Universidade do Minho Licenciatura em Engenharia de Eletrónica Industrial e Computadores

Práticas Laboratoriais III

Grupo n°18

Francisco Faria Costa (A96443)

João Pedro Machado da Silva (A95610)

Rui Pedro Fernandes Pedroso (A96868)

Tiago Leal Pereira (A96008)

Índice

Introdução	2
Simulação do circuito step up converter	26
Conclusão da montagem do step up converter	
Substituição do gerador de sinais por um microcontrolador	

Introdução

Neste relatório constará dividido em dois capítulos as etapas de construção do circuito de um conversor DC – DC desde a sua simulação (capítulo I) até à montagem dos vários constituintes do mesmo (capítulo II).

O capítulo I abrange apenas um único guia (guia 4) e teve a duração de duas aulas práticas enquanto que o capítulo II abrange os restantes quatro guias (do 5 até ao 8) e cada um deles teve a duração de uma aula prática.

Um step up converter (ou boost converter) é um conversor DC/DC que aumenta a tensão (enquanto diminui a corrente) de sua entrada (alimentação) para sua saída (carga). É uma classe de fonte de alimentação comutada (SMPS) contendo pelo menos dois semicondutores (um díodo e um transístor) e pelo menos um elemento de armazenamento de energia: um condensador, indutor ou os dois em combinação. Para reduzir o ripple de tensão, filtros feitos de condensadores (às vezes em combinação com indutores) são normalmente adicionados à saída do conversor (filtro do lado da carga) e à entrada (filtro do lado da alimentação).

Capítulo I

Simulação do circuito step up converter

Para o circuito representado na figura 1, respondemos às questões que se seguem, com o intuito de realizar uma análise detalhada.

Figura 1 – Circuito 1 em simulação (PSIM)

Figura 2 – Circuito 1 em simulação PSIM

1. Tensão e corrente na resistência e no MOSFET

- ➤ U_R = 99.952 V
- Arr IR = 9.9952 A
- \rightarrow U_{DS} = 0.0479 V
- \triangleright Ips = 9.9952 A

 $U_{entrada} = U_{R} + U_{DS} \Leftrightarrow 100 = 99.952 + 0.0479 \rightarrow U$

Como os componentes estão em série, a corrente é a mesma em todo o circuito: R = $U_R / I_R \Leftrightarrow I_R = 99.952 / 10 \Leftrightarrow I_R = 9.9952 A$

Todos os valores correspondem ao esperado.

2. Quando é que o MOSFET está ON e OFF?

- > O MOSFET está ON na zona de tríodo e funciona como um interruptor fechado (los máximo e Uos aproximadamente 0)
- ➤ O MOSFET está *OFF* na zona de corte e funciona como um interruptor aberto (los = 0 A e Uos máximo)

Figura 3 – Valores da tensão na resistência (*Vr*), valores da corrente no circuito (*Icircuito* e *Icircuito*2) e valores da tensão no MOSFET (*Vmosfet*), para uma frequência de 10kHz

- 1ª situação Após analisar os gráficos, podemos concluir que quando Vmosfet = 0, a corrente *lcircuito* (ou *lcircuito*2, visto ser o mesmo gráfico) é máxima, ou seja, a corrente que passa na resistência passa também no MOSFET.
- **2ª situação** Quando *Vmosfet* está, aproximadamente, a 100V, o valor da corrente e da tensão na resistência é 0.

Com isto, concluímos que na primeira situação o MOSFET está *ON* (tríodo) e na segunda situação o MOSFET está *OFF* (corte).

3. Valor médio da tensão aplicada à resistência, recorrendo aos blocos disponíveis no PSIM

Figura 4 – Valor médio da tensão na resistência (Vr) num período

O valor médio da tensão é 50.5V, muito próximo de 50V, num período.

Este valor não é 50V, pois a onda não é completamente quadrada vista ao pormenor, o que irá causar um declive menor na subida.

4. O que acontece se a frequência for mais elevada?

Figura 5 – Valores da tensão na resistência (*Vr*), valores da corrente no circuito (*Icircuito* e *Icircuito*2) e valores da tensão no MOSFET (*Vmosfet*), para uma frequência de 20kHz

Analisando os gráficos obtidos representados na figura 5 e comparando-os com os gráficos obtidos na figura 3, concluímos:

- Para o mesmo intervalo de tempo e para uma frequência maior do que 10kHz que, neste caso, corresponde a 20kHz, o gráfico apresenta mais ciclos pois o seu período diminui
- O valor da tensão na resistência, no MOSFET e da corrente do circuito mantêmse os mesmos

Figura 6 – Valor médio da tensão na resistência (Vr) num período

O valor médio da tensão na resistência, para uma frequência de 20kHz, irá ser 50.9V, muito próximo de 50V.

