Problemas associados a Equações Diferenciais Parciais de segunda ordem do tipo Elíptico

Daniel Morales

Universidade Federal de São Paulo

26 de Novembro 2019

Estrutura

- 1 Exposição do problema
- 2 Conceitos fundamentais
- 3 Solução do problema

Exposição do problema Notação

• Vamos denotar, em \mathbb{R}^2 , por Δ o operador

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

• Seja $g \in L^{\infty}(\mathbb{R})$ uma função T-períodica com

$$0 < g_0 \le g(x) \le g_1$$

quase sempre para $x \in \mathbb{R}$ e denotemos por M(g) o valor medio de g sobre (0,T).

• Defina-se por ω_{ϵ} o conjunto

$$\left\{(x,y)\in R^2: 0\leq x\leq 1, 0\leq y<\epsilon g(\frac{x}{\epsilon})\right\}.$$

Exposição do problema Hipótesis

• Seja $f \in H^1(\Omega)$ e para $\epsilon \in (0, \epsilon_0]$, considere uma família de funções V_{ϵ} que satisfaz

$$\frac{1}{\epsilon} \int_{\omega_{\epsilon}} |V_{\epsilon}|^2 \le C,$$

por alguma constante C > 0 independente de ϵ .

• Se houver uma função $V_0 \in L^2(\Omega)$ tal que

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\omega_{\epsilon}} V_{\epsilon} \phi = \int_{\Gamma} V_{0} \phi,$$

para toda $\phi \in H^1(\Omega)$ então, existe $\lambda_0 \geq 0$ independente de ϵ para o qual sim $\lambda \geq \lambda_0$ as soluções do problema

Exposição do problema

Teorema (Aragao, Pereira, Pereira)

$$\begin{cases}
-\Delta u_{\epsilon} + \lambda u_{\epsilon} + \frac{1}{\epsilon} \chi_{\omega_{\epsilon}} V_{\epsilon} u_{\epsilon} = \frac{1}{\epsilon} \chi_{\omega_{\epsilon}} f, & \Omega \\
\frac{\partial u_{\epsilon}}{\partial n} = 0 & \partial \Omega
\end{cases}$$
(1)

convergen em $H^1(\Omega)$ para a única solução do problema

$$\begin{cases}
-\Delta u_0 + \lambda u_0 = 0, & \Omega \\
\frac{\partial u_0}{\partial n} + V_0 u_0 = M(g)f, & \Gamma \\
\frac{\partial u_0}{\partial n} = 0, & \partial\Omega \setminus \Gamma
\end{cases}$$
(2)

Exposição do problema Notação

Nesta palestra, vamos olhar as soluções do seguinte problema

Problema

$$\begin{cases}
-\Delta u_{\epsilon} + u_{\epsilon} = \frac{1}{\epsilon} \chi_{\omega_{\epsilon}}, & \Omega \\
\frac{\partial u_{\epsilon}}{\partial n} = 0 & \partial \Omega
\end{cases}$$
(3)

para diferentes valores do ϵ , e considerando g = |sin(x)|, olhar o comportamiento das soluções quando ϵ tende a 0.

Exemplo

 $\epsilon=1$ vs. Problema Límite

FIGURE – $\epsilon = 1$

Exemplo

Diversos valores de ϵ

FIGURE - Convergência

Conceptos fundamentales

Equações diferenciais parciais de segunda ordem

EDP de segunda ordem

Dado um aberto $U \subset \mathbb{R}^n$ uma expressão com a forma

$$F(D^{2}u(x), Du(x), u(x), x) = 0, (4)$$

é chamado de EDP de segunda ordem, onde

$$F: \mathbb{R}^{n^2} \times \mathbb{R}^n \times \mathbb{R} \times U \to \mathbb{R}$$

é dada e

$$u:U\to\mathbb{R}$$

é desconhecida.

Conceitos fundamentais

EDP linear de segunda ordem

A equação (4) é chamada linear se tiver a forma

$$\sum_{|\alpha| \le 2} a_{\alpha}(x) D^{\alpha} u = f(x)$$

onde as funções a_{α}, f são dadas. Se $f \equiv 0$, essa equação linear é chamada homogênea.

