INTEGRATED VOLTAGE STABILIZER

The TCA530 is an adjustable 30 V integrated circuit voltage stabilizer for use with variable capacitance diodes.

The circuit features: continuous short-circuit protected output, a.f.c. control voltage input, internal switch-on delay (can be adjusted externally), pre-stabilization and crystal temperature control (temperature sensor and heater).

QUICK REFERENCE DATA

$V_I = V_P$	50	to 68	V
$V_0 = V_{6-16}$	typ.	30	V
ΔV_{6-16}	typ. ±	0,75	V
$\Delta V_{6-12}/\Delta V_{1}$	typ.	0,2	mV/V
$\Delta V_{6-12}/\Delta I_{6}$	typ.	0,5	mV/mA
$\Delta V_{6-12}/\Delta T_{amb}$	ŧyp.	0,1	mV/K
$\Delta V_{6-12}/\Delta V_{1-16}$	typ.	0,2	mV/V
6 - IQ	typ.	3,0	mA
V _O = V ₆₋₁₆	25 to 30 ±	0,75	٧
16	0 t	o 4,6	mA
	$V_{O} = V_{6-16}$ ΔV_{6-16} $\Delta V_{6-12}/\Delta V_{1}$ $\Delta V_{6-12}/\Delta I_{6}$ $\Delta V_{6-12}/\Delta V_{1-16}$ $\Delta V_{6-12}/\Delta V_{1-16}$ $I_{6} - I_{Q}$ $V_{O} = V_{6-16}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Fig. 1 Block diagram.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages:	pin 1 (heater voltage)	V ₁₋₁₆		0 to 20	V
	pin 3 (muting switch supply)	V ₃₋₁₆	max.	15	V
	pins 10 and 11 (a.f.c. input control voltage)	± V ₁₀₋₁₁	max.	6	V
Currents:	pin 3	± I3	max.	5	mΑ
	pin 4	14	max.	500	μΑ
	pin 5	15	max.	25	mΑ
	pin 6	16	max.	30	mΑ
	pin 8	lg	max.	500	μΑ
	pin 10	I ₁₀	max.	500	μΑ
	pin 11	111	max.	500	μΑ
	pin 14	114	max.	15	mΑ
Total pow	er dissipation (excluding heater power)				
at T _{am}	$^{\circ}$ = 60 $^{\circ}$ C	P_{tot}	max.	500	mW
Storage te	mperature	T _{stg}	-	-55 to + 150	oC
Operating	ambient temperature	T _{amb}		-20 to +80	oC

CHARACTERISTICS

 $V_{6-12} = 30 \text{ V}; V_{10-12} = V_{11-12} = 10 \text{ V}; V_{1-16} = 15 \text{ V}; T_{amb} = 25 \text{ °C}; measured in Fig. 3.$

Voltage control

Input (supply) voltage range*				
$R_i = 3.3 \text{ k}\Omega; I_6 = 3.5 \text{ mA}$	$V_I = V_P$		50 to 68	V
Current consumption	Iр	typ.	8,1 5,2 to 11,0	mA mA
	1 ₅	typ. 16	+ (1,1 ± 0,3)	mΑ
Regulator voltage drop				
within operating range of the pre-stabilizer	V ₅₋₆	typ.	2,7 2 to 3,5	
outside operating range of				
the pre-stabilizer**	∨ ₅₋₆	<	6	V
Output current (start of current limiting)	¹ 6	>	8	mΑ
Internal reference voltage	V ₈₋₁₂	typ.	20 18,2 to 21,8	-

^{*} For other input (supply) voltage ranges and output currents, the series resistor R_i has to be altered (see also Fig. 2).

^{**} The specified output voltage dependency of the input (supply) voltage is not guaranteed outside the operating range of the pre-stabilizer.

