Homework #2

Analysis of Algorithms

Illya Starikov

Due Date: September 11th, 2017

Question #1

We define $Q = \{q | q + n = n + k\}$, and $n \in \mathbb{Z}^+$. Given that n + 0 = n = 0 + n

$$q + (k + 1) = (q + k) + 1$$

$$= (k + q) + 1$$

$$= k + (1 + k)$$

$$= (k + 1) + m$$

$$\therefore q \in Q$$

$$\therefore n + q = q$$

Question #2

Theorem 1. $\forall i \in \mathbb{Z}^+$,

$$\sum_{i=1}^{n} \frac{i^2}{(2i-1)(2i+1)} = \frac{n(n+1)}{2(2n+1)} \tag{1}$$

Proof. We will use the principle of recursion to solve this problem.

Step #1 Our problem states for an arbitrary integer i, summed to an arbitrary integer n, we have the summation (we denote by f(x)) and explicit forms (g(x)) described by Equation 1. We take the stopping value to be 0.

Step #2 Checking two values is trivial; take 1 and 2.

$$\sum_{i=1}^{1} \frac{i^2}{(2i-1)(2i+1)} = \frac{1(1+1)}{2(2*1+1)} = \frac{1}{3}$$
$$\sum_{i=1}^{n} \frac{i^2}{(2i-1)(2i+1)} = \frac{2*(2+1)}{2(2*2+1)} = \frac{3}{5}$$

To check the stopping value, we check the 0th value. We clearly see that f(x) = g(x) = 0.

Step #3 If n in \mathbb{Z}^+ triggers a recursive call, then n > 0. The only value used in the call is n - 1, which is in \mathbb{Z} and greater than or equal to 0, because it is an integer and $n1 \ge 0$ since n > 0.

Step #4 We use the integer n as the counter. When recursion is called the function is called with the value n-1. The counter strictly decreases and the recursion halts.

Step #5 To prove recursion stops, we take the following:

$$f(n) = \sum_{i=1}^{n} \frac{i^2}{(2i-1)(2i+1)}$$
 definition
$$= f(n-1) + \frac{n^2}{(2n-1)(2n+1)}$$
 recursive structure
$$= g(n-1) + \frac{n^2}{(2n-1)(2n+1)}$$
 by our assumption
$$= \frac{(n-1)((n-1)+1)}{2(2(n-1)+1)} + \frac{n^2}{(2n-1)(2n+1)}$$
 replacing $g(n)$ with definition
$$= \frac{n(n+1)}{2(2(2n+1))}$$
 algebraic simplification
$$= g(n)$$

Because f(n) = g(n), the property is inherited recursively.

Step #6 Since Steps 1–5 have been verified, it follows from the Principle of Recursion that P holds for all values in \mathbb{Z}^+ , i.e., $f(n) = g(n), \forall n \in \mathbb{Z}, n \geq 0$

Table 1: The results from the explicit form, the series form, and the difference for the first 40 values.

Sum Value	Explicit Values	Difference
0.333333333333	0.333333333333	0.000000000000000
0.600000000000	0.600000000000	0.000000000000000
0.857142857143	0.857142857143	0.000000000000000
1.111 111 111 111	1.111 111 111 111	0.000000000000000
1.363636363636	1.363636363636	0.000000000000000
1.615384615385	1.615384615385	0.000000000000000
1.866666666667	1.866666666667	0.000000000000000
2.117647058824	2.117647058824	0.000000000000000
2.368421052632	2.368421052632	0.000000000000000
2.619047619048	2.619047619048	0.000000000000000
2.869565217391	2.869565217391	0.000000000000000
3.120000000000	3.120000000000	0.000000000000001
3.370370370370	3.370370370370	0.000000000000001
3.620689655172	3.620689655172	0.000000000000001
3.870967741935	3.870967741935	0.000000000000001
4.121212121212	4.121212121212	0.000000000000001
4.371428571429	4.371428571429	0.000000000000001
4.621621621622	4.621621621622	0.000000000000002
4.871794871795	4.871794871795	0.000000000000001
5.121951219512	5.121951219512	0.000000000000002
5.372093023256	5.372093023256	0.000000000000002
5.622222222222	5.622222222222	0.000000000000002
5.872340425532	5.872340425532	0.000000000000003
6.122448979592	6.122448979592	0.000000000000003
6.372549019608	6.372549019608	0.000000000000003
6.622641509434	6.622641509434	0.000000000000004
6.872727272727	6.872727272727	0.000000000000004
7.122807017544	7.122807017544	0.000000000000004
7.372881355932	7.372881355932	0.000000000000004
7.622950819672	7.622950819672	0.000000000000004
7.873015873016	7.873015873016	0.000000000000003
8.123076923077	8.123076923077	0.000000000000004
8.373134328358	8.373134328358	0.000000000000004
8.623188405797	8.623188405797	0.000000000000004
8.873239436620	8.873239436620	0.000000000000004
9.123287671233	9.123287671233	0.000000000000004
9.373333333333	9.373333333333	0.000000000000004
9.623376623377	9.623376623377	0.000000000000004
9.873417721519	9.873417721519	0.000000000000004

