Detecting Parkinsons Disease using Machine Learning ASSIGNMENT - 3

Date	4th October 2022
Team ID	PNT2022TMID27836
Student Name	Subha Madhav M.S (311519104058)
Domain Name	Healthcare
Project Name	Detecting Parkinsons Disease using Machine Learning
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

```
In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

```
In [2]: df = pd.read_csv('abalone.csv')
df.head()

Out[2]:

Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 15

1 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 7

2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9

3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155 10

4 I 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055 7
```

3.)HANDLE MISSING VALUES AND DEAL WITH THEM

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

count mean std min 25% 50% 75% max	4177.000000 0.523992 0.120093 0.075000 0.450000 0.545000 0.615000	4177.000000 0.407881 0.099240 0.055000 0.350000 0.425000	0.139516 0.041827 0.000000 0.115000	4177.000000 0.828742 0.490389 0.002000	4177.000000 0.359367 0.221963 0.001000	0.180594 0.109614	4177.000000 0.238831 0.139203	4177.000000 9.933684 3.224169
std min 25% 50% 75%	0.120093 0.075000 0.450000 0.545000	0.099240 0.055000 0.350000	0.041827 0.000000 0.115000	0.490389 0.002000	0.221963	0.109614		
min 25% 50% 75%	0.075000 0.450000 0.545000	0.055000 0.350000	0.000000 0.115000	0.002000			0.139203	3.224169
25% 50% 75%	0.450000 0.545000	0.350000	0.115000		0.001000			
50% 75%	0.545000					0.000500	0.001500	1.000000
75%		0.425000		0.441500	0.186000	0.093500	0.130000	8.000000
	0.615000		0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
max		0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000
RangeI Data c # C 0 0 1 1 L 2 D 3 H 4 M 5 6 V 7 S	s 'pandas.co Index: 4177 columns (tot Column Sex Length Diameter Height Whole weight Shucked weig Viscera weig Shell weight Rings	entries, 0 al 9 column Non-Nu: 4177 n:	to 4176 ns): 11 Count D on-null connull fon-null	bject loat64 loat64 loat64 loat64 loat64 loat64 loat64 loat64 nt64				

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

b.) BI - VARIANTE ANALYSIS

c.) MULTI - VARIANTE ANALYSIS

In [13]:	df.corr()								
Out[13]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	Length		0.986812		0.925261	0.897914	0.903018	0.897706	
	Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
	Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
	Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
	Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
	Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
	Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
	Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

6.) FIND AND REPLACE THE OUTLIERS


```
In [16]: for i in df.columns.drop('Sex'):
    Q1 = df[i].quantile(0.25)
    Q3 = df[i].quantile(0.75)
    IQR = Q3-Q1
    upper_limit = Q3 + (1.5*IQR)
    lower_limit = Q1 - (1.5*IQR)
    df[i] = np.where(df[i]>=upper_limit,Q3 + (1.5*IQR),df[i])
    df[i] = np.where(df[i]<=lower_limit,Q1 - (1.5*IQR),df[i])</pre>
In [17]: for i in df.columns.drop('Sex'):
    sns.boxplot(df[i])
    plt.show()
```


7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

	le	= La	belEnco		-	mport LabelE .Sex)	ncoder			
]:[df.	head	()							
9]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15.0
	1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.0
	2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.0
	3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10.0
	4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7.0

8.) SPLIT DATA INTO DEPENDENT AND INDEPENDENT

VARIABLES

```
In [20]: X = df.drop(columns=['Rings'])
X.head()
Out[20]:
          Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight
        0 2 0.455 0.365 0.095 0.5140 0.2245 0.1010
                                   0.2255
                                                0.0995
        1 2 0.350 0.265 0.090
                                                           0.0485
                                                                     0.070
                                              0.2565
        2 0 0.530 0.420 0.135 0.6770
                                                         0.1415
                                                                     0.210
        3 2 0.440 0.365 0.125
                                   0.5160
                                                0.2155
                                                           0.1140
                                                                     0.155
        4 1 0.330 0.255 0.080 0.2050
                                                0.0895
                                                          0.0395
                                                                     0.055
In [21]: Y = df.Rings
       Y.head()
Out[21]: 0
            7.0
9.0
           10.0
        Name: Rings, dtype: float64
```

9.) SCALE THE INDEPENDENT VARIABLES

	sca X_s	le =	MinMaxS	Scaler() SataFrame		oort MinMaxS	caler rm(X),columns=	=X.columns)	
Out[22]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
	0	1.0	0.412245	0.424242	0.275	0.230813	0.229231	0.204372	0.237220
	1	1.0	0.240816	0.222222	0.250	0.100755	0.101026	0.097611	0.109425
	2	0.0	0.534694	0.535354	0.475	0.304294	0.262051	0.286731	0.333067
	3	1.0	0.387755	0.424242	0.425	0.231714	0.220000	0.230808	0.245208
	4	0.5	0.208163	0.202020	0.200	0.091514	0.090769	0.079309	0.085463

10.) SPLIT THE DATA INTO TRAINING AND TESTING

```
In [23]:
x_train , x_test , y_train , y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)
```

11.) BUILD THE MODEL

```
In [24]: from sklearn.linear_model import LinearRegression
model = LinearRegression()
```

12.) TRAIN THE MODEL

```
In [25]: model.fit(x_train,y_train)
Out[25]: LinearRegression()
```

13.) TEST THE MODEL

```
In [26]: y_predict = model.predict(x_test)
In [27]: pd.DataFrame({"Actual":y_test,"Predicted":y_predict.round(0)})
Out[27]:
             Actual Predicted
        668 13.0 13.0
        1580 8.0
                      9.0
        3784 11.0 10.0
         463 5.0
                     5.0
        2615 12.0 10.0
        575 11.0 10.0
        3231 12.0
                     9.0
        1084 7.0 9.0
         290
              15.5
                      12.0
        2713 4.0 6.0
        836 rows × 2 columns
```

14.) MEASURE THE PERFORMANCE USING METRICS

```
In [28]: from sklearn import metrics
metrics.r2_score(y_test,y_predict)
Out[28]: 0.58432381444787
```