

Generalized Few-Shot Node Classification

Presenter: Zhe Xu

Email: zhexu3@illinois.edu

Zhe Xu (UIUC)

Kaize Ding (ASU)

Yu-Xiong Wang
(UIUC)

Huan Liu (ASU)

Hanghang Tong
(UIUC)

Roadmap

- Motivation
- Proposed Model STAGER
- Imbalanced Episodic Training
- Experiments
- Conclusion

Graph data is ubiquitous

Traffic graph [1]

Social graph [2]

Citation graph [3]

(Generalized) few-shot node classification

• **shot:** # of labeled samples per class

Base classes: classes with many shots

Novel classes: classes with few shots

Existing few-shot node classification researches [1-3]

This work: a more realistic setting

$$? \rightarrow \{ \bigcirc \bigcirc \}$$

Underestimated Novel Classes

fine-grained classification given priori

$$P(y_i|\mathcal{G}, v_i) = \sum_{C \in \{novel, base\}} P(y_i|C_i, \mathcal{G}, v_i) P(C_i|\mathcal{G}, v_i)$$

A rough classification priori

- A given graph $G = \{A, X\}$,
- A rough classification C_i , i.e., novel or base classes
- If $C_i = base$: standard node classification
- If $C_i = novel$: few-shot node classification
- If C_i is unknown:

$$\mathbb{E}[P(C_i = base|G, v_i)] \gg \mathbb{E}[P(C_i = novel|G, v_i)]$$

Dataset	Method	b o b	$b \rightarrow n$	n o b	n o n
Amazon	APPNP	100.0	0.0	69.6	30.4
Clothing	MetaGNN	100.0	0.0	61.2	38.8
Cora-Full	APPNP	99.2	0.8	66.8	33.2
	MetaGNN	99.0	1.0	72.4	27.6

TABLE I: Test nodes (%) classified from base classes to base classes (i.e., $b \to b$), from base classes to novel classes (i.e., $b \to n$), from novel classes to base classes (i.e., $n \to b$), and from novel classes to novel classes (i.e., $n \to n$), respectively.

Roadmap

- Motivation
- Proposed Model STAGER
- Imbalanced Episodic Training
- Experiments
- Conclusion

Epistemic Uncertainty

- Epistemic uncertainty: how well the model fits the data and is reducible as the size of training data increases [1-2]
- $P(C_i = base|G, v_i) \text{ or } P(C_i = novel|G, v_i)$?
- Measure epistemic uncertainty by a ranked classification output from a preliminary classifier g_1 :

$$\tilde{\mathbf{Z}} = \operatorname{rank}(\operatorname{softmax}(g_1(\mathbf{A}, \mathbf{X}, \phi_1)))$$

Implementation detail: dropout variational inference on ϕ_1 [2-3] The selection of g_1 : show in a case study

Proposed Model – STAGER (1)

Classifier [1,3]: sum of predictions

$$\mathbf{H}^{(0)} = \text{MLP}(\mathbf{X}, \theta)$$
$$\mathbf{H}^{(j+1)} = \widetilde{\mathbf{A}}\mathbf{H}^{(j)}$$

$$\mathbf{Z} = \operatorname{softmax}(\sum_{j=0}^{p} (\mathbf{W}[:,j]\mathbf{1}^{T}) \odot \mathbf{H}^{(j)})$$

Node-specific weight assignments

- For the base classes, local classifier.
- For the novel classes, long-range propagation [1-2]

Proposed Model – STAGER (2)

Classifier:

$$\mathbf{H}^{(0)} = \mathrm{MLP}(\mathbf{X}, \boldsymbol{\theta})$$

$$\mathbf{H}^{(j+1)} = \widetilde{\mathbf{A}}\mathbf{H}^{(j)}$$

$$\mathbf{Z} = \mathrm{softmax}(\sum_{j=0}^{p} (\mathbf{W}[:,j]\mathbf{1}^T) \odot \mathbf{H}^{(j)})$$

$$\mathbf{Z} = \mathrm{softmax}(\sum_{j=0}^{p} (\mathbf{W}[:,j]\mathbf{1}^T) \odot \mathbf{H}^{(j)})$$

uncertainty (shot)-aware weight assigner:

$$\mathbf{W} = \text{MLP}(\tilde{\mathbf{Z}}, \phi_2)$$
$$\tilde{\mathbf{Z}} = \text{rank}(\text{softmax}(g_1(\mathbf{A}, \mathbf{X}, \phi_1)))$$

