

Druckspeicher, insbesondere Pulsationsdämpfer

Die Erfindung betrifft einen Druckspeicher, insbesondere Pulsationsdämpfer mit einem Speichergehäuse und einem darin angeordneten Kolbenteil, wobei sich ein balgartiges Trennglied mit seinem einen Ende am Kolbenteil abstützt und mit seinem anderen Ende am Speichergehäuse, und wobei das

5 Trennglied zwei Arbeitsräume, insbesondere einen Gasraum von einem Fluidraum innerhalb des Speichergehäuses fluddicht, insbesondere gasdicht, voneinander trennt.

Im Stand der Technik (WO 01/55602 A1) sind sogenannte hydropneumatische Druckspeicher bekannt, mit einem innerhalb des Speichergehäuses 10 einen Gasraum von einem Ölraum trennenden Balg, insbesondere in Form eines Metallbalges, der an seinem einem Ende am Speichergehäuse so befestigt ist, dass der Ölraum an die Innenseite des Balges angrenzt, der an seinem freien anderen Ende durch einen entsprechend Volumenänderungen 15 von Gasraum und Ölraum als die beiden Arbeitsräume des Speichers beweglichen Abschlußkörper verschlossen ist, und mit einem das Strömen von Hydraulikfluidum aus dem und in den Ölraum freigebenden oder sperrenden Ventil, das bei einer Bewegung des Abschlußkörpers, die einer ei-

nen vorgegebenen Größtwert übersteigenden Vergrößerung des Volumens des Gasraumes entspricht, durch den der Abschlußkörper in seine sperrende Stellung überführbar ist, wobei der Abschlußkörper in Form eines Troges ausgebildet ist, dessen Boden als bewegliches Ventilglied des das Strömen von Hydraulikfluidum steuernden Ventiles ausgebildet ist.

Bekanntermaßen muss bei Balgspeichern mit Gummibälgen oder Metallbälgen darauf geachtet werden, dass Überbelastungen des Balges vermieden sind. Bei einem weiteren bekannten Druckspeicher (WO 97/46823 A1) ist im Hinblick auf dieses Problem ein Ventilstößel des am Ölraum angelassenen Ventiles relativ zum Abschlußkörper des Metallbalges in solcher Lagebeziehung angeordnet, dass der als ebene Endplatte ausgebildete Abschlußkörper des Metallbalges den Ventilstößel bei Erreichen einer gewünschten Endstellung beaufschlagt und in die Sperrstellung des Ventiles verschiebt, so dass der Ausstrom von Hydraulikfluidum aus dem Ölraum bei Erreichen dieser Endstellung der Endplatte des Metallbalges unterbunden wird. Bei geschlossenem Ventil bleibt somit, selbst wenn das angelassene Hydrauliksystem drucklos werden sollte, im Ölraum des Speichers ein Druck aufrechterhalten, der dem im Gasraum momentan herrschenden Gasdruck entspricht, so dass am Metallbalg beidseits Druckgleichgewicht herrscht.

Zwar ist dadurch eine Überbelastung des Balges dann verhindert, wenn im Betrieb des Druckspeichers der Druck des ölseitig angeschlossenen Hydrauliksystems abfällt, es besteht jedoch weiterhin die Gefahr der Beschädigung des Balges bei Zuständen mit auf der Ölseite herrschendem Überdruck oder bei einem Fehlen des Vorfülldruckes auf der Gasseite. Da bei dem bekannten Druckspeicher der erwähnten Art der Größtwert des Volumens des Gasraumes im wesentlichen dem Hubvolumen entspricht, wel-

