Supplementary Table S3

We simulated genomes, each with a thousand sequence replicates of varying lengths (600, 12,000, or 30,000 nucleotides) and composed of TTAGGG telomeric repeats (with the lexicographically minimal canonical telomeric repeat being AACCCT) at different error rates (1%, 1.5%, 2%, 5%, and 10%). We aimed to assess the performance of tidk explore in identifying telomeric repeats.

The table below shows:

- 1. The simulated conditions (mixture of error rate and sequence length)
- 2. The most abundant canonical telomeric repeat
- 3. The count of the most abundant canonical telomeric repeat
- 4. The most abundant 6-nucleotide canonical telomeric repeat
- 5. The count of the most abundant 6-nucleotide canonical telomeric repeat
- 6. The count of AACCCT canonical telomeric repeat
- 7. The total number of canonical telomeric repeats identified by tidk explore

Simulation	Most abundant	Most abundant	Most abundant 6	Most abundant 6	AACCCT count	Total canonical
Conditions	canonical repeat	count	nucleotide canonical reneat	nucleotide count		repeats
len12000 err0.0	AACCCT	4000	AACCCT	4000	4000	2
len12000_err0.001	AACCCT	1014	AACCCT	1014	1014	2
len12000_err0.01	AAGGT	1652	AACCCT	416	416	7
len12000_err0.015	ACCCT	1896	AACCCT	426	426	7
len12000_err0.02	AAACC	1976	Z	0	0	8
len12000_err0.05	ACCAT	2039	Z	0	0	16
len12000_err0.1	AAGGG	1776	Z	0	0	33
len30000_err0.0	AACCCT	10000	AACCCT	10000	10000	2
len30000_err0.001	AACCCTAACCCT	738	AACCCT	650	650	2
len30000_err0.01	AACTT	5195	AACCCT	430	430	6
len30000_err0.015	AACCC	5160	AACCCT	412	412	7
len30000_err0.02	AACCC	9686	AACCCT	432	432	7
len30000_err0.05	AACTT	4506	N	0	0	28
len30000_err0.1	AACCC	3801	N	0	0	43
len600_err0.0	AACCCT	200	AACCCT	200	200	2
len600_err0.001	AACCCT	200	AACCCT	200	200	2
len600_err0.01	AACCCTAACCCT	86	AACCCT	46	46	2
len600_err0.015	AACCCT	84	AACCCT	84	84	4
len600_err0.02	AACCC	71	AACCCT	62	62	4
len600_err0.05	ACCCT	87	AACCCT	48	48	9
len600_err0.1	AAGGT	104	AACCCT	52	52	17