Report No: CCIS15110090102

FCC REPORT

Applicant: Shenzhen RF-Link Technology Co., Ltd.

Address of Applicant: Bldg56A, 6/F, Baotian Rd3, Xixiang Town, Baoan District,

ShenZhen, China

Equipment Under Test (EUT)

Product Name: WIDI

Model No.: WD01

FCC ID: 2AGQ3-WD01

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 20 Nov., 2015

Date of Test: 20 Nov., to 07 Dec., 2015

Date of report issued: 07 Dec., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Dec., 2015	Original

Prepared by: O7 Dec., 2015

Powart Clark

Reviewed by: Date: 07 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
4		T SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	DESCRIPTION OF SUPPORT UNITS	8
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	18
	6.5	Power Spectral Density	
	6.6	BAND EDGE	29
	6.7	Spurious Emission	32
	6.7.		
	6.7.2		
	6.8	FREQUENCY STABILITY	42
7	TES	T SETUP PHOTO	44
8	EUT	CONSTRUCTIONAL DETAILS	45
•			

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2009 and ANSI C63.10:2009

5 General Information

5.1 Client Information

Applicant:	Shenzhen RF-Link Technology Co., Ltd.
Address of Applicant:	Bldg56A, 6/F, Baotian Rd3, Xixiang Town, Baoan District, ShenZhen, China
Manufacturer:	Shenzhen RF-Link Technology Co., Ltd.
Address of Manufacturer:	Bldg56A, 6/F, Baotian Rd3, Xixiang Town, Baoan District, ShenZhen, China
Factory:	Shenzhen RF-Link Industrial Development Co., Ltd.
Address of Factory:	Bldg56A, 4/F, Baotian Rd3, Xixiang Town, Baoan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	WIDI
Model No.:	WD01
Operation Frequency:	Band 1: 5180MHz-5240MHz
Operation mode:	Portable Used
Channel numbers:	802.11a/802.11n20: 4, 802.11n40: 2, 802.11ac:1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac : 80MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Modulation technology: (IEEE 802.11ac)	BPSK,QPSK,16-QAM, 64-QAM, 256-QAM
Antenna Type:	Internal Antenna
Antenna gain:	6 dBi
Power supply:	AC 120V/ 60Hz

Operation Frequency each of channel

Band 1							
802.11a/8	02.11n20	802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/8	802.11a/802.11n20		802.11n40		1ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency	
The lowest channel	5180MHz	The lowest channel	5190MHz	The lowest channel	5210MHz	
The middle channel	5200MHz	The highest channel	5230MHz			
The highest channel	5240MHz					

Report No: CCIS15110090102

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.					
Mode Data rate					
802.11a	6 Mbps				
802.11n20	6.5 Mbps				
802.11n40 13 Mbps					
802.11ac 23.9 Mbps					
Final Test Medec	·				

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20, 13 Mbps for 802.11n40, and 29.3 Mbps for 802.11ac. All test items for 802.11a, 802.11ac and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

■ FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 6 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10: 2009		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz		
Limit:	Frequency range (MHz)	Limit (d	lBuV)
	, , , , , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarithm	of the frequency	50
Test procedure Test setup:	 The E.U.T and simulators a line impedance stabili 50ohm/50uH coupling imp The peripheral devices through a LISN that provided with 50ohm termination. It test setup and photograph Both sides of A.C. line are interference. In order to find positions of equipment and changed according to ANS measurement. 	ization network (L.I.S redance for the measur are also connected to vides a 500hm/50uH of (Please refer to the blas). The checked for maximum and the maximum emission all of the interface calcolor (C63.10: 2009 on consequence).	.N.). It provides a ing equipment. o the main power coupling impedance lock diagram of the conducted on, the relative bles must be
rost sotup.	AUX Equipment E.U Test table/Insulation plan Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r —— AC power
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details.		
Test results:	Passed		

Measurement Data

Line:

Trace: 11 Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : WIDI Condition

EUT : WD01 Model Test Mode : 5GWifi mode Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: MT.liang

