Lab08

November 8, 2017

1 Lab 08

1.0.1 Emil Magerramov

1.0.2 Link to the report: https://github.com/lemhell/advstat-labs/tree/master/Lab08

1.1 Assignment 1

The task is to estimate mean and median statistics for the target variables y_i using Bootstrap procedure.

Then, linear models for the target variables should be created and coefficients of these models (including the intercept) should be estimated using Bootstrap.

1.1.1 Load the datasets

1.1.2 Check the first dataset

```
In [213]: dataset1.head(3)
Out [213]:
                     p2
                p1
                         рЗ
                                  p4
                                      p5
                                               p6
                                                       р7
                                                                р8
                                                                             p10
         0 6.48148 3.0 5.0 7.75000 0.0 7.16667 8.16667 9.66667 6.16667
                                                                             9.0
         1 5.74074 4.0 8.0 7.33333 8.0 8.83333 9.75000 9.66667 9.00000
                                                                            10.0
         2 7.59259 7.0 8.0 7.66667 8.0 9.66667 9.50000 6.16667 9.66667
                                                                             6.5
```

```
0 ...
                  0.0
                        3.0 1.66667
                                       1.33333
                                                0.0 1.66667
                                                              3.16667
                                                                       0.0 0.00000
                                                                                      0.0
          1 ...
                  7.0
                        3.5 8.46667
                                       7.33333
                                                7.0
                                                     2.50000 5.50000
                                                                       5.0 8.66667
                                                                                      8.0
          2 ...
                 8.0 10.0 8.50000 10.00000 9.0 3.50000 3.50000
                                                                       9.0 6.50000 7.0
          [3 rows x 28 columns]
1.1.3 Split the 1st dataset into X and y
In [95]: target_names = ['y' + str(i) for i in range(1, 6)]
         targets = dataset1[target_names]
         dataset1.drop(target_names, axis=1, inplace=True)
         dataset1.drop('id', axis=1, inplace=True)
In [34]: def bootstrap_estimate(func, data, B=1000):
             Args:
                 func - statistic to estimate
                 data - vector of values
                 B - number of bootstrap samples
             Returns:
                 estimate, std - estimation for the func
             samples = np.random.choice(data, size=(B, len(data)))
             statistics = np.apply_along_axis(func, axis=1, arr=samples)
             b_mean = np.mean(statistics)
             b_std = np.std(statistics)
             return b_mean, b_std
1.1.4 Estimate the targets y_i using Bootstrap
In [35]: for target_name in target_names:
             target = targets[target_name]
             print("Evaluating", target_name)
             print("Mean:")
             mean_b_mean, mean_b_std = bootstrap_estimate(np.mean, target)
             print("({} +- 1.96 * {}) for 95% confidence".format(mean_b_mean, mean_b_std))
             print()
             print("Median:")
             median_b_mean, median_b_std = bootstrap_estimate(np.median, target)
             print("({} +- 1.96 * {}) for 95% confidence".format(median_b_mean, median_b_std))
             print(); print()
Evaluating y1
Mean:
(4.025525 +- 1.96 * 0.46388209641567324) for 95% confidence
```

p22 p23

p24

p19

. . .

p20

p21

p26

p28

p27

p25

```
Median:
(4.00625 +- 1.96 * 0.573714595857557) for 95% confidence
Evaluating y2
Mean:
(5.49970625 + -1.96 * 0.52201355911359) for 95% confidence
Median:
(6.172875 +- 1.96 * 0.7124814800224635) for 95% confidence
Evaluating y3
Mean:
(7.33241775 +- 1.96 * 0.45930786807155555) for 95% confidence
Median:
(8.309085 + 1.96 * 0.2750371570806391) for 95% confidence
Evaluating y4
Mean:
(1.5212154999999998 +- 1.96 * 0.11332830983364219) for 95% confidence
Median:
(1.85524 +- 1.96 * 0.13428623309930174) for 95% confidence
Evaluating y5
Mean:
(5.607217 +- 1.96 * 0.4242976871089448) for 95% confidence
Median:
In [100]: def bootstrap_estimate_regressor(regressor_class, X, y, B=1000):
             n n n
             Args:
                 regressor - class of the regressor (example: LinearRegression)
                 X - data, np.array
                 y - target, np.array
                 B - number of bootstrap samples
             Returns:
                 means, stds: tuple of lists of values
```

```
resample_indices = np.random.choice(list(range(X.shape[0])), size=(B, X.shape[0]))
coefficients = np.ndarray((B, X.shape[1] + 1)) # + 1 for the intercept

for i in range(B):
    X_resample = X.iloc[resample_indices[i], :]
    y_resample = y[resample_indices[i]]
    regressor = regressor_class()
    regressor.fit(X_resample, y_resample)
    coefficients[i] = np.concatenate((regressor.coef_, [regressor.intercept_]))

coef_means, coef_stds = [], []
for i in range(coefficients.shape[1]):
    cur_coef = coefficients[:, i]
    coef_means.append(np.mean(cur_coef))
    coef_stds.append(np.std(cur_coef))

return coef_means, coef_stds
```

