ARGOMENTI TRATTATI

L'impostazione Sperimentale

Evoluzione della strumentazione

Metodo tradizionale e metodo on-line per l'acquisizione dati

Descrizione della struttura generale di un Data Aquisition System (DAS) per grandezze analogiche e per eventi

(L'impostazione Sperimentale)

L'IMPOSTAZIONE SPERIMENTALE

Fasi di impostazione ed elaborazione comuni ad ogni esperimento in fisica, indipendentemente dalle tecnologie usate:

- Strumenti analogici a lettura discreta (nel tempo)
- Strumenti a lettura "continua":
 - registratori XY(stazioni metereologiche, elettrocardiografi)
 - •oscilloscopi
- Strumentazione digitale
 - digitalizzazione strumentazione analogica
 - oscilloscopi digitali
 - •data logger (sistemi di acquisizione dati e memorizzazione su nastro o disco magnetico)
- Strumentazione on-line con computer
 - con inserimento di schede
 - con computer di interfaccia
 - Strumenti digitali collegati con linea seriale RS-232
 - Strumenti digitali collegati con bus parallelo IEEE488
 - Strumenti virtuali

(Metodo tradizionale e metodo on-line)

TRASDUTTORI

Trasformano una grandezza fisica in un'altra più accessibile all'operatore o alla macchina che deve controllare la grandezza fisica

Monitorare una grandezza analogica(pressione, ..) che varia in modo continuo in ampiezza e con continuità nel tempo

Rilevare eventi aleatoriche possono essere o veri o falsi (2 soli stati): passaggio particelle, interruttori aperti o chiusi....

(Metodo tradizionale e metodo on-line)

(schema generale)

Schema a blocchi di un DAS

Data Acquisition System

(circuito di condizionamento del segnale)

(il circuito di Sample and Hold)

(situazioni con n trasduttori)

(situazioni con n trasduttori)

DAS DA TRASDUTTORI DELLO STESSO TIPO

(situazioni con n trasduttori)

SISTEMA DI ACQUISIZIONE DATI DA TRASDUTTORI DIVERSI

(le 3 fasi della conversione A/D)

CONVERSIONE A/D

Campionamento:

la forma d'onda continua d'ingresso $x_c(t)$ viene trasformata nella sequenza $\mathbf{x}_{s}[\mathbf{n}]$.

Quantizzazione:

i valori assunti da x_s[n] vengono discretizzati ottenendo così la sequenza x^{n} .

Codifica:

ai valori assunti da x^[n] viene associato un codice, tipicamente binario; la sequenza $\mathbf{x}_{\mathbf{R}}^{\mathbf{n}}[\mathbf{n}]$ così costruita costituisce il risultato della conversione.

(il Campionatore)

FUNZIONI DEL CAMPIONATORE

(il Codificatore)

QUANTIZZAZIONE E CODIFICA DEL SEGNALE

(Nyquist)

TEOREMA DI NYQUIST

Condizione necessaria e sufficiente perché il segnale limitato in banda $x_c(t)$ sia univocamente determinato dalla sequenza dei suoi campioni x[n] è che la frequenza di campionamento sia almeno il doppio della banda del segnale (Nyquist 1928, Shannon 1949)

Data Acquisition System (i traduttori on-off)

Il trasduttore on-off è un elemento che trasforma una determinata grandezza fisica in una informazione di tipo binario (1-0, si-no,

Data Acquisition System trasduttori on-off

L'interruttore è un esempio di dispositivo che può svolgere il ruolo di trasduttore on-off

