

Al6101 Introduction to Al and Al Ethics

Markov Decision Process

Assoc Prof Bo AN

www.ntu.edu.sg/home/boan

Email: boan@ntu.edu.sg

Office: N4-02b-55

Lesson Outline

- Introduction
- Markov Decision Process
- Two methods for solving MDP
 - Value iteration
 - Policy iteration

Introduction

- We consider a framework for decision making under uncertainty
- Markov decision processes (MDPs) and their extensions provide an extremely general way to think about how we can act optimally under uncertainty
- For many medium-sized problems, we can use the techniques from this lecture to compute an optimal decision policy
- For large-scale problems, approximate techniques are often needed (more on these in later lectures), but the paradigm often forms the basis for these approximate methods

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t=0,1,2,...Agent:

- 1. observes state at step $t: s_t \in S$
- 2. Produces action at step t: $a_t \in A(s_t)$
- 3. Gets resulting reward: r_{t+1} and the next state: $s_{t+1} \in S$

$$\underbrace{s_t} \underbrace{a_t}^{r_{t+1}} \underbrace{s_{t+1}} \underbrace{a_{t+1}}^{r_{t+2}} \underbrace{s_{t+2}} \underbrace{a_{t+2}}^{r_{t+3}} \underbrace{s_{t+3}} \underbrace{a_{t+3}}^{r_{t+3}} \underbrace{s_{t+3}}$$

Making Complex Decisions

- Make a sequence of decisions
 - Agent's utility depends on a sequence of decisions
 - Sequential Decision Making
- Markov Property
 - Transition properties depend only on the current state, not on previous history (how that state was reached)
 - Markov Decision Processes

Markov Decision Processes

- Formulate the agent-environment interaction as an MDP
- Components:
 - Markov States s, beginning with initial state s₀
 - Actions a
 - Each state s has actions A(s) available from it
 - Transition model P(s' | s, a)
 - assumption: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - Reward function R(s), or r(s)
- **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The "solution" to an MDP

Game Show

- A series of questions with increasing level of difficulty and increasing payoff
- Decision: at each step, take your earnings and quit, or go for the next question
 - If you answer wrong, you lose everything

Game Show

- Consider \$50,000 question
 - Probability of guessing correctly: 1/10
 - Quit or go for the question?
- What is the expected payoff for continuing?

$$0.1 * 61,100 + 0.9 * 0 = 6,110$$

What is the optimal decision?

Game Show

- What should we do in Q3?
 - Payoff for quitting: \$1,100
 - Payoff for continuing: 0.5 * \$11,100 = \$5,550
- What about Q2?
 - \$100 for quitting vs. \$4,162 for continuing
- What about Q1?

Grid World

R(s) = -0.04 for every non-terminal state

Transition model:

Goal: Policy

Grid World

Transition model:

R(s) = -0.04 for every non-terminal state

Grid World

Optimal policy when R(s) = -0.04 for every non-terminal state

Atari Video Games

to get the maximum

Solving MDPs

- MDP components:
 - States s
 - Actions a
 - Transition model P(s' | s, a)
 - Reward function R(s)
- The solution:
 - **Policy** $\pi(s)$ mapping from states to actions
 - How to find the optimal policy?

Maximizing Accumulated Rewards

• The optimal policy should maximise the accumulated *rewards over* given a trajectories like $\tau = < S_1, A_1, R_1, ..., S_T, A_T, R_T >$ under some policies:

$$G_{t} = R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \cdots \gamma^{K} R_{t+K} = \sum_{k=0}^{K} \gamma^{k} R_{t+k}$$

- How to define the accumulated rewards of a state sequence?
 - Discounted sum of rewards of individual states
 - Problem: infinite state sequences
 - If finite, LP can be applied

Accumulated Rewards

- Normally, we would define the *accumulated rewards* of trajectories as the discounted sum of the rewards
- **Problem:** infinite time horizon
- **Solution:** discount the individual rewards by a factor γ between 0 and 1:

$$G_{t} = R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \cdots$$

$$= \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \le \frac{R_{max}}{1-\gamma} \quad (0 < \gamma < 1)$$

- Sooner rewards count more than later rewards
- Makes sure the total *accumulated rewards* stays bounded
- Helps algorithms converge

Value Function

• The "true" value of a state, denoted V(s), is the expected sum of discounted rewards if the agent executes an *optimal* policy starting in state s

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Similarly, we define the action-value of a state-action pair as

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

The relationship between Q and V

$$V^{\pi}(s) = \sum_{a \in A} Q^{\pi}(s, a)\pi(a|s)$$

Finding the Value Function of States

 What is the expected value of taking action a in state s?

$$\sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma * V(s')]$$

How do we choose the optimal action?

$$\pi^*(s) = \operatorname{argmax}_{a \in A} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V(s')]$$

 What is the recursive expression for V(s) in terms of the utilities of its successor states?

$$V(s) = \max_{a \in A} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V(s')]$$

The Bellman Equation

 Recursive relationship between the accumulated rewards of successive states:

$$V(s) = \max_{a \in A} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V(s')]$$

