

EXHIBIT I

Skin Rendering Overview

張志文

2005 CGGM LAB
Data: 2006.4.20

Outline

- Introduction
- Property of Skin
 - Skin Appearance
 - Optics property
- Research
 - BRDF
 - Subsurface Scattering && BSSRDF
 - Image/Texture Based Approach
- Problem

Introduction

- What is Skin Rendering
 - Render skin surface as realistic as possible in any light condition or view direction

- Issue
 - Accuracy
 - Speed

Property of Skin

- Skin Appearance
 - Igarashi, T., Nishino, K., and Nayar, S. K.(2005). The Appearance of Human Skin. Technical report#CUCS-024-05, Department of Computer Science, Columbia University 2005
- Skin is the outermost tissue of the body
 - approximately 16, 000 cm²
 - 8% of the body weight
- Skin has a very complex structure
 - Cells, fibers
 - several different layers

Scale	Level	Physiological / Anatomical Components	Physical Phenomena / Models
Micro	Cellular Level Elements	<ul style="list-style-type: none"> • keratinocyte • melanocyte • erythrocyte • collagen fiber ... 	<p>cellular optics</p>
	Skin Layers	<ul style="list-style-type: none"> • epidermis • dermis • subcutis 	<p>cutaneous optics</p>
	Skin	<ul style="list-style-type: none"> • skin surface lipid • hair • skin layers • fine wrinkle ... 	<p>bidirectional reflectance distribution function (BRDF)</p> <p>bidirectional reflectance distribution function (BSSRDF)</p>
Meso		<ul style="list-style-type: none"> • skin layers *3 • fine wrinkle ... 	<p>bidirectional scattering surface reflectance distribution function (BSSRDF)</p>
		<ul style="list-style-type: none"> • skin layers *3 • fine wrinkle ... 	<p>skin layers *3</p> <p>fine wrinkle ...</p>

		Skin Features	bidirectional texture function (BTF)
4	<ul style="list-style-type: none"> • wrinkle • pore • mole • freckle... 	 wrinkle	 ~ 2 cm
5	<ul style="list-style-type: none"> • nose • finger • elbow • knee ... 	Body Regions 	region appearance ~ 10 cm
6	<ul style="list-style-type: none"> • face • arm • leg • torso ... 	Body Parts 	part appearance 30 cm
Macro			

Property of Skin

- Optics property
 - Focus on meso scale
 - Hair
 - Skin surface lipid film (SSLF)
 - Fine wrinkle
 - mole, pore, spot etc..
 - Skin layers (epidermis, dermis, subcutis)

Hair

Skin surface lipid film (SSLF)

表面油脂

T字部位

Specular Map

Fine wrinkle

- 皮膚表面非常細微的皺摺

- fine wrinkle會造成反射
程度的不同

mole, pore, spot etc..

皮膚上的特徵

- 痣
- 疤痕
- 毛孔
- 等等

Texture/Normal Map

Skin layers

- Skin layer
 - epidermis (0.2 mm)
 - dermis (1 to 4 mm)
 - subcuit (4 to 9 mm)
- Composition of layers is too complex
 - difficult for quantitative analysis of the optical properties of skin
 - consider epidermis & dermis as independent optical media
 - *melanin layer* (epidermis)
 - *hemoglobin layer* (dermis)

Optics property of skin layers

□ Assumption

- absorption && scattering are uniformly distributed over skin layer
- anisotropy of the light propagation caused by preferential alignments of collagen fibers is negligible

Optics property of skin layers

Epidermis

- A more or less transparent layer that does not produce strong enough scattering
- Significant absorption depends on the volume of melanin

- Few scattering
- Much absorption (depends on melanin)
- Melanin layer

Dermis

- Significant amount of multiple scattering in the vast network of collagen fibers
- Significant absorption by hemoglobin
- The scattering properties of the dermis depend on the wavelength of light
 - longer wavelength can penetrate deeper
- Can be described as a combination of two layers
 - *multiple scattering layer*
 - *hemoglobin layer*

Subsurface Scattering Effect

Research on Skin Rendering

- ❑ BRDF
- ❑ Subsurface Scattering && BSSRDF
- ❑ Image/Texture Based Approach

BRDF

- Bidirectional Reflectance Distribution Function
- 光在表面入射光線量與反射光線量的比例

$$L_o(x_o, \omega_o) = \int_{2\pi} L(x_i, \omega_i) (\rho_i \cdot \delta_i) f(\omega_i, \omega_o) d\omega_i$$

- Dana, K. J., Ginneken, B. V., Nayar, S. K., and Koenderink, J. J.(1997). Reflectance and Texture of Real-World Surfaces. *Proceedings of the IEEE Computer Society conference on Computer Vision and Pattern Recognition*, June 1997
- Marschner, S. R., Westin, S.H., Lafortune, E. P. F., Torrance, K. E., and Greenberg, D. P.(1999). Image-based BRDF measurement including human skin. In*Proceedings of 10th Eurographics Workshop on Rendering*, pages 139–152, 1999.

