The group G is isomorphic to the group labelled by [72, 44] in the Small Groups library. Ordinary character table of $G \cong A4 \times S3$:

	1a	3a	3b	2a	2b	6a	6b	2c	3c	3d	3e	6c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1	-1	-1	1	1	1	1
χ_3	1	$E(3)^{2}$	E(3)	1	-1	$-E(3)^2$	-E(3)	-1	1	$E(3)^{2}$	E(3)	1
χ_4	1	E(3)	$E(3)^{2}$	1	-1	-E(3)	$-E(3)^2$	-1	1	E(3)	$E(3)^{2}$	1
χ_5	1	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)	1
χ_6	1	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	1
χ_7	2	2	2	2	0	0	0	0	-1	-1	-1	-1
χ_8	2	$2 * E(3)^2$	2 * E(3)	2	0	0	0	0	-1	$-E(3)^2$	-E(3)	-1
χ_9	2	2 * E(3)	$2*E(3)^2$	2	0	0	0	0	-1	-E(3)	$-E(3)^2$	-1
χ_{10}	3	0	0	-1	-3	0	0	1	3	0	0	-1
χ_{11}	3	0	0	-1	3	0	0	-1	3	0	0	-1
χ_{12}	6	0	0	-2	0	0	0	0	-3	0	0	1

Trivial source character table of $G \cong A4 \times S3$ at p = 3:

The bounce character table of $a = M \times b = 0$.													
Normalisers N_i	N_1			N_2		N_3				N_4		N_5	
p-subgroups of G up to conjugacy in G				P_1			P_3				P_4	P_5	
Representatives $n_j \in N_i$	1a	2a	2b	2c	1 <i>a</i>	2a	1a	2a	2b	2c	1a	1a	2a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	9	-3	3	-1	0	0	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	9	-3	-3	1	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	9	9	3	3	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	9	9	-3	-3	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	3	-1	-1	3	-1	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	3	1	1	3	1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	3	-1	0	0	3	-1	3	-1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	-3	1	0	0	3	-1	-3	1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	3	3	3	0	0	3	3	3	3	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	3	-3	-3	0	0	3	3	-3	-3	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6	6	0	0	0	0	0	0	0	0	3	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1

P_2 = Group([(5, 7, 6)])
```

 $P_2 = Group([(5,7,6)]) \cong C3$

 $P_3 = Group([(1,3,2)]) \cong C3$

 $P_4 = Group([(1,3,2)(5,7,6)]) \cong C3$

 $P_5 = Group([(5,7,6),(1,3,2)]) \cong C3 \times C3$

 $N_1 = Group([(2,3),(5,7,6),(4,5)(6,7),(4,6)(5,7),(1,2,3)]) \cong A4 \times S3$

 $N_2 = Group([(5,7,6),(2,3),(1,2)]) \cong C3 \times S3$

 $N_3 = Group([(2,3),(5,7,6),(4,5)(6,7),(4,6)(5,7),(1,2,3)]) \cong \mathrm{A4} \ge 3$

 $N_4 = Group([(1,3,2)(5,7,6),(5,7,6)]) \cong C3 \times C3$

 $N_5 = Group([(1,3,2),(5,7,6),(2,3)(5,7,6)]) \cong C3 \times S3$