## Lista 4

## **Contents**

| Problem 1 | . <b></b> |
|-----------|-----------|
| Problem 2 |           |
| Problem 3 |           |
| Problem 4 |           |

**Problema 1** Let M be a compact, connected, orientable n-dimensional manifold. Let  $\Lambda_0, \Lambda_1 \in \Omega^n(M)$  be two volume forms on M such that  $\int_M \Lambda_0 = \int_M \Lambda_1$ . Show that there is a diffeomorphism  $\phi \in Dif(M)$  such that  $\phi^*(\Lambda_1) = \Lambda_0$ .

*Solução.* Aqui sigo as definições em Lee, p. 380. Como M é orientada, em cada ponto podemos pegar um marco orientado (i.e. que em cada ponto pertence à clase de equivalencia dada pela orientação)  $E_1, \ldots, E_n$  tal que as formas  $\Lambda_0$  e  $\Lambda_1$  são sempre positivas ou sempre negativas. Mas ainda, como  $\int_M \Lambda_0 = \int_M \Lambda_1 > 0$ ,

$$\Lambda_0(E_1,\ldots,E_0),\Lambda(E_1,\ldots,E_n)>0$$

para qualquer marco orientado. Daí é claro que  $\Lambda_t(E_1,\ldots,E_n)>0$ , de modo que  $\Lambda_t$  não pode ser a forma zero em nenhum ponto de M, i.e. é uma forma de volumen.

Para ver que  $[\Lambda_0] = [\Lambda_1]$  lembre que  $H^n(M)$  tem dimensão 1. Daí existe um escalar  $\alpha$  tal que  $[\Lambda_0] = \alpha \, [\Lambda_1]$ . Mas, como a integral está bem definida em classes de cohomologia,  $\int_M [\Lambda_0] = \int_M [\Lambda_1] \implies \alpha = 1$ .

Para concluir só devemos aplicar o Método de Moser. Já temos uma família de formas cohomologas, assim existe uma isotopía  $\phi_t$  tal que  $\phi_t^* \Lambda_t = \Lambda_0$ . Pegando t=1 obtemos o difeomorfismo buscado.

**Problem 2** Give an example of two symplectic forms on  $\mathbb{R}^4$  that induce the same orientation, but admit a convex combination that is degenerate. Is it possible to find an example like that, but admitting another of *symplectic* forms from one to the other? What happens if we consider  $\mathbb{R}^2$  instead of  $\mathbb{R}^4$ ?

Solução. (See StackExchange. Here can also be found a nice general explanation of this problem where degenerate forms are seen as a hypersurface in the space of 2-forms.) Lembre que no problema 1 da lista 1 vimos que uma 2-forma  $\omega$  é não degenerada se é só se  $\omega^n \neq 0$ . No nosso caso, qualquer 2-forma em  $\mathbb{R}^4$  pode ser expressada como

$$\omega = \alpha \, dx \wedge dy + \beta \, dx \wedge dz + \gamma \, dx \wedge dw + \delta \, dy \wedge dz + \varepsilon \, dy \wedge dw + \varphi \, dz \wedge dw.$$

Daí,

$$\omega \wedge \omega = 2F dx \wedge dy \wedge dz \wedge dw$$

onde  $F=\alpha\varphi-\beta\epsilon+\gamma\delta$  (vou fazer essa conta num caso análogo abaixo). Segue que  $\omega$  é não degenerada se e só se  $F\neq 0$ . (Então as formas degeneradas são a conica [F=0].)

Nosso primeiro problema é achar  $\omega_0$  e  $\omega_1$  tais que as suas funções associadas como acima,  $F_0$  e  $F_1$ , sejam não-zero, mas que exista uma combinação convexa delas  $\omega_t$  cuja função  $F_t$  sim seja zero. Note que se  $\omega_t = (1-t)\omega_0 + t\omega_1$ ,

$$\begin{split} \omega_t \wedge \omega_t &= \left( (1-t)\omega_0 + t\omega_1 \right) \wedge \left( (1-t)\omega_0 + t\omega_1 \right) \\ &= (1-t)^2 \omega_0 \wedge \omega_0 + t(1-t) \left( \omega_0 \wedge \omega_1 + \omega_1 \wedge \omega_0 \right) + t^2 \omega_1 \wedge \omega_1 \\ &= (1-t)^2 \omega_0 \wedge \omega_0 + \left( 2t(1-t) \right) \omega_0 \wedge \omega_1 + t^2 \omega_1 \wedge \omega_1 \end{split}$$

