- 1. Consider a pendulum of length l with a mass m. We will need this going forward with our investigation of oscillatory motion under different regimes (damping, driven, etc.)
 - (a) Derive the equation of motion for this system when the amplitude is small.
 - (b) How does frequency depend on amplitude?
 - (c) How does frequency depend on mass?
 - (d) How does frequency depend on length?
 - (e) Generate a phase-space diagram for θ and $\dot{\theta}$. Label all important points. Show that there is a clockwise rotation in phase space.
 - (f) Generate a phase-space diagram with an initial amplitude larger than part (??)
 - (g) What is $\theta(t)$?
 - (h) What is $\theta(t)$?
 - (i) What is x(t)?
 - (j) What is y(t)?
 - (k) Show that the total energy of this system is conserved with respect to time.
 - (l) Build a real pendulum and collect some data on its behaviour for small amplitude oscillations. How does your model compare to a real system?