1 Méthode d'itération

1.1 Principe

La méthode d'itération, ou méthode du point fixe, est utilisée pour résoudre des équations de la forme f(x)=0. Elle est adaptée aux problèmes où l'on peut transformer l'équation f(x)=0 en une forme équivalente x=g(x). On cherche alors une valeur x^* telle que $x^*=g(x^*)$. Une telle valeur x^* est appelée un point fixe de la fonction g. La méthode consiste à construire une suite $(x_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence :

(S)
$$\begin{cases} x_0 \text{ donn\'e} \\ x_{n+1} = g(x_n), \quad \forall n \ge 0 \end{cases}$$
 (1)

Si cette suite converge vers une limite x^* , et si g est continue, alors x^* est un point fixe de g. En effet, $x^* = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} g(x_n) = g(\lim_{n \to \infty} x_n) = g(x^*)$.

1.2 Représentation graphique

Graphiquement, les points fixes de g sont les abscisses des points d'intersection de la courbe y = g(x) avec la droite y = x. Pour construire la suite (x_n) , on part de x_0 .

- 1. On trouve $g(x_0)$ sur la courbe y = g(x). Ce point a pour coordonnées $(x_0, g(x_0))$. Comme $x_1 = g(x_0)$, ce point est (x_0, x_1) .
- 2. Pour reporter x_1 sur l'axe des abscisses, on se déplace horizontalement jusqu'à la droite y = x. Le point atteint est (x_1, x_1) .
- 3. On trouve $g(x_1)$ sur la courbe y = g(x) en se déplaçant verticalement. Ce point est $(x_1, g(x_1))$, c'est-à-dire (x_1, x_2) .
- 4. On répète le processus.

Selon la configuration des courbes, la construction peut donner un motif en "escalier" ou en "spirale" (ou "escargot").

Figure 1: Illustration de la méthode du point fixe pour $g(x) = \cos(x)$ et $x_0 = 0.1$. La suite (x_n) converge vers le point fixe $x^* \approx 0.739$.

1.3 Algorithme

L'algorithme de la méthode du point fixe est le suivant :

1. Initialisation:

- Choisir un point de départ x_0 .
- Se donner une tolérance $\varepsilon > 0$ (pour le critère d'arrêt).
- Définir un nombre maximal d'itérations N_{max} .
- Poser n = 0.

2. Itérations:

- Tant que $n < N_{max}$ (et critère d'arrêt non satisfait) :
 - (a) Calculer $x_{n+1} = g(x_n)$.
 - (b) Vérifier le critère d'arrêt. Par exemple, si $|x_{n+1} x_n| < \varepsilon$, alors arrêter. D'autres critères peuvent être $|x_{n+1} x_n|/|x_{n+1}| < \varepsilon$ (si $x_{n+1} \neq 0$) ou $|f(x_{n+1})| < \varepsilon$. La note manuscrite mentionne $E_{n+1} = |x_{n+1} x_n|$.
 - (c) n = n + 1.
 - (d) Mettre à jour $x_n \leftarrow x_{n+1}$ pour la prochaine itération (ou $x_{old} \leftarrow x_n, x_n \leftarrow x_{n+1}$).
- Fin Tant que.
- 3. Arrêt: La valeur x_n (ou x_{n+1}) obtenue est une approximation du point fixe x^* . Si le nombre maximal d'itérations N_{max} est atteint sans que le critère de tolérance soit satisfait, la méthode peut avoir échoué à converger ou converger trop lentement.

La note manuscrite mentionne : "Tant que $E_n > E$ et N_{max} pas grand (atteint)".

1.4 Convergence

Remark 1.1. Il y a une similitude entre les racines de la fonction h(x) = g(x) - x et les points fixes de g(x). Un point x^* est un point fixe de g si et seulement si x^* est une racine de h(x) = g(x) - x = 0.

Proposition 1.2. Soit I un intervalle fermé de \mathbb{R} . Soit $g:I\to\mathbb{R}$ une fonction telle que:

- 1. $g(I) \subset I$ (c'est-à-dire, pour tout $x \in I$, $g(x) \in I$).
- 2. g est contractante sur I, c'est-à-dire qu'il existe une constante $K \in [0,1)$ telle que pour tous $x,y \in I$, $|g(x) g(y)| \le K|x y|$.

