Artificial Life Summer 2025

Evolutionary Algorithms 2

Master Computer Science [MA-INF 4201] Mon 14:15 – 15:45, HSZ, HS-2

Dr. Nils Goerke, Autonomous Intelligent Systems, Department of Computer Science, University of Bonn

Last Lecture: Mon 19.5.2025

- Evolutionary Computation
- Historic Remarks
- Different Approaches
- Idea of Evolutionary Algorithms (EA)
- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Optimization:

Draw a **nasty fitness function** on the blackboard:

EA steps:

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Computer Science University of Bonn

Inheritance

Inheritance is the principle of transporting some of the information from the previous generation (parents), into the next generation, by generating the offspring out of the parents genomes.

Thus, generating offspring means to create new individuals with new genomes.

Inheritance in the context of Evolutionary Algorithms means to use the genomes of those parents that have been selected.

There is a wide variety of possible ways to generate offspring.

Inheritance

The most popular mechanism to implement the **inheritance** principle is to use k=2 parents and to **combine** their genomes (mostly called recombination).

The most popular mechanism to implement recombination of 2 genomes is cross over:

Inheritance:

- recombination
 - by cross over
 - (other recombination operators)
- (other inheritance mechanism)
 - (other inheritance operators)

- ...

Inheritance

Recombination by **1-point cross over**:

Select two parents, A and B and recombine their genomes by taking one part form parent A and the other part from parent B

Choose a random point C where to split the genomes, and recombine the four remaining fractions to build new individuals, containing partial information from both parents.

Inheritance

Recombination by **1-point cross over**:

Parent A:

Parent B:

Child 1:

Inheritance

Inheritance

Inheritance

Recombination by 1-point cross over:

Parents A, B

$$A = (x_a, y_a)$$

$$B = (x_b, y_b)$$

Inheritance

Recombination by 1-point cross over:

Parents A, B

$$A = (x_a, y_a)$$

$$B = (x_b, y_b)$$

Inheritance

Inheritance

$$B = (x_b, y_b)$$

Inheritance

$$B = (x_b, y_b)$$

Inheritance

$$B = (x_b, y_b)$$

Inheritance

Inheritance

Inheritance

Inheritance

Computer Science University of Bonn

Inheritance

Inheritance

Computer Science University of Bonn

Computer Science University of Bonn

Inheritance can involve k=(0),1,2,3,... or even all μ individuals from the parent generation.

Although, taking k=2 parents is the most popular choice for implementing inheritance, the other possibilities are sensible, and are in use.

- k=0 parents: no inheritance, generate a novel genome
- k=1 parent : just copy the genome of the parent
- k=2 parents: recombination, e.g. cross-over, mean value, sum, ...
- k=3 parents: recombination, e.g. cyclic cross-over
- **k=u** parents: recombination between all parents

k=0, no inheritance, generate a novel genome.

The decision to omit inheritance by generating novel genomes is possible, but not really a good idea for EAs.

Generating new individuals on a random basis, is a very strong implementation of **exploration**.

It can be seen as a special variant of Random Search (RS), (with an extremely large hypersphere).

Typically in EAs, exploration is the role of the subsequent mutation step.

k=1, **copy**, just copy the genome of the parent.

The decision to make just a **copy** of one of the parents for creating the offspring, is not a bad choice for the inheritance principle.

This is a very strong implementation of exploitation.

Just copying, bears the danger of loosing the (necessary) diversity among all genomes within the population.

Only the subsequent EA step (mutation) that will potentially alter the resulting genome, can maintain the diversity to some extent (exploration).

Inheritance

k=2, recombination, combine the genomes of two parents.

The most popular mechanism to implement the **inheritance** principle is to use k=2 parents and to **combine** their genomes (mostly called recombination).

Inheritance

k=2, recombination, combine the genomes of two parents.

The most popular mechanism to implement the **inheritance** principle is to use k=2 parents and to **combine** their genomes (mostly called recombination).

k>2, recombination, combine the genomes of more parents.

Most methods developed and proposed for recombining k=2 parents apply as well for k>2 parents with only small alterations.

k=2 and k>2, recombination with k parents

Several ways to combine (or re-combine) the genomes of the k parents have been proposed.

Some of them rely on a special structure of the genome.

- N-point cross over (the most popular)
- mean-values, one component, all components
- max, min, sum, difference of values
- union, intersection of sets of items
- concatenate (strings)

•

Recombination by **N-point cross over**:

The N-point cross over combination operator, produces offspring that lie only on the corners of a hypercube.

This is a reduced search space to look for solutions.

Recombination by **1-point cross over**:

Parent A:

Parent B:

Child 1:

Parent A:

Parent B:

Child 1:

Recombination by **2-point** cross over:

Parent A:

Parent B:

Child 1:

k=2 and k>2, recombination with k parents

Several ways to combine (or re-combine) the genomes of the k parents have been proposed.

Some of them rely on a special structure of the genome.

