Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2. (Du skal altså *ikk*e levere inn selve eksamensoppgaven med oppgaveteksten.)

Oppgave 1

a) Uorganisk analyse

Du fordeler en kald løsning med oppløste salter på to reagensrør. Til det ene reagensrøret tilsetter du litt HCl(aq). Det blir ingen felling. Til det andre tilsetter du litt $H_2SO_4(aq)$. Det blir en hvit felling.

Hvilken av disse saltblandingene kan befinne seg i løsningen?

- A. $NiCl_2$ og $Cu(NO_3)_2$
- B. Pb(NO₃)₂ og BaCl₂
- C. BaCl₂ og CaCl₂
- D. $Ca(NO_3)_2$ og $Pb(NO_3)_2$

b) Kolorimetri

Kolorimetrisk analyse er en metode som egner seg godt for å finne

- A. nitratinnhold i en jordprøve
- B. pH i en saltsyreløsning
- C. konsentrasjonen av etanol i en vannløsning
- D. bufferkapasiteten til en vannprøve

c) Buffer

Hvilket av stoffene kan gi en buffer sammen med HCI?

- A. NH₄Cl
- B. NaOH
- C. NaNO₂
- D. NaNO₃

d) Buffer

Du har en eddiksyre/acetat-buffer med pH = 4,7. Hvordan vil bufferen endres ved tilsetning av noen dråper HCI?

- A. Det skjer ingen endringer.
- B. Kapasiteten mot sur side øker.
- C. $[H_3O^+]$ øker.
- D. pH øker.

e) Organisk analyse

Figur 1 viser fire forbindelser A-D.

Figur 1

Hvilken forbindelse vil reagere med 2,4-dinitrofenylhydrazin?

- A. forbindelse A
- B. forbindelse B
- C. forbindelse C
- D. forbindelse D

f) Organisk analyse

Vannløselige aldehyder reagerer med Fehlings væske. Fehlings væske inneholder Cu²⁺-ioner. Reaksjonen foregår ved høy pH. I denne reaksjonen blir det dannet et rødt bunnfall av Cu₂O, en karboksylsyre og vann.

Hva er oksidasjonsmiddelet i reaksjonen mellom Fehlings væske og et vannløselig aldehyd?

- A. Cu²⁺-ioner
- B. aldehydet
- C. Cu_2O
- D. hydroksidioner, OH-

g) Omkrystallisering

En reaksjonsblanding inneholder adipinsyre, vann, MnO₂, Mn²⁺ og SO₄²⁻. Reaksjonsblandingen blir varmet opp til kokepunktet og filtrert med en gang. Hva inneholder filtratet (løsningen som har rent gjennom filteret)?

Bruk informasjonen i tabell 1.

Tabell 1. Løselighet i vann ved ulike temperaturer

Forbindelse	Kjemisk formel	Løselighet i vann, g/L Verdiene er anslag
Mangan(II)sulfat	MnSO ₄	Kaldt vann: 52 Varmt vann: 70
Mangan(IV)oksid	MnO ₂	Uløselig
Adipinsyre	HOOC(CH ₂) ₄ COOH	Kaldt vann: 1 Varmt vann: 160

- A. bare adipinsyre og vann
- B. bare vann, Mn²⁺ og SO₄²⁻
- C. Mn^{2+} , SO_4^{2-} , vann og adipinsyre
- D. vann, MnO_2 , Mn^{2+} og SO_4^{2-}

h) Aminosyrer

Figur 2 viser et tetrapeptid. Hva er R-gruppen i den tredje aminosyren regnet fra N-terminalen (NH₂-gruppen på venstre side)?

- A. -H
- B. -CH₂OH
- C. -COOH
- D. -CH(CH₃)OH

Figur 2

Figur 3 viser strukturformelen til hjertemedisinen digoxin.

Figur 3

Ved hydrolyse av digoxin blir det avspaltet tre molekyler av sukkerarten digitoxose.

Hva er den kjemiske formelen til digitoxose?

- A. C₆H₁₁O₃
- B. C₆H₁₂O₃
- C. $C_6H_{11}O_4$
- D. $C_6H_{12}O_4$

j) Isomeri

Figur 4 viser forbindelsen limonen. Ett eller flere karbonatomer i limonen har speilbildeisomeri, det vil si at de er kirale.

Hvilket eller hvilke av karbonatomene som er merket i figur 4, er kiral(e)?

- A. bare B
- B. A og B
- C. Bog C
- D. A, B og C

Figur 4

k) Enzymer

Nedenfor er det tre påstander om enzymkatalyserte reaksjoner.

- i) I likevektsreaksjoner innstiller likevekten seg raskere med enzymer enn uten.
- ii) Bruk av enzymer senker aktiveringsenergien.
- iii) Enzymer blir ikke brukt opp.

Hvor mange av påstandene er riktige?

- A. alle tre
- B. to
- C. en
- D. ingen

Du skal bruke figur 5 både i oppgave I) og i oppgave m).

Figur 5 viser omdanning av pyruvat til etanol i en type organismer.

Figur 5

I) Enzymer

Nedenfor er det to påstander om de to enzymene i figur 5.

- i) Enzym 1 er en isomerase.
- ii) Enzym 2 er en reduktase.

Hvilken eller hvilke av påstandene er riktig(e)?

- A. ingen
- B. bare i)
- C. bare ii)
- D. begge to

m) Enzymer

Hva er A og B i figur 5?

- A. A er H_2 og B er NADH + H^+ .
- B. A er H_2O og B er NAD^+ .
- C. A er CO_2 og B er NAD^+ .
- D. A er CO_2 og B er NADH + H⁺.

n) Forbrenning

Hva er den balanserte reaksjonslikningen for ufullstendig forbrenning av pentan?

