INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

DEPARTMENT OF MECHANICAL ENGINEERING ME 674 SOFT COMPUTING

ASSIGNMENT 1: ARTIFICIAL NEURAL NETWORK

SUBMITTED BY: SONU PRIYA

ROLL NO: 214103323

SUBJECT INSTRUCTOR: Prof. SUKHOMAY PAL

CONTENTS:
Flow chart
Training of artificial neural network
Input-target output data
C code
Result

FLOW CHART:

Let us consider no. of input neurons is 3, no. of hidden neurons is 3 and output neurons is 1.

TRAINING OF ARTIFICIAL NEURAL NETWORK

Let us consider 4 input neurons, 3 hidden neurons and 1 output neurons. We will assign the weight between input layer to hidden layer, V and weights between hidden layer to output layer, W. We will then propagate the signal in the forward direction which is called as forward propagation first to get a desired output. Then the desired output is checked with the target output, and we need we to minimise the error if there in the network by performing back-propagation algorithm.

Considering fully connected multi-layer feed forward neural network.

This neural network consists of 3 layers.

Let the transfer function of hidden layer is log-sigmoid and transfer function for output layer is tan-sigmoid.

1. Input to jth hidden neuron.

$$I_{HJ} = \sum_{i=0}^{l} I_i V_{ij}$$

2. Output of the jth hidden neuron

$$O_{hj} = \frac{1}{1 + e^{-a_1 I_{hj}}}$$

3. Inputs of the kth output neuron

$$I_{ok} = \sum_{j=0}^{m} O_{hj} W_{jk}$$

4. Output of the kth output neuron

$$O_{ok} = \frac{e^{-a_2 I_{ok}} - e^{-a_2 I_{ok}}}{e^{-a_2 I_{ok}} + e^{-a_2 I_{ok}}}$$

5. Calculation of error

$$E_k = \frac{1}{2} (T_k - O_{ok})^2$$

here T_k is the target output

After applying all these steps we need to train the neural network using back propagation algorithm. For this we use steepest descent method and we use learning rate as 0.80 where negative gradient of the objective function to be optimised.

INPUT-TARGET OUTPUT DATA:

	kinematic		prandItI	
diameter	viscosity	Velocity	number	Nu(output)
0.1	1.787	50.02	6.901	0.113477029
0.11	1.788	50.04	6.902	0.122459306
0.12	1.789	50.06	6.903	0.131278131
0.13	1.79	50.08	6.904	0.139949665
0.14	1.791	50.1	6.905	0.148487348
0.15	1.792	50.12	6.906	0.15690252
0.16	1.793	50.14	6.907	0.165204867
0.17	1.794	50.16	6.908	0.173402748
0.18	1.795	50.18	6.909	0.181503448
0.19	1.796	50.2	6.91	0.189513365
0.2	1.797	50.22	6.911	0.19743816
0.21	1.798	50.24	6.912	0.205282874
0.22	1.799	50.26	6.913	0.213052022
0.23	1.8	50.28	6.914	0.220749672
0.24	1.801	50.3	6.915	0.228379502
0.25	1.802	50.32	6.916	0.235944856
0.26	1.803	50.34	6.917	0.243448785
0.27	1.804	50.36	6.918	0.250894084

0.28	1.805	50.38	6.919	0.258283319
0.29	1.806	50.4	6.92	0.265618858
0.3	1.807	50.42	6.921	0.272902887
0.31	1.808	50.44	6.922	0.280137437
0.32	1.809	50.46	6.923	0.287324391
0.33	1.81	50.48	6.924	0.294465506
0.34	1.811	50.5	6.925	0.301562422
0.35	1.812	50.52	6.926	0.308616673
0.36	1.813	50.54	6.927	0.315629697
0.37	1.814	50.56	6.928	0.322602845
0.38	1.815	50.58	6.929	0.329537387
0.39	1.816	50.6	6.93	0.336434523
0.4	1.817	50.62	6.931	0.34329538
0.41	1.818	50.64	6.932	0.35012103
0.42	1.819	50.66	6.933	0.356912483
0.43	1.82	50.68	6.934	0.363670698
0.44	1.821	50.7	6.935	0.370396585
0.45	1.822	50.72	6.936	0.37709101
0.46	1.823	50.74	6.937	0.383754795
0.47	1.824	50.76	6.938	0.390388723
0.48	1.825	50.78	6.939	0.396993543
0.49	1.826	50.8	6.94	0.403569967
0.5	1.827	50.82	6.941	0.410118677
0.51	1.828	50.84	6.942	0.416640325
0.52	1.829	50.86	6.943	0.423135533
0.53	1.83	50.88	6.944	0.429604901
0.54	1.831	50.9	6.945	0.436048999
0.55	1.832	50.92	6.946	0.442468379
0.56	1.833	50.94	6.947	0.448863568
0.57	1.834	50.96	6.948	0.455235074
0.58	1.835	50.98	6.949	0.461583383
0.59	1.836	51	6.95	0.467908965

