Relatório

Link GitHub: https://github.com/gabriel-smello/proj2-fsi

Projeto Individual 2 - Fundamentos de Sistemas Inteligentes

Análise de dados

```
resnet\_model.compile(optimizer=Adam(learning\_rate=0.001), loss='categorical\_crossentropy', metrics=['accuracy'])
history = resnet_model.fit(train_ds, validation_data=val_ds, epochs=15)
Epoch 1/15
          =========] - 30s 228ms/step - loss: 0.5989 - accuracy: 0.7921 - val_loss: 0.2670 - val_accuracy: 0.9073
        107/107 [====
                ========] - 23s 217ms/step - loss: 0.0699 - accuracy: 0.9821 - val loss: 0.1526 - val accuracy: 0.9542
- 22s 203ms/step - loss: 0.0197 - accuracy: 0.9971 - val_loss: 0.1493 - val_accuracy: 0.9542
           =========] - 22s 202ms/step - loss: 0.0129 - accuracy: 0.9985 - val_loss: 0.1041 - val_accuracy: 0.9683
107/107 [==
        =========] - 22s 208ms/step - loss: 0.0083 - accuracy: 0.9982 - val loss: 0.1163 - val accuracy: 0.9601
107/107 [===
Epoch 11/15
107/107 [===
Epoch 12/15
                         - 22s 206ms/step - loss: 0.0085 - accuracy: 0.9982 - val_loss: 0.1128 - val_accuracy: 0.9695
107/107 [====
                :========] - 22s 204ms/step - loss: 0.1546 - accuracy: 0.9475 - val_loss: 0.1703 - val_accuracy: 0.9460
Epoch 13/15
107/107 [===
Epoch 14/15
                 =======] - 22s 202ms/step - loss: 0.0514 - accuracy: 0.9842 - val_loss: 0.1315 - val_accuracy: 0.9542
107/107 [=========================] - 22s 201ms/step - loss: 0.0107 - accuracy: 0.9977 - val_loss: 0.1462 - val_accuracy: 0.9589
```

Olhando para as 'Epoches', é possível notar que a partir da quarta rodada a acurácia não sofre mais tantas alterações. Alguns testes foram feitos usando menos rodadas para análise de dados e foi visto que o resultado final não mudou de forma considerável.

O gráfico mostra o aumento considerável da acurácia em relação às 'Epochs', estabilizando a partir da 4º e se mantendo assim quase todos os testes.

	precision	recall	f1-score	support
вА	0.96	0.99	0.97	77
HA	0.92	0.96	0.94	150
MP	0.99	0.93	0.96	181
SE	0.98	0.90	0.94	105
SL	0.94	0.96	0.95	130
TP	0.94	0.97	0.96	33
TU	0.94	1.00	0.97	118
ZC	1.00	1.00	1.00	58
accuracy			0.96	852
macro avg	0.96	0.96	0.96	852
eighted avg	0.96	0.96	0.96	852

Aqui estão os dados pedidos. Recall e f1 para cada classe de imagens, mantendo um alto nível. A acurácia média ficando em 0,96. Importante notar que a recall e f1 das classes que possuem menor amostragem normalmente são maiores, o que gera uma impressão negativa. Um alto valor não quer dizer que o algoritmo está perfeito, neste caso pode ser que as imagens não se diferem muito entre si, tornando esta classe previsível neste caso. O melhor seria ter um maior número de exemplos para o treinamento com uma grande variedade de tipo de imagem para prever possíveis problemas que podem ser gerados no futuro.

```
accuracy for AB: 98.70% accuracy for HA: 96.00% accuracy for MP: 93.37% accuracy for SE: 90.48% accuracy for SL: 96.15% accuracy for TP: 96.97% accuracy for TU: 100.00% accuracy for ZC: 100.00%
```

Aqui está bem exemplificado o que foi dito acima. Quando duas classes possuem 100% de acurácia quer dizer que temos algum problema. Em casos reais esse valor nunca é atingido porque imprevistos acontecem (entradas que se assemelham muito a uma classe diferente ou a nenhuma delas). Para o trabalho em si é um valor aceitável, mas para uma aplicação real ela se torna limitada.

Talvez algo também para se testar seriam outros tipos de modelos e comparar os resultados com os já obtidos e entender como se comportam com o tipo de entrada que estamos usando aqui.