ECE 382 Embedded Systems I

Conditional jumps support program branching relative to the PC and do not affect the status bits. The possible jump range is from –511 to +512 words relative to the PC value at the jump instruction. The 10-bit program-counter offset is treated as a signed 10-bit value that is doubled and added to the program counter:

$$PC_{new} = PC_{old} + 2 + PC_{offset} \times 2$$

Word Operations (W) = 0Byte Operations (B) = 1

Table 1. Source Addressing Modes (As)

Address Mode	*As	Registers	Syntax	Operation
Register	00	R0-R2, R4-R15	R <i>n</i>	Register Contents.
0	00	R3	#0	0 Constant
Symbolic	01	R0	addr	(PC+next word) points to operand. (x(PC))
Indexed	01	R1, R4-R15	<i>x</i> (R <i>n</i>)	(Rn+x) points to operand. x is next code word.
Absolute	01	R2	&addr	Next code word is the absolute address. (x(SR))
+1	01	R3	#1	+1 Constant
Indirect	10	R0-R1,R4-R15	@R <i>n</i>	R <i>n</i> points to operand.
+4	10	R2	#4	+4 Constant
+2	10	R3	#2	+2 Constant
Immediate	11	R0	#N	Next word is the constant N. (@PC+)
Indirect auto-inc	11	R1,R4-R15	@R <i>n</i> +	Rn points to operand, Rn is incremented (1 or 2).
+8	11	R2	#8	+8 Constant
-1	11	R3	#-1	-1 Constant

^{*}Bits 4 and 5 in Single (Table 3) and Double (Table 5) Operand Instructions

Table 2. Destination Addressing Modes (Ad)

Address Mode	*Ad	Registers	Syntax	Operation
Register	0	R0-R2, R4-R15	R <i>n</i>	Register Contents.
0	0	R3	#0	Bit bucket
Symbolic	1	R0	addr	(PC+next word) points to operand. (x(PC))
Indexed	1	R1, R4-R15	<i>x</i> (R <i>n</i>)	(Rn+x) points to operand. x is next code word.
Absolute		R2	&addr	Next code word is the absolute address. (x(SR))

*Bit 7 in (Table 5) Operand Instructions

Table 3. Single Operand Instructions

				<u> 1</u> 3	abie	e 3. S	Sing	gie (Operand Ir	<u>ıstructı</u>	<u>ons</u>					
15 14	13 12	1	11	10)	9		8	7	6	5	4	3	2	1	0
	Ç	-bit C	Орсо	de						b/w	Α	S		D/S R	egister	•
Mnemonic	Ор	code			٧	N	Z	С		Ope	ration			D	escript	ion
RRC	0 0 0 1	0 0	0 0	0	•	•	•	•	C-	→MSB-	→LSE	S→C		Roll ds	right t	hrough C
SWPB	0 0 0 1	0 0	0 0	1	-	-	-	-		Swap	bytes			S	wap by	rtes
RRA	0 0 0 1	0 0	0 1	0	0	•	•	•	MSE	B→MSE	3→LS	B→C		Roll d	estinati	on right
SXT	0 0 0 1	0 0	0 1	1	0	•	•	Z	b	it 7→bi	t 8bit	15				estination
PUSH	0 0 0 1	0 0	1 0		-	_	-	_		-2→SP						on stack
CALL	0 0 0 1	0 0	1 0	1	_	-	_	_	SP-2→S	•		•	PC		oroutin	
RETI	0 0 0 1	0 0	1 1	0	•	•	•	•	@SI	P+→SR	, @SP-	-→PC		Return	from i	nterrupt
						Tabl	le 4	Ju	mp Instru	ctions						
15 14	13 12	•	11	1	n	9		8		6	5	4	3	2	1	0
13 14	6-bit Opco		••			ГŤ				-bit, 2's						
Mnemonic	Opcod		٧	N	Z	С				, _ (•	scripti				
JNZ/JNE	0 0 1 0	0 0	'	IN	0							if not		<u> </u>		
JZ/JEQ	0 0 1 0	0 1	+-	_	1							np if eq		<u> </u>		
JNC/JLO	0 0 1 0	1 0	+=		<u> </u>	0				Jumn		•		to zero		
JC/JHS	0 0 1 0	1 1	1_	_	_	1				•			•	to zero		
JN	0 0 1 1	0 0	_	1	_							negativ				
JGE	0 0 1 1	0 1	•	•	_									 ual (N = \	/)	
JL	0 0 1 1	1 0	•	•	_	_				•		lower			,	
JMP	0 0 1 1	1 1	1_	_	_	_						ditiona	•			
				!										•		
						9 5. D	<u>Ou</u>	ble	Operand I	nstruct	<u>ions</u>					
15 14	13 12	1	11	10		9		8	7	6	5	4	3		1	0
4-bit O	pcode		S	ourc	ce F	Regis	ster		Ad	b/w	Α	S		Destinati	on Reg	ister
Mnemonic	Opcode	V	N Z	Z (<u> </u>			Op	eration				De	escriptio	n	
MOV	0 1 0 0	-	_ -	- -	-			sr	c→dst			Move	sou	rce to de	stinatio	on
ADD	0 1 0 1	•	• •	•	•		5	src+	dst→dst					ce to des		n
ADDC	0 1 1 0	•	• (•	<u> </u>				st+C→dst					c and C		
SUBC	0 1 1 1	•	• (•	<u> </u>				.src+C→d					and NOT		
SUB	1 0 0 0		• (<u> </u>	C	lst+		i.src+1→d	st				rce from		
СМР	1 0 0 1	•		•	<u> </u>	dst-src Compare source to destination										
DADD	1 0 1 0	•	_	•	<u> </u>	src+dst+C→dst(dec) Decimal add src and C to dst										
BIT	1 0 1 1	0	• (• z	<u> </u>	src.and.dst Test bits in destination										
BIC	1 1 0 0		- -	- -	_	.not.src.and.dst→dst Clear bits in destination										
BIS	1 1 0 1		- -	- -	_	src.or.dst→dst Set bits in destination src.xor.dst→dst XOR source with destination										
XOR	1 1 1 0	•	• •		Z				r.dst→dst							
AND	1 1 1 1 1	0	•	• Z	Z		sro	c.an	d.dst→ds	1		AND 9	sourc	e with de	estınati	on

