Text Categorization

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
- How to do feature selection for text categorization?
- How to evaluate categorization results?

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
- How to do feature selection for text categorization?
- How to evaluate categorization results?

Text Categorization

- Given the following:
 - A set of **predefined categories**, possibly forming a hierarchy
 - A training set of labeled text objects
- Task: Classify a text object into one or more of the categories

Examples of Text Categorization

- Text objects can vary (e.g., documents, passages, or collections of text)
- Categories can also vary
 - "Internal" categories that characterize a text object (e.g., topical categories, sentiment categories)
 - "External" categories that characterize an entity associated with the text object (e.g., author attribution)
- Some examples of applications
 - News categorization, literature article categorization (e.g., MeSH annotations)
 - Spam email detection/filtering
 - Sentiment categorization of product reviews or tweets
 - Automatic email sorting/routing
 - Author attribution

Variants of Problem Formulation

- Binary categorization: only two categories
 - Retrieval: {relevant-doc, non-relevant-doc}
 - Spam filtering: {spam, non-spam}
 - Opinion: {positive, negative}
- K-category categorization: more than two categories
 - Topic categorization: {sports, science, travel, business,...}
 - Email routing:{folder1, folder2,folder3, ...}
- Hierarchical categorization: Categories form a hierarchy

Binary categorization can potentially support all other categorizations

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
- How to do feature selection for text categorization?
- How to evaluate categorization results?

Why Text Categorization?

- To enrich text representation (more understanding of text)
 - Text can now be represented in multiple levels (keywords + categories)
 - Semantic categories assigned can be directly or indirectly useful for an application
 - Semantic categories facilitate aggregation of text content (e.g., aggregating all positive/negative opinions about a product)
- To infer properties of entities associated with text data (discovery of knowledge about the world)
 - As long as an entity can be associated with text data, we can always use the text data to help categorize the associated entities
 - E.g., discovery of non-native speakers of a language

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
- How to do feature selection for text categorization?
- How to evaluate categorization results?

Categorization Methods: Manual

- Determine the categories based on rules that are carefully designed to reflect the domain knowledge about the categorization problem
- Works well when
 - The categories are very well defined
 - Categories are easily distinguished based on surface features in text (e.g., special vocabulary
 is known to only occur in a particular category)
 - Sufficient domain knowledge is available to suggest many effective rules
- Problems
 - Labor intensive → doesn't scale up well
 - Can't handle uncertainty in rules; rules may be inconsistent → not robust
- Both problems can be solved/alleviated by using machine learning

Feature-based Categorization Methods: "Automatic"

- Use human experts to
 - Annotate data sets with category labels → Training data
 - Provide a set of features to represent each text object that can potentially provide a "clue" about the category
- Use machine learning to learn "soft rules" for categorization from the training data
 - Figure out which features are most useful for separating different categories
 - Optimally combine the features to minimize the errors of categorization on the training data
 - The trained classifier can then be applied to a new text object to predict the most likely category (that a human expert would assign to it)

Machine Learning for Text Categorization

- General setup: learn a classifier $f: X \rightarrow Y$
 - Input: X = all text objects; Output: Y = all categories
 - Learn a classifier function, $f: X \rightarrow Y$, such that f(x)=y, $y \in Y$ gives the correct category for $x \in X$ ("correct" is based on the training data)

All feature-based methods

- Rely on discriminative features of text objects to distinguish categories
- Combine multiple features in a weighted manner
- Adjust weights on features to minimize errors on the training data

• Different methods tend to vary in

- Their way of measuring the errors on the training data (may optimize different objective/loss/cost function)
- Their way of combining features (e.g., linear vs. non-linear)

Generative vs. Discriminative Classifiers

- Generative classifiers (learn what the data "looks" like in each category)
 - Attempt to model p(X, Y) = p(Y)p(X|Y) and compute p(Y|X) based on p(X|Y) and p(Y) using Bayes Rule
 - Objective function is likelihood, thus indirectly measuring training errors
 - E.g., Naïve Bayes
- Discriminative classifiers (learn what features separate categories)
 - Attempt to model p(Y|X) directly
 - Objective function directly measures errors of categorization on training data
 - E.g., Logistic Regression, Support Vector Machine (SVM), k-Nearest Neighbor (kNN)

Document Clustering Revisited

Which cluster does d belong to? \rightarrow Which θ_i was used to generate d?

