Mrs	Collett
Mrs	Kerr

Name:	• • • • • •	• • • • •	 	
Teache	er:		 	

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION 2014

Mathematics Extension 2

Time Allowed: 3 hours

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using black or blue pen.
 Black pen is preferred.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.
- Start each question in a new booklet.

Total Marks – 100

Section I | Pages 1-4

10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Section II

Pages 5-12

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Mark	/100	
Highest Mark	/100	
Rank		

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.

Use the multiple choice answer sheet for Questions 1-10.

If $(a+bi)^2 = i$, then what are possible values for $a, b \in \mathbb{R}$?

(A)
$$a = \frac{1}{4}, b = \frac{1}{4}$$

(B)
$$a = -\frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}}$$

(C)
$$a = \frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}}$$

(D)
$$a = \frac{1}{2}, b = \frac{1}{2}$$

The polynomial $P(x) = x^3 + 3x^2 - 24x + 28$ has a double zero.

What is the value of the double zero?

- (A) -7
- (B) -4
- (C) 4
- (D) 2

3 Which graph shows y = 1 + x + |x|?

- 4 The graph of the ellipse $\frac{(x-1)^2}{9} + \frac{y^2}{4} = 1$ and the graph of the hyperbola $x^2 y^2 = 4$ have
 - (A) no points in common.
 - (B) 1 point in common.
 - (C) 2 points in common.
 - (D) 3 points in common.

$\int \sin^{-1} 2x \, dx =$

(A)
$$x \sin^{-1} 2x + \frac{1}{4} \sqrt{1 - 4x^2} + C, |x| \ge -1$$

(B)
$$x \sin^{-1} 2x - \frac{1}{4}\sqrt{1 - 4x^2} + C, |x| \ge -1$$

(C)
$$x \sin^{-1} 2x + \frac{1}{2} \sqrt{1 - 4x^2} + C, |x| \ge -1$$

(D)
$$x \sin^{-1} 2x - \frac{1}{2} \sqrt{1 - 4x^2} + C, |x| \ge -1$$

- 6 Which of the following would be neither odd nor even?
 - $(A) y = x^2 \sin x$
 - (B) $y = \sin(x^2)$
 - (C) $y = (\sin x)^2$
 - (D) $y = x^2 + \sin x$
- 7 What is the exact value of $\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}i\right)^{100}$?
 - (A) 1
 - (B) -1
 - (C) $\frac{1}{2^{50}}$
 - (D) $-\frac{1}{2^{50}}$
- 8 If $\frac{3x-19}{(x+3)(2x-1)} = \frac{a}{x+3} + \frac{b}{2x-1}$, then find the values of a and b.
 - (A) a = -4, b = 5
 - (B) a = -4, b = -5
 - (C) a = 4, b = 5
 - (D) a = 4, b = -5

On the diagram P and Q represent complex numbers z and w respectively. Triangle OPQ is right angled and isosceles.

Which of the following is false?

(A)
$$|z|^2 + |w|^2 = |z + w|^2$$

$$(B) z^2 - w^2 = 0$$

$$(C) z^2 + w^2 = 0$$

(D)
$$w = iz$$

10 The ellipse $x^2 + 2ax + 2y^2 + 4by + 16 = 0$ has its centre at (3, -2). Find the values of a and b.

(A)
$$a = -3, b = -2$$

(B)
$$a = 2, b = -3$$

(C)
$$a = -3, b = 2$$

(D)
$$a = 3, b = 2$$

Section II

90 marks

(ii)

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11. (15 marks). Use a Separate Booklet. Marks (a) Use the substitution $u = 4 + \sin x$ to find 2 $\int \frac{\sin x \cos x}{4 + \sin x} \, dx.$ Let $w = -1 + \sqrt{3}i$ and z = 1 - i. (b) (i) Find wz in the form a+ib. 1 (ii) Find w and z in mod-arg form. 2 Hence, find the exact value of $\sin \frac{5\pi}{12}$. 2 Let polynomial $P(x) = ax^6 - bx^5 + 1$. (c) State the conditions for α to be a zero of multiplicity two of P(x). (i) 1 Given that P(x) is divisible by $(x+1)^2$ find a and b. (ii) 3 (d) The line x = 1 is a directrix and the point (2,0) is a focus of the conic whose eccentricity is $\sqrt{2}$. (i) Derive the equation of the conic. 3

End of Question 11

Prove that it is a rectangular hyperbola.

