A. Proofs of UFF section

In this section we will give proofs for theorems in the UFF section and introduce a robust version of UFF when the measurements have adversarial noise.

Proof of Theorem 2. Consider k+1 distinct elements of $\mathcal{F}: B_0, B_1, \dots, B_k$. Let us define the bad event E as

$$E = 1_{\left\{B_0 \subseteq \bigcup_{i=1}^k B_i\right\}}.$$

The cardinality of $\bigcup_{i=1}^{k} B_i$ is at most kd. Since the elements of B_0 are chosen independently and uniformly at random from [m], we have:

$$\mathbb{P}\left[E\right] \le \frac{\binom{kd}{d}}{\binom{m}{d}} \le \left(\frac{kd}{m-d+1}\right)^d.$$

The total number of choices for the sets B_0, B_1, \dots, B_k is $n\binom{n-1}{k}$. Using union bound, the probability that Algorithm 1 does not return a (d, k)-UFF is

$$\mathbb{P}\left[\text{Err}\right] \le n \binom{n-1}{k} \left(\frac{kd}{m-d+1}\right)^d$$

$$\le n \left(\frac{e(n-1)}{k}\right)^k \left(\frac{kd}{m-d+1}\right)^d$$

$$\le n^{2k} e^k \left(\frac{1}{9}\right)^{k \log\left(\frac{3n}{\delta}\right)}$$

$$= n^{2k} e^k n^{-k \log 9} 3^{-k \log 9} \delta^{k \log 9} < \delta.$$

This finishes the proof.

Proof of Theorem 3. Let $S^* = \text{supp}(\boldsymbol{x}^*)$. We know that $|S^*| \leq k$. Wlog, assume that non-zero elements are in the first k dimensions of \boldsymbol{x}^* , i.e., $S^* = \{1, 2, \dots, |S^*|\}$.

Proof of $\widehat{S} \subseteq S^*$: Consider any $\ell \notin S^*$. As, A is constructed from \mathcal{F} which is (d,k)-UFF (see Definition 1):

$$B_l \nsubseteq B_1 \cup B_2 \cup \cdots \cup B_{|S^*|}$$
.

Therefore, $\exists 1 \leq i' \leq m \text{ s.t. } i' \in B_{\ell} \text{ and } i' \notin B_j \ \forall j \in S^*$. Furthermore, $b_{i'} = \mathbb{1}_{\{\sum_{j:i' \in B_j} x_j^* > 0\}} = 0$. Therefore, $\min_{i \in B_{\ell}} b_i = 0$, i.e., $\ell \notin \widehat{S}$ (see Step 4 of Algorithm 2), and it follows that $\widehat{S} \subseteq S^*$.

Proof of $S^* \subseteq \widehat{S}$: Now consider any $\ell \in S^*$. For all $i \in B_\ell$, we have: $b_i = \mathbb{1}_{\{\sum_{j:i \in B_j} x_j^* > 0\}} \ge \mathbb{1}_{\{x_\ell^* > 0\}} = 1$. Therefore, $\min_{i \in B_\ell} b_i > 0$, and by Step 5 of Algorithm 2: $\ell \in \widehat{S}$. Hence, $S^* \subset \widehat{S}$.

In the presence of arbitrary adversarial noise, the measurements no longer satisfy (3) but are given by

$$\boldsymbol{b} = \operatorname{Sign}\left(A\boldsymbol{x}^* + \boldsymbol{\eta}\right) \tag{5}$$

where $\eta \in \mathbb{R}^m$ is a sparse vector of outliers and $\|\eta\|_0$ is the number of adversarial errors. In the case of adversarial errors, we use a (d, k, ϵ) -UFF to construct the measurement matrix as in (2) and the following algorithm to reconstruct x^* .

