

## Fondamenti di Chimica industriale

22 Febbraio 2013

## Esercizio N. 1

Produzione di ossido di etilene.

$$2C_2H_4(g) + O_2(g) \rightarrow 2C_2H_4O(g)$$

Una reazione secondaria è la combustione dell'etilene a diossido di carbonio.



- . Alimentazione fresca: C<sub>2</sub>H<sub>4</sub> e O<sub>2</sub> equimolari.
- . Reattore: Conversione ( $C_2H_4$ ) = 20%; resa (moli  $C_2H_4O$  formato/moli  $C_2H_4$  reagito) = 0,90.
- . Sezione di separazione:
  - a)  $C_2H_4$ ;
  - b)  $C_2H_4O$ ;
  - c) CO<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O, e 5% C<sub>2</sub>H<sub>4</sub> uscente dal reattore.
- . Base: 100 moli di alimentazione fresca.
- Si completi lo schema di processo.
- Si etichetti lo schema e si proceda al calcolo dei gradi di libertà con il metodo delle tie streams.
- Si proceda alla quantificazione della portata e della composizione (frazioni molari) di tutte le correnti di processo e della resa globale di processo rispetto a C<sub>2</sub>H<sub>4</sub>.
- Quali valutazioni supportano la presenza di ossigeno nella corrente *c*)?

## Esercizio N. 2

Calcolare la conversione di etanolo.



|                                  | $C_p$ (kJ/mol·K) | $\Delta H_{\rm f}^0$ (kJ/mol) |
|----------------------------------|------------------|-------------------------------|
| C <sub>2</sub> H <sub>5</sub> OH | 0,10             | - 235,3                       |
| CH <sub>3</sub> CHO              | 0,08             | - 166,2                       |
| $H_2$                            | 0,03             | 0                             |