Projection Taxonomy

COMP 557
Paul Kry

Review

- What goes where on projection?
- gluPerspective and glFrustum
- Frustum applications
 - Tiled rendering, anaglyphs, depth of field, shifted perspective
- History of projection
- Depth Cues

Recall: Ray Generation vs. Projection

- Viewing in ray tracing
 - start with image point
 - compute ray that projects to that point
 - do this using geometry
- Viewing by projection
 - start with 3D point
 - compute image point that it projects to
 - do this using transforms
- Both provide planar projection

Taxonomy of Classical Projections

- Emphasis on cube-like objects
 - traditional in mechanical and architectural drawing

Parallel Projection

- Viewing rays are parallel rather than diverging
 - like a perspective camera that's far away

Multiview Orthographic

FIGURE 2-1. Multiview orthographic projection: plan, elevations, and section of a building.

Multiview Orthographic

- Projection plane parallel to a coordinate plane
- Projection direction perpendicular to projection plane

Off-axis parallel

axonometric: projection plane perpendicular to projection direction but not parallel to coordinate planes

Oblique Parallel Projection

Gallery

Battery

Cavalier... same length in all dimensions

oblique: projection plane parallel to a coordinate plane but not perpendicular to projection direction.

Orthographic Projection

- In graphics, we associate axonometric with orthographic
 - projection plane
 perpendicular to
 projection direction
 - image height determines size of objects in image

Oblique projection

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances
 still same size
 - objects are shifted in the image depending on their depth

Orthographic View Volume

Recall: view volume is specified by left right top and bottom

Parallel projections in video games?

Taxonomy of Classical Projections

- Emphasis on cube-like objects
 - traditional in mechanical and architectural drawing

Perspective

one-point: projection plane parallel to a coordinate plane (to two coordinate axes) **two-point**: projection plane parallel to one coordinate axis

three-point: projection plane not parallel to a coordinate axis

Perspective projection (normal)

- Perspective is projection by lines through a point;
 "normal" = plane perpendicular to view direction
 - magnification determined by:
 - image height
 - object depth
 - image plane distance
 - $FOV = 2 \operatorname{atan}(h / (2d))$
 - -y'=dy/z
 - "normal" case corresponds to common types of cameras

View volume: perspective

 Recall: how is perspective view volume specified?

McGill COMP577

18

Field of view (or f.o.v.)

- The angle between the rays corresponding to opposite edges of a perspective image
 - Easy to compute only for "normal" perspective
 - Must decide to measure vertical, horizontal, or diagonal
- In cameras, determined by focal length
 - This is confusing because it depends on film image size
 - For still photography, 35mm format: 36 x 24 mm image

- 18mm =
- 28mm =
- 50mm =
- 100mm =

- super-wide angle
- wide angle
- "normal"
- narrow angle ("telephoto")

Field of view

Determines "strength" of perspective effects

close viewpoint
wide angle
prominent foreshortening

far viewpoint narrow angle little foreshortening

McGill COMP577 22

Choice of field of view

- In photography, wide angle lenses are specialty tools
 - "hard to work with"
 - easy to create weird-looking perspective effects
- In graphics, you can type in whatever f.o.v. you want
 - Don't be one of those people that type in big numbers unless you really mean it!

23

Perspective Distortions

McGill COMP577 24

35mm Academy Format

70mm IMAX Format

Widescreen anamorphic e.g., CinemaScope

ANAMORPHIC VINTAGE OVAL BOKEH FILTER+ FLARE/STREAK

GET A VINTAGE LOOK TO YOUR VIDEOS

McGill COMP577

1.33 or 4:3

Standard aspect ratio and standard-definition video

1.66:1

Aspect ratio used for most European theatrical showings

1.78:1 or 16:9

Standard aspect ratio for high-defintion video

1.85:1

Aspect ratio used for most U.S. theatrical showings since the 1960s

2.40:1

Aspect ratio of current anamorphic (wide-screen) showings

2.75:1

Aspect ratio of Ultra-Panavision 70

McGill COMP577

Common Resolutions

Resolutions and Aspect Ratios Square Pixels?

Back to projections...

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
 - additional parameter:projection plane normal
 - exactly equivalent to cropping out an off-center rectangle from a larger "normal" perspective
 - corresponds to view camera in photography

Why shifted perspective?

- Control convergence of parallel lines
- Standard example: architecture
 - buildings are taller than you, so you look up
 - top of building is farther away, so it looks smaller
- Solution: make projection plane parallel to facade
 - top of building is the same distance from the projection plane
- Same perspective effects can be achieved using post-processing
 - (though not the focus effects)
 - choice of which rays vs. arrangement of rays in image

camera tilted up: converging vertical lines

McGill COMP577

lens shifted up: parallel vertical lines

McGill COMP577

Specifying perspective projections

- Many ways to do this
 - common: from, at, up, v.f.o.v. (but not for shifted)
- One way:
 - viewpoint, view direction, up
 - establishes location and orientation of viewer
 - view direction is the direction of the center ray
 - image width, image height, projection distance
 - establishes size and location of image rectangle
 - image plane normal
 - can be different from view direction to get shifted perspective

Non-planar Projections...

Non-planar Projections... (panoramas, environment maps, etc.)

McGill COMP577

McGill COMP577 45

Optimizing Content-Preserving Projections for Wide-Angle Images Robert Carroll, Maneesh Agrawala, Aseem Agarwala, SIGGRAPH 2009

Perspective

Mercator

Stereographic McGill COMP577 Our Result

50

RYAN: Render Your Animation Nonlinearly Projected,

P. Coleman & K. Singh NPAR 04