Algorithm 8 Support recovery algorithm when A is constructed from a (d, k, ϵ) -UFF

input A: measurement matrix, ϵ : robustness parameter, b: measurement vector ($b = \text{sign}(Ax^* + \eta)$)

- 1: $\widehat{S} \leftarrow \emptyset$
- 2: **for** $j = 1, \dots, n$ **do**
- 3: **if** $|\operatorname{supp}(\boldsymbol{b}) \cap B_j| > \frac{|B_j|}{2}$ then
- 4: $\widehat{S} \leftarrow \widehat{S} \cup \{j\}$
- 5: end if
- 6: end for

output \widehat{S}

Theorem 8 shows that Algorithm 8 recovers \boldsymbol{x}^* even in the presence of at most $(\frac{1}{2} - \epsilon) d$ adversarial errors.

Theorem 8. Suppose $\mathbf{x}^* \in \mathbb{R}^n_{\geq 0}$ is a vector of nonnegative elements s.t. $\|\mathbf{x}^*\|_0 \leq k$, A is a sensing matrix constructed according to (2) and the measurements are according to (5). Suppose further that the underlying UFF is a (d, k, ϵ) -UFF and there are up to $(\frac{1}{2} - \epsilon) d$ adversarial errors in the measurement (i.e., $\|\boldsymbol{\eta}\|_0 \leq (\frac{1}{2} - \epsilon) d$ where $\boldsymbol{\eta}$ is as in (5)). Then, the set \widehat{S} returned by Algorithm 8 satisfies: $\widehat{S} = \operatorname{supp}(\mathbf{x}^*)$.

Proof. The proof of this theorem is along lines of the proof for Theorem 3. Let $S^* = \operatorname{supp}(\boldsymbol{x}^*)$. We know that $|S^*| \leq k$. Wlog, assume that non-zero elements are in the first k dimensions of \boldsymbol{x}^* , i.e., $S^* = \{1, 2, \cdots, |S^*|\}$.

We show $\widehat{S} = S^*$, by first proving $\widehat{S} \subseteq S^*$ and then $S^* \subset \widehat{S}$.

Proof of $\widehat{S} \subseteq S^*$: Consider any $\ell \notin S^*$. Since A is constructed from \mathcal{F} which is (d, k, ϵ) -UFF (see Definition 3):

$$|B_l \cap (B_1 \cup B_2 \cup \cdots \cup B_{|S^*|})| < \epsilon |B_l| = \epsilon d.$$

Since there are at most $(\frac{1}{2} - \epsilon) d$ adversarial errors, we have

$$|\operatorname{supp}(\boldsymbol{b}) \cap B_{\ell}| < \epsilon d + \left(\frac{1}{2} - \epsilon\right) d$$

= $\frac{d}{2} = \frac{|B_{\ell}|}{2}$

So, by Step 4 of Algorithm 8, we have $\ell \notin \widehat{S}$. Hence, $\widehat{S} \subseteq S^*$.

Proof of $S^* \subseteq \widehat{S}$: Now consider any $\ell \in S^*$. For every $i \in B_{\ell} \setminus \text{supp}(\eta)$, we have:

$$b_i = \mathbb{1}_{\{\sum_{j:i \in B_i} x_j^* > 0\}} \ge \mathbb{1}_{\{x_\ell^* > 0\}} = 1.$$

So, $|\operatorname{supp}(\boldsymbol{b}) \cap B_{\ell}| > (1 - \epsilon) d - (\frac{1}{2} - \epsilon) d = \frac{d}{2} = \frac{|B_{\ell}|}{2}$ and by Step 5 of Algorithm 8: $\ell \in \widehat{S}$. Hence, $S^* \subseteq \widehat{S}$

B. Proofs of Expanders section

In this section we will prove Theorem 5 for which we need the following lemma.

Lemma 2. With the sensing matrix A constructed as in section 3.2.2 and $\mathbf{b} = sign(A\mathbf{x}^*)$ where \mathbf{x}^* is a k-sparse vector, we have $|supp(\mathbf{b})| > (1-2\epsilon)d|S^*|$, where $S^* = supp(\mathbf{x}^*)$.

Proof of Lemma 2. Since $|S^*| < k + 1$, we have $N(S^*) > (1-\epsilon)d|S^*|$ by the expansion property. Now, $N(S^*)$ can be partitioned into $N_1(S^*)$ and $N_{>1}(S^*)$, where $N_1(S^*)$ are the vertices in $N(S^*)$ with only one neighbor in S^* and $N_{>1}(S^*)$ are the vertices in $N(S^*)$ with at least two neighbors in S^* .

