Proof Techniques

- 0 HW 1 due 11:59 pm
- · Office Hour: 4:30 pm 6:00 pm (Zoom)
- · Quiz 2 on Friday (noon 11:59 pm)

Uploading HW to broadescope

HW01 | Assign Questions and Pages

SUBMITTED AT: JANUARY 19, 9:09 AM

Select questions and pages to indicate where your responses are located. Use esc to deselect all items and hold shift to select multiple questions.

Select pages for Fri. problems.

Contents

1 Logic of Solving Equations

Proof by Contradiction

Open Proof by Contraposition

Logic of Solving Equations

Solving Equations

Logically speaking, to say that x=a is a solution of the equation f(x)=0 is to state

$$f(x) = 0 \iff x = a$$

which usually can be seen by a chain of biconditionals.

For example, we see that $x^2 = 5x - 6$ if and only if x = 2 or x = 3 by:

$$x^{2} = 5x - 6 \iff x^{2} - 5x + 6 = 0$$

$$\iff (x - 2)(x - 3) = 0$$

$$\iff x - 2 = 0 \text{ or } x - 3 = 0$$

$$\iff x = 2 \text{ or } x = 3.$$

One needs to be careful to confirm that all steps are true biconditional sentences.

Examples

Rational Equation

Solve the equation

$$\frac{x-2}{x^2+2x-8} = \frac{1}{8}.$$

Erroneous solution.

$$\Rightarrow x - 2 = (1/8)(x^2 + 2x - 8)$$

$$\Rightarrow 8x - 16 = x^2 + 2x - 8$$

$$\Rightarrow 0 = x^2 - 6x + 8 = (x - 2)(x - 4)$$

$$\Rightarrow x = 2, 4$$

√ Which step is not a true biconditional sentence?

When
$$1=2$$
,
 $1^{2}+21-8=2^{2}+2\cdot 2-8$
 $=4+4-8=0$

Examples (cont')

intermediate steps omitted

Correct solution.

$$\frac{\pi^{-2}}{\pi^{2}+2\pi^{-8}} = \frac{1}{8} \implies \pi^{-2} \text{ or } \pi^{-4}$$

Now if
$$x=2$$
, then $x^2+2x-8=4+4-8=0$,
So $\frac{x-2}{x^2+2x-6}$ is undefined. So $x=2$ is not a solution.

of
$$1 = 4$$
, then $1^2 + 2x - 8 = 16 + 8 - 8 = 16$ and $16 - 2 = 4 - 2 = 2$,

80 $\frac{1}{4^2 + 24 - 8} = \frac{2}{16} = \frac{1}{8}$. So $1 = 4$ is a solution.

Examples

Equation Involving Radicals

Solve the equation

$$x = -\sqrt{x+6}$$

An erroneous solution:

$$\Rightarrow x^2 = x + 6$$

$$\Rightarrow x^2 - x - 6 = 0$$

$$\Rightarrow (x + 2)(x - 3) = 0$$

$$\Rightarrow x = -2.3$$

 $\chi^2 = 4$ $\iff \chi = \pm \sqrt{4} = \pm 2$

Is x = 3 a solution of the original equation?

No, because
$$-\sqrt{3+6} = -\sqrt{9} = -3 \neq 3$$
.

Examples (cont')

Correct solution.

If
$$t=-\sqrt{2+6}$$
, then $t=-2$ or $t=3$.

Now if
$$x=-2$$
, then $t=-\sqrt{x+6}$.

Therefore,
$$\lambda = -\sqrt{\chi + 6}$$
 iff $\chi = -2$. ($\chi = -2$ is the solur of eqn.)

Practical approach (for insight).

One view
$$\lambda^2 = \lambda + b$$
 $\lambda^2 - b = \lambda$

Orig. $\lambda = \sqrt{\lambda + b}$

Proof by Contradiction

Overview: Proof Techniques

The follow is the list of proof techniques discussed in Section 2 of the textbook:

- M Conditional proof Last Fre.
- ☐ Proof by contradiction
- ☐ Proof by contraposition

Contradictions

A contradiction is a sentence of the form $Q \land \neg Q$, which is false regardless of the truth value of Q.

Proof by Contradiction

Proof by Contradiction

To prove a sentence P, assume $\neg P$ and deduce a contradiction. This approach is known as the method of *proof by contradiction*.

Template. To prove P:

- Begin with "Assume $\neg P$ is true."
- Deduce a contradiction.
- Conclude that P is true.

Why does it work?

a contradiction

Proof by Contradiction (cont')

Example

Let n be an integer. Using the method of proof by contradiction, prove that If n^2 is an odd number, then n is an odd number.

A1: Assume n' is an odd number We wish to show n is an odd number. Assume (towards a contradiction) n is not an odd number. Since n is an integer, n must be an even number. So n2 is an even number, that is, n2 is not an odd number, This leads to a contradiction, so we must reject the assumption that n is not an odd number. So n is an odd number. Discharging A1, we see that if n^2 is an odd number, then in is an odd number under no assumption.

Proof of a Negative Sentence

The usual way to prove a negative sentence $\neg P$ to prove by contradiction, that is, assume P and deduce a contradiction.

Why does it work?

Proof of a Negative Sentence (cont')

Section 2, Exercise 23

Use the method of conditional proof to explain in words why

$$[(P \Rightarrow Q) \land \neg Q] \Rightarrow \neg P$$

is a tautology.

Suggestion: Conditional proof.

A1: Assume A1 is true.

NTS C1 is true. ? proof of a negative Sentence.

Proof of a Negative Sentence (cont')

Proof by Contraposition

Overview: Proof Techniques

The follow is the list of proof techniques discussed in Section 2 of the textbook:

- ☑ Proof by contradiction
- □ Proof by contraposition

Contrapositive

Given $P\Rightarrow Q$, the related conditional sentence $\neg R\Rightarrow \neg Q$ is called the contrapositive of $P\Rightarrow Q$. Note that $P\Rightarrow Q$ is logically equivalent to $\neg Q\Rightarrow \neg P$. (Confirm this using a truth table.)

Example. Given the conditional sentence

A: If today is Sunday, then I do not have to go to work today.

• Converse of *A*:

Contrapositive of A:

Proof by Contraposition

Proof by Contraposition

To prove $P\Rightarrow Q$, it suffices to prove $\neg Q\Rightarrow \neg P$.

Proof by Contraposition (cont')

Example (revisited)

Let n be an integer. Using the method of proof by contraposition, prove that

If n^2 is an odd number, then n is an odd number.

Proof by Contradiction vs Proof by Contraposition

Let's examine the two proof techniques in proving $P \Rightarrow Q$.

Proof by contradiction.

Assume P.

Assume $\neg Q$.

Show $\neg P$.

Contradiction, $P \wedge \neg P!$

So *Q* must be true.

Therefore, $P \Rightarrow Q$.

Proof by contraposition.

Assume $\neg Q$.

Show $\neg P$. (if this can be done w/o P.)

So $\neg Q \Rightarrow \neg P$.

Therefore, $P \Rightarrow Q$, by contraposition.

Homework (1/193 due Wed 1/26)

Section 2: # 19, 20, 24