```
from google.colab import drive
drive.mount('/gdrive/')
%cd /gdrive
    Mounted at /gdrive/
    /gdrive
ls
    MyDrive/ Shareddrives/
cd/gdrive/My Drive/Customer Personality/
    /gdrive/My Drive/Customer Personality
1s
    marketing_campaign.csv
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import preprocessing
sb.set()
data=pd.read csv("marketing campaign.csv",sep = '\t')
data
```

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Custo
0	5524	1957	Graduation	Single	58138.0	0	0	04-09-2
1	2174	1954	Graduation	Single	46344.0	1	1	08-03-2
2	4141	1965	Graduation	Together	71613.0	0	0	21-08-2

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2240 entries, 0 to 2239 Data columns (total 29 columns):

Data	columns (total 29 co.	ruiins ,) :	
#	Column	Non-N	Null Count	Dtype
0	ID	2240	non-null	int64
1	Year_Birth	2240	non-null	int64
2	Education	2240	non-null	object
3	Marital_Status	2240	non-null	object
4	Income	2216	non-null	float6
5	Kidhome	2240	non-null	int64
6	Teenhome	2240	non-null	int64
7	Dt_Customer	2240	non-null	object
8	Recency	2240	non-null	int64
9	MntWines	2240	non-null	int64
10	MntFruits	2240	non-null	int64
11	MntMeatProducts	2240	non-null	int64
12	MntFishProducts	2240	non-null	int64
13	MntSweetProducts	2240	non-null	int64
14	MntGoldProds	2240	non-null	int64
15	NumDealsPurchases	2240	non-null	int64
16	NumWebPurchases	2240	non-null	int64
17	NumCatalogPurchases	2240	non-null	int64
18	NumStorePurchases	2240	non-null	int64
19	NumWebVisitsMonth	2240	non-null	int64
20	AcceptedCmp3	2240	non-null	int64
21	AcceptedCmp4	2240	non-null	int64
22	AcceptedCmp5	2240	non-null	int64
23	AcceptedCmp1	2240	non-null	int64
24	AcceptedCmp2	2240	non-null	int64
25	Complain	2240	non-null	int64
26	<pre>Z_CostContact</pre>	2240	non-null	int64
27	Z_Revenue	2240	non-null	int64
28	Response	2240	non-null	int64
dtype	es: float64(1), int64	(25),	object(3)	

memory usage: 507.6+ KB

Data preprocessing

```
def unique_columns(data):
   for i in _data.columns:
        print(i, ':', len(_data[i].unique()))
```

#Removing null values
data = data.dropna()
data.describe()

	ID	Year_Birth	Income	Kidhome	Teenhome	Recency	
count	2216.000000	2216.000000	2216.000000	2216.000000	2216.000000	2216.000000	22
mean	5588.353339	1968.820397	52247.251354	0.441787	0.505415	49.012635	3
std	3249.376275	11.985554	25173.076661	0.536896	0.544181	28.948352	3
min	0.000000	1893.000000	1730.000000	0.000000	0.000000	0.000000	
25%	2814.750000	1959.000000	35303.000000	0.000000	0.000000	24.000000	
50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	49.000000	1
75%	8421.750000	1977.000000	68522.000000	1.000000	1.000000	74.000000	5
max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	99.000000	14

Removing Z Columns - because they contain constant variable and won't contribute to the analysis

data.head(10)

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer
0	5524	1957	Graduation	Single	58138.0	0	0	04-09-2012
1	2174	1954	Graduation	Single	46344.0	1	1	08-03-2014
2	4141	1965	Graduation	Together	71613.0	0	0	21-08-2013
3	6182	1984	Graduation	Together	26646.0	1	0	10-02-2014
4	5324	1981	PhD	Married	58293.0	1	0	19-01-2014
5	7446	1967	Master	Together	62513.0	0	1	09-09-2013
6	965	1971	Graduation	Divorced	55635.0	0	1	13-11-2012
7	6177	1985	PhD	Married	33454.0	1	0	08-05-2013
8	4855	1974	PhD	Together	30351.0	1	0	06-06-2013
9	5899	1950	PhD	Together	5648.0	1	1	13-03-2014

