The answer is each interval must contain enough data points to allow estimation & maximization + they suggest a approximate quantile method.

In practice - use software ; add ; delete knots is action to try to improve the estimation. Other strategies exist as well.

Density Estimation

Often in Statistics, the function that we wish to estimate is a probability density.

1.e. we are given a sample Xi, ..., Xn objid and observations from unknown density forbit and and we construct from with

· f(x) = 0 + x &D

 $\int_{\infty}^{\infty} f(x) dx = 1$

hoping to find f with

· Small error (ex mis.E).

· E[fn(x)] -> f(x) \ \ x \in D \ as n \rightarrow \in \.

If it is believed that f is a parametric density fine there are a writing of techniques to est. f.

• M LE • logspline

· MOM

· Fitting by matching quantiles.
· mixtures. Not.

Nonparametric Density Estimation (Cht. 10).

· We will discuss methods to estimate of when very little is known about its form. We will focus on 3 common methods

(1) Orthoganal Series Estimators (2) Histogram Estimators (3) Kernel Estimatos.

I. Orthog. sories est.

- we have already covered these

$$f(x) = \frac{1}{h} \sum_{k=0}^{n} \sum_{i=1}^{n} g_k(y_i) g_k(y_i)$$

Where gi is an orthog. series. Comments:

1 # of terms has a major effect f more is not necess. better 2 f may not be smooth to it may have

infinite variance.

(3) Convergence rate (to S) is ind of dim may be a good cond. for multivariate problems.

(4) Most commonly Fourier ! Hermito sones used.

IL Histogram Estimators.

A histogram is a piecewise constant density estimator. (Need not be univariate.). What is 7? Consider how we construct the histogram

· Assume the support D is finite · Construct a fixed partition of D using m nonoverlapping bins By ie BINBX=0 & D= OK=1BK

- this is simply the length, her of the bin BE, all equal.
- · Let nx be the # of dos in BK nx = \$\hat{2} I (Xi \in Bx)
- . The proportions of dos in B k is $\hat{P}_{K} = \frac{\Lambda_{K}}{\Lambda}$
- The probability content of the bin is $P_{K} = \int_{B_{K}} f(u) du \qquad (ob course for is often unknown).$
- The histogram estimator of f is $\hat{f}_n(x) = \begin{cases} \hat{p}_1 / 1 & x \in B_1 \\ \hat{p}_2 / 2 & x \in B_2 \end{cases}$

or
$$\hat{f}_n(x) = \sum_{k=1}^{m} \frac{\hat{p}_k}{v_k} I(x \in B_k) = \sum_{k=1}^{m} \frac{n_k}{n_{v_k}} I(x \in B_k)$$

- (3) E[four)] = PK/VK for XEBK
- 4) Var (f(x)) = Px (1-Px) for x & Bx

 n Vx²

 easy to see since nx is a binomial r.v.

 Vour t as bin size T. Variance differs

 from bin to bin.
- (5) Under certain cord. (Lipschitz continuity). you can bound Bias, var, & MSE (& others).

(Fin the multivariate case, can easily see extension of bins as boxes, but other shapes (triangles, squares, hexagons, f more work). and so choice of size f # of bins becomes the problem.

III Kernel Estimators.

(Chapter 10)

Boir ale

Motavation: Let's think about how a prob. density function assigns prob. to intervals.

- If we observe $X_i = x_i$ we assume that f assigns density not only at x_i , but in a region around x_i (fix smooth)

region around Xi (f is smooth).

- ... to estimate f from Xi,..., Xn viid f
it makes sense to accumulate contrib to the
regions.

Formally,

to estimate the density at point X, we consider the region dx = 2h (his some fixed #) contered at X. Then the prop of olds. That fall in the interval X = [x-h, x+h]

we have $f(x) = \frac{1}{2hn} \sum_{i=1}^{2} I \sum_{i=1}^{2} I \sum_{i=1}^{2} X \cdot x_{i} + h \cdot y$

as our estimator.

It can be shown (see discussion on pg 278) in order for \hat{f} to be reasonable ξ pointwise consistent, $nh \rightarrow \infty$ and $h \rightarrow 0$ as $n \rightarrow \infty$.

This estimator is an example of a . Kernel estimator with uniform kernel.

