White Noise Approach to Stochastic Integration

Hui-Hsiung Kuo* and Andrzej Russek

Louisiana State University

Communicated by P. R. Krishnaiah

1. Introduction

The well-known Ito integral

$$\int_a^b \phi(t,\omega) dB(t,\omega)$$

with respect to a Brownian motion $B(t, \omega)$ is defined for $\phi(t, \omega)$ satisfying the following conditions:

- (i) ϕ is nonanticipating.
- (ii) $\int_a^b |\phi(t \omega)|^2 dt < \infty$, ω -almost surely.

The purpose of this paper is to extend the Ito integral by using the white noise calculus. This approach is motivated by the following three considerations:

- (A) Extension of the Ito integral to not necessarily nonanticipating integrand $\phi(t, \omega)$. This was done first by Ito [9] using the stochastic integrals whith respect to a quasi-martingale. It has also been studied by Skorohod [16], Huang and Cambanis [7], and Berger and Mizel [2].
- (B) An open problem on the series expansion of the Ito integral. Suppose $\{e_k(t); k=1, 2, ...\}$ is an orthonormal basis for $L^2(a, b)$. Then by condition (ii) on ϕ , we can expand ϕ by

$$\phi(t, \omega) = \sum_{k=1}^{\infty} a_k(\omega) e_k(t),$$

where $a_k(\omega) = \int_a^b \phi(t, \omega) \, \overline{e_k(t)} \, dt$. It has been an open problem as to whether

Received February 13, 1986.

AMS 1980 subject classifications: 60H05, 60J65.

Key words and phrases: white noise calculus, stochastic integration, Ito integral.

* Research supported by NSF Grant DMS-8501775.

in \mathbb{R}^n of radius one. For a sequence C_i of nonempty subsets of \mathbb{R}^n , the topological limit inferior is given by

$$\lim \inf C_i = \{x: x = \lim x_i, \text{ with } x_i \text{ in } C_i \text{ for all } i\},\$$

and the topological limit superior is given by

$$\lim \sup C_i = \{x: x = \lim x_i, \text{ with } x_i \text{ in } C_i, \text{ a subsequence of } C_i \}.$$

We say that C_i lower semiconverges to C if $\lim \inf C_i$ includes C; we say that C_i upper semiconverges to C if $\limsup C_i$ is included in the closure of C. (These semiconvergences are sometimes called lower and upper convergences.) We say that C_i converges to C if it is both lower and upper semiconvergent to C; then we write $C = \lim C_i$. Note that the limit does not distinguish between a set and its closure.

The convergence of sets is metrizable, or rather semi-metrizable since we allow non-closed sets. The induced topology is the convergence in the Hausdorff distance for a one-point compactification of R^n . We seldom need an explicit metric; when needed, we adopt the stereographic Hausdorff distance (see [10, p. 25]), denoted by haus^s(\cdot , \cdot). The Hausdorff distance between two bounded sets is denoted by haus(\cdot , \cdot).

Let Ω be a complete separable metric space, with metric $d(\cdot, \cdot)$. A multifunction Γ is a mapping that assigns to each ω in Ω a subset $\Gamma(\omega)$ of \mathbb{R}^n . The multifunction is upper semicontinuous (respectively lower semicontinuous, or continuous) at ω_0 if $\omega_i \to \omega_0$ in Ω implies that $\Gamma(\omega_i)$ upper semiconverge (respectively lower semiconverge, or converge) to $\Gamma(\omega_0)$.

Consider now the space Ω with its Borel σ -field Σ . A multifunction Γ is measurable if for every open set G in R^n the set $\Gamma^-(G) = \{\omega \colon \Gamma(\omega) \cap G \neq \emptyset\}$ is in Σ .

For a set D in R^n we denote by int D its interior, by cl D its closure, and by co D its convex hull (namely the set of convex combinations of elements in D, which may not be closed even if D is closed). We set $||D|| = \sup\{|x| : x \text{ in } D\}$ and leas $D = \inf\{|x| : x \text{ in } D\}$. If Γ is a multifunction we write co Γ for the multifunction (co Γ)(ω) = co(Γ (ω)); the multifunctions cl Γ and leas Γ are defined similarly. We say that Γ is bounded if $||\Gamma(\omega)||$ is a bounded real function.

The support function of a set D, denoted by s(v, D) and defined for v in R^n , is given by

$$s(v, D) = \sup\{v \cdot x : x \text{ in } D\}.$$

The Minkowski sum C+D of two subsets in \mathbb{R}^n is $\{x+y: x \text{ in } C, y \text{ in } D\}$. A generalization of that is the integral of a multifunction Γ with respect to a probability measure P, introduced by Aumann [2]. We denote

Moreover, it will be shown that the series in Eq. (1) converges not to the Ito integral, but to the Stratonovich integral

$$\int_{a}^{b} \phi(t,\omega) \circ dB(t) = \frac{1}{2} \left[\int_{a}^{b} \phi(t,\omega) dB(t+,\omega) + \int_{a}^{b} \phi(t,\omega) dB(t-,\omega) \right].$$

2. THE WHITE NOISE CALCULUS

Let \mathscr{S} be the Schwartz space of rapidly decreasing smooth functions on \mathbb{R} . The dual space \mathscr{S}^* of \mathscr{S} consists of the tempered distributions and carries a Gaussian measure μ with the characteristic functional given by

$$\int_{\mathscr{C}^*} e^{i(\omega,\,\xi)} \, d\mu(\omega) = \exp[-\|\xi\|^2/2], \qquad \xi \in \mathscr{S},$$

where $\|\cdot\|$ denotes the $L^2(\mathbb{R})$ -norm. Note that $\mathscr{S} \subset L^2(\mathbb{R}) \subset \mathscr{S}^*$. Define

$$B(t,\omega) = \begin{cases} \langle \omega, 1_{(0,t]} \rangle, & t \ge 0, \quad \omega \in \mathcal{S}^* \\ -\langle \omega, 1_{(t,0)} \rangle, & t < 0, \quad \omega \in \mathcal{S}^*. \end{cases}$$

Then $B(t, \omega)$, $t \in \mathbb{R}$, $\omega \in \mathcal{S}^*$, is a Brownian motion and $\dot{B} = \omega$. Thus (\mathcal{S}^*, μ) can be regarded as a realization of white noise.