- ches durch die bei Zusammenziehen und Ausziehen des Metallbalges erfolgende Bewegung der Endplatte definiert ist, muss die Hublänge, welche die Endplatte innerhalb des Speichergehäuses zurücklegen kann, ausreichend lang gewählt werden, wenn ein für den Betrieb des Speichers ausreichendes Volumen des Gasraumes zur Verfügung gestellt werden soll. Bei fehlendem Gas-Vorfülldruck oder ölseitig herrschendem Überdruck wirkt daher der herrschende Druckgradient auf den voll ausgezogenen und damit mechanisch am stärksten belasteten Metallbalg. Man ist daher gezwungen, entweder dickere oder aber mehrlagige Metallbälge zur Anwendung zu bringen. In nachteiliger Weise wird dadurch die Federsteifigkeit stark vergrößert, was zu einem verhältnismäßig schlechten Ansprechverhalten im Betrieb führt. Mehrlagige Bälge führen zu erhöhtem Gewicht und höheren Kosten. Außerdem ergibt sich ein geringerer Hub pro Balgwundung.
- Bei der eingangs erwähnten Lösung nach der WO 01/55602 A1 ist zusätzlich ein am Trogboden befestigter Ventilstößel vorgesehen, der sich konzentrisch zur Längsachse aus dem Speichergehäuse erstreckt und mit einem zweiten bewegbaren Ventilglied verbunden ist, das bei einer einem vorgegebenen Kleinstwert des Volumens des Gasraumes übersteigenden Bewegung des Troges mit einem das Strömen von Hydraulikfluidum in den Ölraum sperrenden, zweiten Ventilsitz zusammenwirkt, so dass sich die vorteilhafte Möglichkeit ergibt, auch die dem Kleinstwert des Volumens des Gasraumes entsprechende Endstellung des Troges mit Hilfe eines ölseitigen Ventiles zu steuern. Da bei der bekannten Lösung der gesamte Innenraum des Troges als Teil des Gasraumes zur Verfügung steht, erreicht man insoweit ein optimales Verhältnis zwischen Gesamtgröße des Speichergehäuses und Volumen des Gasraumes, obwohl das dem Gasraum zuzurechnende Volumen innerhalb des Speichergehäuses zur Aufnahme und Beherrschung, insbesondere in Form der Pulsationsdämpfung für das Hydraulikfluidum als

weiteres Fluid dann nicht zur Verfügung stehen kann. Zwar kann bei der bekannten Lösung das Speichergehäuse so geformt werden, dass es nach kurzer Hubbewegung des Troges einen mechanischen Anschlag bildet, weil der gesamte Innenraum des Troges als Gasraumvolumen zur Verfügung steht, und insoweit ist der Metallbalg als Ganzes nicht nur gegen zu starkes Ausziehen geschützt, sondern da er die Außenseite des genannten Troges umringt, ist der Balg bei im Gasraum herrschendem Überdruck auch mechanisch auf der Außenseite des Troges auf gesamter Länge abgestützt. Trotz dieses Umstandes und trotz des bestehenden sehr geringen „Totvolumens“ zwischen Trog und Balg ist insoweit aber nicht auszuschließen, dass dennoch einzelne Falten des Metallbalges übermäßig Beanspruchungen ausgesetzt sind und derart einreißen und versagen können. Des weiteren sind sowohl im Bereich des Ventilgliedes als auch im Bereich der möglichen Anstoßstelle zwischen längsverfahrbarem Trog und einer Innenwandung des Speichergehäuses Dichtungen notwendig, die grundsätzlich einem Verschleiß unterliegen und mithin zum Versagen der bekannten hydropneumatischen Druckspeicherlösung führen können.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, die bekannten Druckspeicherlösungen unter Beibehalten ihrer Vorteile dahingehend weiter zu verbessern, dass auf sehr kleinem Bauraum ein hohes Maß an Dämpfung im Hinblick auf die Pulsationen des Hydraulikfluidum einschließlich von Kraftstoff, wie Dieselkraftstoff als weiterem Fluid im Fluidraum des Druckspeichers erreicht ist, bei gleichzeitiger Realisierung eines wirksamen Schutzes für jede einzelne Falte oder Umlenkung des Balges, um dergestalt auch über sehr lange Zykluszeiten mit einer Vielzahl an wechselnden Lastspielen den funktionssicheren Betrieb zu gewährleisten. Eine dahingehende Aufgabe löst ein Druckspeicher mit den Merkmalen des Patentanspruches 1 in seiner Gesamtheit.

Dadurch, dass gemäß dem kennzeichnenden Teil des Patentanspruches 1 der eine Arbeitsraum neben einem vorgebbaren Volumenanteil an einem Arbeitsgas mit einem Fluid gefüllt ist, erlaubt das Arbeitsgas bis zu einem vorgebbaren Grad eine Komprimierung, und dergestalt eine Abdämpfung sowie eine Glättung der auf der Fluidseite des Speichers auftretenden Pulsationen des dahingehenden Fluidmediums.

