SchÄijlerskript SMP

Mach' dir keine Sorgen wegen deiner Schwierigkeiten mit der Mathematik. Ich kann dir versichern, da Äş meine noch gr Äű Äşer sind.

Brief an ein SchulmÃd'dchen, 1943 ALBERT EINSTEIN

> Clara Schaefer Bruno Gelfort Pascal Borel RÃľmy Moll

1^{ÃÍre} & Te SMP

Inhaltsverzeichnis

Kapitel1	Folgen	7
	1.1 Verschiedene Darstellungen 1.2 AuffÄd'llige Folgen 1.3 Klassifizierung von Folgen	11
Kapitel2	Reihen	19
	2.1 Artithmetische Reihen	
Kapitel3	Funktionsuntersuchung	23
	3.1 Stetigkeit	24 24 26
Kapitel4	Trigonometrie	41
	4.1 Kurze Wiederholung	42 42 42 43
Kapitel5	Exponentialfunktionen	47
	5.1 Wiederholung: Potenzgesetze 5.2 Die Eulersche Zahl (e) 5.3 Eigenschaften 5.4 Basiswechsel 5.5 Ableitungsregeln	47 53 54

Inhaltsverzeichnis Inhaltsverzeichnis

Kapitel6	Logarithmen	57
	 6.1 Eigenschaften 6.2 Rechengesetze 6.3 Gleichungen lÃűsen 6.4 Logarithmusfunktionen 	57 58
Kapitel7	Integrale	59
	7.1 EinfÄijhrung - Stammfunktionen	59 60 62 65 68
Kapitel8	Vektorielle Geometrie	71
	8.1 Vektoren 8.2 Basen und Erzeugendensystem 8.3 Winkel zwischen Vektoren 8.4 Linearkombination 8.5 Skalarprodukt 8.6 Kreuzprodukt 8.7 Geraden 8.8 Ebenen 8.9 Kreise und SphÃd'ren 8.10 SÃd'tze	72 73 75 76 79 84 92
Kapitel9	Komplexe Zahlen1	05
	 9.1 EinfÃijhrung	105
Kapitel10	Zahlentheorie1	13
	10.1 KÃűrper 10.2 Teilbarkeit 10.3 Primzahlen 10.4 Restklassen oder Kongruenzklassen 10.5 Die vollständige Induktion	114 115 116
Kapitel11	Wahrscheinlichkeitstheorie1	27
	11.1 Wiederholungen: Unter- & Mittelstufe 11.2 Kombinatorik 11.3 Bedingte Wahrscheinlichkeiten 11.4 Wahrscheinlichkeitsverteilung	130 133

Inhaltsverzeichnis Inhaltsverzeichnis

	11.5 Kontinuierliche Wahrscheinlichkeiten	137
Kapitel12	Matrizen	141
	12.1 Lineare Gleichungssysteme und Gauçalgorithmus	
Capitel13	Algorithmik	143
	13.1 Algorithmen und Programmierung	
Capitel14	ANHANG: Physik	
	14.1 La physique des particules	147
	14.3 Interaction Ãl'lectromagnÃl'tique	149
	14.5 Les 3 lois de Newton	
	14.7 L'analyse dimensionnelle	
	14.8 Mouvements dans le champ de pesanteur uniforme	
	14.9 Mouvements de satellites et des planĀÍtes	
	14.10SystÃÍmes oscillants	
	14.12ÃL'mission, propagation et rÃl'ception des ondes	
	14.13Diffraction des ondes	154
	14.14Particules chargÃl'es dans un champ Ãl'lectrique ou magnÃl'tique	
	14.15Action d'un champ magnĀl'tique sur un circuit parcouru par un courant	
	14.16DipÃťles dans un circuit	155

Inhaltsverzeichnis

Inhaltsverzeichnis

7

FOLGEN

by CLARA

Definition

Eine Funktion, bei der nur nat \tilde{A} ijrlichen Zahlen eine reelle Zahl zugeordnet wird, nennt man Folge. Folgen k \tilde{A} űnnen auch nur f \tilde{A} ijr Teilbereiche von $\mathbb N$ definiert sein.

 $(a_n)_{n\in\mathbb{N}}$ bezeichnet die Folge, wobei $a:\mathbb{N}\to\mathbb{R}$

Bemerkung:

In einem Ausdruck muss das n immer dasselbe bleiben!

GTR-Tipp:

Um statt Funktionen Folgen zu behandeln:

- ON → MODE → Zeile 4: statt FUNC SEQ auswÃďhlen
- in Y=
- Mit nMin den Startindex angeben
- Mit u(n) die Folgenvorschrift angeben
- Falls die Folge rekursiv anzugeben ist, muss mit u(nMin) das Startglied angegeben werden

Bemerkung:

Es ist Ãijblich eine rekursive Folge mit a_{n+1} in AbhÃd'ngigkeit von a_n zu haben. Diese Darstellung ist mit dem GTR nicht direkt verwendbar. Man muss es ümschreibenüm a_n in AbhÃd'ngigkeit von a_{n-1} zu haben.

1.1 Verschiedene Darstellungen

1.1.1 Explizite Darstellung

Definition

Wenn ein beliebiges Glied der Folge direkt berechenbar ist, ist ihre Darstellung explizit.

Beispiel:

1.
$$a_n = 3^n \Rightarrow a_4 = 3^4 = 81$$

2. Die Folge der n-ten positiven, ungeraden Zahl: $a_n=1+2\cdot(n-1)\Rightarrow$ Die 8. positive, ungerade Zahl ist $a_8=1+2\cdot(8-1)=15$

1.1.2 Rekursive Darstellung

Definition

Wenn fÃijr die Berechnung des n-ten Gliedes eines (oder sogar mehrere) der vorherigen Glieder benÃűtigt wird, ist ihre Darstellung rekursiv. In diesen FÃd'llen braucht man immer ein Startglied, oft a_0 oder a_1 .

Beispiel:

1.
$$a_n=3\cdot a_{n-1}+2; a_0=5$$
 $a_1=3\cdot a_{1-1}+2=3\cdot a_0+2=3\cdot 5+2=17$ $a_2=3\cdot a_{2-1}+2=3\cdot a_1+2=3\cdot 17+2=53$ $a_3=3\cdot a_{3-1}+2=3\cdot a_2+2=3\cdot 53+2=159$ und so weiter...

2. Die Folge der n-ten positiven, ungeraden Zahl: $a_n=a_{n-1}+2; a_1=1$

Bemerkung:

FÄijr manche Folgen sind beide Darstellungen mÄűglich, wobei die explizite Darstellung oftmals viel praktischer ist, da die Berechnung der Folgeglieder anhand der rekursiven Darstellung schnell sehr aufwendig wird.

Web-Diagramme

Hier handelt es sich um ein graphisches Verfahren, das dazu dient, das Verhalten einer Folge, deren Darstellung rekursiv ist, zu untersuchen. Es ermÃűgicht die Beobachtung des Langzeitverhaltens (Konvergenz, Divergenz oder Oszillation) einer rekursiven Folge.

Dazu muss man der rekursiven Folgenvorschrift eine Funktion $f(a_{n-1})=a_n$ zuordnen, sodass - grob gesagt - "die Funktion das Gleiche mit x macht, dass die Folge macht, um von a_n auf a_{n+1} zu kommen". Man muss verstehen, dass es sich hierbei nicht um den Graphen der Folge handelt, die Werte der Folgenglieder sind nicht wie gewohnt abzulesen. ZusÄd'tzlich zeichnet man in ein kartesisches Koordinatensystem die Hauptdiagonale ein (entspricht dem Graphen von f(x)=x). Exemplarisch wird hier die Folge $a_{n+1}=2\sqrt{a_n}+2$ behandelt, dementsprechend ist die Hilfsfunktion hier f mit $f(x)=2\sqrt{x}+2$.

Dann trÃd'gt man den Wert des ersten Folgegliedes auf die Abzissenachse ein und verbindet ihn mit der entsprechenden Funktion anhand eines vertikalen Striches. Der Ordinatenwert, der so erhalten wird (Punkt A), entspricht dem Wert von a_1 . Um den Vorgang erneuern zu kÃűnnen, muss der gefundene Wert wieder auf die Abzissenachse, dazu benutzt man die Hauptdiagonale als Špiegel". Ein horizontaler Strich bis zur Hauptdiagonale (zum Punkt B) und ein vertikaler bis zur Abzissenachse lÃűsen das Problem. So ist der Wert von a_1 aud der Abzissenachse, dort wird er fÃijr den nÃd'chsten Schritt benÃűtigt.

Dasselbe muss mehrmals wiederholt werden, so wird jeweils das nÃd'chste Folgeglied auf die Abzissenachse abgebildet (rote Punkte). Daraus kann man dann eine Tendenz erkennen, die die Entwicklung der Folgeglieder beschreibt. Je nach dem, was fÃijr eine Tendenz zu erkennen ist, kann man verschiedene SchlÃijsse bezÃijglich der Entwicklung der Folge schlieçen. In diesem Falle wird deutlich, dass die Folge konvergiert, der Grenzwert ist die Schnittstelle zwischen der Hilfsfunktion und der Hauptdiagonalen, es fehlt nur noch diesen zu berechnen.

$$h(x) = x; \quad f(x) = 2\sqrt{x} + 2$$

$$h(x) = g(x) \Leftrightarrow x - 2\sqrt{x} - 2 = 0$$

$$\Rightarrow x_1 = \left(\frac{2 + \sqrt{12}}{2}\right)^2$$

$$g = x_1$$

Es gibt andere mÃűgliche Tendenzen, hier ein paar Beispiele:

Die divergierende Treppe, es gibt also keinen Grenzwert, man kann den uneigendlichen Grenzwert aber ablesen, hier ist der Grenzwert der Folge a_n mit $a_{n+1}=-\frac{3}{2}a_n-4$ und $a_0=5$: $-\infty$

Die konvergierende Spirale, es gibt also einen Grenzwert, den man erneut mit der Schnittstelle zwischen Funktion und Hauptdiagonale ermitteln kann. Hier konvergiert die Folge a_n mit $a_{n+1}=\frac{4}{a_n}+1$ und $a_1=1$

Bemerkung:

Dieses Verfahren kann ausschlieħlich bei rekusiven Folgen angewendet werden, bei denen keine zusÄd'tzliche AbhÄd'ngigkeit von n vorliegt (Beispiel: $a_n=3\cdot a_{n-1}+4n+3$) oder die RekursivitÄd'tsebene den 1. Grad Äijberschreitet, was bedeutet, dass a_n nicht nur in AbhÄd'ngigkeit von a_{n-1} beschrieben wird, sondern von anderen RekursivitÄd'tsebenen wie a_{n-2} (Beispiel: die Fibonacci-Folge).

GTR-Tipp:

Mit den GTR ist dieses Verfahren auch mÃűglich, die Arbeit der Fertigstellung der Striche wird vom Rechner Ãijbernommen. Das Bild ist vom Benutzer nur noch zu deuten, gegebenenfalls ist die Schnittstelle auszurechnen.

- Der Rechner muss auf SEQ stehen
- in Y= die rekursive Folge angeben
- In 2nd FORMAT von Time auf Web stellen
- TRACE verwenden
- Sooft auf ENTER drÄijcken, bis ausreichend Striche zu sehen sind.

1.2 AuffÃďIlige Folgen

1.2.1 Arithmetische Folgen

Definition

Eine Folge wird arithmetisch genannt, wenn die Differenz zweier aufeinander folgender Glieder konstant ist

1. Rekursive Darstellung:

$$a_n = a_{n-1} + d$$

2. Explizite Darstellung:

Mit Startglied a_0 : $a_n = a_0 + n \cdot d$ Mit Startglied a_1 : $a_n = a_1 + (n-1) \cdot d$ Mit Startglied a_x : $a_n = a_x + (n-x) \cdot d$

Bemerkung:

Letzteres gilt auch fåijr beliebige Folgeglieder, also ist $a_n = a_p + (n-p) \cdot d; n,p \in \mathbb{N}$

Beispiel:

$$a_n = a_{n-1} + 3; a_0 = 0 \Leftrightarrow a_n = 0 + n \cdot 3$$

Bemerkung:

Jedes Folgeglied einer solchen Folge ist das arithmetische Mittel seines Vorg $\tilde{\text{A}}$ d'ngers und Nachg $\tilde{\text{A}}$ d'ngers: $a_n = \frac{a_{n-1} + a_{n+1}}{2}$

1.2.2 Geometrische Folgen

Definition

Eine Folge wird geometrisch genannt, wenn der Quotient zweier aufeinander folgender Glieder konstant ist.

· Rekursive Darstellung:

$$a_n = a_{n-1} \cdot q$$

Explizite Darstellung:

Mit Startglied a_0 : $a_n = a_0 \cdot q^n$ Mit Startglied a_1 : $a_n = a_1 \cdot q^{n-1}$ Mit Startglied a_x : $a_n = a_x \cdot q^{n-x}$

Bemerkung:

Letzteres gilt auch fÄijr beliebige Folgeglieder, also ist $a_n = a_p \cdot q^{n-p}; n, p \in \mathbb{N}$

Beispiel:

$$a_n = a_{n-1} \cdot 3; a_0 = 2 \Leftrightarrow a_n = 2 \cdot 3^n$$

Bemerkung:

Jedes Folgeglied einer solchen Folge ist das geometrische Mittel seines Vorg \tilde{A} d'ngers und Nachg \tilde{A} d'ngers: $a_n = \sqrt{a_{n-1} \cdot a_{n+1}}$

12

.5

1.3 Klassifizierung von Folgen

1.3.1 Monotonie

Definition

 $\text{Eine Folge } (a_n)_n \in \mathbb{N} \text{ hei} \tilde{\mathbb{A}} \text{\$t monoton} \begin{cases} \text{steigend/wachsend} \\ \text{fallend/abnehmend} \end{cases} \text{ wenn } \begin{cases} a_{n+1} \geq a_n \\ a_{n+1} \leq a_n \end{cases}.$

Gelten dabei sagar **strikte** Ordnungsrelationen (> oder <), dann ist (a_n) **streng** monoton wachsend beziehungsweise abnehmend.

Strategie:

- Das Vorzeichen von $a_{n+1}-a_n$ bestimmen, ist es ≤ 0 dann ist die Folge fallend, ist es ≥ 0 , dann ist die Folge wachsend.
- $\frac{a_{n+1}}{a_n}$ mit 1 vergleichen, ist es ≤ 1 , dann ist die Folge fallend, ist es ≥ 1 , dann ist die Folge wachsend.

Beispiel:

Untersucht wird die Monotonie der Folge $a_n = \frac{8n}{n^2 + 1}$.

$$a_{n+1} - a_n = \frac{8(n+1)}{(n+1)^2 + 1} - \frac{8n}{n^2 + 1}$$

$$= \frac{8n+8}{n^2 + 2n + 1 + 1} - \frac{8n}{n^2 + 1}$$

$$= \frac{8n^3 + 8n^2 + 8n + 8 - (8n^3 + 16n^2 + 16n)}{(n^2 + 2n + 2)(n^2 + 1)}$$

$$= \frac{-8n^2 - 8n + 8}{(n^2 + 2n + 2)(n^2 + 1)}$$

 \Rightarrow a_n ist fÃijr $n \in \mathbb{N}$ weder steigend noch fallend. a_n ist fÃijr $n \in \mathbb{N}^*$ streng monoton fallend.

1.3.2 BeschrÄd'nktheit

Definition

 $\begin{array}{ll} \text{Man nennt eine Folge } (a_n)n \in \mathbb{N} \text{ nach } \begin{cases} \text{oben} \\ \text{unten} \end{cases} & \textbf{beschrÃd'nkt} \\ \text{wenn es eine Zahl } \begin{cases} S \in \mathbb{R} \\ s \in \mathbb{R} \end{cases} & \text{gibt mit } \begin{cases} a_n \leq S \\ a_n \geq s \end{cases} & \forall n \in \mathbb{N}. \end{cases}$

S ist eine obere Schranke s ist eine untere Schranke

Definition

Die kleinste obere Schranke ist das **Supremum** der Menge $\{a_n; n \in \mathbb{N}\}$. Die gr \tilde{A} u \tilde{A} §te untere Schranke ist das **Infimum** der Menge $\{a_n; n \in \mathbb{N}\}$.

Definition

Eine nach oben und unten beschrÄd'nkte Folge heiħt beschrÄd'nkte Folge (suite bornÄl'e).

Beispiel:

Die abgebildete Folge $a_n = 0, 8^n$ besitzt als m \tilde{A} űgliche obere Schranke die Gerade f: y = 1, 1, unten die Gerade g: y = -0,05. a_n ist also **beschrÃd'nkt**.

UnbeschrÄd'nktheit

Beispiel:

Unbeschr`Ad`'nktheit mit Absch`Ad`'tzungen zeigen:
$$a_n = \frac{n^2}{n+2} \geq \frac{n^2}{n+2n} = \frac{n^2}{3n} = \frac{1}{3}n \qquad \forall n \geq 1$$

 $u_n = \frac{1}{3}n$ ist eine unbeschrÄd'nkte Folge, a_n ist ab einem bestimmten Glied (a_1) immer darÄijber: a_n ist ebenfalls unbeschrÄd'nkt, sie divergiert nach $+\infty$

1.3.3 Konvergenz

Definition

Eine Folge $(a_n)n \in \mathbb{N}$ ist konvergent, wenn sie einen Grenzwert besitzt. Man sagt a_n konvergiert gegen $g = \lim_{n \to \infty} a_n$.

Theorem

$$\lim_{n \to \infty} a_n = g \Leftrightarrow \lim_{n \to \infty} (a_n - g) = 0$$

<u>WÃűrtlich:</u> Eine Folge (a_n) konvergiert gegen g genau dann, wenn $(a_n - g)$ gegen den Wert 0 konvergiert.

Beispiel:

$$\overline{a_n = \frac{3n^4 - 1}{n^4}}$$

 a_n hat vermutlich den Grenzwert g=3.

$$a_n - 3 = \frac{3n^4 - 1}{n^4} - 3 = \frac{3n^4 - 1 - 3n^4}{n^4} = -\frac{1}{n^4} \underbrace{n \to \infty}_{0} 0$$

Monotone Konvergenz

Theorem

Eine monotone Folge ist genau dann konvergent, wenn sie beschrÄd'nkt ist.

Beweis

Ohne BeschrÄd'nkung der Allgemeinheit nehmen wir an, dass die Folge monoton wachsend sei und sei a die kleinste obere Schranke (Supremum).

14

- Sei $\varepsilon \geq 0$ dann ist $a \varepsilon$ keine obere Schranke der Folgeglieder $\{a_n; \in \mathbb{N}\}$.
- (a_n) ist wachsend
- $\bullet \ \exists n_0 \in \mathbb{N} \ \mathsf{mit} \ a_{n_0} \geq a \varepsilon$
- $\begin{array}{l} \bullet \ \, \forall n > n_0 \; \mathrm{gilt} \; a \varepsilon < a_{n_0} \leq a_n < a + \varepsilon \\ \Leftrightarrow -\varepsilon < a_{n_0} a \leq a_n a < \varepsilon \end{array} \quad | \text{-a}$
- $\bullet \Rightarrow \lim_{n \to \infty} a_n = 0$

Analog kann man mit einer nach unten beschrÄd'nkten monoton fallenden Folge argumentieren.

Besser zu verstehen, wenn man es so sagt:

Theorem

$$\begin{split} \exists\, S \in \mathbb{R} \quad \exists\, n_0 \in \mathbb{N} \quad \forall n \geq n_0 \,:\, a_n \leq a_{n+1} \, \wedge \, a_n \leq S \\ \qquad \Rightarrow \exists\, g \in \mathbb{R} \,:\, \lim_{n \to \infty} a_n = g \, \wedge \, g \leq S \\ \qquad \qquad \text{und} \\ \exists\, s \in \mathbb{R} \quad \exists\, n_0 \in \mathbb{N} \quad \forall n \geq n_0 \,:\, a_n \geq a_{n+1} \, \wedge \, a_n \geq s \\ \qquad \Rightarrow \exists\, g \in \mathbb{R} \,:\, \lim_{n \to \infty} a_n = g \, \wedge \, g \geq s \end{split}$$

WÃűrtlicch:

- Eine monoton wachsende Folge (a_n) ist genau dann konvergent, wenn sie nach oben beschr**Ad'nkt** ist. Ihr Grenzwert g ist kleiner oder gleich der oberen Schranke $S \in \mathbb{R}$.
- Eine monoton fallende Folge (a_n) ist genau dann konvergent, wenn sie nach unten beschrÄd'nkt ist. Ihr Grenzwert g ist grÄűħer oder gleich der oberen Schranke $s \in \mathbb{R}$.

Beispiel:

Untersucht wird die Folge $u_n = \frac{n^2}{2^n}$

BeschrÄďnktheit:

 $\forall n \in \mathbb{N} \quad a_n \geq 0, \text{ f\~Aijr } n = 0, \quad a_n = 0 \Rightarrow \text{die untere Schranke } s = 0 \text{ ist das Infimum.}$

• Monotonie:

$$\begin{split} \frac{u_{n+1}}{u_n} &= \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} \\ &= \frac{(n+1)^2}{2n^2} \\ &= \frac{1}{2} \cdot \left(\frac{n+1}{n}\right)^2 \\ &= \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^2 \le \frac{8}{9} < 1 \qquad \forall n \ge 3 \end{split}$$

N.R.:
$$1 + \frac{1}{n} \le \frac{4}{3}$$
 $\forall n \ge 3$ $\Rightarrow \left(1 + \frac{1}{n}\right)^2 \le \frac{16}{9}$

Somit ist u_n ab dem 3. Folgeglied streng monoton fallend $\Rightarrow S = \frac{9}{8}$

 $\Rightarrow a_n$ konvergiert gegen den Grenzwert g=0

Divergenz

Definition

Eine Folge (a_n) , die keinen Grenzwert $g \in \mathbb{R}$ besitzt (nicht kovergiert), wird **divergent** genannt.

Kann man ihr trotzdem einen Grenzwert wie $\pm \infty$ zuordnen ist sie **bestimmt divergent**. Besitzt die Folge Ãijberhaupt keinen Grenzwert, so heiçt sie **unbestimmt divergent**.

Bemerkung:

Man nennt einen Grenzwert $g=+\infty$ oder $g=-\infty$ einen **uneigentlichen Grenzwert**.

Beispiel:

- Die Folge $u_n = -4n^5$ ist bestimmt divergent $(g = -\infty)$.
- Die Folge $a_n = -n \sin n$ ist unbestimmt divergent, sie besitzt $\tilde{\mathsf{A}}$ ijberhaupt keinen Grenzwert.

Epsilon-n0-Definition

Definition

$$\lim_{n \to \infty} a_n = g \iff \forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \ge n_0 : |a_n - g| < \varepsilon$$

Strategie:

- den Ausdruck $|a_n g|$ vereinfachen
- die Ungleichung $|a_n-g|<\varepsilon$ zu einer Ungleichung der Form $n>\dots$ umformen.
- man hat jetzt die Bedingung f \tilde{A} ijr n, n_0 ist das erste Glied, dass sie erf \tilde{A} ijllt.
- Beweis fÃijhren: sei $n \ge n_0$ beliebig, dann ist $|a_n g| = ... < \varepsilon$.

Bemerkung:

Wenn ein bestimmtes ε angegeben ist, dann verwendet man, um das gesuchte n_0 zu finden die Gauçklammern. Angewendet werden diese $\lfloor x \rfloor$ um eine Zahl abzurunden, diese $\lceil x \rceil$ um aufzurunden. In unserem Fall wollen wir eine ganze Zahl, fÃijr die die Ungleichung auf jeden Fall erfÃijllt wird, deshalb rundet man auf also Gauçklammer $\lceil x \rceil$.

Bemerkung:

Auch Divergenz kann so gezeigt werden:

$$\forall a \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall n_0 \in \mathbb{N} \ \exists n \ge n_0 : |a_n - a| \ge \varepsilon$$

Beispiel:

Die Folge $a_n=\frac{1-2n}{5+3n}$ wird untersucht, es wird gesch $\tilde{\mathbf{A}}$ d'tzt, dass (a_n) gegen $-\frac{2}{3}$ konvergiert.

•

$$|a_n - g| = \left| \frac{1 - 2n}{5 + 3n} + \frac{2}{3} \right|$$

$$= \left| \frac{3(1 - 2n) + 2(5 + 3n)}{3(5 + 3n)} \right|$$

$$= \left| \frac{3 - 6n + 10 + 6n}{15 + 9n} \right|$$

$$= \left| \frac{13}{15 + 9n} \right|$$

$$= \frac{13}{15 + 9n}$$

•
$$n_0 = \left\lceil \frac{13 - 15\varepsilon}{9\varepsilon} \right\rceil$$

$$\bullet \ \ \text{Sei} \ \varepsilon \ \text{beliebig und} \ n \geq n_0, \ \text{dann gilt} \ |a_n-g| = \left|\frac{1-2n}{5+3n} + \frac{2}{3}\right| = \frac{13}{15+9n} < \epsilon$$

GrenzwertsÃďtze

Die GrenzwertsÄd'tze fÄijhren die Grenzwerte komplizierter Folgen auf einfachere Grenzwertbetrachtungen bekannter Folgen zurÄijck.

Theorem

Seien u_n und v_n sind konvergente Folgen mit Grenzwerten U und V.

- Die Folge $u_n \pm v_n$ ist konvergent und besitzt den Grenzwert $U \pm V$.
- Die Folge $u_n \cdot v_n$ ist konvergent und besitzt den Grenzwert $U \cdot V$.
- Die Folge $\frac{u_n}{v_n}$ ist konvergent und besitzt f $\tilde{\mathbf{A}}$ ijr $V \neq 0$ den Grenzwert $\frac{U}{V}$.

Beispiel:

$$a_n = \frac{4\sqrt{n} - n}{\sqrt{n} - 2n} = \frac{n \left(\frac{4}{\sqrt{n}} - 1\right)}{n \left(\frac{1}{\sqrt{n}} - 2\right)} = \frac{\frac{4}{\sqrt{n}} - 1}{\frac{1}{\sqrt{n}} - 2}$$

$$g = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\frac{4}{\sqrt{n}} - 1}{\frac{1}{\sqrt{n}} - 2} = \frac{\lim_{n \to \infty} \frac{4}{\sqrt{n}} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{1}{\sqrt{n}} - \lim_{n \to \infty} 2} = \frac{0 - 1}{0 - 2} = \frac{1}{2}$$

19

REIHEN

by CLARA

Definition

Eine Reihe ist eine Folge, deren Glieder die Partialsummen einer anderen Folge ist. Das bedeutet, dass das n-te Glied der Reihe, die Summe der ersten n Glieder einer anderen Folge ist. Man hat also:

- Mit Startglied a_0 : $s_n = \sum\limits_{i=0}^{n-1} a_i$
- Mit Startglied a_1 : $s_n = \sum_{i=1}^n a_i$
- Mit Startglied a_x : $s_n = \sum_{i=x}^{x+n-1} a_i$

Bemerkung:

In manchen FÃd'llen steht s_n fÃijr die Partialsumme einer anderen Folge bis zum n-ten Glied. Dann gilt fÃijr ein beliebiges Startglied a_x der Folge: $s_n = \sum\limits_{i=-\infty}^n a_i$

2.1 Artithmetische Reihen

2.1.1 Gauç'sche Summenformel

Die Gauç'sche Summenformel bezeichnet die Summe der n ersten natÃijrlichen Zahlen, also:

$$1 + 2 + 3 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

BegrÃijndung:

So sieht man also, dass wenn man die vorher bestimmte Reihe mit sich selbst addiert (ein Mal davon "falschrum"), man n Mal n+1 bekommt. Um dann den Wert einer einzelnen Reihe zu bekommen teilt man durch zwei.

Bemerkung:

Die Gauç'sche Summenformel ist ein Spezialfall der arithmetischen Reihe, ihre Glieder werden **Dreieckszahlen** genannt.

Beweis

Um zu beweisen, dass f $\tilde{\mathbf{A}}$ ijr alle $n \in \mathbb{N}$

$$\sum_{k=1}^{n} f(k) = g(n)$$

gilt, reicht es aus,

$$g(n) - g(n-1) = f(n)$$

f \tilde{A} ijr alle positiven n und

$$g(0) = 0$$

zu zeigen. In der Tat trifft dies hier zu:

$$g(n) - g(n-1) = \frac{n(n+1)}{2} - \frac{(n-1)n}{2} = \frac{n(n+1-n+1)}{2} = \frac{n \cdot 2}{2} = n = f(n)$$
 f\text{\text{\text{f}ijr alle }} n \quad \text{und } g(0) = \frac{0 \cdot 1}{2} = 0

Quelle: Wikipedia (Gauçsche Sumn

Quelle: Wikipedia (Gauçsche Summenformel)

Bemerkung:

Auch ein Beweis durch vollstÃd'ndige Induktion ist mÃűglich, dieser wÃd're sogar empfehlenswert, da er einfacher durchzufÃijhren ist (Siehe Kapitel 8)

2.1.2 Allgemein

Definition

Wenn s_n die Summe der ersten n Folgeglieder einer arithmetische Folge ist, hei \tilde{A} §t sie arithmetische Reihe.

Sei eine arithmetische Folge a mit Startglied a_x und s, die entsprechende Reihe, dann gilt

$$s_n = \frac{n \cdot (a_x + a_{x+n-1})}{2}$$

Bemerkung:

1. Am hÃd'ufigsten wird verwendet:

• Mit Startglied
$$a_0$$
: $s_n = \frac{n \cdot (a_0 + a_{n-1})}{2}$

• Mit Startglied
$$a_1$$
 : $s_n = \frac{n \cdot (a_1 + a_n)}{2}$

2. Alternativ kann auch folgende Darstellung verwendet werden:

$$s_n = \frac{n \cdot (2a_x + (n-1) \cdot d)}{2}$$

Beweis

Sei eine arithmetische Folge a, mit Startglied a_x und Differenz d, und s, die entsprechende Reihe, dann gilt

$$\begin{split} s_n &= a_x + a_{x+1} + a_{x+2} + \dots a_{x+n-1} \\ &= a_x + (a_x + d) + (a_x + 2d) + \dots + (a_x + (n-1) \cdot d) \\ &= n \cdot a_x + d + 2d + \dots + (n-1) \cdot d \\ &= n \cdot a_x + (1 + 2 + \dots + (n-1)) \cdot d \qquad \text{(GauÃ\S)} \\ &= n \cdot a_x + \frac{(n-1) \cdot n}{2} \cdot d \\ &= n \cdot \frac{2a_x + (n-1) \cdot d}{2} \\ &= n \cdot \underbrace{a_x + a_{x+n-1}}_{2} \\ &= n \cdot \frac{a_x + a_{x+n-1}}{2} \end{split}$$

21

2.2 Geometrische Reihen

Definition

Wenn s_n die Summe der ersten n Folgeglieder einer geometrischen Folge ist, hei $\tilde{\mathsf{A}}$ §t sie geometrischen Reihe.

Sei eine geometrische Folge a mit Startglied a_x und s, die entsprechende Reihe, dann gilt

$$s_n = \sum_{i=x}^{n+x-1} a_i = a_x \cdot \frac{1-q^n}{1-q}$$

Bemerkung:

Am hÃďufigsten wird verwendet:

- Mit Startglied a_0 : $s_n = a_0 \cdot \frac{1 q^n}{1 q}$
- Mit Startglied a_1 : $s_n = a_1 \cdot \frac{1 q^n}{1 q}$

Beweis

Allgemein:

$$(1-q)(1+q+q^2+q^3+\ldots+q^n) = (1-q) + (q-q^2) + (q^2-q^3) + (q^3-q^4) + \ldots + (q^n-q^{n+1})$$

$$= 1 + (-q+q) + (-q^2+q^2) + (-q^3+q^3) + \ldots + (-q^n+q^n) - q^{n+1}$$

$$= 1 - q^{n+1}$$

Man hat also
$$\sum\limits_{k=0}^{n}q^{k}=1+q+q^{2}+q^{3}+...+q^{n}=rac{1-q^{n+1}}{1-q}$$

Entsprechend ergibt sich
$$\sum_{k=0}^{n-1} q^k = \underbrace{1+q+q^2+q^3+\ldots+q^{n-1}}_{n-Summanden} = \frac{1-q^n}{1-q}$$

Somit gilt fÃijr eine Reihe s, die die Partialsumme einer geometrischen Folge a, mit Quotient q und Anfangsglied a_x , ist, folgendes:

$$s_n = \sum_{i=x}^{x+n-1} a_i$$

$$= a_x + a_{x+1} + a_{x+2} + \dots + a_{x+n-1}$$

$$= a_x + a_x \cdot q + a_x \cdot q^2 + \dots + a_x \cdot q^{n-1}$$

$$= a_x \cdot (1 + q + q^2 + \dots + q^{n-1})$$

$$= a_x \cdot \sum_{k=0}^{n-1} q^k$$

$$= a_x \cdot \frac{1 - q^n}{1 - q}$$

FUNKTIONSUNTERSUCHUNG

by Bruno

Die **Analysis** (griechisch anÃąlysis, deutsch "Auflösung") ist ein Teilgebiet der Mathematik. Die Untersuchung von reellen und komplexen Funktionen hinsichtlich Stetigkeit, Differenzierbarkeit und Integrierbarkeit zählt zu den Hauptgegenständen der Analysis. Die hierzu entwickelten Methoden sind in allen Natur- und Ingenieurwissenschaften von groçer Bedeutung.

3.1 Stetigkeit

Definition

Eine Funktion ist stetig an der Stelle x_0 , wenn:

- 1. $x_0 \in D$
- 2. $\lim_{x\to x_0} f(x)$ existiert
- 3. $\lim_{x \to x_0^{\pm}} f(x) = f(x_0)$

Stetigkeit ist eine lokale Eigenschaft. Die Funktion f heißt dann stetig, wenn sie an jeder Stelle ihrer Definitionsmenge stetig ist.

Bemerkung:

Theorem

Ist f stetig und $I \subset \mathbb{R}$ ein reelles Intevall, dann ist f(I) ebenfalls ein Intervall. Ist f zudem streng monoton, so ist die Umkehrfunktion f^{-1} ebenfalls stetig.

Bemerkung:

Stetige Funktionen haben sehr angenehme Eigenschaften, die intuitiv mit der "Definition" des Stiftes, welcher beim Zeichnen des Funktionsgraphen nicht angehoben wird, im Zusammenhang stehen.

So sagt der **Zwischenwertsatz** aus, dass eine reelle, im Intervall [a;b] stetige Funktion f jeden Wert zwischen f(a) und f(b) ainnimmt.

Haben a und b zudem verschiedene Vorzeichen, so verspricht der Zwischenwertsatz mindestens eine Nullstelle von f in diesem abgeschlossenen Intervall. Dieser Sonderfall ist als **Nullstellensatz** von Bolzano bekannt.

Theorem - Zwischenwertsatz

Ist $f:[a;b]\Rightarrow$ eine stetige reelle Funktion die auf einem Intervall definiert ist, dann existiert zu **jedem** $s\in[f(a);f(b)]$ bzw. [f(b);f(a)] (vom Vorzeichen der Funktionswerte abhängig) **ein** $c\in[a;b]$ mit f(c)=s

Stetige Fortsetzungen

Beim Vereinfachen von gebrochenrationalen Funktionen ist Vorsicht geboten, denn eine hebbare Definitionslücke "aufzuheben" verändert den Definitionsbereich der Funktion. Die daraus resultierende Funktion wird **stetige Fortsetzung** genannt.

3.2 Differenzierbarkeit

Definition

Eine Funktion ist differenzierbar an der Stelle $x_0 \in D$, wenn der beitseitige Grenzwert des Differenzenquotienten für $h \to 0$ existiert. Anschaulich soll Die Funktion links und rechts des x_0 die selbe Ableitung haben.

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

Dieser Grenzwert ist die **Ableitung** von f an der Stelle x_0 .

Die Funktion heißt differenzierbar, wenn sie $\forall x \in D$ differenzierbar ist.

Die Funktion f(x) = |x| ist nicht differenzierbar, da bei der Stelle $x_0 = 0$ der linksseitige Grenzwert des Differenzenquotienten ($\lim_{h \to 0^-} f'(x_0) = -1$) nicht mit dem rechtsseitigen Grenzwert (1) übereinstimmt.

3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit

Ist eine Funktion f an der Stelle x_0 differenzierbar, so ist sie an dieser Stelle auch stetig. Die Umkehrung gilt erst einmal nicht, aber es gibt eine verneinende Aussage: Ist f an der Stelle x_0 nicht stetig, so ist sie hier auch nicht differenzierbar.

Theorem

f differenzierbar $\Rightarrow f$ stetig.

Bemerkung:

Ist eine Funktion differenzierbar und ist ihre Ableitung zusätzlich stetig, dann wird sie **Stetig differenzierbar** genannt.

3.3 Ableitungsregeln

Ein Ableitungswert gibt die Steigung an einem bestimmten Punkt an. Im Allgemeinen und zum Beweisen wird der Differentenquotient benötigt, um eine Ableitungsfunktion zu definieren, es geht aber in vielen Fällen schneller.

