Algebra geometrica e applicazioni al Deep Learning

Giacomo Bencivinni, Alin Marian Habasescu, Riccardo Lo Iacono 30 ottobre 2024

Algebra di Clifford

Sia fissato uno spazio vettoriale \mathbb{R}^n , e sia $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ una sua base ortonormale.

Da questi è possibile definire un nuovo spazio vettoriale, detto spazio di Clifford n-dimensionale (Cl_n). Nello specifico, Cl_n rappresenta l'insieme di tutti i possibili sottospazi k-dimensionali, con $k \le n$, di tutte le possibili combinazioni dei vettori base.

Multivettori: il caso bi- e tri-dimensionale

Si consideri lo spazio \mathbb{R}^2 e sia $\{\mathbf{e}_1,\mathbf{e}_2\}$ una sua base ortonormale. É noto che comunque presi $\mathbf{a},\mathbf{b}\in\mathbb{R}^2$, questi possano essere intesi come opportune combinazioni lineari dei vettori base. Ossia

$$\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 \qquad \mathbf{a} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2$$

inoltre, sappiamo che

$$ab = (\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2)(\beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2) = \alpha_1 \beta_1 \mathbf{e}_1 \mathbf{e}_1 + \alpha_1 \beta_2 \mathbf{e}_1 \mathbf{e}_2 + \alpha_2 \beta_1 \mathbf{e}_1 \mathbf{e}_2 + \alpha_2 \beta_2 \mathbf{e}_2 \mathbf{e}_2.$$
 (1)

3

Defininedo i seguenti assiomi:

- 1. $e_i e_i = 1$
- 2. $\mathbf{e}_{j}\mathbf{e}_{i}=-\mathbf{e}_{i}\mathbf{e}_{j}$

Equazione (1) può essere riscritta come

$$ab = (\alpha_1\beta_1 + \alpha_2\beta_2) + (\alpha_1\beta_2 - \alpha_2\beta_1)e_1e_2$$
 (2)

Da *Equazione* (2) segue che, $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ il loro prodotto risulti essere la somma di un termine scalare $(\alpha_1\beta_1 + \alpha_2\beta_2)$ e da un termine $(\alpha_1\beta_2 - \alpha_2\beta_1)\mathbf{e}_1\mathbf{e}_2$.

Dando un'interpretazione geometrica, $(\alpha_1\beta_2 - \alpha_2\beta_1)$ descrive l'area del rettandolo definita dai vettori $\mathbf{e}_1, \mathbf{e}_2$; segue che $(\mathbf{e}_1, \mathbf{e}_2)$ definiscono il piano su cui giace l'area.

In conclusione, $\mathbf{e}_1\mathbf{e}_2$ rappresenta un'area orientata in \mathbb{R}^2 ed è definita *bivettore*.

Un ragionamento analogo può essere fatto per \mathbb{R}^3 .

Sia $\{e_1,e_2,e_3\}$ una base ortonormale di \mathbb{R}^3 . Considerati $a,b\in\mathbb{R}^3$, questi saranno della forma

$$a = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$$
 $b = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$

Considerandone il prodotto, e applicando gli assiomi definti poco sopra, segue

$$ab = (\alpha_1\beta_1 + \alpha_2\beta_2 + \alpha_3\beta_3)$$

$$+ (\alpha_1\beta_2 - \alpha_2\beta_1)e_1e_2$$

$$+ (\alpha_1\beta_3 - \alpha_3\beta_1)e_1e_3$$

$$+ (\alpha_2\beta_3 - \alpha_3\beta_2)e_2e_3$$

Oltre le tre aree, in \mathbb{R}^3 è possibile definire un elemento dato dal prodotto dei vettori base: $\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3$.

Similarmente all'area orientata rappresentata da $\mathbf{e}_1\mathbf{e}_2$, $\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3$ rappresenta un volume orientata in \mathbb{R}^3 .

Multivettori: il caso generale

In generale fissato un n, e assunti $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ una base ortonormale di uno spazio \mathbb{R}^n , un multivettore $\mathbf{a}\in\mathbb{R}^n$ è un elemento della forma

$$\mathbf{a} = \alpha_0 + \alpha_1 \mathbf{e}_1 + \cdots + \alpha_n \mathbf{e}_n + \alpha_{1,2} \mathbf{e}_1 \mathbf{e}_2 + \cdots + \alpha_{1,\dots,n} \mathbf{e}_1 \cdots \mathbf{e}_n$$

e lo spazio che contiene tutti questi multivettori è detto spazio di Clifford n-dimensionale (${\it Cl}_n$).

