

Contents

1	Blot	ch3D	1
	1.1	Quick start	1
	1.2	Introduction	1
	1.3	Project structure	3
	1.4	Development	4
	1.5	Making 3D models	5
	1.6	Dynamically changing a sprite's orientation and position	6
	1.7	Matrix internals	6
	1.8	A Short Glossary of 3D Graphics Terms	9
	1.9	Troubleshooting	11
	1.10	Rights	11
2	Nam	espace Index	13
	2.1	Packages	13
	2.1	Tackages	10
3	Hiera	archical Index	15
	3.1	Class Hierarchy	15
4	Clas	s Index	17
	4.1	Class List	17
	4.1	Oldos List	17
5	Nam	espace Documentation	19
	5.1	Blotch Namespace Reference	19

ii CONTENTS

6	Clas	s Docu	mentation		21
	6.1	Blotch.	BIGraphics	DeviceManager Class Reference	21
		6.1.1	Detailed [Description	24
		6.1.2	Construct	or & Destructor Documentation	24
			6.1.2.1	BIGraphicsDeviceManager()	24
		6.1.3	Member F	Function Documentation	25
			6.1.3.1	AdjustCameraDolly()	25
			6.1.3.2	AdjustCameraPan()	25
			6.1.3.3	AdjustCameraRotation()	25
			6.1.3.4	AdjustCameraTruck()	26
			6.1.3.5	AdjustCameraZoom()	26
			6.1.3.6	CalculateRay()	26
			6.1.3.7	CloneTexture2D()	27
			6.1.3.8	Dispose()	27
			6.1.3.9	DoDefaultGui()	27
			6.1.3.10	DrawText()	28
			6.1.3.11	DrawTexture()	29
			6.1.3.12	ExtendClippingTo()	29
			6.1.3.13	GetWindowCoordinates()	29
			6.1.3.14	Initialize()	30
			6.1.3.15	LoadFromImageFile()	30
			6.1.3.16	PrepareDraw()	30
			6.1.3.17	ResetCamera()	31
			6.1.3.18	SetCameraRollToZero()	31
			6.1.3.19	SetCameraToSprite()	31
			6.1.3.20	SetSpriteToCamera()	31
			6.1.3.21	TextToTexture()	32
		6.1.4	Member [Data Documentation	32
			6.1.4.1	AmbientLightColor	32
			6.1.4.2	Aspect	32

CONTENTS

6.1.4.3	AutoRotate	33
6.1.4.4	CameraSpeed	33
6.1.4.5	CameraUp	33
6.1.4.6	ClearColor	33
6.1.4.7	DefGuiMaxLookZ	33
6.1.4.8	DefGuiMinLookZ	33
6.1.4.9	DepthStencilStateDisabled	34
6.1.4.10	DepthStencilStateEnabled	34
6.1.4.11	FarClip	34
6.1.4.12	FogColor	34
6.1.4.13	fogEnd	35
6.1.4.14	fogStart	35
6.1.4.15	FramePeriod	35
6.1.4.16	IsDisposed	35
6.1.4.17	Lights	35
6.1.4.18	NearClip	35
6.1.4.19	Projection	36
6.1.4.20	SpriteBatch	36
6.1.4.21	TargetEye	36
6.1.4.22	TargetLookAt	36
6.1.4.23	View	36
6.1.4.24	Window	36
6.1.4.25	Zoom	37
Property	Documentation	37
6.1.5.1	CameraForward	37
6.1.5.2	CameraForwardMag	37
6.1.5.3	CameraForwardNormalized	37
6.1.5.4	CameraRight	37
6.1.5.5	CurrentAspect	38
6.1.5.6	CurrentFarClip	38
	6.1.4.4 6.1.4.5 6.1.4.6 6.1.4.7 6.1.4.8 6.1.4.9 6.1.4.11 6.1.4.12 6.1.4.13 6.1.4.14 6.1.4.15 6.1.4.16 6.1.4.17 6.1.4.18 6.1.4.19 6.1.4.20 6.1.4.21 6.1.4.22 6.1.4.23 6.1.4.24 6.1.4.25 Property 6.1.5.1 6.1.5.2 6.1.5.3 6.1.5.4 6.1.5.5	6.1.4.5 CameraUp 6.1.4.6 ClearColor 6.1.4.7 DefGuiMaxLookZ 6.1.4.8 DerGuiMinLookZ 6.1.4.9 DepthStencilStateDisabled 6.1.4.10 DepthStencilStateEnabled 6.1.4.11 FarClip 6.1.4.12 FogColor 6.1.4.13 fogEnd 6.1.4.14 fogStart 6.1.4.15 FramePeriod 6.1.4.16 IsDisposed 6.1.4.17 Lights 6.1.4.18 NearClip 6.1.4.19 Projection 6.1.4.20 SpriteBatch 6.1.4.21 TargetEye 6.1.4.22 TargetLookAt 6.1.4.23 View 6.1.4.24 Window 6.1.4.25 Zoom Property Documentation 6.1.5.1 CameraForward 6.1.5.2 CameraForwardMag 6.1.5.3 CameraForwardNormalized 6.1.5.4 CameraRight 6.1.5.5 CurrentAspect

iv CONTENTS

		6.1.5.7	CurrentNearClip	. 38
		6.1.5.8	Eye	. 38
		6.1.5.9	LookAt	. 38
		6.1.5.10	MaxCamDistance	. 38
		6.1.5.11	MinCamDistance	. 39
6.2	Blotch	.BlGuiCont	trol Class Reference	. 39
	6.2.1	Detailed	Description	. 40
	6.2.2	Member	Function Documentation	. 40
		6.2.2.1	HandleInput()	. 40
		6.2.2.2	OnMouseChangeDelegate()	. 40
	6.2.3	Member	Data Documentation	. 40
		6.2.3.1	OnMouseOver	. 40
		6.2.3.2	Position	. 41
		6.2.3.3	PrevMouseState	. 41
		6.2.3.4	Texture	. 41
		6.2.3.5	Window	. 41
6.3	Blotch	.BIMipmap	Class Reference	. 41
	6.3.1	Detailed	Description	. 42
	6.3.2	Construc	ctor & Destructor Documentation	. 42
		6.3.2.1	BIMipmap()	. 42
	6.3.3	Member	Function Documentation	. 43
		6.3.3.1	Dispose()	. 43
	6.3.4	Member	Data Documentation	. 43
		6.3.4.1	IsDisposed	. 43
6.4	Blotch	.BISprite C	Class Reference	. 43
	6.4.1	Detailed	Description	. 47
	6.4.2	Member	Enumeration Documentation	. 47
		6.4.2.1	PreDrawCmd	. 47
		6.4.2.2	PreLocalCmd	. 48
		6.4.2.3	PreMeshDrawCmd	. 48

CONTENTS

	6.4.2.4	PreSubspritesCmd	. 48
6.4.3	Construc	tor & Destructor Documentation	. 49
	6.4.3.1	BISprite()	. 49
6.4.4	Member	Function Documentation	. 49
	6.4.4.1	Add()	. 49
	6.4.4.2	CompareTo()	. 50
	6.4.4.3	Dispose()	. 50
	6.4.4.4	DoesRayIntersect()	. 50
	6.4.4.5	Draw()	. 51
	6.4.4.6	DrawCleanupType()	. 51
	6.4.4.7	ExecuteFrameProc()	. 51
	6.4.4.8	FrameProcType()	. 51
	6.4.4.9	GetRayIntersections()	. 52
	6.4.4.10	GetViewCoords()	. 52
	6.4.4.11	NearestPointOnLine()	. 52
	6.4.4.12	PreDrawType()	. 53
	6.4.4.13	PreLocalType()	. 53
	6.4.4.14	PreMeshDrawType()	. 53
	6.4.4.15	PreSubspritesType()	. 54
	6.4.4.16	SetAllMaterialBlack()	. 54
6.4.5	Member	Data Documentation	. 54
	6.4.5.1	AbsoluteMatrix	. 54
	6.4.5.2	BoundSphere	. 55
	6.4.5.3	Color	. 55
	6.4.5.4	ConstSize	. 55
	6.4.5.5	CylindricalBillboardX	. 55
	6.4.5.6	CylindricalBillboardY	. 55
	6.4.5.7	CylindricalBillboardZ	. 56
	6.4.5.8	DrawCleanup	. 56
	6.4.5.9	EmissiveColor	. 56

vi CONTENTS

		6.4.5.10	Flags	. 56
		6.4.5.11	FlagsParameter	. 56
		6.4.5.12	Graphics	. 57
		6.4.5.13	IncludeInAutoClipping	. 57
		6.4.5.14	IsDisposed	. 57
		6.4.5.15	LastWorldMatrix	. 57
		6.4.5.16	LODs	. 57
		6.4.5.17	LodScale	. 58
		6.4.5.18	Matrix	. 58
		6.4.5.19	Mipmap	. 58
		6.4.5.20	MipmapScale	. 58
		6.4.5.21	Name	. 58
		6.4.5.22	PreDraw	. 59
		6.4.5.23	PreLocal	. 59
		6.4.5.24	PreMeshDraw	. 59
		6.4.5.25	PreSubsprites	. 59
		6.4.5.26	SpecularColor	. 59
		6.4.5.27	SpecularPower	. 60
		6.4.5.28	SphericalBillboard	. 60
	6.4.6	Property	Documentation	. 60
		6.4.6.1	ApparentSize	. 60
		6.4.6.2	CamDistance	. 60
		6.4.6.3	LodTarget	. 60
		6.4.6.4	VerticesEffect	. 61
6.5	Blotch.	BlWindow	3D Class Reference	. 61
	6.5.1	Detailed	Description	. 62
	6.5.2	Construc	ctor & Destructor Documentation	. 62
		6.5.2.1	BIWindow3D()	. 62
	6.5.3	Member	Function Documentation	. 63
		6.5.3.1	Command()	. 63

CONTENTS vii

		6.5.3.2	Dispose()	63
		6.5.3.3	Draw()	63
		6.5.3.4	EnqueueCommand()	63
		6.5.3.5	EnqueueCommandBlocking()	64
		6.5.3.6	FrameDraw()	64
		6.5.3.7	FrameProc()	64
		6.5.3.8	FrameProcSpritesAdd()	65
		6.5.3.9	FrameProcSpritesRemove()	65
		6.5.3.10	Initialize()	65
		6.5.3.11	LoadContent()	65
		6.5.3.12	Setup()	66
		6.5.3.13	Update()	66
	6.5.4	Member	Data Documentation	66
		6.5.4.1	Graphics	66
		6.5.4.2	GuiControls	66
		6.5.4.3	IsDisposed	66
6.6	Blotch.	BIGraphics	sDeviceManager.Light Class Reference	67
	6.6.1	Detailed	Description	67

Chapter 1

Blotch3D

Create real-time 3D graphics with just a few lines of C# code.

1.1 Quick start

- 1. Get the installer for the latest release of MonoGame from http://www.monogame.net/downloads/and run it. (Do NOT get the current development version nor the NuGet package.)
- 2. Get the Blotch3D repository zip from https://github.com/Blotch3D/Blotch3D and unzip it.
- 3. Open the Visual Studio solution file (Blotch3D.sln).
- 4. Build and run the example projects. (For other platforms, you'll need the appropriate Visual Studio add-on and you will need to create a separate project for that platform.)
- 5. Use IntelliSense to see the reference documentation, or see the "Blotch3DManual.pdf".

1.2 Introduction

Blotch3D is a C# library that vastly simplifies many of the tasks in developing 3D applications and games.

Examples are provided that show how with just a few lines of code you can...

- Load standard 3D model file types as "sprites", and display and move thousands of them in 3D at high frame rates.
- · Set a sprite's material, texture, and lighting response.
- · Load textures from standard image files.
- Show 2D and in-world (as a texture) text in any font, size, color, etc. at any 2D or 3D position, and make text follow a sprite in 2D or 3D.
- Attach sprites to other sprites to create 'sprite trees' as large as you want. Child sprite orientation, position, scale, etc. are relative to the sprite's parent, and can be changed dynamically (i.e. the sprite trees are dynamic scene graphs.)
- Override all steps in the drawing of each sprite.

2 Blotch3D

• You can give the user easy control over all aspects of the camera (zoom, pan, truck, dolly, rotate, etc.).

- · Easily control all aspects of the camera programmatically.
- · Create billboard sprites.
- · Connect sprites to the camera to implement HUD models and text.
- · Connect the camera to a sprite to implement 'cockpit view', etc.
- Implement GUI controls (as dynamic 2D text or image rectangles) in the 3D window.
- · Implement a skybox.
- · Get a list of sprites touching a ray, to implement weapons fire, etc.
- Get a list of sprites under the mouse position, to implement mouse selection, tooltips, pop-up menus, etc.
- · Implement levels-of-detail.
- · Implement mipmaps.
- Implement translucent sprites and textures with an alpha channel.
- · Create sprite models programmatically (custom vertices).
- · Use with WPF and WinForms, on Microsoft Windows.
- Access and override many window features and functions using the provided WinForms Form object of the window (Microsoft Windows only).
- · Detect collisions between sprites.
- · Implement fog
- Define ambient lighting, and up to three point-light sources. (More lights can be defined if a custom shader is used.)
- Build for many platforms (currently supports all Microsoft Windows platforms, iOS, Android, MacOS, Linux, PS4, PSVita, Xbox One, and Switch).

Blotch3D sits on top of MonoGame. MonoGame is a widely used 3D library for C#. It is free, fast, cross platform, actively developed by a large community, and used in many professional games. There is a plethora of MonoGame documentation, tutorials, examples, and discussions on line.

Reference documentation of Blotch3D (classes, methods, fields, properties, etc.) is available through Visual Studio IntelliSense, and in "Blotch3DManual.pdf". (Note: To support Doxygen, links in the IntelliSense comments are preceded with '#'.)

