Examen Final Problemes

Enunciat-v1

16 de juny de 2016

 $\mathbf 1$ Per a calcular el punt mig de dos punts a i b a la recta real, podem utilitzar les dues expressions següents:

$$0.5(a+b)$$
 i $a+0.5(b-a)$

Calculeu les dues quan a = 0.982 i b = 0.987, amb una aritmètica de tres xifres bo i truncant. Repetiu els càlculs ara arrodonint. Comenteu els resultats obtinguts. (5punts)

Resposta

Truncant a+b=1.969 a tres xifres s'obté 1.96 que multiplicant per 0.5 dóna 0.98, valor que no es troba entremig de a i de b. En canvi, els càlculs amb la segona fórmula són b-a=0.005 que multiplicat per 0.5 dóna 0.0025 que sumat amb a, dóna el valor aproximat 0.9845, que és valor exacte, que truncat a tres xifres és 0.984 valor aproximat amb tres xifres exactes. Arrodonint, la expressió 0.5(a+b) a tres xifres s'obté 0.985, valor aproximat, amb dues xifres exactes, que si es troba entremig de a i de b. Per la segona expressió, 0.5(b-a)=0.0025 que sumat a a dóna 0.9845, valor exacte que arrodonit a res xifres éss 0.984 valor aproximat amb tres xifres exactes.

2 Considereu el mètode iteratiu següent:

$$x^{n+1} = x^n - \lambda((x^n)^3 + x^n - 9).$$

(a) Per a $1.5 \le x_0 \le 2$, estudieu la convergència del mètode a l'arrel real de $x^3 + x - 9 = 0$ sense calcular les iteracions en Matlab a partir del teorema de convergència. (4punts)

Resposta

El mètode iteratiu $x^{n+1}=g(x^n)$ és convergent si $|g'(\alpha)|<1$ per a qualsevol x^0 de l'entorn de l'arrel α tal que $|g'(x^0)|<1$.

En el nostre cas, g(x) es correspon a $g(x)=x-\lambda(x^3+x-9)$. L'expressió simplificada de la funció derivada és

$$g'(x) = 1 - \lambda(3x^2 + 1) .$$

La condició $|g'(x^0)| < 1$ resulta que

$$|1 - \lambda(3(x^0)^2 + 1)| < 1 \Leftrightarrow -1 < 1 - \lambda(3(x^0)^2 + 1) < 1 \Leftrightarrow 0 < \lambda(3(x^0)^2 + 1) < 2$$
.

(b) Per a $1.5 \le x_0 \le 2$ donat, doneu un l'interval per a λ que asseguri la convergència del mètode. (2punts)

Resposta

Del fet que $3x^2+1$ és una funció positiva i creixent per a $1.5 \le x_0 \le 2$, resulta que

$$0 < \lambda(3(x^0)^2 + 1) < 2 \Leftrightarrow \lambda \in \left(0, \frac{2}{3(x^0)^2 + 1}\right)$$
.

(c) Preneu $\lambda = 1/13$. Obteniu el punt fix amb un mínim de 8 decimals correctes. Doneu el punt inicial i els criteris d'aturada. Presenteu els resultats en una taula. (4punts)

Resposta

lambda = 1/13, resulta |x| < 2.887

alpha = 1.92017512134718

-			
taula =	x^n	x^n-x^(n-1)	f(x^n)
1.9052	230769230769	0.105230769230769	0.178963899484751
1.9189	997223037289	0.013766453806519	0.014198896922053
1.9200	089445877447	0.001092222840158	0.001033308190726
1.9201	168931122887	0.000079485245440	0.000074661420767
1.9201	174674309100	0.000005743186213	0.000005391822354
1.920	175089064666	0.000000414755566	0.000000389366416
1.920	175119015928	0.000000029951263	0.000000028117729
1.9201	175121178831	0.000000002162902	0.000000002030493

Prenent $x^0=1.8$, la successió $|f(x^n)|$ és convergent a 0, i la successió x^n convergeix a un valor fix. Els criteris d'aturada són tolx=tolf<0.00000001.

3 Per a les dades següents:

X	1.0	1.125	1.250	1.375	1.500	1.625	1.750	1.875	2.0
Y	0	0.169925	0.321928	0.459432	0.584962	0.700440	0.807355	0.906891	1.0

(a) Calculeu la paràbola que millor ajusta per mínims quadrats. Dóna l'error quadràtic mínim.

Cal explicar el mètode que escolliu, les matrius usades i tots els càlculs que es fan.

(5punts)

Resposta

Notem l'equació de la paràbola per $y=a_0x^2+a_1x+a_2$, llavors la matriu del sistema A, és

És un sistema sobredeterminat, incompatible i el rang de la matriu A és 3, podem trobar una solució per mínims quadrats, les equacions normals són A'Ax = A'b, on b = Y, B = A'A i c = A'b. Aquestes matrius són

La solució del mètode és $y=-0.34034x^2-2.0107x+-1.6648$ i l'error quadràtic és $E_2=0.011592$

b) Calculeu el polinomi interpolador dels valors de la taula.

(5punts)

Cal detallar la taula de diferències dividides i tots els càlculs que es fan. Resposta

La taula de diferències dividides és

Columns 1	through	8					
1.0000	0	1.3594	-0.5735	0.2921	-0.1533	0.0806	-0.0455
1.1250	0.1699	1.2160	-0.4640	0.2155	-0.1029	0.0464	-0.0153
1.2500	0.3219	1.1000	-0.3832	0.1640	-0.0739	0.0350	-0.0200
1.3750	0.4594	1.0042	-0.3217	0.1271	-0.0521	0.0199	0
1.5000	0.5850	0.9238	-0.2740	0.1010	-0.0396	0	0
1.6250	0.7004	0.8553	-0.2361	0.0812	0	0	0
1.7500	0.8074	0.7963	-0.2057	0	0	0	0
1.8750	0.9069	0.7449	0	0	0	0	0
2.0000	1.0000	0	0	0	0	0	0

i el polinomi és
$$p(x) = -0.0399x^8 + 0.4939x^7 - 2.6761x^6 + 8.3344x^5 - 16.4517x^4 + 21.4352x^3 - 18.7758x^2 + 11.7425x - 4.0624$$

c) Representa gràficament les dades (punts), la paràbola (blau) i el polinomi (verd) en un mateix gràfic. (5punts)

Cal escriure el codi i mostrar el gràfic al professor vigilant.

Exercici 3c Punts, paràbola i polinomi de grau 5

d) Calculeu
$$\int_{1}^{2} f(x) dx$$
 fent ús de tots els punts. (5punts)

Cal explicar el mètode que escolliu i tots els càlculs que es fan. Resposta

Per les dades que es tenen podem fer ús d'una fórmula composta: de rectangles, de trapezis o de Simpson. Per trapezis seria

$$\int_{1}^{2} f(x) dx = \left(\int_{1}^{1.125} + \int_{1.125}^{1.250} + \dots \int_{1.875}^{2} f(x) dx \approx \sum_{i=1}^{8} (x_{i+1} - x_i) \left(\frac{y_{i+1} + y_i}{2} \right) = 0.5564$$