Introduction to Semiconductors P-N Junction Diode

S. Lodha

EE 101

Autumn 2015

Conductivity of metals

$$I = \frac{Nq}{T} = \frac{Nqv}{L}$$

$$J = \frac{Nqv}{AL} = nqv = nq\mu E$$

$$J = \sigma E \Rightarrow \sigma = nq\mu$$

Ohm's Law

$$J = \sigma E \Longrightarrow I = \frac{\sigma A}{L}V$$

$$R = \frac{\sigma A}{L}$$

- Metal → free valence electrons
- Without applied voltage → random thermal motion, avg current=0
- With applied voltage ightarrow electrons go from high to low potential
- v=drift velocity=μΕ
- μ is mobility in cm²/Vs
- Typically for metals
 - Cu, $n^{10^{28}-10^{29}}$ e/m³
 - High conductivity (σ)
- For insulators, n~10⁷ e/m³

Semiconductors

- $n^{10^{16}-10^{19}}$ e/m³
- For example,
 - Si, n=1.5x10¹⁶ m⁻³
 - Ge, n=2.6x10¹⁹ m⁻³
- Two types of mobile charge carriers
 - Electrons and holes
 - In Si, 4 valence electrons, covalent bond
 - Thermal energy at room T excites electrons to break away
 - Vacated state → hole, +q
 - In pure intrinsic semiconductors, n=p=n_i
- In Si, 1.1 eV to form an electron hole pair, E_g=bandgap=1.1 eV
- In Ge, E_g=0.67 eV

 E_g =1.1 eV for Si E_g =0.67 eV for Ge

Semiconductor conductivity

Metals → unipolar (only electrons)

 $_{25/08/201}$ u at RT, $\sigma = 5.8 \times 10^{+7}$ mho/m

 Semiconductor → bipolar conductivity (electrons and holes)

$$J = nq\mu_n E + nq\mu_p E$$

$$J = \sigma E \Rightarrow \sigma = nq\mu_n + nq\mu_p$$
In Si, at RT, $\mu_n = 0.13$, $\mu_p = 0.05 \text{ cm}^2/\text{Vs}$

$$n_i = 1.5 \times 10^{16} \text{ m}^{-3}$$

$$\Rightarrow \sigma = nq\mu_n + nq\mu_p = n_i q(\mu_n + \mu_p) = 4.32 \times 10^{-4} \text{ mho/m}$$

Other semiconductors

- Elemental (Group IV): Si, Ge
- Compound
 - IV-IV: SiC
 - III-V: GaAs, GaN, GaP, In P, AlAs
 - II-VI: ZnO, ZnS, CdSe, CdTe
- Alloyed: Si_{i-x}Ge_x, Al_xGa_{1-x}As, Ga_xIn_{1-x}As_{1-y}P_y
- Used for high speed, optoelectronic, high power and high temperature devices

Doping of semiconductors

Group III impurity → B, Ga (3 valence e⁻)
Holes that can "accept" electrons
Acceptor impurity
Positively charged h⁺ → p-type semiconductor

Group V impurity → P, As, Sb (5 valence e⁻)

"Donate" electrons

Donor impurity

Negatively charged e⁻ → n-type semiconductor

Doping

modulate conductivity by introducing impurities

Doping -> concentrations

Under thermal equilibrium,

$$np = n_i^2$$

For pure (intrinsic) semiconductor

$$n = p = n_i$$

N-type Doped

Charge neutrality implies

$$N_D + p = N_A + n$$

For
$$n$$
 - type, $N_A = 0$

$$N_D + p = n$$

$$|n\rangle\rangle p$$
, $n \approx N_D$, $p = \frac{n_i^2}{n} = \frac{n_i^2}{N_D}$

