

# Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms



Adrien. Todeschini@inria.fr, François.Caron@stats.ox.ac.uk & Marie.Chavent@u-bordeaux2.fr

#### Abstract

A novel class of algorithms for low rank matrix completion:

- ► Novel penalty functions on the singular values of the low rank matrix, using a mixture model representation.
- ► Suitable set of latent variables → EM algorithm to obtain a MAP estimate of the completed matrix.
- ⇒ Iterative soft-thresholded SVD algorithm
- ⇒ Adapts the shrinkage coefficients associated to the singular values.
- ⇒ Simple to implement and can scale to large matrices.
- ► Good numerical results compared to recent alternatives.

## Low-rank matrix completion

**Objective:** Complete the m imes n matrix Z from a subset  $(i,j) \in \Omega$  of noisy observations  $X_{ij}$  and assume Z can be approximated by a low rank factorization.



# Hierarchical Adaptive Spectral Penalty (HASP)



- ▶ Bridge the gap between the rank and the nuclear norm penalties.
- ▶ HASP recovers the nuclear norm when  $\beta \to \infty$ .

# Bayesian model

$$oldsymbol{Z} = oldsymbol{U} oldsymbol{D} oldsymbol{V}^T$$
 with  $oldsymbol{D} = egin{pmatrix} oldsymbol{d}_1 & 0 \ & \ddots \ 0 & oldsymbol{d}_r \end{pmatrix}$ 



 $p(d_i)$  with  $\lambda = 1$ .

# EM algorithm

- Exploit the mixture model representation.
- lacksquare Use latent variables  $\gamma$  and the missing values  $P_{\Omega}^{\perp}(X)$ .

#### Algorithm 1 Hierarchical Adaptive Soft Impute (HASI)

Initialize  $Z^{(0)}$  with Soft-Impute algorithm. At iteration  $t \geq 1$ :

- ullet Impute the missing values:  $X^* = P_\Omega(X) + P_\Omega^\perp(Z^{(t-1)})$
- Adapt the threshold coefficients of each singular value:

For 
$$i=1,\ldots,r$$
,  $\omega_i^{(t)}=rac{\lambda eta+1}{eta+d_i^{(t-1)}}$ 

ullet Compute the weighted soft thresholded SVD of the completed matrix  $oldsymbol{X}^*$ :

$$Z^{(t)} = \mathrm{S}_{\sigma^2\omega^{(t)}}\left(X^*
ight) = \widetilde{U}\widetilde{D}_{\sigma^2\omega}\widetilde{V}^T$$
 with  $\widetilde{D}_\omega = egin{pmatrix} (\widetilde{d}_1 - \omega_1)_+ & 0 \ & \ddots & \ 0 & (\widetilde{d}_r - \omega_r)_+ \end{pmatrix}$  and  $X^* = \widetilde{U}\widetilde{D}\widetilde{V}^T$  is the SVD of  $X^*$ .

- ► HASP penalizes less heavily higher singular values
   ⇒ Bias is reduced.
- ► HASI admits Soft-Impute as special case when  $\beta \to \infty$ .
- ► Initialization with Soft-Impute algorithm gives satisfactory results.
- ► Scaling: use PROPACK algorithm for computing the truncated SVD of large matrices.



#### **Experiments**





(a) SNR=1; Complete; rank=10 (b) SNR=1; 50% missing; rank=5 (c) SNR=10; 80% missing; rank=5 Figure: Test error w.r.t. the rank obtained by varying the value of the regularization parameter  $\lambda$ .

Collaborative filtering examples

|  |           | Jester 1        |      | Jester 2        |      | Jester 3        |      | MovieLens 100k |      | MovieLens 1M    |      |
|--|-----------|-----------------|------|-----------------|------|-----------------|------|----------------|------|-----------------|------|
|  |           | 24983 	imes 100 |      | 23500 	imes 100 |      | 24938 	imes 100 |      | 943 	imes 1682 |      | 6040 	imes 3952 |      |
|  |           | 27.5% miss.     |      | 27.3% miss.     |      | 75.3% miss.     |      | 93.7% miss.    |      | 95.8% miss.     |      |
|  | Method    | NMAE            | Rank | NMAE            | Rank | NMAE            | Rank | NMAE           | Rank | NMAE            | Rank |
|  | MMMF      | 0.161           | 95   | 0.162           | 96   | 0.183           | 58   | 0.195          | 50   | 0.169           | 30   |
|  | Soft Imp  | 0.161           | 100  | 0.162           | 100  | 0.184           | 78   | 0.197          | 156  | 0.176           | 30   |
|  | Soft Imp+ | 0.169           | 14   | 0.171           | 11   | 0.184           | 33   | 0.197          | 108  | 0.189           | 30   |
|  | Hard Imp  | 0.158           | 7    | 0.159           | 6    | 0.181           | 4    | 0.190          | 7    | 0.175           | 8    |
|  | HASI      | 0.153           | 100  | 0.153           | 100  | 0.174           | 30   | 0.187          | 35   | 0.172           | 27   |
|  |           |                 |      | •               |      | '               | '    | '              |      |                 |      |



Figure: NMAE on the test set of the (a) Jester 1 and (b) Jester 3 datasets.

- Low values of  $\beta$ : bimodal with modes at low rank and full rank.
- $m{\beta}=1000$ : unimodal, outperforms Soft-Impute at any given rank.

#### Extensions

- ▶ Using a 3 parameters Generalized inverse Gaussian prior distribution for the parameters  $\gamma_i \to$  additional degree of freedom.
- Extension to binary matrices using a probit model.

### References

- Gaïffas, S. and Lecué, G. (2011).
  Weighted algorithms for compressed sensing and matrix
- arXiv preprint arXiv:1107.1638.
- Larsen, R. M. (2004).

  Propack-software for large and sparse svd calculations.

  Available online. URL http://sun. stanford.

  edu/rmunk/PROPACK.
- Mazumder, R., Hastie, T., and Tibshirani, R. (2010).

  Spectral regularization algorithms for learning large incomplete matrices.

The Journal of Machine Learning Research, 11:2287–2322.

- Rennie, J. and Srebro, N. (2005).

  Fast maximum margin matrix factorization for collaborative prediction.

  In Proceedings of the 22nd international conference on Machine
- Srebro, N. and Jaakkola, T. (2003). Weighted low-rank approximations. In *NIPS*, volume 20, page 720.

learning, pages 713–719. ACM.

Todeschini, A., Caron, F., and Chavent, M. (2013).

Probabilistic low-rank matrix completion with adaptive spectral regularization algorithms.