Analyse I – Corrigé de la Série 6

Echauffement 1.

$$a_n = \frac{2}{3}a_{n-1} + 2$$
$$a_{n+1} = \frac{2}{3}a_n + 2$$

et ainsi

$$a_{n+1} - a_n = \frac{2}{3} (a_n - a_{n-1}).$$

En itérant cette égalité n-1 fois, il suit que

$$|a_{n+1} - a_n| = \frac{2}{3} |a_n - a_{n-1}| = \left(\frac{2}{3}\right)^2 |a_{n-1} - a_{n-2}| = \dots = \left(\frac{2}{3}\right)^{n-1} |a_2 - a_1| = 2\left(\frac{2}{3}\right)^n$$

 $\operatorname{car} a_2 - a_1 = \frac{4}{3}.$

Soient maintenant $n, m \in \mathbb{N}^*$ tels que n > m. Par l'inégalité triangulaire on a

$$|a_n - a_m| \le |a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + \dots + |a_{m+1} - a_m| = \sum_{k=m}^{n-1} |a_{k+1} - a_k|$$

et donc

$$|a_n - a_m| \le 2 \sum_{k=m}^{n-1} \left(\frac{2}{3}\right)^k = 2 \left(\frac{2}{3}\right)^m \left(\sum_{k=0}^{n-m-1} \left(\frac{2}{3}\right)^k\right)$$

$$= 2 \left(\frac{2}{3}\right)^m \cdot \frac{1 - \left(\frac{2}{3}\right)^{n-m}}{1 - \frac{2}{3}} = 6 \left(\frac{2}{3}\right)^m \left(\underbrace{1 - \left(\frac{2}{3}\right)^{n-m}}_{\le 1}\right) \le 6 \left(\frac{2}{3}\right)^m.$$

Soit $\varepsilon > 0$ fixé. Pour avoir $|a_n - a_m| < \varepsilon$, il faut donc que

$$\left(\frac{2}{3}\right)^m < \frac{\varepsilon}{6} \qquad \Leftrightarrow \qquad m \operatorname{Log}\left(\frac{2}{3}\right) < \operatorname{Log}\left(\frac{\varepsilon}{6}\right) \qquad \Leftrightarrow \qquad m > \frac{\operatorname{Log}\left(\frac{\varepsilon}{6}\right)}{\operatorname{Log}\left(\frac{2}{3}\right)} \ .$$

Ainsi, en choisissant $n_0 \in \mathbb{N}^*$ tel que

$$n_0 > \frac{\operatorname{Log}\left(\frac{\varepsilon}{6}\right)}{\operatorname{Log}\left(\frac{2}{3}\right)}$$
,

on a que $|a_n - a_m| < \varepsilon$ pour tout $n, m \ge n_0$. Comme on peut trouver un tel n_0 pour tout $\varepsilon > 0$, la suite $(a_n)_{n \ge 1}$ est bien une suite de Cauchy.

Remarque: Montrer qu'une suite réelle est de Cauchy est un moyen de montrer sa convergence sans calculer sa limite.

Exercice 1.

Supposons que $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$. Ceci veut dire que pour tout $\varepsilon > 0$ il existe n_0 tel que:

$$\forall n \geq n_0, \quad \left| \left| \frac{a_{n+1}}{a_n} \right| - \rho \right| \leq \varepsilon$$

$$\iff \forall n \geq n_0, \quad -\varepsilon \leq \left| \frac{a_{n+1}}{a_n} \right| - \rho \leq \varepsilon$$

$$\iff \forall n \geq n_0, \quad \rho - \varepsilon \leq \left| \frac{a_{n+1}}{a_n} \right| \leq \rho + \varepsilon \tag{1}$$

 $\underline{\text{Cas } \rho > 1}$: Dans ce cas on choisit ε tel que $\rho_1 := \rho - \varepsilon > 1$ (par example $\varepsilon = \frac{\rho - 1}{2}$) et on obtient de (1) que

$$\forall n \ge n_0, \quad 1 < \rho_1 \le \left| \frac{a_{n+1}}{a_n} \right|$$

$$\iff \forall n \ge n_0, \quad |a_{n+1}| \ge \rho_1 |a_n| \quad \text{avec } \rho_1 > 1.$$

Par récurrence on trouve que

$$|a_{n+1}| \ge \rho_1^{n+1-n_0} |a_{n_0}|$$

et donc $\lim_{n\to\infty} |a_{n+1}| = \infty$. La suite est donc non bornée ce qui exclut la convergence car toute suite convergente est bornée.

