RedHat 2

Day2

Nada Mohamed Ahmed Hassan Eleshmawy

Mansoura Open Source

Date: 14/2/2025

1. Create a script named backup.sh in /usr/local/bin and Set the SUID bit so that the script runs with the permissions of the file owner (root).

SUID: set user id \rightarrow the script -with this bit- runs with the permissions of the file owner (root)(add only to files).

Set this bit:

chmod u+s /usr/local/bin/backup.sh

Or using

chmod 4755 /usr/local/bin/backup.sh

Remove it using:

chmod u-s /usr/local/bin/backup.sh

Create the file:

```
[nada_mohamed2243@localhost ~]$ sudo touch /usr/local/bin/backup.sh
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ sudo ls /usr/local/bin/
backup.sh
```

Check permission before Set the SUID bit:

```
[nada_mohamed2243@localhost ~]$ sudo ls -dl /usr/local/bin/backup.sh
-rw-r---. 1 root root 0 Feb 14 13:01 /usr/local/bin/backup.sh
[nada_mohamed2243@localhost ~]$ sudo ls -dl /usr/local/bin/
drwxr-xr-x. 2 root root 23 Feb 14 13:01 /usr/local/bin/
[nada_mohamed2243@localhost ~]$
```

Set the SUID bit:

chmod u+s /usr/local/bin/backup.sh

check permission After Set the SUID bit:

```
[nada_mohamed2243@localhost ~]$ sudo chmod u+s /usr/local/bin/backup.sh
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ sudo ls -dl /usr/local/bin/backup.sh
-rwSr--r-. 1 root root 0 Feb 14 13:01 /usr/local/bin/backup.sh
[nada_mohamed2243@localhost ~]$
```

The uppercase S instead of lowercase s in -rwSr--r- means that the SUID bit is set, but the execute (x) permission is missing for the file owner.

If we add execute permission for the file owner:

chmod u+x /usr/local/bin/backup.sh → we got lowercase s

```
[nada_mohamed2243@localhost ~]$ sudo chmod u+x /usr/local/bin/backup.sh
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ sudo ls -dl /usr/local/bin/backup.sh
-rwsr--r-. 1 root root 0 Feb 14 13:01 /usr/local/bin/backup.sh
[nada_mohamed2243@localhost ~]$
```

- If you set SUID (u+s), but the file is not executable, the system cannot run it as another user.
- Adding execute (x) allows it to run with the owner's privileges (root).

2. Create a directory named shared_team in /home and Set the SGID bit so that any files created in this directory inherit the group ownership of the directory.

SGID: set group id \rightarrow any files created in this directory inherit the group ownership of the directory

Set this bit:

chmod g+s /home/shared_team Or using chmod 2775 /home/shared_team

Remove it using:

chmod g-s /home/shared_team

Create the directory:

```
[nada_mohamed2243@localhost ~]$ ls /home/
ahmed nada_mohamed2243 testu
```

sudo mkdir /home/shared team

```
[nada_mohamed2243@localhost ~]$ sudo mkdir /home/shared_team
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ ls /home/
ahmed nada_mohamed2243 shared_team testu
[nada_mohamed2243@localhost ~]$
```

Check permission before Set the SGID bit:

```
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/
[sudo] password for nada_mohamed2243:
drwxr-xr-x. 2 root root 6 Feb 14 15:43 /home/shared_team/
```

Set the SGID bit:

chmod g-s /home/shared_team

check permission After Set the SGID bit:

```
[nada_mohamed2243@localhost ~]$ sudo chmod g+s /home/shared_team
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/
drwxr-sr-x. 2 root root 6 Feb 14 15:43 /home/shared_team/
[nada_mohamed2243@localhost ~]$
```

Test this:

