Page 1 of 16

Appln No.: 10/659,044 Page 1 of Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

FIG. 1A

Appln No.: 10/659,044 Page 2 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

FIG. 1B

FIG. 1C

Page 3 of 16

Appln No.: 10/659,044 Page 3 of Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO

IMPROVE POWER DELIVERY AND MECHANICAL

FIG.1D

FIG. 2

Page 4 of 16

Applicant(s): Sarah E. Kim et al.

THICK METAL LAYER INTEGRATED PROCESS FLOW TO

IMPROVE POWER DELIVERY AND MECHANICAL

FIG. 5

Page 5 of 16

Applicant(s): Sarah E. Kim et al.

THICK METAL LAYER INTEGRATED PROCESS FLOW TO

IMPROVE POWER DELIVERY AND MECHANICAL

Page 6 of 16

Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL

Appln No.: 10/659,044 Page 7 of 1
Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO
IMPROVE POWER DELIVERY AND MECHANICAL
BUFFERING Page 7 of 16

	FLOW 1		FLOW 2
	1. NO CU DIFFUSION BARRIER		1. NO CU DIFFUSION BARRIER
	NEEDED		NEEDED DESMANDE U.S.
900 <	2. USE PHOTO-DEFINABLE ILD	900~_	2. USE PHOTO-DEFINABLE ILD
902~	PASSIVATION DEP (NITRIDE)	902~	PASSIVATION DEP (NITRIDE)
904~	POLYIMIDE PATTERN	904~	POLYIMIDE PATTERN
906~	DEVELOP POLYIMIDE	906~	DEVELOP POLYIMIDE
908~	BLM DEP	908~	BLM DEP
910~	PR COATING	910~	PR COATING
912~	PR (THICK METAL LAYER #1) PATTERN	912~	PR (THICK METAL LAYER #1) PATTERN
914	CU PLATING	914	CU PLATING
916~	RESIST STRIP	916	RESIST STRIP
918A	BLM ETCH/ASH	918B	BLM ETCH/ASH
370/	DEPOSIT DIELECTRIC	3700	DEPOSIT DIELECTRIC
920~	(PHOTO-DEFINABLE POLYMER)	954~	(SELF-PLANARIZING POLYMER)
922~	PHOTO-PATTERN VIAS	956	PR COATING
924~	DEVELOP DIELECTRIC	958~	PATTERN VIAS
926	BLM DEP	960~	ETCH DIELECTRIC (DRY)
928	PR COATING	924~	PR STRIP
)	PR (THICK METAL LAYER #2)	926	BLM DEP
930~	PATTERN CU PLATING	928~	PR COATING
932	RESIST STRIP		PR (THICK METAL LAYER #2)
934	BLM ETCH/ ASH	930	PATTERN CU PLATING
936	DEPOSIT DIELECTRIC	932	RESIST STRIP
000	(PHOTO-DEFINABLE POLYMER)	934	BLM ETCH/ASH
938	PHOTO-PATTERN VIAS	962	DEPOSIT DIELECTRIC
940	DEVELOP DIELECTRIC	064	(SELF-PLANARIZING POLYMER)
942	BLM DEP	964	PR COATING
944	PR COATING	966	PATTERN VIAS
946	BUMP PATTERN	968	ETCH DIELECTRIC (DRY)
948~ 950~	BUMP PLATING	970	PR STRIP
952	RESIST STRIP	942 944	BLM DEP
302	BLM ETCH/ASH	944	PR COATING
		948	BUMP PATTERN
		950	BUMP PLATING
		952	RESIST STRIP
		302	BLM ETCH/ASH
		İ	
Į		į	
	FIC 04		FIO. 00

FIG. 9A

Appln No.: 10/659,044 Page 8 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

Page 9 of 16

Appln No.: 10/659,044 Page 9 of 1
Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO
IMPROVE POWER DELIVERY AND MECHANICAL
BUFFERING

