Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 9 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i)

```
\begin{split} \varphi_1 &:= \neg (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \rightarrow \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z \neg (\neg E(x,z) \lor f(x,y) = z))) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z (E(x,z) \land \neg (f(x,y) = z)))) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x_1 \exists y_2 E(x_1,y_2) \land \forall x_2 \exists y_2 \forall z_1 (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor \exists x_3 E(x_3,f(y,x_3)) \\ &\equiv \exists x_1 \exists y_2 \forall x_2 \exists y_2 \forall z_1 \exists x_3 ((E(x_1,y_2) \land (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor E(x_3,f(y,x_3))) \end{split}
```

(ii)

```
\varphi_{2} := \exists y \forall z (E(x,z) \land (E(y,z) \rightarrow \forall x (E(f(x,y),z) \land \neg \forall y R(x,y)))) 

\equiv \exists y \forall z (E(x,z) \land (\neg E(y,z) \lor \forall x (E(f(x,y),z) \land \neg \forall y R(x,y)))) 

\equiv \exists y \forall z (E(x,z) \land (\neg E(y,z) \lor \forall x (E(f(x,y),z) \land \exists y \neg R(x,y)))) 

\equiv \exists y_{1} \forall z_{1} (E(x_{1},z_{1}) \land (\neg E(y_{1},z_{1}) \lor \forall x_{2} (E(f(x_{2},y_{1}),z_{1}) \land \exists y_{1} \neg R(x_{2},y_{1}))) 

\equiv \exists y_{1} \forall z_{1} \forall x_{2} (E(x_{1},z_{1}) \land (\neg E(y_{1},z_{1}) \lor (E(f(x_{2},y_{1}),z_{1}) \land \neg R(x_{2},y_{1}))))
```

Aufgabe 2

$$\phi_{1}(\mathcal{N}) := \exists x (y = x + x)
\phi_{2}(\mathcal{N}) := \exists x (y = x \cdot x)
\phi_{3}(\mathcal{R}) := x = y \cdot y
\phi_{4}(\mathcal{R}) := \exists m \forall n (m \cdot n = m \land m = x + y)
\phi_{5}(\mathcal{R}) := \exists m \exists n (n \cdot n = m \land y = x + m)
\phi_{6}(\mathcal{R}) := (u'' = u \cdot u' - v \cdot v') \land (v'' = u' \cdot v + u \cdot v')$$

Aufgabe 3

(i)

(ii) Die gegebene Struktur enthält nur die Relation < aber keine Funktionssymbole. < ist über $\mathbb Z$ eine Relation ohne Maximum oder Minimum.

Damit es ein φ gibt sodass $\varphi(\mathcal{Z}) = \{0\}$, muss es möglich sein, die 0 von allen anderen Zahlen zu unterscheiden. Durch die Unendlichkeit von \mathbb{Z} ist es nicht möglich durch Quantifikation bestimmte Zahlen zu erkennen:

- $\exists x \exists y (x < y)$
- $\exists y (x < y)$
- $\exists x (x < y)$
- $\forall x \forall y (x < y)$
- $\forall y (x < y)$

- $\forall x (x < y)$
- x < y
- $\exists x \forall y (x < y)$
- $\forall x \exists y (x < y)$

In jedem der Fälle gibt es unendlich viele Variablen, die die Gleichung erfüllen. Die mehrfache Verwendung von < hilft nicht weiter, da die Menge an erfüllenden Werten immer unendlich groß bleibt. Durch die Abwesenheit von Funktionssymbolen ist es somit nicht möglich, eine Formel φ aufzustellen, die die gegebenen Vorraussetzungen erfüllt.

Aufgabe 4

Annahme: Bei einer festen Variablenmenge gibt es bis auf logische Äquivalenz nur endlich viele Formeln. Es gibt nun zwei Fälle:

- Ein Quantor ist in der innersten Ebene und enthält keine weiteren Quantoren. Innerhalb des Quantors können höchstens q Variablen auftreten. Nach unseren Annahme gibt es somit nur endlich viele Formeln mit den innersten Quantoren.
- Eine Quantor enthält noch weitere quantifizierte Formeln. Für alle inneren Formeln gibt es nach Punkt 1 nur endlich viele Formeln. Die Formel im aktuellen Quantor ist nun eine Verknüpfung aus inneren Quantoren, die nur endlich viele Formeln haben und anderen Variablen, die im Quantor selber oder in äußeren Quantoren definiert werden. Somit gibt es auch hier nur endlich viele Formeln.

TODO: Mit struktureller aufschreiben und dann noch sagen, dass man die Quantoren auch umsortieren kann... und dass es nur endlich viele Umsortierungen gibt...