Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-13 (canceled)

Claims

14. A compound of formula (I),

$$\begin{array}{c|c}
R^{1} & Q = X \\
 & -Y \\
 & R^{2}
\end{array}$$

$$\begin{array}{c|c}
 & R^{4} \\
 & -(CH_{2})_{n} \\
 & Z \\
 & -(C(R^{3})_{2})_{t} \\
 & -N \\
 & 0
\end{array}$$

$$\begin{array}{c|c}
 & R^{5} & 0 \\
 & R^{5} & 0 \\
 & N \\
 & 0
\end{array}$$

$$\begin{array}{c|c}
 & A \\
 & O
\end{array}$$

$$\begin{array}{c|c}
 & O
\end{array}$$

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

each Q is nitrogen or —c≤;

each X is nitrogen or

each Y is nitrogen or —c ;

each Z is nitrogen or —CH—;

 $R^1 \text{ is } -C(O)NR^8R^9, -N(H)C(O)R^{10}, -C(O)-C_{1\text{-}6} \\ alkane \\ diylSR^{10}, -NR^{11}C(O)N(OH)R^{10}, -NR^{11}C(O)C=N(OH)R^{10} \\ or another Zn-chelating-group \\ wherein R^8 \text{ and } R^9 \text{ are each independently selected from hydrogen, hydroxy,} \\ C_{1\text{-}6} \\ alkyl, \text{ hydroxy} \\ C_{1\text{-}6} \\ alkyl, \text{ amino} \\ C_{1\text{-}6} \\ alkyl \text{ or aminoaryl;} \\$

 R^{10} is independently selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, aryl C_{1-6} alkyl, C_{1-6} alkylpyrazinyl, pyridinone, pyrrolidinone or methylimidazolyl; R^{11} is independently selected from hydrogen or C_{1-6} alkyl;

R² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;

each R³ independently represents a hydrogen atom and one hydrogen atom can be replaced by a substituent selected from aryl;

 \mbox{R}^4 is hydrogen, hydroxy, amino, hydroxyC_{1-6}alkyl, C_{1-6}alkyl, C_{1-6}alkyloxy, arylC_{1-6}alkyl, aminocarbonyl, hydroxycarbonyl, aminoC_{1-6}alkyl, aminocarbonylC_{1-6}alkyl, hydroxycarbonylC_{1-6}alkyl, hydroxyaminocarbonyl, C_{1-6}alkyloxycarbonyl, C_{1-6}alkylaminoC_{1-6}alkyl or di(C_{1-6}alkyl)aminoC_{1-6}alkyl;

R⁵ is hydrogen, C₁₋₆alkyl, C₃₋₁₀cycloalkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl or aryl;

is a radical selected from

wherein each s is independently 0, 1, 2, 3, 4 or 5;