Table 6. Source Operands Using Status (R2) and Constant Generator (R3) Registers

Register	As	Addr Mode	Syntax	Constant	Remarks
R2	00	Register	_	_	Register mode
R2	01	<i>x</i> (R2)	addr	(0)	Absolute address mode, next word contains address
R2	10	@R2	#4	0x0004	+4
R2	11	@R2+	#8	0x0008	+8
R3	00	R3	#0	0x0000	0
R3	01	<i>x</i> (R3)	#1	0x0001	+1, No extension word
R3	10	@R3	#2	0x0002	+2
R3	11	@R3+	#-1	0xFFFF	-1

Mnemonic		Description	Operation	V	N	z	С
ADC(.B)	dst	Add C to destination	dst + C → dst	*	*	*	*
ADD(.B)	src,dst	Add source to destination	$src + dst \rightarrow dst$	*	*	*	*
ADDC(.B)	src,dst	Add source and C to destination	$src + dst + C \rightarrow dst$	*	*	*	*
AND(.B)	src,dst	AND source and destination	src .and. dst → dst	0	*	*	*
BIC(.B)	src,dst	Clear bits in destination	.not.src .and. dst → dst	_	_	_	_
BIS(.B)	src,dst	Set bits in destination	src .or. dst → dst	_	_	_	_
BIT(.B)	src,dst	Test bits in destination	src .and. dst	0	*	*	*
BR	dst	Branch to destination	dst → PC	-	_	_	_
CALL	dst	Call destination	PC+2 → stack, dst → PC	_	_	_	_
CLR(.B)	dst	Clear destination	0 → dst	_	_	_	_
CLRC	asc	Clear C	0 → C		_	_	0
CLRN		Clear N	$0 \rightarrow 0$	-	0	-	-
		Clear Z	$0 \rightarrow 1$ N $0 \rightarrow Z$	-		0	_
CLRZ				*	-	*	*
CMP(.B)	src,dst	Compare source and destination	dst - src				
DADC(.B)		Add C decimally to destination	dst + C → dst (decimally)	_	_	_	_
DADD(.B)		Add source and C decimally to dst	src + dst + C → dst (decimally)	*	*	*	*
DEC(.B)	dst	Decrement destination	$dst - 1 \rightarrow dst$	*	*	*	*
DECD(.B)	dst	Double-decrement destination	$dst - 2 \rightarrow dst$	*	*	*	*
DINT		Disable interrupts	0 → GIE	-	-	-	-
EINT		Enable interrupts	1 → GIE	-	-	-	-
<pre>INC(.B)</pre>	dst	Increment destination	$dst +1 \rightarrow dst$	*	*	*	*
<pre>INCD(.B)</pre>	dst	Double-increment destination	dst+2 → dst	*	*	*	*
INV(.B)	dst	Invert destination	.not.dst → dst	*	*	*	*
JC/JHS	label	Jump if C set/Jump if higher or same		-	-	-	-
JEQ/JZ	label	Jump if equal/Jump if Z set		_	-	-	-
JGE	label	Jump if greater or equal		-	-	-	-
JL	label	Jump if less		_	-	-	-
JMP	label	Jump PC + 2 × offset → PC		_	-	-	-
JN	label	Jump if N set		-	-	-	-
JNC/JLO	label	Jump if C not set/Jump if lower		-	-	-	-
JNE/JNZ	label	Jump if not equal/Jump if Z not set		_	-	-	-
MOV(.B)	src,dst	Move source to destination src → dst		_	-	-	_
NOP	·	No operation		-	-	_	-
POP(.B)	dst	Pop item from stack to destination	$@SP \rightarrow dst, SP+2 \rightarrow SP$	-	_	_	-
PUSH(.B)	src	Push source onto stack	$SP - 2 \rightarrow SP, src \rightarrow @SP$	_	_	_	-
RET		Return from subroutine	$@SP \rightarrow PC, SP + 2 \rightarrow SP$	_	_	_	_
RETI		Return from interrupt		*	*	*	*
RLA(.B)	dst	Rotate left arithmetically		*	*	*	*
RLC(.B)	dst	Rotate left through C		*	*	*	*
RRA(.B)	dst	Rotate right arithmetically		0	*	*	*
RRC(.B)	dst	Rotate right through C		*	*	*	*
SBC(.B)	dst	Subtract not(C) from destination	$dst + 0FFFFh + C \rightarrow dst$	*	*	*	*
SETC	ase	Set C	1 → C	_	_	_	1
SETN		Set N	1 → N	_	1	_	
SETZ		Set Z	1 → Z	_		1	_
SUB(.B)	src,dst	Subtract source from destination	dst + .not.src + 1 → dst	*	*	*	*
		Subtract source and not(C) from	$dst + .not.src + C \rightarrow dst$ $dst dst + .not.src + C \rightarrow dst$	*	*	*	*
SUBC(.B)	src,dst	()	ust ust + .110t.510 + 0 → ust				
SWPB	dst dst	Swap bytes Extend sign		0	*	*	*
SXT TST(.B)	dst	Test destination	dst + 0FFFFh + 1	0	*	*	1
	dst	Exclusive OR source and destination	ust + vrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr	*	*	*	*
XOR(.B)	src,dst	Exclusive Oil source and destination	arc .xur. uat → uat				

Legend: 0

- * = Status bit cleared or set on results= Status bit always cleared
- = Status bit not affected1 = Status bit always set

1	.5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
(0	0	0	1	0	0	Opcode W=0/B=1 A			As	3						
	0	0	1	C	Conditio	n	PC Offset (10-Bit)										
		Opc	ode			Source	e Reg	e Reg Ad W=0/B=1			As	3		Dest Reg			

3.4.4.3 Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute, regardless of whether the jump is taken or not.