Group Marrital Status

```
data['Marital Status'].unique()
    array(['Single', 'Together', 'Married', 'Divorced', 'Widow', 'Alone',
            'Absurd', 'YOLO'], dtype=object)
data['Marital Status'].value counts()
    Married
                857
    Together
                573
    Single
                471
    Divorced
                232
    Widow
                76
    Alone
                  3
    YOLO
                  2
    Absurd
                  2
    Name: Marital_Status, dtype: int64
data ms = data.copy()
data ms['Marital Status'] = data ms['Marital Status'].map({'Single':0, 'Together':
                                                                 'Divorced':0, 'Widow':0
data ms['Marital Status'].unique()
    array([0, 1])
data ms['Marital Status'].value counts()
    1
         1430
          786
    Name: Marital_Status, dtype: int64
Grouping Education
data_ms['Education'].unique()
    array(['Graduation', 'PhD', 'Master', 'Basic', '2n Cycle'], dtype=object)
data_ms['Education'].value_counts()
    Graduation
                  1116
    PhD
                   481
    Master
                   365
    2n Cycle
                   200
```

```
54
    Basic
    Name: Education, dtype: int64
data_ed = data_ms.copy()
Mapping Education into groups
data ed['Education'] = data ed['Education'].map({'Graduation':1, 'PhD':2, 'Master
data ed['Education'].value counts()
    1
         1116
    2
          846
          254
    Name: Education, dtype: int64
data ed= data ed.reset index(drop=True)
data dt = data ed.copy()
Calculating Customers age
data dt['Dt Customer'] = pd.to datetime(data dt['Dt Customer'], format='%d-%m-%Y')
data dt.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2216 entries, 0 to 2215
    Data columns (total 27 columns):
        Column
                            Non-Null Count Dtype
        ----
     0
        ID
                            2216 non-null int64
        Year Birth
     1
                            2216 non-null int64
     2 Education
                            2216 non-null int64
        Marital Status
                            2216 non-null int64
     4
        Income
                            2216 non-null float64
        Kidhome
     5
                            2216 non-null int64
        Teenhome
                            2216 non-null int64
        Dt_Customer
                            2216 non-null datetime64[ns]
        Recency
                            2216 non-null
                                           int64
     9
         MntWines
                            2216 non-null int64
     10 MntFruits
                            2216 non-null
                                         int64
     11 MntMeatProducts
                            2216 non-null int64
                            2216 non-null int64
     12 MntFishProducts
     13 MntSweetProducts
                            2216 non-null
                                         int64
     14 MntGoldProds
                            2216 non-null int64
     15 NumDealsPurchases 2216 non-null
                                         int64
     16 NumWebPurchases
                            2216 non-null int64
     17 NumCatalogPurchases 2216 non-null
                                         int64
     18 NumStorePurchases
                            2216 non-null
                                           int64
     19 NumWebVisitsMonth
                            2216 non-null
                                           int64
     20 AcceptedCmp3
                            2216 non-null
                                           int64
```

```
21 AcceptedCmp4
                             2216 non-null
                                             int64
     22 AcceptedCmp5
                             2216 non-null
                                             int64
     23 AcceptedCmp1
                             2216 non-null
                                           int64
     24 AcceptedCmp2
                             2216 non-null
                                            int64
     25 Complain
                             2216 non-null
                                            int64
     26 Response
                             2216 non-null
                                           int64
    dtypes: datetime64[ns](1), float64(1), int64(25)
    memory usage: 467.6 KB
data dt['Dt Customer'][0].year
    2012
data dt['Year Birth'][0]
    1957
data dt['Dt Customer'].max()
    Timestamp('2014-06-29 00:00:00')
int(data dt['Dt Customer'][10].year)
    2012
Age=[]
print('As the Maximum value of customers joined year in 2014, So we shall assume 1
    As the Maximum value of customers joined year in 2014, So we shall assume that data was
for i in range(data_dt.shape[0]):
    a = int(2014) - data_dt['Year_Birth'][i]
    Age.append(a)
data_dt['Age']=Age
data s = data dt.copy()
Identifying Outliers and Data Distribution
data_s['Income'].unique().max()
```

666666.0

```
sb.set(style="ticks", color_codes=True)
g = sb.pairplot(data_s, vars=["Income", "Recency", "Age", 'MntWines']) #, hue="Cluplt.show()
```



```
sb.set(style="ticks", color_codes=True)
g = sb.pairplot(data_s, vars=['NumDealsPurchases',
       'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases',
       'NumblehVisitsMonth'l)
```

Naminico A Total Collection 17

plt.show()

print('We will remove certain outliers that are prone to distorted the results')

