チェックリストと分割に基づく 網羅と使用テスト

Coverage and Usage Testing Based on Checklists and Partitions

第8章 (p107~p126) B4M1 輪講

修士課程1年生 楊 嘉晨

2012年5月29日(火)

1 8.1 チェックリストに基づくテスト, とその制限

1.1 概要

概要(p103)

チェックリストや分割 (Partition) 等簡単なモデルで正規テストの手法について紹介

- 1. 8.1 節. 様々なチェックリストで正規と半正規のテスト
- 2.8.2節,チェックリストを分割に正規化して,簡単なカバレッジテストを行い
- 3. 8.3 節, 操作プロフィール (Operation Profile, OP) という, 分割のために簡単な UBT(Usagebased Testing) を紹介
- 4. 8.4 節, OP を生成する手順
- 5. 8.5 節, Case Study

第9章には、分割した入力サブドメインの境界条件のテストについて、似ているモデルを紹介

1.2 チェックリストに基づくテスト

Ad hoc テストとランダムテスト (p104)

t

繰り返して Ad hoc テストを実行する時、テスト者は行ったテストを追跡すると、チェックリストテストになる

チェックリストに基づくテスト (p104)

t

- ・ブラックボックステスト (BBT)
 - ソフトウェア要求チェックリスト
 - 機能チェックリスト
 - * システム全体からハイレベルの 機能
 - * ローレベルで独立な部品
- ・ホワイトボックステスト (WBT)
 - プログラムの特徴
 - コーディング標準 (Coding Standard)

- 単体テストのコードの網羅
 - 統合テストとシステムテストの部品 の網羅
- ・構造と特徴など、実装に関しるチェックリスト
 - 関数の呼び出し規則
 - 資源の生産者と消費者
 - モジュール間に共有するデータ

1.3 階層及び複合チェックリスト

階層チェックリスト (p105)

- 1. ハイレベル項目 1
- 2. ハイレベル項目 2
- 3. ハイレベル項目 3
 - \Rightarrow
- 1. ハイレベル項目 1

複合チェックリスト (p105)

- (a) ローレベル項目 1
- (b) ローレベル項目 2
- (c) ローレベル項目 3
- 2. ハイレベル項目 2
 - (a) ローレベル項目 4
 - (b) ローレベル項目 5
- 3. ハイレベル項目 3
 - (a) ローレベル項目 6
 - (b) ローレベル項目 7
 - (c) ローレベル項目 8

Component	Standards Items			
	s_1	s_2	• • •	s_n
c_1				
c_2				
:				
c_m				

図 4: 標準チェックリストと部品チェックリストを複合した二次元表

- 1. 部品 1
 - (a) 要求 1
 - (b) 要求 2
 - (c) 要求 3
- 2. 部品 2
 - (a) 要求 1
 - (b) 要求 2
 - (c) 要求 3
- 3. 部品 3
 - (a) 要求 1
 - (b) 要求 2
 - (c) 要求 3

1.4 チェックリストの問題点と制限

チェックリストの問題点 (p106)

- ・チェックリストの定義が抽象的過ぎて、具体的にするのが難しい
 - 特にハイレベル
- ・具体的なテストケースに変換するのは
 - 経験が必要
 - 特殊な環境や設定等に依存
- ・相互接続と相互作用を定義するのも難しい
 - 特に大規模で、複雑なシステムに

チェックリストの制限 (p106)

- 1. 全部の機能 (ブラックボックステスト) 又は構造部品 (ホワイトボックステスト) を, 異なる視点や保証レベルから, 網羅することが難しい
 - ・網羅されていない穴 (Hole) が残ってしまう
 - 分割したチェックリストを使う
- 2. より高い網羅率を目標にすると、テストを重複でしまう
 - 無駄なテストを行われてしまう
 - 分割したチェックリストを使う
- 3. 各システムの部品間の複雑な相互作用を定義するのは難しい
 - · 10, 11 章に FSM に基づく体系的な正規モデルを紹介

2 8.2 分割カバレッジテスト

2.1 紹介

分割カバレッジテスト (p107)