So the number of edges between S^* and $N(S^*)$ is $d|S^*| \geq |N_1(S^*)| + 2|N_{>1}(S^*)|$. Also $|N(S^*)| = |N_1(S^*)| + |N_{>1}(S^*)| > (1 - \epsilon)d|S^*|$. Eliminating $|N_{>1}(S^*)|$, we obtain $|N_1(S^*)| > (1 - 2\epsilon)d|S^*|$. Also, $N_1(S) \subseteq \text{supp}(\boldsymbol{b})$. Hence, $|\text{supp}(\boldsymbol{b})| > (1 - 2\epsilon)d|S^*|$.

Proof of Theorem 5. We first prove $S^* \subseteq \widehat{S}$. Let $j \in \operatorname{supp}(\boldsymbol{x}^*)$, then $|N(j) \cup \operatorname{supp}(\boldsymbol{b})| \leq |N(S^* \cup j)| \leq d|S^*|$. Using Lemma 2 with the above inequality we get: $|N(j) \cap \operatorname{supp}(\boldsymbol{b})| > (1 - 2\epsilon)d|S^*| - d(|S^*| - 1)$. As $\epsilon < \frac{1}{8k}$, $|N(j) \cap \operatorname{supp}(\boldsymbol{b})| > \frac{3d}{4}$. Hence, Step 4 of Algorithm 3 will add j to \widehat{S} and hence, $S^* \subseteq \widehat{S}$.

We now prove $\widehat{S} \subseteq S^*$. Let $j \notin S^*$, then $|S^* \cup \{j\}| \le k+1$. Using expansion property,

$$\begin{aligned} (1-\epsilon)d(|S^*|+1) &< |N(S^* \cup \{j\})| \\ &\le |N(S^*)| + |N(j)| - |N(j) \cap N(S^*)| \\ &< d|S^*| + d - |N(j) \cap N(S^*)| \end{aligned}$$

$$\Rightarrow |N(j)\cap N(S^*)| < \epsilon d(|S^*|+1) \le \epsilon d(k+1) < \frac{d}{4}.$$

As $\operatorname{supp}(\boldsymbol{b}) \subseteq N(S^*)$, $|N(j) \cap \operatorname{supp}(\boldsymbol{b})| < \frac{d}{4}$. Hence, Step 4 of Algorithm 3 will *not* add j to \widehat{S} . Hence, $\widehat{S} \subseteq S^*$.

C. Proof of the Divide and Conquer approach

Proof of Theorem 6. Let $r = \log k$, $z = Px^*$ and $z_{\ell} = z((\ell-1)\frac{m}{k}, \dots, \ell \frac{m}{k} - 1)$ i.e. the ℓ^{th} block of z. Now,

$$\Pr[||\boldsymbol{z}_{\ell}||_{0} > r] \le {k \choose r} \frac{1}{k^{r}} \le {\left(\frac{e}{r}\right)^{r}}$$

where the second inequality follows from Stirling's approximation. By union bound, we have

$$\Pr[\exists \ell : || \boldsymbol{z}_{\ell} ||_0 > r] \le k \left(\frac{e}{r}\right)^r = e^{-\Omega(\log k)}.$$

So $\|\mathbf{z}_{\ell}\|_0$, $\forall \ell$ is at most $\mathcal{O}(\log k)$ with probability at least $1 - e^{-\Omega(\log k)}$. Theorem now follows using Theorem 3.

D. GraDeS

This section is almost entirely from (Garg & Khandekar, 2009), presented here for the sake of completeness. Before we present the GraDeS algorithm, we have the following definition:

Definition 5. Let $H_k : \mathbb{R}^n \to \mathbb{R}^n$ be a function that sets all but the k largest coordinates in absolute value to zero. More precisely, for $\mathbf{x} \in \mathbb{R}^n$, let π be a permutation of [n] such that $|x_{\pi(1)}| \geq |x_{\pi(2)}| \geq \cdots \geq |x_{\pi(n)}|$. Then the vector $H_k(\mathbf{x})$ is a vector $\hat{\mathbf{x}}$ where $\hat{x}_{\pi(i)} = x_{\pi(i)}$ for $i \leq k$ and $\hat{x}_{\pi(i)} = 0$ for $i \geq k + 1$.

