# **GSERM 2024**Regression for Publishing

June 19, 2024

## Discrepancy, Leverage, and Influence



Note: Solid line is the regression fit for Wilma, Fred, and Betty only. Long-dashed line is the regression for Wilma, Fred, Betty, and Barney. Short-dashed (red) line is the regression for Wilma, Fred, Betty and Dino.

## Discrepancy, Leverage, and Influence

Influence = Leverage  $\times$  Discrepancy

#### Leverage

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} 
= \mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}] 
= \mathbf{H}\mathbf{Y}$$

where

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

$$h_i = \mathbf{X}_i(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i'$$

## Residuals

Variation:

$$\widehat{\mathsf{Var}(\hat{u}_i)} = \hat{\sigma}^2 [1 - \mathsf{X}_i(\mathsf{X}'\mathsf{X})^{-1} \mathsf{X}_i'] \tag{1}$$

$$\widehat{\mathsf{s.e.}(\hat{u}_i)} = \hat{\sigma}\sqrt{[1-\mathsf{X}_i(\mathsf{X}'\mathsf{X})^{-1}\mathsf{X}_i']}$$

$$= \hat{\sigma}\sqrt{1-h_i}$$
(2)

"Standardized":

$$\tilde{u}_i = \frac{\hat{u}_i}{\hat{\sigma}\sqrt{1 - h_i}} \tag{3}$$

#### Residuals

"Studentized": define

$$\hat{\sigma}_{-i}^{2} = \text{Variance for the } N-1 \text{ observations } \neq i$$

$$= \frac{\hat{\sigma}^{2}(N-K)}{N-K-1} - \frac{\hat{u}_{i}^{2}}{(N-K-1)(1-h_{i})}. \tag{4}$$

Then:

$$\hat{u}_i' = \frac{\hat{u}_i}{\hat{\sigma}_{-i}\sqrt{1 - h_i}}\tag{5}$$

### Influence

"DFBETA":

$$D_{ki} = \hat{\beta}_k - \hat{\beta}_{k(-i)} \tag{6}$$

"DFBETAS" (the "S" is for "standardized):

$$D_{ki}^* = \frac{D_{ki}}{\widehat{\mathsf{s.e.}}(\widehat{\beta}_{k(-i)})} \tag{7}$$

Cook's D:

$$D_{i} = \frac{\tilde{u}_{i}^{2}}{K} \times \frac{h_{i}}{1 - h_{i}}$$

$$= \frac{h_{i}\hat{u}_{i}^{2}}{K\hat{\sigma}^{2}(1 - h_{i})^{2}}$$
(8)

#### Variance

```
> # No Barney OR Dino...
> summary(lm(Y~X,data=subset(flintstones,name!="Dino" & name!="Barney")))
Call:
lm(formula = Y ~ X. data = subset(flintstones, name != "Dino" &
   name != "Barney"))
Residuals:
     2 4
0.7143 -2.1429 1.4286
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 159.2857 6.7763 23.51 0.0271 *
X
             6.7857 0.6186 10.97 0.0579 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 2.673 on 1 degrees of freedom
Multiple R-squared: 0.9918, Adjusted R-squared: 0.9835
F-statistic: 120.3 on 1 and 1 DF, p-value: 0.05787
```

#### Variance

```
> # No Barney (Dino included...)
> summary(lm(Y~X,data=subset(flintstones,name!="Barney")))
Call:
lm(formula = Y ~ X, data = subset(flintstones, name != "Barney"))
Residuals:
-8.771e-15 2.632e-01 -2.105e+00 1.842e+00
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 157.3684 2.4651 63.84 0.000245 ***
Х
             6.9737 0.1612 43.27 0.000534 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.987 on 2 degrees of freedom
Multiple R-squared: 0.9989, Adjusted R-squared: 0.9984
F-statistic: 1873 on 1 and 2 DF, p-value: 0.0005336
```

### Variance

"COVRATIO":

$$\mathsf{COVRATIO}_i = \left[ (1 - h_i) \left( \frac{N - K - 1 + \hat{u}_i'^2}{N - K} \right)^K \right]^{-1} \tag{9}$$

## Example: Federal Judicial Review, 1789-2021

#### Dahl (1957):

- ullet SCOTUS gets "out of step" with the other branches o judicial review
- Older / longer-serving justices will more likely to invalidate legislation

#### Data:

> psych::describe(NewDahl,fast=TRUE,skew=TRUE) median min skew kurtosis mean max range Year 233 1905.00 67.41 1905.00 1789.0 2021.00 232.00 0.00 -1.224.42NConstDecisions 233 17.96 19.11 12.00 0.0 85.00 85.00 1.38 1.48 1.25 7.00 NNulls 233 0.70 1.06 0.00 0.0 7.00 1.96 5.39 0.07 62.65 4.96 63.56 45.5 71.11 25.61 -0.84 0.29 0.32 Age 233 Tenure 233 12.00 3.54 11.90 1.0 21.83 20.83 -0.19 0.25 0.23 Unified 233 0.78 0.42 1.00 0.0 1.00 1.00 - 1.32-0.260.03

## Example: Federal Judicial Review, 1789-2021



## A Regression...

```
> Fit<-lm(NNulls~Age+Tenure+Unified,data=NewDahl)
> summarv(Fit)
Call:
lm(formula = NNulls ~ Age + Tenure + Unified, data = NewDahl)
Residuals:
   Min 10 Median 30 Max
-1.3632 -0.7014 -0.1433 0.3279 5.6837
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.63930 1.00986 -4.594 7.18e-06 ***
Age
       Tenure -0.01631 0.02494 -0.654 0.514
Unified -0.10574 0.16025 -0.660 0.510
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.9808 on 229 degrees of freedom
Multiple R-squared: 0.1572, Adjusted R-squared: 0.1461
F-statistic: 14.23 on 3 and 229 DF, p-value: 1.545e-08
```

# Federal Judicial Review and Mean SCOTUS Age



#### Residuals, etc.

- > FitResid<-with(NewDahl,(Fit\$model\$NNulls-predict(Fit))) # residuals
- > FitStandard<-rstandard(Fit) # standardized residuals
- > FitStudent<-rstudent(Fit) # studentized residuals
- > FitCooksD<-cooks.distance(Fit) # Cook's D
- > FitDFBeta<-dfbeta(Fit) # DFBeta
- > FitDFBetaS<-dfbetas(Fit) # DFBetaS
- > FitCOVRATIO<-covratio(Fit) # COVRATIOs

## Studentized Residuals



#### More About Studentized Residuals

```
> max(FitStudent)
[1] 6.340266
> NewDahl$Year1935<-ifelse(NewDahl$Year==1935.1.0)</pre>
> summary(with(NewDahl, lm(NNulls~Age+Tenure+Unified+Year1935)))
Residuals:
   Min
            10 Median 30
                                  Max
-1.3054 -0.6574 -0.1317 0.3242 3.2313
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.887748   0.940647   -4.133   5.03e-05 ***
Age
          0.076292  0.017026  4.481  1.18e-05 ***
Tenure -0.007543 0.023086 -0.327 0.744
Unified -0.168979 0.148415 -1.139 0.256
Year1935 5.809221 0.916242 6.340 1.22e-09 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9063 on 228 degrees of freedom
Multiple R-squared: 0.2835, Adjusted R-squared: 0.2709
F-statistic: 22.55 on 4 and 228 DF, p-value: 1.042e-15
```

#### "Bubble Plot"



### **DFBETAS**



#### **COVRATIO Plot**



## Sensitivity Analyses: Omitting Outliers

```
> out1 < -c(1935) # one outlier
> LD2<-NewDahl[!(NewDahl$Year %in% out1),]</pre>
> out2 < -c(1935, 1968, 1997, 2000) # four outliers
> LD3<-NewDahl[!(NewDahl$Year %in% out2).]
> Fit2<-lm(NNulls~Age+Tenure+Unified,data=LD2)
> Fit3<-lm(NNulls~Age+Tenure+Unified,data=LD3)</pre>
> summary(Fit2)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.887748   0.940647   -4.133   5.03e-05 ***
Age
         0.076292 0.017026 4.481 1.18e-05 ***
Tenure -0.007543 0.023086 -0.327 0.744
Unified -0.168979 0.148415 -1.139 0.256
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.9063 on 228 degrees of freedom
Multiple R-squared: 0.1543, Adjusted R-squared: 0.1432
F-statistic: 13.87 on 3 and 228 DF, p-value: 2.443e-08
```

## Compare Models

|                         | Dependent variable:    |                         |                         |
|-------------------------|------------------------|-------------------------|-------------------------|
|                         | (1)                    | (2)                     | (3)                     |
| Age                     | 0.090***               | 0.076***                | 0.079***                |
|                         | (0.018)                | (0.017)                 | (0.016)                 |
| Tenure                  | -0.016                 | -0.008                  | -0.015                  |
|                         | (0.025)                | (0.023)                 | (0.021)                 |
| Unified                 | -0.106                 | -0.169                  | -0.066                  |
|                         | (0.160)                | (0.148)                 | (0.139)                 |
| Constant                | -4.639***              | -3.888***               | -4.077***               |
|                         | (1.010)                | (0.941)                 | (0.869)                 |
| Observations            | 233                    | 232                     | 229                     |
| $R^2$                   | 0.157                  | 0.154                   | 0.162                   |
| Adjusted R <sup>2</sup> | 0.146                  | 0.143                   | 0.151                   |
| Residual Std. Error     | 0.981 (df = 229)       | 0.906 (df = 228)        | 0.836 (df = 225)        |
| F Statistic             | 14.234***(df = 3; 229) | 13.869*** (df = 3; 228) | 14.529*** (df = 3; 225) |

Note: \*p<0.1; \*\*p<0.05; \*\*\*p<0.01

21 / 113

## Thinking About Diagnostics



Observational Data Complex Data Structure Informative Missingness Complex / Uncertain Causality Experimental Data
Simple Data Structure
No / Uninformative
Missingness
Simple / Clear Causality

## One Approach

Pena, E.A. and E.H. Slate. 2006. "Global Validation of Linear Model Assumptions." *J. American Statistical Association* 101(473):341-354.

#### Tests for:

- Normality in ûs (via skewness & kurtosis tests)
- "Link function" (linearity / additivity)
- Constant variance and uncorrelatedness in ûs ("heteroskedasticity" test)

#### In Action

```
> library(gvlma)
> Nope <- gvlma(Fit) # nope
> display.gvlmatests(Nope)
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
 gvlma(x = Fit)
                    Value p-value
                                                      Decision
Global Stat
                   402.68 0.000e+00 Assumptions NOT satisfied!
Skewness
                   111.88 0.000e+00 Assumptions NOT satisfied!
Kurtosis
                   243.82 0.000e+00 Assumptions NOT satisfied!
Link Function
                     5.07 2.434e-02 Assumptions NOT satisfied!
Heteroscedasticity 41.91 9.565e-11 Assumptions NOT satisfied!
```

> Fit<-lm(NNulls~Age+Tenure+Unified.data=NewDahl)

## Another Approach: plot(fit)



## #1: Residuals vs. Fitted Values



# #2: Q-Q Plot of $\hat{u}$ s



## #3: "Scale-Location" Plot



## #4: Cook's *D*



## #5: Residuals vs. Leverage



#6: Cook's *D* vs. Leverage



# "Variances"

## Variances: Why We Care

2016 ANES pilot study "feeling thermometer" toward gays and lesbians (N = 1200):

```
> summary(ANES$ftgay)
Min. 1st Qu. Median Me
0.0 40.5 54.0 57
```

```
n Mean 3rd Qu. Max. NA's
0 57.4 88.5 100.0 1
```

> summary(ANES\$presjob)
Min. 1st Qu. Median

edian Mean 3rd Qu. Max.

1.00 2.00 4.00 4.19 7.00 7.00

Suppose we wanted to create aggregate measures, by state (N = 51). We would get:

#### > summary(StateFT)

| State             | Nresp          | meantherm     | meanpresapp   |
|-------------------|----------------|---------------|---------------|
| Length:50         | Min. : 1.00    | Min. :17.62   | Min. :2.000   |
| Class : character | 1st Qu.: 8.00  | 1st Qu.:51.33 | 1st Qu.:3.755 |
| Mode :character   | Median : 18.00 | Median :57.11 | Median :4.236 |
|                   | Mean : 24.00   | Mean :58.33   | Mean :4.146   |
|                   | 3rd Qu.: 30.75 | 3rd Qu.:62.55 | 3rd Qu.:4.614 |
|                   | Max. :116.00   | Max. :89.00   | Max. :5.800   |

## Variances: Why We Care



## Variances: A Generalization

Start with:

$$Y_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

with:

$$Var(u_i) = \sigma^2/w_i$$

with  $w_i$  known.

