ThermoFluidStream (TFS)

Developments at the HTWG Konstanz

Prof. Dr. Peter Stein Phillip Jordan (B.Eng.)

HTWG Konstanz

Background

Who are we an how do we use Modelica and ThermoFluidStream

- The HTWG Konstanz is a University of Applied Sciences in the very south of Germany
- We have a school of Mechanical Engineering where we offer Bachelor and Master degree courses
- Within the Bachelor's degree program, we offer courses of specialization, one of which is about energy systems and system simulations i.e.
 Modelica
- Subjects are ranging from simple models to complex systems like heat pumps, steam turbines and fuel cell systems
- We use the standard library as well as TFS and develop our own library, mainly for the purpose of the lectures

Typical cases

Fuel Cell System

 In 2019 we started to develop a fuel cell based motorbike and as a side product, we modelled this in Modelica

Now a part of the model is used in the lectures

Pipe models

TFS Extension on pipe flow models

- Purpose is to enable complex pipe systems
- Some models have directly been transferred from the Modelica standard library
- Other models have been developed by using loss correlations out of Idel'chick
- The models have been verified and partially validated

Transferred from Modelica.Fluid

Self developed, based on Idel'chick

Pipe models

Verification and validation

• Here shown: splitter

Validation against ANSYS CFX

Verification against Idel'chick

14.06.24

Hydro-Turbines

Pelton and Francis

- Hydro Turbines is a rather special subject, nevertheless with respect to energy storage cases and grid stability pretty interesting
- In literature there exists a work on generic 1-D description of hydro turbines
- Motivation of our work was to implement these 1-D descritpion into modelica
- Next step ist to validate the models against real cases in the field
- Further steps may be the development of models for Pump and Kaplan turbines

Hydro Turbines

Validation against literature

Conclusion

... and what happens next

- We decided to use TFS because of its robustness and its strength for thermodynamic energy systems
- Our own library extension of TFS was initially developed to support the lectures, but now we think it's worth to share models with the community
- We started to develop pipe models as we see here the largest most generic benefit
- Hydro-turbines is within our technical field and we intend to cooperate with industry for better validation
- The next intended step is to open an own fork in Github and develop our (TFS-) HTWG Extend, depending on incoming projects
- We are then happy about every user who tests the models and provides feedback for improvement

