

Edson Prestes

Dígrafos - Contagem de Caminhos/Passeios

Considere o dígrafo abaixo e sua matriz de adjacência M

	Α	В	C	D	Е	F	G
Α	0	1	0	0	1	0	1
В	0	0	0	1	0	0	0
C	0	0	0	0	1	1	0
D	1	1	1	0	0	0	1
Е	0	0	0	1	0	0	0
F	0	1	1	0	0	0	1
G	1	0	0	0	0	0	1

Matriz de adjacência M

Determine a quantidade de passeios de comprimento 1, 2, 3 e 4.

Dígrafos – Contagem de Caminhos/Passeios

	A	В	С	D	Е	F	G
A	0	1	0	0	1	0	1
В	0	0	0	1	0	0	0
C	0	0	0	0	1	1	0
D	1	1	1	0	0	0	1
Е	0	0	0	1	0	0	0
F	0	1	1	0	0	0	1
G	1	0	0	0	0	0	1

Note que a matriz M já indica a quantidade de passeios de comprimento 1.

A quantidade de passeios de comprimento 2 é obtida calculando M²=M.M.

Dígrafos – Contagem de Caminhos/Passeios

A quantidade de passeios de comprimento 3 é obtida calculando M³=M².M.

		A	В	C	D	Е	F	G
	Α	1	0	0	2	0	0	1
	В	1	1	1	0	0	0	1
7.72	C	0	1	1	1	0	0	1
$\mathbb{N}^2=$	D	1	1	0	1	2	1	2
	E	1	1	1	0	0	0	1
	F	1	0	0	1	1	1	1
	G	1	1	0	0	1	0	2

G
4
2
2
5
2
4
3

Dígrafos – Conjunto Independente de Vértices

Relembrando, dado um grafo G=(V,A), um subconjunto de vértices S é independente, se a seguinte restrição for satisfeita

$$S\cap\tau\{\ S\}=\emptyset$$

Ou seja, S não pode conter vértices adjacentes.

O subconjunto S é maximal se ele não estiver incluído em nenhum outro subconjunto de vértices que satifaça a restrição acima.

Para enumerar estes subconjuntos será utilizado um método proposto por Maghout.

Dígrafos – Conjunto Independente de Vértices

Considere o dígrafo abaixo

Este método atua sobre em cima da matriz de adjacência de um grafo ou dígrafo sem loops. Portanto, se o dígrafo em questão possuir laços devemos omití-los em sua matriz de adjacência.

Para cada vértice $x_i \in V(G)$ devemos criar uma variável lógica \bar{x}_i e para cada aresta $a = (x_i, x_j) \in A(G)$ devemos criar a seguinte soma $(\bar{x}_i + \bar{x}_j)$.

Dígrafos – Conjunto Independente de Vértices

Em seguida devemos calcular o seguinte produtório

$$\prod_{(x_i,x_j)\in A(G)} (\bar{x_i} + \bar{x_j})$$

Para o dígrafo ao lado, temos o seguinte produto

$$(\bar{a}+\bar{b})(\bar{b}+\bar{e})(\bar{c}+\bar{a})(\bar{d}+\bar{b})(\bar{d}+\bar{c})(\bar{d}+\bar{e})$$

Devemos lembrar que a expressão x+xy, onde x e y são duas variáveis lógicas, pode ser simplificada da seguinte maneira

$$x+xy = x(1+y) = x$$

onde 1 corresponde ao valor true.

Dígrafos – Conjunto Independente de Vértices

$$(\bar{a}+\bar{b})(\bar{b}+\bar{e})(\bar{c}+\bar{a})(\bar{d}+\bar{b})(\bar{d}+\bar{c})(\bar{d}+\bar{e})$$

Analisando a multiplicação dos últimos três termos $(\bar{d} + \bar{b})(\bar{d} + \bar{c})(\bar{d} + \bar{e})$ temos,

$$(\bar{d} + \bar{d}\bar{c} + \bar{d}\bar{b} + \bar{b}\bar{c})(\bar{d} + \bar{e}) = (\bar{d} + \bar{b}\bar{c})(\bar{d} + \bar{e})$$
$$= (\bar{d} + \bar{d}\bar{e} + \bar{b}\bar{c}\bar{d} + \bar{b}\bar{c}\bar{e}) = (\bar{d} + \bar{b}\bar{c}\bar{e})$$

Observamos que para x e a, variáveis lógica, temos

$$\prod_{i=1}^{n} (x + a_i) = x + \prod_{i=1}^{n} a_i$$

Usando esta informação no produto inicial, temos

$$(\bar{a} + \bar{b})(\bar{b} + \bar{e})(\bar{c} + \bar{a})(\bar{d} + \bar{b})(\bar{d} + \bar{c})(\bar{d} + \bar{e})$$
$$(\bar{b} + \bar{a}\bar{e})(\bar{c} + \bar{a})(\bar{d} + \bar{b}\bar{c}\bar{e})$$

