Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ235-МЗ239, весна 2020 года

Домашнее задание №1: «знакомство с исчислением высказываний»

- 1. Укажите про каждое из следующих высказываний, общезначимо, выполнимо, опровержимо или невыполнимо ли оно:
 - (a) $\neg A \lor \neg \neg A$
 - (b) $(A \to \neg B) \lor (B \to \neg C) \lor (C \to \neg A)$
 - (c) $A \to B \vee A$
 - (d) $A \rightarrow B \& B \rightarrow A$
 - (e) $A \to B \to \neg B \to \neg A$.
- 2. Будем говорить, что высказывание α следует из высказываний $\gamma_1, \gamma_2, \ldots, \gamma_n$ (и будем записывать это как $\gamma_1, \gamma_2, \ldots, \gamma_n \models \alpha$), если при любой оценке, такой, что при всех i выполнено $[\![\gamma_i]\!] = \mathbf{H}$, также выполнено и $[\![\alpha]\!] = \mathbf{H}$.

Пусть даны высказывания α и β , причём $\alpha \models \beta$, но $\beta \not\models \alpha$. Придумайте «промежуточное» высказывание γ , такое, что $\alpha \models \gamma$, $\gamma \models \beta$, причём $\gamma \not\models \alpha$ и $\beta \not\models \gamma$.

- 3. Простые высказывания. Докажите высказывания, построив полный вывод:
 - (a) $\alpha, \beta \vdash \alpha \& \beta$
 - (b) $\alpha, \beta \vdash \alpha \lor \beta$
 - (c) $\neg \alpha, \beta \vdash \alpha \lor \beta$
 - (d) $\alpha, \neg \beta \vdash \alpha \lor \beta$
 - (e) $\gamma \vdash \alpha \rightarrow \gamma$
 - (f) $\neg \alpha \vdash \neg \alpha$
 - (g) $\alpha, \beta \vdash \alpha \rightarrow \beta$
- 4. Ассоциативность и коммутативность.
 - (a) Докажите или опровергните: $\models \alpha \to \beta$ влечёт $\models \beta \to \alpha$.
 - (b) Докажите: $\vdash \alpha \lor \beta \to \beta \lor \alpha$
 - (c) Докажите: $\vdash \alpha \& \beta \rightarrow \beta \& \alpha$
- 5. Контрапозиция. $\vdash (\alpha \to \beta) \to \neg \beta \to \neg \alpha$.
- 6. Докажите следующие высказывания, построив полный вывод:
 - (a) $\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$
 - (b) $\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (c) $\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (d) $\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$
 - (e) $\alpha, \neg \beta \vdash \neg(\alpha \to \beta)$ (f) $\neg \alpha, \beta \vdash \alpha \to \beta$
 - (g) $\neg \alpha, \neg \beta \vdash \alpha \rightarrow \beta$
 - (h) $\alpha \vdash \neg \neg \alpha$

Домашнее задание №2: «интуиционистское исчисление высказываний»

- 1. Долги по теореме о полноте ИВ. Докажите:
 - (a) $\vdash \alpha \lor \neg \alpha$
 - (b) $\Gamma, \alpha \vdash \phi$ и $\Gamma, \neg \alpha \vdash \phi$ влечёт $\Gamma \vdash \phi$
- 2. Постройте дерево вывода для следующих высказываний интуиционистской логики (в данных примерах $\neg \alpha$ сокращение для $\alpha \to \bot$):
 - (a) $\vdash \alpha \to \alpha$
 - (b) $\alpha \to \beta \vdash \neg \beta \to \neg \alpha$
 - (c) $\vdash \alpha \lor \beta \to \beta \lor \alpha$
 - (d) $\vdash \alpha \& \beta \rightarrow \beta \& \alpha$
 - (e) $\vdash \neg \neg (\alpha \lor \neg \alpha)$
- 3. Постройте примеры частично упорядоченных множеств:
 - (a) определено a + b, но не $a \cdot b$;
 - (b) определено $a \cdot b$, но не a + b;
 - (с) является решёткой, но не является дистрибутивной решёткой;
 - (d) является дистрибутивной, но не импликативной решёткой;
 - (е) является импликативной, но не имеет нуля;
- 4. Решётки. Покажите, что следующие утверждения выполнены в любой решётке и при любых $a,\,b$ и c:
 - (a) Коммутативность: $a \cdot b = b \cdot a$ и a + b = b + a
 - (b) Ассоциативность: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ и a + (b + c) = (a + b) + c
 - (c) Законы поглощения: $a \cdot (a + b) = a$ и $a + (a \cdot b) = a$
 - (d) Верно ли, что если $a \sqsubseteq b$, то $a + c \sqsubseteq b + c$ и $a \cdot c \sqsubseteq b \cdot c$?
 - (e) Верно ли, что если $a+c \sqsubseteq b+c$ или $a\cdot c \sqsubseteq b\cdot c$, то $a \sqsubseteq b$?
- 5. В любой дистрибутивной решётке
 - (a) $(a \cdot b) + c = (a + c) \cdot (b + c)$.
 - (b) Нет ∂ иамантов: таких пяти элементов p, q, r, s, t, что $p \sqsubseteq q, r, s \sqsubseteq t,$ и при этом q, r и s несравнимы.

