## **Additions and Corrections**

2002, Volume 36, Pages 200-207

William J. Riley, Thomas E. McKone, Alvin C. K. Lai, and William W. Nazaroff: Indoor Particulate Matter of Outdoor Origin: Importance of Size-Dependent Removal Mechanisms

We regret that a transcription error occurred in conducting model calculations for the archetypal rural distribution. The information as reported in Table 2 is correct



FIGURE 4. These panels replace panels e and f in the original Figure 4.



FIGURE 5. These panels replace panels b and d in the original Figure 5.

reported in the "Outdoor PM Concentrations" section. The error propagated through calculations that are reported in



FIGURE 6. These panels replace panels e and f in the original Figure 6.



FIGURE 7. These panels replace panels b, d, and f in the original Figure 7.

Figures 4-7 and in Table 3. In the text, a change is required under "Results and Discussion: Integrated Deposition Loss Coefficient and Filtration Efficiency". The integrated  $PM_{10}$  deposition loss rate coefficient varies by a factor of 6 among scenarios (not "more than an order of magnitude", as reported). The integrated  $PM_{2.5}$  deposition

TABLE 3. Corrections for the Archetypal Rural Distribution

|                         |                                           | PM <sub>2.5</sub>                                                       |                                       |                                 | PM <sub>10</sub>                                                       |                                     |                                     |
|-------------------------|-------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|---------------------------------|------------------------------------------------------------------------|-------------------------------------|-------------------------------------|
| ambient<br>distribution | building<br>scenario                      | deposition loss rate coeff (h <sup>-1</sup> )                           | recirculation filter efficiency (%)   | makeup filter<br>efficiency (%) | deposition loss rate coeff (h <sup>-1</sup> )                          | recirculation filter efficiency (%) | makeup filter<br>efficiency (%)     |
| archetypal<br>rural     | Ofc40<br>Ofc85<br>ResCA<br>ResTV<br>ResHV | 0.16 (0.01)<br>0.15 (0.02)<br>0.16 (0.01)<br>0.18 (0.02)<br>0.22 (0.01) | 9 (0.51)<br>61 (2.0)<br>25 (1.3)<br>– | 14 (0.58)<br>72 (1.5)<br>—<br>— | 0.36 (0.05)<br>0.76 (0.10)<br>0.75 (0.07)<br>0.66 (0.19)<br>1.1 (0.11) | 16 (1.8)<br>68 (2.5)<br>39 (2.4)    | 53 (1.1)<br>83 (1.3)<br>-<br>-<br>- |

except that the integral measures for the rural distribution should be 8 and  $15 \,\mu g \, m^{-3}$  for  $PM_{2.5}$  and  $PM_{10}$ , respectively. The same correction applies to these numbers as they are

loss rate coefficient varies by a factor of about 2.5 (not a factor of 3).
ES020595T