파킨슨 환자 보행 분석

2022.06.29

이수진

contents

1. task

2. data

- 3. 시도
 - 1) z축 기준 LHEE RHEE 비교
 - 2) simple CNN
 - 3) DFT
 - 4) Anormaly detection

1. task

정상과 파킨슨 환자를 구분할 수 있는 보행 특징 찾기

• 타입

1- 환자 정보 (.xlsx)

Group	Fno	FOG	Name	Initial	Age	Sex	Ht	Wt	Domside	Sxdur(질병기간)	Txdur(치료기간)
4	1	1	김말명	KMM	64.0	2	1495.0	47.0	2	10.5	10.0
2	2	1	김명식	KMS	65.0	1	1730.0	74.0	2	10.4	9.4
1	3	1	김병섭	KBS	62.9	1	1760.0	65.1	1	16.2	24.2
4	4	1	김석률	KSR	75.0	1	1516.0	51.0	1	7.3	6.8
3	5	1	김애자	KEJ	69.4	2	1470.0	55.4	1	16.2	15.2
1	6	1	김응걸	KEG	74.3	1	1652.0	64.0	2	15.3	14.3
2	7	1	김정승	KJS	68.0	1	1620.0	57.2	2	2.3	1.8
4	8	1	김정자	KJJ	70.0	2	1440.0	45.0	1	2.5	1.5
3	9	1	김학주	KHJ	77.0	1	1679.0	65.3	2	4.3	3.2
4	10	1	문정숙	MJS	69.0	2	1482.0	55.0	2	3.4	2.9
3	11	1	박양주	PYJ	73.8	2	1526.0	54.4	1	4.1	1.5
4	12	1	박추자	PCJ	73.0	2	1520.0	63.3	2	5.4	4.4
1	13	1	박태철	PTC	71.3	1	1631.0	73.4	2	12.1	11.1
1	14	1	백순복	BSB	61.0	2	1578.0	62.8	2	4.1	1.2
1	15	1	서영균	SYG	68.5	1	1672.0	56.5	1	4.4	3.9
2	16	1	서점동	SJD	69.0	1	1600.0	53.1	2	14.5	13.5
4	17	1	서정봉	SJB	70.4	1	1620.0	76.9	2	16.8	16.3
4	18	1	서정웅	SJW	73.3	1	1643.0	54.4	2	5.3	4.3
3	19	1	손기순	SGS	67.1	2	1511.0	50.0	1	7.3	6.7
4	20	1	신승범	SSB	59.4	1	1650.0	68.8	1	18.8	17.8
1	21	1	심근달	SGD	77.7	1	1708.0	62.9	2	6.2	5.2
3	22	1	안말자	AMJ	72.7	2	1563.0	54.1	2	1.1	0.5
2	23	1	우경호	WGH	73.0	1	1626.0	68.6	1	3.4	2.4
^	0.4		Oallot	VIIV	60.0	0	1400.0	40.0		7.4	4.5

2- 보행 FW/BW (.csv)

• 환자 정보 (.xlxs)

코딩	임상 변수 설명			
Age	나이			
Sex	성별			
Ht	키			
Wt	몸무게			
Ht(m)	키_M			
ВМІ	체질량지수			
Domside	우성측			

PD / Controls 공통

유병기간
치료기간
도파민용량
인지기능
교육연수
넘어짐병력
낙상두려움
보행동결
보행동결척도총점
보행동결 중등도
보행동결 일상생활장애
Off파킨슨척도 1 정신
Off파킨슨척도 2 일상생활
Off파킨슨척도 3 운동증상
Off파킨슨척도 4 치료합병증
Off파킨슨척도 총점
Off호엔야단계
Off일상생활SE
Off진전점수
Off강직점수
Off기준구분

On파킨슨척도 1 정신
On파킨슨척도 2 일상생활
On파킨슨척도 3 운동증상
On파킨슨척도 4 치료합병증
On파킨슨척도 총점
On호엔야단계
On일상생활SE
On진전점수
On강직점수
On기준구분
버그균형척도점수
삼킴장애점수
우울증
우울증척도점수
불안증척도점수
피로척도점수
수면장애지수5 포괄
수면장애지수6 수면제
수면장애지수7 주간졸림
수면장애지수8 열정
수면장애지수9 수면질

