Conjugate set

Conjugate (dual) set

Пусть $S\subseteq\mathbb{R}^n$ - произвольное непустое множество. Тогда сопряженное к нему множество определяется, как:

$$S^* = \{y \in \mathbb{R}^n \mid \langle y, x
angle \geq -1 \ \ orall x \in S\}$$

Double conjugate set

Множество S^{**} называется вторым сопряженным к множеству S, если:

$$S^{**} = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \ \forall x \in S^* \}$$

Inter-conjugate and self-conjugate sets

- ullet Множества S_1 и S_2 называются **взаимосопряженными**, если $S_1^*=S_2, S_2^*=S_1.$
- Множество S называется **самосопряженным**, если $S^{st}=S$

Properties

- Сопряженное множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- ullet Если $S_1\subset S_2$, то $S_2^*\subset S_1^*$
- $\bullet \quad \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*$

$ullet$ Если S - замкнуто, выпукло, включает 0 , то $S^{**}=S$																						
$ullet \ S^* = \left(\overline{S} ight)^*$																						
Examples																						
1																						
Доказать, что $S^* = \left(\overline{S} ight)^*$																						
Решение:																						
	٠	٠			٠	٠	٠	٠				٠			•			٠			•	•
	٠			٠	٠		٠	٠														
															•							•
																						•
2																						
Доказать, что $(\mathbf{conv}(S))^* = S^*$																						
Решение:																						
				•												•	•	•	•	•	٠	•
				ė						•				•								
										•												

3

Доказать, что если B(0,r) - шар радиуса r по некоторой норме с центром в нуле, то $\left(B(0,r)\right)^*=B(0,1/r)$

Решение:

Dual cones

Сопряженным конусом к конусу K называется такое множество K^{st} , что:

$$K^* = \{y \mid \langle x,y
angle \geq 0 \quad orall x \in K\}$$

Чтобы показать, что это определение непосредственно следует из теории выше вспомним, что такое сопряженное множество и что такое конус $\forall \lambda>0$

$$\{y \ \in \mathbb{R}^n \mid \langle y, x
angle \geq -1 \ \ orall x \in S\}
ightarrow \{\lambda y \ \in \mathbb{R}^n \mid \langle y, x
angle \geq -rac{1}{\lambda} \ \ orall x \in S\}$$

Dual cones properties

- ullet Если K замкнутый выпуклый конус. Тогда $K^{**}=K$
- ullet Для произвольного множества $S\subseteq \mathbb{R}^n$ и конуса $K\subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

ullet Пусть K_1,\ldots,K_m - конусы в \mathbb{R}^n , тогда:

$$\left(\sum_{i=1}^m K_i
ight)^* = igcap_{i=1}^m K_i^*$$

• Пусть K_1, \ldots, K_m - конусы в \mathbb{R}^n . Пусть так же, их пересечение имеет внутреннюю точку, тогда:

$$\left(igcap_{i=1}^m K_i
ight)^* = \sum_{i=1}^m K_i^*$$

Examples

4

Найти сопряженнй конус для монотонного неотрицательного конуса:

$$K = \{x \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}$$

Решение:

Polyhedra

Множество решений системы линейных неравенств и равенств представляет собой многогранник:

$$Ax \leq b, \quad Cx = d$$

Здесь $A \in \mathbb{R}^{m imes n}, C \in \mathbb{R}^{p imes n}$, а неравенство - поэлементное.

Теорема:

Пусть $x_1,\dots,x_m\in\mathbb{R}^n$. Сопряженным к многогранному множеству:

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

является полиэдр (многогранник):

$$S^* = \left\{ p \in \mathbb{R}^n \mid \langle p, x_i
angle \geq -1, i = \overline{1, k}; \langle p, x_i
angle \geq 0, i = \overline{k+1, m}
ight\}$$

Доказательство:

ullet Пусть $S=X,S^*=Y$. Возьмем некоторый $p\in X^*$, тогда $\langle p,x_i
angle\geq -1,i=\overline{1,k}$. В то же время для любых $heta>0,i=\overline{k+1,m}$:

$$egin{aligned} \langle p, x_i
angle \geq -1 &
ightarrow \langle p, heta x_i
angle \geq -1 \ \langle p, x_i
angle \geq -rac{1}{ heta} &
ightarrow \langle p, x_i
angle \geq 0 \end{aligned}$$

Значит, $p \in Y o X^* \subset Y$

ullet Пусть, напротив, $p \in Y$. Для любой точки $x \in X$:

$$x = \sum_{i=1}^m heta_i x_i \qquad \sum_{i=1}^k heta_i = 1, heta_i \geq 0$$

Значит:

$$\langle p,x
angle = \sum_{i=1}^m heta_i \langle p,x_i
angle = \sum_{i=1}^k heta_i \langle p,x_i
angle + \sum_{i=k+1}^m heta_i \langle p,x_i
angle \geq \sum_{i=1}^k heta_i (-1) + \sum_{i=1}^k heta_i \cdot 0 = -1$$

Значит, $p \in X^* o Y \subset X^*$

5

Найти и изобразить на плоскости множество, сопряженное к многогранному конусу:

$$S = \mathbf{cone} \{ (-3, 1), (2, 3), (4, 5) \}$$

Решение:

Лемма (теорема) Фаркаша (Фаркаша - Минковского)

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax = b, x \ge 0$$

2)
$$pA \geq 0, \langle p, b \rangle < 0$$

Ax=b при $x\geq 0$ означает, что b лежит в конусе, натянутым на столбцы матрицы A $pA\geq 0,\; \langle p,b\rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором b и конусом из столбцов матрицы A.

Следствие:

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax \leq b$$

$$2)\ pA=0, \langle p,b\rangle<0, p\geq 0$$

Если в задаче линейного программирования на минимум допустимое множество непусто и целевая функция ограничена на нём снизу, то задача имеет решение.