Álgebra 1

Lista 01 (Princípios Básicos)

1.1. (Quanto tinha ontem). Mostre que a relação $(-1)\cdot(-1)=+1$ é uma consequência da lei distributiva.

Como 0 = 1 + (-1), temos que :

$$0 = 0 \cdot (-1) = (1 + (-1)) \cdot (-1)$$
$$= 1 \cdot (-1) + (-1) \cdot (-1)$$
$$= -1 + (-1) \cdot (-1) = 0$$
$$\Rightarrow 1 = (-1) \cdot (-1)$$

Portanto, $(-1) \cdot (-1) = 1$.

1.2. (Funções). Seja $I = \{x \in \mathbb{R} : 0 \le x \le 1\}$. O conjunto C das funções contínuas de I em \mathbb{R} , com as operações usuais de adição e multiplicação pontuais, possui quais propriedades dos conjuntos numéricos vistas em aula?

Sejam $f, g, h \in C$ e $x \in I$.

A1 – Associatividade da Adição : (f+g) + h = f + (g+h)

$$((f+g)+h)(x) = (f(x)+g(x)) + h(x),$$

$$(f+(g+h))(x) = f(x) + (g(x)+h(x)).$$

Como a adição em $\mathbb R$ é associativa, temos

$$(f+g) + h = f + (g+h).$$

Logo, essa propriedade é válida.

A2 – Elemento Neutro aditivo : 0 + f = f

Seja função nula $z(x) = 0 \ \forall \ x \in C$, satisfaz

$$(f+z)(x) = f(x) + 0 = f(x),$$

Logo, essa propriedade é válida.

A3 - A equação f + h = g possui uma única solução

$$h(x) = g(x) - f(x)$$

Como g e f são contínuas, a diferença entre elas também é uma função contínua Logo, $h \in C$ pois g e $f \in C$ e é a única solução.

A4 – Comutatividade da Adição : f + g = g + f

Como a adição em \mathbb{R} é comutativa temos :

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).$$

Logo, essa propriedade é válida.

M1 – Associatividade da Multiplicação : $(f \cdot g) \cdot h = f \cdot (g \cdot h)$

$$((f \cdot g) \cdot h)(x) = (f(x) \cdot g(x)) \cdot h(x),$$

$$(f \cdot (g \cdot h))(x) = f(x) \cdot (g(x) \cdot h(x)).$$

Como a multiplicação em \mathbb{R} é associativa, temos

$$(f \cdot g) \cdot h = f \cdot (g \cdot h).$$

Logo, essa propriedade é válida.

M2 – Elemento Neutro multiplicativo : $1 \cdot f = f$

A função $u(x) = 1 \ \forall \ x \in I$, essa função é contínua, logo $\in C$.

$$(f \cdot u)(x) = f(x) \cdot u(x) = f(x) \cdot 1 = f(x).$$

Logo, essa propriedade é válida.

M3 - fg = h possui uma única solução Contraexemplo :

Seja
$$f(x) = x - 0.5$$
 e $g(x) = 1$

A equação $(x-0.5) \cdot h(x) = 1$ não tem solução em C pois a função $h(x) = \frac{1}{x-0.5}$ não é contínua em 0.5.

Logo, essa propriedade **não** é válida.

M4 – Comutatividade da Multiplicação : fg = gf

Como a adição em $\mathbb R$ é comutativa temos :

$$(fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x).$$

Logo, essa propriedade é válida.

MA – Distributividade.

Portanto, $(C, +, \cdot)$ é um <u>anel comutativo</u> com unidade, mas não um corpo.

1.3. (Reticulado e relação de ordem). Um conjunto L, juntamente com duas operações binárias associativas e comutativas \vee e \wedge sobre L tais que $a \vee (a \wedge b) = a$ e $a \wedge (a \vee b) = a$, para quaisquer $a, b \in L$, é chamado reticulado. Definindo $a \leq b$ se $a = a \wedge b$ ou $b = a \vee b$, verifique que, para quaisquer $x, y, z \in L$, tem-se: $x \leq x$; se $x \leq y$ e $y \leq z$, então $x \leq z$; se $x \leq y$ e $y \leq x$, então x = y.