By the Wiener-Ito theorem, $L^2(\mathcal{S}^*)$ has the following orthogonal decomposition

$$L^2(\mathscr{S}^*) = \sum_{n=0}^{\infty} \bigoplus K_n,$$

where $K_0 = \mathbb{R}$ and K_n consists of multiple Wiener integrals ϕ of order n, i.e.,

$$\phi(\omega) = \int_{\mathbb{R}^n} f(t_1, ..., t_n) dB(t_1, \omega) \cdots dB(t_n, \omega), \qquad \omega \in \mathscr{S}^*$$
 (4)

with $f \in \hat{L}^2(\mathbb{R}^n)$, the symmetric L^2 -functions on \mathbb{R}^n .

The S-transform on $L^2(\mathcal{S}^*)$ is defined by

$$S\phi(\xi) = \int_{\mathscr{L}^*} \phi(\omega + \xi) \ d\mu(\omega), \qquad \xi \in \mathscr{S}, \ \phi \in L^2(\mathscr{S}^*).$$

It can be checked easily that if ϕ is the multiple Wiener integral of f as in Eq. (4), then its S-transform is given by

$$(S\phi)(\xi) = \int_{mn} f(t_1, ..., t_n) \, \xi(t_1) \cdots \xi(t_n) \, dt_1 \cdots dt_n \,. \tag{5}$$

Moreover, if ϕ and ψ in K_n are multiple Wiener integrals of f and g, respectively, then

$$(\phi, \psi) = n! (f, g). \tag{6}$$

Let $H^{\alpha}(\mathbb{R}^n)$ denote the Sobolev space of order α , $\alpha \geqslant 0$, of functions defined on \mathbb{R}^n . Let $\hat{H}^{\alpha}(\mathbb{R}^n) = H^{\alpha}(\mathbb{R}^n) \cap \hat{L}^2(\mathbb{R}^n)$ and $\hat{H}^{-\alpha}(\mathbb{R}^n)$ be the dual space of $\hat{H}^{\alpha}(\mathbb{R}^n)$. Then we have the continuous inclusions $\hat{H}^{\alpha}(\mathbb{R}^n) \subset \hat{L}^2(\mathbb{R}^n) \subset \hat{H}^{-\alpha}(\mathbb{R}^n)$.

Let $\{\alpha_n; n \ge 1\}$ be a sequence of nonnegative numbers. For each $n \ge 1$, let $K_n^{(\alpha_n)}$ consist of multiple Wiener integrals of functions in $\hat{H}^{\alpha_n}(\mathbb{R}^n)$. The dual space $K_n^{(-\alpha_n)}$ of $K_n^{(\alpha_n)}$ consists of the generalized multiple Wiener integrals [5] of functions in $\hat{H}^{-\alpha_n}(\mathbb{R}^n)$. Define

$$(L^2)^+_{\{\alpha_n\}} = \sum_{n=0}^{\infty} \bigoplus K_n^{(\alpha_n)},$$

$$(L^2)^-_{\{\alpha_n\}} = \sum_{n=0}^{\infty} \bigoplus K_n^{(-\alpha_n)},$$

where $K_0^{(\alpha_0)} = K_0^{(-\alpha_0)} = \mathbb{R}$. Obviously, we have

$$(L^2)^+_{\{\alpha_n\}} \subset L^2(\mathscr{S}^*) \subset (L^2)^-_{\{\alpha_n\}}$$

for any choice of the sequence $\{\alpha_n\}$. It can be shown that for each $t \in \mathbb{R}$, $\dot{B}(t) \in K_1^{(-1)}$. The white noise calculus is the analysis of the space $(L^2)_{\{\alpha_n\}}^{-}$ of generalized Brownian functionals with $\{\dot{B}(t); t \in \mathbb{R}\}$ as a coordinate system. The coordinate differentiation $\partial_t \equiv \partial/\partial \dot{B}(t)$ is defined as follows. Let U be the S-transform of ϕ in $L^2(\mathcal{S}^*)$. Suppose the first variation ∂U of U is given by

$$(\delta U)_{\xi}(\eta) = \int_{\mathbb{R}} U'_{\xi}(u) \, \eta(u) \, du, \qquad \xi, \, \eta \in \mathcal{S},$$

and that $U'_{(\cdot)}(t)$ is the S-transform of $\psi(t)$ in $L^2(\mathcal{S}^*)$. Then we define $\partial_t \phi = \psi(t)$. If $\phi \in K_n^{(\alpha_n)}$, $\alpha_n > \frac{1}{2}$, is given by Eq. (4), then for every t, the trace $f(t, u_1, ..., u_{n-1})$ exists and $f(t, \cdot) \in L^2(\mathbb{R}^{n-1})$ [1, p. 216; or 15, p. 41]. Moreover, it can be checked from Eq. (5) that

$$\partial_t \phi = n \int_{\mathbb{R}^{n-1}} f(t, u_1, ..., u_{n-1}) dB(u_1) \cdots dB(u_{n-1}).$$
 (7)

The adjoint operator ∂_t^* of ∂_t is defined by duality:

$$\langle \partial_i^* \phi, \psi \rangle = \langle \phi, \partial_i \phi \rangle, \qquad \phi \in (L^2)^-_{\{\alpha_n\}}, \psi \in (L^2)^+_{\{\alpha_n\}}.$$

It can be shown that if $\phi \in K_n$ is given by Eq. (4), then

$$\hat{\partial}_t^* \phi = \int_{\mathbb{R}^{n+1}} \delta_t \, \hat{\otimes} \, f(u_1, ..., u_{n+1}) \, dB(u_1) \cdots dB(u_{n+1}),$$

where $\hat{\otimes}$ denotes the symmetric tensor product. It follows from this equation that if $\phi(t, \omega)$ is the multiple Wiener integral of $f(t; u_1, ..., u_n)$, $a \le t \le b$, then

$$\int_{a}^{b} \hat{\partial}_{t}^{*} \phi(t) dt = \int_{\mathbb{R}^{n+1}} \hat{h}(u_{1}, ..., u_{n+1}) dB(u_{1}) \cdots dB(u_{n+1}), \tag{8}$$

where \hat{h} is the symmetrization of

$$h(u_1, ..., u_{n+1}) = 1_{(a,b]}(u_1) f(u_1; u_2, ..., u_{n+1}).$$

In the later sections, we need a special case of the product formula [11]. Suppose ϕ is the multiple Wiener integral of f, $f \in \hat{L}^2(\mathbb{R}^n)$ and ψ is the Wiener integral of g, $g \in L^2(\mathbb{R})$. Then

$$\phi \psi = \int_{\mathbb{R}^{n+1}} f \, \hat{\otimes} \, g(u_1, ..., u_{n+1}) \, dB(u_1) \cdots dB(u_{n+1})$$

$$+ \int_{\mathbb{R}^{n-1}} \left(n \int_{\mathbb{R}} f(u_1, u_2, ..., u_n) \, g(u_1) \, du_1 \right) dB(u_2) \cdots dB(u_n). \tag{9}$$

