HW2 - Linear Models for Regression and Classification

11W2 - Linear Wodels for Negression and Classification
CS 434 Hw 2
Q1. Show that He MLE for this model Minimizes the sun
of the assolute errors (SAE):
CATCON NIW - WITH
SAE(w) = & y; -wTz;
- 4: ~ Laplace (4 = WTx; 5) & D(4-17-11) = 1 e - 5
Laplace Dist: - 'Si ~ Laplace (4 = 'WTxi, b) > P(y; xi, w) = 26 = 19i-wx;
1-> Cikeli hoodis (11= Wiki)
$\frac{1}{p(y x,w)} = \frac{n}{m} p[y x;w]$
$= \frac{n}{p-1} \left(\frac{1}{2b} e^{-\frac{ y -y }{2}} \right)$
F=1 (2b)
(2b)n. 6. 1 1 2: pi-m_x;
Calin Clien
15 DVA N 1 TTT1
Ly When N yi- Wx; increases
4) Then 1 1 1 1 1 1 1 decreases
- 2 Ju - 117 J
Ly For example: et 2 / yi - w txi will declease
1) Therefore the likelihood is proportional to \$ [yi-Wixi].
when [-1] (y:-WTX:] is also maximized.
When [== (yi-w/x;] is also maximized.
La For example: 2 4: - WTO(;) is maximized
4) Therefore the MLE of W also maximize & 14: -WTx;

-	60										
	Recall = # True Positive # True Positive + # FalseNegatives										
	H The Porto										
	- Precision = # Tre Positives + # False Positives										
	· ·y	P(y1x)]	t:0	t:0.2	t = 0.4	t = 0.6 -	t 20.8	t-1	N P		
	0	0.1	1	0	0	0	0	0			
	0	0.1	1	0	0	0	0	0			
	0	0.25		1	0	0	0	0			
	1	0,25		1	0	0	0	0			
	0	0.3	1	1	0	0	0	0			
	0	0.33		1	0	0	0	0			
	1	0.4	i	1	0	0	0	0			
0	0	0.52		1	1	0	0	0			
	0	0-5)	1	EV	1	0	0	0			
	1	0-7	Ti C	1	1 PER	1	0	0			
	1119	0.8	1.1	1	1	1	0	0			
	0	0-85	1	1	The second		1 1	0			
	1	0.9	1	1	1	1	1	0			
	1	0.9		1	1	1	1	0			
	1	0.45	1111	1	11	1		0			
	1	-1.0	IL	/ (111	1	1	0			
	let:	TN = TVER IVEG	care FN	: foil sp	Nexative	P - Tree	Pos FI) = Falx	pos.		
	- + = 0										
	15	No (0) Yes (1	13								
	Actual TN 0 FP 8 Actual FN 0 TP 8										
	Actual Yes (1)	FN O TP 8									
		La Recall	= TP		8	1					
•	TP+FN 8+0										
		Ly Precision	- TP		8	8	1	0 -			
			TP+P	P 8	5+8	16 =	2	0.5			

•	
	- t = 0.2 Act Pred Pred Act TN 2 FP 6
	Act FN 0 TP 8 Ly Recall = 8 = 1
	Ly Prec. = 8 84 4 20-571 8+6 147 7
	-t=0.4 pret pret
	ALT TN 5 F0 3 ALT FN 2 TP 6
•	L) Prec = 6 : 6 = 2 = 0.667
	- + 2 0.b
	Act TIN 7 FD 1 Act FN 2 TD 6
	1> Recutt = 6 = 6 = 3 = 0.75
	L) prec. = 6 = 6 = 0.859
	-+ 6.9

- t = 0.8 Pret Pret Pret Pret Act TN Pr EP Act FN 4 TP 4 L) Recall = 4 4 2 2 2 0 5 L) Dres 4 4 7 8 7 2 1 1 1 1 1 1 1 1 1	
L) Prec - 4 - 4 - 0.8 - + = 1 pred pred Act FN 8 FP 0 Act FN 8 TP 0	
1) Recall = $\frac{0}{0+8} = \frac{0}{8} = 0$ L) Prec = $\frac{0}{0+0} = \frac{0}{0} = 0$ and $\frac{0}{0+0} = 0$	

Q4.

- Weight Vector: [-0.2464, 0.8677, 0.2008, 0.2785, -0.676]
- Accuracy: 86.27%

Q5.

- Weight Vector: [-3.4144, 0.08, 0.4192, 0.2177, 0.2745, -0.0528]
- Accuracy: 96.35%
- It did make a meaningful difference in the terms of how the accuracy went up by around 10%.

Q6.

- Based on the graph for 0.0001 the base step_size it looks as if the graph would continue to drop if the max_iteration was set higher when the basic term is added.
- 0.0001

- Training Accuracy (NO BIAS): 86.27%
- Training Accuracy (BIAS): 96.35%

- Training Accuracy (NO BIAS): 82.4%
- Training Accuracy (BIAS): 87.98%

- Training Accuracy (NO BIAS): 75.54%

- Training Accuracy (BIAS): 95.92%

- Training Accuracy (NO BIAS): 84.12%
- Training Accuracy (BIAS): 97.0%

- 0.00001

- Training Accuracy (NO BIAS): 85.62%
- Training Accuracy (BIAS): 90.77%
- The trends whenever the value was above 0.0001 I'd get a "runtimewarning" however as the number got less you can see the bias term's model gets lower and lower.

Q7.

At first my performance was very poor on the kaggle, so it wasn't matching my
performance with these means and standard deviations. However after changing my w
value to the w from X_train the means and standard deviations were matching to the
kaggle submission.

Debriefing

1. Approximately how many hours did you spend on this assignment?

- Approximately around 20 hours was spent on this assignment.

2. Would you rate it as easy, moderate, or difficult?

- I would rate this as somewhat moderate near difficult just because there are still parts of the topic I don't understand in terms of coding, however with some help I was able to understand more and more.

3. Did you work on it mostly alone or did you discuss the problems with others?

- Same as the last homework I used many resources from the canvas along with asking a peer for some ideas and online resources.

4. How deeply do you feel you understand the material it covers (0%-100%)?

- I wanna say around 65% because there are still some areas of the material I don't understand fully, however I'm going to review them before the midterm.

5. Any other comments?

- N/A