Curved Yang-Mills gauge theories and their recent applications

Simon-Raphael Fischer

國家理論科學研究中心 National Center for Theoretical Sciences (National Taiwan University)

Table of contents

- Curved Yang-Mills gauge theory
- 2 Applications: Singular foliations (joint work w/ Camille Laurent-Gengoux)

Infinitesimal curved Yang-Mills-Higgs gauge theory

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra \mathfrak{g} as $L \times \mathfrak{g}$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $L imes \mathfrak{g}$	

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $L imes \mathfrak g$	Lie algebroid $E o N$
$\mathfrak{g}\text{-action }\gamma$	Anchor ρ of <i>E</i> & <i>E</i> -connections
Canonical flat connection $ abla^0$ on $L imes \mathfrak{g}$	General connection ∇ on E

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Field Redefinition

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow L$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- ② As parallel transport along a curve γ :

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p),v\right]$$

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow L$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- **2** As parallel transport along a curve γ :

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p),v\right]$$

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow L$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p), \mathsf{PT}^{0}_{\gamma}(v)\right],$$

Lie algebra $\mathfrak g$ as trivial bundle w/ canonical flat connection

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow L$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^P_{\gamma}(p) \cdot \kappa_{\gamma}, \kappa_{\gamma}^{-1} \cdot \mathsf{PT}^0_{\gamma}(v)\right],$$

Lie algebra ${\mathfrak g}$ as trivial bundle w/ canonical flat connection, κ_γ values in ${\cal G}$ & "suitable"

Theorem (Field Redefinitions S.-R. F.)

This leads to an equivalence relation of gauge theories, preserving dynamics and kinematics.

But: In the curved sense! Curvature terms appear.

Motivation (S.-R. F.)

- How to formulate gauge theory such that it is invariant under field redefinitions?
- ② Are there curved theories which are not equivalent to classical ones?

Theorem (Field Redefinitions S.-R. F.)

This leads to an equivalence relation of gauge theories, preserving dynamics and kinematics.

But: In the curved sense! Curvature terms appear.

Motivation (S.-R. F.)

- How to formulate gauge theory such that it is invariant under field redefinitions?
- ② Are there curved theories which are not equivalent to classical ones?

We will only focus on Yang-Mills theories:

	Classical	Curved
Infinitesimal	Lie algebra $\mathfrak g$	$LAB^1 \mathscr{Q}$
Integrated	Lie group <i>G</i>	LGB ² 𝒯

 $^{^{1}}LAB = Lie algebra bundle$

²LGB = Lie group bundle

Definition (LGB actions, simplified)

 $\mathscr{P} \stackrel{\pi}{\to} L$ a fibre bundle. A **right-action of** \mathscr{G} **on** \mathscr{P} is a smooth map $\mathscr{P} * \mathscr{G} := \pi^* \mathscr{G} = \mathscr{P} \times_L \mathscr{G} \to \mathscr{P}$, $(p,g) \mapsto p \cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{1}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{2}$$

$$p \cdot e_{\pi(p)} = p \tag{3}$$

for all $p \in \mathscr{P}$ and $g, h \in \mathscr{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathscr{G}_{\pi(p)}$.

Definition (Principal bundle)

Still a fibre bundle

$$egin{array}{c} G & \longrightarrow \mathscr{P} & & \downarrow^\pi \ & \downarrow^L & & L \end{array}$$

but with \mathscr{G} -action

$$egin{array}{ccc} \mathscr{P} imes \mathscr{G} & o \mathscr{P} \ \mathscr{P} st \mathscr{G} & \end{array}$$

simply transitive on fibres of \mathcal{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

But:

$$r_g: \mathscr{P}_X \to \mathscr{P}_X$$
 $D_p r_g$ only defined on vertical structure

cYM

Connection on \mathcal{P} : Idea

But:

$$egin{array}{ll} r_g:\mathscr{P}_{\!\scriptscriptstyle X} o\mathscr{P}_{\!\scriptscriptstyle X}\ &\Rightarrow& \mathrm{D}_p r_g ext{ only defined on vertical structure} \end{array}$$

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathcal{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{x}$

