Introduction to binocular stereo vision

Kristian Kirk
Computer Vision and Media Technology Laboratory (CVMT)
Aalborg University (AAU)

What is binocular stereo vision?

 A way of getting depth (3-D) information about a scene from two 2-D views (images) of the scene

What is binocular stereo vision?

- A way of getting depth (3-D) information about a scene from two 2-D views (images) of the scene
- Used by humans and animals

What is binocular stereo vision?

- A way of getting depth (3-D) information about a scene from two 2-D views (images) of the scene
- Used by humans and animals
- Computational stereo vision
 - Programming machines to do stereo vision
 - Studied extensively in the past 25 years
 - Difficult; still being researched

Purpose of this talk:

- An introduction to:
 - Basic principle of stereo vision
 - Computational stereo analysis
 - How does it work?
 - What is required?
 - Where are the difficulties?

Purpose of this talk:

- An introduction to:
 - Basic principle of stereo vision
 - Computational stereo analysis
 - How does it work?
 - What is required?
 - Where are the difficulties?

- A camera model:
 - Models how 3-D scene points are transformed into 2-D image points
 - The pinhole camera: a simple linear model for perspective projection

- The goal of stereo analysis:
 - The inverse process: From 2-D image coordinates to 3-D scene coordinates
 - Requires images from at least two views

• 3-D reconstruction

• 3-D reconstruction

Prerequisites

- Camera model parameters must be known:
 - External parameters:
 - Positions, orientations
 - Internal parameters:
 - Focal length, image center, distortion, etc...

Prerequisites

Camera calibration

Two subproblems

- Matching
 - Finding corresponding elements in the two images
- Reconstruction
 - Establishing 3-D coordinates from the 2-D image correspondences found during matching

Two subproblems

- Matching (hardest)
 - Finding corresponding elements in the two images
- Reconstruction
 - Establishing 3-D coordinates from the 2-D image correspondences found during matching

The matching problem

- Which image entities should be matched?
 - Two main approaches
 - Pixel/area-based (lower-level)
 - Feature-based (higher-level)

Matching challenges

- Scene elements do not always look the same in the two images
 - Camera-related problems
 - Image noise, differing gain, contrast, etc...
 - Viewpoint-related problems:
 - Perspective distortions
 - Occlusions
 - Specular reflections

Choice of camera setup

- Baseline
 - distance between cameras (focal points)
- Trade-off
 - Small baseline: Matching easier
 - Large baseline: Depth precision better

Matching clues

- Correspondance search is a 1-D problem
 - Matching point must lie on a line

Matching clues

Epipolar geometry

Matching clues

Epipolar geometry

Rectification

- Simplifies the correspondance search
 - Makes all epipolar lines parallel and coincident
 - Corresponds to parallel camera configuration

Goal: disparity map

- Disparity:
 - The horizontal displacement between corresponding points
 - Closely related to scene depth

More matching heuristics

- Always valid:
 - (Epipolar line)
 - Uniqueness
 - Minimum/maximum disparity
- Sometimes valid:
 - Ordering
 - Local continuity (smoothness)

- Finding pixel-to-pixel correspondences
 - For each pixel in the left image, search for the most similar pixel in the right image

- Finding pixel-to-pixel correspondences
 - For each pixel in the left image, search for the most similar pixel in the right image
 - Using neighbourhood windows

- Similarity measures for two windows
 - SAD (sum of absolute differences)
 - SSD (sum of squared differences)
 - CC (cross-correlation)

- ...

- Choice of window size
 - Factors to considers:
 - Ambiguity
 - Noise sensitivity
 - Sensitivity towards viewpoint-related distortions
 - Expected object sizes
 - Frequency of depth jumps

- Variable window position
 - Better matching at depth jumps (disparity edges)

Three or more viewpoints

- More matching information
 - Additional epipolar constraints
 - More confident matches

Summary

- Stereo vision:
 - A method for 3-D analysis of a scene using images from two or more viewpoints
- Two subproblems:
 - Matching
 - Reconstruction
- Most difficult part: Matching
- Area-based matching using windows
 - Low-level matching of image intensity patterns