We will remove certain outliers that are prone to distorted the results

Removing Outliers

We will remove following values

- 1. Ages greater than 100
- 2. Income greater than 60,000
- 3. MntMeatProducts greater than 1500
- 4. MntSweetProducts greater than 250
- 5. NumWebPurchases greater than 20
- 6. NumCatalogPurchases greater than 20

```
data s = data s[data s['Age'] < 100]</pre>
data s = data s[data s['Income'] < 60000]</pre>
data s = data s[data s['MntMeatProducts'] < 1500]</pre>
data s = data s[data s['MntSweetProducts'] < 250]</pre>
data s = data s[data s['MntGoldProds'] < 300]</pre>
data s = data s[data s['NumWebPurchases'] < 20]</pre>
data s = data s[data s['NumCatalogPurchases'] < 20]</pre>
data s = data s.reset index(drop=True)
data ags = data s.copy()
column names reordered = ['ID', 'Year Birth', 'Age', 'Education', 'Marital Status']
       'Kidhome', 'Teenhome', 'Dt Customer', 'Recency', 'MntWines',
       'MntFruits', 'MntMeatProducts', 'MntFishProducts',
       'MntSweetProducts', 'MntGoldProds', 'NumDealsPurchases',
       'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases',
       'NumWebVisitsMonth', 'AcceptedCmp3', 'AcceptedCmp4',
       'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2', 'Complain',
       'Response'l
data ag = data ags[column names reordered]
data ags.columns.values
    array(['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income',
           'Kidhome', 'Teenhome', 'Dt Customer', 'Recency', 'MntWines',
           'MntFruits', 'MntMeatProducts', 'MntFishProducts',
           'MntSweetProducts', 'MntGoldProds', 'NumDealsPurchases',
           'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases',
           'NumWebVisitsMonth', 'AcceptedCmp3', 'AcceptedCmp4',
```

'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2', 'Complain',

'Response'. 'Age'l. dtvpe=obiect)

data ag.head(5)

	ID	Year_Birth	Age	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Cust
0	5524	1957	57	1	0	58138.0	0	0	2012-(
1	2174	1954	60	1	0	46344.0	1	1	2014-(
2	6182	1984	30	1	1	26646.0	1	0	2014-(
3	5324	1981	33	2	1	58293.0	1	0	2014-(
4	965	1971	43	1	0	55635.0	0	1	2012-

Grouping Kidhome, Teenhome, Spending and Purchases

```
data_ag['Kids'] = data_ag['Kidhome'] + data_ag['Teenhome']
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
"""Entry point for launching an IPython kernel.

```
→
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
This is separate from the ipykernel package so we can avoid doing imports until

```
→
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
This is separate from the ipykernel package so we can avoid doing imports until

```
>
data_ag = data_ag.drop(['Kidhome', 'Teenhome', 'ID', 'Year_Birth', 'Dt_Customer'];
data_tp = data_ag.drop(['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProduct')
        'MntSweetProducts', 'MntGoldProds', 'NumDealsPurchases',
       'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases',
       'NumWebVisitsMonth'], axis=1)
Analysis from a Wider Prespective (Considering Total Spending and Total Purchases)
data tp.columns.values
    array(['Age', 'Education', 'Marital_Status', 'Income', 'Recency',
           'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1',
           'AcceptedCmp2', 'Complain', 'Response', 'Kids', 'Total Spending',
           'Total Purchases'], dtype=object)
columns tp = ['Income', 'Recency', 'Total Spending', 'Total Purchases']
columns tp
    ['Income', 'Recency', 'Total Spending', 'Total Purchases']
data tbs = data tp[columns tp]
# scale the data for better results
x_scaled_tbs = preprocessing.scale(data tbs)
x scaled tbs
    array([[ 1.52718002, 0.31214897, 4.85806776, 2.10397331],
           [0.6155132, -0.38445323, -0.73596908, -0.97618709],
           [-0.90712653, -0.80241455, -0.64449427, -0.53616417],
           [-0.30612522, 1.1132415, -0.7254143, -0.97618709],
           [ 1.43774484, 1.4615426 , 3.53520119, 1.07725318],
           [ 1.11989051, -0.31479301, -0.22582107, 0.05053304]])
# Createa an empty list
wcss =[]
for i in range(1,10):
    # Clsuter solution with i clusters
    kmeans = KMeans(i)
    # Fit the STANDARDIZED data
    kmoons fithy scaled that
```

```
# Append the WCSS for the iteration
wcss.append(kmeans.inertia_)

