BÀI TẬP CHƯƠNG I

1.1. Thực hiện các phép tính

1.
$$(5-6i)+(2+4i)$$

2.
$$(2-3i)(4+i)$$

3.
$$(1+i)^2(1-i)^3$$

4.
$$\frac{2+3i}{5+4i}$$

5.
$$\frac{(3-2i)(1+2i)}{4-3i}$$

6.
$$\frac{(1+i)(1-2i)}{(2-i)(4+3i)}$$
 7. $\frac{4+5i+i^3}{(2-i)^2}$

7.
$$\frac{4+5i+i}{(2-i)^2}$$

8.
$$\frac{(1+i)^3}{(2+i)(1+2i)}$$

9.
$$(1+2i)^5$$

10.
$$\left(\frac{2+i}{1-2i}\right)^{25}$$

11.
$$\frac{(1+i)^9}{(i\sqrt{2})^8}$$

11.
$$\frac{(1+i)^9}{(i\sqrt{2})^8}$$
 12. $(\sqrt{7}+i\sqrt{3})^3(\sqrt{7}-i\sqrt{3})^2$

13.
$$\sqrt{-3+4i}$$

14.
$$\sqrt{5-12i}$$

15.
$$\sqrt{2i}$$

16.
$$\sqrt{-1-2\sqrt{2}i}$$

1.2. Viết số phức dưới dạng lượng giác và dạng mũ

3.
$$-2i$$

4.
$$-2 + 2i$$

5.
$$-\sqrt{6} - i\sqrt{2}$$

6.
$$2\sqrt{3} + 2i$$

7.
$$-\sqrt{2} + \sqrt{5}i$$

8.
$$12 - 5i$$

1.3. Viết dưới dạng mũ

1.
$$A = (2-2i)(3+3\sqrt{3}i)$$

2.
$$B = (4+4i)(-1+i)$$

3.
$$C = \frac{-i}{1+i}$$

1.
$$A = (2-2i)(3+3\sqrt{3}i)$$
 2. $B = (4+4i)(-1+i)$ **3.** $C = \frac{-i}{1+i}$ **4.** $D = \frac{\sqrt{2}+\sqrt{6}i}{-1+\sqrt{3}i}$

1.4. Tìm modul của các số phức

1.
$$\frac{2i}{3-4i}$$

2.
$$(1-i\sqrt{3})(\sqrt{3}+i)$$

3.
$$(2-3i)^2(3+i)^4$$

4.
$$\frac{(3+4i)^3}{(1+i\sqrt{3})^2}$$

5.
$$\frac{1-2i}{1+i} + \frac{2-i}{1-i}$$

6.
$$\frac{1}{1-i} + \frac{1}{1+i} + \frac{5}{1+2i}$$

1.5. Giải các phương trình

1.
$$z - 2z + 5 - 6i = 0$$

$$z \cdot z^{-2} = 4z$$

3.
$$z + 2\overline{z} = \frac{2-i}{1+3i}$$

4.
$$|z| - z = 3 + i$$

5.
$$|z|^2 + 1 + 6i = 2z$$

1.6. Chứng minh với mọi số phức $z, z_{_{\! 1}}, z_{_{\! 2}}$

1.
$$|-z| = |z|$$

2.
$$|z| = |z|$$

3.
$$|z|^2 = z.\overline{z}$$

$$\textbf{4.} \mid z_{_{\! 1}} + z_{_{\! 2}} \mid \, \leq \, \mid z_{_{\! 1}} \mid \, + \, \mid z_{_{\! 2}} \mid$$

$$||z_1| - |z_2|| \le |z_1 - z_2|$$

1.7. Chứng minh rằng

1. Nếu
$$|z| = 1$$
 thì $2 \le |z^3 - 3| \le 4$.

2. Nếu
$$|z| = 2$$
 thì $|z+6+8i| \le 12$.

1.8. Cho
$$w=\frac{z+i}{1+iz}$$
. Chứng minh rằng nếu $\,{\rm Im}(z)\leq 0\,$ thì $\mid w\mid \leq 1$.

- **1.9.** Chứng minh rằng nếu $u+iv=(x+iy)^n$ thì $u^2+v^2=(x^2+y^2)^n$, với n là số nguyên.
- **1.10.** Chứng minh rằng $f(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n = 0$, nếu $f(\overline{z}) = 0$, với $a_k \in \mathbb{R} \ (k = 0, 1, ..., n)$.
- **1.11.** Bằng cách xét tích của $1+\frac{1}{2}i$ và $1+\frac{1}{3}i$, chứng minh $\arctan\frac{1}{2}+\arctan\frac{1}{3}=\frac{\pi}{4}$.
- **1.12.** Biểu diễn qua lũy thừa của $\cos x$, $\sin x$
 - 1. $\cos 2x$, $\sin 2x$