- For N states, we get N equations in N unknowns
 - Solving them solves the MDP
 - We could try to solve them through expectimax search, but that would run into trouble with infinite sequences
 - Instead, we solve them algebraically
 - Two methods: value iteration and policy iteration

End up here with P(s' | s, a)Get value V(s')(discounted by γ)

Method 1: Value Iteration

- Start out with every V(s) = 0
- Iterate until convergence
 - During the ith iteration, update the value of each state according to this rule:

$$V_{i+1}(s) = \max_{a} \sum_{s' \in S} P(s'|s, a) \left[R(s, a, s') + \gamma V_i(s') \right]$$

- In the limit of infinitely many iterations, guaranteed to find the correct values
 - In practice, don't need an infinite number of iterations...

Value Iteration: Example

- A simple example to show how VI works
 - State, action, reward (non-zero) and transition probability are shown in the figure
 - We use this example as an MDP and solve it using VI and PI

These structure can be easily implemented by dict of Python or HashMap of Java

- Given the states and actions are finite, we can use matrices to represent the value function V(s)
- Pseudo-code of VI
 - 1. Initialize $V_0(s)$, for all s
 - 2. For $i = 0, 1, 2 \dots$
 - 3. $V_{i+1}(S) = \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_i(s')]$ for all state s

• How VI works in an iteration? Given iteration i=0

For all state find

$$V_{i+1}(S) = \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_i(s')]$$

We can instead calculate Q(s, a) values for each s and a and get the best V(s)

$$Q_{i+1}(s,a) = \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_i(s')]$$

Finally

$$V_{i+1}(S) = \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_i(s')] = \max_{a} Q_{i+1}(s,a)$$

- We use the previous example and solve it using VI
- Construct a Q table, Q(s, a)
 - 3 rows (3 states) and 2 columns (2 actions)

 a_1

0

-0.3

 $-V_0 = [0, 0, 0] #3 states$

 S_0

 S_1

 S_2

 Q_0

 a_0

0

 S_0

 S_1

 a_1

0

0

0

 V_0

 Q_1

 a_0

0

3.5

 V_1

$$Q_{i+1}(s,a) = \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_i(s')]$$

$$\begin{split} Q_1(s_1, a_0) &= P(s_0|s_1, a_0)[r(s_1, a_0, s_0) + \gamma V_o(s_0)] + \\ &\quad P(s_1|s_1, a_0)\left[r(s_1, a_0, s_1) + \gamma V_o(s_1)\right] + \\ &\quad P(s_2|s_1, a_0)\left[r(s_1, a_0, s_2) + \gamma V_o(s_2)\right] \end{split}$$

$$Q_1(s_1, a_0) = 0.7 * [5 + 0] + 0.1 * [0 + 0] + 0.2 * [0 + 0] = 3.5$$

The initial Q and V table

Repeat this process until it converges

Iterating the process (code available on later slides)

```
iter
               V(s0) = 0.000
                             V(s1) = 0.000 \quad V(s2) = 0.000
iter
               V(s0) = 0.000 V(s1) = 3.500 V(s2) = 0.000
iter
               V(s0) = 0.000 V(s1) = 3.815 V(s2) = 1.890
iter
             V(s0) = 1.701 V(s1) = 4.184 V(s2) = 2.060
               V(s0) = 8.020
                              V(s1) = 11.160
                                              V(s2) = 8.912
iter
      63
iter
      64
               V(s0) = 8.021 V(s1) = 11.161
                                              V(s2) = 8.913
      65
               V(s0) = 8.022 V(s1) = 11.162 V(s2) = 8.915
iter
```

Very good, the values converge now

Put the optimal values on the graph

- Use V* to find optimal policy
 - aka optimal actions in each state

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_i(s')] = \underset{a}{\operatorname{argmax}} Q_i(s, a)$$

$$\pi^*$$

	a^*
- C	a_1
s_0	- u ₁
S_1	a_0
s_2	a_0

Done! We get the optimal policy of the example

Python Code on Colab: https://colab.research.google.com/drive/1DnYIr3QJxpfs rR jAAUrqHZMjvsjGSx?usp=sharing

Method 2: Policy Iteration

- Start with some initial policy π_0 and alternate between the following steps:
 - Policy evaluation: calculate $V^{\pi_i}(s)$ for every state s, like VI
 - **Policy improvement:** calculate a new policy π_{i+1} based on the updated utilities $\pi_{i+1}(s) = \operatorname{argmax}_{a \in A} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi_i}(s')]$

Policy evaluation Estimate v_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Policy Iteration: Main Steps

- Unlike VI, policy iteration has to maintain a policy chosen actions from all states - and estimate V^{π_i} based on this policy.
 - Iterate this process until convergence (like VI)
- Steps of PI
 - Initialization
 - Policy Evaluation (calculating the *V*)
 - Policy Improvement (calculate the policy π)