## Weighted Least Squares

WLS now minimizes:

$$\mathsf{RSS} = \sum_{i=1}^N w_i (Y_i - \mathbf{X}_i \boldsymbol{\beta}).$$

which gives:

$$\hat{\boldsymbol{\beta}}_{WLS} = [\mathbf{X}'(\sigma^2 \Omega)^{-1} \mathbf{X}]^{-1} \mathbf{X}'(\sigma^2 \Omega)^{-1} \mathbf{Y} 
= [\mathbf{X}' \mathbf{W}^{-1} \mathbf{X}]^{-1} \mathbf{X}' \mathbf{W}^{-1} \mathbf{Y}$$

where:

$$\mathbf{W} = \begin{bmatrix} \frac{\sigma^2}{w_1} & 0 & \cdots & 0\\ 0 & \frac{\sigma^2}{w_2} & \cdots & \vdots\\ \vdots & 0 & \ddots & 0\\ 0 & \cdots & 0 & \frac{\sigma^2}{w_N} \end{bmatrix}$$

## Getting to Know WLS

The variance-covariance matrix is:

$$\begin{aligned} \mathsf{Var}(\hat{\beta}_{\mathit{WLS}}) &= & \sigma^2(\mathbf{X}'\Omega^{-1}\mathbf{X})^{-1} \\ &\equiv & (\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})^{-1} \end{aligned}$$

A common case is:

$$\mathsf{Var}(u_i) = \sigma^2 \frac{1}{N_i}$$

where  $N_i$  is the number of observations upon which (aggregate) observation i is based.

# Feeling Thermometer Example



# Regressions

|                                   |                      | Dependent variable | :            |  |  |  |
|-----------------------------------|----------------------|--------------------|--------------|--|--|--|
|                                   | Mean Gay/Lesbian FTs |                    |              |  |  |  |
|                                   | OLS                  | WLS [1/In(N)]      | WLS [1/N]    |  |  |  |
| Mean Presidential Approval        | -10.216***           | -8.483***          | -5.756**     |  |  |  |
|                                   | (1.976)              | (2.200)            | (2.187)      |  |  |  |
| Constant                          | 100.684***           | 93.221***          | 81.583***    |  |  |  |
|                                   | (8.343)              | (9.378)            | (9.238)      |  |  |  |
| Observations                      | 50                   | 50                 | 50           |  |  |  |
| $R^2$                             | 0.358                | 0.237              | 0.126        |  |  |  |
| Adjusted R <sup>2</sup>           | 0.344                | 0.221              | 0.108        |  |  |  |
| Residual Std. Error ( $df = 48$ ) | 11.130               | 17.072             | 37.914       |  |  |  |
| F Statistic (df = 1; 48)          | 26.721***            | 14.870***          | 6.927**      |  |  |  |
| Note:                             |                      | *p<0.1; **p<0.0    | 5; ***p<0.01 |  |  |  |

# Regressions, Plotted



### "Robust" Variance Estimators

Recall that, if  $\sigma_i^2 \neq \sigma_i^2 \ \forall \ i \neq j$ ,

$$Var(\beta_{Het.}) = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{Q}(\mathbf{X}'\mathbf{X})^{-1}$$

where  $\mathbf{Q} = (\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$  and  $\mathbf{W} = \sigma^2 \mathbf{\Omega}$ .

We can rewrite  ${f Q}$  as

$$\mathbf{Q} = \sigma^{2}(\mathbf{X}'\Omega^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_{i}^{2}\mathbf{X}_{i}\mathbf{X}'_{i}$$

# Huber's Insight

Estimate **Q** as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= (\mathbf{X}'\mathbf{X})^{-1} \left[ \mathbf{X}' \left( \sum_{i=1}^{N} \widehat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

# Practical Things

#### "Robust" standard error estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when  $Var(u) = \sigma^2 I$ .
- Come in various "versions"
  - · Called "HC0," "HC1," "HC2," "HC3," etc.
  - · See the Long and Ervin (2000) paper for details...

# "Clustering"

Huber / White

????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

## "Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2$$
.

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[ \sum_{i=1}^{N} \left( \sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

# Regressions, Again

|                               | Mean Gay/Lesbian FTs  |                       |                      |                      |  |  |  |
|-------------------------------|-----------------------|-----------------------|----------------------|----------------------|--|--|--|
|                               | OLS                   | OLS (robust)          | WLS [1/In(N)]        | WLS [1/N]            |  |  |  |
| Mean Presidential Approval    | -10.216***<br>(1.976) | -10.216***<br>(2.339) | -8.483***<br>(2.200) | -5.756**<br>(2.187)  |  |  |  |
| Constant                      | 100.684***<br>(8.343) | 100.684***<br>(9.722) | 93.221***<br>(9.378) | 81.583***<br>(9.238) |  |  |  |
| Observations                  | 50                    |                       | 50                   | 50                   |  |  |  |
| $R^2$                         | 0.358                 |                       | 0.237                | 0.126                |  |  |  |
| Adjusted R <sup>2</sup>       | 0.344                 |                       | 0.221                | 0.108                |  |  |  |
| Residual Std. Error (df = 48) | 11.130                |                       | 17.072               | 37.914               |  |  |  |
| F Statistic (df = 1; 48)      | 26.721***             |                       | 14.870***            | 6.927**              |  |  |  |

Note:

\*p<0.1; \*\*p<0.05; \*\*\*p<0.01

# Expanded State-Level ANES Example

#### > psych::describe(StateData)

|               | n  | mean  | sd    | median | trimmed | mad   | min   | max    | range  | skew  | kurtosis | se   |
|---------------|----|-------|-------|--------|---------|-------|-------|--------|--------|-------|----------|------|
| State*        | 50 | 25.50 | 14.58 | 25.50  | 25.50   | 18.53 | 1.00  | 50.00  | 49.00  | 0.00  | -1.27    | 2.06 |
| NResp         | 50 | 24.00 | 23.74 | 18.00  | 19.48   | 16.31 | 1.00  | 116.00 | 115.00 | 1.79  | 3.34     | 3.36 |
| LGBTTherm     | 50 | 58.33 | 13.74 | 57.11  | 58.11   | 8.51  | 17.62 | 89.00  | 71.38  | -0.22 | 1.40     | 1.94 |
| MeanCons      | 50 | 3.97  | 0.77  | 4.00   | 3.98    | 0.55  | 1.50  | 5.60   | 4.10   | -0.47 | 1.28     | 0.11 |
| MeanAge       | 50 | 4.74  | 0.64  | 4.78   | 4.74    | 0.43  | 3.10  | 6.50   | 3.40   | 0.11  | 1.10     | 0.09 |
| MeanEducation | 50 | 3.25  | 0.52  | 3.22   | 3.22    | 0.41  | 2.33  | 5.00   | 2.67   | 0.84  | 1.44     | 0.07 |
| BornAgainProp | 50 | 0.28  | 0.18  | 0.25   | 0.28    | 0.19  | 0.00  | 0.72   | 0.72   | 0.11  | -0.62    | 0.02 |