Durch das Einbringen eines Fluides auf die Seite des einen Arbeitsraumes des Speichers mit dem Arbeitsgas, ist der dahingehend gebildete Gasraum im Volumen durch die Fluidfüllung entsprechend reduziert, und eine Entkoppelung von Arbeitsgas zu Fluid kann dergestalt erfolgen, dass das Fluid als dämpfendes Abstützmedium zwischen die Falten und Umlenkungen des balgartigen Trengliedes auf dessen Innenseite tritt, so dass bei den Aufzieh- und Stauchvorgängen des Balges im Betrieb des Druckspeichers, die dahingehend gefalteten Wandungsteile des Balges sich an dem Fluid als Gegenlager abstützen können, was zu einer nachweisbaren Erhöhung der Lebensdauer des erfindungsgemäßen Druckspeichers und mithin zu einer Erhöhung seiner Funktionssicherheit führt. Letzteres gilt insbesondere bei raschen Pulsationen und schnellen Druckstößen. In Abhängigkeit von der jeweils eingenommenen Position des Kolbenteiles und des insoweit verbundenen balgartigen Trengliedes kann das Fluid in den Arbeitsraum mit dem sonstigen Arbeitsgas verdrängt werden oder von dort zurück in die Zwischenräume zwischen den Falten für Abstützvorgänge abgerufen werden.

Vorzugsweise kommt dabei ein Fluid zum Einsatz, das als dünnflüssiges Medium sehr schnell innerhalb des Arbeitsraumes mit dem Arbeitsgas strömen kann, und des weiteren muss das Fluid geeignet sein im Bereich der

Auslegungstemperatur für den Druckspeicher, beispielsweise von – 10° C bis + 160° C seine vorgesehene Aufgabe zu erfüllen. Ferner hat es sich als vorteilhaft erwiesen, eine Fluidfüllung zu verwenden mit der sichergestellt ist, dass wenig Arbeitsgas innerhalb des Fluids in Lösung gerät, um derge-
5 stalt den wirksamen Volumenanteil an Arbeitsgas für die Druckstoßdämp-
fung nicht in unnötiger Weise zu reduzieren. Als besonders vorteilhaft hat sich dabei eine Kombination von Stickstoffgas als Arbeitsgas und Ethylenal-
kohol als Fluid auf der Gasseite des Speichers als Fluidfüllung erwiesen.
Vorzugsweise werden dabei die Volumenanteile von Arbeitsgas und Fluid
10 gleich gewählt oder bevorzugt ist geringfügig mehr Fluid als Arbeitsgas in dem genannten Arbeitsraum des Druckspeichers vorhanden. Bei anders gearteten Ausführungsbeispielen besteht auch die Möglichkeit, die Räume und/oder die Füllmenge von ihrer Größe her anders zu wählen. Vorteilhaf-
terweise ist dann aber darauf zu achten, dass, kurz bevor der maximale Fe-
15 derweg erreicht ist, der Gasraum im wesentlichen mit Fluid befüllt ist.

Ein weiterer Vorteil bei der dahingehenden Lösung ist, dass das Kolbenteil auf der eigentlichen Fluidseite des Speichers mit einem mit dem weiteren Fluid befüllbaren Hohlraum versehen werden kann, so dass derge-
20 stalt auf der Fluidseite des Speichers das Aufnahmevermögen für Hydraulikfluidum einschließlich von Kraftstoffen erhöht ist, um derge-
stalt die Wirksamkeit des Druckspeichers für die Pulsationsdämpfung zu verbessern, wobei man der-
gestalt einen anderen Weg einschlägt als bei den bisher bekannten Lösu-
gen, bei denen man den Versuch unternommen hat, das Arbeitsvermögen
25 des Speichers dahingehend zu verbessern, dass man den vorgesehenen Hohl-
raum des Kolbenteils auf die Seite des Arbeitsraumes mit dem Arbeitsgas gelegt hat (vgl. WO 01/55602 A1). Es ist für einen Durchschnittsfachmann auf dem Gebiet der Druckspeicher überraschend, dass er durch Umkehr dieses Wirkprinzipes mit verringertem Gasanteil bei gleichzeitiger Befüll-

lung mit einem Fluid auf der Gasseite des Druckspeichers zu verbesserten Dämpfungswerten für das in den Speicher eindringende Fluid kommt, bei gleichzeitigem Erreichen einer erhöhten Funktionssicherheit. Da die dahingehende Speicherlösung für die bewegbaren Teile ohne zusätzliche Dichtungen auskommt, ist auch insoweit eine Voraussetzung für einen verschleißfreien, dauerhaften Betrieb gegeben.