Agora vou calcular  $\omega_0 \wedge \omega_1$ :

$$\begin{split} &\omega_0 \wedge \omega_1 \\ &= \left(\alpha_1 \, dx \wedge dy + \beta_1 \, dx \wedge dz + \gamma_1 \, dx \wedge dw + \delta_1 \, dy \wedge dz + \epsilon_1 \, dy \wedge dw + \varphi_1 \, dz \wedge dw\right) \\ &\wedge \left(\alpha_2 \, dx \wedge dy + \beta_2 \, dx \wedge dz + \gamma_2 \, dx \wedge dw + \delta_2 \, dy \wedge dz + \epsilon_2 \, dy \wedge dw + \varphi_2 \, dz \wedge dw\right) \\ &= 2\alpha_1 \varphi_2 dx \wedge dy \wedge dz \wedge dw + 2\beta_1 \epsilon_2 dx \wedge dz \wedge dy \wedge dw + 2\gamma_1 \delta_2 dx \wedge dw \wedge dy \wedge dz\right) \end{split}$$

de forma que

$$\omega_0 \wedge \omega_1 = 2 \Big( \alpha_1 \varphi_2 - \beta_1 \varepsilon_2 + \gamma_1 \delta_2 \Big) dx \wedge dy \wedge dz \wedge d$$

Definamos  $F_{01} := \alpha_1 \phi_2 - \beta_1 \varepsilon_2 + \gamma_1 \delta_2$ .

Agora pegue  $\alpha_1=\alpha_2=\varphi_1=\varphi_2=\beta_1=1$ ,  $\epsilon_2=2$  e o resto zero. Obtemosque  $F_0=F_1=1$ , e que  $F_{01}=-1$ . Então

$$\begin{split} \omega_t \wedge \omega_t &= 2 \left( (1-t)^2 - 2t(1-t) + t^2 \right) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \Big( 1 - 2t + t^2 - 2t + 2t^2 + t^2 \Big) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \Big( 1 - 4t + 4t^2 \Big) dx \wedge dy \wedge dz \wedge dw \\ &= 2 (1 - 2t)^2 dx \wedge dy \wedge dz \wedge dw \end{split}$$

Por fim,  $\omega_t$  é degenerada quando t = 1/2.

The best proof that there exists a path of symplectic forms joining  $\omega_0$  to  $\omega_1$  consists in showing that the hypersurface [F=0] separates  $\mathbb{R}^6$  into two connected components given by [F>0] and [F<0] (which is proved in StackEchange). Then showing that there is a path joining  $\omega_0$  and  $\omega_1$  ammounts to showing that they belong to the same connected component, i.e.  $F_i$  is positive or negative for both i=1,2, which is indeed the case since we have  $F_1=F_2=1$ .

Contudo, uma prova mas direita consiste em observar o seguinte: os valores de  $\beta_1$  e  $\epsilon_2$  não alteram o fato de que  $\omega_0$  e  $\omega_1$  sejam formas não degeneradas (e que induzem a mesma orientação), enquanto que  $\omega_t \wedge \omega_t$  sí pode mudar.

Um exemplo onde toda combinação convexa de duas formas  $\omega_0$  e  $\omega_1$  é o seguinte. Fixe os mesmos valores  $\alpha_1, \alpha_2, \ldots$  como no caso anterior, mas troque  $\epsilon_2 = 1$ . Obtemos que  $F_{01} = 0$ , de modo que

$$\begin{split} \omega_t \wedge \omega_t &= 2 \left( (1-t)^2 + t^2 \right) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \Big( 1 - 2t + 2t^2 \Big) dx \wedge dy \wedge dz \wedge dw \end{split}$$

que é não zero para todo valor de t.

Para um exemplo mais elaborado considere de novo formas  $\omega_0$  e  $\omega_1$  do primeiro exemplo. De fato, existe um caminho de formas simpléticas que as conecta. O método é trocar  $\beta_1$  e  $\epsilon_0$  por funções de t.