each R^6 and R^7 are independently selected from hydrogen; halo; hydroxy; amino; nitro; trihalo C_{1-6} alkyl; trihalo C_{1-6} alkyloxy; C_{1-6} alkyl; C_{1-6} alkyl substituted with aryl and C_{3-10} cycloalkyl; C_{1-6} alkyloxy; C_{1-6} alkyloxy; C_{1-6} alkyloxy; C_{1-6} alkyloxycarbonyl; C_{1-6} alkylsulfonyl; cyano C_{1-6} alkyl; hydroxy C_{1-6} alkyl; hydroxy C_{1-6} alkyloxy; hydroxy C_{1-6} alkylamino; amino C_{1-6} alkyloxy;

```
di(C<sub>1-6</sub>alkyl)aminocarbonyl; di(hydroxyC<sub>1-6</sub>alkyl)amino; (aryl)(C<sub>1-6</sub>alkyl)amino;
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyloxy; di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
di(C_{1-6}alkyl)aminoC_{1-6}alkylaminoC_{1-6}alkyl; arylsulfonyl; arylsulfonylamino; aryloxy;
aryloxyC<sub>1-6</sub>alkyl; arylC<sub>2-6</sub>alkenediyl; di(C<sub>1-6</sub>alkyl)amino;
di(C_{1-6}alkyl)aminoC_{1-6}alkyl; di(C_{1-6}alkyl)amino(C_{1-6}alkyl)amino;
di(C_{1-6}alkyl)amino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)amino;
di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl;
aminosulfonylamino(C<sub>1-6</sub>alkyl)amino;
aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
di(C_{1-6}alkyl)aminosulfonylamino(C_{1-6}alkyl)amino;
di(C_{1-6}alkyl)aminosulfonylamino(C_{1-6}alkyl)aminoC_{1-6}alkyl; cyano; thiophenyl;
thiophenyl substituted with di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, di(C<sub>1-6</sub>
6alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl,
C_{1-6}alkyloxypiperidinyl, C_{1-6}alkyloxypiperidinylC_{1-6}alkyl, morpholinylC_{1-6}alkyl,
hydroxyC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl, or di(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkyl;
furanyl; furanyl substituted with hydroxyC<sub>1-6</sub>alkyl; benzofuranyl; imidazolyl; oxazolyl;
oxazolyl substituted with aryl and C_{1-6}alkyl; C_{1-6}alkyltriazolyl; tetrazolyl; pyrrolidinyl;
pyrrolyl; piperidinylC<sub>1-6</sub>alkyloxy; morpholinyl; C<sub>1-6</sub>alkylmorpholinyl; morpholinylC<sub>1-</sub>
6alkyloxy; morpholinylC<sub>1-6</sub>alkyl; morpholinylC<sub>1-6</sub>alkylamino;
morpholinylC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; piperazinyl; C<sub>1-6</sub>alkylpiperazinyl;
C_{1-6}alkylpiperazinylC_{1-6}alkyloxy; piperazinylC_{1-6}alkyl; naphtalenylsulfonylpiperazinyl;
naphtalenylsulfonylpiperidinyl; naphtalenylsulfonyl;
C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkylamino;
C_{1-6}alkylpiperazinylC_{1-6}alkylaminoC_{1-6}alkyl; C_{1-6}alkylpiperazinylsulfonyl;
aminosulfonylpiperazinylC<sub>1-6</sub>alkyloxy; aminosulfonylpiperazinyl;
aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinyl;
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkylpiperazinyl; hydroxyC<sub>1-</sub>
6alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyloxypiperidinyl;
```

```
C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl; piperidinylaminoC<sub>1-6</sub>alkylamino; piperidinylaminoC<sub>1-6</sub>
6alkylaminoC<sub>1-6</sub>alkyl;
(C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
(C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinyl;
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl;
(hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)amino; (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)aminoC_{1-6}alkyl;
hydroxyC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; di(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
pyrrolidinylC<sub>1-6</sub>alkyl; pyrrolidinylC<sub>1-6</sub>alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl
substituted with two substituents selected from C<sub>1-6</sub>alkyl or trihaloC<sub>1-6</sub>alkyl; pyridinyl;
pyridinyl substituted with C<sub>1-6</sub>alkyloxy, aryloxy or aryl; pyrimidinyl;
tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC<sub>1-6</sub>alkyl; quinolinyl;
indole; phenyl; phenyl substituted with one, two or three substituents independently
selected from halo, amino, nitro, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy,
hydroxyC_{1-4}alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC_{1-4}alkyloxy,
C<sub>1-4</sub>alkylsulfonyl, C<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkyloxy, C<sub>1-4</sub>alkyloxycarbonyl,
aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)amino,
di(C<sub>1-4</sub>alkyl)aminocarbonyl, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C_{1-4}alkyl)aminoC_{1-4}alkylaminoC_{1-4}alkyl, di(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino,
di(C_{1-4}alkyl)amino(C_{1-4}alkyl)aminoC_{1-4}alkyl,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)amino,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)aminoC_{1-4}alkyl,
aminosulfonylamino(C<sub>1-4</sub>alkyl)amino,
aminosulfonylamino(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C_{1-4}alkyl)aminosulfonylamino(C_{1-4}alkyl)amino,
di(C<sub>1-4</sub>alkyl)aminosulfonylamino(C<sub>1-4</sub>alkyl)aminoC<sub>1-6</sub>alkyl, cyano,
piperidinylC<sub>1-4</sub>alkyloxy, pyrrolidinylC<sub>1-4</sub>alkyloxy, aminosulfonylpiperazinyl,
aminosulfonylpiperazinylC<sub>1-4</sub>alkyl, di(C<sub>1-4</sub>alkyl)aminosulfonylpiperazinyl,
di(C<sub>1-4</sub>alkyl)aminosulfonylpiperazinylC<sub>1-4</sub>alkyl, hydroxyC<sub>1-4</sub>alkylpiperazinyl, hydroxyC<sub>1-</sub>
<sub>4</sub>alkylpiperazinylC<sub>1-4</sub>alkyl, C<sub>1-4</sub>alkyloxypiperidinyl,
C<sub>1-4</sub>alkyloxypiperidinylC<sub>1-4</sub>alkyl, hydroxyC<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkylpiperazinyl,
hydroxyC<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkylpiperazinylC<sub>1-4</sub>alkyl,
```

