

Tsen Chee Vincent LEUNG YIN KO

AGENDA

- Introduction to Embedded Systems
- Hands on Workshop!
- Hardware familiarization
- Software familiarization
- Actuators and Sensors
- Demo of applications

WHAT ARE EMBEDDED SYSTEMS

WHAT IS IT

- "Dumb" Devices
- Smart Devices
- Internet of Things
- Robotics

WHERE IS IT

- Anything "Smart"
- Microwaves/Fridges
- Drones/Self Driving Cars
- NASA Rovers
- Biochips

PROVIDED SUPPLIES

ARDUINO UNO/MEGA (1x)

2. USB CABLE (1x)

3. BREADBOARD (1x)

4. HOOKUP WIRE (1m Black, 1m Red)

5. LED (5x)

6. BUTTONS (2x)

7. RESISTORS (7x 330 Ω , 2x 1k Ω)

8. CAPACITORS (2x 33nF, 2x 100nF, 2x 470µF)

Hardware

Overview

- ☐ Arduino Datasheet
- ☐ Connection
- ☐ Arduino IDE Installation
- ☐ "Hello World"
- ☐ Flashing
- ☐ Serial Monitor

ACTIVITY 1 SETUP THE BRAIN

Task: Write "Hello World" on the Serial Monitor Outcome

- Microcontroller documentation
- Arduino IDE Setup
- Hardware + Software familiarization

Hardware

Overview

- □ Arduino Datasheet
- ☐ Connection
- ☐ Arduino IDE Installation
- ☐ "Hello World"
- ☐ Flashing
- ☐ Serial Monitor

 Download the Arduino Datasheet (https://docs.arduino.cc/hardware/uno-rev3)

Hardware

Overview

- □ Arduino Datasheet
- ☐ Connection
- ☐ Arduino IDE Installation
- ☐ "Hello World"
- ☐ Flashing
- ☐ Serial Monitor

 Download the Arduino Datasheet (https://docs.arduino.cc/hardware/uno-rev3)

Hardware

Overview

- ☑ Arduino Datasheet
- ☐ Connection
- ☐ Arduino IDE Installation
- ☐ "Hello World"
- ☐ Flashing
- ☐ Serial Monitor

Hardware

Overview

- ✓ Arduino Datasheet
- ✓ Connection
- ☐ Arduino IDE Installation
- ☐ "Hello World"
- ☐ Flashing
- ☐ Serial Monitor

- 1. Download the Arduino IDE v2.x (https://docs.arduino.cc/software/ide-v2)
- 2. Install & Launch

Future Version of the Arduino IDE

Hardware

Overview

- ✓ Arduino Datasheet
- ☑ Connection
- ☑ Arduino IDE Installation
- ☐ "Hello World"
- ☐ Flashing
- ☐ Serial Monitor

1. Code a simple "Hello World"

```
sketch_aug17a.ino

void setup() {

// put your setup code here, to run once:
Serial.begin(9600); // Open the Serial Port with speed 9600 bps

void loop() {

// put your main code here, to run repeatedly:
Serial.print("Hello "); // Print "Hello "
Serial.println("World!"); // Print "World!" and add a new line

delay(2000); // Wait for 2000 milliseconds

delay(2000); // Wait for 2000 milliseconds

12 }

13
```

Hardware

Overview

- ✓ Arduino Datasheet
- ☑ Connection
- ☑ Arduino IDE Installation
- ☑ "Hello World"
- □ Flashing
- ☐ Serial Monitor

Hardware

Overview

- ✓ Arduino Datasheet
- ☑ Connection
- ☑ Arduino IDE Installation
- □ Flashing
- ☐ Serial Monitor

1. Tools -> Port -> COM[X]

Hardware

Overview

- ✓ Arduino Datasheet
- ☑ Connection
- ☑ Arduino IDE Installation
- □ Flashing
- ☐ Serial Monitor

1. Board "Arduino Uno", Port "COM[X]"

Hardware

Overview

- ✓ Arduino Datasheet
- Connection
- ☑ Arduino IDE Installation
- ☑ "Hello World"
- ☐ Flashing
- ☐ Serial Monitor

1. Flash -> Upload Files (Aka"Flashing")

Hardware

Overview

- ✓ Arduino Datasheet
- ☑ Connection
- ☑ Arduino IDE Installation
- ☑ "Hello World"
- □ Flashing
- ☐ Serial Monitor

1. Notice output console magicks + details

Output

Sketch uses 2000 bytes (0%) of program storage space. Maximum is 253952 bytes.

