page 1	Review
	 Volumetric Locking For near-incompressible materials, all conventional elements 'lock' and predict zero displacement solutions for most loading Problem is caused by too many incompressibility constraints (one for each integration point) compared to number of DOFs
page 1	3.5 3.5 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1

 $_{-}$ page 2 $_{--}$

Review

Fix #1 (works for some elements) – reduced integration

Use one order lower integration scheme

Number of integration points for reduced integration schemes

Linear triangle (3 nodes) 1 point Quadratic triangle (6 nodes): 3 points Linear quadrilateral (4 nodes): 1 point Quadratic quadrilateral (8 nodes): 4 points Linear tetrahedron (4 nodes): 1 point Quadratic tetrahedron (10 nodes): 4 points Linear brick (8 nodes): 1 point

Quadratic brick (20 nodes): 8 points

8 <u>noded</u> quads – perfect!

4 noded quads – Hourglassing

Scaled to show hourglass mode

page 4 Fix	#2 Reduced	Integration with hourglass control			
Basic Idea: Add artificial stiffners to resist hourglassing					
Approach: Introduce "Hourglass base vectors"					
		Hourglass base vectors			
	Linear quadrilateral	$\Gamma^{a(1)} = (+1, -1, +1, -1)$			
	Linear brick	$\Gamma^{a(1)}=(+1,+1,-1,-1,-1,+1,+1)$ $\Gamma^{a(2)}=(+1,-1,-1,+1,-1,+1,+1,-1)$ $\Gamma^{a(3)}=(+1,-1,+1,-1,+1,-1,+1,-1)$ $\Gamma^{a(4)}=(-1,+1,-1,+1,+1,-1,+1,-1)$			
INESE	describe nout	glassing in square 1 cubic elements			
Correction for arhitram acometru					
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

page 5

page 6

ABAQUS menus:

	**	
Element Library Family	🖨 Element Type	
Standard Explicit	Element Library	Family
Geometric Order © Linear O Quadratic Cohesive Pore Pressure	● Standard ○ Explicit	Acoustic Beam Section
Quad Tri	Geometric Order	Cohesive Pore Pressure
✓ Reduced integration ☐ Incompatible modes Element Controls	○ Linear ② Quadratic	Collesive Fole Flessure
Hourglass stiffness:	Quad Tri	
Viscosity: ● Use default ○ Specify ✓ Reduced inte		ation
Second-order accuracy: ○ Yes No	Element Controls	
Distortion control: • Use default • Yes • No Length ratio: 0.1	Viscosity:	Jse default O Specify
Hourglass control: O Use default O Enhanced O Relax stiffness O Stiffness O Viscous O Combined	Element deletion: U	Jse default O Yes O No
Stiffness-viscous weight factor: 0.5	Max Degradation:	Jse default O Specify
Element deletion:		, , , , , , , , , , , , , , , , , , ,
Max Degradation:	1 1997/9	
Scaling factors: Displacement hourglass: 1 Linear bulk viscosity: 1	Not need	ded for
	Not need gnadratic	elements

 $_{-}$ page 6 $_{-}$

• Advantage: Speed -good for explicit	
Disadvantages: Choice of B can be tocky	2.5
Stabilization can fail for large deformations	

_ page 7______

page 8 Fix #3: "Selective reduced integration" · Basic idea: separate volumetric & shear modes in element and integrate separately Define " deviatoric " strain · Approach: eij = Eij - Ev Sij & Shear Er= (En+ Ezz) /2 (20) Volumetric Strains Define New (B) matrices e=[Brev]y Evol = [Bvol] E voi stored as before $_{-}$ page 8_{-}

matrices page 9

$$\underline{e} = \begin{bmatrix} e_{11} \\ e_{22} \\ 2e_{12} \end{bmatrix}$$

$$\underline{\underline{\varepsilon^{VOL}}} = \frac{1}{2} \begin{bmatrix} \varepsilon_{11} + \varepsilon_{22} \\ \varepsilon_{11} + \varepsilon_{22} \\ 0 \end{bmatrix}$$

[B] =

$$\begin{array}{c|c}
\hline
\overline{\partial x_1} & 0 \\
0 & \frac{\partial N^1}{\partial x_2} \\
\partial N^1 & \partial N^1
\end{array}$$

$$0 \qquad \frac{\partial N^2}{\partial x_2}$$

$$\frac{\partial N^2}{\partial x_2} \qquad \frac{\partial N^2}{\partial x_1} \qquad \frac{\partial N^2}{\partial x_2}$$

$$0 \quad \frac{\partial N^3}{\partial x_2}$$

$$\frac{\partial N^3}{\partial x_2} \quad \frac{\partial N^3}{\partial x_1}$$

$$[B^{VOL}] = \frac{1}{2} \begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} & \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} & \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \\ \frac{\partial N^1}{\partial x_1} & \frac{\partial N^1}{\partial x_2} & \frac{\partial N^2}{\partial x_1} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_1} & \frac{\partial N^3}{\partial x_2} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 ∂N^3 ∂x_2

