رایانش تکاملی EVOLUTIONARY COMPUTING

دکتر امیر فرید امینیان مدرّس دانشگاه صنعتی سجاد مشهد یاییز ۱۳۹۶

محاسبات تکاملی و زیستی

- الگوریتمهای تکاملی (evolutionary computing)
 - (biological computation) محاسبات زیستی
- حل مسایل بهینه سازی، جستجو، یادگیری با الهام از طبیعت و موجودات هوشمند طبیعی
 - شبیهسازی نظریه تکامل داروین (۱۸۵۹)

بخش اول - الگوریتمهای جستجو

انواع الگوریتمهای جستجو – طبقهبندی الگوریتمهای فرامکاشفهای – فضای جستجو و دورنمای برازش – پویش و انتفاع

مسایل بهینهسازی (OPTIMIZATION)

• نمايش مساله

- یکی از ملزومات حل مساله، روش نمایش آن (problem representation) است.
 - روشی برای تعیین هر وضعیت (state)
 - هر حالت، یک راهحل برای مساله؛ بهینه یا غیر بهینه

⊙ الگوريتم جستجو

- روش یافتن وضعیت بهینه
- معیاری برای ایجاد تمایز بین راهحلها و انتخاب راه حل بهینه
 - سراسری- محلی
- راه حـل رضایتبخـش (satisfactory solution) بـه انـدازه کـافی خـوب (good.enough solution)

انواع روشهای جستجو

جستجوی تحلیلی جستجوی ناآگاهانه (کور) جستجوی آگاهانه (مکاشفهای)

جستجوى تحليلي

- (analytical search) جستجوی تحلیلی
 - ضابطه ریاضی مدل موجود است.
- جستجو برای حالتهای بهینه بوسیله مفاهیم ریاضی هدایت میشود
 - بردار گرادیان
 - مشتق دوم
 - روش نیوتن–رافسون برای بدستآوردن ریشه تابع
 - معایب
 - عدم کارآمدی در فضاهای بزرگ
 - تعریف فقط در فضای پیوسته و مشتق پذیر
 - احتیاج به دانستن تمامی روابط ریاضی

جستجوى ناآگاهانه

- (uninformed search) جستجوی ناآگاهانه
 - جستجوی کور (blind search)
- فقط تدوین مساله؛ شیوه ارتباط حالتها با یکدیگر؛ موجود است.
 - اطلاعات اضافی درباره ماهیت مساله وجود ندارد.
 - قدرت تشخیص یک حالت هدف از حالت غیرهدف وجود دارد.
 - جستجوی کامل
 - پیمایش تمام فضای حالت و یافتن بهترین راه حل (هدف)
 - تضمین یافتن راه حل در صورت وجود
 - جستجوی ناکامل
 - پیمایش فضا تا هنگام یافتن یک راه حل؛
 - تضمینی برای یافتن راه حل وجود ندارد.
 - جستجوی کامل می تواند بهینه یا غیربهینه باشد.
- الگوریتمهای جستجوی ناآگاهانه براساس ترتیب گسترش حالتها متمایز شدهاند:
 - اول سطح؛ اول عمق؛ هزينه يكنواخت؛ بازگشتى؛ ...

جستجوى أكاهانه

- جستجوی آگاهانه (informed search) جستجوی مکاشفهای (heuristic search)
 - علاوه بر تعریف فضای مساله، اطلاعات اضافی درباره ماهیت مساله دارند
- استفاده از یک تابع تخمینی برای بدست آوردن فاصله تا هدف، می تواند استراتژی بهتری و هوشمندانهای برای رسیدن به هدف ایجاد کند.
 - تابع هیوریستیک
 - انواع روشهای آگاهانه
 - $oldsymbol{A}^*$ محدود ، $oldsymbol{A}^*$ نسخههای تکراری و حافظه محدود ، $oldsymbol{A}^*$
 - جستجوی فرامکاشفهای
 - الهام از یک پدیده طبیعی برای جستجوی فضای حالت پیچیده، دشوار یا نامنظم

الگوریتمهای فرامکاشفهای (METAHEURISTIC)

- یک هیوریستیک سطح بالا برای یافتن، تولید یا انتخاب هیوریستیکی که بتواند جوابهای به اندازه کافی خوب برای مساله بهینهسازی تولید کند.
 - به خصوص در هنگام وجود اطلاعات ناکافی، ناقص یا محدود.
- نمونهبرداری از مجموعهای از راهحلها وقتی که مدلسازی تمامی آنها به خاطر اندازه بزرگ، مقدور نباشد.
 - ⊙ داشتن فرضیات بسیار کم درباره مساله بهینهسازی که قرار است حل شود.
 - کارامدی زیاد برای دامنه بسیار وسیعی از مسایل متنوع
 - الهام از یک پدیده طبیعی برای جستجوی فضای حالت.

ساختار مساله و دورنمای فضای حالت

ساختار مساله (ابعاد و نحوه ارتباط حالتها) ممكن است خيلي پيچيده و غيريكنواخت باشد.

right(a2) release(a2)

right(a1)

left(a1) right(a1)

ساختار مساله و دورنمای فضای حالت

دورنما (نگاشت فضای حالت توسط تابع ارزیابی به دامنه اعداد) کاملاً وابسه به ساختار مساله است و معمولاً شکل غیریکنواخت و پیچیدهای دارد.

