Project name :Retail Store Stock Inventory Analytics

1.Loading Datasets into tools

In [1]:

2.Performing Visualization

Univariate Analysis

In [5]:
data.head()

Out[5]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

Out[6]:

In [7]:

plt.hist(data['Diameter'])

Out[7]:
(array([13., 66., 180., 344., 513., 812., 1017., 934., 275., 23.]),
array([0.055 , 0.1145, 0.174 , 0.2335, 0.293 , 0.3525, 0.412 , 0.4715, 0.531 , 0.5905, 0.65]),

In [8]:

plt.plot(data['Diameter'].head(10))

```
Out[8]:
```

In [9]:

```
0.425 -

0.400 -

0.375 -

0.350 -

0.300 -

0.275 -

0.250 -

0 2 4 6 8
```

[]

```
plt.pie(data['Diameter'].head(),autopct='%.3f')
Out[9]:
```

```
([,
,
,
,
],
[Text(0.8507215626110557, 0.6973326486753676, ''),
Text(-0.32611344931648134, 1.0505474849691026, ''),
Text(-1.0998053664078908, -0.02069193128747144, ''),
Text(-0.08269436219656089, -1.096887251480709, ''),
Text(0.9758446362287218, -0.5076684409569241, '')],
[Text(0.46402994324239394, 0.3803632629138369, '21.856'),
Text(-0.17788006326353525, 0.5730259008922377, '15.868'),
Text(-0.5998938362224858, -0.011286507974984419, '25.150'),
Text(-0.045106015743578656, -0.5983021371712958, '21.856'),
Text(0.5322788924883937, -0.2769100587037768, '15.269')])
```


sns.distplot(data['Diameter'].head(300))

In [10]:

Out[10]:

plt.scatter(data['Diameter'].head(400),data['Length'].head(400))

In [11]:

Out[11]:

In [12]:

plt.bar(data['Sex'].head(20),data['Rings'].head(20))
plt.title('Bar plot')
plt.xlabel('Diameter')
plt.ylabel('Rings')

Out[12]:

sns.barplot(data['Sex'], data['Rings'])

In [13]:

Out[13]:

sns.jointplot(data['Diameter'].head(50),data['Rings'].head(100))

In [14]:

Out[14]:

sns.barplot('Diameter','Rings', hue='Sex', data=data.head())
Out[15]:

sns.lineplot(data['Diameter'].head(),data['Rings'].head())

In [17]:

Out[17]:

 $\label{local_local_local_local} In \ [16]: \\ sns.boxplot(data['Sex'].head(10),data['Diameter'].head(10),data['Rings'].head(10))$

Out[16]:

fig=plt.figure(figsize=(8,5))
sns.heatmap(data.head().corr(),annot=True)

Out[18]:

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.3

In [18]:

Length -	1	0.99	0.86	0.99	0.97	0.98	0.99	0.51
Diameter -	0.99	1	0.87	1	0.99	0.99	1	0.55
Height -	0.86	0.87	1	0.87	0.83	0.92	0.9	0.13
Whole weight -	0.99	1	0.87	1	0.99	0.99	1	0.54
Shucked weight -	0.97	0.99	0.83	0.99	1	0.98	0.98	0.65
Viscera weight -	0.98	0.99	0.92	0.99	0.98	1	1	0.48
Shell weight -	0.99	1	0.9	1	0.98	1	1	0.5
Rings -	0.51	0.55	0.13	0.54	0.65	0.48	0.5	1
	Length -	Diameter -	Height -	Whole weight -	Shucked weight -	Viscera weight -	Shell weight –	Rings -

In [21]:
sns.pairplot(data.head(), hue='Height')
Out[21]:

	In [19]:
<pre>sns.pairplot(data.head())</pre>	
	Out[19]:

3. Perform Descriptive Statistics on the dataset

data.head()

Out[22]:

In [22]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

data.tail()

Out[23]:

In [23]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

In [24]:

data.info()

RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64

```
Viscera weight 4177 non-null float64
```

Shell weight 4177 non-null float64 Rings 4177 non-null int64 7

8

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

data.describe()

In [25]:

								Out[25]:
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
cou nt	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000
_								In [27]:

data.mode().T

Out[27]:

0 1

Sex M NaN

0.55 0.625 Length

Diameter 0.45 NaN

Height 0.15 NaN

Whole weight 0.2225 NaN 0 1

Shucked weight	0.175	NaN
Viscera weight	0.1715	NaN
viscera weight	0.1713	rarv
Shell weight	0.275	NaN
Rings	9.0	NaN
Kings	9.0	INAIN
data.shape		
(4177, 9)		
d = 1 - 1 - 1 - 1 - 1		
data.kurt()		
Length		0.06462
Diameter Height		-0.04547 76.02550
Whole weight	5	-0.02364
Shucked weig Viscera weig		0.59512 0.08401
Shell weight		0.53192
Rings dtype: float	- 6 /	2.33068
dtype, lloat	204	
data.skew()		
I on a th	_	_0 620072
Length Diameter		-0.639873 -0.609198
Height	_	3.128817
Whole weight Shucked weig		0.530959 0.719098
Viscera weig Shell weight		0.591852 0.620927
Rings		1.114102
dtype: float	:64	
data.var()		
Length Diameter		0.01442
Height		0.00175
Whole weight Shucked weig		0.24048
Viscera weig	ght	0.01201
Shell weight Rings	Ţ.	0.01937 10.39526
dtype: float	: 64	_0.00020