- We create group
- Add a user to it.
- Add the dir to this group
- If we create file in this directory (with **SGID bit**), it will inherit the group ownership of the directory not the user group

```
[nada_mohamed2243@localhost ~]$ sudo groupadd team
[nada_mohamed2243@localhost ~]$ sudo usermod -aG team ahmed
[nada_mohamed2243@localhost ~]$ sudo chown :team /home/shared_team
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team
drwxr-sr-x. 2 root team 39 Feb 14 15:56 /home/shared_team
[nada_mohamed2243@localhost ~]$ sudo touch /home/shared_team/testSGID3
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/testSGID3
-rw-r--r-. 1 root team 0 Feb 14 16:27 /home/shared_team/testSGID3
[nada_mohamed2243@localhost ~]$ touch testSGIDoutSide
[nada_mohamed2243@localhost ~]$ sudo ls -dl testSGIDoutSide
-rw-r--r-. 1 nada_mohamed2243 nada_mohamed2243 0 Feb 14 16:28 testSGIDoutSide
[nada_mohamed2243@localhost ~]$
```

- If we create file in this directory (without **SGID bit**), it will inherit the user group

```
[nada_mohamed2243@localhost ~]$ sudo chmod g-s /home/shared_team
[nada_mohamed2243@localhost ~]$ sudo touch /home/shared_team/testSGID4
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/testSGID4
-rw-r--r-. 1 root root 0 Feb 14 16:30 /home/shared_team/testSGID4
[nada_mohamed2243@localhost ~]$
```

 If we create file in this directory (with SGID bit), it will inherit the group ownership of the directory not the user group

```
[nada_mohamed2243@localhost ~]$ sudo chmod g+s /home/shared_team
[nada_mohamed2243@localhost ~]$ sudo touch /home/shared_team/testSGID5
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/testSGID5
-rw-r--r-. 1 root team 0 Feb 14 16:31 /home/shared_team/testSGID5
```

3. Set the sticky bit on the shared_team directory so that users can only delete their own files.

sticky bit → Restrict file deletion (add only to directories)

```
Set this bit:
```

```
chmod a+t /home/shared_team
Or using
sudo chmod 1775 /home/shared_team
```

Remove it using:

chmod a-t /home/shared team

```
[nada_mohamed2243@localhost ~]$ sudo chmod a+t /home/shared_team/
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/
drwxr-sr-t. 2 root team 90 Feb 14 16:31 /home/shared_team/
[nada_mohamed2243@localhost ~]$
```

Test this:

Before adding sticky bit to the dir:

From another user we try to delete the file which exists inside the dir \rightarrow we delete it successfully

 We just make sure that the parent has wx permission to delete the files

```
[nada_mohamed2243@localhost ~]$ sudo chmod 777 /home/shared_team
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/
drwxrwsrwx. 2 root team 90 Feb 14 16:31 /home/shared_team/
```

```
[testu@localhost ~]$ ls -dl /home/shared_team
drwxrwsrwx. 2 root team 90 Feb 14 16:31 //home/shared_team
[testu@localhost ~]$ ls -dl /home/shared_team/testSGID5
-rw-r---. 1 root team 0 Feb 14 16:31 /home/shared_team/testSGID5
[testu@localhost ~]$ rm /home/shared_team/testSGID5
rm: remove write-protected regular empty file '/home/shared_team/testSGID5'? Y
[testu@localhost ~]$ ls /home/shared_team
testSGID testSGID2 testSGID3 testSGID4
[testu@localhost ~]$
```

After adding sticky bit to the dir:

From another user we try to delete the file which exists inside the dir \rightarrow we cannot delete it.

We create the file again

```
[nada_mohamed2243@localhost ~]$ sudo ls /home/shared_team/
testSGID testSGID2 testSGID3 testSGID4
[nada_mohamed2243@localhost ~]$ sudo touch /home/shared_team/testSGID5
```

- Add sticky bit

```
[nada_mohamed2243@localhost ~]$ sudo chmod a+t /home/shared_team/
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared_team/
drwxrwsrwt. 2 root team 90 Feb 14 17:19 /home/shared_team/
[nada_mohamed2243@localhost ~]$
```

Try to remove it from other user

```
[testu@localhost ~]$ ls /home/shared_team
testSGID testSGID2 testSGID3 testSGID4 testSGID5
[testu@localhost ~]$ rm /home/shared_team/testSGID5
rm: remove write-protected regular empty file '/home/shared_team/testSGID5'? y
rm: cannot remove '/home/shared_team/testSGID5': Operation not permitted
[testu@localhost ~]$
```

.....

