

WEBENCH® Design Report

VinMin = 6.0V VinMax = 15.0V Vout = 20.0V Iout = 2.5A Device = TPS43060RTER
Topology = Boost
Created = 4/12/16 4:45:58 AM
BOM Cost = \$10.90
BOM Count = 28
Total Pd = 1.33W

Design: 4116161/21 TPS43060RTER TPS43060RTER 6.0V-15.0V to 20.00V @ 2.5A

1. The pulse skip mode in the device has not been modeled. Efficiency and operational parameters of the model in pulse skip mode is not valid.

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	C12	AVX	06035A101JAT2A Series= C0G/NP0	Cap= 100.0 pF ESR= 119.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
2.	Cboot	AVX	0805YC224KAT2A Series= X7R	Cap= 220.0 nF ESR= 16.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
3.	Ccomp	MuRata	GRM219R71C683KA01D Series= X7R	Cap= 68.0 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
4.	Ccomp2	MuRata	GRM2165C1H302JA01D Series= C0G/NP0	Cap= 3.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.04	0805 7 mm ²
5.	Cin	TDK	C5750JB1E226M Series= JB	Cap= 22.0 uF ESR= 1.558 mOhm VDC= 25.0 V IRMS= 0.0 A	3	\$0.48	2220 54 mm ²
6.	Cout	MuRata	KCM55WR7YA336MH01K Series= X7R	Cap= 33.0 uF VDC= 35.0 V IRMS= 0.0 A	3	\$1.51	KCM55W 59 mm ²
7.	Css	MuRata	GRM188R71E472KA01D Series= X7R	Cap= 4.7 nF ESR= 600.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
8.	Cvcc	MuRata	GRM188R61C106MA73D Series= X5R	Cap= 10.0 uF ESR= 3.636 mOhm VDC= 16.0 V IRMS= 2.8889 A	1	\$0.07	0603 5 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. Cvin	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
10. Dboot	ON Semiconductor	MBRS2040LT3G	VF@Io= 430.0 mV VRRM= 40.0 V	1	\$0.12	SMB 44 mm ²
11. L1	Coilcraft	SER2915H-153KL	L= 15.0 μH DCR= 1.9 mOhm	1	\$1.95	
						SER2915H 652 mm ²
12. M1	Texas Instruments	CSD17506Q5A	VdsMax= 30.0 V IdsMax= 100.0 Amps	1	\$0.50	TRANS_NexFET_Q5A 55 mm²
13. M2	Texas Instruments	CSD17577Q5A	VdsMax= 30.0 V IdsMax= 22.0 Amps	1	\$0.30	TRANS_NexFET_Q5A 55 mm²
14. R13	Vishay-Dale	CRCW080510R0FKEA Series= CRCWe3	Res= 10.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
15. R14	Vishay-Dale	CRCW080510R0FKEA Series= CRCWe3	Res= 10.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
16. R19	Vishay-Dale	CRCW08052R00FKEA Series= CRCWe3	Res= 2.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
17. Rcomp	Panasonic	ERJ-6ENF4221V Series= ERJ-6E	Res= 4.22 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
18. Rfbb	Vishay-Dale	CRCW040211K0FKED Series= CRCWe3	Res= 11.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
19. Rfbt	Vishay-Dale	CRCW0402169KFKED Series= CRCWe3	Res= 169.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
20. Rpg	Panasonic	ERJ-6ENF1003V Series= ERJ-6E	Res= 100.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
21. Rsns1	Susumu Co Ltd	PRL1632-R009-F-T1 Series= PRL1632	Res= 9.0 mOhm Power= 1.0 W Tolerance= 1.0%	1	\$0.19	0612 11 mm ²
22. Rsns2	Susumu Co Ltd	PRL1632-R009-F-T1 Series= PRL1632	Res= 9.0 mOhm Power= 1.0 W Tolerance= 1.0%	1	\$0.19	0612 11 mm ²
23. Rt	Panasonic	ERJ-6ENF2873V Series= ERJ-6E	Res= 287.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	■ 0805 7 mm²
24. U1	Texas Instruments	TPS43060RTER	Switcher	1	\$1.40	•
						S-PVQFN-N16 25 mm ²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	406.594 mA	Current	Input capacitor RMS ripple current
