The Metropolis algorithm

Stat 340: Bayesian Statistics

Big idea: Markov chain simulation

Situation: Suppose that sampling from $\pi_n(\theta)$ is hard, but that we can (somehow) generate a Markov chain $\{\theta(t), t \in T\}$ with stationary distribution $\pi_n(\theta)$.

- We know the the stationary distribution
- We seek transitions $p(\theta^{(t+1)}|\theta^{(t)})$ that will take us to the stationary distribution

Overview

- Start from some initial guess $\theta^{(0)}$ and let the chain run for n steps (\$n\$ large), so that it reaches its stationary distribution
- After convergence, all additional steps in the chain are draws from the stationary distribution $\pi_n(\theta)$
- MCMC methods are all based on the this idea; difference is just in how the transitions in the MC are created

Example: Launch failures

- FAA and USAF were interested in estimating the failure probability for new rockets launched by companies with limited experience
- Goal is to assess prelaunch risk.
- Failures have significant on
 - public safety
 - aerospace manufacturer's ability to develop and field new rocket systems.
- Johnson et al. (2005) data from 1980-2002
 - 11 launches: 3 successes, 8 failures

Model

Y=# successful launches

Likelihood: Assuming trials are iid $Bernoulli(\theta)$

$$Y \sim \mathrm{Binomial}(n=11, \theta)$$

Prior: Elicitation leads to uniform on (0.1, 0.9)

Posterior:

$$p(\theta|y) \propto egin{cases} heta^3 (1- heta)^8 & ext{if } 0.1 < heta < 0.9 \ 0 & ext{otherwise.} \end{cases}$$

Is the posterior a density we know?

Metropolis algorithm

- 1. Select a value $heta^{(0)}$ where $\pi_n(heta^{(0)})>0$
- 2. Given the current draw $heta^{(i)}$, propose a *candidate draw* $heta^p \sim \mathrm{Unif}(heta^{(i)} + C, heta^{(i)} + C).$
- 3. Evaluate the (unnormalized) posterior at the current value: $\pi_n(\theta^{(i)})$.
- 4. Evaluate the (unnormalized) posterior at the candidate: $\pi_n(\theta^c)$.
- 5. Accept candidate with probability $R = \min \big\{ \pi_n(\theta^c) \big/ \pi_n(\theta^{(i)}), 1 \big\}$.
 - \circ Draw $U \sim \mathrm{Unif}(0,1)$, if U < R set $heta^{(i+1)} = heta^p$
 - Otherwise, set $\theta^{(i+1)} = \theta^{(i)}$.

Initial value: 0.5

Propose 0.4, acceptance probability = 1

Update current draw

Propose 0.45, acceptance probability 0.71

U = 0.8, retain current draw

Propose 0.58, acceptance probability 0.18

Metropolis function (Albert and Hu, p. 326)

```
metropolis <- function(logpost, current, C, iter, ...){</pre>
  S <- rep(0, iter) # container for draws
  n_accept <- 0  # acceptance counter
  # Iterate through candidate draws
  for(j in 1:iter){
  candidate <- runif(1, min = current - C, max = current + C)</pre>
  prob <- exp(logpost(candidate, ...) -</pre>
              logpost(current, ...))
  if(is.nan(prob)) prob <- 0 # deal with draws outside parameter space</pre>
  accept <- ifelse(runif(1) < prob, "yes", "no")</pre>
  current <- ifelse(accept == "yes", candidate, current)</pre>
  S[i] <- current
  n_accept <- n_accept + (accept == "yes")</pre>
  list(S=S, accept_rate=n_accept / iter) # Return draws and acceptance rate
```

Using metropolis()

Writing the log-posterior function

```
# Log posterior function
log_posterior <- function(.theta, samp) {
  dbinom(samp$y, size = samp$n, prob = .theta, log = TRUE) + dunif(.theta, 0.1, 0.9)
}</pre>
```

Next, initialize current, C, iter, and pass in the necessary data as the last argument to metropolis:

Did the sampler work?

Did the sampler work?

Now suppose we observed 300 successes and 800 failures and ran our Metropolis sampler (current = 0.15, C = 0.5)

How does the ACF plot look?

If the sampler worked...

Conduct inference just like when we had draws from the grid approximate posterior

Credible intervals

```
quantile(mcmc_draws$S,
          probs = c(0.05, 0.95))
```

```
## 5% 95%
## 0.1441135 0.5304843
```

Posterior probabilities

```
mean(mcmc_draws$S > 0.5)
## [1] 0.088
```

Example: Fluid breakdown

- Engineers needed to understand how long machines can run before replacing oil in a factory
- Collected viscosity breakdown times (in thousands of hours) for 50 samples

Model

Let T_i denote the breakdown time (thousands of hours) and $Y_i = \log(T_i)$

Likelihood:

$$T_i \stackrel{ ext{iid}}{\sim} \operatorname{LogNormal}(\mu, \sigma^2 = .4) \Longrightarrow Y_i \stackrel{ ext{iid}}{\sim} \operatorname{Normal}(\mu, \sigma^2 = .4)$$

Noninformative prior: $\pi(\mu) \propto 1$

Posterior:

$$p(\mu|oldsymbol{y}) \propto \exp\left[\sum_{i=1}^n -rac{1}{2(.4)}(y_i-\mu)^2
ight]$$

Your turn

- 1. Write a log_posterior function. Notice that you can use the dnorm function if you log the data.
- 2. Run the metropolis() function to obtain draws from the (approximate) posterior distribution.
- 3. Check the trace and ACF plots to see if your chain converged and if it's working efficiently.
- 4. Repeat 2-3 until you're satisfied.
- 5. Construct and interpret a 95% credible interval for the viscosity breakdown times.