Machine Learning Misc DNN Topics

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Dropout

- One of the great reguarizers that fits overfitting in deep learning
- It works by randomly "dropping out" a number of neuron outputs in a layer during a training feedforward
 - This process prevents units from co-adapting too much to the data
 - The network learns the pattern rather than memorizing using its huge # of weights
 - o self.dropout = nn.Dropout(0.5)
- It is applied on training only. On testing, all nodes are applied
 - model.eval() is critical
- Where to apply?
 - Mainly In front of linear layers with maybe dropout = 0.5
 - You may explore after some pooling layers with dropout = 0.1 / 0.2
- Video

Dropout

(a) Standard Neural Network

(b) Network after Dropout

Batchnorm (2015)

- Observation: distribution of each layer's inputs changes during training
 - Reason: as the parameters of the previous layers change
 - o Consequence: slow down the training process and make it harder for the network to converge
- Solution: Normalize layer's input + learn scale/shift parameters
 - In train: Use batch mean and batch std
 - o In **inference**: uses the **entire** training set's **moving average** of the mean and variance
 - Again needs model.eval()
 - Addition side effects: Regularization Effect / Faster Convergence
 - Cons: Dependency on Batch Size / not straightforward for dynamic RNNs
 - <u>Alternatives</u>: Layer Normalization, Instance Normalization, and Group Normalization
- Where to apply?
 - After convolutional layers / fully connected layers but before activation function (debate)
 - Tip: if a batchnorm after conv layer, don't use bias term in conv (redundant)
 - Resnet blocks

AdamW Optimizer [high level]

- AdamW is an improvement from Adam Optimizer
 - AdamW fixes an implementation mistake about the weight decay
 - o It works on really many datasets. Consider as your starting point
- You can think of it as combination of SGD with momentum and RMSProp optimizers
- Adam maintains two moving averages for each parameter
 - At each step, Adam computes adaptive learning rates for each parameter
- Videos: Exponentially Weighted <u>Averages</u> / Gradient Descent With <u>Momentum</u> / <u>Adam</u> / <u>Overall</u>

Learning Rate Schedulers [Article]

- We don't just fix one learning rate. We need it to vary during the training
- There are many strategies for that
 - StepLR: One of the easiest/oldest ways
 - Decays the learning rate of each parameter group by gamma every step_size epochs.
 - scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
 - Then, the gamma and step_size are hyperparameters!
 - Gamma like 1/10 or ½ are common choices
 - Check the loss curve to decide a good place for the step_size
 - MultiStepLR gives more variable milestones [30,80]
 - ExponentialLR: Decays by gamma every epoch [common]
 - ReduceLROnPlateau: when a metric has stopped improving
 - CosineAnnealingLR
 - OneCycleLR: <u>read</u>

Vanishing Gradients

- During backpropagation in deep networks the gradients become very small the more we move backward in the hidden layers
 - As a result no or very slow learning as the gradient signal is too weak
 - The opposite is called exploding gradients

Causes

- o **Improper initialization**: In feedforward, we are **multiplying weights** from the matrices
- Activation Functions: In backpropagation, with chain rule, we multiply gradients
 - Sigmoid and tanh activations become extremely small for small/large inputs
- The deeper the network, the harder to train due to these 2 reasons
 - Similarly long sequences in RNNs

Vanishing Gradients

- A good solution must tackle all these issues
 - Weight Initialization: Using He initialization or Xavier initialization
 - Activation Functions: Relu (+ve range derivative = 1) / non-saturating function
 - A saturating function: approach a plateau as the input grows large (sigmoid/tanh)
 - Skip connections (like in ResNets) allow gradients to bypass layers
 - o **Batch Normalization**: Normalizing the input of each layer to have mean=0, variance=1
 - Gradient Clipping: Put a range to clip
- For exploding gradients, in addition to above solutions, weight regularization and lower learning rate are used

