

UNIVERSIDADE ESTADUAL DE MARINGÁ

Centro de Tecnologia - CTC Departamento de Informática – DIN

5178-31 – ALGORITMOS EM GRAFOS BACHARELADO EM INFORMÁTICA Prof. Rodrigo Calvo

Lista de Exercícios 5

Ciclos Hamiltonianos

1) Indique quais dos grafos têm ciclos ou caminhos hamiltonianos.

2) Faça uma lista de todos os possíveis ciclos hamiltonianos no seguinte grafo.

3) Explique porque o seguinte grafo não possui ciclos hamiltonianos, mas possui um caminho hamiltoniano.

4) Considere o seguinte grafo.

- a) Determine um caminho hamiltoniano de A para E.
- b) Determine um ciclo hamiltoniano de A terminando com a aresta (A,E).
- c) Determine um caminho hamiltoniano de A para C.
- d) Determine um caminho hamiltoniano de F para G.

5) Uma empresa de distribuição localizada em A tem de fazer entregas em quatro locais B, C, D e E e depois regressar a A. O seguinte grafo indica o tempo aproximado (em minutos) de viagem entre esses locais.

- a) Aplique o algoritmo do vizinho mais próximo, começando em A. Qual é o tempo de viagem para este percurso?
- b) Aplique o algoritmo do vizinho mais próximo, começando em D. Apresente a resposta como um ciclo começando em A.
- c) Suponha que a última parada antes de regressar a A tem de ser D. Determine o ciclo hamiltoniano ótimo que satisfaz esta condição. Qual é o tempo de viagem para este percurso?
- d) Refaça os itens a) c) aplicando o algoritmo baseado em árvore geradora mínima. Qual é o requisito para que o grafo seja aplicável neste algoritmo? Para encontrar a solução por meio deste algoritmo, execute todos os seus passos:
 - i) Construção da árvore geradora mínima
 - ii) Construção do caminho completo (ciclo) de acordo com o percurso pré-ordem na árvore
 - iii) Redução de arestas e vértices do caminho completo para encontrar o ciclo hamiltoniano
- 6) Seja n um inteiro positivo. O n-cubo é o grafo Q_n cujos vértices são os n-uplos de 0's e 1's, estando dois tais n-uplos ligados por uma aresta se e somente se diferirem em precisamente uma das suas coordenadas.
 - a) Represente os grafos Q₁, Q₂ e Q₃ de forma a que seja perceptível a sua designação de "cubos".
 - b) Mostre que Q_n é um grafo bipartido e regular. Represente os grafos Q_1 , Q_2 e Q_3 de forma a que seja perceptível que são bipartidos.
 - c) Mostre que Q_n é Hamiltoniano.

7) No ano 2020 será lançada da Terra uma expedição para explorar as luas de Júpiter e Saturno. Serão visitadas Calisto, Ganímedes, Io (luas de Júpiter), Mimas e Titã (luas de Saturno), onde serão recolhidas amostras com as quais a expedição voltará à Terra. A seguinte figura indica a duração da missão (em anos) entre cada par de luas. Como determinar um ciclo Hamiltoniano ótimo (de duração mais curta) no grafo representado? Aplique o algoritmo do vizinho mais próximo e o algoritmo baseado em árvore geradora mínima (se possível), executando todos os seus passos (veja exercício 5-d-iii).

8) Suponha que Seu Matias consiga expandir seus negócios aumentando o número de clientes espalhados por dez cidades. O custo das viagens entre as cidades está representado a seguir em forma de uma tabela. Sabendo que Seu Matias mora na cidade A, encontre o caminho de custo mínimo para visitar todas as cidades uma única vez, retornado para sua cidade. Aplique o algoritmo do vizinho mais próximo e o algoritmo baseado em árvore geradora mínima (se possível), executando todos os seus passos (veja exercício 5-d-iii).

	A	B	C	D	E	F	G	H	ſ	K
A	•	185	119	152	133	321	297	277	412	381
В	185		121	150	200	404	458	492	379	427
C	119	121	*	174	120	332	439	348	245	443
D	152	150	174	*	199	495	480	500	454	489
E	133	200	120	199	*	315	463	204	396	487
F	321	404	332	495	315	•	356	211	369	222
G	297	458	439	480	463	356	*	471	241	235
H	277	492	348	500	204	211	471	•	283	478
$\cdot I$	412	379	245	454	396	369	241	283	• 3	304
K	381	427	443	489	487	222	235	478	304	*