- 分割を基づくテストは一種のチェックリスト・テスト
- ・分割は集合全体を徹底的に覆う
 - より高い網羅率
- 分割はお互いに重複することができない
 - より高い効率

2.2 8.2.1 Some Motivational Examples

Motivational Examples(p107)

$$ax^2 + bx + c = 0$$

その解を求めると

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

全部可能な入力の組み合わせ

$$2^{32} \times 2^{32} \times 2^{32} = 2^{96}$$

2.3 8.2.2 分割: 概念と定義

分割:概念と定義 (p108)

- 1. 分割した集合は相互に排他的
- 2. 分割した集合の和集合は全体の集合

$$\bigcup_{i=1}^{n} G_i = S$$

$$\forall i, j, i \neq j \Rightarrow G_i \cap G_j = \emptyset$$

分割した集合は同値類になる

 $R(a,b) \wedge R(b,c) \Rightarrow R(a,c)$

対称律(symmetric)

 $R(a,b) \Rightarrow R(b,a)$

反射律 (reflexive)

推移律(transitive)

R(a,a) が常に成り立つ

2.4 8.2.3 分割テストの決定と網羅範囲の予測

分割テストの網羅範囲の決定 (p109)

分割テストは一種のチェックリストであり、分割の種類は 8.1 節に述べたチェックリストの 種類に似ている. 但し、分割の決定は以下のとおりに決められている

- 1. 製品によって分割
 - ・例えば外部関数 (BBT 視点) 又はシステム部品 (WBT 視点)
 - チェックリストと同じ
- 2. 性質. 関係. 論理的な条件によって分割. 更に 2 つに分かれている
 - ・論理変数を論理演算子に繋がれる論理述語による
 - ・数的な変数を比較演算子によって比較する
 - ・論理述語や比較演算によって入力区間を分割
 - ・決定木を使う
- 3.1と2の組み合わせ

決定木によって分割 (p110)

一貫性を持つ決定木

決定木によって、一つの結果は一つの分割 方法となって、パスを沿って結果を成り立たせ る入力の範囲を求める

3 8.3 Musa 氏の操作プロフィールで使用ベース統計的テスト

3.1 8.3.1 Usage-based 統計的テストの場合

統計的 UBT 適用する場合 (p111)

図 6: 操作プロフィールを開発プロセスに導入する時期

操作	頻度 (%)	
サブドメイン 1		
-操作 1	1%	
-操作 2	72%	\checkmark
-操作 3	2%	
サブドメイン 2		
-操作 4	13%	\checkmark
-操作 5	2%	
サブドメイン3		
-操作 6	3%	
-操作 7	7%	\checkmark

1. 使用シナリオ, パターン, 関連する使用頻

度を,ターゲットとなる消費者やユーザーから収集

- 収集した情報を分析し、操作プロフィール (OP, Operational Profile) に変換
- 3. 操作プロフィールによってテストを行い
- 4. テストの結果を分析し、製品の信頼性を 評価し、テストのフィードバックやソフト ウェア開発プロセスに役立つ
 - ・製品の信頼性を評価する方法は 22 章に紹介する,他のテストに関係す る活動は 7 章に紹介した

OP を開発プロセスに導入時期 (p111)

3.2 8.3.2 Musa 操作プロフィール: 基本的な考え方

Musa による OP の定義 (p112)

定義 1 (操作プロフィール). 操作プロフィールとは, 一連の操作とそれらの出現に関連する確率の 配列

An operational profile is a list of disjoint set of operations and their associated probabilities of occurrence

-[Musa(1993)]

参考文献

[Musa(1993)] J. Musa, "Operational profiles in software-reliability engineering," Software, IEEE, vol. 10, no. 2, pp. 14-32, 1993.