 $\underline{\text{Cas } \rho < 1}$: Dans ce cas on choisit ε tel que $\rho_1 := \rho + \varepsilon < 1$ (par example $\varepsilon = \frac{1 - \rho}{2}$) et on obtient de (1) que

$$\forall n \ge n_0, \quad \left| \frac{a_{n+1}}{a_n} \right| \le \rho_1 < 1$$

$$\iff \forall n \ge n_0, \quad |a_{n+1}| \le \rho_1 |a_n| \quad \text{avec } \rho_1 < 1.$$

Par récurrence on trouve que

$$|a_{n+1}| \le \rho_1^{n+1-n_0} |a_{n_0}|$$

et donc $\lim_{n\to\infty} |a_{n+1}| = 0$ $\left(=\lim_{n\to\infty} |a_n|\right)$. Ceci implique que $\forall \varepsilon > 0$ il existe n_0 tel que $\forall n \geq n_0, \quad |a_n-0| = |a_n| < \varepsilon$ et donc $\lim_{n\to\infty} a_n = 0$.

Cas $\rho = 1$: le critère ne donne aucun résultat.

Exercice 2.

Comme demandé nous suivons l'exemple donné au § 2.9 du cours. Il faut donc trouver d'abord la valeur de la limite sous l'hypothèse que celle-ci existe et ensuite démontrer la convergence de la suite. Pour la première étape, il faut passer à la limite dans l'équation qui définit la récurrence de la suite en utilisant les propriétés algébriques de la limite.

i) Si la limite $\lim_{n\to\infty} a_n = a$ existe, on a

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{4} (3a_{n-1} + 1) \right) = \frac{1}{4} \left(3 \lim_{n \to \infty} a_{n-1} + \lim_{n \to \infty} 1 \right),$$

d'où l'équation $a = \frac{1}{4}(3a+1)$, et donc a = 1.

On montre par récurrence que la suite est majorée par a: On a $a_1 = 0 \le a$, et si $a_{n-1} \le a$, alors

$$a_n = \frac{1}{4} (3a_{n-1} + 1) \le \frac{1}{4} (3a + 1) = 1 = a.$$

On montre que la suite est croissante. Pour $n = 2, 3, \ldots$ on a

$$a_n - a_{n-1} = \frac{1}{4} (1 - a_{n-1}) \ge \frac{1}{4} (1 - a) = 0$$
 car $a_{n-1} \le a$.

Ainsi la suite $(a_n)_{n\geq 1}$ est convergente (car croissante et majorée) et sa limite vaut a=1.

ii) Si la limite $\lim_{n\to\infty} a_n = a$ existe, elle satisfait $a = \frac{1}{4}(a+4)$ (obtenue comme au i), donc $a = \frac{4}{3}$.

On montre par récurrence que la suite est minorée par a: On a $a_1 = 3 \ge a$, et si $a_{n-1} \ge a$, il s'en suit que

$$a_n = \frac{1}{4}(a_{n-1} + 4) \ge \frac{1}{4}(a+4) = \frac{4}{3} = a.$$

On montre que la suite est décroissante. Pour $n = 2, 3, \ldots$ on a

$$a_n - a_{n-1} = \frac{1}{4} (4 - 3a_{n-1}) \le \frac{1}{4} (4 - 3a) = 0$$
 car $a_{n-1} \ge a$.

Donc la suite $(a_n)_{n\geq 1}$ est convergente avec limite $a=\frac{4}{3}$.

Remarque: les fonctions g dans i) et ii) étant affines, ces deux exercices peuvent aussi être résolus en utilisant le théorème vu au $\S 2.13$ du cours.

iii) Si la limite $\lim_{n\to\infty} a_n = a$ existe, elle satisfait l'équation (utiliser les propriétés algébriques comme précédemment)

$$a = \frac{7}{3} - \frac{1}{1+a} \iff 1 = \left(\frac{7}{3} - a\right) \left(1+a\right) \iff 0 = \frac{4}{3} + \frac{4}{3}a - a^2 \iff 3a^2 - 4a - 4 = (3a+2)(a-2) = 0 \iff a = 2 \text{ ou } a = -\frac{2}{3}.$$

On montre par récurrence que $a_n \ge 0$ pour tout $n \in \mathbb{N}^*$. On a $a_1 = 1 \ge 0$. Si $a_{n-1} \ge 0$, alors

$$a_n = \frac{7}{3} - \frac{1}{1 + a_{n-1}} \ge \frac{7}{3} - 1 = \frac{4}{3} \ge 0.$$

Ainsi la seule limite possible est a = 2.

