A Variety of Ways to Solve a Problem

Courtney Gibbons Hamilton College

February 15, 2017

Example Problem

1			
			4
	3	2	
2			

Rules: Fill each cell with the numbers 1, 2, 3, 4 so they appear exactly once in each row, column, and box.

How many solutions does this puzzle have if you omit the clue 4?

↑ (switching media) ↑
http://habanero.math.cornell.edu:3690/

Application

Evolutionary Biology

These Gibbons share a common ancestor:

 ${\tt people.hamilton.edu/cgibbons}$

When did this ancestor roam the world?

Application

Evolutionary Biology

These Gibbons share a common ancestor:

www.ippl.org/gibbon/courtney/ people.hamilton.edu/cgibbons

When did this ancestor roam the world? (about 19 million years ago)

To learn more

To play with the code I just presented, email me! crgibbon@hamilton.edu (you'll need Macaulay2 to run it)

To learn more about:

- Algorithms that make these computations possible: *Ideals, Varieties, and Algorithms* by Cox, Little, and O'Shea
- Using algebra and geometry to solve problems from biology: Algebraic Statistics for Computational Biology
 by Pachter and Sturmfels

Homework (email solutions to crgibbon@hamilton.edu)

Problem 1: Show that each polynomial in B is necessary. That is, by omitting one of each type of rule independently, find a pathological solution.

а				$=\underline{a}\in\mathbb{C}^{16}$	To get started, here's a "solved" boar What if you omit the polynomial
С	d	а	Ь		
Ь	С	d	а		
А	2	h			$(x_{1,1}-1)(x_{1,2}-2)(x_{1,3}-3)(x_{1,4}-4)$?

Problem 2: Ideals and varieties are a match made in heaven. For example, when $I \subseteq J$ as ideals, $V(J) \subseteq V(I)$ as varieties. Assume I and J are ideals in the polynomial ring $P = F[x_1, \dots, x_n]$.

- (a) Prove that $I \subseteq J$ implies $V(J) \subseteq V(I)$.
- (b) Prove that $V(I \cup J) = V(I) \cap V(J)$.

d a b c

