Simulating Onset Age Distribution of anti-GABABR Autoimmune Encephalitis from Published Summary Statistics

This Python notebook demonstrates the robustness of a statistical workflow for reconstructing age-at-onset distributions using real-world evidence from autoimmune encephalitis (AIE).

Import required library

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import lognorm, weibull_min, gamma, genextreme # Importing neces
from scipy.optimize import minimize # Optimization for parameter fitting
from scipy.stats import probplot # Probability plot for visual assessment
from sklearn.metrics import mean_squared_error # Mean Squared Error for goodness-
from scipy.stats import gaussian_kde # Kernel Density Estimation for smooth CDF
```

Generalized Gamma

The generalized Gamma distribution has three parameters to fit:

- a: shape parameter
- c: power parameter
- scale: scale parameter

```
In [96]: import numpy as np
from scipy.stats import gengamma
from scipy.optimize import minimize
```

```
In [97]: median = 66
  q1 = 61
  q3 = 72
  min = 19
  max = 88
  mean = 67
  size = 111
  empirical_q = [q1, median, q3]
```

```
In [98]: # Define the quantile-matching objective function
def gengamma_objective(params):
    a, c, scale = params
    if a <= 0 or scale <= 0:
        return np.inf
    try:
        dist = gengamma(a=a, c=c, scale=scale)</pre>
```

```
return np.sum((np.array(theo_q)- np.array(empirical_q))**2)
             except:
                 return np.inf
In [99]: # Run the optimization
         initial guess gengamma = [2.0, 1.0, 10.0]
         bounds_gengamma = [(0.01, None), (0.01, None), (0.01, None)]
         result_gengamma = minimize(gengamma_objective, x0=initial_guess_gengamma, bounds=
         a_fit_gengamma, c_fit_gengamma, scale_fit_gengamma = result_gengamma.x
         print(f"Fitted Generalized Gamma parameters:\n a = {a_fit_gengamma:.3f}, c = {c_1}
        Fitted Generalized Gamma parameters:
         a = 26.611, c = 1.583, scale_fit_gengamma = 8.409
        /var/folders/b8/9ymtxc2j7rb00xx34s753cwc0000gn/T/ipykernel_51726/1451994867.py:9:
        RuntimeWarning: overflow encountered in square
          return np.sum((np.array(theo_q) - np.array(empirical_q))**2)
        /opt/anaconda3/lib/python3.12/site-packages/scipy/optimize/_numdiff.py:590: Runti
        meWarning: invalid value encountered in subtract
          df = fun(x) - f0
In [100... # Simulate and visualize
         import matplotlib.pyplot as plt
In [101... # Simulate onset ages
         sim_ages_gengamma = gengamma(a = a_fit_gengamma, c = c_fit_gengamma, scale = scal
In [102... # Plot histogram and CDF
         fig, ax = plt.subplots(1, 2, figsize = (12, 4))
         # Histogram
         ax[0].hist(sim_ages_gengamma, bins=50, color='lightcoral', edgecolor='black')
         ax[0].axvline(x=median, color='red', linestyle='--', label='Reported median')
         ax[0].set title('Simulated Onset Ages (GenGamma fit)')
         ax[0].legend()
         # CDF
         x_{gengamma} = np.linspace(0, 100, 300)
         model_cdf_gengamma = gengamma(a=a_fit_gengamma, c=c_fit_gengamma, scale=scale_fit
         ax[1].plot(x_gengamma, model_cdf_gengamma, label='Fitted CDF')
         ax[1].scatter([min, q1, median, q3, max], [0.01, 0.25, 0.5, 0.75, 0.99], color='i
         ax[1].set_title('Empirical vs Fitted CDF')
         ax[1].legend()
         plt.tight_layout()
         plt.show()
```

theo_q = dist.ppf([0.25, 0.5, 0.75])

In this case, the Generalized Gamma distribution shows the smallest squared difference, indicating the best fit among the three candidate distributions.

Sensitivity analysis with Monte Carlo simulation

Purpose

The current sensitivity analysis based on a fixed ±10% grid has notable limitations.

To address these, I plan to implement Monte Carlo simulation using fitted distribution parameters, which offers three key advantages:

- Continuous uncertainty representation rather than relying on only low, central, and high values.
- Faster and smoother calculations through the cumulative distribution function (CDF), without the need for inner resampling.
- More stable confidence intervals and compatibility with tornado analysis for identifying key drivers.

Procedure

- 1. Draw N parameter triplets from continous priors distributions.
- 2. Use CDF differences to get exact band probabilities per draw.
- 3. Aggregate acroos draws to get mean, median and 95% Cl.

Code for implementation

