Licenciatura en Matemáticas Soluciones del examen final de Cálculo de junio de 2002

Ejercicio 1. (a) Calcular el límite de la sucesión $\frac{\frac{n}{1} + \frac{n-1}{2} + \frac{n-2}{3} + \dots + \frac{3}{n-2} + \frac{2}{n-1} + \frac{1}{n}}{\log(n!)}$

(b) Estudiar la convergencia de la serie $\sum_{n\geqslant 1}\left(\sqrt[n]{e}-1-\frac{1}{n}\right)$

Solución. (a) Pongamos $A_n = \frac{n}{1} + \frac{n-1}{2} + \frac{n-2}{3} + \dots + \frac{3}{n-2} + \frac{2}{n-1} + \frac{1}{n}$, $B_n = \log(n!)$. Para calcular el límite de la sucesión $\frac{A_n}{B_n}$ podemos aplicar el criterio de Stolz pues la sucesión $\{B_n\}$ es estrictamente creciente y positivamente divergente. Calcularemos, pues, el límite de la sucesión $\frac{A_{n+1} - A_n}{B_{n+1} - B_n}$. Tenemos que:

$$A_{n+1} - A_n = \frac{n+1}{1} + \frac{n}{2} + \frac{n-1}{3} + \dots + \frac{3}{n-1} + \frac{2}{n} + \frac{1}{n+1} - \left(\frac{n}{1} + \frac{n-1}{2} + \frac{n-2}{3} + \dots + \frac{2}{n-1} + \frac{1}{n}\right) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} + \frac{1}{n} + \frac{1}{n+1}$$

$$B_{n+1} - B_n = \log(n+1)$$

Por tanto:

$$\frac{A_{n+1} - A_n}{B_{n+1} - B_n} = \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} + \frac{1}{n} + \frac{1}{n+1}}{\log(n+1)}$$

Esta última sucesión es bien conocida. Para calcular su límite podemos aplicar otra vez el criterio de Stolz. Pongamos $C_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} + \frac{1}{n}$ y $D_n = \log n$. Tenemos que

$$\frac{C_{n+1} - C_n}{D_{n+1} - D_n} = \frac{\frac{1}{n+1}}{\log(n+1) - \log n} = \frac{1}{(n+1)\log\left(\frac{n+1}{n}\right)} = \frac{1}{\log(1+1/n)(n+1)} \longrightarrow 1$$

Deducimos que lím $\frac{A_{n+1}-A_n}{B_{n+1}-B_n}=1$ y concluimos que lím $\frac{A_n}{B_n}=1$.

(b) Es sabido que la sucesión $(1+1/n)^n$ es creciente y converge a e. Por tanto $(1+1/n)^n < e$, es decir, $1+1/n < \sqrt[n]{e}$. Por tanto, la serie dada es una serie de términos positivos. Pongamos $a_n = e^{1/n} - 1 - 1/n$. La forma de esta sucesión sugiere considerar la función $e^x - 1 - x$. El límite, *bien conocido*:

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}$$

implica, que para toda sucesión $\{x_n\}$ que converja a 0 se tiene que $\lim \frac{e^{x_n} - 1 - x_n}{x_n^2} = 1/2$. En particular, haciendo $x_n = 1/n$, deducimos que

$$\lim \frac{a_n}{x_n^2} = \lim n^2 \left(e^{1/n} - 1 - 1/n \right) = 1/2$$

Como la serie $\sum 1/n^2$ es convergente, concluimos, por el criterio límite de comparación para series de términos positivos o, si se quiere por el criterio de Prinsheim, que la serie dada es convergente.

Ejercicio 2. Dado un número $\alpha \in]0,\pi[$, se define la sucesión $\{x_n\}$ dada por $x_1 = \sin \alpha$, $x_{n+1} = \sin x_n$.