Re

Remark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	dB	₫B	dBu∀	dBu√	<u>ab</u>	
1	0.160	28.32	0.27	10.78	39.37	65.47	-26.10	QP
2	0.260	17.45	0.27	10.75	28.47	61.42	-32.95	QP
3	0.260	14.79	0.27	10.75	25.81	51.42	-25.61	Average
4	0.389	11.19	0.28	10.72	22.19	48.08	-25.89	Average
5	0.724	15.67	0.22	10.78	26.67	56.00	-29.33	QP
6	5.564	18.30	0.30	10.83	29.43	60.00	-30.57	QP
1 2 3 4 5 6 7 8 9	5.805	17.01	0.31	10.83	28.15	50.00	-21.85	Average
8	8.148	17.33	0.32	10.86	28.51	50.00	-21.49	Average
9	18.524	26.49	0.33	10.91	37.73	50.00	-12.27	Average
10	18.721	29.28	0.34	10.91	40.53	60.00	-19.47	QP
11	22.775	28.70	0.44	10.89	40.03	60.00	-19.97	QP
12	22.775	25.74	0.44	10.89	37.07	50.00	-12.93	Average

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: WIDI EUT : WD01 Model

Test Mode : 5GWifi mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: MT.linag

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∇	<u>dB</u>	<u>ab</u>	dBu₹	dBu∀	<u>dB</u>	
1 2	0.155	27.17	0.25	10.78	38. 20		-27.54	
2	0.155	20.99	0.25	10.78	32.02	55.74	-23.72	Average
3	0.260	14.01	0.26	10.75	25.02	51.42	-26.40	Average
4	0.779	13.44	0.19	10.80	24.43	56.00	-31.57	QP
5	1.939	9.40	0.29	10.96	20.65	46.00	-25.35	Average
4 5 6	2.978	15, 21	0.29	10.92	26.42	56.00	-29.58	QP
7	6.319	9.40	0.27	10.81	20.48			Average
7	8.279	16, 11	0.26	10.86	27. 23		-32.77	
9	17.849	23.69	0.26	10.90	34.85	50.00	-15.15	Average
10	17.944	27.99	0.26	10.90	39.15		-20.85	
11	22, 775	22.20		10.89	33.48			Average
12	22.896	27.64	0.40	10.89	38.93		-21.07	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10: 2009, KDB 789033				
Limit:	30.00dBm				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result
	Lowest	11.51	30.00	Pass
802.11a	Middle	12.47	30.00	Pass
	Highest	12.94	30.00	Pass
	Lowest	11.28	30.00	Pass
802.11n20	Middle	11.63	30.00	Pass
	Highest	12.59	30.00	Pass
802.11n40	Lowest	10.18	30.00	Pass
002.111140	Highest	10.77	30.00	Pass
802.11ac	Lowest	10.55	30.00	Pass

Test plot as follows:

Middle channel

Highest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5)				
Test Method:	ANSI C63.10: 2009 and KDB 789033				
Limit:	N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Toot Channal		Limit	Dogult			
Test Channel	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	22.24	22.48	43.52	83.52		
Middle	22.80	22.88			N/A	N/A
Highest	22.64	22.72	43.84			

Test Channel		99% Occupy Band	Limit	Dogult			
rest Chamilei	802.11a	802.11n20	802.11n40 802.11ac		Limit	Result	
Lowest	17.36	18.16	36.64	75.52			
Middle	17.28	18.24			N/A	N/A	
Highest	17.36	18.16	36.64				

Test plot as follows:

26 dB EBW - 802.11a

Date: 23.NOV.2015 07:49:28

Lowest channel

Date: 23.NOV.2015 07:50:49

Middle channel

Date: 23.NOV.2015 07:52:11

Highest channel

Date: 23.NOV.2015 07:56:25

Lowest channel

Date: 23.NOV.2015 07:57:18

Middle channel

Date: 23.NOV.2015 07:58:17

Highest channel

Date: 23.NOV.2015 07:59:24

Date: 23.NOV.2015 07:59:55

Highest channel

Date: 23.NOV.2015 09:45:11

Lowest channel

Date: 23.NOV.2015 07:51:30

Lowest channel

Date: 23.NOV.2015 07:51:03

Date: 23.NOV.2015 07:51:59

Highest channel

Date: 23.NOV.2015 07:56:40

Date: 23.NOV.2015 07:57:04

Date: 23.NOV.2015 07:58:33

Highest channel

Date: 23.NOV.2015 07:59:10

#RBW 300 kHz Marker 1 [T1] *VBW 1 MHz Ref 26.5 dBm *Att 30 dB SWT 20 mm 5.222720000 GHz Off pet 6.4 dB -4.89 dBm -5.21160000 GHz 5.21160000 GHz -4.89 dBm -5.21160000 GHz -5.24824000 GHz -7.55 dBm -7.70 -7.00

