Abelsche Gruppen Beweis (V; +) abelsche Gruppe [-v] $(V; +, ^{-1}, 0)$

- 1. $V \to \text{Trägermenge}$
- 2. $+ \rightarrow$ Gruppenkomposition
- 3. $^{-1} \rightarrow$ Inversenbildung
- 4. $0 \rightarrow \text{Nullelemente}$

 $(v;(k|k \in K))$ k 1-stellige Operationen sei $k \in K$

Beispiele für Vektorräume

- 1. \mathbb{R} bilden einen \mathbb{R} -VR, \mathbb{C} bildet einen \mathbb{C} -VR GF(2) bildet einen GF(2), allgemein: jeder Körper K bildet einen K-VR
- 2. Sei K ein Körper $K^{m \times n}$ bildet er einen K-VR, +i Matrizenaddition, $(k|k \in K)$: Skalarmultiplikation
- 3. $\mathbb{R} := \mathbb{R}^{n \times 1} = \left\{ \begin{pmatrix} r_1 \\ \dots \\ r_n \end{pmatrix} \middle| r_1, \dots, r_n \in \mathbb{R} \right\}$ mit Matrizenaddition; Skalarmultiplikation \mathbb{C}^n , GF(2) z.B.: n = 2 $K = \mathbb{R}$

4. Sei ein Körper A Menge, $A = \emptyset$

Vektoren: $f: A \to K: a \mapsto f(a)$

Addition: $f_1 + f_2$: $a \mapsto f_1(a) + f_2(a)$ (Addition in K)

Skalarmult.: kf: $a \mapsto k \cdot f(a)$ $(k \in K)$

- 5. $\mathbb{C}[a,b]$: VR der auf dem abgeschlossenen Intervall [a,b] stetigen Funktionen
- 6. A Menge, $A \neq 0$

Vektoren:

$$P(A) = \{M|M \subset A\}$$

Addition:

$$M_1 + M_2 := M_1 \triangle M_2 = (M_1 \setminus M_2) \cup (M_2 \setminus M_1)$$

 ${\bf Skalar multiplikation}$

$$0\cdot M=\emptyset$$

$$1\cdot M=M$$