- (a) Justificar que la sucesión $\{x_n\}$ es convergente y calcular su límite.
- (b) Calcular el límite de la sucesión $z_n = \frac{1}{x_{n+1}^2} \frac{1}{x_n^2}$

Solución. (a) Como $0 < \alpha < \pi$, tenemos que $x_1 \in]0,1[$. Además si $x \in]0,1[$ también sen $x \in]0,1[$. Deducimos que para todo $n \in \mathbb{N}$ es $0 < x_n < 1$. Por otra parte, es bien conocida la desigualdad sen $x \le x$, válida para todo $x \ge 0$. Por tanto $x_{n+1} = \operatorname{sen} x_n \le x_n$. Hemos probado así que la sucesión $\{x_n\}$ es decreciente y está acotada por lo que es convergente. Sea $x = \lim \{x_n\}$. Entonces, por la continuidad de la función seno, $x = \lim \{x_{n+1}\} = \lim \operatorname{sen} x_n = \operatorname{sen} x$. Luego $x = \operatorname{sen} x$, lo que implica que x = 0.

(b) Tenemos que

$$z_n = \frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} = \frac{1}{\sec^2(x_n)} - \frac{1}{x_n^2} = \frac{x_n^2 - \sec^2(x_n)}{x_n^2 \sec^2(x_n)}$$

Puesto que $\{x_n\} \to 0$ se verifica que lím $\{z_n\}$ es igual a

$$\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^4} = \lim_{x \to 0} \frac{(x + \sin x)(x - \sin x)}{x^4} = \lim_{x \to 0} \frac{x + \sin x}{x} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \left(1 + \frac{\sin x}{x}\right) \lim_{x \to 0} \frac{x - \sin x}{x^3} = 2\frac{1}{6} = \frac{1}{3}$$

Donde hemos utilizado que el límite *bien conocido* $\lim_{x\to 0} \frac{x-\mathrm{sen}x}{x^3}$ es igual a 1/6 lo que puede probarse de forma inmediata derivando dos veces por L'Hôpital.

Ejercicio 3. En una lámina circular de radio R se recorta un sector circular de ángulo ϑ y con él se construye un cono. Calcula el valor de ϑ para que el volumen del cono así construido sea máximo.

Solución. Sea r el radio de la base del cono y h su altura. El volumen del cono viene dado por $V = \frac{1}{3}\pi r^2 h$. Observa que la longitud de la base del cono, $2\pi r$, debe ser igual a la longitud, ϑR , del arco circular que abarca el sector: $\vartheta R = 2\pi r$, de donde, $r = \frac{\vartheta R}{2\pi}$. Como además $R^2 = h^2 + r^2$, deducimos que

$$h^{2} = R^{2} - r^{2} = R^{2} - \frac{\vartheta^{2}R^{2}}{4\pi^{2}} = R^{2} \left(1 - \frac{\vartheta^{2}}{4\pi^{2}} \right) \Longrightarrow h = \frac{R\sqrt{4\pi^{2} - \vartheta^{2}}}{2\pi}$$

Por tanto

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \frac{\vartheta^2 R^2}{4\pi^2} \frac{R\sqrt{4\pi^2 - \vartheta^2}}{2\pi} = \frac{R^3 \vartheta^2 \sqrt{4\pi^2 - \vartheta^2}}{24\pi^2}$$

La función de la que tenemos que calcular su máximo absoluto es

$$f(\vartheta) = \frac{R^3 \vartheta^2 \sqrt{4\pi^2 - \vartheta^2}}{24\pi^2} \qquad (0 < \vartheta < 2\pi)$$

Tenemos que

$$f'(\vartheta) = \frac{R^3 \vartheta (8\pi^2 - 3\vartheta^2)}{24\pi^2 (4\pi^2 - \vartheta^2)}$$

que tiene un único cero positivo $\vartheta=2\pi\sqrt{\frac{2}{3}}$ que corresponde a un máximo absoluto de f como se justifica fácilmente, ya sea estudiando el signo de la derivada, o bien observando que $f(\vartheta)>0$ para $0<\vartheta<2\pi$ y $f(0)=f(2\pi)=0$ por lo que f debe alcanzar un máximo absoluto en $]0,2\pi[$ que debe ser un cero de su derivada. El correspondiente valor máximo del volumen es $\frac{2\pi R^3}{9\sqrt{3}}$.

