MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 12th February, 2015 D1-Lecture 17

Eigenvalues and Eigenvectors: Motivation

- Solve for u: du/dt = 3u. The solution is $u(t) = c e^{3t}$, $c \in \mathbb{R}$ With initial condition u(0) = 2, the solution is $u(t) = 2e^{3t}$.
- Consider the system of Differential Equations (ODE) with initial conditions (IC):

$$dv/dt = 4v - 5w$$
, $v(0) = 8$,
 $dw/dt = 2v - 3w$, $w(0) = 5$.

How does one find the solution?

• Write the system in matrix form $d\mathbf{u}/dt = A\mathbf{u}$, $\mathbf{u}(0) = \mathbf{u}_0$

$$d\mathbf{u}/dt = A\mathbf{u}, \ \mathbf{u}(0) = \mathbf{u}_0$$

where
$$\mathbf{u} = \begin{bmatrix} v \\ w \end{bmatrix}$$
, $\mathbf{u}_0 = \begin{bmatrix} 8 \\ 5 \end{bmatrix}$, $A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$.

This is a system of linear 1st order ODE with constant coefficients.

• Assuming the solution is $\mathbf{u}(t) = \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} = e^{\lambda t} \mathbf{x} = \begin{bmatrix} e^{\lambda t} y \\ e^{\lambda t} z \end{bmatrix}$, where

$$\mathbf{x} = \begin{bmatrix} y \\ z \end{bmatrix} \in \mathbb{R}^2$$
, we need to find λ and x .

Eigenvalues and Eigenvectors: Definition

We have
$$v'=4v-5w$$
, $w'=2v-3w$, where $v(t)=e^{\lambda t}y$, $w(t)=e^{\lambda t}z$
$$\lambda\,e^{\lambda t}y=4e^{\lambda t}y-5e^{\lambda t}z$$
,
$$\lambda\,e^{\lambda t}z=2e^{\lambda t}y-3e^{\lambda t}z$$
.

Cancelling $e^{\lambda t}$, we get

Eigenvalue problem: Find
$$\lambda$$
 and $\mathbf{x} = (y, z)^T$ satisfying $4y - 5z = \lambda y$, $2y - 3z = \lambda z$.

In the matrix form, it is $A\mathbf{x} = \lambda \mathbf{x}$.

This equation has two unknowns, λ and \mathbf{x} .

If there exists a λ such that $A\mathbf{x}=\lambda\mathbf{x}$ has a non-zero solution \mathbf{x} , then λ is called an eigenvalue of A and all *nonzero* \mathbf{x} satisfying $A\mathbf{x}=\lambda\mathbf{x}$ are called eigenvectors of A associated to λ .

Q: Given $A n \times n$, how does one find its eigenvalues and eigenvectors?

Eigenvalues and Eigenvectors: Solving $A\mathbf{x} = \lambda \mathbf{x}$

- Write $Ax = \lambda x$ as $(A \lambda I)x = 0$.
- λ is an eigenvalue of A

 \Leftrightarrow there is a nonzero x in the nullspace of $A - \lambda I$ $\Leftrightarrow N(A - \lambda I) \neq 0$, i.e., dim $(N(A - \lambda I)) \geq 1$, $\Leftrightarrow A - \lambda I$ is singular $\Leftrightarrow \det(A - \lambda I) = 0$.

- $det(A \lambda I)$ is a polynomial in the variable λ of degree n. Hence it has at most n roots $\Rightarrow A$ has at most n eigenvalues.
- $det(A \lambda I)$ is called the characteristic polynomial of A.
- If λ is an eigenvalue of A, then the nullspace of $A \lambda I$ is called the eigenspace of A associated to eigenvalue λ .
- $\lambda = 0$ is an eigenvalue of $A \Leftrightarrow \det(A) = 0 \Leftrightarrow A$ is singular.

Eigenvalues and Eigenvectors: Example

To summarise: An eigenvalue of \boldsymbol{A} is a root of its characteristic polynomial, and any non-zero vector

in the corresponding eigenspace is an associated eigenvector.

Recall: The ODE system we want to solve is

$$v' = 4v - 5w$$
, $v(0) = 8$, $w' = 2v - 3w$, $w(0) = 5$.