See MonoGame.net for the official MonoGame documentation. When searching on-line for other MonoGame documentation and discussions, be sure to note the MonoGame version being discussed. Documentation of earlier versions may not be compatible with the latest.

MonoGame fully implements Microsoft's (no longer supported) XNA 4 engine, but for multiple platforms. It also implements features beyond XNA 4. Therefore XNA 4 documentation you come across may not show you the best way to do something, and documentation of earlier versions of XNA (versions 2 and 3) will often not be correct. For conversion of XNA 3 to XNA 4 see http://www.nelsonhurst. \leftarrow com/xna-3-1-to-xna-4-0-cheatsheet/.

Note that to support all the platforms, certain limitations were necessary. Currently you can only have one 3D window. Also, there is no official cross-platform way to specify an existing window to use as the 3D window—MonoGame must create it. See below for details and work-arounds.

1.3 Project structure 3

1.3 Project structure

The provided Visual Studio solution file contains both the Blotch3D library project with source, and the example projects.

"BlotchExample01_Basic" is a bare-bones Blotch3D application, where Example.cs contains the example code. Other example projects also contain an Example.cs, which is similar to the one from the basic example but with a few additions to it to demonstrate a certain feature. In fact, you can do a diff between the "BlotchExample01_Basic" source file and another example's source file to see what extra code must be added to implement the features it demonstrates [TBD: the "full" example needs to be split to several simpler examples].

All the provided projects are configured to build for the Microsoft Windows x64 platform. See below for other platforms.

If you are copying the Blotch3D assembly (like Blotch3D.dll on Microsoft Windows) to a project or packages folder so you don't have to include the source code of the library in your solution, be sure to also copy Blotch3D.xml so you still get the IntelliSense. You shouldn't have to copy any other binary file from the Blotch3D output folder if you've installed MonoGame on the destination machine. Otherwise you should copy the entire project output folder. For example, you'd probably want to copy everything in the output folder when you are distributing your app.

To create a new project, you must first install MonoGame as described in the Quick start section, if you haven't already. You must also install the Visual Studio add-ons, etc. for the desired platform if different from Microsoft Windows. (For example, for Android you'd need the Xamarin for Android add-on.)

Then try one of the following, roughly in order of increasing difficulty:

- 1. Copy an existing Blotch3D example project and rename it (Windows only).
- 2. Use the project wizard to create a MonoGame project, and then add a reference to Blotch3D, or the Blotch3D source.
- 3. Look online for instructions on creating the project/platform type you want.
- 4. Do something like the following:
 - a. Create a new project with the project wizard that is close to the type you want.
 - b. Add a reference to MonoGame. (For example, for .NET Framework on Windows you would add something like \Program Files (x86)\MonoGame\v3.0\Assemblies\Windows\MonoGame.Framework.dll)
 - c. If the Blotch3D project is not in the solution, add a reference to the Blotch3D assembly (like Blotch3D.dll on Microsoft Windows).
 - d. Follow the procedure in the 'Making 3D models' section to add a content folder and the pipeline manager so that you have a way to add content.
 - e. If available on the selected platform, you'll probably want to set the output type to 'Console Application' for now, so you can see any debug messages. You can change this to 'Windows Application' (or whatever) later, if you like.
 - f. You may need to copy various XML structures into your csproj file from other projects that have some of the attributes that you want.

To create a 3D window, follow the guidelines in the Development section.

4 Blotch3D

1.4 Development

See the examples.

To make a 3D window, you must derive a class from BlWindow3D and override the Setup, FrameProc, and Frame← Draw methods.

When it comes time to open the 3D window, you instantiate that class and call its "Run" method *from the same thread that instantiated it.* The Run method will call the Setup, FrameProc, and FrameDraw methods when appropriate (explained below), and not return until the window closes. (For this reason, you may want to do all this from some other thread than the main thread so that the main thread can handle a GUI or whatever).

We will call the abovementioned thread the "3D thread".

All code that accesses 3D resources must be done in the 3D thread, including code that creates and uses all Blotch3D and MonoGame objects. Note that this rule also applies to any code structure that may internally use other threads, as well. Do not use Parallel, async, etc. code structures that access 3D resources.

This pattern and these rules are also used by MonoGame. In fact, the BlWindow3D class inherits from Mono Game's "Game" class. But instead of overriding certain "Game" class methods, you override BlWindow3D's Setup, FrameProc, and FrameDraw methods. Other "Game" class methods and events can still be overridden, if needed.

All this is necessary because certain 3D subsystems (OpenGL, DirectX, etc.) generally require that 3D resources be accessed by a single thread. (There are some platform-specific exceptions, but MonoGame does not use them.)

The Setup, FrameProc, and FrameDraw override methods are called by the 3D thread as follows:

The Setup method is called by the 3D thread exactly once at the beginning of instantiation of the BlWindow3← D-derived object. You might put time-consuming initialization of persistent things in there like loading of persistent content (sprite models, fonts, BlSprites, etc.).

The FrameProc method is called by the 3D thread once per frame. For single-threaded applications this is typically where the bulk of application code resides, except the actual drawing code. For multi-threaded applications, this is typically where all application code resides that does anything with 3D resources. (Note: You can also pass a delegate to the BISprite constructor, which will cause that delegate to be executed just after the BIWindow3D's FrameProc method is executed. The effect is the same as putting the code in FrameProc, but it better encapsulates sprite-specific code.)

The FrameDraw method is called by the 3D thread every frame, but only if there is enough CPU for that thread. Otherwise it calls it less frequently. This is where you must put drawing code (BISprite.Draw, BIGraphicsDevice Manager.DrawText, etc.). For apps that may suffer from severe CPU exhaustion (at least for the 3D thread), you may want to put your app code in this method so it is called less frequently (as long as that code can properly handle being called at variable rates).

A single-threaded application would have all its code in those three overridden methods.

If you are developing a multithreaded app, then you would probably want to reserve the 3D thread only for tasks that access 3D resources. When other threads do need to create, change, or destroy 3D resources or otherwise do something in a thread-safe way with the 3D thread, they can pass a delegate to BlWindow3D.EnqueueCommand or BlWindow3D.EnqueueCommandBlocking.

Because multiple windows are not conducive to some of the supported platforms, MonoGame, and thus Blotch3D, do not support more than one window. You *can* create multiple windows, but they don't work correctly (input sometimes goes to the wrong window) and in certain situations will crash. If you want to be able to "close" and "re-open" a window, you can just hide and show the same window. (On Microsoft Windows, you can use the BlWindow3D.Form object for that.)

To make the MonoGame window be a child window of an existing GUI, you need to explicitly size, position, and convey Z order so that it is overlaid at the right screen location. The easiest way to do that would be to overlay the 3D window on an existing child window by getting the current attributes of that child window, whenever they change. On Microsoft Windows, the window's Form object (BlWindow3D.Form) may be of help in this. There may also be a way to specify that an existing window be used as the 3D window, but it probably isn't portable and may not work in later MonoGame releases.

All MonoGame features remain available in Blotch3D. For examples:

1.5 Making 3D models 5

• The models encapsulated in a BISprite (see the BISprite.LODs field) is a list of MonoGame Model objects and/or triangle arrays (VertexPositionNormalTexture[]).

- The BIWindow3D class derives from the MonoGame "Game" class.
- The BIGraphicsDeviceManager class derives from MonoGame's "GraphicsDeviceManager" class.

Most Blotch3D objects must be Disposed when you are done with them and you are not otherwise terminating the program.

See the examples, reference documentation, and IntelliSense for more information.

1.5 Making 3D models

There are several primitive models available with Blotch3D. The easiest way to add them to your project is to...

- 1. Copy the Content folder from the Blotch3D project folder to your project folder
- 2. Add the "Content.mgcb" file in that folder to your project
- 3. Right-click it and select "Properties"
- 4. Set the "Build Action" to "MonoGameContentReference"

If the "MonoGameContentReference" build option is not available in the drop-down list because, for example, you have created a project from scratch (rather than copied an existing example), then try this:

(from http://www.infinitespace-studios.co.uk/general/monogame-content-pipeline-integration

- 1. Open your application .csproj in an Editor.
- 2. In the first <PropertyGroup> section add <MonoGamePlatform>\$(Platform)</MonoGamePlatform>, where \$(Platform) is the system you are targeting e.g Windows, iOS, Android. For example: <MonoGame← Platform>Windows</MonoGamePlatform>
- 3. Add the following lines right underneath the <MonoGamePlatform /> element: <MonoGameInstall← Directory Condition="\'\$(OS)\'!= \'Unix\'">\$(MSBuildProgramFiles32)</MonoGameInstallDirectory> <MonoGameInstallDirectory Condition="\'\$(OS)\' == \'Unix\' ">\$(MSBuildExtensionsPath)</MonoGame← InstallDirectory>
- 4. Find the <Import/> element for the CSharp (or FSharp) targets and underneath add: <Import Project="\$(MSBuildExtensionsPath)\MonoGame\v3.0\MonoGame.Content.Builder.targets" />

You can get the names of the content files by starting the MonoGame pipeline manager (double-click Content/ \leftarrow Content.mgcb). You can also add more content via the pipeline manager (see http://rbwhitaker. \leftarrow wikidot.com/monogame-managing-content). See the examples for details on how to load and display models, fonts, etc.

If no existing model meets your needs, you can either programmatically create a model by specifying the vertices and normals (see the example that uses custom Vertices), or create a model with, for example, the Blender 3D modeler and then add it to the project with the pipeline manager. The pipeline manager can import several model file types. You can also instruct Blender to include texture (UV) mapping by using one of the countless tutorials online, like $\frac{\text{https:}}{\text{www.youtube.com/watch?v=2xTzJIaKQFY}} \text{ or } \frac{\text{https:}}{\text{https:}} = \frac{\text{https:}}{\text{models from the web, but mind the copyright.}}$

6 Blotch3D

1.6 Dynamically changing a sprite's orientation and position

Each sprite has a "Matrix" member that defines its orientation and position relative to its parent sprite, or to an unmodified coordinate system if there is no parent. There are many static and instance methods of the Matrix class that let you easily set and change the scaling, translation, rotation, etc. of a matrix.

When you change anything about a sprite's matrix, you also change the orientation and position of its child sprites, if any. That is, subsprites reside in the parent sprite's coordinate system. For example, if a child sprite's matrix scales it by 3, and its parent sprite's matrix scales by 4, then the child sprite will be scaled by 12 in world space. Likewise, rotation, shear, and translation are inherited, as well.

There are also static and instance Matrix methods and operator overloads to combine (multiply) matrices to form a single matrix which combines the effects of multiple matrices. For example, a rotate matrix and a scale matrix can be multiplied to form a single rotate-scale matrix. But mind the multiplication order because matrix multiplication is not commutative. See below for details, but novices can simply try the operation one way (like A times B) and, if it doesn't work the way you wanted, do it the other way (B times A).

For a good introduction (without the math), see http://rbwhitaker.wikidot.com/monogame-basic-matrices.

The rest of this section should be studied only when you need a deeper knowledge.

1.7 Matrix internals

Here we'll introduce the internals of 2D matrices. 3D matrices simply have one more dimension.

Let's imagine a model that has one vertex at (4,1) and another vertex at (3,3). (This is a very simple model comprised of only two vertices!)

You can move the model by moving each of those vertices by the same amount, and without regard to where each is relative to the origin. To do that, just add an offset vector to each vertex. For example, we could add the vector (2,1) to each of those original vertices, which would result in final model vertices of (6,2) and (5,4). In that case we have *translated* (moved) the model.

Matrices certainly support translation. But first let's talk about moving a vertex *relative to its current position from the origin*, because that's what gives matrices the power to shear, rotate, and scale a model about the origin. This is because those operations affect each vertex differently depending on its relationship to the origin.

If we want to scale (stretch) the X relative to the origin, we can multiply the X of each vertex by 2.

For example,

X' = 2X (where X is the initial value, and X' is the final value)

... which, when applied to each vertex, would change the above vertices from (4,1) and (3,3) to (8,1) and (6,3).

We might want to define how to change each X according to the original X value of each vertex and also according to the original Y value, like this:

X' = aX + bY

For example, if a=0 and b=1, then this would set the new X of each vertex to its original Y value.

Finally, we might also want to define how to create a new Y for each vertex according to its original X and original Y. So, the equations for both the new X and new Y are:

1.7 Matrix internals 7

X' = aX + bY
Y' = cX + dY
(Remember, the idea is to apply this to every vertex.)
By convention we might write the four matrix elements (a, b, c, and d) in a 2x2 matrix, like this:
a b
c d
This should all be very easy to understand.
But why are we even talking about it? Because now we can define the elements of a matrix that, if applied to each vertex of a model, define any type of <i>transform</i> in the position and orientation of that model.
For example, if we apply the following matrix to each of the model's vertices:
1 0
0 1
then the vertices are unchanged, because
X' = 1X + 0Y
Y' = 0X + 1Y
sets X' to X and Y' to Y.
This matrix is called the <i>identity</i> matrix because the output (X',Y') is the same as the input (X,Y).
We can create matrices that scale, shear, and even rotate points. To make a model three times as large (relative to the origin), use the matrix:
3 0
0 3
To scale only X by 3 (stretch a model in the X direction about the origin), then use the matrix:
3 0
0 1
The following matrix flips (mirrors) the model vertically about the origin:
1 0
0 -1
Below is a matrix to rotate a model counterclockwise by 90 degrees about the origin:
0 -1
1 0

Here is a matrix that rotates a model counterclockwise by 45 degrees about the origin:

Generated by Doxygen

8 Blotch3D

0.707 - 0.707

0.707 0. 707

Note that '0.707' is the sine of 45 degrees.

