INFS 4203 / 7203 Data Mining

Week 10: Building Decision Trees using Gini index

&

Calculating Performance metrics using Confusion matrix

In the dataset given in the next slide, There are 14 instances of golf playing decisions based on attributes- outlook, temperature, humidity and wind factors.

Using the provided dataset, construct a decision tree that will determine if a person will be classified as Yes or No to play golf on that particular day. Use the GINI index based splitting criterion to construct the decision tree.

Formulas required -

Gini Index- Stores the sum of squared probabilities for each class.

Gini = $1 - \Sigma$ square(Pi)

where value of i ranges from 1 to total no. of classes

D Outlook a y	Temp.	Humidity	Wind	Decision
1 Sunny	Hot	High	Weak	No
2 Sunny	Hot	High	Strong	No
3 Overcast	Hot	High	Weak	Yes
4 Rain	Mild	High	Weak	Yes
5 Rain	Cool	Normal	Weak	Yes
6 Rain	Cool	Normal	Strong	No
7 Overcast	Cool	Normal	Strong	Yes
8 Sunny	Mild	High	Weak	No
9 Sunny	Cool	Normal	Weak	Yes
1 Rain 0	Mild	Normal	Weak	Yes
1 Sunny 1	Mild	Normal	Strong	Yes
1 Overcast	Mild	High	Strong	Yes

Outlook –

Outlook	Yes	NO	No. of instances
Sunny	2	3	5
Overcast	4	0	4
Rain	3	2	5

Gini(Outlook = Sunny) =
$$1 - sq(2/5) - sq(3/5) = 1 - 0.16-0.36 = 0.48$$

Gini(Outlook = Overcast) =
$$1-sq(4/4) - sq(0/4) = 1-1-0 = 0$$

Gini(Outlook = Rain) =
$$1 - sq(3/5) - sq(2/5) = 1 - 0.36 - 0.16 = 0.48$$

Then, we will calculate weighted sum of gini indexes for outlook feature-

Gini_index(Outlook) =
$$(5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48 = 0.171 + 0 + 0.171 =$$
0.342

Temperature

Temperature	Yes	No	No. of instances
Hot	2	2	4
Cool	3	1	4
Mild	4	2	6

Gini(Temp = Hot) = 1-
$$sq(2/4) - sq(2/4) = 1 - 0.25 - 0.25 = 0.5$$

Gini(Temp = Cool) = 1- $sq(3/4) - sq(1/4) = 1 - 0.5625 - 0.0625 = 0.375$
Gini(Temp = Mild) = 1- $sq(4/6) - sq(2/6) = 1 - 0.444 - 0.111 = 0.445$

Calculating weighted sum of gini index for temperature feature-Gini_index(Temp) = $(4/14) \times 0.5 + (4/14) \times 0.375 + (6/14) \times 0.445 = 0.142 + 0.107 + 0.190 = 0.439$

Humidity-

Humidity	Yes	No	No. of instances
High	3	4	7
Normal	6	1	7

Gini(Humidity=High) =
$$1 - sq(3/7) - sq(4/7) = 1 - 0.183 - 0.326 = 0.489$$

Gini(Humidity=Normal) =
$$1 - sq(6/7) - sq(1/7) = 1 - 0.734 - 0.02 = 0.244$$

Weighted sum of gini index for humidity feature-Gini_index(Humidity) = $(7/14) \times 0.489 + (7/14) \times 0.244 = 0.367$

WIND-

Wind	Yes	No	No. of instances
Weak	6	2	8
Strong	3	3	6

Gini(Wind=Weak) =
$$1 - sq(6/8) - sq(2/8) = 1 - 0.5625 - 0.062 = 0.375$$

Gini(Wind=Strong) =
$$1 - sq(3/6) - sq(3/6) = 1 - 0.25 - 0.25 = 0.5$$

Weighted sum of gini index for wind feature-Gini index(Wind) = $(8/14) \times 0.375 + (6/14) \times 0.5 = 0.428$

Which one to choose?

Feature	Gini index
Outlook	0.342
Temperature	0.439
Humidity	0.367
Wind	0.428

The lower the Gini index cost, the better.

Hence, we choose Outlook feature for the first split of our tree as it has the lowest Gini index!

