a) Machine Parameter Data Set

DELPHI	
Automotive Svetema	Hon J. Kretta
	11/09/99 02:19:14 PM
	The state of the s

To: Juhn A MacBain Subject: Data for Yilmaz

Please find attached an Excel file with data to meet the request of Yilmaz for machine electrical parameters for the Renault Scenic 42 V generator. Data were generated using the "known" program (with the help of Mike Bradfield in supplying the needed geometry files), with some program modifications to calculate field inductance and synchronous inductance.

Field inductance was calculated from the open circuit flux such that Lf = 11 phi / Ifield

where N is the number of field turns, phi is the open circuit flux in the rotor core, and Ifield is the field

Sync ronous inductance was calculated from the machine phasor diagram, knowing the angle of the field EMF (as opposed to airgap EMF) to current and the real voltage component such that w Ls:: la = Vind = Vreal*tan(gamma)

where w is the electrical frequency in rad/sec, Lss is the synchronous inductance, la is the phase current, Vind s the inductive component of voltage, Vreal is the real component of voltage, and gamma is the angle between the field EMF and the current,

The clata show the non-linear trend of machine parameters on both field current and stator current. While the data are by no means comprehensive, they do provide a flavor for the non-linear relationships and should allow for Yilmaz to get started on his simulation work.

A good explanation of the nomenclature which I loosely followed can be found in "Electric Machinery", Fitzgerold, Kingsley, & Umans, Forth Edition, page 316-317.

If you find fault with my numbers, please let me know so we can forward Yilmaz updated information.

Than cyou.

rik

rona ilt scenic xis

Ronald J Kretta Delphi Automotive Systems **Energienix Center** M/C D35 P.O. 3ox 9005 Koko no, IN 46904-9005 (765) 451-3782 (765) 451-3780 (FAX)

Emai: ron.j.krefta@delphiauto.com

42 volt generator parameter data

rik 09Nov99

,	Phase EMF, Field	self inductance, field to phase mutual inductance
	1500 FPM	manufactures to busine unfirms tudocistics

Field Current amps OC	Phase EMF rms vohs	Field Inductance Henries	Field-phase Industance Henries
0.1	1.45	0.0728	0.0205
0.5	7.78	0.0819	0.0218
1	15.79	0.0833	0.0222
2	28.69	0.0766	0.0202
3	34.48	0.0632	0.0162
4	36.91	0.0521	0.0130
5	38.26	0.0441	0.0108
6	39.12	0.0382	0.0092

Current rms Amos	onous Inducta Synchronous Inductance Henries	hoe and phase Leakage Inductance Harries	leakege inductance Gep Inductance inductance
10.15	0.001779	0.000550	0.000820
14,41	0.001857	0.000550	0.000871
17.12	0.001938	0.000550	0.000926
21.00	0.002139	0.000550	0.001059
22.78	0.002285	0.000550	0.001157
23.71	0.002380	0.000550	0.0011221
24.24	0.002440	0.000550	0.001260
24.74	0.002491	0.000550	0.001294
25.07	0.002524	0.000550	0.001216
25.20	0.002533	0.000550	0.001318

nebeugation of	field-phase	mutual inductance	on stator	CURRENT
Field	Generator	Phase	Phase	Fielder

Current amps DC	Speed RPM	Phase EMF rms voits	Phase Current rms Amps	Field-phase Inductance Henries
4.9	1600	38.2	0.00	
4,9	1600	40.1	10.15	0.0115
4.9	1800	46,0	14.41	0.0122
4.9	2000	58.6	17.12	0.0130
4.9	2500	81.0	21.00	0.0149
4.9	3000	106,1	22.78	0.0162
4.9	3500	130.6	23.71	D.0171
4.9	4000	154.1	24.24	0.0177
4.9	5000	197.8	24.74	0.0182
4.8	6500	281.5	25.07	
4.9	8000	323.4	25.20	0.0185 0.0186