Question #3

Theorem 2. For an arbitrary $n \in \mathbb{Z}$, such that $n \geq 0$,

$$2^n \le fib(n) \le 2^{\frac{n}{2}}$$

Proof. Step #1 Prove by induction that for n > 0

$$2^n \le fib(n) \le 2^{\frac{n}{2}}$$

Step #2 Check the base case and two other values,

$$2^0 \le fib(0) \le \le 2^0 2^1 \le fib(1) \le \le 2^{\frac{1}{2}} 2^2 \le fib(2) \le \le 2^1$$

Step #3 To prove the recursive case, we take the following.

$$2^{n} \le fib(n) \le 2^{\frac{n}{2}}$$
$$2^{n-1} \le fib(n) + fib(n-1) \le 2^{\frac{n-1}{2}}$$
$$\frac{2^{n}}{2} \le fib(n) + fib(n-1) \le \frac{2^{\frac{n}{2}}}{\sqrt{2}}$$

Because we know $\frac{2^n}{2} \leq 2^n$ and $\frac{2^{\frac{n}{2}}}{\sqrt{2}} \leq 2^{\frac{n}{2}}$, we know that f(n) must be bounded by those function.

Step #4 Since the hypotheses of Simple Induction are true, the conclusion follows, namely, for all natural numbers, $f(n) \mod 133 = 0$.

Question #4

Upon inspection, it's quite apparent that the series is the sum of all natural numbers, with every other number being negative. More formally,

$$\sum_{q=1}^{n} (-1)^{q-1} q^2 = (-1)^{n-1} \frac{n * (n+1)}{2}$$

The results can be summarized below.

Table 2: The results from the explicit form, the series form, and the difference for the first 40 values.

Sum Value	Explicit Values	Sum of Numbers
1.0000000000	1.0000000000	1.0000000000000000
-3.0000000000	-3.0000000000	3.0000000000000000
6.00000000000	6.0000000000	6.0000000000000000
-10.00000000000	-10.00000000000	10.0000000000000000
15.00000000000	15.0000000000	15.0000000000000000
-21.00000000000	-21.00000000000	21.0000000000000000
28.0000000000	28.0000000000	28.0000000000000000
-36.00000000000	-36.00000000000	36.0000000000000000
45.00000000000	45.0000000000	45.0000000000000000
-55.00000000000	-55.00000000000	55.0000000000000000
66.0000000000	66.0000000000	66.0000000000000000
-78.0000000000	-78.00000000000	78.0000000000000000
91.0000000000	91.0000000000	91.0000000000000000
-105.00000000000	-105.00000000000	105.0000000000000000
120.00000000000	120.0000000000	120.0000000000000000
-136.00000000000	-136.00000000000	136.0000000000000000
153.00000000000	153.00000000000	153.00000000000000000
-171.00000000000	-171.00000000000	171.00000000000000000
190.00000000000	190.00000000000	190.00000000000000000
-210.00000000000	-210.00000000000	210.00000000000000000
231.00000000000	231.00000000000	231.00000000000000000
-253.00000000000	-253.00000000000	253.00000000000000000
276.00000000000	276.00000000000	276.00000000000000000
-300.00000000000	-300.00000000000	300.00000000000000000
325.00000000000	325.00000000000	325.00000000000000000
-351.00000000000	-351.00000000000	351.0000000000000000
378.00000000000	378.00000000000	378.00000000000000000
-406.00000000000	-406.00000000000	406.0000000000000000
435.00000000000	435.00000000000	435.00000000000000000
-465.00000000000	-465.00000000000	465.0000000000000000
496.00000000000	496.0000000000	496.0000000000000000
-528.00000000000	-528.00000000000	528.0000000000000000
561.00000000000	561.0000000000	561.0000000000000000
-595.00000000000	-595.00000000000	595.00000000000000000
630.00000000000	630.00000000000	630.00000000000000000
-666.00000000000	-666.0000000000	666.00000000000000000
703.00000000000	703.0000000000	703.00000000000000000
-741.00000000000	-741.0000000000	741.00000000000000000
780.00000000000	780.00000000000	780.00000000000000000

