Problem A. Square With Minimal Area

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 mebibytes

Муниципалитет одного из сельских округов Байтландии объявил о продаже земли под дачные участки. Участок должен представлять собой квадрат со сторонами, параллельными осям координат. На предназначенной к продаже территории расположено N колодцев, координаты которых являются целочисленными точками.

Байтазар успешно съездил в Лас Байтас и хочет выбрать себе участок таким образом, чтобы на территории участка или на его границе было не менее двух колодцев. При этом площадь выбранного участка должна быть минимальной.

Input

В первой строке входа задано одно целое число N ($2 \le N \le 100$) — количество колодцев. В каждой из последующих N строк заданы координаты колодцев — по два целых числа x и y ($-10^4 \le x, y \le 10^4$). Гарантируется, что никакие два колодца не находятся в одной точке.

Output

Выведите одно целое число — минимальную площадь участка, удовлетворяющего требованиям Байтазара.

Examples

standard input	standard output
3	4
1 1	
3 2	
-1 -3	

Problem B. Конференция

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 mebibytes

На международную конференцию по частным вопросам теории поля, проходящую в Байтландском политехническом музее, собралось N исследователей.

Однако в результате определённых мировоззренческих расхождений некоторые пары учёных находятся настолько в плохих отношениях, что отказываются принимать пищу в одной и той же комнате.

Всего для питания гостей конференции выделено два зала ресторана. Организаторы хотят распределить учёных между залами так, чтобы никакие два специалиста по теории поля, которые друг с другом есть не сядут, не находились в одном и том же зале и чтобы разность между количеством участников в залах была минимальной.

Выясните, возможно ли такое распределение учёных и, если возможно, помогите организаторам с его построением.

Input

Первая строка входа содержит два целых числа N и E — количество делегатов конференции и количество пар делегатов, которые друг с другом в одной комнате есть не сядут ($2 \le N \le 400$, $1 \le m \le 10^5$).

Последующие E строк содержат два различных целых числа в промежутке от 1 до N — номера делегатов, которые находятся между собой в плохих отношениях. Гарантируется, что каждая пара встречается не более одного раза.

Output

Если рассадить делегатов конференции невозможно, выведите "impossible". Иначе выведите распределение делегатов по залам — строку из N символов 'A' и 'B', i-й символ которой равен 'A', если делегат ест в первом зале и 'B', если во втором. Если распределений несколько, выведите то из них, для которого соответствующая строка лексикографически минимальна.

Examples

standard input	standard output
5 2	AABBA
1 3	
2 4	
4 3	impossible
2 3	
3 4	
4 2	

Problem C. Tasks

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 512 mebibytes

Связь со всеми археологическими экспедициями поддерживается через круглосуточный ситуационный центр Байтландского Археологического Общества. Также ситуационный центр, в который входят наиболее опытные и увлечённые археологи, отвечает за предоставление дополнительных сведений и решение возникающих в реальном времени задач, которые не могут быть решены «на месте».

Как только ситуационный центр начинает работу над какой-либо задачей, он работает над ней и только над ней до тех пор, пока решение не будет найдено. Информация о поступивших в ситуационный центр задачах также поступает председателю Археологического общества. Так что у председателя есть информация о том, когда именно поступает каждая из задач, до какого времени решение этой задачи будет актуально и сколько времени на решение подобной задачи тратит ситуационный центр. Председатель хочет понять, существует ли порядок работы над задачами, при котором ситуационному центру удастся решить все задачи вовремя. Ваша задача — написать программу, которая по имеющимся у председателя данным выдаёт соответствующий вердикт.

Input

В первой строке входа задано одно целое число T — количество тестовых примеров.

Каждый тестовый пример начинается строкой, содержащей одно целое число N $(1 \le n \le 2 \cdot 10^5)$ — количество задач. Каждая из последующих N строк содержит три целых числа s_i , f_i и t_i $(1 \le s_i < f_i \le 10^9, (f_i - s_i)/2 < t_i \le f_i - s_i$ — время поступления i-й задачи, время, до которого эта задача должна быть сделана и время, которое ситуационный центр потратит на решение задачи, соответственно.

Гарантируется, что сумма всех n в одном тесте не превосходит 10^6 .

Output

Для каждого тестового примера выведите в отдельной строке число 1, если ситуационный центр справится со всеми задачами, и 0 в противном случае.

Example

standard input	standard output
2	1
2	0
1 7 4	
1 3 2	
2	
1 6 4	
1 3 2	

Problem D. Caravan Ways

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 mebibytes

Компания «1D Software» выпустила давно ожидаемую игру, в которой необходимо установить безопасный караванный путь из города A в город B.

Всего на карте дано N городов и M однонаправленных караванных маршрутов. При этом возможен вариант, когда существуют два караванных маршрута, начинающихся и заканчивающихся в одном и том же городе.

Для каждого караванного маршрута известна его длина L_i , а также сумма денег C_i , которую необходимо потратить для того, чтобы сделать маршрут безопасным (как и в любой давно ожидаемой игре, изначально караваны можно грабить).

