Systèmes de télécommunications sans-fils et applications

Rapport TP Carte sans-contact MIFARE Classic

Réalisé par :

Bou Saba Elie Guiffo Kuicheu Kevin

Travail Présenté à :

M. Vincent THIVENT

Table de matières

Pro	jet :	Réaliser un programme informatique pour les cartes MIFARE Classic	4			
1.	Car	ractéristiques de la carte MIFARE Classic 1 KByte				
2.	For	nctions implémentées dans notre programme	5			
3.	Inte	erface graphique de notre application	6			
4.	Gui	ide d'utilisation :	7			
5.	Exe	emple d'utilisation	7			
1	-	Click sur « Connect »	7			
2	<u> </u>	Saisie d'un nouveau Nom et Prénom d'utilisateur	8			
3	3-	Affichage propriétaire carte	8			
Co	nclus	sion	9			

Liste des Figures

Figure 1 : Secteur contenant les données utilisateur	4
Figure 2 : Secteur contenant la valeur du compteur d'unités	
Figure 3 : Interface Graphique	6
Figure 4 : Résultat du click sur connect	
Figure 5 : Modification Nom et Prénom utilisateur	8
Figure 6 : Modification de la valeur du compteur	
Figure 7 : Affichage des informations de l'utilisateur	

Projet : Réaliser un programme informatique pour les cartes MIFARE Classic

1. Caractéristiques de la carte MIFARE Classic 1 KByte

Les cartes MIFARE Classic sont des cartes NXP sans contact.

Celle sur laquelle nous travaillons possède les caractéristiques suivantes :

Norme ISO/IEC 14443 type A

• Fréquence porteuse : 13.56 MHz

• Débit : 106 kbit/s

Mémoire EEPROM : 1 Kbyte, constituée de 16 secteurs de 4 blocks.

Les informations de l'utilisateur seront stockées dans les secteurs 2 et 3 de la EEPROM. Le secteur 2 pour l'identité de l'utilisateur

Sector	Block	Data
	11	KeyA+AccessBit+KeyB
2	10	Nom
	9	Prenom
	8	« Indentite »

Figure 1 : Secteur contenant les données utilisateur

Le secteur 3 pour les données compteur d'unités de l'utilisateur

Sector	Block	Data
	15	KeyA+AccessBit+KeyB
3	14	Compteur
3	13	Backup Compteur
	12	« Porte Monnaie »

Figure 2 : Secteur contenant la valeur du compteur d'unités

L'accès aux informations présente sur la carte seront possible grâce aux clés d'authentification Key A pour lire le nom, prénom de l'utilisateur et décrémenter le compteur, Key B pour écrire le nom et prénom de l'utilisateur et incrémenter le compteur. Clés d'authentification pour lire et écrire.

Key A: A0 A1 A2 A3 A4 A5Key B: B0 B1 B2 B3 B4 B5

Clés d'authentification pour l'incrémentation et la décrémentation

Key A: C0 C1 C2 C3 C4 C5Key B: D0 D1 D2 D3 D4 D5

Types de commande supporter par la carte :

- Authentification : authentification mutuelle en 3 passes qui nécessite deux paires de commande-réponse.
- Read : nécessite une adresse de bloc et renvoie les 16 octets d'un bloc MIFARE Classic.
- Write : nécessite une adresse de bloc et écrit 16 octets de données dans le bloc MIFARE Classic 1K adressé .
- Increment : nécessite une adresse de bloc source et un opérande. Il ajoute l'opérande à la valeur du bloc adressé et stocke le résultat dans une mémoire volatile.
- Decrement : nécessite une adresse de bloc source et un opérande. Il soustrait l'opérande de la valeur du bloc adressé et stocke le résultat dans une mémoire volatile.
- Restor : nécessite une adresse de bloc source. Il copie la valeur du bloc adressé dans une mémoire volatile.

Dans notre cas, nous allons effectuer le stockage dans l'EEPROM, car on a besoin d'un backup. Il permet de toujours garder une bonne information dans la carte en cas de coupure de courant par exemple.

Notre application QtCreator permet de :

- Enroller une carte MIFARE Classic d'origine ;
- Formater une carte MIFARE Classic pour qu'elle reprenne son état d'origine ;
- Incrémenter et décrémenter des unités dans la carte (avec la gestion d'un backup)
 ;
- Écrire et lire l'identité de la personne dans la carte (nom et prénom) ;

2. Fonctions implémentées dans notre programme

//Fonction permettant de lire les données d'un block Data QString read_block(uint8_t block, uint8_t key_index);

// Fonction permettant de lire la valeur d'un block Value

```
QString read_value(uint8_t block, uint8_t key_index);

//Fonction permettant d'écrire dans un block Data
void write_block(uint8_t block, unsigned char data[16], uint8_t key_index);

//Fonction permettant d'écrire dans un block Value
void write_value(uint8_t block, uint32_t value, uint8_t key_index);

// Fonction permettant d'incrémenter la valeur d'un block Value
void increment(uint8_t block, uint8_t value, uint8_t trans_block, uint8_t key_index);

// Fonction permettant de décrémenter la valeur d'un block Value
void decrement(uint8_t block, uint8_t value, uint8_t trans_block, uint8_t key_index);
```

Les fonctions increment et decrement font appel à la fonction **Mf_Classic_Restore_Value** pour stocker la valeur du compteur dans le block 13 du secteur 13 de sorte à disposer d'un backup.

3. Interface graphique de notre application

Figure 3 : Interface Graphique

4. Guide d'utilisation :

Le bouton « Connect » permet de se connecter à la carte à la l'aide de la commande.

Le champ « Nom » permet de saisir le nom de l'utilisateur.

Le champ « Prénom » permet de saisir le prénom de l'utilisateur.

Le bouton « Modifier Nom » permet d'écrire le nom de l'utilisateur saisie dans la carte.

Le bouton « Modifier Prénom » permet d'écrire le prénom de l'utilisateur saisie dans la carte.

Le bouton « valeur compteur » permet de saisir le compteur d'unités de l'utilisateur.

Le bouton « Incrementer compteur » permet d'incrémenter le compteur d'unités.

Le bouton « Decrementer compteur » permet de décrémenter le compteur d'unités.

Le bouton « Proprietaire carte » permet d'afficher les informations nom, prénom et valeur du du compteur d'unités de l'utilisateur.

Le champ « status » affiche les informations relatives au type de carte utilisé.

Le bouton « Quitter » permet de fermer l'application.

5. Exemple d'utilisation

1- Click sur « Connect »

Figure 4 : Résultat du click sur connect

2- Saisie d'un nouveau Nom et Prénom d'utilisateur

Figure 5 : Modification Nom et Prénom utilisateur

Cliquer sur « Modifier Nom » et « Modifier Prénom »

Renseigner la valeur du compteur à 10 et cliquer sur le bouteur « valeur compteur » Faire défiler la box incrémenter compteur à 2 et cliquer sur le bouton « Incrementer compteur »

Faire défiler la box décrémenter compteur à 4 et cliquer sur le bouton « Decrementer compteur »

Cliquer sur le bouton « Proprietaire carte »

Figure 7 : Affichage des informations de l'utilisateur

Conclusion

En somme, nous avons réaliser une application permettant de s'authentifier à une carte MIFARE Classic 1KByte, de lire les informations des blocks des secteur 2 et 3, de modifier ces informations.