import joblib
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

df = pd.read_csv("Electric_Vehicle_Population_By_County.csv")

df.head()

 \rightarrow

	Date	County	State	Vehicle Primary Use	Battery Electric Vehicles (BEVs)	Plug-In Hybrid Electric Vehicles (PHEVs)	Electric Vehicle (EV) Total	Non- Electric Vehicle Total	1 Vehi
0	September 30 2022	Riverside	CA	Passenger	7	0	7	460	
1	December 31 2022	Prince William	VA	Passenger	1	2	3	188	
2	January 31 2020	Dakota	MN	Passenger	0	1	1	32	
3	June 30 2022	Ferry	WA	Truck	0	0	0	3,575	
4	July 31 2021	Douglas	CO	Passenger	0	1	1	83	

df.shape

→ (20819, 10)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20819 entries, 0 to 20818
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Date	20819 non-null	object
1	County	20733 non-null	object
2	State	20733 non-null	object
3	Vehicle Primary Use	20819 non-null	object

```
4
    Battery Electric Vehicles (BEVs)
                                               20819 non-null
                                                               object
    Plug-In Hybrid Electric Vehicles (PHEVs) 20819 non-null
 5
                                                               object
 6
    Electric Vehicle (EV) Total
                                               20819 non-null
                                                               object
 7
    Non-Electric Vehicle Total
                                               20819 non-null
                                                               object
 8
    Total Vehicles
                                               20819 non-null
                                                               object
9
     Percent Electric Vehicles
                                               20819 non-null
                                                               float64
dtypes: float64(1), object(9)
```

0

memory usage: 1.6+ MB

df.isnull().sum()

₹ 0 Date 0 County 86 State 86 Vehicle Primary Use 0

Battery Electric Vehicles (BEVs)

Plug-In Hybrid Electric Vehicles (PHEVs) 0

> Electric Vehicle (EV) Total 0

> Non-Electric Vehicle Total 0

> > **Total Vehicles** 0

Percent Electric Vehicles 0

dtype: int64

```
# Compute Q1 and Q3
Q1 = df['Percent Electric Vehicles'].quantile(0.25)
Q3 = df['Percent Electric Vehicles'].quantile(0.75)
IQR = Q3 - Q1
# Define outlier boundaries
lower bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
print('lower_bound:', lower_bound)
print('upper_bound:', upper_bound)
# Identify outliers
outliers = df[(df['Percent Electric Vehicles'] < lower_bound) | (df['Percent Electric Vehic
print("Number of outliers in 'Percent Electric Vehicles':", outliers.shape[0])
```

→ lower_bound: -3.517499999999999

upper bound: 6.9025

Number of outliers in 'Percent Electric Vehicles': 2476

```
# Converts the "Date" column to actual datetime objects
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')

# Removes rows where "Date" conversion failed
df = df[df['Date'].notnull()]

# Removes rows where the target (EV Total) is missing
df = df[df['Electric Vehicle (EV) Total'].notnull()]

# Fill missing values
df['County'] = df['County'].fillna('Unknown')
df['State'] = df['State'].fillna('Unknown')

# Confirm remaining nulls
print("Missing after fill:")
print(df[['County', 'State']].isnull().sum())

df.head()
```

→ Missing after fill:

County 0 State 0 dtype: int64

	Date	County	State	Vehicle Primary Use	Battery Electric Vehicles (BEVs)	Plug-In Hybrid Electric Vehicles (PHEVs)	Electric Vehicle (EV) Total	Non- Electric Vehicle Total	Total Vehicles
0	2022- 09-30	Riverside	CA	Passenger	7	0	7	460	467
1	2022- 12-31	Prince William	VA	Passenger	1	2	3	188	19 ⁻
2	2020- 01-31	Dakota	MN	Passenger	0	1	1	32	33
3	2022- 06-30	Ferry	WA	Truck	0	0	0	3,575	3,57!
4	2021- 07-31	Douglas	СО	Passenger	0	1	1	83	84

[#] Cap the outliers - it keeps all the data while reducing the skew from extreme values.

[#] Identify outliers
outliers = df[(df['Percent Electric Vehicles'] < lower_bound) | (df['Percent Electric Vehic
print("Number of outliers in 'Percent Electric Vehicles':", outliers.shape[0])</pre>