Exercice 1

Question 1 Montrer que les fonctions suivantes sont primitves récursives.

- (a) Les fonctions constantes $c_a(n) = a$.
- (b) La fonction *somme* définie par somme(n, m) = n + m.
- (c) La fonction *prédécesseur* p définie par p(n) = max(0, n 1).
- (*d*) La fonction *prod* définie par prod(n, m) = nm.
- (e) La fonction eq0 définie par eq0(m) = 1 si m = 0 et eq0(m) = 0 sinon.
- (*f*) La fonction *eq* définie par eq(n, m) = 1 si m = n et eq(n, m) = 0 sinon.
- (*g*) Toute fonction $f: N \to \mathbb{N}$ à support fini :

$$\exists E \subseteq \mathbb{N}, |E| < \infty \quad x \notin E \implies f(x) = 0$$

(a) Soit $a \in \mathbb{N}$.

On montre que:

$$\forall n \in \mathbb{N}, c_a(n) = s^a(\odot(n))$$

Avec s^a s composé a fois.

Une récurrence sur a montre que $s^a(0) = a$.

Écrit sous cette forme on constate que c_a est récursive primitive par a+1 applications du schéma de composition.

(b) On définit somme':

$$\forall (n,m) \in \mathbb{N}^2$$
, $somme'(n,0) = n$
 $somme'(n,m+1) = (s \circ p_3^3)(n,m,somme'(n,m))$

somme' est PR par application une fois du schéma de récurrence primitive : $s \circ p_3^3$ est PR par composition.

Soit $n \in \mathbb{N}$, on montre par récurrence sur $m \in \mathbb{N}$:

$$P(m)$$
 : "somme'(n,m) = somme(n,m) = n + m"
— $P(0)$: somme'(n,0) = n = n + 0
— Hérédité : Soit $m \in \mathbb{N}$ tel que $P(m)$, on a :
 $somme'(n,m+1) = (s \circ p_3^3)(n,m,somme'(n,m))$
= $s(somme'(n,m))$
= $s(n+m)$
= $(n+m)+1$
= $n+(m+1)$

D'où **P**(m + 1).

Donc somme = somme' et somme est PR.

(c) L'énoncé est un peu ambigü comme soulevé dans la FAQ.

On considère malgré les définitions que les $\mathbb{N}^0 \to \mathbb{N}$ sont PR (les constantes sont PR, ça justifie).

Ainsi on peut définir des fonctions à une seule variable en schéma de récursion primitive. On montre que p vérifie :

$$p(0) = 0$$
 $\forall n \in \mathbb{N}, \quad p(n+1) = p_1^2(n, p(n))$

En effet, p(0) = max(0, -1) = 0 et pour $n \in \mathbb{N}$:

$$p(n+1) = \max(0,n) = n = p_1^2(n,p(n))$$

Sous cette forme on constate que p est PR.

(d) On définit prod':

$$\forall (n,m) \in \mathbb{N}^2, \quad prod'(n,0) = 0$$

$$prod'(n,m+1) = somme_{13}(n,m,prod'(n,m))$$

$$avec: somme_{13}(x_1,x_2,x_3) = somme(p_1^3(x_1,x_2,x_3), p_3^3(x_1,x_2,x_3))$$

 $somme_{13}$ est PR par schéma de composition et 1b) donc prod' est PR par schéma de récurrence.

Soit $n \in \mathbb{N}$, on montre par récurrence sur $m \in \mathbb{N}$:

$$P(m) : "prod'(n, m) = prod(n, m) = n * m"$$

- $\mathbf{P}(0)$: prod'(n,0) = 0 = n * 0
- **Hérédité** : Soit $m \in \mathbb{N}$ tel que $\mathbf{P}(m)$, on a :

$$prod'(n, m + 1) = somme_{13}(n, m, prod'(n, m))$$
$$= n + prod'(n, m)$$
$$= n + n * m$$
$$= n * (m + 1)$$

D'où $\mathbf{P}(m+1)$.

Donc prod = prod' et prod est PR.

(e) On montre que eq0 vérifie :

$$eq0(0) = 1$$
 $\forall n \in \mathbb{N}, \quad eq0(n+1) = (\odot \circ p_1^2)(n, eq0(n))$

En effet, eq(0) = 1 et pour $n \in \mathbb{N}$, $n + 1 \neq 0$:

$$eq0(n+1) = 0 = \odot(n)$$

Sous cette forme on constate que eq0 est PR.

