Describing Motion

Position:

Cartesian coordinates (X, Y, Z)

Spherical coordinates (radius, angle, angle)

Polar coordinates (radius, angle)

Displacement-Time graph: Plots the displacement over time.

Velocity and Speed:

 $Avg.speed = distance/time \\ Avg.velocity = displacement/time$

Velocity-Time graph: Plots the Velocity over time.

(Area under the graph gives the displacement) (Don't draw vertical lines!!)

Acceleration:

Acceleration = change In Velocity/time

Acceleration-Time graph:

Plots acceleration over time.

(we only use uniform acceleration with a constant a.)

Graphs:

Free Fall:

Free fall means no resistance. All object will fall at the same speed. It works with uniform acceleration: $g \approx 10m/s^2$.

Formulary

Symbols:

Symbol for time: t

Unit: [t] = 1s

Symbol for displacement: S

Unit: [S] = 1m

Symbol for speed: V Unit: [V] = 1m/s

Symbol for Acceleration: a

Unit: $[a] = 1m/s^2$

Formulas:

- Avg.speed = distance/time
- Avg.velocity = displacement/time
- $\bullet \ \ Acceleration = change In Velocity/time$
- S(t) = V * t (without acceleration)
- $S(t) = a/2 * t^2$ (with acceleration)
- $S(t) = V0 * t + a/2 * t^2$ (with initial speed)
- V(t) = a * t (if there is a initial speed it has to be added: V(t) = V0 + a * t)
- 1m/s = 3.6km/h
- $g = 9.81m/s^2 \approx 10m/s^2$

Formulas for constant acceleration:

Given	Unknown	Formula 1	Formula 2
a, t	v, s	v = a * t	$s = a/2 * t^2$
a, v	t, s	t = v/a	$s = v^2/2a$
a, s	v, t	$v = \sqrt{2as}$	$t = \sqrt{2s/a}$
v, s	a, t	$a = v^2/2s$	t = 2s/v
v, t	a, s	a = v/t	s = v * t/2
t, s	v, a	v = 2s/t (only with $a > 0$)	$a = 2s/t^2$