

Diagrammi di stato

State machine diagrams

SOMMARIO

Introduzione

Concetti base

SOMMARIO

Introduzione

Concetti base

Ogni fase, i suoi diagrammi

Definizione

Descrivono il comportamento di un sistema

Elementi

Stato iniziale:	•
Stato finale:	
Stato:	
Transizione:	c / a
	c = condizioni a = azioni Se le condizioni sono vere, la transizione scatta e vengono eseguite le azioni

- Transizioni cambiamento da uno stato all'altro
 - source e target state: collegati da una linea che indica la transizione
 - trigger event: l'evento che innesca la transizione
 - guard condition: espressione booleana valutata quando si verifica il trigger event, la transizione può avvenire solo se si avvera la condizione di guardia
 - action: una computazione atomica eseguibile che agisce direttamente sull'oggetto o indirettamente su altri oggetti ad esso visibili

source state trigger-event[guard-condition]/action target state

- Transizioni cambiamento da uno stato all'altro
 - Stato iniziale e stati finali: sono indicati rispettivamente tramite un cerchio nero, ed un cerchio nero circondato da un cerchio vuoto

Stati

entry, exit, do e defer sono parole chiave

 La scacchiera: inizialmente tocca al bianco, poi alternativamente al nero e ciascuno può muovere o mangiare

- Scacchiera: il gioco termina quando uno dei due "mangia" il re all'altro
- mangia(p) parametro su cui testare la condizione

- Azione
 - durata istantanea
 - associata a transizioni (entrata/uscita da stato)

- Attività
 - durata prolungata
 - associata con gli stati
 - Attività di ingresso e uscita

Azioni ed attività sono interne allo stato

Ordine di magazzino

Decomposizioni

OR (un solo stato attivo)

AND (parallela)

- Gestione dei flussi
 - Fork, genera due flussi paralleli
 - Join, richiede la terminazione di entrambi i flussi

- Sincronizzazione
 - Sincronizzazione tra processi paralleli
 - Tramite generazione di eventi

Stati concorrenti

 Descrivono il comportamento di singoli oggetti a comune di più use case

- Da utilizzare per mostrare il comportamento di un singolo oggetto
 - per molteplici oggetti utilizzare i diagrammi di sequenza e i diagrammi di attività

 Non tentate di descrivere degli state machine diagrams per ogni classe nel sistema, da utilizzare per chiarezza e solo per casi significativi

RIFERIMENTI

- OMG Homepage
 - www.omg.org
- UML Homepage
 - www.uml.org
- UML Distilled, Martin Fowler, 2004, Pearson (Addison Wesley)

 Learning UML 2.0, Kim Hamilton, Russell Miles, O'Reilly, 2006