2. $\cos 3x, \sin 3x$

3. $\cos 4x$, $\sin 4x$

1.13. Tính các số phức

1.
$$(1 - i\sqrt{3})^3$$

2.
$$\sqrt[4]{-1}$$

3.
$$(-\sqrt{3}-i)^{-5}$$

4.
$$(-\sqrt{2} + i\sqrt{6})^4$$

5.
$$(2-2i)^5$$

6.
$$(1+i\sqrt{3})^{-7}$$

7.
$$(1+i)^{\frac{1}{2}}$$

8.
$$(\sqrt{3}+i)^{-6}$$

9.
$$\frac{1}{(\sqrt{3}-i)^4}$$

10.
$$(-i)^{\frac{1}{3}}$$

11.
$$\sqrt[3]{i}$$

12.
$$\sqrt[5]{1-i}$$

13.
$$\left(\frac{1}{2} + \frac{1}{2}i\right)^{10}$$

$$14. \left(\frac{1+i}{1-i}\right)^5$$

$$15. \left(\frac{1 + i\sqrt{3}}{1 - i} \right)^4$$

16.
$$(-1+i)^3(\sqrt{3}+i)^{-2}$$

17.
$$\frac{(1-i\sqrt{3})^4}{(2+2i)^3}$$

$$\mathbf{18.} \left(\frac{1 + i\sqrt{3}}{1 - i\sqrt{3}} \right)^{10}$$

1.14. Tính và viết dưới dạng mũ

1.
$$\sqrt[3]{-2+2i}$$

2.
$$\sqrt[4]{\sqrt{3}+i}$$

3.
$$\sqrt[5]{-4+3i}$$

1.15. Giải phương trình trong $\mathbb C$

1.
$$x^8 - 16 = 0$$

2.
$$x^3 + 1 = 0$$

$$3. x^4 - x^2 + 1 = 0$$

- **1.16.** Cho biểu thức $A = \frac{1+i\sqrt{3}}{1-i}$.
 - **1.** Viết biểu thức trên dưới dạng A = x + iy.
 - **2.** Viết dạng mũ của $1+i\sqrt{3}$ và 1-i. Suy ra dạng lượng giác của A, từ đó tính $\cos\frac{7\pi}{12}$, $\sin\frac{7\pi}{12}$.
- 1.17. Tính lần lượt căn bậc 2, 3, 4, 5, 6 của số phức 1 và biểu diễn các giá trị đó trên đường tròn lượng giác.
- **1.18.** Các giá trị của $\sqrt[n]{1}$ là $w_k=\cos\frac{k2\pi}{n}+i\sin\frac{k2\pi}{n},\,k=0,\,1,\,...,\,n-1$.
 - 1. Tính tổng $w_{\scriptscriptstyle 0} + w_{\scriptscriptstyle 1} + \ldots + w_{\scriptscriptstyle n-1}$.
 - 2. Chứng minh rằng $w_{_{\!\! k}}$ và $w_{_{\!\! n-k}}$ ($k=1,\,...,\,n-1$) là cặp số phức liên hợp và nghịch đảo của nhau.

