

Total

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

72.0

Ingeniería en Computación **Métodos Numéricos** Clave Semestre Créditos Área 9.0 Matemáticas 3 Modalidad Curso Tipo Teórico Carácter Obligatorio Horas Semana Semestre **Teóricas** 4.5 **Teóricas** 72.0 **Prácticas** 0.0 **Prácticas** 0.0

Seriación indicativa	
Asignatura antecedente	Álgebra Lineal
Asignatura subsecuente	Probabilidad y Estadística

Total

4.5

Objetivo general: Analizar los elementos que permitan obtener soluciones aproximadas de modelos matemáticos en la ingeniería mediante métodos numéricos.

Índice temático Horas So					
No.	Tema		Prácticas		
1	CEROS DE UNA FUNCIÓN	9.0	0.0		
2	SERIES DE TAYLOR Y DE MCLAURIN	4.5	0.0		
3	MATRICES Y SISTEMAS LINEALES DE ECUACIONES. SOLUCIONES NUMÉRICAS	9.0	0.0		
4	SOLUCIÓN NUMÉRICA DE SISTEMAS NO LINEALES	4.5	0.0		
5	INTERPOLACIÓN	4.5	0.0		
6	DERIVACIÓN NUMÉRICA. DIFERENCIAS FINITAS	4.5	0.0		
7	INTEGRACIÓN NUMÉRICA	9.0	0.0		
8	SOLUCION NUMÉRICA DE ECUACIONES DIFERENCIALES Y SISTEMAS DE ECUACIONES DIFERENCIALES	9.0	0.0		
9	TEORÍA DE LA APROXIMACIÓN	12.0	0.0		
10	EL MÉTODO DE MONTECARLO	6.0	0.0		
	Total	72.0	0.0		
	Suma total de horas	7	2.0		

Contenido Temático

1. CEROS DE UNA FUNCIÓN

Objetivo: Comprender y analizar los métodos para obtener los ceros de una función y observar cuando los procesos iterativos convergen o divergen.

- 1.1 Introducción histórica. Problemas fundamentales de los métodos numéricos.
- 1.2 Concepto de Método iterativo: De aproximaciones sucesivas y de paso a paso.
- 1.3 Métodos de bisección, punto fijo y Newton-Raphson. Interpretaciones geométricas y criterios de convergencia.
- 1.4 Método de Newton Raphson. Caso raíces complejas. Polinomios.
- 1.5 Ecuaciones no lineales.

2. SERIES DE TAYLOR Y DE MCLAURIN

Objetivo: Conocer el desarrollo de una función en serie de potencias y aplicar la solución a problemas de cálculo y ecuaciones diferenciales.

- 2.1 Aproximación de las funciones elementales mediante series de Taylor y series de MacLaurin.
- 2.2 Aplicación a la solución del cálculo de integrales definidas mediante series de Taylor y series de MacLaurin.
- 2.3 Aplicación a la solución de ecuaciones diferenciales ordinarias mediante series de Taylor y series de MacLaurin.

3. MATRICES Y SISTEMAS LINEALES DE ECUACIONES. SOLUCIONES NUMÉRICAS

Objetivo: Analizar los diversos métodos numéricos para resolver sistemas de ecuaciones lineales, así como algunos métodos para obtener valores y vectores característicos.

- 3.1 Método de Gauss Jordan para sistemas de n ecuaciones con n incógnitas.
- 3.2 Rotaciones y traslaciones en 3 dimensiones.
- 3.3 Valores y vectores propios de una matriz.

4. SOLUCIÓN NUMÉRICA DE SISTEMAS NO LINEALES

Objetivo: Analizar los métodos numéricos para sistemas no lineales y aplicarlos en la resolución de los mismos.

- 4.1 Método de sustitución para sistemas de dos ecuaciones con dos incógnitas.
- 4.2 Método de Newton para sistemas no lineales de n ecuaciones con n incógnitas.
- 4.3 Método del máximo descenso.

5. INTERPOLACIÓN

Objetivo: Conocer los procesos de interpolación y analizar los errores involucrados en el mismo proceso.

- 5.1 Tablas de diferencias. Interpolación con incrementos constantes. Polinomios interpolantes y diagramas de rombos. Análisis del error en las fórmulas de interpolación.
- 5.2 Interpolación con incrementos variables. Polinomio de Lagrange.

6. DERIVACIÓN NUMÉRICA. DIFERENCIAS FINITAS

Objetivo: Comprender los procesos de derivación numérica y aplicarlos a la solución de problemas en ingeniería.

