© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – E3A MP 2020

Questions de cours

1 On considère le trinôme du second degré à coefficients complexes $aX^2 + bX + c$ dont on note s_1 et s_2 les racines.

Donner, sans démonstration, les expressions de $\sigma_1 = s_1 + s_2$ et de $\sigma_2 = s_1 s_2$ à l'aide des coefficients a, b et c.

2 Soient a et b deux réels et $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par $u_0\in\mathbb{R}$, $u_1\in\mathbb{R}$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n$$

On note r_1 et r_2 les racines dans $\mathbb C$ de l'équation caractéristique associée à cette suite.

Soit $n \in \mathbb{N}$. Exprimer u_n en fonction de r_1 , r_2 et n.

On sera amené à distinguer trois cas et il n'est pas demandé d'exprimer les constantes qui apparaissent en fonction de u_0 et de u_1 .

Exercice

On note $\mathcal C$ l'ensemble des suites réelles $x=(x_n)_{n\in\mathbb Z}$ indexées par $\mathbb Z$ telles que les sous-suites $(x_n)_{n\in\mathbb N}$ et $(x_{-n})_{n\in\mathbb N}$ convergent.

On admettra que l'ensemble E des suites réelles indexées par Z est un R-espace vectoriel.

L'endomorphisme identité de l'espace E sera noté Id_E.

On définit les applications S et T de $\mathcal C$ dans E par :

$$\forall x \in \mathcal{C}, \ \mathrm{S}(x) = z, \qquad \mathrm{avec} \qquad \forall n \in \mathbb{Z}, \ z_n = x_{-n}$$
 et
$$\forall x \in \mathcal{C}, \ \mathrm{T}(x) = y, \qquad \mathrm{avec} \qquad \forall n \in \mathbb{Z}, \ y_n = x_{n-1} + x_{n+1}$$

- ${\bf 3}$ Donner un exemple de suite non constante, élément de ${\mathcal C}.$
- **4** Montrer que \mathcal{C} est un sous-espace vectoriel de l'espace vectoriel E.
- 5 Prouver que si une suite x est dans \mathcal{C} , elle est bornée.
- 6 Montrer que T est un endomorphisme de C. On admettra qu'il en est de même de S.
- 7 Soient $F = \{x \in \mathcal{C}, \forall n \in \mathbb{Z}, x_n = x_{-n}\}$ et $G = \{x \in \mathcal{C}, \forall n \in \mathbb{Z}, x_n = -x_{-n}\}$. Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de \mathcal{C} .

© Laurent Garcin MP Dumont d'Urville

8 Étude de l'endomorphisme S

Prouver que S est une symétrie de C dont on précisera les éléments caractéristiques.

9 Etude de l'endomorphisme T

On rappelle qu'une suite x est dans \mathcal{C} lorsque les deux sous-suites $(x_n)_{n\in\mathbb{N}}$ et $(x_{-n})_{n\in\mathbb{N}}$ sont convergentes.

- 9.a Soit λ un réel. Montrer que si $\lambda \notin \{-2, 2\}$, $Ker(T \lambda Id_{\mathcal{C}}) = \{0_{\mathcal{C}}\}$ où $0_{\mathcal{C}}$ désigne le vecteur nul de \mathcal{C} . On pourra utiliser les questions de cours.
- **9.b** L'endomorphisme T est-il injectif?
- **9.c** Déterminer $Ker(T 2 Id_{\mathcal{C}})$ et $Ker(T + 2 Id_{\mathcal{C}})$.
- 9.d Déterminer alors l'ensemble de toutes les valeurs propres de l'endomorphisme T.

10 On munit
$$\mathcal{C}$$
 de la norme infinie : si $x \in \mathcal{C}$, $||x||_{\infty} = \sup_{n \in \mathbb{Z}} |x_n|$.

Soit N l'application qui, à tout élément
$$x$$
 de \mathcal{C} , associe $N(x) = \sum_{n=0}^{+\infty} \frac{|x_n| + |x_{-n}|}{2^n}$.

- **10.a** Vérifier que, pour tout x de \mathcal{C} , N(x) existe.
- **10.b** Démontrer que l'on définit ainsi une norme sur l'espace \mathcal{C} .
- **10.c** Montrer que S est une isométrie de l'espace vectoriel normé (C, N). Est-elle continue?
- 10.d Prouver que, dans cet espace normé, les sous-espaces vectoriels F et G sont des fermés.
- **10.e** Les deux normes $\| \|_{\infty}$ et N sont-elles équivalentes?