- N-point cross over (the most popular)
- mean-values, one component, all components
- max, min, sum, difference of values
- union, intersection of sets of items
- concatenate (strings)

•

Recombination by point wise mean values:

Select two parents, A and B and a random position R within the genome, and recombine the genomes by building the mean value between corresponding parts at position R of the genomes.

Pointwise numeric operations, like: mean value, sum, difference, maximum or minimum are only feasible, if the different parts of the genomes are comparable and numeric.

Recombination by point wise **mean values**

Parent A:

0.333 | 144.6 | 42 | 92 | 4.75 | 5926 | 10716

Parent B:

0.123 | 1.40 | 40 | 42 | 1.532 | 5926 | 0

Child C1:

Recombination by point wise **mean values**

Recombination by point wise **mean values**

Parent A:

0.333 | 144.6 | 42 | 92 | 4.75 | 5926 | 10716

Parent B:

0.123 | 1.40 | 40 | 42 | 1.532 | 5926 | 0

½ (4.75 + 1.532) = ½ (6.282)

Child C1:

Recombination by point wise mean values

Parent A:

0.333 | 144.6 | 42 | 92 | 4.75 | 5926 | 10716

Parent B:

0.123 | 1.40 | 40 | 42 | 1.532 | 5926 | 0

 $\frac{1}{2}(4.75 + 1.532) = \frac{1}{2}(6.282)$

Child C1:

3.141

3.141

3.141

Inheritance

Recombination by point wise mean values

Child C1:

Recombination by point wise mean values

46

Recombination by point wise mean values

Inheritance

Recombination by point wise mean values

Inheritance

Recombination by point wise mean values

Parent A:

Parent B:

mean value in one component R

Child C1:

0.123 | 1.40 | 40

42 **3.141** 5926 0

mean value in all components

Child C2:

Recombination by point wise mean values

Parent A:

Parent B:

0.333	144.6	42	92	4.75	5926	10716
-------	-------	----	----	------	------	-------

0.123 | 1.40 | 40 | 42 | 1.532 | 5926 | 0

mean value in one component R

Child C1:

0.123 | 1.40 | 40 | 42 | 3.141 | 5926 | 0

mean value in all components

Child C2:

0.228 73 41 67 3.141 5926 5358

k=2 and k>2, recombination with k parents

Several ways to combine (or re-combine) the genomes of the k parents have been proposed.

Some of them rely on a special structure of the genome.

- N-point cross over (the most popular)
- mean-values, one component, all components
- max, min, sum, difference of values
- union, intersection of sets of items
- concatenate (strings)

•

Recombination by union of sets

For genomes that are structured as a set of items, a valid and sensible **recombination** is to build the **union** of those sets.

Inheritance

Computer Science University of Bonn

Recombination by union of sets

For genomes that are structured as a set of items, a valid and sensible **recombination** is to build the **union** of those sets.

Parent A: { Soup, Pasta, Fish, White-Wine }

Parent B: { Aperitif, White-Wine, Water, Cheese }

Inheritance

Recombination by union of sets

For genomes that are structured as a set of items, a valid and sensible **recombination** is to build the **union** of those sets.

Parent A: { Soup, Pasta, Fish, White-Wine }

Parent B: { Aperitif, White-Wine, Water, Cheese }

Child C4: { Soup, Pasta, Fish, White-Wine, Aperitif, Water, Cheese }

k=2 and k>2, recombination with k parents

Several ways to combine (or re-combine) the genomes of the k parents have been proposed.

Some of them rely on a special structure of the genome.

- N-point cross over (the most popular)
- mean-values, one component, all components
- max, min, sum, difference of values
- union, intersection of sets of items
- concatenate (strings)

•

Recombination by concatenation

Genomes that are representing strings, can be recombined by a simple concatenation of their strings, just "gluing" the genomes one after the other.

In this case, the order is important.

Inheritance

Recombination by concatenation

Genomes that are representing strings, can be recombined by a simple concatenation of their strings, just "gluing" the genomes one after the other.

In this case, the order is important.

Parent A: "Throatwobbler "

Parent B: "Mangrove"

Child LY: "Throatwobbler Mangrove "

From: Monty Python's Flying Circus: Episode 22, Cosmetic surgery

k=2 and k>2, recombination with k parents

Several ways to combine (or re-combine) the genomes of the k parents have been proposed.

Some of them rely on a special structure of the genome.

- N-point cross over (the most popular)
- mean-values, one component, all components
- max, min, sum, difference of values
- union, intersection of sets of items
- concatenate (strings)

•

Inheritance

Special forms of **genome coding** can require special **recombination operators**.

In some cases, the Genome is coded with a special semantics aligned with the application. The inheritance, recombination operator can pay respect to this fact, and can therefore be structured in this way, but it does not have to .

There are good arguments, to regard the genome as a complete context free binary vector.

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

The job of the mutation step is to maintain the diversity of the genomes within the population:

Different positions in search space sample the fitness function at different points.

Changing the genome by **mutation** is implementing the **exploration** principle of **stochastic optimization**.