(a) Find $\int \frac{\ln x}{x^2} dx$.

2

(b) The graph of the function y = f(x), x < a is shown below.

Sketch the following curves on separate half-page diagrams.

(i)
$$y = |f(x)|$$
.

1

(ii)
$$y = f(|x|).$$

1

(iii)
$$y = \frac{1}{f(x)}$$

2

(c) Let C be the curve $3e^{x-y} = x^2 + y^2 + 1$. Find the equation of the tangent to C at the point (1,1). 3

Question 12 continues on page 7

(d) (i) Expand $(a-b)^3$.

1

(ii) Solve $z^3 = -1$.

2

(iii) Express the polynomial $z^3 - 3iz^2 - 3z + 1 + i$ in the form $(z+p)^3 + q$ where p is an imaginary number and q is a real number.

1

(iv) Hence solve $z^3 - 3iz^2 - 3z + 1 + i = 0$ giving the solution in the form z = x + iy where $x, y \in \mathbb{R}$.

2

End of Question 12

- (a) When the polynomial $p(x) = x^4 + ax + 2$ is divided by $x^2 + 1$ the remainder is 2x + 3. Find the value of a.
- 2

(b) Using the substitution $t = \tan \frac{x}{2}$, find $\int \frac{\tan x}{1 + \cos x} dx$.

3

3

- (c) Consider the region bounded by the curve $y = x^2 6x + 8$ and the x-axis. Use the method of cylindrical shells to find the volume of the solid formed if the region is rotated about the y-axis to form a solid of revolution.
- (d) ABCD is a cyclic quadrilateral. Diagonals AC and BD intersect at right angles at P. M is the midpoint of BC. MP produced meets AD at Q. Let $\angle MCP = x$.

(i) Show $\angle MCP = \angle CPM$.

2

(ii) Show $MQ \perp AD$.

2

Question 13 continues on page 9

3

(e) The ellipse shown below passes through point P(-2,6). The centre of the ellipse lies on the x-axis, and the ellipse passes through the points (-6,0) and (10,0).

The line shown is y = x - 2. This line intersects the ellipse at Q.

What is the x coordinate of point Q?

Show that $4 \tan \theta \tan \phi = -1$.

- (a) (i) Derive the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at point $P(x_1, y_1)$.
 - (ii) The tangents to the ellipse $x^2 + 4y^2 = 4$ at the points $P(2\cos\theta, \sin\theta)$ and $Q(2\cos\phi, \sin\phi)$ are at right angles to each other.

(b) If w is one of the complex roots of $z^3 = 1$, simplify $(1-w)(1-w^2)(1-w^4)(1-w^8).$ 3

(c) (i) If $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$ prove that $I_n + I_{n-2} = \frac{1}{n-1}$, n > 2.

(ii) Hence, evaluate $\int_{0}^{\frac{\pi}{4}} \tan^{5} x \, dx.$ 2

(d) Sketch the locus of z if $\frac{z-2i}{z-1}$ is purely imaginary.

(a) The base of a solid is given by the region in the xy-plane enclosed by the curve $y = x^2$ and $y = 8 - x^2$.

Each cross-section perpendicular to the *x*-axis is a square.

