

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Vorlesung DAP2

- Dienstag 12-14 c.t.
- Donnerstag 14-16 c.t.
- Vorlesungswebseite über Lehrstuhl 2 erreichbar
- Materialien (Folien, Übungen) im Moodle (Einschreibung bis Fr 20.4.)

Zu meiner Person

- Maike Buchin
- Fachgebiet: Algorithmik insb. für geometrische Probleme
- Lehrstuhl 2, Informatik
- Raum 307

Übungen

- Mittwoch: 8-10 (4), 10-12 (4), 12-14 (4), 16-18 (4)
- Donnerstag: 8-10 (3), 10-12 (2), 16-18 (5)
- Freitag: 12-14 (3), 14-16 (3)
- Zum Teil mehrere parallele Gruppen (Anzahl in Klammern)
- Anmeldung über AsSESS
- Anmeldung ab heute 14 Uhr
- Anmeldeschluss: Mittwoch 20 Uhr
- Änderungen der Übungsgruppe: Bis Donnerstag 20 Uhr (email an amer.krivosija@tu-dortmund.de)

Übungen

- Übungsblatt erscheint Freitags und enthält Präsenzübungen und Heimübungen
- Die erste Übung ist eine Präsenzübung
- Zu Hause soll nur der Heimübungsteil bearbeitet werden
- Abgabe Heimübung: Montag 12 Uhr Briefkästen Übergang OH 12/14
- Zulassung zur Klausur (Studienleistung Übung; Teil 1): mind. 50% der Heimübungspunkte
- Max. 3 Personen pro Übungsblatt
- Die regelmäßige Teilnahme an den Übungen wird im Hinblick auf die Tests und die Klausur dringend empfohlen

Übungen Praktikum (außer ETIT und IKT)

- Für Studierende des Bachelorstudiengangs Informatik verpflichtend
- Bachelor Elektrotechnik/Informationstechnik und Informations- und Kommunikationstechnik hat eigenes Praktikum
- Das Praktikum wird in Java durchgeführt
- Termine:
- Dienstag: 8-10 (1), 10-12 (2), 14-16 (4), 16-18 (2)
- Mittwoch: 10-12 (2), 12-14 (3), 14-16 (2), 16-18 (1)
- Donnerstag: 8-10 (2), 10-12 (3), 12-14 (2), 16-18 (2)
- Freitag: 12-14 (2), 14-16 (2)
- Anmeldung über AsSESS (ab Do 8 Uhr; Anmeldeschluss Fr 20 Uhr; Änderungen bis Montag 10 Uhr: Email an Amer Krivosija)

Übungen Praktikum Bachelor ETIT und IKT

- Eigenes Praktikum
- Für Bachelor ETIT ist das Praktikum Wahlpflicht
- Für Bachelor IKT ist das Praktikum verpflichtend
- Das Praktikum wird in C/C++ durchgeführt
- Teilnahme am Java Praktikum der Informatik nicht zulässig
- Bis Mo 16.4. um 12 Uhr müssen sich die ETIT und IKT Studierenden über das LSF (Veranstaltungsnummer 080011) registriert haben
- LSF Link ist über den Lehrstuhl Kommunikationstechnik erreichbar
- Dort gibt es eigene Übungsaufgaben
- Termine: Montags ab 16.4. um 14 Uhr (Raum P1-01-108)

Übungen Praktikum

- Heimübungen, Präsenzübungen
- 50% der Punkte bei den Präsenzaufgaben
- 50% der Punkte bei den Heimaufgaben; Heimaufgaben müssen auch am Rechner präsentiert werden
- Bei Feiertagen -> andere Übung

Sonstiges

- Poolräume können außerhalb der Veranstaltungszeiten immer genutzt werden
- Weitere Informationen auf der Praktikumswebseite (erreichbar von der Vorlesungswebseite)

Lernraumbetreuung Übung (OH12 – 4.029)

- Mo 13-16
- Di 9-12, 14-16
- Mi 8-10,11-16
- Do 10-14
- Fr 10-15

Lernraumbetreuung Praktikum (Informatik)