(f) On montre que eq vérifie :

$$\forall (n,m) \in \mathbb{N}^2, \quad eq(n,m) = (eq0 \circ somme)(sub(n,m), sub(m,n))$$

Avec:

$$sub(n,0) = n$$

$$\forall (n,m) \in \mathbb{N}^2, \quad sub(n,m+1) = (p \circ p_3^3)(n,m,sub(n,m))$$

On constate que *sub* est PR.

Une récurrence montre que sub(n, m) = max(0, n - m).

Soient $(n, m) \in \mathbb{N}^2$:

- Si n = m, sub(n, m) = sub(m, n) = 0 et donc : eq(n,m) = 1 = eq0(sub(n,m) + sub(m,n))
- Si $n \neq m$, mettons n > m. Alors $sub(n,m) = n - m \neq 0$ et sub(m,n) = 0 aisni eq0(sub(n,m) + sub(m,n)) = 0Ainsi eq(n,m) = 0 = eq0(sub(n,m) + sub(m,n))

Mis sous cette forme, on constate que eq est PR.

(g) Soit $f : \mathbb{N} \to \mathbb{N}$ à support fini.

Il existe $k \in \mathbb{N}$ et $E \subseteq \mathbb{N} = \{x_1, \dots, x_k\}, |E| = k$, tels que :

$$\forall x \in \mathbb{N} \quad x \notin E \implies f(x) = 0$$

Si k = 0, $f = \odot$ et le résultat est connu.

On suppose donc $k \ge 1$.

On note pour $1 \le i \le k$ $y_i = f(x_i)$.

On définit f':

$$\forall x \in \mathbb{N}, \quad f'(x) = somme_k(d_1(eq0(eq(x, x_1))), \ldots, d_p(eq0(eq(x, x_p))))$$

Avec, pour $1 \le i \le k$:

$$d_i(0) = y_i$$
 $\forall n \in \mathbb{N}, \quad d_i(n+1) = (\odot \circ p_1^2)(n, d_i(n))$

Et:

$$somme_{1} = p_{1}^{1}$$

 $\forall n \in \mathbb{N}^{*} \quad \forall (x_{1}, ..., x_{n+1}) \in \mathbb{N}^{n+1},$
 $somme_{n+1} : \mathbb{N}^{n+1} \to \mathbb{N}$
 $somme_{n+1}(x_{1}, ..., x_{n+1}) = somme(p_{1}^{n+1}(x_{1}, ..., x_{n+1}), Somme_{n}(x_{1}, ..., x_{n+1}))$

$$\forall n \in \mathbb{N}^* \quad Somme_n(x_1, \ldots, x_{n+1}) = somme_n(p_2^{n+1}(x_1, \ldots, x_{n+1}), \ldots, p_{n+1}^{n+1}(x_1, \ldots, x_{n+1}))$$

Par récurrence, on obtient que :

- $\forall k \in \mathbb{N}^*$, somme_k est PR
- $-\forall k \in \mathbb{N} \{0,1\} \ \forall (x_1,\ldots,x_k) \in \mathbb{N}^k, \ somme_k(x_1,\ldots,x_k) = x_1 + \cdots + x_k$

De plus les d_i sont PR donc f' est PR.

On constate que pour $1 \le i \le k$:

$$\forall x \in \mathbb{N} \quad x = x_i \Leftrightarrow d_i(eq0(eq(x, x_i))) = y_i$$

$$\forall x \in \mathbb{N} \quad x \neq x_i \Rightarrow d_i(eq0(eq(x, x_i))) = 0$$

(eq0 agit comme un not logique ici).

Donc:

$$\forall x \in \mathbb{N} \quad x \notin E \implies f'(x) = 0$$

(tous les termes de la somme sont nuls)

$$\forall 1 \leq i \leq k \quad f'(x_i) = y_i$$

(un seul terme non nul, les x_i sont nécessairement distincts puisque |E| = k). On en conclut f = f' et f est PR.

Question 2 On définit la fonction d'Ackermann via la récurrence double suivante :

$$Ack(0,x) = x + 2$$

 $Ack(1,0) = 0$
 $Ack(n + 2,0) = 1$
 $Ack(n + 1, x + 1) = Ack(n, Ack(n + 1, x))$

Montrer que pour tout $n \in \mathbb{N}$, la fonction $Ack_n : x \mapsto Ack(n, x)$ est PR.

- Cas n = 0: $Ack_0(x) = x + 2 = s(s(x)) = s^2(x)$, PR par schéma de composition.
- Cas n = 1:

$$Ack_1(0) = 0$$
 $\forall x \in \mathbb{N}, \quad Ack_1(x+1) = Ack(1, x+1) = Ack(0, Ack(1, x)) = (Ack_0 \circ p_2^2)(x, Ack_1(x))$

PR par schémas de composition et de récurrence.

