大学物理热学试题题库及答案

一、选择题(每题3分)				
1、在一密闭容器中,储有户	A、B、C 三种理想气	体,处于平衡状态	S. A 种气体的分子数	女密度
为 n_1 ,它产生的压强为 p_1 ,	B种气体的分子数容	密度为 2n1, C 种 ^左	〔体的分子数密度为 〕	$3 n_1$,
则混合气体的压强 p 为				
(A) $3 p_1$.	(B) $4 p_1$.			
(C) $5 p_1$.	(D) $6 p_1$.			
2、若理想气体的体积为 V , R 为普适气体常量,则该理	•	",一个分子的质量	(b, m, k) 为玻尔兹曼	常量,
(A) $pV/(mT)$ (B)	pV/(kT).	C) $pV/(RT)$.	(D) $pV/(mT)$.	
3、有一截面均匀的封闭圆筒	,中间被一光滑的活。 1	5塞分隔成两边, 如	口果其中的一边装有	0.1 kg

某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量 为:

(C) 1.6 kg.

(D) 3.2 kg.

٦

- 4、在标准状态下,任何理想气体在1 m3 中含有的分子数都等于
 - (A) 6.02×10^{23} . (B) 6.02×10^{21} . (C) 2.69×10^{25} . (D)2.69 \times 10²³.

(玻尔兹曼常量 $k=1.38\times10^{-23}$ J·K⁻¹)

(A) (1/16) kg. (B) 0.8 kg.

- 5、一定量某理想气体按 pV^2 =恒量的规律膨胀,则膨胀后理想气体的温度 (A) 将升高. (B) 将降低. (D)升高还是降低,不能确定.
- 6、一个容器内贮有 1 摩尔氢气和 1 摩尔氦气,若两种气体各自对器壁产生的压强分别为 p_1 和 p_2 ,则两者的大小关系是:
 - (A) $p_1 > p_2$. (B) $p_1 < p_2$. (D)不确定的. (C) $p_1 = p_2$.

(C) 不变.

- 7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?
- (A) 氧分子的质量比氢分子大, 所以氧气的压强一定大于氢气的压强.
- (B) 氧分子的质量比氢分子大, 所以氧气的密度一定大于氢气的密度.
- (C) 氧分子的质量比氢分子大, 所以氢分子的速率一定比氧分子的速率大.
- (D) 氧分子的质量比氢分子大, 所以氢分子的方均根速率一定比氧分子的方均根速率大.
- 8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?
- (A) 氧分子的质量比氢分子大, 所以氧气的压强一定大于氢气的压强.
- (B) 氧分子的质量比氢分子大, 所以氧气的密度一定大于氢气的密度.
- (C) 氧分子的质量比氢分子大, 所以氢分子的速率一定比氧分子的速率大.
- (D) 氧分子的质量比氢分子大, 所以氢分子的方均根速率一定比氧分子的方均根速率大.

- 9、温度、压强相同的氦气和氧气,它们分子的平均动能 $\bar{\varepsilon}$ 和平均平动动能 \bar{w} 有如下关 系:
- (B) $\bar{\varepsilon}$ 相等, 而 \bar{w} 不相等.
- (A) ε 和 \overline{w} 都相等. (C) \overline{w} 相等,而 $\overline{\varepsilon}$ 不相等.
 - (D) $\bar{\varepsilon}$ 和 \bar{w} 都不相等.
- 10、1 mol 刚性双原子分子理想气体, 当温度为 T 时, 其内能为
 - (A) $\frac{3}{2}RT$.
- (B) $\frac{3}{2}kT$.
- $(C)\frac{5}{2}RT$.
- (D) $\frac{5}{2}kT$.

(式中 R 为普适气体常量, k 为玻尔兹曼常量)

- 11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气 体分子数 n,单位体积内的气体分子的总平动动能(E_K/V),单位体积内的气体质量 ρ ,分别有 如下关系:
 - (A) n 不同, (E_K/V) 不同, ρ 不同.
 - (B) n 不同, (E_K/V) 不同, ρ 相同.
 - (C) n 相同, (E_K/V) 相同, ρ 不同.
 - (D) n 相同, (E_K/V) 相同, ρ 相同.
- 12、有容积不同的 A、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理 想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能 $(E/V)_{a}$ 和 $(E/V)_{B}$ 的 关系
 - (A) 为 $(E / V)_A < (E / V)_B$.
 - (B) 为 $(E/V)_A > (E/V)_B$.
 - (C) 为 $(E/V)_A = (E/V)_B$.
 - (D) 不能确定.
- 13、两个相同的容器,一个盛氢气,一个盛氢气(均视为刚性分子理想气体),开始时它们的 压强和温度都相等,现将6J热量传给氦气,使之升高到一定温度.若使氢气也升高同样温 度,则应向氢气传递热量
 - (A) 12 J.
- (B) 10 J
- (C) 6 J.
- (D) 5 J.
- 14、压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为:
 - (A) $\frac{5}{2}pV$. (B) $\frac{3}{2}pV$.
- - (C) pV.
- (D) $\frac{1}{2}pV$.

15、下列各式中哪一式表示气体分子的平均平动动能? (式中 M 为气体的质量, m 为气体分 子质量,N为气体分子总数目,n为气体分子数密度, N_a 为阿伏加得罗常量)

- (A) $\frac{3m}{2M}pV$. (B) $\frac{3M}{2M_{\text{mol}}}pV$.
- (C) $\frac{3}{2}npV$. (D) $\frac{3M_{\text{mol}}}{2M}N_ApV$.
- 16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:

- (A) 两种气体分子的平均平动动能相等.
- (B) 两种气体分子的平均动能相等.
- (C) 两种气体分子的平均速率相等.
- (D) 两种气体的内能相等.

17、一容器内装有 N_1 个单原子理想气体分子和 N_2 个刚性双原子理想气体分子,当该系统处 在温度为T的平衡态时,其内能为

(A)
$$(N_1+N_2)(\frac{3}{2}kT+\frac{5}{2}kT)$$
.

(B)
$$\frac{1}{2}(N_1+N_2)(\frac{3}{2}kT+\frac{5}{2}kT)$$
.

(C)
$$N_1 \frac{3}{2} kT + N_2 \frac{5}{2} kT$$
.

(D)
$$N_1 \frac{5}{2} kT + N_2 \frac{3}{2} kT$$
.

18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温 度的氧气和氢气的速率之比 $v_{\rm O_1}/v_{\rm H_2}$ 为

- (A) 1 .
- (B) 1/2 .
- (C) 1/3 .
- (D) 1/4 .

19、设 \overline{v} 代表气体分子运动的平均速率, v_p 代表气体分子运动的最概然速率, $(\overline{v^2})^{1/2}$ 代表 气体分子运动的方均根速率. 处于平衡状态下理想气体, 三种速率关系为

(A)
$$(\overline{v^2})^{1/2} = \overline{v} = v$$

(B)
$$\overline{v} = v_n < (\overline{v^2})^{1/2}$$

$$\begin{array}{ll} \text{(A)} & (\overline{v^2})^{1/2} = \overline{v} = v_p \\ \text{(C)} & v_p < \overline{v} < (\overline{v^2})^{1/2} \end{array} \qquad \begin{array}{ll} \text{(B)} & \overline{v} = v_p < (\overline{v^2})^{1/2} \\ \text{(D)} v_p > \overline{v} > (\overline{v^2})^{1/2} \end{array}$$

$$(D)v_p > \overline{v} > (\overline{v^2})^{1/2}$$

20、已知一定量的某种理想气体,在温度为 T_1 与 T_2 时的分子最概然速率分别为 v_{n1} 和 v_{n2} , 分子速率分布函数的最大值分别为 $f(v_{n1})$ 和 $f(v_{n2})$. 若 $T_1 > T_2$,则

- (A) $v_{p1} > v_{p2}$, $f(v_{p1}) > f(v_{p2}).$
- (B) $v_{p1} > v_{p2}$, $f(v_{p1}) < f(v_{p2})$.
- (C) $v_{p1} < v_{p2}$, $f(v_{p1}) > f(v_{p2})$.
- (D) $v_{p1} < v_{p2}$, $f(v_{p1}) < f(v_{p2}).$

21、种不同的理想气体, 若它们的最概然速率相等, 则它们的

- (A) 平均速率相等, 方均根速率相等.
- (B) 平均速率相等, 方均根速率不相等.
- (C) 平均速率不相等, 方均根速率相等.
- (D) 平均速率不相等, 方均根速率不相等.

22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率 是原来氧分子平均速率的

- (A) 4倍.
- (B) 2倍.
- (C) $\sqrt{2}$ 倍.
- (D) $\frac{1}{\sqrt{2}}$ 倍.

