

CZYM JEST GNS?

01

GNS - GRAPHICAL NETWORK SIMULATOR

Jest to graficzny symulator sieci dostępny na Windows, MAC, Linux. Działa na darmowej licencji GPL. Pozwala na planowanie, projektowanie i testowanie sieci (pod kątem funkcjonalności, wydajności czy bezpieczeństwa).

OBSZARY 02 WYKORZYSTANIA GNS3

Projektowanie i testowanie sieci

Zaprojektuj sieć i sprawdź jej działanie przed wdrożeniem

Testy bezpieczeństwa

Przekonaj się czy Twój projekt sieci zawiera podatności, przeprowadź atak i przetestuj działanie mechanizmów bezpieczeństwa

Poszerzanie wiedzy

Pracuj na emulowanym drogim sprzęcie siecowym przygotuj się do certyfikacji

Testowanie urządzeń przed włączeniem ich do sieci

Sprawdź wpływ nowego sprzętu na Twoją sieć

Możliwości 03 GNS3

Emulacja obrazów routerów CISCO

Dzięki **Dynamips** możemy emulować prawdziwe obrazy routerów CISCO. Nie posiada oficjalnego wsparcia CISCO oraz nie umożliwia emulowania switchy (z powodu ich architektury)

IOS on Unix (IOU)

IOU uruchamia obrazy IOS CISCO w środowisku unixsowym. Umożliwia uruchomiecie obrazów takżę urządzeń warstwy drugiej- przełączników. Zużywa też mniej zasobów niż Dynamips. Do działania w systemie WIndows wymaga maszyny wirtualnej GNS3VM.

Uruchamianie maszyn wirtualnych sprzętu sieciowego innych producentów

IOU pozwala nam uruchomić specjalnie przygotowane obrazy routerów, switchy, firewalli i wielu innych.

Dodanie do sieci systemów serwerowych i klienckich

Do projektu sieci można dodać obrazy systemów uruchomione np. za pomocą WMware czy VirtualBoxa. Dzięki temu symulowana sieć może być kompletna. Można takżę użyć VPCS - symulowanego komputera z podstawowymi funkcjami, takimi jak ping.

Podsłuchiwanie i analiza ruchu sieciowego

Ruch pakietów w symulowanej sieci można podsłuchać za pomocą sniffera, np. Wireshark.

PRZYKŁAD

Stworzymy teraz prostą topologię sieciową, by pokazać możliwości rozwiązania GNS3. Zaczniemy od stworzenia szablonu routera CISCO 2600.

Wybieramy urządzenie z listy

Appliances from server

Select one or more appliances to install. Update will request the server to download appliances from our online registry.

Po prawidłowym dodaniu router pojawi się na liście

Router 2600 ma budowę modułową. Dodajmy mu więc

moduły z portami

Moduł **NM-4E** zawiera 4 porty Ethernet Moduł **WIC-2T** zawiera 2 porty szeregowe

Połączmy nasze routery. Z menu po lewej stronie wybieramy opcję z ikoną kabla. Następnie łączymy router R1 z R2 używając portów Serial0/0, a R1 z R3 portami Serial0/1.

Do każdego routera będzie podpięty jeden przełącznik. Użyjemy przełączników wbudowanych w GNS3. Aby dodać przełączniki wybieramy opcję z symbolem przełącznika z listy po lewej stronie.

Podłączmy każdy z przełączników do portu e0/0 w odpowiednim routerze.

W kolejnym kroku do każdego z przełączników podłączmy dwa komputery. Możemy użyć VPCS wbudowanych w program. Aby je dodać z listy wybieramy opcję z ikoną komputera i wybieramy z listy VPCS.

Następnie podłączmy komputery do przełączników. Nasza sieć wygląda następująco. Przechodzimy teraz do jej konfiguracji.

Musimy teraz skonfigurować routery. Do połączeń z nimi użyjemy programu Putty. Należy w ustawieniach GNS3 wybrać Putty do połączeń terminalowych.

Musimy teraz skonfigurować routery. Do połączeń z nimi użyjemy programu Putty. Należy w ustawieniach GNS3 wybrać Putty do połączeń terminalowych.

Uruchomimy teraz wszystkie maszyny klikając zielony przycisk na górnym pasku

Aby skonfigurować router R1 wybieramy opcję "Console" w menu rozwijanym routera.

