

Semidefinite Programming: The Key to Semi-Supervised Support Vector Machines

Joint work with Veronica Piccialli* and Antonio M. Sudoso

Tiene

Jan Schwiddessen, University of Klagenfurt

Doctoral Seminar Mathematics

January 17, 2024

Input

▶ training set $\mathcal{T} = \{(x_i, y_i), i = 1, ..., n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$

Input

ightharpoonup training set $\mathcal{T} = \{(x_i, y_i), i = 1, \dots, n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$

Goal/Output

▶ separating hyperplane $w^T x + b = 0$

Input

ightharpoonup training set $\mathcal{T} = \{(x_i, y_i), i = 1, \dots, n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$

- ▶ separating hyperplane $w^Tx + b = 0$
- ▶ decision function $y(x) = sign(w^T x + b)$ for new data

Input

lacktriangle training set $\mathcal{T} = \{(x_i, y_i), i = 1, \dots, n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$

- ▶ separating hyperplane $w^Tx + b = 0$
- ▶ decision function $y(x) = sign(w^Tx + b)$ for new data

Input

ightharpoonup training set $\mathcal{T} = \{(x_i, y_i), i = 1, \dots, n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$

- ▶ separating hyperplane $w^Tx + b = 0$ (maximum margin)
- ▶ decision function $y(x) = sign(w^T x + b)$ for new data

Input

▶ training set $\mathcal{T} = \{(x_i, y_i), i = 1, \dots, n, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}$

- ▶ separating hyperplane $w^Tx + b = 0$ (maximum margin)
- ▶ decision function $y(x) = sign(w^T x + b)$ for new data

Hard margin

Maximum hard margin hyperplane

$$\begin{aligned} & \min_{w,b} & & \frac{1}{2} \|w\|_2^2 \\ & \text{s.t.} & & y_i [w^\top x_i + b] \geq 1, \ i = 1, \dots, n \end{aligned}$$

Hard margin

Maximum hard margin hyperplane

$$\begin{aligned} & \min_{w,b} & & \frac{1}{2} \|w\|_2^2 \\ & \text{s. t.} & & y_i [w^\top x_i + b] \geq 1, \ i = 1, \dots, n \end{aligned}$$

Question: What if data is **not** linearly separable?

- ► data 'almost' linearly separable ⇒ allow misclassifications
- \blacktriangleright introduce slack variables ξ_i and add penalty term to objective:

- ▶ data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\min_{\substack{w,b,\xi \\ s.t.}} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \xi_i
s.t. y_i [w^\top x_i + b] \ge 1 - \xi_i, i = 1, ..., n
\xi_i \ge 0, i = 1, ..., n$$

- ▶ data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\min_{\substack{w,b,\xi \\ \text{s.t.}}} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \xi_i$$
s.t. $y_i [w^\top x_i + b] \ge 1 - \xi_i, i = 1, \dots, n$

$$\xi_i \ge 0, i = 1, \dots, n$$

- ▶ data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\min_{\substack{w,b,\xi \\ \text{s.t.}}} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \xi_i$$
s.t. $y_i[w^\top x_i + b] \ge 1 - \xi_i, i = 1, \dots, n$

$$\xi_i \ge 0, i = 1, \dots, n$$

- ▶ data 'almost' linearly separable ⇒ allow misclassifications
- ▶ introduce slack variables ξ_i and add penalty term to objective:

$$\begin{aligned} & \min_{w,b,\xi} & & \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \xi_i \\ & \text{s.t.} & & y_i [w^\top x_i + b] \ge 1 - \xi_i, \ i = 1, \dots, n \\ & & \xi_i \ge 0, \ i = 1, \dots, n \end{aligned}$$

Soft margin - dual problem

Wolfe dual

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \langle x_{i}, x_{j} \rangle \alpha_{i} \alpha_{j} - \sum_{i=1}^{n} \alpha_{i}$$
s. t.
$$\sum_{i=1}^{n} y_{i} \alpha_{i} = 0$$

$$0 < \alpha_{i} < C, i = 1, \dots, n$$

Soft margin - dual problem

Wolfe dual

$$\begin{aligned} & \underset{\alpha}{\min} & & \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \langle x_{i}, x_{j} \rangle \alpha_{i} \alpha_{j} - \sum_{i=1}^{n} \alpha_{i} \\ & \text{s. t.} & & \sum_{i=1}^{n} y_{i} \alpha_{i} = 0 \\ & & & 0 \leq \alpha_{i} \leq C, \ i = 1, \dots, n \end{aligned}$$

Let α^* be the optimal solution of the Wolfe dual. Then the maximum margin hyperplane (w^*, b^*) satisfies

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i.$$

Soft margin - dual problem

Wolfe dual

$$\begin{aligned} & \underset{\alpha}{\min} & & \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \langle x_{i}, x_{j} \rangle \alpha_{i} \alpha_{j} - \sum_{i=1}^{n} \alpha_{i} \\ & \text{s. t.} & & \sum_{i=1}^{n} y_{i} \alpha_{i} = 0 \\ & & 0 \leq \alpha_{i} \leq C, \ i = 1, \dots, n \end{aligned}$$

Let α^* be the optimal solution of the Wolfe dual. Then the maximum margin hyperplane (w^*, b^*) satisfies

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i.$$

Decision function

$$y(x) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \langle x_{i}, x \rangle + b^{*}\right).$$

Nonlinear SVMs: the kernel trick Boser, Guyon, Vapnik (1992)

Kernel trick

Map data into a higher-dimensional space via $\phi \colon \mathbb{R}^d \to \mathbb{R}^m, \ m \geq d$. Then find a separating hyperplane in the new space.

