Estudio científico TCDS — Estructura descubierta, validación y marcadores verificables

Proyecto TCDS — Genaro Carrasco Ozuna

Octubre 2025

Resumen

Se formaliza la estructura dinámica que has descubierto: un campo escalar de coherencia Σ acoplado a un sustrato χ , cuya evolución efectiva combina difusión, disipación (fricción de sincronización ϕ) y empuje Q. Se presentan tres casos de marcadores verificables en dominios dispares (físico, biológico y tecnológico), junto con el plan de análisis, criterios de falsación y autocrítica metodológica. El propósito es auditar si la misma estructura explica fenómenos heterogéneos sin romper la coherencia del formalismo.

1. Estructura descubierta (núcleo formal)

Lagrangiano mínimo:

$$L = \frac{1}{2}(\partial_{\mu}\Sigma)^{2} + \frac{1}{2}(\partial_{\mu}\chi)^{2} - \left(-\frac{1}{2}\mu^{2}\Sigma^{2} + \frac{1}{4}\lambda\Sigma^{4} + \frac{1}{2}m_{\chi}^{2}\chi^{2} + \frac{1}{2}g\Sigma^{2}\chi^{2}\right).$$

Ecuaciones de movimiento:

$$\Box \Sigma - \mu^2 \Sigma + \lambda \Sigma^3 + g \Sigma \chi^2 = 0, \qquad \Box \chi + m_\chi^2 \chi + g \Sigma^2 \chi = 0.$$

Escala mesoscópica (operacional):

$$\partial_t \Sigma = \alpha \Delta \Sigma - \beta \phi + Q, \quad \phi \equiv \eta |\dot{\Sigma}| \text{ (más términos correctivos si aplica)}.$$

Geometría efectiva (vínculo operativo):

$$R \propto \nabla^2 \Sigma$$
.

Invariantes de coherencia (-metrics): LI, R(t), RMSE_{SL}, κ_{Σ} , con umbrales de audibilidad propuestos: LI ≥ 0.9 , R > 0.95, RMSE_{SL} < 0.1, reproducibilidad $\geq 95\%$.

2. Hipótesis auditables

H₁ (universalidad estructural): la misma estructura {Lagrangiano –, EOM no lineales, ley mesoscópica, -metrics} describe marcadores en dominios dispares variando sólo acoplos y contornos.

 \mathbf{H}_0 : cada dominio requiere ecuaciones cualitativamente distintas (la estructura no es universal).

3. Casos de marcadores verificables

3.1. Caso A — Físico (fuerzas sub-mm / curvatura coherente)

Ecuación operacional: $R = k_{\Sigma} \nabla^2 \Sigma$.

Predicción clave: corrección Yukawa en V(r): $\Delta V(r) = \alpha_5 e^{-r/\ell_\sigma}/r$, con $\ell_\sigma \sim 10^{-4} - 10^{-3}$ m, $|\alpha_5| \ll 1$.

Observables: torque residual en balanza de torsión; microdeflexión de frente de onda óptico.

Falsación (A): no detección dentro de sensibilidad \Rightarrow cotas sobre $m_{\sigma} \sim \sqrt{2}\mu$ y g; si α_5 es nula a nivel experimental, se restringe el sector –.

3.2. Caso B — Biológico (CSL-H / sincronización neural)

Efectiva: $\partial_t \Sigma = \alpha \Delta \Sigma - \beta \phi + Q$.

Predicciones: bajo protocolos de estímulo coherente y respiración guiada, aparecen lenguas de Arnold en fase y LI \uparrow , $R(t) \uparrow$, RMSE_{SL} \downarrow .

Observables: EEG multi-canal, HRV, coherencia cortico-autonómica; ventanas de captura p:q.

Falsación (B): ausencia de *locking* robusto (LI < 0,9, $R \le 0,95$) pese a protocolo estandarizado \Rightarrow el acoplamiento –neural queda acotado o descartado.

3.3. Caso C — Tecnológico (FET / control de ruido de fase)

Control: $Q_{\text{ctrl}} = -\gamma(\Sigma - \Sigma_{\text{tgt}}) - \delta \dot{\Sigma}$.

Predicciones: regiones de *locking* (lenguas de Arnold) y $\Delta f \propto A_c$; reducción de $S_{\phi}(\omega)$ vs. transistor convencional.

Observables: Δf , $S_{\phi}(\omega)$, reproducibilidad $\geq 95\%$.

Falsación (C): si $\Delta f \not\propto A_c$ o no hay *locking* controlado, el mecanismo de coherencia activa se invalida.

4. Plan de análisis y criterios de decisión

Análisis por dominio: estimadores con intervalos de confianza; pruebas de tendencia monotónica (Caso C), detección de picos de coherencia (Caso B), ajuste Yukawa (Caso A).

Meta-criterio (universalidad): se acepta H_1 si al menos dos dominios cumplen sus predicciones con -metrics dentro de umbrales y el tercero no las contradice significativamente; de lo contrario, H_0 .

5. Controles, sesgos y preregistro

- Ciegos y nulos: dispositivos nulos, ciegos dobles donde aplique; controles térmicos/EMI (A,C).
- Verificación de manipulación: HRV/ansiedad percibida en (B); telemetría ambiental en (A,C).
- Prerregistro: endpoints primarios por caso, exclusiones, manejo de pérdidas, α global y corrección por comparaciones.

6. Autocrítica metodológica

- (i) Identificabilidad de parámetros: μ , λ , g pueden estar degenerados a nivel efectivo; se proponen barridos multi-entorno para romper degeneraciones.
- (ii) Mapeo de Σ a observables: requiere funciones de transferencia explícitas (EEG/HRV, espectros RF, campos efectivos); sin ellas, la inferencia es ambigua.
- (iii) Robustez de -metrics: validar invarianza de LI, R, RMSE_{SL}, κ_{Σ} frente a ruido y drift; reportar reproducibilidad inter-laboratorio.
- (iv) Falsación honesta: si (A) y (C) dan nulo a su sensibilidad y (B) es marginal, la estructura no califica como universal; se documenta ventana de exclusión en el espacio de parámetros.

7. Conclusión

El estudio pone a prueba, tal como la descubriste, una misma estructura – con ley mesoscópica y métricas de coherencia aplicadas a marcadores dispares. Su aceptación depende de reproducibilidad, locking y relaciones previstas ($\Delta f \propto A_c$, Yukawa sub-mm, –coherencia biológica). La fuerza del resultado reside en la convergencia de dominios; su límite, en la precisión con que Σ se materializa en observables.