

USN:												
------	--	--	--	--	--	--	--	--	--	--	--	--

RV University

School of Computer Science and Engineering

BTech (Hons) Degree Examination – Set- 2

Semester : VI

Course Code: CS3403

Course Title: Network Security

Duration : 2 hours Max. Marks: 30

Instructions to students:

Answer all the questions in Part A. Answer any two questions in Part B.

Sl. No.	PART A (12 * 2 marks = 24 marks)	Mar ks	L1- L6	со
1.	Describe how cloud security challenges impact the protection of sensitive data.	2	L2	CO5
2.	Differentiate between the different cryptographic techniques .	2	L3	CO4
3.	Describe confidentiality and explain how different threats can compromise the confidentiality of sensitive information.	2	L2	CO4
4.	Explain the importance of QoS parameters in maintaining network performance.	2	L2	CO3
5.	Apply your understanding of RPC and describe the steps for implementing the communication between the client and the server using RPC .	2	L3	CO3
6.	Highlight the protection AH provides in IPSec .	2	L2	CO5
7.	Explain briefly about each of the different types of NAT implementations.	2	L2	CO3
8.	Why is a new IPv6 standard required while the IPv4 is in operation? Give three key features of IPv6.	2	L3	CO2
9.	Demonstrate IGMP 's operations with an example.	2	L3	CO2
10.	Explain the features of BGP and how does it help in routing over the Internet.	2	L3	CO2
11.	Describe the motivation behind moving from the traditional vertical layers to horizontal layers in providing networking solutions due to proliferation of hyperscale data centres.	2	L2	CO2

	Assume a Distance Vector Algorithm is running in the network below. What is the hop distance after the convergence between the hosts B and D . Give the path taken (list the routers) by the packets between these two hosts. Note : Assume that lower Router name is preferred when the distance is the same between two hosts while a path needs to be picked, i.e., RB < RC.			
12.	Host D Host C	2	L3	CO3

Sl. No.	PART B – Answer any two questions (2 * 3 marks = 6 marks)	Marks	L1- L6	CO
13.	Based on the TCP message exchanges between two hosts shown, during the middle of an established connection, answer the following: a) Assuming the Host B is sending its own data along with ACK after successfully receiving the previous data from the Host A, what should the value of ACK coming from Host B? b) What is the ACK going from Host A to Host B at the end? c) Assuming that the ISNs chosen by both the hosts happen to be the same, in which direction more data has flown between them at the end of this current data transfer? Host A Seq=42, ACK=79, Data len = 10 Seq=52, ACK=? Data len = 0 Host B	3	L4	CO1
14.	Assume both the links between F and G have failed. Assume the DVA is running on this network and it has converged after the failures of both the links. Assume the cost of each link is set to 3. Give the Routing Table at node F.	3	L4	CO3

Answer the following questions based on the network below: 3 CO₃ **L4** a) Give the subnet mask and default gateway set at Host A, assuming that the addresses given here are classful. b) When an IP packet from Host B addressed to Host A is moving from the Host B to the Gateway, MAC addresses of which are the devices will be filled into the Ethernet frame? Note: Mention the contents of both the source and destination MAC address fields. c) What is the network ID of the Host A, if the addresses given are classful? Host A Host B IP: 10.10.10.2 IP: 192.168.100.27 2 192.168.100.1 Gateway 10.10.10.1

Course Outcomes

- 1. Analyze the working principles and characteristics of TCP and its role in providing reliable networking applications.
- 2. Analyze the implementation details of RIP and OSPF routing protocols adapted by large enterprise networks.
- 3. Explain various multimedia transport protocols and the need for QoS in networks
- 4. Describe the working principles and the purpose of cryptographic algorithms used to provide secure communication
- 5. Apply IP security and Web security concepts in real-life scenarios for creating secure networks

	Marks Distribution												
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	CO5			
0	12	12	9	0	0	3	8	14	4	4			

Signature of Paper Setter

Signature of Scrutiniser

Signature of the Dean

USN:												
------	--	--	--	--	--	--	--	--	--	--	--	--

RV University

School of Computer Science and Engineering

BTech (Hons) Degree Examination

Set-2 Answer Keys

Semester : VI

Course Code: CS3403

Course Title : Network Security

Duration : 2 hours Max. Marks: 30

Instructions to students:

Answer all the questions in Part A. Answer any two questions in Part B.

Sl. No.	PART	A (12 * 2 marks = 24 marks)	Marks	L1- L6	CO
	Challenge	Explanation			
	Loss of Control	Data and infrastructure are managed by a third party.			
1.	Shared Technology Vulnerabilities	Multi-tenancy increases risk if virtualization/isolation fails.	2	L2	CO5
	Data Breaches and Misconfigurations	One of the top causes of cloud breaches (e.g., misconfigured S3 buckets).		22	
	Insider Threats	Threats from employees or administrators inside the cloud organization.			
	Compliance Complexity	Different countries have different data privacy and security laws.			
2.	 Example: AES (Advanced Standard). Pros: Fast and efficient for Cons: Key distribution is shared between sender and Asymmetric Encryption (Description: Uses a pair of private key (for decryption) private key is kept secret. Example: RSA (Rivest-SI Cryptography). Pros: Solves the key distrito encrypt, and the private is cons: Slower than symmetric algorithms. 	a challenge since the same key must be securely receiver. Public Key Cryptography) of keys: a public key (for encryption) and a). The public key is shared openly, while the hamir-Adleman), ECC (Elliptic Curve libution problem. Only the public key is needed key is used for decryption. etric encryption due to the complexity of the	2	L3	CO4
3.	by unauthorized individual view or use the data. Two types of attacks threat	ecting sensitive information from being accessed s. It ensures that only authorized people can en the confidentiality of information rized access to or interception of data.	2	L2	CO4