- A. $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$
- B. $C_5H_{10} + 5O_2 \rightarrow 5CO + 5H_2O$
- C. $C_5H_{12} + 6O_2 \rightarrow 5CO + 6H_2O$
- D. $2C_5H_{12} + 11O_2 \rightarrow 10CO + 12H_2O$

o) Redoksreaksjon

Hvilken reaksjonslikning viser oksidasjon av klor?

- A. $Cl_2 + H_2 \rightarrow 2HCl$
- B. $MgCl_2 \rightarrow Mg + Cl_2$
- C. $2NaOCI \rightarrow 2NaCI + O_2$
- D. $HCl + AgNO_3 \rightarrow AgCl + HNO_3$

p) Oksidasjonstall

Figur 6 viser melkesyre.

Hva er summen av oksidasjonstallene til karbon i melkesyre?

- A. -1
- B. 0
- C. +4
- D +8

Figur 6

q) Oksidasjonstall

I hvilken forbindelse har krom oksidasjonstall +III?

- A. $K_2Cr_2O_7$
- B. K₂CrO₄
- C. $K_3Cr(OH)_6$
- D. CrO₅

r) Polymerer

Figur 7 viser 4 ulike forbindelser A-D.

Figur 7

Hvilken forbindelse kan ikke danne en polymer alene?

- A. forbindelse A
- B. forbindelse B
- C. forbindelse C
- D. forbindelse D

s) Korrosjon

Du har to skåler merket 1 og 2. I skål 1 er det en bit kobber med jerntråd rundt, i skål 2 er det en bit sink med jerntråd rundt (se figur 8).

Figur 8

Nedenfor er det to påstander:

- i) Kobber beskytter jern mot korrosjon.
- ii) Sink beskytter jern mot korrosjon.

Er noen av påstandene riktige?

- A. Ja, begge påstandene.
- B. Ja, men bare påstand i).
- C. Ja, men bare påstand ii).
- D. Nei, ingen av påstandene.

t) Elektrolyse

Figur 9 viser et oppsett for elektrolyse av kobberkloridløsning, CuCl₂(aq). I elektrolysekaret er det kobberioner og kloridioner.

Nedenfor er det to påstander om denne elektrolysen.

- i) Ved elektrode A skjer det en oksidasjon av kloridioner.
- ii) Ved elektrode B skjer denne halvreaksjonen:
 Cu → Cu²⁺ + 2e⁻

Er noen av påstandene riktige?

- A. Ja, begge påstandene.
- B. Ja, men bare påstand i).
- C. Ja, men bare påstand ii).
- D. Nei, ingen av påstandene.

Figur 9

Oppgave 2

Oppgave 2 inneholder tre deloppgaver (a, b og c).

- a) Denne oppgaven handler om organiske reaksjoner.
- 1) Hvilken reaksjonstype er vist i figur 10? Hvilket reagens kan du bruke for å påvise produktet?

Figur 10

2) Ved eliminasjon av vann fra 3-metylsyklopentanol kan det dannes to ulike organiske produkter. I figur 11 er det ene produktet vist. Tegn strukturformel til det andre organiske produktet. Forklar hvorfor denne reaksjonen kan gi to ulike organiske produkter.

$$HO \longrightarrow CH_3 \longrightarrow H_2O$$

Eliminasjon av vann

Figur 11

3) Figur 12 viser en reaksjon som blir katalysert av konsentrert svovelsyre, H_2SO_4 . Hva slags type reaksjon er dette? Tegn strukturformel til det organiske produktet som blir dannet i reaksjonen.

Figur 12

b) Denne oppgaven handler om organisk analyse.

På en fagdag besøkte elevene universitetet for å analysere organiske stoffer i en væskeblanding. Elevene hadde fått en liste med organiske stoffer, alle med fem karbonatomer. De fikk vite at de to stoffene i væskeblandingen var å finne på denne lista:

pentan-1-ol pentan-2-ol pentanal pentan-2-on pentan-3-on pentansyre metylbutanat

Elevene destillerte væskeblandingen. De fikk to fraksjoner med kokepunkt 95–105 °C (fraksjon 1) og 115–125 °C (fraksjon 2).

- 1) Forklar hvilket stoff som må være i **fraksjon 2**. Hvilket påvisningsreagens vil reagere med denne forbindelsen?
- 2) Stoffet i **fraksjon 1** reagerte med 2,4-dinitrofenylhydrazin, men ikke med Tollens reagens. Hvilke av stoffene i lista kan være i **fraksjon 1**?
- 3) Figur 13 viser et forenklet ¹H-NMR-spekter til forbindelsen i **fraksjon 1**. Hvilket stoff var i **fraksjon 1**?

c) Denne oppgaven handler om kolorimetri.

Vi kan bruke kolorimetri til å finne konsentrasjonen av kobberioner i vann. Ved lave konsentrasjoner tilsetter vi cuprizon, som i basisk miljø danner et blått kompleks med Cu^{2+} - ioner.

1) Forklar hvorfor vi tilsetter cuprizon ved lav konsentrasjon av kobberioner.

En klasse skulle gjennomføre en kolorimetrisk analyse av kobberioner i vann fra vannkrana. Elevene laget fire standardløsninger og en blindprøve (se figur 14).

Figur 14

2) Forklar hvordan elevene kan finne den omtrentlige konsentrasjonen av kobberioner i vannet fra vannkrana uten å bruke instrument (kolorimeter).

Elevene brukte et kolorimeter til å sette opp standardkurven, se figur 15.

3) Absorbansen til vannet fra vannkrana ble målt til å være 0,55. Bestem konsentrasjonen av kobberioner ved å avlese fra grafen. Oppgi svaret i mg/L.