3. Tính
$$\frac{1}{w_{_{\!k}}}+\frac{1}{w_{_{\!n-k}}},\;k=1,\,...,\;n-1$$
 .

4. Tính
$$\frac{1}{1-w_{_{b}}}+\frac{1}{1-w_{_{n-k}}},\;k=1,...,\;n-1$$
 .

1.19. Xác định các điểm trong mặt phẳng Oxy biểu diễn số phức z

1.
$$Re(z) = Im(z)$$

2.
$$|z| < 3$$

3.
$$|z-1+i| < 1$$

4.
$$\operatorname{Re}(z-i) = 2$$

5.
$$\operatorname{Re}(z) + \operatorname{Im}(z) < 1$$
 6. $|2z - i| = 4$

6.
$$|2z - i| = 4$$

7.
$$0 < \text{Re}(iz) < 1$$

8.
$$\text{Im}(z-i) > 3$$

9.
$$|z-i| = |z-1|$$

10.
$$z = |z|$$

11.
$$\operatorname{Im}(z^2) = 2$$

12.
$$|z| = \text{Re}(z)$$

13.
$$\arg z = -z$$

14.
$$|z-1|+|z+1|=4$$
 15. $\arg z=\frac{\pi}{2}$

15.
$$\arg z = \frac{\pi}{3}$$

16.
$$arg(z-1) = \frac{\pi}{4}$$

17.
$$|z-i|+|z+i|<6$$
 18. $\frac{\pi}{c}<\arg z<\frac{\pi}{4}$

18.
$$\frac{\pi}{6} < \arg z < \frac{\pi}{4}$$

1.20. Xác định đường cong $\,C\,$ cho bởi phương trình

1.
$$z = -2t^2 + it$$
, $0 < t < +\infty$

2.
$$z = 3t - 2it, -1 \le t < 2$$

3.
$$z = t - \frac{i}{t}, \quad 0 < t < \infty$$

4.
$$z = t^2 + it^4, -\infty < t < \infty$$

$$5. z = \frac{1}{1+it}, -\infty < t < \infty$$

6.
$$z = 3(\cos t + i\sin t), \frac{\pi}{2} < t < \frac{3\pi}{2}$$

7.
$$z = \cos t + 2i \sin t$$
, $0 < t < \pi$

7.
$$z = \cos t + 2i \sin t$$
, $0 < t < \pi$ **8.** $z = 2\sin^2 \frac{t}{2} + i \sin t$, $\frac{-\pi}{2} < t < \frac{\pi}{2}$

9.
$$z = -t + i\sqrt{1 - t^2}, -1 \le t \le 0$$
 10. $z = 2(t + i - ie^{-it}), -\infty < t < \infty$

10.
$$z = 2(t + i - ie^{-it}), -\infty < t < \infty$$

BÀI TẬP CHƯƠNG II

2.1. Tính giá trị của hàm tại điểm z_0

1.
$$f(z) = z - 3\operatorname{Im}(z)$$

a)
$$z_0 = 1$$

b)
$$z_0 = -2$$

a)
$$z_0 = 1$$
 b) $z_0 = -2i$ c) $z_0 = 1 - 2i$

2.
$$f(z) = z^2 \overline{z} - 2i$$
.

a)
$$z_0 = 2i$$

b)
$$z_0 = 1 + i$$

a)
$$z_0 = 2i$$
 b) $z_0 = 1 + i$ c) $z_0 = 3 - 2i$

3.
$$f(z) = |z|^2 - 2\operatorname{Re}(iz) + z$$

a)
$$z_0 = 3 - 4i$$
 b) $z_0 = 1 + 2i$

b)
$$z_{-} = 1 + 2z_{-}$$

2.2. Tìm phần thực và phần ảo của các hàm

1.
$$f(z) = 5z - 3i + 4$$

2.
$$f(z) = -2z + 3\overline{z} - i$$

3.
$$f(z) = z^2 - (1-i)z$$

4.
$$f(z) = |z| - 2\operatorname{Im}(iz)$$
 5. $f(z) = \frac{z}{z+1}$

5.
$$f(z) = \frac{z}{z+1}$$

6.
$$f(z) = z - \frac{1}{z}$$

2.3. Biết $z=re^{i\varphi}$, tìm phần thực và phần ảo của các hàm theo $r,\, \varphi$

1.
$$f(z) = \bar{z}$$

2.
$$f(z) = |z|$$

3.
$$f(z) = z^4$$

4.
$$f(z) = x^2 + y^2 - iy$$
 5. $f(z) = z + \frac{1}{z}$

5.
$$f(z) = z + \frac{1}{z}$$

6.
$$f(z) = \text{Re}(z^2)$$

2.4. Tìm miền giá trị của các hàm

1. $f(z) = \overline{z}$ xác định trong nửa mặt phẳng trên Im(z) > 0.

2. f(z) = Im(z) xác định trong hình tròn đóng $|z| \le 2$.

3. f(z) = |z| xác định trong hình vuông $0 \le \text{Re}(z) \le 1$, $0 \le \text{Im}(z) \le 1$.