			•
	FLOW 3		FLOW 4
	1. CU DIFFUSION BARRIER		1. CU DIFFUSION BARRIER
900~	2. USE PHOTO-DEFINABLE ILD	900~	2. USE SELF-PLANARIZING ILD
902~	PASSIVATION DEP (NITRIDE)	902~	PASSIVATION DEP (NITRIDE)
904~	POLYIMIDE PATTERN	904~	POLYIMIDE PATTERN
906~	DEVELOP POLYIMIDE	906	DEVELOP POLYIMIDE
908~	BLM DEP	908	BLM DEP
910~	PR COATING	910~	PR COATING
370	PR (THICK METAL LAYER #1)	370	PR (THICK METAL LAYER #1)
912~	PATTERN	912~	PATTERN
914~	CU PLATING	914~	CU PLATING
916~	RESIST STRIP	916	RESIST STRIP
1100~	BLM ETCH/ASH	1100	BLM ETCH/ASH
918B	EL DIFFUSION BARRIER PLATING	918B	EL DIFFUSION BARRIER PLATING
0.05	DEPOSIT DIELECTRIC	3705	DEPOSIT DIELECTRIC
920~	(SELF-PLANARIZING POLYMER)	954~	(SELF-PLANARIZING POLYMER)
922~	PHOTO-PATTERN VIAS	956	PR COATING
924~	DEVELOP DIELECTRIC	958~	PATTERN VIAS
926	BLM DEP	960	ETCH DIELECTRIC (DRY)
928~	PR COATING	924	PR STRIP
	PR (THICK METAL LAYER #2)	926	BLM STRIP
930~	PATTERN	928~	PR COATING
932~	CU PLATING	. 7	PR (THICK METAL LAYER #2)
934~	RESIST STRIP	930~	PATTERN
1102~	BLM ETCH/ASH	932	CU PLATING
936	EL DIFFUSION BARRIER PLATING	934~	RESIST STRIP
000	DEPOSIT DIELECTRIC (PHOTO-DEFINABLE POLYMER)	1102	BLM ETCH/ASH
938		962	EL DIFFUSION BARRIER PLATING
940	PHOTO-PATTERN VIAS DEVELOP DIELECTRIC	٦	DEPOSIT DIELECTRIC
942	BLM DEP	964	(SELF-PLANARIZING POLYMER)
944	PR COATING	966	PR COATING
946	BUMP PATTERN	968	PATTERN VIAS
948	BUMP PLATING	970	ETCH DIELECTRIC (DRY)
950	RESIST STRIP	942	PR STRIP BLM DEP
952	BLM ETCH/ASH	944	PR COATING
	BLW LTCH/ASH	940	BUMP PATTERN
		948	BUMP PLATING
		950	RESIST STRIP
		952	BLM ETCH/ASH
ı		L	DLIVI LI UTIJAJN

FIG. 11A

Appln No.: 10/659,044 Page 10 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

	FLOW 5	7
	USE CU CMP PROCESS	
000		
900	DASSIVATION DED (NITDIDE)	-
1200~	PASSIVATION DEP (NITRIDE)	77
1202	DEPOSIT DIELECTRIC	<u> </u>
1204	PR COATING	41
1206~	PATTERN VIAS	↓ \
1208~	PR COATING	> 1ST
55	PR (THICK METAL LAYER #1)	101
1210~	PATTERN] [
1212	BLM DEP] {
. – . –	CU PLATING])
1214 1216	CU CMP]/
1218~	PASSIVATION DEP (NITRIDE)] \
1220	DEPOSIT DIELECTRIC] }
1222	PR COATING] [
1224	PATTERN VIAS] [
1226	PR COATING	> 2ND
	PR (THICK METAL LAYER #2)	
1228~	PATTERN	」 {
1230~	BLM DEP	」
1232	CU PLATING	」 】
1234	CU CMP]/
1236	PASSIVATION DEP (NITRIDE)	1)
	POLYIMIDE PATTERN	11
1238	DEVELOP POLYIMIDE	↓ {
1240	BLM DEP	1 \
1242	PR COATING] > 3RD
1244	BUMP PATTERN	J (
1246	BUMP PLATING	4 \
1248	RESIST STRIP	1)
٦	BLM ETCH/ ASH	J /

FIG. 12

Page 11 of 16

Appln No.: 10/659,044 Page 11 of 1
Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO
IMPROVE POWER DELIVERY AND MECHANICAL

FIG. 13A

FIG. 13B

Applicant(s): Sarah E. Kim et al.

Page 12 of 16

THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL

FIG. 13C

FIG. 13D

Appln No.: 10/659,044 Page 13 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

FIG. 13E

Page 14 of 16

Appln No.: 10/659,044 Page 14 of 1
Applicant(s): Sarah E. Kim et al.
THICK METAL LAYER INTEGRATED PROCESS FLOW TO
IMPROVE POWER DELIVERY AND MECHANICAL
BUFFERING

RESULTS	IR DROP (MV)	30			30		49 M)		51	
RES	IMAX (MA)	089	430	(36% IMAX IMPROVEMENT)	530	(22% IMAX IMPROVEMENT)	370	(46% IMAX IMPROVEMENT)	380	(44% IMAX IMPROVEMENT)
	VIA RESISTANCE (MQ)		0.7			0.7	20		20	
SIMULATION PARAMETERS	METAL WIDTH	(PRESENT STATE OF ART)	C# GZVV I INTAN GOZ NI OZ	100 µM FOR METAL LAYER #1	C# GEVA ! INTERN BOE M OZ	100 µM FOR METAL LAYER #1	CH GOD METAL I AVED #2	100 µM FOR METAL LAYER #1	70M EOD METAL I AVED #2	100 µM FOR METAL LAYER #1
	ADDITION THICK METAL LAYERS	ADDITION THICK METAL LAYERS DEFAULT (PRESENT		METAL LAYERS	TWO 15 µM THICK METAL LAYERS		TWO 45 µM THICK METAL LAYERS		TWO 15 µM THICK METAL LAYERS	
	1410~	1400-	7	007	704		404		406	

Appln No.: 10/659,044 Page 16 of 16 Applicant(s): Sarah E. Kim et al. THICK METAL LAYER INTEGRATED PROCESS FLOW TO IMPROVE POWER DELIVERY AND MECHANICAL BUFFERING