10 Weitere vorteilhafte Ausführungsformen des erfindungsgemäßen Druckspeichers sind Gegenstand der sonstigen Unteransprüche.

15

Nachstehend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels, bei dem ein Metallbalg verwendet wird, im einzelnen erläutert.

20

15 Die einzige Figur zeigt dabei einen Längsschnitt des genannten Ausführungsbeispiels des Druckspeichers.

25

Das dargestellte Ausführungsbeispiel eines Druckspeichers ist insbesondere für eine Verwendung in Kraftstoff- und Schwerölanlagen vorgesehen, um dergestalt Druckstöße des dahingehenden Betriebsmediums zu dämpfen und zu glätten. Im Bereich der Kraftstoffe ist dabei insbesondere an Diesekraftstoff oder dergleichen gedacht. Ferner könnte ein dahingehender Druckspeicher auch bei elektrohydraulischen Bremsanlagen, beispielsweise im Fahrzeugbau Verwendung finden. Der gezeigte Druckspeicher weist ein als Ganzes mit 10 bezeichnetes Speichergehäuse auf, mit einem im wesentlichen kreiszylinderförmigen, topartigen Hauptteil 12. Das Haupteil 12 weist in Blickrichtung auf die Figur gesehen oben ein Deckelteil 14 auf, das über eine Einschraubstrecke 16 mit dem topartigen Hauptteil 12 verbindbar ist, und über ein Dichtmittel in Form eines Dichtringes 18 ist das Innere

des Speichergehäuses 10 gegenüber der Umgebung dichtend abgesperrt. Aus Gründen der Gewichtersparnis kann das Deckelteil 14 mit einer Materialaussparung 20 versehen sein, und entlang der Längsachse 22 des Speichers ist das Deckelteil 14 von einer Abschlußschraube 24 durchgriffen,

5 nach deren Entfernen über eine geeignete Vorrichtung (nicht dargestellt) sich Arbeitsgas, beispielsweise in Form von Stickstoffgas und/oder ein Fluid, beispielsweise in Form von Ethylenglykol in den einen Arbeitsraum 26 des Druckspeichers einbringen lassen, der üblicherweise bei den konventionellen Speichern auch nur als Gasraum bezeichnet ist.

10

Ein innerhalb des Speichergehäuses 10 vorhandenes Kolbenteil 28 ist entlang der Längsachse 22 des Speichers axial längsverfahrbar angeordnet. Ferner erstreckt sich ein balgartiges Trenglied 30 entlang der Außenumfangseite des Kolbenteils 28 und stützt sich mit seinem einen Ende 32 am

15 Kolbenteil 28 ab und mit seinem anderen Ende 34 an einer nach unten vorstehenden, ringförmigen Verlängerung 36 des Deckelteiles 14 ab. Das Trenglied 30 ist vorzugsweise in der Art eines Metallbalges ausgebildet, mit einer Vielzahl an ringförmigen Einzelfalten 38 oder Umlenkungen, die zick-zack-förmig in der Art einer Plissierung das zylindrische Kolbenteil 28

20 außenumfangseitig mit einem vorgebbaren Abstand übergreifen. Des weiteren trennt das Kolbenteil 28 den auch als Gasraum bezeichneten einen Arbeitsraum 26 von einem weiteren zweiten Arbeitsraum 40 fluiddicht ab, den man bei dahingehenden Druckspeichern auch als Fluidraum bezeichnet.

