

Evolution of Strategies for Prisoner's Dilemma

Gleb Fedorovich, Jan Heldmann, Lukas Schmitt, Fengshi Zheng

Bob

Today

Tomorrow

Bob

B Cooperates

A Cooperates A Defects

(3,3)	(0,5)
(5,0)	(1,1)

Today

B Defects

Tomorrow

A Defects

(0,5)

(1,1)

(3,3)(5,0)

A Cooperates

B Cooperates

Today

B Defects

Alice

Bob

B Cooperates

(3,3)

(0,5)

A Defects

(<mark>5,0</mark>)

A Cooperates

(1,1)

Nash Equilibrium

Today

B Defects

- Participants played the Iterated Prisoner's Dilemma (IPD)
- Tit For Tat (TFT) was the winning Strategy

A(C) A(D)

B (C)

(3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)

Tit For Tat (TFT) was the winning Strategy

B (D)

TFT						
rand.						

A (C) A (D)

B (C)

(3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)

Tit For Tat (TFT) was the winning Strategy

B (D)

TFT	С					
rand.	С					

A (C) A (D)

B (C)

(3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)

Tit For Tat (TFT) was the winning Strategy

B (D)

TFT	С	C					
rand.	c [′]	D					

A(C) A(D)

B (C)

(3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)

Tit For Tat (TFT) was the winning Strategy

B (D)

TFT	С	С	D				
rand.	С	D	D				

- A(C) A(D)
- B (C)
- (3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)
- Tit For Tat (TFT) was the winning Strategy

В	(D	1
	١.		

(5,0)	(1,1)
` ' /	\

TFT	С	С	D	D	D	С	С	D	С	С	
rand.	С	D	D	D	С	С	D	С	С	D	

A (C) A (D)

B (C)

(3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)

Tit For Tat (TFT) was the winning Strategy

B (D)

TFT	С	С	D	D	D	С	С	D	С	С	Total = 21	
rand.	С	D	D	D	С	С	D	С	С	D	Total = 26	

A (C) A (D)

B (C)

(3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)

B (D)

(5,0) (1,1)

- lith	or lat () was the	winning	Strategy
--------	----------	--	-----------	---------	----------

TFT	С	С	D	D	D	С	С	D	С	С	Total = 21
rand.	С	D	D	D	С	С	D	С	С	D	Total = 26

Important:

- TFT can never get more points than the opponent
- TFT is not the best but the most robust strategy

A (C) A (D)

B (C)

(3,3) (0,5)

- Participants played the Iterated Prisoner's Dilemma (IPD)

B (D)

(5,0) (1,1)

Tit For Tat (TFT) was the winning Strategy

TFT	С	С	D	D	D	С	С	D	С	С	Total = 21
rand.	С	D	D	D	С	С	D	С	С	D	Total = 26

Important:

- TFT can never get more points than the opponent
- TFT is not the best but the most robust strategy

4 Reasons TFT won:

- 1. Starts with cooperation which is nice and prevents trouble
- 2. Punishes the defection of its opponent which stimulates cooperation
- 3. Forgives the opponent when they cooperate again
- 4. TFT is a clear strategy which is easy for an opponent to anticipate

- Always cooperating
- Always defecting

- Always cooperating
- Always defecting
- Tit-for-tat (**TFT**): if you cooperate, I'll cooperate. Otherwise I defect

- Always cooperating
- Always defecting
- Tit-for-tat (**TFT**): if you cooperate, I'll cooperate. Otherwise I defect
- Neural-Agents: cooperate or defect depends on the result of a neural network

- Always cooperating
- Always defecting
- Tit-for-tat (**TFT**): if you cooperate, I'll cooperate. Otherwise I defect
- Neural-Agents: cooperate or defect depends on the result of a neural network
- String-Agents: follow a set of deterministic rules of action

Neural-Agents

Take the history(ies) of the last tournament (0 - cooperating, 1 - defecting)

Feed the action through a forward network

Take the output of the network (float point number from 0 to 1) as the tendency to defect (stochastic)

Each layer applies a linear transform of the previous layer's output, followed by a non-linear activation function:

$$y_{out} = \sigma \left(W \cdot x + b \right)$$

Sigmoid function applied, to make the output between 0 and 1

Histories	Decision	
(CC), (CC)	С	
(CC), (CD)	D	
(CC), (DC)	С	
(CC), (DD)	D	
(DD), (DD)	D	

- A lookup table that tells the agent which action to take;
- Histories: a list of (my action, opponent's action)

Histories	Decision	
(CC), (CC)	С	
(CC), (CD)	D	
(CC), (DC)	С	
(CC), (DD)	D	
(DD), (DD)	D	

- A lookup table that tells the agent which action to take;
- Histories: a list of (my action, opponent's action)
- Take all the decisions in the lookup table, we obtain a string-representation for the agent: CDCD...D (TFT)

- An algorithm to find the maxima of a system
- Inspired by the evolution in nature

- Agents are born with different genes, which determines their behavior totally
 - E.g. String-Agents' string
 - Neural-Agents' weights and biases

