Inferência para a média de uma distribuição Normal com variância desconhecida: O modelo Normal-NormalGama

Definição do Problema

Considere como antes $X_1, \ldots, X_n \mid \mu, \sigma^2 \stackrel{iid}{\sim} N(\mu, \sigma^2)$, mas agora tanto a média μ quanto a variância σ^2 são desconhecidas, i.é. o parâmetro $\theta = (\mu, \sigma^2)$ tem dimensão 2. Usualmente o foco da inferência é o parâmetro μ e σ^2 é chamado um parâmetro nuissance ou de estorvo.

Como vimos na Seção anterior, a notação fica mais simples quando o problema é parametrizado em termos da precisão $\phi = \sigma^{-2}$, de forma que pensamos numa amostra $X_1, \ldots, X_n \mid \mu, \phi \stackrel{iid}{\sim} N(\mu, \phi^{-1})$.

É natural que especificar uma distribuição a priori bivariada $p(\mu, \phi)$ é mais difícil que especificar uma univariada, como foi o caso de $p(\theta)$ na Seção ?? ou de $p(\mu)$ na Seção 1.1. Uma opção conveniente é partir o problema em "pedazos" univariados, especificando sucessivamente $p(\mu \mid \phi)$ e $p(\phi)$ (essa ideia de "dividir para conquistar" é muito útil em modelagem e, de fato, vamos usar ela extensivamente para abordar o problema de modelos hierárquicos nas próximas unidades).

Calculando a condicional \mu | \phi

Começamos assim pela distribuição a priori condicional de $\mu \mid \phi$. Quando condicionamos no valor de ϕ (ou, equivalentemente, no valor de $\sigma^2 = \phi^{-1}$), o problema passa a ser o que estudamos na Seção anterior. Dessa forma, sabemos que a distribuição conjugada $p(\mu, \phi)$ deve satisfazer que a condicional de $\mu \mid \phi$ deve ser Normal e também que a distribuição a posteriori condicional de $\mu \mid x_1, \dots, x_n; \phi$ é Normal com média e variância dadas pelas equações (2) e (3).

Suponha que parametrizamos a distribuição a priori condicional de forma que $\mu \mid \phi \sim \text{Normal}(\mu_0, (\lambda_0 \phi)^{-1})$. Substituindo σ^2 por ϕ^{-1} e τ^2 por $(\lambda_0 \phi)^{-1}$ nas equações (2) e (3), o comentário anterior implica que, a posteriori, $\mu \mid \phi, x_1, \dots, x_n \sim \text{Normal}(\mu^*, (\lambda^* \phi)^{-1})$, onde

$$\mu^* = \frac{\lambda_0 \,\mu_0 + n \,\bar{x}}{\lambda_0 + n} \,\lambda^* = \lambda_0 + n$$

Dessa forma, resolvemos o problema da distribuição a priori condicional de $\mu \mid \phi$ e também o de calcular a posteriori condicional de $\mu \mid \phi, x_1, \dots, x_n$.

Calculando a marginal de \phi

Resta especificar a distribuição a priori marginal de ϕ e calcular a distribuição a posteriori também marginal de $\phi \mid x_1, \dots, x_n$. Por enquanto, considere o caso com uma priori $p(\phi)$ geral.

Lembre primeiro que $[\bar{X} = \sum_{i=1}^{n} X_i, S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2]$ é um estatístico suficiente e que, dado o par (μ, ϕ) , \bar{X} e S^2 são independentes com $\bar{X} \mid \mu, \phi \sim \text{Normal}[\mu, (n \phi)^{-1}]$ e $\phi S^2 \mid \mu, \phi \sim \chi_{n-1}^2 \equiv \text{Gama}(\frac{n-1}{2}, \frac{1}{2})$. Logo. a verossimilhança é $p(x_1, \dots, x_n \mid \mu, \phi) \propto p(\bar{x}, S^2 \mid \mu, \phi) \propto p(\bar{x} \mid \mu, \phi) p(S^2 \mid \mu, \phi)$ $\propto \phi^{1/2} \exp\left\{-\frac{n \phi}{2} (\bar{x} - \mu)^2\right\} \times \phi^{(n-1)/2} \exp\left\{-\frac{\phi}{2} s^2\right\}$ $\propto \phi^{n/2} \exp\left\{-\frac{\phi}{2} [s^2 + (\mu - \bar{x})^2]\right\}.$

