HATS: Histograms of Averaged Time Surfaces for Robust Event-based Object Classification

Software Implementation

 The HATS paper introduces new concept of Local Memory Time Surfaces and there is no implementation available. It makes a histogram from these time surfaces and then further uses a SVM classifier to classify the images.

Algorithm 1 HATS with shared memory units

```
1: Input: Events \mathcal{E} = \{e_i\}_{i=1}^I Parameters: \rho, \Delta t, \tau, K

2: Output: HATS representation \mathbf{H}(\{e_i\})

3: Initialize: \mathbf{h}_{\mathcal{C}_l} = \mathbf{0}, \ |\mathcal{C}_l| = 0, \ \mathcal{M}_{\mathcal{C}_l} = \emptyset, \text{ for all } l

4: \mathbf{for} \ i = 1, \dots, I \ \mathbf{do}

5: \mathcal{C}_l \leftarrow \text{getCell}(x_i, y_i)

6: \mathcal{T}_{e_i} \leftarrow \text{computeTimeSurface}(e_i, \mathcal{M}_{\mathcal{C}_l})

7: \mathbf{h}_{\mathcal{C}_l} \leftarrow \mathbf{h}_{\mathcal{C}_l} + \mathcal{T}_{e_i}

8: \mathcal{M}_{\mathcal{C}_l} \leftarrow \mathcal{M}_{\mathcal{C}_l} \cup e_i

9: |\mathcal{C}_l| \leftarrow |\mathcal{C}_l| + 1

10: \text{return } \mathbf{H} = [\mathbf{h}_{\mathcal{C}_1}/|\mathcal{C}_1|, \dots, \mathbf{h}_{\mathcal{C}_L}/|\mathcal{C}_L|]^\intercal
```

N-CARS Dataset

Real Worl Challenging images from the N-Cars Dataset. (Shown for Events>5000). The below image shows the occlusion produced by fast-moving cars.

Expanded in Time

N-CARS Dataset

- Real Dataset for CARS detection acquired from ATIS camera.
- Different poses and illumination of Cars with real -world noise.
- · 100ms of video for each sample.
- 7940 car training samples and 7482 bckg samples.
- · 4396 car test samples and 4291 bckg test samples

SoC design Flow (Zedboard)

- Vivado HLS C code+testing, synthesis and analysis, optimisation for Hats IP production
- Vivado Design block design, synthesis and implementation
- Linux SDK for ARM processor

HATS hardware algorithm for inference

- · For each cell a histogram is calculated.
- · Computation of hisogram requires memory cell for storing past events.
- · Memory extensive procedure for storing histogram of time surface

FPGA Resource Utilisation

HATS IP (Average resource utilisation/ip)

Precision <address,time,hist,weights></address,time,hist,weights>	Resources					Latency(cycles)	Latency (in ms)	
	BRAM	DSP	FF	LUT	SLICES	(max)	Clock=10ns	
<32,32,32,32>	29	54	6985	6031	2436	1004367	10.04	
<10,18,12,32,32>	20	48	6470	5961	2264	1004367	10.04	
<10,0,16,12,fixed(24,12)> (Perf. Optimised)	10	24	2365	2244	776	414812	4.14	
			Range of Values	Bits Required				
		Address	0-150	9(int)				
		TimeStamp	0-100000	17(int)				
		Constants	0-1500	12(int)				
		Histogram	0-1500	12(int)				
		Weights	-3 to 3(floating point)	24 (bits) 12 integer				

8 Hats Accelerators used with different SVM weights

Performance Comparison

Hardware Latency: 4.14ms/event

Inference Power Estimation: 1.911 W (Logic Power – 0.382 W)

Avg. Throughput: 750*8/4.14 Kevnts/s or 1.45 Mevnts/s

Software Parallelized Latency (in Python): 187 ms/event

Block Design