Mutation

Depending on the different way the information is coded in the genome, the layout of the **mutation** step is to be designed differently.

Some common mutation operators are:

- Binary genome: a bit-flip
- Vector of parameters: change of value
- Set of items: replace a single item
- String of characters: replace a single character
- Sequence: change order within sequence
- Other: other method

Special codings of the genome will require that the mutation is paying respect to this coding.

The mutation for a binary genome is typically implemented as one or more bit-flips:

Method 1:

Choose a random position r in the genome and flip that bit. This yields a 100% chance that the genome is changed; the resulting Hamming distance is always exactly 1.

Before:

The mutation for a binary genome is typically implemented as one or more bit-flips:

Method 1:

Choose a random position r in the genome and flip that bit. This yields a 100% chance that the genome is changed; the resulting Hamming distance is always exactly 1.

The mutation for a binary genome is typically implemented as one or more bit-flips:

Method 1:

Choose a random position r in the genome and flip that bit. This yields a 100% chance that the genome is changed; the resulting Hamming distance is always exactly 1.

The mutation for a binary genome is typically implemented as one or more bit-flips:

Method 2:

Go through all positions in the genome, and flip each bit with a given bit-flip-probability ω . There is a chance, that all bits are flipped, and a chance that none is flipped.

The mutation for a binary genome is typically implemented as one or more bit-flips:

Method 2:

Go through all positions in the genome, and flip each bit with a given bit-flip-probability ω .

There is a chance, that all bits are flipped, and a chance that none is flipped.

 $0.0 < \omega < 1.0$

Before:

The mutation for a binary genome is typically implemented as one or more bit-flips:

Method 2:

Go through all positions in the genome, and flip each bit with a given bit-flip-probability ω .

There is a chance, that all bits are flipped, and a chance that none is flipped.

 $0.0 < \omega < 1.0$

Before:

After:

Inheritance

It is possible, that the inheritance and the mutation process yield invalid genomes, which represent hypotheses **s** from outside the allowed search space **S**.

Those illegal genomes would stress the optimization process in an unwanted way.

Therefore, it is a good advise, to take precautions against illegal genomes (if possible, and economic):

- shape the structure of the genome,
- shape the structure of the inheritance,
- shape the structure of the mutation.

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Fitness Evaluation

The fitness of each individual is evaluated with respect to the fitness-function (most case identical to the objective function). For EAs, it is usual to have a fitness function that is to be maximized.

Fitness Evaluation

The fitness of each individual is evaluated with respect to the fitness-function (most case identical to the objective function). For EAs, it is usual to have a fitness function that is to be maximized.

If the fitness evaluation is expensive, it is a good idea to process only the new individuals/genomes from the inheritance step, including those individuals/genomes that have changed during mutation.

Fitness Evaluation

The fitness $f(g_p)$ of each individual p is evaluated with respect to the application using the given fitness-function f(g).

Fitness Value f(g_p)

$$f(g_p) =$$

$$f(g_4) =$$

$$f(g_3) = 0.228$$

$$f(g_2) = -171.0$$

$$f(g_1) = 0.5$$

Fitness Evaluation

Computer Science University of Bonn

Fitness Evaluation

Fitness Evaluation

Fitness Evaluation

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Computer Science University of Bonn

Computer Science University of Bonn

The purpose of the **selection process** is to keep the "Best", and discard the "Losers". The **selection** is based on the achieved fitness, which is obtained by the fitness function, quasi from external to the EA.

The μ individuals that survive the external selection process, will be the pool for the parents of the next generation. Later on, from these μ parents the λ offspring will be generated through the inheritance process.

The two questions for the **external selection** are:

How many (μ) of the individuals shall survive?

and

Which are the ones to keep?

A common way is to keep the population constant to P individuals.

discard λ by external selection and keep μ as pool for the parents, then generate λ offspring for the next generation.

Have P, keep μ , generate λ offspring

Have P, keep μ , generate λ offspring

Computer Science University of Bonn

Have P, keep μ , generate λ offspring

external selection

Computer Science University of Bonn

Have P, keep μ , generate λ offspring

μ parents

selection

external

Have P, keep μ , generate λ offspring

89

Have P, keep μ , generate λ offspring

inheritance, λ offspring

the next generation

Common strategies for the external selection are:

- random choice
- schedule based, e.g. round robin
- fitness based elitism:
 fitness proportional choice
 rank proportional choice
- fitness based stochastic:
 fitness proportionate, probabilistic choice
 rank proportionate, probabilistic choice
- combinations of the above

External Selection

There are different ideas and principles behind the selection of the μ possible parents from the population, with special pros and cons.