Conceitos fundamentais

Espaços Sobolev

Derivadas fracas

Sejam $u,v\in L^1_{loc}(U)$ e α um multi-índice Diremos que $v\in L^1_{loc}(U)$ é a α -ésima derivada parcial fraca de u se para todas as funções $\phi\in C^\infty_c(U)$ u satisfaz

$$\int_{U} u D^{\alpha} \phi dx = (-1)^{|\alpha|} \int_{U} v \phi dx.$$

Conceitos fundamentais

Espaços Sobolev

Definição

Fixado $p \in [1, \infty]$ diremos que o espaço Sobolev

$$W^{k,p}(U)$$

consiste em todas as funções localmente sumável $u: U \to \mathbb{R}$ tais que para cada multi-índice α , com $|\alpha| \leq k$, $D^{\alpha}u$ existe no sentido fraco e pertence a L^p .

Paso 1 : Uso do Teorema de Lax Milgram

• Se houvesse funções u_{ϵ}, u_0 soluções para problemas os (3),(2) para todas as funções $v \in H^1(\Omega)$ estas satisfazem :

$$\int_{\Omega} \nabla u_{\epsilon} \nabla v + \int_{\Omega} u_{\epsilon} v = \frac{1}{\epsilon} \int_{\omega_{\epsilon}} f v$$

$$\int_{\Omega} \nabla u_0 \nabla v + \int_{\Omega} u_0 v = M(g) \int_{\Gamma} f v$$

•

Paso 1 : Uso do Teorema de Lax Milgram

• Se houvesse funções u_{ϵ}, u_0 soluções para problemas os (3),(2) para todas as funções $v \in H^1(\Omega)$ estas satisfazem :

$$\int_{\Omega} \nabla u_{\epsilon} \nabla v + \int_{\Omega} u_{\epsilon} v = \frac{1}{\epsilon} \int_{\omega_{\epsilon}} f v$$

$$\int_{\Omega} \nabla u_0 \nabla v + \int_{\Omega} u_0 v = M(g) \int_{\Gamma} f v$$

•

Paso 1 : Uso do Teorema de Lax Milgram

• Se houvesse funções u_{ϵ}, u_0 soluções para problemas os (3),(2) para todas as funções $v \in H^1(\Omega)$ estas satisfazem :

$$\int_{\Omega} \nabla u_{\epsilon} \nabla v + \int_{\Omega} u_{\epsilon} v = \frac{1}{\epsilon} \int_{\omega_{\epsilon}} f v$$

$$\int_{\Omega} \nabla u_0 \nabla v + \int_{\Omega} u_0 v = M(g) \int_{\Gamma} f v$$

Paso 1

Teorema(Lax-Milgram)

Seja H um espaço de Hilbert real e suponha que exista uma forma bilinear $B:H\times H\to \mathbb{R}$ para a qual existem constantes $\alpha,\beta>0$ tais que

Se $f:H\to\mathbb{R}$ é um funcional linear delimitado em H então existe apenas um único elemento $u\in H$ tal que para todo $v\in H$

$$B[u,v] = \int fv.$$

Paso 1

Agora, defina as seguintes formas bilineares:

$$a_{\epsilon}(u_{\epsilon}, v) = \int_{\Omega} \nabla u_{\epsilon} \nabla v + \int_{\Omega} u_{\epsilon} v, \tag{5}$$

$$a_0(u,v) = \int_{\Omega} \nabla u_0 \nabla v + \int_{\Omega} uv \tag{6}$$

Paso 1

• Para a primeira forma bilinear podemos considerar, para $u_{\epsilon} \in H^1(\Omega)$, a seguinte igualdade

$$a_{\epsilon}(u_{\epsilon}, u_{\epsilon}) = \|u_{\epsilon}\|_{H^{1}(\Omega)}^{2}.$$

Por tanto, $a_{\epsilon}(u_{\epsilon}, u_{\epsilon})$ é coerciva.

Paso 2 : Mostrar que $\{u_{\epsilon}\}$ é uniformemente limitada em $H^1(\Omega)$ em relação à ϵ .

