DYG

Contents

目录

1团队介绍 4模型介绍

2 赛题理解 5 结果与分析

3 特征工程 6 总结与思考

01 团队介绍

王贺 武汉大学 计算机硕士 算法工程师 2019腾讯广告算法大赛冠军

郭达雅 中山大学-MSRA 联合培养博士 2019腾讯广告算法大赛冠军 在国际顶级学术会议NeurIPS, AAAI, ACL, EMNLP发表多篇一作论文

梁少强 从事NLP相关工作 国内NLP和数据挖掘比 赛中多次名列Top5

02

寒题理解

数据

· 点击日志: 用户id、广告素材id、点击次数与时间

• 用户信息: 年龄、性别

• 广告信息:广告id、产品id、类别id、广告主id、行业id

目标

通过用户的点击记录,预测该用户年龄和性别

评价指标

准确率 (accuracy) = 年龄准确率 + 性别准确率

4等征工程

1. 统计特征

- 1) 用户出现的总次数和天数
- 2) 用户点击广告的总次数
- 3) 用户点击不同广告、产品、类别、素材、广告主的总数
- 4) 用户每天每条广告点击的平均次数,均值和方差

2. 概率分布特征

04 模型介绍

连续特征

Mean Pooling & Max Pooling

- 1. 20分类,预测用户的年龄和性别的概率 $p(age_i, gender_j)$
- 2. 用户的年龄为 age_i 的概率为:

$$p(age_i) = \sum_{j=1}^{2} Transformer p(age_i, gender_j)$$
 Fusion Layer

Transformer Transformer

3. 用户的性别为 $gender_j$ 的概率为:

$$p(gender_j) = \sum_{i=1}^{10} p(age_i, gender_j)$$
广告点击人群的性别年龄分布

用户点击序列

结果与分析

2020-5-21: 使用BERT

2020-5-27: 调整BERT的参数, 锁定A榜冠军

2020-6-03: 调整学习策略,使用warmup调

整学习率, 学习率先增后减

2020-6-12: 模型融合

2020-6-22: 切换B榜

.伍排名	队伍名称	排名变化	最佳成绩
	DYG	0 - 0	1.464798
② 5		0 -	1.458208
©	微醺	0 -	1.457616
4	挥霍的人生	0 -	1.457246
5 ₈	日晨	7 🛨	1.456464
6 9	Lindada	1 +	1.45584
7 10	BANJITINO	1 🛊	1.4556
8	安之	1 +	1.45534
9	chizhu	1 +	1.455072
10	天才抱大腿	1 +	1.454272

2020-6-26: 复现初赛模型

2020-6-30: 引入Fusion Layer, 锁定A榜冠军

2020-7-21: 模型融合

2020-7-22: 切换B榜

队伍排名	队伍名称	排名变化	最佳成绩
0	DYG	0 -	1.490166
2	山有木兮	0 -	1.486404
3	微醺	0 -	1.485036
4	000	0 -	1.483378
5	BANJITINO	1 🛊	1.482612
6	正方形的圆	1 🖡	1.482324
7	天才抱大腿	1 🛊	1.481152
8	挥霍的人生	1 🖡	1.480908
9	玉古路38号_	5 ★	1.480708
10	小太阳2020	27 🕇	1.480212

06 总结与思考

主要创新

- 改进BERT并运用到人口属性预测场景
 - 提出分阶段预训练并改进MLM预训练目标,从多维度学习广告及其属性的语义表示
 - 将BERT运用到人口属性预测的场景,从性能上验证了预训练在广告领域的潜力
- 提出融合后验概率分布的方法及模型
 - 利用种子人群求出每个广告的后验概率分布
 - 利用多层Transformer融合后验概率分布及BERT的语义表示,能有效提升性能

问题思考

• 预训练模型越大越好?

Model	Age	Gender	Overall
Bert-small (L=6, H=512,I=1024)	0.5247	0.9507	1.4754
Bert-base (L=12,H=512,I=2048)	0.5268	0.9512	1.4780
Bert-large (L=24,H=512,I=1024)	0.5261	0.9511	1.4772
Bert-xl (L=24,H=512,I=2048)	0.5234	0.9512	1.4746

- 如何进一步改善预训练模型?
 - 预训练目标
 - 支持图输入的预训练模型
 - 广告稀疏性问题,例如在未脱敏的情况下使用BPE算法

总结

历时两个半月的腾讯广告大赛,非常感谢工作人员辛苦的答疑。感谢主办方提供真实的业务场景与数据,让我们能在比赛中学习到更多知识,在广告业务中做更多尝试。

THANKS