1.1.5 Create a linear model for each y_i

n n n

Create a LinearRegression model for each y_i and evaluate it using Mean Squared Error.

1.1.6 Now estimate confidence intervals for the coefficients of a linear model

For the second part of the first assignment the resampling procedure is the following:

- * Sample train data from X and y with repetitions B times.
- * Then, train a linear model on these data and save the coefficents of the model.

* Finally, calculate the mean and the standard deviation for each coeffifient to estimate the confidence interval.

```
In [212]: for target_name in target_names:
              target = targets[target_name]
              print("Evaluating", target_name, "confidence intervals for coeffs for 95% confiden
              coef_means, coef_stds = bootstrap_estimate_regressor(LinearRegression, dataset1, t
              for i in range(len(coef_means)):
                  current_coef_name = "coefficient_" + str(i)
                  if i == len(coef_means) - 1:
                      current_coef_name = "the intercept"
                  print("Estimating", current_coef_name)
                  print("({{}} +- 1.96 * {{}})".format(coef_means[i], coef_stds[i]))
              print()
Evaluating y1 confidence intervals for coeffs for 95% confidence
Estimating coefficient_0
(0.3052473918532328 + 1.96 * 0.2459362485313749)
Estimating coefficient_1
(-0.016330110599094335 + -1.96 * 0.24739534023004342)
Estimating coefficient_2
(-0.08665757880476911 + -1.96 * 0.32958021074123506)
Estimating coefficient_3
(0.5928848760191404 +- 1.96 * 0.3360349365294616)
Estimating coefficient_4
(-0.25621866702969215 + -1.96 * 0.3142084759283443)
Estimating coefficient_5
(0.22120323093850972 +- 1.96 * 0.4324485246556507)
Estimating coefficient_6
(-0.37903163384217897 + 1.96 * 0.40331838047058954)
Estimating coefficient_7
(-0.08635390600581937 + 1.96 * 0.3077645649043386)
Estimating coefficient_8
(-0.044652940855385834 + -1.96 * 0.32766974253338427)
Estimating coefficient_9
(-0.20750107228094405 + -1.96 * 0.30756256587419756)
Estimating coefficient_10
(0.3783408871328197 + 1.96 * 0.3874257314125129)
Estimating coefficient_11
(0.05627876378175603 + 1.96 * 0.3733778257325087)
Estimating coefficient_12
(0.14104371592813875 + 1.96 * 0.32545630720889684)
Estimating coefficient_13
(-0.03368434022278277 + 1.96 * 0.27842150580340197)
Estimating coefficient_14
(-0.43340294575512983 + -1.96 * 0.2670942506592189)
```