- drei der Praktikumstermine
- wird noch bekannt gegeben

Tests

- 1. Test: 29.5. (statt Vorlesung)
- 2. Test: wird noch bekanntgegeben (ca. 2-3 Wochen später als 1. Test)
- Einer der beiden Test muss mit 50% der Punkte bestanden werden (Studienleistung Übung; Teil 2)

Bei Fragen

Meine Sprechzeiten: Montag 11-12 Uhr oder einfach nach der Vorlesung

Organisatorische Fragen zur Vorlesung und Übung an

Amer Krivosija (amer.krivosija@tu-dortmund.de)

Organisatorische Fragen zum Praktikum an

- Nils Kriege (nils.kriege@tu-dortmund.de)
- Außerdem INPUD Forum
- Schüler -> Amer Krivosija

Klausurtermine

- Di 31.7. 15-18 Uhr
- Mi 19.9. 8-11 Uhr
- (Klausurlänge ist 180 Minuten)

Weitere Infos

- Vorlesungsseite
 http://ls2-www.cs.tu-dortmund.de/lehre/sommer2018/dap2/
- Oder von der Startseite des LS 2 -> Teaching -> DAP2

Einige Hinweise/Regeln

Klausur

Eine Korrelation mit den Übungsaufgaben ist zu erwarten

Laptops

Sind in der Vorlesung nicht zugelassen

Literatur

Skripte

Kein Vorlesungsskript

Bücher und verwendete Literatur

- Cormen, Leisserson, Rivest, Stein: Introduction to Algorithms, MIT Press, auch auf deutsch: "Algorithmen - eine Einführung", Oldenbourg
- Kleinberg, Tardos: Algorithm Design, Addison Wesley

Lernziele

- Bewertung von Algorithmen und Datenstrukturen
 - Laufzeitanalyse
 - Speicherbedarf
 - Korrektheitsbeweise
- Kenntnis grundlegender Algorithmen und Datenstrukturen
 - Sortieren
 - Suchbäume
 - Neu: Verarbeitung sehr großer Datenmengen (Big Data)
 - Graphalgorithmen
- Kenntnis grundlegender Entwurfsmethoden
 - Teile und Herrsche
 - gierige Algorithmen
 - dynamische Programmierung

Lernziele

- Unterschiede zu DAP1
- DAP 1 behandelt Algorithmik aus der Perspektive der Softwaretechnik
- DAP 2 legt die theoretischen Grundlagen zur Algorithmenanalyse

Beispiele für algorithmische Probleme, die z.T. mit Hilfe komplexer mathematischer Methoden gelöst werden

- Internetsuchmaschinen
- Berechnung von Bahnverbindungen
- Optimierung von Unternehmensabläufen
- Datenkompression
- Computer Spiele
- Datenanalyse (Big Data)

Alle diese Bereiche sind (immer noch) Stoff aktueller Forschung im Bereich Datenstrukturen und Algorithmen

Problembeschreibung

- Ein $m \times n$ -Gitter heißt c-färbbar, wenn man seine Knoten mit c Farben so färben kann, dass kein am Gitter orientiertes achsenparalleles Rechteck alle Eckknoten in derselben Farbe hat
- Aufgabe: Finde eine 4-Färbung für ein 17 × 17 Gitter (289\$ Problem)
- Beispiel: (4 × 4 Gitter)

Problembeschreibung

- Ein $m \times n$ -Gitter heißt c-färbbar, wenn man seine Knoten mit c Farben so färben kann, dass kein am Gitter orientiertes achsenparalleles Rechteck alle Eckknoten in derselben Farbe hat
- Aufgabe: Finde eine 4-Färbung für ein 17 × 17 Gitter

Gelöst!

