UNIVERSITY OF WATERLOO

PMATH 348 FIELDS AND GALOIS THEORY

Prof. Yu-Ru Liu • Winter 2018

Contents

1	Int	Introduction		
	1.1	Polynomial Equations		
	1.2	Cubic Equations		
	1.3	Quartic Equations		
	1.4	Quintic Equations		
2	FIELD EXTENSIONS		;	
	2.1	Degree of Extensions	•	
	2.2	Algebraic and Transcendental Extensions	4	
	2.3	Eisenstein's Criterion	-	
3	Splitting Fields		Ç	
	3.1	Existence of Splitting Fields		
	3.2	Uniqueness of Splitting Fields		
	3.3	Degree of Splitting Fields		
4	Fin	ITE FIELDS	12	
	4.1	Prime Fields	12	
	4.2	Formal Derivatives and Repeated Roots	12	
	4.3	Finite Fields	14	
	4.4	Separable Polynomials	15	
5	THE SYLOW THEOREMS		1	
6	Solvable Groups		2	
7	Air	TOMORPHISM GROUPS	2.4	

1 Introduction

1.1 Polynomial Equations

Consider the quadratic equation. Let $ax^2 + bx + c = 0$ with the leading coefficient $a \neq 0$, then we have that,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We notice immediately that there are a couple of operations that are involved in this equation.

Definition 1.1.1. An expression involving only addition, subtraction, multiplication, division and radicals is called a <u>radical</u>. These operations are denoted by $+, -, \times, \div$ and $\sqrt[n]{\cdot}$

The natural question that is raised is the extension to higher dimensions.

1.2 Cubic Equations

All cubic equations can be reduced to the following equation,

$$x^3 + px = q$$

for some $p, q \in \mathbb{C}$. A solution to the above equation is of the form

$$x = \sqrt[3]{\frac{q}{2} + \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}}$$
 (Cardano's Formula)

1.3 Quartic Equations

A radical solution can be obtained by reducing a quartic to a cubic equation.

1.4 Quintic Equations

- General radical solutions were attempted by Euler, Bézout and Lagrange without success
- In 1799, Ruffini gave a 516 page proof about the insolvability of quintic equations. His Proof was "almost right"
- In 1824, Abel filled the gap in Ruffini's proof.

We can now ask ourselves, given a quintic equation, is it solvable by radicals? This question seems to be too hard, so we ask, suppose that a radical solution exists. How does its associated quintic equation look like?

Two main steps in Galois Theory

1. Link a root of a quintic equation, say α to $\mathbb{Q}(\alpha)$, the smallest field containing \mathbb{Q} and α . $\mathbb{Q}(\alpha)$ is a field. So it has more structures to be played with than α ; however, our knowledge of $\mathbb{Q}(\alpha)$ is still too little to answer the question. For example, we do not know how many intermediate fields, E between \mathbb{Q} and $\mathbb{Q}(\alpha)$. What we mean is how many fields E satisfy

$$\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(\alpha)$$
.

2. Link the field $\mathbb{Q}(\alpha)$ to a group. More precisely, we associate $\mathbb{Q}(\alpha)/\mathbb{Q}$ to the group

$$\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha)) = \left\{ \Psi : \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha) \text{ an isomorphism and } \Psi|_{\mathbb{Q}} = 1_{\mathbb{Q}} \right\}$$

It can be shown that if α is "good", say algebraic, $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$ is finite. If α is "very good", say constructable, the order of $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$ is in certain forms. Moreover, there is a one-to-one correspondence between the intermediate fields between $\mathbb{Q}(\alpha)$ and \mathbb{Q} and the subgroups of $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$.

It follows that given some "good" α , we have that the intermediate fields of $\mathbb{Q}(\alpha)$ and \mathbb{Q} are indeed finitely many. This introduces Galois Theory; the interplay between fields and groups.

2 Field Extensions

2.1 Degree of Extensions

Definition 2.1.1. If E is a field containing another field F, we say E is a field extension of F, denoted by $E_{/F}$.

If E_{F} if a field extension, we can view E as a vector space over F.

- 1. Addition: For $e_1, e_2 \in E$, $e_1 + e_2 := e_1 + e_2$ (addition in E)
- 2. Scalar Multiplication: For $c \in F, e \in E, c \cdot e := ce$ (multiplication in E)

Definition 2.1.2. The dimension of E over F (viewed as a vector space) called the <u>degree</u> of E over F, denoted by [E:F]. If $[E:F] < \infty$, we say E/F is a <u>finite extension</u>. Otherwise, E/F is an infinite extension.

Example 2.1.3. $[\mathbb{C}:\mathbb{R}]=2$ is a finite extension since $\mathbb{C}\cong\mathbb{R}+\mathbb{R}i$, with $i^2=-1$.

Example 2.1.4. Let F be a field. Then [F(x):F] is ∞ since $\{1,x,x^2,\dots\}$ are linearly independent over F.

Remark. $F[x] = \{f(x) = a_0 + a_1x + \dots + a_nx^n : a_i \in F, n \in \mathbb{N} \cup \{0\}\}$, the polynomial ring of F. Remark. $F(x) = \{\frac{f(x)}{g(x)} : f(x), g(x) \in F[x]\}$, the fraction field of the polynomial ring of F.

Theorem 1. If E/K and K/F are finite field extensions, then E/F is a finite field extension and

$$[E:F] = [E:K][K:F]$$

In particular, K is an intermediate field of an field extension E_F , then $[K:F] \mid [E:F]$.

Proof. Suppose [E:K]=m and [K:F]=n. Let $\{a_i,\ldots,a_m\}$ be a basis of E/K and $\{b_1,\ldots,b_n\}$ be a basis of K/F. It suffices to show $\{a_ib_j:1\leq i\leq m,1\leq j\leq n\}$ is a basis of E/F.

Claim. Every element of E is a linear combination of $\{a_ib_j\}$ over F.

For $e \in E$, we have

$$e = \sum_{i=1}^{m} k_i a_i$$

with $k_i \in K$. Also, for each $k_i \in K$, we have

$$k_i = \sum_{j=1}^{n} c_{ij} b_j$$

with $c_{ij} \in F$. Thus,

$$e = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} b_j a_i.$$

Claim. The set $\{a_ib_j: 1 \leq i \leq m, 1 \leq j \leq n\}$ is linearly independent over F.

Suppose that

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} b_j a_i = 0$$

with $c_{ij} \in F$. Since $\sum_{j=1}^{n} c_{ij}b_j \in K$ and $\{a_1, \ldots, a_m\}$ are independent over K. We have

$$\sum_{j=1}^{n} c_{ij}b_j = 0.$$

Since $\{b_1, \ldots, b_n\}$ are independent over F, we have $c_{ij} = 0$.

Combining both claims, we see that $\{a_ib_j, 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis of E_F and we have [E:F]=[E:K][K:F].

2.2 Algebraic and Transcendental Extensions

Definition 2.2.1. Let E_F be a field extension and $\alpha \in E$. We say α is <u>algebraic over F</u> if there exists $f(x) \in F[x] \setminus \{0\}$ with $f(\alpha) = 0$. Otherwise, α is <u>transcendental over F</u>.

Example 2.2.2. $\frac{c}{d} \in \mathbb{Q}$, $\sqrt{2} \sqrt[3]{7} + 2i$ are algebraic over \mathbb{Q} (see Assignment 1) but e (Hermite, 1873) and π (Lindemann, 1882) are transcendental over \mathbb{Q} .

Let E_{F} be a field extension and $\alpha \in E$. Let $F[\alpha]$ denote the smallest subfield of E containing F and α . For $\alpha, \beta \in E$, we define $F[\alpha, \beta]$ and $F(\alpha, \beta)$ similarly.

Definition 2.2.3. If $F = F(\alpha)$ for some $\alpha \in E$, we say E is a <u>simple extension</u> of F.

Definition 2.2.4. Let R_1 and R_2 be two rings which contain a field F. A ring homomorphism $\Psi: R_1 \to R_2$ is said to be a F-homomorphism if $\Psi|_F = 1_F$.

Theorem 2. Let E_{F} be a field extension and $\alpha \in E$. If α is transcendental over F, then

$$F[\alpha] \cong F[x]$$
 and $F(\alpha) \cong F(x)$

In particular, $F[\alpha] \neq F(\alpha)$.

Remark. In fact, if α is algebraic, indeed $F[\alpha] = F(\alpha)$.

Proof. Let $\Psi: F(x) \to F(\alpha)$ be the unique F-homomorphism defined by $\Psi(x) = \alpha$. Thus, for $f(x), g(x) \in F[x], g(x) \neq 0$,

$$\Psi\left(\frac{f(x)}{g(x)}\right) = \frac{f(\alpha)}{g(\alpha)} \in F(\alpha).$$

Notice that this is indeed a well-defined map as $g(x) \neq 0$ implies $g(\alpha) \neq 0$ since α is transcendental. Since F(x) is a field and $\ker(\Psi)$ is an ideal of F(x), we have $\ker(\Psi) = F(x)$ or trivial. Thus $\Psi = 0$ or Ψ is injective. Since $\Psi(x) = \alpha \neq 0$, Ψ must be injective. Also, since F(x) is a field, $\operatorname{im}(\Psi)$ contains a field generated by F and α , in other words, $F(\alpha) \subseteq \operatorname{im}(\Psi)$. Thus, $\operatorname{im}(\Psi) = F(\alpha)$ and Ψ is surjective. It follows that Ψ is an isomorphism and we have

$$F[\alpha] \cong F[x]$$
 and $F(\alpha) \cong F(x)$.