4. Create a shared directory named shared where:

add read and write permissions for a group named developers using ACL .

All new files and subdirectories inherit the group developers permissions (use the setgid permission).

Only the owner of a file can delete it (use the sticky bit).

1- Create a shared directory named shared

```
[nada_mohamed2243@localhost ~]$ sudo mkdir /home/shared
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ sudo ls /home/
ahmed nada_mohamed2243 shared shared_team testu
```

2-add read and write permissions for a group named developers using ACL.

```
[nada_mohamed2243@localhost ~]$ sudo groupadd developers
[nada_mohamed2243@localhost ~]$ sudo chown :developers /home/shared
[nada_mohamed2243@localhost ~]$ sudo setfacl -m g:developers:rw /home/shared
[nada_mohamed2243@localhost ~]$ sudo getfacl /home/shared
getfacl: Removing leading '/' from absolute path names
# file: home/shared
# owner: root
# group: developers
user::rwx
group::r-x
group:developers:rw-
mask::rwx
other::r-x
```

3- All new files and subdirectories inherit the group developers permissions (use the setgid permission).

```
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared
drwxrwxr-x+ 2 root developers 6 Feb 14 17:32 /home/shared
[nada_mohamed2243@localhost ~]$ sudo chmod g+s /home/shared
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared
drwxrwsr-x+ 2 root developers 6 Feb 14 17:32 /home/shared
[nada_mohamed2243@localhost ~]$
```

4- Only the owner of a file can delete it (use the sticky bit).

```
[nada_mohamed2243@localhost ~]$ sudo chmod o+t /home/shared
[nada_mohamed2243@localhost ~]$ sudo ls -dl /home/shared
drwxrwsr-t+ 2 root developers 6 Feb 14 17:32 /home/shared
[nada_mohamed2243@localhost ~]$
```

5. What is the difference between traditional Linux permissions and ACLs?

Traditional Linux Permissions: Use rwx (read, write, execute) permissions for owner, group, and others.

ACLs (Access Control Lists): allow you to define permissions for specific users or groups beyond the standard owner/group/others model.

6.Create a directory named lab_acls and navigate into it:

mkdir lab_acls cd lab_acls

```
[nada_mohamed2243@localhost ~]$ mkdir lab_acls
[nada_mohamed2243@localhost ~]$ cd lab_acls
[nada_mohamed2243@localhost lab_acls]$
```

.....

7.Create a file named testfile.txt:

touch testfile.txt

```
[nada_mohamed2243@localhost lab_acls]$ touch testfile.txt
[nada_mohamed2243@localhost lab_acls]$ ls
testfile.txt
```

.....

8. Create two users (alice and bob) and a group (developers):

sudo useradd alice sudo useradd bob sudo groupadd developers2

```
[nada_mohamed2243@localhost lab_acls]$ sudo useradd alice
[nada_mohamed2243@localhost lab_acls]$ sudo useradd bob
[nada_mohamed2243@localhost lab_acls]$ sudo groupadd developers
groupadd: group 'developers' already exists
[nada_mohamed2243@localhost lab_acls]$ sudo groupadd developers2
[nada_mohamed2243@localhost lab_acls]$
```