- (i) Show that the area of the square cross-section at x = h is $(8 2h^2)^2$.
- (ii) Hence, find the volume of the solid.
- **(b)** Show that $\int_0^1 \frac{dx}{x^2 x + 1} = \frac{2\sqrt{3}\pi}{9}$.
- (c) Let $f(x) = \frac{4}{x-1} \frac{4}{x+1} 1$, where $x \neq \pm 1$.
 - (i) Find the x and y intercepts of the graph of y = f(x).
 - (ii) Show that y = f(x) is an even function.
 - (iii) Find the equation of the horizontal asymptote.
 - (iv) Sketch the graph of y = f(x).
 - (v) Let S be the area bound by the graph of y = f(x), the straight lines $x = 3, x = a \ (a > 3)$ and y = -1.

Find S in terms of a and deduce that $S < 4 \ln 2$.

End of Question 15

- (a) The locus of w is described by the equation |w+3| = |w-2+5i|.
 - (i) Sketch on an Argand Diagram the locus of w.

2

(ii) Find the Cartesian equation of the locus of w.

2

- **(b)** (i) Given that $\frac{1}{n} \frac{1}{n+1} = \frac{1}{n(n+1)}$ explain why $\frac{1}{(n+1)^2} < \frac{1}{n(n+1)}, n \in \mathbb{Z}^+$.
 - (ii) Using induction, prove $S_n = \sum_{r=1}^n \frac{1}{r^2} \le 2 \frac{1}{n}, n \ge 1.$
- (c) Consider the quadratic equation $x^2 x + k = 0$ where k is a real number. The equation has 2 distinct positive roots α and β .
 - (i) Show $0 < k < \frac{1}{4}$.

2

(ii) Show that $\frac{1}{\alpha^2} + \frac{1}{\beta^2} > 8$.

2

- (d) Given $I = \int_{-1}^{1} \frac{x^2 e^x}{e^x + 1} dx$ and $J = \int_{-1}^{1} \frac{x^2}{e^x + 1} dx$.
 - (i) Use the substitution u = -x in I to show I = J.

1

(ii) Hence evaluate I and J.

2

·			
5-	(sin -1 2x dx =	u = 5 :- 2x	dv= b
	J	$du = \frac{2}{dx}$	V= 4
		$du = \frac{2}{\sqrt{1-4x^2}} dx$.)
	$\frac{2}{2} \sin^{-1} 22 - \int \frac{2x}{\sqrt{1-4x^2}}$	<i>એ</i> ડ(
- -	V1-4x2		
=	$2 \sin^{-1} 2x + \frac{1}{2} \sqrt{1-4x}$	2 + C	
	2		
	_'. C		
6.	D		
	lan	100	
7.	$\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) = \left(\frac{C_{15}}{\sqrt{2}}\right) = \frac{C_{15}}{\sqrt{2}}$	k))	,
	(12 /2)	<u>り</u>	
1	= CIS (-25	π)	
	= c15 TT		
	= − 1		
8.	D		
욕.	B .		
lo.	C		

Question 11

a) $\begin{cases} \sin x \cos x & dx & h = 4 + \sin x \\ 4 + \sin x & du = \cos x dx \end{cases}$

 $= \int \frac{(u-4) du}{u}$ $= \int \frac{(1-\frac{4}{u}) du}{u}$

= u - 4 m/u/ + C

= 4+sinx -4 ln |4+sinx | + C

b) 1) w=-1+13i ==1-i

11) $w = 2 c_{15} \frac{2\pi}{3}$ arg = +arr(-13)

= = \(\frac{1}{2} \cis(-\frac{1}{4})

111) 51 5TT

 $\omega \neq = 2\sqrt{2} c_{15} \left(\frac{2\pi}{3} - \frac{\pi}{4} \right)$

= 215 cis 517

 $WZ = \sqrt{3} - 1 + (1 + \sqrt{3}) L \qquad from 1$ $\frac{5\pi}{12}$ $\frac{5\pi}{12}$