Theorem 3. Let $E_{/F}$ be a field extension and $\alpha \in E$. If α is algebraic over F, there exists a unique monic irreducible polynomial $p(x) \in F[x]$ such that there exists a F-homomorphism

$$\Psi: F[x]/\langle p(x)\rangle \to F[\alpha] \quad with \ \Psi(x) = \alpha$$

from which we conclude $F[\alpha] \cong F(\alpha)$.

Proof. Consider the unique F-homomorphism $\Psi: F[x] \to F[\alpha]$ defined by $\Psi(x) = \alpha$. Thus, for $f(x) \in F[x]$, we have $\Psi(f) = f(\alpha)$. Since F[x] is a ring, $\operatorname{im}(\Psi)$ contains a ring generated by F and α , in other words, $F[\alpha] \subseteq \operatorname{im}(\Psi)$. Thus, $\operatorname{im}(\Psi) = F[\alpha]$. Let

$$I = \ker(\Psi) = \{ f(x) \in F[x] : f(\alpha) = 0 \}.$$

Since α is algebraic, $I \neq \{0\}$. We have $F[x]/I \cong \operatorname{im}(\Psi) = F[\alpha] \subseteq F(\alpha)$, a subring of a field $F(\alpha)$. Thus, F[x]/I is an integral domain so I is a prime ideal. It follows that $I = \langle p(x) \rangle$, where p(x) is irreducible. If we assume p(x) is monic, then it is unique. It follows that

$$F[x]/\langle p(x)\rangle \cong F[\alpha].$$

Since p(x) is irreducible, $F[x]/\langle p(x)\rangle$ is a field. So $F[\alpha]$ is a field. It follows that $F[\alpha] = F(\alpha)$. \square

Definition 2.2.5. If α is algebraic over a field F, the unique monic polynomial irreducible polynomial p(x) in Theorem 3 is called the minimal polynomial of α over F.

Remark. From the proof of Theorem 3, if $f(x) \in F[x]$ with $f(\alpha) = 0$, then p(x)|f(x).

Theorem 4. Let $E_{/F}$ be a field extension and $\alpha \in E$.

- 1. α is transcendental over F if and only if $[F(\alpha):F]$ is ∞ .
- 2. α is algebraic over F if and only if $[F(\alpha):F]<\infty$.

Moreover, if p(x) is the minimal polynomial of α over F, we have $[F[\alpha]: F] = \deg(p)$ and $\{1, \alpha, \alpha^2, \ldots, \alpha^{\deg(p)-1}\}$ is a basis of $F(\alpha)/F$.

Proof. It suffices to prove the forward direction for each statement as the inverse direction implies the other statement.

- 1. Forwards: From Theorem 2, if α is transcendental over F, then $F(x) \cong F(\alpha)$. In F(x), the elements $\{1, x, x^2, \dots\}$ are linearly independent over F. Thus, $[F(\alpha) : F]$ is ∞ .
- 2. Forwards: From Theorem 3, if α is algebraic over F, $F[x]/\langle p(x)\rangle\cong F(x)$ with the map $x\mapsto \alpha$. Note that,

$$F[x]/\langle p(x)\rangle \cong \{r(x) \in F[x] : \deg(r) < \deg(p)\} \tag{deg}(0) = -\infty)$$

Thus, $\{1, x, x^2, \dots, x^{\deg(p)-1}\}$ forms a basis for $F[x]/\langle p(x)\rangle$. It follows that $[F(\alpha): F] = \deg(p)$ and $\{1, \alpha, \alpha^2, \dots, \alpha^{\deg(p)-1}\}$ is a basis of $F(\alpha)/F$.

Theorem 5. Let E_{f} be a field extension. If $[E:F] < \infty$, then there exists $\alpha_1, \ldots, \alpha_n \in E$ such that

$$F \subsetneq F(\alpha_1) \subsetneq \cdots \subsetneq F(\alpha_1, \dots, \alpha_n) = E.$$

Proof. We proceed with induction on [E:F]. If [E:F]=1, E=F. Suppose that [E:F]>1 and the statement holds for any field extension $\widetilde{E}_{\widetilde{F}}$ with $[\widetilde{E}:\widetilde{F}]<[E:F]$. Let $\alpha_1\in E_{\widetilde{F}}$. By Theorem 1,

$$[E:F] = [E:F(\alpha_1)][F(\alpha_1):F].$$

Since $[F(\alpha):F]>1$, we have $[E:F]>[E:F(\alpha_1)]$. By induction hypothesis, there exists α_2,\ldots,α_n such that

$$F(\alpha_1) \subseteq \cdots \subseteq F(\alpha_1, \dots, \alpha_n) = E$$
.

Thus, we have

$$F \subseteq F(\alpha_1) \subseteq \cdots \subseteq F(\alpha_1, \dots, \alpha_n) = E$$
.

as desired. \Box

Definition 2.2.6. A field extension $E_{/F}$ is <u>algebraic</u> if every $\alpha \in E$ is algebraic over F. Otherwise, it is transcendental.

Theorem 6. Let E_F be a field extension. If $[E:F] < \infty$, then E_F is algebraic.

Proof. Suppose [E:F]=n. For $\alpha \in E$, the elements $\{1,\alpha,\ldots,\alpha^n\}$ are not linearly independent over F. Thus, there exists $c_i \in F$ for all $i=0,\ldots,n$, not all 0, such that

$$\sum_{i=0}^{n} c_i \alpha^i = 0$$

Thus, α is a root of the polynomial $\sum_{i=0}^{n} c_i \alpha^i \in F[x]$ so it is algebraic over F.

Theorem 7. Let $E_{/F}$ be a field extension. Define,

$$L\coloneqq\{\alpha\in E:[F(\alpha):F]<\infty\}.$$

Then L is an intermediate field of $E_{/F}$.

Proof. If $\alpha, \beta \in L$ with $\beta \neq 0$, we need to show that $\alpha \pm \beta, \alpha\beta, \frac{\alpha}{\beta} \in L$. By definition of L, we have $[F(\alpha)] < \infty$ and $[F(\beta) : F] < \infty$. Consider the field $F(\alpha, \beta)$. Since the minimal polynomial of α over $F(\beta)$ divides the minimal polynomial of α over F (the minimal polynomial α over F, say $p(x) \in F[x]$, is also a polynomial over $F(\beta)$. In otherwords, $p(x) \in F(\beta)[x]$ such that $p(\alpha) = 0$), we have

$$[F(\alpha, \beta) : F(\beta)] \le [F(\alpha) : F].$$

Combining this with Theorem 1, we have

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\beta)][F(\beta) : F]$$

$$\leq [F(\alpha) : F][F(\beta) : F]$$

Since $\alpha + \beta \in F(\alpha, \beta)$, it follows that

$$[F(\alpha + \beta) : F] \le [F(\alpha, \beta) : F] < \infty,$$

so $a+b\in L$. We can follow a similar line to show $\alpha-\beta,\alpha\beta,\frac{\alpha}{\beta}\in L$. So L is a field.

Definition 2.2.7. Let $E_{/F}$ be a field extension. The set,

$$L := \{ \alpha \in E : [F(\alpha) : F] < \infty \}$$

is called the algebraic closure of F in E.

Definition 2.2.8. A field F is <u>algebraically closed</u> if for any algebraic extension E_{F} , we have E = F.

Example 2.2.9. By the Fundamental Theorem of Algebra, \mathbb{C} is algebraically closed.

2.3 Eisenstein's Criterion

Definition 2.3.1. Let $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$. We say f(x) is <u>primitive</u> if $a_n > 0$ and $gcd(a_0, \dots, a_n) = 1$.

Lemma. Every non-zero polynomial $f(x) \in \mathbb{Q}[x]$ can be written uniquely as a product $F(x) = cf_0(x)$ where $c \in \mathbb{Q}$ and $f_0(x)$ is a primitive polynomial on $\mathbb{Z}[x]$. Moreover, $f(x) \in \mathbb{Z}[x]$ if and only if $c \in \mathbb{Z}$. If so, then |c| is the greatest common divisor of the coefficients of f(x) and the sign of c is the sign of the leading coefficient of f(x).

Theorem (Gauss' Lemma for $\mathbb{Z}[x]$). Let $f(x) \in \mathbb{Z}[x]$ be non-constant. If f(x) is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$.

Example 2.3.2. The converse of Section 2.3 is not true. Consider the polynomial 2x + 8 is irreducible in $\mathbb{Q}[x]$, but 2x + 8 = 2(x + 4) is reducible in $\mathbb{Z}[x]$.

Remark. $f(x) \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$ if and only if either

- 1. f(x) is a prime integer
- 2. f(x) is a primitive polynomial which is irreducible in $\mathbb{Q}[x]$

Theorem 8 (Eisenstein's Criterion for $\mathbb{Z}[x]$). Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ and let p be a prime integer. Suppose that $p \nmid a_n$, $p \mid a_i$ for all $0 \le i \le (n-1)$ and $p^2 \nmid a_0$, then f(x) is irreducible in $\mathbb{Q}[x]$. In particular, if f(x) is primitive, then it is irreducible in $\mathbb{Z}[x]$.

Proof. Consider the map $f: \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ defined by

$$f(x) \mapsto \overline{f}(x) = \overline{a}_n x^n + \dots + \overline{a}_1 x + \overline{a}_0$$

where $\bar{a}_i = a_i \pmod{p} \in \mathbb{Z}_p$. Since $p \nmid a_n$ and $p \mid a_i$ for all $0 \leq i(n-1)$, we have $\bar{f}(x) = \bar{a}_n x^n$ with $\bar{a}_n \neq 0$. If f(x) is reducible in $\mathbb{Q}[x]$, then it can be factored in $\mathbb{Z}[x]$ into polynomials of positive degree, say f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{Z}[x]$ and $\deg(g), \deg(h) \geq 1$. It follows that $\bar{a}_n x^n = \bar{g}(x)\bar{h}(x)$ from which we see that $\bar{g}(x)$ and $\bar{h}(x)$ have no constant terms in $\mathbb{Z}_p[x]$, as $\mathbb{Z}_p[x]$ is a UFD. Since the constants of both g(x) and h(x) are divisible by p, this implies that the constant of f(x) is divisible by p^2 , which leads to a contradiction. So, f(x) is irreducible in $\mathbb{Q}[x]$

Example 2.3.3. The polynomial $2x^7 + 3x^4 + 6x^2 + 12$ is irreducible in $\mathbb{Q}[x]$ by applying Eisenstein's Criterion with p = 3.

Example 2.3.4. Consider the n^{th} cyclotomic polynomial defined by

$$\Phi_n(x) = \sum_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} \left(x - e^{2i\pi \frac{k}{n}} \right).$$

If n = p where p is a prime number, then $\xi_p = e^{\frac{2i\pi}{p}} = \cos \frac{2\pi}{p} + i \sin \frac{2\pi}{p}$ (the p^{th} root of 1) is a root of the p^{th} cyclotomic polynomial. Notice here, since p is co-prime with all $1 \le k \le p$, we have

$$\Phi_p(x) = x^{p-i} + x^{p-2} + \dots + x + 1 = \frac{x^p - 1}{x - 1}$$

Eisenstein's Criterion does not imply the irreducibility of $\Phi_p(x)$ immediately; however, consider

$$\Phi_p(x+1) = \frac{(x+1)^p - 1}{x} = x^{p-1} + \binom{p}{1}x^{p-2} + \dots + \binom{p}{p-2}x + \binom{p}{p-1} \in \mathbb{Z}[x]$$

with the Binomial Theorem. Since p is prime, $p \nmid 1$, $p \mid \binom{p}{i}, \forall i \in \{1, \dots, p-1\}$ and $p^2 \nmid \binom{p}{p-1}$. Here, Eisenstein's Criterion gives that $\Phi_p(x+1)$ is irreducible in $\mathbb{Q}[x]$, but if $\Phi_p(x) = g(x)f(x)$, then $\Phi_p(x+1) = g(x+1)h(x+1)$ gives a factorization for $\Phi_p(x+1)$, so $\Phi_p(x)$ must be irreducible in $\mathbb{Q}[x]$ as well. Furthermore, since $\Phi_p(x)$ is primitive, $\Phi_p(x)$ is also irreducible in $\mathbb{Z}[x]$.

Example 2.3.5. Let p be prime and $\xi_p = e^{\frac{2i\pi}{p}}$. Since it is a root of $\Phi_p(x)$, which is irreducible, by Theorem 4,

$$[\mathbb{Q}(\xi_p):\mathbb{Q}] = \deg(\Phi_p(x)) = p - 1.$$

The field $\mathbb{Q}(\xi_p)$ is called the p^{th} cyclotomic extension on \mathbb{Q} .

Example 2.3.6. Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} in \mathbb{C} . Since $\xi_p \in \mathbb{Q}$, we have

$$[\overline{\mathbb{Q}}:\mathbb{Q}] \ge [\mathbb{Q}(\xi_p):\mathbb{Q}] = p-1.$$

Since $p \to \infty$, we have $[\overline{\mathbb{Q}} : \mathbb{Q}]$ is ∞ . We have seen in Theorem 6 that if E_F is finite, then E_F is algebraic. However, this example shows that the converse is false.

Now, let R be any unique factorization domain and let F be it's fraction field. Then R[x] is a subring of F[x].

Lemma (Gauss' Lemma). Let R be a UFD with the fraction field F. Let $f(x) \in R[x]$ be non-constant. If f(x) is irreducible in R[x], then it is irreducible in F[x].

Theorem 9 (Eisenstein's Criterion). Let R be a UFD with the fraction field F. Let ℓ be an irreducible element of R. If $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in R[x]$ with $n \ge 1$, $\ell \nmid a_n$, $\ell \mid a_i$, for all $0 \le i \ne (n-1)$ and $\ell^2 \nmid a_0$, then f(x) is irreducible in F[x].

3 Splitting Fields

Definition 3.0.1. Let E_F be a field extension. We say $f(x) \in R[x]$ splits over E if E contains all roots of f(x). In other words, f(x) is a product of linear factors in E[x].

Definition 3.0.2. Let $\widetilde{E}/_F$, $f(x) \in F[x]$ and $F \subseteq E \subseteq \widetilde{E}$. If

- 1. f(x) splits over E
- 2. there is no proper subfield of E such that f(x) splits over E,

Then we say E is a splitting field of $f(x) \in F[x]$ in \widetilde{E} .

3.1 Existence of Splitting Fields

Theorem 10. Let $p(x) \in F[x]$ be irreducible. The quotient ring $F[x]/\langle p(x)\rangle$ is a field containing F and a root of p(x).

Proof. Since p(x) is irreducible, the ideal $I = \langle p(x) \rangle$ is maximal. Thus, E = F[x]/I is a field. Consider the map

$$\Psi: F \to E, \quad a \mapsto a + I$$

Since F is a field and $\Psi \neq 0$, Ψ is injective. Thus, be identifying F with $\Psi(F)$, F is a subfield of E. Claim. Let $\alpha = x + I \in E$. Then α is a root of p(x).

Notice,

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

= $(a_0 + I) + (a_1 + I)x + \dots + (a_n + I)x^n$
 $\in E[x].$

Thus, we have

$$p(\alpha) = (a_0 + I) + (a_1 + I)\alpha + \dots + (a_n + I)\alpha^n$$

$$= (a_0 + I) + (a_1 + I)(x + I) + \dots + (a_n + I)(x + I)^n$$

$$= (a_0 + a_1x + \dots + a_nx^n) + I \qquad (\text{since } (x + I)^i = x^i + I)$$

$$= p(x) + I$$

$$= 0 + I$$

$$= I$$

Thus, $\alpha = x + I \in E$ is a root of p(x).

Theorem 11 (Kronecker). Let $f(x) \in F[x]$. There exists a field E containing F such that f(x) splits over E.

Proof. We proceed with induction on $\deg(f)$. If $\deg(f) = 1$, let E = F and we are done. Suppose $\deg(f) > 1$ and the statement holds for all g(x) with $\deg(g) > \deg(f)$ (g(x) need not to be in F[x]). We write f(x) = p(x)h(x), where $p(x), h(x) \in F[x]$ and p(x) is irreducible. By Theorem 10, there exists a field K such that $F \subseteq K$ and K containing a root of p(x), say α . Thus, $p(x) = (x - \alpha)q(x)$ and $f(x) = (x - \alpha)g(x)h(x)$ where $q(x) \in K[x]$. Since $\deg(hq) < \deg(f)$, by induction, there exists a field E containing K over which h(x)q(x) splits. It follows that f(x) splits over E.

Theorem 12. Every $f(x) \in F[x]$ has a splitting field, which is a finite extension of F.

Proof. For $f(x) \in F[x]$, by Theorem 11, there exists a field extension $E_{/F}$ over which f(x) splits, say $\alpha_1, \alpha_2, \ldots, \alpha_n$ are roots of $f(x) \in E$. Consider $F(\alpha_1, \ldots, \alpha_n)$. The field contains all the roots of f(x) and f(x) does not split over any proper subfield of it. Thus, $F(\alpha_1, \ldots, \alpha_n)$ is the splitting field of f(x) in E. In addition, since α_i are all algebraic, $F(\alpha_1, \ldots, \alpha_n)_{/F}$ is finite.

3.2 Uniqueness of Splitting Fields

We have seen from Theorem 12 that for a field extension \widetilde{E}_{F} , a splitting field of $f(x) \in F[x]$ in E is of the form $F(\alpha_1, \ldots, \alpha_n)$ where α_i are roots of f(x) in \widetilde{E} . Thus, it is unique within \widetilde{E} .

If we change $E_{/F}$ to a different field extension, sat $E_{/F}$, what is the relation between the splitting field of f(x) in E and the one in E'?