Del 2

Oppgave 3

Et av de første batteriene som ble brukt i elbiler, allerede tidlig på 1900-tallet, var nikkel-jern-batteriet. Batteriet er oppladbart. Dette batteriet er oppkalt etter oppfinneren T. A. Edison.

Vi kan lage et enkelt Edison-batteri ved å plassere en nikkelplate og en jernplate med en isolator mellom i en løsning med kaliumhydroksid, KOH, se figur 16.

a) Hvilken funksjon har KOH i denne løsningen?

Halvreaksjonene, skrevet som reduksjoner, skrives slik:

Figur 16

Fe(OH)₂(s) + 2e⁻
$$\rightarrow$$
 Fe(s) + 2OH⁻(aq) E° = -0,88 V
NiO(OH)(s) + H₂O(I) + e⁻ \rightarrow Ni(OH)₂(s) + OH⁻(aq) E° = 0,52 V

- b) Beregn cellepotensial for den spontane reaksjonen i dette batteriet.
- c) Forklar hva som skjer ved elektrodene A og B i et Edison-batteri som leverer elektrisk strøm, og forklar hva som skjer ved elektrodene C og D i et Edison-batteri som blir ladet opp, se figur 17. Bruk reaksjonslikninger i forklaringen.
 Pilene i figur 17 viser retningen som elektronene beveger seg i.

Batteriet leverer strøm

Batteriet blir oppladet

Figur 17

d) Batterikapasiteten til et Edison-batteri er 1250 Ah. Beregn massen til jern i batteriet.

En skoleklasse ønsket å lage et enkelt Edison-batteri. Elevene fant fram noe de trodde var rent jern. For å undersøke om det virkelig var jern, løste de opp en liten bit med masse 0,50 g i svovelsyre. Elevene fortynnet denne prøveløsningen til 100 mL. Deretter overførte de 25 mL av løsningen til en erlenmeyerkolbe og titrerte den mot 0,025 mol/L permanganatløsning. Forbruket av titrerløsningen var 17,9 mL.

e) Var det rent jern elevene hadde funnet? Begrunn svaret ved å vise utregningen.

Oppgave 4

Organiske forbindelser med brom blir brukt som reagens i organisk kjemisk syntese.

a) Bruk oksidasjonstall og skriv den balanserte reaksjonslikningen for denne reaksjonen.

$$Br_2(I) + S(s) + H_2O(I) \implies HBr(aq) + H_2SO_4(aq)$$

b) Den enkleste organiske forbindelsen med brom er brommetan, CH₃Br. Brommetan blir framstilt industrielt fra metanol og hydrogenbromid. Reaksjonen kan skrives slik:

$$CH_3OH(aq) + HBr(aq) \rightleftharpoons CH_3Br(aq) + H_2O(I)$$

Forklar hvilken reaksjonstype dette er, og hvorfor reaksjonsblandingen blir tilsatt konsentrert svovelsyre.

- c) I syntese av brommetan, CH₃Br, fra metanol, kan det bli dannet en eter. Tegn strukturformel til eteren. Forklar hvilken reaksjonstype dannelsen av eteren er.
- d) Massespekteret til brommetan, CH₃Br, er vist i figur 18. Skriv hva de ulike toppene A E representerer. Forklar hvorfor D og E har tilnærmet samme relative forekomst.

e) Utbyttet av brommetan, CH₃Br, fra metanol (se b) er 95 %. Hvor mange kg metanol må til for å framstille 1,0 kg brommetan?

Oppgave 5

Du skal lage en buffer med en bestemt pH på laboratoriet.

- a) Du skal lage en buffer med pH = 10,6.
 - Forklar hvorfor du kan bruke natriumhydrogenkarbonat, NaHCO₃(s) og natriumhydroksid, NaOH(s) til å lage denne bufferen.
- b) Hvilke ioner inneholder bufferen i a)?
- c) Forklar hvorfor det ikke er mulig å ha en konsentrasjon på 0,25 mol/L av både sur og basisk komponent i bufferen fra a).
- d) Du skal lage 0,50 L buffer med pH = 10,6 (se a)). Den basiske komponenten skal ha en konsentrasjon på 0,25 mol/L.
 - Lag en oppskrift på denne bufferen.
- e) Beregn hvor mye 1,0 mol/L saltsyre, HCl, du kan tilsette til bufferen fra d) før bufferkapasiteten i denne bufferen er overskredet. (Hint: velg rimelige tall å regne videre med, hvis du ikke fikk til å løse d).)

Tabeller og formler i REA3012 Kjemi 2 (versjon 15.01.2015)

Dette vedlegget kan brukast under både del 1 og del 2 av eksamen. Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C

Halvreaksjon				
oksidert form	+ ne ⁻	→	redusert form	E⁰ mål i V
F ₂	+ 2e ⁻	→	2F ⁻	2,87
O ₃ (g) + 2H ⁺	+ 2e ⁻	→	O ₂ (g) +H ₂ O	2,08
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H₂O	1,78
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72
PbO ₂ + SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69
MnO ₄ ⁻ +4H ⁺	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68
2HClO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,63
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51
Au ³⁺	+ 3e ⁻	→	Au	1,40
Cl ₂	+ 2e ⁻	→	2Cl ⁻	1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36
O ₂ + 4H ⁺	+ 4e ⁻	→	2H ₂ O	1,23
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86
Hg ²⁺	+ 2e ⁻	→	Hg	0,85
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80
Ag ⁺	+ e ⁻	→	Ag	0,80
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70
l ₂	+ 2e ⁻	→	21-	0,54
Cu ⁺	+ e ⁻	→	Cu	0,52
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40
Cu ²⁺	+ 2e ⁻	→	Cu	0,34
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	→	Cu⁺	0,16

oksidert form	+ ne ⁻	→	redusert form	<i>E</i> ° mål i V
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15
S + 2H ⁺	+ 2e ⁻	→	H ₂ S	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H ⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	→	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H₂O	+ 2e ⁻	→	H ₂ + 2OH ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na ⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	K	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

