NAO6 Humanoid Left Arm Modelling

Masses of respective arm parts:

• $m_{shoulder} \approx 0.07504 \, kg$

• $m_{bicep} \approx 0.15777 \, kg$

• $m_{elbow} \approx 0.06483 \, kg$

• $m_{forearm} \approx 0.07761 \, kg$

• $m_{wrist} \approx 0.18533 \, kg$

• $m_{gripper} \approx 0.000002 \, kg$

Lengths of respective arm parts:

<u>Upper = Shoulder + Bicep; Lower = Elbow + Forearm; Hand = Wrist + Gripper</u>

• $L_{upper} \approx 0.105 \, m$

• $L_{forearm} \approx 0.05595 m$

• $L_{hand} \approx 0.05575 m$

• $r_{upper} \approx r_{lower} \approx 0.02 m$

• $r_{hand} \approx 0.025 m$

Parameters:

• $\theta_{shoulder, pitch}$: angle of shoulder rotation in Y - axis

• $\theta_{shoulder,roll}$: angle of shoulder rotation in Z-axis

• $\theta_{elbow, vaw}$: angle of elbow rotation in X-axis

• $\theta_{elhow,roll}$: angle of elbow rotation in Z-axis

• $\theta_{wrist, vaw}$: angle of wrist rotation in X – axis

 Hand (Gripper) does not have an angle of rotation, since it only can open and close

General equation of motion:

$$\tau_{i,j} = I_i(\theta_i) \frac{d\theta_i^2}{d^2t} + b_i \frac{d\theta_i}{dt} + m_j g l_j \sin(\theta_i)$$

where τ_i is total torque acting on i^{th} joint, I_i — inertia matrix, b_i — damping coefficient, m_j — mass of j^{th} link, and l — length.

General form of Inertia Matrix:

$$\mathbf{I} = egin{bmatrix} I_{xx} & I_{xy} & I_{xz} \ I_{xy} & I_{yy} & I_{yz} \ I_{xz} & I_{yz} & I_{zz} \end{bmatrix}$$

where diagonal elements are known as **moments of inertia**, and off-diagonal components are known as **products of inertia**.

How to calculate components of Inertia Matrix:

$$I_{xx} = I_{yy} = \frac{1}{12}m(3r^2 + l^2)$$
$$I_{zz} = \frac{1}{2}mr^2$$

where **r** and **l** are radius and length of the coressoping link, respectively.

$$I_{xy} = -mx_{com} y_{com}$$

$$I_{xz} = -mx_{com} z_{com}$$

$$I_{yz} = -my_{com} z_{com}$$

where \mathbf{x}_{com} , \mathbf{y}_{com} and \mathbf{z}_{com} are the coordinates of the center of mass relative to the frame of reference (a joint connected to a link can be used as one).

Parameters for Denavit-Hartenberg (D-H) method:

- a_i : link length (between two joints along X axis)
- α_i : link twist, representing the angle between the two successive joint axes
- d_i : link of f set between previous and current joint along Z axis
- θ_i : joint angle

General D-H Transformation Matrix:

$$T_i^{i+1} = egin{bmatrix} \cos heta_i & -\sin heta_i\coslpha_i & \sin heta_i\sinlpha_i & a_i\cos heta_i \ \sin heta_i & \cos heta_i\coslpha_i & -\cos heta_i\sinlpha_i & a_i\sin heta_i \ 0 & \sinlpha_i & \coslpha_i & d_i \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Particular Case Parameters for NAO6:

1. Shoulder Pitch (LShoulderPitch)

- **Rotation**: About the Y-axis (front and back motion).
- D-H Parameters:
 - θ_1 : Variable (joint angle for shoulder pitch).
 - d_1 : Length along Z-axis (distance between shoulder and elbow). This is typically fixed and represents the link length.
 - a_1 : 0 (since this is the first link, there's no X-axis offset).
 - α_1 : $\pi/2$ (90°) as the next axis (shoulder roll) is around the Z-axis.

2. Shoulder Roll (LShoulderRoll)

- Rotation: About the Z-axis (right and left motion).
- D-H Parameters:
 - θ_2 : Variable (joint angle for shoulder roll).
 - d_2 : 0 (the link doesn't move along the Z-axis).
 - a_2 : This would be the distance between the shoulder joint centers (if any). If negligible, it can be 0.
 - $lpha_2$: $-\pi/2$ (-90°) since the next axis (elbow yaw) rotates around the X-axis.

3. Elbow Yaw (LElbowYaw)

- Rotation: About the X-axis (twist motion at the elbow).
- D-H Parameters:
 - θ_3 : Variable (joint angle for elbow yaw).
 - d_3 : The length of the upper arm (distance between shoulder and elbow). This is a fixed length.
 - a_3 : 0 (no offset along the X-axis).
 - α_3 : 0° (as both elbow roll and yaw have aligned Z-axes).

4. Elbow Roll (LElbowRoll)

- Rotation: About the Z-axis (elbow rotation).
- D-H Parameters:
 - θ_4 : Variable (joint angle for elbow roll).
 - d_4 : 0 (no movement along the Z-axis for this joint).
 - a_4 : Fixed, representing the forearm length (distance between elbow and wrist).
 - α_4 : $\pi/2$ (90°) as the next axis (wrist yaw) rotates around the X-axis.

5. Wrist Yaw (LWristYaw)

- Rotation: About the X-axis (wrist twist).
- D-H Parameters:
 - θ_5 : Variable (joint angle for wrist yaw).
 - d_5 : 0 (no displacement along the Z-axis).
 - a_5 : Length from wrist to hand (small, if considered).
 - α_5 : 0° (end effector's frame is aligned with the wrist).

Summary of Limits for DH Parameters:

- $\theta_1 \in [-2.0857, 2.0857]$
- $\theta_2 \in [-0.3142, 1.3265]$
- $\theta_3 \in [-2.0857, 2.0857]$
- $\theta_4 \in [-1.5446, -0.0349]$
- $\theta_5 \in [-1.8238, 1.8238]$

Calculated Transition Matrices for NAO6 Humanoid Left Arm Joints:

1. T_1 (Shoulder Pitch, Y-axis):

$$T_1 = egin{bmatrix} \cos(heta_1) & 0 & \sin(heta_1) & 0 \ \sin(heta_1) & 0 & -\cos(heta_1) & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. T_2 (Shoulder Roll, Z-axis):

$$T_2 = egin{bmatrix} \cos(heta_2) & -\sin(heta_2) & 0 & 0 \ \sin(heta_2) & \cos(heta_2) & 0 & 0 \ 0 & 0 & 1 & 0.105 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. T_3 (Elbow Yaw, X-axis):

$$T_3 = egin{bmatrix} \cos(heta_3) & -\sin(heta_3) & 0 & 0 \ \sin(heta_3) & \cos(heta_3) & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

4. T_4 (Elbow Roll, Z-axis):

$$T_4 = egin{bmatrix} \cos(heta_4) & 0 & \sin(heta_4) & 0 \ \sin(heta_4) & 0 & -\cos(heta_4) & 0 \ 0 & 1 & 0 & 0.05595 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. T_5 (Wrist Yaw, X-axis):

$$T_5 = egin{bmatrix} \cos(heta_5) & -\sin(heta_5) & 0 & 0 \ \sin(heta_5) & \cos(heta_5) & 0 & 0 \ 0 & 0 & 1 & 0.05575 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Full Transformation T:

The full transformation matrix T is:

$$T = T_1 \cdot T_2 \cdot T_3 \cdot T_4 \cdot T_5$$