Observe que, pela equação (5), temos

$$a_{\epsilon}(u_{\epsilon}, u_{\epsilon}) = \frac{1}{\epsilon} \int_{\Omega} f u_{\epsilon}.$$

Então, usando o seguinte lema

Lema

Suponha que $f \in H^1(\Omega)$ então existe C > 0, independente de ϵ , tal que

$$\frac{1}{\epsilon} \int_{\Omega} |f|^2 \le C.$$

nós podemos garantir que

Paso 2

$$a_{\epsilon}(u_{\epsilon}, u_{\epsilon}) \le \left(\frac{1}{\epsilon} \int_{\Omega} |f|^2\right)^{\frac{1}{2}} \left(\frac{1}{\epsilon} \int_{\Omega} |u_{\epsilon}|^2\right)^{\frac{1}{2}} \le C \|u_{\epsilon}\|_{H^1(\Omega)}.$$

Então, usando o resultado final da etapa anterior, garantimos que existe C>0 tal que

$$||a_{\epsilon}(u_{\epsilon}, u_{\epsilon})||_{H^{1}(\Omega)} \leq C,$$

para todo $\epsilon \in [0, \epsilon_0]$.

Paso 2

Assim,

- Há uma subcessão, que iremos denotar u_{ϵ} tal que converge para $u \in H^1(\Omega)$ quando ϵ tende a 0.
- Como existe uma imersão compacta de $H^1(\Omega)$ em $H^s(\Omega)$ para s < 1 temos que

$$u_{\epsilon} \to u$$

quando ϵ tende a 0 em $H^s(\Omega)$.

Paso 3 : Vamos mostrar que $u = u_0$

Agora,

$$\lim_{\epsilon \to 0} \int_{\Omega} \nabla u_{\epsilon} \nabla v = \int_{\Omega} \nabla u \nabla v,$$

para toda função $v \in H^1(\Omega)$.

Além disso, podemos afirmar que

$$\lim_{\epsilon \to 0} \int_{\Omega} u_{\epsilon} v = \int_{\Omega} u v$$

para tuda função $v \in H^1(\Omega)$.

Paso 3

Lema 3

Seja f uma função suave no fechamento de Ω . Então :

 \bullet Para tuda função ϕ suave, definida no fechamento de $\Omega,$ temos que

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\omega_{\epsilon}} f\phi = M(g) \int_{\Gamma} f\phi.$$

2 Se $u_{\epsilon} \to u_0$ en $H^1(\Omega)$ quando $\epsilon \to 0$ então

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\omega_{\epsilon}} u_{\epsilon} \phi = M(g) \int_{\Gamma} u_{0} \phi.$$

Paso 4 : u_{ϵ} tende a u_0 en $H^1(\Omega)$ quando ϵ tende a 0

Sendo $H^1(\Omega)$ uniformemente convexo, basta considerar a convergência na norma.

• A partir do segundo passo, temos que

$$||u_{\epsilon}||_{L^2(\Omega)} \to ||u_0||_{L^2(\Omega)},$$

quando ϵ tende a 0.

• Como ∇u_{ϵ} converge em $L^2(\Omega)$ a ∇u_0 quando ϵ tende a 0 então

$$\|\nabla u_0\|_{L^2(\Omega)} \leq \liminf_{\epsilon \to 0} \|\nabla u_\epsilon\|_{L^2(\Omega)} \leq \limsup_{\epsilon \to 0} \|\nabla u_\epsilon\|_{L^2(\Omega)}.$$

Paso 4

Considerando a equação $a(u_{\epsilon}, u_{\epsilon}) = \frac{1}{\epsilon} \int_{\omega_{\epsilon}} f u_{\epsilon}$, temos que

$$\limsup_{\epsilon \to 0} \|\nabla u_{\epsilon}\|_{L^{2}(\Omega)} = \limsup_{\epsilon \to 0} \left(\frac{1}{\epsilon} \int_{\omega_{\epsilon}} f u_{\epsilon} - \int_{\Omega} |u_{\epsilon}|^{2}\right)^{\frac{1}{2}}.$$

Logo,

$$||u_{\epsilon}||_{H^1(\Omega)} \to ||u_0||_{H^1(\Omega)}$$

quando ϵ tende a 0.