3. STOCHASTIC INTEGRALS BY WHITE NOISE

We want to define stochastic integrals by using the white noise multiplication. For a Brownian functional $\phi(\omega)$, the $\dot{B}(t)$ -multiplication is defined by $\dot{B}(t) \phi = (\partial_t + \partial_t^*) \phi$ [13, 14]. However, this is defined only t-almost everywhere. Thus when we apply $\dot{B}(t)$ -multiplication to a stochastic process $\phi(t, \omega)$, $\dot{B}(t) \phi(t, \omega)$ may not make sense at all. The problem is caused by $\partial_t \phi(t, \omega)$. Take, for instance, the stochastic integral

$$\int_a^b B(t) dB(t).$$

By using $\dot{B}(t)$ -multiplication, this stochastic integral can be rewritten as

$$\int_a^b B(t) dB(t) = \int_a^b (\partial_t + \partial_t^*) B(t) dt.$$

From Eq. (7), we have $\partial_t(B(s)) = 1_{(0,s]}(t)$. But the Brownian motion B(t) can be also defined by using the interval (0,s) and we would have $\partial_t(B(s)) = 1_{(0,s)}(t)$. Thus $\partial_t(B(t))$ cannot be defined in a unique way.

The above example leads us to define two kinds of white noise differentiation, ∂_{t+} and ∂_{t-} , when we deal with stochastic processes. Let $\phi(t, \omega)$ be a stochastic process, not necessarily nonanticipating. Let $U(t; \xi)$ be the S-transform of $\phi(t)$. Suppose that the first variation δU of U is given by

$$(\delta U)_{\xi}(\eta) = \int_{\mathbb{R}} U'_{\xi}(t; u) \, \eta(u) \, du, \qquad \xi, \, \eta \in \mathcal{S},$$

and that $U'_{(\cdot)}(t;t+)$ is the S-transform of $\psi_+(t)$. Then we define $\partial_{t+} \phi(t) = \psi_+(t)$. Similarly, if $U'_{(\cdot)}(t;t-)$ is the S-transform of $\psi_-(t)$, then we define $\partial_{t-} \phi(t) = \psi_-(t)$. We remark that when the operator ∂_t^* is applied to stochastic processes, there is no distinction between ∂_{t+}^* and ∂_{t-}^* .

DEFINITION 1. Let $\phi(t, \omega)$, $a \le t \le b$, $\omega \in \mathcal{S}^*$, be a stochastic process such that for each t, $\phi(t, \cdot) \in L^2(\mathcal{S}^*)$.

(a) Suppose $\partial_{t+} \phi(t)$ and $\partial_t^* \phi(t)$ exist and are integrable on [a, b]. Then we define

$$\int_a^b \phi(t) dB(t+) = \int_a^b (\partial_{t+} \phi(t) + \partial_t^* \phi(t)) dt.$$

(b) Suppose $\partial_{t-} \phi(t)$ and $\partial_t^* \phi(t)$ exist and are integrable on [a, b]. Then we define

$$\int_a^b \phi(t) dB(t-) = \int_a^b (\partial_{\tau-} \phi(t) + \partial_{\tau}^* \phi(t)) dt.$$

In order to state an existence theorem of the above stochastic integrals, we need some notations. Let

$$D_n^+ = \{(t; u_1, ..., u_n) \in (a, b) \times \mathbb{R}^n; u_1 > t\}$$

$$D_n^- = \{(t; u_1, ..., u_n) \in (a, b) \times \mathbb{R}^n; u_1 < t\}.$$

Let $H^{\alpha}(D_n^+)$ and $H^{\alpha}(D_n^-)$ denote the Sobolev spaces of order α , $\alpha \ge 0$, on the domains D_n^+ and D_n^- , respectively.

Let J_{α}^{+} denote the set of stochastic processes $\phi(t, \omega)$, $a \leq t \leq b$, $\omega \in \mathcal{S}^{*}$, such that

$$\phi(t,\omega) = \sum_{n=0}^{\infty} \phi_n(t,\omega),$$

where $\phi_n(t, \omega)$ is the multiple Wiener integral of $f_n(t; u_1, ..., u_n)$ with $f_n \in H^{\alpha}(D_n^+)$, and

$$\sum_{n=0}^{\infty} (n+1)! \|f_n\|_{H^2(D_n^+)}^2 < \infty.$$
 (10)

Similarly, we define J_{α}^{-} by replacing D_{n}^{+} with D_{n}^{-} .

Remark. $f_n(t; u_1, ..., u_n)$ can be obtained from $\phi(t)$ by the formula

$$f_n(t; u_1, ..., u_n) = \frac{1}{n!} E[\partial_{u_1} \cdots \partial_{u_n} \phi(t)].$$

Thus the condition for $\phi(t, \omega)$ to be in J_{α}^{+} or J_{α}^{-} can be checked analytically without appealing to the Wiener-Ito expansion of ϕ .

Theorem 1. (a) The stochastic integral $\int_a^b \phi(t) dB(t+)$ exists for any $\phi \in J_\alpha^+$ with $\alpha > \frac{1}{2}$.

(b) The stochastic integral $\int_a^b \phi(t) dB(t-)$ exists for any $\phi \in J_{\alpha}^-$ with $\alpha > \frac{1}{2}$.