پویش و انتفاع

- (exploration capability) قابلیت پویش 🂿
- جستجوی آزادانه کل فضا بدون توجه به دستاوردهای آن در طول جستجو
 - تنوع در پاسخها
 - رفتار تصادفي تر الگوريتم

- توجه به دستاوردهای الگوریتم در طول جستجو
 - تمرکز بر پاسخها
 - رفتار حساب شده و محتاطانه
- نیاز به تنظیم دو قابلیت بر اساس شرایط مساله
- ایجاد مصالحه (trade-off) بین این دو قابلیت با پارامترهای روش جستجو
- جستجوی با بیشترین پویش= جستجوی تصادفی Random Search
- جستجوی با بیشترین انتفاع= جستجوی تپه نـوردی Search

پویش و انتفاع

دستهبندی الگوریتمهای فرامکاشفهای

و غیرزیستی و غیرزیستی

⊚ تکاملی و غیرتکاملی

• جمعیتی و غیرجمعیتی

• باحافظه و بدون حافظه

⊚ احتمالی و قطعی

دستهبندی انواع روشهای جستجو

• جایگاه الگوریتمهای تکاملی و زیستی

بخش دوم – پردازش تکاملی

نظریه داروین – مراحل الگوریتم تکاملی – شیوههای مختلف پیادهسازی عملگرهای تکاملی – مباحث پیشرفته در پردازش تکاملی

نظریه تکامل لامارک

- ⊙ انتقال موروثي
- موجودات در طول زندگی، با شرایط محیطی تطبیق پیدا میکنند.
 - ویژگیهای غیرضروری از دست میرود.
 - ویژگیهای جدید جایگزین میشوند.
 - انطباقها از طریق وراثت به فرزندان انتقال مییابد.
 - موجودات تمایل به حفظ ویژگیهای ژنتیکی خویش دارند.

نظریه تکامل داروین

• طبیعت موجودی هوشمند است.

- © تمامی موجودات امروزی از نسل موجودات ماقبل تاریخ هستند و صدها میلیون سال از حیات می گذرد.
- سابقه و ریشه تمام میلیونها موجود زنده به یک ارگانیسی زنده ساده برمی گردد.
- فرایند ایجاد یا تغییر شکل گونههای مختلف حیات در اثـر یـک natural) نیروی هدایت کننده طبیعی به نـام انتخـاب طبیعی (selection) است.

تكامل وانتخاب طبيعي

- © انتخاب طبیعی، راز بقای برترینها در طبیعت انتقال خصوصیات برتر به نسل بعد است.
 - تكامل تدريجي جامعه موجودات
 - تنازع بقا: قوى تر زنده مىماند.
 - o نبرد برای زندگی (struggle for the life)
 - o بقای اصلح (survival of the fittest) •
 - از بین رفتن نمونههای ضعیف و زنده ماندن نمونههای برتر

انتخاب طبيعي

• مثال هایی از نیروی انتخاب طبیعی

- تکامل سیستم شنوایی و تضعیف سیستم بینایی خفاش به دلیل زندگی در غار
- تکامل سیستم بینایی عقاب به دلیل نیاز به شکار و پرواز در ارتفاعات بالا در کوهستان
- تکامل ویژگیهای استتار جهـت پنهـان مانـدن از چشـم صـیاد در آفتـاب پرسـت، مارمولک، پروانه، خرس قطبی
 - وابستگی شکل آواز پرندگان به زیستگاه آنها
 - محیط های جنگلی و پوشش گیاهی انبوه، صداهایی با فرکانس پایین و تحریر فاصله دار
 - تخریب صدای فرکانس بالا توسط محیط جنگل
 - علفزارها و زیستگاه های باز، صداهایی با فرکانس بالا و تحریرهای سریع و پی در پی
 - تخریب صدا توسط باد

مفاهيم

- © ژنوتایپ (Genotype) ترکیب تمام ژن ها برای یک فرد مشخص
 - کد ژنتیکی یک موجود
- فنوتایپ (Phenotype) خصوصیات ظاهری یک فرد، حاصل شده از رمزگشایی یک ژنوتایپ
 - خصوصیات نهایی حاصل از کد ژنتیکی

مفاهيم

- (Chromosome) کروزموزم
- محل ذخیره سازی اطلاعات ژنی یک موجود
 - تشكيل شده از دنبالههای DNA
 - (Gene) ژن (
- کروموزم از واحدهای کوچک تری به نام ژن تشکیل شده است
 - ویژگی (مشخصه) داده ها
 - آلل (Allele) مقادیر مجاز برای هر ژن
 - مقادیر مجاز برای مشخصه های هر پاسخ

دو مرحله مهم در حلمساله توسط الگوریتم تکاملی

● ۱– کدگذاری

- تبدیل فنوتایپ به ژنوتایپ
- نگاشت از فضای واقعی مساله به فضای حالت
- در سادهترین حالت، یک موجود بهوسیله یک ساختار از دادهها نمایش داده می شود.
 - غالباً رشته باینری؛ اما انواع دیگری نیز وجود دارد: اعداد صحیح، اعداد حقیقی، درخت، ...
 - منشا تفاوت انواع الگوریتمهای تکاملی

⊙ ۲– ارزیابی

- نگاشت از فضای حالت به مقادیر (قابل اندازه گیری و ترتیبی)
- هر موجود به وسیله تابع برازش (fitness function) ارزیابی می گردد.
- تابع برازش، برای موجودات بهتر، مقدار بیشتری برمی گرداند. (متضاد تابع هیوریستیک)
 - ارزیابی می تواند در فضای ژنوتایپ یا فنوتایپ انجام شود.
 - برای ارزیابی در فضای فنوتایپ، احتیاج به دیکد کردن ژنوتایپ داریم.

