Bayesian Networks

Lecture Outline

- 1. Introduction to Bayesian networks
- 2. How to use Bayesian network
- 3. How to construct Bayesian network

Bayesian networks

- A Bayesian network is a graph with the following:
 - ▶ I. Nodes: Set of random variables
 - 2. Directed links: The intuitive meaning of a link from node X to node Y is that X has a direct influence on Y
 - > 3. Each node has a conditional probability table (CPT) that quantifies the effects that the parent have on the node.
 - ▶ 4. The graph has no directed cycles (DAG)

Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- ▶ Toothache and Catch are conditionally independent given Cavity

Burglar alarm at home

- Turns on if a burglary has occurred.
- Fairly reliable at detecting a burglary but responds at times, to minor earthquakes as well.
- Two neighbors John and Mary may call the police on hearing alarm.
 - In John always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and calls then, too.
 - Mary likes loud music and sometimes misses the alarm altogether

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can turn the alarm on
 - An earthquake can turn the alarm on
 - The alarm can cause Mary to call
 - ▶ The alarm can cause John to call
- Deal with questions like: neighbor John calls, but neighbor Mary doesn't call. Is there a burglar?

Example contd.

Full joint probability distribution

The full joint probability distribution is defined as the product of the local conditional distributions:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i / X_1, ..., X_{i-1})$$
 (chain rule)
= $\pi_{i=1}^n P(X_i / Parents(X_i))$ (local conditional)

Full joint probability distribution

Probability of the event that the alarm has sounded but neither a burglary nor an earthquake has occurred, and both Mary and John call:

$$P(j \land m \land a \land \neg b \land \neg e)$$
= $P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$
= 0.9*0.70*0.01*0.999*0.998
= 0.00063

Answering a Query: Inference by Enumeration

- Suppose we want to find P(X/e), where X is a set of query variables and e is the evidence we have
 - E.g. Probability that burglary occurred given both John and Mary had called. le. $P(B=true \mid J=true, M=true)$ written as $P(b \mid j, m)$ for short.

$$P(X/e) = \frac{p(X,e)}{P(e)} = \frac{\sum_{y} P(X,e,y)}{\sum_{x} \sum_{y} P(x,e,y)} = \alpha \sum_{y} P(X,e,y)$$

Example: Burglar Alarm

• Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)

• Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

```
P(John | Alarm, Burglary) = P(John | Alarm)
```

• Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?

```
P(Mary | Alarm, John) = P(Mary | Alarm)
```


• Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

```
P(John | Alarm, Burglary) = P(John | Alarm)
```

• Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?

```
P(Mary | Alarm, John) = P(Mary | Alarm)
```

• Suppose the alarm went off. Does knowing whether there was an earthquake change the probability of burglary?

```
P(Burglary | Alarm, Earthquake) != P(Burglary | Alarm)
```


• Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

```
P(John | Alarm, Burglary) = P(John | Alarm)
```

• Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?

```
P(Mary | Alarm, John) = P(Mary | Alarm)
```

• Suppose the alarm went off. Does knowing whether there was an earthquake change the probability of burglary?

```
P(Burglary | Alarm, Earthquake) != P(Burglary | Alarm)
```

• Suppose there was a burglary. Does knowing whether John called change the probability that the alarm went off?

```
P(Alarm | Burglary, John) != P(Alarm | Burglary)
```


- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents

- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
- John and Mary are conditionally independent of each other given Alarm
 - Siblings are conditionally independent of each other given parents

- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
- John and Mary are conditionally independent of each other given Alarm
 - Siblings are conditionally independent of each other given parents
- Burglary and Earthquake are *not* conditionally independent of each other given Alarm
 - Parents are not conditionally independent given children

Conditional independence

Common cause

Y: Project due

X: Newsgroup busy

Z: Lab full

- Are X and Z independent?
 - No
- Are they conditionally independent given Y?
 - Yes

Common effect

X: Raining

Z: Ballgame

Y: Traffic

- Are X and Z independent?
 - Yes
- Are they conditionally independent given Y?
 - No

A more realistic Bayes Network: Car diagnosis

- Initial observation: car won't start
- Orange: "broken, so fix it" nodes
- Green: testable evidence
- Gray: "hidden variables" to ensure sparse structure, reduce parameteres

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- ▶ I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, I + I + 4 + 2 + 2 = 10 numbers (vs. $2^5 I = 31$)

Constructing Bayesian networks

- I. Choose the set of relevant variables X that describe the domain
- 2. Choose an ordering for the variables (important step)
 - Any ordering will work but when cause precedes effect,
 the network becomes more compact
- ▶ 3. While there are variables left:
 - a) Pick a variable X_i and add a node for it
 - b) Set Parents(X_i) to some minimal set of existing nodes such that the conditional independence property is satisfied
 - c) Define the conditional probability table for X_i.

▶ Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
?

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
?

No

$$P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)?$$

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
?

No

$$P(A \mid J, M) = P(A \mid J)$$
? $P(A \mid J, M) = P(A)$? **No**
 $P(B \mid A, J, M) = P(B \mid A)$?
 $P(B \mid A, J, M) = P(B)$?

Suppose we choose the ordering M, J, A, B, E

MaryCalls

Alarm

JohnCalls

Earthquake

Suppose we choose the ordering M, J, A, B, E

Earthquake

No

$$P(A \mid J, M) = P(A \mid J)$$
? $P(A \mid J, M) = P(A)$? No
 $P(B \mid A, J, M) = P(B \mid A)$? Yes
 $P(B \mid A, J, M) = P(B)$? No
 $P(E \mid B, A, J, M) = P(E \mid A)$? No
 $P(E \mid B, A, J, M) = P(E \mid A, B)$? Yes

Example contd.

- ▶ This network is less compact: I + 2 + 4 + 2 + 4 = I3 numbers needed
- Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!)
- A causal model (links from cause to effects) usually is more compact than a diagnostic (links from effects to causes) model.
- So it's better to order variables as, root causes first, then variables they
- influence and so on...

Another example

• Variables: Cloudy, Sprinkler, Rain, WetGrass

Another example

• Given that the grass is wet, what is the probability that it has rained?

 $P(r \mid w)$

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution

Generally easy for domain experts to construct

