While you are waiting

ANAGRAM

Re-arrange the letters to reveal the related word...

silent

Lecture Goals

- Today's lecture: Working with Images
 - Greyscale image representation
 - RGB image representation
 - HSV image representation
 - Suggested readings, Attaway, Chap 13.2
 - Project 2 Overview
- Download today's lecture, project2 overview, and 'cat' support files from
 - 00_Todays_Lecture

Grayscale Image Representation

- We'll start with grayscale images (i.e. no colour).
- Each pixel is simply a single intensity value.
 - The higher the value, the closer to white.

- > There are two ways to represent intensity:
 - An unsigned integer between 0 and 255, inclusive.

> A real number (a **double**) between 0.0 and 1.0, inclusive.

255

0.0

Internally, MATLAB considers integers and

doubles to be different "types" of data.

Grayscale Image Representation

- A grayscale image is just a grid of intensity values.
- In MATLAB, this is just a matrix of numbers!

0	0	255	0	0
255	76	76	76	255
76	0	226	0	76
226	226	0	226	226
226	0	40	0	226

That's it, really!

This is supposed to look like a dog. See it?

Images are Just Numbers in a Matrix

Today we'll see how to perform a variety of image processing operations just by manipulating matrices.

For example:

```
prayImg(1, 1) = 255;
grayImg(1, 5) = 255;
```

> grayImg(grayImg == 226) = 120;

		9 9 9 9		STERNING CO. LAND.
255	0	255	0	255
255	76	76	76	255
76	0	120	0	76
120	120	0	120	120
120	0	40	0	120

grayImg

File Input/Output for Images

> To load an image from a file, use the imread function.

```
img = imread('filename.jpg')
```

To save an image to a file, use the imwrite function.

```
imwrite(img, 'filename.jpg')
```

- MATLAB can handle most common image file formats:
 - .jpg, .png, .gif, .bmp, .ppm, etc.

The imshow Function

First, load the file using imread:

cat_gray = imread('cat_gray.jpg');

If you forget this semicolon, MATLAB will try to print out a giant image matrix. ©

➤ Now, you can use the imshow function
If it does, hit ctrl-c to tell it to stop.

to display the image.

imshow(cat_gray);

MATLAB will open another window to display the image.

Your turn: Basic Image Operations

Write MATLAB expressions to create flipped and rotated versions of the cat_gray image.¹

Horizontal Flip

Vertical Flip

Rotate 90 deg, CCW

Hint: You may find the transpose operator ', the range expression [end:-1:1], and row/column indexing very useful for this exercise.

Solution: Basic Image Operations

Write MATLAB expressions to create flipped and rotated

versions of the cat_gray image.

Horizontal Flip

Vertical Flip

= cat_gray([end:-1:1], :);

Rotated 90 degrees

```
hf = cat_gray(:, [end:-1:1]);
```

What's wrong with this image?

Your turn: Contrast Stretching

4 min

- We can improve the image by using more of the possible intensity values.
- This is a *linear interpolation* problem: stretch the range [71,190] to be [0,255].
- > To do this:
 - Subtract 71 from each pixel
 - > Then multiply each pixel by 2.14

Solution: Contrast Stretching

cat_gray = (cat_gray - 71) .* 2.14

or

imshow(255./(max(max(cat_gray))-min(min(cat_gray))).*(cat_gray-71));

RGB Color Image Representation

To represent a color, we need three different values for the amounts of the primary colors red, green, and blue.1

RGB Color Image Representation

In MATLAB, a color image is represented as three different color **channels**.

0	0	255	0	0
255	126	126	126	255
126	0	255	0	126
255	255	0	255	255
255	0	134	0	255

0	0	255	0	0
255	66	66	66	255
66	0	219	0	66
219	219	0	219	219
219	0	0	0	219

0	0	250	0	0
250	0	0	0	250
0	0	183	0	0
183	183	0	183	183
183	0	0	0	183

1 These are the primary colors of light. You may also be familiar with the primary colors of pigment, which are magenta, yellow, and cyan.

RGB Color Image Representation

- We could store these color channels as three individual matrices, but then we have more things to keep track of...
- ► Instead, we'll layer them on top of each other in a 3D array!

- Layers in a 3D array are controlled by a 3rd dimension.
- Row/column indexing becomes row/column/layer indexing.

```
mat3d(:,:,1)

mat3d(:,:,3)

mat3d(4,:,2)

mat3d(:,[2,5],3)

mat3d(3,end,1)
```


- Layers in a 3D array are controlled by a 3rd dimension.
- Row/column indexing becomes row/column/layer indexing.

