Optimalan izbor parametara viševeličinskog sustava

U ovoj vježbi će se za zadani viševeličinski sustav odrediti optimalni parametri, tako da zadana ograničenja budu zadovoljena. Sama optimizacija **maksimizira zadanu funkciju cilja x**₀, i kao rezultat daje **optimalne ulazne pobude** $u_1=f(\alpha)$ i $u_2=f(\beta)$ koje ostvaruju zadanu funkciju cilja. Izlazi ustaljenog stanja ovise isključivo o amplitudama ulaznih signala, gdje su ulazi oblika su odskočne funkcije ($u_1=f(\alpha)$ i $u_2=f(\beta)$), pri čemu α i β predstavljaju pojačanje step pobude.

Za primjer sustava koji je opisan **prijenosnom matricom** promatramo ustaljena stanja (ne i tranzitni dio)

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \lim_{s \to 0} \begin{bmatrix} \frac{2}{s+3} & \frac{4}{s+5} \\ \frac{1}{s+2} & \frac{3}{s+7} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

gdje je zadano da se maksimizira funkcija cilja $x_0=0.7$ $\alpha+0.8$ β , uz zadana ograničenja $y_1\le 6$, $y_2\le 4$ za vrijednosti izlaza. Ukratko izlazi moraju biti manji od zadanih ograničenja, što je redovito ograničenje i realnih sustava (zasićenje). U nastavku su zadana i ograničenja pojačanja ulaza $-7\le \alpha \le 10$, $-2\le \beta \le 8$ što također predstavlja ograničenje realnih sustava.

Podsjetimo se kako se određuje ustaljeno stanje, u beskonačnosti (u ustaljenom stanju) t teži prema ∞, odnosno s teži prema 0, tako da se prijenosna matrica može modificirati tako da opisuju ustaljena stanja na način:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{ustaljeno} = \lim_{s \to 0} \begin{bmatrix} \frac{2}{3} & \frac{4}{5} \\ \frac{1}{2} & \frac{3}{7} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Ovaj sustav se rastavlja se u dvije jednadžbe (podsjetimo se početnih ograničenja ustaljenog stanja $y_1 \le 6$ i $y_2 \le 4$)

$$y_1 = \frac{2}{3}\alpha + \frac{4}{5}\beta \le 6$$
$$y_2 = \frac{1}{2}\alpha + \frac{3}{7}\beta \le 4$$

Ostala ograničenja pojačanja ulaza (-7 \le α \le 10, -2 \le β \le 8) se rastavljaju na 4 nejednadžbe sa ograničenjima tipa \le .

Primjer ograničenje tipa $-7 \le \alpha$ se konvertira u ograničenje $-\alpha \le 7$ (α i β moraju biti sa lijeve strane nejednakosti). Slijedom navedenoga, dobiju se četiri nejednadžbe:

$$\alpha \le 10$$

 $-\alpha \leq 7$

$$\beta \leq 8$$

$$-\beta \leq 2$$

Optimalan rezultat se dobiva online alatom http://www.phpsimplex.com/simplex/simplex.htm?l=en (ili bilo kojim drugim alatom koji rješava simpleks)

U alat se unose sljedeći parametri: 2 decizijske varijable i 6 ograničenja (slika)

- Method: Simplex / Two phases
- How many decison variables are the problem : 2 (α i β)
- How many constraints : 6 (dobiveno iz 6 nejednadžbi)

	Method: Simplex / Two Phases ~
How man	y decision variables are the problem? 2
	How many constraints? 6
	Continue

U idućoj stranici se unose ograničenja (Constraints) i funkcija cilja (Function), cilj optimizacije (Maximize). Funkcija cilja je $x_0=0.7 \alpha + 0.8 \beta$ što se unosi u Fucntion red

Obratite pozornost da se ograničenja tipa $-\beta \le 2$ pišu kao $0 \cdot \alpha - 1 \cdot \beta \le 2$, te se u alat unosi 0 za X1 varijablu, -1 za X2 varijablu i 2 za \le ograničenje (posljednji red unosa)

Function:	0.7	X1 +	0.8	X2
	Cor	nstraints		
2/3	$X_1 + 4/5$		X2 ≤ ∨ 6	
1/2	$X_1 + 3/7$		X2 \le \sigma 4	
1	X1 + 0		X2 ≤ ∨ 10	
-1	X1 + 0		X2 ≤ ✓ 7	
0	X1 + 1		X2 ≤ ~ 8	
0	X1 + -1		X2 ≤ ∨ 2	
	Xı	$X_2 \ge 0$		
	_	, $X_2 \ge 0$	1	

Što je izvedeno iz zadanih 6 nejednadžbi

$$\frac{2}{3}\alpha + \frac{4}{5}\beta \leq 6$$

$$\frac{1}{2}\alpha + \frac{3}{7}\beta \le 4$$

$$\alpha \leq 10$$

$$-\alpha \leq 7$$

$$\beta \leq 8$$

$$-\beta \leq 2$$

U sljedećih nekoliko koraka se dolazi do rješenja, za ovaj konkretan slučaj u 3 koraka.