Proof. Suppose $\phi \in J_{\alpha}^+$, $\alpha > \frac{1}{2}$. Let

$$\phi(t,\,\omega)=\sum_{n=0}^{\infty}\,\phi_n(t,\,\omega),$$

where $\phi_n(t,\omega)$ is the multiple Wiener integral of $f_n(t;u_1,...,u_n)$. By assumption $f_n \in H^{\alpha}(D_n^+)$ Therefore, by the trace theorem [1, p. 216; or 15, p. 41], the trace $f_n(t;t+,u_1,...,u_{n-1}) \in L^2((a,b) \times \mathbb{R}^{n-1})$. Hence $\partial_{t+} \phi_n(t)$ exists and is given by

$$\partial_{t+} \phi_n(t) = n \int_{\mathbb{R}^{n-1}} f_n(t; t+, u_1, ..., u_{n-1}) dB(u_1) \cdots dB(u_{n-1}),$$

i.e., $\partial_{t+}\phi_n(t)$ is the multiple Wiener integral of $nf_n(t;t+,\cdot)$. Moreover,

$$\int_{a}^{b} \int_{\mathbb{R}^{n-1}} |f_{n}(t; t+, u)|^{2} du dt \leq c \|f_{n}\|_{H^{2}(D_{n}^{+})}^{2}, \tag{11}$$

where c is some constant independent of n. Note that by Eq. (6),

$$E |\partial_{t+} \phi_n(t)|^2 = (n-1)! \| nf_n(t; t+, \cdot) \|_{L^2(\mathbb{R}^{n-1})}^2$$
$$= n! n \| f_n(t; t+, \cdot) \|_{L^2(\mathbb{R}^{n-1})}^2.$$

Hence, by Eq. (11),

$$\int_{a}^{b} E |\partial_{t+} \phi_{n}(t)|^{2} dt \leq c n! n \|f_{n}\|_{H^{2}(D_{n}^{+})}^{2}$$

$$\leq c (n+1)! \|f_{n}\|_{H^{2}(D_{n}^{+})}^{2}.$$

Thus, by (10), $\int_a^b \partial_{t+} \phi(t) dt$ exists.

On the other hand, by Eq. (8), we have

$$\int_a^b \partial_t^* \phi(t) dt = \sum_{n=0}^\infty \int_{\mathbb{R}^n} \hat{g}_n(u_1, ..., u_n) dB(u_1) \cdots dB(u_n),$$

where \hat{g}_n is the symmetrization of g_n given by

$$g_n(u_1, ..., u_n) = 1_{(a,b)}(u_1) f_{n-1}(u_1; u_2, ..., u_n).$$

Note that

$$\sum_{n=1}^{\infty} n! \| \hat{g}_n \|^2 \leq \sum_{n=1}^{\infty} n! \| g_n \|^2$$

$$= \sum_{n=1}^{\infty} n! \| f_{n-1} \|_{L^2((a,b) \times \mathbb{R}^{n-1})}^2$$

$$\leq \sum_{n=1}^{\infty} n! \| f_{n-1} \|_{H^2(D_n^+)}^2.$$

Therefore, $\int_a^b \partial_t^* \phi(t) dt$ exists as a Brownian functional in $L^2(\mathcal{S}^*)$. This finishes the proof of the assertion (a). The proof for part (b) is similar.

EXAMPLE 1. B(1) is not nonanticipating with respect to $\{B(t); 0 \le t < \infty\}$. However, B(1) is nonanticipating with respect $\{\mathscr{F}_t; 0 \le t < \infty\}$, where $\mathscr{F}_t = \sigma\{B(1), B(s), s \le t\}$. Moreover, $\{B(t); 0 \le t < \infty\}$ is a quasimartingale with respect to \mathscr{F}_t . With this observation, Ito [9] has shown that

$$\int_{a}^{b} B(1) dB(t) = B(1)(B(b) - B(a)).$$

In the white noise approach, we do not need to construct the new σ -fields. In fact, we have

$$\int_{a}^{b} B(1) dB(t+) = \int_{a}^{b} B(1) dB(t-) = B(1)(B(b) - B(a)).$$

This can be checked easily as follows. Note that $B(1) = \langle \omega, 1_{(0,1]} \rangle$ and, so $\partial_{t+} B(1) = 1_{(0,1]}(t+) = 1_{[0,1]}(t)$ and $\partial_{t-} B(1) = 1_{(0,1]}(t-) = 1_{(0,1]}(t)$. Hence

$$\int_{a}^{b} \partial_{t+} B(1) dt = \int_{a}^{b} \partial_{t-} B(1) dt = \int_{a}^{b} 1_{(0,1]}(t) dt.$$

On the other hand, by Eq. (8), we have

$$\int_{a}^{b} \partial_{t}^{*} B(1) dt = \int_{\mathbb{R}^{2}} 1_{(a,b]}(s) 1_{(0,1]}(t) dB(s) dB(t)$$
$$= B(1)(B(b) - B(a)) - \int_{a}^{b} 1_{(0,1]}(t) dt.$$

Therefore,

$$\int_{a}^{b} B(1) dB(t+) = \int_{a}^{b} (\partial_{t+} B(1) + \partial_{t}^{*} B(1)) dt$$
$$= B(1)(B(b) - B(a)).$$

Similarly,

$$\int_{a}^{b} B(1) dB(t-) = B(1)(B(b) - B(a)).$$

EXAMPLE 2. With the similar computation as in Example 1, we can show that

$$\int_0^1 B(1-t) dB(t+) = \int_0^1 B(1-t) dB(t-)$$

$$= B\left(\frac{1}{2}\right)^2 + 2\int_{1/2}^1 B(1-t) dB(t),$$

where the last integral is an Ito integral.

EXAMPLE 3. As mentioned in the beginning of this section, $\partial_t(B(s)) = 1_{(0,s]}(t)$. Thus $\partial_{t+}(B(t)) = 0$ and $\partial_{t-}(B(t)) = 1$. Therefore, we have

$$\int_{a}^{b} \partial_{t+} B(t) dt = 0$$

$$\int_{a}^{b} \partial_{t-} B(t) dt = b - a.$$

Moreover, it follows from Eq. (8) that

$$\int_{a}^{b} \partial_{t}^{*} B(t) dt = \frac{1}{2} [B(b)^{2} - B(a)^{2} - (b - a)]$$
$$= \int_{a}^{b} B(t) dB(t),$$

where the last integral is an Ito integral. Therefore,

$$\int_{a}^{b} B(t) dB(t+) = \frac{1}{2} [B(b)^{2} - B(a)^{2} - (b-a)]$$

$$\int_{a}^{b} B(t) dB(t-) = \frac{1}{2} [B(b)^{2} - B(a)^{2} + (b-a)].$$

4. Some Theorems

THEOREM 2. Suppose $\phi(t, \omega)$ is a nonanticipating process such that $E \int_a^b |\phi(t, \omega)|^2 dt < \infty$. Then $\partial_{t+} \phi(t, \omega) = 0$ a.e. on $[a, b] \times \mathscr{S}^*$.

