Machine Learning and Data Mining

Bayes Classifiers

Prof. Alexander Ihler

A basic classifier

- Training data D={x⁽ⁱ⁾,y⁽ⁱ⁾}, Classifier f(x; D)
 - Discrete feature vector x
 - f(x; D) is a contingency table
- Ex: credit rating prediction (bad/good)
 - $X_1 = income (low/med/high)$
 - How can we make the most # of correct predictions?

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

A basic classifier

- Training data D={x⁽ⁱ⁾,y⁽ⁱ⁾}, Classifier f(x; D)
 - Discrete feature vector x
 - f(x; D) is a contingency table
- Ex: credit rating prediction (bad/good)
 - $X_1 = income (low/med/high)$
 - How can we make the most # of correct predictions?
 - Predict more likely outcome for each possible observation

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

A basic classifier

- Training data D={x⁽ⁱ⁾,y⁽ⁱ⁾}, Classifier f(x; D)
 - Discrete feature vector x
 - f(x; D) is a contingency table
- Ex: credit rating prediction (bad/good)
 - $X_1 = income (low/med/high)$
 - How can we make the most # of correct predictions?
 - Predict more likely outcome for each possible observation
 - Can normalize into probability:p(y=good | X=c)

Features	# bad	# good
X=0	.7368	.2632
X=1	.5408	.4592
X=2	.3750	.6250

– How to generalize?

- · Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

 You wake up with a headache – what is the chance that you have the flu?

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2
- P(H & F) = ?
- P(F|H) = ?

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

•
$$P(F|H) = ?$$

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

•
$$P(F|H) = p(H \& F) / p(H)$$

= $(1/80) / (1/10) = 1/8$

Classification and probability

- Suppose we want to model the data
- Prior probability of each class, p(y)
 - E.g., fraction of applicants that have good credit
- Distribution of features given the class, p(x | y=c)
 - How likely are we to see "x" in users with good credit?
- Joint distribution p(y|x)p(x) = p(x,y) = p(x|y)p(y)
- Bayes Rule: $\Rightarrow p(y|x) = p(x|y)p(y)/p(x)$ $= \frac{p(x|y)p(y)}{\sum_{c} p(x|y=c)p(y=c)}$

- Learn "class conditional" models
 - Estimate a probability model for each class
- Training data
 - Split by class
 - $D_c = \{ x^{(j)} : y^{(j)} = c \}$
- Estimate p(x | y=c) using D_c
- For a discrete x, this recalculates the same table...

Features	# bad	# good	p(x y=0)	p(x y=1)		p(y=0 x)	p(y=1 x)
X=0	42	15	42 / 383	15 / 307		.7368	.2632
X=1	338	287	338 / 383	287 / 307	→	.5408	.4592
X=2	3	5	3 / 383	5 / 307		.3750	.6250

p(y)	383/690	307/690
------	---------	---------

- Learn "class conditional" models
 - Estimate a probability model for each class
- Training data
 - Split by class
 - $D_c = \{ x^{(j)} : y^{(j)} = c \}$
- Estimate p(x | y=c) using D_c
- For continuous x, can use any density estimate we like
 - Histogram
 - Gaussian
 - **–** ...

Gaussian models

Estimate parameters of the Gaussians from the data

$$\alpha = \frac{m_1}{m} = \hat{p}(y = c_1)$$
 $\hat{\mu} = \frac{1}{m} \sum_j x^{(j)}$ $\hat{\sigma}^2 = \frac{1}{m} \sum_j (x^{(j)} - \mu)^2$

Multivariate Gaussian models

Similar to univariate case

$$\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})\right\}$$

 μ = length-d column vector Σ = d x d matrix

 $|\Sigma| = \text{matrix determinant}$

Maximum likelihood estimate:

$$\hat{\mu} = \frac{1}{m} \sum_{j} \underline{x}^{(j)}$$

$$\hat{\Sigma} = \frac{1}{m} \sum_{j} (\underline{x}^{(j)} - \underline{\hat{\mu}})^{T} (\underline{x}^{(j)} - \underline{\hat{\mu}})$$