При этом, если на данной диаграмме выполнено какое-то вычисление (например, q+r=t), то оно должно быть выполнено и в исходной дистрибутивной решётке.

(c) Нет nenmazonos: таких пяти элементов $p,\,q,\,r,\,s,\,t,$ что $p\sqsubseteq q,r,s\sqsubseteq t,$ также $r\sqsubseteq s,$ элемент же q не сравним с r и s.

При этом, если на данной диаграмме выполнено какое-то вычисление (например, q+r=t), то оно должно быть выполнено и в исходной дистрибутивной решётке.

- 6. Покажите, что в импликативной решётке
 - (а) выполнена дистрибутивность;
 - (b) Из $a \sqsubseteq b$ следует $b \to c \sqsubseteq a \to c$ и $c \to a \sqsubseteq c \to b$;
 - (c) Из $a \sqsubseteq b \rightarrow c$ следует $a \cdot b \sqsubseteq c$;
 - (d) $a \sqsubseteq b$ выполнено тогда и только тогда, когда $a \to b = 1$;
 - (e) $b \sqsubseteq a \rightarrow b$;
 - (f) $a \to b \sqsubseteq ((a \to (b \to c)) \to (a \to c));$
 - (g) $a \sqsubseteq b \rightarrow a \cdot b$;
 - (h) $a \to c \sqsubseteq (b \to c) \to (a + b \to c)$
- 7. Рассмотрим топологию $\langle X,\Omega \rangle$ (напомним, что здесь Ω множество всех открытых подмножеств множества X). Рассмотрим множество Ω , частично упорядоченное отношением «быть подмножеством». Покажите, что получившаяся конструкция:
 - (а) решётка;
 - (b) дистрибутивная решётка;
 - (с) импликативная решётка;
 - (d) псевдобулева алгебра;
 - (е) не является булевой алгеброй.
- 8. Покажите, что булева алгебра булева алгебра.
- 9. Покажите, что подмножества некоторого множества, упорядоченные отношением «быть подмножеством» булева алгебра.
- 10. Покажите недоказуемость следующих высказываний интуиционистской логики, построив *конечные* псевдобулевы алгебры (т.е. частично упорядоченные множества с конечным количеством элементов), в которых следующие высказывания не истинны:
 - (a) $A \vee \neg A$
 - (b) $(((A \rightarrow B) \rightarrow A) \rightarrow A)$
 - (c) $(A \rightarrow (B \lor \neg B)) \lor (\neg A \rightarrow (B \lor \neg B))$
 - (d) $\neg A \lor \neg \neg A$
- 11. Теорема о полноте алгебр Гейтинга как моделей для интуиционистского исчисления высказываний. Уточним определения, данные на лекции:
 - (a) Будем писать $\alpha \sqsubseteq \beta$, если $\alpha \vdash \beta$.
 - (b) Будем писать $\alpha \approx \beta$, если имеет место $\alpha \sqsubseteq \beta$ и $\beta \sqsubseteq \alpha$.
 - (c) Будем писать $[\alpha]$ для класса эквивалентности, порождённого по формуле α : $[\alpha] = \{\phi \mid \phi \approx \alpha\}$

Интуиция здесь такая: высказывание тем ближе к 0 (к лжи), чем меньше ситуаций, в которых оно истинно. Поэтому если $\alpha \vdash \beta$, то α не больше β : возможно, β истинно ещё в каких-то ситуациях, в которых ложно α (но не наоборот).

