# CSC 212: Data Structures and Abstractions Trees

#### Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Fall 2020



### Trees

- · Lists, Stacks, Queues are linear data structures
- Trees allow for hierarchical relationships
  - ✓ nodes have **parent-child** relation





2

# Trees (jargon)



## Trees (jargon)

- Each node is either a leaf or an internal node
  - ✓ an internal node has one or more children
  - $\checkmark$  a leaf node (external node) has no children
- Nodes with the same parent are **siblings**



4

### Paths



A path from node  $v_0$  to  $v_n$  is a sequence of nodes  $v_0$ ,  $v_1$ ,  $v_2$ , ...,  $v_n$ , where there is an edge from one node to the next

The **descendants** of a node **v** are all nodes reached by a path from node **v** to the leaf nodes

The **ancestors** of a node  $\mathbf{v}$  are all nodes found on the path from the root to node  $\mathbf{v}$ 

## Depth and Height



The length of a **path** is the number of edges in the path

length = 3

The **depth** (level) of a node  $\mathbf{v}$  is the length of the path from the root node to  $\mathbf{v}$ 

The **height** of a node  $\mathbf{v}$  is the length of the path from  $\mathbf{v}$  to its deepest descendant

Tree Properties



The **depth of the tree** is the depth of deepest node

The **height of the tree** is the height of the root

6