Capítulo 10

Ligação Química II: Geometria Molecular e Hibridação de Orbitais Atómicas

- · Geometria Molecular
- · Momentos Dipolares
- Teoria da Ligação de Valência
- Hibridação de Orbitais Atómicas
- Hibridação em Moléculas com Ligações Duplas e Triplas
- · Teoria das Orbitais Moleculares
- · Configurações das Orbitais Moleculares
- · Orbitais Moleculares Deslocalizadas

Cópia baseadas na apresentação fornecida pelo editor e não dispensa a consulta do livro "QUÍMICA GERAL", Chang, McGraw.Hill

Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pares de electrões	Geometria molecular
AB ₂	2	0	linear	linear
AB ₃	3	0	triangular plana ∵	linear triangular plana B
Triflu	oreto de Bor	o (BF3)	. 120°	B
Pli	anar		120°	10.1

Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pares de electrões	Geometria molecular
AB ₂	3	0	linear	linear
AB ₃	2	0	triangular plana	triangular plana
AB ₄	4	0	tetraédrica	tetraédrica
AB ₅	5	0	bipiramidal trigonal	bipiramidal trigonal
	onal	90°	20° :	B B B
bipyra	amidal	Penta	acloreto de enxofre F	CI ₅ 10.1

Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pares de electrões	Geometria molecular
AB ₂	2	0	linear triangular	linear triangular
AB ₃	3	0	plana	plana
AB ₄	4	0	tetraédrica	tetraédrica
AB ₅	5	0	bipiramidal trigonal	bipiramidal trigonal
AB ₆	6	0	octaédrica	octaédrica
Octa	hedral	90°	90°	B B B
Hexafluoreto de enxofre (SF ₆) 10.1				

Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pares de electrões	molecular
AB ₃	3	0	triangular plana	triangular plana
AB ₂ E	2	1	triangular planar	angular
			B	
AB ₄	4	0	tetraédrica	tetraédrica
AB ₃ E	3	1	tetraédrica	piramidal trigonal
			B A B	10.1

Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pares de electrões	Geometria molecular
AB ₄	4	0	tetraédrica	tetraédrica
AB ₃ E	3	1	tetraédrica	piramidal trigonal
AB ₂ E ₂	2	2	tetraédrica	angular
			B A	н н
AB ₅	5	0	bipiramidal trigonal	bipiramidal trigonal
AB ₄ E	4	1	bipiramidal trigonal	tetraedro listorcido
		•	B 33	10.1

Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pare de electrões	s Geometria molecular
AB ₅	5	0	bipiramidal trigonal	bipiramidal trigonal
AB ₄ E	4	1	bipiramidal trigonal	tetraedro distorcido
AB ₃ E ₂	3	2	bipiramidal trigonal	em forma de T
			• B B B B	F—CI
				10.1

	RPECV				
Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pares de electrões	Geometria molecular	
AB ₅	5	0	bipiramidal trigonal	bipiramidal trigonal	
AB ₄ E	4	1	bipiramidal trigonal	tetraedro	
AB ₃ E ₂	3	2	bipiramidal trigonal	em forma deT	
AB ₂ E ₃	2	3	bipiramidal trigonal	linear	
			B B	• I I 10.1	

Classe	N.º de átomos ligados ao átomo central	N.º de pares isolados no átomo central	Disposição pares de electrões	Geometria molecular
AB ₆	6	0	octaédrica	octaédrica
AB₅E	5	1	octaédrica	pirâmide F, F F F
AB₄E₂	4	2	octaédrica	quadrangular F F F Xe F 10.1

Previsão da Geometria Molecular

- 1. Desenhe a estrutura de Lewis da molécula.
- 2. Conte o número de pares isolados e de pares ligantes em redor do átomo central.
- 3. Utilize o modelo de RPECV para prever a geometria da molécula.

Quais são as geometrias moleculares de SO₂ e SF₄?

$$AB_2E$$
angular

F

 AB_4E

tetraedro distorcido

10.1

Como é que a teoria de Lewis explica as ligações na H₂ e no F₂?

Partilha de dois electrões entre dois átomos.

<u>E</u>	<u>Energia de dissociação</u> <u>das ligações</u>	Comprimento da ligação	Sobreposição
H_2	436,4 kJ/mole	74 pm	2 1s
F_2	150,6 kJ/mole	142 pm	2 2p

Teoria da Ligação de Valência — os electrões numa molécula ocupam orbitais atómicas dos átomos individuais.

10.3

Variação da energia potencial de dois átomos H Distância de separação 10.4

Hibridação — coalescência de duas ou mais orbitais atómicas para formar um novo conjunto de orbitais híbridas.

- Coalescência de, pelo menos, 2 orbitais atómicas não equivalentes (por ex., s e p). As orbitais hibridas têm uma forma muito diferente das orbitais atómicas originais.
- Número de orbitais híbridas é igual ao número de orbitais atómicas puras que participam no processo de hibridização.
- 3. As ligações covalentes são formadas por:
 - a. Sobreposição de orbitais híbridas com orbitais atómicas;
 - b. Sobreposição de orbitais híbridas com outras orbitais híbridas.

10.4

Como determino a hibridização do átomo central?						
Conte o número de pares isolados e o número de átomos ligados ao átomo central						
# de Pares Isolados	# de Pares Isolados					
# de Átomos Ligados	<u>Hibridização</u>	<u>Exemplos</u>				
2	sp	BeCl ₂				
3	sp²	BF_3				
4	sp³	CH ₄ , NH ₃ , H ₂ O				
5	sp³d	PCI ₅				
$sp^3\sigma^2$ SF_6						
		10.4				

Uma *orbital molecular ligante* tem menor energia e maior estabilidade do que as orbitais atómicas a partir das quais se formou.

Uma *orbital molecular antiligante* tem maior energia e menor estabilidade do que as orbitais atómicas a partir das quais se formou.

10.6

1

1/2

0

10.7

ordem

de ligação

1/2

Configuração das Orbitais Moleculares (OM)

- O número de orbitais moleculares (OM) formado é sempre igual ao número de orbitais atómicas que se combina.
- Quanto mais estável for a OM, menos estável será a correspondente OM antiligante.
- 3. O preenchimento de OM faz-se por ordem crescente de energias.
- Cada OM pode acomodar no máximo dois electrões (com spins opostos de acordo com o Princípio de Exclusão de Pauli).
- 5. Utilize a regra de Hund para preencher OM com a mesma energia.
- O número de electrões nas OM é igual à soma de todos os electrões dos átomos envolvidos na ligação.

10.7