2.5. Tìm miền xác định và miền giá trị của các hàm

1.
$$f(z) = \frac{z}{z}$$

2.
$$f(z) = \frac{z + \overline{z}}{z - \overline{z}}$$

2.6. Tìm ảnh B của tập A qua phép biến hình w = f(z)

1.
$$f(z) = \bar{z}$$
;

- a) A là đường thẳng y = 3
- b) A là đường thẳng y = x

- **2.** f(z) = (1+i)z
 - a) A là đường thẳng x=2
- b) A là đường thẳng y = 2x + 1

- **3.** f(z) = 2z
 - a) A là nửa mặt phẳng trên Im(z) > 1 b) $A = \{z \in \mathbb{C} : 0 < \text{Re}(z) < 1\}$

- **4.** f(z) = iz
 - a) A là đường tròn |z-1|=2
- b) $A = \{z \in \mathbb{C} : -1 < \text{Im}(z) < 0\}$

2.7. Tìm ảnh qua phép biến hình $w=z^2$

- **1.** đường thẳng x = 1
- **2.** đường thẳng y=-2 **3.** tập $A=\left\{z\in\mathbb{C}:0\leq\arg z\leq\frac{\pi}{4}\right\}$

2.8. Tìm ảnh qua phép biến hình $w = \frac{1}{z}$

- **1.** đường thắng y = x
- **2.** đường thẳng x=1
- **3.** đoan thẳng từ điểm 1-i đến điểm 2-2i

- **4.** đường tròn |z|=2
- **5.** đường tròn |z 1| = 1
- **6.** tập $A = \left\{ z \in \mathbb{C} : 1 < \operatorname{Re}(z) < 2 \right\}$

2.9. Tìm giới hạn của các hàm số

- **1.** $\lim_{z \to 2-i} (z^2 \overline{z})$ **2.** $\lim_{z \to -1+i} (|z|^2 i\overline{z})$
- 3. $\lim_{z \to 1+i} \frac{z-z}{z+z}$ 4. $\lim_{z \to 2i} \frac{\text{Im}(z)}{z + \text{Re}(z)}$

2.10. Chứng minh

- 1. $\lim_{z \to z_0} c = c \ (c \in \mathbb{C})$ 2. $\lim_{z \to z_0} z = z_0$
- **3.** $\lim_{z \to 0} \frac{1}{z} = \infty$ **4.** $\lim_{z \to \infty} \frac{1}{z} = 0$

2.11. Sử dụng kết quả bài 2.10, tìm các giới han

1.
$$\lim_{z \to 2+i} (z^2 - z)$$

2.
$$\lim_{z \to z} (z^5 - 2z + 1)$$

3.
$$\lim_{z \to -i} \frac{z^4 - 1}{z + i}$$

4.
$$\lim_{z \to 1-i} \frac{z^2 + 1}{z^2 - 1}$$

5.
$$\lim_{z \to \infty} \frac{z^2 + iz - 2}{(1 + 2i)z^2}$$

$$6. \lim_{z \to \infty} \frac{iz+1}{2z-i}$$

2.12. Xét xem các hàm số sau có giới hạn khi $z \to 0$ hay không?

1.
$$f(z) = \frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}$$

2.
$$f(z) = \frac{z}{z}$$

2.13. Chứng tỏ rằng các hàm số sau liên tục tại z_0

1.
$$f(z) = z^2 - iz + 3 - 2i$$
; $z_0 = 2 - i$

1.
$$f(z) = z^2 - iz + 3 - 2i$$
; $z_0 = 2 - i$ **2.** $f(z) = \overline{z} - 3\operatorname{Re}(z) + i$; $z_0 = 3 - 2i$

3.
$$f(z) = \begin{cases} \frac{z^3 - 1}{z - 1}, & |z| \neq 1 \\ 3, & |z| = 1 \end{cases}$$
; $z_0 = 1$

2.14. Xét tính liên tục của các hàm số

1.
$$f(z) = \bar{z}$$

2.
$$f(z) = \text{Im}(z^2)$$

2.15. Xét tính khả vi của hàm f(z) và tính đạo hàm (nếu có)

1.
$$f(z) = \bar{z}$$

1.
$$f(z) = \overline{z}$$
 2. $f(z) = (\overline{z})^2$

3.
$$f(z) = z$$
. Im(z)

4.
$$f(z) = z.z$$

5.
$$f(z) = \text{Re}(z^2)$$

6.
$$f(z) = e^{|z-1|^2}$$

5.
$$f(z) = \text{Re}(z^2)$$
 6. $f(z) = e^{|z-1|^2}$ **7.** $f(z) = z^5 + z^{-1}$

8.
$$f(z) = |z| . z$$

2.16. Chứng tỏ các hàm số sau không giải tích tại bất kỳ điểm nào trong mặt phẳng phức

1.
$$f(z) = \text{Re}(z)$$

$$2. \ f(z) = y + ix$$

2.
$$f(z) = y + ix$$
 3. $f(z) = 2x^2 + y + i(y^2 - x)$ **4.** $f(z) = 4z - 6z + 3$

4.
$$f(z) = 4z - 6z + 3$$

2.17. Các hàm số sau giải tích trong miền nào của mặt phẳng phức

1.
$$f(z) = z^2$$

2.
$$f(z) = z$$
. Re(z)

3.
$$f(z) = \text{Im}(z^2)$$

4.
$$f(z) = z^2 + zz$$

2.18. Chứng minh rằng

- **1.** Nếu f giải tích trong miền D và |f(z)| là hằng số trong D thì f cũng là hằng số trong D.
- **2.** Nếu f giải tích trong miền D và f'(z) = 0 thì f là hằng số trong D.