Question #5

Question #6

```
1 def depth(n):
      if n < 2:
3
         return 1
      if n % 2 == 1:
4
         return 1 + depth(3 * n + 1)
5
6
      else:
7
         return 1 + depth(n // 2)
8
10 \text{ def main()}:
      for i in range(101):
11
         print("%3.0f & %5.0f\\\" % (i, depth(i)))
12
13
14
16 main()
```

Iteration	\mathbf{Depth}	2.4	1.4		
0	1	34	14	68	15
1	1	35	14	69	15
2	2	36	22	70	15
3	8	37	22	71	103
4	3	38	22	72	23
5	6	39	35	73	116
6	9	40	9	74	23
7	17	41	110	75	15
8	4	42	9	76	23
9	20	43	30	77	23
10	7	44	17	78	36
11	15	45	17	79	36
12	10	46	17	80	10
13	10	47	105	81	23
14	18	48	12	82	111
15	18	49	25	83	111
16	5	50	25	84	10
17	13	51	25	85	10
18	21	52	12	86	31
19	21	53	12	87	31
20	8	54	113	88	18
21	8	55 50	113	89	31
22	16	56	20	90	18
23	16	57	33	91	93
24	11	58	20	92	18
25	24	59	33	93	18
26	11	60	20	94	106
27	112	61	20	95	106
28	19	62	108	96	13
29	19	63	108	97	119
30	19	64	7	98	26
31	107	65 cc	28	99	26
32	6	66 67	28	100	26
33	27	67	28		

33 27 **Question #7**

Theorem 3. For an arbitrary $n \in \mathbb{Z}$, such that $n \geq 0$,

$$\sum_{i=1}^{n} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Proof. Step #1 Prove by induction that for n = 0

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

We choose the summation form as f(x) and the explicit form g(x).

Step #2 Check the base case and two other values,

$$\sum_{i=1}^{1} n^2 = 1 = \frac{1(1+1)(2*1+1)}{6}$$

$$\sum_{i=1}^{2} n^2 = 5 = \frac{1(1+1)(2*1+1)}{6}$$

$$\sum_{i=1}^{3} n^2 = 14 = \frac{2*(2+1)(2*2+1)}{6}$$

Step #3 $\forall n > 0$, prove that P(n) is true if P(n-1) is true,

$$f(x) = \sum_{i=1}^{n} i^2$$
 by definition
$$= f(x-1) + n^2$$
 by recursion
$$= g(x-1) + n^2$$
 by hypothesis
$$= \frac{(n-1)(n-1+1)(2(n+1)+1)}{6} + n^2$$

$$= \frac{n(n+1)(2n+1)}{6}$$
 algebraic simplification

Step #4 Since the hypotheses of Simple Induction are true, the conclusion follows, namely, for all natural numbers, f(n) = g(n).

Question #8

Theorem 4. For an arbitrary $n \in \mathbb{Z}$, such that $n \geq 0$,

$$11^{n+2} + 12^{2n+1} \mod 133 = 0$$

Proof. Step #1 Prove by induction that for n > 0

$$11^{n+2} + 12^{2n+1} \mod 133 = 0$$

Step #2 Check the base case and two other values,

$$11^3 + 12^3 \mod 133 = 0$$

 $11^4 + 12^5 \mod 133 = 0$

Step #3 $\forall n > 0$, prove that P(n) is true if P(n-1) is true,

$$f(x) = 11^{n+2} + 12^{2n+1}$$

= 11ⁿ⁺¹ + 12²ⁿ⁻¹ + 11ⁿ⁺² + 12²ⁿ⁺¹

Because we assume $11^{n+2} + 12^{2n+1}$ to be divisible, we can rewrite it to be $133a_1$, signifying it is evenly divisible by 133.

$$f(x) = 11 * 11^{n} + 12^{-1} * 144^{n} + 133a_{1}$$
$$= a_{2}11^{n} + a_{3}144^{n} + 133a_{1}$$

We know the superposition of all of these numbers to be divisible by 133.