Machine Learning and Data Mining

Bayes Classifiers: Naïve Bayes

Prof. Alexander Ihler

- Estimate p(y) = [p(y=0), p(y=1)...]
- Estimate p(x | y=c) for each class c
- Calculate p(y=c | x) using Bayes rule
- Choose the most likely class c
- For a discrete x, can represent as a contingency table...
 - What about if we have more discrete features?

Features	# bad	# good		p(x y=0)	p(x y=1)		p(y=0 x)	p(y=1 x)
X=0	42	15		42 / 383	15 / 307		.7368	.2632
X=1	338	287	>	338 / 383	287 / 307	→	.5408	.4592
X=2	3	5		3 / 383	5/307		.3750	.6250

p(y)	383/690	307/690
------	---------	---------

Joint distributions

Make a truth table of all combinations of values

В	С
0	0
0	1
1	0
1	1
0	0
0	1
1	0
1	1
	0 0 1 1 0 0

Joint distributions

- Make a truth table of all combinations of values
- For each combination of values, determine how probable it is
- Total probability must sum to one
- How many values did we specify?

Α	В	С	p(A,B,C)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

Overfitting and density estimation

- Estimate probabilities from the data
 - E.g., how many times (what fraction)
 did each outcome occur?
- M data << 2^N parameters?

Α	В	С	p(A,B,C)
0	0	0	4/10
0	0	1	1/10
0	1	0	0/10
0	1	1	0/10
1	0	0	1/10
1	0	1	2/10
1	1	0	1/10
1	1	1	1/10

- What about the zeros?
 - We learn that certain combinations are impossible?
 - What if we see these later in test data?
- Overfitting!

Overfitting and density estimation

- Estimate probabilities from the data
 - E.g., how many times (what fraction)did each outcome occur?
- M data << 2^N parameters?

Α	В	С	p(A,B,C)
0	0	0	4/10
0	0	1	1/10
0	1	0	0/10
0	1	1	0/10
1	0	0	1/10
1	0	1	2/10
1	1	0	1/10
1	1	1	1/10

- What about the zeros?
 - We learn that certain combinations are impossible?
 - What if we see these later in test data?
- One option: regularize $\hat{p}(a,b,c) \propto (N_{abc} + lpha)$
- Normalize to make sure values sum to one...

Overfitting and density estimation

- Another option: reduce the model complexity
 - E.g., assume that features are independent of one another
- Independence:
- p(a,b) = p(a) p(b)
- $p(x_1, x_2, ... x_N) = p(x_1) p(x_2) ... p(x_N)$
- Only need to estimate each individually

Α	p(A)
0	.4
1	.6

В	p(B)
0	.7
1	.3

С	p(C)	\rightarrow
0	.1	<i>→</i>
1	0	

Α	В	С	p(A,B,C)
0	0	0	.4 * .7 * .1
0	0	1	.4 * .7 * .3
0	1	0	.4 * .3 * .1
0	1	1	***
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Naïve Bayes models

- Variable y to predict, e.g. "auto accident in next year?"
- We have *many* co-observed vars x=[x₁...x_m]
 - Age, income, education, zip code, ...
- Want to learn p(y | x₁...x_m), to predict y
- Arbitrary distribution: O(d^{m+1}) values!
- Naïve Bayes:
 - $p(y|\mathbf{x}) = p(\mathbf{x}|y) p(y) / p(\mathbf{x})$; $p(\mathbf{x}|y) = \prod_{i} p(x_i|y)$
 - Covariates are independent given "cause"
- Note: may not be a good model of the data
 - Doesn't capture correlations in x's
 - Can't capture some dependencies
- But in practice it often does quite well!