Musa OP: 基本的な考え方 (p113)

3.3 8.3.3 操作プロフィールを用いて統計的などのテスト等に使う 操作プロフィールで統計的なテスト (p114)

操作	頻度 (%)	テスト数 (合計 30)
サブドメイン 1		
-操作 1	1%	0
-操作 2	72%	23
-操作 3	2%	0
サブドメイン 2		
-操作 4	13%	4
-操作 5	2%	0
サブドメイン3		
-操作 6	3%	1
-操作 7	7%	2

操作プロフィールで進捗テスト (p114)

操作プロフィール: その他の目的 (p115)

- ・ 進捗テストによって、ソフトウェアの信頼性目標に達成するまで予測
- 開発効率の向上
- ・よく使われる機能を特定し、それに着目して新しい機能や製品を開発
 - あまり使われていない機能は後で
 - 螺旋 (spiral) 開発やプロトタイプ開発などのプロセスに使える
- ・顧客とより良い交流とより深い関係
 - 顧客から製品の品質や機能に対する意見を把握できる
 - もっと細かい要求分析と仕様が可能になる
 - 顧客トレーニングを実行すべき項目を特定できる
- ・高い収益率の投資
 - コストの成長はソフトウェアの規模によって線形に近い

4 8.4 操作プロフィールを作成

4.1 8.4.1 一般的な方法と参加者

単一 OP? 多数 OP?(p115)

ユーザーの使用型によって

OP: 一般的な方法 (p116)

- ・実際に顧客のインストールで使用量の測定
 - 最も精度が高い
 - 新製品に既存のインストールがない
 - 顧客のプライバシーに問題がある
- 顧客を調査
 - 精度は専門家の意見より高い
- ・専門家の経験や既存の製品に基づいて使用量を予測
 - コストは最も低い

OP: 一般的な参加者 (p117)

計画やマーケティング担当者

- 顧客との主要な接触
- 顧客の懸念とその視点が反映されて いることを確認
- ・システムエンジニア
 - 製品に実装されるハイレベルの機能 を含む製品全体の要件と仕様
- ・ハイレベルデザイナー
 - 仕様に沿うハイレベルの製品設計を デザイン

4.2 8.4.2 Musa-1 操作プロフィールの開発過程

Musa-1 OP の開発過程 (p117)

定義 2 (Musa-1). トップダウン手法, 同じ重要なユーザーグループに対して多数の操作プロフィール

In Musa's top-down approach or Musa-1 procedure, one OP is developed for each homogeneous group of users or operations

-[Musa(1993)]

Musa-1 の手法で OP を得る手順 (p118)

1. 全種類の顧客に重みを付けて、顧客のプロフィールを探し 2. 一種の顧客の中関連するユーザーの型と彼らの相対使用率を定義し、ユーザーのプロフィールを提示 3. よく使用される操作とそれの重みを見つけ、システムモードと関連プロフィールを定義 4. システムモードを分析し、ハイレベルの機能とその関連するプロフィールを決定 5. 細かい機能の使用率を決定

Table 8.5 A sample customer profile

Table 8.6 A sample user profile

Customer Type	Weight	
corporation	0.5	
government	0.4	
education	0.05	
other	0.05	

User	User Profile by Customer Type				Overall	
Type	ctype	com	gov	edu	etc	User
	weight	0.5	0.4	0.05	0.05	Profile
end user		0.8	0.9	0.9	0.7	0.84
dba		0.02	0.02	0.02	0.02	0.02
programmer		0.18	_	_	0.28	0.104
third party		_	0.08	0.08	-	0.036

(a) 顧客操作プロフィールの例

(b) ユーザー操作プロフィールの例

図 9: 操作プロフィールを Musa-1 で開発する例

Musa-1: 例 (p118)

一貫性がある OP の計算 (p119)

もし一つの操作が二つの段階 (A, B) に分かれて, それぞれのプロフィール

$$p_i = prob(A = A_i)$$

$$p_i = prob(B = B_i)$$

操作全体のプロフィール

$$p_{ij} = prob(A = A_i, B = B_j) = p_i \times p_j$$

4.3 8.4.3 Musa-2 操作プロフィールの開発過程

Musa-2 OP の開発過程 (p120)

定義 3 (Musa-2). 一つユーザー型に対して単一な操作プロフィール, もっと小さいデータソース に適用

for smaller products or ones with more homogeneous user population, one profile would probably be enough

- 1. 操作のイニシエータ (initiator) を決定
- 2. 表現の形式を決定: 表か図か
- 3. 操作配列を決定
- 4. 発生率の測定単位を決定
- 5. 発生する可能性を決め

Musa-2 表現の形式:表(p120)