PD 만

주간졸림점수
파킨슨수면지수
비운동증상 심폐점수
비운동증상 수면점수
비운동증상 정동점수
비운동증상 지각점수
비운동증상 집중점수
비운동증상 위장관점수
비운동증상 배뇨점수
비운동증상 성점수
비운동증상 기타점수
비운동증상 총점수
삶의질1 파킨슨점수
삶의질1 시스템점수
삶의질1 사회점수
삶의질1 정동점수
삶의질1 총점
삶의질2 총점
삶의질2 이동점수
삶의질2 일상생활
삶의질2 정동점수
삶의질2 낙인점수
삶의질2 지지점수
삶의질2 인지점수
삶의질2 소통점수
삶의질2 신체불편점수
삶의질2 요약지수
-

5

• 보행 FW/ BW (.csv)

Frame	LFHD_X	LFHD_Y	LFHD_Z	RFHD_X	RFHD_Y	RFHD_Z	LBHD_X	LBHD_Y	LBHD_Z	RBHD_X
362	-67.340721	1411.976563	1462.628540	51.518406	1423.178467	1465.475586	-56.401962	1258.044556	1418.646851	61.863815
363	-67.416672	1411.767822	1462.584351	51.419613	1422.962646	1465.438965	-56.486877	1257.829224	1418.596924	61.751884
364	-67.775475	1410.832275	1462.389526	50.997658	1421.992432	1465.258057	-56.841885	1256.835205	1418.351196	61.248287
365	-68.604591	1408.725220	1461.947876	50.092590	1419.817261	1464.827148	-57.603889	1254.555054	1417.787964	60.173237
366	-69.962646	1405.297607	1461.229614	48.665070	1416.319824	1464.127686	-58.820278	1250.876953	1416.919678	58.568161
367	-71.834389	1400.615234	1460.277832	46.730553	1411.585815	1463.198730	-60.522839	1245.996582	1415.812500	56.454872
368	-74.150299	1394.880737	1459.170410	44.350708	1405.806763	1462.100220	-62.736450	1240.180298	1414.518921	53.801968
369	-76.813843	1388.339478	1457.973389	41.622337	1399.231201	1460.895996	-65.407028	1233.652466	1413.104370	50.714859
370	-79.745056	1381.218018	1456.734375	38.655109	1392.107056	1459.627563	-68.376572	1226.602173	1411.655884	47.372490
371	-82.864052	1373.713501	1455.484253	35.527489	1384.639160	1458.324951	-71.477158	1219.134766	1410.261719	43.891838
372	-86.090096	1365.997437	1454.259644	32.290466	1376.980347	1457.031372	-74.629509	1211.363281	1408.977173	40.347275
373	-89.355042	1358.205566	1453.101807	28.995722	1369.241333	1455.790894	-77.790611	1203.461792	1407.818726	36.813416
374	-92.606773	1350.428467	1452.032349	25.689997	1361.497437	1454.648926	-80.929649	1195.570557	1406.789917	33.376350
375	-95.803459	1342.721802	1451.080078	22.436607	1353.822266	1453.654785	-84.039948	1187.811890	1405.911743	30.085451

39개의 마커

time-series xyz 측정값

• 보행 FW/ BW (.csv)

- 4m를 보행하는 동안 측정한 값 (보행 속도가 사람마다 다르므로 4m 보행에 걸리는 시간이 다름 따라서, 파일마다 측정값 row 길이가 다름)
- 100Hz로 측정 (1초에 100번 측정)

Frame	LFHD_X	LFHD_Y	LFHD_Z	RFHD_X	RFHD_Y	RFHD_Z	LBHD_X	LBHD_Y	LBHD_Z	RBHD_X
362	-67.340721	1411.976563	1462.628540	51.518406	1423.178467	1465.475586	-56.401962	1258.044556	1418.646851	61.863815
363	-67.416672	1411.767822	1462.584351	51.419613	1422.962646	1465.438965	-56.486877	1257.829224	1418.596924	61.751884
364	-67.775475	1410.832275	1462.389526	50.997658	1421.992432	1465.258057	-56.841885	1256.835205	1418.351196	61.248287
365	-68.604591	1408.725220	1461.947876	50.092590	1419.817261	1464.827148	-57.603889	1254.555054	1417.787964	60.173237
366	-69.962646	1405.297607	1461.229614	48.665070	1416.319824	1464.127686	-58.820278	1250.876953	1416.919678	58.568161
367	-71.834389	1400.615234	1460.277832	46.730553	1411.585815	1463.198730	-60.522839	1245.996582	1415.812500	56.454872
368	-74.150299	1394.880737	1459.170410	44.350708	1405.806763	1462.100220	-62.736450	1240.180298	1414.518921	53.801968
369	-76.813843	1388.339478	1457.973389	41.622337	1399.231201	1460.895996	-65.407028	1233.652466	1413.104370	50.714859
370	-79.745056	1381.218018	1456.734375	38.655109	1392.107056	1459.627563	-68.376572	1226.602173	1411.655884	47.372490
371	-82.864052	1373.713501	1455.484253	35.527489	1384.639160	1458.324951	-71.477158	1219.134766	1410.261719	43.891838
372	-86.090096	1365.997437	1454.259644	32.290466	1376.980347	1457.031372	-74.629509	1211.363281	1408.977173	40.347275
373	-89.355042	1358.205566	1453.101807	28.995722	1369.241333	1455.790894	-77.790611	1203.461792	1407.818726	36.813416
374	-92.606773	1350.428467	1452.032349	25.689997	1361.497437	1454.648926	-80.929649	1195.570557	1406.789917	33.376350
375	-95.803459	1342.721802	1451.080078	22.436607	1353.822266	1453.654785	-84.039948	1187.811890	1405.911743	30.085451