C CODE:

```
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>
#define Max_E pow(10,-6)

int main()
{
```

```
int i,j,k,p; //for iterations
       int L,M,N,P;
       float e, Mean_sq_E;
       float I[100][100],IH[100][100],OH[100][100],IO[100][100],OO[100][100],TO[100][100];
       float V[100][100],W[100][100],del_W[100][100],del_V[100][100];
       float I_min[100],I_max[100],TO_min[100],TO_max[100];
       FILE *IP, *OP 1, *OP 2;
              IP = fopen("IP.txt","r");
              OP_1 = fopen("OP.txt","w");
              OP 2 = fopen("Result.txt","w");
       fscanf(IP,"%d%d%d%d",&P,&L,&M,&N);
       fprintf(OP_2, "Total No of Patterns (P)=%d\n", P);
       fprintf(OP_2,"Total No of Input Neurons (L)=%d\n",L);
       fprintf(OP_2,"Total No of Hidden Neurons (M)=%d\n",M);
       fprintf(OP_2,"Total No of Output Neurons (N)=%d\n",N);
//Scanning & Printing Inputs for Input layer
       for(p=1;p<=P;p++)
       {
```

```
for(i=1;i<=L;i++)
              {
                      fscanf(IP,"%f",&I[i][p]);
              }
       }
       fprintf(OP_2,"\nI matrix of order %dX%d :\n",L,P);
       for(i=1;i<=L;i++)
       {
              for(p=1;p<=P;p++)
              {
                      fprintf(OP_2,"I[%d][%d]=%f\t",i,p,I[i][p]);
              }
              fprintf(OP\_2,"\n");
       }
//Scanning & Printing Target output for Output layer
       fprintf(OP_2,"\nTO matrix of order %dX%d :\n",P,N);
       for(p=1;p<=P;p++)
       {
              for(k=1;k<=N;k++)
```

```
{
                       fscanf(IP,"%f",&TO[k][p]);
                      fprintf(OP_2,"TO[\%d][\%d]:\%f\t",k,p,TO[k][p]);
               }
               fprintf(OP_2,"\n");
       }
//Normalization of Inputs for Input layer
       for(i=1;i<=L;i++)
       {
               I_max[i]=-1000;I_min[i]=1000;
               for(p=1;p<=P;p++)
               {
                       if(I[i][p]>I_max[i])
                       I_max[i]=I[i][p];
                       if(I[i][p] < I\_min[i])
                       I_min[i]=I[i][p];
               }
       }
       for(p=1;p<=P;p++)
       {
```

```
for(i=1;i<=L;i++)
              {
                      I[i][p]=0.1+0.8*((I[i][p]-I_min[i])/(I_max[i]-I_min[i]));
              }
       }
       fprintf(OP_2,"\nNormalized I matrix of order %dX%d :\n",L,P);
       for(i=1;i<=L;i++)
       {
              for(p=1;p<=P;p++)
              {
                     fprintf(OP_2,"%f\t",I[i][p]);
              }
              fprintf(OP_2,"\n");
       }
//Normalization of Target output for Output layer
for(k=1;k<N+1;k++)
       {
              TO_max[k]=-1000;TO_min[k]=1000;
              for(p=1;p<=P;p++)
```

```
{
              if(TO[k][p]>TO_max[k])
              TO_max[k]=TO[k][p];
              if(TO[k][p]<TO_min[k])</pre>
              TO_min[k]=TO[k][p];
       }
}
for(p=1;p<=P;p++)
{
       for(k=1;k<=N;k++)
       {
              TO[k][p]=-0.1+(1.0*((TO[k][p]-TO_min[k])/(TO_max[k]-TO_min[k])));
       }
}
fprintf(OP_2,"\nNormalized TO matrix of order %dX%d :\n",P,N);
for(p=1;p<=P;p++)
{
       for(k=1;k<N+1;k++)
       {
              fprintf(OP\_2,"TO[\%d][\%d]:\%f\t",k,p,TO[k][p]);\\
       }
```

```
fprintf(OP\_2,"\n");
       }
srand(time(NULL));
//Define V
       fprintf(OP\_2, "\nV matrix of order \%dX\%d : \n", L+1, M);
       for(i=0;i<L+1;i++)
       {
               for(j=1;j<=M;j++)
               {
                      if(i==0)
                      {
                             V[i][j]=0;
                      }
                      else
                      {
                             V[i][j]=1.0*rand()/RAND_MAX;
                      }
       }
```

```
for(i=0;i<=L;i++)
       {
              for(j=1;j<=M;j++)
              {
                      fprintf(OP_2,"V[%d][%d]:%f\t",i,j,V[i][j]);
              }
              fprintf(OP_2,"\n");
       }
       fprintf(OP\_2,"\n");
//Define W
       fprintf(OP_2,"\nW matrix of order %dX%d :\n",M+1,N);
       for(j=0;j<M+1;j++)
       {
              for(k=1;k<=N;k++)
              {
                      if(j==0)
                      {
                             W[i][j]=0;
                      }
                      else
                      {
```

```
W[j][k]=1.0*rand()/RAND_MAX;
                     }
             }
       }
       for(j=0;j<M+1;j++)
       {
              for(k=1;k<=N;k++)
              {
                     fprintf(OP\_2,"W[\%d][\%d]:\%f\t",j,k,W[j][k]);
              }
              fprintf(OP_2,"\n");
       }
       int C=1; //C=Counter
//Do-While loop TRAINING of Patterns
       do
       {
              //Calculation for forward pass
              for(p=1;p<=P-5;p++)
              {
```

```
IH[j][p]=0;
       for(j=1;j<M+1;j++)
       {
               for(i=1;i<L+1;i++)
               {
                      IH[j][p]=IH[j][p]+(I[i][p]*V[i][j]);
               }
               IH[j][p]=IH[j][p]+(1.0);
               OH[j][p]=1/(1+exp(-IH[j][p]));
               IH[j][p]=0;
       }
fprintf(OP_1,"\n");
//Calculation for Output of Output layer
for(p=1;p<=P-5;p++)
       IO[k][p]=0;
       for(k=1;k<N+1;k++)
       {
               for(j=1;j<M+1;j++)
               {
                      IO[k][p]=IO[k][p]+OH[j][p]*W[j][k];
```

```
}