	Traffic analysis refers to obmonitoring online traffic.	taining some other type of information by			
		metrics according to application needs.			
	Bandwidth Ma	aximum rate of data transfer over a network path			
4.	Latency (Delay) Tir	ne taken for a packet to travel from source to destination	2	L2	CO3
	Jitter Va	riation in delay for packet delivery			
	Packet Loss Pa	ckets that are dropped and never reach their destination			
5.	RPC is not a protocol; it is a Here, an application program for whether it is local or rem When the procedures being a in an object-oriented language Invocation (RMI).	sage to a server.	2	L3	CO3
6.	provide additional protection authentication, and optional are given (1 mark). If the be AH calculates a cryptograph	r (0.5 mark), added to the IP packets to in terms of data integrity, origin anti-replay protection for IP packets. Any two elow information is also given – full 2 marks ic hash over the IP header fields and its ting hash into the AH header.	2	L2	CO5
7.	Static, dynamic and port bas Static: Maps one private IP Dynamic: Uses a pool of pu dynamically Port based: Also called NA	ed. – 1 mark	2	L2	CO3
8.	Depletion of IPv4 due to unp new IPv6 standard with enor are: Address Space Expansion	precedented expansion of Internet needed a rmous address space. 1 mark, Key features on, simpler header format, built-in security approved support for mobility and multicast and	2	L3	CO2

9.	IGMP: Internet Group Management Protocol – 0.5 marks , which helps in managing the IP multicast groups and in routing – 0.5 marks . Hosts can register for a multicast stream by joining the group and leave the group as per user needs. IGMP helps query messages to discover the registered devices and optimize usage of network bandwidth by delivering the packets efficiently . – 1 mark	2	L3	CO2
10.	The Border Gateway Protocol (BGP) is the inter-domain routing protocol of the Internet. It is the protocol that connects tens of thousands of networks in the Internet to form one big interconnected network. It is the only widely used inter-domain routing protocol in the Internet and is therefore very important for the correct functioning of the Internet.	2	L3	CO2
11.	Due to massive hyperscale data centres the companies owning them wanted to have increased independence of managing the applications running on the networking devices and the integration of hardware and system software on the devices from different vendors, instead of having them all from the same vendor as in the traditional networking solutions. This paradigm shift moved from the vertical layers to horizontal layers of HW, OS and Apps.	2	L3	CO2
12.	RC→RD→RG and the distance is 3.	2	L3	CO2

Sl. No.	PA	ART B – A	nswer any	two questions (2 * 3 marks = 6 marks)	Marks	L1- L6	СО
13.	a) The AC	K will be	Seq = 42 fr	rom Host A + data len 10, thus 52.	3	L4	CO1
	b) The AC	K is Seq =	= 79 from I	Host B + data len 5, thus 84			
	c) Since th	e Host A	is acknowl	edging upto seq number 84 have been			
	received, r	nore data	has flown t	from Host B to Host A.			
	Note: If th	e answer s	says that si	nce nothing can be said about the			
	wraparoun	d of Seq N	Numbers. tl	hat could have happened on either end of the			
	connection	, it is not					
	of data tha	t has flow					
14.	After the line be:	nks betwee	ave failed the converged RT at Node F would	3	L4	CO2	
	below.		r F after the network has converged is given				
				f the cost of each link as 3 and all other entries e costs which are given as half of the correct			
	answers, th						
	Reduce 0.2	5 marks fo	r every othe	r wrong entry. Do not reduce any marks if rows			
	are intercha			e correct.			
	Destination	Cost	Next Hop	В			
	A B	<u>3</u>	Α	(C)			
	С	6	A				
	D	9	A	E			
	E	6	A				
	G	12	Α	(F) (G)			

15.	a) Subnet mask: 255.0.0.0 because 10.10.10.0 is a Class A address. And	3	L4	CO3
	default Gateway: 10.10.10.1			
	b) Source MAC: MAC address of Host B and Destination MAC is the			
	MAC address of the Gateway interface 2.			
	c) 10.0.0.0 is the Network ID of the Host A.			

Course Outcomes

- 1. Analyze the working principles and characteristics of TCP and its role in providing reliable networking applications.
- 2. Analyze the implementation details of RIP and OSPF routing protocols adapted by large enterprise networks.
- 3. Explain various multimedia transport protocols and the need for QoS in networks
- 4. Describe the working principles and the purpose of cryptographic algorithms used to provide secure communication
- 5. Apply IP security and Web security concepts in real-life scenarios for creating secure networks

	Marks Distribution												
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	CO5			
0	12	12	9	0	0	3	8	14	4	4			

Signature of Paper Setter

Signature of Scrutiniser

Signature of the Dean