Анализ влияния кэша на операцию матричного умножения.

Задание

Задача: Реализовать последовательный алгоритм матричного умножения и оценить влияние кэша на время выполнения программы. На основе анализа влияния кэша построить графики, сотавить отчет.

Формат файла-матрицы: Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
char	T - d(int32_t) или l(int64_t)	Тип элементов
int32_t	N > 0	Число строк/столбцов матрицы
Массив чисел типа Т	N x N элементов	Массив элементов матирцы

Элементы матрицы хранятся построчно. Матрица квадратная.

Формат командной строки:

binary> <maтрица_a> <maтрица_b> <maтрица_c> <pежим> Режимы: 0 – ijk, 1 – ikj, 2 – kij, 3 – jik, 4 – jki, 5 – kji.

Пример запуска:

\$./run a b c 0

Требования к решению

Код должен компилироваться $gcc\ v7.2.0\ c\ onциями\ komпиляции\ -Wall\ -Werror\ -O0.$

Программа должна корректно отрабатывать при компиляции c опцией -fsanitize=address.

Решение должно содержать Makefile.

Makefile должен содержать target test.

При вызове make test должен запускаться скрипт ./test.sh.

Бинарник, передаваемый в ./text.sh должен быть скомпилирован с опцией -fsanitize=address.

Для оценки производительности полученного решения, опцию -fsanitize=address следует отключить.

Решение нужно прислать через Pull Request, все изменения должны быть внутри директории ./problem1.