Theorem - Produktregel

Sind die Funktionen u und v an der Stelle $x_0 \in D$ differenzierbar, dann ist die Funktion $f(x) = u(x) \cdot v(x)$ bei x_0 auch differenzierbar und es gilt:

$$f'(x_0) = u'(x_0)v(x_0) + u(x_0)v'(x_0)$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h)v(x_0 + h) - u(x_0)v(x_0 + h) + u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h)v(x_0 + h) - u(x_0)v(x_0 + h)}{h} + \lim_{h \to 0} \frac{u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} v(x_0 + h) \frac{u(x_0 + h) - u(x_0)}{h} \lim_{h \to 0} u(x_0) \frac{v(x_0 + h) - v(x_0)}{h}$$

$$= v(x_0) \lim_{h \to 0} \frac{u(x_0 + h) - u(x_0)}{h} + u(x_0) \lim_{h \to 0} \frac{v(x_0 + h) - v(x_0)}{h}$$

$$= u'(x_0)v(x_0) - u(x_0)v'(x_0)$$

Theorem - Quotientenregel

Sind die Funktionen u und v an der Stelle $x_0 \in D$ differenzierbar, dann ist die Funktion $f(x) = \frac{u(x)}{v(x)}$ bei x_0 auch differenzierbar und es gilt:

$$f'(x_0) = \frac{u'(x_0) \cdot v(x_0) - u(x_0) \cdot v'(x_0)}{v^2(x_0)}$$

Beweis

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\frac{u(x_0 + h)}{v(x_0 + h)} - \frac{u(x_0)}{v(x_0)}}{\frac{u(x_0 + h)}{v(x_0 + h)} - \frac{u(x_0)}{v(x_0)}}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h)}{v(x_0 + h)} - \frac{u(x_0)}{v(x_0 + h)}}{\frac{u(x_0 + h)v(x_0)}{v(x_0)v(x_0 + h)}}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h)v(x_0)}{v(x_0 + h)v(x_0)} - \frac{u(x_0)v(x_0 + h)}{v(x_0)v(x_0 + h)}}{\frac{u(x_0 + h)v(x_0)}{v(x_0 + h)v(x_0)}}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0 + h) + u(x_0)v(x_0)}{v(x_0 + h)v(x_0)}}{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0)}{v(x_0 + h)v(x_0)}}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h} + \frac{v(x_0 + h)v(x_0)}{h}}{v(x_0 + h)v(x_0)}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h} + \frac{v(x_0 + h)v(x_0)}{h}}{v(x_0 + h)v(x_0)}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h} + \frac{v(x_0 + h)v(x_0)}{h}}{v(x_0 + h)v(x_0)}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h} + \frac{v(x_0 + h)v(x_0)}{h}}{v(x_0 + h)v(x_0)}$$

$$= \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{h}$$

$$= \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{(v(x_0))^2}$$

Theorem - Kettenregel

Die Funktion v sei an der Stelle x_0 differenzierbar und die Funktion u an der Stelle $v(x_0)$. Dann ist die Funktion $f=u\circ v$ mit der Gleichung f(x)=u(v(x)) an der Stelle x_0 differenzierbar. Es gilt:

$$f'(x_0) = v'(x_0) \cdot u'(v(x_0))$$

3.3.1 Tangente und Normale

Theorem

Ist die Funktion f differenzierbar an der Stelle x_0 , dann hat die **Tangente** an dem Graphen von f die Steigung $a=f'(x_0)$ und den Y-Achsenabschnitt $b=-f'(x_0)\cdot x_0+f(x_0)$. Daraus ergibt sich die Tangentengleichung:

$$T_{x_0}(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$

Bemerkung:

Eine Merkhilfe dazu ist das Wort "Fuxufu", wobei "u" dem x_0 entspricht.

Definition

Die **Normale** an der Stelle x_0 bezeichnet die Gerade, die genau senkrecht zur Tangente steht und diese im Berührpunkt des Graphen schneidet.

$$N_{x_0}(x) = -\frac{1}{f'(x_0)} \cdot (x - x_0) + f(x_0)$$

3.4 Vollständige Funktionsuntersuchung

3.4.1 Definitionsbereich

Am Anfang muss der Definitionsbereich angegeben werden, um eventuelle Divisionen durch null zu vermeiden. Man achte dabei auch auf hebbare Definitionslücken (siehe "Stetigkeit")

3.4.2 Achsenschnittpunkte

Es gibt zwei Arten von Achsenschnittpunkten:

- 1. X-Achsenschittpunkte (Nullstellen), die man mit der notwendigen und hinreichenden Bedingung für Nullstellen f(x) = 0 herausfindet
- 2. Y-Achsenschnittpunkt, den man durch einsetzen bekommt: f(0)

3.4.3 Symmetrie

Y-Achsensymmetrie

Durch Lösung der Gleichung f(x) = f(-x) findet man heraus ob die Funktion achsensymmetrisch ist. Zudem ist die Funktion dann achsensymmetrisch, wenn nur gerade Exponenten vorhanden sind. Die Funktion nennt man **gerade**.

Symmetrie zum Origo

Durch Lösung der Gleichung f(x) = -f(-x) findet man heraus ob die Funktion punktsymmetrisch ist. Zudem ist die Funktion dann punktsymmetrisch, wenn nur ungerade Exponenten vorhanden sind. Die Funktion nennt man **ungerade**.

Symmetrie zu einem beliebigen Punkt

Definition

Symmetrie zu einem Punkt liegt vor, wenn für den Punkt $P(x_0|y_0)$ gilt:

$$f(x_0 + h) - y_0 = -f(x_0 - h) + y_0$$

Beispiel:

$$f(x) = \frac{x}{x-1}$$

Aus dem Schnittpunkt der Asymptoten kann man vermuten, dass f(x) achsensymmetrisch zum Punkt

P(1|1) ist.

$$\Rightarrow f(x_0+h)-y_0=\tfrac{1+h}{1+h-1}-1=\tfrac{1}{h}$$

$$\Rightarrow -f(x_0-h)+y_0=-[\tfrac{1-h}{1-h-1}+1]=\tfrac{1}{h}$$

$$\bigg\}\,\tfrac{1}{h}=\tfrac{1}{h} \text{ Die Funktion } f \text{ ist zu } P \text{ symmetrisch.}$$

3.4.4 Grenzwerte

Definition

Das Symbol $\lim_{x\to x_0} f(x)$ mit $x_0\in \mathbb{R}$ ($\pm\infty$ eingeschlossen) bezeichnet den Limes der reellen Funktion $f:D\to\mathbb{R}$ für den Grenzübergang von x gegen eine Stelle x_0 , wobei x_0 nicht umbedingt in der Definitionsmenge von f enthalten sein muss.

Eine Zahl $g \in \overline{\mathbb{R}}$ ist der Grenzwert einer Funktion $f: D \to \mathbb{R}$ für $x \to x_0$, falls für jede Folge $(a_n)_{n \in \mathbb{N}}$ mit Folgegliedern aus D und Grenzwert x_0 die Folge $(f(a_n))_{n \in \mathbb{N}}$ den Grenzwert g hat.

$$\lim_{x\to x_0} f(x) = g \quad \Leftrightarrow \quad \forall (a_n)_{n\in\mathbb{N}} \text{ mit } \lim_{n\to\infty} a_n = x_0 : \lim_{n\to\infty} f(a_n) = g$$

Theorem

Regel von l'Hospital: f $\tilde{\text{A}}$ ijr Grenzwerte des Typs 0/0 und ∞/∞ Seien zwei differenzierbare Funktionen f und g und gelte entweder

$$\lim_{x\to x_0}g(x)=\lim_{x\to x_0}f(x)=\infty \qquad \mathsf{ODER}\qquad \lim_{x\to x_0}g(x)=\lim_{x\to x_0}f(x)=0$$

(sie sind also entweder konvergent gegen 0 oder bestimmt divergent) dann gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Bemerkung:

- 1. Falls die Funktionsvorschrift nicht direkt ein Bruch ist (siehe 2. Beispiel) sollte man diese erst zu einem Bruch umformen, um mit der Hospital-Regel fortfahren zu kÃűnnen.
- 2. ACHTUNG: Die Hospital-Regel ist nicht umkehrbar!

Beispiel:

$$f(x) = \frac{\sin(x)}{x} \qquad x_0 = 0 \qquad D = \mathbb{R} \setminus \{0\}$$

$$\Rightarrow \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \frac{\sin(x)}{x} = \lim_{x \to x_0} \frac{\cos(x)}{1} = 1$$

$$g(x) = x \cdot \log \left(\frac{x+1}{x-1}\right) \qquad \text{für } x \to \infty \qquad \qquad D = \mathbb{R} \backslash \{1\}$$

$$\Rightarrow \lim_{x \to \infty} g(x) = \lim_{x \to \infty} x \cdot \log\left(\frac{x+1}{x-1}\right)$$

$$= \lim_{x \to \infty} \frac{\log\left(\frac{x+1}{x-1}\right)}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\frac{x-1}{x} \cdot \frac{-2}{(x-1)^2}}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{\frac{-2}{x^2-1}}{\frac{-1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{\frac{2x^2}{x^2-1}}{\frac{-1}{x^2}} = 2$$

3.4.5 Asymptoten

Eine Asymptote ist eine Gerade oder Kurve, die sich dem Graphen einer Funktion immer weiter annähert. Dabei unterscheidet man verschiedene Fälle:

Definition

1. Senkrechte Asymptote:

Hat f an der stelle x_0 eine Polstelle, und gilt:

$$\lim_{x \to x_{0^{\pm}}} f(x) = \pm \infty$$

dann ist die Gerade $x = x_0$ eine senkrechte Asymptote von f.

2. Waagerechte Asymptote:

Konvergiert f für $x\to\infty$ gegen eine reelle Zahl $g\in\mathbb{R}$, das heiÃ \S t $\lim_{x\to\infty}f(x)=g$, dann ist die Gerade y=g die **waagerechte** Asymptote von f. Das Gleiche gilt für $\lim_{x\to\infty}f(x)=g$.

Bei gebrochenrationalen Funktionen ist dies der Fall, wenn der Zählergrad kleiner (dann ist g=0) oder gleich dem Nennergrad m ist.

3. Schräge Asymptote:

Sie ist eine Gerade $(g: \mathbb{R} \to \mathbb{R})$, der sich f mit $|x| \to \infty$ beliebig annähert:

$$\lim_{x\to\infty}\left[f(x)-g(x)\right]=0 \text{ oder } \lim_{x\to-\infty}\left[f(x)-g(x)\right]=0$$

Bei einer gebrochenrationalen Funktion ist der "Fehlergrad", das heißt der Abstand von g zu f durch den Rest der Polynomdivision von Zähler mit Nenner gegeben.

4. Asymptotische Kurven:

Indem man in der Definition der schrägen Asymptote auch Polynome zulässt, erhält man Näherungskuven, die die gleiche Limesbedingung erfüllen müssen:

$$\lim_{x \to \infty} \left[f(x) - P(x) \right] = 0 \text{ oder } \lim_{x \to -\infty} \left[f(x) - P(x) \right] = 0$$

Diese erscheinen bei gebrochenrationalen Funktion mit n > m + 1.

3.4.6 Monotonie

Definition

Eine stetige Funktion f mit $a, b \in I \subset D_f$ ist:

- 1. ... auf dem Intervall I monoton wachsend, wenn $\forall a < b : f(a) \leq f(b)$
- 2. ... auf dem Intervall I monoton fallend, wenn $\forall a < b : f(a) \ge f(b)$

Wenn die Ordnungsrelation strikt sind, dann wird die Funktion als **streng monoton** bezeichnet. Die Funktion f hat eine Ableitungsfunktion f'. Falls f...

- 1. monoton wachsend auf I ist, dann ist $f'(x) \ge 0$, $\forall x \in I$
- 2. monoton fallend auf I ist, dann ist $f'(x) \leq 0$, $\forall x \in I$
- 3. konstant auf *I* ist, dann ist f'(x) = 0, $\forall x \in I$

Beim Aufstellen der Monotonietabelle sind Definitionslücken zu beachten.

Es handelt sich dabei um eine Tabelle, die die Definitionsmenge in Intervalle mit monotonen Steigungsverhalten unterteilt wird. Das Monotonieverhalten verändert sich an Extrem- oder Polstellen.

Bemerkung:

f sei eine Funktion...

- dann ist die Zahl S obere Schranke, wenn $\forall x: f(x) \leq S$. f heißt in diesem Fall nach oben beschränkt. Die in diesem Fall kleinstmögliche Zahl wird **Supremum** genannt: $\sup f$
- dann ist die Zahl s untere Schranke, wenn $\forall x: f(x) \geq s$. f ist in diesem Fall nach unten beschränkt. Die in diesem Fall größtmögliche Zahl wird **Infimum** genannt: inf f

Bemerkung:

Eine Funktion *f* ist...

- **konvergent**, wenn sie einen Grenzwert $g \in \mathbb{R}$ hat
- bestimmt divergent, wenn sie keinen reellen Grenzwert, also $\lim_{x \to +\infty} f(x) = \pm \infty$
- unbestimmt divergent, wenn es keine Zahl $g\in\overline{\mathbb{R}}$ ($\overline{\mathbb{R}}=\mathbb{R}$ mit ∞ und $-\infty$) gibt mit $\lim_{x\to+\infty}f(x)=g(x)$

Beispiel:

$$f(x) = x \cdot \sin x$$

3.4.7 Extremstellen

Für die Bestimmung von Extremstellen gilt es zwei Bedingungen zu überprüfen:

Hat an einer Stelle x_0 die erste Ableitung von f eine Nullstelle, also $f'(x_0) = 0$, dann handelt es sich um eine Extremstelle **oder** um einen Sattelpunkt. Diese Bedingung ist die notwendige Bedingung für eine Extremstelle. Mit ihr ist eine grobe Kategorisierung gemacht, eine Extremstelle ist noch nicht bewiesen.

Hat f' an der Stelle x_0 einen Vorzeichenwechsel oder ist $f''(x_0) \neq 0$, dann ist der Sonderfall des Wendepunktes ausgeschlossen und es handelt sich um deine Extremstelle. Es gilt also:

$$\exists ! \ x_0 \in I \subseteq D_f : f(x_0) \ge oder \le f(x)$$

Der Punkt $P(x_0|f(x_0))$ heißt Hochpunkt oder Tiefpunkt. Diese Bedingung ist die hinreichende Bedingung für eine Extremstelle.

3.4.8 Wendestellen

Für die Bestimmung von Wendestellen gilt es auch zwei Bedingungen zu überprüfen:

Hat an einer Stelle x_0 die zweite Ableitung von f eine Nullstelle, also $f''(x_0) = 0$, dann handelt es sich um eine Wendestelle **oder** um einen geraden Abschnitt. Diese Bedingung ist die notwendige Bedingung für eine Wendestelle.

Hat f'' an der Stelle x_0 einen Vorzeichenwechsel oder ist $f'''(x_0) \neq 0$, dann ist der Sonderfall ausgeschlossen und es handelt sich um deine Wendestelle. Der Punkt $W(x_0|f(x_0))$ heißt Wendepunkt. Diese Bedingung ist die hinreichende Bedingung für eine Wendestelle.

Bemerkung:

Eine Hilfsformel, die den Zusammenhang zwischen den verschiedenen Ableitungen einfach darstellt ist die NEW-Regel:

N = Nullstellen

E = Extremstellen

W = Wendestellen

3.4.9 Funktionseinordnung

Definition

Jede Funktion f bildet auf verschiedene Weise eine Definitionsmenge D_f auf eine Wertmenge W_f ab. Hat eine Menge G eine gr \tilde{A} u \tilde{A} sere M \tilde{A} d'chtigkeit (notiert |G|) als K, dann besitzt G mehr Elemente als K. Dies gilt eigentlich nicht f \tilde{A} ijr \tilde{A} ijberabz \tilde{A} d'hlbar unendlich gro \tilde{A} se Mengen, diese sind theoretisch alle gleich gro \tilde{A} s (unendlich gro \tilde{A} s!).

Eine Funktion f ist ...

• surjektiv, wenn sie jedes Element der Zielmenge mindestens einmal als Funktionswert annimmt. Das heiħt, jedes Element der Zielmenge hat mindestens ein Urbild.

$$\forall y \in W_f \quad \exists x \in D_f : \quad f(x) = y$$

$$|D_f| \ge |W_f|$$
. Beispiel: $f(x) = \sin x$

injektiv, wenn zu jedem Element der Wertmenge h\(\tilde{A}\)űchstens ein (oder auch gar kein) Element der Definitionsmenge existiert. Zwei verschiedene Elemente \(x_1\) und \(x_2\) der Definitionsmenge bilden also nie auf den gleichen Term \(y\) der Wertmenge ab.

$$\forall x_1, x_2 \in D_f: f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

 \land Dies bedeutet **nicht**: $\forall x_1, x_2 \in D_f$: $x_1 = x_2 \Rightarrow f(x_1) = f(x_2)$

$$|D_f| \le |W_f|$$
. Beispiel: $f(x) = 2x$ mit $D_f = \mathbb{Z}$

П

• **bijektiv**, wenn eine vollstÃd'ndige Paarbildung existiert. Jedes Element der Wertmenge besitzt genau ein Element der Definitionsmenge und jedes Element der Definitionsmenge besitzt genau ein Element der Wertmenge. Eine Funktion ist genau dann bijektiv, wenn sie sowohl surjektiv, als auch injektiv ist.

$$|D_f| = |W_f|$$
. Beispiel: $f(x) = x^3$

Bemerkung:

AusfÃijhrlichere ErklÃd'rungen hier, einfach auf die Links klicken: Uni Vorlesungsskript oder ÃlJberschaubar(er) mit Graphen

3.4.10 Umkehrbarkeit

Definition

Sei f eine Funktion mit $f: D_f \mapsto W_f$ mit $x \mapsto y$, dann ist die Funktion genau dann eindeutig umkehrbar, wenn es zu jedem $y \in W_f$ genau ein $x \in D_f$ existiert.

Wenn diese Funktion umkehrbar ist, dann existiert auch eine Umkehrfunktion $\overline{f}(x)$ die jedem $x \in W_f$ genau ein $y \in D_f$ zuordnet, analog zur Funktion, nur andersrum, also mit $y \mapsto x$

Es gilt:
$$D_{\overline{f}} = W_f$$
 und $W_{\overline{f}} = D_f$

Bemerkung:

Es gibt viele Funktionen (surjektive Funktionen) die nicht in ihrer vollständigen Definitionsmenge umkehrbar sind, zum Beispiel x^n mit n als gerade Zahl, $\sin(x), \tan(x)$, und viele mehr. Hier beschränkt man die Funktion auf ein bestimmtes Intervall, um sie umkehren zu können.

Die Funktion $f(x)=x^2$ mit $D_f=\mathbb{R}$ und $W_f=\mathbb{R}_0^+$ hat für y=4 zwei Urbilder: -2 und 2. Beschränkt man die Funktion auf $D_f=\mathbb{R}_0^+$, ist sie umkehrbar und die Umkehrfunktion lautet $\overline{f}(x)=\sqrt{x}$

Theorem - Umkehr- / Inversenregel

Sei f eine bijektive (also umkehrbare), differenzierbare, reelle Funktion bei der gilt: $f'(x) \neq 0$, dann ist die Umkehrfunktion auch differenzierbar mit der Ableitung

$$\overline{f}'(y) = \frac{1}{f'(\overline{f}(y))} = \frac{1}{f'(x)}$$

$$\Rightarrow$$
 $\overline{f}(f(x)) = x$ | ableiten

$$\Leftrightarrow \overline{f}'(f(x)) \cdot f'(x) = 1$$

$$\Leftrightarrow \qquad \overline{f}'(f(x)) \qquad = \quad \frac{1}{f'(x)}$$

 $\Leftrightarrow \qquad \overline{f}'(y) \qquad = \frac{1}{f'(x)} \qquad | \min y = f(x)$

32

Bemerkung:

Anschaulich ist eine Umkehrfunktion eine Axenspiegelung entlang der Winkelhalbierende am Ursprung, also dem Funktionsgraphen von f(x)=x

Beispiel:

Die Funktion $f(x)=x^2$ mit $D_f=\mathbb{R}_0^+$ ist umzukehren. Leichtes Spiel...

$$\Rightarrow \quad \mathbf{y} = \mathbf{X}^2$$

$$\Leftrightarrow \quad \mathbf{X} = \pm \sqrt{y} \quad \text{Variablen tauschen}$$

$$\Leftrightarrow \quad \mathbf{y} = \pm \sqrt{x}$$

$$\Rightarrow \quad \overline{f}(x) = \pm \sqrt{x}$$

3.4.11 Beispiel

$$f(x) = \frac{4x^2 - 8x + 4}{2x - 1} = \frac{(2x - 2)^2}{2x - 1}$$
 $D_f = \mathbb{R} \setminus \{\frac{1}{2}\}$

$$f'(x) = \frac{(8x-8)(2x-1) - (4x^2 - 8x + 4)(2)}{(2x-1)^2} = \frac{16x^2 - 8x - 16x + 8 - 8x^2 + 16x - 8}{4x^2 - 4x + 1} = \frac{8x^2 - 8x}{(2x-1)^2}$$

$$f''(x) = \frac{\frac{(16x - 8)(4x^2 - 4x + 1) - (8x^2 - 8x)(8x - 4)}{((2x - 1)^2)^2}}{(2x - 1)^{\frac{1}{2}3}} = \frac{\frac{(2x - 1) \cdot 8 \cdot (4x^2 - 4x + 1) - (8x^2 - 8x) \cdot 4 \cdot (2x - 1)}{(2x - 1)^{\frac{1}{2}3}} = \frac{8}{8x^3 - 12x^3 + 6x - 1}$$

Achsenschnittpunkte

Bestimmung der Nullstelle(n):

$$\Rightarrow f(x) = 0 \quad D = \mathbb{R} \setminus \{\frac{1}{2}\}$$

$$\Leftrightarrow \frac{(2x-2)^2}{(2x-1)} = 0$$

$$\Leftrightarrow 2x-2 = 0$$

$$\Leftrightarrow x = 1 \quad L = \{1\}$$

Die Gleichung für die senkrechte Asymptote lautet deshalb x=1

Bestimmung des Y-Achsenabschnitts:

$$\Rightarrow f(0) = \frac{4}{-1} = -4$$

Symmetrie:

Man kann anhand des GTR vermuten dass f punktsymmetrisch ist. Dieser Symmetriepunkt P_0 lässt sich entweder dort ablesen oder ist (häufig) den Schnittpunkt der Asymptoten. $P_o(\frac{1}{2}|-2)$

$$\Rightarrow f(x_0 + h) - y_0 = f(\frac{1}{2} + h) + 2$$

$$= \frac{4(\frac{1}{2} + h)^2 - 8(\frac{1}{2} + h) + 4}{2(\frac{1}{2} + h) - 1} + 2$$

$$= \frac{4(\frac{1}{4} + h + h^2) - 4 - 8h + 4}{2h} + \frac{4h}{2h}$$

$$= \frac{1 + 4h + 4h^2 - 8h + 4h}{2h} = \frac{4h^2 + 1}{2h}$$

$$\Rightarrow -f(x_0 - h) + y_0 = -f(\frac{1}{2} - h) - 2$$

$$= -\frac{4(\frac{1}{2} - h)^2 - 8(\frac{1}{2} - h) + 4}{2(\frac{1}{2} - h) - 1} - 2$$

$$= -\frac{4(\frac{1}{4} - h + h^2) - 4 + 8h + 4}{-2h} - \frac{4h}{2h}$$

$$= \frac{1 - 4h + 4h^2 + 8h - 4h}{2h} = \frac{4h^2 + 1}{2h}$$

Hiermit hat man die Punktsymmetrie von f zu P_0 bewiesen.

Bestimmung der Grenzwerte der Funktion:

$$\Rightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4x^2 - 8x + 4}{2x - 1} = \frac{\lim_{x \to +\infty} \left(4 - \frac{8}{x} + \frac{4}{x^2}\right)}{\lim_{x \to +\infty} \frac{2}{x} - \frac{1}{x^2}} = \frac{4 - 0 + 0}{0 - 0} = +\infty$$

$$\Rightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{4x^2 - 8x + 4}{2x - 1} = \frac{\lim_{x \to +\infty} \left(-4 + \frac{8}{x} + \frac{4}{x^2}\right)}{\lim_{x \to +\infty} -\frac{2}{x} - \frac{1}{x^2}} = \frac{-4 + 0 + 0}{-0 - 0} = -\infty$$

Bemerkung:

Da die Punktsymmetrie vorher bewiesen wurde hätte der $\lim_{x\to -\infty} f(x)$ gar nicht errechnet werden müssen!

$$\Rightarrow \lim_{x \to \frac{1}{2}^{+}} f(x) = \lim_{h \to 0} \frac{4(\frac{1}{2} + h)^{2} - 8(\frac{1}{2} + h) + 4}{2(\frac{1}{2} + h) - 1} = \lim_{h \to 0} \frac{1 + 4h + 4h^{2} - 4 + h + 4}{2h}$$

$$= \lim_{h \to 0} \frac{1 + 5h + 4h^{2}}{\lim_{h \to 0} 2h}$$

$$= \frac{1}{0} = +\infty$$

$$\Rightarrow \lim_{x \to \frac{1}{2}^{-}} f(x) = \lim_{h \to 0} \frac{4(\frac{1}{2} - h)^{2} - 8(\frac{1}{2} - h) + 4}{2(\frac{1}{2} - h) - 1} = \lim_{h \to 0} \frac{1 - 4h + 4h^{2} - 4 - 4h + 4}{-2h}$$

$$= \lim_{h \to 0} \frac{1 - 8h + 4h^{2}}{\lim_{h \to 0} - 2h}$$

$$= -\frac{1}{0} = -\infty$$

Asymptoten:

Es liegt eine nicht hebbare Definitionslücke bei $x=\frac{1}{2}$ vor, also ist dies die Gleichung der senkrechten Asymptote.

Da der Grenzwert $\to \pm \infty$ keinen eindeutigen Wert annimmt, macht man eine Polynomdivision ...

$$\Rightarrow (4x^2 -8x +4) : (2x-1) = 2x-3+\frac{1}{2x-1}$$

$$-(4x^2 -2x)$$

$$-6x +4$$

$$-(-6x +3)$$

 \dots und erhält die Gleichung der schiefen Asymptote y=2x-3

Monotonieverhalten:

Untersuchung auf Extremstellen:

• Notwendige Bedingung: $\Rightarrow f'(x) = 0$

$$\Leftrightarrow \frac{8x^2 - 8x}{4x^2 - 4x + 1} = 0 \qquad \qquad D = \mathbb{R} \backslash \{\frac{1}{2}\}$$

$$\Leftrightarrow x(8x - 8) = 0$$

$$\Leftrightarrow x = 0 \quad \forall \quad x = 1 \qquad \qquad L = \{1; 0\}$$

$$\mathbf{i}\mathbf{\hat{E}_i}$$

• Hinreichende Bedingung: Vorzeichenwechsel f'(x) oder $f''(x) \neq 0$

x	$-\infty$	0		$\frac{1}{2}$	1		$+\infty$
x	_	0	+		+	+	
(8x-8)	_		_		- 0	+	
$(2x-1)^2$	+		+		+	+	
f'(x)	+	0	_		- 0	+	
f(x)	$-\infty$	(0 f(0))	-(+∞	(1 f(1))	+∞

Krümmungsverhalten:

Untersuchung auf Wendestellen:

• Notwendige Bedingung: $\Rightarrow f''(x) = 0$

$$\Leftrightarrow \frac{8}{(2x-1)^3} = 0$$

$$\Leftrightarrow 8 = 0$$
 \$\mathcal{I}\$

Die Funktion weist keine Wendestellen vor. Bei Lösbarkeit der Gleichung ist als hinreichende Bedingung ein Vorzeichenwechsel von f''(x) zu zeigen oder $f''' \neq 0$ zu beweisen. Dann kann die Skizze beginnen:

3.5 Funktionenscharen

Erklärung:

Eine **Funktionenschar** ist eine Menge von Funktionen, die neben der Variable auch noch einen veränderlichen Parameter im Funktionsterm enthält. Jedem Wert des Parameters ist ein Graph der Schar zugeordnet. Der Parameter, oft a, wird hierbei überall wie eine Konstante behandelt.

Der Punkt, den alle Graphen, unabhängig von ihren Parametern, beinhalten, nennt man Bündel. Die Graphen einer Funktionenschar bilden gemeinsam eine Kurvenschar

Hier ist die Kurvenschar der Funktion $f(x)=ax^3.$ Sie verlaufen alle durch das Bündel P(0|0)

$$f_a(x) = \frac{x^2 - 3ax}{x + a}$$
 $D_f = \mathbb{R} \setminus \{-a\}, \quad a \in \mathbb{R}^+$

$$D_f = \mathbb{R} \setminus \{-a\}, \qquad a \in \mathbb{R}^+$$

Sei K_a der Graph der Funktion.

Bestimmen Sie die Schnittpunkte von K_a mit den Koordinatenachsen

$$f_a(0) = \frac{0}{x+a} = 0$$

$$\Rightarrow f_a(x) = 0 \quad \Leftrightarrow \quad x^2 - 3x = 0$$
$$\Leftrightarrow \quad x(x - 3a) = 0$$
$$\Leftrightarrow \quad x = 0 \quad \lor \quad x = 3a$$

ï£į ï£į

Es ergeben sich die Punkte $P_1(0|0)$ und $P_2(3a|0)$

Bestimmen Sie die Asymptoten von K_a

$$\Rightarrow (x^{2} -3ax +0) : (x+a) = x-4a + \frac{4a^{2}}{x+a}$$

$$-(x^{2} +ax)$$

$$-4ax +0$$

$$-(-4ax -4a^{2})$$

$$4a^{2}$$

Man erhält die schiefe Asymptote y = x - 4a

Es liegt eine nicht hebbare Definitionslücke bei -a vor, daraus ergibt sich eine vertikale Asymptote $\Rightarrow x = -a$

Zeigen Sie $f_a''(x) = \frac{8a^2}{(x+a)^3}$

$$\begin{aligned} \mathbf{f'}_a(x) &=& \frac{(2x-3a)(x+a)-(x^2-3ax)(1)}{(x+a)^2} \\ &=& \frac{2x^2+2ax-3ax-3a^2-x^2-3ax}{x^2+2ax+a^2} \\ &=& \frac{x^2+2ax-3a^2}{(x+a)^2} \end{aligned}$$

$$\begin{array}{lcl} \mathsf{f"}_a(x) & = & \dfrac{(2x+2a)(x^2+2ax+a^2)-(x^2-2ax-3a^2)(2(x+a))}{(x+a)^4} \\ & = & \dfrac{2x^2+4ax+2a^2-2x^2+4ax+6a^2}{(x+a)^3} \\ & = & \dfrac{8a^2}{(x+a)^3} \end{array}$$

Weisen Sie nach, dass K_a genau einen Hochpunkt und genau einen Tiefpunkt besitzt. Geben Sie die Koordinaten dieser Punkte in Abhängigkeit von a an und erstellen Sie eine Monotonietabelle der Funktionen f_a

Notwendige Bedingung für Extremstellen: $\Rightarrow f'(x) = 0$

$$\Leftrightarrow x^2 + 2ax - 3a^2 = 0 \qquad D = \mathbb{R} \setminus \{-a\}$$

$$\Rightarrow \Delta = 4a^2 + 12a^2 = 16a^2$$

$$\Leftrightarrow x_1 = a \quad \forall \quad x_2 = -3a \qquad L = \{a; -3a\}$$

$$\Rightarrow f(a) = \frac{a^2 - 3a^2}{2a} = -a$$

$$\Rightarrow f(-3a) = \frac{9a^2 + 9a^2}{-2a} = -9a$$

Es ergeben sich somit die Extremstellen H(-3a|-9a) und T(a|-a). Bevor man mit der Monotonietabelle beginnt, muss die Polstelle untersucht werden.

$$\lim_{x \to -a^{+}} f_{a} = \lim_{x \to -a^{+}} \frac{x^{2} - 3ax}{x + a} = \lim_{h \to 0} \frac{(-a + h)^{2} - 3a(-a + h)}{(-a + h) + a} = \lim_{h \to 0} \frac{h^{2} - 5ah + 4a^{2}}{h} = +\infty$$

$$\lim_{x \to -a^{-}} f_{a} = \lim_{x \to -a^{-}} \frac{x^{2} - 3ax}{x + a} = \lim_{h \to 0} \frac{(-a - h)^{2} - 3a(-a - h)}{(-a - h) + a} = \lim_{h \to 0} \frac{h^{2} + 5ah + 4a^{2}}{-h} = -\infty$$

ï£i Jetzt kann die Monotonietabelle erstellt werden:

x	$-\infty$	-3a		-a		a	$+\infty$
$\begin{array}{ c c c c c } \hline x^2 - \\ 2ax - 3a \\ \hline \end{array}$	+	0	_		_	0 +	
$(x+a)^2$	+		+		+	+	
$f_a'(x)$	+	0	_		_	0 +	
$f_a(x)$	$-\infty$	H(-3a -9		+∞	T(a	$ -a\rangle$	+∞

Zeigen Sie, dass es genau einen Punkt gibt, durch den alle Graphen Ka gehen.

Diesen Punkt haben wir schon per "Zufall" herausgefunden, da wir eine Nullstelle gefunden haben, die nicht von a abhängt. Wenn man diesen aber nicht gefunden hat, geht man diesen Lösungsweg:

$$\Rightarrow f_1 = f_2 \Leftrightarrow \frac{x^2 - 3x}{x+1} = \frac{x^2 - 6x}{x+2}$$

$$\Leftrightarrow \frac{x-3}{x+1} = \frac{x-6}{x+2}$$

$$\Leftrightarrow -x = -5x$$

$$\Leftrightarrow x = 0$$

$$L = \{0\}$$

Bestimmen Sie $a \in \mathbb{R}^+$ so, dass der Graph K_a durch den Punkt $P(5|\frac{5}{3})$ verläuft

$$\Rightarrow f_a(5) = \frac{5}{3} \Leftrightarrow \frac{5^2 - 15a}{5 + a} = \frac{5}{3} \qquad D = \mathbb{R} \setminus \{-5\}$$

$$\Leftrightarrow 15 - 9a = 5 + a$$

$$\Leftrightarrow a = 1 \qquad L = \{1\}$$

Berechnen Sie die Schnittpunkte von K_1 mit der Geraden j(x) = -15x - 4

$$\Rightarrow f_1(x) = \frac{x^2 - 3x}{x + 1} = -15x - 4 = y$$

$$\Leftrightarrow x^2 - 3x = -15x^2 - 19x - 4$$

$$\Leftrightarrow 4x^2 + 4x + 1 = 0$$

$$\Delta = 0 \Rightarrow x = -\frac{1}{2}$$

$$\Rightarrow f_1(-\frac{1}{2}) = \frac{(\frac{1}{2})^2 - 3 \cdot (\frac{1}{2})}{-\frac{1}{2} + 1} = \frac{7}{2}$$

Es existiert genau ein Schnittpunkt von K_1 mit der Geraden j: $P_{K_1j}(-\frac{1}{2}|\frac{7}{2})$

Vom Punkt A(0|-4) wird die Tangente an K_1 gelegt. Bestimmen Sie eine Gleichung der Tangente und die Koordinaten des Berührpunktes

Sei $B(x_0|f(x_0))$, dann lautet die Tangentengleichung:

$$\Rightarrow T_{x_0}(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$
$$= \frac{x_0^2 + 2x_0 - 3}{(x_0 + 1)^2} \cdot (x - x_0) + \frac{x_0^2 - 3x_0}{x_0 + 1}$$

Jetzt werden die Koordinaten des Punktes A(0|-4), durch den die Tangente auch noch geht, eingesetzt.

$$\Rightarrow T_{x_0}(0) = -4 = \frac{x_0^2 + 2x_0 - 3}{(x_0 + 1)^2} \cdot (-x_0) + \frac{x_0^2 - 3x_0}{x_0 + 1} \qquad D = \mathbb{R} \setminus \{-1\}$$

$$\Leftrightarrow -4(x_0 + 1)^2 = (x_0^2 + 2x_0 - 3)(-x_0) + (x_0^2 - 3x_0)(x_0 + 1)$$

$$\Leftrightarrow -4x_0^2 - 8x_0 - 4 = -x_0^3 - 2x_0^2 + 3x_0 + x_0^3 + x_0^2 - 3x_0^2 - 3x_0$$

$$\Leftrightarrow 4x_0^2 + 8x_0 + 4 = 4x_0^2$$

$$\Leftrightarrow x_0 = -\frac{1}{2} \qquad L = \left\{-\frac{1}{2}\right\}$$

Nun werden die Koordinaten des Berührpunktes mit der Ursprünglichen Funktion f durch einsetzen errechnet.

$$\Rightarrow f_1\left(-\frac{1}{2}\right) = \frac{\left(-\frac{1}{2}\right)^2 - 3 \cdot -\frac{1}{2}}{-\frac{1}{2} + 1} = \frac{7}{2}$$
$$\Rightarrow B\left(-\frac{1}{2}|\frac{7}{2}\right)$$

Da es sich um eine Tangente handelt, muss nun die Steigung am Berührpunkt errechnet werden, um die Tangentengleichung bestimmen zu können.

$$\Rightarrow f_1'\left(-\frac{1}{2}\right) = \frac{\left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right) - 3}{\left(-\frac{1}{2}\right)^2} = -15$$

Die Tangentengleichung lautet:

$$t(x) = -15x - 4 \qquad \qquad \text{mit} \quad D_t = \mathbb{R}$$

TRIGONOMETRIE

by RÃĽMY

4.1 Kurze Wiederholung

Definition

In einem Kreis mit Radius 1 gelte:

•
$$\cos(\alpha) = x_{\scriptscriptstyle M}$$

•
$$\sin(\alpha) = y_{\scriptscriptstyle M}$$

•
$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Es ergeben sich folgende (wissenswerte) Werte:

41

Des Weiteren gilt:

	15°	45°	75°
	π	π	5π
	$\overline{12}$	$\frac{1}{4}$	$\overline{12}$
$\sin(lpha)$	$\sqrt{6}-\sqrt{2}$	1	$\sqrt{6} + \sqrt{2}$
$\operatorname{sin}(\alpha)$	4	$\sqrt{2}$	4
(-)	$\sqrt{6} + \sqrt{2}$	$\sqrt{3}$	$\sqrt{6}-\sqrt{2}$
$\cos(\alpha)$	4	2	4

4.2 Additions- und VerdopplungssÃďtze

Theorem

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

Bemerkung:

Hieraus ergeben sich einige weitere Relationen, wie z.B. $\sin(2a)$. Diese lassen sich jedoch schnell und leicht herleiten.

4.3 Allgemeine Sinus- und KosinussÃďtze

In einem beliebigen Dreieck gelten abgewandelte Formen der aus der 8. Klasse bekannten SÃd'tze:

Theorem

- $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$
- $c^2 = a^2 + b^2 2abcos(\gamma)$

Bemerkung:

Man bemerkt, dass sich die bekannten Relationen ergeben, wenn einer der Winkel den Wert $\frac{\pi}{2}$ annimmt.

4.4 Sinusfunktionen

Zur VollstÄd'ndigen Funktionsdiskussion einer Sinus-Funktion sind einige Besonderheiten zu beachten:

- 1. Amplitude und PeriodizitÃd't Eine Funktion der Form $f(x) = a \cdot \sin(b(x-c)) + d$ hat:
 - $\bullet \ \ {\rm die\ Periode}\ P = \frac{2\pi}{|b|}$
 - die Amplitude A = |a|
 - ullet die Verschiebung entlang der x-Achse um d und entlang der y-Achse um c

2. Symmetrieeigenschaften

Hier sollte zumindest bekannt sein, dass $f(x) = \sin(x)$ punktsymmetrisch zum Origo ist, und dass $f(x) = \cos(x)$ Achsensymmetrisch zur y-Achse ist.

3. Die Null-, Extrem- und Wendestellen sind in Form einer Menge anzugeben. (Es sei denn, die Aufgabenvorschrift fordert explizit zu einer Begrenzung auf ein angegebenes Intervall auf)

Beispiel:

Die Nullstellen der Funktion $f(x) = \sin(x)$ lassen sich dartstellen als: $x \in \{k\pi | k \in \mathbb{Z}\}$

4. Bei der Teilung durch eine Sinusfunktion kÃűnnen DefinitionslÃijcken an dessen Nullstellen entstehen. Auch diese kÃűnnen in der bereits gezeigten Form angegeben werden.