Network Initialization

- Initializing the network is a very critical component in training DNNs
- Early days, people realized some lessons
 - Very small weights leads to vanishing gradients and large ones to exploding gradients
 - Weights can't be the same constant. They should be different and have variance
 - Normal and Uniform distribution are good ways
- However, this was not that enough with deep learning
 - Weight initialization methods need to be compatible with the choice of an activation function,
 mismatch can potentially affect training negatively.
 - Just random initialize the weight may cause vanishing/exploding gradient

Network Initialization

- There are 2 major techniques nowadays to tackle deep learning
- Xavier/Glorot initialization [paper]
 - "Adjust the scale of the initial weights based on the number of input and output neurons in a
 way that aims to keep the variance of the activations constant across layers."
 - Some say it is good for tanh/sigmoid activations, but TF uses as default / good for DNN
- Kaiming/He initialization
 - Designed specifically for Deep Networks with RELU: paper <u>Delving Deep into Rectifiers</u>
 - Most PyTorch layers use Kaiming with Uniform distribution for most of the layers
 - Such as Conv, Linear and RNN
 - However, the bias is sampled from the uniform distribution
 - These distributions are sampled from a specific range based on tensor input/output

Network Initialization: Custom

```
def init weights(m):
    if isinstance(m, nn.Conv2d):
        init.xavier uniform (m.weight)
        if m.bias is not None:
            init.zeros (m.bias)
    elif isinstance(m, nn.BatchNorm2d):
        init.constant (m.weight, 1)
        init.constant (m.bias, 0)
    elif isinstance(m, nn.Linear):
        init.kaiming normal (m.weight)
        if m.bias is not None:
            init.zeros (m.bias)
model = nn.Sequential(
    nn.Conv2d(1, 20, 5),
    nn.ReLU(),
    nn.Conv2d(20, 64, 5),
    nn.ReLU(),
    nn.Linear(64, 10)
model.apply(init weights)
```

Tensorboard Visualization

- TensorBoard is a visualization toolkit (web app) for machine learning experimentation inspection developed by the TensorFlow team.
 - Adopted in PyTorch and other machine learning frameworks
- You can
 - Track and visualize metrics such as loss and accuracy
 - Visualize the model graph
 - Display images, text, and audio data samples
 - View the **distribution** of weights, biases, or other tensors as they change over time.
 - Track hyperparameter tuning sessions using the HParams dashboard.
 - from tensorboard.plugins.hparams import api as hp / writer.add_hparams()
- Install from: pip install tensorboard
- Then build and visualize web from: tensorboard --logdir=<Path>


```
writer = SummaryWriter('runs/mnist_experiment_1')
  # Log the running loss averaged per mini-batch
  writer.add scalar('training loss', running loss / 100, epoch * len(train loader) + i)
  # Log a random batch of images
  img grid = torchvision.utils.make grid(inputs[:4].cpu().data)
  writer.add image('four mnist images', img grid, epoch * len(train loader) + i)
     # Log validation loss and accuracy
     writer.add scalar('validation_loss', avg val loss, epoch)
     writer.add scalar('validation accuracy', val accuracy, epoch)
```

```
# Call the training loop

# Call the training loop

• See, run and visualize the full code
```

Close the TensorBoard writer
writer.close()

train(num epochs=5)

What you need in a good project?

Data Loader

- Always start with data loader and verify the data properly
- Prepare sample mode (for fast check / debugging) and full mode loadings

Configuration

Any hyperparameter or model choices must be from a configuration file

Versioning

- You must be able to know which code/version/data generated these results
- For example, git code version + copy config files at minimum

Logger

• You must log every important thing such as model layers, data path, configuration content

Events

- Save events for later tensorboard visualization
- Multi-GPU support / train/eval round strategy

Google Colab

- Colab is a free, cloud-based service that supports ML
 - Write and execute Python in your browser
 - GPUs and TPUs for intensive computational tasks.
 - Integration with Google Drive: save and share your work
 - Supports TensorFlow, PyTorch, Keras, and OpenCV
 - Easy to use for collaboration
 - No setup

Relevant Materials

- Weight Initialization in Neural Networks
- Weight Initialization Techniques-What best works for you
 - Focus on the text not the equations
- What is <u>default</u> weight and bias initialization in PyTorch?

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."