The solutions are $v(t) = e^{\lambda t} y$, $w(t) = e^{\lambda t} z$, where $(y, z)^T$ is a solution of:

$$\begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \lambda \begin{bmatrix} y \\ z \end{bmatrix} \qquad (A\mathbf{x} = \lambda \mathbf{x})$$

The characteristic polynomial of A is

$$|A - \lambda I| = \begin{vmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{vmatrix}$$
$$= (4 - \lambda)(-3 - \lambda) + 10$$
$$= \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)$$

The eigenvalues of A are $\lambda_1 = -1$, $\lambda_2 = 2$.

Eigenvalues and Eigenvectors: Example

To find the eigenvectors \mathbf{x}_1 and \mathbf{x}_2 associated to $\lambda_1 = -1$ and $\lambda_2 = 2$ respectively, find $N(A - \lambda_1 I) = N(A + I)$, and $N(A - \lambda_2 I) = N(A - 2I)$.

$$(A+I)\mathbf{x}_1 = \begin{bmatrix} 5 & -5 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = 0 \Rightarrow$$

The eigenspace of A corresponding to $\lambda_1 = -1$ is N(A + I) =

$$\left\{egin{bmatrix}z\\z\end{bmatrix}$$
 where $z\in\mathbb{R}
ight\}$ and $\mathbf{x}_1=egin{bmatrix}1\\1\end{bmatrix}$ is an associated eigenvector.

Similarly,
$$(A - 2I)\mathbf{x}_2 = \begin{bmatrix} 2 & -5 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = 0$$

$$\Rightarrow N(A - 2I) = \left\{ \begin{bmatrix} \frac{5z}{2} \\ z \end{bmatrix} \text{ where } z \in \mathbb{R} \right\}.$$

$$\Rightarrow N(A-2I) = \left\{ \begin{bmatrix} 2 \\ z \end{bmatrix} \text{ where } z \in \mathbb{R} \right\}.$$

In particular, $\mathbf{x}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ is an eigenvector associated to $\lambda_2 = 2$.

Thus, the system $d\mathbf{u}/dt = A\mathbf{u}$ has two special solutions

$$\mathbf{u}_{1}(t) = e^{-t}\mathbf{x}_{1} \text{ and } \mathbf{u}_{2}(t) = e^{2t}\mathbf{x}_{2}.$$

M.K. Keshari () Chapter 5 12th February, 2015 6 / 12

Complete Solution to ODE

Note: When \mathbf{u}_1 and \mathbf{u}_2 satisfy $d\mathbf{u}/dt = A\mathbf{u}$, then so does $c_1\mathbf{u}_1 + c_2\mathbf{u}_2$ for scalars c_1 and c_2 .

Complete solution: $\mathbf{u}(t) = c_1 e^{-t} \mathbf{x}_1 + c_2 e^{2t} \mathbf{x}_2$.

i.e.
$$\begin{bmatrix} v(t) \\ w(t) \end{bmatrix} = c_1 e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$
.

i.e.
$$v(t) = c_1 e^{-t} + 5c_2 e^{2t}$$
, $w(t) = c_1 e^{-t} + 2c_2 e^{2t}$.

If we put the initial conditions v(0) = 8 and w(0) = 5, then

$$c_1 + 5c_2 = 8$$
, $c_1 + 2c_2 = 5 \Rightarrow c_1 = 3$, $c_2 = 1$.

Hence the solution of the original ODE system with the given IC is

$$v(t) = 3e^{-t} + 5e^{2t}, \quad w(t) = 3e^{-t} + 2e^{2t}.$$

Other Initial Conditions

- If ICs are v(0) = 3, w(0) = 3, then $c_1 = 3$ and $c_2 = 0$. The solutions are $v_1(t) = 3e^{-t}$ and $w_1(t) = 3e^{-t}$ which decays with time.
- If ICs are v(0) = 5, w(0) = 2, then $c_1 = 0$ and $c_2 = 1$. The solutions are $v_2(t) = 5e^{2t}$, $w_2(t) = 2e^{2t}$ which grows with time.