Nonlinear SVMs: the kernel trick Boser, Guyon, Vapnik (1992)

Kernel trick

Map data into a higher-dimensional space via $\phi \colon \mathbb{R}^d \to \mathbb{R}^m, \ m \geq d$. Then find a separating hyperplane in the new space.

- ▶ linear or polynomial kernel, radial basis function kernel, ...
- no explicit mapping into higher dimension via kernel function

$$k(x_i, x_j) := \langle \phi(x_i), \phi(x_j) \rangle$$

Nonlinear SVMs: the kernel trick Boser, Guyon, Vapnik (1992)

Kernel trick

Map data into a higher-dimensional space via $\phi \colon \mathbb{R}^d \to \mathbb{R}^m, \ m \geq d$. Then find a separating hyperplane in the new space.

- ▶ linear or polynomial kernel, radial basis function kernel, . . .
- no explicit mapping into higher dimension via kernel function

$$k(x_i,x_j) := \langle \phi(x_i),\phi(x_j) \rangle$$

separator is nonlinear in the original space

Kernel matrix

General kernel

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} k(x_{i}, x_{j}) \alpha_{i} \alpha_{j} - \sum_{i=1}^{n} \alpha_{i}$$
s. t.
$$\sum_{i=1}^{n} y_{i} \alpha_{i} = 0$$

$$0 \le \alpha_{i} \le C, i = 1, \dots, n$$

▶ kernel matrix K with entries $K_{ij} = k(x_i, x_j)$

Kernel matrix

General kernel

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} k(x_{i}, x_{j}) \alpha_{i} \alpha_{j} - \sum_{i=1}^{n} \alpha_{i}$$
s. t.
$$\sum_{i=1}^{n} y_{i} \alpha_{i} = 0$$

$$0 \le \alpha_{i} \le C, i = 1, \dots, n$$

 \blacktriangleright kernel matrix K with entries $K_{ij} = k(x_i, x_j)$

Decision function

$$y(x) = \operatorname{sign}\left(\sum_{i=1}^{n} y_i \alpha_i^* \frac{k(x_i, x)}{k(x_i, x)} + b^*\right)$$

► linear kernel inappropriate

- ► linear kernel inappropriate
- radial basis function kernel: $K_{ij} = \exp(-\gamma ||x_i x_j||^2), \ \gamma > 0$

- ▶ linear kernel inappropriate
- radial basis function kernel: $K_{ij} = \exp(-\gamma ||x_i x_j||^2), \ \gamma > 0$
- we choose C=1 and $\gamma=0.5$ here

- ▶ linear kernel inappropriate
- radial basis function kernel: $K_{ij} = \exp(-\gamma ||x_i x_j||^2), \ \gamma > 0$
- we choose C=1 and $\gamma=0.5$ here

Summary: SVMs

Properties

- robust prediction technique
- ► applicable to very large data sets
- convex quadratic problem must be solved

Summary: SVMs

Properties

- robust prediction technique
- applicable to very large data sets
- convex quadratic problem must be solved

Applications

- image processing and classification
- ▶ face detection, pattern recognition, ...
- "Support Vector Machines Applications" (Ma & Guo, 2014)

Summary: SVMs

Properties

- robust prediction technique
- applicable to very large data sets
- convex quadratic problem must be solved

Applications

- image processing and classification
- ▶ face detection, pattern recognition, ...
- "Support Vector Machines Applications" (Ma & Guo, 2014)

Supervised learning

▶ all data must be labeled . . .

Bennett & Demiriz (1998)

▶ 70% of all labels are not known (and should be predicted)!

Bennett & Demiriz (1998)

Input

- ightharpoonup n data points $x_i \in \mathbb{R}^d, \ i = 1, \dots, n$
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

Bennett & Demiriz (1998)

Input

- ightharpoonup n data points $x_i \in \mathbb{R}^d, \ i = 1, \ldots, n$
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

Assumption

All data points are centered around the origin ($\Rightarrow b = 0$).

Bennett & Demiriz (1998)

Input

- ightharpoonup n data points $x_i \in \mathbb{R}^d, \ i = 1, \dots, n$
- ▶ ℓ labeled points $\{(x_i, y_i)\}_{i=1}^{\ell}$ with $y_i \in \{-1, +1\}, i = 1, ..., \ell$
- ▶ $n \ell$ unlabeled points $\{x_i\}_{i=\ell+1}^n$

Assumption

All data points are centered around the origin ($\Rightarrow b = 0$).

Kernel-based S3VM model

$$\min_{\substack{w,\xi,y^{u} \\ \text{s.t.}}} \frac{1}{2} \|w\|_{2}^{2} + C_{I} \sum_{i=1}^{\ell} \frac{\xi_{i}^{2}}{\xi_{i}^{2}} + C_{u} \sum_{i=I+1}^{n} \frac{\xi_{i}^{2}}{\xi_{i}^{2}} \\
\text{s.t.} \quad y_{i} \ w^{\top} \phi(x_{i}) \ge 1 - \xi_{i}, \ i = 1, \dots, n \\
y_{i}^{u} := (y_{\ell+1}, \dots, y_{n}) \in \{-1, +1\}^{n-\ell}$$

When can semi-supervised learning work? Chapelle et al. (2006)

Semi-supervised smoothness assumption

If two points x_1, x_2 in a high-density region are close, then so should be the corresponding outputs y_1, y_2 .