STABILE ISOTOPER FOR NOEN GRUNNSTOFFER

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹ H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	¹³ C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	³⁵ Cl	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	Ka	p <i>K</i> a
Acetylsalisylsyre	C ₉ H ₈ O ₄	3,3 · 10 ⁻⁴	3,5
Ammonium	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,3
Askorbinsyre	C ₆ H ₈ O ₆	7,9 · 10 ⁻⁵	4,0
Hydrogenaskorbat	C ₆ H ₇ O ₆ ⁻	1,6 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,4 · 10 ⁻⁵	4,2
Benzylsyre, (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	5,2 · 10 ⁻⁵	4,3
Borsyre	B(OH)₃	5,8 · 10 ⁻¹⁰	9,3
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,8
Eplesyre, malinsyre	C ₄ H ₆ O ₅	4,0 · 10-4	3,4
Hydrogenmalat	C ₄ H ₅ O ₅ ⁻	7,9 · 10 ⁻⁶	5,1
Etansyre (Eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,7
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	10,0
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,2
Dihydrogenfosfat Dihydrogenfosfat	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,2
Hydrogenfosfat	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,3
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfitt	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,7
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,3 · 10 ⁻³	2,9
Hydrogenftalat	C ₆ H ₄ (COOH)COO ⁻	4,0 · 10 ⁻⁶	5,4
Hydrogensulfid	H₂S	7,9 · 10 ⁻⁸	7,1
Hydrogensulfidion	HS ⁻	1,0 · 10 ⁻¹⁹	19
Hydrogensulfat	HSO ₄ ⁻	1,0 · 10-2	2,0
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,2
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,2
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,6
Karbonsyre	H ₂ CO ₃	4,0 · 10 ⁻⁷	6,4
Hydrogenkarbonat	HCO₃ [−]	4,7 · 10 ⁻¹¹	10,3
Klorsyrling	HCIO ₂	1,3 · 10 ⁻²	1,9
Kromsyre	H ₂ CrO ₄	2,0 · 10 ⁻¹	0,7
Hydrogenkromat	HCrO ₄ ⁻	3,2 · 10 ⁻⁷	6,5
Maleinsyre, <i>cis</i> -butendisyre	C ₄ H ₄ O ₄	1,2·10-2	1,9
Hydrogenmaleat	C ₄ H ₃ O ₄ ⁻	5,9 · 10 ⁻⁷	6,2
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10-4	3,9
Metansyre (maursyre)	HCHO ₂	1,5 · 10-4	3,8
Oksalsyre	H ₂ C ₂ O ₄	5,6 · 10 ⁻²	1,3
Hydrogenoksalat	HC ₂ O ₄ ⁻	1,5 · 10 ⁻⁴	3,8
Propansyre	HC ₃ H ₅ O ₂	1,3 · 10 ⁻⁵	4,9
Salisylsyre	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	3,0
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,3
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,9
Hydrogensulfitt	HSO₃ ⁻	6,3 · 10 ⁻⁸	7,2
Sitronsyre	H ₃ C ₆ H ₅ O ₇	7,4 · 10 ⁻⁴	3,1
Dihydrogensitrat	H ₂ C ₆ H ₅ O ₇ ⁻	1,7 · 10 ⁻⁵	4,8
Hydrogensitrat	HC ₆ H ₅ O ₇ ²⁻	4,1 · 10 ⁻⁷	6,4
Vinsyre (2,3-dihydroksybutandisyre, tartarsyre)	(CH(OH)COOH) ₂	6,8 · 10 ⁻⁴	3,2
Hydrogentartrat	HOOC(CH(OH)) ₂ COO	1,2 · 10 ⁻⁵	4,9
Hypoklorsyre (underklorsyrling)	HOCI	4,0 · 10 ⁻⁸	7,4
Urea	CH ₄ N ₂ O	0,8 · 10 ⁻¹	0,1

BASEKONSTANTER (Kb) I VANNLØSNING VED 25 °C

Navn	Formel	<i>K</i> _b	р <i>К</i> ь
Acetat	CH₃COO ⁻	5,0 · 10 ⁻¹⁰	9,3
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,7
Metylamin	CH ₃ NH ₂	5,0 · 10 ⁻⁴	3,3
Dimetylamin	(CH ₃)₂NH	5,0 · 10 ⁻⁴	3,3
Trimetylamin	(CH₃)₃N	6,3 · 10 ⁻⁵	4,2
Etylamin	CH ₃ CH ₂ NH ₂	4,6 · 10 ⁻⁴	3,4
Dietylamin	(C ₂ H ₅) ₂ NH	6,3 · 10 ⁻⁴	3,2
Trietylamin	(C ₂ H ₅) ₃ N	5,0 · 10 ⁻⁴	3,3
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,9 · 10 ⁻¹⁰	9,1
Pyridin	C ₅ H ₅ N	1,6 · 10 ⁻⁹	8,8
Hydrogenkarbonat	HCO ₃ ⁻	2,0 · 10 ⁻⁸	7,7
Karbonat	CO ₃ ²⁻	2,0 · 10 ⁻⁴	3,7

SYRE-BASE-INDIKATORER

Indikator	Fargeforandring	pH-omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel
acetat, etanat	CH ₃ COO⁻	jodat	1O ₃ -
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	ClO ₃ -
arsenitt	AsO ₃ ³ -	kloritt	ClO ₂ -
borat	BO ₃ ³⁻	nitrat	NO ₃ -
bromat	BrO ₃ -	nitritt	NO ₂ -
fosfat	PO ₄ ³⁻	perklorat	ClO ₄ -
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO-	sulfitt	SO ₃ ²⁻