In [31]:

data.nunique()

Out[31]:

Sex	3
Length	134
Diameter	111
Height	51
Whole weight	2429
Shucked weight	1515
Viscera weight	880
Shell weight	926
Rings	28
1	

dtype: int64

4. Check for missing values and deal with them

In [32]:

data.isna()

Out[32]:

								`	J 4 ([J _].
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
•••									
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

```
data.isna().any()
                                                                                                  Out[33]:
Sex False
Length False
Diameter False
Height False
Whole weight False
Shucked weight False
Viscera weight False
Shell weight False
Rings False
                        False
Rings
dtype: bool
                                                                                                   In [34]:
data.isna().sum()
                                                                                                  Out[34]:
                         0
Sex
Length
                       0
Diameter
Height
                       0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight
                       0
Rings
dtype: int64
                                                                                                   In [36]:
data.isna().any().sum()
                                                                                                  Out[36]:
5. Find the outliers and replace them outliers
                                                                                                   In [37]:
sns.boxplot(data['Diameter'])
                                                                                                  Out[37]:
```


quant=data.quantile(q=[0.25,0.75])
quant

Out[38]:

In [38]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	8.0
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	11.0

In [40]:

iqr=quant.loc[0.75]-quant.loc[0.25]
iqr

Out[40]:

0.1650
0.1300
0.0500
0.7115
0.3160
0.1595
0.1990
3.0000

dtype: float64

In [41]:

low=quant.loc[0.25]-(1.5*iqr) low

Out[41]:

Length 0.20250
Diameter 0.15500
Height 0.04000

dtype: float64

up=quant.loc[0.75]+(1.5*iqr)

up

Length 0.86250 Diameter 0.67500 Height 0.24000 Whole weight 2.22025 0.97600 Shucked weight Viscera weight 0.49225 Shell weight 0.62750 15.50000 Rings

dtype: float64

In [43]:

In [42]:

Out[42]:

data['Diameter']=np.where(data['Diameter']<0.155,0.4078,data['Diameter'])
sns.boxplot(data['Diameter'])</pre>

Out[43]:

In [44]:

sns.boxplot(data['Length'])

Out[44]:

data['Length']=np.where(data['Length']<0.23,0.52, data['Length'])
sns.boxplot(data['Length'])</pre>

Out[45]:

In [45]:

sns.boxplot(data['Height'])

In [46]:

Out[46]:

In [47]:

data['Height']=np.where(data['Height']<0.04,0.139, data['Height'])
data['Height']=np.where(data['Height']>0.23,0.139, data['Height'])
sns.boxplot(data['Height'])

Out[47]:

In [48]:

sns.boxplot(data['Whole weight'])

Out[48]:

In [49]:
data['Whole weight']=np.where(data['Whole weight']>0.9,0.82, data['Whole
weight'])
sns.boxplot(data['Whole weight'])

sns.boxplot(data['Shucked weight'])

In [50]:

Out[49]:

Out[50]:

In [51]:

data['Shucked weight']=np.where(data['Shucked weight']>0.93,0.35,
data['Shucked weight'])
sns.boxplot(data['Shucked weight'])

Out[51]:

In [52]:

Out[52]:

sns.boxplot(data['Viscera weight'])

In [53]:

data['Viscera weight']=np.where(data['Viscera weight']>0.46,0.18,
data['Viscera weight'])
sns.boxplot(data['Viscera weight'])

Out[53]:

In [54]:

Out[54]:

sns.boxplot(data['Shell weight'])

In [55]:
data['Shell weight']=np.where(data['Shell weight']>0.61,0.2388, data['Shell
weight'])
sns.boxplot(data['Shell weight'])

Out[55]:

6.Check for Categorical columns and perform encoding.

 $\label{lambdata} \mbox{ data['Sex'].replace({'M':1,'F':0,'I':2},inplace=$True)$ data}$

In [56]:

Out[56]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••									
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605	10
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080	9
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960	10
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950	12

4177 rows × 9 columns

7. Split the data into dependent and independent variables.

In [57]:

x=data.drop(columns= ['Rings'])
y=data['Rings']
x

Out[57]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight		
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550		
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550		
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490		
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605		
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080		
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960		
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950		
4177 rows × 8 columns										
								In [58]:		
У								Out[58]:		
0 1	15 7									
2	9									
3	10									
4	7									
4172	11									
4173	10									
4174	1.0									
4175 4176	10 12									
			gth: 417	7, dty	pe: int64					
Name: Rings, Length: 4177, dtype: int64 8.Scale the independent variables										
								In [59]:		
<pre>from sklearn.preprocessing import scale x = scale(x) x</pre>										
								Out[59]:		
array([[-0.0105225 , -0.67088921, -0.50179694,, -0.61037964, -0.7328165 , -0.64358742],										
	[-C	.01052		613760	82, -1.57304	4487,, -	1.22513334,			
	[-1	.26630		002590	51, 0.08738	3942,, -	0.45300269,			