2.19. Cho $z = x + iy = re^{i\varphi}$ và f(z) = u(x,y) + iv(x,y).

Chứng minh điều kiện C - R tương đương với $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial x_0}$, $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial x_0}$.

2.20. Tìm hàm giải tích f(z) = u + iv, biết

1.
$$u = x + y$$

2.
$$v = x - 2y$$

2.
$$v = x - 2y$$
 3. $u = 2xy + 3x$ **4.** $v = e^{\frac{-y}{x}}$

4.
$$v = e^{\frac{-y}{x}}$$

5.
$$v = x^3 - 3xy^2$$

6.
$$u = \arctan \frac{y}{x}$$

5.
$$v = x^3 - 3xy^2$$
 6. $u = \arctan \frac{y}{x}$ **7.** $u = \ln(x^2 + y^2) + x - 2y$ **8.** $v = e^{-x} \cos y + 2x - y$

8.
$$v = e^{-x} \cos y + 2x - y$$

2.21. Tìm các hằng số a, b, c và d để các hàm sau giải tích

1.
$$f(z) = x + ay + i(bx + cy)$$

2.
$$f(z) = 3x - y + i(ax + by - 3)$$

3.
$$f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$$

2.22. Tìm phần thực và phần ảo của các hàm số

1.
$$f(z) = e^{-3+4i}$$

2.
$$f(z) = \cos(2+i)$$
 3. $f(z) = \sin 2i$

3.
$$f(z) = \sin 2z$$

4.
$$f(z) = \sin(1-4i)$$

2.23. Tính
$$\sin z$$
, nếu $z = \frac{\pi}{2} + i \ln(3 - 2\sqrt{2})$.

2.24. Chứng minh

1.
$$\sin(x+iy) = \sin x \cosh y + i \cos x \sinh y$$

2.
$$cos(x + iy) = cos xch y + i sin xsh y$$

2.25. Giải phương trình

1.
$$\sin z = 2$$

2.
$$\cos z = 3$$
 3. $e^z = 1$

3.
$$e^z = \frac{1}{2}$$

4.
$$e^z = -1$$

BÀI TÂP CHƯƠNG III

3.1. Tính các tích phân

1.
$$I = \int\limits_C (z+3i)dz$$
, C có phương trình $x=2t,\ y=4t-1,\ \ 1\leq t\leq 3$.

2.
$$I=\int\limits_C (2\overline{z}-z)dz$$
 , C có phương trình $x=-t,\ y=t^2+2,\ \ 0\leq t\leq 2$.

3.
$$I=\int\limits_C |z|^2\ dz$$
 , C có phương trình $x=t^2,\ y=\frac{1}{t},\ \ 1\leq t<2$.

4.
$$I = \oint\limits_{C} \mathrm{Re}(z) dz$$
 , C là đường tròn $\mid z \mid = 1$.

5.
$$I = \oint_C \overline{z} dz$$
, C là đường tròn $|z| = 1$.

6.
$$I = \oint_C \left(\frac{1}{(z+i)^2} - \frac{2}{z+i} + 3 \right) dz$$
, C là đường tròn $|z+i| = 1$.

3.2. Tính các tích phân

1.
$$I = \int\limits_{C} (x^2 + iy^3) dz$$
 , C là đoạn thẳng

a) nối từ
$$z=1$$
 đến $z=i$.

b) nối từ
$$z = 1 + i$$
 đến $z = i$.

2.
$$I = \int_C \frac{z+1}{z} dz$$
, C là

- a) nửa phải đường tròn đơn vị từ z = -i đến z = i.
- **b**) nửa trái đường tròn đơn vị từ z = -i đến z = i.

