START OF QUIZ Student ID: 95174918, Maurin-Jones, Kai

Topic: Lecture 1 Source: Lecture 1

Give a BIO tagging of the following sentence: "On the 24th of February 1815, the lookout at Notre-Dame de la Garde signalled the arrival of the three-master Pharaon, coming from Smyrna, Trieste and Naples." (2)

Topic: Lecture 2 Source: Lecture 2

How can we use POS/morphological tagging to aid in temporal relation extraction? (1)

Topic: Lecture 4 Source: Lecture 4

In both of our neural examples for SRL, we provided an explicit indicator of the predicate (either as a binary feature, or as a separate feature to Bert). Why do you think this is necessary? (1)

Topic: Lecture 3 Source: Lecture 3

Thinking in terms of vector semantics, do you think that each dimension of word embeddings could be considered a "semantic fundamental" (like "speaking", "load", "incoherent", etc.). Briefly explain. (1)

Topic: Lecture 3 Source: Lecture 3

Give an example of a sentence where the subject is also the theme of the sentence (hint: it might have a special sentence structure). (1)

Topic: Lecture 4 Source: Lecture 4

We talked about a few other contraints for the ILP solver, such as making sure that "ARG0 must occur before ARG1". How would you implement this as an ILP constraint? (You don't need to write the pulp code - just explain how you would force the constraint.) (2)

Topic: Lecture 2 Source: Lecture 2

Identify the events in the following sentences, and place them in order. Identify the cues you used to determine the order. Every morning, on my walk to the University, I read an audiobook while watching for birds. I start up my laptop after I get to class, and then wait for students to arrive so I can start the lecture. (2)

Topic: Lecture 1 Source: Lecture 1

Explain one way that NER tagging is similar to POS tagging, and two ways it's different. (1)

Topic: Coding Source: Lecture 4

Assume that our fancy SR labeler has been run on the following sentence: "Do androids dream of electric sheep?" Imagine that we ran the sentence with 2 different predicates: "dream" and "do", and obtained the following scores. NP1 = (NP(NNs androids)) NP2 = (NP(JJ electric NNS sheep)) NP3 = (PP(of (NP2)) do: NP1: 0.5, 0.3 NP2: 0.3, 0.5 NP3: 0.2, 0.4 dream: NP1: 0.4, 0.6 NP2: 0.2, 0.3 NP3: 0.4, 0.7 Assuming the standard constraints we talked about in class, what is the most likely parse? Show your work! (3)

END OF QUIZ