Date: 23.NOV.2015 08:00:09

Highest channel

Date: 23.NOV.2015 09:45:24

Lowest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10: 2009 KDB 789033				
Limit:	17 dBm/MHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
	Lowest	7.52	17.00	Pass
802.11a	Middle	7.26	17.00	Pass
	Highest	7.09	17.00	Pass
	Lowest	6.39	17.00	Pass
802.11n20	Middle	6.66	17.00	Pass
	Highest	6.76	17.00	Pass
000 11-10	Lowest	3.24	17.00	Pass
802.11n40	Highest	2.96	17.00	Pass
802.11ac	Lowest	1.96	17.00	Pass

Test plot as follows:

Date: 23.NOV.2015 09:52:18

#BBW 1 MHZ Marker 1 [71] **Ref 26.5 dBm *Att 30 dB SNT 20 ms 5.206160000 GHz Off pet 6.\$ dB SNT 20 ms 5.206160000 GHz **DEW 1 MHZ Marker 1 [71] **CONTROL OF SNT 20 ms 5.206160000 GHz **DEW 1 MHZ MARKER 1 [71] **CONTROL OF SNT 20 ms 5.206160000 GHz **DEW 1 MHZ MARKER 1 [71] **CONTROL OF SNT 20 ms 5.206160000 GHz **DEW 1 MHZ MARKER 1 [71] **CONTROL OF SNT 20 ms 5.206160000 GHz **DEW 1 MHZ MARKER 1 [71] **CONTROL OF SNT 20 ms 5.206160000 GHz **DEW 1 MHZ MARKER 1 [71] **CONTROL OF SNT 20 ms 5.206160000 GHz **DEW 1 MHZ MARKER 1 [71] **DEW 1 MHZ MARKER 1 [

Date: 23.NOV.2015 09:52:45

Date: 23.NOV.2015 09:53:15

Highest channel

Date: 23.NOV.2015 09:54:31

Lowest channel

Date: 23.NOV.2015 09:54:09

Middle channel

Date: 23.NOV.2015 09:53:48

Highest channel

Date: 23.NOV.2015 09:55:13

Lowest channel

Date: 23.NOV.2015 09:55:36

Highest channel

Test mode: 802.11ac

Date: 23.NOV.2015 09:49:26

Lowest channel

6.6 Band Edge

Test Method: ANSI C63.10:2009 , KDB 789033 Receiver setup: Detector RBW VBW Remark Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value Limit: Limit: Limit (dBuV/m @3m) Remark Band 1 88.20 Peak Value Remark: limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test results: Passed	o.o Ballu Euge	T					
Detector RBW VBW Remark Peak Value RMS 11MHz 3MHz Peak Value RMS 11MHz 3MHz Average Value Band 1 68.20 Peak Value Band 1 68.20 Peak Value Remark: Band 1 68.20 Peak Value Remark: Bellow Re	Test Requirement:			, ,			
Detector RBW VBW Remark Peak MIHz 3MHz Peak Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value	Test Method:	ANSI C63.10:20	09 , KDB 7	89033			
Limit: Limit (dBuV/m @3m) Remark Band 1 68.20 Peak Value S4.00 Average Value Remark: Iimit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27dBm. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The EUT was a meter away from one meter to four meters above the ground to determine the maximum value of the field strength, Both horizontal and vertical polarizations of the antenna are set to make the measurement.	Receiver setup:	Peak	1MHz	3MHz	Peak Value	ue	
Band 1 68.20 Peak Value	Limit	1		0111112	, tvolago van	<u> </u>	
Imit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27dBm. 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.6 for details Refer to section 5.3 for details	LIITIIL	Band	1	ì	68.20	Peak Value	
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.6 for details Refer to section 5.3 for details		limit: Ε[dBμV/m] :					
Test Instruments: Refer to section 5.6 for details Test mode: Refer to section 5.3 for details	Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna the ground Both horizon make the make the make the meters and to find the rospecified B 6. If the emission the EUT have 10dB peak or aversalten.	at a 3 meters of the position as set 3 meters of the position as set 3 meters of the position as set 3 meters of the position and very set of the position of	er camber. on of the histers away ounted on the varied from the the maximum of the was turned and the EUT in the EUT in the testing coeported. Otald be re-te	The table was roghest radiation. from the interference the top of a variation one meter to formum value of the zations of the arranged to heights from 0 degree to Peak Detect of the peak mode was all to be stopped a herwise the emissisted one by one	ence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 the esto 360 degrees are function and and the peak values sesions that did not using peak, quasi-	
Test mode: Refer to section 5.3 for details	Test setup:	EUT → 3m Turn 0 8m	4m	sı	Horn Antenna pectrum analyzer		
	Test Instruments:	Refer to section	5.6 for deta	ails	-		
Test results: Passed	Test mode:						
	Test results:	Passed					