- deterministic or stochastic selection
- fitness dependent selection
- fitness proportional selection
- rank-based selection
- tournament selection
- life-time based selection
- combinations of the above + more

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

94 © Nils Goerke, University Bonn, 5/2025

Parent Selection

Selection in Evolutionary Strategy ES-Systems: Following the initial idea of Evolutionary Strategies there are two strategies for the selection process:

$$(\mu + \lambda)$$
 and (μ, λ)

Artificial Life [MA-INF 4201], 07,

External Selection

Parent Selection

Selection in Evolutionary Strategy ES-Systems: Following the initial idea of Evolutionary Strategies there are two strategies for the selection process:

$$(\mu + \lambda)$$
 and (μ, λ)

- + (plus) strategy: next generation consists of μ parents + λ offspring, parents survive.
- (comma) strategy: next generation consists of only the λ offspring, parents are discarded.

External Selection

Parent Selection

(1+1): μ =1 one parent, λ =1 one child, inheritance by copying, only mutation rank based, deterministic external selection

External Selection

Parent Selection

- (1+1): μ =1 one parent, λ =1 one child, inheritance by copying, only mutation rank based, deterministic external selection
- (1 + λ): μ =1 one parent, λ children, offspring, inheritance by copying, only mutation rank based, deterministic external selection

Parent Selection

- (1+1): μ =1 one parent, λ =1 one child, inheritance by copying, only mutation rank based, deterministic external selection
- (1 + λ): μ =1 one parent, λ children, offspring, inheritance by copying, only mutation rank based, deterministic external selection
- ($\mu + \lambda$): μ parents, λ offspring, parents survive recombination, mutation, external selection.

External Selection

Parent Selection

- (1+1): μ =1 one parent, λ =1 one child, inheritance by copying, only mutation rank based, deterministic external selection
- (1 + λ): μ =1 one parent, λ children, offspring, inheritance by copying, only mutation rank based, deterministic external selection
- ($\mu + \lambda$): μ parents, λ offspring, parents survive recombination, mutation, external selection.
- (μ,λ): μ parents, λ offspring, recombination, mutation, external selection, parents are discarded.

Parent Selection

Have P, keep μ , generate λ offspring

$$(\mu + \lambda)$$

external selection

μ parents

inheritance, λ offspring

the next generation

TNG

Parent Selection

Have P, keep μ , generate λ offspring

 (μ,λ)

external selection

μ parents

inheritance, λ offspring

the next generation

Parent Selection

Selection in Evolutionary Strategy ES-Systems: Following the initial idea of Evolutionary Strategies there are two strategies for the selection process:

$$(\mu + \lambda)$$
 and (μ, λ)

- + (plus) strategy: next generation consists of μ parents + λ offspring, parents survive.
- , (comma) strategy: next generation consists of only the λ offspring, parents are discarded.

Parent Selection

Have P, discard λ , select μ parents, generate λ offspring

$$(\mu + \lambda)$$

Artificial Life [MA-INF 4201], 07,

external selection P- λ

keep

discard

Parent Selection

Have P, discard λ , select μ parents, generate λ offspring

select μ parents

Parent Selection

Have P, discard λ , select μ parents, generate λ offspring

$$(\mu + \lambda)$$

external selection

select μ parents

Parent Selection

Have P, discard λ , select μ parents, generate λ offspring

 $(\mu + \lambda)$

external selection

select μ parents

inheritance, λ offspring

Parent Selection

Have P, discard λ , select μ parents, generate λ offspring

 $(\mu + \lambda)$

external selection

select μ parents

inheritance, λ offspring

the next generation

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Computer Science University of Bonn

There are several criteria to determine the **finishing** of the **EA** process:

Finish?

Computer Science University of Bonn

There are several criteria to determine the finishing of the **EA** process:

- by performance of best individual
- by performance of sub-population
- by stagnation/development of fitness improvement
- by time
- by number of generations

Finish?

Computer Science University of Bonn

There are several criteria to determine the finishing of the **EA** process:

- by performance of best individual
- by performance of sub-population
- by stagnation/development of fitness improvement
- by time
- by number of generations
- by choice of human operator

EA: Finish?

There are several criteria to determine the **finishing** of the **EA** process:

- by performance of best individual
- by performance of sub-population
- by stagnation/development of fitness improvement
- by time
- by number of generations
- **3**
- by choice of human operator; whatever that means.

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

The main principles driving the **initialization** of the genomes of the first population are:

Evolutionary Algorithms 2,

Computer Science University of Bonn

The main principles driving the initialization of the genomes of the first population are:

Evolutionary Algorithms 2,

Start as good as possible:

Enough richness, enough diversity:

Computer Science University of Bonn

The main principles driving the initialization of the genomes of the first population are:

Evolutionary Algorithms 2,

Start as good as possible:

Try to use all a priori knowledge available. Try to avoid illegal genomes (if possible).

Enough richness, enough diversity:

Computer Science University of Bonn

The main principles driving the **initialization** of the genomes of the first population are:

Start as good as possible:

Try to use all a priori knowledge available.

Try to avoid illegal genomes (if possible).

Enough richness, enough diversity:

Sample as much from the fitness landscape as possible.

Try to cover the complete search space.

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

 $^{\circ}$ Nils Goerke, University Bonn, 5/2025 122

Performance Graph

The goal of the EA is to maximize the fitness. So, if the EA is working properly, somehow the fitness value within the complete population should rise with time.