3.
$$I=\int\limits_C (x^2-iy^2)dz$$
, C có điểm đầu $z=-1$ và điểm cuối $z=1$, trong hai trường hợp sau

- a) C là nửa dưới đường tròn đơn vi.
- **b)** C là nửa trên đường tròn đơn vị.
- **4.** $I = \int_{\mathbb{R}} e^z dz$, với C là đường gấp khúc nối $0,\,2,\,1+i\pi$.
- 5. $I = \int_C z dz$ theo ellip $\frac{x^2}{4} + y^2 = 1$ từ điểm z = 2 đến điểm z = i, chiều ngược kim đồng hồ.
- **6.** $I=\int\limits_{z}^{\infty}\frac{1}{z}dz$ theo đường tròn $\mid z\mid=1$ từ điểm z=1 đến điểm z=-1, trong hai trường hợp
 - a) nửa mặt phẳng trên.
 - b) nửa mặt phẳng dưới.
- 7. $I=\oint\limits_C {{
 m Im}(z-i)dz}$, với biên C gồm đường tròn $\mid z\mid =1$ từ z=1 đến z=i và đoạn thẳng từ z=i
- **8.** $I=\oint_C ze^zdz$, với C là biên của hình vuông có các đỉnh là z=0, z=1, z=1+i và z=i.
- **3.3.** Tính tích phân $I=\oint_C f(z)dz$, với C là biên của tam giác có các đỉnh là $z=0,\,z=1$ và z=1+i:
 - **1.** f(z) = Re(z)
- **2.** $f(z) = z^2$ **3.** f(z) = 2z 1
- **3.4.** Tính tích phân $I=\int\limits_{C}(z^2-z+2)dz$, với C có điểm đầu z=i , điểm cuối z=1 , trong các trường hợp:
 - **1.** C là đường thẳng x + y = 1

2. C là đường gấp khúc nối i, 1+i, 1

3. C là parabol $y = 1 - x^2$

- **4.** C là đường tròn |z| = 1 (chiều cùng kim đồng hồ)
- **3.5.** Tính tích phân $I = \int\limits_C (z)^2 dz$ với C là đường nổi từ điểm z=0 đến điểm z=1+i trong trường hợp
 - **1.** C là đoan thẳng.

- **2.** C là đường gấp khúc nối 0, 1, 1+i.
- **3.6.** Tính tích phân $I = \int_{z} |z| dz$, nếu C là
 - 1. đoạn thẳng nối từ điểm z=-i đến điểm z=i.
 - **2.** nửa trái đường tròn |z| = 1 nối từ điểm z = -i đến điểm z = i.
 - 3. nửa phải đường tròn | $z\mid=1\,$ nối từ điểm $z=-i\,$ đến điểm $z=i\,.$
- - **1.** dọc theo trục Ox đến O, rồi dọc theo trục Oy đến i.
 - **2.** dọc theo đường thẳng y = 1 x.
 - **3.** dọc theo đường thẳng đứng đến (1+i) rồi dọc theo đường ngang đến i.
- **3.8.** Tính tích phân $I = \oint\limits_C \mid z \mid dz$, với C là đường tròn $\mid z-i \mid = 1$.

3.9. Tính các tích phân

$$1. \int\limits_{0}^{3+i} z^2 dz$$

$$2. \int\limits_{i/2}^{i} e^{\pi z} dz$$

$$3. \int_{-\pi}^{\pi+2i} \sin\frac{z}{2} dz$$

$$4. \int_{0}^{i} z e^{z} dz$$

$$\int_{0}^{1+i\pi} z \sin z dz$$

6.
$$\int_{i}^{1} \frac{1}{(z+1)^{2}} dz$$

3.10. Tính các tích phân

1.
$$I = \int\limits_{C} \cos z dz$$
 , trong đó $C = \{(x,y): x = y^2, \ 0 \leq y \leq 1\}$

2.
$$I = \oint_C \frac{1}{z^2} dz$$
, C là elip $(x-1)^2 + \frac{1}{4}(y+2)^2 = 1$.

3.
$$I = \oint_C \frac{z-3}{z^2+2z+2} dz$$
, $C: |z| = 1$

4.
$$I = \oint_C (1+z^2)^{-1} dz$$
, C là elip $x^2 + 4y^2 = 1$.