Chegando à conjunta de \mu e \phi

Por outra parte, como especificamos que $\mu \mid \phi \sim \text{Normal}(\mu_0, (\lambda_0 \phi)^{-1})$, segue que a densidade a priori conjunta é

$$p(\mu, \phi) = p(\phi) p(\mu | \phi) \propto p(\phi) \phi^{1/2} \exp\left\{-\frac{\phi}{2} \lambda_0 (\mu - \mu_0)^2\right\}.$$
 (9)

$$p(\mu, \phi \mid x_1, \dots, x_n) \propto p(\mu, \phi) p(x_1, \dots, x_n \mid \mu, \phi)$$

$$\propto p(\phi) \,\phi^{(n+1)/2} \,\exp\left\{-\frac{\phi}{2} \left[s^2 + (\mu - \bar{x})^2 + \lambda_0 \,(\mu - \mu_0)^2\right]\right\} \,.$$
 (10)

Finalmente, usando o fato que $\mu \mid \phi, x_1, \dots, x_n \sim \text{Normal}(\mu^*, (\lambda^* \phi)^{-1}),$

A posteriori marginal de \phi

$$p(\phi \mid x_1, \dots, x_n) = \frac{p(\mu, \phi \mid x_1, \dots, x_n)}{p(\mu \mid \phi, x_1, \dots, x_n)}$$

$$\propto p(\phi) \frac{\phi^{(n+1)/2} \exp\left\{-\frac{\phi}{2} \left[s^2 + (\mu - \bar{x})^2 + \lambda_0 (\mu - \mu_0)^2\right]\right\}}{\phi^{1/2} \exp\left\{-\frac{\phi}{2} \lambda^* (\mu - \mu^*)^2\right\}}$$

$$\propto p(\phi) \phi^{n/2} \exp\left\{-\frac{\phi}{2} \left[s^2 + (\mu - \bar{x})^2 + \lambda_0 (\mu - \mu_0)^2 - \lambda^* (\mu - \mu^*)^2\right]\right\}$$
Veja o núcleo da Gama ->
$$\propto p(\phi) \left[\phi^{n/2} \exp\left\{-\frac{\phi}{2} \left[s^2 + \frac{n \lambda_0}{\lambda_0 + n} (\bar{x} - \mu_0)^2\right]\right\}\right] \quad (11)$$

(para o cálculo acima, da equação é útil observar que o termo da esquerda depende somente de ϕ , enquanto o da direita depende também de μ . A equação 11 é portanto uma identidade que vale para todo μ . Em termos práticos, na direita é possível substituir μ por qualquer valor e o resultado final deveria ser o mesmo. Fazer a substituição $\mu = \bar{x}$ ou $\mu = \mu_0$ facilita o cálculo).

Quais as regras de atualização?

Proposição 1. Suponha que $X_1, \ldots, X_n \mid \mu, \phi \stackrel{iid}{\sim} \text{Normal}(\mu, \phi^{-1})$ e, a priori, $\mu \mid \phi \sim Normal(\mu_0, (\lambda_0 \phi)^{-1})$ e $\phi \sim \text{Gama}(\alpha_0, \beta_0)$. Então, a posteriori, $\mu \mid \phi, x_1, \ldots, x_n \sim Normal(\mu_0, (\lambda_0 \phi)^{-1})$

Normal $(\mu^*, (\lambda^* \phi)^{-1})$ $e \phi \mid x_1, \dots, x_n \sim \text{Gama}(\alpha^*, \beta^*)$, onde $\mu^* e \lambda^*$ são dados nas equações (6) e (7) e

$$\alpha^* = \alpha_0 + \frac{n}{2} \,, \tag{12}$$

$$\beta^* = \beta_0 + \frac{1}{2} s^2 + \frac{n \lambda_0}{2 (\lambda_0 + n)} (\bar{x} - \mu_0)^2.$$
 (13)

Prova da regra de atualização

Demonstração. Como foi explicado acima das equações (6) e (7), a parte referente à $p(\mu \mid \phi, x_1, \dots, x_n)$ é consequência da Seção 1.1. Para achar a distribuição a posteriori marginal de ϕ , substitua $p(\phi) \propto \phi^{\alpha-1} e^{-\beta_0 \phi}$ na equação (11) para obter que

$$p(\phi \mid x_1, \dots, x_n) \propto \phi^{\alpha_0 + n/2 - 1} \exp \left\{ -\phi \left[\beta_0 + \frac{1}{2} s^2 + \frac{n \lambda_0 (\bar{x} - \mu_0)^2}{2(\lambda_0 + n)} \right] \right\},$$
 (14)

o que implica que $\phi \mid x_1, \dots, x_n \sim \text{Gamma}(\alpha^*, \beta^*)$

Posteriori Marginal de \mu

Como mencionamos no inicio desta Seção, usualmente o interesse é no parâmetro μ . Nesse caso, precisamos da distribuição a posteriori marginal $p(\mu \mid x_1, \dots, x_n)$.

