Recall:

Lebesque measure Outer measure

 $m_*(E) = \inf \left\{ \sum_{i=1}^{\infty} |Q_i| : E \subseteq \bigcup_{i=1}^{\infty} |Q_i| \right\} = E \subseteq \mathbb{R}^n$

Q: why cube?

A: 简便起见、事实上. 换成 Balls 也可 L 见 Ch3 Ex 26).

 $Q(\text{cube}) = \left(2\gamma(\chi_0) = \left\{ \chi \middle| |\chi^2 - \chi_0^2| \le \frac{\gamma}{\nu}, |\le i \le n^2 \right\} \rightarrow \text{closed}$ $Q_{\gamma}(\chi_0) = \left\{ \chi \middle| |\chi^2 - \chi_0^2| \le \frac{\gamma}{\nu}, |\le i \le n^2 \right\}$

|Qr(xo)|= |Qr(xo)|=r" (r is the size of Q)

Some properties:

O. Nonnegativity: m*(E) 70 & m*(p)=0

② Monotonicity: E, ⊆ Er. ⇒ M* (E) ∈ M* (Er)

 Θ' . $\forall A.B \subseteq \mathbb{R}^n$. $m_*(A \cup B) \leq m_*(A) + m_*(B)$

special case: If d(A,B)>0, then m*(AUB) = m*(A)+m*(B).

Fact:

1. If $E = \bigcup_{i=1}^{\infty} E_i$ and $m*(E_i) = 0$, then m*(E) = 0

2: $m_{\star}(E) = \inf \left\{ \sum_{i=1}^{\infty} |O_{i}| \mid E \subseteq \bigcup_{i=1}^{\infty} |O_{i}|^{2} =: m_{\star}'(E) \right\}$

pf: Need: m*(E) = m*'(E)

If $E \subseteq \mathcal{Y} \, \mathcal{Q}_i$, then $E \subseteq \mathcal{Y} \, \mathcal{Q}_i$.

 $\forall \varepsilon$ > 0. If $E \subseteq \bigcup_{i=1}^{\infty} Q_i$. then $E \subseteq \bigcup_{i=1}^{\infty} (H \varepsilon) Q_i$

From these 2 statements, we obtain

① m*(E) ≤ m*(E)

```
\forall \varepsilon > 0. \exists E \subseteq \mathcal{V}, \mathcal{Q}_i

m_*(E) \leq \tilde{\Xi}_i |\mathcal{Q}_i| \leq m_*(E) + \varepsilon. we know E \subseteq \mathcal{V}, \mathcal{Q}_i

m_*(E) \leq \tilde{\Xi}_i |\mathcal{Q}_i| \leq m_*(E) + \varepsilon

Let \varepsilon > 0, m_*(E) \leq m_*(E).
```

② Similarly, $m_{*}(E) \leq (1+E)^{n} m_{*}(E) \stackrel{E \to 0}{\Longrightarrow} m_{*}(E) \leq m_{*}(E)$ #

3. If
$$m*(A)=0$$
, then $\forall B$.

 $m*(B\setminus A)=m*(A\cup B)=m*(B)$.

 $pf: B\setminus A\subseteq B. m*(B\setminus A)=m*(B)$.

Notice $B=(B\setminus A)\cup(A\cap B)$.

 $m*(B)=m*(B\setminus A)+m*(A\cap B)=m*(B\setminus A)$.

Similarly, $m*(A\cup B)=m*(B)$.

课堂练习:

Ex 1: prove that for
$$\forall \delta > 0$$
 $m_*(E) = \inf \left\{ \sum_{i=1}^{\infty} |Q_i| \mid E \subseteq \bigcup_{i=1}^{\infty} Q_i \text{ and the size of } Q_i < \delta \right\}$
 $pf: \text{Let RHS be } m. \text{ obviously } m_*(E) \leq m.$

If $\forall \epsilon > 0$. $\exists E \subseteq \bigcup_{i=1}^{\infty} Q_i \text{ and } m_*(E) \leq \sum_{i=1}^{\infty} |Q_i| \leq m_*(E) + \epsilon$

Let $Q_i = \sum_{i=1}^{\infty} |Q_i| \leq m_*(E) + \epsilon$
 $|Q_i| = \sum_{i=1}^{\infty} |Q_i| \Rightarrow m \leq m_*(E) + \epsilon \Rightarrow m \leq m_*(E)$

#

Ex2: Suppose E. for any $x \in E$. I cube Qx centered at x s.t. $m_*(E \cap Qx) = 0$, prove that $m_*(E) = 0$ Hint: Define $E_k = \frac{1}{2}x \in E \mid m_*(E \cap Q) = 0$ for any cube $Q = \frac{1}{2}$ with size < k and centered at x

2. mx (Ex)=0

pf of ②: $m_*(E_k) = \inf \left\{ \sum_{i=1}^{\infty} |Q_i| | E_k \subseteq \bigcup_{i=1}^{\infty} Q_i \text{ and size of } Q_i < \frac{1}{100k} \right\}$ WLOG, $Q_i \cap E_k \neq \emptyset$. $\exists \alpha \in Q_i \cap E_k$.

Notice Ek = Q Ek ∩ Qi

We define $Q'_{i} = Q_{2k}(x)$

We know $Q_i \subseteq Q_i'$ since $x \in E_k$. $m_*(E \cap Q_i') = 0$ $m_*(E_k \cap Q_i') \leq m_*(E \cap Q_i') \leq m_*(E \cap Q_i') = 0$

> W* (Ek) = 0.

#

Recall

Def: E is measurable if $\forall \varepsilon > 0$. \exists an open set U S.t. $E \subseteq U$ and $m_*(U \setminus E) < \varepsilon$.

Notation E measurable E € M

Some properties:

- 1. open / closed sets ϵM
- 2. If Ei∈M, then OFEi∈M. ÖFEi∈M
- 3. If EEM, then ECM.
- 4. Countable additivity:

If $E = \bigcup_{i=1}^{\infty} E_i \cdot \in M$ and $E_i \cap E_j = \emptyset$.

then $m(E) = \sum_{i=1}^{\infty} m(E_i)$

Corollary of 4: Principle of inclusion-exclusion If $A \cdot B \in \mathcal{M}$. then

 $m(AUB) = m(A) + m(B) - m(A\cap B)$

Corollary:

If $m(AUB) < \infty$, then m(AUB) = m(A) + m(B) iff $m(A\cap B) = 0$

 $\forall E \subseteq \mathbb{R}^{n}$. $m_{\star}(E) = \inf_{i \in \mathbb{N}} \{ \hat{Z}_{i} | \hat{Q}_{i} \} | E \subseteq \mathbb{N} \{ \hat{Q}_{i} \} \}$ If we set $U_{\epsilon} = \mathbb{N} \{ \hat{Q}_{i} \} \ge E$ and $m(E) \le m(\mathcal{U}) \le \mathbb{N} \{ \hat{Q}_{i} \} \le m_{\star}(E) + E$ Define $U = \mathbb{N} \{ \mathcal{U}_{\epsilon} \} = \mathbb{N} \{ \mathcal{U}_{\epsilon} \}$