Ejercicios - Tema 2 Funciones, límites y continuidad

Funciones 1.1

Ejercicio 1.1.1. Esboza las gráficas de las siguientes funciones.

i)
$$\sqrt{x-3}+2$$
 ii) $(x-2)^3-1$ iii) $4-(x-1)^2$ iv) $3-(x-1)^{1/3}$ v) $|x-2|$ vi) $\ln(x-2)$ vii) $|\sec(x+1)|$ viii) $e^{-x}+1$

$$|x-2|$$
 $vi)$ $\ln(x-2)$ $vii)$ $|\sec(x+1)|$ $viii)$ $e^{-x}+1$

$$ix$$
) e^{x-3} x) $5 + \cos(x-1)$ xi) $\ln(x+5)$ xii) $1 + |x-5|$

Ejercicio 1.1.2. Calcula el dominio de las siguientes funciones.

$$i) \quad \frac{\sqrt{x-8}}{x-7} \qquad ii) \quad \left(\frac{x-3}{(x-4)^2}\right)^{1/2} \quad iii) \quad \frac{x-2}{1+(x-3)^2} \quad iv) \quad \ln(x^2-3x+2)$$

$$v) \quad \frac{1}{\ln(x-1)} \qquad vi) \quad \frac{1}{\sqrt{\ln(x-3)}} \qquad vii) \quad \frac{1}{1-\ln(x+3)} \quad viii) \quad \frac{1}{x^3-x^2+x-1}$$

$$ix) \quad \ln(x^2(x-3)) \quad x) \quad \frac{1}{\sin x} \qquad xi) \quad \frac{1}{3+\cos x} \qquad xii) \ln(1+\cos x)$$

Ejercicio 1.1.3. Esboza la gráfica de una función cuyo dominio sea [0,1] y cuya imagen sea el intervalo [-1, 2].

Ejercicio 1.1.4. La parte positiva y la parte negativa de una función f(x), que se designan por f^+ y respectivamente f^- , se definen como

$$f^+(x) = \max\{f(x), 0\}$$
 y $f^-(x) = \min\{0, f(x)\}.$

- i) Comprueba que $f(x) = f^{+}(x) f^{-}(x)$ y $|f(x)| = f^{+}(x) + f^{-}(x)$.
- ii) Dibuja las gráficas de $f^+(x)$ y $f^-(x)$ en $[0, 2\pi]$, para $f(x) = \sin x$.

Ejercicio 1.1.5. Determina cuando la función dada es inyectiva o no, hallando su inversa en caso de serlo.

i)
$$5x+3$$
 ii) x^5+1 *iii*) $(x+1)^3+2$ *iv*) $\frac{1}{x}$ *v*) $x^{3/5}$ *vi*) $(1-x)^4$

Ejercicio 1.1.6. Demuestra que si $p, q \in \mathbb{N}$ y p, q son impares, la función $f(x) = x^{p/q}$ es una función $f: \mathbb{R} \to \mathbb{R}$ que es inyectiva y sobreyectiva de \mathbb{R} en \mathbb{R} . Calcula la función inversa.

Ejercicio 1.1.7. Estudia si la función dada es par, impar o ninguna de las dos cosas.

i)
$$x^3$$
 ii) x^2 iii) $\sec x$ iv) $\frac{x^2}{1-|x|}$ v) $x^{3/5}$ vi) $x^2 + \frac{1}{x}$

Ejercicio 1.1.8. Determina $f \circ g \ y \ g \circ f$ en los siguientes casos.

i)
$$f(x) = x^2 y g(x) = \frac{1}{x}$$
.

ii)
$$f(x) = \begin{cases} 1 & \text{si } x \ge 0, \\ -1 & \text{si } x < 0 \end{cases}$$
 $g(x) = \frac{1}{x}$

iii)
$$f(x) = \begin{cases} x & \text{si } x \ge 0, \\ 0 & \text{si } x < 0 \end{cases}$$
, $g(x) = \begin{cases} 0 & \text{si } x \le 0, \\ -x^2 & \text{si } x > 0 \end{cases}$

Ejercicio 1.1.9. Sea $f(x) = \frac{1}{1-x}$. Calcula $f \circ f$ y $f \circ f \circ f$.

Ejercicio 1.1.10. Estudia si las funciones siguientes son acotadas en los intervalos que se indican, dando alguna cota en caso de existir.

i)
$$f(x) = \frac{x}{x^2 + 2}$$
 en $[-3, 3]$ ii) $f(x) = x \operatorname{sen} x$ en $[0, 100]$

$$f(x) = 2 \operatorname{sen} x \operatorname{cos} x$$
 en \mathbb{R} iv) $f(x) = \frac{1}{x-1}$ en $(0,1)$

iii)
$$f(x) = 2 \sin x \cos x$$
 en \mathbb{R} *iv*) $f(x) = \frac{1}{x-1}$ en $(0,1)$
v) $f(x) = \sin(\frac{1}{x})$ en $(0,1)$ *vi*) $f(x) = x \sin(\frac{1}{x})$ en $(0,1)$

Limites 1.2

Ejercicio 1.2.1. Estudia la existencia de límite de las siguientes funciones en los puntos indicados.

i)
$$f(x) = \begin{cases} x^2 + x + 2 & \text{si } x > 2\\ \frac{x^2}{x^2 + 7} & \text{si } x \le 2 \end{cases}$$
 en $x = 2$.

ii)
$$f(x) = \begin{cases} \ln(x^2) & \text{si} \quad x \ge \sqrt{e} \\ 2\sin(\frac{e\pi}{2x^2}) & \text{si} \quad x \ge \sqrt{e} \end{cases}$$
 en $x = \sqrt{e}$

Ejercicio 1.2.2. Estudia si existen los límites siguientes

$$i) \quad \lim_{x \to 3} \frac{1}{x - 3} \qquad \qquad ii) \quad \lim_{x \to 3} \operatorname{sen} \frac{1}{x - 3}$$

Ejercicio 1.2.3. Estudia las asíntotas de la función $f(x) = \frac{x^3 + x^2 - 2x}{x^2 - 1}$. ¿Se puede definir f en el punto x=1 de forma que sea continua en ese punto?, ¿y en x = -1?