Table 3-15. Format-II Instruction Cycles and Lengths

	N	o. of Cycles				
Addressing Mode	RRA, RRC SWPB, SXT	PUSH	CALL	Length of Instruction	Example	
Rn	1	3	4	1	SWPB R5	
@Rn	3	4	4	1	RRC @R9	
@Rn+	3	5	5	1	SWPB GR10+	
#N	(See note)	4	5	2	CALL #0F000h	
X(Rn)	4	5	5	2	CALL 2(R7)	
EDE	4	5	5	2	PUSH EDE	
&EDE	4	5	5	2	SXT &EDE	

Table 3-16. Format 1 Instruction Cycles and Lengths

Add	ressing Mode		Length of		
Src	Dst	No. of Cycles	Instruction		Example
Rn	Rm	1	1	MOV	R5,R8
	PC	2	1	BR	R9
	x(Rm)	4	2	ADD	R5,4(R6)
	EDE	4	2	XOR	R8,EDE
	&EDE	4	2	MOV	R5,&EDE
@Rn	Rm	2	1	AND	0R4,R5
	PC	2	1	BR	GR8
	x(Rm)	5	2	XOR	@R5,8(R6)
	EDE	5	2	MOV	GR5, EDE
	&EDE	5	2	XOR	GR5, &EDE
@Rn+	Rm	2	1	ADD	0R5+,R6
	PC	3	1	BR	@R9+
	x(Rm)	5	2	XOR	@R5,8(R6)
	EDE	5	2	MOV	GR9+,EDE
	&EDE	5	2	MOV	GR9+, &EDE
#N	Rm	2	2	MOV	#20,R9
	PC	3	2	BR	#2AEh
	x(Rm)	5	3	MOV	#0300h,0(SP)
	EDE	5	3	ADD	#33,EDE
	&EDE	5	3	ADD	#33,&EDE
x(Rn)	Rm	3	2	MOV	2(R5),R7
	PC	3	2	BR	2(R6)
	TONI	6	3	MOV	4(R7),TONI
	x(Rm)	6	3	ADD	4(R4),6(R9)
	&TONI	6	3	MOV	2(R4),&TONI
EDE	Rm	3	2	AND	EDE, R6
	PC	3	2	BR	EDE
	TONI	6	3	CMP	EDE, TONI
	x(Rm)	6	3	MOV	EDE, 0 (SP)
	&TONI	6	3	MOV	EDE, &TONI
&EDE	Rm	3	2	MOV	&EDE,R8
	PC	3	2	BRA	&EDE
	TONI	6	3	MOV	&EDE, TONI
	x(Rm)	6	3	MOV	&EDE, 0(SP)
	&TONI	6	3	MOV	&EDE,&TONI

Access 1FFFFh Word/Byte Flash/ROM 10000h 0FFFFh Word/Byte Interrupt Vector Table 0FFE0h 0FFDFh Flash/ROM Word/Byte 03FFh Word/Byte **RAM** 0200h 01FFh Word 16-Bit Peripheral Modules 0100h 0FFh Byte 8-Bit Peripheral Modules 010h 0Fh Special Function Registers Byte 0h

5

Figure 3-1. CPU Block Diagram

8.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low

Bit = 1: The input is high

NOTE: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption while the write attempt is active.

8.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is configured as I/O function, output direction, and the pullup/down resistor is disabled.

Bit = 0: The output is low

Bit = 1: The output is high

If the pin's pullup/pulldown resistor is enabled, the corresponding bit in the PxOUT register selects pullup or pulldown.

Bit = 0: The pin is pulled down

Bit = 1: The pin is pulled up

8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/pulldown resistor of the corresponding I/O pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.

Bit = 0: Pullup/pulldown resistor disabled

Bit = 1: Pullup/pulldown resistor enabled

Table 16. Port P1 (P1.0 to P1.2) Pin Functions

DINI NIAME				CONTR	OL BITS AND SI	GNALS ⁽¹⁾	
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 (2)	CAPD.y
P1.0/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
TA0CLK/		TA0.TACLK	0	1	0	0	0
ACLK/	0	ACLK	1	1	0	0	0
A0 ⁽²⁾ /	0	A0	X	X	х	1 (y = 0)	0
CA0/		CA0	X	Х	X	0	1 (y = 0)
Pin Osc		Capacitive sensing	X	0	1	0	0
P1.1/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
TA0.0/		TA0.0	1	1	0	0	0
		TA0.CCI0A	0	1	0	0	0
UCA0RXD/		UCA0RXD	from USCI	1	1	0	0
UCA0SOMI/	1	UCA0SOMI	from USCI	1	1	0	0
A1 ⁽²⁾ /		A1	X	X	×	1 (y = 1)	0
CA1/		CA1	X	X	X	0	1 (y = 1)
Pin Osc		Capacitive sensing	X	0	1	0	0
P1.2/		P1.x (I/O)	I; 0; O: 1	0	0	0	0
TA0.1/		TA0.1	1	1	0	0	0
		TA0.CCI1A	0	1	0	0	0
UCA0TXD/	2	UCA0TXD	from USCI	1	1	0	0
UCA0SIMO/ A2 ⁽²⁾ /	2	UCA0SIMO	from USCI	1	1	0	0
		A2	X	X	X	1 (y = 2)	0
CA2/		CA2	X	X	х	0	1 (y = 2)
Pin Osc		Capacitive sensing	X	0	1	0	0

⁽¹⁾ X = don't care

⁽²⁾ MSP430G2x53 devices only

Table 17. Port P1 (P1.3) Pin Functions

PIN NAME				CONTRO	OL BITS AND SIG	GNALS ⁽¹⁾	
(P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 (2)	CAPD.y
P1.3/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
ADC10CLK ⁽²⁾ /		ADC10CLK	1	1	0	0	0
CAOUT/		CAOUT	1	1	1	0	0
A3 ⁽²⁾ /		A3	X	X	X	1 (y = 3)	0
VREF-(2)/	3	VREF-	X	X	X	1	0
VEREF-(2)/		VEREF-	X	Х	Х	1	0
CA3/		CA3	X	X	X	0	1 (y = 3)
Pin Osc		Capacitive sensing	X	0	1	0	0

Table 18. Port P1 (P1.4) Pin Functions

DIN NAME					CONTROL BITS	AND SIGNALS (1)	
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 ⁽²⁾	JTAG Mode	CAPD.y
P1.4/		P1.x (I/O)	I: 0; O: 1	0	0	0	0	0
SMCLK/		SMCLK	1	1	0	0	0	0
UCB0STE/		UCB0STE	from USCI	1	1	0	0	0
UCA0CLK/		UCA0CLK	from USCI	1	1	0	0	0
VREF+(2)/		VREF+	Х	X	Х	1	0	0
VEREF+(2)/	4	VEREF+	Х	Х	Х	1	0	0
A4 ⁽²⁾ /		A4	Х	Х	Х	1 (y = 4)	0	0
CA4		CA4	Х	Х	Х	0	0	1 (y = 4)
TCK/		TCK	Х	Х	Х	0	1	0
Pin Osc		Capacitive sensing	Х	0	1	0	0	0

