

第二十六讲 航天器姿态捕获

主讲: 刘莹莹

西北工业大学 精确制导与控制研究所

第二十六讲 航天器姿态捕获

- 1、姿态捕获的概念
- 2、地球同步轨道卫星三轴姿态捕获

1、姿态捕获的概念

姿态捕获是航天器由未知姿态到已知 姿态的定向过程,是典型的姿态机动。 卫星初始入轨,或三轴姿态指向有时 失去稳定,需要进行姿态捕获。 姿态捕获过程可以由星上设备完成, 也可以由地面站和星上设备共同完成。 2、地球同步轨道卫星三轴姿态捕获

姿态捕获的任务是将卫星从初期的自旋状态转向三轴姿态稳定。

敏感器:速率陀螺,太阳敏感器,红

外地平仪

执行机构 三个阶段

航捕获

偏

第一阶段为太阳捕获

将卫星消旋后,启动姿态捕获控制模式。

绕x轴转动搜索太阳。

第一阶段为太阳捕获

将卫星消旋后,启动姿态捕获控制模式。

将x轴指向太阳方向。

第一阶段为太阳捕获

将卫星消旋后,启动姿态捕获控制模式。

将x轴指向太阳方向。

第二阶段为地球捕获:

x轴始终指向太阳,同时星体绕x轴转动, 红外地平仪在空间扫描。

第二阶段为地球捕获:

x轴始终指向太阳,同时星体绕x轴转动, 红外地平仪在空间扫描。

第三阶段为偏航捕获:

太阳和地球捕获后,可以确定偏航姿态,实现偏航捕获。达到三轴姿态

捕获。

主动姿态控制小结

							4 38			
控制方式	自然力矩	功耗燃料	控制逻辑	姿态敏感器	构成实例	允许最大 初始姿态 角速度 (deg/s)	允许 初始 姿 角	指向精 度(deg)	最小稳定 速度(deg/s)	进入稳定 状态时间
主动	有	有	有	全自由度	飞轮为主 喷气卸载	接近任意	任意	1~0.01	10-3~10-6	(1~15)min
					飞轮为主 磁力卸载	0.1~1	能够 任意	1~0.01	10-3~10-6	(10~ 100)min
					飞轮为主 重力梯度卸 载	(3~6)ωο	任意	1~0.1	(1~2)ωο	(5~50)轨 道周期
					纯喷气三轴 控制	接近任意	任意	10~0.1	10-1~10-3	(1~15)min