Ejercicio 4. Calcular el volumen del sólido engendrado al girar alrededor del eje de abscisas la región del plano comprendida entre dicho eje y la curva de ecuación $y = \frac{8}{4+x^2}$.

Solución. El volumen pedido, V, viene dado por la integral

$$V = \pi \int_{-\infty}^{+\infty} \left(\frac{8}{4+x^2}\right)^2 dx = 64\pi \int_{-\infty}^{+\infty} \frac{1}{(4+x^2)^2} dx = 16\pi \int_{-\infty}^{+\infty} \frac{(4+x^2)-x^2}{(4+x^2)^2} dx =$$

$$= 16\pi \int_{-\infty}^{+\infty} \frac{1}{4+x^2} dx - 16\pi \int_{-\infty}^{+\infty} \frac{x^2}{(4+x^2)^2} dx = 16\pi \int_{-\infty}^{+\infty} \frac{1}{4+x^2} dx + 8\pi \int_{-\infty}^{+\infty} x \frac{-2x}{(4+x^2)^2} dx =$$

$$= 16\pi \int_{-\infty}^{+\infty} \frac{1}{4+x^2} dx + 8\pi \int_{-\infty}^{+\infty} x \frac{d}{dx} \left(\frac{1}{4+x^2}\right) dx = 16\pi \int_{-\infty}^{+\infty} \frac{1}{4+x^2} dx + 8\pi \left[\frac{x}{4+x^2}\right]_{x\to-\infty}^{x\to+\infty} - 8\pi \int_{-\infty}^{+\infty} \frac{1}{4+x^2} dx =$$

$$= 8\pi \int_{-\infty}^{+\infty} \frac{1}{4+x^2} dx = 4\pi \int_{-\infty}^{+\infty} \frac{1/2}{1+(x/2)^2} dx = 4\pi \left[\arctan(x/2)\right]_{x\to-\infty}^{x\to+\infty} = 4\pi^2$$

Ejercicio 5. Para cada $n \in \mathbb{N}$ sea $f_n : [0, +\infty[\to \mathbb{R}]$ la función dada por $f_n(x) = nx e^{-\sqrt{n}x^2}$.

- (a) Estudiar la convergencia uniforme de $\{f_n\}$ en $[0,+\infty[$ y en intervalos de la forma $[a,+\infty[$ donde a>0.
- (b) Comprobar si es cierta o no la igualdad $\lim_{n\to\infty}\int_{0}^{+\infty}f_n(x)dx=\int_{0}^{+\infty}\lim_{n\to\infty}f_n(x)dx$.

Solución. (a) Es claro que para todo $x \ge 0$ es $\lim_{n \to \infty} f_n(x) = 0$. Por tanto la sucesión $\{f_n\}$ converge puntualmente en \mathbb{R}^+_0 y su función límite, $f: \mathbb{R}^+_0 \to \mathbb{R}$ es la función nula $f(x) = \lim_{n \to \infty} f_n(x) = 0$. Como $f'_n(x) = n \, \mathrm{e}^{-\sqrt{n} x^2} (1 - 2x^2 \sqrt{n})$, deducimos que $f'_n(x)$ tiene un único cero positivo en el punto $x_n = \frac{1}{\sqrt{2} \sqrt[4]{n}}$ y

$$0 \leqslant x < x_n \Longrightarrow f'_n(x) > 0, \qquad x_n < x \Longrightarrow f'_n(x) < 0$$

Por tanto f_n es creciente en $[0,x_n]$ y decreciente en $[x_n,+\infty[$. Deducimos que

$$\sup \{|f_n(x) - f(x)| : x \in \mathbb{R}_o^+\} = \sup \{f_n(x) : x \in \mathbb{R}_o^+\} = f_n(x_n) = \frac{1}{\sqrt{2e}} n^{3/4} \to +\infty$$

luego no hay convergencia uniforme en $[0, +\infty[$.

