Многофононная релаксация триплета $1s\left(T_{2}\right)$ нейтральных доноров магния в кремнии

© Н.А. Бекин, Р.Х. Жукавин, В.В. Цыпленков, В.Н. Шастин

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

E-mail: nbekin@ipmras.ru

Поступила в Редакцию 7 ноября 2023 г. В окончательной редакции 13 декабря 2023 г. Принята к публикации 16 января 2024 г.

Используя адиабатическое и одноэлектронное приближения, сделана оценка темпа многофононной релаксации парасостояний триплета $1s(T_2)$ нейтральных доноров магния в кремнии. Учтены доминирующие процессы рассеяния, связанные с взаимодействием с LO- и LA-фононами. Согласно расчетам, темп многофононной релаксации при нулевой температуре имеет порядок $10^{11}\,\mathrm{c}^{-1}$.

Ключевые слова: глубокие примеси, доноры магния в кремнии, многофононная релаксация, адиабатическое приближение.

DOI: 10.61011/FTP.2024.01.57629.5727

1. Введение

Примесные центры могут использоваться для различных физических приложений и, в частности, могут являться активными элементами в схемах лазерной генерации на внутрицентровых оптических переходах, как это было продемонстрировано для доноров V группы в кремнии [1]. Заглубление уровней в глубоких примесях расширяет диапазон потенциальных источников излучения. Донор Mg⁰ можно рассматривать в качестве одного из кандидатов на эту роль [2].

Магний как примесь замещения в кремнии является двойным донором. Энергия связи однократно заряженного донора составляет 256 мэВ, а нейтрального — 107 мэВ [3-5]. Уровень 1s в магнии, так же как и в мелких донорах, расщепляется короткодействующим потенциалом решетки с симметрией тетраэдра на синглет $1s(A_1)$, триплет $1s(T_2)$ и дублет 1s(E). В гелиеподобном нейтральном доноре Mg⁰ в дополнение к этому возникают две лестницы состояний, определяемых полным спином системы двух электронов — спин-синглетной (парасостояния) и спин-триплетной (ортосостояния). Наличие этих лестниц слабосвязанных (из-за слабости спин-орбитального взаимодействия) состояний может приводить к возможности различных спин-зависимых эффектов, что расширяет спектр возможных приложений таких центров в полупроводниках.

Для изучения возможности реализации подобных источников необходимо знать как положения первых возбужденных уровней, так и время жизни (релаксации) состояний. Как правило, прямое измерение времен релаксации возможно при резонансном возбуждении состояний доноров p-типа в кремнии с помощью метода пробного импульса (ритр-ргове) ввиду разрешенности переходов в электродипольном приближении. Напротив, исследование энергии связи и времени жизни возбужденных s-состояний доноров в каждом конкрет-

ном случае является отдельной задачей. Так, энергия связи уровней 1s(E) и $1s(T_2)$ магния в кремнии до недавнего времени оценивалась лишь по косвенным данным [4]. Спектроскопия при термическом заселении возбужденных состояний в сочетании с измерением резонансов Фано в спектре фототока [2] позволили идентифицировать положение уровня парасостояния $1s(T_2)$ на ~ 66 мэВ выше энергии основного состояния $1s(A_1)$. Разность энергий этих уровней на ~ 2 мэВ превышает максимальную энергию оптического фонона, поэтому законом сохранения энергии одноквантовые процессы релаксации электронов с этого уровня запрещены. В данной работе мы рассмотрим многофононные процессы релаксации этого уровня — переходы электронов с уровня $1s(T_2)$ в основное состояние донора при испускании фононов.

В расчетах вероятности таких переходов мы использовали несколько приближений и упрощений. Во-первых, задача рассмотрена в одноэлектронном приближении, полагая, что электрон примесного центра движется в поле иона и второго электрона, которое описывается суммарным положительным единичным точечным зарядом. Во-вторых, для расчетов волновых функций донорных состояний мы ограничились приближением эффективной массы, считая ее изотропной и равной эффективной массе плотности состояний Δ-долин. Химический сдвиг уровней $1s(A_1)$ и $1s(T_2)$ учитывался методом квантового дефекта. В этом приближении радиус локализации состояния $1s(A_1)$ составляет ~ 1 нм, а для $1s(T_2) \sim 1.7$ нм (что близко к радиусу Бора $\sim 1.9\,\mathrm{HM}$). Сопоставляя эти величины с постоянной решетки 0.543 нм, заключаем, что приближение эффективной массы хотя и довольно грубое (прежде всего для основного состояния), но все же позволяет сделать оценки.

В-третьих, при расчетах вероятностей безызлучательных переходов мы игнорировали вырождение уровня $1s\left(T_{2}\right)$, воспользовавшись адиабатическим приближе-

нием и уравнениями Борна-Оппенгеймера [6]. Такой подход не принимает во внимание вибронные эффекты [7], которые приводят к формированию коллективного электронно-колебательного движения, в которое вовлечены, вообще говоря, все электронные состояния триплета $1s(T_2)$ (эффект Яна-Теллера). Вследствие этого использованное нами адиабатическое разделение движения на электронное и колебательное (фононное) с соответствующей факторизацией волновой функции является некоторым упрощением и приближением. Однако это приближение позволяет качественно описать электронно-колебательное движение, связанное с указанным триплетным термом, включив в рассмотрение такую важную его характеристику, как масштаб локализации электронных состояний, и описав связь между электронным и колебательным движением в рамках адиабатического приближения, пренебрегая спецификой ян-теллеровской динамики.

