Proposition 1. Seien $R \longrightarrow S \longrightarrow T$ Ringhomomorphismen. Dann existiert folgende rechts-exakte Sequenz von T-Modulen.

Beispiel 2. Sei k ein Körper, somit entspricht $d_{k[x]}: k[x] \longrightarrow \Omega_{k[x]/k}$, $f \longmapsto f'd_{k[x]}(x)$ der analytischen Ableitung.

Teste dies an $f(x) = ax^2 + bx + c$:

$$d(f(x)) = a \cdot d(x^2) + b \cdot d(x) = (2ax + b)d(x) = f'(x)d(x)$$

Definition 3. Sei $K \supset k$ eine Körpererweiterung. Dann nennen wir eine Teilmenge $\{b_i\}_{i \in \Lambda} \subseteq T$ eine <u>Differenzialbasis</u> von K über k, falls $\{d_K(b_i)\}_{i \in \Lambda} \subseteq T$ eine Vektorraumbasis von $\Omega_{T/R}$ über T ist.

Beispiel 4. Sei k ein Körper und $K = k(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über k.

Dann ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ eine Differenzialbasis von $\Omega_{K/k}$.

Beweis. Sehe $K = k[x_1, ..., x_n][k[x_1, ..., x_n]^{-1}]$ als Lokalisierung. Nach LO-KALISIERUNG und POLYNOMRING gilt:

$$\Omega_{K/k} \simeq K \otimes \Omega_{k[x_1,...,x_n]/k}
\simeq K \otimes \bigoplus_{i \in \{1,...,n\}} k[x_1,...,x_n] \langle d_{k[x_1,...x_n]}(x_i) \rangle
\simeq K \langle d_{k[x_1,...x_n]}(x_i) \rangle$$

Damit ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ ein Erzeugenden-System von $\Omega_{K/k}$.

Lemma 5. Sei $R \longrightarrow S \subset T$ ein Ringhomomorphismus und $S \subset T$ eine seperabel und algebraische Körpererweiterung. Dann gilt:

$$\Omega_{T/R} = T \otimes_S \Omega_{S/R}$$

Beweis. Wähle $\alpha \in T$ mit $S[\alpha] = T$. Sei weiter f(x) das Minimalpolynom von α . Betrachte dazu die conormale Sequenz von $\pi : S[x] \longrightarrow S[x]/(f) \simeq T$ aus ??:

$$(f)/(f^2) \xrightarrow{1 \otimes d_{S[x]}} T \otimes_{S[x]} \Omega_{S[x]/R} \xrightarrow{D\pi} \Omega_{T/R} \longrightarrow 0$$

Wende nun 16.6 auf $\Omega_{S[x]/R}$ an und tensoriere mit T, somit gilt:

$$T \otimes_{S[x]} \Omega_{S[x]/R} \simeq T \otimes_S \Omega_{S/R} \oplus T \langle d_{S[x]}(x) \rangle$$

Zusammen mit der conormalen Sequenz bedeutet dies:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R} \oplus T \langle d_{S[x]}(x) \rangle) / (d_{S[x]}(f))$$

Wenn wir $d_{S[x]}:(f)\longrightarrow T\otimes_S\Omega_{S/R}\oplus T\langle d_{Sx}\rangle$ wie in beispiel 2 betrachten , sehen wir:

$$d_{S[x]}((f)) = J \oplus (f'(\alpha)d_{S[x]}) = J \oplus T\langle d_{S[x]}(x)\rangle$$
, wobei $J \subseteq T \otimes_S \Omega_{S/R}$ ein Ideal ist.

Für die letzte Gleichheit nutze, dass $T \supset S$ seperabel und somit $f'(\alpha) \neq 0$ ist und nach obiger Wahl $T = S[\alpha]$ gilt.

Damit erhalten wir nun:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R})/J$$

 $\Rightarrow T \otimes_S \Omega_{S/R} \hookrightarrow \Omega_{T/R} \text{ ist surjektiv.}$

Somit muss J = 0 gelten und es folgt $T \otimes_S \Omega_{S/R} \simeq \Omega_{T/R}$.

Theorem 6. Sei $T \supset k$ eine seperabel generierte Körpererweiterung und $B = \{b_i\}_{i \in \Lambda}$. Dann ist B genau dann eine Differenzialbasis von T über k, falls eine der folgedenen Bedingungen erfüllt ist:

- 1. char(k) = 0 und B ist eine Transzendenzbasis von T über k.
- 2. char(k) = p und B ist eine p-Basis von T über k.

Beweis.

1."⇒": Sei B eine Transzendenzbasis von T über k.

Somit ist die Körpererweiterung $K \supset S := k(B)$ algebraisch und seperabel. Mit lemma 5 folgt:

$$\Omega_{T/k} = T \otimes_S \Omega_{S/k}$$

Betrachte S als Lokalisierung von K[B] und wende **Lokalisierung des** Kähler-Differenzials auf $\Omega_{S/k}$ an, somit gilt:

$$\Omega_{S/k} = S \otimes_{k[B]} \Omega_{k[B]/k}$$

In **Differenzial von Polynomalgebren 1** haben wir gesehen, dass $\Omega_{k[B]/k}$ ein freis Modul über k[B] mit $\{b_i\}_{i\in\Lambda}$ als Basis ist. Dies liefert uns letztendlich die gewünschte Darstellung

$$\Omega_{T/k} = \bigoplus_{i \in \Lambda} T \langle d_T(x_i) \rangle.$$

1." \Leftarrow ": Sei $d_T(B)$ eine Vektorraumbasis von $\Omega_{T/k}$.

Zeige zunächst, dass T algebraisch über S ist.

Betrachte dazu die COTANGENT SEQUENZ von $K \hookrightarrow S \hookrightarrow T$.

$$T \otimes_S \Omega_{S/k} \longrightarrow \Omega_{T/k} \longrightarrow \Omega_{T/S} \longrightarrow 0$$

Diese besagt $\Omega_{T/S} = \Omega_{T/k} / im(T \otimes_S \Omega_{S/k} \longrightarrow \Omega_{T/k})$.

Nach Vorraussetzung gilt
$$\Omega_{T/k} = T \langle d_T(B) \rangle$$
.
 $\Rightarrow im(T \otimes_S \Omega_{S/k} \longrightarrow \Omega_{T/k}) = T \langle d_S(B) \rangle \simeq \Omega_{T/k}$

Zusammen zeigt und dies, dass $\Omega_{T/S} = 0$ gilt.

Da, wie wir in " \Rightarrow " gezeigt haben, jede Transzendenzbasis B' von T über S auch eine Differenzialbasis $\Omega_{T/S}=0$ ist, gilt für diese $B'=\emptyset$. Da dies sonst der existens von Transzendenzbasen [vlg. PROPOSITION] widersprechen würde, muss somit T algebraisch über S sein.

Zeige noch, dass B auch algebraisch unabhängig über S ist. Sei dazu τ die minimale Teilmenge von Λ , für welche T noch algebraisch über $k(\{b_i\}_{i\in\tau})$ ist. Für diese ist $\{b_i\}_{i\in\tau}$ algebraisch unabhängig über K. Damit ist $\{b_i\}_{i\in\tau}$ ebenfalls eine Differenzialbasis von T über k. Also muss schon $\tau=\Lambda$ gegolten haben und B ist eine Transzendenzbasis von T über k.