Global variables use 202 bytes (2%) of dynamic memory, leaving 7990 bytes for local variables. Maximum is 8192 bytes.

Hardware

Overview

- ✓ Arduino Datasheet
- ☑ Connection
- ✓ Arduino IDE Installation
- ☑ "Hello World"
- ☑ Flashing
- ☐ Serial Monitor

- 1. Tools -> Serial Monitor
- 2. What do you see?

Hardware

Overview

- ✓ Arduino Datasheet
- ☑ Connection
- ✓ Arduino IDE Installation
- ☑ "Hello World"
- ☑ Flashing
- ☐ Serial Monitor

- 1. Tools -> Serial Monitor
- 2. What do you see? Hello World!

Hardware

Overview

- ☑ Arduino Datasheet
- Connection
- ✓ Arduino IDE Installation
- ☑ "Hello World"
- ✓ Flashing
- ☑ Serial Monitor

ACTIVITY 1 SETUP THE BRAIN

Task: Write "Hello World" on the Serial Monitor Outcome

- Microcontroller documentation
- Arduino IDE Setup
- Hardware + Software familiarization

Recap

- Arduino is a Microcontroller/the Brains
- Programmable "Flashable"
- Can communicate

Hardware

Overview

- ☐ Input and Output
- ☐ Analog/Digital GPIO
- ☐ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

ACTIVITY 2 BLINK FOR HELP

Task: Blink the built-in LED to morse code (SOS) Outcome

- Microcontroller documentation
- Hardware + Software familiarization
- Output / Actuator intro

BREAK TIME RESUME AT:

Hardware

Overview

- ☐ Input and Output
- ☐ Analog/Digital GPIO
- ☐ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

ACTIVITY 2 BLINK FOR HELP

Task: Blink the built-in LED to morse code (SOS) Outcome

- Microcontroller documentation
- Hardware + Software familiarization
- Output / Actuator intro

Hardware

Overview

- ☐ Input and Output
- ☐ Analog/Digital GPIO
- ☐ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

- 1. Communication? Input? Output?
- 2. Receive? Send?

Hardware

Overview

- ☑ Input and Output
- ☐ Analog/Digital GPIO
- ☐ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

- 1. General Purpose Input Output (GPIO)
- 2. Both Analog GPIO and Digital GPIO

Pin	Function	Туре	Description
1	NC	NC	Not connected
2	IOREF	IOREF	Reference for digital logic V - connected to 5V
3	Reset	Reset	Reset
4	+3V3	Power	+3V3 Power Rail
5	+5V	Power	+5V Power Rail
6	GND	Power	Ground
7	GND	rower	Ground
8	VIN	Power	Voltage Input
9	A0	Analog/GPIO	Analog input 0 /GPIO
10	A1	Analog/GPIO	Analog input 1 /GPIO
11	A2	Analog/GPIO	Analog input 2 /GPIO
12	A3	Analog/GPIO	Analog input 3 /GPIO
13	AUSDA	Analog input/I2C	Analog input 4/12C But line
14	A5/SCL	Analog Imput IZC	Arriatog Input 5/I2C Clock line

5.2 JDIGITAL

D.	Function	Туре	Description
1	D0	Digital/GPIO	Digital pin 0/GPIO
2	D1	Digital/GPIO	Digital pin 1/GPIO
3	D2	Digital/GPIO	Digital pin 2/GPIO
4	D3	Digital/GPIO	Digital pin 3/GPIO
5	D4	Digital/GPIO	Digital pin 4/GPIO
6	D5	Digital/GPIO	Digital pin 5/GPIO
7	D6	Digital/GPIO	Digital pin 6/GPIO
8	D7	Digital/GPIO	Digital pin 7/GPIO
9	D8	Digital/GPIO	Digital pin 8/GPIO
10	D9	Digital/GPIO	Digital pin 9/GPIO
11	cc	Digital	SPI Chip 5 Lect
12	MOSI	Digital	ડર્ગી Main Out Secondary In
13	MISO	Digital	SPI Main In Secondary Out
14	SCK	Digital	SPI serial clock output
15	GND	Power	Ground
16	AREF	Digital	Analog reference voltage
17	A4/SD4	Digital	Analog input 4/I2C Data line (duplicated)
18	A5/SD5	Digital	Analog input 5/I2C Clock line (duplicated)

