4. Отношения

Основные понятия

Бинарным отношением между множествами A и B называется подмножество R в $A \times B$. Если A = B, то говорят, что R – **отношение** на A.

Бинарное отношение между конечными множествами может быть описано на словах (при помощи подходящих предикатов), как множество упорядоченных пар, как орграф и с помощью матрицы.

Отношение R на множестве A называется

рефлексивыным, если x R x для всех $x \in A$;

симметричным, если $x R y \Rightarrow y R x$ для всех $x, y \in A$;

кососимметричным если $(x R y u y R x \Rightarrow x = y)$ для всех $x, y \in A$;

транзитивным, если $(x Ry \text{ и } y Rz \Rightarrow x Rz)$ для всех $x, y, z \in A$

Отношение R^* называют **замыканием отношения** R относительно свойства P, если

- **1)** R^* обладает свойством P;
- 2) $R \subset R^*$;
- 3) R^* подмножество любого другого отношения, содержащего R и обладающего свойством P.

Рефлексивное, симметричное и транзитивное отношение R на множестве A называется отношением эквивалентности. Классом эквивалентности элемента $x \in A$ является подмножество

$$E_x = \{ x \in A \mid z R x \}$$

Разбиение множества A представляет собой совокупность подмножеств A_1, A_2, \ldots, A_n в A, удовлетворяющих требованиям:

$$A=A_1\cup A_2\cup\ldots\cup A_n$$
 и $A_i\cap A_j=$ \emptyset при $i
eq j$

Подмножества A_i из предыдущего определения называются **блоками** разбиения. Если R – отношение эквивалентности на A, то различные классы эквивалентности образуют **разбиение** A.

Рефлексивное, кососимметричное и транзитивное отношение R на множестве A называется **частичным порядком**. Множества, на которых определено такое отношение, в свою очередь, называются **частично упорядоченными множествами**.

Линейный порядок на множестве – это такой частичный порядок, при котором можно сравнить любую пару элементов.

Если R – отношение частичного порядка на множестве A и xRy, $x \neq y$, то x называется **предшественником** . В том случае, когда x предшествует y и нет такого элемента z, для которого xRz и zRy, то говорят, что x – **непостредственный предшественник** y. Последний факт обозначают так: $x \prec y$.

Демонстрационные задачи

- **1.** Ниже определены отношения на множествах. Опишите на словах замыкание по транзитивности в каждом случае.
 - (a) $A = \mathbb{Z}$, R задается условием: x R z тогда и только тогда, когда x -y четное число;
 - (б) $A = \mathbb{R}^2$ задается по правилу: (a,b) R(c,d) в том случае, когда $a^2 + b^2 = c^2 + d^2$.
- **2.** Отношение R на множестве \mathbb{Z} определяется так: x R y в том и только том случае, когда $x^2 y^2$ делится на 3. Покажите, что R является отношением эквивалентности и опишите классы эквивалентности.