25

Die ringförmige Verlängerung 36 des Deckelteiles 14, das insoweit als Bestandteil des Speichergehäuses 10 anzusehen ist, weist auf seiner Innenseite eine zylindrische Führungsfläche 42 auf, innerhalb der das obere Ende des Kolbenteiles 28 längsverfahrbar unter Beibehalten eines Radialabstandes in

- der Art eines Ringspaltes 44 geführt ist. Des weiteren weist das Speichergehäuse 10 in Blickrichtung auf die Figur gesehen an seiner Unterseite einen zylindrischen Anschlußstutzen 46 auf, mit zwei Fluidanschlüssen 48, 50 die in einen gemeinsamen Vorraum 52 innerhalb des Anschlußstutzens 46
- 5 münden. Dabei treten die beiden Fluidanschlüsse 48, 50 in einem rechten Winkel zu der Längsachse 22 des Druckspeichers in den Anschlußstutzen 46 ein bzw. aus diesem heraus und es hat sich im Sinne einer optimierten Strömungsführung als günstig erwiesen, wenn durch rechtwinklig hierzu verlaufende Umlenkstellen 54 senkrecht auf der jeweiligen Ausrichtung des
- 10 Fluidanschlusses 48, 50 die Fluidführung dergestalt vorgenommen wird. Für die Funktion des Speichers genügt es, wenn Fluid über den Vorraum 52 im weiteren Arbeitsraum 40 ansteht, und ein Fluiddurchfluß ist nicht zwingend notwendig und auch bei stehender Fluidsäule lassen sich auftretende Pulsationen und Druckstöße entsprechend glätten bzw. dämpfen. Des weiteren
- 15 ist es vorteilhaft, wenn in derselben Höhe die Fluidanschlüsse 48, 50 in den Anschlußstutzen 46 ein- bzw. austreten und über dieselbe Wegstrecke, bedingt durch die gleich wirkenden Umlenkstellen 54, gemeinsam in den Vorraum 52 einmünden.
- 20 Zur Erhöhung des Volumens des Fluidraumes auf der Seite des weiteren Arbeitsraumes 40 des Druckspeichers weist das Kolbenteil 28 einen zylindrischen Hohlraum 56 auf, der bis auf eine reduzierte Wandstärke für das Kolbenteil 28 diesen im wesentlichen ausfüllt. Im Bereich der Verbindung zwischen balgartigem Trenglied 30 mit dem Kolbenteil 28 an seinem ei-
- 25 nen Ende 32 weist das Kolbenteil 28 einen ringförmig verbreiternden Anschlag 58 auf, zum Anschlagen an die zugeordnete, benachbarte Innenwandung 60 des Speichergehäuses 10, in die der Vorraum 52 des Anschlußstutzens 46 mündet. Das Kolbenteil 28 ist des weiteren an seinem dem Anschlag 58 gegenüberliegenden Ende mit einer Anschlagfläche 62

quer zur Längsachse 22 des Speichers verlaufend versehen, die dem Anschlagen an eine weitere gegenüberliegende Innenwandung 64 des Speichergehäuses 10, vorzugsweise gebildet durch das Deckelteil 14 dient. Mit den derart gebildeten Anschlagflächen ist eine Art Überlastsicherung siche-
5 chergestellt, die ein den Metallbalg schädigendes Zusammenstauchen oder Überweiten durch Auseinanderziehen vermeiden hilft.

Über den bereits aufgezeigten Ringspalt 44 ist es möglich, dass die partielle Fluidfüllung im Arbeitsraum 26 zwischen die gebildeten Hohlräume zwi-
10 schen den Einzelfalten 38 und dem Außenumfang des Kolbenteiles 28 tritt, um dergestalt bei den Bewegungen der Einzelfalten 38 diese entsprechend abzustützen, wobei bei einem Stauchvorgang, bei dem sich zwei benach-
barte Wandungen einer Einzelfalte 38 aufeinander zu bewegen, dass derart aufgenommene Fluid in Richtung des Arbeitsraumes 26 zurückgedrängt
15 wird, was beispielsweise der Fall ist, wenn in Blickrichtung auf die Figur gesehen von dem dahingehenden Ausgangszustand des Kolbenteiles 28 dieses nach oben in Richtung der Innenwandung 64 verfährt, und bei einer entgegengesetzten Bewegung des Kolbenteiles 28 und Auseinanderziehen der Falten 38 kann entsprechendes Fluidvolumen vom Arbeitsraum 46 über
20 den Ringspalt 44 in die Zwischenräume zwischen den Falten 38 nachströ-
men, soweit die dahingehenden Zwischenräume mit dem Ringspalt 44 und mit dem Arbeitsraum 26 fluidführend in Verbindung stehen.

