Ficha (7) de Exercícios sobre Propriedades das Linguagens Regulares

Resoluções/soluções para os exercícios selecionados: 5, 6, 2

5. a) tabela de estados distinguíveis:

В	X							
С	X	X						
D		X	X					
Е	X		X	X				
F	X	X		X	X			
G		X	X		X	X		
Н	X		X	X		X	X	
I	X	X		X	X		X	X
	A	В	С	D	Е	F	G	Н

b) DFA equivalente após minimização de estados:

	0	1
\rightarrow {A,D,G}	{B,E,H}	{B,E,H}
{B,E,H}	{C,F,I}	{C,F,I}
*{C,F,I}	{A,D,G}	{B,E,H}

6. a) DFA1 minimizado:

	a	b
→*{A,B}	{A,B}	{C,E}
*{C,E}	{D}	{C,E}
{D}	{D}	{D}

b) Os DFAs são quivalentes. Se renomearmos os estados do DFA1 minimizado para $\{A,B\}\rightarrow F$, $\{C,E\}\rightarrow G$, e $\{D\}\rightarrow H$, obtemos o DFA:

	a	b
→*F	A	G
*G	Н	G
Н	Н	Н

Que é precisamente igual à tabela de transições do DFA2. Os DFAs são por isso equivalentes.

NOTA: um método genérico seria construir a tabela de estados distinguíveis agregando os dois autómatos e depois verificar se os estados de início (A e F) são equivalentes. Essa é a condição necessária e suficiente para que os autómatos sejam equivalentes.

A tabela de estados distinguíveis incluindo os dois DFAs, FA₁ e FA₂, é:

*B							
*C	X	X					
D	X	X	X				
*E	X	X	'	X			
→*F	(equivalentes)		X	X	X		
*G	X	X		X	1	X	
Н	X	X	X		X	X	X
	→*A	*B	*C	D	*E	→* F	G

Como se pode ver os estados de início F e A não são distinguíveis (são equivalentes). E isso indica que os DFAs são equivalentes.

Se considerassemos o FA₃ apresentado abaixo em vez do FA₁ (no FA₃ o estado E não é um estado final), a tabela de estados distinguíveis formada com FA₃ e FA₂ indicaria que os estados A e F são distinguíveis (não equivalentes) neste caso, e por isso os DFAs FA₂ e FA₃ não são equivalentes.

FIM DA NOTA.

2.a) Se L é uma linguagem regular então existe um DFA que representa L.

Pode-se construir o DFA de L/a a partir do DFA de L em que definimos todos os estados como de não aceitação e em seguida para cada estado q do DFA marcamos q como estado de aceitação se δ(q,a) for um estado de aceitação no DFA de L.

[Notem que esta transformação resolve todos os casos especiais que possam ter no DFA de L.]

b) Aplicando as operações de reverso e quociente conseguimos obter a \L a partir de L e por isso a \L tem de ser uma linguagem regular:

 $L \rightarrow Lrev \rightarrow Lrev/a \rightarrow (Lrev/a)rev = a \setminus (Lrev)rev) = a \setminus L$

c) Falso. Falso. Verdadeiro. Verdadeiro.