

S905D3

Quick Reference Manual

Revision: 0.6

Release Date: 2019-07-25

Copyright

©2019 Amlogic. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, or translated into any language in any form or by any means without the written permission of Amlogic.

Trademarks

and other Amlogic icons are trademarks of Amlogic companies. All other trademarks and registered trademarks are property of their respective holders.

Disclaimer

Amlogic may make improvements and/or changes in this document or in the product described in this document at any time.

This product is not intended for use in medical, life saving, or life sustaining applications.

Circuit diagrams and other information relating to products of Amlogic are included as a means of illustrating typical applications. Consequently, complete information sufficient for production design is not necessarily given. Amlogic makes no representations or warranties with respect to the accuracy or completeness of the contents presented in this document.

Contact Information

Website: www.amlogic.com

Pre-sales consultation: contact@amlogic.com

Technical support: support@amlogic.com

Revision History

Version 0.6(2019-07-23)

This is the sixth release. Compare with the last version, the following part is added:

• 1

The following parts are modified:

Section	Change Description	
4.4, 4.5	Remove BT656 related signals.	

Version 0.5(2019-05-14)

This is the fifth release. Compare with the last version, the following part has been modified:

Section	Change Description
2, 3	Remove DVP description, update Neural Network Processing Unit description

Version 0.4(2019-04-10)

This is the forth release. Compare with last version the following part has been modified:

Section	Change Description	
3	Update SOC diagram	
4.3	Update eARC_N, eARC_P description, remove VDDAO_0V8.	
5.5.1	Update R _{PD} , R _{PU} , add Note	
5.7.1	Add Note part for Table 5-1.	
5.8	Updated Table 5-18	
5.10	Update Note5, remove VDDAO_0V8	
5.11	Update Table and Note part	

Compare with last version the following topic is new added:

• 5.9

Version 0.3(2019-03-10)

This is the third release. Compare with last version the following part has been modified:

Section	Change Description
4.3 , 5.2	Correct typo
5.3	Add note

Version 0.2(2019-02-26)

This is the second release. Compare with last version the following topic is new added:

- Pin Order
- Pin Description
- Recommended Operation Conditions
- Thermal Resistance
- Ethernet Timing

Compare with last version the following part has been modified:

Section	Change Description			
5.11	Add Power consumption data			

Version 0.1(2019-02-21)

This is the first release. Compare with last version the following part has been modified:

Section	Change Description			1	0
5.5.1	Correct typo	7	1		

Preliminary Version(2019-01-30)

This is the preliminary release.

Contents

Revision History	ii
1 About This Document	1
2 General Description	2
3 Features Summary	3
4 Pinout Specification	8
4.1 Pin-Out Diagram (top view)	8
4.2 Pin Order	8
4.3 Pin Description	13
4.4 Pin Multiplexing Tables	
4.5 Signal Description	
5 Operating Conditions	39
5.1 Absolute Maximum Ratings	39
5.2 Recommended Operating Conditions	
5.3 Ripple Voltage Specifications	
5.4 Thermal Resistance	
5.5 DC Electrical Characteristics	41
5.5.1 Normal GPIO Specifications (For DIO_xmA)	41
5.5.2 Open Drain GPIO Specifications (For DIO_OD)	42
5.5.3 DDR3/DDR3L/DDR4/LPDDR3/LPDDR4 SDRAM Specifications	43
5.6 Recommended Oscillator Electrical Characteristics	
5.7 Timing Information	
5.7.1 I2C Timing Specification	
5.7.2 EMMC/SD Timing Specification	
5.7.3 NAND Timing Specification	
5.7.4 SPICC Timing Specification	
5.7.5 SPIFC Timing Specification	54
5.7.6 Ethernet Timing Specification	
5.7.7 Audio Timing Specification	
5.7.8 PDM Timing Specification	
5.7.9 UART Timing Specification	
5.8 Power On Config	
5.9 Power On Reset	
5.10 Recommended Power on sequence	
5.11 Power Consumption	
5.12 Storage and Baking Conditions	
6 Mechanical Dimensions	67

1 About This Document

This document is applicable to S905D3 SoC series, please contact your Amlogic sales representative for more detail.

2 General Description

S905D3 is an advanced application processor designed for hybrid OTT/IP Set Top Box (STB) and high-end media box applications. It integrates a powerful CPU/GPU subsystem, a powerful NPU(Neural Network Processing Unit)Optional, a secured 4K video CODEC engine and a best-in-class HDR image processing pipeline with all major peripherals to form the ultimate low power multimedia AP.

The main system CPU is a quad-core ARM Cortex-A55 CPU with unified L3 cache to improve system performance. In addition, the Cortex-A55 CPU includes the NEON SIMD co-processor to improve software media processing capability.

The graphic subsystem consists of two graphic engines and a flexible video/graphic output pipeline. The ARM G31 MP2 GPU handles all OpenGL ES 3.2 Vulkan 1.0 and OpenCL 2.0 graphic programs, while the 2.5D graphics processor handles additional scaling, alpha, rotation and color space conversion operations. Together, the CPU and GPU handle all operating system, networking, user-interface and gaming related tasks. The video output pipeline includes Dolby Visionoptional, HDR10+, HDR10, HLG and PRIME HDR processing, BT.709/BT.2020/BT.2100 processing, motion adaptive edge enhancing de-interlacing, flexible programmable scalar, and many picture enhancement filters before passing the enhanced image to the video output ports.

Amlogic Video Engine (AVE-10) off-loads the Cortex-A55 CPUs from all video CODEC processing. It includes dedicated hardware video decoder and encoder. AVE-10 is capable of decoding 4Kx2K resolution video at 60fps with complete Trusted Video Path (TVP) for secure applications and supports full formats including MVC, MPEG-1/2/4, VC-1/WMV, AVS, AVS+, AVS2 RealVideo, MJPEG streams, H.264, H265-10, VP9 and also JPEG pictures with no size limitation. The independent encoder is able to encode in JPEG or H.265/H.264 up to 1080p at 60fps.

S905D3 integrates all standard audio/video input/output interfaces including a HDMI2.1 transmitter with 3D, Dynamic HDR(w/EMP), CEC and HDCP2.2, ALLM(Auto Low Latency Mode) support, stereo audio DAC, a CVBS output,4-lane MIPI DSI interface,2-lane MIPI CSI interface, multiple TDM, PCM, I2S and SPDIF digital audio input/output interfaces, and 8 channel far-field PDM digital microphone (DMIC) inputs. It also has build-in Voice Activity Detection(VAD)module for ultra-low power operations during system standby.

S905D3 also integrates a set of functional blocks for digital TV broadcasting streams. The built-in two demux can process the TV streams from the serial and paralleltransport stream input interface, which can connect to external tuner/demodulator.

The processor has rich advanced network and peripheral interfaces, including a 10/100/1000M Ethernet MAC with RGMII, 10/100M Ethernet PHY, a set of multi-PHY for USB2, USB3 and PCIe, and multi-ple SDIO/SD card controllers, UART, I2C, high-speed SPI and PWMs.

Standard development environment utilizing GNU/GCC Android tool chain is supported. Please contact your AMLOGIC sales representative for more information.

3 Features Summary

CPU Sub-system

- Quad core ARM Cortex-A55 CPU
- ARMv8-A architecture with Neon and Crypto extensions
- 8-stage in-order full dual issue pipeline
- Unified system L3 cache
- Build-in Cortex-M4^{Optional} core for always on processing
- Build-in Cortex-M3 core for system control processing
- Advanced TrustZone security system
- Application based traffic optimization using internal QoS-based switching fabrics

Neural Network Processing Unit(NPU)Optional

- 1.2 TOPS NN inference accelerator
- Supports all major deep learning frameworks including TensorFlow and Caffe

3D Graphics Processing Unit

- ARM G31 MP2 GPU
- 4-wide warps, dual texture pipe, 2x 4-wide execution engines (EE)
- Concurrent multi-core processing
- OpenGL ES 3.2, Vulkan 1.1 and OpenCL 2.0 support

2.5D Graphics Processor

- Fast bitblt engine with dual inputs and single output
- Programmable raster operations (ROP)
- Programmable polyphase scaling filter
- Supports multiple video formats 4:2:0, 4:2:2 and 4:4:4 and multiple pixel formats (8/16/24/32 bits graphics layer)
- Fast color space conversion
- Advanced anti-flickering filter

Crypto Engine

- AES/ block cipher with 128/256 bits keys, standard 16 bytes block size and streaming ECB, CBC and CTR modes
- TDES block cipher with ECB and CBC modes supporting 64 bits key for DES and 192 bits key for 3DES
- SM4 block cipher with ECB, CBC, CTR modes
- Hardware crypto key-ladder operation and DVB-CSA for transport stream encryption
- Built-in hardware True Random Number Generator (TRNG), CRC and SHA-1/SHA-2/HMAC SHA engine

Video/Picture CODEC

- Amlogic Video Engine (AVE) with dedicated hardware decoders and encoders
- Support multi-video decoder up to 4x1080P@60fps
- Supports multiple "secured" video decoding sessions and simultaneous decoding and encoding
- Video/Picture Decoding
 - VP9 Profile-2 up to 4Kx2K@60fps
 - H.265 HEVC MP-10@L5.1 up to 4Kx2K@60fps
 - AVS2-P2 Profile up to 4Kx2K@60fps
 - H.264 AVC HP@L5.1 up to 4Kx2K@30fps
 - MPEG-4 ASP@L5 up to 1080P@60fps (ISO-14496)
 - WMV/VC-1 SP/MP/AP up to 1080P@60fps
 - AVS-P16(AVS+) /AVS-P2 JiZhun Profile up to 1080P@60fps
 - MPEG-2 MP/HL up to 1080P@60fps (ISO-13818)
 - MPEG-1 MP/HL up to 1080P@60fps (ISO-11172)
 - RealVideo 8/9/10 up to 1080P@60fps
 - Multiple language and multiple format sub-title video support
 - MJPEG and JPEG unlimited pixel resolution decoding (ISO/IEC-10918)
 - Supports JPEG thumbnail, scaling, rotation and transition effects
 - Supports *.mkv,*.wmv,*.mpg, *.mpeg, *.dat, *.avi, *.mov, *.iso, *.mp4, *.rm and *.jpg file formats
- Video/Picture Encoding
 - Independent JPEG and H.264 encoder with configurable performance/bit-rate
 - JPEG image encoding
 - H.265/H.264 video encoding up to 1080P@60fps with low latency

8th Generation Advanced Amlogic TruLife Image Engine

- Supports Dolby Visionoptional, HDR10+, HDR10, HLG and Technicolor HDR processing
- Motion compensated noise reduction and 3D digital noise reduction for random noise
- Block noise, mosquito noise, spatial noise, contour noise reduction
- Motion compensated and motion adaptive de-interlacer
- Edge interpolation with low angle protection and processing
- 3:2/2:2 pulldown and Video on Film (VOF) detection and processing
- Smart sharpness with SuperScaler technology including de-contouring, de-ring, LTI, CTI, dejaggy, peaking
- Dynamic non-Linear contrast enhancement
- All dimension multiple regions smart color management including blue/green extension, fleshtone correction, wider gamut for video
- 2 video planes and 3 graphics planes hardware composer
- Independent HDR re-mapping of video and graphic layer

Video Input/Output Interface

- MIPI-CSI camera interface with 2 lanes
- Built-in HDMI 2.1 transmitter including both controller and PHY supporting eARC,CEC, Dynamic HDR and HDCP 2.2, 4Kx2K@60 max resolution output
- CVBS 480i/576i standard definition output
- Supports all standard SD/HD/FHD video output formats: 480i/p, 576i/p, 720p, 1080i/p and 4Kx2K
- 4-lane MIPI DSI interface, resolution up to 1920*1080

Audio Decoder and Input/Output

- Supports MP3, AAC, WMA, RM, FLAC, Ogg, Dolby Digital Plus Digital Plus
- Low-power VAD
- Built-in serial digital audio SPDIF/IEC958 input/output and PCM input/output, SPDIF supports 192KHz 16/24/32bit stereo
- 3 built-in TDM/PCM/I2S ports with TDM/PCM mode up to 384kHz x 32bits x 16ch or 96kHz x 32bits x 32ch and I2S mode up to 384kHz x 32bits x 16ch
- Digital microphone PDM input with programmable CIC, LPF & HPF, support up to 8 DMICs
- Built-in stereo audio DAC
- Supports concurrent dual audio stereo channel output with combination of analog+PCM or I2S +PCM

Memory and Storage Interface

- 32-bit DRAM memory interface with dual ranks and max 4GB total address space
- Compatible with JEDEC standard DDR3-2133 /DDR3L-2133 /DDR4-3200 /LPDDR3-2133 /LPDDR4-3200 SDRAM
- Supports SLC/MLC/TLC NAND Flash with 60-bit ECC, compatible to Toshiba toggle mode in addition to ONFI 2.2
- SDSC/SDHC/SDXC card and SDIO interface with 1-bit and 4-bit data bus width supporting spec version 2.x/3.x/4.x DS/HS modes up to UHS-I SDR104
- eMMC and MMC card interface with 1/4/8-bit data bus width fully supporting spec version 5.0 HS400
- Supports serial 1, 2 or 4-bit NOR Flash via SPI interface

Built-in 4k bits One-Time-Programming memory for key storage

Network

- Integrated IEEE 802.3 10/100/1000M Ethernet MAC with RGMII interface
- Integrate 10/100M Ethernet PHY interface
- WiFi/IEEE802.11 & Bluetooth supporting via PCIE/SDIO /USB/UART/PCM
- Network interface optimized for mixed WIFI and BT traffic

Digital Television Interface

- One serial and one parallel Transport stream (TS) input interface with built-in demux processor for connecting to external digital TV tuner/demodulator
- Built-in PWM, I2C and SPI interfaces to control tuner and demodulator
- Integrated ISO 7816 smart card controller

Integrated I/O Controllers and Interfaces

- One USB XHCI OTG 2.0 port
- One USB SS and PCIE 2.0 combo port up to 5Gbps, which supports 2 configurations:
 - 1 USB 2.0 Host + 1 PCle
 - 1 USB3.0 (No PCle)
- Multiple PWM, UART, I2C and SPI interface with slave select
- Programmable IR remote input/output controllers
- Built-in 10bit SAR ADC with 4 input channels
- A set of General Purpose IOs with built-in pull up and pull down

System, Peripherals and Misc. Interfaces

- Integrated general purpose timers, counters, DMA controllers
- 24 MHz crystal input
- Embedded debug interface using ICE/JTAG
- Integrated Power On Reset(POR) module

Power Management

- Multiple internal power domains controlled by software
- Multiple sleep modes for CPU, system, DRAM, etc.
- Multiple internal PLLs for DVFS operation
- Multi-voltage I/O design for 1.8V and 3.3V
- Power management auxiliary processor in a dedicated always-on (AO) power domain that can communicate with an external PMIC