Тогда докажите следующие утверждения:

- (a) (\approx) есть действительно отношение эквивалентности.
- (b) $[\alpha \& \beta]$ наибольшая нижняя грань $[\alpha]$ и $[\beta]$ в алгебре Линденбаума. То есть, $\alpha \& \beta \sqsubseteq \alpha$, $\alpha \& \beta \sqsubseteq \beta$, и из $\tau \sqsubseteq \alpha$ и $\tau \sqsubseteq \beta$ следует $\tau \sqsubseteq \alpha \& \beta$. Также поясните, почему нам достаточно доказать эти утверждения для отдельных представителей, чтобы доказать свойства для классов эквивалентности.
- (c) $[\alpha \vee \beta]$ наименьшая верхняя грань $[\alpha]$ и $[\beta]$.
- (d) $[\alpha \to \beta]$ псевдополнение $[\alpha] \to [\beta]$.
- (e) $[\bot]$ ноль.
- (f) $[\neg \alpha]$ псевдодополнение до нуля $\sim [\alpha]$.

Домашнее задание №3: «корректность и дизъюнктивность интуиционистского исчисления высказываний»

1. Теорема о корректности: если $\vdash \alpha$, то $\models \alpha$ в любой алгебре Гейтинга. Поскольу в принятом нами интуиционистском исчислении высказываний доказываются не высказывания, а некоторые сложные условные выражения (записи вида $\Gamma \vdash \alpha$), то и оценкой для данных выражений мы выберем неравенство. А именно, если $\Gamma = \{\gamma_1, \dots, \gamma_n\}, g_i = \llbracket \gamma_i \rrbracket$ и $a = \llbracket \alpha \rrbracket$, то выражению $\Gamma \vdash \alpha$ мы сопоставим неравенство

$$g_1 \cdot g_2 \cdot \cdots \cdot g_n \sqsubseteq a$$

и записывать его будем как $\Gamma \sqsubseteq a$. Также, на случай $G = \emptyset$ положим, что $\emptyset \sqsubseteq a$ означает a = 1 (это естественно предположить, поскольку к любому G всегда можно добавить некоторое $g_0 = 1$, при этом смысл выражения $g_0 \cdot g_1 \cdot g_2 \cdot \dots \cdot g_n \sqsubseteq a$ останется прежним).

Отметим, что следующие утвержедения очевидны (или уже показаны ранее):

- Аксиома. $G, a \sqsubseteq a$.
- Введение (&). Если $G \sqsubseteq b$ и $G \sqsubseteq c$, то $G \sqsubseteq b \cdot c$.
- Удаление (&). Если $G \sqsubseteq a \cdot b$, то $G \sqsubseteq a$ и $G \sqsubseteq b$.
- Введение (\vee). Если $G \sqsubseteq b$, то $G \sqsubseteq b + c$ и $G \sqsubseteq c + b$.

Теперь осталось заполнить промежутки и получить полноценное доказательство. А именно, покажите, что:

- (a) Bведение (\rightarrow) . Если $G, a \sqsubseteq b$, то $G \sqsubseteq a \rightarrow b$. Убедитесь, что если $a \sqsubseteq b$, то $\varnothing \sqsubseteq a \rightarrow b$.
- (b) Удаление (\rightarrow) . Если $G \sqsubseteq a \rightarrow b$ и $G \sqsubseteq a$, то $G \sqsubseteq b$.
- (c) Удаление (\vee). Если $G, a \sqsubseteq c, G, b \sqsubseteq c$ и $G \sqsubseteq a+b$, то $G \sqsubseteq c$.
- (d) Удаление лжи. Если $G \sqsubseteq 0$, то $G \sqsubseteq b$ при любом b.
- (е) Основываясь на доказанных выше утверждениях, покажите теорему о корректности в целом.
- 2. Поясните, как соотносится $G \sqsubseteq a$ со следующими системой (подзадача a) и совокупностью (подзадача b) неравенств:

(a)
$$\begin{cases} g_1 \sqsubseteq a \\ g_2 \sqsubseteq a \\ \dots \\ g_n \sqsubseteq a \end{cases}$$
 (b)
$$\begin{bmatrix} g_1 \sqsubseteq a \\ g_2 \sqsubseteq a \\ \dots \\ g_n \sqsubseteq a \end{cases}$$

То есть, следует ли какое-нибудь утверждение из какого-нибудь другого, и если да, то докажите, если нет — предложите контрпример.