```
import numpy as np
import pandas as pd
from scipy.stats import gengamma, norm
```

```
In [104... # The fitted model object from previous analysis result_gengamma
```

```
Out [104...
           message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH</pre>
            success: True
             status: 0
                fun: 0.10243077858152738
                  x: [ 2.661e+01 1.583e+00 8.409e+00]
                nit: 88
                jac: [-1.463e-02 1.069e+00 -8.571e-02]
               nfev: 456
               njev: 114
           hess_inv: <3x3 LbfgsInvHessProduct with dtype=float64>
In [106... # Get the MLE
         theta_hat = result_gengamma.x
         print(theta_hat)
        [26.61103626 1.58349596 8.40915197]
         Compute the Hessian numerically at the optimum
In [107... import numpy as np
         from statsmodels.tools.numdiff import approx_hess
         H = approx_hess(theta_hat, gengamma_objective) # by default, central differences
In [108... | # Invert the Hessian to get the variance-covariance matrix
         vcov_matrix = np.linalg.inv(H)
         print(vcov_matrix)
        [[ 5.95129550e+02 -1.77608293e+01 -3.15062237e+02]
         [-1.77608293e+01 5.51055889e-01 9.63377691e+00]
         [-3.15062237e+02 9.63377691e+00 1.69340808e+02]]
In [109... # Multivariate normal sampling on fitted scale
         from numpy.random import default_rng
         rng = default rng(123)
         N = 5000
         m = theta_hat # MLE parameter vector
         L = np.linalg.cholesky(vcov_matrix) # Cholesky decomposition of variance-covaria
         Z = rng.standard_normal((N, len(m))) # Standard normal samples
         theta_draws = m + Z @ L.T # MVN samples of parameters
         mu_draws, log_sigma_draws, Q_draws = theta_draws.T
In [110... np.mean(log_sigma_draws)
Out[110... 1.5637918813315672
In [111... # Age bands (inclusive of lower, exclusive of upper)
         age\_bands = [(0, 12), (12, 18), (18, 100)]
```

This custom function aims to calculate log-scale standard deviation for a log-normal prior, so that approximately 95% of mass falls with ±10% multiplicative of the median.

Derivation

For Y ~ Normal(mu, sigma) the 95% interval is mu \pm 1.96sigma, so on the original scale exp(mu \pm 1.96sigma) gives a multiplicative factor exp(1.96*sigma). Setting that factor = 1.1 (i.e. +10%) give sigma = $\ln(1.1)/1.96$

rng.lognormal() is a NumPy random number generator method that draws samples from a lognormal distribution - a distribution where the logarithm of the variable follows normal (Gaussian) distribution.

rng.lognormal(mean=mu_a, sigma=s_log, size=N) draws samples $X = \exp(Y)$ where $Y \sim Normal(mu_a, s_log)$

Note that rng.lognormal equivalent to np.exp(rng.normal(mean, sigma, size))

```
In [112... # Compute band probabilities for each parameter set via CDF

def band_probs_for_draw(a, c, s):
    F = gengamma(a=a, c=c, scale=s).cdf
    p0_12 = F(12.0) - F(0.0)
    p12_18 = F(18.0) - F(12.0)
    p18_100 = F(100.0) - F(18.0)
    return p0_12, p12_18, p18_100
```

gengamma(a=a, c=c, scale=s) constructs a "frozen" SciPy generalized Gamma distribution with given parameters. Appending .cdf returns that distribution's cumulative distribution function as a callable (i.e., can be called like a function).

What F is: a function F(x) that returns $P(x \le x)$ for $X \sim GenGamma(a,c,scale=s)$. It accepts acalars or numpy arrays and returns probabities in [0,1].

