STATISTICS WORKSHEET 1

- 1) a
- 2) a
- 3) b
- 4) d
- 5) c
- 6) b
- 7) b
- 8) a
- 9) c

10) What do you understand by the term Normal Distribution?

The normal distribution, also known as the Gaussian distribution, is the most important probability distribution in statistics for independent, random variables. Most people recognize its familiar bell-shaped curve in statistical reports.

The normal distribution is a continuous probability distribution that is symmetrical around its mean, most of the observations cluster around the central peak, and the probabilities for values further away from the mean taper off equally in both directions. Extreme values in both tails of the distribution are similarly unlikely. While the normal distribution is symmetrical, not all symmetrical distributions are normal. For example, the Student's t, Cauchy, and logistic distributions are symmetric.

As with any probability distribution, the normal distribution describes how the values of a variable are distributed. It is the most important probability distribution in statistics because it accurately describes the distribution of values for many natural phenomena. Characteristics that are the sum of many independent processes frequently follow normal distributions. For example, heights, blood pressure, measurement error, and IQ scores follow the normal distribution.

Common Properties for All Forms of the Normal Distribution

Despite the different shapes, all forms of the normal distribution have the following characteristic properties.

- They're all symmetric bell curves. The Gaussian distribution cannot model skewed distributions.
- o The mean, median, and mode are all equal.
- o Half of the population is less than the mean and half is greater than the mean.
- The Empirical Rule allows you to determine the proportion of values that fall within certain distances from the mean. More on this below!

While the normal distribution is essential in statistics, it is just one of many probability distributions, and it does not fit all populations. To learn how to determine whether the normal distribution provides the best fit to your sample data, read my posts about How to Identify the Distribution of Your Data and Assessing Normality: Histograms vs. Normal Probability Plots.

11) How do you handle missing data? What imputation techniques do you recommend?

Missing data can be dealt with in a variety of ways. I believe the most common reaction is to ignore it. Choosing to make no decision, on the other hand, indicates that your statistical programme will make the decision for you.

Your application will remove things in a listwise sequence most of the time. Depending on why and how much data is gone, listwise deletion may or may not be a good idea.

Another common strategy among those who pay attention is imputation. Imputation is the process of substituting an estimate for missing values and analysing the entire data set as if the imputed values were the true observed values.

And how would you choose that estimate? The following are some of the most prevalent methods:

Mean imputation

Calculate the mean of the observed values for that variable for all non-missing people. It has the advantage of maintaining the same mean and sample size, but it also has a slew of drawbacks. Almost all of the methods described below are superior to mean imputation.

Substitution

Assume the value from a new person who was not included in the sample. To put it another way, pick a new subject and employ their worth instead.

Hot deck imputation

A value picked at random from a sample member who has comparable values on other variables. To put it another way, select all the sample participants who are comparable on other factors, then choose one of their missing variable values at random.

One benefit is that you are limited to just feasible values. In other words, if age is only allowed to be between 5 and 10 in your research, you will always obtain a value between 5 and 10. Another factor is the random element, which introduces some variation. For exact standard errors, this is crucial.

Cold deck imputation

A value picked deliberately from an individual with similar values on other variables. In most aspects, this is comparable to Hot Deck, but without the random variance. As an example, under the same experimental condition and block, you can always select the third individual.

Regression imputation

The result of regressing the missing variable on other factors to get a predicted value. As a result, instead of utilising the mean, you're relying on the anticipated value, which is influenced by other factors. This keeps the associations between the variables in the imputation model, but not the variability around the anticipated values.

Stochastic regression imputation

The predicted value of a regression plus a random residual value. This has all of the benefits of regression imputation plus the random component's benefits. The majority of multiple imputation is based on stochastic regression imputation.

Interpolation and extrapolation

An estimate based on other observations made by the same person. It generally only works with data that is collected over time. Proceed with caution, though. For a variable like height in children—one that cannot be reduced through time—interpolation would make more sense. Extrapolation entails estimating beyond the data's true range, which necessitates making more assumptions than is necessary.

Single or Multiple Imputation

- Single and multiple imputation are the two forms of imputation. When people say imputation, they usually mean single.
- The term "single" refers to the fact that you only use one of the seven methods to estimate the missing number outlined above.
- It's popular since it's simple to understand and generates a sample with the same number of observations as the complete data set.
- When listwise deletion eliminates a considerable amount of the data set, single imputation appears to be a tempting option. It does, however, have certain restrictions.
- Unless the data is Missing Completely at Random, certain imputation processes, such as means, correlations, and regression coefficients, result in skewed parameter

- estimations. The bias is frequently worse than with listwise deletion, which is most software's default.
- The level of the bias is determined by a number of factors, including the imputation technique, the missing data mechanism, the fraction of missing data, and the information in the data set.

