

基于生成式 AI 的个性化文创图像作品设计系统 技术 文档

任课	教师	杨波
学	院	计算机学院
专	业	计算机科学与技术
组	别	第一组
组	长	<u> </u>
成	员	<u>陈奕嘉,苏泳豪</u>

2025年4月24日

目录

1	引言	•																2
	1.1	目的	 		 													2
	1.2	项目范围	 		 													2
	1.3	文档概览	 															2
	1.4	参考资料																2
	1.5	术语与缩																2
2	系统	概览																2
3	系统	架构																3
	3.1	架构设计	 		 													3
	3.2	分解描述	 		 													3
	3.3	设计原理																3
4	数据	设计																4
	4.1	数据说明	 		 													4
	4.2	数据字典	 															4
5	组件	设计																4
6	人机	界面设计																5
	6.1	界面概览	 		 													5
	6.2	界面截图	 		 													5
	6.3	界面控件																7
7	需求	矩阵																7
8	APP	ENDICES																8

1 引言

1.1 目的

本软件设计文档描述了"基于生成式 AI 的个性化文创图像作品设计系统"的架构与系统设计。面向开发、测试、维护本项目的工程人员及项目管理者,作为技术实现和系统集成的参考依据。

1.2 项目范围

该软件旨在利用生成式 AI 技术解决个性化文创产品供给不足的问题,核心功能包括:根据用户输入的文本和指定的位置生成创意图像,或编辑现有图像中的文本。重点目标是实现中文字符的高精度渲染,便于游客与文创从业者快速创作独特图像作品,助力文旅融合与传播。

1.3 文档概览

第1章介绍目的、范围、参考资料和术语;第2章提供系统概览;第3章详细阐述系统架构;第4章描述数据设计;第5章介绍各组件设计;第6章讲解人机界面设计;第7章为需求矩阵;第8章为附录。

1.4 参考资料

信息来源于网页https://www.sohu.com/a/823541100_234564。技术细节参考了 AnyText、TextDiffuser、DDPM 等文献。文档结构基于 IEEE Std 1016-2009 和上传的 SDD 模板。

1.5 术语与缩略语

AI(人工智能)、SDD(软件设计文档)、VAE(变分自编码器)、UNet(网络结构)、扩散模型、Stable Diffusion(SD)、AnyText(图文生成模型)、Text-control Diffusion Pipeline、Auxiliary Latent Module、Text Embedding Module、Gradio(UI库)、Prompt(文本提示)、Glyph(字形)、OCR(光学字符识别)、FID(图像质量指标)、LORA(低秩微调)、CFG-Scale(无分类引导因子)、eta(扩散采样参数)等术语在文中根据需要进一步解释。

2 系统概览

本系统是一个利用生成式 AI 的图像创作工具,支持文本生成图像和图像内文字编辑,专注于中文字符的精准渲染。系统基于 AnyText 并微调 Stable Diffusion 模

型,通过 Web 界面(Gradio)与用户交互,后端使用 Python 与深度学习框架实现, 支持 Docker 部署。背景需求是解决文创产品同质化问题,赋能个体创作。

3 系统架构

3.1 架构设计

系统分为三层:用户界面层(Gradio实现)、应用逻辑层、核心模型层。UI层:负责输入(文本、图像、参数、坐标绘制)与结果展示。逻辑层:解析输入、格式化参数、调用模型、处理输出与数据管理。模型层:以AnyText为核心,包括三大子模块:

- 1. 文本嵌入模块 (Text Embedding Module): 处理提示词和字形, 生成文本语义 嵌入;
- 2. 辅助潜变量模块(Auxiliary Latent Module): 处理位置、掩码等空间信息;
- 3. 文本控制扩散管道(Text-control Diffusion Pipeline): 基于 UNet 模型生成图像,受前两模块的条件引导,最终由 VAE 解码生成图像。

3.2 分解描述

Text Embedding Module:接收用户提示词和需渲染文本,生成对应字形图,提取嵌入后送入 Transformer 编码器;

Auxiliary Latent Module:接收坐标、掩码、字形图,通过卷积处理生成与扩散模型匹配的空间向量;

Diffusion Pipeline: 以初始噪声为起点,联合文本嵌入与空间特征逐步去噪生成图像潜变量,最后 VAE 解码;