How is the fitness of the best individual in the population changing over time?

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

Performance Graph

Evolutionary Algorithms 2,

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

time

Performance Graph

Evolutionary Algorithms 2,

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

Performance Graph

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

126

Performance Graph

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

127

Performance Graph

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

Performance Graph

The performance graph is the most important tool to monitor the optimization process of a working evolutionary algorithm.

Depending on the chosen strategy, the performance graph shows different properties:

For a deterministic, rank dependent elitism strategy ($\mu + \lambda$), the performance graph will increase monotonically.

For a probabilistic, non-elitism strategy, the performance graph can decrease, but should show an increase on the long run.

Performance Graph

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

Performance Graph

The performance graph is the most important tool to monitor the optimization process of a working evolutionary algorithm.

The performance graph can depict different aspects:

- the fitness f*(t) of the best individual, (most important)
- the average fitness $f_{av}(t)$ of the complete population
- the average and variance over the complete population
- the average fitness f_{avp}(t) of the parents
- all fitness values f_p(t) from all parents

Performance Graph

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

132

Performance Graph

The performance graph is showing the development of the fitness f*(t) of the best individual in each generation with respect to time.

133

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Genome Structure

Naive structuring of the genome:

"Normal" structuring of the genome:

Sophisticated structuring of the genome:

Genome Structure

Computer Science University of Bonn

Naive structuring of the genome:

Pro: easy to implement, only few knowledge necessary.

Con: large search space, a lot of local maxima possible, may be hard or impossible to find a good solution.

"Normal" structuring of the genome:

Sophisticated structuring of the genome:

Genome Structure

Naive structuring of the genome:

Pro: easy to implement, only few knowledge necessary.

Con: large search space, a lot of local maxima possible, may be hard or impossible to find a good solution.

"Normal" structuring of the genome:

Pro: still easy to implement, some knowledge necessary, wide variety to implement inheritance and mutation.

Con: still a lot of bad or illegal genomes possible.

Sophisticated structuring of the genome:

Genome Structure

Naive structuring of the genome:

Pro: easy to implement, only few knowledge necessary.

Con: large search space, a lot of local maxima possible, may be hard or impossible to find a good solution.

"Normal" structuring of the genome:

Pro: still easy to implement, some knowledge necessary, wide variety to implement inheritance and mutation.

Con: still a lot of bad or illegal genomes possible.

Sophisticated structuring of the genome:

Pro: only legal, or good genomes are to be investigated.

Con: profound knowledge about the process and of the kind of possible solutions is required, can become computational expensive to implement inheritance and mutation.

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Example:

Implementing a task using an Evolutionary Algorithm, a series of structuring decision will be necessary.

The sequence below is not common theory, but just my personal choice of doing it.

Objective: specify the objective

Genome: structure the genome

Fitness Function: define an appropriate fitness function

Inheritance: layout the inheritance process

Mutation: layout the mutation process

Selection Strategy: specify the selection strategy

Example: Fkt Maximum

Objective:

Genome:

Fitness Function:

Example: Fkt Maximum

Objective:

find the position X, where an objective function o(X) has its maximal value (or minimal value).

Genome:

Fitness Function:

Example: Fkt Maximum

Objective:

find the position X, where an objective function o(X) has its maximal value (or minimal value).

Genome:

the N-dimensional vector X

$$\mathbf{g} = \mathbf{X} = \{ x_1, x_2, ..., x_i, ..., x_N \}$$

with N components X_1 to X_N

Fitness Function:

Objective:

find the position X, where an objective function o(X) has its maximal value (or minimal value).

Genome:

the N-dimensional vector X

$$g = X = \{ x_1, x_2, ..., x_i, ..., x_N \}$$

with N components X_1 to X_N

Fitness Function:

fitness function f(g) is identical to the objective function o(X)

$$f(g) = o(X)$$

Inheritance:

Mutation:

Inheritance:

recombination with k=2 parents, 1-point cross over

Mutation:

Evolutionary Algorithms 2,

Inheritance:

recombination with k=2 parents, 1-point cross over

Mutation:

chose a random component x_i , and change that value to a complete new value.

Inheritance:

recombination with k=2 parents, 1-point cross over

Mutation 1:

chose a random component x_i , and change that value to a complete new value.

Mutation 2:

Inheritance:

recombination with k=2 parents, 1-point cross over

Mutation 1:

chose a random component x_i , and change that value to a complete new value.

Mutation 2:

chose one or two random components x_i , x_j and add a small normally distributed value to them.

Inheritance:

recombination with k=2 parents, 1-point cross over

Mutation 1:

chose a random component x_i , and change that value to a complete new value.

Mutation 2:

chose one or two random components x_i , x_j and add a small normally distributed value to them.

Inheritance:

recombination with k=2 parents, 1-point cross over

Mutation 1:

chose a random component x_i , and change that value to a complete new value.

Mutation 2:

chose one or two random components x_i , x_j and add a small normally distributed value to them.