. . . ,

```
1.08111018, 0.56873549],
       [-1.26630752, 0.85566483, 0.78370057, ..., 0.89699645,
         0.82336724, 0.47666033],
       [-0.0105225, 1.61894185, 1.53357412, ..., 0.00683308,
         1.94673739, 2.00357336]])
9. Split the data into training and testing
                                                                      In [60]:
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2)
print(x train.shape, x test.shape)
(3341, 8) (836, 8)
10.Build the Model
                                                                      In [61]:
from sklearn.linear model import LinearRegression
MLR=LinearRegression()
11.Train the model
                                                                      In [62]:
MLR.fit(x train,y_train)
                                                                     Out[62]:
LinearRegression()
12.Test the model
                                                                      In [63]:
y pred=MLR.predict(x test)
y_pred
                                                                     Out[63]:
array([11.98970767, 9.46980168, 4.35025346, 8.48565951, 13.45658605,
        6.79469942, 11.05392311, 10.58127683, 10.86210502, 11.12758326,
       10.30538487, 7.59007537, 9.72358432, 10.93426172, 7.7700162,
        8.18401367, 13.00426089, 9.00766398, 7.88678041, 10.74517579,
       11.0364535 , 11.17721077, 10.28249725, 8.05769153, 10.03833697,
       12.08213167, 11.26672758, 9.48152993, 12.03100216, 10.50622097,
        9.62474771, 11.53617875, 10.4263722 , 7.42842768, 8.45541483,
        7.75334244, 10.01917083, 10.30704137, 11.431343 , 7.53701438,
       11.68998408, 5.81786965, 11.91290164, 10.46313361, 9.05947091,
        7.47445677, 8.09696943, 10.94896005, 11.35845534, 9.63959737,
        6.88737575, 10.50248168, 12.76790041, 11.02103028, 10.72490686,
        7.1508855 , 7.31893241, 10.23197194, 9.36561869, 8.78050407,
        9.45441901, 6.21239092, 9.15676042, 10.50354829, 7.94642124,
       11.30220996, 14.78546011, 10.65179623, 11.27573463, 6.22170813,
       10.61988512, 7.31363897, 10.18320192, 12.65074413, 8.53154805,
       10.08650898, 6.19428344, 9.19233924, 5.88918593, 9.83478369,
        9.13470566, 10.97642799, 10.14764678, 9.22926113, 8.87803015,
        8.92596367, 7.76736095, 13.08650929, 10.12176844, 10.85091207,
       12.61153724, 12.71571095, 9.15302103, 7.57808902, 10.32748718,
        9.99261727, 9.48924954, 9.44324015, 11.61404884, 8.48033306,
       14.55887537, 8.84876869, 5.92235587, 8.9315552, 11.16910548,
        8.49017686, 10.25918005, 13.200296 , 12.34085468, 9.72937226,
       11.16389598, 7.59160183, 8.01797072, 11.04378886, 9.13215097,
       12.56460677, 6.70468796, 6.25290802, 10.94584676, 9.89511691,
        9.86155519, 10.50629574, 9.47791399, 11.32819595, 10.52565937,
       10.0952434 , 12.22174724, 9.25466345, 11.06032529, 11.05791947,
```