Tome $x, y \in z \in L$.

i. $x \leq x$

Sabemos que $x = x \land (x \lor y)$

Seja $y = (x \lor z)$ para algum z, então

$$x = x \wedge (x \vee (x \vee z)) = x \wedge x$$

Logo, $x \leq x$

ii. Se $x \le y$ e $y \le z$ então $x \le z$

 $x = x \wedge y$ e $y = y \wedge z$, substituindo y em $x \wedge y$

 $x = x \wedge (y \wedge z)$, como "\lambda" é associativa

$$x = (x \land y) \land z = x \land z$$

Logo, $x \leq z$.

iii. Se
$$x \le y$$
 e $y \le x$ então $x = y$
Temos, $x = x \land y$
 $y = y \land x$, como "\lambda" é comutativa $y = x \land y$
Assim, $x = x \land y = y$
Logo, $x = y$

1.4. (Uma álgebra de Boole). Seja P(X) o conjunto das partes de um conjunto X. Escrevendo + ou \vee no lugar de união e \wedge no lugar de interseção, e definindo $\neg a$ como o complementar de $a \subseteq X$, prove que P(X) é um reticulado no qual \wedge distribui-se sobre \vee , \vee distribui-se sobre \wedge , e que $a \vee \neg a = 1$ e $a \wedge (\neg a) = 0$ para qualquer $a \in P(X)$. Quais conjuntos são 0 e 1?

Para ser um reticulado pe preciso que as leis de absorção valem:

$$-a \lor (a \land b) \to A \cup (A \cap B) = A$$
$$-a \land (a \lor b) \to A \cap (A \cup B) = A$$

Como as leis são válidas, P(X) é um reticulado.

Distributivas:

- \wedge distribui-se sobre \vee : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- \vee distribui-se sobre \wedge : $A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$

Logo, a distributiva é válida.

Complemento:

-
$$a \wedge (\neg a) = 0 \rightarrow A \cup A^c = X$$
 (Conjunto Universal)
- $a \vee \neg a = 1 \rightarrow A \cap A^c = \emptyset$
 $0 \rightarrow \emptyset$
 $1 \rightarrow$ Universal (X)

- 1.5. (Até onde encontramos um divisor). Prove que cada inteiro n > 1 ou possui um divisor > 1 e $\le \sqrt{n}$, ou então não possui divisor > 1 e < n.
 - I. n é um número primo

Por definição, a segunda condição é satisfeita

II. n é um número composto

Por definição n pode ser escrito da seguinte forma : $n=a\cdot b$ tal que $a,b\in\mathbb{Z}$ e 1< a,b< n

Em relação a \sqrt{n} temos 3 possibilidades :

- 1. $a > \sqrt{n}$ e $b > \sqrt{n}$: o que seria uma contradição pois $a \cdot b > n$
- 2. $a < \sqrt{n}$ e $b < \sqrt{n}$
- 3. $a \ge \sqrt{n}$ e $b \le \sqrt{n}$ (ou vice-versa)

Assim, pelo menos um dos fatores deve ser menor ou igual a \sqrt{n} , como a,b>1 encontramos um divisor d tal que $1< d \leq \sqrt{n}$

1.6. (Uma equação diofantina). Use o Princípio da Boa Ordenação para ver que a equação $X^6 + 2Y^6 = 4Z^6$ possui uma única solução sobre \mathbb{Z} .

Nota-se que (0,0,0) é uma solução pois $(0^6)+2(0^6)=4(0^6)$

1.7. (Soma dos n primeiros cubos). Demonstre, por indução, que

$$1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
.

De fato, para n = 1 temos :

$$1^3 = \left(\frac{1(1+1)}{2}\right)^2$$

Suponhamos que a equação seja válida para cada n com $1 \le n < N$. Daí,

$$1^{3} + 2^{3} + \dots + (N-1)^{3} + N^{3} = \left(\frac{n - 1(n-1+1)}{2}\right)^{2} + N^{3}$$

$$= \left(\frac{N^{2} - N}{2}\right)^{2} + N^{3}$$

$$= \frac{N^{4} - 2N^{3} + N^{2} + 4N^{3}}{4} = \frac{N^{4} + 2N^{3} + N^{2}}{4}$$

$$= \left(\frac{N^{2} + N}{2}\right)^{2} = \left(\frac{N(N+1)}{2}\right)^{2}$$

Logo, pelo Princípio da Indução Matemática a equação é válida.

1.8. (Múltiplo de 11). Mostre por indução que $3^{3n+2} + 2^{4n+1}$ é múltiplo de 11 para cada inteiro n > 0.

De fato, para n = 0 temos :

$$3^{3\cdot 0+2} + 2^{4\cdot 0+1} = 11 = 11\cdot 0$$

Suponhamos que a expressão seja um multíplo de 11 para cada $n \text{ com } 0 \leq n < N+1$. Daí,

$$3^{3\cdot(N+1)+2} + 2^{4\cdot(N+1)+1} = 3^{3N+2} \cdot 27 + 2^{4N+1} \cdot 16$$
$$= (16+11) \cdot 3^{3N+2} + 16 \cdot 2^{4N+1}$$
$$= 11 \cdot 3^{3N+2} + 16 \cdot (2^{4N+1} + 3^{3N+2})$$

que é um multíplo de 11.

Logo, pelo Princípio da Indução Matemática a afirmação é válida.