Clustering and EM

Mengye Ren

NYU

Nov 28, 2023

K-means Clustering

Unsupervised learning

Goal Discover interesting structure in the data.

Unsupervised learning

Goal Discover interesting structure in the data.

Formulation Density estimation: $p(x;\theta)$ (often with *latent* variables).

Unsupervised learning

Goal Discover interesting structure in the data.

Formulation Density estimation: $p(x;\theta)$ (often with *latent* variables).

Examples

- Discover *clusters*: cluster data into groups.
- Discover *factors*: project high-dimensional data to a small number of "meaningful" dimensions, i.e. dimensionality reduction.
- Discover *graph structures*: learn joint distribution of correlated variables, i.e. graphical models.

Example: Old Faithful Geyser

- Looks like two clusters.
- How to find these clusters algorithmically?

k-Means: By Example

- Standardize the data.
- Choose two cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(a).

• Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).

• Compute new cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(c).

• Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).

Compute cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(e).

• Iterate until convergence.

From Bishop's Pattern recognition and machine learning, Figure 9.1(i).

Suboptimal Local Minimum

• The clustering for k = 3 below is a local minimum, but suboptimal:

Would be better to have one cluster here

From Sontag's DS-GA 1003, 2014, Lecture 8.

• Dataset $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathcal{X}$ where $\mathcal{X} = \mathbb{R}^d$.

- Dataset $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathcal{X}$ where $\mathcal{X} = \mathbb{R}^d$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_1, \ldots, C_k .

- Dataset $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathcal{X}$ where $\mathcal{X} = \mathbb{R}^d$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_1, \ldots, C_k .
- Let $c_i \in \{1, ..., k\}$ be the cluster assignment of x_i .

- Dataset $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathcal{X}$ where $\mathcal{X} = \mathbb{R}^d$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_1, \ldots, C_k .
- Let $c_i \in \{1, ..., k\}$ be the cluster assignment of x_i .
- The **centroid** of C_i is defined to be

$$\mu_i = \underset{\mu \in \mathcal{X}}{\arg\min} \sum_{x \in C_i} \|x - \mu\|^2.$$
 mean of C_i (1)

- Dataset $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathcal{X}$ where $\mathcal{X} = \mathbb{R}^d$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_1, \ldots, C_k .
- Let $c_i \in \{1, ..., k\}$ be the cluster assignment of x_i .
- The **centroid** of C_i is defined to be

$$\mu_i = \underset{\mu \in \mathcal{X}}{\operatorname{arg\,min}} \sum_{x \in C_i} \|x - \mu\|^2.$$
 mean of C_i (1)

• The *k*-means objective is to minimize the distance between each example and its cluster centroid:

$$J(c, \mu) = \sum_{i=1}^{n} \|x_i - \mu_{c_i}\|^2.$$
 (2)

 Mengye Ren (NYU)
 CSCI-GA
 Nov 28, 2023
 12/61

1 Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.

- **1** Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- **2** Repeat until convergence (i.e. c_i doesn't change anymore):

- **1** Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- 2 Repeat until convergence (i.e. c_i doesn't change anymore):
 - For all *i*, set

$$c_i \leftarrow \underset{j}{\operatorname{arg\,min}} \|x_i - \mu_j\|^2. \tag{3}$$

- **1** Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- 2 Repeat until convergence (i.e. c_i doesn't change anymore):
 - For all *i*, set

$$c_i \leftarrow \underset{j}{\operatorname{arg\,min}} \|x_i - \mu_j\|^2. \tag{3}$$

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{x \in C_j} x. \tag{4}$$

- **1** Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- 2 Repeat until convergence (i.e. c_i doesn't change anymore):
 - For all *i*, set

$$c_i \leftarrow \underset{j}{\operatorname{arg\,min}} \|x_i - \mu_j\|^2. \tag{3}$$

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{x \in C_j} x. \tag{4}$$

• Recall the objective: $J(c, \mu) = \sum_{i=1}^{n} ||x_i - \mu_{c_i}||^2$.

- **1** Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- 2 Repeat until convergence (i.e. c_i doesn't change anymore):
 - For all *i*, set

$$c_i \leftarrow \underset{j}{\operatorname{arg\,min}} \|x_i - \mu_j\|^2$$
. Minimize J w.r.t. c while fixing μ (3)

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{x \in C_j} x. \tag{4}$$

• Recall the objective: $J(c, \mu) = \sum_{i=1}^{n} ||x_i - \mu_{c_i}||^2$.