Im wesentlichen ist der dahingehende Arbeitsraum 26 mit einem Arbeits-
25 gas, beispielsweise Stickstoffgas gefüllt, das insoweit im Sinne einer Glät-
tung oder Dämpfung die Druckstöße aufnimmt, die auf der Fluidseite 40 des Speichers in diesen eingebracht werden. Etwaig auftretende Erwärmun-
gen im Bereich des Metallbalges als balgartiges Trennglied 30 lassen sich gleichfalls gut mit dem im Arbeitsraum 26 eingebrachten Fluid, insbesonde-

re in Form von Ethylenglykol beherrschen, das im übrigen als dünnflüssiges Medium ein gutes Ein- und Ausströmverhalten aufweist und des weiteren wenig Arbeitsgas löst, das für das Dämpfungsverhalten des Speichers notwendig ist. Ebenso ist an einen Einsatz für einen Gummibalg als balgartiges
5 Trennglied 30 gedacht.

P a t e n t a n s p r ü c h e

1. Druckspeicher, insbesondere Pulsationsdämpfer mit einem Speichergehäuse (10) und einem darin angeordneten Kolbenteil (28), wobei sich ein balgartiges Trenglied (30), mit seinem einen Ende (32) am Kolbenteil (28) abstützt, und mit seinem anderen Ende (34) am Speichergehäuse (10), und wobei das Trenglied (30) zwei Arbeitsräume (26, 40), insbesondere einen Gasraum (26) von einem Fluidraum (40) innerhalb des Speichergehäuses (10) fluiddicht, insbesondere gasdicht, voneinander trennt, dadurch gekennzeichnet, dass der eine Arbeitsraum (26) neben einem vorgebbaren Volumenanteil an einem Arbeitsgas mit einem Fluid befüllt ist.
- 15 2. Druckspeicher nach Anspruch 1, dadurch gekennzeichnet, dass das Fluid, mit dem der eine Arbeitsraum (26) mit dem Arbeitsgas befüllt ist, ein Alkohol, vorzugsweise Ethylenglykol ist.
- 20 3. Druckspeicher nach Anspruch 2, dadurch gekennzeichnet, dass der andere Arbeitsraum (40) mit Fluidanschlüssen (48, 50) versehen ist, über die ein weiteres Fluid, insbesondere in Form von Dieselkraftstoff oder Schweröl, in das Innere des Speichergehäuses (10) zuführbar ist.
- 25 4. Druckspeicher nach Anspruch 3, dadurch gekennzeichnet, dass das Kolbenteil (28), an seiner dem anderen Arbeitsraum (40) zugewandten Seite einen Hohlraum (56) aufweist, der für die Aufnahme des weiteren Fluids vorgesehen ist.

5. Druckspeicher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kolbenteil (28), zumindest über einen Teil seines möglichen Verfahrweges entlang von Teilen (42) des Speichergehäuses (10), vorzugsweise im Deckelteil (14) desselben, mit einem vorgebbaren Radialabstand, bewegbar geführt ist.
10. Druckspeicher nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass das Kolbenteil (28) an seiner dem Fluidanschluß (48, 50) zugewandten Seite, mit einem Anschlag (58) versehen ist, zum Anschlagen an einer Innenwandung (60) des Speichergehäuses (10).
15. Druckspeicher nach Anspruch 6, dadurch gekennzeichnet, dass das Kolbenteil (28), an seinem dem Anschlag (58) gegenüberliegenden Ende mit einer Anschlagfläche (62) versehen ist, zum Anschlagen an eine weitere Innenwandung (64) des Speichergehäuses (10), vorzugsweise gebildet durch das Deckelteil (14) desselben.
20. Druckspeicher nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das balgartige Trenglied (30) aus einem Metallbalg besteht, mit einer Vielzahl an übereinander angeordneten Einzelfalten (38).
25. Druckspeicher nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Fluidanschlüsse (48, 50), innerhalb eines Anschlußstutzens (46) des Speichergehäuses (10) verlaufen und innerhalb dieses Anschlußstutzens (46) in einem gemeinsamen Vorraum (52) desselben münden.