Gradio UI: 提供文本输入、图像上传、画布交互、参数调节、结果展示等功能。

3.3 设计原理

采用 AnyText + Stable Diffusion 架构,针对中文文本渲染难题,结合字形信息与位置控制; Realistic_Vision_V4.0 作为底模保证图像质量;中文语料微调提升语义理解; Dreambooth 对文化图像样式微调; Gradio 快速构建 UI。相较 Photoshop、Canva 等工具,该方案更友好、更灵活,适配多语言和编辑需求,但也需更高计算资源和复杂集成。

4 数据设计

4.1 数据说明

输入数据包括提示词(文本)、需渲染文本、位置坐标、参考图像(可选)、控制参数;训练数据包含两类:

AnyWord-3M 标注数据(JSON 格式),用于位置与字符控制训练;

文创图像+文本描述(TXT格式),用于风格微调。

输出图像保存在服务器(JPG/PNG格式),模型权重以文件形式存储。

4.2 数据字典

user_prompt: 字符串

text_to_render: 字符串列表
position_data: 坐标列表
edit_mask: 掩码图像/张量

reference_image: 上传图像

control_params:参数字典,如'cfg_scale': 7.5

generated image: 最终图像路径或文件

training_data_1: AnyWord-3M JSON 结构

training data 2: TXT 列表与对应图像

model weights: 模型权重文件

glyph image、text embedding、auxiliary latent、image latent: 中间张量

hehe98/wenchuang: 项目镜像 wenchuang.ckpt: 模型权重

strength: 文字渲染控制强度,可以为0即不使用文字渲染

CFG-Scale: 文字控制强度,低的话会导致生成图像与描述不符合,高的话图像会不自然

eta: 风格多样性, 1 表示启用(更具变化), 0 不启用(更保守)

5 组件设计

主要功能以组件化方式组织,核心函数如下:

generate_image:解析提示词,生成字形图和文本嵌入,调用辅助模块生成空间信息,联合生成潜变量图像,再解码输出;

edit_image:编码参考图像,加入掩码噪声生成初始状态,调用编辑流程生成新图像并融合原图。

每个过程中的局部变量包括潜变量,预测噪声,注意力图等张量,模块间依次传递处理。

6 人机界面设计

6.1 界面概览

提供 Web 端界面,两种主要操作模式:

- 1. 文本生成": 输入提示词与需渲染文本,通过画布绘制或随机选择文本位置;
- 2. 上传图片,手动掩盖修改区域,输入新文本并生成修改结果。

用户可调整 CFG-Scale、Steps 等参数,查看结果并保存。

6.2 界面截图

详情见图 1,图 2.

图 1: 这是图片的标题

图 2: 这是图片的标题

6.3 界面控件与操作

包括:

文本输入框 (Prompt)

位置选择方式(单选按钮)

绘制画布(支持自由绘制、矩形、掩码)

参数调节控件(滑动条/输入框)

"运行"按钮

图像展示区域

上传图片控件

示例加载按钮

参考生成的物品

操作:

用户可进行输入、点击、拖动、选择文件等交互。

7 需求矩阵

详情见表 1。

功能需求	对应组件
文本输入与图像生成	UI(输入、按钮)、逻辑层、Text Embedding、Aux
	Latent, Diffusion Pipeline, VAE
图像上传与编辑	UI(上传、掩码、按钮)、逻辑层、VAE 编码、辅
	助模块、扩散模型、VAE 解码
指定文字位置	UI(画布、位置选择)、逻辑层、Auxiliary Latent
	模块
参数调节	UI 控件、逻辑层、Diffusion Pipeline
结果预览	UI 显示区、逻辑层
保存分享	UI下载、后端文件存储
高中英文渲染准确率	Text Embedding、Auxiliary Latent、训练数据 1
文化主题生成	Diffusion Pipeline (微调模型)、训练数据 2
文字图像自然融合	Diffusion Pipeline、辅助模块、嵌入模块
简洁易用界面	Gradio UI、应用逻辑
示例与指导	UI 示例加载与静态说明

表 1: 功能需求与对应组件矩阵

8 APPENDICES

详见材料中的"项目注意事项"文档。