A alteração da frequência não irá influenciar em muito neste circuito, pois todos os valores irão manter-se iguais.

O que realmente irá influenciar no mesmo circuito é a alteração do *Duty-Cycle*, como iremos analisar a seguir.

5. O que acontece se o *duty-cycle* for mais elevado? E se for mais reduzido?

Se o *duty-cycle* for mais elevado:

- > As tensões e a corrente do circuito mantêm-se iguais
- O valor médio da tensão na resistência irá aumentar, pois o MOSFET passará a estar 75% do tempo de um período na zona de tríodo (ON). Neste caso, o valor médio aumentou para 75.2V, como podemos verificar na figura 7

Figura 7 – Valor médio da tensão na resistência (Vr) num período, para um duty-cycle de 75%

Se o *duty-cycle* for mais reduzido:

- > A corrente e as tensões do circuito mantêm-se iguais
- O valor médio da tensão na resistência irá diminuir, pois o MOSFET passará a estar 25% do tempo de um período na zona de tríodo (ON). Neste caso, o valor médio diminuiu para 25.7V, como podemos verificar na figura 8

Figura 8 – Valor médio da tensão na resistência (Vr) num período, para um duty-cycle de 25%

Para o circuito representado na figura 9, respondemos às questões que se seguem, com o intuito de realizar uma análise detalhada.

Figura 9 – Step-up converter

1. Tensão de entrada e de saída

Analisando os gráficos da figura 11, conseguimos associar o nome deste circuito à sua função, pois o mesmo assume uma tensão de entrada que, neste caso, é 100V e na sua saída obtemos uma tensão de 198V, aproximadamente o dobro da tensão de entrada.

Os resultados obtidos nesta simulação estão de acordo com o esperado.

Figura 10 – Tensão de entrada (Ventrada) e tensão de saída (Vsaida) do Step-up converter

Figura 11 - Onda da tensão de entrada (Ventrada) e da tensão de saída (Vsaida) do Step-up

2. Corrente de entrada e de saída

Analisando a figura 13, sabemos que a corrente de entrada é 3.84A e a de saída é 1.98A.

Os resultados estão de acordo com o esperado pois:

- A potência de entrada do circuito tem de ser igual à potência de saída do circuito
- Como este circuito tem uma tensão de entrada de 100V e uma tensão de saída de 198V, para a potência ser a mesma, a corrente na saída tem de diminuir em relação à corrente de entrada

Figura 12 - Corrente de entrada (lentrada) e corrente de saída (lsaida) do Step-up converter

Figura 13 - Onda da corrente de entrada (lentrada) e da corrente de saída (lsaida) do Step-up

3. Alterando o valor da bobina

Figura 14 – Ondas da tensão e da corrente de entrada e de saída do *Step-up converter,* para L = 0.5mH

Figura 15 – Ondas da tensão e da corrente de entrada e de saída do Step-up converter, para L =

Quando alteramos o valor do indutor para um valor inferior ao inicial, mantendo todas as outras condições iniciais, podemos afirmar que:

- Quanto menor o valor do indutor, maior a corrente de entrada e de saída
- Quanto menor o valor do indutor, maior a tensão de saída

4. Alterando a frequência do MOSFET

Figura 16 – Ondas da tensão e da corrente de entrada e de saída do *Step-up converter*, para f = 20kHz

Figura 17 – Ondas da tensão e da corrente de entrada e de saída do *Step-up converter*, para f = 40kHz

Quando alteramos o valor da frequência para um valor superior ao inicial, mantendo todas as outras condições iniciais, podemos afirmar que:

Quanto maior a frequência, menor o ripple nas ondas da tensão e da corrente

Esperava-se que a tensão à saída diminuísse, pois quanto maior a frequência menor a reatância do condensador. Esta última condição, implica que, para uma mesma corrente, a tensão no condensador diminua, obrigando a tensão na carga a diminuir igualmente. No entanto, no simulador PSIM a queda de tensão na carga aumentou não substancialmente.

