Summary of Results

- Primary outcome plots and ORs indicate reduced proportions and odds of grade 3
 toxicity or higher for cases vs controls, particularly for the DPYD sub-group. This effect
 not apparent in UGT1A1 subgroup. However, tests don't indicate differences are
 significant.
- Secondary outcomes plots and ORs indicate reduced odds of all three secondary outcomes for cases vs controls. Statistically significant difference in proportions for treatment delay and dose change. Drug discontinuation trending (p=0.06)

Descriptive Data Analysis

Variable	Control	Case
n	75	16
Age (mean (SD))	57.49 (10.27)	56.25 (12.06)
Race (%)		
Asian	1 (1.3)	0 (0.0)
Black	5 (6.7)	0 (0.0)
White	67 (89.3)	16 (100.0)
Other	2 (2.7)	0 (0.0)
Gender = Male (%)	32 (42.7)	9 (56.2)
Eligible Gene = UGT1A1 (%)	19 (25.3)	4 (25.0)
DPYD AS = 1.5 (%)	47 (83.9)	9 (75.0)
Cancer Type (%)		
Colon	19 (25.7)	5 (31.2)
Rectal	8 (10.8)	5 (31.2)
Breast	12 (16.2)	3 (18.8)
Gastric	2 (2.7)	1 (6.2)

Pancreatic	19 (25.7)	2 (12.5)
Esophageal	1 (1.4)	0 (0.0)
Head and Neck	2 (2.7)	0 (0.0)
Anal	2 (2.7)	0 (0.0)
Hepatic	1 (1.4)	0 (0.0)
Other	8 (10.8)	0 (0.0)
Cancer Stage and Grade (mean (SD))	3.01 (1.01)	3.19 (0.91)
Chemo Regimen (%)		
Single Irinotecan	3 (4.1)	0 (0.0)
Single Capecitabine	19 (25.7)	4 (25.0)
Combo Capecitabine	4 (5.4)	2 (12.5)
Combo 5-FU	23 (31.1)	5 (31.2)
Folfiri	10 (13.5)	2 (12.5)
Folfirinox	15 (20.3)	3 (18.8)

Table 1 - Data Summary

Variable	Test	Statistic	p.value
Age	t-test	0.381	0.707
Race	Chi-square	1.871	0.600
Gender	Chi-square	0.511	0.475
Eligible Gene	Chi-square	0.000	1.000
DPYD Activity Score	Chi-square	0.102	0.750
Cancer Type	Chi-square	8.511	0.484
Cancer Stage and Grade	Chi-square	2.124	0.547
Chemotherapy Regimen	Chi-square	0.006	0.941

Table 2 - Demographic Variables comparison test results

Primary Outcome: Incidence of >Grade 3 toxicity

- TOX_grade3up

All observations

Eligible Gene = DPYD

Eligible Gene = UGT1A1

Grade 3+ Toxicity Occurrence by Case vs Control, UTG1A1 Eligible

1.00

0.75

Dose Toxicity

No Event

Event

Control

Control

Case

Summary:

using conditional logistic regression as proportions testing, i.e.:

 $logit(P(TOX_grade3up=1)) = \beta_0 + \beta_1 case_control+strata(Pair_ID)$

Group

Secondary Outcomes: drug discontinuation, treatment delay, dose change

Drug discontinuation

Treatment Delay

Dose Change

Summary

Tx delay and drug continuation having no observations for cases \rightarrow OR = 0 \rightarrow 97.5% CI = Inf Reporting results of LRT from Clogit as well*:

Endpoint	Test.Statistic	p.value
Drug Discontinuation	3.502	0.061
Treatment Delay	9.000	0.003 **
Dose Change	4.193	0.041 *

```
*I.e. coxph(formula = Surv(rep(1, 91L), Dose\_change\_fixed) \sim case\_control + strata(Pair\_ID), data = data) n= 91, number of events= 30 coef exp(coef) se(coef) z Pr(>|z|) case_controlCase -1.353 0.258 0.766 -1.77 0.077 .
```

Concordance= 0.578 (se = 0.049)

Likelihood ratio test = 4.19 on 1 df, p=0.04

Wald test = 3.12 on 1 df, p=0.08Score (logrank) test = 3.59 on 1 df, p=0.06

Modeling

Model 1

```
logit(P(TOX\_grade3up = 1)) = \beta_0 + \beta_1(case\_control) + \beta_2(gender) + \beta_3(dpyd\_as) + strata(Pair\_ID)
```

Table 5a: Conditional Logistic Regression Results (Model 1)

	Odds Ratio	2.5% CI	97.5% CI
case_controlCase	0.322	0.078	1.323
genderMale	0.943	0.263	3.376
dpyd_as1.5	0.459	0.080	2.622

Model 2

```
logit(P(TOX_grade3up = 1)) = \beta_0 + \beta_1(case_control) + \beta_2(gender) + \beta_3(dpyd_as) + \beta_4(chemo_reg_condensed) + strata(Pair_ID)
```

Table 5b: Conditional Logistic Regression Results (Model 2)

	Odds Ratio	2.5% CI	97.5% CI
case_controlCase	0.328	0.081	1.336
genderMale	0.897	0.244	3.303
dpyd_as1.5	0.460	0.080	2.635
chemo_reg_condensed2	NA	NA	NA

Model 3

```
logit(P(TOX_grade3up = 1)) = \beta_0 + \beta_1(case_control) + \beta_2(gender) + \beta_3(dpyd_as) + \beta_4(chemo_reg_condensed) + \beta_5(cancer_stage_and_grade) + strata(Pair_ID)
```

Table 5c: Conditional Logistic Regression Results (Model 3)

	Odds Ratio	2.5% CI	97.5% CI
case_controlCase	0.318	0.076	1.336
genderMale	0.782	0.192	3.193
dpyd_as1.5	0.396	0.060	2.599
chemo_reg_condensed2	NA	NA	NA
cancer_stage_and_grade	1.712	0.926	3.166

LRT of Models 2 and 3:

```
Analysis of Deviance Table
Cox model: response is Surv(rep(1, 68L), TOX_grade3up)
Model 1: ~ case_control + gender + dpyd_as + chemo_reg_condensed +
strata(Pair_ID)
Model 2: ~ case_control + gender + dpyd_as + chemo_reg_condensed +
cancer_stage_and_grade + strata(Pair_ID)
loglik Chisq Df Pr(>|Chi|)
1 -26.8
2 -25.1 3.19 1 0.074 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Correlation Matrix of Predictors in Model 2

genderMale dpyd_as1.5 chemo_reg_condensed2

genderMale	1.00	-0.08	0.23
dpyd_as1.5	-0.08	1.00	0.07
chemo_reg_condensed2	0.23	0.07	1.00

Correlation Matrix of Predictors in Model 3

genderMale dpyd_as1.5 chemo_reg_condensed2 cancer_stage_and_grade

genderMale	1.00	-0.08	0.23	0.11
dpyd_as1.5	-0.08	1.00	0.07	0.03
chemo_reg_condensed2	0.23	0.07	1.00	0.15
cancer_stage_and_grade	0.11	0.03	0.15	1.00

Major Changes 12/10/24

- Use of clogit instead of McNemar's test for testing diff proportions
- Updated dataset (uploaded to Dropbox 11/21)
 - o Fixed secondary outcome columns
 - Fixed case vs control misclassification (n=2)
- Further condensed cancer stage variable to two groups
- Looking for multicolinearity issues in model(s) with corr matrices
- Updated tables and plots

Still running into NA issue from Chemo_reg_condensed