Homework #2

PDF version due Mon. Oct. 24 11:59pm through CatCourses (Upload a PDF of a legible scan of your written solution or a PDF of it typeset in Word/Latex/etc.)

PROBLEM 1:

Consider the two image subsets, S_1 and S_2 , shown in the following figure. For $V = \{1\}$, determine whether these two subsets are (a) 4-adjacent, (b) 8-adjacent, or (c) m-adjacent.

	S_1				S_2				
0	0	0	0	0	0	0	1	1	0
1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0	$\lfloor 0 \rfloor$	1	1	1	0	0	0	0	0
0	0	1		1		0	1	1	1

PROBLEM 2:

Consider the image segment shown.

- \bigstar (a) Let $V = \{0, 1\}$ and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain why.
 - **(b)** Repeat for $V = \{1, 2\}$.

PROBLEM 3:

Let $H[\cdot]$ be the operator that determines the minimum pixel value in an image. That is, if the image f(x,y) has the following pixel values

	30	23	6
f(x,y)=	110	128	234
	12	4	175

then

$$H[f] = 4.$$

Prove that $H[\cdot]$ is non-linear.

(Remember that to prove non-linearity, you just need to come up with a counter-example; i.e., images f1 and f2 and constants a and b such that $H[a*f1+b*f2] \neq a*H[f1]+b*H[f2]$.)

PROBLEM 4:

In general, do affine transformations commute?

That is, given two affine transformations T_1 and T_2 , does the transformation T_1T_2 give the same result as T_2T_1 ? (T_1 and T_2 are the matrix representations of the transformations. You can interpret T_1T_2 as first applying T_1 and then applying T_2 or you can interpret it as the matrix multiplication of T_1 and T_2 .)

If not, provide a counter example. That is, provide affine transformation matrices T_1 and T_2 such that a point mapped by T_1T_2 is different from the same point mapped by T_2T_1 .

PROBLEM 5:

Suppose that only pixels with values 5, 10, 30, and 150 occur in a grayscale image. And suppose that these pixels occur with the following probabilities in the image:

$$p(5) = 0.10$$

 $p(10) = 0.55$
 $p(30) = 0.05$
 $p(150) = 0.30$

(You can assume the usual case where grayscale images have pixels with values 0 through 255.)

- (a) Compute the mean of the pixel values in the image.
- (b) Compute the variance (σ^2) of the pixel values in the image.