ДИСКРЕТНАЯ МАТЕМАТИКА

Раздел 1 Множества и отношения

	Наименование раздела	Оценочные средства текущего контроля успеваемости
1	Множества и отношения	Домашние задания №1— №4 Тест №1
2	Алгебраические структуры	Контрольная работа №1 Контрольная работа №2
3	Нечеткие множества	Контрольная работа №3 Тест№2
Промежуточная аттестация:		Письменная экзаменационная работа

Лекция 1 Элементы комбинаторики

- 1. Предмет и задачи комбинаторики.
- 2. Размещения и перестановки.
- 3. Сочетания.
- 4. Число разбиений. Полиномиальная формула.

Литература

- 1. Мальцев И.А. Дискретная математика.
 - СПб: Лань, 2011.
 - https://e.lanbook.com/book/638
- 2. Жуков А.Е. Элементы комбинаторики: учебное пособие. М.: МГТУ им. Н.Э. Баумана, 2014.
 - https://e.lanbook.com/book/58450
- 3. Виленкин Н.Я. Комбинаторика. М.: ФИМА, МЦНМО, 2015.

Введение

МАТЕМАТИЧЕСКОЕ МАТЕМАТИЧЕСКАЯ ОБЕСПЕЧЕНИЕ **ЛОГИКА** ЭВМ ТЕОРИЯ ФОРМАЛЬНЫХ ЯЗЫКОВ ТЕОРИЯ ТЕОРИЯ АЛГОРИТМОВ КОДИРОВАНИЯ

ITMO University

Дискретная математика — область математики, занимающаяся изучением свойств структур конечного характера, которые возникают как в самой математике, так и в области ее приложений.

Для нее характерны алгебраические и топологические методы.

1. Предмет и задачи комбинаторики

Комбинаторика — раздел математики, посвященный решению задач выбора и расположения элементов некоторого, обычно конечного, множества в соответствии с заданными правилами (схемами).

Каждое такое правило называется комбинаторной конфигурацией.

Блез Паскаль (1623 – 1662)

Пьер Ферма (1601 – 1665)

Готфрид Вильгельм Лейбниц (1646 – 1716)

© I.Krivtsova ITMO University

Основные задачи комбинаторики

- перечисление;
 - пересчет;
- оптимизация.

Правило суммы:

Пусть $X_1, X_2, ..., X_{\kappa}$ – конечные, попарно непересекающиеся множества,

т.е.
$$X_i \cap X_j = \emptyset$$
 при $i \neq j$.

Тогда выполняется равенство:

$$|\bigcup_{i=1}^{k} X_i| = \sum_{i=1}^{k} |X_i|$$

Пусть $|X_1|=m$, $|X_2|=n$.

Для $\kappa = 2$ правило формулируется так:

если объект x может быть выбран m способами, а объект y — другими n способами, то выбор nubo x, nubo y может быть осуществлен m+n способами.

Правило произведения:

Пусть $X_1, X_2, ..., X_{\kappa}$ – конечные множества.

Тогда выполняется равенство:

$$|X_1 \times X_2 \times ... \times X_k| = |X_1| \cdot |X_2| \cdot ... \cdot |X_k|$$

Для $\kappa = 2$ правило формулируется так: если объект x может быть выбран mспособами и после каждого из таких выборов объект y, в свою очередь, может быть выбран n способами, то выбор упорядоченной пары (х,у) может быть осуществлен $m \cdot n$ способами.

2. Размещения и перестановки

Пусть
$$X=\{x_1, ..., x_n\}, |X|=n.$$

• Определение 1

Набор элементов $x_{i_1}, x_{i_2}..., x_{i_r}$ называется выборкой объема r из n элементов или иначе (n, r)-выборкой.

• Определение 2

- Выборка называется
- упорядоченной, если в ней задан порядок следования элементов;
- неупорядоченной, если порядок следования элементов в выборке не является существенным.

• Определение 3

Упорядоченная (n,r) выборка в которой элементы могут повторяться, называется размещением с повторениями из n по r;

если элементы упорядоченной (n,r) выборки попарно различны, то она называется размещением без повторений из n по r или просто размещением.