- 23、麦克斯韦速率分布曲线如图所示,图中 A、B 两部分 面积相等,则该图表示
 - (A) v_0 为最概然速率.
 - (B) v_0 为平均速率.
 - (C) v_0 为方均根速率.
 - (D) 速率大于和小于 v_0 的分子数各占一半.

- 24、速率分布函数 f(v)的物理意义为:
 - (A) 具有速率 v的分子占总分子数的百分比.
 - (B) 速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比.
 - (C) 具有速率 v的分子数.
 - (D) 速率分布在 v 附近的单位速率间隔中的分子数.
- 25、若N表示分子总数,T表示气体温度,m表示气体分子的质量,那么当分子速率v确定 后,决定麦克斯韦速率分布函数 f(v)的数值的因素是
 - (A) m, T.

(C) N, m.

(D) N, T.

- (E) N, m, T.
- 26、气缸内盛有一定量的氢气(可视作理想气体), 当温度不变而压强增大一倍时, 氢气分子 的平均碰撞频率 \overline{Z} 和平均自由程 $\overline{\lambda}$ 的变化情况是:
 - (A) \overline{Z} 和 $\overline{\lambda}$ 都增大一倍.
 - (B) \overline{Z} 和 $\overline{\lambda}$ 都减为原来的一半.
 - (C) \overline{Z} 增大一倍而 $\overline{\lambda}$ 减为原来的一半.
 - (D) \overline{Z} 减为原来的一半而 $\overline{\lambda}$ 增大一倍.
- 27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率 \overline{Z} 和平均自由程 λ 的变化情况是:
 - (A) \overline{Z} 减小而 $\overline{\lambda}$ 不变. (B) \overline{Z} 减小而 $\overline{\lambda}$ 增大.
- - (C) \overline{Z} 增大而 $\overline{\lambda}$ 减小. (D) \overline{Z} 不变而 $\overline{\lambda}$ 增大.
- 28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率 \overline{Z} 和 平均自由程 $\overline{\lambda}$ 的变化情况是:
 - (A) \overline{Z} 和 $\overline{\lambda}$ 都增大.
- (B) \overline{Z} 和 $\overline{\lambda}$ 都减小.

- (C) \overline{Z} 增大而 $\overline{\lambda}$ 减小. (D) \overline{Z} 减小而 $\overline{\lambda}$ 增大.
- 29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率 \overline{Z} 和 平均自由程 $\overline{\lambda}$ 的变化情况是:
 - (A) \overline{Z} 减小, 但 $\overline{\lambda}$ 不变. (B) \overline{Z} 不变, 但 $\overline{\lambda}$ 减小.
- - (C) \overline{Z} 和 $\overline{\lambda}$ 都减小. (D) \overline{Z} 和 $\overline{\lambda}$ 都不变.
- 一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率 $ar{Z}$ 30、 和平均自由程 λ 的变化情况是:

 - (A) \overline{Z} 增大, $\overline{\lambda}$ 不变. (B) \overline{Z} 不变, $\overline{\lambda}$ 增大.
 - (C) \overline{Z} 和 $\overline{\lambda}$ 都增大. (D) \overline{Z} 和 $\overline{\lambda}$ 都不变.
- 31、在一个体积不变的容器中,储有一定量的理想气体,温度为 T_0 时,气体分子的平均速 率为 \overline{v}_0 ,分子平均碰撞次数为 \overline{Z}_0 ,平均自由程为 $\overline{\lambda}_0$. 当气体温度升高为 $4T_0$ 时,气体分子 的平均速率 \bar{v} ,平均碰撞频率 \bar{Z} 和平均自由程 $\bar{\lambda}$ 分别为:
 - (A) $\overline{v} = 4\overline{v_0}$, $\overline{Z} = 4\overline{Z_0}$, $\overline{\lambda} = 4\overline{\lambda_0}$.
 - (B) $\overline{v} = 2\overline{v_0}$, $\overline{Z} = 2\overline{Z_0}$, $\overline{\lambda} = \overline{\lambda_0}$.
 - (C) $\overline{v} = 2\overline{v_0}$, $\overline{Z} = 2\overline{Z_0}$, $\overline{\lambda} = 4\overline{\lambda_0}$.
 - (D) $\overline{v} = 4\overline{v_0}$, $\overline{Z} = 2\overline{Z_0}$, $\overline{\lambda} = \overline{\lambda_0}$.
- 32、在一封闭容器中盛有 1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅 决定于
 - (A) 压强 p.
- (B) 体积 V.
- (C) 温度 T.
- (D) 平均碰撞频率 \overline{Z} .
- 33、一定量的某种理想气体若体积保持不变,则其平均自由程 $\overline{\lambda}$ 和平均碰撞频率 \overline{Z} 与温度 的关系是:
 - (A) 温度升高, $\overline{\lambda}$ 减少而 \overline{Z} 增大.
 - (B) 温度升高, $\bar{\lambda}$ 增大而 \bar{Z} 减少.
 - (C) 温度升高, $\bar{\lambda}$ 和 \bar{Z} 均增大.
 - (D) 温度升高, $\bar{\lambda}$ 保持不变而 \bar{Z} 增大.
- 34、一容器贮有某种理想气体,其分子平均自由程为 $\overline{\lambda_0}$,若气体的热力学温度降到原来的 一半, 但体积不变, 分子作用球半径不变, 则此时平均自由程为

- (A) $\sqrt{2} \overline{\lambda_0}$. (B) $\overline{\lambda_0}$. (C) $\overline{\lambda_0} / \sqrt{2}$. (D) $\overline{\lambda_0} / 2$.

35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成 的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么:

- (A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.
- (B) 图(a)总净功为负. 图(b)总净功为负. 图(c)总净功为正.
- (C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.
- (D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.
- 36、 关于可逆过程和不可逆过程的判断:
 - (1) 可逆热力学过程一定是准静态过程.
 - (2) 准静态过程一定是可逆过程.
 - (3) 不可逆过程就是不能向相反方向进行的过程.
 - (4) 凡有摩擦的过程,一定是不可逆过程.
- 以上四种判断, 其中正确的是
 - (A) (1), (2), (3).
 - (B) (1), (2), (4).
 - (C) (2), (4).
 - (D) (1), (4).
- 37、如图所示, 当气缸中的活塞迅速向外移动从而使气体膨胀时, 气体所经历的过程
- (A) 是平衡过程,它能用 p-V 图上的一条曲线表示.
- (B) 不是平衡过程,但它能用p-V图上的一条曲线表示.
- (C) 不是平衡过程,它不能用p-V图上的一条曲线表示.
- (D) 是平衡过程,但它不能用 p-V 图上的一条曲线表示.

38、在下列各种说法

- (1) 平衡过程就是无摩擦力作用的过程.
- (2) 平衡过程一定是可逆过程.
- (3) 平衡过程是无限多个连续变化的平衡态的连接.
- (4) 平衡过程在 p-V 图上可用一连续曲线表示.
 - 中,哪些是正确的?
 - (A) (1), (2).
- (B) (3), (4).
- (C) (2), (3), (4).
- (D) (1), (2), (3), (4).

- 39、设有下列过程:
- (1) 用活塞缓慢地压缩绝热容器中的理想气体. (设活塞与器壁无摩擦)
- (2) 用缓慢地旋转的叶片使绝热容器中的水温上升.
- (3) 一滴墨水在水杯中缓慢弥散开.
- (4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.

其中是可逆过程的为

- (A) (1), (2), (4).
- (B) (1), (2), (3).
- (C) (1), (3), (4).
- (D) (1), (4).
- 40、在下列说法中,哪些是正确的?
- (1) 可逆过程一定是平衡过程.
- (2) 平衡过程一定是可逆的.
- (3) 不可逆过程一定是非平衡过程.
- (4) 非平衡过程一定是不可逆的.
 - (A) (1), (4).
 - (B) (2), (3).
 - (C) (1), (2), (3), (4).
 - (D) (1), (3).
- 41、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态
- (A) 一定都是平衡态.
- (B) 不一定都是平衡态.
- (C) 前者一定是平衡态,后者一定不是平衡态.
- (D) 后者一定是平衡态,前者一定不是平衡态.
- 42、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程
- (A) 一定都是平衡过程.
- (B) 不一定是平衡过程.
- (C) 前者是平衡过程,后者不是平衡过程.
- (D) 后者是平衡过程,前者不是平衡过程.