A matrix can be created to rotate any amount about any axis.

(The Matrix class provides functions that make it easy to create a rotation matrix from a rotation axis and angle, or pitch and yaw and roll, or something called a quaternion, since otherwise we'd have to call sine and cosine functions, ourselves, to create the matrix elements.)

Since we often also want to translate (move) points *without* regard to their current distances from the origin as we did at the beginning of this section, we add more numbers to the matrix just for that purpose. And since many mathematical operations on matrices work only if the matrix has the same number of rows as columns, we add more elements simply to make the rows and columns the same size. And since Blotch3D/MonoGame works in 3-space, we add even more numbers to handle the Z dimension. So, the final matrix size in 3D graphics is 4x4.

Specifically:

$$X' = aX + bY + cZ + d$$

$$Y' = eX + fY + gZ + h$$

$$Z' = iX + jY + kZ + I$$

$$W = mX + nY + oZ + p$$

(Consider the W as unused, for now.)

Notice that the d, h, and I are the translation vector.

Rather than using the above 16 letters ('a' through 'p') for the matrix elements, the Matrix class in MonoGame uses the following field names:

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

Besides the ability to multiply entire matrices (as mentioned at the beginning of this section), you can also divide (i.e. multiply by a matrix inverse) matrices to, for example, solve for a matrix that was used in a previous matrix multiply, or otherwise isolate one operation from another. Welcome to linear algebra! The Matrix class provides matrix multiply, inversion, etc. methods. If you are interested in how the individual matrix elements are processed to perform matrix arithmetic, please look it up online.

As was previously mentioned, each sprite has a matrix describing how that sprite and its children are transformed from the parent sprite's coordinate system. Specifically, Blotch3D does a matrix-multiply of the parent's matrix with the child's matrix to create the final ("absolute") matrix used to draw that child, and that matrix is also used as the parent matrix for the subsprites of that child.

1.8 A Short Glossary of 3D Graphics Terms

Vertex

A point in space. Typically, a point at which the line segments of a polygon meet. That is, a corner of a polygon. A corner of a model. Most visible models are described as a set of vertices. Each vertex can have a color, texture coordinate, and normal.

Polygon

A visible surface described by a set of vertices that define its corners. A triangle is a polygon with three vertices, a quad is a polygon with four. One side of a polygon is a "face".

Ambient lighting

A 3D scene has one ambient light setting. The intensity of ambient lighting on the surface of a polygon is unrelated to the orientation of the polygon or the camera.

Diffuse lighting

Directional or point source lighting. You can have multiple directional or point light sources. Its intensity depends on the orientation of the polygon relative to the light.

Texture

A 2D image applied to the surface of a model. For this to work, each vertex of the model must have a texture coordinate associated with it, which is an X,Y coordinate of the 2D bitmap image that should be aligned with that vertex. Pixels across the surface of a polygon are interpolated from the texture coordinates specified for each vertex.

Normal

In mathematics, the word "normal" means a vector that is perpendicular to a surface. In 3D graphics, "normal" means a vector that indicates from what direction light will cause a surface to be brightest. Normally they would mean the same thing. However, by defining a normal at some angle other than perpendicular, you can somewhat cause the illusion that a surface lies at a different angle. Each vertex of a polygon has a normal vector associated with it and the brightness across the surface of a polygon is interpolated from the normals of its vertices. So, a single flat polygon can have a gradient of brightness across it giving the illusion of curvature. In this way a model composed of fewer polygons can still be made to look quite smooth.

X-axis

The axis that extends right from the origin.

Y-axis

The axis that extends forward from the origin.

Z-axis

The axis that extends up from the origin.

Origin

The center of a coordinate system. The point in the coordinate system that is, by definition, at (0,0).

Translation

Movement. The placing of something at a different location from its original location.

10 Blotch3D

Rotation

The circular movement of each vertex of a model about the same axis.

Scale

A change in the width, height, and/or depth of a model.

Shear (skew)

A pulling of one side of a model in one direction, and the opposite side in the opposite direction, without rotation, such that the model is distorted rather than rotated. A parallelogram is a rectangle that has experienced shear. If you apply another shear along an orthogonal axis of the first shear, you rotate the model.

Yaw

Rotation about the Y-axis

Pitch

Rotation about the X-axis, after any Yaw has been applied.

Rol

Rotation about the Z-axis, after any Pitch has been applied.

Euler angles

The yaw, pitch, and roll of a model, applied in that order.

Matrix

An array of numbers that can describe a difference, or transform, in one coordinate system from another. Each sprite has a matrix that defines its location, rotation, scale, shear etc. within the coordinate system of its parent sprite, or within an untransformed coordinate system if there is no parent. See Dynamically changing a sprite's orientation and position.

Frame

In this document, \'frame\' is analogous to a movie frame. A moving 3D scene is created by drawing successive frames.

Depth buffer

3D systems typically keep track of the depth of the polygon surface (if any) at each 2D window pixel so that they know to draw the nearer pixel over the farther pixel in the 2D display. The depth buffer is an array with one element per 2D window pixel, where each element is (typically) a 32-bit floating point value indicating the depth of the last drawn pixel. In that way pixels that are farther away need not be drawn. You can override this behavior for special cases. See BIGraphicsDeviceManager.NearClip and BIGraphicsDeviceManager.FarClip.

Near clipping plane (NearClip)

The distance from the camera at which a depth buffer element is equal to zero. Nearer surfaces are not drawn.

Far clipping plane (FarClip)

The distance from the camera at which a depth buffer element is equal to the maximum possible floating-point value. Farther surfaces are not drawn.

Model space

The untransformed three-dimensional space that models are initially created/defined in. Typically, a model is centered on the origin of model space.

World space

The three-dimensional space that you see through the two-dimensional view of the window. A model is transformed from model space to world space by its final matrix (that is, the matrix we get *after* a sprite's matrix is multiplied by its parent sprite matrices, if any).

View space

The two-dimensional space of the window on the screen. Objects in world space are transformed by the view matrix and projection matrix to produce the contents of the window. You don't have to understand the view and projection matrices, though, because there are higher-level functions that control them—like Zoom, aspect ratio, and camera position and orientation functions.

1.9 Troubleshooting

1.9 Troubleshooting

Q: When I set a billboard attribute of a flat sprite (like a plane), I can no longer see it.

A: Perhaps the billboard orientation is such that you are looking at the plane from the side or back. Try setting a rotation in the sprite's matrix (and make sure it doesn't just rotate it on the axis intersecting your eye point).

Q: When I'm inside a sprite, I can't see it.

A: By default, Blotch3D draws only the outside of a sprite. Try doing a "Graphics.GraphicsDevice.RasterizerState = RasterizerState.CullClockwise" (or set it to CullNone to see both the inside and outside) in the BlSprite.PreDraw delegate, and set it back to CullCounterClockwise in the BlSprite.DrawCleanup delegate.

Q: I set a sprite's matrix so that one of the dimensions has a scale of zero, but then the sprite becomes black.

A: A sprite's matrix also affects its normals. By setting a dimension's scale to zero, you may have caused some of the normals to be zero'd-out as well.

Q: When I am zoomed-in a large amount, sprite and camera movement jumps as the sprite or camera move.

A: You are experiencing floating point precision errors in the positioning algorithms. About all you can do is "fake" being that zoomed in by, instead, moving the camera forward temporarily. Or simply don't allow zoom to go to that extreme.

Q: Sometimes I see slightly farther polygons and parts polygons of sprites appear in front of nearer ones, and it varies as the camera or sprite moves.

A: The floating-point precision limitation of the depth buffer can cause this. Try increasing your near clip and/or decreasing your far clip so the depth buffer doesn't have to cover so much dynamic range.

Q: I have a sprite that I want always to be visible, but I think its invisible because its outside the depth buffer, but I don't want to change the depth buffer.

A: Try doing a "Graphics.GraphicsDevice.DepthStencilState = Graphics.DepthStencilStateDisabled" in the Bl⇔ Sprite.PreDraw delegate, and set it back to DepthStencilStateEnabled in the BlSprite.DrawCleanup delegate.

1.10 Rights

Blotch3D (formerly GWin3D) is Copyright © 1999-2018 by Kelly Loum

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, IN ← CLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

12 Blotch3D

Chapter 2

Namespace Index

2.1	Packag	es

Here are the packages with brief descriptions (if available):				
Blotch	19			

14 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Blotch.BIGuiControl	39
Dictionary	
Blotch.BlSprite	. 43
Game	
Blotch.BlWindow3D	. 61
GraphicsDeviceManager	
Blotch.BlGraphicsDeviceManager	. 21
Cloneable	
Blotch.BlGraphicsDeviceManager	. 21
Comparable	
Blotch.BISprite	. 43
Disposable	
Blotch.BIMipmap	. 41
Blotch.BlSprite	. 43
Blotch.BlGraphicsDeviceManager.Light	67
ist	
Blotch.BIMipmap	. 41

16 Hierarchical Index

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Blotch.BlGraphicsDeviceManager	
This holds everything having to do with an output device. BIWindow3D creates one of these for	
itself	21
Blotch.BlGuiControl	
A 2D GUI control. To create a GUI control: instantiate one of these, set its initial Texture (remember to create it in the 3D thread context), window position, and delegate, and then add it to BIWindow3D::GuiControls. (Any member can be dynamically changed.) The texture will be displayed, and then each frame the mouse is over it the delegate will be called. The delegate typically would examine the current mouse state (Mouse.GetState()) and the PrevMouseState member to detect button changes, etc. and perform an action. The delegate is called in the context of the window's 3D thread after the BIWindow3D::FrameProc method. You can use BIGraphicsDeviceManager::TextToTexture to create a textual textures, or just load a texture from a content file. Remember to Dispose textures when you are done with them.	39
Blotch.BIMipmap	
A mipmap of textures for a given BISprite. You could load this from an image file and then assign it to a BISprite::Mipmap. Note that this is a software mipmap (i.e. it isn't implemented in the 3D hardware). That is, only one resolution texture is used at time.	41
Blotch.BISprite	
A BISprite is a single 3D object. Each sprite can also hold any number of subsprites, so you can make a sprite tree (a scene graph). In that case the child sprites 'follow' the orientation and position of the parent sprite. That is, they exist in the coordinate system of the parent sprite. The location and orientation of a sprite in its parent's coordinate system is defined by the sprite's Matrix member. Subsprites, LODs, and Mipmap are NOT disposed when the sprite is disposed, so you can assign the same one to multiple sprites.	43
Blotch.BlWindow3D	
To make a 3D window, you must derive a class from BlWindow3D and override the Setup, FrameProc, and FrameDraw methods. When it comes time to open the 3D window, you instantiate that class and call its "Run" method from the same thread that instantiated it. The Run method will call the Setup, FrameProc, and FrameDraw methods when appropriate, and not return until the window closes. All code that accesses 3D resources must be done in that thread, including code that creates and uses all Blotch3D and MonoGame objects. Note that this rule also applies to any code structure that may internally use other threads, as well. Do not use Parallel, async, etc. code structures that access 3D resources. Other threads that need to access 3D resources can do so by passing a delegate to EnqueueCommand and EnqueueCommandBlocking	61
Blotch.BlGraphicsDeviceManager.Light Defines a light. See the Lights field. The default BasicShader supports up to three lights	67
Dominos a light. One the Lights held. The delault basiconader supports up to three lights	07

18 Class Index

Chapter 5

Namespace Documentation

5.1 Blotch Namespace Reference

Classes

· class BIDebug

This static class holds the debug flags. Many flags are initialized according to whether its a Debug build or Release build. Some flags enable exceptions for probable errors, and many flags cause warning messages to be sent to the console window, if it exist. For this reason you should first test your app as a debug build console app.

· class BIGraphicsDeviceManager

This holds everything having to do with an output device. BIWindow3D creates one of these for itself.

class BlGuiControl

A 2D GUI control. To create a GUI control: instantiate one of these, set its initial Texture (remember to create it in the 3D thread context), window position, and delegate, and then add it to BIWindow3D::GuiControls. (Any member can be dynamically changed.) The texture will be displayed, and then each frame the mouse is over it the delegate will be called. The delegate typically would examine the current mouse state (Mouse.GetState()) and the PrevMouseState member to detect button changes, etc. and perform an action. The delegate is called in the context of the window's 3D thread after the BIWindow3D::FrameProc method. You can use BIGraphicsDeviceManager::TextToTexture to create a textual textures, or just load a texture from a content file. Remember to Dispose textures when you are done with them.

class BIMipmap

A mipmap of textures for a given BlSprite. You could load this from an image file and then assign it to a BlSprite::Mipmap. Note that this is a software mipmap (i.e. it isn't implemented in the 3D hardware). That is, only one resolution texture is used at time.

· class BISprite

A BISprite is a single 3D object. Each sprite can also hold any number of subsprites, so you can make a sprite tree (a scene graph). In that case the child sprites 'follow' the orientation and position of the parent sprite. That is, they exist in the coordinate system of the parent sprite. The location and orientation of a sprite in its parent's coordinate system is defined by the sprite's Matrix member. Subsprites, LODs, and Mipmap are NOT disposed when the sprite is disposed, so you can assign the same one to multiple sprites.

class BlWindow3D

To make a 3D window, you must derive a class from BIWindow3D and override the Setup, FrameProc, and FrameDraw methods. When it comes time to open the 3D window, you instantiate that class and call its "Run" method from the same thread that instantiated it. The Run method will call the Setup, FrameProc, and FrameDraw methods when appropriate, and not return until the window closes. All code that accesses 3D resources must be done in that thread, including code that creates and uses all Blotch3D and MonoGame objects. Note that this rule also applies to any code structure that may internally use other threads, as well. Do not use Parallel, async, etc. code structures that access 3D resources. Other threads that need to access 3D resources can do so by passing a delegate to EnqueueCommand and EnqueueCommandBlocking.

