Aufgabe_Lecture_1

March 22, 2023

```
[1]: # print out each line in the input cell not only the last one
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

# expand the cell width to 100% of t
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:70% !important; }</style>"))
```

<IPython.core.display.HTML object>

1 Vorlesung 1 - 21. März 2023

Bearbeite folgende Aufgabe bis zur nächsten Vorlesung am 28. März 2023

1.0.1 4.2.2 Aufgabe

Die Ellipse

$$9x^2 + 16y^2 = 144$$

soll ein möglichst großes Rechteck einbeschrieben werden, dessen Seiten parallel zu den Koordinatenachsen sind. Bestimmen Sie die Abmessungen des Rechtecks und zeichnen Sie die Ellipse und das Rechteck.

1. Lösen der Gleichung nach y

Ellipse teilt sich in zwei Funktionen auf. Eine beschreibt dabei den unteren Bogen der Ellipse, die andere den oberen.

2. Plotten der beiden Funktionen

g(x) beschreibt in der Ellipse den oberen Bogen (siehe grüne Funktion) und f(x) beschreibt den unteren Bogen (blau).

```
[3]: f(x) = ellipse[0][0]
     g(x) = ellipse[1][0]
     print('f(x) = ' + str(f(x)))
     print('g(x) = ' + str(g(x)))
     plot((f(x), g(x)), xmin = -4, xmax = 4, figsize = 3)
    f(x) = -3/4*sqrt(-x^2 + 16)
```

 $g(x) = 3/4*sqrt(-x^2 + 16)$

[3]:

3. Berechnung des Flächeninhaltes des Rechteckes - Formel aufstellen

Da der Mittelpunkt der Ellipse bei (0,0) liegt ergibt sich folgende Formel für das Rechteck:

Für die Berechnung wird nur eine Funktion benötigt, daher wird aus Gründen der Einfachheit hier $mit\ dem\ postiven\ Teil\ der\ Funktion\ gearbeitet\ g(x).$

$$[4]: A(x) = 2 * x * 2 * g(x)$$

4. Berechnung der Extremstellen der Flächeninhaltsfunktion A(x)

```
[5]: x0, x1 = var('x0', 'x1')
     a(x) = diff(A(x))
     result = list(map(lambda sol : sol.rhs(), solve(diff(A(x), x), x)))
     x0 = result[0]
     x1 = result[1]
     adiff(x) = diff(a(x))
     print('Hochpunkt bei x1 = ' + str(x1) + ' da a``(x1) = ' + str(adiff(x1)))
```

Hochpunkt bei x1 = 2*sqrt(2) da a``(x1) = -12

5. Quadrate einzeichnen und Maße berechnen

```
[6]: lines = line([(-x1,-f(x1)), (x1, -f(x1)), (x1,f(x1)), (-x1,f(x1)), (-x1,f(x1)), color='red')
```

```
[7]: myplot = implicit_plot(term(x,y), (x,-5,5), (y,-5,5)) show(myplot + lines)
```



```
[8]: laenge = abs(x0) + abs(x1)
hoehe = abs(2 * f(x0))
flaeche = laenge * hoehe

print('Länge: ' + str(laenge))
print('Höhe: ' + str(hoehe))
print('Flächeninhalt: ' + str(flaeche))
```

Länge: 4*sqrt(2)
Höhe: 3*sqrt(2)
Flächeninhalt: 24