Korak1

Tableau 1			0.7	0.8	0	0	0	0	0	0
Base	Сь	P ₀	P ₁	\mathbf{P}_2	P 3	P4	P ₅	P 6	P 7	Ps
P 3	0	6	0.66666666666667	0.8	1	0	0	0	0	0
P4	0	4	0.5	0.42857142857143	0	1	0	0	0	0
P5	0	10	1	0	0	0	1	0	0	0
P6	0	7	-1	0	0	0	0	1	0	0
P 7	0	8	0	1	0	0	0	0	1	0
Ps	0	2	0	-1	0	0	0	0	0	1
Z		0	-0.7	-0.8	0	0	0	0	0	0

Korak 2

Tableau 2			0.7	0.8	0	0	0	0	0	0
Base	Cb	P 0	P 1	P 2	P3	P4	Ps	P ₆	P 7	Ps
P 2	0.8	7.5	0.83333333333333	1	1.25	0	0	0	0	0
P ₄	0	0.78571428571429	0.14285714285714	0	-0.53571428571429	1	0	0	0	0
P5	0	10	1	0	0	0	1	0	0	0
P6	0	7	-1	0	0	0	0	1	0	0
P 7	0	0.5	-0.83333333333333	0	-1.25	0	0	0	1	0
Ps	0	9.5	0.83333333333333	0	1.25	0	0	0	0	1
Z		6	-0.033333333333333	0	1	0	0	0	0	0

Korak 3

Tableau 3			0.7	0.8	0	0	0	0	0	0
Base	Сь	P ₀	P 1	\mathbf{P}_2	P 3	P4	P5	P6	P7	P
P ₂	0.8	2.9166666666667	βo	1	4.375	-5.83333333333333	0	0	0	0
P 1	0.7	(5.5) a	1	0	-3.75	7	0	0	0	0
P5	0	4.5	0	0	3.75	-7	1	0	0	0
P6	0	12.5	0	0	-3.75	7	0	1	0	0
P 7	0	5.0833333333333	0	0	-4.375	5.8333333333333	0	0	1	0
Ps	0	4.9166666666667	0	0	4.375	-5.8333333333333	0	0	0	1
Z		6.18333333333333	χω	0	0.875	0.233333333333333	0	0	0	0

Optimalno rješenje je za α β =5.5 i β =2.91, što u konačnici daje i optimalan x_0 =6.183 Klikom na Solve using graphical method se crta prostor rješenja ovog sustava.

Područje pod ograničenjima je zatamnjeno (zeleno). Funkcija cilja je podebljani crveni pravac, a crvena točka predstavlja **optimalno** rješenje. Isprekidana linija određuje optimalne vrijednosti α (x os) i β (y os).

Primijetite kako se funkcija cilja maksimizira, da se točka u kojoj je ostvaren maksimum nalazi na rubu zatamnjenog / zelenog područja. Rješenje se nalazi u prvom kvadrantu, kako se očekuje da su α i β pozitivni.

Optimalno rezanje materijala

U nastavku će se metodom dualnog simpleksa odrediti optimalan odabir rezanih oblika, s ciljem da se ostvari optimum uz zadana ograničenja. Jedan primjer iz stvarnog života bi bio rezanje lima iz limenih listova poznatih dimenzija s ciljem izrade posuda različitih dimenzija:

- Oblik A Konzerva za grašak, dimenzija kvadrat 6 x 6 + 2 kruga radijusa 2 , površina 61.13
- Oblik B limenka napitka, kvadrat dimenzija 8 x 8, površina 64
- Oblik C limenka paštete, krug radijusa 3, površina 28.27

Dostupan je neograničen broj limova dimenzija 16 x 16

Prvi zadatak je pripremiti nekoliko planova rezanja lima (najmanje 4 koja ucrtavate u predložak dobiven sa laboratorijskom vježbom) tako da se svi traženi oblici upotrijebe bar na jednom od planova rezanja. Prihvatljivo je i optimalno rješenje ako neki plan rezanja uopće ne treba rezati (što znači da je taj plan rezanja bio beskoristan).

Ako je zadano da se mora napraviti najmanje **4 oblika A**, **5 oblika B** i **7 oblika C**, moramo pripremiti nekoliko planova rezanja i izračunati površinu neupotrjebljenog materijala od svakog plana rezanja.

