Solución primer parcial Probabilidad 2

May 4, 2023

Ejercicio 1

- 1. (15pt) Consideremos un conjunto Ω arbitrario.
 - (a) Probar que la familia

 $\mathcal{A} = \{ A \subset \Omega : A \text{ numerable o } A^c \text{ numerable} \},$

es una σ -álgebra en $\Omega.$ (Se asume que el conjunto vacío y Ω están en $\mathcal{A}.)$

- (b) Considere la familia $\mathcal{F} := \{\{\omega\} : \omega \in \Omega\}$ formada por todos los subconjuntos de Ω con un único elemento. Probar que la σ -álgebra generada por \mathcal{F} coincide con \mathcal{A} .
- (c) Sea $\Omega = [0,1]$, y $\mathcal{A} = \sigma(\{x\}_{x \in [0,1]})$. Consideremos funciones X,Y de Ω en \mathbb{R} dadas por $X = \mathbbm{1}_{[0,1/2]}$, e $Y = \mathbbm{1}_{\mathbb{Q} \cap [0,1]}$, donde denotamos por \mathbb{Q} los números racionales. ¿Son X e Y variables aleatorias? Justifique su respuesta.

Solución Ejercicio 1

(a) Observar que si Ω es numerable, entonces \mathcal{A} son las parts de Ω , i.e. todos los subconjuntos de Ω , y por lo tanto una σ -álgebra.

Asi que podemos suponer Ω no numerable.

Dado que el vacío y Ω están en \mathcal{A} , basta probar que la famila es cerrada por complementos y uniones numerables.

Observar que si $A \in \mathcal{A}$, entonces, A es numerable, o A^c es numerable, y por lo tanto $A^c \in \mathcal{A}$.

Sean $A_n \in \mathcal{A}$. Si A_n es numerable para todo n, se tiene que $\bigcup_n A_n$ es numerable (por ser unión numerable de conjuntos numerables). Luego $\bigcup_n A_n \in \mathcal{A}$.

Supongamos ahora que A_m es no numerable para cierto $m \in \mathbb{N}$, y por lo tanto A_m^c es numerable (dado que $A_m \in \mathcal{A}$). Por la parte anterior, la condición $\bigcup_{n\geq 1} A_n \in \mathcal{A}$ es equivalente a que su complemento sea miembro de \mathcal{A} , i.e. $(\bigcup_n A_n)^c \in \mathcal{A}$. Pero como $(\bigcup_n A_n)^c = \bigcap_n A_n^c \subset A_m^c$, resulta que $(\bigcup_n A_n)^c$ es numerable terminando la prueba.

- (b) Si B es un conjunto numerable, entonces podemos expresarlo como una unión numerable $B = \bigcup_{i=1}^n \{\omega : w \in B\}$. Dado que cada subconjunto $\{\omega : w \in B\}$ tiene un único elemento, tenemos que son elementos de \mathcal{F} , y por lo tanto la unión numerable de estos es un elemento de $\sigma(\mathcal{F})$. Hemos probado que $\sigma(\mathcal{F})$ contiene a todos los conjuntos numerables. Si $A \in \mathcal{A}$, entonces A es numerable y por lo tanto $A \in \sigma(\mathcal{F})$, o A^c es numerable y por lo tanto $A^c \in \sigma(\mathcal{F})$, y por ser esta una σ -álgebra, $A \in \sigma(\mathcal{F})$. Con esto concluimos que $A \subset \sigma(\mathcal{F})$. Por otro lado observar que $\mathcal{F} \subset \mathcal{A}$, dado que los conjuntos de un elemento son conjuntos numerables. Luego como \mathcal{A} es una σ -álgebra, se tiene por definición de σ -álgebra generada que $\sigma(\mathcal{F}) \subset \mathcal{A}$.
- (c) Escribamos genéricamente, $Z=\mathbbm{1}_C:[0,1]\to\mathbb{R},$ para cierto subconjunto $C\subset[0,1],$ i.e.,

$$Z(x) := \begin{cases} 1 & \text{si } x \in C \\ 0 & \text{si } x \in C^c \end{cases}$$

Para ver si Z es una variable aleatoria, basta ver que las preimágenes del recorrido (i.e. $Z^{-1}(0) = C^c$, y $Z^{-1}(1) = C$) están en \mathcal{A} . (Esto resulta que dado cualquier boreliano $B \subset \mathbb{R}$, $Z^{-1}(B)$ puede ser alguno de los dos conjuntos anteriores, el vacío, o todo $\Omega = [0,1]$, dependiendo de si 0, y/o 1 están en B.) Más precisamente se tiene

$$Z^{-1}(B) = \begin{cases} \emptyset & \text{si } 1 \notin B, 0 \notin B \\ C & \text{si } 1 \in B, 0 \notin B \\ C^{c} & \text{si } 1 \notin B, 0 \in B \\ \Omega & \text{si } 1 \in B, 0 \in B \end{cases}$$

Por lo tanto, para saber si $Z = \mathbb{1}_C$ es o no una variable aleatoria basta conocer si $C \in \mathcal{A}$, y por las partes (a) y (b) basta ver si C o su complemento son numerables.

Luego como $[0,1/2] \notin \mathcal{A}$ (porque él y su complemento son no-numerables), y $\mathbb{Q} \cap [0,1] \in \mathcal{A}$ por ser numerable, resulta que X no es una variable aleatoria, y sí lo es Y.