- **1** Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- 2 Repeat until convergence (i.e. c_i doesn't change anymore):
 - For all *i*, set

$$c_i \leftarrow \underset{j}{\operatorname{arg\,min}} \|x_i - \mu_j\|^2$$
. Minimize J w.r.t. c while fixing μ (3)

For all j, set

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{x \in C_i} x.$$
 Minimze J w.r.t. μ while fixing c . (4)

• Recall the objective: $J(c, \mu) = \sum_{i=1}^{n} ||x_i - \mu_{c_i}||^2$.

k-means converges to a local minimum.

• *J* is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

Re-run with random initial centroids.

k-means converges to a local minimum.

• *J* is non-convex, thus no guarantee to converging to the global minimum.

- Re-run with random initial centroids.
- *k*-means++: choose initial centroids that spread over all data points.

k-means converges to a local minimum.

• *J* is non-convex, thus no guarantee to converging to the global minimum.

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
 - Randomly choose the first centroid from the data points \mathfrak{D} .

k-means converges to a local minimum.

• *J* is non-convex, thus no guarantee to converging to the global minimum.

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
 - Randomly choose the first centroid from the data points \mathfrak{D} .
 - Sequentially choose subsequent centroids from points that are farther away from current centroids:

k-means converges to a local minimum.

• *J* is non-convex, thus no guarantee to converging to the global minimum.

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
 - Randomly choose the first centroid from the data points \mathfrak{D} .
 - Sequentially choose subsequent centroids from points that are farther away from current centroids:
 - Compute distance between each x_i and the closest already chosen centroids.

k-means converges to a local minimum.

• *J* is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
 - Randomly choose the first centroid from the data points \mathfrak{D} .
 - Sequentially choose subsequent centroids from points that are farther away from current centroids:
 - Compute distance between each x_i and the closest already chosen centroids.
 - Randomly choose next centroid with probability proportional to the computed distance squared.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 14/61

Summary

We've seen

• Clustering—an unsupervised learning problem that aims to discover group assignments.

- *k*-means:
 - Algorithm: alternating between assigning points to clusters and computing cluster centroids.
 - Objective: minmizing some loss function by cooridinate descent.
 - Converge to a local minimum.

Summary

We've seen

- Clustering—an unsupervised learning problem that aims to discover group assignments.
- k-means:
 - Algorithm: alternating between assigning points to clusters and computing cluster centroids.
 - Objective: minmizing some loss function by cooridinate descent.
 - Converge to a local minimum.

Next, probabilistic model of clustering.

- A generative model of x.
- Maximum likelihood estimation.

Gaussian Mixture Models

Probabilistic Model for Clustering

- Problem setup:
 - There are *k* clusters (or **mixture components**).
 - We have a probability distribution for each cluster.

Probabilistic Model for Clustering

- Problem setup:
 - There are *k* clusters (or **mixture components**).
 - We have a probability distribution for each cluster.
- Generative story of a mixture distribution:
 - Choose a random cluster $z \in \{1, 2, ..., k\}$.
 - 2 Choose a point from the distribution for cluster z.

Probabilistic Model for Clustering

- Problem setup:
 - There are *k* clusters (or **mixture components**).
 - We have a probability distribution for each cluster.
- Generative story of a mixture distribution:
 - **1** Choose a random cluster $z \in \{1, 2, ..., k\}$.
 - Choose a point from the distribution for cluster z.

Example:

- Choose $z \in \{1, 2, 3\}$ with $p(1) = p(2) = p(3) = \frac{1}{3}$.
- **2** Choose $x \mid z \sim \mathcal{N}(X \mid \mu_z, \Sigma_z)$.

Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:

- Choose cluster $z \sim \text{Categorical}(\pi_1, \dots, \pi_k)$.
- **2** Choose $x \mid z \sim \mathcal{N}(\mu_z, \Sigma_z)$.

Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:

- Choose cluster $z \sim \text{Categorical}(\pi_1, \dots, \pi_k)$.
- **2** Choose $x \mid z \sim \mathcal{N}(\mu_z, \Sigma_z)$.

Probability density of x:

• Sum over (marginalize) the **latent variable** z.

$$p(x) = \sum_{z} p(x, z) \tag{5}$$

$$=\sum_{z}p(x\mid z)p(z)\tag{6}$$

$$= \sum_{k} \pi_k \mathcal{N}(\mu_k, \Sigma_k) \tag{7}$$

Suppose we have found parameters

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means : $\mu = (\mu_1, ..., \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

• Suppose we have found parameters

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means: $\mu = (\mu_1, \dots, \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

that are at a local minimum.

• What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.

• Suppose we have found parameters

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means: $\mu = (\mu_1, \dots, \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?

• Suppose we have found parameters

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means: $\mu = (\mu_1, \dots, \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?
- Assuming all clusters are distinct, there are k! equivalent solutions.

