Guided Tour of Machine Learning in Finance

Week 3: Unsupervised Learning

Dimension reduction and data visualization with t-SNE

Igor Halperin

NYU Tandon School of Engineering, 2017

2D visualization: what can be improved?

Can we find a better 2D visualization of the DJI stock returns than the 2D PCA?

2D visualization: the "crowding problem"

Can we find a better 2D visualization of the DJI stock returns than the 2D PCA?

Quiz: What do you think is the origin of the crowding problem?

- 1. The crowding problem is specific to stock analyses because of high level of noise in financial data
- 2. Two dimensions are just not enough to explain the amount of variation in multi-dimensional data
- 3. When you project multi-dimensional data on a plane, the need to display outliers forces non-outliers to crowd together
- 4. Because in higher dimensions there are typically more outliers than in lower dimensions, the crowding problem becomes worse with increased dimensions
- 5. A uniform distribution in an N-dimensional hyper-cube of size r has the number of points proportional to the volume of the hyper-cube $V \sim r^N$, therefore a *fixed* number of uniformly distributed observed points in N dimensions will generally translate into a *non-uniform* distributions of their projections onto a 2D plan.

Multiple choice answers:

- 1. Answer 1
- 2. Answer 2
- 3. Answers 3 and 4
- 4. Answer 5
- 5. Answers 3, 4, 5
- 6. All of the above

Quiz: What do you think is the origin of the crowding problem?

- 1. The crowding problem is specific to stock analyses because of high level of noise in financial data
- 2. Two dimensions are just not enough to explain the amount of variation in multi-dimensional data
- 3. When you project multi-dimensional data on a plane, the need to display outliers forces non-outliers to crowd together
- 4. Because in higher dimensions there are typically more outliers than in lower dimensions, the crowding problem becomes worse with increased dimensions
- 5. A uniform distribution in an N-dimensional hyper-cube of size r has the number of points proportional to the volume of the hyper-cube $V \sim r$, therefore a *fixed* number of uniformly distributed observed points in N dimensions will generally translate into a *non-uniform* distributions of their projections onto a 2D plan.

Multiple choice answers:

- 1. Answer 1
- 2. Answer 2
- 3. Answers 3 and 4
- 4. Answer 5
- 5. Answers 3, 4, 5
- 6. All of the above

Correct answer: 5

tSNE vs PCA

t-SNE: t-distributed Stochastic Neighbor Embedding (van der Maaten and Hinton 2008)

	PCA	t-SNE
Type of algorithm	Deterministic	Stochastic
Projection onto a low dimensional space	Linear	Non-linear
Global or local approach?	Global	Local/global
Handling discarded dimensions	Hard truncation of extra PCA dimensions	No truncation of dimensions
Unique solution?	Yes	No
Interpretability of results	Straightforward (PCA is just a rotation of axes)	Subjective

Probabilistic dimension reduction with t-SNE

1. Define **similarity** of point $\mathbf{X}_j \in \mathbb{R}^D$ to point $\mathbf{X}_i \in \mathbb{R}^D$ by assuming that it is generated by a **Gaussian distribution** centered at \mathbf{X}_i

$$p_{j|i} = \frac{\exp\left(-\left|\left|\mathbf{x_i} - \mathbf{x_j}\right|\right|^2 / (2\sigma_i^2)\right)}{\sum_{k \neq i} \exp\left(-\left|\left|\mathbf{x_i} - \mathbf{x_j}\right|\right|^2 / (2\sigma_i^2)\right)}$$

and define the **joint probability** as $p_{ij} = (p_{j|i} + p_{i|j})/(2n)$ (n is the total number of data points) - guaranteed to be between 0 and 1. Data-specific variances σ_i^2 will be specified later...

2. Assume that their projections onto a 2D plane are samples from a **Student t-distribution** with one degree of freedom (= the Laplace distribution)

 $q_{ij} = \frac{\left(1 + \left|\left|\mathbf{y}_{i} - \mathbf{y}_{j}\right|\right|^{2}\right)^{-1}}{\sum_{k \neq i} \left(1 + \left|\left|\mathbf{y}_{k} - \mathbf{y}_{j}\right|\right|^{2}\right)^{-1}}$

A fat-tailed distribution

Large
distances are
suppressed as a
power law

Probabilistic dimension reduction with t-SNE

3. Fix the data-dependent variances σ_i^2 from the requirement that distributions of points \mathbf{X}_j centered around \mathbf{X}_i have a fixed perplexity (specified by the user!. Perplexity controls the effective number of neighbors for each point.)

$$Perp(\mathbf{P}_{i}) = 2^{H(\mathbf{P}_{i})}, \quad H(\mathbf{P}_{i}) = -\sum_{j} p_{j|i} \log_{2} p_{j|i}$$

4. Use the Kullback-Leibler (KL) divergence to quantify the collective dissimilarity between the set of points in \boldsymbol{D} dimensions with their projections onto a plane:

$$C = KL(P \parallel Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

5. Optimize C with respect to the choice of points $\{y_i\}$ using a gradient descent method, with the following value of the gradient:

$$\frac{\partial C}{\partial y_i} = 4\sum_{j} \left(p_{ij} - q_{ij} \right) (y_i - y_j), \quad i = 1, \dots, n$$

The basic t-SNE algorithm

Laurens van der Maaten and Geoffrey Hinton, "Visualizing Data using t-SNE", Journal of Machine Learning Research 9 (2008), 2579-2605.

```
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
 Data: data set X = \{x_1, x_2, ..., x_n\},
```

cost function parameters: perplexity *Perp*,

optimization parameters: number of iterations T, learning rate η , momentum $\alpha(t)$.

Result: low-dimensional data representation $\mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}$. begin

compute pairwise affinities $p_{j|i}$ with perplexity Perp (using Equation 1)

```
set p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}
sample initial solution \mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\} from \mathcal{N}(0, 10^{-4}I)
```

for t=1 to T do

compute low-dimensional affinities q_{ij} (using Equation 4)

compute gradient
$$\frac{\delta C}{\delta \mathcal{Y}}$$
 (using Equation 5)
set $\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$

end

end

Momentum term

Apply t-SNE to the DJI stock return data, for different values of perplexity

tSNE dimensions colored by regime, perplexity=10

Apply t-SNE to the DJI stock return data, for different values of perplexity

tSNE dimensions colored by regime, perplexity=50

Apply t-SNE to the DJI stock return data, for different values of perplexity

Apply t-SNE to the DJI stock return data, for different values of perplexity

Apply t-SNE to the DJI stock return data, for different values of perplexity

t-SNE algorithm: further notes

- Visualization results depend on perplexity. What perplexity would be optimal?
- In its basic form, t-SNE provides visualization of a given dataset but not the a dimensional reduction recipe/algorithm for a new, unseen data. New data points cannot be embedded into an existing low dimensional representation.
- t-SNE preserves nearest neighbors but not distance. Running distance or density based clustering algorithms on outputs of the t-SNE can be problematic!
- The basic algorithm is not well scalable with the number of data points (has complexity (scales as N^2). Additional tricks are required to apply it to large datasets, e.g. a tree-based algorithm of van der Maaten (2014) has $O(N\log N)$ complexity