- Motivation
- Proposed Model STAGER
- Imbalanced Episodic Training
- Experiments
- Conclusion

Meta-learning-based training paradigm

- Existing episodic training [1-5]: mimic the few-shot scenarios using labeled base samples
- a few-shot episode: $S_i = \{v_i, ..., v_{N \times K}\}, Q_i = \{v_i', ..., v_{N \times I}'\}$
- N: # of novel classes
- K: shots of the novel classes

$$\phi^* = \arg\min_{\phi} \mathbb{E}_{v_i \in \mathcal{Q}} \mathcal{L}_{cla}(z(\mathcal{G}, \theta^*, \phi, v_i), y_i)$$

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{v_j \in \mathcal{S}} \mathcal{L}_{cla}(z(\mathcal{G}, \theta, \phi, v_j), y_j)$$

Meta-learner ϕ learns from the learning of the learner Learner θ learns to converge

^[2] Ding, Kaize, et al. "Graph prototypical networks for few-shot learning on attributed networks." CIKM. 2020.

Imbalanced episodic training

- Goal: Learning to distinguish few-shot and many-shot samples
- Key idea: mimic the few-shot vs. many-shot scenarios

$$\begin{split} \mathcal{S}_i &= \{v_1, \dots, v_{N \times K}\}, \mathcal{Q}_i = \{v_1', \dots, v_{N \times I}'\} \\ \mathcal{S}_i &= \{v_1, \dots, v_{N \times K}, v_{N \times K+1}, \dots, v_{N \times K+M \times L}\}, \\ \text{pseudo-novel classes pseudo-base classes} \\ \mathcal{Q}_i &= \{v_1', \dots, v_{N \times I}', v_{N \times I+1}', \dots, v_{(N+M) \times I}'\} \end{split}$$

- N: # of pseudo-novel classes
- K: shots of pseudo-novel classes
- M: # of pseudo-base classes
- L: shots of pseudo-base classes

^[2] Ding, Kaize, et al. "Graph prototypical networks for few-shot learning on attributed networks." CIKM. 2020.

- Motivation
- Proposed Model STAGER
- Imbalanced Episodic Training
- Experiments
- Conclusion

Experimental settings

- Datasets
- Training nodes:
 - Novel: N-way K-shot
 - Base: many-way many-shot
- Test nodes: fixed for every class

Dataset	Nodes	Edges	Features	Labels
Amazon Clothing	24919	91680	9034	77
Amazon Electronics	42318	43556	8669	167
Aminer	40672	288270	7202	137
Cora-Full	18800	62685	8710	56

- Baselines:
 - Classic neural node classifier: APPNP, GPRGNN
 - Few-shot node classifier: Meta-GNN, GPN, G-Meta
 - Imbalanced node classifier: GraphSMOTE
- Metric: accuracy in 10 runs

