



#### Links de interés

- Awesome Machine learning
  - https://github.com/josephmisiti/awesome-machine-learning

- Kaggle fake news
  - https://www.kaggle.com/c/fake-news/data

- Google datasearch
  - https://datasetsearch.research.google.com/

### Machine learning

- Machine learning es un campo interdisciplinario basado fuertemente en la programación y análisis estadístico.
- Su principal objetivo es desarrollar y aplicar técnicas que permitan a los computadores aprender o imitar habilidades cognitivas propias de nosotros.



#### Usual tasks

# Regresión

"A Entel le interesa saber cuántos GB consumirán sus clientes el próximo mes. Deberá construir un modelo de regresión."

#### Clasificación

"Falabella quiere promocionar un nuevo producto. ¿En qué segmento debería poner las fichas y promocionar este producto?"

## Clustering

"Los observatories de la ESO necesitan procesar las imágenes que toman cada noche e identificar de manera automática las imágenes anómalas. Los datos no están etiquetados."

### Tipos de ML

# Supervised learning

El sistema aprende utilizando datos previamente clasificados. Los datos pueden estar estructurados o no estructurados.

El algoritmo genera un modelo que establece la correspondencia entre los datos de entrada y la salida esperada del sistema.



# Tipos de ML

- Unsupervised learning
  - Los datos no han sido clasificados previamente.
  - El sistema debe poder reconocer patrones y generar sus propias etiquetas. El modelo debe clasificar los nuevos datos de entrada.





### Tipos de ML

# Reinforcement learning

Tenemos un entorno que representa el mundo exterior para el agente y un agente que realiza acciones.

El agente recibe observaciones del entorno que consisten en una recompensa por su acción e información de su nuevo estado.





# Métodos de machine learning



#### Métodos de Scikit-learn





### Librerías en Python

- Pandas
  - https://pandas.pydata.org/
  - Lectura de datos, limpieza, ingeniería de features, normalización
- Scikit-learn
  - https://scikit-learn.org/stable/user\_guide.html
  - Entrenamiento de modelos supervisados y no supervisados
- Spacy
  - https://spacy.io
  - Procesamiento de lenguaje natural



#### ML con features manuales

- El approach clásico es hacer machine learning con ingeniería de features manual
  - Algoritmo de ML aprende a hacer predicciones a partir de la representación de mayor nivel
  - Se usa conocimiento del dominio y experiencia previa



#### Proliferación datos no estructurados

- Datos no estructurados son datos crudos y que suelen no estar organizados.
- Deben ser procesados y transformados para luego ser almacenados en una base de datos.



# Big data y Deep Learning

#### **BIG DATA & DEEP LEARNING**



### Deep Learning

- Deep learning is a collection of machine learning methods based in feature or representation learning.
- The most famous are Deep Neural Networks (DNN). They are based on Artificial Neural Networks and multiple layer architectures.



### Deep Learning

- Deep Learning
  - Entrenar múltiples capas de features y abstraciones a partir del dato no estructurado
  - Tratar de descubrir las representaciones que permitan hacer mejores predicciones



### Librerías en Python

- Tensorflow
  - https://www.tensorflow.org/
  - Framework para entrenar modelos de Deep Learning
  - Desarrollado originalmente por Google
- Keras
  - https://keras.io/
  - Framework de alto nivel para entrenar modelos de Deep Learning
  - Puede usar otros frameworks en el backend
  - Desarrollado originalmente por François Chollet
- Pytorch
  - https://pytorch.org/
  - Framework para entrenar modelos de Deep Learning
  - Desarrollado originalmente por Facebook

# Visit the website

http://playground.tensorflow.org