	802.11a							
Test cl	hannel		Lowest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	37.15	32.07	9.13	40.06	38.29	68.20	-29.91	Horizontal
5150.00	36.69	32.07	9.13	40.06	37.83	68.20	-30.37	Vertical
				802.11a				
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	27.12	32.07	9.13	40.06	28.26	54.00	-25.74	Horizontal
5150.00	26.52	32.07	9.13	40.06	27.66	54.00	-26.34	Vertical
				802.11a				
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	37.52	31.78	9.15	40.18	38.27	68.20	-29.93	Horizontal
5350.00	37.65	31.78	9.15	40.18	38.40	68.20	-29.80	Vertical
				802.11a				
Test cl	Test channel Highest			Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	27.85	31.78	9.15	40.18	28.60	54.00	-25.40	Horizontal
5350.00	27.54	31.78	9.15	40.18	28.29	54.00	-25.71	Vertical

	802.11n-HT20										
Test cl	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	37.12	32.07	9.13	40.06	38.26	68.20	-29.94	Horizontal			
5150.00	36.69	32.07	9.13	40.06	37.83	68.20	-30.37	Vertical			
	802.11n-HT20										
Test cl	hannel		Lowest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	27.83	32.07	9.13	40.06	28.97	54.00	-25.04	Horizontal			
5150.00	27.98	32.07	9.13	40.06	29.12	54.00	-24.88	Vertical			
			8	02.11n-HT20							
Test cl	hannel		Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	36.69	31.78	9.15	40.18	37.44	68.20	-30.76	Horizontal			
5350.00	36.19	31.78	9.15	40.18	36.94	68.20	-31.26	Vertical			
			8	02.11n-HT20							
Test cl	hannel		Highest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	27.54	31.78	9.15	40.18	28.29	54.00	-25.71	Horizontal			
5350.00	28.62	31.78	9.15	40.18	29.37	54.00	-24.63	Vertical			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n-HT40										
Test c	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	36.35	32.07	9.13	40.06	37.49	68.20	-30.71	Horizontal			
5150.00	36.14	32.07	9.13	40.06	37.28	68.20	-30.92	Vertical			
			8	02.11n-HT40							
Test c	hannel		Lowest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	26.54	32.07	9.13	40.06	27.68	54.00	-26.32	Horizontal			
5150.00	25.37	32.07	9.13	40.06	26.51	54.00	-27.49	Vertical			
			8	02.11n-HT40							
Test c	hannel		Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	36.32	31.78	9.15	40.18	37.07	68.20	-31.13	Horizontal			
5350.00	36.77	31.78	9.15	40.18	37.52	68.20	-30.68	Vertical			
			8	02.11n-HT40							
Test c	hannel		Highest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	26.36	31.78	9.15	40.18	27.11	54.00	-26.89	Horizontal			
5350.00	26.74	31.78	9.15	40.18	27.49	54.00	-26.51	Vertical			

