Assignment - Baby Step 3

Requirement:

Predict the insurance charges.

1.Identify Problem statement:

Predict insurance charges

2.Tell basic info about dataset

Rows-1338, columns-6

3.Pre-processing method

Dataset has nominal dataset, using of get_dummies method, have changed to string to integer.

4. Models

4.1 Multiple Linear Regression

R² Score = 0.78947903498

4.2 Support Vector Machine

SL. No	Hyper Parameter	Linear	RBF (non- linear)-r value	POLY (r value)	SIGMOID (r value)
1	C=.1	-0.0809599	-0.089074	-0.0883023	-0.088269
2	C=10	0.4624684	0.3200317	0.038716	0.0393071
3	C=100	0.62887928	0.6642984	0.617956	0.5276103
4	C=500	0.763105	0.664298	0.8263683	0.4446061
5	C=1000	0.7649311	0.810206	0.8566487	0.287470
6	C=2000	0.744041	0.8547766	0.860557	-0.593950
7	C=3000	0.7414236	0.8663393	0.8598930	-2.12441
8	C=5000	0.7414179	0.874777	0.8595656	-7.530043

The SVM use R² value (rbf) and hyper parameter (C5000)) =0.874777

4.3 Decision Tree

SL. NO	CRITERION	MAX FEATURES	SPLITTER	R Value
1	squared_error	None	auto	0.6896639
2	squared_error	None	best	0.6802739
3	squared_error	None	random	0.7490586
4	squared_error	sqrt	auto	0.74516469
5	squared_error	sqrt	best	0.7721569
6	squared_error	sqrt	random	0.58916340
7	squared_error	Log2	auto	0.6622829
8	squared_error	Log2	best	0.70448358
9	squared_error	Log2	random	0.6620452
10	friedman_mse	None	auto	0.6867127
11	friedman_mse	None	best	0.688167
12	friedman_mse	None	random	0.7215396
13	friedman_mse	sqrt	auto	0.67276
14	friedman_mse	sqrt	best	0.704074
15	friedman_mse	sqrt	random	0.7841867
13	friedman_mse	Log2	auto	0.684577
14	friedman_mse	Log2	best	0.6563524
15	friedman_mse	Log2	random	0.738002
16	absolute_error	None	auto	0.68480736
17	absolute_error	None	best	0.68787262
18	absolute_error	None	random	0.6895067
19	absolute_error	sqrt	auto	0.720446
20	absolute_error	sqrt	best	0.693450
21	absolute_error	sqrt	random	0.7244735
22	absolute_error	Log2	auto	068487
23	absolute_error	Log2	best	0.747989
24	absolute_error	Log2	random	0.541372
25	poisson	None	auto	0.7182793

26	poisson	None	best	0.71777
27	poisson	None	random	0.6977028
28	poisson	sqrt	auto	0.6813093
29	poisson	sqrt	best	0.6956314
30	poisson	sqrt	random	0.66000
31	poisson	Log2	auto	0.709384
32	poisson	Log2	best	0.79875
33	poisson	Log2	random	0.7335870

4.4 Random Forest

Random forest regression R^2 score(estimators=1000) = 0.8541778

I choose the best model as **Support Vector Regression** since it has **0.874777** r2_score value which is near to 1 compare with other models.