

مرور جلسه قبل

حل رابطه بازگشتی با درخت بازگشتی

اثبات حدس به دست آمده از طریق استقراء

حل روابط بازگشت با قضیه اصلی

$$T(n) = aT(n/b) + f(n)$$
 $a \ge 1$ and $b > 1$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$f(n) \qquad n^{\log_b a}$$

چالشهای روش جایگذاری

حدس
$$T(n) = O(n)$$
 \longrightarrow $T(n) \le cn$ \times \longrightarrow $T(n) \le cn - d$, where $d \ge 0$ is a constant.

۱. درجه جمله اضافه کمتر از حکم باشد: به حکم یک جمله از درجه کمتر اضافه میکنیم

۲. درجه جمله اضافه با حکم برابر باشد: یک فاکتور لگاریتم در حکم کمتر حدس زدیم

۳. درجه جمله اضافه بیشتر از حکم باشد: باید حکم از درجه بالاتری باشد

تغییر متغیر برای حل رابطه بازگشتی

$$T(n) = 2T \left(\sqrt{n}\right) + \lg n$$

$$m = \lg n$$

$$S(m) = T(2^m)$$

$$S(m) = 2S(m/2) + m$$

$$S(m) = O(m \lg m)$$

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$$

فصل ششم: مرتبسازی هرمی | Heap sort

• مرتبسازی هرمی یا Heap sort

- Heap چیست
- نگهداری خاصیت Heap
 - درست کردن Heap
- الگوریتم مرتبسازی هرمی
 - صفهای اولویت

II Sorting and Order Statistics

Introduction 147

6 Heapsort 151

- 6.1 Heaps 151
- 6.2 Maintaining the heap property 154
- 6.3 Building a heap 156
- 6.4 The heapsort algorithm 159
- 6.5 Priority queues 162

7 Quicksort 170

- 7.1 Description of quicksort 170
- .2 Performance of quicksort 174
- 7.3 A randomized version of quicksort 179
- 7.4 Analysis of quicksort 180

مرتبسازی و ساختار دادهای

• درواقعیت اعدادی که نیاز به مرتبسازی دارند معمولا اعداد منفرد نیستند

• در عمل درهنگام جابجایی key توسط الگوریتم مرتبطسازی record نیز باید جابجایی شود

[•] اگر حجم داده record زیاد باشد آرایهای از اشارهگرها به داده جابجا میشوند و نه خود داده

درس طراحی الگوریتم (ترم اول ۱ ۰۵ م) | INTRODUCTION TO ALGORITHM

مقایسه الگوریتمهای مرتبسازی

	only a constant number of elements of the input are ever stored outside the array.	• الگوريتم Insertion sort
fast in-place sorting algorithm for small input	sorts in place	worst-case running time $\ \Theta(n^2)$ expected running time $\ \Theta(n^2)$
		• الگوريتم Merge sort
	sorts in place MERGE procedure	running time $\Theta(n\lg n)$ مرتبه زمانی
		• الگوریتم Heap sort
important data structure, called a heap priority queue	sorts in place	worst-case running time $O(n \lg n)$ مرتبه زمانی
quicksort has tight code		• الگوريتم Quick sort

sorts in place

popular algorithm for sorting large input arrays

5

worst-case running time $\Theta(n^2)$ expected running time $\Theta(n \lg n)$

outperforms heapsort in practice

مقايسه الگوريتمهاي مرتبسازي

we can beat this lower bound of $\Omega(n \lg n)$

if we can gather information about the sorted order of the input

• الگوريتم Counting sort

worst-case running time $\Theta(k+n)$

مرتبه زماني

expected running time $\Theta(k+n)$

• الگوريتم Radix sort

worst-case running time $\Theta(d(n+k))$

expected running time $\Theta(d(n+k))$

مرتبه زماني

integer has d digits digit can take on up to k possible values

there are n integers to sort

the input numbers are in the set $\{0, 1, \dots, k\}$

• الگوريتم Bucket sort

worst-case running time

 $\Theta(n^2)$

 $\Theta(n)$

مرتبہ زمانی

requires knowledge of the probabilistic distribution of numbers in the input array real numbers uniformly distributed in the half-open interval [0, 1)

average-case running time

ساختار Heap و ویژگیهای آن – ۱

- Heap عبارت است از یک درخت دودویی کامل (به غیر از پایین ترین سطح)
 - هر گره از درخت یک المان از آرایه
 - $A[PARENT(i)] \geq A[i]$ هر گره بزرگترمساوی فرزندان: max heap •
 - $A[\operatorname{PARENT}(i)] \leq A[i]$ هر گره کوچکتر مساوی فرزندان: min heap •

root: *A*[1]

node: A[i]

left-child: A[2i]

right-child: A[2i+1]

leaves: $A[(\lfloor n/2 \rfloor + 1) ... n]$

ساختار Heap و ویژگیهای آن – ۲

• Heap عبارت است از یک درخت دودویی کامل

HEAP:
$$array A$$

- A.length: تعداد اعداد در آرایه $A[1\mathinner{.\,.} A.length]$
- $A.heap_size$: چه تعداد المانهای هرم در آرایه مرتب شده است $A[1\ldots A.heap_size], ext{ where } 0 \leq A.heap_size \leq A$

