Álgebra Linear

Dependencia Linear

- 1. Classifique os conjuntos do \mathbb{R}^n abaixo como LI ou LD.
 - (a) $\{(2,-1),(3,5)\}$
 - (b) $\{(1,0),(-1,1),(3,5)\}$
 - (c) $\{(1,2,-1),(2,4,-2),(1,3,0)\}$
 - (d) $\{(1,-1,-2),(2,1,1),(0,3,5)\}$
 - (e) $\{(1,2,-1),(1,0,0),(0,1,2),(3,-1,2)\}$
 - (f) $\{(1,1,2,4),(1,-1,-4,2),(0,-1,-3,1),(2,1,1,5)\}$
- 2. Determine o valor de k para que o conjunto $\{(-1,0,2),(1,1,1),(k,-2,0)\}$ seja LI.
- 3. Para quais valores de k o conjunto $\beta = \{(1, k), (k, 4)\}$ é base do \mathbb{R}^2 ?
- 4. Mostre que o conjunto $\{(1,1,1,0),(0,0,1,1),(1,0,0,3),(0,0,0,5)\}$ é base do \mathbb{R}^4 .
- 5. Mostre que os vetores $v_1=(1,1,1),\ v_2=(1,2,3),\ v_3=(3,0,2)$ e $v_4=(2,-1,1)$ geram o \mathbb{R}^3 e encontre uma base dentre os vetores $v_1,\ v_2,\ v_3$ e v_4 .
- 6. No espaço vetorial \mathbb{R}^3 , considere a seguinte base: $B = \{(1,0,0), (0,1,0), (1,-1,1)\}$. Determine o vetor coordenada de $v \in \mathbb{R}^3$ em relação à base B se:
 - (a) v = (2, -3, 4)
 - (b) v = (3, 5, 6)
 - (c) v = (1, -1, 1)
- 7. Sejam os vetores $v_1 = (1, 0, -1), v_2 = (1, 2, 1)$ e $v_3 = (0, -1, 0)$ do \mathbb{R}^3 .
 - (a) Mostre que $B = \{v_1, v_2, v_3\}$ é base do \mathbb{R}^3 .
 - (b) Escrever $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ e $e_3 = (0,0,1)$ como combinação linear dos vetores de B.
- 8. Determine a dimensão e uma base para cada um dos seguintes espaços vetoriais:
 - (a) $\{(x, y, z) \in \mathbb{R}^3 | y = 3x \}$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 | y = 5xez = 0\}$

- (c) $\{(x,y) \in \mathbb{R}^2 | x+y=0 \}$
- (d) $\{(x, y, z) \in \mathbb{R}^3 | x = 3yez = -y\}$
- (e) $\{(x, y, z) \in \mathbb{R}^3 | 2x y + 3z = 0\}$
- (f) $\{(x, y, z) \in \mathbb{R}^3 | z = 0\}$