Figura 18 – Tensão de saída do *Step-up converter*, para f = 20kHz

Figura 19 – Tensão de saída do *Step-up converter*, para f = 40kHz

5. Alterando o duty-cycle do MOSFET

Figura 20 – Ondas da tensão e da corrente de entrada e de saída do *Step-up converter,* para D = 50%

Figura 21 – Ondas da tensão e da corrente de entrada e de saída do *Step-up converter*, para D = 25%

Quando alteramos o valor de *duty-cycle* para um valor inferior ao inicial, mantendo todas as outras condições iniciais, podemos afirmar que:

Quanto menor o duty-cycle, menor a corrente e a tensão, tanto de entrada como de saída

6. Alterando o valor do condensador

Figura 22 – Ondas da tensão e da corrente de entrada e de saída do Step-up converter, para C = 5uF

Figura 23 – Ondas da tensão e da corrente de entrada e de saída do *Step-up converter,* para C = 25uF

Quando alteramos o valor do condensador para um valor diferente do inicial, mantendo todas as outras condições iniciais, podemos afirmar que:

Quanto maior o valor do condensador, maior a corrente de entrada e menor o ripple na tensão de saída. A tensão de saída e a corrente de saída não aumentam substancialmente.

7. Alterando o valor da carga

Figura 24 – Ondas da tensão e da corrente de entrada e de saída do *Step-up converter,* para R =

Figura 25 – Ondas da tensão e da corrente de entrada e de saída do Step-up converter, para R = 200Ω

Quando alteramos o valor da carga para um valor diferente do inicial, mantendo todas as outras condições iniciais, podemos afirmar que:

Quanto maior a carga, menor as variações da corrente de entrada e de saída, menor o ripple na tensão de saída e menor as variações da mesma

Conversor sem carga em paralelo com o condensador, o que acontece?

- > Se um Step-up converter não possuir uma carga agregada, o condensador continuará a carregar infinitamente com a carga recebida pelo indutor, até chegar a um ponto em que algum componente danificar-se-á.
- Com efeito, é necessário colocar sempre uma carga em paralelo com o condensador de um conversor CC-CC comutado.

Se o *duty-cycle* for muito elevado, haverá algum problema com o circuito?

Se o duty-cycle do MOSFET for 100% (ou um valor muito próximo do mesmo), a tensão de saída tenderá para infinito, bem como a corrente de entrada, o que fará com que a certo ponto algum componente se danifique.

Tensão de entrada, tensão de saída e *duty-cycle*. Estarão estes três termos relacionados?

- Para uma mesma tensão de entrada, se o *duty-cycle* for menor, a tensão de saída terá menos *ripple*.
- No entanto, se o *duty-cycle* for maior, a tensão de saída terá valores significativamente maiores.

Se usar uma lâmpada como carga e formos alterando o *duty-cycle* deste conversor, o que acontecerá?

Se for usada uma lâmpada como carga, quanto maior for o *duty-cycle* no MOSFET, maior será a intensidade de brilho da lâmpada.

Capítulo II

Montagem do circuito do driver

Depois de efetuada a simulação do circuito no guia anterior chega a hora de o implementar em ambiente laboratorial. Para esse efeito foram usados alguns componentes, visíveis na fig.26:

- Duas resistências (R1 e R2);
- Um transístor BC546 (transístor NPN);

Foram também usados equipamentos do laboratório, tal como:

- Uma fonte de alimentação DC;
- Um gerador de sinais;

Na implementação do guia, com vista a substituir o driver presente na simulação do circuito no ambiente de simulação PSIM, foi-nos sugerida a troca por um transístor bipolar de junção do tipo NPN capaz de funcionar como um interruptor elétrico, operando assim nas zonas de saturação (ON) e corte (OFF). Para isso foi necessário calcular o valor das resistências para que o transístor funcionasse como esperado. Com base no datasheet do BC546:

Fig. 26 – Esquema do circuito do driver e dimensionamento das resistências

No PSIM:

Fig. 27 – Esquema do circuito no PSIM

Nota: No gerador de ondas quadradas o valor 10V representa a tensão pico a pico, o que significa que a amplitude da onda é de 5V.