⁽¹⁾ X = don't care(2) MSP430G2x53 devices only

⁽¹⁾ X = don't care(2) MSP430G2x53 devices only

Table 19. Port P1 (P1.5 to P1.7) Pin Functions

PIN NAME					CONTROL BITS	AND SIGNALS ⁽¹)	
(P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 ⁽²⁾	JTAG Mode	CAPD.y
P1.5/		P1.x (I/O)	l: 0; O: 1	0	0	0	0	0
TA0.0/		TA0.0	1	1	0	0	0	0
UCB0CLK/		UCB0CLK	from USCI	1	1	0	0	0
UCA0STE/		UCA0STE	from USCI	1	1	0	0	0
A5 ⁽²⁾ /	5	A 5	Х	Х	X	1 (y = 5)	0	0
CA5		CA5	Х	Х	X	0	0	1 (y = 5)
TMS		TMS	Х	Х	X	0	1	0
Pin Osc		Capacitive sensing	Х	0	1	0	0	0
P1.6/		P1.x (I/O)	l: 0; O: 1	0	0	0	0	0
TA0.1/		TA0.1	1	1	0	0	0	0
UCB0SOMI/		UCB0SOMI	from USCI	1	1	0	0	0
UCB0SCL/		UCB0SCL	from USCI	1	1	0	0	0
A6 ⁽²⁾ /	6	A6	Х	Х	X	1 (y = 6)	0	0
CA6		CA6	Х	Х	X	0	0	1 (y = 6)
TDI/TCLK/		TDI/TCLK	Х	Х	Х	0	1	0
Pin Osc		Capacitive sensing	Х	0	1	0	0	0
P1.7/		P1.x (I/O)	l: 0; O: 1	0	0	0	0	0
UCB0SIMO/		UCB0SIMO	from USCI	1	1	0	0	0
UCB0SDA/		UCB0SDA	from USCI	1	1	0	0	0
A7 ⁽²⁾ /		A7	X	X	X	1 (y = 7)	0	0
CA7	7	CA7	Х	Х	X	0	0	1 (y = 7)
CAOUT		CAOUT	1	1	0	0	0	0
TDO/TDI/		TDO/TDI	Х	Х	X	0	1	0
Pin Osc		Capacitive sensing	Х	0	1	0	0	0

⁽¹⁾ X = don't care(2) MSP430G2x53 devices only

Table 5. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG (5)(4)	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG ⁽²⁾⁽⁶⁾	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See (7)			0FFDEh	15
See ⁽⁸⁾			0FFDEh to 0FFC0h	14 to 0, lowes

NOTE: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

- Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)
- 2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)
- 3. Configure ports
- Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)
- Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

16.4.1 UCAxCTL0, USCI_Ax Control Register 0, UCBxCTL0, USCI_Bx Control Register 0

7	6		5	4	3	2	1	0
UCCKPH	UCCKF	PL	UCMSB	UC7BIT	UCMST	UCM	ODEx	UCSYNC=1
rw-0	rw-0	•	rw-0	rw-0	rw-0	rw-0	rw-0	
UCCKPH	Bit 7	Clock	c phase select.					
		0	Data is chan	ged on the first U	CLK edge and cap	tured on the follo	wing edge.	
		1	Data is capti	ured on the first U	CLK edge and cha	anged on the follo	wing edge.	
UCCKPL	Bit 6	Clock	polarity select.					
		0	The inactive	state is low.				
		1	The inactive	state is high.				
UCMSB	Bit 5	MSB	first select. Con	trols the direction	of the receive and	transmit shift reg	jister.	
		0	LSB first					
		1	MSB first					
UC7BIT	Bit 4	Chara	acter length. Se	lects 7-bit or 8-bit	character length.			
		0	8-bit data					
		1	7-bit data					
UCMST	Bit 3	Maste	er mode select					
		0	Slave mode					
		1	Master mode	•				
UCMODEx	Bits 2-1	USCI	mode. The UC	MODEx bits selec	t the synchronous	mode when UCS	SYNC = 1.	
		00	3-pin SPI					
		01	4-pin SPI wit	th UCxSTE active	high: slave enable	ed when UCxSTE	= 1	
		10		th UCxSTE active	low: slave enable	d when UCxSTE	= 0	
		11	I ² C mode					
UCSYNC	Bit 0	Sync	hronous mode e	enable				
		0	Asynchronou	ıs mode				
		1	Synchronous	s mode				

15.4.2 UCAxCTL1, USCI_Ax Control Register 1

7	6		5	4	3	2	1	0
UCS	SSELX		UCRXEIE	UCBRKIE	UCDORM	UCTXADDR	UCTXBRK	UCSWRST
rw-0	rw-0		rw-0	rw-0	rw-0	rw-0	rw-0	rw-1
UCSSELX	Bits 7-6	USCI	I clock source se	elect. These bits s	elect the BRCLK	source clock.		
		00	UCLK					
		01	ACLK					
		10	SMCLK					
		11	SMCLK					
UCRXEIE	Bit 5	Rece	eive erroneous-c	haracter interrupt-	-enable			
		0	Erroneous cl	naracters rejected	and UCAxRXIFG	is not set		
		1	Erroneous cl	naracters received	d will set UCAxRX	IFG		
UCBRKIE	Bit 4	Rece	eive break chara	cter interrupt-enat	ole			
		0	Received bre	eak characters do	not set UCAxRXI	FG.		
		1	Received bre	eak characters se	t UCAxRXIFG.			
UCDORM	Bit 3	Dorm	nant. Puts USCI	into sleep mode.				
		0	Not dormant	. All received cha	racters will set UC	AxRXIFG.		
		1	UCAxRXIFG		with automatic bar	an idle-line or with ud rate detection o		
UCTXADDR	Bit 2		smit address. Ne processor mode		insmitted will be m	narked as address	depending on the	selected
		0	Next frame t	ransmitted is data	ı			
		1	Next frame t	ransmitted is an a	ıddress			
UCTXBRK	Bit 1	baud	rate detection 0		en into UCAxTXB	the transmit buffer UF to generate the		
		0	Next frame t	ransmitted is not	a break			
		1	Next frame t	ransmitted is a br	eak or a break/syr	nch		
UCSWRST	Bit 0	Softw	vare reset enable	е				
		0	Disabled, US	CI reset released	for operation.			
		1	Enabled, US	CI logic held in re	eset state.			