4.4.1 Zusammengesetzte Sinusfunktionen

4.5 Polarkoordinaten

In der Kursstufe beschrÄd'nken wir uns auf die Benutzung von Polarkoordinaten fÄijr Punkte in der Ebene (2D).

Definition

Polarkoordinaten sind eine Form der eindeutigen Punktangaben, doch anstatt wie kartesische Koordinaten 2 Entfernungen x und y zu verwenden, haben sie die Form $(r|\varphi)$. r ist hierbei die Entfernung zum Origo und φ ein orientierter Winkel (in rad).

4.5.1 Umrechnung

Kartesisch → Polar

$$\quad \bullet \ \ r = \sqrt{x^2 + y^2}$$

•
$$\varphi = \tan(\frac{y}{x})$$

Polar -> Kartesisch

•
$$x = r \cdot \cos(\varphi)$$

•
$$y = r \cdot \sin(\varphi)$$

4.6 Beispiele einer Funktionsdiskussion

4.6.1
$$f(x) = 2\cos(x) + 2\sin(x)\cos(x)$$

Sei die Funktion $f(x)=2\cos(x)+2\sin(x)\cos(x)$, ihr Schaubild sei K. Untersuchen Sie K im Intervall $[0;2\pi]$ auf gemeinsame Punkte mit der x-Achse, sowie Extrem- und Wendepunkte. Zeichnen Sie K im Intervall $[0;2\pi]$. Untersuchen Sie K auf Symmetrie.

Definitionsmenge

$$D = \mathbb{R}$$

PeriodizitÃd't und Amplitude Die Periode von f ist $P=2\pi.$ Die Amplitude A betrÃd'gt $\frac{3}{2}\sqrt{3}.$

Nullstellen

Notwendige und hinreichende Bedingung:

$$f(x) = 0$$

$$\Leftrightarrow 2\cos(x) + 2\sin(x)\cos(x) = 0$$

$$\Leftrightarrow 2\cos(x)(1 + \sin(x)) = 0$$

$$S.d.^{N} \begin{cases} 2\cos(x) = 0 \\ 1 + \sin(x) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos(x) = 0 \\ \sin(x) = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1} = \frac{1}{2}\pi \\ x_{2} = \frac{3}{2}\pi \end{cases}$$

$$\Rightarrow \mathbb{L} = \left\{ \left(\frac{1}{2}\pi \middle| 0\right); \left(\frac{3}{2}\pi \middle| 0\right) \right\}$$

Ableitungen

$$f'(x) = -2\sin(x) + 2(\cos(x)\cos(x) - \sin(x)\sin(x))$$

$$= -2\sin(x) + 2(\cos^{2}(x) - \sin^{2}(x))$$

$$= -2\sin(x) + 2(1 - \sin^{2}(x) - \sin^{2}(x))$$

$$= -4\sin^{2}(x) - 2\sin(x) + 2$$

$$f''(x) = -4(\cos(x)\sin(x) + \sin(x)\cos(x)) - 2\cos(x)$$

$$= -8\sin(x)\cos(x) - 2\cos(x)$$

$$f'''(x) = -8(\cos(x)\cos(x) - \sin(x)\sin(x)) + 2\sin(x)$$

$$= -8(1 - \sin^{2}(x) - \sin^{2}(x)) + 2\sin(x)$$

$$= 16\sin^{2}(x) + 2\sin(x) - 8$$

Extremstellen

Notwendige Bedingung:

$$f'(x) = 0$$

$$\Leftrightarrow 4\sin^2(x) - 2\sin(x) + 2 = 0$$
Substitution: $y = \sin(x)$

$$\Rightarrow 4y^2 - 2y + 2 = 0$$

$$\stackrel{ABC-Formel}{\Rightarrow} y_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 * (-4) * 2}}{-8}$$
Resubstitution:
$$\begin{cases} \sin(x) &= \frac{2 + \sqrt{20}}{-8} \\ \sin(x) &= \frac{2 - \sqrt{20}}{-8} \end{cases}$$

Hinreichende Bedingung:

$$f''(x) \neq 0$$

$$\Rightarrow \begin{cases} f''\left(\frac{1}{6}\pi\right) & \stackrel{?}{=} 0 \\ f''\left(\frac{5}{6}\pi\right) & \stackrel{?}{=} 0 \end{cases}$$

$$\Rightarrow \begin{cases} 8\sin\left(\frac{1}{6}\pi\right) & \stackrel{?}{=} 0 \\ 8\sin\left(\frac{1}{6}\pi\right)\cos\left(\frac{1}{6}\pi\right) - 2\sin\left(\frac{1}{6}\pi\right) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8\sin\left(\frac{5}{6}\pi\right)\cos\left(\frac{5}{6}\pi\right) - 2\sin\left(\frac{5}{6}\pi\right) & \stackrel{?}{=} 0 \\ 8\sin\left(\frac{3}{2}\pi\right)\cos\left(\frac{3}{2}\pi\right) - 2\sin\left(\frac{3}{2}\pi\right) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8\sin\left(\frac{3}{2}\pi\right)\cos\left(\frac{3}{2}\pi\right) - 2\sin\left(\frac{3}{2}\pi\right) & \stackrel{?}{=} 0 \\ 8*\frac{1}{2}*\frac{\sqrt{3}}{2} - 2*\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , < 0 \Rightarrow HP \\ 8*\frac{1}{2}*-\frac{\sqrt{3}}{2} - 2*-\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , > 0 \Rightarrow TP \\ 8*(-1)(0) - 2(0) & \stackrel{!}{=} 0 \Rightarrow \text{ kein } EP \end{cases}$$

Ergebnis

Auf dem Intervall $[0;2\pi]$ besitzt K den Hochpunkt H $\left(\frac{1}{6}\pi|f\left(\frac{1}{6}\pi\right)\right)$ und den Tiefpunk T $\left(\frac{5}{6}\pi|f\left(\frac{5}{6}\pi\right)\right)$. \Leftrightarrow H $\left(\frac{1}{6}\pi|\frac{3}{2}\sqrt{3}\right)$ und T $\left(\frac{5}{6}\pi|-\frac{3}{2}\sqrt{3}\right)$.

Wendestellen

Notwendige Bedingung:

$$f''(x) = 0$$

$$\Leftrightarrow -8\sin(x)\cos(x) - 2\cos(x) = 0$$

$$\Leftrightarrow \cos(x)(-2 - 8\sin(x)) = 0$$

$$\stackrel{SdN}{\Rightarrow} \begin{cases} \cos(x) = 0 \\ \sin(x) = -\frac{1}{4} \end{cases}$$

$$\Rightarrow \mathbb{L} = \left\{ \frac{1}{2}\pi; \frac{3}{2}\pi; \sim 3,394; \sim 6,031 \right\}$$

Hinreichende Bedingung:

$$f'''(x) \neq 0$$

$$f'''\left(\frac{1}{2}\pi\right) \stackrel{?}{=} 0$$

$$f'''\left(\frac{3}{2}\pi\right) \stackrel{?}{=} 0$$

$$f'''\left(3,394\right) \stackrel{?}{=} 0$$

$$f'''\left(6,031\right) \stackrel{?}{=} 0$$

$$\begin{cases} 16\sin^2\left(\frac{1}{2}\pi\right) + \sin\left(\frac{1}{2}\pi\right) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 16\sin^2\left(\frac{3}{2}\pi\right) + \sin\left(\frac{3}{2}\pi\right) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$16\sin^2\left(3,394\right) + \sin\left(3,394\right) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$16\sin^2\left(6,031\right) + \sin\left(6,031\right) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$\begin{cases} 16*1 + 1 - 8 & \neq 0 \\ 16*1 - 1 - 8 & \neq 0 \end{cases}, > 0 \Rightarrow WP$$

$$-7,5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP$$

$$-7,5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP$$

$$-7,5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP$$

Bemerkung:

Auçerdem:
$$f'\left(\frac{3}{2}\pi\right)=0\Rightarrow$$
 Sattelpunkt

Ergebnis

Auf dem Intervall $[0;2\pi]$ besitzt K die Wendepunkte $\left(\frac{1}{2}\pi\middle|f\left(\frac{1}{2}\pi\right)\right)$, (3,394|f(3,394)), (6,031|f(6,031)) und den Sattelpunkt $\left(\frac{3}{2}\pi\middle|f\left(\frac{3}{2}\pi\right)\right)$.

$$\Leftrightarrow W_1\left(\frac{1}{2}\pi\middle|0\right), W_2(3,394|-1,452), W_3(6,031|1,452), S\left(\frac{3}{2}\pi\middle|0\right).$$

Schaubild

Symmetrie

K ist punktsymmetrisch zu W_1 , denn es gilt:

$$\begin{split} f(\frac{1}{2}\pi + x) &= -1 * f(\frac{1}{2}\pi - x) \\ \Leftrightarrow 2\cos(\frac{1}{2}\pi + x) + 2\sin(\frac{1}{2}\pi + x)\cos(\frac{1}{2}\pi + x) &= -1 * (2\cos(\frac{1}{2}\pi - x) + 2\sin(\frac{1}{2}\pi - x)\cos(\frac{1}{2}\pi - x)) \\ \Leftrightarrow -2\sin(x) - 2\cos(x)\sin(x) &= -1 * (2\sin(x) + 2\cos(x)\sin(x)) \end{split}$$

K ist au \tilde{A} §erdem zu S punktsymmetrisch, denn es gilt:

$$\begin{split} f(\frac{3}{2}\pi + x) &= -1 * f(\frac{3}{2}\pi - x) \\ \Leftrightarrow 2\cos(\frac{3}{2}\pi + x) + 2\sin(\frac{3}{2}\pi + x)\cos(\frac{3}{2}\pi + x) &= -1 * (2\cos(\frac{3}{2}\pi - x) + 2\sin(\frac{3}{2}\pi - x)\cos(\frac{3}{2}\pi - x)) \\ \Leftrightarrow 2\sin(x) + 2\cos(x)\sin(x) &= -1 * (-2\sin(x) - 2\cos(x)\sin(x)) \end{split}$$

EXPONENTIAL FUNKTIONEN

by CLARA

Definition

Man bezeichnet als Exponentialfunktion eine Funktion der Form $x \to a^x$ mit $a \in \mathbb{R}^+ \setminus 1$ x ist die Variable und wird *Exponent* oder *Hochzahl* genannt.

a nennt man Basis oder Grundzahl, sie ist fÄijr jede Funktion fest forgegeben.

Allgemeiner gilt jede Funktion, bei der die Variable im Exponenten steht als Exponentialfunktion.

5.1 Wiederholung: Potenzgesetze

Theorem

Seien $a, b \in \mathbb{R}$, sowie $n, m \in \mathbb{N}$, dann gilt:

1.
$$a^0 = 1$$
 (fÃijr $a \neq 0$)

2.
$$a^1 = a$$

3.
$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{nMal}$$

4.
$$a^m \cdot a^n = a^{m+n}$$

5.
$$(a^n)^m = a^{n \cdot m}$$

6.
$$a^{-n} = \frac{1}{a^n}$$

$$7. \ \frac{a^n}{a^m} = a^{n-m}$$

8.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

9.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

10.
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

5.2 Die Eulersche Zahl (e)

Definition

e=2,71828182845904523536028747135266249775724709369995...

Die **Eulersche Zahl** (e) ist eine irrationale, transzendente und reelle Zahl, die die Basis des $(nat\tilde{A}ijrlichen)$ Logarithmus und der $(nat\tilde{A}ijrlichen)$ Exponentialfunktion ist.

Die Darstellung, der man am HÃd'ufigsten begegnet ist diese: $e = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t$; $t \in \mathbb{R}$

Benannt nach dem bekannten Mathematiker Leonhard Euler ist diese Zahl eine der wichtigsten Konstanten der Mathematik. Sie ist die Basis des nat \tilde{A} ijrlichen Logarithmus und der nat \tilde{A} ijrlichen Exponentialfunktion. Diese besondere Exponentialfunktion wird aufgrund dieser Beziehung zur Zahl e h \tilde{A} d'ufig kurz e-Funktion genannt, sie eignet sich zur Modellierung von Wachstums- und Zufallsprozessen.

Bemerkung:

Eine alternative Definition wÃd're folgende: Die positive Zahl a, fÃijr die die Exponentialfunktion f mit $f(x) = a^x$ mit ihrer Ableitungsfunktion f' Ãijbereinstimmt, heiçt Eulersche Zahl. (siehe 12.5)

Definition

Eine reelle Zahl heiçt (oder allgemeiner eine komplexe Zahl) transzendent, wenn sie nicht Nullstelle eines Polynoms mit ganzzahligen Koeffizienten ist. Andernfalls handelt es sich um eine algebraische Zahl. Jede reelle transzendente Zahl ist Ãijberdies irrational.

5.2.1 Verschiedene Darstellungen

e ist darstellbar bzw. ergibt sich durch:

$$\bullet \sum_{k=0}^{\infty} \frac{1}{k!}$$

•
$$\lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t$$
; $t \in \mathbb{R}$

•
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
; $n \in \mathbb{N}$

5.2.2 Herleitung zur Zahl e

Wir definieren eine Folge $(e_n)n\in\mathbb{N}$ durch $e_n=\left(1+\frac{1}{n}\right)^n$ und beweisen ihre Konvergenz.

•

$$\frac{e_{n+1}}{e_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n}$$

$$= \left(\frac{n(n+2)}{(n+1)^2}\right)^{n+1} \cdot \left(1 + \frac{1}{n}\right)$$

$$= \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \cdot \frac{n+1}{n}$$

• Die Umformung ermÄűglicht uns auf den Term $\left(1-\frac{1}{(n+1)^2}\right)^{n+1}$ die Ungleichung von Bernoulli anzuwenden. Diese besagt Folgendes: $(1+x)^n>1+nx$ fÄijr $n\geq 2$ und x>-1

$$\Rightarrow \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} > 1 + (n+1) \cdot \left(-\frac{1}{(n+1)^2}\right)$$

$$= 1 - \frac{1}{n+1}$$

$$= \frac{n}{n+1}$$

• Dies kann man fÃijr den ersten Ausdruck verwenden:

$$\Rightarrow \frac{e_{n+1}}{e_n} = \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \cdot \frac{n+1}{n}$$
$$> \frac{n}{n+1} \cdot \frac{n+1}{n}$$
$$= 1$$

 $\Leftrightarrow e_n$ ist streng monoton steigend

Sei eine Folge f_n mit $f_n = \left(1 + \frac{1}{n}\right)^{n+2}$, deren Monotonieverhalten wir untersuchen wollen. Dazu formen wir den Term so um, dass die Bernoulli-Ungleichung angewandt werden kann.

•

$$\frac{f_n}{f_{n+1}} = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^{n+2}} \\
= \left(\frac{1 + \frac{1}{n}}{1 + \frac{1}{n+1}}\right)^{n+2} \cdot \frac{1}{1 + \frac{1}{n}} \\
= \left(\frac{\frac{n+1}{n}}{\frac{n+2}{n+1}}\right) \cdot \frac{n}{n+1} \\
= \left(\frac{(n+1)^2}{n(n+2)}\right)^{n+2} \cdot \frac{n}{n+1} \\
= \left(\frac{n^2 + 2n + 1}{n^2 + 2n}\right)^{n+2} \cdot \frac{n}{n+1} \\
= \left(1 + \frac{1}{n(n+2)}\right)^{n+2} \cdot \frac{n}{n+1}$$

• Bernoulli: $(1+x)^n > 1 + nx$ fÃijr $n \ge 2$ und x > -1

$$\Rightarrow \left(1 + \frac{1}{n(n+2)}\right)^{n+2} > 1 + (n+2) \cdot \frac{1}{n(n+2)}$$
$$= \frac{n+1}{n}$$

$$\bullet \Rightarrow \frac{f_n}{f_{n+1}} = \left(1 + \frac{1}{n(n+2)}\right)^{n+2} \cdot \frac{n}{n+1} > \frac{n+1}{n} \cdot \frac{n}{n+1} = 1$$

$$\bullet \ \, \frac{f_n}{f_{n+1}} > 1 \Leftrightarrow \frac{f_{n+1}}{f_n} < 1 \Leftrightarrow f_n \ \, \text{ist streng monoton fallend}$$

Als Letztes zeigt man, dass f_n zu e_n eine obere Schranke ist:

Eine streng monoton steigende Folge, die eine monoton fallende Folge, als ober Schranke hat, konvergiert. Es gilt also, dass e_n konvergent ist. e_n besitzt einen besonderen Grenzwert, der **Eulersche Zahl** genannt wird.

5.2.3 e ist irrational

Wie schon erwÃd'hnt, handelt es sich bei der Eulerschen Zahl um eine transzendente Zahl, daraus ergibt sich schon, dass sie irrational ist. Trotzdem ist es interessant, dies zu beweisen.

Beweis

Teil A: unnÃűtig

Sei f eine Funktion mit $f(x) = xe^{1-x}$ mit Schaubild $\mathcal C$

1. Monotonieverhalten:

$$f'(x) = e^{1-x} - xe^{1-x}$$
$$= (1-x) \cdot e^{1-x}$$

$$\begin{array}{lll} \forall x < 1 \colon & f'(x) > 0 & \Leftrightarrow f \nearrow \\ \mathsf{f} \tilde{\mathsf{A}} \mathsf{ijr} \ x = 1 \colon & f'(x) = 0 & \mathsf{und} \ \mathsf{VZW} + \to - & \Leftrightarrow \mathsf{Hochpunkt} \\ \forall x > 1 \colon & f'(x) < 0 & \Leftrightarrow f \searrow \end{array}$$

Grenzwerte:

•
$$\lim_{x \to +\infty} \underbrace{x}_{\to +\infty} \underbrace{e^{1-x}}_{\to 0} = 0$$
 (Croissance comparÃľe)

•
$$\lim_{x \to -\infty} \underbrace{x}_{x \to -\infty} \underbrace{e^{1-x}}_{x \to +\infty} = -\infty$$

2. Graph von f:

3. Man hat I_1 , das Integral mit $I_1 = \int_0^1 f(x) dx$

$$\begin{split} I_1 &= \int_0^1 x e^{1-x} \mathsf{d} x \\ &= \left[-x e^{1-x} \right]_0^1 - \int_0^1 -e^{1-x} \mathsf{d} x \\ &= -1 e^{1-1} - 0^1 - \left[e^{1-x} \right]_0^1 \\ &= -1 - 1 + e \\ &= e - 2 \end{split} \qquad \begin{aligned} u(x) &= x & u'(x) &= 1 \\ v'(x) &= e^{1-x} & v(x) &= -e^{1-x} \end{aligned}$$

Teil B: $n \in \mathbb{N}$

Sei I_n das Integral mit $I_n = \int_0^1 x^n e^{1-x} dx$, $n \ge 1$

1. (a) $\forall x \in [0,1]$ gilt $x^n \leq x^n e^{1-x} \leq ex^n$

$$x^{n} \stackrel{?}{\leq} x^{n}e^{1-x} \stackrel{?}{\leq} ex^{n} \qquad |:x^{n}]$$

$$1 \stackrel{!}{\leq} e^{1-x} \stackrel{!}{\leq} e$$

N.R.: fÃijr $x \in [0;1]$ ist $(1-x) \in [0;1]$ und entsprechen $e^{1-x} \in [e^0;e^1] = [1;e]$

(b) Sei J_n das Integral mit $J_n = \int_0^1 x^n \mathrm{d}x$

$$\begin{split} J_n &= \int_0^1 x^n \mathrm{d}x \\ &= \left[\frac{1}{n+1} \cdot x^{n+1}\right]_0^1 \\ &= \frac{1^{n+1}}{n+1} - \frac{0^{n+1}}{n+1} \\ &= \frac{1}{n+1} \end{split}$$

(c) $72: \forall n \geq 1 \text{ gilt } \frac{1}{n+1} \leq I_n \leq \frac{e}{n+1}$

2. 72: $\forall n \geq 1$ gilt $I_{n+1} = (n+1)I_n - 1$

$$\begin{split} I_{n+1} &= \int_0^1 x^{n+1} \cdot e^{1-x} \mathsf{d} x \\ &= \left[-e^{1-x} \cdot x^{n+1} \right]_0^1 - \int_0^1 -(n+1) x^n ex - 1 \mathsf{d} x \\ &= -e^{1-1} \cdot 1^{n+1} - 0 + (n+1) \cdot I_n \\ &= (n+1) I_n - 1 \end{split} \qquad \begin{aligned} u(x) &= x^{n+1} & u\prime(x) = (n+1) x^n \\ v'(x) &= e^{1-x} & v(x) = -e^{1-x} \end{aligned}$$

(a)

$$\begin{aligned} k_{n+1} &= (n+1)!e - I_{n+1} \\ &= (n+1)n!e - (n+1)I_n + 1 \\ &= (n+1)(n!e - I_n) + 1 \\ &= (n+1)k_n + 1 \end{aligned}$$
 siehe 2.

(b) $\mathbb{Z}: \forall n \geq 1 \text{ gilt } k_n \in \mathbb{Z}:$

IA:
$$\tilde{\text{fAijr}} n = 1$$
: $k_1 = 1!e - I_1 = e - (e - 2) = 2$ (wahr)

IV: fÃijr ein beliebiges aber festes
$$n \in \mathbb{N}$$
 gelte: $k_n \in \mathbb{Z}$

IB: dann gelte fÃijr
$$(n+1)$$
: $k_{n+1} \in \mathbb{Z}$

$$\textbf{IS}: \quad k_{n+1} = \underbrace{(n+1)}_{\in \mathbb{Z} \text{ da } n \in \mathbb{N}} \underbrace{k_n}_{\in \mathbb{Z}(\text{IB})} + \underbrace{1}_{\in \mathbb{Z}} \in \mathbb{Z}$$

(c) abla: $\forall n \geq 2 \text{ gilt } n!e = k_n + I_n \notin \mathbb{Z}$

Wir haben:
$$\frac{1}{n+1} \le I_n \le \frac{e}{n+1}$$
 (1.(c))

Und es gilt:

•
$$k_n \in \mathbb{Z}$$

•
$$\forall n \geq 0 : \frac{1}{n+1} \geq 0$$

$$\bullet \ \, \forall n \geq 2: n+1 \geq 3 \Rightarrow \frac{1}{n+1} \leq \frac{1}{3} \\ \text{und } e \leq 3 \Rightarrow \frac{e}{n+1} \leq 1$$

$$\Rightarrow \forall n \geq 2: 0 < I_n < 1 \Rightarrow I_n \notin \mathbb{N} \Rightarrow k_n + I_n \notin \mathbb{N} \Rightarrow n!e \notin \mathbb{N}$$

4. Seien $p, q \in \mathbb{N}$

Dann gilt fÃijr
$$n \geq q: \frac{n!p}{q} \in \mathbb{N}$$

$$\text{Das stimmt weil } n! = n \cdot (n-1) \cdot \ldots \cdot (q+1) \cdot q \cdot (q-1) \cdot \ldots \cdot 2 \cdot 1 \Rightarrow q \text{ teilt } n! \Rightarrow \frac{n!}{q} \in \mathbb{N} \Rightarrow \frac{n!p}{q} \in \mathbb{N} \text{ da } p \in \mathbb{N}$$

Hypothese: $e \in \mathbb{Q}$

$$\Rightarrow \exists p,q \in \mathbb{N}, \, \mathrm{sodass} \, e = rac{p}{q}$$
 $\Rightarrow n!e = rac{n!p}{q} \in \mathbb{N}$

Im Voraus wurde aber gezeigt, dass $n!e \notin \mathbb{N}$: Widerspruch

$$\Leftrightarrow \boxed{e \notin \mathbb{Q}}$$

Herkunft der Aufgabenstellung: Buch? S.199 Nr. 78, d'aprÃÍs le bac

5.3 Eigenschaften

- $f(x) = a^x$
- $a \in \mathbb{R}^+ \backslash 1$
- $D_f = \mathbb{R}$
- $W_f = \mathbb{R}^+$
- fÃijr 0 > a > 1: f ist streng monoton fallend fÃijr a > 1: f ist streng monoton wachsend
- $$\begin{split} \bullet & \text{ f\~Aijr } 0 > a > 1 \text{: } \lim_{x \to +\infty} f(x) = -\infty \\ & \lim_{x \to -\infty} f(x) = 0 \\ \text{ f\~Aijr } a > 1 \text{: } \lim_{x \to +\infty} f(x) = 0 \\ & \lim_{x \to -\infty} f(x) = +\infty \end{split}$$
- f(0) = 1
- x-Achse ist waagerechte Asmyptote

Zusammengesetzte Funktionen

Sei $f(x) = a^x$ mit a > 1 und $g(x) = x^n$ mit $n \in \mathbb{R}$:

•
$$\lim_{x \to +\infty} f(x) \cdot g(x) = \lim_{x \to +\infty} = a^x \cdot x^n = +\infty$$

•
$$\lim_{x \to -\infty} f(x) \cdot g(x) = \lim_{x \to -\infty} a^x \cdot x^n = 0$$

•
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{a^x}{x^n} = +\infty$$

•
$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{a^x}{x^n} = 0$$

•
$$\lim_{x \to +\infty} \frac{g(x)}{f(x)} = \lim_{x \to +\infty} \frac{x^n}{a^x} = 0$$

•
$$\lim_{x \to -\infty} \frac{g(x)}{f(x)} = \lim_{x \to -\infty} \frac{x^n}{a^x} = \pm \infty$$

Croissances comparÃľes

Bemerkung:

Diese Grenzwerte gelten auch wenn g ein Polynom beliebig hohen Grades ist.

Allgemein kann man also sagen, dass eine Exponentialfunktion ihr Wachstum bezÃijglich dem jedes Polynoms immer durchsetzt.

Bemerkung:

△D as Vorzeichen der anderen Funktion(en) muss natÃijrlich immer beachtet werden.

Da die Wertemenge einer Exponentialfunktion immer \mathbb{R}^+ ist, hÃd'ngt das Vorzeichen ausschlieçlich von der(den) anderen Funktion(en) ab. Wenn der (hÃűchste) Exponent also eine gerade Zahl ist, dann bleiben die Grenzwerte dieselben $(0 \text{ oder } +\infty)$. Im Falle eines hÃűchsten Exponenten, der ungerade ist, Ãďndert sich dementsprechend das Vorzeichen $(0 \text{ oder } -\infty)$ des Grenzwertes fÃijr $x \to -\infty$. Der Grenzwert fÃijr $x \to +\infty$ bleibt derselbe, selbst wenn der hÃűchste Exponent eine negative Zahl ist.

FÄijr
$$f(x) = a^x$$
 mit $0 < a < 1$ und $g(x) = x^n$ mit $n \in \mathbb{R}$:

Es gilt weiterhin, dass sich das Wachstum der Exponentialfunktion durchsetzt, anhand dieser Aussage kÃűnnen die Grenzwerte von Funktionen, die Exponentialfunktionen mit Basis < 1 beinhalten, leicht bestimmt werden.

△A uch hier gilt es, auf das Vorzeichen der anderen Funktion(en) zu achten.

5.4 Basiswechsel

Seien, $a, b \in \mathbb{R}^+ \backslash 1$:

Theorem

$$a^x = b^{x \cdot \log_b a}$$

Beweis

$$a^{x} = (b^{\log_b a})^{x}$$
$$= b^{x \cdot \log_b a}$$

5.5 Ableitungsregeln

Anhand der Definition des Differenzialquotienten kann man ermitteln, wie man Exponentialfunktionen ableitet.

Beweis

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x}(a^x) &= \lim_{h \to 0} \frac{a^{x_0+h} - a^{x_0}}{h} \\ &= \lim_{h \to 0} \frac{a^{x_0} \cdot a^h - a^{x_0}}{h} \\ &= \lim_{h \to 0} a^x \cdot \frac{a^h - 1}{h} \\ &= a^x \cdot \underbrace{\lim_{h \to 0} \frac{a^h - 1}{h}}_{\text{eine Konstante } \lambda} \end{split}$$

So erkennen wir, dass die Ableitung einer Funktion f der Form a^x diese selbe Funktion mal einem konstanten Vorfaktor λ ist: $(a^x)' = a^x \cdot \lambda$

Nun versucht man, Weiteres Ãijber λ zu erfahren: $\lambda = \lim_{h \to 0} \frac{a^h - 1}{h}$ ist ein Grenzwert, der sich ausschlieçlich in AbhÃd'ngigkeit von a verÃd'ndert, ist also fÃijr jede definierte Funktion eine Konstante.

Wenn man mehrere Graphen der Funktionenschar $g_a(h)=\frac{a^h-1}{h}$ zeichnet, erkennt man, dass es sich um stetige Funktionen handelt. Somit kann man behaupten, dass $\lim_{h\to 0}g_a(h)=g_a(0)$ ist, dies entspricht auch λ .

GRAPEHN VERSCHIEDEN A AUCH E UND LAMBDA SAGEN

Hier ist auffÃd'llig, dass wenn man a so verÃd'ndert, dass der y-Achsenschnittpunkt (0|1) wird, man sich immer mehr der Zahl e nÃd'hert. Wenn man fÃijr a genau e einsetzt hat man $g_e(0)=1$. λ ist also 1 fÃijr die Funktion e^x , was gut zeigt, dass die natÃijrliche Exponentialfunktion ihre eigene Ableitung darstellt:

$$\frac{\mathsf{d}}{\mathsf{d}x}e^x = (\lim_{h \to 0} \frac{e^h - 1}{h}) \cdot e^x = 1 \cdot e^x = e^x$$

Eine wichtige Eigenschaft ist auch, dass $f'(0) = \lambda$ ist. Dies kann man auf zwei verschiedene aber gleicherma \tilde{A} §en einfache Arten herausfinden, beide verwenden die vorher angewendete Definition des Differenzial-quotienten.

Differential quotient neu angewendet: $f'(0) = \lim_{h \to 0} \frac{a^{0+h} - a^0}{h} = \lim_{h \to 0} \frac{a^h - 1}{h} = \lambda$ Vorheriges Ergebnis genutzt: $f'(x) = a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h} \Rightarrow f'(0) = a^0 \cdot \lim_{h \to 0} \frac{a^h - 1}{h} = 1 \cdot \lim_{h \to 0} \frac{a^h - 1}{h} = \lambda$

 λ entspricht also auch der Steigung der Tangenten der Ausgangsfunktion an der y-Achse.

Exponentialfonktionen mit nat Aijrlicher Basis

Theorem

Die natÄijrliche Exponentialfunktion Äijberstimmt mit ihrer Ableitungsfunktion.

$$f(x) = e^x \Rightarrow f' = e^x$$

Theorem

Die Funktion f mit $f(x) = e^{v(x)}$ ist eine Verkettung der Funktion $v: x \to v(x)$ mit der Exponentialfunktion $u: v \to e^v$. Exisitiert die Ableitung v', so gilt nach der Kettenregel

$$f'(x) = v'(x) \cdot e^{v(x)}$$

Bemerkung:

Letzteres kann natÃijrlich auch verwendet werden, um eine Stammfunktion zu ermitteln. Die Funktion f mit $f(x) = e^{v(x)}$ mit v differenzierbar hat als mÃűgliche Stammfunktion F mit

$$F(x) = \frac{1}{v'(x)} \cdot e^{v(x)} + C$$

Beispiel:

1.
$$f(x) = \frac{2}{3} \cdot e^{-\frac{1}{2}x^2 + 1}$$

$$\Rightarrow f'(x) = \frac{2}{3} \cdot (-x) \cdot e^{\frac{1}{2}x^2 + 1} = -\frac{2}{3}x \cdot e^{-\frac{1}{2}x^2 + 1}$$

$$\Rightarrow F(x) = \frac{2}{3} : (-x) \cdot e^{\frac{1}{2}x^2 + 1} + C = -\frac{2}{3x} \cdot e^{\frac{1}{2}x^2 + 1} + C$$

2.
$$f(t) = \frac{\sin(tx)}{e^{tx}}$$

$$\Rightarrow f'(x) = \frac{t \cdot \cos(tx) \cdot e^{tx} - \sin(tx) \cdot t \cdot e^{tx}}{(e^{tx})^2} = \frac{t \cdot e^{tx} \cdot (\cos(tx) - \sin(tx))}{(e^{tx})^2} = \frac{t \cdot (\cos(tx) - \sin(tx))}{e^{tx}}$$

3.
$$f(x) = x \cdot e^{t\sqrt{x}+0.5}$$

 $\Rightarrow f'(x) = e^{t\sqrt{x}+0.5} + x \cdot (-\frac{t}{\sqrt{x}}) \cdot e^{t\sqrt{x}+0.5} = (1 - t\sqrt{x}) \cdot e^{t\sqrt{x}+0.5}$

Exponentialfunktionen mit beliebiger Basis

Der vorher erw $\tilde{\text{A}}$ d'hnte Wert λ ist f $\tilde{\text{A}}$ ijr beliebige Basen schwierig festzulegen. Viel einfacher geht es nach einem Basiswechsel. Wenn man n $\tilde{\text{A}}$ d'mlich e als Grundzahl w $\tilde{\text{A}}$ d'hlt, kann wiederum die Ableitungsregel f $\tilde{\text{A}}$ ijr Funktionen mit nat $\tilde{\text{A}}$ ijrlicher Basis angewendet werden, so wurde das Problem umgangen.

Theorem

Sei f eine Funktion mit $f(x) = a^x, a \in \mathbb{R}^+ \setminus 1$. dann ist ihre Ableitungsfunktion f', fÄijr die gilt:

$$f'(x) = \ln(a) \cdot a^x$$

Beweis

$$\begin{array}{lll} \frac{\mathsf{d}}{\mathsf{d}x}(a^x) & = & \frac{\mathsf{d}}{\mathsf{d}x}(e^{x\cdot \ln(a)}) & & \mathsf{Basiswechsel} \ \mathsf{und} \ \mathsf{Kettenregel} \ \mathsf{anwenden} \\ & = & (x\cdot \ln(a))'\cdot e^{x\cdot \ln(a)} & & \mathsf{Ableiten} \ (\ln a \ \mathsf{ist} \ \mathsf{eine} \ \mathsf{Konstante}) \\ & = & \ln(a)\cdot e^{x\cdot \ln a} & & \mathsf{Auf} \ \mathsf{urspr}\tilde{\mathsf{Aijngliche}} \ \mathsf{Basis} \ \mathsf{bringen} \\ & = & \ln(a)\cdot a^x & & \mathsf{Auf} \ \mathsf{urspr}\tilde{\mathsf{Aijngliche}} \ \mathsf{Basis} \ \mathsf{bringen} \end{array}$$

Dasselbe Prinzip kann auch fÄijr verkettete Funktionen angewendet werden.

Theorem

Die Funktion f mit $f(x)=a^{v(x)}, a\in \mathbb{R}^+\backslash 1$ ist eine Verkettung der Funktion $v:x\to v(x)$ mit der Exponentialfunktion $u:v\to a^v$. Exisitiert die Ableitung v', so gilt nach der Kettenregel

$$f'(x) = v'(x) \cdot \ln(a) \cdot a^{v(x)}$$

Reweis

$$\begin{array}{ll} \frac{\mathsf{d}}{\mathsf{d}x}(a^{v(x)}) & = & \frac{\mathsf{d}}{\mathsf{d}x}(e^{v(x)\cdot \ln(a)}) & \text{Basiswechsel und Kettenregel anwenden} \\ & = & (v(x)\cdot \ln(a))'\cdot e^{v(x)\cdot \ln(a)} & \text{Ableiten (} \ln a \text{ ist eine Konstante)} \\ & = & v'(x)\cdot \ln(a)\cdot e^{v(x)\cdot \ln a} & \text{Auf urspr\~Aijngliche Basis bringen} \\ & = & v'(x)\cdot \ln(a)\cdot a^{v(x)} & \end{array}$$

5.5.1 AktivitÃďt

Quelle: DÃľclic 1Ãĺre?????? ich weiç nicht ob ich das noch mache

Definition

LOGARITHMEN

by CLARA

Der Logarithmus einer Zahl ist der Exponent, mit dem die Basis des Logarithmus' potenziert werden muss, um die gegebene Zahl zu erhalten. Logarithmen sind nur fÄijr positive reelle Zahlen definiert, die Basis muss positiv und ungleich 1 sein

$$\log_b a = x \Leftrightarrow b^x = a$$

Definition

Man bezeichnet als Logarithmusfunktion eine Funktion der Form $x \to \log_b x$ mit $b \in \mathbb{R}^+ \setminus 1$ x ist die Variable und wird Argument oder Numerus genannt, Logarithmusfunktionen sind nur fÄijr positive, reelle Zahlen definiert: $x \in \mathbb{R}^+$

b nennt man Basis oder Grundzahl, sie ist fÄijr jede Funktion fest forgegeben.

Hier Graphen

Besondere Logarithmen

Logarithmus naturalis : $\ln a := \log_e a$ Dekadischer Logarithmus : $\lg a := \log_{10} a$

Eigenschaften 6.1

- $f(x) = \log_b x$
- $b \in \mathbb{R}^+ \backslash 1$
- $D_f = \mathbb{R}^+$
- $W_f = \mathbb{R}$
- fÃi|r 0 > b > 1: f ist streng monoton wachsend fÃijr b > 1: f ist streng monoton fallend
- fÃijr 0 > b > 1: $\lim_{x \to +\infty} f(x) = -\infty$ $\lim_{\substack{x \to 0 \\ z}} f(x) = +\infty$ $f\tilde{\mathsf{A}}\mathsf{ijr}\;b>1:\lim_{x\to+\infty}f(x)=+\infty$ $\lim_{x \to 0} f(x) = -\infty$
- f(1) = 0
- y-Achse ist senkrechte Asmyptote

6.2 Rechengesetze

Aus den Potenzgesetzen kann man die LogarithmussÃd'tze erhalten.

Theorem

Seien $a,b,c\in\mathbb{R}^+$ und $n\in\mathbb{N}$

$$\begin{array}{lll} \log_c(a \cdot b) &=& \log_c a + \log_c b & \quad \text{Produktregel} \\ \log_c\left(\frac{a}{b}\right) &=& \log_c a - \log_c b & \quad \text{Quotientenregel} \\ \log_c a^n &=& n \cdot \log_c a & \quad \text{1. Potenzregel} \\ \log_c \sqrt[n]{a} &=& \frac{1}{n} \cdot \log_c a & \quad \text{2. Potenzregel} \end{array}$$

Bemerkung:

Die zweite Potenzregel ist nur ein Sonderfall der ersten, da $\sqrt[n]{a}=a^{\frac{1}{n}}$

6.3 Gleichungen IÃűsen

6.4 Logarithmusfunktionen

- 6.4.1 Ableitungsregeln
- 6.4.2 Funktionsuntersuchungsbeispiel

INTEGRALE

by RÃĽMY

7.1 EinfÄijhrung - Stammfunktionen

Definition

Sei f eine Funktion, die Äijber einem Intervall $I \in \mathbb{R}$ definiert ist. Man nennt jede Funktion F, die auf I differenzierbar ist, fÄijr die gilt F'(x) = f(x), $\forall x \in I$ eine Stammfunktion von f.

