Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Лабораторная работа по дисциплине «Биометрия и нейротехнологии» «Анализ ЭКГ»

Выполнили: студенты Кобик Никита Алексеевич Маликов Глеб Игоревич Чайкин Вадим Константинович группа Р3324 Принял: преподаватель Штенников Дмитрий Геннадьевич

Задание лабораторной работы

Целью лабораторной работы является анализ фотоплетизмограммы для оценки состояния сердечно-сосудистой системы. С помощью программы $ECG\ Control$:

- 1. Выбрать отведение, при котором наиболее чётко видны зубцы, и провести контурный анализ усреднённого периода $ЭК\Gamma$.
- 2. Составить отчёт контурного анализа.
- 3. Провести анализ вариабельности сердечного ритма (ВСР).

Выполнение лабораторной работы

Puc. 1. Кардиограмма испытуемого (все виды отведений).

Выбираем отведение I (так как при нём чётче всего выражаются зубцы P, Q, R, S, T). В принципе, отведение II тоже подошло бы, однако мы не стали его выбирать, поскольку там слишком «мягкий» зубец S.

Рис. 2. Контурный анализ, выбор отведения и фрагмента.

Маркеры, указывающие на расположение зубцов, требуют ручной корректировки. Расставим их:

Puc. 3. Контурный анализ, установка маркеров (отведение I).

На основании рассчитанных параметров система не выявляет никаких заболеваний (таблица параметров — см. ниже).

Результаты контурного анализа

Возможные заболевания: контурным анализом не выявлены

Пояснения к результатам: электрическая ось сердца - нормограмма(13)

Параметр	Значение	Параметр	Значение	
<ЧСС>, уд./минуту	75	ЧСС(макс-мин)/<ЧСС>	0,11	
Интервал RR, с	0,8	30C,°	59	

Временные параметры

Параметр	Значение	Параметр	Значение
Интервал QT (T1-Q0), с	0,38	Сегмент PQ (Q0-P1),c	0,024
Интервал QTc (QT/sqrt(RR)), с	0,43	Время ВЖ отклон. (R-Q0),с	0,051
Интервал ST (T1-J), с	0,29	QRS комплекс (J-Q0),с	0,093
Зубец Р (Р1-Р0),с	0,08	Сегмент ST (Т0-J),с	0,1
Интервал PQ (Q0-P0),c	0,1	Зубец Т (Т1-Т0),с	0,18

Амплитудные параметры

Параметр	I	II	III	avR	avL	avF	V*	I(0°)
Потенциал РО,мВ	-0,03	-0,034	-0,0034	0,032	-0,014	-0,019	-	-0,0023
Потенциал Р,мВ	0,045	0,045	-0,00053	-0,045	0,023	0,022	-	0,074
Потенциал Р1,мВ	-0,045	-0,067	-0,022	0,056	-0,012	-0,045	-	-0,026
Потенциал Q0,мВ	-0,046	-0,077	-0,031	0,061	-0,0071	-0,054	-	-0,036
Потенциал Q,мВ	-0,049	-0,094	-0,045	0,071	-0,0017	-0,069	-	-0,05
Потенциал R,мВ	0,5	1,3	0,76	-0,88	-0,13	1	-	1,1
Потенциал Ѕ,мВ	-0,16	0,034	0,2	0,064	-0,18	0,11	-	0,041
Потенциал Ј,мВ	-0,042	-0,073	-0,03	0,057	-0,0058	-0,052	-	-0,03
Потенциал Т0,мВ	0,0029	-0,034	-0,037	0,016	0,02	-0,036	-	0,0047
Потенциал Т,мВ	0,14	0,28	0,14	-0,21	0,00068	0,21	-	0,29
Потенциал Т1,мВ	-0,061	-0,069	-0,0081	0,065	-0,027	-0,039	-	-0,032

^{* -} данные для грудного отведения отсутствуют.

Puc. 4. Результаты контурного анализа.

Проанализируем также вариабельность сердечного ритма (BCP). Для этого перейдём на вкладку «Анализ BCP» и увидим следующее:

 $Puc.\ 5.\$ Анализ ВСР (ритмограмма, скатерограмма, вариационная пульсограмма), параметры.

• Ритмограмма (кардиоинтервалограмма) сверху — показывает зависимость

длительности каждого кардиоинтервала от времени его регистрации с момента начала измерений.

