Name:

Solutions

Math 21C Section B05 Thursday 4-5pm 4/17/2008

QUIZ #2

Problem 1 (5 points): Does the series

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt[n]{n}}$$

converge or diverge? Give reasons for your answer.

We know the serves
$$\frac{1}{N}$$
 and $\frac{1}{N}$ we have that $\frac{1}{N}$ and $\frac{1}{N}$ and

Problem 2 (5 points): Does the series

$$\sum_{n=2}^{\infty} \frac{n}{(\ln n)^n}$$

converge or diverge? Give reasons for your answer.

Lets apply the ratio test which says that for
$$\sum_{n=2}^{\infty} a_n$$
 , we have converges if $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, diverges if $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$, and inconclusing results if $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$.

So $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$.

$$= \lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$$
.

So by ratio lest $\sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{a_n}{|a_n|^n}$ converges