- 3. Покажите, что $\Gamma(A)$ алгебра Гейтинга, если A алгебра Гейтинга.
- 4. Покажите или опровергните, что если $\Gamma(\mathcal{B})$ алгебра Гейтинга, то и \mathcal{B} алгебра Гейтинга.
- 5. Покажите, что отображение $\varphi : \Gamma(A) \to A$, определённое как:

$$\varphi(g) = \left\{ \begin{array}{ll} g, & \text{если } g \sqsubset \omega \\ 1_{\mathcal{A}}, & \text{если } g = \omega \text{ или } g = 1_{\Gamma(\mathcal{A})} \end{array} \right.$$

действительно является гомоморфизмом.

6. Является ли требование на сохранение нуля в определении гомоморфизма алгебр Гейтинга обязательным?

Если точнее, пусть $\varphi: \mathcal{A} \to \mathcal{B}$ — отображение алгебр Гейтинга, сохраняющее операции: $\varphi(a \star b) = \varphi(a) \star \varphi(b)$ и $\varphi(\neg a) = \neg \varphi(a)$. Всегда ли $\varphi(0_{\mathcal{A}}) = 0_{\mathcal{B}}$ и φ — гомоморфизм.

7. Покажем, что если α доказано в интуиционистском исчислении высказываний в стиле Гильберта (с изменённой 10 аксиомой: $\alpha \to \neg \alpha \to \beta$), то оно может быть доказано и в интуиционистской.

Для этого покажите, что:

- (a) Все аксиомы 1-9 выполнены (подзадачи а.1 а.9): если α аксиома, то $\vdash_{\mathbf{u}} \alpha$.
- (b) $\vdash_{\mathbf{n}} \alpha \to \neg \alpha \to \beta$.
- (c) Покажите правило Modus Ponens: если $\vdash_{\mathbf{u}} \alpha \ \mathbf{u} \vdash_{\mathbf{u}} \alpha \to \beta$, то $\vdash_{\mathbf{u}} \beta$.
- 8. Как доказать, что если $\vdash_{\mathbf{u}} \alpha$, то $\vdash_{\mathbf{k}} \alpha$? Придумайте схему доказательства, для доказательства отдельных утверждений можно пользоваться теоремой о полноте К.И.В.
- 9. Как доказать, что если $\vdash_{\mathbf{u}} \alpha$, то $\vdash \alpha$ в интуиционистском исчислении высказываний в стиле Гильберта? Придумайте схему доказательства.
- 10. Покажем теорему Гливенко. Для этого покажем следующее:
 - (а) Если $\vdash_{\mathbf{u}} \alpha$, то $\vdash_{\mathbf{u}} \neg \neg \alpha$.
 - (b) $\vdash_{\mathbf{w}} \neg \neg (\neg \neg \alpha \to \alpha)$.
 - (с) Вспользовавшись предыдущими пунктами и задачами, докажите теорему Гливенко.

Домашнее задание №4: «Исчисление предикатов»

