1. Let R be a ring, M a left R-module, and $N_1 \subseteq N_2 \subseteq \cdots$ an ascending chain of R-submodules of M. Prove that $\bigcup_{i=1}^{\infty} N_i$ is a left R-submodule of M.

Solution.

Let R, M, and N_i for all $i \in \mathbb{N}$ be as given above. Let $a \in R$ and $m, n \in \bigcup_{i=1}^{\infty} N_i$. We see that $\bigcup_{i=1}^{\infty} N_i \neq \emptyset$ since for each $i \in \mathbb{N}$, N_i is an R-submodule of M and so $N_i \neq \emptyset$. Now, since $m, n \in \bigcup_{i=1}^{\infty} N_i$, we have that $m \in N_j$ $n \in N_k$ for some $j, k \in \mathbb{N}$. Let $\ell = maxj, k$. Since N_i for $i \in \mathbb{N}$ is an ascending chain of R-submodules of M, $m, n \in N_{ell}$. Since N_ℓ is an R-submodule of M, $m + n \in N_\ell$ and so $m + n \in \bigcup_{i=1}^{\infty} N_i$. Also since $n \in N_k$ for some $k \in \mathbb{N}$ and N_k is an R-submodule of M, $an \in N_k$. Hence, $an \in \bigcup_{i=1}^{\infty} N_i$. Therefore, by the submodule criterion, $\bigcup_{i=1}^{\infty} N_i$ is a left R-submodule of M as desired.

2. Let R be a ring and $\phi: M \to N$ be a homomorphism of left R-modules. Prove that ϕ is 1-1 if and only if $ker(\phi) = \{0\}$.

Solution.

Let R and ϕ be as given, and let M, N be left R-modules. First, we will show that $\phi(0_M) = 0_N$. Since ϕ is a homomorphism and $0_M = 0_M + 0_M$, we have that $\phi(0_M) = 0_M + 0_M$ $\phi(0_M + 0_M) = \phi(0_M) + \phi(0_M)$. Now, $\phi(0_M) = 0_N + \phi(0_M)$. Therefore, $0_N + \phi(0_M) = 0_M + \phi(0_M)$ $\phi(0_M) + \phi(0_M)$ and by cancellation, $0_N = \phi(0_M)$. Thus we have that $0 \in \ker(\phi)$. Now, assume first that ϕ is injective. Let $m \in M$ such that $\phi(m) = 0$. We will show that m=0. We have that $\phi(m)=\phi(m+0)=\phi(m)+\phi(0)$ since ϕ is a homomorphism. By our assumption and by what was shown above, $\phi(m) + \phi(0) = 0 + \phi(0) = \phi(0) + \phi(0)$. So by cancellation, $\phi(m) = \phi(0)$. Since ϕ is 1-1, we have that m = 0 and since $m \in M$ was arbitrary and we showed that $0 \in \ker(\phi)$, we have that $\ker(\phi) = \{0\}$. On the other hand, assume that $\ker(\phi) = \{0\}$. Let $m, n \in M$ and assume that $\phi(m) = \phi(n)$. We can now see that $\phi(m) - \phi(n) = 0$ and since ϕ is a homomorphism, $\phi(m-n) = 0$. Since $\ker(\phi) = \{0\}$, we have that m - n = 0. Hence, m = n. So by definition, ϕ is 1-1. Thus ϕ is 1-1 if and only if $\ker(\phi) = \{0\}$ as desired.

3. Let F be a field, n > 1, $R = M_n(F)$, and $M \subseteq R$ the set of all matrices that have arbitrary entries in the first column but zeros elsewhere. Show that M is an R-submodule of R, but not an R-submodule of R.

Solution.

Let F, n, R, and M be as given. Let $z \in R$ and $x, y \in M$. Clearly $M \neq \emptyset$ since the zero $n \times n$ matrix

$$\left(\begin{array}{ccc} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{array}\right) \in M$$

Since $x, y \in M$ we have that

$$x = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ a_2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & 0 \end{pmatrix}$$

and

$$y = \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ b_2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ b_n & 0 & \cdots & 0 \end{pmatrix}$$

where $a_i, b_i \in F$ for $1 \le i \le n$. Then

$$x + y = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ a_2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & 0 \end{pmatrix} + \begin{pmatrix} b_1 & 0 & \cdots & 0 \\ b_2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ b_n & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} (a_1 + b_1) & 0 & \cdots & 0 \\ (a_2 + b_2) & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ (a_n + b_n) & 0 & \cdots & 0 \end{pmatrix} \in M$$