Security

- Trustzone based Trusted Execution Environment (TEE)
- Secured boot, encrypted OTP, encrypted DRAM with memory integrity checker, hardware key ladder and internal control buses and storage
- Separated secure/non-secure Entropy true RNG
- Pre-region/ID memory security control and electric fence
- Hardware based Trusted Video Path (TVP), video watermarking and secured contents (needs SecureOS software)
- Secured IO and secured clock

Package

• FCBGA, 16.1mmx14.3mm, 0.6mm ball pitch, RoHS compliant

4 Pinout Specification

4.1 Pin-Out Diagram (top view)

Figure 4-1 Pinout Diagram(topview)

4.2 Pin Order

BALL#	NET NAME
A1	DDR_DQ31
A3	DDR_DQ30
A5	DVSS
A7	DDR_DQSP3
A11	DDR_DQ25
A15	GPIOA_8
A19	GPIOA_0
A24	GPIOC_4
A28	DVSS
A32	PCIE_RXP
A36	USBOTG_B_VBUS
A40	USBOTG_B_DM
A42	ENET_TXP
A44	ENET_RXP
A46	DVSS
C1	DVSS
С3	DDR_DQ18
C5	DDR_DQ29
C7	DDR_DQSN3
C9	DDR_DQ28
C11	DVSS
C13	DVSS
C15	GPIOA_9
C17	GPIOA_3
C19	GPIOA_1
C21	GPIOC_2
C24	GPIOC_5
C26	GPIOC_0
C28	GPIOC_6
C30	PCIE_CLK_p
C32	PCIE_RXN
C34	PCIE_TXN
C36	DVSS
C38	USBHOST_A_DM
C40	USBOTG_B_DP
C42	ENET_TXN

BALL#	NET NAME
C44	ENET_RXN
C46	HDMITX_2P
E3	DDR_DQ19
E5	DDR DQ17
E7	DVSS
E9	DDR_DQ26
E13	DDR_DQ24
E15	GPIOA_6
E17	GPIOA_2
E19	DVSS
E21	GPIOC_3
E24	DVSS
E26	VDDIO_C
E28	GPIOC_1
E30	PCIE_CLK_n
E32	DVSS
E34	PCIE_TXP
E36	ENET_EXTRES
E38	USBHOST_A_DP
E40	DVSS
E42	DVSS
E44	HDMITX_2N
E46	DVSS
G1	DDR_DQ21
G3	DDR_DQ20
G5	DVSS
G8	DDR_DQ27
G11	DDR_DQM3
G13	DVSS
G16	GPIOA_4
G19	VDDIO_A
G22	GPIOA_11
G25	GPIOA_10
G28	GPIOC_7
G31	USB_TXRTUNE
G34	HDMI_REXT

BALL#	NET NAME
G37	GPIOH_8
G42	DVSS
G44	HDMITX_1P
G46	HDMITX_1N
H40	GPIOH_6
J3	DDR_DQSN2
J5	DDR_DQSP2
J13	GPIOA_5
J16	GPIOA_7
J19	GPIOA_12
J22	GPIOA_15
J25	DVSS
J28	PCIE_REXT
J31	USBOTG_B_ID
J34	HDMI_CEXT
J37	GPIOH_1
J42	DVSS
J44	HDMITX_0N
J46	HDMITX_0P
K7	DDR_DQM2
K9	DDR_DQ16
K11	DVSS
L1	DDR_DQ23
L3	DVSS
L5	DDR_DQ22
L13	VDDQ
L16	GPIOA_13
L19	DVSS
L22	GPIOA_14
L25	DVSS
L28	HCSL_REXT
L31	DVSS
L34	DVSS
L37	GPIOH_0
L40	GPIOH_3
L42	HDMITX_CKN

BALL#	NET NAME
L44	HDMITX_CKP
N3	DVSS
N5	AC_35
N7	DVSS
N9	AC_31
N11	DVSS
N15	VDDQ
N36	GPIOH_2
N38	VMID
N40	AVSS_AUDIO
N42	LOLP
N44	DVSS
P13	VDDQ
P18	DVSS
P20	DVSS
P22	DVSS
P24	AVDD18_PCIE
P26	AVDD18_ENET
P28	AVDD33_USB
P30	DVSS
P32	AVSS_HPLL
P34	DVSS
R1	DVSS
R3	AC_34
R5	AC_20
R15	DVSS
R42	LORN
R44	LOLN
R46	LORP
Т7	AC_38
Т9	DDR_RSTn
T11	DVSS
T36	REFP
T38	CVBS_RSET
T40	CVBS_VREF
U3	AC_21
U5	DVSS

BALL#	NET NAME
U13	VDDQ
U15	DVSS
U17	DVSS
U19	VDD_DDR
U21	DVSS
U23	DVSS
U25	AVDD18_USB
U27	ENET_ATP
U29	AVSS_ENETPLL
U31	NC
U33	DVSS
U42	DVSS
U44	CVBS_IOUT
W1	AC_33
W3	AC_29
W5	AC_32
W7	AC_37
W9	AC_30
W11	PVREF
W36	CVBS_COMP
W38	GPIOH_5
W40	GPIOH_4
W42	DVSS
W44	eARC_P
W46	eARC_N
Y14	VDDQ
Y16	DVSS
Y18	DVSS
Y20	VDD_EE
Y22	DVSS
Y24	AVSS_HCSL
Y26	DVSS
Y28	AVDD0V8_USB_PCIE
Y30	AVDD0V8_HDMI
Y32	AVDD18_HDMI
Y34	AVSS_CVBS
AA3	AC_25

BALL#	NET NAME			
AA5	AC_24			
AA42	NC			
AA44	NC			
AB7	AC_5			
AB9	AC_4			
AB11	PZQ			
AB36	CSI_CLKA_P			
AB38	GPIOH_7			
AB40	DVSS			
AC1	AC_28			
AC3	DVSS			
AC5	AC_22			
AC13	DVSS			
AC15	VDDQ			
AC17	DVSS			
AC19	VDD_DDR			
AC21	DVSS			
AC23	DVSS			
AC25	DVSS			
AC27	VDD_EE			
AC29	DVSS			
AC31	AVDD18_AUDIO			
AC33	AVDD18_CVBS			
AC42	DVSS			
AC44	NC			
AC46	NC			
AE3	DVSS			
AE5	AC_26			
AE7	AC_6			
AE9	AC_7			
AE11	AC_12			
AE36	CSI_CLKA_N			
AE38	CSI_D1N			
AE40	CSI_D1P			
AE42	DSI_CLKN			
AE44	DSI_CLKP			
AF14	DVSS			

BALL#	NET NAME
AF16	VDDQ
AF18	DVSS
AF20	DVSS
AF22	AVSS_AMPLL
AF24	DVSS
AF26	VDD_EE
AF28	VDD_EE
AF30	DVSS
AF32	AVDD18_MIPICSI
AF34	AVDD18_MIPIDSI
AG1	AC_15
AG3	AC_14
AG5	AC_23
AG42	DVSS
AG46	DSI_D0P
AH7	AC_13
AH9	DVSS
AH11	AC_9
AH14	AVDD_DDRPLL
AH17	VDD_DDR
AH20	VDDCPU
AH23	AVDD18_DPLL
AH26	VDD_EE
AH29	DVSS
AH32	DVSS
AH36	DVSS
AH38	CSI_D0N
AH40	CSI_DOP
AH44	DSI_D0N
AK1	AC_11
AK3	AC_10
AK5	DVSS
AK13	DVSS
AK15	VDDQ
AK17	DVSS
AK19	VDDCPU
AK21	VDDCPU

BALL#	NET NAME
AK23	DVSS
AK25	DVSS
AK27	VDD_EE
AK29	VDD_EE
AK31	DVSS
AK33	AVDD18_SARADC
AK42	DVSS
AK44	DSI_D1P
AK46	DSI_D1N
AL7	AC_17
AL9	AC_16
AL11	AC_3
AL36	DSI_CEXT
AL38	DSI_R1K
AL40	DSI_R600
AM3	AC_2
AM5	AC_36
AM27	VDD_EE
AM42	DSI_D2N
AM44	DSI_D2P
AN14	DVSS
AN16	DVSS
AN18	DVSS
AN20	VDDCPU
AN22	VDDCPU
AN24	DVSS
AN30	DVSS
AN32	VDD18_AO_XTAL
AN34	DVSS
AP1	AC_0
AP3	DVSS
AP5	AC_18
AP7	DDR_DQM1
AP9	DDR_DQ15
AP11	AC_1
AP27	VDD_EE

BALL#	NET NAME
AP36	GPIOAO_0
AP38	GPIOAO_1
AP40	DVSS
AP42	DVSS
AP44	DSI_D3P
AP46	DSI_D3N
AT3	DVSS
AT5	AC_8
AT13	DVSS
AT15	DVSS
AT17	VDDCPU
AT19	VDDCPU
AT21	VDDCPU
AT23	DVSS
AT25	DVSS
AT27	VDD_EE
AT33	DVSS
AT42	GPIOAO_8
AT44	GPIOAO_9
AU9	DDR_DQ12
AU11	DVSS
AU29	DVSS
AU31	DVSS
AU36	GPIOAO_10
AU38	GPIOE_2
AU40	GPIOAO_2
AV1	DVSS
AV3	DDR_DQ14
AV5	DDR_DQ11
AV42	RESET_N
AV44	GPIOAO_6
AV46	GPIOAO_7
AW14	DVSS
AW16	VDDCPU
AW18	VDDCPU
AW20	VDDCPU
AW22	VDDCPU

BALL#	NET NAME
AW24	DVSS
AW26	VDD_EE
AW28	DVSS
AW30	DVSS
AW32	VDDIO_Z
AW34	VDDIO_H
AY3	DDR_DQ10
AY5	DDR_DQ9
AY7	DVSS
AY9	DDR_DQ13
AY11	DVSS
AY36	VDDIO_AO
AY38	SARADC_CH0
AY40	SARADC_CH1
AY42	SYS_OSCIN
AY44	DVSS
BB1	DDR_DQSP1
BB3	DDR_DQSN1
BB5	DVSS
BB10	DVSS
BB13	DVSS
BB16	DVSS
BB19	BOOT_10
BB22	DVSS
BB25	DVSS
BB28	GPIOE_0
BB31	DVSS
BB34	GPIOX_8
BB42	GPIOZ_15
BB44	SYS_OSCOUT
BB46	DVSS
BC7	DVSS
BC36	GPIOZ_1
BC38	SARADC_CH2
BC40	SARADC_CH3
BD3	DDR_DQ8
BD5	DDR_DQ7

BALL#	NET NAME
BD10	DVSS
BD13	GPIOAO_5
BD16	GPIOAO_4
BD19	BOOT_11
BD22	DVSS
BD25	DVSS
BD28	GPIOE_1
BD31	GPIOX_10
BD34	GPIOX_9
BD42	GPIOZ_12
BD44	GPIOZ_13
BF1	DDR_DQ6
BF3	DVSS
BF5	DDR_DQ5
BF7	DVSS
BF10	DVSS
BF13	GPIOAO_3
BF16	GPIOAO_11
BF19	BOOT_15
BF22	BOOT_9
BF25	VDDIO_X
BF28	TEST_N
BF31	GPIOX_17
BF34	GPIOX_11
BF36	GPIOZ_0
BF39	GPIOZ_14
BF42	GPIOZ_9
BF44	GPIOZ_11
BF46	GPIOZ_10
BH1	DVSS
ВН3	DDR_DQ4
BH5	DVSS
ВН7	DVSS
ВН9	BOOT_1
BH11	BOOT_3
BH13	BOOT_4

BALL#	NET NAME				
BH17	BOOT_6				
BH19	DVSS				
BH21	VDDIO_BOOT				
BH24	BOOT_8				
BH26	GPIOX_19				
BH28	GPIOX_14				
BH30	GPIOX_13				
BH32	DVSS				
BH34	GPIOX_3				
BH36	DVSS				
BH38	DVSS				
BH40	GPIOX_7				
BH42	GPIOZ_6				
BH44	DVSS				
BH46	GPIOZ_8				
BK1	DDR_DQM0				
BK3	DDR_DQSN0				
BK5	DDR_DQ3				
BK7	DDR_DQ1				
BK9	BOOT_0				
BK11	BOOT_2				
BK13	DVSS				
BK15	DVSS				
BK17	BOOT_7				
BK19	BOOT_14				
BK21	BOOT_12				
BK24	DVSS				
BK26	GPIOX_15				
BK28	GPIOX_12				
BK30	GPIOX_16				
BK32	GPIOX_1				
BK34	GPIOX_2				
BK38	GPIOX_5				
BK40	GPIOX_6				
BK42	GPIOZ_2				
BK44	GPIOZ_5				

BALL#	NET NAME
DALL#	NEI NAME
BK46	GPIOZ_7
BM1	DDR_DQSP0
ВМ3	DVSS
BM5	DDR_DQ2
ВМ7	DDR_DQ0
BM11	DVSS

BALL#	NET NAME			
BM15	BOOT_5			
BM19	BOOT_13			
BM24	GPIOX_18			
BM28	DVSS			
BM32	GPIOX_0			
BM36	GPIOX_4			

BALL#	NET NAME
BM40	DVSS
BM42	GPIOZ_3
BM44	GPIOZ_4
BM46	DVSS

4.3 Pin Description

The S905D3 application processor pin assignment is described in the following table.

