CMR75 毫米波雷达 通信协议

成都纳雷科技有限公司

版本信息:

日期	版本	版本描述
2022-04-12	1.0	CMR75 通信协议初稿
2022-05-27	2.0	添加 CANFD 通信协议说明
2022-06-15	2.0	修改点云解析范例错误
2022-08-11	3.0	修改点云协议、解析
2022-10-27	4.0	添加轨迹协议、解析
2022-10-28	5.0	添加轨迹目标过滤
2023-03-13	6.0	添加轨迹信息输出、配置信息输入

注:详细修改内容参考"CMR75雷达通信协议迭代信息.xlsx"。

景

1	通用配置协议
	1.1 通用串口协议帧格式
	1.2 通用 CAN 协议帧格式
	1.3 通用协议帧 ID
	1.3.1 雷达配置(0x200)
	1.3.2 配置返回(0x201)
2	通用目标输出协议(兼容大陆)
	2.1 版本信息(0x700)
	2.2 点云状态信息(0x600)
	2.3 点云数据信息(0x701)
	2.4 轨迹数据信息(0x701)

1 通用配置协议

雷达传感器硬件接口一种是 UART-TTL (3.3V 电平)接口,一般默认波特率为 115200 (不同型号的雷达可以使用自己默认的波特率),8 位数据位,1 位停止位,无奇偶校验位,无流控。一种是 CAN,默认波特率为 500K,标准 CAN。每一个数据报文以一个起始序列开始,同时以一个终止序列结束;在每个刷新周期内,都会输出系统状态和目标输出状态报文,如果检测到目标即目标输出状态报文的探测到目标个数字段为 N,其中 N 大于 0,目标输出状态报文后会紧接着输出目标信息报文。可以配置雷达 ID,同时输出消息 ID(Message IDs)也会改变。

雷达 ID 为 0~7, 帧 ID 计算公式如下:

$$MsgID = MsgID_0 + SensorID*0x10$$

如,雷达 ID = 0,则配置帧 ID 为 0x200;雷达 ID = 1,则配置帧 ID 为 0x210,依此类推。改变雷达 ID 后,雷达只会响应新的配置消息。

1.1 通用串口协议帧格式

1) 数据包发送格式

帧 帧 命 起始码 ID ID 参数 结束码 令 低位 高位 字节 1 2 3 4 5 7 8 9 10 11 12 13 0x01 0x000xAA | 0xAA | 0x00 | 0x05 0x00 0x000x000x000x000x000x55 0x55

表 1-1 数据包发送格式

- ◆ 起始码: 2 个字节帧头——0xAA 0xAA。
- ◆ 帧 ID: 2 个字节——低字节在前,需要和雷达 ID 一致。
- ◆ 命令号: 当命令为写命令时, 最高位为1, 读命令时, 最高位为0。
- ◆ 参数:如无特别说明,都是无符号数。
- ◆ 结束码: 2个字节。

2) 雷达应答格式

表 1-2 雷达应答格式

		帧	帧	命										结束码				
起如	台码	ID	ID	今				参数										
		低位	高位	₹														
字节																		
0	1	2	3	4	5	6	7	8	9	10	11	12	13					

	0xAA	0xAA	0x01	0x05	0x81	0x00	0x55	0x55						
--	------	------	------	------	------	------	------	------	------	------	------	------	------	------

- ◆ 起始码: 2 个字节帧头——0xAA 0xAA。
- ◆ 帧 ID: 2 个字节——低字节在前,需要和雷达 ID 一致。
- ◆ 命令号: 当命令成功时, 最高位为1, 命令失败时, 最高位为0。
- ◆ 参数:如无特别说明,都是无符号数。
- ◆ 结束码: 2个字节。

1.2 通用 CAN 协议帧格式

1) 数据包发送格式

表 1-3 数据包发送格式

帧 ID	命令		参数								
0x0500	字节 1	字节 2	字节3	字节 4	字节 5	字节 6	字节 7	字节 8			
UXU500	0x81	0x00									

- ◆ 帧 ID: 2 个字节,需要和雷达 ID 一致。
- ◆ 命令号: 当命令为写命令时, 最高位为1, 读命令时, 最高位为0。
- ◆ 参数:如无特别说明,都是无符号数。
- 2) 雷达应答格式

表 1-4 雷达应答格式

帧 ID	命令				参数						
0x0501	字节1	字节 2	字节 3	字节 4	字节 5	字节 6	字节 7	字节8			
0X0501	0x01	0x00									

- ◆ 帧 ID: 2 个字节,需要和雷达 ID 一致。
- ◆ 命令号: 当命令成功时,最高位为1,命令失败时,最高位为0。
- ◆ 参数:如无特别说明,都是无符号数。

注意: CAN 协议帧没有帧头和帧尾。

1.3 通用协议帧 ID

帧 ID(Message ID)用于表示此消息报文的用途,帧 ID 的传输方向有雷达接收(In)以及雷达发送(Out),每个帧 ID 都有特定的传输方向。

表 1-5 通用协议帧 ID

Num	In/Out	Message ID	Message Name	Comment
1	接收	0x200	Sensor Configuration	雷达配置(兼容大陆)

2	发送	0x201	Sensor Back	雷达返回(兼容大陆)
3	接收	0x500	Sensor Configuration	自定义雷达配置
4	发送	0x501	Sensor Read Back	自定义读配置返回
5	发送	0x502	Sensor Write Back	自定义写配置返回

1.3.1 雷达配置(0x200)

本配置指令兼容大陆配置指令(8字节数据相同)。本配置指令是组合配置指令,可通过 一条指令同时配置多个参数。

图 1-1 雷达配置(0x200)内存分布图

表 1-6 雷达配置(0x200)说明

Signal	Start	Len	Min	Max	Res	Unit
RadarCfg MaxDistance Valid	0	1	0	1	1	0x0:Invalid
Radar C1g_iviaxD1stance_vand		1		1	_	0x1:Valid
RadarCfg SensorID Valid	1	1	0	1	1	0x0:Invalid
Radarerg_Sensorid_vand	1	1	0	1	1	0x1:Valid
RadarCfg RadarPower Valid	2	1	0	1	1	0x0:Invalid
Radarerg_Radarrower_vand	2	1	0	1	1	0x1:Valid
RadarCfg OutputType Valid	3	1	0	1	1	0x0:Invalid
RadarCig_OutputType_valid	3	1		1	1	0x1:Valid
PadarCfa SandOuglity Valid	4	1	0	1	1	0x0:Invalid
RadarCfg_SendQuality_Valid	4	1	0			0x1:Valid
DodowCfo CondEntInfo Volid	5	1	0	1	1	0x0:Invalid
RadarCfg_SendExtInfo_Valid	3	1	0	1	1	0x1:Valid
DodowCfo ContIndox Vol. 1	6	1	0	1	1	0x0:Invalid
RadarCfg_SortIndex_Valid	6	1	0	1	1	0x1:Valid
RadarCfg_StoreInNvm_Valid	7	1	0	1	1	0x0:Invalid

