Ham | | Spam

Email Spam Estimator
w/ TensorFlow and UiPath
DH

.:: Overview

Task: Identify spam using email messages

.:: Under The Hood: Spam Estimator / DE

- csv text file with 5728 emails, each labelled as spam (1) or ham (0)
- samples
 - start with 'Subject: '
 - lower case text
 - contain words, numbers, non-word chars
 - min: 13 chars, max: 43952 chars
 - English only
- unbalanced, sorted dataset
 - 1368 spam, 4360 ham

Subject: contact info i will be in one of these two places -- my home: 011 91 80 3312635 my in - laws ' home: 011 91 80 5262719 you can also contact me by email at vshanbh @ yahoo. com, but it is better to call since i do not have easy access to a computer, and there may be a delay with reading email. vasant, 0

.:: Under The Hood: Spam Estimator / DP

- remove string 'Subject: '
- convert text documents to a matrix of token counts

Example:

```
text_docs =
['contact info i will be in one of
these two places',
'but it is better to call since i
do not have']

['better',
[[0. 1. 1. 1.] 'contact',
[1. 0. 0. 0.]] 'info', 'places']
```

- split and shuffle dataset
 - 20% for test
 - 20% of remaining set for validation
 - balance of spam & ham persists

.:: Under The Hood: Spam Estimator / ME

Question: Is it better to identify spam as ham or ham as spam?

Confusion Matrix:

		predicted class	
		spam (1)	ham (0)
true class	spam (1)	TP	FN
	ham (0)	FP	TN

Metric to use is Precision: $PPV = \frac{TP}{TP+FP}$

.:: Under The Hood: Spam Estimator / IM

epoch # 0, batch # 46 / 46, train metric: 0.95 , val metric: 0.9704641350210971 val metric improved, model saved to ./tf_saves/run_MlpSpafi/best_acc_val.ckpt epoch # 1, batch # 46 / 46, train metric: 1.0 , val metric: 0.9710743801652892 val metric improved, model saved to ./tf_saves/run_MlpSpafi/best_acc_val.ckpt epoch # 2, batch # 46 / 46, train metric: 1.0 , val metric: 0.9710743801652892 epoch # 3, batch # 46 / 46, train metric: 1.0 , val metric: 0.975103734439834 val metric improved, model saved to ./tf_saves/run_MlpSpafi/best_acc_val.ckpt epoch # 4, batch # 46 / 46, train metric: 1.0 , val metric: 0.975103734439834 epoch # 5, batch # 46 / 46, train metric: 1.0 , val metric: 0.975103734439834 early stopping after epoch 5

.:: Under The Hood: Spam Estimator / EV

Training

Scores

validation: 0.9751

test: 0.9893

Confusion Matrix:

predicted class

		spam (1)	ham (0)
true class	spam (1)	280	10
	ham (0)	3	853

.:: Under The Hood: Mail Reader / SEQ

.:: Real-Time Demonstration

- Python script: Spam Estimator
- UiPath sequence: Mail Reader
- choose and send mails
 - http://www.antespam.co.uk/spam-resource/
 - mailto:dan.spamcheck@outlook.com

.:: Improvements

- data preprocessing
 - lemmatization / stemming
 - correlations, i.e. mail length vs spam
- implementation of estimator in UiPath
 - Python + required packages (w/o virtual environment)
 - official package 'UiPath.Python.Activities'
- serving mode of estimator and online learning capability
- check of other mail types and languages
 - attachments
 - graphical mails

.:: Interesting Facts

- underlying MLP was prior used to recognize handwritten digits
- dataset contains mails from the Enron scandal
- less top k words worked better