Maxwell's Equations (Guassian)	Maxwell's Equations (SI)
Electrodynamics	Electrodynamics
Gaussian Integrals	Geometric Series
General Math	General Math
Stirling's Approximation	Adiabatic Process
General Math	Thermodynamics
Adiabatic Properties of Ideal Gas	Bose-Einstein Distribution

THERMODYNAMICS THERMODYNAMICS

Carnot Efficiency Carnot Cycle

THERMODYNAMICS THERMODYNAMICS

$$\vec{\nabla} \cdot \vec{D} = \rho_f \qquad \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \qquad \vec{\nabla} \cdot \vec{D} = 4\pi \rho_f \qquad \qquad \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \qquad \vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}_f \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0 \qquad \qquad \vec{\nabla} \times \vec{H} = \frac{1}{c} \left(\frac{\partial \vec{D}}{\partial t} + 4\pi \vec{J}_f \right)$$

$$\begin{split} \sum_{i=0}^{N} r^{i} &= \frac{1 - r^{N+1}}{1 - r} \\ \sum_{i=0}^{\infty} x^{n} e^{-ax^{2}} dx &= \begin{cases} \frac{1}{2} \sqrt{\frac{\pi}{a^{m+1}}} \frac{(2m)!}{4^{m} m!} & n = 2m \\ \frac{1}{2} \frac{1}{a^{k+1}} k! & n = 2k + 1 \end{cases} \\ \sum_{i=0}^{\infty} r^{i} &= \frac{1}{1 - r} \\ I_{0}(x) &= \frac{1}{2} \sqrt{\frac{\pi}{a}} & I_{1}(x) &= \frac{1}{2a} \\ I_{2}(x) &= \frac{1}{4a} \sqrt{\frac{\pi}{a}} & I_{3}(x) &= \frac{1}{2a^{2}} \end{cases} \end{split}$$

Also called *isentropic*. $\Delta S = 0$ in the process. Use the thermodynamic identity at constant volume and a systems internal energy equation to derive properties about the entropy of the system.

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

 $\ln n! \approx n \ln n - n$

$$f\left(\varepsilon\right) = \frac{1}{e^{\left(\varepsilon - \mu\right)/k_BT} - 1}$$

$$T_1V_1^{\gamma - 1} = \text{const}$$

$$T_1^{\gamma/(1 - \gamma)}P_1 = \text{const}$$

$$P_1V_1^{\gamma} = \text{const}$$

Characterized by alternating stages of isothermal and isentropic expansion and compression. Work done is

$$W = (T_h - T_l) (S_H - S_L)$$

where T_l and T_h are the low and high temperatures reached during the cycle and S_L and S_H are the low and high entropies of the working substance.

$$\eta = 1 - \frac{T_l}{T_h}$$

Equipartition Theorem	Fermi Gasses
Thermodynamics	Thermodynamics
Fermi-Dirac Distribution	Gibbs Free Energy
Thermodynamics	Thermodynamics
Helmholtz Free Energy	Ideal Gasses
Thermodynamics	Thermodynamics
Ideal Gas (RMS Average Speed)	Ideal Monoatomic Gas

Maxwell Speed Distribution Partition Function

THERMODYNAMICS

THERMODYNAMICS THERMODYNAMICS

THERMODYNAMICS

- 1. High kinetic energy
- 2. Low heat capacity
- 3. Low magnetic susceptibility
- 4. Low interparticle collision rate
- 5. High pressure

A classical gas's energy gains $\frac{1}{2}k_BT$ for each degree of freedom. An ideal monotomic gas has $U=\frac{3}{2}k_BT$ from three translational degrees of freedom, while an ideal diatomic gas has $U=\frac{5}{2}k_BT$ from an additional two degrees of rotational freedom.

$$G \equiv U + PV - TS$$

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} + 1}$$

$$PV = nRT$$

$$PV = Nk_BT$$

$$Z_N = \frac{Z_1^N}{N!}$$

Acts as effective energy in isothermal changes of volume.

$$F \equiv U - TS$$

$$dF = dU - SdT$$

$$C_V = \frac{3}{2}Nk_B \qquad \qquad C_P = \frac{5}{2}Nk_B$$

$$U = \frac{3}{2}Nk_BT \qquad \qquad \gamma = \frac{5}{3}$$

Derived by considering a single particle. For translation in three dimensions $KE=\frac{3}{2}k_BT$ and also $KE=\frac{1}{2}mv^2$ so that when combined,

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

$$v = \sqrt{\frac{3k_BT}{m}}$$

$$Z = \sum_{n} e^{-\varepsilon_n/k_B T}$$

$$U = k_B T^2 \frac{\partial \ln Z}{\partial T} \qquad F = -k_B T \ln Z$$

$$f\left(v\right) = \sqrt{\left(\frac{m}{2\pi k_B T}\right)^3} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

$$v_{\rm rms} = \sqrt{\frac{3k_BT}{m}} \qquad \qquad \langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$$

Photon Gasses

Planck Distribution function

THERMODYNAMICS

Planck Spectral Density (frequency)

Radiant Energy Flux (blackbody)

Thermodynamics

Thermodynamics

Stefan-Boltzmann Law (energy density)

Thermodynamic Identity

THERMODYNAMICS

$$\langle s \rangle = \frac{1}{e^{\hbar \omega/k_BT}-1}$$

$$P = \frac{1}{3}\sigma_b V T^4$$

$$\mu = 0$$

$$\begin{split} J_u &= \frac{\pi^2 k_B^4}{60\hbar^3 c^2} T^4 \\ J_u &= \frac{c}{4} u \end{split} \qquad u_\omega = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar \omega/k_B T} - 1} \end{split}$$

$$dU = TdS - PdV + \mu dN$$

$$\frac{U}{V} = u = \frac{\pi^2 k_B^3}{15\hbar^3 c^3} T^4$$

$$u = \sigma_B T^4$$

$$U = \frac{\partial U}{\partial T} \Big|_V = T \left(\frac{\partial S}{\partial T}\right)_V \qquad P = -\left(\frac{\partial U}{\partial V}\right)_S$$

$$u = \frac{4}{c} J_u$$