IN THE CLAIMS

List	ing	of ·	Cla	ims:
		<u> </u>		

for a first type instruction:
setting a first data value, corresponding to a portion of a first address stored in
said link stack, [[in]] into a first portion of an entry in a queue having a plurality of
entries in response to a first type operation; [[and]]
for a second type instruction:
setting a current value of a first pointer into of said link stack [[in]] into a first
register in response to a second type operation; and
setting said current value of said first pointer [[in]]into a second portion of said
entry in said queue.
2. (currently amended) The method of claim 1 further comprising the steps of:
for said second type instruction, reading from said link stack a second address
stored at a stack entry at said current value of said first pointer in response to said second
type operation; and
storing said second address in a second register.
3. (currently amended) The method of claim 1 wherein said first type instruction
operation is a "push" type instruction operation [[an]] and said second type instruction
operation is a "pop" type instruction operation.
4. (currently amended) The method of claim [[1]] 2 further comprising the step of , for a
first type operation, setting said first data value in a third register for said first type
operation.
5. (currently amended) The method of claim 4 further comprising the step of , for third
type instruction, setting a second data value from said second register in a said first
portion of said entry in said queue in response to a third type operation.

1	o. (currently afficilities) The method of claim I wherein said steps recited therein are
2	performed in response to a fetch of an instruction using a corresponding one of said first
3	type instruction operation and said second type instruction operation.
1	7. (currently amended) The method of claim 2 further comprising the steps of:
2	receiving a pointer value in response to a pipeline flush operation, said pointer
3	value operable for pointing into said queue; and
4	setting a current pointer value of said first pointer to a value in said second
5	portion of an entry in the queue pointed to by said pointer value.
1.	8. (currently amended) The method of claim 7 further comprising the steps of:
2	retrieving a value from said second register; and
3	comparing said value from said retrieving step with a value from said second
4	portion of said entry in the queue pointed to by said pointer value.
1	9. (currently amended) The method of claim 8 further comprising the steps of:
2	in response to a compare match in said comparing step, comparing said current
3	value of said first pointer with a data value in said first register; and
4	in response to a compare match of said current value of said first pointer and said
5	data value in said first register, setting said data value in said second register [[in]] into
6	said link stack at a location pointed to by said current value of said first pointer
7	decremented by one.
1	Claims 10-17 (canceled)
1	18. (currently amended) A data processing system comprising:
2	a central processing unit (CPU), said CPU including:
3	a link stack; and
4	first logic operable for , for a first type instruction, setting a first data value
5	corresponding to a portion of a first address stored in said link stack [[in]] into a first

6	portion of an entry in a queue having a plurality of entries in response to a first type
7	operation, and for a second type instruction, setting a current value of a first pointer into
8	said link stack in a first register in response to a second type operation, and setting said
9	current value of said first pointer in a second portion of said entry in said queue.
1	19 (currently amended) The system of claim 18 wherein said CPU further comprises,
2	second logic operable for, for said second type instruction operation, reading from said
3	link stack a second address stored at a stack entry at said current value of said first
4	pointer, and storing said second address in a second register.
1	20. (currently amended) The system of claim 18 wherein said first type instruction is a
2	"push" type instruction operation [[an]] and said second type instruction operation is a
3	"pop" type instruction operation.
1	21. (currently amended) The system of claim [[18]] 19 wherein said CPU further
2 .	comprises, third logic operable for, for a first type operation, setting said first data value
3	in a third register for a first type operation.
1	22. (currently amended) The system of claim 21 wherein said CPU further comprises
2	fourth logic operable for, for third type instruction operation, setting a second data value
3	from said second register in a said first portion of said entry.
1	23. (currently amended) The system of claim 18 wherein said first logic sets said first
2	data value, for said first type instruction, and sets said current value of said pointer, for
3	said second type instruction operation in response to a fetch of a corresponding one of
4	said first type instruction operation and said second type instruction operation.
1	24. (currently amended) The system of claim 19 wherein said CPU further comprises:
2	fifth logic operable for receiving a pointer value in response to a pipeline flush

operation, said pointer value operable for pointing into said queue; and

3

4	sixth logic operable for setting a current pointer value of said first pointer to a
5	value in said second portion of an entry in the queue pointed to by said pointer value.
1	25. (currently amended) The system of claim 24 wherein said CPU further comprises:
2	seventh logic operable for retrieving a data value from said second register; and
3	eighth logic operable for comparing said value from said retrieving step with a
4	data value from said second portion of said entry in the queue pointed to by said pointer
5	value.
1	26. (currently amended) The system of claim 25 wherein said CPU further comprises:
2	ninth logic operable for, in response to a compare match in said comparing step,
3	comparing said current value of said first pointer with a data value in said first register;
4	and .
5	tenth logic operable for, in response to a eompare match of said current value of
6	said first pointer and said data value in said first register, setting said data value in said
7	second register [[in]]into said link stack at a location pointed to by said current value of
8	said first pointer decremented by one.
1	27. (currently amended) The system of claim 18 further comprising system memory
2	coupled to said CPU, said system memory operable for storing a program of instructions
3	including instructions of said first type operations and said second type operations.
1	Claims 28-48 (canceled)