15.4.3 UCAxBR0, USCI_Ax Baud Rate Control Register 0

7	6	5	4	3	2	1	0
			UCI	BRx			
rw	rw	rw	rw	rw	rw	rw	rw

15.4.4 UCAxBR1, USCI_Ax Baud Rate Control Register 1

7	6	5	4	3	2	1	0
			UC	BRx			
rw	rw	rw	rw	rw	rw	rw	rw
UCBBx	7-0	Clock prescaler setting	of the Baud ra	te generator. The 1	6-bit value of (UC	CAXBRO + UCAXBE	R1 × 256) forms

15.4.5 UCAxMCTL, USCI_Ax Modulation Control Register

7	6	5	4	3	2	1	0
		UCBRFx			UCBRSx		UCOS16
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
UCBRFx	Bits 7-4	First modulation stag 1. Ignored with UCO				for BITCLK16 wh	en UCOS16 =
UCBRSx	Bits 3-1	Second modulation s the modulation patter	•	se bits determine ti	he modulation patte	ern for BITCLK. T	able 15-2 shows
UCOS16	Bit 0	Oversampling mode	enabled				
		0 Disabled					
		1 Enabled					

15.4.7 UCAxRXBUF, USCI_Ax Receive Buffer Register

7	6	5	4	3	2	1	0		
			UCRX	BUFx					
rw	rw	rw	rw	rw	rw	rw	rw		
UCRXBUFx	UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCAxRXIFG. In 7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset.								

15.4.8 UCAxTXBUF, USCI_Ax Transmit Buffer Register

7	6	5	4	3	2	1	0
			UCTX	BUFx			
rw	rw	rw	rw	rw	rw	rw	rw
UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCAxTXIFG. The MSB of UCAxTXBUF is not used for 7-bit data and is reset.							

12.3.1 TACTL, Timer_A Control Register

15	14		13	12	11	10	9	8
			Uni	used			TAS	SELx
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6		5	4	3	2	1	0
	IDx		М	Cx	Unused	TACLR	TAIE	TAIFG
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
Unused	Bits 15-10	Unus	ed					
TASSELx	Bits 9-8	Timer	_A clock sourc	e select				
		00	TACLK					
		01	ACLK					
		10	SMCLK					
		11	INCLK (INC specific data		cific and is often as:	signed to the inve	rted TBCLK) (see	the device-
IDx	Bits 7-6	Input	divider. These	bits select the div	rider for the input cl	lock.		
		00	/1					
		01	/2					
		10	/4					
		11	/8					
MCx	Bits 5-4	Mode	control. Setting	g MCx = 00h whe	n Timer_A is not in	use conserves po	ower.	
		00	Stop mode:	the timer is halte	d.			
		01	Up mode: th	e timer counts up	to TACCR0.			
		10	Continuous	mode: the timer of	counts up to 0FFFF	h.		
		11	Up/down mo	de: the timer cou	unts up to TACCR0	then down to 000	0h.	
Unused	Bit 3	Unus	ed					
TACLR	Bit 2	Timer	r_A clear. Settir natically reset a	ng this bit resets ' and is always read	TAR, the clock divid d as zero.	der, and the count	direction. The TA	CLR bit is
TAIE	Bit 1	Timer	r_A interrupt en	able. This bit ena	bles the TAIFG inte	errupt request.		
		0	Interrupt dis	abled				
		1	Interrupt ena	abled				
TAIFG	Bit 0	Timer	r_A interrupt fla	9				
		0	No interrupt	pending				
		1	Interrupt per	adina				

12.3.4 TACCTLx, Capture/Compare Control Register

15	14	20	13	12	11	10	9	8
	CMx		CC	ISx	SCS	SCCI	Unused	CAP
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	r	rO	rw-(0)
7	6		5	4	3	2	1	0
- 17	OUTMOD	x		CCIE	CCI	OUT	cov	CCIFG
rw-(0)	rw-(0)		rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)
CMx	Bit 15-14	Captu	re mode					
		00	No capture					
		01	Capture on	risina edae				
		10	Capture on					
		11	0.0000	both rising and fall	ina edaes			
CCISx	Bit 13-12	Captu	re/compare inp			CRx input signal.	See the device-sp	ecific data
		00	CCIxA	na comiconomi				
		01	CCIxB					
		10	GND					
		11	Voc					
scs	Bit 11			source This hit is	used to synchron	rize the canture in	put signal with the	timer clock
000	Dit 11	0	Asynchrono		daca to syncinor	nze tre capture n	iput signai with the	unior clock.
		1	Synchronou					
SCCI	Bit 10		1927 (1921) 1924	NAMES OF STREET	The selected CCL	innut cianal ic late	hed with the EQU:	eignal and ca
		be rea	ad via this bit			input signai is iatt	ned with the EQU	k signai and ca
Unused	Bit 9		400 338	Always read as 0.				
CAP	Bit 8		re mode					
		0	Compare m					
		1	Capture mo					
OUTMODx	Bits 7-5			2, 3, 6, and 7 are	not useful for TA	CCR0, because E	EQUx = EQU0.	
		000	OUT bit valu	ie				
		001	Set					
		010	Toggle/rese	t				
		011	Set/reset					
		100	Toggle					
		101	Reset					
		110	Toggle/set					
		111	Reset/set					
CCIE	Bit 4	Captu	re/compare int	errupt enable. This	bit enables the in	nterrupt request o	f the corresponding	CCIFG flag.
		0	Interrupt dis	abled				
		1	Interrupt ena	abled				
CCI	Bit 3	Captu	re/compare inp	out. The selected in	nput signal can be	read by this bit.		
OUT	Bit 2		10000 700	ode 0, this bit dire		200		
		0	Output low		50	- 51		
		1	Output high					
cov	Bit 1	Captu		nis bit indicates a c	apture overflow o	ccurred. COV mu	st be reset with so	ftware.
		0		overflow occurred				
		1		rflow occurred				
	Dia o		0.00					
CCIFG	BILL		re/compare inii	errupt flag				
CCIFG	Bit 0	0	re/compare int No interrupt	100.00 700				

12.3.5 TAIV, Timer_A Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
0	0	0	0		TAIVx		0
r0	r0	r0	r0	r-(0)	r-(0)	r-(0)	r0