Наконец, учитывая умеренную глубину залегания уровней нейтрального магния, мы рассмотрим взаимодействие электронов на примеси с объемными фононными модами, используя известные из литературы константы деформационных потенциалов.

Согласно полученным в данной работе оценкам, темп многофононной релаксации состояния $1s(T_2)$ имеет порядок $10^{11}\,\mathrm{c}^{-1}$, что близко к результатам измерения времен релаксации $2p_0$ и $2p_\pm$, полученным методом pump-probe [8].

2. Метод расчета

2.1. Энергия и волновые функции

Электрон, связанный на примеси и взаимодействующий с колебаниями решетки, можно описать волновой функцией $\Psi(\mathbf{r},\eta)=\psi(\mathbf{r},\eta)\chi(\eta)$, которая подчиняется системе уравнений Борна–Оппенгеймера:

$$(H_{e}(\mathbf{r}) + H_{eL}(\mathbf{r}, \eta))\psi(\mathbf{r}, \eta) = W(\eta)\psi(\mathbf{r}, \eta), \tag{1}$$

$$(H_L(\eta) + W(\eta))\chi(\eta) = E\chi(\eta), \tag{2}$$

где $\psi(\mathbf{r},\eta)$ и $\chi(\eta)$ — волновые функции электрона и фононов соответственно; H_e — гамильтониан электрона в поле примеси, H_{eL} — энергия электрон-фононного взаимодействия, H_L — энергия колебаний решетки; \mathbf{r} — радиус-вектор электрона, η — совокупность координат колебательного движения кристалла. Энергия электрона $W(\eta)$ параметрически зависит от координат η , поскольку от них зависит энергия взаимодействия $H_{eL}(\mathbf{r},\eta)$. Собственное значение E, определяемое уравнением (2), является полной энергией электронно-колебательной системы.

В уравнениях (1)-(2) пренебрегается оператором неадиабатичности [6], H_{na} , что позволяет решать систему этих уравнений независимо для каждого уровня примеси. Получаемые в результате решения полные

энергии E и волновые функции $\Psi(\mathbf{r}, \eta)$ отвечают стационарным состояниям электронно-колебательной системы, которые классифицируются по своей принадлежности к определенным уровням примеси — решениям уравнения (1). Переходы между различными состояниями можно интерпретировать как безызлучательные переходы с испусканием или поглощением фононов. Энергией возмущения, вызывающей переходы между состояниями, является оператор H_{na} , а для расчета вероятности переходов можно использовать стандартную теорию возмущений [6].

Решение уравнения (1) найдем в первом порядке теории возмущений. Рассмотрим подробнее нулевое приближение $(H_{eL}=0)$, поскольку конечный результат выражается через матричные элементы волновых функций этого приближения. Будем использовать для этих волновых функций то же обозначение $\psi(\mathbf{r})$, опустив зависимость от нормальных координат η .

Рассмотрим гамильтониан H_e в одноэлектронном приближении, полагая, что электрон в возбужденном и основном состояниях движется в поле однократно заряженного иона. Следовательно, будем считать, что наличие второго электрона проявляется в частичной экранировке заряда иона. Будем рассматривать задачу в приближении эффективной массы, считая ее изотропной и равной эффективной массе плотности состояний $m=0.32m_0$ [9]. В многодолинных полупроводниках волновая функция связанного состояния кулоновского центра является линейной комбинацией волновых функций состояний различных долин и представляется в виде [10]

$$\psi_n = \sum_j C_{nj} F_{nj}(\mathbf{r}) \varphi_j(\mathbf{k}, r). \tag{3}$$

Здесь $\varphi_j(\mathbf{k},r)$ — блоховская волновая функция на дне зоны проводимости j-й долины, а $F_{nj}(r)$ — огибающая волновая функция донорного состояния n-го уровня j-й долины. Коэффициенты C_{nj} определяют распределение волновой функции по всем шести долинам зоны проводимости кремния в соответствии с симметрией точечной группы тетраэдра T_d . Для синглетного состояния $1s(A_1)$ и для выбранного нами одного из состояний триплета $1s(T_2)$ коэффициенты C_{nj} имеют следующие значения [11]:

$$A_1: \frac{1}{\sqrt{6}}(1, 1, 1, 1, 1, 1),$$

$$T_2: \frac{1}{\sqrt{2}}(1, -1, 0, 0, 0, 0). \tag{4}$$

Здесь выбрана такая же нумерация долин, как и в [11]. Для огибающих волновых функций используем метод квантового дефекта:

$$F_n = A_n (r/r_0)^{\nu_n - 1} \exp(-r/(\nu_n r_0)),$$

$$A_n = \left[4\pi r_0^3 (\nu_n / 2)^{2\nu_n + 1} \Gamma(2\nu_n + 1) \right]^{-1/2},$$
(5)

 $r_0=\hbar^2 \varepsilon/(e^2 m), \ \nu_n=(E_H/|E_n|)^{1/2}, \ E_n$ — энергия уровня n (n принимает значения 1 и 2 соответственно, для уровней $1s(A_1)$ и $1s(T_2)$), $E_H=e^4 m/(2\hbar^2 \varepsilon^2)$ — энергия связи в приближении эффективной массы, e — заряд электрона, ε — диэлектрическая проницаемость.