Chapter 6

Class Documentation

6.1 Blotch.BlGraphicsDeviceManager Class Reference

This holds everything having to do with an output device. BIWindow3D creates one of these for itself.

Inheritance diagram for Blotch.BlGraphicsDeviceManager:

Classes

· class Light

Defines a light. See the Lights field. The default BasicShader supports up to three lights.

Public Member Functions

- BlGraphicsDeviceManager (BlWindow3D window)
- · void Initialize ()

For internal use only. Apps should not normally call this. This initializes some values AFTER the BIWindow3D has been created.

void ExtendClippingTo (BISprite s)

Informs the auto-clipping code of an object that should be included in the clipping region. This is mainly for internal use. Application code should control clipping with NearClip and FarClip.

• void SetSpriteToCamera (BISprite sprite)

Sets a sprite's BISprite::Matrix to the current camera position and orientation. You could use this to implement a HUD, for example. Note: This only works correctly if the sprite has no parent (and is thus drawn directly) or it's parents are untransformed. If all you want is to set the sprite's position (but NOT orientation) to the camera, then set the sprite's Matrix.Translation = graphics.Eye

void SetCameraToSprite (BISprite sprite)

Sets the camera position and orientation to the current position and orientation of a sprite. You could use for cockpit view, for example. Note that the camera will lag sprite movement unless the following is done: For every frame you must first calculate the sprite's position and orientation, call this function, and then draw everything.

22 Class Documentation

· void AdjustCameraZoom (double dif)

Sets the Zoom. If dif is zero, then there is no change in zoom. Normally one would set zoom with the Zoom field. This is mainly for internal use.

void AdjustCameraDolly (double dif)

Migrates the current camera dolly (distance from LookAt) according to dif. If dif is zero, then there is no change in dolly.

void AdjustCameraTruck (double difX, double difY=0)

Adjusts camera truck (movement relative to camera direction) according to difX and difY. if difX and difY are zero, then truck position isn't changed.

void AdjustCameraRotation (double difX, double difY=0)

Adjusts camera rotation about the LookAt point according to difX and difY. if difX and difY are zero, then rotation isn't changed.

void AdjustCameraPan (double difX, double difY=0)

Adjusts camera pan (changing direction of camera) according to difX and difY. if difX and difY are zero, then pan direction isn't changed.

• Ray DoDefaultGui ()

Updates Eye, LookAt, etc. according to mouse and certain key input. Specifically: Wheel=Dolly, CTRL-wheel=Zoom, Left-drag=Truck, Right-drag=Rotate, CTRL-left-drag=Pan, Esc=Reset. Also, SHIFT causes all the previous controls to be fine rather than coarse. If CTRL is pressed and mouse left or right button is clicked, then returns a ray into window at mouse position.

void ResetCamera ()

Sets Eye. LookAt, etc. back to default starting position.

void SetCameraRollToZero ()

Sets the camera 'roll' to be level with the XY plane

Ray CalculateRay (Vector2 windowPosition)

Returns a ray that that goes from the near clipping plane to the far clipping plane, at the specified window position.

Vector3 GetWindowCoordinates (BISprite sprite)

Returns the window coordinates of the specified sprite.

 Texture2D TextToTexture (string text, SpriteFont font, Microsoft.Xna.Framework.Color? color=null, Microsoft.Xna.Framework.Color? backColor=null)

Returns a Texture2D containing the specified text. It's up to the caller to Dispose the returned texture.

• void DrawTexture (Texture2D texture, Rectangle windowRect, Microsoft.Xna.Framework.Color? color=null)

Draws a texture in the window.

void DrawText (string text, SpriteFont font, Vector2 windowPos, Microsoft.Xna.Framework.Color? color=null)

Draws text on the window.

• Texture2D LoadFromImageFile (string fileName)

Loads a texture directly from an image file.

void PrepareDraw (bool firstCallInDraw=true)

This is automatically called once at the beginning of your BIWindow3D::FrameDraw method. It calculates the latest View and Projection settings according to the current camera specifications (Zoom, Aspect, Eye, LookAt, etc.), and if firstCallInDraw is true it also may sleep in order to obey FramePeriod. It must also be called explicitly after any changes to the camera settings made later in the BIWindow3D::FrameDraw method. Only in the first call should firstCallInDraw be true, and in any subsequent calls it should be false.

Texture2D CloneTexture2D (Texture2D tex)

Returns a deepcopy of the texture

- object Clone ()
- new void Dispose ()

When finished with the object, you should call <code>Dispose()</code> from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if <code>BIDebug::EnableDisposeErrors</code> is true (it is true by default for <code>Debug</code> builds), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying 3D library (OpenGL, etc.) often requires 3D resources to be managed only by one thread.

Public Attributes

Microsoft.Xna.Framework.Matrix View

This is the view matrix. Normally you would use the higher-level functions Eye, LookAt, CameraUp, SetCameraToSprite, and DoDefaultGui intead of changing this directly.

Microsoft.Xna.Framework.Matrix Projection

The Projection matrix. Normally you would use the higher-level functions Zoom, Aspect, NearClip, or FarClip intead of changing this directly.

Vector3 CameraUp

Camera Up vector. Initially set to +Z. ResetCamera and SetCameraToSprite updates this.

double DefGuiMinLookZ = -1

Causes DoDefaultGui to prevent the Z component of CameraForwardNormalized from falling below this value. For example, set this to zero so that DoDefaultGui won't allow the camera to look downward

double DefGuiMaxLookZ = 1

Caues DoDefaultGui to prevent the Z component of CameraForwardNormalized from rising above this value. For example, set this to zero so that DoDefaultGui won't allow the camera to look upward

DepthStencilState DepthStencilStateEnabled

Assign DepthStencilState to this to enable depth buffering

DepthStencilState DepthStencilStateDisabled

Assign DepthStencilState to this to disable depth buffering

Vector3 TargetEye

The point that Eye migrates to, according to CameraSpeed. See Eye for more information.

Vector3 TargetLookAt

The point that LookAt migrates to, according to CameraSpeed. See LookAt for more information.

• double CameraSpeed = .4

The responsiveness of the camera position to changes in TargetEye and TargetLookAt. A value of 0 means it doesn't respond to changes, 1 means it immediately responds. See Eye and LookAt for more information.

double Zoom =45

The field of view, in degrees.

• double Aspect =2

The aspect ratio.

• double NearClip = 0

The near clipping plane, or 0 = autoclip.

• double FarClip = 0

The far clipping plane, or 0 = autoclip.

Microsoft.Xna.Framework.Color ClearColor = new Microsoft.Xna.Framework.Color(0,0,.1f)

The background color.

double AutoRotate = 0

How fast DoDefaultGui should auto-rotate the scene.

• double FramePeriod = 1/60.0

How much time between consecutive frames.

List< Light > Lights = new List<Light>()

The directional lights. Note: The BasicEffect shader only supports the first three. To handle more lights, you'll need to write your own shader.

Vector3 AmbientLightColor = new Vector3(.1f, .1f, .1f)

The ambient light color. If null, no ambient light is enabled. Note: There is no ambient color for a BISprite. Both diffuse and ambient light illuminates the model's Color. See the BISprite::Color member.

Vector3 FogColor = null

If not null, color of fog.

• float fogStart = 1

How far away fog starts. See FogColor.

• float fogEnd = 10

24 Class Documentation

How far away fog ends. See FogColor.

BIWindow3D Window

The BIWindow3D associated with this object.

SpriteBatch SpriteBatch = null

A SpriteBatch for use by certain text and teture drawing methods.

• bool IsDisposed = false

Set when the object is Disposed.

Properties

• Vector3 CameraForward [get]

The vector between Eye and LookAt. Writes to Eye and LookAt and calls to SetCameraToSprite cause this to be updated. Also see CameraForwardNormalized and CameraForwardMag.

• Vector3 CameraForwardNormalized [get]

Normalized form of CameraForward. Writes to Eye and LookAt, and calls to SetCameraToSprite cause this to be updated. Also see CameraForward and CameraForwardMag.

• float CameraForwardMag [get]

The magnitude of CameraForward. Writes to Eye and LookAt, and calls to SetCameraToSprite cause this to be updated. Also see CameraForward and CameraForwardNormalized.

Vector3 CameraRight [get]

Camera Right vector. Writes to Eye and LookAt, and calls to SetCameraToSprite cause this to be updated.

• Vector3 Eye [get]

The current camera position. Note: To change the camera position, set TargetEye. Also see CameraSpeed.

Vector3 LookAt [get]

The current camera LookAt position. Note: To change the camera LookAt, set TargetLookAt. Also see CameraSpeed.

• double CurrentAspect [get]

Current aspect ratio. Same as Aspect unless Aspect==0.

double CurrentNearClip [get]

Current value of near clipping plane. See NearClip.

• double CurrentFarClip [get]

Current value of far clipping plane. See FarClip.

• double MinCamDistance [get]

Distance to the nearest sprite, less its radius. Note this is set to a very large number by PrepareDraw, and then as BIWindow3D::FrameDraw is called it is set more reasonably.

• double MaxCamDistance [get]

Distance to the farthest sprite, plus its radius. Note this is set to a very small number by PrepareDraw, and then as BIWindow3D::FrameDraw is called it is set more reasonably.

6.1.1 Detailed Description

This holds everything having to do with an output device. BIWindow3D creates one of these for itself.

6.1.2 Constructor & Destructor Documentation

6.1.2.1 BIGraphicsDeviceManager()

Parameters

window	The BIWindow3D object for which this is to be the BIGraphicsDeviceManager
VVIIIUUVV	The bivillowab object for which this is to be the bigraphics bevice manager

6.1.3 Member Function Documentation

6.1.3.1 AdjustCameraDolly()

```
void Blotch.BlGraphicsDeviceManager.AdjustCameraDolly ( \label{eq:double_dif} \mbox{ double } dif \mbox{ )}
```

Migrates the current camera dolly (distance from LookAt) according to dif. If dif is zero, then there is no change in dolly.

Parameters

```
dif How much to dolly camera (plus = toward LookAt, minus = away)
```

6.1.3.2 AdjustCameraPan()

```
void Blotch.BlGraphicsDeviceManager.AdjustCameraPan ( double difX, double difY = 0 )
```

Adjusts camera pan (changing direction of camera) according to difX and difY. if difX and difY are zero, then pan direction isn't changed.

Parameters

	difX	How much to pan horizontally
ſ	difY	How much to pan vertically

6.1.3.3 AdjustCameraRotation()

```
void Blotch.BlGraphicsDeviceManager.AdjustCameraRotation ( double difX, double difY = 0 )
```

Adjusts camera rotation about the LookAt point according to difX and difY. if difX and difY are zero, then rotation isn't changed.

26 Class Documentation

Parameters

difX	How much to rotate the camera horizontally
difY	How much to rotate the camera vertically

6.1.3.4 AdjustCameraTruck()

```
void Blotch.BlGraphicsDeviceManager.AdjustCameraTruck ( \mbox{double } difX, \mbox{double } difY = 0 \mbox{ )}
```

Adjusts camera truck (movement relative to camera direction) according to difX and difY. if difX and difY are zero, then truck position isn't changed.

Parameters

	How much to truck the camera horizontally
difY	How much to truck the camera vertically

6.1.3.5 AdjustCameraZoom()

```
void Blotch.BlGraphicsDeviceManager.AdjustCameraZoom ( double dif )
```

Sets the Zoom. If dif is zero, then there is no change in zoom. Normally one would set zoom with the Zoom field. This is mainly for internal use.

Parameters

```
dif How much to zoom camera (plus = magnify, minus = reduce)
```

6.1.3.6 CalculateRay()

Returns a ray that that goes from the near clipping plane to the far clipping plane, at the specified window position.

Parameters

Returns

The Ray into the window at the specified pixel coordinates

6.1.3.7 CloneTexture2D()

```
Texture2D Blotch.BlGraphicsDeviceManager.CloneTexture2D ( {\tt Texture2D}\ tex\ )
```

Returns a deepcopy of the texture

Parameters

tex	The texture to deepcopy
-----	-------------------------

Returns

A deepcopy of tex

6.1.3.8 Dispose()

```
new void Blotch.BlGraphicsDeviceManager.Dispose ( )
```

When finished with the object, you should call Dispose() from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if BIDebug::EnableDisposeErrors is true (it is true by default for Debug builds), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying 3D library (OpenGL, etc.) often requires 3D resources to be managed only by one thread.

6.1.3.9 DoDefaultGui()

```
Ray Blotch.BlGraphicsDeviceManager.DoDefaultGui ( )
```

Updates Eye, LookAt, etc. according to mouse and certain key input. Specifically: Wheel=Dolly, CTR ← L-wheel=Zoom, Left-drag=Truck, Right-drag=Rotate, CTRL-left-drag=Pan, Esc=Reset. Also, SHIFT causes all the previous controls to be fine rather than coarse. If CTRL is pressed and mouse left or right button is clicked, then returns a ray into window at mouse position.

Returns

If a mouse left or right click occurred, returns the Ray into the screen at that position. Otherwsie returns null

6.1.3.10 DrawText()

Draws text on the window.

Parameters

text	The text to draw	
font	The font to use (typically created from SpriteFont content with Content.Load <spritefont>())</spritefont>	
windowPos	The X and Y window location, in pixels	
color	Foreground color of the font	

6.1.3.11 DrawTexture()

Draws a texture in the window.

Parameters

texture	The texture to draw
windowRect	The X and Y window location, in pixels
color	Foreground color of the font

6.1.3.12 ExtendClippingTo()

```
void Blotch.BlGraphicsDeviceManager.ExtendClippingTo ( {\tt BlSprite}\ s\ )
```

Informs the auto-clipping code of an object that should be included in the clipping region. This is mainly for internal use. Application code should control clipping with NearClip and FarClip.

