### EE401: Advanced Communication Theory

Professor A. Manikas Chair of Communications and Array Processing

Imperial College London

Introductory Concepts

### Table of Contents

- Introduction
- 2 Communication Channels: Continuous and Discrete
  - Continuous Channels
  - Discrete Channels
- 3 Communication Systems Block Diagrams
- 4 Digital Modulators/Demodulators
- 6 Appendices
  - A: Comm Systems: Basic Performance Criteria
  - B: Additive Noise
    - Additive White Gaussian Noise (AWGN)
    - Bandlimited AWGN
    - "I" and "Q" Noise Components
    - Tail function (or Q-function) for Gaussian Signals
  - C: Tail Function Graph
  - D: Fourier Transform Tables

### Introduction

With reference to the following block structure of a Dig. Comm. System (DCS), this topic is concerned with the basics of both continuous and discrete communication channels.



- Just as with sources, communication channels are either
  - discrete channels, or
  - continuous channels
    - wireless channels (in this case the whole DCS is known as a Wireless DCS)
    - wireline channels (in this case the whole DCS is known as a Wireline DCS)
- Note that a continuous channel is converted into (becomes) a discrete channel when a digital modulator is used to feed the channel and a digital demodulator provides the channel output.
- Examples of channels with reference to DCS shown in previous page,
  - discrete channels:
    - ★ input: A2 output: Â2 (alphabet: levels of quantiser Volts)
    - ★ input: B2 output: B2 (alphabet: binary digits or binary codewords)
  - continuous channels:
    - ★ input: A1 output: Â1, (Volts) continuous channel (baseband)
    - ★ input: T, output:  $\hat{T}$  (Volts) continuous channel (baseband),
    - ★ input: T1 output: T1 (Volts) continuous channel (bandpass).

### Continuous Channels

- A continuous communication channel (which can be regarded as an analogue channel) is described by
  - ▶ an input ensemble  $(s(t), pdf_s(s))$  and  $PSD_s(f)$
  - ▶ an output ensemble,  $(r(t), pdf_r(r))$
  - the channel noise (AWGN)  $n_i(t)$  and  $\beta$ ,
  - ▶ the channel bandwidth B and channel capacity C.



### Discrete Channels

- A discrete communication channel has a discrete input and a discrete output where
  - ▶ the symbols applied to the channel input for transmission are drawn from a finite alphabet, described by an input ensemble (X, p) while
  - ightharpoonup the symbols appearing at the channel output are also drawn from a finite alphabet, which is described by an output ensemble (Y,q)
  - the channel transition probability matrix  $\mathbb{F}$ .



 In many situations the input and output alphabets X and Y are identical but in the general case these are different. Instead of using X and Y, it is common practice to use the symbols H and D and thus define the two alphabets and the associated probabilities as

input: 
$$H = \{H_1, H_2, ..., H_M\}$$
  $\underline{p} = [\underbrace{\mathsf{Pr}(H_1)}_{\triangleq q_1}, \underbrace{\underbrace{\mathsf{Pr}(H_2)}_{\triangleq q_2}, ..., \underbrace{\mathsf{Pr}(H_M)}_{\triangleq q_K}]^T}_{\triangleq q_K}]^T$ 
output:  $D = \{D_1, D_2, ..., D_K\}$   $\underline{q} = [\underbrace{\mathsf{Pr}(D_1)}_{\neq q_1}, \underbrace{\mathsf{Pr}(D_2)}_{\neq q_2}, ..., \underbrace{\mathsf{Pr}(D_K)}_{\neq q_K}]^T$ 

where  $p_m$  abbreviates the probability  $\Pr(H_m)$  that the symbol  $H_m$  may appear at the input while  $q_k$  abbreviates the probability  $\Pr(D_k)$  that the symbol  $D_k$  may appear at the output of the channel.

◆ロ → ◆部 → ◆注 → 注 ・ の Q (~)

• The probabilistic relationship between input symbols H and output symbols D is described by the so-called channel transition probability matrix F, which is defined as follows:



$$\mathbb{F} = \begin{bmatrix} \Pr(D_1|H_1), & \Pr(D_1|H_2), & \dots, & \Pr(D_1|H_M) \\ \Pr(D_2|H_1), & \Pr(D_2|H_2), & \dots, & \Pr(D_2|H_M) \\ \dots, & \dots, & \dots, & \dots \\ \Pr(D_K|H_1), & \Pr(D_K|H_2), & \dots, & \Pr(D_K|H_M) \end{bmatrix}$$
(1)

Prof. A. Manikas (Imperial College)

