Discrete Math Chapter 5 (Attempt) Solutions

Question 1. (Exercise 5.1) Explain why the following is logically correct:

- 1. Everyone loves my baby;
- 2. My baby loves only me;
- 3. Therefore, I am my own baby.

Solution:

From statement 1, "everyone" includes the baby itself, so the baby loves itself. But statement 2 says the baby only loves one person: me. Therefore, if the baby loves itself and only loves me, I must be the baby. Hence, I am my own baby.

Question 2. (Nearly Exercise 5.3) Determine which of the following are statements. If so, identify whether they are true or false.

Solution:

- (a) $\sin(\pi) = 0$ This is a true statement.
- (b) If x is an integer, then x is positive This is a false statement (e.g., x = 0 or x = -1).
- (c) "The sets \mathbb{Z} and \mathbb{Q} " Not a statement; this is a noun phrase.
- (d) "The sets \mathbb{Z} and \mathbb{Q} both contain $\sqrt{2}$ " False. \mathbb{Z} and \mathbb{Q} do not contain $\sqrt{2}$ since it is irrational.

Question 3. (Exercise 5.5) Consider the open sentence:

$$\frac{2n^2 + 5 + (-1)^n}{2}$$
 is prime.

Solution:

For n = 1:

$$\frac{2(1)^2 + 5 + (-1)}{2} = \frac{6}{2} = 3 \Rightarrow \text{prime.}$$

For n = 5:

$$\frac{2(5)^2 + 5 + (-1)^5}{2} = \frac{50 + 5 - 1}{2} = \frac{54}{2} = 27 \Rightarrow \text{not prime.}$$

So it is true for n = 1 and false for n = 5.

Question 4. (Exercise 5.8 parts (f)-(h)) Rewrite each sentence in the form "If P, then Q." Solution:

- (f) If a tree has m edges, then it has m+1 vertices.
- (g) If an integer is not odd, then it is even.
- (h) If a geometric series has ratio r with $|r| \geq 1$, then the series diverges.

Question 5. (Exercise 5.9(d)) Rewrite as a biconditional.

Solution:

N is a normal subgroup of G if and only if Ng = gN for all $g \in G$.

Question 6. (Exercise 5.10 parts (g)-(h)) Negate the following statements. **Solution:**

(g) Original: For all $\varepsilon > 0$ there exists some $\delta > 0$ such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$. Negation: There exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists x with $|x - a| < \delta$ and $|f(x) - f(a)| \ge \varepsilon$.

(h) Original: If I pass Algebra I and Analysis I this semester, then I will take Algebra II or Analysis II next semester.

Negation: I pass Algebra I and Analysis I this semester, and I will not take Algebra II and I will not take Analysis II next semester.

Question 7. (Nearly Exercise 5.18(d)) Construct a truth table for $\sim (\sim P \vee Q)$.

Solution:

P	Q	$\sim P$	$\sim P \vee Q$	$\sim (\sim P \vee Q)$
Т	Т	F	Т	F
T	F	F	F	${ m T}$
F	Τ	Γ	Τ	F
F	F	Т	Τ	F

Question 8. (Exercise 5.18(f)) Construct a truth table for $(P \wedge Q) \vee \sim R$.

Solution:

Solution.							
P	Q	R	$P \wedge Q$	$\sim R$	$(P \land Q) \lor \sim R$		
Т	Т	Т	Т	F	Т		
T	Т	F	Т	Τ	ightharpoons T		
T	F	Γ	F	F	F		
T	F	F	F	Т	T		
F	Т	Т	F	F	F		
F	Т	F	F	Τ	ightharpoonup		
F	F	Т	F	F	F		
F	F	F	F	Τ	ight] T		

Question 9. (Exercise 5.22(g)) Show that $P \Rightarrow Q \equiv \sim P \vee Q$.

Solution:

Solution.							
P	Q	$P \Rightarrow Q$	$\sim P$	$\sim P \vee Q$			
Т	Т	Т	F	Τ			
Γ	F	F	\mathbf{F}	${ m F}$			
F	Т	T	${ m T}$	${ m T}$			
F	F	Т	${ m T}$	${ m T}$			

Since the final columns match, the two expressions are logically equivalent.

Question 10. (Exercise 5.26(d)) Determine whether $(P \lor Q) \lor (\sim P \land \sim Q)$ is a tautology. **Solution:**

P	Q	$P \lor Q$	$\sim P$	$\sim Q$	$\sim P \land \sim Q$	Final Expr
T	Т	Т	F	F	F	Т
$\mid T \mid$	F	Τ	F	Τ	F	T
F	Т	Т	Τ	F	F	Γ
F	F	F	Τ	Τ	T	m T

All rows in the final column are true. Thus, this is a tautology.