Ejercicio 1.2.4. Demuestra que cuando $x \to 0$, las expresiones $\ln(x+1)$ y 1+x son infinitésimos equivalentes. Utiliza este resultado para calcular aproximadamente el valor de $\ln 0, 97$.

Ejercicio 1.2.5. Calcula $a \in \mathbb{R}$ para que

$$\lim_{x \to \infty} \left(\frac{x+a}{x} \right)^{\frac{x}{2}} = 6.$$

2

Ejercicio 1.2.6. Calcula los siguientes límites.

i)
$$\lim_{x \to 0} \frac{-3x}{|x|}$$
 ii)
$$\lim_{x \to 2} e^{-1/|x-2|}$$
 iii)
$$\lim_{x \to 0} \frac{e^{1/x}}{1 + e^{1/x}}$$

iv)
$$\lim_{x \to \infty} \frac{x^2 + 1}{x^3 + 2x + 3}$$
 v)
$$\lim_{x \to \infty} \frac{x^8 + x^6 + 8}{x^3 + 2x + 1}$$
 vi)
$$\lim_{x \to \infty} \frac{x + x^6 + 8}{x^2 + 1}$$
 vi)

vii)
$$\lim_{x \to \infty} \frac{\log x}{x^3}$$
 viii) $\lim_{n \to \infty} (\arctan 1)^x$ ix) $\lim_{x \to \infty} x \sec 1/x$

$$x) \qquad \lim_{x \to \infty} \frac{3^x}{x^3 + 5} \qquad \qquad xi) \qquad \lim_{x \to \infty} \frac{3^x}{2^x + 5^x} \qquad \qquad xii) \qquad \lim_{x \to \infty} \frac{x^2 + 8}{2^x}$$

$$\operatorname{xvi}) \quad \lim_{x \to \infty} \left(\frac{a}{a+1} \right)^x a > 0 \qquad \qquad \operatorname{xvii}) \quad \lim_{x \to \infty} (x^2 + 8x + 6)^{1/x} \qquad \operatorname{xviii}) \quad \lim_{x \to \infty} \frac{\log x^2 + 3}{x}$$

$$\operatorname{xix}) \quad \lim_{x \to \infty} \left(\tan(\frac{\pi}{4} + \frac{1}{x}) \right)^{3x} \qquad \operatorname{xx}) \quad \lim_{x \to \infty} \left(\operatorname{sen}(\frac{\pi}{2} + \frac{1}{x}) \right)^{1/x} \quad \operatorname{xxi}) \quad \lim_{x \to 0} \frac{\log x + 1}{2^x - 1}$$

xxii)
$$\lim_{n \to \infty} \left(\log(1 + \frac{1}{x}) + 1 \right)^{x+3}$$
 xxiii) $\lim_{x \to \infty} \left(\frac{x^2 + x}{x+1} \right)^{\frac{x+3}{3x^2+2}}$ xxiv) $\lim_{x \to \infty} (\log x)^{1/x}$

$$xxv) \quad \lim_{x \to \infty} \left(\frac{x^2 + x}{x + 1}\right)^{\frac{x + 3}{3x + 2}} \qquad xxvi) \quad \lim_{x \to \infty} \left(\frac{x^2 + x}{x + 1}\right)^{\frac{3x^2 + 2}{x + 3}} \qquad xxvii) \quad \lim_{x \to 1} \frac{\log x}{e^x - e}$$

1.3 Continuidad

Ejercicio 1.3.1. Sea $\lim_{x\to a} f(x) = L$. Señala la certeza o falsedad de las siguientes afirmaciones.

i) f esta definida en a ii) f(a) = L iii) f es continua en a

Ejercicio 1.3.2. Sea $f(x) = \begin{cases} \frac{x^2 - 4}{x + 4} & \text{si } x \neq -4 \\ 0 & \text{si } x = -4 \end{cases}$. Señala la certeza o falsedad

de las siguientes afirmaciones.

i) f esta definida en -4 ii) El límite $\lim_{x\to -4} f(x)$, existe. iii) f es continua en -4

Ejercicio 1.3.3. Estudia el conjunto de puntos donde las siguientes funciones son continuas.

i)
$$f(x) = \frac{1}{1 - \ln(x+2)}$$
 ii) $\ln(5 + \cos x)$ iii) $f(x) = \frac{1}{7 + \cos x}$

Ejercicio 1.3.4. Calcula el valor de $a \in \mathbb{R}$ para que las siguientes funciones sean continuas en \mathbb{R} .

i)
$$f(x) = \begin{cases} (x-3)\ln(ax) & \text{si } x > 2\\ \sin\frac{\pi x}{2} & \text{si } x \le 2 \end{cases}$$
 en $x = 2$.

ii)
$$f(x) = \begin{cases} 1 + (x-3) \operatorname{sen}(\frac{1}{x-3}) & \text{si } x > 3 \\ e^{a+4x} & \text{si } x \le 3 \end{cases}$$
 en $x = 3$.