

Designing Hierarchical Multi-HCA Aware Allgather in MPI

Tu Tran, Benjamin Michalowicz, Bharath Ramesh,
Hari Subramoni, Aamir Shafi and Dhabaleswar K. Panda
Network Based Computing Laboratory
The Ohio State University

tran.839@osu.edu

- Motivation and Contributions
- Designing Multi-HCA Aware (MHA) Allgather
- Accelerating Allreduce with MHA Allgather
- Performance Evaluation
 - Microbenchmark-level
 - Application-level
- Summary

Motivation

- Multi-rail networks in existing and upcoming exa-scale systems
 - Summit and Sierra [1] 2 adapters per node
 - ThetaGPU system [2] 8 adapters per node
 - Frontier [3] and El Capitan [4] Multiple Slingshot NICs
- Advantages:
 - Fault-tolerance
 - Performance
- Have we efficiently utilized all adapters per node in the context of MPI?
 - Yes, at point-to-point level
 - No, at the collective level
 - => Collective designs need to be revisited and augmented

Multi-rail Support at P2P Level

Figure 1: Bandwidth comparison between intra-node and inter-node communication

Collective Performance with Multi-rail Support at P2P Level

Figure 2: Allgather 2 Nodes, 2 PPN communication timeline visualization

Contributions

 Design and implementation of Multi-HCA Aware (MHA) Allgather to speed up both intranode and internode performance

 Performance evaluation at both microbenchmark and application levels with state-of-the-art MPI libraries, namely MVAPICH2-X and HPC-X

Accelerating Allreduce with the proposed Allgather

• Performance Model of MHA Allgather

- Motivation and Contributions
- Designing Multi-HCA Aware (MHA) Allgather
- Accelerating Allreduce with MHA Allgather
- Performance Evaluation
 - Microbenchmark-level
 - Application-level
- Summary

Intranode Design

- For **pure intranode** communication
 - Intranode transfers performed by
 CPUs
 - Network adapters stay idle
- => **How** can we efficiently **utilize** the idle **adapters** to **accelerate** the communication?
- Idea:
 - Each process offloads the same
 amount of work to adapters

(a) Direct Spread algorithm executes in 3 steps

(b) The proposed MHA-intra executes in 2 steps. Step 1' is step 2 overlapping with 1st half of step 1. Step 2' is step 3 overlapping with 2nd half of step 1.

Tuning Algorithm for Intranode Design

- What is the optimal offload size?
 - Processes and adapters need to finish at the same time
 - Otherwise, the one that takes long
 time will be a source of bottleneck

Figure 5: A chart showing the correlation between the offload size to adapters and latency

Internode Design

- Observations:
 - Intranode transfer is a source of bottleneck
 - Need to separate intranode and internode communication
- The proposed hierarchical MHA Allgather

Overlapping Intranode and Internode Communication

Figure 6: A timeline view of communication events of a node during interleader data exchange and node-level data distribution phases

Figure 7: A comparison of Recursive Doubling and Ring algorithms used in inter-leader data exchange phase

- Motivation and Contributions
- Designing Multi-HCA Aware (MHA) Allgather
- Accelerating Allreduce with MHA Allgather
- Performance Evaluation
 - Microbenchmark-level
 - Application-level
- Summary

Accelerating Allreduce with MHA Allgather

- Ring Allreduce is proven to be bandwidth-optimal, which is particularly suitable for large messages
- The algorithm executes in two phases

- Motivation and Contributions
- Designing Multi-HCA Aware (MHA) Allgather
- Accelerating Allreduce with MHA Allgather
- Performance Evaluation
 - Microbenchmark-level
 - Application-level
- Summary

Experimental Setup

- Thor cluster of HPC Advisory Council
- Comparison with
 - MVAPICH2-X v2.3
 - HPC-X v2.10.0
- Application software
 - PyTorch v1.8.0
 - Horovod v0.20.0

Specification	Thor
Number of Nodes	32
Processor Family	Xeon Broadwell
Processor Model	E5-2697AV4
Clock Speed	2.6 GHz
Sockets	2
Cores per Socket	16
RAM (DDR4)	256 GB
GPU Family	Tesla V100
GPUs	1
GPU Memory	32 GB
Interconnect	2x IB-HDR (100Gb/s)

OMB - Intranode Allgather Evaluation

OMB - Internode Allgather Evaluation

Figure 13: Proposed MPI_Allgather against state of the art libraries via OSU Microbenchmarks on 512 processes (16 nodes 32 PPN)

44-53% improv.

Figure 14: Proposed MPI_Allgather against state of the art libraries via OSU Microbenchmarks on 1024 processes (32 nodes 32 PPN)

61% improv.

OMB - Allreduce Evaluation

Figure 15: Evaluation of Proposed Inter-node MPI_Allreduce Design against state of the art libraries via OSU Microbenchmarks at scale (32 PPN)

15-34% improv.

31-39% improv.

44-56% improv.

Matrix-Vector Multiplication Kernel

- 1D row layout partition
- The proposed Allgather outperforms both HPC-X and MVAPICH2-X
 - By up to **1.98x** and **1.42x** for strong scaling
 - And **1.84x** and **1.94x** for weak scaling experiments with **1024 processes**

Figure 16: Performance Evaluation of MHA against state of the art MPI libraries in a Matrix-Vector Multiplication kernel for Weak and Strong Scaling

Deep Learning Training

- CPU-based training
- The three neural networks are ResNet50, ResNet101, and ResNet152
 - with **25.6**, **44.7** and **60.4** millions of parameters, respectively
- Up to 7.83% better than MVAPICH2-X

Figure 17: Proposed MHA design against MVAPICH2-X via PyTorch + Horovod DL Performance Evaluation: Images Per Second

- Motivation and Contributions
- Designing Multi-HCA Aware (MHA) Allgather
- Accelerating Allreduce with MHA Allgather
- Performance Evaluation
 - Microbenchmark-level
 - Application-level
- Summary

Summary

- This paper proposed a Multi-HCA Allgather that
 - Utilizes all the available network adapters within a node
 - Provides high overlap between inter-node and intra-node communication
- At the micro-benchmark level
 - The Improvements are up to 62% and 61% better than HPC-X and MVAPICH2-X for 1024 processes
 - The design also boosts the performance of Ring Allreduce by 56% and 44% compared to
 HPC-X and MVAPICH2-X
- At the application level
 - The enhanced Allgather shows 1.98x and 1.42x improvement in a matrix-vector multiplication kernel when compared to HPC-X and MVAPICH2-X
 - Allreduce performs up to 7.83% better in deep learning training against MVAPICH2-X

Thank You!

tran.839@osu.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/

References

- 1. https://www.top500.org/lists/top500/2021/11/
- 2. https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
- 3. https://www.olcf.ornl.gov/frontier/
- 4. https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html