time-series xyz 측정값

• 그룹

1- PD

인원: 77

FW: 220

BW: 202

2- Control

인원: 22

FW: 66

BW: 69

• 해본 방법

- 1) z축 기준 LHEE RHEE 비교
- 2) simple CNN
- 3) **DFT**
- 4) Anormaly detection?

• 진행중인 방법

- 1) z축 기준 LHEE RHEE 비교
- 2) simple CNN
- 3) DFT
- 4) Anormaly detection

• 데이터 전처리 - phase 나누기

PCI (Phase coordination index)

- 하나의 보행 주기에서 그 보행 주기의 보폭 시간, 즉 한쪽 하지의 발뒤축 접지에서 동일한 하지의 다음 발뒤축접지까지의 시간을 연속적으로 비교하여 양 하지의 보폭시간의 차이를 정량화환 수치와 각각 의 보폭 시간차이의 변동계수를 합 한 수치
- Locomotion의 정확성 일관성 지속성을 나타내는 변수로서, 보폭시간의 차이를 투영법을 통해 다차원 분석 하여 계산하며, 수치를 통해 보행 협응력을 정량적으로 평가할 수 있음.
- 수치가 높을수록 양발의 보행 협응 능력이 떨어짐을 나타낸다. 정상인의 경우 3미만으로 나타남

2022.02.17 천상명 교수님 발표자료

• 데이터 전처리 - phase 나누기

1) z축 기준 LHEE - RHEE 비교

step 1. z축 기준 LHEE RHEE 겹치도록 shift shift 기준은 phase 1과 3

step 2. 컬럼 생성

- LHEE RHEE 넓이 차
- LHEE RHEE 변화량의 넓이 차
- 4m 보행의 걸음 수

step 3. k-means 클러스터링

1) z축 기준 LHEE - RHEE 비교

step 1. z축 기준 LHEE RHEE 겹치도록 shift shift 기준은 phase 1과 3

step 2. 컬럼 생성

- LHEE RHEE 넓이 차
- LHEE RHEE 변화량의 넓이 차
- 4m 보행의 걸음 수

step 3. k-means 클러스터링

1) z축 기준 LHEE - RHEE 비교

step 1. z축 기준 LHEE RHEE 겹치도록 shift shift 기준은 phase 1과 3

step 2. 컬럼 생성

- LHEE RHEE 넓이 차
- LHEE RHEE 변화량의 넓이 차
- 4m 보행의 걸음 수

step 3. k-means 클러스터링

LHEE RHEE 넓이 차

CONTROL |mean: 360.3548608730155 |std: 1565.5728372941462 PD |mean: 142.97332588461543 |std: 1830.5223180195273

LHEE RHEE 변화량의 넓이 차

CONTROL |mean: -0.0686737936507954 |std: 29.226771145607895 | PD |mean: 3.9423622564102545 |std: 27.75444782036892

PD/ Control 구분할 수 없음!!!

1) z축 기준 LHEE - RHEE 비교

step 1. z축 기준 LHEE RHEE 겹치도록 shift shift 기준은 phase 1과 3

step 2. 컬럼 생성

- LHEE RHEE 넓이 차
- LHEE RHEE 변화량의 넓이 차
- 4m 보행의 걸음 수

step 3. k-means 클러스터링

cluster 결과

PD/ Control 구분할 수 없음!!!