				802.11ac					
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.14	32.07	9.13	40.06	38.28	68.20	-29.92	Horizontal	
5150.00	26.38	32.07	9.13	40.06	27.52	68.20	-40.68	Vertical	
802.11ac									
Test cl	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	27.01	32.07	9.13	40.06	28.15	54.00	-25.85	Horizontal	
5150.00	25.63	32.07	9.13	40.06	26.77	54.00	-27.23	Vertical	
				802.11ac					
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.85	31.78	9.15	40.18	38.60	68.20	-29.60	Horizontal	
5350.00	37.52	31.78	9.15	40.18	38.27	68.20	-29.93	Vertical	
				802.11ac					
Test cl	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	27.52	31.78	9.15	40.18	28.27	54.00	-25.73	Horizontal	
5350.00	27.14	31.78	9.15	40.18	27.89	54.00	-26.11	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1	Restricted Band								
	Test Requirement:	FCC Part15 E Section 15.407(b)							
	Test Method:	ANSI C63.10: 2	009						
	Test Frequency Range:	4.5 GHz to 5.1	5 GHz and 5.	35GHz to 5.46	6GHz				
	Test site:	Measurement [Distance: 3m						
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
			Peak	1MHz	3MHz	Peak Value			
		Above 1GHz	RMS	1MHz	3MHz	Average Value			
	Limit:								
		Freque	ency	Limit (dBuV		Remark			
		Above 1	IGHz	74.0 54.0		Peak Value Average Value			
		7. The EUT v				le 0.8 meters above			
	Test Procedure:	the ground to determine to determine to determine the EUT wantenna, watower. 9. The anten the ground Both horiz make the reach so case and to find the the total the limit specified In the EUT have 10dE	d at a 3 meter ne the position was set 3 meter which was more and height is very d to determine ontal and very measurements suspected emoter then the anter d the rota tab maximum real eceiver system Bandwidth with sion level of the pecified, then would be real margin would	camber. The in of the higher ters away from bunted on the trained from one of the maximun tical polarization. The end was turned ading. In was set to Fith Maximum Fithe EUT in peatesting could ported. Otherwld be re-tested.	table was rest radiation in the interferop of a varies meter to for value of the constant of the allocations of the allocations of the allocations of the allocations of the constant of the c	rence-receiving iable-height antenna four meters above he field strength. Intenna are set to mged to its worst from 1 meter to 4 rees to 360 degrees			
	Test setup:								
	Test Instruments:	Refer to section	n 5.6 for deta	ils					
	Test mode:	Refer to section	n 5.3 for deta	ils					
	Test results:	Passed							

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.24	30.72	8.54	40.67	34.83	74.00	-39.17	Horizontal
4500.00	37.02	30.72	8.54	40.67	35.61	74.00	-38.39	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	26.54	30.72	8.54	40.67	25.13	54.00	-28.87	Horizontal
4500.00	26.40	30.72	8.54	40.67	24.99	54.00	-29.01	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	37.26	31.99	9.16	40.23	38.18	74.00	-35.82	Horizontal
5460.00	37.05	31.99	9.16	40.23	37.97	74.00	-36.03	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	27.12	31.99	9.16	40.23	28.04	54.00	-25.96	Horizontal
5460.00	27.00	31.99	9.16	40.23	27.92	54.00	-26.08	Vertical

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.87	30.72	8.54	40.67	35.46	74.00	-38.54	Horizontal
4500.00	36.38	30.72	8.54	40.67	34.97	74.00	-39.03	Vertical
Test cl	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	26.54	30.72	8.54	40.67	25.13	54.00	-28.87	Horizontal
4500.00	26.36	30.72	8.54	40.67	24.95	54.00	-29.05	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	37.28	31.99	9.16	40.23	38.20	74.00	-35.80	Horizontal
5460.00	37.89	31.99	9.16	40.23	38.81	74.00	-35.20	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	27.52	31.99	9.16	40.23	28.44	54.00	-25.56	Horizontal
5460.00	27.18	31.99	9.16	40.23	28.10	54.00	-25.90	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.50	30.72	8.54	40.67	36.09	74.00	-37.91	Horizontal
4500.00	37.55	30.72	8.54	40.67	36.14	74.00	-37.86	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	27.55	30.72	8.54	40.67	26.14	54.00	-27.86	Horizontal
4500.00	27.36	30.72	8.54	40.67	25.95	54.00	-28.05	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.28	31.99	9.16	40.23	37.20	74.00	-36.80	Horizontal
5460.00	37.29	31.99	9.16	40.23	38.21	74.00	-35.80	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	27.32	31.99	9.16	40.23	28.24	54.00	-25.76	Horizontal

802.11ac

Test cl	Test channel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	38.24	30.72	8.54	40.67	36.83	74.00	-37.17	Horizontal		
4500.00	37.45	30.72	8.54	40.67	36.04	74.00	-37.96	Vertical		
Test c	hannel		Lowest		Level		Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	28.13	31.99	9.16	40.23	29.05	54.00	-24.95	Horizontal		
5460.00	28.41	31.99	9.16	40.23	29.33	54.00	-24.67	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205								
Test Method:	ANSI C63.10:2009										
Test Frequency Range:	30MHz to 40GH	30MHz to 40GHz Measurement Distance: 3m									
Test site:	Measurement D	istance: 3m									
Receiver setup:											
·	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120kHz 300kHz Quasi-peak Value										
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value						
	Above 1GHz	Peak Value									
Limit:	_										
	Freque		Limit (dBuV/	m @3m)	Remark						
	30MHz-8	8MHz	40.0)	Quasi-peak Value						
	88MHz-21		43.5		Quasi-peak Value						
	216MHz-9	i	46.0		Quasi-peak Value						
	960MHz-	1GHz	54.0)	Quasi-peak Value						
	Freque	ncv	Limit (dBn	n/MHz)	Remark						
		_	68.2	•	Peak Value						
	Above 1	GHz	54.0		Average Value						
Test Procedure:	the ground determine of the EUT was antenna, we tower. 3. The antenry ground to compare the following and then the and the rote maximum results. The test-results of the EUT were specified to the EUT were specified t	ras placed on that a 3 meter cathe position of the position was mountained to the position of	he top of a reamber. The the highest rest away from the don the to the field from one haximum valuarizations of the from 0 ce was set to P Maximum He EUT in pear grould be sid. Otherwise	otating table table was readiation. the interfer op of a variation of the first the antennal of the antennal of the arrange of the cold Mode. The was arranged to seek Detect old Mode.	e 0.8 meters above otated 360 degrees to rence-receiving able-height antenna our meters above the eld strength. Both as are set to make the nged to its worst case 1 meter to 4 meters 360 degrees to find the						

Below 1GHz

Horizontal:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 901RF

Pro EUT WIDI Model : WD01 Test mode : 5GWifi mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor					Over Limit	
7	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBu∜/m	dBuV/m	<u>dB</u>	
1	109.796	49.66	12.25	1.04	29.46	33.49	43.50	-10.01	QP
2	193.773	50.05	10.56	1.37	28.87	33.11	43.50	-10.39	QP
2	297.224	50.90	13.00	1.76	28.46	37.20	46.00	-8.80	QP
4	332.519	56.31	13.86	1.88	28.52	43.53	46.00	-2.47	QP
5	339.589	55.91	14.12	1.91	28.54	43.40	46.00	-2.60	QP
6	385.281	48.00	14.73	2.07	28.72	36.08	46.00	-9.92	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 901RF Condition

Pro EUT WIDI

: WD01 Model Test mode : 5GWifi mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

THEME									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	_dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	93.768	44.72	12.58	0.93	29.56	28.67	43.50	-14.83	QP
2	167.824	52.93	8.90	1.34	29.07	34.10	43.50	-9.40	QP
2	203.523	53.19	10.67	1.40	28.81	36.45	43.50	-7.05	QP
4 5	272.278	54.32	12.46	1.69	28.50	39.97	46.00	-6.03	QP
5	330.195	52.04	13.79	1.87	28.52	39.18	46.00	-6.82	QP
6	385.281	49.57	14.73	2.07	28.72	37.65	46.00	-8.35	QP

Above 1GHz:

	802.11a mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	45.62	39.23	13.84	41.34	57.35	68.20	-10.85	Vertical				
10360.00	44.12	39.23	13.84	41.34	55.85	68.20	-12.35	Horizontal				
		802.11	a mode Lowe	est channe	I (Average V	/alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	32.52	39.23	13.84	41.34	44.25	54.00	-9.75	Vertical				
10360.00	33.69	39.23	13.84	41.34	45.42	54.00	-8.58	Horizontal				