- $\Pr(D_k|H_m)$  denotes the probability that symbol  $D_k \in D$  will appear at the channel output, given that  $H_m \in H$  was applied to the input.
- The input ensemble  $(H, \underline{p})$ , the output ensemble  $(D, \underline{q})$  and the matrix  $\mathbb{F}$  fully describe the functional properties of the channel.
- ullet The following expression describes the relationship between  $\underline{q}$  and  $\underline{p}$

$$\underline{q} = \mathbb{F}.\underline{p} \tag{2}$$

Note that in a noiseless channel

$$D = H \tag{3}$$

$$q = p$$

i.e the matrix  ${\mathbb F}$  is an identity matrix

$$\mathbb{F} = \mathbb{I}_M \tag{4}$$

40 140 145 15 15 1000

# Joint transition Probability Matrix

• The joint probabilistic relationship between input channel symbols  $H = \{H_1, H_2, ..., H_M\}$  and output channel symbols  $D = \{D_1, D_2, ..., D_M\}$ , is described by the so-called joint-probability matrix,

$$\mathbb{J} \triangleq \begin{bmatrix} \Pr(H_{1}, D_{1}), & \Pr(H_{1}, D_{2}), & ..., & \Pr(H_{1}, D_{K}) \\ \Pr(H_{2}, D_{1}), & \Pr(H_{2}, D_{2}), & ..., & \Pr(H_{2}, D_{K}) \\ ..., & ..., & ..., & ... \\ \Pr(H_{M}, D_{1}), & \Pr(H_{M}, D_{2}), & ..., & \Pr(H_{M}, D_{K}) \end{bmatrix}^{T}$$
(5)

• J is related to the forward transition probabilities of a channel with the following expression (compact form of Bayes' Theorem):

$$\mathbb{J} = \mathbb{F}. \underbrace{\begin{bmatrix} \rho_1 & 0 & \dots & 0 \\ 0 & \rho_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \rho_M \end{bmatrix}}_{= \mathbb{F}.\mathsf{diag}(\underline{p})$$
(6)

 $\triangleq \operatorname{diag}(p)$ 

Note: This is equivalent to a new (joint) source having alphabet

$$\{(H_1, D1), (H_1, D_2), ..., (H_M, D_K)\}$$

and ensemble (joint ensemble) defined as follows

$$(H \times D, \mathbb{J}) = \begin{cases} (H_{1}, D_{1}), \Pr(H_{1}, D_{1}) \\ (H_{1}, D_{2}), \Pr(H_{1}, D_{2}) \\ ... \\ (H_{m}, D_{k}), \Pr(H_{m}, D_{k}) \\ ... \\ (H_{M}, D_{K}), \Pr(H_{M}, D_{K}) \end{cases}$$

$$= \left\{ \left( (H_{m}, D_{k}), \underbrace{\Pr(H_{m}, D_{k})}_{=J_{km}} \right), \forall mk : 1 \leq m \leq M, 1 \leq k \leq K \right\}$$
(7)

- ◆ロ → ◆昼 → ◆ Ē → ◆ Q O

# Block Structure of a Digital Comm System



# Block Structure of a Spread Spectrum Comm System





#### CDMA:



# Digital Modulators/Demodulators

- A digital modulator is described by M different channel symbols . These channel symbols are **ENERGY SIGNALS** of duration  $T_{cs}$ .
- Digital Modulator:



#### Digital Demodulator:



Note:

It is common practice to ignore the up/down conversion and to work in 'baseband'.

- If  $M = 2 \Rightarrow$  Binary Digital Modulator  $\Rightarrow$  Binary Comm. System
- If  $M > 2 \Rightarrow$  M-ary Digital Modulator  $\Rightarrow$  M-ary Comm. System



 Note: A continuous channel is converted into (becomes) a discrete channel when a digital modulator is used to feed the channel and a digital demodulator provides the channel output.



• In this topic we will focus on the following block of a digital communication system ( $\beta=1$  is assumed):



This is the **'heart'** of a communication system and some elements of detection/decision theory will be employed for its investigation.

# Appendices - A: Basic Performance Criteria



SNR<sub>in</sub> = Power of signal at 
$$\widehat{T}$$
 =  $\frac{\mathcal{E}\left\{(\beta s(t))^2\right\}}{\mathcal{E}\left\{n(t)^2\right\}} = \frac{\beta^2 P_s}{N_0 B}$  (8)

$$p_e = BER \text{ at point } \widehat{B}$$
 (9)

$$SNR_{out} = \frac{\text{Power of signal at } \widehat{A}}{\text{Power of noise at } \widehat{A}} = \underbrace{\underbrace{f\{p_e\}}_{\text{denotes: a function of } p_e}}_{\text{denotes: a function of } p_e} \tag{10}$$

Prof. A. Manikas (Imperial College)

### **B**: Additive Noise



- types of channel signals
  - s(t), r(t), n(t): bandpass
  - $n_i(t) = AWGN$ : allpass



- $\bullet$   $n_i(t)$ 
  - ▶ it is a random all-Pass signal
  - its Power Spectral Density is "White" i.e. "flat". That is,