Parameters

```
s The sprite that should be included in the auto-clipping code
```

6.1.3.13 GetWindowCoordinates()

```
\label{thm:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:problem:p
```

Returns the window coordinates of the specified sprite.

Parameters

sprite	The sprite to get the window coordinates of
,	, ,

Returns

The window coordinates of the sprite, in pixels

6.1.3.14 Initialize()

```
{\tt void Blotch.BlGraphicsDeviceManager.Initialize \ (\ )}
```

For internal use only. Apps should not normally call this. This initializes some values AFTER the BlWindow3D has been created.

6.1.3.15 LoadFromImageFile()

```
\label{thm:continuous} \begin{tabular}{ll} Texture 2D & Blotch. Bl Graphics Device Manager. Load From I mage File ( string file Name ) \end{tabular}
```

Loads a texture directly from an image file.

Parameters

fileName	An image file of any standard type supported by MonoGame (jpg, png, etc.)

Returns

The texture that was loaded

6.1.3.16 PrepareDraw()

This is automatically called once at the beginning of your BlWindow3D::FrameDraw method. It calculates the latest View and Projection settings according to the current camera specifications (Zoom, Aspect, Eye, LookAt, etc.), and if firstCallInDraw is true it also may sleep in order to obey FramePeriod. It must also be called explicitly after any changes to the camera settings made later in the BlWindow3D::FrameDraw method. Only in the first call should firstCallInDraw be true, and in any subsequent calls it should be false.

Parameters

firstCallInDraw	True indicates this method should also sleep in order to obey FramePeriod.
-----------------	--

6.1.3.17 ResetCamera()

```
void Blotch.BlGraphicsDeviceManager.ResetCamera ( )
```

Sets Eye. LookAt, etc. back to default starting position.

6.1.3.18 SetCameraRollToZero()

```
void Blotch.BlGraphicsDeviceManager.SetCameraRollToZero ( )
```

Sets the camera 'roll' to be level with the XY plane

6.1.3.19 SetCameraToSprite()

```
void Blotch.BlGraphicsDeviceManager.SetCameraToSprite ( {\tt BlSprite}\ sprite\ )
```

Sets the camera position and orientation to the current position and orientation of a sprite. You could use for cockpit view, for example. Note that the camera will lag sprite movement unless the following is done: For every frame you must first calculate the sprite's position and orientation, call this function, and then draw everything.

Parameters

sprite	The sprite that the camera should be connected to
--------	---

6.1.3.20 SetSpriteToCamera()

```
void Blotch.BlGraphicsDeviceManager.SetSpriteToCamera ( {\tt BlSprite}\ sprite\ )
```

Sets a sprite's BISprite::Matrix to the current camera position and orientation. You could use this to implement a HUD, for example. Note: This only works correctly if the sprite has no parent (and is thus drawn directly) or it's parents are untransformed. If all you want is to set the sprite's position (but NOT orientation) to the camera, then set the sprite's Matrix.Translation = graphics.Eye

Parameters

sprite	The sprite that should be connected to the camera
--------	---

6.1.3.21 TextToTexture()

Returns a Texture2D containing the specified text. It's up to the caller to Dispose the returned texture.

Parameters

text	The text to write to the texture
font	Font to use
color	If specified, color of the text. (Default is white)
backColor	If specified, background color, like Color.Transparent. If null, then do not clear the background)

Returns

The texture (as a RenderTarget2D). Caller is responsible for Disposing this!

6.1.4 Member Data Documentation

6.1.4.1 AmbientLightColor

```
Vector3 Blotch.BlGraphicsDeviceManager.AmbientLightColor = new Vector3(.1f, .1f)
```

The ambient light color. If null, no ambient light is enabled. Note: There is no ambient color for a BISprite. Both diffuse and ambient light illuminates the model's Color. See the BISprite::Color member.

6.1.4.2 Aspect

```
double Blotch.BlGraphicsDeviceManager.Aspect =2
```

The aspect ratio.

6.1.4.3 AutoRotate

double Blotch.BlGraphicsDeviceManager.AutoRotate = 0

How fast DoDefaultGui should auto-rotate the scene.

6.1.4.4 CameraSpeed

```
double Blotch.BlGraphicsDeviceManager.CameraSpeed = .4
```

The responsiveness of the camera position to changes in TargetEye and TargetLookAt. A value of 0 means it doesn't respond to changes, 1 means it immediately responds. See Eye and LookAt for more information.

6.1.4.5 CameraUp

Vector3 Blotch.BlGraphicsDeviceManager.CameraUp

Camera Up vector. Initially set to +Z. ResetCamera and SetCameraToSprite updates this.

6.1.4.6 ClearColor

 $\label{local_model} \begin{tabular}{ll} Microsoft.Xna.Framework.Color Blotch.BlGraphicsDeviceManager.ClearColor = new Microsoft.Xna.} \\ \end{tabular}$ Framework.Color (0,0,.1f)

The background color.

6.1.4.7 DefGuiMaxLookZ

```
double Blotch.BlGraphicsDeviceManager.DefGuiMaxLookZ = 1
```

Caues DoDefaultGui to prevent the Z component of CameraForwardNormalized from rising above this value. For example, set this to zero so that DoDefaultGui won't allow the camera to look upward

6.1.4.8 DefGuiMinLookZ

```
double Blotch.BlGraphicsDeviceManager.DefGuiMinLookZ = -1
```

Causes DoDefaultGui to prevent the Z component of CameraForwardNormalized from falling below this value. For example, set this to zero so that DoDefaultGui won't allow the camera to look downward

6.1.4.9 DepthStencilStateDisabled

DepthStencilState Blotch.BlGraphicsDeviceManager.DepthStencilStateDisabled

Initial value:

Assign DepthStencilState to this to disable depth buffering

6.1.4.10 DepthStencilStateEnabled

 ${\tt DepthStencilState\ Blotch.BlGraphicsDeviceManager.DepthStencilStateEnabled}$

Initial value:

Assign DepthStencilState to this to enable depth buffering

6.1.4.11 FarClip

```
double Blotch.BlGraphicsDeviceManager.FarClip = 0
```

The far clipping plane, or 0 = autoclip.

6.1.4.12 FogColor

Vector3 Blotch.BlGraphicsDeviceManager.FogColor = null

If not null, color of fog.

6.1.4.13 fogEnd

float Blotch.BlGraphicsDeviceManager.fogEnd = 10

How far away fog ends. See FogColor.

6.1.4.14 fogStart

float Blotch.BlGraphicsDeviceManager.fogStart = 1

How far away fog starts. See FogColor.

6.1.4.15 FramePeriod

double Blotch.BlGraphicsDeviceManager.FramePeriod = 1/60.0

How much time between consecutive frames.

6.1.4.16 IsDisposed

bool Blotch.BlGraphicsDeviceManager.IsDisposed = false

Set when the object is Disposed.

6.1.4.17 Lights

List<Light> Blotch.BlGraphicsDeviceManager.Lights = new List<Light>()

The directional lights. Note: The BasicEffect shader only supports the first three. To handle more lights, you'll need to write your own shader.

6.1.4.18 NearClip

double Blotch.BlGraphicsDeviceManager.NearClip = 0

The near clipping plane, or 0 = autoclip.

6.1.4.19 Projection

Microsoft.Xna.Framework.Matrix Blotch.BlGraphicsDeviceManager.Projection

The Projection matrix. Normally you would use the higher-level functions Zoom, Aspect, NearClip, or FarClip intead of changing this directly.

6.1.4.20 SpriteBatch

SpriteBatch Blotch.BlGraphicsDeviceManager.SpriteBatch =null

A SpriteBatch for use by certain text and teture drawing methods.

6.1.4.21 TargetEye

Vector3 Blotch.BlGraphicsDeviceManager.TargetEye

The point that Eye migrates to, according to CameraSpeed. See Eye for more information.

6.1.4.22 TargetLookAt

Vector3 Blotch.BlGraphicsDeviceManager.TargetLookAt

The point that LookAt migrates to, according to CameraSpeed. See LookAt for more information.

6.1.4.23 View

Microsoft.Xna.Framework.Matrix Blotch.BlGraphicsDeviceManager.View

This is the view matrix. Normally you would use the higher-level functions Eye, LookAt, CameraUp, SetCameraToSprite, and DoDefaultGui intead of changing this directly.

6.1.4.24 Window

BlWindow3D Blotch.BlGraphicsDeviceManager.Window

The BIWindow3D associated with this object.

6.1.4.25 Zoom

double Blotch.BlGraphicsDeviceManager.Zoom =45

The field of view, in degrees.

6.1.5 Property Documentation

6.1.5.1 CameraForward

Vector3 Blotch.BlGraphicsDeviceManager.CameraForward [get]

The vector between Eye and LookAt. Writes to Eye and LookAt and calls to SetCameraToSprite cause this to be updated. Also see CameraForwardNormalized and CameraForwardMag.

6.1.5.2 CameraForwardMag

float Blotch.BlGraphicsDeviceManager.CameraForwardMag [get]

The magnitude of CameraForward. Writes to Eye and LookAt, and calls to SetCameraToSprite cause this to be updated. Also see CameraForward and CameraForwardNormalized.

6.1.5.3 CameraForwardNormalized

Vector3 Blotch.BlGraphicsDeviceManager.CameraForwardNormalized [get]

Normalized form of CameraForward. Writes to Eye and LookAt, and calls to SetCameraToSprite cause this to be updated. Also see CameraForward and CameraForwardMag.

6.1.5.4 CameraRight

Vector3 Blotch.BlGraphicsDeviceManager.CameraRight [get]

Camera Right vector. Writes to Eye and LookAt, and calls to SetCameraToSprite cause this to be updated.

6.1.5.5 CurrentAspect

```
double Blotch.BlGraphicsDeviceManager.CurrentAspect [get]
```

Current aspect ratio. Same as Aspect unless Aspect==0.

6.1.5.6 CurrentFarClip

```
double Blotch.BlGraphicsDeviceManager.CurrentFarClip [get]
```

Current value of far clipping plane. See FarClip.

6.1.5.7 CurrentNearClip

double Blotch.BlGraphicsDeviceManager.CurrentNearClip [get]

Current value of near clipping plane. See NearClip.

6.1.5.8 Eye

```
Vector3 Blotch.BlGraphicsDeviceManager.Eye [get]
```

The current camera position. Note: To change the camera position, set TargetEye. Also see CameraSpeed.

6.1.5.9 LookAt

```
Vector3 Blotch.BlGraphicsDeviceManager.LookAt [get]
```

The current camera LookAt position. Note: To change the camera LookAt, set TargetLookAt. Also see CameraSpeed.

6.1.5.10 MaxCamDistance

```
double Blotch.BlGraphicsDeviceManager.MaxCamDistance [get]
```

Distance to the farthest sprite, plus its radius. Note this is set to a very small number by PrepareDraw, and then as BlWindow3D::FrameDraw is called it is set more reasonably.

6.1.5.11 MinCamDistance

double Blotch.BlGraphicsDeviceManager.MinCamDistance [get]

Distance to the nearest sprite, less its radius. Note this is set to a very large number by PrepareDraw, and then as BIWindow3D::FrameDraw is called it is set more reasonably.

The documentation for this class was generated from the following file:

• C:/Users/kloum/Desktop/Source/Blotch3D/src/BlGraphicsDeviceManager.cs

6.2 Blotch.BlGuiControl Class Reference

A 2D GUI control. To create a GUI control: instantiate one of these, set its initial Texture (remember to create it in the 3D thread context), window position, and delegate, and then add it to BIWindow3D::GuiControls. (Any member can be dynamically changed.) The texture will be displayed, and then each frame the mouse is over it the delegate will be called. The delegate typically would examine the current mouse state (Mouse.GetState()) and the PrevMouseState member to detect button changes, etc. and perform an action. The delegate is called in the context of the window's 3D thread after the BIWindow3D::FrameProc method. You can use BIGraphicsDeviceManager::TextToTexture to create a textual textures, or just load a texture from a content file. Remember to Dispose textures when you are done with them.

Public Member Functions

- delegate void OnMouseChangeDelegate (BlGuiControl guiCtrl)
 - Delegates for a BIGuiControl are of this type
- BIGuiControl (BIWindow3D window)
- bool HandleInput ()

Periodically called by BlWindow3D. You shouldn't need to call this.

Public Attributes

• Texture2D Texture = null

The texture to display for this control. Don't forget to dispose it when done.

• Vector2 Position = Vector2.Zero

The pixel position in the BlWindow3D of this control

OnMouseChangeDelegate OnMouseOver = null

The delegate to call each frame (from the 3D thread) when the mouse is over the control. A typical delegate would make a decision according to PrevMouseState and the current mouse state (Mouse.GetState).

MouseState PrevMouseState = new MouseState()

The previous mouse state. A delegate typically uses this along with the current mouse state to make a decision.

• BIWindow3D Window = null

The window this BlGuiControl is in.

6.2.1 Detailed Description

A 2D GUI control. To create a GUI control: instantiate one of these, set its initial Texture (remember to create it in the 3D thread context), window position, and delegate, and then add it to BIWindow3D::GuiControls. (Any member can be dynamically changed.) The texture will be displayed, and then each frame the mouse is over it the delegate will be called. The delegate typically would examine the current mouse state (Mouse.GetState()) and the PrevMouseState member to detect button changes, etc. and perform an action. The delegate is called in the context of the window's 3D thread after the BIWindow3D::FrameProc method. You can use BIGraphicsDeviceManager::TextToTexture to create a textual textures, or just load a texture from a content file. Remember to Dispose textures when you are done with them.

