概率论与数理统计

授课教师: 唐宏岩

前言

本讲义基于清华大学数学系唐宏岩老师于 2023 - 2024 学年秋季学期开设的《概率论与数理统计》课程,用于辅助同学们课后复习。

由于时间与能力所限,本讲义可能不会出现大段的文字论述(但会包含重要的定义、定理与公式等)。但是,对许多基本概念的深入理解是非常有必要的,同学们可以在浏览时检查自己是否能够回忆起课上的内容,对掌握不够扎实的地方,鼓励大家查阅参考书或在课程群提问以解决问题。

由于此为教学团队第一年尝试整理讲义,诸如格式编排、内容完整性方面可能存在许多不足,欢迎大家联系我提出宝贵的意见与建议。

曹子尧 2023 年 9 月

目录

前言		j
第一部	邓分 初等概率论	1
第一章	事件的概率	2
1.1	概率的发展史	2
1.2	随机试验与事件	2
1.3	事件的运算	3
1.4	概率的几种解释	3
1.5	概率的公理化定义	3
1.6	条件概率	5
1.7	事件的独立性	6
1.8	Bayes 公式	6
第二章	随机变量	8
2.1	一维随机变量	8
2.2	离散随机变量	10
2.3	常见离散分布	11
2.4	连续随机变量	12
2.5	常见连续分布	12
2.6	随机变量的函数	14
第三章	联合分布	16
3.1	随机向量	16
3.2	离散分布	16
3.3	连续分布	17

目录		目录
3.4	边际分布	1,
3.5	条件分布	
3.6	独立性	
3.7	随机向量的函数	. 15
第四章	随机变量的数字特征	22
4.1	期望	. 22
4.2	分位数	. 22
4.3	方差	. 23
4.4	协方差与相关系数	. 23
4.5	矩	. 24
4.6	矩母函数	. 25
4.7	条件期望	. 27
第五章	不等式与极限定理	29
5.1	概率不等式	. 29
5.2	大数定律	. 30
5.3	中心极限定理	. 31
第二部	邓分 统计推断	33
第六章	参数估计	36
6.1	矩估计	. 36
6.2	极大似然估计	. 36
6.3	优良性准则	. 37
6.4	置信区间	. 39
6.5	Bayes 估计	. 42
第七章	假设检验	44
7.1	基本概念	. 44
7.2	Neyman-Pearson 假设检验	. 46
7.3	假设检验与置信区间	. 47

47

48

7.5

目录		目录
7.6	似然比检验	
7.7	两总体比较	50
7.8	Bayes 假设检验	51
第八章	线性回归	52
8.1	回归问题	52
8.2	简单线性回归	52
8.3	最小二乘法估计参数	53
8.4	回归参数推断	53
8.5	预测	54

第一部分

初等概率论

第一章 事件的概率

1.1 概率的发展史

赌博中的 de Méré's Problem: 连续掷一个均匀六面骰 4 次,获得至少一次"6"的概率为 $1-(\frac{5}{6})^4\approx 0.5177$; 而连续掷两个均匀六面骰 24 次,获得至少一次"对 6"的概率为 $1-(35/36)^{24}\approx 0.4914$ 。

Pascal 和 Fermat 的通信中使用初等数学的方法,首创了概率论相当多的数学理论,虽然当时没有总结成通用的定理。

Laplace 创立了采用分析方法的分析概率论。

Kolmogorov 利用测度论方法发展了现代概率理论。

1.2 随机试验与事件

定义 1.1. 概率论中的随机试验指的是符合下面两个特点的试验:

- 1. 不能预先确知结果
- 2. 可以预测所有可能的结果

定义 1.2. 样本空间是指一个试验的所有可能结果的集合,常用 Ω 表示。

定义 1.3. 事件是样本空间的一个良定义的子集。

一次随机试验中,一个事件可能发生或不发生。

下面是一些常见的事件:

- 1. 全事件 Ω (必然事件)
- 2. 空事件 Ø (不可能事件)
- 3. 基本事件 $\{a\}$, 其中 $a \in \Omega$, 即仅包含单一试验结果的事件

1.3 事件的运算

由于事件是集合,因此事件之间可以进行集合之间的运算,如:

- 2. $A + B = A \cup B = (A^c \cap B^c)^c$
- 3. 差 $A B = A \setminus B$
- 4. 积 $AB = A \cap B = (A^c \cup B^c)^c$

集合的 De Morgan's laws 也适用于事件: $(\bigcup_n A_n)^c = \bigcap_n A_n^c$ 。 事件的运算像集合的运算一样,可以用 Venn 图来表示。

1.4 概率的几种解释

对于概率这一数学概念,人们形成了几种从不同角度出发的解释:

- 1. 古典解释: 基于等可能性的解释
- 2. 频率解释:基于大量重复试验的解释(频率学派采用的解释)
- 3. 主观解释: 概率是一种对确信程度的度量(Bayes 学派采用的解释)

1.5 概率的公理化定义

用 2^{Ω} 表示 Ω 的幂集, 即 Ω 的所有子集组成的集合。

定义 1.4. 事件集类 $\mathscr{F} \subset 2^{\Omega}$ 必须满足所谓 σ -代数的性质:

- 1. $\Omega \in \mathscr{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ (对补运算的封闭性)
- 3. $A_i \in \mathcal{F}, \forall i \in \mathbb{N}^* \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (对可列并的封闭性)

例 1.1. $\Omega = \{a, b, c, d\}$,以下是一些合法的事件集类:

- 1. $\mathscr{F}_1 = 2^{\Omega}$
- 2. $\mathscr{F}_2 = \{\Omega, \varnothing\}$
- 3. $\mathscr{F}_3 = \{\Omega, \varnothing, \{a, b\}, \{c, d\}\}\$

定义 1.5. (Kolmogorov) 概率函数 $P: \mathscr{F} \to \mathbb{R}$ 是满足以下三条公理的映射:

- 1. $P(A) \ge 0, \forall A \in \mathscr{F}$
- 2. $P(\Omega) = 1$

3. $A_i \in \mathcal{F}, \forall i \in \mathbb{N}^*, A_i A_j = \emptyset, \forall i \neq j \Rightarrow P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (加法公理/可列可加性)

 $称(\Omega, \mathcal{F}, P)$ 是一个概率空间。

命题 1.1. 关于概率空间, 有如下性质:

- 1. $P(A) \le 1, \ \forall A \in \mathscr{F}$
- 2. $P(\emptyset) = 0$
- 3. $P(A) + P(A^c) = 1$
- 4. $A_i \in \mathscr{F}, \forall i \in \{1, 2, \dots, n\}, \ A_i A_j = \varnothing, \forall i \neq j \Rightarrow P(\sum_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ (有限可加性)
- 5. $A \subset B \Rightarrow P(A) \leq P(B)$ (称事件 A 蕴涵事件 B)

6.
$$P(A_1 + \dots + A_n) = \sum_{i=1}^n P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} A_{i_2})$$
 (容斥公式)
$$+ \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \dots A_{i_r})$$

$$+ \dots + (-1)^{n+1} P(A_1 \dots A_n)$$

特别地, P(A+B) = P(A) + P(B) - P(AB)。

例 1.2. (配对问题)

有 n 个人,每人有一顶帽子。现将所有帽子放到一起,再随机分配给每人一顶,考虑无人拿到自己的帽子的概率。

为此,设事件 A_i 为 "第 i 个人拿到自己的帽子",则 $P(A_i) = 1/n$ 。

利用容斥公式,至少一人拿到自己帽子的概率为

$$P(A_1 + \dots + A_n)$$

$$= \sum_{i=1}^n P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} A_{i_2})$$

$$+ \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \cdots A_{i_r})$$

$$+ \dots + (-1)^{n+1} P(A_1 \cdots A_n)$$

其中 $\sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \cdots A_{i_r}) = \frac{(n-r)!}{n!} \binom{n}{r} = \frac{1}{r!}$,即 $P(A_1 + \dots + A_n) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots + (-1)^{r+1} \frac{1}{r!} + \dots + (-1)^{n+1} \frac{1}{n!} \circ$

所求概率 $P_n = 1 - P(A_1 + \dots + A_n) = 1 - (1 - \frac{1}{2!} + \dots + (-1)^{n+1} \frac{1}{n!}) \to e^{-1}(n \to +\infty)$.

思考: 恰有 k 个人拿到自己的帽子的概率?

1.6 条件概率

定义 1.6. 若 P(B) > 0,定义条件概率 $P(A|B) = \frac{P(AB)}{P(B)}$ 。

通常, 计算条件概率的方法有两种:

- 1. 在缩小(受限)的样本空间(要求事件 B 发生)上,考虑事件 A 发生的概率
- 2. 根据定义计算
- 一种常用的形式是 P(AB) = P(A|B)P(B) = P(B|A)P(A),这可以视作是求解两个事件的积的概率的方法(乘法法则)。

例 1.3. 掷一个均匀六面骰, $\Omega = \{1, 2, 3, 4, 5, 6\}, A = \{2, 3, 4, 5\}, B = \{1, 3, 5\},$ 则 $P(A) = 4/6, P(B) = 3/6, P(AB) = 2/6, P(A|B) = \frac{P(AB)}{P(B)} = 2/3$ 。

例 1.4. 袋子中有 8 个红球和 4 个白球,无放回地取出两个球,利用组合数可知,两个都是红球的概率为 $\frac{\binom{8}{2}}{\binom{12}{2}}$ 。

用条件概率可以简化计算: $P(R_1R_2) = P(R_1)P(R_2|R_1) = \frac{8}{12} \times \frac{7}{11}$.

更一般地,有 $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$,常用于序贯发生的一系列事件的积的概率求解。

例 1.5. 回忆上一节的"配对问题"。我们有

$$P(A_{i_1} A_{i_2} \cdots A_{i_r})$$

$$= P(A_{i_1}) P(A_{i_2} | A_{i_1}) \cdots P(A_{i_r} | A_{i_1} \cdots A_{i_{r-1}})$$

$$= \frac{1}{n} \times \frac{1}{n-1} \times \cdots \times \frac{1}{n-(r-1)}$$

$$= \frac{(n-r)!}{n!}.$$

命题 1.2. 对于给定的事件 $B, P(\cdot|B): \mathscr{F} \to \mathbb{R}$ 是概率函数,即 $(\Omega, \mathscr{F}, P(\cdot|B))$ 仍是概率空间。

对于上述命题的证明,只需验证 $P(\cdot|B)$ 满足概率的三条公理即可。

这提示我们,条件概率也是一种概率,如果将 P(A) 称为观察到事件 B 之前 A 的 "先验概率",则 P(A|B) 就是相应的 "后验概率"。

一个常见的迷思是: 观测到事件 A 已经发生后, 是否可以说事件 A 发生的概率 P(A) = 1? 学过条件概率之后, 我们知道答案是否定的, 实际上是后验概率 P(A|A) = 1.

1.7 事件的独立性

定义 1.7. 若 P(AB) = P(A)P(B),则称事件 A, B 相互独立。

如果 P(B) > 0,我们注意到 A, B 独立等价于 P(A|B) = P(A)。

命题 1.3. 若 A, B 独立,则 A^c, B 独立。

定义 1.8. 若 P(ABC) = P(A)P(B)P(C),且 A, B, C 两两独立,则称事件 A, B, C 独立。

注意, 仅有 A, B, C 两两独立, 不能推出三者独立。

定义 1.9. 若对于事件列 $\{A_i\}_{i=1}^{\infty}$,任意取有限个事件 $A_{i_1}, A_{i_2}, \cdots, A_{i_r}$,都有 $P(A_{i_1}A_{i_2}\cdots A_{i_r}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_r})$,则称 $\{A_i\}_{i=1}^{\infty}$ 相互独立。

例 1.6. 每周开奖的彩票,各次中奖率均为 10^{-5} 且独立,问连续十年(520 周)不中奖的概率? 令事件 A_i 为第 i 周不中奖,则 $P(A_i) = 1 - 10^{-5}$,故 $P(A_1 \cdots A_{520}) = (1 - 10^{-5})^{520} \approx 0.9948$ 。

定义 1.10. 若事件 A, B, E 满足 P(AB|E) = P(A|E)P(B|E), 则称 A, B 关于 E 条件独立。

注意,条件独立性和独立性之间没有蕴涵关系。

1.8 Bayes 公式

定理 1.1. (全概率公式)

设 $\{B_i\}$ 是 Ω 的一个分割,即

- 1. $\sum_{i} B_{i} = \Omega$
- 2. $B_i B_i = \emptyset, \forall i \neq j$
- 3. $P(B_i) > 0, \forall i$

则 $P(A) = P(\sum_i (AB_i)) = \sum_i P(AB_i) = \sum_i P(A|B_i)P(B_i)$ 。

注: $\{B_i\}$ 可以是有限集合,或可数无穷集合。

例 1.7. 对于调查问卷中的敏感问题(如"你是否有过某病史"),被调查者可能会有所顾虑而做出虚假的回答。为保护被调查者的隐私,同时取得其信任,考虑引入一个"保护性问题",即不具有敏感性的问题(如"你是否会游泳"),并让被调查者以抛硬币的方式,随机抽取一个问题回答。这样,抽到敏感问题的、确有过该病史的被调查者在回答"是"时也无须有病史暴露之虞。

设人群中,敏感问题答案为"是"的比例为 p (未知),保护性问题答案为"是"的比例为 q (假设已知),则若收集到 n 个被调查者的结果,其中 k 个为"是",便有 $\frac{1}{2}p+\frac{1}{2}q\approx\frac{k}{n}$,可以据此得到 p 的估计。

定理 1.2. (Bayes 公式 / Bayes 准则)

设 $\{B_i\}$ 是 Ω 的一个分割,则 $P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_i P(B_j)P(A|B_j)}$ 。

例 1.8. (假阳性悖论)

对于一种流行病, A 表示一个人检查呈阳性, B 表示此人确实患病。

设
$$P(B) = 10^{-4}$$
, $P(A|B) = 0.99$, $P(A|B^c) = 10^{-3}$,

则一个检查呈阳性的人真的患病的概率仅为 $P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)} \approx 9\%$ 。

如果再次检测仍呈阳性,且两次检测效率不变,结果彼此独立,则此人真的患病的概率为 $P(B|A_1A_2) = \frac{P(A_1A_2|B)P(B)}{P(A_1A_2|B)P(B) + P(A_1A_2|B^c)P(B^c)} = \frac{P(A_1|B)P(A_2|B)P(B)}{P(A_1|B)P(A_2|B)P(B) + P(A_1|B^c)P(A_2|B^c)P(B^c)} \approx 99\%.$

第二章 随机变量

2.1 一维随机变量

定义 2.1. 随机变量是样本空间上的实值函数。

注意,上述定义是不严格的。

更严谨的定义: 若对于可测空间 (Ω, \mathscr{F}) 和函数 $X: \Omega \to \mathbb{R}$,有 $\forall x \in \mathbb{R}, \{\omega | X(\omega) \leq x\} \in \mathscr{F}$,则称 X 是 (Ω, \mathscr{F}) 上的随机变量。其中"可测空间"是指 \mathscr{F} 是样本空间 Ω 上的 σ -代数。此处不要求"概率空间",即随机变量的定义并不依赖概率测度 P 的存在。

例 2.1. 下表展示了两个随机变量。其中"像集"即 $\{X(\omega)|\omega\in\Omega\}$ 。

试验	样本空间 Ω	随机变量 X	像集	
随机调查 50 人对	$O = \{0, 1\}^{50}$	V _ "1" 的 人 米h	[0 1 50]	
某议题支持与否	$\Omega_1 = \{0, 1\}^{50}$	$X_1 = "1"$ 的个数	$\{0, 1, \cdots, 50\}$	
随机抽取一名北	0	V 甘东此 i	П	
京成年市民	$\Omega_2 = $ 所有北京成年市民之集	$X_2 = $ 其年收入	\mathbb{R}	

注意,我们经常用 " $X_1=20$ "、" $X_2>100000$ " 等简化的记号来表示事件。例如,前者实际上指的是 $\{\omega\in\Omega_1|X_1(\omega)=20\}$ 。

诸如此类的试验结果集合需是事件,这体现出前述的随机变量严谨定义的意义。事实上,如果满足该严谨定义,则对于任意可测集 $I\subset\mathbb{R}$,都有 $\{\omega\in\Omega|X(\omega)\in I\}\in\mathscr{F}$ 。

随机变量是试验结果的数值摘要,起到一种概括的作用。随机变量的"随机"要素来自于 样本点 $\omega \in \Omega$ 的随机选择。在实际应用中,随机变量常常比样本空间具有更直观的意义。

随机变量可以分为:

1. 离散型: 至多可数多个取值

2. 连续型:区间型取值(非严格定义)

3. 其他

"其他"中的一个非常特殊的子类是所谓的混合型随机变量。

定义 2.2. 对于随机变量 X 和 \mathbb{R} 的可测子集 I (例如 I = (a, b]),令 $X^{-1}(I) = \{\omega \in \Omega | X(\omega) \in I\}$ $\subset \Omega$ 为 I 的原像集,定义记号 $P(X \in I)$ 表示"X 的取值在 I 中的概率",其值为 $P(X^{-1}(I))$ 。

例如, $P(a < X \le b) = P(\{\omega | X(\omega) \in (a, b]\})$ 。

定义 2.3. $F_X(x) = P(X \le x), \forall x \in \mathbb{R}$ 称为随机变量 X 的累积分布函数(Cumulative Distribution Function, CDF)。下标 X 在无歧义时可省略。

我们有 $P(a < X \le b) = F(b) - F(a)$ 。

例 2.2. $\Diamond X$ 表示掷两个均匀六面骰所得的点数和,则 X 的分布表(详见 2.2 节)为

X	2	3	4	5	6	7	8	9	10	11	12
P	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

相应的 CDF 见图 2.1。

图 2.1: X 的 CDF 图象

注:由于软件限制,各个阶跃点的绘制方式不太规范,实际上从其左侧逼近应该为一个空圈,例如 F(3) = 3/36 而不是 1/36。另外, $\forall x < 2, F(x) = 0; \forall x \ge 12, F(x) = 1$ 。

命题 2.1. CDF 的性质:

- 1. F 单调递增(未必严格单调递增)
- 2. $\lim_{x \to +\infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$
- 3. F 右连续

可以证明,上述三条性质是任意函数 $F: \mathbb{R} \to \mathbb{R}$ 成为 CDF 的充要条件。

思考: 如果将 CDF 的定义改为 P(X < x), 上述性质会如何变化?