Ist F irgendeine Stammfunktion von f, dann ist auch F(x) + C (mit konstantem C) eine Stammfunktion, denn beim Ableiten fÄd'llt C als konstanter Summand weg. Jede Funktion hat also unendlich viele Stammfunktionen, die sich aber nur um einen konstanten Summanden unterscheiden.

Theorem

Jede auf I stetige Funktion besitzt eine Stammfunktion \tilde{A} ijber I.

7.2 Bestimmte Integrale

Definition

Sei f eine auf einem Intervall I stetige Funktion und zwei reelle Zahlen $a,b\in I$. Die reelle Zahl, dargestellt durch $\int_a^b f(t)dt$ und gegeben durch F(b)-F(a), mit F als beliebige Stammfunktion von f, wird bestimmtes Integral von a bis b von f genannt. Eine weitere Darstellungsm $\tilde{\mathbf{A}}$ űglichkeit des bestimmten Integrals sieht folgenderma $\tilde{\mathbf{A}}$ §en aus:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} U_n = \lim_{n \to \infty} s_n$$

$$= \lim_{n \to \infty} O_n = \lim_{n \to \infty} S_n$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \sum_{k=1}^{n} f\left(\frac{b - a}{n} \cdot k\right)$$

 S_n und O_n bezeichnen die Obersumme, wohingegen s_n und U_n die Untersumme bezeichnen.

Bemerkung:

Der Hauptunterschied zwischen einem bestimmten und einem unbestimmten Integral ist die Existenz (bestimmtes Integral) bzw. das Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

Bei einem bestimmten Integral ist die LÄűsung ein FlÄd'cheinhalt, also ein einfacher Zahlenwert.

Bei einem unbestimmten Integral erhÄd'lt man als LÄűsung eine (wie soeben eingefÄijhrte) Stammfunktion.

Bemerkung:

a und b bezeichnen jeweils die untere und obere Grenze des zu berechnenden Integrals. Sie bezeichnen anschaulich die x-Werte, zwischen denen die FlÃd'che berechnet wird. TatsÃd'chlich ist die geometrische Interpretation von $\int_a^b f(t)dt$ die FlÃd'che zwischen dem Schaubild der Funktion und der x_1 -Achse, die durch die Geraden x=a und x=b begrenzt wird.

Theorem

FÃijr eine auf einem Intervall I stetige Funktion f und einer reellen Zahl $a \in I$ gilt: Die Funktion, die Ãijber I definiert ist durch $x \mapsto \int_a^x f(t)dt$, ist die Stammfunktion von f, die bei a gleich 0 ist.

Aus diesen SÃd'tzen stellt sich der **Hauptsatz der Differenzial- und Integralrechnung** zusammen. Wir beschrÃd'nken uns in diesem Kapitel auf die Integralrechnung, da die Differentialrechnung bereits in Kapitel 3 behandelt wird.

Bemerkung:

Man beobachtet hier eine Erweiterung der NEW-Regel (siehe 3.4.8, NEW-Regel):

N = Nullstellen

 $\mathsf{E} = \mathsf{Extremstellen}$

W = Wendestellen

7.3 SÃďtze Ãijber Integrale

Theorem

$$\int_a^b f(x)dx = -\int_b^a f(x)dx \qquad \text{Invertieren der Intergrationsgrenzen}$$

$$\int_a^b (f(x)+g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx \qquad \text{Summenregel}$$

$$\int_a^b r*f(x)dx = r*\int_a^b f(x)dx \qquad \text{Linearit} \tilde{\mathbf{A}} \mathrm{d} \mathrm{'t}$$

$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx \qquad \text{Abschnittweise Integration}$$

Beweis - Invertieren der Intergrationsgrenzen

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = -(F(a) - F(b)) = -\int_{b}^{a} f(x)dx$$

Beweis - Summenregel

$$\int_{a}^{b} f(x) + g(x)dx = [F(x) + G(x)]_{a}^{b} = F(b) + G(b) - (F(a) + G(b)) = F(b) - F(a) + G(b) - G(b)$$

$$= \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Beweis - LinearitÃďt

$$\int_{a}^{b} r * f(x) dx = [r * F(x)]_{a}^{b} = r * F(b) - r * F(a) = r * (F(a) - F(b)) = r * \int_{a}^{b} f(x) dx$$

Beweis - Abschnittweise Integration

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = F(a) - F(b) - (F(b) - F(c)) = F(c) - F(a) = \int_{a}^{c} f(x)dx$$

Theorem

Sei eine in [a;b] stetige Funktion f. Wenn fÃijr $m,M\in\mathbb{R}$ gilt: $m\leq f(t)\leq M\ \forall t\in[a;b]$, dann gilt:

$$m(b-a) \le \int_a^b f(t)dt \le M(b-a)$$

Beweis

Es reicht, $m \le f(t) \le M$ als Ungleichung zwischen a und b zu integrieren.

Bemerkung:

Eine Konsequenz davon ist, dass falls $|f(t)| \leq M \ \forall t \in [a;b],$ dann gilt:

$$\left| \int_a^b f(t) dt \right| \leq M(|b-a|)$$

Auçerdem:

Definition

FÃijr eine auf [a;b] stetige Funktion f mit $a \neq b$ gilt: Der Mittelwert von f auf [a;b] ist gegeben durch

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$

7.4 Integrationsregeln und -techniken

7.4.1 Potenzregel

Hoffentlich einleuchtend und selbstverstÄd'ndlich:

Theorem

$$\forall n \in \mathbb{Z} \backslash \{-1\} : \int x^n dx = \frac{1}{n+1} x^{n+1} + C$$

Bemerkung:

Die einzige Ausnahme stellt der Fall n=-1 dar:

Theorem

$$\int \frac{1}{x} dx = \ln(|x|) + C$$

Eine Konsequenz dessen ist:

Theorem

$$\int \frac{a}{bx+c}dx = \frac{a}{b}\ln(|bx+c|) + C$$

Beweis

$$\left(\frac{a}{b}\ln(|bx+c|)\right)' = \frac{a}{b} \cdot \frac{1}{bx+c} \cdot b = \frac{a}{bx+c}$$

7.4.2 Partielle Integration

Theorem

Seien u und v zwei stetig differenzierbare Funktionen auf dem Intervall I. Dann gilt:

$$\int u(x)'v(x)dx = u(x)v(x) - \int u(x)v'(x)dx$$

63

Beweis

$$(u(x) * v(x))' = u'(x)v(x) + u(x)v'(x)$$

$$\Rightarrow \int (u(x) * v(x))' dx = \int u'(x)v(x)dx + \int u(x)v'(x)dx$$

$$\Leftrightarrow u(x) * v(x) = \int u'(x)v(x)dx + \int u(x)v'(x)dx$$

$$\Leftrightarrow \int u(x)v'(x)dx = u(x) * v(x) - \int u'(x)v(x)dx$$

Beispiel:

$$\int x \sin(x) dx \qquad \text{Mit } u(x) = x; \ u'(x) = 1; \ v(x) = \sin(x); \ v'(x) = -\cos(x)$$

$$= \int x (-\cos(x))' dx$$

$$= -x \cos(x) - \int -\cos(x) * 1 dx$$

$$= -x \cos(x) + \int \cos(x) dx$$

$$= -x \cos(x) + \sin(x)$$

7.4.3 Substitution

Theorem

Sei f eine auf [a;b] stetige funktion und g eine auf diesem Intervall differenzierbare Funktion mit stetiger Ableitung g'. Wenn die Verkettung $f \circ g$ existiert, gilt:

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(z) dz$$

Eine abgespeckte Variante dieses Theorems, genannt lineare Substitution ist gegeben durch:

Theorem

FÃijr ein Funktion f mit einer Stammfunktion F und $r \neq 0$ gilt:

$$\int_{a}^{b} f(rx+s)dx = \frac{1}{r} [F(rx+s)]_{a}^{b} + C$$

Beispiel:

Zu berechnen:

$$\int_0^4 \frac{x\sqrt{x}}{1 + x^2\sqrt{x}} dx$$

Substitution:

$$\begin{split} g(x) &= x^2 \sqrt{x} \quad \text{(alternativ: } g(x) = x^2 \sqrt{x} + 1) \\ &\frac{dg}{dx} = (x^2 \sqrt{x})' \\ &= \frac{5}{2} \cdot x \sqrt{x} \\ \left(\Leftrightarrow dx = \frac{2}{5x \sqrt{x}} dg \Rightarrow \int_0^4 \frac{x \sqrt{x}}{1 + x^2 \sqrt{x}} dx = \int_{g(0)}^{g(4)} \frac{x \sqrt{x}}{1 + g} \cdot \frac{2}{5x \sqrt{x}} dg \right) \end{split}$$

Berechnung des Integrals:

$$\begin{split} \int_0^4 \frac{x\sqrt{x}}{1+x^2\sqrt{x}} dx &= \int_0^4 f(g(x)) \cdot g'(x) dx \\ &= \int_{g(0)}^{g(4)} \frac{2}{5} \cdot \frac{1}{1+z} dz \\ &= \frac{2}{5} \cdot \int_{0^2 \cdot \sqrt{0}}^{4^2 \cdot \sqrt{4}} \frac{1}{1+z} dz \\ &= \frac{2}{5} \cdot [\ln(|1+z|)]_0^{3^2} \\ &= \frac{2}{5} \cdot \ln(33) \end{split}$$

7.4.4 Substitution der Integrationsvariablen

Theorem

Sei f eine auf [a;b] stetige funktion und g eine auf diesem Intervall differenzierbare und umkehrbare Funktion mit stetiger Ableitungsfunktion g'. Wenn die verkettung $f \circ g$ esxistiert, gilt:

$$\int_a^b f(x)dx = \int_{\bar{q}(a)}^{\bar{g}(b)} f(g(t)) * g'(t)dt$$

7.4.5 Integrale von e-Funktionen

Theorem

$$\mathsf{F} \tilde{\mathsf{A}} \mathsf{ijr} \ f(x) = e^{l(x)} \ \mathsf{mit} \ l(x) = ax + b \ \mathsf{gilt} \mathsf{:} \ F(x) = \frac{1}{a} e^{l(x)}$$

Beweis

Man bilde F'(x).

7.4.6 Integrale von $\ln()$ -Funktionen

Es handelt sich hierbei streng genommen auch um eine Substitution:

Theorem

FÃijr $x \in \mathbb{R}^+$ ist F eine Stammfunktion zur Funktion $f(x) = \ln(x)$ mit $F(x) = x \ln(x) - x$

Beweis

Der Beweis erfolgt Äijber partielle Integration und wird dem SchÄijler als ÄlJbung Äijberlassen.

7.4.7 Integrale von (un)geraden Funktionen

Theorem

Sei f eine auf einem Intervall I stetige und auf 0 zentrierte Funktion. Wenn f gerade ist, gilt $\forall a \in \mathbb{R}$: $\int_{-a}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt, \text{ und wenn } f \text{ ungerade ist: } \int_{-a}^{a} f(t)dt = 0$

Reweis

Sei die Funktion $\varphi(x)=\int_{-x}^x f(t)dt=F(x)-F(-x)$ mit F, einer Stammfunktion von f. Also ist φ auf I=[-x;x] differenzierbar und $\varphi'(x)=F'(x)-F'(-x)=f(x)+f(-x)$.

- Wenn f auf I ungerade ist, gilt: $f(x) = -f(-x) \Rightarrow \varphi'(x) = 0$ und somit konstant. Deshalb gilt $\varphi(x) = \varphi'(x) = 0$ auf I, was $\int_{-a}^{a} f(t)dt = 0$ beweist.
- Wenn f gerade ist, gilt: $f(x) = f(-x) \Rightarrow \varphi'(x) = 2f(x)$. Also gilt fÃijr $\varphi(x) = \int_0^x 2f(t)dt$, einer Stammfunktion von 2f(x), $\varphi(0) = 0$, was $\int_{-a}^a f(t)dt = 2\int_0^a f(t)dt$ beweist.

7.4.8 Integrale von periodischen Funktionen

Theorem

FÃijr jede in \mathbb{R} stetige und periodische Funktion f gilt:

$$\int_{a}^{a+T} f(x)dx \text{ ist unabh}\tilde{\mathbf{A}}\text{d'ngig von } a \text{ und } \int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$$

Beweis

Sei die Funktion $\varphi=\int_x^{x+T}f(t)dt=F(x+T)-F(x)$ mit F, einer Stammfunktion von f. Dann ist $\varphi(x)$ auf f differenzierbar und $\varphi'(x)=F'(x+T)-F'(x)=f(x+T)-f(x)=0$ (denn f hat die Periode f). Also ist $\varphi(x)$ auf $\mathbb R$ konstant. Daraus folgt, dass $\int_a^{a+T}f(t)dt$ nicht von f0 abhād ngt und dass $\int_a^{a+T}f(x)dx=\int_0^Tf(x)dx$.

7.5 FIÃd'chen und Volumen mit Integralen berechnen

7.5.1 FlÃd'che zwischen einer Funktion und der x_1 -Achse

Definition

FÃijr die auf dem Intervall [a;b] (also stÃijckweise) stetige Funktion f mit Nullstellen und $x_1,x_2,...,x_n$ mit $a \le x_1 \le x_2 \le ... \le x_n \le b$ ist der FlÃd'cheninhalt A zwischen dem Graphen von f und der x_1 -Achse im

Intervall [a; b] gegeben durch:

$$A = \left| \int_a^{x_1} f(x)dx \right| + \left| \int_{x_1}^{x_2} f(x)dx \right| + \dots + \left| \int_{x_{n-1}}^{x_n} f(x)dx \right| + \left| \int_{x_n}^b f(x)dx \right|$$
$$= \left| \int_a^b f(x)dx \right|$$

Bildhaft sieht das folgendermaħen aus:

$$C = A + B$$

= $|\int_{a}^{x_1} f(x)dx| + |\int_{x_1}^{b} f(x)dx|$

$$C = A + B$$

$$= \int_{a}^{x_1} f(x)dx + \int_{x_1}^{b} f(x)dx$$

$$= \int_{a}^{b} f(x)dx$$

Beispiel:

$$f(x)=x^2-2x^3; x\in\mathbb{R}$$
 notwendige und hinreichende Bedingung fÃijr Nullstellen: $f(x)=0$

$$\begin{array}{c} s_{dN} \\ \Leftrightarrow \\ \begin{cases} x^2 = 0 \\ 1 - 2x = 0 \end{cases} \\ \Leftrightarrow \\ \begin{cases} x_1 = 0 \\ x_2 = \frac{1}{2} \end{cases} \end{array}$$

Also gilt:

$$\begin{split} A_{-1}^1 &= \left| \int_{-1}^0 x^2 - 2x^3 dx \right| + \left| \int_{0}^{0.5} x^2 - 2x^3 dx \right| + \left| \int_{0.5}^1 x^2 - 2x^3 dx \right| \\ &= \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{-1}^0 \right| + \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{0}^{0.5} \right| + \left| \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{0.5}^1 \right| \\ &= \left| 0 - \left(-\frac{1}{3} - \frac{1}{2} \right) \right| + \left| \frac{1}{24} - \frac{1}{32} - 0 \right| + \left| \frac{1}{3} - \frac{1}{2} - \left(\frac{1}{24} - \frac{1}{32} \right) \right| \\ &= 1 + \frac{1}{12} - \frac{1}{16} \\ &= \frac{49}{48} \, \mathrm{FE} \end{split}$$

GTR-Tipp:

Mit $Y_1 = f(x)$ und $Y_2 = abs(Y_1)$ bzw. $Y_2 = |Y_1|$ (zu finden in MATH > NUM oder Ãijber F2, also ALPHA+WINDOW) lÃd'sst sich die FlÃd'che berechnen Ãijber MATH > MATH mit der Option fnInt. Hierzu wÃd'hlt man Y_2 aus und gibt a und b an.

7.5.2 FIÃď che zwischen zwei Funktionen

Theorem

FÃijr zwei auf [a;b] stetige Funktionen f und g gilt: Die FlÃd'che zwischen ihren Schaubildern C_f und C_g ist gegeben durch: $\int_a^b (g(x)-f(x))dx$.

7.5.3 Volumenangaben mittels Integralen

Theorem

Man betrachtet einen KÃűrper, der durch zwei parallele Ebenen mit den Gleichungen $x_3=a$ und $x_3=b$ begrenzt wird. FÃijr alle $a\leq z\leq b$ nennt man P_z die zur x_1 -Achse orthogonale FlÃd'che mit der Seite z und S(z) die FlÃd'che des Schnitts des KÃűrpers durch P_z . Ist S stetig, so ist ist das Volumen S0 des KÃűrpers gegeben durch:

$$V = \int_{a}^{b} S(z)dz$$

Bemerkung:

Analog zur Unterteilung einer FlÄd'che in kleine Balken, kann man ein Volumen in kleine Scheiben unterteilen.

Bemerkung:

Dieses Theorem nehmen wir hin, ohne es zu beweisen, uns geht es ohnehin um die Schlussfolgerungen, die wir daraus ziehen kÃűnnen:

Theorem

Ein KÃűrper, der durch die Rotation der Kurve von f um die x_1 -Achse entsteht, hat ein Volumen von $\pi \int_a^b f^2(z)dz$.

TatsÃd'chlich ist die FlÃd'che eines zur x_3 -Achse parallelen Querschnitts die der Scheibe mit Radius f(z).

Uneigentliche Integrale

Definition

Ist die Funktion f auf $[a; +\infty)$ stetig und existiert der Grenzwert $\lim_{Z\to\infty}\int_a^Z f(x)dx$, so heiçt dieser Grenzwert uneigentliches Integral von f Ãijber $[a; +\infty)$.

Schreibweise: $\int_{a}^{+\infty} f(x)dx$

Analog dazu spricht man von einem uneigentlichen Integral f $\tilde{\mathsf{A}}$ ijr $\int_{-\infty}^{b} f(x)dx$

$$\overline{f(x)} = \frac{-3}{x^3}$$

$$A(z) = \int_z^{-2} \frac{-3}{x^3} dx = \left[\frac{3}{2}x^{-2}\right]_z^{-2} = \frac{3}{8} - \frac{3}{2}z^{-2}$$

$$\lim_{z \to -\infty} \frac{3}{8} - \frac{3}{2}z^{-2} = \frac{3}{8}$$

 \Rightarrow Das uneigentliche Integral hat den Wert $\frac{3}{2}$.

Beispiel.
$$f(x) = \frac{1}{\sqrt{x}}$$

$$A(z) = \int_z 1^Z \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_1^Z = 2\sqrt{Z} - 2$$

$$\lim_{Z \to \infty} 2\sqrt{Z} - 2 \stackrel{\rightarrow}{Z} \to \infty \infty$$

 $\lim_{Z \to \infty} 2\sqrt{Z} - 2\stackrel{\cdot}{Z} \stackrel{\rightarrow}{\to} \infty \infty$

 \Rightarrow Das uneigentliche Integral existiert nicht.

Definition

Ist die Funktion f auf (a;b] stetig und existiert der Grenzwert $\lim_{Z \to a} \int_{Z}^{b} f(x) dx$, so heiħt dieser Grenzwert $\textit{uneigentliches Integral} \ \mathsf{von} \ f \ \tilde{\mathsf{A}} \mathsf{ijber} \ (a;b].$

Schreibweise: $\int_a^b f(x)dx$

Analog dazu spricht man von einem uneigentlichen Integral f $\tilde{\mathsf{A}}$ ijr $\int^a f(x)dx$

Bemerkung:

Diese Berechnung ergibt nur dann Sinn, wenn bei a eine DefinitionslÄijcke vorliegt.

7.7 Merkenswerte Integrale

Hier eine (mÃűglicherweise unvollstÃďndige) rÃijckblickende Liste mit Integralen, die insbesondere zum Abitur beherrscht werden sollten.

Diese sollten ohne weitere Rechtfertigung oder Beweis verwendet werden dÄijrfen. (Diese Angabe ist ohne GewÄd'hr)

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int \frac{1}{x} dx = \ln(|x|) + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C$$

$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

$$\int \frac{u'(x)}{u(x)} dx = \ln(|u(x)|) + C$$

$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

▲ Definitionsmengen sind zu beachten.

VEKTORIELLE GEOMETRIE

by PASCAL

8.1 Vektoren

Definition

Ein Vektor ist Element eines Vektorraums.

VektorrÃd'ume, wir erinnern uns zurÃijck. VerknÃijpfungen, inverse Elemente und die dazugehÃűrenden Gesetze, konsequente Definitionen und mathematische Korrektheit, die guten alten Zeiten... TatsÃd'chlich kann ein Vektor in den meisten FÃd'llen als Verschiebung bezeichnet werden, **nicht aber als Pfeil oder Strich!**

8.1.1 Besondere Vektoren

Definition - Der Ortsvektor

Der Vektor von O auf den Punkt P, geschrieben als \overrightarrow{OP} oder \overrightarrow{p} .

Hat P die Koordinaten $(P_1|P_2|...|P_n)$, so besitzt \overrightarrow{p} die Darstellung $\begin{pmatrix} P_1 \\ P_2 \\ ... \\ P_n \end{pmatrix}$

Definition - Der Nullvektor

Der Vektor mit Wert $\begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$, er hat keine und alle Richtungen zugleich.

Bemerkung:

Er ist somit das neutrale Element der Vektoraddition.

Definition - Der Verbindingsvektor

Der Vektor \overrightarrow{AB} ist der Vektor, der den Punkt A auf den Punkt B abbildet. Er ist definiert als: $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, woraus folgt, dass:

$$\overrightarrow{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ \dots \\ b_n - a_n \end{pmatrix}.$$

Definition - Der Gegenvektor

Der Gegenvektor zu \overrightarrow{AB} ist \overrightarrow{BA} , definiert als $-\overrightarrow{AB}$.

/1

Bemerkung:

Er ist somit das inverse Element der Vektoraddition.

Bemerkung:

Definition - Norm eines Vektors

Die Norm eines Vektors ist anschaulich als seine LÃd'nge zu interpretieren. Der Betrag, wie sie ebenfalls genannt wird, eines Vektors \overrightarrow{v} ist folgendermaçen definiert: $|\overrightarrow{v}| = \sqrt{\sum_{i=1}^n v_i^2}; \overrightarrow{v} \in \mathbb{R}^n$.

Anhand dieser Graphik IÃd'sst sich die Berechnung der Norm eines Vektors $\vec{v} \in \mathbb{R}^3$ verdeutlichen. FÃijr diesen glit: $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$.

Definition - Der Einheitsvektor

Ein Vektor, dessen Norm 1 betrÃďgt wird als normiert oder Einheitsvektor bezeichnet. FÃijr jeden Vektor $\overrightarrow{v} \in \mathbb{R}^3$ existiert ein Einheitsvektor $\overrightarrow{v^*}$, der folgendermaçen definiert wird: $\overrightarrow{v^*} = \frac{1}{|\overrightarrow{v}|} * \overrightarrow{v}$.

8.2 Basen und Erzeugendensystem

Definition

Eine endliche Anzahl von Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n} \in V$ hei $\widetilde{\mathsf{A}}$ §t Erzeugendensystem, wenn sich jeder Vektor $\overrightarrow{v} \in V$ als Linearkombination dieser Vektoren schreiben l $\widetilde{\mathsf{A}}$ d'sst. Um ein Erzeugendensystem zu bilden ben $\widetilde{\mathsf{A}}$ űtigt man mindestens die Anzahl Vektoren, die der Anzahl von Dimensionen von \overrightarrow{v} entspricht. Wenn man **genau** diese Anzahl besitzt, spricht man von einer Basis.

8.2.1 Besondere Basen

Definition - Orthogonalbasis

Sind die Vektoren der Basis paarweise orthogonal zueinander, so spricht man von einer **Orthogonal-basis**.

Definition - Orthonormalbasis

Sind die Vektoren zus $\tilde{\mathsf{A}}$ d'tzlich zu dieser Bedingung normiert, wird sie als **Orthonormalbasis** bezeichnet. Die einfachste und meist benutzte Basis des \mathbb{R}^3 besteht aus den drei Vektoren $\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Sie wird als **Standardbasis** des \mathbb{R}^3 bezeichnet. Vektoren wie $\overrightarrow{v} = \begin{pmatrix} 2 \\ 3 \\ 8 \end{pmatrix}$ lassen sich als eine Linearkombination der drei Vektoren der Standardbasis darstellen: $\overrightarrow{v} = 2 \cdot \overrightarrow{e_1} + 3 \cdot \overrightarrow{e_2} + 8 \cdot \overrightarrow{e_3}$.

8.2.2 Basistransformation

Bilden die Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$ eine Basis des n-dimensionalen Vektorraums V und sei der Vektor $\overrightarrow{v} = \begin{pmatrix} v_1 \\ v_2 \\ ... \\ v_n \end{pmatrix}$; $\overrightarrow{v} \in V$. Dann gilt wie Äijblich: $\overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + ... + v_n \cdot \overrightarrow{a_n}$. Sei eine weitere Basis $\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}$

des selben Vektorraumes, so besitzt der Vektor \overrightarrow{v} andere Koordinaten: $\overrightarrow{v} = \begin{pmatrix} v_1' \\ v_2' \\ ... \\ v_n' \end{pmatrix}$. Dabei muss gelten: $\overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + ... + v_n \cdot \overrightarrow{b_1} + v_2' \cdot \overrightarrow{b_2} + ... + v_n' \cdot \overrightarrow{b_n}$.

Bemerkung:

Um die Koordinaten eines Vektors in einer anderen Basis als der Aktuellen zu bestimmen, lÃűst man diese Gleichung, die sich ergibt.

Beispiel:

Basis 1: Standardbasis des
$$\mathbb{R}^3$$
, Basis 2: $\vec{b_1} = \begin{pmatrix} 4 \\ 9 \\ -1 \end{pmatrix}$, $\vec{b_2} = \begin{pmatrix} -2 \\ -2 \\ 8 \end{pmatrix}$, $\vec{b_3} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$, Vektor $\vec{v} = \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix}$ (in der Standardbasis des \mathbb{R}^3)
$$\vec{v} = -5 \cdot \vec{a_1} + 3 \cdot \vec{a_2} + 2 \cdot \vec{a_3} = r \cdot \vec{b_1} + s \cdot \vec{b_2} + t \cdot \vec{b_3} \Leftrightarrow \begin{vmatrix} 4r & -2s & t & = & -5 \\ 9r & -2s & 3t & = & 3 \\ -r & 8s & t & = & 2 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} -r & 8s & t & = & 2 \\ 0 & 30s & 5t & = & 3 \\ 0 & 70s & 12t & = & 21 \end{vmatrix}$$

$$\mathbb{L} = \{-15.2| -6.9|42\}$$

Daraus lÃd'sst sich folgern: $\vec{v} = -15.2 \cdot \vec{b_1} - 6.9 \cdot \vec{b_2} + 42 \cdot \vec{b_3} = \begin{pmatrix} -15.2 \\ -6.9 \\ 42 \end{pmatrix}$ (in der anderen Basis).

8.3 Winkel zwischen Vektoren

Definition

Unter einem Winkel zwischen zwei Vektoren versteht man den Winkel, der ensteht, wenn man beide Vektoren an einen **gemeinsamen Startpunkt** verschiebt ohne dabei ihre Ausrichtung zu verÄd'ndern.

8.3.1 Orientierte Winkel

Wenn man in der Mathematik mit Winkeln arbeitet, werden sie immer im **mathematisch positiven** Sinn angegeben. Dies bedeutet, dass man von einem Vektor oder Schenkel, der an den Winkel grenzt, ausgeht und Äijber Rotation um den Schnittpunkt "gegen den Uhrzeigersinn" zum anderen gelangt, bis beide Äijbereinanderliegen (wenn man davon ausgeht, dass sich beide schneiden).

So ergibt sich $\alpha=\angle ABC=\angle ac=(\overrightarrow{BA},\overrightarrow{BC})=\frac{\pi}{3}$. Ein Winkel α wird zudem immer so angegeben, dass $\alpha\in I; I=[-\pi,\pi]$ gilt. Dies bedeutet, dass man nur Winkel zwischen 0 und 180 erhÃd'lt, und das in beide "Richtungen", als im mathematisch positiven und negativen Sinn. Diese EinschrÃd'nkung kennzeichnet man mit dem Ausdruck "**modulo** 2π ".

8.3.2 Rechnungen mit Winkeln

Bei Berechnungen von Winkeln zwischen Vektoren geht man genau wie in der elementaren Geometrie vor. So wird die Differenz zwischen zwei Winkeln θ_1 und θ_2 wie gehabt berechnet: $\Delta\theta=\theta_1-\theta_2$. Jedoch benÄűtigt man weitere Rechenregeln, um mit Winkeln rechnen zu kÄűnnen.

Theorem - Relation de Chasles

$$(\overrightarrow{u}, \overrightarrow{w}) + (\overrightarrow{w}, \overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v}); \quad modulo \quad 2\pi$$

Umformungen:

$$(1) \ (\overrightarrow{u}, \overrightarrow{v}) = -(\overrightarrow{v}, \overrightarrow{u})$$

(2)
$$(-\vec{u}, -\vec{v}) = (\vec{u}, \vec{v})$$

(3)
$$(\vec{u}, \vec{v}) = \pi + (-\vec{u}, \vec{v})$$

Aus der ersten und letzten dieser Relationen IAd'sst sich analog dazu bestimmen:

(4)
$$(\overrightarrow{u}, \overrightarrow{v}) = -(\overrightarrow{v}, \overrightarrow{u}) = \pi - (-\overrightarrow{v}, \overrightarrow{u})$$

Linearkombination 8.4

Vektoren lassen sich allgemein mit der additiven VerknÄijpfung des Vektorraums verknÄijpfen. Diese Verkn $\tilde{\mathbf{A}}$ ijpfung zwischen zwei beliebigen Vektoren \vec{v} und \vec{u} erfolgt, wie auch schon im Teil Verbindungsvektor

gezeigt wird, wie folgt:
$$\vec{v} + \vec{u} = \begin{pmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \dots \\ v_n + u_n \end{pmatrix}$$
. Anschaulich wird \vec{u} an \vec{v} angehÃd'ngt und der Schaft von \vec{v}

mit der Spitze von \vec{u} verbunden, um den neuen Vektor zu bilden.

Definition

Eine Familie von Vektoren $\vec{a_1}, \vec{a_2}, ..., \vec{a_n} \in V$ wird als linear abhÄd'ngig bezeichnet, wenn die Gleichung: $(r_1 \cdot \overrightarrow{a_1} + r_2 \cdot \overrightarrow{a_2} + ... + r_n \cdot \overrightarrow{a_n} = \overrightarrow{0}; r_i \in \mathbb{R}$ nicht nur die triviale LÃűsung $r_1 = r_2 = ... = r_n = 0$ besitzt. Existiert nur diese LÃűsung, ist die Familie linear unabhÃďgig.

Anders gesagt, ist eine Familie von Vektoren linear abhÄd'ngig, wenn sich einzelne Vektoren dieser Familie als Linearkombination von einer beliebigen Anzahl anderer Vektoren der Familie darstellen lassen.

Bemerkung:

Eine linear abhÃď ngige Familie aus genau zwei Vektoren wird als kollinear bezeichnet. Eine linear abhÃďngige Familie aus genau drei Vektoren dagegen nennt man komplanar.

Skalarprodukt 8.5

Das Skalarprodukt ist eine ("multiplikative") VerknÃijpfung des Vektorraums. Seinen Namen trÃd'gt es, da es aus zwei Vektoren einen Skalar, alias eine Zahl macht. Es dient dazu ein Maç fÃijr den Winkel, den zwei Vektoren \vec{u} und \vec{v} einschlieħen, festzulegen. Zudem lÄd'sst sich von dieser Definition aus der Winkel selber

anhand der [4]r[1cm]0.45

Vektoren bestimmt werden. Es wird als die Multiplikation der Norm der Projektion des Vektors \vec{v} in die Richtung von \vec{u} , das hei \tilde{A} §t, der Anteil von \vec{v} der auf der Geraden liegt, entlang welcher \vec{u} liegt, mit der Norm von \vec{v} definiert. Im Klartext bedeutet das:

Definition

$$\vec{u} \odot \vec{v} = |\vec{u}| \cdot |\vec{v'}|$$
$$= |\vec{u}| \cdot |\vec{v}| \cdot \cos(\alpha)$$

Daraus IÃd'sst sich ableiten, dass:

- $0 <= \alpha < 90$ (spitzer Winkel) $\Leftrightarrow \cos \alpha > 0 \Leftrightarrow \vec{u} \odot \vec{v} > 0$
- $90 < \alpha <= 180$ (stumpfer Winkel) $\Leftrightarrow \cos \alpha < 0 \Leftrightarrow \vec{u} \odot \vec{v} < 0$
- $\alpha = 90$ (rechter Winkel) $\Leftrightarrow \cos \alpha = 0 \Leftrightarrow \vec{u} \odot \vec{v} = 0$

Da wir nun aber selten Zugriff auf den Winkel haben, und dieser in den meisten FÄd'llen die gesuchte Variable ist, benÄűtigen wir eine praktikablere Berechnung, welche dasselbe Ergebnis liefert. Als Ansatz kann man auf eine im Abschnitt "Orthonormalbasis" bereits besprochene Schreibweise von Vektoren zurÄijckgreifen:

$$\vec{u} = u_1 \cdot \vec{e_1} + u_2 \cdot \vec{e_2} + u_3 \cdot \vec{e_3}$$
$$\vec{v} = v_1 \cdot \vec{e_1} + v_2 \cdot \vec{e_2} + v_3 \cdot \vec{e_3}$$

Somit erreicht man folgendes Ergebnis: $\vec{u}\odot\vec{v}=(u_1\cdot\vec{e_1}+u_2\cdot\vec{e_2}+u_3\cdot\vec{e_3})\odot\vec{v}=v_1\cdot\vec{e_1}+v_2\cdot\vec{e_2}+v_3\cdot\vec{e_3}$ Um hiermt allerdings weiterrechnen zu kÃűnnen, mÃijssen einige Rechenregeln bezÃijglich des Skalarprodukts aufgestellt werden. ZunÃďchst gilt, dass das Skalarprodukt symmetrisch ist: $\vec{u}\odot\vec{v}=\vec{v}\odot\vec{u}$, da

Bemerkung:

Aus dieser Gleichung folgt: $\cos(\alpha) = \frac{\vec{u} \odot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$.

8.6 Kreuzprodukt

Das Kreuzprodukt ist das zweite n $\tilde{\mathsf{A}}$ ijtzliche Werkzeug, welches in der Vektorgeometrie genutzt wird. Es dient haupts $\tilde{\mathsf{A}}$ d'chlich zur einfachen Berechnung eines zu zwei **nicht kollinearen** Vektoren \vec{u} und \vec{v} orthogonalen Vektors \vec{i} .