Hardware

Overview

- ☑ Input and Output
- ☑ Analog/Digital GPIO
- ☐ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

1. Turn ON/OFF LED, Use Digital GPIO!

2. We'll use "LED_BUILTIN"

Hardware

Overview

- ☑ Input and Output
- ☑ Analog/Digital GPIO
- ☐ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

- 1. Arduino IDE, File -> New
- 2. Set "LED_BUILTIN" to OUTPUT mode!
- 3. Turn it OFF and ON

1. Flash!

Hardware

Overview

- ☑ Input and Output
- ☑ Analog/Digital GPIO
- ☑ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

- 1. Blink SOS morse code (· · · · · · · ·)
- 2. Use functions

Dot 100ms Dash 300ms Between Dots and Dashes 100ms Between Letters 300ms

Morse Code

```
S ....
```

Between Words

```
void loop()

// put your main code here, to run repeatedly:

Serial.print("SOS ");

blink_letter_s();
blink_letter_o();
blink_letter_s();

delay(WORD_SPACE - LETTER_SPACE);
Serial.println(); // New line

Serial.println(); // New line
```

700ms

Morse Code Dot 100ms Dash 300ms Between Dots and Dashes 100ms Between Letters 300ms Between Words 700ms S ... O --S ...

Hardware

Overview

- ☑ Input and Output
- ☑ Analog/Digital GPIO
- ☑ Turn ON/OFF Built-in LED
- ☐ Blink SOS
- ☐ Physical Limitations (Datasheets!)

1. Flash!

```
#define DOT 100
#define DASH 300
#define DOT DASH SPACE 100
#define LETTER_SPACE 300
#define WORD_SPACE 700
void setup()
 Serial.begin(9600); // Open the Serial Port with speed 9600 bps
 pinMode(LED_BUILTIN, OUTPUT); // Set the digital pin for the built-in led to output mode
 digitalWrite(LED BUILTIN, LOW); // Turn LED OFF
 digitalWrite(LED BUILTIN, HIGH); // Turn LED ON
void loop()
 Serial.print("SOS ");
 blink_letter_s();
 blink_letter_o();
 blink_letter_s();
 delay(WORD_SPACE - LETTER_SPACE);
 Serial.println(); // New line
void blink_letter_o()
```

```
void blink letter o()
   int i:
   // Send letter '0'
   for (i = 0; i < 3; i++)
       digitalWrite(LED_BUILTIN, HIGH); // Turn LED ON
       Serial.print("-");
       delay(DASH);
                                       // Wait for the duration of a dash
       digitalWrite(LED_BUILTIN, LOW); // Turn LED OFF
       delay(DOT DASH SPACE);
                                       // Wait between dots and dashes
   delay(LETTER_SPACE - DOT_DASH_SPACE); // Wait between letters
   // Note: remove dot dash space because it was already done before!
void blink letter s()
   int i;
   for (i = 0; i < 3; i++)
       digitalWrite(LED_BUILTIN, HIGH); // Turn LED ON
       Serial.print(".");
       delay(DOT);
                                       // Wait for the duration of a dot
       digitalWrite(LED BUILTIN, LOW); // Turn LED OFF
       delay(DOT_DASH_SPACE);
                                       // Wait between dots and dashes
   delay(LETTER SPACE - DOT DASH SPACE); // Wait between letters
```

Hardware

Overview

- ☑ Input and Output
- ☑ Analog/Digital GPIO
- ☑ Turn ON/OFF Built-in LED
- ☑ Blink SOS
- ☐ Physical Limitations (Datasheets!)