43、如图所示,一定量理想气体从体积 V_1 ,膨胀到体积 V_2 分别经历的过程是: $A \rightarrow B$ 等压过程, $A \rightarrow C$ 等温过程; $A \rightarrow D$ 绝热过程,其中吸热量最多的过程

- (B) 是 *A→C*.
- (C) 是 *A→D*.
- (D) 既是 $A \rightarrow B$ 也是 $A \rightarrow C$, 两过程吸热一样多

44、质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,

使其体积增加一倍. 那么气体温度的改变(绝对值)在

- (A) 绝热过程中最大, 等压过程中最小.
- (B) 绝热过程中最大, 等温过程中最小.
- (C) 等压过程中最大,绝热过程中最小.
- (D) 等压过程中最大, 等温过程中最小.
- 45、理想气体向真空作绝热膨胀.
 - (A) 膨胀后,温度不变,压强减小.
 - (B) 膨胀后, 温度降低, 压强减小.
 - (C) 膨胀后,温度升高,压强减小.
 - (D) 膨胀后,温度不变,压强不变.

46、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对 外作的功三者均为负值?

- (A) 等体降压过程. (B) 等温膨胀过程.
- (C) 绝热膨胀过程.
- (D) 等压压缩过程.

47、 理想气体经历如图所示的 abc 平衡过程,则该系统对外作功 W, 从外界吸收的热量 Q 和内能的增量 ΔE 的正负情况如下:

- (A) $\triangle E > 0$, Q > 0, W < 0.
- (B) $\triangle E > 0$, Q > 0, W > 0.
- (C) $\triangle E > 0$, Q < 0, W < 0.
- (D) $\triangle E < 0$, O < 0, W < 0.

- 48、一物质系统从外界吸收一定的热量,则
 - (A) 系统的内能一定增加.
 - (B) 系统的内能一定减少.
 - (C) 系统的内能一定保持不变.
 - (D) 系统的内能可能增加,也可能减少或保持不变.
- 49、一物质系统从外界吸收一定的热量,则
 - (A) 系统的温度一定升高.
 - (B) 系统的温度一定降低.
 - (C) 系统的温度一定保持不变.
 - (D) 系统的温度可能升高,也可能降低或保持不变.
- 50、热力学第一定律表明:
 - (A) 系统对外作的功不可能大于系统从外界吸收的热量.
 - (B) 系统内能的增量等于系统从外界吸收的热量.
 - (C) 不可能存在这样的循环过程,在此循环过程中,外界对系统作的功不等于系统传给 外界的热量.
 - (D) 热机的效率不可能等于 1.
- 51、一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定:

- (1) 该理想气体系统在此过程中吸了热.
- (2) 在此过程中外界对该理想气体系统作了正功.
- (3) 该理想气体系统的内能增加了.
- (4) 在此过程中理想气体系统既从外界吸了热,又对外作了正功.
- 以上正确的断言是:
- (A) (1), (3).
- (B) (2), (3).
- (C) (3).
- (D) (3), (4).
- (E) (4)

0

52、如图所示,一定量的理想气体,沿着图中直线从状态 a(压强 $p_1 = 4$ atm,体积 $V_1 = 2$ L)变到状态 b(压强 $p_2 = 2$ atm,体积 $V_2 = 4$ L).则在此过程中:

- (A) 气体对外作正功,向外界放出热量.
- (B) 气体对外作正功, 从外界吸热.
- (C) 气体对外作负功,向外界放出热量.
- (D) 气体对外作正功,内能减少.

53、用公式 $\Delta E = \nu C_{\nu} \Delta T$ (式中 C_{ν} 为定体摩尔热容量,视为常量, ν 为气体摩尔数)计算理想气体内能增量时,此式

- (A) 只适用于准静态的等体过程.
- (B) 只适用于一切等体过程.
- (C) 只适用于一切准静态过程.
- (D) 适用于一切始末态为平衡态的过程.

54、一定量的某种理想气体起始温度为 T,体积为 V,该气体在下面循环过程中经过三个平衡过程: (1) 绝热膨胀到体积为 2V,(2)等体变化使温度恢复为 T,(3) 等温压缩到原来体积 V,则此整个循环过程中

- (A) 气体向外界放热
- (B) 气体对外界作正功
- (C) 气体内能增加
- (D) 气体内能减少

55、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体. 若把隔板抽出,气体将进行自由膨胀,达到平衡后

- (A) 温度不变, 熵增加.
- (B) 温度升高,熵增加.
- (C) 温度降低, 熵增加.
- (D) 温度不变, 熵不变.

56、"理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功."对此说法,有如下几种评论,哪种是正确的?

- (A) 不违反热力学第一定律, 但违反热力学第二定律.
- (B) 不违反热力学第二定律,但违反热力学第一定律.
- (C) 不违反热力学第一定律, 也不违反热力学第二定律.
- (D) 违反热力学第一定律,也违反热力学第二定律.

57、热力学第二定律表明:

- (A) 不可能从单一热源吸收热量使之全部变为有用的功.
- (B) 在一个可逆过程中,工作物质净吸热等于对外作的功.

- (C) 摩擦生热的过程是不可逆的.
- (D) 热量不可能从温度低的物体传到温度高的物体.
- 58、一定量的理想气体向真空作绝热自由膨胀,体积由 V_1 增至 V_2 ,在此过程中气体的
 - (A) 内能不变, 熵增加. (B) 内能不变, 熵减少.
 - (C) 内能不变, 熵不变.
- (D) 内能增加, 熵增加.
- 59、某理想气体状态变化时,内能随体积的变化关系如图中 AB 直 线所示. $A \rightarrow B$ 表示的过程是
 - (A) 等压过程.
- (B) 等体过程.
- (C) 等温过程. (D) 绝热过程.

- 60、如图,一定量的理想气体,由平衡状态 A 变到平衡状态 B $(p_A = p_B)$,则无论经过的是什么过程,系统必然
 - (A) 对外作正功. (B) 内能增加.
 - (C) 从外界吸热. (D) 向外界放热.

二、填空题(每题4分)

61、理想气体微观模型(分子模型)的主要内容是:

(1)

62、在容积为 10⁻² m³ 的容器中,装有质量 100 g 的气体,若气体分子的方均根

速率为 200 m·s⁻¹,则气体的压强为 .

(1) 对等压过程来说,气体的密度随温度 的增加而_______,并绘出曲线.

(2) 对等温过程来说,气体的密度随压强 的增加而______,并绘出曲线.

64、下面给出理想气体的几种状态变化的关系,指出它们各表示什么过程.

(1) p dV= (M / M_{mol})R dT表示_____ 过程.

(2) $V dp = (M/M_{mol})R dT$ 表示 过程.

(3)	p dV + V dp = 0 表示
	对一定质量的理想气体进行等温压缩. 若初始时每立方米体积内气体分子数为 1.96×,则当压强升高到初始值的两倍时,每立方米体积内气体分子数应为
66、	在推导理想气体压强公式中,体现统计意义的两条假设是
(1)_	;
(2)_	
67、	解释下列分子动理论与热力学名词:
(1)	状态参量:
(2)	微观量:
(2)	灰/ 儿 里:
(3)	; 宏观量:
温度	气体分子间的平均距离 \bar{l} 与压强 p 、温度 T 的关系为,在压强为 1 atm、为 0 ℃的情况下,气体分子间的平均距离 \bar{l} =
69、	某理想气体在温度为 27℃和压强为 1.0×10 ⁻² atm 情况下,密度为 11.3 g/m³,
则这	气体的摩尔质量 $M_{\text{mol}} =$ (普适气体常量 $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$)
理想	三个容器内分别贮有 $1 \mod $ 氦(He)、 $1 \mod $ 氢(H_2)和 $1 \mod $ 氨(NH_3)(均视为刚性分子的气体)。若它们的温度都升高 $1 K$,则三种气体的内能的增加值分别为:(普适气体常量 $31 J \cdot \text{mol}^{-1} \cdot K^{-1}$)
氦:	$\triangle E = \underline{\hspace{1cm}};$
氢:	$\triangle E = $;
氨:	$\triangle E = \underline{\hspace{1cm}}.$
71、	1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为 27℃,
 	氧气的内能为 J: 分子的平均平动动能为 J:

分子的平均总动能为	_J. (摩尔气体常量 R= 8.31 J • mol ⁻¹ • K ⁻¹ 玻
尔兹曼常量 $k=1.38\times10^{-23}\mathrm{J} \cdot \mathrm{K}^{-1})$	
	子分子的理想气体),温度为 T,则氢分子的平均 l动能为,该瓶氢气的内能为
	入一氖管中, 氖管内充有 0.1 mol 的氖气, 若宇则氖气温度升高了K. (1 eV=•K))
	$0.5 \mathrm{m}$ 高处.假定铁球与地面碰撞时损失的宏观 度将升高(已知铁的比热 $c = 501.6$
75、容器中储有 1 mol 的氮气,压强为 1.33 (1) 1 m³ 中氮气的分子数为; (2) 容器中的氮气的密度为(3) 1 m³ 中氮分子的总平动动能为(玻尔兹曼常量 $k=1.38\times10^{-23}$ J• K $^{-1}$, N $_2$ 气体常量 $R=8.31$ J• mol $^{-1}$ • K $^{-1}$)	;
76、2g氢气与2g氦气分别装在两个容积相刚性双原子分子) (1) 氢气分子与氦气分子的平均平动动能之	旧同的封闭容器内,温度也相同. (氢气分子视为 \overline{w}_{tr} / \overline{w}_{tr} =
(2) 氢气与氦气压强之比 $p_{\rm H_2} = p_{\rm He} =$	-
(3) 氢气与氦气内能之比 $E_{\rm H_2}/E_{\rm He} =$	
77、理想气体分子的平均平动动能 与热力示的气体温度的统计意义是	」学温度 <i>T</i> 的关系式是,此式所揭
78、若气体分子的平均平动动能等于 1.06×1 尔兹曼常量 $k=1.38 \times 10^{-23} \text{J} \cdot \text{K}^{-1}$)	0^{-19} J,则该气体的温度 T =K. (玻
79、对于单原子分子理想气体,下面各式分	别代表什么物理意义?
$(1) \ \frac{3}{2}RT:$,
(2) $\frac{3}{2}R$:	,
(3) $\frac{5}{2}R$:	(式中 R 为普适气体常量,T 为气体的温度)

80、若某容器内温度为 300 K 的二氧化碳气体(视为刚性分子理想气体)的内能为 3.74×103

J,则该容器内气体分子总数为	(玻尔兹曼常量 $k = 1.38 \times 10^{-23}$
$J \cdot K^{-1}$,阿伏伽德罗常量 N_A =6.022×10 ²³ mol ⁻¹)	
81 、一定量 H_2 气(视为刚性分子的理想气体),若 J ,则该 H_2 气的质量为 (普适	
82、1 mol 的单原子分子理想气体,在 1 atm 的恒内能改变了	
83、1 大气压、27 ℃时,一立方米体积中理想气的平均平动动能=(玻尔兹曼?	体的分子数 $n=$,分子热运动常量 $k=1.38\times 10^{-23} \mathrm{J\cdot K^{-1}})$
84、根据能量按自由度均分原理,设气体分子为R时,	则性分子,分子自由度数为 i,则当温度为 T
(1) 一个分子的平均动能为	
(2) 一摩尔氧气分子的转动动能总和为	·
85、1 mol 氮气,由状态 $A(p_1,V)$ 变到状态 $B(p_2,V)$,气体内能的增量为
86、有两瓶气体,一瓶是氦气,另一瓶是氢气(坎 们的压强、体积、温度均相同,则氢气的内能是	
87、在温度为 127 ℃时,1 mol 氧气(其分子可视 其中分子转动的总动能为J.(普适	
88、对于处在平衡态下温度为 T 的理想气体, $\frac{3}{2}$	- kT 的物理意义是
(k 为玻尔兹曼常量)	•
89 、 对 于 处 在 平 衡 态 下 温 度 为 <i>T</i> 的	り理 想 气 体 , $\frac{1}{2}kT$ 的 物 理 意 义 是
90、分子热运动自由度为 i 的一定量刚性分子理想能 $E=$	想气体,当其体积为 V 、压强为 p 时,其内
91、若 i 是气体刚性分子的运动自由度数,则 $\frac{1}{2}$ ik	<i>T</i> 所表示的是
92 、分子质量为 <i>m</i> 、温度为 <i>T</i> 的气体, j	其分子数密度按高度 h 分布的规律是 (已知 h=0 时,分子数密度为 n ₀)

	F用的条件下,处于平衡态的气体分子按速度分布的规律,可序分布律来描述.如果气体处于外力场中,气体分子在空间的分布规律	
可用		,
	律可知,在温度为 T 的平衡态中,分布在某一状态区间的分子数 $d N = 1$ 有关,其关系为 $d N = 1$	与
(原子量 20) 和氩 分布曲线。其中: 曲线 (a) 是	f(v) (原子量 4)、氖 (原子量 4)、氖 (原子量 40) 三种气体分子的速率 (a) (b) (c) (c) (c) (c) (c) (d) (d) (d) (d) (e) (e) (e) (f(v)) (f(υ
两条曲线分别表示 布,则曲线表	子速率分布曲线(1)和(2),如图所示.若 司一种气体处于不同的温度下的速率分 示气体的温度较高.若两条曲线分别表 气和氧气的速率分布,则曲线表示	
	尔质量分别为 $M_{\text{mol}1}$ 和 $M_{\text{mol}2}$ 的两种不同的理想气体 1 和 2 ,当此混合 1 和 2 两种气体分子的方均根速率之比是	
98、在相同温度下, 值为.	氢分子与氧分子的平均平动动能的比值为 方均根速率的比	比
速率在 $\overline{\upsilon}$ 到 $\overline{\upsilon}$ +	麦克斯韦速率分布律, $\overline{\upsilon}$ 代表平均速率, $\Delta \upsilon$ 为一固定的速率区间, $\delta \upsilon$ 范围内的分子数占分子总数的百分率随气体的温度升高。 π 、降低或保持不变).	
	医下的分子平均碰撞频率为 5.42×10 ⁸ s ⁻¹ ,分子平均自由程为 6×10 ⁻⁶ c ₂ 2为0.1 atm ,则分子的平均碰撞频率变为; 平均自由 :	
101、(1) 分子的有数	女直径的数量级是	
(2) 在常温下,	气体分子的平均速率的数量级是	
(3) 在标准状态	下气体分子的碰撞频率的数量级是	
原来的量值之比是	气体,经等压过程从体积 $oldsymbol{V}_0$ 膨胀到 $2oldsymbol{V}_0$,则描述分子运动的下列各量 $rac{1}{2}$	与
(1) 平均自由程	= = ,	

(2) 平均速率 $\frac{v}{\overline{v_0}} = $
(3) 平均动能 $\frac{\mathcal{E}_K}{\mathcal{E}_{K0}} =$.
${\cal E}_{K0}$
103、一定质量的理想气体,先经过等体过程使其热力学温度升高一倍,再经过等
温过程使其体积膨胀为原来的两倍,则分子的平均自由程变为原来的倍。
104、在 <i>p-V</i> 图上:
(1) 系统的某一平衡态用来表示;
(2) 系统的某一平衡过程用来表示;
(3) 系统的某一平衡循环过程用
105、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量是
·
106、 <i>p</i> — <i>V</i> 图上的一点代表
曲线表示
107、如图所示,已知图中画不同斜线的两部分的面积分别为
S_1 和 S_2 ,那么:
a 1 a
(1) 如来气体的膨胀过程为 $a=1=0$,则气体对外做为 $w=1=0$
;
(2) 如果气体进行 $a-2-b-1-a$ 的循环过程,则它对外做
功 $W=$
V
108 、设在某一过程中,系统由状态 A 变为状态 B ,如果
为不可逆过程.
109、处于平衡态 A 的一定量的理想气体,若经准静态等体过程变到平衡态 B ,将从外界吸
收热量 $416\mathrm{J}$,若经准静态等压过程变到与平衡态 B 有相同温度的平衡态 C ,将从外界吸收
热量 $582 J$,所以,从平衡态 A 变到平衡态 C 的准静态等压过程中气体对外界所作的功为
·
110、不规则地搅拌盛于绝热容器中的液体,液体温度在升高,若将液体看作系统,则:
(1) 外界传给系统的热量 零;
(2)

(3) 系统的内能的增量零; (填大于、等于、小于)
111 、要使一热力学系统的内能增加,可以通过
两种方式,或者两种方式兼用来完成. 热力学系统的状态发生变化
时,其内能的改变量只决定于,而与无关.
112、某理想气体等温压缩到给定体积时外界对气体作功 $ W_1 $,又经绝热膨胀返回原来体积时气体对外作功 $ W_2 $,则整个过程中气体 (1) 从外界吸收的热量 $Q=$
(2) 内能增加了Δ <i>E</i> =
113、如图所示,一定量的理想气体经历 $a \to b \to c$ 过程,在此过程中气体从外界吸收热量 Q ,系统内能变化 ΔE ,请在以下空格内填上 0 或< 0 或= 0 :
114 、同一种理想气体的定压摩尔热容 C_p 大于
定 体 摩 尔 热 容 C_V , 其 原 因 是
115、 一定量的理想气体,从状态 <i>A</i> 出发,分别经历等压、等温、绝热三种过程由体积 <i>V</i> ₁ 膨胀到体积 <i>V</i> ₂ ,试示意地画出这三种过程的 <i>p</i> - <i>V</i> 图曲线. 在上述三种过程中: (1) 气体的内能增加的是过程;