On montre alors (encore par récurrence) que la suite est majorée par a=2. On a $a_1=1\leq a$. Si $0\leq a_{n-1}\leq a$, on a alors

$$a_n = \frac{7}{3} - \frac{1}{1+a_{n-1}} \le \frac{7}{3} - \frac{1}{1+a} = 2 = a$$
.

Montrons que la suite est croissante. Pour $n = 2, 3, \ldots$ on a

$$a_n - a_{n-1} = \frac{7}{3} - \frac{1}{1 + a_{n-1}} - a_{n-1} \ge \frac{7}{3} - \frac{1}{1 + a} - a = 0$$
 car $0 \le a_{n-1} \le a$.

En étant croissante et majorée, la suite $(a_n)_{n\geq 1}$ est donc convergente avec limite a=2.

iv) Si la limite $a = \lim_{n \to \infty} a_n$ existe, elle satisfait l'équation

$$a = 1 + \frac{1}{2}a^2 - \frac{1}{2}a\,, (2)$$

parce qu'en utilisant les propriétés algébriques de la limite, on a

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{2} a_{n-1}^2 - \frac{1}{2} a_{n-1} \right) = \lim_{n \to \infty} 1 + \frac{1}{2} \lim_{n \to \infty} a_{n-1}^2 - \frac{1}{2} \lim_{n \to \infty} a_{n-1}$$
$$= 1 + \frac{1}{2} \left(\lim_{n \to \infty} a_{n-1} \right)^2 - \frac{1}{2} \lim_{n \to \infty} a_{n-1}.$$

L'équation (2) est équivalente à

$$a^{2} - 3a + 2 = (a - 1)(a - 2) = 0$$
,

donc a = 1 ou a = 2.

On a

$$a_2 = 1 + \frac{1}{2} \left(\frac{3}{2}\right)^2 - \frac{1}{2} \cdot \frac{3}{2} = 1 + \frac{9}{8} - \frac{3}{4} = \frac{11}{8} < \frac{12}{8} = \frac{3}{2} = a_1$$
.

Montrons par récurrence que la suite est minorée par 1. On a

$$a_1 = \frac{3}{2} \ge 1,$$

et si $a_{n-1} \ge 1$, il suit que

$$a_n = 1 + \frac{1}{2}a_{n-1}^2 - \frac{1}{2}a_{n-1} = 1 + \frac{1}{2}a_{n-1}(a_{n-1} - 1) \ge 1$$
.

Montrons par récurrence que la suite est décroissante. On a déjà montré que $a_2 \le a_1$. Supposons donc $a_n \le a_{n-1}$. Puisque la suite est minorée par 1, on obtient

$$0 < a_n - 1 < a_{n-1} - 1$$
,

et donc

$$a_n(a_n-1) \le a_{n-1}(a_{n-1}-1)$$
,

et finalement

$$a_{n+1} = 1 + \frac{1}{2}a_n^2 - \frac{1}{2}a_n = 1 + \frac{1}{2}a_n(a_n - 1) \le 1 + \frac{1}{2}a_{n-1}(a_{n-1} - 1) = a_n$$

La suite $(a_n)_{n\geq 1}$ est donc décroissante et minorée. Ainsi elle est convergente et sa limite est $a=\lim_{n\to\infty}a_n=1$.

Exercice 3.

Q1: FAUX.

Prendre par exemple $a_n = \sqrt{n}$ pour tout $n \in \mathbb{N}$. Alors

$$|a_{n+1} - a_n| = \sqrt{n+1} - \sqrt{n} = \frac{\left(\sqrt{n+1} - \sqrt{n}\right)\left(\sqrt{n+1} + \sqrt{n}\right)}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

converge vers 0 mais (a_n) n'est évidemment pas bornée.

Q2: VRAI.

Comme la suite est de Cauchy, elle converge vers $a \in \mathbb{R}$. Il existe alors C > 0 tel que $|a_n - a| < C$ pour tout $n \in \mathbb{N}$. Ainsi $|a_m - a_n| \le |a_m - a| + |a - a_n| < 2C$ pour tout $m, n \in \mathbb{N}$. On peut donc prendre $\varepsilon = 2C$ dans la proposition.