Alors:

- 1. g admet un unique point fixe x^* dans I.
- 2. Pour tout choix initial $x_0 \in I$, la suite (x_n) définie par $x_{n+1} = g(x_n)$ converge vers x^* .
- 3. On a les estimations d'erreur suivantes :
 - $|x_n x^*| \le K^n |x_0 x^*|$
 - $|x_n x^*| \le \frac{K^n}{1 K} |x_1 x_0|$

Si g est dérivable sur I, la condition de contraction (2) est satisfaite si $\sup_{x \in I} |g'(x)| \le K < 1$. Si $|g'(x^*)| > 1$, la méthode diverge (sauf si $x_0 = x^*$).

Preuve. (Suivant les notes manuscrites) **Existence :** Soit I = [a,b]. Posons h(x) = g(x) - x. Comme $g(I) \subset I$, on a $g(a) \in [a,b]$ et $g(b) \in [a,b]$. Donc $g(a) \ge a \implies h(a) = g(a) - a \ge 0$. Et $g(b) \le b \implies h(b) = g(b) - b \le 0$. Si h(a) = 0, alors a est un point fixe. Si h(b) = 0, alors b est un point fixe. Sinon, si h(a) > 0 et h(b) < 0, et g (donc h) est continue (car dérivable, ou contractante implique continue), d'après le Théorème des Valeurs Intermédiaires, il existe $x^* \in (a,b)$ tel que $h(x^*) = 0$, c'est-à-dire $g(x^*) = x^*$.

Unicité: Supposons qu'il existe deux points fixes distincts x^* et x^{**} dans I. Alors $g(x^*) = x^*$ et $g(x^{**}) = x^{**}$. On a $|x^{**} - x^*| = |g(x^{**}) - g(x^*)|$. Si g est contractante avec une constante K < 1, alors $|g(x^{**}) - g(x^*)| \le K|x^{**} - x^*|$. Donc $|x^{**} - x^*| \le K|x^{**} - x^*|$. Comme $x^* \ne x^{**}$, $|x^{**} - x^*| > 0$. On peut diviser par $|x^{**} - x^*|$ pour obtenir $1 \le K$. Ceci contredit K < 1. Donc, l'hypothèse qu'il existe deux points fixes distincts est fausse. Le point fixe est unique.

Convergence: Soit $x_0 \in I$. La suite (x_n) est définie par $x_{n+1} = g(x_n)$. On a $x^* = g(x^*)$. Alors $|x_{n+1} - x^*| = |g(x_n) - g(x^*)|$. En utilisant la propriété de contraction (ou le théorème des accroissements finis si g est dérivable, $|g(x_n) - g(x^*)| \le |g'(c_n)| |x_n - x^*|$ pour un c_n entre x_n et x^* , avec $|g'(c_n)| \le K$), on a : $|x_{n+1} - x^*| \le K|x_n - x^*|$. Par récurrence, on obtient : $|x_n - x^*| \le K^n|x_0 - x^*|$. Comme $0 \le K < 1$, $K^n \to 0$ quand $n \to \infty$. Donc, $\lim_{n \to \infty} |x_n - x^*| = 0$, ce qui signifie que la suite (x_n) converge vers x^* . La note mentionne $K_1 = \lim_{n \to \infty} \frac{x_{n+1} - x^*}{x_n - x^*} = g'(x^*)$ et $|K_1| \le K < 1$. Ceci est lié à l'ordre de convergence.

1.4.1 Ordre de convergence

L'ordre de convergence d'une suite (x_n) vers x^* est un nombre $p \ge 1$ tel que :

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^p} = C > 0$$

où C est la constante asymptotique d'erreur. Si p=1, la convergence est linéaire. Si p=2, elle est quadratique.

Supposons que g est suffisamment dérivable et utilisons un développement de Taylor de $g(x_n)$ autour de x^* : $x_{n+1} = g(x_n) = g(x^*) + g'(x^*)(x_n - x^*) + \frac{g''(x^*)}{2!}(x_n - x^*)^2 + \dots + \frac{g^{(k)}(x^*)}{k!}(x_n - x^*)^k + O((x_n - x^*)^{k+1})$. Puisque $x^* = g(x^*)$, on a : $x_{n+1} - x^* = g'(x^*)(x_n - x^*) + \frac{g''(x^*)}{2!}(x_n - x^*)^2 + \dots$. Si $g'(x^*) \neq 0$, alors :

$$\frac{x_{n+1} - x^*}{x_n - x^*} = g'(x^*) + O(x_n - x^*)$$

Donc, $\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = |g'(x^*)|$. La convergence est linéaire (ordre p=1) avec $C=|g'(x^*)|$. Pour que la méthode converge, il faut que $|g'(x^*)| < 1$.

