Lightweight Encryption Algorithm - LEA -

Ji Yong-Hyeon

Department of Information Security, Cryptology, and Mathematics

College of Science and Technology Kookmin University

January 8, 2024

List of Symbols

Contents

1	Block Cipher LEA	1
	1.1 Specification	1
	1.2 Key Schedule	1
	1.2.1 Round Constant	2
Α	Additional Data A	3
	A.1 Substitution-BOX	3

Chapter 1

Block Cipher LEA

1.1 Specification

Table 1.1: Specification Comparison between AES and LEA Block Ciphers

Specification	AES	LEA	
Block Size (bits)	128	128	
Key Size (bits)	128/192/256	128/192/256	
Structure	Substitution-Permutation Network	Generalized Feistel Network	
Rounds	10/12/14 (depends on key size)	24/28/32 (depends on key size)	
Designed By	Joan Daemen, Vincent Rijmen	Deukjo Hong et al.	
Design Year	1998	2013	

Table 1.2: Parameters of the Block Cipher LEA (1-word = 32-bit)

	Block	Key	Number of	Round-Key	Number of	Total Size of
Algorithms	Size	Length	Rounds	Length	Round-Keys	Round-Keys
	$(N_b$ -byte)	$(N_k$ -byte)	(N_r)	(byte)	$(N_r + 1)$	$(N_b(N_r+1))$
LEA-128	16(4-word)	16(4-word)	24	24	11	44 (176-byte)
LEA-192	16(4-word)	24(6-word)	28	24	13	52 (208-byte)
LEA-256	16(4-word)	32(8-word)	32	24	15	60 (240-byte)

1.2 Key Schedule

KeySchedule₁₂₈^{enc}:
$$\{\mathbf{0}, \mathbf{1}\}^{128=8\cdot16} \rightarrow \{\mathbf{0}, \mathbf{1}\}^{4608=192\cdot24}$$

$$KeySchedule_{192}^{enc}: \{\textbf{0},\textbf{1}\}^{192=8\cdot 24} \to \{\textbf{0},\textbf{1}\}^{5376=192\cdot 28}$$

$$KeySchedule_{256}^{enc}: \{\textbf{0},\textbf{1}\}^{256=8\cdot32} \to \{\textbf{0},\textbf{1}\}^{6144=192\cdot24}$$

1.2.1 Round Constant

The constant $\delta[i] \in \mathbb{F}_{2^{32}}$ $(i \in \{1, ..., 7\})$ is as follows:

i	$\delta[i]$	value
0	δ[0]	0xc3efe9db
1	δ[1]	0x44626b02
2	δ[2]	0x79e27c8a
3	δ[3]	0x78df30ec
4	$\delta[4]$	0x715ea49e
5	δ[5]	0xc785da0a
6	δ[6]	0xe04ef22a
7	δ[7]	0xe5c40957

Algorithm 1: Key Schedule (LEA-128)

```
Input: User-key UK = (UK<sub>0</sub>,..., UK<sub>15</sub>) (UK<sub>i</sub> \in {0, 1}<sup>8</sup>); // UK \in {0, 1}<sup>128</sup> is 16-byte Output: Round-keys {RK<sub>i</sub>}<sup>23</sup><sub>i=0</sub> (RK<sub>i</sub> \in {0, 1}<sup>192</sup>); // {RK<sub>i</sub>}<sup>23</sup><sub>i=0</sub> \in {0, 1}<sup>4608</sup> is 576-byte
 1 \ rk_0 \leftarrow uk_0 \parallel uk_1 \parallel uk_2 \parallel uk_3;
 2 rk_1 \leftarrow uk_4 \parallel uk_5 \parallel uk_6 \parallel uk_7;
 3 rk_2 \leftarrow uk_8 \parallel uk_9 \parallel uk_{10} \parallel uk_{11};
 4 \ rk_3 \leftarrow uk_{12} \parallel uk_{13} \parallel uk_{14} \parallel uk_{15};
 5 for i = 4 to 43 do
              t \leftarrow rk_{i-1};
             if i \mod 4 = 0 then
 7
                     /* SubWord \circ RotWord : \{0, 1\}^{32} \rightarrow \{0, 1\}^{32}
                                                                                                                                                                                                         */
                     t \leftarrow \text{RotWord}(t);
  8
                     t \leftarrow \text{SubWord}(t);
  9
                     t \leftarrow t \oplus (rCon_{i/4} \parallel 0x00 \parallel 0x00 \parallel 0x00);
10
11
              rk_i \leftarrow rk_{i-4} \oplus_{32} t;
12
13 end
```

Appendix A Additional Data A

A.1 Substitution-BOX