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused	
GPIOZ - Refer	GPIOZ - Refer to Table 4-1 for functional multiplex information.					
GPIOZ_0	DIO	Up	General purpose input/output bank Z signal 0	VDDIO_Z	NC	
GPIOZ_1	DIO	Up	General purpose input/output bank Z signal 1	VDDIO_Z	NC	
GPIOZ_2	DIO	Up	General purpose input/output bank Z signal 2	VDDIO_Z	NC	
GPIOZ_3	DIO	Up	General purpose input/output bank Z signal 3	VDDIO_Z	NC	
GPIOZ_4	DIO	Up	General purpose input/output bank Z signal 4	VDDIO_Z	NC	
GPIOZ_5	DIO	Up	General purpose input/output bank Z signal 5	VDDIO_Z	NC	
GPIOZ_6	DIO	Up	General purpose input/output bank Z signal 6	VDDIO_Z	NC	
GPIOZ_7	DIO	Up	General purpose input/output bank Z signal 7	VDDIO_Z	NC	
GPIOZ_8	DIO	Úp	General purpose input/output bank Z signal 8	VDDIO_Z	NC	
GPIOZ_9	DIO	Down	General purpose input/output bank Z signal 9	VDDIO_Z	NC	
GPIOZ_10	DIO	Down	General purpose input/output bank Z signal 10	VDDIO_Z	NC	
GPIOZ_11	DIO	Down	General purpose input/output bank Z signal 11	VDDIO_Z	NC	
GPIOZ_12	DIO	Down	General purpose input/output bank Z signal 12	VDDIO_Z	NC	
GPIOZ_13	DIO	Down	General purpose input/output bank Z signal 13	VDDIO_Z	NC	
GPIOZ_14	OD 5V	Z	General purpose input/output bank Z signal 14	VDDIO_Z	NC	
GPIOZ_15	OD 5V	Z	General purpose input/output bank Z signal 15	VDDIO_Z	NC	
VDDIO_Z	Р	-	Power supply for GPIO bank Z	-	NC	
GPIOA - Refe	GPIOA - Refer to Table 4-2 for functional multiplex information.					
GPIOA_0	DIO	Down	General purpose input/output bank A signal 0	VDDIO_A	NC	
GPIOA_1	DIO	Down	General purpose input/output bank A signal 1	VDDIO_A	NC	
GPIOA_2	DIO	Down	General purpose input/output bank A signal 2	VDDIO_A	NC	

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
GPIOA_3	DIO	Down	General purpose input/output bank A signal 3	VDDIO_A	NC
GPIOA_4	DIO	Down	General purpose input/output bank A signal 4	VDDIO_A	NC
GPIOA_5	DIO	Down	General purpose input/output bank A signal 5	VDDIO_A	NC
GPIOA_6	DIO	Down	General purpose input/output bank A signal 6	VDDIO_A	NC
GPIOA_7	DIO	Down	General purpose input/output bank A signal 7	VDDIO_A	NC
GPIOA_8	DIO	Down	General purpose input/output bank A signal 8	VDDIO_A	NC
GPIOA_9	DIO	Down	General purpose input/output bank A signal 9	VDDIO_A	NC
GPIOA_10	DIO	Down	General purpose input/output bank A signal 10	VDDIO_A	NC
GPIOA_11	DIO	Down	General purpose input/output bank A signal 11	VDDIO_A	NC
GPIOA_12	DIO	Down	General purpose input/output bank A signal 12	VDDIO_A	NC
GPIOA_13	DIO	Down	General purpose input/output bank A signal	VDDIO_A	NC
GPIOA_14	DIO	Up	General purpose input/output bank A signal 14	VDDIO_A	NC
GPIOA_15	DIO	Up	General purpose input/output bank A signal 15	VDDIO_A	NC
VDDIO_A	Р	- , ,	Power supply for GPIO bank A	-	NC
BOOT - Refer	to Table 4-3 f	or functional m	nultiplex information.		
BOOT_0	DIO	UP	General purpose input/output bank BOOT signal 0	VDDIO_ BOOT	NC
BOOT_1	DIO	UP	General purpose input/output bank BOOT signal 1	VDDIO_ BOOT	NC
BOOT_2	DIO	UP	General purpose input/output bank BOOT signal 2	VDDIO_ BOOT	NC
BOOT_3	DIO	UP	General purpose input/output bank BOOT signal 3	VDDIO_ BOOT	NC
BOOT_4	DIO	UP	General purpose input/output bank BOOT signal 4	VDDIO_ BOOT	NC
BOOT_5	DIO	UP	General purpose input/output bank BOOT signal 5	VDDIO_ BOOT	NC
BOOT_6	DIO	UP	General purpose input/output bank BOOT signal 6	VDDIO_ BOOT	NC
BOOT_7	DIO	UP	General purpose input/output bank BOOT signal 7	VDDIO_ BOOT	NC
BOOT_8	DIO	UP	General purpose input/output bank BOOT signal 8	VDDIO_ BOOT	NC
BOOT_9	DIO	UP	General purpose input/output bank BOOT signal 9	VDDIO_ BOOT	NC
BOOT_10	DIO	UP	General purpose input/output bank BOOT signal 10	VDDIO_ BOOT	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
BOOT_11	DIO	UP	General purpose input/output bank BOOT signal 11	VDDIO_ BOOT	NC
BOOT_12	DIO	DOWN	General purpose input/output bank BOOT signal 12	VDDIO_ BOOT	NC
BOOT_13	DIO	DOWN	General purpose input/output bank BOOT signal 13	VDDIO_ BOOT	NC
BOOT_14	DIO	UP	General purpose input/output bank BOOT signal 14	VDDIO_ BOOT	NC
BOOT_15	DIO	UP	General purpose input/output bank BOOT signal 15	VDDIO_ BOOT	NC
VDDIO_ BOOT	Р	-	Power supply for GPIO bank BOOT		To VDDIO_ BOOT
GPIOC - Refe	r to Table 4-4	for functional r	nultiplex information.		
GPIOC_0	DIO	UP	General purpose input/output bank C signal 0	VDDIO_C	NC
GPIOC_1	DIO	UP	General purpose input/output bank C signal 1	VDDIO_C	NC
GPIOC_2	DIO	UP	General purpose input/output bank C signal 2	VDDIO_C	NC
GPIOC_3	DIO	UP	General purpose input/output bank C signal 3	VDDIO_C	NC
GPIOC_4	DIO	UP	General purpose input/output bank C signal 4	VDDIO_C	NC
GPIOC_5	DIO	UP	General purpose input/output bank C signal 5	VDDIO_C	NC
GPIOC_6	DIO	UP	General purpose input/output bank C signal 6	VDDIO_C	NC
GPIOC_7	OD 5V	Z	General purpose input/output bank C signal 7	VDDIO_C	NC
VDDIO_C	Р	-	Power supply for GPIO bank C	-	NC
GPIOX - Refe	r to Table 4-5	for functional r	nultiplex information.		
GPIOX_0	DIO	Up	General purpose input/output bank X signal 0	VDDIO_X	NC
GPIOX_1	DIO	Up	General purpose input/output bank X signal 1	VDDIO_X	NC
GPIOX_2	DIO	Up	General purpose input/output bank X signal 2	VDDIO_X	NC
GPIOX_3	DIO	Up	General purpose input/output bank X signal 3	VDDIO_X	NC
GPIOX_4	DIO	Up	General purpose input/output bank X signal 4	VDDIO_X	NC
GPIOX_5	DIO	Up	General purpose input/output bank X signal 5	VDDIO_X	NC
GPIOX_6	DIO	Down	General purpose input/output bank X signal 6	VDDIO_X	NC
GPIOX_7	DIO	Up	General purpose input/output bank X signal 7	VDDIO_X	NC
GPIOX_8	DIO	Up	General purpose input/output bank X signal 8	VDDIO_X	NC
GPIOX_9	DIO	Up	General purpose input/output bank X signal 9	VDDIO_X	NC
GPIOX_10	DIO	Up	General purpose input/output bank X signal 10	VDDIO_X	NC
GPIOX_11	DIO	Up	General purpose input/output bank X signal 11	VDDIO_X	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
GPIOX_12	DIO	Up	General purpose input/output bank X signal 12	VDDIO_X	NC
GPIOX_13	DIO	Up	General purpose input/output bank X signal 13	VDDIO_X	NC
GPIOX_14	DIO	Up	General purpose input/output bank X signal 14	VDDIO_X	NC
GPIOX_15	DIO	Up	General purpose input/output bank X signal 15	VDDIO_X	NC
GPIOX_16	DIO	Up	General purpose input/output bank X sig <mark>nal</mark> 16	VDDIO_X	NC
GPIOX_17	DIO	Down	General purpose input/output bank X signal 17	VDDIO_X	NC
GPIOX_18	DIO	Up	General purpose input/output bank X signal 18	VDDIO_X	NC
GPIOX_19	DIO	Z	General purpose input/output bank X signal 19	VDDIO_X	NC
VDDIO_X	Р	-	Power supply for GPIO bank X	-	NC
GPIOH - Refe	r to Table 4-6	for functional r	multiplex information.		
GPIOH_0	OD5V	Z	General purpose input/output bank H signal 0	VDDIO_H	NC
GPIOH_1	OD5V	Z	General purpose input/output bank H signal 1	VDDIO_H	NC
GPIOH_2	OD5V	Z	General purpose input/output bank H signal 2	VDDIO_H	NC
GPIOH_3	OD5V	Z	General purpose input/output bank H signal 3	VDDIO_H	NC
GPIOH_4	DIO	DOWN	General purpose input/output bank H signal 4	VDDIO_H	NC
GPIOH_5	DIO	DOWN	General purpose input/output bank H signal 5	VDDIO_H	NC
GPIOH_6	DIO	DOWN	General purpose input/output bank H signal 6	VDDIO_H	NC
GPIOH_7	DIO	DOWN	General purpose input/output bank H signal 7	VDDIO_H	NC
GPIOH_8	OD5V	Z	General purpose input/output bank H signal 8	VDDIO_H	NC
VDDIO_H	Р	-	Power supply for GPIO bank H	-	NC
GPIOAO - Ref	fer to Table 4-	7 for functiona	I multiplex information.	•	•
GPIOAO_0	DIO	Up	General purpose input/output bank AO signal 0	VDDIO_AO	NC
GPIOAO_1	DIO	Up	General purpose input/output bank AO signal 1	VDDIO_AO	NC
GPIOAO_2	DIO	Down	General purpose input/output bank AO signal 2	VDDIO_AO	NC
GPIOAO_3	DIO	Up	General purpose input/output bank AO signal 3	VDDIO_AO	NC
GPIOAO_4	DIO	Down	General purpose input/output bank AO signal VDDIO_A		NC
GPIOAO_5	DIO	Up	General purpose input/output bank AO signal 5	VDDIO_AO	NC
GPIOAO_6	DIO	Down	General purpose input/output bank AO signal 6	VDDIO_AO	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
GPIOAO_7	DIO	Up	General purpose input/output bank AO signal 7	VDDIO_AO	NC
GPIOAO_8	DIO	Up	General purpose input/output bank AO signal 8	VDDIO_AO	NC
GPIOAO_9	DIO	Down	General purpose input/output bank AO signal 9	VDDIO_AO	NC
GPIOAO_10	DIO	Up	General purpose input/output bank AO signal 10	VDDIO_AO	NC
GPIOAO_11	DIO	Down	General purpose input/output bank AO signal 11	VDDIO_AO	NC
TEST_N	DIO	UP	SOC test pin and general purpose input/out- put bank AO signal 12. Should be pulled up during normal power-on.	VDDIO_AO	NC
RESET_N	Input	DOWN	System reset input	VDDIO_AO	To GND by 1nF capacitor
VDDIO_AO	Р	-	Power supply for GPIO bank AO	VDDIO_AO	To 3.3V
GPIOE- Refer	to Table 4-8 f	or functional m	nultiplex information.		
GPIOE_0	DIO	Z	General purpose input/output bank E signal 0	VDD18_ AO_XTAL	NC
GPIOE_1	DIO	Z	General purpose input/output bank E signal 1	VDD18_ AO_XTAL	NC
GPIOE_2	DIO	Z	General purpose input/output bank E signal 2	VDD18_ AO_XTAL	NC
VDD18_ AO_XTAL	Р		Power supply for GPIO bank E and XTAL, IOVREF	-	To VDD18_ AO_ XTAL
SARADC		10			•
SARADC_ CH0	Al		ADC channel 0 input	AVDD18_ SARADC	NC
SARADC_ CH1	Al	_	ADC channel 1 input	AVDD18_ SARADC	NC
SARADC_ CH2	Al	-	ADC channel 2 input	AVDD18_ SARADC	NC
SARADC_ CH3	Al	-	ADC channel 3 input	AVDD18_ SARADC	NC
AVDD18_ SARADC	Р	-	Analog power supply for SARADC	-	To 1.8V
CVBS OUT		_			•
CVBS_ COMP	А	-	CVBS external compensation capacitor connection AVDD CVBS		NC
CVBS_IOUT	AO	-	Video DAC output	AVDD18_ CVBS	NC
CVBS_ RSET	А	-	CVBS output strength setting resistor	AVDD18_ CVBS	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
CVBS_ VREF	А	-	CVBS reference voltage filter cap	AVDD18_ CVBS	NC
AVDD18_ CVBS	Р	-	1.8 V Analog power supply for CVBS_OUT	-	To 1.8V
HDMI TX					
eARC_N	Al	-	HDMI RX ARC negative input	HDMITX_ AVDD18	NC
eARC_P	Al	-	HDMI RX ARC positive input	HDMITX_ AVDD18	NC
HDMITX_0P	AO	-	HDMI TMDS data0 positive output	3.3V	NC
HDMITX_0N	AO	-	HDMI TMDS data0 negative output	3.3V	NC
HDMITX_1P	AO	-	HDMI TMDS data1 positive output	3.3V	NC
HDMITX_1N	AO	-	HDMI TMDS data1 negative output	3.3V	NC
HDMITX_2P	AO	-	HDMI TMDS data2 positive output	3.3V	NC
HDMITX_2N	AO	-	HDMI TMDS data2 negative output	3.3V	NC
HDMITX_ CKP	AO	-	HDMI TMDS clock positive output	3.3V	NC
HDMITX_ CKN	AO	-	HDMI TMDS clock negative output	3.3V	NC
HDMI_ REXT	A	-	HDMI output strength setting resistor	3.3V	NC
HDMI_ CEXT	Α		HDMI TX external filter cap	3.3V	NC
AVDD18_ HDMI	Р		Analog power supply 1.8V for HDMI	-	To 1.8V
AVDD0V8_ HDMI	P		Power supply 0.8V for HDMI	-	To VDD_ EE
DRAM-Refer	to Table 4-9 fo	or functional m	ultiplex information.		
AC_0	DO		DDR PHY address/command/control signal bit 0	VDDQ	NC
AC_1	DO	-	DDR PHY address/command/control signal bit 1	VDDQ	NC
AC_2	DO	-	DDR PHY address/command/control signal bit 2	VDDQ	NC
AC_3	DO	-	DDR PHY address/command/control signal bit 3	VDDQ	NC
AC_4	DO	-	DDR PHY address/command/control signal bit 4	VDDQ	NC
AC_5	DO	-	DDR PHY address/command/control signal bit 5		NC
AC_6	DO	-	DDR PHY address/command/control signal bit 6	VDDQ	NC
AC_7	DO	-	DDR PHY address/command/control signal bit 7	VDDQ	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
AC_8	DO	-	DDR PHY address/command/control signal bit 8	VDDQ	NC
AC_9	DO	-	DDR PHY address/command/control signal bit 9	VDDQ	NC
AC_10	DO	-	DDR PHY address/command/control signal bit 10	VDDQ	NC
AC_11	DO	-	DDR PHY address/command/control signal bit 11	VDDQ	NC
AC_12	DO	-	DDR PHY address/command/control signal bit 12	VDDQ	NC
AC_13	DO	-	DDR PHY address/command/control signal bit 13	VDDQ	NC
AC_14	DO	-	DDR PHY address/command/control signal bit 14	VDDQ	NC
AC_15	DO	-	DDR PHY address/command/control signal bit 15	VDDQ	NC
AC_16	DO	-	DDR PHY address/command/control signal bit 16	VDDQ	NC
AC_17	DO	-	DDR PHY address/command/control signal bit 17	VDDQ	NC
AC_18	DO	-	DDR PHY address/command/control signal bit 18	VDDQ	NC
AC_20	DO	- 410	DDR PHY address/command/control signal bit 20	VDDQ	NC
AC_21	DO		DDR PHY address/command/control signal bit 21	VDDQ	NC
AC_22	DO		DDR PHY address/command/control signal bit 22	VDDQ	NC
AC_23	DO	-10	DDR PHY address/command/control signal bit 23	VDDQ	NC
AC_24	DO	-0	DDR PHY address/command/control signal bit 24	VDDQ	NC
AC_25	DO	-	DDR PHY address/command/control signal bit 25	VDDQ	NC
AC_26	DO	-	DDR PHY address/command/control signal bit 26	VDDQ	NC
AC_28	DO	-	DDR PHY address/command/control signal bit 28	VDDQ	NC
AC_29	DO	-	DDR PHY address/command/control signal bit 29	VDDQ	NC
AC_30	DO	-	DDR PHY address/command/control signal bit 30	VDDQ	NC
AC_31	DO	-	DDR PHY address/command/control signal bit 31		NC
AC_32	DO	-	DDR PHY address/command/control signal bit 32	VDDQ	NC
AC_33	DO	-	DDR PHY address/command/control signal bit 33	VDDQ	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
AC_34	DO	-	DDR PHY address/command/control signal bit 34	VDDQ	NC
AC_35	DO	-	DDR PHY address/command/control signal bit 35	VDDQ	NC
AC_36	DO	-	DDR PHY address/command/control signal bit 36	VDDQ	NC
AC_37	DO	-	DDR PHY address/command/control signal bit 37	VDDQ	NC
AC_38	DO	-	DDR PHY address/command/control signal bit 38	VDDQ	NC
DDR_RSTn	DO	-	DDR3/DDR4/LPDDR4 RSTn	VDDQ	NC
DDR_DQ0	DIO	-	DRAM data bus bit 0	VDDQ	To DRAM
DDR_DQ1	DIO	-	DRAM data bus bit 1	VDDQ	To DRAM
DDR_DQ2	DIO	-	DRAM data bus bit 2	VDDQ	To DRAM
DDR_DQ3	DIO	-	DRAM data bus bit 3	VDDQ	To DRAM
DDR_DQ4	DIO	-	DRAM data bus bit 4	VDDQ	To DRAM
DDR_DQ5	DIO	-	DRAM data bus bit 5	VDDQ	To DRAM
DDR_DQ6	DIO		DRAM data bus bit 6	VDDQ	To DRAM
DDR_DQ7	DIO	-	DRAM data bus bit 7	VDDQ	To DRAM
DDR_DQ8	DIO		DRAM data bus bit 8	VDDQ	To DRAM
DDR_DQ9	DIO		DRAM data bus bit 9	VDDQ	To DRAM
DDR_DQ10	DIO	-	DRAM data bus bit 10	VDDQ	To DRAM
DDR_DQ11	DIO	-	DRAM data bus bit 11	VDDQ	To DRAM
DDR_DQ12	DIO	-	DRAM data bus bit 12	VDDQ	To DRAM
DDR_DQ13	DIO	-	DRAM data bus bit 13	VDDQ	To DRAM
DDR_DQ14	DIO	-	DRAM data bus bit 14	VDDQ	To DRAM
DDR_DQ15	DIO	-	DRAM data bus bit 15	VDDQ	To DRAM
DDR_DQ16	DIO	-	DRAM data bus bit 16	VDDQ	NC
DDR_DQ17	DIO	-	DRAM data bus bit 17	VDDQ	NC
DDR_DQ18	DIO	-	DRAM data bus bit 18	VDDQ	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
DDR_DQ19	DIO	-	DRAM data bus bit 19	VDDQ	NC
DDR_DQ20	DIO	-	DRAM data bus bit 20	VDDQ	NC
DDR_DQ21	DIO	-	DRAM data bus bit 21	VDDQ	NC
DDR_DQ22	DIO	-	DRAM data bus bit 22	VDDQ	NC
DDR_DQ23	DIO	-	DRAM data bus bit 23	VDDQ	NC
DDR_DQ24	DIO	-	DRAM data bus bit 24	VDDQ	NC
DDR_DQ25	DIO	-	DRAM data bus bit 25	VDDQ	NC
DDR_DQ26	DIO	-	DRAM data bus bit 26	VDDQ	NC
DDR_DQ27	DIO	-	DRAM data bus bit 27	VDDQ	NC
DDR_DQ28	DIO	-	DRAM data bus bit 28	VDDQ	NC
DDR_DQ29	DIO	-	DRAM data bus bit 29	VDDQ	NC
DDR_DQ30	DIO	-	DRAM data bus bit 30	VDDQ	NC
DDR_DQ31	DIO	-	DRAM data bus bit 31	VDDQ	NC
DDR_DQM0	DIO	-	DRAM data mask 0	VDDQ	To DRAM
DDR_DQM1	DIO	-	DRAM data mask 1	VDDQ	To DRAM
DDR_DQM2	DIO	-	DRAM data mask 2	VDDQ	NC
DDR_DQM3	DIO		DRAM data mask 3	VDDQ	NC
DDR_ DQSP0	DIO	-	DRAM data strobe 0	VDDQ	To DRAM
DDR_ DQSN0	DIO	-	DRAM data strobe 0 complementary	VDDQ	To DRAM
DDR_ DQSP1	DIO		DRAM data strobe 1	VDDQ	To DRAM
DDR_ DQSN1	DIO		DRAM data strobe 1 complementary	VDDQ	To DRAM
DDR_ DQSP2	DIO	-	DRAM data strobe 2	VDDQ	NC
DDR_ DQSN2	DIO	-	DRAM data strobe 2 complementary	VDDQ	NC
DDR_ DQSP3	DIO	-	DRAM data strobe 3	VDDQ	NC
DDR_ DQSN3	DIO	-	DRAM data strobe 3 complementary	VDDQ	NC
PZQ	А	-	DRAM reference pin for ZQ calibration,to GND by 240ohm	VDDQ	To GND by 240ohm
PVREF			DRAM reference voltage	VDDQ	To GND by ca- pacitor