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

cYM

Connection on \mathcal{P} : Revisiting the classical setup

If \mathcal{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Remarks (Integrated case)

Parallel transport $PT^{\mathscr{P}}_{\gamma}$ in \mathscr{P} :

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p\cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p)\cdot g$$

where $\gamma: I \to L$ is a base path

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g).$$

Back to the roots

- $\mathfrak{G}\cong\mathsf{L}\times\mathsf{G}$
- 2 Equip \mathcal{G} with canonical flat connection

Connection on \mathcal{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g).$$

Back to the roots

- 2 Equip \mathscr{G} with canonical flat connection

General notion of Ehresmann and Yang-Mills connections

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi_{\mathcal{T}} : \mathcal{T} \to L$ so that one has a commuting diagram

Ehresmann connection:

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(t \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(t) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(t) = t \cdot \mathsf{g}_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathscr{G}_{\pi_{\mathscr{T}}(t)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On ${\mathscr G}$ there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On \mathcal{G} : Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

Definition (Multiplicative YM connection, [S.-R. F.])

On ${\mathscr G}$ there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On \mathcal{G} : Multiplicative Yang-Mills connection
- On P: Ehresmann connection

Remarks

There is a simplicial differential δ on $\mathscr{G} \overset{\pi_\mathscr{G}}{\to} L$ with Lie algebra bundle g

$$\delta: \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k \text{ times}}; \pi_{\mathscr{C}}^{*}g) \to \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k+1 \text{ times}}; \pi_{\mathscr{C}}^{*}g)$$

such that the definition of the multiplicative Yang-Mills connection is equivalent to the **compatibility conditions**

- Connection closed
- Curvature exact ([S.-R. F.])

Remarks

On the Lie algebra bundle g we have a connection ∇ with

$$\nabla ([\mu, \nu]_{g}) = [\nabla \mu, \nu]_{g} + [\mu, \nabla \nu]_{g},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Example

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting $\chi \colon \mathrm{T} L \to E$, then

$$\nabla_{X}\nu = [\chi(X), \nu]_{E},$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_{E} - \chi([X, X']).$$

Remarks

On the Lie algebra bundle q we have a connection ∇ with

$$\nabla ([\mu, \nu]_{g}) = [\nabla \mu, \nu]_{g} + [\mu, \nabla \nu]_{g},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Example

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting $\chi \colon \mathrm{T} L \to E$, then

$$\nabla_{X}\nu = [\chi(X), \nu]_{E},$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_{E} - \chi([X, X']).$$

cYM

Given a multiplicative Yang-Mills connection on \mathcal{G} :

Definition (Generalized curvature/field strength F of A, [S.-R. F.])

We define

$$F := \mathrm{d}^{\pi_{\mathscr{P}}^* \nabla} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi_{\mathscr{P}}^* \mathscr{Q}} + \pi_{\mathscr{P}}^! \zeta.$$

Theorem (Lagrangian, [S.-R. F.])

- κ be an Ad-invariant fibre metric on q,
- M a spacetime, and * its Hodge star operator,
- \bullet $(U_i)_i$ open covering of M with subordinate gauges $s_i \in \Gamma(\mathscr{P}|_{U_i}).$

Then the Lagrangian $\mathfrak{L}_{CYM}[A]$, defined locally by

$$(\mathfrak{L}_{\mathrm{CYM}}[A])\big|_{U_i} := -\frac{1}{2}\kappa(F_{s_i} \stackrel{\wedge}{,} *F_{s_i}),$$

is well-defined, and

$$\mathfrak{L}_{\mathrm{CYM}}[K^!A] = \mathfrak{L}_{\mathrm{CYM}}[A]$$

for all principal bundle automorphisms K.

Classical theory

Back to the roots

- $\textbf{ 2} \quad \textbf{Equip } \mathcal{G} \text{ with canonical flat connection }$
- $\zeta \equiv 0$

Example

Example (Hopf fibration $\mathbb{S}^7 \to \mathbb{S}^4$, [S.-R. F.])