```
In [113... P = np.array([band_probs_for_draw(a, c, s) for a, c, s in zip(mu_draws, log_sigma
In [114... print(P[:10])
        [[1.20059387e-02 7.33904212e-02 9.14603640e-01]
         [1.08145832e-25 8.45280534e-18 9.99985839e-01]
         [1.92092384e-12 1.54251855e-08 9.99999974e-01]
         [1.20756676e-18 5.23993223e-13 9.99994565e-01]
                      nan
                                     nan
         [1.70337946e-27 3.55365476e-19 9.99994112e-01]
         [3.04377245e-19 1.99256162e-13 9.99996554e-01]
         [1.00000000e+00 2.01283434e-13 0.00000000e+00]
                      nan
                                                     nan]
                                     nan
                      nan
                                     nan
                                                     nan]]
In [115... # Filter out NaNs in all three columns
         P = P[\sim np.isnan(P).any(axis=1)]
In [116... print(P[:10])
```

```
[[1.20059387e-02 7.33904212e-02 9.14603640e-01]
         [1.08145832e-25 8.45280534e-18 9.99985839e-01]
         [1.92092384e-12 1.54251855e-08 9.99999974e-01]
         [1.20756676e-18 5.23993223e-13 9.99994565e-01]
         [1.70337946e-27 3.55365476e-19 9.99994112e-01]
         [3.04377245e-19 1.99256162e-13 9.99996554e-01]
         [1.00000000e+00 2.01283434e-13 0.00000000e+00]
         [8.17154984e-16 4.93084700e-11 9.99937577e-01]
         [1.00000000e+00 0.00000000e+00 0.00000000e+00]
         [2.02810919e-20 2.75611355e-14 9.99997395e-01]]
In [117... # Summarize reults
         summary = pd.DataFrame({
             'Age Band': ['0-12', '12-18', '18+'],
              'Mean': np.char.mod('%.2f%%', P.mean(axis=0)*100),
             "SD": np.char.mod('%.2f%%', P.std(axis=0)*100),
             "Median": np.char.mod('%.2f%%', np.median(P, axis=0)*100),
             "CI Lower (2.5%)": np.char.mod('%.2f%%', np.percentile(P, 2.5, axis=0)*100),
             "CI Upper (97.5%)": np.char.mod('%.2f%%', np.percentile(P, 97.5, axis=0)*100)
         })
         print(summary)
          Age Band
                                     Median CI Lower (2.5%) CI Upper (97.5%)
                      Mean
                                SD
                     2.67% 14.00%
              0 - 12
                                                       0.00%
                                                                       44.47%
        0
                                       0.00%
             12-18
                     1.95%
                            9.41%
                                       0.00%
                                                       0.00%
                                                                       23.81%
        1
        2
               18+ 95.38% 18.45% 100.00%
                                                       9.54%
                                                                      100.00%
In [118... # Draw CDF for sampled parameters
         x = np.linspace(0, 100, 300)
         cdf_samples = [gengamma(a=a, c=c, scale=s).cdf(x)  for a, c, s in zip(mu_draws, lc)
         import matplotlib.pyplot as plt
         # Plot sampled CDFs
         plt.figure(figsize=(8, 5))
         for cdf in cdf samples:
             plt.plot(x, cdf, color='lightgray', alpha=0.1)
         # Plot mean CDF
         mean_cdf = np.mean(cdf_samples, axis=0)
         plt.plot(x, mean_cdf, color='blue', label='Mean CDF', linewidth=2)
         # Plot empirical quantiles
         plt.scatter([min, q1, median, q3, max], [0.01, 0.25, 0.5, 0.75, 0.99], color='rec
         # Format plot
         plt.title('CDFs from MVN-sampled Generalized Gamma Parameters')
         plt.xlabel('Age')
         plt.ylabel('Cumulative Probability')
         plt.legend()
         plt.grid(linestyle='--', alpha=0.5)
         plt.tight_layout()
         plt.show()
```