Remark. It follows from this theorem that

$$\int_a^b \phi(t) dB(t+) = \int_a^b \partial_t^* \phi(t) dt.$$

Thus, by Eq. (3), we have

$$\int_a^b \phi(t) dB(t+) = \int_a^b \phi(t) dB(t),$$

where the Last integral is an Ito integral. However, $\int_a^b \phi(t) dB(t-)$ is different from Ito's integral in view of Example 3.

Proof. By the Wiener-Ito decomposition theorem, it is sufficient to prove the assertion for $\phi(t, \cdot) \in K_n, n \ge 1$. Let $\phi(t, \cdot)$ be the multiple Wiener integral of $f(t; u_1, ..., u_n)$, i.e.,

$$\phi(t) = \int_{\mathbb{R}^n} f(t; u_1, ..., u_n) dB(u_1) \cdots dB(u_n)$$

$$= n! \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{u_1} \cdots \left[\int_{-\infty}^{u_{n-1}} f(t; u_1, ..., u_n) dB(u_n) \right] \cdots dB(u_2) \right\} dB(u_1),$$

where the last integral is an iterated Ito integral. But $\phi(t, \omega)$ is non-anticipating by assumption, so

$$\phi(t) = n! \int_{-\infty}^{t} \left\{ \int_{-\infty}^{u_1} \cdots \left[\int_{-\infty}^{u_{n-1}} f(t; u_1, ..., u_n) dB(u_n) \right] \cdots dB(u_2) \right\} dB(u_1)$$

$$= \int_{\{-\infty, t\}^n} f(t; u_1, ..., u_n) dB(u_1) \cdots dB(u_n).$$

By taking the S-transform of ϕ as in Eq. (5) and applying the definition of ∂_{t+} , we see easily that $\partial_{t+} \phi(t) = 0$.

THEOREM 3. Suppose $\phi(t, \omega)$ is a stochastic process such that $E \int_a^b |\phi(t, \omega)|^2 dt < \infty$. Then

$$E\left|\int_a^b \partial_t^* \phi(t) dt\right|^2 = E\int_a^b |\phi(t)|^2 dt + \int_a^b \int_a^b E(\partial_s \phi_t) (\overline{\partial_t \phi_s}) dt ds.$$

Remark. When $\phi(t)$ is nonanticipating, the first integral is Ito's integral in view of Eq. (3). Obviously, the double integral vanishes. Thus the above equality reduces to the well-known identity

$$E\left|\int_a^b \phi(t) dB(t)\right|^2 = E\int_a^b |\phi(t)|^2 dt.$$

Proof. By the Wiener-Ito decomposition theorem, it is sufficient to prove the theorem for the case when ϕ is a multiple Wiener integral. Let $\phi(t)$ be the multiple Wiener integral of $f(t; u_1, ..., u_n)$. By Eq. (8), we have

$$\int_a^b \hat{\partial}_t^* \phi(t) dt = \int_{\mathbb{R}^{n+1}} \hat{g}(u_1, ..., u_{n+1}) dB(u_1) \cdots dB(u_{n+1}),$$

where \hat{g} is the symmetrization of the function

$$g(u_1, ..., u_{n+1}) = 1_{(a,b)}(u_1) f(u_1; u_2, ..., u_{n+1}).$$

Therefore,

$$E\left|\int_{a}^{b} \partial_{t}^{*} \phi(t) dt\right|^{2} = (n+1)! \int_{\mathbb{R}^{n+1}} |\hat{g}(u_{1}, ..., u_{n+1})|^{2} du_{1} \cdots du_{n+1}. \quad (12)$$

Now,

$$\hat{g}(u_1, ..., u_{n+1}) = \frac{1}{(n+1)!} \sum_{\sigma} 1_{(a,b)}(u_{\sigma(1)}) f(u_{\sigma(1)}; u_{\sigma(2)}, ..., u_{\sigma(n+1)}),$$

where the summation is over all permutations σ of the set $\{1, 2, ..., n+1\}$. Note that $f(u_1; u_2, ..., u_{n+1})$ is symmetric in the variables $u_2, ..., u_{n+1}$. Therefore,

$$\hat{g}(u_1, ..., u_{n+1}) = \frac{1}{(n+1)!} \cdot n! \sum_{i=1}^{n+1} 1_{(a,b]}(u_i) f(u_i; \tilde{u}_i)$$

$$= \frac{1}{n+1} \sum_{i=1}^{n+1} 1_{(a,b]}(u_i) f(u_i; \tilde{u}_i),$$

where \tilde{u}_i denotes the variables $u_1, ..., u_{n+1}$ with u_i being deleted. Hence, we have

$$|\hat{g}|^{2} = \frac{1}{(n+1)^{2}} \left\{ \sum_{i=1}^{n+1} 1_{(a,b]}(u_{i}) |f(u_{i}; \tilde{u}_{i})|^{2} + \sum_{i \neq i} 1_{(a,b]}(u_{i}) f(u_{i}; \tilde{u}_{i}) 1_{(a,b]}(u_{j}) \overline{f(u_{j}; \tilde{u}_{j})} \right\}.$$
(13)

Note that for any i = 1, ..., n + 1,

$$\int_{\mathbb{R}^{n+1}} 1_{(a,b]}(u_i) |f(u_i; \tilde{u}_i)|^2 du_1 \cdots du_{n+1}$$

$$= \int_a^b \int_{\mathbb{R}^n} |f(t; u_1, ..., u_n)|^2 du_1 \cdots du_n dt$$

$$= \int_a^b \frac{1}{n!} E |\phi(t)|^2 dt; \tag{14}$$

and for any $i \neq j$,

$$\int_{\mathbb{R}^{n+1}} 1_{(a,b]}(u_i) f(u_i; \tilde{u}_i) 1_{(a,b]}(u_j) \overline{f(u_j; \tilde{u}_j)} du_1 \cdots du_{n+1}$$

$$= \int_a^b \int_a^b \int_{\mathbb{R}^{n-1}} f(t; s, u_2, ..., u_n) \overline{f(s; t, u_2, ..., u_n)} du_2 \cdots du_n dt ds$$

$$= \frac{1}{n^2} \int_a^b \int_a^b \int_{\mathbb{R}^{n-1}} n f(t; s, u_2, ..., u_n) \overline{n f(s; t, u_2, ..., du_n)} du_2 \cdots du_n dt ds$$

$$= \frac{1}{n^2} \int_a^b \int_a^b \frac{1}{(n-1)!} E\left[(\partial_s \phi_t) \overline{(\partial_t \phi_s)} \right] dt ds.$$
(15)

The assertion of the theorem follows easily from Eqs. (12)–(15).