• Suppose we have found parameters

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means : $\mu = (\mu_1, ..., \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?
- Assuming all clusters are distinct, there are k! equivalent solutions.
- Not a problem *per se*, but something to be aware of.

Learning GMMs

How to learn the parameters π_k , μ_k , Σ_k ?

Learning GMMs

How to learn the parameters π_k , μ_k , Σ_k ?

- MLE (also called maximize marginal likelihood).
- Log likelihood of data:

$$L(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta)$$
 (8)

$$=\sum_{i=1}^{n}\log\sum_{z}p(x,z;\theta)$$
(9)

Learning GMMs

How to learn the parameters π_k , μ_k , Σ_k ?

- MLE (also called maximize marginal likelihood).
- Log likelihood of data:

$$L(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta)$$
 (8)

$$=\sum_{i=1}^{n}\log\sum_{z}p(x,z;\theta)$$
(9)

- Cannot push log into the sum... z and x are coupled.
- No closed-form solution for GMM—try to compute the gradient yourself!

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

¹See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

• Can be done, in principle – but need to be clever about it.

¹See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done, in principle but need to be clever about it.
- For example, each covariance matrix $\Sigma_1, \ldots, \Sigma_k$ has to be positive semidefinite.

¹See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done, in principle but need to be clever about it.
- For example, each covariance matrix $\Sigma_1, \ldots, \Sigma_k$ has to be positive semidefinite.
- How to maintain that constraint?

¹See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done, in principle but need to be clever about it.
- For example, each covariance matrix $\Sigma_1, \ldots, \Sigma_k$ has to be positive semidefinite.
- How to maintain that constraint?
 - Rewrite $\Sigma_i = M_i M_i^T$, where M_i is an unconstrained matrix.

¹See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done, in principle but need to be clever about it.
- For example, each covariance matrix $\Sigma_1, \ldots, \Sigma_k$ has to be positive semidefinite.
- How to maintain that constraint?
 - Rewrite $\Sigma_i = M_i M_i^T$, where M_i is an unconstrained matrix.
 - Then Σ_i is positive semidefinite.

¹See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done, in principle but need to be clever about it.
- For example, each covariance matrix $\Sigma_1, \ldots, \Sigma_k$ has to be positive semidefinite.
- How to maintain that constraint?
 - Rewrite $\Sigma_i = M_i M_i^T$, where M_i is an unconstrained matrix.
 - Then Σ_i is positive semidefinite.
- Even then, pure gradient-based methods have trouble. 1

¹See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

Learning GMMs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

$$n_z = \sum_{i=1}^n \mathbb{1}[z_i = z]$$
 # examples in each cluster (10)

$$\hat{\pi}(z) = \frac{n_z}{n}$$
 fraction of examples in each cluster (11)

$$\hat{\mu}_z = \frac{1}{n_z} \sum_{i: z_i = z} x_i$$
 empirical cluster mean (12)

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} (x_{i} - \hat{\mu}_{z}) (x_{i} - \hat{\mu}_{z})^{T}. \qquad \text{empirical cluster covariance}$$
 (13)

The inference problem: observe x, want to know z.

(16)

The inference problem: observe x, want to know z.

$$p(z = j \mid x_i) = p(x, z = j)/p(x)$$
 (14)

(16)

The inference problem: observe x, want to know z.

$$p(z = j \mid x_i) = p(x, z = j)/p(x)$$
 (14)

$$= \frac{p(x \mid z = j)p(z = j)}{\sum_{k} p(x \mid z = k)p(z = k)}$$
(15)

(16)

The inference problem: observe x, want to know z.

$$p(z = j \mid x_i) = p(x, z = j)/p(x)$$
 (14)

$$= \frac{p(x \mid z = j)p(z = j)}{\sum_{k} p(x \mid z = k)p(z = k)}$$
(15)

$$= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_k \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}$$
(16)

The inference problem: observe x, want to know z.

$$p(z = j \mid x_i) = p(x, z = j)/p(x)$$
 (14)

$$= \frac{p(x \mid z = j)p(z = j)}{\sum_{k} p(x \mid z = k)p(z = k)}$$
(15)

$$= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_k \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}$$
(16)

- $p(z \mid x)$ is a soft assignment.
- If we know the parameters μ, Σ, π , this would be easy to compute.

Let's compute the cluster assignments and the parameters iteratively.

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:

- Initialize parameters μ, Σ, π randomly.
- 2 Run until convergence:

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:

- **1** Initialize parameters μ , Σ , π randomly.
- 2 Run until convergence:
 - E-step: fill in latent variables by inference.
 - compute soft assignments $p(z | x_i)$ for all i.