Si $g'(x^*) = 0$, et si g est p-fois dérivable avec $g^{(k)}(x^*) = 0$ for $1 \le k < p$ et $g^{(p)}(x^*) \ne 0$ (où $p \ge 2$ est le plus petit entier tel que $g^{(p)}(x^*) \ne 0$), alors le développement de Taylor devient : $x_{n+1} - x^* = \frac{g^{(p)}(x^*)}{p!}(x_n - x^*)^p + O((x_n - x^*)^{p+1})$. Dans ce cas :

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^p} = \left| \frac{g^{(p)}(x^*)}{p!} \right|$$

La convergence est d'ordre p, et la constante asymptotique d'erreur est $C = \left| \frac{g^{(p)}(x^*)}{p!} \right|$.

Example 1.3. Soit $g(x) = e^x - 1 - x - \frac{x^2}{2}$. On cherche un point fixe x^* de g. On observe que $x^* = 0$ est un point fixe, car $g(0) = e^0 - 1 - 0 - 0 = 1 - 1 = 0$. Calculons les dérivées de g en $x^* = 0$: $g'(x) = e^x - 1 - x \implies g'(0) = e^0 - 1 - 0 = 0$. $g''(x) = e^x - 1 \implies g''(0) = e^0 - 1 = 0$. $g'''(x) = e^x \implies g'''(0) = e^0 = 1$. Puisque g'(0) = 0, g''(0) = 0, et $g'''(0) = 1 \neq 0$, l'ordre de convergence est p = 3. La constante asymptotique d'erreur est $C = \left| \frac{g'''(0)}{3!} \right| = \left| \frac{1}{6} \right| = \frac{1}{6}$.

Analyse de la méthode de la fausse position (Regula Falsi).

Solution. Indication : c'est une méthode de point fixe.

2 Méthode de Newton

2.1 Principe

La méthode de Newton est une méthode itérative pour trouver une approximation d'une racine x^* d'une fonction f, c'est-à-dire $f(x^*) = 0$. Elle est applicable si f est dérivable.

2.2 Comment construire x_{n+1} à partir de x_n ?

On part d'une approximation x_n de la racine x^* . On remplace la fonction f(x) par son polynôme de Taylor d'ordre 1 (sa tangente) au voisinage de x_n :

$$f(x) \approx P_1(x) = f(x_n) + f'(x_n)(x - x_n)$$

On cherche x_{n+1} tel que $P_1(x_{n+1}) = 0$.

$$f(x_n) + f'(x_n)(x_{n+1} - x_n) = 0$$

En supposant $f'(x_n) \neq 0$, on peut résoudre pour x_{n+1} :

$$x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Ceci définit la relation de récurrence de la méthode de Newton. On peut voir cela comme une méthode de point fixe :

$$x_{n+1} = g(x_n)$$
avec $g(x) = x - \frac{f(x)}{f'(x)}$

2.3 Interprétation géométrique

Graphiquement, x_{n+1} est l'abscisse du point où la tangente à la courbe y = f(x) au point $(x_n, f(x_n))$ coupe l'axe des abscisses (y = 0).

Figure 2: Illustration de la méthode de Newton pour $f(x) = x^2 - 2$ avec $x_0 = 2.5$.

2.4 Algorithme

L'algorithme de Newton peut être vu comme un cas particulier de l'algorithme du point fixe, avec $g(x) = x - \frac{f(x)}{f'(x)}$.

Listing 1: Pseudo-code pour la méthode de Newton

2.5 Convergence

Pour analyser la convergence de la méthode de Newton, on étudie la fonction d'itération $g(x) = x - \frac{f(x)}{f'(x)}$. On calcule sa dérivée g'(x):

$$g'(x) = \frac{d}{dx} \left(x - \frac{f(x)}{f'(x)} \right)$$

$$= 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{(f'(x))^2}$$

$$= \frac{(f'(x))^2 - (f'(x))^2 + f(x)f''(x)}{(f'(x))^2}$$

$$= \frac{f(x)f''(x)}{(f'(x))^2}$$

Si x^* est une racine simple de f (c'est-à-dire $f(x^*) = 0$ et $f'(x^*) \neq 0$), alors :

$$g'(x^*) = \frac{f(x^*)f''(x^*)}{(f'(x^*))^2} = \frac{0 \cdot f''(x^*)}{(f'(x^*))^2} = 0$$

