STK121 - Chapter 18

Learning outcomes:

- Be able to understand, explain and execute the hypothesis test about the difference of more than two populations based on independent samples.
- Know what the requirements for the sample size is in order to do a Chi-square approximation.
- Be able to calculate a p-value by hand and by using EXCEL's CHI.DIST.RT function

2.4.3 - Kruskal-Wallis test

Previously:

- We used ANOVA parametric test for more than two independent samples
- **H0:** μ 1 = μ 2 = μ 3 ... μ k **Ha:** At least one pair of means is not equal to each other
- Parameters were known

Currently:

- Three or more random samples and parameters unknown
- Kruskal-Wallis test is based on the analysis of independent random samples from each of K
 populations.
- Can be ordinal or quantitative data and does not require the assumption that the populations have normal distribution
- This is a Hypothesis test about the difference between more than two populations based on k-independent samples where k = the number of populations
- ----
- The ranks of the data and not the observations itself is used to compare the populations.
- The process is done as follows:
 - All the data are combined into one group, sorted and ranked.
 - Determine the sum of ranks for the separate groups.
- Kruskal-Wallis test is always a UPPER TAIL TEST

Steps:

- 1) Hypothesis test
- 2) Use ranks of data to compare K populations
- Combine the samples and award ranks to data points. Deal with the ties by awarding average ranks
- 4) Determine separate sample RANKS
- 5) Determine Test the statistic H
- 6) Determine P-value
- 7) Rejection rule
- 8) Conclusion

Hypothesis:

- H0: All population means are identical
- Ha: Not all population means are identical

Test statistic:

- When the populations are identical, the sampling distribution of the test statistic H can be approximated by a chi-square distribution with k – 1 degrees of freedom.
- This approximation is acceptable if each of the sample sizes $n_i \geq 5$

•
$$H = \left[\frac{12}{n_{T(n_T+1)}} \sum_{i=1}^{k} \frac{Ri^2}{n_i}\right] - 3(n_T + 1)$$

- k = number of populations
- $n_i = number of observations in smaple i$
- $n_T = total number of observations in all samples$
- Ri = sum of ranks for sample i

Rejection rule:

Reject H0 if p-value ≤ alpha

Example 1:

A company employ people from three different colleges A, B and C. The employees get an annual performance evaluation rating and management want to see if the people from the three colleges perform equally or not. A sample of 20 employees, 7 from College A, 6 from college B and 7 from college C is drawn at random and the results are below.

College A	College B	College C
25	60	50
70	20	70
60	30	60
85	15	80
95	40	90
90	35	70
80		75

• $n_1; n_2; n_3 \ge 5$, $H \sim \chi^2$ (2)

Step 1: Hypothesis test

- H0: All population means are identical
- Ha: Not all population means are identical

Step 2 and 3: Ranking

Data	College	Rank	
15	В	1	
20	В	2	
25	А	3	
30	В	4	0 0 1010 0
35	В	5	8 + 9 + 10 / 3 = 9
40	В	6	
50	С	7	
60	С	9	
60	В	9	11+ 12 + 13 /3 = 12
60	A	9 _	
70	С	12 🖳	
70	A	12 -	
70	С	12 –	
75	С	14	18 + 19 / 2 = 18.50
80	С	15.5 \	
80	A	15.5 🗸	
85	А	17	
90	A	18.5	
90	С	18.50	
95	Α	20	

Step 4: Determine separate sample RANKS

ni	College A	Rank	College B	Rank	College C	Rank
1	25	3	60	9	50	7
2	70	12	20	2	70	12
3	60	9	30	4	60	9
4	85	17	15	1	80	15.5
5	95	20	40	6	90	18.5
6	90	18.5	35	5	70	12
7	80	15.5			75	14
	Sum	95	Sum	27	Sum	88

Step 5: Determine test stat

•
$$H = \left[\frac{12}{n_{T(n_T+1)}} \sum_{i=1}^{k} \frac{Ri^2}{n_i}\right] - 3(n_T + 1)$$

- k = 3 populations
- n1 = 7, n2 = 6, n3 = 7, nT = 20

•
$$H = \left[\frac{12}{20(20+1)}\sum_{i=1}^{3} \frac{(95)^2}{7} + \frac{(27)^2}{6} + \frac{(88)^2}{7}\right] - 3(20+1) = 8.9163$$