116、一定量的理想气体,从p-V图上状态A出发,分别经历 等压、等温、绝热三种过程由体积 V_1 膨胀到体积 V_2 ,试画出这 三种过程的 p-V 图曲线. 在上述三种过程中:

过程. (2) 气体吸热最多的是

117、在大气中有一绝热气缸,		
供热如图所示)使活塞(无摩擦地化?(选用"变大"、"变小"、"5	不变"填空)	100000
(1) 气体压强;(2) 气体分子平均动能;	(2)	[···]······
118、一定量理想气体,从同一状		
下三种过程(1)等压过程; (2)等	• • • • • • • • • • • • • • • • • • • •	•
功最多;过程气体	本内能增加最多;过和	星气体吸收的热量最多.
119、将热量 Q 传给一定量的理	想气体,	
(1) 若气体的体积不变,则热量	量用于	_ ·
(2) 若气体的温度不变,则热量	量用于	_•
(3) 若气体的压强不变,则热量		_•
120、 已知一定量的理想气体:	经历 p-T 图上所示的循环过程。	,
图中各过程的吸热、放热情况为		<i>р</i> λ
(1) 过程 1-2 中,气体	·	1 1 3
(2) 过程 2-3 中,气体	·	
N. American Control of the Control o		2
(3) 过程 3-1 中,气体	·	$O \longrightarrow T$
121、3 mol 的理想气体开始时处过程, 压强变为 <i>p</i> ₂ =3 atn	* -	中吸收的热量为 Q =
122、压强、体积和温度都相同	,	
]的内能之比为 <i>E</i> ₁ : <i>E</i> ₂ =	
程中吸收了相同的热量,则它们表示氢气,2表示氦气)	JMグバF切之比 <i>为 W</i> ₁ ・W ₂ =	(合里下用你工
123、刚性双原子分子的理想 ^点 ·	气体在等压下膨胀所作的功为 ,	W,则传递给气体的热量为
124、已知 1 mol 的某种理想气作能增加了 20.78 J , 则气作		
. (5	普适气体常量 $R = 8.31$ J·mol ⁻	$^{-1}\cdot \mathrm{K}^{-1}$)
W >= NI ==		III
125、 常温常压下,一定量的压过程中吸热为 Q ,对外作功为	· ·	性分子,自由度为 <i>i</i>),在等
<i>W</i> / <i>Q</i> =	$\Delta E/Q = $	

130、一气缸内贮有 10 mol 的单原子分子理想气体,在压缩过程中外界作功 209J,气体升温 1 K ,此过程中气体内能增量为_________,外界传给气体的热量为________,外界传给气体的热量为________,但适气体常量 R=8.31 J/mol· K)

131、如图所示理想气体从状态 A 出发经 ABCDA 循环过程,回到初态 A 点,则循环过程中气体净吸的热量为 Q = _____.

132、 一个作可逆卡诺循环的热机,其效率为 η ,它逆向运转时便成为一台致冷机,该致冷机的致冷系数 $w = \frac{T_2}{T_1 - T_2}$,则 η 与w的关系为_____.

133、气体经历如图所示的一个循环过程,在这个循环中,外界传给气体的净热量是

134、如图温度为 <i>T</i> ₀ 2 <i>T</i> ₀ 3 <i>T</i> ₀ 三条等温线与两条绝热线围成三个卡诺 循环: (1) <i>abcda</i> (2) <i>dcefd</i> (3) <i>abefa</i> , 其效率分别为
η_1 , η_2 , η_3 , η_3 , η_4 , η_5 , η_5 , η_5 , η_7 , η_8 ,
135、一热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热. 若热机在最大效率下工作,且每一循环吸热 2000 J ,则此热机每一循环作功J.
136、有一卡诺热机,用 290 g 空气为工作物质,工作在 27℃的高温热源与 -73 ℃的低温热源之间,此热机的效率 η = 若在等温膨胀的过程中气缸体积增大到 2.718 倍,则此热机每一循环所作的功为 (空气的摩尔质量为 29 × 10^{-3}
kg/mol,普适气体常量 $R=8.31$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$)
137、可逆卡诺热机可以逆向运转. 逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为 T_1 =450 K,低温热源的温度为 T_2 =300 K,卡诺热机逆向循环时从低温热源吸热 Q_2 =400 J,则该卡诺热机逆向循环一次外界必须作功 W =
138、一卡诺热机(可逆的),低温热源的温度为 27℃,热机效率为 40%,其高温热源温度为 K. 今欲将该热机效率提高到 50%,若低温热源保持不变,则高温热源的温度应增加 K.
139、在一个孤立系统内,一切实际过程都向着
140、从统计的意义来解释,不可逆过程实质上是一个
三、计算题: (每题 10 分) 141、 容积 $V=1$ m³ 的容器内混有 $N_1=1.0\times10^{25}$ 个氢气分子和 $N_2=4.0\times10^{25}$ 个氧气分子,混合气体的温度为 400 K,求: (1) 气体分子的平动动能总和. (2) 混合气体的压强. (普适气体常量 $R=8.31$ J·mol ⁻¹ ·K ⁻¹)

- 142、许多星球的温度达到 10⁸ K. 在这温度下原子已经不存在了,而氢核(质子)是存在的. 若把氢核视为理想气体,求:
- (1) 氢核的方均根速率是多少?
- (2) 氢核的平均平动动能是多少电子伏特? (普适气体常量 $R=8.31\,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$,1 eV= $1.6\times 10^{-19}\,\mathrm{J}$,玻尔兹曼常量 $k=1.38\times 10^{-23}\,\mathrm{J} \cdot \mathrm{K}^{-1}$)

143、 如图所示,一个四周用绝热材料制成的气缸,中间有一用导热材料制成的固定隔板 C 把气缸分成 A、B 两部分. D 是一绝热的活塞. A 中盛有 1 mol 氦气,B 中盛有 1 mol 氦气(均视为刚性分子的理想气体). 今外界缓慢地移动活塞 D,压缩 A 部分的气体,对气体作功为 W,试求在此过程中 B 部分气体内能的变化.

144、 如图所示,C是固定的绝热隔板,D是可动活塞,C、D将容器分成 A、B 两部分. 开始时 A、B 两室中各装入同种类的理想气体,它们的温度 T、体积 V、压强 p 均相同,并与大气压强相平衡. 现对 A、B 两部分气体缓慢地加热 当对 A 和 B 给予相等的热量 Q 以后,A 室中气体的温度升高度数与 B 室中气体的温度升高度数之比为 7:5.

- (1) 求该气体的定体摩尔热容 C_V 和定压摩尔热容 C_n .
- (2) B 室中气体吸收的热量有百分之几用于对外作功?

145、将 1 mol 理想气体等压加热,使其温度升高 72 K,传给它的热量等于 1.60×10^3 J,求

- (1) 气体所作的功W;
- (2) 气体内能的增量 ΔE ;
- (3) 比热容比 γ . (普适气体常量R = 8.31 $J \cdot mol^{-1} \cdot K^{-1}$)

146、1 mol 双原子分子理想气体从状态 $A(p_1,V_1)$ 沿 p-V 图 所示直线变化到状态 $B(p_2,V_2)$,试求:

- (2) 气体对外界所作的功.
- (3) 气体吸收的热量.
- (4) 此过程的摩尔热容.

(摩尔热容 $C = \Delta Q / \Delta T$, 其中 ΔQ 表示 1 mol 物质在过程中升高温度 ΔT 时所吸收的热量.)

147.一定量的单原子分子理想气体,从A态出发经等压过程膨胀到B态,又经绝热过程膨胀到C态,如图所示. 试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.

148、一定量的某单原子分子理想气体装在封闭的汽缸里. 此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气). 已知气体的初压强 p_1 =1atm,体积 V_1 =1L,现将该气体在等压下

加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的 2 倍,最后作绝热膨胀, 直到温度下降到初温为止,

- (1) 在p-V图上将整个过程表示出来.
- (2) 试求在整个过程中气体内能的改变.
- (3) 试求在整个过程中气体所吸收的热量. (1 atm=1.013×10⁵ Pa)
 - (4) 试求在整个过程中气体所作的功.

