Politechnika Rzeszowska im. Ignacego Łukasiewicza Kierunek: Inżynieria i Analiza Danych grupa II

Igor Guła Projekt 3

1. Wstęp

Tematem mojego zadania było napisać program bazujący na grafie skierowanym reprezentowanym przy pomocy macierzy sąsiedztwa. Program ma za zadanie wypisać następujące informacje:

- -Wszystkich sąsiadów dla każdego wierzchołka grafu.
- -wszystkie wierzchołki, które są sąsiadami każdego wierzchołka.
- -stopnie wychodzące wszystkich wierzchołków.
- -stopnie wchodzące wszystkich wierzchołków.
- -wszystkie wierzchołki izolowane.
- -wszystkie pętle.
- -wszystkie krawędzie dwukierunkowe.

2. Schematy blokowe

2.1 funkcja wyświetlająca sąsiadów wierzchołków

2.2 funkcja wyświetlająca wierzchołek będący sąsiadem każdego wierzchołka

2.3 funkcja wyświetlająca stopień wychodzący wierzchołka

2.4 funkcja wyświetlająca stopień wchodzący wierzchołka

2.5 funkcja wyświetlająca wierzchołek izolowany

2.6 funkcja wyświetlająca wszystkie pętle wierzchołków

2.7 funkcja wyświetlająca krawędź dwukierunkowe między wierzchołkami

2.8 funkcja main

3. Działanie Programu

3.1 Chciałbym tutaj przedstawić działanie tego programu na pewnym przykładzie, dokładniej grafie skierowanym podanym poniżej:

3.2 Pierw program prosi nas o podanie liczby wierzchołków i krawędzi, potem musimy podać również sąsiadujące wierzchołki by program mógł wpisać je do macierzy sąsiedztwa.

```
C:\Users\marce\OneDrive\Pulpit\projketci\Projekt3algorytmy\bin\Debug\Projekt3algorytmy.exe
```

```
Podaj liczbe wierzcholkow i krawedzi
6 8
Podaj sasiadujace wierzcholki oddzielone spacja.
0 1
1 2
2 2
1 3
3 1
2 4
4 0
4 3
```

3.3 Program po wpisaniu wymaganych do macierzy sąsiedztwa wykonuje wszystkie potrzebne operacje a następnie wyświetla on uporządkowane odpowiedzi tak jak na podanych zdjęciach.

```
Macierz sasiedztwa:
010000
001100
001010
010000
100100
00000
Zadanie 1:
Wierzcholek 0 sasiaduje z wierzcholkiem 1
Wierzcholek 1 sasiaduje z wierzcholkiem 2
Wierzcholek 1 sasiaduje z wierzcholkiem 3
Wierzcholek 2 sasiaduje z wierzcholkiem 2
Wierzcholek 2 sasiaduje z wierzcholkiem 4
Wierzcholek 3 sasiaduje z wierzcholkiem 1
Wierzcholek 4 sasiaduje z wierzcholkiem 0
Wierzcholek 4 sasiaduje z wierzcholkiem 3
```

```
WybierzC:\Users\marce\OneDrive\Pulpit\projketci\Projekt3algorytmy\bin\Debug\Projekt3algorytmy.exe
Nie ma wierzcholka, ktory sasiaduje ze wszystkimi
Zadanie 3:
Stopien wychodzacy wierzcholka 0: 1
Stopien wychodzacy wierzcholka 1: 2
Stopien wychodzacy wierzcholka 2: 2
Stopien wychodzacy wierzcholka 3: 1
Stopien wychodzacy wierzcholka 4: 2
Stopien wychodzacy wierzcholka 5: 0
Zadanie 4:
Stopien wchodzacy wierzcholka 0: 1
Stopien wchodzacy wierzcholka 1: 2
Stopien wchodzacy wierzcholka 2: 2
Stopien wchodzacy wierzcholka 3: 2
Stopien wchodzacy wierzcholka 4: 1
Stopien wchodzacy wierzcholka 5: 0
Zadanie 5:
Wierzcholek 5 jest izolowany
Zadanie 6:
Wierzcholek 2 jest petla
Zadanie 7:
Krawedz dwukierunkowa pomiedzy wierzcholkiem 1, a wierzcholkiem 3
Krawedz dwukierunkowa pomiedzy wierzcholkiem 3, a wierzcholkiem 1
```