Разумеется, потраченная сумма зависит от требований к максимальной длине пути из A в B: чем больше максимально допустимая длина пути, тем больше путей сможет выбрать караван (и тем больше маршрутов придётся защищать).

По заданной карте маршрутов и городам A и B Вам требуется отвечать на запросы о минимальной стоимости защиты караванов из A в B, если длина караванного маршрута не должна превосходить заданной величины R (при этом допустимыми являются все маршруты, длина которых не превосходит R, в том числе и те, которые проходят через один город несколько раз).

Input

Первая строка входа содержит четыре целых числа: N ($1 \le N \le 10^5$) — количество городов, M ($1 \le M \le 10^5$) — количество караванных маршрутов, A — город, из которого отправляется караван, B — город, куда он должен прибыть ($1 \le A, B \le N, A \ne B$).

В последующих M строках заданы караванные маршруты. Каждый маршрут задаётся четырьмя целыми числами: S_i , F_i , L_i и C_i — соответственно, номера начального и конечного города для данного маршрута, длина маршрута и стоимость защиты этого маршрута, соответственно $(1 \le S_i, F_i \le N, S_i \ne F_i, 1 \le T_i, C_i \le 10^4)$.

Следующая строка содержит одно целое число Q ($1 \le Q \le 10^5$) — количество запросов. Каждая из последующих Q строк содержит параметр i-го запроса — одно целое число R_i ($1 \le R_i \le 10^9$) — максимально допустимую длину караванного пути из A в B.

Output

Для каждого запроса в порядке их появления в файле в отдельной строке выведите одно целое число — минимальную сумму, которую придётся потратить на то, чтобы сделать все пути из A в B безопасными.

Вступительная олимпиада ЗКШ-2017, 27 февраля 2017

Examples

standard input	standard output
4 5 2 4	0
2 3 5 2	32
2 3 8 100	2132
3 4 2 30	132
4 2 80 2000	
4 1 1 2	
4	
6	
8	
94	
90	

Problem E. The Action

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 mebibytes

Известный художник-абстракционист решил провести в Байтсбурге акцию "Байтсбургская доминанта". Акция должна символизировать сопротивление городского пространства застройке исторических кварталов высокими современными зданиями.

Художник выставил в ряд n брусков, похожих на костяшки домино; все бруски имеют одинаковый размер, но различаются по массе — никакие два бруска не имеют одинаковую массу. После этого художник толкает один из брусков в некотором направлении. Брусок падает, обрушивая все бруски, расположенные в соответствующем направлении, до тех пор, пока очередной брусок не будет превосходить его по весу — в этом случае процесс останавливается (высота бруска достаточна для того, чтобы "дотянуться" до любого бруска вне зависимости от расстояния между брусками; в частности, если самый тяжёлый брусок расположен n-м и художник его толкает в направлении первого бруска, то вся конструкция обрушивается). Если после завершения падений ещё не вся конструкция обрушена, художник толкает следующий брусок в некотором направлении и так далее до тех пор, пока хотя бы один брусок стоит вертикально.

По заданому начальному расположению брусков определите, какое наименьшее количество брусков должен будет толкнуть художник для завершения акции.

Input

В первой строке входного файла задано целое число n ($1 \le n \le 10^6$) — количество брусков. Во второй строке заданы n попарно различных целых чисел от 1 до n — веса брусков в порядке, в котором бруски были выставлены художником.

Output

Выведите одно целое число — наименьшее количество брусков, которые художник должен толкнуть для завершения акции.

Example

standard input	standard output
8	2
4 6 8 2 7 5 3 1	

Problem F. 5G

Input file: standard input
Output file: standard output

Time limit: 4 seconds Memory limit: 512 mebibytes

В центральном парке столицы Байтландии расположено множество различных кафе. Один из крупнейших провайдеров сотовой связи Байтландии — «Нанофон» объявил о тестировании 5G-сетей. Основное отличие 5G-сети от 4G-сети заключается в том, что зона покрытия передатчика представляет собой квадрат (в случае слабого сигнала квадрат может быть вырожденным, то есть стягиваться в точку). Руководство парка решило установить два 5G-передатчика таким образом, чтобы каждое кафе находилось в зоне приёма хотя бы одного передатчика, стороны соответствующих квадратов были бы параллельны осям координат, а сумма площадей этих квадратов была бы минимальна. Площадью, занимаемой каждым кафе, в данной задаче можно пренебречь.

Input

Первая строка входного файла содержит одно целое число $T \le 300$ — количество тестовых примеров.

Первая строка каждого тестового примера содержит целое число $n\ (3 \le n \le 150\,000)$. Каждая из последующих n строк содержит по два целых числа x_i и $y_i\ (-10^8 \le x_i, y_i \le 10^8)$ — координаты i-го кафе.

Гарантируется, что сумма всех n во входном файле не превышает 10^6 .

Output

Для каждого тестового примера в отдельной строке выведите наименьшую возможную сумму площадей квадратов.

Example

standard input	standard output
1	5
6	
1 3	
1 5	
3 3	
3 5	
6 2	
7 1	