Beispiel: (4 × 4 Gitter)

Problembeschreibung

- Ein m × n-Gitter heißt c-färbbar, wenn man seine Knoten mit c Farben so färben kann, dass kein am Gitter orientiertes achsenparalleles Rechteck alle Eckknoten in derselben Farbe hat
- Aufgabe: Finde eine 4-Färbung für ein 17 × 17 Gitter

Gelöst!

- Beispiel: (4 × 4 Gitter)
- Die vier unterlegten Knoten dürfen z.B. nicht alle dieselbe Farbe haben

Problembeschreibung

- Ein m × n-Gitter heißt c-färbbar, wenn man seine Knoten mit c Farben so färben kann, dass kein am Gitter orientiertes achsenparalleles Rechteck alle Eckknoten in derselben Farbe hat
- Aufgabe: Finde eine 4-Färbung für ein 17 × 17 Gitter

Gelöst!

- Beispiel: (4 × 4 Gitter)
- Die vier unterlegten Knoten dürfen z.B. nicht alle dieselbe Farbe haben

Ist das 4x4 Gitter 4-färbbar?

Problembeschreibung

- Ein $m \times n$ -Gitter heißt c-färbbar, wenn man seine Knoten mit c Farben so färben kann, dass kein am Gitter orientiertes achsenparalleles Rechteck alle Eckknoten in derselben Farbe hat
- Aufgabe: Finde eine 4-Färbung für ein 17 × 17 Gitter

Gelöst!

Beispiel: (4 × 4 Gitter)

4x4 Gitter ist 4-färbbar! Geht es besser?

Problembeschreibung

- Ein $m \times n$ -Gitter heißt c-färbbar, wenn man seine Knoten mit c Farben so färben kann, dass kein am Gitter orientiertes achsenparalleles Rechteck alle Eckknoten in derselben Farbe hat
- Aufgabe: Finde eine 4-Färbung für ein 17 × 17 Gitter

Gelöst!

Beispiel: (4 × 4 Gitter)

Ja! 4x4 Gitter ist 2färbbar!

17×17 Problem

- Es ist z.Z. nicht möglich, das 17×17 Problem mit einem Rechner zu lösen
- Warum ist dieses Problem so schwer zu lösen?
- Es gibt sehr viele Färbungen!

Fragen/Aufgaben

- Können wir die Laufzeit eines Algorithmus vorhersagen?
- Können wir bessere Algorithmen finden?

1. Teil der Vorlesung – Grundlagen der Algorithmenanalyse

Inhalt

- Wie beschreibt man einen Algorithmus?
- Rechenmodell
- Laufzeitanalyse
- Wie beweist man die Korrektheit eines Algorithmus?

Was ist ein Algorithmus?

Algorithmus

- Ein Algorithmus ist ein wohldefiniertes eindeutiges Berechnungsverfahren, das eine Eingabe in eine Ausgabe umformt
- Dabei besteht ein Algorithmus aus einer Sequenz von grundlegenden Berechnungsschritten

Berechnungsproblem

- Beschreibt eindeutig eine gewünschte Relation zwischen Eingabe und Ausgabe
- Ein Algorithmus kann als ein Verfahren zum Lösen eines Berechnungsproblems angesehen werden

Programm vs. Algorithmus

Programm

 Ein Programm ist eine Umsetzung eines Algorithmus in eine bestimmte Programmiersprache

Algorithmenentwurf

Anforderungen

- Korrektheit
- Effizienz (Laufzeit, Speicherplatz)

Entwurf umfasst

- Beschreibung des Berechnungsproblems
- 2. Beschreibung des Algorithmus/der Datenstruktur
- 3. Korrektheitsbeweis
- 4. Analyse von Laufzeit- und Speicherplatzbedarf

Algorithmenentwurf

Warum mathematische Korrektheitsbeweise?

- Fehler können fatale Auswirkungen haben (Steuerungssoftware in Flugzeugen, Autos, AKWs)
- Fehler können selten auftreten ("Austesten" funktioniert nicht)

Der teuerste algorithmische Fehler?

- Pentium bug (>400 Mio \$)
- Enormer Image Schaden
- Trat relativ selten auf

Algorithmenentwurf

Warum Laufzeit/Speicherplatz optimieren?

