

SECOND SEMESTER 2021-

2022

### (COURSE HANDOUT PART II)

Date: 17.01.2022

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No: BIO G643

**Course Title: Plant Biotechnology** 

Instructor-In charge: SRIDEV MOHAPATRA Instructors: Nikhil PT, Poosala Ramya Sri, Jayasree

## 1. Scope and Objective of the Course:

This course will provide an insight to the theory and practice of plant biotechnology with emphasis on plant cell and tissue culture and genetic engineering of plants. Scope and objectives of this course encompass (a) plant cell and tissue culture (with emphasis on media constituents, micropropagation and other culture techniques, their applications and limitations, germplasm storage, secondary metabolite production etc.) and (b) techniques and applications of plant transformation (vectors for plant transformation, promoter designing and inducible promoters, molecular markers and their applications, genetic manipulation of herbicide tolerance, pest resistance, disease resistance, stress tolerance, improvement of crop yield and quality, therapeutic protein and antibody production through plants, approaches to influence metabolite partitioning and quality and quantity of plant storage products, public concerns of GM crops).

## 2. Text Books:

- (1). Narayanaswamy, S. Plant Cell and Tissue Culture, Tata McGraw Hill Publishing Company Limited, 1994 (Tenth Reprint 2011).
- (2). Adrian Slater, Nigel W. Scott, and Mark R. Fowler: Plant Biotechnology: The Genetic manipulation of plants (Second edition). Oxford University Press (Reprint 2010).

#### 3. Reference Books:

- (1). Bhojwani, S.S. and Razdan, M.K. Plant Tissue Culture: Theory and Practices, A Revised Edition, Elsevier, Reprint 2004.
- (2). Hammond, J. Mc Garvey, P. and Yusibov, Plant Biotechnology. Springer Verlag, Berlin, NY (1999), 3rd Indian Reprint 2009.
- (3). Recent research articles and reviews will be recommended regularly.

#### 4. Course Plan:

| Lec. No. | Learning Objective           | Topic                                      | Reference to chapter |
|----------|------------------------------|--------------------------------------------|----------------------|
| 1        | Introduction                 | Overview of plant tissue culture and plant | Chap. 1, TB1         |
|          |                              | biotechnology                              | Chap 1, TB2          |
| 2        | Objective, scope and basic   | Historical introduction to plant tissue    | Chap 1, 2-TB 1       |
|          | requirements of plant tissue | culture, Lab organization (Lay out,        | Chap 1, 2-RB 1       |
|          | culture                      | requirements and general techniques)       |                      |
| 3-4      | Requirements to grow         | Culture media constituents, impact of      | Chap 3, TB 1         |
|          | plants in vitro (details)    | hormones and other chemicals in culture    | Chap 3, RB 1         |
|          |                              | media on the physiology of plant cells,    |                      |
|          |                              | media selection and preparation            |                      |
| 5-6      | In vitro techniques of       | Micro propagation stages, factors          | Chap 7, TB 1         |
|          | clonal propagation           | affecting micropropagation, applications   | Chap 16, RB 1        |
|          |                              | and limitations.                           |                      |
| 7-8      | Production of haploids       | Haploid production through anther culture  | Chap 10, TB 1        |
|          |                              | and microspore culture, applications and   | Chap 7, RB 1         |
|          |                              | limitations.                               |                      |
| 9        | Producing disease free       | Meristem culture and virus free plants.    | Chap 6, TB 1         |
|          | plants                       | _                                          | Chap 15,RB 1         |

| 10-11         | Producing secondary metabolites                                                                    | Cell culture and biosynthesis of secondary products                                                                                                                                       | Chap 14, TB 1                      |
|---------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 12-14         | Creating variations in vitro                                                                       | Somaclonal variations.                                                                                                                                                                    | Chap 9, RB 1                       |
| 15-17         | Somatic hybridization                                                                              | Protoplast isolation and culture, somatic hybrids production.                                                                                                                             | Chap 11,TB 1<br>Chap 12 & 13, RB 1 |
| 18            | Germplasm storage                                                                                  | Cryopreservation.                                                                                                                                                                         | Chap15, TB 1<br>Chap18, RB 1       |
| 19            | Introduction to plant transformation                                                               | Implications for plant transformation, protein targeting, heterologous promoters, molecular markers and their applications, <i>Arabidopsis</i> and new technologies                       | Chap 1, TB2<br>Chap 1, RB2         |
| 20-22         | Techniques for plant transformation                                                                | Agrobacterium mediated transfer and the Ti plasmid technology, practical applications of Agrobacterium mediated plant transformation and case study, direct gene transfer methods.        | Chap 3, TB2<br>Chap 2, 3, RB2      |
| 23-25         | Vectors for plant<br>transformation                                                                | Desirable features of a vector, development of plant transformation vectors and optimization                                                                                              | Chap 4, TB2<br>Chap 4, RB2         |
| 26-38         | Case studies                                                                                       | Genetic manipulation of herbicide tolerance, pest resistance, plant disease resistance, strategies for engineering stress tolerance, strategies for improvement of crop yield and quality | Chap 5, 6, 7, 8, 9 and 10, TB2     |
| 39-40         | Approaches to influence metabolite partitioning and quality and quantity of plant storage products | Molecular farming of Starch, polyfructans, bioplastics, the oleosin system, custom made antibodies, edible vaccines  Chap 11, TB2 Chap 5, 6, 8, I                                         |                                    |
| Self<br>Study | Science and society                                                                                | Public concerns over GM crops and government regulations                                                                                                                                  | Chap 12, TB2<br>Chap 1, RB2        |

# **List of Experiments:**

- 1. Surface sterilization and germination of plant seeds in soil and nutrient media
- 2. Induction of callus from plant explants in nutrient media
- 3. Propagation of callus in suspension cultures
- 4. Tissue regeneration from callus
- 5. Protoplast isolation from dicot leaves
- 6. Transformation of Agrobacterium tumefaciens with appropriate plant expression vector
- 7. Infiltration of *Nicotiana benthamiana* leaves with *Agrobacterium tumefaciens* and analysis of transformants

## **5. Evaluation Scheme:**

| Component                              | Duration | Weightage | Date and time      | Nature of Component |
|----------------------------------------|----------|-----------|--------------------|---------------------|
|                                        |          | (%)       |                    |                     |
| Mid-sem exam                           | 90 min   | 30        | 16/03 1.30-3.00 PM | Closed Book         |
| Lecture assignments (Research related) | Variable | 15        | Variable           | Open Book           |
| Laboratory assignments                 | Variable | 20        | Variable           | Open Book           |
| Comprehensive Examination              | 120 min  | 35        | 20/05 FN           | Open Book           |

- **6. Chamber Consultation Hour**: By prior appointment obtained in person or by email <a href="mailto:sridev.mohapatra@hyderabad.bits-pilani.ac.in">sridev.mohapatra@hyderabad.bits-pilani.ac.in</a>.
- **7. Notices:** Notices, if any, regarding the course will be displayed on the **CMS**.
- **8. Make-up Policy:** Only medical emergencies with evidence will be considered for make-up. For regulations about the make-up flexibility, students are advised to refer to Clause 4.07 of *BITS Academic Regulations*.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge BIO G643