Definition

$$\vec{i} = \vec{u} \times \vec{v} = \begin{pmatrix} u_2 \cdot v_3 - u_3 \cdot v_2 \\ u_3 \cdot v_1 - u_1 \cdot v_3 \\ u_1 \cdot v_2 - u_2 \cdot v_1 \end{pmatrix}$$

Beweis

Seien \vec{u} und \vec{v} beliebige zueinander nicht kollineare Vektoren des \mathbb{R}^3 . Ein zu beiden Vektoren orthogonaler Vektor ergibt sich durch:

$$\begin{cases} \vec{u} \circ \vec{i} &= 0 & (1) \\ \vec{v} \circ \vec{i} &= 0 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 i_1 + u_2 i_2 + u_3 i_3 &= 0 & (1) & | \cdot v_1 \\ v_1 i_1 + v_2 i_2 + v_3 i_3 &= 0 & (2) & | \cdot (-u_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ -u_1 v_1 i_1 - u_1 v_2 i_2 - u_1 v_3 i_3 &= 0 & (2) & | (1) + (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ u_2 v_1 i_2 + u_3 v_1 i_3 - u_1 v_2 i_2 - u_1 v_3 i_3 &= 0 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ (u_2 v_1 - u_1 v_2) \cdot i_2 + (u_3 v_1 - u_1 v_3) \cdot i_3 &= 0 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ (u_2 v_1 - u_1 v_2) \cdot i_2 &= -(u_3 v_1 - u_1 v_3) \cdot i_3 & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ i_2 &= (u_3 v_1 - u_1 v_3) \cdot i_3 &= -(u_2 v_1 - u_1 v_2) & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + u_2 v_1 i_2 + u_3 v_1 i_3 &= 0 & (1) \\ i_2 &= u_3 v_1 - u_1 v_3 & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 v_1 i_1 + (u_3 v_1 - u_1 v_3) \cdot u_2 v_1 + (u_1 v_2 - u_2 v_1) \cdot u_3 v_1 &= 0 & (1) \\ i_2 &= u_3 v_1 - u_1 v_3 & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} i_1 &= \frac{-(u_3 v_1 - u_1 v_3) \cdot v_2 v_1 - (u_1 v_2 - u_2 v_1) \cdot u_3 v_1}{u_1 v_1} & (1) \\ i_2 &= u_3 v_1 - u_1 v_3 & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} i_1 &= \frac{(u_1 v_3 - u_3 v_1) \cdot v_2 + (u_2 v_1 - u_1 v_2) \cdot u_3}{u_1 v_2 - u_2 v_1} & (1) \\ i_2 &= u_3 v_1 - u_1 v_3 & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} i_1 &= u_2 v_3 - u_3 v_2 + \frac{-u_3 v_1 u_2 + u_3 v_1 v_3}{u_1 v_2 - u_2 v_1} & (2) \\ i_3 &= u_1 v_2 - u_2 v_1 & (3) \end{cases}$$

$$\Leftrightarrow \left\{ \begin{array}{lcl} i_1 & = & u_2v_3 - u_3v_2 & (1) \\ i_2 & = & u_3v_1 - u_1v_3 & (2) \\ i_3 & = & u_1v_2 - u_2v_1 & (3) \end{array} \right.$$

$$\Leftrightarrow \overrightarrow{i} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

Bemerkung:

$$\vec{u} \times \vec{v} = 0 \Leftrightarrow \vec{u} \parallel \vec{v} (\vec{u} = r \cdot \vec{v}; r \in \mathbb{R})$$

Zudem gilt:

$$\begin{split} |\overrightarrow{i}| &= |\overrightarrow{u}| \cdot (\sin(\alpha) \cdot |\overrightarrow{v}|) \\ &= |\overrightarrow{u}| \cdot \left(\sin\left(\cos^{-1}\left(\frac{\overrightarrow{u} \odot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}\right)\right) \cdot |\overrightarrow{v}| \right) \end{split}$$

Einfacher gesagt ist der Betrag des Vektors \vec{i} gleich der FlÃd'che des Parallelogramms, welches die zwei Vektoren \vec{u} und \vec{v} aufspannen. Um diese doch recht verwirrende ErklÃd'rung etwas zu verdeutlichen folgt eine visuelle Darstellung:

Beweis

$$\begin{split} |\overrightarrow{u}| \cdot (sin(\alpha) \cdot |\overrightarrow{v}|) &= \sqrt{(|\overrightarrow{u}|)^2 \cdot (|\overrightarrow{v}|)^2} \cdot sin(\alpha) \\ &= \sqrt{(|\overrightarrow{u}|)^2 \cdot (|\overrightarrow{v}|)^2} \cdot (1 - \cos^2(\alpha)) \\ &= \sqrt{(\overrightarrow{u})^2 \cdot (\overrightarrow{v})^2} \cdot (1 - \cos^2(\alpha)) \\ &= \sqrt{(\overrightarrow{u})^2 \cdot (\overrightarrow{v})^2} \cdot (|\overrightarrow{v}|)^2 \cdot (|\overrightarrow{v}|)^2 \cdot \cos^2(\alpha) \\ &= \sqrt{\overrightarrow{u} \cdot \overrightarrow{u} \cdot \overrightarrow{v} \cdot \overrightarrow{v} \cdot \overrightarrow{v} - (|\overrightarrow{u}|)^2} \cdot (|\overrightarrow{v}|)^2 \cdot \cos^2(\alpha) \\ &= \sqrt{\overrightarrow{u} \cdot \overrightarrow{u} \cdot \overrightarrow{v} \cdot \overrightarrow{v} \cdot \overrightarrow{v} - |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha) \cdot |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha)} \\ &= \sqrt{\overrightarrow{u} \cdot \overrightarrow{u} \cdot \overrightarrow{v} \cdot \overrightarrow{v} \cdot \overrightarrow{v} - |\overrightarrow{u} \cdot \overrightarrow{v}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha) \cdot |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot \cos(\alpha)} \\ &= \sqrt{(u_1^2 + u_2^2 + u_3^2) \cdot (v_1^2 + v_2^2 + v_3^2) - (u_1v_1 + u_2v_2 + u_3v_3)^2} \\ &= \sqrt{(u_1^2 v_1^2 + u_1^2 v_2^2 + u_1^2 v_3^2 + u_2^2 v_1^2 + u_2^2 v_2^2 + u_2^2 v_3^2 + u_3^2 v_1^2 + u_3^2 v_2^2} \\ &+ y_3^2 \sigma_3^2) - (y_1^2 \sigma_1^2 + u_1 v_1 u_2 v_2 + u_1 v_1 u_3 v_3 + u_2 v_2 u_1 v_1 + y_2^2 \sigma_2^2} \\ &+ u_2 v_2 u_3 v_3 + u_3 v_3 u_1 v_1 + u_3 v_3 u_2 v_2 + y_3^2 \sigma_3^2} \\ &= \sqrt{u_1^2 v_2^2 + u_1^2 v_3^2 + u_2^2 v_1^2 + u_2^2 v_3^2 + u_3^2 v_1^2 + u_3^2 v_2^2} \\ &+ - (2u_1 v_1 u_2 v_2 + 2u_1 v_1 u_3 v_3 + 2u_2 v_2 u_3 v_3)} \\ &= \sqrt{u_1^2 v_2^2 - 2u_1 v_1 u_2 v_2 + u_2^2 v_1^2 + u_1^2 v_3^2 - 2u_1 v_1 u_3 v_3 + u_3^2 v_1^2 + u_2^2 v_3^2 - 2u_2 v_2 u_3 v_3 + u_3^2 v_2^2} \\ &= \sqrt{(u_1 v_2 - u_2 v_1)^2 + (u_1 v_3 - u_3 v_1)^2 + (u_2 v_3 - u_3 v_2)^2}} \\ &= \left| \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \right| \qquad \text{(unter anderem, aber auch)} \\ &= |\overrightarrow{i}| \end{aligned}$$

8.7 Geraden

8.7.1 Darstellungen

Eine Gerade ist ein sehr bekannter Bestandteil der elementaren Geometrie. Bezogen auf die Vektorgeometrie ist sie nichts anderes als ein unendlich langer Vektor, beziehungsweise eine Linearkombination aus unendlich vielen (identischen / kollinearen) Vektoren. Somit ergibt sich die eindeutige **Parameterform** einer Geraden $g: g: \vec{x} = \vec{q} + s \cdot \vec{u}; s \in \mathbb{R}$. Diese Schreibweise beschreibt die der Geraden zugehÄürigen Punktmenge. Der Vektor \vec{q} bestimmt die Position der Geraden im Raum und trÄd'gt folglich den Namen **StÄijtzvektor**, wohingegen der Vektor \vec{u} die Ausrichtung der Geraden anzeigt und **Richtungsvektor** genannt wird.

Bemerkung:

Die Parameterform ist die einzige m \tilde{A} űgliche Darstellungsform einer Geraden im \mathbb{R}^3 , da ihr Normalvektor nicht eindeutig bestimmt werden kann. Im \mathbb{R}^2 jedoch ist dies m \tilde{A} űglich, \tilde{A} d'hnlich wie f \tilde{A} ijr Kreise. Zudem kann eine Gerade in Koordinatenform durch **die Schnittmenge zweier Ebenen** beschrieben werden (siehe auch,5.7.3 Lagebeziehungen zwischen Ebenen").

8.7.2 Lagebeziehungen zwischen Geraden

Es gibt bezÃijglich Geraden vier verschiedene Beziehungen, vorausgesetzt diese befinden sich im \mathbb{R}^3 . Zwei Geraden g und h kÃűnnen...

3)...windschief zueinander sein...

4)...sich schneiden

Die Lagebeziehung zwischen zwei Geraden g und h l $\tilde{\text{A}}$ d'sst sich wie folgt ermitteln:

8.7.3 Abstand zu einem Punkt

Definition

Der Lotfuçpunkt L einer Geraden $g: \overrightarrow{x} = \overrightarrow{q} + t \cdot \overrightarrow{u}; t \in \mathbb{R}$ zu einem Punkt $P \notin g$ ist definiert durch: $\overrightarrow{LP} \odot \overrightarrow{u} = 0$. Er ist somit der dem Punkt P am nÃd'hesten gelegenen Punkt der Gerade g und wird folglich hauptsÃd'chlich zur Abstandsberechnung genutzt.

Der Abstand von einer Geraden g zu einem Punkt P ist $\tilde{\text{Ad'quivalent}}$ zur **Norm des Verbindungsvektors** \overrightarrow{LP} , wobei L der Lotfu $\tilde{\text{A}}$ §punkt der Geraden g zu P ist. F $\tilde{\text{Aijr}}$ die Berechnung des Abstands gibt es drei verschiedene L $\tilde{\text{A}}$ űsungsans $\tilde{\text{Ad'tze}}$ (OHG) von denen zwei gebr $\tilde{\text{Ad'uchlicher}}$ sind als der dritte.

OrthogonalitÃďt:

Da die Norm des Verbindungsvektors gesucht wird, gilt es nun diesen eindeutig zu bestimmen. Folgender Ablauf fÄijhrt zum Ziel:

1) Punkt L auf der Geraden *g* in AbhÃd'ngigkeit des Faktors des Richtungsvektors bestimmen:

$$\overrightarrow{l} = \begin{pmatrix} q_1 + t \cdot u_1 \\ q_2 + t \cdot u_2 \\ q_3 + t \cdot u_3 \end{pmatrix}$$

2) Verbindungsvektor bestimmen:

$$\overrightarrow{LP} = \begin{pmatrix} p_1 - (q_1 + t \cdot u_1) \\ p_2 - (q_2 + t \cdot u_2) \\ p_3 - (q_3 + t \cdot u_3) \end{pmatrix}$$

3) $\overrightarrow{LP} \odot \overrightarrow{u} = 0$ und Gleichung l \widetilde{A} űsen (nach t aufl \widetilde{A} űsen):

$$0 = u_1 \cdot (p_1 - (q_1 + t \cdot u_1)) + u_2 \cdot (p_2 - (q_2 + t \cdot u_2)) + u_3 \cdot (p_3 - (q_3 + t \cdot u_3))$$

$$\Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2}$$

4) Verbindungsvektor berechnen:

$$\overrightarrow{LP} = \left(\begin{array}{c} p_1 - (q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1) \\ p_2 - (q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2) \\ p_3 - (q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3) \end{array} \right)$$

5) Norm des Verbindungsvektors berechnen:

$$\begin{split} d(g,P) &= |\overrightarrow{LP}| \\ &= \left| \left(\begin{array}{c} p_1 - \left(q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1 \right) \\ p_2 - \left(q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2 \right) \\ p_3 - \left(q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3 \right) \right) \right| \\ &= \sqrt{\left(p_1 - \left(q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1 \right) \right)^2} \\ &+ \left(p_2 - \left(q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2 \right) \right)^2} \\ &+ \left(p_3 - \left(q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3 \right) \right)^2 \end{split}$$

Hilfsebene:

Diese Methode hat sich Platz zwei erkAd'mpft:

1) Hilfsebene E bestimmen ($\vec{n} \equiv \vec{u}$ $P \in E$, da die Gerade g die Ebene im rechten Winkel durchst $\tilde{A}\tilde{u}\tilde{A}$ st und der Verbindungsvektor somit orthogonal zur Geraden ist):

$$E: \vec{u} \odot [\vec{x} - \vec{p}] = 0$$

$$\Leftrightarrow u_1 x_1 + u_2 x_2 + u_3 x_3 = u_1 p_1 + u_2 p_2 + u_3 p_3$$

2) g = E und Gleichung lÃűsen (nach t auflÃűsen):

$$\begin{aligned} u_1(q_1+t\cdot u_1) + u_2(q_2+t\cdot u_2) + u_3(q_3+t\cdot u_3) &= u_1p_1 + u_2p_2 + u_3p_3 \\ \Leftrightarrow t &= \frac{u_1\cdot (p_1-q_1) + u_2\cdot (p_2-q_2) + u_3\cdot (p_3-q_3)}{u_1^2 + u_2^2 + u_3^2} \end{aligned}$$

- 3) Siehe Schritt 4 OrthogonalitÃďt
- 4) Siehe Schritt 5 OrthogonalitÃďt

Grenzwertberechnung:

Zu guter Letzt wollen wir die Analysis Fanatiker befriedigen:

- 1) Siehe Schritt 1 OrthogonalitÃďt
- 2) Siehe Schritt 2 OrthogonalitÃďt
- 3) Norm des Vektors in AbhÃd'ngigkeit von t bestimmen:

$$|\overrightarrow{LP}| = \sqrt{(p_1 - (q_1 + t \cdot u_1))^2 + (p_2 - (q_2 + t \cdot u_2))^2 + (p_3 - (q_3 + t \cdot u_3))^2}$$

$$= \sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}$$

$$+ ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)$$

Somit ergibt sich eine Funktion f(t):

$$f(t) = \frac{\sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}}{+((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)}$$

4) Tiefpunkt von f(t) berechnen:

$$f'(t) = \frac{2(u_1^2 + u_2^2 + u_3^2)t + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)}{2\sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}} \dots \dots \underbrace{ \frac{2(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}_{+((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)}} \dots$$

notwendige Bedingung TP:

$$f'(t) = 0$$

$$\Leftrightarrow 0 = 2(u_1^2 + u_2^2 + u_3^2)t + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3$$

$$\Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2}$$

Die hinreichende Bedingung ist nicht zu prÄijfen, sie gilt (der Minimalabstand existiert immer), und die Art des Extremwerts ist ebenfalls vorbestimmt, da der Verbindungsvektor unendlich lang wird wenn man den Lotfuħpunkt in beide Richtungen entlang der Geraden verschiebt.

- 5) Siehe Schritt 4 OrthogonalitÃďt
- 6) Siehe Schritt 5 OrthogonalitÃďt

Bemerkung:

Wie sich unschwer erkennen lÄd'sst, sind die Formeln fÄijr die Berechnung von t bei allen drei LÄűsungsansÄd'tzen identisch. Die Methoden unterscheiden sich somit nur am Anfang voneiander.

Bemerkung:

Zur Abstandsberechnung gibt es eine allgemeine Formel, welche die oben aufgelisteten Vorgehensweisen ÃijberflÃijssig macht. Da sie fÃijr das Abitur allerdings nicht zugelassen ist, wird sie hier nicht bewiesen beziehungsweise graphisch ergÃd'nzt: $d(g,P) = \frac{|\overrightarrow{u} \times \overrightarrow{QP}|}{|\overrightarrow{u}|}$.

8.7.4 Abstand zweier Geraden

Zwei nicht sich schneidende oder identische Geraden haben einen **eindeutig definierten Minimalabstand**. Bei zwei parallelen Geraden ist dies einfach zu visualisieren, der Abstand zweier windschiefer Geraden jedoch weniger. Im Folgenden sollen beide FÄd'lle untersucht werden.

Parallele Geraden:

Der Abstand zweier paralleler Geraden g und h entspricht genau dem Abstand eines Punktes $P \in g \lor P \in h$ zur jeweiligen gegenÄijberliegenden Geraden. Somit genÄijgt es den Abstand zwischen zwischen dem StÄijtzpunkt einer Geraden und der anderen zu berechnen.

Windschiefe Geraden:

Der minimale Abstand zweier windschiefer Geraden IÃd'sst sich mithilfe einer **Hilsebene** verbildlichen und bestimmen. Gegeben seien zwei Geraden $g: \vec{x} = \vec{p} + r \cdot \vec{u}; r \in \mathbb{R}$ und $h: \vec{x} = \vec{q} + s \cdot \vec{v}; s \in \mathbb{R}$. Daraus folgt, dass: $E: \vec{x} = \vec{p} + r \cdot \vec{u} + s \cdot \vec{v} \vee E: \vec{x} = \vec{q} + r \cdot \vec{u} + s \cdot \vec{v}; s, r \in \mathbb{R}$. Somit ergibt sich eine Ebene, welche entweder die Gerade g oder h enthÃd'lt und parallel zur anderen ist. Der Minimalabstand ist Ãd'quivalent zum Abstand zwischen einem Punkt der Geraden, die nicht in der Ebene enthalten ist, und der Ebene. FÃijr die genaue Vorgehensweise von diesem Punkt aus empfiehlt es sich sich den Teil "Abstand zu einem Punkt" unter Ebenen zuzuwenden.

Bemerkung:

Zur Berechnung des Abstands zweier windschiefer Geraden gibt es zudem eine Formel, welche zugleich das **Ergebnis des Skalarprodukts** veranschaulicht. Aus zwei Geraden

$$g: \overrightarrow{x} = \overrightarrow{p} + r \cdot \overrightarrow{u}; r \in \mathbb{R} \qquad \text{ und } \qquad h: \overrightarrow{x} = \overrightarrow{q} + s \cdot \overrightarrow{v}; s \in \mathbb{R}$$

lÃďsst sich mit dem Kreuzprodukt ein normierter Normalenvektor n_0 zu beiden Richtungsvektoren \vec{u} und \vec{v} errechnen, den man mit dem Verbindungsvektor der beiden Ortsvektoren ($\vec{q} - \vec{p}$) zur Minimalabstandsberechnung der beiden Geraden skaliert:

$$d(g,h) = |n_0 \odot (\overrightarrow{q} - \overrightarrow{p})| = |\frac{\overrightarrow{u} \times \overrightarrow{v}}{|\overrightarrow{u} \times \overrightarrow{v}|} \odot (\overrightarrow{q} - \overrightarrow{p})|$$

8.8 Ebenen

8.8.1 Darstellungen

Die Darstellung einer Ebene beinhaltet immer die gleichen Informationen: Ihre Position im Raum und ihre Ausrichtung:

 $\begin{array}{lll} \textit{Name} & \textit{Darstellung} \\ \textit{Parameterform} & E: \overrightarrow{x} = \overrightarrow{p} + s \cdot \overrightarrow{u} + t \cdot \overrightarrow{v}; & s, t \in \mathbb{R} \\ \textit{Normalenform} & E: (\overrightarrow{x} - \overrightarrow{q}) \odot \overrightarrow{n} = 0 \\ \textit{Koordinatenform} & E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d; & d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \end{array}$

Die erste bei Geraden bereits eingefÄijhrte Form ist leicht zu verstehen. An den StÄijtzvektor setzt man anschlieħend einen zweiten Richtungsvektor; die beiden Vektoren werden **Spannvektoren** genannt, da sie gemeinsam die Ebene aufspannen. Da man sich Äijber diese beliebig in zwei Dimensionen bewegen kann, ist jeder Punkt in einer Ebene erreichbar. Bei der Bildung der Ebene muss man beachten, dass die Spannvektoren **nicht kollinear** sind. In diesem Fall erhÄd'lt man wieder eine Gerade.

Somit ist jeder Punkt $X \in E$, wenn der Verbindingsvektor $(\overrightarrow{x} - \overrightarrow{q})$ orthogonal zum Vektor \overrightarrow{n} ist. Dabei spielt die Position des sogenannten **Normalenvektors** keine Rolle, ebenso wenig wie seine Norm. Allein seine Ausrichtung bestimmt die der Ebene. Um die Position im Raum genau zu bestimmen, ben \widetilde{A} ütigt man zudem einen Punkt $Q \in E$. Diese zus \widetilde{A} d'tzliche Information schlie \widetilde{A} §t alle anderen parallelen Ebenen aus, die durch einen kollinearen Normalenvektor defniert sind.

Aus der Normalenform lÄd'sst sich die Koordinatenform ableiten. Man macht hÄd'ufiger Gebrauch von letzterer, da sich leichter mit ihr rechnen lÄd'sst. Man bildet sie wie folgt:

```
\begin{split} E: (\overrightarrow{x} - \overrightarrow{q}) \odot \overrightarrow{n} &= 0 \\ \Leftrightarrow E: \overrightarrow{x} \odot \overrightarrow{n} &= \overrightarrow{q} \odot \overrightarrow{n} \\ \Leftrightarrow E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 &= d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \end{split}
```

Bemerkung:

Ebenen lassen sich auch mittels **Spurpunkten** und **Spurgeraden** lokalisieren. Spurpunkte sind die der Achsen des Koordinatensystems, welche in der Ebene enthalten sind. Aus diesen lassen sich anschlieħend die Spurgeraden bilden (durch Verbinden der Punkte). Folgende MÄüglichkeiten bieten sich an:

- 1) 3 Spurpunkte
- 2) 2 Spurpunkte $\Rightarrow E \parallel \overrightarrow{x_1} \lor E \parallel \overrightarrow{x_2} \lor E \parallel \overrightarrow{x_3}$
- 3) 1 Spurpunkt \Rightarrow $E \parallel E_{x_1x_2} \lor E \parallel E_{x_2x_3} \lor E \parallel E_{x_1x_3}$
- 4) Ausnahme des vorherigen Falls: $P \equiv O \Rightarrow$ Ausrichtung von E lÃd'sst sich nicht bestimmen

- 5) ∞ Punkte \Rightarrow Eine der Achsen des Koordinatensystems $\in E$, Ausrichtung von E lÃd'sst sich nicht bestimmen
- 6) ∞ , \cdot 2" Punkte $\Rightarrow E \equiv E_{x_1x_2} \lor E \equiv E_{x_2x_3} \lor E \equiv E_{x_1x_3}$

Drei beziehungsweise zwei (falls man Normalenform und Koordinatenform als eine ansieht) verschiedene Darstellungsweisen sind zwar interessant und eine nicht ganz unwichtige ÄlJberlegung, jedoch scheint das auf den ersten Blick unnÄijtz. Im Laufe dieser section wird sich der jeweilige Nutzen noch offenbaren. Dann wird einem auch deutlich, dass es manchmal von Vorteil sein kann die Formen umzuformen. Die Herangehensweisen fÄijr jede Umformung unterscheiden sich nur wenig voneiander, Folgendes Diagramm stellt eine MÄüglichkeit vor:

- 1) Siehe oben
- 2) \overrightarrow{n} aus den einzelnen Faktoren herausarbeiten \land Per Punktprobe (Koordinaten einsetzen) einen Punkt Q von E ermitteln
- 3) \overrightarrow{n} mittels Kreuzprodukt ermitteln \wedge St \widetilde{A} ijtzpunkt P als Punkt Q einsetzen
- 4) Zwei Punkte $U, V \not\equiv Q$ von E ermitteln $\land Q$ als StÃijtzpunkt $P \land (\vec{u} \vec{q})$ und $(\vec{v} \vec{q})$ als Spannvektoren einsetzen
- 5) Siehe 4 (gleiches Prinzip)
- 6) Siehe 3 (gleiches Prinzip) A Skalarprodukt "ausmultiplizieren"

8.8.2 Lagebeziehungen zwischen Ebenen und Geraden

Ebenen und Geraden k $\tilde{\text{A}}$ űnnen im Gegensatz zu zwei Geraden nur eine von den drei folgenden Beziehungen zueinander haben. Eine Ebene E und eine Gerade g k $\tilde{\text{A}}$ űnnen...

3) Zudem kann g in E liegen

Die Lagebeziehung zwischen einer Ebene E und einer Geraden g l $\tilde{\mathsf{A}}$ d'sst sich wie folgt ermitteln:

8.8.3 Lagebeziehungen zwischen Ebenen

Ebenen teilen bez \tilde{A} ijglich ihrer Lage zueinander eine Eigenschaft mit einer Ebene und einer Geraden. Zwei Ebenen E_1 und E_2 k \tilde{A} űnnen ebenfalls:

3) ...sich schneiden

Die Lagebeziehung zwischen zwei Ebenen E_1 und E_2 l \tilde{A} d'sst sich wie folgt ermitteln:

FÃijr die Berechnung der Schnittgeraden gibt es unterschiedliche AnsÃd'tze abhÃd'ngig von der Ausgangssituation, welche durch die zwei mÃuglichen Darstellungsweisen von Ebenen bedingt sind. Drei mÃugliche FÃd'lle kÃunnen auftreten:

- 1) $E_1: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;$ $d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \wedge E_2: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;$ $d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3$
- 2) $E_1: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \land E_2: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R}$
- 3) $E_1: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R} \land E_2: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R}$

8.8.4 Winkel zwischen Ebenen (und Geraden)

Die einzige bisher angesprochene MÃűglichkeit den Winkel zwischen zwei geometrischen Formen zu ermitteln macht sich der Definition des Skalarprodukts zunutze. Wie bereits erlÃďutert gilt: $\cos(\alpha) = \frac{\vec{v} \odot \vec{u}}{|\vec{r}| \cdot |\vec{u}|}$.

Hierbei soll erneut hervorgehoben werden, dass der Winkel der "kleinere"der beiden mÄüglichen ist. Den anderen erhÄd'lt man in AbhÄd'ngigkeit des ersten. Daraus lÄd'sst sich ableiten wie zwei Geraden oder Ebenen oder auch eine Gerade und eine Ebene zueinander stehen:

- 1) Geraden: $\cos(\alpha) = \frac{\overrightarrow{u_1} \odot \overrightarrow{u_2}}{|\overrightarrow{u_1}| \cdot |\overrightarrow{u_2}|}$
- 2) Ebenen: $\cos(\alpha) = \frac{\overrightarrow{n_1} \odot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$
- 3) Gerade / Ebene: $\sin(\alpha) = \frac{\vec{u} \odot \vec{n}}{|\vec{u}| \cdot |\vec{n}|}$

8.8.5 Abstand zu einem Punkt

Eine simple und intuitive Art den Abstand einer Ebene E zu einem Punkt P zu bestimmen, wÄdre eine Gerade zu erstellen, welche durch P geht und die als Richtungsvektor den Normalenvektor Es hat, da \overrightarrow{n} per Definition orthogonal zu E ist und somit ein anderer kollinearer Vektor den ßchnellst mÄüglichsten Weg zum Punkt"darstellt. Anschlieħend mÄijsste man den Schnittpunkt der Geraden und E und die Norm des somit erhaltenen Vektors berechnen. Es sticht einem schnell ins Auge, dass dies ein groħer Aufwand ist. TatsÄd'chlich gibt es einen fÄijr das Abitur zugelassenen schnelleren LÄüsungsweg: die **Hess'sche Normalenform**.

Definition - Hess'sche Normalenform

Die Hess'sche Normalenform ist eine besondere Normalenform einer Ebene, dadurch besonders, dass der Normalenvektor normiert ist. Sie l $\tilde{\mathbf{A}}$ d'sst sich wie folgt ableiten: $E_h: \frac{\overrightarrow{n}\odot[\overrightarrow{x}-\overrightarrow{q}]}{|\overrightarrow{n}|}=0$

Anhand dieser Graphik lÃd'sst sich die Formel zur Berechnung des Abstands eines Punktes zu einer Ebene ablesen: $d=\frac{|\vec{n}\odot(\vec{p}-\vec{q})|}{|\vec{n}|}$

Beweis

$$\overrightarrow{FP} = r \cdot \overrightarrow{n}; r \in \mathbb{R}^+$$
:

Nach Theoremen der Trigonometrie und der Definition des Skalarprodukts gilt:

$$cos(\alpha) = \frac{d}{|\overrightarrow{QP}|}$$
$$cos(\alpha) = \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}| \cdot |\overrightarrow{QP}|}$$

Daraus folgt:

$$\frac{d}{|\overrightarrow{QP}|} = \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}| \cdot |\overrightarrow{QP}|}$$

$$d = \frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}|}$$

$$d = \frac{\overrightarrow{n} \odot (\overrightarrow{p} - \overrightarrow{q})}{|\overrightarrow{n}|}$$

$$\overrightarrow{FP} = r \cdot \overrightarrow{n}; r \in \mathbb{R}^-$$
:

$$\frac{d}{|\overrightarrow{QP}|} = \frac{-\overrightarrow{n} \odot \overrightarrow{QP}}{|-\overrightarrow{n}| \cdot |\overrightarrow{QP}|}$$

$$d = -\frac{\overrightarrow{n} \odot \overrightarrow{QP}}{|\overrightarrow{n}|}$$

$$d = -\frac{\overrightarrow{n} \odot (\overrightarrow{p} - \overrightarrow{q})}{|\overrightarrow{n}|}$$

Somit lautet die gesuchte Formel: $d = \frac{|\vec{n} \odot (\vec{p} - \vec{q})|}{|\vec{n}|}$

8.9 Kreise und SphAd'ren

Letzte relevant Objektgruppe ist die der Kreise und Sph \tilde{A} d'ren, wobei Letztere lediglich auf den \mathbb{R}^3 angewandte Formen der Ersten sind.

8.9.1 Kreise

Kreise werden Äijber einen **Mittelpunkt** und einen **Radius** definiert. Alle Punkte, welche einen Distanz gleich dem Radius zum Mittelpunkt aufweisen, sind teil der Kreismenge, die den Kreis algebraisch beschreibt. Wie bei allen anderen Sektoren der Geometrie ist es von NÃűten, das Ganze zu visualisieren:

Hieraus ergibt sich eine einfache Formel, um einen Kreis zu definieren, aus welcher auch die allgemeine Kreisgleichung folgt:

$$\begin{split} |\overrightarrow{MP}| &= r; P \in M_K \text{ mit } M_k \text{ Kreismenge} \\ \Leftrightarrow |\overrightarrow{MP}|^2 &= r^2 \\ \Leftrightarrow |\overrightarrow{p} - \overrightarrow{m}|^2 &= r^2 \\ \Leftrightarrow \left| \left(\begin{array}{c} x - a \\ y - b \end{array} \right) \right|^2 &= r^2; (x,y) = (p_x, p_y) \wedge (a,b) = (m_x, m_y) \\ \Leftrightarrow \left(\sqrt{(x-a)^2 + (y-b)^2} \right)^2 &= r^2 \\ \Leftrightarrow (x-a)^2 + (y-b)^2 &= r^2 \end{split}$$

Wie die Graphik es bereits verdeutlicht, kann es von Nutzen sein mit einer Kreisscheibe zu arbeiten. Diese wird Äijber die Menge der Punkte, die innerhalb des Kreises liegen, definiert. Somit erschlieħt sich, dass jeglicher Punkt, der eine Entfernung zum Mittelpunkt, welche kleiner als der oder gleich dem Radius ist, teil dieser Kreisscheibe ist:

$$|\overrightarrow{MP}| \le r; P \in M_K$$

Bemerkung:

Anhand dessen l \tilde{A} d'sst sich bereits eine Eigenschaft eines Kreises im Vektorraum erkennen: **er ist lediglich im** \mathbb{R}^2 **definierbar**. \tilde{A} IJbertr \tilde{A} d'gt man diese Formel in einen Raum mit mehr Dimensionen erh \tilde{A} d'It man eine Sph \tilde{A} d're oder gar eine Hypersph \tilde{A} d're.

Tangenten an einen Kreis

Definition

Eine Tangente an einen Punkt eines Kreises ist vergleichbar mit der an einen Punkt einer Kurve. Sie ist gerade zu der Geraden equivalent, die **den Kreis in diesem Punkt berÄijhrt**. Dies impliziert auch, dass es nur eine Menge identischer Geraden gibt, welche erfolgreich als Tangente kandidieren kÄűnnen.

Erneut liefert uns die Graphik eine generelle Formel:

$$\overrightarrow{MP} \odot \overrightarrow{PX} = 0; P \in M_K, X \in M_T \text{ mit } M_K \text{ und } M_T \text{ Kreis- und Tangentenmenge} \\ \Leftrightarrow (\overrightarrow{p} - \overrightarrow{m}) \odot (\overrightarrow{x} - \overrightarrow{p}) = 0 \quad | + (\overrightarrow{p} - \overrightarrow{m})^2 \\ \Leftrightarrow (\overrightarrow{p} - \overrightarrow{m}) \odot (\overrightarrow{x} - \overrightarrow{p}) + (\overrightarrow{p} - \overrightarrow{m})^2 = (\overrightarrow{p} - \overrightarrow{m})^2 \\ \Leftrightarrow (\overrightarrow{p} - \overrightarrow{m}) \odot ((\overrightarrow{x} \nearrow \overrightarrow{p}) + (\overrightarrow{p} - \overrightarrow{m})) = (\overrightarrow{p} - \overrightarrow{m})^2 \\ \Leftrightarrow (\overrightarrow{p} - \overrightarrow{m}) \odot (\overrightarrow{x} - \overrightarrow{m}) = r^2$$

Polare an einen Kreis

Definition

Sei $\mathscr C$ ein Kreis mit Mittelpunkt M und P ein Punkt mit $|\overrightarrow{MP}| \nleq r$. Des Weiteren seien die zwei Tangenten(mengen) an den Kreis, die durch den Punkt P gehen, gegeben. Dann bezeichnet man die Gerade, welche die Ber \widetilde{A} ijhrpunkte der Tangenten beinhaltet, als **Polare an den Kreis** $\mathscr C$ **zum Punkt P**.

Bemerkung:

TatsÃd'chlich ist das nur die halbe Wahrheit, die Polare existiert fÃijr alle P ungleich M. Sie landet dann auçerhalb des Kreises und schneidet diesen nicht (berÃijhrt ihn in einem, wenn gilt $|\overline{MP}| = r$).

Die Prozedur sollte allmÄd'hlich bekannt vorkommen:

Wenn auch ein wenig um mehr Ecken gedacht als Aijblich:

$$\begin{vmatrix} \overrightarrow{MB} \odot \overrightarrow{PB} = 0 \\ \overrightarrow{MP} \odot \overrightarrow{BX} = 0 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} (\overrightarrow{b} - \overrightarrow{m}) \odot (\overrightarrow{b} - \overrightarrow{p}) = 0 \\ (\overrightarrow{p} - \overrightarrow{m}) \odot (\overrightarrow{x} - \overrightarrow{b}) = 0 \end{vmatrix}$$
 Nach der bereits aufgestellten Formel fÄijr Tangenten
$$\Leftrightarrow \begin{vmatrix} (\overrightarrow{b} - \overrightarrow{m}) \odot (\overrightarrow{p} - \overrightarrow{m}) = r^2 \\ (\overrightarrow{p} - \overrightarrow{m}) \odot (\overrightarrow{x} - \overrightarrow{b}) = 0 \end{vmatrix}$$
 (1) + (2)
$$\Leftrightarrow (\overrightarrow{p} - \overrightarrow{m})((\overrightarrow{x} - \overrightarrow{b}) + (\overrightarrow{b} - \overrightarrow{m})) = r^2$$

$$\Leftrightarrow (\overrightarrow{p} - \overrightarrow{m})(\overrightarrow{x} - \overrightarrow{m}) = r^2$$

8.9.2 SphÃďren

SphÃďren werden wie Kreise Ãijber einen **Mittelpunkt** und einen **Radius** definiert. Alle Punkte, welche einen Distanz gleich dem Radius zum Mittelpunkt aufweisen, sind teil der SphÃďrenmenge, die die SphÃďre algebraisch beschreibt:

Theorem - SphÃď rengleichung

Eine SphÃd're im \mathbb{R}^n ; $n \geq 3$ mit Mittelpunkt M und Radius r ist eindeutig Ãijber die folgende Gleichung definiert:

$$|\overrightarrow{MP}| = r; P \in M_{\mathscr{C}}$$

Die allgebraische Formel lautet somit wie folgt:

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2; (x,y,z) = (p_x, p_y, p_z) \land (a,b,c) = (m_x, m_y, m_z)$$

$$|\overrightarrow{MP}| = r; P \in M_{\mathscr{C}} \text{ mit } M_{\mathscr{C}} \text{ Kreismenge}$$

$$\Leftrightarrow |\overrightarrow{MP}|^2 = r^2$$

$$\Leftrightarrow |\overrightarrow{p} - \overrightarrow{m}|^2 = r^2$$

$$\Leftrightarrow \left| \left(\begin{array}{c} x - a \\ y - b \\ z - c \end{array} \right) \right|^2 = r^2; (x, y, z) = (p_x, p_y, p_z) \wedge (a, b, c) = (m_x, m_y, m_z)$$

$$\Leftrightarrow \left(\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}\right)^2 = r^2$$

\Rightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2

$$\Leftrightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Tangenten an eine SphÃd're

Definition

Die Tangente in einem Punkt an eine SphÃd're unterscheidet sich nur in einer Eigenschaft von der an einen Kreis: mehrere nicht identische Geraden berÃijhren eine SphÃd're in einem Punkt. TatsÃd'chlich stellt diese Menge von Geraden eine Ebene dar: die **Tangentialebene**.

Theorem - Tangentialebene

FÃijr die Tangentialebene an eine SphÃd're \mathscr{C} , mit Mittelpunkt M und Radius r, in einem Punkt P gilt:

$$|\overrightarrow{MP}| = r$$

Polarebene?

Definition

Sei $\mathscr C$ eine SphÃd're mit Mittelpunkt M und P ein Punkt mit $|\overrightarrow{MP}| \nleq r$. Des Weiteren seien die ÃijberabzÃd'hlbar vielen Tangenten(mengen) an $\mathscr C$, die durch den Punkt P gehen, gegeben. Dann bezeichnet man die Ebene, welche die BerÃijhrpunkte der Tangenten beinhaltet, als **Polare an die SphÃd're** $\mathscr C$ **zum Punkt P**.

8.10 SÃďtze

8.10.1 SÃďtze des Pythagoras

Theorem

In einem rechtwingkligen Dreieck ΔABC gilt:

$$a^2 + b^2 = c^2$$

Beweis

Man modelliere die 3 Seiten durch Vektoren, \vec{a} , \vec{b} und \vec{c} .

Es gilt:

$$\vec{a} \cdot \vec{b} = 0$$
$$a_1b_1 + a_2b_2 = 0$$

Auçerdem:

$$\begin{split} |\overrightarrow{a}+\overrightarrow{b}| &= \sqrt{(b_1-a_1)^2 + (b_2-a_2)^2} \\ &= \sqrt{b_1^2 - 2b_1a_2 + a_1^2 + b_2^2 - 2b_2a_2 + a_2^2} \\ &= \sqrt{b_1^2 + b_2^2 + a_1^2 + a_2^2 - 2(b_1a_2 + b_2a_2)} \\ &= \sqrt{b_1^2 + b_2^2 + a_1^2 + a_2^2} \\ &= |\overrightarrow{c}|, \, \text{denn } \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c} \\ \Leftrightarrow |\overrightarrow{c}|^2 &= b_1^2 + b_2^2 + a_1^2 + a_2^2 \\ \Leftrightarrow |\overrightarrow{c}|^2 &= |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 \\ \Leftrightarrow c^2 &= a^2 + b^2 \end{split}$$

Bemerkung:

Dieser Beweis ist weitaus intuitiver und einfacher, wenn er in der klassischen Geometrie vollfÄijhrt wird, aber das Ziel ist der Beweis Äijber Vektoren, und somit analytisch.

Theorem - Umkehrung

Falls fÃijr ein Dreieck ΔABC gilt:

$$a^2 + b^2 = c^2$$

Dann ist dieses Dreieck in C rechtwinklig.

Beweis

Sind ÃĎquivalenzumformungen nicht schÃűn?

