Precept 4: HMMs, MEMMs, CRFs

COS 484

Tyler Zhu (Viterbi figures adapted from Howard Chen, lecture)

Today's Plan

- 1. Hidden Markov Models (20 min)
- 2. Maximum Entropy Markov Models (20 min)
- 3. Conditional Random Fields (5 min)

Hidden Markov Model (HMM)

- We don't normally see sequences of POS tags in text
- However, we do observe the words!
- The HMM allows us to jointly reason over both hidden and observed events.
 - Assume that each position has a tag that generates a word

HMMs: Assumptions

What are the key assumptions?

1. Markov assumption:

$$P(s_t | s_1, \dots, s_{t-1}) \approx P(s_t | s_{t-1})$$

2. Output independence:

$$P(o_t | s_1, \dots, s_t) \approx P(o_t | s_t)$$

HMMs: Assumptions

What are the key assumptions?

1. Markov assumption:

$$P(s_t | s_1, \dots, s_{t-1}) \approx P(s_t | s_{t-1})$$

Transition probabilities

2. Output independence:

$$P(o_t | s_1, \dots, s_t) \approx P(o_t | s_t)$$

Emission probabilities

HMMs: Training

What do we train and how?

Transition probabilities

$$P(s_t | s_1, \dots, s_{t-1}) \approx P(s_t | s_{t-1})$$

Emission probabilities

$$P(o_t | s_1, \dots, s_t) \approx P(o_t | s_t)$$

	DT	NN	VB
Ø	0.5	0.3	0.2
DT	0.1	0.5	0.4
NN	0.2	0.3	0.5
VB	0.4	0.3	0.3

From training data!

	the	cat	runs
DT	0.4	0.5	0.1
NN	0.5	0.4	0.1
VB	0.2	0.3	0.5

HMMs: Inference

Task: Find the most probable sequence of states $S = s_1, s_2, \ldots, s_n$ given the observations $O = o_1, o_2, \dots, o_n$

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \frac{P(O \mid S)P(S)}{P(O)}$$
 [Bayes' rule]

=
$$\underset{S}{\operatorname{arg}} \max_{S} P(O | S)P(S)$$
 [$P(O)$ doesn't depend on S !]

How can we maximize this? Search over all state sequences?

= arg
$$\max_{s_1, s_2, \dots s_n} \prod_{i=1}^n P(o_i | s_i) P(s_i | s_{i-1})$$
 [Markov assumption]

You are building a lie detector taking as input a stream of recorded behaviors:

• $x_t \in \{a, b\}$, i.e., face touching (a) or blinking (b)

Detector at every moment then predicts one of four labels:

• $y_t \in \{N, U, L, H\}$, i.e., Neutral (N), Unclear (U), Lying (L), and Honest (H)

Dataset is triplets (y_{t-1}, y_t, x_t) : 9x of (N, L, a), 9x of (U, L, b), 1x of (N, H, b)

• Labels y_t come from body language experts' annotation

Q1: You use the above data to build an HMM. What is $P(x_t = b \mid y_{t-1} = N)$?

Q1: You use the above data to build an HMM. What is $P(x_t = b \mid y_{t-1} = N)$?

Q1: You use the above data to build an HMM. What is $P(x_t = b \mid y_{t-1} = N)$?

Q1: You use the above data to build an HMM. What is $P(x_t = b \mid y_{t-1} = N)$?

Q1: You use the above data to build an HMM. What is $P(x_t = b \mid y_{t-1} = N)$?

Simplified model of the HMM we care about.

We need to condition over y_t using our emission and transition probabilities.

$$P(x_t = b | y_{t-1} = N) = \sum_{y_t} P(x_t = b, y_t | y_{t-1} = N)$$

$$P(x_{t} = b | y_{t-1} = N) = \sum_{y_{t}} P(x_{t} = b, y_{t} | y_{t-1} = N)$$

$$= \sum_{y_{t}} P(x_{t} = b | y_{t}) P(y_{t} | y_{t-1} = N)$$
emission transition

$$P(x_{t} = b | y_{t-1} = N) = \sum_{y_{t}} P(x_{t} = b, y_{t} | y_{t-1} = N)$$

$$= \sum_{y_{t}} P(x_{t} = b | y_{t}) P(y_{t} | y_{t-1} = N)$$

$$= P(b | L) P(L | N) + P(b | H) P(H | N)$$

$$P(x_t = b | y_{t-1} = N) = \sum_{y_t} P(x_t = b, y_t | y_{t-1} = N)$$

$$= \sum_{y_t} P(x_t = b | y_t) P(y_t | y_{t-1} = N)$$

$$= P(b | L) P(L | N) + P(b | H) P(H | N)$$

$$= \frac{1}{2} \times \frac{9}{10} + 1 \times \frac{1}{10} = \frac{11}{20}$$

HMMs: Efficient Inference

Task: Find the most probable sequence of states $S=s_1,s_2,\ldots,s_n$ given the observations $O=o_1,o_2,\ldots,o_n$

