Stock Market Forecasting Report

1. Introduction

Objective

The objective of this project is to develop a predictive model for stock price movements with an accuracy of at least 80%. Using machine learning techniques, we analyze historical stock data, engineer relevant features, and optimize model performance.

Dataset Overview

- The dataset contains 600 rows of stock price data with the following features:
 - o timestamp (datetime)
 - o open price (float)
 - o high price (float)
 - o low price (float)
 - o close price (float)
 - o volume (integer)

2. Data Preprocessing

Exploratory Data Analysis (EDA)

- Checked for missing values and found none.
- Verified the dataset for duplicates and found none.
- Set the timestamp column as the index.
- Dropped the symbol column since it contained only a single value.

Feature Engineering

- Created technical indicators:
 - o Simple Moving Averages (SMA): sma 5, sma 10
 - o Other Features Considered: ema 5, ema 10, rsi
- Selected the most important features based on feature importance analysis:
 - o open_price, high_price, close_price, sma_5, sma_10

3. Model Selection & Implementation

Machine Learning Models Used

We experimented with the following models:

- 1. Logistic Regression
- 2. Support Vector Machine (SVM)
- 3. Decision Tree Classifier

- 4. Random Forest Classifier
- 5. XGBoost Classifier
- 6. K-Nearest Neighbors (KNN)

Hyperparameter Tuning

For each model, we performed hyperparameter tuning using GridSearchCV to optimize accuracy.

4. Performance Evaluation

Best Model: SVM

After testing multiple models, **SVM** (**Support Vector Machine**) achieved the highest accuracy:

SVM Accuracy: 88.98%

Metric Class 0 Class 1 Macro Avg Weighted Avg

Precision 0.85	0.93	0.89	0.89
Recall 0.93	0.85	0.89	0.89
F1-Score 0.89	0.89	0.89	0.89

- **Confusion Matrix Analysis:** The model correctly classified most stock movement trends.
- Feature Importance Analysis: The most influential features were close_price, open price, and sma 5.

5. Model Saving & Deployment

To ensure reusability, we saved the trained SVM model using joblib:

```
import joblib
joblib.dump(best svm, 'svm model.pkl')
```

6. Conclusion & Future Work

Key Takeaways

- SVM was the most effective model, achieving 88.98% accuracy.
- **Feature Engineering played a crucial role**, with sma_5 and sma_10 significantly improving performance.
- **Hyperparameter tuning** was essential in optimizing model accuracy.

Future Improvements

• Incorporating **deep learning models** like LSTMs to capture time-series patterns.

- Testing ensemble models combining multiple ML techniques.
 Expanding dataset coverage to include market sentiment analysis and additional indicators.