Энергию H_{eL} напишем, полагая, что связанный на доноре электрон взаимодействует с объемными фононными модами, и считая электрон-фононную связь линейной:

$$H_{eL} = \sum_{\sigma,\lambda,\mathbf{q}} u_{\sigma\lambda\mathbf{q}}(\mathbf{r}) \eta_{\sigma\lambda\mathbf{q}},\tag{6}$$

 σ — нумерует ветви закона дисперсии, λ — тип стоячей волны колебаний кристалла (косинус- или синус-тип), ${\bf q}$ — волновой вектор фонона; $\eta_{\sigma\lambda{\bf q}}$ — вещественные нормальные координаты, измеряемые в единицах $[\hbar/(M\omega_{\sigma{\bf q}})]^{1/2},~\omega_{\sigma{\bf q}}$ — частота фонона, M — масса решеточного осциллятора. Суммирование по ${\bf q}$ здесь и далее ведется по половине зоны Бриллюэна (см. Π риложение).

Найдя энергию $W(\eta)$ в (1) в первом порядке теории возмущений, уравнение (2) затем легко решается в гармоническом приближении для оператора H_L . Волновой функцией фонона, соответствующего моде $(\sigma, \lambda, \mathbf{q})$, является волновая функция гармонического осциллятора со смещенным положением равновесия:

$$\eta_{\sigma\lambda\mathbf{q}}^{(i)} = -\frac{\langle \psi_i | u_{\sigma\lambda\mathbf{q}} | \psi_i \rangle}{\hbar\omega_{\sigma\mathbf{q}}}.$$
 (7)

Полная энергия электронно-колебательной системы, состоящей из электрона в состоянии с волновой функцией ψ_i и фононной подсистемы, характеризуемой совокупностью $\{n\}$ чисел заполнения $n_{\sigma\lambda\mathbf{q}}$:

$$E_{i,\{n\}} = W_i^{(0)} + \sum_{\sigma,\lambda,\mathbf{q}} \hbar \omega_{\sigma\mathbf{q}} (n_{\sigma\lambda\mathbf{q}} + 1/2) + J_i, \qquad (8)$$

где $W_i^{(0)}$ — энергия электрона в нулевом приближении (при $H_{eL}=0$ в уравнении (1)), J_i — энергия деформатии:

$$J_i = -\frac{1}{2} \sum_{\sigma, \lambda, \mathbf{q}} \hbar \omega_{\sigma \mathbf{q}} (\eta_{\sigma \lambda \mathbf{q}}^{(i)})^2. \tag{9}$$

Энергия чисто электронного перехода E_T при фиксированном состоянии фононной подсистемы определяется разностью энергий $E_{i,\{n\}}$ при неизменной совокупности чисел заполнения $\{n\}$:

$$E_T = W_2^{(0)} - W_1^{(0)} + J_2 - J_1. (10)$$

Данные спектроскопии поглощения или люминесценции на переходе $1s(A_1)-1s(T_2)$ в донорах Mg^0 в литературе отсутствуют в отличие, например, от халькогенов в кремнии [12–14]. Однако соответствующая энергия перехода E_T была идентифицирована по резонансам Фано в спектре фотопроводимости [2] и составляет ~ 66 мэВ. При расчетах волновых функций (3), (5) мы пренебрегали разностью энергий деформации (порядка 10 мэВ), отождествляя $E_T \approx W_2^{(0)} - W_1^{(0)} = E_2 - E_1$.

2.2. Фононы и электрон-фононное взаимодействие

В расчетах нам потребуются матричные элементы оператора H_{eL} и, соответственно, функций $u_{\sigma\lambda\mathbf{q}}(\mathbf{r})$ на электронных волновых функциях (3):

$$\langle \psi_n | H_{eL} | \psi_m \rangle = \sum_{\sigma, \lambda, \mathbf{q}} \langle \psi_n | u_{\sigma\lambda\mathbf{q}} | \psi_m \rangle \eta_{\sigma\lambda\mathbf{q}}. \tag{11}$$

Учитывая многодолинный характер электронных волновых функций, матричные элементы $\langle \psi_n | u_{\sigma\lambda \mathbf{q}} | \psi_m \rangle$ содержат три вклада, которые соответствуют нормальным процессам рассеяния и процессам с перебросом g- и f-типа соответственно:

$$\langle \psi_n | u_{\sigma \lambda \mathbf{q}} | \psi_m \rangle = d_{\sigma \lambda \mathbf{q}}^{nm} + g_{\sigma \lambda \mathbf{q}}^{nm} + f_{\sigma \lambda \mathbf{q}}^{nm}. \tag{12}$$

Вклад нормальных (внутридолинных) процессов $d_{\sigma\lambda \mathbf{q}}^{nm}$ возникает от диагональных по долинам матричных элементов $\langle F_{ni} \varphi_i | u_{\sigma\lambda \mathbf{q}} | F_{mj} \varphi_j \rangle$ (i=j), а "междолинные" вклады — от недиагональных $(i\neq j)$ матричных элементов, которые возникли от пар долин, расположенных на их оси симметрии $(g_{\sigma\lambda \mathbf{q}}^{nm})$, и от долин, расположенных под углом друг к другу $(f_{\sigma\lambda \mathbf{q}}^{nm})$.

Конечные выражения для вероятности безызлучательных переходов содержат суммы, каждое слагаемое которых — квадратичное по матричным элементам (12). Соответственно, появляются вклады, билинейные по величинам $d_{\sigma\lambda q}^{nm}$, $g_{\sigma\lambda q}^{nm}$ и $f_{\sigma\lambda q}^{nm}$. Отталкиваясь от приближения эффективной массы, допустимо пренебречь перекрестными вкладами типа $d_{\sigma\lambda q}^{nm}g_{\sigma\mu k}^{ps}$, $g_{\sigma\lambda q}^{nm}f_{\sigma\mu k}^{ps}$ и т.п. Это оправдано, поскольку для умеренно глубоких центров области в зоне Бриллюэна, в которых каждый из разнотипных множителей существенно отличен от нуля, в достаточной мере отделены друг от друга. Таким образом, в вычислениях учитывались только "диагональные" вклады, которые содержат произведения только однотипных сомножителей — "внутридолинных" либо "междолинных" g- или f-типа.

Энергетическое расстояние между уровнями $1s(A_1)$ и $1s(T_2)$ составляет ~ 66 мэВ, что лишь незначительно превышает максимальную энергию оптических фононов 64.3 мэВ [9]. Нормальные процессы рассеяния электронов на оптических фононах запрещены симметрией [11], поэтому они не включались в рассмотрение. Среди разрешенных симметрией междолинных процессов рассеяния максимальная резонансная энергия соответствует g-LO-фононам (~ 62 мэВ) [9]. Этим же фононам отвечает максимальное значение деформационного потенциала [9]. Из оптических фононов во внимание принимались только g-LO-фононы, а из акустических — LA-фононы (нормальные процессы и процессы g-типа). Междолинными процессами f-типа пренебрегалось.

Для деформационных потенциалов "междолинных" фононов использовались величины из справочника [9], а для деформационных потенциалов при внутридолинном рассеянии — из [15].

Зона Бриллюэна предполагалась сферически симметричной с радиусом $q_D=(6\pi^2N/V)^{1/3}$ [16], V — объем кристалла, N — число элементарных ячеек, $V/N=a_0^3/4$, a_0 — постоянная решетки. Закон дисперсии фононов полагался изотропным, и использовались следующие аппроксимации. Для оптических фононов он считался квадратичным (индекс, нумерующий ветви закона дисперсии $\sigma=1$):

$$\omega_{1q} = \omega_1(q) = \omega_1(0) \left(1 - \frac{q^2}{q_1^2}\right),$$
 (13)

$$q_1^2 = q_D^2 / (1 - \omega_1(q_D) / (\omega_1(0)),$$

где максимальная и минимальная частоты соответствуют энергиям фонона $\hbar\omega_1(0)=64.3\,\mathrm{mp}$, $\hbar\omega_1(q_D)=51.4\,\mathrm{mp}$ [9], минимальная энергия соответствует энергии LO-фонона в точке X зоны Бриллюэна.

Закон дисперсии акустических фононов ($\sigma=2$) аппроксимировался дробно-линейной функцией:

$$\omega_{2q} = \omega_2(q) = \frac{vq}{1 + q/q_2},$$
(14)

$$q_2 = \omega_2(q_D)/(v - \omega_2(q_D)/q_D),$$

где максимальная частота соответствует энергии LA-фонона в точке X: $\hbar\omega_2(q_D)=51.4\,\mathrm{m}$ В. Параметр v равен средней по направлениям скорости звука [17]:

$$v = \langle v_{\text{LA}} \rangle = \sqrt{\frac{1}{\rho} \left(\frac{2}{5} c_{12} + \frac{4}{5} c_{44} + \frac{3}{5} c_{11} \right)},$$

 ρ — плотность кристалла, c_{11} , c_{12} и c_{44} — упругие постоянные [9]; $v \approx 9 \cdot 10^5$ см/с.

2.3. Вероятность перехода

Вероятности безызлучательных переходов записываются в стандартной теории возмущений первого порядка, в которой возмущением является оператор неадиабатичности:

$$w = \frac{2\pi}{\hbar} Av(\{m\}) \sum_{\{n\}} \left| \langle 1, \{n\} | H_{na} | 2, \{m\} \rangle \right|^2$$

$$\times \delta(E_{2,\{m\}} - E_{1,\{n\}}), \tag{15}$$

где $|i,\{n\}\rangle$ и $E_{i,\{n\}}$ — волновая функция и энергия (8) электронно-колебательной системы в начальном (i=2) и конечном (i=1) состояниях, $\{n\}$ — совокупность чисел заполнения фононных мод. Символ $Av(\{m\})$ означает статистическое усреднение по начальным состояниям фононной подсистемы.