                                                                                                                                                                                                                                                                                                                             IO[k][p]=IO[k][p]+1.0;
                                                                                                                                                                                                                                                                                                                             OO[k][p] = (exp(IO[k][p]) - exp(-1*IO[k][p]))/(exp(IO[k][p]) + exp(-1*IO[k][p]) + exp(-1*IO[k][p]))/(exp(IO[k][p]) + exp(-1*IO[k][p]) + exp(-1*IO[
1*IO[k][p]));
                                                                                                                                                                                                                                                                                                                             IO[k][p]=0;
                                                                                                                                                                                                                                               }
                                                                                                                                                               }
                                                                                                                                                             fprintf(OP_1,"\n");
                                                                                                                                                             //Calculations del_W_jk
                                                                                                                                                             for(j=1;j<=M;j++)
                                                                                                                                                               {
                                                                                                                                                                                                                                             for(k=1;k<=N;k++)
                                                                                                                                                                                                                                                {
                                                                                                                                                                                                                                                                                                                             del_W[j][k]=0;
                                                                                                                                                                                                                                                                                                                             for(p=1;p<=P-5;p++)
                                                                                                                                                                                                                                                                                                                             {
                                                                                                                                                                                                                                                                                                                                                                                                              del_{W[j][k]} = del_{W[j][k]} + ((0.5/P)*(TO[k][p]-OO[k][p])*(1-p) + ((0.5/P)*(TO[k][p]-OO[k][p]-OO[k][p])*(1-p) + ((0.5/P)*(TO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][p]-OO[k][
(OO[k][p]*OO[k][p]))*OH[j][p]);
                                                                                                                                                                                                                                                                                                                             }
                                                                                                                                                                                                                                                                                                                             fprintf(OP\_1,"del\_W[\%d][\%d]=\%f\backslash t",j,k,del\_W[j][k]);
                                                                                                                                                                                                                                                }