# Check the result

# Plot the number of clusters vs WCSS
plt.plot(range(1,10),wcss)

# Name your axes
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
print('From the graph we shall consider 4 clusters optimal number, as we try to mi
```

From the graph we shall consider 4 clusters optimal number, as we try to minimize the WC

Modeling - KMeans

	Age	Education	Marital_Status	Income	Recency	AcceptedCmp3	AcceptedCmp4	Accepte
0	57	1	0	58138.0	58	0	0	
1	60	1	0	46344.0	38	0	0	
2	30	1	1	26646.0	26	0	0	
3	33	2	1	58293.0	94	0	0	
Model Ev	aluat	tion						
			· ·		. 16	1.1	1.7	

plt.figure(figsize=(10,6))
Cl = sb.countplot(x = 'Cluster', data = data_tbss_clusters, palette= ['#F7420D',
Cl.set_title("Distribution Of The Clusters", size = 20)
plt.show()

Customer Segmentation

```
Features = ['Income', 'Recency', 'Total Spending', 'Total Purchases', 'Cluster']
plt.figure()
sb.pairplot(data_tbss_clusters[Features], hue = "Cluster", palette=['#F7420D', '#:
plt.subplots_adjust(top=0.9)
plt.suptitle('Customers Segmentation', size = 20)
plt.show()
```

<Figure size 432x288 with 0 Axes>

Customers Segmentation

		Features	Cluster 0	Cluster 1	Cluster 2	Cluster 3			
	0	Income	High	Low	Avg	High			
	1	Spending	High	Low	Low	Avg			
Clusters Distribution Along the Features									
data_tbss_clusters.columns.values									

	Marital_Status		Age	Kids	Education	Recency	Income	Total Spending	Tota Purchase
C]	luster								
	0	200	14674	407	436	8985	14669715.0	76170	576
	0 2 1 2 2 1	249	15228	417	421	10786	10065084.0	22101	513
	2	152	200 14674 407 436 8985 1466 249 15228 417 421 10786 1006 152 11379 260 323 13157 1246	12460150.0	179218	694			
	3	288	18959	14674 407 436 8985 14669 15228 417 421 10786 10069 11379 260 323 13157 12469	15387382 0	46085	635		

percents_df = grouped.apply(lambda x: round((x/x.sum()*100),2))
percents_df

	Marital_Status	Age	Kids	Education	Recency	Income	Total Spending	Total Purchases
Cluster								
0	22.50	24.36	24.85	25.75	13.37	27.90	23.54	23.82
1	28.01	25.28	25.46	24.87	16.05	19.14	6.83	21.21
2	17.10	18.89	15.87	19.08	19.58	23.70	55.39	28.71
3	32.40	31.47	33.82	30.30	50.99	29.26	14.24	26.26

```
plt.figure(figsize=(15,8))
```

 s.set_title("Distribution Of Clusters along the Features", size=20)

```
Text(0.5, 1.0, 'Distribution Of Clusters along the Features')
```

```
Distribution Of Clusters along the Features
                                                                                Cluster
Clusters Distribution over Customers Interaction
plt.figure(figsize=(15,8))
grouped = (data tbss clusters.groupby(['Cluster']).agg({'AcceptedCmp1': 'sum', 'Acc
                                                           'AcceptedCmp3': 'sum','Acc
                                                           'AcceptedCmp5': 'sum', 'Re
           .stack().reset index().rename(columns = {'level 1':'weights', 0: 'value'
h = sb.barplot(x = 'weights', y = 'value', hue = 'Cluster', data = grouped)
h.set title("Customers' Response Segment", size=20)
    Text(0.5, 1.0, "Customers' Response Segment")
                                Customers' Response Segment
                                                                                Cluster
Result
      40 -
plt.figure(figsize=(15,8))
pl = sb.countplot(x = 'Age', hue=data tbss clusters['Cluster'], data = data tbss (
pl.set title("Age Distribution", size=20)
plt.show()
plt.figure(figsize=(15,8))
pl = sb.countplot(x = 'Kids', hue=data_tbss_clusters['Cluster'], data = data_tbss_
pl.set title("Distribution Of The Clusters", size=20)
plt.show()
sb.scatterplot(data = data_tbss_clusters, x = 'Age', y = 'Income', hue='Cluster',
```

```
g = sb.FacetGrid(data_tbss_clusters, col="Marital_Status", row="Education", hue="(
g.map(sb.scatterplot, "Age", "Kids", alpha=.7)
g.add_legend()
g.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
g.fig.suptitle('Customer Demographics', size=20)
```

Text(0.5, 0.98, 'Customer Demographics')

Customer Demographics

oustomer Personality.ipynb - Colaboratory cs = pd.DataFrame(data_cs)

	Features	Cluster 0	Cluster 1	Cluster 2	Cluster 3
0	Income	High	Low	Avg	High
1	Spending	High	Low	Low	Avg
2	Purchases	High	Low	Low	Avg
3	Recency	High	Low	Low	Low
4	Customer Segments	Impulsive	Need-Based	Wandering	Loyal