						0x1:Valid
RadarCfg_MaxDistance	22	10	0	2048	2	m
RadarCfg_SensorID	32	3	0	7	1	ID(0~7)(默认值 ID 为 0)
						0x0:None
RadarCfg_OutputType	35	2	0	2	1	0x1:Objects
						0x2:Clusters(默认值)
RadarCfg_RadarPower	37	3	0	7	1	0x0:Standard(默认值)
						0x0:CLASSIC Frame
						0x1:FD Frame
CANFD_FrameType	40	1	0	1	1	点云版本默认为 0x1
						轨迹版本默认为 0x0
						暂不支持修改
CANED From Torre Valid	41	1		1	1	0x0:Invalid
CANFD_FrameType_Valid	41	1	0	1	1	0x1:Valid
P 1 CC C 10 1'	42	1		1	1	0x0:Inactive
RadarCfg_SendQuality	42	1	0	1	1	0x1:Active
D. J. office CondEnd.	42	1	0	1	1	0x0:Inactive
RadarCfg_SendExtInfo	43	1	0	1	1	0x1:Active
D 1 CC C 4 1	4.4			7	1	0x0:No Sorting(默认值)
RadarCfg_SortIndex	44	3	0	7	1	0x1:Sort By Range(预留)
D 1 CC C NUM	47	1		1	1	0x0:Inactive
RadarCfg_StoreNVM	47	1	0	1	1	0x1:Active
D 1 CC DCC TL 1 11 W L	40	1		1	1	0x0:Inactive
RadarCfg_RCS_Threshold_Valid	48	1	0	1	1	0x1:Active
D 1 CC DCC TI 1 11	40			7	1	0x0:Standard(默认值)
RadarCfg_RCS_Threshold	49	3	0	7	1	0x1:High Sensitivity
						0x0:UART
RadarCfg_InterfaceType	52	2	0	3	1	0x1:CAN
						点云输出不支持 UART
	5.4	1			1	0x0:Inactive
RadarCfg_InterfaceSelectValid	54	1	0	1	1	0x1:Active
D. I. GO. HIDGHAN						0x0:Inactive
RadarCfg_LVDS Valid	55	1	0	1	1	0x1:Active
						0x0:Inactive
RadarCfg_LVDS Select	56	1	0	1	1	0x1:Active
						暂不开放
CAMED D (D 15)					1	CANFD 数据域波特率,
CANFD_DataBaudRate	57	3	0	7	1	0x0:1M

						0x1:5M(默认) 0x2:2M 暂不支持修改
RadarCfg_BaudRate_Valid	60	1	0	1	1	0x0:Inactive 0x1:Active
RadarCfg_BaudRate	61	3	0	7	1	当为 CAN 时, 0x0:500K 0x1:250K 0x2:1M(默认) 当为串口时, 0x0:115200(默认) 0x1:9600 0x2:921600

举例: AA 00 02 82 00 00 00 01 80 00 00 55 55(修改雷达 ID 为 1, 并保存)。

1.3.2 配置返回(0x201)

当雷达接收到 0x200 配置指令,需在 1 秒内返回本指令。本指令兼容大陆配置返回指令 (8 字节数据相同)。

举例: AA AA 01 02 00 00 00 00 00 00 00 00 55 55

图 1-2 雷达配置返回(0x201)内存分布图

表 1-7 雷达配置返回(0x201)说明

Signal	Start	Len	Min	Max	Res	Uint
RadarState NVMReadStatus	6	1	0	1	1	0x0:Failed
						0x1:Successful

RadarState_NVMWriteStatus	7	1	0	1	1	0x0:Failed 0x1:Successful
RadarState MaxDistanceCfg	22	10	0	2046	2	m
RadarState_IviaxDistanceCig RadarState SensorID	32	3	0	7	1	当前雷达 ID(0~7)
RadarState_SellsoftD	32	3	U	/	1	` ′
D 1 Co c C d 1	26			_	1	0x0:nosorting
RadarState_SortIndex	36	3	0	7	1	0x1:(预留)
	20		_	_		0x2:(预留)
RadarState_RadarPowerCfg	39	3	0	7	1	0x0:Standard
						0x0:None
RadarState_OutputTypeCfg	42	2	0	3	1	0x1:Object
						0x2:Cluster
RadarState SendQualityCfg	44	1	0	1	1	0x0:Inactive
Taddistate_Sond Quanty Org		1		1	1	0x1:Active
RadarState SendExtInfoCfg	45	1	0	1	1	0x0:Inactive
RadarState_SchdExtimoerg	43	1	U	1	1	0x1:Active
						0x0:input ok
						0x1:speed missing
RadarState_MotionRxState	46	2	0	3	1	0x2:yaw rate missing
						0x3:speed and yaw rate
						missing
G.13788 R	10					0x0:CLASSIC Frame
CANFD_FrameType	49	1	0	1	1	0x1:FD Frame
CANFD_DataBaudRate	50	3	0	7	1	CANFD 时,0x1:5M(默认)
D. L. Ciete Deviller	52	1	0	7	1	CAN 时,0x2:1M(默认)
RadarState_BaudRate	53	3	0	7	1	串口时, 0x0:115200(默认)
Dederate DCC d 1 11	50			7	1	0x0:Standard
RadarState_RCS_threshold	58	3	0	7	1	0x1:high sensitivity

1.3.3 目标过滤配置(0x202)

通过(0x202)可以配置过滤方式和过滤条件。目标过滤方式包含速度过滤、角度过滤、 距离过滤,各过滤方式互斥。对轨迹目标进行过滤,满足过滤条件则输出,不满足则滤掉。

目标过滤方式参考 408 协议,使用 FilterCfg_Index 参数选择筛选条件,C 和 O 分别指定改过滤方式是否可以用于 Cluster 或者 Object(x 表示支持)。

表 1-8 目标过滤方式

Index	过滤方式	С	О	描述
0x1	Distance		X	径向距离,单位: m,范围: [0,90]
0x2	Azimuth		Х	角度,支持2个角度范围,单位: °,范围:[-90,90]
0x3	Velocity		X	径向速度,单位: km/h, 范围: [-60,60]

目标过滤配置(0x202)内存分布图中,FilterCfg_Min_Para 和 FilterCfg_Max_Para 两个参数分别表示不同过滤方式的过滤参数的最小值和最大值,参见目标过滤配置(0x202)说明表。

	7	6	5	4	3	2	1	0
0	FilterCfg_Type 7	FilterCfg_Index 6	5	4	3	2 Isb	FilterCfg_Active 1	FilterCfg_Valid 0
1	SpecFilterCfg 15 Idx msb	14		FilterCfg_Min_ 12 Para msb	11	10	9	8
2	FilterCfg_Min_ 23 Para	22	21	20				16 Isb
3	31	30		FilterCfg_Max_ 28 Para msb				24
4	FilterCfg_Max_ 39 Para	38	37			34		3.2 lab

图 1-3 目标过滤配置(0x202)内存分布图

表 1-9 目标过滤配置(0x202)说明

Signal	Start	Len	Offset	Min	Max	Res	Uint
							0x0:Invalid
FilterCfg_Valid	0	1		0	1	1	0x1:Valid
FilterCfg_Active	1	1		0	1	1	0x0:Inactive
Thereig_Active	1	1			1	1	0x1:Active
FilterCfg_Index	2	5		0	31	1	过滤方式,见目标过滤方
Tittereng_maex					31	1	式表
FilterCfg_Type	7	1		0	1	1	0x0:Cluster filter
Tittereng_type		1				1	0x1:Object filter
SpecFilterCfg_Idx	13	3		0	1	1	特定过滤方式的过滤 id
FilterCfg Min Distance	16	13		0	1638.	0.2	m
Therety_Min_Distance	10	13			2	0.2	111
FilterCfg_Max_Distance	16	13		0	1638.	0.2	m
		10			2	0.2	
FilterCfg_Min_Azimuth	16	13	-90	-90	1629	2	 度
					2		
FilterCfg_Max_Azimuth	16	13	-90	-90	1629	2	 度
<u> </u>					2		
							km/h,速度必须连续设
FilterCfg_Min_Velocity	16	13	-60	-60	8131	1	置,范围[-60 km/h,60
							km/h]
							km/h,速度必须连续设
FilterCfg_Max_Velocity	_Max_Velocity 16 13 -60 -60 8131 1	1	置,范围[-60 km/h,60				
							km/h]

- 1) FilterCfg_Valid: 如果为真,则可更新过滤配置。
- 2) FilterCfg_Active: 使能或者失能对应过滤方式。
- 3) FilterCfg_Index: 指定要配置的过滤方式。

- 4) SpecFilterCfg_Idx: 特定过滤方式的不同配置 id, 例如, 角度过滤支持两个范围,则可用 SpecFilterCfg Idx 指定范围 id 为 0 或者 1。
- 5) FilterCfg Max Para, FilterCfg Min Para: 配置过滤的最大最小值。

1.3.4 目标过滤返回(0x203)

