Càlcul Integral - Resum

Tomàs Ortega

14 de gener de 2017

$\mathbf{\acute{I}ndex}$

1	Sèries Numèriques		
	1.1	Criteri de Dirichlet	2
	1.2	Criteri de Leibniz per a sèries alternades	2
2	Integral Riemann		
	2.1	Definició de integral Riemann	2
	2.2	Conjunts de mesura nul·la o contingut nul	2
	2.3	Teorema de Lebesgue	2
	2.4	Conjunts admissibles	2
	2.5	Teorema de Fubini	3
3	Teo	orema canvi variables	3
4	Parametritzar corbes i superfícies		3
5	Green, Kelvin-Stokes i Gauss		
	5.1	Green	3
	5.2	Kelvin-Stokes	4
	5.3	Gauss	4
6	Formes diferencials		
	6.1	Propietats	4
	6.2		4
7	Teo	orema de Stokes amb formes diferencials	5

1 Sèries Numèriques

1.1 Criteri de Dirichlet

Siguin (a_n) , (b_n) dues successions numèriques. Suposem que les sumes parcials s_n de la sèrie $\sum a_n$ són fitades i que la successió (b_n) és positiva i decreixent amb límit 0. Aleshores la sèrie $\sum a_n b_n$ és convergent.

1.2 Criteri de Leibniz per a sèries alternades

Si (a_n) és una successió decreixent amb $\lim a_n = 0$, aleshores la sèrie alternada $\sum (-1)^n a_n$ és convergent. A més, si s_N és la seva suma parcial N-èsima i s és la suma de la sèrie, $|s - s_N| \le a_{N+1}$.

2 Integral Riemann

2.1 Definició de integral Riemann

Una funció fitada f es diu integrable Riemann en A (rectangle compacte) quan les seves integrals inferior i superior coincideixen. En aquest cas el seu valor comú es diu integral de Riemann de f en A, i es denota per

$$\int_{A} f$$

2.2 Conjunts de mesura nul·la o contingut nul

Es diu que un subconjunt $T \subset \mathbb{R}^n$ té mesura (n-dimensional) zero, o mesura nul·la, si $\forall \varepsilon > 0$ es pot recobrir T amb una família numerable de rectangles compactes tals que la suma de les seves mesures n-dimensionals sigui $< \varepsilon$.

Si aquesta família de rectangles compactes és finita T té contingut nul. Si un conjunt té un punt interior, aleshores no té mesura nul·la.

2.3 Teorema de Lebesgue

Siguin $A \subset \mathbb{R}^n$ un rectangle compacte, $f:A \to \mathbb{R}$ una funció fitada. Sigui $N=\{x\in A|f \text{ no és contínua en }x\}$. f és integrable Riemann sii N és de mesura nul·la.

2.4 Conjunts admissibles

Un subconjunt $C \in \mathbb{R}^n$ es diu admissible o mesurable Jordan si és fitat i la seva frontera té mesura nul·la

2.5 Teorema de Fubini

Siguin $A\subset\mathbb{R}^m,\ B\subset\mathbb{R}^n$ rectangles compactes, $f:A\times B\to\mathbb{R}$ una funció integrable Riemann.

Sigui $\Phi:A\to\mathbb{R}$ una funció tal que $\underline{\int}_B f(x,\cdot)\leq \Phi(x)\leq \overline{\int}_B f(x,\cdot)$. Aleshores Φ és integrable Riemann, i

$$\int_{A\times B}f=\int_A\Phi$$

Anàlogament podriem integrar primer respecte a x i després respecte a y.

$$\underline{\int}_{B} f(\cdot,y) \leq \Psi(y) \leq \overline{\int}_{B} f(\cdot,y) \implies \int_{A \times B} f = \int_{B} \Psi$$

3 Teorema canvi variables

Siguin $V \subset \mathbb{R}^n$ un conjunt obert, i $\varphi : V \to \mathbb{R}^n$ una aplicació injectiva, de classe C^1 , i amb det $D_{\varphi(y)} \neq 0, \forall y \in V$. Sigui $U = \varphi(V)$, de manera que $\varphi : V \to U$ és un difeomorfisme de classe C^1 . Si f és integrable Riemann i de suport compacte, i U, V són mesurables Jordan, aleshores:

$$\int_{U} f = \int_{V} (f \circ \varphi) |\det D_{\varphi(y)}|$$

4 Parametritzar corbes i superfícies

//Tema 3. Corbes i tal.