                                                                                                                                                                                                                                               fprintf(OP_1,"\n");
                                                                                                                                                               }
```

```
fprintf(OP_1,"\n");
               //Calcualtions del_V_ij
               for(i=1;i<=L;i++)
                      for(j=1;j<=M;j++)
                      {
                              del_V[i][j]=0;
                              for(p=1;p<=P-5;p++)
                              {
                                     for(k=1;k<=N;k++)
                                             del_V[i][j]=del_V[i][j]+((0.5/(P*N))*((TO[k][p]-
OO[k][p])*(1-(OO[k][p]*OO[k][p]))*W[j][k]*OH[j][p]*(1-OH[j][p])*I[i][p]));\\
                                     }
                              }
                              fprintf(OP\_1,"del\_V[\%d][\%d]=\%f\t",i,j,del\_V[i][j]);
                      }
                      fprintf(OP_1,"\n");
               }
               //Calcualtion for e
               Mean_sq_E=0;
               for(p=1;p<=P-5;p++)
```

```
{
       for(k=1;k<=N;k++)
       {
               e=pow((TO[k][p]-OO[k][p]),2)/2;
               Mean_sq_E=Mean_sq_E+e;
       }
}
Mean_sq_E=Mean_sq_E/P;
fprintf(OP_1, \nesuremath{"
nMean_sq_E=\%f\tlteration=\%d\n",Mean_sq_E,C);}
//Updating values of Vij
for(i=1;i<=L;i++)
{
       for(j=1;j<=M;j++)
       {
               V[i][j]=V[i][j]+del_V[i][j];
               fprintf(OP_1,"V[\%d][\%d]:\%f\t",i,j,V[i][j]);
       }
       fprintf(OP_1,"\n");
}
fprintf(OP_1,"\n");
//Updating values of Wjk
```

```
for(j=1;j<=M;j++)
       {
               for(k=1;k<=N;k++)
               {
                      W[j][k]=W[j][k]+del_W[j][k];
                      fprintf(OP_1,"W[%d][%d]:%f\t",j,k,W[j][k]);
               }
               fprintf(OP_1,"\n");
       }
printf("\nIteration %d completed",C);
C++;
}while(Mean_sq_E>Max_E);
for(i=1;i<=L;i++)
       {
               for(j=1;j\leq M;j++)
               {
                      fprintf(OP_2,"V[\%d][\%d]:\%f\t",i,j,V[i][j]);
               }
               fprintf(OP_2,"\n");
       }
```

```
fprintf(OP_2,"\n");
       //Updating values of Wjk
       for(j=1;j<=M;j++)
       {
              for(k=1;k<=N;k++)
              {
                      fprintf(OP\_2,"W[\%d][\%d]:\%f\t",j,k,W[j][k]);
               }
              fprintf(OP_2,"\n");
       }
//Pattern Testing
       //Calculation for forward pass
       fprintf(OP_2,"\nForward Pass Calculation Result:");
       for(p=36;p<=40;p++)
       {
               IH[j][p]=0;
              for(j=1;j<M+1;j++)
              {
                      for(i=1;i<L+1;i++)
```

```
{
                               IH[j][p]=IH[j][p]+(I[i][p]*V[i][j]);\\
                       }
                       IH[j][p]=IH[j][p]+1.0;
                       OH[j][p]=1/(1+exp(-IH[j][p]));
fprintf(OP\_2, "\\nIH[\%d][\%d]:\%f\\tOH[\%d][\%d]:\%f",j,p,IH[j][p],j,p,OH[j][p]);\\
                       IH[j][p]=0;
               }
       }
       fprintf(OP_2,"\n\n");
       fprintf(OP_2,"\nOutput of Output layer:");
       //Calculation for Output of Output layer
       for(p=36;p<=40;p++)
       {
               IO[k][p]=0;
               for(k=1;k<N+1;k++)
               {
                       for(j=1;j<=M+1;j++)
                       {
```

```
IO[k][p]=IO[k][p]+OH[j][p]*W[j][k];
                                                                                                                                                                                                      }
                                                                                                                                                                                                        IO[k][p]=IO[k][p]+1.0;
                                                                                                                                                                                                      OO[k][p] = (exp(IO[k][p]) - exp(-1*IO[k][p]))/(exp(IO[k][p]) + exp(-1*IO[k][p]) +
1*IO[k][p]));
                                                fprintf(OP_2,"\nIO[%d][%d]:%f\tOO[%d][%d]:%f\tTO[%d][%d]%f\terror=:%f",k,p,IO[k][p]
,k,p,OO[k][p],k,p,TO[k][p],fabs(OO[k][p]-TO[k][p]));
                                                                                                                                                                                                        IO[k][p]=0;
                                                                                                                                                      }
                                                                                                    }
                                                  fclose(IP);
                                                fclose(OP_1);
                                                fclose(OP_2);
                                                   return 0;
}
```

