

Electron diffraction project WP4

Tarik Drevon, David Waterman, Eugene Krissinel

Simulating electron diffraction patterns of macromolecular crystals Identifying correction opportunities at the scaling stage in DIALS

Discrepancy between theory and experiments

Macromolecules solved from experimental Electron Diffraction (ED) data

Sample Resolution Year 2.9 Å 2013 Lysozyme (14.4 kDa) Sup35 prion 2016 1.0 Å protein core (905 Da) 0.85 Å Au₁₄₆(p-MBA)₅₇ 2017 nanoparticle (37.5 kDa)

Multiple scattering should prevent use of standard X-ray kinematic technique

B. L. Nannenga and T. Gonen, "The cryo-EM method microcrystal electron diffraction (MicroED)," Nat. Methods, vol. 16, no. May, pp. 369–379, 2019

G. Subramanian, S. Basu, H. Liu, J. Zuo, and J. C. H. Spence, "Solving protein nanocrystals by cryo-EM diffraction: Multiple scattering artifacts," Ultramicroscopy, vol. 148, pp. 87–93, 2015

Electron diffraction and dynamical scattering

Atomic scattering factors and cross section

$$\left\{\frac{\hbar^2}{2m_0}\nabla^2 + V(\mathbf{r})\right\}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Born approximation

$$f(\theta) = -\frac{2me}{h^2} \int d^3r e^{i\mathbf{q}\cdot\mathbf{r}} V(r)$$

Atomic cross section

$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2$$

Mean free path

$$l_e = 1/\sigma_e \rho$$

T. Latychevskaia and J. P. Abrahams, "Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals," Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., vol. 75, pp. 523–531, 2019

Numerical simulation tools of ED patterns

$$\left\{\frac{\hbar^2}{2m_0}\nabla^2 + V(\mathbf{r})\right\}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Fast electron wave equation

$$\frac{\partial \Psi(x, y, z)}{\partial_z} = \left\{ \frac{i\lambda}{4\pi} \nabla_{xy}^2 + i\sigma V(x, y, z) \right\} \Psi(x, y, z)$$

Method	Exact/ consistent	Speed	Memory (per atoms)	Periodic structure	Grid based	Package
Multislice (MS)	no	fast	10 points	yes	yes	TEMSIM PRISM
Bloch wave (diagonalization in reciprocal space)	yes	slow	10 points	yes	no	EDM muSTEM PyQt
Near bragg (real space path difference integral)	no	??	1 point	no	no	NearBragg (James Holton)

Multislice (MS) algorithm

$$\frac{\partial \Psi(x, y, z)}{\partial z} = \left\{ \frac{i\lambda}{4\pi} \nabla_{xy}^2 + i\sigma V(x, y, z) \right\} \Psi(x, y, z)$$

 $\frac{\partial \Psi(x,y,z)}{\partial z} = \left\{ \frac{i\lambda}{4\pi} \nabla_{xy}^2 + i\sigma V(x,y,z) \right\} \Psi(x,y,z) \qquad \qquad \Psi(z + \Delta z) = p(x,y,\Delta z) * \left(t(x,y,z) \Psi(z) \right)$

FFT

Fresnel propagator

$$p(x, y, \Delta z) = \frac{1}{i\lambda\Delta z}e^{ik_0\frac{x^2+y^2}{2\Delta z}}$$

Specimen is cut in slices ~ 1 Angstrom thick each

Transmission function

$$t(x, y, z) = e^{i\sigma\nu_{\Delta z}}$$
$$\approx 1 + i\sigma\nu_{\Delta z}$$

Weak potential

Projected potential

$$\nu_{\Delta_z} = \int_z^{z+\Delta z} V(x, y, z') dz'$$

Multislice (MS)

3D Silicon Diamond structure

Basic 2D example

Simulation of biotin

 $C_{10}H_{16}N_2O_3S$

Structure $P2_12_12_1$

$$a = 5.24A$$
,

$$b = 10.35A$$

$$c = 21.04A$$

 $[102]=7\deg$

 $[201]=25\deg$

[001]=0deg

What's next?

- Explore opportunities with nearBragg simulator
- Perform simulations under continuous rotation
- Investigate the effect of defects and mosaicity
- Use CCP4 with the simulated data

http://brno.rc-harwell.ac.uk:8000/

	Sample	Year	Resolution
Proteinase K (28.9 kDa)		2018	1.7 Å
Bank vole prion protein segment (1.1 kDa)	de la	2018	0.75 Å
Carbamazepine (236 Da)	***	2018	0.85 Å