[-0.0105225, 0.63117159, 0.67657577, ..., 0.86994729,

```
11.20692934, 6.27165522, 10.2597939 , 6.05958795, 11.84180734,
 9.51324936, 11.10403617, 8.51681268, 6.87414708, 11.0534178,
10.47536081, 7.69623789, 6.54885131, 12.05953806, 8.02831225,
11.15932263, 9.3998229, 10.98826636, 6.67910868, 7.34969915,
 8.29323306, 7.11219176, 12.36068754, 10.45505288, 10.06950877,
11.31352789, 11.22708933, 9.26772284, 15.37459416, 10.39687749,
7.48942603, 7.43919586, 8.56702744, 10.56661638, 8.69790757,
8.69900354, 9.70433871, 12.45513696, 9.06979795,
                                                    7.33775194,
12.54853448, 11.33786339, 12.91861026, 8.99145307, 9.58790903,
10.15999757, 6.99659744, 8.54220143, 8.83625241, 11.51620819,
 9.91540092, 6.45166428, 9.01809321, 8.40148903, 10.92052964,
11.77330948, 13.21358276, 7.93174441, 7.73811714, 11.8514039,
 9.3629353 , 12.01208042, 11.46067991, 11.2145525 , 10.1537862 ,
11.78691293, 8.6159141, 8.0345903, 11.19924006, 6.07702876,
12.22598843, 10.28666776, 9.37219576, 10.28209301, 10.80978669,
 6.84411822, 6.75738384, 9.89174901, 10.8057265 , 10.95543545,
 8.67066232, 7.51609598, 10.05199564, 4.33368961, 7.51850764,
 7.38632949, 6.22209359, 9.92009278, 10.98554571, 8.05400193,
 8.55432047, 12.557745 , 6.95202282, 11.31348709, 8.87529663,
10.93385273, 7.54928915, 11.6300183, 11.44218534, 5.78931976,
12.49431519, 12.31374534, 7.96476778, 10.96488911, 8.91553212,
10.61802317, 10.46072562, 11.01481376, 7.29274609, 10.98181832,
 8.36932481, 7.93335475, 10.92396191, 9.98631275, 10.45144238,
11.68006486, 12.39306153, 12.51912362, 10.85346179, 10.09920043,
8.99612506, 8.33007559, 8.46055934, 12.41294996, 6.28122827,
11.66257551, 11.28179299, 6.40482713, 10.14364931, 11.49977723,
 9.08487352, 10.33058586, 6.87975583, 11.64778127, 11.53592909,
12.81952526, 8.55840393, 10.75012221, 12.35704165, 11.19847421,
10.31126561, 9.95138633, 8.26147815, 13.13786087, 8.41200902,
12.89446352, 11.82768916, 11.55259894, 10.37430721, 11.0365319,
 9.66145111, 10.01550916, 6.96324092, 9.02232749, 10.64481532,
 6.49374833, 11.00904362, 6.47952614, 4.38044105, 10.0113065,
 6.94874045, 10.31092562, 8.82540608, 8.77580186, 10.88409155,
 7.45660975, 11.36474912, 12.61117106, 9.85303714, 7.36049074,
 8.89496314, 7.082777 , 11.87166823, 10.13176552, 8.66850516,
 9.8595539 , 11.40795575, 10.13004898, 9.67257272, 9.27226953,
 7.05876205, 10.38629473, 9.9183537, 6.39571126, 11.20103927,
 9.11160373, 11.54439648, 9.43154309, 11.27760992, 7.15053591,
 7.49686717, 8.16152255, 10.6304907, 10.39958866, 13.81917824,
 7.73665253, 11.56863404, 11.11923999, 11.02312742, 12.43760706,
10.54216738, 7.03544758, 7.92746952, 12.62036327, 11.0518507, 13.79306817, 11.40966613, 8.57260153, 9.61887077, 8.78586985,
7.62207439, 14.49729943, 9.22560928, 7.79522065, 12.38573781,
10.01444924, 12.4981958, 2.69352628, 12.0367661, 11.00748475,
 8.67197729, 11.56578835, 10.66616118, 8.95876612, 9.69713882,
13.77717207, 7.62695249, 7.92474221, 10.86440884, 12.66220701,
10.05035722, 10.63893624, 12.51438367, 11.79143184, 10.43388926,
12.0538815 , 9.16760983, 10.3997367 , 12.25841497, 9.59377615,
10.21161787, 10.60544448, 9.1857429, 9.86347979, 8.06925446,
11.48104538, 12.8386074 , 10.8057051 , 6.35270699, 10.66048644,
12.45355308, 13.40150842, 11.30445608, 10.97624435, 9.67861027,
12.07952904, 9.29613519, 11.95769977, 6.54546175, 10.82073305,
8.96802109, 9.27635823, 14.38975458, 13.24436306, 14.58928867,
4.44384194, 7.95649597, 11.13273261, 11.51805189, 6.621585 ,
12.62138527, 7.90855687, 10.81479734, 10.47903873, 13.22252751,
 7.16509427, 11.80086509, 8.74728871, 12.20209111, 9.91672166,
10.16692974, 7.01559344, 10.74680738, 11.35253004, 6.64181211,
```

```
11.3860844 , 6.42593572, 11.97648173, 6.18697602, 11.77888753,
12.21347787, 6.7690112 , 11.70511659, 7.6117017 , 11.51648253,
 6.18796819, 10.93530666, 12.10009315, 8.81526239, 10.69731857,
 7.39161721, 7.9726238, 4.94229834, 12.52608259, 6.59221814,
11.62914567, 14.66591795, 10.04730906, 10.59421052, 8.4180404,
 9.68319755, 9.77954136, 9.97255092, 6.86561885, 10.28625124,
10.64611193, 12.2988038 , 12.23930539, 6.67852213, 9.02526566, 11.42157697, 11.187776 , 9.43527149, 12.49318339, 12.78299183,
 7.08211364, 10.85710975, 9.21955595, 6.79008878, 10.53617029,
13.78305976, 10.78614302, 10.90046572, 10.90127153, 11.16020975,
 8.84399499, 8.99352892, 12.52979327, 10.56331841, 9.89599114,
4.31352908, 12.01743913, 7.78897804, 9.18089091, 8.37694031, 15.70720302, 11.22378731, 7.9017382, 6.01630207, 10.16310964,
10.04174403, 10.2299612 , 11.84550486, 14.96717852, 8.63052259,
11.25062476, 11.85815833, 8.33248328, 10.31124261, 10.6031685,
 7.65453339, 13.23976972, 6.56257536, 13.46671177, 10.41887953,
