Hearing loss meta-analysis

Raúl Rodríguez-Cruces & Francis Manno 29 abril, 2019

Methods

Eligibility Criteria

We included peer-review publications in English, involving patients with bilateral congenital and mixed hearing loss and controls with structural Magnetic Resonance Imaging.

Study design was using cross-sectional including control groups, ivestigating the structural relation between MRI changes and the Hearing loss. ROI were selected among the included studies Analysis method, the most common outcome measures were **volume**, **FA**, **VBM** and **thickness**. A total of 41 studies were included, with a total of 851 patients and 964 patients.

Notes:

- 1. I excluded Xia et al. Chin J Rad, 2008 because I don't understand chinese and it appears to be the same data as Xia et al. Chin J Med Img Tech, 2008
- 2. Kim et al. Hear Res 2014 used two groups prelingual deaf and post lingual deaf, I used the average for the main table.
- 3. Xia et al. Chin J Med Img Tech, 2008 had a total of 40 patients, two groups 9-12 years and 19-22 years, no controls
- 4. Zheng et al. Sci Rep, 2017 this variables change; Con rangeLow Con rangeHigh. Why? I didn't find them on the orignal paper

Effect size direction was directly include in the Cohen's D value by mutipliying by -1 if the effect was decrease and by 1 if it was none of increased. Forests plots were calculated the meta-regression for left and right. We measure a global meta regression for white and gray mater by side (Left and right). We include those ROI with most frequency of apearing.

Effects were summarized across studies using the generic inverse-variance weighting method with DerSimonian and Laird random effects, meaning studies were weighted by 1/SEš (where SE is the standard error)

$$Hedges'G = \frac{X_1 - X_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}}$$

Assumptions:

- 1. We assume that the calculation of the cohen's D is correct.
- 2. We assume that the direction of the effect is correct.
- 3. Variance was estimated using the cohen's D and sample size of each study. Our estimated variance was used for all meta-regressions, therefore we could have and additional in the between studies variance and eterogeneity calculations. We should have done the mean and standart deviation from each study. Variance was estimated using the following formula:

$$Variance = \frac{n1 + n2}{n1 \times n2} + \frac{Hedges'G^2}{2 \times (n1 + n2 - 2)}$$

Estimate of heterogeneity per model

"We estimated heterogeneity in results using the τ statistic, which represents the standard deviation" such as overall.hetstat or a heterogeneity test x2 and I2 index

We performed a multi-level meta-analytic model, over our multiple effect size estimates nested withing variables: Big brain area, ROI, etc. We expect that the underlying true effects are more similar for the same level of the grouping variable than thrue effects arising from different levels

"We can account for the correlation in the true effects by adding a random effect to the model at the level corresponding to the grouping variable." The dataset contains the result from N studies, each comparing different measurements between patients and controls. The difference of between groups was quantified in terms of Cohen's D.

Notes from Francis

Remember I created the effect size because are the variables and metric were different. This take mean and SD out of the equation. But you can represent the mean and SD as another variable if you want to calculate what effect sizes would create a cohen's d and cc r for specific variables. That way we would standardize it across our different means and SD. 2.1.16. CC which is the correlation coefficient

2.3. Calculate Hedges' g which takes into consideration sample size

> I used Cohen's D instead of these last two because ai calculated the variace from the cohen's D, but I can do it for the Hedges'G as well

	Hearing Loss	Healthy
Total number of patients	964	851
Number mean	23.51	21.82
Number sd	18.21	11.25
Age mean	21.27	22.12
Age~SD	12.07	12.2
%Female mean	52.32	55.46
%Female sd	10.8	13.21

Table 1: Total included studies: 41

Table of included studies

Table 2: Studies with incomplete information (NA)

