Data Mining Databases and Information Systems

Fabian Panse

panse @informatik.uni-hamburg.de

University of Hamburg

Introduction

Acknowledgements

These slides are based on slides provided by

 Prof. Dr. Wolfgang Menzel University of Hamburg https://nats-www.informatik.uni-hamburg.de/

 Prof. Dr. Frhard Rahm University of Leipzig http://dbs.uni-leipzig.de/

Overview

Introduction

Introduction

- What is data mining?
- Example tasks
- Data mining process

Data Preprocessing

- Outlier detection, number of values reduction, ...

Classification

- Nearest-Neighbor classifier, decision trees, ...

Clustering

- K-means, canopy clustering, hierarchical clustering, ...

Association rules (Market Basket Analysis)

- Apriori algorithm, support and confidence

What is Data Mining?

Introduction

Mining as a metaphor:

- The search for the precious thing amongst the overburden
- Goal is not always clearly specified
 - What's precious?
 - Successful even if looking for gold but found diamonds

Mining is an explorative activity

- Finding cues
- Making hypotheses
- Evaluating hypotheses
- Getting the precious stuff

Introduction

What is Data Mining? (2)

"Data mining" is a misleading metaphor!

	mining	data mining
target	coal, gold, ore,	trends, associations
overburden	dirt, rock	"useless" data

- Alternative notion:
 - KDD: Knowledge Discovery in Databases
- Alternative view:
 - KDD is a complex process, DM only one step in it

Knowledge Discovery in Databases (KDD)

- (Semi-)automatic extraction of knowledge from databases which is:
 - valid (in the statistical sense),
 - unknown so far,

Introduction

- and potentially useful
- Combination of approaches from databases, statistics and Al (machine learning)

Example Tasks

Customer relationship management

- Grouping of customer populations (tailored marketing)
- Prediction of customer behaviour (individualized marketing)
- Risk assessment (risky credits, fraudulent credit card use)

Fault analysis

- Interdependencies between faults
- Interdependencies between production processes or maintenance procedures and faults

Time-series analysis

- Trend detection
- Stock market development
- Event prediction (stock market crashes, bankruptcies, natural disasters)
- Intrusion detection
- Web Usage and Text Mining

Why is Data Mining special?

Introduction

There is no silver bullet for data mining!

- Many different techniques
- Extremely laborious parameter tuning
- Very few clues for performance predictions

Data mining aims at partially correct solutions

- Vague task descriptions
- No perfect solution methods
- Issues: quality, portability to similar application domains

Contrast: querying a database

- Precise semantics
- 100% correct results must be guaranteed
- Issues: performance, maintenance, ...

Evaluation

- Models in data mining are usually developed and evaluated on data collections
- For development purposes a clear separation between training and test data is necessary

1011

Fabian Panse

Data Mining as a Process

Data Mining as a Process

1. Problem formulation

Data Mining

- Based on domain-specific knowledge and experience

2. Selection of a suitable model class

- Based on the available and feasible data mining techniques
- Which kind of model seems most promising given the available data?

Fabian Panse UH

Data Mining as a Process

3. Data collection

Introduction

- Designed experiment (artificial data generation):
 - Data can be generated on demand
 - Sampling distribution is known (but realistic?)
- Observational approach:
 - Random data collection
 - Sampling distribution is unknown or implicit in the data collection procedure
 - Data can be biased
- Data collection affects the outcome (garbage in, garbage out)

υп

Data Mining as a Process

4. Data preparation

Introduction

- Data cleansing
 - Outliers: measurement, coding or recording errors
 - Outliers: abnormal but natural values
 - Missing values
- Outlier treatment
 - Only if outlier detection is not the goal
 - Either removal as part of preprocessing or application of techniques insensitive to outliers
- Data transformation
 - Rescaling: making features comparable
 - Dimensionality reduction: gaining efficiency
 - Binning: map numerical values to qualitative classes

υп ..

Fabian Panse

Data Mining as a Process

5. Training of model parameters

- Estimation of stochastic parameters
- Adjustment of threshold values
- Adjustment of weights
- ..
- Training is usually an optimization problem

6. Evaluation and interpretation of results

- Defining metrics for quality assessment
- Measuring the quality of results on held out test data
- Summarization and visualization of results
- Usually simple models ...
 - ... are better trainable
 - ... are better interpretable
 - ... but less accurate

Data Mining Fabian Panse

14

CRISP-DM

- Cross industry standard process for data mining
- Life-cycle model

1. Business understanding phase

- Analysis of objectives and requirements
- Problem definition
- Initial strategy development

2. Data understanding phase

- Data collection
- Exploratory data analysis
- Assessment of data quality

3. Data preparation phase

- Cleansing, transformation etc.

CRISP-DM

4. Modelling phase

- Selection of modelling techniques and tools
- Parameter tuning / optimization
- Data analysis

5. Evaluation Phase

- Evaluation of the model
- Comparison of the outcome to the initial objectives
- Deployment decision

6. **Deployment phase**

- Reporting
- Transfer to other application cases
- If applicable: introduction into day-to-day business

Data Mining Fabian Panse

16

Data Preprocessing

Goals:

- Decrease runtime of data mining process
- Decrease resource requirements of data mining process
- Increase quality of mining result

Important aspects:

- Handling of missing data
- Detecting outliers
- Reducing the number of dimensions
- Reducing the number of values
- Transforming data values (e.g. binning, rescaling)
- Depends on data type
- Uses similarity/distance measures

Data Preprocessing

Data Types

Nominal scale

- No problem-specific order and distance relation
- Mathematical Operators: =, ≠
- Central Tendency: mode (most often occurring value)
- Examples: color, zip-code

Ordinal scale

- Problem-specific order relation
- No problem-specific distance relation
- Mathematical Operators: $=, \neq, >, <$
- Central Tendency: mode, median
- Examples: income classes, medal ranks, age

Data Types

Interval scale

- Problem-specific order and distance relation
- No problem-specific zero point
- Differences meaningful, ratios meaningless
- Mathematical Operators: =, \neq , >, <, +, -
- Central Tendency: mode, median, arithm. mean, deviation
- Examples: temperature (Celsius), date (B.C./A.D.)