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
AVDD_ DDRPLL	Р		Analog power supply for DDRPLL	-	To DDR VDDQ
USB					
USBHOST_ A_DP	AIO	-	USB 2.0 Port A positive data signal (Host only)	AVDD33_ USB	NC
USBHOST_ A_DM	AIO	-	USB 2.0 Port A negative data signal (Host only)	AVDD33_ USB	NC
USBOTG_ B_DP	AIO	-	USB 2.0 Port B positive data signal (OTG)	AVDD33_ USB	NC
USBOTG_ B_DM	AIO	-	USB 2.0 Port B negative data signal (OTG)	AVDD33_ USB	NC
USBOTG_ B_ID	AIO	-	USB OTG mini-receptacle identifier (Internal 12.8KΩ pull-up resistor to AVDD18)	AVDD18_ USB	NC
USBOTG_ B_VBUS	AIO	-	USB OTG cable power detection	AVDD18_ USB	NC
USB_ TXRTUNE	AIO	-	USB 2.0 Port A B host output strength setting resistor	AVDD18_ USB	NC
AVDD33_ USB	Р	-	3.3V Power supply for USB	-	To 3.3V
AVDD18_ USB	Р	-	1.8V Power supply for USB	-	To 1.8V
Ethernet		* . (C)			
ENET_ATP	AIO		Ethernet PHY analog test pin	AVDD18_ NET	NC
ENET_ EXTRES	A	-	Ethernet PHY external resistor connection	AVDD18_ NET	NC
ENET_RXN	AIO	-	Ethernet PHY receive date negative input	AVDD18_ NET	NC
ENET_RXP	AIO		Ethernet PHY receive data positive input	AVDD18_ NET	NC
ENET_TXN	AIO	-	Ethernet PHY transmit data negative output	AVDD18_ NET	NC
ENET_TXP	AIO	-	Ethernet PHY transmit data positive output	AVDD18_ NET	NC
AVDD18_ ENET	AP	-	Analog 1.8V power supply for Ethernet module	-	To 1.8V
DSI					
DSI_CEXT	А	-	MIPI DSI external filter capacitor	AVDD18_ DSI	NC
DSI_CLKN	AO	-	MIPI DSI clock negative output	AVDD18_ DSI	NC
DSI_CLKP	AO	-	MIPI DSI clock positive output	AVDD18_ DSI	NC
DSI_D0N	AIO	-	MIPI DSI data0 negative output or Bidirectional in LP mode	AVDD18_ DSI	NC
DSI_D0P	AIO	-	MIPI DSI data0 positive output or Bidirectional in LP mode	AVDD18_ DSI	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
DSI_D1N	AO	-	MIPI DSI data1 negative output	AVDD18_ DSI	NC
DSI_D1P	AO	-	MIPI DSI data1 positive output	AVDD18_ DSI	NC
DSI_D2N	AO	-	MIPI DSI data2 negative output	AVDD18_ DSI	NC
DSI_D2P	AO	-	MIPI DSI data2 positive output	AVDD18_ DSI	NC
DSI_D3N	AO	-	MIPI DSI data3 negative output	AVDD18_ DSI	NC
DSI_D3P	AO	-	MIPI DSI data3 positive output	AVDD18_ DSI	NC
DSI_R1K	А	-	MIPI DSI reference current setting resistor with 1K ohm	AVDD18_ DSI	NC
DSI_R600	А	-	MIPI DSI reference voltage setting resistor with 604 ohm	AVDD18_ DSI	NC
AVDD18_ MIPIDSI	AP	-	MIPI-DSI power supply	-	To 1.8V
CSI					
CSI_D0_N	AIO	-	MIPI CSI data 0 negative input	AVDD18_ MIPICSI	NC
CSI_D0_P	AIO		MIPI CSI data 0 positive input	AVDD18_ MIPICSI	NC
CSI_D1_N	Al		MIPI CSI data 1 negative input	AVDD18_ MIPICSI	NC
CSI_D1_P	Al	-	MIPI CSI data 1 positive input	AVDD18_ MIPICSI	NC
CSI_CLKA_ N	Al	- 0	MIPI CSI CLK negative input for channel A	AVDD18_ MIPICSI	NC
CSI_CLKA_ P	Al	.0	MIPI CSI CLK positive input for channel A	AVDD18_ MIPICSI	NC
AVDD18_ MIPICSI	AP	-	MIPI-CSI power supply	-	To 1.8V
Audio DAC					
LOLN	AO	-	Audio DAC line-out left channel negative signal	AVDD18_ Audio	NC
LOLP	AO	-	Audio DAC line-out left channel positive signal	AVDD18_ Audio	NC
LORN	AO	-	Audio DAC line-out right channel negative signal	AVDD18_ Audio	NC
LORP	AO	-	Audio DAC line-out right channel positive signal	AVDD18_ Audio	NC
REFP	A	-	Audio DAC positive reference voltage	AVDD18_ Audio	NC
VMID	А	-	Audio DAC external filter cap connection	AVDD18_ Audio	NC

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
AVDD18_ AUDIO	AP	-	Analog 1.8V for Audio DAC	-	To 1.8V
AVSS_Audio	AP	-	Analog power ground for Audio DAC	-	To VSS
PCIE					
PCIE_CLK_ n	AO	-	PCIE reference clock negative signal	AVDD18_ PCIE	NC
PCIE_CLK_ p	AO	-	PCIE reference clock positive signal	AVDD18_ PCIE	NC
PCIE_REXT	AIO	-	PCIE output strength setting resistor	AVDD18_ PCIE	NC
PCIE_RXN	Al	-	PCIE or USB3.0 input negative signal	AVDD18_ PCIE	NC
PCIE_RXP	Al	-	PCIE or USB3.0 input positive signal	AVDD18_ PCIE	NC
PCIE_TXN	AO	-	PCIE or USB3.0 output negative signal	AVDD18_ PCIE	NC
PCIE_TXP	AO	-	PCIE or USB3.0 output positive signal	AVDD18_ PCIE	NC
AVDD0V8_ USB_PCIE	AP	-	Analog 0.8V power supply for USB and PCIE	-	To VDD_ EE
AVDD18_ PCIE	AP	-	Analog 1.8V power supply for PCIE	-	To 1.8V
HCSL_ REXT	AIO	-	PCIE reference clk output strength setting resistor	AVDD18_ PCIE	NC
AVDD18_ HCSL	AP	-	Analog 1.8V power supply for PCIE reference module clock	-	To 1.8V
AVSS_ HCSL	AP	-	Analog ground for PCIE reference module clock	-	To VSS
System Clock	& PLL	Ye			
SYS_OSCIN	Al	10	24MHz crystal oscillator input	VDD18_ AO_XTAL	To XTAL
SYS_ OSCOUT	AO	_	24MHz crystal oscillator output	VDD18_ AO_XTAL	To XTAL
Analog Powe	r	1		<u>I</u>	1
AVDD18_ MIPIDSI	AP		Analog power of MIPIDSI	-	To 1.8V
AVDD18_ DPLL	AP	-	Analog power of System PLL	-	To 1.8V
AVSS_ ENETPLL	AP	-	Ground of Ethernet PLL		To GND
AVSS_ AMPLL	AP	-	Ground of DDR AM_ PLL	-	To GND
AVSS_HPLL	AP	-	Ground of HDMI PLL	-	To GND
AVSS_PLL	AP	-	Ground of System PLL	-	To GND

Net Name	Туре	Default Pull UP/ DN	Description	Power Domain	If Unused
AVSS_ CVBS	AP		Ground of CVBS digital-analog converter	-	To GND
Digital Power	•	-			
VDDCPU	Р	-	Power supply for CPU (Cortex A55)	-	To VDDCP- U
VDDQ	Р	-	DDR IO Power supply for DDR PHY	-	To VDDQ
VDD_DDR	Р	-	Core Power supply for DDR PHY	-	To VDD_ EE
VDD_EE	Р	-	Power supply for GPU and core logic		To VDD_ EE
VDD18_ AO_XTAL	Р	-	1.8V Power supply for Always On Domain		To VDD18_ AO_ XTAL
Digital Groun	d				
DVSS	Р	-	Digital power ground	-	To GND

Abbreviations:

- DI = Digital input pin
- DO = Digital output pin
- DIO = Digital input/output pin
- OD 5V = 5V input tolerant open drain (OD) output pin, need external pull up
- A = Analog setting or filtering pin
- AI = Analog input pin
- AO = Analog output pin
- AIO = Analog input/output pin
- P = Power pin
- AP = Analog power pin
- NC = No connection
- UP = Pull-Up
- DOWN = Pull-down
- Z = High-Z

4.4 Pin Multiplexing Tables

Multiple usage pins are used to conserve pin consumption for different features. The devices can be used in many different applications but each application will not utilize all the on chip features. As a result, some of the features share the same pin. Most of the multiple usage pins can be used as a GPIO pin as well.