Konfigurujemy interfejsy routera używając następujących komend:

enable - przejście do trybu
uprzywilejowanego EXEC
configure terminal - tryb konfiguracji
globalnej
interface [nazwa] - wejście w
konfigurację interfejsu
ip address [ip] [maska] - nadanie ip i
maski sieci
no shutdown - podniesienie interfejsu

Konfiguracja interfejsów routera R2:

clock rate [wartosc] - ustawienie zegara dla interfejsu szeregowego

```
R2
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int s0/0
R2(config-if)#ip add 10.0.0.2 255.255.255.252
R2(config-if)#no shut
R2(config-if)#clock -rate
*Mar 1 00:09:50.255: %LINK-3-UPDOWN: Interface SerialO/O, changed state to up
R2(config-if)#clock -rate
*Mar 1 00:09:51.261: %LINEPROTO-5-UPDOWN: Line protocol on Interface SerialO/0,
changed state to up
R2(config-if)#clock rate 64000
R2(config-if)#int e0/0
R2(config-if)#ip add 192.168.1.1 255.255.255.0
R2(config-if)#no shut
R2(config-if)#
*Mar 1 00:10:35.433: %LINK-3-UPDOWN: Interface Ethernet0/0, changed state to up
*Mar 1 00:10:36.435: %LINEPROTO-5-UPDOWN: Line protocol on Interface EthernetO/
O, changed state to up
R2(config-if)#
```

Konfiguracja interfejsów routera R3:

```
₫<sup>®</sup>
                                    R3
                                                                            R3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)#int s0/1
R3(config-if)#ip add 10.0.0.6 255.255.255.252
R3(config-if)#no shut
R3(config-if)#clock rate
*Mar 1 00:14:50,247: %LINK-3-UPDOWN: Interface SerialO/1, changed state to up
R3(config-if)#clock rate 64
*Mar 1 00:14:51,257: %LINEPROTO-5-UPDOWN: Line protocol on Interface SerialO/1,
 changed state to up
R3(config-if)#clock rate 64000
R3(config-if)#int e0/0
R3(config-if)#ip add 192,168,2,1 255,255,255,0
R3(config-if)#n
*Mar 1 00:15:12.375: %LINEPROTO-5-UPDOWN: Line protocol on Interface SerialO/1,
 changed state to down
R3(config-if)#no shut
R3(config-if)#
*Mar 1 00:15:17.243: %LINK-3-UPDOWN: Interface Ethernet0/0, changed state to up
*Mar 1 00:15:18,245: %LINEPROTO-5-UPDOWN: Line protocol on Interface EthernetO/
O, changed state to up
R3(config-if)#
```

Skonfigurujemy teraz serwer DHCP na każdym z routerów w następujący sposób. Tutaj przykład dla routera R1.

```
R1(config)#ip dhcp pool pula1
R1(dhcp-config)#network 192,168,0,0 255,255,255,0
R1(dhcp-config)#def
R1(dhcp-config)#default-router 192,168,0,1
R1(dhcp-config)#exit
R1(config)#ip dhcp ex
R1(config)#ip dhcp excluded-address 192,168,0,1
R1(config)#
```

Przyszedł czas na skonfigurowanie routingu między sieciami. Użyjemy do tego protokołu routingu dynamicznego EIGRP.

```
R1(config)#router eigrp 100
R1(config-router)#network 10.0.0.0
R1(config-router)#network 192.168.0.0
R1(config-router)#network 10.0.0.4
R1(config-router)#
```

Polecenie **router eigrp 100** uruchamia proces routingu EIGRP.
Poleceniami **network** podajemy sieci bezpośrednio podłączone do routera.

Na każdym z komputerów ustawmy pobieranie adresu ip przez DHCP.

Sprawdźmy połączenia:

```
PC6> ping 192,168,1,3
84 bytes from 192,168,1,3 icmp_seq=1 ttl=61 time=50,660 ms
84 bytes from 192,168,1,3 icmp_seq=2 ttl=61 time=46,391 ms
84 bytes from 192,168,1,3 icmp_seq=3 ttl=61 time=37,423 ms
84 bytes from 192,168,1,3 icmp_seq=4 ttl=61 time=45,968 ms
84 bytes from 192,168,1,3 icmp_seq=5 ttl=61 time=46,176 ms
PC6>
```

```
R2(config-if)#do ping 192.168.0.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 20/24/32 ms

R2(config-if)#
```

Źródła:

- https://docs.gns3.com/
- https://niebezpiecznik.pl/post/gns3-darmowy-symulator-sieci/
- https://www.nastykusieci.pl/gns3-wprowadzenie/

DZIĘKUJEMY ZAUWAGĘ

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Please keep this slide for attribution.