В рамках первого порядка теории возмущений матричные элементы оператора неадиабатичности H_{na} можно заменить матричными элементами оператора H_{eL} (6), причем для электронной волновой функции использовать нулевое приближение [18]. Эта замена справедлива при дополнительном условии равенства энергий

электронно-колебательного движения в начальном и конечном состояниях, что в выражении (15) выполняется автоматически в силу наличия δ -функции.

С учетом этой замены формула (15) полностью идентична выражению, полученному Р. Паслером (R. Pässler) в рамках статического приближения (static coupling scheme) [19]. Суммирование по конечным состояниям и статистическое усреднение по начальным состояниям в выражении для вероятности безызлучательных переходов были проведены, и мы воспользуемся результатами из цитированной работы.

Положим температуру равной нулю, и запишем формулу Паслера в наших обозначениях:

$$w = \frac{\pi}{\hbar} \sum_{\sigma \lambda \mathbf{q}} |V_{\sigma \lambda \mathbf{q}}|^2 R(E_T - \hbar \omega_{\sigma \mathbf{q}}), \tag{16}$$

$$V_{\sigma\lambda\mathbf{q}} = \langle \psi_1 | u_{\sigma\lambda\mathbf{q}} | \psi_2 \rangle, \tag{17}$$

R(E) — фактор Франка-Кондона. Его можно выразить через обратное преобразование Лапласа [19]:

$$R(E) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} r(\tau) e^{-\tau E} d\tau, \qquad (18)$$

$$r(\tau) = \exp(s_N(\tau) - s_N(0)).$$

При нулевой температуре

$$s_N(\tau) = \sum_{\sigma \lambda \mathbf{q}} S_{\sigma \lambda \mathbf{q}} \exp(\tau \, \hbar \omega_{\sigma \mathbf{q}}),$$
 (19)

где фактор Хуанга–Рис $S_{\sigma\lambda\mathbf{q}}$ для фононной моды $(\sigma, \lambda, \mathbf{q})$ выражается через разность смещений положений равновесия (7):

$$S_{\sigma\lambda\mathbf{q}} = \frac{1}{2} \left(\eta_{\sigma\lambda\mathbf{q}}^{(2)} - \eta_{\sigma\lambda\mathbf{q}}^{(1)} \right)^2. \tag{20}$$

В вычислениях пренебрегалось величинами $\eta_{\sigma\lambda q}^{(2)}$ для возбужденного состояния, поскольку они много меньше $\eta_{\sigma\lambda q}^{(1)}$.

В формуле (16) отброшены слагаемые, которые содержат произведения диагональных и недиагональных матричных элементов (12). Для рассматриваемого перехода ими можно пренебречь, поскольку они содержат исключительно "перекрестные" вклады в том смысле, о котором говорилось в п. 2.2.

Для практических вычислений выражение (16) удобно представить в виде суммы определенных интегралов, соответствующих вкладам в нарушение адиабатичности LO- ($\sigma=1$) и LA-фононов ($\sigma=2$):

$$w = \sum_{\sigma} \int w_{\sigma}(E)R(E_T - E)dE, \qquad (21)$$

$$w_{\sigma}(E) = \frac{\pi}{\hbar} \sum_{\mathbf{l},\mathbf{q}} |V_{\sigma\lambda\mathbf{q}}|^2 \delta(E - \hbar\omega_{\sigma\mathbf{q}}). \tag{22}$$

3. Результаты и обсуждение

Вероятность многофононных переходов (21) выражается через интегралы от фактора Франка–Кондона, R(E). Эта функция, подобно δ -функции Дирака, имеет смысл скорее только в подынтегральных выражениях, т.е. как ядро интегрального оператора. (Заметим, что интеграл от R(E) по энергии E по бесконечным пределам равен единице [19].) Для наглядного представления зависимости R(E) (рис. 1) и практических вычислений мы использовали следующую регуляризацию. Фактор R(E) заменялся на функцию $R_{\gamma}(E)$, которая представляет собой свертку с нормальным распределением:

$$R_{\gamma}(E) = \frac{1}{\gamma \sqrt{2\pi}} \int R(W) \exp\left(-\frac{(W-E)^2}{2\gamma^2}\right) dW, \quad (23)$$

где параметр уширения γ необходимо устремить к нулю. В вычислениях полагалось $\gamma=1.5$ мэВ. Заметим, что максимум функции $R_{\gamma}(E)$ при E=0 является уширенным в силу использованной процедуры регуляризации.

Вклад в недиагональный матричный элемент $\langle \psi_1 | u_{\sigma\lambda \mathbf{q}} | \psi_2 \rangle$, а следовательно, и в функции $w_{\sigma}(E)$ (22) дают только междолинные процессы рассеяния (слагаемые $g_{\sigma\lambda \mathbf{q}}^{12}$ в формуле (12), соответствующие g-процессам). Вклад нормальных (внутридолинных) процессов рассеяния ($d_{\sigma\lambda \mathbf{q}}^{12}$ в (12)) на LA-фононах равен нулю для выбранных начальных и конечных электронных состояний $1s(T_2)$ и $1s(A_1)$, а для оптических фононов он равен нулю, как отмечалось, по более общим симметрийным соображениям. Функции $w_{\sigma}(E)$ для LO-и LA-фононов показаны на рис. 2. Они имеют максимумы, приблизительно соответствующие резонансным энергиям g-LO (62 мэВ) и g-LA (18.5 мэВ) фононов.

