หาเส้นทางที่ใช้เวลาน้อยที่สุด ในการเจอน้ำมัน

รายชื่อสมาชิก

สิทธิกร เฉลิมกิตติชัย 640315

มงคล ฮะติ๊ด 640546

ชิษณุชา อัครกุลพิชา 640549

ความสำคัญ

การเจาะน้ำมันเป็นกระบวนการที่มีความสำคัญในอุตสาหกรรมพลังงาน เป็นกระบวนการที่นำไปสู่การสืบค้นและการผลิตน้ำมัน โดยมัก จะมีขั้นตอนหลายขั้นตอนที่เกี่ยวข้อง เช่น การสำรวจและการวิเคราะห์ข้อมูลเพื่อค้นหาทรัพยากรน้ำมันที่มีศักยภาพ, การเจาะบ่อเพื่อ เข้าถึงแหล่งน้ำมัน, การตรวจสอบและการวิเคราะห์สมบัติของน้ำมัน, และการขนส่งน้ำมันไปยังที่ประจำการใช้งาน ขั้นตอนแต่ละขั้น ตอนมีความสำคัญเพื่อให้กระบวนการนี้เป็นไปอย่างเป็นระบบและปลอดภัย

ความสำคัญ

การเจาะน้ำมันมีความยากลำบากในการหาเส้นทางที่ดีที่สุด เนื่องจากระยะทางและค่าความคงทนของหินในการเจาะรูเพื่อนำน้ำมันไปใช้ ยิ่งระยะทางมากยิ่งใช้เวลานานและที่สำคัญคือการที่เจาะหินที่มีค่าความคงทนเยอะที่ใช้เวลานาน เพราะว่าต้องใช้อัตราการหมุนของตัว สว่านเร็วและเจาะแบบอย่างช้า เพื่อนำหินออกมาได้ตามรูปทรง

หาเส้นทางที่ใช้เวลาน้อยที่สุดในการเจอน้ำมัน

https://www.geothai.net/petroleum-drilling4/

การทำให้หัวเจาะโค้ง

https://www.geothai.net/petroleum-drilling4/

https://www.geothai.net/petroleum-drilling4/

วัตถุประสงค์

- 1. การใช้ Ant colony ในการแก้ปัญหา
- 2. ประยุกต์ปัญหาที่เกิดขึ้นให้เข้ากับ Algorithm
- 3. หาเส้นทางที่ดีที่สุดในการขุดไปที่จุดที่มีน้ำมันได้

Ant Colony Optimization

ACO เป็นอัลกอริธึมที่ใช้ในการหาคำตอบสำหรับปัญหา optimization ซึ่งแรงบันดาลใจมาจากพฤติกรรมของมดในการ หาอาหาร โดยมดจะหาเส้นทางที่สั้นที่สุดไปยังแหล่งอาหารโดยปล่อยสารเคมีที่เรียกว่าฟีโรโมนตามทางที่เดินไป ซึ่งมดตัว อื่นๆจะสามารถติดตามได้ ACO ใช้หลักการนี้ในการคำนวณเพื่อหาเส้นทางหรือคำตอบที่เหมาะสมที่สุดในหลากหลายปัญหา รวมถึง TSP

ชุดข้อมูล

Possible Path	Next Possible Path	Distance	UCS
AB	['BC', 'BD']	100	80
AC	['CD', 'CE']	80	83
ВС	['CD', 'CE']	155	83
BD	['DE', 'DF']	125	185
CD	['DE', 'DF']	95	185
CE	['EF', 'EG']	125	185
DE	['EF', 'EG']	130	185
DF	['FG', 'FH']	120	70
EF	['FG', 'FH']	195	70
EG	['GI']	130	50
FG	['GI']	175	50
FH	['HG', 'HI']	120	60
GI	[]	110	60
HG	['GI']	150	50
HI		80	70

Possible Path	Next Possible Path	Distance	UCS	Pheromone
AB	['BC','BD']	100	80	1
AC	['CD','CE']	80	83	1
ВС	['CD','CE']	155	83	1
BD	['DE','DF']	125	185	1
CD	['DE','DF']	95	185	1
CE	['EF','EG']	125	185	1
DE	['EF','EG']	130	185	1
DF	['FG','FH']	120	70	1
EF	['FG','FH']	195	70	1
EG	['GI']	130	50	1
FG	['GI']	175	50	1
FH	['HG','HI']	120	60	1
GI	0	110	60	1
HG	['GI']	150	50	1
HI		80	70	1

