FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Exercicis resolts de Fonaments de les Matemàtiques (Primer curs del Grau de Matemàtiques)

Àlex Batlle Casellas

${\rm \acute{I}ndex}$

1	Formalisme matemàtic: enunciats i demostracions.	2
2	Conjunts i aplicacions.	3
3	Relacions, operacions i estructures.	5
4	Conjunts de nombres. Numerabilitat.	6
5	El cos dels nombres complexos.	7
6	Aritmètica	8
7	Polinomis	a

1 Formalisme matemàtic: enunciats i demostracions.

2 Conjunts i aplicacions.

21. Siguin $A_1, A_2, B_1, B_2 \neq \emptyset$. Demostreu:

21.3.
$$(A_1 \cup A_2) \times (B_1 \cup B_2) = (A_1 \times B_1) \cup (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2)$$
.
Sigui $y \in (A_1 \cup A_2) \times (B_1 \cup B_2)$. Aleshores, $\exists y_1 \in A_1 \cup A_2, \ y_2 \in B_1 \cup B_2 : \ y = (y_1, y_2)$.
 $\iff (y_1 \in A_1 \vee y_1 \in A_2) \wedge (y_2 \in B_1 \vee y_2 \in B_2) \iff (y_1 \in A_1 \wedge y_2 \in B_1)$
 $\vee (y_1 \in A_2 \wedge y_2 \in B_1) \wedge (y_1 \in A_1 \wedge y_2 \in B_2) \vee (y_1 \in A_2 \wedge y_2 \in B_2)$
 $\iff y \in (A_1 \times B_1) \cup (A_2 \times B_2) \cup (A_1 \times B_2) \cup (A_2 \times B_1)$.

- 30. Considerem una aplicació $f: A \mapsto B$ i subconjunts $A', A'' \subseteq A$ i $B', B'' \subseteq B$.
 - 30.1. Demostreu que si $A' \subseteq A''$, aleshores $f(A') \subseteq f(A'')$.

Sigui
$$A' \subseteq A''$$
. Aleshores $f(A') = \{y \in B : (\exists x \in A' : f(x) = y)\}$
 $\subseteq \{y \in B : (\exists x \in A'' : f(x) = y)\} = f(A'') \implies f(A') \subseteq f(A'').\square$

30.3. Demostreu que si $B' \subseteq B''$, aleshores $f^{-1}(B') \subseteq f^{-1}(B'')$.

Sigui
$$B' \subseteq B''$$
. Aleshores, $f^{-1}(B') = \{x \in A : (\exists y \in B' : f^{-1}(\{y\}) = \{x\})\} \subseteq \{x \in A : (\exists y \in B'' : f^{-1}(\{y\}) = \{x\})\} = f^{-1}(B'') \implies f^{-1}(B') \subseteq f^{-1}(B'').\square$

30.2. Demostreu que $f(A') \subseteq f(A'')$ implica que $A' \subseteq A''$, per a tot $A', A'' \subseteq A$, si, i només si, f és injectiva.

Si fem el conjunt antiimatge dels dos costats de la hipòtesi $(f(A') \subseteq f(A''))$:

$$f^{-1}(f(A')) \subseteq f^{-1}(f(A'')) \implies (f^{-1} \circ f)(A') \subseteq (f^{-1} \circ f)(A'') \implies$$
$$Id_A(A') \subseteq Id_A(A'') \implies A' \subseteq A''.$$

Això només passarà quan f és injectiva, doncs en tal cas A' i A'' no podrien ser disjunts.

Si f no fos injectiva, en canvi, A' i A'' podrien ser disjunts però donar el mateix conjunt imatge sense inconvenient.

- 30.4. Demostreu que $f^{-1}(B') \subseteq f^{-1}(B'')$ implica que $B' \subseteq B''$, per a tot $B', B'' \subseteq B$, si, i només si, f és exhaustiva.
- 31. Considerem una aplicació $f: A \mapsto B$. Demostreu:
 - 31.1. Si $A' \subseteq A$, aleshores $A' \subseteq f^{-1}(f(A'))$.

$$f(A') = \{ y \in B : (\exists x \in A' : f(x) = y) \}.$$
$$f^{-1}(f(A')) = \{ x \in A : f(x) \in f(A') \}.$$

Tenint en compte que podrien existir elements d'A que corresponguessin amb l'aplicació a elements d'f(A'), el conjunt antiimatge $f^{-1}(f(A'))$ és un superconjunt d'A'.

$$\implies A' \subseteq f^{-1}(f(A')).\square$$

31.2. f és injectiva si i només si $A' = f^{-1}(f(A')) \ \forall A' \subseteq A$.

Agafant la igualtat que volem demostrar, si apliquem f als dos costats, ens ha de quedar una identitat per poder afirmar que f és injectiva. Com podem efectivament comprovar,

$$f(A') = f(f^{-1}(f(A'))) = Id_B(f(A')) = f(A')$$

i A' = A', per tant, queda demostrat l'enunciat.

3 Relacions, operacions i estructures.

4 Conjunts de nombres. Numerabilitat.

5 El cos dels nombres complexos.

6 Aritmètica

7 Polinomis.