عملیاتهای Heap

Maintain/Restore the max-heap property MAX-HEAPIFY

Create a max-heap from an unordered array BUILD-MAX-HEAP

Sort an array in place HEAPSORT

Priority queues

نگهداری ویژگی heap با عملیات heap

مثال

Max-Heapify(A, 2)

MAX-HEAPIFY (A, i)

- 1 l = LEFT(i)
- $2 \quad r = RIGHT(i)$
- 3 **if** $l \le A$. heap-size and A[l] > A[i]
- 4 largest = l
- 5 else largest = i
- 6 **if** $r \le A$.heap-size and A[r] > A[largest]
- 7 largest = r
- 8 **if** $largest \neq i$
- 9 exchange A[i] with A[largest]
- 10 MAX-HEAPIFY(A, largest)

تحلیل زمانی عملیات MAX-HEAPIFY


```
Max-Heapify(A, i)
        l = LEFT(i)
        r = RIGHT(i)
        if l \leq A. heap-size and A[l] > A[i]
             largest = l
                                                          \Theta(1)
                                                                                             worst case
        else largest = i
        if r \le A. heap-size and A[r] > A[largest]
             largest = r
        if largest \neq i
             exchange A[i] with A[largest]
             MAX-HEAPIFY (A, largest)
    10
                                                  T(2n/3)
                                                                                                          n/3
                                                                                         n/3
                                                    T(n) = O(\lg n)
                                                                                         n/3
T(n) \le T(2n/3) + \Theta(1)
                                case 2 of
```

the master theorem

درس طراحی الگوریتم (ترم اول ۱ ۱۴۰) INTRODUCTION TO ALGORITHM |

درست کردن heap

1	n/2	n
	برگھا	

BUILD-MAX-HEAP(A)

- 1 A.heap-size = A.length
- 2 **for** $i = \lfloor A.length/2 \rfloor$ **downto** 1
- 3 MAX-HEAPIFY(A, i)

درست کردن heap – مثال

اثبات الگوريتم BUILD-MAX-HEAP

دانشگاه صنعی امیر کیبر (اید کتیج نه اد)

BUILD-MAX-HEAP(A)

- 1 A.heap-size = A.length
- 2 **for** $i = \lfloor A.length/2 \rfloor$ **downto** 1
- 3 MAX-HEAPIFY(A, i)

مستقل از حلقه

At the start of each iteration of the **for** loop of lines 2–3, each node i + 1, i + 2, ..., n is the root of a max-heap.

Initialization: Prior to the first iteration of the loop, $i = \lfloor n/2 \rfloor$. Each node $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, \ldots, n$ is a leaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, observe that the children of node i are numbered higher than i. By the loop invariant, therefore, they are both roots of max-heaps. This is precisely the condition required for the call MAX-HEAPIFY (A, i) to make node i a max-heap root. Moreover, the MAX-HEAPIFY call preserves the property that nodes $i+1, i+2, \ldots, n$ are all roots of max-heaps. Decrementing i in the **for** loop update reestablishes the loop invariant for the next iteration.

Termination: At termination, i = 0. By the loop invariant, each node 1, 2, ..., n is the root of a max-heap. In particular, node 1 is.

تحلیل زمانی BUILD-MAX-HEAP

BUILD-MAX-HEAP(A)

- 1 A.heap-size = A.length
- 2 for i = |A.length/2| downto 1
- 3 MAX-HEAPIFY(A, i)

MAX-HEAPIFY costs $O(\lg n)$ × BUILD-MAX-HEAP makes O(n) such calls

the running time is $O(n \lg n)$

$$T(n) = \sum_{h=0}^{\lg(n)} \left\lceil \frac{n}{2^{h+1}} \right\rceil * O(h)$$

$$= O(n * \sum_{h=0}^{\lg(n)} \frac{h}{2^h})$$

$$= O(n * \sum_{h=0}^{\infty} \frac{h}{2^h})$$

$$= O(n * \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2})$$

$$= O(n * 2)$$

$$= O(n)$$

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

$$\sum_{n=1}^{\infty} n x^{n-1} = \frac{d}{dx} \left[\sum_{n=0}^{\infty} x^n \right] = \frac{d}{dx} \left[\frac{1}{1-x} \right] = \frac{1}{(1-x)^2}$$

$$\sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}$$

الگوریتم heap sort


```
HEAPSORT(A)
```

```
1 BUILD-MAX-HEAP(A) O(n)

2 for i = A.length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size -1

5 MAX-HEAPIFY(A, 1) O(\lg n)
```