4. Pseudokod

```
zadeklaruj funkcję sasiedzi
1
 2
           dla kazdego i od 0 do n-1 powtarzaj:
 3
               dla kazdego j od 0 do n-1 powtarzaj:
 4
                    jezeli A[i][j] == 1:
 5
                        wypisz "sasiadem wierzcholka" i "jest wirzcholek " j;
 6
 7
 8
       zadeklaruj funkcję sasiedzi kazdego
 9
           zadeklaruj licznik
10
           dla kazdego i od 0 do n-1 powtarzaj:
11
               licznik = 0
12
               dla kazdego j od 0 do n-1 powtarzaj:
13
                   jezeli A[i][j] == 1:
14
                        licznik+=1
                jezeli licznik == n-1:
15
                   wypisz "Wierzcholek "i" jest sasiadem kazdego wierzcholka
16
17
18
       zadeklaruj funkcje stopien wychodzacy
19
           zadeklaruj licznik
20
           dla kazdego i od 0 do n-1 powtarzaj:
21
22
               licznik = 0
23
               dla kazdego j od 0 do n-1 powtarzaj:
24
                    jezeli A[i][j] == 1:
25
                        licznik+=1
26
               wypisz "Stopien wychodzacy wierzcholka "i" wynosi "licznik
27
28
29
       zadeklaruj funkcje stopien wchodzacy
30
           zadeklaruj licznik
31
           dla kazdego j od 0 do n-1 powtarzaj:
32
               licznik = 0
33
               dla kazdego i od 0 do n-1 powtarzaj:
34
                   jezeli A[i][j] == 1:
35
                        licznik+=1
36
               wypisz "Stopien wchodzacy wierzcholka "j" wynosi "licznik
37
```

```
zadeklaruj funkcje izolowany
40
           zadeklaruj czy izo
           dla kazdego i od 0 do n-1 powtarzaj:
41
               czy_izo = True
42
43
               dla kazdego j od 0 do n-1 powtarzaj:
                    jezeli A[i][j] == 1 albo A[j][i] == 1:
44
45
                        czy izo = False
46
                       przerwij petle
               jezeli czy izo == True:
47
48
                   wypisz "Wierzcholek "i" jest izolowany"
49
50
51
       zadeklaruj funckje petla
           dla kazdego i od 0 do n-1 powtarzaj:
52
53
               jezeli A[i][i] == 1:
                   wypisz "Wierzcholek "i" jest petla"
54
55
56
57
       zadeklaruj funkcje kr dwukierunkowa
58
           dla kazdego i od 0 do n-1 powtarzaj:
59
               dla kazdego j od 0 do n-1 powtarzaj:
60
                   jezeli A[i][j] == 1 i A[j][i] == 1 i i!=j:
                        wypisz "Krawedz dwukierunkowa pomiedzy wierzcholkami "i" i "j
61
62
63
       zadeklaruj main
64
65
           zadeklaruj n,m
66
           wprowadz n
67
           wprowadz m
68
           zadeklaruj A[n][n]
69
           dla kazdego i od 0 do n-1 powtarzaj:
70
               dla kazdego j od 0 do n-1 powtarzaj:
71
                   A[i][j]=0
72
           zadeklaruj a,b
           wypisz "Podaj sasiadujace wierzcholki oddzielone spacja"
73
74
           dla kazdego i od 0 do m-1:
75
               wprowadz a, b
76
               A[a][b]=1
77
           wywolaj funkcje sasiedzi
78
           wywolaj funkcje sasiedzi_kazdego
           wywolaj funkcje stopien_wychodzacy
79
80
           wywolaj funkcje stopien wchodzacy
81
           wywolaj funkcje izolowany
82
           wywolaj funkcje petla
83
           wywolaj funkcje kr dwukierunkowa
```

5. Wnioski

Podczas pracy nad tym zadaniem dowiedziałem się jak programować grafy oraz przedstawiać je za pomocą macierzy sąsiedztwa. Było to niezwykle przydatne doświadczenie dzięki któremu byłem w stanie zrozumieć poszczególne funkcje i działania grafów które na pewno przydadzą mi się w przyszłości.