Q3: VRAI.

Découle de la deuxième inégalité triangulaire de la valeur absolue: $|a_n| - |a_m| \le |a_n - a_m|$ pour tout $m, n \in \mathbb{N}$.

Exercice 4.

Q1: FAUX.

Prendre par exemple la suite constante $a_n = 1$ pour tout $n \in \mathbb{N}$. Alors $1 = \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \sup a_n = \lim_{n \to \infty} \inf a_n$.

Q2: VRAI.

Comme $0 \le \liminf_{n \to \infty} |a_n| \le \limsup_{n \to \infty} |a_n|$, on a $\liminf_{n \to \infty} |a_n| = \limsup_{n \to \infty} |a_n| = 0$. Ainsi $\lim_{n \to \infty} |a_n| = 0$ et donc (a_n) converge vers zéro aussi.

Q3: FAUX.

Prendre par exemple $a_n = \frac{1}{n} \ge 0$ pour tout $n \in \mathbb{N}^*$. Alors $\sup A_n = \sup \left\{ \frac{1}{n}, \frac{1}{n+1}, \dots \right\} = \frac{1}{n}$ (cf. cours pour les détails), d'où $\limsup_{n \to \infty} a_n = 0$.

Q4: FAUX.

Prendre par exemple $a_n = (-1)^n - 1$ et $b_n = (-1)^n + 1$. Alors $\sup A_n = \sup \{0, -2\} = 0$ et $\inf \{2, 0\} = 0$ pour tout $n \in \mathbb{N}$, mais $a_n - b_n = -2$ pour tout $n \in \mathbb{N}$.

Exercice 5.

Q1: VRAI.

 $(|a_n|)$ est décroissante et minorée par 0.

Q2: FAUX.

Prendre par exemple $a_n = (-1)^n \frac{n+1}{n}$ pour $n \in \mathbb{N}^*$ et $a_0 = 3$. Comme cette suite alterne $(a_n a_{n+1} < 0)$ et que $\lim_{n \to \infty} |a_n| = 1$, elle ne converge pas.

Q3: VRAI.

 $(|a_n|)$ est bornée puisque $|a_n| < |a_0|$ pour tout $n \in \mathbb{N}$. Ainsi $(a_n) \subset]-|a_0|, |a_0|$ [est aussi bornée. Par le théorème de Bolzano-Weierstrass, toute suite bornée admet une sous-suite convergente.

Q4: VRAI.

Comme ($|a_n|$) converge (cf. Q1), la suite des carrés (a_n^2) converge aussi: $\lim_{n\to\infty} a_n^2 = \lim_{n\to\infty} |a_n|^2 = \left(\lim_{n\to\infty} |a_n|\right)^2$. Ainsi $\lim_{n\to\infty} a_n^2 = \lim_{n\to\infty} \inf a_n^2 = \limsup_{n\to\infty} a_n^2$.

Q5: VRAI.

Si a est un point d'accumulation, il existe une sous-suite (a_{n_k}) de (a_n) telle que $\lim_{k\to\infty}a_{n_k}=a$. Comme $||a_{n_k}|-|a||\leq |a_{n_k}-a|$ (2^e inégalité triangulaire), il suit que $\lim_{k\to\infty}|a_{n_k}|=|a|$.

Or, $(|a_{n_k}|)$ est une sous-suite de $(|a_n|)$ et on sait par la Q1 que cette dernière converge. Soit donc $\ell = \lim_{n \to \infty} |a_n|$. Ainsi pour tout $\varepsilon > 0$ il existe $n_0 \in \mathbb{N}$ tel que $||a_n| - \ell| < \varepsilon$ pour $n \ge n_0$. Comme $k \ge n_0$ implique $n_k \ge n_0$, on a $||a_{n_k}| - \ell| < \varepsilon$ pour $k \ge n_0$, d'où $\ell = |a|$ par unicité de la limite. Finalement $a = \pm \ell$, c.-à-d. a peut prendre au plus deux valeurs distinctes.

