EVALUACIÓN 6

Manuel Vicente Bolaños Quesada

Problema 1

a) Es claro que Z está acotado. Sean entonces $\inf(Z) = \alpha$, $\sup(Z) = \beta$. Es evidente que $c \le \alpha \le \beta \le d$ Entonces, lo que queremos probar es que $f(\alpha) = f(\beta) = 0$.

Para ello, como α es el ínfimo de Z, existe una sucesión $\{x_n\}$ que converge a α , con $x_n \in Z$ para todo $n \in \mathbb{N}$, es decir, $\lim\{x_n\} = \alpha$. De la continuidad de f, obtenemos que $\lim\{f(x_n)\} = f(\alpha)$, pero $f(x_n) = 0$ para todo $n \in \mathbb{N}$, por ser elementos de Z. De aquí, deducimos que $f(\alpha) = 0$, y por lo tanto, $\alpha \in Z$.

La demostración de que $f(\beta) = 0$ es análoga. Por ser β el supremo de Z, existe una sucesión de puntos del conjunto, $\{y_n\}$, con $y_n \in Z$ para todo $n \in \mathbb{N}$, con límite β , es decir, $\lim\{y_n\} = \beta$. Como f es continua, tenemos que $\lim\{f(y_n)\} = f(\beta)$, pero como $f(y_n) = 0$ para todo $n \in \mathbb{N}$ por ser elementos de Z, tenemos que $f(\beta) = 0$, de donde $\beta \in Z$.

b) Definamos la función $f_1:[a,c]\to\mathbb{R}$ definida por $f_1(x)=f(x)$ para todo $x\in[a,c]$. Como $f_1(c)>0$, y $f_1(a)<0$, por el Teorema de Bolzano, sabemos que hay un $r\in[a,c]$ tal que $f_1(r)=0$. Consideramos el conjunto $Z_1=\{x\in[a,c]:f_1(x)=0\}\neq\emptyset$. Pongamos $u=\max(Z_1)$ (sabemos que existe por lo visto en el apartado anterior). Además, si $x\in]u,c],\ f_1(x)>0$, ya que si $f_1(x)\leq0$, por el teorema de Bolzano habría otro punto, $\lambda>u$ tal que $f_1(\lambda)=0$, lo que es contradictorio.

Definimos, análogamente, la función $f_2:[c,b]\to\mathbb{R}$ definida por $f_2(x)=f(x)$ para todo $x\in[c,b]$. Como $f_2(c)>0$, y $f_2(b)<0$, por el Teorema de Bolzano, sabemos que hay un $s\in[c,b]$ tal que $f_2(s)=0$. Consideramos el conjunto $Z_2=\{x\in[c,b]:f_2(x)=0\}\neq\emptyset$. Pongamos $v=\min(Z_2)$ (sabemos que existe por lo visto en el apartado anterior). Análogamente al razonamiento anterior, observamos que si $x\in[c,v[$ entonces $f_2(x)>0$.

Entonces, a < u < c < v < b, f(u) = f(v) = 0 y f(x) > 0 para todo $x \in]u,v[$, tal y como se pedía demostrar.

Problema 2

Sea $\alpha = \sup(A)$. Entonces, se tiene que para todo $a \in A$, $a \le \alpha$. Como f es creciente, $f(a) \le f(\alpha)$. Esto nos dice que $f(\alpha)$ es un mayorante de f(A).

Si $\alpha \in A$, entonces $f(\alpha) \in f(A)$, y como $f(\alpha)$ es un mayorante de f(A), sería $f(\alpha) = \sup(f(A))$. Supongamos entonces, a partir de ahora, que $\alpha \notin A$.

Primera forma. Dado un $\varepsilon > 0$, como f es continua, existe un $\delta > 0$, tal que para todo $x \in A$ que verifique que $|x - \alpha| < \delta$, se tiene que $|f(x) - f(\alpha)| < \varepsilon$. Como α es el supremo de A, tenemos que el conjunto $C =]\alpha - \delta, \alpha[\cap A$ no es vacío. Sea entonces $s \in C$. Entonces, $|f(s) - f(\alpha)| < \varepsilon$; en particular, $f(\alpha) - \varepsilon < f(s)$. Como $f(s) \in f(A)$, esto nos dice que $f(\alpha) - \varepsilon$ no es un mayorante de f(A). De aquí, se deduce que $f(\alpha) = \sup(f(A))$.

Segunda forma. Como $\alpha = \sup(A)$, existe una sucesión $\{x_n\}$ con $x_n \in A$ para todo $n \in \mathbb{N}$, tal que $\lim\{x_n\} = \alpha$. Al ser f continua, deducimos que $\lim\{f(x_n)\} = f(\alpha)$. Así pues, si ρ es un real tal que $\rho < f(\alpha)$, entonces, existe un $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$, entonces $f(x_n) > \rho$. Por lo tanto, deducimos que $f(\alpha)$ es el mínimo mayorante de f(A), equivalentemente, $f(\alpha) = \sup(f(A))$.

Manuel Vicente Bolaños Quesada

Problema 3

Veamos que g es creciente en [a,b]. Para ello tomemos $x,y \in [a,b]$ tales que x < y. Es claro que $\max[a,x] \leq \max[a,y]$, o lo que es lo mismo, g(x) < g(y).

Como hemos visto que g es creciente, para probar que es continua, es suficiente demostrar que su imagen es un intervalo, es decir, que g([a,b]) es un intervalo. Vamos a demostrar que g([a,b]) = [f(a),M], donde $M = \max f([a,b])$.

Está claro que $\inf(g([a,b])) = \max f([a,a]) = f(a) = g(a)$ y que $\sup(g([a,b])) = \max f([a,b]) = M = g(b)$. Sea ahora $u \in]f(a), M[$. Definimos $t_u = \sup\{x \in [a,b]: f(s) \le u \text{ para todo } s \in [a,x]\}$. Entonces, $f(t_u) = u$ y también $g(t_u) = u$ (ya que si $a \le v < u$, entonces $f(v) \le f(u)$). De aquí, obtenemos que $u \in g([a,b])$.

Por lo tanto, g([a,b]) = [f(a), M].