Appier Interview Report

廖偉丞 Vincent Liao

I. Data Overview

Ⅱ. 資料清理與缺失值處理

Agenda

Ⅲ. 找到目標客群

IV. Create User Persona

IV. Advanced Questions

我將簡單分享 H&M 資料集的分析流程, 並提供分析結果以及目標客群之user persona, 最後會分享對於這份資料集的一些其他發現與後續之可研究方向。

Key Takeaways

- 1. 資料清理:針對 customers.csv 中的資料做缺失值處理
- 2. 目標客群:基於 RFM 分析之結果選擇 Champions 作為目標客群
- 3. User Persona: | Jennifer | 25y | 化妝品產業 PM | 未婚 | 中產階級 |
- 4. 其他發現: 從 2020-05-12 開始, 每日訂單數量以及訂單金額有非常大幅度的增長

I. Data Overview

Ⅱ. 資料清理與缺失值處理

Agenda

Ⅲ. 找到目標客群

IV. Create User Persona

IV. Advanced Questions

此份資料為H&M 所提供,一共三個csv 檔以及一個圖片資料夾。

裡面的每張服飾圖片分別對應了unique article id images 存有每一個 article id 的 metadata, 可以清楚了解每個訂單的購買商品資訊 articles.csv 總共 105542 種商品資料(包含不同色號) 只有detail desc 的部分有缺失值 存有每位顧客的metadata,每位顧客都對應了unique customer id customers.csv 總共 1371980 位顧客資料, 包含了Active, club member status, fashion news frequency, age 等等屬性資料 有從 2018.09.20 - 2020.09.22 的訂單資料, 內容包含 t dat, article id, customer id, 以及其他屬性資料 transactions train.csv 總共 31788324 筆交易資料, 一筆資料代表一樣被購買之商品, 若有N 筆完全重複之資料, 則為購買了N 次 1.2 Exploratory of Data

articles

#	Column	Non-Nu	ll Count	Dtype
0	article_id	105542	non-null	int64
1	product_code	105542	non-null	int64
2	prod_name	105542	non-null	object
3	product_type_no	105542	non-null	int64
4	product_type_name	105542	non-null	object
5	product_group_name	105542	non-null	object
6	graphical_appearance_no	105542	non-null	int64
7	graphical_appearance_name	105542	non-null	object
8	colour_group_code	105542	non-null	int64
9	colour_group_name	105542	non-null	object
10	perceived_colour_value_id	105542	non-null	int64
11	perceived_colour_value_name	105542	non-null	object
12	perceived_colour_master_id	105542	non-null	int64
13	perceived_colour_master_name	105542	non-null	object
14	department_no	105542	non-null	int64
15	department_name	105542	non-null	object
16	index_code	105542	non-null	object
17	index_name	105542	non-null	object
18	index_group_no	105542	non-null	int64
19	index_group_name	105542	non-null	object
20	section_no	105542	non-null	int64
21	section_name	105542	non-null	object
22	garment_group_no	105542	non-null	int64
23	garment_group_name	105542	non-null	object
24	detail_desc	105126	non-null	object

customers

Rang	eIndex: 1371980 entries,	0 to 1371979	
Data	columns (total 7 column	s):	
#	Column	Non-Null Count	Dtype
0	customer_id	1371980 non-null	object
1	FN	476930 non-null	float64
2	Active	464404 non-null	float64
3	club_member_status	1365918 non-null	object
4	fashion_news_frequency	1355971 non-null	object
5	age	1356119 non-null	float64
6	postal_code	1371980 non-null	object
dtyp	es: float64(3), object(4)	
memo	ry usage: 73.3+ MB		

transactions

Rang	eIndex: 31788324 e	ntries, 0 to 31788323
Data	columns (total 5	columns):
#	Column	Dtype
		<u></u>
0	t_dat	object
1	customer_id	object
2	article_id	int64
3	price	float64
4	sales_channel_id	int64
dtyp	es: float64(1), in	t64(2), object(2)
memo	ry usage: 1.2+ GB	

