DĚLAT DOBRÝ SOFTWARE NÁS BAVÍ

PROFINIT

Clustering velkých dat

Jan Hučín 12. dubna 2019

Osnova

- 1. Účel a typy clusteringu
- 2. Metriky a podobnosti
- 3. Aglomerativní metody
- 4. Přiřazovací metody
- 5. Clustering a Spark ML

Účel clusteringu

- unsupervised learning
- sdružení jednotek do logických shluků (clusterů)
 - blízké jednotky v jednom clusteru
 - vzdálené jednotky v různých clusterech
 - vyžaduje metriku vzdálenosti / podobnosti

Typy clusteringu

- aglomerativní
 - jednotky se sdružují postupně
 - počet clusterů není předem dán
- přiřazovací
 - počet clusterů dán předem
 - jednotky se přiřazují definovaným clusterům

Metriky a podobnosti

- Určuje vzdálenost mezi dvěma prvky
 - čím podobnější, tím bližší
- Vzdálenost
 - jednotky jako body v nějakém prostoru délka cesty
 - norma vektoru: Eukleidovská, Manhattan, maximální (L_∞)
 - problém vysoké dimenzionality
 - editační (Levensteinova) vzdálenost mezi řetězci
- Podobnost
 - jednotky jako množiny vlastností
 - číselné vyjádření shody množin nebo shody míry vlastností
 - **-** <0; 1>

Podobnosti množin

A, B – množiny

Jaccardova podobnost

$$\frac{|A \cap B|}{|A \cup B|}$$

Cosinová podobnost

$$\frac{|A \cap B|}{\sqrt{|A||B|}}$$

Další: Dice-Sorensen, overlap atd.

Podobnosti vektorů

A, B – vektory v n-rozměrném prostoru

vážená Jaccardova podobnost

$$\frac{\sum_{i} \min(a_i, b_i)}{\sum_{i} \max(a_i, b_i)}$$

Cosinová podobnost

$$\frac{\sum_i a_i b_i}{\|A\| \|B\|}$$

Jiné podobnosti:

např. podobnost řetězců – délka společného podřetězce

Aglomerativní metody

- postupné sdružování nejbližších jednotek/clusterů
- mohou vznikat i složité clustery
- finální clusterování lze dynamicky

Příklady:

- hclust
- dbscan

Přiřazovací metody

- stanoví se počet clusterů
- výchozí reprezentanti clusterů (centroid, clusteroid)
- body postupně přiřazovány
- opakování s jinou výchozí reprezentací clusterů

Příklady:

- k-means
- Gaussian mixture
- Power Iteration (PIC)

Classification

Co je Spark ML

- nadstavba nad Sparkem
- pro RDD i pro DataFrame
- popisné statistiky
- lineární algebra
- modely (regrese, Bayes, stromy)
- redukce dimenzionality (hlavní komponenty)
- clustering
- a další (viz spark.apache.org)

Clustering v Spark ML 1.6

- aglomerativní metody ne mj. příliš náročné, více než O(N²)
- > K-means
- Gaussian mixture
- Power Iteration Clustering (PIC)
- Latent Dirichlet Association (LDA)
- a další

K-means

Princip:

jednotka náleží do clusteru, k jehož středu je nejblíže (L₂)

Vstup:

- > RDD s elementy array
- > K
- parametry pro běh (mj. počet opakovaných běhů)

Výstup:

- centroidy
- metoda pro zatřídění obecného bodu

Power Iteration Clustering

Princip:

- detekce komunit v grafu
- > embedding grafu do 1D prostoru + k-means

Vstup:

- > RDD jako řídká trojúhelníková matice afinit (podobností)
- > K

Výstup:

přiřazená ID clusterů (komunity)

Problémy:

- Ilustrační příklad nekonverguje.
- Na Metacentru padá při vyšším limitu počtu iterací.
- Řešeno vlastní implementací.

Latent Dirichlet Association

Princip:

- stanoví témata (topics) podle frekvence slov v dokumentech
- řeší problém vysoké dimenzionality

Vstup:

- > korpus RDD vektorů (řádky=dokumenty, sloupce=slova, hodnoty=četnosti)
- > K

Výstup:

popisy témat pomocí nejtypičtějších slov

Díky za pozornost

PROFINIT

Profinit, s.r.o. Tychonova 2, 160 00 Praha 6

