Aufgabe 3

Nach Definition 6.4 existieren natürliche Abbildungen $\varphi_i \colon A \to A[f^{-1}]$ für alle $i \in I$ und es gilt für $i \leq j$, dass $\varphi_j \circ \varphi_{ij} = \varphi_i$.

(a) Nach Definition 6.4 ist $A[f^{-1}]$ als direkter Limes von A-Moduln wieder ein A-Modul. Insbesondere ist durch $(A[f^{-1}], +, \varphi_0(0_A))$ eine abelsche Gruppe gegeben. Seien $m, n \in A[f^{-1}]$. Dann existieren $i, j \in I$ mit $\varphi_i(m_i) = m, \varphi_j(n_j) = n$ für $m_i, n_j \in A$. Wir definieren das Produkt $m \cdot n := \varphi_{i+j}(m_i \cdot n_j)$.

Dies ist wohldefiniert. Seien nämlich $k,l \in I$ mit $\varphi_k(m_k) = m, \varphi_l(n_l) = n$ für $m_k, n_l \in A$. Dann existieren per Definition der Gleichheit in $A[f^{-1}]$ größere Indizes $y,z \in I$ mit $f^{y-i}m_i = \varphi_{i,y}(m_i) = \varphi_{k,y}(m_k) = f^{y-k}m_k$ und $f^{z-j}n_j = \varphi_{j,z}(n_j) = \varphi_{l,z}(n_l) = f^{z-l}n_l$. Es gilt nun

$$\varphi_{i+j}(m_i \cdot n_j) = \varphi_{y+z}(\varphi_{i+j,y+z}(m_i \cdot n_j)) = \varphi_{y+z}(f^{y+z-(i+j)} \cdot m_i \cdot n_j)$$

$$= \varphi_{y+z}(f^{y-i}m_i \cdot f^{z-j}n_j) = \varphi_{y+z}(f^{y-k}m_k \cdot f^{z-l}n_l)$$

$$= \varphi_{y+z}(f^{y+z-(k+l)}m_kn_l) = \varphi_{y+z}(\varphi_{k+l,y+z}(m_k \cdot n_l))$$

$$= \varphi_{k+l}(m_k \cdot n_l)$$

Die Distributivität erbt $A[f^{-1}]$ von A. Wir erhalten also eine Ringstruktur auf $A[f^{-1}]$. Es gilt nun $\varphi_0(a+b) = \varphi_0(a) + \varphi_0(b)$ (siehe Definition 6.4). Außerdem gilt $\varphi_0(a) \cdot \varphi_0(b) = \varphi_{0+0}(ab)$. Sei $x \in A[f^{-1}]$. Dann existiert ein $i \in I$ mit $\varphi_i(a) = x$ für ein $a \in A$. Daher gilt $\varphi_0(1) \cdot x = \varphi_0(1) \cdot \varphi_i(a) = \varphi_{0+i}(1 \cdot a) = \varphi_i(a) = x$, also $\varphi_0(1_A) = 1_{A[f^{-1}]}$. Daher ist φ_0 ein Ringhomomorphismus.

(b) Wir nutzen zunächst die universelle Eigenschaft des direkten Limes und definieren

$$\psi_i \colon A \to A$$

$$x \mapsto \frac{x}{f_i}$$

Sei $a \in A$. Dann gilt

$$\psi_j \circ \varphi_{i,j}(a) = \psi_j(f^{j-i}a) = \frac{f^{j-i}a}{f^j} = \frac{f^{j-i}a}{f^{j-i}f^i} = \frac{a}{f^i} = \psi_i(a),$$

also $\psi_i = \psi_j \circ \varphi_{i,j}$. Nach der universellen Eigenschaft des direkten Limes excistiert dann ein eindeutig bestimmter A-Modulhomomorphismus $\psi \colon M \to A_f$ mit $\psi_i = \psi \circ \varphi_i$, also $\psi(\varphi_i(a)) = \psi_i(a) = \frac{a}{f^i}$ für ein $a \in A$.