Dígrafos – Conjunto Independente de Vértices

$$(\bar{b} + \bar{a}\bar{e})(\bar{c} + \bar{a})(\bar{d} + \bar{b}\bar{c}\bar{e}) \implies (\bar{b}\bar{c} + \bar{b}\bar{a} + \bar{a}\bar{e})(\bar{d} + \bar{b}\bar{c}\bar{e})$$

$$\rightarrow$$
 $(\bar{b}\bar{c}\bar{d} + \bar{b}\bar{c}\bar{e} + \bar{b}\bar{a}\bar{d} + \bar{b}\bar{a}\bar{c}\bar{e} + \bar{a}\bar{e}\bar{d} + \bar{a}\bar{e}\bar{b}\bar{c})$

$$\rightarrow$$
 $(\bar{b}\bar{c}\bar{d} + \bar{\mathbf{b}}\bar{\mathbf{c}}\bar{\mathbf{e}} + \bar{b}\bar{a}\bar{d} + \bar{\mathbf{b}}\bar{\mathbf{a}}\bar{\mathbf{c}}\bar{\mathbf{e}} + \bar{a}\bar{e}\bar{d})$

$$\rightarrow$$
 $(\bar{b}\bar{c}\bar{d} + \bar{b}\bar{c}\bar{e} + \bar{b}\bar{a}\bar{d} + \bar{a}\bar{e}\bar{d})$

Após este processo, encontramos 4 termos que representam 4 conjuntos indepedentes.

Cada um dos termos encontrados define um subconjunto estável constituidos dos vértices cujas variáveis lógicas não aparecem naquele termo.

Logo, temos os seguintes conjuntos independentes.

$$\{a,e\},\{a,d\},\{c,e\},\{b,c\}$$

Dígrafos – Conjunto Independente de Vértices

Calcule os conjuntos independentes de vértices do dígrafo abaixo

 ${c,d,f,h},{b,c,f,h},{a,c,f,h},{b,c,f,g},{b,e,h}$

Grafos– Cliques Maximais

Para determinar os cliques maximais de um grafo G podemos usar o método de Maghout em \bar{G}

Dado o grafo abaixo, calcule $ar{G}$

Determine os conjuntos independentes maximais em $ar{G}$

Grafos-Cliques Maximais

Para o grafo abaixo temos $(\bar{a}+\bar{d})(\bar{a}+\bar{e})(\bar{a}+\bar{f})(\bar{c}+\bar{d})(\bar{c}+\bar{b})$

$$(\bar{a} + \bar{d}\bar{e}\bar{f})(\bar{c} + \bar{d}\bar{b})$$

$$\bar{a}\bar{c} + \bar{a}\bar{d}\bar{b} + \bar{d}\bar{e}\bar{f}\bar{c} + \bar{d}\bar{e}\bar{f}\bar{b}$$

Os conjuntos independentes de $\,\bar{G}\,$ são

$$\{b,d,e,f\}; \{c,e,f\}, \{a,b\}, \{a,c\}$$

Grafos– Cliques Maximais

Dado o dígrafo abaixo, calcule os seus cliques maximais

Grafos-Cliques Maximais

Para o dígrafo abaixo temos $(\bar{a}+\bar{e})(\bar{b}+\bar{c})(\bar{b}+\bar{e})(\bar{c}+\bar{d})(\bar{c}+\bar{e})(\bar{d}+\bar{e})$

$$(ar{e}+ar{a}ar{b}ar{c}ar{d})(ar{c}+ar{b}ar{d})$$

$$(\bar{e}\bar{c} + \bar{e}\bar{b}\bar{d} + \bar{a}\bar{b}\bar{c}\bar{d} + \bar{a}\bar{b}\bar{c}\bar{d})$$

$$(\bar{e}\bar{c} + \bar{e}\bar{b}\bar{d} + \bar{a}\bar{b}\bar{c}\bar{d})$$

Os cliques maximais são $\{a,b,d\}$, $\{a,c\}$, $\{e\}$

Grafos-Enumeração de Passeios/Caminhos

O processo associado à enumeração de caminhos de um grafo/dígrafo é semelhante ao processo de contagem com a diferença de que usaremos uma matriz de adjacência modificada, chamada matriz latina.

Note que a Matriz Latina contém todos os passeios de comprimento 1

Matriz de Adjacência

	Α	В	С	D	Е
A	0	1	0	0	0
В	0	0	1	1	0
С	1	0	0	0	1
D	0	0	1	0	1
Е	1	0	0	0	0

Matriz Latina

	A	В	C	D	Е
Α		AB			
В			BC	BD	
С	CA				CE
D			DC		DE
Е	EA				

Grafos-Enumeração de Passeios/Caminhos

Vimos que a quantidade de caminhos de comprimento 2 era obtida através de M²=M.M, onde M é a matriz de adjacência de G. Aqui calcularemos L² através de L.L', onde L é a matriz latina e L' é uma matriz latina modificada construida da seguinte maneira.