#### Basic regression:

> OLS<-lm(LGBTTherm~MeanCons+MeanAge+MeanEducation+BornAgainProp,data=StateData)
> summary(OLS)

#### Coefficients:

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.55 on 45 degrees of freedom Multiple R-squared: 0.4589, Adjusted R-squared: 0.4108 F-statistic: 9.542 on 4 and 45 DF, p-value: 1.128e-05

#### "Robust" SEs

```
> hccm(OLS.tvpe="hc3") # "HC3" var-cov matrix
             (Intercept) MeanCons
                                      MeanAge MeanEducation BornAgainProp
               605.37713 -43.049519 -37.2508294
(Intercept)
                                                -89.9147335
                                                              122,746274
MeanCons
               -43.04952 11.706690 -1.2344463
                                                  4.9693587
                                                              -38.744970
MeanAge
              -37.25083 -1.234446 9.1700322
                                                 -0.6448676
                                                               -3.438703
MeanEducation -89.91473 4.969359 -0.6448676
                                                 23.1479923 -4.406169
BornAgainProp 122.74627 -38.744970 -3.4387029 -4.4061691
                                                              182.301825
> sqrt(diag(hccm(OLS,type="hc3"))) # "HC3" robust SEs
  (Intercept)
                 MeanCons
                                MeanAge MeanEducation BornAgainProp
   24.604413
                  3.421504
                               3.028206
                                            4.811236
                                                        13.501919
> coeftest(OLS.vcov.=vcovHC)
t test of coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             71.64636
                       24.60441 2.9119 0.005572 **
MeanCons
             -7.92559 3.42150 -2.3164 0.025147 *
             -2.66876 3.02821 -0.8813 0.382838
MeanAge
MeanEducation 9.47715 4.81124 1.9698 0.055035 .
BornAgainProp -0.22727 13.50192 -0.0168 0.986644
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

# $\hat{eta}$ s and 95% CIs: Various Types of Robust SEs



# Generalized Linear Models (GLMs)

# The Exponential Family

$$f(z|\psi) = \Pr(Z = z|\psi)$$

Exponential if:

$$f(z|\psi) = r(z)s(\psi)\exp[q(z)h(\psi)]$$

provided that r(z) > 0 and  $s(\psi) > 0$ .

$$f(z|\psi) = \exp\left[\underbrace{\ln r(z) + \ln s(\psi)}_{\text{"additive"}} + \underbrace{q(z)h(\psi)}_{\text{"interactive"}}\right]$$

#### Canonical Forms

$$y = q(z)$$
  $\theta = h(\psi)$   $f[y|\theta] = \exp[y\theta - b(\theta) + c(y)].$ 

- $b(\theta)$  is a "normalizing constant"
- c(y) is a function solely of y
- $y\theta$  is a multiplicative term

# A Familiar Family Member: Poisson

$$f(y|\lambda) = \frac{\exp(-\lambda)\lambda^y}{y!}.$$

$$f(y|\lambda) = \exp \left\{ \ln \left[ \exp(-\lambda) \lambda^{y} / y! \right] \right\}$$
$$= \exp \left[ \underbrace{y \ln(\lambda)}_{y\theta} - \underbrace{\lambda}_{b(\theta)} - \underbrace{\ln(y!)}_{c(y)} \right]$$

# Family Nuisances

$$f(y|\theta,\phi) = \exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right]$$

## Familiar Family Member II: Normal

$$f(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{(y-\mu)^2}{2\sigma^2}\right]$$

$$f(y|\mu, \sigma^2) = \exp\left[-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(y^2 - 2y\mu + \mu^2)\right]$$

$$= \exp\left[-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}y^2 + \frac{1}{2\sigma^2}2y\mu - \frac{1}{2\sigma^2}\mu^2\right]$$

$$= \exp\left[\frac{y\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)\right]$$

$$= \exp\left\{\frac{y\mu - \frac{\mu^2}{2}}{\sigma^2} + \frac{-1}{2}\left[\frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2)\right]\right\}$$

## Normal, continued

$$f(y|\mu,\sigma^2) = \exp\left\{\frac{y\mu - \frac{\mu^2}{2}}{\sigma^2} + \frac{-1}{2}\left[\frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2)\right]\right\}$$

 $\theta = \mu$ , so:

• 
$$y\theta = y\mu$$

• 
$$b(\theta) = \frac{\mu^2}{2}$$

• 
$$a(\phi) = \sigma^2$$

• 
$$c(y,\phi) = \frac{-1}{2} \left[ \frac{y^2}{\sigma^2} + \ln(2\pi\sigma^2) \right]$$

# Other Family Members

- Binomial (⊃ Bernoulli; also Multinomial)
- Exponential
- Gamma
- Logarithmic
- Inverse Gaussian
- Negative Binomial
- others...

#### Little Red Likelihood

$$\ln L(\theta, \phi|y) = \ln f(y|\theta, \phi)$$

$$= \ln \left\{ \exp \left[ \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \right] \right\}$$

$$= \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)$$

$$\frac{\partial \ln L(\theta, \phi | y)}{\partial \theta} \equiv \mathbf{S} = \frac{\partial}{\partial \theta} \left[ \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \right] \\
= \frac{y - \frac{\partial}{\partial \theta} b(\theta)}{a(\phi)}.$$

#### Among family members:

- **S** is a sufficient statistic for  $\theta$ .
- E(S) = 0.
- $Var(S) \equiv \mathcal{I}(\theta) = E[(S)^2 | \theta]$

### More Estimation

$$\mathsf{E}(\mathsf{Y}) = \frac{\partial}{\partial \theta} b(\theta)$$

 $\quad \text{and} \quad$ 

$$Var(Y) = a(\phi) \frac{\partial^2}{\partial \theta^2} b(\theta)$$

# Example: Poisson Again

$$E(Y) = \frac{\partial}{\partial \theta} \exp(\theta)$$

$$= \exp(\theta)|_{\theta = \ln(\lambda)}$$

$$= \lambda$$

$$\begin{aligned} \mathsf{Var}(Y) &= 1 \times \frac{\partial^2}{\partial \theta^2} \exp(\theta)|_{\theta = \mathsf{ln}(\lambda)} \\ &= \exp[\mathsf{ln}(\lambda)] \\ &= \lambda \end{aligned}$$

# Example: Normal Again

$$E(Y) = \frac{\partial}{\partial \theta} \left( \frac{\theta^2}{2} \right)$$
$$= \theta|_{\theta=\mu}$$
$$= \mu$$

$$Var(Y) = \sigma^2 \times \frac{\partial^2}{\partial \theta^2} \left(\frac{\theta^2}{2}\right)$$