Вместе с тем "внутридолинное" взаимодействие с LA-фононами все-таки дает вклад в вероятность безызлучательного перехода. Это обусловлено зависимостью фактора Франка–Кондона от диагональных матричных элементов, для которых "внутридолинный" вклад LA-фононов доминирует. Количественной мерой такого вклада является сумма по модам факторов Хуанга–Рис. Для фиксированной ветви σ закона дисперсии

$$S_{\sigma} = \sum_{\lambda \mathbf{q}} S_{\sigma \lambda \mathbf{q}}.$$

Для LO- и LA-фононов соответственно: $S_1 \approx 6 \cdot 10^{-3}$, $S_2 \approx 0.65$. При этом доминирующий вклад в S_2 вносят внутридолинные процессы, в то время как вклад g-процессов $(9 \cdot 10^{-4})$ существенно меньше. Факторы Хуанга-Рис $S_{\sigma\lambda q}$ характеризуют изменение деформации решетки и соответствующее изменение накопленной ею энергии, характеризуемой величинами (9), при переходе электрона между состояниями примеси. Это изменение отражается в законе сохранения энергии, выражаемом фактором R(E).

Мы видим, что вклад *g*-процессов в суммарный фактор Хуанга–Рис, а следовательно, и в фактор Франка–Кондона мал по сравнению с "внутридолинными" процессами взаимодействия с LA-фононами. Аналогичным

Рис. 1. Зависимость фактора Франка–Кондона от энергии для перехода $1s(T_2)-1s(A_1)$ при нулевой температуре.

Рис. 2. Функции $w_1(E)$ (кривая I) и $w_2(E)$ (кривая 2), характеризующие степень нарушения адиабатичности при вза-имодействии электрона донора, соответственно, с g-LO- и g-LA-фононами.

образом учет междолинных f-процессов рассеяния не должен существенно повлиять на функцию R(E).

Производя интегрирование и суммирование в формуле (21), получаем, что суммарный темп многофононных переходов $w \approx 8 \cdot 10^{10} \, \mathrm{c}^{-1}$. Довольно высокий темп релаксации объясняется близостью энергии перехода к одноквантовому резонансу на g-LO-фононах. Вклады в вероятность перехода w, возникающие из-за нарушения адиабатичности при взаимодействии с LO- и LA-фононами (вклады от функций $w_1(E)$ и $w_2(E)$ (22)), составляют, соответственно, $\sim 8 \cdot 10^{10}$ и $\sim 7 \cdot 10^7 \, \mathrm{c}^{-1}$. Поскольку деформационный потенциал g-LO-фононов не менее чем в 5 раз превосходит остальные деформационные потенциалы g- и f-фононов, мы ожидаем, что учет взаимодействия с остальными "междолинными"

фононами существенным образом не изменит сделанную оценку для темпа многофононных переходов.

Чтобы выяснить чувствительность темпа релаксации к неточности деформационных потенциалов, были сделаны расчеты вероятности w при вариации деформационных потенциалов на $\pm 20\%$ от их табличных значений. При варьировании деформационного потенциала g-LOфононов темп перехода попадает в интервал от $5.1 \cdot 10^{10}$ до $1.1 \cdot 10^{11}$ с $^{-1}$, в то время как к варьированию деформационных потенциалов LA-фононов (как для процессов g-типа, так и для внутридолинных переходов) темп релаксации оказался слабо чувствительным. Заметим, что погрешность расчета вероятности переходов, обусловленная константами электрон-фононной связи, определяется не только неточностью их табличных значений, но и отклонением расчета от приближения эффективной массы.

4. Заключение

Используя одноэлектронное приближение для описания донорных парасостояний $\mathrm{Si}:\mathrm{Mg^0}$, а также адиабатическое приближение, сделана оценка для темпа релаксации триплета $1s(T_2)$ при низких температурах. Темп многофононной релаксации имеет порядок $10^{11}\,\mathrm{c^{-1}}$. В расчетах учтены доминирующие процессы рассеяния, обусловленные взаимодействием с LO- и LA-фононами.

Приложение

Выразим матричные элементы (12) через деформационные потенциалы и матричные элементы на огибающих волновых функциях $F_{nj}(\mathbf{r})$. Для взаимодействия электронов с "междолинными" фононами поступим в духе работы [20], заменив в выражениях операторы рождения и уничтожения фононов нормальными координатами.

