Causal Inference Case Studies

Irene Y. Chen

Housekeeping

- 1. IBM announcement from Willie
- 2. Midsemester feedback form
 - We read every comment
 - Already taking suggestions into account
- 3. Final project mentors
 - Received initial feedback
 - Email TAs with questions
- 4. HW5 out
 - Mystery poll??

Agenda for today

- 1. Housekeeping
- 2. Review lecture material [15 mins]
- 3. Post surgical opioid abuse [15 mins]
- 4. Diabetes treatment management [15 mins]

Goal: learn practical causality analysis tools for homework, final projects, and beyond

You inherit a tobacco company in the 1950's

smoking

lung cancer

Does smoking cause cancer?

Observed association; cannot do randomized control trial

Does cancer cause smoking?

Probably not: Smoking begins years before diagnosis.

Does smoking cause cancer?

How can we estimate ATE = E[Y=1|T=1,X] - E[Y=0|T=0,X]?

Three ML methods to control for confounders

- 1. Covariate adjustment
- 2. Matching
- 3. Propensity scoring

Explicitly model the relationship between treatment, confounders, and outcome:

[Slide 4 of lecture 15]

Covariate adjustment (reminder)

• Under ignorability, CATE(x) = $\mathbb{E}_{x \sim p(x)} \Big[\mathbb{E}[Y_1 | T = 1, x] - \mathbb{E}[Y_0 | T = 0, x] \Big]$

• Fit a model $f(x,t) \approx \mathbb{E}[Y_t | T = t, x]$, then: $\widehat{CATE}(x_i) = f(x_i, 1) - f(x_i, 0)$.

Recap: Covariate adjustment

- "Plug in different values of treatment and see what happens"
- Assumes we have a very accurate and calibrated f(x,T)
- If data is nonlinear and we assume linearity, CATE and ATE estimates can be very misleading
- Recent research has investigated using different model classes for f, e.g. random forests and neural networks.
 We must then figure out how to modify the learning criteria

Matching

 Find each unit's long-lost counterfactual identical twin, check up on his outcome

Obama, had he gone to law school

Obama, had he gone to business school

1-NN Matching

- Let $d(\cdot, \cdot)$ be a metric between x's
- For each i, define $j(i) = \underset{j \text{ s.t. } t_j \neq t_i}{\operatorname{argmin}} d(x_j, x_i)$ j(i) is the nearest counterfactual neighbor of i
- $t_i = 1$, unit i is treated:

$$\widehat{CATE}(x_i) = y_i - y_{j(i)}$$

• $t_i = 0$, unit i is control:

$$\widehat{CATE}(x_i) = y_{j(i)} - y_i$$
[Slide 18 of lecture 15]

Recap: Matching

- "Approximate my long lost twin and compare results"
- Useful for both CATE and ATE
- In practice, difficult because of finding right distance function and having enough twins
- Not used widely (yet!)

What if the populations are different?

Income

Propensity score reweighting

$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{\hat{p}(t_i = 1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{\hat{p}(t_i = 0|x_i)}$$

Recap: Propensity score reweighting

- "Give higher weight to lower represented samples"
- Can only calculate ATE
- Requires some overlap of the populations and good estimator p_hat
- If denominator is too low, weights can explode quickly

What about instrumental variables?

We can then estimate Wald estimator Cov(Y,B) / Cov(T,B)

Agenda for today

- 1. Housekeeping
- 2. Review lecture material [15 mins]
- 3. Post surgical opioid abuse [15 mins]
- 4. Diabetes treatment management [15 mins]

Drug overdose deaths in America

*Some deaths on this chart may overlap if they involve multiple drugs.

[Centers for Disease Control]

Opioid painkillers (natural and semisynthetic)

Share of organ donors who died of drug overdoses

Research

Postsurgical prescriptions for opioid naive patients and association with overdose and misuse: retrospective cohort study

BMJ 2018; 360 doi: https://doi.org/10.1136/bmj.j5790 (Published 17 January 2018)

Cite this as: BMJ 2018;360:j5790

Article

Related content

Metrics

Responses

Peer review

Gabriel A Brat, instructor in surgery ¹ ², Denis Agniel, postdoctoral fellow ¹, Andrew Beam, research scientist ¹,

Brian Yorkgitis, assistant professor in surgery ³, Mark Bicket, assistant professor in anesthesia ⁴, Mark Homer, postdoctoral fellow ¹,

Kathe P Fox, director ⁵, Daniel B Knecht, chief of staff ⁵, Cheryl N McMahill-Walraven, director ⁵,

Nathan Palmer, research scientist ¹, Isaac Kohane, department chair ¹

Author affiliations >

Correspondence to: G A Brat gbrat@bidmc.harvard.edu

Accepted 1 December 2017

Do postsurgical opioids cause opioid abuse?

Aetna Insurance claims

Pros

- Complete patient record
- Hospital and pharmacy care
- Surgical claims from CPT, outcomes from ICD-9 codes

Cons

- Lacking granular information about hospital stays (e.g. lab values)
- CPT and ICD-9 codes can be incorrect or manipulated for billing purposes

Data source

Include

- Patients with "complete" medical and pharmacy insurance records
- Underwent first surgery
- Opioid naïve: little/no previous opioid use

Final cohort

- Large dataset (37 million)
- Longitudinal (2008-2016)
- After inclusion criteria, 1 million opioid naïve patients undergoing surgery

Do postsurgical opioids cause opioid abuse?