Matriz Latina L

A B C D E

A AB BC BD

C CA BC BD

C CA DC CE

D D DC DE

Remoção 10. elemento de cada entrada

		A	В	C	D	E
	A		В			
3.5 () 3.5	В			C	D	
Matriz L'	C	Α				Е
	D			C		Е
	E	A				

Grafos-Enumeração de Passeios/Caminhos

Cada elemento (i,j) de L² é igual a

$$L^{2}(i,j) = \bigcup_{k=1}^{n} L(i,k) \bullet L'(k,j)$$

onde n=V(G) e a operação \bullet é uma operação binária não comutativa que obedece as seguintes regras:

Se L(i,j)=p e L'(j,m)=p' são dois subcaminhos, então

$$L(i,j) \bullet L'(j,m)=pp'.$$

Se L(i,j) ou L'(j,m) forem iguais ao conjunto vazio, então $L(i,j) \bullet L'(j,m) = \emptyset$

Grafos-Enumeração de Passeios/Caminhos

Se quisermos enumerar todos os caminhos de comprimento 3 em um grafo G basta calcularmos

$$L^3 = L^2 \bullet L'$$

 $L^3 = L^2 \bullet L'$ Generalizando, os caminhos de comprimento n são determinados por

$$L^n = L^{n-1} \bullet L'$$

Grafos-Enumeração de Passeios/Caminhos

Enumere os caminhos de comprimento 2 e 3 do dígrafo abaixo

	Matriz de Latina L									
	A	В	C	D	E					
A		AB								
В			BC	BD						
C	CA				CE					

Matrin de Latine I

	A	В	C	D	E
A		В			
В			C	D	
B C	A				Е
			C		Е
D E	A				

Matriz L'

Matriz Latina L²

	Α	В	Ç	D	Ĕ
Α			ABC	ABD	
В	BCA		BDC		BCE,BDE
Ç	CEA	CAB			
D	DCA,DEA				DCE
Æ		EAB			

Matriz Latina L³

DE

	Α	В	Ç	D	Ĕ
Α	ABCA		ABDC		ABCE,ABDE
В	BDCA,BCEA,BDEA	BCAB			BDCE
Ç		CEAB	CABC	CABD	
D	DCEA	DCAB,DEAB			
Æ			EABC	EABD	

Se o preenchimento de L' fosse igual ao de L, teriamos algumas distorções. Por exemplo, se L(i,j)=ab e L'(j,m)=bc, teriamos L(i,j) ● L'(j,m)=abbc, o que na verdade corresponde ao caminho abc.

Grafos-Enumeração de Passeios/Caminhos

Para determinar todos os passeios/caminhos de um dado comprimento que não passam por um vértice v, basta gerar as matrizes latinas L e L', sem considerar a linha e a coluna associada ao vértice v. Por exemplo, quais são os caminhos de comprimento 3 que não possuem o vértice d?

Matriz de Latina L

	A	В	C	D	E
A		AB			
В			BC	BD	
C	CA				CE
D			DC		DE
Е	EA				

1	7	

	Α	В	С	Е
Α		AB		
В			ВС	
С	CA			CE
Е	EA			

Matriz L'

	A	B	C	D	E
A		В			
В			C	D	
B C D E	A				Е
D			C		Е
E	A				

Grafos-Enumeração de Passeios/Caminhos

Matriz de Latina L

	Α	В	С	Е
Α		AB		
В			ВС	
С	CA			CE
Е	EA			

Matriz de Latina L'

	Α	В	С	E
Α		В		
В			С	
С	Α			E
Е	A			

Matriz de Latina L²

	Α	В	С	Е
Α			ABC	
В	ВСА			BCE
С	CEA	CAB		
Е		EAB		

Matriz de Latina L³

	А	В	С	Е
Α	ABCA			ABCE
В	BCEA	ВСАВ		
С		CEAB	CABC	
Е			EABC	

Grafos-Enumeração de Passeios/Caminhos

Para determinar todos os passeios/caminhos que não passam por um determinado arco/ aresta (x,y), basta gerar as matrizes latinas L e L' deixando vazia a entrada (x,y). Por exemplo, se quisermos calcular os caminhos de comprimento 3 que não passam pelo arco (b,c) devemos usar as seguintes matrizes

Matriz de Latina L

	Α	В	С	D	Е
Α		AB			
В				BD	
С	CA				CE
D			DC		DE
Е	EA				

Matriz L'

	Α	В	С	D	Е
Α		В			
В				D	
С	Α				Е
D			С		Е
Е	Α				

Matriz de Latina Original

	A	В	C	D	Е
Α		AB			
В			BC	BD	
С	CA				CE
D			DC		DE
Е	EA				