- its amplitude probability density function is Gaussian
- ▶ its Autocorrelation function (i.e.  $FT^{-1} \{PSD(f)\}$ ) is:



### Bandlimited AWGN

- n(t)
  - ▶ it is a random Band-Pass signal of bandwidth *B* (equal to the channel bandwidth)
  - its Power Spectral Density is "bandmimited White". That is,



$$PSD_{n_i}(f) = \frac{N_0}{2} \left( rect \left\{ \frac{f + F_c}{B} \right\} + rect \left\{ \frac{f - F_c}{B} \right\} \right)$$
(13)

Its power is:

$$P_{n} = \sigma_{n}^{2} = \int_{-\infty}^{\infty} PSD_{n_{i}}(f).df = \frac{N_{0}}{2} \times B \times 2$$

$$\Rightarrow P_{n} = N_{0}B$$
(14)

EE.401: Introductory Concepts

- **Appendices**
- its amplitude probability density function is Gaussian

$$pdf_n = N(0, \sigma_n^2 = N_0 B)$$
 (15)

- It is also known as bandlimited-AWGN
- It can be written as follows:

$$n(t) = n_c(t)\cos(2\pi F_c t) - n_s(t)\sin(2\pi F_c t)$$

$$= \sqrt{n_c^2(t) + n_s^2(t)}\cos(2\pi F_c t + \phi_n(t))$$

$$\stackrel{\triangleq}{=} r_c(t)$$
(16)

#### where

• more on n(t):

- ★  $n_c(t)$  and  $n_s(t)$  are random signals with pdf=Gaussian distribution
- ★  $r_n(t)$  is a random signal with pdf=Rayleigh distribution
- ★  $\phi_n(t)$  is a random signal with pdf=uniform distribution:  $[0, 2\pi]$ )

N.B.: all the above are low pass signals & appear at Rx's o/p



Equ. 16 is known as Quadrature Noise Representation.

# "I" and "Q" Noise Components

- $n_c(t)$  (i.e. "I") and  $n_s(t)$  (i.e. "Q")
  - their Power Spectral Densities are:



$$PSD_{n_c}(f) = PSD_{n_s}(f) = N_0 rect \left\{ \frac{f}{B} \right\}$$
 (18)

their power are:

$$P_{n_c} = \sigma_{n_c}^2 = \int_{-\infty}^{\infty} PSD_{n_c}(f).df = N_0 \times B$$

$$\Rightarrow P_{n_c} = P_{n_s} = P_n = N_0 B$$
(19)

Amplitude probability density functions: Gaussian,

$$pdf_{n_c} = pdf_{n_s} = N(0, N_0 B)$$
 (20)

• are uncorrelated i.e.  $\mathcal{E}\left\{n_c(t).n_s(t)\right\}=0$ 

# Tail function (or Q-function) for Gaussian Signals

Probablity and Probability-Density-Function (pdf)

• Consider a random signal x(t) with a known amplitude probability density function  $\operatorname{pdf}_x(x)$  - not necessarily Gaussian. Then the probability that the amplitude of x(t) is greater than A Volts (say) is given as follows:

$$Pr(x(t) > A) = \int_{A}^{\infty} pdf_{x}(x).dx$$
 (21)

• e.g. if  $A = 3V \Rightarrow \Pr(x(t) > 3V) = \int_3^\infty \mathsf{pdf}_x(x).dx = \text{highlighted area}$ 



◆ロト ◆部 ト ◆ 恵 ト ・ 恵 ・ 釣 Q (\*)

#### Gaussian pdf and Tail function

• If  $pdf_x(x)=Gaussian$  of mean  $\mu_x$  and standard deviation  $\sigma_x$  (notation used:  $pdf_x(x)=N(\mu_x,\sigma_x^2)$ , then the above area is defined as the Tail-function (or Q-function)

$$\Pr(x(t) > A) = \int_{A}^{\infty} \mathsf{pdf}_{x}(x) . dx \triangleq \mathsf{T} \left\{ \frac{|A - \mu_{x}|}{\sigma_{x}} \right\}$$
 (22)

- e.g.
  - $\begin{array}{l} \bullet \ \ \text{if } \mathrm{pdf}_{\mathrm{X}}(\mathrm{X}) = \mathrm{N}(1,4) \text{ i.e. } \ \mu_{\mathrm{X}} = \mathrm{0,} \ \sigma_{\mathrm{X}} = 2 \text{ and } A = 3V \\ \mathrm{then} \ \mathrm{Pr}(\mathrm{X}(t) > 3V) = \int_{3}^{\infty} \mathrm{pdf}_{\mathrm{X}}(\mathrm{X}).d\mathrm{X} \triangleq \mathbf{T} \Big\{ \frac{|3-1|}{2} \Big\} = \mathbf{T} \Big\{ \mathbf{1} \Big\} \end{array}$
- The Tail function graph is given in the next page