Sec 10.2

EF (21)

* weights all points w/in h of x equally. Suppose we allow a more flexible weighting scheme, ie.

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{n}\right)$$

Where K is a kernel function of h is the bandwidth.

Comments on The kernel function weights the contributions given by each obs. Xi to the density est. f(x) based on proximity of

(2) K is usually pos. everywhere & sym. about 0.
(3) Often a density, such as normal, studentst.
but there are others that are popular.

(See pg. 292. Table 10.1)

(4) Kornel in & is Uniform.

Example pg 280 Fig 10.1.
-4 points, Kernel & normal density.

When constructing a Kernel density estimator you need to choose 2 things

1) the Kernel K

2) the bandwith h.

Turns out (2) is of much greater importance

Sec10.2.1 Choice of Bandwidth.

The bandwidth h strongly influences fox. - h too small - density assigned to locally, f I is very wiggly w/ many false modes.

-h too big -> density spread out too much : features are lost; causing higher bias.

Example Fig 10.2 pg 282

--- h = 1.875 too long oversmoothing h = .3 too small too much variability h = .625 best.

Q: How to choose h?

- Often in practice if density est is used for exploratory data analysis visual inspection (trial 's error) is "defensible". Since there is no correct choice you have some room 10-2090.
- Some software has automatic bandwidth selection based on various approaches.
- A little more formally: Let's consider how the bandwidth affects the MISE (=IMSE)

Recall: MISE(\hat{f}) = $IV(\hat{f})$ + $ISB(\hat{f})$ error measures and clearly is effected by bandwidth. His.

mISE= AMISE + Emor

That the Asymptotic mean integ. squared error.

AMISE is minimized when

$$h = \frac{\left(\frac{R(K)}{n \sigma_{K}^{4} R(f'')}\right)^{1/5}}{n \sigma_{K}^{4} R(f'')}$$

prob density w'
moon 0; var ot 2 coo

mand o

Where R(g) = Sg2(2)dz is a measure of the roughness of ox.

This is the exact balancing of the orders of the bias ; variance terms.

How helpful is this?

- We don't know f.
 Does tell us that optimal h = O(n-1/5)

 ! MISE = O(n-4/5).
- Employ one of soveral b.w. selection strategies.

- Think of f as a function of h.

 Want to estimate f while optimizing some quality Q(h). (nin emr, mse).

 As we know, using Xi,..., Xn to find f and then again to calculate B(h) can cause over fitting.

 Boic So instead to exact at xi we use

 This is the same (Xi) = \frac{1}{h(n-1)} \frac{1}{2} \text{if } \text{K} \left(\frac{Xi-Xi}{h}\right)

 Shape (Xi omittled from PH:

Options for bandwidth selection

(1) (3(h) is the pseudo-likelihood $PL(h) = \prod_{i=1}^{n} f_i(X_i)$

Then choose h to minimize PL.

- Not the best, often to wiggly isens to outliers.
or not consistent.

Unbiased cross validation UCV

(2) Minimize
$$TSE(h) = \int f(x) dx - 2E[f(x)] + \int f(x)^2 dx$$

$$= R(f) - 2E[f(x)] + R(f).$$

$$\approx R(f) - \frac{2}{h} \sum_{i=1}^{h} f_{-i}(x_i) + R(f)^{\frac{h}{2}} constant$$

and so choose h to minimize $ucv(h) = R(\hat{f}) - \frac{2}{h} = f_1(x_i)$.

Comments:

- R(f) can be found analytically for some kernels (ex Normal Eq 10.23 pg 280). so use one you know.
- his asyptotically as good as best possible, but convergence can be slow, and has a strong dependence on the observed data.

8/pg 287 Fig 10.4.

Method 2: Plug-in methods

Basic idea: Apply a pilot b.w. to est one or more important features of f, then estimate better h at a 2nd stage based on initially estimated features.

Recall opt. $h = \left(\frac{R(k)}{n \sqrt{k^2} R(f'')}\right)^{1/2}$ (Eg BW)

So 1st estimate R(f") the obtain h.

- OPTION (). Silverman's Rule

 Assume f is normal w/ variance = sample vax.

