Exercise 3.2.1.

(a) The rank of a matrix is equal to the number of its nonzero columns.

Proof. False. The matrix
$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
 has rank 1.

(b) The product of two matrices always has rank equal to the lesser of the ranks of the two matrices.

Proof. False. We have
$$\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
. However, $rank \begin{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \end{pmatrix} = 2$ and $rank \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} = 0$

- (c) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0.
- (d) Elementary row operations preserve rank.
- (e) Elementary column operations do not necessarily preserve rank.
- (f) The rank of a matrix is equal to the maximum number of linearly independent rows in the matrix.
- (g) The inverse of a matrix can be computed exclusively by means of elementary row operations.
- (h) The rank of an $n \times n$ matrix having rank n is invertible.

Exercise 3.2.14. Let $T, U : V \to W$ be linear transformations.

(a) Prove that $R(T+U) \subseteq R(T) + R(U)$.

Proof. If $t \in R(T+U)$, then there exists $v \in V$ such that T(v)+U(v)=t. Thus $t \in R(T)+R(U)$. Thus $R(T+U) \subseteq R(T)+R(U)$.

(b) Prove that if W is finite-dimensional, then $rank(T+U) \leq rank(T) + rank(U)$.

Proof. Since W is finite-dimensional, there exist n, m such that $\{v_1, v_2, \cdots, v_n\}$ is a basis for R(T) and $\{u_1, u_2, \cdots, u_m\}$ is a basis for R(U). Thus rank(T) = n and rank(U) = m. Moreover, $\{v_1, v_2, \cdots, v_n, u_1, \cdots, u_m\}$ spans R(T+U). Thus $rank(T+U) \leq m+n = rank(T)+rank(U)$. \square

(c) Deduce from (b) that $rank(A+B) \leq rank(A) + rank(B)$ for any $m \times n$ matrices A and B.

Proof. Since a matrix represent a linear transformation, we have $rank(A+B) \leq rank(A) + rank(B)$ for any $m \times n$ matrices A and B.

Exercise 3.3.1. Label the following statements as true or false.

(a) Any system of linear equation has at least one solution.

Proof. False, because $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ has no solution. \Box

(b) Any system of linear equation has at most one solution.

Proof. False because 0x = 0 has infinitely many solutions.

(c) Any homogeneous system of linear equations has at least one solution.

Proof. True, when all the unknowns equal 0.

(d) Any system of n linear equations in n unknowns has at most one solution False, because $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ has infinitely many solutions.

(e) Any system of n linear equations in n unknowns has at least one solution.
<i>Proof.</i> False. It can have no solution too.
(f) If the homogeneous system corresponding to a given system of linear equations has a solution, then the given system has a solution.
<i>Proof.</i> False. A homogeneous system always have a solution, but system of linear equations is not.
(g) If the coefficient matrix of a homogeneous system of n linear equations in n unknowns is invertible, then the system has no nonzero solutions
<i>Proof.</i> True. If the coefficient matrix is invertible, then the system has exactly one solution and since it is homogeneous, all unknowns should equal to 0.
(h) The solution set of any system of m linear equations in n unknowns is a subspace of F^n .
<i>Proof.</i> False. This only holds for homogeneous system of linear equations. \Box
Exercise 3.3.9. Prove that the system of linear equations $Ax = b$ has a solution if and only if $b \in R(L_A)$.
<i>Proof.</i> If $Ax = b$ has a solution, then there exists a vector v such that $Av = b$ or $L_A(v) = b$. Thus $b \in R(L_A)$. Conversely, if $b \in R(L_A)$, then there exists a vector v such that $L_A(v) = b$ or $Av = b$. Thus $Ax = b$ has at least one solution.

Exercise 3.4.1.

(a)	If $(A' b')$ is obtained from $(A b)$ by a finite sequence of elementary column operations, then the systems $Ax = b$ and $A'x = b'$ are equivalent.
	<i>Proof.</i> False. It should be row operations. \Box
(b)	If $(A' b')$ is obtained from $(A b)$ by a finite sequence of elementary row operations, then the systems $Ax = b$ and $A'x = b'$ are equivalent.
	<i>Proof.</i> True.
(c)	If A is an $n \times n$ matrix with rank n, then the reduced row echelon form of A is I_n .
	<i>Proof.</i> True. Because it's rank n , there are n 1's in each row. Thus A is I_n .
(d)	Any matrix can be put in reduced row echelon form by means of a finite sequence of elementary row operations.
	<i>Proof.</i> True.
(e)	If $(A b)$ is in reduced row echelon form, then the system $Ax=b$ is consistent.
	<i>Proof.</i> False. Any augmented matrix has a reduced row echelon form, but not all system of linear equations are consistent. $\hfill\Box$
<i>(f)</i>	Let $Ax = b$ be a system of m linear equations in n unknowns for which the augmented matrix is in reduced row echelon form. If this system is consistent, then the dimension of the solution set of $Ax = 0$ is $n - r$, where r equals the number of nonzero rows in A .
	<i>Proof.</i> True. The dimension of the solution space i.e. $rank$ is the number of nonzero rows of the reduced echelon matrix.
(g)	If a matrix A is transformed by elementary row operations into a matrix A' in reduced row echelon form, then the number of nonzero rows in A' equals the rank of A .
	<i>Proof.</i> True. That's what f said.