Øvingsoppgaver TEK5020/9020 – Mønstergjenkjenning Del 4 – Lineære diskriminantfunksjoner

Høsten 20223

Oppgave 1

Anta lineære diskriminantfunksjoner for et problem med tre klasser, dvs.

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}, i = 1, 2, 3,$$

der egenskapsvektoren \mathbf{x} er todimensjonal og tersklingsvektene er $w_{10} = w_{20} = w_{30} = 0$. Skisser vektvektorene med halen i origo, de tre linjene som forbinder hodene og desisjonsgrensene. Hvordan forandrer denne skissen seg når det legges en konstant vektor til hver av vektvektorene?

Oppgave 2

Anta en lineær klassifikator med diskriminantfunksjonene

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}, i = 1, \dots, c.$$

Vis at desisjonsregionene er konvekse ved å vise at hvis $\mathbf{x}_1 \in \mathcal{R}_i$ og $\mathbf{x}_2 \in \mathcal{R}_i$ da er

$$\lambda x_1 + (1 - \lambda)x_2 \in \mathcal{R}_i$$

dersom $0 \le \lambda \le 1$.

Oppgave 3

Betrakt kriteriefunksjonen

$$J_q(\boldsymbol{a}) = \sum_{\boldsymbol{y} \in \mathscr{Y}} (\boldsymbol{a}^t \boldsymbol{y} - b)^2,$$

der $\mathscr{Y}(\boldsymbol{a})$ er mengden av sampler der $\boldsymbol{a}^t\boldsymbol{y} \leq b$. Anta at \boldsymbol{y}_1 er eneste samplet i $\mathscr{Y}(\boldsymbol{a}_k)$. Vis at $\nabla J_q(\boldsymbol{a}_k) = 2(\boldsymbol{a}_k^t\boldsymbol{y}_1 - b)\boldsymbol{y}_1$ og at matrisen av annenordens partialderiverte er gitt ved $D = 2\boldsymbol{y}_1\boldsymbol{y}_1^t$. Bruk dette til å vise at oppdateringen i gradientsøkalgoritmen, med den optimale verdien av ρ_k blir

$$a_{k+1} = a_k + \frac{b - a^t y_1}{\|y_1\|^2} y_1.$$

Oppgave 4

La treningssettet i et endimensjonalt toklasseproblem bestå av samplene $\mathscr{X} = \{1, 2, 6, 8\}$, der de to første samplene er fra klasse ω_1 og de to siste fra ω_2 . Bruk fast inkrement regelen til å finne en løsningsvektor. Sett startvektoren til $\boldsymbol{a}_0 = [0, 0]^t$.

Oppgave 5

La treningssettet i et endimensjonalt toklasseproblem være som i oppgave 4. Bruk minste kvadraters metode (Pseudoinvers løsningsmetode der vektoren **b** har kun enere som komponenter) til å finne den utvidede vektvektoren i toklasse-diskriminantfunksjonen for dette problemet. Er denne vektvektoren en separerende vektor (løsningsvektor for problemet)? Hva blir terskelverdien mellom klassene i det opprinnelige egenskapsrommet (x-rommet)?