Manifold assumption

The (high-dimensional) data lie (roughly) on a low-dimensional manifold.

Cluster assumption

If points are in the same cluster, they are likely to be of the same class.

When can semi-supervised learning work? Chapelle et al. (2006)

Semi-supervised smoothness assumption

Manifold assumption

Cluster assumption

If points are in the same cluster, they are likely to be of the same class.

When can semi-supervised learning work? Chapelle et al. (2006)

Semi-supervised smoothness assumption

Manifold assumption

Cluster assumption

If points are in the same cluster, they are likely to be of the same class.

Low density separation

The decision boundary should lie in a low-density region.

Expectation vs. reality

Expectation

The S3VM performance increases with decreasing objective values.

Expectation vs. reality

Expectation

The S3VM performance increases with decreasing objective values.

Bitter truth Chapelle et al. (2006, 2008)

- many local optima with poor performance
- often only the global optimum exhibits good performance
- degenerate local optima
- no heuristic method consistently finds the optimum

Expectation vs. reality

Expectation

The S3VM performance increases with decreasing objective values.

Bitter truth Chapelle et al. (2006, 2008)

- many local optima with poor performance
- often only the global optimum exhibits good performance
- degenerate local optima
- no heuristic method consistently finds the optimum

Goal: exact approach for S3VMs!

Reformulation of S3VM model with fewer variables

Notation

- ▶ kernel matrix $K^* \succeq 0$ with $K_{ij}^* = k(x_i, x_j) \coloneqq \langle \phi(x_i), \phi(x_j) \rangle$
- ▶ diagonal matrix D with $D_{ii} = \begin{cases} \frac{1}{2C_l}, & \text{if } i \in \{1, \dots, \ell\} \\ \frac{1}{2C_u}, & \text{if } i \in \{\ell+1, \dots, n\} \end{cases}$
- $K := K^* + D > 0$

Reformulation of S3VM model with fewer variables

Notation

- lacktriangle kernel matrix $K^* \succeq 0$ with $K^*_{ij} = k(x_i, x_j) \coloneqq \langle \phi(x_i), \phi(x_j) \rangle$
- ▶ diagonal matrix D with $D_{ii} = \begin{cases} \frac{1}{2C_l}, & \text{if } i \in \{1, \dots, \ell\} \\ \frac{1}{2C_u}, & \text{if } i \in \{\ell+1, \dots, n\} \end{cases}$
- $K := K^* + D > 0$

Reformulation as non-convex QCQP Bai & Yan (2016)

$$\begin{aligned} & \min & & \frac{1}{2} v^\top K^{-1} v \\ & \text{s.t.} & & y_i v_i \geq 1, \ i = 1, \dots, \ell \\ & & v_i^2 \geq 1, \ i = \ell + 1, \dots, n \\ & & v \in \mathbb{R}^n \end{aligned}$$

Reformulation of S3VM model with fewer variables

Notation

- ▶ kernel matrix $K^* \succeq 0$ with $K_{ij}^* = k(x_i, x_j) \coloneqq \langle \phi(x_i), \phi(x_j) \rangle$
- $ightharpoonup K := K^* + D > 0$

Reformulation as non-convex QCQP Bai & Yan (2016)

$$\begin{aligned} & \min \quad \frac{1}{2} v^{\top} K^{-1} v \\ & \text{s.t.} \quad y_i v_i \geq 1, \quad i = 1, \dots, \ell \\ & \quad v_i^2 \geq 1, \quad i = \ell + 1, \dots, n \\ & \quad v \in \mathbb{R}^n \end{aligned}$$

- quadratic programming problem in continuous variables
- convex objective function
- ► nonconvex feasible set
- **bound constraints**: $y_i v_i \ge 1$ means either $v_i \le -1$ or $v_i \ge 1$

Balancing constraint

Chapelle & Zien (2005): balancing constraint for linear kernel

$$\frac{1}{n-\ell}\sum_{i=\ell+1}^n \operatorname{sign}(w^\top x_i) = \frac{1}{\ell}\sum_{i=1}^\ell y_i$$

- no degenerate solutions (all unlab. data points in one class)
- enhances performance and robustness

Balancing constraint

Chapelle & Zien (2005): balancing constraint for linear kernel

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^n \operatorname{sign}(w^\top x_i) = \frac{1}{\ell} \sum_{i=1}^\ell y_i$$

- ▶ no degenerate solutions (all unlab. data points in one class)
- enhances performance and robustness
- difficult to handle explicitly

Balancing constraint

Chapelle & Zien (2005): balancing constraint for linear kernel

$$\frac{1}{n-\ell}\sum_{i=\ell+1}^n \operatorname{sign}(w^\top x_i) = \frac{1}{\ell}\sum_{i=1}^\ell y_i$$

- ▶ no degenerate solutions (all unlab. data points in one class)
- enhances performance and robustness
- difficult to handle explicitly

We use the following "relaxation" instead:

Soft-balancing constraint

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} v_{i} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_{i}$$

Illustration

(c) optimal S3VM solution

(b) labeled and unlabeled data points

(d) with balancing constraint

Reformulation as non-convex QCQP Bai & Yan (2016)

min
$$\frac{1}{2}v^{\top}K^{-1}v$$

s. t. $y_iv_i \geq 1, i = 1, ..., \ell$
 $v_i^2 \geq 1, i = \ell + 1, ..., n$
 $v \in \mathbb{R}^n$