Resistances	
Phase	Field
rosistance	resistance
ohwite	ohms
25 deg C	25 deg C
0.029	2.055

27C CURVE

K590364		14.00 V		27 C			02DE98	
	Shaft	Output	Fleid	input	Input	Input	Output	Generator
	Speed	Current	Current	Torque	Torque	Power	Power	Efficiency
Cut-In >	(grpm) 1062	(amps)	(amps)	(lb-in)	(N-m)	(kW)	(watts)	(%/10)
2 Amp >		0.0	4.88	14.1	1.59	0.1772	0.0	Ö
e Amp -	1075 1200	2.0	4.87	16.5	1.86	0.2099	28.0	1,334
	1400	21.5	4.86	39.3	4.44	0.5580	301.0	5.395
	1600	45.3 62.4	4.84	62.5	7.06	1.0352	634.2	6.126
	2000	83.7	4.82	75.3	8.51	1.4254	873.6	6.129
	2500	98.1	4.83	83.7	9.46	1.9805	1171.8	5.917
	3000	106.6	4.88	81.3	9.19	2.4047	1373.4	5.711
	3500	111.9	4.95	75.2	8.50	2.6691	1492.4	5.591
	4500	118.7	4.98	68.6	7.75	2.8407	1566.6	5.515
	5500	122.6	5.11	58.1	6.56	3.0933	1661.8	5.372
	6500	124.8	5.17	50.2	5.67	3.2666	1716.4	5.254
	8000	126.5	5.18	44.3	5.01	3.4068	1747.2	5.129
	10000	127.7	5.19	38.6	4.36	3.6535	1771.0	4.847
	12000	128.1	5.16	33.9	3.83	4.0108	1787.8	4.458
	15000		5.13	30.9	3.49	4.3870	1793.4	4.088
	13000 :	126.9	5.02	28.5	3.22	5.0578	1776.6	3.513
o 00 11:0	,		Tor	que	Output		8 (W-N) er	iency (%/10)
Culput Curr		Ef	ficiencv	Input Po	ower		Input	Input Pow Efficiency
210	1000 200	00 3000 40	00 5000 60	00 7000 8	000 9000 1	000 1100	0 1200	
		Ge	nerator	Speed (r	pm)			

Page 1

105C CURVE

K58	2036	54	13.25	V	105	C			02DE98
		Shaft Speed	Output Current	Field	Input	Input	Input	Output	Generator
······································		(grpm)	(amps)	Current (amps)	(lb-in)	Torque (N-m)	Power (kW)	Power	Efficiency
Cut-	in >	1044	0.0	3.89	9.8	1.11	0.1210	(watts)	(%/10) 0
2 An		1063	2.0	3.88	12.4	1.40	0.1559	26.5	1.600
	-	1200	18.8	3.87	30.8	3.48	0.4373	249.1	5.697
		1400	37.1	3.85	47.5	5.37	0.7868	491.6	6.248
***********		1600	49.4	3.84	55.6	6.28	1.0525	654.6	6.219
·····		2000	66.7	3.84	61.8	6.98	1.4623	883.8	6.044
***************************************		2500	79.1	3.87	60.3	6.81	1.7835	1048.1	5.876
		3000	85.9	3.91	55.7	6.29	1.9770	1138.2	5.757
		3500	90.3	3.95	50.8	5.74	2.1036	1196.5	5.688
		4500	95.7	4.01	42.7	4.82	2.2734	1268.0	5,578
		5500	8.86	4.05	36.8	4.16	2.3946	1309.1	5.467
		6500	100.9	4.09	32.5	3.67	2.4993	1336.9	5.349
		8000	102.6	4.09	28.1	3.17	2.6596	1359.5	5.111
		10000	103.8	4.10	24.3	2.75	2.8750	1375.4	4.784
		12000	104.4	4.08	22.1	2.50	3.1376	1383.3	4.409
		15000	105.0	4.07	20.8	2.35	3.6913	1391.3	3.769
							0.0010		0.700
*******	140 r						T T TO THE TRANSPORT OF A T	——————————————————————————————————————	- 10 1111111111111111111111111111111111
4	1 20			· · · · · ·					
				t 1		Oı	itput	8	
Ğ.	190	1					**************************************		`≨∂ —
Current (Amps)	30	je fa		: : •	_			e Grause (N-m	Power (kW) ency (%/10)
urre	50	/		; ; ;	* • • .	Efficie	nov	oral	- 10 W
•	30	- 1		Torqu	<u>.</u>			4	cie
Output	40			TOIQU	· · · · · · · · · · · · · · · · · · ·			חמם	Input Efficie
Õ			, and a	lnn	ut Powei	• ·	,	2	
	50	1/	,a-	пh	ut i UWEI				
	ا ه			<u> </u>					
	0	1000 200	00 3000 40	00 5000 60	00 7000 8	000 9000 1	000 1100	1200	
				:			0 0	0	