Algorithm 9 GraDeS (Garg & Khandekar, 2009)

input $\widehat{\boldsymbol{z}}, A_1, \gamma$ and ϵ

- 1: Initialize $\hat{x} \leftarrow 0$
 - 2: while $\|\widehat{\boldsymbol{z}} A_1 \widehat{\boldsymbol{x}}\|^2 > \epsilon \ \mathbf{do}$
- 3: $\widehat{\boldsymbol{x}} \leftarrow H_k \left(\widehat{\boldsymbol{x}} + \frac{1}{\gamma} A_1^T \left(\widehat{\boldsymbol{z}} A_1 \widehat{\boldsymbol{x}} \right) \right)$
- 4: end while

output \hat{x}

The following theorem which shows the correctness of Algorithm 9 is a restatement of Theorem 2.3 from (Garg & Khandekar, 2009).

Theorem 9. Suppose \mathbf{x}^* is a k-sparse vector satisfying $\widehat{\mathbf{z}} = A_1 \mathbf{x}^* + \mathbf{e}$ for an error vector $\mathbf{e} \in \mathbb{R}^{m'}$ and the isometry constant of the matrix A_1 satisfies $\delta_{2k} < \frac{1}{3}$. There exists a constant D > 0 that depends only on δ_{2k} , such that Algorithm 9 with $\gamma = 1 + \delta_{2k}$, computes a k-sparse vector $\widehat{\mathbf{x}} \in \mathbb{R}^n$ satisfying $\|\mathbf{x}^* - \widehat{\mathbf{x}}\| \leq D \|\mathbf{e}\|$ in at most

$$\left\lceil \frac{1}{\log\left(\frac{1-\delta_{2k}}{4\delta_{2k}}\right)} \cdot \log\left(\frac{\left\|\widehat{\boldsymbol{z}}\right\|^2}{\left\|\boldsymbol{e}\right\|^2}\right) \right\rceil$$

iterations. Moreover, for $\delta_{2k} < \frac{1}{6}$, we can choose the constant D to be 6.

E. Recovery using Gaussian Measurements

Here we state a theorem from (Jacques et al., 2011) which guarantees that all unit vectors which agree with the 1-bit measurements obtained from a random Gaussian matrix must be very close to each other.

Theorem 10 (Theorem 2 of (Jacques et al., 2011)). Let $A \in \mathbb{R}^{m \times n}$ be a matrix generated as $A \sim \mathcal{N}^{m \times n}(0,1)$. Fix $0 < \eta \le 1$ and $\epsilon > 0$. If the number of measurements(m) satisfy:

$$m > \frac{8}{\epsilon} k \log(\frac{16n}{\epsilon \eta}),$$

then with probability $1 - \eta$, for all k-sparse vectors \boldsymbol{x} and \boldsymbol{y} :

$$sign(A\boldsymbol{x}) = sign(A\boldsymbol{y}) \Rightarrow \left| \left| \frac{\boldsymbol{x}}{||\boldsymbol{x}||_2} - \frac{\boldsymbol{y}}{||\boldsymbol{y}||_2} \right| \right|_2 \leq \epsilon.$$

F. Proof of the Two-stage algorithm (Algorithm 6)

Here we prove Theorem 7 which is a proof of correctness of Two-stage algorithm (Algorithm 6).

Proof of Theorem 7. We prove the theorem by analyzing both the stages of our algorithm.