How do we define T, Y, and X?

What is treatment T?

- Refill
- Total dosage
- Duration of use

What is outcome Y?

- ICD-9 code for opioid dependence, abuse, and overdose
- Only include diagnosis codes related to prescription opioids

What are confounders X?

- Demographics (age, sex)
- US state of residence
- surgery type group
- surgery year
- presurgical diagnoses

Statistical analysis

- Weighted linear regression for log transformed weekly rates of misuse
 - Each week weighted according to sample size
 - Create outcome of adjusted analysis of time until misuse event using Cox proportional hazards (survival analysis!)
 - Results report multiplicative percentage increases in rate
- Sensitivity analysis to rule out structural confounders
 - Interaction term between duration and year indicator
 - Interaction between duration and state of residence indicator
 - Build in an unobserved confounder with a Bernoulli random variable

Recap: Postsurgical opioid use to misuse

- "Duration more than dosage use may cause opioid misuse"
- Use covariate adjustment to estimate multiplicative effects
- Interaction terms

Agenda for today

- 1. Housekeeping
- 2. Review lecture material [15 mins]
- 3. Post surgical opioid abuse [15 mins]
- 4. Diabetes treatment management [15 mins]

Personalized Diabetes Management Using Electronic Medical Records

Dimitris Bertsimas , Nathan Kallus, Alexander M. Weinstein and Ying Daisy Zhuo

+ Author Affiliations

Corresponding author: Dimitris Bertsimas, dbertsim@mit.edu.

Diabetes Care 2017 Feb; 40(2): 210-217.

https://doi.org/10.2337/dc16-0826

Abstract

OBJECTIVE Current clinical guidelines for managing type 2 diabetes do not differentiate based on patient-specific factors. We present a data-driven algorithm for personalized diabetes management that improves health outcomes relative to the standard of care.

Type 2 Diabetes Treatment Still a Mystery

Male

BMJ Open. 2015; 5(5): e007375.

Published online 2015 May 12. doi: 10.1136/bmjopen-2014-007375

Racial ethnic differences in type 2 diabetes treatment patterns and glycaemic control in the Boston Area Community Health Survey

Sunali D Goonesekera, May H Yang, Susan A Hall, Shona C Fang, Rebecca S Piccolo, and John B McKinlay

▶ Author information ▶ Article notes ▶ Copyright and License information Disclaimer

Diabetologia. Author manuscript; available in PMC 2014 Dec 1.

Published in final edited form as:

Diabetologia. 2013 Dec; 56(12): 10.1007/s00125-013-3078-7.

Published online 2013 Oct 5. doi: 10.1007/s00125-013-3078-7

PMCID: PMC3842214

NIHMSID: NIHMS529351

PMID: 24092493

PMCID: PMC4431069

PMID: 25967997

Age-related differences in glycaemic control in diabetes

Elizabeth Selvin 1 and Christina M. Parrinello 1

What do we include in this analysis?

Inclusion criteria

- Patients in hospital EMR for >1 year
- Prescription for at least one blood glucose regulation agent
- At least three recorded laboratory results for HbA1C
- No recorded diagnosis of type 1 diabetes (from ICD-9 code 250.x1 or 250.x3)

Final cohort

- 10k patients, 48k patient visits
- Access to demographic information
- Analyze all associated EMR data

What makes two patients similar or different?

Features

- Differentiate 13 lines of therapy
- Patient visit every 100 day and average HbA1C after visit (75-200 days after)
- Collect what standard of care was actually administered

[Slide 17 of lecture 15]

Which treatment will lead to lower HbA1C?

Model

- For each patient visit, find kNN regression to predict HbA1C under every possible treatment
- Algorithm prescribes regimen with best predicted outcome if predictive improvement exceeds threshold
- Evaluation compared actual treatment and outcome with recommended therapy and outcome
- Sensitivity analysis by drawing new training and testing splits

[Figure 1 of Bertsimas et al, 2017]

Recommendation: Switch from insulin monotherapy to metformin monotherapy Predicted HbA1c (%): 8.3 Outcomes for similar patients who were prescribed... insulin + non-metformin oral agent insulin **PATIENT ID** 12XXXXX **CURRENT** Mean 9.4 Mean 9.2 AGE (Years) 61.9 (SD 1.2) (SD 1.1) SEX F RACE/ETHNICITY Black **CURRENT HbA1c (%)** 10.1 metformin metformin + insulin **CURRENT REGIMEN** Insulin RECOMMEND Mean 8.3 Mean 9.7 (SD 1.5) (SD 1.8) Patient Treatment & HbA1c History Sulfonylurea -Insulin non-metformin oral agent no treatment Mean 9.6 Mean 9.5 5-(SD 1.6) 15-(SD 1.5) HbA1c

2001

15

15 0

HbA1c

[Figure 2 of Bertsimas et al, 2017]

2003

2004

2002

Recap: Diabetes treatment management

- "kNN over patients can recommend diabetes treatments"
- Use matching to estimate different treatment effects
- Evaluate by comparing predicted and actual treatment and HbA1C values
- Sensitivity analysis through repeated sampling of training and test data

Have a great weekend!