1. AUTÓMATAS FINITOS Y GRAMÁTICAS REGULARES.

- EJERCICIO 1.- Dada la expresión regular (a*b)*c* implementar:
 - 1) EI AFND,
 - 2) El AFD correspondiente al anterior,
 - 3) El AFD mínimo.
- EJERCICIO 2.- Dada la gramática regular:

$$A:=bB|cC|a|b$$

Obtener:

- 1) el AFND correspondiente a la gramática.
- 2) el AFD equivalente al del apartado 1)
- EJERCICIO 3.- Dado el AFND=({a,b} , {p,q,r,s,}, f, p, {s}) donde f viene dada por la siguiente tabla de transiciones:

f	а	b	λ
$\rightarrow p$	q,s	р	q,r
q		q,r	r
r		p,s	q
* s	S	q,r,s	

Obtener:

- 1) el AFD equivalente
- 2) el AFD mínimo
- 3) La expresión regular del lenguaje reconocido por el autómata del apartado 2)
- **EJERCICIO 4.-** Dada la expresión regular $\alpha = 00^* + 10^* 10^*$ obtener:
 - 1) un AFD mínimo del correspondiente lenguaje y
 - 2) una gramática regular que lo genere.
- EJERCICIO 5.- Dada la gramática lineal por la derecha:

$$C::=0$$

- 1) Obtener el AFND correspondiente a la gramática
- 2) el AFD mínimo equivalente al del apartado 1).
- 3) La expresión regular del lenguaje generado por ella.
- EJERCICIO 6.- Dada la expresión regular ab*c·(ab*c)* implementar:
 - 1) EI AFND,
 - 2) El AFD correspondiente al anterior,
 - 3) El AFD mínimo.
 - 4) Determinar la gramática regular equivalente.

• EJERCICIO 7.- Obtener una expresión regular equivalente al siguiente autómata finito:

	а	b	С	λ
→ p				q, t
q		r, s		r, s
r				q, u
s	t, p		u	
t		v		q
u	s, q		v	S
* V				r

- EJERCICIO 8.- Dado el AFND definido en la tabla, hallar:
 - 1. Si son aceptadas o no por el autómata las siguientes cadenas:
 - a) f"(p,bbcc)
 - b) f"(p,acbcac)
 - c) f"(p,bcacaa)
 - d) f"(p,caa)
 - e) f"(p,abac)

(son aceptadas a), b), e) y no aceptadas c), d))

- 2. El autómata finito determinista mínimo.
- 3. Corroborar el resultado obtenido para las palabras del apartado 1. con el AFD obtenido en el apartado 2.

	а	b	С	λ
→p				{q, t}
q		{r, s}		{r, s}
r				{q, u}
s	{t, p}		{u}	
t		{v}		{q}
u	{q, s}		{v}	{s}
*V				{r}

• EJERCICIO 9.- Dado el AFND definido en el grafo, hallar:

- 1 Si son aceptadas o no por el autómata las siguientes cadenas: ba, ab, bb, b, bba
- 2 El autómata finito determinista mínimo.
- 3 Corroborar el resultado obtenido para las palabras del apartado 1. con el AFD obtenido en el apartado 2.

2. AUTÓMATAS CON PILA Y GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO.

- EJERCICIO 1.- Dado el lenguaje libre de contexto: $L = \{x^n y^m z^n / n, m \ge 0\}$ Se pide:
 - a) Obtener un Autómata con Pila asociado al lenguaje.
 - b) Construir una gramática LL(1) que lo genere.
 - c) Especificar el pseudocódigo sintáctico LL dirigido por la sintaxis.
 - d) Analizar si son correctas sintácticamente las entradas: "xxyzz" "xyx"
- EJERCICIO 2.- Construir una gramática que reconozca el lenguaje L siguiente:

$$L = \{ a^n b^m c^n / n, m > 0 \}$$

Implementar el analizador sintáctico LL dirigido por la sintaxis, y comprobar si es correcta la cadena abbbc.

• **EJERCICIO 3.-** Diseñar el analizador sintáctico dirigido por la sintaxis para un lenguaje de programación que incluya las siguientes instrucciones de asignación y las dos posibles formas de la estructura SI-SINO:

• EJERCICIO 4.- Dada la siguiente gramática:

```
S \rightarrow S = A \mid A

A \rightarrow A := B \mid B

B \rightarrow (S) \mid a \mid b
```

- Eliminar la recursividad por la izquierda y comprobar si es LL(1) mediante el cálculo de los conjuntos Primero y Siguiente.
- Escribir el analizador analizador sintáctico LL dirigido por la sintaxis y realiza el análisis para la entrada (a)
- EJERCICIO 5.- Dada la siguiente gramática:

```
S \rightarrow S a A \mid A

A \rightarrow B b C

B \rightarrow B c d \mid d

C \rightarrow d \mid e D C

D \rightarrow D c d \mid d
```

- a) Eliminar la recursividad por la izquierda y comprobar si es LL(1) mediante el cálculo de los conjuntos Primero y Siguiente.
- b) A partir de la gramática LL(1) especificar el pseudocódigo de análisis sintáctico dirigido por la sintaxis y realizar el análisis para la entrada: "dbedcdd"
- EJERCICIO 6.- Dada la siguiente gramática:

```
S \rightarrow -S \mid (S) \mid AB

A \rightarrow i C

B \rightarrow -S \mid \lambda

C \rightarrow (S) \mid \lambda
```

- a) Comprobar si es LL(1) mediante el cálculo de los conjuntos Primero y Siguiente
- b) A partir de la gramática LL(1) especificar el pseudocódigo de análisis sintáctico dirigido por la sintaxis y realizar el análisis para la entrada: i--i(i))
- EJERCICIO 7.- Dada la siguiente gramática:

$$S \to AS \mid \lambda$$

$$A \rightarrow aA \mid b$$

- a) A partir de la gramática LL(1) especificar el pseudocódigo de análisis sintáctico dirigido por la sintaxis.
- b) Realizar el análisis para la entrada: aabb\$
- EJERCICIO 8.- Dada la siguiente gramática:

$$S \rightarrow S = A \mid A$$

$$A \rightarrow A + B \mid A - B \mid B$$

$$B \rightarrow (S) \mid a \mid b$$

- 1) Factorizar, eliminar la recursividad por la izquierda y comprobar si es LL(1) mediante el cálculo de los conjuntos Primero y Siguiente.
- 2) A partir de la gramática LL(1) especificar el pseudocódigo de análisis sintáctico dirigido por la sintaxis y realizar el análisis para la entrada " **a = b** "