

Department of Mathematics and Statistics

CSE Exercises - Week 9

- D Let $X_1, ..., X_n \sim Uniform (a, b)$, where a < b, i.e. the uniform distribution on the interval [a, b].
 - (a) Find the ML estimators for a and b analytically.
 - (b) Let $\mu = E(X_i)$, i.e. the mean of the Uniform (a, L) distribution. Find the ML estimator $\hat{\mu}$ for μ .
 - (c) Suppose that a = 5, b = 8 and n = 10.
 - (i) Estimate the mean squared error of û by Monte Carlo simulation.
 - (ii) Let X be the sample mean of X1,..., Xn. Find the mean squared error of X analytically.
 - (iii) Compare and comment on your results in (i) and (ii).

- (2) Let $X_1, ..., X_n \sim Normal(\mu, \sigma^2)$. Let g be the 0.95 quantile of the Normal(μ, σ^2) distribution.
 - (a) Find the ML estimator, q, analytically.
 - (b) Suppose that n = 30 and the data, X_1, \ldots, X_n , are given in the file, normal-data mat.
 - (i) Find the ML estimate, q.
 - (ii) Estimate the standard error of \hat{q} using the parametric bootstrap.
 - (iii) Estimate the standard error of q̂ using the delta method.
 - (iv) Compare and comment on your answers in (ii) and (iii).

(3) Recall the definition of the Beta(x, B) distribution in Exercise 5 of week 5.

Let X1, , , , Xn N Beta (x, B).

Suppose that n = 25 and the data, $X_1,...,X_n$, are given in the file, beta-data, mat.

- (a) Use fininsearch to find the ML estimates, 2 and &.
- (b) when $\alpha > 1$ and $\beta > 1$, the mode of the Beta(α , β) density is at $m = \frac{\alpha 1}{\alpha + \beta 2}$.

Find the ML extimate of m.

(c) Obtain approximate 95% confidence intervals for \times , β and m using the parametric bootstrap.