2.	lin Avg	8.555 A	Current	Average input current
3.	L Ipp	1.408 A	Current	Peak-to-peak inductor ripple current
		8.498 A	Current	Inductor ripple current
5.	M1 Irms	7.137 A	Current	MOSFET RMS ripple current
6.	M2 Irms	4.612 A	Current	MOSFET RMS ripple current
7.	BOM Count	28	General	Total Design BOM count
8.	FootPrint	1.28 k mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	200.348 kHz	General	Switching frequency
10.	M1 Rdson	3.506 mOhm	General	Drain-Source On-resistance
11.	M1 ThetaJA	50.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
12.	M2 Rdson	3.517 mOhm	General	Drain-Source On-resistance
13.	M2 ThetaJA	50.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
14.	Pout	50.0 W	General	Total output power
15.	Total BOM	\$10.9	General	Total BOM Cost
	Low Freq Gain	67.337 dB	Op_Point	Gain at 10Hz
	Vout Actual	19.964 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
18.	Vout OP	20.0 V	Op_Point	Operational Output Voltage
19.	Cross Freq	2.484 kHz	Op_point	Bode plot crossover frequency
	Duty Cycle	70.547 %	Op_point	Duty cycle
	Efficiency	97.406 %	Op_point	Steady state efficiency
22.	•	-9.195 dB	Op_point	Bode Plot Gain Margin
23.	IC Ti	34.418 degC	Op_point	IC junction temperature
	ICThetaJA	65.7 degC/W	Op_point	IC junction-to-ambient thermal resistance
	IOUT_OP	2.5 A	Op_point	lout operating point
26.	M1 TiOP	49.937 degC	Op_point	M1 MOSFET junction temperature
	M2 TjOP	48.34 degC	Op_point	MOSFET junction temperature
	Phase Marg	58.255 deg	Op_point	Bode Plot Phase Margin
	VIN_OP	6.0 V	Op_point	Vin operating point
	Vout p-p	106.786 mV	Op_point	Peak-to-peak output ripple voltage
	Cin Pd	85.856 μW	Power	Input capacitor power dissipation
	Cout Pd	0.0 W	Power	Output capacitor power dissipation
	IC Pd	67.251 mW	Power	IC power dissipation
	L Pd	171.505 mW	Power	Inductor power dissipation
	M1 Pd	398.733 mW	Power	MOSFET power dissipation
36.	M1 PdCond	214.355 mW	Power	M1 MOSFET conduction losses
37.		54.043 mW	Power	M1 MOSFET Coss Losses
38.	M1 PdQrr	0.0 W	Power	M1 MOSFET switching losses
	M1 PdSw	130.335 mW	Power	M1 MOSFET switching losses
40.	M2 Pd	366.791 mW	Power	MOSFET power dissipation
-	M2 PdCond	97.234 mW	Power	M2 MOSFET conduction losses
	M2 PdCoss	6.686 mW	Power	M2 MOSFET Coss Losses
43.		32.8 mW	Power	Synchronous Boost High Side Reverse Recovery
	M2 PdSw	8.996 mW	Power	M2 MOSFET switching losses
44. 45.	M2 Pdbody	221.074 mW	Power	Power dissipation through lower FET
	Rsns1 Pd		Power	Rsns1 Power Dissipation
46. 47.		162.478 mW 162.478 mW	Power	Rsns2 Power Dissipation
47. 48.	Total Pd	1.332 W	Power	•
48. 49.			rowei	Total Power Dissipation
	Vout Tolerance	2.141 %		Vout Tolerance based on IC Tolerance and voltage divider resistor

Design Inputs

#	Name	Value	Description
1.	lout	2.5	Maximum Output Current
2.	VinMax	15.0	Maximum input voltage
3.	VinMin	6.0	Minimum input voltage
4.	Vout	20.0	Output Voltage
5.	base_pn	TPS43060	Base Product Number
6.	source	DC	Input Source Type
7.	Ta	30.0	Ambient temperature

Design Assistance

- 1. Feature Highlights: Low Quiescent Current Boost Controller, Wide Vin Range 4.5V to 38V Vin, 58V Vout, 7.5V Gate Drive optimized for standard MOSFET Thresholds Thermal Shutdown
- 2. TPS43060 Product Folder: http://www.ti.com/product/TPS43060: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.