GRAFIKA COMPUTER

Kurva Spline (Spline Curve)

SPLINES

- Spline mempunyai sejarah yang panjang dalam grafika komputer sebelum dikenal dalam teknik gambar.
- Secara alamiah spline kubik merupakan model matematis untuk sejenis *thin strip*, yang mana melalui semua titik control yang dapat meminimalkan energi dasar.
- Spline kubik alami (natural cubic spline) mempunyai kontinuitas C² (terdiri C¹, C⁰) dan lebih halus jika dibandingkan dengan kurva Hermite ataupun Bezier.

Interpolasi Spline

- Modern splines merupakan kurva yang lembut(smooth) yang didefiniskan dari suatu himpunan titik-titik yang seringkali dinamakan dengan *knot*.
- Dalam satu kelas utama spline (main class of splines), kurva harus melalui tiap titik dalam himpunan tersebut.
- Ini dinamakan dengan interpolasi spline

KURVA INTERPOLASI SPLINE

PENDEKATAN SPLINE (APPROXIMATING SPLINE)

- Dalam kasus lainnya kurva tidak bisa melalui titik-titik
- Titik-titik dianggap sebagai titik kontrol (control points) yang mana user dapat memindahkan untuk membuat kurva atau bentuk yang interaktif sesuai dengan yang diinginkan.

PENDEKATAN SPLINE (APPROXIMATING SPLINE)

Non Parametric Spline

- Spline paling sederhana merupakan persamaan dalam x dan y (untuk 2D)
- Bentuk umumnya adalah polynomial spline:

$$y = a_2 x^2 + a_1 x + a_0$$

Di sini terdapat 3 titik yang dapat dihitung a₂,
 a₁, dan a₀

non parametric (parabolic spline)

KONTROL NON-PARAMETRIK SPLINE

- Di sini tidak ada kontrol menggunakan non parametrik spline
- Di sini hanya terdapat satu kurva (parabola) yang cocok untuk data.

PARAMETRIK SPLINE

 JIka kita tulis spline dalam suatu bentuk vektor, maka didanatkan:

$$P = a_2 \mu^2 + a_1 \mu + a_0$$

Dimana parameternya μ
 Nilainya antara 0 dan 1.

PENGHITUNGAN PARAMETRIK SPLINE SEDERHANA

- Untuk menyelesaikan konstanta vektor a₀,a₁,
 dan a² sebagai berikut :
- Misalkan awal kurva ada di P₀

$$\mathbf{P_0} = \mathbf{a_2} \mu^2 + \mathbf{a_1} \ \mu + \mathbf{a_0}$$

dengan $\mu=0$ pada awal maka $P_0 = a_0$

PENGHITUNGAN PARAMETRIK SPLINE SEDERHANA

Misalkan diinginkan spline titik akhirnya di P₂.
 Maka kita punya akhir

Selanjutnya $\mu = 1$

$$\mathbf{P_2} = \mathbf{a_2} \mu^2 + \mathbf{a_1} \mu + \mathbf{a_0}$$
$$= \mathbf{a_2} + \mathbf{a_1} + \mathbf{a_0}$$
$$= \mathbf{a_2} + \mathbf{a_1} + \mathbf{P_0}$$

Dan ditengah (μ = 1/2), kita menginginkan ini melalui P_1

$$\mathbf{P_1} = \mathbf{a_2}\mu^2 + \mathbf{a_1} \mu + \mathbf{a_0}$$
$$= \mathbf{a_2}/4 + \mathbf{a_1}/2 + \mathbf{P_0}$$

KEMUNGKINAN MENGGUNAKAN PARAMETRIK SPLINE

PATCH SPLINE

• Tiap patch dapat dijadikan sebagai suatu parametrik spline.

PATCH SPLINE KUBIK

• Cara paling mudah dan sederhana, dan efektif untuk menghitung patch parametrik spline adalah dengan menggunakan suatu polinomial kubik.

$$\mathbf{P} = \mathbf{a}_3 \,\mu^3 + \mathbf{a}_2 \mu^2 + \mathbf{a}_1 \mu + \mathbf{a}_0$$

PEMILIHAN GRADIENT

- o Untuk suatu patch gabungan titik-titik P_i dan P_{i+1} dipunyai $\mu=0$ pada P_i dan $\mu=1$ pada P_{i+1}
- o Dengan substitusi maka akan didapatkan:

$$P_i = a_0$$

 $P_{i+1} = a_3 + a_2 + a_1 + a_0$

o Dengan menurunkan $P = a_i \mu^3 + a_2 \mu^2 + a_1 \mu + a_0$ ka kita dapatkan $P' = 3a_3 \mu^2 + 2a_2 \mu + a_1$ dengan subtitusi pada P_i dan P_{i+1}

$$P'_{i} = a_{1}$$

 $P'_{i+1} = 3a_{3} + 2a_{2} + a_{1}$

• Jika dituliskan dalam bentuk matriks:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \end{pmatrix} = \begin{pmatrix} \mathbf{P_i} \\ \mathbf{P'_i} \\ \mathbf{P_{i+1}} \\ \mathbf{P'_{i+1}} \end{pmatrix}$$

o Dengan inversi matriks maka akan didapatkan:

$$\begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{P_i} \\ \mathbf{P'_i} \\ \mathbf{P_{i+1}} \\ \mathbf{P'_{i+1}} \end{bmatrix}$$

Kurva Bezier

- o Kurva Bezier digunakan untuk Desain CAD.
- Karakteristik utama dari kurva Bezier adalah:
 - interpolasi pada titik akhir
 - slope pada akhir adalah sama dengan penggabungan garis titik akhir ke tetangganya.