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $\frac{g}{mL}$	Konsentrasjon $\frac{\text{mol}}{\text{L}}$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H ₂ O	100	1,00	55,56

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	CI ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	l-	O ²⁻	OH⁻	S ²⁻	SO ₄ ²⁻
Ag ⁺	U	U	U	U	U	U	1	U	Т
Al ³⁺	R	R	-	-	R	U	U	R	R
Ba ²⁺	L	L	U	U	L	R	L	Т	U
Ca ²⁺	L	L	U	T	L	Т	U	Т	Т
Cu ²⁺	L	L	-	U	-	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	-	U	-	U	U	U	L
Hg ₂ ²⁺	U	U	U	U	U	-	U	-	U
Hg ²⁺	Т	L	1	U	U	U	U	U	R
Mg ²⁺	L	L	U	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	Т	Т	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	1	R	U	U	U	R
Sn ⁴⁺	R	R	-	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

- = Ukjent forbindelse, eller forbindelse dannes ikke ved utfelling, R = reagerer med vann.

LØSELIGHETSPRODUKT, K_{sp}, FOR SALT I VANN VED 25 °C

Navn	Kjemisk formel	K _{sp}	Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kvikksølv (I) bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv (I) jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹
Bariumkarbonat	BaCO₃	2,58 · 10 ⁻⁹	Kvikksølv (I) karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv (I) klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv (II) bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv (II) jodid	Hgl ₂	2,9 · 10 ⁻²⁹
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Bly (II) bromid	PbBr ₂	6,60 · 10 ⁻⁶	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10 ⁻²⁴
Bly (II) hydroksid	Pb(OH)2	1,43 · 10 ⁻²⁰	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Bly (II) jodid	Pbl ₂	9,80 · 10 ⁻⁹	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Bly (II) karbonat	PbCO₃	7,40 · 10 ⁻¹⁴	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Bly (II) klorid	PbCl ₂	1,70 · 10 ⁻⁵	Mangan(II) karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Bly (II) oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II) oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷
Bly (II) sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Nikkel(II) fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²
Bly (II) sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II) hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Jern (II) fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II) karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Jern (II) hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II) sulfid	NiS	2 · 10 ⁻¹⁹
Jern (II) karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Jern (II) sulfid	FeS	8 · 10 ⁻¹⁹	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Jern (III) fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinksulfid	ZnS	2 · 10 ⁻²⁴
Jern (III) hydroksid	Fe(OH)₃	2,79 · 10 ⁻³⁹	Sølv (I) acetat	AgCH₃COO	1,94 · 10 ⁻³
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv (I) bromid	AgBr	5,35 · 10 ⁻¹³
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv (I) jodid	AgI	8,52 · 10 ⁻¹⁷
Kalsiumhydroksid	Ca(OH)₂	5,02 · 10 ⁻⁶	Sølv (I) karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Kalsiumkarbonat	CaCO₃	3,36 · 10 ⁻⁹	Sølv (I) klorid	AgCl	1,77 · 10 ⁻¹⁰
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv (I) kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv (I) sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv (I) sulfid	Ag ₂ S	8 · 10-51
Kobolt(II) hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Tinn(II) hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷
Kopper(I) bromid	CuBr	6,27 · 10 ⁻⁹			
Kopper(I) klorid	CuCl	1,72 · 10 ⁻⁷	_		
Kopper(I) oksid	Cu ₂ O	2 · 10 ⁻¹⁵			
Kopper(I) jodid	Cul	1,27 · 10 ⁻¹²			
Kopper(II) fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷			
Kopper(II) oxalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰			
Kopper(II) sulfid	CuS	8 · 10 ⁻³⁷			

α -AMINOSYRER VED pH = 7,4.

Vanlig navn			Vanlig navn	
Forkortelse pH ved isoelektrisk	Strukturformel		Forkortelse pH ved isoelektrisk	Strukturformel
Alanin Ala 6,0	O		Arginin Arg 10,8	NH3 O O O O O O O O O O O O O O O O O O O
Asparagin Asn 5,4	O = CH ₂ CH O NH ₃		Aspartat (Asparagin- syre) Asp 2,8	O
Cystein Cys 5,1	HS CH NH3		Fenylalanin Phe 5,5	HC CH CH NH3
Glutamin Gln 5,7	O CH ₂ CH ₂ CH O NH ₃		Glutamat (Glutamin- syre) Glu 3,2	O CH ₂ CH ₂ CH O NH ₂
Glysin Gly 6,0	H CH + NH3		Histid His 7,6	HC CH CH NH3

Isoleucin Ile 6,0	CH ₃ O	Leucin Leu 6,0	H ₃ C CH ₂ CH ₂ C O CH ₃ NH ₃ CH ₃
Lysin Lys 9,7	H ₃ N ⁺ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ NH ₃ O	Metionin Met 5,7	H ₃ C CH ₂ CH O NH ₃
Prolin Pro 6,3	H ₂ C CH C O	Serin Ser 5,7	HO CH ₂ CH O NH ₃
Treonin Thr 5,6	H2 H3	Tryptofan Trp 5,9	HC CH CH CH CH NH3
Tyrosin Tyr 5,7	HC CH CH CH NH3	Valin Val 6,0	H ₃ C CH CH NH ₃

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, HAL= halogen (CI, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Hydrogenatomene er uthevet.