9.Add alice and bob to the developers group:

sudo usermod -aG developers2 alice sudo usermod -aG developers2 bob

[nada_mohamed2243@localhost lab_acls]\$ sudo usermod -aG developers2 alice
[nada_mohamed2243@localhost lab_acls]\$ sudo usermod -aG developers2 bob
[nada_mohamed2243@localhost lab_acls]\$ cat /etc/group

bob:x:1006:

developers2:x:1007:alice,bob

10. View and List the ACL of a file named testfile.txt.

sudo getfacl testfile.txt

```
[nada_mohamed2243@localhost lab_acls]$ ls
testfile.txt
[nada_mohamed2243@localhost lab_acls]$ sudo getfacl testfile.txt
# file: testfile.txt
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rw-
group::r--
other::r--
[nada_mohamed2243@localhost lab_acls]$
```

11.read and write permissions for a user named alice to the file testfile.txt and Verify the changes.

sudo setfacl -m u:alice:rw testfile.txt sudo getfacl testfile.txt

```
[nada_mohamed2243@localhost lab_acls]$ sudo setfacl -m u:alice:rw testfile.txt
[nada_mohamed2243@localhost lab_acls]$ sudo getfacl testfile.txt
# file: testfile.txt
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rw-
user:alice:rw-
group::r--
mask::rw-
other::r--
```

12.Add execute permission for a group named developers to the file testfile.txt and Verify the changes.

sudo setfacl -m g:developers:x testfile.txt sudo getfacl testfile.txt

```
[nada_mohamed2243@localhost lab_acls]$ sudo setfacl -m g:developers2:x testfile.txt
[nada_mohamed2243@localhost lab_acls]$ sudo getfacl testfile.txt
# file: testfile.txt
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rw-
user:alice:rw-
group::r--
group:developers2:--x
mask::rwx
other::r--
```

13.Remove the ACL entry for the user alice from the file testfile.txt and Verify the changes.

setfacl -x u:alice testfile.txt getfacl testfile.txt

```
[nada_mohamed2243@localhost lab_acls]$ sudo setfacl -x u:alice testfile.txt
[nada_mohamed2243@localhost lab_acls]$ sudo getfacl testfile.txt
# file: testfile.txt
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rw-
group::r--
group:developers2:--x
mask::r-x
other::r--
```

14.Set read and execute permissions for bob on all files and subdirectories inside lab_acls.

cd

sudo setfacl -R -m u:bob:rx lab_acls getfacl lab acls

The -R flag in setfact stands for recursive, meaning it applies the ACL changes to the directory and all its files and subdirectories.

```
[nada_mohamed2243@localhost ~]$ sudo setfacl -R -m u:bob:rx lab_acls
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ sudo getfacl lab_acls
# file: lab_acls
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rwx
user:bob:r-x
group::r-x
mask::r-x
other::r-x
[nada_mohamed2243@localhost ~]$
```

15. How does the mask affect the effective permissions of named users and groups?

- The mask limits the maximum permissions a user or group can have
- Even if ACL grants a user rwx, if the mask is set to r--, the user will only have read access.

- Mask is Recalculated Automatically:
 - Every time you run setfacl, the mask is automatically recalculated to the maximum permissions given to any named user or group.
- We can set the mask manually using :
 - setfacl -m m:r-- testfile.txt
- If you don't want the mask to be automatically recalculated, use -n:
 - setfacl -n -m g:user1:rwx file1.txt

16.Set the mask for the file testfile.txt to r-- and observe how it affects the effective permissions of named users and groups.

sudo setfacl -m m::r-- testfile.txt sudo getfacl testfile.txt

17.Add read and write permissions for two users, alice and bob, to the file testfile.txt in a single command.

sudo setfacl -m u:alice:rw,u:bob:rw testfile.txt

```
[nada_mohamed2243@localhost lab_acls]$ sudo setfacl -m u:alice:rw,u:bob:rw testfile.txt
[nada_mohamed2243@localhost lab_acls]$ sudo getfacl testfile.txt
# file: testfile.txt
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rw-
user:alice:rw-
user:bob:rw-
group::r--
group:developers2:--x
mask::rwx
other::r--
[nada_mohamed2243@localhost lab_acls]$
```

18.Backup the ACLs of the directory mydir to a file named mydir_acls.txt.