Selection Strategy:

elitism, μ parents, parents survive, no mutation for the parents deterministic, rank dependent, take the μ best individuals ($\mu + \lambda$), with P=500, μ =100, λ =400.

EA:

Example: Fkt Maximum

A typical playground to investigate the capabilities of optimzation methods are test functions to minimize.

Schwefel's Function (1981)

$$f(\mathbf{x}) = \sum -x_j \sin(sqrt(abs(x_j)))$$

$$j = 1 \dots d$$

$$-500 < x_j < 500$$

Schwefel, H.-P.:

Numerical optimization of computer models. Chichester: Wiley & Sons, 1981.

 $f(x)=sum(-x(i)\cdot sin(sqrt(abs(x(i))))),$ i=1:n; -500<=x(i)<=500.

 $f(x)=sum(100\cdot(x(i+1)-x(i)^2)^2+(1-x(i))^2),$ i=1:n-1; -2.048 <= x(i) <= 2.048.

 $f(x)=10\cdot n+sum(x(i)^2-10\cdot cos(2\cdot pi\cdot x(i))),$ i=1:n; -5.12 <= x(i) <=5.12.

 $f(x)=-a\cdot exp(-b\cdot sqrt(1/n\cdot sum(x(i)^2)))-exp(1/n\cdot sum(cos(c\cdot x(i))))+a+exp(1);$ a=20; b=0.2; c=2·pi; i=1:n;

 $f(x)=-sum(c(i)\cdot(exp(-1/pi\cdot sum((x-A(i))^2))\cdot cos(pi\cdot sum((x-A(i))^2)))),$ i=1:m, m=5

 $f(x1,x2) = -\cos(x1)\cdot\cos(x2)\cdot\exp(-((x1-pi)^2+(x2-pi)^2));$ -100<=x(i)<=100, i=1:2.

EA:

Example: Fkt Maximum

Computer Science University of Bonn

Below is a list of common **test functions (to minimize)** that are used to investigate the capabilities of optimization methods:

- Schwefel's Function
- Generalized Rosenbrock's Function
- Rastrigin's Function
- Ackley's (path) Function
- Langermann's Function
- Michalewicz's Function
- Easoms Function
- Griewangk's Function
- Bohachevsky's Function
- Watson's Function
- Colville's Function

• . . .

Example: Sorting

Objective:

Genome:

(easy) Fitness Function:

Example: Sorting

Objective:

sort a set of numerical values x_i with respect to the square x_i^2 of their value.

Genome:

an ordered set of values (x_i) , $g = \{x_1, x_2, ..., x_i, ..., x_{42}, ...\}$

(easy) Fitness Function:

f(g) is the accumulation of all comparisons of subsequent values add a +1 if the order is correct, and a -1 if the order is wrong.

$$f(g) = \sum sign(x_i^2 - x_{i+1}^2)$$

Example: Sorting

Easy Inheritance:

Artificial Life [MA-INF 4201], 07,

since a classical cross over will generate illegal genomes the k=1, copy operator with no recombination is fine.

Mutation:

exchange 2 values within the sequence (genome), or even a complete subsequence, or invert the order of a subsequence within the genome.

Selection Strategy:

elitism, μ parents, parents survive, no mutation for the parents deterministic, rank dependent, take the μ best individuals $(\mu + \lambda)$, with P=500, μ =100, λ =400.

Example: 42

Objective:

find the L-bit binary representation of the square root of 42; unfortunately, the math. function *sqrt* is not available.

Genome:

Fitness function:

Example: 42

Objective:

find the L-bit binary representation of the square root of 42; unfortunately, the math. function sqrt is not available.

Genome:

an L-bit binary vector **g**, in fix-point representation

Fitness function:

EA:

Example: 42

Objective:

find the L-bit binary representation of the square root of 42; unfortunately, the math. function *sqrt* is not available.

Genome:

an L-bit binary vector g, in fix-point representation

Fitness function:

take the genome g as a binary, fix point number x(g) calculate the square of x(g), compare the result to 42.0, the square of the objective number

$$f(g) = |42.0 - x(g)^2|$$

EA:

Example: 42

Objective:

find the L-bit binary representation of the square root of 42; unfortunately, the math. function *sqrt* is not available.

Genome:

an L-bit binary vector g, in fix-point representation

Fitness function:

take the genome g as a binary, fix point number x(g) calculate the square of x(g), compare the result to 42.0, the square of the objective number

$$f(g) = |42.0 - x(g)^2|$$

In fact, this is a cost function, that is to be minimized.

Example: 42

Population:

P = 100, population size kept constant.

Inheritance:

recombination, k=2 parents, 1-point cross over.

Mutation:

bit-flip, flip each bit of the genome with a probability $\omega = 0.01$ Caution: be aware of Hamming-cliffs.

Selection Strategy:

elitism, μ parents, parents survive, no mutation for the parents deterministic, rank dependent, take the μ best individuals ($\mu + \lambda$), with μ =20, λ =80.

Objective:

find the shortest route visiting each point from a set of given points (cities) exactly once (Traveling Salesman Problem).