Ejercicio 2

Consideremos el espacio de probabilidad ([0,1], \mathcal{B} , λ) siendo \mathcal{B} la σ -álgebra de Borel, y λ la medida de Lebesgue. (Recordar que $\lambda([a,b]) = b-a$, para todo $0 \le a < b \le 1$.)

- (a) Probar que $\{x\} \in \mathcal{B}$, para todo $x \in [0, 1]$.
- (b) Utilizando la definición de λ para intervalos, probar que $\lambda(\{x\}) = 0$ para todo $x \in [0,1]$.
- (c) Probar que $\lambda(\{q \in [0,1] : q \in \mathbb{Q}\}) = 0$.

Solución Ejercicio 2

(a) Recordar que \mathcal{B} está generada por los intervalos (de cualquier tipo) en [0,1].

Dado $x \in (0,1]$, podemos escribirlo como Observar que

$$\{x\} = \bigcap_{N>n}^{\infty} [x - \frac{1}{n}, x] \cap [0, 1].$$

Y como cada conjunto $[x - \frac{1}{n}, x] \cap [0, 1]$ está en la σ -álgebra de Borel de [0, 1], tenemos que su intersección también lo está. Análogo para el caso x = 0 dado que tenemos $\{0\} = \bigcap_{N>n}^{\infty} [0, \frac{1}{n}]$.

(b) Utilizando la proposición de la continuidad de la medida se tiene que

$$\lambda(\{x\}) = \lim_{n} \lambda\left(\left[x - \frac{1}{n}, x\right] \cap [0, 1]\right)$$

$$\leq \lim_{n} \lambda\left(\left[x - \frac{1}{n}, x\right]\right) = \lim_{n} 1/n = 0.$$

para $x \in (0, 1]$, y es análogo para x = 1.

(c) Hemos probado que los conjuntos formado por un único elemento tienen medida 0 de Lebesgue. Por lo tanto, utilizando la propiedadad de σ aditividad de la medida se tiene que cualquier conjunto numerable tiene medida 0 (por ser unión disjunta de conjuntos de medida 0). Luego por ser $\mathbb{Q} \cap [0,1]$ numerable, se tiene que $\lambda(\mathbb{Q} \cap [0,1]) = 0$.

Ejercicio 3

Consideremos un espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$. Consideremos A_1, A_2, \ldots , una sucesión de eventos en \mathcal{A} . Se define el *límite superior* de la sucesión $\{A_n\}$ como

$$\limsup_{n} A_n := \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k.$$

- (a) Probar que $\omega \in \limsup_n A_n$ si y sólo si $\omega \in A_n$ para infinitos $n \in \mathbb{N}$.
- (b) Probar que $\limsup_{n} A_n \in \mathcal{A}$.
- (c) Probar que si la serie $\sum_{n} \mathbb{P}(A_n) < +\infty$, entonces $\mathbb{P}(\limsup_{n} A_n) = 0$.
- (a) (\Rightarrow si $\omega \in \limsup A_n$ entonces $\omega \in A_n$ para infinitos $n \in \mathbb{N}$) Si $\omega \in \limsup A_n$, entonces para cualquier $n \in \mathbb{N}$ ocurre que $\omega \in \bigcup_{k \geq n} A_k$, y por lo tanto existe algún $k \geq n$ que satisface $\omega \in A_k$. Es fácil ver que esto implica que hay infinitos A_k que contienen a ω . Una forma de verlo es

por inducción. Para n=1 sea n_1 tal que $\omega \in A_{n_1}$. Como $\omega \in \bigcup_{k>n_1} A_k$, existe $n_2>n_1$ tal que $\omega \in A_{n_2}$. Procediendo de esta manera construimos una sucesión n_1,n_2,\ldots tal que $\omega \in A_{n_j}$ para todo $j\geq 1$.

- (⇐) Recíproramente, si $\omega \in A_{n_k}$ para una subsucesión n_1, n_2, \ldots , entonces dado cualquier $n \in \mathbb{N}$ se tiene que $\omega \in \bigcup_{k \geq n} A_k$ dado que n_j es mayor a cualquier n para j suficientemente grande.
- (b) Notar que $A_k \in \mathcal{A}$, para todo $k \in \mathbb{N}$, y por lo tanto $B_n := \bigcup_{k \geq n} A_k \in \mathcal{A}$ por ser \mathcal{A} una σ -álgebra. Luego como $\limsup_n A_n = \bigcap_n B_n$, se tiene que $\limsup_n A_n$ es una intersección numerable de elementos de \mathcal{A} , y por tanto en \mathcal{A} .
- (c) Como $\limsup_n A_n \in \mathcal{A}$, podemos calcular su probabilidad. Además se tiene que

$$\mathbb{P}(\limsup_n A_n) = \mathbb{P}\left(\bigcap_{n \geq 1} \bigcup_{k \geq n} A_k\right) \leq \mathbb{P}\left(\bigcup_{k \geq n} A_k\right) \leq \sum_{k = n} \mathbb{P}(A_k)$$

La primera igualdad es la definición, la segunda se inclusión de eventos y la monotonía de la medida, y la última se da por la subaditividad de la medida.

Luego como la serie de términos positivos $\sum_{n\geq 1} \mathbb{P}(A_k)$ converge, se concluye que la cola de la seria $\sum_{k=n} \mathbb{P}(A_k)$ tiende a 0 cuando n tiende a infinito.