Reformulation as non-convex QCQP Bai & Yan (2016)

min
$$\frac{1}{2}v^{\top}K^{-1}v$$

s.t. $y_iv_i \ge 1$, $i = 1, ..., \ell$
 $v_i^2 \ge 1$, $i = \ell + 1, ..., n$
 $v \in \mathbb{R}^n$

Textbook-like form

Reformulation as non-convex QCQP Bai & Yan (2016)

min
$$\frac{1}{2}v^{\top}K^{-1}v$$

s.t. $y_iv_i \ge 1$, $i = 1, \dots, \ell$
 $v_i^2 \ge 1$, $i = \ell + 1, \dots, n$
 $v \in \mathbb{R}^n$

Textbook-like form

min

s.t.

$$x \in \mathbb{R}^n$$

rename variables

Reformulation as non-convex QCQP Bai & Yan (2016)

$$\begin{aligned} & \min \quad \frac{1}{2} v^{\top} K^{-1} v \\ & \text{s.t.} \quad y_i v_i \geq 1, \quad i = 1, \dots, \ell \\ & \quad v_i^2 \geq 1, \quad i = \ell + 1, \dots, n \\ & \quad v \in \mathbb{R}^n \end{aligned}$$

Textbook-like form

min
$$x^{\top}Cx$$

s.t.

$$x \in \mathbb{R}^n$$

- rename variables
- C symmetric and positive definite

Reformulation as non-convex QCQP Bai & Yan (2016)

$$\begin{aligned} & \min \quad \frac{1}{2} v^{\top} K^{-1} v \\ & \text{s.t.} \quad y_i v_i \geq 1, \quad i = 1, \dots, \ell \\ & \quad v_i^2 \geq 1, \quad i = \ell + 1, \dots, n \\ & \quad v \in \mathbb{R}^n \end{aligned}$$

Textbook-like form

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1,...,n$
 $x \in \mathbb{R}^n$

- rename variables
- C symmetric and positive definite
- $ightharpoonup L_i \in \mathbb{R} \cup \{-\infty\}$ and $U_i \in \mathbb{R} \cup \{+\infty\}$

Reformulation as non-convex QCQP Bai & Yan (2016)

$$\begin{aligned} & \min \quad \frac{1}{2} v^{\top} K^{-1} v \\ & \text{s.t.} \quad y_i v_i \geq 1, \quad i = 1, \dots, \ell \\ & \quad v_i^2 \geq 1, \quad i = \ell + 1, \dots, n \\ & \quad v \in \mathbb{R}^n \end{aligned}$$

Textbook-like form

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $x_i^2 \geq 1, i = 1, ..., n$
 $x \in \mathbb{R}^n$

- rename variables
- C symmetric and positive definite
- ▶ $L_i \in \mathbb{R} \cup \{-\infty\}$ and $U_i \in \mathbb{R} \cup \{+\infty\}$
- some constraints redundant

Convex relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1,...,n$ (QP)
 $x \in \mathbb{R}^n$

Convex relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1,...,n$ (QP)
 $x \in \mathbb{R}^n$

Bai & Yan (2016) introduce $X := xx^{\top}$ and relax to $X - xx^{\top} \succeq 0$:

Semidefinite programming (SDP) relaxation

min
$$\langle C, X \rangle$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $X_{ii} \geq 1, i = 1, ..., n$
 $\bar{X} := \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0, x \in \mathbb{R}^n, X \in \mathcal{S}^n$ (SDP)

Convex relaxations

Quadratic programming (QP) relaxation

min
$$x^{\top}Cx$$

s.t. $L_i \leq x_i \leq U_i, i = 1,...,n$ (QP)
 $x \in \mathbb{R}^n$

Bai & Yan (2016) introduce $X := xx^{\top}$ and relax to $X - xx^{\top} \succeq 0$:

Semidefinite programming (SDP) relaxation

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & L_i \leq x_i \leq U_i, \ i = 1, \dots, n \\ & X_{ii} \geq 1, \ i = 1, \dots, n \\ & \bar{X} \coloneqq \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0, \ x \in \mathbb{R}^n, \ X \in \mathcal{S}^n \end{array} \tag{SDP}$$

Bai & Yan (2016): doubly nonnegative relaxation

- ► feasible set unbounded
- ► IPM solvers like Mosek can fail to solve these SDPs accurately

- feasible set unbounded
- ► IPM solvers like Mosek can fail to solve these SDPs accurately

Convex QCQP

$$L_{i}/U_{i} := \min / \max \quad x_{i}$$
s.t. $L_{i} \le x_{i} \le U_{i}, i = 1, ..., n$

$$x^{\top} Cx \le UB$$

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} x_{i} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_{i}$$

$$x \in \mathbb{R}^{n}$$
(*)

▶ UB: upper bound on optimal S3VM objective

- feasible set unbounded
- ► IPM solvers like Mosek can fail to solve these SDPs accurately

Convex QCQP

$$L_{i}/U_{i} := \min / \max \quad x_{i}$$
s.t. $L_{i} \le x_{i} \le U_{i}, i = 1, ..., n$

$$x^{\top} Cx \le \mathsf{UB}$$

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} x_{i} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_{i}$$

$$x \in \mathbb{R}^{n}$$
(*)

- ▶ UB: upper bound on optimal S3VM objective
- we could also solve SDPs instead
- any convex feasibility or optimality cut can be added

- feasible set unbounded
- ► IPM solvers like Mosek can fail to solve these SDPs accurately

Convex QCQP

$$L_{i}/U_{i} := \min / \max \quad x_{i}$$
s.t. $L_{i} \le x_{i} \le U_{i}, i = 1, ..., n$

$$x^{\top} Cx \le \mathsf{UB}$$

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} x_{i} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_{i}$$

$$x \in \mathbb{R}^{n}$$
(*)

