Pricing exotic path-dependent options

The Singular Points method [GZA10; GZ11]

Sudip Sinha Supervisor: Prof. Fabio Antonelli

MathMods Università degli Studi dell'Aquila

23rd October, 2015

(Financial) Market models: introduction

- Financial assets
 - basic assets riskless (deterministic) treasury bonds: $S_t^0 = e^{rt}$
 - derivatives contracts on other assets (underlying), till maturity T
 futures symmetric risk
 options asymmetric risk historically used for insurance

risky (stochastic) stocks: $(S_t)_t$, parameter σ characterises risk

- Problem: pricing derivatives
- Assumptions
 - viable / no arbitrage / no free lunch
 - frictionless
 - infinitely divisible assets

Option types

 Simple options – classification of the basis of: exercise time European or American right of owner call or put

Example (European call)

payoff:
$$h(S_T) = (S_T - K)_+ = \max\{S_T - K, 0\}$$
, exercise at maturity

Exotic options – usually path-dependent

Asian payoff: function of average of the underlying. lookback payoff: function of extrema of the underlying. cliquet a series of globally or locally bounded at-the-money options.

digital existence depends on pre-set barriers.

Evolution of risky asset: [CRR79] model (discrete)

$$t = 0$$
 $t = 1$ $t = 2$ $t = 3$ $N_{3,3} \triangleright S_0 u^3$ $N_{2,2} \triangleright S_0 u^2$

Motivation Asian options Cliquet options Conclusion

[BS73] model (continuous)

riskless
$$S_t^0 = e^{rt}$$

risky $S_t = s_0 e^{(r - \frac{\sigma^2}{2})t + \sigma W_t}$

Theorem (Convergence of prices from CRR to BS)

Prices of basic assets under CRR $\stackrel{d}{\rightarrow}$ prices of basic assets under BS.

Corollary (Convergence of evaluation formulae)

The previous theorem implies that evaluation formulae under CRR converge in distribution to evaluation formulae for BS.

Approximate BS price by using CRR model.

Quest: Find algorithms with reduced computational complexity.

Motivation Asian options Cliquet options Conclusion

Market models: discrete vs. continuous

Parameter	Discrete	Continuous
Example	[CRR79]	[BS73]
Theoretical complexity	Easy	Hard
Ease of implementation	Hard	Easy
Closed-form formula	No ¹	Yes
Computational complexity	Hard: $O(2^n)^1$	Easy: <i>O</i> (1)
Versatile	Yes	No

¹CRR: backward recursive

Asian options: introduction

Payoff: function of some form of average price.

Average	Discrete	Continuous
AM	$A_n = \frac{1}{n+1} \sum_{i=0}^n S_n$	$A_T = \frac{1}{T} \int_0^T S_t dt$
GM	$G_n = \left(\prod_{i=0}^n S_n\right)^{\frac{1}{n+1}}$	$G_T = \exp\left(\frac{1}{T}\int_0^T \log(S_t) dt\right)$

Example (fixed-strike Asian call of European type)

Given strike-price K, payoff = $(A_T - K)_+$, exercised only at maturity.

Asian option: pre-existing methods

Arithmetic mean			
Method	Туре	Complex	Remarks
[CRR79] [HW93]	Tree Tree	$\frac{O(2^n)}{O(n^3)}$	simple, accurate, convergence accuracy & convergence problems
[BP96]	Tree	$O(n^3)$	accuracy & convergence problems
[Cha+99] [VecO1]	Tree PDE	$O(n^4)$ $O(n^2)$	thin bounds, very large memory not universally applicable
[dFLO5]	PDE	, ,	more general than [VecO1]

Geometric mean

Closed-form formula exist under BS.

SPM for Asian options: idea

```
N_{i,i} Node of the binomial tree
```

$$A_{i,j}^{l}$$
 Average upto $N_{i,j}$, $l \in \binom{i}{j}$

$$P_{i,j}^l$$
 Corresponding option price

$$\left\{ \left(A_{i,j}^l, P_{i,j}^l \right) \right\}_i$$
 singular points (SPs) - completely characterise price

price function continuous, convex, piecewise-linear; found by joining SPs.

SPM for Asian options: start at maturity (i = n)

For $N_{n,j}$: calculate $A_{i,j}^{\min}$ and $A_{i,j}^{\max}$.

Singular points:

$$i \in \{0, n\}: (A, (A - K)_+)$$

- (K, O)
- **3** $(A_{n,j}^{\max}, A_{n,j}^{\max} K)$

- $\bullet \quad \left(A_{n,j}^{\min}, (A_{n,j}^{\min} K)_{+}\right)$

Figure: Case 2

SPM for Asian options: exact price

- Up movement (for $N_{i,i}$):

 - **3** For each SA, $B_{ii}^l = \frac{(i+1)B^l + S_{i+1:j+1}}{i+2}$.
 - $v_{i,i}(B^l) =$ $\frac{1}{R} \left[\rho_{u} \mathsf{v}_{i+1,j+1} \left(\mathsf{B}_{u}^{l} \right) + \rho_{d} \mathsf{v}_{i+1,j} \left(\mathsf{A}_{i+1,j}^{l} \right) \right].$
- Down movement (for $N_{i,i}$).
- Aggregate and sort by SAs.
- Repeat for all j.
- Iterate backward till i = 0. $P_{0,0}^1$ is the exact binomial price.

SPM for Asian options: approximation Lower estimates

SPM for Asian options: numerical results

Data: $s_0 = 100, T = 1, r = 0.1, q = 0.03$.