انواع الگوریتم های تکاملی

- (Genetic Algorithm) الگوريتم ژنتيک (•
- (Genetic Programming) برنامەنويسى ژنتيک
 - استراتژی تکاملی (Evolutionary Strategy)
- برنامهنویسی تکاملی (Evolutionary Programming)
 - (Differential Evolution) تكامل تفاضلي (
 - (Memetic Algorithm) الگوريتم ممتيک
 - (Cultural Algorithm) الگوريتم فرهنگي
- (Taguchi-Genetic Algorithm) الگوريتم ژنتيک تاگوچى
 - الگوريتم همتكاملي (Co-Evolutionary Algorithm)
- (Diploid Evolutionary Algorithm) الگوريتم تكاملي ديپلوئيدي 🂿
- (Asexual Reproduction Optimization) بهينه سازى توليدمثل غيرجنسى
 - (Artificial Immune System) سيستم ايمني مصنوعي 🂿
 - ... g •

مراحل یک الگوریتم تکاملی

- تولید جمعیت اولیه
- محاسبه برازندگی (ارزیابی) جمعیت ورودی
 - ⊙ انتخاب برای تولید مثل
 - بازتركيب والدين (توليد مثل)
 - جهش فرزندان تولید شده
- محاسبه برازندگی (ارزیابی) جمعیت فرزندان
 - ⊙ انتخاب برای جایگزینی
 - بررسی شرط توقف

جمعیت اولیه

- روش تصادفی: تولید مقادیر تصادفی در بازه مجاز برای هر ژن
 - پوشش یکنواخت فضا
 - روش هیوریستیک: تولید کروموزمهای با برازندگی نسبتاً بالا
 - پوشش بخشهای مهم فضا
- نیاز به دانستن اطلاعات کلی درباره مساله و دورنمای فضای حالت حدس زدن جوابهای نسبتاً خوب
 - ⊙ اندازه جمعیت معمولاً ثابت است.
 - بر اساس محدودیت منابع، در تئوری داروین
 - اندازه جمعیت اولیه، مهم است
 - افزایش اندازه جمعیت اولیه
 - تقویت قابلیت پویش به خاطر پوشش دادن فضای جستجوی بزرگتر
 - تقویت قابلیت انتفاع به خاطر افزایش شانس عملگرهای تولید مثل
 - افزایش بار محاسباتی!

تابع برازش

- © تابع برازش، یک نگاشت یا شیوه تصویر کردن، از فضای نمایش کروموزمها به یک مقدار عددی
- مقدار عددی، به طور مستقیم میزان برازندگی یا خوب بودن کروموزم را نشان میدهد.
- مقدار برازندگی، میزان رسیدن به هدف بهینه سازی را نشان میدهد و به شدت به کاربرد وابسته است.
 - ممکن است در بعضی مسایل، به سادگی محاسبه نشود.

عملگر انتخاب

- یکی از عملگرهای اصلی در الگوریتم تکاملی
- ارتباط مستقیم به مفهوم بقاء اصلح در نظریه داروین
 - هدف: انتخاب راهحلهای برتر
 - (selective pressure) فشار انتخاب
- تاکید بر انتخاب راهحلهای بهتر توسط اعمال عملگر انتخاب.
- عملگر با فشار انتخاب زیاد: تنوع در جمعیت سریع کاهش می یابد.
 - گیرافتادن در راهحلهای بهینه محلی
 - محدود كردن قابليت پويش تقويت قابليت انتفاع
 - ⊚ انواع عملگرهای انتخاب
 - انتخاب تصادفی
 - انتخاب نسبی
 - انتخاب رتبهای
 - انتخاب مسابقهای
 - انتخاب برشی

4

عملگرهای الگوریتم ژنتیک

- ⊙ ترکیب یا تقاطع (crossover) تولید مثل
- فرض کنیم دو موجود برای تولید مثل، انتخاب شدهاند. تولید پسینها (فرزندان) به کمک این دو صورت می گیرد.
 - مانند تولید مثل در موجودات زنده و طبیعی؛ هر فرزند توسط والدین (دو والد) ایجاد میشود.
 - (one-point crossover) ترکیب یکنقطهای
 - ترکیب چندنقطهای (multi-point crossover)
 - (uniform crossover) ترکیب یکنواخت
 - ترکیب در حالت نمایش جایگشتی، درختی، عدد صحیح و اعشاری

5

عملگرهای الگوریتم ژنتیک

- جهش (mutation) جهش ژنتیکی
- در طبیعت، همیشه موجودات تمام خصوصیات خود را از والدین به ارث نمی برند.
 - تولد نوزادی با چشمهای رنگی از والدین با چشمهای مشکی!
- انتخاب یک کروموزوم و تغییر یکی از ژنهای آن به صورت اتفاقی.
 - باعث ایجاد تنوع و پراکندگی در جمعیت.
- GA در طبیعت، جهش ژنتیکی امر معمول عادی نیست؛ بنابراین در نیز نرخ وقوع این عملگر کم است.
 - جهش در نمایش جایگشتی، اعداد صحیح و اعشاری، درختی،...

