Задание 4

1. В этом задании речь идет о схеме, приведенной на рис. 4.16, со значениями параметров согласно одному из вариантов, перечисленных в табл. 1.

Схема с малосигнальными транзисторами в качестве VT1 и VT2 (рис. 4.16) с сопротивлением нагрузки $R_{\rm H}$, равным нескольким сотням Ом, — это всего лишь иллюстрация принципа действия усилителя мощности, предназначенная для учебного лабораторного эксперимента.

Предполагается, что напряжения питания $U_{\Pi 1}$ и $U_{\Pi 2}$ будут такими, как указано на рисунке ($U_{\Pi 1} = U_{\Pi 2} = U_{\Pi}$), амплитуда максимального сигнала на выходе $\max U_{\text{вых.}m}$ будет порядка 10 В, а измерения по переменному току будут проводиться на частоте f, равной 10 кГц.

Рис. 4.16

Таблина 1

NºN∘	R_{H}	$\max P_{R_{H}}$	$\max I_{R_{\rm H}}$	R _{K3}	<i>I</i> ^o ,K	R _{E3}	h ₁₁₉	R_{M}
	Ом	Вт	мА	кОм	мА	кОм	Ом	кОм
1	270	0.185	37	2.7	4.2	270	600	6.2
2	300	0,167	33	3.0	3.8	300	660	6.8
3	330	0.151	30	3.3	3.4	330	735	7.5
4	360	0.139	28	3.6	3.15	360	800	8.2
5	390	0.128	26	3.9	2.9	390	860	9.1
6	430	0.116	23	4.3	2.6	430	960	10
7	470	0.106	21	4.7	2.4	470	1040	11
8	510	0.098	20	5.1	2.2	510	1140	12
9	560	0.089	18	5.6	2.0	560	1250	13

 $\max P_{\mathsf{H}} = \left(\max U_{\mathsf{Bыx.}m}/\sqrt{2}\right)^2/R_{\mathsf{H}}$ в табл. 1 — это максимальная мощность сигнала в нагрузке (при максимальной амплитуде сигнала на выходе), а $I_{\mathsf{9,K}}^{\mathsf{o}}$ — эмиттерные (коллекторные) токи покоя транзисторов VT1 и VT2 в исходном состоянии в режиме AB; здесь этот ток выбран равным $0.1 \cdot \max I_{R_{\mathsf{H}}}$.

В отсутствие сигнала коллекторный ток $I_{\rm K3}$ транзистора VT3 будет приблизительно равен току $I_{\rm 3,K}^{\rm o}$, поэтому $R_{\rm K3} = \left(U_{\rm \Pi} - U^{\rm o}\right) / I_{\rm K3}$, где $U^{\rm o}$ — напряжение на открытом диоде; здесь, на стадии оценки ожидаемых значений токов и напряжений, можно положить $U^{\rm o}$ равным 0.65 В. Сопротивление резистора $R_{\rm 53}$ должно быть примерно в 100...200 раз больше $R_{\rm K3}$ (о том, как подобрать величину $R_{\rm 53}$, см. ниже в п. 2) .

Указанные в табл. 1 значения R_{F3} и $h_{119}^{(3)} = \left(h_{219}^{(3)} + 1\right) \cdot r_{33}$, $r_{33} = U_T / I_{\text{K3}}$, найдены в предположении, что $h_{219}^{(3)} = h_{219}^{(3)} = 100$. Для наблюдений и измерений, о которых пойдет речь в п. 3 этого задания, нужно взять 'сопротивление источника' R_{N} в 10 раз больше входного сопротивления $h_{119}^{(3)}$ транзисто-

ра VT3 ($R_{\rm M} \approx 10 \cdot h_{113}^{(3)}$). Емкость конденсатора $C_{\rm ME3}$ между источником сигнала и базой транзистора VT3 должна быть такой (из интервала $0.1 \dots 1.0$ мкФ), чтобы его сопротивление переменному току на частоте f было много меньше $R_{\rm M} + h_{113}^{(3)}$.