Table 4-1 GPIOZ_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOZ_0	ETH_MDIO		ISO7816_ CLK	I2C_EE_ M0_SDA	PWM_B	I2C_EE_ M1_SDA	
GPIOZ_1	ETH_MDC		ISO7816_ DATA	I2C_EE_ M0_SCL	PWM_C	I2C_EE_ M1_SCL	
GPIOZ_2	ETH_ RGMII_RX_ CLK	PWM_D	TSIN_B_ VALID	TDMC_D0	SDCARD_ D0	TDMC_ DIN0	PDM_DIN0
GPIOZ_3	ETH_RX_ DV		TSIN_B_ SOP	TDMC_D1	SDCARD_ D1	TDMC_ DIN1	PDM_DIN1
GPIOZ_4	ETH_RXD0		TSIN_B_ DIN0	TDMC_D2	SDCARD_ D2	TDMC_ DIN2	PDM_DIN2
GPIOZ_5	ETH_RXD1		TSIN_B_ CLK	TDMC_D3	SDCARD_ D3	TDMC_DIN3	PDM_DIN3
GPIOZ_6	ETH_ RXD2_ RGMII		TSIN_B_ FAIL	TDMC_FS	SDCARD_ CLK	TDMC_ SLV_FS	PDM_ DCLK
GPIOZ_7	ETH_ RXD3_ RGMII		TSIN_B_ DIN1	TDMC_ SCLK	SDCARD_ CMD	TDMC_ SLV_SCLK	I2C_EE_ M0_SDA
GPIOZ_8	ETH_ RGMII_TX_ CLK		TSIN_B_ DIN2	MCLK_1			I2C_EE_ M0_SCL
GPIOZ_9	ETH_ TXEN		TSIN_B_ DIN3	TDMC_D4			
GPIOZ_10	ETH_TXD0		TSIN_B_ DIN4	I2C_EE_ M2_SDA	IR_ REMOTE_ OUT		
GPIOZ_11	ETH_TXD1		TSIN_B_ DIN5	I2C_EE_ M2_SCL			
GPIOZ_12	ETH_ TXD2_ RGMII	20	TSIN_B_ DIN6	TDMC_D5	PWM_F		
GPIOZ_13	ETH_ TXD3_ RGMII	CLK12_24	TSIN_B_ DIN7		PWM_B		GEN_CLK_ EE
GPIOZ_14	ETH_LINK_ LED		I2C_EE_ M2_SDA				
GPIOZ_15	ETH_ACT_ LED		I2C_EE_ M2_SCL				

Table 4-2 GPIOA_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4
GPIOA_0	MCLK_0	TDMB_D7		
GPIOA_1	TDMB_SCLK	TDMB_SLV_SCLK		
GPIOA_2	TDMB_FS	TDMB_SLV_FS		
GPIOA_3	TDMB_D0	TDMB_DIN0		
GPIOA_4	TDMB_D1	TDMB_DIN1	PWM_D	

Pin Name	Func1	Func2	Func3	Func4
GPIOA_5	PDM_DIN3	TDMB_DIN2	TDMB_D2	TDMC_D5
GPIOA_6	PDM_DIN2	TDMB_DIN3	TDMB_D3	TDMC_D4
GPIOA_7	PDM_DCLK	TDMC_D3	TDMC_DIN3	TDMB_D4
GPIOA_8	PDM_DIN0	TDMC_D2	TDMC_DIN2	TDMB_D5
GPIOA_9	PDM_DIN1	TDMC_D1	TDMC_DIN1	TDMB_D6
GPIOA_10	SPDIF_IN	TDMC_D0	TDMC_DIN0	
GPIOA_11	SPDIF_OUT	MCLK_1	PWM_F	
GPIOA_12	SPDIF_IN	TDMC_SCLK	TDMC_SLV_SCLK	
GPIOA_13	SPDIF_OUT	TDMC_FS	TDMC_SLV_FS	
GPIOA_14	WORLD_SYNC	I2C_EE_M3_SDA		TDMB_D7
GPIOA_15	IR_REMOTE_ INPUT	I2C_EE_M3_SCL	9 6	

Table 4-3 BOOT_x Multi-Function Pin

Pin Name	Func1	Func2	Func3
BOOT_0	EMMC_D0		
BOOT_1	EMMC_D1	4.0	
BOOT_2	EMMC_D2		
BOOT_3	EMMC_D3		NOR_HOLD
BOOT_4	EMMC_D4		NOR_D
BOOT_5	EMMC_D5		NOR_Q
BOOT_6	EMMC_D6		NOR_C
BOOT_7	EMMC_D7		NOR_WP
BOOT_8	EMMC_CLK	NAND_WEN_CLK	
BOOT_9		NAND_ALE	
BOOT_10	EMMC_CMD	NAND_CLE	
BOOT_11		NAND_CE0	
BOOT_12		NAND_REN_WR	
BOOT_13	EMMC_NAND_DQS		
BOOT_14		NAND_RB0	NOR_CS
BOOT_15		NAND_CE1	

Table 4-4 GPIOC_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5
GPIOC_0	SDCARD_D0	JTAG_B_TDO		PDM_DIN0	SPI_A_MOSI
GPIOC_1	SDCARD_D1	JTAG_B_TDI		PDM_DIN1	SPI_A_MISO

Pin Name	Func1	Func2	Func3	Func4	Func5
GPIOC_2	SDCARD_D2	UART_AO_A_ RX		PDM_DIN2	SPI_A_SS0
GPIOC_3	SDCARD_D3	UART_AO_A_ TX		PDM_DIN3	SPI_A_SCLK
GPIOC_4	SDCARD_CLK	JTAG_B_CLK		PDM_DCLK	PWM_C
GPIOC_5	SDCARD_CMD	JTAG_B_TMS	I2C_EE_M0_ SDA		ISO7816_CLK
GPIOC_6			I2C_EE_M0_ SCL		ISO7816_DATA
GPIOC_7	PCIECK_REQN	WORLD_SYNC			

Table 4-5 GPIOX_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOX_0	SDIO_D0	PDM_DIN0	TSIN_A_ DIN0		SDCARD_ D0	5	
GPIOX_1	SDIO_D1	PDM_DIN1	TSIN_A_ SOP	10	SDCARD_ D1		
GPIOX_2	SDIO_D2	PDM_DIN2	TSIN_A_ VALID		SDCARD_ D2		
GPIOX_3	SDIO_D3	PDM_DIN3	TSIN_A_ CLK	PWM_D	SDCARD_ D3		
GPIOX_4	SDIO_CLK	PDM_ DCLK	0		SDCARD_ CLK		
GPIOX_5	SDIO_CMD	MCLK_1	40	PWM_C	SDCARD_ CMD		
GPIOX_6	PWM_A	UART_EE_ B_TX		PWM_D			
GPIOX_7	PWM_F	UART_EE_ B_RX		PWM_B			
GPIOX_8	TDMA_D1	TDMA_ DIN1	TSIN_B_ SOP	SPI_A_ MOSI	PWM_C	ISO7816_ CLK	
GPIOX_9	TDMA_D0	TDMA_ DIN0	TSIN_B_ VALID	SPI_A_ MISO		ISO7816_ DATA	
GPIOX_10	TDMA_FS	TDMA_ SLV_FS	TSIN_B_ DIN0	SPI_A_SS0	I2C_EE_ M1_SDA		
GPIOX_11	TDMA_ SCLK	TDMA_ SLV_SCLK	TSIN_B_ CLK	SPI_A_ SCLK	I2C_EE_ M1_SCL		
GPIOX_12	UART_EE_ A_TX						
GPIOX_13	UART_EE_ A_RX						
GPIOX_14	UART_EE_ A_CTS						
GPIOX_15	UART_EE_ A_RTS						
GPIOX_16	PWM_E						

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOX_17	I2C_EE_ M2_SDA						
GPIOX_18	I2C_EE_ M2_SCL						
GPIOX_19	PWM_B	WORLD_ SYNC					GEN_CLK_ EE

Table 4-6 GPIOH_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6
GPIOH_0	HDMITX_ SDA	I2C_EE_M3_ SDA				
GPIOH_1	HDMITX_SCL	I2C_EE_M3_ SCL			*	
GPIOH_2	HDMITX_ HPD_IN	I2C_EE_M1_ SDA		15	5	
GPIOH_3		I2C_EE_M1_ SCL		AO_CEC_A	AO_CEC_B	
GPIOH_4	SPDIF_OUT	UART_EE_ C_RTS	SPI_B_MOSI			
GPIOH_5	SPDIF_IN	UART_EE_ C_CTS	SPI_B_MISO	PWM_F	TDMB_D3	TDMB_DIN3
GPIOH_6	ISO7816_ CLK	UART_EE_ C_RX	SPI_B_SS0	I2C_EE_M1_ SDA	IR_ REMOTE_ OUT	
GPIOH_7	ISO7816_ DATA	UART_EE_ C_TX	SPI_B_SCLK	I2C_EE_M1_ SCL	PWM_B	
GPIOH_8						

Table 4-7 GPIOAO_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOAO_0	UART_AO_ A_TX						
GPIOAO_1	UART_AO_ A_RX						
GPIOAO_2	I2C_AO_ M0_SCL	UART_AO_ B_TX	I2C_AO_ S0_SCL				
GPIOAO_3	I2C_AO_ M0_SDA	UART_AO_ B_RX	I2C_AO_ S0_SDA				
GPIOAO_4	IR_ REMOTE_ OUT	CLK_32K_ IN	PWMAO_C	PWMAO_ C_HIZ	TDMB_D0	TDMB_ DIN0	
GPIOAO_5	IR_ REMOTE_ INPUT		PWMAO_D				
GPIOAO_6	JTAG_A_ CLK		PWMAO_C	TSIN_A_ SOP	TDMB_D2	TDMB_ DIN2	

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOAO_7	JTAG_A_ TMS			TSIN_A_ DIN0	TDMB_FS	TDMB_ SLV_FS	
GPIOAO_8	JTAG_A_ TDI		UART_AO_ B_TX	TSIN_A_ CLK	TDMB_ SCLK	TDMB_ SLV_SCLK	
GPIOAO_9	JTAG_A_ TDO	IR_ REMOTE_ OUT	UART_AO_ B_RX	TSIN_A_ VALID	MCLK_0		
GPIOAO_ 10	AO_CEC_A	AO_CEC_B	PWMAO_D	SPDIF_ OUT	TDMB_D1	TDMB_ DIN1	CLK12_24
GPIOAO_ 11		PWMAO_ A_HIZ	PWMAO_A	GEN_CLK_ EE	GEN_CLK_AO		

Table 4-8 GPIOE_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4
GPIOE_0	UART_AO_A_CTS	UART_AO_B_CTS	PWMAO_B	I2C_AO_M0_SCL
GPIOE_1	UART_AO_A_RTS	UART_AO_B_RTS	PWMAO_D	I2C_AO_M0_SDA
GPIOE_2	CLK12_24	CLK25_EE	PWM_A	

Table 4-9 DDR AC Multi-Function Pin

Pin Name	LPDDR3	LPDDR4	DDR3	DDR4
AC_0	CKEA0	CKEA0	CKE0	CKE0
AC_1	CKEA1	CKEA1	CKE1	CKE1
AC_2	CSA0	CSA0	CS_N0	CS_N0
AC_3	CSA1	CSA1	NC	NC
AC_4	CLKA_T	CLKA_T	CAS_N	A6
AC_5	CLKA_C	CLKA_C	BA2	A8
AC_6	NC	NC	A7	A2
AC_7	NC	NC	A5	A11
AC_8	CAA2	CAA2	A10	A10
AC_9	CAA7	CAA3	WE_N	BG1
AC_10	CAA1	CAA1	A0	A3
AC_11	CAA4	CAA0	A2	A12
AC_12	CAA5	CAA5	A9	A0
AC_13	CAA6	CAA4	A13	A4
AC_14	CAA0	NC	A14	A13
AC_15	CAA3	NC	A11	A9
AC_16	CAA9	NC	CLK0_T	CLK0_T
AC_17	CAA8	NC	CLK0_C	CLK0_C
AC_18	ODTA	NC	NC	NC

Pin Name	LPDDR3	LPDDR4	DDR3	DDR4
AC_20	NC	CKEB0	CLK1_T	CLK1_T
AC_21	NC	CKEB1	CLK1_C	CLK1_C
AC_22	NC	CSB1	NC	NC
AC_23	NC	CSB0	NC	NC
AC_24	NC	CLKB_T	A6	A5
AC_25	NC	CLKB_C	A4	BA1
AC_26	NC	NC	A1	A1
AC_28	NC	CAB1	A8	A7
AC_29	NC	CAB3	BA1	RAS_N/A16
AC_30	NC	CAB5	A15	ACT_N
AC_31	NC	CAB2	RAS_N	WE_N/A14
AC_32	NC	CAB4	NC	NC
AC_33	NC	CAB0	A12	CAS_N/A15
AC_34	NC	NC	A3	BA0
AC_35	NC	NC	BA0	BG0
AC_36	NC	NC	ODT0	ODT0
AC_37	NC	NC	ODT1	ODT1
AC_38	NC •	NC	CS_N1	CS_N1
DDR_RSTn	NC	RESET_N	RESET_N	RESET_N
PVREF	PVREF	PVREF	PVREF	PVREF
PZQ	PZQ	PZQ	PZQ	PZQ

Table 4-10 PCIE IO Multi-Function Pin

Pin Name	Func1	Func2
PCIE_RXN	PCIE_RXN	USB3.0_RXN
PCIE_RXP	PCIE_RXP	USB3.0_RXP
PCIE_TXN	PCIE_TXN	USB3.0_TXN
PCIE_TXP	PCIE_TXP	USB3.0_TXP

4.5 Signal Description

Table 4-11 SD Card Interface Signal Description

Signal Name	Туре	Description	
SDCARD_D0	DIO	SD Card data bus bit 0 signal	
SDCARD_D1	DIO	SD Card data bus bit 1 signal	
SDCARD_D2	DIO	SD Card data bus bit 2 signal	

Signal Name	Туре	Description
SDCARD_D3	DIO	SD Card data bus bit 3 signal
SDCARD_CLK	DO	SD Card clock signal
SDCARD_CMD	DIO	SD Card command signal

Table 4-12 SDIO Interface Signal Description

Signal Name	Туре	Description
SDIO_D0	DIO	SDIO data bus bit 0 signal
SDIO_D1	DIO	SDIO data bus bit 1 signal
SDIO_D2	DIO	SDIO data bus bit 2 signal
SDIO_D3	DIO	SDIO data bus bit 3 signal
SDIO_CLK	DO	SDIO clock signal
SDIO_CMD	DIO	SDIO command signal