$$= \sigma^2 \times \frac{\partial}{\partial \theta} \theta$$
$$= \sigma^2$$

# Linear Model(s)

$$Y_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

$$\mathsf{E}(Y_i) \equiv \boldsymbol{\mu}_i = \mathbf{X}_i \boldsymbol{\beta}$$

### The "Generalized" Part

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}.$$

$$\eta_i = \mathbf{X}_i \boldsymbol{\beta} \\
= \mathbf{g}(\boldsymbol{\mu}_i)$$

$$\mu_i = g^{-1}(\eta_i)$$
  
=  $g^{-1}(\mathbf{X}_i\beta)$ 

Random component  $\sim$  Exponential Family( $\cdot$ ) with

$$\mathsf{E}(Y_i) = \mu_i$$
.

Systematic component:

$$g(\mu_i) = \eta_i$$

or

$$g^{-1}(\eta_i) = \mu_i.$$

# The Return of The Family

$$egin{array}{lll} m{ heta}_i &=& m{g}(m{\mu}_i) \ &=& m{\eta}_i \ &=& m{X}_im{eta} \end{array}$$

$$g^{-1}(\theta_i) = \mu_i$$

## GLM Example: Linear-Normal

$$f(y|\mu, \sigma^2) = \mathcal{N}(\mu, \sigma^2)$$
 $\mu_i = \eta_i$ 
 $\mu_i \equiv \theta_i = \eta_i$ 
 $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$ 

# GLM Example: Binary

$$f(y|\pi) = \pi^y (1-\pi)^{1-y}$$
  $heta_i = \ln\left(rac{\mu_i}{1-\mu_i}
ight)$   $\mu_i = g^{-1}( heta_i)$   $= rac{\exp(\eta_i)}{1+\exp(\eta_i)}$   $Y_i \sim ext{Bernoulli}(\mu_i)$ 

# GLM Example: Counts (Independent Events)

$$f(y|\lambda) = rac{\exp(-\lambda)\lambda^y}{y!}$$
 $\ln(\lambda_i) = \eta_i$ 
 $\mu_i = g^{-1}(\theta_i)$ 
 $= \exp(\eta_i)$ 
 $Y_i \sim \operatorname{Poisson}(\lambda_i)$ 

#### Common GLM Flavors

| Distribution | Range of $Y$            | $Link(s)\; g(\cdot)$                                                                         | Inverse Link $g^{-1}(\cdot)$                           |
|--------------|-------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Normal       | $(-\infty, \infty)$     | Identity: $oldsymbol{	heta} = oldsymbol{\mu}$ (Canonical)                                    | $\boldsymbol{	heta}$                                   |
| Binomial     | $\{0,n\}$               | Logit: $oldsymbol{	heta} = In\left(rac{oldsymbol{\mu}}{1-oldsymbol{\mu}} ight)$ (Canonical) | $rac{exp(oldsymbol{	heta})}{1+exp(oldsymbol{	heta})}$ |
|              |                         | Probit: $\theta = \Phi^{-1}(\mu)$                                                            | $\Phi(\boldsymbol{\theta})$                            |
|              |                         | C-Log-Log: $	heta = \ln[-\ln(1-\mu)]$                                                        | $1 - \exp[-\exp(\boldsymbol{\theta})]$                 |
| Bernoulli    | {0,1}                   | (same as Binomial)                                                                           | (same as Binomial)                                     |
| Multinomial  | $\{0,J\}$               | (same as Binomial)                                                                           | (same as Binomial)                                     |
| Poisson      | $[0,\infty]$ (integers) | Log: $oldsymbol{	heta} = In(oldsymbol{\mu})$ (Canonical)                                     | $\exp(\theta)$                                         |
| Gamma        | (0, ∞)                  | Reciprocal: $\hat{\theta} = -\frac{1}{\mu}$ (Canonical)                                      | $-\frac{1}{\theta}$                                    |

Note: The Bernoulli is a special case of the Binomial with n=1. The multinomial is the J-outcome variant of the Binomial, and is also related to the Poisson (see, e.g., Agresti 2002).

# GLMs: How-To

- Pick f(Y)
- Pick  $g(\cdot)$
- Specify **X**
- Estimate

# Model Fitting

- MLE
- IRLS (≈ MLE):

$$\hat{\boldsymbol{\beta}}^{(t+1)} = [\mathbf{X}'\mathbf{W}^{(t)}\mathbf{X}]^{-1}\mathbf{X}'\mathbf{W}^{(t)}\mathbf{z}^{(t)}$$

with

$$\mathbf{W}_{N \times N}^{(t)} = \operatorname{diag}\left[\frac{\left(\partial \mu_i^{(t)}/\partial \eta_i^{(t)}\right)^2}{\operatorname{Var}(Y_i)}\right]$$

and

$$\mathbf{z}^{(t)} = \boldsymbol{\eta}^{(t)} + (Y - \boldsymbol{\mu}^{(t)}) \left( \frac{\partial \boldsymbol{\eta}^{(t)}}{\partial \boldsymbol{\mu}} \right).$$

# IRLS, Intuitively

#### At iteration t:

- 1. Calculate  $\mathbf{z}^{(t)}$ ,  $\mathbf{W}^{(t)}$
- 2. Regress  $\mathbf{z}^{(t)}$  on  $\mathbf{X}$ , using  $\mathbf{W}^{(t)}$  as weights, to obtain  $\hat{\boldsymbol{\beta}}^{(t+1)}$
- 3. Generate  $\boldsymbol{\eta}^{(t+1)} = \mathbf{X}\hat{\boldsymbol{\beta}}^{(t+1)}$
- 4. Generate  $oldsymbol{\mu}^{(t+1)} = g^{-1}(oldsymbol{\eta}^{(t+1)})$
- 5. Use  $\boldsymbol{\eta}^{(t+1)}$  and  $\boldsymbol{\mu}^{(t+1)}$  to calculate  $\mathbf{z}^{(t+1)}$  and  $\mathbf{W}^{(t+1)}$
- 6. Repeat until convergence.

#### Residuals

"Response" Residuals:

$$\hat{u}_{i} = Y_{i} - \hat{\mu}_{i} 
= Y_{i} - g^{-1}(\mathbf{X}_{i}\hat{\boldsymbol{\beta}})$$

"Pearson" Residuals:

$$\hat{P}_i = \frac{\hat{u}_i}{[\mathsf{Var}(\hat{u}_i)]^{1/2}}$$

#### More Residuals

"Deviance":

$$\hat{d}_{i} = -2[\ln L_{i}(\hat{\theta}) - \ln L_{i}(\theta_{S})] 
= 2\left\{ \left[ \frac{Y_{i}\theta_{S} - b(\theta_{S})}{a(\phi)} + c(Y_{i}, \phi) \right] - \left[ \frac{Y_{i}\hat{\theta} - b(\hat{\theta})}{a(\phi)} + c(Y_{i}, \phi) \right] \right\} 
= 2\left[ \frac{Y_{i}(\theta_{S} - \hat{\theta}) - b(\theta_{S}) + b(\hat{\theta})}{a(\phi)} \right]$$

"Deviance" Residuals:

$$\hat{r}_{Di} = \left(\frac{\hat{u}_i}{|\hat{u}_i|}\right)\sqrt{\hat{d}_i^2}$$

### Toy Example: Linear-Normal

$$\begin{array}{rcl} X & = & \{1,1,2,2,3,3,4,4,5,5\} \\ Y & = & \{0,2,1,3,2,4,3,5,4,6\} \\ \\ Y_i & = & 0+1X_i+u_i \\ & \hat{u}_i^2 & = & 1\,\forall\,i \\ \\ \\ \text{"TSS"} & \equiv \sum_i (Y_i - \bar{Y})^2 & = & 30 \\ & \text{"RSS"} & \equiv \sum_i \hat{u}_i^2 & = & 10 \\ & \text{"MSS"} & / \text{"ESS"} & = & 20 \\ \end{array}$$

### Toy Example: Plot



### Toy Example: OLS