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{s_1, s_2, \dots s_n} \prod_{i=1}^{n} P(o_i \mid s_i) P(s_i \mid s_{i-1})$$

HMMs: Efficient Inference

Task: Find the most probable sequence of states $S = s_1, s_2, \ldots, s_n$ given the observations $O = o_1, o_2, \ldots, o_n$

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{s_1, s_2, \dots s_n} \prod_{i=1}^{n} P(o_i \mid s_i) P(s_i \mid s_{i-1})$$

Do what we just did for the example, but for every possible state!

- Viterbi is simply realizing that we only need to do this one-step calculation
- Try all possible explanations s_i for o_i to find the most likely one
- Multiply by (highest) $P(s_{i-1})$, i.e. score, so "most likely" is over all observations

HMMs: Efficient Inference

Task: Find the most probable sequence of states $S = s_1, s_2, \ldots, s_n$ given the observations $O = o_1, o_2, \ldots, o_n$

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{s_1, s_2, \dots s_n} \prod_{i=1}^{n} P(o_i \mid s_i) P(s_i \mid s_{i-1})$$

Thanks to Markov, we only need to "look-back" one time step to decode!

Makes dynamic programming possible, so we only need to keep the "best" for each previous time step to decode the next (instead of more history).

	X	Υ	Z
S	0.1	0.2	0.7
X	0.2	0.5	0.3
Υ	0.4	0.4	0.2
Z	0.6	0.2	0.2

		like	cats
X	0.2	0.1	0.7
Υ	0.1	0.8	0.1
Z	0.4	0.3	0.3

 $0.0672 \times 0.2 \times 0.7 = 0.0023$ $0.0448 \times 0.4 \times 0.7 = 0.0125$ $0.0168 \times 0.6 \times 0.7 = 0.0070$

 $0.0672 \times 0.2 \times 0.7 = 0.0023$ $0.0448 \times 0.4 \times 0.7 = 0.0125$ $0.0168 \times 0.6 \times 0.7 = 0.0070$

Viterbi Intuition: Backtracking

like

cats

This is where the backtracking matrix comes in handy!

 Keep track of best node from previous step

Viterbi Intuition: Backtracking

from previous step

Viterbi Understanding Check

How does Viterbi on a trigram HMM change? What about a 4-gram HMM?

Viterbi Understanding Check

How does Viterbi on a trigram HMM change? What about a 4-gram HMM?

Key: Without Markov, we just need to look further back to calculate our likelihood!

. HMM extended to trigram, 4-gram etc:
$$P(S,O) = \prod_{i=1}^n P(s_i \mid s_{i-1}, s_{i-2}) P(o_i \mid s_i)$$

. MLE estimate:
$$P(s_i | s_{i-1}, s_{i-2}) = \frac{\text{Count}(s_i, s_{i-1}, s_{i-2})}{\text{Count}(s_{i-1}, s_{i-2})}$$

Viterbi:

$$M[i,j,k] = \max_{r} M[i-1,k,r] \ P(s_j | s_k, s_r) \ P(o_i | s_j) \quad 1 \le j, k, r \le K \quad 1 \le i \le n$$

- most probable sequence of states ending with state j at time i, and state k at i-1
- Time complexity = $O(nK^3)$

Maximum Entropy Markov Models

Generative vs. Discriminative

- HMM is a generative model : we compute probability P(S, O)
- Can we model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly?

	Generative	Discriminative
Text classification	Naive Bayes: $P(c) P(d \mid c)$	Logistic Regression: $P(c \mid d)$
Sequence prediction	HMM: $P(s_1, \ldots s_n) P(o_1, \ldots o_n s_1, \ldots s_n)$	MEMM: $P(s_1, \ldots s_n o_1, \ldots o_n)$

MEMM Basics

$$P(S \mid O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}, s_{i-2}, ..., s_1, O)$$

$$= \prod_{i=1}^{n} P(s_i \mid s_{i-1}, O)$$
Markov assumption:
Bigram MEMM

Instead of learning how to model observations given states, directly learn to predict states given observations.

MEMM Basics

- To predict the red node, the bigram MEMM conditions on the "prior tag" (VB) and the observations in the window (The, cat, sat, on)
- Prior tags and observations will be transformed into features (some sort of vector representation) just like logistic regression

(Bigram) MEMM Formulation

- To make the equivalence b/w MEMMs & logistic regression clearer, we will depart slightly from the lecture notation
- Our primary objective: $P(S \mid O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}, s_{i-2}, ..., s_1, O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}, O)$

Logistic Regression

Input: documents *d*

Features: $\vec{\mathbf{x}} = \mathbf{f}(d)$ (#words, patterns, ...)

