Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	3	/	0	1	Signature	

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Monday 23 May 2005 – Morning

Time: 1 hour 30 minutes

Exam	iner's us	e only
 Team L	eader's ι	ise onl

Materials required for examination Mathematical Formulae (Green)

Items included with question papers

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

 $\stackrel{\text{Printer's Log. No.}}{N23491C}$ W850/R6663/57570 7/7/3/3/3/2/2/3

Turn over

		L
(a) Write down the value of $8^{\frac{1}{3}}$.		
	(1)	
(b) Find the value of $8^{-\frac{2}{3}}$.		
	(2)	
		Q1

	١
Leave	
blank	

2. Given that $y = 6x - \frac{4}{x^2}, x \neq 0$,	
(a) find $\frac{dy}{dx}$,	(2)
(b) find $\int y dx$.	(3)

Question 2 continued	Leav blanl
	Q2
(Tota	l 5 marks)

$x^2 - 8x - 29 \equiv (x+a)^2 + b,$	
where a and b are constants.	
(a) Find the value of a and the value of b.	(3)
(b) Hence, or otherwise, show that the roots of	
$x^2 - 8x - 29 = 0$	
are $c \pm d\sqrt{5}$, where c and d are integers to be found.	
are e = a vs, where e and a are integers to be round.	(3)

	Lea
uestion 3 continued	
	Q3

4.

Figure 1

Leave blank

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and through the point (6, 0). The maximum point on the curve is (3, 5).

On separate diagrams, sketch the curve with equation

(a)
$$y = 3f(x)$$
,

(2)

(b)
$$y = f(x + 2)$$
.

(3)

On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the *x*-axis.

	Q4
(Total 5 marks)	

Solve the simultaneous equations	
x-2	2y = 1,
$x^2 + v$	$2y = 1,$ $y^2 = 29.$
,	(6)

	Leave blank
Question 5 continued	
	Q5
(Total 6 marks)	

		T
6.	Find the set of values of x for which	
••		
	(a) $3(2x+1) > 5-2x$,	
	(2)	
	(b) $2x^2 - 7x + 3 > 0$,	
	(4)	
	(c) both $3(2x+1) > 5 - 2x$ and $2x^2 - 7x + 3 > 0$. (2)	
_		
_		
_		
_		
_		
_		
_		
_		
_		

	Leave blank
Question 6 continued	
	Q6
(Total 8 marks)	

	\
Leave	1
blank	-

7.	(a)	Show that	$\frac{(3-\sqrt{x})^2}{\sqrt{x}}$	can be written as $9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}}$.
----	-----	-----------	-----------------------------------	---

(2)

Given that $\frac{dy}{dx} = \frac{(3 - \sqrt{x})^2}{\sqrt{x}}$, x > 0, and that $y = \frac{2}{3}$ at x = 1,

(b) find y in terms of x.

(6)

Overtion 7 continued	Leave blank
Question 7 continued	
	07
(Total 8 marks)	Q7

8.	The line l_1 passes through the point $(9, -4)$ and has gradient $\frac{1}{3}$.	
	(a) Find an equation for l_1 in the form $ax + by + c = 0$, where a , b and c are integers. (3)	
	The line l_2 passes through the origin O and has gradient -2 . The lines l_1 and l_2 intersect at the point P .	
	(b) Calculate the coordinates of <i>P</i> .	
	(4)	
	Given that l_1 crosses the y-axis at the point C ,	
	(c) calculate the exact area of $\triangle OCP$.	
	(3)	
_		
_		
_		
_		
_		
_		
_		
_		

	Leav blanl
Question 8 continued	
	Q
/TD / 140 1 1	
(Total 10 marks)	

T
Leave
la la mlr

An arithmetic series has first term <i>a</i> and common difference <i>d</i> . (a) Prove that the sum of the first <i>n</i> terms of the series is $\frac{1}{2}n[2a+(n-1)d].$ (4) Sean repays a loan over a period of <i>n</i> months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the <i>n</i> th month, where <i>n</i> > 21. (b) Find the amount Sean repays in the 21st month. (2) Over the <i>n</i> months, he repays a total of £5000.
$\frac{1}{2}n[2a+(n-1)d].$ (4) Sean repays a loan over a period of n months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000.
Sean repays a loan over a period of <i>n</i> months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the <i>n</i> th month, where <i>n</i> > 21. (b) Find the amount Sean repays in the 21st month. (2) Over the <i>n</i> months, he repays a total of £5000.
Sean repays a loan over a period of n months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000.
sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000.
so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000.
Over the n months, he repays a total of £5000.
Over the n months, he repays a total of £5000.
(c) Form an equation in n , and show that your equation may be written as
$n^2 - 150n + 5000 = 0.$
(3)
(d) Solve the equation in part (c).
(3)
(e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible solution to the repayment problem.
(1)

Question 9 continued	Lobl

uestion 9 continued		

	Leave blank
Question 9 continued	
	Q9
(Total 13 marks)	

). [The curve C has equation $y = \frac{1}{3}x^3 - 4x^2 + 8x + 3$.
7	The point P has coordinates $(3, 0)$.
((a) Show that P lies on C .
	(1)
((b) Find the equation of the tangent to C at P , giving your answer in the form $y = mx + c$, where m and c are constants.
	(5)
1	Another point Q also lies on C . The tangent to C at Q is parallel to the tangent to C at P .
((c) Find the coordinates of Q .
	(5)
_	
_	

Question 10 continued	Leav

		Lea bla
Question 10 continued		
		Q
	(Total 11 marks)	
	`	