	Source	MRI Tesla	all.techniques	all.measures
4	2006, Kara et al. J Neuroradiol	1.5	VBM	length, Thickness, volume
8	2008, Xia et al. Chin J Med Img Tech	1.5	VBM	volume
15	2012, Chang et al., Clin Exp Otorhinolaryngo	3	DTI	FA
24	2014, Lyness et al. Neuroimage	1.5	DTI	FA, MD, RD
32	2016, Wu et al. Brain Res	1.5	VBM	ADC, FA
33	2017, Karns et al. Hear Res	3	DTI	AD, FA, RD, volume
40	2018, Kumar U, Mishra M. Brain Res	3	VBM	Thickness, VBM

Table 3: Included studies

	Source	MRI Tesla	all.techniques	all.measures
1	2003, Emmorey et al. PNAS	1.5	VBM	asymmetry, GM+WM, ratio GM/WM, volume
2	2003, Penhune et al. Neuroimage	1.5	VBM	asymmetry, ratio GM/WM, volume
3	2004, Chang et al. Neuroreport	3	DTI	asymmetry, FA

	Source	MRI Tesla	all.techniques	all.measures
5	2007, Meyer et al. Restor Neurol Neurosci	3	VBM	volume
6	2007, Shibata DK. AJNR Am J Neuroradiol	1.5	VBM	volume
7	2008, Allen et al. J Neurosci	1.5	VBM	asymmetry, ratio GM/WM, Vol proportion, volume
9	2009, Kim et al. Neuroreport	3	DTI, VBM	FA, volume
10	2009, Wang et al. Chin J Med Img Tech	3	DTI	FA
11	2010, Leporé et al. Hum Brain Mapp	1.5	VBM	VBM
12	2010, Li, et al. J Clin Rad	1.5	VBM	volume
13	2010, Liu et al. Chin J Med Img Tech	3	CT	FA
14	2011, Smith et al. Cereb Cortex	3	VBM	asymmetry, ratio GM/WM, volume
16	2012, Li et al. Brain Res	3	CT	Thickness
17	2012, Li et al. Hum Brain Mapp	3	DTI	AD, FA, RD
18	2013, Allen et al. Front Neuroanat	1.5	VBM	asymmetry, volume
19	2013, Li et al. Restor Neurol Neurosci	3	VBM	asymmetry, Thickness
20	2013, Miao et al. AJNR Am J Neuroradiol	3	CT	FA, RD
21	2013, Pénicaud et al. Neuroimage	1.5	VBM	volume
22	2014, Hribar et al. Hear Res	3	DTI, VBM	AD, FA, Thickness
23	2014, Kim et al. Hear Res	3	VBM	volume
25	2014, Olulade et al. J Neurosci	3	VBM	volume
26	2015, Huang et al. PLoS One	1.5	DTI	FA, MD
27	2015, Li et al. Restor Neurol Neurosci	3	CT	volume
28	2015, Tae Investig Magn Reson Imaging	1.5	VBM	VBM
29	2016, Amaral et al. Eur J Neurosci	3	VBM	asymmetry, Thickness
30	2016, Chinnadurai et al. Magn Reson Imaging	1.5	DTI	AD, Axial Kurtosis, FA, Mean Kurtosis, Radial Kurtosis, RD
31	2016, Shiell et al. Neural Plasticity	3	CT	Thickness
34	2017, Kim et al. Neuroreport	3	DTI	FA
35	2017, Shiell & Zatorre. Hear Res	3	DTI	AD, MD, RD, volume
36	2017, Zheng et al. Sci Rep	3	DTI	FA, Mean Kurtosis
37	2018, Alfandari et al. Trends Hear	3	VBM	volume
38	2018, Benetti et al. Neuroimage	4	DTI	AD, FA, RD
39	2018, Feng et al. PNAS	3	VBM	VBM
41	2018, Park et al. Biomed Res Int	3	DTI	FA

Overal view of the studies

Relation of Average dB and Age

Average dB HL mean vs Age

Frequency and contingensy tables

- a. Most of the studies that measured Gray matter focus on cortical changes (volume, thicknes and VBM).
- b. White matter studies are more heterogeneous in their measurements.
- c. Diffusion tensor (DT) derived mesurements are the most frequent in white matter, followed by volume. c.1 It is harder to interpret a meta-analysis of multiple white matter measurements because their effect varies widely and in different directions. The measurements derived from DT have the most differences.