- Riesige Datenmengen durch Vernetzung (Internet)
- Datenmengen wachsen schneller als Rechenleistung und Speicher
- Physikalische Grenzen
- Schlechte Algorithmen versagen häufig bereits bei kleinen und mittleren Eingabegrößen

Beschreibung von Algorithmen: Pseudocode

- Ziel: Wir wollen von syntaktischen Besonderheiten der Programmiersprachen abstrahieren
- Beschreibungssprache ähnlich wie C, Java, Python, etc...
- Hauptunterschied: Wir benutzen immer die klarste und präziseste Beschreibung
- Manchmal kann auch ein vollständiger Satz die beste Beschreibung sein
- Wir ignorieren Aspekte wie
 - Modularität
 - Fehlerbehandlung

Berechnungsproblem: Sortieren

Problem: Sortieren

• Eingabe: Folge von n Zahlen $(a_1, ..., a_n)$

• Ausgabe: Permutation $(a'_1, ..., a'_n)$ von $(a_1, ..., a_n)$ so dass $a'_1 \le a'_2 \le \cdots \le a'_n$

Beispiel:

Eingabe: 15, 7, 3, 18, 8, 4

Ausgabe: 3, 4, 7, 8, 15, 18

```
InsertionSort(Array A)
```

```
1. for j \leftarrow 2 to length[A] do
```

- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length[A] do
```

```
2. key \leftarrow A[j]
```

$$3.$$
 i \leftarrow j-1

4. while i>0 and A[i]>key do

5.
$$A[i+1] \leftarrow A[i]$$

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Beschreibung des Algorithmus in Pseudocode

(kein C, Java, etc.)

Pseudocode

Schleifen (for, while, repeat)

```
InsertionSort(Array A)
```

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Schleifen (for, while, repeat)

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Zuweisungen durch ←

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Variablen (z.B. i, j, key) sind lokal definiert

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Keine Typdeklaration, wenn Typ klar aus dem Kontext

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Zugriff auf Feldelemente mit [.]

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

- Verbunddaten sind typischerweise als Objekte organisiert
- Ein Objekt besteht aus Attributen instanziiert durch Attributwerte
- Beispiel: Feld wird als Objekt mit Attribut Länge betrachtet

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

- Beispiel: Objekt ist Graph G mit Knotenmenge V
- Auf den Attributwert V von Graph G wird mit V[G] zugegriffen

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

• Objekte werden als Zeiger referenziert, d.h. für alle Attribute f eines Objektes x bewirkt $y \leftarrow x$, dass gilt: f[y] = f[x].

```
InsertionSort(Array A)
```

```
1. for j \leftarrow 2 to length[A] do
```

2.
$$key \leftarrow A[j]$$

3.
$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

7.
$$A[i+1] \leftarrow key$$

Beschreibung des Algorithmus in

Pseudocode

(kein C, Java, etc.)

Pseudocode

Blockstruktur durch Einrücken

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Bedingte Verzweigungen (if then else)

```
InsertionSort(Array A)
```

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

Beschreibung des Algorithmus in

Pseudocode

(kein C, Java, etc.)

Pseudocode

- Prozeduren "call-by-value" ; jede aufgerufene Prozedur erhält neue Kopie der übergebenen Variable
- Die lokalen Änderungen sind nicht global sichtbar
- Bei Objekten wird nur der Zeiger kopiert (lokale Änderungen am Objekt global sichtbar)

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Rückgabe von Parametern durch return

```
InsertionSort(Array A)
```

```
1. for j \leftarrow 2 to length[A] do
```

2.
$$key \leftarrow A[j]$$

$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

6.
$$i \leftarrow i-1$$

7.
$$A[i+1] \leftarrow key$$

Beschreibung des Algorithmus in Pseudocode (kein C, Java, etc.)

Pseudocode

Kommentare durch >

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length[A] do
```

```
2. key \leftarrow A[j]
```

