

SISTEMAS COMPUTACIONAIS E SEGURANÇA

AGOSTO

15/08 – Início das Aulas

22/08 – Aula 1

29 a 31/08 – **TECHWEEK**

SETEMBRO

05/09 - Aula 2

12/09 - Aula 3

19/09 - Aula 4

26/09 - Aula 5

OUTUBRO

03/10 - Aula 6

10/10 - Aula 7

17/10 - Aula 8

19 e 20/10 - AVALIAÇÃO A1

24/10 - Aula 9

31/10 – Aula 10

NOVEMBRO

07/11 - Aula 11

14/11 – Aula 12

21/11 – Aula 13

28/11 - Aula 14

DEZEMBRO

04 a 08/12 - AVALIAÇÃO A3

11 e 12/12 – AVALIAÇÃO A2

19/12 – Término do semestre letivo

AVALIAÇÕES

A1 – Avaliação (30%)

A2 – Avaliação (30%)

A3 – Avaliação (40%)

- Desenhe o circuito lógico que executa a seguinte expressão booleana
- S = (A.B.C) + (A+B).C

$$S = (A.B.C) + (A + B) . C$$

Comprovação da regra de precedência das operações lógicas

Quando numa mesma expressão Booleana aparecem operações Ee OU, é necessário seguir a ordem de precedência. A multiplicação (lógica) tem precedência sobre a adição (lógica). Além disso, expressões entre parêntesis têm precedência sobre operadores E e OU.

Portas Lógicas - Símbolos

NOME	Simbolo Gráfico	Símbolo Algébrico
NOT	A	S = Ā ou S = A'
AND	A	S = A . B ou S = AB
OR	A B	S = A + B
NAND	A	S = (A B)
NOR	A	S = (A + B)
XOR	A—————————————————————————————————————	S = A⊕B

Blocos Lógicos básicos

Blocos Lógicos derivados

Circuitos Integrados

Escreva a expressão booleana executada pelo circuito abaixo

 Desenhe o circuito lógico cuja expressão característica é S = (A.B + C.D)

 Prove, usando tabela verdade, que os seguintes blocos lógicos são equivalentes

Obtenha a expressão de X:

Obtenha a expressão de X:

• Obter a Tabela Verdade do circuito:

 Construir um circuito lógico a partir da expressão:

$$y = AC + B\overline{C} + \overline{A}BC$$

 Desenhar todos os Circuitos Lógicos da Tabela Verdade AND, OR e NOT

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

A	A'
0	1
1	0

 Desenhar todos os Circuitos Lógicos da Tabela Verdade XOR

PORTA OU EXCLUSIVO (XOR) C=A⊕B

 Desenhar todos os Circuitos Lógicos da Tabela Verdade NAND

 Escreva a expressão booleana executada dos circuitos abaixo:

 Escreva a expressão booleana executada pelo circuito abaixo:

 Escreva a expressão booleana executada pelo circuito abaixo:

 Dada a expressão booleana S = (A+B).C.(B+D), representar o circuito lógico correspondente.

- Desenhe o circuito lógico que executa a seguinte expressão booleana
- S = (A.B.C) + (A+B).C

Obrigado