sudo getfacl -R mydir > mydir_acls.txt

Make this about our example lab_acls:

sudo getfacl -R lab_acls > lab_acls_backup.txt

```
[nada_mohamed2243@localhost lab_acls]$ cd
[nada_mohamed2243@localhost ~]$ getfacl -R lab_acls> lab_acls_backup.txt
[nada_mohamed2243@localhost ~]$ cat lab_acls_backup.txt
# file: lab_acls
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rwx
user:bob:r-x
group::r-x
mask::r-x
other::r-x
# file: lab_acls/testfile.txt
# owner: nada_mohamed2243
# group: nada_mohamed2243
user::rw-
user:alice:rw-
user:bob:rw-
group::r--
group:developers2:--x
mask::rwx
other::r--
[nada_mohamed2243@localhost ~]$
```

19. Check the Current SELinux Mode.

getenforce

```
[nada_mohamed2243@localhost ~]$ getenforce
Enforcing
```

setenforce [Enforcing | Permissive | 1 | 0]

This will return one of the following:

- Enforcing → SELinux is fully enabled and enforcing security policies.
- Permissive → SELinux logs policy violations but doesn't enforce them.
- Disabled → SELinux is turned off.

Or using

sestatus

```
[nada_mohamed2243@localhost ~]$ sestatus
SELinux status:
                                 enabled
SELinuxfs mount:
                                 /sys/fs/selinux
SELinux root directory:
                                 /etc/selinux
Loaded policy name:
                                 targeted
Current mode:
                                 enforcing
Mode from config file:
                                 enforcing
Policy MLS status:
                                 enabled
Policy deny_unknown status:
                                 allowed
Memory protection checking:
                                 actual (secure)
Max kernel policy version:
                                 33
[nada mohamed2243@localhost ~]$
```

20. Change SELinux mode temporarily.

sudo setenforce [0|1]

- Set SFI inux to Permissive mode:

sudo setenforce 0

```
[nada_mohamed2243@localhost ~]$ sudo setenforce 0
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ getenforce
Permissive
[nada_mohamed2243@localhost ~]$ sestatus
SELinux status:
                                 enabled
SELinuxfs mount:
                                 /sys/fs/selinux
SELinux root directory:
                                 /etc/selinux
Loaded policy name:
                                 targeted
Current mode:
                                 permissive
Mode from config file:
                                 enforcing
Policy MLS status:
                                 enabled
Policy deny_unknown status:
                                 allowed
Memory protection checking:
                                 actual (secure)
Max kernel policy version:
[nada_mohamed2243@localhost ~]$
```

- Set SELinux to Enforcing mode:

sudo setenforce 1

```
[nada_mohamed2243@localhost ~]$ sudo setenforce 1
[nada_mohamed2243@localhost ~]$ getenforce
Enforcing
[nada_mohamed2243@localhost ~]$ sestatus
SELinux status:
                                 enabled
SELinuxfs mount:
                                 /sys/fs/selinux
SELinux root directory:
                                 /etc/selinux
Loaded policy name:
                                 targeted
Current mode:
                                 enforcing
Mode from config file:
                                 enforcing
Policy MLS status:
                                 enabled
Policy deny_unknown status:
                                 allowed
Memory protection checking:
                                 actual (secure)
Max kernel policy version:
[nada_mohamed2243@localhost ~]$
```

.....