WE conduct our meta-analysis using the **TWO** most frequent measurements for gray and white matter. We use *volume* for GM and *fractional anysotropy* for WM.

Further meta regressions can be found in the supplementary material.

Gray Matter

- thickness
- VBM

White Matter integrity

- mean diffusivity MD
- radial diffusivity RD
- axial diffusivity AD
- mean kurtosis

White Matter volume

- thickness (I am unsure how they did this)
- VBM
- volume

Frequency tables: measures of WM & GM

Table 4: Matter vs Side

	asymmetry	bilateral	left	right	total
$\mathbf{G}\mathbf{M}$	10	19	105	75	1
$\mathbf{W}\mathbf{M}$	15	148	83	77	1

Table 5: Matter vs measure (continued below)

	AD	ADC	asymmetry	Axial Kurtosis	FA	$_{\mathrm{GM+WM}}$	length	MD
GM	0	0	10	0	0	0	0	0
WM	35	8	8	3	102		1	13

Table 6: Table continues below

	Mean Kurtosis	Radial Kurtosis	ratio GM/WM	RD	Thickness	VBM
GM WM	0 27	0 3	0	$0 \\ 23$	22 10	42 11

	Vol proportion	volume
$\mathbf{G}\mathbf{M}$	6	130
$\mathbf{W}\mathbf{M}$	6	74

White Matter measures

Contingensy tables: Main areas and sub-areas

Sub-analys were carried out in those areas that had measures from at least five studies. Those areas were selected from the contingensy tables.

Table 8: Table: Measure vs Big area (continued below)

	AD	ADC	asymmetry	Axial Kurtosis	FA	GM+WM
temporal lobe	12	7	11	0	41	6
frontal	4	0	1	0	5	0

	AD	ADC	asymmetry	Axial Kurtosis	FA	GM+WM
thalmus	10	0	6	3	11	0
parietal	0	0	0	0	5	0
insular cortex	1	0	6	0	1	0
occipital	0	0	1	0	1	0
brainstem	0	1	1	0	14	0
corpus callosum	4	0	0	0	5	0
cerebellum	0	0	0	0	0	0

Table 9: Table continues below

	length	MD	Mean Kurtosis	Radial Kurtosis
temporal lobe	0	3	6	0
frontal	0	1	4	0
thalmus	0	2	3	3
parietal	0	1	4	0
insular cortex	0	0	0	0
occipital	0	1	0	0
brainstem	0	3	8	0
corpus callosum	1	0	0	0
cerebellum	0	0	0	0

	ratio GM/WM	RD	Thickness	VBM	Vol proportion	volume
temporal lobe	7	12	9	22	0	122
frontal	1	1	8	19	0	20
thalmus	0	3	12	3	0	1
parietal	1	1	3	8	0	18
insular cortex	6	0	0	0	12	14
occipital	0	1	6	6	0	20
$\mathbf{brainstem}$	0	0	0	0	0	0
corpus callosum	0	3	5	2	0	5
cerebellum	0	0	4	1	0	17

Table 11: Table: Measure vs ROI (continued below)

	AD	ADC	asymmetry	Axial Kurtosis	FA	GM+WM
HG	3	6	5	0	13	2
\mathbf{STG}	2	1	2	0	10	2
temporal lobe	0	0	2	0	0	2
\mathbf{MTG}	0	0	0	0	2	0
\mathbf{IC}	1	0	1	1	2	0
insula	0	0	2	0	0	0
anterior insula	0	0	2	0	0	0
posterior insula	0	0	2	0	0	0
fusiform gyrus	0	0	0	0	0	0
middle frontal gyrus	0	0	0	0	2	0
planum temporale	2	0	0	0	2	0
splenium of corpus callosum	2	0	0	0	3	0
Culmen	0	0	0	0	0	0
occipital	0	0	0	0	1	0
supramarginal gyrus	0	0	0	0	2	0
cerebellum	0	0	0	0	0	0