Definition 3.2.1. Let $\phi: R \to R'$ be a ring homomorphism, and $\Phi: R[x] \to R'[x]$ be the unique ring homomorphism satisfying $\Phi|_R = \emptyset$ and $\Phi(x) = x$. In this case, we say $\underline{\Phi}$ extends $\underline{\phi}$. More generally, if $R \subseteq S$, $R' \subseteq S'$, and $\Phi: S \to S'$ is a ring homomorphism with $\overline{\Phi}|_R = \emptyset$, we say $\underline{\Phi}$ extends $\underline{\phi}$.

Theorem 13. Let $\phi: F \to F'$ be an isomorphism of fields and $f(x) \in F[x]$. Let $\Phi: F[x] \to F'[x]$ be the unique ring homomorphism which extends ϕ . Let $f'(x) = \Phi(f(x))$ and E_{F} and $E'_{F'}$ be splitting fields of f(x) and f'(x) respectively. Then there exists an isomorphism $\Psi: E \to E'$.

Proof. We proceed with induction on [E:F]. If [E:F]=1, then f(x) is a product of linear factors in F[x], and so is f'(x) in F'[x]. Thus, E=F and E'=F' so take $\Psi=\phi$ and we are done. Now, suppose [E:F]<1 and the statement is true for all field extensions $\widetilde{E}_{\widetilde{F}}$ with $[\widetilde{E}:\widetilde{F}]<[E:F]$. Let $p(x)\in F[x]$ be an irreducible factor of f(x) with $\deg(p)>1$ and let $p'(x)=\Phi(f(x))$ (such p(x) exists as if all irreducible factors of f(x) are of degree 1, then [E:F]=1). Let $\alpha\in E$ and $\alpha'\in E'$ be roots of p(x) and p'(x) respectively. From Theorem 3, we have an F-isomorphism,

$$F(\alpha) \cong F[x]/\langle p(x)\rangle, \quad \alpha \mapsto x + \langle p(x)\rangle$$

Similarly, there is an F'-isomorphism,

$$F'(\alpha) \cong F'[x]/\langle p'(x)\rangle, \quad \alpha \mapsto x + \langle p'(x)\rangle$$

Consider the isomorphism $\Phi: F[x] \to F'[x]$ which extends ϕ . Since $p'(x) = \Phi(f(x))$, there exists a field isomorphism,

$$\widetilde{\Phi}: F[x]/\langle p(x)\rangle \to F'[x]/\langle p'(x)\rangle, \quad x + \langle p(x)\rangle \mapsto x + \langle p'(x)\rangle$$

which extends ϕ . It follows that there exists a field isomorphism.

$$\widetilde{\phi}: F(\alpha) \to F'(\alpha), \quad \alpha \mapsto \alpha'$$

which extends ϕ . Note that since $\deg(p) > 2$, $[E:F[\alpha]] < [E:F]$. Since E (respectively E') is the splitting field of $f(x) \in F(\alpha)[x]$ (respectively $f(x) \in F(\alpha)[x]$) over $F(\alpha)$ (respectively $F'(\alpha')$), by induction, there exists $\Psi: E \to E'$ which extends $\widetilde{\phi}$. Thus, Ψ extends ϕ .

Corollary 14. Any two splitting fields of $f(x) \in F[x]$ over F are F-isomorphic. Thus, we say "the" splitting field of f(x) over F.

Proof. Let $\phi: F \to F$ be the identity map and apply Theorem 13

3.3 Degree of Splitting Fields

Theorem 15. If E_{f} is the splitting field of f(x), then $[E:F] \mid \deg(f)!$.

Proof. We proceed by induction on $\deg(f)$. If $\deg(f) = 1$, choose E = F and we have $[E:F] \mid 1$. Suppose $\deg(f) < 1$ and the statement holds for all g(x) with $\deg(g) < \deg(f)$. We break this down into two cases.

Case 1: If $f(x) \in F[x]$ is irreducible and $\alpha \in E$ is a root of f(x), by Theorem 13,

$$F(\alpha) \cong F[x]/\langle f(x) \rangle$$
 and $[F(\alpha) : F] = \deg(f) = n$.

We write $f(x) = (x - \alpha)g(x) \in F(\alpha)[x]$ with $g(x) \in F(\alpha)[x]$. Since E is the splitting field of g(x) over $F[\alpha]$ and $\deg(g) = n$, by induction hypothesis, $[E : F(\alpha)] \mid (n-1)!$. Since $[E : F] = [E : F(\alpha)][F(\alpha) : F]$, it follows that $[E : F] \mid n!$.

<u>Case 2</u>: If f(x) is not irreducible, write f(x) = g(x)h(x) with $g(x), h(x) \in F[x]$, $\deg(g) = m, \deg(h) = k, 1 \le m, k, < n$ and m + k = n. Let K be the splitting field of g(x) over F. Since $\deg(g) = m$, by induction, $[K : F] \mid m!$. Since E is the splitting field of h(x) over K and $\deg(h) = k$, by induction hypothesis, $[E : K] \mid k!$. Thus, $[E : F] \mid m! k!$, which is a factor of n! as

$$\frac{n!}{m!\,k!} = \binom{n}{m} \in \mathbb{Z}$$

4 Finite Fields

4.1 Prime Fields

Definition 4.1.1. The prime field of a field F is the intersection of all subfields of F.

Theorem 16. If F is a field, then its prime field is isomorphic to either \mathbb{Q} or $\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z}$ for some prime p.

Proof. Consider the ring map $\chi: \mathbb{Z} \to F$ defined by

$$\chi(n) = n \cdot 1 = \underbrace{1 + \dots + 1}_{n \text{ times}}$$

Let $I = \ker(\chi)$, the kernel of χ . Since $\mathbb{Z}/I \cong \operatorname{im}(\chi)$, a subring of F, it is an integral domain. Thus, I is a prime ideal. We break this down to two cases.

<u>Case 1</u>: If $I = \langle 0 \rangle$, then $\mathbb{Z} \subseteq F$. Since F is a field, $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z}) \subseteq F$.

Case 2: If $I = \langle p \rangle$, then

$$\mathbb{Z}_p = \mathbb{Z}_{p\mathbb{Z}} \cong \operatorname{im} \chi \subseteq F$$

Definition 4.1.2. Given a field F, if its prime field is isomorphic to \mathbb{Q} (respectively \mathbb{Z}_p), we say F has characteristic 0 (respectively characteristic p) denoted by ch(F) = 0 (respectively ch(F) = p).

Remark. Note that if ch(F) = p, for $a, b \in F$,

$$(a+b)^p = a^p + b^p.$$

Using this property, the following proposition follows.

Proposition 17. Let F be a field with ch(F) = p and let $n \in \mathbb{N}$. Then, the map $\phi : F \to F$ given by $u \mapsto u^{p^n}$ is an injective \mathbb{Z}_p -homomorphism of fields. If F is finite, then ϕ is a \mathbb{Z}_p -isomorphism of F.

4.2 Formal Derivatives and Repeated Roots

Definition 4.2.1. If F is a field, the monomials $\{1, x, x^2, \dots\}$ for a F-basis of F[x]. Define the linear operator

$$D: F[x] \to F[x]$$

by D(1) = 0 and $D(x^i) = ix^{i-1}$ for all $i \in \mathbb{N}$. Thus for

$$f(x) = a_0 + a_1 x + \dots + a_n x^n, a_i \in F$$

we have

$$D(f)(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}.$$

Note that

- 1. *D* is linear: D(f + g) = D(f) + D(g)
- 2. D respects the Leibniz Rule: D(fg) = (D(f))g + f(D(g)).

We call D(f) = f' the <u>formal derivative</u> of f.

Theorem 18. Let F be a field and $f(x) \in F[x]$.

- 1. If ch(F) = 0, then f'(x) = 0 if and only if f(x) = c for some $c \in F$.
- 2. If ch(F) = p, then f'(x) = 0 if and only if $f(x) = g(x^p)$ for some $g(x) \in F[x]$

Proof.

- 1. Backwards is trivial. Suppose we have $f(x) = a_0 + a_1 x + \cdots + a_n x^n$, then $f'(x) = a_1 + 2a_2 x + \cdots + na_n x^{n-1} = 0$. This implies that $ia_i = 0$ for all $1 \le i \le n$, Since $\operatorname{ch}(F) = 0$, $i \ne 0$. Thus, $a_i = 0$ for all $i \ge 1$. This, $f(x) = a_0 \in F$.
- 2. Forwards. For $f(x) = a_0 + a_1x + \cdots + a_nx^n$, $f'(x) = a_1 + 2a_2x + \cdots + na_nx^{x-1} = 0$ implies that $ia_i = 0$ for all $1 \le i \le n$. Since ch(F) = p, $ia_i = 0$ implies that $ia_i = 0$ implies that $a_i = 0$ unless $p \mid i$. Thus,

$$f(x) = a_0 + a_p x^p + \dots + a_{mp} x^{mp} = g(x^p)$$

where $g(x) = a_0 + a_p + \dots + a_{mp}x^m \in F[x]$.

<u>Backwards</u>. Write $g(x) = b_0 + b_1 x + \dots + b_m x^m \in F[x]$. Then,

$$f(x) = g(x^p) = b_0 + b_1 x^p + \dots + b_m x^{mp}.$$

Thus, $f'(x) = pb_1x^{p-1} + 2pb_2x^{2p-1} + \dots + mpb_m^{pm-1}$. Since ch(F) = p, we have f'(x) = 0.

Definition 4.2.2. Let E_F is a field extension and $f(x) \in F[x]$. We say $\alpha \in E$ is a repeated root of f(x) if $f(x) = (x - \alpha)^2 g(x)$ for some $g(x) \in E[x]$.

Theorem 19. Let E_{f} is a field extension and $f(x) \in F[x]$. Then α is a repeated root of f(x) if and only if $(x - \alpha)$ divides both f and f'. In other words, $(x - \alpha) \mid \gcd(f, f')$.

Proof. Forwards. Suppose $f(x) = (x - \alpha)^2 g(x)$. Then,

$$f'(x) = 2(x - \alpha)g(x) + (x - \alpha)^2 g'(x)$$

= $(x - a)(2g(x) + (x - \alpha)g'(x))$

Thus, $(x - \alpha)$ divides both f and f'.

Backwards. Suppose $(x-\alpha)$ divides both f and f'. We write $f(x)=(x-\alpha)h(x)$ where $h(x)\in E[x]$. Then, $f'(x)=h(x)+(x-\alpha)h'(x)$. Since $f'(\alpha)=0$, we have $h(\alpha)=0$. Thus, $(x-\alpha)$ is a factor of h(x) and $f(x)=(x-\alpha)^2g(x)$ for some $g(x)\in E[x]$.

Corollary 20. Let F be a field and $f(x) \in F[x]$. Then f(x) has no repeated roots if and only if gcd(f, f') = 1.

4.3 Finite Fields

Proposition 21. If F is a finite field, then $ch(F) = p \neq 0$ for some prime p and $|F| = p^n$ for some $n \in \mathbb{N}$.

Proof. Since F is a finite field, by Theorem 16, its prime field is \mathbb{Z}_p . Since F is a finite dimensional vector space over \mathbb{Z}_p , we have

$$F \cong \underbrace{\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p}_{n \text{ summands}}.$$

Thus $|F| = p^n$.

Theorem 22. Let F be a field and $F^* = F \setminus \{0\}$, multiplicative group of nonzero elements of F. Let G be a finite subgroup of F^* , then G is a cyclic group. In particular, if F is a finite field, then F^* is a cyclic group.

Proof. If $G = \langle 1 \rangle$, the result follows immediately. Otherwise, since G is a finite abelian group,

$$G \cong \mathbb{Z}/_{n_1\mathbb{Z}} \times \cdots \times \mathbb{Z}/_{n_r\mathbb{Z}}$$

where $n_i > 1$ and $n_1 \mid \cdots \mid n_r$. Since $n_r \left(\mathbb{Z}/_{n_1 \mathbb{Z}} \times \cdots \times \mathbb{Z}/_{n_r \mathbb{Z}} \right) = 0$, it follows that every $u \in G$ is a root of $x^{n_r} - 1 \in F[x]$. Since the polynomial has at most n_r distinct roots in F, we have r = 1 and $G \cong \mathbb{Z}/_{n_r \mathbb{Z}}$.

By taking u to be a generator of the multiplicative group F^* , we have the following corollary.

Corollary 23. f F is a finite field, then F is a simple extension of \mathbb{Z}_p . In other words, $F = \mathbb{Z}_p(u)$ for some $u \in F$.

Proposition 24. Let p be prime and $n \in \mathbb{N}$. Then F is a finite field with $|F| = p^n$ if and only if F is a splitting field of $x^{p^n} - x$ over \mathbb{Z}_p .

Proof. Forwards: If $|F| = p^n$, then $|F^*| = p^n - 1$. Thus, every $u \in F$ satisfies $u^{p^n - 1} = 1$ and thus is a root of $x(x^{p^n - 1} - 1) = x^{p^n} - x \in \mathbb{Z}_p[x]$. Since $0 \in F$ is also a root of $x^{p^n} - x$, the polynomial $x^{p^n} - x$ has distinct p^n distinct roots in F. In other words, it splits over F. Thus F is a splitting field of $x^{p^n} - x$ over \mathbb{Z}_p .

<u>Backwards</u>: Suppose \hat{F} is a splitting field of $f(x) = x^{p^n} - x$ over \mathbb{Z}_p . Since $\operatorname{ch}(F) = p$, we have

$$f'(x) = p^n x^{p^n - 1} - 1$$
$$\equiv -1 \pmod{p}.$$

Now, since $\gcd(f, f') = 1$, by Corollary 20, f(x) has p^n distinct roots in F. Let E be the set of the roots of f(x) in F. Let $\varphi : F \to F$ be given by $u \mapsto u^{p^n}$. For $u \in F$, u is a root of f(x) if and only if $\varphi(u) = u$. Thus, the set E is a subfield of F of order p^n which contains \mathbb{Z}_p . Since F is a splitting field, it is generated over \mathbb{Z}_p by the roots of f(x), in other words, the elements of E. Thus, $F = \mathbb{Z}_p(E) = E$.

As a direct consequence of Proposition 24 and Corollary 14, we have the following corollary.

Corollary 25 (E. H. Moore). Let p be a prime and $n \in \mathbb{N}$. Then any two finite field of order p^n are isomorphic.

4.4 Separable Polynomials

Definition 4.4.1. Let F be a field and $f(x) \in F[x]$, $f \neq 0$. If f(x) is irreducible, we say f(x) is separable over F if it has no repeated root in any extension E of F. In the general case, we say $\overline{f(x)}$ is separable over F if each irreducible factor of f is separable over F.

Example 4.4.2. $f(x) = (x-2)^2$ is separable over \mathbb{Q} .

Example 4.4.3. Consider the polynomial $f(x) = x^n - a \in F[x]$ with $n \ge 2$. We recall that if $\gcd(f, f') = 1$, then f(x) has no repeated root in any extension of F. In other words, f(x) is separable. Note that if a = 0, the only irreducible factor of f(x) is x and $\gcd(x, 1) = 1$. Thus, f(x) is separable. Now, assume $a \ne 0$. Note that $f'(x) = nx^{n-1}$.

1. If ch(F) = 0, we have gcd(f, f') = 1 since

$$1 = \frac{x}{na}nx^{n-1} - \frac{1}{a}(x^n - a)$$
$$= \frac{x}{na}f' - \frac{1}{a}f$$

Thus, f is separable.

- 2. If ch(F) = p and gcd(n, p), then by Fermat's Little Theorem, f(x) = x a and f'(x) = 1 so gcd(f, f') = 1 and f(x) is separable.
- 3. If $\operatorname{ch}(F) = p$ and $\gcd(n,p) \neq 1$, consider $f(x) = x^p a$. Since $f'(x) = px^{p-1} = 0$, we have $\gcd(f,f') \neq 1$. However, it is still possible that all irreducible factors $\ell(x)$ of f(x) has the property that $\gcd(\ell,\ell') = 1$. To decide if f(x) is separable, we need to find its irreducible factors first. Define

$$F^p := \{b^p : b \in F\}$$

which is a subfield of F.

3.1. If $a \in F^p$, say $a = b^p$ for some $b \in F$, then

$$f(x) = x^p - b^p = (x - b)^p$$
 (by Binomial Theorem)

which is irreducible. Since each irreducible factor of f(x) is linear, thus separable. Thus, f(x) is separable.

3.2. Suppose $a \notin F$

Claim. $f(x) = x^p - a$ is irreducible in F[x].

We write $x^p - a = g(x)h(x)$ where $g(x), h(x) \in F[x]$ are monic polynomials. Let E_F be an extension where $x^p - a$ has a root, say $\beta \in E$ (i.e. $\beta^p - a = 0$). Note that $\beta \notin F$, otherwise $a = b^p \in F^p$. We have

$$x^p - a = x^p - \beta^p = (x - \beta)^p$$
. (by Binomial Theorem)

Thus, $g(x) = (x - \beta)^r$ and $h(x) = (x - \beta)^s$ for some $r, s \in \mathbb{N} \cup \{0\}$ and r + s = p. We write,

$$g(x) = x^r - r\beta x^{r-1} + \dots$$

then $r\beta \in F$. Since $\beta \notin F$, as an element of F, we have r = 0. Thus, as an integer, we have r = 0 or r = p. It follows that wither q(x) = 1 or h(x) = 1 in F[x]. Thus, f(x) is

irreducible.

Since f(x) is irreducible and $f(x) = (x - \beta)^p \in E[x]$, it is not separable. This type of polynomial is called a purely inseparable polynomial.

Definition 4.4.4. A field F is <u>perfect</u> if every irreducible polynomial $r(x) \in F[x]$ is separable over F.

Theorem 26. Let F be a field.

- 1. If ch(F) = 0, then F is perfect.
- 2. If ch(F) = p and $F = F^p$, then F is perfect.

Proof. Let $r(x) \in F[x]$ be irreducible. Then

$$\gcd(r, r') = \begin{cases} 1 & \text{, if } r' \neq 0 \\ 0 & \text{, if } r' = 0 \end{cases}.$$

Suppose r(x) is not separable. Then by Corollary 20, $\gcd r, r' \neq 1$, so it must be that $\gcd(r, r') = 0$.

- 1. If $\operatorname{ch}(F) = 0$, from Theorem 18, r'(x) = 0 implies that $r(x) = c \in F$, which is a contradiction since $\operatorname{deg}(r) \geq 1$. Thus, r(x) is separable and F is perfect.
- 2. If ch = p, from Theorem 18, r'(x) = 0 implies that

$$r(x) = a_0 + a_1 x^p + a_2 x^{2p} + \dots + a_m x^{mp}, a_i \in F$$

Since $F = F^p$, we can write $a_i = b_i^p$ with $b_i \in F$. Thus,

$$r(x) = b_0^p + b_1^p x^p + b_2^p x^{2p} + \dots + b_m^p x^{mp}$$

= $(b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m)^p$

which raises a contradiction since r(x) is irreducible. Thus, r(x) must be separable and F is perfect.

Remark. Let $\operatorname{ch}(F) = p$ and $F \neq F^p$ (e.g. $F = \mathbb{F}_p(x)$). If we take $a \in F/F_p$, then the polynomial $x^p - a$ is not separable. Thus, if $\operatorname{ch}(F) = p$, F is perfect if and only if $F^p = F$.

Corollary 27. Every finite field is perfect.

Proof. Every finite field F with $|F|=p^n$ is the splitting field of $x^{p^n}-x$ over \mathbb{Z}_p for some prime p and $n \in \mathbb{N}$. Thus, for every $a \in F$, $a=a^{p^n}=(a^{p^{n-1}})^p$. Since $a^{p^{n-1}} \in F$, $F=F^p$. Thus, by Theorem 26, F is perfect.

Remark. It is possible that $F^p = F$ and F is an infinite field, say $F = \overline{\mathbb{F}_p}$.

5 The Sylow Theorems

Recall the following definitions and theorems from Group Theory:

Theorem (Lagrange's Theorem). If H is a subgroup of a group G, then |G| = [G : H]|H|. In particular, if G is finite, and $g \in G$, then $|\langle g \rangle|$ divides |G|.

We can ask the reverse question; if a positive integer m divides the order of a group G, does G have a subgroup of order m?

Definition 5.0.1. An <u>action</u> of a group G on a set S is a function $G \times S \to S$ (usually denoted by $(g,x) \mapsto gx$ such that for all $x \in S$ and $q_1, g, 2 \in G$, we have ex = x and $(g_1g_2)x = g_1(g_2x)$). We say G acts on S by a group action.

Definition 5.0.2. If G acts on S, for $x \in S$, we define the <u>orbit</u> of x by $\bar{x} := \{gx : g \in G\}$.

Definition 5.0.3. If G acts on S, for $x \in S$, we define the <u>stabilizer</u> of x by $G_x := g \in G : gx = x$. G_x is a subgroup of G and $|\bar{x}| = [G : G_x]$.

Definition 5.0.4. Let G be a group acting on itself by conjugation. Then, for $x \in G$, we define the <u>centralizer</u> of x by $C_G(x) := G_x = \{g \in G : gxg^{-1} = x.$

Definition 5.0.5. Let S be all subgroups of G and let G act on S by conjugation. Then, for $K \in S$, we define the <u>normalizer</u> of K by $N_G(K) := G_K = g \in G : gKg^{-1} = K$.

Definition 5.0.6. Let G be a group. Then we define the <u>center</u> of G by $C(G) := \{g \in G : gxg^{-1} = x, \forall x \in G\}.$

Theorem (Class Equation of a Group). Suppose G is a finite group acting on itself by conjugation, C(G) is the center of G, and C_1, C_2, \ldots, C_r are all the conjugacy classes in G comprising the elements outside the center. Let g_i be an element in C_i for each $1 \le i \le r$. Then, we have

$$|G| = |C(G)| + \sum_{i=1}^{r} |G : C_G(g_i)|.$$

Lemma 28. Let H be a group of order p^n for some prime p, which acts on a finite set S. Let $S_0 = \{x \in S : hx = x, \forall h \in H\}$. Then, we have $|S| \equiv |S_0| \pmod{p}$.

Proof. For $x \in S$, $|\bar{x}| = 1$ if and only if $x \in S_0$. Thus, S can be written as a disjoint union $S = S_0 \cup \overline{x_1} \cup \cdots \cup \overline{x_n}$. Thus,

$$|S| = |S_0| + \sum_{i=0}^n |\overline{x_i}|.$$

Since $|\overline{x_i}| > 1$ and $|\overline{x_i}| = [H: H_{x_i}]$ divides $|H| = p^n$, we have $p \mid |\overline{x_i}|$ for all i. It follows that $|S| \equiv |S_0| \pmod{p}$.

Theorem 29. Let p be prime and G a finite group. If $p \mid |G|$, then G contains an element of order p.

Proof. Consider the set,

$$S = \{(a_1, \dots, a_p) : a_i \in G, a_1 \dots a_p = e\}.$$

Since a_p is uniquely determined and |G| = n, we have $|S| = n^{p-1}$. Since $p \mid n$, we have $|S| \equiv 0 \pmod{p}$. Let the group \mathbb{Z}_p act on S by cyclic permutation, in other words, for $k \in \mathbb{Z}_p$, $k(a_1, \ldots, a_p) = 0$

 $(a_{k+1}, a_{k+2}, \ldots, a_p, a_1, \ldots, a_k)$. Since $(a_1, \ldots, a_p) \in S_0$ if and only if $a_1 = \cdots = a_p$. Clearly, $(e, \ldots, e) \in S_0$, so $|S_0| \ge 1$. By Lemma 28, we have $|S_0| \equiv |S| \equiv 0 \pmod{p}$. So $|S_0| \ge p$. Thus, there exists $a \ne e$ such that $(a, \ldots, a) \in S_0$ which implies that $a^p = e$. Since p is prime, the order of a is p.

Definition 5.0.7. Let p be a prime. A group in which the order of every element is a non-negative power of p is called a p-group.

Corollary 30. A finite group G is a p-group if and only if |G| is a power of p.

Proof. This is a direct consequence of Theorem 29.

Lemma 31. The center C(G) of a nontrivial finite p-group G contains more than 1 element.

Proof. Since G is a p-group by Corollary 30, |G| is a power of p. Recall the class equation:

$$|G| = |C(G)| + \sum_{i=1}^{n} [G : C_G(x_i)], \text{ where } [G : C_G(x_i)] \ge 1.$$

Since |G| is a power of p, $[G:C_G(x_i)] \mid |G|$, and $[G:C_G(x_i)] > 1$. We see that $p \mid [G:C_G(x_i)]$. It follows that $p \mid |C(G)|$ since $|C(G)| \ge 1$ so C(G) has at least p elements.

Definition 5.0.8. If H is a subgroup of a group G, then the normalizer of H is defined by

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}.$$

In particular, $H \triangleleft N_G(H)$.

Lemma 32. If p is prime and H is a p-subgroup of a finite group G, then $[N_G(H):H] \equiv [G:H] \pmod{p}$.

Proof. Let S be the set of all left cosets of H in G and let H act on S by left translation, $G \times S \to S$ defined by,

$$h \cdot xH \mapsto (hx)H$$

which fixes on coset to another. Then, |S| = [G:H]. For some fixed $x \in G$, consider the set S_0 defined by $xH \in S_0 \iff hxH = xH$ for all $h \in H$. In other words, all elements of S_0 are fixed by the group action. Now, we have,

$$xH \in S_0 \iff hxH = xH$$

 $\iff x^{-1}hxH = H$
 $\iff x^{-1}Hx = H$
 $\iff x \in N_G(H)$

So, $|S_0| = [N_G(H): H]$. By Lemma 28,

$$[N_G(H):H] = |S_0|$$

$$\equiv |S| \pmod{p}$$

$$= [G:H].$$

Corollary 33. If H is a p-subgroup of a finite group G such that $p \mid [G:H]$, then $N_G(H) \neq H$.

Proof. Since $p \mid [G:H]$, by Lemma 32 we have $[H_G(H):H] \equiv [G:H] \equiv 0 \pmod{p}$. Since $p \mid [N_G(H):H]$ and $[N_G(H):H] \geq 1$, we have $[N_G(H):H] \geq p$, so $N_G(H) \neq H$.

Theorem 34 (First Sylow Theorem). Let G be a group with order $p^n m$ with p prime, $n \geq 1$, gcd(p,m) = 1. Then G contains a subgroup of order p^i for all $1 \leq i \leq n$ which is normal under some subgroup of order p^{i+1} .

Proof. We proceed with induction on i. For i=1, since $p\mid |G|$, we have be Theorem 29 that G contains an element a of order p, so $|\langle a\rangle|=p$. Suppose that the statement holds for some $1\leq i\leq n$, say H is a subgroup of order p^i . Now, from Corollary 33, we have $p\mid [N_G(H):H]$ and $[N_G(H):H]\geq p$, since $H\triangleleft N_G(H)$. Then, by Theorem 29, $N_G(H)/H$ contains a subgroup of order p. Such a group is of the from H'/H where H' is a subgroup of $N_G(H)$ containing H. Since $H\triangleleft N_G(H)$, we have $H\triangleleft H'$. Finally, $|H'|=|H| |H'/H|=p^{i+1}$.

Definition 5.0.9. A subgroup P of a group G is said to be a Sylow p-subgroup if P is a maximal p-subgroup of G. In other words, if $P \subseteq H \subseteq G$ with H a p-subgroup of G, then P = H.

Corollary 35. Let G be a group of order $p^n m$ where p is a prime, $n \ge 1$, gcd(p, m) = 1. Let H be a p-subgroup of G. Then, all the following hold:

- 1. H is a Sylow p-subgroup if and only if $|H| = p^n$
- 2. Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup
- 3. If there is only one Sylow p-subgroup, P, then $P \triangleleft G$.

Theorem 36 (Second Sylow Theorem). If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then there exists $g \in G$ such that $H \subseteq gPg^{-1}$. In particular, any two Sylow p-subgroups of G are conjugate.

Proof. Let S be the set of all left cosets of P in G, and let H act on S by left multiplication. By Lemma 28, we have $|S_0| \equiv |S| = [G:P] \pmod{p}$. Since $p \nmid [G:P]$, we have $|S_0| \neq 0$. There exists $xP \in S_0$ for some $x \in G$. Note that

$$xP \in S_0 \iff hxP = xP, \quad \forall h \in H$$

 $\iff x^{-1}hxP = P, \quad \forall h \in H$
 $\iff x^{-1}Hx \subseteq P$
 $\iff H \subseteq xPx^{-1}.$

In particular, if H is a Sylow p-subgroup, then $|H|=|P|=|xPx^{-1}$. Thus, $H=xPx^{-1}$.

Theorem 37 (Third Sylow Theorem). If G is a finite group and p is prime, then the number of Sylow p-subgroups of G divides |G| and is of the form kp + 1 for some $k \in \mathbb{N} \cup \{0\}$.

Proof. By the Second Sylow Theorem, the number of Sylow p-subgroups of G is the number of conjugates of any one of them, say P. This number is $[G:N_G(P)]$ which is a divisor of |G|. Let S be the set of all Sylow p-subgroups of G and let P act on S by conjugation. Then, $Q \in S_0$ if and only if $xQx^{-1} = Q$ for all $x \in P$. The latter condition holds if and only if $P \subseteq N_G(Q)$. Both P and Q are Sylow p-subgroups of G and hence of $N_G(Q)$. Thus, by Corollary 35, the are conjugate in $N_G(Q)$. Since $Q \triangleleft N_G(Q)$, this can only occur if Q = P. Thus, $S_0 = \{p\}$ and by Lemma 28, $|S| \equiv |S_0| \equiv 1 \pmod{p}$. Thus, |S| = kp + 1 for some $k \in \mathbb{N} \cup \{0\}$.

Example 5.0.10. Every group of order 15 is cyclic.

Let G be a group of order $15 = 3 \cdot 5$. Let n_p be the number of Sylow p-subgroups of G. By the Third Sylow Theorem, we have $n_3 \mid 15$ and $n_3 \equiv 1 \pmod{3}$. Thus, $n_3 = 1$. Similarly, since $n_5 \mid 15$ and $n_5 \equiv 1 \pmod{5}$, $n_5 = 1$. It follows that there is only one Sylow 3-subgroup and one Sylow 5-subgroup in G, say P_3 and P_5 respectively. Thus, $P_3 \triangleleft G$ and $P_5 \triangleleft G$. Consider $|P_3 \cap P_5|$, which divides 3 and 5. Thus, $|P_3 \cap P_5| = 1$. Also, $|P_3 P_5| = 15 = |G|$. It follows that

$$G \cong P_3 \times P_5 \cong \mathbb{Z}/\langle 3 \rangle \times \mathbb{Z}/\langle 5 \rangle \cong \mathbb{Z}/\langle 15 \rangle.$$

Example 5.0.11. There are exactly two isomorphism classes of groups of order 21.

Let G be a group of order $21 = 7 \cdot 3$. Let n_p be the number of Sylow p-subgroups of G. By the Third Sylow Theorem, we have $n_3 \mid 21$ and $n_3 \equiv 1 \pmod{3}$. Thus, $n_3 = 1$ or 7. Similarly, we have $n_7 \mid 21$ and $n_7 \equiv 1 \pmod{7}$. Thus, $n_7 = 1$. It follows that G has a unique Sylow 7-subgroup, say P_7 and note that $P_7 \triangleleft G$ and P_7 is cyclic, say $P_7 = \langle x \rangle$ with $x^7 = 1$. Let H be a Sylow 3-subgroup. Since |H| = 3, |H| is cyclic and $H = \langle y \rangle$ with $y^3 = 1$. Since $P_7 \triangleleft G$, we have $yxy^{-1} = x^i$ for some power $i \in [0, 6]$. It follows that

$$x = y^{3}xy^{-3} = y^{2}yxy^{-1}y^{-2} = y^{2}x^{i}y^{-2} = yx^{i^{2}}y^{-1} = x^{i^{3}}.$$

Since $x^{i^3} = x$ and $x^7 = 1$, we have $i^3 - 1 \equiv 0 \pmod{7}$. Then, it must be that i = 1, 2, 4. We break this down to three cases:

- 1. If i = 1, then $yxy^{-1} = x$ or yx = xy. Thus, G is abelian and $G \cong \mathbb{Z}/\langle 21 \rangle$.
- 2. If i = 2, then $yxy^{-1} = x^2$. Thus,

$$G = \{x^i y^j : 0 \le i \le 6, \ 0 \le j \le 2, \ yxy^{-1} = x^2\}$$

which has 21 distinct elements. Here, G is generated by x and y, which are order 3 and 7 respectively, so $G \cong \mathbb{Z}/\langle 3 \rangle \times \mathbb{Z}/\langle 7 \rangle$.

3. If i = 4, then $yxy^{-1} = x^4$. Note that

$$y^2xy^{-2} = yx^4y^{-1} = x^{16} = x^2.$$

Note that y^2 is also a generator of H. Thus, by replacing y by y^2 , we get back to case 2.

6 Solvable Groups

Definition 6.0.1. A group G is solvable if there exists a tower of subgroups

$$\{1\} = G_0 < G_1 < \dots < G_k = G$$

such that $G_i \triangleright G_{i+1}$ and G_i/G_{i+1} is abelian.

Remark. G_{i+1} is not necessarily a normal subgroup of G. However, if G_{i+1} is a normal subgroup of G, we get $G_i \triangleright G_{i+1}$ for free.

Example 6.0.2. Consider the symmetric group S_4 . Let A_4 be the alternating subgroup of S_4 and $V \cong \mathbb{Z}/\langle 2 \rangle \times \mathbb{Z}/\langle 2 \rangle$ the Klein 4 group. Note that A_4 and V are normal subgroup of S_4 . We have

$$S_4 > A_4 > V > \{1\}.$$

Since $S_4/_{A_4} \cong \mathbb{Z}/_{\langle 2 \rangle}$ and $A_4/_V \cong \mathbb{Z}/_{\langle 3 \rangle}$, we see that S_4 is solvable.

Theorem (First Isomorphism Theorem). If G and H are groups and $\phi: G \to H$ is a group homomorphism, then

- 1. $\ker(\phi) \triangleleft G$
- 2. $\operatorname{im}(\phi) \leq H$
- 3. $G_{\ker(\phi)} \cong \operatorname{im}(\phi)$.

In particular, if ϕ is a surjective map, then $H \cong G_{\ker(\phi)}$.

Theorem (Second Isomorphism Theorem). If H and N are subgroups of a group G with $N \triangleleft G$, then $H/H \cap N \cong NH/N$.

Theorem (Third Isomorphism Theorem). If H and H are normal subgroups of a group G such that $N \subseteq H$, then $H_{/N}$ is a normal subgroup of G and $G_{/N} \cong G_{/N}/H_{/N}$.

Theorem 38.

- 1. If G is a solvable group, every subgroup and every quotient group of G is solvable
- 2. Conversely, if N is a normal subgroup of a group G and both N and G_N are solvable, then G is solvable.

In particular, a direct product of finitely many solvable groups is solvable.

Proof.

1. Suppose that G is a solvable group with a tower

$$\{1\} = G_0 < G_1 < \cdots < G_k = G$$

with $G_i \triangleright G_{i+1}$ and G_i/G_{i+1} is abelian.

Claim. Let H be a subgroup of G. Then, H is solvable.

Define $H_i = H \cap G_i$. Since $G_{i+1} \triangleleft G_i$, we have a tower

$$\{1\} = H_0 < H_1 < \dots < H_k = H$$

with $H_{i+1} \triangleleft H_i$. Note that both H_i and G_{i+1} are subgroups of G_i and $H_{i+1} = H \cap G_{i+1} = H_i \cap G_{i+1}$. Applying the Second Isomorphism Theorem to G_i , we have

$$H_{i/H_{i+1}} = H_{i/H_{i} \cap G_{i+1}} \cong H_{i}G_{i+1/G_{i+1}} \subset G_{i/G_{i+1}}.$$

Since $G_{i/G_{i+1}}$ is abelian, so is $H_{i/H_{i+1}}$. So H is solvable.

Claim. Let N be a normal subgroup of G. Then G_N is solvable.

Consider the towers

$$N = G_0 N < G_1 N < \dots < G_k N = G$$

and

$$\{1\} = G_0 N_N < G_1 N_N < \dots < G_k N_N = G_N.$$

Since $G_{i+1} \triangleleft G_i$ and $N \triangleleft G$, we have $G_{i+1}N \triangleleft G_iN$, which implies that $G_{i+1}N/N \triangleleft G_iN/N$. By the Third Isomorphism Theorem,

$$G_i N / N / G_{i+1} N / N \cong G_i N / G_{i+1} N$$

By the Second Isomorphism Theorem, we have

$$G_i N / G_{i+1} N \cong G_i / G_i \cap G_{i+1} N$$

Since $G_{i+1} \subseteq (G_i \cap G_{i+1}N)$, there is a natural injection $G_{i/G_i \cap G_{i+1}N} \to G_{i/G_i + 1}$ defined by

$$g + (G_i \cap G_{i+1}N) \mapsto g + G_{i+1}.$$

Since $G_{i/G_{i+1}}$ is abelian, so is $G_{i/G_{i} \cap G_{i+1}N}$. Thus, $G_{i}N/N/G_{i+1}N/N$ is abelian. It follows that G_{N} is solvable.

Both these claims together show the first part of this theorem.

2. Suppose that N is a normal subgroup of a group G and both N and G_N are solvable. Since N is solvable, we have a tower

$$\{1\} = N_0 < N_1 < \dots < N_k = N$$

where $N_i \triangleright N_{i+1}$ and N_{i+1}/N_i is abelian for all $0 \le i \le (m-1)$. For a subgroup $H \le G$ with $N \le H$, which we denote by $\overline{H} := H/N$. Note $N \triangleleft G$ and $N \triangleleft H$. Since G/N, we have a tower,

$$\{1\} = N/N = \overline{G}_0 < \overline{G}_1 < \dots < \overline{G}_r = \overline{G} = G/N$$

with $\overline{G}_j \triangleright \overline{G}_{j+1}$ and $\overline{G}_{j+1}/\overline{G}_j$ for all $0 \le j \le (r-1)$. Let $\operatorname{Sub}_N(G)$ be the group of subgroups of G which contain N. Consider the map

$$\sigma: \operatorname{Sub}_N(G) \to \operatorname{Sub}_N\left(G/N\right)$$

$$H \mapsto \overline{H} \coloneqq H/N$$

which is trivially injective. Then, by First Isomorphism Theorem, this is a bijection. For all $0 \le j \le r$, define $G_j := \sigma^{-1}(\overline{G}_j)$. Since $N \triangleleft G$, $\overline{G}_{j+1} \triangleleft \overline{G}_j$, we have $G_{j+1} \triangleleft G_j$. Now, by Third Isomorphism Theorem, we have

$$G_{j/G_{j+1}} \cong G_{j/N/G_{j+1/N}} \cong \overline{G}_{j/\overline{G}_{j+1}}$$

which is abilian. If follows that

$$\{1\} = N_0 < \dots < N_m = G_0 < \dots < G_r = G$$

so G is solvable.

Example 6.0.3. S_4 contains subgroups isomorphic to S_3 and S_2 . Since S_4 is solvable, by Theorem 38, S_3 and S_4 are solvable

Definition 6.0.4. A group G is $\underline{\text{simple}}$ if it is not trivial and has no normal subgroups other than G and $\{1\}$.

Remark. S_n is not solvable for $n \geq 5$.

Proof. One can show that the alternating group A_5 is simple. Since $A_5 \supseteq \{1\}$ is the only tower and $A_5/\{1\}$ is not abelian, A_5 is not solvable. For all $n \geq 5$, S_5 is a subgroup of S_n . Then by Theorem 38, S_n is not solvable.

Corollary 39. G is a finite solvable group if and only if there exists a tower

$$\{1\} = G_0 < G_1 < \dots < G_m = G$$

with $G_i \triangleright G_{i+1}$ and G_i/G_{i+1} is cyclic.

Proof. Let A be a finite abelian group. We have

$$A \cong C_{k_1} \times \cdots \times C_{k_r}$$

where C_k is a cyclic group of order k. For a finite cyclic group C, we have

$$C \cong \mathbb{Z}/\langle p_1^{\alpha_1} \rangle \times \cdots \times \mathbb{Z}/\langle p_r^{\alpha_r} \rangle$$

be the Chinese Remainder Theorem, with p_i distinct primes. For a cyclic group whose order is a prime power, say $\mathbb{Z}/\langle p^{\alpha} \rangle$, be the First Sylow Theorem, we have a tower of subgroups

$$\{1\} < \mathbb{Z}/\langle p \rangle < \dots < \mathbb{Z}/p^{\alpha-1} < \mathbb{Z}/p^{\alpha-1}$$

which concludes the proof.

7 Automorphism Groups

Definition 7.0.1. Let E_F be a field extension. If ψ is an automorphism of E, in other words $\psi: E \to E$ is an isomorphism and $\psi|_F = 1_F$, we say ψ is an <u>F-automorphism</u>. By map composition, the set

$$\{\psi: E \to E \mid \psi \text{ is an } F\text{-automorphism}\}$$

is a group. We call it the automorphism group of E_F denoted by $\operatorname{Aut}_F(E)$.

Lemma 40. Let E_{f} be a field extension with $f(x) \in F[x]$ and $\psi \in \operatorname{Aut}_{F}(E)$. If $\alpha \in E$ is a root of f(x), then $\psi(\alpha)$ is also a root of f(x).

Proof. Write $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$. We have

$$f(\psi(\alpha)) = a_0 + a_1 \psi(\alpha) + a_2 \psi^2(\alpha) + \dots + a_n \psi^n(\alpha)$$

$$= \psi(a_0) + \psi(a_1) \psi(\alpha) + \psi(a_2) \psi^2(\alpha) + \dots + \psi(a_n) \psi^n(\alpha)$$

$$= \psi(a_0 + a_1 \alpha + \dots + a_n \alpha^n)$$

$$= \psi(0)$$

$$= 0.$$

Lemma 41. Let $E = F(\alpha_1, ..., \alpha_n)$ be a field extension of F. For $\psi_1, \psi_2 \in \operatorname{Aut}_F(E)$, if $\psi_1(\alpha_i) = \psi_2(\alpha_i)$ for all α_i , $1 \le i \le n$, then $\psi_1 = \psi_2$.

Proof. Since each $\alpha \in E$ is of the form $\frac{f(\alpha_1, \ldots, \alpha_n)}{g(\alpha_1, \ldots, \alpha_n)}$ where $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$, the lemma follows.

Corollary 42. If E_F is a finite extension, then $Aut_F(E)$ is a finite group.

Proof. Since E_F is a finite extension, by Theorem 5, $E = F(\alpha_1, \ldots, \alpha_n)$ where α_i are algebraic over F for all $1 \le i \le n$. For $\psi \in \operatorname{Aut}_F(E)$, by Lemma 40, $\psi(\alpha_i)$ is a root of the minimal polynomial of α_i . Thus, there are finitely many choices for $\psi(\alpha_i)$. By Lemma 41, since $\psi \in \operatorname{Aut}_F(E)$ is completely determined by $\psi(\alpha_i)$, there are finitely many choices for ψ . Thus, $\operatorname{Aut}_F(E)$ is finite.

Remark. The converse to Corollary 42 is false. For example, $[\mathbb{R} : \mathbb{Q}]$ in infinite, by $\mathrm{Aut}_{\mathbb{Q}}(\mathbb{R}) = \{1\}$.

Definition 7.0.2. Let F be a field and $f(x) \in F[x]$. The Automorphism Group of f(x) over F is defined to be the group $\operatorname{Aut}_F(E)$, where E is the splitting field of f(x) over F[x].

From Assignment 2, we proved that the number of automorphisms is at most [E:F] with equality if and only if f(x) is separable over F, we have the following theorem as a direct consequence.

Theorem 43. Let E_F be the splitting field of a nonzero polynomial $f(x) \in F[x]$. We have $|\operatorname{Aut}_F(E)| \leq [E:F]$ with equality if and only if f(x) is separable.

Example 7.0.3. Let F be a field with $\operatorname{ch}(F) = p$ for some prime p and $F^p \neq F$. Also consider $f(x) = x^p - a$ with $a \in F \setminus F^p$. Let $E_{\nearrow F}$ be the splitting field of f(x). We have seen before that $f(x) = (x - \beta)$ for some $\beta \in E \setminus F$. Thus, $E = F(\beta)$, Since β can only map to β , $\operatorname{Aut}_F(E)$ is trivial. Note that $|\operatorname{Aut}_F(E)| = 1$ but [E : F] = p. We have $|\operatorname{Aut}_F(E)| \neq [E : F]$ because f(x) is not separable.

Theorem 44. If $f(x) \in F[x]$ has n distinct roots in the splitting field E, then $\operatorname{Aut}_F(E)$ is isomorphic to a subgroup of the symmetric group S_n . In particular, $|\operatorname{Aut}_F(E)| | n!$.