Table 4-13 Clock Interface Signal Description

Signal Name	Туре	Description
CLK_32K_IN	DI	32KHz clock input
CLK12_24	DO	12MHz/24MHZ clock output
CLK25_EE	DO	25MHz clock output

Table 4-14 UART Interface Signal Description

Signal Name	Туре	Description
UART_AO_A _ TX	DO	UART Port A data output in AO domain
UART_AO_A_RX	DI	UART Port A data input in AO domain
UART_AO_A_CTS	DI	UART Port A Clear To Send Signal in AO domain
UART_AO_A RTS	DO	UART Port A Ready To Send Signal in AO domain
UART_AO_B _ TX	DO	UART Port B data output in AO domain
UART_AO_B RX	DI	UART Port B data input in AO domain
UART_AO_B_CTS	DI	UART Port B Clear To Send Signal in AO domain
UART_AO_B_RTS	DO	UART Port B Ready To Send Signal in AO domain
UART_EE_A _TX	DO	UART Port A data output in EE domain
UART_EE _A_RX	DI	UART Port A data input in EE domain
UART_EE _A_CTS	DI	UART Port A Clear To Send Signal in EE domain
UART_EE _A_RTS	DO	UART Port A Ready To Send Signal in EE domain
UART_EE _B_TX	DO	UART Port B data output in EE domain
UART_EE _B_RX	DI	UART Port B data input in EE domain
UART_EE _C_TX	DO	UART Port C data output in EE domain
UART_EE _C_RX	DI	UART Port C data input in EE domain

Signal Name	Туре	Description
UART_EE _C_CTS	DI	UART Port C Clear To Send Signal in EE domain
UART_EE _C_RTS	DO	UART Port C Ready To Send Signal in EE domain

Table 4-15 ISO7816 Interface Signal Description

Signal Name	Туре	Description
ISO7816_DATA	DIO	ISO7816 data signal
ISO7816_CLK	DO	ISO7816 clock signal

Table 4-16 TS In Interface Signal Description

Signal Name	Туре	Description
TSIN_A_DIN0	DI	Serial TS input port A data
TSIN_A_CLK	DI	TS input port A clock
TSIN_A_SOP	DI	TS input port A start of stream signal
TSIN_A_VALID	DI	TS input port A date valid signal
TSIN_B_DIN0	DI	Serial/Parallel TS input port B data 0
TSIN_B_DIN1	DI	Parallel TS input port B data 1
TSIN_B_DIN2	DI	Parallel TS input port B data 2
TSIN_B_DIN3	DI	Parallel TS input port B data 3
TSIN_B_DIN4	DI	Parallel TS input port B data 4
TSIN_B_DIN5	DI	Parallel TS input port B data 5
TSIN_B_DIN6	DI	Parallel TS input port B data 6
TSIN_B_DIN7	DI	Parallel TS input port B data 7
TSIN_B_FAIL	DI	TS input port B fail signal
TSIN_B_CLK	DI	TS input port B clock
TSIN_B_SOP	DI	TS input port B start of stream signal
TSIN_B_VALID	DI	TS input port B date valid signal

Table 4-17 PWM Interface Signal Description

Signal Name	Туре	Description
PWM_A	DO	PWM channel A output signal
PWM_B	DO	PWM channel B output signal
PWM_C	DO	PWM channel C output signal
PWM_D	DO	PWM channel D output signal
PWM_E	DO	PWM channel E output signal
PWM_F	DO	PWM channel F output signal
PWMAO_A / PWMAO_A_ HIZ	DO	PWM A output signal in Always On domain, or extended HiZ function of PWMAO_A

Signal Name	Туре	Description
PWMAO_B	DO	PWM B output signal in Always On domain
PWMAO_C / PWMAO_C_ HIZ	DO	PWM C output signal in Always On domain, or extended HiZ function of PWMAO_C
PWMAO_D	DO	PWM D output signal in Always On domain

Table 4-18 I2C Interface Signal Description

Signal Name	Туре	Description
I2C_AO_M0_SCL	DO	I2C bus port 0 clock output, Master mode, in AO domain
I2C_AO _M0_SDA	DIO	I2C bus port 0 data input/output, Master mode, in AO domain
I2C_AO_S0_SCL	DI	I2C bus port 0 clock input, Slave mode, in AO domain
I2C_AO_S0_SDA	DIO	I2C bus port 0 data input/output, Slave mode, in AO domain
I2C_EE_M0_SCL	DO	I2C bus port 0 clock output, Master mode, in EE domain
I2C_EE _M0_SDA	DIO	I2C bus port 0 data input/output, Master mode, in EE domain
I2C_EE_M1_SCL	DO	I2C bus port 1 clock output, Master mode, in EE domain
I2C_EE _M1_SDA	DIO	I2C bus port 1 data input/output, Master mode, in EE domain
I2C_EE_M2_SCL	DO	I2C bus port 2 clock output, Master mode, in EE domain
I2C_EE _M2_SDA	DIO	I2C bus port 2 data input/output, Master mode, in EE domain
I2C_EE_M3_SCL	DO	I2C bus port 3 clock output, Master mode, in EE domain
I2C_EE_M3_SDA	DIO	I2C bus port 3 data input/output, Master mode, in EE domain

Table 4-19 eMMC Interface Signal Description

Signal Name	Type	Description
EMMC_D0	DIO	eMMC/NAND data bus bit 0 signal
EMMC_D1	DIO	eMMC/NAND data bus bit 1 signal
EMMC_D2	DIO	eMMC/NAND data bus bit 2 signal
EMMC_D3	DIO	eMMC/NAND data bus bit 3 signal
EMMC_D4	DIO	eMMC/NAND data bus bit 4 signal
EMMC_D5	DIO	eMMC/NAND data bus bit 5 signal
EMMC_D6	DIO	eMMC/NAND data bus bit 6 signal
EMMC_D7	DIO	eMMC/NAND data bus bit 7 signal
EMMC_CLK	DO	eMMC clock signal
EMMC_CMD	DIO	eMMC command signal
EMMC_NAND_DQS	DIO	eMMC/NAND data strobe

Table 4-20 NAND Signal Description

Signal Name	Туре	Description
NAND_RB0	DI	NAND ready/busy
NAND_ALE	DO	NAND address latch enable
NAND_CE0	DO	NAND chip enable 0
NAND_CE1	DO	NAND chip enable 1
NAND_CLE	DO	NAND command latch enable
NAND_REN_WR	DO	NAND read enable or write/read
NAND_WEN_CLK	DO	NAND write enable or clock

Table 4-21 NOR Interface Signal Description

Signal Name	Туре	Description
NOR_CS	DO	SPI NOR chip select
NOR_C	DO	SPI NOR Serial Clock
NOR_D	DIO	SPI NOR 1bit mode Output, 2/4 bit mode data I/O 0
NOR_Q	DIO	SPI NOR 1bit mode Input, 2/4 bit mode data I/O 1
NOR_WP	DIO	SPI NOR Write protection output, 4 bit mode data I/O 2
NOR_HOLD	DIO	SPI bus hold output, 4 bit mode data I/O 3

Table 4-22 HDMI Interface Signal Description

Signal Name	Туре	Description
HDMITX_SDA	DIO	HDMI TX DDC_I2C interface data signal
HDMITX_SCL	DO	HDMI TX DDC_I2C interface clock signal
HDMITX_HPD_IN	DI	HDMI TX hot-plug in signal input
AO_CEC_A	DIO	Customer Electronics Control signal in AO domain
AO_CEC_B	DIO	2nd pin of Customer Electronics Control signal in AO domain

Table 4-23 SPDIF Interface Signal Description

Signal Name	Туре	Description
SPDIF_IN	DI	SPDIF input signal
SPDIF_OUT	DO	SPDIF output signal

Table 4-24 PCIE Interface Signal Description

Signal Name	Туре	Description
PCIECK_REQN	DI	PCIE clock request input

Table 4-25 SPI Interface Signal Description

Signal Name	Туре	Description
SPI_A_MOSI	DIO	SPI master output, slave input A
SPI_A_MISO	DIO	SPI master input, slave output A
SPI_A_SCLK	DIO	SPI clock A
SPI_A_SS0	DIO	SPI slave select 0 A
SPI_B_MOSI	DIO	SPI master output, slave input B
SPI_B_MISO	DIO	SPI master input, slave output B
SPI_B_SCLK	DIO	SPI clock B
SPI_B_SS0	DIO	SPI slave select 0 B

Table 4-26 Remote Interface Signal Description

Signal Name	Туре	Description
IR_REMOTE_IN	DI	IR remote control input
IR_REMOTE_OUT	DO	IR remote control output

Table 4-27 Time Division Multiplexing Signal Description

Signal Name	Туре	Description
MCLK_0	DO	Master clock output 0, for I2S master mode
MCLK_1	DO •	Master clock output 1, for I2S master mode
TDMA_DIN0	DI	Data input 0 of TDM port A
TDMA_DIN1	DI	Data input 1 of TDM port A
TDMA_D0	DIO	Data input/output 0 of TDM port A
TDMA_D1	DIO	Data input/output 1 of TDM port A
TDMA_SCLK	DO	Bit clock output of TDM port A
TDMA_FS	DO	Frame sync output of TDM port A (Word clock of I2S)
TDMA_SLV_SCLK	DI	Bit clock input of TDM port A
TDMA_SLV_FS	DI	Frame sync input of TDM port A (Word clock of I2S)
TDMB_DIN0	DI	Data input 0 of TDM port B
TDMB_DIN1	DI	Data input 1 of TDM port B
TDMB_DIN2	DI	Data input 2 of TDM port B
TDMB_DIN3	DI	Data input 3 of TDM port B
TDMB_D0	DIO	Data input/output 0 of TDM port B
TDMB_D1	DIO	Data input/output 1 of TDM port B
TDMB_D2	DIO	Data input/output 2 of TDM port B
TDMB_D3	DIO	Data input/output 3 of TDM port B
TDMB_D4	DIO	Data input/output 4 of TDM port B

Signal Name	Туре	Description
TDMB_D5	DIO	Data input/output 5 of TDM port B
TDMB_D6	DIO	Data input/output 6 of TDM port B
TDMB_D7	DIO	Data input/output 7 of TDM port B
TDMB_SCLK	DO	Bit clock output of TDM port B
TDMB_FS	DO	Frame sync output of TDM port B (Word clock of I2S)
TDMB_SLV_SCLK	DI	Bit clock input of TDM port B
TDMB_SLV_FS	DI	Frame sync input of TDM port B (Word clock of I2S)
TDMC_DIN0	DI	Data input 0 of TDM port C
TDMC_DIN1	DI	Data input 1 of TDM port C
TDMC_DIN2	DI	Data input 2 of TDM port C
TDMC_DIN3	DI	Data input 3 of TDM port C
TDMC_D0	DIO	Data input/output 0 of TDM port C
TDMC_D1	DIO	Data input/output 1 of TDM port C
TDMC_D2	DIO	Data input/output 2 of TDM port C
TDMC_D3	DIO	Data input/output 3 of TDM port C
TDMC_D4	DIO	Data input/output 4 of TDM port C
TDMC_D5	DIO	Data input/output 5 of TDM port C
TDMC_SCLK	DO	Bit clock output of TDM port C
TDMC_FS	DO	Frame sync output of TDM port C (Word clock of I2S)
TDMC_SLV_SCLK	DI	Bit clock input of TDM port C
TDMC_SLV_FS	DI	Frame sync input of TDM port C (Word clock of I2S)

Table 4-28 PDM Signal Description

Signal Name	Туре	Description
PDM_DIN0	DI	PDM input data 0 signal
PDM_DIN1	DI	PDM input data 1 signal
PDM_DIN2	DI	PDM input data 2 signal
PDM_DIN3	DI	PDM input data 3 signal
PDM_DCLK	DO	PDM output clock signal

Table 4-29 JTAG Interface Signal Description

Signal Name	Туре	Description
JTAG_A_TDO	DO	JTAG data output channel A
JTAG_A _TDI	DI	JTAG data input channel A
JTAG_A_TMS	DI	JTAG Test mode select input channel A
JTAG_A_CLK	DI	JTAG Test clock input channel A

Signal Name	Туре	Description
JTAG_B_TDO	DO	JTAG data output channel B
JTAG_B _TDI	DI	JTAG data input channel B
JTAG_B_TMS	DI	JTAG Test mode select input channel B
JTAG_B_CLK	DI	JTAG Test clock input channel B

Table 4-30 Ethernet Interface Signal Description

Signal Name	Туре	Description
ETH_LINK_LED	DO	Ethernet link LED indicator
ETH_ACT_LED	DO	Ethernet active LED indicator
ETH_RGMII_RX_CLK	DI	Ethernet RGMII interface receive clock input
ETH_RGMII_TX_CLK	DO	Ethernet RGMII transmit clock
ETH_TX_EN	DO	Ethernet RMII/RGMII Interface transmit enable
ETH_TXD3_RGMII	DO	Ethernet RGMII interface transmit data 3
ETH_TXD2_RGMII	DO	Ethernet RGMII interface transmit data 2
ETH_TXD1	DO	Ethernet RMII/RGMII interface transmit data 1
ETH_TXD0	DO	Ethernet RMII/RGMII interface transmit data 0
ETH_RX_DV	DI	Ethernet RMII/RGMII interface receive data valid signal
ETH_RXD3_RGMII	DI	Ethernet RGMII interface receive data 3
ETH_RXD2_RGMII	DI	Ethernet RGMII interface receive data 2
ETH_RXD1	DI	Ethernet RMII/RGMII interface receive data 1
ETH_RXD0	DI	Ethernet RMII/RGMII interface receive data 0
ETH_MDIO	DIO	Ethernet SMI interface management data input/output
ETH_MDC	DO	Ethernet SMI interface management clock

Table 4-31 Other Signal Description

Signal Name	Туре	Description
WORLD_SYNC	DI	World clock sync input, to sync clock of multi devices
GEN_CLK_EE	DO	General clock output for EE domain clock, for debug
GEN_CLK_AO	DO	General clock output for AO domain clock, for debug

5 Operating Conditions

5.1 Absolute Maximum Ratings

The table below gives the absolute maximum ratings. Exposure to stresses beyond those listed in this table may result in permanent device damage, unreliability or both.