- 6.1 Derivación numérica. Deducción de esquemas de derivación: Derivadas de los polinomios interpolantes. Análisis del error en los esquemas de derivación.
- 6.2 Aplicaciones.

7. INTEGRACIÓN NUMÉRICA

Objetivo: Analizar los procesos de integración de forma numérica y aplicarlos a la solución de los problemas en ingeniería.

- 7.1 Integración numérica. Fórmulas de integración de Newton-Cotes: Fórmula trapecial y fórmulas de Simpson. El método de cuadratura gaussiana. Análisis del error en las fórmulas de integración.
- 7.2 Aplicaciones.

8. SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES Y SISTEMAS DE ECUACIONES DIFERENCIALES

Objetivo: Dominar los métodos numéricos para resolver ecuaciones diferenciales, así como validar los resultados obtenidos a través del análisis de los errores.

- 8.1 Métodos de Euler y Euler-Gauss. Análisis de error.
- 8.2 Métodos de Runge-Kuta. Análisis de error.
- 8.2 Solución aproximada de sistemas de ecuaciones diferenciales de primer orden.

9. TEORÍA DE LA APROXIMACIÓN

Objetivo: Comprender las teorías de aproximaciones de funciones y analizar las ventajas y desventajas.

- 9.1 Diferentes tipos de aproximación.
- 9.2 Aproximación por mínimos cuadrados.
- 9.3 Polinomios ortogonales.
- 9.4 Series de Fourier.
- 9.5 Fracciones continuadas.

10. EL MÉTODO DE MONTECARLO

Objetivo: Comprender el método de Montecarlo, así como entender problemas físicos y matemáticos a través de la simulación con variables aleatorias.

- 10.1 Generadores de números aleatorios.
- 10.2 Caminos aleatorios.
- 10.3 Cálculo de integrales.
- 10.4 Simulación.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	(X)	Exámenes parciales	(X)	Aula interactiva	()
Trabajo en equipo	(X)	Examen final	(X)	Computadora	(X)
Lecturas	(X)	Trabajos y tareas	(X)	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	()	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	()	Rúbricas	()		
Aprendizaje basado en problemas	()	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

Perfil profesiográfico		
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo perfil sea afín al área de Matemáticas. 	
Experiencia docente	Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir.	
	 Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno: 	
	 Para aplicar recursos didácticos. 	
	o Para motivar al alumno.	
	 Para evaluar el aprendizaje del alumno, con equidad y objetividad. 	
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza- aprendizaje. 	
	 Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. 	
	• Identificarse con los objetivos educativos de la institución y hacerlos propios.	
	Tener disposición para ejercer su función docente con ética profesional:	
	 Para observar una conducta ejemplar fuera y dentro del aula. 	
	 Para asistir con puntualidad y constancia a sus cursos. 	
	 Para cumplir con los programas vigentes de sus asignaturas. 	

Bibliografía básica	Temas para los que se recomienda
Burden, R. (2002).	
Análisis numérico.	4,5,7 y 8
México: Thompson Learning.	
Carrasco, V. L. (2011).	
Métodos numéricos.	1,2,4,5,6,7, 8, 9 y 10
Lima, Perú: Macro.	
Ezquerro, F. J. (2012).	
Iniciación a los Métodos Numéricos.	1,2,4,5,6,7, 8, 9 y 10
España, Iberus.	
García, R. (2005).	
Métodos Numéricos Con Mathematica.	1,2,4,5,6,7, 8 y 10
México: Alfaomega, Universidad Politécnica de Valencia.	
Luthe, R. (1996).	
Métodos numéricos.	1,2,3,4,5,6,7,8 y 9
Mexico: Limusa.	

Bibliografía complementaria	Temas para los que se recomienda		
Dauben, J. y Scriba, C. J. (2002).			
Writing the History of Mathematics: Its Historical	12456780410		
Development.	1,2,4,5,6,7, 8, 9 y 10		
Germany: Birkhäuser.			
Emmer, M. (2012).			
Imagine Math. Between Culture and Mathematics.	1,2,4,5,6,7, 8, 9 y 10		
Italia: Springer.			
Gindikin, S. (2007).			
Tales of Mathematicians and Physicists.	1,2,4,5,6,7, 8, 9 y 10		
New York: Springer.			
Mora, W. F. (2016).			
Introducción a los Métodos Numéricos.	1,2,4,5,6,7, 8, 9 y 10		
Costa Rica: Escuela de Matemáticas.			

