How Sequencing Experiments Fail

v1.0

Simon Andrews simon.andrews@babraham.ac.uk

Classes of Failure

Technical

Something went wrong with a machine

Tracking

Samples aren't what they're supposed to be

Library

Problems during sequencing library preparation

Contamination

Unexpected material in your libraries

Biological

Samples didn't behave the way you expected

Interpretation

Drawing the wrong conclusion from the data

Technical Failures

Call = T Confidence = High

Call = T Confidence = Low

Call = T Confidence = Low

Phred Scores

Phred = $-10 \log_{10} p$

p = Probability call is incorrect

10% error 1% error 0.1% error Phred10 Phred20 Phred30

Incorrect Encoding

Phred64

!"#\$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
Phred33

Phred64 (Illumina)

Phred Scores

20 22 24 26 28 30 32 34 36 38 40

Position in read (bp)

Positional Phred Scores

Positional Phred Scores

Biased Phred Scores

HindIII sites

GGATCCGTATGCGATGCTAGCGT
GGATCATATATATGCTAGCGTAT
GGATCTATATTGCGCGATACTGG
GGATCCCGTAGCTGCGATGCTGA
GGATCAAGGATAGCGCGTCTAGA
GGATCTATATAGTTGCCGTATCG
GGATCGGAGCGGGATCCG

Tracking - Barcodes

Barcodes shown explain 92% of the data

Tracking - Barcodes

Barcodes shown explain 92% of the data

Tracking - Barcodes

Barcodes shown explain 91% of the data

Tracking Exercise

You have some barcode statistics from a set of runs from the same group.

Red = Expected barcode

Grey = Unexpected barcode

Can you see if you can spot a problem within this data set, and say how many of the lanes it might affect?

Tracking – Swapped Samples

- Swapped between users
 - Different sample type
 - Different species
 - See later Contamination / Biology sections

- Swapped within experiment
 - Look for consistent biological signal
 - Use other knowledge of the samples to validate

Tracking – Sample groups

Tracking – Sample groups

Tracking – Sample swaps

Library Problems

- Material Lost
 - Overamplification
 - Duplication
- Biases in selection
 - Priming bias
 - GC bias
 - Methylation bias
 - Size selection bias
- Technical contamination
 - Read through adapter
 - Adapter dimers

- Over-sequencing of library complexity
- Too little material or too much PCR
- Can be difficult to assess

- Why does duplication matter?
 - Potentially biased
 - Over-estimates measurement accuracy

Duplication - Repeats

Priming Bias

Contamination

- Different kinds
 - Technical contamination
 - Adapter dimers
 - Contamination with a species you might expect
 - E.coli in a mouse sample
 - Contamination with something unexpected
 - Contamination with the wrong material
 - DNA in an RNA-Prep
 - Mixed samples

Mapping Efficiency

- Know what to expect
 - Data type (genomic / transcriptomic)
 - How good / complete is the genome

- Distinguish unique / multi-mapped reads
 - Understand the mapping process

Reads:

Input: 5725730

Mapped: 4703342 (82.1% of input)

of these: 471516 (10.0%) have multiple alignments

(471516 have >1)

82.1% overall read alignment rate.

Species Screen

Species Screen

Species Screen

TAGC Plots

Assemble

Filter contigs

Plot %GC vs Coverage

Sample and blast

Contamination

Contamination

Salter et al. BMC Biology 2014, 12:87 http://www.biomedcentral.com/1741-7007/12/87

RESEARCH ARTICLE

Open Access

Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Susannah J Salter^{1*}, Michael J Cox², Elena M Turek², Szymon T Calus³, William O Cookson², Miriam F Moffatt², Paul Turner^{4,5}, Julian Parkhill¹, Nicholas J Loman³ and Alan W Walker^{1,6*}

Contamination

Internal Contamination

Samples Don't Behave

- All samples come with a set of expectations
 - Biological effect
 - Sample source
 - Rough biological behaviour
- If these aren't met
 - Samples may not be what you expect
 - Statistical analyses may be invalid
 - Larger biological picture may be missed

Exercise

You have been given a set of QC and visualisation results for a knockout in male black6 mice (same genotype as the reference) of a single gene.

Have a look through the plots and see if there is anything which would cause you concern regarding the behaviour of the samples.

Expected effects missing

Confounded effects

ChIP doesn't behave

ChIP doesn't behave

ChIP vs GC Content

Methylation doesn't behave

RNA-Seq doesn't behave

Multiple subgroups

Interpretation