Characteristic	Value	Unit
VDDCPU Supply Voltage	1.1	V
VDD_EE Supply Voltage	1.0	V
VDDQ Supply Voltage	1.7	V
AVDD_DDRPLL	1.98	V
1.8V Supply Voltage	1.98	V
3.3V Supply Voltage	3.63	V
Input voltage, V _I	-0.3 ~ VDDIO+0.3	V
Junction Temperature	125	°C

5.2 Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max	Unit
VDDCPU	Voltage for Cortex A55 CPU	0.681	-	1.032	V
VDD_EE and other 0.8V domain	Voltage for GPU & core logic	0.77	0.8	0.9	V
VDDQ	DDR3/DDR3L/DDR4/LPDDR/ LPDDR3/LPDDR4 IO Supply Voltage	1.05	-	1.6	V
AVDD18	1.8V AVDD for HDMI, USB, SARADC, PCIE, CVBS, ETHERNET phy,MIPI_DSI, MIPI_CSI and AUDIO	1.71	1.80	1.89	V
VDD18_AO_XTAL	1.8V VDD for XTAL, and IOVREF	1.71	1.80	1.89	V
AVDD_DDRPLL	Analog power supply for DDRPLL	1.05	-	1.89	V
AVDD33	3.3V AVDD for USB	3.15	3.3	3.45	V
VDDIO	LV mode	1.71	1.80	1.89	V
	HV mode	3.03	3.3	3.45	V
TJ	Operating Junction Temperature		_	105 ⁴	°C
T _A	Operating Ambient Temperature	0	_	70	°C

- Minimal VDDCPU voltage is for sleep mode while system runs at very low speed. Higher clock will need higher voltage. Considering the power supply may have 3% deviation, the minimal voltage in actual application should not be set to lower than min spec plus 0.02V.
- Likewise, maximum VDDCPU voltage in actual application should be lower than the max spec value minus 0.02V. Voltage of VDDCPU will affect CPU speed. Use lower voltage when CPU runs on lower speed to save power. Recommend to use +/-1.5% or higher precision DCDC.
- 3. GPIO cannot work if VDDIO voltage is out of the spec of LV / HV mode. GPIO output at HV mode will be weaker & max operating speed will be lower if VDDIO are design to 3.0V. Do not design VDDIO to lower than 3.0V in HV mode, recommend to use +/-1.5% or higher precision DCDC to supply power for VDDIO, actual voltage supplies to VDDIO (HV mode) should not be lower than 2.9V.
- 4. For operating temperature, good heat sink may be needed to guarantee Tj < max spec.

5.3 Ripple Voltage Specifications

Please check below table for ripple voltage specifications.

Power	Max Ripple	Unit	Test State
VDDCPU	40	+/-mV	Run APK StabilityTest
VDD_EE and other 0.8V domain	40	+/-mV	Run APK Basemark ES 2.0 Taiji
DDR3 VDDQ and AVDD_ DDRPLL	60	+/-mV	Kernel boot
DDR3L VDDQ and AVDD_ DDRPLL	60	+/-mV	Kernel boot
LPDDR3 VDDQ and AVDD_DDRPLL	40	+/-mV	Kernel boot
DDR4 VDDQ and AVDD_ DDRPLL	40	+/-mV	Kernel boot
LPDDR4 VDDQ and AVDD_DDRPLL	40	+/-mV	Kernel boot
AVDD18	30	+/-mV	Kernel boot
VDD18_AO_XTAL	30	+/-mV	Kernel boot
AVDD33	50	+/-mV	WIFI SCAN
VDDIO LV	60	+/-mV	Kernel boot
VDDIO HV	60	+/-mV	WIFI SCAN

Note

Ripple specification is only a reference spec, customer should run stress/performance/reliability test (high/low temperature test, damp and hot test, function test, etc...) on their product to confirm the system stability.

5.4 Thermal Resistance

Jedec 2P2S board 101.5mm*114.5mm, natural convection, ambient temperature 25°C.

Symbol	Parameter	Value(°C/ Watt)	Air Flow(m/s)
Θја	Package junction-to- ambiance thermal resistance in nature convection	16.92	0
Θjb	Package junction-to-pcb thermal resistance in nature convection	8.13	0
Ѳјс	Package junction-to-case thermal resistance in nature convection	7.25	0

Note

- 1. Due to the thinness of the SOC, DRAM or capacitors placed close to SOC may prevent heatsink touching SOC top side. A special convex shape heatsink is recommended.
- 2. These measurement were conducted on a JEDEC defined 2S2P system. For more information, check below JEDEC standards:
 - JESD51-2A: Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
 - JESD51-8: Integrated Circuit Thermal Test Method Environmental Conditions —Junctionto-Board
 - JESD51-12 : Guidelines for Reporting and Using Electronic Package Thermal Information
- 3. m/s = meters per second

5.5 DC Electrical Characteristics

5.5.1 Normal GPIO Specifications (For DIO_xmA)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{iH(VDDIO=3.3V)} ³	High-level input voltage	IOVREF+0.37	-	VDDIO+0.3	V
V _{iL(VDDIO=3.3V)} ³	Low-level input voltage	-0.3	-	IOVREF-0.23	V
V _{iH(VDDIO=1.8V)} ³	High-level input voltage	IOVREF/2+0.3	-	VDDIO+0.3	V
V _{iL(VDDIO=1.8V)} ³	Low-level input voltage	-0.3	-	IOVREF/2-0.3	V
R _{PU}	Built-in pull up resistor	50K	60K	70K	ohm
R _{PD}	Built-in pull down resistor	50K⁵	60K	130K ⁶	ohm
IoL/IoH(DS=0)1,4	GPIO driving capability	0.5	-	-	mA
IoL/IoH(DS=1) ¹	GPIO driving capability	2.5	-	-	mA
IoL/IoH(DS=2)1	GPIO driving capability	3	-	-	mA

Symbol	Parameter	Min.	Тур.	Max.	Unit
IoL/IoH(DS=3)1	GPIO driving capability	42	-	-	mA
VOH	Output high level with loL/loH loading	VDDIO-0.5	-	-	V
VOL	Output low level with IoL/IoH loading	-	-	0.4	V

- With Minimal IoL/IoH driving capability loading, IO is garanteed to meet Vol < 0.4V or VOH > (VDDIO-0.5V) spec.
- 2. Maximal GPIO loading is 6mA for application such as driving LED, which does not care about Vol/Voh spec. Please set DS=3 for such application.
- 3. VDD18 AO XTAL supplies power to IOVREF.
- 4. Do not use this setting, it's too weak for most applications.
- 5. Test condition: GPIO pin voltage close to 0V.
- Test condition: GPIO pin voltage close to VDDIO(3.3V).

5.5.2 Open Drain GPIO Specifications (For DIO_OD)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{iH(} OD5V)	High-level input voltage	1.5		5.5	٧
V _{iL(} OD5V)	Low-level input voltage	-0.3		0.8	٧
V _{iH} (OD3.3V)	High-level input voltage	1.5		3.6	٧
V _{iL(} OD3.3V)	Low-level input voltage	-0.3		0.8	٧
R _{PU/PD}	No built-in pull up/down resistor on OD IO	-	-	-	ohm
lo	OD IO driving low capability	4		6	mA
VOL	Output low level with min lo loading			0.4	V

Note

- 1. With Minimal IoL driving capability loading, IO is guaranteed to meet Vol<0.4V spec
- 2. Maximal GPIO loading is 6mA for application such as driving LED, which does not care about Vol spec
- 3. The V_{iL} / V_{iH} of OD PAD is irrelevant to VDDIO voltage.

5.5.3 DDR3/DDR3L/DDR4/LPDDR3/LPDDR4 SDRAM Specifications

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDDQ	IO supply voltage (DDR3)	1.425	1.50	1.57	V
VDDQ	IO supply voltage (DDR3L)	1.283	1.35	1.45	V
VDDQ	IO supply voltage (DDR4)	1.14	1.20	1.30	V
VDDQ	IO supply voltage (LPDDR3)	1.14	1.2	1.30	٧
VDDQ	IO supply voltage (LPDDR4)	1.06	1.1	1.17	>
Vref	Input reference supply voltage	0.49*VDDQ	0.5*VDDQ	0.51*VDDQ	V

Note

The minimal VDDQ voltage in sleep mode is defined by memory.

DC specifications - DDR3/DDR3L mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	DC input voltage high	Vref + 0.100		VDDQ	V
VIL	DC input voltage low	VSSQ		Vref-0.100	V
VOH	DC output logic high	0.8*VDDQ			V
VOL	DC output logic low			0.2*VDDQ	V
RTT	Input termination resistance to VDDQ/2	100 54 36	120 60 40	140 66 44	ohm

DC specifications - DDR4 mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VdIVW_total	Rx Mask voltage-p-p total			136	mv
VOH	DC output logic high	0.9*VDDQ			V
VOL	DC output logic low			0.1*VDDQ	V
RTT	Input termination	200	240	280	ohm
	resistance to VDDQ	100	120	140	

Symbol	Parameter	Min.	Тур.	Max.	Unit
		67	80	93	
		50	60	70	
		42	48	56	
		34	40	46	
		28	34	40	

DC Specifications - LPDDR3 mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	DC input voltage high	Vref + 0.100	.	VDDQ	V
VIL	DC input voltage low	VSSQ	G	Vref-0.100	V
VOH	DC output logic high	0.9*VDDQ		05	V
VOL	DC output logic low			0.1*VDDQ	V
RTT	Input termination resistance to VDDQ	100 200	120 240	140 280	ohm

DC Specifications - LPDDR4 mode

Symbol	Parameter	Min.	Тур.	Max.	Unit	
VOH	DC output logic high	0.9*VDDQ	-	-	V	
VOL	DC output logic low		-	0.1*VDDQ	V	
RTT	Input termination resistance to VDDQ	216	240	264	ohm	
			108	120	132	
		72	80	88		
·		54	60	66		
		43.2	48	52.8		
		36	40	44		

5.6 Recommended Oscillator Electrical Characteristics

The SoC requires the 24MHz oscillator for generating the main clock source.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
F _o	Nominal Frequency		24		MHz	
Δf/f _o	Frequency	-30		30	ppm	At 25 °C
Tolerance	Tolerance	-50		50	ppm	At -20~85 °C

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
C _L	Load Capacitance	7.5	12	12.5	pF	
ESR	Equivalent Series Resistance			100	oHm	

- 1. 10ppm Tolerance is preferred if 24MHz XTAL is also driving WIFI module.
- 2. For user external clock source, Please connect input clock output to SYS_OSCIN, let SYS_OSCOUT floating.
- 3. The threshold of Xin inverter is around 0.9V (Xin range: -0.3V to +2.1V). Therefore, Following suggestion for input clock.
 - Suggestion 1: Without DC blocking capacitor, use a higher Vpp output TCXO. The high voltage should be higher than 1.35V (VSWING >1.35V, 0V to >1.35V).
 - Suggestion 2: With DC blocking capacitor, re-bias the middle voltage at 0.9V, VSWING >2*0.45V;

5.7 Timing Information

5.7.1 I2C Timing Specification

The I2C master interface Fast/Standard mode timing specifications are shown below.

Figure 5-1 I2C Interface Timing Diagram, FS mode

Table 5-1 I2C Interface Timing Specification, SF mode

Symbol Parameter		Standard-mod	e	Fast-mode		Unit
		Min.	Max	Min	Max	
tR	Rise time of SDA and SCL signals	-	1000	-	300	ns
tF	Fall time of SDA and SCL signals	-	300	-	300	ns
fSCL	SCL clock frequency	-	100	-	400	KHz
tLOW	LOW period of the SCL clock	4.7	-	1.3		μs
tHIGH	HIGH period of the SCL clock	4	-	0.6	-	μs
tSu;STA	Setup time for START	4.7	- 16	0.6	73	μs
tSu;DAT	Setup time for SDA	250	-	100	-	ns
tSu;STO	Setup time for STOP	4	7	0.6	-	μs
tHd;STA	Hold time for START	4		0.6	-	μs
tHd;DAT	Hold time for SDA	0	3.45	0	0.9	μs
tBuf	Bus free time between stop and start	4.7		1.3	-	μs

Open drain does not support driver strength adjustment.

5.7.2 EMMC/SD Timing Specification

Timing specification for EMMC and SDIO are shown as below.

VCCQ

CLOCK
OUTPUT

VSS.

VALID
VALID
OUTPUT

VII.

VALID
WINDOW

VALID

Figure 5-2 EMMC HS400 Data Output Timing

Table 5-2 HS400 Timing Specification

Symbol	Parameter	Min	Max	Unit
tPERIOD	Cycle time data transfer mode	5		ns
SR	Slew rate	1.125	1	V/ns
tCKDCD	Duty cycle distortion	0	0.3	ns
tCKMPW	Minimum pulse width	2.2	-	ns
tISU	input set-up time	1.4	-	ns
tIH	input hold time	0.8	-	ns
tISUddr	input set-up time	0.4	-	ns
tlHddr	input hold time	0.4	-	ns

VCCQ

CLOCK
OUTPUT

VSS......

VSS......

VCCQ

VIIII
VIIII
VALID
WINDOW
VIII
VSS.....

VSS.....

Figure 5-3 EMMC HS200 Data Output Timing

Table 5-3 HS200 Timing Specification

Symbol	Parameter	Min	Max	Unit
tPERIOD	Cycle time data transfer mode	5	-	ns
tISU	output set-up time	1.4	-	ns
tIH	output hold time	0.8	-	ns

Figure 5-4 EMMC HS400 Data Intput Timing

Table 5-4 HS400 Data Input Timing Specification

Symbol	Parameter	Min	Мах	Unit
tPERIOD	Cycle time data transfer mode	5	-	ns
SR	Slew rate	1.125	-	V/ns
tCKDCD	Duty cycle distortion	0	0.2	ns
tCKMPW	Minimum pulse width	2	-	ns
tRQ	Input skew	-	0.4	ns
tRQH	input hold skew	-	0.4	ns

Figure 5-5 EMMC HS200 Data Input Timing

Table 5-5 HS200 Timing Specification

Symbol	Parameter	Min	Max	Unit
tPH	Device output momentary phase from CLK input to CMD or DAT line output. Does not include a longterm temperature drift.	0	2	UI
ΔΤΡΗ	Delay variation due to temperature change after tuning. Total allowable shift of output valid window (TVW) from last system Tuning procedure Δ TPH is 2600ps for Δ T from -25 °C to 125 °C during operation.	-350(ΔT=-20deg.C)	1550(ΔT=90deg.C)	ps
tVW	Valid Data Simple window	0.575	- 70	UI

Figure 5-6 SDIO (SDR104) Clock Signal Timing Diagram

Table 5-6 SDIO (SDR104) Clock Timing Specification

Symbol	Parameter (SDR104 Mode)	Min	Max	Unit
tCLK	clock period Data Transfer Mode (PP)	4.8	-	ns
Duty	Clock Duty	30	70	%
tCR	clock rise time	1	0.96	ns
tCF	clock fall time	-	0.96	ns

Figure 5-7 SDIO (SDR104) Output Timing Diagram

Table 5-7 SDIO (SDR104) Output Timing Specification

Inputs CMD, DAT (referenced to CLK)					
Symbol	Parameter	Min	Max	Unit	
tIS	input set-up time	1.4	-	ns	
tIH	input hold time	0.8	-	ns	

SD card interface uses SDIO protocol.