چاپگزینی نسل

- (steady state replacement) جایگزینی حالت پایدار
- نگهداری بخش بزرگی از جمعیت والـدین و جـایگزینی بخـش کـوچکی (P_{rep}) از آن بـا بهترین فرزندان تولید شده.
 - بافت کلی جمعیت و گوناگونی حفظ می شود.
 - جلوگیری از همگرا شدن سریع به پاسخهای بهینه.
- \mathbf{P}_{rep} هرچه \mathbf{P}_{rep} بیشتر باشد، احتمال کاهش گوناگونی بیشتر شده و همگرایی الگوریتم سریعتر خواهد بود.
 - (generational replacement) جایگزینی نسلی
 - جایگزینی کل جمعیت والدین با کل جمعیت فرزندان.
 - احتمال از دست رفتن برترین پاسخها.
 - o نخبه سالاری (elitism): جایگزینی بهترین عضو از جمعیت والدین به جای ضعیفترین فرزند.
- و روش انتخاب $(\mu+\lambda)$: تعداد μ عضو برتر از مجموع μ والـد و λ فرزنـد بـه نسـل بعـد منتقـل می شوند.
 - $(\mu {<} \lambda)$. تعداد μ عضو برتر از λ فرزند به نسل بعد منتقل می شوند. (μ,λ)
 - احتمال از دست رفتن ناگهانی تنوع جمعیتی

شرايط توقف

- رسیدن به موجودی با برازش مشخص
- در بعضی از مسایل، حد دلخواه تابع ارزیابی (تابع برازش) قابل محاسبه و تعیین است.
- در این مسایل، شرط خاتمه مناسب، یافتن موجودی در جمعیت نسل فعلی است که مقدار برازش دلخواه را داشته باشد.
 - عدم بهبود وضعیت جمعیت در طی نسلهای گذشته
- ممکن است چند نسل بگذرد و مقدار برازش بهترین موجود جامعه، تغییری نکند؛ یا اینکه تمام موجودات جامعه، یکسان شده باشند.
 - همگرا شدن جمعیت؛ راکد (stagnant) شدن جمعیت.
 - در این حالت، تولید نسلهای بعد احتمالاً مفید نیست: خاتمه الگوریتم.
 - رسیدن تعداد نسلها به حد مشخص
- همیشه الگوریتم تکاملی بعد از رسیدن شماره نسلها به عدد مشخصی، خاتمه مییابد. (همیشه مثبت نیست)
- حداکثر تعداد نسلها نباید عدد خیلی کوچکی باشد، چون فرصت پیمایش فضا برای الگوریتم تکاملی وجود نخواهد داشت.

كنترل پویش - انتفاع

- حفظ مصالحه بین پویش و انتفاع
 - کاهش فشار انتخاب
 - اجتناب از پاسخهای بهینه محلی
- اگر در زمان توقف الگوریتم تکاملی، نتایج حاصل شده رضایتبخش نباشد،
 باید با تغییر شرایط، موازنه پویش انتفاع را تنظیم مجدد نمود.
 - سه روش برای کنترل موازنه پویش–انتفاع
 - کنترل پارامترهای موثر
 - استفاده از توابع مناسب بازتولید
 - حفظ تنوع جمعیتی

کنترل پارامترهای موثر در موازنه پویش-انتفاع

- پارامترهای الگوریتمهای تکاملی که در موازنه موثرند:
 - (P_c) احتمال بازترکیب \blacksquare
 - رابطه مستقیم با قابلیت انتفاع
 - (P_m) احتمال جهش
 - و رابطه مستقیم با قابلیت پویش
 - (P_{rep}) درصد جایگزینی
 - و رابطه مستقیم با قابلیت انتفاع
- (P_{tourn}) درصد اعضای مورد گزینش در انتخاب مسابقه ای lacktriangle
 - و رابطه مستقیم با قابلیت انتفاع
 - (P_{trunc}) درصد اعضای مورد بررسی در انتخاب برشی lacktriangle
 - و رابطه مستقیم با قابلیت پویش

پیاده سازی توابع باز تولید

- انتخاب روش پیاده سازی توابع بازتولید متناسب با ماهیت فضای جستجوی مساله
 - چرخ رولت ساده
 - تقویت قابلیت انتفاع
 - چرخ رولت با چنداشاره گر
 - تقویت قابلیت پویش
 - بازترکیب یک نقطهای (یا با نقاط شکست کم)
 - تقویت قابلیت انتفاع
 - بازترکیب یکنواخت
 - تقویت قابلیت پویش
 - جهش با بیشترین تخریب روی ساختار کروموزوم
 - تقویت قابلیت پویش
 - روش جایگزینی پایدار به جای روش جایگزینی نسلی
 - تقویت قابلیت پویش

