Kalman Filters 101

Arnav Sheth iCapital Network

January 17, 2023

Summary

- 1 Intro
- 2 The Math

3 References

What is a Kalman Filter?

- State space model or regime-switching model.
- Traditionally rooted in engineering applications.
 - For example, autonomous vehicles or trajectory analysis.
- Now used in economics/finance.
- Can be interpreted as a natural extension of traditional ARMA models¹.
 - Makes it easier to explain.

¹See Harvey (1989), for example.

What is a Kalman Filter?

• Introduced in 1960 by Rudolf Kalman and Ruslan Bucy².

The Kalman filter is an estimator of the conditional moments of a Gaussian linear system. It is an optimal recursive algorithm.

- Used for:
 - the calibration of time series model predictor variables;
 - also for data smoothing applications.
 - Appropriate for dealing with multivariable time-varying systems and non-stationary stochastic processes.
 - Is an advantage over VAR since factors are non-stationary.
 - It's also a more realistic assumption.

 $^{^2}$ See Kalman (1960) and Kalman and Bucy (1961).

Why Use Kalman Filters?

- Kalman Filters have several desirable properties:
 - 1 They are fast; amenable to large datasets.
 - Good at dealing with unknown structural breaks and regime changes³.
 - They preserve OLS property of being consistent, unbiased, and efficient.
 - 4 Can handle missing data in a fairly straightforward manner⁴.
 - Secause they are constructed as recursions, can handle out-of-sample forecasting well.

³See Renzi-Ricci (2016).

⁴See Brockwell and Davis (1991).

A Simple Model

• In its simplest setup, we have⁵:

$$y_t = \mu_t + u_t \tag{1}$$

$$\mu_{t+1} = T_t \mu_t + \eta_t \tag{2}$$

- Equation (3) is known as the *measurement* equation.
- Equation (4) is known as the transition equation.
- For even more simplicity, let's assume T_t to be constant, or 1.
 - Then μ_t follows a random walk.

⁵These are variables but you can replace them with $K \times 1$ vectors (say).

A Simple Model

• In its simplest setup, we have⁶:

$$y_t = \mu_t + u_t \tag{3}$$

$$\mu_{t+1} = T_t \mu_t + \eta_t \tag{4}$$

- u_t and η_t are called, respectively, measurement and observation noise.
- $u_t \sim N(0, \sigma_u^2)$, $\eta \sim N(0, \sigma_\eta^2)$, and $E[u_t \eta_t] = 0$.
- The latent state, μ_t is hidden (unobserved). E.g., the true beta of a company, or state of the economy.
 - The data gives us y_t .

⁶These are variables but you can replace them with $K \times 1$ vectors (say).

A Simple Model

• In its simplest setup, we have⁶:

$$y_t = \mu_t + u_t \tag{3}$$

$$\mu_{t+1} = T_t \mu_t + \eta_t \tag{4}$$

- u_t and η_t are called, respectively, *measurement* and *observation* noise.
- $u_t \sim N(0, \sigma_u^2)$, $\eta \sim N(0, \sigma_\eta^2)$, and $E[u_t \eta_t] = 0$.
- The latent state, μ_t is hidden (unobserved). E.g., the true beta of a company, or state of the economy.
 - The data gives us y_t .
- To evaluate the size of σ_n^2 , we use the ratio of variances: σ_n^2/σ_u^2 .

⁶These are variables but you can replace them with $K \times 1$ vectors (say).

A More Complex Model

$$y_t = \alpha + \beta_t x_t + u_t \tag{5}$$

$$\beta_{t+1} = \beta_t + \eta_t \tag{6}$$

- β_t is the hidden state variable here.
- For example:
 - \bullet y_t could be the excess return on a stock.
 - \bullet x_t could be the excess return on a market proxy.
- We could generalize further and allow Jensen's alpha to vary over time.

A More Complex Model

$$y_t = \alpha + \beta_t x_t + u_t \tag{5}$$

$$\beta_{t+1} = \beta_t + \eta_t \tag{6}$$

- β_t is the hidden state variable here.
- For example:
 - \bullet y_t could be the excess return on a stock.
 - ullet x_t could be the excess return on a market proxy.
- We could generalize further and allow Jensen's alpha to vary over time.
 - Note that this is what we called μ_t in the previous example.

Parameter Estimation

- In traditional MLE, parameters are the slope and intercept.
 - Recall that these could be time-varying in state space models.
- In this setup, α , β , and the variances (σ_n^2 and σ_u^2), are all parameters.
- For a filter, you plug in variance values and estimate the slope and intercept.
- For a smoother, you go back and use MLE to find the values that minimize the variances.

General Steps

- ① Specify an initial value for β , β_1 .
- ② Beginning with t=2, apply the Kalman filter to β_t to provide an estimate for β_{t+1} .
 - Estimates are denoted with hats: $\widehat{\beta}_{t+1}$ and \widehat{y}_{t+1} .
 - At t+1 compare with the actual value, and compute the prediction error, termed the *Kalman gain*.
 - Adjust $\hat{\beta}_{t+1}$ appropriately.
- 3 Use the adjusted estimate of β_{t+1} to get an estimate for β_{t+2} .
- Rinse and repeat.

References

- Brockwell, P. J., & Davis, R. A. (1991). Time series: theory and methods. Springer Science & Business Media.
- Brooks, C. (2009). Introductory Econometrics for Finance. Cambridge University Press.
- Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge University Press.
- Jalles, J. T. (2009). Structural time series models and the Kalman filter: a concise review, SSRN.
- Salman, R. E. (1960). A new approach to linear filtering and prediction problems, Transactions of the ASME - Journal of Basic Engineering, 83 (Series D): 95-108.
- Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory, Transactions of the ASME - Journal of Basic Engineering. 82 (Series D): 35-45.
- Ljungqvist, L., & Sargent, T. J. (2018). Recursive macroeconomic theory. MIT press.
- 8 Renzi-Ricci, G. (2016). Estimating equity betas: What can a time-varying approach add. A comparison of ordinary least squares and the Kalman filter. *Insights in Economics*, 1-9.