TAIVx Bits 15-0 Timer_A interrupt vector value

TAIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending	-	
02h	Capture/compare 1	TACCR1 CCIFG	Highest
04h	Capture/compare 2 ⁽¹⁾	TACCR2 CCIFG	
06h	Reserved	-	
08h	Reserved	-	
0Ah	Timer overflow	TAIFG	
0Ch	Reserved	-	
0Eh	Reserved	-	Lowest

⁽¹⁾ Not implemented in MSP430x20xx devices

Table 12-2. Output Modes

OUTMODx	Mode	Description					
000 Output		The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately when OUTx is updated.					
001	Set	The output is set when the timer counts to the TACCRx value. It remains set until a reset of the timer, or until another output mode is selected and affects the output.					
010	Toggle/Reset	The output is toggled when the timer counts to the TACCRx value. It is reset when the timer counts to the TACCR0 value.					
011	Set/Reset	The output is set when the timer counts to the TACCRx value. It is reset when the timer counts to the TACCR0 value.					
100	Toggle	The output is toggled when the timer counts to the TACCRx value. The output period is double the timer period.					
101	Reset	The output is reset when the timer counts to the TACCRx value. It remains reset until anothe output mode is selected and affects the output.					
110	Toggle/Set	The output is toggled when the timer counts to the TACCRx value. It is set when the timer counts to the TACCR0 value.					
111	Reset/Set	The output is reset when the timer counts to the TACCRx value. It is set when the timer counts to the TACCR0 value.					