命题 2.2. 若 X, Y 为随机变量,则 aX + bY, XY, X/Y (需 $Y \neq 0$) 都是随机变量。一般地,若 g 为可测函数,则 g(X, Y) 是随机变量。

定义 2.4. 设 X_1, X_2 的 CDF 分别为 F_1, F_2 , 称 X_1 与 X_2 同分布, 若 $\forall x \in \mathbb{R}, F_1(x) = F_2(x)$ 。

命题 2.3. 随机变量 X_1 与 X_2 同分布的一个充要条件是 \forall 可测集 $I \subset \mathbb{R}, P(X_1 \in I) = P(X_2 \in I)$ 。

注意,同分布不等价于"同变量",即两个同分布的变量的取值不一定恒等。

例 2.3. 掷一次硬币,X 表示正面向上次数,Y 表示反面向上次数,显然 X 与 Y 同分布,但取值不等。

2.2 离散随机变量

定义 2.5. 离散随机变量 X 的概率质量函数(Probability Mass Function, PMF)f 是指该随机变量取各个可能值的概率,即 $f(x) = P(X = x), \forall x \in \mathbb{R}$ 。可以用分布表的形式展示各个可能取值与概率的对应关系。

命题 2.4. 如果离散随机变量 X 的所有可能取值为 $\{x_i\}$,则 X 的 PMF 具有如下性质:

- 1. $f(x_i) = p_i \ge 0, \forall i$
- 2. $\sum_{i} p_{i} = 1$
- 3. $F(x) = \sum_{x_i \le x} f(x_i)$

定义 2.6. 离散随机变量 X 的期望定义为 $E(X) = \sum_{i} x_{i} p_{i}$ 。

称 X 的期望存在,当且仅当 $\sum_{i} |x_{i}| p_{i} < +\infty$ 。

当期望存在时,其方差定义为 $Var(X) = \sum_i (x_i - E(X))^2 p_i = E((X - E(X))^2) = E(X^2) - E^2(X)$ 。 当方差有限时,称其算术平方根为 X 的标准差,记作 SD(X)。

注意、通常我们所说的一个随机变量的均值指的就是期望。

标准化指的是对 X 作线性变换 $\frac{X-\mu}{\sigma}$, 其中 μ 和 σ 分别为 X 的期望和标准差,得到均值 为 0,标准差为 1 的随机变量。

对于可测函数 g, g(X) 也是随机变量, 其期望 $E(g(X)) = \sum_i g(x_i)p_i$ 。期望反映了随机变量的集中趋势, 而方差反映了其分散程度。

2.3 常见离散分布

定义 2.7. 称一个随机变量 X 服从 Bernoulli 分布,若 $\exists p \in (0,1), X$ 的取值集合为 $\{0,1\},$ 且 P(X=1)=p, P(X=0)=1-p。记作 $X \sim B(p)$ 。

B(p) 中的 p 称为该 Bernoulli 分布的参数。后续介绍的其他分布同理。

常将两种取值分别称为"成功"和"失败"。

计算可得, 若 $X \sim B(p)$, 则 E(X) = p, Var(X) = p(1-p)。

定义 2.8. 称一个随机变量 X 服从二项分布,若 $\exists N \in \mathbb{N}^*, p \in (0,1), X$ 的取值集合为 $\{0,1,\cdots,N\}$,且 $P(X=k) = \binom{N}{k} p^k (1-p)^{N-k} (k \in \{0,1,\cdots,N\})$ 。记作 $X \sim B(N,p)$ 。

常将 k 理解为 "N 次独立 Bernoulli 试验中的成功次数"。

计算可得, 若 $X \sim B(N, p)$, 则 E(X) = Np, Var(X) = Np(1-p)。

定义 2.9. 称一个随机变量 X 服从 Poisson 分布,若 $\exists \lambda > 0$,X 的取值集合为 \mathbb{N} ,且 $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} (k \in \mathbb{N})$ 。记作 $X \sim P(\lambda)$ 。

计算可得,若 $X \sim P(\lambda)$,则 $\mathrm{E}(X) = \lambda, \mathrm{Var}(X) = \lambda$ 。

对 Poisson 分布的一种常见理解是"一段时间内某个小概率事件发生的次数"所服从的分布。例如,观察时间 (0,1] 内某路口的交通事故数 X,将 (0,1] 区间等分成 n 个小区间,即 $l_i = (\frac{i-1}{n}, \frac{i}{n}](i=1,2,\cdots,n)$ 。考虑到 n 很大时,每个区间的长度很小,作如下假设:

- 1. 每段区间内,至多发生一次事故
- 2. l_i 上发生一次事故的概率与区间长度 (1/n) 成正比,为 $p = \lambda/n$
- 3. 各区间内是否发生事故彼此独立 则 $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \to \frac{\lambda^k e^{-\lambda}}{k!} (n \to +\infty)$,即 $X \sim P(\lambda)$ 。

例 2.4. 设某医院平均每天出生婴儿数为 λ ,则接下来 t 天内出生婴儿数服从参数为 $t\lambda$ 的 Poisson 分布。

对于一般的二项分布 $X \sim B(N,p)$,若 p 很小,N 很大,而 $\lambda = Np$ 不太大,则近似有 $X \sim P(\lambda)$,且近似误差不超过 $\min\{p,Np^2\}$ 。

进一步,若 N 次 Bernoulli 试验并非严格独立,但满足弱相依条件,则 Poisson 分布仍为一种较好的近似。

例 2.5. (配对问题)

 A_i 表示第 i 个人拿到自己的帽子,则 $P(A_i) = 1/n, P(A_i|A_j) = \frac{1}{n-1}(j \neq i)$,当 n 很大时,1/n

和 $\frac{1}{n-1}$ 很接近,可以认为满足弱相依条件。

记 X 为拿到自己帽子的人数,则 X 近似服从参数为 $\lambda=np=n\cdot\frac{1}{n}=1$ 的 Poisson 分布,即 $P(X=k)\approx\frac{e^{-1}}{k!}$ 。

我们用常规做法检查这种近似是否合理。首先考虑指定的某 k 人,记事件 E 表示这 k 人拿到自己的帽子,事件 F 表示其余 (n-k) 人未拿到自己的帽子,则 $P(EF) = P(E)P(F|E) = \frac{(n-k)!}{n!} \cdot P_{n-k}$,其中 P_{n-k} 为 (n-k) 人随机拿帽子时无人拿对的概率。那么 $P(X=k) = \binom{n}{k} P(EF) = \frac{1}{k!} P_{n-k} \to \frac{e^{-1}}{k!} (n \to +\infty)$ 。这说明前述的近似是较好的。

2.4 连续随机变量

定义 2.10. 对随机变量 X,若存在 $f: \mathbb{R} \to [0, +\infty)$,使得 \forall 可测集 $I \subset \mathbb{R}$,都有 $P(X \in I) = \int_I f(x) dx$,则称 X 为 连续型随机变量,f 称为其概率密度函数 (Probability Density Function, PDF)。

命题 2.5. 连续随机变量 X 的 PDF 具有如下性质:

- 1. $\int_{-\infty}^{+\infty} f(x) dx \equiv 1$
- 2. $P(a < X \le b) = \int_a^b f(x) dx = P(a \le X \le b) = P(a \le X < b) = P(a < X < b)$
- 3. $P(X = a) \equiv 0, \forall a \in \mathbb{R}$
- 4. 若 f 在 x_0 处连续,则 $P(x_0 \delta < X < x_0 + \delta) = \int_{x_0 \delta}^{x_0 + \delta} f(t) dt \approx f(x_0) \cdot 2\delta$
- 5. $F(x) = \int_{-\infty}^{x} f(t) dt$ 连续,且若 f 在 x 处连续,有 F'(x) = f(x)
- 6. PDF 若存在,则不唯一(可以修改其在任意零测集上的值,得到不同的 PDF)

定义 2.11. 连续随机变量 X 的期望定义为 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ 。

称 X 的期望存在,当且仅当 $\int_{-\infty}^{+\infty} |x| f(x) dx < +\infty$ 。

当期望存在时,其方差定义为 $Var(X) = \int_{-\infty}^{+\infty} (x - E(x))^2 f(x) dx = E((X - E(X))^2) = E(X^2) - E^2(X)$ 。

当方差有限时,称其算术平方根为X的标准差,记作 $\mathrm{SD}(X)$ 。

对于可测函数 g, g(X) 也是随机变量, 其期望 $\mathrm{E}(g(X)) = \int_{-\infty}^{+\infty} g(x) f(x) \mathrm{d}x$.

2.5 常见连续分布

定义 2.12. 称一个连续型随机变量 X 服从均匀分布,若其 PDF 为 $f(x) = \frac{1}{b-a}(x \in (a,b))$, f 在其余各处取 0。记作 $X \sim U(a,b)$ 。

常将 $X \sim U(0,1)$ 称为随机数。

计算可得,若 $X \sim U(a,b)$,则 $E(X) = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$ 。

定义 2.13. 称一个连续型随机变量 X 服从正态分布,若其 PDF 为 $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(\sigma > 0)$ 。记作 $X \sim N(\mu, \sigma^2)$ 。

计算可得,若 $X \sim N(\mu, \sigma^2)$,则 $E(X) = \mu, Var(X) = \sigma^2$ 。 著名的"经验法则"见图 2.2。

图 2.2: 经验法则

 $X \sim N(\mu, \sigma^2)$ 的充要条件是 $Y = \frac{X-\mu}{\sigma} \sim N(0,1)$ 。 N(0,1) 称为标准正态分布。

定义 2.14. 称一个连续型随机变量 X 服从指数分布, 若其 PDF 为 $f(x) = \lambda e^{-\lambda x} (\lambda > 0, x > 0)$, f 在其余各处取 0。记作 $X \sim Exp(\lambda)$ 。

指数分布常用于刻画等待时间、寿命等。

计算可得, 若 $X \sim Exp(\lambda)$, 则 $E(X) = 1/\lambda$, $Var(X) = 1/\lambda^2$ 。

指数分布有另一种符号约定,以 $\beta = 1/\lambda$ 为参数,一些数学软件可能采用此种约定。

指数分布的 CDF 为 $F(x)=1-e^{-\lambda x}(x>0)$,所谓的 "尾概率" 为 $P(X>x)=1-F(x)=e^{-\lambda x}(x>0)$ 。

例 2.6. 设某医院平均每天出生婴儿数为 λ ,现在观察到一名婴儿出生,则接下来 t 天内有婴儿出生的概率为 $P(X \le t)$,其中 X 表示到下一个婴儿出生所需等待的时间。

记 N(t) 为 t 天内出生婴儿数,我们已经知道 $N(t)\sim P(t\lambda)$,则 $P(X>t)=P(N(t)=0)=e^{-\lambda t}$,故 $P(X\leq t)=1-e^{-\lambda t}$,即 X 服从参数为 λ 的指数分布。

我们从另一个角度理解指数分布。

首先引入失效率或危险率的概念。设 X 为连续型随机变量(表示某种零件的寿命),其 CDF 为 F(x),且 F(0)=0。考虑条件概率 $P(x < X < x + \mathrm{d}x | X > x) = \frac{P(x < X < x + \mathrm{d}x | X > x)}{P(X > x)} = \frac{F(x + \mathrm{d}x) - F(x)}{1 - F(x)} \approx \frac{F'(x)}{1 - F(x)} \mathrm{d}x$,即 "年龄" 为 x 的零件不能继续工作的条件概率密度为 $\frac{F'(x)}{1 - F(x)}$,称 其为瞬时失效率 $\lambda(x)$,则 $F(x)=1-e^{-\int_0^x \lambda(t) \mathrm{d}t}$ 。

在 "无老化" 假设下,即 $\lambda(t) \equiv \lambda$ 不随时间变化,则 $F(x) = 1 - e^{-\lambda t}(x > 0)$,X 服从指数分布。

指数分布有所谓"无记忆性": $P(X > t + s | X > s) = \frac{P(X > t + s)}{P(X > s)} = e^{-\lambda t} = P(X > t)(t, s > 0)$ 。 "无老化"假设并不总是成立。为此,可以进行一定程度的改进,例如令 $\lambda(x) = \alpha \frac{x^{\alpha - 1}}{\beta^{\alpha}}(x > 0)$, $\alpha, \beta > 0$ 为常数),则 $F(x) = 1 - e^{-(\frac{x}{\beta})^{\alpha}}(x > 0)$,称之为 Weibull 分布。当 $\alpha = 1$ 时,Weibull 分布退化为参数为 $1/\beta$ 的指数分布。

总览至此介绍过的各个分布的参数,可以将其大致分为以下几类:

- 1. 位置参数: 决定了分布平移到的位置,通常在 PMF/PDF 中体现为 $f(x) = g(x \cdot)$ 的形式,如正态分布的参数 μ
- 2. 尺度参数: 决定了分布伸缩的程度,通常在 PMF/PDF 中体现为 $f(x) = g(\frac{x}{x})$ 的形式,如正态分布的参数 σ 、Weibull 分布的参数 β
- 3. 形状参数: 决定了分布的形状, 如 Weibull 分布的参数 α

2.6 随机变量的函数

对于随机变量 X 和可测函数 g, Y = g(X) 也是随机变量。特别地,若 X 为离散型随机变量,则 Y 也离散。但若 X 为连续型随机变量,Y 未必连续。

例 2.7.
$$X \sim Exp(\lambda)$$
, $Y = \begin{cases} 0, & X \le t_0, \\ 1, & X > t_0, \end{cases}$ 其中 $t_0 > 0$ 为常数,则 $Y \sim B(e^{-\lambda t_0})$ 。

例 2.8. 设 X 为连续型随机变量, PDF 为 f(x), 考虑 $Y = X^2$ 。

从 CDF 入手, $\forall y > 0, P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f(x) dx$,有 Y 的 PDF 为 $l(y) = \frac{d}{dy} P(Y \le y) = \frac{1}{2\sqrt{y}} (f(\sqrt{y}) + f(-\sqrt{y}))(y > 0)$ 。

特别地, 若 $X \sim N(0,1)$, 称 Y 服从自由度为 1 的 χ^2 -分布, 读作"卡方分布"。

若 Y = g(X) 为随机变量,可以计算 Y 的分布如下:

- $P(Y = y) = P(g(X) = y) = P(X \in g^{-1}(y))$
- $P(Y \le y) = P(g(X) \le y) = P(X \in g^{-1}((-\infty, y]))$

第三章 联合分布

3.1 随机向量

定义 3.1. 称 $(X_1, X_2, \dots, X_n) : \Omega \to \mathbb{R}^n$ 为 $(n \, \mathfrak{t})$ 随机向量,若 $\{X_i\}_{i=1}^n$ 均为随机变量。

定义 3.2. n 维随机向量的(联合)(累积)分布函数(CDF)定义为 $F(x_1, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n), \forall (x_1, \dots, x_n) \in \mathbb{R}^n$ 。

对于 n=2 (二元分布) 的情形, 常用 (X,Y) 来表示随机向量, 对应的 CDF 为 F(x,y)。

3.2 离散分布

定义 3.3. 称 n 维随机向量 (X_1, \dots, X_n) 是离散的,当且仅当 $\{X_i\}_{i=1}^n$ 均为离散随机变量。 离散随机向量 (X_1, \dots, X_n) 的 (联合) 概率质量函数 (PMF) 定义为 $f(x_1, \dots, x_n) = P(X_1 = x_1, \dots, X_n = x_n), \forall (x_1, \dots, x_n) \in \mathbb{R}^n$ 。

命题 3.1. 离散随机向量 (X_1, \dots, X_n) 的 PMF 具有如下性质:

- 1. $f(x_1, \dots, x_n) > 0, \forall (x_1, \dots, x_n) \in \mathbb{R}^n$
- 2. $\sum_{x_i \in \{X_i(\omega) | \omega \in \Omega\}, \forall i \in \{1, \dots, n\}} f(x_1, \dots, x_n) \equiv 1$

注意第 2 条性质中求和的项数为至多可数,原因是有限个至多可数集的笛卡尔积仍是至 多可数集。

例 3.1. 设 $\{B_i\}_{i=1}^n$ 为 Ω 的一个分割(分割的定义见 1.8 节), $P(B_i) = p_i \ge 0, \forall i \in \{1, \dots, n\}$, $\sum_{i=1}^n p_i = 1$ 。

进行 N 次独立试验,设 $\forall i \in \{1, \dots, n\}$,有 X_i 个试验结果落在 B_i 中,则若 $k_1 + \dots + k_n = N$,其 中 k_i 均为非负整数,有 $P(X_1 = k_1, \dots, X_n = k_n) = \binom{N}{k_1, \dots, k_n} p_1^{k_1} \dots p_n^{k_n}$ 。其中 $\binom{N}{k_1, \dots, k_n} = \frac{N!}{k_1! \dots k_n!}$ 为多项式 $(a_1 + \dots + a_n)^N$ 中 $a_1^{k_1} \dots a_n^{k_n}$ 项的系数。

称 (X_1, \dots, X_n) 服从多项分布。

3.3 连续分布

定义 3.4. 对 n 维随机向量 (X_1, \dots, X_n) ,若存在 $f: \mathbb{R}^n \to [0, +\infty)$,使得 \forall 可测集 $Q \subset \mathbb{R}^n$, 都有 $P((X_1, \dots, X_n) \in Q) = \int_Q f(x_1, \dots, x_n) dx_1 \dots dx_n$,则称 (X_1, \dots, X_n) 为连续型随机向 量, f 称为其 (联合) 概率密度函数 (PDF)。

命题 3.2. 连续随机向量 (X_1, \dots, X_n) 的 PDF 具有如下性质:

- 1. $\int_{\mathbb{R}^n} f(x_1, \cdots, x_n) dx_1 \cdots dx_n \equiv 1$
- 2. 以 n=2 为例, $F(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(t,s)\mathrm{d}s\mathrm{d}t, f(a,b)=\frac{\partial^{2}F}{\partial x\partial y}(a,b)$, a.e.

其中 a.e. 表示 "almost everywhere"。

例 3.2. 矩形域上的均匀分布的 PDF:
$$f(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)}, & (x,y) \in (a,b) \times (c,d), \\ 0, &$$
其他.

例 3.3. 二元正态分布
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$
 的 PDF:
$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2} \frac{1}{\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}((\frac{x-\mu_1}{\sigma_1})^2 + (\frac{y-\mu_2}{\sigma_2})^2 - 2\rho\frac{x-\mu_1}{\sigma_1}\frac{y-\mu_2}{\sigma_2})}, \forall (x,y) \in \mathbb{R}^2, \sigma_1, \sigma_2 > 0, |\rho| < 1.$$
 令 $\boldsymbol{x} = \begin{bmatrix} \frac{x-\mu_1}{\sigma_1} \\ \frac{y-\mu_2}{\sigma_2} \end{bmatrix}, W = \frac{1}{1-\rho^2} \begin{bmatrix} 1 & -\rho \\ -\rho & 1 \end{bmatrix}, W = A^{\mathrm{T}}A$ 为正定矩阵 W 的 Cholesky 分解,则

$$\begin{bmatrix}
\frac{y-\mu_2}{\sigma_2}
\end{bmatrix} - \frac{1}{2(1-\rho^2)} \begin{bmatrix} -\rho & 1 \\ -\frac{1}{2(1-\rho^2)} \end{bmatrix} - \frac{1}{2(1-\rho^2)} ((\frac{x-\mu_1}{\sigma_1})^2 + (\frac{y-\mu_2}{\sigma_2})^2 - 2\rho \frac{x-\mu_1}{\sigma_1} \frac{y-\mu_2}{\sigma_2}) = -\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} W \boldsymbol{x} = -\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x} = -\frac{1}{2} (A \boldsymbol{x})^{\mathrm{T}} (A \boldsymbol{x}).$$

上述 Cholesky 分解的结果为
$$A = \frac{1}{\sqrt{1-\rho^2}}\begin{bmatrix} 1 & -\rho \\ 0 & \pm\sqrt{1-\rho^2} \end{bmatrix}$$
 或 $A = \frac{1}{\sqrt{1-\rho^2}}\begin{bmatrix} -1 & \rho \\ 0 & \pm\sqrt{1-\rho^2} \end{bmatrix}$ 。

3.4 边际分布

对 n 维随机向量 (X_1, \dots, X_n) , 称 $F_i(x) = P(X_i \le x) = P(X_i \le x, -\infty < X_i < +\infty, \forall j \ne x)$ i) 为 X_i 的边际分布。

例如, 若 n=2, 随机向量 (X,Y) 有 CDF F(x,y), 则 X 的边际分布为 $F_X(x)=P(X\leq$

$$\begin{split} x) &= P(X \leq x, Y \in \mathbb{R}) = \lim_{y \to +\infty} P(X \leq x, -\infty < Y \leq y) = \lim_{y \to +\infty} F(x, y) \, \text{o} \\ & \stackrel{\cdot}{\text{H}} = 3 \, \text{, 随机向量} \, (X, Y, Z) \, \text{有 CDF } F(x, y, z) \, \text{, } \text{则 } F_X(x) = \lim_{y, z \to +\infty} F(x, y, z) \, \text{, } \text{而 } (X, Y) \end{split}$$
的边际分布为 $F_{X,Y}(x,y) = P(X \le x, Y \le y) = P(X \le x, Y \le y, -\infty < Z < +\infty) =$ $\lim_{z \to +\infty} F(x, y, z) \,.$

例 3.4. 设二维随机向量 (X,Y) 的 CDF 为 F(x,y), 则 $\forall a,b \in \mathbb{R}, P(X>a,Y>b)=1$ $F_X(a) - F_Y(b) + F(a,b)$.

对于离散型随机向量,以 n=2 为例,定义边际 PMF 为 $P(X=x)=\sum_{x}P(X=x,Y=y)$ 。 对于连续型随机向量,以 n=2 为例,设联合 PDF 为 f(x,y),则 $F_X(x)=P(X\leq x,Y\in X)$ \mathbb{R}) = $\int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(t,s) ds dt$, 则 X 的边际 PDF 为 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$ 。

例 3.5. $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$,即 $X \sim$ $N(\mu_1, \sigma_1^2)$. 同理 $Y \sim N(\mu_2, \sigma_2^2)$.