Skin color using BRDF

- 43 Caucasian male

9 girl

23 male from India

- Looks not so realistic
- Miss count the effect of subsurface scattering in skin layer

Subsurface Scattering && BSSRDF

- Participating Media
- Volume Rendering Equation
- Research on Subsurface Scattering
- Research on BSSRDF
- Skin Rendering using BSSRDF

Jade

Participating Media

- Optical properties which affect the light
 - Absorption, emission, scattering

Fig. 1 Interaction of light in a participating medium.

Properties of Participating Media

□ Emission

- Volume emittance function $\varepsilon(x) [W/m^3]$
- Volume emittance radiance $dL^e(x \rightarrow \theta) = \frac{\varepsilon(x)}{4\pi} ds [W/m^2 \cdot sr]$

□ Absorption

- Absorption coefficient $\sigma_a(x) [1/m]$
- One photon traveling a distance Δs in media has chance $\sigma_a \cdot \Delta s$ be absorbed
- Mean free path $1/\sigma_a(x) [m]$

Properties of Participating Media

- 極小變動距離下，光線量的衰減可以表示為

$$L(z + \Delta s \cdot \Theta \rightarrow \Theta) = L(z \rightarrow \Theta)(1 - \sigma_a(z) \cdot \Delta s)$$

- 取極限值後，可以得到

$$dL(z \rightarrow \Theta) / ds = -\sigma_a(z) L(z \rightarrow \Theta)$$

- 將極限值從 X 積分到 Z ，可推導出 X 和 Z 光線量關係

$$L(z \rightarrow \Theta) = L(x \rightarrow \Theta) \exp\left(-\int_x^z \sigma_a(x) ds\right)$$

- 材質為同質性的話，則形成常見的指數函式

$$L(z \rightarrow \Theta) = L(x \rightarrow \Theta) e^{-\sigma_a \cdot s}$$

Properties of Participating Media

- Scattering
 - Scattering coefficient $\sigma_s(x)$ [$1/m$]
 - One photon traveling a distance Δs in media has chance $\sigma_s \cdot \Delta s$ be scattered.
- Extinction
 - extinction coefficient $\sigma_t(x) = \sigma_a(x) + \sigma_s(x)$ [$1/m$]
- Albedo
 - relative importance of scattering vs absorption
$$\alpha(x) = \sigma_s(x) / \sigma_t(x)$$

Properties of Participating Media

- Phase function $\rho(x, \Psi \leftrightarrow \Theta)$
 - describe the distribution of the scattered light in participating media.
 - Normalized $\int_{\Omega} \rho(x, \Psi \leftrightarrow \Theta) d\Theta = 1$
 - Reciprocity $\rho(x, \Psi \leftrightarrow \Theta) = \rho(x, \Theta \leftrightarrow \Psi)$
 - The mean cosine $g = \int_{4\pi} (\Theta \cdot \Psi) \rho(x, \Theta \leftrightarrow \Psi) d\Psi$

Properties of Participating Media

□ Greenstein phase function

Volume Rendering Equation

Volume Rendering Equation

- 如何表示再Participating Media內部，光的Rendering Equation ??
- 考慮在內部光從 X往Ψ方向的光線量 $L_p(x \rightarrow -\Psi)$

$$L_p(x \rightarrow -\Psi) = L(y \rightarrow -\Psi)r(x, y) + \int_x^y L^+(z \rightarrow -\Psi)r(x, y)dr$$
$$r(x, y) = \exp\left(-\int_x^y \sigma_t(r)dr\right)$$

- $L^+(z \rightarrow \Psi)$ 表示內部經由In-Scattering而聚集的光線量

$$L^+(z \rightarrow \Psi) = L^e(z) + \int_{\Omega} \sigma_t(z) \rho(x, \Psi \leftrightarrow \Theta) L_p(z \rightarrow \Theta) d\Theta$$

- 最後光經過折射穿透出材質表面

$$L(x \rightarrow \Theta) = L_e(x \rightarrow \Theta) + \int_{\Omega} L_p(x \rightarrow \Psi) F_t(\Psi \rightarrow \Theta) d\Psi$$

Research on Subsurface Scattering

- Pat Hanrahan & Wolfgang Krueger (1993) Reflection from Layered Surfaces due to Subsurface Scattering. In *Proceedings of the 20th annual conference on Computer graphics and interactive technique*

Research on BSSRDF

- Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P.A.(2001). A Practical Model for Subsurface Light Transport. *Proceedings of SIGGRAPH 2001*

- Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF)