Step 6 and 7: Determine P-value and state rejection rule

- Reject H0 if p-value < 0.05
- 0.0116 < P-value < 0.025

OR

- Degrees of freedom (3-1) = 2
- Alpha = 0.05
- $\chi^2_{(2;0.05)} = 5.991$
- $H > \chi^2_{(2;0.05)}$ Reject H0
- 8.9163 > 5.991 Reject H0

Step 8: Conclusion

- Conclusion Reject H0. Using excel will show that P-value for H = 8.92 is 0.0116.
- As P-value is $< \alpha = .05$, we reject H0.
- Not all populations are identical.
- College B perform worse than A and C since RANK sum total is only 27.
- There is insufficient evidence to conclude that the populations are identical.

Example 2:

A well-know car magazine has decided to compare the average fuel consumption of midsize cars between four manufacturers. A random selection of 20 cars (new0 were selected and the were subjected to identical road tests. The fuel consumption in liter / 100km is given below.

Manufacturer 1	8.8	8.9	9.3	8.9	8.7
Manufacturer 2	9.6	9.9	9.1	9.3	9.7
Manufacturer 3	9.7	8.3	8.9	9.1	8.7
Manufacturer 4	9.2	9.5	9.7	9.5	9.8

What can we conclude regarding the fuel consumption of the manufacturers, are they the same or not?

•
$$n_1 = n_2 = n_3 = n_4 = 5$$
, $H \sim \chi^2(3)$

Step 1: Hypothesis test

- H0: All four population are identical with regard to fuel consumption
- Ha: All four populations are **not identical** with regards to fuel consumption

Step 2 and 3: Ranking

manufacturer	Consumption	Ranks
3	8.3	1
3	8.7	2.5
1	8.7	2.5
1	8.8	4
1	8.9	6
1	8.9	6
3	8.9	6
2	9.1	8.5
3	9.1	8.5
4	9.2	10
1	9.3	11.5
2	9.3	11.5
4	9.5	13.5
4	9.5	13.5
2	9.6	15
2	9.7	17
3	9.7	17
4	9.7	17
4	9.8	19
2	9.9	20

Step 4: Determine separate sample RANKS

Sum of the ranks:

Manufacturer 1	R ₁	8.7 + 8.8 + 8.9 + 8.9 + 9.3	= 30
Manufacturer 2	R ₂	9.1 + 9.3 + 9.6 + 9.7 + 9.9	= 72
Manufacturer 3	R ₃	8.3 + 8.7 + 8.9 + 9.1 + 9.7	= 35
Manufacturer 4	R ₄	9.2 + 9.5 + 9.5 + 9.7 + 9.7	= 73

Step 5: Determine test stat

•
$$H = \left[\frac{12}{n_{T(n_T+1)}} \sum_{i=1}^k \frac{Ri^2}{n_i}\right] - 3(n_T + 1)$$

• $H = \left[\frac{12}{(20)(20+1)} \sum_{i=1}^k \frac{(30)^2}{5} + \frac{(72)^2}{5} + \frac{(35)^2}{5} + \frac{(73)^2}{5}\right] - 3(20+1) = 9.2171$

Do the test stat in three parts - see highlighted parts

Step 6 and 7: Determine P-value and state rejection rule

- Reject H0 if p-value < alpha = 0.05
- 0.025 < P-value < 0.05

OR

- Degrees of freedom (4-1) = 3
- Alpha = 0.05
- $\chi^2_{(3;0.05)} = 7.8147$
- $H > \chi^2_{(2;0.05)}$ Reject H0
- 9.2171 > 7.8147 Reject H0

Step 8: Conclusion

• All four populations are NOT IDENTICAL with regard to fuel consumption

YouTube videos:

- 1) https://www.youtube.com/watch?v=agtKm_SBIPw
- 2) https://www.youtube.com/watch?v=JJ6RKqRUK10
- 3) https://www.youtube.com/watch?v=q1D4Di1KWLc
- 4) https://www.youtube.com/watch?v=At0NMw7HWMw