Ratio scale

- Problem-specific zero point (absence of the feature)
- Differences and ratios meaningful
- Mathematical Operators: =, \neq , >, <, +, -, \cdot , /
- Central Tendency: mode, median, arithm./geom. mean, deviation
- Examples: temperature (Kelvin), speed, length, age, quantity

Data Types - Summary

Scale	Math. Operators	Advanced Operations	Central Tendency
nominal	=, ≠	grouping	mode
ordinal	>,<	sorting	median
interval	+,-	yardstick	mean, deviation
ratio	·,/	ratio	geometric mean

Sources: https://de.wikipedia.org/wiki/Skalenniveau and https://en.wikipedia.org/wiki/Level_of_measurement

UHI #

Metrics

- Many data mining techniques are based on some notion of distance, similarity or dissimilarity
- e.g. MINKOVSKIJ Distance

$$d(\vec{x_1}, \vec{x_2}) = \left(\sum_{i=1}^{n} |x_{1i} - x_{2i}|^m\right)^{1/m}$$

- m = 1: Manhattan Distance, City Block Distance
- m = 2: EUCLIDIAN Distance
- $m = \infty$: max-Distance, TCHEBYCHEV Distance

Properties:

- Self identity: $\forall \vec{x} : d(\vec{x}, \vec{x}) = 0$
- Positivity: $\forall \vec{x_1} \neq \vec{x_2}$: $d(\vec{x_1}, \vec{x_2}) > 0$
- Symmetry: $\forall \vec{x_1}, \vec{x_2} : d(\vec{x_1}, \vec{x_2}) = d(\vec{x_2}, \vec{x_1})$
- Triangle inequation: $\forall \vec{x_1}, \vec{x_2}, \vec{x_3} : d(\vec{x_1}, \vec{x_3}) \leq d(\vec{x_1}, \vec{x_2}) + d(\vec{x_2}, \vec{x_3})$

Metrics

- Metrics for complex objects
- Sets/Bags
 - Jaccard Coefficient

$$\mathsf{Jacc}(S_1,S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

Cosine Similarity

- Strings
 - Token-based (e.g. Jaccard Coefficient of q-grams)
 - Sequence-based (e.g. LEVENSHTEIN Distance)
 - Phonetic (e.g. Soundex)
 - Hybrid (e.g. Monge-Elkan Similarity)
- Signatures, histograms, probability distributions
 - Earth Mover's Distance

Metrics - Levenshtein Distance

- String edit distance, Levenshtein Distance
- Minimal effort to transform a sequence into another one
- Basic operations
 - Substitution
 - Insertion
 - Deletion
- Computation rules:

$$d(x_i, y_0) = i$$

$$d(x_0, y_j) = j$$

$$d(x_i, y_j) = \min \begin{cases} d(x_{i-1}, y_{j-1}) + d(x_1, y_1) \\ d(x_{i-1}, y_j) + 1 \\ d(x_i, y_{i-1}) + 1 \end{cases}$$

υн

Metrics - Levenshtein Distance

 Finding the minimum distance is an optimization problem ⇒ dynamic programming

local distances

		С	h	е	а	t
	0	1	1	1	1	1
С	1	0	1	1	1	1
0	1	1	1	1	1	1
а	1	1	1	1	0	1
S	1	1	1	1	1	1
t	1	1	1	1	1	0

global distances

_							
			С	h	е	а	t
		0	1	2	3	4	5
	С	1	0	1	2	3	4
	0	2	1	1	2	3	4
	а	3	2	2	2	2	3
	S	4	3	3	3	3	3
	t	5	4	4	4	4	3

• Space and time requirements $\mathcal{O}(m \cdot n)$

Handling of Missing Data

Some data mining tools are insensitive to missing data

Ignore all incomplete objects

- Might result in the loss of a substantial amount of data
- Problem: maybe a systematic correlation between target of mining process and missing values (e.g. customers who do not answer a specific question of a survey)

Manual completion

- Expensive in time and money

Automatic completion

- Using a global constant
- Using the global mean value
- Using a class-dependent mean value
- Use a predictive model, e.g. based on feature correlations

Fabian Panse Data Mining

Outlier Detection

- Not applicable if the application is aimed at outlier detection e.g. fraudulent credit card transactions
- The task: find k out of n tuples, which are
 - Considerably dissimilar
 - Exceptional
 - Inconsistent with the remaining data

011

Outlier Detection

Manual detection supported by visualization tools

- Only for low dimensional data

Statistical methods

- Threshold for the variance, e.g. two times variance
- Only applicable if the distribution is known

Using domain knowledge

- Value restrictions, e.g. $0 \leq age < 150$
- Less applicable for multi-dimensional data

Distance-based detection

- A sample is an outlier if it has not enough neighbors

Deviation-based methods

- Measure the dissimilarity of a data set (e.g. variance)
- Determine the smallest subset of data that if removed results in the largest reduction of dissimilarity
- Combinatorics of subset selection ⇒ extremely expensive

UH

Fabian Panse

Outlier Detection - Example

• Sample data set:

$$S = \{s_1, ..., s_7\} = \{(2, 4), (3, 2), (1, 1), (4, 3), (1, 6), (5, 3), (4, 2)\}$$

Distance matrix:

	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄	<i>S</i> 5	<i>s</i> ₆	<i>S</i> 7
<i>s</i> ₁		2.236	3.162	2.236	2.236	3.162	2.828
<i>s</i> ₂	2.236		2.236	1.414	4.472	2.236	1.000
s 3	3.162	2.236		3.605	5.000	4.472	3.162
<i>S</i> ₄	2.236	1.414	3.605		4.242	1.000	1.000
<i>S</i> 5	2.236	4.472	5.000	4.242		5.000	5.000
<i>s</i> ₆	3.162	2.236	4.472	1.000	5.000		1.414
<i>S</i> 7	2.828	1.000	3.162	1.000	5.000	1.414	

• Neighborhood: $d \le \theta = 3$

	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	<i>S</i> ₅	<i>s</i> ₆	<i>S</i> 7
<i>s</i> ₁		2.236	3.162	2.236	2.236	3.162	2.828
<i>s</i> ₂	2.236		2.236	1.414	4.472	2.236	1.000
s 3	3.162	2.236		3.605	5.000	4.472	3.162
<i>S</i> ₄	2.236	1.414	3.605		4.242	1.000	1.000
<i>S</i> ₅	2.236	4.472	5.000	4.242		5.000	5.000
<i>s</i> ₆	3.162	2.236	4.472	1.000	5.000		1.414
<i>S</i> 7	2.828	1.000	3.162	1.000	5.000	1.414	

Number of points in the neighborhood

Sample	<i>s</i> ₁	s ₂	<i>S</i> 3	<i>S</i> ₄	<i>S</i> 5	<i>s</i> ₆	<i>S</i> 7
	4	5	1	4	1	3	4

Outlier Detection - Example

All high-dimensional data spaces are sparse:

- Keeping the same object density in a space with more dimensions requires exponentially more objects
- To enclose a prespecified portion of objects, an increasingly large part of the hypercube needs to be "encircled":

portion p	dimensionality <i>n</i>	edge length $p^{1/n}$			
0.1	1	0.100			
0.1	2	0.316			
0.1	3	0.464			
0.1	10	0.794			

- Almost every object is closer to an edge of the cube than to another sample object
- Almost every object is an outlier

• **Example:** portion p = 0.1, dimensionality n = 2

Note: $0.316^2 = 0.1$

• **Example:** portion p = 0.1, dimensionality n = 3

Note: $0.464^3 = 0.1$

• **Example:** portion p = 0.1, dimensionality n = 10

Note: $0.794^{10} = 0.1$

• **Example:** portion p = 0.1, dimensionality n = 100

Note: $0.977^{100} = 0.1$

Question: Which data can be discarded without sacrificing the quality of the data mining results?

Too many dimensions:

- Mining results degrade (insufficient amount of data)
- Resulting model is incomprehensible
- Problem becomes intractable

Too few dimensions:

- Data dependencies are lost
- Mining results degrade (limited expressiveness)

Fabian Panse Data Mining

Dimensionality Reduction

Feature selection approaches:

- Idea: discard features (i.e. attributes, dimensions) which
 - have many inaccurate/inconsistent values
 - have many missing values
 - do not provide much (relevant) information
 - contribute least to the overall class distinction capability (task specific criterion)
- Approaches: Feature ranking, minimum subset selection

• Feature composition approaches:

- Idea: features are composed into a new feature set with reduced dimensionality
- ⇒ Given feature space is transformed into a more compact feature space without losing relevant information
 - Approach: Principal component analysis

Dimensionality Reduction - Minimum Subset Selection

- Idea: select a feature set which maximizes the class distinction capability
- Assuming normal distribution, class distinction can be defined as:

$$cd_{A,B} = \frac{|\mu_A - \mu_B|}{\sqrt{\frac{\sigma_A}{n_A} + \frac{\sigma_B}{n_B}}}$$
 where A and B are the compared classes

- Class distinction is maximal if:
 - Means μ_A and μ_B are far away and
 - Variances σ_A and σ_B are low (despite many samples n_A and n_B)
- Simple case: features are considered as independent
- Compute all pairwise class distinction values
- Retain a feature, if it is relevant for any of the pairwise comparisons

Fabian Panse Data Mining

- **Assumption:** normal distribution, independent features
- Sample data set:

\overline{X}	Y	С	X	Y	С
0.3	3 0.7	Α	0.2	0.9	В
0.6	0.6	Α	0.7	0.7	В
0.5	5 0.5	Α	0.4	0.9	В

Data sets separated by class and dimension

$$X_A = \{0.3, 0.6, 0.5\},$$
 $X_B = \{0.2, 0.7, 0.4\},$
 $Y_A = \{0.7, 0.6, 0.5\},$ $Y_B = \{0.9, 0.7, 0.9\}$

Data Mining Fabian Panse

Dimensionality Reduction - Example

Data sets separated by class and dimension

$$X_A = \{0.3, 0.6, 0.5\},$$
 $X_B = \{0.2, 0.7, 0.4\},$
 $Y_A = \{0.7, 0.6, 0.5\},$ $Y_B = \{0.9, 0.7, 0.9\}$

$$cd_{X_A,X_B} = \frac{|\mu_{X_A} - \mu_{X_B}|}{\sqrt{\frac{\sigma_{X_A}}{n_{X_A}} + \frac{\sigma_{X_B}}{n_{X_B}}}} = \frac{|0.4667 - 0.4333|}{0.3671} = 0.0908$$

$$cd_{Y_A,Y_B} = \frac{|\mu_{Y_A} - \mu_{Y_B}|}{\sqrt{\frac{\sigma_{Y_A}}{n_{Y_A}} + \frac{\sigma_{Y_B}}{n_{Y_B}}}} = \frac{|0.6 - 0.8333|}{0.268} = 0.8706$$

 \Rightarrow Discard dimension X

Fabian Panse Data Mining

Dimensionality Reduction - Principal Component Analysis

Construction of a new feature space:

- New features are computed as linear combinations of old ones

$$\vec{y} = \sum_{i=1}^{n} w_i \cdot x_i$$

- Each vector of weights is called a principal component
- Principal components are ranked according to their usefulness ⇒ components with lowest rank can be discarded
- Idea: high information content corresponds to high variance
 - Not always valid (e.g. distribution with many very small and many very large values)
- Choose weights so that \vec{y} has the largest possible variance
 - \vec{y} is a new axis in the direction of maximum variance

Dimensionality Reduction - Principal Component Analysis

Data Preprocessing Classification Clustering Association Rules

Number of Values Reduction

Benefits:

- Increase of performance (less values to process)
- Often simplifies the mining process (e.g. finding of rules)
- One dimensional: feature discretization (binning)
 - \Rightarrow Mapping values to intervals
 - Value exchange techniques
 - Merging techniques
- Multi dimensional: clustering of feature vectors
 - Splitting techniques

Data Mining Fabian Panse

40

Number of Values Reduction

- **Splitting Techniques:** splitting of bins (vector quantization)
 - 1. Start: All values in a single bin/cluster
 - 2. Compute the mean of all data values (centroid)
 - 3. Split each centroid into 2 or more centroids (bins)
 - 4. Assign data points to the nearest centroid (bin)
 - 5. Continue until enough bins have been generated
- Learning without teacher (i.e. no labeled training objects)
- Based on distance functions
 - ⇒ Problems in high dimensional spaces

Fabian Panse Data Mining

Number of Values Reduction

Input: 9 values Output: 4 values

Fabian Panse

on Data Preprocessing Classification Clustering Association Rules

Number of Values Reduction

Input: 9 values
Output: 4 values

ta Mining Fabian Panse

Number of Values Reduction

Input: 9 values Output: 4 values

Fabian Panse

Data Preprocessing Classification Clustering Association Rules

Number of Values Reduction

Input: 9 values
Output: 4 values

Fabian Panse U+

Data Mining Fabian

ion Data Preprocessing Classification Clustering Association Rules

Number of Values Reduction

Input: 9 valuesOutput: 4 values

sta Mining Fabian Panse U

Data Preprocessing Classification Clustering Association Rules

Number of Values Reduction

Input: 9 valuesOutput: 4 values

Fabian Panse UH

Data Mining

Number of Values Reduction

Input: 9 values Output: 4 values

Fabian Panse

42

Data Preprocessing Classification Clustering Association Rules

Classification

Applications in

- Customer Relationship Management: tailored marketing
- Banking: credit authorization

Given:

- Set of objects (database) $D = \{o_1, o_2, \dots, o_m\}$ where each object o_i corresponds to a k-dimensional vector $\langle o_{i,1}, \dots, o_{i,k} \rangle$
- Set of classes $C = \{c_1, c_2, \ldots, c_n\}$ (usually: $|D| \gg |C|$)
- Set of labeled training objects $T \subset D$
- **Goal:** Find a mapping $f: D \to C$ that assigns objects to classes
 - Class is a set of objects: $c = \{o | o \in D, f(o) = c\}$
 - No object belongs to several classes
 - Classes are predefined ⇒ Supervised learning, learning with a teacher

Notation:

- $c_t(o)$: class assignment in the training data
- c(o): class assignment by the classifier

Classification

2. Using the classifier to make predicitions

UHI

- Direct approach: training objects are
 - directly stored in the classifier and
 - used for classification
- Given:
 - Training data set $T = \{o_1, o_2, \ldots, o_r\}$ with class labels $c_t \colon T \to C$
 - Object distance function d
- Nearest neighbor:
 - The class of an object o is set to the class label of its nearest training object o*, i.e.

$$c(o) = c_t(o^*)$$
 where $o^* = \arg\min_{o' \in T} d(o, o')$

(here we assume that the distance d(o, o') is different for every $o' \in T$)

Data Mining Fabian Panse

Classification

Nearest-Neighbor Classifier

• k-nearest neighbors:

- Determine the set N of the k nearest neighbors of o in T
- Choose the class with the maximum number of training objects in N, i.e.

$$c(o) = \operatorname{arg\,max}_{c \in C} |\{o'|o' \in N, c_t(o') = c\}|$$

- More robust against singular data points
- But more expensive

Fabian Panse 48

roduction Data Preprocessing Classification Clustering Association Rules

Nearest-Neighbor Classifier

Fabian Panse

Classification

Nearest-Neighbor Classifier

NN-classifier is instance-based

- Model size and classification effort grow linearly with amount of training data
 - Theoretical classification effort: one distance computation per training object
 - Several techniques for increasing performance of NN-search (e.g. filtering, pruning)
- No generalization of the available training data

Generalizing models required

- Use class representatives as training objects
 - Means of classes
 - Means of class-dependent clusters

Classification

Threshold-Based Classifiers

- Simple generalizing model for classification with two classes
 - Threshold divides the data space into two subspaces along a single dimension

$$c(o_i) = \begin{cases} c_1, & o_{i,j} > \theta \\ c_2, & \textit{else} \end{cases}$$

- Analogue separation criteria for non-numeric data

Threshold-Based Classifiers

Choice of the optimal threshold:

- Minimizing the classification error on the training objects

$$\theta = \operatorname{arg\,min}_{\theta} |\{o|o \in T, c(o) \neq c_t(o)\}|$$

- For numeric data: minimizing the total distance of misclassified samples to the threshold

$$heta = \operatorname{arg\,min}_{ heta} \sum_{o_i \in \mathcal{T}, c(o_i) \neq c_t(o_i)} |o_{i,j} - heta|$$

troduction Data Preprocessing **Classification** Clustering Association Rules

Threshold-Based Classifiers

Insufficient to separate more difficult distributions

troduction Data Preprocessing **Classification** Clustering Association Rules

Threshold-Based Classifiers

• Better (linear) class separation

ta Mining Fabian Panse

Classification

Decision Trees

Extension of threshold-based classifiers to multiple classes:

