

Questions to answer and ponder:

Consider the odds of an organism obtaining the 3 new mutations necessary for the appearance of a new trait.

If you were to predict, which would be faster (in terms of the number of generations required) in achieve this goal, a sexual or an asexual organism. Generate a drawing that illustrates your thinking.

What happens if there are 4 or 23 distinct chromosomes for 4 chromosomes: how many gametes how many (genetically) different zygotes (new organism	
Now consider mutation rate Article OPEN Differences between germline and somatic mutation rates in humans and mice Brandon Milholland, Xiao Dong, Lei Zhang, Xiaoxiao Hao, Youzin Suh & Jan Vijg Noture Communications 8, Article number: 1518 3 (2017) doi:10.1038/normns15183 (2017) doi:10.1038/normns15183 (2017) Ageing Genomics Mutation Ageing Genomics Mutation in human: germline mutation rate (males) ~3 x 10-11 per bp Somatic mutation rate ~3 x 10-9 per bp haploid human genome ~3 x 109 bps both mutation rates are higher in mouse	
Genetics Fathers pass on four times as many new genetic mutations as mothers – study	
The figures mean that a child born to 30-year-old parents would, on average, inherit 11 new mutations from the mother, but 45 from the father. why, exactly?	

calculate average number of crossing over events (50 Mbps $\,=\,$ probability on crossing over ~ 1

is crossing over deterministic>

Chromosome No.	Relative length ^{a)} (%)	Chromosome length (µm)	Typeb)
1	20.30±0.16	8.07±0.05	m
2	11.19±0.08	4.45±0.06	m
3	7.47±0.03	2.97±0.05	sm
4	7.47±0.01	2.97±0.02	st
5	6.39±0.11	2.54±0.10	sm
6	6.19±0.05	2.46±0.08	st
7	5.11±0.23	2.03±0.05	sm
8	5.10±0.09	2.09±0.04	sm
9	5.01±0.08	1.99±0.01	sm
10	4.58±0.03	1.82±0.04	sm
11	4.15±0.09	1.65±0.05	sm
12	3.72±0.04	1.48±0.03	st
13	3.62±0.02	1.44±0.01	sm
14	3.30±0.10	1.31±0.06	sm
15	3.19±0.01	1.27±0.05	sm
16	3.19±0.01	1.27±0.03	sm
Total		39.81±0.73	

cross over to generate new allele (rarity) - why? A allele

Questions to answer: 209. You are working with an organism with 5 autosomes and 1 sex chromosome. Considering only the effects of independent assortment during meiosis, how many different types of gametes could be generated? A drawing of the process could help. 210. Indicate (in a drawing and associated explanation) how a deleterious mutation within a gene could be generated by or eliminated from a gene. 211. How would genetic diversity be altered if meiotic recombination occurred during meiosis II, rather than during meiosis I?	
Questions to ponder -Under what conditions might you expect the evolution of sexual reproduction to be selected against? -Why are parents and their siblings not necessarily good donors for organ transplantation?	