配置过滤参数后,雷达回复 FilterState_Header(0x203) 和已修改过滤方式的 FilterState_Cfg(0x204)过滤状态消息。

	7	6	5	4	3	2	1	0
0	FilterState_Nof 7 ClusterFilter msb	6	5 Isb	4	3 Isb	2	1	0
1	FilterState_Nof15 ObjectFilter msb	14	13	12	11 (sb	10	9	8

图 1-4 目标过滤返回(0x203)内存分布图

表	1-10	目标过滤返回	(0x203))
---	------	--------	---------	---

Signal	Start	Len	Offset	Min	Max	Res	Uint
FilterState_NofClusterFilter	3	5		0	31	1	点云模式已配置过滤器 数量
FilterState_NofObjectFilter	11	5		0	31	1	轨迹模式已配置过滤器 数量

1.3.5 目标过滤返回(0x204)

配置过滤器参数后,雷达回复 $FilterState_Header(0x203)$ 和已修改过滤方式的 $FilterState_Cfg(0x204)$ 过滤状态消息,过滤状态消息参考**目标过滤配置(0x202)**描述说明。

图 1-5 目标过滤返回(0x204)内存分布图

1.3.6 碰撞检测配置(0x400)

使用 CollDetCfg(0x400)消息可以激活基于区域的碰撞检测功能。激活碰撞检测功能之后,对于所有的配置区域,雷达周期性的(10s)发送 CollDetState(0x408)和消息 CollDetRegionState(0x402)。目前仅支持设置一个区域,且区域 ID 为 1。雷达默认是 objects 模式,未开启碰撞检测功能。

只有 Objects 模式有碰撞检测功能,即 RadarCfg_OutputType 设置为 Objects(0x1)。碰撞检测功能使能后。

图 1-6 碰撞检测配置(0x400)内存分布图

表 1-11 碰撞检测区域设置(0x401)说明

Signal	Start	Len	Min	Max	Res	Uint
ColDetCfg_WarningReset	0	1	0	1	1	0x0:idle 0x1:reset warnings
ColDetCfg_Activation	1	1	0	1	1	0x0:Inactive 0x1:Active
ColDetCfg_MinTime_Valid	3	1	0	1	1	0x0:Inactive 0x1:Active
ColDetCfg_ClearRegions	7	1	0	1	1	0x0:idle 0x1:clear regions
ColDetCfg_MinTime	8	8	0.0	25.5	0.1	秒(sec)

表 1-12 碰撞检测区域设置(0x401)说明

Signal	Start	Description
		0x1:使能时重置当前的所有
ColDetCfg_ WarningReset		区域的警告
	0	0x0:失能时开启当前所有区
		域警告模式
ColDetCfg_ Activation	1	激活/不激活碰撞检测功能
ColDetCfg_ MinTime_Valid	3	为真时, 允许改变时间参数
ColDetCfg_ ClearRegions	7	为真时,清除所有的区域配置
ColDetCfg_ MinTime	0	警告触发前,区域内一个目标
	8	需要被检测到的最小时间

- 2) 如需打开区域,则将 ColDetCfg_ Activation 置 1。
- 3) ColDetCfg_ WarningReset: 0x1:使能时重置当前的所有区域的激活警告; 0x0:失能时开 启当前所有防区警告模式
- 4) ColDetCfg_MinTime_Valid: 暂未使用。
- 5) ColDetCfg_ MinTime: 暂未使用。

1.3.7 碰撞检测区域设置(0x401)

Collision detection region configuration(0x401)支持设置 3 个检测区域,每个区域有两个点的横坐标和纵坐标扩展而成,如下图所示:

图 1-7 碰撞检测区域坐标设置示意图

配置碰撞检测区域(0x401)时,需要确保已配置碰撞检测配置(0x400),确保ColDetCfg_Activation = 1, ColDetCfg_ClearRegions = 0;否则无法配置区域。

	7	6	5	4	3	2	1	0
0	ColDetRegCfg 7 CoordinatesValid		5	4	ColDetRegCfg 3 Warning	ColDetRegCfg 2 RegionID msb	1	O
1	Max_Output 15 Number msb	14	13	12	11	10	9	8 Isb
2	ColDetRegCfg 23 Point1Long msb							16
3	ColDetRegCfg 31 Point1Long	30			.27 isb	ColDetRegCfg 26 Point1Lat msb		24
4	ColDetRegCfg 39 Point1Lat		277			3.4		32 Isb
5	ColDetRegCfg 47 Point2Long msb	46	45	44	43	42	41	40
6	ColDetRegCfg 55 Point2Long	54	53,	sb 52		ColDetRegCfg 50 Point2Lat msb	49	48
7	ColDetRegCfg 63 Point2Lat	62	61	60	59	58	57	56 Isb

图 1-8 碰撞检测区域设置(0x401)内存分布图

表 1-13 碰撞检测区域状态(0x402)说明

Signal	Start	Len	Offset	Min	Max	Res	Uint
ColDetRegCfg_RegionID	0	3		0	7	1	ID 号只能是 1~3
ColDetRegCfg_Warning	3	1		0	1	1	0x0:Inactive 0x1:Active
ColDetRegCfg_Activation	6	1		0	1	1	0x0:Inactive 0x1:Active
ColDetRegCfg	7	1		0	1	1	0x0:Invalid

_CoordinatesValid							0x1:Valid
ColDetRegCfg	8	8		0	255	1	最大支持 128 个目
_MaxOutputNumber	8	8		0	233	1	标
ColDetRegCfg _Point1Long	27	13	-500	-500	1138.2	0.2	单位 m
ColDetRegCfg _Point1Lat	32	11	-204.6	-204.6	204.8	0.2	单位 m
ColDetRegCfg _Point2Long	51	13	-500	-500	1138.2	0.2	单位 m
ColDetRegCfg _Point2Lat	56	11	-204.6	-204.6	204.8	0.2	单位 m

- 1) ColDetRegCfg RegionID: 支持画三个区域, 防区 ID 为 1~3。
- 2) ColDetRegCfg_Warning: 区域告警模式,使能时防区内目标输出 0x60E 告警消息。
- 3) ColDetRegCfg_Activation: 碰撞检测功能是否激活, 0x0: inactive 不激活, 0x1: active 激活。激活该功能后,且坐标有效,随后的矩形框设置才会生效,即重新上电时,上次设置的参数有效。
- 4) ColDetRegCfg _CoordinatesValid: 坐标点设置 0x0: invalid 无效, 0x1: active 有效。只有激活碰撞检测功能且使能坐标有效,坐标设置才会生效,否则不生效。
- 5) ColDetRegCfg Point1Long: 坐标点1的纵向距离值;
- 6) ColDetRegCfg Point1Lat: 坐标点 1 的横向距离值;
- 7) ColDetRegCfg Point2Long: 坐标点 2 的纵向距离值;
- 8) ColDetRegCfg_Point1Lat: 坐标点 2 的横向距离值;
- 9) 设置坐标点注意事项:坐标点1为矩形框的右下角的坐标值,坐标点2为矩形框的左上角坐标值。即满足,

ColDetRegCfg _Point1Long < ColDetRegCfg _Point2Long ColDetRegCfg _Point1Lat > ColDetRegCfg _Point1Lat 否则设置的矩形框无效,且不保存到 Flash 中。

1.3.8 碰撞检测区域状态(0x402、0x405/0x406)

当 0x401 中 ColDetRegCfg_Activation 和 ColDetRegCfg_CoordinatesValid 任何一个值不为 1 时,雷达只输出 objects 模式目标,防区不生效。

图 1-9 碰撞检测区域状态(0x402)内存分布图表 1-14 碰撞检测区域状态(0x402)说明

Signal	Start	Len	Offset	Min	Max	Res	Uint
ColDetRegStat_RegionID	0	3		0	7	1	当前区域的区域编 号
ColDetRegStat_Warning	3	1		0	1	1	
ColDetRegStat_ MaxOutputNumber	8	8		0	255	1	
ColDetRegStat _Point1Long	27	13	-500	-500	1138.2	0.2	单位 m
ColDetRegStat _Point1Lat	32	11	-204.6	-204.6	204.8	0.2	单位 m
ColDetRegStat _Point2Long	51	13	-500	-500	1138.2	0.2	单位 m
ColDetRegCfg _Point2Lat	56	11	-204.6	-204.6	204.8	0.2	单位 m

