NeuroField

P.K. Fung*, R.G. Abeysuriya, P.A. Robinson

School of Physics, University of Sydney, New South Wales, Australia

Abstract

Draft on publication of NeuroField to document capability, usage, and example results. Other internal documents exist: a user manual and a developer manual.

Keywords: Neural field theory, EEG, neurophysiology, methods, modeling

1. Introduction

- Motivation behind neural field theory: large-scale neural dynamics.
- Neural field theory of Robinson et al, EEG spectra, alpha and beta peaks,
- 4 etc:

$$D_{ab}V_{ab}(\mathbf{r},t) = \nu_{ab}\phi_{ab}(\mathbf{r},t),$$
$$Q_a(\mathbf{r},t) = S_a \left[\sum_b V_{ab}(\mathbf{r},t)\right],$$

$$\mathcal{D}_{ab}\phi_{ab}(\mathbf{r},t) = Q_b(\mathbf{r},t-\tau_{ab}).$$

- NeuroField: a general code to solve the neural field theory by allowing users
- 6 to:
- 1. Specify an arbitrary number of populations and connections between populations;
- 2. Specify the parameters for any objects, including populations, dendritic responses, firing responses, propagators, synapses, and stimulus pattern;

^{*}Corresponding author. Tel. +61 9036 7274 Email address: ffung@physics.usyd.edu.au (P.K. Fung)

2. Method and Results

NeuroField solves each equation within the Robinson et al. model with an object:

$$P=
u_{ab}\phi_{ab},$$
 Couple $D_{ab}V_{ab}=P,$ Dendrite $Q_a=S_aigl[\sum_b V_{ab}igr],$ QResponse $\mathcal{D}_{ab}\phi_{ab}=Q_b,$ Propag

where an arbitrary number of these objects, with each object may be a different

13 type (e.g. constant synaptic coupling vs plastic synaptic coupling), and all

parameter values may be tailored.

Examples for single excitatory population, cortical population, corticothalamic model. Each example has a population diagram, and related results. All examples should preferably be published result?

18 3. Discussion

Overview of any tricky issues with the problem being solved e.g. EEGLAB mentiones limitations of time/frequency decompsition. Discuss limitations or qualifiers on the usage of the code.

22 4. Acknowledgements

To add.

4 5. References