EX_3

EX_3

EX 3.1

EX 3.2

EX 3.3

EX 3.4

EX 3.5

EX 3.6

EX 3.7

EX 3.8

EX 3.9

EX 3.10

Notation: the Grashof condition $(S+L \leq P+Q)$ must be verified after painting

EX 3.1

Basic Synthesis

- 1. 确定B的两个极限位置,记为 B_1 和 B_2
- 2. 做 B_1B_2 垂直平分线,在其上选取合适位置为 O_4
- 3. 量取 B_1B_2 距离
- 4. 在 B_1B_2 延长线上选择合适位置为 O_2 · 以 B_1B_2 距离为直径做圆 · 交延长线上两点极为对应的 A_1 和 A_2

Crank Rocker

- 1. 确定C和D的端点位置,记为 C_1 和 C_2 , D_1 和 D_2
- 2. 做 C_1C_2 和 D_1D_2 的垂直平分线,记其交点为 O_4
- 3. 以 C_1C_2 的垂直平分线在 O_4C_1 和 O_4C_2 上寻找合适两点 B_1B_2
- 4. 量取 B_1B_2 距离
- 5. 在 B_1B_2 延长线上选择合适位置为 O_2 · 以 B_1B_2 距离为直径做圆 · 交延长线上两点极为对应的 A_1 和 A_2

Double Crank

- 1. 确定C和D的端点位置,记为 C_1 和 C_2 , D_1 和 D_2
- 2. 做 C_1C_2 的垂直平分线,在其上选择合适的点为 O_2
- 3. 做 D_1D_2 的垂直平分线·在其上选择合适的点为 O_4

Add a Dyad on Double Crank

- 1. 确定C和D的端点位置,记为 C_1 和 C_2 , D_1 和 D_2
- 2. 做 C_1C_2 的垂直平分线,在其上选择合适的点为 O_2
- 3. 做 D_1D_2 的垂直平分线,在其上选择合适的点为 O_4
- 4. 以 C_1C_2 的垂直平分线在 O_2C_1 和 O_2C_2 上寻找合适两点 B_1B_2
- 5. 量取 B_1B_2 距离
- 6. 在 B_1B_2 延长线上选择合适位置为 O_6 · 以 B_1B_2 距离为直径做圆 · 交延长线上两点极为对应的 A_1 和 A_2

EX 3.5

Three-Position Synthesis

- 1. 确定C和D的端点位置,记为 C_1 , C_2 和 C_3 , D_1 , D_2 和 D_3
- 2. 做 C_1C_2 和 C_2C_3 垂直平分线,其交点记为 O_2
- 3. 做 D_1D_2 和 D_2D_3 垂直平分线,其交点记为 O_4

Three-Position Synthesis using different moving pivots than ${\cal C}{\cal D}$

- 1. 寻找相对CD位置固定的杆EF,记其三个位置的点为 E_1 , E_2 和 E_3 , F_1 , F_2 和 F_3
- 2. 做 E_1E_2 和 E_2E_3 垂直平分线,其交点记为 O_2
- 3. 做 F_1F_2 和 F_2F_3 垂直平分线,其交点记为 O_4

EX 3.7

Invert ${\it CD}$ use specified fixed pivots

- 1. 以 C_3D_3 为底边,分别作 O_2 和 O_4 为顶点的三角形
- 2. 以 C_2D_2 和 C_1D_1 为底边、做 $C_3D_3O_2$ 和 $C_3D_3O_4$ 的全等三角形、其顶点分别记为 O_2' , O_4' 和 O_2'' 和
- 3. 连接 $O_2'O_4'$ 和 $O_2''O_4''$

Find the moving pivots for three positions and specified fixed pivots

- 1. 以 C_3D_3 为底边,分别作 O_2 和 O_4 为顶点的三角形
- 2. 以 C_2D_2 和 C_1D_1 为底边,做 $C_3D_3O_2$ 和 $C_3D_3O_4$ 的全等三角形,其顶点分别记为 O_2' , O_4' 和 O_2'' 和 O_2''
- 3. 连接 $O_2'O_4'$ 和 $O_2''O_4''$

- 4. 做 E_1E_2 和 E_2E_3 垂直平分线,其交点记为G
- 5. 做 F_1F_2 和 F_2F_3 垂直平分线,其交点记为H
- 6. 选取 E_1 和 F_1 ,将两点视作地面,重新绘制机构

Design a quick return linkage for specified time ratio

- 1. 确定两个端点位置,记为 B_1 和 B_2
- 2. 做 B_1B_2 垂直平分线,在其上选取合适位置为 O_4
- 3. 选取 B_2 ,作任意直线
- 4. 在该直线上选取一点记为 O_2 · 使得 $\angle B_1O_2B_2=\delta=rac{eta-lpha}{2}$

Design a quick return with 90° rocker motion

Sorry that I didn't get the meaning of the problem