3.
$$i \leftarrow j-1$$

4. while i>0 and A[i]>key do

```
5. A[i+1] \leftarrow A[i]
```

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Idee InsertionSort

- Die ersten j-1 Elemente sind sortiert (zu Beginn j=2)
- Innerhalb eines Schleifendurchlaufs wird das j-te Element in die sortierte Folge eingefügt
- Am Ende ist die gesamte Folge sortiert

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length[A] do
```

- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

Beispiel

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

n

 \triangleright length[A] = n

8 15 3 14 7 6 18 °	19
--------------------	----

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n

InsertionSort(Array A)

- for $j \leftarrow 2$ to length[A] do
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

 \triangleright length[A] = n

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \rightarrow length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

 \rightarrow length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

Eingabegröße n

n

 \triangleright length[A] = n

8 15 3 14 7 6 18 19

1 j

54

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \rightarrow length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

 \triangleright length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

 \triangleright length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

 \rightarrow length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

n

 \rightarrow length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

 \triangleright length[A] = n

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \rightarrow length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

n

 \triangleright length[A] = n

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

> Eingabegröße n

n

$$\triangleright$$
 length[A] = n

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \rightarrow length[A] = n

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n

InsertionSort(Array A)

Eingabegröße n

1. **for** $j \leftarrow 2$ **to** length[A] **do**

 \triangleright length[A] = n

- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- ➤ Eingabegröße n
- \triangleright length[A] = n

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow i-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow i-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- > Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- > Speichere key in Lücke

- for j ← 2 to length[A] do
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

key=7

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. key \leftarrow A[j]
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. key \leftarrow A[j]
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow i-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

InsertionSort(Array A)

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \rightarrow length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- > Speichere key in Lücke

key=6

82

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. key \leftarrow A[j]
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. **for** $j \leftarrow 2$ **to** length[A] **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. for $j \leftarrow 2$ to length[A] do
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- > Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- ➤ Speichere key in Lücke

- 1. for $j \leftarrow 2$ to length[A] do
- 2. $key \leftarrow A[j]$
- $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- Eingabegröße n
- \triangleright length[A] = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind, eine Stelle nach rechts
- > Speichere key in Lücke

InsertionSort(Array A)

2. key \leftarrow A[j]

$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

6. $i \leftarrow i-1$

7.
$$A[i+1] \leftarrow key$$

> Eingabegröße n

 \triangleright length[A] = n

> verschiebe alle Elemente aus

➤ A[1...j-1], die größer als key

> sind, eine Stelle nach rechts

Speichere key in Lücke

Fragestellung

Wie kann man die Laufzeit eines Algorithmus vorhersagen?

Laufzeit hängt ab von

- Größe der Eingabe (Parameter n)
- Art der Eingabe
 (Insertionsort ist schneller auf sortierten Eingaben)

Analyse

- Parametrisiere Laufzeit als Funktion der Eingabegröße
- Finde obere Schranken (Garantien) an die Laufzeit

Worst-Case Analyse

- Für jedes n definiere Laufzeit T(n) = Maximum über alle Eingaben der Größe n
- Garantie f
 ür jede Eingabe
- Standard

Average-Case Analyse

- Für jedes n definiere Laufzeit T(n) =Durchschnitt über alle Eingaben der Größe n
- Hängt von Definition des Durchschnitts ab (wie sind die Eingaben verteilt)

Laufzeit hängt auch ab von

- Hardware (Prozessor, Cache, Pipelining)
- Software (Betriebssystem, Programmiersprache, Compiler)

Aber

Analyse soll unabhängig von Hard- und Software gelten

Maschinenmodell

- Eine Pseudocode-Instruktion braucht einen Zeitschritt
- Wird eine Instruktion r-mal aufgerufen, werden r Zeitschritte benötigt
- Formales Modell: Random Access Machines (RAM Modell)

Idee

- Ignoriere rechnerabhängige Konstanten
- Betrachte Wachstum von T(n) für $n \to \infty$

"Asymptotische Analyse"

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length[A] do
```

```
2. key \leftarrow A[j]
```

3.
$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

6.
$$i \leftarrow i-1$$

7.
$$A[i+1] \leftarrow key$$

Was ist die Eingabegröße?