Output:
$$z_i = \mathbf{w}^{(i)} \cdot \vec{\mathbf{x}} \quad (\mathbf{w}^{(i)} \in \mathbb{R}^d)$$

$$P(y = i \mid d) = \operatorname{softmax}(\mathbf{\vec{z}})_i$$

$$\propto \exp(\mathbf{w}^{(i)} \cdot \mathbf{f}(d))$$
weights features

MEMM

Input: state s_{i-1} , observations O, position i

Features: $\mathbf{f}(s_{i-1}, O, i)$ (1 if $\langle man, the \rangle$ else 0)

Output:
$$z_s = \mathbf{w}^{(s)} \cdot \mathbf{f}(s_{i-1}, O, i) \quad (\mathbf{w}^{(s)} \in \mathbb{R}^d)$$

$$P(s_i = s \mid s_{i-1}, O) = \operatorname{softmax}(\vec{\mathbf{z}})_s$$

$$\propto \exp(\mathbf{w}^{(s)} \cdot \mathbf{f}(s_{i-1}, O, i))$$
weights features

MEMM Formulation

Examples of binary features and potential weights:

- $(o_{i-2} = \text{animal}, s_{i-1} = \text{VB})$: $w_{IN} = 3, w_{VB} = -1, w_{DT} = 0, w_{NN} = 1$
- (tri-gram) $(s_{i-2} = NN, s_{i-1} = VB)$: $w_{IN} = 4,...$

f would look like [1,0,0,1,...], and $\mathbf{w}_{\text{IN}} = [3,0,1,4,...]$

MEMM Formulation

Can also define generic feature templates:

•
$$\langle s_i, o_{i-2} \rangle$$
, $\langle s_i, o_{i-1} \rangle$, $\langle s_i, o_i \rangle$, $\langle s_i, o_{i+1} \rangle$, $\langle s_i, o_{i+2} \rangle$

•
$$\langle s_i, s_{i-1} \rangle$$
, $\langle s_i, s_{i-1}, s_{i-2} \rangle$

MEMM Basics

MEMM

$$P(S \mid O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}, O)$$

$$P(s_i = s \mid s_{i-1}, O) \propto \exp(\mathbf{w}^{(s)} \cdot \mathbf{f}(s_{i-1}, O, i))$$
weights features

$$P(s_i = s \mid s_{i-1}, O) = \frac{\exp(\mathbf{w}^{(s)} \cdot \mathbf{f}(s_{i-1}, O, i))}{\sum_{s'=1}^{K} \exp(\mathbf{w}^{(s')} \cdot \mathbf{f}(s_{i-1}, O, i))}$$

Markov assumption: Bigram MEMM

Important: you can define features over entire word sequence O!

Quick Aside: Two Equivalent Formulations

This formulation is identical to one in lecture; it's just different in featurization.

$$P(s_i = s \mid s_{i-1}, O) \propto \exp(\mathbf{w}^{(s)} \cdot \mathbf{f}(s_{i-1}, O, i))$$

Parameters: $\mathbf{w}^{(s)} \in \mathbb{R}^d$ for s = 1, 2, ..., K

$$P(s_i = s \mid s_{i-1}, O) \propto \exp(\mathbf{w} \cdot \mathbf{f}(s = s_i, s_{i-1}, O, i))$$

Parameters: $\mathbf{w} \in \mathbb{R}^d$, same for all features

Viterbi Decoding for MEMMs

M[i,j] stores joint probability of most probable sequence of states ending with state j at time i

$$M[i,j] = \max_{k} M[i-1,k] P(s_i = j | s_{i-1} = k, O)$$
 $1 \le k \le K$ $1 \le i \le n$

Backward: Pick $\max_{k} M[n, k]$ and backtrack using B

MEMMs vs. HMMs

- HMM models the joint P(S, O) while MEMM models the required prediction $P(S \mid O)$
- MEMM has more expressivity
 - accounts for dependencies between neighboring states and entire observation sequence
 - allows for more flexible features
- HMM may hold an advantage if the dataset is small

[SP23 Midterm] Problem 5: Lie Detection

You are building a lie detector taking as input a stream of recorded behaviors:

• $x_t \in \{a, b\}$, i.e., face touching (a) or blinking (b)

Detector at every moment then predicts one of four labels:

• $y_t \in \{N, U, L, H\}$, i.e., Neutral (N), Unclear (U), Lying (L), and Honest (H)

Dataset is triplets (y_{t-1}, y_t, x_t) : 9x of (N, L, a), 9x of (U, L, b), 1x of (N, H, b)

• Labels y_t come from body language experts' annotation

Q1: You use the above data to build an HMM. What is $P(x_t = b \mid y_{t-1} = N)$?