6.2.2 Member Function Documentation

6.2.2.1 HandleInput()

```
bool Blotch.BlGuiControl.HandleInput ( )
```

Periodically called by BlWindow3D. You shouldn't need to call this.

Returns

True if mouse is over any control, false otherwise.

6.2.2.2 OnMouseChangeDelegate()

Delegates for a BIGuiControl are of this type

Parameters

guiCtrl

6.2.3 Member Data Documentation

6.2.3.1 OnMouseOver

OnMouseChangeDelegate Blotch.BlGuiControl.OnMouseOver = null

The delegate to call each frame (from the 3D thread) when the mouse is over the control. A typical delegate would make a decision according to PrevMouseState and the current mouse state (Mouse.GetState).

6.2.3.2 Position

Vector2 Blotch.BlGuiControl.Position = Vector2.Zero

The pixel position in the BIWindow3D of this control

6.2.3.3 PrevMouseState

MouseState Blotch.BlGuiControl.PrevMouseState = new MouseState()

The previous mouse state. A delegate typically uses this along with the current mouse state to make a decision.

6.2.3.4 Texture

Texture2D Blotch.BlGuiControl.Texture = null

The texture to display for this control. Don't forget to dispose it when done.

6.2.3.5 Window

BlWindow3D Blotch.BlGuiControl.Window = null

The window this BlGuiControl is in.

The documentation for this class was generated from the following file:

• C:/Users/kloum/Desktop/Source/Blotch3D/src/BlGuiControl.cs

6.3 Blotch.BlMipmap Class Reference

A mipmap of textures for a given BISprite. You could load this from an image file and then assign it to a BISprite::Mipmap. Note that this is a software mipmap (i.e. it isn't implemented in the 3D hardware). That is, only one resolution texture is used at time.

Inheritance diagram for Blotch.BlMipmap:

Public Member Functions

• BlMipmap (BlGraphicsDeviceManager graphics, Texture2D tex, int numMaps=999, bool reverseX=false, bool reverseY=false)

Creates the mipmaps.

· void Dispose ()

When finished with the object, you should call <code>Dispose()</code> from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if <code>BIDebug.EnableDisposeErrors</code> is true (it is true by default for <code>Debug builds</code>), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying 3D library (<code>OpenGL</code>, etc.) often requires 3D resources to be managed only by one thread.

Public Attributes

• bool IsDisposed = false

Set when the object is Disposed.

6.3.1 Detailed Description

A mipmap of textures for a given BISprite. You could load this from an image file and then assign it to a BISprite::Mipmap. Note that this is a software mipmap (i.e. it isn't implemented in the 3D hardware). That is, only one resolution texture is used at time.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 BIMipmap()

Creates the mipmaps.

Parameters

graphics	Graphics device (typically the one owned by your BlWindow3D)
tex	Texture from which to create mipmaps, typically gotten from BIGraphics::LoadFromImageFile.
numMaps	Maximum number of mipmaps to create (none are created with lower resolution than 16x16)
reverseX	Whether to reverse pixels horizontally
reverseY	Whether to reverse pixels vertically

6.3.3 Member Function Documentation

6.3.3.1 Dispose()

```
void Blotch.BlMipmap.Dispose ( )
```

When finished with the object, you should call <code>Dispose()</code> from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if <code>BIDebug.EnableDisposeErrors</code> is true (it is true by default for <code>Debug builds</code>), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying 3D library (OpenGL, etc.) often requires 3D resources to be managed only by one thread.

6.3.4 Member Data Documentation

6.3.4.1 IsDisposed

```
bool Blotch.BlMipmap.IsDisposed = false
```

Set when the object is Disposed.

The documentation for this class was generated from the following file:

• C:/Users/kloum/Desktop/Source/Blotch3D/src/BlMipmap.cs

6.4 Blotch.BISprite Class Reference

A BISprite is a single 3D object. Each sprite can also hold any number of subsprites, so you can make a sprite tree (a scene graph). In that case the child sprites 'follow' the orientation and position of the parent sprite. That is, they exist in the coordinate system of the parent sprite. The location and orientation of a sprite in its parent's coordinate system is defined by the sprite's Matrix member. Subsprites, LODs, and Mipmap are NOT disposed when the sprite is disposed, so you can assign the same one to multiple sprites.

Inheritance diagram for Blotch.BISprite:

Public Types

enum PreDrawCmd { PreDrawCmd.Continue, PreDrawCmd.Abort, PreDrawCmd.UseCurrentAbsoluteMatrix }

Return code from PreDraw callback. This tells Draw what to do next.

enum PreSubspritesCmd { PreSubspritesCmd.Continue, PreSubspritesCmd.Abort, PreSubspritesCmd.DontDrawSubsprites
 }

Return code from PreSubsprites callback. This tells Draw what to do next.

enum PreMeshDrawCmd { PreMeshDrawCmd.Continue, PreMeshDrawCmd.Abort, PreMeshDrawCmd.Skip }

Return code from PreSubsprites callback. This tells Draw what to do next.

enum PreLocalCmd { PreLocalCmd.Continue, PreLocalCmd.Abort }

Return code from PreSubsprites callback. This tells Draw what to do next.

Public Member Functions

delegate void FrameProcType (BISprite sprite)

See #FrameProc

void ExecuteFrameProc ()

Execute the FrameProc, if it was specified in the BISprite constructor. (Normally you wouldn't need to call this because its automatically called by the BIWindow.)

delegate PreDrawCmd PreDrawType (BISprite sprite)

See PreDraw

delegate PreSubspritesCmd PreSubspritesType (BISprite sprite)

See PreSubsprites

delegate PreMeshDrawCmd PreMeshDrawType (BISprite sprite, ModelMesh mesh)

See PreMeshDraw

delegate PreLocalCmd PreLocalType (BISprite sprite)

See Prel ocal

delegate void DrawCleanupType (BISprite sprite)

See DrawCleanup

BISprite (BIGraphicsDeviceManager graphicsIn, string name, FrameProcType frameProc=null)

Constructs a sprite

void Add (BISprite s)

Add a subsprite. (A BISprite inherits from a Dictionary of BISprites. This wrapper method to the dictionary's Add method simply adds the sprite where the key is the sprite's Name.)

• Vector2 GetViewCoords ()

Returns the current view coordinates of the sprite (for passing to DrawText, for example), or null if it's behind the camera.

void SetAllMaterialBlack ()

Sets all material colors to black.

double DoesRayIntersect (Ray ray)

Returns the distance along the ray to the first point the ray enters the bounding sphere (BoundSphere), or null if it doesn't enter the sphere.

Returns a list of subsprites that the ray hit (i.e. those that were within their radius of the ray)

Draws the sprite and the subsprites.

- override string ToString ()
- int CompareTo (object obj)

This makes a Sort operation sort sprites far to near. That is, the nearer sprites are later in the list. For sorting near to far, use something like myList.Sort(new Comparison<EsSprite>((b, a) => a.CompareTo(b)));

· void Dispose ()

When finished with the object, you should call <code>Dispose()</code> from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if <code>BIDebug.EnableDisposeErrors</code> is true (it is true by default for <code>Debug builds</code>), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying 3D library (<code>OpenGL</code>, etc.) often requires 3D resources to be managed only by one thread.

Static Public Member Functions

static Vector3 NearestPointOnLine (Vector3 point1, Vector3 point2, Vector3 nearPoint)

Returns the point on the line between point1 and point2 that is nearest to nearPoint

Public Attributes

The Flags field can be used by callbacks of Draw (PreDraw, PreSubsprites, PreLocal, and PreMeshDraw) to indicate various user attributes of the sprite. Also, GetRayIntersections won't hit if the bitwise AND of this value and the flags argument passed to it is zero.

List< object > LODs = new List<object>()

The level-of-detail objects drawn for this sprite. Only one element is drawn depending on the ApparentSize. Each element can be a Model, a triangle list (VertexPositionNormalTexture[]), or null (indicating nothing should be drawn). Elements with lower indices are higher LODs. So index 0 is the highest, index 1 is second highest, etc. LOD decreases (the index increases) for every halving of the object's apparent size. You can adjust how close the LODs must be to the camera with LodScale. When the calculated LOD index is higher than the last element, then the last element is used. So the simplest way to use this is to add a single element of the object you want drawn. You can also add multiple references of the same object so multiple consecutive LODs draw the same object. You can also set an element to null so it doesn't draw anything, which is typically the last element. A model can be assigned to multiple sprites. These are NOT disposed when the sprite is disposed.

• double LodScale = 9

Defines the LOD scaling. The higher this value, the closer you must be to see a given LOD. A value of 9 (default) indicates that the highest LOD (LODs[0]) occurs when an object with a diameter of 1 roughly fills the window. Set to a large negative value, like -1000, to disable LODs (i.e. always use the highest resolution LOD).

• BlMipmap Mipmap = null

Mipmap textures to apply to the model. These work the same as LODs (see LODs for more information). The texture used depends on the apparent size of the model. The next higher mipmap is used for every doubling of model size, where element zero is the highest resolution, used when the apparent size is largest. If a mipmap is not available for the apparent size, the next higher available on is used. So, for example, you can specify only one texture to be used as all mipmaps if you like. Note that for a texture to display, the model must include texture coordinates. Most graphics subsystems do support mipmaps, but these are supported at the app level. Therefore only one image is used over a model for a given model apparent size, rather than nearer portions of the model showing higher-level mipmaps. These are NOT disposed when the sprite is disposed so that a given BIMipmap may be assigned to multiple sprites.

• double MipmapScale = 5

Defines the mipmap (Textures) scaling. The higher this value, the closer you must be to see a given mipmap. Set to a large negative value, like -1000, to disable mipmaps (i.e. always use the highest resolution mipmap).

• BoundingSphere BoundSphere = null

The bounding sphere for this sprite. This is automatically updated when a model is drawn, but not if vertices are drawn. In that case you should set/update it explicitly if any of the internal functions may need it to be roughly correct, like if auto-clipping is enabled or a mouse selection or ray may hit the sprite and the hit be properly detected.

• bool SphericalBillboard = false

Spherically billboard the model. Specifically, keep the model's 'forward' direction pointing at the camera and keep its 'Up' direction pointing in the same direction as the camera's 'Up' direction. Also see CylindricalBillboardX, CylindricalBillboardZ, and ConstSize.

Vector3 CylindricalBillboardX = Vector3.Zero

If non-zero, this is the rotation vector and magnitude of cylindrical billboarding where the angle calculation assumes this vector is the X axis, even though it may not be. The more this varies from that axis, the more eccentric the billboarding behavior. The amount of billboarding is equal to: $2*mag^2 - 1/mag^2$. So if this vector's magnitude is unity (1), then full cylindrical billboarding occurs. A vector magnitude of 0.605 produces double reverse cylindrical billboarding. Also see SphericalBillboard, CylindricalBillboardY, CylindricalBillboardZ, and ConstSize.

Vector3 CylindricalBillboardY = Vector3.Zero

If non-zero, this is the rotation vector and magnitude of cylindrical billboarding where the angle calculation assumes this vector is the Y axis, even though it may not be. The more this varies from that axis, the more eccentric the billboarding behavior. The amount of billboarding is equal to: $2*mag^2 - 1/mag^2$. So if this vector's magnitude is unity (1), then full cylindrical billboarding occurs. A vector magnitude of 0.605 produces double reverse cylindrical billboarding. Also see SphericalBillboard, CylindricalBillboardX, CylindricalBillboardZ, and ConstSize.

Vector3 CylindricalBillboardZ = Vector3.Zero

If non-zero, this is the rotation vector and magnitude of cylindrical billboarding where the angle calculation assumes this vector is the Z axis, even though it may not be. The more this varies from that axis, the more eccentric the billboarding behavior. The amount of billboarding is equal to: $2*mag^2 - 1/mag^2$. So if this vector's magnitude is unity (1), then full cylindrical billboarding occurs. A vector magnitude of 0.605 produces double reverse cylindrical billboarding. Also see SphericalBillboard, CylindricalBillboardX, CylindricalBillboardY, and ConstSize.

• bool ConstSize = false

If true, maintain a constant apparent size for the sprite regardless of camera distance or zoom. This is typically used along with one of the Billboarding effects (see SphericalBillboard, CylindricalBillboardX, etc.). Note that if ConstSize is true, ApparentSize, LodScale, and MipmapScale still act as if it is false, and therefore in that case you may want to disable them (set them to large negative values. If both ConstSize and any Billboarding is enabled and you have asymmetric scaling (different scaling for each dimension), then you'll need to separate those operations into different levels of the sprite tree to obtain the desired behavior. You'll also probably want to disable the depth stencil buffer and control which sprite is drawn first so that certain sprites are 'always on top'. See the examples.

Matrix AbsoluteMatrix = Matrix.Identity

The Draw method takes an incoming 'world' matrix parameter which is the coordinate system of its parent. AbsoluteMatrix is that incoming world matrix parameter times the Matrix member and altered according to Billboarding and ConstSize. This is not read-only because a callback (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw) may need to change it from within the Draw method. This is the matrix that is also passed to subsprites as their 'world' matrix.

• Matrix Matrix = Matrix.Identity

The matrix for this sprite. This defines the sprite's orientation and position relative to the parent coordinate system. For more detailed information, see AbsoluteMatrix.

BIGraphicsDeviceManager Graphics = null

Current incoming graphics parameter to the Draw method. Typically this would be of interest to a callback function (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw).

Matrix LastWorldMatrix = null

Current incoming world matrix parameter to the Draw method. Typically this would be of interest to a callback function (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw).

bool IncludeInAutoClipping = true

Whether to use depth testing, and whether to participate in autoclipping calculations when they are enabled.

• ulong FlagsParameter = 0

Current incoming flags parameter to the Draw method. Typically this would be of interest to a callback function (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw).