- 1. Try reducing the time by a factor of 10x
- 2. Reduce it by a factor of 100x
- 3. Does it still blink?
- 4. Is it still bright?

```
Morse Code

Dot 100ms

Dash 300ms

Between Dots and Dashes 100ms

Between Letters 300ms

Between Words 700ms

S ...

O ---
S ...
```

```
#define DOT 100
#define DASH 300
#define DOT_DASH_SPACE 100
#define LETTER_SPACE 300
#define WORD_SPACE 700
#define WORD_SPACE 700
#define WORD_SPACE 700
```

```
#define DOT 1
#define DASH 3
#define DOT_DASH_SPACE 1
#define LETTER_SPACE 3
#define WORD_SPACE 7
```

Hardware

Overview

- ☑ Input and Output
- ☑ Analog/Digital GPIO
- ☑ Turn ON/OFF Built-in LED
- ☑ Blink SOS
- ☐ Physical Limitations (Datasheets!)

1. Typical LED Datasheet

Absolute Maximum Ratings at TA=25°C

Parameter	Super Bright Red	Units
Power dissipation	75	mW
DC Forward Current	30	mA
Peak Forward Current [1]	155	mA
Reverse Voltage	5	V
Operating/Storage Temperature	-40°C To +85°C	
Lead Solder Temperature [2]	260°C For 3 Seconds	
Lead Solder Temperature [3]	260°C For 5 Seconds	

Notes

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.
- 3. 5mm below package base.

Further reading: Pulse Width Modulation (PWM)

Hardware

Overview

- ☑ Input and Output
- ☑ Analog/Digital GPIO
- ☑ Turn ON/OFF Built-in LED
- ☑ Blink SOS
- ☑ Physical Limitations (Datasheets!)

ACTIVITY 2 BLINK FOR HELP

Task: Blink the built-in LED to morse code (SOS) Outcome

- Microcontroller documentation
- Hardware + Software familiarization
- Output / Actuator intro

Recap

- A/O GPIO
- Knowledge in documentation and/or datasheets!
- Know the limitations (software and hardware)

Hardware

- ☐ Connect External Hardware
- ☐ Modify SOS
- ☐ Send command via Serial

ACTIVITY 3 LIGHTBRINGER

Task: Blink an external LED to morse code (SOS) on command Outcome

- Schematic reading (basic)
- Hardware + Software familiarization
- Serial & Serial Monitor

BREAK TIME RESUME AT:

WORKING WITH ELECTRONICS

Fundamentals

- Power source (AC/DC)
- Voltage = Current x
 Resistance
- Ground, Ground, Ground
- If in doubt, <u>there's no doubt</u>, double check & ask

Breadboard?

- Build prototypes
- Connect using "hookup wire"

Hardware

- ☐ Connect External Hardware
- ☐ Modify SOS
- ☐ Send command via Serial

ACTIVITY 3 LIGHTBRINGER

Task: Blink an external LED to morse code (SOS) on command Outcome

- Schematic reading (basic)
- Hardware + Software familiarization
- Serial & Serial Monitor

ACTIVITY 3 LIGHTBRINGER

Hardware

Overview

- ☐ Connect External Hardware
- ☐ Modify SOS
- ☐ Send command via Serial

1. DISCONNECT!

5 Band Resistor

ACTIVITY 3 LIGHTBRINGER

Hardware

Overview

- ☐ Connect External Hardware
- ☐ Modify SOS
- ☐ Send command via Serial

1. Wire as per schematic

Hardware

Overview

- ☐ Connect External Hardware
- ☐ Modify SOS
- ☐ Send command via Serial

Wiring Check

Overview

- ☑ Connect External Hardware
- ☐ Modify SOS
- ☐ Send command via Serial

- 1. Modify Activity 2 code (Blink for Help, SOS) to work with digital pin 13
- 2. Make a variable "led_pin" and swap it for "LED_BUILTIN" (everywhere, not only `setup()`)
- 3. Connect & Flash!

```
7  void setup()
8  {
9    // put your setup code here, to run once:
10    Serial.begin(9600); // Open the Serial Port with special
11    pinMode(LED_BUILTIN, OUTPUT); // Set the digital pin digitalWrite(LED_BUILTIN, LOW); // Turn LED OFF digitalWrite(LED_BUILTIN, HIGH); // Turn LED ON
15  }
16
```

```
int led_pin = 13;

void setup()

// put your setup code here, to run once:
Serial.begin(9600); // Open the Serial Port wit

pinMode(led_pin, OUTPUT); // Set the digital pidigitalWrite(led_pin, LOW); // Turn LED OFF digitalWrite(led_pin, HIGH); // Turn LED ON

// Publication of the content of the cont
```


