Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

Práctica N° 3: INDEPENDENCIA LINEAL

1) Determinar si cada uno de los siguientes conjuntos es linealmente independiente o dependiente.

a)
$$H = \left\{ \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

b) $H = \left\{ \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix}; \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$
c) $H = \left\{ \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 4 & 6 \\ 8 & 6 \end{bmatrix} \right\}$
d) $H = \left\{ t^2 + t, t - 1, t + 1 \right\}$

2) ¿Cuales de los siguientes conjuntos de vectores en P_2 son linealmente dependientes?

a)
$$\{2-x+4x^2, 3+6x+2x^2, 2+10x-4x^2\}$$

b)
$$\{3+x+x^2, 2-x+5x^2, 4-3x^2\}$$

c)
$$\{6-x^2, 1+x+4x^2\}$$

3) Hallar los valores de α (si es que existen) para los cuales los vectores del conjunto C determinan que éste sea linealmente independiente:

$$C = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}; \begin{pmatrix} 2\\-1\\4 \end{pmatrix}; \begin{pmatrix} 3\\\alpha\\4 \end{pmatrix} \right\}$$

- 4) Dados los vectores $v_1 = (0, 3, 1, -1), v_2 = (6, 0, 5, 1)$ y $v_3 = (4, -7, 1, 3)$:
 - a) Demostrar que los vectores forman un conjunto linealmente dependiente en \mathbb{R}^4 .
 - b) Expresar cada vector como una combinación lineal de los otros dos.
- 5) Determinar si cada una de las siguientes afirmaciones es verdadera o falsa. Si es verdadera, demostrarla. Si es falsa, exhibir un contraejemplo.
 - a) Todo conjunto de 2 vectores en \mathbb{R}^2 es linealmente independiente en \mathbb{R}^2 .
- b) Todo conjunto de vectores de un espacio vectorial V que contiene al vector nulo de V es linealmente independiente.
 - c) No existen condiciones para que un conjunto de un solo vector sea linealmente independiente.
 - d) Un conjunto finito de vectores que contiene al vector nulo es linealmente dependiente.
- e) Si $\{v_1, v_2, ..., v_n\}$ es un conjunto linealmente independiente, entonces $\{v_1, v_2, ..., v_n, v_{n+1}\}$ también es un conjunto linealmente independiente.
- f) Si $\{v_1, v_2, ..., v_n\}$ es un conjunto linealmente dependiente, entonces $\{v_1, v_2, ..., v_n, v_{n+1}\}$ también es un conjunto linealmente dependiente.

1

- 6) Agregar un elemento al conjunto $A = \left\{ \left(-2, \frac{1}{2}, 3\right), \left(1, 0, -1\right) \right\}$ de modo que resulte:
 - c) Linealmente independiente.
 - d) Linealmente dependiente.

- 7) Suponiendo que el conjunto $\{v_1, v_2, ..., v_n\}$ es linealmente independiente, demuestra que si $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$, entonces se verifica que $\alpha_1 = \beta_1, \alpha_2 = \beta_2, ..., \alpha_n = \beta_n$.
- 8) Sea $\{v_1,v_2\}$ linealmente independiente en un espacio vectorial V. Demostrar que si un vector v_3 tiene la forma av_1+bv_2 con $a,b\in R$, entonces el conjunto $\{v_1,v_2,v_3\}$ es linealmente dependiente.
- 9) Sea el conjunto $\{v_1, v_2, v_3\}$ linealmente independiente en un espacio vectorial V. Sea c un escalar distinto de cero. Demostrar que los siguientes conjuntos también son linealmente independientes:

a)
$$\{v_1, v_1 + v_2, v_3\}$$

b)
$$\{v_1, cv_2, v_3\}$$

Ejercitación adicional para seguir practicando:

10 ¿Cuál de los siguientes conjuntos son linealmente independientes en \mathbb{R}^2 ?

$$a) \{(1,1),(-1,-1)\}$$

$$b) \{(2,3),(3,2)\}$$

$$c) \{(11,0),(0,4)\}$$

$$d) \{(6,-10),(0,0)\}$$