CO-205: Discrete Structures Tutorial #3 Question Bank

Summary		proof by contradiction	a proof that <i>p</i> is true based on
argument	a sequence of statements	proof by contradiction	the truth of the conditional
argument form	a sequence of compound		statement $\sim p \rightarrow q$, where q is
ar gument form	propositions involving		a contradiction
	propositional variables	exhaustive proof	a proof that establishes a
premise	a statement, in an argument,	canaustive proof	result by checking a list of all
P	or argument form, other than		possible cases
	the final one	proof by cases	a proof broken into separate
conclusion	the final statement in an	proof by cases	cases, where these cases cover
	argument or argument form		all possibilities
valid argument form	a sequence of compound	without loss of	an assumption in a proof that
	propositions involving	generality	makes it possible to prove a
	propositional variables where		theorem by reducing the
	the truth of all the premises		number of cases to consider in
	implies the truth of the		the proof
	conclusion	counterexample	an element x such that $P(x)$ is
valid argument	an argument with a valid		false
	argument form	constructive existence	a proof that an element with a
rule of inference	a valid argument form that	proof	specified property exists that
	can be used in the		explicitly finds such an
	demonstration that arguments		element
A	are valid	Non-constructive	a proof that an element with a
fallacy	an invalid argument form	existence proof	specified property exists that
	often used incorrectly as a		does not explicitly find such
	rule of inference (or		an element
	sometimes, more generally, an	Fallacy of affirming	an incorrect reasoning in
aiwaylay yaaganing ay	incorrect argument) reasoning where one or more	the conclusion	proving $p \rightarrow q$ by starting
circular reasoning or begging the question	steps are based on the truth of		with assuming q and proving
begging the question	the statement being proved	Fallacy of denying the	an incorrect reasoning in
theorem	a mathematical assertion that	hypothesis	an incorrect reasoning in proving $p \rightarrow q$ by starting
theorem	can be shown to be true	nypothesis	with assuming ~p and proving
conjecture	a mathematical assertion		~q
,	proposed to be true, but that	Fallacy of begging the	an incorrect reasoning when
	has not been proved	question or circular	one or more steps of a proof is
proof	a demonstration that a	reasoning	based on the statement being
	theorem is true		proved.
axiom	a statement that is assumed to	the principle of	the statement $\forall n \ P(n)$ is true
	be true and that can be used as	mathematical	if $P(1)$ is true and $\forall k[P(k) \rightarrow$
	a basis for proving theorems	induction	$P(k+1)$] is true. $k \in \mathbb{Z}^+$.
lemma	a theorem used to prove other	 basis step 	Establish that $P(1)$ is true.
	theorems	 inductive step 	on the assumption that $P(k)$ is
corollary	a proposition that can be	_	true for an arbitrary $k, P(k) \rightarrow$
	proved as a consequence of a		P(k + 1) for all positive
	theorem that has just been		integers k ; $\therefore \forall n P(n)$
e	proved	strong induction	the statement $\forall nP$ (n) is true
vacuous proof	a proof that $p \rightarrow q$ is true		if $P(1)$ is true and $\forall k[(P(1)) \land$
	based on the fact that p is		$ \cdot\cdot\cdot\wedge P(k) \rightarrow P(k+1)$ is
4	false		true
trivial proof	a proof that $p \rightarrow q$ is true	recursive definition of	a definition of a function that
1°	based on the fact that q is true	a function	specifies an initial set of
direct proof	a proof that $p \rightarrow q$ is true that		values and a rule for obtaining
	proceeds by showing that q		values of this function at
C1	must be true when <i>p</i> is true		integers from its values at
proof by	a proof that $p \rightarrow q$ is true that		smaller integers
contraposition	proceeds by showing that p		
	must be false when q is false		

recursive definition of	a definition of a set that
a set	specifies an initial set of
	elements in the set and a rule
	for obtaining other elements
	from those in the set
structural induction	a technique for proving
	results about recursively
	defined sets
recursive algorithm	an algorithm that proceeds by
Teensive angorium	reducing a problem to the
	same problem with smaller
	input
linear homogeneous	a recurrence relation that
recurrence relation	expresses the terms of a
with constant	sequence, except initial terms,
coefficients	as a linear combination of
	previous terms
characteristic roots of	the roots of the polynomial
a linear homogeneous	associated with a linear
recurrence relation	homogeneous recurrence
with constant	relation with constant
coefficients	coefficients
linear non-	a recurrence relation that
homogeneous	expresses the terms of a
recurrence relation	sequence, except for initial
with constant	terms, as a linear combination
coefficients	of previous terms plus a
	function that is not identically
	zero that depends only on the
	index
divide-and-conquer	an algorithm that solves a
algorithm	problem recursively by
8	splitting it into a fixed number
	of smaller non-overlapping
	sub-problems of the same type