Echauffement 2.

i) Pour la série géométrique, le critère de d'Alembert s'écrit (pour $q \neq 0$)

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{q^{n+1}}{q^n} \right| = |q|.$$

Donc par le critère, la série géométrique converge absolument si |q| < 1 (la convergence absolue pour q = 0 est triviale) et diverge si |q| > 1. Si |q| = 1, la série diverge aussi, car $\lim_{n \to \infty} a_n \neq 0$.

ii) Le critère de Cauchy appliqué à la série géométrique s'écrit

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|q^n|} = |q|.$$

Donc par le critère, la série converge absolument pour |q| < 1 et diverge pour |q| > 1. Si |q| = 1, la série diverge aussi, car $\lim_{n \to \infty} a_n \neq 0$.

Exercice 6.

i) Par le critère de Cauchy, la série converge (absolument), car

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left| \frac{3n+2}{4n+5} \right| = \lim_{n \to \infty} \frac{3n+2}{4n+5} = \frac{3}{4} < 1.$$

ii) Par le critère de d'Alembert, la série converge (absolument), car

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^4}{3n^4} \right| = \lim_{n \to \infty} \frac{(n+1)^4}{3n^4} = \frac{1}{3} < 1.$$

- iii) Cette série converge par le critère de Leibniz. En effet, $a_n = \frac{(-1)^n}{3n-2}$ satisfait les trois conditions de ce critère:
 - le signe de a_n change avec la parité de n,
 - la suite des valeurs absolues $|a_n| = \frac{1}{3n-2}$ est décroissante,
 - $\bullet \lim_{n\to\infty} a_n = 0.$

Noter que la série des valeurs absolues $\sum_{n=1}^{\infty} |a_n|$ ne converge pas parce que $\frac{1}{3n-2} \ge \frac{1}{3n}$ et que la série harmonique $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

iv) On a

$$\sqrt{n^2 + 7} - n = \frac{\left(\sqrt{n^2 + 7} - n\right)\left(\sqrt{n^2 + 7} + n\right)}{\sqrt{n^2 + 7} + n} = \frac{7}{\sqrt{n^2 + 7} + n}.$$

Observons que pour n > 3, on a $n^2 + 7 < (n+1)^2$ et donc

$$\frac{7}{\sqrt{n^2+7}+n} > \frac{7}{\sqrt{(n+1)^2+n}} > \frac{7}{3n} .$$

Comme la série $\sum_{n=1}^{\infty} \frac{7}{3n} = \frac{7}{3} \sum_{n=1}^{\infty} \frac{1}{n}$ diverge, la série initiale diverge aussi par le critère de comparaison.

v) On a

$$1 - \cos\left(\frac{\pi}{n+1}\right) \stackrel{\text{(1)}}{=} 2\sin\left(\frac{\pi}{2(n+1)}\right)^2 \stackrel{\text{(2)}}{\le} 2\left(\frac{\pi}{2(n+1)}\right)^2 = \frac{\pi^2}{2(n+1)^2} < \frac{\pi^2}{2}\frac{1}{n^2},$$

où on a utilisé la trigonométrie en $^{(1)}$ et l'inégalité $\sin(x) \leq x$ pour $x \geq 0$ en $^{(2)}.$

Comme la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, la série $\sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{\pi}{n+1}\right)\right)$ converge (absolument) par le critère de comparaison.

- vi) Cette série diverge car $\lim_{n\to\infty} \frac{n(n+4)(n-3)}{7n^3+n+2} = \frac{1}{7} \neq 0$ (critère nécessaire).
- vii) On a pour tout $n \ge 1$

$$0 < \frac{\sqrt{n+4} - \sqrt{n}}{n} = \frac{4}{n(\sqrt{n+4} + \sqrt{n})} < \frac{2}{n^{3/2}}.$$

Par le critère de comparaison, la série $\sum_{n=1}^{\infty} \frac{\sqrt{n+4}-\sqrt{n}}{n}$ converge (absolument) car