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:

- **1** Initialize parameters μ , Σ , π randomly.
- 2 Run until convergence:
 - E-step: fill in latent variables by inference.
 - compute soft assignments $p(z | x_i)$ for all i.
 - **2** M-step: standard MLE for μ , Σ , π given "observed" variables.
 - Equivalent to MLE in the observable case on data weighted by $p(z \mid x_i)$.

M-step for GMM

• Let $p(z \mid x)$ be the soft assignments:

$$\gamma_i^j = \frac{\pi_j^{\text{old}} \mathcal{N}\left(x_i \mid \mu_j^{\text{old}}, \Sigma_j^{\text{old}}\right)}{\sum_{c=1}^k \pi_c^{\text{old}} \mathcal{N}\left(x_i \mid \mu_c^{\text{old}}, \Sigma_c^{\text{old}}\right)}.$$

Exercise: show that

$$n_{z} = \sum_{i=1}^{n} \gamma_{i}^{z}$$

$$\mu_{z}^{\text{new}} = \frac{1}{n_{z}} \sum_{i=1}^{n} \gamma_{i}^{z} x_{i}$$

$$\Sigma_{z}^{\text{new}} = \frac{1}{n_{z}} \sum_{i=1}^{n} \gamma_{i}^{z} (x_{i} - \mu_{z}^{\text{new}}) (x_{i} - \mu_{z}^{\text{new}})^{T}$$

$$\pi_{z}^{\text{new}} = \frac{n_{z}}{n}.$$

Initialization

• First soft assignment:

• First soft assignment:

After 5 rounds of EM:

• After 20 rounds of EM:

EM for GMM: Summary

- EM is a general algorithm for learning latent variable models.
- Key idea: if data was fully observed, then MLE is easy.
 - E-step: fill in latent variables by computing $p(z \mid x, \theta)$.
 - M-step: standard MLE given fully observed data.
- Simpler and more efficient than gradient methods.
- Can prove that EM monotonically improves the likelihood and converges to a local minimum.
- k-means is a special case of EM for GMM with hard assignments, also called hard-EM.

Latent Variable Models

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of **observed variables**.

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x,z \mid \theta)$$

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x, z \mid \theta)$$

Definition

A latent variable model is a probability model for which certain variables are never observed.

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x, z \mid \theta)$$

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

Complete and Incomplete Data

• Suppose we observe some data $(x_1, ..., x_n)$.

Complete and Incomplete Data

- Suppose we observe some data $(x_1, ..., x_n)$.
- To simplify notation, take x to represent the entire dataset

$$x=(x_1,\ldots,x_n)$$
,

and z to represent the corresponding unobserved variables

$$z = (z_1, \ldots, z_n)$$
.

- An observation of x is called an **incomplete data set**.
- An observation (x, z) is called a **complete data set**.

Our Objectives

• Learning problem: Given incomplete dataset x, find MLE

$$\hat{\theta} = \arg\max_{\theta} p(x \mid \theta).$$

Our Objectives

• Learning problem: Given incomplete dataset x, find MLE

$$\hat{\theta} = \arg\max_{\theta} p(x \mid \theta).$$

• Inference problem: Given x, find conditional distribution over z:

$$p(z | x, \theta)$$
.

Our Objectives

• Learning problem: Given incomplete dataset x, find MLE

$$\hat{\theta} = \arg\max_{\theta} p(x \mid \theta).$$

• **Inference problem**: Given x, find conditional distribution over z:

$$p(z | x, \theta)$$
.

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)

Note that

$$\underset{\theta}{\arg\max} p(x \mid \theta) = \underset{\theta}{\arg\max} \left[\log p(x \mid \theta) \right].$$

Note that

$$\arg\max_{\theta} p(x \mid \theta) = \arg\max_{\theta} [\log p(x \mid \theta)].$$

• Often easier to work with this "log-likelihood".

Note that

$$\arg\max_{\theta} p(x \mid \theta) = \arg\max_{\theta} [\log p(x \mid \theta)].$$

- Often easier to work with this "log-likelihood".
- We often call p(x) the marginal likelihood,
 - because it is p(x,z) with z "marginalized out":

$$p(x) = \sum_{z} p(x, z)$$

Note that

$$\arg\max_{\theta} p(x \mid \theta) = \arg\max_{\theta} [\log p(x \mid \theta)].$$

- Often easier to work with this "log-likelihood".
- We often call p(x) the marginal likelihood,
 - because it is p(x,z) with z "marginalized out":

$$p(x) = \sum_{z} p(x, z)$$

• We often call p(x,z) the **joint**. (for "joint distribution")

Note that

$$\underset{\theta}{\arg\max} p(x \mid \theta) = \underset{\theta}{\arg\max} [\log p(x \mid \theta)].$$

- Often easier to work with this "log-likelihood".
- We often call p(x) the marginal likelihood,
 - because it is p(x,z) with z "marginalized out":

$$p(x) = \sum_{z} p(x, z)$$

- We often call p(x,z) the **joint**. (for "joint distribution")
- Similarly, $\log p(x)$ is the marginal log-likelihood.