Rules of Inference for Propositional Logic

Rule	Tautology	Name
p	$(p \land (p \rightarrow q)) \rightarrow q$	Modus ponens
$p \rightarrow q$		Or Mode that affirms
∴ q		
~q	$(\sim q \land (p \rightarrow q)) \rightarrow \sim p$	Modus tollens
$p \rightarrow q$		
∴ ~p		
$p \rightarrow q$	$[(p \to q) \land (q \to r)] \to$	Hypothetical
$q \rightarrow r$	$(p \rightarrow r)$	syllogism
$\therefore p \rightarrow r$		
p Vq	$[(p \lor q) \land \sim p] \to q$	Disjunctive syllogism
<u>~p</u>		
∴q		
<u>p</u>	$p \rightarrow (p \lor q)$	Addition
<i>∴ p V q</i>		G: 1:0
<u>p A q</u>	$(p \land q) \rightarrow p$	Simplification
<i>∴</i> p		
p	$[(p)\land(q)]\to(p\land q)$	Conjunction
<u>q</u>		
<i>∴p∧r</i>		D 1 .
p Vq	$[(p \lor q) \land (\sim p \lor r)] \rightarrow$	Resolution
~p Vr	(q V r)	
<i>∴ q V r</i>		

Rules of Inference for Quantified Statements

Rule	Name
$\forall x P(x)$	Universal instantiation
$\therefore P(c)$	
P(c) for an arbitrary c	Universal generalization
$\therefore \forall x P(x)$	
$\exists x P(x)$	Existential instantiation
$\therefore P(c)$ for some element c	
P(c) for some element c	Existential generalization
$\therefore \exists x P(x)$	

Template for Proofs by Mathematical Induction

- 1. Express the statement that is to be proved in the form " $\forall n \geq b, P(n)$ " for a given integer b.
- 2. Explicitly indicate the "Basic Step" and "Inductive Steps".
- 3. In the "Basis Step" establish that P(b) is true, taking care that the correct value of b is used. This completes the first part of the proof.
- 4. In the "Inductive Step", state and clearly identify, the inductive hypothesis, in the form "assume that P(k) is true for an arbitrary integer $k \ge b$."
- 5. State what needs to be proved under the assumption that the inductive hypothesis is true. That is, write out what P(k + 1) says.
- 6. Prove the statement P(k+1) making use the assumption P(k). Ensure that the proof is valid for all integers k with $k \ge b$, taking care that the proof works for small values of k, including k = b.
- 7. Clearly identify the conclusion of the inductive step, by stating "this completes the inductive step."
- 8. After completing the basis step and the inductive step, state the conclusion, namely that by mathematical induction, P(n) is true for all integers n with $n \ge b$.