0

$$\underline{e} = \begin{bmatrix} e_{11} \\ e_{22} \\ e_{33} \\ e_{12} \\ e_{13} \\ e_{23} \end{bmatrix} \qquad \underline{\varepsilon}^{VOL} = \frac{1}{3} \begin{bmatrix} \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} \\ \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} \\ \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$[B^{DEV}] = [B] - [B^{VOL}]$$

[B] = $\frac{\partial N^2}{\partial x_1}$ $\frac{\partial N^1}{\partial x_2}$ ∂x_2

3D	CBJ	matrices
		_

 $[B^{DEV}] = [B] - [B^{VOL}]$

_page 10

Fix #4 "B-bac" method Alternative approach to selective reduced integration - Introduce a new strain field inside each element Let Eij = eij + Ev Sij We want Ex to be constant throughout element Introduce Vol averaged volumetric strain W= I Er dV Ret Eij = eij + W Sig $_{-}$ page 12 $_{-}$

 $^-$ page 13 $^{\circ}$ Implementation: Define new B matrix: E = [B] U Can express B in tems of vol averaged shape function derive Then 2D B matrix W: $\begin{array}{c} - \\ - \\ - \\ - \\ - \end{array} \begin{bmatrix} \frac{\partial N^1}{\partial x_1} & 0 & \frac{\partial N^2}{\partial x_1} & 0 & \frac{\partial N^3}{\partial x_1} & 0 \\ 0 & \frac{\partial N^1}{\partial x_2} & 0 & \frac{\partial N^2}{\partial x_2} & 0 & \frac{\partial N^3}{\partial x_2} \\ - \\ - \\ - \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \frac{\partial N^1}{\partial x_1} & \frac{\partial N^1}{\partial x_2} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_2} \\ - \\ - \\ - \\ - \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{\partial N^1}{\partial x_1} & \frac{\partial N^1}{\partial x_2} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_2} & 0 & \frac{\partial N^3}{\partial x_2} \\ \frac{\partial N^1}{\partial x_2} & \frac{\partial N^1}{\partial x_2} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_2} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{\partial N^1}{\partial x_1} & \frac{\partial N^1}{\partial x_2} & \frac{\partial N^2}{\partial x_1} & \frac{\partial N^3}{\partial x_2} \\ \frac{\partial N^1}{\partial x_1} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_1} & \frac{\partial N^3}{\partial x_2} & \frac{\partial N^3}{\partial x_2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{\partial N^1}{\partial x_1} & \frac{\partial N^1}{\partial x_2} & \frac{\partial N^2}{\partial x_1} & \frac{\partial N^3}{\partial x_2} & \frac{\partial N^3}{\partial x_1} & \frac{\partial N^3}{\partial x_2} \\ \frac{\partial N^1}{\partial x_1} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_1} & \frac{\partial N^3}{\partial x_2} & \frac{\partial N^3}{\partial x_2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{\partial N^1}{\partial x_1} & \frac{\partial N^1}{\partial x_2} & \frac{\partial N^2}{\partial x_1} & \frac{\partial N^3}{\partial x_2} & \frac{\partial N^3}{\partial x_2} \\ \frac{\partial N^1}{\partial x_1} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_1} & \frac{\partial N^3}{\partial x_2} & \frac{\partial N^3}{\partial x_2} & \frac{\partial N^3}{\partial x_2} \\ \frac{\partial N^1}{\partial x_1} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_1} & \frac{\partial N^3}{\partial x_2} \\ \frac{\partial N^1}{\partial x_1} & \frac{\partial N^2}{\partial x_2} & \frac{\partial N^3}{\partial x_2} & \frac{\partial$

6.5: "Hybrid" elements for fully incompressible solids $^-$ page 15 All methods dicussed so far give singular [K] When N- 0.5 Need to re-derive FE equations for fully incompressible linear elasticity Eij = (dui/dxi + duj/dxi) /2 Field Eggs: Oi = 2 M Ei + 1/2 Sij 1 EKR = 1 DUR = 0 (Incompressibility) =0 (Equilibrium

_ page 15 _

Weak form: Let n; and q be test functions _page 16⁻ Hence 1 2 (2 M &ij + 1 p Sij > M; dV = 0 (2) Integrate (1) by parts: (3), (2) are new governing egs

page 16

page 17 FE interpolation: $Ui = N^{\alpha}(x) U_{i}^{\alpha} \qquad \eta_{i} = N^{\alpha} \eta_{i}^{\alpha}$

p = M(X) pa

q = M9(x) qa

M, N - Interpolation functions
U.a, n.a - nodal values

pa, qq - nodal values of pressure

_page 17 _____