

FOKUS

fhwn.ac.at/bro

Theorie und Praxis

FOKUS

fhwn.ac.at/bro

Hoher Praxisbezug

Gesamt	180 ECTS
Spezialisierung & Praktikum	32 ECTS
Intelligente Syst. & Virtualisierung	27 ECTS
Informationstechnologie	17 ECTS
Technische Grundlagen	18 ECTS
Robotik & Automatisierung	37 ECTS
Produktion	12 ECTS
Science & Communication	20 ECTS
Mathematik	17 ECTS

FOKUS IT, Int. Systeme & Virtualisierung

fhwn.ac.at/bro

1. Semester	ECTS	30
Mathematik 1		5
Scientific Computing		3
Grundlagen der Programmi	erung	4
Grundlagen der Informatik		3
Grundlagen der Robotik		2
Computer Aided Design		4
Communication Skills		4
Projekt Robotik 1		5

Projekt Robotik 1		5
4. Semester	ECTS	30
Industrielle Robotik		3
Mobile Robotik		3
Computer Vision		4
Künstliche Intelligenz		4
Embedded Systems		4
Regelungstechnik		4
Betriebssicherheit		2
Spezialisierung		6

2. Semester ECTS	30
Mathematik 2	5
Software Engineering	2
Objektorientierte Programmierung	g 4
Elektrotechnik	5
Mechanik	5
Betriebswirtschaftslehre	3
Scientific Skills Introduction	3
Projekt Robotik 2	3

5. Semester ECTS	30
Medinzinische Robotik	3
Smart Robotics	3
Computergrafik	4
Datenbanken und Maschin. Lernen	4
Netzwerke und Bussysteme	3
Flexible Produktion	4
Scientific Skills Application	3
Spezialisierung	6

3. S	emester	ECTS	30
Date	nanalyse und Statistik		4
Algo	rithmen und Datenstru	ıkturen	4
Auto	matisierungstechnik		4
Sens	oren und Aktoren		4
Simu	ılation Robotik		4
Elek	tronik		4
Prod	uktion und Logistik		3
Proje	ekt Robotik 3		3

ECTS	30
	20
	2
	8
	ECTS

• INHALT

- Perspektiven
- PRAXIS
- CAMPUS
- BEWERBUNG
- AUSBLICK

STUDIUM

TECHNIK

SPORT

SICHERHEIT

GESUNDHEIT

Key Facts

Akademischer Grad

Bachelor of Science in Engineering (BSc.)

Studienort

Campus 1 Wiener Neustadt | FabLab Mödling

Umfang

6 Semester (180 ECTS)

Sprache

Deutsch

Bewerbung

Nachweis der Zugangsberechtigung (z. B. Maturazeugnis) kann nachgereicht werden

Studienbeginn

September

Organisationsform

Vollzeit

Kosten

€ 363,36 + € 22,70 ÖH-Beitrag pro Semester

Bewerbungsfrist

bis Ende Juni

Aufnahmetermine

Laufend

Studienplätze

30

Pflichtpraktikum

Ja

Mustafa Algan, MSc
 Studiengang Robotik

fhwn.ac.at/bro robotikfhwn

Wie funktioniert dieser Roboter?

Sensoren

Intelligenz

Was erwarten wir von KI?

Die KI soll eine Information erfassen, verarbeiten und etwas Umsetzen!

Aufgabenstellung

Was muss für die Ziffernerkennung gemacht werden?

Aufgabenstellung

Was muss für die Ziffernerkennung gemacht werden?

Schritt 1: Daten erfassen

Programmierumgebung

Schritt 1: Daten erfassen

Bilder importieren

%% Daten erfassen

dataFolder = fullfile(toolboxdir('nnet'), 'nndemos', 'nndatasets', 'DigitDataset');

imds = imageDatastore(dataFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

Je Ziffer ein Ordner.

Workspace

2

_

3

4

Schritt 2: Daten verarbeiten


```
Wie schauen die Daten aus?
```


Schritt 2: Daten verarbeiten

Wie viele Bilder haben wir pro Ziffer und wie groß ist ein Bild?

```
% Zeigt Anzahl je Ziffer
classNames = categories(imds.Labels);
labelCount = countEachLabel(imds)
```

% Zeigt die Pixelanzahl der Bilder
img = readimage(imds,1);
size(img)

oixel =

28 28

Danet	Counc
0	1000
1	1000
2	1000
3	1000
4	1000
5	1000
6	1000
7	1000
8	1000
9	1000

Count

Label

2

3

4

[

Schritt 2: Daten verarbeiten

Trainings- & Validierungsdatensätze

% Trainingsdaten und Testdaten
numTrainFiles = 750;

[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,"randomize");

_

2

3

4

FACHHOCHSCHULE WIENER NEUSTADT

Austrian Network for Higher Education

Was für ein Modell wird eingesetzt?

)

imageinput imageInputLayer CNN! conv convolution2dL... imageInputLayer batchnorm batchNormaliza... convolution2dLayer imageinput Name InputSize 28,28,1 Name conv SplitComplexInputs FilterSize 3,3 relu Normalization zerocenter reluLayer NumFilters 8 auto NormalizationDimension 1,1 Stride DilationFactor 1,1 fc fullyConnected. Padding same 0 PaddingValue softmax softmaxLayer classoutput classificationLa...

1

)

3

4

FACHHOCHSCHULE WIENER NEUSTADT Austrian Network for Higher Education

CNN - Filter

CNN - MLP

FACHHOCHSCHULE WIENER NEUSTADT Austrian Network for Higher Education

Künstliches Neuron

Ausgang $\hat{y} = f\left(\sum_{k=1}^{n} x_k \cdot w_k + b\right)$

Nicht-lineare Funktion

$$\hat{y} = f(X^T W + b)$$

4

5

Eingänge Gewichte

Summe

Aktivierungsfunktion

Ausgang

FACHHOCHSCHULE WIENER NEUSTADT Austrian Network for Higher Education

Bilder vom Workspace importieren

Trainingszeit (2)

CNN - Trainingsprozess

Schritt 4: Modell evaluieren

Kann das Modell richtig erkennen?

Kann das Modell richtig erkennen?

```
%% Modell testen
[YPred, probs] = classify(trainedNetwork_1, imdsValidation);
figure
tiledlayout("flow");
perm = randperm(2500, 20);
for i = 1:20
 nexttile
 imshow(imdsValidation.Files{perm(i)});
 label = YPred;
 M = max(probs, [], 2);
 title(string(label(perm(i))) + ", " + num2str(100*M(perm(i)),3) + "%");
end
```

Schritt 5: Modell anwenden

FACHHOCHSCHULE WIENER NEUSTADT Austrian Network for Higher Education

Meine Ziffer 👴

- Paint öffnen
- Bildgröße auf 28x28 ändern
- Hintergrund auf schwarz ändern
- Eigene Ziffer mit weiß zeichnen
- Abspeichern

1

2

3

4

Schritt 5: Modell anwenden


```
Meine Ziffer 锅
%% Meine Handschrift
I = imread("vier.png");
%I = imresize(I, [28 28 1]);
I = rgb2gray(I);
[YPred, probs] =
classify(trainedNetwork_1,I);
imshow(I)
label = YPred;
title(string(label) + ", " +
num2str(100*max(probs),3) + "%");
```

1

2

2

Λ

Conclusio

FACHHOCHSCHULE WIENER NEUSTADT Austrian Network for Higher Education

Eine kleine Zusammenfassung vom Workshop...