- ▶ UB: upper bound on optimal S3VM objective
- we could also solve SDPs instead
- any convex feasibility or optimality cut can be added
- ▶ (*) is equivalent to a convex QP with only bound constraints

SDP relaxation with bounded main diagonal

More stable SDP relaxation

min
$$\langle C, X \rangle$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $1 \leq X_{ii} \leq \max\{L_i^2, U_i^2\}, i = 1, ..., n$
 $\frac{1}{n-\ell} \sum_{i=\ell+1}^n x_i = \frac{1}{\ell} \sum_{i=1}^\ell y_i$
 $\bar{X} = \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0, x \in \mathbb{R}^n, X \in \mathcal{S}^n$

$$(*)$$

SDP relaxation with bounded main diagonal

More stable SDP relaxation

min
$$\langle C, X \rangle$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $1 \leq X_{ii} \leq \max\{L_i^2, U_i^2\}, i = 1, ..., n$
 $\frac{1}{n-\ell} \sum_{i=\ell+1}^n x_i = \frac{1}{\ell} \sum_{i=1}^\ell y_i$
 $\bar{X} = \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0, x \in \mathbb{R}^n, X \in \mathcal{S}^n$

$$(*)$$

For any feasible solution $\bar{X} \succeq 0$, we have:

$$\lambda_{\mathsf{max}}(ar{X}) \leq \mathsf{trace}(ar{X}) \leq 1 + \sum_{i=1}^n \mathsf{max}\{L_i^2, U_i^2\}$$

SDP relaxation with bounded main diagonal

More stable SDP relaxation

min
$$\langle C, X \rangle$$

s.t. $L_i \leq x_i \leq U_i, i = 1, ..., n$
 $1 \leq X_{ii} \leq \max\{L_i^2, U_i^2\}, i = 1, ..., n$
 $\frac{1}{n-\ell} \sum_{i=\ell+1}^n x_i = \frac{1}{\ell} \sum_{i=1}^\ell y_i$
 $\bar{X} = \begin{pmatrix} 1 & x^\top \\ x & X \end{pmatrix} \succeq 0, x \in \mathbb{R}^n, X \in \mathcal{S}^n$

$$(*)$$

For any feasible solution $\bar{X} \succeq 0$, we have:

$$\lambda_{\mathsf{max}}(ar{X}) \leq \mathsf{trace}(ar{X}) \leq 1 + \sum_{i=1}^n \mathsf{max}\{L_i^2, U_i^2\}$$

- solvers can exploit this information
- ▶ helps to find dual bounds on (*)

For any $x_i, x_i, i, j = 1, ..., n$, we have:

$$U_i - x_i \geq 0$$

$$x_i - L_i \ge 0$$

$$U_i - x_i \ge 0$$

$$x_j - L_j \geq 0$$

For any $x_i, x_j, i, j = 1, ..., n$, we have:

$$\bigcup U_i - x_i > 0$$

$$x_i - L_i \ge 0$$

$$U_i - x_i \geq 0$$

$$x_j - L_j \geq 0$$

$$(U_i - x_i)(x_j - L_j) \ge 0 \quad \Leftrightarrow \quad X_{ij} \le U_i x_j + L_j x_i - U_i L_j$$

For any $x_i, x_j, i, j = 1, ..., n$, we have:

$$\bigcup U_i - x_i > 0$$

$$x_i - L_i > 0$$

$$U_j - x_j \geq 0$$

$$(U_i - x_i)(x_j - L_j) \ge 0 \quad \Leftrightarrow \quad X_{ij} \le U_i x_j + L_j x_i - U_i L_j$$

RLT cuts

$$X_{ij} \ge \max\{U_i x_j + U_j x_i - U_i U_j, L_i x_j + L_j x_i - L_i L_j\},\ X_{ij} \le \min\{L_i x_j + U_j x_i - L_i U_j, U_i x_j + L_j x_i - U_i L_j\}.$$

For any $x_i, x_j, i, j = 1, ..., n$, we have:

$$\bigcup U_i - x_i > 0$$

$$U_i - x_i \geq 0$$

$$x_i - L_i \ge 0$$

$$x_j - L_j \ge 0$$

$$(U_i - x_i)(x_j - L_j) \ge 0 \quad \Leftrightarrow \quad X_{ij} \le U_i x_j + L_j x_i - U_i L_j$$

RLT cuts

$$X_{ij} \ge \max\{U_i x_j + U_j x_i - U_i U_j, L_i x_j + L_j x_i - L_i L_j\},\ X_{ij} \le \min\{L_i x_j + U_j x_i - L_i U_j, U_i x_j + L_j x_i - U_i L_j\}.$$

- cutting plane approach
- significant stronger lower bounds

With three variables x_i, x_j, x_k :

$$(x_i - L_i)(x_j - L_j)(U_k - x_k) \ge 0$$

$$\Leftrightarrow$$

$$L_i L_j U_k - L_i L_j x_k - L_i U_k x_j + L_i x_j x_k - L_j U_k x_i + L_j x_i x_k + U_k x_i x_j \ge x_i x_j x_k$$