- Decomposition into a sequence of sub-decisions
- Multi-branch splits possible
- Each leaf node represents a class $c \in C$

- Finding the optimal decision tree is NP complete
 - ⇒ Deterministic (non-backtracking), greedy algorithms

Data Mining Fabian Panse

Decision Trees

Data Preprocessing Classification Clustering Association Rules

Decision Trees

• Explicit, simple to understand representation of classification knowledge

ID	Age	Car Type	Risk
1	23	Family	high
2	17	Sport	high
3	43	Sport	high
4	68	Family	low
5	32	Truck	low

Representation in the form of rules:

If (Car Type = Truck) then risk class = low If (Car Type \neq Truck AND Age > 60) then risk class = low If (Car Type \neq Truck AND Age <= 60) then risk class = high

- Usage of the decision tree to make predictions:
 - ⇒ Top-down traversing of the tree from the root to one of the leaf nodes
 - ⇒ Assignment of the object to the class of the resultant leaf node

UH . Data Preprocessing Classification Clustering Association Rules

Construction of a Decision Tree

Basic algorithm:

- Initially, all training objects belong to the root
- Selection of the next attribute (split strategy), e.g. by maximization of the information gain
- Partitioning of the training objects with the selected split attribute
- Algorithm is applied to each partition recursively

Stop criterion:

- No further split attributes
- All training objects of a node belong to the same class

Types of splits:

- Categorical attribute: Split condition of the form "attribute = a" or "attribute ∈ set" (many possible subsets)
- Numerical attribute: Split condition of the form "attribute < a" (many possible split points)

Data Mining Fabian Panse U

Construction of a Decision Tree

- ID3: split along a dimension as to maximize information gain
- Entropy of a set S partitioned into k classes

$$E(S) = -\sum_{i=1}^{k} p(c_i) \cdot \log p(c_i)$$

where $p(c_i)$ is the relative amount of objects in S that are labeled with class c_i , i.e. $p(c_i) = |\{o \mid o \in S, c_t(o) = c_i\}|/|S|$

• Entropy of a test set T partitioned into n subsets by an attribute test X with n possible outcomes

$$E_X(T) = -\sum_{i=1}^n \frac{|T_i|}{|T|} \cdot E(T_i)$$

Information gain of the attribute test

$$G(X) = E(T) - E_X(T)$$

Fabian Panse

Classification

Construction of a Decision Tree

Problem of overfitting

- Splitting until no object is misclassified usually means to adapt the classifier too much to the training data
 - "Learning off by heart" (dt. "auswendig lernen")
 - Degrading performance on held out test data
- Cut-off criterion required, or post-pruning

Classification

Construction of a Decision Tree

- Decision rules can be extracted from a decision tree
 - IF part: combine all tests on the path from the root node to the leaf node
 - THEN part: the final classification
- Enables a simple extraction of 'real' knowledge from the learned classifier

Fabian Panse

Data Mining 60

Evaluation

- Goal: predicting future model performance
 - Estimation of an error rate on a sample of test cases
- Testing on the training data is too optimistic
 - Error rate is significantly lower compared to a real application scenario
 - ⇒ Evaluation only on separate test data
- But: labeled data (test and training) is usually not much available
 - Manual data cleansing
 - Manual class assignment
- Using data for training and testing: resampling

υп

Classification

Resampling Methods

Held out data:

- 30% ... 50% of the data are reserved for testing
- Training and test data are independent
- Error estimation is pessimistic and depends on the partitioning
 - ⇒ repeat the measurement with different partitionings and average the results

Leave one out:

- Use n-1 samples for training and evaluate on the n-th one
- Repeat with all *n* samples
- Extremely expensive

n-fold cross validation

- Combines hold-out and leave-one-out
- Divide data set into p partitions
- Use p-1 partitions for training; evaluate on the remaining one
- Repeat with different partitionings

Quality Measures

- Given:
 - Test set S
 - Misclassified test data objects $M \subseteq S$
- Error rate:

$$e = \frac{|M|}{|S|}$$

Accuracy:

$$a=1-e=\frac{|S|-|M|}{|S|}$$

Quality Measures

- **Contrastive analysis:** comparison with a baseline case
 - Absolute improvement/degradation:

$$\Delta_{abs}a=a_n-a_{n-1}$$

$$\Delta_{abs}e = e_n - e_{n-1}$$

- Relative improvement/degradation:

$$\Delta_{rel} a = \frac{a_n - a_{n-1}}{a_{n-1}}$$

$$\Delta_{rel}e = \frac{e_n - e_{n-1}}{e_{n-1}}$$

Essential difference between absolute and relative improvement/degradation

Quality Measures

- Example: Test of a new medication
 - Baseline: 4 death in 1000 applications
 - New approach: 3 death in 1000 applications
 - relative improvement/degradation (strong):

$$\Delta_{rel}e = \frac{e_n - e_{n-1}}{e_{n-1}} = \frac{\frac{3}{1000} - \frac{4}{1000}}{\frac{4}{1000}} = -0.25$$

- absolute improvement/degradation (moderate):

$$\Delta_{abs}e = e_n - e_{n-1} = \frac{3}{1000} - \frac{4}{1000} = -0.001$$

- However, the single death less can even be pure coincidence

- Often used manipulation:
 - Relative improvement for positive effects
 - Absolute improvement for negative (adverse) effects