P-type Doped

Charge neutrality implies

$$N_D + p = N_A + n$$

For p-type,
$$N_D = 0$$

$$N_A + n = p$$

$$|p\rangle\rangle n, p \approx N_A, n = \frac{n_i^2}{p} = \frac{n_i^2}{N_A}$$

Doping \rightarrow conductivity

In Si, at RT,
$$\mu_n = 0.13$$
, $\mu_p = 0.05$ cm²/Vs

$$n_i = 1.5 \times 10^{16} \text{ m}^{-3}$$

2 parts per 10⁸ of donor impurity

$$N_D = (5 \times 10^{28})(\frac{2}{10^8}) = 10^{21} \text{ m}^{-3}$$

$$n \sim 10^{21} \text{ m}^{-3} \text{ and } p = \frac{n_i^2}{n} = 2.25 \times 10^{11} \text{ m}^{-3}$$

$$\Rightarrow \sigma = nq\mu_n + nq\mu_p = q(n\mu_n + p\mu_p) = 20.8 \text{ mho/m}$$

A factor of 50000 increase w.r.t undoped (4.3x10⁻⁴) case

Small percentage of impurity can drastically alter conductivity

How does current flow in semiconductors? – Diffusion Current

$$J_p \mid_{Diffusion} = -qD_p \nabla p$$
 or $J_n \mid_{Diffusion} = qD_n \nabla n$

 Diffusion current: "flow of carriers" from one region of higher concentration to lower concentration results in a "diffusion current".

How does current flow in semiconductors? – Drift Current

Hole Drift current density

Electron Drift current density

Current due to motion of carrier under the influence of an electric field

Total current

$$J_p = J_p \mid_{Drift} + J_p \mid_{Diffusion} = q \mu_p p E - q D_p \nabla p$$
 and
$$J_n = J_n \mid_{Drift} + J_n \mid_{Diffusion} = q \mu_n n E + q D_n \nabla n$$
 and
$$J = J_p + J_n$$

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q}$$

Einstein's relationship

 Summation of drift and diffusion currents of both holes and electrons

Graded Semiconductor

In general,

The p-n junction diode

$$p_p = N_A$$
 $n_n = N_D$
$$n_p = \frac{n_i^2}{N_A}$$
 $p_n = \frac{n_i^2}{N_D}$

Barrier potential or built-in voltage

$$V_o = \frac{kT}{q} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{n_n}{n_p} = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

Equilibrium picture (no voltage applied) $_{kT}$

- J_{drift} and J_{diff} for each carrier type cancel out
- Net current is zero

The Biased Diode

- Low resistance state in forward bias
- High resistance state in reverse bias
- Check Valve → diode

www.electrapk.com

Current flow (Band diagrams)

Forward Bias Diode I-V

$$i = I_s \left[\exp \left(\frac{V}{V_T} \right) - 1 \right]$$

$$I_s = 10^{-13} \text{ A, V}_T = 25 \text{ mV}$$

V	$x = V/V_T$	e^{x}	i (Amp)
0.1	3.87	0.479×10^{2}	0.469×10^{-11}
0.2	7.74	$0.229{ imes}10^4$	0.229×10^{-9}
0.3	11.6	$0.110{ imes}10^6$	0.110×10^{-7}
0.4	15.5	0.525×10^{7}	0.525×10^{-6}
0.5	19.3	$0.251{\times}10^9$	0.251×10^{-4}
0.6	23.2	$0.120{ imes}10^{11}$	0.120×10^{-2}
0.62	24.0	$0.260{ imes}10^{11}$	0.260×10^{-2}
0.64	24.8	0.565×10^{11}	0.565×10^{-2}
0.66	25.5	0.122×10^{12}	0.122×10^{-1}
0.68	26.3	$0.265{ imes}10^{12}$	0.265×10^{-1}
0.70	27.1	$0.575{ imes}10^{12}$	0.575×10^{-1}
0.72	27.8	$0.125{ imes}10^{13}$	0.125

