KLASSZIUKS FIZIKA LABORATÓRIUM

A mikroszkóp vizsgálata jegyzőkönyv

Mérést végezte: Koroknai Botond

Mérés időpontja: 2023.04.05

Neptun kód: AT5M0G

Jegyzőkönyv leadásának időpontja: 2023.04.25

Tartalomjegyzék:

1	A mérés célja	2
2	A mérőeszközök:	2
3	Fontos összefüggések	2
4	Nagyítás: 4.1 026586 - "kis" objektív 4.2 462091 - "nagy" objektív	3 3
5	Fókusztávolság:	3
6	Numerikus apertúra:	4
7	A lencse görbületi sugarának meghatározása Newton gyűrűkkel 7.1 IV - domború lencse:	4 4 5
	Diszkusszió:	

1 A mérés célja

A mérés célja a mikroszkóp működésének megismerése volt, ezért számos különböző mérést végeztünk el a segítségével a labor során. Például meghatároztuk a nagyítást, a fókusztávolságot két különböző objektív esetén. Valamint vizsgáltuk a mikroszkóp numerikus apertúráját is. Végül egy domború, valamint egy homorú lencse görbületi sugarát számoltuk ki Newton-gyűrűk segítségével.

2 A mérőeszközök:

- Mikroszkóp
- 462091 és 026586 -es számú objektívek
- Csavarmikrométer
- Penge
- Lyukblende
- A IV-es számú domború lencse
- Az V-ös számú homorú lencse
- · Na spektrállámpa
- Tolómérő
- Okulár-mikrométer
- · Objektív-mikrométer
- · Tubushosszabító

3 Fontos összefüggések

Nagyítás:

$$N_{ob} = \frac{K}{T}$$

Az N_{ob} az objektív nagyítása, K a képméret, és T a tárgyméret.

Össznagyítás:

$$N_{ossz} = N_{ok}N_{ob}$$

Az N_{ossz} az össznagyítás, míg az N_{ok} az okulár nagyítása.

Fókusztávolság:

$$f_{ob} = \frac{\Delta_2 - \Delta_1}{N_{ob2} - N_{ob1}} \tag{1}$$

A $\Delta_2-\Delta_1$ a tubushosszabító hossza, míg az N_{ob2} a meghoszabított tubusú mikroszkóp nagyítása, és N_{ob1} a rövidebb tubus melett a nagyítás

Fényelhajlás:

$$d = \frac{\lambda}{n \sin u}$$

d a legkisebb távolság, amit az objektív lencse fel tud bontnani, n a tárgy és az objektív közötti közeg törésmutatója, λ a megvilágító fény hullámhossza, u pedig az objektívre eső fénynyaláb félnyílásszöge.

Numerikus apertúra:

$$A = n\sin u$$

Félnyílásszög:

$$u = \arctan\left(\frac{a}{2h}\right)$$

a a penge által megtett táv, míg ki nem takarja a lyukblendén átmenő fényt, h pedig a hasáb vastagsága.

Newton gyűrűk sugarai:

$$r_k^2 = k\lambda R + b \tag{2}$$

 r_k a k-adik Newton-gyűrű sugara, λ a fény hullámhossza, R pedig a lencse görbületi sugara.

$$r_k = \frac{1}{N_{ob}} \frac{x_{jobb} - x_{bal}}{2}$$

Effektív görbületi sugár:

$$\frac{1}{R_{eff}} = \frac{1}{R_d} - \frac{1}{R_h}$$

 R_d a domború lencse, és R_h a homorú lencse görbületi sugara.

4 Nagyítás:

4.1 026586 - "kis" objektív

	$T_1[mm]$	$T_2[mm]$	T[mm]	$K_1[mm]$	$K_2[mm]$	K[mm]	N_{ob}
Hosszabító nélkül	4.5 ± 0.005	6 ± 0.005	1.5 ± 0.005	1.58 ± 0.05	7.49 ± 0.05	5.91 ± 0.05	3.94 ± 0.05
Hosszabítóval	4 ± 0.005	5.5 ± 0.005	1.5 ± 0.005	0.54 ± 0.05	8.29 ± 0.05	7.75 ± 0.05	5.17 ± 0.05

