Instituto de Matemática e Estatística-UERJ

Departamento de Informática e Ciência da Computação

1^a Lista de Algoritmos
 Professor: Luerbio Faria
 Data: 18/05/2013

1. Um grafo G é autocomplementar, se G e seu complemento são isomorfos. Mostre que se G é autocomplementar, então |V|=4k ou |V|=4k+1 para algum k inteiro não negativo.

Prova:

Pela definição de \overline{G} $|E(G)| + |E(\overline{G})| = \frac{n(n-1)}{2}$. Como G é isomorfo a \overline{G} , temos que $|E(G)| = |E(\overline{G})|$. Dessa forma, $2|E(G)| = \frac{n(n-1)}{2}$. E assim, $|E(G)| = \frac{n(n-1)}{4}$. Como um de n ou n-1 é impar, ocorre que ou n ou n-1 é um múltiplo de n0. Dessa forma, temos que n1 e um n2 de n3 de n4 de n5 de n5 de n5 de n6 de n6 de n6 de n6 de n7 de n8 de n9 de n9

 Mostre que dois caminhos máximos em um grafo conexo SEMPRE possuem pelo menos um vértice em comum.

Prova: Sejam $P_1=(u_1,u_2,u_3,\ldots,u_k)$ e $P_2=(v_1,v_2,v_3,\ldots,v_k)$ dois caminhos máximos. Se P_1 e P_2 não compartilham algum vértices, então existe um caminho $P=(w_1,w_2,w_3,\ldots,w_t)$, com pelo menos uma aresta, formado por vértices de $V\setminus (P_1\cup P_2)$ que liga algum vértice u_i até algum vértice v_j . Assumindo $i\geq \frac{k}{2}$ e $j\geq \frac{k}{2}$ temos que o caminho $Q=(u_1,u_2,u_3,\ldots,u_i,w_1,w_2,w_3,\ldots,w_t,v_j,v_{j-1},v_{j-2},\ldots,v_1)$ é um caminho maior que $\frac{k}{2}+\frac{k}{2}+1=k+1$, uma contradição.

Prove ou disprove que o seguinte par de grafos é isomorfo:

Figure 1:

Prova: São isomorfos, encontre um isomorfismo!

4. Dado um grafo G=(V,E) a conectividade $c_v(G)$ de vértices de G é o menor inteiro não negativo tal que existe um conjunto com $c_v(G)$ vértices cuja remoção produz um grafo desconexo ou não trivial. Assim, G é desconexo ou trivial se e somente se $c_v(G)=0$. A conectividade $c_e(G)$ de arestas de G é o menor inteiro não negativo tal que existe um conjunto com $c_e(G)$ arestas cuja remoção produz um grafo desconexo ou não trivial. Assim, G é desconexo ou trivial se e somente se $c_e(G)=0$.

Justifique e dê os valores de cv(G) e de ce(G):

a)
$$cv(K_n) = ce(K_n) = n - 1$$

b)
$$cv(K_{n,m}) = ce(K_{n,m}) = \min n, m.$$
 c) $cv(C_n) = ce(C_n) = 2.$

d)
$$cv(Q_n) = ce(C_n) = n$$
. e) $cv($ Petersen $) = ce($ Petersen $) = 3$. f) $cv($ árvore $) = ce($ árvore $) =$
$$\begin{cases} 0, & \text{se } n = 1 \\ 1, & \text{se } n \geq 1 \end{cases}$$
 Justifique!

g) Determine um grafo G com o menor n tal que:

cv(G)	ce(G)	(O grau mínimo) δ
1	3	3
1	2	3
1	3	4
2	3	4
3	3	3

Com vocês!