3.5 条件分布

以 n=2 为例说明条件分布的概念,考虑随机向量 (X,Y)。

对于离散型随机向量,设联合 PMF 为 $P(X = a_i, Y = b_j) = p_{ij} \ge 0, \sum_{i,j} p_{ij} \equiv 1$,则在 $Y=b_j$ 条件下的 X 的条件 PMF 为 $P(X=a_i|Y=b_j)=\frac{P(X=a_i,Y=b_j)}{P(Y=b_j)}=\frac{p_{ij}}{\sum_k p_{ki}}$ 。条件 PMF 满 足 $\sum_{i} P(X = a_i | Y = b_i) \equiv 1, \forall j$.

对于连续型随机向量,设联合 PDF 为 f(x,y),首先考虑条件概率 $P(X \leq x|y \leq Y \leq x)$ $y+\mathrm{d}y)=\tfrac{P(X\leq x,y\leq Y\leq y+\mathrm{d}y)}{P(y\leq Y\leq y+\mathrm{d}y)}=\tfrac{\int_{-\infty}^x\int_y^{y+\mathrm{d}y}f(t,s)\mathrm{d}s\mathrm{d}t}{\int_y^{y+\mathrm{d}y}f_Y(s)\mathrm{d}s},\ \ \text{对}\ x$ 求导得 X 在 $y\leq Y\leq y+\mathrm{d}y$ 条件下的条 件 PDF 为 $\frac{\int_y^{y+\mathrm{d}y} f(x,s)\mathrm{d}s}{\int_y^{y+\mathrm{d}y} f_Y(s)\mathrm{d}s} \to \frac{f(x,y)}{f_Y(y)}(\mathrm{d}y \to 0)$ 。

定义 3.5. 对于连续型随机向量 (X,Y), 设联合 PDF 为 f(x,y), 若 $f_Y(y) > 0$, 则称 X 在 Y = y 条件下的条件 PDF 为 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)}$.

可以验证 $f_{X|Y}(x|y)$ 满足 PDF 的各性质。

相应的条件 CDF 为 $F_{X|Y}(a|y) = P(X \le a|Y = y) = \int_{-\infty}^{a} f_{X|Y}(x|y) dx$.

我们熟知的各个定理均有适用于连续型随机向量的版本:

- 1. $f(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$ (乘法法则)
- 2. $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} f_{X|Y}(x|y) f_Y(y) dy$ (全概率公式) 3. $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{f_{X|Y}(x|y) f_Y(y)}{\int_{-\infty}^{+\infty} f_{X|Y}(x|y) f_Y(y) dy}$ (Bayes 公式)

例 3.6.
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$
,则 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{\sqrt{2\pi}\sigma_2} \frac{1}{\sqrt{1-\rho^2}} e^{-\frac{(y-(\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1)))^2}{2(1-\rho^2)\sigma_2^2}}$,即 $Y|X=x \sim N(\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1),(1-\rho^2)\sigma_2^2)$ 。

独立性 3.6

定义 3.6. 设二维随机向量 (X,Y) 的 CDF 为 F(x,y),若 $F(x,y) = F_X(x)F_Y(y)$, $\forall x,y \in \mathbb{R}$, 则称 X,Y 相互独立。

可以证明,对于二维离散型(或连续型)随机向量 (X,Y), X,Y 相互独立的充要条件是 $f(x,y) = f_X(x)f_Y(y), \forall x,y \in \mathbb{R}$,其中 f(x,y) 为联合 PMF(或 PDF)。

定义 3.7. 设 n 维随机向量 (X_1, \dots, X_n) 的 CDF 为 $F(x_1, \dots, x_n)$,若 $F(x_1, \dots, x_n) = F_1(x_1) \dots F_n(x_n), \forall x_1, \dots, x_n \in \mathbb{R}$,则称 X_1, \dots, X_n 相互独立。

可以证明,对于 n 维离散型(或连续型)随机向量 (X_1, \dots, X_n) , X_1, \dots, X_n 相互独立的充要条件是 $f(x_1, \dots, x_n) = f_1(x_1) \dots f_n(x_n)$, $\forall x_1, \dots, x_n \in \mathbb{R}$, 其中 $f(x_1, \dots, x_n)$ 为联合PMF(或 PDF)。

定理 3.1.

- 1. 若 X_1, \dots, X_n 相互独立,则 $\forall m \in \{1, \dots, n-1\}$,可测函数 g_1, g_2 ,有 $Y_1 = g_1(X_1, \dots, X_m)$ 与 $Y_2 = g_2(X_{m+1}, \dots, X_n)$ 相互独立。
- 2. 若 n 维连续型随机向量 (X_1, \dots, X_n) 的联合 PDF 满足

$$f(x_1, \dots, x_n) = g_1(x_1) \dots g_n(x_n), \forall x_1, \dots, x_n \in \mathbb{R},$$

其中 $g_i: \mathbb{R} \to [0, +\infty), \forall i \in \{1, \dots, n\}, \ 则 \ X_1, \dots, X_n \ 相互独立, \ 且 \ X_i \ 的边际 \ PDF \ f_i$ 与 g_i 相差常数因子, $\forall i \in \{1, \dots, n\}$ 。

例 3.7. 设 (X,Y) 服从如图 **3.1** 的三角形域 D 上的均匀分布,即 $f(x,y) = \begin{cases} c, & (x,y) \in D, \\ 0, & \text{其他,} \end{cases}$ 则 X,Y 不独立。

图 3.1: 三角形域上的均匀分布

3.7 随机向量的函数

本节中,考虑给定随机向量 (X_1,\cdots,X_n) 和可测函数 g,如何求 $Y=g(X_1,\cdots,X_n)$ 的分 布。

首先介绍"直接法"。

例 3.8. $X_i \sim B(n_i, p) (i = 1, 2)$ 独立, $Y = X_1 + X_2$, 则 $\forall k \in \{0, 1, \dots, n_1 + n_2\}$,

$$P(Y = k)$$

$$= P(X_1 + X_2 = k)$$

$$= \sum_{k_1=0}^{k} P(X_1 = k_1, X_2 = k - k_1)$$

$$= \sum_{k_1=0}^{k} P(X_1 = k_1) P(X_2 = k - k_1)$$

$$= \sum_{k_1=0}^{k} {n_1 \choose k_1} p^{k_1} (1 - p)^{n_1 - k_1} {n_2 \choose k - k_1} p^{k - k_1} (1 - p)^{n_2 - (k - k_1)}$$

$$= \left(\sum_{k_1=0}^{k} {n_1 \choose k_1} {n_2 \choose k - k_1}\right) p^k (1 - p)^{n_1 + n_2 - k}$$

$$= {n_1 + n_2 \choose k} p^k (1 - p)^{n_1 + n_2 - k}$$

因此 $Y \sim B(n_1 + n_2, p)$ 。

例 3.9. 随机向量 (X_1, X_2) 有联合 PDF $f(x_1, x_2)$,且 $X_1 > 0$,考虑 $Y = X_2/X_1$,有 $\forall y \in \mathbb{R}$, $P(Y \leq y) = P(\frac{X_2}{X_1} \leq y) = P(X_2 \leq X_1 y) = \int_D f(x_1, x_2) \mathrm{d}x_1 \mathrm{d}x_2 = \int_0^{+\infty} \int_{-\infty}^{yx_1} f(x_1, x_2) \mathrm{d}x_2 \mathrm{d}x_1$,作 $x_2 = x_1 t$ 换元得 $P(Y \leq y) = \int_0^{+\infty} \int_{-\infty}^y f(x_1, x_1 t) x_1 \mathrm{d}t \mathrm{d}x_1$,故 Y 的 PDF 为 $l(y) = \int_0^{+\infty} x_1 f(x_1, yx_1) \mathrm{d}x_1$ 。

图 3.2: 区域 D 的范围,其中边界线的斜率为 y

接下来介绍"密度函数变换法"。

设随机向量 (X_1, X_2) 有联合 PDF $f(x_1, x_2)$,且有可逆可微的映射关系 $\begin{cases} Y_1 = g_1(X_1, X_2) \\ Y_2 = g_2(X_1, X_2) \end{cases}$

据此解出逆映射 $\begin{cases} X_1 = h_1(Y_1, Y_2) \\ X_2 = h_2(Y_1, Y_2) \end{cases}$,则对于任意可测集 A, 若 (h_1, h_2) 将 A 映射到集合 B,

则由可逆性可知 B 在 (g_1,g_2) 的映射下的值域为 A。 因此 $P((Y_1,Y_2) \in A) = P((X_1,X_2) \in B)$ = $\int_B f(x_1,x_2) \mathrm{d}x_1 \mathrm{d}x_2 = \int_A f(h_1(y_1,y_2),h_2(y_1,y_2))|J|\mathrm{d}y_1 \mathrm{d}y_2$, 其中 J 为 Jacobi 行列式 $\det \begin{bmatrix} \frac{\partial h_1}{\partial y_1} & \frac{\partial h_1}{\partial y_2} \\ \frac{\partial h_2}{\partial y_1} & \frac{\partial h_2}{\partial y_2} \end{bmatrix}$, 因此 (Y_1,Y_2) 的联合 PDF 为 $l(y_1,y_2) = f(h_1(y_1,y_2),h_2(y_1,y_2))|J|$ 。

例 3.10. 随机向量 (X_1,X_2) 有联合 PDF $f(x_1,x_2)$,为求 $Y=X_1+X_2$ 的 PDF,引入 $Z=X_1$,则 $\begin{cases} X_1=Z\\ X_2=Y-Z \end{cases}$,Jacobi 行列式为 $\det\begin{bmatrix} 0&1\\ 1&-1 \end{bmatrix}=-1$,故 (Y,Z) 的联合 PDF 为 f(z,y-z)|-1|=f(z,y-z),Y 的边际 PDF 为 $f(z,y-z)=\int_{-\infty}^{+\infty}f(z,y-z)\mathrm{d}z$ 。

上例中,若 X_1, X_2 相互独立,则 $f(x_1, x_2) = f_1(x_1) f_2(x_2) \Rightarrow l_Y(y) = \int_{-\infty}^{+\infty} f_1(z) f_2(y-z) dz$, 这称之为 f_1 和 f_2 的卷积,记作 $f_1 * f_2$ 。

特别地,若 $(X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则 $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2)$ 。 利用上述随机向量的函数的 PDF 求解方法,可以得到所谓卡方分布(χ^2 -分布)、t-分布和 F-分布的 PDF。这些分布的表达式较为复杂,在此不一一罗列。感兴趣的同学可以查阅资料,简单了解一下它们与标准正态分布的联系。

第四章 随机变量的数字特征

4.1 期望

离散型和连续型随机变量的期望分别参见定义 2.6 和定义 2.11。 对于随机向量,期望自然推广定义为 $\mathrm{E}((X_1,\cdots,X_n))=(\mathrm{E}(X_1),\cdots,\mathrm{E}(X_n))$ 。

命题 4.1. 期望有如下性质:

1. 离散型和连续型随机向量的函数的期望 $E(g(X_1, \dots, X_n))$ 分别等于

$$\sum_{x_i \in \{X_i(\omega) | \omega \in \Omega\}, \forall i \in \{1, \cdots, n\}} g(x_1, \cdots, x_n) f(x_1, \cdots, x_n)$$
和 $\int_{\mathbb{R}^n} g(x_1, \cdots, x_n) f(x_1, \cdots, x_n) dx_1 \cdots dx_n$,
其中 g 为可测函数, f 分别为联合 PMF 与联合 PDF

- 2. $E(aX + bY) = aE(X) + bE(Y), \forall$ 常数 $a, b \in \mathbb{R}$
- 3. 若 X_1, \dots, X_n 相互独立,则 $E(X_1 \dots X_n) = E(X_1) \dots E(X_n)$

4.2 分位数

定义 4.1. 设 X 为连续型随机变量, 若 $P(X \le m) = F(m) = 1/2$, 则称 m 为 X 的中位数。

和均值一样,中位数也是随机变量集中趋势的一种刻画。中位数不一定唯一。

若 m 是连续型随机变量 X 的中位数,则 P(X < m) = P(X > m) = 1/2。

以下给出更一般的中位数定义。

定义 4.2. 对随机变量 X,若 $P(X < m) \le 1/2$,且 $P(X > m) \le 1 - 1/2 = 1/2$,则称 m 为 X 的中位数。

例 4.1. 设离散型随机变量 X 的分布表为

X	1	2	3	4	
P	1/3	1/2	1/12	1/12	

则其中位数为 2。

定义 4.3. 对随机变量 X, $\forall \alpha \in (0,1)$, 若 $P(X < a) \le \alpha$ 且 $P(X > a) \le 1 - \alpha$, 则称 a 为 X 的(下侧) α -分位数。

上述定义的 α -分位数是不唯一的。为了唯一性,考虑定义 $F^{-1}(\alpha) = \inf\{x | F(x) \ge \alpha\}$ 。

我们给出众数(mode)的方便定义: f(x) 的最大值点,其中 f(x) 为 PMF 或 PDF。由于 PDF 可在任意零测集上修改取值,故这一定义并非严谨的。

4.3 方差

离散型和连续型随机变量的方差分别参见定义 2.6 和定义 2.11。

方差的意义: 若 X 为收益率,则 $\mathrm{SD}(X)$ 称为波动率,刻画了风险的大小。定义变异系数 $\mathrm{CV} = \frac{\mathrm{SD}(X)}{\mu}$,其中 $\mu = \mathrm{E}(X) \neq 0$ 。

命题 4.2. 方差有如下性质:

- 1. $Var(C) \equiv 0, C$ 为常数
- 2. $Var(CX) = C^2Var(X)$
- 3. Var(X + Y) = Var(X) + Var(Y) + 2E((X E(X))(Y E(Y))),且若 X, Y 独立,则 E((X E(X))(Y E(Y))) = 0

4.4 协方差与相关系数

对随机变量 X, Y,设 $E(X) = \mu_1, E(Y) = \mu_2, Var(X) = \sigma_1^2, Var(Y) = \sigma_2^2$ 。

定义 4.4. 称 X 与 Y 的协方差 $Cov(X,Y) = E((X - \mu_1)(Y - \mu_2))$ 。

命题 4.3. 协方差有如下性质:

- 1. Cov(X, X) = Var(X)
- 2. Cov(X, Y) = Cov(Y, X)
- 3. Cov(X,Y) = E(XY) E(X)E(Y)
- 4. $Cov(aX_1 + bX_2 + c, Y) = aCov(X_1, Y) + bCov(X_2, Y), \forall$ 常数 $a, b, c \in \mathbb{R}$

定义 4.5. 称 X 与 Y 的(线性)相关系数 $Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_1\sigma_2} = E(\frac{X-\mu_1}{\sigma_1}\frac{Y-\mu_2}{\sigma_2})$ 。

若 Corr(X,Y) = 0,称 X,Y 不相关。

定理 4.1. 相关系数有如下性质:

1. 若 X,Y 相互独立,则 X,Y 不相关(反之未必成立)

2. $|\operatorname{Corr}(X,Y)| \le 1$,且等号成立当且仅当 $\exists a,b,P(Y=aX+b)=1$,即 Y=aX+b, a.s. 其中 a.s. 表示 "almost surely"。

为证明上述定理的 (2),首先利用 Cauchy-Schwartz 不等式证明引理: 对随机变量 U,V,有 $E^2(UV) \leq E(U^2)E(V^2)$,且等号成立当且仅当 $\exists t_0 \in \mathbb{R}, P(V=t_0U)=1$ 。接下来令 $U=\frac{X-\mu_1}{\sigma_1}, V=\frac{Y-\mu_2}{\sigma_2}$,即得。

当 $Corr(X,Y) = \pm 1$,可以证明 $a = \pm \sigma_2/\sigma_1$ 。

例 4.2. $X \sim N(0,1), Y = X^2$,则 X 与 Y 不相关,但不独立。

例 4.3. $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则

$$\begin{aligned} & \operatorname{Corr}(X,Y) \\ = & \operatorname{E}(\frac{X - \mu_1}{\sigma_1} \frac{Y - \mu_2}{\sigma_2}) \\ &= \int_{\mathbb{R}^2} \frac{x - \mu_1}{\sigma_1} \frac{y - \mu_2}{\sigma_2} \frac{1}{2\pi \sigma_1 \sigma_2} \frac{1}{\sqrt{1 - \rho^2}} e^{-\frac{1}{2(1 - \rho^2)} ((\frac{x - \mu_1}{\sigma_1})^2 + (\frac{y - \mu_2}{\sigma_2})^2 - 2\rho \frac{x - \mu_1}{\sigma_1} \frac{y - \mu_2}{\sigma_2})} \mathrm{d}x \mathrm{d}y \end{aligned}$$

进行换元 $(u,v)^{\mathrm{T}} = A(\frac{x-\mu_1}{\sigma_1}, \frac{y-\mu_2}{\sigma_2})^{\mathrm{T}}$,其中 A 的定义参见例 3.3,则指数上的项化为 $-\frac{1}{2}(u^2+v^2)$,这一步实质上是进行了二次型的标准化。后续过程留作习题,最终计算结果为 $\mathrm{Corr}(X,Y) = \rho$ 。

4.5 矩

定义 4.6. 对 $k=1,2,\cdots$,称 $\mathrm{E}((X-c)^k)$ 为 X 关于 c 点的 k 阶矩。特别地,c=0 的情况下称为 k 阶原点矩, $c=\mathrm{E}(X)$ 的情况下称为 k 阶中心矩。

根据定义可知, $\mathrm{E}(X)$ 为 1 阶原点矩,而 1 阶中心矩恒等于 0; $\mathrm{Var}(X)=\mathrm{E}(X^2)-\mathrm{E}^2(X)$ 为 2 阶中心矩。

若 $E(X) = \mu$, $SD(X) = \sigma$, 称 $E((\frac{X-\mu}{\sigma})^k) = \frac{E((X-\mu)^k)}{\sigma^k}$ 为 k 阶标准矩。

1 阶标准矩恒等于 0,2 阶标准矩恒等于 1,3 阶标准矩称为 X 的偏度系数,记作 Skew(X)。

例 4.4. $X \sim N(0,1)$,则 $Skew(X) = \int_{-\infty}^{+\infty} x^3 f(x) dx = 0$,其中 f 为 X 的 PDF。

称偏度系数 < 0 的分布为"负偏"或"左偏",如图 4.1。

- 5 阶以上的奇数阶标准矩计算更复杂, 受噪声影响更大。
- 4 阶标准矩称为 X 的峰度系数,记作 Kurt(X)。由于正态分布的峰度系数恒等于 3,因此常定义超额峰度系数为 Kurt(X) 3。

常将 $\mu \pm \sigma$ 以内的范围称为"峰", 范围在"峰"以外但在 $\mu \pm 2\sigma$ 以内的范围称为"肩", 范围在"肩"以外的部分称为"尾"。

通常,峰度系数 > 3 表现为相对于正态分布"尖峰厚尾",如图 4.2。

图 4.1: 负偏分布

图 4.2: "Leptokurtic" 一词的含义即峰度系数 > 3

4.6 矩母函数

定义 4.7. 记 $M_X(t) = E(e^{tX})$,若 $M_X(t)$ 在 t = 0 的某邻域内存在,则称其为 X 的矩母函数 (Moment Generating Function, MGF),否则称 X 的矩母函数不存在。

例 4.5. 若 $X \sim Exp(\lambda)$,则 $M_X(t) = \mathrm{E}(e^{tX}) = \int_0^{+\infty} e^{tx} \lambda e^{-\lambda x} \mathrm{d}x = \frac{\lambda}{\lambda - t}, t < \lambda$ 。

例 4.6. 若 $X \sim N(0,1)$,则 $M_X(t) = \mathrm{E}(e^{tX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{tx} e^{-\frac{x^2}{2}} \mathrm{d}x = e^{\frac{t^2}{2}}, t \in \mathbb{R}$ 。

命题 4.4. 矩母函数有如下性质:

- 1. $M_X(0) \equiv 1$
- 2. Y = aX + b, 则 $M_Y(t) = E(e^{tY}) = E(e^{t(aX+b)}) = e^{tb}M_X(at)$

例 4.7. 若 $Y \sim N(\mu, \sigma^2)$, 令 $Y = \sigma X + \mu$, 则 $X \sim N(0, 1)$, 故 $M_Y(t) = e^{\mu t} M_X(\sigma t) = e^{\mu t} e^{\frac{(\sigma t)^2}{2}} = e^{\frac{\sigma^2 t^2}{2} + \mu t}$, $t \in \mathbb{R}$ 。

矩母函数可以用于确定矩。

定理 4.2. 随机变量 X 的 n 阶(原点)矩与其矩母函数有如下关系: $\mathrm{E}(X^n) = M_X^{(n)}(0)$ 。

证明. 由 Taylor 展开有 $M_X(t) = \sum_{n=0}^{+\infty} M_X^{(n)}(0) \frac{t^n}{n!}$,又 $M_X(t) = \mathrm{E}(e^{tX}) = \mathrm{E}(\sum_{n=0}^{+\infty} X^n \frac{t^n}{n!}) = \sum_{n=0}^{+\infty} \mathrm{E}(X^n) \frac{t^n}{n!}$,得到结论。

例 4.8. 若 $X \sim N(0,1)$,则 $M_X(t) = e^{\frac{t^2}{2}} = \sum_{n=0}^{+\infty} \frac{(\frac{t^2}{2})^n}{n!} = \sum_{n=0}^{+\infty} \frac{(2n)!}{2^n n!} \frac{t^{2n}}{(2n)!}$,因此 $E(X^{2n}) = \frac{(2n)!}{2^n n!}$, $E(X^{2n+1}) \equiv 0 \ (n=0,1,\cdots)$ 。

由此可以计算 $Var(X) = E(X^2) = 1$, $Kurt(X) = E(X^4) = \frac{4!}{2^2 \cdot 2!} = 3$.