A nagyítás hibája:

$$\Delta N = N \cdot \left(\frac{\Delta T}{T} + \frac{\Delta K}{K}\right)$$

4.2 462091 - "nagy" objektív

	$T_1[mm]$	$T_2[mm]$	T[mm]	$K_1[mm]$	$K_2[mm]$	K[mm]	N_{ob}
Hosszabító nélkül	4 ± 0.005	5 ± 0.005	1 ± 0.005	2.13 ± 0.05	7.28 ± 0.05	5.15 ± 0.05	5.15 ± 0.08
Hosszabítóval	3 ± 0.005	3.7 ± 0.005	0.7 ± 0.005	0.61 ± 0.05	6.87 ± 0.05	6.26 ± 0.05	8.94 ± 0.08

5 Fókusztávolság:

A tubus hosszát tolómérővel mértem meg:

$$\Delta_2 - \Delta_1 = (40.06 \pm 0.005) \ mm$$

A fókusztávolságokat a (1) képlet alapján számoltam:

	"nagy" objektív	"kis" objektív
fókusztávolság [mm]	10.57	32.57
hiba [mm]	0.26	0.73

A hiba:

$$\Delta f = f \cdot \left(\frac{\Delta l_{cso}}{l_{cso}} + \frac{\Delta N_{ob1}}{N_{ob1}} + \frac{\Delta N_{ob2}}{N_{ob2}} \right)$$

6 Numerikus apertúra:

A penge alá helyezett hasáb vastagságát csavarmikrométer segítségével határoztam meg: A vastagság így:

	vastagság [mm]
1. mérés	20.05
2. mérés	20.06
3. mérés	20.10
4. mérés	20.09

$$d = 20.075 \pm 0.005$$

	kis "objektív"	nagy "objektív"
$a_1[mm]$	65.6 ± 0.005	63.9 ± 0.005
$a_2[mm]$	69.4 ± 0.005	70.3 ± 0.005
a[mm]	3.80 ± 0.01	6.40 ± 0.01
u	0.1556	0.0943
Δu	0.0009	0.0011

A félnyílásszög hibája:

$$\Delta u = \frac{1}{1 + \frac{a^2}{4h^2}} \frac{a}{2h} \left(\frac{\Delta a}{a} + \frac{\Delta h}{h} \right)$$

A numerikus apertúrák így, a (3) képlet alapján:

"kis" objektív:

$$A = 0.1549 \pm 0.0009$$

"nagy" objektív:

$$A = 0.0941 \pm 0.0011$$

A numerikus apertúra hibája:

$$\Delta A = n \cdot \cos u \Delta u$$

Ahol n=1 mert levegő van a tárgy és az objektív között.

7 A lencse görbületi sugarának meghatározása Newton gyűrűkkel

7.1 IV - domború lencse:

Domború lencse - IV					
k	$x_{bal}[mm]$	$x_{jobb}[mm]$	$r_k[mm]$		
1	5.32	6.72	0.235		
2	4.96	7.01	0.344		
3	4.75	7.27	0.423		
4	4.55	7.47	0.489		
5	4.39	7.67	0.550		
6	4.24	7.81	0.598		
7	4.06	7.99	0.659		
8	3.96	8.09	0.692		
9	3.81	8.21	0.738		
10	3.69	8.35	0.781		
11	3.58	8.45	0.817		

A koordináták leolvasási hibája 0.005 mm

A (2) alapján, és tudván, hogy $\lambda=589nm$, valamint az illesztés alapján a meredekség: 0.0613 \pm 0.001 mm^2 . A domború lencse görbületi sugara:

$$R_d = (104.075 \pm 3.43) \ mm$$

7.2 V - homorú lencse:

Homorú lencse - V					
k	$x_{bal}[mm]$	$x_{jobb}[mm]$	$r_k[mm]$		
1	3.11	5.20	0.350		
2	2.70	5.63	0.491		
3	2.30	6.01	0.622		
4	2.04	6.26	0.708		
5	1.77	6.57	0.805		
6	1.50	6.84	0.895		
7	1.31	7.04	0.961		
8	1.09	7.22	1.028		
9	0.98	7.43	1.082		
10	0.78	7.57	1.139		
11	0.61	7.75	1.197		

Az illesztés meredeksége: 0.132 \pm 0.001 mm^2 . Így a homorú lencse görbületi sugara:

$$R_d = 224.109 \pm 13.402$$

A hibát mindkét esetben a

$$\Delta R = R \cdot \left(2 \frac{\Delta r}{r} + \frac{\Delta m}{m} \right)$$

képlettel számoltam.

8 Diszkusszió:

Mivel a mérés során keletkező értékeket nem tudom összehasonlítani irodalmi értékekkel, így a hibákra hagyatkozva azt mondhatom, hogy sikeres volt a mérés. Egyedül a homorú lencse görbületi sugara mutat elég nagy pontatlanságot.