[SP23 Midterm] Problem 5: Lie Detection

(3) (4 points) Now assume you design the system with an MEMM model that predicts the label y_t :

$$P(y_{t} = \hat{y}_{t} \mid y_{t-1} = N, x_{t} = b) = \frac{\exp\left(\mathbf{w} \cdot \mathbf{f}(y_{t} = \hat{y}_{t}, y_{t-1} = N, x_{t} = b)\right)}{\sum_{y'_{t}} \exp\left(\mathbf{w} \cdot \mathbf{f}(y_{t} = y'_{t}, y_{t-1} = N, x_{t} = b)\right)},$$

where $\mathbf{f}(\cdot)$ is defined by the feature templates: $\langle y_{t-1}, y_t \rangle$, $\langle y_t, x_t \rangle$, and $\langle y_{t-1}, y_t, x_t \rangle$. Assume that, after the model is trained, the learned weight vector \mathbf{w} is:

$$w_{i} = \begin{cases} 0.2, & \text{for } \mathbb{1}[y_{t-1} = N, y_{t} = L] \\ 0.1, & \text{for } \mathbb{1}[y_{t-1} = N, y_{t} = H] \\ 0.6, & \text{for } \mathbb{1}[y_{t} = L, x_{t} = b] \\ 0.5, & \text{for } \mathbb{1}[y_{t} = H, x_{t} = b] \\ 0.7, & \text{for } \mathbb{1}[y_{t-1} = U, y_{t} = L, x_{t} = b] \\ 0.3, & \text{for } \mathbb{1}[y_{t-1} = N, y_{t} = H, x_{t} = b] \\ 0, & \text{otherwise} \end{cases}$$

where w_i is the element in **w**. Which tag will this model predict at time step t if we know $y_{t-1} = N$ and $x_t = b$? With the model predicting \hat{y}_t , does this triplet $(y_{t-1} = N, y_t = \hat{y}_t, x_t = b)$ have a higher count than all other triplets $(y_{t-1} = N, y_t = y'_t, x_t = b)$ in the past annotated recordings?

Labels are (N, H, L, U)

[SP23 Midterm] Problem 5: Lie Detection

(a) Just add up each of the z_i for each label; unnormalized is good enough

•
$$\tilde{P}(y_t = H \mid y_{t-1} = N, x_t = b) = 0.1 + 0.5 + 0.3 = 0.9$$

•
$$\tilde{P}(y_t = L \mid y_{t-1} = N, x_t = b) = 0.2 + 0.6 = 0.8$$

Therefore $\hat{y}_t = H$ is most likely.

(b) Yes. The 0.3 on $(y_{t-1}=N,y_t=H,x_t=b)$ shows that.

$$w_{i} = \begin{cases} 0.2, & \text{for } \mathbb{1}[y_{t-1} = N, y_{t} = L] \\ 0.1, & \text{for } \mathbb{1}[y_{t-1} = N, y_{t} = H] \\ 0.6, & \text{for } \mathbb{1}[y_{t} = L, x_{t} = b] \\ 0.5, & \text{for } \mathbb{1}[y_{t} = H, x_{t} = b] \\ 0.7, & \text{for } \mathbb{1}[y_{t-1} = U, y_{t} = L, x_{t} = b] \\ 0.3, & \text{for } \mathbb{1}[y_{t-1} = N, y_{t} = H, x_{t} = b] \\ 0, & \text{otherwise} \end{cases}$$

Conditional Random Field

- Model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly
- No Markov assumption
 - Map entire sequence of states S and observations O to a global feature vector
 - Normalize over entire sequences
- Generalization of MEMMs

$$P(S \mid O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(S, O))}{\sum_{S'} \exp(\mathbf{w} \cdot \mathbf{f}(S', O))} = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(S, O))}{Z(O)}$$

Features

$$1\{x_i = the, y_i = DET\}$$

$$1\{y_i = PROPN, x_{i+1} = Street, y_{i-1} = NUM\}$$

$$1\{y_i = VERB, y_{i-1} = AUX\}$$

$$P(S \mid O) = \frac{\exp(\sum_{k=1}^{m} w_k \cdot F_k(S, O))}{\sum_{S'} \exp(\sum_{k=1}^{m} w_k \cdot F_k(S', O))}$$

- Each F_k in f is a global feature function
- · Can be computed as a combination of local

features:
$$F_k = \sum_{i=1}^{n} f_k(s_{i-1}, s_i, O, i)$$

Each local feature only depends on previous and current states

CRFs vs. MEMMs

- MEMM models the required prediction $P(S \mid O)$ using the Markov assumption, while the CRF does not
- CRF uses global features while MEMM features are localized
- Feature design is flexible in both models
- CRF is computationally more complex