Vector3 Color = new Vector3(.5f, .5f, 1)

The color of the material. This is lit by both diffuse and ambient light. If null, MonoGame's default color is kept.

• Vector3 EmissiveColor = new Vector3(.1f, .1f, .2f)

The emissive color. If null, MonoGame's default is kept.

Vector3 SpecularColor = null

The specular color. If null, MonoGame's default is kept.

• float SpecularPower = 8

If a specular color is specified, this is the specular power.

PreDrawType PreDraw = null

If not null, Draw method calls this at the beginning before doing anything else. From this function one might examine and/or alter any public writable BISprite field, and/or control the further execution of the Draw method.

• PreSubspritesType PreSubsprites = null

If not null, Draw method calls this after the matrix calculations for AbsoluteMatrix (including billboards, CamDistance, ConstSize, etc.) but before drawing the subsprites or local model. From this function one might examine and/or alter any public writable BISprite field.

PreMeshDrawType PreMeshDraw = null

If not null, Draw method calls this before each model mesh is drawn for the local model. From this function one might examine and/or alter any public writable BISprite field. If the return value is true, then the mesh will not be drawn.

PreLocalType PreLocal = null

If not null, Draw method calls this after drawing subsprites (if appropriate) but before drawing the local model. From this function one might examine and/or alter any public writable BISprite field, and/or abort the Draw method.

DrawCleanupType DrawCleanup = null

If not null, Draw method calls this at the end.

string Name

The name of the BISprite

• bool IsDisposed = false

Set when the object is Disposed.

Properties

• double ApparentSize [get]

This is proportional to the apparent 2D size of the sprite. (Calculated from the last Draw operation that occurred, but before any effect of ConstSize)

• double LodTarget [get]

This read-only value is the log of the reciprocal of ApparentSize. It is used in the calculation of the LOD and the mipmap level. See LODs and Mipmap for more information.

• BasicEffect VerticesEffect [get, set]

BasicEffect used to draw vertices. If not explicitly set, then use a default BasicEffect and dispose it when the BISprite is disposed. If explicitly set, then don't dispose it when the BISprite is disposed.

• double CamDistance [get]

Distance to the camera.

6.4.1 Detailed Description

A BISprite is a single 3D object. Each sprite can also hold any number of subsprites, so you can make a sprite tree (a scene graph). In that case the child sprites 'follow' the orientation and position of the parent sprite. That is, they exist in the coordinate system of the parent sprite. The location and orientation of a sprite in its parent's coordinate system is defined by the sprite's Matrix member. Subsprites, LODs, and Mipmap are NOT disposed when the sprite is disposed, so you can assign the same one to multiple sprites.

6.4.2 Member Enumeration Documentation

6.4.2.1 PreDrawCmd

```
enum Blotch.BlSprite.PreDrawCmd [strong]
```

Return code from PreDraw callback. This tells Draw what to do next.

Enumerator

Continue	Continue Draw method execution
Abort	Draw should immediately return
UseCurrentAbsoluteMatrix	Continue Draw method execution, but don't bother re-calculating AbsoluteMatrix. One would typically return this if, for example, its known that AbsoluteMatrix will not change from its current value because the Draw parameters will be the same as they were the last time Draw was called. This happens, for example, when multiple calls are being made in the same draw iteration for graphic operations that require multiple passes, like proper handling of translucency, etc.

6.4.2.2 PreLocalCmd

enum Blotch.BlSprite.PreLocalCmd [strong]

Return code from PreSubsprites callback. This tells Draw what to do next.

Enumerator

Continue	Continue Draw method execution
Abort	Draw should immediately return

6.4.2.3 PreMeshDrawCmd

enum Blotch.BlSprite.PreMeshDrawCmd [strong]

Return code from PreSubsprites callback. This tells Draw what to do next.

Enumerator

Continue	Continue Draw method execution
Abort	Draw should immediately return
Skip	Draw should skip the current mesh

6.4.2.4 PreSubspritesCmd

enum Blotch.BlSprite.PreSubspritesCmd [strong]

Return code from PreSubsprites callback. This tells Draw what to do next.

Enumerator

Continue	Continue Draw method execution	
Abort	Draw should immediately return	
DontDrawSubsprites	Skip drawing subsprites	

6.4.3 Constructor & Destructor Documentation

6.4.3.1 BISprite()

Constructs a sprite

Parameters

graphics← In	The BIGraphicsDeviceManager that operates on this sprite
name	The name of the sprite (must be unique among other sprites in the same subsprite list)
frameProc	The delegate to run every frame

6.4.4 Member Function Documentation

6.4.4.1 Add()

Add a subsprite. (A BISprite inherits from a Dictionary of BISprites. This wrapper method to the dictionary's Add method simply adds the sprite where the key is the sprite's Name.)

Parameters

6.4.4.2 CompareTo()

This makes a Sort operation sort sprites far to near. That is, the nearer sprites are later in the list. For sorting near to far, use something like myList.Sort(new Comparison<EsSprite>((b, a) => a.CompareTo(b)));

Parameters

Returns

6.4.4.3 Dispose()

```
void Blotch.BlSprite.Dispose ( )
```

When finished with the object, you should call <code>Dispose()</code> from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if <code>BIDebug.EnableDisposeErrors</code> is true (it is true by default for <code>Debug builds</code>), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying <code>3D library (OpenGL, etc.)</code> often requires <code>3D resources</code> to be managed only by one thread.

6.4.4.4 DoesRayIntersect()

```
double Blotch.BlSprite.DoesRayIntersect ( {\tt Ray} \ ray \ )
```

Returns the distance along the ray to the first point the ray enters the bounding sphere (BoundSphere), or null if it doesn't enter the sphere.

Parameters

ray

Returns

How far along the ray till the first intersection, or null oif it didn't intersect

6.4.4.5 Draw()

Draws the sprite and the subsprites.

Parameters

world⇔	Defines the position and orientation of the sprite
MatrixIn	
flagsIn	Copied to LastFlags for use by any callback of Draw (PreDraw, PreSubspriteDraw,
	PreLocalDraw, and PreMeshDraw) that wants it

6.4.4.6 DrawCleanupType()

See DrawCleanup

Parameters

sprite

6.4.4.7 ExecuteFrameProc()

```
void Blotch.BlSprite.ExecuteFrameProc ( )
```

Execute the FrameProc, if it was specified in the BISprite constructor. (Normally you wouldn't need to call this because its automatically called by the BIWindow.)

6.4.4.8 FrameProcType()

See #FrameProc

Parameters

sprite

6.4.4.9 GetRayIntersections()

Returns a list of subsprites that the ray hit (i.e. those that were within their radius of the ray)

Parameters

ray	The ray we are searching
flags	Check for a hit only if flags & BISprite::Flags is non-zero
sprites	An existing sprite list to load. If null, then this allocates a new sprite list.

Returns

A list of subsprites that the ray hit

6.4.4.10 GetViewCoords()

```
Vector2 Blotch.BlSprite.GetViewCoords ( )
```

Returns the current view coordinates of the sprite (for passing to DrawText, for example), or null if it's behind the camera.

Returns

The view coords of the sprite

6.4.4.11 NearestPointOnLine()

Returns the point on the line between point1 and point2 that is nearest to nearPoint

Parameters

point1	
point2	
nearPoint	

Returns

Point on the line nearest to nearPoint

6.4.4.12 PreDrawType()

See PreDraw

Parameters

sprite

Returns

6.4.4.13 PreLocalType()

```
delegate PreLocalCmd Blotch.BlSprite.PreLocalType ( {\tt BlSprite}\ sprite\ )
```

See PreLocal

Parameters

sprite

Returns

6.4.4.14 PreMeshDrawType()

See PreMeshDraw

Parameters

sprite mesh

Returns

6.4.4.15 PreSubspritesType()

See PreSubsprites

Parameters

sprite

Returns

6.4.4.16 SetAllMaterialBlack()

void Blotch.BlSprite.SetAllMaterialBlack ()

Sets all material colors to black.

6.4.5 Member Data Documentation

6.4.5.1 AbsoluteMatrix

Matrix Blotch.BlSprite.AbsoluteMatrix = Matrix.Identity

The Draw method takes an incoming 'world' matrix parameter which is the coordinate system of its parent. AbsoluteMatrix is that incoming world matrix parameter times the Matrix member and altered according to Bill-boarding and ConstSize. This is not read-only because a callback (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw) may need to change it from within the Draw method. This is the matrix that is also passed to subsprites as their 'world' matrix.

6.4.5.2 BoundSphere

```
BoundingSphere Blotch.BlSprite.BoundSphere = null
```

The bounding sphere for this sprite. This is automatically updated when a model is drawn, but not if vertices are drawn. In that case you should set/update it explicitly if any of the internal functions may need it to be roughly correct, like if auto-clipping is enabled or a mouse selection or ray may hit the sprite and the hit be properly detected.

6.4.5.3 Color

```
Vector3 Blotch.BlSprite.Color = new Vector3(.5f, .5f, 1)
```

The color of the material. This is lit by both diffuse and ambient light. If null, MonoGame's default color is kept.

6.4.5.4 ConstSize

```
bool Blotch.BlSprite.ConstSize = false
```

If true, maintain a constant apparent size for the sprite regardless of camera distance or zoom. This is typically used along with one of the Billboarding effects (see SphericalBillboard, CylindricalBillboardX, etc.). Note that if ConstSize is true, ApparentSize, LodScale, and MipmapScale still act as if it is false, and therefore in that case you may want to disable them (set them to large negative values. If both ConstSize and any Billboarding is enabled and you have asymmetric scaling (different scaling for each dimension), then you'll need to separate those operations into different levels of the sprite tree to obtain the desired behavior. You'll also probably want to disable the depth stencil buffer and control which sprite is drawn first so that certain sprites are 'always on top'. See the examples.

6.4.5.5 CylindricalBillboardX

```
Vector3 Blotch.BlSprite.CylindricalBillboardX = Vector3.Zero
```

If non-zero, this is the rotation vector and magnitude of cylindrical billboarding where the angle calculation assumes this vector is the X axis, even though it may not be. The more this varies from that axis, the more eccentric the billboarding behavior. The amount of billboarding is equal to: $2*mag^2 - 1/mag^2$. So if this vector's magnitude is unity (1), then full cylindrical billboarding occurs. A vector magnitude of 0.605 produces double reverse cylindrical billboarding. Also see SphericalBillboard, CylindricalBillboardY, CylindricalBillboardZ, and ConstSize.

6.4.5.6 CylindricalBillboardY

```
Vector3 Blotch.BlSprite.CylindricalBillboardY = Vector3.Zero
```

If non-zero, this is the rotation vector and magnitude of cylindrical billboarding where the angle calculation assumes this vector is the Y axis, even though it may not be. The more this varies from that axis, the more eccentric the billboarding behavior. The amount of billboarding is equal to: $2*mag^2 - 1/mag^2$. So if this vector's magnitude is unity (1), then full cylindrical billboarding occurs. A vector magnitude of 0.605 produces double reverse cylindrical billboarding. Also see SphericalBillboard, CylindricalBillboardX, CylindricalBillboardZ, and ConstSize.

6.4.5.7 CylindricalBillboardZ

```
Vector3 Blotch.BlSprite.CylindricalBillboardZ = Vector3.Zero
```

If non-zero, this is the rotation vector and magnitude of cylindrical billboarding where the angle calculation assumes this vector is the Z axis, even though it may not be. The more this varies from that axis, the more eccentric the billboarding behavior. The amount of billboarding is equal to: $2*mag^2 - 1/mag^2$. So if this vector's magnitude is unity (1), then full cylindrical billboarding occurs. A vector magnitude of 0.605 produces double reverse cylindrical billboarding. Also see SphericalBillboard, CylindricalBillboardX, CylindricalBillboardY, and ConstSize.

6.4.5.8 DrawCleanup

```
DrawCleanupType Blotch.BlSprite.DrawCleanup = null
```

If not null, Draw method calls this at the end.

6.4.5.9 EmissiveColor

```
Vector3 Blotch.BlSprite.EmissiveColor = new Vector3(.1f, .1f, .2f)
```

The emissive color. If null, MonoGame's default is kept.

6.4.5.10 Flags

The Flags field can be used by callbacks of Draw (PreDraw, PreSubsprites, PreLocal, and PreMeshDraw) to indicate various user attributes of the sprite. Also, GetRayIntersections won't hit if the bitwise AND of this value and the flags argument passed to it is zero.

6.4.5.11 FlagsParameter

```
ulong Blotch.BlSprite.FlagsParameter = 0
```

Current incoming flags parameter to the Draw method. Typically this would be of interest to a callback function (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw).

6.4.5.12 Graphics

```
BlGraphicsDeviceManager Blotch.BlSprite.Graphics = null
```

Current incoming graphics parameter to the Draw method. Typically this would be of interest to a callback function (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw).

6.4.5.13 IncludeInAutoClipping

```
bool Blotch.BlSprite.IncludeInAutoClipping = true
```

Whether to use depth testing, and whether to participate in autoclipping calculations when they are enabled.

6.4.5.14 IsDisposed

```
bool Blotch.BlSprite.IsDisposed = false
```

Set when the object is Disposed.

6.4.5.15 LastWorldMatrix

```
Matrix Blotch.BlSprite.LastWorldMatrix = null
```

Current incoming world matrix parameter to the Draw method. Typically this would be of interest to a callback function (see PreDraw, PreSubsprites, PreLocal, and PreMeshDraw).