Table 12: Table continues below

	length	MD	Mean Kurtosis	Radial Kurtosis
HG	0	1	2	0
\mathbf{STG}	0	0	2	0

	length	MD	Mean Kurtosis	Radial Kurtosis
temporal lobe	0	0	0	0
$\overline{ ext{MTG}}$	0	0	2	0
IC	0	1	1	1
insula	0	0	0	0
anterior insula	0	0	0	0
posterior insula	0	0	0	0
fusiform gyrus	0	0	0	0
middle frontal gyrus	0	0	2	0
planum temporale	0	1	0	0
splenium of corpus callosum	0	0	0	0
Culmen	0	0	0	0
occipital	0	1	0	0
supramarginal gyrus	0	0	2	0
cerebellum	0	0	0	0

Table 13: Table continues below

	ratio GM/WM	RD	Thickness	VBM	Vol proportion
HG	3	2	3	3	0
\mathbf{STG}	2	1	2	6	0
temporal lobe	2	0	0	2	0
\mathbf{MTG}	0	0	2	2	0
\mathbf{IC}	0	1	2	2	0
insula	2	0	0	0	4
anterior insula	2	0	0	0	4
posterior insula	2	0	0	0	4
fusiform gyrus	0	0	1	2	0
middle frontal gyrus	0	0	3	3	0
planum temporale	0	2	2	0	0
splenium of corpus callosum	0	2	1	1	0
Culmen	0	0	0	0	0
occipital	0	1	0	0	0
supramarginal gyrus	0	0	1	1	0
cerebellum	0	0	4	1	0

	volume
HG	34
\mathbf{STG}	32
temporal lobe	21
\mathbf{MTG}	6
\mathbf{IC}	0
insula	5
anterior insula	4
posterior insula	4
fusiform gyrus	7
middle frontal gyrus	0
planum temporale	1
splenium of corpus callosum	1
Culmen	8
occipital	5
supramarginal gyrus	2
cerebellum	2

Most common ROI for WM-FA and GM-volume

White matter FA ROIs: >5 studies Gray Matter volume ROIs: >5 studi

Figure 1 - Methods

Figure 3 - Meta-regressions of GM & WM by measure

Figure 3 - Gray Matter Volume: Random effects model no intercept covariated by Big area

Figure 3 - White Matter Volume: Random effects model no intercept covariated by Big area

White Matter Volume

Figure 3 - White Matter Fractional Anisotropy (FA): Random effects model no intercept covariated by Big area

Figure 3 - Supplementary material: heterogeneity per model

Heterogeney: GM volume Right

GM volume Right

GM volume Right

Heterogeney: GM volume Left

GM volume Left

GM volume Left

Heterogeney: WM FA Right

Heterogeney: WM FA Left

WM FA Left

Squared Pearson Residual

WM FA Left

Heterogeney: WM volume Right

WM volume Right

Influence on Overall Result 0.0 0.2 0.4 0.6 0.8 0 2 4 6 8 10

Squared Pearson Residual

WM volume Right

Heterogeney: WM volume Left

WM volume Left

WM volume Left

Figure 4 - Meta-regressions of Gray Matter Volume & Brain Areas: Random effects model no intercept covariated by Side

Gray matter Volume - parietal

Gray matter Volume - frontal

Gray matter Volume - cerebellum

Gray matter Volume - occipital

Gray matter Volume - insular cortex

Figure 5 - Meta-regressions of White Matter FA & Brain Areas: Random effects model no intercept covariated by Side

White matter FA - brainstem

White matter FA - thalmus

White matter FA - parietal

White matter FA - frontal

White matter FA - corpus callosum

Figure 6 - Meta-regressions of White Matter Volume & Brain Areas: Random effects model no intercept covariated by Side

