Neural Networks Loss Landscape Convergence in Hessian Low-Dimensional Space

Tem Nikitin, Nikita Kiselev, Vladislav Meshkov, Andrey Grabovoy

Moscow Institute of Physics and Technology

2025

Neural Networks Loss Landscape Convergence in Hessian Low-Dimensional Space

Goals and Tasks

- Study how neural network loss landscape changes with dataset size
- 2. Define and measure metrics Δ_k
- 3. Derive theoretical bound for Δ_k via top-d eigenvalues
- 4. Propose an algorithm to determine the Δ -sufficient dataset size

Loss landscape stabilizes after sufficient sample size.

Problem Statement

Hypothesis

Beyond some k^* , adding new samples changes the local loss landscape by less than a tolerance Δ_{tol} , i.e. $\forall k \geq k^*$: $\Delta_k < \Delta_{tol}$.

Model

MLP with ReLU activations for K-class classification

Empirical loss: $\mathcal{L}_k(\mathbf{w}) = \frac{1}{k} \sum_{i=1}^k \ell_i(\mathbf{w})$

Hessian: $\mathbf{H}_k(\mathbf{w}) = \nabla_{\mathbf{w}}^2 \mathcal{L}_k(\mathbf{w})$

Criteria

Convergence rate: $\Delta_k = O(1/k^2)$

Theoretical bound via top-d eigenvalues upper-bounds empirical Δ_k

Plateau in eigenvalue differences $\lambda_i^{k+1} - \lambda_i^k$ indicates threshold

Theoretical Analysis

Bound:
$$\Delta_k \approx \frac{\sigma^4}{4} \left(2 \sum_{i=1}^d (\lambda_{k+1}^i - \lambda_k^i)^2 + \left(\sum_{i=1}^d (\lambda_{k+1}^i - \lambda_k^i) \right)^2 \right)$$
.

Computational Experiment

Datasets: MNIST, Fashion-MNIST (60k train, 10k test)

MLP: 2 hidden layers, $\sim 10^5$ parameters

Subspace dimension d=10, Monte Carlo samples K=64,

 $\sigma = 1$

Compare empirical Δ_k vs theoretical bound across k

Combining results

Empirical Δ_k consistently below theoretical estimate Gap due to neglected eigen-modes beyond top-d Monte Carlo variance decreases with sample size K

Theoretical (dashed) vs empirical (solid) Δ_k

Theoretical vs. Empirical Δ_k

Practical Measurements

Dataset	Model	Δ	k	L_k	Time (s)
MNIST	Single-layer	0.025	100	0.013	2000
	MLP				
	Multi-layer	0.025	40	0.010	3500
	MLP				
	Convolutional	0.025	60	0.024	1800
	CNN				
Fashion-MNIST	Single-layer	0.030	120	0.020	2100
	MLP				
	Multi-layer	0.030	90	0.017	4400
	MLP				
	Convolutional	0.030	70	0.015	2400
	CNN				

Algorithm: Δ -sufficient Dataset Size

Algorithm 1: Determine Δ -sufficient dataset size

- 1. Initialize dataset $D \leftarrow \emptyset$ and batch counter $k \leftarrow 0$.
- 2. Repeat:

$$k \leftarrow k + 1$$
.

Sample a new batch of data and append to D.

Train or update model on D.

Compute top-d Hessian eigenvalues $\{\lambda_k^{(i)}\}_{i=1}^d$ and $\{\lambda_{k+1}^{(i)}\}$. Estimate

$$\Delta_k pprox rac{\sigma^4}{4} \Big(2 \sum_{i=1}^d (\lambda_{k+1}^{(i)} - \lambda_k^{(i)})^2 + \big(\sum_{i=1}^d (\lambda_{k+1}^{(i)} - \lambda_k^{(i)}) \big)^2 \Big).$$

- 3. Until $\Delta_k < \Delta_{\text{tol}}$.
- 4. **Return** |D|, the Δ -sufficient sample size.

Summary

Results

- 1. Loss landscape stabilizes.
- 2. Hessian-based bound provides a reliable upper-bound for Δ_k .
- 3. Proposed a practical algorithm for Δ -sufficient dataset sizing.
- 4. Offers guidelines for dataset collection and early stopping.

Future work

- Test the method on additional architectures.
- 2. Evaluate the approach on other datasets.
- Incorporate automatic selection of the optimal number of Hessian eigenvalues.

Literature

- 1. Wu et al. (2017): loss landscapes vs dataset size
- 2. Sagun et al. (2018): Hessian low effective rank
- 3. Li et al. (2018): visualizing loss surfaces
- 4. Ghorbani et al. (2019): eigenvalue density analysis
- 5. Bousquet & Elisseeff (2002): stability and generalization bounds