 7.26279948, 9.30697912, 8.02192369, 8.52641326, 8.9791074,
 8.52820448, 11.40488569, 8.45161259, 7.48334235, 10.91140629,
10.12952478, 6.6214448, 6.05589595, 6.26471274, 10.14679879,
 9.79983407, 10.47363519, 7.81554591, 11.77865161, 13.16538742,
 9.11926083, 10.92992814, 9.76736177, 11.48245634, 12.60394962,
 7.05161648, 10.91416042, 9.19303431, 13.11362943, 6.72079541,
 7.04445141, 11.73052881, 11.0963064, 10.89167605, 10.73119002,
12.03834379, 7.69185783, 9.74375431, 9.91292185, 10.69291234,
11.04294615, 7.76233663, 6.07445064, 8.74203555, 8.87087
11.02251961, 12.88965993, 8.29031222, 9.39467669, 9.85264396,
 8.12126927, 10.08490342, 9.6537145 , 11.29761265, 8.84331006,
 9.25172376, 8.96288504, 12.50308297, 8.0866498, 10.28888347,
 9.86514864, 11.41650989, 9.56875042, 12.06793833, 10.44085615,
10.47281497, 10.59714391, 8.29467118, 12.73670772, 9.75416984,
10.6910441 , 10.51225051, 9.05798559, 10.59974781, 9.34252427,
11.01995598, 9.89017963, 14.42517774, 10.25862631, 7.73163556,
10.50428733, 10.4288323 , 8.68461102, 12.05319323, 12.4912229 ,
 7.53807642, 10.41394024, 10.9060969 , 6.25620361, 8.09352181,
 7.13549639, 7.10943471, 8.68218033, 11.86435153, 11.02202925,
 6.82440531, 7.19642455, 8.36539554, 8.66074342, 5.77351113,
 8.56726216, 10.19189078, 7.09798298, 6.82555216, 8.95946546,
11.10620544, 11.02334221, 6.74575303, 6.81306037, 17.14870858,
 8.19446209, 9.7375027, 7.49500302, 9.00718172, 10.50682672,
15.33787375, 10.53108412, 9.20034674, 6.53636246, 11.84166127,
 2.97481759, 13.28246562, 10.50833363, 15.71347233, 8.45407386,
 7.09160646, 11.67573889, 6.90528138, 4.69578382, 10.83134934,
 9.37614306, 11.00591133, 11.26626933, 8.07227978, 8.56575064,
12.21783805, 11.477709 , 10.06461557, 7.08264276, 10.60070852,
12.49884778, 9.5865514, 11.75790741, 9.23580915, 15.72052526,
 6.96030707, 6.15241871, 7.34907551, 10.80006787, 12.81139338,
 7.26019008, 16.5035662 , 11.39427639, 12.0002038 , 10.94233559,
 7.45411577, 9.71671377, 7.89541149, 11.30832976, 9.06252517,
 7.90653983, 12.84587742, 10.571125 , 12.24558569, 11.49487769,
10.53404219, 9.48091145, 6.04643574, 12.73978399, 9.54057225,
 8.69035521, 9.40407186, 11.42988129, 9.1968477, 7.58155556,
 9.90912663, 4.3520971, 9.22135181, 6.53719435, 12.58949867, 8.79240413, 10.93496993, 8.37262522, 14.61774694, 7.94775012,
10.20341831, 6.93445252, 10.35517654, 9.62817455, 10.37925353,
 9.79957436, 6.37895301, 8.78715452, 9.99837187, 11.68459741,
 6.05062105, 13.06843093, 10.4019314 , 10.37522707, 10.73835238,
 6.6275382 , 7.82748258, 10.45556032, 8.00963757, 11.33195157,
```

```
10.89142905, 10.25258865, 10.49159937, 11.74669226, 6.3778602,
       10.82409638, 9.46339333, 6.97630421, 14.43511842, 12.48325824,
        6.96278097, 13.3221863 , 10.80645439, 11.13173137, 13.05577552,
       13.21975929, 8.7269004, 6.40051175, 11.21099258, 7.66764097,
       11.48936858, 11.16093438, 11.3078443 , 12.34900535, 9.69859439,
       10.02892479, 8.95551555, 10.48629806, 10.49867729, 13.29695595,
       10.64641562, 11.59699928, 14.18970031, 11.16320111, 9.54906374, 6.09918895, 10.98606479, 10.30456213, 10.0086629, 10.1970695,
       10.18228559, 12.0851079 , 12.76899478, 9.77952062, 9.32532135,
       12.04402426, 3.17707892, 10.49521104, 13.66227972, 8.08854334,
        9.50144139, 9.66975835, 11.98675769, 9.75782096, 12.49025094,
        6.76157656, 11.13049243, 10.28132699, 6.62139505, 7.94951482,
        6.44211066, 10.44391664, 11.37658744, 12.19602318,
                                                             9.66524717,
       11.18015482, 10.44134489, 11.02877945, 11.59165727, 11.34421605,
        7.06510084, 11.51476068, 10.55369348, 13.06817066, 9.87793135,
       11.31816048, 7.67131359, 13.0146992, 8.43633425, 10.45356196,
        7.41517663, 11.41891131, 7.22447122, 13.11381749, 10.04809098,
        8.93776262, 8.99559368, 8.92586829, 12.75122002, 11.15451423,
        6.83172658, 8.56420477, 8.66984518, 11.73983658, 10.17432078,
       11.76057733, 6.79466608, 10.89339441, 11.16882175, 10.80792376,
       10.88570472, 9.07605534, 11.52394349, 10.92403653, 8.33777207,
        8.82946222, 11.44152531, 10.51215556, 6.81328904, 8.954938 ,
        6.38143593, 6.25775954, 8.90652966, 11.62298011, 8.88096547,
                     9.42464492, 11.87174067, 8.6647173 , 10.8092521 ,
        8.77541787,
        9.52452318, 10.6367846 , 13.285861 , 11.20171482, 10.98622665,
       11.48839113, 11.52502121, 12.32588484, 6.63384375, 10.82116114,
       10.24621482, 8.96253033, 13.44621885, 6.94038277, 8.74830537,
       10.97918968])
                                                                         In [64]:
pred=MLR.predict(x train)
pred