White matter Volume - insular cortex

White matter Volume - frontal

White matter Volume - occipital

White matter Volume - occipital

White matter Volume - corpus callosum

Supplementary material: Forest-plots of other Measures

Hesch gyrus FA white matter

White matter FA and HG

STG Volume White matter

White matter FA and STG

Measures of White matter Integrity

White matter: RD

WM & RD

White matter: MD

WM & MD

				VVI	N & NID		
Year & Author	Aç Ptn	ge Ctl	N	ROI		Weights	Hedge's G [95% CI]
right							
2017-Shiell	28.2	32.1	28	planum temporale	⊢ ■	7.23%	-0.85 [-1.65, -0.06]
RE Model for Subgroup (Q :	= 0.00, df = 0, p =	= 1.00; I ²	= 0.0%)				-0.85 [-1.65, -0.06]
bilateral							
2014-Lyness.1	17.29		26	frontal	⊢	■ 6.39 %	1.94 [0.99, 2.88]
2014-Lyness.6	17.29		26	occipital	t 	7.10%	0.97 [0.15, 1.78]
2014-Lyness.5	17.29		26	parietal lobe	ı <u> </u>	7.26%	0.61 [-0.18, 1.40]
2015-Huang.3	4.7	4.2	44	IC	⊢ = -1	8.39%	0.28 [-0.32, 0.88]
2015-Huang.1	4.7	4.2	44	ТВ	⊢	8.40%	0.20 [-0.40, 0.79]
2015-Huang.2	4.7	4.2	44	SON	- ■ - 1	8.41%	0.09 [-0.51, 0.68]
2015-Huang.6	4.7	4.2	44	HG	⊢	8.41%	0.00 [-0.59, 0.59]
2015-Huang.5	4.7	4.2	44	AR	⊢	8.41%	0.00 [-0.59, 0.59]
2015-Huang.4	4.7	4.2	44	MGB	⊢	8.41%	0.00 [-0.59, 0.59]
2014-Lyness.4	17.29		26	temporal	<u> </u>	7.38%	0.00 [-0.77, 0.77]
2014-Lyness.2	17.29		26	Motor zone		7.38%	0.00 [-0.77, 0.77]
2014-Lyness.3	17.29		26	somatosensory	├──	6.85%	-1.37 [-2.23, -0.51]
RE Model for Subgroup (Q :	= 32.17, df = 11,	p = 0.00;	I ² = 71.2%)		•		0.20 [-0.17, 0.57]
RE Model for All Stud	lies (Q = 38.1	18, df =	12, p = 0.	00; I ² = 74.0%)	•	100.00%	0.13 [-0.25, 0.51]
					; 		
					-5 0	3	
					Hedge's G		