```
> linmod<-lm(Y~X)
> summary(linmod)
Call:
lm(formula = Y ~ X)
Residuals:
  Min 1Q Median
                            Max
   -1 -1 0
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.661e-16 8.292e-01
                                    0 1.00000
X
           1.000e+00 2.500e-01
                                    4 0.00395 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1.118 on 8 degrees of freedom
Multiple R-squared: 0.6667, Adjusted R-squared: 0.625
F-statistic: 16 on 1 and 8 DF, p-value: 0.00395
```

### Toy Example: Linear-Normal GLM

```
> linglm<-glm(Y~X,family="gaussian")</pre>
> summarv(linglm)
Call:
glm(formula = Y ~ X, family = "gaussian")
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.661e-16 8.292e-01 0 1.00000
X
          1.000e+00 2.500e-01 4 0.00395 **
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for gaussian family taken to be 1.25)
   Null deviance: 30 on 9 degrees of freedom
Residual deviance: 10 on 8 degrees of freedom
ATC: 34.379
Number of Fisher Scoring iterations: 2
```

## Better GLM Example: Political Knowledge

- 2008 NES political knowledge
- Identify Speaker of the House, VP, British PM, and Chief Justice
- $Y_i$  = number of correct answers (out of four)

$$f(Y_i, p_i) = {4 \choose Y_i} p_i^{Y_i} (1 - p_i)^{4 - Y_i}$$

$$Y \sim \text{Binomial}(4, p)$$

$$\mathsf{E}(Y_i) = \frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}$$

## GLM Example Data (2008 NES)

> psych::describe(NES08[,4:16],fast=TRUE,skew=TRUE)

|              | vars | n    | mean  | sd   | median | min | max  | range | skew  | kurtosis | se   |
|--------------|------|------|-------|------|--------|-----|------|-------|-------|----------|------|
| knowledge    | 1    | 2102 | 1.63  | 1.33 | 2      | 0   | 4    | 4     | 0.23  | -1.14    | 0.03 |
| sex          | 2    | 2323 | NaN   | NA   | NA     | Inf | -Inf | -Inf  | NA    | NA       | NA   |
| race         | 3    | 2323 | NaN   | NA   | NA     | Inf | -Inf | -Inf  | NA    | NA       | NA   |
| age          | 4    | 2323 | NaN   | NA   | NA     | Inf | -Inf | -Inf  | NA    | NA       | NA   |
| female       | 5    | 2323 | 0.57  | 0.50 | 1      | 0   | 1    | 1     | -0.28 | -1.92    | 0.01 |
| white        | 6    | 2323 | 0.62  | 0.49 | 1      | 0   | 1    | 1     | -0.50 | -1.75    | 0.01 |
| oftenvote    | 7    | 2323 | NaN   | NA   | NA     | Inf | -Inf | -Inf  | NA    | NA       | NA   |
| conservative | 8    | 1626 | 4.14  | 1.54 | 4      | 1   | 7    | 6     | -0.13 | -0.74    | 0.04 |
| prayfreq     | 9    | 2323 | NaN   | NA   | NA     | Inf | -Inf | -Inf  | NA    | NA       | NA   |
| heterosexual | 10   | 2274 | 0.96  | 0.20 | 1      | 0   | 1    | 1     | -4.63 | 19.47    | 0.00 |
| married      | 11   | 2308 | 0.42  | 0.49 | 0      | 0   | 1    | 1     | 0.31  | -1.90    | 0.01 |
| yrsofschool  | 12   | 2312 | 13.08 | 2.59 | 13     | 0   | 17   | 17    | -0.75 | 1.81     | 0.05 |
| income       | 13   | 2172 | 10.52 | 6.20 | 11     | 1   | 25   | 24    | 0.13  | -0.82    | 0.13 |

## Political Knowledge (2008 NES)



#### GLM Results