Estimating coefficient_15

```
(0.19967344374691132 + 1.96 * 0.19949887609195938)
Estimating coefficient_16
(0.32363421909956036 +- 1.96 * 0.2525227326283371)
Estimating coefficient_17
(-0.05794376611311911 + -1.96 * 0.2486578899759727)
Estimating coefficient_18
(-0.21187147231598252 + -1.96 * 0.2524699983418228)
Estimating coefficient_19
(-0.16111621699091042 + -1.96 * 0.2603676032291606)
Estimating coefficient_20
(0.3609088717267041 +- 1.96 * 0.26108781239312406)
Estimating coefficient_21
(-0.018903173521867246 +- 1.96 * 0.2208717582145471)
Estimating coefficient_22
(0.34377321899604113 +- 1.96 * 0.20080065742351835)
Estimating coefficient_23
(-0.24272363459481638 + -1.96 * 0.25358122652890114)
Estimating coefficient_24
(0.21162784257312348 +- 1.96 * 0.27878195332390077)
Estimating coefficient_25
(0.0504874395443007 + 1.96 * 0.24696281609211213)
Estimating coefficient_26
(-0.03977049776435379 + 1.96 * 0.28539145656239817)
Estimating coefficient_27
(-0.16115261473659842 + 1.96 * 0.21294535618668742)
Estimating the intercept
(-0.022447894970708544 +- 1.96 * 0.43529900616369255)
Evaluating y2 confidence intervals for coeffs for 95% confidence
Estimating coefficient_0
(-0.022584535374032776 + 1.96 * 0.4065884305569933)
Estimating coefficient_1
(0.11213123799836339 + 1.96 * 0.35870668689750496)
Estimating coefficient_2
(-0.11165303164140478 + -1.96 * 0.4703292646086423)
Estimating coefficient_3
(0.21008764464581062 + 1.96 * 0.49540042517950467)
Estimating coefficient_4
(0.06198518206297909 +- 1.96 * 0.473291949106145)
Estimating coefficient_5
(0.4982033672610486 +- 1.96 * 0.7002382154229662)
Estimating coefficient_6
(0.38477984563870893 + 1.96 * 0.4889208619478313)
Estimating coefficient_7
(-0.3800606859586509 + -1.96 * 0.48398335418740546)
Estimating coefficient_8
(-0.06532273823765576 + -1.96 * 0.4719263481879249)
Estimating coefficient_9
```

```
(-0.05244154298568181 + 1.96 * 0.47441563597876846)
Estimating coefficient_10
(0.19404948631167543 + 1.96 * 0.4910560066017214)
Estimating coefficient_11
(0.05057302930415489 + 1.96 * 0.5950537203595693)
Estimating coefficient_12
(-0.006466221887143646 + -1.96 * 0.4733387680947154)
Estimating coefficient_13
(0.1922931976275236 + 1.96 * 0.3514369647208421)
Estimating coefficient_14
(-0.380733516000323 + -1.96 * 0.4161633302038853)
Estimating coefficient_15
(0.17966669611647312 + 1.96 * 0.2999818627292036)
Estimating coefficient_16
(0.19437599085032298 + 1.96 * 0.3292043942104859)
Estimating coefficient_17
(0.02670114418747452 +- 1.96 * 0.3279674110842693)
Estimating coefficient_18
(-0.3485750055508314 + -1.96 * 0.3885978533090944)
Estimating coefficient_19
(-0.15759721933204907 + 1.96 * 0.3973456792836041)
Estimating coefficient_20
(0.33282811096363885 + 1.96 * 0.3809260007768491)
Estimating coefficient_21
(0.2099891678993505 + 1.96 * 0.3221576461558138)
Estimating coefficient_22
(-0.11114938735519185 + -1.96 * 0.27730359936850785)
Estimating coefficient_23
(-0.01502622163638666 + -1.96 * 0.4651778029292537)
Estimating coefficient_24
(0.11232364649227085 + 1.96 * 0.42304441416552485)
Estimating coefficient_25
(0.22977252470315832 + 1.96 * 0.3815910513793848)
Estimating coefficient_26
(-0.27930789294282227 + 1.96 * 0.5735527114780614)
Estimating coefficient_27
(-0.19860890728850297 + 1.96 * 0.26546193711402405)
Estimating the intercept
(-0.017610235874727733 +- 1.96 * 0.40995780424756484)
Evaluating y3 confidence intervals for coeffs for 95% confidence
Estimating coefficient_0