I. Data Overview

Ⅱ. 資料清理與缺失值處理

Agenda

Ⅲ. 找到目標客群

IV. Create User Persona

IV. Advanced Questions

主要使用 Python 中 的 Pandas 套件做資料分析處理。在看過資料後我判斷只有customers.csv 中的資料需要去做缺失值處理。

缺失值處理

- 1. 將 FN 屬性中的 nan 值改為 0, 以符合 binary value 的模式
- 2. 將 Active 屬性中的 nan 值改為 0, 以符合 binary value 的模式
- 3. 將 club member status 屬性中的 nan 值改為 NON-ACTIVE
- 4. 將 fashion_news_frequency 屬性中的 None 值改為 NONE

```
customers.FN.loc[customers.FN.isna() == True] = 0.0
customers.Active.loc[customers.Active.isna() == True] = 0.0
customers.club_member_status.loc[customers.club_member_status.isna() == True] = 'NON-ACTIVE'
customers.fashion_news_frequency.loc[customers.fashion_news_frequency == 'None'] = 'NONE'
```

I. Data Overview

Ⅱ. 資料清理與缺失值處理

Agenda

Ⅲ. 找到目標客群

V. Create User Persona

IV. Advanced Questions

利用 RFM analysis 將所有顧客區分成多種類型, 並從中挑出我們的目標客群。

合併資料

將 articles.csv 以及 transactions.csv 合併以便後續的分析

計算 RFM & 建立 RFM score

- 1. 計算出每位顧客的 Recency, Frequency, Monetary 指標
- 2. 根據計算出的結果給予 1~5 分的分級, 5 分代表最高, 反之 1 分代表最低。

顧客分群

根據計算出來的分數將顧客分群, 一共十種類型的顧客

顧客類型介紹

代號	Description
Champions	Bought recently, buy often and spend the most
Loyal Customers	Spend good money and often, responsive to promotions
Potential Loyalist	Recent customers, but spent a good amount and bought more than once
New Customers	Bought most recently, but not often
Promising	Recent shoppers, but haven't spent much
Needing Attention	Above average recency, frequency and monetary values; may not have bought very recently though
About to Sleep	Below average recency, frequency and monetary values; will lose them if not reactivated
At Risk	Spent big money and purchased often but long time ago; need to bring them back
Can't Loose Them	Made biggest purchases, and often but haven't returned for a long time
Hibernating	Last purchase was long back, low spenders and low number of orders

Dataset Overview

	customer_id	recency	monetary	frequency	r_score	f_score	m_score	rfm_sum	rfm_label
0	00000dbacae5abe5e23885899a1fa44253a17956c6d1c3	17	0.6490	10	5	3	4	12	potential loyalist
	0000423b00ade91418cceaf3b26c6af3dd342b51fd051e	76	2.6019	23	4	4	5	13	loyal customers
2	000058a12d5b43e67d225668fa1f8d618c13dc232df0ca	7	0.7048	7	5	3	4	12	potential loyalist
3	00005ca1c9ed5f5146b52ac8639a40ca9d57aeff4d1bd2	471	0.0610	1	1			3	hibernating
4	00006413d8573cd20ed7128e53b7b13819fe5cfc2d801f	41	0.4697	6	4	3	4	11	potential loyalist
5	000064249685c11552da43ef22a5030f35a147f723d5b0	356	0.1016	1	2		2	5	hibernating
6	0000757967448a6cb83efb3ea7a3fb9d418ac7adf2379d	8	0.1660	3	5	2	3	10	potential loyalist
7	00007d2de826758b65a93dd24ce629ed66842531df6699	132	3.8236	16	3	4	5	12	loyal customers
8	00007e8d4e54114b5b2a9b51586325a8d0fa74ea23ef77	261	0.0534	1	2	1	1	4	hibernating
9	00008469a21b50b3d147c97135e25b4201a8c58997f787	680	0.0781	1			2	4	hibernating

透過圖表檢視 Recency, Frequency, Monetary 指標的分佈情況。

Recency

Frequency

Monetary

尋找對品牌最有價值的顧客群。

指標 -> 平均每人貢獻之金額比例 (monetary / number_of_people)