EM Algorithm

Problem: marginal log-likelihood $\log p(x;\theta)$ is hard to optimize (observing only x)

Observation: complete data log-likelihood $\log p(x,z;\theta)$ is easy to optimize (observing both x and z)

Idea: guess a distribution of the latent variables q(z) (soft assignments)

Maximize the **expected complete data log-likelihood**:

$$\max_{\theta} \sum_{z \in \mathcal{Z}} q(z) \log p(x, z; \theta)$$

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?

Math Prerequisites

Jensen's Inequality

Theorem (Jensen's Inequality)

If $f : R \to R$ is a **convex** function, and x is a random variable, then

$$\mathbb{E}f(x) \geqslant f(\mathbb{E}x).$$

Theorem (Jensen's Inequality)

If $f : R \to R$ is a **convex** function, and x is a random variable, then

$$\mathbb{E}f(x) \geqslant f(\mathbb{E}x).$$

Moreover, if f is **strictly convex**, then equality implies that $x = \mathbb{E}x$ with probability 1 (i.e. x is a constant).

Theorem (Jensen's Inequality)

If $f : R \to R$ is a **convex** function, and x is a random variable, then

$$\mathbb{E}f(x) \geqslant f(\mathbb{E}x).$$

Moreover, if f is **strictly convex**, then equality implies that $x = \mathbb{E}x$ with probability 1 (i.e. x is a constant).

• e.g. $f(x) = x^2$ is convex. So $\mathbb{E}x^2 \geqslant (\mathbb{E}x)^2$. Thus

$$\operatorname{Var}(x) = \mathbb{E}x^2 - (\mathbb{E}x)^2 \geqslant 0.$$

Kullback-Leibler Divergence

- Let p(x) and q(x) be probability mass functions (PMFs) on \mathcal{X} .
- How can we measure how "different" p and q are?

Kullback-Leibler Divergence

- Let p(x) and q(x) be probability mass functions (PMFs) on X.
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$\mathrm{KL}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

(Assumes q(x) = 0 implies p(x) = 0.)

Kullback-Leibler Divergence

- Let p(x) and q(x) be probability mass functions (PMFs) on \mathfrak{X} .
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$\mathrm{KL}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

(Assumes q(x) = 0 implies p(x) = 0.)

Can also write this as

$$\mathrm{KL}(p\|q) = \mathbb{E}_{x \sim p} \log \frac{p(x)}{q(x)}.$$

Gibbs Inequality $(KL(p||q) \ge 0 \text{ and } KL(p||p) = 0)$

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on \mathfrak{X} . Then

$$KL(p||q) \geqslant 0$$
,

with equality iff p(x) = q(x) for all $x \in \mathcal{X}$.

Gibbs Inequality $(KL(p||q) \ge 0 \text{ and } KL(p||p) = 0)$

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on \mathfrak{X} . Then

$$KL(p||q) \geqslant 0$$
,

with equality iff p(x) = q(x) for all $x \in \mathcal{X}$.

• KL divergence measures the "distance" between distributions.

Gibbs Inequality (KL($p||q) \ge 0$ and KL(p||p) = 0)

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on \mathfrak{X} . Then

$$KL(p||q) \geqslant 0$$
,

with equality iff p(x) = q(x) for all $x \in \mathcal{X}$.

- KL divergence measures the "distance" between distributions.
- Note:
 - KL divergence not a metric.
 - KL divergence is not symmetric.

Gibbs Inequality: Proof

$$\mathrm{KL}(p\|q) = \mathbb{E}_p\left[-\log\left(\frac{q(x)}{p(x)}\right)\right]$$

Gibbs Inequality: Proof

$$\begin{split} \mathrm{KL}(p\|q) &= \mathbb{E}_{p}\left[-\log\left(\frac{q(x)}{p(x)}\right)\right] \\ &\geqslant -\log\left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \end{aligned} \qquad \text{(Jensen's)}$$

$$\begin{aligned} \mathrm{KL}(p\|q) &= & \mathbb{E}_{p}\left[-\log\left(\frac{q(x)}{p(x)}\right)\right] \\ &\geqslant & -\log\left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \qquad \text{(Jensen's)} \\ &= & -\log\left[\sum_{\{x|p(x)>0\}} p(x)\frac{q(x)}{p(x)}\right] \end{aligned}$$