Type proton	Kjemisk skift, ppm	Type proton	Kjemisk skift, ppm
− C H ₃	0,9 - 1,0	O R	10 - 13
C H ₂R	1,3 - 1,4	O = C H	9,4 - 10
-CHR ₂	1,4 - 1,6	O H C O-R	Ca. 8
—C≡C— H	1,8 - 3,1	-CH=CH ₂	4,5 - 6,0
-CH ₂ -HAL	3,5 - 4,4	0 R ^C \O-C H ₂ -	3,8 - 4,1
R-O-CH ₂ -	3,3 - 3,7	R-O-H	0,5 - 6
O R	2,2 - 2,7	O	2,0 - 2,5
———	6,9 - 9,0	———он	4,0 - 12,0
− C H ₃	2,5 - 3,5		

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

HYDR	OKARBONE	R, METTEDE	(alkaner)	
Navn	Formel	Smp	Кр	Diverse
Metan	CH ₄	-182	-161	
Etan	C ₂ H ₆	-183	-89	
Propan	C₃H ₈	-188	-42	
Butan	C ₄ H ₁₀	-138	-0,5	
Pentan	C ₅ H ₁₂	-130	36	
Heksan	C ₆ H ₁₄	-95	69	
Heptan	C ₇ H ₁₆	-91	98	
Oktan	C ₈ H ₁₈	-57	126	
Nonan	C ₉ H ₂₀	-53	151	
Dekan	C ₁₀ H ₂₂	-30	174	
Syklopropan	C ₃ H ₆	-128	-33	
Syklobutan	C ₄ H ₈	-91	13	
Syklopentan	C ₅ H ₁₀	-93	49	
Sykloheksan	C ₆ H ₁₂	7	81	
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan
3-Metylpentan	C ₆ H ₁₄	-163	63	
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58	
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110	
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115	
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114	
HYDR	OKARBONEF	R, UMETTED	E, alkener	
Navn	Formel	Smp	Кр	Diverse
Eten	C ₂ H ₄	-169	-104	Etylen
Propen	C₃H ₆	-185	-48	Propylen
But-1-en	C ₄ H ₈	-185	-6	
cis-But-2-en	C ₄ H ₈	-139	4	
trans-But-2-en	C ₄ H ₈	-106	1	
Pent-1-en	C ₅ H ₁₀	-165	30	
cis-Pent-2-en	C ₅ H ₁₀	-151	37	
trans-Pent-2-en	C ₅ H ₁₀	-140	36	
Heks-1-en	C ₆ H ₁₂	-140	63	
cis-Heks-2-en	C ₆ H ₁₂	-141	69	
trans-Heks-2-en	C ₆ H ₁₂	-133	68	
cis-Heks-3-en	C ₆ H ₁₂	-138	66	

Vedlegg 1: Tabeller og formler i REA3012 Kjemi 2

Navn	Formel	Smp	Кр	Diverse
trans-Heks-3-en	C ₆ H ₁₂	-115	67	
Hept-1-en	C7H14	-119	94	
<i>cis</i> -Hept-2-en	C ₇ H ₁₄		98	
trans-Hept-2-en	C ₇ H ₁₄	-110	98	
<i>cis</i> -Hept-3-en	C ₇ H ₁₄	-137	96	
trans-Hept-3-en	C ₇ H ₁₄	-137	96	
Okt-1-en	C ₈ H ₁₆	-102	121	
Non-1-en	C ₉ H ₁₈	-81	147	
Dek-1-en	C ₁₀ H ₂₀	-66	171	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
Penta-1,2-dien	C ₅ H ₈	-137	45	
trans-Penta-1,3-dien	C ₅ H ₈	-87	42	
cis-Penta-1,3-dien	C ₅ H ₈	-141	44	
Heksa-1,2-dien	C ₆ H ₁₀		76	
<i>cis</i> -Heksa-1,3-dien	C ₆ H ₁₀		73	
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73	
Heksa-1,5-dien	C ₆ H ₁₀	-141	59	
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5	
HYDR	OKARBONEI	R, UMETTED	E, alkyner	
Navn	Formel	Smp	Кр	Diverse
Etyn	C ₂ H ₂	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	
But-2-yn	C ₄ H ₆	-32	27	
Pent-1-yn	C₅H ₈	-90	40	
Pent-2-yn	C₅H8	-109	56	
Heks-1-yn	C ₆ H ₁₀	-132	71	
Heks-2-yn	C ₆ H ₁₀	-90	85	
Heks-3-yn	C ₆ H ₁₀	-103	81	
AF	ROMATISKE	HYDROKARE	BONER	
Navn	Formel	Smp	Кр	Diverse
Benzen	C ₆ H ₆	5	80	
Metylbenzen	C ₇ H ₈	-95	111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136	
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Difenylmetan	C ₁₃ H ₁₂	25	265	
Trifenylmetan	C ₁₉ H ₁₆	94	360	Tritan
1,2-Difenyletan	C14H14	53	284	Bibenzyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
Antracen	C ₁₄ H ₁₀	216	340	PAH
Phenatren	C ₁₄ H ₁₀	99	340	PAH

Vedlegg 1: Tabeller og formler i REA3012 Kjem ALKOHOLER									
Navn	Formel	Smp	Кр	Diverse					
Metanol	CH₃OH	-98	65	Tresprit					
Etanol	C ₂ H ₆ O	-114	78						
Propan-1-ol	C ₃ H ₈ O	-124	97	<i>n</i> -propanol					
Propan-2-ol	C ₃ H ₈ O	-88	82	Isopropanol					
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol					
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol					
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol					
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol					
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	n-Pentanol, amylalkohol					
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol					
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol					
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, n-heksanol					
Heksan-2-ol	C ₆ H ₁₄ O		140						
Heksan-3-ol	C ₆ H ₁₄ O		135						
Heptan-1-ol	C ₇ H ₁₆ O	-33	176	Heptylalkohol, <i>n</i> -heptanol					
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, <i>n</i> -oktanol					
Sykloheksanol	C ₆ H ₁₂ O	26	161						
Etan-1,2-diol	C ₂ H ₆ O ₂	-13	197	Etylenglykol					
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten triglyserid					
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol					
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol					
	KARBONYLI	FORBINDEL	SER						
Navn	Formel	Smp	Кр	Diverse					
Metanal	CH ₂ O	-92	-19	Formaldehyd					
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd					
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd					
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd					
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd					
2-Metylpropanal	C ₄ H ₈ O	-65	65						
Butanal	C ₄ H ₈ O	-97	75						
3-Hydroksybutanal	C ₄ H ₈ O ₂		83						
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd					
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd					
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd					
Heptanal	C ₇ H ₁₄ O	-43	153						
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd					
Propanon	C ₃ H ₆ O	-95	56	Aceton					
Navn	Formel	Smp	Кр	Diverse					
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon					
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon					
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon					
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon					

