Home Assignment 6, IE1206 & IF1330, VT2020

Problem 1

The circuit has a sinusoidal voltage source $V_0=5\cos(\omega t)$ V. Determine $I_R(t)$ when $\omega=10^5$ rad/s, C=20 nF, R=1 k Ω and L=10 mH.

Problem 2

The circuit has a sinusoidal voltage source $V_0=5\cos(\omega t+30^\circ)$ V. Determine the Thévenin equivalent circuit at nodes A-B. The angular frequency $\omega=10^6$ rad/s, C=10 nF, R=100 Ω and L=100 μ H.

Also draw a schematic diagram in time domain with component values of the Thévenin circuit.

Problem 3

The current source is a sinusoidal source with $I_0=3\cos(\omega t)$ mA. Determine the current I_C when $R_1=2$ k Ω , $R_2=6$ k Ω , C=25 nF, L=200 mH and k=2 V/mA.

Problem 4

The current source $I_0=2\cos(\omega t)$ mA. Determine $V_R(t)$, $V_C(t)$ and $V_L(t)$. $\omega=10^5$ rad/s, R=1 k Ω , L=20 mH and C=10 nF.

Problem 5

V_{in} is a sinusoidal voltage source. The R,L,C circuit performs a filter function.

- (A) Express V_{out} as a function of V_{in} , ω , R, L and C in the frequency (complex) domain.
- (B) Analyse the expression derived in A and motivate what filter function the circuit performs.
- (C) At a specific ω the output voltage V_{out} has a maximum amplitude. What is the phase angle of V_{out} at that frequency?

Problem 6

Vs=20cos(5000t) [V], R1=50 Ω , R2=50 Ω , R3=65 Ω , C=8 μ F. Assume the op-amp is ideal.

- (A) Assume that the op-amp operates in the linear region. Determine $V_{\text{out}}(t)$.
- (B) Motivate if the op-amp operates in the linear region or not in (A).