10. Druckspeicher nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das Kolbenteil (28), zumindest entlang eines Teiles seines möglichen Verfahrweges, einen den Radialabstand bildenden Ringspalts (44) begrenzt, über den das Arbeitsgas mit dem einen Fluid auf die Innenseite des balgartigen Trengliedes (30) gelangt.

5

1 / 1

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2005/000410

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 F15B1/10 F15B1/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 F15B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 199 08 089 A1 (HYDAC TECHNOLOGY GMBH) 21 September 2000 (2000-09-21) the whole document -----	1
A	DE 102 53 012 A1 (CONTINENTAL TEVES AG & CO. OHG) 6 November 2003 (2003-11-06) column 2, line 38 – column 4, line 3 -----	1-10
A	WO 01/55602 A (HYDAC TECHNOLOGY GMBH; WEBER, NORBERT) 2 August 2001 (2001-08-02) cited in the application page 6, line 4 – page 9, line 5 -----	1-10
A	WO 97/46823 A (LORAN, HAIM) 11 December 1997 (1997-12-11) page 6, line 6 – page 8, line 7 -----	1-10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

22 March 2005

Date of mailing of the international search report

31/03/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Staengl, G

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2005/000410

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
DE 19908089	A1	21-09-2000	NONE		
DE 10253012	A1	06-11-2003	NONE		
WO 0155602	A	02-08-2001	DE 10003648 A1		09-08-2001
			WO 0155602 A1		02-08-2001
			EP 1250533 A1		23-10-2002
			JP 2003521643 T		15-07-2003
			US 2003000589 A1		02-01-2003
WO 9746823	A	11-12-1997	US 5638868 A		17-06-1997
			AT 241774 T		15-06-2003
			DE 69722400 D1		03-07-2003
			DE 69722400 T2		08-04-2004
			DK 901595 T3		22-09-2003
			EP 0901595 A1		17-03-1999
			ES 2200181 T3		01-03-2004
			JP 2000511996 T		12-09-2000
			PT 901595 T		31-10-2003
			WO 9746823 A1		11-12-1997

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/000410

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F15B1/10 F15B1/22

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F15B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 199 08 089 A1 (HYDAC TECHNOLOGY GMBH) 21. September 2000 (2000-09-21) das ganze Dokument -----	1
A	DE 102 53 012 A1 (CONTINENTAL TEVES AG & CO. OHG) 6. November 2003 (2003-11-06) Spalte 2, Zeile 38 – Spalte 4, Zeile 3 -----	1-10
A	WO 01/55602 A (HYDAC TECHNOLOGY GMBH; WEBER, NORBERT) 2. August 2001 (2001-08-02) in der Anmeldung erwähnt Seite 6, Zeile 4 – Seite 9, Zeile 5 -----	1-10
A	WO 97/46823 A (LORAN, HAIM) 11. Dezember 1997 (1997-12-11) Seite 6, Zeile 6 – Seite 8, Zeile 7 -----	1-10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

*'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

*'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

*'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

*'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

*'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

*'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

*'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

*'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

*'8' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

22. März 2005

Absendedatum des internationalen Rechercheberichts

31/03/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Staengl, G

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2005/000410

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 19908089	A1	21-09-2000	KEINE		
DE 10253012	A1	06-11-2003	KEINE		
WO 0155602	A	02-08-2001	DE 10003648 A1 WO 0155602 A1 EP 1250533 A1 JP 2003521643 T US 2003000589 A1	09-08-2001 02-08-2001 23-10-2002 15-07-2003 02-01-2003	
WO 9746823	A	11-12-1997	US 5638868 A AT 241774 T DE 69722400 D1 DE 69722400 T2 DK 901595 T3 EP 0901595 A1 ES 2200181 T3 JP 2000511996 T PT 901595 T WO 9746823 A1	17-06-1997 15-06-2003 03-07-2003 08-04-2004 22-09-2003 17-03-1999 01-03-2004 12-09-2000 31-10-2003 11-12-1997	