THEOREM 4. Let $\phi(t, \omega)$ be an $L^2(\mathcal{S}^*)$ -continuous stochastic process:

(a) If
$$\phi \in J_{\alpha}^+$$
 with $\alpha > 1$, then

$$\sum_{i=1}^{k} \phi(t_{i-1})(B(t_i) - B(t_{i-1})) \to \int_{a}^{b} \phi(t) \, dB(t+) \quad \text{in} \quad L^2(\mathcal{S}^*)$$

as the mesh of the partition $\{t_0 = a, t_1, ..., t_k = b\}$ tends to zero.

(b) If
$$\phi \in J_{\alpha}^{-}$$
 with $\alpha > 1$, then

$$\sum_{i=1}^k \phi(t_i)(B(t_i) - B(t_{i-1})) \to \int_a^b \phi(t) dB(t-) \quad \text{in} \quad L^2(\mathcal{S}^*)$$

as the mesh of the partition $\{t_0 = a, t_1, ..., t_k = b\}$ tends to zero.

Proof. We will prove only (a) since the proof for (b) is similar. By the Wiener-Ito decomposition theorem, we may assume that $\phi(t, \cdot)$ is a multiple Wiener integral, say, of $f(t; u_1, ..., u_n)$. By the product formula (9), we have

$$\phi(t_{i-1})(B(t_i) - b(t_{i-1}))$$

$$= \int_{\mathbb{R}^{n+1}} (1_{d_i} \hat{\otimes} f(t_{i+1}; \cdot))(u_1, ..., u_{n+1}) dB(u_1) \cdots dB(u_{n+1})$$

$$+ \int_{\mathbb{R}^{n-1}} \left(n \int_{A_i} f(t_{i-1}; u_1, u_2, ..., u_n) du_1 \right) dB(u_2) \cdots dB(u_n).$$
 (16)

Since $\phi(t, \omega)$ is $L^2(\mathcal{S}^*)$ -continuous,

$$\sum_{i=1}^{k} 1_{\Delta_i} \widehat{\otimes} f(t_{i-1}; \cdot) \to \widehat{h} \quad \text{in} \quad L^2(\mathbb{R}^{n+1}), \tag{17}$$

where \hat{h} is the symmetrization of

$$h(u_1, ..., u_{n+1}) = 1_{(a,b)}(u_1) f(u_1; u_2, ..., u_{n+1}).$$

But, by Eq. (8), we have

$$\int_{\mathbb{R}^{n+1}} \hat{h}(u_1, ..., u_{n+1}) dB(u_1) \cdots dB(u_{n+1})$$

$$= \int_{a}^{b} \partial_{t}^{*} \phi(t) dt.$$
(18)

On the other hand, $f \in H^{\alpha}(D_n^+)$ with $\alpha > 1$. Thus it follows from Lemma 3.F [2, p. 441] that

$$\sum_{i=1}^{k} n \int_{A_i} f(t_{i-1}; u_1, \cdot) du_1 \to n \int_a^b f(t; t+, \cdot) dt \quad \text{in} \quad L^2(\mathbb{R}^{n-1}).$$
 (19)

But, by Eq. (7) for ∂_{t+} , we have

$$\int_{\mathbb{R}^{n-1}} \left(n \int_a^b f(t; t+, u_2, ..., u_n) dt \right) dB(u_2) \cdots dB(u_n)$$

$$= \int_a^b \partial_{t+} \phi(t) dt. \tag{20}$$

From Eqs. (16)-(20), it is easy to see that

$$\sum_{i=1}^{k} \phi(t_{i-1})(B(t_i) - B(t_{i-1})) \to \int_{a}^{b} \phi(t) \, dB(t+) \quad \text{in} \quad L^2(\mathcal{S}^*)$$

as the mesh of the partition tends to zero. This completes the proof.

Let $\phi(t, \omega)$ be a stochastic process and $0 \le c \le 1$. For a partition $P = \{t_0 = a, t_1, ..., t_k = b\}$ of the interval [a, b], put

$$\phi_P = \sum_{i=1}^k \left(c\phi(t_{i-1}) + (1-c) \phi(t_i) \right) (B(t_i) - B(t_{i-1})).$$

If the limit of ϕ_P exists in $L^2(\mathcal{S}^*)$ as mesh(P) tends to zero, then we define the limit to be the $\langle c \rangle$ -Stratonovich integral of ϕ . It is denoted by $\langle c \rangle \int_a^b \phi(t) \circ dB(t)$.

THEOREM 5. Let ϕ be an $L^2(\mathcal{S}^*)$ -continuous stochastic process and $\phi \in J_x^+ \cap J_x^-$ with $\alpha > 1$. Then $\langle c \rangle$ -Stratonovich integral of ϕ exists and is given by

$$\langle c \rangle \int_a^b \phi(t) \circ dB(t) = c \int_a^b \phi(t) dB(t+) + (1-c) \int_a^b \phi(t) dB(t-).$$

Proof. This follows obviously from Theorem 4.

5. SERIES EXPANSION

We now consider the open problem mentioned in the first section. The answer is given in the following theorem.

THEOREM 6. Let ϕ be an $L^2(\mathcal{S}^*)$ -continuous stochastic process and $\phi \in J_{\alpha}^+ \cap J_{\alpha}^-$ with $\alpha > \frac{1}{2}$. Then, for any orthonormal basis $\{e_k; k \ge 1\}$ for $L^2(a,b)$, the following series converges in $L^2(\mathcal{S}^*)$ and

$$\sum_{k=1}^{\infty} a_k(\omega) \int_a^b e_k(t) \, dB(t, \omega) = \frac{1}{2} \left[\int_a^b \phi(t) \, dB(t+) + \int_a^b \phi(t) \, dB(t-) \right],$$

where $a_k(\omega) = \int_a^b \phi(t, \omega) \ \overline{e_k(t)} \ dt$.