 $(hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)amino, (hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ di(hydroxyC₁₋₄alkyl)amino, di(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkyl, furanyl, furanyl substituted with -CH=CH-CH=CH-, pyrrolidinylC₁₋₄alkyl, pyrrolidinylC₁₋₄alkyloxy, morpholinyl, morpholinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyl, morpholinylC₁₋₄alkylamino, morpholinylC₁₋₄alkylaminoC₁₋₄alkyl, piperazinyl, C₁₋₄alkylpiperazinyl, C₁₋₄alkylpiperazinylC₁₋₄alkyloxy, piperazinylC₁₋₄alkyl, C₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkylpiperazinylC₁₋₄alkylamino, C₁₋₄alkylpiperazinylC₁₋₄alkylaminoC₁₋₆alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinylC₁₋₄alkyl, piperidinylaminoC₁₋₄alkylamino, piperidinylaminoC₁₋₄alkylaminoC₁₋₄alkyl, (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylamino, (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylaminoC₁₋₄alkyl, pyridinylC₁₋₄alkyloxy, hydroxyC₁₋₄alkylamino, hydroxyC₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkylamino, aminothiadiazolyl, aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino; each R⁶ and R⁷ can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

15. A compound as claimed in claim 14 wherein n is 0, 1 or 2; t is 0, 1, 2 or 3; each Q is $C \in \mathbb{R}^1$ is hydrogen; $C \in \mathbb{R}^1$ is hydrogen; $C \in \mathbb{R}^1$ is hydrogen, $C \in \mathbb{R}^1$ is hydrogen atom; $C \in \mathbb{R}^1$ is hydrogen, hydroxy, hydroxy $C \in \mathbb{R}^1$ independently represents a hydrogen atom; $C \in \mathbb{R}^1$ is hydrogen, hydroxy, hydroxy $C \in \mathbb{R}^1$ is hydrogen, $C \in \mathbb{R}^1$ is hydrogen, $C \in \mathbb{R}^1$ is a radical selected from (a-1), (a-7) or (a-20); each s is independently 0 or 1; each $C \in \mathbb{R}^1$ is independently selected from hydrogen; thiophenyl; furanyl; benzofuranyl; phenyl; or phenyl substituted with one substituents independently selected from $C \in \mathbb{R}^1$ is independently selected from hydroxy $C \in \mathbb{R}^1$ is independently selected from hydrogen.

16. A compound according to claim 14 wherein t is 0;

R¹ is -C(O)NR⁸R⁹, -C(O)-C₁₋₆alkanediyISR¹⁰, -NR¹¹C(O)N(OH)R¹⁰,

-NR¹¹C(O)C₁₋₆alkanediylSR¹⁰, -NR¹¹C(O)C=N(OH)R¹⁰ or another Zn-chelating-group wherein R⁸ and R⁹ are each independently selected from hydrogen, hydroxy, hydroxyC₁₋₆alkyl or aminoC₁₋₆alkyl;

R² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl or di(C₁₋₆alkyl)amino;