Plan rezanja 1, 1 oblik A i 2 oblika B, iskorištena površina 189.13, ostatak 66.86

Plan rezanja 2, 1 oblik A i 3 oblika C, iskorištena površina 145.95, ostatak 110.04

Plan rezanja 3, 2 oblika B i 2 oblika C, iskorištena površina 184.54 ostatak 71.45

Plan rezanja 4, 2 oblika A i 1 oblik C, iskorištena površina 150.53 ostatak 105.46

Planovi rezanja se unose u tablicu koji sadrže broj oblika na planu rezanja, iskorištenu površinu i ostatak svakog plana rezanja.

	Površina	Plan 1	Plan 2	Plan3	Plan4
		X1	X2	Х3	X4
Oblik 1	61.13	1	1	0	2
Oblik 2	64	2	0	2	0
Oblik 3	28.27	0	3	2	1
Ostatak		66.86	110.04	71.45	105.46

Možemo sastaviti funkciju izračuna ostatka (škarta) prema posljednjem redu tablice.

$$X_0 = 66.86x_1 + 110.04x_2 + 71.45x_3 + 105.46x_4$$

U ovom zadatku se minimizira količina ostatka, tako da je cilj optimizacije minimizirati funkciju cilja uz zadana minimalna ograničenja koliko kojih oblika se mora ostvariti.

Uz zadana ograničenja 4 oblika A, 5 oblika B i 7 oblika C možemo pisati

$$1x_1 + 1x_2 + 0x_3 + 2x_4 \le 4$$

$$2x_1 + 0x_2 + 2x_3 + 0x_4 \le 5$$

$$0x_1 + 3x_2 + 2x_3 + 1x_4 \le 7$$

Na temelju prethodnih jednadžbi gradi se simpleks tablica sa zadanim uvjetima.

Prvo se unose zadana ograničenja koliko kojih oblika se mora ostvariti

$$g_0 = 4y_1 + 5y_2 + 7y_3$$

A potom ostala ograničenja koja se dobivaju iz vertikala prethodne tablice, za svaki od planova rezanja:

$$y_1 + 2y_2 \le 66.86$$
$$1y_1 + 3y_3 \le 110.04$$
$$2y_2 + 2y_3 \le 71.45$$
$$2y_1 + 1y_3 \le 105.46$$

Simpleks tablica sada ima oblik:

	g 0	y 1	y ₂	y 3	S ₁	S ₂	S ₃	S ₄	Rješenje:
g_0	1	-4	-5	-7	0	0	0	0	0
S ₁	0	1	2	0	1	0	0	0	66.86
S ₂	0	1	0	3	0	1	0	0	110.04
S ₃	0	0	2	2	0	0	1	0	71.45
S ₄	0	2	0	1	0	0	0	1	105.46

Broj ograničenja je 4, broj decizijskih varijabli je 3

U program koji smo koristili na početku vježbe unosimo funkciju $\mathbf{f} = 4\mathbf{x}_1 + 5\mathbf{x}_2 + 7\mathbf{x}_3$, potom unosimo sva ostala ograničenja

Pritiskom na **Continue** dolazim do rješenja (u 4 koraka). Promatraju se vrijednosti u posljednjem redu tablice u stupcima P4 P5 P6 i P7, zaokruženo u slici.

Tableau 4			4	5	7	0	0	0	0
Base	Cb	P ₀	Pı	\mathbf{p}_2	P 3	P4	P5	P6	P 7
P ₂	5	12.799	0	1	0	0.2	-0.2	0.3	0
P 1	4	41.262	1	0	0	0.6	0.4	-0.6	0
Рз	7	22.926	0	0	1	-0.2	0.2	0.2	0
P7	0	0.009999999999999	0	0	0	-1	-1	1	1
Z		389.525	0	0	0	(2)	(2)	(0.5)	0

Što znači da je optimalno rješenje upotreba **2 x plana rezanja 1, 2 x plana rezanja 2** i **0.5x plana rezanja 3**. Primijetite da plan rezanja 4 nije upotrjebljen. U konačnici na ovaj način dobivamo ukupno 4 oblika A, 5 oblika B i 7 oblika C što je u zadatku i traženo!

Ukupno bi za izradu traženih oblika bilo utrošeno 4.5 (5) ploča, ukupni škart iznosi 389.52 jedinca, što je ako se uračuna 4.5 ploča površine 1152 iznosi 33.81 %.

U konačnici broj ostvarenih oblika može biti i veći nego što je zadano, **ali ne i manji od minimalno zadanih.** Sa funkcijom cilja možemo birati kako će se kidanje optimizirati. U ovom slučaju je to bilo minimiziranje škarta, dok u drugim slučajevima to može biti i maksimiziranje dobiti (ako svaki oblik ima svoju cijenu) ili kao dodatni parametar možemo uvesti vrijeme upotrebe stroja za kidanje koje treba minimizirati.