3.11. Tính các tích phân

$$I = \oint_C \frac{z^2}{z - 2i} dz$$

a)
$$C: |z| = 3$$

b)
$$C : |z| = 1$$

2.
$$I = \oint_C \frac{1}{z^2 + 9} dz$$

a)
$$C: |z-2i| = 2$$

a)
$$C: |z-2i| = 2$$
 b) $C: |z+2i| = \frac{1}{2}$

3.
$$I = \oint_C \frac{z^2 + z - i}{z^2 + 3z - 4} dz$$
 a) $C: |z| = 2$

a)
$$C: |z| = 2$$

b)
$$C: |z+5| = \frac{3}{2}$$

4.
$$I = \oint_C \frac{z+2}{z^2(z-1-i)} dz$$
 a) $C: |z| = 1$

a)
$$C: |z| = 1$$

b)
$$C: |z-1-i| = 1$$

$$\mathbf{5.}\ I = \oint_C \frac{1}{z^3(z-4)} dz$$

a)
$$C : |z| = 1$$

b)
$$C: |z-2| = 1$$

$$6. I = \oint_C \frac{e^z}{z(z-1)^3} dz$$

a)
$$C: |z+2| = 1$$
 b) $C: |z| = \frac{1}{2}$

b)
$$C: |z| = \frac{1}{2}$$

c)
$$C: |z-1| = \frac{1}{2}$$
 d) $C: |z| = 2$

d)
$$C: |z| = 2$$

3.12. Tính các tích phân

1.
$$I = \oint_C \frac{\cos(iz)}{z^2 + \pi^2} dz$$
, $C : |z - i| = 4$

2.
$$I = \oint_C \frac{\sin(\pi z/2)}{z^2 - 1} dz$$
, $C : |z + i| = \sqrt{3}$

3.
$$I = \oint_C \frac{e^z}{z^2(z^2+1)} dz$$
, $C: |z-i| = \sqrt{2}$

4.
$$I = \oint_C \frac{z}{(z^2+1)(z+3)^2} dz$$
, $C: |z| = 2$

5.
$$I = \oint_C \frac{1}{z^3(z-1)^2} dz$$
, $C: |z-2| = 4$

6.
$$I = \oint_C \frac{\cos 2z}{z^5} dz$$
, $C: |z| = 1$

3.13. Tính các tích phân

1.
$$I = \oint_C \frac{\sin \frac{\pi z}{4}}{z^2 - 1} dz$$
, $C : x^2 + y^2 = 2x$.

- **2.** $I = \oint_C \frac{\cos z}{z^2 1} dz$, C là biên của tam giác có các đỉnh z = 0, z = 2 2i và z = 2 + 2i.
- 3. $I = \oint \frac{z^2}{z^2 + 4} dz$, C là biên của hình vuông có các đỉnh là z = -2, z = 2, z = -2 + 4i và z = 2 + 4i.
- **4.** $I=\oint \frac{e^{iz}}{4z^2-\pi^2}dz$, C có phương trình $z=i+2e^{it},~0\leq t\leq 2\pi$.
- **3.14.** Cho t > 0 và C là đường cong tron, kín, bao quanh điểm z = -1.

$$\text{Chứng minh rằng: } \frac{1}{2\pi i} \oint\limits_{C} \frac{z e^{zt}}{\left(z+1\right)^{3}} dz = \left(t - \frac{t^{2}}{2}\right) e^{-t} \ .$$

3.15. Cho C là nửa trên đường tròn $\mid z \mid = R$ từ z = R đến z = -R .

$$\text{Chứng minh rằng: } \left| \int_C \frac{e^{imz}}{z^2 + a^2} \, dz \right| \leq \frac{\pi R}{R^2 - a^2} \qquad (m > 0, \ R > a > 0) \, .$$

BÀI TẬP CHƯƠNG IV

4.1. Xác định xem các dãy sau, dãy nào hội tụ, dãy nào phân kỳ

$$\mathbf{1.} \left\{ \frac{1+in}{in^2} \right\}$$

$$2. \left\{ \frac{n(1+i^n)}{n+1} \right\}$$

$$3. \left\{ \frac{n+i^n}{\sqrt{n}} \right\}$$

$$\mathbf{4.} \left\{ e^{\frac{1}{n}} + i2 \arctan n \right\}$$

4.2. Chứng tỏ các dãy sau hội tụ bằng cách sử dụng định lý 4.1

$$\mathbf{1.} \left\{ \frac{4n + i3n}{2n + i} \right\}$$

$$2. \left\{ \left(\frac{1+i}{4} \right)^n \right\}$$

4.3. Tìm tổng của các chuỗi sau (nếu chuỗi hội tụ)

$$1. \sum_{k=1}^{\infty} \frac{i}{k(k+1)}$$

2.
$$\sum_{k=1}^{\infty} (1-i)^k$$

$$3. \sum_{k=1}^{\infty} 2 \left(\frac{3}{1+3i} \right)^k$$

4.
$$\sum_{k=1}^{\infty} 4i \left(\frac{1}{2}\right)^{k-1}$$

5.
$$\sum_{k=1}^{\infty} \frac{i^k}{(1+i)^{k-1}}$$

6.
$$\sum_{k=1}^{\infty} \left(\frac{1}{k+2i} - \frac{1}{k+1+2i} \right)$$

4.4. Tìm bán kính và hình tròn hôi tu của các chuỗi

$$1. \sum_{n=1}^{\infty} \frac{(z-i)^n}{n^2}$$

2.
$$\sum_{n=0}^{\infty} \frac{(z-2i)^n}{(1-i)^{n+1}}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} (z-1+i)^n$$

