1. Симетричні оператори. Приклади.

Розглядатимемо задачі вигляду

$$Au = f, (1.1)$$

де A — лінійний оператор, що відображає деяку множину D_A (область визначення оператора A), яка належить гільбертовому простору H, на множину $R_A \subset H$ (область значень оператора A).

Означення. Оператор A називають симетричним, якщо його область визначення $D_A \subset H$ ϵ щільною множиною у просторі H, і виконується співвідношення

$$(Au, v) = (u, Av), \qquad \forall u, v \in D_A. \tag{1.8}$$

Приклад 3. Доведемо, що оператор задачі (1.2), (1.3) симетричний. Перш за все зазначимо, що множина D_A (1.4) щільна в L_2 (0,1). Цей висновок ґрунтується на очевидному співвідношенні $C_0^{(\infty)} \subset D_A$ і тому факті, що $C_0^{(\infty)}$ утворює щільну множину у просторі L_2 (0,1) [5,10]. Розглянемо скалярний добуток

$$(Au, v) = -\int_{a}^{b} u''v dx, \qquad \forall u, v \in D_{A}.$$
 (1.9)

Зінтегруємо праву частину попереднього виразу частинами і візьмемо до уваги граничні умови (1.3). Отримаємо

$$(Au, v) = \int_{a}^{b} u'v'dx. \tag{1.10}$$

Оскільки права частина цього виразу є симетричною відносно функцій u та v, то можна записати

$$(Au, v) = (Av, u).$$
 (1.11)

З огляду на симетрію скалярного добутку остаточно одержимо

$$(Au, v) = (u, Av).$$
 (1.12)

2. Додатні оператори. Приклади.

Означення. Оператор A називають додатним, якщо він симетричний, і виконуються співвідношення

$$(Au, u) \geq 0, \qquad \forall u \in D_A;$$
 (1.13)

$$(Au, u) = 0 \Rightarrow u \equiv 0. \tag{1.14}$$

Приклад 4. Доведемо додатність оператора крайової задачі Діріхле для рівняння Пуассона (1.5), (1.6). Область визначення D_A цього оператора є щільною множиною в просторі $L_2(\Omega)$ (див. приклад 1). Розглянемо вираз

$$(Au,u)=-\int\limits_{\Omega}\Delta u\,\,ud\Omega.$$

Щоб його перетворити, отримаємо формулу Гріна для оператора Лапласа. З цією метою використаємо формулу Остроградського [8,10]

$$\int_{\Omega} \left(\frac{\partial \varphi}{\partial x_1} + \frac{\partial \psi}{\partial x_2} \right) d\Omega = \int_{\Gamma} (\varphi l_1 + \psi l_2) d\Gamma, \tag{1.16}$$

де $l_i = \cos{(\nu, x_i)}, i = 1, 2; \nu$ — зовнішня нормаль до границі Γ області Ω . Приймемо у формулі (1.16) $\varphi = uv, \psi = 0$. Знайдемо

$$\int_{\Omega} v \frac{\partial u}{\partial x_1} d\Omega = -\int_{\Omega} u \frac{\partial v}{\partial x_1} d\Omega + \int_{\Gamma} u v l_1 d\Gamma. \tag{1.17}$$

Аналогічно матимемо

$$\int_{\Omega} v \frac{\partial u}{\partial x_2} d\Omega = -\int_{\Omega} u \frac{\partial v}{\partial x_2} d\Omega + \int_{\Gamma} u v l_2 d\Gamma. \tag{1.18}$$

Підставивши у формули (1.17), (1.18) замість функції u її похідні $\partial u/\partial x_1$ та $\partial u/\partial x_2$ і додаючи їх, отримаємо формулу Гріна

$$-\int_{\Omega} \Delta u \, v d\Omega = \int_{\Omega} \operatorname{grad} u \operatorname{grad} v d\Omega - \int_{\Gamma} \frac{\partial u}{\partial \nu} v d\Gamma, \tag{1.19}$$

де

$$\operatorname{grad} u = \left\{ \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2} \right\}, \qquad \frac{\partial u}{\partial \nu} = \frac{\partial u}{\partial x_1} l_1 + \frac{\partial u}{\partial x_2} l_2. \tag{1.20}$$

Отже, для скалярного добутку (Au, u) з урахуванням формули Гріна та граничних умов (1.6) запишемо

$$(Au, u) = \int_{\Omega} (\operatorname{grad} u)^2 d\Omega. \tag{1.21}$$

Очевидно, що $(Au,u) \geq 0$. Припустимо тепер, що

$$(Au, u) = 0. (1.22)$$

Звідси, враховуючи (1.21), матимемо

$$\operatorname{grad} u \equiv 0 \Rightarrow u \equiv \operatorname{const.}$$
 (1.23)

Якщо взяти до уваги граничну умову (1.6), то отримаємо потрібний результат $u \equiv 0$.