(0.051177439005156485 +- 1.96 * 0.07426591496685372)
Estimating coefficient_1
(0.03535417571327615 + 1.96 * 0.056768119889512816)
Estimating coefficient_2
(0.05472680855374009 + 1.96 * 0.07986477023652078)
Estimating coefficient_3
```

```
(0.07448686302870053 + 1.96 * 0.08123214432321112)
Estimating coefficient_4
(0.10210684277000757 +- 1.96 * 0.07688188837102766)
Estimating coefficient_5
(0.007926945930539879 + 1.96 * 0.10755424828131124)
Estimating coefficient_6
(0.1648399977970918 + -1.96 * 0.0931687528325408)
Estimating coefficient_7
(0.13169291444211637 + 1.96 * 0.09189482679800252)
Estimating coefficient_8
(0.08023732111018501 + 1.96 * 0.10203247555275198)
Estimating coefficient_9
(0.0529842210299951 +- 1.96 * 0.07987468239909688)
Estimating coefficient_10
(0.13324413909867183 + 1.96 * 0.09687855936999933)
Estimating coefficient_11
(0.11832614580007716 +- 1.96 * 0.10080780128655152)
Estimating coefficient_12
(0.006439010216469216 +- 1.96 * 0.07908851011075851)
Estimating coefficient_13
(0.05243882446759999 +- 1.96 * 0.08261316634112427)
Estimating coefficient_14
(0.07524449704684713 + 1.96 * 0.06782486184870903)
Estimating coefficient_15
(-0.0017363200144281188 + -1.96 * 0.04914942297915374)
Estimating coefficient_16
(-0.04179891891580384 + -1.96 * 0.06784257165707387)
Estimating coefficient_17
(-0.0006534095903160185 + -1.96 * 0.0736982023081848)
Estimating coefficient_18
(0.04753107402424646 +- 1.96 * 0.07063356766064761)
Estimating coefficient_19
(0.015284110685826345 +- 1.96 * 0.06600422946304654)
Estimating coefficient_20
(-0.012298011778592672 + 1.96 * 0.07096772085127713)
Estimating coefficient_21
(-0.03401792013636229 + 1.96 * 0.06607130525933012)
Estimating coefficient_22
(7.967483943773418e-05 +- 1.96 * 0.052669684968453756)
Estimating coefficient_23
(0.0398720775780162 +- 1.96 * 0.06884110503608394)
Estimating coefficient_24
(-0.07365876404514299 + -1.96 * 0.07897643033819139)
Estimating coefficient_25
(-1.0838306214789596e-05 +- 1.96 * 0.0708041901291112)
Estimating coefficient_26
(-0.00028346969200432326 +- 1.96 * 0.07973769595338481)
Estimating coefficient_27
```

```
(-0.01917399553521352 + 1.96 * 0.051182201456378924)
Estimating the intercept
(0.02201087888094191 +- 1.96 * 0.2485220391424638)
Evaluating y4 confidence intervals for coeffs for 95% confidence
Estimating coefficient_0
(-0.02313261304826252 + -1.96 * 0.04289891665685881)
Estimating coefficient_1
(-0.0008685429033719769 + -1.96 * 0.03525638938375469)
Estimating coefficient_2
(0.026510156113911908 + 1.96 * 0.057802976408654075)
Estimating coefficient_3
(0.02831602880028164 +- 1.96 * 0.04606308464533662)
Estimating coefficient_4
(0.04434768808641603 + 1.96 * 0.0412342627350406)
Estimating coefficient_5
(0.04968579345040043 +- 1.96 * 0.06834707497027112)
Estimating coefficient_6
(-0.020119697394872408 + -1.96 * 0.061167106198356164)
Estimating coefficient_7
(0.06117540772141643 + 1.96 * 0.0530168958828602)
Estimating coefficient_8
(0.042656301388637574 +- 1.96 * 0.059053668782145394)
Estimating coefficient_9
(0.02700560840307788 + 1.96 * 0.05758894828899638)
Estimating coefficient_10
(-0.006849167270962192 + -1.96 * 0.06497208205804852)
Estimating coefficient_11
(-0.001469518006729794 + -1.96 * 0.06619149484394353)
Estimating coefficient_12
(-0.06371605195867522 +- 1.96 * 0.04711529808152812)
Estimating coefficient_13
(0.03729506897631613 + 1.96 * 0.04267992253262685)
Estimating coefficient_14