149、汽缸内有 2 mol 氦气, 初始温度为 27℃, 体积为 20 L(升), 先将氦气等压膨胀, 直至体积加倍, 然后绝热膨涨, 直至回复初温为止. 把氦气视为理想气体. 试求:

- (1) 在 p-V图上大致画出气体的状态变化过程.
- (2) 在这过程中氦气吸热多少?
- (3) 氦气的内能变化多少?
- (4) 氦气所作的总功是多少?

(普适气体常量 *R*=8.31 J·mol⁻¹·K⁻¹)

150、0.02 kg 的氦气(视为理想气体),温度由 17℃升为 27℃. 若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功. (普适气体常量 R=8.31 J·mol $^{-1}$ K $^{-1}$)

151、一定量的单原子分子理想气体,从初态 A 出发,沿图示直线过程变到另一状态 B,又经等容、等压两过程回到状态 A.

- (1) 求 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$ 各过程中系统对外所作的功 W,内能的增量 ΔE 以及所吸收的热量 Q.
- (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).

152、一卡诺循环的热机,高温热源温度是 400 K. 每一循环从此热源吸进 100 J 热量并向一低温热源放出 80 J 热量. 求:

- (1) 低温热源温度;
- (2) 这循环的热机效率.

153.一卡诺热机(可逆的), 当高温热源的温度为 127℃、低温热源温度为 27℃时, 其每次循环对外作净功 8000 J. 今维持低温热源的温度不变, 提高高温热源温度, 使其每次循环对外作净功 10000 J. 若两个卡诺循环都工作在相同的两条绝热线之间, 试求:

- (1) 第二个循环的热机效率;
- (2) 第二个循环的高温热源的温度.

154、比热容比 χ =1.40 的理想气体进行如图所示的循环. 已知状态 A 的温度为 300 K. 求:

- (1) 状态 B、C 的温度;
- (2) 每一过程中气体所吸收的净热量.

(普适气体常量 $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$)

155、1 mol 氦气作如图所示的可逆循环过程, 其中 ab 和 cd 是绝热过程, bc 和 da 为等体过程,已知 $V_1 = 16.4$ L, $V_2 = 32.8$ L, $p_a = 1$ atm, $p_b = 3.18$ atm, $p_c = 4$ atm, $p_d = 1.26$ atm,试求:(1)在各态氦气的温度.

- (2)在态氦气的内能.
- (3)在一循环过程中氦气所作的净功. (1 atm = 1.013×10^5 Pa,普适气体常量 R = 8.31 J· mol⁻¹· K⁻¹)

156、如图所示, *abcda* 为 1 mol 单原子分子理想 气体的循环过程, 求:

- (1) 气体循环一次,在吸热过程中从外界共吸收的热量;
- (2) 气体循环一次对外做的净功;
- (3) 证明 在 abcd 四态, 气体的温度有 $T_aT_c=T_bT_d$.

157、一定量的某种理想气体进行如图所示的循环过程.已 知气体在状态 A 的温度为 $T_A = 300$ K, 求

- (1) 气体在状态 B、C 的温度;
- (2) 各过程中气体对外所作的功;

经过整个循环过程,气体从外界吸收的总热量(各过程 吸热的代数和).

158、1 mol 理想气体在 T_1 = 400 K 的高温热源与 T_2 = 300 K 的低温热源间作卡诺循环(可逆的),在 400 K 的等温线上起始体积为 V_1 = 0.001 m³,终止体积为 V_2 = 0.005 m³,试求此气体在每一循环中

- (1) 从高温热源吸收的热量 Q_1
- (2) 气体所作的净功 W
- (3) 气体传给低温热源的热量 Q_2

159、一定量的刚性双原子分子的理想气体,处于压强 p_1 =10 atm 、温度 T_1 =500 K 的平衡态. 后经历一绝热过程达到压强 p_2 =5 atm、温度为 T_2 的平衡态. 求 T_2 .

160、一定量的氦气(理想气体),原来的压强为 p_1 =1 atm,温度为 T_1 = 300 K,若经过一绝热过程,使其压强增加到 p_2 = 32 atm. 求:

- (1) 末态时气体的温度 T_2 .
- (2) 末态时气体分子数密度 n. (玻尔兹曼常量 $k=1.38\times10^{-23}\,\mathrm{J\cdot K^{-1}}$, 1atm= $1.013\times10^5\,\mathrm{Pa}$)

普通物理试题库——热学部分参考答案

一、选择题

 01-05
 DBCCB
 06-10
 CDDCC
 11-15
 CABAA
 16-20
 ACDCB

 21-25
 ABDBA
 26-30
 CBDAA
 31-35
 BBDBC
 36-40
 DCBDA

41-45 BBADA 46-50 DBDDC 51-55 CBDAA 56-60 CCAAB

二、填空题

- 61. 气体分子的大小与气体分子之间的距离比较,可以忽略不计. 除了分子碰撞的一瞬间外,分子之间的相互作用力可以忽略. 分子之间以及分子与器壁之间的碰撞是完全弹性碰撞。
- 62. $1.33 \times 10^5 Pa$:
- 63. 成反比地减小成正比地增加;

- 64. 等压, 等体, 等温;
- 65. 3.92×10^{24} :
- 66. (1) 沿空间各方向运动的分子数目相等, (2) $\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$;
- 67. (1) 描述物体状态的物理量, 称为状态参量(如热运动状态的参量为p、V、T);
 - (2) 表征个别分子状况的物理量(如分子的大小、质量、速度等) 称为微观量;
 - (3) 表征大量分子集体特性的物理量(如p、V、T、 C_v 等)称为宏观量。
- 68. $\bar{l} = (kT/p)^{1/3}$, 3.34×10^{-9} ;
- 69. 27.8g/mol;
- 70. 12.5J, 20.8J, 24.9J;
- 71. 6.23×10^3 , 6.21×10^{-21} , 1.035×10^{-21} ;
- 72. $\frac{3}{2}kT$, $\frac{5}{2}kT$, $\frac{M}{M_{max}}\frac{5}{2}RT$;

- 73. 1.28×10^{-7} ;
- 74. 0.186K;
- 75. 3.44×10^{20} , $1.6 \times 10^{-5} kg/m^3$, 2J;
- 76. 1, 2, 10/3;
- 77. $\overline{w} = \frac{3}{2}kT$, 气体的温度是分子平均平动动能的量度;
- 78. 5.12×10^3 :
- 79. 1摩尔理想气体的内能, 气体的定体摩尔热容, 气体的定压摩尔热容;
- 80. $3.01 \times 10^{23} \, \uparrow$:
- 81. $4.0 \times 10^{-3} kg$;
- 82. $1.25 \times 10^3 J$;
- 83. $2.45 \times 10^{25} \, \uparrow$, $6.21 \times 10^{-21} J$;
- 84. $\frac{1}{2}ikT$, RT;
- 85. $\frac{5}{2}V(p_2-p_1)$;
- 86. $\frac{5}{3}$
- 87. 8.31×10^3 , 3.32×10^3 ;
- 88. 每个气体分子热运动的平均平动动能;
- 89. 气体分子热运动的每个自由度的平均能量;
- 90. $\frac{1}{2}ipV$;
- 91. 在温度为T的平衡态下,每个气体分子的热运动平均能量(或平均动能)(注:此题答案中不指明热运动或无规运动,不得分.);
- 92. $n = n_0 \exp\left\{-\frac{mgh}{kT}\right\}$, $(\exp\{a\} \boxtimes e^a)$;
- 93. 麦克斯韦,波耳兹曼;
- 94. $\exp\left\{-\frac{\varepsilon}{kT}\right\}$;
- 95. 氩, 氦;

- 96. (2), (1);
- 97. $\sqrt{M_{\text{mol}2}/M_{\text{mol}1}}$;
- 98. 1, 4;
- 99. 降低;
- 100. $5.42 \times 10^7 \, s^{-1}$, $6 \times 10^{-5} \, cm$;
- 101. $10 \times 10^{-10} \, m$, $10^2 \sim 10^3 \, m \cdot s^{-1}$, $10^8 \sim 10^9 \, s^{-1} \, 10^8 \sim 10^9 \, s^{-1}$;
- 102. 2, $\sqrt{2}$, 2;
- 103. 2;
- 104. 一个点,一条曲线, 一条封闭曲线;
- 105. 体积、温度和压强,分子的运动速度(或分子运动速度,或分子的动量,或分子的动能);
- 106. 系统的一个平衡态,系统经历的一个准静态过程;
- 107. $S_1 + S_2$; 128 $-S_1$;
- 108. 能使系统进行逆向变化,从状态 B 回复到初态 A,而且系统回复到状态 A 时,周围一切也都回复原状;系统不能回复到状态 A,或当系统回复到状态 A 时,周围并不能回复原状;
- 109. 166J;
- 110. 等于 , 大于 , 大于 ;
- 111. 外界对系统做功,向系统传递热量,始末两个状态,所经历的过程;
- 112. $-|W_1|$, $-|W_2|$;
- 113. > 0, > 0:
- 114. 在等压升温过程中,气体要膨胀而对外做功,所以要比气体等体升温过程多吸收一部分热量;
- 115. (1) 等压, (2) 等温;