— Cas *n* ≥ 2 :

$$Ack_n(0) = 1$$
 $\forall x \in \mathbb{N}, \ Ack_n(x+1) = Ack(n, x+1) = (Ack_{n-1} \circ p_2^2)(x, Ack_n(x))$

Par récurrence sur $n \ge 2$ on obtient que les $Ack_{n \ge 2}$ sont PR. Ainsi, pour tout $n \in \mathbb{N}$, la fonction $Ack_n : x \mapsto Ack(n, x)$ est PR.

Question 3 On veut montrer dans cette question que la fonction d'Ackermann n'est pas primitive récursive.

(a) Montrer que $\forall n \in \mathbb{N}$, $x \in \mathbb{N}^*$, $Ack_n(x) > x$. En déduire que pour tout entier n, Ack_n est strictement croissante et que Ack est croissante en son premier argument : $\forall x \geq 2 \ \forall n \in \mathbb{N}$, $Ack(n,x) \leq Ack(n+1,x)$

(a) On va procéder par induction bien fondée sur $\mathbb{N} \times \mathbb{N}^*$ muni de l'ordre lexicographique naturel (total et bien fondé). Il admet pour minimum : (0,1). On veut montrer :

$$\forall n \in \mathbb{N} \ \forall x \in \mathbb{N}^* \ \mathbf{P}(n,x) : "Ack_n(x) > x"$$

- $\mathbf{P}(0,1) : Ack_0(1) = 3 > 1$
- **Induction** : Soit $(n, x) \in \mathbb{N} \times \mathbb{N}^*$ (et donc x > 0), on suppose **P** vraie pour tous les couples lexicographiquement strictement plus petits. Si n = 0 on conclut car x + 2 > x, sinon :

$$Ack_n(x) = Ack_n((x-1)+1) = Ack_{n-1}(Ack_n(x-1)) > Ack_n(x-1) > x-1$$

Ceci par hypothèse d'induction car $\forall a \in \mathbb{N}^*(n,x) > (n-1,a)$ et (n,x) > (n,x-1).

Par les deux inégalités strictes on en conclut :

$$Ack_n(x) > x$$

Soit $n \in \mathbb{N}$ on souhaite montrer :

$$\forall x \in \mathbb{N} \ Ack_n(x+1) > Ack_n(x)$$

Si n=0 on constate que c'est vrai. On suppose $n\geq 1$: Soit $x\in\mathbb{N}$:

$$Ack_n(x+1) = Ack_{n-1}(Ack_n(x)) > Ack_n(x) > x$$

Ceci d'après la preuve précédente.

D'où le résultat.

On veut maintenant montrer que:

$$\forall x \geq 2 \ \forall n \in \mathbb{N}, \ Ack_n(x) \leq Ack_{n+1}(x)$$

Soit $x \ge 2$, on peut appliquer le premier résultat à $x - 1 \ge 1$, soit $n \in \mathbb{N}$ on a :

$$Ack_{n+1}(x-1) > x-1 \text{ donc } Ack_{n+1}(x-1) \ge x.$$

Par croissance de Ack_n (précédent résultat) :

$$Ack_{n+1}(x) = Ack_n(Ack_{n+1}(x-1)) \ge Ack_n(x)$$

D'où le résultat.

(b) On pose pour k entier, $Ack_n^k = Ack_n \circ \ldots \circ Ack_n$, où la composition est prise k fois.

Montrer que $\forall n, k, x \in \mathbb{N}$ $Ack_n^k(x) \leq Ack_{n+1}(x+k)$.

(b) Soient $n, x \in \mathbb{N}$ on montre par récurrence sur $k \in \mathbb{N}$:

$$\mathbf{P}(k) : "Ack_n^k(x) \le Ack_{n+1}(x+k)"$$

— $\mathbf{P}(0) : Ack_n^0(x) = x$ on doit donc montrer :

$$x < Ack_{n+1}(x)$$

Pour $x \neq 0$ on sait déjà $x < Ack_{n+1}(x)$ (par 3a) d'où le résultat.

Si x = 0:

- $-Ack_0(0) = 2 > 0$
- $-Ack_1(0) = 0 \ge 0$
- $-Ack_{n>1}(0) = 1 > 0$

D'où le résultat dans tous les cas.

— **Hérédité** : Soit $k \in \mathbb{N}$ on suppose $\mathbf{P}(k)$. On a :

$$Ack_n^{k+1}(x) = Ack_n(Ack_n^k(x)) \le Ack_n(Ack_{n+1}(x+k))$$

Par croissance et hypothèse de récurrence.

