Statistische Verfahren WS 2019

Projekt 1 – Produktivität von Frischwiesen

Problemstellung:

Einfluss von Bodenfaktoren und Artenzahl auf die Produktivität von Frischwiesen.

Datensatz: (frischwiesen.csv)

Der Datensatz enthält Daten zur Produktivität von Frischwiesen im Saale- und Ilmtal (Christiane Roscher, FSU Jena)

- Probe Bezeichnung der Probefläche
- Gebiet Saaletal/Ilmtal
- P Phosphorgehalt des Bodens
- K Kaliumgehalt des Bodens
- pH pH-Wert
- Cges Gesamtkohlenstoffgehalt
- Corg Gehalt an organischem Kohlenstoff
- Corg/N Kohlenstoff-/Stickstoff-Verhältnis
- Artenzahl Gesamtzahl vorkommender Arten
- biom Frischmasse der geernteten Biomasse

Aufgaben zur Datenanalyse:

- Leiten Sie zunächst getrennt für das Saaletal und das Ilmtal geeignete lineare Modelle zur Prognose der Biomasseproduktion her.
- Analysieren Sie dann beide Teildatensätze gemeinsam und untersuchen Sie insbesondere das Vorliegen von Wechselwirkungen, d.h. unterschiedliche quantitative Effekte der Einflussgrößen in den beiden Untersuchungsgebieten.
- Vergleichen Sie die Genauigkeit der Vorhersage der Biomasse für das Saaletal basierend auf dem separaten und dem gemeinsamen Modell. Verwenden Sie dabei den auf geeignete Art geschätzten erwarteten Prognosefehler SPSE.

Simulationsaufgabe:

- Untersuchen Sie in einer Simulationsstudie den Einfluss des Stichprobenumfangs auf die Güte der Modellwahl basierend auf Mallow's Cp-Kriterium. Untersuchen Sie dabei insbesondere:
 - o die relative Häufigkeit, mit der die "richtigen" Prädiktoren ausgewählt werden
 - o die Anzahl der ausgewählten Prädiktoren.
- Wählen Sie dazu ein "wahres Modell" in Anlehnung an die Ergebnisse des ersten Teils und eine Designmatrix, die zufällig ausgewählte Zeilen der realen Design-Matrix (mit Wiederholung) enthält. Simulieren Sie dann mehrfach Pseudo-Beobachtungen der Zielgröße und führen Sie für die so simulierten Pseudo-Datensätze die Modellwahl mit Hilfe von Mallow's Cp-Kriterium durch.