矩母函数还可以用于确定分布。

定理 4.3. 若存在 a > 0,使得 $M_X(t) = M_Y(t), \forall t \in (-a, a)$,则 X, Y 同分布。

例 4.9. 若随机变量 X 的矩母函数 $M_X(t) = \frac{1}{2}e^{-t} + \frac{1}{4} + \frac{1}{8}e^{4t} + \frac{1}{8}e^{5t}$,则 X 为离散型随机变量,分布表为

X	-1	-1 0		5	
P	1/2	1/4	1/8	1/8	

一般地,若离散型随机变量 X 有 PMF $P(X=k)=p_k$ ($\sum_k p_k\equiv 1$),则其 MGF 为 $M_X(t)=\mathrm{E}(e^{tX})=\sum_k e^{tk}p_k$ 。

注意,各阶矩均相同的随机变量未必同分布。

例 4.10. 设连续型随机变量 X_1 和 X_2 的 PDF 分别为 $f_1(x) = \frac{1}{\sqrt{2\pi}x}e^{-\frac{(\log x)^2}{2}}, x > 0$ 和 $f_2(x) = f_1(x)(1 + \sin(2\pi \log x)), x > 0$ (X_1 服从对数正态分布) ,则 $E(X_2^n) = E(X_1^n) + \int_0^{+\infty} x^n f_1(x) \sin(2\pi \log x) dx$,其中后一项通过换元 $y = \log x - n$ 可以证明为 0,即 X_1 和 X_2 同矩但不同分布。

下面运用矩母函数,研究独立随机变量和的分布。

定理 4.4. 若随机变量 X, Y 独立, Z = X + Y, 则 $M_Z(t) = M_X(t)M_Y(t)$ 。

证明. $M_Z(t) = \mathrm{E}(e^{tZ}) = \mathrm{E}(e^{t(X+Y)}) = \mathrm{E}(e^{tX}e^{tY}) = M_X(t)M_Y(t)$,其中最后一个等号利用了独立性。

推而广之,若 $\{X_i\}_{i=1}^n$ 相互独立, $Z = X_1 + \cdots + X_n$,则 $M_Z(t) = \prod_{i=1}^n M_{X_i}(t)$ 。

例 4.11. 若 $\{X_i\}_{i=1}^n$ 相互独立且服从正态分布,则 $X_1 + \cdots + X_n$ 也服从正态分布。

以 n=2 为例说明。设 $X_i \sim N(\mu_i, \sigma_i^2)$ (i=1,2),则 $M_{X_1+X_2}(t)=M_{X_1}(t)M_{X_2}(t)=e^{\frac{\sigma_1^2t^2}{2}+\mu_1t}e^{\frac{\sigma_2^2t^2}{2}+\mu_2t}=e^{\frac{1}{2}(\sigma_1^2+\sigma_2^2)+(\mu_1+\mu_2)t}$,对应 $N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$ 的 MGF,再由 MGF 确定分布可得结论。

定义随机向量 (X_1, \dots, X_n) 的 MGF 为 $M_{X_1, \dots, X_n}(t_1, \dots, t_n) = \mathbb{E}(e^{t_1 X_1 + \dots + t_n X_n})$ 。 以下简介类似 MGF 的其他函数:

- 1. 概率母函数 (Probability Generating Function, PGF), 仅针对非负整数取值的离散型随机 变量 X, 设其 PMF 为 $P(X=k)=p_k$, 则其 PGF 定义为 $E(t^X)=\sum_{k=0}^{+\infty}p_kt^k, t\in[-1,1]$, 或对于 $t \in (0,1]$, 等于 $E(e^{X \log t}) = M_X(\log t)$.
- 2. 特征函数, 定义为 $E(e^{itX})$, 其中 $i^2 = -1$ 。

和连续型随机变量。

定义条件期望
$$\mathrm{E}(Y|X\in A)=$$

$$\begin{cases} \sum_{i}y_{i}P(Y=y_{i}|X\in A)\\ , \ \mathrm{两种定义分别针对}\ Y\ \mathrm{为离散型} \end{cases}$$
 连续型随机变量。
$$\begin{cases} \sum_{i}y_{i}P(Y=y_{i}|X\in A)\mathrm{d}y\\ \\ \int_{-\infty}^{+\infty}yf_{Y|X}(y|X\in A)\mathrm{d}y \end{cases}$$
 进而,定义 $\mathrm{E}(Y|X)=\mathrm{E}(Y|X=x)=$
$$\begin{cases} \sum_{i}y_{i}P(Y=y_{i}|X=x)\\ \\ \int_{-\infty}^{+\infty}yf_{Y|X}(y|x)\mathrm{d}y \end{cases}$$
 ,注意到这是一个 x 的函

数,记作 h(x)。将其作用在 X 上,得到 h(X) = E(Y|X),这是一个 X 的函数 (称为 Y 对 X的回归函数),因此是一个新的随机变量。

例 4.12.
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$
,则 $E(Y|x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x-\mu_1)$ 。

例 4.13. 甲、乙两种同类产品, 平均使用寿命分别为 10 年和 15 年, 市场占有率分别为 60% 和 40%, 随机买一个, 则期望寿命是 $10 \times 60\% + 15 \times 40\% = 12$ 年, 我们发现这个计算过程可以 表示为 E(Y) = E(Y|X=1)P(X=1) + E(Y|X=2)P(X=2) = h(1)P(X=1) + h(2)P(X=1)(2) = E(h(X)) = E(E(Y|X)),其中 (X) = 1 表示抽到甲产品,(X) = 0 表示抽到乙产品,(Y) 表示 抽到的产品的寿命。

一般地,有以下定理:

定理 4.5. (全期望公式)

对于随机向量 (X,Y), 有 E(Y) = E(E(Y|X))。

证明. 以连续型为例。设 (X,Y) 的联合 PDF 为 f(x,y), 有 $\mathrm{E}(Y|x) = \int_{-\infty}^{+\infty} y f_{Y|X}(y|x) \mathrm{d}y =$ $\int_{-\infty}^{+\infty} y \frac{f(x,y)}{f_X(x)} \mathrm{d}y, \quad \text{ix } \mathrm{E}(Y) = \int_{-\infty}^{+\infty} y f_Y(y) \mathrm{d}y = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x,y) \mathrm{d}x \mathrm{d}y = \int_{-\infty}^{+\infty} \mathrm{E}(Y|x) f_X(x) \mathrm{d}x = \int_{-\infty}^{+\infty} \mathrm{E}(Y|x) f_X(x) \mathrm{E}(Y|x) \mathrm{d}x = \int_{-\infty}^{+\infty} \mathrm{E}(Y|x) f_X(x) \mathrm{e}x = \int_{-\infty}^{+\infty} \mathrm$ $E(E(Y|X))_{\circ}$

一般地,对于可测函数 g,有 E(g(X,Y)) = E(E(g(X,Y)|X))。

定理 4.6. 对于随机向量 (X,Y) 和任意可测函数 $g:\mathbb{R}\to\mathbb{R}$,都有 $\mathrm{E}((Y-g(X))^2)\geq \mathrm{E}((Y-g(X))^2)$ $E(Y|X))^2$),即条件期望是均方误差意义下的最优预测。

证明. 类比期望的性质 $\mathrm{E}((Y-c)^2) \geq \mathrm{E}((Y-\mathrm{E}(Y))^2), \forall c \in \mathbb{R}, \ \mathrm{ff} \ \mathrm{E}((Y-g(X))^2|X) \geq \mathrm{E}((Y-\mathrm{E}(Y|X))^2|X), \forall g: \mathbb{R} \to \mathbb{R}$ 可测,两边对 X 求期望即得。

我们经常用到最优线性预测,即 $\min_{a,b} \mathrm{E}((Y-(aX+b))^2)$,这种"均方意义上的最优"称 之为最小二乘(least square)。

命题 4.5. 记 $\hat{Y} = E(Y|X)$ 为已知 X 的条件下对 Y 的最优估计, \tilde{Y} 为估计误差 $\hat{Y} - Y$,则 $E(\tilde{Y}) = 0$, $E(\tilde{Y}\hat{Y}) = 0$,进而有 $Cov(\hat{Y}, \tilde{Y}) = 0$, $Var(Y) = Var(\hat{Y}) + Var(\tilde{Y})$ 。

第五章 不等式与极限定理

5.1 概率不等式

定理 5.1. (Markov 不等式)

若随机变量 $Y \ge 0$, 则 $\forall a > 0$, 有 $P(Y \ge a) \le \frac{E(Y)}{a}$.

证明. 取示性变量
$$I = \begin{cases} 1, & Y \geq a, \\ 0, & Y < a, \end{cases}$$
则 $I \leq Y/a$,故 $P(Y \geq a) = \mathrm{E}(I) \leq \mathrm{E}(Y/a) = \mathrm{E}(Y)/a$ 。

定理 5.2. (Chebyshev 不等式)

若随机变量 Y 的方差 $\mathrm{Var}(Y)$ 存在,则 $\forall a>0$ 有 $P(|Y-\mathrm{E}(Y)|\geq a)\leq \frac{\mathrm{Var}(Y)}{a^2}$ 。

证明.
$$P(|Y - E(Y)| \ge a) = P((Y - E(Y))^2 \ge a^2) \le \frac{E((Y - E(Y))^2)}{a^2} = \frac{Var(Y)}{a^2}$$
.

这告诉我们, 如果 Var(Y) = 0, 则 P(Y = E(Y)) = 1 (即 a.s.)。

定理 5.3. (Chernoff 不等式)

对于任意随机变量 Y, $\forall a>0, t>0$, 有 $P(Y\geq a)\leq \frac{\mathrm{E}(e^{tY})}{e^{ta}}$.

证明.
$$\forall t > 0, P(Y \ge a) = P(e^{tY} \ge e^{ta}) \le \frac{\mathbf{E}(e^{tY})}{e^{ta}}.$$

例 5.1. 若 $X \sim N(0,1)$,则

- 1. 根据 Markov 不等式, $P(|X| \ge 3) \le \frac{E(|X|)}{3} = \frac{1}{3}\sqrt{\frac{2}{\pi}} \approx 0.27$;
- 2. 根据 Chebyshev 不等式, $P(|X| \ge 3) \le \frac{\text{Var}(X)}{3^2} = \frac{1}{9} \approx 0.11$;
- 3. 根据 Chernoff 不等式, $\forall t > 0, P(|X| \ge 3) = 2P(X \ge 3) \le 2\frac{\mathbb{E}(e^{tX})}{e^{3t}} = 2e^{\frac{t^2}{2} 3t}$,取最小值点 t = 3,得 $P(|X| \ge 3) \le 2e^{-\frac{9}{2}} \approx 0.022$;
- 4. 根据经验法则, $P(|X| \ge 3) \approx 0.003$ 。

5.2 大数定律

设随机变量 X_1, \cdots, X_n 独立同分布,均值 $\mathrm{E}(X_i) = \mu$,方差 $\mathrm{Var}(X_i) = \sigma^2 > 0$,则样本均值 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$,其均值 $\mathrm{E}(\bar{X}) = \mu$,方差 $\mathrm{Var}(\bar{X}) = \frac{\sigma^2}{n} \to 0 (n \to +\infty)$ 。

定理 5.4. (Khinchin 弱大数定律)

设随机变量 X_1, \dots, X_n 独立同分布,均值 $E(X_i) = \mu$,方差 $Var(X_i) = \sigma^2 > 0$,则 $\forall \epsilon > 0$,有 $\lim_{n \to +\infty} P(|\bar{X} - \mu| \ge \epsilon) = 0$,或等价地, $\lim_{n \to +\infty} P(|\bar{X} - \mu| < \epsilon) = 1$ 。

证明. 由 Chebyshev 不等式,
$$P(|\bar{X} - \mu| \ge \epsilon) \le \frac{\operatorname{Var}(\bar{X})}{\epsilon^2} = \frac{\sigma^2}{n} \frac{1}{\epsilon^2} \to 0 (n \to +\infty)$$
。

 $\forall \epsilon > 0, \forall \alpha > 0$, 如果将 ϵ 和 $(1-\alpha)$ 分别称为精度和置信度,则根据 Khinchin 弱大数定律, $\exists N \in \mathbb{N}^+$,当 $n \geq N$ 时, $P(|\bar{X} - \mu| < \epsilon) \geq 1 - \alpha$,即 \bar{X} 至少以概率 $(1-\alpha)$ 落在区间 $(\mu - \epsilon, \mu + \epsilon)$ 内。

换句话说,当样本量足够大时,有很大的概率 $\bar{X} \approx \mu$,其中 μ 为未知的总体均值。

我们将 $X_i \sim B(p)$ 这一特例称之为 Bernoulli 大数定律。

通过更进一步的讨论可以证明,上述定理中关于方差的条件可以去掉,结论仍正确。

此外,还有对 Khinchin 弱大数定律的若干推广,如

- 1. 要求 X_i 两两不相关, $Var(X_i)$ 一致有界, 我们就得到了 Chebyshev 大数定律;
- 2. 要求 $Var(\bar{X}) \to 0 (n \to +\infty)$,我们就得到了 Markov 大数定律。

定义 5.1. 称 Y_n 依概率收敛于 Y, 记作 $Y_n \stackrel{P}{\to} Y$, 如果 $\forall \epsilon > 0$, 有 $\lim_{n \to +\infty} P(|Y_n - Y| \ge \epsilon) = 0$.

用上述定义,弱大数定律可以表述为 $\bar{X} \stackrel{P}{\to} \mu$ 。

定理 5.5. (Kolmogorov 强大数定律)

设随机变量 X_1, \dots, X_n 独立同分布,均值 $\mathrm{E}(X_i) = \mu$,则 $P(\lim_{n \to +\infty} \bar{X} = \mu) = 1$ 。

考虑 $X_i \sim B(p)$ 的特殊情形,则 \bar{X} 称之为频率,由强大数定律, $P(\lim_{n\to+\infty} \bar{X} = p) = 1$,这说明概率的频率解释是合理的。

定义 5.2. 称 Y_n 以概率 1 收敛于 Y,又称几乎必然收敛于 Y,记作 $Y_n \stackrel{\text{a.s.}}{\to} Y$,如果 $P(\lim_{n \to +\infty} Y_n = Y) = 1$ 。

用上述定义,强大数定律可以表述为 $\bar{X} \stackrel{\text{a.s.}}{\to} \mu$ 。

例 5.2. (Monte Carlo 积分)

设要计算 g(x) > 0 在区间 [a, b] 上的定积分, 首先取一个适当的 $c > \sup\{g(x)|x \in [a, b]\}$, 设

例 5.3. 我们通过一个例子来考察一下上面介绍的两种收敛性的区别。

设概率空间 (Ω, \mathscr{F}, P) , 其中 $\Omega = [0, 1]$, ω 在 Ω 上均匀分布。定义随机变量序列 $\forall \omega \in \Omega, Y_1(\omega) = \omega + I_{[0,1]}(\omega), Y_2(\omega) = \omega + I_{[0,1/2]}(\omega), Y_3(\omega) = \omega + I_{[1/2,1]}(\omega), Y_4(\omega) = \omega + I_{[0,1/3]}(\omega), Y_5(\omega) = \omega + I_{[1/3,2/3]}(\omega), Y_6(\omega) = \omega + I_{[2/3,1]}(\omega), \cdots$,则 $Y_n(\omega)$ 依概率收敛于 $Y(\omega) = \omega$,但不以概率 1 收敛于 $Y(\omega)$,因为 $\forall \omega_0 \in \Omega$, $Y_n(\omega_0)$ 无极限。

5.3 中心极限定理

定理 5.6. 设随机变量 X_1, \cdots, X_n 独立同分布,均值 $\mathrm{E}(X_i) = \mu$,方差 $\mathrm{Var}(X_i) = \sigma^2 > 0$,则 $\forall x \in \mathbb{R}, \lim_{n \to +\infty} P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le x\right) = \Phi(x)$,其中 $\Phi(x)$ 为标准正态分布的 CDF。或等价地, $\lim_{n \to +\infty} P\left(\frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \Phi(x)$ 。

证明. 只对 X_i 的 MGF 存在的情形给出证明。

不失一般性,假设 $\mu = 0, \sigma^2 = 1$,令 $M(t) = \mathrm{E}(e^{tX_i})$,则 M(0) = 1, M'(0) = 0, M''(0) = 1,于 是 $\mathrm{E}(e^{t\frac{X_1+\cdots+X_n}{\sqrt{n}}}) = M^n\left(\frac{t}{\sqrt{n}}\right)$,而根据 Taylor 展开, $M\left(\frac{t}{\sqrt{n}}\right) = 1 + 0 + \frac{1}{2}\left(\frac{t}{\sqrt{n}}\right)^2 + o\left(\frac{t^2}{n}\right)$,故 $\mathrm{E}(e^{t\frac{X_1+\cdots+X_n}{\sqrt{n}}}) = (1+\frac{t^2}{2n}+o(\frac{t^2}{n}))^n \to e^{t^2/2}(n\to+\infty)$,此为 N(0,1) 的 MGF,这说明 $\frac{X_1+\cdots+X_n}{\sqrt{n}}$ 的分布趋近于 N(0,1)。

上述定理通常称为 Lindeberg-Lévy CLT, 可推广至不同分布的情形。

如果将定理中的 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ 理解为标准化的过程,则不难得出 \bar{X} 近似服从 $N(\mu,\frac{\sigma^2}{n})$, $X_1+\cdots+X_n$ 近似服从 $N(n\mu,n\sigma^2)$ 。

例 5.4. (De Moivre-Laplace CLT)

设 $X_i \sim B(p)$,则 $\sum_{i=1}^n X_i \sim B(n,p)$,当 n 充分大时,可以近似地认为 $\sum_{i=1}^n X_i \sim N(np,np(1-p))$,于是可近似计算 $P(t_1 \leq \sum_{i=1}^n X_i \leq t_2) = P\left(\frac{t_1-np}{\sqrt{np(1-p)}} \leq \frac{\sum_{i=1}^n X_i-np}{\sqrt{np(1-p)}} \leq \frac{t_2-np}{\sqrt{np(1-p)}}\right) \approx \Phi(y_2) - \Phi(y_1)$,其中 $y_1 = \frac{t_1-np-\frac{1}{2}}{\sqrt{np(1-p)}}$, $y_2 = \frac{t_2-np+\frac{1}{2}}{\sqrt{np(1-p)}}$,其中 $\frac{1}{2}$ 是连续性修正项。

定义 5.3. (依分布收敛)

称 Y_n 依分布收敛于 Y,记作 $Y_n \stackrel{d}{\to} Y$,如果 $\lim_{n \to +\infty} F_{Y_n}(x) = F_Y(x), \forall x \in \mathbb{R}$ 。

用上述定义,CLT 可以表述为 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} Z$,其中 $Z \sim N(0,1)$,或简记为 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \to N(0,1)$ 。

例 5.5. (选举问题)

设 p 为选民真实支持度(未知),随机抽样调查 n 人(假设 n 远远小于总人数 N,可以近似有放回抽样),样本支持比例 $P_n = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$,其中 $X_i \sim B(p)$ 且独立,表示第 i 个人是否支持。

设置精度 $\epsilon = 0.03$,置信度 $1-\alpha = 95\%$,则至少需要 n 为多少,才能保证 $P(|P_n-p|<\epsilon) \geq 1-\alpha$? 根据 CLT 有 $P(|P_n-p| \geq \epsilon) \approx 2\left(1-\Phi(\frac{\epsilon}{\sqrt{p(1-p)/n}})\right) \leq \alpha$,于是 $n \geq \frac{z_{\alpha/2}^2p(1-p)}{\epsilon^2}$,其中 $z_{\alpha/2}$ 为标准正态分布的上 $\alpha/2$ 分位数,代入最大值点 $p=\frac{1}{2}$,得到 $n \geq \frac{z_{\alpha/2}^2}{4}\epsilon^2$,代入 $\epsilon = 0.03$, $\alpha = 0.05$,得到 $n \geq 1068$ 。这一结果与 N 无关!