 The solving for h we get

Then use this to obtain f

Comments () If multimodel, this will oversmooth.

- ② sometimes replace if w Interquartite Range (another measure of the spread
- (3) Often used as a method to obtain a pilot h.

- Option(2) Sheather-Jones Method.
 Choose Pilot band width his = suff diff
 - ternel L Estimate f" empirically

$$\hat{f}''(x) = \frac{2^{2}}{dx^{2}} \left(\frac{1}{h_{0}} \sum_{i=1}^{n} L\left(\frac{X-Xi'}{h_{0}}\right) \right)$$

$$= \frac{1}{h_{0}^{3}} \sum_{i=1}^{n} L''\left(\frac{X-Xi'}{h_{0}}\right)$$

- compute opt. It based on it".
- estimate quinq h.

(omments.

- 1) The best bus. for est. I is not the same as that for f. (var &f"3 playes a greater noll) : ho > h.
- 2) This method generally does very well.

 and is often used.

 Example Figre291

Method 3: Maximal Smoothing Principle (Terrell)

Basic idea: Replace R(f'') w/ the most conservative (smallest) possible value.

Terrell booked at a pollection of h that would minimize eg BW for various f.

- wanted to maximize eg BW Writ. f.

(worse case).

- found worse case will be a polynomial.

h= 3(RK) 156

Comments: - creates a b.w. biased against undersmoothing in order to avoid false modes.

- oversmooths often

Easy Table 10.1 gives RCK) for several K. Expg 291.

Sec 10.22

Choice of Kernel.

Turns out that the choice of Kernel has much less influence than. Bandwidth

Epanechnikov showed that if we minimize AMISE wrt K, we obtain a min w/

Ex/pg 294 So K*(2) is optimal, but obes not do markedly botter so it really doesn't matter. See Table 10.1.

you need to multiply K(2) by 1 Exici3.

(Other ideas using rescaling or resnaping.)

10.2.2.2 Rescalings.

Suppose we have found a b.w. h that works well for Kornel K and we wish to change to ternel L. Unfortunately, h will correspond to a different amount of smoothing with L than w/ K. Can we easily switch?

Suppose hx = hr are optimal (AMISE) for sym, mean zero, pos var. ternels K! L. resp.

where

to go from he for K to L wellse he = hk SU)/SUK). Some common values are listed in page 292 Table 10.1

Secro.4 Multivariate Methods (A brief word)

Now we wish to esimate of based on iid samples $X_i = (X_{ii}, ..., X_{ip})^T$ from y = p - dim

Methodio: histogram. from earlier.

Method 1: Kernel estimation - product ternel.

$$f(x) = \frac{1}{h} \sum_{i=1}^{n} \frac{1}{h_i} K\left(\frac{X_i - X_{ij}}{h_j}\right)$$

where K(z) is a univariate fernel and his are fixed b.w. for each coord. j=1,...,p.

Can be shown that for the normal kernel, the opt bandwidth is $hi = \left(\frac{4}{n(p+2)}\right)^{1/(p+4)} \hat{g}\hat{\tau}_{c}$

where fi is an est. of the st. dev along the ith coord. -> Can rescale to get other b.w. for nonnormal ternels.

Sec10,43.1 Method 2: Nearest reighbor.

- previously use fixed a region of influence ; # of observation of influence to vary, but contain a fixed number of observations.

The kth-nearest neighbor density estimator

$$f(x) = \frac{n V_p d_k(x)^p}{k}$$

- dx^2 is the Euclidean distance from xto the kth nearest observed point. - V_p = is the volume of the unit sphere in P dimensions = $V_p = T^{P/2}/\Gamma(P/2+1)$

- p-dim of data.

Note: @ only unknown is ducx)

2 k plays rok similar to bw. large k-smooth small k-wiggly.

There are other adaptive methods.

10.4.1. Problems: Multivariate density est is a debt task than univariate: It is hard to visualize any density estimate in more than 2 or 3 dems. Not useful as an exploratory Hus,

Curse of dimensionality: # of points reg for a good est. good up radically as p increases.

Est. a p-variate normal w/optimal relative mean squared envor = .0289.

P	n
1	30
2 3	180
	806
50	17,400
15	2, 190, 000, 000
	2, 1,10,000,000,000