Input current of control amplifier	18	typ.	0,5 1	μ Α μ Α
Variation of output voltage as a function of * input (supply) voltage variations output current variations temperature variations heater voltage variations	$\Delta V_{6-12}/\Delta V_{1}$ $\Delta V_{6-12}/\Delta I_{6}$ $\Delta V_{6-12}/\Delta T_{amb}$ $\Delta V_{6-12}/\Delta V_{1-16}$	typ. typ. typ. typ.	0,5 0,1	mV/V mV/mA mV/K mV/V
Hum suppression at f = 50 Hz between input (supply) voltage and pin 6 between pins 5 and 6 between pins 1 and 6		typ. typ. typ.	60	dB dB dB
Output noise voltage at f = 10 Hz to 15 kHz (r.m.s. value)	$V_{n(rms)}$	<	50	μV
A.F.C. control amplifier				
Common mode input voltage range	$V_{10-12} = V_{11-12}$	6,0 to	18,0	V
Common mode rejection ratio	CMRR	typ.	60	dB
Input current	110 = 111	typ. <		μΑ μΑ
Input resistance	Ri(10-11)	>	1	$M\Omega$
Ratio between output voltage variation and a.f.c. input voltage variation	$\Delta V_{6-12}/\Delta V_{10-11}$	1	,2 : 1	
Amplitude range of output voltage	ΔV_{6-12}	typ. ± ± 0,5 to	: 0,75 ± 1,0	

Muting switch

When the crystal temperature has reached approximately its stationary final value, the output of the muting switch (pin 3) becomes high-ohmic. The switching of pin 3 can be delayed by an external RC-circuit at pin 4 or by a switching voltage.

Muting	ewitch	UNI	inin	3 10	w-ohmic)

Input voltage	V ₄₋₁₆	<	8	٧
Input current	14	typ.	1	μΑ
Output saturation voltage at I ₃ = 1 mA	V _{3-16 sat}	typ.	0,45 0,6	
Muting switch OFF (pin 3 high-ohmic)				
Input voltage	V ₄₋₁₆		8 to 11	٧
Input current	14	>	0,1	μΑ
Output voltage	∨ ₃₋₁₆	<	15	٧
Output current	13	<	1	μΑ
Internal switch-on delay	ta	<	3	s

^{*} External component value changes are not taken into account.

CHARACTERISTICS (continued)

Crystal temperature control

Heater voltage range	V ₁₋₁₆	8	to 20 V
Heater peak current at switching on	[†] 1M	typ.	230 mA 300 mA
Continuous heater current at V ₁₋₁₆ = 15 V	11	typ.	40 mA 55 mA
Continuous heater power	P_{h}	typ.	600 mW

Fig. 2 Curves to obtain R_i-values for various input (supply) voltages and/or output currents. Conditions: $V_{6.12}$ = 30 V; tolerance of I₆ = \pm 20%; R_{5.14} = 3,6 k Ω ; tolerance of R_i = \pm 2%. Above the dotted curve a tolerance of V₁ (Vp) of \pm 15% is allowed.

- (1) It is recommended that fixed resistors of the same kind be used for the voltage divider.

 The voltage divider of Fig. 4 can be used when a narrow temperature dependency is required.
- (2) This capacitor can be applied to increase the internal delay.
- (3) This resistor is recommended when the IC is not soldered on a printed-circuit board.
- (4) Can be connected to pin 6, for example.

Fig. 3 Test circuit.

Fig. 4 Voltage divider for the narrowest possible temperature dependency.

Fig. 5 Circuit extension by means of a series transistor at the output, for output currents > 4,6 mA.

The following table gives some resistor value examples for various output voltages with $\Delta R/R \leqslant \pm~2\%$ and $\Delta R_P/R_P \le \pm 20\%$.

V _{Ostab} V	R p2 kΩ	R21 kΩ	R22 kΩ	R23 kΩ	R _{P1} kΩ	R1 kΩ	R2 kΩ
30 30	100 47	200 180	82 82	300 300	10 47	20 100	10 47
29					22	39	18
28 ⁺ 28	100 47	220 300	75 100	300 430	22	39	15
27					47	68	24
26					22	27	8,2
25 25	100 47	560 620	91 100	390 430	47	47	12

The series resistors R_i and R_i ' (see Fig. 3), as well as the input (supply) voltage V_I (V_P), have to be adapted to the chosen output voltages Vostab.

Fig. 6 Application example; f.m. receiver with TCA530 and TCA420A.

29