

Computer Networks

Guilherme lecker Ricardo guilherme.iecker-ricardo@dauphine.psl.eu guilhermeir.github.io/L3Networks.html

Class 6: Link Layer (Continued)

[K] Chapter 6
[T] Chapters 3 and 4

Computer Networks: Link Layer

Roadmap

- Introduction
- Error Control
- Medium Access Control (MAC)
 - Introduction
 - Channel Partitioning Protocols
 - TDMA, FDMA, CDMA
 - "Taking Turns" Protocols
 - Polling, Token Passing
 - Random Access Protocols
 - ALOHA, Slotted ALOHA
 - CSMA, CSMA/CD
- LANs

Today

Class 5

MAC – Summary

- Channel Partitioning:
 - Time Division Multiple Access (TDMA), FDMA, etc.
- Taking Turns:
 - Polling from central site and token passing
 - Application examples: Bluetooth, token ring
- Random Access:
 - ALOHA, Slotted ALOHA
 - Carrier Sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11

MAC - Random Access Protocols: Carrier Sense Multiple Access (CSMA)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- human analogy: don't interrupt others!

CSMA/CD: CSMA with collision detection

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection easy in wired, difficult with wireless
- human analogy: the polite conversationalist

MAC - Random Access Protocols: CSMA Collisions

- collisions can still occur with carrier sensing:
 - propagation delay means two nodes may not hear each other's just-started transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in determining collision probability

MAC - Random Access Protocols: CSMA/CD Algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel:

```
if idle: start frame transmission.
if busy: wait until channel idle, then transmit
```

- 3. If NIC transmits entire frame without collision, NIC is done with frame
- 4. If NIC detects another transmission while sending: abort, send jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from $\{0,1,2, ..., 2^m-1\}$. NIC waits K · "512 bit times", returns to Step 2
 - more collisions: longer backoff interval

MAC - Random Access Protocols: CSMA/CD Efficiency

- $t_{prop} = max propagation delay between 2 nodes in LAN$
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

MAC - Random Access Protocols: CSMA Collision Exercise

Consider the figure below, which shows the arrival of 7 messages for transmission at different multiple access wireless nodes at times t = <0.3, 0.4, 1.4, 2.3, 2.7, 3.2, 4.3> and each transmission requires exactly one time unit.

Suppose all nodes are implementing Carrier Sense Multiple Access (CSMA), but without collision detection. Suppose that the time from when a message transmission begins until it is beginning to be received at other nodes is 0.4 time units. (Thus if a node begins transmitting a message at t=2.0 and transmits that message until t=3.0, then any node performing carrier sensing in the interval [2.4, 3.4] will sense the channel busy.)

Q1: Which messages are transmitted?

Q2: Which messages are successfully transmitted?

MAC - Random Access Protocols: CSMA/CD Collision Exercise

Consider the figure below, which shows the arrival of 7 messages for transmission at different multiple access wireless nodes at times t = <0.3, 0.4, 1.4, 2.3, 2.7, 3.2, 4.3> and each transmission requires exactly one time unit.

Suppose all nodes are implementing CSMA/CD. Suppose that the time from when a message transmission begins until it is beginning to be received at other nodes is 0.4 time units. (Thus if a node begins transmitting a message at t=2.0 and transmits that message until t=3.0, then any node performing carrier sensing in the interval [2.4, 3.4] will sense the channel busy.)

Q1: Which messages are transmitted?

Q2: Which messages are successfully transmitted?

Computer Networks: Link Layer

Roadmap

- Introduction
- Error Control
- Medium Access Control (MAC)
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches
 - VLANs

MAC addresses

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
 - e.g.: 128.119.40.136
- MAC (or LAN or physical or Ethernet) address:
 - function: used "locally" to get frame from one interface to another physically-connected interface (same subnet, in IP-addressing sense)
 - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "numeral" represents 4 bits)

MAC addresses

each interface on LAN

- has unique 48-bit MAC address
- has a locally unique 32-bit IP address (as we will see)

MAC addresses

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address: portability
 - can move interface from one LAN to another
 - recall IP address not portable: depends on IP subnet to which node is attached

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

 IP/MAC address mappings for some LAN nodes:

< IP address; MAC address; TTL>

 TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP protocol in action

example: A wants to send datagram to B

B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

UNIVERSITÉ PARIS DAUPHINE - PSL

Place du Maréchal de Lattre de Tassigny – 75775 Paris cedex 16