ETL and Analysis applied to Meetup

Ideas that cities and communities across the US curious about...

Karin Brodd
Chandler McCann
Natarajan Shankar
Dan Watson

Project Scope

- Apply the ETL concepts learned in this class
 - Pick a provider of a live data stream
 - Establish an architecture for the end to data flow and implement
 - Refine the chosen architecture through issues encountered
 - With a working implementation:
 - Extract information about the curiosities and interests in geographical regions and subgroups (of practical scope)
 - Which communities are relatively more active throughout the US?
 - Are similar groups more active in one geographic region than in another?
 - What possibly accounts for these differences?
- Project the architecture and implementation towards a future form!

Ingestion of live data stream - Data Source : Meetup.com

- Why meetup.com?
 - Real data source, streamed
 - Meetup topics reflect public inclination and sentiment
 - Measure of frequency of similar meetings across the nation will augment and outperform national polls
 - Meetup.com offers diverse API
 - Data diversity via events and get_events API
 - Meets velocity requirements, many hundred JSON records per query
- Data Ingestion Layer
 - Preprocessing
 - Segment the incoming stream into individual JSON records
 - Built-in filtering: Write only the clean records to Database
 - Dirty records are dropped prior to database write

Initial proposed architecture... based on Classic Lambda

Big Data Analytics Architecture: Lambda Architecture

Refined Architecture and Data Flow

Serving Layer

Processing

RDD:JSON Extract

All Record Table

Analysis Table

Tradeoffs, Design Choices, Rationale

- Limit the number of spout types
 - Design for multiple types of data spouts but focus on meetup.com get_event()
- Use in stream schema application and data cleanup
 - Chosen data spout provides well formatted data
 - Schema on Write is not necessary, JSON is already well formed
 - Drop bad JSON in stream
- Choose MongoDB over S3
 - Need a self managed DIY app rather than a managed service
 - Couple the DB very closely with the API process
 - Document store in Mongo well suited for JSON
- Write persistent Hive tables from Pyspark
 - Data manipulation in Pyspark with data frames, has long term machine learning abilities
 - Native hive context in Spark allows easy save of Hive tables
 - Easy access to Hive from Tableau
 - Trouble getting the spark SQL thrift server to work

The long road from Mongo to Spark : Advanced Analytics, Complex Computation

Versatile **PYMONGO** mongoDB

Cumbersome lynch pin

PYMONGO_SPARK on top of Mongo-Hadoop Convenient

- MongoDB Conn
 - mongoRDD(conn)
- JSON Extract
- DF manipulation
- Scale

```
Easily connect to a mongoDB with a mongoRDD
conn = "mongodb://meetup user:%40B%24%40rp1Dy%25C3@ec2-54-144-14-181.c
rdd = sc.mongoRDD(conn)
2/04 02:43:47 WARN SampleSplitter: Not enough documents for more than
new rdd = rdd.map(lambda x: dict([(i, x[i]) for i in x if i != '_id'])
                ).map(lambda x: json.dumps(x, ensure ascii=False).encd
                ).map(lambda x: "".join(x.split("\\n"))
df = sqlContext.jsonRDD(new rdd)
```

Schema automatically inferred from JSON

```
>>> df.printSchema()
root
 |-- created: long (nullable = true)
 -- description: string (nullable = true
 -- distance: double (nullable = true)
 -- duration: long (nullable = true)
  -- event url: string (nullable = true)
  -- fee: struct (nullable = true)
```

Create columns from nested JSON fields easily

-- accepts: string (nullable = tru |-- amount: double (nullable = true |-- currency: string (nullable = tr |-- description: string (nullable = |-- label: string (nullable = true) |-- required: string (nullable = tr -- group: struct (nullable = true)

sqlContext.sql("CREATE TABLE groupCity AS SELECT group.name, venue.city FROM events temp")