Musa-2 表現の形式:図(p121)

Figure 8.2 A tree-structured or graphical operational profile

5 8.5 Case Study: 交換支援ソフトウェアに使う操作プロフィール

5.1 8.5.1 背景と参加者

交換支援システム CSS の背景 (p121)

Lockheed Martin 戦術航空機 (Tactical Aircraft) 会社 (LMTAS) が開発した, 航空機要員に使われて, 任務の計画の媒介を交換するの支援システム (Cartridge Support Software, CSS)

CSS の OP を開発する参加者 (p122)

参加者 [Chruscielski and Tian(1997)] は

- · Software Product Manager
- · Software Test Engineers
- · System Engineers

参考文献

[Chruscielski and Tian(1997)] K. Chruscielski and J. Tian, "An operational profile for the cartridge support software," in PROCEEDINGS The Eighth International Symposium On Software Reliability Engineering. IEEE, 1997, pp. 203-212.

5.2 8.5.2 五つのステップで OP 開発

Step 1&2: 顧客とユーザー(p122)

CSS の顧客は空軍

User Group	Marketing Concerns	Frequency of Use	Total Weighting Factor
Air Force Pilot	0.85	0.05	0.45
Flight Test Support	0.10	0.80	0.45
Avionics System Test	0.05	0.15	0.1

図 10: CSS ユーザー・プロフィール

ユーザーの型は

- 1. 空軍のパイロット
- 2. 飛行テスト支援者
- 3. 航空機システムテスト者
- 4. システム管理者

Step 3: システム・モード (p123)

CSS に見つけたシステム・モードは三種類に分かれています:

- 1. 飛行前の任務計画
- 2. 航空機システムテスト
- 3. システム管理

操作分析によると、この三つは区別しない。

Step 4&5: 機能と操作 (p123)

パイロットの OP

飛行テスト支援者の OP

システム・テスト者の OP

CSS 使用率よる機能の分類 (p124)

High	Medium-high	Medium-low	Low
DTC Load Inventory Save Route Planning Print	DTC Read Delete Retrieve Route	Wpn Prof Hot Keys Comm Retr/Save SCL Help Base Default FCR Mstr Mode	RetrCanned Save Canned DTC Test
High usage = 100% - 75%	Medium-high usage = 74.9% - 50%	Medium-low usage = 49.9% - 25%	Low usage = 24.9% – 0%

5.3 8.5 メトリック収集, 結果検証, 経験

メトリックを収集 (p124)

- 1. SPM に製品の市場を把握する
 - ・何週間に短いインタビュー
- 2. SPM と議論し、ユーザープロフィールと機能プロフィールの要求を定義

6 8.6 まとめ 17

- ・既存の CSS の機能設計は役に立った
- 3. ユーザー調査書を作った
 - ・System Engineers と Test Engineers の経験から
 - ・二週間で
- 4. メールでのユーザー調査
- 5. 結果操作プロフィールの解釈
 - 前の図と表で表す

結果を検証 (p125)

意外の結果を解釈中に出た

- ・ホットキーの使用は Medium-low
 - ユーザーは既存のホットキーを依存
- ・ヘルプ機能は Medium-low
 - ユーザーはシステムにもっと詳しいと思った

6 8.6 まとめ

6.1 8.6 まとめ

まとめ (p125)

- 1. チェックリスト・テスト, とそれの制限を紹介した
- 2. 分割に基づくテストモデルを紹介した
 - ・9章に入力ドメインによる分割と境界テストを紹介する
- 3. Musa による操作プロフィール (OP) を紹介した
 - · Musa-1 多数 OP
 - · Musa-2 単一 OP
 - · CSS の事例

もっと複雑のプログラムに使う FSM に基づくモデルを 10,11 章に紹介する

参考文献

参考文献

[Musa(1993)] J. Musa, "Operational profiles in software-reliability engineering," Software, IEEE, vol. 10, no. 2, pp. 14-32, 1993.

[Chruscielski and Tian(1997)] K. Chruscielski and J. Tian, "An operational profile for the cartridge support software," in PROCEEDINGS The Eighth International Symposium On Software Reliability Engineering. IEEE, 1997, pp. 203–212.