Nun möchten wir die universelle Eigenschaft der Lokalisierung nutzen und zeigen dafür $\varphi_0(f^i) \in A[f^{-1}]^{\times}$. Es gilt

$$\varphi_0(f^i) \cdot \varphi_i(1) = \varphi_i(f^i \cdot 1) = \varphi_i(\varphi_{0,i}(1)) = \varphi_0(1),$$

also $\varphi_0(f^i)^{-1} = \varphi_i(1) \forall i \in I$ und damit $\varphi_0(f^i) \in A[f^{-1}]^{\times}$. Wir erhalten daher nach der universellen Eigenschaft der Lokalisierung einen eindeutig bestimmten A-Modulhomomorphismus $g \colon A_f \to A[f^1]$ mit der Abbildungsvorschrift

$$g\left(\frac{a}{f^i}\right) = \varphi_0(f^i)^{-1} \cdot \varphi_0(a) = \varphi_i(1) \cdot \varphi_0(a) = \varphi_i(a).$$

 ψ und g sind invers. Sei dafür $\frac{a}{f^i}$ in A_f . Dann gilt

$$(\psi \circ g) \left(\frac{a}{f^i}\right) = \psi(\varphi_i(a)) = \frac{a}{f^i}$$

Sei $x \in A[f^{-1}]$. Es existiert ein $i \in I$ und $a \in A$ mit $\varphi_i(a) = x$. Dann gilt

$$(g \circ \psi)(x) = g(\psi(\varphi_i(a))) = g\left(\frac{a}{f^i}\right) = \varphi_i(a) = x.$$

Wir erhalten also zwei inverse A-Modulhomomorphismen zwischen $A[f^{-1}]$ und A_f . Damit sind beide als R-Moduln isomorph.

Aufgabe 4

(a) Das Komplement jeder offenen Menge lässt sich als abgeschlossene Menge schreiben und damit nach Blatt 2, Aufgabe 4 in der Form V(M) für ein $M \subset A$. Sei U offen. Dann gilt

A abgeschlossen

$$U = A^{c}$$

$$= V(M)^{c}$$

$$= \operatorname{Spec} A \setminus \{ \mathfrak{p} \in \operatorname{Spec} A \colon M \subset \mathfrak{p} \}$$

$$= \operatorname{Spec} A \setminus \{ \mathfrak{p} \in \operatorname{Spec} A \colon f \in \mathfrak{p} \forall f \in M \}$$

$$= \left(\bigcap_{f \in M} \{ \mathfrak{p} \in \operatorname{Spec} A \colon f \in \mathfrak{p} \} \right)^{c}$$

$$= \left(\bigcap_{f \in M} V(f) \right)^{c}$$

$$= \bigcup_{f \in M} V(f)^{c}$$

$$= \bigcup_{f \in M} D(f)$$

(b) Es gilt

$$D(f) \cap D(g) = V(f)^c \cap V(g)^c$$
$$= (V((f)) \cup V((g)))^c$$

Zettel 2

$$= (V((f) \cdot (g)))^{c}$$

$$= V((f \cdot g))^{c}$$

$$= V(fg)^{c}$$

$$= D(fg)$$

Sei $D(f) = \emptyset$. Das ist äquivalent zu $V(f) = \operatorname{Spec} A$. Das ist äquivalent zu

$$\forall \mathfrak{p} \in \operatorname{Spec} A \colon f \in \mathfrak{p} \Leftrightarrow f \in \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} = \mathfrak{N},$$

also liegt f in dem von Nullteilern erzeugten Ideal. Da Summe und Produkt von Nullteilern wieder Nullteiler sind, ist dies also äquivalent dazu dass f Nullteiler ist. Ist f eine Einheit, so folgt $1 \in (f)$ und damit $V(f) = \emptyset \implies D(f) = \operatorname{Spec} A$ nach Zettel 2, Aufgabe 4b. Sei andererseits $D(f) = \operatorname{Spec} A \Leftrightarrow V(f) = \emptyset$. Angenommen, f wäre keine Einheit. Dann wäre f in mindestens einem Maximalideal enthalten. Jedes Maximalideal ist ein Primideal. Also wäre f in einem Primideal enthalten. Das steht aber im Widerspruch zu $V(f) = \emptyset$. Also muss f eine Einheit sein.