

Programming in R and Python

Lecture 6 - R for high-dimensional data analysis - part 2

Anna Papież

Department of Data Science and Engineering

Homework practice

- 1) There are 10 multiple choice questions at an exam with only one correct answer out of four. You need to score at least 5 points to pass. What is the probability of failing if you choose all the answers at random? (Calculate using the binomial distribution.)
- 2) In the Auto dataset (ISLR package), check if there is a significant difference in mileage between Dodges and Toyotas.

Practice

Load the Auto dataset.

- 1) Build a regression model of mpg as a function of horsepower, dividing the dataset 50:50 into a training and test set. Calculate the MSE.
- 2) Perform L00 crossvalidation on the dataset. Use the glm function for building the model and the cv.glm function from the boot package for obtaining estimates of the prediction error.
- 3) Perform 10-fold crossvalidation on the dataset. Estimate the prediction error as in (2).

4

Classification: prediction of categorical response

Classification

Regression involves predicting continuous-valued response, like tumor size.

Classification involves predicting categorical response:

- Cancer versus Normal
- Tumor Type 1 versus Tumor Type 2.

6

Logistic regression

Straightforward extension of linear regression to the classification setting, for simplicity, suppose a two-class problem.

Model fit with maximum likelihood.

$$P(y = 1|X) = \frac{exp(X^T\beta)}{1 + exp(X^T\beta)}$$

8

Support Vector Machine

Find a separating hyperplane

Support Vector Machine

If a linear separating hyperplane doesn't exist we may:

- 1. allow for violations
- 2. use non-linear kernel

9

Practice

Load the Smarket dataset.

- 1) Fit a logistic regression model using all the Lag variables and Volume.
- 2) Estimate the model accuracy using the predict function.
- 3) Now use all the observations from 2005 as a test set. Fit the model again and see how the prediction works this time.

Repeat the same using a Support Vector Machine model. Experiment with different cost values.

Clustering analysis

Clustering analysis

Finding homogeneous subgroups among observations - objects in one cluster are more similar to each other than objects in other clusters.

What does similar mean?

Dissimilarity measures

Euclidean

$$\sqrt{\sum_{k=1}^{p} (X_{ik} - X_{jk})^2}$$

Manhattan

$$\sum_{k=1}^{p} |X_{ik} - X_{jk}|$$

Mahalanobis

$$(X_i - X_j)^T \sum_{i=1}^{T} (X_i - X_j)^T$$

•••

14

Similarity measures

Correlation coefficients:

Pearson's

$$r = r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Spearman's Kendall's

•••

Hierarchical clustering

Hierarchical clustering results in a sequence of solutions (nested clusters), organized in a hierarchical tree structure, called the dendrogram

Bottom-Up:

- Start from n individual clusters
- At each step, merge the closest pair of clusters until all objects form a single cluster

Top-Down:

- Start from 1 cluster
- At each step, split the most heterogeneous cluster until every cluster has only one member

Dendrogram

Linkage:

Single - minimum distance between points in two clusters is used to determine which two clusters should be merged Complete - maximum distance between points in two clusters is used to determine which two clusters should be merged Average - the average distance between points in two clusters is used to determine which two clusters should be merged

Inter-cluster similarity

R Studio

K-means clustering

Partition-based method - minimizing within cluster variation

$$\underset{\mathbf{S}}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

K-means clustering

Finding exact solutions (global minimum) is not tractable.

However, we can efficiently find good approximate solutions for this problem (local minimum) using the following algorithm:

- 1. Randomly assign each observation to one of K clusters.
- 2. Iterate until the cluster assignments don't change:
 - (a) For each of the K clusters, compute the cluster centroid, i.e. the mean of the observations assigned to the each cluster. This is a vector of length p (for p features).
 - (b) Assign each observation to the cluster with closest centroid (based on Euclidean distance).

K-means clustering

Evaluating the Quality of a Clustering Cluster homogeneity

Within sum of squares (WSS)

For each object the "error" is the distance to its cluster centroid:

$$\sum_{k=1}^{K} \sum_{i \in C_k} d^2(m_k; X_i)$$

Cluster separation

Between sum of squares (BSS)

For each cluster the "error" is the distance between the cluster centroid and the grand mean:

$$\sum_{k=1}^{K} d^2(m_k; m)$$

Practice

Use the following commands to simulate a dataset:

```
x=matrix(rnorm(50*2), ncol=2)

x[1:25,1]=x[1:25,1]+3

x[1:25,2]=x[1:25,2]-4
```

- 1) Perform k-means clustering on the dataset with two and three clusters. Experiment with the nstart parameter. Visualize the data on a scatterplot.
- 2) Perform hierarchical clustering with all linkage methods. Plot the resulting dendrograms. Use the cutree function to experiment with cutoff thresholds.

R or Python?

Super Powers in Analysis Tool Similar Superhero Common R Batman Detective Work Intelligence Cunning Usage of Tools More Brain than Muscles Python Superman Muscle Power Super Strength Elegance Wide Range More Muscles than Brain

Choice's up to you

But remember:

Parallelization

mclapply {parallel}

Parallel version of lapply. Applies a function to each list element, returns list

mclapply

Code parallelization in R

One can use the <code>%dopar%</code> function to parallelize for loops. The result returned is a list:

```
library(doParallel)
cl <- makeCluster(2)
registerDoParallel(cl)
foreach(i=1:3) %dopar% sqrt(i)
stopCluster(cl)</pre>
```


Practice

Load the ChickWeight dataset.

- 1) Use a grouping function to determine which variables could serve as grouping variables (hint: use the unique function).
- 2) Use these grouping variables to summarise the basic statistics of chick weight in corresponding groups.
- 3) Use the weight and diet variables to construct multiple logistic regression models. Perform 10000 trials sampling 300 observations out of all possible. Compare the runtimes of a **for** loop, **lapply** function and a two-core parallel run with **%dopar**%.

I APP ECIATE YOUR ATTENTION

Have a good Easter time!