4.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} (z-1)^n$$
 5. $\sum_{n=1}^{\infty} \frac{z^n}{n^n}$

$$5. \sum_{n=1}^{\infty} \frac{z^n}{n^n}$$

6.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1+2i}{2} \right)^n (z+2i)^n$$

4.5. Khai triển Taylor các hàm số sau trong lân cân điểm a và cho biết miền khai triển được

1.
$$f(z) = \frac{1}{1-z}$$
, $a = 3i$

2.
$$f(z) = e^z$$
, $a = \pi i$

3.
$$f(z) = \frac{1}{z}$$
, $a = 1$

4.
$$f(z) = \cos z$$
, $a = \pi / 4$

5.
$$f(z) = \frac{1}{2+z}$$
, $a = -1$, $a = i$ **6.** $f(z) = \frac{z-1}{z+1}$, $a = 0$, $a = 1$

6.
$$f(z) = \frac{z-1}{z+1}$$
, $a = 0$, $a = 1$

4.6. Khai triển Taylor các hàm số sau trong lân cận điểm a và tìm bán kính hội tụ

1.
$$f(z) = \frac{i}{(z-i)(z-2i)}, a = 0$$

2.
$$f(z) = \frac{z}{z^2 - 2z - 3}$$
, $a = 0$, $a = 2$

4.7. Khai triển Laurent các hàm số trong miền cho trước

1.
$$f(z) = \frac{\cos z}{z}, \mid z \mid > 0$$

2.
$$f(z) = \frac{z - \sin z}{z^5}, |z| > 0$$

3.
$$f(z) = e^{\frac{-1}{z^2}}, \mid z \mid > 0$$

4.
$$f(z) = \frac{e^{2z}}{(z-1)^2}, |z-1| > 0$$

5.
$$f(z) = z \sin \frac{2}{z}, |z| > 0$$

6.
$$f(z) = z^2 e^{\frac{1}{z}}, \mid z \mid > 0$$

7.
$$f(z) = \frac{1}{z(z+1)^2}$$
, $0 < |z+1| < 1$ **8.** $f(z) = \frac{1}{(z^2+1)^2}$, $0 < |z+i| < 2$

8.
$$f(z) = \frac{1}{(z^2 + 1)^2}, \ 0 < |z + i| < 2$$

4.8. Khai triển Laurent hàm số $f(z) = \frac{1}{z(z-1)^2}$ trong các miền

1.
$$0 < |z| < 1$$

2.
$$|z| > 1$$

4.9. Khai triển Laurent hàm số $f(z) = \frac{1}{z(z-3)}$ trong các miền

1.
$$0 < |z| < 3$$

2.
$$|z| > 3$$

3.
$$0 < |z - 3| < 3$$

4.
$$|z-3| > 3$$

5.
$$1 < |z - 4| < 4$$

5.
$$1 < |z-4| < 4$$
 6. $1 < |z+1| < 4$

4.10. Khai triển Laurent hàm số $f(z) = \frac{z}{(z+1)(z-2)}$ trong các miền

1.
$$1 < |z| < 2$$

2.
$$|z+1| > 2$$

3.
$$0 < |z+1| < 3$$

4.
$$0 < |z-2| < 3$$

4.11. Tìm và phân loại các điểm bất thường cô lập của các hàm số

1.
$$f(z) = \frac{z+2}{(z-1)^3 z(z+1)}$$

2.
$$f(z) = \frac{1 - \cos z}{z^3}$$

3.
$$f(z) = \frac{2}{(z^2 + 1)^2}$$

4.
$$f(z) = ze^{\frac{1}{z}}$$

5.
$$f(z) = \frac{z^5}{(z-1)^2}$$
 6. $f(z) = \cos \frac{1}{z+i}$

6.
$$f(z) = \cos \frac{1}{z+i}$$

7.
$$f(z) = \frac{3z-1}{z^2+2z+5}$$

8.
$$f(z) = \frac{z-1}{(z+1)(z^3+1)}$$

9.
$$f(z) = \frac{\sin z}{z^2 - z^3}$$

10.
$$f(z) = \frac{\cos z - \cos 2z}{z^6}$$