Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Латыпова Диана. НФИбд-02-21

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Контрольные вопросы	17
6	Выводы	20
Список литературы		21

Список иллюстраций

4.1	ОС машины	8
4.2	Оборудование ВМ	9
4.3	Размер диска	9
4.4	Запуск ВМ	10
4.5	Выбор программ	10
4.6	Установка пароля для root	11
4.7	Установка пароля для пользователя с правами администратора	11
4.8	Окно настройки установки (1)	11
4.9	Окно настройки установки (2)	12
4.10	Окно настройки установки (3)	12
4.11	Установка ОС	13
	Запуск образа диска дополнений гостевой ОС (1)	13
4.13	Запуск образа диска дополнений гостевой ОС (2)	14
4.14	Пункт 0	14
4.15	Пункт 1,2,3,4	15
4.16	Пункт 5	16
4.17	Пункт 6	16
4.18	Пункт 7	16

Список таблиц

1 Цель работы

Приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

Установить операционную систему на виртуальную машину.

3 Теоретическое введение

VirtualBox [1] - это бесплатная и открытая система виртуализации, которая позволяет запускать несколько операционных систем на одном компьютере. Она поддерживает множество ОС, включая Linux, Windows и macOS. С помощью VirtualBox можно создавать и управлять виртуальными машинами, что удобно для тестирования, разработки и изоляции приложений.

CentOS (Community ENTerprise Operating System) [2] - это дистрибутив Linux, который ранее был бинарной копией Red Hat Enterprise Linux (RHEL), созданный сообществом.

СепtOS предоставлял бесплатный вариант RHEL с теми же пакетами и функциональностью, но без официальной поддержки и с менее частыми обновлениями. В конце 2020 года Red Hat объявила о смене фокуса CentOS на CentOS Stream, который представляет собой "поток" обновлений, предшествующий RHEL. Это изменение вызвало создание альтернативных дистрибутивов, таких как Rocky Linux и AlmaLinux.

Rocky [3] - это свободный и открытый дистрибутив Linux, созданный как преемник CentOS после изменений в его стратегическом направлении. Разработан и поддерживается сообществом, Rocky Linux стремится быть совместимым с RHEL (Red Hat Enterprise Linux), предоставляя стабильную и надежную операционную систему для серверов и рабочих станций.

4 Выполнение лабораторной работы

Для начала с создания виртуальной машины. Задала имя и ОС машины (рис. 4.1):

Рис. 4.1: ОС машины

Далее задала оборудование ВМ. Задала размер основной памяти 2048МБ (рис. 4.2):

Рис. 4.2: Оборудование ВМ

Задала размер диска равным 40ГБ (рис. 4.3):

Рис. 4.3: Размер диска

Запустила ВМ (рис. 4.4):

Рис. 4.4: Запуск ВМ

После чегоо приступила к настройке установки ОС:

• Выбрала программу (рис. 4.5):

Рис. 4.5: Выбор программ

• Установила пароль для root (рис. 4.6):

Рис. 4.6: Установка пароля для root

• Установила пароль для пользователя с правами администратора (рис. 4.7):

Рис. 4.7: Установка пароля для пользователя с правами администратора

• Место установки (рис. 4.8):

Рис. 4.8: Окно настройки установки (1)

• Отключила KDUMP (рис. 4.9):

٠

Рис. 4.9: Окно настройки установки (2)

• Сеть и имя узла (рис. 4.10):

Рис. 4.10: Окно настройки установки (3)

Запустила установку ОС (рис. 4.11):

Рис. 4.11: Установка ОС

Подключила и запустила образ диска дополнений гостевой ОС (рис. 4.12) (рис. 4.13):

Рис. 4.12: Запуск образа диска дополнений гостевой ОС (1)

```
∄
                             VirtualBox Guest Additions installation
                                                                                         Ħ
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.16 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Copying additional installer modules ...
Installing additional modules ...
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
VirtualBox Guest Additions:
                                    /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
5.14.0-427.13.1.el9_4.x86_64.
VirtualBox Guest Additions: reloading kernel modules and services
VirtualBox Guest Additions: kernel modules and services 7.0.16 r162802 reloaded
VirtualBox Guest Additions: NOTE: you may still consider to re-login if some
user session specific services (Shared Clipboard, Drag and Drop, Seamless or
Guest Screen Resize) were not restarted automatically
Press Return to close this window...
```

Рис. 4.13: Запуск образа диска дополнений гостевой ОС (2)

Приступила к выполнению заданий:

• Проанализировала последовательность загрузки системы, выполнив (рис. ??):

dmesg | less

Рис. 4.14: Пункт 0

• Вывела версию ядра Linux, выполнив (рис. 4.15):

dmesg | grep -i "linux version"

• Вывела частоту процессора, выполнив (рис. 4.15):

dmesg | grep -i "Mhz"

• Вывела модель процессора, выполнив (рис. 4.15):

dmesg | grep -i "CPU0"

• Вывела объем доступной оперативной памяти, выполнив (рис. 4.15):

dmesg | grep -i "memory"

```
ⅎ
                                     dlatihpova@user:~
0.000939] ACPI: Reserving FACS table
                                                    at [mem 0x7fff0200-0x7fff023f]
     0.000940] ACPI: Reserving FACS table
                                                    at [mem 0x7fff0200-0x7fff023f]
     0.000940] ACPI: Reserving APIC table 0.000941] ACPI: Reserving SSDT table
                                                    at [mem 0x7fff0240-0x7fff0293]
                                                    at [mem 0x7fff02a0-0x7fff060b]
     0.001196] Early memory node ranges
0.001897] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000ff
     0.001898] PM: hibernation: Registered nosave me
                                                          ry: [mem 0x0009f000-0x0009ffff
     0.001899] PM: hibernation: Registered nosave mem
                                                          ory: [mem 0x000a0000-0x000effff
     0.001899] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000fffff
                 Memory: 260860K/2096696K available (16384K kernel code, 5626K rwdata,
3892K init. 5956K bss. 143416K reserved. 0K cma-reserved)
```