Registos dos sinais de saída, para uma amplitude do sinal de entrada de 5V:

Para uma frequência de 5kHZ:

Fig. 28 - Duty-Cycle de 18.2%

Fig.29 - Duty-Cycle de 25%

Fig.30 – Duty-Cycle de 50%

Fig.31 – Duty-Cycle de 87.6%

Para uma frequência de 10kHZ:

Fig.32 – Duty-Cycle de 18.2%

Fig.33 – Duty-Cycle de 25%

Fig.34 - Duty-Cycle de 50%

Fig.35 – Duty-Cycle de 87.6%

Para uma frequência de 25kHZ:

Fig.36 – Duty-Cycle de 18.2%

Fig.37 - Duty-Cycle de 25%

Fig.38 – Duty-Cycle de 50%

Fig.39 – Duty-Cycle de 87.6%

Para uma frequência de 50kHZ:

Fig.40 – Duty-Cycle de 18.2%

Fig.41 – Duty-Cycle de 25%

Fig.42 – Duty-Cycle de 50%

Fig.43 – Duty-Cycle de 87.6%

Conclusão da montagem do circuito de comando

Depois de efetuada a montagem do circuito do driver, avançou-se para a montagem final do circuito de comando do step up converter (driver do guia anterior mais o circuito do MOSFET). Para esse efeito foram usados alguns novos componentes, visíveis na fig.44, tais como:

- Uma resistência de carga (150 Ω 20 W);
- Uma resistência R_G (10 Ω 0.25 W);
- Um MOSFET (TOSHIBA TK40E10N1);

Foram também usados equipamentos do laboratório, tais como:

- Uma fonte de alimentação DC;
- Um gerador de sinais;

Na implementação do guia, montados junto do driver desenvolvido no guia anterior o restante do circuito correspondente ao step up converter (neste caso, o MOSFET e a resistência de carga de 150 Ω - 20 W, representada na fig.44 por R₃).

Fig.44 – Esquema do circuito de comando

☆ ○

No PSIM:

Fig.45 – Esquema do circuito de comando no PSIM

Posteriormente, colocou-se 30 V no coletor do MOSFET e verificou-se que na resistência de carga passava uma corrente de 0.55 A. Ou seja, a potência máxima que passaria na carga seria de Pmáx = 30 * 0.55 = 16.5 W e, como a resistência de carga utilizada tem uma potência nominal de 20W, conclui-se que era adequada para essa situação. No entanto, nem todas as resistências de 150 Ω poderiam ser usadas. Por exemplo: uma resistência do mesmo tipo da resistência R_G não poderia ser usada, pois essa só aguenta com potências até 0.25 W.

Registos dos sinais de saída, para uma amplitude do sinal de entrada de 5V:

Frequência de 10kHz:

Fig.46 – Duty-Cycle de 35%

Fig.47 – Duty-Cycle de 50%

Fig.48 – Duty-Cycle de 65%

Frequência de 25kHz:

Fig.49 – Duty-Cycle de 35%

Fig.50 – Duty-Cycle de 50%

Frequência de 25kHz e Duty-Cycle – 65%:

Fig.51 – Duty-Cycle de 65%

Frequência de 45kHz:

Fig.52 – Duty-Cycle de 35%

Fig.53 – Duty-Cycle de 50%

Fig.54 - Duty-Cycle de 65%

De modo a complementar o conhecimento adquirido através da análise dos sinais de entrada e de saída no osciloscópio e da montagem dos circuitos, respondeu – se às seguintes questões:

• Se a carga R, for uma resistência de aquecimento de um processo de eletrónica industrial, o que acontece se variarmos o duty-cycle?

R: Ao aumentar-mos o duty-cycle na saída, aumentamos a potência na carga, ou seja, a resistência de aquecimento liberta mais calor; se diminuirmos o duty-cycle na saída, a potência na carga diminui e a resistência liberta menos calor.

 Em vez da carga R, podemos usar uma lâmpada (LED)? O que acontece se variarmos o duty-cycle?

R: Seria possível, desde que se acrescentasse uma resistência que permitisse ao Led receber apenas entre 1.8 e 2.2V. Se o duty-cycle aumentar, o led brilha com mais intensidade; se o duty-cycle diminuir, o led brilha com menor intensidade ou pode até mesmo não brilhar (dependendo da gama de frequências que se usarem).

