CSU33061 Artificial Intelligence I

Introduction

www.scss.tcd.ie/Tim.Fernando/AI

Key Phrases:

Can machines think?

- Turing test & ELIZA effect
- Al-complete (contra low hanging fruit)

Agent & environment

- Cognitive Revolution & Big Data

Levels of intelligence

Can machines think? (Turing 1950)

Turing test: can C tell A from B?

From Wikipedia, (Juan Alberto Sánchez Margallo)

Intelligence operationalized: subject to testing

Can machines think? (Turing 1950)

Turing test: can C tell A from B?

From Wikipedia, (Juan Alberto Sánchez Margallo)

Intelligence operationalized: subject to testing ... cheating?

- use pattern matching and substitution to fake understanding

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they feared violence.

T. Wir

T. Winograd

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they advocated violence.

Who advocated violence?

T. Winograd

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they advocated violence.

Who advocated violence?

T. Winograd

Caution: Programs may appear to work better than they do **Siri rage** (Urban dictionary):

When you get enraged because Siri just doesn't get it.

Chinese room argument (Searle's thought experiment)

 $From \ http://america.pink/images/9/6/3/2/5/4/en/2-chinese-room.jpg$

- a clerk can follow instructions for communicating in Chinese without understanding Chinese

Strong vs Weak Al

Chinese room argument (Searle's thought experiment)

From http://america.pink/images/9/6/3/2/5/4/en/2-chinese-room.jpg

- a clerk can follow instructions for communicating in Chinese without understanding Chinese

mindless obedience \neq mind from biological processes

Strong vs Weak Al

Chinese room argument (Searle's thought experiment)

From http://america.pink/images/9/6/3/2/5/4/en/2-chinese-room.jpg

- a clerk can follow instructions for communicating in Chinese without understanding Chinese

mindless obedience \neq mind from biological processes

Just do it → Black Box, judged by its actions

Locating intelligence (black box)

Intelligence: (abilities, goals, ..., experience) \mapsto action

Locating intelligence (black box)

Intelligence: (abilities, goals, ..., experience) \mapsto action Turing test: what to say \rightsquigarrow what to do

Between agent and environment

agent	environment
program	data
Cognitive Revolution	Big Data
hard-wired	experienced
rationalist	empiricist
nativist	behaviorist
innate	tabula rasa
nature	nurture

Turing machine & specialized automaton

Between agent and environment

agent	environment
program	data
Cognitive Revolution	Big Data
hard-wired	experienced
rationalist	empiricist
nativist	behaviorist
innate	tabula rasa
nature	nurture

Turing machine & specialized automaton

Learning (from environment) trial & error: "data as oil"

Between agent and environment

agent	environment
program	data
Cognitive Revolution	Big Data
hard-wired	experienced
rationalist	empiricist
nativist	behaviorist
innate	tabula rasa
nature	nurture

Turing machine & specialized automaton

Learning (from environment) trial & error: "data as oil"

Moving target: changing agent & environment e.g. change in state

unstructured information → actionable knowledge Demis Hassabis

www.theguardian.com/technology/2016/feb/16/demis-hassabis-artificial-intelligence-deepmind-alphago

From Narrow to General Al

unstructured information → actionable knowledge

Demis Hassabis

 $\mbox{Autonomous} = \mbox{perform tasks in complex environments without} \\ \mbox{constant user guidance}$

Adaptive = improve performance by learning from experience

From web.stanford.edu/class/cs221

From web.stanford.edu/class/cs221

Back in Trinity

Undergraduate ML modules

- CSU44061 Machine Learning Semester 1 (5 ECTS)
- CSU44062 Advanced Computational Linguistics Semester 1 (5 ECTS) unsupervised ML for natural language processing

Back in Trinity

Undergraduate ML modules

- CSU44061 Machine Learning Semester 1 (5 ECTS)
- CSU44062 Advanced Computational Linguistics Semester 1 (5 ECTS) unsupervised ML for natural language processing

CSU33061: a taste building on CSU34011 (Prolog)

- logic & agents as Turing machines
- search
- Q-learning & Markov decision processes
- Constraint satisfaction
- ► Bayesian & Markov networks