Figure 12-12. Output Example—Timer in Up Mode

22.3.1 ADC10CTL0, ADC10 Control Register 0

when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is see when a block of transfers is completed. O No interrupt pending Interrupt pending Enable conversion O ADC10 disabled ADC10 enabled Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start	15	1	4	13	12	11	10	9	8	
MSC REF2 SV REFON ADGION ADCIONE ADCIONED ENC ADCIOSC		SR	EFx		ADC10SHTx		ADC10SR	REFOUT	REFBURST	
MSC	rw-(0)	rw-	(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
MSC	7		3	5	4	3	2	1	0	
Can be modified only when ENC = 0	MSC				ADC100N			ENC		
Can be modified only when ENC = 0										
SREFX Bits 15-13 Select reference. 000 V _m = V _{cs} and V _m = V _{cs} 010 V _m = V _{css} , and V _m = V _{cs} 010 V _m = V _{css} , and V _m = V _{cs} 010 V _m = V _{css} , and V _m = V _{cs} 011 V _m = V _{css} , and V _m = V _{css} . Devices with V _{csss} , pin only. 100 V _m = V _{css} , and V _m = V _{css} . Devices with V _{csss} , pin only. 101 V _m = V _{css} , and V _m = V _{css} . Devices with V _{csss} , pin only. 101 V _m = V _{csss} , and V _m = V _{css} . Devices with V _{csss} , pin only. 110 V _m = Suffered V _{csss} , and V _m = V _{css} . Devices with V _{csss} , pin only. 111 V _m = Buffered V _{csss} , and V _m = V _{csss} . Devices with V _{cssss} , pins only. 111 V _m = Buffered V _{csss} , and V _m = V _{csss} . Devices with V _{cssss} , pins only. 111 V _m = Buffered V _{csss} , and V _m = V _{csss} . Devices with V _{cssss} , pins only. 111 V _m = Buffered V _{cssss} , and V _m = V _{csss} . V _{cssss} . Devices with V _{csssss} , pins only. 111 V _m = Buffered V _{cssss} , and V _m = V _{csss} . V _{cssss} . Devices with V _{csssss} , pins only. 111 V _m = Buffered V _{cssssssssssssssssssssssssssssssssssss}	, (0)				200	(0)	(2)	(0)	111 121	
DOC V _{in.} = V _{roc.} and V _{in.} = V _{roc.} and V _{in.} = V _{roc.}	0.000	Can be	modilled of	lly when ENC	= 0					
Oct V _n = V _{nex} , and V _n = V _{sc}	SREFx	Bits 15	13 Selec	t reference.						
OTO V _{n.} = V _{degr.} and V _{h.} = V _{degr.} Devices with V _{degr.} pin only.			000	$V_{R_{+}} = V_{CC}$ as	$V_{R-} = V_{SS}$					
OTT V _B = Buffered V _{BEF} , and V _B = V _{BEF} Devices with V _{BEF} , pin only.			001	$V_{R+} = V_{REF+}$	and $V_{R} = V_{SS}$					
The sample and conversion Seference output off Reference output on Devices with V _{entex} , V _{netex} , pin only. REFBURST Bit 8 Reference output on Devices with V _{entex} , V _{netex} , pin only. REFBURST Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{entex} , V _{netex} , pin only. Reference output on Devices with V _{netex} , V _{netex} , pin only. Reference output on Devices with V _{netex} , V _{netex} , pin only. Reference output on Devices with V _{netex} , V _{netex} , pin only. Reference output on Devices with V _{netex} , V _{netex} , pin only. Refer			010	$V_{R+} = V_{eREF+}$	and V _R . = V _{SS} . Dev	vices with V _{eREF+} o	only.			
The content of the			011	10000			41144			
ADC10SHTX Bits 12-11 ADC10 sample-and-hold time 10			100							
ADC10SHTX Bits 12-11 ADC10 sample-and-hold time 00			101	$V_{R+} = V_{REF+}$	and $V_{R-} = V_{REF-} / V_{eF}$	_{REF} Devices with	V _{eREF+/-} pins only.			
ADC10SHTX Bits 12-11 ADC10 sample-and-hold time 0			110	$V_{R+} = V_{eREF+}$	and $V_{R-} = V_{REF} / V_{e}$	REF. Devices with	V _{eREF+} . pins only.			
ADC10SR Bit 10 8 × ADC10CLKs 10 16 × ADC10CLKs 11 64 × ADC10CLKs ADC10SR reduces the current consumption of the reference buffer drive capability for the maximum sampling rate. This bit is selects the reference buffer drive capability for the maximum sampling rate. Reference buffer supports up to ~200 ksps REFOUT Bit 9 Reference output on Devices with V _{enEF} , V _{NEF} , pin only. REFBURST Bit 8 Reference output on. Devices with V _{enEF} , V _{NEF} , pin only. REFBURST Bit 8 Reference buffer on continuously 1 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed conversions are performed automatically as soon as the prior conversion is completed REF2.5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5.V 1 2.5.V 1 2.5.V 1 Reference on ADC10 interrupt disabled 1 Interrupt disabled 1 Interrupt pending 1 ADC10 enabled 1 AD						V _{REF} / V _{eREF} Dev	rices with V _{eREF+} . pi	ns only.		
ADC10SR Bit 10	ADC10SHT	x Bits 12	11 ADC1	100000000000000000000000000000000000000						
ADC10SR Bit 10 6 x ADC10CLKs 11 6 4 x ADC10CLKs 11 6 4 x ADC10CLKs 11 6 4 x ADC10CLKs ADC10SR educes the reference buffer drive capability for the maximum sampling rate. Setting ADC10SR reduces the current consumption of the reference buffer. Reference buffer supports up to -50 ksps REFOUT Bit 9 Reference output 0 Reference output off 1 Reference output off 1 Reference output on. Devices with V _{enter} , / V _{enter} , pin only. REFBURST Bit 8 Reference buffer on continuously 1 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed REF2_SV Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on 0 Interrupt disabled 1 Interrupt enabled CTIOIFG Bit 2 ADC10 interrupt filag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically se when a block of transfers is completed. CTIOIFG Bit 1 Enable conversion 0 No interrupt geneding 1 Interrupt pending 1 Interrupt pending 1 Interrupt pending 1 ADC10 enabled CTIOIFC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically.										
ADC10SR Bit 10 ADC10 campling rate. This bit selects the reference buffer drive capability for the maximum sampling rate. Setting ADC10SR reduces the current consumption of the reference buffer. 0 Reference buffer supports up to ~200 ksps REFOUT Bit 9 Reference output of 1 Reference output on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 1 The first rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal to trigger each sample-and-conversion is completed conversions are performed automatically as soon as the prior conversion is completed on 1.5 V Reference generator voltage. REFON must also be set. 0 1.5 V REFON Bit 5 Reference generator on 0 Reference generator on 0 Reference of 1 Reference generator on 0 Reference of 1 Reference on 1 NaDC10 on 1 ADC10 on 1 Interrupt idiabled 1 Interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when the interrupt pending 1 Interrupt pending 1 Interrupt pending 1 ADC10 on 1			01		0.000					
ADC10SR Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate. Setting ADC10SR reduces the current consumption of the reference buffer. On Reference buffer supports up to ~50 ksps REFOUT Bit 9 Reference output 0 Reference output off 1 Reference output on. Devices with V _{engr.} , V _{Ngr.} , pin only. REFBURST Bit 8 Reference buffer on continuously 1 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference of 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 interrupt enable 1 Interrupt enable 1 Interrupt enable CTOIFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. 0 No interrupt pending 1 ADC10 clasabled 1 ADC10 disabled 1 ADC10 disabled 1 ADC10 disabled 1 ADC10 of Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.					990000					
REFOUT Bit 9 Reference buffer supports up to ~200 ksps 1 Reference buffer supports up to ~200 ksps 1 Reference buffer supports up to ~50 ksps REFBURST Bit 8 Reference output 0 Reference output on. Devices with V _{ener} , V _{mer} , pin only. REFBURST Bit 8 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal trigger each sample-and-conversion. 1 The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference penerator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled CT0IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 2 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together with the interrupt pending and the performance of the set of the performance										
REFOUT Bit 9 Reference output REFBURST Bit 8 Reference output of Reference output on. Devices with V _{eners} , / V _{mar} , pin only. REFBURST Bit 8 Reference output on. Devices with V _{eners} , / V _{mar} , pin only. Reference burst. Reference burst. Reference buffer on continuously Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. O The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed REF2.5V Bit 6 Reference-generator voltage. REFON must also be set. O 1.5 V 1 2.5 V REFON Bit 5 Reference generator on O Reference off 1 Reference on ADC10 on O ADC10 on ADC10 on ADC10 interrupt disabled 1 Interrupt enable O Interrupt enable O Interrupt equest is accepted, or it may be reset by software. When using the DTC this flag is set when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when the interrupt pending C Bit 1 Enable conversion O ADC10 disabled 1 Interrupt pending C Bit 1 Enable conversion O ADC10 disabled 1 ADC10 enabled Ctosc Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set togethed. O No sample-and-conversion start.	ADC10SR	Bit 10	Setting ADC10SR reduces the current consumption of the reference buffer.							
REFOUT Bit 9 Reference output 0 Reference output off 1 Reference output off 1 Reference output off 1 Reference output on. Devices with V _{enEF*} , / V _{REF*} , pin only. REFBURST Bit 8 Reference burst. 0 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal to trigger each sample-and-conversion are performed automatically as soon as the prior conversion is completed conversions are performed automatically as soon as the prior conversion is completed 0 1.5 V 1 2.5 V			0			~ ************************************				
REFBURST Bit 8 Reference output off 1 Reference output on. Devices with V _{eREF*} , V _{REF*} , pin only. REFBURST Bit 8 Reference burst. 0 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversion are performed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference off 1 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled CTOIFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. 0 No interrupt pending 1 ADC10 enabled CTOISC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically.	DEFOUT	D'1 0	D. (outter supports up	to ~50 ksps				
REFBURST Bit 8 Reference output on. Devices with V _{eREF} , /V _{REF} , pin only. Reference burst. 0 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal to rigger each sample-and-conversion is completed conversions are performed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on ADC10 off 1 ADC10 on ADC10 on ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewen a block of transfers is completed. 0 No interrupt pending 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start	REFOUT	Bit 9								
REFBURST Bit 8 Reference burst. 0 Reference buffer on continuously 1 Reference buffer on continuously 1 Reference buffer on only during sample-and-conversion MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversion as reperformed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 interrupt enable 0 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10ISC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.			0			and the state of t	ala sale			
MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. O The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal to trigger each sample-and-conversion. REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. O 1.5 V 1 2.5 V REFON Bit 5 Reference on ADC10ON Bit 4 ADC10 on O ADC10 off 1 ADC10 on O ADC10 interrupt enable O Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. O No interrupt pending 1 Interrupt pending C Bit 1 Enable conversion O ADC10 disabled 1 ADC10 enabled C10ISC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start	DEEDLIBET	Dia 0	The state of the s							
MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC10ON Bit 4 ADC10 on 0 ADC10 of 1 ADC10 on ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10ISC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.	HEFBURSI	DIT 6			uffer en continue	ah.				
MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. 1 The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.			1				nuaraian			
The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed. REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is see when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.	Mec	Dit 7								
REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference off 1 ADC10 on 0 ADC10 off 1 ADC10 off 1 ADC10 interrupt disabled 1 Interrupt enable 0 Interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. O No interrupt pending C Bit 1 Enable conversion 0 ADC10 disabled 1 Interrupt pending 1 Interrupt pending 1 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start.	MISC	DIL /	100000						conversion	
CONVERSIONS are performed automatically as soon as the prior conversion is completed REF2_5V Bit 6 Reference-generator voltage. REFON must also be set. 0 1.5 V 1 2.5 V REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on ADC10 interrupt enable 0 Interrupt enabled 1 Interrupt enabled CTOIFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 Interrupt pending 1 ADC10 enabled CTOISC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.			53							
REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.										
REFON Bit 5 Reference generator on 0 Reference off 1 Reference on 1 ADC10 on 0 ADC10 off 1 ADC10 on 1 ADC10 on 1 ADC10 on 1 ADC10 on 1 Interrupt disabled 1 Interrupt enabled 1 Interrupt pending 1 Interrupt pending 1 Interrupt pending 1 Interrupt enabled 1 ADC10 disabled 1 ADC10 enabled 1 ADC10 enabled 1 ADC10 enabled 2 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.	REF2_5V	Bit 6	Reference-generator voltage. REFON must also be set.							
REFON Bit 5 Reference generator on 0 Reference off 1 Reference on ADC10ON Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. O No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start.			0	1.5 V						
ADC100N Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on 0 ADC10 interrupt enable 0 Interrupt enabled 1 Interrupt enabled 1 Interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending 1 Interrupt enabled C10SC Bit 1 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together. No sample-and-conversion start.			1	2.5 V						
ADC10ON Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending C Bit 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together. 0 No sample-and-conversion start.	REFON	Bit 5	Refer	ence generato	on					
ADC10ON Bit 4 ADC10 on 0 ADC10 off 1 ADC10 on ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is se when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending C Bit 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start			0	Reference of	off					
ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is sewhen a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending C Bit 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set togeth with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.			1	Reference of	n					
ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is se when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending C Bit 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start	ADC100N	Bit 4	ADC1	0 on						
ADC10IE Bit 3 ADC10 interrupt enable 0 Interrupt disabled 1 Interrupt enabled C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending 1 Interrupt pending C Bit 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set togeth with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start.			0	ADC10 off						
C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically re when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is se when a block of transfers is completed. O No interrupt pending Interrupt pending Enable conversion ADC10 disabled ADC10 enabled Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. No sample-and-conversion start			1	ADC10 on						
C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. O No interrupt pending Interrupt pending Enable conversion O ADC10 disabled I ADC10 enabled Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start	ADC10IE	Bit 3	ADC1	0 interrupt ena	ble					
C10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically rewhen the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. O No interrupt pending Interrupt pending Enable conversion O ADC10 disabled ADC10 enabled Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start				Interrupt dis	abled					
when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is see when a block of transfers is completed. O No interrupt pending Interrupt pending Enable conversion O ADC10 disabled ADC10 enabled Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start			1	Interrupt en	abled					
when a block of transfers is completed. 0 No interrupt pending 1 Interrupt pending C Bit 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start	C10IFG	Bit 2	ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically							
C Bit 1 Enable conversion O ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. O No sample-and-conversion start							et by software. W	men using the	DTC this hag is se	
C Bit 1 Enable conversion 0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start			0 1	No interrupt p	ending					
0 ADC10 disabled 1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start			1 1	nterrupt pend	ing					
1 ADC10 enabled C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start	C	Bit 1	Enable c	onversion						
C10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set toget with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start			0	ADC10 disabl	ed					
with one instruction. ADC10SC is reset automatically. No sample-and-conversion start			1	ADC10 enable	ed					
0 No sample-and-conversion start	C10SC	Bit 0	Start con	version. Softv	vare-controlled sa		ersion start. ADC	10SC and ENC	may be set toget	
1 State Samulesanos conversion						55%				