حفظ تنوع جمعیتی

⊙ روشهای حفظ تنوع

- کرانه سازی (niching): دادن اولویت به تنوع موجـودات از طریـق جلـوگیری از رقابـت ناعادلانه پاسخهای نامربوط یا غیرمشابه یا با فاصله زیاد
 - o مشترک سازی برازش (fitness sharing)
- استفاده از ایده منابع محدود در طبیعت در یک منطقه؛ موجودات زیاد در یک ناحیه باعث می شوند برازش کلی آنها کم شود.
 - ترغیب الگوریتم تکاملی به پویش بیشتر فضا و عدم همگرایی زودرس
 - o انبوه سازی (crowding)
 - جایگزینی اعضای جدید با اعضای مشابه در جمعیت و حفظ تنوع.
- فرزند جدید تولید شده با شبیه ترین یا یکی از شبیه ترین موجودات نسل قبلی رقابت می کند و در صورت بهتر بودن، جایگزین می شود.
 - (speciation) گونهسازی
- فقط آن دسته از موجودات که به اندازه کافی به یکدیگر شبیه هستند، حق بازترکیب شدن دارند؛ جلوگیری از ترکیب دو پاسخ با تفاوتهای بنیادی و بسیار زیاد که معمولاً منجر به تولید پاسخهای مهلک (lethal solutions–ضعیف) می شود.

بخش سوم – فرامکاشفههای تکاملی

بررسى انواع الگوريتمهاي تكاملي

GENETIC ALGORITHM الكوريتم ژنتيك

- ⊙ الگوريتم ژنتيک استاندارد (Canonical GA CGA)
 - توسط هالند.
 - هالند، پدر الگوریتمهای ژنتیک
- قبلا ایده معرفی شده بود. اما به خاطر فعالیتهای وی، الگوریتم ژنتیک توسعه زیادی یافت.
 - CGA نکات مهم
 - استفاده از نمایش رشته بیتی
 - طول ثابت و یکسان برای هر کروموزوم
 - جمعیت با تعداد اعضای ثابت
 - عملگر انتخاب نسبی برای والدین
 - بازترکیب تک نقطهای
 - بازترکیب در CGA عملگر اصلی است.
 - احتمال بازترکیب P_c مقادیر بزرگی است . معمو V_c بیشتر از ۹۵.
 - جهش به شکل معکوس سازی بیت
 - جهش در CGA عملگر فرعی است.
 - احتمال جهش P_{m} مقادیر کوچکی است. مثلاً 1/L که L طول کروموزوم است.

شبه کد الگوریتم ژنتیک استاندارد

```
Function GA(problem) returns a state that is a local optimum
Input: Populationsize, Problemsize, Pcrossover, Pmutation
Output: Sbest
Population ← InitializePopulation(Populationsize, Problemsize);
EvaluatePopulation(Population);
Sbest ← GetBestSolution(Population);
while ¬ StopCondition() do
 Parents ← SelectParents(Population, Populationsize);
 Children ← Ø;
foreach Parent1. Parent2 ∈ Parents do
   Child1, Child2 ← Crossover(Parent1, Parent2, Pcrossover);
   Children ← Mutate(Child1, Pmutation);
   Children ← Mutate(Child2, Pmutation);
 end
 EvaluatePopulation(Children);
Population ← Replace(Population, Children);
 Sbest ← GetBestSolution(Population);
end
return Sbest;
```

ویرایشهای GA

- مبتنی بر نوع استرتژی جایگزینی نسلها
- الگوريتمهاي ژنتيک نسلي (Generational GA GGA)
 - (Steady State GA SSGA) الگوريتمهاي ژنتيک پايا
 - (Generation Gap) شکاف نسلی (
 - میزان همپوشانی بین نسل کنونی و نسل بعدی
 - GGA شکاف نسلی صفر (یا در صورت نخبه گرایی، خیلی کم)
 - مكاف نسلى زياد SSGA •

GENETIC) برنامه نویسی ژنتیکی (PROGRAMMING

- برنامه نویسی ژنتیکی (GP)
- یک الگوریتم تکاملی استاندارد
- به عنوان یکی از انواع الگوریتم ژنتیکی
- هم GA و هم GP متکی بر تکامل ژنوتایپی با تاکید بر تولید مثل هستند.
 - \odot تفاوت GA و GP در شیوه نمایش موجودات است.
 - در GP از نمایش درختی استفاده می شود.
 - \odot پیشنهاد اولیه GP برای تکامل برنامههای کامپیوتری بوده است!
- قابل استفاده برای تکامل، ایجاد و بهینه سازی: عبارات بولی، مسایل برنامهریـزی، حل معادلات، تولیـد مفهـوم، برنامـه نویسـی خودکـار، شناسـایی الگـو، طراحـی شبکههای عصبی، درخـت تصـمیم، مسـایل بـازی، بیوانفورماتیـک، داده کـاوی و رباتیک.

GP esti

• خصوصیات مهم GP

- استفاده از نمایش درختی
- طول متغیر برای کروموزومها
- تنها الگوریتم تکاملی که دارای این ویژگی است!
 - تعداد ثابت اعضای جمعیت
 - عملگر بازترکیب عملگر اصلی است.
- (۰/۹ مقادیر بزرگ (بیشتر از P_c مقادیر بزرگ (بیشتر از
- احتمال برش شاخههای غیرپایانی زیاد و احتمال برش شاخههای پایانی کم است.
 - عملگر جهش عملگر فرعی است.
 - P_{m} مقادیر کوچک (کمتر از P_{m}) مقادیر کوچک احتمال مقادیر کوچک
- استفاده از عملگر ویژهای به نام اصلاح ساختاری (operator) operator

انتخابهای مختلف GP

• جمعیت اولیه

- تولید موجودات به صورت تصادفی با توجه به محدودیتهای معنایی که می تواند ساختار درخت کروموزوم داشته باشد.
 - عمق درخت، فاكتور انشعاب، ...

