

PHYSICS

Chapter 13

PRINCIPIO DE ARQUÍMEDES

HELICO | MOTIVATION

FUERZA DE EMPUJE

Es aquella fuerza que surge cuando un cuerpo esta parcial o totalmente sumergido en un líquido ; siendo esta el resultado de la diferencia de presiones del líquido sobre el cuerpo sumergido.

FUERZA DE EMPUJE

01

Esta fuerza presenta una dirección perpendicular a la superficie libre del líquido, y actúa en el centro de la zona sumergida (metacentro). Dicha fuerza es la responsable de los fenómenos mostrados en las dos imágenes.

MÓDULO DE LA FUERZA DE EMPUJE (E)

El módulo de la fuerza de empuje, se obtiene con:

```
E = \rho_{Liq} g V_{sum}
```

Unidad Newton (N)

Densidad

```
ho_{
m Liq}: del líquido ( kg/m^3)
```

 $V_{sum} : \begin{tabular}{ll} Volumen & sumergido & (\\ V_{sum} : \begin{tabular}{ll} volumen & del & cuerpo & que & se \\ encuentra & dentro & del & líquido &), \\ \end{tabular}$

 $\mathsf{en}\; m^3$

De manera experimental, el módulo de la fuerza de empuje se obtiene con el principio de Arquímedes, el cual establece:

El principio de Arquímedes establece lo siguiente: Si un cuerpo está parcial o totalmente sumergido en un fluido, este ejerce una fuerza hacia arriba sobre el cuerpo igual al peso del fluido desplazado por el cuerpo.

Un bloque de aluminio de 4 kg flota en agua. Determine el módulo de la fuerza de empuje que ejerce el agua sobre el bloque. (g = 10 m/s2)

SOLUCIÓ

Como el bloque de acuerdo al enunciado, esta flotando en el agua; se encuentra en equilibrio, por lo tanto:

SOLUCIÓ

Se muestra una esfera de 1,5 kg flotando sobre aceite. Determine el módulo y dirección de la fuerza de empuje sobre dicha esfera. (g = 10 m/s2)

Como la esfera de acuerdo al enunciado, flota en aceite; esta se encuentra en equilibrio, por lo tanto:

Determine el módulo de la fuerza de empuje hidrostático del agua sobre un bloque de 3 m3 si este se encuentra totalmente sumergido. (g = 10 m/s2)

Ν

$$E = \rho_{Liq} g V_{sum}$$

$$E = 10^3 (10) 3 N$$

$$E = 30 \text{ kN}$$

De la figura mostrada, determine el módulo de la fuerza de empuje sobre la esfera. (g = 10 m/s2)

Ν

$$E = \rho_{Liq} g V_{sum}$$

$$E = 10^3 (10) 1 N$$

E = 10 kN

Se agradece su colaboración y participación durante el tiempo de la clase.