3. Теорема про єдність розв'язку крайової задачі з додатним оператором.

Уважатимемо тут, що задача

$$Au = f, f \in H, (1.33)$$

має додатний оператор, який відображає область його визначення D_A у гільбертів простір H.

Зазначимо перш за все, що властивість додатності оператора задачі (1.33) пов'язана з єдиністю її розв'язку. Виконується така теорема:

Теорема 1. Нехай $A - \partial o \partial amний оператор. Тоді, якщо задача (1.33) має розв'язок, то він єдиний.$

Доведення. Припустимо, що існують два розв'язки задачі (1.33) u_1 та u_2 , причому u_1 не дорівнює тотожно u_2 . Розглянемо скалярний добуток $(A(u_1-u_2),u_1-u_2)$. Оскільки $A(u_1-u_2)=Au_1-Au_2=f-f=0$, то

$$(A(u_1-u_2), u_1-u_2)=0.$$

Звідси, враховуючи, що A — додатний оператор, робимо висновок, що $u_1-u_2\equiv 0$. Це суперечить початковому припущенню, а отже, доводить теорему. \blacksquare

4. Додатновизначені оператори. Приклади. Нерівність Фрідріхса.

Означення. Оператор A називають додатним, якщо він симетричний, і виконуються співвідношення

$$(Au, u) \geq 0, \qquad \forall u \in D_A;$$
 (1.13)

$$(Au, u) = 0 \Rightarrow u \equiv 0. \tag{1.14}$$

Якщо в цьому разі існує стала $\gamma > 0$ така, що виконується нерівність

$$(Au, u) \ge \gamma^2 \|u\|_H^2$$
, (1.15)

то оператор A називають додатно визначеним.

Приклад 5. Доведемо додатну визначеність оператора задачі (1.2), (1.3). Для цього запишемо u(x) у вигляді

$$u(x) = \int_{a}^{x} \frac{du}{dt} dt. \tag{1.24}$$

Звідси, враховуючи нерівність Коші-Буняковського, отримаємо

$$u^{2}(x) = \left(\int_{a}^{x} \frac{du}{dt} dt\right)^{2} \leq \int_{a}^{x} \left(\frac{du}{dt}\right)^{2} dt \quad \int_{a}^{x} dx \leq (x-a) \int_{a}^{b} \left(\frac{du}{dt}\right)^{2} dt. \quad (1.25)$$

Зінтегрувавши ліву та праву частини ланцюжка нерівностей (1.25), зна-йдемо

$$\int_{a}^{b} u^{2}(x)dx \leq \frac{(b-a)^{2}}{2} \int_{a}^{b} \left(\frac{du}{dx}\right)^{2} dx. \tag{1.26}$$

Отриману нерівність (1.26) називають нерівністю Фрідріхса. Використовуючи її, можна довести додатну визначеність оператора задачі (1.2), (1.3). Справді, враховуючи співвідношення (1.26), матимемо

$$(Au, u) \ge \frac{2}{(b-a)^2} \|u\|^2.$$
 (1.27)

Отже,

$$\gamma^2 = \frac{2}{(b-a)^2}.$$

5. Теорема про функціонал енергії.

Теорема 2 (теорема про мінімум функціонала енергії). Нехай A — додатний оператор. Якщо задача (1.33) має розв'язок, то він надає мінімуму функціоналу

$$F(u) = (Au, u) - 2(u, f), \qquad u \in D_A.$$
 (1.34)

Навпаки, функція, яка надає мінімального значення функціоналу (1.34), є одночасно розв'язком задачі (1.33).

6. Існування розв'язку задачі про мінімум квадратичного функціонала.

Розглянемо функціонал

$$F(u) = (Au, u) - 2(u, f), \qquad u \in D_A.$$
 (1.45)

Згідно з теоремою про функціонал енергії, якщо A — додатний оператор, то задача мінімізації цього функціонала еквівалентна задачі Au=f за умови, що існує її розв'язок. Якщо оператор A — додатно визначений, то функціонал (1.45) можна розглядати в енергетичному просторі

$$F(u) = (u, u)_A - 2(u, f), \qquad u \in H_A.$$
 (1.46)

Тоді ж можна довести, що існує розв'язок задачі про мінімум функціонала.

Теорема 4. Нехай A- додатно визначений оператор. Тоді варіаційна задача про мінімум функціонала енергії (1.46) має единий розв'язок $u_0 \in H_A$.