$$\frac{w(t)}{v(t)} = \frac{3e^{-t} + 2e^{2t}}{3e^{-t} + 5e^{2t}} = 1 - \frac{3e^{2t}}{3e^{-t} + 5e^{2t}} = 1 - \frac{3}{3e^{-3t} + 5} < \frac{2}{5}$$

$$\frac{w_1(t)}{v_1(t)} = 1, \quad \frac{w_2(t)}{v_2(t)} = \frac{2}{5}, \quad \frac{w(t)}{v(t)} \to \frac{2}{5} \quad \text{as} \quad t \to \infty$$

8 / 12

Summary

To solve $Ax = \lambda x$,

- **1** Find characteristic polynomial $det(A \lambda I)$ (of degree n).
- ② Find roots of characteristic polynomial. [For $n \ge 5$, no formula exist for roots. (Abel, Galois) For n = 3, 4, formulae for root exist, but not easy to use.]
- **③** For each eigenvalue λ , to find associated eigenspace, solve $(A \lambda I)x = 0$.
- Finding roots of characteristic polynomial is difficult in general. However we know the sum and product of eigenvalues: Write $\det(A-\lambda I)=(\lambda-\lambda_1)\cdots(\lambda-\lambda_n)$ and expand both sides. Comparing the coefficients of λ^{n-1} and λ^0 , we get

Trace of
$$A := a_{11} + \ldots + a_{nn}$$
 (sum of diagonal entries)
 $= \lambda_1 + \ldots + \lambda_n$ (sum of eigenvalues)
 $\det(A) = \lambda_1 \ldots \lambda_n$ (product of eigenvalues)

Examples

In some cases it is easy to find the eigenvalues.

Ex:
$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
 is diagonal. Characteristic polynomial $(\lambda - 3)(\lambda - 2)$.

Eigenvalues: $\lambda_1 = 3$, $\lambda_2 = 2$.

Eigenvectors:
$$(A - 3I)x_1 = 0 \Rightarrow x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.

Similarly, eigenvector associated to λ_2 is $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Further, \mathbb{R}^2 has a basis consisting of eigenvectors of A: $\{x_1, x_2\}$.

Ex: If A is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then

Eigenvalues: $\lambda_1, \dots, \lambda_n$

Eigenvectors: e_1, \dots, e_n ,

which form a basis for \mathbb{R}^n .

M.K. Keshari () Chapter 5 12th February, 2015 10 / 12

Examples

Ex: Projection onto the line
$$x = y$$
: $P = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$.

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 projects onto itself $\Rightarrow \lambda_1 = 1$ with eigenvector x_1 .

$$x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 projects onto $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \lambda_2 = 0$ with eigenvector x_2 .

Further, $\{x_1, x_2\}$ is a basis of \mathbb{R}^2 .

Q: Do a collection of eigenvectors always form a basis of \mathbb{R}^n ? **A:** No.

Ex:
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
. Characteristic Polynomial: $det(A - \lambda I) = (\lambda - 1)^2$.

Eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 1$.

Eigenvectors:
$$(A - I)x_1 = 0 \Rightarrow x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.

Eigenspace of A is 1 dimensional $\Rightarrow \mathbb{R}^2$ has no basis of eigenvectors of A.

Q: What is the advantage of a basis of \mathbb{R}^n consisting of eigenvectors?

Similarity and Eigenvalues

Theorem: If A and B are similar, i.e., $S^{-1}AS = B$ for an invertible matrix S, then they have the same characteristic polynomial.

In particular, they have the same eigenvalues, det(A) = det(B) and Trace(A) = Trace(B).

Proof. Given:
$$B = S^{-1}AS$$
. Want to prove: $\det(A - \lambda I) = \det(B - \lambda I)$. Note: $\det(B - \lambda I) = \det(S^{-1}AS - \lambda S^{-1}S)$
$$= \det(S^{-1}(A - \lambda I)S) = \det(A - \lambda I).$$

Observe: $A - \lambda I$ and $B - \lambda I$ are similar.

Definition: An $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix Λ , i.e., there is an invertible matrix S and a diagonal matrix Λ such that $S^{-1}AS = \Lambda$.

Note: If this happens, the eigenvalues of A are the diagonal entries of Λ .