MIDI Visualizer

Group:3'b101
Alec Adair, Ben Antczak, Aaron Herrmann

The Goal: MIDI Visualizer

- Piano Keyboard Input
- MIDI Note Parser
- Glyph-Based Graphics by Note
- Possible Gamification

Topics:

- ALU / Registers / Memory
- Immediates
- Simple Operations
- Control Flow
- MIDI Input and VGA Output

ALU / Registers / Memory

- 16 Register Processor
- Dual-Port BRAM Memory
- RISC 8-bit ALU OpCodes

Simple Operations

- Direct Load From Memory to Registers
- Immediates on ALU Input B
- ALU Result to Memory

ToDo:

- Control Flow
 - Flag Based Jumps and Branches
- Memory Partition
 - Program Memory Block
 - MIDI Buffer Block
 - Graphics Block
- MIDI and VGA Controllers

MIDI to FPGA

- Standard MIDI Output on Keyboard
- USB Input on Nexys3
- Buffer Bit Patterns in Block RAM
- MIDI Clock Time Slow vs 100MHz

Multiple Instruments - Multiple Inputs

MIDI Specs

- 31.25K bits/sec
- Period: 320 microseconds
- Asynchronous
- Bits:
 - 1 Start Bit
 - 8 Data Bits
 - 1 Stop Bit

Image: MIDI 1.0 Detailed Specifications; midi.org

MIDI Bit Patterns

Message Types:

- Channel Messages
- System Messages
 - Common: All Channels
 - Real-Time: Synchronization
 - Exclusive: HW Dependant

Data Types:

- Status Bytes
 - Note-on, Note-off, etc.
- Data Bytes:
 - Note Number, Velocity

Image: MIDI 1.0 Detailed Specifications; midi.org

MIDI Data

Code Index Number (CIN)

- 0x2 0x5: System Common Messages
- 0x9: Note-on

Example: 0x90 3C 7F

- 0x9: Note-On (0x8: Note-Off)
- 0x0: Channel 1
- 0x3C (8'd60)Middle C
- 0x7F (8'd127) Max Vel
- Followed by 0x90 3C 00, end of note

Byte 0		Byte 1	Byte 2-	Byte 3
Cable Number	Code Index Number	MIDI_0	MIDI_1	MIDI_2

Image: USB Device Class Definition for Audio Devices

Image: MIDI 1.0 Detailed Specifications; midi.org

Image: MIDI 1.0 Detailed Specifications; midi.org

Glyph Graphics

- Basic Shapes
- Array of Colors: Change Colors
- Public Domain Images
- Pattern Output
 - Note Played
 - Note Length
 - Velocity

Future Decisions

- -Glyph Based Graphics vs Bit-Mapped Graphics -PSRAM (Cellular) for Bit-Mapped Graphics
- -Assembly Format: 2 Variable vs. 3 Variable
- -Additional OpCodes

Gamification

Need to Decide on More Complex Projects:

- <u>-"Gui</u>tar Hero" Game
- -Multiplayer Pong
- -Visualize Precomposed MIDI Files
- -MIDI Looper: Output MIDI Back to Keyboard
- -Multiple Instrument I/O Signal "Shuffling"
- -Multi-Player Memory Games (Simon Says, Solve the Puzzle)
- -Side-Scrolling Game
- -Tug-of-War

CONCLUSION

-MIDI Visualizer

-Keyboard Note Input

-MIDI Note Parser

-Glyph Based Graphics

