Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	I	23115	Работа выполнена <u>13.05.2021</u>
Студент _	Девя	ткин Арсений	Отчет сдан
Преподав	атель	Боярский К.К.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.10

«И<u>зучение свободных затухаю электромагнитных</u> колебаний »

Цель работы

1. Изучение основных характеристик свободных затухающих колебаний

Схема установки

Принципиальная схема установки изображена на Рисунке 1. Буквой L обозначена катушка, использующаяся в качестве индуктивности; буквой С обозначен конденсатор, использующийся в качестве ёмкости; $R_{\rm M}-$ добавочное сопротивление, выставляемое в магазине сопротивлений; ГН1 — генератор переменного напряжения; ОЦЛ2 — канал осциллографа, на который подается сигнал с конденсатора. На генераторе напряжения была установлена частота 40 Гц.

Измерительные приборы

п/п	Наименование	Используемый диапазон	Погрешность
			прибора
1	Осциллограф	Настраиваемый	Настраиваемый

Исходные данные

Индуктивность

 $L = 10 \, \text{мгН} \, \pm 10\%$

Емкости конденсаторов

 $C_1 = 0.022 \text{ мк}\Phi \pm 10\%$

 $C_2 = 0.033 \text{ мк} \Phi \pm 10\%$

 $C_3 = 0.047 \text{ мк}\Phi \pm 10\%$

 $C_4 = 0.47 \text{ мкФ } \pm 10\%$

Результаты прямых измерений и их обработки

1. Измерили период колебаний Т, значения удвоенной амплитуды $2U_i$ и $2U_{i+n}$ колебаний для двух моментов времени, разделённых количеством периодов n, для каждого сопротивления магазина $R_{\rm M}$. Затем рассчитали значение логарифмического декремента λ , добротности Q, полного сопротивления R и индуктивности L по формулам:

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}}$$

$$R = R_0 + R_M$$

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

$$L = \frac{\pi^2 R^2 C}{\lambda^2}$$

Результаты занесли в Таблицу 1:

Таблица 1								
R _M , OM	Г, мс	U _i , дел	2U _{i+n} , дел	n	λ	Q	R, Om	L , мГн
0	0,09	4,8	2,4	2	0,35	12,57	55,6	5,59
10	0,09	4,4	2,2	2	0,35	12,57	65,6	7,78
20	0,09	6,4	2,8	2	0,41	11,17	75,6	7,26
30	0,09	6,2	2,4	2	0,47	10,25	85,6	7,07
40	0,09	6	2	2	0,55	9,42	95,6	6,58
50	0,09	5,9	3,2	1	0,61	8,90	105,6	6,47
60	0,09	11,2	2,8	2	0,69	8,38	115,6	6,04
70	0,09	11	2,6	2	0,72	8,23	125,6	6,59
80	0,09	10,8	2,4	2	0,75	8,08	135,6	7,06
90	0,09	10,4	2	2	0,82	7,78	145,6	6,77
100	0,09	10,2	4,2	1	0,89	7,57	155,6	6,68
200	0,09	8,4	2	1	1,44	6,66	255,6	6,89
300	0,09	7,2	0,9	1	2,08	6,38	355,6	6,35
400	0,09	4,9	0,4	1	2,51	6,33	455,6	7,18

- 2. Увеличивая сопротивление магазина, нашли $\mathbf{R}_{\mathsf{кp(эксп)}}$ сопротивление, при котором исчезает периодичность процесса разряда конденсатора: $\mathbf{R}_{\mathsf{kp(эксп)}} = 1250 \; \mathrm{Om};$
- 3. Установив нулевое сопротивление магазина, измерили $T_{\text{эксп}}$ период колебаний в контуре при C_1 , C_2 , C_3 , C_4 . Также вычислили теоретические значения периода $T_{\text{эксп}}$ колебаний в контуре по формуле $T = \frac{2\pi}{\sqrt{\frac{1}{LC} \frac{R^2}{4L^2}}}$

Результаты занесли в Таблицу 2:

Таблица 2				
С, мкФ	Тэксп, мс	Ттеор, мс	$oldsymbol{\delta T} = rac{oldsymbol{T}_{ ext{ iny FEOR}} - oldsymbol{T}_{ ext{ iny Teop}}}{oldsymbol{T}_{ ext{ iny Teop}}}$, %	
0,022	0,09	0,08	17,7	
0,033	0,11	0,09	17,4	
0,047	0,13	0,11	16,1	
0,47	0,43	0,36	18,5	

4. Построили график зависимости $\lambda = \lambda(R_M)$. По графику нашли R_0 , как пересечение аппроксимации графика с осью абсцисс, после чего нашли общее сопротивление R для каждого R_M . Результаты занесли в **Таблицу 1**:

•
$$R_0 = 55,6 \text{ Om}$$
;

5. Вычислили значение индуктивности L для каждого R_{M} , после чего нашли L_{cp} для всех $R_{M} \le 100$ Ом:

•
$$L_{cp} = 6,72 \text{ M}\Gamma_{H};$$

6. Вычислили теоретическое значение периода колебаний Т при значениях сопротивления магазина 0 Ом, 200 Ом и 400 Ом, используя формулу:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

- $T_0 = 0.093 \text{ mc};$
- $T_{200} = 0.095 \text{ mc};$
- $T_{400} = 0.099 \text{ mc};$

- 7. Построили график зависимости Q = Q(R)
- 8. Вычислили теоретическое значение добротности при $R_{M} = 0$ Ом, используя формулу:

$$Q = \frac{1}{R} * \sqrt{\frac{L}{C}}$$

•
$$Q_0 = 12,13;$$

9. Вычислили теоретическое и экспериментальное критическое значение сопротивления, при котором исчезает периодичность процесса разряда конденсатора, используя формулу:

$$R_{\rm \kappa p} = 2 * \sqrt{\frac{L}{C}}$$

- R_{крит}= 1250 Ом (эксп);
- R_{крит}= 1348,4 Ом (теор);
- 10.Построили зависимость $T_{\text{эксп}} = T_{\text{эксп}}(C)$ и $T_{\text{теор}} = T_{\text{теор}}(C)$

Расчет погрешностей

1. Рассчитали среднее квадратичное отклонение величины индукции L:

$$\sigma(L) = \sqrt{rac{\sum (L_i - \overline{L})^2}{n(n-1)}} = 0.15$$
 м Γ н

2. Вычислили погрешность среднего значения индукции L_{cp}:

$$\Delta L_{cp} = t_{\alpha,n} * \sigma(L) = 0,34$$
 мГн

Графики

Окончательные результаты

В ходе выполнения лабораторной работы были получены следующие значения:

$$R_{\kappa p(\ni \kappa c \pi)} = 1250 \text{ Om}$$

$$R_{\text{крит(теор)}} = 1348,4 \text{ Om}$$

Теоретическое и экспериментальное критическое значение сопротивления, при котором исчезает периодичность процесса разряда конденсатора

 $R_0 = 55,6 \text{ Om} - \text{собственное сопротивление контура}$

Lcp = $(6,72 \pm 0,34)$ мГн - среднее значение идуктивности для всех $R_{\text{м}} \le 100$ Ом $T_0 = 0,093$ мс - теоретическое значение периода колебаний Т при значениях сопротивления магазина 0 Ом, 200 Ом и 400 Ом

$$T_{200} = 0.095 \text{ mc};$$

$$T_{400} = 0.099 \text{ mc};$$

 $Q_0 = 12,13$ – теоретическое значение добротности при $R_M = 0$ Ом

Выводы

- 1. Графики зависимостей теоретического периода колебаний от емкости и экспериментального периода колебаний от емкости практически совпадают;
- 2. Экспериментальная средняя индуктивность катушки меньше, чем теоретическая индуктивность стенда, равная 10 мГн;
- 3. Теоретические периоды колебаний при 0 Ом, 200 Ом и 400 Ом сопротивления магазина практически совпадают с экспериментальными;
- 4. Теоретическое значение добротности при 0 Ом сопротивления магазина практически совпадает с экспериментальным;
- 5. Теоретическое критическое значение сопротивления различается с экспериментальным меньше, чем на 100 Ом;
- 6. Так как $\beta \ll \omega_0$, то мы можем использовать формулу Томпсона для расчетов: $T = 2\pi \sqrt{LC}$.