

Competitive Programming

From Problem 2 Solution in O(1)

Combinatorial Game Theory Disjunctive and Selective Compound Games

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Recall Nim game properties

- Impartial game
 - Same set of moves at any time allowed for both players
- 2 players play sequentially
- Each pile is independent sub-game
- Perfect information
- Finite game, No draws, No randomization
- Winner = last move
 - Loser = can't make a move
- Such game => Sprague—Grundy theorem

Recall: Knights on chessboard

- Given N x N chessboard with K knights on it
 - Knight Move is to 4 positions only
 - Player turn: Pick a knight and move it
 - Allowed: Multiple knights in 1 position
 - Loser: Player who can't make a move to knight
- Equivalent game to Nim
 - Knight move is independent nim pile
 - Compute pile size of knights using grundy
 - xor the knights grundy
 - $\mathbf{xor} == 0 \Rightarrow \mathbf{Loser}$

Recall: Knights on chessboard

```
int grundy2[120][120];
                                           \mathbf{0}
                                                0
                                                              0
bool valid(int v) {
                                           0
                                                0
                                                              0
  return v >= 0 && v < 8;
                                                         2
int calcGrundyChess(int r, int c) {
  int &ret = grundy2[r][c];
                                                     3
                                           0
                                                0
                                                         4
                                                              0
  if (ret != -1)
                                           0
                                                              0
                                                0
    return ret;
  unordered set<int> sub nimbers;
  const int DIR = 4:
  int dr[DIR] = \{ 1, -1, -2, -2 \}:
  int dc[DIR] = \{ -2, -2, 1, -1 \};
  for (int d = 0; d < 4; ++d) {
    if (valid(r + dr[d]) && valid(c + dc[d]))
      sub nimbers.insert(calcGrundyChess(r + dr[d], c + dc[d]));
  return ret = calcMex(sub nimbers);
```

0

Compound games

- Conway proposed 12 compound games
 - 3 movements styles
 - **Disjunctive**: Move in **one** sub-game
 - Selective: Move in at least one sub-game
 - Conjunctive: Move in all sub-games
 - 2 ending rules: long rule or short rule
 - Long rule: Game ends when all sub-games are done
 - Short term: Game ends **once a sub-game** is done
 - Short term: also called WTIA (winner takes it all)
 - 2 plays: normal or misere
 - So total: $3 \times 2 \times 2 = 6 \times 2 = 12$ games
 - We studied 2 out of 12: See **blue words** above

Disjunctive compound game

- What we studied so far (2 games)
 - We studied Normal Nim and its Misere using long rule
 - Keep playing till last pile is empty (long rule)
 - It is the most popular versus the other 10 games
 - Nim was based on xor of piles.
 - Nim misere was almost as Nim except bottom cases
 - We used Grundy function for complex games
 - Grundy is not defined for Nim misere
- Diminished disjunctive compound
 - Same game, buts uses the short rule
 - Once a sub-game (pile, knight) is done, game is over

Other compound game

- Remaining 5 x 2 games
 - They don't offer real new theory
 - They are either
 - Direct make use of grundy
 - Little modification to grundy
 - Compute # steps in minimax or maximin styles
 - Please after presenting every one of the 10 games
 - Consider it a challenge to solve by yourself
 - Think about the terminal cases
 - Think about the possible winning strategy

- Let's modify Knights on chessboard game
 - Old game: Loser can't move any knight
 - New game: Loser have one knight in its final position
 - E.g. the winner moves a knight to its final position
 - E.g. In Nim, 1 pile is now empty (short rule)
 - **Your turn**: Solve it under **normal** and **misere** plays
 - Hints
 - Think about terminal losing positions
 - Think about positions before the losing positions
 - Modify grundy to consider above 2 notes
 - Misere will be very close to normal play in this game

Solution

- Identify positions where a knight in a terminal position
 - Call these super losing positions (SL) or TP
- Identify all knight positions that are 1 step from a SL
 - Then these are Super winning position. Call them SW
- Call any other position a normal position
 - These positions follow normal nim strategy
 - Compute grundy for these positions
 - Mex on all sub-moves except SL and SW
- This solution style is close to Misere Nim
 - Normal nim unless you are close to the bottom cases

