

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE PÓS-GRADUAÇÃO Programa de Pós-Graduação em Ciência da Computação PLANO DE ENSINO

Nome do Componente Curricular em português:		Código: PCC179
Otimização não-linear	1 0	Č
Nome do Componente Curric	ular em inglês:	
Nonlinear Optimization		
Nome e sigla do departamento: Programa de Pós-Graduação em Ciência da Computação (PPGCC)		Unidade acadêmica: ICEB
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática
60 horas	4 horas/aula	00 horas/aula
Data de aprovação na assemb	leia departamental: 19/02/2024	
Ementa:		
Caracterização das Funções;		
Otimização Não Linear;		
Direções de Busca;		
Exclusão de Semi-Espaços;		
Otimização por Populações		

Conteúdo programático:

- Introdução e Conceitos Preliminares
 - o Otimização em Projetos Assistidos por Computador
 - Caracterização das Funções
 - o Superfícies de Nível e Modalidade
 - o Continuidade e Diferenciabilidade
 - o Convexidade e Quasi-Convexidade
 - o Caracterização dos Mínimos Locais
- Otimização Escalar
 - o Formulação do Problema de Otimização
 - Otimização Sem Restrições
 - o Otimização com Restrições de Desigualdade
 - o Otimização com Restrições de Igualdade
- Direções de Busca
 - Estrutura Básica

- Algoritmo do Gradiente
- Aproximações Quadráticas
- Tratamento de Restrições
- o Comportamento dos Métodos de Direção de Busca
- Exclusão de Semi-Espaços
 - Formulação Geral
 - Métodos de Planos de Corte
 - Tratamento de Restrições
- Otimização por Populações
 - o Algoritmo Evolucionário
 - Algoritmos Genéticos
 - Tratamento de Restrições
 - Características de Comportamento

Objetivos: Compreender os conceitos básicos da otimização não-linear, incluindo o que significa "não-linear", a importância da otimização na resolução de problemas práticos e os tipos de problemas que podem ser resolvidos através da otimização não-linear. Conhecer os principais métodos de otimização não-linear e aprender sobre as limitações e desafios da otimização não-linear, incluindo questões como a possibilidade de múltiplas soluções e a dificuldade de encontrar uma solução ótima global.

Metodologia:

Aulas expositivas sobre o conteúdo programático

Estudos Dirigidos: atividades individuais práticas contendo exercícios e implementações dos métodos estudados que podem ser avaliados com entrevistas.

Leituras recomendadas: leitura de textos técnicos com a finalidade de proporcionar ao discente a oportunidade de consulta e desenvolvimento de sua capacidade de análise, síntese e crítica de uma bibliografia específica..

Atividades avaliativas:

Estudos dirigidos (EDs) de 10 pontos

1 Trabalho Prático dividido em duas estapas: (i) apresentação do tema (T1) - 10 pontos e (ii) Apresentção do desenvolvimento e resultados (T2) - 10 pontos

Nota Final = $(0.1 \times T1 + 0.5 \times T2 + 0.4 \times média(EDs))/10,0$

Cronograma:

Semana Conteúdo 25/03/2024 à 27/03/2024 Introdução e motivação

01/04/2024 à 03/04/2024 Revisão de conceitos matemáticos

08/04/2024 à 10/04/2024 Máximos e mínimos de funções com várias variáveis

15/04/2024 à 17/04/2024 Máximos e mínimos de funções com várias variáveis

22/04/2024 à 24/04/2024 Questões de convexidade e Globalidade

29/04/2024 Apresentações dos temas dos trabalhos

06/05/2024 à 08/05/2024 Algoritmos de descida

13/05/2024 à 15/05/2024 Métodos de primeira ordem (I)

20/05/2024 à 22/05/2024 Variações modernas do método do gradiente

27/05/2024 à 29/05/2024 Métodos de primeira ordem (II)

03/06/2024 à 05/06/2024 Método de segunda ordem

10/06/2024 à 12/06/2024 Método de quase Newton

17/06/2024 à 19/06/2024 Otimização com restrições

24/06/2024 à 26/06/2024 Otimização com restrições

01/07/2024 à 03/07/2024 Otimização com restrições

10/07/2024 e 15/07/2024 Apresentações dos trabalhos

Bibliografia básica:

RIBEIRO, Ademir Alves; KARAS, Elizabeth Wegner. Otimização Contínua: aspectos teóricos e computacionais. São Paulo: Cengage Learning, 2013.

ZÖRNIG, Peter. Introdução à programação não linear. Brasília: UNB, 2011.

BORTOLOSSI, Humberto José. Cálculo diferencial a várias variáveis. São Paulo: Edições Loyola, 2002.

Bibliografia complementar:

IZMAILOV, A.; SOLODOV, M. Otimização, volume 2: métodos computacionais. Rio de Janeiro: IMPA, 2007.

MATEUS, G. R.; LUNA, H. P. L. Programação não linear. Belo Horizonte: UFMG, 1986.

BAZARAA, M. S.; SHERALI, H. D.; SHETTY, C. M. Nonlinear programming: Theory and algorithms. 3rd ed. Hoboken, N.J.: Wiley-Interscience, 2006.

TAVARES, L. V.; CORREIA, F. N. Optimização linear e não linear: conceitos, métodos e algoritmos. 2. ed. Lisboa: Fundação Calouste Gulbenkian, 1999.

BEVERIDGE, G. S. G.; SCHECHTER, R. S. Optimization: theory and practice. Tóquio, Auckland, Düsseldorf, Joanesburgo, Londres, México, Nova Deli, Panamá, São Paulo, Cingapura, Sydney: McGraw-Hill Kogakusha, Ltda, 1970.