Beamer Theme

Your Name

April 4, 2020

Outline

Beamer Theme

1 Introduction

- 2 Beamer Basic
 - Hightlight
 - Other Environments
- 3 Beamer More
 - Split Screen
 - Table
 - Math
- Conclusion

Latex and Beamer

Beamer Theme

Your Nam

Introduction

Beamer Basic Hightlight Other Environment

Beamer More Split Screen Table

Conclusior

LaTeX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation.

Latex and Beamer

Beamer Theme

Your Nam

Introduction

Beamer Basic Hightlight Other Environment

Beamer More Split Screen Table Math

Conclusi

LaTeX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation.

Beamer is a LaTeX class to create powerful, flexible and nice-looking presentations and slides.

The beamer class is focussed on producing (on-screen) presentations, along with support material such as handouts and speaker notes.

Block and Alert

Beamer Theme

Your Nam

Introductio

Beamer Basic

Beamer More
Split Screen
Table

Conclusion

Pythagorean theorem

$$a^2 + b^2 = c^2$$

where c represents the length of the hypotenuse and a and b the lengths of the triangle's other two sides.

Remark

- the environment above is block
- the environment here is alertblock

Pythagorean theorem

$$a^2 + b^2 = c^2$$

Proof.

$$3^2 + 4^2 = 5^2$$
$$5^2 + 12^2 = 13^2$$

Algorithm

Beamer Theme

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Table
Math

Conclusio

```
Data: this text

Result: how to write algorithm with LATEX2e initialization;

while not at end of this document do

read current;

if understand then

go to next section;

current section becomes this one;

else

go back to the beginning of current section;
end
```

Algorithm 1: How to write algorithms (copied from here)

An Algorithm For Finding Primes Numbers.

Beamer Theme

Your Name

Introduction

Beamer Basic
Hightlight
Other Environments

Beamer More

Split Screen

Table Math

Conclusion

```
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
    if (is_prime[i])
    {
        std::cout << i << " ";
        for (int j = i; j < 100; is_prime [j] = false, j+=i);
    }
    return 0;
}</pre>
```

Note the use of \alert.

More

Beamer Theme

Your Nam

Introduction

Hightlight
Other Environments

Beamer More Split Screen

Table Math

Conclusior

More environments such as

- Definition
- lemma
- corollary
- example

Minipage

Beamer Theme

- 1 item
- 2 another
- 3 more
 - first
 - second
 - third

Columns

Beamer Theme

Introduction

Hightlight
Other Environments

Beamer More

Split Screen

Table Math

Conclusion

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

first block

columns achieves splitting the screen

second block

stack block in columns

Create Tables

Beamer Theme

Your Nam

Introduction

Hightlight

Beamer M

0.10.0

Table

Math

Conclusion

first	second	third
1	2	3
4	5	6
7	8	9

Equation1

Beamer Theme

rour ivam

Introduction

Beamer Basic

Beamer More Split Screen

Table Math

Conclusion

A matrix in text must be set smaller: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to not increase leading in a portion of text.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$

50apples $\times 100$ apples = $lotsofapples^2$

Equation2

Beamer Theme

Your Nam

Introduction

Beamer Basic

Beamer Mo

Dearrier Wo

Table

Math

Conclusion

$$\sum_{\substack{0 < i < m \\ 0 < j < n}} P(i,j) = \int_{a}^{b} \prod P(i,j)$$

$$P\left(A = 2 \left| \frac{A^2}{B} > 4 \right.\right)$$

$$(a), [b], \{c\}, |d|, \|e\|, \langle f \rangle, |g|, [h], \lceil i \rceil$$

Equation3

Beamer Theme

Introduction

Beamer Basic

Other Environmer

Beamer Mo

Split Screen

Math

Conclusion

$$Q(\alpha) = \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$$

$$Q(\alpha) = \alpha^i \alpha^j y^{(i)} y^{(j)} (x^i \cdot x^j)$$

$$\Gamma = \beta + \alpha + \gamma + \rho$$

End

Beamer Theme

Your Ivam

Introduction

Hightlight

Page Mare

Split Serson

Table

Conclusion

The last page.