First Order ODE

1. Reduction to Separable Form

$$y' = g\left(\frac{y}{x}\right)$$

Set $\frac{y}{x}$ to be v, then y = vx and y' = v + xv'

2. Linear Change of Variable

$$\overline{y'} = f(ax + by + c)$$

where f is continuous and $b \neq 0$, solve by setting

$$u = ax + by + c$$

Linear First Order ODE

1. Integrating Factor

$$\frac{dy}{dx} + P(x)y = Q(x)$$

Obtain the integrating factor R,

$$R(x) = e^{\int P(x) dx}$$

Solve by setting:

$$Ry' + RPy = RQ \text{ or } (Ry)' = RQ$$

2. Reduction to Linear Form (Bernoulli Equation)

$$y' + P(x)y = Q(x)y^n$$

Solve by rewriting:

$$y^{-n}y' + y^{1-n}P(x) = q(x)$$
Set $y^{1-n} = z$, so $z' = (1-n)y^{-n}y'$,
$$z' + (1-n)P(x)z = (1-n)q(x)$$

Linear Second Order Homogenous ODE

1. Characteristic Equation

y'' + ay' + by = 0 has the characteristic equation:

$$\lambda^{2} + a\lambda + b = 0$$
$$\lambda_{1}\lambda_{2} = \frac{1}{2}(-a \pm \sqrt{a^{2} - 4b})$$

Distinct Roots

$$v = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$$

3. Real Double Roots

$$y = (A + Bx)e^{-\frac{ax}{2}}$$

4. Complex Roots $(\lambda_1 \lambda_2 = \frac{a}{2} \pm i\omega)$

$$y = (A\cos\omega x + B\sin\omega x)e^{-\frac{ax}{2}}$$

Linear Second Order Nonhomogeneous ODE

1. General Solution

$$y'' + P(x)y' + Q(x)y = R(x)$$
$$y(x) = y_h(x) + y_n(x)$$

2. Method of Undetermined Coefficient (Polynomial)

$$y'' + ay' + y = x^2 + x + 2$$

Try
$$y = Ax^2 + Bx + C$$
:

$$Ax^{2} + (B - 8A)x + 2A - 4B + C = x^{2} + x + 2$$

Compare coefficients:

$$A = 1, B = 9, C = 36$$

 $\therefore y_n(x) = x^2 + 9x + 36$

3. Method of Undetermined Coefficient (Exponential)

$$y'' - 4y' + 2y = 2x^3 e^{2x}$$

Try $y = ue^{2x}$

$$u''e^{2x} - 2ue^{2x} = 2x^3e^{2x}$$
$$u'' - 2u = 2x^3$$

4. Method of Undetermined Coefficient (Trigonometry)

$$y'' + 4y = 16x \sin 2x$$

Solve instead $z'' + 4z = 16xe^{i2x}$ using Method of Undetermined

Coefficient (Exponential):

$$u^{\prime\prime} + 4iu^{\prime} = 16x$$

Solve using Undetermined Coefficient (Polynomial), $u = -2ix^2 + x$ and $z = (-2ix^2 + x)e^{i2x}$

$$\therefore y_p(x) = Imz = x \sin 2x - 2x^2 \cos 2x$$

5. Method of Variations of Parameters

$$\begin{aligned} y_p(x) &= u(x)y_1(x) + v(x)y_2(x) \\ y_h(x) &= Ay_1(x) + By_2(x) \\ u &= -\int \frac{y_2 r}{y_1 y_2' - y_1' y_2} dx \\ v &= \int \frac{y_1 r}{y_1 y_2' - y_1' y_2} dx \end{aligned}$$

Simple Harmonic Motion

$$mL\ddot{\theta} = -mg\sin\theta$$

Unstable Equilibrium ($\theta = \pi$):

$$\sin \theta \approx -(\theta - \pi)$$

$$mL\ddot{\theta} = -mg(\theta - \pi)$$

$$\pi - \theta = Ae^{(\sqrt{g/L})t} + Be^{-(\sqrt{g/L})t}$$

Stable Equilibrium ($\theta = 0$):

$$\sin \theta \approx \theta$$

$$mL\ddot{\theta} = -mg\theta$$

$$\ddot{\theta} = -\frac{g}{L}\theta = -\omega^2\theta$$

$$\theta = A\cos \omega t + B\sin \omega t \text{ or } \theta = A\cos(\omega t - \delta)$$