Main results on the effectiveness

			standard		few-shot ir			mbalanced		
Dataset	Setting	Class	APPNP	GPRGNN	MetaGNN	GPN	G-META	G-SMOTE	STAGER	STAGER-I
		Base	67.4±1.6	64.7±0.5	64.0±0.5	46.1±3.3	48.7±2.7	67.4±1.6	69.3±1.1	67.3±0.4
	5w1s	Novel	$\overline{31.4\pm0.9}$	31.5 ± 5.4	28.3 ± 0.4	36.1 ± 5.1	39.2 ± 2.9	$\overline{31.4\pm0.9}$	32.4 ± 2.0	41.3±1.0
		All	48.5±1.0	47.3 ± 3.0	45.4 ± 0.4	40.9 ± 2.9	43.7 ± 2.2	48.5 ± 1.0	50.0 ± 1.0	53.7±0.5
		Base	70.5±0.9	69.7±1.0	66.1±1.2	62.9±1.9	63.3±1.7	69.4±0.7	72.3±1.5	68.4±1.0
Amazon	5w3s	Novel	48.6±2.5	50.1 ± 3.8	40.4 ± 0.8	46.1 ± 6.7	47.6 ± 6.3	45.6 ± 2.3	53.9 ± 2.1	66.0±2.4
Clothing		All	59.1±1.2	59.4 ± 2.1	52.6 ± 1.0	54.1 ± 3.4	55.1 ± 3.5	57.0±1.4	62.7 ± 1.1	67.2±1.1
		Base	73.3±0.3	70.7 ± 1.2	67.6 ± 0.5	42.7 ± 2.4	48.2 ± 2.1	73.3 ± 0.3	76.7±1.5	66.7±0.5
	10w1s	Novel	45.2±0.6	37.7 ± 3.1	41.5 ± 0.5	39.7 ± 5.7	39.9 ± 4.9	45.2 ± 0.6	43.1±2.7	59.6±0.6
		All	58.6±0.3	53.5 ± 1.6	54.0 ± 0.4	40.9 ± 3.5	43.9 ± 2.0	58.6 ± 0.3	59.0 ± 1.6	63.0±0.5
		Base	69.2±0.6	67.5±1.1	65.6 ± 1.2	59.5±2.7	57.4±1.9	68.1 ± 0.7	70.9±0.7	69.3±0.4
	10w3s	Novel	61.4±0.4	58.0 ± 1.5	53.6 ± 0.2	49.6 ± 7.1	54.1 ± 2.8	53.6 ± 3.8	61.8 ± 1.2	64.6 ± 0.7
		All	65.2±0.4	62.5 ± 1.3	59.2 ± 0.2	54.3 ± 3.4	55.6 ± 1.6	60.5 ± 1.9	66.2 ± 0.8	66.8±0.5
		Base	60.1±1.8	58.4 ± 0.9	59.7 ± 0.3	19.1 ± 2.1	22.5 ± 3.1	60.1 ± 1.8	65.8±2.1	63.9±1.0
Amazon Elec.	5w1s	Novel	7.8 ± 0.8	5.1 ± 1.1	6.4 ± 0.3	16.6 ± 5.4	15.3 ± 6.7	7.8 ± 0.8	8.0 ± 0.7	19.7 ± 1.6
		All	27.2±0.4	24.8 ± 0.4	26.2 ± 0.2	17.5±3.8	18.0 ± 5.0	27.2 ± 0.4	29.4 ± 1.4	36.1±1.1
		Base	64.2±1.8	55.1±0.9	63.0 ± 0.7	43.7±1.6	43.6 ± 2.4	63.0±1.4	69.1±1.6	69.0 ± 2.9
	5w3s	Novel	21.6±1.5	13.3 ± 2.0	23.1 ± 0.2	32.7 ± 4.8	28.1 ± 5.6	12.0 ± 4.0	29.8 ± 2.7	40.7±2.2
		All	37.4±1.5	28.8 ± 1.4	37.9 ± 0.3	36.8 ± 3.4	33.9 ± 3.5	30.9 ± 2.5	44.3 ± 1.8	51.2±2.3
		Base	64.4±1.2	59.7±1.3	53.1±1.6	18.5±1.4	$20.8{\pm}2.2$	64.4±1.2	69.0±0.9	61.3±0.8
	10w1s	Novel	8.0±1.3	5.7 ± 1.1	4.9 ± 0.1	15.3 ± 3.7	15.0 ± 3.7	8.0±1.3	11.3±1.5	15.4 ± 0.3
		All	34.4±1.0	31.0 ± 1.1	27.7 ± 0.2	16.8 ± 2.3	17.7 ± 2.0	34.4 ± 1.0	38.3±1.2	36.9 ± 0.4
		Base	58.6±0.4	55.2±0.9	$48.8 {\pm} 0.7$	43.8±1.7	46.3±1.6	62.9 ± 0.7	72.3±1.1	66.5 ± 0.1
	10w3s	Novel	22.4±1.1	14.8 ± 1.0	16.5 ± 0.2	27.5 ± 2.9	26.2 ± 3.2	13.8 ± 0.3	20.3 ± 2.4	38.1 ± 2.3
		All	39.4±0.5	33.7 ± 0.7	31.6 ± 0.4	35.1 ± 1.4	35.6 ± 1.8	36.8 ± 0.2	44.7 ± 1.5	51.4±1.1

More results in the paper

- Compared with standard node classifiers (APPNP, GPRGNN), STAGER is competitive.
- Few-shot node classifiers (MetaGNN, GPN, G-Meta) cannot work well in the generalized setting.
- Imbalanced node classifier
 G-SMOTE cannot fully use
 the labeled base classes.
- Imbalanced episodic training facilitates a better tradeoff between the novel and base classes.

Roadmap

I C D M

- Motivation
- Proposed Model STAGER
- Imbalanced Episodic Training
- Experiments
- Conclusion

Conclusion

I C D M

- Problem: generalized few-shot node classification
 - Classify nodes into the joint set of base & novel classes
- Solution: STAGER + imbalanced episodic training
 - Uncertainty-aware node classifier
 - Few-shot vs. many-shot scenarios
- Experiments
 - The consistent advantage over all classes

Thank you!

Q & A

