Podstawy systemów operacyjnych

Wykład 3

Zarządzanie dyskiem

Formatowanie dysku HDD

- Nowy dysk magnetyczny tarcze wykonane z materiału magnetycznego.
- Przed rozpoczęciem użytkowania dysku należy podzielić go na sektory, które sterownik dysku będzie potrafił zapisywać i odczytywać.
- Proces ten nazywa się formatowaniem niskopoziomowym lub fizycznym.
- Formatowanie polega na umieszczeniu specjalnej struktury danych w miejscach na dysku odpowiadających sektorom.
- Struktura danych sektora składa się z nagłówka, sekcji danych (najczęściej 512B) i zakończenia.

Nagłówek sektora

- Nagłówek i zakończenie sektora są używane przez sterownik dysku.
- Zawiera informacje:
 - nr sektora
 - kod korygujący (ang. ECC error-correcting code)
- Podczas zapisu danych sterownik oblicza i uaktualnia kod ECC na podstawie obszaru danych.
- Przy czytaniu sektora, kod korygujący jest obliczany i porównywany z zapisanym. Jeśli wartości się nie zgadzają, to oznacza, że sektor uległ uszkodzeniu.

Formatowanie logiczne

- Aby użyć dysk do przechowywania plików należy podzielić go na partycje i utworzyć na nim system plików.
- Formatowanie logiczne tworzenie systemu plików – polega na zapisaniu wstępnych struktur danych systemu plików, np. mapa wolnych i przydzielonych obszarów (np. tablica FAT) oraz początkowy, pusty katalog.

Surowy dysk

- Liniowa tablica bloków logicznych bez żadnych struktur danych systemu plików.
- Surowe operacje wejścia-wyjścia operacje przeprowadzane na surowym dysku.
- Z operacji tych korzystają niektóre *bazy danych*, gdyż pozwalają one na ścisłe kontrolowanie miejsca przechowywania na dysku poszczególnych rekordów.
- **Surowe operacje wejścia wyjścia** wykonywane są *z pominięciem* wszelkich usług systemu plików, takich jak:
 - buforów podręcznych,
 - pobierania z wyprzedzeniem,
 - blokowanie pliku,
 - przydział miejsca,
 - nazwy plików i katalogi.

Blok rozruchowy

- W czasie uruchamiania komputera musi zostać wykonany jakiś program wstępny – program rozruchowy (bootstrap).
- Program rozruchowy ustawia stan początkowy wszystkich elementów systemu – od rejestru systemu po sterowniki urządzeń i zawartość pamięci głównej.
- W większości komputerów, program rozruchowy jest przechowywany w pamięci ROM (*Read Only Memory*) – wygodne rozwiązanie – nie wymaga żadnych zabiegów wstępnych, nie zmienia położenia i nie zostanie zainfekowany.
- **Kłopot?** *przy zmianie programu* rozruchowego należy wymienić układ scalony.

Blok rozruchowy

- Zastąpienie programu bootstrap przez mały ładowacz programu rozruchowego (bootstrap loader).
- Pełny program rozruchowy można łatwo wymienić.
- Program rozruchowy umieszczany jest na dysku w strefie nazwanej blokami rozruchowymi w ustalonym miejscu.
- Dysk posiadający partycję rozruchową nazywa się dyskiem rozruchowym lub systemowym.

Zarządzanie obszarem wymiany

- Zarządzanie obszarem wymiany (swap space management) – jest niskopoziomowym zadaniem systemu operacyjnego.
- Pamięć wirtualna korzysta z przestrzeni dyskowej jako z rozszerzenia pamięci głównej.
- Podstawowym celem w projektowaniu obszaru wymiany jest umożliwienie najlepszej przepustowości systemowej pamięci wirtualnej.

Wykorzystanie obszaru wymiany

- Obszar wymiany jest wykorzystywany na wiele sposobów przez różne systemy operacyjne, zależnie od zaimplementowanych algorytmów zarządzania pamięcią.
- Obszar wymiany może zostać wykorzystany dp:
 - przechowywania całych procesów, łącznie z ich kodem i segmentami danych;
 - przechowywania stron (dla systemów ze stronicowaniem);
- Rozmiar obszaru wymiany uzależniony jest od rozmiaru pamięci fizycznej, rozmiaru pamięci wirtualnej i zaimplementowanych metod obsługi pamięci.

Położenie obszaru wymiany

- Obszar wymiany może rezydować w dwóch miejscach:
 - może znajdować się w obszarze zwykłego systemu plików,
 - może znajdować się na osobnej partycji
- Jeśli obszar wymiany jest jednym wielkim plikiem w obrębie systemu plików, to trzeba użyć zwykłych procedur systemu plików. Podejście niezbyt wydajne.
- Na osobnej partycji bez żadnego systemu plików i bez struktury katalogów. Do tego obszaru wykorzystuje się osobnego zarządcę pamięci obszaru wymiany. Nie optymalizuje on zużycia pamięci lecz używa algorytmów zoptymalizowanych ze względu na szybkość.