Operazioni tra multivettori

Fissata una qualche algebra di Clifford Cl_n , su gli elementi della stessa è possibile applicare diverse operazioni, quali

- prodotto geometrico
- · prodotto esterno
- · contrazione sinistra (destra)
- operazioni unari: duale, inverso, coniugato e involuzione di grado

Operazioni tra multivettori: il prodotto geometrico

Sia considerata Cl_2 , (l'estensione al caso n-simo è immediata), e siano \mathbf{a} , \mathbf{b} due multivettori.

Il prodotto geometrico tra i due consiste nel moltiplicare ciascuna delle componenti del primo multivettore per quelle del secondo, tenendo conto dei seguenti assiomi:

- $\mathbf{e}_i \mathbf{e}_i = \pm 1$
- $\cdot e_i e_j = -e_i e_j$
- $\lambda \mathbf{e}_i = \mathbf{e}_i \lambda$

Si ha cioè che

$$\begin{aligned} \mathbf{a}\mathbf{b} &= (\alpha_{0} + \alpha_{1}\mathbf{e}_{1} + \alpha_{2}\mathbf{e}_{2} + \alpha_{1}\alpha_{2}\mathbf{e}_{1}\mathbf{e}_{2})(\beta_{0} + \beta_{1}\mathbf{e}_{1} + \beta_{2}\mathbf{e}_{2} + \beta_{1}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{2}) \\ &= \alpha_{0}\beta_{0} + \alpha_{0}\beta_{1}\mathbf{e}_{1} + \alpha_{0}\beta_{2}\mathbf{e}_{2} + \alpha_{0}\beta_{1}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{2} \\ &+ \alpha_{1}\beta_{0}\mathbf{e}_{1} + \alpha_{1}\beta_{1}\mathbf{e}_{1}\mathbf{e}_{1} + \alpha_{1}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{2} + \alpha_{1}\beta_{1}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{1}\mathbf{e}_{2} \\ &+ \alpha_{2}\beta_{0}\mathbf{e}_{2} + \alpha_{2}\beta_{1}\mathbf{e}_{2}\mathbf{e}_{1} + \alpha_{2}\beta_{2}\mathbf{e}_{2}\mathbf{e}_{2} + \alpha_{2}\beta_{1}\beta_{2}\mathbf{e}_{2}\mathbf{e}_{1}\mathbf{e}_{2} \\ &+ \alpha_{1}\alpha_{2}\beta_{0}\mathbf{e}_{1}\mathbf{e}_{2} + \alpha_{1}\alpha_{2}\beta_{1}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{1} + \alpha_{1}\alpha_{2}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{2} + \alpha_{1}\alpha_{2}\beta_{1}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{1} \\ &+ \alpha_{1}\alpha_{2}\beta_{0}\mathbf{e}_{1}\mathbf{e}_{2} + \alpha_{1}\alpha_{2}\beta_{1}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{1} + \alpha_{1}\alpha_{2}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{2} + \alpha_{1}\alpha_{2}\beta_{1}\beta_{2}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{1}\mathbf{e}_{2} \end{aligned}$$
 diventa, applicando gli assiomi di cui sopra

$$ab = (\alpha_0\beta_0 + \alpha_1\beta_1 + \alpha_2\beta_2 - \alpha_1\alpha_2\beta_1\beta_2)$$

$$+ (\alpha_0\beta_1 + \alpha_1\beta_0 - \alpha_2\beta_1\beta_2 + \alpha_1\alpha_2\beta_2)\mathbf{e}_1$$

$$+ (\alpha_0\beta_2 + \alpha_2\beta_0 + \alpha_1\beta_1\beta_2 - \alpha_1\alpha_2\beta_1)\mathbf{e}_2$$

$$+ (\alpha_0\beta_1\beta_2 + \alpha_1\alpha_2\beta_0 + \alpha_1\beta_2 - \alpha_2\beta_1)\mathbf{e}_1\mathbf{e}_2$$

The frame title

The frame title