⊙ تابع برازش

■ موجودات نماینده یک برنامه یا یک ساختار هستند، بنابراین برای محاسبه برازندگی معمولاً توسط یک برنامه آزمون که آن را در شرایط خاصی اجرا می کند، صورت می گیرد.

• عملگرهای بازترکیب

- دو روش متداول در GP
- تولید یک فرزند با ترکیب دو والد
- تولید دو فرزند با جابجایی زیردرختها

انتخابهای مختلف GP

- عملگرهای جهش
 - جهش گره تابع
- جهش یک گره داخلی از بین مقادیر تابعی مجاز
 - جهش تعویضی
 - تعویض تصادفی پارامترهای یک گره داخلی
 - جهش گره پایانی
- جهش یک گره برگ از بین مقادیر پایانی مجاز
 - جهش گوسین
 - جهش مقدار یک گره پایانی به شیوه گوسین
 - جهش رشدی
- جایگزینی یک گره با یک زیردرخت تصادفی با عمق از قبل مشخص
 - جهش برشی
- \circ جایگزینی تصادفی یک گره داخلی با یک مقدار تصادفی پایانی (برگ) هرس درخت

انتخابهای مختلف GP

- عملگرهای اصلاح ساختاری
- بازترکیب غیرجنسی؛ اصلاح ساختار درختی یک موجود
 - عملگر جایگشت
- مشابه جهش تعویضی؛ تولید یک جایگشت تصادفی از n! جایگشت ممکن بین فرزندان یک گره
 - عملگر ویرایش
 - ویرایش ساختار درخت بر اساس قوانین حاکم در دنیا که از قبل تعریف شدهاند.
- o مثلاً زیردرختی که عبارت X AND x را نشان میدهد با یک گره با برچسب X جایگزین میشود.
 - عملگر بلوک سازنده
- بلوکهای سازنده مفید تشخیص داده شده و با یک گره ویژه جایگزین میشوند. در این صورت دیگر ساختار آنها برهم نمیخورد.

شبه کد پرنامه نویسی ژنتیکی – GP

```
Function GP(problem) returns a state that is a local optimum
 Input: Populationsize, nodesfunc, nodesterm, Pcrossover, Pmutation, Palteration
 Output: Sbest
Population ← InitializePopulation(Populationsize, nodesfunc, nodesterm);
EvaluatePopulation(Population);
Sbest ← GetBestSolution(Population);
while ¬ StopCondition() do
  Children \leftarrow \emptyset:
  while Size(Children) < Populationsize do
    Operator ← SelectGeneticOperator(Pcrossover, Pmutation, Palteration);
    if Operator ≡ CrossoverOperator then
      Parent1, Parent2 ← SelectParents(Population, Populationsize);
      Child1, Child2 ← Crossover(Parent1, Parent2);
      Children ← Child1;
      Children ← Child2;
    else if Operator = MutationOperator then
      Parenti ← SelectParents(Population, Populationsize);
      Childı \leftarrow Mutate(Parentı);
     Children ← Child1;
    else if Operator ≡ AlterationOperator then
     Parenti ← SelectParents(Population, Populationsize);
     Child₁ ← AlterArchitecture(Parentı);
     Children ← Child1;
    end
  end
  EvaluatePopulation(Children);
  Population ← Replace(Population, Children);
 Sbest ← GetBestSolution(Population);
end
return Sbest:
```

EVOLUTION) استراتژی تکامل (STRATEGY

● استراتژی تکامل ES

- بهینه سازی فرآیند تکامل، همزمان با یافتن موجود بهینه!
- فرایندهای زیست شناسی توسط تکامل بهینه میشوند. تکامل خود یک فرایند زیست شناسی است؛ پس باید بتوان تکامل را نیز بهینه نمود!!
- هر موجود توسط بلوکهای سازنده ژنی و همچنین مجموعهای از پارامترهای استراتژی که رفتار موجودات را مدل می کند، نمایش داده می شود.
 - ویژگیهای ژنی و پارامترهای استراتژی همزمان تکامل مییابند.
 - تکامل ویژگیهای ژنی توسط پارامترهای استراتژی کنترل میشود.