```
> nes08.binom<-glm(cbind(knowledge,4-knowledge)~age+female+white+
                    conservative+heterosexual+married+yrsofschool+
                    income, data=NESO8, family=binomial)
> summary(nes08.binom)
Call:
glm(formula = cbind(knowledge, 4 - knowledge) ~ age + female +
   white + conservative + heterosexual + married + yrsofschool +
   income, family = binomial, data = NESO8)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.155103 0.247251 -8.716 < 2e-16 ***
            0.012301 0.001806 6.811 9.68e-12 ***
age
female
           -0.229704 0.058547 -3.923 8.73e-05 ***
white
           0.185427 0.063213 2.933 0.00335 **
conservative -0.030712  0.018824 -1.632  0.10277
heterosexual -0.073058 0.138717 -0.527 0.59842
married
           0.170145 0.057919 2.938 0.00331 **
vrsofschool 0.099083 0.012940 7.657 1.90e-14 ***
income
           0.010540 0.005197 2.028 0.04256 *
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 3167.1 on 1350 degrees of freedom
Residual deviance: 2962.6 on 1342 degrees of freedom
  (972 observations deleted due to missingness)
ATC: 4558.4
Number of Fisher Scoring iterations: 4
```

### GLMs: Other Topics + Extensions

#### Other Topics:

- Generalizations for Overdispersion (binomial)
- Diagnostics (leverage, etc.)
- Joint Mean-Dispersion Models

#### Extensions:

- Bias-reduced models (a la Firth 1993)
- "Generalized additive models" (GAMs)
- "Generalized estimating equations" (GEEs)
- "Vector" GLMs (Yee and Wild 1996; Yee and Hastie 2003)

#### **GLMs**: References

McCullagh, P., and J. A. Nelder. 1989. *Generalized Linear Models*, 2nd Ed. London: Chapman & Hall.

Dobson, Annette J., and and Adrian G. Barnett. 2008. *An Introduction to Generalized Linear Models*, 3rd Ed. London: Chapman & Hall.

Faraway, Julian J. 2006. Extending the Linear Model with R: Generalized Linear, Mixed Effects, and Nonparametric Regression Models. London: Chapman & Hall / CRC.

Dunn, Peter K., and Gordon K. Smyth. 2018. *Generalized Linear Models With Examples in R*. New York: Springer.

Hardin, James W., and Joseph W. Hilbe. 2012. *Generalized Linear Models and Extensions*, 3rd Ed. College Station, TX: Stata Press.

# Binary Response Models

### Linear Probability Model (LPM)

$$\mathsf{E}(Y) = \mathsf{X} eta$$

$$Y \in \{0,1\}$$

$$E(Y) = 1[Pr(Y = 1)] + 0[Pr(Y = 0)]$$
  
=  $Pr(Y = 1)$ 

So:

or:

$$\Pr(Y_i=1)=\mathbf{X}_i\boldsymbol{\beta}$$

$$Y_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

### LPM Illustrated



#### LPM Issues

Variance:

$$Var(Y) = E(Y)[1 - E(Y)]$$
$$= \mathbf{X}_{i}\beta(1 - \mathbf{X}_{i}\beta)$$

Residuals:

$$\hat{u}_i \in \{1 - \mathbf{X}_i \hat{\boldsymbol{\beta}}, -\mathbf{X}_i \hat{\boldsymbol{\beta}}\}$$

### LPM Residuals



#### Whither The LPM?

#### Various thoughts:

- Issues:
  - · Model misspecification  $\rightarrow$  bias, inconsistency
  - · Creates heteroscedasticity
  - · Can yield predicted values outside (0,1)
  - See, e.g., See: Chen, Kaicheng, Robert S. Martin, and Jeffrey M. Wooldridge. 2023. "Another Look at the Linear Probability Model and Nonlinear Index Models." Working paper: Michigan State University.
- The rehabilitation of the LPM:
  - · "Logit is hard" / "OLS is awesome" / "It doesn't matter anyway"
  - · More-or-less entirely due to (famous) economists
  - · Examples: here, here, etc.
- Takeaway: Pay attention to what people in your discipline / field are doing.

#### A Different Model

Start with:

$$Y_i^* = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

And:

$$Y_i = 0 \text{ if } Y_i^* < 0$$
  
 $Y_i = 1 \text{ if } Y_i^* \ge 0$ 

So:

$$Pr(Y_i = 1) = Pr(Y_i^* \ge 0)$$

$$= Pr(\mathbf{X}_i \beta + u_i \ge 0)$$

$$= Pr(u_i \ge -\mathbf{X}_i \beta)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \int_{-\infty}^{\mathbf{X}_i \beta} f(u) du$$

"Standard logistic" PDF:

$$Pr(u) \equiv \lambda(u) = \frac{\exp(u)}{[1 + \exp(u)]^2}$$

CDF:

$$\Lambda(u) = \int \lambda(u) du$$

$$= \frac{\exp(u)}{1 + \exp(u)}$$

$$= \frac{1}{1 + \exp(-u)}$$

### Standard Normal and Logistic PDFs



### Standard Normal and Logistic CDFs



#### Characteristics

### For the standard logistic:

• 
$$\lambda(u) = 1 - \lambda(-u)$$

• 
$$\Lambda(u) = 1 - \Lambda(-u)$$

• 
$$Var(u) = \frac{\pi^2}{3} \approx 3.29$$

### Logistic ightarrow "Logit"

$$Pr(Y_i = 1) = Pr(Y_i^* > 0)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \Lambda(\mathbf{X}_i \beta)$$

$$= \frac{\exp(\mathbf{X}_i \beta)}{1 + \exp(\mathbf{X}_i \beta)}$$

(equivalently) = 
$$\frac{1}{1 + \exp(-\mathbf{X}_i \boldsymbol{\beta})}$$

#### Likelihoods

$$L_i = \left(\frac{\exp(\mathbf{X}_i\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i\boldsymbol{\beta})}\right)^{Y_i} \left[1 - \left(\frac{\exp(\mathbf{X}_i\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i\boldsymbol{\beta})}\right)\right]^{1 - Y_i}$$

$$L = \prod_{i=1}^{N} \left( \frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right)^{Y_{i}} \left[ 1 - \left( \frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right) \right]^{1 - Y_{i}}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \left( \frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) + \\
\left( 1 - Y_i \right) \ln \left[ 1 - \left( \frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) \right]$$

### Digression I: Logit as an Odds Model

$$\begin{aligned} \mathsf{Odds}(Z) &\equiv \Omega(Z) = \frac{\mathsf{Pr}(Z)}{1 - \mathsf{Pr}(Z)}. \\ \mathsf{In}[\Omega(Z)] &= \mathsf{In}\left[\frac{\mathsf{Pr}(Z)}{1 - \mathsf{Pr}(Z)}\right] \\ \mathsf{In}[\Omega(Z_i)] &= \mathbf{X}_i \beta \\ \\ \Omega(Z_i) &= \frac{\mathsf{Pr}(Z)}{1 - \mathsf{Pr}(Z)} \\ &= \mathsf{exp}(\mathbf{X}_i \beta) \end{aligned}$$

$$\mathsf{Pr}(Z_i) &= \frac{\mathsf{exp}(\mathbf{X}_i \beta)}{1 + \mathsf{exp}(\mathbf{X}_i \beta)}$$

### Visualizing Log-Odds



#### Y Be Normal?

Standard Normal PDF:

$$Pr(u) \equiv \phi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

Standard Normal CDF:

$$\Phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

#### $Normal \rightarrow "Probit"$

$$\begin{array}{lcl} \Pr(Y_i = 1) & = & \Phi(\mathbf{X}_i \boldsymbol{\beta}) \\ & = & \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mathbf{X}_i \boldsymbol{\beta})^2}{2}\right) d\mathbf{X}_i \boldsymbol{\beta} \end{array}$$

$$L = \prod_{i=1}^{N} \left[ \Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{Y_i} \left[ 1 - \Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{(1-Y_i)}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \Phi(\mathbf{X}_i \boldsymbol{\beta}) + (1 - Y_i) \ln [1 - \Phi(\mathbf{X}_i \boldsymbol{\beta})]$$

## Digression II: The Random Utility Model

$$Y \in \{SQ, A\}$$

$$Y_i = A$$
 if  $E[U_i(A)] \ge E[U_i(SQ)]$   
=  $SQ$  if  $E[U_i(A)] < E[U_i(SQ)]$ 

$$\mathsf{E}[\mathsf{U}_i(A)] = \mathbf{X}_{iA}\boldsymbol{\beta} + u_{iA}$$

So:

$$Pr(Y = A) = Pr\{E[U_i(A)] \ge E[U_i(SQ)]\}$$
$$= Pr\{(\mathbf{X}_{iA}\beta + u_{iA}) \ge E[U_i(SQ)]\}$$

### Digression II: The Random Utility Model

Normalize:

$$\mathsf{E}[\mathsf{U}_i(SQ)]=0$$

Then:

$$Pr(Y = A) = Pr\{(\mathbf{X}_{iA}\beta + u_{iA}) \ge 0\}$$
$$= Pr\{u_{iA} \ge -\mathbf{X}_{iA}\beta\}$$
$$= F(\mathbf{X}_{iA}\beta)$$

### Another Model: Complementary Log-Log

Uses:

$$\Pr(Y_i = 1) = 1 - \exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})]$$

or

$$\ln\{-\ln[1-\Pr(Y_i=1)]\} = \mathbf{X}_i\boldsymbol{\beta}$$

Likelihood is:

$$\ln L = \sum_{i=1}^{N} Y_i \ln\{1 - \exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})]\} + \\
(1 - Y_i) \ln\{1 - \{1 - \exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})]\}\}$$

## Logit and C-log-log CDFs



## Binary Response Models: Identification

### All require that:

- "Threshold" =  $Y^* > 0$
- $E(u_i|\mathbf{X},\boldsymbol{\beta})=0$
- $Var(u_i) = \frac{\pi^2}{3}$  or 1.0.

### Logit vs. Probit

### In general:

- The Universe: Logit > Probit
- The (Social Science) Universe: Meh...
- $\hat{oldsymbol{eta}}_{\mathsf{Logit}} pprox 1.8 imes \hat{oldsymbol{eta}}_{\mathsf{Probit}}$
- Four reasons to prefer / use logit

### A Toy Example