White matter: Mean Kurtosis

WM & Mean Kurtosis

Year & Author	A Ptn	ge Ctl	N	ROI		Weights	Hedge's G [95% CI]
bilateral							
2017-Zheng.9	4.7	4.2	110	STG		β. 92 %	3.00 [2.44, 3.56]
2017-Zheng.17	4.7	4.2	110	HG		⊢ ■ 3.72%	1.77 [1.31, 2.22]
2017-Zheng.19	4.7	4.2	110	inferior frontal gyrus		⊢ ■ 3.72%	1.74 [1.28, 2.19]
2017-Zheng.18	4.7	4.2	110	middle frontal gyrus		─ 3.73%	1.06 [0.64, 1.48]
2017-Zheng.13	4.7	4.2	110	acoustic radiation		3.73%	0.63 [0.23, 1.03]
2017-Zheng.15	4.7	4.2	110	SON	 •	→ 3.73%	0.23 [-0.16, 0.63]
2017-Zheng.24	4.7	4.2	110	Hippocampus	⊢	3.73%	0.00 [-0.39, 0.39]
2017-Zheng.23	4.7	4.2	110	supramarginal gyrus	⊢ - i	3.73%	0.00 [-0.39, 0.39]
2017-Zheng.22	4.7	4.2	110	Angular gyrus	⊢ •	3.73%	0.00 [-0.39, 0.39]
2017-Zheng.21	4.7	4.2	110	STG	⊢ •	3.73%	0.00 [-0.39, 0.39]
2017-Zheng.1	4.7	4.2	110	acoustic radiation	⊢= ─-(3.73%	-0.44 [-0.84, -0.04]
2016-Chinnadurai.1	8.58	8.58	50	IAC	⊢	3.69%	-0.48 [-1.04, 0.08]
2017-Zheng.16	4.7	4.2	110	MGB	⊢	3.73%	-0.51 [-0.91, -0.11]
2016-Chinnadurai.2	8.58	8.58	50	IC	⊢	3.69%	-0.53 [-1.09, 0.03]
2016-Chinnadurai.3	8.58	8.58	50	LL	⊢	3.69%	-0.92 [-1.51, -0.34]
2017-Zheng.20	4.7	4.2	110	MTG	⊢= →	3.73%	-1.02 [-1.43, -0.60]
2017-Zheng.12	4.7	4.2	110	Hippocampus	⊢= ⊣	3.72%	-1.68 [-2.13, -1.23]
2017-Zheng.14	4.7	4.2	110	ТВ	⊢= →	3.71%	-2.21 [-2.71, -1.72]
2017-Zheng.7	4.7	4.2	110	inferior frontal gyrus	⊢= →	3.71%	-2.50 [-3.01, -1.98]
2017-Zheng.4	4.7	4.2	110	MGB	⊢= →	3.71%	-2.51 [-3.02, -1.99]
2017-Zheng.8	4.7	4.2	110	MTG	⊢	3.70%	-2.84 [-3.39, -2.30]
2017-Zheng.5	4.7	4.2	110	HG	⊢	3.69%	-3.11 [-3.68, -2.53]
2017-Zheng.11	4.7	4.2	110	supramarginal gyrus	⊢ ■	3.68%	-3.64 [-4.27, -3.02]
2017-Zheng.3	4.7	4.2	110	SON	⊢ ■	3.67%	-3.90 [-4.55, -3.25]
2017-Zheng.6	4.7	4.2	110	middle frontal gyrus	⊢	3.67%	-3.91 [-4.56, -3.25]
2017-Zheng.2	4.7	4.2	110	ТВ	← ⊣	3.63%	-5.04 [-5.82, -4.26]
2017-Zheng.10	4.7	4.2	110	Angular gyrus	← ⊣	3.63%	-5.20 [-6.00, -4.40]
RE Model for Subgroup (Q = 13	62.61, df = 2	26, p = 0.0	100 ; $1^2 = 98.69$	%)			-1.17 [-1.97, -0.38]
RE Model for All Studies	(Q = 136	62.61, df	f = 26, p =	$0.00; I^2 = 98.6\%$	-	100.00%	-1.17 [-1.97, -0.38]
					i i		
					-5 0	3	
					Hedge's G		

White matter: AD

WM & AD

Error in rma(yi = hedgesG, vi = varG, data = meta.mod, measure = "MD", : Fisher scoring algorithm did not converge. See 'help(rma)' for possible remedies.