- 1. Докажите следующие формулы в исчислении предикатов:
 - (a) $\forall x. \phi \rightarrow \phi$
 - (b) $(\forall x.\phi) \rightarrow (\exists x.\phi)$
 - (c) $(\forall x. \forall x. \phi) \rightarrow (\forall x. \phi)$
 - (d) $(\forall x.\phi) \to (\neg \exists x. \neg \phi)$
 - (e) $(\exists x.\phi) \to (\neg \forall x.\neg \phi)$
 - (f) $(\forall x. \neg \phi) \rightarrow (\neg \exists x. \phi)$
 - (g) $(\exists x. \neg \phi) \rightarrow (\neg \forall x. \phi)$
- 2. Опровергните формулы $\phi \to \forall x.\phi$ и $(\exists x.\phi) \to (\forall x.\phi)$
- 3. Все правила и аксиомы с кванторами имеют дополнительные ограничения на свободу переменных (свободу для подстановки). Для каждого из правил и каждой из аксиом найдите по примеру, когда эти ограничения существенны (они запрещают доказательства, выводящие опровержимые формулы).
- 4. Рассмотрим формулу α с двумя свободными переменными x и y (мы предполагаем, что эти метапеременные соответствуют разным переменным). Определите, какие из сочетаний кванторов выводятся из каких и приведите соответствующие доказательства или опровержения:
 - (a) $\forall x. \forall y. \alpha, \forall y. \forall x. \alpha$
 - (b) $\exists x. \exists y. \alpha, \exists y. \exists x. \alpha$
 - (c) $\forall x. \forall y. \alpha, \ \forall x. \exists y. \alpha, \ \exists x. \forall y. \alpha, \ \exists x. \exists y. \alpha$
 - (d) $\forall x. \exists y. \alpha, \exists y. \forall x. \alpha$
- 5. Научимся выносить квантор всеобщности «наружу»:
 - (a) Покажите, что если x не входит свободно в α , то

$$\vdash (\alpha \lor \forall x.\beta) \to (\forall x.\alpha \lor \beta)$$
 и $\vdash ((\forall x.\beta) \lor \alpha) \to (\forall x.\beta \lor \alpha)$

(b) Покажите, что

$$\vdash ((\forall x.\alpha) \lor (\forall y.\beta)) \to \forall p. \forall q.\alpha [x := p] \lor \beta [y := q]$$

где p и q — свежие переменные, не входящие в формулу. Заметим, что в частном случае x может совпадать с y.

- (с) Докажите аналогичные утверждения для &.
- (d) Как будут сформулированы аналогичные утверждения для \to и \neg ? Сформулируйте и докажите их.
- 6. Научимся вносить квантор всеобщности «внутрь»:

(a) Покажите, что если x не входит свободно в α , то

$$\vdash (\forall x.\alpha \lor \beta) \to (\alpha \lor \forall x.\beta) \quad \text{if} \quad \vdash (\forall x.\beta \lor \alpha) \to ((\forall x.\beta) \lor \alpha)$$

(b) Покажите, что если p не входит свободно в β и q не входит свободно в α , то

$$\vdash (\forall p. \forall q. \alpha \lor \beta) \to (\forall x. \alpha[p := x]) \lor (\forall y. \beta[q := y])$$

при условии, что x свободно для подстановки вместо p в α и y свободно для подстановки вместо q в β .

- (с) Докажите аналогичные утверждения для &.
- (d) Как будут сформулированы аналогичные утверждения для → и ¬? Сформулируйте и докажите их.
- Сформулируйте и докажите аналогичные предыдущим пунктам утверждения для квантора существования.
- 8. Научимся работать со спрятанными глубоко кванторами. Пусть $\vdash \alpha \to \beta$, тогда:
 - (а) Докажите:

$$\vdash \psi \lor \alpha \to \psi \lor \beta \quad \vdash \psi \& \alpha \to \psi \& \beta \quad \vdash (\psi \to \alpha) \to (\psi \to \beta) \quad \vdash (\beta \to \psi) \to (\alpha \to \psi)$$

- (b) Сформулируйте и докажите аналогичное свойство для отрицания.
- (c) Докажите $\vdash (\forall x.\alpha) \to (\forall x.\beta)$. Надо ли наложить на формулы α и β какие-либо ограничения?
- (d) Докажите $\vdash (\exists x. \alpha) \to (\exists x. \beta)$. Надо ли наложить на формулы α и β какие-либо ограничения?
- 9. Формулой исчисления предикатов с *поверхностными* кванторами (формулой в предварённой форме) назовём формулу, соответствующую нетерминалу ψ в грамматике

$$\psi ::= \forall x. \psi | \exists x. \psi | \sigma$$

где σ — это формула, не содержащая кванторов. Иными словами, это формула, в которой все кванторы снаружи — квантор не может быть указан внутри конъюнкции, дизъюнкции, импликации или отрицания.