With three variables x_i, x_j, x_k :

$$(x_{i} - L_{i})(x_{j} - L_{j})(U_{k} - x_{k}) \geq 0$$

$$\Leftrightarrow$$

$$L_{i}L_{j}U_{k} - L_{i}L_{j}x_{k} - L_{i}U_{k}x_{j} + L_{i}x_{j}x_{k} - L_{j}U_{k}x_{i} + L_{j}x_{i}x_{k} + U_{k}x_{i}x_{j} \geq x_{i}x_{j}x_{k}$$

$$(U_{i} - x_{i})(U_{j} - x_{j})(x_{k} - L_{k}) \geq 0$$

$$\Leftrightarrow$$

$$x_{i}x_{j}x_{k} \geq L_{k}U_{i}U_{j} + L_{k}x_{i}x_{j} - U_{i}U_{j}x_{k} + U_{j}x_{i}x_{k} + U_{i}x_{j}x_{k} - L_{k}U_{j}x_{j} - L_{k}U_{i}x_{j}$$

With three variables x_i, x_j, x_k :

$$(x_i - L_i)(x_j - L_j)(U_k - x_k) \ge 0$$

$$\Leftrightarrow$$

$$L_i L_j U_k - L_i L_j x_k - L_i U_k x_j + L_i x_j x_k - L_j U_k x_i + L_j x_i x_k + U_k x_i x_j \ge x_i x_j x_k$$

$$(U_i - x_i)(U_j - x_j)(x_k - L_k) \ge 0$$

$$\Leftrightarrow$$

$$x_i x_i x_k \ge L_k U_i U_i + L_k x_i x_i - U_i U_i x_k + U_i x_j x_k + U_i x_i x_k - L_k U_i x_i - L_k U_i x_i$$

Triangle cut

$$\begin{aligned} (U_k - L_k) x_i x_j + (L_j - U_j) x_i x_k + (L_i - U_i) x_j x_k + L_i L_j U_k - L_k U_i U_j \\ + (L_k U_j - L_j U_k) x_i + (L_k U_i - L_i U_k) x_j + (U_i U_j - L_i L_j) x_k \ge 0 \end{aligned}$$

With three variables x_i, x_j, x_k :

$$(x_i - L_i)(x_j - L_j)(U_k - x_k) \ge 0$$

$$\Leftrightarrow$$

$$L_i L_j U_k - L_i L_j x_k - L_i U_k x_j + L_i x_j x_k - L_j U_k x_i + L_j x_i x_k + U_k x_i x_j \ge x_i x_j x_k$$

$$(U_i - x_i)(U_j - x_j)(x_k - L_k) \ge 0$$

$$\Leftrightarrow$$

$$x_i x_i x_k \ge L_k U_i U_i + L_k x_i x_i - U_i U_i x_k + U_i x_j x_k + U_i x_i x_k - L_k U_i x_i - L_k U_i x_i$$

Triangle cut

$$(U_k - L_k)x_i x_j + (L_j - U_j)x_i x_k + (L_i - U_i)x_j x_k + L_i L_j U_k - L_k U_i U_j$$

$$+ (L_k U_j - L_j U_k)x_i + (L_k U_i - L_i U_k)x_j + (U_i U_j - L_i L_j)x_k \ge 0$$

▶ adding triangle cuts almost never improves lower bounds

Product constraints

Balancing constraint

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} x_i = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

Product constraints

Balancing constraint

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} x_i = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

Multiplying the balancing constraint by any variable x_j :

Product constraints

$$\frac{1}{n-\ell}\sum_{i=\ell+1}^{n}x_{i}x_{j}=\left(\frac{1}{\ell}\sum_{i=1}^{\ell}y_{i}\right)x_{j}, \quad j=1,\ldots,n$$

Product constraints

Balancing constraint

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} x_i = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

Multiplying the balancing constraint by any variable x_j :

Product constraints

$$\frac{1}{n-\ell}\sum_{i=\ell+1}^{n}x_{i}x_{j}=\left(\frac{1}{\ell}\sum_{i=1}^{\ell}y_{i}\right)x_{j}, \quad j=1,\ldots,n$$

- can be linearized in SDP relaxation
- stronger lower bounds but computation slows down

Optimality-based tightening Ryoo & Sahinidis (1995)

- ► UB: best known upper bound for nonconvex problem (P)
- ► LB: optimal value of SDP relaxation

Optimality-based tightening Ryoo & Sahinidis (1995)

- ► UB: best known upper bound for nonconvex problem (P)
- ► LB: optimal value of SDP relaxation

Optimality-based tightening (in our setting)

Let $g(x, X) \le 0$ be an active constraint in the SDP relaxation with corresponding optimal dual multiplier $\lambda > 0$. Then the constraint

$$g(x,X) \ge -\frac{\mathsf{UB} - \mathsf{LB}}{\lambda}$$

is valid for all solutions of (P) with objective value better than UB.

Optimality-based tightening Ryoo & Sahinidis (1995)

- ► UB: best known upper bound for nonconvex problem (P)
- ► LB: optimal value of SDP relaxation

Optimality-based tightening (in our setting)

Let $g(x, X) \le 0$ be an active constraint in the SDP relaxation with corresponding optimal dual multiplier $\lambda > 0$. Then the constraint

$$g(x,X) \ge -\frac{\mathsf{UB} - \mathsf{LB}}{\lambda}$$

is valid for all solutions of (P) with objective value better than UB.

- ▶ $-\frac{\text{UB-LB}}{\lambda} \le g(x, X) \le 0$ for all optimal solutions (x, X) of (P)
- new constraint is convex

Marginals-based bound tightening Ryoo & Sahinidis (1995)

Bound tightening

If the constraint $L_i - x_i \le 0$ is active at the optimal SDP solution with dual multiplier $\lambda_i^L > 0$, then the inequality

$$L_i - x_i \ge -\frac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}$$

can be added to (P) and to the SDP relaxation.