1	Sunny	Hot	High	Weak	No					
2	Sunny	Hot	High	Strong	No					
8	Sunny	Mild	High	Weak	No					
9	Sunny	Cool	Normal	Weak	Yes	sunny				
11	Sunny	Mild	Normal	Strong	Yes		Outlook	Rain		
								Kalli		
	Day	Outlook	Temp.	Humidity	Wind	Decision	overcast	4	Rain	Mild
	ŕ									
								5	Rain	Cool
	В	Overcast	Hot	High	Weak	Yes		6	Rain Rain	Cool
	7	Overcast Overcast	Hot Cool	High Normal	Weak	Yes				
								6	Rain	Cool

High

Normal

Normal

Normal

High

Weak

Weak

Strong

Weak

Strong

Yes

Yes

No

Yes

No

• As all the obs. in overcast have decision "Yes", the tree can be updated-

										4	Rain	Mild	High	Weak	Yes
						sunny	Ou	tlook	rain	5	Rain	Cool	Normal	Weak	Yes
1	Sunny	Hot	High	Weak	No					6	Rain	Cool	Normal	Strong	No
2	Sunny	Hot	High	Strong	No					U	Naiii	COOI	NOTHIA	Strong	NO
8	Sunny	Mild	High	Weak	No			overcas	st	10	Rain	Mild	Normal	Weak	Yes
9	Sunny	Cool	Normal	Weak	Yes			VEC							
11	Sunny	Mild	Normal	Strong	Yes			YES		14	Rain	Mild	High	Strong	No

• **Next**: Focus on the dataset where outlook = sunny and repeat the steps

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

Gini index for Temperature of sunny outlook

Temperature	Yes	No	No. of instances
Hot	0	2	2
Cool	1	0	1
Mild	1	1	2

Gini(Outlook=Sunny and Temp.=Hot) = 1 - sq(0/2) - sq(2/2) = 0

Gini(Outlook=Sunny and Temp.=Cool) = 1 - sq(1/1) - sq(0/1) = 0

Gini(Outlook=Sunny and Temp.=Mild) = 1 - sq(1/2) - sq(1/2) = 1 - 0.25 - 0.25 = 0.5

Gini_index(Outlook=Sunny and Temp.) = (2/5)x0 + (1/5)x0 + (2/5)x0.5 = 0.2

Gini index for Humidity of sunny outlook

Humidity	Yes	No	No. of instances
High	0	3	3
Normal	2	0	2

Gini(Outlook=Sunny and Humidity=High) = 1 - sq(0/3) - sq(3/3) = 0

Gini(Outlook=Sunny and Humidity=Normal) = 1 - sq(2/2) - sq(0/2) = 0

Gini_index(Outlook=Sunny and Humidity) = (3/5)x0 + (2/5)x0 = 0

Gini index for wind of sunny outlook

WIND	Yes	No	No of instances
weak	1	2	3
strong	1	1	2

Gini(Outlook=Sunny and Wind=Weak) = 1 - (1/3)2 - (2/3)2 = 0.266

Gini(Outlook=Sunny and Wind=Strong) = 1-(1/2)2-(1/2)2=0.2

Gini_index(Outlook=Sunny and Wind) = (3/5)x0.266 + (2/5)x0.2 = 0.466

Which one to choose?

Feature	Gini Index
Temperature	0.2
Humidity	0
Wind	0.466

we choose Humidity feature for the next split of our tree as it has the lowest Gini index.

Updated tree-

Normal

Normal

Cool

Mild

Weak

Strong

Yes

Yes

Updated based on humidity-

• **Next**: Focus on the dataset where outlook = Rain and repeat the steps

Day	Outlook	Temp.	Humidity	Wind	Decision
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
10	Rain	Mild	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Gini index for Temperature of Rain outlook

Temperature	Yes	No	No of instances
Cool	1	1	2
Mild	2	1	3

Gini(Outlook=Rain and Temp.=Cool) = 1 - sq(1/2) - sq(1/2) = 0.5

Gini(Outlook=Rain and Temp.=Mild) = 1 - sq(2/3) - sq(1/3) = 0.444

Gini_index(Outlook=Rain and Temp.) = (2/5)x0.5 + (3/5)x0.444 = 0.466

Gini index for Humidity of Rain outlook

Humidity	Yes	No	No of instances
High	1	1	2
Normal	2	1	3

Gini(Outlook=Rain and Humidity=High) = 1 - sq(1/2) - sq(1/2) = 0.5

Gini(Outlook=Rain and Humidity=Normal) = 1 - sq(2/3) - sq(1/3) = 0.444

Gini_index(Outlook=Rain and Humidity) = (2/5)x0.5 + (3/5)x0.444 = 0.466

Gini index for Wind of Rain outlook

Wind	Yes	No	No of instances
Weak	3	0	3
Strong	0	2	2

Gini(Outlook=Rain and Wind=Weak) = 1 - sq(3/3) - sq(0/3) = 0

Gini(Outlook=Rain and Wind=Strong) = 1 - sq(0/2) - sq(2/2) = 0

Gini_index(Outlook=Rain and Wind) = $(3/5)x0 + (2/5)x0 = \mathbf{0}$

Which one to choose?