Equating parts

2/2 510 511 = 14 (3

 $-1.5 \times 5 \times = 1 + 13$

c) P(x) = ax 6-bx 5+1

 $P(\alpha) = 0 = P'(\alpha)$

 $\frac{P(-1) = a+b+1 = 0 - 0}{P'(x) = 6ax^5 - 5bx^4}$

P(-1) = -6a -5b = 0 - 2

5a+5b=-5-6a+5b=0

a = 5

P(x,y) het P(x,y) he

a point on the

i set S be the focus

M be the Got of the

perpendicular at the directors

 $PS = \sqrt{2}$

$$3e^{x-6} = x^{2} + y^{2} + 1$$

$$3e^{x-6} \times (1-e^{h}) = 2x + 2x + e^{h}$$

$$3e^{x-6} \times (1-e^{h}) = 2x + 2x + e^{h}$$

$$3e^{x-6} \times (1-e^{h}) = 2x + 2x + e^{h}$$

$$3e^{x-6} \times (1-e^{h}) \times (1-e^{h}) = 2x + 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) \times (1-e^{h}) = 2x + e^{h}$$

$$4x \times (1-e^{h}) \times (1$$


```
En of ellipse
        -\frac{(x-z)^2}{6u} + \frac{y^2}{b^2} = 1
Passes through (-2,6)
        (-2-2)^2 + \frac{6^2}{6^4} = 1
 48 (x2-4x+4) + 64(x2-4x+4) = 3072
           112 x 2 - 448 2 + 4 48 = 3072
               x2 -4x +4 = 3072
               (x-2)^2 = \frac{30.72}{11.2}
                                         x = 2+ 8/21
                x-2 = \pm \sqrt{3072} 15 the x
                                        Coordinate of Q
                 x = 2 \pm \frac{32\sqrt{3}}{4\sqrt{7}}
                    = 2 ± 813 × 17
```

a) 1)
$$\frac{2x}{a^2} + \frac{2y}{b^3} \frac{dy}{dx} = 0$$
 $\frac{dy}{a^2} - \frac{2x}{b^3} \frac{x}{dx}$
 $\frac{dy}{a^2} - \frac{2x}{b^2} \frac{x}{dx}$
 $\frac{-b^2x}{a^2y_1}$
 $\frac{-b^2x}{a^2y_1}$
 $\frac{2y}{a^2y_1} - \frac{-b^2x_1}{a^2y_1}$
 $\frac{a^2y}{a^2y_1} + \frac{b^2x_1}{a^2y_1} = \frac{a^2y}{a^2y_1} + \frac{b^2x_1}{a^2y_1}$
 $\frac{a^2y}{a^2y_1} + \frac{b^2x_1}{a^2y_1} = \frac{a^2y}{a^2y_1} + \frac{b^2x_1}{a^2y_1} = \frac{a^2y}{a^2y_1} + \frac{b^2x_1}{a^2y_1} = \frac{a^2y}{a^2y_1} + \frac{b^2x_1}{a^2y_1} = \frac{a^2y}{a^2y_1} = \frac{a^2y}{a^2y_1} = \frac{a^2y_1}{a^2y_1} = \frac{$

46 cos o cos 0 = -1 $a^{2} = 4$, $b^{2} = 1$ coso cos \$ = -4 5,00 sin \$ 1=-451005100 1. 4+and+and=- $\frac{(z-1)(z^2+z+1)=0}{z-1+\sqrt{-3}}$ Let w= cis 2 3. $w^{2} = c_{15} w_{3}^{2} = c_{15} \left(-\frac{277}{5}\right)$ $w^{4} = c_{15} s_{77}^{2} = c_{15} \left(-\frac{277}{5}\right)$ $w^{8} = c_{15} 1677 = c_{15} \left(-\frac{277}{5}\right)$ $\frac{1-cis^{2}}{(1-cis(-2))(1-cis(-2))}(1-cis(-2))(1-cis(-2))$ $I_{n+1} = 1-nI_{n+2} = 1-nI_{n-2} + 2I_{n-2} + 2I_{n-2}$ = (1- cis 2) 2 (1- cis (-27)) 2 = (1-(-1/2+ 131))2(1-(-1/2-131))2 $= \left(\frac{3}{2} - \frac{\sqrt{3}}{2}\right)^2 \left(\frac{3}{2} + \frac{\sqrt{3}}{2}\right)^2$ $=\left(\left(\frac{3}{2} - \frac{\sqrt{3}}{2}L\right)\left(\frac{3}{2} + \frac{\sqrt{3}}{2}L\right)\right) = \left(\frac{9}{4} + \frac{3}{4}\right)^2 = 9$