- 5. V ou F, respectivemente, com justificativa e contraexemplos:
 - (a) G e seu complemento não podem ser ambos desconexos. V Justificativa com vocês
 - (b) Se G é um grafo bipartido d-regular e (X,Y) consiste em uma partição em conjuntos independentes para V, então |X|=|Y| V Justificativa com vocês
 - (c) substitua "grafo bipartido d-regular" por "grafo bipartido completo d-regular". Muda alguma coisa? – V - Justificativa com vocês
 - (d) Se G é um grafo com $\delta \geq 4$, então existe um cliclo de comprimento maior V Justificativa com vocês ou igual a 5.
 - (e) Se H é subgrafo de G, então $ce(G) \geq ce(H)$ F Contra-exemplo com vocês.
 - (f) Se H é subgrafo de G, então $ce(G) \leq ce(H)$. F Contra-exemplo com vocês.
 - (g) Em todo grafo o número de vértices de grau ímpar é par. – V - Justificativa com vocês.
 - (h) Em todo grafo o número de vértices de grau par é ímpar. – F - Contra-exemplo com vocês.
 - (i) Se G possui uma ponte, então G possui uma articulação. V Justificativa com vocês.
 - (j) Se G possui uma articulação, então G possui uma ponte. – F - Contra-exemplo com vocês.
- Desenhe todas as árvores não isomorfas com 7 vértices.
 Resposta: Faça! São 08 árvores. Classifique-as pelo seu diâmetro.
- Prove ou refute: N\u00e3o existe grafo Euleriano conexo simples com n\u00eamero par de v\u00e9rtices e n\u00eamero \u00eamero \u00e4mero \u00eamero de arestas.

Resposta: Refuto, considere $V = \{a, b, c, d, e, f\}$ e $E = \{ab, bc, cd, da, ae, ef, fa\}$.

8. Um grafo é semi-euleriano se existe um passeio não fechado contendo todas as arestas de G. Prove que dado G=(V,E) um grafo conexo, então: G é semieuleriano se e somente se G possui exatamente 2 vértices de grau ímpar.

Com vocês.

9. Para cada grafo a seguir diga para quais valores de m e n o grafo é hamiltoniano, euleriano e dê o número cromático com a justificativa.

GRAFO	HAMILTON.	EULER.	χ
$K_{m,n}$	$m=n\geq 2$	m e n pares	2
K_n	$\forall n \geq 3$	$n \ge 4, n \text{ par}$	n
Q_n	$\forall n \geq 2$	$n \ge 2, n \text{ par}$	2
S_n	não é	não é	2
P_n	não é	não é	2
C_n	$\forall n \geq 3$	$\forall n \geq 3$	$\begin{cases} 2, & \text{se } n \text{ \'e par} \\ 3, & \text{se } n \text{ \'e impar} \end{cases}$
PETERSEN	não é	não é	3

10. Prove que se G é um grafo Euleriano e e,f são duas arestas de G com um extremo comum, então G tem uma trilha Euleriana fechada no qual e,f aparecem consecutivamente.

Dica: Use a questão 8.

11. Prove que todo grafo acíclico orientado tem pelo menos uma fonte e pelo menos um sumidouro.

Prova: Suponha por um momento que não. Então, construa a sequência $(v_1, v_2, v_3, \ldots, v_k)$, onde $v_i v_{i+1} \in E$ porque v_i não é fonte e $v_j v_i \notin E, i < j$, porque G é acíclico. Como G é finito a sequência tem fim ou com um ciclo ou com um sumidouro. \clubsuit

12. Mostre que se um grafo G=(V,E) é hamiltoniano, então L(G) é hamiltoniano.

Com vocês.

13. Mostre que se um grafo G=(V,E) é eulerianiano, então L(G) é euleriano.

Com vocês.

14. Dado um grafo G=(V,E) e $\omega(G)$ o tamanho do maior completo subgrafo de G, mostre que $\omega(G) \leq \chi \leq \Delta+1$. Dê duas classes de grafos nas quais $\chi=\Delta+1$.

Prova: Você precisa de pelo menos ω cores para colorir o maior completo. Assim, $\omega(G) \leq \chi$. Você consegue colorir qualquer grafo com $\Delta+1$ cores, onde Δ é o grau máximo, usando o algoritmo para cada vértice v de G colora v com a menor cor em $\{1,2,3,\ldots,\Delta,\Delta+1\}$ que não estiver presente na vizinhança de $v.\clubsuit$

15. Mostre o teorema das 6 cores, isto é se G é planar, então G é 6-colorível.

Com vocês.

16. Mostre que em todo grafo G=(V,E) colorido com $\chi(G)$ cores satisfaz que para cada cor $c\in\{1,2,3,\ldots\chi\}$ existe um vértice $v\in V$ tal que para toda cor c diferente da cor c(v) de v existe um vizinho de v com a cor c.

Prova: Se não for verdade, você consegue colorir o grafo G com menos cores que χ , uma contradição.