The Structure of Mathematical Expressions

An ArXiv Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

March 21, 2012

Contents

C	ontents	2				
1	Introduction 1.1 Motivation	3 3				
	1.2 Related Resources	3				
	1.3 Experimental Setup	3				
2	A Study of Mathematical Syntax					
	2.1 Basics	5				
	2.2 Discrete math	5				
	2.3 Continuous math	6				
	2.4 Other fields	7				
3	Discussion	9				
4	Conclusion	11				

Chapter 1

Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover their linguistic phenomena. A practical motivation for this study is to provide a foundation for determining the boundary between syntactic and semantic phenomena in said expressions, from the perspective of language modeling. The ultimate goal of this project is to construct a grammar of mathematical expressions, which captures all relevant syntactic properties established in this study, and allows for the semantic analysis necessary to model and observe the semantic relationships.

1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").¹

EdN:1

1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and FMathL have examples, but no real systematic study.² EdN:2

1.3 Experimental Setup

The primary corpus on which we base this investigation is the Cornel pre-print archive "ARXIV"³, consisting of over 700,000 articles in 37 scientific subfields.

EdN:3

 $^{^{1}\}mathrm{EdNote}$: expand $^{2}\mathrm{EdNote}$: expand

³EDNOTE: cite here

Train1	Differential Geometry
	http://arxmliv.kwarc.info/files/9609/dg-ga.9609012
Train2	Quantum Physics http://arxmliv.kwarc.info/files/0910/0910.5733/
Train3	High Energy Physics - Theory http://arxmliv.kwarc.info/files/9407/hep-th.9407125/
Train4	Commutative Algebra http://arxmliv.kwarc.info/files/0809/0809.4873/
Train5	Statistics Theory http://arxmliv.kwarc.info/files/0905/0905.1486/
Train6	General Relativity and Quantum Cosmology http://arxmliv.kwarc.info/files/0807/0807.2507/
Train7	Cosmology and Extragalactic Astrophysics http://arxmliv.kwarc.info/files/0908/0908.2548
Train8	Exactly Solvable and Integrable Systems http://arxmliv.kwarc.info/files/0905/0905.2033
Train9	Geometric Topology http://arxmliv.kwarc.info/files/0809/0809.4477
Train10	Algebraic Geometry http://arxmliv.kwarc.info/files/0704/0704.0537

Table 1.1: Sandbox of Ten Random ARXIV Papers from Diverse Scientific Subfields

arXiv Sandbox

EdN:4

EdN:5

4

As a secondary resource, we we will also consult entry-level literature on highschool mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors. 5

 $^{^4\}mathrm{EdNote}$: Say that, on the ArXIV front, we first start with the train sandbox from Deyan's thesis $^5\mathrm{EdNote}$: Wikipedia? PEMDAS?

Chapter 2

A Study of Mathematical Syntax

2.1 Basics

Foundations

6 7 8

EdN:7
EdN:8

9 10

EdN:9
EdN:10

EdN:6

2.2 Discrete math

Set Theoretic Notations

11 12 EdN:11 EdN:12

Logical Operators

 13 EdN:13

⁶EDNOTE: arithmetic, grouping fences and equality

⁷EDNOTE: basic relations and orderings

 $^{^8\}mathrm{Ed}\mathrm{Note}$: arithmetic and algebraic sequences?

 $^{^9\}mathrm{EdNote}$ geometry here, otherwise a separate geometry subsection

¹⁰EdNote: trigonometry, complex and rational numbers

 $^{^{11}\}mathrm{EdNote}$: elementhood, inclusions, set constructors, overloaded arith ops

 $^{^{12}\}mathrm{EdNote}\colon$ also maps : domains -¿ codomains, xRy notations

¹³EDNOTE: classic logic, HOL, type theories

Combinatorics

EdN:14

 $14 \ 15$

EdN:15

Number Theory

EdN:16

16 17 18 19

EdN:17

EdN:18 Graph Theory

EdN:19

20 21 22

EdN:20

EdN:21 EdN:22 **Algebra**

EdN:23

23 24 25 26

EdN:24

EdN:25 Functions Theory

EdN:26

EdN:27

2.3 Continuous math

Calculus

EdN:28

28

Probability

EdN:29 EdN:30 $29 \ 30$

 $^{14}\mathrm{EdNote}$: Infinite sums

¹⁵EdNote: binomials, combinations, permutations,

¹⁶EDNOTE: modulo modifiers

¹⁷EdNote: tuples

 $^{18}\mathrm{EdNote}$: divisibility notations $a\mid b$ and b/a

 $^{19}\mathrm{EdNote}$: DLMF sneaky notations

²⁰EDNOTE: edge and vertex notations

²¹EdNote: incidence and adjacency notations

²²EDNOTE: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary_of_graph_theory

²³EdNote: vectors

²⁴EdNote: maps and complements

 $^{25}\mathrm{EdNote}$: groups $^{26}\mathrm{EdNote}$: lattices

²⁷EDNote: talk about associativity of application and composition, ";" and "o" as notation variants,

discuss complex examples

²⁸EDNOTE: differentials, integrals, limits, remember brownian motion integral notations!

 $^{29}\mathrm{EdNote}$: Bayes formula with multiple denotations of P

³⁰EDNOTE: Various conditional and joint probability notations

Interval Notation and Arithmetic

EdN:31

Topology

32 EdN:32

2.4 Other fields

Quantum Physics

33 34 : EdN:33 EdN:34

 $^{^{31}\}mathrm{EdNote}$: introduce interval notations, then move to interval arithmetic

 $^{^{32}\}mathrm{EdNote}$: manifold constructors and notations

 $^{^{33}\}mathrm{EdNote}$: Bra-ket notation

³⁴EDNOTE: computer science, biology, chemistry...

Chapter ${\it 3}$

Discussion

Chapter 4

Conclusion