                                                                       Out[64]:
array([ 9.92784979, 10.35813798, 6.56020653, ..., 9.24069844,
        8.53446807, 10.25800281])
                                                                        In [65]:
from sklearn.metrics import r2 score
accuracy=r2_score(y_test,y_pred)
accuracy
                                                                       Out[65]:
0.4989573317530529
                                                                        In [66]:
MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
                                                                       Out[66]:
array([9.87970961])
13. Measure the performance using Metrics
                                                                        In [67]:
from sklearn import metrics
from sklearn.metrics import mean squared error
np.sqrt(mean squared error(y test,y pred))
                                                                       Out[67]:
2.2952783609522607
LASSO
                                                                         In [68]:
```

```
from sklearn.linear model import Lasso, Ridge
#intialising model
lso=Lasso(alpha=0.01, normalize=True)
#fit the model
lso.fit(x train, y train)
Lasso(alpha=0.01, normalize=True)
#prediction on test data
lso pred=lso.predict(x test)
#coef
coef=lso.coef
coef
                                                                     Out[68]:
                             , 0.
                 , 0.
array([-0.
                                           , 0.46241716, 0.20671087,
                              , 0.74636559])
        0.
                  , 0.
                                                                     In [69]:
from sklearn import metrics
from sklearn.metrics import mean squared error
metrics.r2 score(y test,lso pred)
                                                                     Out[69]:
0.38322738481767316
                                                                     In [70]:
np.sqrt(mean_squared_error(y_test,lso_pred))
                                                                     Out[70]:
2.5465989046842914
RIDGE
                                                                     In [71]:
#initialising model
rg=Ridge(alpha=0.01, normalize=True)
#fit the model
rg.fit(x train,y train)
Ridge(alpha=0.01, normalize=True)
#prediction
rg pred=rg.predict(x test)
rg pred
                                                                     Out[71]:
array([11.98352897, 9.42892675, 4.49818396, 8.48737085, 13.355495
        6.77287934, 11.0920111 , 10.59527459, 10.74978581, 11.13457017,
       10.35270607, 7.62353385, 9.72408223, 10.93505704, 7.78241361,
       8.16777068, 12.90444173, 9.19446497, 8.14773434, 10.8257376,
       11.02655099, 11.20491985, 10.30262701, 8.11682572, 10.03467159,
       11.97682407, 11.24091732, 9.52516865, 11.98804589, 10.5531938,
        9.79342209, 11.60618133, 10.43547944, 7.47214372, 8.45558322,
       7.78491507, 9.95657829, 10.38124828, 11.34058365, 7.55982939,
       11.64217332, 5.79955307, 11.90706752, 10.40261384, 9.03409672,
       7.47718722, 8.06206888, 10.88364451, 11.35288486, 9.66313675,
        6.89712708, 10.50313213, 12.69968003, 11.06911418, 10.7482954,
       7.17621055, 7.32900136, 10.37170343, 9.45921503, 8.79466909,
       9.45443092, 6.21143317, 9.1947239, 10.50200188, 7.9549207,
       11.2743297 , 14.64196291, 10.63272527, 11.2747729 , 6.19833399,
       10.55333685, 7.2775159, 10.2813656, 12.6524492, 8.54601837,
       10.13084651, 6.19450923, 9.21213058, 5.86804493, 9.85280301,
        9.18751639, 11.12143034, 10.20665377, 9.24200487, 8.88373624,
       8.90383956, 7.74278316, 12.9542893 , 10.19814531, 10.71460716,
       12.54082917, 12.6471121 , 9.15085985, 7.60262451, 10.24982973,
```

```
10.06989448, 9.48082199, 9.41007404, 11.60510763, 8.45539633,
14.36585988, 8.84447769, 5.91505111, 8.92084325, 11.19919592,
 8.48603785, 10.26097091, 13.09586682, 12.35587892, 9.696046 ,
11.10630482, 7.58638739, 8.05046817, 11.10676032, 9.07780918,
12.50454749, 6.69896989, 6.20567725, 11.00590568, 9.88227949,
 9.85473785, 10.54412956, 9.57887757, 11.4126624, 10.51778274,
10.08034265, 12.25045843, 9.26681727, 11.08604741, 10.99730814,
11.18560653, 6.24736563, 10.26303653, 6.03300395, 11.85091658,
 9.54446977, 11.22611867, 8.52426756, 6.85972483, 10.96942394,
10.53188998, 7.66377057, 6.67823587, 11.97288343, 8.08521648,
11.13137376, 9.41802235, 11.06311447, 6.64927949, 7.36309378,
 8.29016291, 7.1211626, 12.33996016, 10.42031107, 10.03779086,
11.22796575, 11.23031443, 9.42206566, 15.13583688, 10.4625341 ,
 7.48458716, 7.45095553, 8.8242452, 10.59261468, 8.73414555,
 8.72764364, 9.70142789, 12.36314082, 9.06660348, 7.35759611,