Result

242754 iteration for convergence rate of order of 10^-4 and the output is as below:

Total No of Patterns (P)=50

Total No of Input Neurons (L)=4

Total No of Hidden Neurons (M)=3

Total No of Output Neurons (N)=1

I matrix of order 4X50:

```
I[1][1]=0.100000
                     I[1][2]=0.110000
                                          I[1][3]=0.120000
                                                               I[1][4]=0.130000
       I[1][5]=0.140000
                            I[1][6]=0.150000
                                                 I[1][7]=0.160000
                                                                      I[1][8]=0.170000
       I[1][9]=0.180000
                            I[1][10]=0.190000
                                                 I[1][11]=0.200000
                                                                      I[1][12]=0.210000
                                                                      I[1][16]=0.250000
       I[1][13]=0.220000
                            I[1][14]=0.230000
                                                 I[1][15]=0.240000
       I[1][17]=0.260000
                            I[1][18]=0.270000
                                                 I[1][19]=0.280000
                                                                      I[1][20]=0.290000
       I[1][21]=0.300000
                            I[1][22]=0.310000
                                                 I[1][23]=0.320000
                                                                      I[1][24]=0.330000
       I[1][25]=0.340000
                            I[1][26]=0.350000
                                                 I[1][27]=0.360000
                                                                      I[1][28]=0.370000
       I[1][29]=0.380000
                            I[1][30]=0.390000
                                                 I[1][31]=0.400000
                                                                      I[1][32]=0.410000
       I[1][33]=0.420000
                            I[1][34]=0.430000
                                                 I[1][35]=0.440000
                                                                      I[1][36]=0.450000
       I[1][37]=0.460000
                            I[1][38]=0.470000
                                                 I[1][39]=0.480000
                                                                      I[1][40]=0.490000
       I[1][41]=0.500000
                            I[1][42]=0.510000
                                                 I[1][43]=0.520000
                                                                      I[1][44]=0.530000
       I[1][45]=0.540000
                            I[1][46]=0.550000
                                                 I[1][47]=0.560000
                                                                      I[1][48]=0.570000
       I[1][49]=0.580000
                            I[1][50]=0.590000
I[2][1]=1.787000
                     I[2][2]=1.788000
                                          I[2][3]=1.789000
                                                               I[2][4]=1.790000
       I[2][5]=1.791000
                            I[2][6]=1.792000
                                                 I[2][7]=1.793000
                                                                      I[2][8]=1.794000
       I[2][9]=1.795000
                            I[2][10]=1.796000
                                                 I[2][11]=1.797000
                                                                      I[2][12]=1.798000
       I[2][13]=1.799000
                            I[2][14]=1.800000
                                                 I[2][15]=1.801000
                                                                      I[2][16]=1.802000
       I[2][17]=1.803000
                                                 I[2][19]=1.805000
                                                                      I[2][20]=1.806000
                            I[2][18]=1.804000
       I[2][21]=1.807000
                            I[2][22]=1.808000
                                                 I[2][23]=1.809000
                                                                      I[2][24]=1.810000
       I[2][25]=1.811000
                            I[2][26]=1.812000
                                                 I[2][27]=1.813000
                                                                      I[2][28]=1.814000
       I[2][29]=1.815000
                            I[2][30]=1.816000
                                                 I[2][31]=1.817000
                                                                      I[2][32]=1.818000
       I[2][33]=1.819000
                            I[2][34]=1.820000
                                                 I[2][35]=1.821000
                                                                      I[2][36]=1.822000
       I[2][37]=1.823000
                            I[2][38]=1.824000
                                                 I[2][39]=1.825000
                                                                      I[2][40]=1.826000
       I[2][41]=1.827000
                            I[2][42]=1.828000
                                                 I[2][43]=1.829000
                                                                      I[2][44]=1.830000
       I[2][45]=1.831000
                            I[2][46]=1.832000
                                                 I[2][47]=1.833000
                                                                      I[2][48]=1.834000
       I[2][49]=1.835000
                            I[2][50]=1.836000
                                                               I[3][4]=50.080002
I[3][1]=50.020000
                     I[3][2]=50.040001
                                          I[3][3]=50.060001
                                                 I[3][7]=50.139999
       I[3][5]=50.099998
                            I[3][6]=50.119999
                                                                      I[3][8]=50.160000
       I[3][9]=50.180000
                            I[3][10]=50.200001
                                                 I[3][11]=50.220001
                                                                      I[3][12]=50.240002
       I[3][13]=50.259998
                            I[3][14]=50.279999
                                                 I[3][15]=50.299999
                                                                      I[3][16]=50.320000
       I[3][17]=50.340000
                            I[3][18]=50.360001
                                                 I[3][19]=50.380001
                                                                      I[3][20]=50.400002
       I[3][21]=50.419998
                            I[3][22]=50.439999
                                                 I[3][23]=50.459999
                                                                      I[3][24]=50.480000
       I[3][25]=50.500000
                            I[3][26]=50.520000
                                                 I[3][27]=50.540001
                                                                      I[3][28]=50.560001
       I[3][29]=50.580002
                            1[3][30]=50.599998
                                                 I[3][31]=50.619999
                                                                      I[3][32]=50.639999
```