- 提出BSSRDF 模擬光進入表面後，經過表面下散射後，透射出表面的光線量比例

$$L_o(x_o, \omega_o) = \int \int_S(x_i, \omega_i, x_o, \omega_o) L(x_i, \omega_i)(\hat{h}_i \cdot \hat{\omega}_i)d\omega_i dA_{x_i}$$

- contributed by two terms

- Single scattering term
- Diffuse multiple scattering term

$$S(x_i, \omega_i, x_o, \omega_o) = S^{(1)}(x_i, \omega_i, x_o, \omega_o) + S_d(x_i, \omega_i, x_o, \omega_o)$$

Multi-Scattering

$$S_d(x_i, \phi_i, x_o, \phi_o) = \frac{1}{\pi} F_t(\eta, \phi_i) R_d(\|x_i - x_o\|) F_t(\eta, \phi_o)$$

- $R_d(\|x_i - x_o\|)$ is dipole function
 - Related to the distance of incoming and outgoing point

$$R_d(\|x_i - x_o\|) = \frac{\alpha'}{4\pi} \left[z_r (1 + \sigma_{tr} \cdot d_r) \frac{e^{-\sigma_{tr} \cdot d_r}}{d_r^3} + z_v (1 + \sigma_{tr} \cdot d_v) \frac{e^{-\sigma_{tr} \cdot d_v}}{d_v^3} \right]$$

Multi-Scattering

Marble S(2.19,2.62,3.00) $\lambda(0.00021,0.0041,0.7100)$ $n=1.5$

Setting

Ratio(10^{-4})

Coefficients of BSSRDF

Material	σ'_s [mm ⁻¹]			σ_a [mm ⁻¹]			Diffuse Reflectance			η
	R	G	B	R	G	B	R	G	B	
Apple	2.29	2.39	1.97	0.0030	0.0034	0.046	0.85	0.84	0.53	1.3
Chicken1	0.15	0.21	0.38	0.015	0.077	0.19	0.31	0.15	0.10	1.3
Chicken2	0.19	0.25	0.32	0.018	0.088	0.20	0.32	0.16	0.10	1.3
Cream	7.38	5.47	3.15	0.0002	0.0028	0.0163	0.98	0.90	0.73	1.3
Ketchup	0.18	0.07	0.03	0.061	0.97	1.45	0.16	0.01	0.00	1.3
Marble	2.19	2.62	3.00	0.0021	0.0041	0.0071	0.83	0.79	0.75	1.5
Potato	0.68	0.70	0.55	0.0024	0.0090	0.12	0.77	0.62	0.21	1.3
Skimmilk	0.70	1.22	1.90	0.0014	0.0025	0.0142	0.81	0.81	0.69	1.3
Skin1	0.74	0.88	1.01	0.032	0.17	0.48	0.44	0.22	0.13	1.3
Skin2	1.09	1.59	1.79	0.013	0.070	0.145	0.63	0.44	0.34	1.3
Spectralon	11.6	20.4	14.9	0.00	0.00	0.00	1.00	1.00	1.00	1.3
Wholemilk	2.55	3.21	3.77	0.0011	0.0024	0.014	0.91	0.88	0.76	1.3

Result

BRDF

BSSRDF

Result

Demo 1 Demo 2

(a) BRDF

(b) BSSRDF_(5min)

(c) Monte Carlo_(1250min)

Research on BSSRDF

- Donner, C., and Jensen, H. W.(2005). Light Diffusion in Multi-Layered Translucent Materials. *Proceeding of SIGGRAPH 2005*

semi-infinite thin-layer

$$T_{12} = T_1 * T_2 + T_1 * R_2 * R_1 * T_2 + T_1 * R_2 * R_1 * R_2 * R_1 * T_2 + \Lambda$$

Research on BSSRDF

Backlit close-up of the left ear

Research on BSSRDF

- Jensen, H. W., and Buhler, J.(2002). A Rapid Hierarchical Rendering Technique for Translucent Materials. *ACM Transactions on Graphics*, pages 576-581.

$$L_o(x_o, \phi_o) = \frac{1}{\pi} \int_{A^{2\pi}} L(x_i, \phi_i) (\hat{h}_i \cdot \hat{\phi}_o) F_t(\eta, \phi_i) R_d(\|x_i - x_o\|) F_t(\eta, \phi_o) d\phi_i dA_{xi}$$

$$L_o(x_o, \phi_o) = F_t(\eta, \phi_o) \int_A E_{in}(x_i) R_d(\|x_i - x_o\|) dA_{xi}$$

$$E_{in}(x_i) = \frac{1}{\pi} \int_{A^{2\pi}} L(x_i, \phi_i) (\hat{h}_i \cdot \hat{\phi}_i) F_t(\eta, \phi_i) d\phi_i$$

Demo

Research on BSSRDF

- Lensch, H. P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M. A., Lang, J., and Seidel, H.-P.(2002). Interactive Rendering of Translucent Objects. *Proceedings of Pacific Graphics 2002*, pages 214–224.
-

Research on BSRRDF

- Mertens, T., Kautz, J., Bekaert, P., Reeth, F. V., and Seidel, H.-P. (2003). Efficient Rendering of Local Subsurface Scattering, *Proceedings of the 11th Pacific Conference on Computer Graphics and Applications*, page 51.