Stage 1: Let $z^* = A_1 x^*$. As $b = \text{sign}(A_2 z^*)$, $(\mathbf{a}_2^{(i)}, b_i)$, $\forall i$ are linearly separable and hence using linear programming, we can find a vector \hat{z} consistent with the measurements b i.e. $b = \text{sign}(A_2 \hat{z})$. Using Theorem 10,

$$\left\| \frac{z^*}{\|z^*\|_2} - \frac{\widehat{z}}{\|\widehat{z}\|_2} \right\|_2 < \epsilon. \tag{6}$$

Stage 2: In stage 2 of Algorithm 6, we run GradeS with inputs $\frac{\hat{z}}{\|\hat{z}\|_2}$ and A_1 . Now, using (6):

$$\frac{\widehat{z}}{\|\widehat{z}\|_2} = A_1 \frac{x^*}{\|A_1 x^*\|_2} + \eta,$$

where $\|\boldsymbol{\eta}\|_2 \leq \epsilon$. Also, since A_1 satisfies RIP with $\delta_{2k} < 1/6$, using the recovery result of GradeS (Theorem 9, Appendix D), the recovered vector $\hat{\boldsymbol{x}}$ satisfies:

$$\left| \left| \hat{x} - \frac{x^*}{\|A_1 x^*\|_2} \right| \right|_2 \le 6\epsilon.$$

That is,

$$\begin{aligned} \|\hat{\boldsymbol{x}}\|_{2}^{2} + \frac{\|\boldsymbol{x}^{*}\|_{2}^{2}}{\|A_{1}\boldsymbol{x}^{*}\|_{2}^{2}} - 2\frac{\hat{\boldsymbol{x}}^{T}\boldsymbol{x}^{*}}{\|A_{1}\boldsymbol{x}^{*}\|_{2}} \leq 36\epsilon^{2}, \\ \frac{\|\hat{\boldsymbol{x}}\|_{2}\|A_{1}\boldsymbol{x}^{*}\|_{2}}{\|\boldsymbol{x}^{*}\|_{2}} + \frac{\|\boldsymbol{x}^{*}\|_{2}}{\|\hat{\boldsymbol{x}}\|_{2}\|A_{1}\boldsymbol{x}^{*}\|_{2}} \\ - 2\frac{\hat{\boldsymbol{x}}^{T}\boldsymbol{x}^{*}}{\|\hat{\boldsymbol{x}}\|_{2}\|\boldsymbol{x}^{*}\|_{2}} \leq 36\epsilon^{2}\frac{\|A_{1}\boldsymbol{x}^{*}\|_{2}}{\|\hat{\boldsymbol{x}}\|_{2}\|\boldsymbol{x}^{*}\|_{2}}. \end{aligned}$$

Using the fact that $t + 1/t \ge 2$ and using RIP,

$$2 - 2 \frac{\hat{\boldsymbol{x}}^T \boldsymbol{x}^*}{\|\hat{\boldsymbol{x}}\|_2 \|\boldsymbol{x}^*\|_2} \le 36\epsilon^2 (1 + \delta_{2k}) \frac{1}{\|\hat{\boldsymbol{x}}\|_2}.$$

Also, $\|\hat{\boldsymbol{x}}\|_2 \ge \|\frac{\boldsymbol{x}^*}{\|A_1\boldsymbol{x}^*\|_2}\|_2 - 6\epsilon \ge \frac{1}{1 + \delta_{2k}} - 6\epsilon$. So we have

$$\left\| \frac{x^*}{\|x^*\|_2} - \frac{\hat{x}}{\|\hat{x}\|_2} \right\|_2^2 < 36 \left(\frac{1 + \delta_{2k}}{\left(\frac{1}{1 + \delta_{2k}} - \epsilon\right)} \right) \epsilon^2$$

$$\Rightarrow \left\| \frac{x^*}{\|x^*\|_2} - \frac{\hat{x}}{\|\hat{x}\|_2} \right\|_2 < 20\epsilon$$

for
$$\epsilon < \frac{1}{4}$$
.

G. Lower Bound on Reconstruction Error

The following is a lower bound on the reconstruction error of any approximate recovery algorithm from (Jacques et al., 2011).

Theorem 11 (Theorem 1 of (Jacques et al., 2011)). Let $||x^*||_0 \leq k, ||x^*||_2 = 1, b = sign(Ax^*), A \in \mathbb{R}^{m \times n}$ and let $\hat{x} = \Delta^{1bit}(b, A, k)$ be the unit vector reconstructed by some recovery algorithm Δ^{1bit} based on b, A, k. Then the worst case reconstruction error $\sup_{x^*} ||\hat{x} - x^*||_2 \geq \frac{k}{em}$.