Week 4

Electronic Spectroscopy

4.1 Lecture 7: Electronic Molecular Spectroscopy

1/24: • Lant check in on lab.

- The clean up process is still going on; we're not getting back in the lab for the rest of the quarter.
 We'll still meet in Jones 108, but not use the PChem lab.
- When cleaning up the small barometer spill, they found a much larger spill covered in dust that's been there for who knows how many years, so they're having to bring in a professional team and it will take weeks. They don't just have to get it down to OSHA levels; it's an educational environment, so the requirements are even more stringent.
- They may or may not be able to still offer every lab.
- Lant is open to questions.
- Most of us should be totally fine.
- They found a line of it behind the hood.
- Announcements.
 - No lecture on Thursday; OH then in Searle 240.
 - NMR lecture next week.
 - Detailed guidelines on the long report by the end of the week.
- Today: Electronic spectroscopy and the I₂ absorption data.
- This is electronic *molecular* spectroscopy where electrons are localized, in contrast to electronic *nano-material* spectroscopy for example.
- We focus on valence electrons.
 - These absorb UV/Vis light.
 - Light absorption changes electronic charge distribution around the molecule; a lot of energy allows you to break bonds.
 - Molecules change all states, but start in the electronic ground state.
 - We will not look at core electrons here; we'd need X-rays for that. This is atom specific.
- Types of molecular electronic transitions.
 - In organic compounds, we're usually looking at $\sigma \to \sigma^*$ or $\pi \to \pi^*$ transitions, typically in unsaturated compounds.

- In saturated compounds, it is extremely difficult to get excitations, and we have to go into the deep UV.
- Example: Coumarin 153 dye.
 - Which HOMO and LUMO change, as well as the net change in dipole.
- Inorganic spectroscopy.
 - $-d \rightarrow d$ and charge transfer; related to Ru(bpy)₃²⁺.
- Electronic spectra of diatomic molecules.
 - Lots of fine structure: Primarily changes in vibrational quantum number.
 - The rotational constant of massive I₂ is very small; thus, we just can't resolve it here.
- Electronic spectra of diatomic molecules. picture
 - Transition to higher energy across potential energy surfaces.
 - Bound vs. dissociative surfaces.
 - Franck-Condon principle: The big one for electronic spectroscopy. Along the same lines as the BO approximation, we assume that electronic configuration can change/be excited much more quickly than the nuclei can move, so we fix the nuclei when we study electronic changes. Corresponds to vertical transitions.
 - Electronic excitation results in unstable configuration. More force on the atom as it tries to lengthen its bond causes it to vibrate more.
- Potential energy surfaces of I₂.
 - We get a transition from the X to the B state that increases bond length.
 - I₂ is a massively anharmonic oscillator (hard repulsive wall; softer attractive wall).
 - Vibrational spacing Δv decreases with increasing energy.
 - Different shaped potentials (different bond lengths and different vibrational splittings).
- UV/Vis spectroscopy of I₂.

Figure 4.1: Franck-Condon factors in electronic spectroscopy.

- Franck-Condon implies a vertical transition; this implies significant vibrational excitation since vertically above the equilibrium is an excited vibrational state.
 - In particular, we get excitation to the classical turning point.
- We need good overlap between vibrational wavefunctions to get excitation (also by Franck-Condon).
- There are resonances with many states, especially since higher-energy vibrational states are so tightly spaced. This is what gives vibrational fine structure.
- The transition spacing converges on the dissociation energy. From the 0-0 transition (v'' = v' = 0) and convergence limit, we can get D'_0 .
- Low frequency vibration of the X state implies that v'' = 1, 2 will be thermally occupied as well. This allows access to lower vibrational excited states because this wavefunction extends farther and can overlap with lower.
- There is also an excited A state between the X and the B state.
- To measure v'' = 0 transitions all the way down, you need to eliminate the hot bands. To do this, cool your sample down to a few degrees kelvin (reduces thermal occupation of higher states).
- Reconstructing a potential from absorption spectra.
 - Can't resolve rotational transitions.
 - The sawtooth structure hides the rotational transitions.
 - Assign transitions.
 - Use spacing to get information.
 - The frequency of the transition is related to the bare electronic transition, plus vibrational fine structure.
- Tons of good stuff on UV-Vis that may be worth rewatching at some point!!!
- Isolate X and B state frequencies.
 - Changes in v' vs. v''.
 - You can go from frequencies to dissociation constants with additional equations.
- Birge-Sponer plot: A plot of the vibrational frequency vs. the final vibrational quantum number.
 - At higher and higher vibrational quantum numbers, we get closer to the dissociation threshold and see deviation from linearity.
 - If it deviates to higher vibrational quantum numbers, the potential is a bit softer; otherwise, it's a bit steeper.
 - The y-intercept also tells you the maximum transition you can get to before dissociating.
- Selection rules for electronic spectroscopy.
 - We won't have to analyze intensity, but it does convey a lot of important information.
 - Absorption requires that resonance creates changes in electronic charge density, i.e.,