Text Categorization with Naïve Bayes Classifier

$$d = x_1 x_2 \dots x_L$$
 where $x_i \in V$

If θ_i represents category i accurately, then ...

How can we make this happen?

$$category(d) = \arg \max_{i} p(\theta_{i}|d)$$

$$= \arg \max_{i} p(d|\theta_{i})p(\theta_{i})$$

$$= \arg \max_{i} \prod_{w \in V} p(w|\theta_{i})^{c(w,d)}p(\theta_{i})$$

$$category(d) = arg \max_{i} log p(\theta_i) + \sum_{w \in V} c(w, d) log p(w|\theta_i)$$

Learn from the Training Data

Naïve Bayes Classifier: $p(\theta_i) = ?$ and $p(w|\theta_i) = ?$

Category 1

$$T_1 = \{d_{11}, d_{12}, \dots, d_{1N_1}\}$$

Category 2

$$T_2 = \{d_{21}, d_{22}, \dots, d_{2N_2}\}$$

Category k

$$T_k = \{d_{k1}, d_{k2}, \dots, d_{kN_k}\}$$

Which category is most popular?

$$p(\theta_i) = \frac{N_i}{\sum_{j=1}^k N_j} \propto |T_i|$$

$$p(w|\theta_i) = \frac{\sum_{j=1}^{N_i} c(w, d_{ij})}{\sum_{w' \in V} \sum_{j=1}^{N_i} c(w', d_{ij})} \propto c(w, T_i)$$

Which word is most frequent in category *i*?

Smoothing in Naïve Bayes

- Why smoothing?
 - Address data sparseness (training data is small \rightarrow zero probability)
 - Incorporate prior knowledge
 - Achieve discriminative weighting (i.e., IDF weighting)
- How?

$$p(\theta_i) = \frac{N_i + \delta}{\sum_{j=1}^k N_j + k\delta} \qquad \delta \ge 0$$

What if $\delta \to \infty$?

$$p(w|\theta_i) = \frac{\sum_{j=1}^{N_i} c(w, d_{ij}) + \mu p(w|\theta_B)}{\sum_{w' \in V} \sum_{j=1}^{N_i} c(w', d_{ij}) + \mu} \qquad \mu \ge 0$$

$$p(w|\theta_B)$$
: background LM

$$p(w|\theta_B) = 1/|V|?$$

What if
$$\mu \to \infty$$

Anatomy of Naïve Bayes Classifier

Two categories: θ_1 and θ_2

$$score(d) = \log \frac{p(\theta_1|d)}{p(\theta_2|d)} = \log \frac{p(\theta_1) \prod_{w \in V} p(w|\theta_1)^{c(w,d)}}{p(\theta_2) \prod_{w \in V} p(w|\theta_2)^{c(w,d)}}$$

$$= \log \frac{p(\theta_1)}{p(\theta_2)} + \sum_{w \in V} \underline{c(w,d)} \log \frac{p(w|\theta_1)}{p(w|\theta_2)}$$

Category bias (β_0) doesn't depend on d! Sum over all words (features $\{f_i\}$)

Feature value: $f_i = c(w, d)$

$$d = (f_1, f_2, ..., f_M), \quad f_i \in \Re$$

$$score(d) = \beta_0 + \sum_{i=1}^M f_i \beta_i, \quad \beta_i \in \Re$$
= Logistic Regression!