Segue da proposição 1 que, dado $x_1, \ldots, x_n, Z = (\lambda^* \phi)^{1/2} (\mu - \mu^*)$ segue uma distribuição Normal Padrão. Considere então a distribuição a posteriori conjunta de (Z, ϕ) . O Jacobiano da transformação de $(Z, \phi) \mapsto (\mu = \mu^* + (\lambda^* \phi)^{-1/2} Z; \phi)$ é $(\lambda^* \phi)^{-1/2} \propto \phi^{-1/2}$. Logo, a densidade a posteriori de (Z, ϕ) é

$$p(Z, \phi \mid x_1, \dots, x_n) \propto p(\mu, \phi \mid x_1, \dots, x_n) \left| \frac{\partial (\mu, \phi)}{\partial (Z, \phi)} \right|$$

$$\propto p(\mu \mid \phi, x_1, \dots, x_n) p(\phi, x_1, \dots, x_n) \phi^{-1/2}$$

$$\propto \phi^{1/2} \exp \left\{ -\frac{\lambda^* \phi}{2} (\mu - \mu^*)^2 \right\} \times \phi^{\alpha^* - 1} \exp \{ -\beta^* \phi \} \times \phi^{-1/2}$$

$$\propto \exp \left\{ -\frac{1}{2} z^2 \right\} \times \phi^{\alpha^* - 1} \exp \{ -\beta^* \phi \}.$$

Posteriori Marginal de \mu

Logo, a posteriori, Z e ϕ são independentes com $Z \mid x_1, \ldots, x_n \sim \mathrm{N}(0,1)$ e, como já sabíamos, $\phi \mid x_1, \ldots, x_n \sim \mathrm{Gama}(\alpha^*, \beta^*)$. Das propriedades da distribuição Gama sabemos que isso implica que $2\beta^* \phi \mid x_1, \ldots, x_n \sim \mathrm{Gama}(\alpha^*, 1/2)$, também denominada de distribuição χ^2 com $(2\alpha^*)$ graus de liberdade. Da definição da distribuição t de Student como a razão entre duas variáveis aleatórias independentes, uma com distribuição Normal(0,1) e a outra sendo a raiz quadrada de uma χ^2_m dividida pelos graus de liberdade m, segue que

$$\sqrt{\frac{\lambda^* \alpha^*}{\beta^*}} (\mu - \mu^*) = \frac{Z}{\sqrt{2 \beta^* \phi/(2 \alpha^*)}} | x_1, \dots, x_n \sim t_{2 \alpha^*}.$$

Note que, como a distribuição a priori a a posteriori pertencem a mesma família Normal-Gama, um resultado semelhante deve valer também para a distribuição a priori marginal de μ . É conveniente escrever o resultado para uso futuro (veja, por exemplo, a subseção 1.2.3).

Resumindo num lema

Lema 2. Suponha que $\mu \mid \phi \sim Normal(\mu_0, (\lambda_0 \phi)^{-1})$ e $\phi \sim Gama(\alpha_0, \beta_0)$, onde α , β , λ_0 e ϕ são parâmetros positivos. Então

$$\sqrt{\frac{\lambda_0 \,\alpha}{\beta}} \left(\mu - \mu_0\right) \sim t_{2\,\alpha} \,. \tag{16}$$

Tornando a priori não informativa

O intervalo de intervalo de confiança clássico para μ é

$$\bar{x} \pm t_{n-1;a/2} \frac{s}{\sqrt{n\left(n-1\right)}}$$
, Sé só a soma, sem (17) Dividir por n-1.

Com base na distribuição (15), o equivalente bayesiano desse intervalo de confiança seria

$$\mu^* \pm t_{2\alpha^*;a/2} \sqrt{\frac{\beta^*}{\lambda^* \alpha^*}}, \qquad (18)$$

Quais valores dos hiperparâmetros?