Sample Data Table - Visualization via Tableau

		RSVE	s by C	ategor	y and	State						
	State Upper									Yes Rsvp Count		
Cat Short	AZ	CA	CO	СТ	FL	IL	NJ	NY	PA	TX	res ksvp counc	
arts-culture	35	191	24		139	412	89	573	36	131	3	Ī
book-clubs	74	424	175	23		124	62	313	65	422		
career-business	202	5,751	1,338	60	63	399	374	1,560	855	442		
cars-motorcycles	31	287						45	106	528		
community-environment	50	374	16		54	68	19	157	700			
dancing	32	346		80	5	4	109	281	28	80		
education-learning	25	236		28	10	3	19	509	139	90		
fashion-beauty	64				25			49				
fitness	41	439	68		28	112	470	454	18	127		
food-drink	213	341	90	142	84	80	85	297	54	322		
games	474	304	227		78	83	262	302	111	187		
government-politics		217	45		6	57	45	406	15	12		
health-wellbeing	83	1,162	127	54	84	126	83	391	98	145		
hobbies-crafts	53	210	126		6	46	192	144	7	42		
language	35	919	118	9	36	108	126	672	135	281		
lgbt	15	331		12		83	30	245	72			
lifestyle	4	18					12	15		6		
movies-film	124	231	70		38	82		152		718		
music	8	979	99		20	40	43	369	32	141		
new-age-spirituality	33	958	122	4	125	137	46	242	174	212		
outdoors-adventure	624	2,860	1,144	115	784	249	293	516	222	498		
paranormal			65									
parents-family	11	260	70		25	99	35		35	44		
pets-animals		502	35		80			15		3		
photography	27	1,239	47		39	22	47	305	117	32		
religion-beliefs	10	935	27	5	30	53	148	322	58	150		
sci-fi-fantasy		132	40			20	13	179	26	56		
singles	499	2,304	34	81	43	203	87	186		169		
socializing	235	5,725	599	144	255	457	1,155	954	295	1,507		
sports-recreation	118	885	76	8	173	237	149	1,625	276	160		
support	60	271	3	3	38	74	20	105	6	118		
tech	75	5,411	405	21	67	1,072	312	5,315	2,151	971		
writing	109	233	181		4	16	20	66	56	24		

Sample Data Viz - Tableau

Output: Stories

Output: Dashboards

Complexity and Storage Needs

- Complexity
 - Project complexity is moderated by design
 - o Spouts are well behaved, present well formed data
 - Data velocity is throttled by API throttling
 - System is designed to handle higher velocity
 - Database kept co-located with Ingest, provides managed latency
 - Overcomes inability to extract data over relatively slow internet
 - Hive and Map Reduce well understood but not pushed to limit
 - Hive latency issues due to the map reduce framework not magnified
- Storage
 - Tested at order of 86Mb/hour, can be scaled by 100x
 - o To meet higher scale, Ingest layer may need distributed Storage architecture
 - Distributed storage provides capability to handling diverse data sets
 - Can push magnification of I/O rate by 100x

Challenges and Remedies

- API
 - Meetup api is limited in scope. For instance, querying by epoch is not supported!
 - Some required fields needs special parameter tags and are expensive to extract
 - API requests are limited to 200 per hour, need to throttle rate
- Processing
 - Multiple points of interface: PyMongo/ MongoHadoop/ PyMongoSpark/ Spark interface, many points of data exchange
- Front End
 - Despite the processing, still have minor issues with redundancy
 - Solution opt for stricter constraints
 - Timezones
 - Known problem with all programming
 - ST solution- convert time from epoch to date-time then adjust by state
 - LT Solution- create tables for offsets based upon zipcodes and recognition of

Future Product Improvements

- Extend filtering and grouping algorithm for Precise Calculations
- Support Deeper Insights via:
 - Group analysis
 - Keyword Search
 - Domain knowledge
- Seek out and group Demographic Information
 - Focus on individuals, not groups
 - Pull information from profiles and connect to attended events
- Refine Ease of Use
 - Even with more robust information, we have a business tool
 - Need to make user friendly with controlled/verified output
- Extend application capability
 - Extract public sentiment

Scaling: Now and Future

- Support multiple data spouts, each with own schema
- Extend I/O Scaling: Obtaining and saving data
 - Scale the Database architecture, possibly distributed
 - Storage buffer in Ingest layer
- API
 - Extend API calls for more subfield level queries
- Analysis
 - Extend to predictive and prescriptive conclusions
- Extend towards capability for custom output
 - GUI output for casual applications
 - CDN for advanced users

Did Project meet set goals?

- ETL infrastructure for Meetup data
- Summarization of data across 12 large metropolitan areas
- Summarization of recent data
 - What activities are communities throughout the United States excited about?
 - Most prominent meetings in the US in December 2016
 - Ones how people connect through activity differ by region?