Число различных размещений с повторениями из n элементов по r определяется по формуле:

$$\overline{A}_n^r = n^r$$

Число различных размещений без повторений из n элементов по r вычисляется по формуле:

$$A_n^r = \frac{n!}{(n-r)!}$$
 при $r \le n$,

СР Свойства размещений

• Определение 4

(n,n) размещение без повторений называется перестановкой множества X.

Пусть имеем $\{x_1, ..., x_r\} \neq \emptyset$, $n_i \in \mathbb{Z}, n_i > 0$ и $n_1 + n_2 + ... + n_r = n$.

• Определение 5

Каждая упорядоченная выборка, содержащая элемент x_i ровно n_i раз, где $1 \le i \le r$, называется перестановкой с повторениями X.

Число различных перестановок без повторений из n элементов вычисляется по формуле:

$$P_n = n!$$

СР Свойства перестановок

3. Сочетания

• Определение 6

Неупорядоченная (n,r) выборка в которой элементы могут повторяться называется сочетанием с повторениями из n по r;

если элементы неупорядоченной (n,r) выборки попарно различны, то она называется сочетанием без повторений или просто сочетанием.

Число сочетаний без повторений из n элементов по r вычисляется по формуле:

$$C_n^r = rac{n!}{r!(n-r)!}$$
 при $r \le n$, $C_n^r = 0$ при $r > n$.

Число сочетаний с повторениями из n элементов по r вычисляется по формуле:

$$\overline{C_n^r} = C_{n+r-1}^r$$

СР Доказательство Т. 5

СР Свойства сочетаний

4. Число разбиений. Полиномиальная формула

Пусть X – конечное множество, X = n.

Множество $\{X_1, X_2, ..., X_k\}$ – разбиение X, если:

- $X_i \cap X_j = \emptyset$ при $i \neq j$
- $\bigcup_{i=1}^{\kappa} X_i = X$

При этом
$$|X_i| = n_i, n_1 + n_2 + ... + n_k = n.$$

© I.Krivtsova ITMO University

Число разбиений множества X вычисляется по формуле:

$$N(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_{\kappa}!}$$

Число *перестановок с повторениями из п элементов* вычисляется по формуле:

$$\overline{P_n}(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$

где n_i – число повторений i-того элемента и $n_1 + n_2 + \ldots + n_k = n$.

Бином Ньютона: $n \in \mathbb{Z}$, n > 0

$$(x_1+x_2)^n = x_1^n + n x_1^{n-1}x_2 + \frac{n(n-1)}{1\cdot 2} x_1^{n-2}x_2^2 + \frac{n(n-1)(n-2)}{1\cdot 2\cdot 3} x_1^{n-3}x_2^3 + \dots + x_2^n$$

$$(x_1+x_2)^n = \sum_{r=0}^n C_n^r x_1^{n-r} x_2^r$$

 C_n^r — биномиальные коэффициенты (интерпретация числа сочетаний)

© I.Krivtsova ITMO University

Обобщенная формула бинома Ньютона или полиномиальная формула:

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{n_1 + n_2 + \dots + n_k = n} C_{n_1 n_2 \dots n_k} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}$$

где $n \in \mathbb{Z}, n > 0,$ n_i — показатель степени переменной x_i и $n_1 + n_2 + \ldots + n_k = n.$

Коэффициенты полинома в правой части полиномиальной формулы вычисляются по формуле:

$$C_{n_1 n_2 \cdots n_k} = \frac{n!}{n_1! n_2! \dots n_{\kappa}!}$$

Пример 1

$$(x_1 + x_2)^n = \sum_{r=0}^n C_{(n-r)r} x_1^{n-r} x_2^r$$

$$C_{(n-r)r} = \frac{n!}{(n-r)!r!} = C_n^r,$$

где
$$n-r+r=n$$
.

Пример 2

Рассмотрим полиномиальную формулу

$$(x_1 + x_2 + x_3)^{10} = \sum_{n_1 + n_2 + n_3 = 10} C_{n_1 n_2 n_3} x_1^{n_1} x_2^{n_2} x_3^{n_3}$$

Найдем коэффициент $C_{n_1n_2n_3}$ при одночлене $x_1^2x_2^3x_3^5$:

$$C_{235} = \frac{10!}{2!3!5!} = 2520$$