Φροντιστήριο 9 ΦΥΣ112

13/11/2024

29.56) Το παρακάτω σχήμα δείχνει μια διάταξη πηνίων Helmholtz. Περιλαμβάνει δύο κυκλικά ομοαξονικά πηνία των 200 στροφών έκαστο και ακτίνας $R=25.0\,cm$, σε απόσταση s=R το ένα από το άλλο. Τα πηνία φέρουν ρεύμα $I=12.2\,mA$ στην ίδια κατεύθυνση. Βρείτε το μέτρο του συνισταμένου μαγνητικού πεδίου στο μέσο της απόστασης μεταξύ τους, P.

30.11) Ένα ορθογώνιο πηνίο N στροφών, μήχους a και πλάτους b περιστρέφεται με συχνότητα f εντός ομοιγενούς μαγνητικού πεδίου \vec{B} όπως φαίνεται στο σχήμα. Το πηνίο είναι συνδεδεμένο με συμπεριστρεφόμενους κυλίνδρους έναντι των οποίων μεταλλικές επαφές ολισθαίνουν για να έρθουν σε επαφή. (a) Δείξτε ότι η $\text{HE}\Delta$ που επάγεται στο πηνίο δίνεται σαν συνάρτηση του χρόνου ως:

$$\mathcal{E} = 2\pi f \, Nab \, B \, \sin\left(2\pi f t\right) = \mathcal{E}_0 \, \sin\left(2\pi f t\right) \tag{1}$$

Αυτή είναι η αρχή στην οποία βασίζονται οι ηλεκτρογεννήτριες. (b) Ποια τιμή του Nab προκαλεί $HE\Delta$ με $\mathcal{E}_0=150\,V$ όταν το πηνίο περιστρέφεται με $60.0\,$ στροφές/s σε μαγνητικό πεδίο μέτρου $0.500\,T;$

30.25) Δ ύο μαχριά παράλληλα χάλχινα χαλώδια διαμέτρου $2.5\,mm$ φέρουν ρεύμα $10\,A$ σε αντίθετες χατευθύνσεις. (a) Θεωρώντας ότι η απόσταση μεταξύ των αξόνων τους είναι $20\,mm$, υπολογίστε την μαγνητιχή ροή ανά μέτρο χαλωδίου που υπάρχει στον χώρο μεταξύ των αξόνων. (b) Τι ποσοστό της μαγνητιχής ροής βρίσχεται εντός των χαλωδίων; (c) Επαναλάβετε το πρώτο ερώτημα για ρεύματα στην ίδια χατεύθυνση.

30.28) Στο πιο κάτω σχήμα, ένας ορθογώνιος βρόχος καλωδίου μήκους $a=2.2\,cm$, πλάτους $b=0.80\,cm$ και αντίστασης $R=0.40\,m\Omega$ τοποθετείται κοντά σε ένα απείρου μήκους καλώδιο που φέρει ρεύμα $I=4.7\,A$. Ο βρόχος έπειτα μετακινείται μακριά από το καλώδιο με ταχύτητα $v=3.2\,mm/s$. Όταν το κέντρο του βρόχου βρίσκεται σε απόσταση r=1.5b πόση είναι (a) η μαγνητική ροή που διαρρέει τον βρόχο και (b) το επαγόμενο ρεύμα στον βρόχο;

30.35) Η αγώγιμη ράβδος του σχήματος έχει μήχος L και σύρεται κατά μήχος οριζόντιων αγώγιμων ραγών χωρίς τριβή με σταθερή ταχύτητα \vec{v} . Οι ράγες είναι συνδεδεμένες στο ένα άχρο με μεταλλική λωρίδα. Ένα ομοιογενές μαγνητικό πεδίο \vec{B} με κατεύθυνση έξω από την σελίδα γεμίζει τον χώρο στον οποίο κινείται η ράβδος. Έστω ότι $L=10\,cm,\ v=5.0\,m/s$ και $B=1.2\,T.$ Ποιο είναι (a) το μέτρο και (b) η κατεύθυνση (πάνω ή κάτω) της επαγόμενης $\text{HE}\Delta$ στη ράβδο; Ποιο (c) το μέγεθος και (d) η κατεύθυνση του ρεύματος στον βρόχο; Υποθέστε ότι η αντίσταση στην ράβδο είναι $0.40\,\Omega$, ενώ στις ράγες και την μεταλλική λωρίδα είναι αμελητέα. (e) Με τι ρυθμό παράγεται θερμική ενέργεια στη ράβδο; (f) Τι εξωτερική δύναμη χρειάζεται να εφαρμοστεί στην ράβδο για να παραμείνει η κίνηση ομαλή (σταθερό \vec{v}); (g) Με τι ρυθμό παράγει έργο αυτή η δύναμη στη ράβδο;