Navn	Formel	Smp	Кр	Diverse
4-Metyl-pentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon
2-Metylpentan-3-on	C ₆ H ₁₂ O		114	Etylisopropylketon
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon
<i>trans</i> -Fenylpropenal	C ₉ H ₈ O	-8	246	trans-Kanelaldehyd
	ORGAN	IISKE SYRER		•
Navn	Formel	Smp	Кр	Diverse
Metansyre	CH ₂ O ₂	8	101	Maursyre, p $K_a = 3,75$
Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, p $K_a = 4,76$
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, pK _a = 4,87
2-Metyl-propansyre	C ₄ H ₈ O ₂	-46	154	pKa = 4,84
2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, p K_a = 3,86
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved
, , , ,				oppvarming,
				pK _a = 4,51
Butansyre	$C_4H_8O_2$	-5	164	Smørsyre, p $K_a = 4.83$
3-Metylbutansyre	$C_5H_{10}O_2$	-29	177	Isovaleriansyre , $pK_a = 4,77$
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, p $K_a = 4,83$
Heksansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, p K_a = 4,88
Propensyre	C ₃ H ₄ O ₂	12	139	pK _a = 4,25
cis-But-2-ensyre	C ₄ H ₆ O ₂	15	169	cis-Krotonsyre, pK _a = 4,69
trans-But-2-ensyre	C ₄ H ₆ O ₂	72	185	trans-Krotonsyre, p $K_a = 4,69$
But-3-ensyre	C ₄ H ₆ O ₂	-35	169	pK _a = 4,34
Etandisyre	C ₂ H ₂ O ₄			Oksalsyre, p K_{a1} = 1,25, p K_{a2} = 3,81
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), $pK_{a1} = 4,21$, $pK_{a2} = 5,64$
Pentandisyre	C ₅ H ₈ O ₄	98		Glutarsyre, $pK_{a1} = 4,32$, $pK_{a2} = 5,42$
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, $pK_{a1} = 4,41$, $pK_{a2} = 5,41$
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, p $K_a = 4,44$
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		pK _a = 3,88
Benzosyre	C ₇ H ₆ O ₂	122	250	
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31
	E	STERE		
Navn	Formel	Smp	Кр	Diverse
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær

Vedlegg 1: Tabeller og formler i REA3012 Kjemi 2

Navn	Formel	Smp	Кр	Diverse
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas
3-Metyl-1-butyletanat	C7H11O2	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan
Metyl- <i>trans</i> -cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og ananas
Pentyletanat	C ₇ H ₁₄ O ₂	-71	149	Amylacetat, lukter banan og eple
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple
0	RGANISKE FORBIN	DELSER ME	D NITROGEN	
Navn	Formel	Smp	Кр	Diverse
Metylamin	CH₅N	-94	-6	pK _b = 3,34
Dimetylamin	C ₂ H ₇ N	-92	7	pK _b = 3,27
Trimetylamin	C ₃ H ₉ N	-117	2,87	pK _b = 4,20
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35
Dietylamin	C ₄ H ₁₁ N	-28	312	pK _b = 3,16
Etanamid	C ₂ H ₃ NO	79-81	222	Acetamid
Fenylamin	C ₆ H ₇ N	-6	184	Anilin
1,4-diaminbutan	C ₄ H ₁₂ N ₂	27	158-160	Engelsknavn: putrescine
1,6-Diaminheksan	C ₆ H ₁₆ N ₂	9	178-180	Engelsknavn: cadaverine
C	RGANISKE FORBIN	DELSER ME	D HALOGEN	
Navn	Formel	Smp	Кр	Diverse
Klormetan	CH₃Cl	-98	-24	Metylklorid
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt som løsemiddel
Triklormetan	CHCl₃	-63	61	Kloroform
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid
	1	63	189	Kloreddiksyre, pK _a = 2,87
Kloretansyre	C ₂ H ₃ ClO ₂	03		
	$C_2H_3CIO_2$ $C_2H_2Cl_2O_2$	9,5	194	Dikloreddiksyre, pK _a = 1,35
Kloretansyre			194 196	Dikloreddiksyre, p K_a = 1,35 Trikloretansyre, p K_a = 0,66

KVALITATIV UORGANISK ANALYSE. REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING

	HCI	H ₂ SO ₄	NH₃	КІ	KSCN	K₃Fe(CN) ₆	K ₄ Fe(CN) ₆	K₂CrO₄	Na₂S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Lakserødt
Fe ²⁺			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe³+			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Gulhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gulhvitt kan forekomme	Hvitt	Hvitt	
Ca ²⁺									Gulehvitt kan forekomme	Hvitt	Hvitt	