Let W-number(x) = w(x): {SL | SW | Grundy*(X)}

SL	SL	SW	SW	0	0	1	1
SL	SL	SW	SW	0	0	2	1
SW	SW	SW	SW	1	2	3	2
SW	SW	SW	1	2	1	2	1
0	0	1	2	0	0	1	2
0	0	2	1	0	0	2	1
1	2	3	2	1	2	1	2
1	1	2	1	2	1	2	0

w-numbers for 8×8 All the King's horses modification

Src: https://www.cs.ox.ac.uk/files/2735/Composite_games.pu

Some logic

- If we are in SL or SW, it is a special handling
- If we are in a normal position and play normal nim
 - Next move may be to normal position
 - Or to a SW position (it can't be to SL or we r in SW)
- In optimal setting, you won't move to SW if can
 - As Opponent will just make 1 move to win
 - So always move to normal nim position if possible
- In other words, if all availables moves are to SW => lose
- Given that optimal strategy is to keep playing like a nim, computing grundies is ok (unless SL, SW positions)
 - Skip SW from the grundy computations

- X is Losing position
 - $w(x) == SL \ \mathbf{OR} \ W(x) = 0$
 - Recall: $W(x) = Grundy*(x) = 0 \Rightarrow losing in normal nim$
- X is Winning position
 - w(x) != SL AND (w(x) == SW OR w(x) > 0)
- Combining sub-games: g1, g2...gn
 - If any sub-game is SL => lose
 - Otherwise, If any sub-game is SW => win
 - Otherwise, xor the grundies: $g1 \wedge g2 \dots \wedge gn != 0 \Rightarrow win$
 - This helps **computationally**: Once a **sub-game is SL** you don't need to compute others

Grundies Vs W-numbers

0	0	1	1	0	0	1	L
0	0	2	1	0	0	1	1
1	2	2	2	3	2	2	2
1	1	2	1	4	3	2	3
0	0	3	4	0	0	1	1
0	0	2/	3	0	0	2	1
1	1	7	2	1	2	2	2
1	1	2	3	1	1	2	0

SL	SL	SW	SW	0	0	1	1
SL	SL	SW	SW	0	0	2	1
SW	SW	SW	SW	1	2	3	2
SW	SW	SW	1	2	1	2	1
0	0	1	2	0	0	1	2
0	0	2	1	0	0	2	1
1	2	3	2	1	2	1	2
1	1	2	1	2	1	2	0

Recall: w(x): {SL | SW | grundy*(X)} grundy* = Don't consider SWs

Different values If $w(x) = 0 \Rightarrow grundy(x) = 0$ if grundy(x) = $0 \Rightarrow w(x) = 0$ is NOT true

3 = mex(0, 1, 2)

1 = mex(0, SW) = mex(1)

```
const int SL = 1000000000:
const int SW = SL + 1:
int calcWNumbersChess(int r, int c) {
  int &ret = wNumbers[r][c];
  if (ret != -1)
    return ret:
  unordered set<int> sub nimbers;
  int total moves = \theta:
  for (int d = \theta; d < 4; ++d) {
    int nr = r + dr[d], nc = c + dc[d];
    if (valid(nr) && valid(nc)) {
      int val = calcWNumbersChess(nr, nc);
      if (val == SL)
        return ret = SW; // optimization
      if (val != SW)
        sub nimbers.insert(val);
      ++total moves;
  if (total moves == 0)
    return ret = SL:
  return ret = calcMex(sub nimbers);
```

```
int nimXor = θ, knights;
bool anySuperLose = false, anySuperWin = false;
cin >> kniahts:
for (int d = \theta; d < knights; ++d) {
  int x, y;
  cin >> x >> v;
  int val = calcWNumbersChess(x, v);
 if (val == SL) {
    anvSuperLose = true;
    break; // optmization
  } else if (val == SW)
    anySuperWin = true;
 else
    nimXor ^= val:
if (anvSuperLose)
  cout << "Second win*":
else if (anySuperWin)
  cout << "First win*":
else if (nimXor != θ)
  cout << "First win":
else
  cout << "Second win";
```

Your turn

- Given N piles, and you can remove only {1, 3, 4} stones from a single pile
- Once any pile is empty, game ends (WTIA)
- Write code to compute w-numbers and compare it

