디지털 영상처리 연구실 연구보고서

김우허

#CNN(convolutional neural network)

- 1. 입력층
- 2. 합성곱층
- 3. 풀링층
- 4. 완전연결층
- 5. 출력층

#합성곱연산

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$

#2차원 배열의 합성곱

-> 스트라이드?

-> 패딩?

		,		5											
	٥	ſ	1	9											
	5	ょ	ť	6			1	0	١						
	Ļ	3	3	0	(4	B	ı	2	0	=		40	32		
	١	1	1	2			3	0	1			26	25		
0	0	0	0	0	0										
0	٥	ſ	1	5	0							26	42	妫	35
0	5	ţ	Ç	6	0			1	0	١		34	41	33	28
0	Ļ	3	3	0	0	G	A	1	2	0	=	(8	25,	23	14
đ	1	1	1	2	0)		3	0	1		3	9	8	8
©	0	0	0	0	0										1,085 × 762

#합성곱층

#풀링층

#합성곱층+풀링층

합성곱층+풀링층+완전연결층+출력층

#텐서플로를 통한 cnn모델링

```
model= tf.keras.models.Sequential([
tf.keras.layers.Conv2D(input_shape=(100,100,3), activation='relu', kernel_size=(5,5), filters=32),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(activation='relu', kernel_size=(5,5), filters=64),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(activation='relu', kernel_size=(5,5), filters=64),
tf.keras.layers.Conv2D(activation='relu', kernel_size=(5,5), filters=64),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Platten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(2, activation='relu'),
tf.keras.Layers
```


Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 96, 96, 32)	2432
max_pooling2d (MaxPooling2 D)	(None, 48, 48, 32)	0
conv2d_1 (Conv2D)	(None, 44, 44, 64)	51264
max_pooling2d_1 (MaxPooling2D)	(None, 22, 22, 64)	0
conv2d_2 (Conv2D)	(None, 18, 18, 64)	102464
max_pooling2d_2 (MaxPooling2D)	(None, 9, 9, 64)	0
conv2d_3 (Conv2D)	(None, 5, 5, 64)	102464
max_pooling2d_3 (MaxPooling2D)	(None, 2, 2, 64)	0
flatten (Flatten)	(None, 256)	0
dense (Dense)	(None, 128)	32896
dense_1 (Dense)	(None, 64)	8256
dense_2 (Dense)	(None, 32)	2080
dense_3 (Dense)	(None, 2)	66

#Feature map

conv2d_input (InputLayer) [(None, 100, 100, 3)] 0 conv2d (Conv2D) (None, 96, 96, 32) 2432

->96*96의 feature map 32개

->5*5의 feature map 64개 (6번째 계층)