$$\begin{split} \mathrm{KL}(\rho \| q) &= \mathbb{E}_{\rho} \left[-\log \left(\frac{q(x)}{\rho(x)} \right) \right] \\ &\geqslant -\log \left[\mathbb{E}_{\rho} \left(\frac{q(x)}{\rho(x)} \right) \right] \qquad \text{(Jensen's)} \\ &= -\log \left[\sum_{\{x \mid \rho(x) > 0\}} \rho(x) \frac{q(x)}{\rho(x)} \right] \\ &= -\log \left[\sum_{x \in \mathcal{X}} q(x) \right] \end{split}$$

$$\begin{split} \mathrm{KL}(\rho \| q) &= \mathbb{E}_{\rho} \left[-\log \left(\frac{q(x)}{\rho(x)} \right) \right] \\ &\geqslant -\log \left[\mathbb{E}_{\rho} \left(\frac{q(x)}{\rho(x)} \right) \right] \quad \text{(Jensen's)} \\ &= -\log \left[\sum_{\{x \mid \rho(x) > 0\}} \rho(x) \frac{q(x)}{\rho(x)} \right] \\ &= -\log \left[\sum_{x \in \mathcal{X}} q(x) \right] \\ &= -\log 1 = 0. \end{split}$$

$$\begin{split} \mathrm{KL}(\rho \| q) &= & \mathbb{E}_{\rho} \left[-\log \left(\frac{q(x)}{\rho(x)} \right) \right] \\ &\geqslant & -\log \left[\mathbb{E}_{\rho} \left(\frac{q(x)}{\rho(x)} \right) \right] \quad \text{(Jensen's)} \\ &= & -\log \left[\sum_{\{x \mid \rho(x) > 0\}} \rho(x) \frac{q(x)}{\rho(x)} \right] \\ &= & -\log \left[\sum_{x \in \mathcal{X}} q(x) \right] \\ &= & -\log 1 = 0. \end{split}$$

• Since $-\log$ is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which implies q=p.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 43/61

The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$

Mengye Ren (NYU)

Lower bound of the marginal log-likelihood

$$\log p(x;\theta) = \log \sum_{z \in \mathcal{Z}} p(x,z;\theta)$$

Lower bound of the marginal log-likelihood

$$\log p(x;\theta) = \log \sum_{z \in \mathcal{Z}} p(x,z;\theta)$$
$$= \log \sum_{z \in \mathcal{Z}} q(z) \frac{p(x,z;\theta)}{q(z)}$$

Lower bound of the marginal log-likelihood

$$\log p(x;\theta) = \log \sum_{z \in \mathcal{Z}} p(x,z;\theta)$$

$$= \log \sum_{z \in \mathcal{Z}} q(z) \frac{p(x,z;\theta)}{q(z)}$$

$$\geq \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

Lower bound of the marginal log-likelihood

$$\begin{array}{lcl} \log p(x;\theta) & = & \log \sum_{z \in \mathcal{Z}} p(x,z;\theta) \\ \\ & = & \log \sum_{z \in \mathcal{Z}} q(z) \frac{p(x,z;\theta)}{q(z)} \\ \\ & \geqslant & \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z;\theta)}{q(z)} \\ \\ & \stackrel{\mathrm{def}}{=} & \mathcal{L}(q,\theta) \end{array}$$

- Evidence: $\log p(x; \theta)$
- Evidence lower bound (ELBO): $\mathcal{L}(q, \theta)$
- q: chosen to be a family of tractable distributions
- Idea: maximize the ELBO instead of $log p(x; \theta)$

MLE, EM, and the ELBO

• The MLE is defined as a maximum over θ :

$$\hat{\theta}_{\mathsf{MLE}} = \mathop{\arg\max}_{\theta} \left[\log p(x \mid \theta) \right].$$

• For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta).$$

• In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

$$\hat{\theta}_{\mathsf{EM}} pprox rg \max_{\theta} \left[\max_{q} \mathcal{L}(q, \theta)
ight]$$

MLE, EM, and the ELBO

• The MLE is defined as a maximum over θ :

$$\hat{\theta}_{\mathsf{MLE}} = \mathop{\arg\max}_{\theta} \left[\log p(x \mid \theta) \right].$$

• For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta).$$

• In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

$$\hat{\theta}_{\mathsf{EM}} pprox rg \max_{\theta} \left[\max_{q} \mathcal{L}(q, \theta)
ight]$$

• In EM algorithm, q ranges over all distributions on z.

• Choose sequence of q's and θ 's by "coordinate ascent" on $\mathcal{L}(q,\theta)$.

- Choose sequence of q's and θ 's by "coordinate ascent" on $\mathcal{L}(q,\theta)$.
- EM Algorithm (high level):
 - Choose initial θ^{old} .