Genome:

Fitness Function:

Objective:

find the shortest route visiting each point from a set of given points (cities) exactly once (Traveling Salesman Problem).

Genome:

an ordered set of points (cities, C_i), sequence of cities to be visited, containing each city exactly once.

$$\mathbf{g} = \{ C_3, C_{17}, C_i, C_{42}, ... \}$$

Fitness Function:

Objective:

Artificial Life [MA-INF 4201], 07,

find the shortest route visiting each point from a set of given points (cities) exactly once (Traveling Salesman Problem).

Genome:

an ordered set of points (cities, C_i), sequence of cities to be visited, containing each city exactly once.

$$\mathbf{g} = \{ C_3, C_{17}, C_i, C_{42}, ... \}$$

Fitness Function:

f(g) is the sum of all distances $d(C_i, C_{i+1})$ between subsequent cities in the list (genome). Of course all distances $d(C_i, C_i)$ between the cities i and j is required; either by a distance matrix or by a calculation from the coordinates.

Easy Inheritance:

Mutation:

Easy Inheritance:

Since a classical cross over will generate illegal genomes the k=1, copy operator, omitting recombination is O.K.

Mutation:

Easy Inheritance:

Since a classical cross over will generate illegal genomes the k=1, copy operator, omitting recombination is O.K.

Mutation:

exchange 2 cities within the sequence (genome), or even a complete subsequence, or invert the order of a subsequence within the genome.

Computer Science University of Bonn

Easy Inheritance:

Since a classical cross over will generate illegal genomes the k=1, copy operator, omitting recombination is O.K.

Mutation:

exchange 2 cities within the sequence (genome), or even a complete subsequence, or invert the order of a subsequence within the genome.

g = { ..., London, Rio, Moscow, New York, Paris, Tokyo, LA, ... }

Easy Inheritance:

Since a classical cross over will generate illegal genomes the k=1, copy operator, omitting recombination is O.K.

Mutation:

exchange 2 cities within the sequence (genome), or even a complete subsequence, or invert the order of a subsequence within the genome.

g = { ... , London, Rio, Moscow, New York, Paris, Tokyo, LA, ... }

g' = { ..., London, Paris, Moscow, New York, Rio, Tokyo, LA, ... }

Easy Inheritance:

Since a classical cross over will generate illegal genomes the k=1, copy operator, omitting recombination is O.K.

Mutation:

exchange 2 cities within the sequence (genome), or even a complete subsequence, or invert the order of a subsequence within the genome.

```
g = { ..., London, Rio, Moscow, New York, Paris, Tokyo, LA, ... }
g' = { ..., London, Paris, Moscow, New York, Rio, Tokyo, LA, ... }
g" = { ..., London, Tokyo, Rio, Moscow, New York, Paris, LA, ... }
```


Computer Science University of Bonn

Easy Inheritance:

Since a classical cross over will generate illegal genomes the k=1, copy operator, omitting recombination is O.K.

Mutation:

exchange 2 cities within the sequence (genome), or even a complete subsequence, or invert the order of a subsequence within the genome.

```
g = { ..., London, Rio, Moscow, New York, Paris, Tokyo, LA, ... }
g' = { ..., London, Paris, Moscow, New York, Rio, Tokyo, LA, ... }
g" = { ..., London, Tokyo, Rio, Moscow, New York, Paris, LA, ... }
g''' = { ..., London, Paris, New York, Moscow, Rio, Tokyo, LA, ... }
```

EA:

Example: TSP

Sophisticated Inheritance:

A more sophisticated inheritance operator would have to guarantee that the offspring still represent legal genomes,

- routes that visit each city exactly once - .

This may cause high computational effort, which might be larger than the potential benefit.

Sophisticated Mutation:

Sophisticated Inheritance:

A more sophisticated inheritance operator would have to guarantee that the offspring still represent legal genomes,

- routes that visit each city exactly once - .

This may cause high computational effort, which might be larger than the potential benefit.

Sophisticated Mutation:

a more sophisticated mutation operator might take the fitness value f(g) of the genome g into account, to make only those changes to the genome that have a high probability for a fitness increase.

EA:

Example: TSP

Sophisticated Inheritance:

A more sophisticated inheritance operator would have to guarantee that the offspring still represent legal genomes,

- routes that visit each city exactly once - .

This may cause high computational effort, which might be larger than the potential benefit.

Sophisticated Mutation:

a more sophisticated mutation operator might take the fitness value f(g) of the genome g into account, to make only those changes to the genome that have a high probability for a fitness increase.

How do you know?

Either by theory (if available), or by a heuristics.

The 8 queens puzzle with an evolutionary algorithm:

The task of the 8 queens puzzle is to place 8 queens on a chess board (8x8) so that they can not reach each other.