Опираясь на доказанные выше леммы, докажите, что если α — формула, то для неё найдётся такая формула β с поверхностными кванторами, что:

- (a) $\vdash \alpha \rightarrow \beta$
- (b) $\vdash \beta \rightarrow \alpha$

Домашнее задание №5: арифметика

- 1. Докажите следующие утверждения в Аксиоматике Пеано:
 - (a) a + (b+c) = (a+b) + c
 - (b) $a \cdot b = b \cdot a$
 - (c) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - (d) $a \cdot (b+c) = a \cdot b + a \cdot c$
- 2. Будем считать, что $a \le b$ если либо a = 0, либо $p \le q$ при p' = a и q' = b.
 - (a) Покажите, что если $a \le b$, то $a + c \le b + c$.
 - (b) Покажите, что если $a \le b$ и $c \le d$, то $a \cdot c \le b \cdot d$.
 - (c) Покажите, что при любых a и b выполнено $a \le b$ или $b \le a$.
 - (d) Покажите, что если $a \le b$ и $b \le a$, то a = b.
- 3. Докажите следующие утверждения в формальной арифметике:
 - (a) $\vdash 0 + a = a + 0$

- (b) $\vdash a = b \to a + 0' = b + 0'$
- (c) $\vdash a = b \rightarrow a + c = b + c$
- 4. Определим новое обозначение: будем писать $x \le y$ вместо $\exists a.x + a = y$ (и воспринимать это новое обозначение как своего рода макроподстановку). Также, введём обозначение для записи натуральных чисел в формальной арифметике:

$$\overline{n} = \left\{ \begin{array}{ll} 0, & n = 0\\ (\overline{n-1})', & n > 0 \end{array} \right.$$

Естественно, данные обозначения целиком принадлежат мета-языку. Покажите в формальной арифметике следующие утверждения:

- (a) $\vdash a = b \rightarrow a \leq b$
- (b) $\vdash a < b \to a' < b'$
- (c) $\vdash a \leq b \rightarrow \forall c.a + c \leq b + c$
- (d) $\vdash a < b \lor b < a$
- (е) Обозначим за $\phi_n(x)$ формулу $x=0 \lor x=0' \lor x=0'' \lor \cdots \lor x=\overline{n}$. Покажите тогда, что при любом натуральном n выполнено $\vdash a \leq \overline{n} \to \phi_n(a)$
- (f) При любом натуральном n выполнено $\vdash \phi_n(a) \to a \leq \overline{n}$

Домашнее задание №6: выразимость и представимость в арифметике

Введем обозначение. Если в тексте вводится некоторая формула $\alpha(x_1, \dots x_n)$, то по умолчанию считается, что эта формула имеет n свободных переменных с именами $x_1, \dots x_n$

Внутри же выражения запись $\alpha(y_1, \dots y_n)$ мы будем трактовать, как $\alpha[x_1 := y_1, \dots x_n := y_n]$, при этом мы подразумеваем, что $y_1, \dots y_n$ свободны для подстановки вместо $x_1, \dots x_n$ в α .

Также, запись $B(x_1, \dots x_n) \equiv \alpha(x_1, \dots x_n)$ будет означать, что мы определяем новую формулу с именем B и n свободными переменными $x_1, \dots x_n$. Данная формула должна восприниматься только как сокращение записи, макроподстановка.

Определение 1. Отношение R называется выразимым (в формальной арифметике), если существует такая формула $\alpha(x_1, \ldots x_n)$ с n свободными переменными, что для любых натуральных чисел $k_1 \ldots k_n$

- 1. если $(k_1, \ldots k_n) \in R$, то доказуемо $\alpha(\overline{k_1}, \ldots \overline{k_n})$
- 2. если $(k_1, \ldots k_n) \notin R$, то доказуемо $\neg \alpha(\overline{k_1}, \ldots \overline{k_n})$.

Определение 2. Введем следующее сокращение записи: пусть $\exists ! y. \phi(y)$ означает

$$(\exists y.\phi(y)) \& \forall a.\forall b.\phi(a) \& \phi(b) \rightarrow a = b$$

 $3десь\ a\ u\ b\ -$ некоторые переменные, не входящие в формулу ϕ свободно.