- Note that I increases significantly beyond 0.65 V → 10's of mA
- 0.65 is the "cut-in" voltage of the diode \rightarrow I_s dependent
- For Si, typically, cut-in voltage \rightarrow 0.6 0.7 V, Ge \rightarrow 0.2 0.3 V, GaAs \rightarrow 1.1 V

Types and Applications of Diodes

- − Electrical → Optical conversion
- Made of III-V semiconductors
- Light of specific wavelength (red, blue, green, yellow)
- Semiconductor lasers → Coherent light

	Type of Light Bulb			
Parameter	Incandescent	Fluorescent	White LED	
			Circa 2010	Circa 2025
Luminous Efficiency (Lumens/W)	~12	~40	~70	~150
Useful Lifetime (hours)	~1000	~20,000	~60,000	~100,000
Purchase Price	~\$1.50	~\$5	~\$10	~\$5
Estimated Cost over 10 Years	~\$410	~\$110	~\$100	~\$40

Courtesy of: "Fundamentals of Applied Electromagnetics" by Fawwaz T. Ulaby, Eric Michielssen, Umberto Ravaioli. Page 33, Figure TF1-7

Types and Applications of Diodes

- Solar cells
 - Optical → Energy
 - Solar panel → Multpile solar cells in series/parallel

25/08/2015

19

Types and Applications of Diodes

Photodiodes

- Detect optical signals (DC or time-varying) → Electrical signal
- Similar to solar cell → Optimized for high sensitivity, low noise and high frequency applications
- Consumer electronics
 - CD players, infrared remote control receivers, cameras
- Fibre-optic communications → high frequency application
- Spectroscopy, night vision, astronomy → high sensitivity app

Chip

Discrete

Material	Electromagnetic spectrum	
	wavelength range (nm)	
Silicon	190–1100	
<u>Germanium</u>	400–1700	
Indium gallium arsenide	800–2600	
Lead(II) sulfide	<1000–3500	

25/0\$/ource: wikipedia

Diode circuits

$$i = I_S(e^{\frac{v}{\eta V_T}} - 1)$$

$$v_1 = v + Ri \Rightarrow i = \frac{v_1}{R} - \frac{v}{R}$$

Transcendental equation -> no analytical equation

Graphical solution

 $i=(v_1-v)/R$ is called the load line \rightarrow external constraint on the diode

Diode circuits

The battery will forward bias D1 and reverse bias D2

$$\begin{array}{ccc}
 & - & & \\
 & \downarrow & \\
 & \downarrow \\$$

$$v_1 = \eta V_T \ln \left(\frac{I_S}{I_S} + 1 \right) = 0.036V$$

 $v_2 = -6 + v_1 = -5.964V$

 Assume both diodes have the same saturation current I_s and η

DC Diode Models

(i) Ideal diode

(ii) Non-ideal diode Model 1

DC Diode Models

(iii) Non-ideal diode Model 2

(iv) Non-ideal diode Model 3

24

Algorithm for diode circuits (Ideal diode model)

- Assume forward bias (ON) or reverse bias (OFF)
- Replace the diode by a short circuit or open circuit
- Solve the circuit using known techniques
- If inconsistent, e.g. I<0 for forward bias, then change assumption and resolve

Example: Half-wave rectifier

For $v_s>0$, assume D is ON

$$v_o = v_s$$

 $i = v_s/R > 0 \rightarrow D$ is ON is correct

For v_s≤0, assume D is OFF

$$i=0$$

 $v=v_s - Ri = v_s \le 0 \rightarrow D$ is OFF is correct

$$v_o = \begin{cases} 0 \text{ V for } v_s \le 0 \\ v_s \text{ for } v_s > 0 \end{cases}$$