Dado a > 0, sea n_0 tal que $x_{n_0} < a$. Entonces, para todo $n \ge n_0$ se tiene que $x_n < a$, por lo que la función f_n es decreciente en $[a, +\infty[$ y, por tanto:

$$\sup\{|f_n(x) - f(x)| : x \in [a, +\infty[\}] = \sup\{f_n(x) : x \in [a, +\infty[\}] = f_n(a) \to f(a) = 0$$

luego hay convergencia uniforme en $[a,+\infty[$.

(b)

$$\lim_{n\to\infty} \int_{0}^{+\infty} f_n(x)dx = \lim_{n\to\infty} \int_{0}^{+\infty} nx e^{-\sqrt{n}x^2} dx = \lim_{n\to\infty} \frac{\sqrt{n}}{2} \left[-e^{-\sqrt{n}x^2} \right]_{x=0}^{x\to +\infty} = \lim_{n\to\infty} \frac{\sqrt{n}}{2} = +\infty$$

$$\int_{0}^{+\infty} \lim_{n\to\infty} f_n(x)dx = \int_{0}^{+\infty} 0 dx = 0$$

Ejercicio 6. (a) Comprobar, mediante una integral doble, que el volumen del tetraedro con vértices en el origen y en los puntos (a,0,0), (0,b,0) y (0,0,c) (donde a,b,c son números positivos), es igual a $\frac{1}{6}abc$.

(b) Calcular el volumen de la región
$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : 1 \leqslant x^2 + y^2 \leqslant 2x, \ 0 \leqslant z \leqslant \frac{1}{\sqrt{4 - x^2 - y^2}} \right\}.$$

Solución. (a)

El tetraedro en cuestión es el subconjunto de \mathbb{R}^3 que tiene como base el triángulo T en azul en la figura y como tapadera el plano que pasa por los puntos (a,0,0), (0,b,0) y (0,0,c). La ecuación de dicho plano es x/a + y/b + z/c = 1. Por tanto se trata de calcular el volumen del conjunto

$$A = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x, 0 \le y, \ x/a + y/b \le 1, 0 \le z \le c(1 - x/a - y/b)\}$$

La proyección de A sobre el plano XY es el triángulo $T = \{(x,y) \in \mathbb{R}^2 : 0 \le x, 0 \le y, \ x/a + y/b \le 1\}$ y podemos escribir $A = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in T, \ 0 \le z \le c(1-x/a-y/b)\}$. El volumen de A viene dado por

$$\begin{split} \iint_T c \left(1 - \frac{x}{a} - \frac{y}{b} \right) d(x, y) &= \int_0^a \left[\int_0^{b(1 - x/a)} c \left(1 - \frac{x}{a} - \frac{y}{b} \right) dy \right] dx = c \int_0^a \left[y - \frac{xy}{a} - \frac{y^2}{2b} \right]_{y=0}^{y=b(1 - x/a)} = \\ &= c \int_0^a \frac{b(a - x)^2}{2a^2} dx = \frac{1}{6} abc \end{split}$$

(b) El conjunto A es una región de tipo I en \mathbb{R}^3 . Pongamos

$$E = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2x\} = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2, (x-1)^2 + y^2 \le 1\}$$

Observa que E está formado por la parte del círculo de centro (1,0) y radio 1 que queda fuera del círculo unidad.