21. Change SELinux Mode Permanently.

A- Open the SELinux configuration file:

sudo vi /etc/selinux/config

```
[nada mohamed2243@localhost ~]$ sudo vi /etc/selinux/config
```

B- Find this line:

SELINUX=enforcing

It can be:

SELINUX=enforcing (Enforcing mode)

SELINUX=permissive (Permissive mode)

SELINUX=disabled (Disabled mode)

```
# SELINUX= can take one of these three values:
# enforcing - SELinux security policy is enforced.
# permissive - SELinux prints warnings instead of enforcing.
# disabled - No SELinux policy is loaded.
# See also:
# https://access.redhat.com/documentation/en-us/red_hat_enterprisinux#changing-selinux-modes-at-boot-time_changing-selinux-states-
# NOTE: Up to RHEL 8 release included, SELINUX=disabled would als fully disable SELinux during boot. If you need a system with SE fully disabled instead of SELinux running with no policy loaded need to pass selinux=0 to the kernel command line. You can use to persistently set the bootloader to boot with selinux=0:
# grubby --update-kernel ALL --args selinux=0
# grubby --update-kernel ALL --remove-args selinux
# SELINUX=enforcing
# SELINUXTYPE= can take one of these three values:
# targeted - Targeted processes are protected,
# minimum - Modification of targeted policy. Only selected pr
# mls - Multi Level Security protection.
SELINUXTYPE=targeted
```

C- Change it to:

SELINUX=enforcing (Enforcing mode)

SELINUX=permissive (Permissive mode)

SELINUX=disabled (Disabled mode)

```
#SELINUX=enforcing
SELINUX=permissive
#SELINUX=disabled
```

```
[nada_mohamed2243@localhost ~]$ sestatus
SELinux status:
                                enabled
SELinuxfs mount:
                                /sys/fs/selinux
SELinux root directory:
                                /etc/selinux
Loaded policy name:
                                targeted
Current mode:
                                enforcing
Mode from config file:
                                permissive
Policy MLS status:
                                enabled
Policy deny_unknown status:
                                allowed
                                actual (secure)
Memory protection checking:
Max kernel policy version:
                                33
[nada_mohamed2243@localhost ~]$
```

Note:

If we choose Disabled mode (SELINUX=disabled) \rightarrow we should restart the system

reboot

22.what difference between cp, mv,cp-a (ContextSwitching).

- cp file1 file2: Loses SELinux context; new file gets default context
 (cp loses the context because it creates a new file, which follows the default
 SELinux policy for the target directory)
- mv file1 file2: Preserves SELinux context(mv keeps the context because it only updates the file's location, not its attributes)
- cp -a file1 file2: Preserves SELinux context(cp -a keeps the context by preserving all file attributes, including SELinux labels)

Example:

- get the context of /var/www/html/:

Is -IdZ /var/www/html/

```
[nada_mohamed2243@localhost ~]$ ls -ldZ /var/www/html/
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_content_t:s0 6 Jan 10 20:45 /var/www/html/
[nada_mohamed2243@localhost ~]$
```

- Create files and check there context :

touch file1 file2 file3

- Use cp with file1 ,Use mv with file2 and Use cp -a with file3 :

cp file1 /var/www/html/file1 mv file2 /var/www/html/file2

cp -a file3 /var/www/html/file3

```
[nada_mohamed2243@localhost ~]$ sudo cp file1 /var/www/html/file1
[sudo] password for nada_mohamed2243:
[nada_mohamed2243@localhost ~]$ sudo ls /var/www/html/
file1
[nada_mohamed2243@localhost ~]$ sudo mv file2 /var/www/html/file2
[nada_mohamed2243@localhost ~]$ sudo ls /var/www/html/
file1 file2
[nada_mohamed2243@localhost ~]$ sudo cp -a file3 /var/www/html/file3
[nada_mohamed2243@localhost ~]$ sudo ls /var/www/html/
file1 file2 file3
```

Check the context again after cp,mv,cp -a:

We note that with cp : Loses original context (new file follows directory defaults).