 $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converge. Ceci se démontre comme pour la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$: la suite des sommes

partielles $s_n = \sum_{k=1}^n \frac{1}{k^{3/2}}$ est croissante et bornée car pour n = 2m(+1) selon la parité

$$\begin{split} s_n &= 1 + \left(\frac{1}{2^{3/2}} + \frac{1}{3^{3/2}}\right) + \left(\frac{1}{4^{3/2}} + \frac{1}{5^{3/2}}\right) + \dots + \begin{cases} \left(\frac{1}{(2m)^{3/2}} + \frac{1}{n^{3/2}}\right), & n \text{ impair} \\ \frac{1}{(2m)^{3/2}}, & n \text{ pair} \end{cases} \\ &\leq 1 + 2\left(\frac{1}{2^{3/2}} + \frac{1}{4^{3/2}} + \dots + \frac{1}{(2m)^{3/2}}\right) \quad \text{vrai dans les deux cas} \\ &\leq 1 + \frac{2}{2^{3/2}}\left(1 + \frac{1}{2^{3/2}} + \dots + \frac{1}{m^{3/2}}\right) = 1 + \frac{1}{\sqrt{2}} \, s_m \leq 1 + \frac{1}{\sqrt{2}} \, s_n \end{split}$$

et donc $s_n \le \frac{1}{1 - \frac{1}{\sqrt{2}}} = \frac{\sqrt{2}}{\sqrt{2} - 1}$.

viii) $\underline{d=1}: a_n = \frac{n!}{n!} = 1$. La série diverge, car pour une série convergente on a $\lim_{n \to \infty} a_n = 0$ (critère nécessaire pour la convergence).

On écrit

$$\sum_{n=0}^{\infty} \frac{(n!)^d}{(dn)!} = 1 + \frac{1}{d!} + \sum_{n=2}^{\infty} \frac{(n!)^d}{(dn)!}$$

 $\underline{d=2}$: Pour $n \geq 2$ on a

$$0 \le a_n = \frac{(n!)^2}{(2n)!}$$

$$= \frac{(n!)^2}{2^n n! (2n-1)(2n-3) \cdots 3}$$

$$\le \frac{n!}{2^n (2n-2)(2n-4) \cdots 2}$$

$$= \frac{n!}{2^n 2^{n-1} (n-1)!}$$

$$= \left(\frac{1}{4}\right)^n 2n =: b_n$$

La série converge par le critère de comparaison car la série $\sum_{n=2}^{\infty} b_n$ converge. En effet, par le critère de d'Alembert

$$\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \left| \frac{1}{4} \frac{2(n+1)}{2n} \right| = \frac{1}{4} < 1.$$

 $\underline{d=3}$: Ce cas est très similaire au cas d=2. Pour $n\geq 2$ on a

$$0 \le a_n = \frac{(n!)^3}{(3n)!}$$

$$= \frac{(n!)^3}{3^n n! (3n-1)(3n-2)(3n-4)(3n-5) \cdots}$$

$$\le \frac{(n!)^3}{3^n n! (3n-3)(3n-3)(3n-6)(3n-6) \cdots}$$

$$\le \frac{(n!)^3}{3^{n+2(n-1)}(n-1)!^2}$$

$$= \left(\frac{1}{27}\right)^n 9n^2 =: b_n$$

avec les mêmes conclusions.

Une deuxième possibilité qui s'applique à tous les valeurs de d>1 est d'utiliser directement le critère de d'Alambert. On a

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| a_{n+1} \frac{1}{a_n} \right| = \lim_{n \to \infty} \left| \frac{((n+1)!)^d}{(d(n+1))!} \frac{(dn)!}{(n!)^d} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)^d (n!)^d}{(dn+d) \cdots (dn+1)(dn)!} \frac{(dn)!}{(n!)^d} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^d}{(dn+d) \cdots (dn+1)} \right| = \frac{1}{d^d}$$

et $\frac{1}{d^d} < 1$ pour d > 1.

Exercice 7.

$$i) -\sum_{k=1}^{\infty} \left(-\frac{1}{2}\right)^k = -\sum_{k=0}^{\infty} \left(-\frac{1}{2}\right)^k + 1 = 1 - \frac{1}{1 + \frac{1}{2}} = 1 - \frac{2}{3} = \frac{1}{3}.$$

ii)
$$\sum_{k=2}^{\infty} \left(-\frac{1}{3} \right)^k = \sum_{k=0}^{\infty} \left(-\frac{1}{3} \right)^k - 1 + \frac{1}{3} = \frac{1}{1 + \frac{1}{3}} - \frac{2}{3} = \frac{3}{4} - \frac{2}{3} = \frac{1}{12}.$$

Exercice 8.

On distingue pour chacun des deux critères les cas de convergence et de divergence.

Critère de Cauchy - cas convergent.

Le but est de trouver une suite (b_n) de la forme $b_n = Cq^n$ avec |q| < 1 et C > 0 telle que $|a_n| \le b_n$ pour tout $n \in \mathbb{N}$.