I[3][33]=50.660000 I[3][37]=50.740002 I[3][41]=50.820000 I[3][45]=50.900002 I[3][49]=50.980000	I[3][34]=50.680000 I[3][38]=50.759998 I[3][42]=50.840000 I[3][46]=50.919998 I[3][50]=51.000000	I[3][35]=50.700001 I[3][39]=50.779999 I[3][43]=50.860001 I[3][47]=50.939999	I[3][36]=50.720001 I[3][40]=50.799999 I[3][44]=50.880001 I[3][48]=50.959999
I[4][1]=6.901000 I[4][2]	=6.902000 I[4][3]	=6.903000	=6.904000
I[4][5]=6.905000	I[4][6]=6.906000	I[4][7]=6.907000	I[4][8]=6.908000
1[4][9]=6.909000	I[4][10]=6.910000	I[4][11]=6.911000	I[4][12]=6.912000
I[4][13]=6.913000	I[4][14]=6.914000	I[4][15]=6.915000	I[4][16]=6.916000
I[4][17]=6.917000	I[4][18]=6.918000	I[4][19]=6.919000	I[4][20]=6.920000
I[4][21]=6.921000	I[4][22]=6.922000	I[4][23]=6.923000	I[4][24]=6.924000
I[4][25]=6.925000	I[4][26]=6.926000	I[4][27]=6.927000	I[4][28]=6.928000
I[4][29]=6.929000	I[4][30]=6.930000	I[4][31]=6.931000	I[4][32]=6.932000
I[4][33]=6.933000	I[4][34]=6.934000	I[4][35]=6.935000	I[4][36]=6.936000
I[4][37]=6.937000	I[4][38]=6.938000	I[4][39]=6.939000	I[4][40]=6.940000
I[4][41]=6.941000	I[4][42]=6.942000	I[4][43]=6.943000	I[4][44]=6.944000
I[4][45]=6.945000	I[4][46]=6.946000	I[4][47]=6.947000	I[4][48]=6.948000
1[4][49]=6.949000	I[4][50]=6.950000		

TO matrix of order 50X1:

TO[1][1]:0.113477

TO[1][2]:0.122459

TO[1][3]:0.131278

TO[1][4]:0.139950

TO[1][5]:0.148487

TO[1][6]:0.156903

TO[1][7]:0.165205

TO[1][8]:0.173403

TO[1][9]:0.181503

TO[1][10]:0.189513

TO[1][11]:0.197438

TO[1][12]:0.205283

TO[1][13]:0.213052

TO[1][14]:0.220750

TO[1][15]:0.228380

TO[1][16]:0.235945

TO[1][17]:0.243449

TO[1][18]:0.250894

TO[1][19]:0.258283

TO[1][20]:0.265619

TO[1][21]:0.272903

TO[1][22]:0.280137

TO[1][23]:0.287324

TO[1][24]:0.294466

TO[1][25]:0.301562

TO[1][26]:0.308617

TO[1][27]:0.315630

TO[1][28]:0.322603

TO[1][29]:0.329537

TO[1][30]:0.336435

TO[1][31]:0.343295

TO[1][32]:0.350121

TO[1][33]:0.356912

TO[1][34]:0.363671

TO[1][35]:0.370397

TO[1][36]:0.377091

TO[1][37]:0.383755

TO[1][38]:0.390389

TO[1][39]:0.396994

TO[1][40]:0.403570

TO[1][41]:0.410119

TO[1][42]:0.416640

TO[1][43]:0.423136

TO[1][44]:0.429605

TO[1][45]:0.436049

TO[1][46]:0.442468

TO[1][47]:0.448864

TO[1][48]:0.455235

TO[1][49]:0.461583

TO[1][50]:0.467909

Normalized I matrix of order 4X50:

0.100000	0.116327	0.13265	3 0.1489	80 0.1653	06 0.1816	33
0.19	7959 0.2	214286 (0.230612	0.246939	0.263265	0.279592
0.29	5918 0.3	312245 (0.328571	0.344898	0.361224	0.377551
0.39	3878 0.4	110204 (0.426531	0.442857	0.459184	0.475510
0.49	1837 0.5	508163 (0.524490	0.540816	0.557143	0.573469
0.58	9796 0.6	506122 (0.622449	0.638776	0.655102	0.671429
0.68	7755 0.7	704082 (0.720408	0.736735	0.753061	0.769388
0.78	5714 0.8	302041 (0.818367	0.834694	0.851020	0.867347
0.88	3673 0.9	900000				

0.100000	0.116327	0.1326	655	0.1489	980	0.1653	07	0.1816	534
0.19	7960 0.2	14287	0.230	612	0.2469	940	0.2632	267	0.279592
0.29	5920 0.3	12245	0.328	572	0.3449	900	0.3612	225	0.377552
0.39	3878 0.4	10205	0.426	532	0.4428	357	0.4591	185	0.475510
0.49	1837 0.5	08165	0.524	490	0.5408	317	0.5572	145	0.573470
0.58	9797 0.6	06122	0.622	450	0.6387	777	0.6551	102	0.671430
0.68	37755 0.7	04082	0.720	410	0.7367	735	0.7530	062	0.769388
0.78	35715 0.8	02042	0.8183	367	0.8346	595	0.8510	020	0.867347
0.88	33675 0.9	00000							
0.100000	0.116327	0.1326	654	0.1489	981	0.1653	805	0.1816	531
0.19	7958 0.2	14285	0.230	612	0.2469	939	0.2632	266	0.279593
0.29	5917 0.3	12244	0.328	571	0.3448	397	0.3612	224	0.377551
0.39	3878 0.4	10205	0.426	529	0.4428	356	0.4591	183	0.475510
0.49	1837 0.5	08163	0.524	490	0.5408	317	0.5572	144	0.573468
0.58	9795 0.6	06122	0.622	449	0.6387	776	0.6551	103	0.671429
0.68	37756 0.7	04080	0.720	407	0.7367	734	0.7530	061	0.769388
0.78	35715 0.8	02042	0.8183	369	0.8346	592	0.8510	019	0.867346
0.88	33673 0.9	00000							
0.100000	0.116325	0.1326	651	0.1489	976	0.1653	809	0.1816	535
0.19	7960 0.2	14286	0.230	611	0.2469	937	0.2632	262	0.279595
0.29	5921 0.3	12246	0.328	571	0.3448	397	0.3612	222	0.377555
0.39	3881 0.4	10206	0.426	532	0.4428	357	0.4591	183	0.475508
0.49	1841 0.5	08167	0.524	492	0.5408	317	0.5572	143	0.573468
0.58	9801 0.6	06127	0.622	452	0.6387	778	0.6551	103	0.671429
0.68	37754 0.7	04087	0.720	413	0.7367	738	0.7530	063	0.769389
0.78	35714 0.8	02040	0.8183	373	0.8346	598	0.8510	024	0.867349
0.88	3675 0.9	00000							

Normalized TO matrix of order 50X1:

TO[1][1]:-0.100000

TO[1][2]:-0.074657

TO[1][3]:-0.049776

TO[1][4]:-0.025310

TO[1][5]:-0.001221

TO[1][6]:0.022521

TO[1][7]:0.045946

TO[1][8]:0.069075

TO[1][9]:0.091931

TO[1][10]:0.114530

TO[1][11]:0.136889

TO[1][12]:0.159022

TO[1][13]:0.180942

TO[1][14]:0.202661

TO[1][15]:0.224188

TO[1][16]:0.245533

TO[1][17]:0.266704

TO[1][18]:0.287711

TO[1][19]:0.308559

TO[1][20]:0.329255

TO[1][21]:0.349807

TO[1][22]:0.370218

TO[1][23]:0.390496

TO[1][24]:0.410644

TO[1][25]:0.430667

TO[1][26]:0.450570

TO[1][27]:0.470357

TO[1][28]:0.490031

TO[1][29]:0.509596 TO[1][30]:0.529056 TO[1][31]:0.548413 TO[1][32]:0.567671 TO[1][33]:0.586833 TO[1][34]:0.605900 TO[1][35]:0.624877 TO[1][36]:0.643765 TO[1][37]:0.662566 TO[1][38]:0.681283 TO[1][39]:0.699918 TO[1][40]:0.718473 TO[1][41]:0.736949 TO[1][42]:0.755350 TO[1][43]:0.773675 TO[1][44]:0.791928 TO[1][45]:0.810110 TO[1][46]:0.828221 TO[1][47]:0.846265 TO[1][48]:0.864242 TO[1][49]:0.882153 TO[1][50]:0.900000

V matrix of order 5X3:

V[0][1]:0.000000	V[0][2]:0.000000	V[0][3]:0.000000
V[1][1]:0.990356	V[1][2]:0.154515	V[1][3]:0.430708
V[2][1]:0.012482	V[2][2]:0.387127	V[2][3]:0.349956
V[3][1]:0.360851	V[3][2]:0.650838	V[3][3]:0.249916
V[4][1]:0.234626	V[4][2]:0.867702	V[4][3]:0.907529

W matrix of order 4X1:

W[0][1]:0.000000

W[1][1]:0.369152

W[2][1]:0.547166

W[3][1]:0.905759

V[1][1]:0.240079 V[1][2]:-0.347375 V[1][3]:-0.041741 V[2][1]:-0.738050 V[2][2]:-0.114859 V[2][3]:-0.122488 V[3][1]:-0.389706 V[3][2]:0.148844 V[3][3]:-0.222497

V[4][1]:-0.515534 V[4][2]:0.365768 V[4][3]:0.435017

W[1][1]:-4.525525

W[2][1]:1.191946

W[3][1]:1.649294

Forward Pass Calculation Result:

IH[1][36]:0.057843 OH[1][36]:0.514457

IH[2][36]:1.035169 OH[2][36]:0.737917

IH[3][36]:1.032423	OH[3][36]:0.737385
IH[1][37]:0.034935	OH[1][37]:0.508733
IH[2][37]:1.036024	OH[2][37]:0.738082
IH[3][37]:1.033211	OH[3][37]:0.737538
IH[1][38]:0.012022	OH[1][38]:0.503006
IH[2][38]:1.036881	OH[2][38]:0.738248
IH[3][38]:1.034003	OH[3][38]:0.737691
IH[1][39]:-0.010887	OH[1][39]:0.497278
IH[2][39]:1.037735	OH[2][39]:0.738413
IH[3][39]:1.034791	OH[3][39]:0.737844
IH[1][40]:-0.033796	OH[1][40]:0.491552
IH[2][40]:1.038590	OH[2][40]:0.738578
IH[3][40]:1.035579	OH[3][40]:0.737996

Output of Output layer:

error=:0.001729	TO[1][36]0.643765	OO[1][36]:0.645494	IO[1][36]:0.767535
error=:0.001960	TO[1][37]0.662566	OO[1][37]:0.660606	IO[1][37]:0.793888
error=:0.006073	TO[1][38]0.681283	OO[1][38]:0.675210	IO[1][38]:0.820257
error=:0.010616	TO[1][39]0.699918	OO[1][39]:0.689302	IO[1][39]:0.846624
error=:0.015584	TO[1][40]0.718473	OO[1][40]:0.702889	IO[1][40]:0.872987

CONCLUSION:

THE ERROR IS APPROXIMATELY 0.01% for convergence of 10^-4, the error will minimise if we change the convergence rate to 10^-6. Here it is taking too long time to converge for 10^-6. So we use convergence rate of order of 10^-4.