第二部分

统计推断

统计引言

统计学是一门从数据中获得信息的学问。根据 Claude Shannon 的信息论,所谓的信息就是不确定性的分解。

数理统计通常包括数据收集、数据分析和统计推断三部分。

例. 检测某厂的一大批电子元件产品的寿命,我们关注的问题是"判断产品是否合格"。这个问题的"总体"就是所需检测的这批元件的寿命,更具体地说,是元件寿命这一随机变量 X 的分布。

统计学上所谓总体,就是指一个概率分布。而统计分析问题就是研究对象全体所服从的分布的某个数字特征,来了解总体变量 X 的分布。

总体可以分为有限总体、无限总体等,其中有限总体在个体数量很多时可以近似看作无限总体。

所谓的"虚拟总体"是一种无限总体,并无实际存在的个体集合,而是一个假想的、潜在的无限个体集合,如测量讲桌的长度所得到的测量值,可以视为来自一个虚拟总体。

将一族概率分布称为一个统计模型。

例. 正态分布族 $\{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$ 就是一个统计模型。

模型可以分为参数模型和非参数模型,正态分布族就是一个参数模型。非参数模型是指不能用少数几个参数决定的模型,例如对某总体 X,限定 X 连续,E(X) 存在或属于某个取值范围等条件,但不用具体的若干参数去精确描述 X 的分布,这就是一个非参数模型。

样本是指从总体中抽取的一组观测值 X_1, \dots, X_n ,其中每个 X_i 来自总体 X,而 n 称为样本容量。

抽样方式分为试验与观测,后者又可以分为完全观测和不完全观测。

若 X_1, \dots, X_n 独立同分布,且 $X_i \sim X$,则称 X_1, \dots, X_n 为来自总体 X 的一个随机样本。对于有限总体,这需要有放回地抽样。

简单随机抽样是指当总体个数 N 有限,从中无放回地抽取 n 个个体,每个个体被抽取的概率相同。这种情况下,任意容量为 n 的样本都有相同的出现概率,为 $\frac{1}{\binom{N}{n}}$ 。

抽样方式的选择有很多需要注意的地方、否则可能属于不当抽样。

定义. 统计量定义为样本的函数, 即 $T(X_1, \dots, X_n)$ 。

统计量是完全由样本决定的量,因此也是随机变量。统计量可以看作一种对数据进行简 化的方式。

- **例.** 设 X_1, \dots, X_n 独立同分布,均值 $E(X_i) = \mu$,则以下是一些常用的统计量:
 - 1. 样本均值 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$;
 - 2. 样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$;
 - 3. 当 μ 已知时, $\bar{X} \mu$ 是统计量; 当 μ 未知时, $\bar{X} \mu$ 不是统计量。

总体决定样本,故可以通过样本来推断总体的性质,这就是统计推断。统计推断又可以分为经典方法(频率学派的)以及 Bayes 方法。

- **例.** 设总体满足 $Y = aX + \epsilon$,其中 X 为自变量,Y 为因变量, ϵ 为误差。这是一个参数模型。 假设抽取的样本为 $(X_1,Y_1),\cdots,(X_n,Y_n)$,则:
- **例.** 假设元件寿命 $X \sim Exp(\lambda)$,如何通过样本估计 λ 的值?这是一个参数估计问题。 假设元件的合格标准是 $E(X) \geq L$,但 E(X) 未知。考虑制定一种可操作的检验标准,当 $\bar{X} \geq l$ 时,就认为元件合格。这种标准如何制定?这是一个假设检验问题。

第六章 参数估计

6.1 矩估计

设 X_1, \dots, X_n 为独立同分布的样本, 定义样本矩如下:

- 1. k 阶样本原点矩 $\mu_k = \frac{1}{n} \sum_{i=1}^n X_i^k$
- 2. k 阶样本中心矩 $m_k = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^k$ 根据大数定律, $\mu_k \to E(X^k)$ 。

矩估计就是用样本矩去估计参数。

例 6.1. 设 X_1, \dots, X_n 独立同分布, $X_i \sim N(\mu, \sigma^2)$,则 $\mu = E(X) \approx \mu_1 = \bar{X}$, $\sigma^2 = Var(X) \approx m_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ 。

例 6.2. 设 X_1, \dots, X_n 独立同分布, $X_i \sim Exp(\lambda)$,则 $\lambda = E(X)^{-1} \approx \mu_1^{-1} = \frac{1}{X}$,或 $\lambda = Var(X)^{-1/2} \approx m_2^{-1/2}$ 。

我们发现上例中 λ 可以有两种不同的矩估计,一个基本原则是尽量用低阶矩。

6.2 极大似然估计

设 (X_1, \dots, X_n) 的联合分布(PMF 或 PDF)为 $f(x_1, \dots, x_n; \theta)$,其中 θ 为未知参数。 对于观测 (X_1, \dots, X_n) ,定义似然函数(likelihood function)为 $L(\theta) = f(X_1, \dots, X_n; \theta)$ 。 对于离散情形, $L(\theta)$ 就是当参数为 θ 时出现观测 (X_1, \dots, X_n) 的概率。

随机变量 X_1, \dots, X_n 的一个实现是指一次观测到的具体数据,记为 x_1, \dots, x_n 。

若 X_1, \dots, X_n 独立同分布,来自总体 $f_1(x;\theta)$ (PMF 或 PDF) ,则 $f(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f_1(x_i;\theta)$,似然函数 $L(\theta) = \prod_{i=1}^n f_1(X_i;\theta)$ 。

例 6.3. 设 X_1, \dots, X_n 独立同分布, $X_i \sim N(\mu, \sigma^2)$, μ 和 σ^2 未知, 则 $f_1(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, 似然函数 $L(\theta) = L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(X_i-\mu)^2}{2\sigma^2}}$ 。

定义 6.1. $\theta^* = \underset{\alpha}{\operatorname{argmax}} L(\theta)$ 称为 θ 的极大似然估计 (MLE)。

注意 $\theta^* = \theta^*(X_1, \dots, X_n)$ 是一个随机变量,因为它是 X_1, \dots, X_n 的函数。

例 6.4. 上例中,解方程 $\frac{\partial \log L}{\partial \mu} = 0$ 和 $\frac{\partial \log L}{\partial (\sigma^2)} = 0$ (称它们为似然方程),得 $\mu^* = \bar{X}$ 和 $(\sigma^2)^* = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ 。

此处 MLE 的结果与矩估计一致,这是偶然现象,对于一般分布不总成立。

命题 6.1. MLE 有重要的所谓不变性: 设 θ^* 是 θ 的 MLE, $g(\theta)$ 是 θ 的可测函数,则 $g(\theta^*)$ 是 $g(\theta)$ 的 MLE。例如,如果上例中选择 $\theta = (\mu, \sigma)$,则 $\sigma^* = \sqrt{(\sigma^2)^*}$ 是 σ 的 MLE。

例 6.5. 设
$$X_1, \dots, X_n$$
 独立同分布, $X_i \sim U(0, \theta), \theta > 0$ 未知, $L(\theta) = \begin{cases} \frac{1}{\theta^n}, & X_i \in (0, \theta), \forall i, \\ 0, & \text{其他,} \end{cases}$ 则 $\theta^* = \max\{X_1, \dots, X_n\}$ 。

例 6.6. 设 X_1, \dots, X_n 独立同分布, X_i 的 PDF 为 $f_1(x; \theta) = \frac{1}{\pi(1 + (x - \theta)^2)} (x \in \mathbb{R})$, θ 未知,即 X_1, \dots, X_n 服从 Cauchy 分布。

- 由于 Cauchy 分布的任意阶矩都不存在,故不能用矩估计。
- 若采用 MLE 方法,似然方程为 $\sum_{i=1}^{n} \frac{X_i \theta}{1 + (X_i \theta)^2} = 0$,当 n 较大时,此方程有很多的根且 无显式解,故 MLE 方法也不理想。
- - θ 中可能的对 θ 的估计: 由于 θ 为中位数, 因此用样本中位数作为 θ 的估计。

这个例子告诉我们,统计方法不是唯一的,也没有绝对的优劣。

需要指出, MLE 不一定是唯一的。

MLE 的另一局限性是它需要分布的具体函数形式, 而矩估计不需要。

此外,如果似然函数在最大值点附近变化过于平缓,则可能不利于通过迭代等方法有效计算。

6.3 优良性准则

无论是矩估计还是极大似然估计,都是用样本的函数来估计总体的参数,对每个参数给出一个估计值,这样的估计称为点估计。

用于估计参数的函数 $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ 称为估计量,其分布(依赖于 θ)称为抽样分布,其标准差 $\sqrt{\mathrm{Var}(\hat{\theta})}$ 称为标准误(差)(Standard error),记为 $\mathrm{Se} = \mathrm{Se}(\hat{\theta})$ 。

在选择估计量时, 有若干准则。首先介绍所谓无偏性。

称 $E(\hat{\theta} - \theta) = E(\hat{\theta}) - \theta$ 为 $\hat{\theta}$ 的偏差 (bias)。

定义 6.2. 设 $\hat{\theta}$ 是 θ 的估计量,若 $\forall \theta, E(\hat{\theta} - \theta) = 0$,则称 $\hat{\theta}$ 为 θ 的一个无偏估计(量)。

由上述定义可知,无偏性指的是无系统偏差。

一般地, 若 $\hat{g}(X_1, \dots, X_n)$ 是对 θ 的函数 $g(\theta)$ 的估计, 且满足 $\forall \theta, \mathbb{E}(\hat{g}(X_1, \dots, X_n)) = g(\theta)$, 则称 $\hat{g}(X_1, \dots, X_n)$ 是 $g(\theta)$ 的一个无偏估计。

对于无偏估计 $\hat{g}(X_1, \dots, X_n)$,若进行 N 组抽样,第 m 组样本记作 $X_1^{(m)}, \dots, X_n^{(m)}$,则由大数定律, $\frac{1}{N}\sum_{m=1}^N \hat{g}(X_1^{(m)}, \dots, X_n^{(m)})$ 会收敛到 $\mathrm{E}(\hat{g}(\theta)) = g(\theta)$ 。

在实际应用中, 无偏的重要性视情况而定。

例 6.7. 若随机变量 X 的均值 μ 和方差 σ^2 均未知,则由 $E(\bar{X}) = \mu$ 知 \bar{X} 是 μ 的无偏估计。 而二阶矩 $m_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\bar{X} - \mu)^2$,有 $E(m_2) = \frac{n-1}{n} \sigma^2 \neq \sigma^2$,故 m_2 不是 σ^2 的无偏估计(系统偏小)。

样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 中的 (n-1) 是所谓的无偏修正,满足 $\mathrm{E}(S^2) = \sigma^2$,故 S^2 是 σ^2 的无偏估计。

例 6.8. 若随机变量 $X \sim U(0,\theta)$,则矩估计 $\hat{\theta} = 2\bar{X}$ 为 θ 的无偏估计,而 MLE $\theta^* = \max\{X_1, \dots, X_n\}$,有 $E(\theta^*) = \frac{n}{n+1}\theta$,故 θ^* 不是 θ 的无偏估计。

这个例子说明, MLE 不一定是无偏的。

下面介绍均方误差准则。

定义均方误差(MSE)为 $E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E^2(\hat{\theta} - \theta)$,其中等号右边的两项分别反映了精确度(precision)和准确度(accuracy)。

定义 6.3. 若 $\hat{\theta}_1, \hat{\theta}_2$ 为 θ 的无偏估计,且 $\forall \theta, \mathrm{Var}(\hat{\theta}_1) \leq \mathrm{Var}(\hat{\theta}_2)$,且存在一个 θ 的值使得不等 号严格成立,则称 $\hat{\theta}_1$ 在均方误差意义下优于 $\hat{\theta}_2$ 。

例 6.9. 若随机变量 X 的均值 μ 未知,方差为 σ^2 ,则 $\bar{X}, \frac{1}{2}(X_1+X_2), X_1$ 都是 μ 的无偏估计,它们各自的方差为 $\frac{\sigma^2}{n}, \frac{\sigma^2}{2}, \sigma^2$,故若 n>2,则 \bar{X} 在均方误差意义下优于 $\frac{1}{2}(X_1+X_2)$,而 $\frac{1}{2}(X_1+X_2)$ 在均方误差意义下优于 X_1 。

定义 6.4. 若 $\hat{\theta}_0$ 是 θ 的无偏估计,且 $\forall \hat{\theta}$ 为 θ 的无偏估计,都有 $\forall \theta, \mathrm{Var}(\hat{\theta}_0) \leq \mathrm{Var}(\hat{\theta})$,则称 $\hat{\theta}_0$ 是 θ 的最小方差无偏估计(MVUE)。

例 6.10. 若 $X \sim N(\mu, \sigma^2)$,则 $E(m_2) = \frac{n-1}{n}\sigma^2$, $E(S^2) = \sigma^2$,但 $E((m_2 - \sigma^2)^2) < E((S^2 - \sigma^2)^2)$,故 m_2 在均方误差意义下优于 S^2 。尽管 m_2 是有偏的,但它有更小的方差,总的来说其 MSE 更小。

相合性是良好点估计的自然要求。

接下来介绍一些大样本性质。所谓大样本性质,是指样本容量 n 趋于无穷时 $\hat{\theta}$ 的性质。首先是渐进无偏性。若 $\lim_{n\to+\infty} \mathrm{E}(\hat{\theta}-\theta)=0$,则称 $\hat{\theta}$ 具有渐进无偏性。 然后是相合性。若 $\forall \epsilon>0$, $\lim_{n\to+\infty} P(|\hat{\theta}-\theta|\geq\epsilon)=0$,则称 $\hat{\theta}$ 是 θ 的相合估计。 $\hat{\theta}$ 是 θ 的相合估计,当且仅当 $\hat{\theta}$ θ 。例如,根据弱大数定律, \bar{X} 是 μ 的相合估计。

例 6.11. 若随机变量 X 的均值为 μ ,方差为 σ^2 ,考虑 $m_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\bar{X} - \mu)^2$,由大数定律, $\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \overset{P}{\to} \mathrm{E}((X_i - \mu)^2) = \sigma^2$,而 $(\bar{X} - \mu)^2 \overset{P}{\to} 0$,故 $m_2 \overset{P}{\to} \sigma^2$,即 m_2 是 σ^2 的相合估计。同时, $S^2 = \frac{n}{n-1} m_2 \overset{P}{\to} \sigma^2$,故 S^2 也是 σ^2 的相合估计。

最后是渐进正态性。若 $\frac{\hat{\theta}-\theta}{\mathrm{Se}(\hat{\theta})} \stackrel{d}{\to} Z \sim N(0,1)$,则称 $\hat{\theta}$ 是 θ 的渐进正态估计。

例如,根据 CLT, \bar{X} 是 μ 的渐进正态估计,且 $\mathrm{Se}(\bar{X}) = \frac{\sigma}{\sqrt{n}}$ 。

若 $\hat{\theta}$ 是 θ 的渐进正态估计,则当 n 充分大时,近似有 $\hat{\theta} \sim N(\theta, \text{Se}^2(\hat{\theta}))$ 。

6.4 置信区间

定义 6.5. $\forall \alpha \in (0,1), \ \hat{\theta}_i = \hat{\theta}_i(X_1, \dots, X_n) (i=1,2)$ 为统计量,若 $P(\hat{\theta}_1 < \theta < \hat{\theta}_2) \ge 1 - \alpha$,则 称 $(\hat{\theta}_1, \hat{\theta}_2)$ 为 θ 的一个 $(1-\alpha)$ -置信的(双侧)区间估计。

 $(1-\alpha)$ 称为置信水平,置信系数或置信度是指置信水平中的最大者,这三个术语都是针对方法而言的。 α 通常取 0.05,0.01,0.1 等。

通常用 $E(\hat{\theta}_2 - \hat{\theta}_1)$ 来刻画区间估计的精度。我们遵循可靠度优先原则,即先保证置信水平,然后再提升精度。

例 6.12. 设 X_1, \dots, X_n 独立同分布, $X_i \sim N(\mu, \sigma^2)$, μ 未知, σ^2 已知,则由 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$,有 $\bar{X} - \mu \sim N(0, \frac{\sigma^2}{n})$ 。为给出 μ 的区间估计,目标是寻找 c_1, c_2 使得 $P(\bar{X} - c_1 < \mu < \bar{X} + c_2) \geq 1 - \alpha$,这等价于 $P(-c_2 < \bar{X} - \mu < c_1) \geq 1 - \alpha$ 。设 $\alpha_1 = P(\bar{X} - \mu \leq -c_2)$, $\alpha_2 = P(\bar{X} - \mu \geq c_1)$,一个自然 的选择是令 $\alpha_1 = \alpha_2 = \alpha/2$ (事实上这也是能够使精度最高的选择)。记 $z_{\frac{\alpha}{2}}$ 为 N(0,1) 的上 $\frac{\alpha}{2}$ -分 位数,即 $\Phi(z_{\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$,则 $P(\left|\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right| \leq z_{\frac{\alpha}{2}}) = 1 - \alpha$,从而 $P(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$,故 $(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$ 是 μ 的一个 $(1 - \alpha)$ -置信的区间估计。

若 $\alpha = 0.05$,则 $z_{\frac{\alpha}{2}} \approx 1.96 \approx 2$ 。

上述区间估计的一种理解是: 若用 \bar{X} 来估计 μ ,则绝对误差 $|\bar{X}-\mu|$ 在 $(1-\alpha)$ -置信下不超过 $z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}$ 。

区间的半长度为 $z_{\frac{\alpha}{2}\sqrt{n}}$, 如果给定精度,例如取 $\epsilon > 0$,要求 $z_{\frac{\alpha}{2}\sqrt{n}} \le \epsilon$,则 $n \ge (\frac{z_{\frac{\alpha}{2}}\sigma}{\epsilon})^2$,即样本容量至少为 $(\frac{z_{\frac{\alpha}{2}}\sigma}{\epsilon})^2$ 时有 $(1-\alpha)$ -置信使绝对误差不超过 ϵ 。这一推理可以理解为 (α,ϵ,n) 三个变量之间存在的关系。

例 6.13. 设 X_1, \cdots, X_n 独立同分布, $X_i \sim N(\mu, \sigma^2)$, μ, σ^2 未知,首先估计 σ^2 。注意到, $\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 - \left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sigma}}\right)^2 \sim \chi^2(n-1)$,同样令 $\alpha_1 = \alpha_2 = \alpha/2$,有 $\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right)$ 是 σ^2 的一个 $(1-\alpha)$ -置信的区间估计,其中 $\chi_{\frac{\alpha}{2}}^2(n-1)$ 和 $\chi_{1-\frac{\alpha}{2}}^2(n-1)$ 分别为 $\chi^2(n-1)$ 的上 $\frac{\alpha}{2}$ -分位数和下 $\frac{\alpha}{2}$ -分位数。