П

8.10.2 Euklids SÃďtze

Theorem - Kathetensatz

In einem in C rechtwinkligen Dreieck ΔABC mit h der HÃűhe zu C gilt:

•
$$a^2 = p \cdot c$$

$$\bullet \ b^2 = q \cdot c$$

100

•

$$\begin{split} a^2 &= c^2 - b^2 & | \mathsf{Pythagoras} \\ &= c^2 - (q^2 + h^2) \\ &= c^2 - ((c-p)^2 + (a^2 - p^2)) \\ &= c^2 - c^2 + 2cp - p^2 - a^2 + p^2 \\ \Leftrightarrow 2a^2 &= 2cp \\ \Leftrightarrow a^2 &= cp \end{split}$$

•

$$\begin{split} b^2 &= c^2 - a^2 & | \mathsf{Pythagoras} \\ &= c^2 - (p^2 + h^2) \\ &= c^2 - ((c - q)^2 + (b^2 - q^2)) \\ &= c^2 - c^2 + 2cq - q^2 - b^2 + q^2 \\ \Leftrightarrow 2b^2 &= 2cq \\ \Leftrightarrow b^2 &= cq \end{split}$$

Theorem - HÃűhensatz

In einem in C rechtwinkligen Dreieck ΔABC mit h der HÃűhe zu C gilt:

$$h^2 = p \cdot q$$

Beweis

$$a^{2} + b^{2} = c^{2}$$

$$\Leftrightarrow \qquad p^{2} + h^{2} + q^{2} + h^{2} = (p+q)^{2}$$

$$\Leftrightarrow \qquad p^{2} + h^{2} + q^{2} + h^{2} = p^{2} + 2pq + q^{2}$$

$$\Leftrightarrow \qquad h^{2} + h^{2} = 2pq$$

$$\Leftrightarrow \qquad 2h^{2} = 2pq$$

$$\Leftrightarrow \qquad h^{2} = pq$$

Sei ein Dreieck ΔABC mit M einem Punkt der Geraden (AB) und N einem Punkt der Geraden (AC). Wenn (BC)//(MN), dann gilt:

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

Beweis

$$\begin{split} (BC)//(MN) &\Leftrightarrow \overrightarrow{BC} = k \cdot \overrightarrow{MN}, k \in \mathbb{R} \\ &= k \cdot (\overrightarrow{MA} + \overrightarrow{AN}) \\ &= \overrightarrow{BA} + \overrightarrow{AC} \end{split}$$

|Die Vektoren sind kollinear.

$$|\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN}$$

Da \overrightarrow{MA} und \overrightarrow{BA} kollinear sind, und \overrightarrow{AN} und \overrightarrow{AC} auch, gilt:

$$\begin{cases} |\overrightarrow{BA}| &= k \cdot |\overrightarrow{MA}| \\ |\overrightarrow{AC}| &= k \cdot |\overrightarrow{AN}| \\ |\overrightarrow{BC}| &= k \cdot |\overrightarrow{MN}| \end{cases} \Leftrightarrow \begin{cases} \frac{|\overrightarrow{BA}|}{|\overrightarrow{MA}|} &= k \\ \frac{|\overrightarrow{AC}|}{|\overrightarrow{AN}|} &= k \\ \frac{|\overrightarrow{BC}|}{|\overrightarrow{MN}|} &= k \end{cases} \Leftrightarrow \frac{|\overrightarrow{BA}|}{|\overrightarrow{MA}|} = \frac{|\overrightarrow{AC}|}{|\overrightarrow{MN}|} = \frac{|\overrightarrow{BC}|}{|\overrightarrow{MN}|} \Leftrightarrow \frac{|\overrightarrow{MA}|}{|\overrightarrow{BA}|} = \frac{|\overrightarrow{MN}|}{|\overrightarrow{AC}|} = \frac{|\overrightarrow{MN}|}{|\overrightarrow{BC}|}$$

Theorem - Umkehrung

Sei ein Dreieck ΔABC mit M einem Punkt der Geraden (AB) und N einem Punkt der Geraden (AC). Wenn gilt:

$$\frac{AB}{AC} = \frac{AM}{AN}$$

Dann ist (BC)//(MN).

Beweis

Auch hier profitieren wir von $\tilde{\mathbf{A}}\check{\mathbf{D}}$ quivalenzumformungen.

8.10.4 Der Satz des Apollonios

Theorem

Gegeben sind: Eine Strecke [AB] und eine positive Zahl $\lambda \in \mathbb{R}^+ \backslash \{1\}$. Dann ist die Punktmenge

$$M_A = \left\{ X \left| \frac{\overline{AX}}{\overline{BX}} = \lambda \right. \right\}$$

ein Kreis, den man Kreis des Apollonios nennt.

Beweis

Anfangen kann man den den Beweis damit, dass man zwei Punkte sucht, die die Bedingung erfüllen **und** auf der Geraden AB liegen. Logisch ist, dass einer dieser Punkte zwischen A und B sein wird, dieser wird **innerer Teilungspunkt** T_i genannt. Der andere Punkt liegt außerhalb der Strecke [AB] und wird **äußerer Teilungspunkt** T_a genannt.

Im letzten Schritt des Beweises wird man anhand des Skalarprodukts zeigen, dass für alle Punkte X, die ebenfalls die Verhältnisgleichung erfüllen, die Vektoren $\overrightarrow{T_iX}$ und $\overrightarrow{T_aX}$ orthogonal zueinander sind. Somit liegen diese Punkte auf dem Thaleskreis (frz.: Theoreme du triangle rectangle) über T_i und T_a , der dann **Apolliniuskreis** genannt wird.

1. FÃijr mÃuglichst einfache Koordinaten platziert man A auf den Origo, [AB] entlang der x-Achse, und kÃijrzt \overline{AB} mit b ab. Gleichermaßen verfährt man mit den Längen $\overline{AT_i} = t_i$ und $\overline{AT_a} = t_a$, und man führt den Punkt X(x|y) ein.

Hier nochmal ein Überblick:

$$\triangleright \mathsf{A}(\mathsf{0}|\mathsf{0}) \qquad \triangleright \mathsf{B}(\mathsf{b}|\mathsf{0}) \qquad \triangleright \mathsf{T}_i(t_i|\mathsf{0}) \qquad \triangleright \mathsf{T}_a(t_a|\mathsf{0}) \qquad \triangleright \mathsf{X}(\mathsf{x}|\mathsf{y})$$

2. Nun gilt:

•
$$t_i + t_a = \frac{\lambda}{\lambda + 1} \cdot b + \frac{\lambda}{\lambda - 1} \cdot b = (\frac{\lambda}{\lambda + 1} + \frac{\lambda}{\lambda - 1}) \cdot b = \frac{\lambda^2}{\lambda^2 - 1} \cdot 2b$$
 (1)

•
$$t_i \cdot t_a = \frac{\lambda}{\lambda + 1} \cdot b \cdot \frac{\lambda}{\lambda + 1} \cdot b = \frac{\lambda^2}{\lambda^2 - 1} \cdot b^2$$
 (2)

Diese ZusammenÃďnge werden gleich benÃűtigt.

3. Jetzt wo wir T_i und T_a in Abhängigkeit von b und λ bestimmt haben, kann man die Vorraussetzung auch noch auf den Punkt X anwenden.

$$\frac{\overline{AX}}{\overline{XB}} = \lambda$$

$$\Leftrightarrow \frac{(AX)^2}{(\overline{XB})^2} = \lambda^2$$

$$\Leftrightarrow \frac{x^2 + y^2}{(x - b)^2 + y^2} = \lambda^2$$

$$\Leftrightarrow X^2 + y^2 = \lambda^2[(x - b)^2 + y^2]$$

$$\Leftrightarrow 0 = \lambda^2 \cdot (x - b)^2 + \lambda^2 y^2 - x^2 - y^2$$

$$= x^2 \cdot \lambda^2 - 2bx \cdot \lambda^2 + b^2 \cdot \lambda^2 + y^2 \cdot \lambda^2 - x^2 - y^2 \text{ (3)}$$

4. Jetzt prÃijft man auf OrthogonalitÃd't zwischen $\overrightarrow{T_iX} = \left(\begin{array}{c} x - t_i \\ y \end{array} \right); \overrightarrow{T_aX} = \left(\begin{array}{c} x - t_a \\ y \end{array} \right).$

$$\overrightarrow{T_{i}X} \cdot \overrightarrow{T_{a}X} = (x - t_{i}) \cdot (x - t_{a}) + y^{2}$$

$$= x^{2} - (t_{i} + t_{a})x + t_{i} \cdot t_{a} + y^{2}$$
Benutze (1) und (2)
$$= x^{2} - \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot 2bx + \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot b^{2} + y^{2}$$

$$= \frac{x^{2} \cdot (\lambda^{2} - 1) - 2bx \cdot \lambda^{2} + b^{2} \cdot \lambda^{2} + y^{2} \cdot (\lambda^{2} - 1)}{\lambda^{2} - 1}$$

$$= \frac{x^{2} \cdot \lambda^{2} - 2bx \cdot \lambda^{2}b^{2} \cdot \lambda^{2} + y^{2} \cdot \lambda^{2} - x^{2} - y^{2}}{\lambda^{2} - 1}$$
Benutze (3)
$$= 0$$

⇒ Man hat bewiesen, dass fÃijr alle Punkte X die Vektoren T i X und T a X orthogonal zueinan- der sind, weshalb sie auf dem Thaleskreis Ãijber T i und T a liegen mÃijssen.

Bemerkung:

Die Figur und die Zusammenhänge, die man durch den Satz des Apollonios erhalten hat, kann man benutzen, um ein wenig mit Winkeln zu spielen:

ÃlJber diese 10 Winkel lassen sich einige Beziehungen aufstellen:

$$\triangleright \alpha + \beta + \gamma = 180 \quad \triangleright \beta + \gamma_2 + \delta_2 = 180 \quad \triangleright \delta_1 + \delta_2 = 180 \quad \triangleright \alpha + \gamma + \epsilon + \zeta = 180 \quad \triangleright \epsilon + \zeta + \eta = 180$$

$$\triangleright +\gamma_1 + \delta_1 = 180 \quad \triangleright \gamma_1 + \gamma_2 = \gamma \quad \triangleright \gamma_2 + \epsilon = 90 \quad \triangleright \beta + \eta = 180 \quad \triangleright \gamma_2 + \delta_2 + \epsilon + \zeta = 180$$

LÃűst man dieses Gleichungssystem, erhÃd'lt man $\gamma_1=\gamma_2$, was bedeutet, dass die Gerade T_iX Winkelhalbierende des Winkels $\gamma=\angle AXB$ ist:

KOMPLEXE ZAHLEN

by Pascal

9.1 EinfÄijhrung

Die Ursache fÃijr die EinfÃijhrung der komplexen Zahlen ist vergleichbar mit der jeglicher anderer Zahlenmengen (abgesehen von $\mathbb N$). Alles basiert auf einer Rechnung oder einer Menge an Rechnungen, welche fÃijr die vorhandenen Zahlenmengen **keine LÃűsung besitzen** oder aber diese Zahlenmengen einem nicht erlauben eine LÃűsung zu finden. Ein Beispiel hierfÃijr ist die EinfÃijhrung der negativen Zahlen. Gleichungen der Form 2+x=1 waren eine Zeit lang nicht lÃűsbar. Ebenso galt einmal, dass $x^2-2=0$ keine LÃűsung besitzt, da hierfÃijr die reellen Zahlen benÃűtigt werden. Analog dazu wird die Erweiterung auf die komplexen Zahlen begrÃijndet. Dies wird an folgendem klassischen Beispiel erlÃďutert:

$$x^2 + 1 = 0$$
$$\Leftrightarrow x = \sqrt{-1} \quad \mathbf{f}$$

Um dieser und anderen Gleichungen eine LÃűsung zuzuteilen ist es nicht nur notwendig die Zahlenmenge zu erweitern, sondern auch, neue Symbole und Zeichen einzufÃijhren um die neuen Zahlen zu kennzeichnen. FÃijr die $\mathbb Z$ ist es das Symbol "-", fÃijr $\mathbb Q$ ","und $\frac{a}{b}$, fÃijr $\mathbb R$ \sqrt{a} und die Zeichen π und e zum Beispiel (auch wenn beide sich anders darstellen lassen). (Ein) gewisse(r) Mathematiker (Leibniz glaube ich) hat entschieden, dass das einzige benÃűtigte Zeichen i sein sollte, da er sie imaginÃďre Zahl nannte (FÃijr den Fall, dass ich hier ein bisschen was durcheinander bringe, sind Direktverbesserungen kommentarlos erlaubt und erwÃijnscht). Und dem war so, weshalb nun gilt:

$$i \in \mathbb{C} : i^2 = -1; \mathbb{C} = \mathbb{R} \cup \{i\}$$

Definition

Komplexe Zahlen werden standartm \tilde{A} d' \tilde{A} ig mit dem Buchstaben z dargestellt. Die allgemeine Formel einer solchen Zahl lautet:

Hierbei wird x = Re(z) Realteil und y = Im(z) und zwar **nur** y ImaginÃďrteil genannt.

Bemerkung:

Eine Zahl $z=x+yi\in\mathbb{C}$ heiçt rein imaginÃďre Zahl fÃijr x=0. Analog dazu wird sie fÃijr y=0 als reell bezeichnet.

9.2 Der KÄürper der komplexen Zahlen

Da wir nun wissen (oder halt auch nicht), weshalb wir die komplexen Zahlen ben \tilde{A} űtigen, gilt es nun die verschiedenen Verkn \tilde{A} ijpfungen, mit welchen wir zwei komplexe Zahlen verbinden, zu definieren. Wie alle anderen bekannten Mengen (au \tilde{A} §er \mathbb{N}), ist \mathbb{C} teil eines **K\tilde{A}űrpers** welcher die zwei Verkn \tilde{A} ijpfungen, denen wir allgemein die Namen **Addition** und **Multiplikation** geben. Das 3-Tupel (oder auch Tripel) (\mathbb{C} , +, *) ist somit der K \tilde{A} űrper, mit welchem wir arbeiten werden (jemals gefragt warum keine weiteren Verkn \tilde{A} ijpfungen eingef \tilde{A} ijhrt wurden?). Jedoch muss auch erstmal bewiesen werden, dass dieses Tripel ein K \tilde{A} űrper ist:

Beweis

Die Addition:

FÃijr die Addition gilt bekanntlich zu beweisen, dass (\mathbb{C} , \oplus) eine abelsche oder auch kommutative Gruppe ist:

1)

$$\begin{split} \forall z_1, z_2 \in \mathbb{C} : z_1 \oplus z_2 &= (x_1 + y_1 i) \oplus (x_2 + y_2 i) \\ &= ((x_1 + x_2) + (y_1 + y_2) i) \\ &\in \mathbb{C} \\ \Rightarrow \forall z_1, z_2 \in \mathbb{C} : \oplus : \mathbb{C} \times \mathbb{C} \to \mathbb{C} \quad \text{(Abgeschlossenheit)} \end{split}$$

2)

$$\begin{split} (z_1 \oplus z_2) \oplus z_3 &= ((x_1 + x_2) + (y_1 + y_2)i) \oplus (x_3 + y_3i) \\ &= ((x_1 + x_2 + x_3) + (y_1 + y_2 + y_3)i) \\ &= (x_1 + y_1i) \oplus ((x_2 + x_3) + (y_2 + y_3)i) \\ &= (x_1 + y_1i) \oplus ((x_2 + y_2i) \oplus (x_3 + y_3i)) \\ &= z_1 \oplus (z_2 \oplus z_3) \\ \Rightarrow \forall z_1, z_2, z_3 \in \mathbb{C} : (z_1 + z_2) \oplus z_3 = z_1 \oplus (z_2 + z_3) \quad \text{(AssoziativitÅd't)} \end{split}$$

3)

$$0 = (0+0i) \in \mathbb{C}, \forall z \in \mathbb{C} :$$

$$z \oplus 0 = (x+yi) \oplus (0+0i)$$

$$= ((x+0) + (y+0)i)$$

$$= (x+yi)$$

$$= z$$

 $\Rightarrow \exists ! 0 : z \oplus 0 = z; z \in \mathbb{C}$ (Neutrales Element)

4)

$$-z = -(x+yi) \in \mathbb{C}, z \in \mathbb{C} :$$

$$z \oplus (-z) = (x+yi) \oplus (-(x+yi))$$

$$= ((x-x) + (y-y)i)$$

$$= (0+0i)$$

$$= 0$$

 $\Rightarrow \forall z \in \mathbb{C}\exists -z : z \oplus -z = 0$ (Inverses Element)

5)

$$z_1 \oplus z_2 = (x_1 + y_1 i) \oplus (x_2 + y_2 i)$$

$$= ((x_1 + x_2) + (y_1 + y_2)i)$$

$$= ((x_2 + x_1) + (y_2 + y_1)i)$$

$$= (x_2 + y_2 i) \oplus (x_1 + y_1 i)$$

$$= z_2 \oplus z_1$$

 $\Rightarrow \forall z_1, z_2 \in \mathbb{C}: z_1 \oplus z_2 = z_2 \oplus z_1$ (KommutativitÃďt)

Die Multiplikation:

FÃijr die Multiplikation gilt ebenfalls zu beweisen, dass (\mathbb{C} , \otimes) eine kommutative Gruppe ist:

1)

$$\forall z_1, z_2 \in \mathbb{C} : z_1 \otimes z_2 = (x_1 + y_1 i) \otimes (x_2 + y_2 i)$$

$$= ((x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i)$$

$$\in \mathbb{C}$$

 $\Rightarrow \forall z_1, z_2 \in \mathbb{C} : \otimes : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ (Abgeschlossenheit)

2)

$$(z_{1} \otimes z_{2}) \otimes z_{3} = ((x_{1}x_{2} - y_{1}y_{2}) + (x_{1}y_{2} + x_{2}y_{1})i) \otimes (x_{3} + y_{3}i)$$

$$= ((x_{1}x_{2}x_{3} - y_{1}y_{2}x_{3} - x_{1}y_{2}y_{3} - x_{2}y_{1}y_{3}) + (x_{1}x_{2}y_{3} - y_{1}y_{2}y_{3} + x_{1}y_{2}x_{3} + x_{2}y_{1}x_{3})i)$$

$$= (x_{1} + y_{1}i) \otimes ((x_{2}x_{3} - y_{2}y_{3}) + (x_{2}y_{3} + x_{3}y_{2})i)$$

$$= (x_{1} + y_{1}i) \otimes ((x_{2} + y_{2}i) \otimes (x_{3} + y_{3}i))$$

$$= z_{1} \otimes (z_{2} \otimes z_{3})$$

 $\Rightarrow \forall z_1, z_2, z_3 \in \mathbb{C} : (z_1 + z_2) \otimes z_3 = z_1 \otimes (z_2 + z_3)$ (AssoziativitÃďt)

3)

$$1 = (1+0i) \in \mathbb{C}, \forall z \in \mathbb{C}:$$

$$z \otimes 1 = (x+yi) \otimes (1+0i)$$

$$= ((1 \cdot x - 0 \cdot y) + (1 \cdot y + 0 \cdot x)i)$$

$$= (x+yi)$$

$$= z$$

 $\Rightarrow \exists ! 1 : z \otimes 1 = z; z \in \mathbb{C}$ (Neutrales Element)

4)

$$z^{-1} = (x+yi)^{-1} \in \mathbb{C}, z \in \mathbb{C} :$$

$$z \otimes z^{-1} = (x+yi) \otimes \frac{1}{(x+yi)}$$

$$= \frac{(x+yi) \cdot (x-yi)}{(x+yi) \cdot (x-yi)}$$

$$= \frac{((x^2+y^2) + (0i))}{((x^2+y^2) + (0i))}$$

$$= (1+0i)$$

$$= e$$

 $\Rightarrow \forall z \in \mathbb{C} \exists z^{-1} : z \otimes z^{-1} = 1$ (Inverses Element)

5)

$$z_1 \otimes z_2 = (x_1 + y_1 i) \otimes (x_2 + y_2 i)$$

$$= ((x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i)$$

$$= ((-y_1 y_2 + x_1 x_2) + (x_2 y_1 + x_1 y_2) i)$$

$$= (x_2 + y_2 i) \otimes (x_1 + y_1 i)$$

$$= z_2 \otimes z_1$$

 $\Rightarrow \forall z_1, z_2 \in \mathbb{C}: z_1 \otimes z_2 = z_2 \otimes z_1$ (KommutativitÃďt)

9.3 Die Gauç'sche Zahlenebene

9.3.1 HinfÃijhrung

Da jetzt der KÃűrper der komplexe Zahlen definiert wurde, gilt es ihn nun in unser bekanntes Zahlensystem zu integrieren. HierfÃijr kann man zum Beispiel beobachten, wie sich komplexe Zahlen auf der **reellen Zahlengerade** (welche eine Veranschaulichung des euklidischen Vektorraums \mathbb{R}^1 ist) verhalten. Nun sollte erstmal der Begriff des **Zeiger**s eingefÃijhrt werden.

Definition

Als Zeiger definieren wir ein visuelles Hilfsmittel, welches dem Darstellungsmodul eines Vektors, einem Pfeil, sehr Ãd'hnlich ist, jedoch sich durch eine kleine Nuance von Letzterem zu unterscheiden ist.

ZunÃďchst muss verstanden werden, welche Transformation jeweils Addition und Multiplikation im \mathbb{R}^1 auf reelle Zahlen ausfÃijhrt. Das lÃďsst sich am einfachsten anhand einer Graphik erklÃďren:

Da gilt, dass: $i^2=-1$ ist die Multiplikation einer reellen Zahl mit i^2 Äd'quivalent zu einer 180 - Grad Drehung. Daraus lÄd'sst sich schlieħen, dass die Multiplikation mit i einer 90 - Grad Drehung entspricht, da: $a\cdot i^2=a\cdot i\cdot i; a\in\mathbb{R}$ und man davon ausgeht, dass $\cdot(i)$ beides mal dieselbe Transformation anwendet. Somit entsteht eine wunderschÄűne Ebene, in der alle Zahlen zusammen spielen und sich amÄijsieren kÄűnnen:

Eine komplexe zahl z=x+yi kann somit Ãijber einen Zeiger in der Gauç'schen Zahlenebene dargestellt werden. FÃijr z=2+3i gilt beispielsweise:

9.3.2 Rechenoperationen

Die bereits angesprochenen basischen Rechenoperationen lassen sich in der Gauç'schen Zahlenebene als Transformation darstellen. Weshalb dies interessant ist, wird im Verlauf dieses Abschniits hoffentlich noch deutlich.

Die Addition ist die einfachste Transformation, weil sie equivalent zur Linearkombination bei Vektoren ist, da gilt:

$$(z_1 + z_2) = ((x_1 + x_2) + (y_1 + y_2)i)$$

Bildlich bedeutet das:

Im Gegensatz dazu ist die Multiplikation weniger intuitiv. Aus logistischen GrÃijnden wird sie trotz allem in diesem Abschnitt besprochen. Bildlich stellt sie eine Drehstreckung dar (auch dies wird gegen Ende des Kapitels genauer beschrieben), da gilt:

$$(z_1 \cdot z_2) = r_{1\alpha} \cdot r_{2\beta} = (r_1 \cdot r_2)_{\alpha+\beta}$$

ZAHLENTHEORIE

by Bruno

10.1 KÃűrper

Definition

Ein KÃűrper ist eine Menge K, versehen mit zwei inneren zweistelligen VerknÃijpfungen + und \cdot , also Addition und Multiplikation, fÃijr welche eine Addition

$$\oplus$$
 : $K \times K \to K$; $(a;b) \longmapsto a+b$

und eine Multiplikation

$$\odot$$
 : $K \times K \to K$; $(a;b) \longmapsto a \cdot b$

gegeben sind, sodass folgende Gesetze bewisen sind:

$$Assoziativgesetz$$
 (A1) $a + (b + c) = (a + b) + c$

$$Kommutativgesetz$$
 (A2) $a+b=b+a$

Neutrales Element (A3)
$$\exists ! \ 0$$
 mit:

$$a + 0 = 0 + a = a$$

Inverses Element (A4)
$$\forall a \in K \exists ! -a \in K \text{ mit:}$$

$$a + (-a) = 0$$

Assoziativgesetz (M1)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$Kommutativgesetz$$
 (M2) $a \cdot b = b \cdot a$

Neutrales Element (M3)
$$\exists ! 1 \in K \text{ mit}$$

$$1 \cdot a = a \cdot 1 = a \hat{\mathsf{A}} \check{\mathsf{a}}$$

Inverses
$$Element$$
 (M4) $\exists ! \ \frac{1}{a}$ zu jedem $a \in K \setminus \{0\}$ mit:
$$a \cdot \frac{1}{a} = 1$$

$$Distributivgesetz$$
 (D) $a \cdot (b+c) = ab + ac$

Dies erfÄijllen \mathbb{Q} , \mathbb{R} , \mathbb{R}^n (VektorrÄd'ume), \mathbb{C} , Matritzen, prime Restklassengruppen $\mathbb{Z}/p\mathbb{Z}$...

10.2 Teilbarkeit

10.2.1 Teilbarkeitseigenschaften

Definition

Die ganze Zahl $a \in \mathbb{Z}$ teilt $b \in \mathbb{Z}$, wenn es ein x gibt, mit $b = a \cdot x$. Man schreibt:

 $a \mid b$

a ist ein **Teiler** von b und b ist **Vielfaches** von a

Zwei Zahlen $a,b\in\mathbb{Z}$ sind **teilerfremd**, wenn aus $c\mid a$ und $c\mid b$ folgt |c|=1

Theorem

Aus dieser Teilbarkeitsrelation ergeben sich mehrere Eigenschaften:

Sei $a, b, c, t \in \mathbb{Z}$ und $t \neq 0$:

- (0) $a \mid b$ und $a \mid c$ dann $a \mid b \pm c$
- (1) $a \mid b$ und $b \mid c$ dann $a \mid c$
- (2) $a \mid b$ dann $a \mid bc$
- (3) $at \mid bt \Leftrightarrow a \mid b$
- (4) $a \mid b$ dann b = 0 oder $|a| \leq |b|$
- (5) $a \mid b$ und $b \mid a$ dann $a = \pm b$

Beweis

- (1) Wenn $a \mid b$ und $b \mid c$, dann gibt es $x,y \in \mathbb{Z}$ mit $b=a \cdot x$ und $c=b \cdot y$. Also gilt auch $c=b \cdot y=a \cdot (xy)$ und somit $a \mid c$
- (2) Weil offensichtlich $b \mid bc$ gilt, folgt die Aussage sofort aus Aussage (3)
- (3) $at \mid bt \Leftrightarrow \exists x \in \mathbb{Z} : bt = atx \Leftrightarrow b = ax \Leftrightarrow a \mid b$
- (4) Sei b=ax mit $x\in\mathbb{Z}$. Wenn x=0, dann ist b=0. In alles anderen FÃd'llen ist |x|>1 und daher $|b|=|a|\cdot|x|\geq |a|$
- (5) Wenn weder a=0 noch b=0 ist, dann folgt aus (4) $|a| \ge |b| \ge |a|$ und daher $a=\pm b$. Wenn also a=0, dann folgt b=0

10.2.2 Euklidische Division

Definition

Seien a und b zwei nat Aijrliche Zahlen. Es gibt dann immer $q, r \in \mathbb{N}$ sodass

$$a = b \cdot q + r$$
 $0 \le r < b$

q heiçt **Quotient** und r heiçt **Rest**. Man schreibt: $q = a \div b$ und $r \equiv a \mod b$

10.3 Primzahlen

Hier die Liste der Primzahlen bis 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Definition

Eine natÃijrliche Zahl heiçt Primzahl, wenn sie in N genau zwei Teiler besitzt.

Theorem

Es gibt unendlich viele Primzahlen

Beweis

Es gibt unendlich viele Primzahlen: Beweis nach Euklid

Jede ganze Zahl n>1 ist durch eine Primzahl teilbar. Entweder ist n selber eine Primzahl oder $n=a\cdot b$ mit $a,b\in\mathbb{N}$

Also ist $1 < a = \frac{n}{b} < n$. Wenn man diesen Schritt endlich oft macht, kommt man am Ende auf ein neues $a' \in \mathbb{P}$.

A: Nehmen wir jetzt an, es gÃd'be nur endlich viele Primzahlen $p_1, p_2, ..., p_{r-1}, p_r$.

Dann ist

$$N = p_1 \cdot p_2 \cdot \dots \cdot p_{r-1} \cdot p_r + 1 = \left(\prod_{r=1}^r P_r\right) + 1$$

eine ganze Zahl >1 und hat daher mindestens einen Primteiler $p_l\in\mathbb{P}$ und $l\in\{1,2,...,r-1,r\}$ Dann hat man:

$$\Rightarrow \left\{ \begin{array}{ll} \mathbf{p}_l & p_1 \cdot p_2 \cdot \dots \cdot p_{r-1} \cdot p_r \\ \mathbf{p}_l & p_1 \cdot p_2 \cdot \dots \cdot p_{r-1} \cdot p_r + 1 \end{array} \right.$$

$$\Leftrightarrow p_l \mid p_1 \cdot p_2 \cdot \ldots \cdot p_{r-1} \cdot p_r - (p_1 \cdot p_2 \cdot \ldots \cdot p_{r-1} \cdot p_r + 1)$$

$$\Leftrightarrow p_l \mid \ (-1) \quad \text{oder} \quad p_l \mid 1 \qquad \text{ WIDERSPRUCH, da } p_l = 1 \text{ aber } 1 \notin \mathbb{P}$$

N muss also einen Primteiler haben ungleich p_r mit $r \in \{1,2,3,...,r-1,r\}$ oder **selber prim sein**.

Theorem

Jede natÃijrliche Zahl $n \ge 2$, die nicht prim ist, besitzt einen Primfaktor p, fÃijr den gilt

$$p^2 < n \Leftrightarrow p < \sqrt{n}$$

Also lÃd'sst sich jede Zahl, die nicht prim ist, in Primfaktoren zerlegen.

Jede natÃijrliche Zahl n > 2 besitzt eine eindeutige **Primfaktorzerlegung** der Form

$$n = (p_1)^{a_1} \cdot (p_2)^{a_2} \cdot \dots \cdot (p_{k-1})^{a_{k-1}} \cdot (p_k)^{a_k}$$

$$\text{mit } p_1 < p_2 < \ldots < p_{k-1} < p_k \quad \text{ und } \quad \{p_1, p_2, \ldots, p_{k-1}, p_k\} \in \mathbb{P} \quad \text{ und } \quad a_1, a_2, \ldots a_{k-1}, a_k \in \mathbb{N}$$

10.4 Restklassen oder Kongruenzklassen

Definition

Seien drei natÃijrliche Zahlen $a, b, n \in \mathbb{N}$ mit $n \geq 2$.

Wenn $a=q_1\cdot n+r_1$ und $b=q_2\cdot n+r_2$ und $r_1=r_2$, also falls a und b bei der euklidischen Division durch a den gleichen Rest besitzen, dann gilt

$$a \equiv b \mod n$$

Beispiel:

- $29 \equiv -121 \mod 5$ da $29 \equiv 5 \cdot 5 + 4$ und $-121 = 5 \cdot (-25) + 4$
- $88 \equiv 24 \mod 8$ da $8 \mid 88$ und $8 \mid 24$
- $87 \equiv 23 \mod 8$

Theorem

Seien a, b zwei ganze Zahlen und $n \in \mathbb{N}$ mit $n \ge 2$, dann gilt

- (1) $a \equiv b \mod n \Leftrightarrow n \mid (a-b)$
- (2) $a \equiv 0 \mod n \Leftrightarrow n \mid a$
- (3) falls $n' \geq 2$ und $n' \mid n$ dann gilt: $a \equiv b \mod n \implies a \equiv b \mod n'$

Beweis

• (1) $a \equiv b \mod n \Leftrightarrow a-b \equiv 0 \mod n \Leftrightarrow n \text{ teilt } (a-b)$

Beispiel:

- (1) $61 \equiv 29 \mod 8$ (Rest 5) \Leftrightarrow $8 \mid (61 29) = 32$
- (3) $4 \ge 2$ und $4 \mid 12$ $43 \equiv 67 \mod 12$ (r = 7) $\Rightarrow 43 \equiv 67 \mod 4$

Theorem

FÃijr jedes $n \in \mathbb{N}$ mit $n \ge 2$ gilt:

Jede ganze Zahl a ist modulo n kongruent zu einer nat \tilde{A} ijrlichen Zahl r mit $0 \ge r \ge n-1$

Anders gesagt gibt es zu jeder Zahl immer Kongruenzklassen.

Definition

Es seien $n \in \mathbb{N}$ mit $n \ge 2$ und $r \in \mathbb{N}$ mit $0 \le r < n$

Die Menge $[r] \mod n$ ist die Menge aller ganzen Zahlen z, die bei der euklidischen Division durch n den Rest r liefern.

Sie ist eine Menge von Zahlen, die den Abstand n zueinander haben.

Kongruenzen sind mit der Addition und der Multiplikation vertr \tilde{A} d'glich. Seien a, b, a^*, b^* ganze

Zahlen:

$$\begin{split} &\Rightarrow \left\{ \begin{array}{l} \mathbf{a} &\equiv a^* \mod n \\ \mathbf{b} &\equiv b^* \mod n \end{array} \right. \\ &\Rightarrow a+b \equiv a^*+b^* \mod n \qquad \text{und} \qquad a\cdot b \equiv a^*\cdot b^* \mod n \end{split}$$

Beispiel:

- [1] mod $4 = \{..., -7, -3, 1, 5, 9, ...\}$
- [2] mod $4 = \{..., -6, -2, 2, 6, 10, ...\}$
- [3] mod $4 = \{..., -5, -1, 3, 7, 11, ...\}$
- [4] $\mod 4 = [0] \mod 4 = \{..., -8, -4, 0, 4, 8, 12, ...\}$

Theorem

Seien $a, b \in \mathbb{N}$ mit $a, b \ge 2$ und $a \mid b$, dann gilt

$$[r] \mod b \subseteq [r] \mod a$$

(⊆ heiçt "Teilmenge")

Beispiel:

So gilt zum Beispiel:

10.4.1 Mit Kongruenzen rechnen und beweisen

Definition

Kongruenzen sind mit der Addition und der Multiplikation vertrÄd'glich. Daraus folgen diese Eigenschaften:

Sei $n \in \mathbb{N}$ mit $n \geq 2$. a und a^* zwei (beliebige) ganze Zahlen.

1. FÃijr jede ganze Zahl k gilt:

$$a \equiv a^* \mod n \quad \Rightarrow \quad k \cdot a \equiv k \cdot a^* \mod n$$

2. FÃijr jede natÃijrliche Zahl $p \in \mathbb{N} \setminus \{0\}$ gilt:

$$a \equiv a^* \mod n \quad \Rightarrow \quad a^p \equiv a^{*p} \mod n$$

Diese Eigenschaften sind **keine** ÃĎquivalenzen, sondern Folgerungen! Bei Beweisen kann man also nicht vom Ergebnis ausgehen, und dann durch das dividieren auf beiden Seiten des Kongruenzzeichens auf ein einfaches Ergebnis kommen. Man muss von etwas einfachem ausgehen, und das dann so umformen, dass man auf die gewÃijnschte Kongruenz kommt.

Beispiel:

$$\not \ge 35^{228} + 84^{501} \equiv 0 \mod 17$$

Definition

Es seien a und b zwei natÃijrliche Zahlen grÃűçer Null mit a>b. r sei der Rest der Euklidischen Division von a durch b. Dann gilt:

- 1. Wenn r=0, dann sind die gemeinsamen Teiler von a und b die Teiler von b. Da die Division aufgeht, teilt b die Zahl a. a ist also ein Vielfaches von b, deshalb sind die Teiler von a auch die Teiler von b.
- 2. Wenn $r \neq 0$, dann sind die gemeinsamen Teiler von a und b gerade die gemeinsamen Teiler von b und r. ($\tilde{\mathsf{ADguivalenz}} \Leftrightarrow$)

Beweis

Die Euklidische Division sagt $a = b \cdot q + r$

$$\begin{array}{cccc} \mathsf{n} \mid \mathsf{a} & \wedge & n|b \, \Rightarrow \, n|q \cdot b & \Rightarrow & n|a - q \cdot b \\ & \Rightarrow & n|r \end{array}$$

Alle Teiler n haben die Eigeschaften: n|a, n|b und n|r. n ist also Teiler von a, b und r.

Umgekehrt gilt: wenn n|b und n|r:

$$\Rightarrow \quad \begin{array}{ll} \mathbf{n} \mid \mathbf{q} \cdot b + r \\ \Rightarrow \quad n \mid a \end{array}$$

10.4.2 Der Euklidische Algorithmus

Der Euklidische Algorithmus ist eine effiziente Methode um den ggT (grÃűçter gemeinsamer Teiler) zweier Zahlen zu finden, wenn die Primfaktorzerlegung nicht vorliegt.

Definition

Seien $a,b\in\mathbb{N}$. Sei a die grÃű§ere Zahl, also a>b. Sei b kein Teiler von a. Nun wiederholt man immer wieder die Euklidische Division mit den Resten der vorherigen Division. Nach <u>diesem Satz</u> sind die Teiler von a und b auch die Teiler von b und b. Man mÃűchte ja den ersten gemeinsamen Teiler der Zahlen a und b finden.

$$\begin{array}{rcl} a & = & q_1 \cdot b + r_1 & 0 < r_1 < b \\ b & = & q_2 \cdot r_1 + r_2 & 0 < r_2 < r_1 \\ r_1 & = & q_3 \cdot r_2 + r_3 & 0 < r_3 < r_2 \\ & \vdots & & & \\ r_{n-2} & = & q_n \cdot r_{n-1} + r_n & 0 < r_n < r_{n-1} \\ r_{n-1} & = & q_{n+1} \cdot r_n + 0 \end{array}$$

Deshalb ist r_n der grÃű§te gemeinsame Teiler der Zahlen a und b:

Die Folge der Reste $r_k \in \mathbb{N}$ mit $k = \{1, 2, ..., n-1, n\}$ ist streng monoton fallend. Diese Folge hat den Grenzwert g=0. Deshalb gibt es immer **ein** letztes r_n der Folge.

Die **Existenz** von der letzten Zahl r_n ist sicher, da $b \nmid a$. Die Teiler von a und b sind also auch

die Teiler von b und r_1 . Da die Folge der Reste monoton fallend ist, kommt man am Ende auf jeden Fall auf eine Zahl r_n , die Teilerin von a und b ist. (zum <u>Satz</u>)

Theorem

Aus vorheriger Definition des Euklidischen Algorithmus ergeben sich diese Eigenschaften der Zahl r_n :

- 1. r_n ist gleichzeitig Teiler von a und b.
- 2. Jeder andere Teiler von a und b ist auch Teiler von r_n

 r_n ist der grÃűçte gemeinsame Teiler von a und b. $ggT(a;b) = r_n$. Es gilt also:

- ggT(a;b) = ggT(b;a)
- $a|c \text{ und } b|d \Rightarrow \text{ggT}(a;b)| \text{ggT}(c;d)$
- $ggT(a^2; b^2) = (ggT(a; b))^2$

Beispiel:

Man sucht den ggT von a = 780 und b = 567.

$$780 = 1 \cdot 567 + 213$$

$$567 = 2 \cdot 213 + 141$$

$$213 = 1 \cdot 141 + 72$$

$$141 = 1 \cdot 72 + 69$$

$$72 = 1 \cdot 69 + 3$$

$$69 = 23 \cdot 3 + 0$$

$$ggT(780;567) = ggT(567;780) = 3$$

Jetzt sucht man den ggT von $c=3\cdot 780=2340$ und $d=567\cdot 5=2835$.

Aus $780 \mid 2340 \text{ und } 567 \mid 2835 \text{ folgt } ggT(780, 567) \mid ggT(2340; 2385) \text{ oder auch } 3 \mid 45$

10.4.3 Der kleine Satz von Fermat

Definition

Sei a eine ganze Zahl und $p \in \mathbb{P}$ kein Teiler von a. Dann gilt

$$a^{p-1} \equiv 1 \mod p$$

 $\Rightarrow a^p \equiv a \mod p$

Beweis

Seien p eine Primzahl und $a \in Z$ und zwei Listen (oder Mengen) von Zahlen

$$M: a, 2a, 3a, 4a, ..., (p-2)a, (p-1)a$$

 $N: 1, 2, 3, 4, ..., (p-2), (p-1)$

Erst wird bewiesen, dass bei der Division von 2 Zahlen $k, k' \in \mathbb{N}$ mit $k \neq k'$ ein anderer Rest rauskommt.

$$\Rightarrow k \not\equiv k' \mod p$$
 (da $k \neq k'$ und $k < p$ und $k' < p$) $\Rightarrow k \cdot a \not\equiv k' \cdot a \mod p$

Die Reste von beliebigen Zahlen $x \in M$ durch $p \in \mathbb{P}$ ergeben genau die Zahlen $y \in N$, da in beiden Mengen genau (p-1) verschiedene Elemente sind und da gerade gezeigt wurde dass jedes Element aus M bei der Division durch p einen unterschiedlichen Rest hat. Die Reihenfolge der zu $x \in M$ zugehÄűrigen Reste $y \in N$ ist natÄijrlich nicht klar (ganz normal bei Mengen).

