$$

Como os símbolos são i.i.d. (fonte sem memória):

$$H(X_1,\ldots,X_n)=nH(X).$$

Substituindo em cima obtém-se

$$nH(X) \leq E[I(X_1,\ldots,X_n)] < nH(X) + 1.$$

Agrupando n símbolos para formar "novos" símbolos, obtém-se um comprimento médio no intervalo

$$H(X_1, \dots, X_n) \leq \underbrace{E[I(X_1, \dots, X_n)]}_{\text{comprimento médio}} < H(X_1, \dots, X_n) + 1$$

Como os símbolos são i.i.d. (fonte sem memória):

$$H(X_1,\ldots,X_n)=nH(X).$$

Substituindo em cima obtém-se

$$nH(X) \leq E[I(X_1, \ldots, X_n)] < nH(X) + 1.$$

Dividindo por n obtém-se

o comprimento médio por símbolo individual

$$H(X) \leq \frac{E[I(X_1,\ldots,X_n)]}{n} < H(X) + \frac{1}{n}.$$

Aplicação do código numa fonte diferente

Problema

- Uma fonte sem memória gera símbolos com probabilidades p(x).
- Constrói-se um código Shannon-Fano usando probabilidades q(x) de uma fonte diferente.
- Ao aplicar o código à fonte p(x), qual vai ser a penalização no comprimento médio L(C)?

Problema

- Uma fonte sem memória gera símbolos com probabilidades p(x).
- Constrói-se um código Shannon-Fano usando probabilidades q(x) de uma fonte diferente.
- Ao aplicar o código à fonte p(x), qual vai ser a penalização no comprimento médio L(C)?

A penalização será a diferença entre o comprimento médio e a entropia da fonte. Isto é,

$$\begin{split} L(C) - H(X) &= \sum_{x} p(x) \lceil -\log_2 q(x) \rceil + \sum_{x} p(x) \log_2 p(x) \\ &\geq \sum_{x} p(x) \big(-\log_2 q(x) \big) + \sum_{x} p(x) \log_2 p(x) \\ &= \sum_{x} p(x) \log \frac{p(x)}{q(x)} \quad \text{(Kullback-Leibler)}. \end{split}$$

Código de Huffman

- Requesitos:
 - ▶ Conhecer a priori as probabilidades p(x)

Código de Huffman

- Requesitos:
 - ightharpoonup Conhecer a priori as probabilidades p(x)
- Algoritmo:
 - ► Todos os símbolos são folhas de uma árvore a construir.
 - Em cada passo seleccionam-se os dois nós de menor probabilidade para formar o novo nó pai.
 - ► As palavras de código correspondem ao caminho da raiz até às folhas.

Código de Huffman

- Requesitos:
 - ▶ Conhecer a priori as probabilidades p(x)
- Algoritmo:
 - ► Todos os símbolos são folhas de uma árvore a construir.
 - Em cada passo seleccionam-se os dois nós de menor probabilidade para formar o novo nó pai.
 - As palavras de código correspondem ao caminho da raiz até às folhas.
- Optimalidade:
 - ▶ O código de Huffman satisfaz

$$H(X) \le L(C) < H(X) + 1$$

▶ É o melhor código instantaneo que se pode construir para um dado alfabeto.

- Requesitos:
 - ightharpoonup Conhecer a priori as probabilidades p(x)
- Algoritmo:
 - ► Todos os símbolos são folhas de uma árvore a construir.
 - Em cada passo seleccionam-se os dois nós de menor probabilidade para formar o novo nó pai.
 - As palavras de código correspondem ao caminho da raiz até às folhas.
- Optimalidade:
 - ▶ O código de Huffman satisfaz

$$H(X) \leq L(C) < H(X) + 1$$

- ▶ É o melhor código instantaneo que se pode construir para um dado alfabeto.
- Desvantagens:
 - Assume que os símbolos são v.a. independentes.
 - Assume que as probabilidades não variam no tempo.
 - O compressor e o descompressor têm de conhecer a mesma árvore (necessário enviar a árvore para o descompressor descodificar a mensagem).