$$\frac{\partial \mu}{\partial q} \neq 0$$

- Technically, we need a change in parity/inversion from $u \leftrightarrow g$.
- Transition probability involves nuclear and electronic degrees of freedom.
- Vibrational wave functions are on different electronic surfaces.
- Related to both the electronic transition dipole moment and the Franck-Condon overlap integral.

- Thus, the maximum intensity tells us about the displacement between r''_e and r'_e .
- Franck-Condon factors (FCF's) for harmonic oscillators are discussed.
- We can talk to Tokmakoff about this if we want to do it in our report.
- After absorption.
 - A word on fluorescence (useful for later experiments).
 - Energy has to dissipate to return to equilibrium.
 - Options.
 - Energy transfer and relaxation processes (within and between molecules).
 - Electron transfer.
 - Photochemistry.
 - Radiative relaxation.
 - High probability/fast processe dominate.
- Relaxation of electronic states.

Figure 4.2: UV/Vis fluorescence.

- We get a displacement of charge and a new equilibrium nuclear separation.
- More vibrational energy is dissipated nonradiatively.
- A huge amount of energy is released to the ground state, typically through flourescence.
- Naturally, fluorescence is always red-shifted relative to absorption.
- We call the red shift the **Stokes shift** and denote it by 2λ .

4.2 Lab 2: FT-IR

Lab Manual

- Plan.
 - Investigate the relationships between the energies of spectral lines and the rovibrational properties
 of the studied molecules.
 - In particular, study $HCl_{(g)}$.
 - Determine the bond length of HCl.

- Classical picture of molecules.
 - Picture two point charges $\pm q$ separated by a distance l.
 - By definition, the electric dipole moment is ql.
 - -ql changes as the molecule vibrates.
 - If light waves strike the molecule and their frequency ν is equal to the normal vibration frequency of the molecule, they will drive the oscillatory motion and thus light will be absorbed and converted into vibrational energy.
 - Covers the harmonic oscillator treatment/derivation.
- Quantum picture of molecules.
 - There are allowed but discrete amounts of vibrational and rotational energy which a diatomic molecule may have in its stationary nonradiating states.
- Diatomic molecules.
 - Quantum harmonic oscillator: Can exist in the following energy levels, where $\bar{\nu}_e = \nu/c$ is the fundamental frequency of the oscillator expressed in wavenumbers (cm⁻¹) and v = 0, 1, 2, ... is the vibrational quantum number.

$$E_v(\text{vib}) = hc\bar{\nu}_e \left(v + \frac{1}{2}\right)$$

– Quantum rigid rotator: Can exist in the following energy levels, where $B_e = h/8\pi^2cI$ is the rotational constant (in cm⁻¹), $I = \mu r_e^2$ is the moment of inertia, r_e is the equilibrium internuclear separation, and J is the rotational angular momentum quantum number.

$$E_J(\text{rot}) = hcB_eJ(J+1)$$

- For a diatomic molecule that is vibrating harmonically with an amplitude much smaller than the bond length and rotating as a rigid body, the total energy of vibration and rotation is given by

$$E_{v,J} = E_v(\text{vib}) + E_J(\text{rot}) = hc \left[\bar{\nu}_e \left(v + \frac{1}{2} \right) + B_e J(J+1) \right]$$