So, M is closed under addition. Since

$$z \in R, z = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

where $c_{ij} \in F$ for $1 \leq i, j \leq n$. Hence,

$$zx = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ a_2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & 0 \end{pmatrix}$$
$$= \begin{pmatrix} (a_1c_{11} + a_2c_{12} + \cdots + a_nc_{1n}) & 0 & \cdots & 0 \\ (a_1c_{21} + a_2c_{22} + \cdots + a_nc_{2n}) & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ (a_1c_{n1} + a_2c_{n2} + \cdots + a_nc_{nn}) & 0 & \cdots & 0 \end{pmatrix} \in M$$

However,

$$xz = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ a_2 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_1c_{11} & a_1c_{12} & \cdots & a_1c_{1n} \\ a_2c_{11} & a_2c_{12} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_nc_{11} & a_nc_{12} & \cdots & a_nc_{1n} \end{pmatrix} \notin M$$

Thus, we have that M is an R-submodule of R but is not an R-submodule of R since z, x, y were arbitrary.

4. Give an example of a ring R, left R-modules M and N and a map $\phi: M \to N$ such that ϕ is a group homomorphism but not an R-module homomorphism.

Solution.

Consider the ring $\mathbb C$ and the left $\mathbb C$ -modules $M=N=\mathbb C$. That is consider $\mathbb C$ as a left R-module of itself. Further consider the function $\phi:M\to N$ defined by $\phi(x)=\bar x$ where $\bar x$ is the complex conjugate of x. Let $x,y\in M$. Then x=a+bi and y=c+di where $a,b,c,d\in\mathbb R$. Clearly ϕ is well defined. Also,

$$\phi(x+y) = \phi(a+bi+c+di) = \phi((a+c)+(b+d)i) = (a+c)-(b+d)i = a+c-bi-di$$
$$= a-bi+c-di = \phi(x)+\phi(y)$$

Hence, ϕ is a group homomorphism by definition. However, consider $1+i \in \mathbb{C}$ and $5 \in M$. Then $(1+i)\phi(5)=(1+i)5=5+5i\neq 5-5i=\phi(5+5i)=\phi(5(1+i))$. Therefore, ϕ is indeed not a \mathbb{C} -module homomorphism.

5. Let R be a commutative ring, and S be a ring. Prove that S is an R-algebra if and only if there is a ring homomorphism $\phi: R \to S$ such that for all $a \in \phi(R)$ and $b \in S$, ab = ba.

Solution.

Let R and S be as given. First, assume first that there exists a ring homomorphism $\phi: R \to S$ such that for all $a \in \phi(R)$ and $b \in S$, ab = ba. Define the action on S by $\phi(a)b = ab$ for all $a \in R$ and $b \in S$. Now, let $a \in R$ and $b, c \in S$. Then we have that $a(bc) = \phi(a)(bc) = (\phi(a)b)c = (ab)c$ by the definition of ϕ and by associativity on S. Then, $(ab)c = (\phi(a)b)c = (b\phi(a))c = b(\phi(a)c) = b(ac)$ by our assumption about the homomorphism ϕ , the action we defined for ϕ , and by the associativity on S. Thus, we have that S is an R-algebra. Now assume that S is an S-algebra. Define the function S is an S-algebra. So clearly, S is an S-algebra. Then, S is an S-algebra in S is a ring homomorphism. Let S is an S-algebra, we have that S is a ring homomorphism. Let S is an S-algebra, we have that S is a ring homomorphism in S is an S-algebra, we have that S is a ring homomorphism such that for all S is an S-algebra, we have that there exists a ring homomorphism such that for all S is an S-algebra, we have that there

6. Let R be a ring, M a left R-module, and $\phi: M \to M$ an R-module homomorphism such that $\phi \circ \phi = \phi$. Show that $M = \phi(M) + \ker(\phi)$ and $\phi(M) \cap \ker(\phi) = \{0\}$.

Solution.