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length[A] do
```

```
2. key \leftarrow A[j]
```

3.
$$i \leftarrow j-1$$

4. while i>0 and A[i]>key do

5.
$$A[i+1] \leftarrow A[i]$$

6.
$$i \leftarrow i-1$$

7.
$$A[i+1] \leftarrow key$$

Was ist die Eingabegröße? Die Länge des Feldes *A*

```
InsertionSort(Array A) Zeit:

1. for j \leftarrow 2 to length[A] do

2. key \leftarrow A[j]

3. i \leftarrow j-1

4. while i>0 and A[i]>key do

5. A[i+1] \leftarrow A[i]

6. i \leftarrow i-1

7. A[i+1] \leftarrow key
```

InsertionSort(Array A)

1. **for** $j \leftarrow 2$ **to** length[A] **do**

2. $key \leftarrow A[j]$

3. $i \leftarrow j-1$

4. while i>0 and A[i]>key do

5. $A[i+1] \leftarrow A[i]$

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Zeit:

n

n-1

InsertionSort(Array A)

1. **for**
$$j \leftarrow 2$$
 to length[A] **do**

2. $key \leftarrow A[j]$

3. $i \leftarrow j-1$

4. while i>0 and A[i]>key do

5. $A[i+1] \leftarrow A[i]$

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Zeit:

n

n-1

n-1

InsertionSort(Array A)

2. $key \leftarrow A[j]$

3.
$$i \leftarrow j-1$$

4. while i>0 and A[i]>key do

5. $A[i+1] \leftarrow A[i]$

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Zeit:

n

n-1

n-1

 $n-1+\sum t_k$

InsertionSort(Array A)

1. for j ← 2 to length[A] do

2. $key \leftarrow A[j]$

3. $i \leftarrow j-1$

4. while i>0 and A[i]>key do

5. $A[i+1] \leftarrow A[i]$

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Zeit:

n

n-1

n-1

 $n-1+\sum t_k$

 $\sum t_k$

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length[A] do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	$n-1 + \sum t_k$
5.	$A[i+1] \leftarrow A[i]$	$\sum t_k$
6.	i ← i-1	$\sum t_k$
7.	A[i+1] ← key	

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length[A] do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	$n-1 + \sum t_k$
5.	$A[i+1] \leftarrow A[i]$	$\sum t_k$
6.	i ← i-1	$\sum t_k$
7.	A[i+1] ← key	n-1

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length[A] do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	$n-1 + \sum t_k$
5.	$A[i+1] \leftarrow A[i]$	$\sum t_k$
6.	i ← i-1	$\sum t_k$
7.	A[i+1] ← key	n-1
		$\overline{5n-4+3\sum t_k}$

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length[A] do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	$n-1 + \sum t_k$
5.	$A[i+1] \leftarrow A[i]$	$\sum t_k$
6.	i ← i-1	$\sum t_k$
7.	A[i+1] ← key	n-1
		$5n-4+3\sum t_k$

 t_k : Anzahl Wiederholungen der **while**-Schleife bei Laufindex j = k

Wie groß ist t_k im schlimmsten Fall?

Worst-Case Analyse

• $t_k = k - 1$ für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{k=2}^{n} (k-1) = 2n - 4 + 3 \cdot \sum_{k=1}^{n} k$$

Worst-Case Analyse

• $t_k = k - 1$ für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{k=2}^{n} (k - 1) = 2n - 4 + 3 \cdot \sum_{k=1}^{n} k$$
$$= 2n - 4 + 3 \cdot \frac{n(n+1)}{2} = \frac{3n^2 + 7n - 8}{2}$$

Speicherplatzanalyse

Maschinenmodell (Speicherplatz)

- Rechner hat beliebig viele Speicherzellen zur Verfügung
- Die Speicherzellen sind mit natürlichen Zahlen nummeriert
- Jede Variable benötigt eine Speicherzelle
- Jedes Feld A[1..k] benötigt k Speicherzellen
- Jede Referenz benötigt eine Speicherzelle
- Verbunddaten benötigen die Summe der Speicherzellen, die die einzelnen Daten des Verbunds benötigen

Speicherplatzanalyse

Maschinenmodell (Speicherplatz - Verwaltung)

- Das Betriebssystem (bzw. der Compiler) übernimmt die Zuordnung von Variablen zu ihren Speicherzellen
- Eine Referenz ist die Nummer der Speicherzelle, in der eine Variable oder ein Objekt abgespeichert ist
- Bei Verbunddaten verweist die Referenz auf die erste Speicherzelle

Speicherplatzanalyse

Worst-Case Analyse

Für jedes n definiere Speicherplatz S(n) = maximaler Speicherplatz über alle Eingaben der Größe n

Average-Case Analyse

Für jedes n definiere Speicherplatz S(n) = durchschnittlicher Speicherplatz über alle Eingaben der Größe n

Speicherplatzanalyse

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length[A] do
```