Przykładowe systemy plików

- ext2,
- ext3
- ext4
- FAT
- NTFS
- reiserfs
- reiser 4

RAID

- » RAID (ang. Redundand Array of Independent Disks) to sposób połączenia dwóch lub większej ilości dysków twardych w jedną macierz, która zapewnia dodatkową funkcjonalność w porównaniu z oddzielnie podłączonymi pojedynczymi dyskami twardymi.
- » Macierze RAID są powszechnie stosowane w rozwiązaniach serwerowych, dzięki nim uzyskujemy:
 - > odporność na awarie,
 - > zwiększenie prędkości transmisji w porównaniu z pojedynczym dyskiem,
 - > zależnie od rodzaju pamięć widoczna jako jedno urządzenie.

RAID c.d

- » Macierze potrafią pracować zarówno równolegle jak też niezależnie.
- » W systemie wielodyskowym istnieje duża różnorodność organizacji danych zaś stabilność systemu można zwiększyć poprzez nadmiarowość.
- » Macierz RAID składa się z siedmiu poziomów ponumerowanych od zera do sześć. Poziomy te nie sugerują relacji hierarchicznej ale symbolizują zróżnicowane rodzaje architektury projektowej:
 - 1. RAID to zestaw napędów dysków fizycznych, które system operacyjny traktuje jako jeden napęd logiczny
 - 2. Dane są przesyłane do poszczególnych napędów macierzy.
 - 3. Nadmiarowa pojemność dysku jest wykorzystywana do przechowywania informacji o parzystości, co gwarantuje możliwość odzyskania danych na wypadek awarii dysku.
- » Poszczególne poziomy RAID różnią się szczegółami 2 i 3 właściwości.

Tabela 11.4. Poziomy macierzy RAID

Kategoria	Poziom	Opis	Wymagane dyski	Dostępność danych	Duża przepustowość operacji we/wy	Niewielki współczynnik żądań we/wy
Paskowanie	0	Bez nadmiarowości	N	Niższa niż w przypadku jednego dysku	Bardzo duża	Bardzo wysoki zarówno dla odczytu, jak i zapisu
Kopiowanie lustrzane	1	Kopia lustrzana	2N, 3N itd.	Wyższa niż w RAID 2, 3, 4 lub 5, niższa niż w RAID 6	Wyższa niż odczyt z jednego dysku, podobna przy zapisie na jednym dysku	Do dwóch razy wyższy dla odczytu z pojedynczego dysku; podobny dla zapisu
Dostęp równoległy	2	Nadmiarowość z wykorzystaniem kodu Hamminga	N+m	O wiele wyższa niż w jednym dysku, wyższa niż RAID 3, 4 lub 5	Najwyższa ze wszystkich wymienionych alternatyw	W przybliżeniu dwukrotnie wyższy od jednego dysku
	3	Parzystość z przeplotem bitów	N + 1	O wiele wyższa niż w jednym dysku, porównywalna z RAID 2, 4 lub 5	Najwyższa ze wszystkich wymienionych alternatyw	W przybliżeniu dwukrotnie wyższy od jednego dysku
Dostęp niezależny	4	Parzystość z przeplotem bloków	N + 1	O wiele wyższa niż w jednym dysku, porównywalna z RAID 2, 3 lub 5	Podobna do RAID 0 dla odczytu, znacząco niższa dla zapisu na jednym dysku	Podobny do RAID 0 dla odczytu, znacząco niższy dla zapisu na jednym dysku
	5	Parzystość rozproszona z przeplotem bloków	N + 1	O wiele wyższa niż w jednym dysku, porównywalna z RAID 2, 3 lub 4	Podobna do RAID 0 dla odczytu, mniejsza niż w jednym dysku dla zapisu	Podobny do RAID 0 dla odczytu, ogólnie niższy niż w jednym dysku dla zapisu
	6	Podwójnie rozproszona parzystość z przeplotem bloków	N+2	Najwyższa ze wszystkich wymienionych alternatyw	Podobna do RAID 0 dla odczytu, niższa niż RAID 5 dla zapisu	Podobny do RAID 0 dla odczytu, znacząco niższy niż RAID 5 dla zapisu

(a) RAID 0 (bez nadmiarowości)

(b) RAID 1 (kopia lustrzana)

(c) RAID 2 (nadmiarowość z wykorzystaniem kodu Hamminga)

(g) RAID 6 (podwójna nadmiarowość)