9.3.3.3 Bevel Gears *using Mott

Let's get right to it:

- 1. Find the type of shock and K_o from the spur gear guide
- 2. Calculate any missing values such as N or F using the spur gear guide
- 3. Find the load transmitted, and the pitch line velocity

$$\nu_t = \frac{\pi Dn}{12}$$

$$W_t = \frac{33000P}{\nu_t}$$

4. Find the size factor, K_s , using the equations below or the table:

$$K_s = \begin{cases} 0.5 & P_d \ge 16 \\ 0.4867 + \frac{0.2133}{P_d} & P_d < 16 \end{cases}$$

5. Find $K_m b$ where:

 $K_{mb} = 1$ for both gears straddle mounted

 $K_{mb} = 1.1$ for one gears straddle mounted

 $K_{mb} = 1.25$ for neither gears straddle mounted

6. Find K_m using $K_m b$ and F:

$$K_m = K_{mb} + 0.0036F^2$$

7. If the quality number, Av, is given use that. If not, use this table:

Small power drill Clothes washing machine Printing press Computing mechanism Automotive transmission Radar antenna drive Marine propulsion drive Aircraft engine drive Gyroscope	A9 A8 A7 A6 A6 A5 A5 A4
Printing press Computing mechanism Automotive transmission Radar antenna drive Marine propulsion drive Aircraft engine drive	A7 A6 A6 A5 A5
Computing mechanism Automotive transmission Radar antenna drive Marine propulsion drive Aircraft engine drive	A6 A6 A5 A5
Automotive transmission Radar antenna drive Marine propulsion drive Aircraft engine drive	A6 A5 A5
Radar antenna drive Marine propulsion drive Aircraft engine drive	A5 A5
Marine propulsion drive Aircraft engine drive	A5
Aircraft engine drive	715
	A4
Gurnscone	
чугозсоре	A2
	h line speed (m/s)
A10	0-4
A8	4-11
A6	11-22
	A10 A8

8. Find K_v from the graphs below:

9. Find J using the graph shown below:

10. Calculate the bending stress number:

$$s_t = \frac{W_t P_d K_O K_s K_m K_v}{FJ}$$

- 11. Choose a safety factor of 1 for now:
- 12. Assume 99% reliability and thus choose K_R as 1, make a note of what C_R is, also going to typically be 1 just like every other one of these stupid ass factors, anyway if you have a reason for higher or lower reliability use the table below:

13. Using the lifetime of the machine, calculate the number of load cycles, N_{L}

$$N_{LP} = (60)(lifetime)n_P$$

 $N_{LG} = (60)(lifetime)n_G$

If lifetime is not specified then use this table:

Application	Design life (h)
Domestic appliances	1000-2000
Aircraft engines	1000-4000
Automotive	1500-5000
Agricultural equipment	3000-6000
Elevators, industrial fans, multipurpose gearing	8000-15 000
Electric motors, industrial blowers, general industrial machines	20 000–30 000
Pumps and compressors	40 000-60 000
Critical equipment in continuous 24-h operation	100 000–200 000

14. Find the stress cycle factor, K_L , from the graph below:

15. Find the allowable bending stress:

$$s_{at} = \frac{s_t(SF)K_R}{K_L}$$

- 16. Perform a similar analysis to spur gears for specifying a material and calculating a safety factor
- 17. To find the critical stress, choose $C_p=2300$ for steel
- 18. Calculate the pitting resistance size factor, Cs, using this formula/table:

$$C_s = 0.125F + 0.4375$$

19. Calculate the crown factor, C_{xc} , to be one of the following:

 $C_{xc} = 1.5$ for properly crowned teeth (this is the assumption we use)

 $C_{xc} = 2$ for non-crowned teeth

20. Calculate I from the graph below:

21. Calculate the contact stress number:

$$s_c = C_p \sqrt{\frac{W_t K_O K_m K_\nu C_a C_{xc}}{F D_p I}}$$

22. Calculate the stress cycle factor, \mathcal{C}_L , from the graph below:

23. Calculate the allowable contact stress number using the following formula:

$$s_a c = \frac{s_c(SF)C_R}{C_L}$$

24. Perform a similar analysis to spur gears for finding the material and associated safety factor. However you will use these graphs below and a different formula for the safety factor which is:

$$SF = \frac{s_{ac}C_L}{s_cC_R}$$

$$SF = \frac{s_{at}K_L}{s_tK_R}$$

$$SF = \frac{s_{at}K_I}{s_{t}K_B}$$

Note that these graphs are different from the ones used in the spur gears they have different numbers so be sure to use the ones here.

