

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»				
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»				

Отчёт по лабораторной работе №3 по курсу "Анализ алгоритмов"

Тема Поиск по словарю	
Студент Гаврилюк В. А.	
Группа <u>ИУ7-51Б</u>	
Оценка (баллы)	
Преполаватель Волкова Л	П

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	 	•	3
1 Аналитическая часть	 		4
1.1 Линейный поиск	 		4
1.2 Бинарный поиск	 . .		4
2 Конструкторская часть	 		5
2.1 Требования к входным и выходным параметрам	 		5
2.2 Схемы алгоритмов	 . .		5
3 Технологическая часть	 		8
3.1 Средства реализации	 		8
3.2 Реализация алгоритмов			
3.3 Тестирование			
4 Исследовательская часть	 		11
4.1 Оценка алгоритмов	 		11
4.2 Вывод			
ЗАКЛЮЧЕНИЕ	 		15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	 		16

ВВЕДЕНИЕ

Цель лабораторной работы — сравнение алгоритмов нахождения заданного значения методами линейного и бинарного поиска. Для достижения поставленной цели необходимо выполнить следующие задачи:

- построить схемы для алгоритмов нахождения заданного значения методами линейного и бинарного поиска;
- создать программное обеспечение (ПО), реализующее перечисленные выше алгоритмы;
- провести анализ алгоритмов по количеству необходимых сравнений для нахождения каждого элемента массива.
- описать и обосновать полученные результаты в отчёте.

1 Аналитическая часть

В данном разделе будут рассмотрены алгоритмы линейного и бинарного поиска.

1.1 Линейный поиск

Алгоритм, основанный на линейном поиске, или поиске полным перебором, проходит по всему массиву, пытаясь отыскать целевой элемент [1]. Из этого следует, что если искомое значение находится в начале массива, то оно будет найдено быстрее, нежели если оно было бы расположено в конце. Линейный поиск работает как с отсортированными, так и с неотсортированными данными.

1.2 Бинарный поиск

Алгоритм бинарного (двоичного) поиска позволяет осуществлять быстрый поиск в массиве S отсортированных ключей. Чтобы найти ключ q, мы сравниваем значение q со средним ключом массива S[n/2]. Если значение ключа q меньше, чем значение ключа S[n/2], значит, данный ключ должен находиться в верхней половине массива S; в противном случае он должен находиться в его нижней половине. Повторяется данный процесс на половине, гипотетически содержащей элемент q, пока значение ключа S[n/2] не станет равным q или область поиска не станет пустой [2].

2 Конструкторская часть

В данном разделе будут приведены требования к входным, выходным параметрам и представлены схемы для алгоритмов линейного и бинарного поиска.

2.1 Требования к входным и выходным параметрам

Требования к входным и выходным параметрам:

- в качестве входных параметров алгоритм принимает массив и искомое значение;
- пустой массив является корректным входным значением;
- для бинарного поиска массив должен быть отсортирован;
- выходными параметрами являются два числа индекс искомого значения и количество сравнений, потребовавшихся для нахождения данного значения;
- если искомое значение не найдено, в качестве индекса возвращается -1.

2.2 Схемы алгоритмов

На рисунках 1 и 2 представлены схемы алгоритмов линейного и бинарного поиска соответственно.

Рисунок 1 — Схема алгоритма линейного поиска

Рисунок 2 — Схема алгоритма бинарного поиска

3 Технологическая часть

В данном разделе будет представлена реализация алгоритмов линейного и бинарного поиска. Также будут указаны средства реализации и результаты тестирования.

3.1 Средства реализации

Для реализации был выбран язык программирования Python [3]. Выбор обусловлен наличием библиотеки matplotlib [4]. Для построения гистограмм использовалась функция bar [5].

3.2 Реализация алгоритмов

В листингах 1 — 2 представлены реализации алгоритмов линейного и бинарного поиска.

Листинг 1: Реализация алгоритма линейного поиска

```
def linearSearch(arr: list[int], elem: int) -> tuple[int, int]:
        idx, comparisons = -1, 0
2
3
       for i in range(len(arr)):
4
            comparisons += 1
5
            if arr[i] == elem:
6
                idx = i
7
                break
8
       return idx, comparisons
10
```

Листинг 2: Реализация алгоритма бинарного поиска

```
def binarySearch(arr: list[int], elem: int) -> tuple[int, int]:
        idx, comparisons = -1, 0
2
        left, right = 0, len(arr) - 1
3
4
        while left <= right:</pre>
5
            comparisons += 1
6
            mid = (left + right) // 2
            if arr[mid] == elem:
8
                 idx = mid
9
                 break
10
            elif arr[mid] < elem:</pre>
11
                 left = mid + 1
12
            else:
13
                 right = mid - 1
14
15
        return idx, comparisons
16
```

3.3 Тестирование

В таблице 2 представлены тесты для алгоритмов линейного и бинарного поиска. Тестирование проводилось по методологии чёрного ящика. В качестве входных данных использовались массивы из таблицы 1. Все тесты пройдены успешно.

