Recurrent Neural Network

Tianchu.Zhao@uts.edu.au

Why Recurrent

Sequence data

- Sequence data means that there exists a relation between data points
- The relation can be time, spatial, semantic ...
- Each sequence consists of multiple data points can have vary length

Neural network on sequence data

- For vary length input, we need vary length neuron (parameters) in each layer
- If we capture a certain feature in one area, this feature can not be broadcasted to another area
- Can not accommodate the large amount of parameters

 To address the above problems, we use Recurrent Neural Network(RNN)

Applications of RNN

- name entity recognition: sentence to location of noun, action
 - eg, what is the noun(machine learning) action(training)
- sentiment analysis: sentence to score
- speech recognition: audio to text
- machine translation: French to English
- video activity recognition: video to "running"
- music generation: notes to music sheet/audio
- DNA/Protein analysis: sequence to property score

How Recurrent

Mathematic notation

- x, data point, each data point is a sequence
- x^(t), the t-th element in a sequence
- y^(t), the t-th label in a sequence
- T_x, the input length
- T_y, the output length
- put together we have
- x^{(i)(t)}, i-th sequence t-th element
- y^{(i)(t)}, i-th sequence t-th label
- T_x⁽ⁱ⁾, input length of i-th sequence

RNN Structure

- The hidden layer of each corresponding time step will receive the activation value $a^{(t-1)}$, as a input, $a^{(0)}$ is usually 0
- The parameters are input W_{ax} , W_{aa} , W_{ay} where we share parameters at every timestamp

Zoom in each neuron

Forward pass

$$egin{align} a^{\langle 0
angle} &= ec{0} \ \ a^{\langle t
angle} &= g_1(W_{aa}a^{\langle t-1
angle} + W_{ax}x^{\langle t
angle} + b_a) \ \ \hat{y}^{\langle t
angle} &= g_2(W_{ya}a^{\langle t
angle} + b_y) \ \end{gathered}$$

- To simplify the calculation we can combine (append) W_{ax} , W_{aa} to W_{a}
- combine $a^{(t-1)}$ and $x^{(t)}$

$$W_a = [W_{ax}, W_{aa}]$$
 $a^{\langle t \rangle} = g_1(W_{aa}a^{\langle t-1 \rangle} + W_{ax}x^{\langle t \rangle} + b_a)$ \Longrightarrow $a^{\langle t \rangle} = g_1(W_a[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_a)$ $\hat{y}^{\langle t \rangle} = g_2(W_{ya}a^{\langle t \rangle} + b_y)$ $\hat{y}^{\langle t \rangle} = g_2(W_ya^{\langle t \rangle} + b_y)$

Backpropagation

RNN Structuresssss

we can have vary input output structure

RNN Issues

- The cat, which already ate a bunch of food, was full
- The cats, which already ate a bunch of food, were full
- The verb at the end is dependent on the noun at the beginning (subject-verb agreement)
- but RNN is not good at learning this long term dependent relationship

As we go deeper, vanishing gradient

To combat these two issues we have GRU and LSTM

Gated Recurrent Units (GRU)

- introduce additional variable call c in the recurrent unit which stands for memory cell
- We have the following new variables
- c^(t), output activation value a^(t)
- $\bar{c}^{(t)}$, the next activation value $a^{(t)}$ candidate
- Γ_{ij} , the Update Gate, it tells when to update memory cell c value

$$egin{aligned} ilde{c}^{\langle t
angle} &= tanh(W_c[c^{\langle t-1
angle}, x^{\langle t
angle}] + b_c) \ & \Gamma_u = \sigma(W_u[c^{\langle t-1
angle}, x^{\langle t
angle}] + b_u) \ & c^{\langle t
angle} &= \Gamma_u imes ilde{c}^{\langle t
angle} + (1 - \Gamma_u) imes c^{\langle t-1
angle} \ & a^{\langle t
angle} = c^{\langle t
angle} \end{aligned}$$

• Complete version also includes a Relevance gate Γ_r to represent the relevance between $c^{-(t)}$ and $c^{(t)}$

Long Short Term Memory (LSTM)

- more flexible and powerful than GRU
- it involves Forget Gate Γ_f and output gate Γ_o

$$\begin{split} &\Gamma_f^{\langle t \rangle} = \sigma(W_f[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_f) \\ &\Gamma_u^{\langle t \rangle} = \sigma(W_u[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_u) \\ &\tilde{c}^{\{t\}} = \tanh(W_C[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_C) \\ &c^{\langle t \rangle} = \Gamma_f^{\langle t \rangle} \circ c^{\langle t-1 \rangle} + \Gamma_u^{\langle t \rangle} \circ \tilde{c}^{\langle t \rangle} \\ &\Gamma_o^{\langle t \rangle} = \sigma(W_o[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_o) \\ &a^{\langle t \rangle} = \Gamma_o^{\langle t \rangle} \circ \tanh(c^{\langle t \rangle}) \end{split}$$

Bidirectional RNN (BRNN)

Deep RNN (DRNN)

Simple RNN example

- Language Model is to describe fact base on language to model language using mathematic, it is able to predict the probability of element occurring in a sequence
- we use corpus (text compose of many sentences)
- the first step to build the model is tokenize (dictionaries words)
- we then encode each word into word vector and add EOS (End of Sentence) to signify the end of sentence

- after we trained a language model, we can use sampling to learn what we've learnt
- first input $a^{(0)} x^{(1)}$ are 0, we get a distribution of softmax
- then we sample a random word
- we keep sampling till EOS
- then we get some sentence

Grand Plan (besides the lecture material)

- (√) Neural Network Foundation
- (√) Ensemble/Optimise your neural network
- (√) Convolution Neural Network
- (√) Principal Component Analysis / Big data
- (√) Reinforcement Learning
- (√) Recurrent Neural Network
- (□) Natural Language Processing
- (□) Generative Adversarial Network