Let *P* be the Hopf bundle

$$SU(2) \cong \mathbb{S}^3 \longrightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Define $\mathscr{P} := \mathscr{G}$ as the inner group bundle of P,

$$\mathscr{G} := c_{\mathrm{SU}(2)}(P) := (P \times \mathrm{SU}(2)) / \mathrm{SU}(2).$$

This principal $c_{\mathrm{SU}(2)}(P)$ -bundle admits the structure as curved Yang-Mills gauge theory; there is no description as classical gauge theory.

Applications: Singular foliations

(joint work w/ Camille Laurent-Gengoux)

Curved Yang-Mills gauge theory

Singular Foliations:

- Gauge Theory (Ex.: Singular foliation \leftrightarrow Symmetry breaking \rightarrow Higgs mechanism)
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
-

Definition

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is involutive,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation $\mathscr F$ on a smooth manifold is a subspace of $\mathfrak X_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is **locally finitely generated**.

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is **stable under** $C^{\infty}(M)$ -**multiplication**, *i.e.* $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i^r$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Remarks (Leaves)

Following the flows in \mathcal{F} , this gives rise to a partition of connected immersed submanifolds in M.

Theorem $(\mathcal{F}$ -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $Sym(\tau_{I}, \tau_{I'})$.
- For a contractible loop γ_0 at 1: PT_{γ_0} values in $Inner(\tau_l)$.

Example of a transverse foliation τ :

Remarks

- Inner(τ_I) maps each circle to itself
- Sym (τ_I) allows to exchange circles
- Both preserve τ_l and fix the origin

Idea

Idea

Generators of $\mathcal F$ given by $\mathcal F_{\text{projectable}}$:

$$\mathbb{H}(X) + \overline{\nu}$$
,

where $X \in \mathfrak{X}(L)$, $\mathbb{H}(X)$ its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$[\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] = \mathbb{H}([X, X']) + \overline{\dots}$$

$$= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{\sim curvature}}$$

$$+ \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{\sim connection}} + \overline{[\nu, \mu]}$$

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof

We have

$$\begin{split} [\mathbb{H}(X),\overline{\nu}] &= \overline{\nabla_X^{\mathcal{G}} \nu}, \\ [\mathbb{H}(X),\mathbb{H}(X')] &= \mathbb{H}([X,X']) + \overline{\zeta(X,X')}, \end{split}$$

where $\zeta \in \Omega^2(L; q)$.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof.

We have

$$\begin{split} [\mathbb{H}(X), \overline{\nu}] &= \overline{\nabla_X^{\mathscr{G}} \nu}, \\ [\mathbb{H}(X), \mathbb{H}(X')] &= \mathbb{H}([X, X']) + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; \mathcal{Q})$.

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- \bigcirc P a principal G-bundle, equipped with an ordinary connection

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{G} := (P \times G) / G$, the inner group bundle

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $oldsymbol{Q}$ P a principal G-bundle, equipped with an ordinary connection
- ① $\mathcal{T} := \left(P \times \mathbb{R}^d\right) / G$, the normal bundle

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the normal bundle

Remarks

- ullet Think of the induced connection on ${\mathcal T}$ as the ${\mathcal F}$ -connection.
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- P a principal G-bundle, equipped with an ordinary connection

Remarks

- Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.
- \mathscr{G} acts on \mathscr{T} (canonically from the left).

Proposition ([C. L.-G., S.-R. F.])

The associated connection on $\mathcal G$ is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on *P*.

Proposition ([C. L.-G., \overline{S} .-R. F.])

The reconstructed foliation is independent of the choice of connection on *P*.

Summary

Remarks ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner(τ_I)-bundles over L

Remarks (Classification of curved Yang-Mills gauge theories)

If $\mathcal G$ acts faithfully on $\mathcal T$, then a curved Yang-Mills gauge theory can be flattened if and only if P is flat.

Summary

Remarks ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner(τ_I)-bundles over L

Remarks (Classification of curved Yang-Mills gauge theories)

If $\mathscr G$ acts faithfully on $\mathscr T$, then a curved Yang-Mills gauge theory can be flattened if and only if P is flat.

Future Prospects

Remarks (Future prospects)

- Further applications of curved gauge theories (existence of Cartan connections,...)
- Total space and Atiyah bundles of groupoid-based principal bundles
- Field redefinitions as natural symmetry in associated applications

Thank you!