CS & IT

ENGINEERING

Digital Logic Sequential Circuit

Lecture No. 12

By- CHANDAN SIR

TOPICS TO BE COVERED 01 Synchronous Counter Design

02 Practice

03 Discussion

DESIGNING OF SYNCHRONOUS COUNTER

STEP 1. Write the Previous and Present State.

STEP 2. Write the Excitation Table of FF.

STEP 3. Write the Logical Expression.

STEP 4. Minimize the Logical expression.

STEP 5. Hardware Implementation.

Design a Synchronous Counter by using T Flip Flop which count

$$00 \longrightarrow 10 \longrightarrow 11 \longrightarrow 00$$

the sequence $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$

Method -1

Qı	Q,	Q [†]	Q _t	T ₁	To
0	0	1	0	1.	0
J	0	1	1	0	L
1	ı	0	0	1	1

$$\mathcal{I}^T = \mathcal{O}^T \odot \mathcal{O}^0$$

CLOCK	Q1 Qo			
0	0	0		
1	L	0		
2	1	1		
3	0	Ò		

Method -2

Ø ¹	Q _o	a†	Q ₀ ⁺	Tj	to
0	0	L	0	1	0
0	L	X	X	X	×
1	0	1	1	0	A
L	J	0	0	1	1

Design a Synchronous Counter by using T Flip Flop which count

the sequence $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0$

4 bit

$$T_{A}=1$$

$$T_c = Q_A \cdot Q_B$$

SERIES CARRY SYNCHRONOUS COUNTER

SERIES CARRY SYNCHRONOUS COUNTER

SERIES CARRY SYCHRONOUS COUNTER

PARALLEL CARRY SYNCHRONOUS COUNTER

Minimum number of flip flops required to construct BCD

4

counter is

B. 3

c. 1

D. !

@ Minimum no. of FF required to design counter state given below-

3 bit synchronous up counter

3-FF required

Qc QB QA

What is the MOD of the counter

B. mod-6 counter

mod-7 counter

D. mod-8 counter

Q.

G20,00

000

00

0 10

0 | |

100

101

110

000

MOD=7

Synchronous Reset -> State at which Reset occure is counted into Mop.

Pw

Q.

For the circuit shown in the figure, the delay of the bubbled NAND gate is 2 ns and that of the counter is assumed to be zero. If the clock (Clk) frequency is 1 GHz, then the counter behaves as

a

A. mod-5 counter

B. mod-6 counter

c. mod-7 counter

D. mod-8 counter

Consider the below circuit:

The delay of NAND, NOT gate is 3 ns, 1 ns respectively and that of the counter is assumed to be zero. If the clock frequency is 500 MHz, then the counter behaves as a

$$Clr = Q_2 \bar{q}_1 q_0$$

$$f_{CLK} = 500 \times 10^{6} \text{ Hz}$$

$$T_{CLK} = \frac{1}{500 \times 10^{6}} \text{ sec.}$$

$$= \frac{1000 \times 10^{6}}{500 \times 10^{9}}$$

$$= \frac{1000 \times 10^{9}}{500}$$

$$= \frac{2 \text{ ns sec}}{500 \times 10^{9}}$$

Q.

Consider the circuit below with initial state $Q_0 = 1$, $Q_1 = Q_2 = 0$.

The state of the circuit is given by the value of $4Q_2 + 2Q_1 + Q_0$

Which one of the following is the correct state sequence of the

D.

Consider the circuit given below.

The duty cycle of Y₂ is

25%

	CAB AOB								
A	B	C	D	P	g	١,	9,	y y 2	Y3
0	0	O	0	0	1	0	1	0 -	ō
0	O	O	1	1	· t	0	0	O	1
0	0	1	0	1	1	O	0	0	L
Ö	0	1	1	0	1	0	1	0	0
0	L	0	0	0	0	1	0	0	O
O	L	0	.1	1	0		0	47	0
0	1	1	O	1	0	0	0	13	Ó
0	1	1	1	0	0	1	0	0	7

0

107-> Total time 37 = TON

101 X100 TON X100 TON X100 107 107 107