接下来估计 μ ,可以证明, $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)$ 且与 $\frac{(n-1)S^2}{\sigma^2}$ 独立,从而 $\frac{\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{(n-1)S^2}{\frac{\sigma^2}{n-1}}}}=\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}\sim t(n-1)$,故 $(\bar{X}-t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}},\bar{X}+t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}})$ 是 μ 的一个 $(1-\alpha)$ -置信的区间估计,其中 $t_{\frac{\alpha}{2}}(n-1)$ 为 t(n-1) 的上 $\frac{\alpha}{2}$ -分位数。

例 6.14. 若 $X \sim N(\mu_1, \sigma^2), Y \sim N(\mu_2, \sigma^2)$,且 X, Y 独立,下面估计均值差 $\mu_1 - \mu_2$ 。设随机样本 为 X_1, \cdots, X_n 和 Y_1, \cdots, Y_m ,则 $\bar{X} - \bar{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma^2}{n} + \frac{\sigma^2}{m})$,有 $\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N(0, 1)$ 。同时,由 $\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} = \frac{(n-1)S_1^2}{\sigma^2} \sim \chi^2(n-1)$ 和 $\frac{\sum_{i=1}^m (Y_i - \bar{Y})^2}{\sigma^2} = \frac{(m-1)S_2^2}{\sigma^2} \sim \chi^2(m-1)$,且 $\frac{(n-1)S_1^2}{\sigma^2}$ 与 $\frac{(m-1)S_2^2}{\sigma^2}$ 独立,有 $\frac{(n-1)S_1^2}{\sigma^2} + \frac{(m-1)S_2^2}{\sigma^2} \sim \chi^2(n+m-2)$,故 $\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n-1)S_1^2}{\sigma^2} + \frac{(m-1)S_2^2}{n+m-2}}} = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n+m-2)$,其中 $S^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n-m+2}$,于是 $(\bar{X} - \bar{Y} - t_{\frac{\alpha}{2}}(n+m-2)S\sqrt{\frac{1}{n} + \frac{1}{m}}, \bar{X} - \bar{Y} + t_{\frac{\alpha}{2}}(n+m-2)S\sqrt{\frac{1}{n} + \frac{1}{m}})$ 是 $\mu_1 - \mu_2$ 的一个 $(1 - \alpha)$ -置信的区间估计。

类似点估计,区间估计也有对应的大样本方法,即所谓渐近置信区间。

例 6.15. (选举问题)

设 p 为未知的真实支持率,样本容量 n=1200,其中有 684 人支持,即观测比例为 $\frac{684}{1200}=0.57$,下面给出 p 的一个 $1-\alpha=95\%$ 置信的区间估计。

记 X_i 为第 i 个人的态度,1 表示支持,0 表示不支持, $X_i \sim B(p)(i=1,2,\cdots,n)$ 且独立,记观测比例 $P_n = P_n(X_1,\cdots,X_n) = \frac{1}{n}\sum_{i=1}^n X_i = \bar{X}$,有 $\mathrm{E}(P_n) = p, \mathrm{Var}(P_n) = \frac{p(1-p)}{n}$,由 CLT,近似有 $\frac{P_n-p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$ 。但是,由于 p 未知,则分母上的标准误未知,故无法直接利用这一分布给出置信区间。记 $\sigma^2 = p(1-p)$,下面采用几种不同方法给出其估计 $\hat{\sigma}^2$ 。

- 1. 用 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ 估计 σ^2 ,于是近似有 $\frac{P_n p}{\sqrt{\frac{S^2}{n}}} \sim N(0,1)$,对应的置信区间为 $(P_n z_{\frac{\alpha}{2}} \sqrt{\frac{S^2}{n}}, P_n + z_{\frac{\alpha}{2}} \sqrt{\frac{S^2}{n}}) \approx (0.542, 0.598)$ 。
- 2. 用 $m_2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2 = P_n (1 P_n)$ 估计 σ^2 , 于是近似有 $\frac{P_n p}{\sqrt{\frac{P_n (1 P_n)}{n}}} \sim N(0, 1)$, 对 应的置信区间为 $(P_n z_{\frac{\alpha}{2}} \sqrt{\frac{P_n (1 P_n)}{n}}, P_n + z_{\frac{\alpha}{2}} \sqrt{\frac{P_n (1 P_n)}{n}}) \approx (0.542, 0.598)$ 。

3. 用 p(1-p) 的最大值 $\frac{1}{4}$ 来估计 σ^2 ,于是近似有 $\frac{P_n-p}{\frac{1}{2}\sqrt{\frac{1}{n}}} \sim N(0,1)$,对应的置信区间为 $(P_n-z_{\frac{\alpha}{2}}\frac{1}{2\sqrt{n}},P_n+z_{\frac{\alpha}{2}}\frac{1}{2\sqrt{n}}) \approx (0.542,0.598)$ 。

注意这里采用了近似分布,因此只能说置信水平近似是 $(1-\alpha)$,且近似的程度取决于总体分布和样本容量 n 的大小。

下面介绍利用 MLE 构建置信区间的方法。

设总体分布的 PDF 或 PMF 为 $f(x;\theta)$, 有随机样本 X_1, \dots, X_n , 则似然函数 $L(\theta) = \prod_{i=1}^n f(X_i;\theta)$, 对数似然函数 $\ell(\theta) = \log L(\theta) = \sum_{i=1}^n \log f(X_i;\theta)$ 。

定理 6.1. 若 f 满足一定的光滑性条件, θ^* 为 θ 的 MLE, 则存在 $\sigma_n > 0$, 使得 $\frac{\theta^* - \theta}{\sigma_n} \to N(0, 1)$ 。

根据 Taylor 展开,对于 θ^* 附近的 θ ,有 $0 = \ell'(\theta^*) = \ell'(\theta) + \ell''(\theta)(\theta^* - \theta) + o(\theta^* - \theta)$,从 而 $\theta^* - \theta \approx -\frac{\ell'(\theta)}{\ell''(\theta)}$,即 $\sqrt{n}(\theta^* - \theta) \approx \frac{\frac{1}{\sqrt{n}}\ell'(\theta)}{-\frac{1}{2}\ell''(\theta)}$ 。

由 $\frac{1}{\sqrt{n}}\ell'(\theta) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} \frac{\partial \log f(X_i;\theta)}{\partial \theta} = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} \frac{f_{\theta}(X_i;\theta)}{f(X_i;\theta)}$, 其中 f_{θ} 表示 f 对 θ 的偏导数,记 $Y_i = \frac{f_{\theta}(X_i;\theta)}{f(X_i;\theta)}$,则 Y_1, \dots, Y_n 独立同分布,且 $E(Y_i) = E\left(\frac{f_{\theta}(X_i;\theta)}{f(X_i;\theta)}\right) = \int_{-\infty}^{+\infty} \frac{f_{\theta}(x;\theta)}{f(x;\theta)} f(x;\theta) dx = \int_{-\infty}^{+\infty} f_{\theta}(x;\theta) dx = \frac{\partial}{\partial \theta} \int_{-\infty}^{+\infty} f(x;\theta) dx = \frac{\partial}{\partial \theta} 1 = 0$, $Var(Y_i) = E(Y_i^2) = E\left(\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right)^2\right)$ 记作 $I(\theta)$ 。根据 CLT 有 $\frac{1}{\sqrt{n}}\ell'(\theta) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} Y_i \to N(0, I(\theta))$ 。

一般地,称 $I_n(\theta) = \mathrm{E}((\ell'(\theta))^2) = \mathrm{E}\left(\left(\sum_{i=1}^n \frac{\partial \log f(X_i;\theta)}{\partial \theta}\right)^2\right)$ 为 Fisher 信息量,展开得 $I_n(\theta) = \sum_{i=1}^n \mathrm{E}\left(\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right)^2\right) + \sum_{i\neq j} \mathrm{E}\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta} \frac{\partial \log f(X_j;\theta)}{\partial \theta}\right), \text{ 由于 } X_1, \cdots, X_n \text{ 独立同分}$ 布,有 $\mathrm{E}\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta} \frac{\partial \log f(X_j;\theta)}{\partial \theta}\right) = \mathrm{E}\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right) \mathrm{E}\left(\frac{\partial \log f(X_j;\theta)}{\partial \theta}\right) = 0, \text{ 从而 } I_n(\theta) = nI(\theta).$ 注意到 $\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta^2} = \frac{\partial}{\partial \theta}\left(\frac{f_\theta(X_i;\theta)}{f(X_i;\theta)}\right) = \frac{f_{\theta\theta}(X_i;\theta)f(X_i;\theta)-f_\theta(X_i;\theta)f_\theta(X_i;\theta)}{f^2(X_i;\theta)} = \frac{f_{\theta\theta}(X_i;\theta)}{f(X_i;\theta)} - \left(\frac{f_\theta(X_i;\theta)}{f(X_i;\theta)}\right)^2,$

故 $\mathrm{E}\left(\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta^2}\right) = \mathrm{E}\left(\frac{f_{\theta\theta}(X_i;\theta)}{f(X_i;\theta)} - \left(\frac{f_{\theta}(X_i;\theta)}{f(X_i;\theta)}\right)^2\right),$ 其中 $\mathrm{E}(\frac{f_{\theta\theta}(X_i;\theta)}{f(X_i;\theta)}) = \int_{-\infty}^{+\infty} \frac{f_{\theta\theta}(x;\theta)}{f(x;\theta)} f(x;\theta) \,\mathrm{d}x = \int_{-\infty}^{+\infty} \frac{f_{\theta\theta}(x;\theta)}{f(x;\theta)} f(x;\theta) \,\mathrm{d}x$

 $\int_{-\infty}^{+\infty} f_{\theta\theta}(x;\theta) \, \mathrm{d}x = \frac{\partial}{\partial \theta} \int_{-\infty}^{+\infty} f_{\theta}(x;\theta) \, \mathrm{d}x = \frac{\partial}{\partial \theta} 0 = 0, \quad \text{II} \quad \mathrm{E}\left(\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta^2}\right) = -\mathrm{E}\left(\left(\frac{f_{\theta}(X_i;\theta)}{f(X_i;\theta)}\right)^2\right) = -\mathrm{E}\left(\left(\frac{f_{\theta}(X_i;\theta)}{f(X_i;\theta)}\right)^2\right) = -\mathrm{E}\left(\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta^2}\right) = -\mathrm{E}\left(\frac{\partial^2 \log f(X_i;\theta)}{f(X_i;\theta)}\right)^2$

 $-I(\theta)$ 。则根据弱大数定律有 $-\frac{1}{n}\ell''(\theta) = -\frac{1}{n}\sum_{i=1}^{n} \frac{\partial^{2} \log f(X_{i};\theta)}{\partial \theta^{2}} \stackrel{P}{\to} I(\theta)$ 。

至此,有结论 $\sqrt{n}(\theta^*-\theta) \approx \frac{\frac{1}{\sqrt{n}}\ell'(\theta)}{-\frac{1}{n}\ell''(\theta)} \to N(0,\frac{1}{I(\theta)})$,即 $\frac{\theta^*-\theta}{\sqrt{\frac{1}{nI(\theta)}}} \to N(0,1)$,即定理 6.1 中的 $\sigma_n = \sqrt{\frac{1}{nI(\theta)}}$ 。 θ 是未知的,但构造置信区间时 $I(\theta)$ 可以用 $I(\theta^*)$ 估计,即 $\frac{\theta^*-\theta}{\sqrt{\frac{1}{nI(\theta^*)}}} \to N(0,1)$ 。

对选举问题, $f(x;p) = p^x(1-p)^{1-x}$, $I(p) = \mathrm{E}\left(\left(\frac{\partial \log f(X_i;p)}{\partial p}\right)^2\right) = \mathrm{E}\left(\left(\frac{X_i-p}{p(1-p)}\right)^2\right) = \frac{1}{p(1-p)}$, 于是 $\frac{P_n-p}{\sqrt{\frac{1}{nI(P_n)}}} = \frac{P_n-p}{\sqrt{\frac{P_n(1-P_n)}{n}}} \to N(0,1)$, 据此构造的置信区间与前面的第二种方法相同。 最后介绍一个近似估计两正态总体的均值差的例子。

例 6.16 设单体分布为 $X \sim N(u_1, \sigma^2) | V \sim N(u_2, \sigma^2) | X | V$ 独立

例 6.16. 设总体分布为 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), X, Y$ 独立, $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 均未知, 随机样本 $X_1, \dots, X_n; Y_1, \dots, Y_m$, 则 $\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$ 。由于 σ_1^2, σ_2^2 未知, 用 S_1^2, S_2^2 分别估计

之,于是近似有 $\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{S_1^2}{n}+\frac{S_2^2}{m}}}\sim N(0,1)$,对应 $\mu_1-\mu_2$ 的置信区间为 $(\bar{X}-\bar{Y}-z_{\frac{\alpha}{2}}\sqrt{\frac{S_1^2}{n}+\frac{S_2^2}{m}},\bar{X}-\bar{Y}+z_{\frac{\alpha}{2}}\sqrt{\frac{S_1^2}{n}+\frac{S_2^2}{m}})$ 。

6.5 Bayes 估计

Bayes 学派看待世界的视角与频率学派不同。简单来说,在 Bayes 方法中,对未知参数 θ 的认知可以由概率分布来刻画,设对应的随机变量为 Θ ,则 θ 为 Θ 的实现值。在搜集数据前对 Θ 的分布的认知 $f_{\Theta}(\theta)$ 称为先验分布。将试验观测抽象为随机变量 X,当参数为 θ 时,观测数据的分布为 $f_{X|\Theta}(x|\theta)$,称为样本分布。当观测到数据 x 后,可以利用 Bayes 公式来更新对 Θ 的认知,得到后验分布 $f_{\Theta|X}(\theta|x) = \frac{f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)}{f_{X}(x)}$ 。这样,就可以利用后验分布来对 Θ 进行推断。

例 6.17. 某枚硬币正面向上的概率为未知参数 θ ,设先验分布为 $f_{\Theta}(\theta) = 1$ ($\theta \in (0,1)$)(无信息先验,体现了所谓的同等无知原则,是 Bayes 统计常用假设)。现抛硬币 n 次,观测到正面向上的次数为 x。

记 X 为 n 次中正面向上的次数,则给定 θ 时, $X \sim B(n,\theta)$,即样本分布 $f_{X|\Theta}(x|\theta) = \binom{n}{x}\theta^x(1-\theta)^{n-x}$ $(x=1,\cdots,n)$ 。于是 X 与 Θ 的联合分布为 $f(x,\theta) = f_{X|\Theta}(x|\theta)f_{\Theta}(\theta) = \binom{n}{x}\theta^x(1-\theta)^{n-x}$,从的边缘 PMF 为 $f_X(x) = \int_0^1 f(x,\theta)\mathrm{d}\theta = \binom{n}{x}\int_0^1 \theta^x(1-\theta)^{n-x}\mathrm{d}\theta = \binom{n}{x}\frac{\Gamma(x+1)\Gamma(n-x+1)}{\Gamma(n+2)} = \frac{1}{n+1}$,则后验分布为 $f_{\Theta|X}(\theta|x) = \frac{f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)}{f_X(x)} = \frac{\Gamma(n+2)}{\Gamma(x+1)\Gamma(n-x+1)}\theta^x(1-\theta)^{n-x}$,即 $\Theta|X = x \sim \beta(x+1,n-x+1)$ 。

其中, $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ 为 Gamma 函数,满足 $\Gamma(x+1) = x\Gamma(x)$, $\Gamma(1) = 1$,对于正整数 n, $\Gamma(n+1) = n!$ 。而 $\beta(a,b)$ 表示 Beta 分布,其 PDF 为 $f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} (x \in (0,1))$ 。 若 $X \sim \beta(a,b)$,则 $E(X) = \frac{a}{a+b}$, $Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$ 。 均匀分布 U(0,1) 即 $\beta(1,1)$ 分布。

上例中,若 n=20, x=13,则后验分布为 $\beta(14,8)$,其 PDF 图象如 6.1。计算可知, $P(\Theta > \frac{1}{2}) \approx 0.91$,而 $\Theta < \frac{1}{4}$ 的可能性很小。

已知了后验分布后,如何给出参数 θ 的合理估计呢?常用方法如:

- 1. 后验众数 $\hat{\theta}_1$, 即 $\beta(x+1,n-x+1)$ 的 PDF 最大值点 $\frac{x}{n}$ (恰与 MLE 一致,这是因为我们选取了无信息先验,后验分布正比于样本分布作为参数的函数,即似然函数)
- 2. 后验均值 $\hat{\theta}_2 = \mathbb{E}(\Theta|X=x) = \frac{x+1}{n+2}$
- 3. 后验中位数 $\hat{\theta}_3$

上例中还可以进一步证明,若选取先验为 $\beta(a,b)$,则后验分布为 $\beta(x+a,n-x+b)$,此时后验均值为 $\frac{x+a}{n+a+b}=\frac{a+b}{n+a+b}\frac{a}{a+b}+\frac{n}{n+a+b}\frac{x}{n}$,即后验均值是先验均值 $\frac{a}{a+b}$ 与样本均值 $\frac{x}{n}$ 的加权平均,权重分别为 $\frac{a+b}{n+a+b}$ 和 $\frac{n}{n+a+b}$ 。

6.5 BAYES 估计 第六章 参数估计

图 6.1: $\beta(14,8)$ 的 PDF 图象

Bayes 方法根据后验分布给出区间估计, 称之为 可信区间。具体来说, 就是要找到 $a,b \in \mathbb{R}$, 使 $P(a < \Theta < b | X = x) \ge 1 - \alpha$ 。具体的选取方式如:

- 1. 最大后验区间(通常用于单峰情形),可以直观理解为用一条平行于横轴的线自上而下扫描,直到截取后验 PDF 的面积为 $(1-\alpha)$
- 2. 等尾区间, 即令 $P(\Theta < a|X = x) = P(\Theta > b|X = x) = \frac{\alpha}{2}$

例 6.18. 设总体分布为 $X \sim N(\mu, \sigma^2)$,其中 σ^2 已知,有随机样本 X_1, \cdots, X_n ,取 μ 的先验分布 $f(\mu) \propto 1$ (无信息先验,这不是一个合理的分布,理解为一种广义 PDF),则样本分布为 $f(x_1, \cdots, x_n | \mu) \propto \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$,后验分布为 $f(\mu | x_1, \cdots, x_n) \propto f(x_1, \cdots, x_n | \mu) f(\mu) \propto \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \propto e^{-\frac{n\mu^2 - 2\mu \sum_{i=1}^n x_i}{2\sigma^2}} \propto e^{-\frac{n(\mu - \bar{x})^2}{2\sigma^2}}$,即 μ 的后验分布为 $N(\bar{x}, \frac{\sigma^2}{n})$ 。

第七章 假设检验

7.1 基本概念

例 7.1. 某女士声称自己可以区分奶茶的制作方法是先加奶还是先加茶。为检验她的话是否为真,Ronald Fisher 设计了如下实验:分别用两种方法制作各 4 杯奶茶,以随机顺序让女士品尝并鉴别(女士知道两种奶茶各有 4 杯),发现她全部说对了。用 H 表示"该女士无鉴别能力"这一假设,则在 H 成立的前提下,该女士只能随机猜测哪 4 杯是先加奶的,能全猜对的概率为 $\frac{1}{\binom{8}{4}} = \frac{1}{70}$ 。根据小概率事件原理,即小概率的事件不易发生,于是我们相信 H 不成立,即该女士有鉴别能力。

那么一个自然而然的问题是: 概率要多小才算小呢? 通常结合实际情况选取阈值 $\alpha = 0.05, 0.01, 0.1$ 等,称之为显著性水平。

上例中,若女士只说对了 3 杯,那么 H 成立的前提下,能猜对至少 3 杯的概率为 $\frac{17}{10} \approx 0.243$ 。形象地说,这一概率即"出现与观测结果一样或更极端的结果的概率",称为 p 值,参见定义 7.1。由于 $p > \alpha$,因此不能轻易否定 H,即不能轻易认为女士有鉴别能力。

这种方法称为 Fisher 显著性检验。注意到,若我们认可某组观测(样本)的效力,则用它来证实和证伪某个理论(断言)具有天然的不对等,因为即使 p 值不小,也不能断言该理论(断言)成立,只能说该理论(断言)在这组观测下没有被证伪。因此,用 Fisher 显著性检验证伪比证实更容易。

通过这个例子我们看到,可以将假设 H 模型化,计算出 H 成立的前提下的各种情况的概率,如记女士猜对的杯数为随机变量 X,则 $P(X=k)=\frac{\binom{4}{k}\binom{4}{4-k}}{\binom{8}{k}}(k\in\{0,1,2,3,4\})$ 。

历史上,先后提出了 Fisher 显著性检验、Neyman-Pearson 检验和零假设显著性检验 (NHST)。其中 Neyman-Pearson 检验强调了两类错误,而 Fisher 显著性检验和 NHST 都仅强调 $\alpha(R) \leq \alpha$ 条件(参见 7.2 节)。

统计假设是对一个或多个总体的某种断言或猜测,分为 H_0 和 H_1 ,分别称之为原假设或 零假设(Null Hypothesis)和备择假设(Alternative Hypothesis)。原假设 H_0 是被检验的假设,而备择假设 H_1 是拒绝 H_0 后可供选择的假设。

7.1 基本概念 第七章 假设检验

一种常见情形是假设可表示为参数形式,即 $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1, \Theta_0 \cap \Theta_1 = \emptyset$,且 $\Theta_0 \cup \Theta_1$ 为 θ 的所有可能取值之集合。

例 7.2.

