MFSURP Notes

Contents

1. Chooser options under the Blachelier Model

1. Chooser options under the Blachelier Model

We consider the Blachelier model with where the stock prices $\{S_t\}_{t>0}$ evolves according to

$$S_t = S_0 + \kappa W_t \tag{1.1}$$

1

where $S_0 > 0$ and $\{W_t\}_{t>0}$ is a Brownian motion under the risk neutral measure $\tilde{\mathbb{P}}$.

We consider a contract with maturity T and strike price K, that allows an agent to decide on a choosing date $\tau < T$ to choose the underlying derivative. Many results are known when an agent is allowed to choose between a European call and a European put. In this section we consider a contract that allows an agent to decide between two securities that pays

$$C_T = (A_T - K)^+, \ P_T = (K - A_T)^+, \ A_T = \frac{1}{T} \int_0^T S_t \ dt.$$
 (1.2)

(fill in derivation that gives V_{τ} , the value of the contract at time τ). Here, we assume the agent chooses optimally with no outside information. At time τ , the agent will choose the option of higher value between the put and call. The value of contract V at time τ is

$$V_{\tau} = \max(C_{\tau}, P_{\tau}). \tag{1.3}$$

We subtract C_{τ} out of the max function and get

$$V_{\tau} = C_{\tau} + \max(0, P_{\tau} - C_{\tau}) \tag{1.4}$$

which we want to evaluate through Put-Call Parity.

Recall that Put-Call Parity tells us

$$P_T - C_T = K - A_T. (1.5)$$

We want to discount this entire equation back to time τ , but note that we cannot bring A_T back to time τ as A_{τ} (why?). So, we define w_{τ} to be the price at time τ of a contract to receive A_T at time T. We can now use w_{τ} to bring the equation back to time τ

$$P_{\tau} - C_{\tau} = Ke^{r(\tau - T)} - w_{\tau} \tag{1.6}$$

So in conclusion, we find that

$$V_{\tau} = C_{\tau} + \left(K - S_0 + \frac{\kappa (T - \tau)}{T} W_{\tau} - \frac{\kappa}{T} \int_0^{\tau} W_t dt\right)^+. \tag{1.7}$$

Then by the risk-neutral pricing formula, the time-zero price of this contract is given by

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY Date : July 8, 2022.