116. (1) 等压, (2) 等压;

- (1) 不变, (2) 变大, (3) 变大; 117.
- 等压, 等压, 等压; 118.
- 119. (1) 气体内能的增加, (2) 气体对外做功, (3) 气体内能增加和对外做功.
- 120. (1) 吸热, (2) 放热, (3) 放热
- 121. 8.64×10^3 ;
- 122. 1:2, 5:3, 5:7;
- 123. $\frac{7}{2}W$;
- 124. 8.31*J* , 29.09*J* ;
- 125. $\frac{2}{i+2}$, $\frac{i}{i+2}$;
- 126. $\frac{1}{2}(p_1+p_2)(V_2-V_1)$, $\frac{3}{2}(p_2V_2-p_1V_1)+\frac{1}{2}(p_1+p_2)(V_2-V_1)$;
- 127. $\frac{3}{2}p_1V_1$, 0;
- 128. W/R, $\frac{7}{2}W$;
- 129. $7.48 \times 10^3 J$, $7.48 \times 10^3 J$;
- 130. 124.7J, -84.3J;
- 131. 1.62×10⁴ J(或 160 atm·L);

132.
$$\eta = \frac{1}{w+1} \ (\vec{x} w = \frac{1}{\eta} - 1);$$

- 133. 90J;
- 134. 33.3%, 50%, 66.7%;
- 135. 400:
- 136. 33.3%, $8.31 \times 10^3 J$:
- 137. 200J;
- 138. 500, 100;
- 139. 状态几率增大,不可逆的;
- 140. 从几率较小的状态到几率较大的状态,状态的几率增大 (或熵值增加)。

三、计算题

141. 解:

(1)
$$\overline{w} = \frac{3}{2}kT = 8.28 \times 10^{-21} \text{ J}$$

$$E_K = N\overline{w} = (N_1 + N_2)\frac{3}{2}kT = 4.14 \times 10^5 \text{ J}$$

(2)
$$p = n kT = 2.76 \times 10^5 \text{ Pa}$$

142. 解:

(1)
$$\oplus$$

$$\left(\overline{v^2}\right)^{1/2} = \sqrt{3RT/M_{\text{mol}}}$$

而氢核 $M_{\text{mol}} = 1 \times 10^{-3} \text{ kg} \cdot \text{mol}^{-1}$

$$(v^{-2})^{1/2} = 1.58 \times 10^6 \,\mathrm{m} \cdot \mathrm{s}^{-1}$$

(2)
$$\overline{w} = \frac{3}{2}kT = 1.29 \times 10^4 \text{ eV}$$

143. 解:

取 A、B 两部分的气体为系统,依题意知,在外界压缩 A 部分的气体,作功为 W 的过程中,系统与外界交换的热量 Q 为零,根据热力学第一定律,有

$$Q = \triangle E + (-W) = 0 \tag{1}$$

设 $A \times B$ 部分气体的内能变化分别为 $\triangle E_A$ 和 $\triangle E_B$,则系统内能的变化为

$$\triangle E = \triangle E_A + \triangle E_B$$
 2

因为C是导热的,故两部分气体的温度始终相同,设该过程中的温度变化为 ΔT ,则A、B 两部分气体内能的变化分别为

$$\Delta E_A = \frac{3}{2} R \Delta T \tag{3}$$

$$\Delta E_B = \frac{5}{2} R \Delta T \tag{4}$$

将②、③、④代入①式解得 $\triangle T = W/(4R)$

将上式代入④式得
$$\Delta E_B = \frac{5}{2}R\frac{W}{4R} = \frac{5}{8}W$$

144. 解:

(1) 对 $A \times B$ 两部分气体缓慢地加热,皆可看作准静态过程,两室内是同种气体,而且 开始时两部分气体的p、V、T均相等,所以两室内气体的摩尔数 M/M_{mol} 也相同。

A 室气体经历的是等体过程,B 室气体经历的是等压过程,所以 A、B 室

气体吸收的热量分别为

$$Q_A = (M/M_{mol})C_V(T_A - T)$$

$$Q_B = (M/M_{mol})C_P(T_B - T)$$

已知 $Q_A = Q_B$,由上两式可得

$$\gamma = C_p/C_V = \Delta T_A/\Delta T_B = 7/5$$

因为
$$C_p = C_V + R$$
,代入上式得 $C_V = \frac{5}{2}R$, $C_p = \frac{7}{2}R$

$$C_V = \frac{5}{2}R$$
 , $C_p = \frac{7}{2}R$

(2) B 室气体作功为

$$W=p \cdot \triangle V = (M/M_{mol}) R \triangle T_R$$

B室中气体吸收的热量用于作功的百分比为

$$\frac{W}{Q_B} = \frac{(M/M_{mol})R\Delta T_B}{(M/M_{mol})C_p\Delta T_B} = \frac{R}{C_p} = \frac{R}{\frac{7}{2}R} = 28.6\%$$

145. 解:

$$(1) W = p\Delta V = R\Delta T = 598 \text{ J };$$

(2)
$$\Delta E = Q - W = 1.00 \times 10^3 \text{ J};$$

(3)
$$C_p = \frac{Q}{\Delta T} = 22.2 \quad \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$C_V = C_p - R = 13.9 \quad \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$\gamma = \frac{C_p}{C} = 1.6$$

146. 解:

(1)
$$\Delta E = C_V (T_2 - T_1) = \frac{5}{2} (p_2 V_2 - p_1 V_1);$$

(2)
$$W = \frac{1}{2}(p_1 + p_2)(V_2 - V_1),$$

W 为梯形面积,根据相似三角形有 $p_1V_2=p_2V_1$,则

$$W = \frac{1}{2}(p_2V_2 - p_1V_1)$$

(3)
$$Q = \Delta E + W = 3(p_2 V_2 - p_1 V_1)$$

(4) 以上计算对于 $A \rightarrow B$ 过程中任一微小状态变化均成立, 故过程中

$$\triangle Q = 3 \triangle (pV)$$
.

由状态方程得

 $\Delta (pV) = R \Delta T$

故

 $\Delta Q = 3R\Delta T$

摩尔热容

 $C = \Delta Q / \Delta T = 3R$.

147. 解:

由图可看出

$$p_A V_A = p_C V_C$$

从状态方程

$$pV = \nu RT$$
 可知 $T_A = T_C$,

因此全过程 $A \rightarrow B \rightarrow C$ 的 $\Delta E = 0$.

B→C 过程是绝热过程,有 Q_{BC} =0.

 $A \rightarrow B$ 过程是等压过程,有

$$Q_{AB} = v C_p (T_B - T_A) = \frac{5}{2} (p_B V_B - p_A V_A) = 14.9 \times 10^5 \text{ J}.$$

故全过程 $A \rightarrow B \rightarrow C$ 的 $Q = Q_{BC} + Q_{AB} = 14.9 \times 10^5 \text{ J.}$

根据热一律 $Q=W+\Delta E$, 得全过程 $A\rightarrow B\rightarrow C$ 的

$$W = Q - \Delta E = 14.9 \times 10^5 \,\text{J}$$
.

