Introducing software development best practices for research in the behavioral and social sciences

Pablo Caceres
Nov - 2019
University of Wisconsin-Madison

Why should I care? I'm doing just fine!

Why should I care?

Research in the behavioral and social sciences (B&SS) is **increasingly relying on complex computational procedures**

In general, B&SS have little formal training in data management and software development best practices for scientific computing

Introducing a set of **basic principles** in data management and software development may significantly improve research practices based on heavy computation

Keep in mind...

I'm not a software engineer and I don't have a CS degree

This is **not about** the best way of writing code (kinda...)

This is **not about** the best programming language for the B&SS

This is **not about** the best statistical procedures or machine learning approaches

This is **not about** deploying data pipelines in production systems

Keep in mind...

This is about what I believe are **good software engineering practices for scientific computing in the B&SS**

This is more useful for projects that **do not require large scale computing** (HTC, HPC, Hadoop, Spark, cloud computing, etc.). Roughly ~10 to 10 million of rows or TB of data

Based on **my experience** writing code for scientific research in sociology, public policy/economics, cognitive neuroscience and psychology in the past ~8 years:

- **SPSS** and **Excel** for 4 years (don't do this...)
- **STATA** and **MATLAB** for 2 years (don't do this either....)
- **Python** and **R** for 2.5 years (definitely do this!)

What is this about then?

This is about simple principles that allow creating data projects which are:

REPRODUCIBLE: Others can produce my exact same results given the same data

REUSABLE: I can reuse part of my code base for future projects

RELIABLE: I can trust my results

MAINTAINABLE: I can safely modify my pipeline in the future or fix my code

EXTENSIBLE: I can add more analysis, plots, etc without creating a mess

SHAREABLE: I can share my code base and results with my group and the wider scientific community

Outline

- 1. Use free and open-source software (FOSS)
- 2. Create simple and well-organized data file system ("code base")
- 3. Use virtual environments
- 4. Use version control systems
- 5. Add and maintain documentation
- Maintain your raw-data (single authoritative version of your data)

- 6. Use well-tested and supported libraries
- 7. Use this 8 simple principles to write better code
- 8. If doing ML: use a experiment tracking system
- 9. Test your code
- 10. Code reviews (when possible)
- 11. More resources

Use free and open-source software (FOSS)

Python, R, Scala, SQL, Julia, Bash, etc. instead of SPSS, STATA, MATLAB, SAS, etc.

Otherwise, reproducibility, reusability, and shareability, are not possible

Far **more people** use FOSS than proprietary software

Proprietary software is **not accessible** in lower income countries

FOSS is the **present** AND the **future** of data science ecosystems

Most new statistical and machine learning procedures are created in FOSS

Create simple and well-organized data file system

Separate code from data and results

Split your code into modules

Add a **README.md** file

Add a LICENSE .txt

Add a **requirements.txt** file

```
--\my awesome project
  README.md
  |LICENSE.txt
  |requirements.txt
  I - - \code
     |--cool-script.py
     |--helper-script.py
  I - - \data
     |--fantastic-data.csv
     |--fantastic-data schema.csv
  I -- \docs
      --brilliant-manuscript.pdf
  |--\results
     |--fig-1.tiff
     |--fig-2.tiff
     |--table-1.tiff
     |--table-2.tiff
```

Use virtual environments

Virtual environments create an **isolated environment** for your project

For Python **virtualenv** or **conda environment**

For R conda environment

If you're feeling adventurous, use **Docker containers** (probably overkill for small projects....)

Use version control systems

- Use **Git**, Mercurial, or SVN
- **Push frequently** after changes
- Use **branches** for experimentation
- Use a third backup system with continuous sync (Box, Dropbox, Drive, etc.)
- Optimized for **plain text** (txt, md). Not that good for tabular data, docx, or PDFs.
- Bad for "large files" (limited to 100 megabytes per file in GitHub).
- When files are too large: **zip** the files (OK). **Read data from the web** (Better)
- Raw data should not change, and therefore, should not require version tracking
- Keep minimal **notes/logs** of major changes

Add and maintain documentation

README.txt: about, installing instructions, usage instructions, etc.