Primeiro fixe os mesmos valores  $\alpha_1, \alpha_2, \dots$  como no caso anterior, mas deixe  $\beta_1$  e  $\epsilon_2$  sem definir. Obtemos que:

$$\begin{split} \omega_t \wedge \omega_t &= 2 \left( (1-t)^2 + 2t(1-t)\beta_1 \epsilon_2 + t^2 \right) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \Big( 1 - 2t + t^2 + 2t\beta_1 \epsilon_2 - 2t^2\beta_1 \epsilon_2 + t^2 \Big) dx \wedge dy \wedge dz \wedge dw \\ &= 2 \Big( (2 - 2\beta_1 \epsilon_2) t^2 - 2t(\beta_1 \epsilon_2 - 1)t + 1 \Big) dx \wedge dy \wedge dz \wedge dw \end{split}$$

Agora defina

$$\beta_1 = -2(t-1/2), \qquad \qquad \epsilon_0 = 4(t-1/2)$$

e considere a família de formas  $\omega_t'=(1-t)\omega_0(t)\omega_1(t)$ . Note que  $\omega_0'=\omega_0$  e  $\omega_1'=\omega_1$ . Daí,

$$\begin{split} \omega_t \wedge \omega_t &= 2 \Bigg( \big( (2 - 2 \big( \underbrace{-2(t-1/2)}_{\beta_1} \big) \underbrace{4(t-1/2)}_{\epsilon_2} \big) t^2 \\ &- 2t \Big( \big( \underbrace{-2(t-1/2)}_{\beta_1} \big) \underbrace{4(t-1/2)}_{\epsilon_2} - 1 \Big) t + 1 \Bigg) dx \wedge dy \wedge dz \wedge dw \end{split}$$

Para calcular isso calculei que

$$\beta_1\epsilon_2=-8t^2-4t+1$$

daí cheguei a que

$$\omega_t \wedge \omega_t = 2(32t^4 - 32t^3 + 6t^2 + 1) dx \wedge dy \wedge dz \wedge dw$$

de modo que F<sub>t</sub> nunca se anula.



 $F_t$ 

Em fim, no caso de  $\mathbb{R}^2$ , as formas  $\omega_0$  e  $\omega_1$  nunca se anulam já que elas são formas de grau máximo. Daí, toda combinação convexa delas, que também é de grau máximo, não pode ser zero e portanto é não degenerada.

**Problem 3** Let  $(V, \Omega)$  be a symplectic vector space (or vector bundle) and let  $W \subseteq V$  be a coisotropic subspace (or bundle).

- a. Let E be a complement of  $W^{\Omega}$  in W, i.e.,  $W = W^{\Omega} \oplus E$ . Show that the restriction of  $\Omega$  to E is nondegenerate.
- b. Let J be a  $\Omega$ -compatible complex structure, with g the associated inner product. Show that  $\Omega$  induces an identification of  $J(W^{\Omega}) = W^{\perp}$  with  $(W^{\Omega})^*$ . Taking E as the orthogonal complement (with respect to g) to  $W^{\Omega}$  in W (this means that  $W = W^{\Omega} \oplus E$ ), show that the identification

$$V \cong E \oplus (W^{\Omega} \oplus (W^{\Omega})^*),$$

is an isomorphism of symplectiv vector spaces (bundles)—on the right-hand-side, E is equipped with its induced symplectic form (see a. above) and  $W^{\Omega} \oplus (W^{\Omega})^*$  with its canonical symplectic form.

Solução.

- a. Basta ver que  $\ker \Omega|_{\mathsf{E}} = 0$ . Se  $e \in \ker \Omega|_{\mathsf{E}}$ , então eu gostaria de ver que  $e \in W^{\Omega}$  para concluir que e = 0. Seja  $w \in W$ . Então  $\Omega(e, w) = \Omega(e, w_1 + w_2)$  com  $w_1 \in W^{\Omega}$  e  $w_2 \in \mathsf{E}$ . Daí  $\Omega(e, w) = 0$  já que tanto  $\Omega(e, w_1) = 0$  porque  $e \in \mathsf{E} \subset W$  quanto  $\Omega(e, w_2) = 0$  porque  $e \in \mathsf{E}$ .
- b. Considere o mapa

$$J(W^{\Omega}) \longrightarrow (W^{\Omega})^*$$
$$Jw \longmapsto i_w \Omega = \Omega(w,\cdot)$$

Note que  $J(W^{\Omega})$  e  $W^{\Omega}$  são espaços vetorias de dimensões iguais, e que esse mapa tem kernel trivial pela não degeneração de  $\Omega$ . Isso explica que é um isomorfismo.