Wir benennen um, damit es klarer wird:

$$\begin{array}{rcl} \mathbf{a} & \equiv & r_1 \mod p \\ \mathbf{2a} & \equiv & r_2 \mod p \\ \mathbf{3a} & \equiv & r_3 \mod p \\ & & \vdots \\ (\mathsf{p-2})\mathbf{a} & \equiv & r_{p-2} \mod p \\ (\mathsf{p-1})\mathbf{a} & \equiv & r_{p-1} \mod p \end{array}$$

 $r_1, r_2, ..., r_{p-1}$ sind alle voneinander verschieden ($\hat{=}$ paarweise verschieden) und sind genau alle Elemente aus der Menge N

Demnach gilt die Schreibweise:

$$r_1 \cdot r_2 \cdot r_3 \cdot \ldots \cdot r_{p-2} \cdot r_{p-1} \quad = \quad 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (p-2) \cdot (p-1) \quad = \quad (p-1)!$$

Daraus folgt:

$$\mathbf{a} \cdot 2a \cdot 3a \cdot \dots \cdot (p-1)a \equiv r_1 \cdot r_2 \cdot r_3 \cdot \dots \cdot r_{p-1} \mod p$$

$$(\mathbf{p}\text{-}\mathbf{1})! \ \mathbf{a}^{p-1} \equiv (p-1)! \mod p$$

Da ggT((p-1)!; p) = 1, kann man durch (p-1)! teilen, ohne dass sich das Modulo verÄd'ndert

$$\Rightarrow a^{p-1} \equiv 1 \mod p$$

10.4.4 ZusammenhÃďnge zwischen ggT und kgV

Theorem

Das kgV besitzt \tilde{A} d'hnliche Eigenschaften wie der ggT Seien a,b,c,d,k ganze Zahlen ungleich Null. Dann gilt:

- 1. kgV(a; b) = kgV(b; a)
- 2. $kgV(k \cdot a; k \cdot b) = |k| \cdot kgV(a; b)$
- 3. Falls a|c und b|d, dann gilt auch kgV(a; b) | kgV(c; d)

Eine wichtige Eigenschaft, die oft benutzt wird, ist folgende:

$$ggT(a;b) \cdot kgV(a;b) = |a \cdot b|$$

Eine andere Art, den ggT und den kgV zu ermitteln ist die Ãijber die Primfaktorzerlegung. Diese wird gleich mithilfe eines Beispiels erklÃďrt.

Beispiel:

124

Daraus ergeben sich $\mathsf{ggT}(a;b) = 2^1 \cdot 7^1 = 14 \\ \mathsf{kgV}(a;b) = 2^3 \cdot 3^4 \cdot 5^1 \cdot 7^2 \cdot 11^1 \cdot 17^1 = 29688120$

10.4.5 Die SÃd'tze von BÃl'zout, Gauç und der Fundamentalsatz des ggT

Definition

Der **Fundamentalsatz des ggT** besagt, dass f $\tilde{\mathsf{A}}$ ijr $a,b\in\mathbb{N}$ ganze Zahlen u und v exisitieren, sodass gilt:

$$a \cdot u + b \cdot v = ggT(a; b)$$

Wenn a und b teilerfremd sind, dann gilt im Sonderfall: $\exists u, v \in \mathbb{Z}$:

$$a \cdot u + b \cdot v = ggT(a; b) = 1$$

Daraus folgt der **Satz von BÃl'zout**. Zwei ganze Zahlen ungleich Null sind genau dann teilerfremd, wenn $\exists u, v \in \mathbb{Z}$ gibt, sodass gilt:

$$a \cdot u + b \cdot v = 1$$

Der **Satz von Gauç** ist bei diophantischen Gleichungen n \tilde{A} ijtzlich: Es seien a, b und c ganze Zahlen ungleich Null und seien a und b teilerfremd.

$$a|bc \Rightarrow a|c$$

Daraus folgt:

$$ggT(a; b_1)$$
 und $ggT(a; b_2)$ \Leftrightarrow $ggT(a; b_1 \cdot b_2)$

Beispiel:

MusterlÃűsung einer diophantischen Gleichung:

$$(1) \qquad 12597a - 3813b = 3$$

Enweder man sucht mit dem Taschenrechner eine LÃűsung oder man verwendet den oft lÃďngen Weg mit einer hohen Vorzeichenfehlerwahrscheinlichkeit. Wir sind mutig und die Zahken sind groç, deshalb nehmen wir den Weg mit dem Gaus'schen Algorithmus. Man merkt dass 12597, 3813 mit 3 gekÃijrzt werden kann.

(1)
$$\Leftrightarrow$$
 4199 $a - 1271b = 1$

$$\begin{array}{rcl} 4199 & = & 3 \cdot 1271 + 386 \\ 1271 & = & 3 \cdot 386 + 113 \\ 386 & = & 3 \cdot 113 + 47 \\ 113 & = & 2 \cdot 47 + 19 \\ 47 & = & 2 \cdot 19 + 9 \\ 19 & = & 2 \cdot 9 + 1 \end{array}$$

Jetzt wird zurÄijck eingesetzt, um auf eine LÄűsung zu kommen

```
\begin{array}{lll} 1 &=& 19-2\cdot(9) \\ 1 &=& 19-2\cdot(47-2\cdot19)=5\cdot19-2\cdot47 \\ 1 &=& 5\cdot(113-2\cdot47)-2\cdot47=5\cdot113-12\cdot47 \\ 1 &=& 5\cdot113-12\cdot(386-3\cdot113)=41\cdot113-12\cdot386 \\ 1 &=& 41\cdot(1271-3\cdot386)-12\cdot386=41\cdot1271-135\cdot386 \\ 1 &=& 41\cdot1271-135\cdot(4199-3\cdot1271)=446\cdot1271-135\cdot4199 \end{array}
```

Eine LÃűsung dieser Gleichung ist also das Zahlentupel (-135; -446). Jetzt zieht man eine Gleichung von der anderen ab:

```
\Rightarrow 4199(a+135) - 1271(b+446) = 0
\Leftrightarrow 4199(a+135) = 1271(b+446)
```

Unter Verwendung des Satzes von Gauç folgert man

```
\Rightarrow 4199|b + 446

\Rightarrow 4199k = b + 446

\Leftrightarrow b = 4199k - 446
```

Jetzt wird eingesetzt

```
\Rightarrow 4199a + 135 \cdot 4199 = 1271(4199k - 446 + 446) = 1271 \cdot 4199k \\ \Leftrightarrow a = 1271k - 135
```

Die LÄűsungsmenge FÄijr die Geichung (1) lautet

$$\mathbb{L} = \{ (1271k - 135; 4199k - 446); \quad k \in \mathbb{Z} \}$$

Jetzt kann man jede ganze Zahl ${\cal F}$ durch unendlich viele Linearkombinationen von 1271 und 4199 darstellen. Sei die Aufgabe

$$4199a - 1271b = F$$

$$\mathbb{L}_F = \{ (1271k - (F \cdot 135); 4199k - (F \cdot 446)); \quad k \in \mathbb{Z} \}$$

10.4.6 Das RSA VerschlÄijsselungsverfahren

Die RSA-VerschlÄijsselung ist eine sehr sichere VerschlÄijsselungsmethode, welche auch sehr viele Kommunikationsdienste benutzen. Mit einem langen SchlÄijssel kann ein brute force Angriff (Rumprobieren) mehrere Generationen dauern und noch ist kein Algorithmus (Äűffentlich) bekannt, der entschlÄijsseln kann.

Konstruktion der SchlÄijssel

- 1. Man nimmt 2 sehr gro \tilde{A} e Primzahlen p und q, die privat bleiben.
- 2. Man rechnet das Rsa-Modul $N=p\cdot q$ aus. N ist ein Teil des Ãűffentlichen SchlÃijssels und hat mehrere hunderte von Dezimalstellen
- 3. Man bestimmt die Anzahl der zu N teilerfremden Zahlen. Wenn man dazu nur N kennt, brauchen Computer Jahre. Da wir aber die Primfaktorzerlegung haben, ist $\varphi(N) = (p-1) \cdot (q-1)$. φ sei die Funktion die die Anzahl an teilerfremden Zahlen angibt. Die Anzahl der zu N teilerfremden Zahlen ist das Produkt der zu p teilerfremden Zahlen mit den zu p teilerfremden Zahlen. p und p sind prim, deshalb ist $\varphi(p) = (p-1)$.
- 4. Man wÃd'hlt eine Zahl e mit $1 < e < (p-1) \cdot (q-1)$ mit ggT(e; (p-1)(q-1)) = 1. Sie ist also teilerfremd mit $\varphi(N)$ Der Ãűffentliche SchlÃijssel ist (e, N). Geheim bleiben p, q, und $(p-1) \cdot (q-1)$.

5. Jetzt bestimmt man eine Zahl d mit $e \cdot d \equiv 1 \mod (p-1)(q-1)$. Man bestimmt also das Inverse Element zu e bei der Rechnung mit $\mod (p-1)(q-1)$. Dies macht man mithilfe des Euklidischen Algorithmus:

$$\begin{array}{lll} e\cdot d & \equiv & 1 \mod (p-1)(q-1) \\ \Leftrightarrow (p-1)(q-1)\cdot k & = & e\cdot d-1 & (k\in\mathbb{Z}) \\ \Leftrightarrow e\cdot d-k\cdot (p-1)(q-1) = 1 & \text{Eine I\~A\~usbare Diophantische Gleichung! (ggT(e;(p-1)(q-1)) = 1))} \\ \Leftrightarrow e\cdot d+k\cdot (p-1)(q-1) = 1 & \text{da } k\in\mathbb{Z} \end{array}$$

Der private Schl \tilde{A} ijssel ist (d, N)

Ver- und EntschlÄijsselung der Nachricht

Sei T der Klartext, also der unverschl \tilde{A} ijsselte Text und G der geheime, verschl \tilde{A} ijsselte Text.

- Verschl $\tilde{\mathsf{A}}$ ijsselung: $G = T^e \mod N$
- EntschlÄijsselung: $T = G^d \mod N$

Damit diese Rechnung funktioniert, muss $(T^e)^d \equiv T \mod N$ gelten. Um dies zu pr $\tilde{\mathsf{A}}$ ijfen, schauen wir uns die Ausgangsgleichheiten an:

$$e \cdot d \equiv 1 \mod (p-1)(q-1) \qquad \Leftrightarrow \qquad e \cdot d = r \cdot (p-1)(q-1) + 1 \qquad r \in \mathbb{Z}$$

Und es sei die (Eulersche) Formel gegeben (Vorraussetzung: ggT(a; pq) = 1):

$$a^{(p-1)(q-1)} \equiv 1 \mod pq$$

Dann mÄijssen nur Potenzgesetze angewandt werden:

$$\begin{array}{lcl} \left(T^{e}\right)^{d} \,=\, T^{e \cdot d} &=& T^{r \cdot (p-1)(q-1)+1} \\ &=& T^{r \cdot (p-1)(q-1)} \cdot T \\ &=& \left(T^{(p-1)(q-1)}\right)^{r} \cdot T \\ &\equiv& 1^{r} \cdot T \mod pq \\ &\equiv& T \mod N \end{array}$$

Beispiel:

Nehmen wir zur Veranschaulichung lieber kleine Primzahlen

- $\mathbf{1.} \ \ p=7 \ \mathsf{und} \ q=23$
- **2.** $N = p \cdot q = 161$
- 3. $\varphi(N) = (p-1)(q-1) = 132$
- 4. e = 5 passt, da ggT(5; 161) = 1 und 1 < 5 < 132
- 5. Sei d mit $5d \equiv 1 \mod 132$ oder auch Ãd'quivalent 5d + 132r = 1. Ein LÃusungstupel ist (53; -2).

Der Äuffentliche SchlÄijssel ist (5; 161) und der geheime SchlÄijssel ist (53; 161)

Nun verschlÄijsseln wir die Nachricht "ADVENT". Der Absender bekommt den Äuffentlichen SchlÄijssel.

Nachricht	Α	D	V	Ε	Ν	Т
ZugehÃűrige Zahl	1	4	22	5	14	20
$G = T^5 \mod 161$	1	58	22	66	84	125

ÄlJbermittlung der Nachricht

$$T=G^{53} \mod 161$$
 1 4 22 5 14 20 Entschl $ilde{A}$ ijsselte Nachricht A D V E N T

10.5 Die vollständige Induktion

Die vollständige Induktion ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird, die größer oder gleich einem bestimmten Startwert sind.

Daher wird der Beweis in zwei Etappen durchgeführt; mit dem **Induktionsanfang** beweist man die Aussage für die kleinste Zahl, mit dem **Induktionsschritt** für die nächste Zahl, also logischerweise für alle darauffolgenden Zahlen.

Beweis

Beweis der Gaußschen Summenformel

$$\mathbf{Z}: S(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Induktionsanfang : $1 = \frac{1(1+1)}{2} = 1$

Induktionsvorraussetzung: für ein beliebiges, aber festes $k \in \mathbb{N}$ gilt: $\sum_{i=1}^k = \frac{k(k+1)}{2}$

Induktionsbehauptung: man behauptet, dass $\forall n \in \mathbb{N}$ gilt: $\sum_{i=1}^{n+1} = \frac{(n+1)((n+1)+1)}{2}$

Induktionsschluss : $\sum_{i=1}^{n} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+1)((n+1)+1)}{2}$

Beweis

Beweis der Summe ungerader Zahlen

Induktionsanfang : $\sum_{k=1}^{1} (2k-1) = 2 \cdot 1 - 1 = 1 = 1^2$

Induktionsvorraussetzung : für ein beliebiges, aber festes $i \in \mathbb{N}$ gilt: $\sum_{k=1}^{i} (2k-1) = i^2$

Induktionsbehauptung: man behauptet, dass $\forall n \in \mathbb{N} : \sum_{k=1}^{n+1} (2k-1) = (n+1)^2$

Induktionsschluss: $\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(n+1) - 1 = n^2 + 2n + 1 = (n+1)^2$

Beweis

Beweis der Bernoullischen Ungleichung

Induktionsanfang : $(1+x)^0 = 1 \ge 1 = 1 + 0x$

Induktionsvorraussetzung : Es gelte nun: $(1+x)^n \ge 1 + nx; n \in \mathbb{N}_0$

Induktionsbehauptung: $(1+x)^{n+1} \ge 1 + (n+1)x$

Induktionsschluss: $(1+x)^{n+1} = (1+x)^n \cdot (1+x) \ge (1+nx) \cdot (1+x) = nx^2 + nx + x + 1$

 $\geq 1 + x + nx = 1 + (n+1)x$

Reweis

Beweis der Summe der Quadratzahlen

Mittels Induktion lässt sich "nur" eine vorhandene Formel beweisen.

 $\mathbb{Z}: S(n) = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Induktionsanfang : $S(1) = \sum_{i=1}^{1} i^2 = 1^2 = 1 = \frac{1(1+1)(2+1)}{6}$

Induktionsvorraussetzung: keine Ahnung was hier rein soll

Induktionsbehauptung : $S(n+1) = \sum_{i=1}^{n+1} i^2 = \frac{(n+1)(n+2)(2(n+1)+1)}{6}$

Induktionsschluss : S(n) +(n+1)² = $\frac{n(n+1)(2n+1)}{6}$ + $(n+1)^2$ = $\frac{2n^3 + 9n^2 + 13n + 6}{6}$

 $\frac{(n+1)(n+2)(2(n+1)+1)}{6} = \frac{2n^3 + 9n^2 + 13n + 6}{6}$

125

Beweis

Beweis für eine Abschätzung der Summe der Quadratzahlen

 $\ \, \text{Induktionsanfang}: \quad \, \mathbf{1}^2 > \frac{\mathbf{1}^3}{3}$

Induktionsvorraussetzung : für ein beliebiges, aber festes $k \in \mathbb{N}$ gilt: $\sum\limits_{i=1}^k i^2 > \frac{k^3}{3}$

 $\textbf{Induktionsbehauptung}: \quad \text{man behauptet, dass } \forall n \in \mathbb{N} \text{ gilt: } \sum_{i=1}^{n+1} i^2 > \frac{(n+1)^3}{3}$

Induktionsschluss: $\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 > \frac{n^3}{3} + (n+1)^2$ $= \frac{n^3 + 3n^2 + 6n + 3}{3}$ $= \frac{n^3 + 3n^2 + 3n + 1 + 3n + 2}{3}$ $= \frac{(n+1)^3}{3} + \frac{3n+2}{3} \xrightarrow{n \ge 0} \frac{(n+1)^3}{3}$

Beweis

Beweis einer Abschätzung der Fakultät

 $\forall n \in \mathbb{N}, \quad n \ge 4: \quad n! > n^2$

 $\label{eq:normalization} \text{Induktionsanfang}: \quad \mathsf{n}_o = 4: \quad 4! = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0! = 24 > 16 = 4^2$

Induktionsvorraussetzung: $\exists n \in \mathbb{N}, n \geq 4: n! > n^2$

Induktionsbehauptung: $n! \ge n^2 \Rightarrow (n+1)! > (n+1)^2 = (n+1) \cdot (n+1)$

Induktionsschluss: $(n+1)! = (n+1) \cdot n! > (n+1) \cdot n^2$

$$\Rightarrow n^2 \stackrel{?}{>} (n+1)$$

Mini-induktion: $n_0 = 4$: $4^2 = 16 > 5 = 4 + 1$

$$\Rightarrow (n^2)' \stackrel{?}{>} (n+1)'$$

$$\Leftrightarrow 2n \stackrel{!}{>} 1 \qquad \forall n \in \mathbb{N}$$

126

WAHRSCHEINLICHKEITSTHEORIE

by RÃĽMY

Bemerkung:

Der Oberbegriff **Stochastik** wird hier nicht verwendet, da wir uns SMP nicht mit der AijberflAijssigen **Statistik** beschAd'ftigen.

11.1 Wiederholungen: Unter- & Mittelstufe

11.1.1 Zufallsexperimente

Definition

Als Zufallsexperiment bezeichnet man Versuche, deren Ergebnisse sich nicht vorhersagen lassen, also vom Zufall abhÃd'ngig sind.

Vor der DurchfÄijhrung eines Zufallsexperiments muss eine **Ergebnismenge** S festgelegt werden. Sie beinhaltet alle mÄüglichen Ergebnisse: $S=\{e_1,e_2,...,e_n\}$

Ein Versuch hei ħt Zufallsexperiment, falls:

- er unter gleichen Bedingungen beliebig oft wiederholbar ist
- sein Ergebnis sich nicht mit Sicherheit vorhersagen IAd'sst
- ullet bei jeder Durchf $ilde{A}$ ijhrung genau ein Ergebnis aus S auftritt

Beispiel:

Bekannte Zufallsexperimente sind:

- das Werfen einer MÃijnze
- das Werfen eines WAijrfels
- das Ziehen einer Kugel aus einer Urne
- ...

Definition - Laplace-Experiment

Laplace-Experimente sind Experimente, deren Ergebnisse jeweils gleichwahrscheinlich sind.

Beispiel:

Ein Beispiel hierfÄijr wÄd're der Wurf eines perfekten WÄijrfels.

Theorem

In einem Laplace-Experiment gilt f $\tilde{\mathbf{A}}$ ijr die Wahrscheinlichkeit P, dass ein Ergebnis A von n m $\tilde{\mathbf{A}}$ űglichen Ergebnis eintritt:

$$P(A) = \frac{1}{n}$$

Mehrstufige Zufallsexperimente

Definition

Werden mehrere (n) Zufallsexperimente nacheinander ausgerfÄijhrt, so kann man sie als ein einziges Zufallsexperiment zusammenfassen. Man nennt dies ein **mehrstufiges Zufallsexperiment**. Die Ergebnisse eines solchen Experiments kann man als geordnete n-Tupel auffassen.

Beispiel:

Zweifaches Werfen einer MÃijnze: $S = \{(Z/Z), (Z/K), (K/Z), (K/K)\}.$

Bemerkung:

Alternativ kann man S als einfache Menge definieren. Bei zweifachem MÃijnzwurf wÃd're eine mÃűgliche Darstellung $S = \{0, 1, 2\}$ mit der Anzahl an Kopf-WÃijrfen als Ergebnis mÃűglich.

Ereignisse

Definition - Ereignisse

Jede Teilmenge A von der Ergebnismenge S nennt man ein Ereignis. Endet das Zufallsexperiment mit einem Ergebnis aus A, sagt man: A ist eingetreten.

Beispiel:

Werfen eines WÃijrfels: $S = \{1, 2, 3, 4, 5, 6\}$

 $A: \text{Augenzahl ist gerade:} \qquad A = \{2,4,6\}$ $B: \text{Augenzahl ist ungerade:} \qquad B = \{1,3,5\}$ $C: \text{Augenzahl ist Primzahl:} \qquad C = \{2,3,5\}$ $C = \{2,3,5\}$ D = S $E: \text{Augenzahl} = 6: \qquad E = \{6\}$ $F: \text{Augenzahl} > 6: \qquad F = \{\}$

Bemerkung:

Definition

- Ein Ereignis, das nur aus einem Ergebnis besteht, hei Ast Elementarereignis.
- $B = \bar{A}$ (A quer) ist das **Gegenereignis** von A. Es gilt: $B = S \setminus A$
- Ein Ereignis, das immer eintritt, heiçt sicheres Ereignis
- Ein Ereignis, das niemals eintritt, heiçt unmÃűgliches Ereignis

Baumdiagramme

Definition - Bernoulli-Experiment

Bei Bernoulli-Experimenten gibt es nur 2 m \tilde{A} űgliche Ausg \tilde{A} d'nge: Erfolg / Miserfolg (= $\overline{\text{Erfolg}}$). Mehrfaches Ausf \tilde{A} ijhren (l Mal) von Bernoulli-Experimenten ergibt eine **Bernoulli-Kette** der L \tilde{A} d'nge l.

Eine Bernoulli-Kette kann als Baumdiagramm dargestellt werden:

E bezeichnet das Erfolgs-Ereignis, \overline{E} bezeichnet somit den Miserfolg. Jeder Pfad tr \tilde{A} d'gt 2 Informationen: das jeweilige Ereignis und seine Wahrscheinlichkeit.

Definition - Pfadregeln

- Die Summe der Wahrscheinlichkeiten auf den ÄDsten, die von einem Knoten (Ort der Verzweigung), ist = 1.
- Die Wahrscheinlichkeit eines Pfades (also eines Elementarereignisses) ist gleich dem **Produkt** der Wahrscheinlichkeiten aller ÃĎste des Pfades.
- Die Wahrscheinlichkeit eines Ereignissesb ist gleich der Summe der Wahrscheinlichkeit der Pfade, die zu diesem Ereignis f\(\tilde{A}ijhren. \)

Bemerkung:

Besonders beim Urnenmodell eines Zufallsexperiments muss beachtet werden, ob nach dem Ziehen zur Aijckgelegt wird, oder nicht, weil sich die Wahrscheinlichkeiten der ADste sonst entsprechend ver Ad'ndern.

Definition - HÃďufigkeiten

Nach der n-fachen Durchf $\tilde{\mathbf{A}}$ ijhrung eines Zufallsexperiments betrachtet man, wie oft Ereignisse eingetreten sind.

Ist das Ereignis A H-mal eingetreten, so nennt man H die **absolute HÃd'ufigkeit** und $\frac{H}{n}$ die **relative HÃd'ufigkeit** von A.

Theorem

Wird ein Zufallsexperiment sehr hÃd'ufig durchgefÃijhrt, so stabilisieren sich die relativen HÃd'ufigkeiten der Ereignisse. Es gilt:

$$\lim_{n \to \infty} \left(\frac{H_n(E)}{n} \right) = P(E)$$

mit E einem Ereignis, und H_n seiner HÃd'ufigkeit nach n Wiederholungen.

11.1.2 Zufallsvariable

Definition

Sind die Ergebnisse eines Zufallsexperiments Zahlen, oder kann man den Ergebnissen Zahlen zuornen, so nennt man die Variable f $\tilde{\mathsf{A}}$ ijr diese Zahlen **Zufallsvariable** X.

Mit Hilfe von Zufallsvariablen kann man Zufallsexperimente einfacher bechreiben.

Beispiel:

ZÃd'hlen von Erfolgen (1) und Miserfolgen (0) bei Bernoulli-Ketten: statt P((Erfolg, Erfolg, ..., Erfolg,)) (n Mal) schreibt man einfach: P(x = k * 1) mit k der gewÃijnschten Anzahl an Erfolgen.

11.1.3 Das Pascal'sche Dreieck

$$(1) \qquad (1) \qquad (1) \qquad (1) \qquad (1) \qquad (1) \qquad (1) \qquad (2) \qquad (1) \qquad (1) \qquad (3) \qquad (3) \qquad (1) \qquad (1) \qquad (4) \qquad (6) \qquad (4) \qquad (1) \qquad (1) \qquad (5) \qquad (10) \qquad (5) \qquad (1) \qquad (1) \qquad (6) \qquad (15) \qquad (21) \qquad (15) \qquad (6) \qquad (1) \qquad (1) \qquad (7) \qquad (21) \qquad (35) \qquad (35) \qquad (21) \qquad (7) \qquad (1)$$

Bekannt aus der Mittelstufe. Es ergibt sich, wenn man die Summe von zwei Werten eine Stufe tiefer, zwischen die beiden Werte schreibt. Es wird vor Allem fÄijr Binomialkoeffizienten verwendet, findet aber auch in der Wahrscheinlichkeitsrechnung Verwendung.

11.2 Kombinatorik

11.2.1 Binomialkoeffizienten

Definition

Der Binomialkoeffizient ist die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge.

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} \qquad \text{(gesprochen "n \~Aijber k")} \qquad \forall 0 \leq k \leq n$$

Bemerkung:

Anschaulich entspricht das den M $\tilde{\text{A}}$ űglichkeiten, genau k bestimmte Kugeln von n Kugeln zu ziehen, wobei die gezogenen Kugeln nicht zur $\tilde{\text{A}}$ ijckgelegt werden, und die Reihenfolge, in der sie gezogen wurden, nicht beachtet wird.

Bemerkung:

Die gefundenen Werte entsprechen den Vorfaktoren, die man f \tilde{A} ijr das k-te Element aus der nten Reihe aus dem Pascalschen Dreieck ablesen kann.

Das bedeutet, dass Potenzen von Binomen auch Äijber Binomialkoeffizienten darstellbar sind:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Bemerkung:

Die obige Definition gilt nur f \tilde{A} ijr $0 \le k \le n$ da die Fakult \tilde{A} d't (!) nicht f \tilde{A} ijr negative Zahlen definiert ist.

GTR-Tipp:

Im englischen wird $\binom{n}{r}$ als "n choose r"gesprochen. Auf dem GTR findet sich die Option unter MATH > PRB. Es handelt sich um \mathtt{nCr} .

Benutzung: $\langle ZAHL_1 \rangle$ nCr $\langle ZAHL_2 \rangle$. (Entspricht $\binom{Z_1}{Z_2}$)

Theorem

FÃijr Binomialkoeffizienten gelten mehrere Eigenschaften, unter ihnen wollen wir folgende zwei hervorheben:

1.

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

2.

$$\binom{n}{k} = \binom{n}{n-k}$$

Beweis

1.

$$\binom{n+1}{k+1} = \frac{(n+1)!}{(n-k)!k!}$$

$$= \frac{n!}{k!} \frac{(n+1)}{(n-k)!(k+1)}$$

$$= \frac{n!}{k!} \frac{n-k+k+1}{(n-k)!(k+1)}$$

$$= \frac{n!}{k!} \left(\frac{n-k}{(n-k)!(k+1)} + \frac{k+1}{(n-k)!(k+1)} \right)$$

$$= \frac{n!}{k!} \left(\frac{1}{(n-k-1)!(k+1)} + \frac{1}{(n-k)!} \right)$$

$$= \frac{n!}{k!} \left(\frac{1}{(n-(k+1))!(k+1)} + \frac{1}{(n-k)!} \right)$$

$$= \frac{n!}{(n-k)!k!} + \frac{n!}{(n-k-1)!(k+1)!}$$

$$= \binom{n}{k} + \binom{n}{k+1}$$

2.

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(n-(k-n))!(n-k)!}$$

$$= \binom{n}{n-k}$$

Bemerkung:

- 1. Entspricht der Aussage, dass ein Glied im Pascal'schen Dreieck sich aus der Summe der zwei Äijberliegenden Glieder ergibt.
- 2. Entspricht der Aussage, dass das Pascal'sche Dreieck symmetrisch ist.

11.2.2 Kombinatorik

Theorem

Kombinatorik bezeichnet die Anzahl der M $\tilde{\text{A}}$ űglichkeiten der Anordnung von k Elementen auf n Stellen. Es werden 2 F $\tilde{\text{A}}$ d'lle unterschieden:

• Die Reihenfolge der Elemente wird berÄijcksichtigt:

$$n(n-1)(n-2)...(n-(k-1))$$

• Die Reihenfolge der Elemente wird **nicht** berÄijcksichtigt:

$$\binom{n}{k}$$

Bemerkung:

Auch hier gilt die EinschrÄd'nkung $0 \le k \le n$. Diese ist sinnvoll, denn es ist nicht mÄüglich, eine k-elementige Teilmenge einer n-elementigen Menge zu nehmen, wenn k > n. Deshalb gilt:

Anzahl MÃűglichkeiten = 0 fÃijr
$$n \le k$$

Beweis

Es handelt sich hier eher um eine logische BegrÄijndung:

• Reihenfolge berÄijcksichtigt:

1. Auswahl: n MÃűglichkeiten

2. Auswahl: n-1 MÃűglichkeiten

k-te Auswahl: n - (k - 1) MÃűglichkeiten

 \Rightarrow MÃűglichkeiten insgesamt: n(n-1)(n-2)...(n-(k-1))

• Reihenfolge nicht berÄijcksichtigt:

1. Auswahl: n MÃűglichkeiten, 1 mÃűgliche Permutation

1. Auswahl: n-1 MÃűglichkeiten, 2 mÃűgliche Permutationen

k-te Auswahl: n - (k - 1) MÃűglichkeiten, k mÃűgliche Permutationen

$$= \binom{n}{k}$$

Beispiel

Nehmen wir das Ereignis E: bei einer Lotto-Ziehung "6 aus 49" sind genau 4 Zahlen richtig.

$$P(E) = \frac{\binom{6}{4}\binom{43}{2}}{\binom{49}{6}}$$

132

ZunÃďchst nimmt man die Anzahl an MÃűglichkeiten, 4 richtige Kugeln von 6 zu ziehen, man multipliziert diese durch die Anzahl an MÃűglichkeiten, 2 Kugeln aus den 43 "unerwÃijnschten" zu ziehen. Um die Wahrscheinlichkeit zu erhalten teilt man durch die Gesamtanzahl an MÃűglichkeite, 6 Kugeln aus 49 zu ziehen.

11.3 Bedingte Wahrscheinlichkeiten

Definition

Sind A und B beliebige Ereignisse mit $P(A) \neq 0$, so bezeichnet man $P_A(B)$ oder P(B|A) die **durch** A bedingte Wahrscheinlichkeit von B. Es gilt:

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Daraus ergibt sich die korrekte Darstellung als Baumdiagramm:

Theorem - Satz von Bayes

$$P_B(A) = \frac{P_A(B) \cdot P(A)}{P(B)}$$

Bemerkung:

Folgende Aussagen sind zu dieser Formulierung Ãd'quivalent:

- $P_A(B) \cdot P(B) = P_B(A) \cdot P(A)$
- $P(A) = P_A(B) \cdot P(B) + P_A(\overline{B}) \cdot P(\overline{B})$ (totale Wahrscheinlichkeit von A)

Beweis

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{P(A \cap B)}{P(A)} \cdot P(A)}{P(B)} = \frac{P_A(B) \cdot P(A)}{P(B)}$$

11.3.1 Stochastische UnabhAd'ngigkeit

Definition

Die Ergebnisse A und B werden stochastisch unabh \tilde{A} d'ngig genannt, wenn das Eintreten As die Wahr-

scheinlichkeit Bs nicht verÄd'ndert. Es gilt dann:

$$P_A(B) = P(B)$$

11.4 Wahrscheinlichkeitsverteilung

Definition

Man nennt $P(e_i)$ Wahrscheinlichkeit und die Zuordnung $e_i \mapsto P(e_i)$ Wahrscheinlichkeitsverteilung, wenn gilt:

- $e_i \in S = \{e_1, e_2, ..., e_n\} \land P(e_i) \in \mathbb{R}$
- $!\exists P(e_i) \forall e_i \in S$
- $0 \le P(e_i) \le 1 \forall i \le n$
- $P(e_1) + P(e_2) + ... + P(e_n) = 1$
- ?

Darstellung:

Bemerkung:

Dieses Balkendiagramm wird als Histogramm bezeichnet und ist in vielen FÃd'llen eine gute DarstellungsmÃűglichkeit.

GTR-Tipp:

- Mit seq() (in LIST > OPS) wird die Liste mit allen X-Werten generiert: seq(X,X,0,<Anzahl an Versuchen>,1)→<Variable>. (→ wird durch die Taste STO> aufgerufen)
- 3. Im MenÃij STAT PLOT > Plot 1 kann der gewÃijnschte Anzeigemodus gewÃd'hlt werden, fÃijr die Xlist wird die erste Liste gewÃd'hlt, fÃijr Freq die zweite. Beim Anzeige achte man auf die richtigen MaçstÃd'be: Die Anzahl an Versuchen fÃijr Xmax, 1 fÃijr Ymax.

Bemerkung:

Der GTR ist ab einer Anzahl von Äijber 48 Äijberfordert, dann kÄűnnen die Balken wegen der niedrigen AuflÄűsung nicht alle angezeigt werden. In einem solchen Fall kann nur ein Ausschnitt des Histogramms angezeigt werden, sonst erscheint eine Fehlermeldung.

Bemerkung:

Alternativ kann eine Funktion definiert werden Äijber

<Verteilung>(<Anzahl an Versuchen>,<Erfolgswahrscheinlichkeit>,round(X,0)) und anschlieħend
angezeigt werden.

Dies funktionniert nur f \tilde{A} ijr ganze x, weshalb X durch round (X,0) (zu finden in... (KP, catalog durchsuchen)) auf den n \tilde{A} d'chsten ganzen Wert gerundet wird.

Definition - Erwartungswert

Es sei eine Zuffalsvariable X mit Werten $x_1, x_2, ..., x_n$ und die zugehÃűrige Wahrscheinlichkeitsverteilung P(X). Als Erwartungswert μ wird das arithmetische Mittel der Werte von P(X) bezeichnet:

$$E(X) = \mu = \sum_{i=1}^{n} x_i P(X = x_i)$$

Definition - Median einer Wahrscheinlichkeitsverteilung

Als Median einer Wahrscheinlichkeitsverteilung bezeichnenn wir den den Wert X_n , ab dem die kumulierte Wahrscheinlichkeit von $P(X=x_i)$ den Wert von 50% Ãijberschreitet.

Bemerkung:

Anschaulich bezeichnet der Erwartungswert den durchschnittlichen Wert, den eine ZufallsgrÄűħe annimt, wenn ein Zufallsexperiment unendlich oft durchgefÄijhrt wird.

11.4.1 Binomialverteilung

Theorem

FÃijr eine Bernoulli-Kette der LÃd'nge $l \in \mathbb{N}$ und der Trefferwahrscheinlichkeit P (Wahrscheinlichkeit fÃijr einen Pfad) gilt:

$$P(X = k) = \binom{l}{k} p^k (1 - p)^{l - k}$$

mit k der gerwAijnschten Anzahl an Erfolgen.

Auçerdem gilt:

$$P(X \le k) = \sum_{i=0}^{k} {l \choose i} p^{i} (1-p)^{l-i}$$

Bemerkung:

Definition

X hei $ilde{A}$ st in diesem Fall **binomialverteilte Zufallsvariable**. Die entsprechende Wahrscheinlichkeitsverteilung hei $ilde{A}$ st Binomialverteilung $B_{l,p}(k)$. l ist die L $ilde{A}$ d'nge der Bernoulli-Kette, p die Erfolgswahrscheinlichkeit und k ist die gew $ilde{A}$ ijnschte Anzahl an Erfolgen.

GTR-Tipp:

Beide Berechnungen werden durch einen GTR-Befehl automatisiert:

- $\binom{l}{k}p^k(1-p)^{l-k}$ wird duch den Befehl binomPDF(1,p,k) berechnet.
- $\sum_{i=0}^{k} {l \choose i} p^i (1-p)^{l-i}$ wird duch den Befehl binomCDF(1,p,k) berechnet.

Beide Befehle befinden sich im DISTR-MenÄij (2ND+VARS)

Darstellung:

Erwartungswert

Theorem - Erwartungswert einer Binomialverteilung

FÃijr eine binomialverteilte Zufallsvariable *X* gilt:

$$E(x) = n \cdot p$$

mit n der Anzahl an Versuchen, und p der Erfolgswahrscheinlichkeit eines Versuchs.

Beweis

$$E(x) = \sum_{k=0}^{n} x_k \cdot P(X = x_k)$$

$$= \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^{n} \cdot k \frac{n!}{n-k)!k!} \cdot p^k (1-p)^{n-k}$$

$$= n \cdot p \cdot \sum_{k=0}^{n} k \frac{(n-1)!}{n-k-1!k!} p^{k-1} (1-p)^{n-k}$$

$$= n \cdot p \cdot \sum_{k=0}^{n} k \binom{n-1}{k-1} p^k (1-p)^{n-k}$$

$$= n \cdot p \cdot \sum_{k=1}^{n} k \binom{n-1}{k-1} p^k (1-p)^{n-k}$$

$$= n \cdot p$$

Bemerkung:

Der Startindex der Summe kann ver Ãd'ndert werden, da die kumulierte Wahrscheinlichkeite sich nicht ver Ãd'ndert. FÃijr k=0 ist $\binom{n-1}{k-1}=0$.

11.5 Kontinuierliche Wahrscheinlichkeiten

Manche Ereignisse lassen sich nicht als ganze Zahl modellieren oder kÃűnnen nicht einzeln abgezÃďhlt werden, weshalb man ihre Wahrscheinlichkeitsverteilung nur durch kontinuierliche Funktionen darstellen kann. Man kann dies als Erweiterung der diskreten Wahrscheinlichkeit auf die reellen Zahlen sehen, analog zum ÃlJbergang von den Folgen zu den Funktionen.

