Matemáticas discretas II

Septiembre 2022

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Recorridos en árboles

Expresiones aritméticas

Las expresiones matemáticas pueden ser representadas usando árboles:

- En preorden: (* (* (+ x y) (- x 5)) (/ (* x 6) 10))
- En inorden: ((x + y) * (x 5)) * ((x * 6) / 10))
- En postorden: (((x y +) (x 5 -) *) ((x 6 *) 10 /) *)

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Definición

- Se modelan los posibles movimientos de un jugador en un juego
- Sirve para analizar el efecto de las jugadas
- Considera el cambio de estado de un juego al realizar la jugadas, esta información debe almacenarse en la representación del nodo
- Pueden considerar 1 o más jugadores
- Es útil para generar jugadores inteligentes contrincantes de jugadores humanos.

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Definición

Es un problema que está asociado a como obtener un árbol expansión para un grafo. Este árbol contiene todos los nodos del grafo y algunas de sus aristas para asegurar conectividad Un árbol

de expansión de un **grafo conexo** G=(V,E) es un árbol que tiene el conjunto de nodos N y es subgrafo de G. Esto es, un árbol de expansión es conexo, a cíclico y tiene a todo N y a parte de A como un conjunto de aristas.

Obtención del árbol

Hay muchas formas de obtener un árbol de expansión. Al empezar a borrar aristas para borrar los ciclos, por ejemplo:

Obtención del árbol

Al eliminar $\{(v1, v5), (v3, v6)(v4, v6)\}$

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Definición

- I Escoja la arista de menor peso y adicionela al árbol recubridor
- Seleccione la mejor arista que sea incidente al árbol recubridor y que no cree un circuito. Adicionela al árbol
- Repita el proceso hasta cuando el árbol tenga n-1 aristas (n es el número de vértices)

Aplicar el algoritmo de Prim

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Definición

- 1 Escoja la arista de menor peso y adiciónela al árbol recubridor
- Seleccione la arista con menor peso y adiciónela al árbol recubridor
- 3 Repita el proceso hasta cuando el árbol tenga n-1 aristas (n es el número de vértices)

Comparación Kruskal y Prim

Árbol recubridor mínimo obtenido con el algoritmo de Prim

Árbol recubridor mínimo obtenido con el algoritmo de Kruskal

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Definición

- Los algoritmos de búsqueda permiten encontrar nodos en un árbol.
- Se utilizan para resolver problemas de búsqueda en problemas basados en árboles y grafos
- Son especialmente útiles para el desarrollo de jugadores inteligentes en juegos

Estrategias de búsqueda

Introducción

Existen dos formas de recorrer un árbol. Búsqueda por amplitud (BFS) y búsqueda por profundidad (DFS). BFS se puede utilizar para hallar la distancia más corta entre algún nodo inicial y los nodos restantes de un grafo. La distancia más corta es el mínimo número de aristas que hay que recorrer entre un par vértices.

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Introducción

La idea de esta búsqueda es iniciar un nodo concreto del grafo e ir examinando todos los nodos adyacentes a este, repitiendo este proceso hasta encontrar el nodo deseado. Para mejorar esta búsqueda se pueden marcar como visitados los nodos ya recorridos, para evitar tener que recorrerlos de nuevo.

Introducción

El enfoque general de BFS es:

- 1 Inicie en un nodo s
- Observe todos los hijos
- 3 Almacene los caminos encontrados desde nodo inicial s al resto de nodos
- Repita el proceso
- 5 Para programar esta búsqueda puede usar un cola

Tomemos como ejemplo el siguiente árbol:

Arrancamos en la raíz, agregamos a la lista y continuamos con los hijos.


```
//Primer iteración
cola = []
//Agregar raiz
cola = \lceil 1 \rceil
salida = [1]
//Continuar con los hijos
cola = [7 9]
salida = [1]
```



```
cola = [5 11 5]
salida = [1 7 9 2 6 9]
```

Contenido

- 1 Arboles de operaciones
- 2 Arbol de juego
- 3 Arboles de expansión
 - Definiciones
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- 4 Algoritmos de búsqueda
 - Definiciones
 - Búsqueda en amplitud
 - Búsqueda en profundidad

Búsqueda en profundidad

Introducción

Suponga que una persona se encuentra en un sistema de cuevas interconectadas y quiere encontrar la salida.

- Una estrategia es comenzar a explorar la cueva más a la izquierda, hasta encontrar una intersección.
- En esta seleccionamos la cueva más a la izquierda y a así sucesivamente hasta encontrar la salida.
- Si en un camino dado situado más a la izquierda no tiene éxito, ya que es un camino sin salida, se devuelve hasta la ultima intersección y toma el camino situado al lado de la ultima elección.
- Este proceso puede aplicarse a la derecha de forma análoga.

Búsqueda en profundidad

Introducción

La rutina asociada una búsqueda DFS es:

- Iniciar por la raiz
- 2 Recorrer los nodos priorizando el orden indicado
- 3 Una vez no se pueda recorrer más, recorrer los nodos faltantes
- 4 Para implementar este algoritmo se usa una pila

Ejemplo priorizando a la izquierda


```
//Primer iteración
pila = []
//Agregar raiz
pila = [1]
salida = [1]
//Continuar con los hijos
pila = [7 9]
salida = [1]
```

Ejemplo priorizando a la izquierda


```
pila = [2 6 9]
salida = [1 7]
```

Ejemplo priorizando a la izquierda


```
pila = [9]
salida = [1 7 2 6 5 11]

pila = [9]
salida = [1 7 2 6 5 11 9]

pila = [5]
salida = [1 7 2 6 5 11 9 9]
```

salida = [1 7 2 6 5 11 9 9 5]

pila = []

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011.

Chapter 11. Graphs.

Gracias

Próximo tema: Lenguajes y gramáticas