Before we begin

On a desktop

- 1. Login with your McGill credentials.
- 2. Open RStudio
- 3. Install the packages and download the data.

On your laptop

Install the packages and download the data.

Packages and data

packagesData.R available at goo.gl/FJtdXu.

HGSS Workshop: Analysis and Visualization of Large Genomics Data in R

Jean Monlong

Human Genetics department

March 28, 2017

Today's topic

- Reading large genomics data.
- ▶ Analyzing large genomics data.
- ▶ Visualizing large genomics data.

Let's get started!

- 1. Open R/Rstudio or whatever you use.
- 2. Prepare a folder for the workshop and set it as working directory.

Disclaimer

- ▶ Some things might be technical. Follow what you can.
- ▶ Feel free to interrupt or suggest other ways.
- ▶ No need to type/do everything.
- ▶ You can follow the live script.

Today's packages

Installation

- ▶ Using install.packages for CRAN packages.
- ▶ Using biocLite for Bioconductor packages.

Run this

```
install.packages(c("data.table","dplyr","ggplot2","parallel",
    "Batchlobb", "parallel", "magrittr"))
source("http://bioconductor.org/biocLite.R")
biocLite(c("GenomicRanges", "Rsamtools", "VariantAnnotation",
    "rtracklayer", "Gviz"))
```

Shared folder

Use the script in the shared Google Drive folder: goo.gl/FJtdXu.

Today's data

Get the data

- download.file("ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL .chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz. tbi", "tgp22.vcf.gz.tbi")

Gencode file

- ▶ Human gene reference annotation: genes, exons, transcipts, ...
- ▶ More than 2 million lines.
- ▶ See GTF format.

1000 Genomes Project

- ▶ Variants: SNPs, indels, structural variants.
- ▶ Chr 22, \sim 1 million variants and genotypes across 2500 samples.
- ▶ See VCF format

Reading large genomics data

data.table package and fread

fread function

- + Very fast.
- + Usually no need for additional parameters.
- Has its specific format (data.table)...
- + ... which can be converted into data.frame.
- + Very fast.

Example

```
library(data.table)
myDT = fread("myFile.tsv")
myDF = as.data.frame(myDT)

myDT = fread("gunzip -c myFile.tsv.gz")
```

Exercise

- 1. Read Gencode file (gencode.gtf.gz) with read.table.
- 2. Same with fread.
- 3. Have a look at the data.
- 4. List the different chromosomes.
- 5. How many different gene types?
- 6. How many different genes?
- * How many different genes per gene type ?

Chunk-by-chunk approach

When you can analyze the data in slices.

- + Only a slice of the file in memory.
- A bit painful/ugly.

```
con = file(file.name)
while(length((chunk.df = read.table(con,nrows=1000)))>0){
    ... Instructions
}
close(con)
```

Bioconductor packages

- ▶ GFF format with import (rtracklayer package).
- ▶ VCF format with readVcf (VariantAnnotation package).
 - + Parse the format.
 - Sometimes parse too much \rightarrow complicated object.
 - + Read indexed files.

Exercise

- 1. Read gencode.gtf.gz in another object using import.
- 2. Have a look at the data.

Using file indexing

Why indexing?

To quickly import a slice of a file. In genomics, one region.

Indexing workflow

- 1. Order file by position (chr + start).
- 2. Compress with bgzip.
- 3. Index.

How?

With command lines or with R functions.

Indexing files with R

data.table package is faster to order large files than conventional R.

```
library(data.table)
dt = fread("file.bed")
setkey(dt, chr, start)
write.table(dt, file="file-ordered.bed")
library(Rsamtools)
bgzip("file-ordered.bed")
indexTabix("file-ordered.bed.bgz")
```

Using indexed files

```
reg = GRanges(...)
library(VariantAnnotation)
vcf <- readVcf("variants.vcf.gz", "hg19", reg)
library(rtracklayer)
gtf = import(TabixFile("annotation.gtf.bgz"), which=reg)</pre>
```

Exercise

- 1. Read variants in VCF between coordinates 30 Mb and 31 Mb.
- 2. Order, write, compress and index the gencode file.
- * Tile the Mb in 10 bins. In each bin count the number of variants in the VCF.