Puisque $g'(x^*) = 0$, d'après la théorie de la méthode du point fixe, si $g''(x^*)$ existe et est non nulle, la convergence est au moins d'ordre 2 (quadratique), à condition que x_0 soit suffisamment proche de x^* . Calculons $g''(x^*)$: Si $g'(x) = \frac{f(x)f''(x)}{(f'(x))^2}$, alors $g''(x) = \frac{(f'(x)f''(x)+f(x)f'''(x))(f'(x))^2-f(x)f''(x)-f(x)f''(x)}{(f'(x))^4}$. En $x = x^*$, $f(x^*) = 0$, donc: $g''(x^*) = \frac{(f'(x^*)f''(x^*))(f'(x^*))^2-0}{(f'(x^*))^4} = \frac{f''(x^*)}{f'(x^*)}$. Si $f''(x^*) \neq 0$ (et $f'(x^*) \neq 0$), alors $g''(x^*) \neq 0$. La convergence de la méthode de Newton est quadratique pour une racine simple, avec $\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^2} = \left|\frac{g''(x^*)}{2}\right| = \left|\frac{f''(x^*)}{2f'(x^*)}\right|$.

Remark 2.1 (Cas des racines multiples). Si x^* est une racine de multiplicité m > 1, c'est-à-dire $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$ et $f^{(m)}(x^*) \neq 0$. Dans ce cas, la convergence de la méthode de Newton redevient linéaire. On peut écrire $f(x) = (x - x^*)^m h(x)$ avec $h(x^*) \neq 0$. Alors $f'(x) = m(x - x^*)^{m-1}h(x) + (x - x^*)^m h'(x)$. La fonction d'itération $g(x) = x - \frac{f(x)}{f'(x)}$ devient :

$$g(x) = x - \frac{(x - x^*)^m h(x)}{m(x - x^*)^{m-1} h(x) + (x - x^*)^m h'(x)}$$
$$= x - \frac{(x - x^*) h(x)}{mh(x) + (x - x^*) h'(x)}$$

Pour évaluer $g'(x^*)$, on peut calculer la limite de g'(x) quand $x \to x^*$, ou utiliser une forme plus

complexe de g'(x). La note indique que $g'(x^*) = 1 - \frac{1}{m}$. En effet, $g'(x) = \frac{d}{dx} \left(x - \frac{(x-x^*)h(x)}{mh(x) + (x-x^*)h'(x)} \right)$. En $x = x^*$, après un calcul (assez long, ou en utilisant la limite $\lim_{x \to x^*} \frac{f(x)f''(x)}{(f'(x))^2}$ avec les formes de f, f', f'' pour une racine multiple), on trouve $g'(x^*) = 1 - \frac{1}{m}$. Puisque m > 1, $0 \le g'(x^*) < 1$. La convergence est donc linéaire avec une constante asymptotique $K_1 = 1 - \frac{1}{m}$.

Example 2.2. Soit $f(x) = (x-1)^3$. Ici $x^* = 1$ est une racine de multiplicité m = 3. f(1) = 0, $f'(x) = 3(x-1)^2 \implies f'(1) = 0$, $f''(x) = 6(x-1) \implies f''(1) = 0$, $f'''(x) = 6 \implies f'''(1) = 6 \neq 0$. La méthode de Newton standard donne : $x_{n+1} = x_n - \frac{(x_n-1)^3}{3(x_n-1)^2} = x_n - \frac{x_n-1}{3} = \frac{2}{3}x_n + \frac{1}{3}$. C'est une suite arithmético-géométrique. Le point fixe est $x^* = \frac{1/3}{1-2/3} = 1$. $x_{n+1} - 1 = \frac{2}{3}x_n + \frac{1}{3} - 1 = \frac{2}{3}x_n - \frac{2}{3} = \frac{2}{3}(x_n-1)$. Donc $\frac{x_{n+1}-1}{x_n-1} = \frac{2}{3}$. La convergence est linéaire, avec $K_1 = \frac{2}{3}$. Ceci correspond à $1 - \frac{1}{m} = 1 - \frac{1}{3} = \frac{2}{3}$.