148. 解:

(1)
$$p-V$$
图如右图

(2)
$$T_4=T_1 \quad \Delta E=0$$

$$(3) Q = \frac{M}{M_{mol}} C_p (T_2 - T_1) + \frac{M}{M_{mol}} C_V (T_3 - T_2)$$

$$= \frac{5}{2} p_1 (2V_1 - V_1) + \frac{3}{2} [2V_1 (2p_1 - p_1)]$$

$$= \frac{11}{2} p_1 V_1 = 5.6 \times 10^2 \text{ J}$$

(4)
$$W = Q = 5.6 \times 10^2 \text{ J}$$

149. 解:

(2)
$$T_1 = (273 + 27) \text{ K} = 300 \text{ K}$$

据
$$V_1/T_1=V_2/T_2$$
,

得
$$T_2 = V_2 T_1 / V_1 = 600 \text{ K}$$

$$Q = v C_p(T_2 - T_1) = 1.25 \times 10^4 \text{ J}$$

(3)
$$\Delta E = 0$$

(4) 据
$$Q = W + \Delta E$$

$$W = Q = 1.25 \times 10^4 \text{ J}$$

150. 解:

氦气为单原子分子理想气体,i=3

(1) 等体过程,V=常量,W=0

据
$$Q=\Delta E+W$$
 可知

$$Q = \Delta E = \frac{M}{M_{mol}} C_V (T_2 - T_1) = 623 \text{ J}$$

(2) 定压过程, p = 常量,

$$Q = \frac{M}{M_{mol}} C_p (T_2 - T_1) = 1.04 \times 10^3 \,\text{J}$$

$$W = Q - \Delta E = 417 \text{ J}$$

(3)
$$Q=0, \Delta E = 11$$

$$W = -\Delta E = -623$$
 J (负号表示外界做功)

151. 解:

(1)
$$A \rightarrow B$$
: $W_1 = \frac{1}{2} (p_B + p_A) (V_B - V_A) = 200 \text{ J.}$

$$\Delta E_1 = v C_V (T_B - T_A) = 3(p_B V_B - p_A V_A) / 2 = 750 \text{ J}$$

$$Q = W_1 + \Delta E_1 = 950 \text{ J.}$$

$$B \rightarrow C$$
: $W_2 = 0$

$$\Delta E_2 = v C_V (T_C - T_B) = 3(p_C V_C - p_B V_B)/2 = -600 \text{ J}.$$

$$Q_2 = W_2 + \Delta E_2 = -600 \text{ J}.$$

$$C \rightarrow A$$
: $W_3 = p_A (V_A - V_C) = -100 \text{ J.}$

$$\Delta E_3 = v C_V (T_A - T_C) = \frac{3}{2} (p_A V_A - p_C V_C) = -150 \text{ J}.$$

$$Q_3 = W_3 + \Delta E_3 = -250 \text{ J}$$

(2)
$$W = W_1 + W_2 + W_3 = 100 \text{ J}.$$
$$Q = Q_1 + Q_2 + Q_3 = 100 \text{ J}$$

152. 解:

(1) 对卡诺循环有: $T_1/T_2 = Q_1/Q_2$

$$T_2 = T_1 Q_2 / Q_1 = 320 \text{ K}$$

即:低温热源的温度为 320 K.

(2) 热机效率:
$$\eta = 1 - \frac{Q_2}{Q_1} = 20\%$$

153. 解:

(1)
$$\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}$$

$$Q_1 = W \frac{T_1}{T_1 - T_2} \quad \mathbb{B} \qquad \frac{Q_2}{Q_1} = \frac{T_2}{T_1}$$

$$\vdots \qquad Q_2 = T_2 Q_1 / T_1$$
即
$$Q_2 = \frac{T_1}{T_1 - T_2} \cdot \frac{T_2}{T_1} W = \frac{T_2}{T_1 - T_2} = 24000 \text{ J}$$
由于第二循环吸热
$$Q'_1 = W' + Q'_2 = W' + Q_2 \quad (\because Q'_2 = Q_2)$$

$$\eta' = W' / Q'_1 = 29.4\%$$
(2)
$$T'_1 = \frac{T_2}{1 - \eta'} = 425 \text{ K}$$

154. 解:

由图得
$$p_A=400 \, \mathrm{Pa}$$
, $p_B=p_C=100 \, \mathrm{Pa}$, $V_A=V_B=2 \, \mathrm{m}^3$, $V_C=6 \, \mathrm{m}^3$.

(1) C→A 为等体过程,据方程 $p_A/T_A = p_C/T_C$ 得

$$T_C = T_A p_C / p_A = 75 \text{ K}$$

$$B \rightarrow C$$
 为等压过程,据方程 $V_B/T_B = V_C T_C$ 得

$$T_B = T_C V_B / V_C = 225 \text{ K}$$

(2) 根据理想气体状态方程求出气体的物质的量(即摩尔数)ν为

$$v = p_A V_A / RT_A = 0.321 \text{ mol}$$

由 γ =1.4 知该气体为双原子分子气体, $C_V = \frac{5}{2}R$, $C_P = \frac{7}{2}R$

$$B \to C$$
 等压过程吸热 $Q_2 = \frac{7}{2} \nu \ R(T_C - T_B) = -1400 \ \mathrm{J}.$

$$C→A$$
 等体过程吸热

$$Q_3 = \frac{5}{2} v R(T_A - T_C) = 1500 \text{ J}.$$

循环过程 $\Delta E = 0$,整个循环过程净吸热

$$Q = W = \frac{1}{2}(p_A - p_C)(V_B - V_C) = 600$$
 J.

∴ $A \rightarrow B$ 过程净吸热:

$$Q_1 = Q - Q_2 - Q_3 = 500 \text{ J}$$

155. 解:

(1)
$$T_a = p_a V_2 / R = 400 \text{ K}$$

$$T_b = p_b V_1 / R = 636 \text{ K}$$

$$T_c = p_c V_1 / R = 800 \text{ K}$$

$$T_d = p_d V_2 / R = 504 \text{ K}$$
(2)
$$E_c = (i/2) R T_c = 9.97 \times 10^3 \text{ J}$$

(3) b-c 等体吸热

$$Q_1 = C_V(T_c - T_b) = 2.044 \times 10^3 \text{ J}$$

d-a 等体放热

$$Q_2 = C_V (T_d - T_a) = 1.296 \times 10^3 \text{ J}$$

 $W = Q_1 - Q_2 = 0.748 \times 10^3 \text{ J}$

156. 解:

(1) 过程 ab 与 bc 为吸热过程,

吸热总和为

$$Q_1 = C_V(T_b - T_a) + C_p(T_c - T_b) = \frac{3}{2}(p_b V_b - p_a V_a) + \frac{5}{2}(p_c V_c - p_b V_b) = 800 \text{ J}$$

(2) 循环过程对外所作总功为图中矩形面积

$$W = p_b(V_c - V_b) - p_d(V_d - V_a) = 100 \text{ J}$$

(3)
$$T_a = p_a V_a / R$$
, $T_c = p_c V_c / R$, $T_b = p_b V_b / R$, $T_d = p_d V_d / R$, $T_a T_c = (p_a V_a p_c V_c) / R^2 = (12 \times 10^4) / R^2$ $T_b T_d = (p_b V_b p_d V_d) / R^2 = (12 \times 10^4) / R^2$ \vdots $T_a T_c = T_b T_d$

157. 解:

曲图, p_A =300 Pa, p_B = p_C =100 Pa; V_A = V_C =1 m³, V_B =3 m³.

(1) C→A 为等体过程,据方程 $p_A/T_A = p_C/T_C$ 得

$$T_C = T_A p_C / p_A = 100 \text{ K}.$$

 $B \to C$ 为等压过程,据方程 $V_{\rm B}/T_{\rm B}=V_{\rm C}/T_{\rm C}$ 得

$$T_{\rm B} = T_{\rm C} V_{\rm B} / V_{\rm C} = 300 \text{ K}.$$

(2) 各过程中气体所作的功分别为

$$A \rightarrow B$$
: $W_1 = \frac{1}{2} (p_A + p_B)(V_B - V_C) = 400 \text{ J.}$
 $B \rightarrow C$: $W_2 = p_B (V_C - V_B) = -200 \text{ J.}$
 $C \rightarrow A$: $W_3 = 0$

(3) 整个循环过程中气体所作总功为

$$W = W_1 + W_2 + W_3 = 200 \text{ J.}$$

因为循环过程气体内能增量为 $\Delta E=0$,因此该循环中气体总吸热

$$Q = W + \Delta E = 200 \text{ J}.$$

158. 解:

(1)
$$Q_1 = RT_1 \ln(V_2 / V_1) = 5.35 \times 10^3 \text{ J}$$

(2)
$$\eta = 1 - \frac{T_2}{T_1} = 0.25.$$

$$W = \eta Q_1 = 1.34 \times 10^3 \text{ J}$$

(3)
$$Q_2 = Q_1 - W = 4.01 \times 10^3 \text{ J}$$

159. 解:

根据绝热过程方程: $p^{1-\gamma}T^{\gamma}$ 常量,

可得
$$T_2=T_1(p_1/p_2)^{(1-\gamma)/\gamma}$$

刚性双原子分子 $\gamma=1.4$,代入上式并代入题给数据,得

$$T_2 = 410 \text{ K}$$

160. 解:

(1) 根据绝热过程方程 $p^{\gamma-1}T^{-\gamma}=C$

有
$$\frac{T_2}{T_1} = (\frac{p_2}{p_1})^{(\gamma-1)/\gamma}$$

$$T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{(\gamma - 1)/\gamma}$$

氦为单原子分子, $\gamma = 5/3$

$$T_2=1200 \text{ K}$$

(2)
$$n = \frac{p_2}{kT_2} = 1.96 \times 10^{26} \text{ m}^{-3}$$