Означення. Функцію u_0 , яка надає мінімуму функціоналу енергії на множині функцій з простору H_A , називають узагальненим розв'язком рівняння Au=f.

Цей термін зумовлений тим, що розв'язок $u_0 \in H_A$ і, отже, може не належати області визначення оператора D_A .

7. Головні та природні крайові умови.

Означення. Нехай диференціальне рівняння має порядок 2k. Тоді граничні умови, що містять похідні до порядку k-1 включно, є головними. Граничні ж умови, що містять похідні порядку k та вище, є природними граничними умовами.

У варіаційному формулюванні крайової задачі, як задачі мінімізації квадратичного функціонала, природні граничні умови та диференціальне рівняння становлять необхідні умови мінімуму функціонала (рівняння Ейлера).

Приклад 11. Розглянемо мішану крайову задачу для рівняння Пуассона

$$-\Delta u = f, \qquad x_1, x_2 \in \Omega; \tag{1.54}$$

$$u = 0, \qquad x_1, x_2 \in \Gamma_1; \tag{1.55}$$

$$\frac{\partial u}{\partial \nu} = 0, \qquad x_1, x_2 \in \Gamma_2, \qquad \Gamma = \Gamma_1 \cup \Gamma_2,$$
 (1.56)

де ν — зовнішня нормаль до границі Γ . Нескладно довести, що ця задача має додатний оператор. Отже, вона еквівалентна задачі про мінімум функціонала енергії

$$F(u) = \int_{\Omega} \left(\left(\frac{\partial u}{\partial x_1} \right)^2 + \left(\frac{\partial u}{\partial x_2} \right)^2 \right) d\Omega - 2 \int_{\Omega} f u \ d\Omega. \tag{1.57}$$

Оскільки диференціальне рівняння є рівнянням другого порядку, то k=1. Отже, гранична умова (1.55) є головною умовою, а гранична умова (1.56) — природною. Шукатимемо розв'язок задачі про мінімум функціонала (1.57) на множині функцій

$$M = \{u(x_1, x_2) : u \in C^{(2)}; u = 0, x_1, x_2 \in \Gamma_1\}.$$

8. Слабкий розв'язок крайової задачі.

Приклад 14. Задачу описує диференціальне рівняння

$$-\frac{d^2u}{dx^2} + Pe\frac{du}{dx} + u = f, \ x \in (a, b)$$
 (1.115)

та граничні умови

$$u(a) = 0, \quad \frac{du(b)}{dx} = 0.$$
 (1.116)

Означення. Назвемо слабким розв'язком крайової задачі (1.115), (1.116) функцію $u\left(x\right)\in V$, яка задовольняє варіаційне рівняння

$$(Au, v) = (f, v), \qquad \forall v \in V. \tag{1.119}$$

Виконується включення

$$D_A \subset V$$
.

Тому, очевидно, якщо функція $u(x) \in D_A$ є розв'язком задачі ((1.115), (1.116))

$$Au = f$$

вона ϵ і слабким розв'язком, тобто задовольня ϵ варіаційне рівняння (1.119).

9. Абстрактна варіаційна задача.

Запишемо варіаційну задачу (1.119) у загальному вигляді. Знайдемо $u \in V$ таке, що

$$a(u, v) = l(v), \quad \forall v \in V,$$

де $a\left(u,v\right),\ l\left(v\right)$ — деякі задані білінійна та лінійна форми. Питання існування і єдиності слабкого розв'язку цієї варіаційної задачі розглянуто у такій теоремі.

Теорема 7 (Лакса-Мільграма). Нехай V — гільбертів простір, у якому задана білінійна форма $a(u,v):V\times V\to R$ та лінійна форма $l(v):V\to R$. Уважатимемо, що білінійна форма неперервна та V-еліптична, тобто виконуються нерівності

$$|a(u,v)| \le M \|u\|_V \|v\|_V;$$
 (1.120)

$$a(u, u) \ge \alpha \|u\|_V^2$$
, (1.121)

 $\partial e\ M,\ \alpha-cmaлi,\ M>0,\ \alpha>0$ а лінійна форма l(v) неперервна, тобто задовольняє нерівність

$$|l(v)| < K ||v||_{V}, \tag{1.122}$$

 $\partial e\ K-c$ тала K>0. Тоді така варіаційна задача: знайти таку функцію $u\in V,\ \mathit{щo}$

$$a(u,v) = l(v) \qquad \forall v \in V,$$
 (1.123)

має единий розв'язок, і виконується нерівність

$$||u||_V \le \frac{K}{\alpha}.\tag{1.124}$$