Kurva Bezier

ALGORITMA CASTELJAU

- Kurva Bezier dihitung dan divisualisasikan dengan menggunakan konstruksi geometri Casteljau sekitar 1900.
- Seperti patch kubik, disini dibutuhkan parameter yang pada awal nilainya 0 dan akhir nilainya 1. Koneksi dap dibuat untuk beberapa nilai

Casteljau's Construction of the Bezier Curve

Perluasan Persamaan Bezier

2 Point:
$$P_0(1-\mu) + P_1\mu$$

3 Point:
$$P_0(1-\mu)^2 + 2P_1(1-\mu)\mu + P_2\mu^2$$

4 Point:
$$P_0(1-\mu)^3 + 3P_1(1-\mu)^2\mu + 3P_2(1-\mu)\mu^2 + P_3\mu^3$$

etc

PERLUASAN PERSAMAAN 'CAMPURAN'

- Empat titik kurva Bezier adalah sama dengan patch-patch kubik yang melalui knot pertama dan terakhir(**P**⁰ **dan P**³)
- Kesamaan ini dapat ditunjukkan dengan menggunakan dua cara:

$$\mathbf{P}(\mu) = \sum_{i=0}^{3} \quad \mathbf{Pi} \ \mathbf{W}(3,i, \ \mu)$$

• Untuk kasus empat knot :

$$\mathbf{P}(\mu) = \mathbf{P_0}(1-\mu)^3 + 3\mathbf{P_1} \,\mu(1-\mu)^2 + 3\mathbf{P_2}\mu^2 \,(1-\mu) + \mathbf{P_3} \,\mu^3$$

PERKALIAN AKAN MENGHASILKAN:

$$P(\mu) = a_3 \ \mu^3 + a_2 \ \mu^2 + a_1 \mu \ + a_0$$
 where
$$a_3 = P_3 - 3P_2 + 3P_1 - P_0$$

$$a_2 = 3P_2 - 6P_1 + 3P_0$$

$$a_1 = 3P_1 - 3P_0$$

$$a_0 = P_0$$

ALGORITMA CASTELJAU

$$\begin{split} \mathbf{P}_{3,0} &= \mu \, \mathbf{P}_{2,1} + (1 - \mu) \, \mathbf{P}_{2,0} \\ &= \mu \, (\mu \mathbf{P}_{1,2} + (1 - \mu) \mathbf{P}_{1,1}) + (1 - \mu) \, (\mu \mathbf{P}_{1,1} + (1 - \mu) \, \mathbf{P}_{1,0}) \\ &= \mu^2 \, \mathbf{P}_{1,2} + 2\mu (1 - \mu) \, \mathbf{P}_{1,1} + (1 - \mu)^2 \, \mathbf{P}_{1,0} \\ &= \mu^2 (\mu \mathbf{P}_{0,3} + (1 - \mu) \mathbf{P}_{0,2}) + 2\mu (1 - \mu) (\mu \mathbf{P}_{0,2} + (1 - \mu) \, \mathbf{P}_{0,1}) \\ &\quad + (1 - \mu)^2 \, (\mu \, \mathbf{P}_{0,1} + (1 - \mu) \, \mathbf{P}_{0,0}) \end{split}$$

LANJUTAN PERLUASAN

• Kita dapat menghilangkan subscript pertama dan akan dihasilkan :

$$P(\mu) = \mu^{2}(\mu \mathbf{P}_{3} + (1-\mu)\mathbf{P}_{2}) + 2\mu(1-\mu)(\mu \mathbf{P}_{2} + (1-\mu)\mathbf{P}_{1}) + (1-\mu)^{2}(\mu \mathbf{P}_{1} + (1-\mu)\mathbf{P}_{0})$$

=
$$\mathbf{P}_0(1-\mu)^3 + 3 \mathbf{P}_1 \mu (1-\mu)^2 + 3 \mathbf{P}_2 \mu^2 (1-\mu) + \mathbf{P}_3 \mu^3$$

TITIK-TITIK KONTROL

- Dapat diambil kesimpulan bahwa empat titik kurva Bezier terdiri: 2 titik untuk interpolasi dan 2 titik sebagai titik kontrol
- Kurva dimulai pada titik P_0 dan berakhir pada titik P_3 . serta bentuknya (shape) dapat ditentukan melalui pemindahan titik-titik kontrolnya (P_1 dan P_2).