Quality Measures

- **Special case:** 2 classes (true/false)
 - True positives: $TP = \{o \mid c(o) = \text{true} = c_t(o)\}$
 - True negatives: $TN = \{o \mid c(o) = \text{false} = c_t(o)\}$
 - False positives: $FP = \{o \mid c(o) = \text{true} \neq c_t(o)\}$
 - False negatives: $FN = \{o \mid c(o) = \text{false} \neq c_t(o)\}$

Fabian Panse

Quality Measures

False positive rate (fall-out):

$$FPR = \frac{|FP|}{|TN| + |FP|}$$

False negative rate (miss rate):

$$FNR = \frac{|FN|}{|TP| + |FN|}$$

• True positive rate (sensitivity):

$$TPR = \frac{|TP|}{|TP| + |FN|}$$

True negative rate (specificity):

$$TNR = \frac{|IN|}{|TN| + |FP|}$$

UП.,

Classification

Quality Measures

- General case: k classes
- $k^2 k$ error types
- Description of the error type distribution as a confusion matrix
- **Biased error consequences:** Weighted error measures
 - Error types e_{ii} are associated with costs c_{ii}

$$e_w = \frac{\sum_{i=1}^k \sum_{j=1}^k e_{ij} \cdot c_{ij}}{|S|}$$

Classification

Quality Measures

Further important quality aspects:

- Compactness, e.g. size of the decision tree (size determines classification time)
- Interpretability (how many insights can be imparted by the classifier to the user?)
- Efficiency of the construction process and application of the constructed classifier
- Scalability with respect to large data sets (construction as well as application)
- Robustness against noise and missing values

Clustering (or Cluster Analysis)

- **Goal:** Automatic identification of a finite set of categories, classes, or groups (clusters) in the given data
- Procedure: Grouping of data points according to their inherent structure
 - Points within the same cluster should be as similar as possible
 - Points in different clusters should be as dissimilar as possible
 - Learning without teacher
- Clustering approaches: partitioning, hierarchical, incremental, ...
- Problem: What is the optimal clustering? What is the meaning of "optimal"?

Clustering (or Cluster Analysis)

• **Goal:** Automatic identification of a finite set of categories, classes, or groups (clusters) in the given data

- Procedure: Grouping of data points according to their inherent structure
 - Points within the same cluster should be as similar as possible
 - Points in different clusters should be as dissimilar as possible
 - Learning without teacher
- Clustering approaches: partitioning, hierarchical, incremental, ...
- Problem: What is the optimal clustering? What is the meaning of "optimal"?

Clustering (or Cluster Analysis)

• **Goal:** Automatic identification of a finite set of categories, classes, or groups (clusters) in the given data

- Procedure: Grouping of data points according to their inherent structure
 - Points within the same cluster should be as similar as possible
 - Points in different clusters should be as dissimilar as possible
 - Learning without teacher
- Clustering approaches: partitioning, hierarchical, incremental, ...
- Problem: What is the optimal clustering? What is the meaning of "optimal"?

e UH

Clustering (or Cluster Analysis)

- Definition of the optimal clustering depends on
 - Application domain
 (i.e. structure/semantics of the data, meaning of distance)
 - Data mining target (i.e. object correlations that should be detected)
- Computing the optimal clustering is computationally infeasible
 ⇒ greedy, sub-optimal approaches
- Different clustering algorithms might lead to different clustering results

K-Means Algorithm

Starting Situation:

- Distance measure
- Method that can be used to compute the centroid ("mean") of a cluster
- Number of clusters k

Basic Algorithm:

- 1. (Initialization): k cluster centroids are chosen (randomly)
- (Assignment): Each object is assigned to the cluster with the nearest centroid
- 3. (Cluster Centroids): For each cluster a new centroid is computed
- 4. (Repeat): Stop if the clustering stabilizes (i.e. the assignment does not change) or another termination criterion (e.g. number of iterations) is met, otherwise restart Step 2

Problems:

- Converges to local minima, i.e. the clustering does not have to be optimal
- Workaround: Start the algorithm several times
- Relatively high effort to compute distances and cluster centroids

K-Means Algorithm: Example 1

- Clustering of the numbers 1, 3, 6, 14, 17, 24, 26, 31 into 3 clusters
 - (1) Centroids (chosen randomly): 10, 21, 29
 - (2) Cluster: $10: \{1,3,6,14\}, 21: \{17,24\}, 29: \{26,31\}$
 - (3) Centroids (arithmetic mean): 6, 21, 29
 - (2) Cluster: $6: \{1,3,6\}, 21: \{14,17,24\}, 29: \{26,31\}$
 - (3) Centroids (arithmetic mean): 3, 18, 29
 - (2) Cluster: $3:\{1,3,6\}, 18:\{14,17\}, 29:\{24,26,31\}$
 - (3) Centroids (arithmetic mean): 3, 16, 27
 - (2) Cluster: 3: {1,3,6}, 16: {14,17}, 27: {24,26,31}
 - Stop because clustering did not change.

K-Means Algorithm: Example 2

- Clustering of the numbers 1, 3, 6, 14, 17, 24, 26, 31 into 3 clusters
 - (1) Centroids (chosen randomly): 2, 5, 8
 - (2) Cluster: $2: \{1,3\}, 5: \{6\}, 8: \{14,17,24,26,31\}$
 - (3) Centroids (arithmetic mean): 2, 6, 22
 - (2) Cluster: $2:\{1,3\}, 6:\{6\}, 22:\{14,17,24,26,31\}$
 - Stop because clustering did not change.