Tem valores de $(\mu_0, \lambda_0, \alpha_0, \beta_0)$ para quais (17) e (18) são iguais?

$$2\alpha^* = 2\alpha_0 + n$$
 tería que ser igual a $(n-1)$, isto é $\alpha_0 = -(1/2)$

 $\mu^* = \bar{x}$, e da equação (2) obtemos então $\lambda_0 = 0$ Assim o valor de \mu_0 não importa

$$\frac{s}{\sqrt{n(n-1)}} = \sqrt{\frac{\beta^*}{\lambda^* \alpha^*}} = \sqrt{\frac{\beta_0 + \frac{1}{2} s^2 + \frac{n \lambda_0}{2(\lambda_0 + n)} (\bar{x} - \mu_0)^2}{(\lambda_0 + n) (\alpha_0 + n/2)}}$$

$$\alpha_0 = -(1/2) \ {
m e} \ \lambda_0 = 0 \ {
m d} {
m atching},$$
 nesse caso não informativa.

Um problema, porém, é que nem a distribuição Normal está bem definida para variância infinita (i.é. precisão $\lambda_0 \phi = 0$), nem a distribuição Gama está definida quando $\alpha_0 = -(1/2) \le 0$ e/ou $\beta_0 = 0 \le 0$. Nesse sentido, veja que da equação (9) temos que

Substituindo os valores

$$p(\mu, \phi) \propto \phi^{\alpha_0 - 1} \exp\{-\beta_0 \phi\} \times \phi^{1/2} \exp\{-\frac{\phi}{2} \lambda_0 (\mu - \mu_0)^2\}$$

 $\propto \phi^{\alpha_0 - 1/2} \exp\{-\frac{\phi}{2} \lambda_0 (\mu - \mu_0)^2\}$

Leva a
$$p(\mu,\phi) \propto rac{1}{\phi}\,,\;\;$$
 Que é imprópria.

Veja que pode ser pensada como $p(\mu, \phi) \propto p(\mu) \times p(\phi) \propto 1 \times \phi^{-1}$

isto é, a priori μ e ϕ seriam independentes com $p(\mu) \propto 1$ e $p(\phi) \propto \phi^{-1}$.

Distribuição Preditiva

O problema do cálculo de distribuições preditivas no caso desta Seção pode tomar a seguinte forma, semelhante à que foi discutida na Seção 1.1. Considere $X_1, \ldots, X_n, X_{n+1}, \ldots, X_{n+m} \mid \mu, \phi \stackrel{iid}{\sim} \operatorname{Normal}(\mu, (\lambda_0 \phi)^{-1})$ com a distribuição a priori $\mu \mid \phi \sim \operatorname{Normal}(\mu_0, (\lambda_0 \phi)^{-1})$ e $\phi \sim \operatorname{Gama}(\alpha_0, \beta_0)$. Com base na observação de x_1, \ldots, x_n desejamos prever $\bar{X}_{(n+1):(n+m)} = m^{-1} \sum_{i=n+1}^{m+n} X_i$ ou, em outras palavras, procuramos a distribuição condicional de $\bar{X}_{(n+1):(n+m)}$ dado x_1, \ldots, x_n .

Da subseção 1.1.2 sabemos que $\bar{X}_{(n+1):(n+m)} | x_1, \ldots, x_n; \phi \sim \text{Normal}[\mu^*, (\lambda^* \phi)^{-1}].$ Por outro lado, da subseção ??, sabemos também que $\phi | x_1, \ldots, x_n \sim \text{Gama}(\alpha^*, \beta^*).$

Portanto, se olharmos o par $(\bar{X}_{(n+1):(n+m)}, \phi)$ condicionado a x_1, \ldots, x_n , temos uma distribuição Normal-Gama e o Lema 2 implica que

$$\sqrt{\frac{\left(\frac{1}{m} + \frac{1}{\lambda^*}\right) \alpha^*}{\beta^*}} \left(\bar{X}_{(n+1):(n+m)} - \mu^*\right) | x_1, \dots, x_n \sim t_{2\alpha^*}.$$

Previsão para a velocidade da luz

Exemplo 2 (Continuação). Como a distribuição a posteriori de μ [equação (15)] é simétrica com respeito a μ^* , segue que a estimativa bayesiana com respeito a PQ, PA ou perda zero-um é $\mu^* = 27.75$.