Feature	Gini index
Temperature	0.466
Humidity	0.466
Wind	0

we choose **Wind** feature for the next split of our tree as it has the lowest Gini index.

Updated tree-

• Final Decision Tree-

Final Answer-

- The first decision node is the attribute "Outlook".
- if the value of outlook = "overcast" the decision of playing the game is classified as "yes".
- If value of outlook = "sunny", further splitting is based on the attribute "humidity", wherein, if humidity = "high" then, decision = "No", if humidity = "normal", then decision = "yes".
- If value of outlook = "Rain", further splitting is based on the attribute "Wind", wherein, if wind = "Strong", then decision is classified "No", if wind = "weak", the decision is classified as "Yes"

Calculate Precision, Recall and F1 measurement for both the classifiers below and discuss which one is better?

Classifier 1

(Blue)	Not Blue
(Blue)	Blue
(Yellow)	Not Blue
(Blue)	Blue
(Brown)	Not Blue
(Blue)	Blue
(Blue)	Not Blue
(Blue)	Not Blue
(Green)	Not Blue
(Black)	Not Blue

(Orange)	Not Blue
(Blue)	Blue
(Blue)	Not Blue
(Pink)	Not Blue
(Blue)	Blue
(Brown)	Blue
(Blue)	Blue
(Blue)	Not Blue
(Blue)	Blue
(Green)	Not Blue

Predicted Actual	Blue	Not Blue
Blue	True positive	False negative
Not Blue	False positive	True negative

(Orange)	Not Blue
(Blue)	Blue
(Blue)	Not Blue
(Pink)	Not Blue
(Blue)	Blue
(Brown)	Blue
(Blue)	Blue
(Blue)	Not Blue
(Blue)	Blue
(Green)	Not Blue

Predicted ————————————————————————————————————	Blue	Not Blue
Blue	4	False negative
Not Blue	False positive	True negative

(Orange)	Not Blue
(Blue)	Blue
(Blue)	Not Blue
(Pink)	Not Blue
(Blue)	Blue
(Brown)	Blue
(Blue)	Blue
(Blue)	Not Blue
(Blue)	Blue
(Green)	Not Blue

Predicted Actual	Blue	Not Blue
Blue	4	2
Not Blue	False positive	True negative

(Orange)	Not Blue
(Blue)	Blue
(Blue)	Not Blue
(Pink)	Not Blue
(Blue)	Blue
(Brown)	Blue
(Blue)	Blue
(Blue)	Not Blue
(Blue)	Blue
(Green)	Not Blue

Predicted Actual	Blue	Not Blue
Blue	4	2
Not Blue	1	True negative

(Orange)	Not Blue
(Blue)	Blue
(Blue)	Not Blue
(Pink)	Not Blue
(Blue)	Blue
(Brown)	Blue
(Blue)	Blue
(Blue)	Not Blue
(Blue)	Blue
(Green)	Not Blue

Predicted Actual	Blue	Not Blue
Blue	4	2
Not Blue	1	3

Predicted Actual	Blue	Not Blue
Blue	4	2
Not Blue	1	3

```
Precision = TP/(TP+FP) = 4 / (4 + 1) = 4/5 = 0.8
Recall = TP/(TP+FN) = 4 / (4 + 2) = 4/6 = 0.67
F1 = 2* [(Precision *recall)/ (Precision +recall)] = 0.729
```

(Blue)	Not Blue
(Blue)	Blue
(Yellow)	Not Blue
(Blue)	Blue
(Brown)	Not Blue
(Blue)	Blue
(Blue)	Not Blue
(Blue)	Not Blue
(Green)	Not Blue
(Black)	Not Blue

Predicted	Blue	Not Blue
Blue	3	3
Not Blue	0	4

Predicted Actual	Blue	Not Blue
Blue	3	3
Not Blue	0	4

- Precision = TP/(TP+FP) = 3 / (3 + 0) = 1
- Recall = TP/(TP+FN) = 3/(3+3) = 3/6 = 0.5
- F1 = 2* [(Precision *recall)/ (Precision +recall)] = 0.67

- Which of the two classifiers is better??
- Precision is better for classifier 2 (1 > 0.8)
- Recall is better for classifier 1 (0.67> 0.5)
- In cases like this, we need a single measure of comparison that trades off between precision and recall ->
- **F1** It is the harmonic mean of precision and recall.

Hence, as classifier 1 has higher F1 measurement value than classifier 2, it is safe to conclude that **Classifier 1 is better**.