Research on BSSRDF

- Hao, X., and Varsney, A.(2004). Real-time rendering of Translucent Meshes. *ACM Transactions on Graphics*, pages 120-142.
- Wang, R., Tran, J., and Luebke, D.(2005). All-Frequency Interactive Relighting of Translucent Objects with Single and Multiple Scattering. In *Proceedings of SIGGRAPH 2005*.

Single Scattering Multiple and Single Scattering
Multiple Scattering Diffuse BRDF

Diffuse BRDF Multiple Scattering

Skin Rendering using BSSRDF

- Henrik Wann Jensen. Digital Face Cloning SIGGRAPH'2003 Technical Sketch, San Diego, July 2003
- Weyrich, T., Matusik, W., Pfister, H., Lee, J., Ngan, A., Jensen, H.W., and Gross, M. Measurement-Based Skin Reflectance Model for Face Rendering and Editing MERL Technical Report (TR2005-071), July 2005

$$L(x_o, \omega_o) = R_{skin}(x_o, \omega_o) + S_{skin}(x_o, \omega_o)$$

$$R_{skin}(x_o, \omega_o) = \int L(x_i, \omega_i)(\rho_i \cdot \delta_i) F_r(\eta, \omega_i) F(\omega_i, \omega_o) d\omega_i$$

$$S_{skin}(x_o, \omega_o) = \int \int L(x_i, \omega_i)(\rho_i \cdot \delta_i) F_t(\eta, \omega_i) S(x_i, \omega_i, x_o, \omega_o) F_t(\eta, \omega_o) d\omega_i d\omega_o$$

Skin Rendering using BSSRDF

(d) Oily layer

(e) Subsurface scattering

(f) Final result

Image/Texture Based Approach

- Green, S. Real-Time Approximation to Subsurface Scattering. GPU gems chapter 16.
- Warp lighting
- Rim lighting
- Depth map
 - nVIDIA
- Realistic Shading of Human Skin in Real time
- Texture Space Diffusion
 - “The Matrix Reloaded”
 - ATI
 - nVIDIA

Warp lighting

$$y = (x + \text{wrap}) / (1 + \text{wrap})$$

Figure 16-1. Graph of the Wrap Lighting Function

Rim lighting

□ 邊緣打光，強化邊緣透射的效果

- Struck, F., Bohn, C.-A., Schmidt, S., and Helzle, V. (2004). Realistic shading of human skin in real time. In Proceedings of the 3rd international conference on Computer graphics, virtual reality, visualisation and interaction in Africa
 - 以Color Texture Map為基礎
 - Local illumination model
 - 利用多個數學式，強化皮膚顯像的特性

Rim lighting

Movie Demo

Depth map

- Calculating the depth from view to light

Figure 16-3. Calculating the Distance Light Has Traveled Through an Object Using a Depth Map

- nVIDIA Demo

- Dawn
- Luna

nVIDIA-Luna

❑ Depth Map+Multi-Layer Mapping

nVIDIA-Luna

nVIDIA-Luna

Texture Space Diffusion

- $L_o(x_o, \phi_o) = F_t(\eta, \phi_o) \int_A E_{in}(x_i) R_d(\|x_i - x_o\|) dA_{xi}$
- $$E_{in}(x_i) = \frac{1}{\pi} \int_{2\pi} L(x_i, \phi_i) (\hat{h}_i \cdot \hat{\phi}_i) F_t(\eta, \phi_i) d\phi_i$$
- Calculating by texture space filter
- $$L_o(x_o, \phi_o) = F_t(\eta, \phi_o) \sum_i E_{in}(u_i, v_i) R_d(\|x_i - x_o\|) A_i$$
- Research
 - “The Matrix Reloaded”
 - ATI
 - nVIDIA

“The Matrix Reloaded”

- Phase 1 : Render irradiance to texture

Light map

- Phase 2 : Apply Filter to texture

“The Matrix Reloaded”

□ Phase 3 : Render final Image according to

- Blurred irradiance map
- Color map
- Other else

Real vs. CG

Problem

- Large gap between Realistic and Real-Time
- Realistic algorithm can't run in Real-Time.
- Real-Time technique doesn't have very good result.
 - Detail feature need to be taken into account
 - Hair
 - Fine wrinkle
 - mole, pore, spot etc..