Analyzing large genomics data

Avoid loops, use sapply/lapply instead

- + Avoid manual init/update of objects.
- + No temporary object polluting the environment.
- + More optimized.
- + Easy to parallelize.
 - More painful to debug.
- An error and everything must be computed again.

```
perm.l = lapply(1:1000, function(ii){
   data.frame(perm=ii, est=..SOMETHING..)
})

perm.df = do.call(rbind, perm.l)
## or
perm.df = as.data.frame(rbindlist(perm.l))
```

Stupid exercise

Sample 10 elements of the gencode annotation and count the number of exons, 100 times.

Parallel processing

Easiest solution with parallel package

- ▶ Using mclapply instead of lapply.
- ▶ mc.cores= the number of processors to use.

Example

```
perm.1 = mclapply(1:1000, function(ii){
  data.frame(perm=ii, est=..SOMETHING..)
}, mc.cores=4)
```

Exercise

Parallelize the previous exercise.

Using computing clusters directly with BatchJobs

What you need

- ▶ A function that can independently the code
 - ► Load packages.
 - ► Load necessary data.
 - ▶ Run the code.
- ▶ A parameter list (used to define the jobs).
- ▶ Some global objects (same for all jobs). Optional.
- ▶ Your favorite cluster configured (or your computer).

More info

Checkout PopSV documentation on BatchJobs. To use Guillimin, Abacus, Briaree or Mammouth ask me for the configuration files.

BatchJobs example

```
library(BatchJobs)
reg = makeRegistry("perm")
jobFun <- function(ii, necessaryData){</pre>
    library(...)
    ... Instructions using 'ii' and 'necessaryData'
    data.frame(perm=ii, ...)
batchMap(reg, jobFun, 1:10, more.args=list(necessaryData=myData))
submitJobs(reg))
showStatus(reg)
perm.l = reduceResultsList(reg)
```

data.frames

- ▶ Mix between matrix and list
- ► Array form.
- ▶ Columns can have different data types.

matrix

```
samp1 samp2 samp3
gene1 -1.3 -1.8 -4.1
gene2 -1.5 -1.2 4.9
```

data.frame

```
      gene
      sample
      expression

      gene1
      samp1
      -1.3

      gene2
      samp1
      -1.5

      gene1
      samp2
      -1.8

      gene2
      samp2
      -1.2

      gene1
      samp3
      -4.1

      gene2
      samp3
      4.9
```

Pros/Cons

- + Dense representation of large data.
 - Accepts only one data type.
 - <u>manual</u> combination with other information often required.

- + Flexible.
- + Accepts several data types.
- + Can represent all the data needed for an analysis.
- Takes more space/memory due to repetitions.

dplyr package

"A Grammar of Data Manipulation"

dplyr provides functions which can be combined for data manipulation.

```
mutate add a new column using others.
```

```
filter filter rows (similar as subset function).
```

```
select specific columns only.
```

```
arrange order rows using specific columns.
```

```
group_by groups rows according to specific columns.
```

```
summarize summarizes each group of rows.
```

do applies a function to a group of rows.

- + Works with pipes.
- + Fast.
 - Has its own format $tbl_{-}df_{-}$...
- $+ \dots$ which is almost the same as data.frame.

Pipes are cool!

- ▶ Pipe functions instead of embedding them.
- ▶ More readable.
- ▶ Easier to combine several functions.
- ▶ Avoid temporary objects.
- ▶ Pipe argument %>%.

Example

Grouping rows

Operation by block

- ▶ Using group_by() function.
- ▶ Further operations are applied separately per group of rows.

Example

Tips

- ▶ n() gives the number of rows in the group.
- ungroup removes groups.
- desc() means descending order (in arrange()).