Rules of Inference

- 1. What rule of inference is used in each of these arguments?
 - a) Kangaroos live in Australia and are marsupials. Therefore, kangaroos are marsupials.
 - b) It is either hotter than 45°C today or the pollution is dangerous. It is less than 45°C outside today. Therefore, the pollution is dangerous.
 - c) Vijay is an excellent swimmer. If Vijay is an excellent swimmer, then he can work as a lifeguard. Therefore, Vijay can work as a lifeguard.
 - d) Shiva will work at a grocery store this summer. Therefore, this summer Shiva will work at a grocery store or he will spend his time at the Goa Beach.
 - e) If I work all night on this homework, then I can answer all the exercises. If I answer all the exercises, I will understand the content of the course CO-205. Therefore, if I work all night on this homework, then I will understand the content of the course CO-205.
- 2. For each of these sets of premises, what relevant conclusion or conclusions can be drawn? State the rules of inference used to obtain each conclusion from the premises.
 - a) "If I play hockey, then I am sore the next day." "I use the whirlpool if I am sore." "I did not use the whirlpool."
 - b) "If I work, it is either sunny or partly sunny." "I worked last Monday or I worked last Friday." "It was not sunny on Tuesday." "It was not partly sunny on Friday."
 - c) "All insects have six legs." "Dragonflies are insects." "Spiders do not have six legs." "Spiders eat dragonflies."
 - d) "Every student has an Internet account." "Henry does not have an Internet account." "Mamta has an Internet account."
 - e) "All foods that are healthy to eat do not taste good." "Bitter-gourd is healthy to eat." "You only eat what tastes good." "You do not eat bitter-gourd." "Cheeseburgers are not healthy to eat."
 - f) "I am either dreaming or hallucinating." "I am not dreaming." "If I am hallucinating, I see elephants running down the road."
- 3. Show that the argument form with premises $(p \land t) \rightarrow (r \lor s)$, $q \rightarrow (u \land t)$, $u \rightarrow p$, q and $\sim s$ and conclusion r is valid.
- 4. Confirm the validity of each of these arguments (state the rules of inference are used for each step).
 - a) "Linda, a student in this class, owns a red car. Everyone who owns a red car has got at least one speeding ticket. Therefore, someone in this class has got a speeding ticket."
 - b) "There is someone in this class who has been to France. Everyone who goes to France visits the Louvre. Therefore, someone in this class has visited the Louvre."

- 5. Determine whether each of these arguments is valid. If an argument is correct, what rule of inference is being used? If it is not, what logical error occurs?
 - a) If n is a real number such that n > 1, then $n^2 > 1$. Suppose that $n^2 > 1$; then, n > 1.
 - b) If *n* is a real number with n > 3, then $n^2 > 9$. Suppose that $n^2 \le 9$; then, $n \le 3$.
 - c) If *n* is a real number with n > 2, then $n^2 > 4$. Suppose that $n \le 2$; then, $n^2 \le 4$.
- 6. Use resolution to show the hypotheses "Allen is a bad boy or Hillary is a good girl" and "Allen is a good boy or David is happy" imply the conclusion "Hillary is a good girl or David is happy."

Methods of Proofs

- 7. Use a direct proof to show that every odd integer is the difference of two squares.
- 8. Prove or disprove the following:-
 - (a) the product of a nonzero rational number and an irrational number is irrational.
 - (b) if x is rational and $x\neq 0$, then 1/x is rational.
- 9. Use a proof by contraposition to show that if $x + y \ge 2$, where x and y are real numbers, then $x \ge 1$ or $y \ge 1$.
- 10. Prove that if m and n are integers and mn is even, then m is even or n is even.
- 11. Show that if n is an integer and $n^3 + 5$ is odd, then n is even using
 - a) a proof by contraposition.
 - b) a proof by contradiction.
- 12. Prove the proposition P(0), where P(n) is the proposition "If n is a positive integer greater than 1, then $n^2 > n$." What kind of proof did you use?
- 13. Show that if you pick three socks from a drawer containing just blue socks and black socks, you must get either a pair of blue socks or a pair of black socks.
- 14. Identify the error(s) in this argument that supposedly shows that if $\exists x P(x) \land \exists x Q(x)$ is true then $\exists x (P(x) \land Q(x))$ is true.
 - 1. $\exists x P(x) \lor \exists x Q(x)$ Premise2. $\exists x P(x)$ Simplification from (1)3. P(c)Existential instantiation from (2)4. $\exists x Q(x)$ Simplification from (1)5. Q(c)Existential instantiation from (4)6. $P(c) \land Q(c)$ Conjunction from (3) and (5)7. $\exists x (P(x) \land Q(x))$ Existential generalization of (6)

- 15. Is this reasoning for finding the solutions of the equation $\sqrt{2x^2 - 1} = x$ correct?
 - (1) $\sqrt{2x^2 1} = x$ is given;
 - (2) $2x^2 1 = x^2$, obtained by squaring both sides
 - (3) $x^2 1 = 0$, obtained by subtracting x^2 from both sides of (2);
 - (4) (x-1)(x+1) = 0, obtained by factoring the lefthand side of (3);
 - (5) x = 1 or x = -1, which follows because ab = 0implies that a = 0 or b = 0.
- 16. Find a counterexample to the statement that every positive integer can be written as the sum of the squares of three integers.
- 17. Show that these three statements are equivalent, where a and b are real numbers: (i) a is less than b, (ii) the average of a and b is greater than a, and (iii) the average of a and b is less than b.