6.4.5.16 LODs

```
List<object> Blotch.BlSprite.LODs = new List<object>()
```

The level-of-detail objects drawn for this sprite. Only one element is drawn depending on the ApparentSize. Each element can be a Model, a triangle list (VertexPositionNormalTexture[]), or null (indicating nothing should be drawn). Elements with lower indices are higher LODs. So index 0 is the highest, index 1 is second highest, etc. LOD decreases (the index increases) for every halving of the object's apparent size. You can adjust how close the LODs must be to the camera with LodScale. When the calculated LOD index is higher than the last element, then the last element is used. So the simplest way to use this is to add a single element of the object you want drawn. You can also add multiple references of the same object so multiple consecutive LODs draw the same object. You can also set an element to null so it doesn't draw anything, which is typically the last element. A model can be assigned to multiple sprites. These are NOT disposed when the sprite is disposed.

6.4.5.17 LodScale

```
double Blotch.BlSprite.LodScale = 9
```

Defines the LOD scaling. The higher this value, the closer you must be to see a given LOD. A value of 9 (default) indicates that the highest LOD (LODs[0]) occurs when an object with a diameter of 1 roughly fills the window. Set to a large negative value, like -1000, to disable LODs (i.e. always use the highest resolution LOD).

6.4.5.18 Matrix

```
Matrix Blotch.BlSprite.Matrix = Matrix.Identity
```

The matrix for this sprite. This defines the sprite's orientation and position relative to the parent coordinate system. For more detailed information, see AbsoluteMatrix.

6.4.5.19 Mipmap

```
BlMipmap Blotch.BlSprite.Mipmap = null
```

Mipmap textures to apply to the model. These work the same as LODs (see LODs for more information). The texture used depends on the apparent size of the model. The next higher mipmap is used for every doubling of model size, where element zero is the highest resolution, used when the apparent size is largest. If a mipmap is not available for the apparent size, the next higher available on is used. So, for example, you can specify only one texture to be used as all mipmaps if you like. Note that for a texture to display, the model must include texture coordinates. Most graphics subsystems do support mipmaps, but these are supported at the app level. Therefore only one image is used over a model for a given model apparent size, rather than nearer portions of the model showing higher-level mipmaps. These are NOT disposed when the sprite is disposed so that a given BIMipmap may be assigned to multiple sprites.

6.4.5.20 MipmapScale

```
double Blotch.BlSprite.MipmapScale = 5
```

Defines the mipmap (Textures) scaling. The higher this value, the closer you must be to see a given mipmap. Set to a large negative value, like -1000, to disable mipmaps (i.e. always use the highest resolution mipmap).

6.4.5.21 Name

string Blotch.BlSprite.Name

The name of the BISprite

6.4.5.22 PreDraw

```
PreDrawType Blotch.BlSprite.PreDraw = null
```

If not null, Draw method calls this at the beginning before doing anything else. From this function one might examine and/or alter any public writable BISprite field, and/or control the further execution of the Draw method.

6.4.5.23 PreLocal

```
PreLocalType Blotch.BlSprite.PreLocal = null
```

If not null, Draw method calls this after drawing subsprites (if appropriate) but before drawing the local model. From this function one might examine and/or alter any public writable BISprite field, and/or abort the Draw method.

6.4.5.24 PreMeshDraw

```
PreMeshDrawType Blotch.BlSprite.PreMeshDraw = null
```

If not null, Draw method calls this before each model mesh is drawn for the local model. From this function one might examine and/or alter any public writable BISprite field. If the return value is true, then the mesh will not be drawn.

6.4.5.25 PreSubsprites

```
PreSubspritesType Blotch.BlSprite.PreSubsprites = null
```

If not null, Draw method calls this after the matrix calculations for AbsoluteMatrix (including billboards, CamDistance, ConstSize, etc.) but before drawing the subsprites or local model. From this function one might examine and/or alter any public writable BISprite field.

6.4.5.26 SpecularColor

```
Vector3 Blotch.BlSprite.SpecularColor = null
```

The specular color. If null, MonoGame's default is kept.

6.4.5.27 SpecularPower

```
float Blotch.BlSprite.SpecularPower = 8
```

If a specular color is specified, this is the specular power.

6.4.5.28 SphericalBillboard

```
bool Blotch.BlSprite.SphericalBillboard = false
```

Spherically billboard the model. Specifically, keep the model's 'forward' direction pointing at the camera and keep its 'Up' direction pointing in the same direction as the camera's 'Up' direction. Also see CylindricalBillboardX, CylindricalBillboardZ, and ConstSize.

6.4.6 Property Documentation

6.4.6.1 ApparentSize

```
double Blotch.BlSprite.ApparentSize [get]
```

This is proportional to the apparent 2D size of the sprite. (Calculated from the last Draw operation that occurred, but before any effect of ConstSize)

6.4.6.2 CamDistance

```
double Blotch.BlSprite.CamDistance [get]
```

Distance to the camera.

6.4.6.3 LodTarget

```
double Blotch.BlSprite.LodTarget [get]
```

This read-only value is the log of the reciprocal of ApparentSize. It is used in the calculation of the LOD and the mipmap level. See LODs and Mipmap for more information.

6.4.6.4 VerticesEffect

```
BasicEffect Blotch.BlSprite.VerticesEffect [get], [set]
```

BasicEffect used to draw vertices. If not explicitly set, then use a default BasicEffect and dispose it when the BISprite is disposed. If explicitly set, then don't dispose it when the BISprite is disposed.

The documentation for this class was generated from the following file:

• C:/Users/kloum/Desktop/Source/Blotch3D/src/BlSprite.cs

6.5 Blotch.BlWindow3D Class Reference

To make a 3D window, you must derive a class from BlWindow3D and override the Setup, FrameProc, and FrameDraw methods. When it comes time to open the 3D window, you instantiate that class and call its "Run" method from the same thread that instantiated it. The Run method will call the Setup, FrameProc, and FrameDraw methods when appropriate, and not return until the window closes. All code that accesses 3D resources must be done in that thread, including code that creates and uses all Blotch3D and MonoGame objects. Note that this rule also applies to any code structure that may internally use other threads, as well. Do not use Parallel, async, etc. code structures that access 3D resources. Other threads that need to access 3D resources can do so by passing a delegate to EnqueueCommand and EnqueueCommandBlocking.

Inheritance diagram for Blotch.BlWindow3D:

Public Member Functions

• delegate void Command (BlWindow3D win)

See EnqueueCommand, EnqueueCommandBlocking, and BIWindow3D for more info

• BlWindow3D ()

See BIWindow3D for details.

void EnqueueCommand (Command cmd)

Since all operations accessing 3D resources must be done by the 3D thread, this allows other threads to send commands to execute in the 3D thread. For example, you might need another thread to be able to create, move, and delete BlSprites. You can also use this for general thread safety of various operations. This method does not block. Also see BlWindow3D and the (blocking) EnqueueCommandBlocking for more details.

void EnqueueCommandBlocking (Command cmd)

Since all operations accessing 3D resources must be done by the 3D thread, this allows other threads to send commands to execute in the 3D thread. For example, you might need another thread to be able to create, move, and delete BISprites. You can also use this for general thread safety of various operations. This method blocks until the command has executed. Also see BIWindow3D and the (non-blocking) EnqueueCommand for more details.

void FrameProcSpritesAdd (BISprite s)

Used internally

• void FrameProcSpritesRemove (BISprite s)

Used internally

• new void Dispose ()

When finished with the object, you should call <code>Dispose()</code> from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if <code>BIDebug.EnableDisposeErrors</code> is true (it is true by default for <code>Debug builds</code>), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying 3D library (OpenGL, etc.) often requires 3D resources to be managed only by one thread.

Public Attributes

BIGraphicsDeviceManager Graphics

The BlGraphicsDeviceManager associated with this window. This is automatically created when you create the BlWindow3D.

• ConcurrentDictionary< string, BlGuiControl > GuiControls = new ConcurrentDictionary<string, BlGuiControl>()

The GUI controls for this window. See BIGuiControl for details.

• bool IsDisposed = false

Set when the object is Disposed.

Protected Member Functions

• override void Initialize ()

Used internally, Do NOT override. Use Setup instead.

• override void LoadContent ()

Used internally, Do NOT override. Use Setup instead.

virtual void Setup ()

Override this and put all initialization and global content creation code in it. See BlWindow3D for details.

override void Update (GameTime timeInfo)

Used internally, Do NOT override. Use FrameProc instead.

virtual void FrameProc (GameTime timeInfo)

See BIWindow3D for details.

override void Draw (GameTime timeInfo)

Used internally, Do NOT override. Use FrameDraw instead.

virtual void FrameDraw (GameTime timeInfo)

See BlWindow3D for details.

6.5.1 Detailed Description

To make a 3D window, you must derive a class from BlWindow3D and override the Setup, FrameProc, and FrameDraw methods. When it comes time to open the 3D window, you instantiate that class and call its "Run" method from the same thread that instantiated it. The Run method will call the Setup, FrameProc, and FrameDraw methods when appropriate, and not return until the window closes. All code that accesses 3D resources must be done in that thread, including code that creates and uses all Blotch3D and MonoGame objects. Note that this rule also applies to any code structure that may internally use other threads, as well. Do not use Parallel, async, etc. code structures that access 3D resources. Other threads that need to access 3D resources can do so by passing a delegate to EnqueueCommand and EnqueueCommandBlocking.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 BIWindow3D()

Blotch.BlWindow3D.BlWindow3D ()

See BlWindow3D for details.

6.5.3 Member Function Documentation

6.5.3.1 Command()

See EnqueueCommand, EnqueueCommandBlocking, and BlWindow3D for more info

Parameters

win The BIWindow3D object

6.5.3.2 Dispose()

```
new void Blotch.BlWindow3D.Dispose ( )
```

When finished with the object, you should call Dispose() from the same thread that created the object. You can call this multiple times, but once is enough. If it isn't called before the object becomes inaccessible, then the destructor will call it and, if BIDebug.EnableDisposeErrors is true (it is true by default for Debug builds), then it will get an exception saying that it wasn't called by the same thread that created it. This is because the platform's underlying 3D library (OpenGL, etc.) often requires 3D resources to be managed only by one thread.

6.5.3.3 Draw()

```
override void Blotch.BlWindow3D.Draw ( {\tt GameTime}~timeInfo~)~[protected]
```

Used internally, Do NOT override. Use FrameDraw instead.

Parameters

timeInfo

6.5.3.4 EnqueueCommand()

Since all operations accessing 3D resources must be done by the 3D thread, this allows other threads to send commands to execute in the 3D thread. For example, you might need another thread to be able to create, move, and delete BISprites. You can also use this for general thread safety of various operations. This method does not block. Also see BIWindow3D and the (blocking) EnqueueCommandBlocking for more details.

Parameters

cmd

6.5.3.5 EnqueueCommandBlocking()

Since all operations accessing 3D resources must be done by the 3D thread, this allows other threads to send commands to execute in the 3D thread. For example, you might need another thread to be able to create, move, and delete BISprites. You can also use this for general thread safety of various operations. This method blocks until the command has executed. Also see BIWindow3D and the (non-blocking) EnqueueCommand for more details.

Parameters

cmd

6.5.3.6 FrameDraw()

```
virtual void Blotch.BlWindow3D.FrameDraw ( {\tt GameTime}\ timeInfo\ )\ \ [protected],\ [virtual]
```

See BlWindow3D for details.

Parameters

timeInfo

6.5.3.7 FrameProc()

See BlWindow3D for details.

Parameters

timeInfo

6.5.3.8 FrameProcSpritesAdd()

```
void Blotch.BlWindow3D.FrameProcSpritesAdd ( {\tt BlSprite}\ s\ )
```

Used internally

Parameters

s

6.5.3.9 FrameProcSpritesRemove()

```
void Blotch.BlWindow3D.FrameProcSpritesRemove ( {\tt BlSprite}\ s\ )
```

Used internally

Parameters

s

6.5.3.10 Initialize()

```
override void Blotch.BlWindow3D.Initialize ( ) [protected]
```

Used internally, Do NOT override. Use Setup instead.

6.5.3.11 LoadContent()

```
override void Blotch.BlWindow3D.LoadContent ( ) [protected]
```

Used internally, Do NOT override. Use Setup instead.

6.5.3.12 Setup()

```
virtual void Blotch.BlWindow3D.Setup ( ) [protected], [virtual]
```

Override this and put all initialization and global content creation code in it. See BlWindow3D for details.

6.5.3.13 Update()

```
override void Blotch.BlWindow3D.Update ( {\tt GameTime}\ timeInfo\ ) \quad [{\tt protected}]
```

Used internally, Do NOT override. Use FrameProc instead.

Parameters

timeInfo

6.5.4 Member Data Documentation

6.5.4.1 Graphics

BlGraphicsDeviceManager Blotch.BlWindow3D.Graphics

The BIGraphicsDeviceManager associated with this window. This is automatically created when you create the BIWindow3D.

6.5.4.2 GuiControls

ConcurrentDictionary<string, BlGuiControl> Blotch.BlWindow3D.GuiControls = new Concurrent← Dictionary<string, BlGuiControl>()

The GUI controls for this window. See BIGuiControl for details.

6.5.4.3 IsDisposed

bool Blotch.BlWindow3D.IsDisposed = false

Set when the object is Disposed.

The documentation for this class was generated from the following file:

C:/Users/kloum/Desktop/Source/Blotch3D/src/BlWindow3D.cs

6.6 Blotch.BlGraphicsDeviceManager.Light Class Reference

Defines a light. See the Lights field. The default BasicShader supports up to three lights.

Public Attributes

- Vector3 LightDirection = new Vector3(1, 0, 0)
- Vector3 LightDiffuseColor = new Vector3(1, 0, 1)
- Vector3 LightSpecularColor = new Vector3(0, 1, 0)

6.6.1 Detailed Description

Defines a light. See the Lights field. The default BasicShader supports up to three lights.

The documentation for this class was generated from the following file:

• C:/Users/kloum/Desktop/Source/Blotch3D/src/BlGraphicsDeviceManager.cs