Podemos escribir

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in E, \ 0 \leqslant z \leqslant \frac{1}{\sqrt{4 - x^2 - y^2}} \right\}$$

El volumen de A viene dado por $\iint_E \frac{1}{\sqrt{4-x^2-y^2}}$. Calcularemos esta integral pasando a coordenadas polares. Tenemos que

$$B = \{ (\rho, \vartheta) \in \mathbb{R}^+ \times] - \pi, \pi[: (\rho \cos \vartheta, \rho \sin \vartheta) \in E \} = \{ (\rho, \vartheta) \in \mathbb{R}^+ \times] - \pi, \pi[: 1 \leqslant \rho \leqslant 2 \cos \vartheta \} =$$

$$= \{ (\rho, \vartheta) \in \mathbb{R}^+ \times] - \pi, \pi[: 1 \leqslant \rho \leqslant 2 \cos \vartheta, \cos \vartheta \geqslant 1/2 \} =$$

$$= \{ (\rho, \vartheta) : 1 \leqslant \rho \leqslant 2 \cos \vartheta, -\pi/3 \leqslant \vartheta \leqslant \pi/3 \}$$

Usando primero el teorema del cambio de variables y después el teorema de Fubini, tenemos que

$$\iint_{E} \frac{1}{\sqrt{4 - x^2 - y^2}} d(x, y) = \iint_{B} \frac{\rho}{\sqrt{4 - \rho^2}} d(\rho, \vartheta) = \int_{-\pi/3}^{\pi/3} \left[\int_{1}^{2\cos\vartheta} \frac{\rho}{\sqrt{4 - \rho^2}} d\rho \right] d\vartheta =$$

$$= \int_{-\pi/3}^{\pi/3} \left[-\sqrt{4 - \rho^2} \right]_{\rho=1}^{\rho=2\cos\vartheta} d\vartheta = \int_{-\pi/3}^{\pi/3} (\sqrt{3} - 2\sqrt{\sin^2\vartheta}) d\vartheta = \frac{2\pi}{\sqrt{3}} - 2 \int_{-\pi/3}^{\pi/3} |\sin\vartheta| d\vartheta =$$

$$= \frac{2\pi}{\sqrt{3}} - 4 \int_{0}^{\pi/3} \sin\vartheta d\vartheta = \frac{2\pi}{\sqrt{3}} + 4(\cos(\pi/3) - 1) = \frac{2\pi}{\sqrt{3}} - 2$$

Ejercicio 7. Encontrar un punto P de coordenadas positivas perteneciente al elipsoide de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, tal que el plano tangente al elipsoide en P determine con los ejes coordenados un tetraedro de volumen mínimo

Solución. Pongamos P = (u, v, w), $g(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$. El plano tangente al elipsoide en P viene dado por $(\nabla g(u, v, w) | (x - u, y - v, z - w)) = 0$, esto es:

$$((2u/a^2, 2v/b^2, 2w/c^2)|(x-u, y-v, z-w)) = 2(ux/a^2 + vy/b^2 + wz/c^2 - u^2/a^2 - v^2/b^2 - w^2/c^2) = 2(ux/a^2 + vy/b^2 + wz/c^2 - 1) = 0$$

O sea $ux/a^2 + vy/b^2 + wz/c^2 - 1 = 0$. Las intersecciones de dicho plano con los ejes coordenados son los puntos $(a^2/u,0,0)$, $(0,b^2/v,0)$ y $(0,0,c^2/w)$. El volumen del tetraedro cuyos vértices son dichos puntos y el origen es, según lo visto en el ejercicio anterior, igual a $\frac{(abc)^2}{uvw}$.