	802.11a mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	44.62	39.36	13.85	41.27	56.56	68.20	-11.64	Vertical
10400.00	44.95	39.36	13.85	41.27	56.89	68.20	-11.31	Horizontal
		802.11	a mode Mido	de channe	l (Average V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	34.52	39.36	13.85	41.27	46.46	54.00	-7.54	Vertical
10400.00	35.01	39.36	13.85	41.27	46.95	54.00	-7.05	Horizontal

	802.11a mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	43.62	39.56	13.90	41.06	56.02	68.20	-12.18	Vertical
10480.00	42.35	39.56	13.90	41.06	54.75	68.20	-13.45	Horizontal
		802.11a	a mode High	est channe	l (Average \	/alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	33.15	39.56	13.90	41.06	45.55	54.00	-8.45	Vertical
10480.00	32.54	39.56	13.90	41.06	44.94	54.00	-9.06	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	45.32	39.23	13.84	41.34	57.05	68.20	-11.15	Vertical
10360.00	44.21	39.23	13.84	41.34	55.94	68.20	-12.26	Horizontal
		802.11n2	20 mode Lov	vest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	35.62	39.23	13.84	41.34	47.35	54.00	-6.65	Vertical
10360.00	34.85	39.23	13.84	41.34	46.58	54.00	-7.42	Horizontal

	802.11n20 mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	45.62	39.36	13.85	41.27	57.56	68.20	-10.64	Vertical
10400.00	44.23	39.36	13.85	41.27	56.17	68.20	-12.03	Horizontal
		802.11n	20 mode Mid	dle chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	35.62	39.36	13.85	41.27	47.56	54.00	-6.44	Vertical
10400.00	34.85	39.36	13.85	41.27	46.79	54.00	-7.21	Horizontal

	802.11n20 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	43.35	39.56	13.90	41.06	55.75	68.20	-12.45	Vertical
10480.00	44.01	39.56	13.90	41.06	56.41	68.20	-11.79	Horizontal
		802.11n2	20 mode Higl	hest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	32.14	39.56	13.90	41.06	44.54	54.00	-9.46	Vertical
10480.00	31.11	39.56	13.90	41.06	43.51	54.00	-10.49	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	43.25	39.29	13.84	41.31	55.07	68.20	-13.13	Vertical
10380.00	44.57	39.29	13.84	41.31	56.39	68.20	-11.81	Horizontal
		802.11n ²	40 mode Lov	vest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	31.47	39.29	13.84	41.31	43.29	54.00	-10.71	Vertical
10380.00	32.20	39.29	13.84	41.31	44.02	54.00	-9.98	Horizontal

	802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460.00	43.25	39.54	13.88	41.17	55.50	68.20	-12.70	Vertical	
10460.00	42.28	39.54	13.88	41.17	54.53	68.20	-13.67	Horizontal	
		802.11n ²	10 mode Hig	hest chann	el (Average	Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460.00	33.25	39.54	13.88	41.17	45.50	54.00	-8.50	Vertical	
10460.00	32.28	39.54	13.88	41.17	44.53	54.00	-9.47	Horizontal	

	802.11ac mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	45.17	39.23	13.84	41.34	56.90	68.20	-11.30	Vertical
10420.00	45.32	39.23	13.84	41.34	57.05	68.20	-11.15	Horizontal
		802.11a	c mode Low	est channe	el (Average \	/alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	34.18	39.23	13.84	41.34	45.91	54.00	-8.09	Vertical
10420.00	33.47	39.23	13.84	41.34	45.20	54.00	-8.80	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.					
Test results:	Passed					

Measurement Data (the worst channel):

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Tes	st conditions	F(MII-)	Mara Davidian (norm)	
Temp(°C)	Voltage(DC)	Frequency(MHz)	Max. Deviation (ppm)	
	5.2	5179.983638	3.16	
20	5.0	5179.986754	2.56	
	4.8	5179.986285	2.65	

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test con	ditions	Francisco (MIII-)	May Deviation (name)
Voltage(DC)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5179.986470	2.61
	-10	5179.988638	2.19
	0	5179.988952	2.13
5vdc	10	5179.986547	2.60
Svac	20	5179.985025	2.89
	30	5179.984899	2.92
	40	5179.983452	3.19
	50	5179.984852	2.92