Or $Ack_n(Ack_{n+1}(x+k)) = Ack_{n+1}(x+k+1)$.

D'où $\mathbf{P}(k+1)$

D'où le résultat.

- (c) Montrer que Ack_n^k est dominée par Ack_{n+1} .
- (c) On procède en quatre étapes.

Lemme 0

- (a) $\forall n \geq 0 \quad Ack_n(1) \geq 2$
- (b) $\forall n \geq 0 \quad Ack_n(2) > 3$

Preuve (a):

Par récurrence sur $n : Ack_0(1) = 3 \ge 2$

 $Ack_{n+1}(1) = Ack_n(Ack_{n+1}(0)) = Ack_n(1) \ge 2$ (par HR).

Preuve (b) : c'est analogue.

Lemme 1 Soient $k, n \in \mathbb{N}$:

Soit $x_0 > 0$ tel que $Ack_n^k(x_0) \le Ack_{n+1}(x_0)$

Alors: $\forall x \ge x_0 \ Ack_n^k(x) \le Ack_{n+1}(x)$

Preuve

On se donne un tel x_0 .

Il suffit de montrer : $Ack_n^k(x_0+1) \le Ack_{n+1}(x_0+1)$

Si n = 0 et k = 0 c'est connu par 3a.

On a:

$$Ack_n^k(x_0+1) = Ack_n^{k-1}(Ack_{n-1}(Ack_n(x_0))) \le Ack_n^{k-1}(Ack_n(Ack_n(x_0)))$$

En effet, $Ack_n(x_0) \ge Ack_n(1) \ge 2$ par le **Lemme 0 (a)** et on conclut par croissance de Ack en le premier argument (3a) et par croissance de Ack_n^{k-1} (récurrence sur k). Donc :

$$Ack_n^k(x_0+1) \le Ack_n(Ack_n^k(x_0)) \le Ack_n(Ack_{n+1}(x_0)) = Ack_{n+1}(x_0+1)$$

D'où le résultat.

Lemme 2 Soit $n \in \mathbb{N}^*$:

$$\forall k \in \mathbb{N} \ \exists x_0 \in \mathbb{N} \ Ack_n(x_0) > x_0 + k + 1$$

Par récurrence sur *k* :

- k = 0: par le **Lemme 0 (b)** $x_0 = 2$ convient.
- **Hérédité** $(n \neq 0)$: $Ack_n(x_0 + 1) = Ack_{n-1}(Ack_n(x_0)) > Ack_{n-1}(x_0 + k + 1)$ par HR. On a alors :

$$Ack_n(x_0+1) > Ack_{n-1}(x_0+k+1) > x_0+k+1$$

 $Ack_n(x_0+1) > x_0+k+2$

 $x_0 + 1$ convient donc pour k + 1.

D'où le résultat.

On peut maintenant répondre à la question en démontrant :

$$\forall n \in \mathbb{N} \ \forall k \in \mathbb{N} \ \exists C_{n,k} \in \mathbb{N} \ \ \forall x \in \mathbb{N} \ Ack_n^k(x) \leq Ack_{n+1}(max(x, C_{n,k}))$$

Soient $n, k \in \mathbb{N}$.

— Si $n \neq 0$, on se donne un x_0 du **Lemme 2**, d'après **3b** et le **Lemme 2** :

$$Ack_n^k(x_0 + k + 1) < Ack_n^k(Ack_n(x_0)) \le Ack_{n+1}(x_0 + k + 1)$$

On pose $C_{n,k} = x_0 + k + 1 > 0$ En application du **Lemme 1** à $C_{n,k}$ on a :

$$\forall x \ge C_{n,k} \quad Ack_n^k(x) \le Ack_{n+1}(x)$$

De plus, par croissance de Ack_n^k :

$$Ack_{n+1}(C_{n,k}) \ge Ack_n^k(C_{n,k}) \implies \forall x \le C_{n,k} \ Ack_{n+1}(C_{n,k}) \ge Ack_n^k(x)$$

C'est ce qu'on voulait.

— Si n = 0 on ne peut pas se servir du **Lemme 2** mais on a par récurrence :

$$Ack_0^k(x) = x + 2k$$

Alors par récurrence sur k, on montre l'existence d'un $x_0 \neq 0$ tel que :

$$x_0 + 2k \le Ack_1(x_0)$$

Pour k = 0 tout $x \neq 0$ convient par (3a).

L'argument d'hérédité est le même que pour le lemme 2, si x_0 convient à l'étape k $x_0 + 1$ convient à k + 1.

Muni de cela on peut conclure comme dans le cas $n \neq 0$.

D'où le résultat. (ouf!!)