(-0.0291086765869272 + 1.96 * 0.050214947284385573)
Estimating coefficient_15
(0.024175362044688557 + 1.96 * 0.031484685622264794)
Estimating coefficient_16
(-0.04603793474200113 + -1.96 * 0.045012604598961815)
Estimating coefficient_17
(0.03306792903542521 +- 1.96 * 0.04078339380904264)
Estimating coefficient_18
(0.027545891900325237 + 1.96 * 0.04015313379951429)
Estimating coefficient_19
(0.029576665867569386 +- 1.96 * 0.04692715206392505)
Estimating coefficient_20
(0.04606073701779964 +- 1.96 * 0.045845976782851856)
Estimating coefficient_21
```

```
(-0.047972514460880515 + -1.96 * 0.043659309267359746)
Estimating coefficient_22
(0.019270540598781954 +- 1.96 * 0.03368200326002764)
Estimating coefficient_23
(0.015413525875169655 + 1.96 * 0.04751720108814641)
Estimating coefficient_24
(-0.05519363775567555 + 1.96 * 0.05676146944158244)
Estimating coefficient_25
(0.01741962715006592 + 1.96 * 0.04392499699053847)
Estimating coefficient_26
(0.00850904028420664 +- 1.96 * 0.04431152193034938)
Estimating coefficient_27
(-0.0006467801122101742 +- 1.96 * 0.031162015220312374)
Estimating the intercept
(0.0017643177366053469 +- 1.96 * 0.04828330655329393)
Evaluating y5 confidence intervals for coeffs for 95% confidence
Estimating coefficient_0
(0.09663841059101225 +- 1.96 * 0.15981984763337023)
Estimating coefficient_1
(0.03499265201869525 + 1.96 * 0.14877430039477219)
Estimating coefficient_2
(-0.03233122744435318 + -1.96 * 0.20912687306104377)
Estimating coefficient_3
(0.3134966158989402 +- 1.96 * 0.19650934877460513)
Estimating coefficient_4
(-0.04308868686595181 + -1.96 * 0.1699256546908766)
Estimating coefficient_5
(0.256824407168735 + 1.96 * 0.2810546317922285)
Estimating coefficient_6
(0.025008048938897312 +- 1.96 * 0.20217867263225608)
Estimating coefficient_7
(-0.08509437382045641 + -1.96 * 0.18358863542206175)
Estimating coefficient_8
(-0.006785705100062131 + -1.96 * 0.23968477189752316)
Estimating coefficient_9
(-0.058725180653944616 + -1.96 * 0.20505820031854122)
Estimating coefficient_10
(0.21950737092528733 + 1.96 * 0.21893310634346577)
Estimating coefficient_11
(0.06505049464335926 +- 1.96 * 0.22062724921374025)
Estimating coefficient_12
(0.039742479875343566 +- 1.96 * 0.19975855698876616)
Estimating coefficient_13
(0.06602217970651464 +- 1.96 * 0.17902673634033595)
Estimating coefficient_14
(-0.2514105648040371 + 1.96 * 0.19986283374429706)
Estimating coefficient_15
```

```
(0.12384555067052841 + 1.96 * 0.12654246411827705)
Estimating coefficient_16
(0.13536442726897532 + 1.96 * 0.14861600150264492)
Estimating coefficient_17
(-0.002269349962124311 + 1.96 * 0.14369074039864907)
Estimating coefficient_18
(-0.14048577117362687 + 1.96 * 0.19043629224108788)
Estimating coefficient_19
(-0.08665844514661092 + -1.96 * 0.17000778979736222)
Estimating coefficient_20
(0.21533259504534066 +- 1.96 * 0.17887271265106924)
Estimating coefficient_21
(0.03406242979686218 +- 1.96 * 0.15521541148687776)
Estimating coefficient_22
(0.09516770603437226 +- 1.96 * 0.1283111869199293)
Estimating coefficient_23
(-0.08244489614024167 + 1.96 * 0.17672305019252194)
Estimating coefficient_24
(0.06972900932301525 +- 1.96 * 0.174692240999731)
Estimating coefficient_25
(0.10481491538211628 +- 1.96 * 0.17820493459955764)
Estimating coefficient_26
(-0.08785290518016846 + -1.96 * 0.21742986709516485)
Estimating coefficient_27
(-0.11945029852127398 + -1.96 * 0.1258410623380885)
Estimating the intercept
(0.000526232302898955 +- 1.96 * 0.12940758969107188)
```