 \mbox{R}^4 is hydrogen, hydroxy, amino, hydroxyC $_{\mbox{1-6}}$ alkyl, C $_{\mbox{1-6}}$ alkyl, aminocarbonyl, aminoC $_{\mbox{1-6}}$ alkyl,

 C_{1-6} alkylamino C_{1-6} alkyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl;

R⁵ is hydrogen;

—(A) is a radical selected from

(a-1), (a-3), (a-4), (a-5), (a-6), (a-7), (a-8), (a-9), (a-10), (a-11), (a-12), (a-13), (a-14), (a-15), (a-16), (a-17), (a-18), (a-19), (a-20), (a-21), (a-22), (a-23), (a-24), (a-25), (a-26), (a-28), (a-29), (a-30), (a-31), (a-32), (a-33), (a-34), (a-35), (a-36), (a-37), (a-38), (a-39), (a-40), (a-41), (a-42), (a-44), (a-45), (a-46), (a-47), (a-48) or (a-51); each s is independently 0, 1, 2, 3 or 4;

R⁶ is hydrogen; halo; hydroxy; amino; nitro; trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy;

 $C_{1\text{-}6} \\ alkylcarbonyl; \ C_{1\text{-}6} \\ alkylcarbonyl; \ C_{1\text{-}6} \\ alkylcarbonyl;$

 C_{1-6} alkylsulfonyl; hydroxy C_{1-6} alkyl; aryloxy; di(C_{1-6} alkyl)amino; cyano; thiophenyl; furanyl; furanyl substituted with hydroxy C_{1-6} alkyl; benzofuranyl; imidazolyl; oxazolyl; oxazolyl substituted with aryl and C_{1-6} alkyl;

 $C_{1\text{-}6} alkyltriazolyl;\ tetrazolyl;\ pyrrolidinyl;\ pyrrolyl;\ morpholinyl;$

 C_{1-6} alkylmorpholinyl; piperazinyl; C_{1-6} alkylpiperazinyl;

hydroxy C_{1-6} alkylpiperazinyl; C_{1-6} alkyloxypiperidinyl; pyrazoly; pyrazolyl substituted with one or two substituents selected from C_{1-6} alkyl or trihalo C_{1-6} alkyl; pyridinyl; pyridinyl substituted with C_{1-6} alkyloxy, aryloxy or aryl; pyrimidinyl; quinolinyl; indole; phenyl; or phenyl substituted with one or two substituents independently selected from halo, C_{1-6} alkyloxy or trifluoromethyl; and

 R^7 is hydrogen; halo; hydroxy; amino; nitro; trihalo C_{1-6} alkyl; trihalo C_{1-6} alkyloxy; C_{1-6} alkyl; C_{1-6} alkyloxy; C_{1-6} alkylcarbonyl; C_{1-6} alkyloxycarbonyl; C_{1-6} alkyl; aryloxy; di(C_{1-6} alkyl)amino; cyano; pyridinyl; phenyl; or phenyl