设总体分布为 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知,以下是一些原假设与备择假设的例子:

- 1. $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$
- 2. $H_0: \mu = \mu_0, H_1: \mu > \mu_0$
- 3. $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$

设总体分布为 $X \sim N(\mu_1, \sigma^2), Y \sim N(\mu_2, \sigma^2), X, Y$ 独立, σ^2 已知,则一组可能的原假设与备择假设为: $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$ 。

称只对应一个总体的假设为简单假设,对应多个总体的假设为复合假设。例如上例中的 $H_0: \mu = \mu_0$ 为简单假设, $H_0: \mu \leq \mu_0$ 为复合假设。注意,若上例中的 σ^2 未知,则 $H_0: \mu = \mu_0$ 等价于 $H_0: \mu = \mu_0, \sigma^2 > 0$,这是一个复合假设。

依据样本(观测)对假设进行决策(拒绝 H_0 或不拒绝 H_0)的过程,称为假设检验。一个具体的检验(准则),就是做出决策的一个具体法则,即在何种情况下拒绝 H_0 。根据小概率事件原理,若在原假设 H_0 为真的前提下,所观测的样本出现的概率很小,则意味着样本提供了拒绝 H_0 的证据。

考虑所有可能出现的观测之集合 $\{(X_1(\omega),\cdots,X_n(\omega))|\omega\in\Omega\}$,其中样本量 n 固定,则可以按照检验准则将之分为两部分 R 和 R^c ,其中 R 称为拒绝域或临界域,当样本落在 R 中时,拒绝原假设 H_0 。一种常见的拒绝域形式为 $R=\{(X_1,\cdots,X_n)|T(X_1,\cdots,X_n)\geq c\}$,其中 $T(X_1,\cdots,X_n)$ 称为检验统计量,c 称为临界值。若对于某个 $\alpha\in(0,1)$,有 $\forall\theta\in\Theta_0,P_\theta(T(X_1,\cdots,X_n)\geq c)\leq\alpha$,则称(R 对应的)检验是(显著性)水平为 α 的检验。

例 7.3.

设总体分布为 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知。考虑以下两个假设检验。

- 1. $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,这是一个双侧检验。对于给定的 $\alpha \in (0,1)$,设检验准则 为当 $|\bar{X} \mu_0| \geq c$ 时拒绝 H_0 。这要求当 H_0 为真时, $P_{H_0}(|\bar{X} \mu_0| \geq c) \leq \alpha$ 。由于 $\bar{X} \mu \sim N(0, \frac{\sigma^2}{n})$,即 H_0 为真时 $\frac{\bar{X} \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$,要求为 $P_{H_0}(\frac{|\bar{X} \mu_0|}{\frac{\sigma}{\sqrt{n}}}) \geq \frac{c}{\frac{\sigma}{\sqrt{n}}}) \leq \alpha$,因此 取 $\frac{c}{\frac{\sigma}{\sqrt{n}}} = z_{\frac{\alpha}{2}}$,即 $c = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ 。据此确定检验准则:若 $|\bar{X} \mu_0| \geq z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$,则拒绝 H_0 。
- 2. $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$,这是一个单侧检验。对于给定的 $\alpha \in (0,1)$,设检验准则为当 $\bar{X} \leq c$ 时拒绝 H_0 。这要求当 H_0 为真时, $P_{H_0}(\bar{X} \leq c) \leq \alpha$ 。当 H_0 为真时 $\frac{\bar{X} \mu}{\sqrt{n}} \sim N(0,1)$,要求为 $P_{\mu \geq \mu_0}(\frac{\bar{X} \mu}{\sqrt{n}} \leq \frac{c \mu}{\sqrt{n}}) \leq \alpha$,因此 $\frac{c \mu}{\sqrt{n}} \leq -z_{\alpha}$,由于要对所有 $\mu \geq \mu_0$ 成立,取 $c = \mu_0 z_{\alpha} \frac{\sigma}{\sqrt{n}}$ 。据此确定检验准则:若 $\bar{X} \leq \mu_0 z_{\alpha} \frac{\sigma}{\sqrt{n}}$,则拒绝 H_0 。

本例有时也称为 Z-检验。

上例中,若 σ^2 未知,则要根据 $\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)$ 来构造检验准则,称为 t-检验。

7.2 Neyman-Pearson 假设检验

首先讨论假设检验中的两类错误。若原假设为真,但拒绝了原假设,则犯了第 I 类错误,又称弃真错误。若原假设为假,但不拒绝原假设,则犯了第 II 类错误,又称取伪错误。两类错误发生的概率分别记作 $P_{\theta}(I)(\theta \in \Theta_0)$ 和 $P_{\theta}(II)(\theta \in \Theta_1)$ 。一次决策不会同时犯两种错误。

根据样本作决策,错误不可能根本避免。对于固定的 n,调整检验准则时,两种错误发生的概率此消彼长。

- **例** 7.4. 检验元件是否合格, H_0 和 H_1 分别表示合格与不合格。
 - 1. 若从不拒绝 H_0 ,即总认为元件合格,则 $P_{\theta}(I) = 0$,但 $P_{\theta}(II) = 1$ 。
 - 2. 一般地,当 $P_{\theta}(I)$ 变小,就意味着更不容易拒绝原假设(更谨慎地判断元件不合格),此时不合格元件就更不容易检出,因此 $P_{\theta}(II)$ 变大。

进一步讨论两种错误的概率。对于 $\theta \in \Theta_0$,我们有 $P_{\theta}(I) = P_{\theta}((X_1, \dots, X_n) \in R)$,将其记为 $\alpha(R)$,即调整拒绝域时,犯第 I 类错误的概率相应变化。对于 $\theta \in \Theta_1$,我们有 $P_{\theta}(II) = P_{\theta}((X_1, \dots, X_n) \in R^c)$,将其记为 $\beta(R)$,即调整拒绝域时,犯第 II 类错误的概率相应变化。若固定 R,则 $\alpha(R)$ 和 $\beta(R)$ 都是 θ 的函数。对于 $\theta \in \Theta_1$,将 $(1 - \beta(R))$ 称为功效(Power)。

利用上述概念,我们之前所做的假设检验"当 $T(X_1, \dots, X_n) \ge c$ 时拒绝 H_0 "需要满足的条件 $P_{H_0}(T(X_1, \dots, X_n) \ge c) \le \alpha$ 实际上就是犯第 I 类错误的概率不超过 α 。

在假设检验中,有所谓 Neyman-Pearson 范式: 固定 n, 对于预先给定的检验水平 $\alpha \in (0,1)$,首先保证犯第 I 类错误的概率不超过 α ,再在此限制之下使 $P_{\theta}(II)(\theta \in \Theta_1)$ 尽可能小。 若 $\exists \alpha, \beta > 0, \forall \theta \in \Theta_0, \alpha(R) \leq \alpha; \forall \theta \in \Theta_1, \beta(R) \leq \beta$,则 α, β 是检验程序的属性,即预先给定的可接受的长期错误率。

此种范式下, H_0 与 H_1 一般来说地位不对等。原假设 H_0 通常是受保护的,若证据不充分则不能予以拒绝;备择假设 H_1 往往是我们真正感兴趣的,又称研究假设。

在 7.1 节中,我们强调过 Fisher 显著性检验中,"不拒绝"不等于"接受"。但在 Neyman-Perason 检验中,由于强调了两类错误,并量化了其概率,故若 $\beta(R)$ 足够小 (即功效 $(1-\beta(R))$ 足够大),则可以接受 H_0 。

7.3 假设检验与置信区间

例 7.5. 设总体分布为 $X \sim N(\mu, \sigma^2)$,其中 σ^2 已知。给定 $\alpha \in (0,1)$,有 $(1-\alpha)$ -置信的(双侧)置信区间 $\mu \in (\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$ 。而在进行(双侧)假设检验时, $\forall \mu_0$,若 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,检验准则为若 $|\bar{X} - \mu_0| \geq z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ 则拒绝 H_0 ,即所谓的 接受域 $R^c = \{(X_1, \cdots, X_n) \mid |\bar{X} - \mu_0| < z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\}$,或接受条件为 $\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu_0 < \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ 。由此可见, μ_0 落在置信区间 $(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$ 等价于用 \bar{X} 作为检验统计量检验上述 H_0, H_1 时的结果为不拒绝 H_0 ,这体现出区间估计与假设检验存在对偶关系。

7.4 **检验的** p 值

定义 7.1. 当原假设为真时,称"出现观测值以及更极端的观测的概率"为该检验的 p 值。

其中,所谓"更极端"的具体含义是由 H_1 决定的,这也进一步决定了拒绝域的形状。

例 7.6. (选举问题)

设 p 为未知的真实支持率,样本容量 n=1200,其中有 684 人支持,即观测比例为 $p_n=\frac{684}{1200}=0.57$ 。给定 $p_0\in(0,1)$,检验 $H_0:p=p_0,H_1:p>p_0$,取检验统计量为 $P_n=\bar{X}$,其中 $\{X_i\}_{i=1}^n$ 独立同分布, $X_i\sim B(p)$ 。由 CLT,近似有 $\frac{P_n-p}{\mathrm{Se}(P_n)}\sim N(0,1)$,其中 $\mathrm{Se}(P_n)=\sqrt{\frac{p(1-p)}{n}}$ 。当 H_0 为 真时, $\mathrm{Se}(P_n)=\sqrt{\frac{p_0(1-p_0)}{n}}$,故 p 值为 $P(P_n\geq p_n|H_0)=P(\frac{P_n-p_0}{\mathrm{Se}(P_n)}\geq \frac{p_n-p_0}{\mathrm{Se}(P_n)}|H_0)\approx P(Z\geq \frac{p_n-p_0}{\mathrm{Se}(P_n)})$,其中 $Z\sim N(0,1)$ 。代入 $p_0=0.5$,得 $\mathrm{Se}(P_n)\approx 0.014$,p 值 $\ll 0.001$;代入 $p_0=0.55$,得 $\mathrm{Se}(P_n)\approx 0.014$,p 值 ≈ 0.082 。

根据 p 值的定义,容易发现设计检验准则时,拒绝 H_0 的条件为 p 值 $\leq \alpha$ 。非正式地,p 值通常作为拒绝 H_0 的证据强弱的度量。但需要强调,p 值与 $P(H_0|$ 观测值)完全是两回事。若 p 值不小,则不拒绝 H_0 ,这可能有多种原因,既可能是 H_0 为真,也可能是 H_0 不真,但检验的功效不够大。p 值也不等于"错误拒绝 H_0 的概率"。

上例中,若 H_0 改为 $p \leq p_0$,则 p 值应当修正为 $\sup_{p \leq p_0} P(P_n \geq p_n)$ 。此时当 H_0 为真时,对 $\operatorname{Se}(P_n)$ 的估计 $\widehat{\operatorname{Se}}(P_n) = \sqrt{\frac{P_n(1-P_n)}{n}}$,p 值的计算公式也相应修正为 $P(P_n \geq p_n|H_0) = P(\frac{P_n-p}{\widehat{\operatorname{Se}}(P_n)} \geq \frac{p_n-p}{\widehat{\operatorname{Se}}(P_n)}|H_0) \approx P(Z \geq \frac{p_n-p}{\widehat{\operatorname{Se}}(P_n)})$,其中 $Z \sim N(0,1)$ 。

对 p 值的定义给出一更具体的修订。

定义 7.2. 若检验准则为拒绝 $H_0: \theta \in \Theta_0$ 当且仅当 $T(X_1, \dots, X_n) \geq C$,则检验的 p 值为 $\sup_{\theta \in \Theta_0} P(T(X_1, \dots, X_n) \geq T(x_1, \dots, x_n))$ 。其中 $T(x_1, \dots, x_n)$ 为检验统计量的观测值。

7.5 拟合优度检验

例 7.7. 设连续掷一个六面骰 60 次,得到结果如下:

点数	1	2	3	4	5	6	总计
观测频数	4	6	17	16	8	9	60
期望频数	10	10	10	10	10	10	60

检验 H_0 : 骰子是均匀的, H_1 : 骰子不均匀。下面介绍 Pearson 拟合优度检验。取检验统计量 $\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$, 其中 k = 6, O_i 为观测频数, E_i 为期望频数。

有如下一般性的定理: 设 k 为单元数,检验 $H_0: P(X \in \mathbb{R} \mid \mathbb{R} \mid \mathbb{R}) = p_i^0 (i=1,\cdots,k)$,若 H_0 为真,则当 $n \to \infty$ 时,上述检验统计量 χ^2 的分布收敛于 $\chi^2 (k-1)$ 。

代入表中数据,得检验统计量的观测值为 $\frac{(4-10)^2}{10} + \frac{(6-10)^2}{10} + \cdots = 14.2$,故 p 值为 $P(\chi^2 \ge 14.2) \approx 0.014$,其中近似有 $\chi^2 \sim \chi^2(5)$ 。

应用中,需期望频数 $E_i = np_i^0 \ge 5$,才可以保证应用上述定理的效果较好。

例 7.8. 对于 k=2 的简单情形,即检验 $H_0: p_1=p_1^0, p_2=1-p_1^0$,取检验统计量 $\chi^2=\frac{(O_1-np_1^0)^2}{np_1^0}+\frac{(O_2-n(1-p_1^0))^2}{n(1-p_1^0)}=\frac{(O_1-np_1^0)^2}{np_1^0(1-p_1^0)}$,近似有 $\chi^2\sim\chi^2(1)$ 。可以从中发现与 CLT 的联系: $\mathrm{E}(O_1)=np_1^0, \mathrm{Var}(O_1)=np_1^0(1-p_1^0)$,而 $\chi^2(1)$ 分布正是标准正态分布的平方。

需要强调,统计显著不一定实际显著,如下例。

例 7.9. 设连续掷一个六面骰 6×10^{10} 次,得到结果如下:

点数	1	2	3	4	5	6
$O_i - 10^{10}$	-10^{6}	1.5×10^{6}	-2×10^6	4×10^6	-3×10^{6}	0.5×10^{6}

检验 H_0 : 骰子是均匀的, H_1 : 骰子不均匀。则 χ^2 统计量的观测值为 $\frac{(-10^6)^2}{10^{10}} + \cdots = 3250$,故 p 值为 $P(\chi^2 \geq 3250) \ll 0.00001$,其中近似有 $\chi^2 \sim \chi^2(5)$ 。p 值非常小,拒绝 H_0 。但实际上,观测值给出的 MLE 为 $p_1^* = \frac{10^{10} - 10^6}{6 \times 10^{10}} = \frac{1}{6} - \frac{1}{6} \times 10^{-4}$,与 $\frac{1}{6}$ 相差非常小。

下面介绍列联表(独立性)检验。

例 7.10. 设希望研究对某项议题的态度于年龄段是否相互独立,调查结果如下:

	青	中	老	总计
支持	20	40	20	80
反对	30	30	10	70
总计	50	70	30	150

7.6 似然比检验 第七章 假设检验

检验 H_0 : 年龄段与态度相互独立, H_1 : 年龄段与态度不相互独立。设 p_{ij} 表示样本属于 (i,j) 单元的概率,用 p_{i+}, p_{+j} 分别表示第 i 行和第 j 列的边际概率,则 H_0 下, $p_{ij} = p_{i+}p_{+j}$ 。取检验统计量 $\chi^2 = \sum_{i=1}^a \sum_{j=1}^b \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$,其中 a,b 分别为行数和列数, O_{ij} 为观测频数, E_{ij} 为期望频数。在 H_0 为真时,可给出 p_{ij} 的估计 $p_{ij}^* = (p_{i+}p_{+j})^* = p_{i+}^* p_{+j}^*$,其中 $p_{i+}^* = \frac{O_{i+}}{n}$, $p_{+j}^* = \frac{O_{+j}}{n}$, O_{i+} 为第 i 行的观测频数之和, O_{+j} 为第 j 列的观测频数之和,此时 $E_{ij} = np_{ij} \approx np_{ij}^*$ 。当 $n \to \infty$ 时,上述统计量 χ^2 的分布收敛于 $\chi^2((a-1)(b-1))$ 。代入表中数据,得检验统计量的观测值为 $\frac{(20-26.67)^2}{26.67} + \cdots \approx 6.12$,故 p 值为 $P(\chi^2 \ge 6.12) \approx 0.0469$,其中近似有 $\chi^2 \sim \chi^2(2)$ 。

7.6 似然比检验

例 7.11. 设有两种硬币,正面朝上的概率分别为 p=0.5,0.7。现有一硬币,掷之 n=10 次,观测到 X=x 次正面向上。检验 $H_0: p=0.5, H_1: p=0.7$ 。选取似然比统计量 $\frac{P(X=x|H_0)}{P(X=x|H_1)}=\frac{\binom{n}{x}0.5^x(1-0.5)^{n-x}}{\binom{n}{x}0.7^x(1-0.7)^{n-x}}$,检验准则为若似然比 $\leq C$ 则拒绝 H_0 ,则需满足 P(似然比 $\leq C|H_0) \leq \alpha$,可据此确定 C。

当 H_0 , H_1 均为简单假设时,Neyman 与 Pearson 证明了似然比检验的最优性(即功效最大)。当 H_0 , H_1 不全为简单假设时,似然比检验一般来说不是最优的,但通常表现不错。

一般地,若检验 $H_0:\theta\in\Theta_0, H_1:\theta\in\Theta_1$,随机样本 X_1,\cdots,X_n ,则广义似然比为 $\Lambda^*=\frac{\sup\limits_{\theta\in\Theta_0}L(\theta)}{\sup\limits_{\theta\in\Theta_1}L(\theta)}$,其中 $L(\theta)$ 为似然函数。实际应用中,通常采用其修正形式 $\Lambda=\frac{\sup\limits_{\theta\in\Theta_0}L(\theta)}{\sup\limits_{\theta\in\Theta_0\cup\Theta_1}L(\theta)}=\min\{\Lambda^*,1\}$,其分母 $\sup\limits_{\theta\in\Theta_0\cup\Theta_1}L(\theta)$ 等于 $L(\theta^*)$,其中 θ^* 表示 MLE。显然 $\Lambda=\Lambda(X_1,\cdots,X_n)$ 越小越反对 H_0 ,故应根据 $P(\Lambda\leq\lambda_0|H_0)\leq\alpha$ 确定拒绝域。

定理 7.1. 在一定的光滑性条件下,当 $n \to \infty$ 时,在 H_0 为真的前提下, $-2 \log \Lambda \stackrel{d}{\to} \chi^2(d)$,其中自由度 $d = \dim(\Theta_0 \cup \Theta_1) - \dim(\Theta_0)$,dim 表示自由参数个数。