The 8 queens puzzle with an evolutionary algorithm:

The task of the 8 queens puzzle is to place 8 queens on a chess board (8x8) so that they can not reach each other.

allowed moves for a queen

chess board with 8x8 = 64 positions

The 8 queens puzzle with an evolutionary algorithm:

The task of the 8 queens puzzle is to place 8 queens on a chess board (8x8) so that they can not reach each other.

allowed moves for a queen

One of the **92** solutions

chess board with 8x8 = 64 positions

Very naive implementation of the genome:

a 64 bit binary vector; queen is 1, no queen is 0; more than 8 queens are possible.

This very naive implementation is generating an extremely large search space with 2^64 possible genomes. This is beyond any computing power to be investigated in total.

Semi naive implementation of the genome:

a 64 bit binary vector; queen is 1, no queen is 0; exactly 8 queens == 8 bits set are possible.

Still the resulting search space is very large.

Normal/Sophisticated implementation of the genome:

8 rows of 8 bit binary vectors; queen is 1, no queen is 0; each row contains exactly one queen.

This is reducing the search space to $8^8 = 16777216$ possibilities, (which can be managed by brute-force).

Normal/Sophisticated implementation of the genome:

8 rows of 8 bit binary vectors; queen is 1, no queen is 0; each row contains exactly one queen.

This is reducing the search space to $8^8 = 16777216$ possibilities, (which can be managed by brute-force).

Normal/Sophisticated implementation of the genome:

8 rows of 8 bit binary vectors; queen is 1, no queen is 0; each row contains exactly one queen.

This is reducing the search space to $8^8 = 16777216$ possibilities, (which can be managed by brute-force).

Inheritance, recombination, 1 point cross over cross-over points only between the rows

Inheritance, recombination, 1 point cross over cross-over points only between the rows

Mutation only the position of the queen within the row is altered

Chose a random row \mathbf{r} (1, ..., 8): and pick a new random position (1, ..., 8) for the queen \bigcirc

A more sophisticated implementation of the genome:

If you have an even more sophisticated idea for structuring the genome, don't forget to shape the inheritance and mutation operators and the fitness function accordingly.

Go ahead,

feel free to do experiments

The objective, is to find a placement of the 8 queens so that they can't reach each other.

The fitness function for the EA should reflect this:

a large value of f if the placement is o.k.

a small value of f if the placement is not o.k.

A fitness function that yields a binary value (O,I) is not a good idea for an evolutionary algorithm.

The resulting fitness surface is flat (\circ) , with only a few isolated peeks (I).

The value of this kind of fitness function is not reflecting, that a genome can be close to a possible solution.

The objective, is to find a placement of the 8 queens so that they can't reach each other.

An appropriate fitness function for an EA must be shaped accordingly;

In addition, the fitness function **f** value should implement, that genomes **g**, close to an optimal solution should yield a larger fitness value **f(g)** than those far away.

The optimal would be, to have a fitness function f(g) that is proportional to the distance between the genome g to an optimal genome g^* .

Unfortunately this is not possible in general.

The objective, is to find a placement of the 8 queens so that they can't reach each other.

A proposal for a fitness function for the 8 queens problem:

Each possibilty that one queen can attack another queen is counted as -1

The fitness value f(g) is the sum of all attack possibilities.

This yields a graded response as required, with a maximal value $f(g^*) = 0.0$ when no attack is possible.

Caution:

This fitness function is only appropriate if the number of queens is fixed to 8 (0 queens => 0 attack possibilities)

 $^{\circ}$ Nils Goerke, University Bonn, 5/2025 196

Overview

- EA Steps
 - Individual, Genome, Fitness, Population
 - Parent selection
 - Inheritance
 - Mutation
 - Fitness evaluation
 - External selection
 - Finish?
 - Initialization
- Strategy
- Performance Graph
- Genome Structure
- Examples

Some important dates

Wed 14.5.25: Dies Academicus, special talks, no regular teaching

Thu 29.5.25: Ascension Day, no lectures, no exercises, ...

Sun 8.6. - 9.6.25 : **Pentecost, Whitsun, Pfingsten**, Public holiday Tue 10.6.25 – Fri 13.6.25 : Excursion week, no lectures, exercises, ...

Thu 19.6.25: Feast of Corpus Christi, no lectures, exercises, ...

Some important dates

Thu 29.5.25: Ascension Day (Chr. Himmelfahrt),

University is closed (building is closed, no exercises, lectures ...) shops are closed, restaurants are typically open.

Since Ascension Day is also known as Father's Day (Vatertag) or Men's Day (Männertag, Herrentag) in some parts of Germany, groups of male friends or male relatives spend a day together.

They often take part in an outdoor activity, such as a walk in the country or a horse-and-cart ride. There might be alcohol involved.

Artificial Life Summer 2025

Evolutionary Algorithms 2

Master Computer Science [MA-INF 4201] Mon 14:15 – 15:45, HSZ, HS-2

Dr. Nils Goerke, Autonomous Intelligent Systems, Department of Computer Science, University of Bonn

Artificial Life Summer 2025

Evolutionary Algorithms 2

Thank you for listening

Dr. Nils Goerke, Autonomous Intelligent Systems, Department of Computer Science, University of Bonn

Computer Science University of Bonn