22.3.2 ADC10CTL1, ADC10 Control Register 1

15	14		13	12	11	10	9	8		
	INCHx				SHSx		ADC10DF	ISSH		
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6		5	4	3	2	1	0		
170	ADC10DI	Vx		ADC10	SSELx	CON	ISEQx	ADC10BUS		
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r-0		
	Can be mor	dified onl	y when ENC	= 0						
	The second		10 10		2 10 100		120000	100		
INCHx	Bits 15-12	12 Input channel select. These bits select the channel for a single-conversion or the highest channel for a sequence of conversions. Only available ADC channels should be selected. See device specific data should be selected.								
		0000	A0	oronor orny aranao	no riso o sitaminoto	0110010 00 001001		Joine data onlo		
		0001	A1							
		0010	A2							
		0011	A3							
		0100	A4							
		0101	A5							
		0110	A6							
		0111	A7							
		1000	V _{eREF+}							
		1001	V _{REF} /V _{eREF} .							
		1010	Temperatur	e sensor						
		1011	(V _{cc} - V _{ss}) /	2						
		1100	(V _{cc} - V _{ss}) /	2, A12 on MSP43	0F22xx devices					
		1101 (V _{CC} - V _{SS}) / 2, A13 on MSP430F22xx devices								
		1110		2, A14 on MSP43						
		1111		2, A15 on MSP43						
SHSx	Bits 11-10									
		00	ADC10SC							
		01	Timer_A.Ol							
		10	Timer_A.Ol							
		11			1 on MSB420E20	LO MEDIOCOL	21 and MSD420C	2v20 devices)		
ADCHODE	Dia o							izx30 devices)		
ADC10DF	Bit 9	ADC10 data format								
		0	Straight bin							
	2000	1 2s complement								
ISSH	Bit 8 Invert signal sample-and-hold									
		0		-input signal is not						
		1	The sample	-input signal is inv	erted.					
ADC10DIVx	Bits 7-5	Bits 7-5 ADC10 clock divider								
		000	/1							
		001	/2							
		010	/3							
		011	/4							
		100	/5							
		101	/6							
		110	/7							
		111	/8							
ADC10SSELx	Bits 4-3		clock source	select						
ADCIUSSELX	DII 4-3									
		00	ADC10OSC	•						
		01	ACLK							
		10	MCLK							
		11	SMCLK							

(1) Timer triggers are from Timer0_Ax if more than one timer module exists on the device.

22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0