c) i) $I_n = \int_0^{1/4} + an \int_0^{2} c dx$ In-2 = f +an n-2 x dx $\frac{T_{n}+T_{n-2}}{T_{n-2}} = \int_{-\infty}^{\infty} \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{1}{$ $= \int_{0}^{1/4} \int_{0}^{1/2} \frac{n-2}{x} \int_{0}^$ $\frac{1}{2} + \frac{1}{4} \frac{1}{x} + \frac{1}{4} \frac{1}{x} = \frac{1}{4} \frac{1}{x} \frac{1}{x} + \frac{1}{4} \frac{1}{x} = \frac{1}{x} \frac{$ - (n-2) (+an x Sec x dx $= 1 - (n-2) \int_{-\infty}^{\infty} \frac{1}{1+\cos^{2}x} dx$ $\frac{T+T}{n-2} = 1 - (n-2) \frac{T}{n} - (n-2) \frac{T}{n-2}$ $I_{n} + n I_{n-2} I_{n} + I_{n-2} + n I_{n-2} - 2 I_{n-2} = 1$ In+ Tn-2 = 1 As reg'd

b) 1)
$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$$

Multiply b. 5 by $\frac{1}{n+1}$
 $\frac{1}{n(n+1)} = \frac{1}{n(n+1)^2}$
 $\frac{1}{(n+1)^2} = \frac{1}{n(n+1)^2}$

Since $n \in \mathbb{Z}^+ = \frac{1}{n(n+1)^2} = 0$
 $\frac{1}{(n+1)^2} = \frac{1}{n(n+1)^2}$

Since $n \in \mathbb{Z}^+ = \frac{1}{n(n+1)^2} = 0$
 $\frac{1}{(n+1)^2} = \frac{1}{n(n+1)^2}$

Let the statement be

1) $\frac{1}{n} = \frac{1}{n(n+1)^2} = 0$
 $\frac{1}{n(n+1)^2} = \frac{1}{n(n+1)^2} = 0$
 $\frac{1}{n(n+1)^2} = \frac{1}{n(n+1)^2} = 0$
 $\frac{1}{n(n+1)^2} = \frac{1}{n(n+1)^2} = 0$

Thus $\frac{1}{n(n+1)^2} = \frac{1}{n(n+1)^2} = 0$
 $\frac{1}{n(n+1)^2} = 0$
 \frac

x2+ B2 - 8x2B2 = (A+B)2 - 2 xB - 8 x2B2 = (1)2 - 2K - 8K2 = 1-2k-8k2 = (1 - 4K)(1+ 2K) Tom (D 1-44) and Itahyo 1-24-842 70 1 + 1 7 8 $\int \frac{u^2}{1+e^u} du = J.$

(ii) $T + J = \int_{-1}^{1} \frac{x^{2}e^{x} + x^{2}}{e^{x} + 1} dx$ $= \int_{-1}^{2} \frac{x^{2}(e^{x} + 1)}{e^{x} + 1} dx$ $= \left[\frac{x^{3}}{3}\right]_{-1}^{-1}$ $= \frac{1}{3} - \frac{1}{3} = \frac{2}{3} = 2T = 2J$ $\therefore T = J = \frac{1}{3}$

.

.

: :

.