- 1) ColDetRegStat_Warning: 区域是否开启警告。
- 2) ColDetRegStat_RegionID: 当前区域的区域编号,只能为 1~3。
- 3) ColDetRegStat_MaxOutputNumber: 满足碰撞检测条件的当前区域中支持最大目标数,超出则取径向距离近的 ColDetRegStat_MaxOutputNumber 个目标。

1.3.9 碰撞检测状态(0x408)

通过 ColDetCfg(0x408)消息激活基于区域的碰撞检测。当激活碰撞检测功能时,传感器周期性的通过消息 ColDetState(0x408)发送当前的碰撞检测配置和警告状态,对于单个区域, 雷达发送 ColDetRegState(0x402)。

图 1-10 碰撞检测状态(0x408)内存分布图

表 1-15 碰撞检测状态(0x408)说明

Signal	Start	Len	Min	Max	Res	Uint
ColDetState_Activation	1	1	0	1	1	0x0:Inactive 0x1:Active
ColDetState_NofRegions	4	4	0	15	1	
ColDetState_MinDetTime	8	8	0.0	25.5	0.1	秒/sec
ColDetState_MeasCounter	24	16	0	65535	1	

表 1-16 碰撞检测状态(0x408)说明

Signal Start Description

ColDetState_Activation	1	碰撞检测激活状态
ColDetState_NofRegions	4	已配置的区域个数
CalDatOtata MinDatTina	0	当前配置的警告出发前目标
ColDetState_MinDetTime	8	的最小检测时间。暂未使用
		测量周期计数(循环累加,当
ColDetState_MeasCounter	24	大于 65535 时重置为 0,继续
		累加)

1.3.10 碰撞检测区域告警(0x60E)

当碰撞检测配置告警失能(ColDetCfg_WarningReset = 0)且开启了碰撞检测区域告警模式 (ColDetRegCfg_Warning = 1)时,对于防区内的每个目标,雷达发送消息 Obj_Warning(0x60E),该消息表示当前目标侵犯某个区域。

图 1-11 碰撞检测区域告警(0x60E)内存分布图

表 1-17 碰撞检测区域告警(0x60E)说明

Signal	Start	Len	Min	Max	Res	Uint
Objects_ID	0	8	0	255	1	区域内目标 ID
						区域的位域,该目标在区
Obj_ColDetRegBitfield	16	8	0	255	1	域中设置为该区域的区域
						ID

1.3.11 自定义配置

1.3.11.1 雷达型号(只读)

表 1-18 读雷达型号命令

			帧	帧	读										
	起如	台码	ID	ID	命		参数						结束码		
			低位	高位	令										
4	字节	字节	字节 2	字节											
	0	1	子112	3	4	5	6	7	8	9	10	11	12	13	
0	xAA	0xAA	0x00	0x05	0x01	0x00	0x55	0x55							

表 1-19 读雷达型号后返回的命令格式

ナコムヘブコ	帧 ID	帧 ID	命	42 W.L.	ル まね
起始码	低位	高位	令	参数	结束码

| 字节 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 0xAA | 0xAA | 0x01 | 0x05 | 0x81 | 0xXX | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x55 | 0x55 |

根据下表来回复,可补充。

表 1-20 雷达型号枚举类型表

Data[1]枚举值	雷达类型
0x00	SR60
0x01	ETR10
0x02	MR76
0x03	MR76S
0x04	MR62
0x05	TGR20
0x06	TCR300
0x07	SR73F
0x09	SR75

1.3.11.2 雷达固件版本(只读)

表 1-21 读雷达版本命令

		帧	帧	读												
起始	闷	ID	ID	命		参数						参数				巨码
		低位	高位	令												
字节 0	字节															
子口 0	1	2	3	4	5	6	7	8	9	10	11	12	13			
0xAA	0xAA	0x00	0x05	0x02	0x00	0x55	0x55									

雷达执行命令后返回帧格式如下表所示:

表 1-22 读雷达版本后返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束	巨码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x82	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x00	0x55	0x55

根据下表来回复,可补充。

表 1-23 雷达固件版本示例表

Data[1]~Data[3]	雷达固件版本
0x01 0x00 0x00	V1.0.0
0x02 0x01 0x03	V2.1.3

1.3.11.3 雷达 ID

表 1-24 读雷达 ID 命令

起始码		帧 帧 i		结束码
-----	--	-------	--	-----

		ID	ID	命									
		低位	高位	令									
字节 0	字节												
子中 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x04	0x00	0x55	0x55						

表 1-25 读雷达 ID 返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x84	0xXX	0x00	0x00	0x00	0x00	0x00	0x00	0x55	0x55

表 1-26 写雷达 ID 命令

	起始	码	帧 ID 低位	帧 ID 高位	写命令				参数				结束	[码
字	2节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0x	κAA	0xAA	0x00	0x05	0x84	0xXX	0x00	0x00	0x00	0x00	0x00	0x00	0x55	0x55

雷达执行命令后返回帧格式如下表所示:

表 1-27 写雷达 ID 返回的命令格式

起始	闷	帧 ID 低位	帧 ID 高位	命令				参数				结束	克码
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
子110	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x84	0x00	0x55	0x55						

根据下表来回复,可补充,设置完新的 ID 重启才能生效,

表 1-28 雷达 ID 定义表

Data[1]	雷达 ID
0x00	0
0x01	1
0x07	7

1.3.11.4 雷达输出接口

表 1-29 读雷达输出接口命令

		帧	帧	读									
起始	;码	ID	ID	命				参数				结束	[码
		低位	高位	令									
字节 0	字节												

	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x05	0x00	0x55	0x55						

表 1-30 读雷达输出接口返回的命令格式

起如	台码	帧 ID 低位	帧 ID 高位	命令				参数				结束	
字节	字节	字节	字节	字节	→± €	字节							
0	1	2	3	4	字节 5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x85	0xXX	0x00	0x00	0x00	0x00	0x00	0x00	0x55	0x55

表 1-31 写雷达输出接口命令

起	始码	帧 ID 低位	帧 ID 高位	写 命 令				参数				结束	戸码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x85	0xXX	0x00	0x00	0x00	0x00	0x00	0x00	0x55	0x55

雷达执行命令后返回帧格式如下表所示:

表 1-32 写雷达输出接口返回的命令格式

起始	闷	帧 ID 低位	帧 ID 高位	命令				参数				结束	巨码
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
7 11 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x85	0x00	0x55	0x55						

根据下表来回复,可补充。

- 1) 修改了雷达输出接口需要重启才能生效,且修改后波特率为1.3.3.6 中该接口的<u>默认波</u>特率;
- 2) Uart 和 CAN 必选,且两者只能选其一;

表 1-33 雷达输出接口定义表

Data[1]	雷达输出接口
0x00	Uart
0x01	CAN

1.3.11.5 雷达硬件版本(只读)

表 1-34 读雷达硬件版本命令

		帧	帧	读									
起始码 ID ID 命							参数				结身	 長码	
低位 高位 令													
字节 0	字节	字节											
子中 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x06	0x00	0x55	0x55						

表 1-35 读雷达硬件版本后返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束码	
字节	字节	字节	字节	字节	字节	字节 字节 字节 字节 字节 字节						字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x86	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x00	0x55	0x55

根据下表来回复,可补充。

表 1-36 雷达硬件版本示例表

Data[1]~Data[3]	雷达硬件版本
0x01 0x00 0x00	V1.0.0
0x03 0x00 0x00	V3.0.0

1.3.11.6 雷达波特率

表 1-37 读雷达波特率命令

起始	闷	帧 ID 低位	帧 ID 高位	命令		参数					结束	结束码	
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
子110	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x09	0x00	0x55	0x55						

雷达执行命令后返回帧格式如下表所示:

表 1-38 读雷达波特率返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束码	
字节	字节	字节	字节	字节	字节	字节 字节 字节 字节 字节 字节						字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x89	0xXX	0xXX	0x00	0x00	0x00	0x00	0x00	0x55	0x55

表 1-39 写雷达波特率命令

起始	码	帧 ID 低位	帧 ID 高位	写命令		参数						结束码	
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x89	0xXX	0xXX	0x00	0x00	0x00	0x00	0x00	0x55	0x55

表 1-40 写雷达波特率返回的命令格式

起始	闷	帧 ID 低位	帧 ID 高位	命令	参数 结束						巨码		
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
丁110	1	2	3	4	5	6	7	8	9	10	11	12	13

0xAA	0xAA	0x02	0x05	0x89	0x00	0x55	0x55						
------	------	------	------	------	------	------	------	------	------	------	------	------	------

根据下表来回复,可补充。

与 1.3.3.4 <u>雷达接口</u>搭配使用,切换完需要重启才能生效。

表 1-41 Uart 波特率定义表

Data[1]	Uart 波特率
0x00	115200(默认)
0x01	9600
0x02	921600
0x03	57600

表 1-42 CAN 波特率定义表

Data[1]	CAN 波特率
0x00	500K
0x01	250K
0x02	1M(默认)
0x03	125K

表 1-43 CANFD 波特率定义表

Data[1]	CANFD 仲裁域波特率
0x00	500K
0x01	250K
0x02	1M(默认)
0x03	125K
Data[2]	CANFD 数据域波特率
0x00	1M
0x01	5M(默认)
0x02	2M
0x03	500K

1.3.11.7 雷达激活状态(只读)

表 1-44 读雷达激活状态命令

		帧	帧	读									
起如	起始码 ID							结束码					
	低位 高位 令												
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
一子10	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x0F	0x00	0x55	0x55						

表 1-45 读雷达激活状态后返回的命令格式

±コ かんてご	帧 ID	帧 ID	命	\$≥ ₩r	结束码
起始码	低位	高位	令	参数	知 來阿

| 字节 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 0xAA | 0xAA | 0x01 | 0x05 | 0x8F | 0xXX | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x55 | 0x55 |

根据下表来回复,可补充。

表 1-46 激活状态定义表

Data[1]	Uart 波特率
0x00	己激活
0x01	未激活

1.3.11.8 雷达安装参数

表 1-47 读雷达安装参数命令

_														
			帧	帧	读									
ı	起始	闷	ID	ID	命				参数				结束	 長码
			低位	高位	令									
	⇒ #. 0	字节												
	字节 0	1	2	3	4	5	6	7	8	9	10	11	12	13
	0xAA	0xAA	0x00	0x05	0x12	0x00	0x55	0x55						

雷达执行命令后返回帧格式如下表所示:

表 1-48 读雷达安装参数返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束	[码
字节	字节	字节	字节	字节	字节 字节 字节 字节 字节 字节						字节	字节	字节
0	1	2	3	4	5 6 7 8 9 10 11						11	12	13
0xAA	0xAA	0x01	0x05	0x92	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0x00	0x55	0x55

表 1-49 写雷达安装参数命令

起	台码	帧 ID 低位	帧 ID 高位	写命令				参数				结束	巨码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x92	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0x00	0x55	0x55

雷达执行命令后返回帧格式如下表所示:

表 1-50 写雷达安装参数返回的命令格式

起始	闷	帧 ID 低位	帧 ID 高位	命令				参数				结束	
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
1 11 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x92	0x00	0x55	0x55						

根据下表来回复,可补充。

计算公式: 实际高度(单位 米)*100 = 安装高度

实际角度(单位 度)*100= 安装角度

安装水平角度和安装俯仰角度为有符号类型。

表 1-51 安装参数定义表

Data[1]-Data[7]	状态
0x00	安装高度高字节及高度补偿
0x01	安装高度低字节
0x02	安装水平角度高字节
0x03	安装水平角度低字节
0x04	安装俯仰角度高字节
0x05	安装俯仰角度低字节
0x06	角度补偿

Data[0] 0-2bit 代表安装高度高字节, 3-7bit 代表高度补偿值。

其中第 7bit 代表正负号,0 为正,1 为负。3-6bit 代表 0-15 米的补偿等于实际高度*10的补偿。

比如 Data[1]-Data[2]是 0xA2 0x58, 补偿高度-0.4 米, 实际高度 6 米。

Data[7] 0-3bit 代表安装俯仰角度补偿,第3个bit 代表正负号,0为正,1为负。

第 0-2bit 每个 bit 代表 1°的补偿。

例如 Data[7]是 0x0C 代表-4°的补偿。

Data[7] 4-7bit 代表安装水平角度补偿。第7个bit 代表正负号,0为正,1为负。

第 4-6bit 每个 bit 代表 1°的补偿。

例如 Data[7]是 0xC0 代表-4°的补偿。

1.3.11.9 雷达区域目标过滤模式

表 1-52 读雷达区域外目标模式命令

		帧	帧	读									
起始码 ID ID								参数				结束	
低位 高位 令													
字节 0	字节							字节	字节	字节			
子 11 0	1	2	3	4	5 6 7 8 9 10 11						12	13	
0xAA	0xAA	0x00	0x05	0x13	3 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x							0x55	0x55

表 1-53 读雷达区域外目标模式返回的命令格式

起如	治码	帧 ID 低位	帧 ID 高位	命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节 字节 字节 字节 字节 字节 字节						字节	字节
0	1	2	3	4	5 6 7 8 9 10 11						12	13	
0xAA	0xAA	0x01	0x05	0x93	0xXX	0x00	0x00	0x00	0x00	0x00	0x00	0x55	0x55

表 1-54 写雷达区域外目标模式命令

起始	码	帧 ID 低位	帧 ID 高位	写命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x93	0xXX	0x00	0x00	0x00	0x00	0x00	0x00	0x55	0x55

表 1-55 写雷达区域外目标模式返回的命令格式

起始	诏	帧 ID 低位	帧 ID 高位	命令				参数				结束	
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
1 11 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x93	0x00	0x55	0x55						

根据下表来回复,可补充,需要重启才能生效。

表 1-56 静默模式定义表

Data[1]	状态
0x00	区域外目标显示
0x01	区域外目标不显示

1.3.11.10 雷达软重启(只写)

表 1-57 写雷达软重启命令

					7C 1 5	, H.C.	· / (/ / / / / /						
		帧	帧	写									
起始码 ID ID 命						参数				结身	巨码		
低位 高位 令													
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
子110	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0xFF	0x10	0x01	0x02	0x03	0x04	0x05	0x06	0x55	0x55

写完重新启动,无回复。

1.3.11.11 雷达检测距离

表 1-58 读雷达检测距离命令

			帧	帧	读									
	起始	闷	ID	ID	命		参数						结束	[码
			低位	高位	令									
→	节 0	字节												
1	. Ti U	1	2	3	4	5	6	7	8	9	10	11	12	13
02	xAA	0xAA	0x00	0x05	0x14	0x00	0x55	0x55						

表 1-59 读雷达检测距离返回的命令格式

起始码 帧 ID 帧 ID 命 参数 结束

		低位	高位	令									
字节													
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x94	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x55	0x55

表 1-60 写雷达检测距离命令

起始	码	帧 ID 低位	帧 ID 高位	写命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x94	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x55	0x55

表 1-61 写雷达检测距离返回的命令格式

起始	闷	帧 ID 低位	帧 ID 高位	命令				参数				结束	克码
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
7 11 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x94	0x00	0x55	0x55						

根据下表来回复,可补充。

计算公式:实际最大检测距离(单位 米)*100=最大检测距离(50~600)

实际最小检测距离(单位 米)*100=最小检测距离(0~50)

实际纵向距离修正(单位米)*100=纵向距离修正(-327-327)

表 1-62 雷达检测距离定义表

Data[1]~Data[4]	状态
0x00	最大检测距离高位
0x01	最大检测距离低位
0x02	最小检测距离高位
0x03	最小检测距离低位
0x04	纵向距离修正(signed 型)高位
0x05	纵向距离修正(signed 型)低位