Other Measures of White Matter

White matter: Thickness

WM & Thickness

White matter: VBM

WM & VBM

Age								
Year & Author	Ptn	Ctl	N	ROI		·	Weights	Hedge's G [95% CI]
right								
2018-Kumar.2	19.5		100	STG		⊢= ⊣	9.91%	-1.47 [-1.92, -1.03]
RE Model for Subgroup (Q =	0.00, df = 0, p =	= 1.00; I ²	= 0.0%)			•		-1.47 [-1.92, -1.03]
left								
2018-Kumar.1	19.5		100	STG		⊢= →	9.88%	-1.64 [-2.10, -1.19]
RE Model for Subgroup (Q =	0.00, df = 0, p =	= 1.00; I ²	= 0.0%)			•		-1.64 [-2.10, -1.19]
bilateral								
2010-Leporé.2	29.5	8	30	STG		-	8.88%	0.73 [-0.01, 1.47]
2010-Leporé.1	29.5	8	30	STG		-	8.88%	0.73 [-0.01, 1.47]
2010-Leporé.8	29.5	8	30	splenium of corpus callosum			8.88%	0.72 [-0.02, 1.46]
2010-Leporé.7	29.5	8	30	temporal lobe		-	8.89%	0.68 [-0.06, 1.42]
2010-Leporé.3	29.5	8	30	frontal lobe		-	8.89%	0.66 [-0.07, 1.40]
2010-Leporé.6	29.5	8	30	parietal lobe		r	8.92%	0.56 [-0.18, 1.29]
2010-Leporé.9	29.5	8	30	corpus callosum genu		⊢	⊣ 8.94%	0.40 [-0.32, 1.13]
2010-Leporé.5	29.5	8	30	occipital lobe		⊢	8.96%	0.26 [-0.46, 0.98]
2010-Leporé.4	29.5	8	30	limbic lobe		⊢	8.97%	0.01 [-0.71, 0.73]
RE Model for Subgroup (Q =	3.79, df = 8, p =	= 0.88; I ²	= 0.0%)			•		0.52 [0.28, 0.77]
RE Model for All Studie	es (Q = 107	.53, df	= 10, p :	= 0.00; I^2 = 87.0%)		•	100.00%	0.11 [-0.43, 0.66]
						<u> </u>		
					-5	0	3	
						Hedge's G		

Supplementary material: Gray and White matter relation with Age

Meta Plots

The L'Abbé plot

In a L'Abbé plot (based on L'Abbé, Detsky, & O'Rourke, 1987), the arm-level outcomes for two experimental groups (e.g., treatment and control group) are plotted against each other. is treatment versus effect, since you have the cohen's d this should be relatively simple.

> WE DON'T HAVE TWO EXPERIMENTAL GROUPS

Baujat plot to identify studies contributing to heterogeneity

The plot shows the contribution of each study to the overall Q-test statistic for heterogeneity on the horizontal axis versus the influence of each study (defined as the standardized squared difference between the overall estimate based on a fixed-effects model with and without the ith study included in the model) on the vertical axis 2.17. Funnel plot to illustrate publication bias

Galbraith plot

Radial plot (radial) of variables and cohen's d - Galbraith, Rex (1988). "Graphical display of estimates having differing standard errors". Technometrics. Technometrics, Vol. 30, No. 3. 30 (3): 271–281.

2.18.2. We want to see this type of error plot over time for our patient cohorts by age. we want this for each measure WM and GM versus age on the x-axis so we can see GM and WM over time! Do a monte carlo simulation to connect different age population and create the error.

For a fixed-effects model, the plot shows the inverse of the standard errors on the horizontal axis against the individual observed effect sizes or outcomes standardized by their corresponding standard errors on the vertical axis. On the right hand side of the plot, an arc is drawn corresponding to the individual observed effect sizes or outcomes. A line projected from (0,0) through a particular point within the plot onto this arc indicates the value of the individual observed effect size or outcome for that point.

Resources

We are following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines: Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6:e1000097. doi: 10.1371/journal.pmed.1000097 AND https://www.bmj.com/content/339/bmj.b2535

- https://stackoverflow.com/questions/14426637/how-to-do-bubble-plot
- https://www.researchgate.net/publication/296680807_Menstrual_hygiene_management_among_adolescent girls in India A Systematic review and meta-analysis/figures?lo=1

Good explanation of some of the plots:

• https://ora.ox.ac.uk/objects/uuid:ff78831d-6f82-4187-97cc-349058e9abde/download_file?file_format=pdf&safe_filename=Rahimi%2Bet%2Bal%252C%2BData%2Bvisualisation%2Bfor%2Bmeta-analysis.pdf&type of work=Journal+article