Let R, M, and ϕ be as given. We will first show that $\phi(M) \cap \ker(\phi) = \{0\}$. Since we showed $\phi(0) = 0$ for an arbitrary left R-module homomorphism, we clearly have that $\{0\} \subseteq \phi(M) \cap \ker(\phi)$. Now, let $m \in \phi(M) \cap \ker(\phi)$. Then $\phi(m) = 0$ and $m \in M$ such that $m = \phi(n)$ for some $n \in M$. Since $\phi \circ \phi = \phi$, we have that $\phi(\phi(n)) = \phi(m) = 0$ and $\phi(\phi(n)) = \phi(n)$. So, $\phi(n) = m = 0$. Thus we have that $m \in \{0\}$. Therefore $\phi(M) \cap \ker(\phi) = \{0\}$. Now we will show that $M = \phi(M) + \ker(\phi)$. Clearly, since $\phi(M), \ker(\phi) \subseteq M$ and M is closed under addition, $\phi(M) + \ker(\phi) \subseteq M$. So, let $x \in M$. Now, $\phi(M) + \ker(\phi) = \{m + n | m \in \phi(M), n \in \ker(\phi)\}$. We need to show that $x = \phi(m) + n$ for some $\phi(m) + n \in \phi(M) + \ker(\phi)$. Take $\phi(x) = \phi(\phi(m) + n)$. Since ϕ is a homomorphism, we have that $\phi(x) = \phi(\phi(m)) + \phi(n)$. By our assumption of ϕ , $\phi(x) = \phi(m) + \phi(n)$ and since $n \in \ker(\phi)$, $\phi(x) = \phi(m)$. Thus, we have that $x \in \phi(M) + \ker(\phi)$. Therefore $M = \phi(M) + \ker(\phi)$ as desired.

7. 7. Let R be a ring, M a left R-module, and $A \subseteq B$ R-submodules of M. Prove that $(M/A)/(B/A) \cong (M/B)$.

Solution.

Let R, M, A and B be as given above. By theorem 8, we have that M/A is a left R-module. Similarly, we have that M/B is a left R-module. Now consider $\phi: (M/A) \to (M/B)$ defined by $\phi(m+A) = m+B$. Let $a \in R$ and $m+A, n+A \in M/A$. Then we have that $\phi((m+A)+(n+A)) = \phi((m+n)+A) = (m+n)+B = (m+B)+(n+B) = \phi(m+A) + \phi(n+A)$ by the definition of ϕ and M/A, M/B as a left R-modules. Also, $a\phi(m+A) = a(m+B) = (am) + B = \phi((am) + A)$ by the definition of the action on quotient modules and ϕ . So, we have that ϕ is an R-module homomorphism. Now, $\phi(M/A) = \{m+B \in M/B | \text{there exists} m+A \in M/A \text{suchthat} \phi(m+A) = m+B \} = \{m+B|m\in M\}$. So, $\phi(M/A) = M/B$ by our definition of ϕ . Further, $\ker(\phi) = \{m+A \in M/A | \phi(m+A) = 0\} = \{m+A \in M/A | m+B = 0\} = \{m+A|m\in B\}$. That is $\ker(\phi) = M/B$. Thus, by the Fundamental Homomorphism Theorem, we have that $(M/A)/(B/A) \cong (M/B)$ as desired.

8. 8. Let R be a ring, M a left R-module, and N an R-submodule of M. Prove that if M/N and N are both finitely generated as left R-modules, then so is M.

Solution.

Let R, M, and N be as given, and suppose that M/N and N are both finitely generated as left R-modules. We then have that N = RS and M/N = RT for some finite sets $S \subseteq N$ and $T \subseteq M/N$. Now, define $\phi: M \to M/N$ by $\phi(m) = m + N$. By theorem 8, we have that ϕ is an R-module homomorphism. Now, take $X = \{x_1, \ldots, x_n\} \subseteq M$ for some $n \in \mathbb{N}$ such that $\phi(X) = T$. Let $m \in M$. if $m \in \ker(\phi)$, then we have that $\phi(m) = 0$. Thus, $m \in N$ and $m = a_1s_1 + \cdots + a_{\alpha}s_{\alpha}$ where $\alpha \in \mathbb{N}$, $a_i \in R$ and $s_i \in S$ for $1 \leq i \leq \alpha$. If, however, $m \notin \ker(\phi)$, then $\phi(m) \in M/N$. Hence, since ϕ is a homomorphism,

$$\phi(m) = a_1 \phi(x_1) + \dots + a_n \phi(x_n) = \phi(a_1 x_1 + \dots + a_n x_n)$$

where $a_i \in R$ for $1 \le i \le n$. Then,

$$\phi(m) - \phi(a_1x_1 + \dots + a_nx_n) = \phi(m - (a_1x_1 + \dots + a_nx_n)) = 0$$

since ϕ is a homomorphism. Therefore $m - (a_1x_1 + \cdots + a_nx_n) \in N$. So,

$$m - (a_1x_1 + \dots + a_nx_n) = b_1s_1 + \dots + b_{\alpha}s_{\alpha}$$

where $b_i \in R$ for $1 \le i \le \alpha$. Thus,

$$m = (b_1 s_1 + \dots + b_{\alpha} s_{\alpha}) + (a_1 x_1 + \dots + a_n x_n)$$

and so $m \in R(S \cup X)$. Since $m \in m$ was arbitrary and S and X were both finite, we have that M is finitely generated as $S \cup X$ is also finite.