1.3.11.12 雷达检测范围

表 1-63 读雷达检测范围命令

		帧	帧	读									
起始	闷	ID	ID	命		参数						结身	包码
		低位	高位	令									
⇒ ++ 0	字节												
字节 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x15	0x00	0x55	0x55						

表 1-64 读雷达检测范围返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5 6 7 8 9 10 11					12	13		
0xAA	0xAA	0x01	0x05	0x95	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x55	0x55

表 1-65 写雷达检测范围命令

起始	码	帧 ID 低位	帧 ID 高位	写命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x95	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x55	0x55

雷达执行命令后返回帧格式如下表所示:

表 1-66 写雷达检测范围返回的命令格式

起始	闷	帧 ID 低位	帧 ID 高位	命令				参数				结束	
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
子110	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x95	0x00	0x55	0x55						

根据下表来回复,可补充。

计算公式:实际左检测范围(单位米)*100=左检测范围(0~100)

实际右检测范围(单位 米)*100=右检测范围(0~100)

表 1-67 雷达检测范围定义表

Data[1]~Data[4]	状态
0x00	左检测范围高位
0x01	左检测范围低位
0x02	右检测范围高位
0x03	右检测范围低位

1.3.11.13 雷达灵敏度和模式选择

表 1-68 读雷达灵敏度和模式选择命令

		帧	帧	读									
起始	诏	ID	ID	命				参数				结束	
		低位	高位	令									
字节 0	字节												
1 1 10	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x16	0x00	0x55	0x55						

表 1-69 读雷达灵敏度和模式选择返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x96	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x55	0x55

表 1-70 写雷达灵敏度和模式选择命令

走	已始	码	帧 ID 低位	帧 ID 高位	写 命 令				参数				结束	[码
字节		字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0		1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA		0xAA	0x00	0x05	0x96	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x55	0x55

表 1-71 写雷达灵敏度和模式选择返回的命令格式

起如	台码	帧 ID 低位	帧 ID 高位	命令				参数				结束	
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
1 7 11 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x96	0x00	0x55	0x55						

根据下表来回复,可补充。

计算公式: 实际落杆时间(单位 秒)*100= 落杆时间(50~800)

灵敏度范围: 0~10

表 1-72 雷达灵敏度和模式选择定义表

長172日之人気	蚁泛州铁八处往足义衣 ────────────────────────────────────				
Data[1]~Data[7]	状态				
	控制开关,可以同时打开多个				
	0x01 灵敏度开关				
0x00	0x02 工作模式开关				
0x00	0x04 人车分区开关				
	0x08 检测方向开关				
	0x10 落杆时间开关				
0x01	灵敏度				
	工作模式				
	0x00 广告杆在雷达左侧				
002	0x01 广告杆在雷达右侧				
0x02	0x02 暗箱模式				
	0x10 单杆模式				
	0x11 触发模式				
0x03	人车区分				

	0x00 是
	0x01 否
	检测方向
004	0x00 不区分方向
0x04	0x01 从左至右
	0x02 从右至左
0x05	落杆时间高位
0x06	落杆时间低位

1.3.11.14 雷达计数统计

表 1-73 读雷达计数统计命令

		帧	帧	读									
起始	治码	ID	ID	命				参数				结束	
		低位	高位	令									
⇒± o	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
字节 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x17	0x00	0x55	0x55						

雷达执行命令后返回帧格式如下表所示:

表 1-74 读雷达计数统计返回的命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令				参数				结束	[码
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0x97	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x00	0x55	0x55

表 1-75 写雷达计数统计清零命令

		帧	帧	写									
起始	闷	ID	ID	命				参数				结束	
		低位	高位	令									
字节 0	字节												
1 1 10	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x97	0x00	0x55	0x55						

雷达执行命令后返回帧格式如下表所示:

表 1-76 写雷达计数统计清零返回的命令格式

起始	闷	帧 ID 低位	帧 ID 高位	命令				参数				结束	巨码
字节 0	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
十 11 0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x02	0x05	0x97	0x00	0x55	0x55						

根据下表来回复,可补充。

表 1-77 雷达灵敏度和模式选择定义表

	Data[1]~Data[4]	雷达计数统计
--	-----------------	--------

1.3.11.15 雷达过滤方式

表 1-78 读雷达当前过滤方式命令格式

		帧	帧	读									
起如	台码	ID	ID	命		参数						结束	
		低位	高位	令									
字节													
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x00	0x05	0x26	0x00	0x55	0x55						

雷达执行命令后返回帧格式如下表所示:

表 1-79 读雷达过滤方式返回命令格式

起始	码	帧 ID 低位	帧 ID 高位	命令		参数						结束码	
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0xA6	0xXX	0x00	0x00	0x00	0x00	0x00	0x00	0x55	0x55

根据下表来回复,可补充。

表 1-80 雷达过滤方式

Data[1]	雷达过滤方式
0x01	Distance
0x02	Azimuth
0x03	Velocity
0xFF	无

1.3.11.16 雷达过滤参数

表 1-81 读雷达过滤参数命令

	帧 帧 读													
	起始码 ID ID 命 参数								结束码					
			低位	高位	令									
Ī	字节 0	字节												
	子 11 0	1	2	3	4	5	6	7	8	9	10	11	12	13
	0xAA	0xAA	0x00	0x05	0x27	0xXX	0xXX	0x00	0x00	0x00	0x00	0x00	0x55	0x55

- 1) 字节 5 为要读取的过滤方式。
- 2) 字节 6 为要读取过滤方式的 SpecFilterCfg_Idx,参考目标过滤配置(0x202)。

表 1-82 读雷达过滤参数返回的命令格式

起始码	帧 ID	帧 ID	命	参数	结束码
/C/HFJ	17, 10	10, 10	HIS	2 22	ンロンにより

	低位 高位 令												
字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节
0	1	2	3	4	5	6	7	8	9	10	11	12	13
0xAA	0xAA	0x01	0x05	0xA7	0xXX	0xXX	0xXX	0xXX	0xXX	0x00	0x00	0x55	0x55

过滤参数返回参考目标过滤返回(0x204),字节 5~字节 9 对应目标过滤返回的字节 0~字节 4。

2 通用目标输出协议(兼容大陆)

此协议适用于 77G 雷达, 型号为 CMR75。

本小节目标输出协议帧格式,符合**数据包发送格式表**所示的帧格式,目标输出帧 ID 及数据内容兼容大陆 Objects 目标输出协议。目标输出帧 ID 列表如下:

Num	In/Out	Message ID	Message Name	Comment
1	发送	0x201	Sensor Status	雷达状态消息
2	发送	0x700	Version Info	雷达版本消息
3	发送	0x60A	Target Status	目标状态消息
4	发送	0x60B	Target Info	目标消息

表 2-1 Message ID 定义

上表中的帧 ID 内容定义,请参考大陆协议。

输出周期:

0x201、0x700 雷达状态消息输出周期 10 秒;

当使用 CAN 输出目标时,可使用 CAN 和 CANFD 协议,其中 CAN 协议一帧数据为 8 个字节,即一个目标的数据信息,CANFD 协议一帧数据可达 64 字节,共 8 个目标的数据信息。CAN 盒只能输出 CAN 协议数据,CANFD 盒既能输出 CAN 协议数据也能输出 CANFD 协议数据,示例如下。

序号	时间标识	源通道	帧ID	帧类型	帧格式	CAN类型	方向	长度	数据
13	2022-04-12 08:50:03.913	Ch1	0x600	标准帧	数据帧	CAN	Rx	8	00 01 00 0A 00 01 00 00
14	2022-04-12 08:50:03.913	Ch1	0x701	标准帧	数据帧	CAN	Rx	8	04 4F 29 F7 80 20 10 04
15	2022-04-12 08:50:04.038	Ch1	0x600	标准帧	数据帧	CAN	Rx	8	00 01 00 0B 00 01 00 00
16	2022-04-12 08:50:04.038	Ch1	0x701	标准帧	数据帧	CAN	Rx	8	04 4F 29 F7 80 21 00 02
17	2022-04-12 08:50:04.163	Ch1	0x600	标准帧	数据帧	CAN	Rx	8	00 02 00 0C 00 01 00 00
18	2022-04-12 08:50:04.163	Ch1	0x701	标准帧	数据帧	CAN	Rx	8	04 4F 29 F7 80 21 18 03
19	2022-04-12 08:50:04.163	Ch1	0x701	标准帧	数据帧	CAN	Rx	8	0D 4E D9 FC 80 20 00 08