Exercise

- 1. For each gene, compute the number of exon.
- 2. Print the top 10 genes with the most exons.
- 3. For each gene type, compute the average number of exon per gene.
- 4. For each gene type, compute the average gene size.
- 5. For each chromosome, compute the number of genes for each gene type.
- 6. In protein-coding genes, compute the median size of the first exon, second exon, etc (i.e. per exon_number).

GenomicRanges

Introduction

Represents genomic intervals. All annotation can be represented through GenomicRanges objects.

Which function fit your exact need?

overlaps Any Test overlaps of one GRanges into second GRanges.

count Overlaps For each region in one GRanges , count how many overlaps from another.

findOverlaps Finds overlaps between two GRanges objects.

distance ToNearest Computes the distance from each regions in a GRanges object to the nearest in another GRanges object.

 $\operatorname{subsetByOverlaps}$ Keep the regions from one GRanges that overlaps another.

Overlaps between two *GRanges* sets

findOverlaps function

- ▶ Two *GRanges* objects as input.
- ► Extra parameters available for specific overlaps.
- ▶ Returns the index of regions in object 1 and 2 that overlap.
- ▶ queryHits and subjectHits functions to retrieves those index.

Example

Better one big overlap than many small ones

Exercise

- 1. For each gene type, how many genes have at least one variant in their body?
- * For each gene type, what is the average number of variant per gene?
- * For each gene type, what is the average allele frequency of the variant?

Hints

lapply, tapply, dplyr.

Other tricks

- ightharpoonup Create a GRanges from a data.frame .
- ► Change chromosome names ('chr' or no 'chr', that is the question).

```
library(GenomicRanges)
gr = makeGRangesFromDataFrame(df, keep.extra.columns = TRUE)
seqlevels(genc) = gsub("chr","",seqlevels(genc))
## or
seqlevels(genc) = paste0("chr",seqlevels(genc))
```

GenomicRanges + dplyr

tapply

- 1. The values to use (vector).
- 2. How to group these values (vector).
- 3. The function to run (input is one vector).

tapply works but dplyr is faster and more flexible.

Visualizing large genomics data

Gviz for multi-track graphs

```
library(Gviz)
gatrack = GenomeAxisTrack()
snp.t = DataTrack(snp.gr, data="AF", type='h', name="SNP freq")
plotTracks(list(gatrack, snp.t))
```

More info

See slides/code/links from MonBUG Gviz demo.

ggplot2 package

Introduction

A package to construct pretty and/or complex graphs. Many aspects of the graph are arranged automatically but everything can be specified. Easy layers addition.

ggplot2

Input: data.frame

- ▶ Each row represents one "observation".
- ▶ Columns represent the different information about the "observations".

Concept

- ▶ Start with a ggplot(...) part and the input data.frame.
- ▶ aes(...) defines how to use the input data.frame columns.
- ▶ Add layers : geom_*(...), scale_*(...), ...

Example

```
library(ggplot2)
ggplot(myDf, aes(x=colA, y=colB, colour=colC, linetype=colD))
    + geom_point() + geom_line() + scale_y_log10()
```

Useful online resources

```
▶ http://docs.ggplot2.org/current/
```

▶ http://www.cookbook-r.com/Graphs/

Exercise

- 1. Show the distribution of the gene size (histogram), colored by gene type.
- 2. Show for each chromosome the number of genes, colored by gene type.
- * Show the median size of the first exon, second exon, etc, of protein coding genes.
- * For each gene type, what is the average allele frequency of the variant? Maybe a boxplot?

Final recommendations

- ▶ Use **names** that makes sense (to you and future you).
- ▶ Nothing in the console, everything in an organized script.
- ➤ The script should be **sequential and commented** when complex.
- ▶ Save the graphs in the code, not manually through RStudio.
- ▶ Split long scripts and save temporary files.
- ▶ **Overwriting** is fine if in the same paragraph.
- ▶ Use functions/pipes to avoid environment/code pollution.
- ▶ Use **R** Markdown to produce a readable report while keeping the code.