Deterministic Finite Automata

Definition:

$$\begin{split} \Sigma \text{ is an alphabet} \\ \Sigma* &= \{\alpha | \alpha = \beta \gamma\} \text{ is the set of strings over } \Sigma \\ (Q, \delta, \Sigma, q_0, F) \text{ is a DFA, where} \\ Q &= \{q_0, q_1, ..., q_n\} \text{ is the set of states} \\ \Sigma \text{ is an alphabet of symbols} \\ q_0 \text{ is the start state} \\ F &\in Q \text{ is the set of accepting states} \end{split}$$

Definition: L(A) is the set of strings accepted by a DFA A.

Let $S^+ \subset \Sigma$ be a set of strings accepted by a DFA A. Let S^- be the set of strings rejected by a DFA A.

Equivalence Relations for DFA's

Definition: A Myhill-Nerode equivalence on Σ^* for a DFA $A = (Q, \delta, \Sigma, q_0, F)$

Definition: Given a DFA D and $a, b \in \Sigma *$: $a \cong b$ i.f.f. $\delta * (q_0, a) = \delta * (q_0, b)$, and it is called an equivalence relation on $\Sigma *$

 $\textbf{Definition:} \hspace{0.5cm} [a]_{\cong} = \{b \in A | a \cong b\} \text{ is called an equivalence class of A}.$

Definition: A partition π of A is the set of equivalence classes where the union of the classes in π is equal to A.

A Quotient Automoton A_{π} can be constructed by partitioning the states of A into equivalence classes, and then by replacing each state that belongs in an equivalence relation with a new state that represents the merged states of that equivalence class

Definition: A Quotient Automaton is defined as $A_{\pi} = (Q_{\pi}, \Sigma, \delta_{\pi}, B(q_0, \pi), F_{\pi})$

$$\begin{aligned} Q_{\pi} &= \{B(q,\pi)|\ q \in Q\} \\ F_{\pi} &= \{B(q,\pi)|\ q \in F\} \\ \delta_{\pi} : Q_{\pi} &\to 2^{Q_{\pi}} \end{aligned}$$

 $\forall a \in \Sigma, \ \forall B(q_i, \pi), \ B(q_j, \pi) \in Q_{\pi}$, The transition function is defined as

$$\delta_{\pi}(B(q_i, \pi), a) = B(q_j, \pi),$$

if $q_i, q_j \in Q$ and $\delta(q_i, a) = q_j$

A lattice is the set of all Quotient Automata obtained by merging the states of a DFA A.

The Learning Setup

We will say that $\{(x_i, y_i)\}$ is consistent with a DFA A if $\forall (x_i, y_i)$:

```
i) x_i \in S^+ i.f.f. y_i = 1
ii) x_i \in S^- i.f.f. y_i = -1
```

Here is how the Parekh and Honavar define the learning environment:

- The sample space is defined as $X = \Sigma^*$
- A Concept $x \subset X$ is defined as $x = \{x \text{ is a regular language } \}$
- The concept class C is the class of all DFA, where a concept x corresponds with some DFA in C.
- The target function is defined as $R: C \to \{-1, +1\}^*$

I find this setup of a learning space interesting for two reasons. First, R is a multiclass classifier. Second, while the concept is a regular language, the Concept Class is derived by mapping a concept to a DFA. This mapping is onto, but not one-to-one (**TODO:** explain this). However, if we were to restrict the mapping of regular languages to a canonical DFA, the relationship would be one-to-one.

Inside this environment, the training data D could be defined as:

$$D = \{(x_i, y_i) : x_i \in \Sigma * \text{ and } y_i \in \{-1, 1\}\}, \text{ where } y_i = 1 \text{ if } (x_i \in L(A))$$

PAC Learnability

Leonard Pitt, in his paper 'Inductive Inference, DFAs, and Computational Complexity defines the PAC-Identifiability of DFas as follows:

DFAs are PAC-identifiable iff there exists a (possibly randomized algorithm A such that on input of any parameters ϵ and δ , for any DFA M of size n, for any number m, and for any probability distribution D on strings of $\Sigma *$ of length at most m, if A obtains labeled examples, M generated according to distribution D, then A produces a DFA M' such that, with probability at least $1-\delta$, the probability (with respect to distribution D) of the set $\{w: w \in L(M) \oplus L(M')\}$ is at most ϵ . The run time of A (and hence the number of randomly generated examples obtained by A) is required to be polynomial in $n, m, \frac{1}{\epsilon}, \frac{1}{\delta}$, and $|\Sigma|$

So,
$$P[|L(M) \oplus L(M')| > \epsilon] \leq \frac{1}{\delta}$$
.

RPNI

Algorithm 1 RPNI

```
Input: D = (\{x_i, y_i\})

\pi = \pi_0 = \{\{0\}, ..., \{\bar{N} - 1\}\}

FOR i = 1..\bar{N} - 1

FOR j = 0..i - 1

\tilde{\pi} = \pi \setminus \{\{B(i, \pi), B(j, \pi)\} \cup \{\{B(i, \pi), B(j, \pi)\}\}

M_{\tilde{\pi}} = derive(M, \pi)

\hat{\pi} = deterministicMerge(M, \tilde{\pi})

if consistent(M_{\hat{\pi}}), S^-)

then

M_{\pi} = M_{\hat{\pi}}

\pi = \hat{\pi}

break

return M_{\pi}
```