Weight on each

word (feature) β_i

Discriminative Classifier 1: Logistic Regression

• Binary Response Variable: $Y \in \{0, 1\}$

Predictors:
$$X = (x_1, x_2, ..., x_M), x_i \in \Re$$

$$Y = \begin{cases} 1 & category(d) = \theta_1 \\ 0 & category(d) = \theta_2 \end{cases}$$

Modeling p(Y|X) directly

Allow many other features than words!

$$\log \frac{p(\theta_1|d)}{p(\theta_2|d)} = \log \frac{p(Y=1|X)}{p(Y=0|X)} = \log \frac{p(Y=1|X)}{1 - p(Y=1|X)} = \beta_0 + \sum_{i=1}^{M} x_i \beta_i \qquad \beta_i \in \Re$$

$$p(Y = 1|X) = \frac{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i}}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

Estimation of Parameters

- Training Data: $T = \{(X_i, Y_i)\}, i = 1, 2, ..., |T|$
- Parameters: $\vec{\beta} = (\beta_0, \beta_1, ..., \beta_M)$
- Conditional likelihood: $p(T|\vec{\beta}) = \prod_{i=1}^{|T|} p(Y = Y_i | X = X_i, \vec{\beta})$

$$p(Y = 1|X) = \frac{e^{\beta_0 + \sum_{i=1}^{M} x \beta_i}}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

$$p(Y = 0|X) = \frac{1}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

- Maximum Likelihood estimate $\vec{\beta}^* = \arg\max_{\vec{\beta}} p(T|\vec{\beta})$
- Can be computed in many ways (e.g., Newton's method)

Discriminative Classifier 2: k-Nearest Neighbors (k-NN)

- Find k examples in the training set that are most similar to the text object to be classified ("neighbor documents")
- Assign the category that is most common in these neighbor text objects (neighbors vote for the category)
- Can be improved by considering the distance of a neighbor (a closer neighbor has more influence)
- Can be regarded as a way to directly estimate the conditional probability of label given data instance, i.e., p(Y|X)
- Need a similarity function to measure similarity of two text objects

Illustration of K-NN Classifier

k-NN as an Estimate of p(Y|X)

Assume $p(\theta_i|d)$ is locally smooth, i.e., the same for all the d's in this region R

 $p(\theta_i|d) = p(\theta_i|R)$

Count of d's in R with category θ_i

Estimate $p(\theta_i|R)$ based on the known categories in the region

$$p(\theta_i|R) = \frac{c(\theta_i,R)}{|R|}$$

Total # of₂₄ docs in R

Discriminative Classifier 3: Support Vector Machine (SVM)

 $f(X) \ge 0 \Rightarrow X$ is in category θ_1 $f(X) < 0 \Rightarrow X$ is in category θ_2

25

- Consider two categories: $\{\theta_1, \theta_2\}$
- Use a linear separator $f(X) = \beta_0 + \sum_{i=1}^{M} x_i \beta_i$ $\beta_i \in \Re$

Which Linear Separator Is the Best?

Best Separator = Maximize the Margin

Only the Support Vectors Matter

Linear SVM

Classifier:
$$f(x) = w^T x + b$$

Training Data:
$$T = \{(x_i, y_i)\}, i = 1, ..., |T| | x_i \text{ is a feature vector, } y_i \in \{-1, 1\}$$

Goal 1: Correct labeling on training data:

If
$$y_i = 1 \rightarrow w^T x_i + b \geq 1$$

If
$$y_i = -1 \rightarrow w^T x_i + b \leq -1$$

Goal 2: Maximize Margin

Large Margin \Leftrightarrow Small w^Tw

Constraint

 $f(X) \ge 0 \Rightarrow X$ is in category θ_1

 $f(X) < 0 \Rightarrow X$ is in category θ_2

$$\forall i, y_i (w^T x_i + b) \geq 1$$

Objective

Minimize
$$\Phi(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w}$$

The optimization problem is quadratic programming with linear constraints

Linear SVM with Soft Margin

Classifier: $f(x) = w^T x + b > 0$?

Parameters: w, b

Added to allow training errors

30

Training Data:
$$T = \{(x_i, y_i)\}, i = 1, ..., |T|$$

Find w, b, and ξ_i to minimize $\Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + \mathbf{C} \sum_{i \in [1,|T|]} \xi_i$

subject to
$$\forall i \in [1, |T|], y_i(w^Tx_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

 ${\cal C}>0$ is a parameter to control the trade-off between minimizing the errors and maximizing the margin

The optimization problem is still quadratic programming with linear constraints