Para construir o isomorfismo requerido note que por definição  $W\cong E\oplus W^\Omega$ . E como mostramos que  $W^\perp\cong (W^\Omega)^*$ , sabemos que  $V\cong W\oplus (W^\Omega)^*$ . Daí o isomorfismo algébrico está comprovado por causa de que a soma direita é associativa. Issto é, temos um isomorfismo de espaços vetoriais

$$\Phi: V \longrightarrow E \oplus W^{\Omega} \oplus (W^{\Omega})^*$$
$$\nu \longmapsto (\nu_1, \nu_2, \nu_3)$$

onde 
$$g(v_1, v_2) = 0$$
 e  $g(v_1 + v_2, v_3) = 0$ .

Agora vamos comprovar que esse mapa é um simplectomorfismo,

**Problem 4** Prove the following generalization of Weinstein's lagrangian neighbourhood theorem to coisotropic submanifolds (due to Gotay, 1982): Let  $(M_0, \omega_0)$  be and  $(M_1, \omega_1)$  be symplectic manifolds, and  $\iota_0: Q \longrightarrow M_0$ ,  $\iota_1: Q \longrightarrow M_1$  be coisotropic embeddings. If  $\iota_0^*\omega_0 = \iota_1^*\omega_1$  then there exist open neighbourhoods  $\mathcal{U}_0$  and  $\mathcal{U}_1$  of Q, in  $M_0$  and  $M_1$ , and a diffeomorphism  $\varphi: \mathcal{U}_0 \longrightarrow \mathcal{U}_1$  such that  $\varphi(\mathfrak{p}) = \mathfrak{p}$  for all  $\mathfrak{p} \in Q$  and  $\varphi^*\omega_1 = \omega_0$ .

Solução. Estamos aqui:



## Em aula demostramos que:

**Theorem** (Teorema de Darboux generalizado Versão 2.0) Suponha que, além do diagrama anterior, temos um isomorfismo de fibrados simplécticos



tal que  $\phi|_{TQ}: TQ \to TQ$  é  $id_{TQ}$ .

Então φ estende a derivada de um simplectomorfismo



i.e.,

$$d\varphi|_{Q} = \varphi : TM_{0}|_{Q} \rightarrow TM_{1}|_{Q}$$

Em palavras: a derivada do simplectomofismo (entre as vizinhanças de  $M_1$  e  $M_2$ ) que obtemos é estendida pelo isomorfismo simplético dos fibrados tangentes que nos foi dado.

Portanto, para nosso exercício só precisamos achar um simplectomorfismo  $\phi$  de fibrados tangentes que restringe a identidade no TQ.

Também é bom lembrar que na prova do teorema das vizinhanças lagrangianas construiimos esse simplectomorfismo de fibrados do seguinte jeito:



Issto é, mostrando que, no caso lagragiano, existe um isomorfismo de fibrados tangentes entre o fibrado tangente da variedade ambiente restrito à subvariedade lagrangiana e a soma direita  $T\mathcal{L} \oplus (T\mathcal{L})^*$ . Aplicando isso usando como variedade ambiente tanto M quanto  $T^*M$  construimos o diagrama anterior.

A estrutura complexa foi usada para obter a descomposição  $T\mathcal{L} \oplus (T\mathcal{L})^*$ : o que fizemos foi construir o complemento ortogonal usando a métrica compatível e daí mostramos que esse complemento é de fato isomorfo a  $(T\mathcal{L})^*$ .

No caso coisotrópico temos, pelo exercício anterior, dois isomorfismos de fibrados

$$\mathsf{T} \mathsf{M}_1 \cong \mathsf{E}_1 \oplus \Big( \mathsf{T} \mathsf{Q}^\omega \oplus (\mathsf{T} \mathsf{Q}^\omega)^* \Big), \qquad \qquad \mathsf{T} \mathsf{M}_2 \cong \mathsf{E}_2 \oplus \Big( \mathsf{T} \mathsf{Q}^\omega \oplus (\mathsf{T} \mathsf{Q}^\omega)^* \Big)$$

então é claro que se  $E_1 \cong E_2$  terminhamos. Mas  $E_i$  é só o complemento ortogonal de  $TQ^\omega$  respeito à métrica compatível  $g_i$  em TQ, enquanto  $g_1$  e  $g_2$  coincidem em TQ já que  $\omega_1|_Q=\omega_2|_Q$  por hipótese (o pullback das incluções coincide). Note que também é imediato que a restrição desse isomorfismo a TQ é a identidade.