LICENSE.txt: MIT is the standard

Requirements.txt: list all dependencies required to run and reproduce your work

To-do.txt: to keep track of things to be fixed, added, etc.

Push frequently to maintain snapshots of your projects at different timepoints. This works as **automated documentation**.

Maintain your raw-data (a single authoritative version)

Readable and consistent naming

Use unique and consistent identifiers

Add dates

Keep a data schema

Keep multiple **copies** of the file

Use open non-proprietary formats (CSV, JSON, XML etc)

For relatively small data files, create clean data "on the fly"

For relatively large data files, create (repeatable) intermediate files with clean data

Use well-tested and properly supported software libraries

Why? Because popular libraries are:

- Thoroughly **tested** (less bugs)
- Optimized for performance
- Are **safer**
- Better **documentation**
- Better support (e.g., Stack Overflow, books, blogs)
- Better and more **tutorials**
- Are more likely to be maintained long-term

Review what are the **most popular** libraries in your field

Python: pandas, numpy, scikit-learn, matplotlib, seaborn, Tensorflow, Keras, Pythorch, XGBoost, statsmodels, etc.

R: ggplot2, dplyr, data.table, glm, prophet, lme4, glmnet, etc.

Check **GitHub activity** and downloads as a guide

Use this 8 simple principles to write better code

- Write modular code
- 2. **Explicit** is better than implicit
- 3. Write **DRY** (Don't repeat yourself) code
- 4. Use **consistent** and **transparent** naming
- 5. Iterate and re-run: particularly if using IDE that allows for **out of order execution** like Jupyter Notebooks and R-Studio
- 6. Avoid premature optimization
- 7. **Refactor** code as needed
- 8. **Test code** for critical issues

If doing ML: use a experiment tracking system

Machine learning is **iterative** and **experimental**

Tracking progress and changes is hard and messy

Reproducibility in ML is a problem

Tracking systems **facilitate** training, evaluation, reporting, and reproducibility

Deep learning: Weights and Biases

ML in general: Mlflow or Sacred

Do code reviews (when possible)

Code reviews are critical for:

- 1. Finding bugs
- 2. Improve code **readability**
- 3. Improve **usability**
- 4. Improve code performance
- 5. Improve documentation
- 6. **Sharing progress** with your group/peers
- 7. Efficient **knowledge exchange**

Resources to learn

Version control:

• Tutorials: <u>Git/GitHub</u>

• Book: <u>Git-Book</u>

Virtual environments:

- Virtualenv package
- Conda environments management
- Tutorial: <u>virtual environments in Python</u>

Refactoring:

Book: <u>Refactoring</u>

ML tracking systems:

Tutorial: <u>Weights & Biases</u>

Tutorial: <u>Mlflow</u>

Testing code:

• Talk: <u>Testing for Data Scientist</u>

• Tutorial: <u>Unit testing in Python</u>

Modular and Maintainable code for ML/Data Science:

• Talk: <u>Reproducible Data Science in Python</u>

• Talk: Maintainable Code in Data Science

Articles and References

- 1. Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., ... & Waugh, B. (2014). <u>Best practices for scientific computing</u>. PLoS biology, 12(1), e1001745.
- 2. Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). <u>Good enough practices in scientific computing</u>. PLoS computational biology, 13(6), e1005510.
- 3. Fehr, J., Heiland, J., Himpe, C., & Saak, J. (2016). <u>Best practices for replicability, reproducibility and reusability of computer-based experiments exemplified by model reduction software.</u> arXiv preprint arXiv:1607.01191.
- 4. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). <u>Ten simple rules for reproducible computational research</u>.
- 5. Hart, E. M., Barmby, P., LeBauer, D., Michonneau, F., Mount, S., Mulrooney, P., ... & Hollister, J. W. (2016). <u>Ten simple rules for digital data storage</u>.
- 6. Rule, A., Birmingham, A., Zuniga, C., Altintas, I., Huang, S. C., Knight, R., ... & Rose, P. W. (2019). <u>Ten</u> <u>simple rules for writing and sharing computational analyses in Jupyter Notebooks</u>. PLoS computational biology, 15(7).