Se trata, pues, de calcular el mínimo de $f(u,v,w) = \frac{(abc)^2}{uvw}$ con la condición de que g(u,v,w) = 0 y además u > 0, v > 0, w > 0. Formemos la función de Lagrange:

$$F(u, v, w, \lambda) = \frac{(abc)^2}{uvw} + \lambda \left(\frac{u^2}{a^2} + \frac{v^2}{b^2} + \frac{w^2}{c^2} - 1 \right)$$

y calculemos sus puntos críticos.

$$\frac{\partial F}{\partial u} = -\frac{(abc)^2}{u^2 v w} + \lambda \frac{2u}{a^2} = 0$$

$$\frac{\partial F}{\partial v} = -\frac{(abc)^2}{u v^2 w} + \lambda \frac{2v}{b^2} = 0$$

$$\frac{\partial F}{\partial w} = -\frac{(abc)^2}{u v w^2} + \lambda \frac{2w}{c^2} = 0$$

$$\frac{\partial F}{\partial \lambda} = \frac{u^2}{a^2} + \frac{v^2}{b^2} + \frac{w^2}{c^2} - 1 = 0$$

Multiplicando la primera ecuación por u, la segunda por v y la tercera por w se deduce que

$$\frac{u^2}{a^2} = \frac{v^2}{b^2} = \frac{w^2}{c^2} = \frac{1}{2\lambda} \frac{(abc)^2}{uvw}$$

Usando ahora la cuarta ecuación se sigue que

$$\frac{u^2}{a^2} = \frac{v^2}{b^2} = \frac{w^2}{c^2} = \frac{1}{3}$$

Obtenemos de esta forma que la única solución positiva es

$$(u, v, w) = \left(a/\sqrt{3}, b/\sqrt{3}, c/\sqrt{3}\right)$$

Esta solución corresponde efectivamente a un mínimo pues es claro que la función f no alcanza ningún máximo.

Ejercicio 8. (a) Comprobar que la ecuación $z^2 - 5xyz + x^3 + 5x^2y = 0$ define a z como función implícita de (x,y) en un entorno de (1,1), con z(1,1) = 2. Calcular $\frac{\partial^2 z}{\partial x \partial y}(1,1)$.

(b) Resolver la ecuación diferencial y' + 2xy = 4x.

Solución. (a) Sea $f(x,y,z) = z^2 - 5xyz + x^3 + 5x^2y$. Tenemos f(1,1,2) = 0 y $\frac{\partial f}{\partial z}(1,1,2) = -1 \neq 0$. El teorema de la función implícita garantiza que hay una función $(x,y) \mapsto z(x,y)$ definida en un entorno U de (1,1) tal que z(1,1) = 2 y f(x,y,z(x,y)) = 0 para todo $(x,y) \in U$. Derivando respecto a $x \in y$ la identidad $z(x,y)^2 - 5xyz(x,y) + x^3 + 5x^2y = 0$, $((x,y) \in U)$, tenemos:

$$2z(x,y)\frac{\partial z}{\partial x}(x,y) - 5yz(x,y) - 5xy\frac{\partial z}{\partial x}(x,y) + 3x^2 + 10xy = 0$$
$$2z(x,y)\frac{\partial z}{\partial y}(x,y) - 5xz(x,y) - 5xy\frac{\partial z}{\partial y}(x,y) + 5x^2 = 0$$

Volviendo a derivar la primera de estas identidades respecto a *y* obtenemos:

$$2\frac{\partial z}{\partial y}(x,y)\frac{\partial z}{\partial x}(x,y) + 2z(x,y)\frac{\partial^2 z}{\partial x \partial y}(x,y) - 5z(x,y) - 5y\frac{\partial z}{\partial y}(x,y) - 5x\frac{\partial z}{\partial x}(x,y) - 5xy\frac{\partial^2 x}{\partial x \partial y}(x,y) + 10x = 0$$

Haciendo las sustituciones x = 1, y = 1, z(1, 1) = 2, calculamos fácilmente:

$$\frac{\partial z}{\partial x}(1,1) = 3$$
, $\frac{\partial z}{\partial y}(1,1) = -5$, $\frac{\partial^2 z}{\partial x \partial y}(1,1) = -20$

(b) Se trata de una ecuación diferencial lineal de primer orden cuya integración es inmediata.