```
> set.seed(7222009)
> ystar<-rnorm(100,0.5,0.5)
> y<-ifelse(ystar>0.5,1,0)
> x<-ystar+(0.5*rnorm(100))
> data<-data.frame(ystar,y,x)</pre>
> head(data)
    ystar y
  0.17977 0 0.2677
2 0.79428 1 1.5079
3 0.82408 1 0.8842
  0.24658 0 0.8172
  0.50966 1 1.1255
6 -0.07852 0 -0.6506
```

## A Toy Example



### Model Comparisons

Logit, Probit, and C-Log-Log Models (Simulated Data)

|                   | Logit     | Probit         | C-Log-Log     |  |
|-------------------|-----------|----------------|---------------|--|
| X                 | 2.428***  | 1.458***       | 1.613***      |  |
|                   | (0.500)   | (0.272)        | (0.309)       |  |
| Constant          | -0.861*** | -0.519***      | -1.048***     |  |
|                   | (0.318)   | (0.183)        | (0.250)       |  |
| Observations      | 100       | 100            | 100           |  |
| Log Likelihood    | -49.690   | -49.490        | -49.522       |  |
| Akaike Inf. Crit. | 103.380   | 102.979        | 103.044       |  |
| Note              | *n        | ∠∩ 1· **n ∠∩ ∩ | 5· ***n <0.01 |  |

Note:

<sup>&</sup>gt; mylogit<-glm(y~x,family=binomial(link="logit"), data=data)

<sup>&</sup>gt; myprobit<-glm(y~x,family=binomial(link="probit"), data=data)

<sup>&</sup>gt; mycloglog<-glm(y~x,family=binomial(link="cloglog"), data=data)

## Comparing Models (continued)

#### Note:

- zs, Ps, In Ls, AICs nearly identical
- Residuals, too
- ullet  $\hat{eta}_{\mathsf{Logit}}$  is  $rac{2.428}{1.458} = 1.54 imes \hat{eta}_{\mathsf{Probit}}$

## Toy Example: Predicted Probabilities



### Note: C-Log-Log Isn't "Reversible"

Suppose we generate a new dependent variable:

$$Y_{iNew} = 1 - Y_i$$

What happens to our estimates?

|           |       | $\hat{eta}_{0}$   |           | $\hat{eta}_1$ |                   |           |  |
|-----------|-------|-------------------|-----------|---------------|-------------------|-----------|--|
|           | Y     |                   | $Y_{New}$ | Y             |                   | $Y_{New}$ |  |
| Probit    | -0.52 | $\leftrightarrow$ | 0.52      | 1.46          | $\leftrightarrow$ | -1.46     |  |
| Logit     | -0.86 | $\leftrightarrow$ | 0.86      | 2.43          | $\leftrightarrow$ | -2.43     |  |
| C-Log-Log | -1.05 | $\leftrightarrow$ | 0.11      | 1.61          | $\leftrightarrow$ | -1.66     |  |