MidPrep Problem Statement

CloudPhysician: The Vital Extraction Challenge

INTRODUCTION

- ➤ <u>Objective</u> To extract the data for the vitals like Heart Rate, SPO2, RR, SBP, DBP, MAP from the monitor screen of patients
- ➤ <u>Background</u> This problem statement is a part of CloudPhysician's pursuit of creating a Smart ICU Solution
- ➤ Entire problem statement divided into 3 main tasks monitor screen extraction, feature extraction and text recognition
- Graph digitization to extract information from waveform based vitals

DATASET

- Provided with 3 types of datasets:
 - Monitor Dataset
 - Classification Dataset
 - Unlabelled Dataset
- > Monitor dataset -
 - 2000 images and coordinates of the monitor screen
- > Classification dataset -
 - 4 folders of 250 images each and 4 data files with coordinates for features
 - Deal with null values
- ➤ Unlabelled dataset -
 - 7000 images of monitors without any coordinates for screen or features

	А	В
	image_name	points
	medicakolkata_mau	[459.5, 169.5, 886.0
	kamalnayanbajaj_m	[422.4, 158, 967.8, 1
	kamalnayanbajaj_mi	[497.4, 184.9, 792.7
	medicakolkata_ccu2	[353.799987792968
	medicakolkata_ccu2	[246.9, 155.3, 756.5
	hcgbhavnagar_micu	[228.9, 110.4, 808.4
8	medicakolkata_ccu1	[467.4, 188.1, 854.1
	medicakolkata_ccu2	[337, 165.80000305
10	medicakolkata_ccu2	[238.4, 76.5, 721.59
	medicakolkata_ccu1	[339.600006103515
	medicasiliguri_icu_r	[398.4, 309.1, 665.8
	medicakolkata_ccu2	[319.6, 122.8, 741, 1
14	medicakolkata_ccu3	[295.5, 137.3, 822.5
15	medicakolkata_ccu3	[443.200012207031

MONITOR DATASET

CLASSIFICATION DATASET

MAIN PIPELINE

MODEL M1 - Monitor Screen Extraction

- > Training 1800 images, Validation 200 images, 35 epochs
- ➤ Uses **Yolov?** as the object detection framework
- > Input Monitor images from dataset with a label file containing coordinates for the screen
- > Output Tensor containing bounding box coordinates and confidence score
- Accurately detects the screen from the given image forming the basis for the next stage of the pipeline

MODEL M2 - Feature Extraction

- > Training 800 images, Validation 200 images, 45 epochs
- ➤ Uses **Yolov7** for object detection
- ➤ Input for Yolov7 model image and label file containing coordinates for bounding boxes
- > Output Tensor containing bounding box coordinates and confidence score for each feature on the screen
- > Further, through text recognition, the features are extracted
- > Graph digitization is applied to extract information from the graphs on the monitor

Text Recognition

- ➤ Based on the dataframe containing bounding box coordinates, feature images are cropped and text is extracted using EasyOCR
- Remove non-numeric characters from the predicted values for vitals using clean string

Example of cropped image containing a bracket

Graph Digitization

- > Get insights from the graph features on the monitor
- > Use of k-means clustering, thresholding, masking, DBSCAN clustering

RESULTS

- > Inference Time:
 - Ran on Google Colab Notebooks
 - Total inference time is around **3.5** s
 - This includes preprocessing for images, feature extraction and prediction

- Model Wise Results :
 - o Model M1
 - F1 score approaching 1 at a confidence of **0.912**
 - o <u>Model M2</u>
 - F1 score of about **0.93** at a confidence of **0.702**

MODEL M1 - MONITOR SCREEN EXTRACTION

MODEL M2 - FEATURE EXTRACTION

THANK YOU