Overview

- ☑ Connect External Hardware
- ☐ Modify SOS
- ☐ Send command via Serial

```
activity_3_lightbringer.ino
       #define DOT 100
       #define DOT DASH SPACE 100
       #define LETTER SPACE 300
       #define WORD SPACE 700
       int led pin = 13;
       void setup()
         Serial.begin(9600); // Open the Serial Port with
         pinMode(led pin, OUTPUT); // Set the digital pin
         digitalWrite(led_pin, LOW); // Turn LED OFF
         digitalWrite(led_pin, HIGH); // Turn LED ON
       void loop()
           Serial.print("SOS ");
           blink_letter_s();
           blink_letter_o();
           blink_letter_s();
           delay(WORD_SPACE - LETTER_SPACE);
      void blink_letter_o()
```

```
activity_3_lightbringer.ino
  32 void blink letter o()
           int i;
           // Send letter '0'
           for (i = 0; i < 3; i++)
               digitalWrite(led_pin, HIGH); // Turn LED ON
               Serial.print("-");
               delay(DASH);
               digitalWrite(led_pin, LOW); // Turn LED OFF
               delay(DOT_DASH_SPACE);
                                              // Wait between dots and dashes
           delay(LETTER_SPACE - DOT_DASH_SPACE); // Wait between letters
           // Note: remove dot dash space because it was already done before!
       void blink letter s()
           int i;
           for (i = 0; i < 3; i++)
               digitalWrite(led_pin, HIGH); // Turn LED ON
                                               // Wait for the duration of a dot
               delay(DOT);
               digitalWrite(led_pin, LOW); // Turn LED OFF
               delay(DOT_DASH_SPACE);
                                              // Wait between dots and dashes
           delay(LETTER SPACE - DOT DASH SPACE); // Wait between letters
           // Note: remove dot dash space because it was already done before!
```


Overview

- ☑ Connect External Hardware☑ Modify SOS
- ☐ Send command via Serial

- 1. Serial Monitor is not a pure monitor!
- 2. Use `Serial.readString()`

Hardware

Overview

- ☑ Connect External Hardware☑ Modify SOS
- ☐ Send command via Serial

1. Something like this? Flash!

```
activity_3_lightbringer.ino
                                                                                                                    void blink letter o()
       #define DOT 100
       #define DASH 300
                                                                                                                      int i;
       #define DOT DASH SPACE 100
      #define LETTER SPACE 300
                                                                                                                      // Send letter '0'
                                                         Serial.println("Send SOS signal?");
      #define WORD SPACE 700
                                                                                                                      for (i = 0; i < 3; i++)
       int led pin = 13;
                                                                                                                        digitalWrite(led pin, HIGH); // Turn LED ON
                                                     bool signal sos()
                                                                                                                        Serial.print("-");
                                                                                                                        delay(DASH);
                                                                                                                                                      // Wait for the duration of a dash
                                                       if (Serial.available() > 0)
                                                                                                                        digitalWrite(led pin, LOW); // Turn LED OFF
                                                                                                                        delay(DOT DASH SPACE);
                                                                                                                                                     // Wait between dots and dashes
        Serial.begin(9600); // Open the Serial
                                                         String incoming_string = Serial.readString();
                                                         incoming_string.trim(); // Remove any \r \n whitespace
        pinMode(led_pin, OUTPUT); // Set the d:
                                                                                                                      delay(LETTER SPACE - DOT_DASH_SPACE); // Wait between letters
                                                         Serial.println("Received: " + incoming string);
        digitalWrite(led pin, LOW); // Turn
                                                         if (incoming string == "yes")
        digitalWrite(led_pin, HIGH); // Turn
                                                           return true;
                                                                                                                    void blink letter s()
                                                                                                                      int i;
                                                           return false;
        bool result = signal sos();
        if (result == true)
                                                                                                                       for (i = 0; i < 3; i++)
          Serial.print("SOS ");
                                                                                                              81
                                                                                                                        digitalWrite(led_pin, HIGH); // Turn LED ON
                                                     void blink_letter_o()
          blink letter s();
                                                                                                                        Serial.print(".");
          blink_letter_o();
                                                                                                                        delay(DOT);
                                                                                                                                                      // Wait for the duration of a dot
                                                      int i;
          blink_letter_s();
                                                                                                                        digitalWrite(led_pin, LOW); // Turn LED OFF
                                                                                                                        delay(DOT DASH SPACE);
                                                                                                                                                     // Wait between dots and dashes
                                                       // Send letter '0'
          delay(WORD_SPACE - LETTER_SPACE);
                                                       for (i = 0; i < 3; i++)
                                                                                                                       delay(LETTER SPACE - DOT DASH SPACE); // Wait between letters
                                                         digitalWrite(led pin, HIGH); // Turn LED ON
                                                         Serial.print("-");
```

