实验报告六 光电效应数据处理

学号: PB21000276 姓名: 施耀炜 班级: 21 级少院 6 班 日期: 2022 年 5 月 11 日

1 数据处理与分析

1.1 不同光照测量截止电压拟合计算普朗克常数

固定光阑直径大小,固定光源光电管的距离,分别测量5种不同单色光照射下光电流的截止电压,如表6.1:

光阑孔,直径 $\Phi = 8mm$, 距离 L = 400mm波长 λ_i/nm 365.0404.7435.8 546.1577.0 频率 $\nu_i/10^{14} Hz$ 8.214 7.4085.196 6.8795.490零电流法测得的截止电压 U_{0i}/V 1.744 1.112 0.5580.4541.435 补偿法测得的截止电压 U_{0i}/V 1.7461.436 1.114 0.5590.454

表 6.1 不同单色光照射下的光电流的截止电压

描点画图,最小二乘法拟合,如图 6.1, 6.2:

图 6.1 零电流法测得截止电压与频率的 $U - \nu$ 图

图 6.2 补偿法测得截止电压与频率的 $U - \nu$ 图

(1) 零点法:

$$k=4.3332\times 10^{-15}J\cdot s\cdot C^{-1}$$
, $A=1.8145V$, $h=ek=6.9406\times 10^{-34}J\cdot s$,相对误差 $\delta=4.74\%$ $\nu_0=\frac{A}{h}=2.614\times 10^{14}Hz$, $\lambda=\frac{c}{\nu}=1146.9nm$, $A_{\rm 逸出功}=A\cdot e=2.9068\times 10^{-19}V$

(2) 补偿法:

$$k=4.3337\times 10^{-15}J\cdot s\cdot C^{-1}$$
, $A=1.8166Vh=ek=6.9448\times 10^{-34}J\cdot s$,相对误差 $\delta=4.81\%$ $\nu_0=\frac{A}{h}=2.616\times 10^{14}Hz$, $\lambda=\frac{c}{\nu}=1146.0nm$, $A_{\rm 逸出功}=A\cdot e=2.9102\times 10^{-19}V$ 可以看到,原理上补偿法应该更精确,但实际实验结果零点法略比补偿法相对误差较小,但两者对的误差都

PB21000276 施耀炜 2

较大。

1.2 曲线法测量截止电压拟合计算普朗克常数

固定距离 L=400mm, $\Phi=8mm$, 通过测量多个点, 绘制 I-U 曲线, 数据如表 6.2, 绘制成图 6.3:

557.0nm	U_{AK}/V	-1.0	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1
	$I/10^{-11}A$	-33.2	-32.5	-31.8	-31.0	-28.1	-20.1	9.5	88.4	218	376
546.1nm	U_{AK}/V	-1.2	-1.1	-1.0	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3
	$I/10^{-11}A$	-43.0	-42.0	-40.9	-39.9	-37.6	-33.5	-22.4	10.0	93.0	229
435.8nm	U_{AK}/V	-1.7	-1.6	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0	-0.9	-0.8
	$I/10^{-11}A$	-149.7	-141.9	-133.5	-120.4	-102.7	-75	-11.7	113.2	308	648
404.7nm	U_{AK}/V	-1.9	-1.8	-1.7	-1.6	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0
	$I/10^{-11}A$	-73.7	-66.3	-58.6	-45.3	-25.7	4.0	51.5	125.2	239	423
365.0nm	U_{AK}/V	-2	-1.95	-1.9	-1.85	-1.8	-1.75	-1.7	-1.65	-1.6	-1.55
	$I/10^{-11}A$	-57.5	-50.9	-43.4	-35.7	-25.3	-11.5	9.5	41.0	87.1	147.6

表 6.2 光电管的伏安特性曲线测量

观察,得斜率突变时的电压即截止电压分别为 0.494V, 0.558V, 1.134V, 1.423V, 1.702V。根据这些数据,再

PB21000276 施耀炜 3

次描点连线,最小二乘法拟合,绘制 $U-\nu$ 图,如图 6.4:

图 6.4 测得截止电压与频率的 $U - \nu$ 图

$$k=4.136 \times 10^{-15} J \cdot s \cdot C^{-1}$$
, $A=1.583V$ $h=ek=6.6467 \times 10^{-34} J \cdot s$, 相对误差 $\delta=0.31\%$ $u_0,=\frac{A}{h}=2.382 \times 10^{14} Hz$, $\lambda=\frac{c}{\nu}=1258.6nm$ $A_{\mathrm{逸} \boxplus \Im}=A \cdot e=2.53 \times 10^{-19} V$

1.3 饱和光电流与光强的关系

 $U_{AK}=30V$ 下,分别固定距离 (L=40.00cm) 改变光阑孔直径、固定光阑孔直径 $\Phi=8mm$ 改变距离,从而改变光电流,数据如下表 6.3,6.4:

435.8nm	Φ/mm	2	4	8	14.35	
	$I/10^{-10}A$	7.86	29.9	118.6	401	
546.1nm	Φ/mm	2	4	8	14.35	
	$I/10^{-10}A$	1.16	4.11	15.45	47.1	

表 6.3 固定距离改变光阑孔直径测得的光电流

PB21000276 施耀炜 4

表 6.4	固定光阑孔直径改变距离测得的光电流
AC 0. I	

435.8nm	L/cm	30.00	32.00	34.00	36.00	38.00	40.00
	$I/10^{-10}A$	231	201	173.4	148.2	130.2	118.6
546.1nm	L/cm	30.00	32.00	34.00	36.00	38.00	40.00
	$I/10^{-10}A$	32.1	27.1	23.0	19.64	17.22	15.45

使用最小二乘法拟合,制 $I-\Phi^2$, $I-L^{-2}$ 散点图,如图 6.5, 6.6:

图 6.5 $I - \Phi^2$ 图

图 6.6 $I-L^{-2}$ 图

注意到 \mathbb{R}^2 较接近 1,基本呈线性关系,即光电流与光强在一定范围内呈线性关系。