- Скатерограмма (график Пуанкаре / корреляционная ритмограмма) снизу слева диаграмма рассеяния, где по оси X откладывается длительность текущего кардиоинтервала, по Y следующего за ним.
- Гистограмма (вариационная ритмограмма) снизу справа показывает распределение длительности каждого кардиоинтервала как случайной величины. По гистограмме видно, что это распределение близко к нормальному.
- Параметры в окошке справа параметры, вычисленнык в ходе анализа.

Ниже можно прочитать пояснение к результатам анализа:

```
1 {Симпатикотония} Незначительная активация симпатического звена
    регулировки сердечного ритма, что может быть вызвано в ответ
     на различные внутренние и внешние стрессовые воздействия на
                Наблюдается состояние повышенного напряжения рег
     организм.
    уляторных систем (эмоциональный стресс, физические нагрузки
     , переутомление, неблагоприятные внешние факторы).
    онные возможности и функциональные резервы сердечно
    -сосудистой системы снижены. Общее функциональное состояние
    удовлетворительно. Рекомендован отдых и полноценный здоровый
      сон.
з Индекс напряжения(SI)=131 о.е.
4 Мода(Мо)=776 мс
5 Амплитуда моды (Amo) = 0,34
6 Коэффициент вариации(CV)=4 %
7 Средняя частота сердечных сокращений (HBR) = 77,30 уд/мин
8 Среднеквадратичное отклонение (SDNN) = 33 мс
SI = 131 \text{ o.e.}
_{11} Mo = 776 Mc
12 \text{ Amo} = 0,34
_{13} CV = 4 %
_{14} HBR = 77,30 уд/мин
_{15} SDNN = 33 Mc
   *******
_{17} \text{ HF} = 7 \%
_{18} LF = 22 %
19 VLF = 69 %
  *******
_{21} HF = 177 Mc^2
_{22} LF = 517 Mc^2
_{23} VLF = 1610 Mc^2
   ***********
_{25} ULF = 0 %
_{26} ULF = 2 Mc<sup>2</sup>
_{27} TP = 2308 Mc^2
_{28} LF/HF = 2,91
```

```
29 IC = 11,97
```

30 RMSSD = 15 мс

 $_{31} PNN50 = 0 \%$

 $_{32}$ MxDMn = 168 Mc

33 MxRMn = 1,24

Результаты выполнения лабораторной работы

По предложенной записи $ЭК\Gamma$ было выполнено исследование с использованием программы «ECG Control». Проделанные шаги:

- Загружена запись кардиограммы (нормограмма) и проведен детальный анализ всех необходимых отведений (I, II, III, aVL, aVR, aVF).
- Изучены и применены инструменты масштабирования и настройки параметров развертки для точного отображения данных.
- Проведен автоматический контурный анализ ЭКГ с определением интервалов и амплитуд зубцов P, Q, R, S, T. Маркеры расставлены корректию, проведена ручная корректировка для уточнения результатов (во II стандартном отведении зубцы различимы лучше всего, что соответствует норме).
- Выполнен автоматический анализ ВСР по фрагменту записи.
- Построили ритмограмму, гистограмму и скатерограмму с помощью встроенных инструментов.
- Выявили параметры ритма сердца, такие как индекс напряжения, коэффициент вариации и среднеквадратичное отклонение. Эти показатели были проанализированы и интерпретированы в соответствии с нормами для здорового человека.
- Произведен экспорт данных кардиограммы и параметров вариабельности ритма в текстовые файлы для дальнейшего анализа с использованием сторонних приложений.

Проведенный анализ показал, что исследуемая запись электрокардиограммы соответствует норме. Вариабельность сердечного ритма находится в пределах допустимых значений, что указывает на нормальную работу сердца и отсутствие значительных отклонений. Контурный анализ ЭКГ подтвердил корректность всех основных интервалов и амплитуд зубцов.

Наверное, всё-таки стоит провести дальнейший анализ данных с использованием экспортированных файлов у медицинского сотрудника, что позволит более детально изучить состояние сердечной деятельности.

Выводы

В ходе выполнения лабораторной работы мы познакомились с интерфейсом программы «ECG Control» и самостоятельно провели детальный анализ предложенной записи ЭКГ. Также проделанные действия позволили немного углубиться в область медицинских знаний.