Damping:

For a SHM with equation:

$$A\ddot{x} + B\dot{x} + Cx = 0$$

Underdamped if
$$B^2 - 4AC > 0$$

Critically damped if $B^2 - 4AC = 0$
Overdamped if $B^2 - 4AC > 0$

Forced Oscillations

No force applied:

$$m\ddot{x} = -kx = -m\omega^2 x$$

Force applied:

$$m\ddot{x} + kx = F_0 \cos \alpha t$$

$$x = \frac{2F_0/m}{\alpha^2 - \omega^2} \sin \left[\left(\frac{\alpha - \omega}{2} \right) t \right] \sin \left[\left(\frac{\alpha + \omega}{2} \right) t \right]$$

At resonant $(\alpha \to \omega)$:

$$x = \frac{F_0 t}{2m\omega} \sin(\omega t)$$

Conservation

$$m\frac{d}{dx}\left(\frac{1}{2}\dot{x}^2\right) = -kx$$
$$E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

Malthus Model

$$\frac{dN}{dt} = (B - D)N = kN$$
$$N(t) = N_0 e^{kt}$$

Logistic Model

$$\frac{dN}{dt} = BN - DN = BN - sN^{2}$$

$$N_{\infty} = \frac{B}{s}$$

$$N(t) = \frac{B}{s + \left(\frac{B}{N_{0}} - s\right)e^{-Bt}} \leftrightarrow N(t) < N_{\infty}$$

$$N(t) = \frac{B}{s - \left(s - \frac{B}{N_{0}}\right)e^{-Bt}} \leftrightarrow N(t) > N_{\infty}$$

Logistic Model with Harvesting

$$\frac{dN}{dt} = BN - DN - E = N(B - sN) - E$$

Population wiped out:

$$E > \frac{B^2}{4s}$$

Population at stable equilibrium $\beta_2 \leftrightarrow \beta_2 > \beta_1$:

$$E < \frac{B^2}{4s}$$

$$\beta_1 \beta_2 = \frac{-B \pm \sqrt{B^2 - 4Es}}{-2s}$$

Population at unstable equilibrium:

$$E = \frac{B^2}{4s}$$

Wave Equation

$$c^{2} \frac{\partial^{2} y}{\partial x^{2}} = \frac{\partial^{2} y}{\partial t^{2}}$$
$$y(t, x) = \frac{1}{2} [f(x + ct) + f(x - ct)]$$