Naïve Bayes Models for Spam

- $y \in \{spam, not spam\}$
- X = observed words in email
 - Ex: ["the" ... "probabilistic" ... "lottery"...]
 - "1" if word appears; "0" if not
- 1000's of possible words: 2^{1000s} parameters?
- # of atoms in the universe: $\sim 2^{270}...$
- Model words *given* email type as independent
- Some words more likely for spam ("lottery")
- Some more likely for real ("probabilistic")
- Only 1000's of parameters now...

Naïve Bayes Gaussian models

$$p(x_1) = \frac{1}{Z} \exp\left\{-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2\right\} \qquad p(x_2) = \frac{1}{Z_2} \exp\left\{-\frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right\}$$

$$p(x_1)p(x_2) = \frac{1}{Z_1 Z_2} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \Sigma^{-1}(\underline{x} - \underline{\mu})\right\}$$

$$\underline{\mu} = [\mu_1 \ \mu_2]$$

$$\Sigma = \operatorname{diag}(\sigma_1^2 \ , \ \sigma_2^2)$$

Again, reduces the number of parameters of the model: Bayes: m²/2 Naïve Bayes: m

You should know...

- Bayes rule; p(y | x)
- Bayes classifiers
 - Learn p(x | y=C) , p(y=C)
- Naïve Bayes classifiers
 - Assume features are independent given class:

$$p(x | y=C) = p(x_1 | y=C) p(x_2 | y=C) ...$$

- Maximum likelihood (empirical) estimators for
 - Discrete variables
 - Gaussian variables
 - Overfitting; simplifying assumptions or regularization

Machine Learning and Data Mining

Bayes Classifiers: Measuring Error

Prof. Alexander Ihler

- Given training data, compute p(y=c|x) and choose largest
- What's the error rate of this method?

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

- Given training data, compute p(y=c|x) and choose largest
- What's the error rate of this method?

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

Gets these examples wrong:

(empirically on training data: better to use test data)

Similar form & computation for continuous x

$$p(y=0|x) < p(y=1|x)$$

$$= p(y=0,x) < p(y=1,x) = \log \frac{p(y=0)}{p(y=1)} < \log \frac{p(x|y=1)}{p(x|y=0)}$$

"log likelihood ratio"

- Not all errors are created equally...
- Risk associated with each outcome?

$$\gamma \leq \log \frac{p(x|y=1)}{p(x|y=0)}$$

Type 1 errors: false positives

Type 2 errors: false negatives

False positive rate: $(\# y=0, \hat{y}=1) / (\# y=0)$

False negative rate: $(\# y=1, \hat{y}=0) / (\# y=1)$

- Increase gamma: prefer class 0
- Spam detection

$$\gamma \leq \log \frac{p(x|y=1)}{p(x|y=0)}$$

Type 1 errors: false positives

Type 2 errors: false negatives

False positive rate: $(\# y=0, \hat{y}=1) / (\# y=0)$

False negative rate: $(\# y=1, \hat{y}=0) / (\# y=1)$

- Decrease gamma: prefer class 1
- Cancer detection

$$\gamma \leq \log \frac{p(x|y=1)}{p(x|y=0)}$$

Type 1 errors: false positives

Type 2 errors: false negatives

False positive rate: $(\# y=0, \hat{y}=1) / (\# y=0)$

False negative rate: $(\# y=1, \hat{y}=0) / (\# y=1)$

Measuring errors

- Confusion matrix
- Can extend to more classes

	Predict 0	Predict 1
Y=0	380	5
Y=1	338	3

- True positive rate: #(y=1, ŷ=1) / #(y=1) -- "sensitivity"
- False negative rate: #(y=1, ŷ=0) / #(y=1)
- False positive rate: #(y=0, ŷ=1) / #(y=0)
- True negative rate: #(y=0, ŷ=0) / #(y=0) -- "specificity"

ROC Curves

Characterize performance over various gamma?