วิธีคิด cost 1

Cost_X = Distance + UCS /2

ยกตัวอย่าง

1.AB = (100 + 80)/2

AB = 180/2

AB = 90

2.AC = (80 + 83)/2

AC = 163/2

AC = 81.5

วิธีคิด cost 2

```
Cost_X = Distance(D_weight) + UCS(UCS_weight)
ยกตัวอย่าง
1.AB = 100(0.2) +80(0.8)
  AB = 20 + 64
  AB = 84
2.AC = 120(0.2)+40(0.8)
  AC = 24 + 32
  AC = 56
```

Result

```
All Path after running full algorithm
['AB', ['BC', 'BD'], 100, 80, 0.0001248843012480265]
['AC', ['CD', 'CE'], 80, 83, 1286.5838105868784]
['BC', ['CD', 'CE'], 155, 83, 0.00012488303542801442]
['BD', ['DE', 'DF'], 125, 185, 1.2658203354438695e-09]
['CD', ['DE', 'DF'], 95, 185, 308.47879371948625]
['CE', ['EF', 'EG'], 125, 185, 978.1051417504269]
['DE', ['EF', 'EG'], 130, 185, 3.389591863337121e-12]
['DF', ['FG', 'FH'], 120, 70, 308.47879372074874]
['EF', ['FG', 'FH'], 195, 70, 1.6776228557610968e-10]
['EG', ['GI'], 130, 50, 978.1051417502625]
['FG', ['GI'], 175, 50, 156.5044755722055]
['FH', ['HG', 'HI'], 120, 60, 151.9743181487108]
['GI', [], 110, 60, 1134.6096173227015]
['HG', ['GI'], 150, 50, 2.346461309344598e-10]
['HI', [], 80, 70, 151.9743181484762]
```

Result

```
Choosen path after running full algorithm
      [("['AC', 'CE', 'EG', 'GI']", 69).
      ("['AC', 'CD', 'DF', 'FH', 'HI']", 17)
      ("['AC', 'CD', 'DF', 'FG', 'GI']", 14)]
```

[("['AC', 'CE', 'EG', 'GI']", 69)

จำนวน iter_number

iter_number มาก: จำนวนรอบการทำงานมากจะช่วยให้ ACO มีเวลามากขึ้นในการค้นหา เพื่อทำให้มีโอกาส ค้นพบเส้นทางที่ดีขึ้น แต่อาจทำให้การทำงานใช้เวลามากขึ้นด้วย

iter_number น้อย: จำนวนรอบการทำงานน้อยอาจทำให้ ACO ไม่มีเวลาเพียงพอในการค้นหา เพื่อค้นพบเส้น ทางที่ดีที่สุด ทำให้มีโอกาสที่จะไม่ได้เส้นทางที่มีความคุ้มค่ามากพอ

จำนวน ant_number

ant_number น้อย: จำนวนมดน้อยอาจทำให้ ACO ไม่สามารถสร้างเส้นทางที่หลากหลายมากพอ และมีโอกาส ที่จะพลาดเส้นทางที่ดี โดยรวม

ant_number มาก: จำนวนมดมากจะช่วยให้ ACO สามารถสร้างเส้นทางที่หลากหลายมากขึ้น และมีโอกาสที่ จะค้นพบเส้นทางที่ดีโดยรวมมากขึ้น แต่ก็จะเพิ่มความซับซ้อนของการคำนวณและใช้ทรัพยากร (เช่น เวลา และหน่วยความจำ) มากขึ้นด้วย

สรุป

กลุ่มเราได้เริ่มทำ 2 โมเดล

1.GA(genetic algorithm)

2.Ant Colony System

Ant Colony System มีประสิทธิภาพดีที่สุดสำหรับหาเส้นทางที่ ใช้เวลาน้อยที่สุดในการเจอน้ำมัน เนื่องจากถ้ามีการใช้เส้นทางนี้ บ่อย แปลว่าเส้นทางนี้เป็นเส้นทางที่สั้นที่สุด

GA ไม่เหมาะสมกับการ cross ของตัวที่เป็น next path เพราะ ถ้า cross กันมีค่าเหมือนเดิม หรือถ้า cross ทั้งก้อนก็ต้องมี เงื่อนไขที่เยอะเกิน เพราะว่ามันต้องกำหนดจนเริ่มและจุดที่เชื่อม โยงกันและจุดปลายทาง

THANK YOU