Marginals-based bound tightening Ryoo & Sahinidis (1995)

Bound tightening

If the constraint $L_i - x_i \le 0$ is active at the optimal SDP solution with dual multiplier $\lambda_i^L > 0$, then the inequality

$$L_i - x_i \ge -\frac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}$$

can be added to (P) and to the SDP relaxation.

lacksquare if $\lambda_i^L > 0$, update U_i via $U_i := \min \left\{ U_i, L_i + rac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}
ight\}$

Marginals-based bound tightening Ryoo & Sahinidis (1995)

Bound tightening

If the constraint $L_i - x_i \le 0$ is active at the optimal SDP solution with dual multiplier $\lambda_i^L > 0$, then the inequality

$$L_i - x_i \ge -\frac{\mathsf{UB} - \mathsf{LB}}{\lambda_i^L}$$

can be added to (P) and to the SDP relaxation.

- lacksquare if $\lambda_i^L > 0$, update U_i via $U_i := \min \left\{ U_i, L_i + rac{\mathsf{UB} \mathsf{LB}}{\lambda_i^L}
 ight\}$
- ▶ if $\lambda_i^U > 0$, update L_i via $L_i := \max \left\{ L_i, U_i \frac{\mathsf{UB} \mathsf{LB}}{\lambda_i^U} \right\}$

Applying optimality-based tightening to main diagonal

$$(x, X)$$
 feasible for $(P) \Rightarrow 1 \le x_i^2 = X_{ii} \le \max\{L_i^2, U_i^2\}$

Applying optimality-based tightening to main diagonal

$$(x, X)$$
 feasible for $(P) \Rightarrow 1 \le x_i^2 = X_{ii} \le \max\{L_i^2, U_i^2\}$

Lemma

Let $i \in \{1, ..., n\}$. If the constraint $X_{ii} \ge 1$ is active at the optimal SDP solution with dual multiplier $\lambda > 0$, then we can update

$$L_i \coloneqq \max \left\{ L_i, -\sqrt{1 + \frac{UB - LB}{\lambda}} \right\}, \quad U_i \coloneqq \min \left\{ U_i, \sqrt{1 + \frac{UB - LB}{\lambda}} \right\}.$$

Applying optimality-based tightening to main diagonal

$$(x,X)$$
 feasible for $(P) \Rightarrow 1 \le x_i^2 = X_{ii} \le \max\{L_i^2, U_i^2\}$

Lemma

Let $i \in \{1, ..., n\}$. If the constraint $X_{ii} \ge 1$ is active at the optimal SDP solution with dual multiplier $\lambda > 0$, then we can update

$$L_i \coloneqq \max\left\{L_i, -\sqrt{1 + \frac{\mathit{UB} - \mathit{LB}}{\lambda}}\right\}, \quad U_i \coloneqq \min\left\{U_i, \sqrt{1 + \frac{\mathit{UB} - \mathit{LB}}{\lambda}}\right\}.$$

Lemma

Let $i \in \{1, ..., n\}$. Assume that a constraint of type $X_{ii} \le \gamma$ is active at the optimal SDP solution with dual multiplier $\lambda > 0$ such that $p := \gamma - \frac{UB - LB}{\lambda} \ge 1$. Then the following holds:

- If $L_i > -\sqrt{p}$, then we can update L_i via $L_i := \max\{L_i, \sqrt{p}\}$.
- ② If $U_i < \sqrt{p}$, then we can update U_i via $U_i := \min\{U_i, -\sqrt{p}\}$.

- Find an initial good upper bound UB.
- 2 Compute optimality-based box constraints.
- **③** Solve SDP + RLT relaxation using a cutting-plane approach.

- Find an initial good upper bound UB.
- 2 Compute optimality-based box constraints.
- **③** Solve SDP + RLT relaxation using a cutting-plane approach.
- Mosek as SDP solver
- bound tightening and primal heuristic in every iteration
- box constraints are recomputed whenever UB is updated

- Find an initial good upper bound UB.
- 2 Compute optimality-based box constraints.
- 3 Solve SDP + RLT relaxation using a cutting-plane approach.
- Mosek as SDP solver
- bound tightening and primal heuristic in every iteration
- box constraints are recomputed whenever UB is updated

Projecting box constraints

$$L_i > -1 \implies L_i := \max\{L_i, 1\}$$
 and $U_i < 1 \implies U_i := \min\{U_i, -1\}$

- Find an initial good upper bound UB.
- 2 Compute optimality-based box constraints.
- 3 Solve SDP + RLT relaxation using a cutting-plane approach.
- Mosek as SDP solver
- bound tightening and primal heuristic in every iteration
- box constraints are recomputed whenever UB is updated

Projecting box constraints

$$L_i > -1 \implies L_i := \max\{L_i, 1\}$$
 and $U_i < 1 \implies U_i := \min\{U_i, -1\}$

Binary branching

- ▶ choose a variable x_i with $L_i \leq -1$ and $U_i \geq 1$
- ▶ set $U_i := -1$ in one subproblem and set $L_i := 1$ in the other

Primal heuristic

SVM with respect to $\bar{y} \in \{-1, 1\}^n$

min
$$x^{\top}Cx$$

s.t. $\bar{y}_i x_i \ge 1$, $i = 1, \dots, n$,

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^{n} x_i = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i,$$

$$x \in \mathbb{R}^n$$
(QP)

Primal heuristic

SVM with respect to $\bar{y} \in \{-1, 1\}^n$

min
$$x^{\top}Cx$$

s. t. $\overline{y}_i x_i \ge 1$, $i = 1, \dots, n$,

$$\frac{1}{n-\ell} \sum_{i=\ell+1}^n x_i = \frac{1}{\ell} \sum_{i=1}^\ell y_i,$$

$$x \in \mathbb{R}^n$$
(QP)

Let (\hat{x}, \hat{X}) be the SDP solution.