結果 -> 以 champions 族群作為我們的分析目標客群

	rfm_label	number_of_people	frequency	monetary	per_buy	per_person
0	about to sleep	173716	336880	34047.5503	0.1011	0.1960
1	at risk	63721	503749	47830.5122	0.0949	0.7506
2	champions	138804	3451812	341548.4287	0.0989	2.4607
3	hibernating	481013	762828	72659.5944	0.0953	0.1511
4	loyal customers	116095	2089726	202154.3818	0.0967	1.7413
5	needing attention	65524	455429	46999.4234	0.1032	0.7173
6	new customers	40195	56348	5497.7601	0.0976	0.1368
7	potential loyalist	219848	1333623	125991.5242	0.0945	0.5731
8	promising	63365	89784	7916.7991	0.0882	0.1249

I. Data Overview

Ⅱ. 資料清理與缺失值處理

Agenda

Ⅲ. 找到目標客群

IV. Create User Persona

IV. Advanced Questions

選定目標客群後,開始從各個資料維度去尋找資料集中性,作為user persona 之輪廓。 首先必須定義集中性,網路上並沒有資料集中性的明確定義,因此我自行訂定了幾個規則

Rule	Description
Rule1	該屬性指標資料量必須超過總資料量的 10%
Rule2	若為連續性資料, 則看分佈趨勢是否大致符合 Rule1

17

Transactions -> Product_Group & Product_Type -> (Garment Lower body, Trousers), (Garment Full body, Dress)

Transactions -> Index_Group_Name & Index_Name -> (Ladieswear, Ladieawear)

Transactions -> Garment_Group_Name -> Jersey_Fancy

Transactions -> Prod Name -> 集中性較不明顯

備註:空白為找不到圖片

Customers -> *Age ->* **23~26**

Customers -> Club_Member_Status -> ACTIVE

根據上述各維度之集中性描繪出Champions 客群之 User Persona

本 个貝科	Description
姓名	Jennifer
身份	上班族
職業	化妝品產業 PM
性別	女
年齢	25
婚姻狀態	未婚
薪資水準	middle-income level
Club_Member_Status	ACTIVE

Jennifer's challenge

Personal Challenge 三年前 Jennifer 作為初出社會茅廬的小資女孩, 每天都非常認真努力的上班, 身處於化妝品產業的她,身邊的同事們個個都很會打扮,在同儕壓力下她也開 始研究起穿搭。在可支配金錢較少的限制之下, 她成為了快時尚品牌 H&M 的 忠實顧客之一,其多樣且高 CP值的服飾風格滿足了 Jennifer 的需求。然而隨 著年紀漸長. Jennifer 在手頭逐漸寬裕的情況下逐漸有嘗試其他服飾品牌的念 頭. 她現在最大的問題是她不知道 H&M 是不是還適合現在的她...

I. Data Overview

Ⅱ. 資料清理與缺失值處理

Agenda

Ⅲ. 找到目標客群

IV. Create User Persona

IV. Advanced Questions

在分析資料過程中發現有趣的現象以及值得探討的問題

現象

從 2020-05-12 開始. 每日訂單數量以及訂單金額有非常大幅度的增長

基於這個現象去分析了目標客群的相關數據,發現也是相同的趨勢。

All vs Target

Advanced Questions

All vs Target

ALL

ALL

TARGET

TARGET

綜合以上結果. 歸納出幾個未來可以繼續研究的方向。

- 若能夠獲得更多消費者旅程的相關數據, 就可以更加清楚在各階段的各項 進階數據。舉例來說:
 - 消費者旅程:搜尋 -> 瀏覽 -> 加入購物車 -> 購買
 - 數據:點擊、商品頁代碼、停留時間、結帳與否
- 诱過品牌的提供的**行銷活動資料**,就可以了解哪些活動以及商品會受到 TA 的喜愛, 能夠刺激購買率。舉例來說:
 - 行銷活動資料:活動碼、日期、活動商品
- 可以比較 TA 以及所有顧客的輪廓, 善用 user persona 將**顧客形象具體化** 並剖析其中的差異,以將所有消費者都轉化為 Champions 類型顧客作為核 心目標。

End