Определение 3. Функция f от n аргументов называется представимой в формальной арифметике, если существует такая формула $\alpha(x_1, \dots x_{n+1})$ с n+1 свободными пременными, что для любых натуральных чисел k_1 ... k_{n+1}

- 1. $f(k_1, \ldots k_n) = k_{n+1}$ тогда и только тогда, когда доказуемо $\alpha(\overline{k_1}, \ldots \overline{k_{n+1}})$.
- 2. Доказуемо $\exists ! b. \alpha(\overline{k_1}, \dots \overline{k_n}, b)$

Задания:

- 1. Покажите, что пустое отношение (без единой пары) представимо в формальной арифметике.
- 2. Покажите, что функция f(x) = 0 представима в формальной арифметике.
- 3. Покажите, что отношение равенства представима в формальной арифметике формулой $x_1 = x_2$. А именно:
 - (a) Покажите, что если $x_1 = x_2$, то $\vdash \overline{x_1} = \overline{x_2}$;

- (b) Покажите, что если $x_1 \neq x_2$, то $\vdash \neg \overline{x_1} = \overline{x_2}$.
- 4. Покажите, что функция f(x) = x + 1 представима в формальной арифметике формулой $x_2 = x_1 + 1$. А именно:
 - (a) Покажите, что $\vdash \overline{x+1} = \overline{x}+1$;
 - (b) Покажите, что $\exists ! x_2.x_2 = x_1 + 1.$
 - (c) Покажите, что если $y \neq x+1$, то $\vdash \neg \overline{y} = \overline{x}+1$.
- 5. Назовём характеристическим отношением для функции f отношение

$$C_f = \{x_1, \dots, x_n, y | f(x_1, \dots, x_n) = y\}$$

Покажите, что:

- (a) Если функция f представима в формальной арифметике, то C_f выразимо в формальной арифметике:
- (b) Если характеристическое отношение C_f некоторой функции f выразимо в формальной арифметике, то функция f представима в формальной арифметике.
- 6. Какую формулу выбрать для выражения отношения «два числа имеют одинаковую чётность» в формальной арифметике? Наметьте план доказательства выразимости.
- 7. Какую формулу выбрать для представления функции «деление с остатком»? Наметьте план доказательства представимости.
- 8. Какую формулу выбрать для представления функции «факториал»? Наметьте план доказательства представимости.

Домашнее задание №7: рекурсивные функции

Определение 4. Рассмотрим следующие примитивы.

- 1. $Z: \mathbb{N}_0 \to \mathbb{N}_0, Z(x) = 0$
- 2. $N: \mathbb{N}_0 \to \mathbb{N}_0$, N(x) = x'
- 3. Проекция. $U_i^n: \mathbb{N}_0^n \to \mathbb{N}_0, U_i^n(x_1,...x_n) = x_i$
- 4. Подстановка. Если $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g_1, ...g_n: \mathbb{N}_0^m \to \mathbb{N}_0$, то $S\langle f, g_1, ...g_n \rangle: \mathbb{N}_0^m \to \mathbb{N}_0$. При этом $S\langle f, g_1, ...g_n \rangle (x_1, ...x_m) = f(g_1(x_1, ...x_m), ...g_n(x_1, ...x_m))$
- 5. Примитивная рекурсия. Если $f:\mathbb{N}_0^n \to \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} \to \mathbb{N}_0$, то $R\langle f,g \rangle:\mathbb{N}_0^{n+1} \to \mathbb{N}_0$, при этом

$$R\langle f,g\rangle(x_1,...x_n,y) = \begin{cases} f(x_1,...x_n) & ,y = 0\\ g(x_1,...x_n,y-1,R\langle f,g\rangle(x_1,...x_n,y-1)) & ,y > 0 \end{cases}$$

6. Минимизация. Если $f: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$, то $\mu\langle f \rangle : \mathbb{N}_0^n \to \mathbb{N}_0$, при этом $\mu\langle f \rangle (x_1, ...x_n)$ — такое минимальное число y, что $f(x_1, ...x_n, y) = 0$. Если такого y нет, результат данного примитива неопределен.

