"IL CALORE PASSA SPONTANEAMENTE DA UN CORPO CALDO A UNO FREDDO"

Si eseguano i bilanci di energia e di entropia per il sistema Z

$$\Delta U_Z = 0$$

$$\Delta U_1 + \Delta U_2 = 0$$

$$Q_1^{\leftarrow} + Q_2^{\leftarrow} = 0$$

Il bilancio entropico diventa:

$$\frac{Q_{1}^{\leftarrow}}{T_{1}} + \frac{Q_{2}^{\leftarrow}}{T_{2}} = S_{irr}$$

$$-\frac{Q_{1}}{T_{1}} + \frac{Q_{2}}{T_{2}} = S_{irr}$$

$$S_{irr} > 0$$

$$Q_{1} = Q_{2} = Q$$

$$Q\left(-\frac{1}{T_{1}} + \frac{1}{T_{2}}\right) = S_{irr} > 0$$

$$T_{1} > T_{2}$$

$$\Delta S_{Z} = S_{irr}$$
$$\Delta S_{1} + \Delta S_{2} = S_{irr}$$

Sistema Z

"NON ESISTE UNA MACCHINA CICLICA CHE NON PRODUCA ALTRO EFFETTO CHE IL TRASFERIMENTO DI CALORE DA UNA SORGENTE FREDDA A UNA SORGENTE CALDA" (Clausius)

"NON ESISTE UNA MACCHINA CICLICA IL CUI UNICO EFFETTO SIA L'ASSORBIMENTO DI CALORE DA UNA SORGENTE CALDA E LA PRODUZIONE DI UN'EQUIVALENTE QUANTITA' DI LAVORO" (Lord Kelvin)

$$\begin{cases} \Delta U_z = 0 \\ \Delta S_z = S_{irr} \end{cases} \qquad \begin{cases} \Delta U_{sc} + \Delta U_M + \Delta U_{sl} = 0 \\ \Delta S_{sc} + \Delta S_M + \Delta S_{sl} = S_{irr} \end{cases}$$

ma essendo

$$\begin{cases}
\Delta U_{sc} = Q_{sc} \\
\Delta S_{sc} = \frac{Q_{sc}}{T_{sc}}
\end{cases}$$

$$\Delta U_{M} = 0$$

$$\Delta U_{sl} = -L_{sl} \\
\Delta S_{M} = 0$$

$$\Delta S_{sl} = 0$$

dal bilancio entropico deriva

$$\frac{Q_{sc}}{T_{sc}} = S_{irr}$$

Ed essendo $S_{irr}>0$ e $T_{sc}>0$ si conclude che anche il calore scambiato dal serbatoio di calore debba essere positivo e quindi entrante nel serbatoio.

Ciò significa che la situazione descritta in figura viola il secondo principio della termodinamica e che quindi tale macchina sia incapace di produrre lavoro.

INTERPRETAZIONE FISICA DEL CONCETTO DI ENTROPIA

E' evidente ai nostri sensi che l'energia di un sistema termodinamico isolato può essere espressa come somma di due termini: l'energia disponibile ad essere convertita in lavoro (E_{disp}) e energia che non è possibile convertire in lavoro $(E_{nondisp})$

$$E = E_{disp} + E_{nondisp}$$

Definiamo l'entropia come proprietà di un sistema termodinamico la cui variazione dS a seguito di una trasformazione sia proporzionale alla differenza fra la variazione di energia totale dE e la variazione dell'energia disponibile per produrre lavoro dE_{disp} :

$$dS = C(dE - dE_{disp})$$

Per un sistema isolato che evolva verso una diversa situazione di equilibrio a seguito della rimozione di vincoli il principio di conservazione dell'energia consente di affermare che dE=0 mentre il principio di degradazione dell'energia consente di affermare che d E_{disp} <0 e quindi che d E_{disp}

Secondo questa interpretazione l'entropia risulta essere una misura dell'energia non disponibile

LA VISIONE MECCANICISTA BACONE

Novum organum 1620 (metodo scientifico)

CARTESIO

Descrizione matematica

NEWTON

Leggi della dinamica

Sembra una descrizione ineccepibile dell'universo

DISORDINE = NON CONFORMITA' ALLE LEGGI NATURALI

POLITICA

Estendere il dominio sulla natura

Crescita illimitata

SMITH

ECONOMIA

Laissez faire

Crescita illimitata

LEGGE DELL'ENTROPIA

In ogni trasformazione di energia (che complessivamente per un sistema isolato rimane costante) una parte di essa non sarà più utilizzabile

L'entropia è la freccia del tempo (ma non ci dice nulla sulla velocità)

Gli esseri viventi riescono ad andare in direzione opposta a quella del processo entropico perché assorbono energia dall'ambiente circostante: esseri viventi = sistemi aperti

C'è un continuo passaggio di energia attraverso ogni essere vivente, energia che entra nel sistema a un livello più alto uscendone in uno stato degradato

Per tenere in vita un uomo un anno

1000 tonnellate d'erba

Stadi di sviluppo di un ecosistema

TRANSIZIONE DA UN MODELLO DI COLONIZZAZIONE A UN MODELLO DI CLIMAX

=

PROGRESSO(?)

Esempio

UN'ANALISI ENTROPICA

L'INDUSTRIA MILITARE

Alto impiego di capitale

Forte intensità energetica

Bassa intensità di lavoro

Impatto inflattivo (retribuzioni senza ampliamento del mercato dei beni di consumo)

Zone di elevata concentrazione energetica pronte a trasformarsi senza alcuna produzione di lavoro

Elevata richiesta di energia per il sostentamento o per lo smantellamento