Proof by Cases, Proof by Exhaustion etc

- 18. Prove: -
- (a) $n^2 + 1 \ge 2^n$ when *n* is a positive integer with $1 \le n$
- (b) the triangle inequality, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).
- (c) that there atleast 100 consecutive positive integers that are not perfect squares. Is your proof constructive or non-constructive?
- (d) that there exists a pair of consecutive integers such that one of these integers is a perfect square and the other is a perfect cube.
- (e) that if a, b, and c are real numbers and $a\neq 0$, then there is a unique solution of the equation ax + b = c.
- (f) that there are no solutions in integers x and y to the equation $2x^{2} + 5y^{2} = 14$.
- 19. Prove that $m^2 = n^2$ if and only if m = n or m = -n.
- 20. Prove or disprove that: -
- (a) if a and \bar{b} are rational numbers, then a^b is also rational.
- (b) if you have an 8-litre jug of water and two empty jugs with capacities of 5 litres and 3 litres, respectively, then you can measure 4 litres by successively pouring some or all of the water in a jug into another jug.
- 21. Use forward reasoning (direct proof) to show that if x is a nonzero real number, then $x^2 + \frac{1}{r^2} \ge 2$. {Hint: Start with the inequality $\left(x-\frac{1}{x}\right)^2 \ge 0$ which holds for all nonzero real numbers x.}

22. Let T be the transformation that transforms an *even* integer x to $\frac{x}{3}$ and an *odd* integer x to 3x + 1. A famous conjecture, known as the 3x + 1 conjecture (or Hasse's Algorithm), states that for all positive integers x, when we repeatedly apply the transformation T, we will eventually reach the integer 1. Verify the 3x + 1 conjecture for these integers 6 and 21.

Principle of Mathematical Induction

- 23. Use mathematical induction to prove the summation formulae: -
- (a) P(n): $1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6$ for the positive integer n.
- (b) P(n): $1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = (n+1)(2n+1)(2n+3)/3$ for a *nonnegative* integer *n*.
- (c) P(n): $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ whenever *n* is a positive integer.
- 24. Find a formula for $\frac{1}{1.2} + \frac{1}{2.3} + \cdots + \frac{1}{n(n+1)}$ by examining the values of this expression for small values of n.
- 25. Prove that $3^n < n!$ if *n* is an integer greater than 6.
- 26. Prove that 2 divides $n^2 + n$ whenever n is a positive integer.
- 27. Use mathematical induction to show that given a set of n + 1 positive integers, none exceeding 2n, there is at least one integer in this set that divides another integer in the set.

Recursion

- 28. Determine whether each of these proposed definitions is a valid recursive definition of a function f from the set of nonnegative integers to the set of integers. If f is well defined, find a formula for f(n) when n is a nonnegative integer
- a) f(0) = 0, f(n) = 2f(n-2) for $n \ge 1$
- b) f(0) = 1, f(n) = f(n-1) 1 for $n \ge 1$
- c) f(0) = 2, f(1) = 3, f(n) = f(n-1) 1 for $n \ge 2$
- 29. Give a recursive definition of the sequence $\{a_n\}$, n =1, 2, 3, . . . if

 - a) $a_n = 4n 2$. b) $a_n = 1 + (-1)^n$. c) $a_n = n(n + 1)$. d) $a_n = n^2$.
- 30. Let F be the function such that F(n) is the sum of the first n positive integers. Give a recursive definition of F(n).
- 31. Solve these recurrence relations:
 - a) $a_n = 2a_{n-1}$ for $n \ge 1$, $a_0 = 3$
 - b) $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$
 - c) $a_n = 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 4$
 - d) $a_n = -6a_{n-1} 9a_{n-2}$ for $n \ge 2$, $a_0 = 3$, $a_1 = -3$