oef 74 Wietse Vaes

wietse vaes

Beschouw de ruimte der begrensde rijen in \mathbb{R}

$$\mathcal{B}_{\mathbb{R}}(\mathbb{N}) = \{ f : \mathbb{N} \to \mathbb{R} | \exists C \in \mathbb{R}, |f(n)| \le C, \forall n \in \mathbb{N} \}$$

en de deelruimte

$$c_0 = \{ f \in \mathcal{B}_{\mathbb{R}}(\mathbb{N}) | \lim_{n \to \infty} f(n) = 0 \}$$

Toon aan dat $\mathcal{B}_{\mathbb{R}}(\mathbb{N})/c_0$ een volledige genormeerde ruimte is.

Eerst tonen we aan dat $(\mathcal{B}_{\mathbb{R}}(\mathbb{N}), \|\cdot\|_{\infty})$ een genormeerde ruimte is, met $\|f\|_{\infty} = \sup_{x \in \mathbb{N}} |f(x)|$. Er geldt, $\forall \lambda \in \mathbb{K}$ en $\forall f, g \in \mathcal{B}_{\mathbb{R}}(\mathbb{N})$:

- $||f||_{\infty} = 0 \iff \sup_{x \in \mathbb{N}} |f(x)| = 0 \iff f(x) = 0, \ \forall x \in \mathbb{N} \ (|f| \ge 0) \iff f = 0$
- $\bullet \ \|\lambda f\|_{\infty} = \sup_{x \in \mathbb{N}} |\lambda f(x)| = \sup_{x \in \mathbb{N}} |\lambda| |f(x)| = |\lambda| \sup_{x \in \mathbb{N}} |f(x)| = |\lambda| \|f\|_{\infty}$
- $\bullet \ \|f+g\|_{\infty} = \sup_{x \in \mathbb{N}} |(f+g)(x)| = \sup_{x \in \mathbb{N}} |f(x)+g(x)| \leq \sup_{x \in \mathbb{N}} |f(x)| + |g(x)| \leq \sup_{x \in \mathbb{N}} |f(x)| + \sup_{x \in \mathbb{N}} |g(x)| = \|f\|_{\infty} + \|g\|_{\infty}$

Vervolgens tonen we aan dat deze ruimte volledig is:

We nemen een cauchy rij $(f_n)_{n\in\mathbb{N}}\in\mathcal{B}_{\mathbb{R}}(\mathbb{N})$, er geldt dus:

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : \forall m, n > n_0 : ||f_n - f_m||_{\infty} = \sup_{x \in \mathbb{N}} |f_n(x) - f_m(x)| < \varepsilon$$

Hieruit besluiten we ook dat voor alle $x \in \mathbb{N}$: $|f_n(x) - f_m(x)| < \varepsilon$, dus $(f_n(x))_{n \in \mathbb{N}}$ is een Cauchy rij in $(\mathbb{R}, |\cdot|)$. Ook weten we dat $(\mathbb{R}, |\cdot|)$ een Banach ruimte is, dus er bestaat een $f = \lim_{n \to \infty} f_n$ zodat: $\forall \varepsilon > 0 : \forall x \in \mathbb{N} \exists n_{\epsilon} \mathbb{N} : \forall n > n_0 : |f_n(x) - f(x)| < \varepsilon$. Vervolgens is $\sup_{x \in \mathbb{N}} |f_n(x) - f(x)| < \varepsilon$. $(f_n)_{n \in \mathbb{N}}$ convergeert dus naar f en bovendien zit $f \in \mathcal{B}_{\mathbb{R}}(\mathbb{N})$. Indien dit niet zo zou zijn, zou er dus een $x^* \in \mathbb{N}$ bestaan zodat $|f(x^*)| = C^* > C$, dus zou $|f_n(x^*) - f(x^*)| \ge |f_n(x^*)| - C^*$. Omdat $|f_n(x^*)| \le C < C^*$ zou de rij niet naar f convergeren, dus een contradictie.

Tenslotte bewijzen we dat c_0 gesloten is in $\mathcal{B}_{\mathbb{R}}(\mathbb{N})$ (rekening houdend met $c_0 \subset \mathcal{B}_{\mathbb{R}}(\mathbb{N})$). Neem

$$\mathcal{B}_{\mathbb{R}}(\mathbb{N}) \backslash c_0 = \{ f : \mathbb{N} \to \mathbb{R} | \exists C \in \mathbb{R}, |f(n)| \leq C, \forall n \in \mathbb{N} \text{ en } \lim_{n \to \infty} f(n) \neq 0 \}$$

Uit de eis dat $\lim_{n\to\infty} f(n) \neq 0$ weten we dat $\exists V \in \mathcal{V}(0) : \exists n_0 \in \mathbb{N} \text{ met } f(n) \notin V, \forall n \geq n_0$. Neem nu voor elke functie in deze verzameling een bijhorende V en definieer metriek $d(f,g) := \|x - y\|_{\infty}$ (dit mag omdat het een norm is). Nu bestaat er een V zodat r = d(f,V) > 0, dus: $B_r(f) \subset \mathcal{B}_{\mathbb{R}}(\mathbb{N}) \setminus c_0$. Nu is $\mathcal{B}_{\mathbb{R}}(\mathbb{N}) \setminus c_0$ open $\iff c_0$ gesloten

Nu voldoen alle voorwaarden van stelling 2.7. $\mathcal{B}_{\mathbb{R}}(\mathbb{N})/c_0$ is een volledige genormeerde ruimte.