In order to prove this theorem, we need two lemmas on the trace of integral operators on $L^2([a, b])$.

DEFINITION 2. An operator A on a Hilbert space H is said to have a finite trace if for any orthonormal basis $\{e_k; k \ge 1\}$ for H, $\sum_{k=1}^{\infty} \langle Ae_k, e_k \rangle$ converges and the limit is independent of $\{e_k; k \ge 1\}$. The limit is denoted by tr A.

Remark. Suppose A is an operator on H such that (Ax, x) is real for all x in H and its symmetrization $\hat{A} = \frac{1}{2}(A + A^*)$ is a trace class operator. Then

obviously A has a finite trace and tr $A = \operatorname{Tr} \hat{A}$, where Tr denotes the trace of a trace class operator.

LEMMA 1. Let $g \in H^{\alpha}((a,b)^2)$ with $\alpha > \frac{1}{2}$. Then the integral operator G defined on $L^2([a,b])$ by

$$Gf(t) = \int_a^b g(t, s) f(s) ds, \qquad f \in L^2([a, b])$$

is a trace class operator. Moreover,

$$\operatorname{Tr} G = \int_a^b g(t, t) dt,$$

$$|\operatorname{Tr} G| \leq c \|g\|_{H^{\alpha}((a,b)^2)},$$

where c is a constant independent of g.

Proof. It follows from Theorem 1 [2, p. 42] that G is a trace class operator and

$$|\text{Tr } G| \leq c_1 \|g\|_{H^{\alpha}((a,b)^2)},$$

where c_1 is a constant independent of g. On the other hand, from the trace theorem [1, p. 216; or 15, p. 41]

$$\left| \int_{a}^{b} g(t, t) dt \right| \leq c_{2} \|g\|_{H^{\alpha}((u, b)^{2})},$$

where c_2 is a constant independent of g. Therefore, the linear maps $g \mapsto \operatorname{Tr} G$ and $g \mapsto \int_a^b g(t, t) dt$ are continuous on $H^{\alpha}((a, b)^2)$. But

$$\operatorname{Tr} G = \int_a^b g(t, t) dt$$

holds for all g in a dense subspace $C^{\infty}([a, b]^2)$ of $H^{\alpha}((a, b)^2)$. Hence it holds for all g in $H^{\alpha}((a, b)^2)$.

LEMMA 2. Let $Q^+ = \{(u, v) \in (a, b)^2; u < v\}$ and $Q^- = \{(u, v) \in (a, b)^2; u > v\}$. Suppose $g \in H^{\alpha}(Q^+) \cap H^{\alpha}(Q^-)$ with $\alpha > \frac{1}{2}$. Then the integral operator G given by g has a finite trace and

tr
$$G = \frac{1}{2} \int_{a}^{b} (g(t, t+) + g(t, t-)) dt$$
.

Moreover.

$$|\operatorname{tr} G| \leq c(\|g\|_{H^{2}(O^{+})} + \|g\|_{H^{2}(O^{-})}),$$

where c is a constant independent of g.

Proof. By considering the real and imaginary parts of g separately, we may assume that g is a real-valued function. Thus (Gf, f) is real for all f in $L^2([a, b])$.

It follows from the assumption that g(t, t+) and g(t, t-) exist a.e. Define

$$\hat{g}(t,s) = \begin{cases} \frac{1}{2}(g(t,s) + g(s,t)), & t \neq s \\ \frac{1}{2}(g(t,t+) + g(t,t-)), & t = s. \end{cases}$$

Then \hat{g} is the symmetrization of g. It follows from Theorem 2.2 [15, p. 13] and Theorem 8.1 [15, p. 38] that for $\alpha \le 1$, $g \in H^{\alpha}((a, b)^2)$ implies that $\hat{g} \in H^{\alpha}((a, b)^2)$. Therefore, for any α , $g \in H^{\alpha}((a, b)^2)$ implies that $\hat{g} \in H^{\beta}((a, b)^2)$ with $\beta = \min(\alpha, 1)$. By Lemma 1, the integral operator \hat{G} given by \hat{g} is a trace class operator and

$$\operatorname{Tr} \hat{G} = \int_{a}^{b} \hat{g}(t, t) dt$$
$$= \frac{1}{2} \int_{a}^{b} (g(t, t+) + g(t, t-)) dt$$

and

$$|\operatorname{Tr} \hat{G}| \leq c_1 \|\hat{g}\|_{H^{\beta}((a, b)^2)}$$

$$\leq c_2 (\|g\|_{H^{\alpha}(Q^+)} + \|g\|_{H^{\alpha}(Q^-)}).$$

Therefore, by the remark following Definition 2, the integral operator G given by g has a finite trace and tr $G = \operatorname{Tr} \hat{G}$. This gives the conclusion of the lemma immediately.

Proof of Theorem 6. It is sufficient to prove the case when ϕ is a multiple Wiener integral, say, of $f(t; u_1, ..., u_n)$, i.e.,

$$\phi(t,\omega) = \int_{\mathbb{R}^n} f(t; u_1, ..., u_n) dB(u_1, \omega) \cdots dB(u_n, \omega).$$

Then, for k = 1, 2, ..., we have

$$a_k(\omega) = \int_a^b \phi(t, \omega) \, \overline{e_k(t)} \, dt$$
$$= \int_{\mathbb{R}^n} f_k(u_1, ..., u_n) \, dB(u_1, \omega) \cdots dB(u_n, \omega),$$

where $f_k(u_1, ..., u_n) = \int_a^b f(t; u_1, ..., u_n) \overline{e_k(t)} dt$. Therefore, by the product formula (9), we have

$$a_{k}(\omega) \int_{a}^{b} e_{k}(t) dB(t, \omega)$$

$$= \int_{\mathbb{R}^{n+1}} (f_{k} \hat{\otimes} (1_{(a,b)} e_{k}))(u_{1}, ..., u_{n+1}) dB(u_{1}, \omega) \cdots dB(u_{n+1}, \omega)$$

$$+ \int_{\mathbb{R}^{n-1}} \left(n \int_{a}^{b} f_{k}(u_{1}, u_{2}, ..., u_{n}) e_{k}(u_{1}) du_{1} \right) dB(u_{2}, \omega) \cdots dB(u_{n}, \omega).$$
(21)

