Machine Learning (Assignment for IITP-BSE Course)

A1: Consider the iris data set and perform clustering on it. The iris dataset is of 150 instances

represented by 4 features. The last column in the iris data set represents the label information.

Group the dataset in an unsupervised way i.e., without considering the label information. Perform the clustering algorithm using the following algorithm i) K-means, ii) Bottom-up Hierarchical Clustering (BUHC) using single linkage, and iii) Fuzzy C means (FCM) (nonoverlapping).

Provide the number of cluster K as K=3, 4 and 5. Use the Silhouette score and Adjusted Rank Index (ARI) for evaluating the generated clusters. Report the score obtained

below in a tabular form.

	SILHOUETTE SCORE			ARI			
	K-means	BUHC	FCM	K-means	BUHC	FCM	
K=3	0.4599	0.50464	0.4584	0.6201	0.5583	0.6303	
K=4	0.3882	0.4067	0.4016	0.4440	0.5522	0.5877	
K=5	0.3423	0.3424	0.3448	0.4324	0.5517	0.5617	

A2:

1.Load data on colab from the following GitHub links:

```
ratings="https://github.com/couturierc/tutorials/raw/master/recommender_sy
stem/data/ratings.csv"
movies="https://github.com/couturierc/tutorials/raw/master/recommender_sys
tem/data/movies.csv"

df_ratings = pd.read_csv(ratings, sep=',')
df_ratings.columns = ['userId', 'itemId', 'rating', 'timestamp']
df_movies = pd.read_csv(movies, sep=',')
df movies.columns = ['itemId', 'title', 'genres']
```

2.Print first 20 rows for each dataset.

Movies:

S.NO	itemId title		genres
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1	2	Jumanji (1995)	Adventure Children Fantasy

2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama Romance
4	5	Father of the Bride Part II (1995)	Comedy
5	6	Heat (1995)	Action Crime Thriller
6	7	Sabrina (1995)	Comedy Romance
7	8	Tom and Huck (1995)	Adventure Children
8	9	Sudden Death (1995)	Action
9	10	GoldenEye (1995)	Action Adventure Thriller
10	11	American President, The (1995)	Comedy Drama Romance
11	12	Dracula: Dead and Loving It (1995)	Comedy Horror
12	13	Balto (1995)	Adventure Animation Children
13	14	Nixon (1995)	Drama
14	15	Cutthroat Island (1995)	Action Adventure Romance
15	16	Casino (1995)	Crime Drama
16	17	Sense and Sensibility (1995)	Drama Romance
17	18	Four Rooms (1995)	Comedy
18	19	Ace Ventura: When Nature Calls (1995)	Comedy
19	20	Money Train (1995)	Action Comedy Crime Drama Thriller

Ratings:

S.NO	userId	itemId	Rating	timestamp	
0	1	1	4.0	964982703	
1	1	3	4.0	964981247	
2	1	6	4.0	964982224	
3	1	47	5.0	964983815	
4	1	50	5.0	964982931	
5	1	70	3.0	964982400	

	T			ı
6	1	101	5.0	964980868
7	1	110	4.0	964982176
8	1	151	5.0	964984041
9	1	157	5.0	964984100
10	1	163	5.0	964983650
11	1	216	5.0	964981208
12	1	223	3.0	964980985
13	1	231	5.0	964981179
14	1	235	4.0	964980908
15	1	260	5.0	964981680
16	1	296	3.0	964982967
17	1	316	3.0	964982310
18	1	333	5.0	964981179
19	1	349	4.0	964982563

3. Give a graphical representation of how the total number of users varies from rating ${\bf 1}$ to ${\bf 5}$.

4.Print max, min, and average ratings for userId 10.

count	140.00000	0
mean	3.27857	1
std	1.17570	0
min	0.50000	0
25%	3.00000	0
50%	3.50000	0
75%	4.00000	0
max	5.00000	0
Name:	rating, dtype	e: float64

5.Give a graphical representation of how the total number of users (based on the number of posted ratings) varies from time to time.

6.Convert the Rating data to matrix form where columns indicate 'userId' and row indicates

'itemId' and each entry indicates rating values.

itemId userId	1	2	3	4	 193583	193585	193587	193609
1	4.0	NaN	4.0	NaN	 NaN	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
5	4.0	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
606	2.5	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
607	4.0	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
608	2.5	2.0	2.0	NaN	 NaN	NaN	NaN	NaN
609	3.0	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
610	5.0	NaN	NaN	NaN	 NaN	NaN	NaN	NaN

[610 rows x 9724 columns]

7. For instance, print rating for userId=10 for movies with itemId 1 to 30.

```
itemId
1
      0.0
2
      0.0
3
      0.0
4
      0.0
5
      0.0
6
      0.0
7
      0.0
8
      0.0
9
      0.0
10
      0.0
11
      0.0
12
      0.0
13
      0.0
14
      0.0
15
      0.0
16
      0.0
17
      0.0
18
      0.0
19
      0.0
20
      0.0
21
      0.0
22
      0.0
23
      0.0
24
      0.0
25
      0.0
26
      0.0
27
      0.0
28
      0.0
29
      0.0
30
      0.0
Name: 10, dtype: float64
```

8. Save the movie ids for userId: 21.

9.Model 1: Apply Approximate SVD with stochastic gradient descend (SGD) on the dataset with $n_{\text{factors}} = 10$, # number of factors alpha = .01, # learning rate $n_{\text{epochs}} = 3$, # number of iteration of the SGD procedure

MAE: 2.4

Model 2: Apply Approximate SVD with stochastic gradient descend (SGD) on the dataset with $n_{\text{factors}} = 20$, # number of factors alpha = .01, # learning rate $n_{\text{epochs}} = 6$, # number of iteration of the SGD procedure

MAE: 3.4

Model 3: Apply Approximate SVD with stochastic gradient descend (SGD) on the dataset with $n_{\text{factors}} = 40$, # number of factors alpha = .01, # learning rate $n_{\text{epochs}} = 18$, # number of iteration of the SGD procedure

MAE: 3.8