		<i>K</i> = 90		K = 110	
	n	$\sigma = 0.2$	$\sigma = 0.4$	$\sigma = 0.2$	$\sigma = 0.4$
Bin	10	14.5912	17.8033	2.5100	6.6523
	25	15.1535	18.6786	2.6270	7.3451
SP	10	14.5925	17.8068	2.5090	6.6511
	25	15.1535	18.6785	2.6270	7.3449
	50	15.3524	19.0420	2.6673	7.4563
	100	15.4732	19.2696	2.6886	7.5174
	200	15.5453	19.4065	2.6996	7.5502
	400	15.5861	19.4845	2.7053	7.5674

SPM for Asian options: summary

- □ Introduced by Gaudenzi *et al* [GZA10] in 2010.
- Convergent to exact CRR and thus BS.
- Easily generalised to American case and lookback options.
- Approx: A priori error bounds.
- Difficult to compute theoretical complexity.
- Depends on the recombinant nature of the underlying's tree.
- Not extensible to GM, since the price function is non-linear.

$$G_u = \left(G^{i+1}S_{i+1,j}\right)^{rac{1}{i+2}} \propto G^{rac{i+1}{i+2}}$$

lacktriangleq Constant volatility assumption \Longrightarrow local volatility models fail.

Cliquet options: introduction

Definitions

forward start option price option today with payoff = $(S_T - S_u)_+$, $0 \le u < T$.

cliquet option a series of consecutive at-the-money forward start options, with bounded returns.

Pre-existing methods for pricing

- No prominent tree-based method.
- [WilO2]: PDE based, FD approach.
- [WFVO6]: PDE based, FD approach; generalisations.

- N: observation times (equidistant).
- Return: $R_i = \frac{S_i S_{i-1}}{S_{i-1}} = \frac{S_i}{S_{i-1}} 1$.
- Running sum: $Z_i = \sum_{k=1}^i \max\{F_{loc}, \min\{C_{loc}, R_k\}\}.$
- Payoff = $\max\{F_{glob}, \min\{C_{glob}, Z_N\}\}$.
- m: computational time steps.
- 2^m possible paths; $\sim Bin(p)$.
- Z depends on paths, probs.
- $(Z, P) \implies SP(P \text{ is price}).$
- Price function at maturity.
- Proceed as in the Asian case.
- Iterate backwards. P_0^1 is the exact binomial price.

SPM for cliquet options: numerical results

Data

•
$$F_{loc} = 0, C_{loc} = 0.08, F_{glob} = 0.16, C_{glob} = \infty$$

•
$$T = 5, N = 5, r = 0.03$$

σ	m	Pri	Time (s) 2		
	,,,	Bin	SP	Bin	SP
	200	0.173716366	0.173716366	0.0165	0.00828
0.2	500	0.173922597	0.173922671	0.0875	0.0437
	1000	0.174051949	0.174051983	2.38	0.183
	200	0.150465004	0.150466828	600	6.09
0.0	2 500	0.150508871	0.150510526	∞	24.2
	1000	0.150522368	0.150524027	∞	55

 $^{^{2}\}infty$ means time taken is more than an hour.

SPM for cliquet options: complexity $O(m^2)$

SPM for cliquet options: summary

- ✓ Approximation: *A priori* error bounds.
- Approximation: converges to binomial price, no bounds.
- Significant speed improvement in low volatility cases against binomial model.
- Can be used for local volatility models and varying interest rates in each period.
- ✓ Fast experimental order of complexity O(m²).
- Difficult to compute theoretical complexity.

Recapitulation

- Efficient polynomial-time technique.
- Theory and flexibility varies with option type.

Further research

- Theoretical complexity: dependence of singular point redundancy on initial data.
- Verify cliquet complexity for large m.
- Customising the method for other path-dependent options.

Questions?

Thank you!

Bibliography I

Marcellino Gaudenzi and Antonino Zanette. "Pricing cliquet options by tree methods". In: *Computational Management Science* 8.1-2 (2011), pp. 125-135.

Marcellino Gaudenzi, Antonino Zanette, and Maria Antonietta Lepellere. "The singular points binomial method for pricing American path-dependent options". In: Journal of Computational Finance 14.1 (2010), p. 29.

HA Windcliff, PA Forsyth, and KR Vetzal. "Numerical methods and volatility models for valuing cliquet options". In: *Applied Mathematical Finance* 13.4 (2006), pp. 353–386.

Bibliography II

Yann d'Halluin, Peter A Forsyth, and George Labahn. "A semi-Lagrangian approach for American Asian options under jump diffusion". In: *SIAM Journal on Scientific Computing* 27.1 (2005), pp. 315–345.

Paul Wilmott. "Cliquet options and volatility models". In: *The best of Wilmott* (2002), p. 379.

Jan Vecer. "New pricing of Asian options". In: *Preprint, Columbia University* (2001).

Prasad Chalasani et al. "A refined binomial lattice for pricing American Asian options". In: *Review of Derivatives Research* 3.1 (1999), pp. 85-105.

Jérôme Barraquand and Thierry Pudet. "Pricing of American path-dependent contingent claims". In: *Mathematical Finance* 6.1 (1996), pp. 17–51.

Bibliography III

J. C. Hull and A. White. "Efficient Procedures for Valuing European and American Path-Dependent Options". In: *Journal of Derivatives* 1.Fall (1993), pp. 21–31.

John C Cox, Stephen A Ross, and Mark Rubinstein. "Option pricing: A simplified approach". In: *Journal of financial Economics* 7.3 (1979), pp. 229–263.

Fischer Black and Myron Scholes. "The pricing of options and corporate liabilities". In: *The journal of political economy* (1973), pp. 637–654.