Grunnstoffenes periodesystem

Gruppe 1	Gruppe 2				Forklariı	ng						Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,008						omnummer Atommasse	35 79,90	Fargekoder	Ikke-	metall							2 4,003
H 2,1					Elektronegai	Symbol	B r 2,8		Halvr	netall							He
Hydrogen		_				Navn	Brom		Me	tall							Helium
3 6,941	4 9,012				() betyr m			Aggregat- tilstand	Fast s	toff B		5 10,81	6 12,01	7 14,01	8 16,00	9 19,00	10 20,18
Li 1,0	Be				isotopen * Lantanoi ** Aktinoi			ved 25 °C og 1 atm	Væsk	е Н g		B 2,0	C 2,5	N 3,0	O 3,5	F 4,0	Ne
Lithium	Beryl- lium 12				AKUIION	iei		aun	Gas	s N		Bor 13	Karbon 14	Nitrogen	Oksygen	Fluor 17	Neon
11 22,99 Na	24,31 Mg											26,98 Al	28,09 Si	15 30,97 P	16 32,07 S	35,45 Cl	18 39,95 Ar
0,9 Natrium	1,2 Magne- sium	3	4	5	6	7	8	9	10	11	12	1,5 Alumini- um	1,8 Silisium	2,1 Fosfor	2,5 Svovel	3,0 Klor	- Argon
19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,38	31 69,72	32 72,63	33 74,92	34 78,97	35 79,90	36 83,80
K 0,8	Ca	Sc 1,3	Ti 1,5	V	Cr	Mn 1,5	Fe	Co	Ni 1,9	Cu	Zn	Ga	Ge	As 2,0	Se 2,4	Br 2,8	Kr
Kalium	Kalsium	Scan- dium	Titan	Vana- dium	Krom	Mangan	Jern	Kobolt	Nikkel	Kobber	Sink	Gallium	Germa- nium	Arsen	Selen	Brom	Krypton
37 85,47	38 87,62	39 88,91	40 91,22	41 92,91	42 95,95	43 (98)	44 101,07	45 102,91	46 106,42	47 107,87	48 112,41	49 114,82	50 118,71	51 121,76	52 127,60	53 126,90	54 131,29
Rb 0,8	Sr	Y 1,2	Zr 1,4	Nb	Mo 1,8	Tc	Ru 2,2	Rh 2,2	Pd 2,2	Ag	Cd	In 1,7	Sn	Sb	Te	I 2,4	Xe
Rubidium	Stron- tium	Yttrium	Zirko- nium	Niob	Molyb- den	Techne- tium	Ruthe- nium	Rhodium	Palla- dium	Sølv	Kad- mium	Indium	Tinn	Antimon	Tellur	Jod	Xenon
55 132,91	56 137,33	57 138,91	72 178,49	73 180,95	74 183,84	75 186,21	76 190,23	77 192,22	78 195,08	79 196,97	80 200,59	81 204,38	82 207,2	83 208,98	84 (209)	85 (210)	86 (222)
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0,7 Cesium	0,9 Barium	1,1 Lantan*	1,3 Hafnium	1,5 Tantal	1,7 Wolfram	1,9 Rhenium	2,2 Osmium	2,2 Iridium	2,2 Platina	2,4 Gull	1,9 Kvikk- sølv	1,8 Thallium	1,8 Bly	1,9 Vismut	2,0 Poloni- um	2,3 Astat	- Radon
87 (223)	88 (226)	89 (227)	104 (267)	105 (268)	106 (271)	107 (270)	108 (269)	109 (278)	110 (281)	111 (280)	112 (285)	113 (286)	114 (289)	115 (289)	116 (293)	117 (294)	118 (294)
Fr 0,7	Ra 0,9	Ac 1,1	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
Francium	Radium	Actinium **	Ruther- fordium	Dub- nium	Sea- borgium	Bohrium	Hassium	Meit- nerium	Darm- stadtium	Rønt- genium	Coper- nicium	Unun- trium	Flero- vium	Unun- pentium	Liver- morium	Unun- septium	Unun- oktium
		*	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			138,91 La	140,12 Ce	140,91 Pr	144,24 Nd	(145) Pm	150,36 Sm	151,96 Eu	157,25 Gd	158,93 Tb	162,50 Dv	164,93 Ho	167,26 Er	168,93 Tm	173,05 Yb	174,97 Lu
			1,1	1,1	1,1	1,1	1,1	1,2	1,2	1,2	1,1	1,2	1,2	1,2	1,3	1,1	1,3
			Lantan	Cerium	Praseo- dym	Neodym	Prome- thium	Sama- rium	Euro- pium	Gado- linium	Terbium	Dyspro- sium	Hol- mium	Erbium	Thulium	Ytter- bium	Lute- tium
		**	89 (227)	90 232,04	91 231,04	92 238,03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (266)
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			1,1 Actinium	1,3 Thorium	1,4 Protacti-	1,4 Uran	1,4 Neptu-	1,3 Pluto-	1,1 Ame-	1,3 Curium	1,3 Berke-	1,3 Califor-	1,3 Einstein-	1,3 Fer-	1,3 Mende-	1,3 Nobel-	1,3 Lawren-
					nium		nium	nium	ricium		lium	nium	ium	mium	levium	ium	cium

Kilder:

- De fleste opplysningene er hentet fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGAVE (2008–2009), ISBN 9781420066791
- Oppdateringer (særlig av periodesystemet) er gjort ut fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 95. UTGAVE (2014-2015): http://www.hbcpnetbase.com/ (sist besøkt 13.01.15)
- For ustabile radioaktive grunnstoffer ble periodesystemet til «Royal Society of Chemistry» brukt: http://www.rsc.org/periodic-table (sist besøkt 15.01.15)
- Gyldendals tabeller og formler i kjemi, Kjemi 1 og Kjemi 2, Gyldendal, ISBN: 978-82-05-39274-8
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.09.2013)
- Stabilitetskonstanter: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (sist besøkt 03.12.2013) og, http://www.cem.msu.edu/~cem333/EDTATable.html (sist besøkt 03.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er hentet fra Kjemi 3KJ, Studiehefte (Brandt mfl), Aschehough (2003), side 203