Step #4 Since the hypotheses of Simple Induction are true, the conclusion follows, namely, for all natural numbers, $f(n) \mod 133 = 0$.

Question #9

Let F(0) denote the root of the tree T. If we start at F(0), there must be an adjacent vertex to it, namely, v_1 . There are infinitely many vertexes by going through the tree (this must be the case, or the tree T would be finite).

We can repeat this process, for at any vertex v_n , there exists a vertex v_{n+1} . Because the tree is infinite, there are infinitely many v_{n+1} .

By induction, for any n, there exists a path of length L in T.

Question #10

```
1 class Binary_Search_Tree:
2   def __init__(self, data):
3     if data is None:
4         self.data = [0, [], []]
5     else:
6     self.data = data
```

```
7
8
        def add_node(self, node):
9
            if node.data[0] < self.data[0]:</pre>
10
                self.__add_node_left(node)
11
            else:
12
                self.__add_node_right(node)
13
        def __add_node_left(self, node):
14
15
            if self.data[1] == []:
16
                self.data[1] = node
17
            else:
18
                self.data[1].add_node(node)
19
20
        def __add_node_right(self, node):
21
            if self.data[2] == []:
22
                self.data[2] = node
23
            else:
24
                self.data[2].add_node(node)
25
26
        def leaf_count(self):
27
            if self.data[1] == []:
28
                if self.data[2] == []:
29
                     return 1
30
                else:
31
                     return self.data[2].leaf_count()
32
            elif self.data[2] == []:
33
                return self.data[1].leaf_count()
34
            else:
                return self.data[1].leaf_count() + self.data[2].leaf_count()
35
36
37
        def internal_count(self):
38
            if self.data[1] == []:
39
                if self.data[2] == []:
40
                     return 0
41
            elif self.data[2] == []:
42
                return 1 + self.data[1].internal_count()
43
            else:
                return 1 + self.data[1].internal_count() + self.data[2].
44
       internal_count()
45
46
47
   def main():
48
       T = Binary_Search_Tree([
49
            42,
50
            Binary_Search_Tree([29, [], []]),
            Binary_Search_Tree([51, [], []])
51
52
       ])
53
54
       print("Leaf: {0}, Internal: {1}".format(T.internal_count(), T.
       leaf_count()))
55
       T.add_node(Binary_Search_Tree([25, [], []]))
56
```

```
57
       T.add_node(Binary_Search_Tree([22, [], []]))
       T.add_node(Binary_Search_Tree([45, [], []]))
58
59
       T.add_node(Binary_Search_Tree([8, [], []]))
60
       T.add_node(Binary_Search_Tree([1000, [], []]))
       T.add_node(Binary_Search_Tree([3, [], []]))
61
62
       T.add_node(Binary_Search_Tree([1, [], []]))
63
       print("Leaf: {0}, Internal: {1}".format(T.internal_count(), T.
64
       leaf_count()))
65
66
67
   if __name__ == "__main__":
68
       main()
```

From the results, we can very much see that Internal Nodes = Leaf Nodes -1.

10.1 Proof

Proof. Take n to be the number of nodes, I(T) the number of internal nodes and L(T) to be the number of leaf nodes. We know the internal nodes to be the sum of previous internal nodes (i.e., $I(t) = I(t_1) + I(t_2) + 1$).

From this, we get

$$I(T) = I(t_1) + I(t_2) + 1 \tag{2}$$

$$I(t_1) = L(t_1) - 1 (3)$$

$$I(t_2) = L(t_2) - 1I(T) = L(t_1) - 1 + L(t_2) - 1$$
(4)

$$=L(T)-1\tag{5}$$