3-10 等价关系与等价类

等价关系是很重要的关系,它是我们遇到最多的关系类型,例如,数值相等关系=、命题间的等价关系⇔、三角形相似∽和全等关系≌,.....

- 一、等价关系
- 1.定义:设R是集合A上的关系,若R是自反的、对称的和传递的,则称R是A上的等价关系。

若 a,b∈A,且aRb,则称a与b等价。

例:集合 A={1,2,3,4,5,6,7},R是A上的模3同余关系,即R= {<x,y>| x-y可被3整除}即 <x,y>∈R ⇔ x(mod 3) = y(mod 3) 例如:因 4(mod 3)=7(mod 3)所以 <4,7>∈R R={<1,1>,<1,4>,<1,7>,<2,2>,<2,5>,<3,3>,<3,6>,<4,1>,<4,4>,<4,7>,<5,2>,<5,5>,<6,3>,<6,6>,<7,1>,<7,4>,<7,7>}

> 从关系图可看出,R是 自反、对称、传递的关 系,所以R是等价关系

2. 等价关系的关系图

由若干个孤立的完全子图构成。

完全关系就是全域关系A×A,下面分别是当A中只有1、2、3个元素时的完全关系的关系图。

A={1,2,3}下面是定义在A上的关系,根据等价关系有向图的特点,判断哪些是等价关系:

 R_3 、 R_4 、 R_8 是等价关系

思考题: A={1,2,3},可构造多少个A中不同的等价关系?

可以根据等价关系有向图的特点来考虑。

如果等价关系R中有

- a)三个独立子图的情形,则(1)个等价关系。
- b)二个独立子图的情形,则(3)个等价关系。
- c)一个独立子图的情形,则(1)个等价关系。
 - 一共有(5)个中不同的等价关系。

二、等价类

1. 定义: R是A上的等价关系, $a \in A$,由a确定的集合 $[a]_R$:

$$[a]_R = \{x \mid x \in A \land \langle a, x \rangle \in R\}$$

称集合[a]_R为由a形成的R等价类。简称a等价类。

$$x \in [a]_R \Leftrightarrow \langle a, x \rangle \in R$$

显然,

$$[a]_R \subseteq A$$

例: A={1,2,3,4,5,6,7}, R是A上的模3同余关系,

 $[1]_R=\{1,4,7\}=[4]_R=[7]_R$ ----余数为1的等价类

 $[2]_{R} = \{2,5\} = [5]_{R}$

----余数为2的等价类

 $[3]_R = \{3,6\} = [6]_R$

----余数为0的等价类

思考题: 此例为什么只有三个等价类?

2. 由等价关系图求等价类: R关系图中每个独立的完全子图中的所有的结点,构成一个等价类。

不同等价类的个数 = 孤立完全子图的个数

练习:上述三个等价关系各有几个等价类?说出对应的各个等价类。

3.等价类性质

R是集合A上的等价关系,任意 a,b,c∈A

性质(1) 同一个等价类中的元素,彼此有等价关系R。

即对任意x,y∈[a]_R,必有<x,y>∈R

证明: 任取x,y∈[a]_R, 由等价类定义得, <a,x>∈R, <a,y>∈R, 由R对称得<x,a>∈R, 又由R传递得<x,y>∈R。

性质(1)说明: 每个等价类的关系图是一个完全图。

性质(2) [a]_R∩[b]_R=Φ,当且仅当 <a,b>∉R。

证明:充分性:设<a,b> \notin R,假设[a]_R \cap [b]_R \neq Φ,则存在 x∈ [a]_R \cap [b]_R,使得 x∈[a]_R \wedge x∈[b]_R,于是有<a,x>∈R ,<b,x>∈R,由R对称得 <x,b>∈R,又由R传递得<a,b>∈R,这与<a,b> \notin R 矛盾。于是有[a]_R \cap [b]_R=Φ

必要性: 若 $[a]_R \cap [b]_R = \Phi$,假设<a,b> $\in R$,由等价类定义得 b $\in [a]_R$,又因为bRb,所以b $\in [b]_R$,于是b $\in [a]_R \cap [b]_R$,与 $[a]_R \cap [b]_R = \Phi$ 矛盾,于是有<a,b> $\notin R$ 。

性质(2)说明:不同的等价类之间是孤立的,

没有交集的。

性质(3) [a]_R = [b]_R 当且仅当 <a,b>∈R。

证明: 充分性 若<a,b>∈R,

则对任何 $x \in [a]_R$,有<a,x> $\in R$,由R对称有

<b,a>∈R,再由R传递有 <b,x>∈R,于是

x∈[b]_R,所以[a]_R⊆[b]_R。

类似可证 [b]_R⊆ [a]_R。因此 [a]_R=[b]_R。

必要性

如果 [a]_R = [b]_R,由于R自反,所以<a,a>∈R,

即 a∈[a]_R,于是 a∈[b]_R,

即有<b,a>∈R,由R对称有 <a,b>∈R。

性质(3)说明: 若 a,b 有 R关系,则 a等价类与 b等价类相等。

从上述等价关系的性质可看出: 任何两个等价类要么相等,要么不相交;

思考:

两个等价类在什么情况下相等? 在什么情况下不相交?