Soit $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho < 1$. On choisit q tel que $\rho < q < 1$ (par exemple $q = \frac{1+\rho}{2}$, mais la valeur précise n'a pas d'importance ici). Puisque la limite $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ existe, on peut trouver un entier naturel $n_0 \ge 1$ tel que $\sqrt[n]{|a_n|} < q$ pour tout $n \ge n_0$ (en effet, écrire la définition de la limite de $\sqrt[n]{|a_n|}$ pour $\varepsilon = q - \rho > 0$). Par conséquent on a

$$|a_n| \le q^n$$
 pour tout $n \ge n_0$.

Il reste à choisir la constante C > 0 de sorte que les termes $|a_n|$ pour $n < n_0$ soient aussi inférieurs au b_n correspondants, c.-à-d. que

$$|a_0| \le C$$
, $|a_1| \le Cq$, ..., $|a_{n_0-1}| \le Cq^{n_0-1}$

ce qui revient à choisir $C \ge \max\left\{1, |a_0|, \frac{|a_1|}{q}, \dots, \frac{|a_{n_0-1}|}{q^{n_0-1}}\right\}$. Ainsi on a

$$|a_n| \le b_n := Cq^n$$
 pour tout $n \ge 0$,

ce qui implique la convergence de la série $\sum_{n=0}^{\infty} |a_n|$, car

$$\sum_{n=0}^{\infty} |a_n| = \lim_{n \to \infty} \sum_{k=0}^{n} |a_k| \le \lim_{n \to \infty} \left(C \sum_{k=0}^{n} q^k \right) = C \sum_{k=0}^{\infty} q^k = \frac{C}{1 - q} .$$

Critère de Cauchy - cas divergent.

Dans ce cas on veut trouver (b_n) avec |q| > 1 telle que $|a_n| \ge b_n$ pour tout $n \in \mathbb{N}$.

Soit $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho > 1$. On choisit q tel que $\rho > q > 1$. Il existe un entier naturel n_0 tel que $\sqrt[n]{|a_n|} > q$ pour tout $n \ge n_0$ (écrire la définition de la limite pour $\varepsilon = \rho - q > 0$). Par conséquent on a

$$|a_n| \ge q^n$$
 pour tout $n \ge n_0$. (3)

Pour avoir en plus

$$|a_0| \ge C$$
, $|a_1| \ge Cq$, ..., $|a_{n_0-1}| \ge Cq^{n_0-1}$,

on pose
$$C=\min\Big\{1,|a_0|,\frac{|a_1|}{q},\dots,\frac{|a_{n_0-1}|}{q^{n_0-1}}\Big\}$$
. Ainsi
$$|a_n|\geq Cq^n\quad \text{pour tout } n\geq 0$$

et donc la série $\sum_{n=0}^{\infty} |a_n|$ diverge parce que

$$\sum_{n=0}^{\infty} |a_n| = \lim_{n \to \infty} \sum_{k=0}^{n} |a_k| \ge \lim_{n \to \infty} \left(C \sum_{k=0}^{n} q^k \right) = C \sum_{k=0}^{\infty} q^k = \infty.$$

Remarque: Pour montrer la divergence de la série sans passer par le critère de comparaison, il suffit de constater à partir de (3) que $\lim_{n\to\infty} a_n \neq 0$. Ainsi la série $\sum_{n=0}^{\infty} |a_n|$ diverge parce que le critère nécessaire pour la convergence n'est pas satisfaite.

Critère de d'Alembert - cas convergent.

La stratégie est la même que pour le cas convergent du critère de Cauchy.

Si $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \rho < 1$, choisir q tel que $\rho < q < 1$. Il existe un entier naturel n_0 tel que $\left|\frac{a_{n+1}}{a_n}\right| < q$ pour tout $n \ge n_0$ (poser $\varepsilon = \rho - q$). Par conséquent on a pour tout $n \ge n_0$

$$|a_n| \le |a_{n-1}| q \le |a_{n-2}| q^2 \le \dots \le |a_{n_0}| q^{n-n_0} = \frac{|a_{n_0}|}{q^{n_0}} q^n.$$

Pour les autres termes de la suite on doit de nouveau avoir

$$|a_0| \le C$$
, $|a_1| \le Cq$, ..., $|a_{n_0-1}| \le Cq^{n_0-1}$

si bien qu'on doit choisir une constante $C \ge \max\left\{\frac{|a_{n_0}|}{q^{n_0}}, |a_0|, \frac{|a_1|}{q}, \dots, \frac{|a_{n_0-1}|}{q^{n_0-1}}\right\}$. Ainsi

$$|a_n| \le b_n := Cq^n$$
 pour tout $n \ge 0$.