نکات استراتژی تکامل ES

ES خصوصیات ©

- استفاده از نمایش اعداد حقیقی ممیز شناور
 - جمعیت با تعداد اعضای ثابت
- پارامترهای استراتژی همراه هر کدام از موجودات است تا شیوه و جهت جستجو در هـر مرحلـه برای آن تعیین شود.
 - \blacksquare عملگر جهش در ES عملگر اصلی است.
- ES در ES، بازترکیب وجود ندارد. هرچند در نسخههایی از بازترکیب هم استفاده شده است؛ که به ماهیت ES لطمه زده و از آن دور می شود.
 - الگوریتم عملگر جهش و پارامترهای آن نیز طی فرایند استراتژی تکامل، تکامل مییابند.
 - نرخ جهش با توجه به برازش موجودات، به صورت تطبیقی تنظیم میشود.
 - پاسخ برازنده، نرخ جهش کم و پاسخ با برازندگی کم، نرخ جهش بالا
 - نرخ جهش با توجه به موفقیت بهبود پاسخ، تنظیم میشود.
 - اگر درصد موفقیت بیشتر از ۲۰٪ بود، نرخ جهش افزایش و در غیر اینصورت کاهش می یابد.
 - احتمال جهش با توجه به یک تابع توزیع احتمال گوسی محاسبه می شود.
 - $(\mu+\lambda)$ جایگزینی انتخاب =
 - (μ,λ) جایگزینی انتخاب =
 - $1 \le \mu \le \lambda$ o

شبه کد استراتژی تکامل – ES

```
Function ES(problem) returns a state that is a local optimum
Input: μ, λ, ProblemSize
Output: Sbest
Population 1 \leftarrow InitializePopulation(\mu, ProblemSize);
EvaluatePopulation(Population);
Sbest ← GetBestSolution(Population);
while ¬ StopCondition() do
  Children \leftarrow \emptyset;
  for i = 0 to \lambda do
    P_i \leftarrow GetParent(Population, i);
    S_i \leftarrow \emptyset;
    Siproblem ← Mutate(Piproblem, Pistrategy);
    Sistrategy ← Mutate(Pistrategy);
    Children ← Si;
  end
  EvaluatePopulation(Children);
  Population \leftarrow Replace(Population, Children, \mu);
  Sbest ← GetBestSolution(Population);
end
return Sbest;
```

EVOLUTIONARY) برنامه نویسی تکاملی (PROGRAMMING

- © ایده اصلی برنامه نویسی تکاملی €P
- هوش، ویژگیای که به سیستم اجازه میدهد تا رفتار خود را برای رسیدن به هدف خاص، در محیطهای مختلف، تطبیق دهد!
 - تقلید از تکامل خصیصههای رفتاری
 - توسعه مدلهای رفتاری، نه الزاما توسعه مدلهای ژنی
 - شیوه نمایش اولیه، ماشینهای حالت متناهی
 - البته روشهای دیگر نیز استفاده شده است.
 - کاربردهای وسیع در مسایل دنیای واقعی
 - زمانبندی، مسیریابی، طراحی ساختارها، رباتیک، پردازش تصویر، ...

نكات برنامه نويسى تكاملى EP

• خصوصیات EP

- استفاده از نمایش نمادی برای حالتها و انتقالهای ماشینهای حالت متناهی
 - تعداد ثابت اعضای جمعیت
 - عملگر جهش در EP عملگر اصلی است.
 - بازترکیب وجود ندارد.
- شیوه عملکرد و پارامترهای عملگر جهش طی فرایند الگوریتم تکامل، تکامل مییابند.
 - استفاده از حالتها و انتقالهای جدید در ماشینهای متناهی
 - پارامترهای جهش (گام و نرخ جهش) در هر موجود نگهداری میشود.
 - خودتطبیقی بودن؛ هر موجود بهترین شرایط خودش را تعیین می کند.
 - تنظیم پارامترهای جهش با توجه به برازش پاسخها به صورت تطبیقی
- برای پاسخهای برازنده گام جهش کوتاه و برای پاسخهای نامطلوب، گام جهش بلند
 - احتمال جهش توسط تابع توزیع احتمال گوسی محاسبه می شود.
 - هر والد یک فرزند را از طریق عملگر جهش ایجاد می کند.
 - روش انتخاب برای جایگزینی، رقابت بین والدین و فرزندان است.

شبه کد پرنامه نویسی تکاملی – EP

```
Function EP(problem) returns a state that is a local maximum
Input: Populationsize, ProblemSize, BoutSize
Output: Sbest
Population ← InitializePopulation(Populationsize, ProblemSize);
EvaluatePopulation(Population);
Sbest ← GetBestSolution(Population);
while ¬ StopCondition() do
  Children \leftarrow \emptyset;
  foreach Parenti ∈ Population do
    Pi ← GetParent(Population, i);
    S_i \leftarrow \emptyset:
    Siproblem ← Mutate(Piproblem, Pistrategy);
    Sistrategy ← Mutate(Pistrategy);
    Children ← Si;
  end
  EvaluatePopulation(Children);
  Union ← Population + Children;
  foreach Si ∈ Union do
    for 1 to BoutSize do
       S_i \leftarrow RandomSelection(Union);
       if Fitness(Si) > Fitness(Sj) then
        Siwins ← Siwins + 1;
      end
    end
   end
   Population ← SelectBestByWins(Union, Populationsize);
   S_{best} \leftarrow GetBestSolution(Population);
 end
 return Sbest;
```

MEMETIC) الكوريتهاى ممتيك (ALGORITHM

⊚ انتقال فرهنگ و رفتار از طریق مِم (meme)

- عنصر فرهنگی یا رفتاری که به وسیله عوامل غیرژنی منتقل میشود.
- خصایص رفتاری که در طول زندگی یک موجود از طریق تجربه و تقلید فراگرفته شده است.
 - بخشی از تمدن که ژنها در به ارث رسیدنشان نقش ندارند.
 - رفتارها، مد، علوم و دانش، ادبیات، موسیقی، ...
 - شباهت ژن و مم:
- ژنها از کروموزومی به کروموزوم دیگر انتقال مییابند، و ممها از مغزی به مغز دیگر انتقال میابند.
 - در تکامل، بهترین ژنها و بهترین ممها باقی میمانند.
 - تفاوت ژن و مم:
 - ژنها مقادیر از قبل مشخصی دارند (از والدین) اما مهها قبل از زندگی قابل تعیین نیستند.
 - ژنها در طول زندگی ثابت هستند، اما مهها در طول دوره زندگی تغییر می کنند.
- مهها اصلاح را در یک دوره زندگی میسر می کنند، اما ژنها این کار را در زمان طولانی انجام می دهند.