Рис. 4.15: Пункт 1,2,3,4

• Вывела тип обнаруженного гипервизора, выполнив (рис. 4.16):

dmesg | grep -i "hypervisor"

```
[dlatihpova@user ~]$ dmesg | grep -i "hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 0.041207] GDS: Unknown: Dependent on hypervisor status
[ 1.742201] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.
```

Рис. 4.16: Пункт 5

• Вывела тип файловой системы корневого раздела (рис. 4.17):

df -Th

```
ilesystem
                                          Size
                                                  Used Avail Use% Mounted on
                            Type
devtmpfs
                            devtmpfs
                                         4.0M
                                                          4.0M
                                                                   0% /dev/shm
2% /run
                                                          984M
                                          984M
tmpfs
                            tmpfs
                                          394M
                                                 6.1M
                                                          388M
tmpfs
                            tmpfs
                                                                  16% /
 /dev/mapper/rl-root xfs
                                                         691M 29% /boot
197M 1% /run/user/1000
0 100% /run/media/dlatihpova/VBox_GAs_7
/dev/sda1
                                          960M 270M
tmpfs
/dev/sr0
                            tmpfs
                                          197M
                                                 108K
                            iso9660
                                          52M
                                                   52M
.0.16
[dlatihpova@user ~]$ mount
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs on /dev type devtmpfs (rw,nosuid,seclabel,size=4096k,nr_inodes=244164,mode=
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,seclabel,inode64)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,seclabel,gid=5,mode=620,pt
mxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,nodev,seclabel,size=402992k,nr_inodes=819200,mod
```

Рис. 4.17: Пункт 6

• Вывела тип обнаруженного гипервизора, выполнив (рис. 4.18):

mount

или

dmesg | grep -i "Mount"

```
[dlatihpova@user ~]$ dmesg | grep -i "Mount"

[ 0.039526] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)

[ 0.039530] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)

2.455105] XFS (dm-0): Mounting V5 Filesystem 7454cf9b-4ad0-49b5-915f-17d298572a

3.55

[ 3.056511] systemd[1]: Set up automount Arbitrary Executable File Formats File S

/stem Automount Point.

[ 3.065537] systemd[1]: Mounting Huge Pages File System...

3.066859] systemd[1]: Mounting POSIX Message Queue File System...

3.070537] systemd[1]: Mounting Kernel Debug File System...

3.071412] systemd[1]: Mounting Kernel Trace File System...

4.279529] XFS (sda1): Mounting V5 Filesystem a9f77f07-d4a4-4025-a13b-5459ca3ddb
```

Рис. 4.18: Пункт 7

5 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Учётная запись пользователя **содержит**: Системное имя (user name), ID, GID (Group Identifier), Полное имя (full name) Домашний каталог (home directory), начальная оболочка(shell), пароль (password)- эта информация хранится в файле /etc/passwd для общих данных и в /etc/shadow для хранения паролей.

- 2. Команды терминала и примеры:
- Для получения справки по команде используется команда man:
- man ls # Просмотр справки по команде ls
 - Для перемещения по файловой системе используется команда cd:

```
cd /home/user # Переход в каталог /home/user
cd ~ # Переход в домашний каталог
```

• Для просмотра содержимого каталога используется команда ls:

```
ls /home/user # Просмотр содержимого каталога /home/user
ls -l # Подробный список с правами доступа
```

• Для определения объёма каталога используется команда du:

du -sh /home/user # Определение объёма каталога в человекочитаемом формате

• Для создания/удаления каталогов и файлов bспользуются команды mkdir, rmdir, touch и rm:

mkdir /home/user/catalog # Создание нового каталога
rmdir /home/user/catalog # Удаление пустого каталога
touch file.txt # Создание пустого файла
rm file.txt # Удаление файла

 Для задания определённых прав на файл/каталог используется команда chmod для изменения прав доступа:

chmod u+x # Назначить права на выполнение для пользователя (владельца) файла

- Для просмотра истории команд используется команда history.
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — это способ организации данных на носителях информации. Она управляет хранением, доступом и структурированием файлов на устройстве.

Примеры файловых систем: - ext4 (Extended Filesystem 4): современная файловая система, широко используемая в Linux, поддерживает большие файлы и жесткие диски, улучшенная производительность. - XFS: высокопроизводительная файловая система, хорошо работает с большими объёмами данных. - Btrfs (B-tree filesystem): новая файловая система с поддержкой снимков и самовосстановления. - FAT32: устаревшая файловая система, поддерживаемая практически всеми операционными системами, но ограниченная размером файлов до 4 ГБ.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Для просмотра смонтированных файловых систем используется **команда df** или **mount**.

5. Как удалить зависший процесс?

Для завершения зависшего процесса используется **команда kill**. Сначала необходимо узнать PID процесса, который можно получить с помощью команды ps или top.

6 Выводы

Я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов. А также вспомнила, как применять средства контроля версий, как работать с git, как работать с Markdown.

Список литературы

- 1. Установка VirtualBox [Электронный ресурс]. Oracle, 2024. URL: https://www.virtualbox.org/.
- 2. Установка CentOS [Электронный ресурс]. The CentOS Project, 2024. URL: https://www.centos.org/.
- 3. Установка Rocky [Электронный ресурс]. Rocky Linux, 2024. URL: https://rockylinux.org/.