- Selection rules determine that for IR rovibrational spectroscopy, v changes by ± 1 and J can change by ± 1 .
 - This leads to the **R-branch** and **P-branch**.
- The R- and P-branch equations are linear in J''+1 and -J'', respectively. Thus, plots of these quantities vs. wavenumbers follow a linear regression, allowing for experimental determination of $\bar{\nu}_e$ and B_e .
- Real vibration potentials are not fully harmonic. We can adjust the vibrational energies with a multiplied term containing a dimensionless positive anharmonicity constant $x_e \ll 1$.

$$E_v = hc\bar{\nu}_e \left(v + \frac{1}{2} \right) \left[1 - x_e \left(v + \frac{1}{2} \right) \right]$$

- \blacksquare x_e describes how the vibrational energy level spacing decreases as v grows in anharmonic vibrations.
- Similarly, real molecules are not entirely rigid as they rotate. We can adjust the rotational energies by accounting for the extent to which B_e changes as the moment of inertia changes; I will change more at higher v, so we take

$$B_v = B_e - \alpha \left(v + \frac{1}{2} \right)$$

- \blacksquare $\alpha_e \ll B_e$ is a positive number.
- The new rotational energy levels are $E_{J,v}(\text{rot}) = hcB_vJ(J+1)$.
- It follows that the corrected...
 - Total energy is...

$$E_{v,J} = hc\left\{\bar{\nu}_e\left(v + \frac{1}{2}\right)\left[1 - x_e\left(v + \frac{1}{2}\right)\right] + B_eJ(J+1) - \alpha_e\left(v + \frac{1}{2}\right)J(J+1)\right\}$$

■ R-branch expression is...

$$\bar{\nu} = \bar{\nu}_e (1 - 2x_e) + (2B_e - 3\alpha_e) + J''(2B_e - 4\alpha_e) - {J''}^2 \alpha_e$$

■ P-branch expression is...

$$\bar{\nu} = \bar{\nu}_e (1 - 2x_e) - J''(2B_e - 2\alpha_e) - J''^2 \alpha_e$$

- As before, a fit of this plot (this time, a quadratic fit) can be used to calculate $\bar{\nu}_e, B_e, \alpha_e$.
- R-branch: The set of rovibrational transitions corresponding to $\Delta J = +1$. Given by

$$\bar{\nu} = \bar{\nu}_e + 2B_e(J'' + 1)$$

- Derivation.

$$\bar{\nu} = \frac{\Delta E}{hc}$$

$$= \frac{E_{v',J'} - E_{v'',J''}}{hc}$$

$$= \left[\bar{\nu}_e \left(v'' + 1 + \frac{1}{2}\right) + B_e(J'' + 1)(J'' + 2)\right] - \left[\bar{\nu}_e \left(v'' + \frac{1}{2}\right) + B_eJ''(J'' + 1)\right]$$

$$= \bar{\nu}_e + B_e(J'' + 1)[(J'' + 2) - J'']$$

$$= \bar{\nu}_e + 2B_e(J'' + 1)$$

• P-branch: The set of rovibrational transitions corresponding to $\Delta J = -1$. Given by

$$\bar{\nu} = \bar{\nu}_e - 2B_e J^{\prime\prime}$$

- A similar derivation to that for the R-branch applies here.
- Fourier transform spectroscopy.
 - Difference from a grating spectrometer: All wavelengths are measured simultaneously; computer
 processing performs an FFT on the raw data later to decompose it into its component wavelengths
 and their respective intensities.
 - Advantages of FT-IR.
 - 1. Substantially better signal-to-noise ratio.
 - Math in here??
 - 2. The light throughput can be much larger because the Michelson interferometer in an FT-IR machine does not require the narrow entrance and exit slits of the monochromator.
 - 3. Computers do the data processing.
 - FT-IR is useful for samples with very high and very low absorption bands, e.g., catalyst molecules on a surface.