Département de génie électrique et de génie informatique Faculté des sciences et de génie Vision numérique GIF-4100 / GIF-7001

Date 21 octobre 2021 Local VCH-2830 Heure 13h30 à 16h20 Examen partiel 1 A2021

Toute documentation permise sauf Internet

Questions 1 à 4 Obligatoires

Question 1. Coordonnées homogènes (20 points au total)

A. (7 points)

Soit un point de coordonnées $p = [x \ y \ z]^t$ dans l'espace cartésien à trois dimensions. Quelles sont les coordonnées du point p en coordonnées homogènes. **Expliquez votre réponse**.

B. (7 points)

Soit un point $p = [x \ y \ z \ 1]^t$ en coordonnées homogènes. Est-ce que $[5x \ 5y \ 5z \ 5]^t$ représente le même point en coordonnées cartésiennes en 3D? **Expliquez votre réponse**.

c. (6 points)

Soit la matrice définie en coordonnées homogènes par l'équation (1) :

$$\underline{\underline{\widetilde{M}}} = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$
(1)

Est-ce que cette matrice préserve les angles et les longueurs? **Justifiez votre réponse par un argument géométrique**.

Question 2. Transformations rigides (20 points au total)

Un référentiel de coordonnées initialement confondu avec le repère X_1 - Y_1 - Z_1 de la Figure 1 (a) subit une *translation* de 4 unités selon l'axe X_1 et ensuite une *rotation* de 45° autour de l'axe Z (vecteur sortant de la page) du repère ayant subi la translation. La configuration finale des repères X_1 - Y_1 - Z_1 et X_2 - Y_2 - Z_2 est celle montrée à la Figure 1 (b).

A. (10 points)

Pour un point de coordonnées homogènes $[\sqrt{2} \sqrt{2} \ 1]^t$ dans le repère X_2 - Y_2 - Z_2 , quelles sont ses coordonnées réelles dans le repère X_1 - Y_1 - Z_1 ? **Votre réponse doit montrer les étapes de calcul**.

B. (10 points)

Pour un point de coordonnées homogènes $\begin{bmatrix} 1 & 1 \end{bmatrix}^t$ dans le repère X_1 - Y_1 - Z_1 , quelles sont ses coordonnées réelles dans le repère X_2 - Y_2 - Z_2 ? **Votre réponse doit montrer les étapes de calcul**.

Figure 1. Repères de la Question 2/Frames for Question 2. (a) Repères confondus / Superimposed frames. (b) Repères après les transformations rigides de translation et rotation / Frames following the rigid transformations of translation and rotation.

Question 3. (20 points au total) Projection de perspective et point de fuite

A. (5 points)

Soient les sténopés "lignes" (on considère que le plan image est une ligne) non-inverseurs C_1 et C_2 de la Figure 2. Les deux sténopés d'axe optique "Z" ont leurs centres de projection confondus et la même longueur focale, et le sténopé C_2 est tourné par rapport au sténopé C_1 dont l'axe optique est horizontal. Pour simplifier, on suppose aussi que les plans images des deux sténopés sont infinis. On assume que le repère monde est celui du sténopé C_1 .

Une série de points **également distancés** P₁, P₂, ..., P_i, P_{i+1}, ..., P_{infini/infinite} dans le **repère monde** s'étend jusqu'à l'infini.

Est-ce que les points images des points P du repère monde sont également distancés sur les plans images de C₁ et C₂? **Expliquez votre réponse par un dessin**.

Figure 2. Sténopés "lignes" avec plans images infinis de la Question 3. "Line" pinholes with infinite image planes of Question 3.

B. (5 points)

Montrez **sur un schéma** où sur le plan image de C_1 se trouve le point de fuite de la droite formée des points P_1 - P_{infini} du repère monde.

c. (5 points)

Montrez sur un schéma où sur le plan image de C_2 se trouve le point de fuite de la droite formée des points P_1 - P_{infini} du repère monde.

D. (5 points)

Supposons maintenant que nous considérons un troisième sténopé "ligne" non-inverseur C_3 d'axe optique Z_3 et de même longueur focale que C_1 et C_2 montré sur la Figure 3. Le plan image de C_3 est aussi infini.

Figure 3. Sténopé C_3 de la Question 3 (d). / Pinhole C_3 of Question 3 (d).

Expliquez comment vous feriez pour trouver le point de fuite dans le plan image de C_3 sans effectuer la projection des points P_1 - $P_{infini/infinite}$. Justifiez votre raisonnement par un dessin.