- Choose sequence of q's and θ 's by "coordinate ascent" on $\mathcal{L}(q,\theta)$.
- EM Algorithm (high level):
 - Choose initial θ^{old} .
 - 2 Let $q^* = \arg\max_{q} \mathcal{L}(q, \theta^{\text{old}})$
 - 3 Let $\theta^{\text{new}} = \arg\max_{\theta} \mathcal{L}(q^*, \theta)$.

- Choose sequence of q's and θ 's by "coordinate ascent" on $\mathcal{L}(q,\theta)$.
- EM Algorithm (high level):
 - Choose initial θ^{old} .
 - 2 Let $q^* = \arg\max_{q} \mathcal{L}(q, \theta^{\text{old}})$
 - 3 Let $\theta^{\text{new}} = \arg \max_{\theta} \mathcal{L}(q^*, \theta)$.
 - Go to step 2, until converged.
- Will show: $p(x \mid \theta^{new}) \geqslant p(x \mid \theta^{old})$
- ullet Get sequence of θ 's with monotonically increasing likelihood.

• Start at θ^{old} .

From Bishop's Pattern recognition and machine learning, Figure 9.14.

- Start at θ^{old} .
- ② Find q giving best lower bound at $\theta^{\text{old}} \Longrightarrow \mathcal{L}(q,\theta)$.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

- Start at θ^{old} .
- ② Find q giving best lower bound at $\theta^{\text{old}} \Longrightarrow \mathcal{L}(q,\theta)$.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

Is ELBO a "good" lowerbound?

$$\mathcal{L}(q,\theta) = \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z \mid \theta)}{q(z)}$$

$$= \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(z \mid x,\theta)p(x \mid \theta)}{q(z)}$$

$$= -\sum_{z \in \mathcal{Z}} q(z) \log \frac{q(z)}{p(z \mid x,\theta)} + \sum_{z \in \mathcal{Z}} q(z) \log p(x \mid \theta)$$

$$= -KL(q(z) || p(z \mid x,\theta)) + \underbrace{\log p(x \mid \theta)}_{\mathbf{z} \in \mathcal{Z}}$$

- KL divergence: measures "distance" between two distributions (not symmetric!)
- $KL(q||p) \ge 0$ with equality iff q(z) = p(z|x).
- ELBO = evidence KL ≤ evidence

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 50 / 61

• Find q maximizing

$$\mathcal{L}(q,\theta) = -KL[q(z), p(z \mid x, \theta)] + \log p(x \mid \theta)$$

• Find q maximizing

$$\mathcal{L}(q,\theta) = -\text{KL}[q(z), p(z \mid x, \theta)] + \underbrace{\log p(x \mid \theta)}_{\text{no } q \text{ here}}$$

• Find q maximizing

$$\mathcal{L}(q,\theta) = -\text{KL}[q(z), p(z \mid x, \theta)] + \underbrace{\log p(x \mid \theta)}_{\text{no } q \text{ here}}$$

• Recall $KL(p||q) \ge 0$, and KL(p||p) = 0.

• Find q maximizing

$$\mathcal{L}(q,\theta) = -\text{KL}[q(z), p(z \mid x, \theta)] + \underbrace{\log p(x \mid \theta)}_{\text{no } q \text{ here}}$$

- Recall $KL(p||q) \ge 0$, and KL(p||p) = 0.
- Best q is $q^*(z) = p(z \mid x, \theta)$ and

• Find q maximizing

$$\mathcal{L}(q,\theta) = -\text{KL}[q(z), p(z \mid x, \theta)] + \underbrace{\log p(x \mid \theta)}_{\text{no } q \text{ here}}$$

- Recall $KL(p||q) \ge 0$, and KL(p||p) = 0.
- Best q is $q^*(z) = p(z \mid x, \theta)$ and

$$\mathcal{L}(q^*, \theta) = -\underbrace{\mathrm{KL}[p(z \mid x, \theta), p(z \mid x, \theta)]}_{=0} + \log p(x \mid \theta)$$

Find q maximizing

$$\mathcal{L}(q,\theta) = -\text{KL}[q(z), p(z \mid x, \theta)] + \underbrace{\log p(x \mid \theta)}_{\text{no } q \text{ here}}$$

- Recall $KL(p||q) \ge 0$, and KL(p||p) = 0.
- Best q is $q^*(z) = p(z \mid x, \theta)$ and

$$\mathcal{L}(q^*, \theta) = -\underbrace{\mathrm{KL}[p(z \mid x, \theta), p(z \mid x, \theta)]}_{=0} + \log p(x \mid \theta)$$

Summary:

$$\log p(x \mid \theta) = \sup_{q} \mathcal{L}(q, \theta) \qquad \forall \theta$$

• For any θ , sup is attained at $g(z) = p(z \mid x, \theta)$.

