

▶ Goal: Learn something about the underlying probability distribution F(x).

- ▶ Goal: Learn something about the underlying probability distribution F(x).
- ▶ Observe data $X_1, ..., X_n$ drawn independently from F(x).

- ▶ Goal: Learn something about the underlying probability distribution F(x).
- ▶ Observe data $X_1, ..., X_n$ drawn independently from F(x).
- ▶ Use the empirical distribution $\hat{F}(x)$ as a surrogate for F. \hat{F} puts probability mass 1/n to each of X_1, \ldots, X_n .

True CDF:

$$F(x) = P(X \le x)$$

Empirical CDF:

$$\hat{F}_n(x) = \sum_{i=1}^n I(X_i \le x).$$

We are interested in the quantity $\theta(F)$. Simply estimate using

$$\hat{\theta} = \theta(\hat{F}_n).$$

Plug-in Principle Examples

Example 1

$$\Theta(F) = E_F(x) = \int x dF(x) = \int x f(x) dx$$

$$\hat{\theta} = \theta(\hat{f}_n) = \frac{1}{n} \sum_{i=1}^{n} \chi_i = \text{Sample mean } \hat{\Xi} \hat{\chi}$$

Example 2

$$\Theta(F) = Var_{F}(X) = \int (X - F_{F}X)^{2} dF(X)$$

$$= \int (X - F_{F}X)^{2} f(X) dX$$

$$\hat{\theta} = \frac{1}{n} \sum_{F_{0}} (X_{i} - \bar{X}_{i})^{2}$$

Example 3.

$$\theta(F) = g.e._{F}(\bar{X}) = \sqrt{Var_{F}(\bar{X})}$$

Any statistic
$$S(X) = S(X_1, ..., X_n)$$
, $\theta(F) = Var_F(S(X))$.

$$\theta(F) = Var_{F}(S(X))$$

density

Bootstrap as Plug-in Principle

Let $S(\mathbf{X}) = S(X_1, \dots, X_n)$ be any statistic, $\theta = \sqrt{Var_F(S)}$ be the standard error of S.

What does "plugging in \hat{F} for F" mean in this case?

Bootstrap Estimate of Standard Error

Bootstrap Percentile Confidence Intervals

Standard trinterval. a + t1-a, pn-1 s.e.(pi)

Confidence intervals are passed on quantiles of the difference 4-4.

Basic Bootstrap percentile intervals:

the quarties of

Use 5 = 8 for the quantiles of

True interval.

 $\hat{S} - S$.

$$\int_{F} \left(C_{n,p,\alpha}(F) \leq \hat{0} - O(F) \leq C_{n,p-\alpha}(F) \right) = 1 - 2\alpha.$$

Bootstrap interval:

$$P_{\widehat{F}_n}\left(C_{n,\log}(\widehat{F}_n) \leq \widehat{\partial}^* - \theta(\widehat{F}_n) \leq C_{n,l-\alpha}(\widehat{F}_n)\right) = l - 2\alpha.$$

Example: Law School Data

Example: Law School Data

Parametric Bootstrap

Instead of plugging in \hat{F} , use $F_{\hat{\theta}}$.

Parametric Bootstrap

Instead of plugging in \hat{F} , use $F_{\hat{\theta}}$.

- Nonparametric Bootstrap avoids limiting assumptions.
- Parametric Bootstrap smoothes out discrete data, and is less sensitive to outliers.

Example: Bootstrapping Regressions

Example: Bootstrapping Regressions

$$X = (X_1, \dots, X_n)^T$$

$$Y = (Y_1, \dots, Y_n)^T$$

Model:
$$Y_i = \beta X_i + \epsilon_i$$
,

Errors $\epsilon_i \stackrel{iid}{\sim} F$ $Var(\epsilon_i) = 6^2$.

$$\hat{\beta} = \frac{\chi' \gamma}{\chi^{\tau} \chi}$$

least squares estimate of B. conf. int B., s.t. err

$$\hat{F}_n$$
 empirical cdf of residuals $Y_i - \hat{Y}_i$ for F_n
 $X_i = X_i + X_i$

$$X \xrightarrow{B} X \stackrel{\frown}{p} \xrightarrow{F_n} Y^* = X \stackrel{\frown}{p} + E^*$$

$$F_{n}$$

$$(X_{i}, Y_{i})_{i=1, \dots, n}$$

$$(X_{i}^{*}, Y_{i}^{*})_{i=1, \dots, n}$$

$$(X_{i}^{*}, Y_{i}^{*})_{i=1, \dots, n}$$

$$(X_{i}^{*}, Y_{i}^{*})_{i=1, \dots, n}$$

$$\beta^{*} = S(X_{i}^{*}, Y_{i}^{*})$$

$$\beta^{*} = S(X_{i}^{*}, Y_{i}^{*})$$

$$\beta^{*} = S(X_{i}^{*}, Y_{i}^{*})$$

Example: Bootstrapping Regressions

Nonparametric bootstrap