Ceci implique comme pour le critère de Cauchy la convergence de la série $\sum_{n=0}^{\infty} |a_n|$.

Critère de d'Alembert - cas divergent.

Même stratégie que pour le critère de Cauchy.

Soit $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \rho > 1$. On choisit q tel que $\rho > q > 1$. Il existe un entier naturel n_0 tel que $\left|\frac{a_{n+1}}{a_n}\right| > q$ pour tout $n \ge n_0$ (poser $\varepsilon = \rho - q > 0$). Par conséquent on a pour tout $n \ge n_0$

$$|a_n| \ge |a_{n-1}| q \ge |a_{n-2}| q^2 \ge \dots \ge |a_{n_0}| q^{n-n_0} = \frac{|a_{n_0}|}{q^{n_0}} q^n.$$

Pour avoir en plus

$$|a_0| \ge C$$
, $|a_1| \ge Cq$, ..., $|a_{n_0-1}| \ge Cq^{n_0-1}$,

on pose $C = \min \left\{ \frac{|a_{n_0}|}{q^{n_0}}, |a_0|, \frac{|a_1|}{q}, \dots, \frac{|a_{n_0-1}|}{q^{n_0-1}} \right\}$. Ainsi

$$|a_n| \ge Cq^n$$
 pour tout $n \ge 0$

et donc la série $\sum_{n=0}^{\infty} |a_n|$ diverge comme pour le critère de Cauchy.

Exercice 9.

Q1: VRAI.

Comme la série converge, on a $\lim_{n\to\infty} (-1)^n a_n = 0$ par le critère nécessaire. Ainsi $0 = \lim_{n\to\infty} |(-1)^n a_n| = \lim_{n\to\infty} |a_n|$. La proposition en suit par le théorème des deux gendarmes.

Q2: FAUX.

Prendre par exemple la suite $a_n = \frac{1}{n}$. Elle converge vers 0, mais on a vu au cours que la série harmonique diverge.

Noter que cet énoncé est la réciproque du critère nécessaire pour la convergence qui justement est seulement nécessaire mais pas suffisant.

Q3: VRAI.

Comme $|(-1)^n a_n| = |a_n|$ et que $\sum_{n=1}^{\infty} |a_n|$ converge, la série $\sum_{n=1}^{\infty} (-1)^n a_n$ converge par le critère de comparaison.

Q4: FAUX.

Prendre par exemple la suite $a_n = -n$ qui est strictement décroissante. Comme $(-1)^n a_n = (-1)^{n+1} n$ ne converge pas vers zéro, la série diverge.

Q5: FAUX.

Prendre par exemple la suite $a_n = \frac{(-1)^n}{\sqrt{n}}$. Par le critère de Leibniz, la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converge. Par contre $a_n^2 = \frac{1}{n}$ et on obtient la série harmonique qui diverge.

Q6: VRAI.

Comme $\lim_{n\to\infty} |a_n| = 0$, il existe $n_0 \in \mathbb{N}^*$ tel que $|a_n| < 1$ pour tout $n \ge n_0$ (définition de la convergence avec $\varepsilon = 1$). Donc $|a_n|^2 < |a_n|$ pour tout $n \ge n_0$ et ainsi la série $\sum_{n=1}^{\infty} |a_n|^2 = \sum_{n=1}^{\infty} a_n^2$ converge par le critère de comparaison.

Remarque: Ici l'hypothèse du critère de comparaison n'est vérifiée que pour $n \geq n_0$ et pas pour tout n comme énoncé au cours. Cet assouplissement n'affecte pourtant pas la conclusion. En effet, on peut "découper" la série à $n=n_0$ en une somme d'un nombre fini de termes et une série commençant en n_0 qui converge par le critère de comparaison.

Q7: FAUX.

On a pour tout $n \ge 1$ que $\sqrt{n} \le n$ et donc $\frac{1}{n} \le \frac{1}{\sqrt{n}}$. Comme la série harmonique diverge, on conclut par le critère de comparaison que la série en question diverge aussi.

11