Heat Equation

$$u_t = c^2 u_{xx}$$

$$u(0,t) = u(L,t) = 0$$

$$u(x,0) = f(x)$$

Lanlace Transformation

Laplace Transformation	
$\mathcal{L}(1) = \frac{1}{s}$	$\mathcal{L}(e^{at}) = \frac{1}{s-a}$
$\mathcal{L}(1) = \frac{1}{s}$ $\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$	$\mathcal{L}(e^{at}) = \frac{1}{s - a}$ $\mathcal{L}(\sqrt{t}) = \frac{\sqrt{\pi}}{2s^{3/2}}$
$\mathcal{L}(\cosh at) = \frac{s}{s^2 - a^2}$ $\mathcal{L}(\cos at) = \frac{s}{s^2 + a^2}$	$\mathcal{L}(\sinh at) = \frac{a}{s^2 - a^2}$ $\mathcal{L}(\sin at) = \frac{a}{s^2 + a^2}$
$\mathcal{L}(\cos at) = \frac{s}{s^2 + a^2}$	$\mathcal{L}(\sin at) = \frac{a}{s^2 + a^2}$
$\mathcal{L}(t\cos at)$	$= \frac{s^2 - a^2}{(s^2 + a^2)^2}$ 2as
$\mathcal{L}(t\sin at)$:	$=\frac{2as}{(s^2+a^2)^2}$
$\mathcal{L}(\cos at - at \sin at)$	$at) = \frac{s(s^2 - a^2)}{(s^2 + a^2)^2}$
$\mathcal{L}(\cos at + at \sin at)$	$\frac{-(s^2 + a^2)^2}{2as} = \frac{2as}{(s^2 + a^2)^2}$ $at) = \frac{s(s^2 - a^2)}{(s^2 + a^2)^2}$ $at) = \frac{s(s^2 + 3a^2)}{(s^2 + a^2)^2}$ $at) = \frac{2as}{(s^2 + 3a^2)}$ $at) = \frac{2as}{(s^2 + 3a^2)^2}$
$\mathcal{L}(\sin at - at \cos at)$	$(s^{2} + a^{2})^{2}$ $(sat) = \frac{2a^{3}}{(s^{2} + a^{2})^{2}}$ $2a^{2}$
$\mathcal{L}(\sin at + at \cos at)$	$(sat) = \frac{2a^2}{(s^2 + a^2)^2}$
$\mathcal{L}(\sin(at+b)) =$	$= \frac{s\sin b + a\cos b}{s^2 + a^2}$
$\mathcal{L}(\cos(at+b)) =$	$=\frac{s\cos b - a\sin b}{s^2 + a^2}$
$\mathcal{L}(\cos(at+b)) = \mathcal{L}(e^{at}t^n) = \mathcal{L}(e^{at}\cos\omega t) = \mathcal{L}(e^{at}\cos\omega t$	$\frac{n!}{(s-a)^{n+1}}$
$\mathcal{L}(e^{at}\cos\omega t) =$	$=\frac{s-a}{(s-a)^2+\omega^2}$
$\mathcal{L}(e^{-\epsilon}\sin\omega\iota) =$	$\frac{1}{(c-a)^2+\omega^2}$
$\mathcal{L}(e^{at}\cosh\omega t)$	$=\frac{s-a}{s-a}$ $=\frac{(s-a)^2-\omega^2}{\omega}$
$\mathcal{L}(e^{at}\sinh\omega t)$	$= \frac{\omega}{(s-a)^2 - \omega^2}$ $(a) = e^{-as} \mathcal{L}(f(t))$
$\mathcal{L}(f(t-a)u(t-a$	$a(a) = e^{-as} \mathcal{L}(f(t))$ $a(a) = \frac{e^{-as}}{s}$
$\mathcal{L}(\delta(t-a))$	$a(x) = e^{-as}$
$\therefore \hat{\mathcal{L}}^{-1}(1)$	$\Delta = \delta(t)$

anlace	Transfo	rmation	of Dei	ivatives

Bupinee Fransieri	and of Berriad to
$\mathcal{L}(f')$	$s\mathcal{L}(f) - f(0)$
$\mathcal{L}(f'')$	$s^2 \mathcal{L}(f) - sf(0) - f'(0)$
$\mathcal{L}(f''')$	$s^3 \mathcal{L}(f) - s^2 f(0) - sf'(0) - f''(0)$

Laplace Transformation of Integrals

$$\mathcal{L}\left(\int_0^t f(\tau)d\tau\right) = \frac{1}{s}\mathcal{L}(f)$$

Trigonomotrio Identities

Trigonometric Identities	
1	1
$\csc x = \frac{1}{\sin x}$	$\sec x = \frac{1}{\cos x}$
$\tan x = \frac{\sin x}{1}$	$\cot x = \frac{\cos x}{\cos x}$
$\cos x$	sin x
	$\cos B \pm \cos A \sin B$
$\cos(A \pm B) = \cos A$	$1\cos B \mp \sin A \sin B$
$\tan(A \pm B) = 0$	$\tan A \pm \tan B$
	1 ∓ tan <i>A</i> tan <i>B</i>
	$\sin A \cos A$
$\cos 2A = \cos^2 A - \sin^2 A =$	$2\cos^2 A - 1 = 1 - 2\sin^2 A$
tan 24 =	2 tan A
$\tan 2A = -$	$1 - \tan^2 A$
$\sin A + \sin B = 2 \mathrm{s}$	$A + B \qquad A - B$
$\sin A - \sin B = 2 \mathrm{s}$	A-B $A+B$
$\cos A + \cos B = 2c$	
$\cos A - \cos B = 2$	$\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
$\sin A \sin B = \frac{1}{2} [\cos(A)]$	$(A-B)-\cos(A+B)]$
$\cos A \cos B = \frac{1}{2} [\cos(a)$	$(A-B)+\cos(A+B)]$
$\sin A \cos B = \frac{1}{2} [\sin(A + B)]$	$(A+B)+\sin(A-B)]$
$\cos A \sin B = \frac{1}{2} [\sin(A)]$	$(A+B)-\sin(A-B)]$
·	· · · · · · · · · · · · · · · · · · ·

