

États de surface

Définitions et notations, mesurage, influence du procédé de fabrication, rectification

Dr. S. Soubielle

Dans ce cours, nous allons...

... Définir les paramètres d'état de surface

- ... Influence du procédé de fabrication
- ... Quantification de l'état de surface
- ... Mesurage de l'état de surface

... Lister les valeurs de référence d'état de surface

- ... Pour les principaux types de procédés
- ... Avec un focus sur la rectification mécanique

... Définir la manière de spécifier les états de surface sur un plan

- ... Etat de surface général / local
- ... Spécification du type de procédé

Etat de surface et fonction technique

Constat

- Pas besoin de la même qualité de surface partout
- Dépend des fonction techniques à satisfaire
 - Contact + mouvement relatif (roulement et/ou glissement)
 → Qualité élevée requise
 - Ø contact ou contact statique
 → Qualité de surface basse ok

Quantification et contrôle

- → Comment quantifier une qualité d'état de surface ?
- → Comment contrôler la qualité de surface lors de la fabrication ?

Retour sur l'usinage

Exercice de mise en situation

L'outil de coupe utilisé pour réaliser l'opération de chariotage ci-contre a un rayon de pointe r = 0,4 mm.

- 1. Quelle est la hauteur des stries si l'avance par tour $f_7 = 0.3$ mm?

Quantification de l'état de surface (1/3)

@ EPFL

Profil de rugosité

- Mesure topographique des défaut de surface réels
 = « profil de rugosité »
- Mesure faite sur un échantillon de la surface selon une direction de mesure définie

normes ISO 4287:1997, Fig. 2

Rugosimètre

- Scanne le profil de rugosité
- Calcule les paramètres normalisés d'état de surface

https://www.youtube.com/watch?v=s7rrlhEikg4

Quantification de l'état de surface (2/3)

Profil de rugosité et paramètres normalisés

© Extrait de Normes 2018, p. 88, Fig. 88/3

Hauteur maximale du profil Rz

- = Hauteur de saillie Z_p + profondeur de creux Z_v
- → Souvent utilisée pour spécifier des surfaces avec contact frottant

Écart moyen arithmétique Ra (« average roughness »)

- = Surface bleue / longueur de mesure
- → Critère le plus souvent utilisé

--> pas d'indication des écarts max avec Ra

Quantification de l'état de surface (3/3)

© EPEI

- Classes de rugosité ISO
 - Critère antérieure à Ra et Rz, encore souvent utilisé
 - Notation: « N » suivi d'un nombre entre 1 et 12
 - → Table de correspondance N vs. Ra

Rugosité <i>R</i> a [µm]	0,025	0,05	0,1	0,2	0,4	0,8	1,6	3,2	6,3	12,5	25	50
Classe ISO [-]	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12

- Estimation de la rugosité
 ISO par « rugotest »
 - Plaquette de référence
 - Mesure estimative, par comparaison visuelle ou tactile (grattage à l'ongle)

Rugotest L.C.A. - C.E.A - modèle n°1

Rugosité et procédés de fabrication

Tableau 94/1 de l'extrait de normes (p. 94)

Valeurs usuelles

Usinage standard

$$\rightarrow$$
 Ra = 3,2 - 6,3

Usinage fin

$$\rightarrow$$
 Ra = 0,8 - 1,6

Rectification

$$\rightarrow$$
 Ra = 0,4 - 0,8

Découpe laser

$$\rightarrow$$
 Ra = 6,3 - 12,5

Moulage au sable $\rightarrow Ra \ge 25$

↑ © Extrait de Normes 2018, p. 94, Tableau 94/1

Finition mécanique = rectification

Principe

- Opération de finition pour haute qualité d'état de surface
- Abrasion de la surface au moyen d'une meule cylindrique

Rectification cylindrique

Rectification plane

© Swiss Mechanic – Pièce en gris $(V_w >> V_b)$ / Meule en jaune $(V_s >> S)$

- Valeurs de Ra
- → Ra 0,4 pour de la rectification cylindrique
- → Ra 0,8 pour du planage

Inscription normalisée (1/2)

- Symboles pour l'indication des états de surface

- Spécification « avec ou sans enlèvement de matière »
 - Si doit être obtenu par enlèvement de matière

Si doit être obtenu sans enlèvement de matière

- Indication de la valeur de rugosité exigée
 - Par exemple « Ra 1,6 » → \/ Ra 1,6
- Indication du procédé de fabrication (optionnel)

Ex. si l'état de surface doit être obtenu par rectification

Inscription normalisée (2/2)

Indications sur le dessin de fabrication

État de surface « général »

Symbole placé à proximité du cartouche

Exemple: rugosité générale Ra 6,3 — avec enlèvement de matière

- État de surface « local »
 - Exigence particulière sur une surface
 - Symbole placé sur une arête visible de la surface concernée, ou sur une ligne de rappel qui la prolonge.
 - Rappelé à proximité du cartouche (noté entre parenthèses, après l'état de surface général)

Des questions?

Références normatives principales

ISO 1302	Spécification géométrique des produits (GPS) — Indication des états de surface dans la documentation technique de produits
ISO 4287	Spécification géométrique des produits (GPS) — État de surface: Méthode du profil — Termes, définitions et paramètres d'état de surface
ISO 8015	Spécification géométrique des produits (GPS) — Principes fondamentaux — Concepts, principes et règle
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps