#### **Amsterdam Pizzeria**

### Introduction

Imagine that you want to open a new pizzeria in Amsterdam. The big question is: What is a good location?

This notebook is trying to answer this question by examining the amount of pizzerias and population per neighborhood.

#### Data

Three different data sources will be used in this project:

- The geodata about the neighborhoods is retrieved from <a href="https://data.overheid.nl/dataset/mea3qdtnvln9ca">https://data.overheid.nl/dataset/mea3qdtnvln9ca</a>. This data is a so called shapefile. To read and modify this data, the geopandas package is used.
- The population data about the neighborhoods is retrieved from <a href="https://data.amsterdam.nl/datasets/DMknRs8hEH-CtA/bevolking-wijken/">https://data.amsterdam.nl/datasets/DMknRs8hEH-CtA/bevolking-wijken/</a>. The file with expected population between 2020 and 2050 is used. This contains data from 2020, 2025, 2030, 2040 and 2050 on neighborhood level.
- The amount of pizzerias and food places in Amsterdam is retrieved by using the Foursquare API. At first, only the data of all the pizzeria's is retrieved by specifying it in the query. After this, all food places in the area of the centroid of the neighborhood are retrieved.

## Methodology

The starting point was retrieving and transforming the data from the shapefile about the defined areas in Amsterdam. This resulted in 386 defined areas and the following map:



Figure 1: Defined areas in Amsterdam

After this, population data is retrieved and examined. In this file, there are only 101 defined neighborhoods with the following summary statistics:

| :     | 2020         | 2025         | 2030         | 2040         | 2050         |
|-------|--------------|--------------|--------------|--------------|--------------|
| count | 91.000000    | 91.000000    | 91.000000    | 91.000000    | 91.000000    |
| mean  | 9296.901099  | 9755.604396  | 10071.912088 | 10728.692308 | 11163.670330 |
| std   | 5571.873208  | 5818.566328  | 5962.490286  | 6435.329907  | 6935.461238  |
| min   | 0.000000     | 1121.000000  | 1098.000000  | 1063.000000  | 1047.000000  |
| 25%   | 5187.500000  | 5566.500000  | 5489.000000  | 5906.500000  | 5886.500000  |
| 50%   | 8537.000000  | 8831.000000  | 8964.000000  | 9387.000000  | 9592.000000  |
| 75%   | 12576.000000 | 13829.000000 | 14181.500000 | 15011.000000 | 15360.000000 |
| max   | 29788.000000 | 29999.000000 | 31944.000000 | 31619.000000 | 35390.000000 |

Figure 2: Summary statistics of population data

So in 2020, the most populated neighborhood had 29788 inhabitants, while the least one had zero inhabitants.

Given that the area do not match, the geodata had to be aggregated to neighborhood level. After this, the two dataframes are merged and give the following choropleth map of the population in 2020:



Figure 3: Choropleth map of Amsterdam population 2020

After this, I moved on to the Foursquare data. At first, I was only interested in the existing pizza places in Amsterdam, so this was defined in the query. There were only 41 pizza places in Amsterdam:



Figure 4: Location of pizza places in Amsterdam according to Foursquare

So there are a lot of areas without a pizza place. Therefore, further analysis is necessary to find the optimal neighborhood to start a new pizzeria. This is done by retrieving all the food places from Foursquare API based on the centroid of the neighborhood and a 500 meter radius. This was the result:



Figure 5: All food places in Amsterdam according to Foursquare

If we transform figure 5 to a choropleth map, this is the result:



Figure 6: Amount of food places per neighborhood

### **Results & Discussion**

To determine the best location, the population of 2020 and 2025 is used. These numbers are divided by the amount of food places according to Foursquare. The next figure shows a summary of the ratio of 2020:

| count | 91.000000   |
|-------|-------------|
| mean  | 361.174931  |
| std   | 357.542519  |
| min   | 0.000000    |
| 25%   | 143.950204  |
| 50%   | 236.354167  |
| 75%   | 408.318182  |
| max   | 1518.500000 |

Figure 7: Summary statistics of ratio 2020

So there is one food place for every 361 inhabitants in Amsterdam. The top 5 least covered neighborhoods are the following ones:

|    | Name                 | Venue | 2020  | Ratio 2020  |
|----|----------------------|-------|-------|-------------|
| 87 | Nellestein           | 2     | 3037  | 1518.500000 |
| 89 | Gein                 | 8     | 11327 | 1415.875000 |
| 67 | Banne Buiksloot      | 11    | 14781 | 1343.727273 |
| 86 | Bijlmer-Oost (E,G,K) | 23    | 29788 | 1295.130435 |
| 72 | Geuzenveld           | 13    | 16535 | 1271.923077 |

Figure 8: Top 5 least covered areas in 2020

If we do the same analysis based on population data of 2025, the results are the same:

| : |    | Name                 | Venue | 2025  | Ratio 2025  |
|---|----|----------------------|-------|-------|-------------|
|   | 87 | Nellestein           | 2     | 2863  | 1431.500000 |
|   | 89 | Gein                 | 8     | 11297 | 1412.125000 |
|   | 67 | Banne Buiksloot      | 11    | 14787 | 1344.272727 |
|   | 86 | Bijlmer-Oost (E,G,K) | 23    | 29999 | 1304.304348 |
|   | 72 | Geuzenveld           | 13    | 16407 | 1262.076923 |

Figure 9: Top 5 least covered areas in 2025

Therefore, the results seem consistent.

# Conclusion

Based on the population per food place, the conclusion can be made that Nellestein, Gein, Banne Buiksloot, Bijlmer-Oost, and Geuzenveld are the best options to start a new pizzeria. This results seems to be consistent over the next 5 years. Furthermore, there are no pizza places in those areas yet:



Figure 10: Population per food venue in 2020