Src: https://www.cs.ox.ac.uk/files/2735/Composite_games.pd

Diminished Disjunctive - Misere

Under Misere

- Recall, disjunctive game under Misere has no grundies
- The terminal positions now are winning positions
 - Let's call them Super Winning SW
- Again, from a normal position we have 2 choices
 - To normal position
 - To winning position (don't move there unless forced)
- So we again play normal nim, except bottom cases
 - So again, compute grundies, but ignore SW
 - Values propagate normally from bottom to top
- Given set of games:
 - If any position is SW (win), otherwise xor != 0 (win)

Diminished Disjunctive - Misere

Try to get intuition why grundy misere failed for Disjunctive Compound, but worked for Diminished Disjunctive Compound case

Diminished Disjunctive - Misere

```
int calcWNumbersChessMisere(int r, int c) {
  int &ret = wNumbers[r][c];
  if (ret != -1)
    return ret:
  unordered set<int> sub nimbers;
  int total moves = \theta:
  for (int d = 0; d < 4; ++d) {
    int nr = r + dr[d], nc = c + dc[d];
    if (valid(nr) && valid(nc)) {
      int val = calcWNumbersChessMisere(nr, nc);
      if (val != SW)
        sub nimbers.insert(val);
      ++total moves;
  if (total moves == 0)
    return ret = SW:
  return ret = calcMex(sub nimbers);
```

```
int nimXor = θ, knights;
bool anySuperWin = false;
cin >> knights;
for (int d = \theta; d < knights; ++d) {
  int x, y;
 cin >> x >> y;
  int val = calcWNumbersChessMisere(x, y);
 if (val == SW)
    anySuperWin = true;
 else
    nimXor ^= val:
if (anySuperWin)
  cout << "First win*";
else if (nimXor != θ)
 cout << "First win";
else
  cout << "Second win";
```

Compound games

- Selective compound (long short rules)
 - Move at least 1 knight
 - Move at least 1 knight but NOT all
 - Make use of grundy
- Conjunctive compound (next session)
 - Move all knights (short rule)
 - Minimax style game to count the game # steps
 - E.g. introduce **Remoteness function**
- Continued conjunctive compound
 - Move in all available knights (long rule)
 - Use Suspense function (count the game # steps)

Selective compound

- Game (long rule)
 - Move at least 1 knight
 - Assume we have piles (2, 3, 4): How to win?
 - Think :)

Selective compound

- Game (long rule)
 - Move at least 1 knight
 - Assume we have piles (2, 3, 4): How to win?
 - Simply take from all
 - What about input (0, 0, 0)? We directly lose
 - Overall, compute sub-games grundies
 - If ALL grundies = $0 \Rightarrow$ Losing position
 - Otherwise, just go and win in every one

Selective compound - Misere

Assume piles

- (0, 0, 0) =>first win (base case)
- \bullet (0, 0, 1) => (0, 0, 0) => Lose (1 non-losing component)
- \bullet (0, 1, 1) => (0, 0, 1) => (0, 0, 0) => Win
- $(0, 3, 4) \Rightarrow (0, 0, 1) \Rightarrow (0, 0, 0) \Rightarrow Win$
- So compute grundies
 - All losing => first win
 - Only one losing => first lose
 - Other cases => first win

Shortened Selective compound

- Selective compound (short rule)
 - Solution is same as previous
 - If all grundies = $0 \Rightarrow lose$
 - Even Misere case: Same solution exactly
 - Hene 3 scenarios things have same rule (grundies = 0)
 - Please verify

Selective compound - Variant

- Game (long rule)
 - Move at least 1 knight but NOT all
 - Hints:
 - Playing around nim piles game might help in thinking
 - What about input piles (2, 3, 4)?
 - What about input piles (2, 2, 2)?
 - Think :)

Selective compound - Variant

- Game (long rule)
 - Move at least 1 knight but NOT all
 - What about input piles (2, 3, 4)?
 - Convert to equal piles (e.g. find min val) \Rightarrow (2, 2, 2)
 - Second can change to non equal \Rightarrow e.g. (1, 0, 2)
 - Convert to equal \Rightarrow (0, 0, 0)
 - What about input (3, 3, 3)?
 - From above, if all piles = $val \Rightarrow losing state$
 - So winning strategy
 - Keep converting to equal length piles. Last (0,0,0)
 - Overall, compute sub-games grundies
 - If all grundies are equal \Rightarrow Losing position

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