图 2-1 CAN 协议输出

14	2022-04-12 08:54:53.883	Ch1	0x701	标准帧	数据帧	CANFD加速	Rx	64	00 4F 51 F3 7F DF 82 08 01 4F 89 EE 7F DF E8 09 02 50 21 E7 80 1F 48 08 03 4F 59 E7 80 20 80 0
15	2022-04-12 08:54:53.961	Ch1	0x701	标准帧	数据帧	CANFD加速	Rx	64	00 4F 51 F3 7F DF 82 08 01 4F 89 EE 7F DF E8 09 02 50 21 E7 80 1F 48 08 03 4F 59 E7 80 20 80 0
16	2022-04-12 08:54:54.087	Ch1	0x701	标准帧	数据帧	CANFD加速	Rx	64	00 4F 51 F3 7F DF 82 08 01 4F 89 EE 7F DF E8 09 02 50 21 E7 80 1F 48 08 03 4F 59 E7 7F E0 80 04
17	2022-04-12 08:54:54.211	Ch1	0x701	标准帧	数据帧	CANFD加速	Rx	64	00 4F 51 F3 7F DF 82 08 01 4F 89 EE 7F DF E8 09 02 50 21 E7 80 1F 48 08 03 4F 59 E7 7F E0 80 0
18	2022-04-12 08:54:54.335	Ch1	0x701	标准帧	数据帧	CANFD加速	Rx	48	00 4F 91 EE 80 1F A0 09 01 50 21 E7 80 1F 48 08 02 4F 59 E7 7F E0 88 07 03 4E C2 06 7F E0 00 0
19	2022-04-12 08:54:54.470	Ch1	0x701	标准帧	数据帧	CANFD加速	Rx	48	00 4F 99 ED 80 1F A0 09 01 50 21 E7 80 1F 48 08 02 4F 59 E6 7F E0 28 07 03 4E C2 06 7F E0 00 C
20	2022-04-12 08:54:54.586	Ch1	0x701	标准帧	数据帧	CANFD加速	Rx	48	00 4F 99 ED 7F DE E0 09 01 50 21 E7 80 1F 48 08 02 4F 59 E6 7F E0 68 08 03 4E C2 06 7F E0 00 (

图 2-2 CANFD 协议输出

注意:使用 CANFD 协议时,目标总数除以 8 余数为 5 个或 7 个目标时,协议会将 5 个目标用 0xCC 补齐到 48 个字节(即 6 个目标的长度),将 7 个目标补齐到 64 个字节(即 8 个目标的长度),示例如下。

2.1 版本信息(0x700)

	7	6	5	4	3	2	1	0
0	Soft 7 MajorRelease _{msb}	6	5	4	3	2	1	0 Isb
1	Soft 15 MinorRelease _{msb}	14	13	12	11	10	9	8 Isb
2	Soft 23 PatchLevel msb	22	21	20	19	18	17	16 isb

图 2-5 版本信息(0x700)内存分布图 表 2-2 版本信息(0x700)说明

Signal	Start	Len	Min	Max	Res	描述
Soft_MajorRelease	0	8	0	255	1	软件主版本
Soft_MinorRelease	8	8	0	255	1	软件次版本
Soft_PatchLevel	16	8	0	255	1	软件补丁版本

Sort_MajorRelease: 软件主版本
Soft_MinorRelease: 软件次版本
Soft_PatchLevel: 软件补丁版本

2.2 点云状态信息(0x600)

该消息每周期发送一次

	7		6	5	4	3	2	1	0
~	Cluster NofObjects	7 msb	6	5	4	3	2	1	0
	Cluster NofObjects	15	14	13	12	11	10	9	8 Isb
2	Cluster MeasCount	23 msb	22	21	20	19	18	17	16
	Cluster MeasCount	31	30	29	28	27		25	24 lsb
4	Interface Version	39 msb	38	37	36	35	34	33	32 Isb
Е	SubFrame Number	47 msb	46	45	44	43	42	41	40 Isb

	7		6	5	4	3	2	1	0
0	Objects NofObjects	7 msb	6	5	4	3	2	1	O lsb
1		15 msb	14	13	12	11	10	9	8
2	Objects MeasCount	23	22	21	20	19	18	17	16
3		31 msb	30	29	28	27	26	25	24
4	Objects CarSpeed	39	38	37	36	35	34	33	32 lsb

图 2-6 点云状态信息(0x600)内存分布图

表 2-3 点云状态信息(0x600)说明

Signal	7	Start	Len	Min	Max	Res	Description
Cluster_NofObjects		8	16	0	65535	1	总目标个数
Cluster_MeasCounter	$\overline{\ }$	24	16	0	65535	1	循环计数
Cluster_InterfaceVersion		32	8	0	255	1	0
Cluster_SubFrameNumber		40	8	0	255	1	子帧数

0x600 解析示例

消息 message 为 0x01 0x20 0x02 0x04 0x00 0x00 0x00 0x00

即:

字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6	字节 7
0x01	0x20	0x02	0x04	0x00	0x00	0x00	0x80

1) 目标个数: 0x01*256 + 0x20 = 288;

2) 循环计数: 0x02*256 + 0x04 = 516;

3) 接口版本: 默认为 0;

4) 子帧数: 0或者 1;

2.3 点云数据信息(0x701)

此消息包含位置和速度,输出原始点云信息。

图 2-7点云数据信息(0x701)内存分布图

表 2-4 点云数据信息(0x701)说明

Signal	Start	Len	Min	Max	Res	Unit
Cluster_ID	0	8	0	255	1	
Cluster_DistLong	19	13	-100	+309.55	0.05	m
Cluster_DistLat	24	11	-50	+52.35	0.05	m
Cluster_VrelLong	46	10	-128.00	127.75	0.25	m/s
Cluster_DynProp	48	3	0	7	1	
Cluster_Class	51	2	0	3	1	暂未使用
Cluster_Height	53	9	-64.00	63.75	0.25	m
Cluster_RCS	56	8	0	255	1	dB

表 2-5 点云数据信息(0x701)说明

Signal	Start	Description
Cluster_ID	0	目标个数
Cluster_DistLong	19	目标纵向距离
Cluster_DistLat	24	目标横向距离
Cluster_VrelLong	46	目标径向速度
Cluster_DynProp	48	目标类型
Cluster_Height	53	目标高度
Cluster_RCS	56	目标信噪比

0x701 解析示例

1) 消息 message 为 0x57 0x4E 0xC2 0x0C 0x7F 0x60 0x00 0x80

即:

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6	字节 7
1 14 0	1 14 1	1 14 2	1 14 2	1 12 4	1 14 2	1 12 0	1 12 /

		0x57	0x4E	0xC2	0x0C	0x7F	0x60	0x00	0x80
--	--	------	------	------	------	------	------	------	------

- 2) 目标 ID: 0x57=87, 即目标 ID 为 87。目标在 0~255 之间循环产生。在稳定跟踪过程中,目标 ID 保持不变;
- 3) 目标纵向距离: (0x4E*32+0xC2>>3)*0.05-100 = 26 米;
- 4) 目标横向距离: ((0xC2 &0x07)*256 + 0x0C) *0.05-50 = -23.8 米;
- 5) 目标径向速度: (0x7F*4+0x60>>6)*0.25-128 = -0.75m/s;
- 6) 目标高度: ((0x60&0x3F)*8+0x00>>5)*0.25-64 = 0m;
- 7) 目标动态属性: 0x00&0x07=0, 默认均为0;
- 8) 目标信噪比: 0x80 = 128。
- 9) 目标径向距离 R = sqrt(Cluster_DistLong*Cluster_DistLong + Cluster_DistLat* Cluster DistLat)。
- 10) 目标角度为θ,注意区分角度与弧度的单位。

$$\tan \theta = \frac{Cluster_DistLat}{Cluster_DistLong}$$

2.4 轨迹状态信息(0x600)