Hardware

Overview

- ☑ Connect External Hardware☑ Modify SOS
- ☐ Send command via Serial

- 1. "Ctrl + Shift + M" to open Serial Monitor
- 2. "Ctrl + Enter" to send message

```
Output Serial Monitor ×

yes

New Line

9600 baud

▼

Send SOS signal?
```


- Overview
- ☑ Connect External Hardware☑ Modify SOS
- ☐ Send command via Serial

- 1. Note the option to change line endings.
- 2. How quickly is your command registered?
- 3. What happens if you change the "baud" rate?

Hardware

- ☑ Connect External Hardware
- ☑ Modify SOS
- ☑ Send command via Serial

ACTIVITY 3 LIGHTBRINGER

Task: Blink an external LED to morse code (SOS) on command Outcome

- Schematic reading (basic)
- Hardware + Software familiarization
- Serial & Serial Monitor

Recap

- Build your own circuits
- Knowledge in documentation and/or datasheets!
- Know the limitations (software and hardware)

Hardware

Overview

☐ More LEDs

☐ Buttons (Pull-up config) & Debouncing

☐ Code "Knight Rider" effect

ACTIVITY 4 KNIGHT RIDER

Task: Blink LEDs from left to right. Change speed with buttons. Outcome

- Hardware + Software familiarization
- Input / Sensor

BREAK TIME RESUME AT:

Hardware

Overview

- ☐ More LEDs
- ☐ Buttons (Pull-up config) & Debouncing
- ☐ Code "Knight Rider" effect

ACTIVITY 4 KNIGHT RIDER

Task: Blink LEDs from left to right. Change speed with buttons. Outcome

- Hardware + Software familiarization
- Input / Sensor

Overview

- ☐ More LEDs
- ☐ Buttons (Pull-up config) & Debouncing
- ☐ Code "Knight Rider" effect

- 1. Disconnect
- 2. Wire as per schematic

Hardware

✓ More LEDs

☐ Buttons (Pull-up config) & Debouncing

☐ Code "Knight Rider" effect

1. Push button

Hardware

✓ More LEDs

- ☐ Buttons (Pull-up config) & Debouncing
- ☐ Code "Knight Rider" effect

- 1. Pull-up configuration
- 2. Default value is HIGH
- 3. Pressed value is LOW

Hardware

Overview

✓ More LEDs

- ☐ Buttons (Pull-up config) & Debouncing
- ☐ Code "Knight Rider" effect

- 1. Things are not perfect! (;_;)
- 2. Unwanted fluctuations (Aka noise)
- 3. Solution: add a capacitor to smoothen out noise

Hardware

Overview

✓ More LEDs

☐ Buttons (Pull-up config) & Debouncing

☐ Code "Knight Rider" effect

Hardware

✓ More LEDs

☐ Buttons (Pull-up config) & Debouncing

☐ Code "Knight Rider" effect

Wiring Check

Hardware

✓ More LEDs

☑ Buttons (Pull-up config) & Debouncing

☐ Code "Knight Rider" effect

1. Try coding a knight rider effect (single direction)

Pseudocode:

Int delay_time (has max and min values) setup:

led pins as output pushbtn pins as input

main:

if push btn1 only: increment delay_time

if push btn2 only: decrement delay_time

turn LED 1 ON, wait delay_time, turn LED 1 OFF

. . .