υн

Canopy Clustering Algorithm (Non-Partitioning Clustering)

Construction of overlapping clusters (canopies)

- Often used as a first step in a multi-step analysis approach
- Scalable for large data sets
- Can be used for string data

• **Given:** Distance function, two thresholds T_1 and T_2 $(T_1 > T_2)$

• Algorithm:

- (Initialization): candidate list for canopy centroids is initialized with all objects
- (Canopy Centroid): Canopy centroid Z is selected (randomly) from the candidate list
- 3. (Assignment): All objects whose distance to Z is lower than threshold T_1 are assigned to canopy Z
- 4. (Candidate List): All objects whose distance to Z is lower than threshold T_2 , are removed from the candidate list
- 5. (End/Repeat): Stop if candidate list is empty, otherwise restart of Step 2

UHI ..

Fabian Panse

Clustering

Canopy Clustering Algorithm: Example

- Clustering of the numbers 1, 3, 6, 11, 13
- Given: Distance function = absolute difference, $T_1 = 8$, $T_2 = 4$
 - (1) Candidate list = $\{1, 3, 6, 11, 13\}$
 - (2) Canopy centroid = 11 (randomly)
 - (3) Constructed Canopy {6, 11, 13}
 - (4) Remove $\{11,13\}$ from candidate list
 - (5) Candidate list = $\{1, 3, 6\}$
 - (2) Canopy centroid = 1 (randomly)
 - (3) Constructed Canopy {1,3,6}
 - (4) Remove {1,3} from candidate list
 - (5) Candidate list = $\{6\}$
 - (2) Canopy centroid = 6
 - (3) Constructed Canopy {1, 3, 6, 11, 13}
 - (4) Remove {3,6} from candidate list
 - (5) Stop because candidate list is empty

Data Mining Fabian Panse

76

Agglomerative/Hierarchical Clustering

Successively merging data sets

Algorithm:

- Initially each cluster consists of a single data point
- Determine all inter-cluster distances
- Merge the least distant clusters into a new one
- Continue until the shortest cluster distance exceeds a predefined threshold or all clusters have been merged
- Result can be displayed as a dendrogram

Distance Measures for Clusters

• Single link: minimal distance between two data points

Distance Measures for Clusters

- Single link: minimal distance between two data points
- Complete link: maximal distance between two data points

Ιυн

Distance Measures for Clusters

- **Single link:** minimal distance between two data points
- Complete link: maximal distance between two data points
- Average link: average distance between two data points

Distance Measures for Clusters

- **Single link:** minimal distance between two data points
- Complete link: maximal distance between two data points
- Average link: average distance between two data points
- Canonical link: distance between two cluster representatives (e.g. the centroids)

Clustering

Incremental Clustering

Huge data sets cannot be clustered in a single step

- Divide-and-conquer: cluster subsets and merge the results
- Incremental clustering: data points are loaded successively and the cluster representation is updated accordingly

• Algorithm:

- 1. Assign the first data point to the first cluster
- 2. Consider the next data point
 - Assign it to an already existing cluster, or
 - Create a new cluster
- 3. Recompute the cluster description for that cluster
- 4. Continue until all data points are clustered

Cluster description consists at least of

- Centroid
- Number of data points in the cluster
- "Radius" of the cluster (e.g. the maximal distance of a point to the centroid)

• Problem: Result depends on the order in which data points are processed

Dependency Mining

Goal: Prediction of events commonly occurring together

- Market basket analysis: Which items are often purchased together
 - Placement of items in a store
 - Layout of mail-order catalogues
 - Targeted marketing campaigns
- Association rules: Rules of the form

$$a \wedge b \wedge \ldots \wedge c \rightarrow d \wedge e$$

 Challenge: Finding good combinations of premises and conclusions is a combinatorial problem

• Example (transaction) database:

trans-	item
action	
001	cola
001	chips
001	peanuts
002	beer
002	chips
002	cigarettes

trans-	items
action	
001	{chips, cola, peanuts}
002	{beer, chips, cigarettes}
003	{beer, chips, cigarettes, cola}
004	{heer cigarettes}

- Set of *n* different items: $I = \{x_1, \dots, x_n\}$
- Itemset: $I_k \subseteq I$
- i-itemset: $I_k^i \subseteq I$, $|I_k^i| = i$
- Transaction: $T_k \subseteq I$
- **Database:** $D = \{(k, T_k) \mid k = 1, ..., m\}$
- Support of an itemset: share of transactions which contain the itemset

$$s(I_i) = \frac{|\{T_k \mid I_i \subseteq T_k\}|}{|D|}$$

- Frequent (strong, large) itemset: $s(l_i) \geq s_{cut}$
- Minimal support: s_{cut} is application-specific, i.e. depends on total number of items, size of database, etc.

υп

Association Rules

• Downward closure:

Every subset of a frequent itemset is also a frequent itemset

• Every superset of a non-frequent itemset is also a non-frequent itemset

Data Mining Fabian Panse

83

- Association rule: $X \to Y$ where $X, Y \subseteq I, X \cap Y = \emptyset$
- **Support of a rule:** Share of transactions which contain both, premise and conclusion of the rule

$$s(X \to Y) = s(X \cup Y) = \frac{|\{T_k | X \cup Y \subseteq T_k\}|}{|D|} = p(XY)$$

 Confidence of a rule: Share of transactions supporting the rule from those supporting the premise

$$c(X \to Y) = \frac{s(X \cup Y)}{s(X)} = \frac{|\{T_k | X \cup Y \subseteq T_k\}|}{|\{T_k | X \subseteq T_k\}|} = p(Y | X)$$

• **Lift of a rule:** Ratio of the observed support to that expected if *X* and *Y* were independent

$$lift(X \to Y) = \frac{s(X \cup Y)}{s(X) \times s(Y)} = \frac{p(Y|X)}{p(Y)}$$

Association Rules

- **Strong rule:** high support + high confidence
- **Detection of strong rules:** Two pass algorithm
 - 1. Find frequent (strong, large) itemsets (Apriori algorithm)
 - Necessary to generate rules with strong support
 - Uses the downward closure
 - Itemsets are ordered
 - 2. Use the frequent itemsets to generate association rules
 - Find strong correlations in a frequent itemset

Fabian Panse Data Mining

Association Rules

Apriori: Finding frequent itemsets of increasing size (itemsets are ordered!)

