Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

MA1116. Matemáticas III.

GUIA 3: Determinantes. Matriz Adjunta

1. Evalúe los siguientes determinantes en forma directa:

(a)
$$\begin{vmatrix} 2 & 17 & 4 \\ 0 & 7 & -1 \\ 0 & 0 & 4 \end{vmatrix}$$
 (b) $\begin{vmatrix} 1 & 0 & 0 & 0 \\ 6 & 7 & 0 & 0 \\ -3 & 1 & 4 & 0 \\ 1 & 2 & 3 & 4 \end{vmatrix}$ (c) $\begin{vmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -1 & 2 & -3 \end{vmatrix}$ (d) $\begin{vmatrix} 1 & -2 & 3 \\ 6 & -12 & -1 \\ -3 & 6 & 4 \end{vmatrix}$

2. Para cada una de las siguientes matrices encuentre su determinante, reduciendo la matriz por filas:

(a)
$$\begin{pmatrix} 3 & 6 & -9 \\ 0 & 0 & -2 \\ -2 & 1 & 5 \end{pmatrix}$$
 (c) $\begin{pmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{pmatrix}$ (e) $\begin{pmatrix} 1 & -2 & 3 & 1 \\ 5 & -9 & 6 & 3 \\ -1 & 2 & -6 & 3 \\ 2 & 8 & 6 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 3 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 4 \end{pmatrix}$ (d) $\begin{pmatrix} 3 & -6 & 9 \\ -2 & 7 & -2 \\ 0 & 1 & 5 \end{pmatrix}$ (f) $\begin{pmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}$

3. Dado que $\det(A) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6$, encuentre $(a) \begin{vmatrix} d & e & f \\ g & h & i \\ a & b & c \end{vmatrix} (b) \begin{vmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 4g & 4h & 4i \end{vmatrix} (c) \begin{vmatrix} a+g & b+h & c+i \\ d & e & f \\ g & g & i \end{vmatrix} (d) \begin{vmatrix} -3a & -3b & -3c \\ d & e & f \\ g-4d & h-4e & i-4f \end{vmatrix}$ (e) $\det(3A)$ (f) $\det(2A^{-1})$ (g) $\det((2A)^{-1})$ (h) $\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} = -6$

4. Encuentre los valores de k para que la matriz A sea invertible:

(a)
$$A = \begin{pmatrix} k-3 & -2 \\ -2 & k-2 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 1 & 6 \\ k & 3 & 2 \end{pmatrix}$

5. En cada una de las siguientes matrices, encuentre A^{-1} :

(a)
$$A = \begin{pmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{pmatrix}$$
 (c) $A = \begin{pmatrix} 2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{pmatrix}$ (b) $A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{pmatrix}$ (d) $A = \begin{pmatrix} 2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6 \end{pmatrix}$

6. Sea

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -3 & 1 & 4 \end{pmatrix}$$

- (a) Encuentre todos los menores de A.
- (b) Encuentre todos los cofactores.

7. Sea

$$A = \begin{pmatrix} 4 & -1 & 1 & 6 \\ 0 & 0 & -3 & 3 \\ 4 & 1 & 0 & 14 \\ 4 & 1 & 3 & 2 \end{pmatrix}$$

Encuentre

(a) M_{13} y C_{13} ,

(b) M_{23} y C_{23} (c) M_{22} y C_{22}

(d) M_{21} y C_{21} .

8. Para cada una de las siguientes matrices, evalúe $\det(A)$ por expansión de cofactores atrvés de una fila o columna:

(a)
$$A = \begin{pmatrix} -3 & 0 & 7 \\ 2 & 5 & 1 \\ -1 & 0 & 5 \end{pmatrix}$$

(b) $A = \begin{pmatrix} 3 & 3 & 1 \\ 1 & 0 & -4 \\ 1 & -3 & 5 \end{pmatrix}$
(c) $A = \begin{pmatrix} k+1 & k-1 & 7 \\ 2 & k-3 & 4 \\ 5 & k+1 & k \end{pmatrix}$
(d) $A = \begin{pmatrix} 3 & 3 & 0 & 5 \\ 2 & 2 & 0 & -2 \\ 4 & 1 & -3 & 0 \\ 2 & 10 & 3 & 2 \end{pmatrix}$
(e) $A = \begin{pmatrix} 4 & 0 & 0 & 1 & 0 \\ 3 & 3 & 3 & -1 & 0 \\ 1 & 2 & 4 & 2 & 3 \\ 9 & 4 & 6 & 2 & 3 \\ 2 & 2 & 4 & 2 & 3 \end{pmatrix}$

9. En cada una de las siguientes matrices, encuentre A^{-1} :

(a)
$$A = \begin{pmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{pmatrix}$$
 (c) $A = \begin{pmatrix} 2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{pmatrix}$ (b) $A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{pmatrix}$ (d) $A = \begin{pmatrix} 2 & 0 & 0 \\ 8 & 1 & 0 \\ -5 & 3 & 6 \end{pmatrix}$

10. Sea

$$A = \begin{pmatrix} 1 & 3 & 1 & 1 \\ 2 & 5 & 2 & 2 \\ 1 & 3 & 8 & 9 \\ 1 & 3 & 2 & 2 \end{pmatrix}$$

- (a) Encuentre A^{-1} usando eliminación gaussiana.
- (b) Encuentre A^{-1} usando la adjunta de A.
- (c) Diga cual método involucra menos cálculos.