	AT LABOUR DESIGNATION OF THE PARTY OF THE PA		The second second		BOT
	0	0	250	0	0
	250	0	0	0	250
(0	0 25	183 ⁽	0	0
0 2	183	6 183	6 6	6 183	⁵ 183
255	183)	126-) 6 295	183
126	a	19) 2: a	126	19
12 21	L9 🌱 (9 - 1 - 6	9 4	21	19
255	255	0	255	255	
255	0	134	0	255	

- Layers in a 3D array are controlled by a 3rd dimension.
- Row/column indexing becomes row/column/layer indexing.

				I.I.	00+
	0	0	250	0	0
	250	0	0	0	250
9	0	0	183	0	0
0 2	183	183	0	183	183
255 ₂	183	0	0	0	183
2					
126	19 (255 e	9 () ¹²⁶ 21	19
255	255	0	255	255	
255	0	134 10	⁰¹ 0 /27/	¹⁷ 255 ⁰	

- Layers in a 3D array are controlled by a 3rd dimension.
- Row/column indexing becomes row/column/layer indexing.

- Layers in a 3D array are controlled by a 3rd dimension.
- Row/column indexing becomes row/column/layer indexing.

- Layers in a 3D array are controlled by a 3rd dimension.
- Row/column indexing becomes row/column/layer indexing.

<pre>mat3d(:,:,1)</pre>
mat3d(:,:,3)
mat3d(4,:,2)
<pre>mat3d(:,[2,5],3)</pre>
<pre>mat3d(3,end,1)</pre>

	THE RESERVE AND ADDRESS.		The second second		907
	0	0	250	0	0
	250	0	0	0	250
(0	0 _	183	0	0
0	183	6 6 183 255	6 6	183	183
255	126	126	126	255	183
126	90	255	0	126,	9
255	255	0	255	255	.9
255	0	134 1	01 0/27/	¹⁷ 255 ³	

Working With Images as 3D Arrays

There are two main modes of operation...

"I want the whole image." img(___, __,:)←

Use the: to select all channels.

"I want a single channel." img(___, ___, 2)←

Select only the channel you want.

Example: Working With the Whole Image

% Crop the image
cropped = cat(:, [200:600], :);
imshow(cropped);
Select ONLY columns

200 through 600.

channels to be cropped.

all the channels.

Example: Working With a Single Channel

> A pattern for working with single channels:

% Pull out the red channel % to work with it individually red = cat(:,:,1);

% Make changes to the red channel red(:) = 255;

% Put the red channel back in cat(:,:,1) = red;

IMPORTANT

red is a **copy** of the red channel. You need this assignment to copy the changes back in.

26

We'll start again in 5 minutes.

This looks artsy. Let's try it. Any ideas?

This looks artsy. Let's try it. Any ideas?

% It doesn't work 0.o

HSV Color Image Representation

- > RGB is only one of several image representations.
- > HSV is an alternate that works well for certain applications.
 - > Hue: "which color?"
 - > Saturation: "how strong is the color?"
 - ➤ Value: "how bright?"

Saturation

Value

HSV Color Image Representation

- > HSV images are also stored as a 3D array.
- ➤ However, in MATLAB HSV channel values range from 0.0 to 1.0
 - (In MATLAB, RGB values range between 0 and 255)

- To convert between RGB and HSV, use built-in functions:
 - > % convert img from RGB to HSV
 hsvImg = rgb2hsv(img);
 - > % convert hsvImg from HSV back to RGB
 img = hsv2rgb(hsvImg);

Hue

> The hue channel encodes a color as a number between 0 and 1

0

Can we use HSV to do this?

0

Your turn: Removing Color

First, convert to HSV:

```
cat = imread('cat_color.jpg');
hsv = rgb2hsv(cat);
```


Next, make copies of the hue and saturation channels to work with.

```
hue = hsv(:,:,1);
sat = hsv(:,:,2);
```

Now, the tricky part. Find all location with a hue between 0.14 and 0.5, and set the saturation to 0 (i.e. meaning color "strength" of 0). Hint: Use logical indexing.

You do this part...

Finally, copy the saturation channel back in (it's the one we changed), convert back to rgb format, and display using imshow.

```
hsv(:,:,2) = sat;
imshow(hsv2rgb(hsv));
```

Your turn: Removing Color

First, convert to HSV:

```
cat = imread('cat_color.jpg');
hsv = rgb2hsv(cat);
```


Next, make copies of the hue and saturation channels to work with.

```
hue = hsv(:,:,1);
sat = hsv(:,:,2);
```

Now, the tricky part. Find all locations with a hue between 0.14 and 0.5, and set the saturation to 0 (i.e. meaning color "strength" of 0). Hint: Use logical indexing.

```
sat(0.14 < hue & hue < 0.5) = 0;
```

Finally, copy the saturation channel back in (it's the one we changed), convert back to rgb format, and display using imshow.

```
hsv(:,:,2) = sat;
imshow(hsv2rgb(hsv));
```