

Dimensionality Reduction

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution. Please send comments and corrections to Eric.

Principal Components Analysis

Based on slides by Barnabás Póczos, UAlberta

How Can We Visualize High Dimensional Data?

• E.g., 53 blood and urine tests for 65 patients

	H-WBC	H-RBC	H-Hgb	H-Hct	H-MCV	H-MCH	H-MCHC
A1	8.0000	4.8200	14.1000	41.0000	85.0000	29.0000	34.0000
A2	7.3000	5.0200	14.7000	43.0000	86.0000	29.0000	34.0000
A3	4.3000	4.4800	14.1000	41.0000	91.0000	32.0000	35.0000
A4	7.5000	4.4700	14.9000	45.0000	101.0000	33.0000	33.0000
A5	7.3000	5.5200	15.4000	46.0000	84.0000	28.0000	33.0000
A6	6.9000	4.8600	16.0000	47.0000	97.0000	33.0000	34.0000
A7	7.8000	4.6800	14.7000	43.0000	92.0000	31.0000	34.0000
A8	8.6000	4.8200	15.8000	42.0000	88.0000	33.0000	37.0000
A9	5.1000	4.7100	14.0000	43.0000	92.0000	30.0000	32.0000

Features

Difficult to see the correlations between the features...

nstances

Data Visualization

- Is there a representation better than the raw features?
 - Is it really necessary to show all the 53 dimensions?
 - ... what if there are strong correlations between the features?

Could we find the *smallest* subspace of the 53-D space that keeps the *most information* about the original data?

One solution: Principal Component Analysis

Principle Component Analysis

Orthogonal projection of data onto lower-dimension linear space that...

- maximizes variance of projected data (purple line)
- minimizes mean squared distance between data point and projections (sum of blue lines)

The Principal Components

- Vectors originating from the center of mass
- Principal component #1 points in the direction of the largest variance
- Each subsequent principal component...
 - is **orthogonal** to the previous ones, and
 - points in the directions of the largest variance of the residual subspace

2D Gaussian Dataset

1st PCA axis

2nd PCA axis

PCA algorithm I (sequential)

Given the **centered** data $\{x_1, ..., x_m\}$, compute the principal vectors:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^m \{(\mathbf{w}^T \mathbf{x}_i)^2\} \qquad 1^{\text{st}} \text{ PCA vector}$$

We maximize the variance of projection of \mathbf{x}

$$\mathbf{w}_{k} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \sum_{j=1}^{k-1} \mathbf{w}_{j} \mathbf{w}_{j}^{T} \mathbf{x}_{i})]^{2} \}$$

$$\mathbf{x'} \text{ PCA reconstruction}$$

We maximize the variance of the projection in the residual subspace

Dimensionality Reduction

Can ignore the components of lesser significance

You do lose some information, but if the eigenvalues are small, you don't lose much

- choose only the first k eigenvectors, based on their eigenvalues
- final data set has only k dimensions

PCA Algorithm

- Given data $\{\mathbf x_1, ..., \mathbf x_n\}$, compute covariance matrix $\mathbf \Sigma$
 - X is the n x d data matrix
 - Compute data mean (average over all rows of X)
 - Subtract mean from each row of X (centering the data)
 - Compute covariance matrix $\Sigma = X^TX$ (Σ is $d \times d$)
- PCA basis vectors are given by the eigenvectors of Σ
 - $Q,\Lambda = \text{numpy.linalg.eig}(\Sigma)$
 - $\{\mathbf{q}_i, \lambda_i\}_{i=1..n}$ are the eigenvectors/eigenvalues of Σ ... $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$
- Larger eigenvalue ⇒ more important eigenvectors

$$X = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & \dots \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & \dots \\ & & & \vdots & & & & \vdots & & & \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \dots \end{bmatrix}$$

X has d columns

Q is the eigenvectors of Σ ; columns are ordered by importance!

Q is d x d

$$X = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & \dots \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & \dots \\ & & & \vdots & & & & \vdots & & & \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \dots \end{bmatrix}$$

Each row of Q corresponds to a feature; keep only first k columns of Q

 Each column of Q gives weights for a linear combination of the original features

= 0.34 feature1 + 0.04 feature2 – 0.64 feature3 + ...

 We can apply these formulas to get the new representation for each instance x

• The new 2D representation for x_3 is given by:

$$\hat{x}_{31} = 0.34(0) + 0.04(0) - 0.64(1) + \dots$$

 $\hat{x}_{32} = 0.23(0) + 0.13(0) + 0.93(1) + \dots$

• The re-projected data matrix is given by X = XQ

PCA Example

Covariance Matrix

0.61655	0.61544
0.61544	0.71655

Eigenvectors

-0.73518	-0.67787
0.67787	-0.73518

Eigenvalues

0.04908	0
0	1.28403

PCA Visualization of MNIST Digits

Challenge: Facial Recognition

- Want to identify specific person, based on facial image
- Robust to glasses, lighting,...
 - → Can't just use the given 256 x 256 pixels

PCA applications -Eigenfaces

- Eigenfaces are
 the eigenvectors of
 the covariance matrix of
 the probability distribution of
 the vector space of
 human faces
- Eigenfaces are the 'standardized face ingredients' derived from the statistical analysis of many pictures of human faces
- A human face may be considered to be a combination of these standard faces

PCA applications -Eigenfaces

To generate a **set of eigenfaces**:

- Large set of digitized images of human faces is taken under the same lighting conditions.
- The images are normalized to line up the eyes and mouths.
- 3. The eigenvectors of the covariance matrix of the statistical distribution of face image vectors are then extracted.
- 4. These eigenvectors are called eigenfaces.

PCA applications - Eigenfaces

 the principal eigenface looks like a bland androgynous average human face

http://en.wikipedia.org/wiki/Image:Eigenfaces.png

Eigenfaces

Eigenfaces – Face Recognition

- When properly weighted, eigenfaces can be summed together to create an approximate gray-scale rendering of a human face.
- Remarkably few eigenvector terms are needed to give a fair likeness of most people's faces
- Hence eigenfaces provide a means of applying <u>data compression</u> to faces for identification purposes.
- Similarly, Expert Object Recognition in Video

Eigenfaces

Experiment and Results

Data used here are from the ORL database of faces. Facial images of 16 persons each with 10 views are used.

- Training set contains 16 × 7 images.

Test set contains 16×3 images.

First three eigenfaces:

Classification Using Nearest Neighbor

- Save average coefficients for each person. Classify new face as the person with the closest average.
- Recognition accuracy increases with number of eigenfaces till 15.
 Later eigenfaces do not help much with recognition.

Best recognition rates

Training set 99%

Test set 89%

Facial Expression Recognition: Happiness subspace

Disgust subspace

Image Compression

Original Image

- Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- View each as a 144-D vector

L₂ error and PCA dim

PCA compression: 144D) 60D

PCA compression: 144D) 16D

16 most important eigenvectors

PCA compression: 144D) 6D

6 most important eigenvectors

PCA compression: 144D) 3D

3 most important eigenvectors

PCA compression: 144D) 1D

60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...

2D Discrete Cosine Basis

Noisy image

Denoised image using 15 PCA components

Isomap