Пары $R_{\varphi 1}, C_{\varphi 1}$ и $R_{\varphi 2}, C_{\varphi 2}$ представляют собой фильтры, предназначенные для того, чтобы по постоянным напряжениям на $R_{\varphi 1}$ и $R_{\varphi 2}$ находить средние значения коллекторных токов $I_{\mathsf{K}1}$ и $I_{\mathsf{K}2}$ транзисторов VT1 и VT2 по правилу: $I_{\mathsf{K}1,2} = \left(U_{\mathsf{\Pi}1,2} - \left|U_{\mathsf{K}1,2}\right|\right) / R_{\varphi 1,2}$. Сопротивления резисторов $R_{\varphi 1}$ и $R_{\varphi 2}$ следует выбрать одинаковыми из интервала 110...180 Ом; емкости электролитических конденсаторов $C_{\varphi 1}$ и $C_{\varphi 2} - 100$ мкФ или 220 мкФ (при собирании схемы необходимо соблюдать указанную на рис. 4.16 полярность включения).

Наконец, в данном случае целесообразно использовать качестве диодов VD1 и VD2 транзисторы КТ315 с замкнутыми накоротко базами и коллекторами (рис. 4.17). При этом вольтамперные характеристики «диодов» практически совпадают с зависимостями $i_{K,\Im}(u_{Б\Im})$ транзисторов VT1 и VT2.

Рис. 4.17

Внимание! Если вам предстоит выполнение задания 5, то вам нужно будет воспользоваться схемой, которую вы соберёте, выполняя задание 4. В этом случае данную схему (рис. 4.16, 4.17) следует собирать компактно в левой части макетной платы и не разбирать её по окончании выполнения задания 4.

- 2. Соберите схему, представленную на рис. 4.16, 4.17. Включите питание и осуществите отладку схемы по постоянному току, выполнив следующие действия:
- а) Убедитесь в том, что напряжения $U_{\Pi 1}$ и $U_{\Pi 2}$ равны ± 12 В соответственно.
- б) Подключите источник сигнала к входу схемы [к точке слева (на рисунке) от резисторов $R_{\rm N}$ и $R_{\rm E3}$], а вход цифрового вольтметра постоянного напряжения к точке ${\cal A}$.
- в) При $\mathcal{E}_{\mathsf{N}.m}=0$, где $\mathcal{E}_{\mathsf{N}.m}$ амплитуда синусоидального сигнала, вырабатываемого компьютерным генератором, изменяя $\mathit{Уровень}$ (напряжение смещения) E_{N} , добейтесь того, чтобы напряжение $U_{\mathcal{A}}$ в точке \mathcal{A} относительно земли отличалось от нуля не более чем на ± 0.25 В. Если при выбранном ранее значении сопротивления $R_{\mathsf{E}3}$ не удается добиться требуемого напряжения в точке \mathcal{A} , то необходимо изменить сопротивление резистора $R_{\mathsf{E}3}$ и выбрать его таким, чтобы требуемое смещение E_{N} не превосходило ± 1 В.
- г) Измерьте постоянные напряжения $U_{\rm K1}$ и $U_{\rm K2}$ на коллекторах транзисторов VT1 и VT2. Если значения этих напряжений будут отличаться от напряжений питания $U_{\rm \Pi1}$ и $U_{\rm \Pi2}$ более, чем на 2...3 В, то необходимо увеличить сопротивления резисторов $R_{\rm K3}$ и $R_{\rm E3}$ и вновь выполнить действия, указанные выше в п. в).
- д) Если постоянное напряжение $U_{\text{вых}}$ выходит за пределы $\pm 0.25\,$ В при $\left|U_{\mathcal{A}}\right| \leq 0.25\,$ В, то желательно подобрать пару транзисторов VT1 и VT2, обеспечивающих меньшую разность напряжений в точке \mathcal{A} и на выходе.
- е) Результаты отладки схемы по постоянному току напряжения на коллекторах и базах всех транзисторов, а также значения $E_{\rm N}$, $U_{\cal A}$, $U^{\rm O}$ и $U_{\rm Bbix}$ следует зафиксировать в рабочей тетради. Полезно также определить путем расчета постоянные коллекторные токи $I_{\rm K1}$, $I_{\rm K2}$ и $I_{\rm K3}$ и мощность $P_{\rm pacc}$, рассеиваемую на коллекторах транзисторов VT1 и VT2 в отсутствие сигнала.
- 3. Подайте от компьютерного генератора синусоидальный сигнал с амплитудой $\mathcal{E}_{\mathsf{N}.m}$ в несколько десятков милливольт или порядка 100 мВ и с помощью осциллографа убедитесь в возникновении на выходе неискаженного по форме синусоидального сигнала с амплитудой $U_{\mathsf{Bblx}.m}$, равной нескольким вольтам. Определите коэффициент усиления $K_e(def) = U_{\mathsf{Bblx}.m} / \mathcal{E}_{\mathsf{N}.m}$ и сравните его с ожидаемым значением $h_{213}^{(3)} R_{\mathsf{K3}} / \left(R_{\mathsf{N}} + h_{113}^{(3)} \right)$.