turn LED 5 ON, wait delay_time, turn LED 5 OFF

5ms <= time <= 150ms default value = 100ms increment = 5ms

Get input with `digitalRead(pin)`

Hardware

Overview

✓ More LEDs

☑ Buttons (Pull-up config) & Debouncing

☐ Code "Knight Rider" effect

1. Something like this? Flash!

```
activity_4_knight_rider.ino
                                                                                                                                       delay time -= increment;
                                                                                                                                       if (delay time <= delay min)</pre>
       // LED ON delay
                                                                                                                                          delay time = delay min;
       int delay time = 100;
                                                              Serial.begin(9600);
        const int delay max = 150;
                                                                                                                                      // Increase delay if left button is pressed
       const int delay min = 5;
                                                                                                                                      if (button right state == LOW)
                                                            void loop()
       // Delay increment when pressing pushbutton
                                                                                                                                       delay time += increment;
        const int increment = 5;
                                                              handle btn press();
                                                                                                                                       if (delay time >= delay max)
                                                              switch_leds();
                                                                                                                                         delay time = delay max;
       // LED pins
       const int pin led one = 9;
                                                                                                                                      // Print new delay time
                                                            void handle_btn_press()
       const int pin_led_two = 8;
                                                                                                                                      Serial.print("New delay time: ");
        const int pin_led_three = 7;
                                                                                                                                      Serial.println(delay time);
                                                              // Read state of button (HIGH or LOW)
       const int pin led four = 6;
                                                              const int button_left_state = digitalRead(pin_button_left);
        const int pin led five = 5;
                                                              const int button right state = digitalRead(pin button right);
        // Pushbutton pins
                                                                                                                                  void switch_leds()
                                                              Serial.print("Button states: ");
        const int pin button left = 3;
                                                              Serial.print(button left state);
        const int pin button right = 4;
                                                              Serial.println(button_right_state);
                                                                                                                                   blink_led(pin_led_one);
                                                                                                                                   blink_led(pin_led_two);
       void setup()
                                                                                                                                   blink led(pin led three);
                                                              if (button left state != button right state)
                                                                                                                                   blink_led(pin_led_four);
         // Set LED pins as output
                                                                                                                                   blink led(pin led five);
         pinMode(pin_led_one, OUTPUT);
                                                                // Decrease delay if left button is pressed
         pinMode(pin_led_two, OUTPUT);
                                                                if (button left state == LOW)
          pinMode(pin_led_three, OUTPUT);
                                                                                                                                  void blink led(int pin led)
                                                                  delay time -= increment;
          pinMode(pin_led_four, OUTPUT);
          pinMode(pin_led_five, OUTPUT);
                                                                                                                                   // Turn LED ON then back OFF after a delay
                                                                                                                                   digitalWrite(pin led, HIGH);
                                                                                                                                   delay(delay time);
         pinMode(pin_button_left, INPUT);
                                                                                                                                   digitalWrite(pin_led, LOW);
          pinMode(pin button right, INPUT);
```

Hardware

✓ More LEDs

☑ Buttons (Pull-up config) & Debouncing

☑ Code "Knight Rider" effect

ACTIVITY 4 KNIGHT RIDER

Task: Blink LEDs from left to right. Change speed with buttons. Outcome

- Hardware + Software familiarization
- Input / Sensor

Recap

- Input / Sensor are used to gather data from the world
- Real life has "defects" compared to models

QUESTIONS?

57

DEMO 1 LED/SERVO CONTROLLER

Demo	Example Application
Battery (power bank)	Wildlife tracking, Autonomous robot
Remote control (ESP8266)	Smart TV, Robotic surgery, Marine exploration
E-paper screen	Name tag, Price tag, Bus stop ads

DEMO 2 RASPBERRY PI

- 1. Raspbian on raspberry pi
- 2. Retro game arcade
- 3. Web server

WHAT NEXT?

Buy your own?

Polling vs Interrupts

ESP8266? Zigbee? Bluetooth? WiFi?

IoT benefits and dangers

Slides, files, source code available:

https://github.com/MrTanoshii/Intro-Embedded-Systems

QUESTIONS?

THANK YOU

Tsen Chee Vincent LEUNG YIN KO

vincent.leungyinko@gmail.com

Slides, files, source code available:

https://github.com/MrTanoshii/Intro-Embedded-Systems