Karnaugh Maps With Don't Cares

There will be times when you don't care about the output from a circuit for certain combinations of inputs. Take the following example. It is part of a circuit that will light up one of the digits on a calculator display. This means that the only inputs that are of interest to the designer are those that represent the denary digits 0 to 9. So we could draw the truth table as follows:

Α	В	C	D	X
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0 0 0 0 0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	d
1	0	1	1	d
1	1	0	0	d
1	1	0	1	d
1	1	1	0	d
1	1	1	1	d

The idea is that you plot the d's on the map as well as the ones. When you are looking for groups, you can include them in a box if it makes the box bigger (and the corresponding term therefore simpler), or you can leave them out of a box if that makes the resulting term simpler.

So for the map above, you could end up with the following expression:

Z =

Exercise

Write a simplified expression for the truth table shown below:

Α	В	С	D	X
0	0	0	0	d
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	d
0	1	1	1	1
1	0	0	0	d
1	0	0	1	0
1	0	1	0	d d
1	0	1	1	d
1	1	0	0	d 0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