125C CURVE

(5 9	9036	4	13.25	V	125	C			02DE98
		Shaft Speed	Output Current	Fleid	Input	input	Input	Output	Generator
		(grpm)	(amps)	Current (amps)	(lb-in)	Torque (N-m)	Power (kW)	Power	Efficiency
Cut-	in >	1074	0.0	3.52	8.9	1.01	0.1131	(watts)	(%/10)
2 An		1095	1.7	3.44	10.6	1.20	0.1131	22.5	1.640
		1200	12.4	3.40	22.0	2.49	0.3123	164.3	5.260
		1400	29.8	3.42	37.9	4.28	0.6278	394.9	6.290
		1600	40.6	3.32	44.6	5.04	0.8443	538.0	6.372
		2000	56.7	3.33	50.7	5.73	1.1997	751.3	6.262
		2500	67.7	3.34	49.5	5.59	1.4641	897.0	6.127
		3000	73.9	3.35	45.6	5.15	1.6185	979.2	6.050
· • · · · · · · · · · · · · · · · · · ·		3500	77.6	3.36	41.3	4.67	1.7102	1028.2	6.012
		4500	81.8	3.38	34.4	3.89	1.8315	1083.9	5.918
	~ -	5500	83.6	3.37	29.2	3.30	1.9001	1107.7	5.830
		6500	85.6	3.40	25.6	2.89	1.9687	1134.2	5.761
		8000	87.5	3.43	22.4	2.53	2.1201	1159.4	5.468
		10000	91.1	3.57	20.1	2.27	2.3781	1207.1	5.076
		12000	91.0	3.50	18.2	2.06	2.5839	1205.8	4.666
		15000	95.7	3.70	18.0	2.03	3.1944	1268.0	3.970
• • • •									
	12:0							10	
Current (Amps)	1(IO) EIO				·		_ Outpu	e (N.W.)	i Power (kW)
•	(10		/ °ч	orque	E	fficiencv	** .	4	Input Po Efficienc
Output	40			:	*****			1	-E-M
-	2:0		. * * * · · · · · · · · · · · · · · · ·	Inp	ut Power	•		2	***************************************
	ے م								
	0	1000 20	DO 3000 40	100 50 00 61	000 7000 8	000 9000 1	0 0	1200	
				:	Speed (I				

Page 3

C-8244						
"CZ" laboratory test	order was K590364	· · · · · · · · · · · · · · · · · · ·		···- 		
Generakir was mod	lei 10480341 (10480	327 w/gvernu	nnina pullev)			
Generatur #29 was	selected as represe	ntative of the	nominal of 30	0 units test	ed on K590	296
Generatur #29 was	built with production	parts in plant	4 on 24AP9	8.		
The segments were	CFPT design 1 tran	(version F) n	nade with ste	el near the	upper thic	kness limit
The segments were	not machined "flat"	on the inside	face.			
The rotal field coll (onsisted of 315 turn	s of 19 25 AV	/G wire			
"CZ" testing was pe	normed on stand #5	during the m	onth of Septe	mber 199	B.	