- 2. $key \leftarrow A[j]$
- 3. i \leftarrow j-1
- 4. **while** i>0 and A[i]>key **do** A[i+1] \leftarrow A[i]
- 5. $i \leftarrow i-1$
- 6. $A[i+1] \leftarrow key$

Verwendete Variablen

• Integers *i*, *j*, key

3

Feld A

n

n+3

Laufzeit- und Speicherplatzanalyse

Diskussion

- Die konstanten Faktoren sind wenig aussagekräftig, da wir bereits bei den einzelnen Befehlen konstante Faktoren ignorieren
- Je nach Rechnerarchitektur und genutzten Befehlen könnte also z.B. 3n + 4 langsamer sein als 5n + 7
- Betrachte nun Algorithmus A mit Laufzeit 100n und Algorithmus B mit Laufzeit $5n^2$
- Ist n klein, so ist Algorithmus B schneller
- Ist n groß, so wird das Verhältnis Laufzeit B / Laufzeit A beliebig groß
- Algorithmus B braucht also einen beliebigen Faktor mehr Laufzeit als A (wenn die Eingabe lang genug ist)
- Ähnliches gilt für Speicherplatz

Idee (asymptotische Analyse)

- Ignoriere konstante Faktoren
- Betrachte das Verhältnis von Laufzeiten für $n \to \infty$
- Klassifiziere Laufzeiten durch Angabe von "einfachen Vergleichsfunktionen"

0-Notation

- $\mathbf{0}(f(n)) = \{g(n): \exists c > 0, n_0 > 0, \text{ so dass für alle } n \ge n_0 \text{ gilt } g(n) \le c \cdot f(n)\}$
- (wobei $f, g: \mathbb{N} \to \mathbb{R}^+$)

Interpretation

- $g(n) \in \mathbf{O}(f(n))$ bedeutet, dass g(n) für $n \to \infty$ höchstens genauso stark wächst wie f(n)
- Beim Wachstum ignorieren wir Konstanten

Beispiele

- $10n \in \mathbf{O}(n)$
- $10n \in \mathbf{O}(n^2)$
- $n^2 \notin \mathbf{O}(1000n)$
- $\mathbf{0}(1000n) = \mathbf{0}(n)$

Gilt ... ?

- A) $n + n^2 \in \mathbf{O}(n^2)$
- B) $\log(n^2) \in \mathbf{O}(\log n)$
- C) $\log(n^2) \in \mathbf{O}(\log^2 n)$
- $\mathsf{D}) \ \sqrt{n} \in \mathbf{O}(\log n)$

Hierarchie

- $\mathbf{0}(\log n) \subseteq \mathbf{0}(\log^2 n) \subseteq \mathbf{0}(\log^c n) \subseteq \mathbf{0}(n^{\varepsilon}) \subseteq \mathbf{0}(\sqrt{n}) \subseteq \mathbf{0}(n)$
- $\mathbf{0}(n) \subseteq \mathbf{0}(n^2) \subseteq \mathbf{0}(n^c) \subseteq \mathbf{0}(2^n)$
- $\left(\text{für } c \ge 2 \text{ und } 0 < \varepsilon \le \frac{1}{2} \right)$

Ω -Notation

- $\Omega(f(n)) = \{g(n): \exists c > 0, n_0 > 0, \text{ so dass für alle } n \ge n_0 \text{ gilt } g(n) \ge c \cdot f(n)\}$
- (wobei $f, g: \mathbb{N} \to \mathbb{R}^+$)

Interpretation

- $g(n) \in \Omega(f(n))$ bedeutet, dass g(n) für $n \to \infty$ mindestens so stark wächst wie f(n)
- Beim Wachstum ignorieren wir Konstanten

Beispiele

- $10n \in \mathbf{\Omega}(n)$
- $1000n \notin \mathbf{\Omega}(n^2)$
- $n^2 \in \mathbf{\Omega}(n)$
- $f(n) = \mathbf{\Omega}(g(n)) \Leftrightarrow g(n) = \mathbf{O}(f(n))$

Gilt ... ?

- A) $n + n^2 \in \Omega(n^2)$
- B) $\log(n^2) \in \Omega(\log n)$
- C) $\log(n^2) \in \Omega(\log^2 n)$
- D) $\sqrt{n} \in \Omega(\log n)$

O-Notation

 $g(n) \in \mathbf{O}(f(n)) \Leftrightarrow g(n) = \mathbf{O}(f(n)) \text{ und } g(n) = \mathbf{\Omega}(f(n))$

Beispiele

- $1000n \in \mathbf{\Theta}(n)$
- $10n^2 + 1000n \in \Theta(n^2)$
- $n^{1-\sin(\pi n/2)} \notin \mathbf{\Theta}(n)$

o-Notation

- $\mathbf{o}(f(n)) \in \{g(n): \forall c > 0, \exists n_0 > 0, \text{ so dass für alle } n \ge n_0 \text{ gilt } c \cdot g(n) < f(n)\}$
- (wobei $f, g: \mathbb{N} \to \mathbb{R}^+$)

ω-Notation

 $f(n) \in \mathbf{\omega}(g(n)) \Leftrightarrow g(n) \in \mathbf{o}(f(n))$

Beispiele

- $n \in \mathbf{o}(n^2)$
- $n \notin \mathbf{o}(n)$

Eine weitere Interpretation

Grob gesprochen sind \mathbf{O} , $\mathbf{\Omega}$, \mathbf{O} , \mathbf{o} , $\mathbf{\omega}$ die "asymptotischen Versionen" von $\leq,\geq,=,<,>$ (in dieser Reihenfolge)

Schreibweise

• Wir schreiben häufig $f(n) = \mathbf{0}(g(n))$ anstelle von $f(n) \in \mathbf{0}(g(n))$

Worst-Case Laufzeitanalyse (Insertion Sort)

• $t_k = k - 1$ für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{k=2}^{n} (k-1) = 2n - 4 + 3 \cdot \sum_{k=1}^{n} k$$

$$=2n-4+3\cdot\frac{n(n+1)}{2}=\frac{3n^2+7n-8}{2}=\mathbf{\Theta}(n^2)$$

Worst-Case Speicherplatzanalyse

• $n+3 = \Theta(n)$ Speicherplatz

Zusammenfassung

Rechenmodell

- Abstrahiert von maschinennahen Einflüssen wie Cache, Pipelining, Prozessor, etc.
- Jede Pseudocodeoperation braucht einen Zeitschritt
- Jedes Datum benötigt eine Speicherzelle

Asymptotische Analyse

- Normalerweise Worst-Case, manchmal Average-Case (sehr selten auch Best-Case)
- Asymptotische Analyse für $n \to \infty$
- Ignorieren von Konstanten → 0-Notation