Mengye Ren (NYU) CSCI-GA Nov 28, 2023 51/61

sup is over all distributions on z

Summary

Latent variable models: clustering, latent structure, missing lables etc.

Parameter estimation: maximum marginal log-likelihood

Challenge: directly maximize the evidence $\log p(x; \theta)$ is hard

Solution: maximize the evidence lower bound:

$$\mathsf{ELBO} = \mathcal{L}(q, \theta) = -\mathsf{KL}(q(z) || p(z \mid x; \theta)) + \log p(x; \theta)$$

Why does it work?

$$q^*(z) = p(z \mid x; \theta) \quad \forall \theta \in \Theta$$
$$\mathcal{L}(q^*, \theta^*) = \max_{\theta} \log p(x; \theta)$$

Coordinate ascent on $\mathcal{L}(q,\theta)$

- **1** Random initialization: $\theta^{\text{old}} \leftarrow \theta_0$
- 2 Repeat until convergence

Expectation (the E-step):
$$q^*(z) = p(z \mid x; \theta^{\text{old}})$$

 $J(\theta) = \mathcal{L}(q^*, \theta)$

Expectation Step

• Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. [q^* gives best lower bound at θ^{old}]

Expectation Step

- Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. [q^* gives best lower bound at θ^{old}]
- Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\text{expectation w.r.t. } z \sim q^*(z)}$$

- Expectation Step
 - Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. [q^* gives best lower bound at θ^{old}]
 - Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\text{expectation w.r.t. } z \sim q^*(z)}$$

Maximization Step

$$\theta^{\mathsf{new}} = \argmax_{\theta} J(\theta).$$

- Expectation Step
 - Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. [q^* gives best lower bound at θ^{old}]
 - Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\textbf{expectation w.r.t. } z \sim q^*(z)}$$

Maximization Step

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

[Equivalent to maximizing expected complete log-likelihood.]

Expectation Step

- Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. $[q^*]$ gives best lower bound at θ^{old}
- Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\text{expectation w.r.t. } z \sim q^*(z)}$$

Maximization Step

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on q in the E-step and assumes the M-step is easy. In general, both steps can be hard.

Monotonically increasing likelihood

Exercise: prove that EM increases the marginal likelihood monotonically

$$\log p(x; \theta^{\mathsf{new}}) \geqslant \log p(x; \theta^{\mathsf{old}}) .$$

Does EM converge to a global maximum?

Variations on EM

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

EM Gives Us Two New Problems

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

• The "M" Step: Computing

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

EM Gives Us Two New Problems

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

• The "M" Step: Computing

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

EM Gives Us Two New Problems

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

The "M" Step: Computing

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} J(\theta).$$

Either of these can be too hard to do in practice.

• Addresses the problem of a difficult "M" step.

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}\,\mathsf{max}}\, J(\theta),$$

find any θ^{new} for which

$$J(\theta^{\mathsf{new}}) > J(\theta^{\mathsf{old}}).$$

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} J(\theta),$$

find any θ^{new} for which

$$J(\theta^{\mathsf{new}}) > J(\theta^{\mathsf{old}}).$$

- Can use a standard nonlinear optimization strategy
 - ullet e.g. take a gradient step on J.

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}\,\mathsf{max}}\,J(\theta),$$

find any θ^{new} for which

$$J(\theta^{\mathsf{new}}) > J(\theta^{\mathsf{old}}).$$

- Can use a standard nonlinear optimization strategy
 - ullet e.g. take a gradient step on J.
- We still get monotonically increasing likelihood.

EM and More General Variational Methods

- Suppose "E" step is difficult:
 - Hard to take expectation w.r.t. $q^*(z) = p(z \mid x, \theta^{\text{old}})$.

EM and More General Variational Methods

- Suppose "E" step is difficult:
 - Hard to take expectation w.r.t. $q^*(z) = p(z \mid x, \theta^{\text{old}})$.
- Solution: Restrict to distributions Q that are easy to work with.

EM and More General Variational Methods

- Suppose "E" step is difficult:
 - Hard to take expectation w.r.t. $q^*(z) = p(z \mid x, \theta^{\text{old}})$.
- Solution: Restrict to distributions Q that are easy to work with.
- Lower bound now looser:

$$q^* = \underset{q \in \Omega}{\operatorname{arg\,min}\, \mathrm{KL}[q(z), p(z \mid x, \theta^{\mathrm{old}})]}$$

Today's Summary

- Motivation: Unsupervised learning
- K-means: A simple algorithm for discovering clusters
- Making k-means probabilistic: Gaussian mixture models
- More generally: Latent variable models
- Learning of latent variable models: EM
- Underlying principle: Maximizing ELBO