شبه کد الگوریتم ممتیک – AM

```
Function MA(problem) returns a state that is a local optimum
Input: Populationsize, Problemsize, Pcrossover, Pmutation, MemePopsize
Output: Sbest
Population ← InitializePopulation(Populationsize, Problemsize);
EvaluatePopulation(Population);
Sbest ← GetBestSolution(Population);
while ¬ StopCondition() do
  Parents ← SelectParents(Population, Populationsize);
  Children \leftarrow \emptyset;
  foreach Parent1, Parent2 ∈ Parents do
    Child1, Child2 ← Crossover(Parent1, Parent2, Pcrossover);
   Children ← Mutate(Child1, Pmutation);
    Children ← Mutate(Child2, Pmutation);
  end
  EvaluatePopulation(Children);
  MemeticPopulation ← SelectMemeticPopulation(Children, MemePopsize);
  foreach Si ∈ MemeticPopulation do
   Si ← LocalSearch(Si);
  end
  Population ← Replace(Population, Children);
  Sbest ← GetBestSolution(Population);
end
return Sbest;
```

نکاتی درباره MM

- ⊙ اصالت وجودی مم از ژن بیشتر است.
- ژن پس از مرگ موجود از بین میرود، اما مم باقی میماند.
 - دو شيوه مهم الگوريتم MA
 - (Lamarckian MA) روش لاماركي •
- در قسمت جستجوی محلی، اگر کروموزوم y از x بهتر باشد، جایگزین آن می شود.
 - (Baldwinian MA) روش بالدوینی -
- در قسمت جستجوی محلی، اگر کروموزوم y از x بهتر باشد، فقط مقدار برازندگی آن جایگزین مقدار برازندگی x می شود.
 - روش لامار کی سرعت بیشتر و روش بالدیوینی پویش بیشتری دارند.

الگوریتمهای فرهنگی (CULTURAL) فرهنگی (ALGORITHM

- بهبود جوامع فقط تابع تکامل ژنتیکی نیست، بلکه تابع تکامل فرهنگی نیز هست!
 - تعریف فرهنگ:
- مفاهیم و نمادهایی که بصورت اجتماعی و تاریخی میان گروهها منتشر میشود.
- ذخیرهسازی دانش، تجربه، باورها، ارزشها، افکار، مهایم، ... در گروهی از مردم در طول یک نسل که حاصل تلاش گروهی و فردی افراد است.
 - رفتارهای یادگرفته شده از مردم؛ سنت
 - برنامه ریزی اجتماعی از تمایلات فکری که رفتارهای مردم را هدایت می کند.

الگوریتمهای فرهنگی (CULTURAL) فرهنگی (ALGORITHM

- الگوریتم CA یک سیستم دو-وراثتی است.
 - دارای دو فضای جستجو است.
 - فضای جمعیت: تکامل ژنتیکی
 - فضای باور: نمایش مولفههای فرهنگی
 - هر دو فضا تكامل مى يابند.
 - ارتباط دو فضا
- فضای باور، مدل سازی اطلاعات فرهنگی جمعیت
 - فضای جمعیت، تبعیت از باورها
- در هر تکرار، موجوداتی از جمعیت فعلی برای تاثیر گذاردن روی باورها، پذیرش میشوند.
- سپس تجربه موجودات پذیرفته شده برای تنظیم باورها مورد استفاده قرار می گیرد.
- در ادامه، از باورهای تنظیم شده برای تاثیر بر روی جمعیت استفاده می شود.

شبه كد الگوريتمهاي فرهنگي - CA

```
Function CA(problem) returns a state that is a local optimum
Input: Problemsize, Populationnum
Output: Sbest
Population ← InitializePopulation(Problemsize, Populationnum);
Belief Space ← Initialize Belief Space (Problemsize, Populationnum);
Sbest ← GetBestSolution(Population);
while ¬ StopCondition() do
  EvaluatePopulation(Population);
  Children ← ReproduceWithInfluence(Population, Belief Space);
  Population ← Select(Children, Population);
  Beliefcandidate ← AcceptBelief(Population);
  UpdateBelief Space(Belief Space, Beliefcandidate);
  Sbest ← GetBestSolution(Population);
end
return Sbest;
```

الگوریتم هم تکاملی (CO-EVOLUTIONARY ALGORITHM)

DIPLOID) ديپلوئيدي (EVOLUTIONARY ALGORITHM

بهینه سازی تولید مثل غیر جنسی (REPRODUCTION OPTIMIZATION

ARTIFICIAL) سيستم ايمنى مصنوعي (IMMUNE SYSTEM