But with mv and cp -a: Preserves original context

Note:

If you accidentally lose the context with cp, you can restore it with:

restorecon -Rv /var/www/html/file3

23.Run Apache web Server on /websites [must SELinuxMode=Enforcing]

1. Show IP

ifconfig \rightarrow 192.168.112.137

```
[nada_mohamed2243@localhost ~]$ ifconfig
ens160: flags=4163UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.112.137    netmask 255.255.255.0    broadcast 192.168.112.255
    inet6 fe80::20c:29ff:fee4:19fc    prefixlen 64    scopeid 0x20<link>
        ether 00:0c:29:e4:19:fc    txqueuelen 1000    (Ethernet)
        RX packets 98005    bytes 137681098    (131.3 MiB)
        RX errors 0    dropped 0    overruns 0    frame 0
        TX packets 44644    bytes 2782501    (2.6 MiB)
        TX errors 0    dropped 0    overruns 0    carrier 0    collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING>    mtu 65536
        inet 127.0.0.1    netmask 255.0.0.0
        inet6 ::1    prefixlen 128    scopeid 0x10<host>
        loop    txqueuelen 1000    (Local Loopback)
        RX packets 836    bytes 75887    (74.1 KiB)
        RX errors 0    dropped 0    overruns 0    frame 0
        TX packets 836    bytes 75887    (74.1 KiB)
        TX errors 0    dropped 0    overruns 0    carrier 0    collisions 0

[nada_mohamed2243@localhost ~]$
```

2. Show Mode SElinux

getenforce

```
[nada_mohamed2243@localhost ~]$ getenforce
Enforcing
```

3. create fileHtml

sudo vi /var/www/html/test.html

4. Edit config Apache

sudo vi /etc/httpd/conf/httpd.conf

```
[nada_mohamed2243@localhost ~]$ sudo vi /etc/httpd/conf/httpd.conf
```

</Directory>

5. Restart Service and Make Html File in Website Folder sudo mkdir /websites

sudo vi /websites/test.html

```
[nada_mohamed2243@localhost ~]$ sudo mkdir /websites
[nada_mohamed2243@localhost ~]$ sudo vi /websites/test.html
```

sudo systemctl restart httpd.service

[nada_mohamed2243@localhost ~]\$ sudo systemctl restart httpd.service

6. Test

sudo setenforce 1

getenforce #Enforcing

```
[nada_mohamed2243@localhost ~]$ sudo setenforce 1
[nada_mohamed2243@localhost ~]$ sudo getenforce
Enforcing
[nada_mohamed2243@localhost ~]$
```

Openbrowser → Forbidden

sudo setenforce 0

getenforce #Permissive
Openbrowser → Work
And send notifications in /var/log/messages
sudo cat /var/log/messages

7. Change Context for Website Folders

Is -IZ /websites/

```
[nada_mohamed2243@localhost ~]$ sudo ls -lZ /websites/
total 4
-rwxr-xr-x. 1 root root unconfined_u:object_r<mark>:default_t</mark>:s0 40 Feb 14 23:40 test.
html
[nada_mohamed2243@localhost ~]$
```

Is -IdZ /var/www/html/

drwxr-xr-x. root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html/

```
[nada_mohamed2243@localhost ~]$ sudo ls -ldZ /var/www/html/
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_content_t:s0 84 Feb 14 19:53
   /var/www/html/
[nada_mohamed2243@localhost ~]$
```

sudo chcon -R -t httpd_sys_content_t /websites/

```
[nada_mohamed2243@localhost ~]$ sudo chcon -R -t httpd_sys_content_t /websites/
```

Is -IdZ /websites/

```
[nada_mohamed2243@localhost ~]$ sudo ls -ldZ /websites
drwxr-xr-x. 2 root root unconfined_u:object_r:httpd_sys_content_t:s0 23 Feb 14 2
3:40 /websites
```

drwxr-xr-x. root root unconfined u:object r:httpd sys content t:s0 /websites/

Is -IZ /websites/

```
[nada_mohamed2243@localhost ~]$ sudo ls -Zl /websites
total 4
-rwxr-xr-x. 1 root root unconfined_u:object_r:httpd_sys_content_t:s0 40 Feb 14 2
3:40 test.html
```

-rw-r--r-- root root unconfined u:object r:httpd sys content t:s0 test.html

Openbrowser ==> Enforcing Mode ===> Work

http://192.168.112.137/websites/test.html