Furthermore, standard errors are underestimated by all single imputation approaches. Because the imputed observations are estimates, their values have a random error associated with them. However, your programme is unaware of this when you enter that estimate as a data point. As a result, it ignores the additional source of error, resulting in too-small standard errors and p-values.

And, while imputation is straightforward in theory, it is difficult to master in reality. As a result, it isn't perfect, although it may suffice in some circumstances.

As a result of multiple imputation, numerous estimates are generated. In multiple imputation, two of the approaches indicated above—hot deck and stochastic regression—work as the imputation method.

The multiple estimates varied significantly because these two approaches contain a random component. This reintroduces some variance that your program can account for in order to provide reliable standard error estimates for your model.

About 20 years ago, multiple imputation was a big advance in statistics. It eliminates many (but not all) difficulties with missing data and, when done correctly, leads to unbiased parameter estimations and accurate standard errors.

12) What is A/B testing?

A/B testing in its simplest sense is an experiment on two variants to see which performs better based on a given metric. Typically, two consumer groups are exposed to two different versions of the same thing to see if there is a significant difference in metrics like sessions, click-through rate, and/or conversions.

Using the visual above as an example, we could randomly split our customer base into two groups, a control group and a variant group. Then, we can expose our variant group with a red website banner and see if we get a significant increase in conversions. It's important to note that all other variables need to be held constant when performing an A/B test.

Getting more technical, A/B testing is a form of statistical and two-sample hypothesis testing. Statistical hypothesis testing is a method in which a sample dataset is compared against

the population data. Two-sample hypothesis testing is a method in determining whether the differences between the two samples are statistically significant or not.

13) Is mean imputation of missing data acceptable practice?

The process of replacing null values in a data collection with the data's mean is known as mean imputation.

Mean imputation is typically considered terrible practice since it ignores feature correlation. Consider the following scenario: we have a table with age and fitness scores, and an eight-year-old has a missing fitness score. If we average the fitness scores of people between the ages of 15 and 80, the eighty-year-old will appear to have a significantly greater fitness level than he actually does.

Second, mean imputation decreases the variance of our data while increasing bias. As a result of the reduced variance, the model is less accurate and the confidence interval is narrower.

14) What is linear regression in statistics?

Linear regression analysis is used to predict the value of a variable based on the value of another variable. The variable you want to predict is called the dependent variable. The variable you are using to predict the other variable's value is called the independent variable.

This form of analysis estimates the coefficients of the linear equation, involving one or more independent variables that best predict the value of the dependent variable. Linear regression fits a straight line or surface that minimizes the discrepancies between predicted and actual output values. There are simple linear regression calculators that use a "least squares" method to discover the best-fit line for a set of paired data. You then estimate the value of X (dependent variable) from Y (independent variable).

15) What are the various branches of statistics?

The two main branches of statistics are descriptive statistics and inferential statistics. Both of these are employed in scientific analysis of data and both are equally important for the student of statistics.

Descriptive Statistics

Descriptive statistics deals with the presentation and collection of data. This is usually the first part of a statistical analysis. It is usually not as simple as it sounds, and the statistician needs to be aware of designing experiments, choosing the right focus group and avoid biases that are so easy to creep into the experiment.

Different areas of study require different kinds of analysis using descriptive statistics. For example, a physicist studying turbulence in the laboratory needs the average quantities that

vary over small intervals of time. The nature of this problem requires that physical quantities be averaged from a host of data collected through the experiment.

Inferential Statistics

Inferential statistics, as the name suggests, involves drawing the right conclusions from the statistical analysis that has been performed using descriptive statistics. In the end, it is the inferences that make studies important and this aspect is dealt with in inferential statistics. Most predictions of the future and generalizations about a population by studying a smaller sample come under the purview of inferential statistics. Most social sciences experiments deal with studying a small sample population that helps determine how the population in general behaves. By designing the right experiment, the researcher is able to draw conclusions relevant to his study.

While drawing conclusions, one needs to be very careful so as not to draw the wrong or biased conclusions. Even though this appears like a science, there are ways in which one can manipulate studies and results through various means. For example, data dredging is increasingly becoming a problem as computers hold loads of information and it is easy, either intentionally or unintentionally, to use the wrong inferential methods. Both descriptive and inferential statistics go hand in hand and one cannot exist without the other. Good scientific methodology needs to be followed in both these steps of statistical analysis and both these branches of statistics are equally important for a researcher.