5.7.3 NAND Timing Specification

Nand timing specifications are shown as below.

Figure 5-8 Async Waveform for Command/Address/Data Output Timing

Figure 5-9 Async Waveform for Address Output Cycle

Figure 5-10 Async Waveform for Sequential Data Read Cycle(After Read)-EOD Mode

Table 5-8 Nand Timing Specifications

Symbol	Parameter (- Asynchronous) (- mode 5)	Min	Max	Unit
tCLS	CLE setup time	10	-	ns
tCLH	CLE hold time	5	-	ns
tALS	ALE setup	10	-	ns

Symbol	Parameter (- Asynchronous) (- mode 5)	Min	Max	Unit
tALH	ALE hold	5	-	ns
tDS	Data setup time	7	-	ns
tDH	Data hold time	5	-	ns
tWC	WE# cycle time	20	-	ns
tWP	WE# pulse width	10	-	ns
tWH	WE# high lold time	7	-	ns
tREA	RE# access time	-	16	ns
tOH	Data output hold time	15	**	ns
tRLOH	RE#-low to data hold time (EDO)	5	5	ns
tRP	RE# pulse width	10	-	ns
tREH	RE# high hold time	7	- 10	ns
tRC	RE# cycle time	20	-	ns

5.7.4 SPICC Timing Specification

Table 5-9 SPICC Master Timing Specification

Symbol	Description	Min.	Max.	Unit
fCLK	Clock Frequency	1	80	MHz
тсн	Clock high time	5		ns
TCL	Clock low time	5		ns
TLS1	CS fall to First Rising CLK Edge	50		ns
TSET	Data input Setup Time	4		ns

Symbol	Description	Min.	Max.	Unit
THOL	Data input Hold Time	4		ns
TLH	Minimum idling time between transfers (- minimum ss high time)	5		ns

5.7.5 SPIFC Timing Specification

Figure 5-12 SPIFC Serial Input Timing Diagram

Figure 5-13 SPIFC Out Timing Diagram

Table 5-10 SPIFC Master Timing Specification

Symbol	Parameter (Clock 41.7MHz)	Min	Max	Unit
fRSCLK	Clock Frequency for READ instructions		50	Mhz
tCH	Clock High Time	8		ns
tCL	Clock Low Time	8		ns

Symbol	Parameter (Clock 41.7MHz)	Min	Max	Unit
tCLCH	Clock Rise Time (- peak to peak)	0.1		V/ns
tCHCL	Clock Fall Time (- peak to peak)	0.1		V/ns
tSLCH	CS# Active Setup Time (relative to SCLK)	4	-	ns
tCHSH	CS# Active Hold Time (relative to SCLK)	4		ns
tDVCH	Data In Setup Time	2	-	ns
tCHDX	Data In Hold Time	3	- 10	ns
tSHQZ	Output Disable Time (relative to CS#)		8	ns
tCLQV	Clock Low to Output Valid	10	6	ns
tCLQX	Output Hold Time	1		ns

5.7.6 Ethernet Timing Specification

MD CLK

Table 5-11 Management Data Timing Specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
tMDC	MDC clock Period	400	500		ns	From MAC
tMDCSU	Setup time to rising edge of MDC	10			ns	
tMDCHD	Hold time to rising edge of MDC	10			ns	

RMII CLK

RMII RXD
RMII DV

RMII TXD
RMII TXD
RMII TX_EN

Figure 5-15 RMII Timing Diagram

Table 5-12 RMII Timing Specification

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tREFCLK	RMII clock period		20		ns	50MHz from PHY
tOSU	TXD & TX_ EN setup time to rising edge of RMII clock	1.8	10		ns	To PHY
tOHD	TXD & TX_ EN hold time to rising edge of RMII clock	1.4	10		ns	To PHY
tISU	RXD & DV setup time to rising edge of RMII clock	1.0	10		ns	From PHY
tIHD	RXD & DV hold time to rising edge of RMII clock	1.0	10		ns	From PHY

Figure 5-16 RGMII Receive Timing Diagram

Table 5-13 RGMII Receive Timing Specification

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tRX_CLK	RGMII RX_ CLK clock period		8		ns	125MHz from PHY
tSETUP	RXD[3:0] & RX_DV setup time (PHY in- ternal delay enabled)	1.2			ns	From PHY
tHOLD	RXD[3:0] & RX_DV hold time (PHY in- ternal delay enabled)	1.2		• 0	ns	From PHY
tSKEW	RXD[3:0] & RX_DV skew between these 5 sig- nals (PHY in- ternal delay disabled)	-0.5	16	0.5	ns	From PHY

When PHY internal delay is enabled, check setup/hold timing.

When PHY internal delay is disabled, check signal skew.

Figure 5-17 RGMII Transmit Timing Diagram

Table 5-14 RGMII Transmit Timing Specification

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tTX_CLK	RGMII TX_ CLK clock period		8		ns	125MHz to PHY
tOSU	TXD & TX_ EN setup time to rising edge of RGMII clock (no clock delay added)	1			ns	From PHY

Symbol	Description	Min.	Тур.	Max	Unit	Notes
	TXD & TX_ EN setup time to rising edge of RGMII clock (clock delay added)	-0.9			ns	From PHY
tOHD	RXD & DV hold time to rising edge of RGMII clock (no clock de- lay added)	0.8			ns	From PHY
	RXD & DV hold time to rising edge of RGMII clock (clock delay added)	2.7		S	ns	From PHY

5.7.7 Audio Timing Specification

There are two modes for the audio I2S/TDM interface: Master mode and Slave mode, as shown below.

Figure 5-18 I2S/TDM Timing Diagram, Master Mode

Table 5-15 Audio I2S/TDM Timing Specification, Transmitter, Master Mode

Transmitter (master mode)								
Symbol	Parameter	Min	Тур	Max	Unit			
Т	Clock period	10			ns			
tHC	High level of SCLK	0.4			Т			
tLC	Low level of SCLK	0.4			Т			
tRC	Edge time of SCLK			0.8	ns			
tdly	Delay from SCLK to WS	-2	3	5				
tsuin	Setup time of Din	4			ns			
thdin	Hold time of Din	4			ns			

Measure Pointrefers to VIH, ViL parameter of Normal GPIO Specifications.

SCLK (Input)

Dout 3:0] (Output)

thd din

t su din

Figure 5-19 2S/TDM Timing Diagram, Slave Mode

Transmitter (slave mode)								
Symbol	Parameter	Min	Тур	Max	unit			
T(out)	Clock period	40			ns			
T(in)	Clock period	10			ns			

Transmitter (slave mode)					
Symbol	Parameter	Min	Тур	Max	unit
tHC	High level of SCLK	0.4			Т
tLC	Low level of SCLK	0.4			Т
tRC	Edge time of SCLK			0.8	ns
tsu in	Setup time of WS/Din	4			ns
thd in	Hold time of WS/ Din	4			ns
tdly	Delay between SCLK and Dout	2	12	15	ns

Measure Pointrefers to VIH, ViL parameter of Normal GPIO Specifications.

5.7.8 PDM Timing Specification

Table 5-16 PDM Timing Specification

Parameter	Symbol	Min.	Тур.	Max.	Units.
PDM clock period	tDCLK	200			ns
PDM clock duty cycle	tHIGH/tLOW	48%		52%	tDCLK
PDM Data setup time	tSETUP	20			ns
PDM Data hold time	tHOLD	20			ns
Sys clock period	tSYSCLK	5	7.5		ns

Note

- 1. Default PDM_SYS_CLOCK=133MHz.
- 2. For Sample position, please refer to PDM register PDM_CHAN_CTRL, PDM_CHAN_CTRL1.

5.7.9 UART Timing Specification

TXD

Midpoint of STOP bit

Midpoint of STOP bit

RXD

RTS

Figure 5-21 UART Timing Diagram

Table 5-17 UART Timing Specification

Parameter	Symbole	Min.	Max.	Units.
Delay time, CTS high before midpoint of stop bit	tTXSTOP		0.5	Bit Periods
Delay time, midpoint of stop bit to RTS hgih	tSRTS		0.5	Bit Periods

5.8 Power On Config

3 Boot pins are used as power on config (POC) pins, to set the booting sequence.

POC setting is latched at the rising edge of reset signal.

3 POC pins are all pull high internal, CPU will try to boot from nand/eMMC first, if fails then try to boot from SD CARD, still fails then try to boot from USB (PC).

External 4.7K ohm pull down resistors can be used to change the POC setting. The resistors should be placed on right location, avoid stubs on high speed signals.

The SoC's Power On Configuration is listed as following:

Table 5-18 Power On Configuration Pin Table

POC	Boot Pin	Name	Pull low	Pull high
POC_0	Boot_4	SPI NAND First	SPI NAND boot first	Default sequence
POC_1	Boot_5	USB First	USB boot first	Default sequence
POC_2	Boot_6	SPI NOR First	SPI NOR first	Default sequence

Table 5-19 Booting Sequence Diagram

No.	POC_0 (SPI_ NAND)	POC_1 (USB_ BOOT)	POC_2 (SPI_NOR, eMMC/ NAND)	1st Boot device	2nd Boot device	3rd Boot device	4th Boot device
1	0	0	0	USB (short delay)	SPI_NOR	NAND/ eMMC	SD Card
2	0	0	1	USB (short delay)	NAND/ eMMC	SD Card	-
3	0	1	0	SPI_NOR	NAND/ eMMC	SD Card	USB
4	0	1	1	SPI_NAND	NAND/ eMMC	USB	-
5	1	0	0	USB (short delay)	SPI_NOR	NAND/ eMMC	SD Card
6	1	0	1	USB (short delay)	NAND/ eMMC	SD Card	-
7	1	1	0	SPI_NOR	NAND/ eMMC	SD Card	USB
8	1	1	1	NAND/ eMMC	SD Card	USB	-

If GPIOC is not work as SDIO port, please do not pull CARD_DET(GPIOC_6) low when system booting up, to avoid romcode trying to boot from SD CARD.

5.9 Power On Reset

The POR (Power On Reset) monitors VDDIO_AO power voltage and compares it to a threshold Voltage.

RESET_N pin is low (SOC is reset mode) when VDDIO_AO is below threshold,

Force SOC enter reset mode via key to GND serial 100R resitor.

Note

- 1. Place 1nF capacitors on RESET N Pin.
- 2. VDDIO AO power pin is only support 3.3V, not allow to power off in sleep mode.

Figure 5-22 POR Wave Diagram

Table 5-20 POR Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit
Reset threshold voltage	Vth	2.6	2.7	2.8	V
Reset delay time	tDELAY	109	170	218	ms

5.10 Recommended Power on sequence

Example power on sequence:

- 1. All test values refer to 80% of typical power voltage.
- 2. VDDAO_3.3V & VCC3.3V should ramp up > 0.5ms later than VDD_EE.
- 3. All power sources should get stable within 20ms (except for DDR VDDQ).
- 4. No sequence requirement between VDDCPU & DDR_VDDQ and other power source.
- 5. VDDIO_AO18 should ramps up earlier than or at the same time with VDDAO_3.3V & VCC3.3V, VDDAO_3.3V & VCC3.3V should never be 2.5V higher than VDDIO_AO18.
- 6. In some designs, VDDCPU & VDD_EE are merged to VCC_CORE, the power on sequence should be same as VDD_EE.
- 7. RESET_n should keep low for at least 40ms after power up (except DDR_VDDQ).

Please refer to reference schematics.

5.11 Power Consumption

Note

Value listed here is estimated typical max value tested. Enough margin in circuit needs to be reserved.

Symbol	Maximum Current	Note
VDDCPU	2.5 A	
VDD_EE	1.5 A	- 60
VDD_DDR	400 mA	
VDDQ	600 mA	VDDQ Maximum current does not include DRAM current. Peak SOC + DRAM VDDQ current is up to 1.5A with 2 ranks DDR3

Symbol	Typical Current	Maximum Current	Note
VDD18_AO_XTAL	0.6mA	1mA	EFUSE: Max 100mA when programing EFUSE
AVDD0V8_USB_ PCIE	19.2mA	58mA	-
AVDD0V8_HDMI	17.2mA	23mA	At 6 Gbps mode
AVDD_DDRPLL	4.1mA	6mA	-
AVDD18_ENET	35.5mA	40mA	-
AVDD18_AUDIO	4mA	6.6mA	-
AVDD18_PCIE	31.6mA	40mA	At 5 Gbps mode(WIFI module)
AVDD18_HDMI	9.3mA	15.3mA	-
AVDD18_SARADC	2.1mA	2.5mA	-
AVDD18_CVBS	39.8mA	48mA	-
AVDD18_MIPIDSI	29.6mA	40mA	-
AVDD18_MIPICSI	16.4mA	20mA	-

Symbol	Typical Current	Maximum Current	Note
AVDD18_USB	18.2mA	25mA	-
AVDD33_USB	0.3mA	2mA	-
AVDD18_DPLL	23.2mA	25mA	-
VDDIO			Note

VDDIO=1.8V, DS=3, output 200MHz clock:

- 1. IO pad itself consumes about 1.4mA.
- 2. Driving a 55ohm trace with length of 50mm and width of 0.1mm will consumes about 2.8mA additional current (low impedance trace consumes more power)
- 3. Base on #2, add 5pF cap will consumes about 1.8mA additional current, total about 6mA
- When VDDIO=3.3V, GPIO consumes about 70% higher current, about 13mA.
- 5. Internal & external pull down resistor consumes more current.

5.12 Storage and Baking Conditions

The processor is moisture-sensitive device of MSL level 3, defined by IPC/JEDEC J-STD-020. Please follow the storage and backing guidelines.

- 1. Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).
- 2. After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - a. Mounted with 168 hours of factory conditions ≤30°C/60% RH, or
 - b. Stored per J-STD-033
- 3. Devices require bake, before mounting, if Humidity Indicator Card reads >10%.
- 4. If baking is required, refer IPC/JEDEC J-STB-033 for baking process.

6 Mechanical Dimensions

The SoC comes in a 52x46 ball matrix FCBGA RoHS package. The mechanical dimensions are given in millimeters as the following figures.

Figure 6-1 Dimensions AD COR 0000000000000000 **TOP VIEW BOTTOM VIEW** △ 0.10 C SEATING PLANE **DETAIL A** SIDE VIEW **Figure 6-2 Dimension Specification** DIMENSION MINIMUM NOMINAL MAXIMUM Α 0.952 1.032 1.112 0.230 0.270 0.310 Α1 0.762 0.804 Α2 0.730 b 0.300 0.350 0.400 NUMBER OF BALL 454