Первые три из них — обычные функции на натуральных числах. Оставшиеся три подобны шаблонам в C++ или функциям высшего порядка в Xаскеле/Окамле.

Например, функция f(x) = x+2 может быть выражена через данные примитивы так: f(x) = S(N, N)(x).

Определение 5. Функция называется примитивно-рекурсивной, если возможно построить выражение только из первых пяти примитивов, такое, что оно при всех аргументах возвращает значение, равное значению требуемой функции.

 $\it Ecли$ функция может быть выражена с помощью всех шести примитивов, она называется рекурсивной.

Данное задание в целом сводится к демонстрации того, что различные функции являются примитивно-рекурсивными (рекурсивными). В отличие от предыдущих заданий, в данном задании это необходимо показывать при помощи демонстрации соответствующей программы на языке примитивно-рекурсивных (рекурсивных) функций. Данный язык, например, легко эмулируется языком шаблонов C++ (как подсказывает синтаксис рекурсивных выражений), также возможно использовать любой другой интерпретатор.

- 1. Покажите, что следующие функции примитивно-рекурсивные:
 - (а) сложение;
 - (b) умножение;
 - (с) ограниченное вычитание 1 (0 для 0, для остальных натуральных чисел совпадает с обычным вычитанием 1);
 - (d) ограниченное вычитание (0, если a < b, и a b, если $a \ge b$);
 - (e) меньше: m(a, b) = 1, если a < b.
 - (f) побитовая конъюнкция (операция & в языке Си);
 - (g) побитовое «исключающее или»;
 - (h) конструкция first $\langle f \rangle (x_1, \dots, x_k, n)$: возвращает минимальный t < n, что $f(x_1, \dots, x_k, t) \neq 0$, либо n, если функция равна 0 при всех $t \in 0 \dots n-1$;
 - (i) деление нацело (деление с округлением вниз);
 - (j) остаток от деления нацело;
 - (k) возведение в степень;
 - (l) ограниченный логарифм $\operatorname{plog}_k(n)$ максимальное p, что k^p делится на n. Например, $\operatorname{plog}_6(72)=2;$
 - (m) факториал;
 - (n) упорядоченную пару, т.е. набор из трёх функций (одно задание, на подпункты не делится):
 - і. левая проекция: $\pi_l(\langle a,b\rangle)=a;$
 - іі. правая проекция: $\pi_r(\langle a, b \rangle) = a$;
 - ііі. построение пары: $\langle \rangle(a,b) = \langle a,b \rangle$;
 - (о) проверку числа на простоту;
 - (p) простое число номер k.
- 2. Будем называть гёделевой нумерацией списка следующую конструкцию. Пусть a_0, \ldots, a_{n-1} некоторый список натуральных чисел. Пусть p_i это простое число номер i (естественно, $p_0=2$). Тогда гёделева нумерация этого списка $\lceil a_0, a_1, \ldots, a_{n-1} \rceil = 2^a \cdot 3^a \cdot \cdots \cdot p_{n-1}^{a_{n-1}}$.

Покажите, что следующие функции являются примитивно-рекурсивными:

- (a) nil: гёделев номер пустого списка;
- (b) $\cos(\lceil a_0, \dots, a_{n-1} \rceil, x) = \lceil x, a_0, \dots, a_{n-1} \rceil$;
- (c) head: функция, возвращающая голову списка;
- (d) tail: функция, возвращающая хвост списка;
- (e) получение элемента списка с номером k: $(\lceil a_0, \dots, a_{n-1} \rceil)_k = a_k$
- (f) len: длина списка;
- (g) (@): конкатенация списков;
- 3. Назовём функцией Аккермана следующую функцию:

Определение 6. Функцией Аккермана мы назовем так определенную функцию:

$$A(m,n) = \left\{ \begin{array}{ll} n+1, & \textit{echu } m=0 \\ A(m-1,1), & \textit{echu } m>0, n=0 \\ A(m-1,A(m,n-1)), & \textit{echu } m>0, n>0 \end{array} \right.$$

Покажите, что функция Аккермана — рекурсивная (8 баллов). К сожалению, примитивно-рекурсивной данная функция не является.