Разложим энергию электрон-фононного взаимодействия в ряд по степеням смещений $\mathbf{z}_{\mathbf{n}\rho}$ атомов в элементарных ячейках. Положение ячеек характеризуется векторами трансляции \mathbf{n} , индекс ρ нумерует атомы в ячейке:

$$H_{eL} = \sum_{\mathbf{n}\rho} \mathbf{z}_{\mathbf{n}\rho} C_{\rho}(\mathbf{r} - \mathbf{n}),$$

$$\mathbf{C}_{\rho}(\mathbf{r} - \mathbf{n}) = \left(\partial H_{eL} / \partial \mathbf{z}_{\mathbf{n}\rho}\right)_{\{\mathbf{z}_{\mathbf{r}, \mathbf{r}}\} = 0}.\tag{\Pi.1}$$

Смещения $\mathbf{z}_{\mathbf{n}\rho}$ можно представить в виде разложения:

$$\mathbf{z}_{\mathbf{n}\rho} = \sum_{\sigma \mathbf{q}} \frac{\mathbf{e}_{\sigma\rho\mathbf{q}}}{\sqrt{2NM\omega_{\sigma\mathbf{q}}/\hbar}} (a_{\mathbf{q}\sigma} + a_{-\mathbf{q}\sigma}^{+}) \exp(i\mathbf{q}\mathbf{n}), \quad (\Pi.2)$$

 ${\bf e}_{\sigma\rho{\bf q}}$ — единичный вектор поляризации фононов; суммирование по ${\bf q}$ ведется по всей зоне Бриллюэна. Явно выделим в (П.2) суммирование по двум половинам зоны Бриллюэна, отличающимся знаком ${\bf q}$, и введем путем линейного преобразования новые операторы рождения

и уничтожения фононов, соответствующие стоячим волнам и вещественным нормальным координатам:

$$b_{\mathbf{q}\sigma 1}^{+} = \frac{1}{\sqrt{2}} (a_{\mathbf{q}\sigma}^{+} + a_{-\mathbf{q}\sigma}^{+}),$$

$$b_{\mathbf{q}\sigma 2}^{+} = \frac{i}{\sqrt{2}} (-a_{\mathbf{q}\sigma}^{+} + a_{-\mathbf{q}\sigma}^{+}), \tag{\Pi.3}$$

операторы уничтожения получаются из $b_{{f q}\sigma\lambda}^+$ $(\lambda=1,2)$ эрмитовым сопряжением.

Предполагая, что огибающие волновые функции $F_{nj}(\mathbf{r})$ достаточно плавные, вычислим матричные элементы оператора H_{eL} на базисных волновых функциях

$$\psi_{nj} = F_{nj}(\mathbf{r})\varphi_j(\mathbf{k}, \mathbf{r}), \qquad (\Pi.4)$$

$$\varphi_j(\mathbf{k}, \mathbf{r}) = \exp(i\mathbf{k}\mathbf{r})\alpha_j(\mathbf{r}),$$
 (II.5)

 $\alpha_j(\mathbf{r})$ — периодическая часть блоховской функции j-й долины, нормированная условием

$$\int\limits_{\Omega_0} |lpha_j|^2 d{f r} = \Omega_0,$$

где интеграл берется по элементарной ячейке объемом Ω_0 . Огибающая волновая функция нормирована на единицу в основном объеме кристалла. Введя вещественные нормальные координаты $\eta_{{\bf q}\sigma\lambda}=(b_{{\bf q}\sigma\lambda}+b_{{\bf q}\sigma\lambda}^+)/\sqrt{2}$, матричные элементы (12) на базисных функциях (П.4) можно записать в следующем виде:

$$\langle \psi_{nj} | u_{\sigma\lambda\mathbf{q}} | \psi_{ml} \rangle = \left(\frac{2\hbar}{NM\omega_{\sigma\mathbf{q}}} \right)^{1/2}$$

$$\times A_{\sigma jl} \int F_{nj}^* \exp(i(\mathbf{k}_l - \mathbf{k}_j)\mathbf{r}) c_{\lambda}(\mathbf{qr}) F_{ml} d\mathbf{r}, \quad (\Pi.6)$$

 $c_1(\mathbf{qr}) = \cos(\mathbf{qr}), c_2(\mathbf{qr}) = \sin(\mathbf{qr}), \mathbf{k}_j$ — волновое число, соответствующее минимуму j-й долины,

$$A_{\sigma jl} = \frac{1}{\Omega_0} \int_{\Omega_0} \varphi_j^* \xi_{\sigma \mathbf{q}} \varphi_l d\mathbf{r},$$

$$\xi_{\sigma \mathbf{q}}(r) = \sum_{\rho} \mathbf{e}_{\sigma \rho \mathbf{q}} \mathbf{C}_{\rho}(\mathbf{r}). \tag{\Pi.7}$$

Зависимостью $A_{\sigma jl}$ от ${\bf q}$ мы пренебрегли, и соответствующий индекс в обозначении этих констант опустили. Для недиагональных по долинам матричных элементов (П.6) модули констант $|A_{\sigma jl}|$ можно отождествить с известными из литературы деформационными потенциалами "междолинных" фононов.

С учетом произведенных преобразований суммирование по ${\bf q}$ в (11) необходимо производить по половине зоны Бриллюэна. Матричные элементы (12) произвольных волновых функций находятся из (П.6) с учетом коэффициентов разложения (3) по базисным функциям. При вычислении интегралов с огибающими волновыми функциями в (П.6) необходимо учитывать, что волновой

вектор фонона ${\bf q}$ определен с точностью до вектора обратной решетки.

