Определение 1. Если число d делит числа a и b, то d называется общим делителем чисел a и b. Наибольший среди общих делителей чисел a и b называется наибольшим общим делителем a и b (обозначение: (a,b)). В том случае, когда (a,b)=1, говорят, что числа a и b взаимно простые.

Соглашение 1. Пусть a и b — два фиксированных целых числа. В данном листке через I будем обозначать множество всех целых чисел, представимых в виде ax + by (где x и y — целые числа).

Задача 1° . (о сумме идеалов) Пусть d — наименьшее положительное число в I. Докажите, что

- а) каждое число из I делится на любой общий делитель чисел a и b (а значит, и на (a,b));
- $\mathbf{6}$) каждое число из I делится на d;
- **B)** d = (a, b);
- ${f r}$) число d=(a,b) является наименьшим натуральным числом, делящимся на любой общий делитель a и b.

Задача 2°. (Алгоритм Евклида) Пусть a и b — два фиксированных натуральных числа. Будем последовательно заменять большее из этих чисел остаток от деления на меньшее. Докажите, что:

- **a)** все числа, которые мы будем получать, лежат в множестве I;
- **б)** в некоторый момент мы получим пару $(d, 0), d \neq 0;$
- **B)** (a,b) = d;
- **r)** Как именно для данных чисел a и b при помощи алгоритма Евклида искать такие целые числа x и y, что ax + by = (a, b)?

Задача 3. а) Докажите, что для любого натурального k выполнено $(ka, kb) = k \cdot (a, b)$.

б) Докажите, что если m — общий натуральный делитель чисел a и b, то (a/m, b/m) = (a, b)/m.

Задача 4. Докажите, что числа a и b взаимно просты тогда и только тогда, когда существуют такие целые x и y, что ax + by = 1.

Задача 5. Числа a, b и c целые, (a, b) = 1. Докажите, что

a) если ac : b, то c : b; **б)** если c : a и c : b, то c : ab.

Задача 6°. (Основная теорема арифметики) Докажите следующие утверждения:

- а) для каждого целого n > 1 найдутся такие простые числа p_1, \ldots, p_k , что $n = p_1 \cdot \cdots \cdot p_k$;
- **б)** (*каноническое разложение*) Для каждого целого n > 1 найдутся такие различные простые p_1, \ldots, p_k и натуральные $\alpha_1, \ldots, \alpha_k$, что $n = p_1^{\alpha_1} \cdot \cdots \cdot p_k^{\alpha_k}$;
- в) разложения из пунктов а) и б) единственны с точностью до порядка сомножителей.

Задача 7. Числа a, b, c, n натуральные, $(a, b) = 1, ab = c^n$. Найдётся ли такое целое x, что $a = x^n$?

Задача 8. Решите в натуральных числах уравнение $x^{42} = y^{55}$.

Задача 9. Найдите каноническое разложение числа а) 2013, б) 1002001, в) 17!, г) C_{20}^{10} .

Определение 2. Общим кратным ненулевых целых чисел a и b называется целое число, которое делится как на a, так и на b. Наименьшее среди положительных общих кратных называется hau-меньшим общим кратным чисел a и b. Обозначение: [a,b].

Задача 10°. Пусть $a=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_n^{\alpha_n},\ b=p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_n^{\beta_n},$ причём $\alpha_i,\ \beta_i\geqslant 0.$

а) Найдите (a, b) и [a, b]. 6) Докажите, что $ab = (a, b) \cdot [a, b]$.

Задача 11°. Докажите, что любое общее кратное чисел a и b делится на [a,b].

Задача 12. Верно ли, что **a)** $[ca, cb] = c \cdot [a, b]$ при $c \in \mathbb{N}$; **б)** числа [a, b]/a и [a, b]/b взаимно просты?

Задача 13. Про натуральные числа a и b известно, что (a,b)=15, [a,b]=840. Найдите a и b.

1 a	1 6	1 B	1 Г	2 a	2 6	2 B	2 Г	3 a	3 6	4	5 a	5 6	6 a	6 6	6 B	7	8	9 a	9 6	9 B	9 Г	10 a	10 б	11	12 a	12 6	13	