CONTOH

Contoh soal

Diketahui 3 buah titik kontrol dengan koordinat C1(1,2), C2(7,10), C3(15,4), dengan menggunakan kenaikan t=0.02 maka tentukanlah:

- Berapa titik yang digunakan untuk membangun kurya bezier?
- 2. Berapa nilai titik pada kurva pada saat t=0.8?

-LITAMA

Solusi (lanjutan)

Titik untuk t=0.8

$$x = (1-t)^2.x1 + 2(1-t)t.x2 + t^2.x3$$

$$y = (1-t)^2.y1 + 2(1-t)t.y2 + t^2.y3$$

Catatan : x1, x2, x3, y1, y2 dan y3 diambil dari titik kontrol

$$x = (1-0.8)^2.1 + 2(1-0.8)(0.8).7 + (0.8)^2.15$$

$$x = 0.04 + 2.24 + 9.6 = 11.88 \sim 12$$

$$y = (1-0.8)^2.2 + 2(1-0.8)(0.8).10 + (0.8)^2.4$$

$$y = 0.08 + 3.2 + 2.56 = 5.84 \sim 6$$

Nilai titik pada kurva saat t = 0.8 adalah (12,6)

IF-UTAMA

solusi

 Dengan kenaikan sebanyak 0.02 maka jumlah titik yang diperlukan antara 0 dan 1 adalah

$$\frac{1}{t} = \frac{1}{0.02} = 50 titik$$

b. Karena terdiri dari 3 titik kontrol maka persamaan menjadi :

$$(x+y)^{3-1}=(x+y)^2$$

 $x^2 + 2xy + y^2 = 0$
 $x = (1-t) dan y = t$

Maka persamaan tersebut menjadi :

$$L(t) = (1-t)^2 + 2(1-t)t + t^2$$

IF-UTAM

Soal (untuk 4 titik kontrol)

Diketahui 4 buah titik kontrol dengan koordinat C1(0,1), C2(1,2), C3(2,2), C4(3,1) dengan menggunakan kenaikan t=0.02 maka tentukanlah:

Berapa nilai titik pada kurva pada saat t=0.8?

IF-UTAMA

1

CONTOH SOAL

1. A four knot, two dimensional Bezier curve is defined by the following table

	X	у
P_0	0	0
P ₀	2	3
\mathbf{P}_2	3	-1
P_3	0	0

Use Casteljau's construction to sketch the curve.

Calculate the coefficients a_0 , a_1 , a_2 and a_3 of the corresponding cubic spline patch:

$$P(\mu) = a_3 \mu^3 + a_2 \mu^2 + a_1 \mu + a_0$$

Differentiate the spline patch equation to find $P'(\mu)$ and hence show that the gradient at P_3 is the same as the gradient of the line joining P_3 to P_2 .

2. A Coons surface patch is to be drawn using the following array of points:

		μ			
		-1	0	1	2
ν	-1	(0,0,0)	(0,10,5)	(0,20,10)	(0,30,20)
	0	(10,0,5)	(10,10,20)	(10,25,30)	(15,35,40)
	1	(20,0,10)	(20,12,40)	(20,30,50)	(25,40,30)
	2	(30,0,5)	(35,15,30)	(40,35,40)	(50,50,20)

We are interested in the patch constructed on the centre knots, P[0,0], P[0,1], P[1,0] and P[1,1].

a. Find the equations of the four cubic spline patches that bound the Coon's Patch $P(\mu,0)$, $P(\mu,1)$, $P(0,\nu)$, P(1,1), $P(0,\nu)$, P(1,1), P

$$\mathbf{P} = \mathbf{a_3} \; \mu^3 + \mathbf{a_2} \mu^2 + \mathbf{a_1} \mu + \mathbf{a_0}$$

whose parameters are found using:

$$\begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{P_i} \\ \mathbf{P'_i} \\ \mathbf{P_{i+1}} \\ \mathbf{P'_{i+1}} \end{bmatrix}$$

b. Find the point at the centre of the patch using the equation:

$$\begin{split} \mathbf{P}(\mu,\nu) &= \mathbf{P}(\mu,0) \; (1-\nu) + \mathbf{P}(\mu,1) \; \nu + \mathbf{P}(0,\nu) \; (1-\mu) + \mathbf{P}(1,\nu) \; \mu \\ &\quad - \mathbf{P}(0,0) (1-\nu) (1-\mu) - \mathbf{P}(0,1) \nu (1-\mu) - \mathbf{P}(1,0) (1-\nu) \mu - \mathbf{P}(1,1) \; \nu \mu \end{split}$$

SOAL

- o Diketahui 3 titik kontrol dengan koordinatnya P0 = (1,2), P1(7,10) dan P2(15,4). Dengan nilai kenaikan u=0,02. Tentukan
- 1. berapa titik yang digunakan untuk membangun kurva bezier/
- 2. Berapa nilai titik pada kurva saat u=0.8.

PR

- o Diketahui 4 titik kontrol dengan koordinatnya P0 = (0,1), P1(1,2),P2(2,2) dan P3(4,1). Dengan nilai kenaikan u=0,05. Tentukan
- 1. berapa titik yang digunakan untuk membangun kurva bezier/
- 2. Berapa nilai titik pada kurva saat u=0.5.