Matematika 4 – Logika pre informatikov: Cvičenie 2

Úloha 1. Napíšte vytvárajúcu postupnosť pre formuly:

- a) $(((p \land q) \lor p) \to ((p \land q) \lor \neg p))$
- b) $(((p \land p) \land (p \land q)) \land ((p \land p) \land (p \land p)))$
- Úloha 2. Napíšte dve ďalšie (rôzne) vytvárajúce postupnosti pre formuly z úlohy 1.
- Úloha 3. Zakreslite vytvárajúce stromy pre formuly z úlohy 1.
- **Úloha 4.** Vypíšte všetky (a) priame podformuly a (b) podformuly pre formuly z úlohy 1.
- Úloha 5. Určte stupeň formúl z úlohy 1.

Úloha 6. Zadefinujte:

- a) sub(A) množinu všetkých podformúl formuly A;
- b) v $\operatorname{count}(A, p)$ počet výskytov výrokovej premennej p vo formule A;
- c) $\operatorname{ccount}(A)$ počet logických spojok vo formule A;
- d) p $\operatorname{count}(A)$ počet výskytov zátvoriek vo formule A.

Úloha 7. Majme danú množinu výrokových premenných $\mathcal{V} = \{p, q, r, \ldots\}$ a jej ohodnotenie $v = \{p \mapsto t, q \mapsto f, r \mapsto f, \ldots\}$. Zistite, či ohodnotenie v spĺňa nasledovné formuly:

- a) $((\neg p \to q) \land \neg(\neg q \lor p))$
- b) $((\neg p \to q) \land (\neg q \to (q \lor \neg (q \to r))))$
- c) $((\neg(q \lor \neg r) \lor q) \to (r \to ((p \lor \neg p) \land \neg(q \to r))))$
- d) $((((p \land \neg p) \lor \neg r) \lor q) \leftrightarrow (r \to ((p \lor \neg p) \lor \neg (r \land q))))$, kde $(A \leftrightarrow B)$ je skratkou za $((A \to B) \land (B \to A))$.

Úloha 8. O každej z nasledujúcich formúl nad $\mathcal{V} = \{p, q, r, \ldots\}$ rozhodnite, či je (i) tautológia, (ii) splniteľná, (iii) falzifikovateľná, alebo (iv) nesplniteľná:

- a) $((p \land \neg p) \lor (p \lor \neg p))$
- b) $((p \land q) \rightarrow (\neg p \land q))$
- c) $(\neg (q \land \neg q) \rightarrow ((p \lor \neg p) \rightarrow (p \land \neg p)))$
- d) $((\neg (q \lor \neg r) \lor q) \to (r \to ((p \lor \neg p) \land \neg (q \to r))))$

Domáca úloha du01. Riešenie domácej úlohy odovzdajte najneskôr v pondelok 13. marca 2017:

- v čitateľnej papierovej podobe na začiatku prednášky o 11:30;
- elektronicky najneskôr o 23:59:59 cez svoj repozitár na github.com ako pull-request do vetvy (base) du01 repozitára (base fork) FMFI-UK-1-AIN-412/lpi17-vášAisLogin. Odovzdávaný dokument uložte do súboru du01.pdf v adresári du01 vo vetve du01. Dokument musí byť vo formáte PDF. Vytvorte ho podľa svojich preferencií (TEXom, textovým procesorom, tlačou do PDF z webového prehliadača, ...), nesmie však obsahovať obrázky rukou písaného textu ani screenshoty.

Úloha má hodnotu 2 body [po 1 bode za každú časť a), b)].

a) Spojka a nie,označovaná symbolom $\not\rightarrow,$ je binárna logická spojka s nasledovným významom:

 $A \not\to B$ je pravdivé vt
tA je pravdivé a B je nepravdivé.

Vybudujte teóriu výrokovej logiky používajúcej spojky $\not\to$ a \to , teda zadefinujte pojem: (i) formuly, (ii) vytvárajúcej postupnosti pre formulu, (iii) vytvárajúceho stromu pre formulu, (iv) splnenia formuly pri ohodnotení výrokových premenných.

b) Hovoríme, že binárna logická spojka α je definovateľná zo spojok β_1, β_2, \ldots , ak existuje formula, obsahujúca iba spojky β_1, β_2, \ldots a výrokové premenné p a q, ekvivalentná s formulou $(p \alpha q)$.

Hovoríme, že unárna logická spojka α je definovateľná zo spojok β_1, β_2, \ldots , ak existuje formula, obsahujúca iba spojky β_1, β_2, \ldots a výrokovú premennú p, ekvivalentná s formulou αp .

Napríklad \vee je definovateľná z \neg a \wedge pretože $(p \vee q)$ je ekvivalentná s $\neg(\neg p \wedge \neg q)$ (samozrejme, ekvivalenciu tých dvoch formúl by bolo treba ešte dokázať).

Dokážte, že:

- (i) \rightarrow a $\not\rightarrow$ sú definovateľné zo spojok \neg , \land a \lor ;
- (ii) \neg , \wedge , \vee a \leftrightarrow sú definovateľné z $\not\rightarrow$ a \rightarrow .