substituted with one or two substituents independently selected from halo, C_{1-6} alkyloxy or trifluoromethyl.

```
A compound as claimed in claim 14 wherein
17.
R<sup>8</sup> and R<sup>9</sup> are each independently selected from hydrogen, hydroxy.
   hydroxyC<sub>1-6</sub>alkyl, aminoC<sub>1-6</sub>alkyl or aminoaryl;
R<sup>5</sup> is hydrogen, C<sub>1-6</sub>alkyl, C<sub>3-10</sub>cycloalkyl, hydroxyC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkyl or
   di(C_{1-6}alkyl)aminoC_{1-6}alkyl;
                     is a radical selected from (a-1), (a-2), (a-3), (a-4), (a-5), (a-6), (a-7), (a-8),
   (a-9), (a-10), (a-11), (a-12), (a-13), (a-14), (a-15), (a-16), (a-17), (a-18), (a-19),
   (a-20), (a-21), (a-22), (a-23), (a-24), (a-25), (a-26), (a-27), (a-28), (a-29), (a-30),
   (a-31), (a-32), (a-33), (a-34), (a-35), (a-36), (a-37), (a-38), (a-39), (a-40), (a-41),
   (a-42) (a-43) or (a-44);
each R<sup>6</sup> and R<sup>7</sup> are independently selected from hydrogen; halo; hydroxy; amino; nitro;
   trihaloC<sub>1-6</sub>alkyl; trihaloC<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyloxy;
   C_{1-6}alkyloxyC_{1-6}alkyloxy; C_{1-6}alkylcarbonyl; C_{1-6}alkylsulfonyl; cyanoC_{1-6}alkyl;
   hydroxyC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkyloxy; hydroxyC<sub>1-6</sub>alkylamino;
   aminoC<sub>1-6</sub>alkyloxy; di(C<sub>1-6</sub>alkyl)aminocarbonyl; di(hydroxyC<sub>1-6</sub>alkyl)amino;
   arylC<sub>1-6</sub>alkyl)amino; di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyloxy;
   di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino; arylsulfonyl; arylsulfonylamino;
   aryloxy; arylC<sub>2-6</sub>alkenediyl; di(C<sub>1-6</sub>alkyl)amino;
  \operatorname{di}(C_{1-6}\operatorname{alkyl})\operatorname{amino}C_{1-6}\operatorname{alkyl}; \operatorname{di}(C_{1-6}\operatorname{alkyl})\operatorname{amino}C_{1-6}\operatorname{alkyl}(C_{1-6}\operatorname{alkyl})\operatorname{amino}C_{1-6}\operatorname{alkyl};
   cyano; thiophenyl; thiophenyl substituted with
   di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl, di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyl, di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyl, di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyl, di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyl, di(C_{1-6}alkyl)aminoC_{1-6}alkyl, 
   6alkylpiperazinylC<sub>1-6</sub>alkyl or di(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; furanyl; imidazolyl; C<sub>1-</sub>
   6alkyltriazolyl; tetrazolyl; pyrrolidinyl; piperidinylC<sub>1-6</sub>alkyloxy; morpholinyl; C<sub>1-</sub>
   6alkylmorpholinyl; morpholinylC<sub>1-6</sub>alkyloxy;
   morpholinylC_{1-6}alkyl; C_{1-6}alkylpiperazinyl; C_{1-6}alkylpiperazinylC_{1-6}alkyloxy;
   C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkylpiperazinylsulfonyl; aminosulfonylpiperazinylC<sub>1-</sub>
   6alkyloxy; aminosulfonylpiperazinyl; aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; di(C<sub>1-</sub>
   6alkyl)aminosulfonylpiperazinyl;
```

di(C₁₋₆alkyl)aminosulfonylpiperazinylC₁₋₆alkyl; hydroxyC₁₋₆alkylpiperazinyl; hydroxyC₁₋₆ 6alkylpiperazinylC₁₋₆alkyl; C₁₋₆alkyloxypiperidinyl; C₁₋₆alkyloxypiperidinylC₁₋₆alkyl; hydroxyC₁₋₆alkyloxyC₁₋₆alkylpiperazinyl; hydroxyC₁₋₆ 6alkyloxyC₁₋₆alkylpiperazinylC₁₋₆alkyl; (hydroxy C_{1-6} alkyl)(C_{1-6} alkyl)amino; (hydroxy C_{1-6} alkyl)(C_{1-6} alkyl)amino C_{1-6} alkyl; pyrrolidinylC₁₋₆alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl substituted with two substituents selected from C₁₋₆alkyl or trihaloC₁₋₆alkyl; pyridinyl; pyridinyl substituted with C₁₋₆alkyloxy or aryl; pyrimidinyl; quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents independently selected from halo, amino, C₁₋₆alkyl, C₁₋ 6alkyloxy, hydroxyC₁₋₄alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC₁₋₄alkyloxy, . . C_{1-4} alkyloxy C_{1-4} alkyloxy, amino C_{1-4} alkyloxy, di(C_{1-4} alkyl)amino C_{1-4} alkyloxy, di(C_{1-4} alkyl)amino, $di(C_{1-4}alkyl)aminoC_{1-4}alkyl, di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ piperidinylC₁₋₄alkyloxy, pyrrolidinylC₁₋₄alkyloxy, aminosulfonylpiperazinyl, aminosulfonylpiperazinylC₁₋₄alkyl, di(C₁₋₄alkyl)aminosulfonylpiperazinyl, di(C₁₋₄alkyl)aminosulfonylpiperazinylC₁₋₄alkyl, hydroxyC₁₋₄alkylpiperazinyl, hydroxyC₁₋ 4alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkyloxypiperidinyl, C₁₋₄alkyloxypiperidinylC₁₋₄alkyl, hydroxyC₁₋₄alkyloxyC₁₋₄alkylpiperazinyl, hydroxyC₁₋₄alkyloxyC₁₋₄alkylpiperazinylC₁₋₄alkyl, $(hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)amino, (hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ pyrrolidinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyl, C_{1-4} alkylpiperazinyl, C_{1-4} alkylpiperazinyl C_{1-4} alkyloxy, C₁₋₄alkylpiperazinylC₁₋₄alkyl, hydroxyC₁₋₄alkylamino, di(hydroxyC₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminoC₁₋₄alkylamino, aminothiadiazolyl,

aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino.

independently 0 or 1; and each R⁶ is independently selected from hydrogen;

thiophenyl; furanyl; benzofuranyl; phenyl; or phenyl substituted with one substituents independently selected from C_{1-6} alkyl, C_{1-6} alkyloxy, hydroxy C_{1-4} alkyl or di(C_{1-4} alkyl)amino.

19. A compound according to claim 14 selected from the following compounds No. 13,

No. 15, No. 2, No. 5, No. 21, No. 4, No. 24, No. 32, No. 26, No. 36, No. 38, No. 39, No. 40, No. 41, No. 42, No. 43, No. 44 and No. 35.

OH NH	OH NH
Co. No. 13	Co. No. 15
HO N N N N N N N N N N N N N N N N N N N	HO HO N N N N N N N N N N N N N N N N N
Co. No. 2	Co. No. 5
HO N N N N N N N N N N N N N N N N N N N	HO N N N N N N N N N N N N N N N N N N N
.0.7 CH₃OH; Co. No. 21	Co. No. 4
HO N N N N N N N N N N N N N N N N N N N	OH N N N N N N N N N N N N N N N N N N N
.0.23 C ₆ H ₁₄ O; Co. No. 24	.0.82 C ₂ HF ₃ O ₂ .0.82 H ₂ O; Co. No. 32

N N N N N N N N N N N N N N N N N N N	HO-NH N H'N SOO
.0.85 C ₂ HF ₃ O ₂ .1.11 H ₂ O; Co. No. 26	Co. No. 36
HO-NH N H-N-SO	HO—NH N N N N N N N N N N N N N N N N N N
Co. No. 38	Co. No. 39
HO-NH N H-N-O	HO-NH N H-NO
Co. No. 40	Co. No. 41
HO-NH N H N SO O-	HO-NH N H'NSO
Co. No. 42	Co. No. 43
HO-NH N H-NSOO	N N N N N N N N N N N N N N N N N N N
Co. No. 44	Co. No. 35

- 20. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 14.
- 21. A process of preparing a pharmaceutical composition as claimed in claim 20 wherein the pharmaceutically acceptable carriers and the compound are intimately mixed.

- 22. The method of treating proliferative disease comprising administering to a patient in need of such treatment, an anti-proliferative disease-effective amount of a compound of Claim 14.
- 23. A process for preparing a compound as claimed in claim 14, characterized by reacting an intermediate of formula (II) with an appropriate acid, such as for example, trifluoro acetic acid, yielding a hydroxamic acid of formula (I-a), wherein R¹ is –C(O)NH(OH)

- 24. A method of detecting or identifying a histone deactylase (HDAC) in a biological sample comprising detecting or measuring the formation of a complex between a labelled compound as defined in claim 14 and a HDAC.
- 25. A combination of an anti-cancer agents and a compound of Claim 14.