◆ロ > ◆昼 > ◆差 > 差 のQ

25 / 27

#### **Appendices** C: Tail Function Graph

The graph below shows the Tail function  $\mathbf{T}\{x\}$  which represents the area from x to  $\infty$  of the Gaussian probability density function N(0,1), i.e

$$T\{x\} = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy$$



### Fourier Transform Tables

| Transform rables |    |                             |                                                                                                                                         |                                                                                   |
|------------------|----|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                  |    | Description                 | Function                                                                                                                                | Transformation                                                                    |
|                  | 1  | Definition                  | g(t)                                                                                                                                    | $G(f) = \int_{-\infty}^{\infty} g(t).e^{-j2\pi ft}dt$                             |
|                  | 2  | Scaling                     | $g(\frac{t}{T})$                                                                                                                        | T .G(fT)                                                                          |
|                  | 3  | Time shift                  | g(t-T)                                                                                                                                  | $G(f).e^{-j2\pi fT}$                                                              |
|                  | 4  | Frequency shift             | $g(t).e^{j2\pi Ft}$                                                                                                                     | G(f - F)                                                                          |
|                  | 5  | Complex conjugate           | g*(t)                                                                                                                                   | $G^*(-f)$                                                                         |
|                  | 6  | Temporal derivative         | $\frac{d^n}{dt^n}g(t)$                                                                                                                  | $(j2\pi f)^n.G(f)$                                                                |
|                  | 7  | Spectral derivative         | $(-j2\pi t)^n.g(t)$                                                                                                                     | $\frac{d^n}{df^n}G(f)$                                                            |
|                  | 8  | Reciprocity                 | G(t)                                                                                                                                    | g(-f)                                                                             |
|                  | 9  | Linearity                   | A.g(t) + B.h(t)                                                                                                                         | A.G(f) + B.H(f)                                                                   |
|                  | 10 | Multiplication              | g(t).h(t)                                                                                                                               | G(f) * H(f)                                                                       |
|                  | 11 | Convolution                 | g(t) * h(t)                                                                                                                             | G(f).H(f)                                                                         |
|                  | 12 | Delta function              | $\delta(t)$                                                                                                                             | 1                                                                                 |
|                  | 13 | Constant                    | 1                                                                                                                                       | $\delta(f)$                                                                       |
|                  | 14 | Rectangular function        | $\mathbf{rect}\{t\} \triangleq \left\{ egin{array}{ll} 1 & \mathrm{if} \  t  < rac{1}{2} \\ 0 & \mathrm{otherwise} \end{array}  ight.$ | $\operatorname{sinc}\{f\} \triangleq \frac{\sin(\pi f)}{\pi f}$                   |
|                  | 15 | Sinc function               | sinc(t)                                                                                                                                 | $rect{f}$                                                                         |
|                  | 16 | Unit step function          | $u(t) \triangleq \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$                                                                      | $\frac{1}{2}\delta(f) - \frac{j}{2\pi f}$                                         |
|                  | 17 | Signum function             | $\operatorname{sgn}(t) \triangleq \left\{ \begin{array}{ll} 1 & t > 0 \\ -1 & t < 0 \end{array} \right.$                                | $-\frac{j}{\pi f}$                                                                |
|                  | 18 | decaying exp<br>(two-sided) | $e^{- t }$                                                                                                                              | $\frac{2}{1+(2\pi f)^2}$                                                          |
|                  | 19 | decaying exp<br>(one-sided) | $e^{- t }.u(t)$                                                                                                                         | $\frac{1-j2\pi f}{1+(2\pi f)^2}$                                                  |
|                  | 20 | Gaussian function           | $e^{-\pi t^2}$                                                                                                                          | $e^{-\pi f^2}$                                                                    |
|                  | 21 | Lambda function             | $\Lambda\{t\} \triangleq \begin{cases} 1-t & \text{if } 0 \le t \le 1\\ 1+t & \text{if } -1 \le t \le 0 \end{cases}$                    | $\operatorname{sinc}^2\left\{f\right\}$                                           |
|                  | 22 | Repeated function           | $\operatorname{rep}_{\mathcal{T}}\left\{g(t)\right\} = g(t) * \operatorname{rep}_{\mathcal{T}}\left\{\delta(t)\right\}$                 | $\left \frac{1}{T}\right  comb_{\frac{1}{T}} \{G(f)\}$                            |
|                  | 23 | Sampled function            | $comb_{\mathcal{T}}\{g(t)\} = g(t).rep_{\mathcal{T}}\{\delta(t)\}$                                                                      | $\left \frac{1}{T}\right  \operatorname{rep}_{\frac{1}{T}} \left\{ G(f) \right\}$ |