Exemplo

Considere um alfabeto $\{A,B,C,D,E\}$ com probabilidades $\{0.1,0.1,0.2,0.3,0.3\}$. O código de Huffman constrói-se do seguinte modo:

Exemplo

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

Exemplo

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

Exemplo

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

Exemplo

Considere um alfabeto $\{A,B,C,D,E\}$ com probabilidades $\{0.1,0.1,0.2,0.3,0.3\}$. O código de Huffman constrói-se do seguinte modo:

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

Considere um alfabeto $\{A, B, C, D, E\}$ com probabilidades $\{0.1, 0.1, 0.2, 0.3, 0.3\}$. O código de Huffman constrói-se do seguinte modo:

 O código de Huffman anterior só pode ser construído depois de conhecer as probabilidades da fonte.

- O código de Huffman anterior só pode ser construído depois de conhecer as probabilidades da fonte.
- No caso de se pretender comprimir uma string gerada por uma fonte desconhecida (e.g. um ficheiro), é necessário determinar a frequência com que os símbolos ocorrem.

- O código de Huffman anterior só pode ser construído depois de conhecer as probabilidades da fonte.
- No caso de se pretender comprimir uma string gerada por uma fonte desconhecida (e.g. um ficheiro), é necessário determinar a frequência com que os símbolos ocorrem.
- São necessárias duas passagens sobre o ficheiro:
 - 1 Contar o número de ocorrências de cada símbolo;
 - 2 Desenhar código e comprimir ficheiro.

- O código de Huffman anterior só pode ser construído depois de conhecer as probabilidades da fonte.
- No caso de se pretender comprimir uma string gerada por uma fonte desconhecida (e.g. um ficheiro), é necessário determinar a frequência com que os símbolos ocorrem.
- São necessárias duas passagens sobre o ficheiro:
 - 1 Contar o número de ocorrências de cada símbolo;
 - 2 Desenhar código e comprimir ficheiro.

O código de Huffman adaptativo permite fazer compressão nas seguintes condições:

- não necessita de conhecer as probabilidades dos símbolos.
- faz apenas uma passagem sobre o ficheiro.
- não é necessário transmitir o código. O receptor consegue reconstruir a árvore à medida que faz a descodificação.

O algoritmo foi desenvolvido independentemente por Faller (1973) e Galager (1978) e melhorado por Knuth (1985), ficando conhecido como algoritmo FGK. Existe ainda outro melhoramento devido a Vitter (1987), conhecido como algoritmo V, que não é apresentado aqui.

O código de Huffman adaptativo é usado no comando compact do UNIX.

Código de Huffman adaptativo: ideias chave

■ Construir uma árvore binária à medida que são lidos novos símbolos.

Código de Huffman adaptativo: ideias chave

- Construir uma árvore binária à medida que são lidos novos símbolos.
- Reserva um símbolo de ESCAPE para representar todos os símbolos que ainda não ocorreram até ao momento actual.

Código de Huffman adaptativo: ideias chave

- Construir uma árvore binária à medida que são lidos novos símbolos.
- Reserva um símbolo de ESCAPE para representar todos os símbolos que ainda não ocorreram até ao momento actual.
- Manipular a árvore de modo a aproximar-se de uma árvore de Huffman:
 - Cada nível da árvore não pode conter nós com número de ocorrências superior aos níveis de cima: ordenar nós de baixo para cima de modo a que os símbolos mais frequentes estejam mais acima.
 - As ocorrências devem estar ordenadas da esquerda para a direita em cada nível da árvore.

- Construir uma árvore binária à medida que são lidos novos símbolos.
- Reserva um símbolo de ESCAPE para representar todos os símbolos que ainda não ocorreram até ao momento actual.
- Manipular a árvore de modo a aproximar-se de uma árvore de Huffman:
 - Cada nível da árvore não pode conter nós com número de ocorrências superior aos níveis de cima: ordenar nós de baixo para cima de modo a que os símbolos mais frequentes estejam mais acima.
 - As ocorrências devem estar ordenadas da esquerda para a direita em cada nível da árvore.
- Para codificar um símbolo, verifica-se se este já existe na árvore e:
 - Se já existe, usa-se o código correspondente e incrementam-se as ocorrências desse símbolo e dos seus ascendentes.
 - Se não existe, usa-se o código de "escape" seguido do símbolo sem ser codificado, acrescenta-se o símbolo à árvore por baixo de onde antes estava o "escape", e actualizam-se as ocorrências dos nós ascendentes.

Em qualquer um dos casos anteriores, modifica-se a árvore de modo a que as ocorrências estejam ordenadas de baixo para cima e depois da esquerda para a direita.

"ABRACADABRA" \longrightarrow A

"ABRACADABRA" \longrightarrow A

