

Simult. Localiz. and Mapping

Luís Paulo Reis

<u>Ipreis@fe.up.pt</u>

Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt

Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

Background

Localization – Where am I?

- Mapping My (dynamic?) surroundings
- Navigation How do I get where I want to go?

SLAM –
 Simultaneous Localization and Mapping

 SLAM = Simultaneous Localization and Mapping

=> Cycle through both!

Exploration with Active Loop-Closing for FastSLAM

Cyrill Stachniss Dirk Hähnel Wolfram Burgard

Taxonomy of the SLAM Problem

Known vs. unknown correspondence

Uncertainty...

- The mapping between observations and the map is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)

Given

The robot's controls

$$u_{1:T} = \{u_1, u_2, u_3 \dots, u_T\}$$

Observations

$$z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$$

Wanted

- Map of the environment
- Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2 \dots, x_T\}$$

In Probabilistic Terms

Estimate the robot's path and the map

Motion (=System) Model + Observation (=Sensor) Model

MOTION MODEL

 The motion model describes the relative motion of the robot

$$p(x_t \mid x_{t-1}, u_t)$$
 distribution new pose given old pose control

MOTION MODEL example

Gaussian model

Non-Gaussian model

Observation Model

 The observation or sensor model relates measurements with the robot's pose

Observation Model example

Gaussian model

Non-Gaussian model

Loop Closure

https://youtu.be/BaqSRf5pAZ0

The blue arrow is the 'odometric' robot position (where the robot 'thinks' it is). The red arrow is the 'corrected' robot position.

The ellipses represent the uncertainties of the positions of the landmarks. The smaller the ellipse, the more certain the robot is about the position of the landmark.

https://youtu.be/WXeWFIUFTC4

SLAM simulation by Sjoerd de Jong under supervision of Gert Kootstra. Department of Artificial Intelligence University of Groningen

Loop Closure

Probabilistic Robotics

- Authors:
 - Sebastian Thrun
 - Wolfram Burgard
 - Dieter Fox

- Publisher:
 - MIT Press, 2005.

Sources

 Video Class - Introduction to Robot Mapping https://www.youtube.com/watch?v=wVsfCnyt5jA

Extra

- SLAM Artificial Intelligence for Robotics https://youtu.be/O5Zu19-tjY8?t=22
- RPLidar and Hector SLAM for Beginners | ROS #8
 https://youtu.be/Qrtz0a7HaQ4

Simult. Localiz. and Mapping

Luís Paulo Reis

<u>Ipreis@fe.up.pt</u>

Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt

Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