性质(4) A中任何元素都必属于且仅属于一个等价类。证明:对A中任何元素a,由于R自反,所以 $<a,a>\in R$,于是 $a\in [a]_R$ 。 如果还有 $a\in [b]_R$,则有 $<b,a>\in R$,由R对称知 $<a,b>\in R$,再由性质(3)有 $[a]_R = [b]_R$ 。

性质(5) R的所有不同等价类构成的集合是A的一个划分。

三. 商集

定义: R是A上的等价关系,由R的所有等价类构成的集合称 之为A关于R的商集,记作 A/R。

即 $A/R = \{[a]_R | a \in A\}$

"商"和除法有关,相当于用R把A分成几份。

2023/4/22

18

例:集合A={1,2,3,4,5,6,7}用模3同余关系R划分集合A,得到

三个等价类,所以A/R={{1,4,7},{2,5},{3,6}}={[1]_R,[2]_R,[3]_R}

练习 $X=\{1,2,3\},X$ 上关系 R_1 、 R_2 、 R_3 ,如上图所示,求商集。

$$X/R_1 = \{[1]_{R1}, [2]_{R1}, [3]_{R1}\} = \{\{1\}, \{2\}, \{3\}\}\}$$

$$X/R_2 = \{[1]_{R2}, [2]_{R2}\} = \{\{1\}, \{2,3\}\}$$

$$X/R_3 = \{[1]_{R3}\} = \{\{1,2,3\}\}$$

定理 集合A上的等价关系R,决定了A的一个划分,这个划分就是商集 A/R。

证明: 由等价类性质可得:

- 1) A/R中任意元素[a]_R,有[a]_R⊆A;
- 2) 设[a]_R, [b]_R是A/R的两个不同元素,有 [a]_R∩[b]_R=Φ;
- 3) 因为A中每个元素都属于一个等价类,所以所有等价 类的并集必等于A。

所以商集 A/R 是 A 的一个划分。

四. 由划分确定等价关系

2023/4/22 **22**

例如,X={1,2,3,4},A={{1,2},{3},{4}} 是 X的一个划分,求X上的一个等价关系R,使得 X/R=A。

R关系图如右图所示:

 $R=\{1,2\}^2\cup\{3\}^2\cup\{4\}^2$.

一般地, $A=\{A_1,A_2,...,A_n\}$ 是集合 X 的一个划分,构造一个 X 上的等价关系 R,使得 X/R = A。

如何构造?

R=
$$A_1^2 \cup A_2^2 \cup ... \cup A_n^2$$

其中 $A_i^2 = A_i \times A_i$, (i =1,2,...,n)

2023/4/22 **24**

定理 给定集合 X 上的一个划分 $A = \{A_1, A_2, ..., A_n\}$,由它确定的关系 $R = A_1^2 \cup A_2^2 \cup ... \cup A_n^2$, 其中 $A_i^2 = A_i \times A_i$ (i=1,2,...,n) 是 X上的一个等价关系。 证明: 1) 证R自反: 任取 $a \in X$,因为A是X的划分, 必存在整数 n≥i > 0 ,使得 a∈A;, 于是 <a,a>∈A_i×A_i,又 A_i×A_i⊆R,于是 <a,a>∈R,即R是自反的。 2) 证R对称: 任取 a,b∈X, 设<a,b>∈R, 必存在 整数 n≥i > 0 ,使得 <a,b>∈A_i×A_i ,于是 <b,a>∈A_i×A_i,又A_i×A_i⊆R,所以有

2023/4/22 **25**

<b,a>∈R,即R是对称的。

3) 证R传递:

任取 a,b,c∈X,设有<a,b>∈R且<b,c>∈R, 则必存在整数 n≥i , i > 0 使得 <a,b>∈A_i×A_i, <b,c>∈A_i×A_i, 于是有 a,b ∈ A_i,b,c ∈ A_i,于是 b∈ A_i∩A_i。 这与A_i, A_i是划分块,当 i≠j 时其交集为空矛盾, 因此 i=j ,于是 a,b,c∈A_i ,即有 <a,c>∈A_i×A_i , 又 A_i×A_i ⊆R,所以 <a,c>∈R ,即R传递。

2023/4/22 **26**

定理: 设R₁和R₂是非空集合A上的等价关系,

则 $A/R_1=A/R_2$ 当且仅当 $R_1=R_2$

(自行证明)

2023/4/22 **27**