Чтобы получить выражение внутридолинной части $d_{\sigma\lambda q}^{nm}$ матричных элементов (12) через деформационные потенциалы, воспользуемся тем соображением, что энергия электрон-фононного взаимодействия в длинноволновом пределе пропорциональна тензору деформации. Следуя, например, [21], и используя разложение для смещений (П.2) и преобразование для операторов (П.3), для диагонального по долинам матричного элемента получим

$$\langle \psi_{nj} | u_{\sigma\lambda\mathbf{q}} | \psi_{mj} \rangle = \left(\frac{2\hbar}{NM\omega_{\sigma\mathbf{q}}} \right)^{1/2} q \left(\Xi_d + \frac{(\mathbf{q}\mathbf{e}_j)^2}{q^2} \Xi_u \right)$$

$$\times \int F_{nj}^* s_{\lambda}(\mathbf{q}\mathbf{r}) F_{mj} d\mathbf{r}, \qquad (\Pi.8)$$

 $\sigma=2$ (LA-фононы), \mathbf{e}_j — единичный вектор в направлении оси j-й долины, $s_1(\mathbf{qr})=-\sin(\mathbf{qr})$, $s_2(\mathbf{qr})=\cos(\mathbf{qr})$. В вычислениях мы заменяли величину $(\mathbf{qe}_j)^2$ в (П.8) ее средним значением по телесному углу, тем самым вводя усредненный деформационный потенциал $\Xi_d+\Xi_u/3$.

Финансирование работы

Работа выполнена в рамках государственного задания ИПФ РАН (тема № FFUF-2021-0019).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S.G. Pavlov, R.Kh. Zhukavin, V.N. Shastin, H.-W. Hübers. Phys. Status Solidi B, 250, 9 (2013).
- [2] В.Н. Шастин, Р.Х. Жукавин, К.А. Ковалевский, В.В. Цыпленков, В.В. Румянцев, Д.В. Шенгуров, С.Г. Павлов, В.Б. Шуман, Л.М. Порцель, А.Н. Лодыгин, Ю.А. Астров, Н.В. Абросимов, Ј.М. Кlopf, Н.-W. Hübers. ФТП, 53, 1263 (2019).
- [3] R.K. Franks, J.B. Robertson. Solid State Commun., 5, 479 (1967).
- [4] L.T. Ho, A.K. Ramdas. Phys. Rev. B, 5, 462 (1972).
- [5] E. Ohta, M. Sakata. Solid State Electron., 22, 677 (1979).
- [6] В.А. Коварский, Н.Ф. Перельман, И.Ш. Авербух. *Много-квантовые процессы* (М., Энергоатомиздат, 1985).
- [7] I.B. Bersuker. *The Jahn-Teller Effect* (Cambridge University Press, United Kingdom, 2006).
- [8] N. Dessmann, S.G. Pavlov, A. Pohl, V.B. Shuman, L.M. Portsel, A.N. Lodygin, Yu.A. Astrov, N.V. Abrosimov, B. Redlich, H.-W. Hübers. Phys. Rev. B, 106, 195205 (2022).
- [9] A. Dargys, J. Kundrotas. Handbook on physical properties of Ge, Si, GaAs and InP (Vilnius, 1994).
- [10] W. Kohn, J.M. Luttinger. Phys. Rev., 90, 915 (1955).
- [11] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках (М., Наука, 1972).
- [12] H.G. Grimmeiss, E. Janzén, K. Larsson. Phys. Rev. B, 25, 2627 (1982).

- [13] E. Janzén, R. Stedman, G. Grossmann, H.G. Grimmeiss. Phys. Rev. B, 29, 1907 (1984).
- [14] A. DeAbreu, C. Bowness, R.J.S. Abraham, A. Medvedova, K.J. Morse, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, M.L.W. Thewalt, S. Simmons. Phys. Rev. Appl., 11, 044036 (2019).
- [15] Sadao Adachi. Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons Ltd, 2005).
- [16] B.K. Ridley. Solid State Electron., 21, 1319 (1978).
- [17] Б. Ридли. Квантовые процессы в полупроводниках (М., Мир, 1986). [Пер. с англ.: В.К. Ridley. Quantum processes in semiconductors (Clarendon Press Oxford, 1982)].
- [18] Huang Kun. Scientia Sinica, 24, 27 (1981).
- [19] R. Pässler. Czech. J. Phys. B, 24, 322 (1974).
- [20] S. Rodriguez, T.D. Schultz. Phys. Rev., 178, 1252 (1969).
- [21] В.Н. Абакумов, В.И. Перель, И.Н. Яссиевич. Безызлучательная рекомбинация в полупроводниках (СПб., 1997).

Редактор Г.А. Оганесян

Multi-Phonon Relaxation of the $1s(T_2)$ Triplet of Neutral Magnesium Donors in Silicon

N.A. Bekin, R.Kh. Zhukavin, V.V. Tsyplenkov, V.N. Shastin

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

Abstract Using adiabatic and one-electron approximations, the rate of multiphonon relaxation of the $1s(T_2)$ triplet of neutral magnesium donors in silicon is estimated. The dominant scattering processes associated with interaction with LO- and LA-phonons are taken into account. According to calculations, the rate of multiphonon relaxation at zero temperature is of the order of 10^{11} s⁻¹.