Electromagnetics 3: Signal Transmission

Numerical solutions to past examination papers

2016

```
A1:
```

```
a) (3.2 x 10<sup>9</sup>, -3.9 x 10<sup>9</sup>, 0) Vm<sup>-1</sup>
b) i) –

        ii) No

c) i) No

        ii) 2.1 x 10<sup>-5</sup> radians
```

- d) -
- e) –
- f) –
- g) λ_c unchanged, f_c (dielectric) = f_c (air)/2

B1:

- a) Conduction current
- b) 2.8 μm
- c) 43528 Am
- d) H lags E by $\pi/4$

B2:

- a) i) 0.9 ∠ -25
 - ii) 0.2 ∠ -78
- b) -
- c) i) $v_{ph} = 4.53 \times 10^8 \text{ ms}^{-1}$, $v_g = 1.98 \times 10^8 \text{ ms}^{-1}$ ii) -

B3:

- a) i) 100 MHz
 - ii) $(22 + j25) \Omega$
 - iii) $I_m = 0 \text{ m}$, $I_s = 20.3 \text{ cm}$
 - iv) -

2017

A1:

- a) $(4.5 \times 10^{-9}, -4.5 \times 10^{-9}, 0)$
- b) –
- c) i) (0, -0.285, 0) Am⁻¹
 - ii) O
- d) i) 10.02°
 - ii) 15 Gbit/s.m
- e) –

B1:

- h) –
- i) $3.2 \epsilon_0 \, Fm^{-1}$
- j) i)
 - ii) 3.9 ε₀ Fm⁻¹
- k) –

B2:

- a) –
- b) $0.5 \text{ radians}, 0.88 V_0$
- c) $(32.5 j42.6) \Omega$, $(0.011 j0.015) \Omega^{-1}$
- d) $I_m = 294 \text{ mm}$, $I_s = 678 \text{ mm}$

B3:

- a) –
- b) –
- c) –
- d) –

2018

A1: a) 1.8x10⁻¹⁰ Vm⁻¹ b) (0,0,10) Cm⁻¹ c) 509.3 Am⁻¹ d) approximately 0 e) – f) – g) Cable 1 h) Reflected wave amplitude: $-V_0/3$, Transmitted wave amplitude: $+2V_0/3$ i) 7.5 GHz j) – B1: a) – b) c) approximately 0 B2: a) – b) 29 nm c) 50 Ω d) 2.5 x 10⁸ ms⁻¹ B3: a) i) 1.9

ii) $(41.6 + j16.5) \Omega$ b) $I_m = 108.5 \ mm$, $I_s = 193 \ mm$

2019

A1:

- a) –
- b) –
- c) –
- d) Yes, we must
- e) R/L = G/C Zero dispersion/distortion
- f) –

B1:

- a) –
- b) –
- c) (-43, 0) Vm⁻¹

B2:

- a) i) Displacement current (because it is a good conductor)
 - ii) 2.24 x 10⁴ ms⁻¹
- b) 75 mm < a < 187.5 mm
- c) $(29.8 j44.0) \Omega$

B3:

- a) 2.26
- b) i) 2.5 x 10⁸ ms⁻¹
 - ii) 115.13 m