Установите амплитуду входного сигнала $\mathcal{E}_{\mathsf{N},m}$ такой, чтобы амплитуда выходного сигнала $U_{\mathsf{Bbix},m}$ была равна 3 В. Измерьте постоянные напряжения $U_{\mathsf{K}1}$ и $U_{\mathsf{K}2}$ на коллекторах транзисторов VT1 и VT2, произведите необходимые вычисления и заполните 1-ю строку в следующей таблице:

Таблина 2

$U_{\mathtt{Bыx}.m}$	P_{H}	I_{K1}	$P_0^{(1)}$	$P_{pacc}^{(1)}$	I _{K2}	$P_0^{(2)}$	$P_{pacc}^{(2)}$	η
В	мВт	мА	мВт	мВт	мА	мВт	мВт	-
3								
6								
9								

Здесь, в табл. 2:

$$P_{\rm H} = \left(U_{\rm BыX.m}/\sqrt{2}\right)^2/R_{\rm H}$$
 — мощность, рассеиваемая на нагрузке; $I_{\rm K1} = \left(U_{\Pi 1} - U_{\rm K1}\right)/R_{\Phi 1}$ — постоянный ток, текущий по резистору $R_{\Phi 1}$; $P_0^{(1)} = I_{\rm K1} \cdot U_{\Pi 1}$ — мощность, потребляемая от источника питания $U_{\Pi 1}$; $P_{\rm pacc}^{(1)} = P_0^{(1)} - P_{\rm H}/2 - I_{\rm K1}^2 \cdot R_{\Phi 1}$ — мощность, рассеиваемая на коллекторе транзистора VT1; $I_{\rm K2} = \left(U_{\Pi 2} - U_{\rm K2}\right)/R_{\Phi 2}$ — постоянный ток, текущий по резистору $R_{\Phi 2}$; $P_0^{(2)} = I_{\rm K2} \cdot U_{\Pi 2}$ — мощность, потребляемая от источника питания $U_{\Pi 2}$; $P_{\rm pacc}^{(2)} = P_0^{(2)} - P_{\rm H}/2 - I_{\rm K2}^2 \cdot R_{\Phi 2}$ — мощность, рассеиваемая на коллекторе транзистора VT2;

 $\eta = P_{\rm H} / \left(P_{\rm H} + P_{\rm pacc}^{(1)} + P_{\rm pacc}^{(2)} \right) -$ коэффициент полезного действия (КПД).

Повторите измерение напряжений $U_{\rm K1}$ и $U_{\rm K2}$ при $U_{\rm вых.}{}_m=$ 6 В и при $U_{\rm вых.}{}_m=$ 9 В и заполните 2-ю и 3-ю строки таблицы.

4. Осуществите с помощью осциллографа наблюдение искажений в выходном сигнале или их отсутствие, выполнив следующие действия.

Подайте на вход синусоидальный сигнал такой величины $\mathcal{E}_{\text{N.m}}$, чтобы в случае, когда схема остается такой, как она представлена на рис. 4.16, 4.17, амплитуда сигнала на выходе $U_{\text{вых.m}}$ была равна 1...3 В. Убедитесь в том, что искажения отсутствуют или мало заметны. Теперь замкните накоротко диоды VD1 и VD2, соединив между собой базы транзисторов VT1 и VT2, и при том же значении амплитуды входного сигнала $\mathcal{E}_{\text{N.m}}$ рассмотрите искажения типа

«ступеньки», наступающие в $u_{\rm BЫX}(t)$ вблизи нуля. Обратите внимание на то, что во втором случае размах сигнала $u_{\rm BЫX}$ меньше, чем в отсутствие искажений. Зарисуйте осциллограммы в обоих случаях, «наложив» изображения одно на другое в одном масштабе по оси ординат.

