Also run the Matlab rref function and compare results.

Your program probably disagrees with rref even for small values of n. The problem is that some pivots are very small and the normalization step (to make the pivot 1) causes roundoff errors. Use a tolerance parameter to fix this problem.

What can you conjecture about the rank of A?

(4) Prove that the matrix A has the following row reduced form:

$$R = \begin{pmatrix} 1 & 0 & -1 & -2 & \cdots & -(n-2) \\ 0 & 1 & 2 & 3 & \cdots & n-1 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Deduce from the above that A has rank 2

Hint. Some well chosen sequence of row operations.

(5) Use your program to show that if you add any number greater than or equal to $(2/25)n^2$ to every diagonal entry of A you get an invertible matrix! In fact, running the Matlab function chol should tell you that these matrices are SPD (symmetric, positive definite).

Problem 8.15. Let A be an $n \times n$ complex Hermitian positive definite matrix. Prove that the lower-triangular matrix B with positive diagonal entries such that $A = BB^*$ is given by the following formulae: For $j = 1, \ldots, n$,

$$b_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} |b_{jk}|^2\right)^{1/2},$$

and for i = j + 1, ..., n (and j = 1, ..., n - 1)

$$\bar{b}_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} b_{ik} \bar{b}_{jk}\right) / b_{jj}.$$

Problem 8.16. (Permutations and permutation matrices) A permutation can be viewed as an operation permuting the rows of a matrix. For example, the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$

corresponds to the matrix

$$P_{\pi} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$