- **1.** Start with all itemsets of size one: I^1
- 2. Select all itemsets with sufficient support
- **3.** From the selected itemsets I^i generate larger itemsets I^{i+1}

$$\{i_1,\ldots,i_{n-2},i_{n-1}\}\oplus\{i_1,\ldots,i_{n-2},i_n\}\to\{i_1,\ldots,i_{n-2},i_{n-1},i_n\}$$

- Already blocks some of the non-frequent itemsets, but not all of them
- 4. Remove those itemsets which still contain a non-frequent subset
 - They cannot have enough support (downward closure)
- 5. Continue with Step 2 until no further frequent itemsets can be generated

011

Association Rules

- Example database again
- **Assumption:** Threshold for the required support $s_{cut} = 0.5$

k	T_k
001	{chips, cola, peanuts}
002	{beer, chips, cigarettes}
003	{beer, chips, cigarettes, cola}
004	{beer, cigarettes}

I_k^1	#	$s(I_k^1)$
{chips}	3	0.75
{cola}	2	0.5
$\{peanuts\}$	1	0.25
{beer}	3	0.75
$\{cigarettes\}$	3	0.75

No non-empty subsets

• 2-itemsets: I_k^2

11

I_k^{\pm}	#	$S(I_k^{\perp})$
{chips}	3	0.75
$\{cola\}$	2	0.5
$\{beer\}$	3	0.75
{cigarettes}	3	0.75

(11)

I_k^2	#	$s(I_k^2)$
{chips, cola}	2	0.5
{beer, chips}	2	0.5
{chips, cigarettes}	2	0.5
{beer, cola}	1	0.25
{cigarettes, cola}	1	0.25
{beer, cigarettes}	3	0.75

No itemsets to prune

Fabian Panse

Association Rules

• 3-itemsets: I_k^3

I_k^2	#	$s(I_k^2)$
{chips, cola}	2	0.5
$\{beer, chips\}$	2	0.5
{chips, cigar.}	2	0.5
$\{beer,\;cigar.\}$	3	0.75

I_k^3	#	$s(I_k^2)$
{beer, chips, cigar.}	2	0.5
{chips, cigar., cola}	1	0.25

- Note: Itemset $\{beer, chips, cola\}$ is not constructed because we only combine sets of I_k^2 that have the first element in common
- However, this set cannot be frequent because otherwise the set $\{beer, cola\}$ would be in I_k^2 (and then we would have constructed $\{beer, chips, cola\}$)
- Itemset {chips, cigar., cola} can be pruned because {cigar., cola} is not frequent

Association Rules

Resulting frequent itemsets:

```
{beer, chips, cigarettes}
{chips, cola}
{beer, chips}
{chips, cigarettes}
{beer, cigarettes}
{beer}
{chips}
{cigarettes}
{cola}
```

- Generation of strong association rules:
 - For all frequent itemsets I_i with $|I_i| \geq 2$ determine all non-empty subsets I_k for which

$$c = \frac{s(I_j)}{s(I_k)} \ge c_{min}$$

- Add rule $I_k \to Y$ with $Y = I_i I_k$ to the rule set
- e.g. $s(\{chips\}) = 0.75, s(\{cola\}) = 0.5, s(\{chips, cola\}) = 0.5$

rule	confidence
$\{cola\} o \{chips\}$	1.00
$\{chips\} o \{cola\}$	0.67

• Interesting association rules: Only those for which the confidence is greater than the support of the conclusion

$$c(X \rightarrow Y) > s(Y)$$
 ($\equiv lift(X \rightarrow Y) > 1$)

- **Rule modification:** Confidence can be increased by shifting items from the conclusion to the premise
- Negative border:

$$\{I_j \mid s(I_j) < s_{cut} \land \forall I_k \subset I_j \colon s(I_k) \geq s_{cut}\}$$

used to derive negative association rules (e.g. customers who buy cola and chips do not buy beer)

Fabian Panse Data Mining

Association Rules

• Apriori: Number of potential itemsets is exponential in the number of items

- But:
 - Data is sparse: $|T_i| \ll |I|$
 - Itemsets are generated in separate scans of the database
 - Size of generated itemsets grows monotonically
 - Large itemsets are usually useless
 - Only k scans required $(k \ll |I|)$

Association Rules

Modifications / Extensions:

- Rule mining on relational data
- Apriori for hierarchically organized items
- Partitioned Apriori
- Sampled transactions
- Incremental rule mining
- Non uniform support thresholds
- Class association rules

Association Rules with Relational Data

- Relational data has to be transformed into transaction data
- Apriori requires categorical data ⇒ binning has to be performed
- The same category can appear as value of different attributes

age	income	debt
low	low	low
middle	low	high
high	high	low

- Values have to be combined with their attribute
 - Attribute-value pairs are taken as items

1	(age, low)	(income, low)	(debt, low)
2	(age, middle)	(income, low)	(debt, high)
3	(age, high)	(income, high)	(debt, low)

Hierarchical Apriori

• In addition to the base level of items, determine also frequent itemsets on a higher level in an is-a hierarchy

Sometimes regularities can only be found at higher levels of abstraction

Partitioned Apriori

Computation in two steps:

1st step:

- Partition the database
- Compute locally frequent itemsets on each partition

2nd step:

- Determine the global support of all locally frequent itemsets
- Remove all itemsets which do not satisfy the minimal support

Heuristics:

- Idea: if an itemset is globally frequent it will be so locally in at least one partition
- ⇒ Second step deals with a superset of possible frequent itemsets

Ισπ