- Agents are born with different genes
- In each generation, the agents play against neighbors. Their payoffs determine their "fitness in the nature"

- Agents are born with different genes
- In each generation, the agents play against neighbors. Their payoffs determine their "fitness in the nature"

Subsequent rounds

- Agents are born with different genes
- In each generation, the agents play against neighbors. Their payoffs determine their "fitness in the nature"

After last round of the generation

- Agents are born with different genes
- In each generation, the agents play against neighbors. Their payoffs determine their "fitness in the nature"
- The fitter agents will survive, whereas the weaker ones die

After last round of the generation

- The fitter agents will survive, whereas the weaker ones die
- The fittest agents reproduce with each other

After last round of the generation

- The fitter agents will survive, whereas the weaker ones die
- The fittest agents reproduce with each other
 - Parents cross over their genes (or swap weight matrices) to create the children

- The fittest agents reproduce with each other
 - Parents cross over their genes (or swap weight matrices) to create the children
 - Random mutations can happen to children's genes

- The fittest agents reproduce with each other
 - Parents cross over their genes (or swap weight matrices) to create the children
 - Random mutations can happen to children's genes
 - The child replace the weakest neighbor

- The fittest agents reproduce with each other
 - Parents cross over their genes (or swap weight matrices) to create the children
 - Random mutations can happen to children's genes
 - The child replace the weakest neighbor
- Redo the former process for next generations

Genetic Algorithm

Project goals

Can the Agents learn Tit for Tat

Investigating the behavior of Agents in different settings

Analyzing the formation of cooperation

Ring Structure

Ring Structure

- 20 Agents
- Nearest-Neighbor-Interaction
- 20 Rounds of PD
- Global-Genetic-Algorithm

Ring Structure - Feature Vectors

- **FV0**: Output, given C of opponent
 - \circ FV0 = 0: Cooperating
 - FV0 = 1: Defecting
- **FV1**: Output, given D of opponent
 - \circ FV1 = 0: Forgiving
 - FV1 = 1: Punishing
- Phase of cooperation from 1700 to 2500

- Starts with Tit for tat
- Always Cooperating
- Defectors spread
- Tit for Tat again

What we already know For Neural-Agents?

N-2 Neural-Agents, one Tit For Tat, one defects N Neural-Agents

N, number of generation

N-2 Neural-Agents, one Tit For Tat, one defects

N Neural-Agents

! Let's go to 2D!

Grid - Formation of Cooperation

Grid - Formation of Cooperation

Grid - Formation of Cooperation

Config.py

```
PAYOFF_MAP = [
    [5, 1],
NEIGHBOR_TYPE = 4
NEIGHBOR_RADIUS = 1 # interaction radius
NUM_SUBSTEPS = 10 # rounds in a generation
USE_LOCAL_GA = True # weather to use the localized version of GA
FITNESS_MULTIPLIER = 2 # parameter used for scaling fitness function, see P15 of the java manual
MUT_PROB = 0.2 # mutation probability for NeuralAgent and StringAgent
MUT_STRENGTH = 1.0 # how strong to perturb the weights of NeuralAgent
TFT_REPRODUCABLE = False # does TFT participate in the reproduction
NEURAL_REPRODUCABLE = True # does NeuralAgent participate in the reproduction
STRING_REPRODUCABLE = True # does StringAgent participate in the reproduction
DEFAULT_NEURAL_STRUCTURE = [6, 1]
MEM LEN = 2
```

```
MEM LEN = 2
DEFAULT_WIDTH = 10
DEFAULT_HEIGHT = 10
TORUS GRID = True
CANVAS_DX = 30
MESA\_SEED = 4
NUMPY_SEED = 3
VISUALIZE_GRID_TYPE = 'inherited_attr'
```


Generation: 109 Fittest feature vector: 0.4918, 0.6789

Results

Agents have to learn TFT for cooperation

Cooperation could be achieved by adding punishers

Local interaction + reproduction are important for cooperation

Larger Agent memory leads to stable cooperation

Questions

References

- 1. R. M. Axelrod and W. D. Hamilton, *The Evolution of Cooperation*. Basic Books, 1984, isbn: 0-465-02121-2.
- 2. R. Axelrod, *The Evolution of Strategies in the Iterated Prisoner's Dilemma*. Lawrence Davis, London: Pitman, and Los Altos, CA: Morgan Kaufman, 1987, pages 32–41.
- 3. A. Errity, Evolving Strategies for the Prisoner's Dilemma, 2003.
- 4. J. H. Holland, *Genetic Algorithms*, 1. Scientific American, a division of Nature America, Inc., 1992, volume 267, pages 66–73. url: http://www.jstor.org/stable/24939139.

Memory-length tests

Memory-length tests

Memory-length tests

Connection to society?

Public Good Game

- Examples: Tax evasion, climate change, cleaning shared apartment,
 Cross-Code-Checking
- Defectors lead to tragedy of the common
- Punishment and Reputation key for avoiding the tragedy of the commons