Example: Diode clipper circuit

For $v_s > 0$ assume that D is ON

$$i_{1} = \frac{v_{s} - 3}{1000}, i_{2} = \frac{3}{2000} = 1.5 \text{ mA}$$

$$i = i_{1} - i_{2} = \frac{v_{s}}{1000} - 3 \times 10^{-3} - 1.5 \times 10^{-3}$$

$$i > 0 \Rightarrow v_{s} > 4.5V$$

$$v_{o} = 2000 \times 1.5 \times 10^{-3} = 3V$$

Example: Diode clipper circuit

For v_s≤4.5 0 assume that D is OFF

$$v_o = \frac{2}{1+2} \times v_s = \frac{2}{3} v_s$$
$$v = v_o - 3 = \frac{2}{3} v_s - 3 \le 0$$

Hence assumption that D is OFF is correct

Example: Diode clipper

circuit

$$v_o = \begin{cases} \frac{2}{3} v_s & \text{for } v_s \le 4.5V \\ 3V & \text{for } v_s > 4.5V \end{cases}$$

Case 1: D is off.

 $V_{AB} = V_{AC} = (3x36)/9 = 12 \text{ V}$ which is not consistent with our assumption of D being off.

 \rightarrow D must be on.

Case 2: D is on.

Taking
$$V_C = 0 V$$
,

$$\frac{V_{A} - 36}{6 k} + \frac{V_{A}}{3 k} + \frac{V_{A} - 0.7}{1 k} = 0,$$

$$\rightarrow~V_{\mbox{\scriptsize A}}=4.47~V,~i=3.77~\mbox{mA}\,.$$

Application to Digital Logic

V ₁	V ₂	D_1	D ₂	Vo
0	0	OFF	OFF	0
0	V_{H}	OFF	ON	$(R/R_f+R)V_H^{\sim}V_H$
V_{H}	0	ON	OFF	$(R/R_f+R)V_H^{\sim}V_H$
V_{H}	V_{H}	ON	ON	$(2R/R_f+2R)V_H^{\sim}V_H$

- Assume high voltage=V_H>0 represents "1"
- Assume low voltage=0V represents "0"
- Assume ideal diodes

V ₁	V ₂	Vo
0	0	0
0	1	1
1	0	1
1	1	1

OR Gate

Zener Diodes

Symbol for a Zener diode

- At high reverse biases, diodes "break down"
 - Large current flow, voltage "clamped" at -V_{BR}
- Breakdown occurs due to
 - (i) Avalanche of carriers generated by collisions → typically in lightly doped diodes, large |V_{BR}| → tens to hundreds of V
 - (ii) Zener tunneling of carriers → typically in heavily doped diodes, small $|V_{BR}|=V_7 \rightarrow 5-6 \text{ V}$ in Si
- Zener diodes are used to limit voltage swing in electronic circuits

For a current to flow, we have two possibilities:

 D_1 on (forward), D_2 in reverse breakdown

$$V_0 = i R_2 = \frac{V_i - 5.7}{R_1 + R_2} R_2$$

Since i>0, this can happen only when $V_{\mbox{\scriptsize i}}>5.7~\mbox{\scriptsize V}.$

 D_2 on (forward), D_1 in reverse breakdown

$$V_0 = -i R_2 = \frac{V_1 + 5.7}{R_1 + R_2} R_2$$

Since i>0, this can happen only when $V_{\dot{I}}<-5.7\ V.$

Example: Voltage Limiter

For a current to flow, we have two possibilities:

 D_1 on (forward), D_2 in reverse breakdown

 $V_{on}=0.7~V,~V_{Z}=5~V.$

Plot Vo versus Vi.

 D_2 on (forward), D_1 in reverse breakdown

In the range, $-5.7~{\rm V} < {\rm V_i} < 5.7~{\rm V}$, no current flows, and ${\rm V_0} = {\rm V_i}$. (B)

Peak Detector

- Let $V_o(t)=0$ V at t=0, and assume the diode to be ideal, with $V_{on}=0$ V.
- For 0 < t < T/4, V_i rises from 0 to V_m . As a result, the capacitor charges.
- Since the on resistance of the diode is small, time constant $\tau << T/4$; therefore the charging process is instantaneous $\rightarrow V_o(t) = V_i(t)$.
- For t > T/4, V_i starts falling. The capacitor holds the charge it had at t=T/4 since the diode prevents discharging.