例 7.12. (多项分布检验)

设 $X = (X_1, \dots, X_k)$ 服从多项分布,参数为 n, p_1, \dots, p_k ,检验 $H_0: p_1 = p_1^0, \dots, p_k = p_k^0$ 。观测 频数为 n_1, \dots, n_k ,满足 $n_1 + \dots + n_k = n$ 。此时似然函数为 $L(p_1, \dots, p_k) = \binom{n}{n_1, \dots, n_k} p_1^{n_1} \dots p_k^{n_k}$,故似然比为 $\Lambda = \frac{L(p_1^0, \dots, p_k^0)}{L(p_1^*, \dots, p_k^*)} = \frac{p_1^{0n_1} \dots p_k^{0n_k}}{p_1^{*n_1} \dots p_k^{*n_k}}$,其中 $p_i^* = \frac{n_i}{n}$ 。仍记 $O_i = np_i^* = n_i$, $E_i = np_i^0$,则 $-2\log\Lambda = -2\sum_{i=1}^k n_i \log \frac{p_i^0}{p_i^*} = 2\sum_{i=1}^k O_i \log \frac{O_i}{E_i}$ 。利用 Taylor 展开 $x \log \frac{x}{x_0} = 0 + (x - x_0) + \frac{(x - x_0)^2}{2x_0} + \dots$,有 $-2\log\Lambda = 2\sum_{i=1}^k (O_i - E_i) + \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} + \dots = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} + \dots$ 。由定理 7.1,当 $n \to \infty$ 时, $-2\log\Lambda \xrightarrow{d} \chi^2(d)$,其中 d = (k-1) - 0 = k-1。可以从中发现与Pearson 拟合优度检验的联系。

7.7 两总体比较 第七章 假设检验

7.7 两总体比较

设有两独立总体如下。

总体	均值	方差	随机样本
X	μ_1	σ_1^2	X_1, \cdots, X_n
Y	μ_2	σ_2^2	Y_1, \cdots, Y_m

若要比较两总体均值,取检验统计量 $\bar{X}-\bar{Y}$,有 $\mathrm{E}(\bar{X}-\bar{Y})=\mu_1-\mu_2, \mathrm{Var}(\bar{X}-\bar{Y})=\frac{\sigma_1^2}{n}+\frac{\sigma_2^2}{m}=\mathrm{Se}^2(\bar{X}-\bar{Y})$,其中 $\mathrm{Se}(\bar{X}-\bar{Y})$ 为标准误,若未知则需要进行估计。

还有一种常见情形是比较两总体方差。以下以 X,Y 均服从正态分布为例。(双侧)检验 $H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$ 。利用 $\frac{(n-1)S_1^2}{\sigma_1^2} \sim \chi^2(n-1), \frac{(m-1)S_2^2}{\sigma_2^2} \sim \chi^2(m-1)$ 且独立,有 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n-1,m-1)$ 。检验统计量为 $\frac{S_1^2}{S_2^2}$,若 H_0 为真,则 $\frac{S_1^2}{S_2^2} \sim F(n-1,m-1)$ 。检验准则 为若 $\frac{S_1^2}{S_2^2} \geq F_{\frac{\alpha}{2}}(n-1,m-1)$ 或 $\frac{S_1^2}{S_2^2} \leq F_{1-\frac{\alpha}{2}}(n-1,m-1)$ 则拒绝 H_0 。其中 $F_{1-\frac{\alpha}{2}}(n-1,m-1) = \frac{1}{F_{\frac{\alpha}{2}}(m-1,n-1)}$ 。

例 7.13. 研究阿司匹林对于降低心脏病发病率的有效性, 样本数据如下。

	心脏病发作	未发作	总计	发作率
阿司匹林	$k_1 = 139$	10898	$n_1 = 11037$	1.26%
安慰剂	$k_2 = 239$	10795	$n_2 = 11034$	2.17%

检验 $H_0: p_1 = p_2, H_1: p_1 < p_2$,其中 p_1, p_2 为总体发作率,原假设和备择假设分别表示"有效"和"无效"。检验统计量为 $P_1 - P_2$,其中 P_1, P_2 为样本发作率(随机变量),有 $\mathrm{E}(P_1 - P_2) = p_1 - p_2, \mathrm{Var}(P_1 - P_2) = \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2} = \mathrm{Se}^2$,由 CLT 有 $\frac{(P_1 - P_2) - (p_1 - p_2)}{\mathrm{Se}}$ 近似服从 N(0,1)。在 H_0 为真前提下有 $p_1 = p_2 = p$,根据观测值给出 p 的估计 $p^* = \frac{k_1 + k_2}{n_1 + n_2} = \frac{139 + 239}{11037 + 11034}$,故 $\mathrm{Se}^2 = p(1-p)(\frac{1}{n_1} + \frac{1}{n_2}) \approx p^*(1-p^*)(\frac{1}{n_1} + \frac{1}{n_2}) \approx 0.00176^2 = \hat{\mathrm{Se}}^2$ 。此时近似有 $\frac{P_1 - P_2}{\mathrm{Se}} \sim N(0,1)$,故 p 值为 $P(P_1 - P_2 \le 1.26\% - 2.17\%) \approx P(Z \le \frac{1.26\% - 2.17\%}{0.00176}) \approx 10^{-7}$,其中 $Z \sim N(0,1)$ 。故 拒绝 H_0 。

上例的实验设计中需注意的几点:

- 1. 随机分组
- 2. 双盲试验
- 3. 样本容量 n 要充分大

例 7.14. 某大型出租车公司比较两种油 A 和 B 的行驶里程,实验为将 100 辆车随机平分为两组,样本数据如下。

	样本容量	平均里程	标准差
油A	50	25	5.00
油B	50	26	4.00

直观来看,两组数据的标准差均较大,因此可能会统计不显著。进行(双边)检验 $H_0: \mu_A = \mu_B, H_1: \mu_A \neq \mu_B$,其中 μ_A, μ_B 分别为油 A 和 B 的总体均值。检验统计量为 $\bar{X}_A - \bar{X}_B$,当 H_0 为真时,近似有 $\frac{\bar{X}_A - \bar{X}_B}{\widehat{Se}} \sim N(0,1)$,其中 \widehat{Se} 为标准误的估计 $\sqrt{\frac{S_A^2}{n_1} + \frac{S_B^2}{n_2}}$ 。p 值为 $P(\left|\frac{\bar{X}_A - \bar{X}_B}{\widehat{Se}}\right| \geq \left|\frac{25-26}{\sqrt{\frac{5}{50}} + \frac{45}{50}}\right|) \approx P(|Z| \geq 1.1) \approx 0.1357 \times 2$,其中 $Z \sim N(0,1)$ 。故不拒绝 H_0 。

如果是两相关总体比较,有更好的方法,如下例。

例 7.15. 仍研究上例中的问题,但改进实验设计为:同一辆车(固定司机)在不同的日子加不同的油,即每辆车都测试两种油。样本数据如下。

车号	油A	油B	差异 d_i
1	27.01	26.95	0.06
2	20.00	20.44	-0.44
÷	:	:	:
10	25.22	26.01	-0.79
均值	25.00	25.60	-0.60
标准差	4.27	4.10	0.61

可以看出 d_i 的标准差明显较小。检验 $H_0: \mu_d = 0, H_1: \mu_d \neq 0$,假设近似有 $d_i \sim N(\mu, \sigma^2)$,则 $\frac{\bar{d}-\mu_d}{\frac{S_d}{\sqrt{n}}} \sim t(n-1)$,p 值为 $P(|t_9| \geq \left| \frac{-0.60}{\frac{0.61}{\sqrt{10}}} \right|) \approx 0.006 \times 2$,其中 $t_9 \sim t(9)$ 。故拒绝 H_0 。

7.8 Bayes 假设检验

例 7.16. 设有两种硬币,正面朝上的概率分别为 p=0.5,0.7。现有一硬币,掷之 n 次,观测到 X=x 次正面向上。检验 $H_0: p=0.5, H_1: p=0.7$ 。与之前不同,此时我们假定有先验概率 $P(H_0), P(H_1)$ (如掌握一些硬币来源的信息),则 Bayes 检验准则为若后验概率比 $\frac{P(H_0|X=x)}{P(H_1|X=x)} < 1$ 则拒绝 H_0 。 $\frac{P(H_0|X=x)}{P(H_1|X=x)} = \frac{P(H_0)P(X=x|H_0)}{P(H_1)P(X=x|H_1)}$,即先验比与似然比的乘积。

第八章 线性回归

8.1 回归问题

回归问题可以表述为: 已知存在变量关系 $Y = f(X_1, \dots, X_n) + \epsilon$, 其中 Y 称为因变量或响应变量, X_1, \dots, X_n 称为自变量、回归变量或预测变量,而 ϵ 为随机误差,可能无法测量或不重要,或在建模时无法想到。

如果假定 $E(\epsilon|X_1,\dots,X_n)=0$,则 $E(Y|X_1,\dots,X_n)=f(X_1,\dots,X_n)$,这便是 Y 对 X_1,\dots,X_n 的(均值)回归。如果有 (X_1,\dots,X_n,Y) 的样本数据,则可以通过有监督的学习,推断出 f 的信息。

模型中的 X_1, \dots, X_n 可以是随机的,也可以是非随机的控制变量。例如,随机抽取一个人,则其所有属性 $(X_1, \dots, X_n$ 和 Y) 都是随机的。但应用中,一律将 X_1, \dots, X_n 视为非随机的。

最后, 我们假设 $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$, 其中 σ^2 未知。与 σ^2 大小有关的因素包括:

- 1. 模型中的要素是否完全
- 2. f 的形式是否准确

8.2 简单线性回归

本节开始讨论简单线性回归,其具体形式为 $Y = \beta_0 + \beta_1 X + \epsilon$,该式称为理论模型,其中 β_0 为截距, β_1 为斜率或回归系数,二者统称回归参数,均未知且待定。

这里的"简单"指的是只有一个自变量 X, "线性"指的是 f 关于 β_0 , β_1 线性。

设对 (X,Y) 进行 n 次独立观测,得到样本 $(x_1,y_1),\cdots,(x_n,y_n)$,即

$$\begin{cases} y_i = \beta_0 + \beta_1 x_i + \epsilon_i (i = 1, 2, \dots, n) \\ \epsilon_i \text{ 独立同分布}, \ \mathrm{E}(\epsilon_i) = 0, \mathrm{Var}(\epsilon_i) = \sigma^2 \end{cases}$$

称之为简单线性回归模型。由此, $E(y_i) = \beta_0 + \beta_1 x_i, Var(y_i) = \sigma^2$ 。

8.3 最小二乘法估计参数

为估计参数 $\beta_0, \beta_1,$ 定义损失函数 $s_i(\beta_0, \beta_1) = (y_i - (\beta_0 + \beta_1 x_i))^2$, 记 $s(\beta_0, \beta_1) = \sum_{i=1}^n s_i(\beta_0, \beta_1)$, 则目标是最小化 $s(\beta_0, \beta_1)$ 。直接求导可得最小值点为 $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{S_{xx}}, \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = \sum_{i=1}^n (\frac{1}{n} - \frac{(x_i - \bar{x})\bar{x}}{S_{xx}})y_i$,其中 $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$ 。记 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ 。

如果采用 8.2 节的建模,上述计算对任意的 (X,Y) 总是可行的,但其实际效果如何取决于选择线性模型是否合理。

命题 8.1. $\hat{\beta}_1, \hat{\beta}_0$ 分别是 β_1, β_0 的无偏估计。

证明. 计算有
$$\mathrm{E}(\hat{\beta}_1) = \frac{\sum_{i=1}^n (x_i - \bar{x}) \mathrm{E}(y_i)}{S_{xx}} = \frac{\sum_{i=1}^n (x_i - \bar{x}) (\beta_0 + \beta_1 x_i)}{S_{xx}} = \frac{\beta_1 \sum_{i=1}^n (x_i - \bar{x}) x_i}{S_{xx}} = \frac{\beta_1 \sum_{i=1}^n (x_i - \bar{x})^2}{S_{xx}} = \beta_1,$$
 以及 $\mathrm{E}(\hat{\beta}_0) = \mathrm{E}(\bar{y} - \hat{\beta}_1 \bar{x}) = \frac{1}{n} \sum_{i=1}^n \mathrm{E}(y_i) - \bar{x} \mathrm{E}(\hat{\beta}_1) = \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 x_i) - \bar{x} \beta_1 = \beta_0.$

进一步计算可以得出 $\operatorname{Var}(\hat{\beta}_1) = \operatorname{Var}\left(\frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{S_{xx}}\right) = \sum_{i=1}^n \frac{(x_i - \bar{x})^2}{S_{xx}^2} \operatorname{Var}(y_i) = \frac{1}{S_{xx}^2} \sum_{i=1}^n (x_i - \bar{x})^2 \sigma^2 = \frac{\sigma^2}{S_{xx}}, \quad \text{以及} \operatorname{Var}(\hat{\beta}_0) = \operatorname{Var}(\sum_{i=1}^n (\frac{1}{n} - \frac{(x_i - \bar{x})\bar{x}}{S_{xx}})y_i) = \sum_{i=1}^n (\frac{1}{n} - \frac{(x_i - \bar{x})\bar{x}}{S_{xx}})^2 \sigma^2 = (n \cdot \frac{1}{n^2} - \frac{\sum_{i=1}^n 2(x_i - \bar{x})\bar{x}}{nS_{xx}} + \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \bar{x}^2}{S_{xx}^2})\sigma^2 = (\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}})\sigma^2 = \frac{\sigma^2}{S_{xx}} \frac{\sum_{i=1}^n x_i^2}{n} \circ$

可以将 x_i 和 y_i 的关系改写成某种"中心化"处理的形式: $y_i = \beta_0 + \beta_1 \bar{x} + \beta_1 (x_i - \bar{x}) + \epsilon_i$, 则其中的常数项 $\beta_0 + \beta_1 \bar{x}$ 的估计为 $\hat{\beta}_0 + \hat{\beta}_1 \bar{x} = \bar{y}$ 。

当 $x=x_i$ 时,拟合直线上相应点为 $(x_i,\hat{\beta}_0+\hat{\beta}_1x_i)$ 。记 $\hat{y}_i=\hat{\beta}_0+\hat{\beta}_1x_i$ 为在 $x=x_i$ 处 y 的拟合值, $y_i-\hat{y}_i$ 称之为残差(Residual)或误差。误差平方和(Sum of Squared Errors, SSE)或残差平方和(Residual Sum of Squares, RSS)为 $SSE=\sum_{i=1}^n(y_i-\hat{y}_i)^2=\sum_{i=1}^n(y_i-(\hat{\beta}_0+\hat{\beta}_1x_i))^2$ 。

命题 8.2. $\hat{\sigma}^2 = \frac{SSE}{n-2}$ 是 σ^2 的无偏估计。

还可以据此给出 $\hat{\beta}_1, \hat{\beta}_0$ 的标准差的估计 $\widehat{\operatorname{Se}}(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{S_{xx}}}, \widehat{\operatorname{Se}}(\hat{\beta}_0) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}$.

8.4 回归参数推断

本节中追加假设 $\epsilon_i \sim N(0,\sigma^2)(i=1,\cdots,n)$,则有 $y_i \sim N(\beta_0+\beta_1x_i,\sigma^2)$ 且独立。对于此模型,似然函数 $L(\beta_0,\beta_1,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i-(\beta_0+\beta_1x_i))^2}{2\sigma^2}}$,可以证明 β_0,β_1,σ^2 的 MLE 为 $\hat{\beta}_0,\hat{\beta}_1,\frac{SSE}{n}$ 。

考虑假设检验: $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$ 。注意到 $\frac{\hat{\beta}_1 - \beta_1}{\sqrt{S_{xx}}} \sim N(0,1)$,以及可以证明 $\frac{SSE}{\sigma^2} = \frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-2)$,且二者独立,故 $\frac{\frac{\hat{\beta}_1 - \beta_1}{\sqrt{S_{xx}}}}{\sqrt{\frac{SSE}{\sigma^2}/(n-2)}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}/\sqrt{S_{xx}}} = \frac{\hat{\beta}_1 - \beta_1}{\hat{Se}(\hat{\beta}_1)} \sim t(n-2)$ 。取检验统计量 $T = \frac{\hat{\beta}_1}{\hat{Se}(\hat{\beta}_1)}$,当 H_0 为真时, $T \sim t(n-2)$ 。检验准则为若 $|T| \geq t_{\frac{\alpha}{2}}(n-2)$ 则拒绝 H_0 。若 H_0 被拒绝,说明有理由相信 $\beta_1 \neq 0$,即模型是有意义的。

除了检验 $\beta_1 = 0$ 之外,还可以针对其他的 β_1 可能值进行检验,也可以对 β_1 作区间估计。 也可以对 β_0 进行相应的推断,过程类似。

8.5 预测

沿用 8.2 节的建模,当 $x = x_0$ 时, $y_0 = \beta_0 + \beta_1 x_0 + \epsilon_0$,其中 $\epsilon_0 \sim N(0, \sigma^2)$ 。记 $\mu_0 = E(y_0) = \beta_0 + \beta_1 x_0$,则 μ_0 的预测正是拟合直线上 x_0 处的取值 $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 = \bar{y} + \hat{\beta}_1 (x_0 - \bar{x}) = \sum_{i=1}^n (\frac{1}{n} + \frac{(x_i - \bar{x})(x_0 - \bar{x})}{S_{xx}}) y_i$ 。计算得 $E(\hat{y}_0) = E(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \beta_0 + \beta_1 x_0 = \mu_0$,Se² $(\hat{y}_0) = Var(\hat{y}_0) = \sum_{i=1}^n (\frac{1}{n} + \frac{(x_i - \bar{x})(x_0 - \bar{x})}{S_{xx}})^2 \sigma^2 = \sigma^2 (\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})$ 。

利用 $\frac{\hat{y}_0-\mu_0}{\mathrm{Se}(\hat{y}_0)}\sim N(0,1)$,以及标准误的估计为 $\widehat{\mathrm{Se}}(\hat{y}_0)=\hat{\sigma}\sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{S_{xx}}}$,有 $\frac{\hat{y}_0-\mu_0}{\widehat{\mathrm{Se}}(\hat{y}_0)}\sim t(n-2)$,可以据此给出 μ_0 的 $(1-\alpha)$ -置信的 (双侧)区间估计为 $(\hat{y}_0-t_{\frac{\alpha}{2}}(n-2)\widehat{\mathrm{Se}}(\hat{y}_0),\hat{y}_0+t_{\frac{\alpha}{2}}(n-2)\widehat{\mathrm{Se}}(\hat{y}_0))$ 。

由于 $y_0 \sim N(\mu_0, \sigma^2)$, μ_0 (若已知) 是 y_0 的均方意义下的最优估计。由于 μ_0 未知,用 $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ 代替,也是 y_0 的一个良好估计。可以证明 y_0 与 \hat{y}_0 相互独立,且 $\hat{y}_0 - y_0$ 服从正态分布,有 $\mathrm{E}(\hat{y}_0 - y_0) = 0$, $\mathrm{Var}(\hat{y}_0 - y_0) = \mathrm{Var}(\hat{y}_0) + \mathrm{Var}(y_0) = \sigma^2(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}})$,即 $\frac{\hat{y}_0 - y_0}{\sigma \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}} \sim N(0, 1)$,分母的估计为 $\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}}$,有 $\frac{\hat{y}_0 - y_0}{\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}}} \sim t(n - 2)$,可以据此给出 y_0 的 $(1 - \alpha)$ -置信的(双侧)区间估计为($\hat{y}_0 - t_{\frac{\alpha}{2}}(n - 2)\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}}$, \hat{y}_0 + $t_{\frac{\alpha}{2}}(n - 2)\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}})$ 。

当 x_0 与 \bar{x} 距离增加,估计误差会增大。特别是如果 x_0 落在数据点范围外(即需要外推),则需谨慎对待。

对于固定截距为 0 的回归,上述推导中的自由度由 (n-2) 改为 (n-1)。 还需注意,由于模型中 X 与 Y 不是对称的,故不能将回归方程逆转使用。