- **①** Construct \bar{y} with entries $\bar{y}_i = \text{sign}(\hat{x}_i)$ and solve (QP).
- ② Improve the solution found by applying a 2-opt local search with respect to the last $n-\ell$ entries of \bar{y} .

Computational results

- ▶ implementation in Julia using JuMP
- Mosek for SDPs and Gurobi for QPs
- optimality gap computed as $\varepsilon = \frac{\text{UB-LB}}{\text{UB}}$
- **b** branch-and-bound is stopped when ε smaller than 0.1%
- results are averaged over three different seeds
- kernel and hyperparameters are chosen by 10-fold cross-validation

Root node relaxation for 10%, 20%, 30% labeled points

Instance	ℓ	$n-\ell$	Time Box [s]	Gap [%]	Time [s]	Iter
2moons	30	270	11.86	0.00	7.57	3.00
2moons	60	240	12.45	0.00	7.35	3.00
2moons	90	210	11.12	0.00	7.31	3.00
art150	14	136	1.30	0.04	1.44	3.00
art150	29	121	1.59	0.00	1.69	3.00
art150	44	106	1.32	0.01	1.38	3.00
connectionist	20	188	3.21	0.19	6.13	4.00
connectionist	41	167	3.09	0.16	9.84	4.67
connectionist	62	146	3.05	0.45	9.03	4.67
GunPoint	44	407	47.15	0.00	57.56	4.00
GunPoint	89	362	46.59	0.04	55.44	4.00
GunPoint	134	317	43.90	0.01	50.60	4.00
heart	27	243	6.92	0.22	10.36	4.00
heart	54	216	6.96	0.08	13.93	4.33
heart	81	189	6.37	0.15	12.05	4.33
ionosphere	34	317	19.84	0.66	19.53	3.67
ionosphere	70	281	19.67	0.01	20.73	3.33
ionosphere	104	247	17.98	0.00	27.77	4.00
PowerCons	36	324	21.80	0.04	22.79	3.67
PowerCons	72	288	19.12	0.01	26.26	4.00
PowerCons	108	252	18.87	0.01	28.53	4.00

Gurobi vs. SDP-S3VM

			Gur	obi	SDP-S3VM		
Instance	ℓ	$n-\ell$	Gap [%]	Time [s]	Gap [%]	Time [s]	Solved
art100	10	90	7.37	3600	0.10	26.11	3
art100	20	80	3.09	2467.43	0.10	13.28	3
art100	30	70	3.27	2401.26	0.10	37.48	3
art150	14	136	8.44	3600	0.10	61.05	3
art150	29	121	2.72	1450.20	0.10	1.89	3
art150	44	106	2.52	2629.13	0.10	2.44	3
connectionist	20	188	16.83	3600	0.88	2587.20	1
connectionist	62	146	12.87	3600	0.10	248.07	3
connectionist	41	167	10.71	3600	0.10	104.95	3
heart	27	243	14.00	3600	0.10	38.89	3
heart	54	216	10.21	3600	0.10	64.45	3
heart	81	189	10.58	3600	0.10	16.22	3
2moons	30	270	6.52	3600	0.10	16.22	3
2moons	60	140	0.03	1023.52	0.10	22.07	3
2moons	90	210	0.05	1.95	0.10	21.50	3

▶ time limit of 3600 seconds

SVM vs. S3VM

Instance	ℓ	$n-\ell$	Kernel	Nodes	Time [s]	Acc. [%]	SVM [%]
ionosphere	34	317	RBF	59	529.48	91.80	81.70
ionosphere	34	317	linear	73	492.74	88.33	88.96
ionosphere	34	317	linear	3	50.05	87.38	84.23
ionosphere	70	281	RBF	3	107.89	90.75	90.04
ionosphere	70	281	RBF	7	181.61	91.46	85.05
ionosphere	70	281	linear	1	43.55	88.61	87.54
ionosphere	104	247	RBF	5	128.45	90.28	90.69
ionosphere	104	247	linear	37	221.45	88.26	86.64
ionosphere	104	247	linear	1	56.87	89.47	90.69
PowerCons	36	324	RBF	11	139.97	95.06	93.83
PowerCons	36	324	RBF	1	45.2	95.37	96.3
PowerCons	36	324	linear	53	534.19	97.84	94.44
PowerCons	72	288	RBF	11	101.41	95.83	94.79
PowerCons	72	288	RBF	1	30.79	96.53	97.57
PowerCons	72	288	linear	55	375.76	98.61	97.57
PowerCons	108	252	linear	11	129.53	98.81	98.81
PowerCons	108	252	linear	15	109.83	98.81	99.21
PowerCons	108	252	linear	17	169.85	98.41	99.21

Conclusion and future work

Conclusion

- ► S3VM models can be solved to optimality
- tools from global optimization essential
- S3VMs can be much better than SVMs

Future work:

- first-order solver for SDPs
- parallel branch-and-bound

Conclusion and future work

Conclusion

- S3VM models can be solved to optimality
- tools from global optimization essential
- S3VMs can be much better than SVMs

Future work:

- first-order solver for SDPs
- parallel branch-and-bound

Thank you!