(Замечание: Если при переходе к случаю, когда диоды замкнуты накоротко, нарушается требование нуля на выходе в отсутствие сигнала, то перед тем, как осуществить вторую часть этого опыта, необходимо скорректировать смещение $E_{\rm u}$ и только после этого перейти к наблюдению сигнала на выходе при той же самой величине сигнала $\mathcal{E}_{{\rm u},m}$.)

5. (Факультативно.) Разомкните осуществленное ранее (в п. 4) соединение баз транзисторов VT1 и VT2 между собой.

Подайте на вход синусоидальный сигнал такой величины, чтобы в случае, когда схема остается такой, как она представлена на рис. 4.16, 4.17, амплитуда сигнала на выходе $U_{{\sf Bых.m}}$ была равна 6...8 В. Убедитесь в том, что искажения отсутствуют или мало заметны. Теперь замкните накоротко резистор $R_{\sf N}$ во входной цепи, соединив проводником точки, к которым подключены выводы этого резистора, и *уменьшите сигнал*, подаваемый от компьютерного генератора, настолько, чтобы при замкнутом накоротко резисторе $R_{\sf N}$ полный размах сигнала на выходе был таким же, как перед этим (равным $2U_{\sf Bыx.m}$). Рассмотрите возникающие при этом искажения $u_{\sf Bыx}(t)$, заключающиеся в том, что верхняя полуволна в пределах периода оказывается затупленной, а нижняя — заостренной, что является проявлением экспоненциального характера зависимости $i_{\sf K3}(u_{\sf E33})$. Зарисуйте осциллограммы в обоих случаях, «наложив» изображения одно на другое в одном масштабе по оси ординат.

6. (Φ акультативно.) Сохранив неизменной собранную ранее схему, замените резистор $R_{\rm N}$ на новый с сопротивлением, равным 2...3 $h_{113}^{(3)}$, и соедините выход усилителя с базой транзистора VT3 двумя последовательно включенными резисторами $R_{\rm 0.c.}'$ и $R_{\rm 0.c.}''$, образующими цепь обратной связи (о.с.), как показано на рис. 4.18. Сопротивление каждого из резисторов $R_{\rm 0.c.}'$ и $R_{\rm 0.c.}''$ можно выбрать примерно равным $R_{\rm E3}/2$. Пусть первоначально между точкой соединения резисторов $R_{\rm 0.c.}'$, $R_{\rm 0.c.}''$ и землей включен изображенный на рис. 4.18 пунктиром конденсатор C сравнительно большой емкости (0.1...1.5 мкФ).

Необходимо заново при $e_{\rm N}(t)=0$ подобрать у источника сигнала такое смещение $E_{\rm N}$, чтобы постоянное напряжение на выходе (в точке соединения эмиттеров VT1 и VT2) было равно нулю.

Включите на входе синусоидальный сигнал с такой амплитудой $\mathcal{E}_{\mathsf{N.m}}$, при которой полный размах выходного сигнала $\max u_{\mathsf{Bыx}} - \min u_{\mathsf{Bыx}}$ (удвоенная амплитуда) был бы равен 12...16 В. Рассмотрите форму колебания на выходе, в которой должен проявиться экспоненциальный характер зависимости $i_{\mathsf{K3}}(u_{\mathsf{D33}})$, и зарисуйте осциллограмму в рабочей тетради.

Теперь извлеките конденсатор C и увеличьте входной сигнал настолько, чтобы полный размах сигнала на выходе $u_{\rm BЫX}(t)$ был таким же, как и ранее. Обратите внимание на то, что в данном случае искажения вследствие экспоненциального характера зависимости $i_{\rm K3}(u_{\rm E33})$ заметны меньше. Зарисуйте новую осциллограмму на том же самом рисунке, что был сделан ранее, и сравните форму колебания на выходе, когда действует обратная связь (в отсутствие конденсатора C), со случаем, когда действие обратной связи исключено (при наличии в схеме конденсатора C).