FACULTAD POLITÉCNICA Ejercitario de Métodos Numéricos

Ejercicio 1: Contestar con verdadero (V) o falso (F) las siguientes proposiciones. Justificar las falsas.

- 1) Si se conoce tres puntos por donde pasa una función, entonces el polinomio interpolante no puede ser de grado nulo.
- 2) La función $g(x)=5x^2-kx$ tiene como punto fijo a x=(k+1)/5.
- 3) Si $\wp(A)$ es el radio espectral de una matriz A , entonces puede existir algún autovalor λ de A tal que $\wp(A) \leq \lambda$.
- 4) El sistema $\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ puede resolverse por el Método de Cholesky.
- 5) Todos los polinomios tienen por lo menos una raíz real ya que son continuas en todo punto.
- 6) Sean p_1,p_2,p_3 y p_4 aproximaciones al número p .Si se da $|p-p_i| \le 2^{-i}$ para i=1,2,3 y 4 entonces la aproximación p_1 a p es más exacta que la aproximación p_4 a p.

Ejercicio 2: La oferta por la venta de un cierto producto se describe por la función $S(p) = 18.000 e^{-0.01(p-28.23)^2} - 10$; donde S es la cantidad ofrecida para el precio p en dólares. Sabiendo que el precio que anula la oferta se encuentra entre 5 y 20 dólares. Se pide lo sgte:

Utilizar el Método de la Falsa Posición para aproximar el precio que cancela la oferta e iterar hasta que la precisión sea menor que 10^{-5} .

Ejercicio 3: Aplicar el Método de Newton y del Punto fijo a las siguientes funciones comenzando con el punto p_0 indicado. Comparar los resultados iterando 10 veces en cada método.

a)
$$f(x) = x - \sin(x)$$
; en $p_0 = 3$

b)
$$f(x)=x^2-e^x$$
; $en p_0=-3$

c)
$$f(x)=x+\sin(x)-5\ln(x)$$
; en $p_0=0.1$

Ejercicio 4: El número de habitantes de una determinada ciudad ha aumentado según los datos de la sgte tabla:

Años	2010	2014	2018
Población	55.000	76.000	82.000

- a) Ajustar por el polinomio de Newton estos datos.
- b) Estimar la población que tendría en el año 2019.
- c) Esime en qué año se tuvo una población de 70.000 habitantes.

Ejercicio 5: La temperatura de un material varía con el transcurrir de la horas del día. Especificamente la temperatura **T (en °C)** en el instante **x (en horas)** está dada por $T(x)=-2(x-6)^2+24(x-6)$.

- a) A qué hora (la más tarde) se registra una temperatura de 0 °C.?
- c) Aproxime a) mediante el método de Newton comenzado con $x_0=9$. Realizar 5 iteraciones y luego calcule la exactitud.