By a similar argument as in proving Eq. (17), we can check easily that the following series converges in $L^2(\mathbb{R}^{n+1})$ and

$$\sum_{k=1}^{\infty} f_k \, \hat{\otimes} \, e_k = \hat{h},$$

where \hat{h} is the symmetrization of

$$h(u_1, ..., u_{n+1}) = 1_{\{a,b\}}(u_1) f(u_1; u_2, ..., u_{n+1}).$$

Therefore, by Eq. (18), the following series converges in $L^2(\mathcal{S}^*)$ and

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}^{n+1}} (f_k \, \hat{\otimes} \, 1_{(a,b)} \, e_k)(u_1, \, ..., \, u_{n+1}) \, dB(u_1, \, \omega) \cdots dB(u_{n+1}, \, \omega)$$

$$= \int_{a}^{b} \hat{\sigma}_t^* \, \phi(t) \, dt. \tag{22}$$

On the other hand, for each $(u_2, ..., u_n) \in \mathbb{R}^{n-1}$, let $F(u_2, ..., u_n)$ be the integral operator on $L^2([a, b])$ given by $f(\cdot; \cdot, u_2, ..., u_n)$. By the assumption on f and Lemma 2, $F(u_2, ..., u_n)$ has a finite trace given by

$$\operatorname{tr} F(u_2, ..., u_n) = \frac{1}{2} \int_a^b \left[f(t; t+, u_2, ..., u_n) + f(t; t-, u_2, ..., u_n) \right] dt.$$
 (23)

But, since $\{e_k; k \ge 1\}$ is an orthonormal basis for $L^2([a, b])$, the trace of $F(u_2, ..., u_n)$ is also given by

$$\operatorname{tr} F(u_{2}, ..., u_{n}) = \sum_{k=1}^{\infty} \langle F(u_{2}, ..., u_{n}) e_{k}, e_{k} \rangle$$

$$= \sum_{k=1}^{\infty} \int_{a}^{b} f_{k}(u_{1}, u_{2}, ..., u_{n}) e_{k}(u_{1}) du_{1}, \qquad (24)$$

where f_k is given as above. From Eqs. (23) and (24), and the assumption on f, we can check that the following series converges in $L^2(\mathbb{R}^{n-1})$ and

$$\sum_{k=1}^{\infty} n \int_{a}^{b} f_{k}(u_{1}, \cdot, ..., \cdot) e_{k}(u_{1}) du_{1}$$

$$= \frac{1}{2} \int_{a}^{b} n [f(t; t+, \cdot, ..., \cdot) + f(t; t-, \cdot, ..., \cdot)] dt.$$

Therefore, the following series converges in $L^2(\mathcal{S}^*)$ and

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}^{n-1}} \left(n \int_{a}^{b} f_{k}(u_{1}, u_{2}, ..., u_{n}) e_{k}(u_{1}) du_{1} \right) dB(u_{2}, \omega) \cdots dB(u_{n}, \omega)$$

$$= \int_{\mathbb{R}^{n-1}} \left(\frac{1}{2} \int_{a}^{b} n [f(t; t+, u_{2}, ..., u_{n}) + f(t; t-, u_{2}, ..., u_{n})] dt \right)$$

$$\times dB(u_{2}, \omega) \cdots dB(u_{n}, \omega)$$

$$= \frac{1}{2} \int_{a}^{b} (\partial_{t+} \phi(t) + \partial_{t-} \phi(t)) dt. \tag{25}$$

From Eqs. (21), (22), and (25), it is obvious that the following series converges in $L^2(\mathcal{S}^*)$ and

$$\sum_{k=1}^{\infty} a_k(\omega) \int_a^b e_k(t) dB(t, \omega)$$

$$= \int_a^b \partial_t^* \phi(t) dt + \frac{1}{2} \int_a^b \left[\partial_{t+} \phi(t) + \partial_{t-} \phi(t) \right] dt$$

$$= \frac{1}{2} \left[\int_a^b \phi(t) dB(t+) + \int_a^b \phi(t) dB(t-) \right].$$

This completes the proof.

REFERENCES

- [1] Adams, R. A. (1975). Sobolev Spaces. Academic Press, New York/London.
- [2] BERGER, M., AND MIZEL, V. (1982). An extension of the stochastic integral. Ann. Probab. 10 435-450.
- [3] BIRMAN, M., AND SOLOMYAK, M. (1977). Estimates of singular numbers of integral operators. Russian Math. Surveys 32 15-89.
- [4] HIDA, T. (1975). Analysis of Brownian Functionals. Carleton Math. Lecture Notes No. 13. Carleton Univ., Ottawa.

- [5] Hida, T. (1978). Generalized multiple Wiener integrals. Proc. Japan Acad. Ser. A Math. Sci. 54 55-58.
- [6] Hida, T. (1980). Brownian Motion. Application of Math. Vol. 11. Springer-Verlag, Heidelberg/Berlin/New York.
- [7] HUANG, S. T., AND CAMBANIS, S. (1978). Gaussian processes: Nonlinear analysis and stochastic calculus. Lecture Notes in Math. Vol. 695, pp. 165-177, Springer-Verlag, New York/Berlin.
- [8] Ito, K. (1951). Multiple Wiener integrals. J. Math. Soc. Japan 3 157-169.
- [9] Ito, K. (1976). Extension of stochastic integrals. Proceedings, Internat. Sympos. on Stochastic Differential Equations, Kyoto, pp. 95-109.
- [10] KUBO, I. (1983). Ito formula for generalized Brownian functionals. Lecture Notes in Control and Information Sciences Vol. 49, pp. 156–166. Sringer-Verlag, New York/Berlin.
- [11] KUBO, I., AND TAKENAKA, S. (1980). Calculus on Gaussian white noise, II. Proc. Japan Acad. Ser. A Math. Sci. 56 411-416.
- [12] KUBO, I. AND TAKENAKA, S. (1981). Calculus on Gaussian white noise, III. Proc. Japan Acad. Ser. A Math. Sci. 57 433-437.
- [13] Kuo, H.-H. (1982). On Fourier transform of generalized Brownian functionals. J. Multivariate Anal. 12 415-431.
- [14] Kuo, H.-H. (1983). Brownian functionals and applications. Acta Appl. Math. 1 175-188.
- [15] LIONS, J. L., AND MAGENES, E. (1972). Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer-Verlag, New York/Berlin.
- [16] SKOROKHOD, A. V. (1975). On a generalization of a stochastic integral. Theory Probab. Appl. 20 219-233.