Таблица 1 — Входные массивы для тестирования алгоритмов

Название массива	Массив	
sorted_array	[-1, -2, 3, 4, 5, 6, 7, 8, 9, 10]	
array	[1, -10, 3, 4, 8, -6, 2, 7, 9, 8, -5]	
empty_array		

Таблица 2 — Тесты для алгоритмов линейного и бинарного поиска

Ŋo॒	Алгоритм	Описание	Название массива	Результат	
1	1 Линейный поиск	Поиск значения 7 в отсор-	sorted_array	(6, 7)	
1		тированном массиве.	sorted_array	(0, 7)	
2	2 Линейный поиск	Поиск значения 7 в неот-	array	(7, 8)	
		ный поиск сортированном массиве.		(7, 8)	
		Поиск значения 11 в неот-			
3	3 Линейный поиск	сортированном массиве,	arrav	(-1, 11)	
)		когда значение отсутству-	array	(-1, 11)	
		ет.			
4	Линейный поиск	Поиск значения 11 в пу-	empty_array	(-1, 0)	
-		стом массиве.	chipty_array	(-1, 0)	
5	Бинарный поиск	Поиск значения 7 в отсор-	sorted_array	(6, 4)	
	ринарный поиск	тированном массиве.	(0, 4)		
		Поиск значения 11 в от-			
6	Бинарный поиск	сортированном массиве,	sorted_array	(-1, 4)	
0		когда значение отсутству-	sorted_array	(-1, 4)	
		ет.			
7	Бинарныи поиск	Поиск значения 11 в пу-	ampty array	(1.0)	
'		стом массиве.	empty_array	(-1,0)	

4 Исследовательская часть

4.1 Оценка алгоритмов

В данном разделе будет проведено сравнение алгоритмов линейного и бинарного поиска по количеству сравнений, потребовавшихся для получения ответа. Длина массива равна n=1020.

Для алгоритма поиска полным перебором существует n+1 возможных исходов: n случаев расположения ключа в массиве и случай, когда ключ не найден. В худшем случае ключ может либо находиться в самом конце массива, либо отсутствовать вовсе, при этом количество сравнений в худшем случае будет равно n. В лучшем случае ключ будет находиться в начале массива и для его нахождения потребуется только одно сравнение. На рисунке 3 представлена гистограмма, отображающая количество сравнений для каждого элемента в массиве при линейном поиске. Крайний правый и крайний левый столбцы гистограммы соответствуют худшим случаям.

Рисунок 3 — Количество сравнений для каждого элемента в массиве при линейном поиске

На рисунке 4 представлена гистограмма, отображающая количество сравнений для каждого элемента в массиве при бинарном поиске. Для алгоритма бинарного поиска количество сравнений в худшем случае не превышает $log_2(n)$.

На рисунке 5 представлена гистограмма, на которой элементы отсортированы по количеству сравнений при бинарном поиске. В таком случае количество сравнений под индексом i ($i=\overline{0,n-1}$) соответствует максимальному количеству сравнений для массива длины i+1.

Рисунок 4 — Количество сравнений для каждого элемента в массиве при бинарном поиске

Рисунок 5 — Максимальное количество сравнений при бинарном поиске в зависимости от длины массива

На рисунке 6 представлены приближенные версии гистограмм, отображающих количество сравнений для каждого элемента при линейном и бинарном поиске на отсортированном массиве.

тированном массиве

Рисунок 6 — Количество сравнений при линейном и бинарном поиске на отсор-

В таблице 3 продемонстрировано количество сравнений при линейном и бинарном поиске при индексах $i=\overline{0,10}$. Для индексов, меньших $log_2(1020)\approx 9.994$, количество сравнений при линейном поиске меньше или равно количеству сравнений при бинарном поиске.

Таблица 3 — Количество сравнений при линейном и бинарном поиске при индексах $i=\overline{0,10}$

Индекс	Линейный поиск	Бинарный поиск
0	1	9
1	2	10
2	3	8
3	4	10
4	5	9
5	6	10
6	7	7
7	8	10
8	9	9
9	10	10
10	11	8

4.2 Вывод

При поиске заданного ключа в массиве полным перебором количество сравнений растёт линейно с увеличением индекса ключа. В случае, если массив отсортирован и для нахождения элемента используется бинарный поиск, то количество сравнений не будет превышать $log_2(n)$, где n — размер массива. Хотя скорость роста функции $log_2(n)$ меньше (при увеличении n), чем у функции n, для отсортированного массива количество сравнений при линейном поиске может быть меньше или равно количеству сравнений при бинарном поиске, если индекс искомого ключа меньше $log_2(n)$. В исходном массиве, длиной n=1020, для элементов, расположенных по индексам $i=\overline{0},\overline{9}$, количество сравнений при линейном поиске будет меньше или равно количеству сравнений при бинарном поиске.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы были проанализированы алгоритмы линейного и бинарного поиска посредством сопоставления количества сравнений для поиска заданного элемента в массиве, длина которого составляла n=1020. Экспериментально было подтверждено, что линейный поиск требует n сравнений в худшем случае, тогда как бинарный поиск не превышает $log_2(n)$.

Исследование также показало, что алгоритм линейного поиска может иметь меньшее количество сравнений, чем в бинарном поиске при индексах, меньших $log_2(n)$. При больших объемах данных предпочтительным остаётся бинарный поиск, но для его использования данные должны быть отсортированы.

В ходе лабораторной работы были выполнены все поставленные задачи, а именно:

- построены схемы для алгоритмов нахождения заданного значения методами линейного и бинарного поиска;
- создано программное обеспечение (ПО), реализующее перечисленные выше алгоритмы;
- проведён анализ алгоритмов по количеству необходимых сравнений для нахождения каждого элемента массива.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. <u>Стивенс Р.</u> Алгоритмы. Теория и практическое применение. 2-е издание. Москва: Эксмо, 2024.
- 2. <u>Скиена С.</u> Алгоритмы. Руководство по разработке. Санкт-Петербург : БХВ, 2022.
- 3. Welcome to Python [Электронный ресурс]. Режим доступа: https://www.python.org/ (дата обращения: 07.11.2024).
- Matplotlib 3.9.2 documentation [Электронный ресурс]. Режим доступа: https://matplotlib.org/stable/#matplotlib-release-documentation (дата обращения: 07.11.2024).
- 5. matplotlib.pyplot.bar [Электронный ресурс]. Режим доступа: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html# (дата обращения: 07.11.2024).