Question 4. (20 points au total) Radiométrie

Deux sources ponctuelles uniformes s_1 et s_2 d'intensité I_1 et I_2 placées au plafond d'une pièce, éclairent la surface d'une table de travail. Une feuille de papier d'aire dA est placée directement en dessous de s_2 à une distance d de la source, tel que montré à la Figure 4. Les deux sources ponctuelles sont aussi espacées d'une distance d/2.

Figure 4. Géométrie, Question 4. / Geometry, Question 4.

Quel doit être le rapport I_2/I_1 entre les intensités pour que la feuille de papier d'aire dA recoive la même

Choisir une question parmi les questions suivantes

Question 5. (20 points au total) Projection de perspective et point de fuite

Soit le sténopé non-inverseur C de focale F et d'axe optique Z de la Figure 5. Supposons que le repère monde X-Y-Z soit situé au centre de projection C.

Figure 5. Géométrie de la Question 5. / Geometry of Question 5.

L'équation paramétrique (de paramètre λ) en coordonnées homogènes d'une ligne droite passant par le point P et de direction D est donnée par l'équation (2).

$$\widetilde{X}(\lambda) = \widetilde{P} + \lambda \, \widetilde{D} \tag{2}$$

La direction D est donnée par le vecteur de l'équation (3). La matrice caméra du sténopé en coordonnées homogènes est donnée par l'équation (4) où \underline{K} est la matrice des paramètres intrinsèques.

$$\underline{\underline{\mathcal{D}}} = \left[\underline{d^t} \ 0\right]^t \tag{3}$$

$$\underline{\widetilde{M}} = \underline{K}[\underline{I} \ \underline{0}] \tag{4}$$

A. (12 points)

Quelle est l'expression $\underline{x}(\lambda)$ du point image d'un point $\overline{X}(\lambda)$ sur la droite?

B. (8 points)

Quelle est l'expression du point de fuite de la droite (image du point objet pour lequel $\lambda --> \infty$) et est-ce que les coordonnées du point de fuite dans le plan image dépendent des coordonnées du point \underline{P} ? **Justifiez votre réponse**.

Indice: quand vous faites tendre une valeur vers l'infini, n'oubliez pas qu'en coordonnées homogènes, tout est à un facteur d'échelle près. Par conséquent, "infini" veut dire "grand".

Question 6. (20 points au total) Homographie

Soit le sténopé non-inverseur C d'axes X-Y-Z de la Figure 6 observant des points sur une surface. Le sténopé subit une *rotation* pure de θ° autour de l'axe X et devient le sténopé C' d'axes X'-Y'-Z' (avec X' confondu avec X).

Figure 6. Géométrie de la Question 6. Geometry of Question 6.

Si on suppose que le repère monde est confondu avec le repère X-Y-Z, l'équation de projection de perspective pour le sténopé C est donnée par l'équation (5) alors que celle pour le sténopé C' est donnée par l'équation (6).

$$\widetilde{p} = \underline{K} [\underline{I} \ 0] \widetilde{P} \tag{5}$$

$$\widetilde{\underline{p}}' = \underline{K} \left[\underline{R}^{\underline{t}} \ \underline{0} \right] \underline{\widetilde{P}}$$
(6)

A. (15 points)

Quelle est l'homographie qui permet de transférer les points du plan image du sténopé C au plan image du sténopé C'?

B. (5 points)

Pour le cas où le sténopé subit une *translation suivie* d'une *rotation*, l'expression de l'homographie *induite par un plan* est celle donnée par l'équation (7), tel que nous l'avons vu dans les notes et les capsules.

$$\underline{H} = \underline{K'} \left[\underline{\underline{R}}^t - \frac{\left(-\underline{\underline{R}}^t \underline{t} \right) \underline{n}^t}{d} \right] \underline{K}^{-1} \tag{7}$$

On peut supposer pour simplifier que $\underline{K}' = \underline{K}$. Dans l'équation (7), \underline{n} est la normale au plan, \underline{t} est la translation imposée au sténopé, d est la distance entre le plan et l'origine du repère monde (confondu avec le sténopé avant la translation et la rotation) et \underline{R} est la matrice de rotation.

En comparant l'expression obtenue en A avec l'équation (7), dans le cas d'une rotation pure du sténopé, la distribution des points dans le repère monde doit-elle être sur un plan? **Expliquez votre réponse**.