1.2 Assignment 2

The task is to determine the best model for the mean number of bugs as a function of time. Then, the confidence intervals for each of the model's parameters should be estimated using Bootstrap.

1.2.1 Check the 2nd dataset

```
Returns the predicted number of bugs given timepoint.
"""
return a*(1 - (1 + b*t)*np.exp(-b*t))
```

Since the data is a time series, the proposed approach to do the sampling is the following:

- * Set random 10% of data from the bugsPerDay column to 0. Then, recalculate the cumulative sum.
- * The sampling procedure is being repeated B times. For each sample, the least squares optimization is used to determine the best model given the data.
- * Then, the mean and the standard deviation are calculated to estimate the confidence interval for each of the model's parameters.
- * Finally, the optimization procedure is executed on the whole dataset in order to do the comparison.

```
In [195]: def func_to_min(values):
              Least squares optimization problem
              to determine the best model given data.
              a, b = values
              return np.sum(np.power(np.array([ros(x, a, b) for x in np.arange(len(current_cumsu
          B = 1000
          results_a, results_b = [], []
          throw_away_inds_len = int(0.1 * len(dataset2['day']))
          for i in tqdm(range(B)):
              current_bugs = dataset2['bugsPerDay'].copy()
              # randomly set some of the bugs to 0
              throw_away_inds = np.random.choice(np.arange(len(current_bugs)), size=throw_away_i
              current_bugs[throw_away_inds] = 0
              current_cumsum = np.cumsum(current_bugs)
              # [5000., 0.001] is a starting point for the parameters
              result = minimize(func_to_min, [5000., 0.001], tol=1e-25)
              a, b = result.x
              results_a.append(a)
              results_b.append(b)
          print("a: ({} +- 1.96 * {})".format(np.mean(results_a), np.std(results_a)))
          print("b: ({} +- 1.96 * {})".format(np.mean(results_b), np.std(results_b)))
/usr/local/lib/python3.6/site-packages/scipy/optimize/optimize.py:964: RuntimeWarning: divide by
  rhok = 1.0 / (numpy.dot(yk, sk))
/usr/local/lib/python3.6/site-packages/scipy/optimize/optimize.py:964: RuntimeWarning: divide by
  rhok = 1.0 / (numpy.dot(yk, sk))
/usr/local/lib/python3.6/site-packages/scipy/optimize/optimize.py:964: RuntimeWarning: divide by
```

rhok = 1.0 / (numpy.dot(yk, sk))

```
/usr/local/lib/python3.6/site-packages/scipy/optimize/optimize.py:964: RuntimeWarning: divide by
  rhok = 1.0 / (numpy.dot(yk, sk))
/usr/local/lib/python3.6/site-packages/scipy/optimize/optimize.py:964: RuntimeWarning: divide by
  rhok = 1.0 / (numpy.dot(yk, sk))
a: (18709.62167630103 +- 1.96 * 144827.36988481347)
b: (0.0018502726499009373 +- 1.96 * 0.00015379929476585236)
In [205]: bugs = dataset2['cummBugs']
          ros_bugs = [ros(t, np.mean(results_a), np.mean(results_b)) for t in range(len(bugs))]
          plt.plot(ros_bugs, color='r', label='Bootstrap-estimated curve')
          plt.plot(bugs, label='Cumulative amount of bugs')
          plt.xlabel("Time")
          plt.ylabel("Cumulative amount of bugs")
          plt.legend(loc='upper left');
         14000
                       Bootstrap-estimated curve
         12000
                       Cumulative amount of bugs
      Cumulative amount of bugs
         10000
          8000
          6000
          4000
          2000
                       200
                                400
                                        600
                                                 800
                                                         1000
                                                                  1200
                                                                           1400
                                            Time
```

The bootstrap-estimated model pessimistically overestimated the cumulative amount of bugs over time.

1.2.2 Optimizing for the whole dataset

```
In [206]: current_cumsum = bugs
    result = minimize(func_to_min, [5000., 0.001], tol=1e-25)
```

```
a, b = result.x
   ros_bugs = [ros(t, a, b) for t in range(len(bugs))]
   plt.plot(ros_bugs, color='r', label='Estimated curve')
   plt.plot(bugs, label='Cumulative amount of bugs')
   plt.xlabel("Time")
   plt.ylabel("Cumulative amount of bugs")
   plt.legend(loc='upper left');
   7000
                 Estimated curve
   6000
                 Cumulative amount of bugs
Cumulative amount of bugs
   5000
   4000
   3000
   2000
   1000
       0
                200
                         400
                                  600
                                           800
                                                    1000
                                                             1200
        0
                                                                      1400
                                      Time
```

The model optimized on the whole dataset fitted the data pretty good.