- 2 **for** i = A.length **downto** 2
- 3 exchange A[1] with A[i]
- A.heap-size = A.heap-size 1
- 5 MAX-HEAPIFY(A, 1)

heap sort مثال

17

heap sort مثال

درس طراحی الگوریتم (ترم اول ۱ ۱۴۰) INTRODUCTION TO ALGORITHM

- 2 **for** i = A.length **downto** 2 3 exchange A[1] with A[i]
- A.heap-size = A.heap-size 1
- 5 MAX-HEAPIFY(A, 1)

Example of Heap Sort

7 12 16 1 4

Sorted:

19

16 | 12 | 7 | 1 | 4

Sorted:

19

4 | 12 | 7 | 1

Sorted:

16 | 19

4 | 12 | 7 | 1

Sorted:

16 | 19

12 4 7 1

Sorted:

16 | 19

 $1 \mid 4 \mid 7$

Sorted:

12 | 16 | 19

 $7 \mid 4 \mid 1$

Sorted:

12 | 16 | 19

 $4 \mid 1$

Sorted:

7 | 12 | 16 | 19

Take out biggest

Array A

Sorted:

1 4 7 12 16 19

Sorted:

1 4 7 12 16 19

اثبات الگوريتم heap sort

HEAPSORT(A)

```
1 BUILD-MAX-HEAP(A)
```

- 2 **for** i = A. length **downto** 2
- 3 exchange A[1] with A[i]
- A.heap-size = A.heap-size 1
- 5 MAX-HEAPIFY(A, 1)

مستقل از حلقه

امتیازی! ۳ دقیقه فرصت

صف اولویت یا priority queue

A *priority queue* is a data structure for maintaining a set S of elements, each with an associated value called a *key*. A *max-priority queue* supports the following operations:

INSERT(S, x) inserts the element x into the set S, which is equivalent to the operation $S = S \cup \{x\}$.

MAXIMUM(S) returns the element of S with the largest key.

EXTRACT-MAX(S) removes and returns the element of S with the largest key.

INCREASE-KEY (S, x, k) increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

عملیاتهای روی priority queue

HEAP-MAXIMUM(A)

1 return A[1]

HEAP-EXTRACT-MAX(A)

- 1 **if** A.heap-size < 1
- 2 **error** "heap underflow"
- 3 max = A[1]
- $4 \quad A[1] = A[A.heap-size]$
- $5 \quad A.heap\text{-size} = A.heap\text{-size} 1$
- 6 MAX-HEAPIFY (A, 1)
- 7 **return** *max*

HEAP-INCREASE-KEY (A, i, key)

- 1 if key < A[i]
- error "new key is smaller than current key"
- A[i] = key
- 4 **while** i > 1 and A[PARENT(i)] < A[i]
- 5 exchange A[i] with A[PARENT(i)]
- i = PARENT(i)

MAX-HEAP-INSERT(A, key)

- 1 A.heap-size = A.heap-size + 1
- 2 $A[A.heap\text{-}size] = -\infty$
- 3 HEAP-INCREASE-KEY (A, A. heap-size, key)

صف اولویت و عملیاتهای آن

صف اولویت یا priority queue

A *priority queue* is a data structure for maintaining a set S of elements, each with an associated value called a *key*. A *max-priority queue* supports the following operations:

INSERT(S, x) inserts the element x into the set S, which is equivalent to the operation $S = S \cup \{x\}$.

MAXIMUM(S) returns the element of S with the largest key.

EXTRACT-MAX(S) removes and returns the element of S with the largest key.

INCREASE-KEY (S, x, k) increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

عملیاتهای روی priority queue

HEAP-MAXIMUM(A)

1 return A[1]

HEAP-EXTRACT-MAX(A)

- 1 **if** A.heap-size < 1
- 2 **error** "heap underflow"
- 3 max = A[1]
- $4 \quad A[1] = A[A.heap-size]$
- $5 \quad A.heap\text{-}size = A.heap\text{-}size 1$
- 6 MAX-HEAPIFY (A, 1)
- 7 **return** *max*

HEAP-INCREASE-KEY (A, i, key)

- 1 if key < A[i]
- error "new key is smaller than current key"
- A[i] = key
- 4 while i > 1 and A[PARENT(i)] < A[i]
- 5 exchange A[i] with A[PARENT(i)]
- i = PARENT(i)

MAX-HEAP-INSERT(A, key)

- 1 A.heap-size = A.heap-size + 1
- 2 $A[A.heap\text{-size}] = -\infty$
- 3 HEAP-INCREASE-KEY (A, A. heap-size, key)