9. 9. Let R be a ring, M a left R-module, N_1, \ldots, N_n submodules of M, and $\pi: N_1 \times \cdots \times N_n \to N_1 + \cdots + N_n$ defined by $\pi(m_1, \ldots, m_n) = m_1 + \cdots + m_n$. Prove that the statement π is an isomorphism is equivalent to $N_i \cap (N_1 + \cdots + N_{i-1} + N_{i+1} + \cdots + N_n) = \{0\}$ for all $i \in \{1, \ldots, n\}$.

Solution.

Let R, M, N_i for $1 \leq i \leq n$, and π be as given. Assume first that $N_i \cap (N_1 + \cdots + N_{i-1} + N_{i+1} + \cdots + N_n) = \{0\}$ for all $i \in \{1, \dots, n\}$. Now, let $a \in R$ and $(x_1, \dots, x_n), (y_1, \dots, y_n) \in \prod_{i=1}^n N_i$. Then,

$$\pi((x_1, \dots, x_n) + (y_1, \dots, y_n)) = \pi((x_1 + y_1, \dots, x_n + y_n))$$

= $x_1 + y_1 + \dots + x_n + y_n = x_1 + \dots + x_n + y_1 + \dots + y_n = \pi((x_1, \dots, x_n)) + \pi((y_1, \dots, y_n))$

since $\sum_{i=1}^{n} N_i$ is an abelian group by definition of being an R-module. Also,

$$a\pi((x_1, \dots, x_n)) = a((x_1 + \dots + x_n)) = ax_1 + \dots + ax_n$$

= $\pi((ax_1, \dots, ax_n)) = \pi(a(x_1, \dots, x_n))$

by the definition of the action on $\sum_{i=1}^{n} N_i$. So, we have that π is an R-module homomorphism. Now, let $z \in \sum_{i=1}^{n} N_i$. Then $z = z_1 + \cdots + z_n$ where $z_i \in N_i$ for $1 \le i \le n$. Hence, we have that $\pi((z_1, \ldots, z_n)) = z_1 + \cdots + z_n$ and so π is onto. Now, with $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \prod_{i=1}^{n} N_i$, assume that $\pi((x_1, \ldots, x_n)) = \pi((y_1, \ldots, y_n))$. So,

$$\pi((x_1, \dots, x_n)) - \pi((y_1, \dots, y_n)) = \pi((x_1, \dots, x_n) - (y_1, \dots, y_n))$$
$$= \pi((x_1 - y_1, \dots, x_n - y_n)) = 0$$

since π is a homomorphism. Therefore, $x_1 - y_1 + \cdots + x_n - y_n = 0 = \underbrace{0 + \cdots + 0}_{::}$. Since

 $N_i \cap (N_1 + \dots + N_{i-1} + N_{i+1} + \dots + N_n) = \{0\}$ for all $i \in \{1, \dots, n\}$, we have that $x_i \neq y_j$ for all $i \neq j$. Thus, $x_1 - y_1 + \dots + x_n - y_n = x_1 + \dots + x_n - y_1 - \dots - y_n$ and so $x_1 + \dots + x_n = y_1 + \dots + y_n$. Therefore, $(x_1, \dots, x_n) = (y_1, \dots, y_n)$. Thus, we have that π is an isomorphism. Now, assume that π is an R-module isomorphism. Take $(0, \dots, 0) \in \prod_{i=1}^n N_i$. Then, $\pi(0, \dots, 0) = \underbrace{0 + \dots + 0}$. Since π is an isomorphism, then π is $1 - \dots + \infty$.

1. Hence, $\ker(\pi) = \{(0,\ldots,0)\}$. That is, there exists no $(x_1,\ldots,x_n), (y_1,\ldots,y_n) \in \prod_{i=1}^n N_i$ such that if $\pi((x_1,\ldots,x_n)-(y_1,\ldots,y_n))=0$, then $x_i=y_j$ for all $i\neq j$ with $1\leq i,j\leq n$. Hence, we have that $N_i\cap(N_1+\cdots+N_{i-1}+N_{i+1}+\cdots+N_n)=\{0\}$ for all $i\in\{1,\ldots,n\}$. Thus, the two statements are equivalent as desired.