2) simple CNN

아이디어

- 테이블 데이터를 이미지로 변환해서 생각해보자
- 특성을 추출해서 비교하기 보다 모델이 직접 특성을 학습하도록 해보자
- 모델의 결과가 잘 나오면 XAI 기법들을 적용해서 특성을 역추적하면 되지 않을까

2) simple CNN

step 1. 이미지 형태로 데이터 생성

- xyz 각 채널
- 머리부터 발끝까지

step 2. row resize 200

- 4m 걸은 시간이 다르므로 짧은 사람 기준으로 resize

step 3. CNN

200 x 39 x 3

*시각화한 이미지 실제 색생은 의미 없음

2) simple CNN

step 1. 이미지 형태로 데이터 생성

- xyz 각 채널
- 머리부터 발끝까지

step 2. row resize 200

- 4m 걸은 시간이 다르므로 짧은 사람 기준의

step 3. CNN

class weight 적용
filter = 3x3
loss = binary crossentropy
optimizer = adam(lr=0.0001)
epochs = 100
early stopping(patience=5, loss)

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	99, 37, 16)	448
max_pooling2d (MaxPooling2D)	(None,	49, 36, 16)	0
zero_padding2d (ZeroPadding2	(None,	51, 38, 16)	0
conv2d_1 (Conv2D)	(None,	25, 18, 32)	4640
max_pooling2d_1 (MaxPooling2	(None,	12, 9, 32)	0
flatten (Flatten)	(None,	3456)	0
dense (Dense)	(None,	512)	1769984
dropout (Dropout)	(None,	512)	0
dense_1 (Dense)	(None,	64)	32832
dropout_1 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	1)	65
Total params: 1,807,969 Trainable params: 1,807,969 Non-trainable params: 0			

2) simple CNN

step 1. 이미지 형태로 데이터 생성

- xyz 각 채널
- 머리부터 발끝까지

step 2. row resize 200

- 4m 걸은 시간이 다르므로 짧은 사람 기준으

step 3. CNN

class weight 적용
filter = 1x7
loss = binary crossentropy
optimizer = adam(lr=0.0001)
epochs = 100
early stopping(patience=5, loss)

Layer (type)	Output	Shape ========	Param # ======
conv2d (Conv2D)	(None,	100, 33, 16)	352
max_pooling2d (MaxPooling2D)	(None,	50, 32, 16)	0
zero_padding2d (ZeroPadding2	(None,	52, 34, 16)	0
conv2d_1 (Conv2D)	(None,	26, 14, 32)	3616
max_pooling2d_1 (MaxPooling2	(None,	13, 7, 32)	0
flatten (Flatten)	(None,	2912)	0
dense (Dense)	(None,	512)	1491456
dropout (Dropout)	(None,	512)	0
dense_1 (Dense)	(None,	64)	32832
dropout_1 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	1)	65
Total params: 1,528,321 Trainable params: 1,528,321 Non-trainable params: 0			

2) simple CNN

결론

- 학습이 잘 되지 않는다.
 이미지 구성의 문제?
 데이터의 불균형의 문제?
 필터 적용의 문제?
 상관도가 높은 데이터의 특성 상 이미지로 생각하면 안되는 건지?
- 모델의 결과가 잘 나오면 XAI 기법들을 적용해서 특성을 역추적하면 되지 않을까 -> XAI는 성능 좋은 모델부터 만들고 생각해보기로

3) DFT

step 1. 주파수 공간으로 변환

- target : Z축

step 2. 가장 amplitude가 높은 주파수 추출

step 3. PD/ Controls 비교

- 가장 높은 amplitude의 히스토그램

3) DFT

step 1. 주파수 공간으로 변환

- target : Z축

step 2. 가장 amplitude가 높은 주파수 추출

step 3. PD/ Controls 비교

- 가장 높은 amplitude의 히스토그램

sampling rate = 100

3) DFT

step 1. 주파수 공간으로 변환

- target : Z축

step 2. 가장 amplitude가 높은 주파수 추출

step 3. PD/ Controls 비교

- 가장 높은 amplitude의 히스토그램

sampling rate = 100

3) DFT

3) DFT

추후

- DFT 세미나 이후 DFT 새로 적용
- 이미지 재구성 후 CNN
- channel wise attention 적용
- phase cycle을 나눠서 anormaly detection 쪽으로 생각해보는 것도? 데이터가 충분할 지 의문.

추후

- DFT 세미나 이후 DFT 새로 적용
- 이미지 재구성 후 CNN
- channel wise attention 적용
- phase cycle을 나눠서 anormaly detection 쪽으로 생각해보는 것도? 데이터가 충분할 지 의문.

- FW 데이터를 위주로만 보고 있음
- Z축을 위주로 진행했음

- XYZ 모두를 고려해서 살펴볼 방법
- 환자 정보도 활용할 방법
- 특성을 찾아야하는 목표에 따라 모델 생성 후 예측을 잘하는 것 이후에 특성을 찾을 방법

END