12.46186713, 11.29251998, 12.83605572, 9.03454027, 9.52081485,
10.17800277, 7.01277441, 8.51458183, 8.84286297, 11.49591906,
 9.87775281, 6.45311037, 9.28201283, 8.39037222, 10.88051622,
11.7095855 , 13.19891223, 7.93548261, 7.73484304, 11.86064534,
 9.50370942, 11.97342406, 11.43659443, 11.24840015, 10.13669084,
11.72175073, 8.5787261, 8.06618203, 11.16760863, 6.07578276,
12.16632815, 10.25662792, 9.4235827, 10.23274935, 10.75552837,
 6.86155261, 6.74883848, 9.90361297, 10.73124229, 11.01232508,
 8.71666287, 7.52634357, 10.14218866, 4.46262777, 7.50981785,
 7.39694085, 6.17204587, 9.97798592, 10.97762488, 8.00791114,
 8.61254717, 12.49267394, 6.93416719, 11.35065282, 8.87896764,
10.99294247, 7.5396951 , 11.6118407 , 11.42838703, 5.77830849,
12.39307559, 12.21485292, 7.94301879, 10.90909427, 8.90891661,
10.68074068, 10.54235028, 10.99397679, 7.3210998, 11.02313589,
 8.65496289, 7.93941482, 10.92075121, 9.95639326, 10.50332025,
11.61162727, 12.35601116, 12.45834954, 10.89474049, 10.10430375,
 9.0472368 , 8.39058576, 8.43299147, 12.35753972, 6.26917672,
11.6913308 , 11.30284985, 6.35166107, 10.14352237, 11.44299664,
 9.10620898, 10.34609645, 6.86786887, 11.61703975, 11.49767229,
12.68740139, 8.57623865, 10.75502441, 12.42122988, 11.12997228,
10.34658525, 9.91805369, 8.26350668, 13.10171425, 8.45933738,
12.81299751, 11.75792728, 11.56585442, 10.31987694, 11.04401699,
 9.66688149, 10.06722272, 6.96094706, 9.05058752, 10.66937448,
 6.46966544, 10.95210104, 6.55099404, 4.51477698, 10.0257969,
 6.86704915, 10.31991921, 8.83284356, 8.78167845, 10.79572193,
 7.46411621, 11.33683503, 12.54859007, 10.01207076, 7.34485741,
 8.90894041, 7.08255149, 11.78454391, 10.20372256, 8.66306309,
 9.87483266, 11.36695465, 10.11150406, 9.652357 , 9.22216611,
 7.08871133, 10.47343885, 9.95101208, 6.3763492 , 11.2082451 ,
 9.23113502, 11.55840252, 9.3384765, 11.21338788, 7.16688567,
 7.46834885, 8.19929676, 10.65176105, 10.44433119, 13.63638826,
 7.71275115, 11.50165116, 11.09029443, 10.98512333, 12.30504674,
10.62009581, 7.06133732, 8.01435144, 12.51431559, 11.01465385,
13.63478344, 11.43592963, 8.54878005, 9.5873381, 8.83665846,
7.60813549, 14.37027623, 9.28250616, 7.77556745, 12.39478199,
10.01252064, 12.39287736, 3.24195741, 11.94819001, 11.09587723,
 8.71156132, 11.67734657, 10.67843508, 8.98040194, 9.80489747,
13.63624415, 7.65657371, 7.95199531, 10.85838574, 12.71570559,
10.10617129, 10.71875312, 12.40370066, 11.73218148, 10.42828615,
11.96255607, 9.2123409, 10.41673339, 12.21676881, 9.57496389,
10.16783585, 10.52569465, 9.18999097, 9.87722888, 8.09914583,
11.56172877, 12.87660227, 10.87111164, 6.31362198, 10.66821469,
```

```
12.35964692, 13.31026914, 11.33681158, 10.99826694, 9.68525857,
12.09814041, 9.22459428, 11.9223407, 6.67509646, 10.79983157,
8.93548158, 9.25816844, 14.34250423, 13.15154312, 14.46939355,
4.58678649, 7.95577406, 11.1506027, 11.40590849, 6.59922624,
12.56370626, 7.832963 , 10.78899785, 10.45927983, 13.13268845,
7.16416862, 11.73019657, 8.73029756, 12.20541216, 9.91322926,
10.13555228, 7.01316265, 10.81160264, 11.24867663, 6.66239704,
11.37568151, 6.42059087, 11.88268961, 6.19299915, 11.82264603,
12.20072901, 6.77653364, 11.58971109, 7.6256508 , 11.3881558 ,
6.19465049, 11.01706727, 12.11244 , 8.85863142, 10.68713213,
7.39013247, 8.17397498, 5.04111401, 12.49170625, 6.58507563,
11.62632738, 14.55292541, 10.13789447, 10.54220392, 8.39655083,
9.80914221, 9.81282924, 9.94409934, 6.8665089, 10.35480815,
10.69135732, 12.21379524, 12.26621536, 6.65473351, 8.99017799,
11.39337039, 11.26138216, 9.46286825, 12.45149864, 12.74965609,
7.14636204, 10.81953545, 9.18872524, 6.78934727, 10.48901898,
13.57906312, 10.77084832, 10.97738369, 10.89890993, 11.14682475,
8.80047137, 8.97218278, 12.48422677, 10.62904428, 9.80839213,
4.44433712, 12.00267921, 7.75732449, 9.28734678, 8.41857902,
15.52214457, 11.14669238, 7.9244808, 5.9946329, 10.14447579,
10.00945265, 10.21671059, 11.85572716, 14.83389279, 8.80677796,
11.24510511, 11.80164183, 8.20694094, 10.26967807, 10.61832462,
7.61982441, 13.13762791, 6.58704862, 13.36332018, 10.49916643,
7.26901923, 9.48859682, 8.04000207, 8.59390379, 8.96549708,
8.5632058 , 11.40972266, 8.43826599, 7.42064013, 10.93613249,
10.20533667, 6.60684734, 6.04546195, 6.25278493, 10.20059955,
9.86656931, 10.46130777, 7.87661446, 11.67949931, 13.12771975,
9.0949832 , 10.91386846, 9.9018874 , 11.52620155, 12.52277753,
7.05063544, 10.97011758, 9.20930878, 13.00311639, 6.7101118,
7.06641892, 11.83264577, 11.13878077, 10.94892731, 10.7808044,
11.92499976, 7.73110275, 9.78229444, 9.96823632, 10.69549177,
11.06984822, 7.78757052, 6.02784018, 8.76133399, 8.85998029,