Definition - Dichtefunktion

Eine auf I = [a; b] stetige Funktion f hei \tilde{A} Dichtefunktion einer Wahrscheinlichkeit, wenn gilt:

$$\int_{a}^{b} f(x)dx = 1$$

Definition

Die Wahrscheinlichkeitsverteilung P, die jedem Intervall $[c;d] \subset I$ den Wert $P([c;d]) = \int_c^d f(x) dx$ zuordnet, hei $\tilde{\mathsf{A}}$ §t Wahrscheinlichkeitsverteilung $\tilde{\mathsf{A}}$ ijber I.

Bemerkung:

Durch die Definition des Integrals lassen sich folgende Eigenschaften direkt ableiten:

- P(I) = 1
- $[c;d] \subset I \Rightarrow P([c;d]) \in [0;1]$
- mit I = [a; b] gilt: P([a; c]) = 1 P([c; b])
- Die Wahrscheinlichkeit eines "Singleton", einer ein-elementigen Menge, also eines einzelnen Ergebnisses ist: $P(c) = P([c;c]) = \int_c^c f(x) dx = 0.$
- Das bedeutet, dass $P(A \cap B)$ null sein kann, ohnen dass A und B disjunkt sind. (Zum Beispiel, wenn der Schnitt genau ein Element enthÄd'lt.)
- $\bullet \ \ \text{Es folgt au} \tilde{\mathsf{A}} \\ \text{Serdem, dass} \ P([c;d]) = P(]c;d]) = P([c;d]) = P([c;d]) = \int_{c}^{d} f(t)dt$

Definition - Stetige Zufallsvariable

Sei P eine Wahrscheinlichkeitsverteilung \tilde{A} ijber I mit Dichtefunktion f.

• Eine Zufallsvariable X mit Werten in I folgt der Wahrscheinlichkeitsverteilung P, wenn gilt:

$$P(c \le X \le d) = \int_{c}^{d} f(t)dt$$

• Die Verteilungsfunktion F ist definiert durch $F(X) = P(X \le x) = P(a \le x) = \int_{-x}^{x} f(t)dt$

Bemerkung:

F besitzt per Definition folgende Eigenschaften:

- F ist differenzierbar und F' = f
- F ist monoton steigend auf I

• FÃijr h > 0 und $x + h \in I$ gilt: P(x + h) = F(x + h) - F(x).(Gleichbedeutend mit der Aussage P(c < X < d) = F(d) - F(c))

Definition - Erwartungswert

Sei X eine Zufallsvariable mit Werten aus I = [a; b]. Der Erwartungswert ist gegeben durch:

$$E(X) = \mu = \int_{a}^{b} t \cdot f(t)dt$$

11.5.1 Uniformverteilung

11.5.2 Exponentialverteilung

11.5.3 Normalverteilung

Definition

Eine stetige Zufallsvariable X hat eine (Gauç- oder) Normalverteilung mit Erwartungswert μ und Varianz σ^2 wenn X die folgende Wahrscheinlichkeitsdichte hat:

$$\varphi_{\mu,\sigma^2}(x) = f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

 $\varphi(x)$ ist die Dichtefunktion der Normalverteilung.

Definition

Die Verteilungsfunktion der Normalverteilung ist gegeben durch:

$$\Phi_{\mu,\sigma^2}(x) = \int_{-\infty}^x \varphi_{\mu,\sigma^2}(x) dx$$

Durch Substitution erhÃďIt man:

$$\Phi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{1}{2}t^2} dt$$

Bemerkung:

Diese Definition ist somit analog zur Definition der Verteilungsfunktion der Binomialverteilung (Summe der FlÄd'chen).

Auçerdem bedeutet das, dass $\Phi(x) \xrightarrow{x \to \infty} 1$.

GTR-Tipp:

Zur Berechnung geht man, wie Äijblich, ins MenÄij DISTR und wÄd'hlt fÄijr φ normalpdf, und fÄijr Φ normalcdf aus

Theorem

FÃijr eine normalverteilte Zufallsvariable X mit den Parametern n,p und der Standardabweichung $\sigma=\sqrt{{\rm Var}(X)}=\sqrt{\sigma^2}$ erhÃd'lt man folgende NÃd'herungen:

- $P(\mu \sigma \le X \le \mu + \sigma) \approx 68,3\%$
- $P(\mu 2\sigma \le X \le \mu + 2\sigma) \approx 95,4\%$
- $P(\mu 3\sigma \le X \le \mu + 3\sigma) \approx 99,7\%$

Beweis

Die Wahrscheinlichkeit fÄijr ein bestimmtes Streuintervall $I=[\mu-z\sigma;\mu+z\sigma]$ kann berechnet werden als:

$$\begin{split} P(I) &= 2\Phi(z) - 1 \\ &= 2\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt - 1 \end{split}$$

Bemerkung:

Andersherum kann die GrÃűçe von I berechnet werden Ãijber:

$$z = \Phi^{-1} \left(\frac{P+1}{2} \right)$$

RÃijckfÃijhrung: Binomialverteilung

Warum interessiert uns das? Weil die Binomialverteilung diese symmetrische Kurve f $\tilde{\mathsf{A}}$ ijr $n \to \infty$ Versuche ann $\tilde{\mathsf{A}}$ d'hert. Noch nicht $\tilde{\mathsf{A}}$ ijberzeugt? $\tilde{\mathsf{A}}$ lJber die Varianz k $\tilde{\mathsf{A}}$ unnen wir interessante Aussagen $\tilde{\mathsf{A}}$ ijber die Verteilung der Wahrscheinlichkeiten machen.

Theorem - Laplace-Bedingung

FÃijr eine Binomialverteilung mit $\sigma = \sqrt{np(1-p)}$ und $\mu = np$ gilt:

Wenn $\sigma > 3$, dann kann diese Binomialverteilung durch die Normalverteilung angen Ad'hert werden.

$$B_{l,p}(k) = P(X = k) = \binom{l}{k} p^k (1-p)^{l-k} \approx \varphi_{\mu,\sigma^2}(k) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \left(\frac{k-\mu}{\sigma}\right)^2}; k \in \mathbb{Z}$$

Daraus folgt, dass die Verteilungsfunktion ebenfalls angenÄd'hert werden kann:

$$P(a \le X \le b) \approx \int_{a-0.5}^{b+a.5} \varphi_{\mu,\sigma^2}(x) dx = \Phi_{\mu,\sigma^2}(b+0.5) - \Phi_{\mu,\sigma^2}(a-0.5)$$

Beweis

Die Abweichung wird so gering, dass sie vernachlÄd'ssigbar wird.

Theorem

FÃijr eine binomialverteilte Zufallsvariable X mit den Parametern n,p und der Varianz $\sigma=\sqrt{np(1-p)}$ erhÃd'lt man folgende NÃd'herungen:

- $P(\mu \sigma < X < \mu + \sigma) \approx 68,3\%$
- $P(\mu 2\sigma \le X \le \mu + 2\sigma) \approx 95,4\%$
- $P(\mu 3\sigma \le X \le \mu + 3\sigma) \approx 99,7\%$

GTR-Tipp:

SAME

139

MATRIZEN

by Bruno

12.1 Lineare Gleichungssysteme und GauA§algorithmus

Lineare Gleichungssysteme lassen sich aufwendig mit Einsetzungsverfahren oder Additionsverfahren lösen, Carl Friedrich Gauç (1777-1855) hat ein Algorithmus erfunden, mit dem sie sich ohne Taschenrechner leicht und relativ schnell lösen lassen.

Am Besten wird dieser mit einem Beispiel Erläutert:

$$\Rightarrow \left\{ \begin{array}{rcl} 4x + 3y + z & = & 13 & (1) \\ 2x - 5y + 3z & = & 1 & (2) \\ 7x - y - 2z & = & -1 & (3) \end{array} \right. \quad \left\{ \begin{array}{l} 1 \cdot (1) - 2 \cdot (2) \end{array} \right\} \text{ und } \left\{ \begin{array}{l} 7 \cdot (1) - 4 \cdot (3) \end{array} \right\} \qquad \qquad D = \mathbb{R}^3$$

Hier versucht man in Zeile (2) und (3) die erste Variabel zu eliminieren

$$\Leftrightarrow \left\{ \begin{array}{rcl} 4x + 3y + z & = & 13 \\ 0x + 13y - 5z & = & 11 \\ 0x + 25y + 15z & = & 95 \end{array} \right. \left. \left\{ \begin{array}{l} 25 \cdot (2) - 13 \cdot (3) \end{array} \right\}$$

Jetzt versucht man die zweite Variabel in der dritten Gleichung zu eliminieren

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5z &= 11\\ 0x + 0y - 320z &= -960 & \Leftrightarrow z = 3 \end{cases}$$

Jetzt wird eingesetzt

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5 \cdot 3 &= 11\\ 0x + 0y + z &= 3 \end{cases} \Leftrightarrow y = 2$$

$$\Leftrightarrow \left\{ \begin{array}{lll} x + 0y + 0z & = & 1 \\ 0x + y + 0z & = & 2 \\ 0x + 0y + z & = & 3 \end{array} \right.$$

 $\mathbb{L} = \{(1; 2; 3)\}$ Die L\tilde{A}\tilde{u}sungsmenge wird als n-Tupel (geordente Objekte) alphabetisch sortiert.

12.2 LGS mit dem Taschenrechner lösen

12.2.1 Eindeutig lösbare lineare Gleichungssysteme

Ein lineares Gleichungssystem lässt sich sehr viel schneller mit dem Taschgenrechner lösen:

$$\Rightarrow \left\{ \begin{array}{rcl} 4x + 3y + z & = & 13 \\ 2x - 5y + 3z & = & 1 \\ 7x - y - 2z & = & -1 \end{array} \right.$$

Hierfür geht man beim Taschenrechner auf [matrix] und auf [edit]. Dann gibt man seine Matrix (hier als Beispiel) ein:

$$\Rightarrow \begin{vmatrix} 4 & 3 & 1 & 13 \\ 2 & -5 & 3 & 1 \\ 7 & -1 & -2 & -1 \end{vmatrix}$$

Dann geht man wieder in den rechnen-Modus und gibt ein: [matrix], dann geht man auf [math], [rref]. dann geht man nochmal auf [matrix], [A] (die gerade bearbeitete Matrix):

$$\Leftrightarrow \left| \begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array} \right| \qquad \Rightarrow \mathbb{L} = \{(1;2;3)\}$$

Die Lösungsmenge wird als n-Tupel angegeben.

Wenn sich Werte mit Kommazahlen ergeben, ist es nützlich, im Taschenrechner [Math] + [1](Frac) einzugeben, um sich die Werte in Brüchen anzeigen zu lassen.

12.2.2 Nicht eindeutig lösbare lineare Gleichungssysteme

Oft begegnen einem auch unterbestimmte LGS, sei es in der Geometrie (Zwei Ebenengleichungen, die in einem Gleichungssystem als Lösung die Schnittgerade ergeben) oder in anderen Teilbereichen. Sie sind auch recht aufwendig von Hand zu lösen, deshalb hier den schnelleren GTR-Lösungsweg:

$$\Rightarrow \left\{ \begin{array}{rcl} x_1 - 2x_2 + 0x_3 & = & 10 \\ x_1 - x_2 - x_3 & = & 5 \end{array} \right.$$

Unterbestimmte LGS erkennt man daran, dass es mehr unbekannte als Gleichungen gibt:

$$\Rightarrow \left| \begin{array}{cccc} 1 & -2 & 0 & 10 \\ 1 & -1 & -1 & 5 \end{array} \right|$$

$$\Leftrightarrow \left| \begin{array}{ccc} 1 & -2 & 0 & 10 \\ 0 & 0 & 1 & 5 \end{array} \right| \qquad \Rightarrow \mathbb{L} = \left\{ (2t + 10; t; t + 5 | t \in \mathbb{R}) \right\}$$

Auch hier wird die Lösungsmenge als n-Tupel angegeben, in Abhängigkeit eines Faktors, dessen Wertebereich in der Lösungsmenge ebenfalls angegeben werden muss.

ALGORITHMIK

by RÃĽMY

13.1 Algorithmen und Programmierung

Definition

Algorithmen besitzen die folgenden charakteristischen Eigenschaften:

- Eindeutigkeit: ein Algorithmus darf keine widersprÄijchliche Beschreibung haben. Diese muss eindeutig sein.
- AusfÃijhrbarkeit: jeder Einzelschritt muss ausfÃijhrbar sein.
- Finitheit (= Endlichkeit): die Beschreibung des Algorithmus muss endlich sein.
- Terminierung: nach endlich vielen Schritten muss der Algorithmus enden und ein Ergebnis liefern.
- Determiniertheit: der Algorithmus muss bei gleichen Voraussetzungen stets das gleiche Ergebnis liefern.
- Determinismus: zu jedem Zeitpunkt der AusfÄijhrung besteht hÄűchstens eine MÄűglichkeit der Fortsetzung. Der Folgeschritt ist also eindeutig bestimmt.

Diese Eigenschaften kÃűnnen in der Mathematik genutzt werden, um Probleme zu lÃűsen. HierfÃijr bedarf es einer einheitlichen Schreibweise.

Insbesondere vor dem Abitur stehen den SchÄijlern mehrere MÄűglichkeiten zur VerfÄijgung, die im Folgenden behandelt werden.

13.1.1 Pseudocode

Pseudocode ist ein Programmcode, der nicht zur maschinellen Interpretation, sondern lediglich zur Veranschaulichung eines Algorithmus dient. Meistens Ãd'hnelt er hÃűheren Programmiersprachen, gemischt mit natÃijrlicher Sprache und mathematischer Notation. Er ist leichter verstÃd'ndlich als realer Programmcode aber klarer und weniger missverstÃd'ndlich als eine Beschreibung in natÃijrlicher Sprache.

Beispiel:

Ein Beispiel erÄijbrigt sich.

13.1.2 **Python**

Programmiersprache, bekannt durch ihre einfach verstÄd'ndliche Syntax, sie gilt als hÄűhere Sprache, was sie zu einer auf die (gesprochene) Sprache angepasste Sprache macht. Sie ist somit gerade fÄijr Einsteiger interessant und eignet sich dennoch fÄijr grÄűħere Projekte. Ein weiterer Vorteil ist die mitlerweile allgegenwÄd'rtige PrÄd'senz der Sprache, denn sie wird auch fÄijr Apps und Web-Entwicklung verwendet.

Syntax

Folgendes macht die Syntax Pythons aus:

• gute Lesbarkeit des Quellcodes

- englische SchlÄijsselwÄűrter
- · wenig syntaktische Konstruktionen

Funktionsweise

Python verwendet Schleifen und Verzweigungen.

```
#Schleifen:
for: #(Wiederholung ueber Elemente einer Sequenz (Zahl, Liste, Zeit...))
   #Inhalt der Schleife
while: #(Wiederholung, solange ein logischer Ausdruck wahr ist)
   #Inhalt der Schleife

#Verzweigungen:
if: #(prueft,ob ein logischer Ausdruck wahr ist)
   #Inhalt der Verzweigung
elif: #(prueft,ob ein anderer logischer Ausdruck wahr ist)
   #Inhalt der Verzweigung
else: #(letzter Fall, tritt ein, wenn keine der obigen Bedingungen erfuellt wurde)
   #Inhalt der Verzweigung
```

Beispiel:

Man nehme den Algorithmus, der die Fibonacci-Sequenz bis zum n-ten Glied generiert:

```
a = 0
b = 1
n = 10
for iteration in range(n):
    print(a)
    a = a+b
    b = a-b
```

13.2 Algorithmen und mathematische Anwendungen

13.2.1 Iterationsverfahren

Unter Iteration versteht man ein Verfahren zur schrittweisen AnnÃd'herung an die LÃűsung einer Gleichung unter Anwendung eines sich wiederholenden Rechengangs. Das bedeutet, (wenn es mÃűglich ist) aus einer NÃd'herungslÃűsung durch Anwenden eines Algorithmus zu einer besseren NÃd'herungslÃűsung zu kommen und die LÃűsung beliebig gut an die exakte LÃűsung heranzufÃijhren. Man sagt dann, dass die Iteration konvergiert.

Beispiele fÄijr Verfahren dieser Art werden im Folgenden behandelt.

Newton-Rhapson Verfahren

Das Newton-Rhapson Verfahren, auch bekannt als Newtonmethode dient der Nullstellenbestimmung komplexer Polynome und allgemein jeder differenzierbaren Funktion.

Die Grundidee ist, die Nullstelle der Tangente an der Stelle x_0 von f zu nehmen und den Vorgang mit $f(NS_T)$ zu wiederholen.

Eine mÃűgliche Umsetzung in Python wÃďre:

```
def NS_Tangente(x):
    NS_T = x - fx(x)/f_strich(x)
    return NS_T

Startwert=1
altwert = NS_Tangente(Startwert)
Genauigkeit = 0.00001

while abs(altwert-NS_Tangente(altwert))>Genauigkeit:
    altwert=NS_Tangente(altwert)
print(altwert)
```

Heron-Verfahren

Es handelt sich hierbei um eine vereinfachte Version des Newton-Rhapson Verfahrens, da es zur Berechnung einer NÃd'herung der Quadratwurzel einer reellen Zahl a > 0ï£ij dient.

Man erhÃd'lt das gewÃijnschte Ergebnis durch die Berechnung der Nullstelle einer Funktion $f(x) = x^2 - a$. Es gilt also: f'(x) = 2x.

Durch die Verwendung des Newton-Rhapson Verfahrens erhÄd'lt man die Iterationsvorschrift:

$$\mathbf{\tilde{i}}\mathbf{\hat{E}}\mathbf{i}\mathbf{\tilde{j}}x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Leftrightarrow x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{x_n^2 + a}{2x_n} = \frac{1}{2}\left(x_n + \frac{a}{x_n}\right)$$

Als kluger, ungefÄd'hr zutreffender Startwert gilt $x_0 = \frac{a+1}{2}$

Eine mÃűgliche Umsetzung in Python wÃďre:

```
a=2  #Muss manuell angegeben werden
def fx(x):
    return x**2-a

def f_strich(x):
    return 2*x

def next_val(wert):
    return 0.5*(wert+(a/wert))

Startwert=(a+1)/2
altwert = next_val(Startwert)
Genauigkeit = 0.00001

while abs(altwert-next_val(altwert))>Genauigkeit:
    altwert=next_val(altwert)
print(altwert)
```

ANHANG: PHYSIK

by Bruno

14.1 La physique des particules

Le modÃÍle standard de la physique dans sa beautÃl' incontestÃl'e.

14.2 Interaction gravitationelle

Definition

L'interaction gravitationnelle est une force toujours attractive qui agit sur tout ce qui possde une masse, mais avec une intensitÃl' extrmement faible (c'est l'interaction la plus faible). Son domaine d'action est l'infini.

Un corps est considÃl'rÃl' ponctuel si sa taille $\leq \frac{\text{distance d'observation}}{100}$

$$\overrightarrow{F_g} = -\frac{G \cdot m_a \cdot m_b}{r^2} \cdot \overrightarrow{u_{AB}}$$

Si:
$$r = AB$$
 $G = 6,67 \cdot 10^{-11} (S.I)$ $\overrightarrow{u_{AB}} \rightarrow \text{vecteur norm} \tilde{A} I'$

14.2.1 Le champ de gravitation

Definition

Tout objet de Masse M et d'origine spaciale O cr \tilde{A} l'e autour de lui un champ gravitationnel.

En un point quelconque P, ce champ s' $\tilde{\mathcal{G}}_{(P)}$.

Un deuxii \mathfrak{L}_i me objet de masse m plac $\tilde{\mathsf{A}}$ l' en ce point P est soumis a la force de gravitation:

$$\overrightarrow{F}_{O/P} = m \cdot \overrightarrow{\mathcal{G}}_{(P)}$$

D'ou on peut tirer la formule pour le champ de gravitation d'un objet consid $\tilde{\mathbf{A}}$ l'r $\tilde{\mathbf{A}}$ l' ponctuel de masse M a une distance d:

 $\mathcal{G}_o = \frac{G \cdot M}{d^2}$

14.3 Interaction Ãl'lectromagnÃl'tique

Definition

L'interaction Ãl'IÃl'ctromagntique est une force attractive ou rÃl'pulsive qui agit sur tout ce qui possde une charge Ãl'IÃl'ctrique. Son domaine d'action est Ãl'galement l'infini.

14.3.1 Le champ Ãl'lectrique

Definition

La loi de Coulomb

Dans le vide, 2 corps ponctuels A et B de charges q_a et q_b exercent l'un sur l'autre des forces :

$$\vec{F}_{A/B} = K \cdot \frac{q_a \cdot q_b}{r^2} \cdot \vec{U}_{A/B}$$

avec

$$K = \frac{1}{4\pi\varepsilon_0} = 9,0 \cdot 10^9 (S.I.)$$

 ε_0 : permittivitÃl' du vide (rÃl'ponse d'un milieu donnÃl' a un champ Ãl'lectrique appliquÃl') $(8,85\cdot 10^9)$ \triangle [5ex] \vec{F} et \vec{E} n'ont pas forcÃl'ment le meme sens, cela dÃl'pend de la charge q

La relation entre force \tilde{A} l'lectrique et champ \tilde{A} l'lectrique s'exprime avec q (Coulombs), charge de source:

$$\overrightarrow{F}_e = q \cdot \overrightarrow{E}$$

 $\Rightarrow F_e = |q| \cdot E$

Le champ Ãl'lectrique s'exprime donc de cette maniere:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \cdot \vec{U}_{A/B}$$

$$m^2$$

 $ec{E}$ va dans le sens des potentiels d $ilde{\mathsf{A}}$ l'croissants

Les lignes de champ sont tangentes aux vecteurs champ Ãl'lectrique tandis que les Ãl'quipotentielles relient les points ou le champ Ãl'lectrique possede la meme valeur(intensitÃl')

Dans un condensateur plan, le champ \tilde{A} l'lectrique est uniforme (lignes de champ paralleles) et la valeur du champ \tilde{A} l'lectrique est

$$E = \frac{|U_{ab}|}{d} \frac{\phantom{|U_{ab}|}}{m}$$

et, avec Q (charge totale) et S (surface des armatures)

14.3.2 Le champ magnÃľtique

Definition

Dans une bobine: Soit B_i l'intensitÃl' du champ magnÃl'tique, I l'intensitÃl' du courant, N le nombre de spires (jointives) et l la longueur de la bobine,

$$B_i = \mu_0 \cdot \frac{N \cdot I}{l}$$

$$S.I.$$

avec μ_0 la permÃl'abilitÃl' du vide

$$\mu_0 = 4\pi \cdot 10^{-7}$$

On obtient deux bobines de Helmholz quand d=R; Le champ est donc uniforme

14.4 Mouvement, vitesse et accÃľIÃľration d'un systÃÍme physique

Definition

Dans la base de Frenet: avec a_{τ} l'accÃl'IÃl'ration tangentielle et a_{η} l'accÃl'IÃl'ration normale et ρ le rayon de courbure,

$$a_{ au}=rac{dV}{dt}$$
 et $a_{\eta}=rac{v^2}{
ho}$ m
$$a=\sqrt{{a_{ au}}^2+{a_{\eta}}^2}$$

Voici les trois formules magiques pour un mouvement rectiligne uniformÃl'ment variÃl':

$$a_x = cste$$

$$v_x = a_x \cdot t + v_{x0}$$

$$x = \frac{1}{2}a_x \cdot t^2 + v_{x0} \cdot t + x_0$$

Dans un mouvement circulaire de rayon R, avec $\omega=\frac{\Delta\theta}{\Delta t}$ Ãl'tant la vitesse angulaire,

$$V = \omega \cdot R$$
 rad/s

La fr $\tilde{\mathsf{A}}$ l'quence f est d $\tilde{\mathsf{A}}$ l'finie

$$f(\mathrm{Hz}) = \frac{1}{T(\mathrm{s})} = \frac{\omega \, (\mathrm{rad/s})}{2\pi (\mathrm{rad})}$$

14.5 Les 3 lois de Newton

14.5.1 1^{ere} loi

Definition

Dans un rÃl'fÃl'rentiel galilÃl'en, le centre d'inertie d'un solide isolÃl' ou pseudo-isolÃl' est animÃl' d'un mouvement **rectiligne uniforme** (et rÃl'ciproquement) :

$$\sum \vec{F}_{ext} = \vec{0}$$
 \Leftrightarrow Mvt rect. uniforme

14.5.2 2^{eme} loi

Definition

Dans un rÃľfÃľrentiel galilÃľen, le PFD prÃľdit que

$$\sum \vec{F}_{ext} = m \cdot \vec{a}$$

14.5.3 3^{eme} loi

Definition

C'est le principe de l'action et de la r $\tilde{\mathsf{A}}$ l'action. Soient A et B deux centres d'inertie de deux objets dans un r $\tilde{\mathsf{A}}$ l' $\tilde{\mathsf{A}}$ l'rentiel galil $\tilde{\mathsf{A}}$ l'en :

$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

14.6 ÃL'nergies et TEC

Definition

L'Ãl'nergie fait bouger des choses... Il existe plusieures formes d'Ãl'nergie :

- E_c L'Ãl'nergie cinÃl'tique, Vitesse v : $E_c = 1/2 \cdot m \cdot v^2$
- E_{pp} L'Ãl'nergie potentielle de pesanteur, Altitude z : $E_{pp} = m \cdot g \cdot z$
- E_{pe} L'Ãl'nergie potentielle Ãl'lastique, Longueur dÃl'formÃl'e x : $E_{pe} = 1/2 \cdot k \cdot x^2$
- E_{th} L'Âl'nergie thermique, TempÂl'rature T
- E_c L'Ãl'nergie potentielle Ãl'lectrique : $E_c = 1/2 \cdot C \cdot U_c^2$
- E_m L'Ãl'nergie potentielle magnÃl'tique : $E_m = 1/2 \cdot L \cdot i^2$
- Les Al'nergies physique, chimique et nuclAl'aire, Masse des corps m

L'Al'nergie peut cependant changer de forme par un travail, transfert d'Al'nergie :

• travail mÃl'canique
$$W_m$$
 (force) : $W_{A \to B}(\vec{F}) = W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F \cdot AB \cdot \cos \alpha$

- travail $\tilde{\mathsf{A}}$ flectrique W_e (courant $\tilde{\mathsf{A}}$ flectrique) : $W_{A \to B}(\overrightarrow{F}_e) = q \cdot (V_A V_B)$
- travail rayonnant W_r (rayonnement)
- chaleur Q (chaleur)

On retient aussi:

$$W_{AB}(\vec{P}) = m \cdot g \cdot (z_A - z_B)$$

$$W_{AB}(\vec{f}) = -f \cdot \widetilde{AB}$$

$$W_{AB}(\vec{R}_n) = 0$$

$$W_{AB}(\vec{F}_R) = 1/2 \cdot k \cdot (x_B^2 - x_A^2)$$

La puissance moyenne mesure la quantitAl d'Alnergie transfAlrAle par seconde :

$$P_m(\vec{F}) = \frac{W_{AB}(\vec{F})}{\Delta t}$$

La puissance instantanÃl'e:

$$P(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v} = F \cdot v \cdot \cos \alpha$$

Le TEC:

$$\Delta E_{cA\to B} = \sum W_{AB}(\vec{F}_{ext})$$

14.7 L'analyse dimensionnelle

Definition

Les diffAl'rentes dimensions sont :

- ullet Longueur L
- Masse M
- DurÃľe T
- TempÃl'rature θ
- IntensitÃl Ãl lectrique I
- IntensitÃľ lumineuse J
- QuantitÃľ de matiÃÍre N

Il ne faut pas oublier les grandeurs sans dimensions, comme les angles ou les facteurs...

14.8 Mouvements dans le champ de pesanteur uniforme

Definition

La force de frottement du fluide sur le corps peut Ãłtre donnÃl'e par l'expression:

$$f = k \cdot v^n$$

o \tilde{A} ź k contient le coefficient de p \tilde{A} l'n \tilde{A} l'tration du corps et la nature du fluide et n est r \tilde{A} l'el. Ce sont des

coefficients seulement dÃl'terminables par des expÃl'riences.

Pour des petites vitesses (quelques cm/s), n=1, la force de frottement est donc proportionnelle $\tilde{\text{A}}$ ă la vitesse du corps. Dans le cas d'une sph $\tilde{\text{A}}$ Íre de rayon R et η la viscosit $\tilde{\text{A}}$ ľ,

$$f = (6\pi \cdot \mathbb{R} \cdot \eta) \cdot v$$

Pour des vitesses plus grandes (quelques m/s), n=2 convient mieux. Si S est la section, C_x le coefficient de trainÃl'e, ρ_{fluide} la masse volumique,

$$f = \frac{1}{2}C_x \cdot \rho_{fluide} \cdot S \cdot v^2$$

Dans une chute non libre, le r \tilde{A} l'gime **permanent** est atteint quand $\vec{P} = -\vec{f}$, donc quand $a = \frac{dv}{dt} = 0$.

14.9 Mouvements de satellites et des planAltes

Definition

L'accÃ'lÃ'ration d'un satellite terrestre est Ã'gal au champ de gravitation:

$$\vec{a} = \vec{\mathcal{G}}$$

Des formules souvent retrouvAl'es sont :

$$g_0 \approx \mathcal{G}_0 = \frac{G \cdot M_T}{R_T^2} \Leftrightarrow G \cdot M_T = g_0 \cdot R_T^2$$

$$a = a_n = \frac{G \cdot M_T}{r^2} = \frac{v^2}{r} \Leftrightarrow v = \sqrt{\frac{G \cdot M_T}{r}} = \sqrt{\frac{g_0 \cdot R_T^2}{(R_T + h)}}$$

$$V = \frac{d}{t} = \frac{2\pi r}{T} \Leftrightarrow T = \frac{2\pi r}{v} = \frac{2\pi r}{\sqrt{\frac{G \cdot M_T}{r}}} = 2\pi \cdot \sqrt{\frac{r^3}{G \cdot M_T}} = 2\pi \cdot \sqrt{\frac{(R_T + h)^3}{g_0 \cdot R_T^2}}$$

14.9.1 Les 3 lois de Kepler

Definition

1^{ÃÍre} loi :

La trajectoire d'un astre (solaire) est une Al'Ilipse dont le soleil est un des foyers

2^{Alme} lo:

Si la planÃÍte met la mÃÍme durÃľe pour aller de $A \to B$ que de $C \to D$, alors $\mathcal{A}_{AMB} = \mathcal{A}_{CMD}$

3^{Ãĺme} loi:

$$\frac{T^2}{a^3} = cste$$

14.10 SystÃÍmes oscillants

Definition

A COMPLETER APRES AVOIT FAIT LES OSCILLATEURS ÃL'LECTRIQUES La pÃ'riode propre d'un pendule simple, non amorti est :

$$T_0 = 2\pi \sqrt{\frac{l}{g}}$$

Bien que T_0 est aussi proportionnel \tilde{A} ă l'amplitude θ , ce facteur peut \tilde{A} ltre n \tilde{A} l'glig \tilde{A} l' dans nos calculs

La pAl'riode propre d'un pendule Al'lastique horizontal non amorti est :

$$T_0 = 2\pi \sqrt{\frac{m}{k}}$$

On remarque que la **pulsation propre** ω_0 d'un pendule \tilde{A} l'lastique horizontal non amorti est un peu comme la vitesse angulaire pour un oscillateur :

$$\omega_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k}{m}}$$

Dans le cas d'un systÃlme oscillant amorti, on distingue entre un rÃl'gime **pseudo-pÃl'riodique** et un rÃl'gime **apÃl'riodique** (aucune oscillation)

14.11 Oscillateurs mÃl'caniques en rÃl'gime forcÃl'

Definition

La bande passante est l'intervalle des frÃl'quences pour lesquelles le rÃl'sonnateur donne une rÃl'ponse importante en amplitude. Elle est dÃl'terminable sur le graphique de l'amplitude en fonction de la frÃl'quence. On fait $\frac{X_{mres}}{\sqrt{2}}$ et on retrouve la largeur de la bande passante $\Delta f = f_2 - f_1$. Il en rÃl'sulte le facteur de qualitÃl' Q:

$$Q = \frac{f_{res}}{\Delta f} \approx \frac{f_0}{f_2 - f_1}$$

14.12 ÃL'mission, propagation et rÃl'ception des ondes

Definition

La cÃľIÃľ ritÃľ (vitesse de propagation) de l'onde est constante dans un milieu non dispersif.

$$v = \frac{d}{\Delta t} = \frac{\lambda}{T} = \lambda \cdot f$$

Une onde est p \tilde{A} l'riodique dans l'espace et dans le temps. Dans un moment donn \tilde{A} l', les points P_1 et P_2 du milieu (en gros, deux courbes d'onde) sont en phase si

$$d(P_1; P_2) = k \cdot \lambda \quad : k \in \mathbb{Z}$$

et ils sont en opposition de phase si

$$d(P_1; P_2) = (2k+1) \cdot \frac{\lambda}{2}; \in \mathbb{Z}$$

$$v_{\Phi} = \frac{c}{n}$$

14.13 Diffraction des ondes

Definition

Il y a seulement diffraction si l'obstacle de l'onde a une dimension du m\(\tilde{A}\) tme ordre de grandeur que celle-ci.

L'Ãl'cart angulaire pour la diffraction par une fente est, avec a largeur de la fente, θ , mesurÃl' entre le milieu de la tache centrale et la premiÃlre extinction :

$$\theta = \frac{\lambda}{a}$$

14.14 Particules chargÃl'es dans un champ Ãl'lectrique ou magnÃl'tique

Definition

La force magn $\tilde{\mathsf{A}}$ l'tique s'exer $\tilde{\mathsf{A}}$ gant sur une particule de charge q est

$$\vec{F}_m = q \cdot (\vec{v} \times \vec{B})$$

, d'aprÃÍs la loi de Lorentz. On utilise la rÃÍgle de la main droite pour le produit vectoriel. Et dans la plupart des cas, α vaut 90

$$\Rightarrow F_m = |q| \cdot v \cdot B \cdot \sin(\alpha)$$

La trajectoire d'une particule charg \tilde{A} l'e dans un champ magn \tilde{A} l'tique est circulaire, lorsqu'on reste dans un plan. La trajectoire dans un champ \tilde{A} l'lectrique est une parabole. La trajectoire rectiligne suivant l'acc \tilde{A} l' \tilde{A} l'ration dans E passe par le milieu d'une des faces du condensateur.

14.15 Action d'un champ magnÃl'tique sur un circuit parcouru par un courant

Definition

L'intensitAl' instantanAl'e dans un circuit Al'lectrique est dAl'finie par :

$$i = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

Un conducteur rectiligne de longueur l, parcouru par un courant continu d'intensit \tilde{A} l' l et plac \tilde{A} l' dans un champ magn \tilde{A} l'tique uniforme \vec{B} (\vec{l} : pouce, \vec{B} : index, $\vec{F_l}$: majeur) :

$$\overrightarrow{F_l} = I \cdot (\overrightarrow{l} \times \overrightarrow{B})$$

Le flux magnÃl'tique dans une bobine a l'unitÃl' Weber (Wb) :

$$\Phi = N \cdot \vec{B} \cdot \vec{S} = N \cdot B \cdot S \cdot \cos \alpha$$

La fem d'induction suite a une variation du flux :

$$e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

$$\Rightarrow i = \frac{e}{R} = -\frac{1}{R} \cdot \frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

14.16 DipÃťles dans un circuit

14.16.1 Lois gÃl'nÃl'rales de dipÃt'les

Definition

La loi d'Ohm g \tilde{A} l'n \tilde{A} l'ralis \tilde{A} l'e, avec e, force \tilde{A} l'lectromotrice \tilde{A} l'ventuelle

$$U_{AB} = R_{AB} \cdot I_{AB} - e_{AB}$$

La puissance Ãl'lectrique instantanÃl'e aux bornes d'un dipÃt'le AB est exprimÃl'e en Watt (W) :

$$\mathcal{P} = U_{AB} \cdot i_{AB}$$

La puissance Ãl'lectrique instantanÃl'e (la bobine reÃgoit un travail Ãl'lectrique W) :

$$P = \frac{\mathrm{d}W}{\mathrm{d}t}$$

14.16.2 Le dipÃť le (R,L)

Definition

La Loi de Faraday-Lenz, avec L, inductance de la Bobine (Henri H)

$$e = -L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

Le flux propre appelÃl' flux d'autoinduction de la bobine (WB)

$$\Phi = L \cdot i$$

La constante de temps τ :

$$au = rac{L}{R}$$

La tension aux bornes d'une Bobine avec une r $\tilde{\mathsf{A}}$ l'sistance propre r si $i_{A \to B}$

$$u_{AB} = r \cdot i + L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

L'Ãl'quation diffÃl'rentielle Ãă Ãl'tablir aura toujours des +

$$U_G = R_T \cdot i + L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

L'Ãl'nergie (potentielle) magnÃl'tique emmagasinÃl'e par une bobine est :

$$E_m = \frac{1}{2} \cdot L \cdot i^2$$

156

14.16.3 Le dipÃt'le (R,C)

Definition

La capacit \tilde{A} l' du condensateur C (Farad F) est sa capacit \tilde{A} l' \tilde{A} a acqu \tilde{A} l'rir une certaine charge :

$$q = C \cdot U_c$$

La capacitÃl' C en fonction de l'aire de la surface des armatures A, de la distance entre les armatures d et la permittivitÃl' absolue de l'isolant ε . ε_0 est la permittivitÃl' du vide et ε_r la permittivitÃl' relative ou constante diÃl'IÃl'ctrique du matÃl'riau utilisÃl' :

$$C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot A}{d}$$

Lors de l'association en sÃl'rie, l'inverse des capacitÃl's est additionnÃl' :

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$$

BranchÃl's en parallÃlle, les capacitÃl's des condensateurs sont additionnÃl'es.

La constante de temps τ : $\tau = R \cdot C$

L'intensitAl' aux bornes du condensateur lors de la charge et de la dAl'charge :

$$i = C \cdot \frac{\mathrm{d}U_C}{\mathrm{d}t} = C \cdot \frac{\mathrm{d}U_{AB}}{\mathrm{d}t}$$

L'Ãl'quation diffÃl'rentielle Ãă Ãl'tablir aura toujours des +

$$U_G = \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{RC}$$

L'Āl'nergie (potentielle) Ãl'lectrique emmagasinÃl'e par le condensateur initialement dÃl'chargÃl' est :

$$E_c = \frac{1}{2} \cdot C \cdot U_c^2$$

14.16.4 Le dipÃt'le (R,L,C) et les oscillations Ãl'lectriques

Definition

On rappelle la pulsation propre $\omega_0=rac{2\pi}{T_0}$

La p $\tilde{\mathsf{A}}$ iriode propre T_0 des oscillations $\tilde{\mathsf{A}}$ ilectriques est :

$$T_0 = 2\pi\sqrt{LC}$$

$$\Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$