Policy Iteration: Detailed Steps

1. Initialization

- Initialize V(s) and $\pi(s)$ for all state s
- Policy Evaluation (calculate the *V*)
 - Repeat
 - b. $\Delta \leftarrow 0$
 - For each state s:
 - $v \leftarrow V(s)$
 - $V(s) \leftarrow \sum_{s'} p(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V(s')]$
 - $\Delta \leftarrow \max(\Delta, |v V(s)|)$
 - until $\Delta < \omega$ (a small positive number)
- 3. Policy Improvement (calculate the new policy π)
 - $policystable \leftarrow True$
 - For each state s:
 - $b \leftarrow \pi(s)$
 - $\pi(s) \leftarrow \operatorname{argmax}_{\pi(s)} \sum_{s'} p(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V(s')]$
 - If $b \neq \pi(s)$, then policystable \leftarrow False
 - If $policystable \leftarrow True$, then stop; else go to step 2;

Policy Iteration: Policy Evaluation

- Use the example used in VI
- Start iteration i = 0, initialize random π , $\gamma = 0.99$, and V(s) = 0 for all state s

$$V^{\pi_{i}}(s) = \sum_{s'} P(s, \pi_{i}(s), s') [R(s, \pi_{i}(s), s') + \gamma V^{\pi_{i}}(s')]$$

$$V(s_{0}) \leftarrow P(s_{0}, \pi(s_{0}), s_{0}) [R(s_{0}, \pi(s_{0}), s_{0}) + \gamma V(s_{0})] + P(s_{0}, \pi(s_{0}), s_{1}) [R(s_{0}, \pi(s_{0}), s_{1}) + \gamma V(s_{1})] + P(s_{0}, \pi(s_{0}), s_{2}) [R(s_{0}, \pi(s_{0}), s_{2}) + \gamma V(s_{2})]$$

$$V(s_1) \leftarrow P(s_1, \pi(s_1), s_0)[R(s_1, \pi(s_1), s_0) + \gamma V(s_0)] + P(s_1, \pi(s_1), s_1)[R(s_1, \pi(s_1), s_1) + \gamma V(s_1)] + P(s_1, \pi(s_1), s_2)[R(s_1, \pi(s_1), s_2) + \gamma V(s_2)]$$

$$V(s_2) \leftarrow P(s_2, \pi(s_2), s_0)[R(s_2, \pi(s_2), s_0) + \gamma V(s_0)] + P(s_2, \pi(s_2), s_1)[R(s_2, \pi(s_2), s_1) + \gamma V(s_1)] + P(s_2, \pi(s_2), s_2)[R(s_2, \pi(s_2), s_2) + \gamma V(s_2)]$$

Policy Iteration: Policy Evaluation (cont'd)

- Use the example used in VI
- Start iteration $i=0, \gamma=0.99$, initialize random $\pi=[a_1,a_0,a_1]$ and V(s)=0 for states s_0, s_1 and s_2

$$V(s_0) \leftarrow 0.0[0.0 + \gamma V(s_0)] + 0.0[0.0 + \gamma V(s_1)] + 1.0[0.0 + \gamma V(s_2)]$$
$$V(s_1) \leftarrow 0.7[5.0 + \gamma V(s_0)] + 0.1[0.0 + \gamma V(s_1)] + 0.2[0.0 + \gamma V(s_2)]$$

$$V(s_2) \leftarrow 0.3[-1 + \gamma V(s_0)] + 0.3[0.0 + \gamma V(s_1)] + 0.4[0.0 + \gamma V(s_2)]$$

- Values are calculated asynchronously
- The converged values are used for policy improvement

$$V(s_0) = 0$$

$$V(s_1) = 0.7 * 5.0 = 3.5$$

$$V(s_2) = 0.3 * (-1) + 0.3 * (0.99 * 3.5) = 0.7395$$

... loop this process as instructed in step 2 ...

Policy Iteration: Example (cont'd)

- The optimal Q values are
 - Nearly the same as that of VI (as shown in the figure below)

	V^*	
s_0	8.03	
s_1	11.2	
s_2	8.9	

We can easily calculate the optimal policy. Can you try it?

		a*
π^*	s_0	a_1
π	s_1	a_0
	s_2	a_0

Further Reading [AAAI'18: http://www.ntu.edu.sg/home/boan/papers/AAAI18_Malmo.pdf]

We Won 2017 Microsoft Collaborative Al Challenge

- Collaborative Al
 - How can AI agents learn to recognise someone's intent (that is, what they are trying to achieve)?
 - How can AI agents learn what behaviours are helpful when working toward a common goal?
 - How can they coordinate or communicate with another agent to agree on a shared strategy for problem-solving?

Further Reading

[AAAI'18: http://www.ntu.edu.sg/home/boan/papers/AAAI18_Malmo.pdf]

- Microsoft Malmo Collaborative Al Challenge
 - Collaborative mini-game, based on an extension "stag hunt"
 - Uncertainty of pig movement
 - Unknown type of the other agent
 - Detection noise (frequency 25%)
- Our team HogRider won the challenge (out of more than 80 teams from 26 countries)
 - learning + game theoretic reasoning + sequential decision making + optimisation

