Université Sultan Moulay Slimane Faculté des Sciences et Techniques Département : Génie Electrique

28 juin 2024

GE-GM

Examen de Rattrapage Electrotechnique GE-GM /S4 (deux pages) 1h30min

Exercice 1

Les essais d'un transformateur monophasé T dont La plaque signalétique porte les indications suivantes : 220/3000 V; 4000VA; 50 Hz, ont donné les résultats suivants :

• Essai à vide, sous tension primaire nominale 220V on a relevé :

$$U_{20} = 3140 \text{ V}; I_{10} = 1 \text{ A}; P_{10} = 50 \text{ W}.$$

Essai en court-circuit sous tension réduite U_{1CC} = 12 V a donné :

$$I_{2cc} = 1.33 \text{ A}; P_{1cc} = 190 \text{ W}.$$

D'autre part, la résistance de l'enroulement primaire est $R_1 = 0.17\Omega$.

Dans tout ce qui suit on admet la légitimité des hypothèses de Kapp.

- 1. Calculer la résistance totale r_{t2} et de la réactance secondaire totale x_{t2} ramenées au secondaire.
- 2. Pour la tension secondaire nominale, déterminer :
 - Le rendement η_1 pour une utilisation à pleine charge (**charge nominale**) sur un circuit purement résistant ;
 - Le rendement η_2 à **charge nominale**, le secondaire débitant dans un récepteur de facteur de puissance 0,6.
- 3. Déterminer la chute de tension dans les deux cas suivants :
 - Fonctionnement à charge nominale sur un circuit inductif de facteur de puissance 0,9;
 - Fonctionnement à **charge nominale** sur un circuit d'utilisation purement résistant ;
 - En déduire les chutes de tension relatives pour les deux cas précédents.

Exercice 2

On s'intéresse à l'installation électrique triphasée 230 V/400 V d'un atelier comportant:

1. Une charge triphasée résistive consommant 6 kW.

ELECTROTECHNIQUE GE-GM

2. Trois machines triphasées consommant chacune 5 kW avec un facteur de puissance de 0,8 arrière.

- 3. Un appareillage particulier représentant trois impédances identiques $\bar{Z}=10~\Omega~+~j15~\Omega$ câblées en triangle sur les phases.
- 1) Calculer les puissances active et réactive P_Z et Q_Z consommées par les impédances \bar{Z} .
- 2) Calculer la puissance active totale consommée par l'atelier.
- 3) Calculer la puissance réactive totale consommée par l'atelier.
- 4) En déduire la puissance apparente totale et la valeur du courant de ligne l consommé.
- 5) Calculer la valeur du facteur de puissance de l'atelier.
- 6) Calculer la valeur des capacités C, câblées en étoile, permettant de relever le facteur de puissance à la valeur 1.