Hyperbolic Functions

$ cosh x = \frac{e^x + e^{-x}}{2} $	$\sinh x = \frac{e^x - e^{-x}}{2}$	
$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right)$	$\cosh^{-1} x = \ln\left(x \pm \sqrt{x^2 - 1}\right)$	
$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$		
$\tanh^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x}$		

Partial Differential Equation

$$u_v = 2u_{xx}, u(0,t) = u(3,t) = 0, u(x,0) = 5\sin 4\pi x$$

- 1. Set u(x, y) = X(x)Y(y), $u_{xx} = X''(x)Y(y)$ and $u_y = X(x)Y'(y)$
- 2. Substitute u, u_{xx} and u_y into equation to obtain X'' - kX = 0 and Y' - 2kY = 0

ntegration and	Differentiation	Techniques
----------------	-----------------	------------

ntegration and Differentiation Techniques			
f(x)	f'(x)		
$\sin^{-1} x$	1		
	$\sqrt{1-x^2}$		
$\cos^{-1} x$	1		
	$-\frac{1}{\sqrt{1-x^2}}$		
tan ⁻¹ x	1		
	$1 + x^2$		
csc x	$\csc x \cot x$		
sec x	sec x tan x		
$sinh^{-1} x$	1		
	$\sqrt{1+x^2}$		
cosh ^{−1} x	1		
	$\pm \sqrt{x^2-1}$		
$tanh^{-1} x$	1		
	$1-x^2$		
f(x)g(x)	f(x)g'(x) + f'(x)g(x)		
$\frac{f(x)g(x)}{f(x)}$	f(x)g'(x) + f'(x)g(x) $g(x)f'(x) - f(x)g'(x)$		
$\overline{g(x)}$	$g^2(x)$		

f(x)	$\int f(x) dx$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right)$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right)$
tan x	$ln(\sin x)$
csc x	$-\ln(\csc x + \cot x)$
sec x	$\ln(\sec x + \tan x)$
$\sin^2 ax$	$\frac{x}{2} - \frac{\sin 2ax}{4x}$
$\cos^2 ax$	$\frac{x}{2} + \frac{\sin 2ax}{4x}$
$\frac{1}{a^2 - x^2}$	$\frac{1}{2a}\ln\frac{x+a}{x-a}$
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a} \ln \frac{x-a}{x+a}$
uv' dx	$uv - \int u'vdx$

Partial Fractions

px + q A B	
$\frac{1}{(ax+b)(cx+d)} = \frac{1}{ax+b} + \frac{1}{cx+d}$	
$px^2 + qx + r$ A B C	
$\frac{1}{(ax+b)(cx+d)^2} = \frac{1}{ax+b} + \frac{1}{cx+d} + \frac{1}{(cx+d)^2}$	
$px^2 + qx + r$ A $Bx + C$	
$\frac{1}{(ax+b)(x^2+c^2)} = \frac{1}{ax+b} + \frac{1}{x^2+c^2}$	
	_

- 3. Solve to obtain $X(x) = a \cos \sqrt{-k}x + b \sin \sqrt{-k}x$ and $Y(y) = Ae^{2ky}$
- 4. Using boundary conditions, X(0) = a = 0, $X(3) = b \sin 3\sqrt{-k} = 0$ 5. $\sqrt{-k} = \frac{n\pi}{3}$, $k = \frac{-n^2\pi^2}{9}$, $u_n(x, y) = b_n e^{-\frac{2n^2\pi^2y}{9}} \sin \frac{n\pi x}{3}$ 6. $u(x, 0) = 5 \sin 4\pi x$, n = 12