5 Green, Kelvin-Stokes i Gauss

Si f és un camp escalar i F un camp vectorial, ambdós de classe C^2 , es té rot grad f = 0,

div rot F = 0.

Definició: F es diu conservador si $\exists f$ tal que $F = \operatorname{grad} f$

Definició: F es diu irrotacional si rot F=0

Definició: F es diu solenoidal si $\exists G$ tal que F = rot G

Definició: F es diu sense divergència si div F=0

5.1 Green

Siguin $U \subset \mathbb{R}^2$ un conjunt obert, $F: U \to \mathbb{R}^2$ un camp vectorial de classe C^1 . Sigui $M \subset U$ un conjunt obert tal que $\overline{M} \subset U$ és compacta. Sigui ∂M la vora de M amb la orientació induïda (l'la part de dintre, a l'esquerra"). Si el conjunt de punts frontera singulars de M és finit, aleshores se satisfà la fórmula de Green:

$$\int_{M} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx dy = \int_{\partial M} F \cdot dl$$

5.2 Kelvin-Stokes

Siguin $W \subset \mathbb{R}^3$ un conjunt obert, $F:W \to \mathbb{R}^3$ un camp vectorial de classe C^1 . Sigui $M \subset W$ una superfície orientada de classe C^2 tal que $\overline{M} \subset W$ és compacta. Sigui ∂M la vora de M amb l'orientació induïda ("regla de la mà dreta"). Si el conjunt de punts frontera singulars de M és finit, aleshores se satisfà la fórmula de Kelvin-Stokes:

$$\int_{M} (rotF) \cdot dS = \int_{\partial S} F \cdot dl$$

5.3 Gauss

Siguin $W \subset \mathbb{R}^3$ un conjunt obert, $F: W \to \mathbb{R}^3$ un camp vectorial de classe C^1 . Sigui $B \subset W$ un obert (amb la orientació natural de \mathbb{R}^3) tal que $\overline{B} \subset W$ és compacte. Sigui ∂B la vora de B amb la orientació induïda ("amb la normal cap a fora"). Si el conjunt de punts frontera singulars de B és finit, aleshores se satisfà la fórmula de Gauss-Ostrogradskii:

$$\int_{B} div F dV = \int_{\partial B} F \cdot dS$$

6 Formes differencials

No hem donat una definició formal de forma.

Definició: Forma diferencial α tancada si $d\alpha = 0$

Definició: Forma diferencial β exacta si \exists forma diferencial γ tal que $d\gamma = \beta$

6.1 Propietats

- 1. $dx \wedge dy = -dy \wedge dx$
- $2. dx \wedge dx = 0$
- 3. $d^2\omega = 0$ (exacta \Longrightarrow tancada)

Si tenim una forma $\omega = f(x, y)$ aleshores

$$d\omega = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

6.2 Lema de Poincaré

Tota forma diferencial en \mathbb{R}^n tancada i de grau ≥ 1 és tancada.

7 Teorema de Stokes amb formes diferencials

Sigui $M \subset \mathbb{R}^n$ una varietat amb vora, orientada i de dimensió m. Denotem ∂M la seva vora amb la orientació induïda. Sigui ω una forma diferencial de grau m-1 en M de suport compacte, aleshores se satisfà la fórmula de Stokes:

$$\int_M d\omega = \int_{\partial M} \omega$$