10.8836776 , 12.76868338 , 8.32024145 , 9.3864845 , 9.89871208 ,
8.13781198, 9.95312503, 9.6996162, 11.28868745,
                                                  8.81024533,
9.25550073, 8.99954553, 12.43337737, 8.08146822, 10.38355314,
9.93833194, 11.42465357, 9.68308617, 12.03927333, 10.40731979,
10.47028679, 10.68030445, 8.56091524, 12.66852672, 9.82395956,
10.63751442, 10.536913 , 9.1925589 , 10.61243895, 9.33484228,
11.03477599, 9.8820423 , 14.28570872, 10.31331964, 7.76506041,
10.55910549, 10.41591117, 8.6766533, 12.03324357, 12.47492025,
7.51402859, 10.44702978, 10.9543036, 6.2705464, 8.12645631,
7.12739502, 7.16164413, 8.72404065, 11.73534462, 10.96797219,
6.85607309, 7.24825824, 8.33129591, 8.6575654, 5.75650918,
8.5440535 , 10.1696962 , 7.09628867, 6.81308524, 9.16634091,
11.24627588, 10.98815801, 6.74930181, 6.80572736, 16.89752466,
8.2239898, 9.84652568, 7.51962632, 9.02106571, 10.53926412,
15.06062894, 10.50325209, 9.23412176, 6.57221094, 11.77402063,
3.49417177, 13.2404444 , 10.44137547, 15.5582878 , 8.4700726 ,
7.08957495, 11.63733515, 6.90856587, 4.83828439, 10.89113279,
9.41027122, 11.00735715, 11.20791983, 8.0554771 , 8.51175899,
12.23051058, 11.53194913, 9.98473489, 7.10430803, 10.74368778,
12.46626091, 9.5608846, 11.74329005, 9.18630254, 15.52621671,
6.96590144, 6.15008805, 7.30781504, 10.91915853, 12.63402338,
7.29115619, 16.1732366 , 11.35236634, 12.0321206 , 11.03981313,
7.43530566, 9.69186017, 7.8545576, 11.29860025, 9.04053011,
7.93554224, 12.71024581, 10.64888552, 12.11458784, 11.45346723,
10.55724035, 9.56829378, 6.00087071, 12.69991736, 9.55421535,
```

```
8.66732762, 9.40060408, 11.47456413, 9.21717562, 7.60481067,
       10.00916523, 4.48070331, 9.18726789, 6.66702635, 12.59713947,
        8.93819088, 10.94723109, 8.40966254, 14.47888131, 7.91789475,
       10.22120332, 7.19451706, 10.38914805, 9.60176636, 10.35391239,
        9.80869205, 6.39123262, 8.82504912, 9.98577853, 11.69094684,
        6.03217138, 12.99043782, 10.54647526, 10.40634101, 10.68961935,
       6.75292713, 7.91217579, 10.43443471, 7.95798848, 11.32071899, 10.86747048, 10.28632856, 10.56088458, 11.78877149, 6.33523427,
       10.94853866, 9.48217689, 6.99460152, 14.26962277, 12.46836213,
        6.97167778, 13.1909541 , 10.82852125, 11.19373531, 12.91976943,
       13.10730614, 8.71403557, 6.35036099, 11.23645764, 7.65931547,
       11.44873267, 11.11140401, 11.2854582 , 12.33082546, 9.67730787,
       10.0277662 , 8.93571049, 10.49805925, 10.46540302, 13.21384853,
       10.58484134, 11.59326267, 14.07640938, 11.1483976, 9.57201869,
        6.05212501, 10.84419417, 10.26917339, 10.04880743, 10.27930314,
       10.09341648, 12.11194759, 12.73697935, 9.91651483, 9.42344365,
       11.96960768, 3.69197442, 10.55799795, 13.52039314, 8.13433427,
        9.50753456, 9.84141961, 11.90353434, 9.75404755, 12.51028194,
        6.80478145, 11.11781085, 10.34236625, 6.59172868, 7.94774689,
        6.39505299, 10.57442708, 11.27928838, 12.15160616, 9.63988101,
       11.11621484, 10.47885751, 11.03651642, 11.58834753, 11.34975206,
        7.05787741, 11.51084648, 10.48559595, 12.92040869, 9.90660708,
       11.38483034, 7.66367165, 12.94494715, 8.44082138, 10.46409281,
        7.4322936 , 11.41096419, 7.23737243, 12.9985222 , 10.04419944,
        8.91571669, 8.97459292, 8.94633063, 12.71817066, 11.09541659,
        6.81817261, 8.59322801, 8.690961 , 11.75042498, 10.27228457,
       11.6372652 , 6.80756026, 10.83098904, 11.24480095, 10.87152403,
       10.90166642, 9.0415812, 11.63097757, 10.96463392, 8.34551403,
        8.87894986, 11.47895921, 10.50645687, 6.81391842, 9.06686687,
        6.3858208 , 6.24301466, 8.89674578, 11.58395037, 8.88283563,
        8.753093 , 9.37886895, 11.85884246, 8.62561711, 10.85945237,
        9.5375009 , 10.67076259, 13.18708738, 11.12714477, 10.94482296,
       11.46912633, 11.47643361, 12.36118922, 6.60270798, 10.88193041,
       10.22965499, 8.94661973, 13.29750286, 6.95926073, 8.81162931,
       10.96020208])
                                                                       In [72]:
rg.coef
                                                                      Out[72]:
array([-0.34103928, -0.77725789, 0.3310163 , 0.96951553, 0.99624027,
       -1.37297398, -0.14044317, 1.70865278])
                                                                       In [73]:
metrics.r2 score(y test,rg pred)
                                                                      Out[73]:
0.49819524561746076
                                                                       In [74]:
np.sqrt(mean squared error(y test,rg pred))
                                                                      Out[74]:
2.2970232574440512
```