7 A student set up the circuit shown in Fig. 7.1.

Fig. 7.1

The resistors are of resistance 15 Ω and 45 Ω . The battery is found to provide 1.6 \times 10⁵ J of electrical energy when a charge of 1.8 \times 10⁴ C passes through the ammeter in a time of 1.3 \times 10⁵ s.

- (a) Determine
 - (i) the electromotive force (e.m.f.) of the battery,

e.m.f. = V

(ii) the average current in the circuit.

current = A [4]

- 8 A student has available some resistors, each of resistance 100Ω .
 - (a) Draw circuit diagrams, one in each case, to show how a number of these resistors may be connected to produce a combined resistance of
 - (i) 200 Ω,

(ii) 50Ω ,

(iii) 40Ω .

[4]

(b) The arrangement of resistors shown in Fig. 8.1 is connected to a battery.

Fig. 8.1

The power dissipation in the 100 Ω resistor is 0.81 W. Calculate

(i) the current in the circuit,

current = A

(ii) the power dissipation in each of the 25Ω resistors.

power = W [4]

- 7 (a) A student has been asked to make an electric heater. The heater is to be rated as 12 V 60 W, and is to be constructed of wire of diameter 0.54 mm. The material of the wire has resistivity $4.9 \times 10^{-7} \Omega$ m.
 - (i) Show that the resistance of the heater will be $2.4\,\Omega$.

[2]

(ii) Calculate the length of wire required for the heater.

(b) Two cells of e.m.f. E_1 and E_2 are connected to resistors of resistance R_1 , R_2 and R_3 as shown in Fig. 7.1.

Fig. 7.1

The	curr	rents I_1 , I_2 and I_3 in the various parts of the circuit are as shown.	
(i)	Wri	te down an expression relating $I_{\rm 1},I_{\rm 2}$ and $I_{\rm 3}.$	
			.[1]
(ii)	Use	e Kirchhoff's second law to write down a relation between	
	1.	E_1 , R_1 , R_2 , I_1 and I_3 for loop ABEFA,	
	2.	E_1 , E_2 , R_1 , R_3 , I_1 and I_2 for loop ABCDEFA.	
			[2]

7 A student set up the circuit shown in Fig. 7.1.

Fig. 7.1

The resistors are of resistance 15 Ω and 45 Ω . The battery is found to provide 1.6 \times 10⁵ J of electrical energy when a charge of 1.8 \times 10⁴ C passes through the ammeter in a time of 1.3 \times 10⁵ s.

- (a) Determine
 - (i) the electromotive force (e.m.f.) of the battery,

e.m.f. = V

(ii) the average current in the circuit.

current = A [4]

- 8 A student has available some resistors, each of resistance 100Ω .
 - (a) Draw circuit diagrams, one in each case, to show how a number of these resistors may be connected to produce a combined resistance of
 - (i) 200 Ω,

(ii) 50Ω ,

(iii) 40Ω .

[4]

(b) The arrangement of resistors shown in Fig. 8.1 is connected to a battery.

Fig. 8.1

The power dissipation in the 100 Ω resistor is 0.81 W. Calculate

(i) the current in the circuit,

current = A

(ii) the power dissipation in each of the 25Ω resistors.

power = W [4]

- 7 (a) A student has been asked to make an electric heater. The heater is to be rated as 12 V 60 W, and is to be constructed of wire of diameter 0.54 mm. The material of the wire has resistivity $4.9 \times 10^{-7} \Omega$ m.
 - (i) Show that the resistance of the heater will be $2.4\,\Omega$.

[2]

(ii) Calculate the length of wire required for the heater.

(b) Two cells of e.m.f. E_1 and E_2 are connected to resistors of resistance R_1 , R_2 and R_3 as shown in Fig. 7.1.

Fig. 7.1

The	curr	rents I_1 , I_2 and I_3 in the various parts of the circuit are as shown.	
(i)	Wri	te down an expression relating $I_{\rm 1},I_{\rm 2}$ and $I_{\rm 3}.$	
			.[1]
(ii)	Use	e Kirchhoff's second law to write down a relation between	
	1.	E_1 , R_1 , R_2 , I_1 and I_3 for loop ABEFA,	
	2.	E_1 , E_2 , R_1 , R_3 , I_1 and I_2 for loop ABCDEFA.	
			[2]

7 A student set up the circuit shown in Fig. 7.1.

Fig. 7.1

The resistors are of resistance 15 Ω and 45 Ω . The battery is found to provide 1.6 \times 10⁵ J of electrical energy when a charge of 1.8 \times 10⁴ C passes through the ammeter in a time of 1.3 \times 10⁵ s.

- (a) Determine
 - (i) the electromotive force (e.m.f.) of the battery,

e.m.f. = V

(ii) the average current in the circuit.

current = A [4]

- 8 A student has available some resistors, each of resistance 100Ω .
 - (a) Draw circuit diagrams, one in each case, to show how a number of these resistors may be connected to produce a combined resistance of
 - (i) 200 Ω,

(ii) 50Ω ,

(iii) 40Ω .

[4]

(b) The arrangement of resistors shown in Fig. 8.1 is connected to a battery.

Fig. 8.1

The power dissipation in the 100 Ω resistor is 0.81 W. Calculate

(i) the current in the circuit,

current = A

(ii) the power dissipation in each of the 25Ω resistors.

power = W [4]

- 7 (a) A student has been asked to make an electric heater. The heater is to be rated as 12 V 60 W, and is to be constructed of wire of diameter 0.54 mm. The material of the wire has resistivity $4.9 \times 10^{-7} \Omega$ m.
 - (i) Show that the resistance of the heater will be $2.4\,\Omega$.

[2]

(ii) Calculate the length of wire required for the heater.

(b) Two cells of e.m.f. E_1 and E_2 are connected to resistors of resistance R_1 , R_2 and R_3 as shown in Fig. 7.1.

Fig. 7.1

The	curr	rents I_1 , I_2 and I_3 in the various parts of the circuit are as shown.	
(i)	Wri	te down an expression relating $I_{\rm 1},I_{\rm 2}$ and $I_{\rm 3}.$	
			.[1]
(ii)	Use	e Kirchhoff's second law to write down a relation between	
	1.	E_1 , R_1 , R_2 , I_1 and I_3 for loop ABEFA,	
	2.	E_1 , E_2 , R_1 , R_3 , I_1 and I_2 for loop ABCDEFA.	
			[2]