Peak Detector (Contd.)

- Capacitor can discharge through R when diode is off
- When $V_i > V_o$, the capacitor charges again.
- The time constant for the charging process is $\tau=R_{Th}C$, where $R_{Th}=R\mid\mid R_{on}$ is the Thevenin resistance seen by the capacitor, R_{on} being the on resistance of the diode.
- Since $\tau << T$, the charging process is instantaneous.
- Used to demodulate AM signals → envelope detector

Clamping Circuit (DC restorer)

- Assume $V_{on} = 0$ V for the diode.
- When D conducts, $V_D = -V_0 = 0 \rightarrow V_C + V_i = 0$, i.e., $V_C = -V_i$.
- V_c can only increase with time (or remain constant) since i_D can only be positive.
- The net result is that the capacitor gets charged to a voltage $V_C = -V_i$ corresponding to the maximum negative value of V_i , and holds that voltage thereafter. Let us call this voltage V_c^0 (a constant).
- $V_0(t) = V_C(t) + V_i(t) = V_C^0 + V_i(t)$, which is a "level-shifted" version of V_i .

Voltage doubler (Peak-to-peak detector)

- The diode clamp shifts V_A up by V_m (the amplitude of the AC source), making V_B go from 0 to $2V_m$.
- The peak detector detects the peak of V_B (2 V_m w.r.t. ground), and holds it constant.
- Note that it takes a few cycles to reach steady state.

Backup

(a) Plot V_0 versus V_i for -5 V < V_i < 5 V .

- First, let us show that D_1 on $\rightarrow D_2$ off, and D_2 on $\rightarrow D_1$ off.
- Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1R_1$.
 - Note that $i_1 > 0$, since D_1 can only conduct in the forward direction.
 - V_{AB} > 1.7 V → D₂ cannot conduct.
- Similarly, if D₂ is on, V_{BA} > 0.7 V, i.e., V_{AB} < −0.7 V → D₁ cannot conduct.
- Clearly, D₁ on => D₂ off, and D₂ on => D₁ off.

- For $-0.7 \text{ V} < \text{V}_i < 1.7 \text{ V}$, both D₁ and D₂ are off.
 - no drop across R, and $V_0 = V_i$.
- For $V_i < -0.7 \text{ V}$, D_2 conducts $\rightarrow V_0 = -0.7 i_2 R_2$

Use KVL to get i_2 : $V_i + i_2R_2 + 0.7 + Ri_2 = 0$.

$$\rightarrow i_2 = -rac{V_i + 0.7}{R + R_2}$$
, and

$$V_o = -0.7 - R_2 i_2 = \frac{R_2}{R + R_2} V_i - 0.7 \frac{R}{R + R_2}$$

• For $V_i > 1.7 \text{ V}$, D_1 conducts $\rightarrow V_0 = 0.7 + 1 + i_1 R_1$

Use KVL to get i_1 : $-V_i + i_1R + 0.7 + 1 + i_1R_1 = 0$.

$$\rightarrow i_1 = \frac{V_i - 1.7}{R + R_1}$$
, and

$$V_o = 1.7 + R_1 i_1 = \frac{R_1}{R + R_1} V_i + 1.7 \frac{R}{R + R_1}$$
.

Plot V_0 versus V_i for $-5~V < V_i < 5~V$.

At what value of V_i will the diode turn on?

In the off state,
$$V_D = \frac{R_1}{R_1 + R_2} V_i$$
.

For D to change to the on state, $V_D \models 0.7 \ V$.

i.e.,
$$V_i = \frac{R_1 + R_2}{R_1} \times 0.7 = 1.05 \ V.$$