Conclusão da montagem do step up converter

Depois de efetuada a montagem do step up converter, avançou-se para a montagem do circuito step up converter diferente do anterior. Este novo circuito incluía o que foi desenvolvido nos guias anteriores (driver, que corresponde ao circuito de comando) mais o circuito de potência (inclui o MOSFET, o condensador, o díodo e a indutância). Por motivos de proteção do circuito, adicionou-se um díodo zener e uma resistência de $10k\Omega$ entre o circuito de potência e o circuito de comando. Foram usados alguns novos componentes relativamente aos circuitos anteriores, visíveis na fig.x, tais como:

- Condensador C (10µF);
- Indutância L (1 mH);
- Díodo (SB5100);
- Resistência (10kΩ 0.25W);
- Díodo zener (16V);

Foram também usados equipamentos do laboratório, tais como:

- Uma fonte de alimentação DC;
- Um gerador de sinais;

Na implementação do guia, adicionou-se aos circuitos montados nos guias anteriores os novos componentes e obteve-se o circuito da fig.x.

Fig.55 – Esquema do circuito step up converter

No PSIM:

Fig.56 - Esquema do circuito step up converter no PSIM

Registos dos sinais de saída, para uma amplitude do sinal de entrada de 5V:

Nota: As figuras de simulação têm o sinal de pwm aplicado na gate do mosfet, as figuras dos resultados registados no osciloscópio têm o sinal de pwm do gerador de sinais.

Fig.57 – Imagem do PSIM para um duty-cycle de 30% e uma frequência de 10KHz

Fig.58 – Imagem do osciloscópio para um duty-cycle de 30% e uma frequência de 10KHz

Fig.59 – Imagem do PSIM para um duty-cycle de 50% e uma frequência de 10KHz

Fig.60 – Imagem do osciloscópio para um duty-cycle de 50% e uma frequência de 10KHz

Fig.61 – Imagem do PSIM para um duty-cycle de 70% e uma frequência de 10KHz

Fig.62 – Imagem do osciloscópio para um duty-cycle de 70% e uma frequência de 10KHz

Fig.63 – Imagem do PSIM para um duty-cycle de 30% e uma frequência de 25KHz

Fig.64 – Imagem do osciloscópio para um duty-cycle de 30% e uma frequência de 25KHz

Fig.65 – Imagem do PSIM para um duty-cycle de 50% e uma frequência de 25KHz

Fig.66 – Imagem do osciloscópio para um duty-cycle de 50% e uma frequência de 25KHz

Fig.67 – Imagem do PSIM para um duty-cycle de 70% e uma frequência de 25KHz

Fig.68 – Imagem do osciloscópio para um duty-cycle de 70% e uma frequência de 25KHz

Fig.69 – Imagem do PSIM para um duty-cycle de 30% e uma frequência de 50KHz

Fig.70 – Imagem do osciloscópio para um duty-cycle de 30% e uma frequência de 50KHz

Fig.71 – Imagem do PSIM para um duty-cycle de 50% e uma frequência de 50KHz

Fig.72 – Imagem do osciloscópio para um duty-cycle de 50% e uma frequência de 50KHz

Fig.73 – Imagem do PSIM para um duty-cycle de 70% e uma frequência de 50KHz

Fig.74 – Imagem do osciloscópio para um duty-cycle de 70% e uma frequência de 50KHz

Substituição do gerador de sinais por um microcontrolador

Foi feita a implementação do controlo digital do boost converter. O controlo foi conseguido, assim como recorrendo ao gerador de sinais, através da variação do PWM e foi feito com recurso a um microcontrolador (Atmega328p), presente na plataforma Arduino Uno, que devido à grande variedade de bibliotecas permitiu simplificar bastante a implementação do código.

Fig.75 - Circuito a ser simulado.

Fig.76 – Simulação para duty-cycle de 25%.

Fig.77 – Simulação para duty-cycle de 50%.

Fig.78 – Simulação para duty-cycle de 75%.

Em suma, o programa lê o valor do potenciómetro e atualiza a função que gera o pwm e não permite que este seja menor que 30% e maior que 70%. Foi usado um botão para selecionar a frequência, cujos valores são: 5khz, 10khz, 25khz e 50khz. Foi também implementada uma interface gráfica com recurso a um display OLED que mostra as informações relativas ao duty-cycle e à frequência de output do microcontrolador.

Fig.79 - Circuito montado na breadboard com valor de pwm de 52% e frequencia de 50khz

Fig.80 – Circuito montado na breadboard com valor de pwm de 30% e frequencia de 25khz


```
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
```

Fig.81 – Bibliotecas usadas para o display OLED

#include "TimerOne.h"

Fig.82 – Biblioteca usada para gerar o pwm

Funções usadas para o pwm Timer1.pwm(); Timer1.setPeriod();