LABORATORIO DI CALCOLO, CANALE Q-Z ESERCITAZIONE 9, 10/12/2015

Simulazione della ricerca del bosone di Higgs

Si vuole simulare la ricerca di un segnale gaussiano $G(x|\mu,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)}{2\sigma^2}}$ dove μ e` il valore centrale e σ la larghezza della Gaussiana, e con il fondo che ha una distribuzione esponenziale del tipo $B(x|\lambda)=\lambda e^{-\lambda x}$

Il programma esercitazione09.c deve

- 1. Implementare una funzione **segnale** che prenda come argomenti due valori \mathbf{m} ed \mathbf{s} e restituisca una variabile Gaussiana con i parametri $\mu = \mathbf{m}$ e $\sigma = \mathbf{s}$. A tal fine, generare due numeri razionali casuali $\mathbf{y_1}$ e $\mathbf{y_2}$ distribuiti uniformemente nell'intervallo]0,1], e calcolare $x = \mu + \sigma \times cos(2\pi y_1)\sqrt{-2\ln(y_2)}$ che avrà la distribuzione Gaussiana desiderata.
- 2. Implementare una funzione **fondo** che prenda come argomenti **lambda**, **a** e **b** e generi una distribuzione esponenziale con il parametro **lambda** nell'intervallo [**a**, **b**]. A tal fine, è necessario generare un numero casuale **p** distribuito uniformemente nell'intervallo $]e^{-\lambda b}, e^{-\lambda a}[$ e restituire $x = -\frac{\ln p}{\lambda}$ che avrà la distribuzione esponenziale desiderata.
- 3. Acquisire dall'utente un numero intero **Nsig** di eventi di segnale aspettato nell'intervallo [10,30] e ripetere l'acquisizione in caso di errore.
- 4. Con un opportuno ciclo, variare il numero **Nbkg** di eventi di fondo da un minimo di 50 fino a un massimo di 200 a passo di 10.
- 5. Per ciascun valore di **Nbkg**, simulare NEXP=100 esperimenti, ciascuno dei quali consiste in
 - a. Generare **Nsig** eventi di segnale distribuiti secondo una gaussiana con $\mu = 125$ e $\sigma = 2.5$;
 - b. Generare **Nbkg** eventi di fondo nell'intervallo [100,150] secondo una distribuzione esponenziale con $\lambda = 0.0025$:
 - c. Contare il numero di eventi di segnale e di fondo che cadono nell'intervallo [122, 128] e salvarli in opportuni array Scut e Bcut;
- 6. Al termine degli esperimenti, tramite un'opportuna funzione analisi che prende in input i due array Scut e Bcut, calcolare la significanza $S_{cut}/\sqrt{B_{cut}}$ per tutti gli esperimenti e restituire il valore minimo, massimo, e medio
- 7. Nella funzione main, stampare sullo schermo i valori restituiti dalla funzione analisi, con il formato simile a quello riportato

```
$ /tmp/app.exe
Ricerca di segnale gaussiano (mu=125.0, sig=2.5) e fondo esponenziale (lambda=2.5e-03) in [100,150]
Numero di eventi di segnale in [10,30]:13
segnale: 13 fondo: 50 Significanza min: 2.24 max: 12.00 media: 4.47
segnale: 13 fondo: 60 Significanza min: 1.81 max: 6.35 media: 3.87
```

8. **Facoltativo**: scrivere questi valori numerici (una riga per ciascun valore di **Nbkg**) su un file **risultati.txt** per fare i grafici con gnuplot. Graficare i valori min, max, e medio della significanza in funzione di **Nbkg**

Inoltre si ricorda che potete usare le funzioni della libreria matematica cos(x), sqrt(x), exp(x), e log(x).

Laboratorio di Calcolo, Canale Q-Z Esercitazione 9, 10/12/2015