该消息每周期发送一次

	7		6	5	4	3	2	1	0
0	Objects NofObjects	7 msb	6	5	4	3	2	1	() Isb
1	Objects MeasCount	15 msb	14	13	12	11	10	9	8
2	Objects MeasCount	23	22	21	20	19	18	17	16 lsb
3	Objects CarSpeed	31 msb	30	29	28	27	26	25	24
4	Objects CarSpeed	39	38	37	36	35	34	33	32 Isb

图 2-8 点云状态信息(0x600)内存分布图

表 2-6 点云状态信息(0x600)说明

Signal	Start	Len	Min	Max	Res	Description
Objects_NofObjects	0	8	0	255	1	总目标个数
Objects _MeasCounter	16	16	0	65535	1	循环计数
						车身速度,精度
Objects _CarSpeed	32	16	0	65535	1	0.1m/s , 范 围
						[-20m/s,20m/s]

0x600 解析示例

消息 message 为 0x21 0x01 0x02 0x04 0x00 0x91 0x00 0x00

即:

字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6	字节 7
0x01	0x20	0x02	0x04	0x00	0x00	0x00	0x80

- 1) 目标个数: 0x21 = 33;
- 2) 循环计数: 0x01*256 + 0x02 = 258;
- 3) 车身速度: (0x00*256+0x91)*0.1-20 = -5.5m/s;

2.5 轨迹数据信息(0x701)

此消息包含位置、速度等输出轨迹状态信息。

图 2-9 轨迹数据信息(0x701)内存分布图

图 2-10 轨迹数据信息(0x701)内存分布图

表 2-7 轨迹数据信息(0x701)说明

Signal	Start	Len	Min	Max	Res	Unit
Objects _ID	0	7	0	127	1	
Objects_Frame0	7	1	0	1	1	默认为0
Objects _DistY	19	13	-100	+309.55	0.05	m
Objects _DistX	24	11	-50	+52.35	0.05	m
Objects _VrelY	46	10	-128.00	127.75	0.25	m/s
Objects _DynProp	48	3	0	7	1	
Ojbects_Class	51	2	0	3	1	
Objects _ VrelX	53	9	-64.00	63.75	0.25	m
Objects _RCS	56	8	0	255	1	dB
Objects _ID	0	7	0	127	1	
Objects_Frame1	7	1	0	1	1	默认为1
Objects _DistZ	22	10	-30	+72.3	0.1	m
Objects _RzMean	28	10	-30	+72.3	0.1	m
Objects _RzStd	34	10	-30	+72.3	0.1	m
Objects _RzCount1	46	4	0	15	1	
Objects _RzCount2	42	4	0	15	1	
Objects _RzCount3	54	4	0	15	1	
Objects _RzCount4	50	4	0	15	1	
Objects _RzCount5	62	4	0	15	1	
Objects_Confid	56	6	0	64	1	%

表 2-8 轨迹数据信息(0x701)说明

Signal	Start	Description
Objects _ID	0	目标 ID
Objects_Frame0	7	目标信息输出帧号,默认为0
Objects _DistY	19	目标纵向距离
Objects _DistX	24	目标横向距离
Objects _VrelY	46	目标纵向速度
Objects _DynProp	48	目标运动状态
Objects _Class	51	目标类型
Objects _VrelX	53	目标横向速度
Objects _RCS	56	目标信噪比
Objects _ID	0	目标 ID

Objects_Frame1	7	目标信息输出帧号,默认为1
Objects _DistZ	22	目标高度
Objects _RzMean	28	目标平均高度
Objects _RzStd	34	目标高度方差
Objects _RzCount1	46	目标在高度范围(-0.5 - 0.5)m 次数
Objects _RzCount2	42	目标在高度范围(+0.5 - +1)m 次数
Objects _RzCount3	54	目标在高度范围(-1.00.5)m 次数
Objects _RzCount4	50	目标在高度范围(+1.0 - +30)m 次数
Objects _RzCount5	62	目标在高度范围(-301.0)m 次数
Objects_Confid	56	目标存在几率

0x701 解析示例

第一帧消息 message 为 0x57 0x4E 0xC2 0x0C 0x7E 0x60 0x0F 0x62

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6	字节 7
0x57	0x4E	0xC2	0x0C	0x7E	0x60	0x0F	0x62

- 1) 目标 ID: 0x57 & 0x7F=87, 即目标 ID 为 87。目标在 0~127 之间循环产生。在稳定 跟踪过程中,目标 ID 保持不变;
- 2) 信息输出帧号 Frame0: (0x57 & 0x80) >> 7 = 0。两帧 0x701 输出一个目标信息,0 代 表此帧为第一帧信息;
- 3) 目标纵向距离: (0x4E*32 +0xC2>>3)*0.05-100 = 26 米;
- 4) 目标横向距离: ((0xC2 &0x07)*256 + 0x0C) *0.05-50 = -23.8 米;
- 5) 目标纵向速度: (0x7E*4+0x60>>6)*0.25-128 = -1.75m/s;
- 6) 目标横向速度: ((0x60&0x3F)*8+0x0F>>5)*0.25-64 = 0m/s;
- 7) 目标运动状态: 0x0F&0x04=1 , 1 表示目标横穿运动,0 表示非横穿运动;0x0F&0x02=1 , 1 表示目标靠近雷达,0 表示远离雷达;0x0F&0x01=1 , 1 表示目标运动,0 表示静止;
- 8) 目标类型: 0x0F&0x07=1,1表示目标为车,0表示目标为人;
- 9) 目标信噪比: 0x62 = 98。
- 10) 目标径向距离 R = sqrt(Objects_DistY*Objects_DistY + Objects_DistX* Objects DistX)。
- 11) 目标角度为6,注意区分角度与弧度的单位。

$$\tan \theta = \frac{Cluster_DistLat}{Cluster_DistLong}$$

第二帧消息 message 为 0xD7 0x4E 0xD4 0x15 0x09 0x88 0x04 0x10:

字节 8	字节 9	字节 10	字节 11	字节 12	字节 13	字节 14	字节 15
------	------	-------	-------	-------	-------	-------	-------

0xD7	0x4E	0xD4	0x15	0x09	0x88	0x04	0x10

- 12) 目标 ID: 0xD7& 0x7F=87, 即目标 ID 为 87。目标在 0~127 之间循环产生。在稳定 跟踪过程中,目标 ID 保持不变;
- 13) 信息输出帧号 Frame1: (0xD7 & 0x80)>>7 = 1。两帧 0x701 输出一个目标信息,1代表此帧为第二帧信息;
- 14) 目标高度: (0x4E*4 +0xD4>>6)*0.1 30 = 1.5 米;
- 15) 目标平均高度: ((0xD4 &0x3F)*16 + 0x15>>4) *0.1-30 = 2.1 米;
- 16) 目标高度方差: ((0x15 &0x0F)*64 + 0x09>>2) *0.1-30 = 2.2 米;
- 17) 目标在高度范围(-0.5 0.5)m 次数: (0x09 &0x03)*4 + (0x88>>6)=6;
- 18) 目标在高度范围(+0.5-+1)m 次数: (0x88 &0x3C)>>2=2;
- 19) 目标在高度范围(-1.0 -0.5)m 次数: (0x88 &0x03)*4 + (0x04>>6) = 0;
- 20) 目标在高度范围(+1.0 +30)m 次数: (0x04 &0x3C)>> 2= 1;
- 21) 目标在高度范围(-30 -1.0)m 次数: (0x04 &0x03)*4 + (0x10>>6) = 0;
- 22) 目标存在几率: (0x10 &0x1F)*5 = 80%;