

Бюро Советских
Патентных и
Земельных
Реестров

Комитет по делам
изобретений и открытий
при Совете Министров
СССР

ОПИСАНИЕ | 350833 ИЗОБРЕТЕНИЯ

к авторскому свидетельству

Зависимое от авт. свидетельства №

Заявлено 26.VI.1970 (№ 1456472/22-2)

с присоединением заявки №

Приоритет —

Опубликовано 13.IX.1972. Бюллетень № 27.

М. Кл. С 21 с 5/52

УДК 669.054(088.8)

Дата опубликования описания 20.IX.1972

Авторы изобретения И. Д. Донец, Л. Ф. Косой, С. Г. Вонюк, Н. А. Тулин, Н. Ф. Бастраков, Ю. А. Ходоров и А. И. Маркелов

Заявитель Центральный научно-исследовательский институт черной металлургии им. И. П. Бардина

СПОСОБ ПОЛУЧЕНИЯ НЕРЖАВЕЮЩЕЙ СТАЛИ

Изобретение относится к черной металлургии, а именно к способу производства высокочромистых и других комплексно-легированных нержавеющих сталей, в том числе легированных титаном.

Известный способ получения нержавеющей хромсодержащей стали включает в себя расплавление шихты, обезуглероживание расплава, раскисление, легирование и выпуск плавки в ковш под первичным шлаком. В ванну по ходу плавки вводят окислы марганца. Основность шлака перед выпуском плавки из печи увеличивают путем присадки марганцевой или хромистой руды и известняка. Далее металл через стопорное отверстие переливают во второй ковш, где проводят легирование легокоокисляющимися элементами, например титаном. В ковш вводят также шлакообразующие материалы или жидкий синтетический шлак. Однако этот способ характеризуется недостаточным извлечением хрома и марганца из руды, и трудностями, связанными с переливом стали из ковша в ковш.

Целью изобретения является повышение извлечения хрома, марганца и никеля и повышене производительности сталеплавильного агрегата.

Для этого в ванну до раскисления вводят окислы или карбонаты марганца, после чего металл и шлак продувают инертным газом, а

выпуск плавки осуществляют непосредственно в сталеплавильный ковш при основности шлака не менее 1,3 с одновременным легированием металла титаном.

Выплавка стали по новому способу заключается в следующем. В сталеплавильную печь загружают металлическую шихту, хромовую руду, окислы или карбонаты марганца и основные шлакообразующие материалы. Затем в обычном порядке расплавляют и обезуглероживают расплав. При этом продувку производят кислородом или смесью кислорода и нейтрального газа, а при выплавке изотермических сталей — смесью кислорода и азота. Хромовая руда (если она используется), окислы или карбонаты марганца частично или полностью могут быть загружены в печь после обезуглероживания металла. Для извлечения хрома, марганца и железа из шлака в ванну присаживают восстановители, например, силикагром или ферросилиций, в зависимости температуры металла — отходы нержавеющей или соответствующей стали. Далее ванну подвергают перемешиванию путем продувки нейтральным газом и азотом. По результатам анализа проб металла, взятых после обезуглероживания, производят корректировку состава металла и производят выпуск плавки в ковш без предварительного сканивания шлака. При основности шлака не

356833

менее 1,3 легирования сталью титаном проводят в ковше. Разливку стали производят обычным методом.

Предмет изобретения

Способ получения нерожавеющей стали, включающий расплавление шихты, ее залывание в ковш, нагревание расплава, раскисление, легирование и выпуск плавки в ковш под первичным шлаком, отличающийся тем, что с целью по-

выления из ковша шлака марганца и никеля в повышенной концентрации в сталь в правильного пропорции в ковш под раскисление вводят окислы или карбонаты марганца, после чего металлический шлак продувается газом, а выпущеная плавка из стальной ковши осуществляют при температуре не менее 1200°C одновременным легированием металла титаном.

Составитель: Р. Зельмер

Редактор: С. Смирнов

Техред: З. Тарренко

Корректор: А. Тарасова

Заказ 2888/14

Изл. № 1957

Тираж 400

Подпись

ЦНИИТИ Комитета по делам изобретений и открытий при Совете Министров СССР
Москва, Ж-35, Раушская наб., д. 4/5

Типография: пр. Сапунари, 2

BEST AVAILABLE COPY

[see English abstract-separate page]

Union of Soviet Socialist Republics	SPECIFICATION OF INVENTOR'S CERTIFICATE	(11) 350833
[state seal]	Dependent on Inventor's Certificate No. —	[stamp] [illeg.] LIBRARY [illeg.] AND INVENTION APRIL 4, 1973
State Committee of the USSR Council of Ministers on Inventions and Discoveries	Applied June 26, 1970 (No. 1456472/22-2) with the attachment of application No. - Priority - Published September 13, 1972. Bulletin No. 27 Publication date of specification September 20, 1972	Int. Cl. C 21c 5/52
Inventors	I. D. Donets, L. F. Kosoy, S. G. Vonnoy, N. A. Tulin, N. F. Bastrakov, Yu. A. Kholodov, and A. I. Markedov	UDC 669.054 (088.8)
Applicant	I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy	

(54) METHOD FOR OBTAINING STAINLESS STEEL

1

The invention relates to ferrous metallurgy, and specifically to a method for producing high-chromium and other complex alloy stainless steels, including steels alloyed with titanium.

A known method for obtaining chromium-containing stainless steel includes melting the mixture, decarburizing the melt, deoxidizing, alloying, and tapping the melt into a ladle under the primary slag. Manganese oxides are introduced into the bath during melting. The basicity of the slag before the melt is tapped from the furnace is increased by adding manganese or chromium ores and lime. Then the metal is transferred to a second ladle through the taphole, where alloying with easily oxidizable elements such as titanium is carried out. Slag-forming materials or liquid, synthetic slag are also added to the ladle. However, this method is characterized by insufficient recovery of chromium and manganese from the ore, and difficulties associated with transfer of the steel from ladle to ladle.

The aim of the invention is to improve recovery of chromium, manganese, and nickel and to increase the throughput of the steel smelter.

For this purpose, manganese oxides or carbonates are added before deoxidizing, after which the metal and slag are purged with inert gas, and

the melt is tapped directly into the steel-pouring ladle with a slag basicity no less than 1.3, with simultaneous alloying of the metal with titanium.

Smelting steel by the new method involves the following. The steel smelting furnace is charged with a metal mixture, chromium ore, manganese oxides or carbonates, and basic slag-forming materials. Then the melt is melted and decarburized according to the usual procedure. In this case, purging is done with oxygen or a mixture of oxygen and a neutral gas, and when smelting nitrogen-containing steels, it is purged with a mixture of oxygen and nitrogen. The furnace can be partially or completely charged with chromium ore (if it is used), manganese oxides or carbonates after decarburization of the metal. For recovery of chromium, manganese, and iron from the slag, reducing agents such as silicochromium or ferrosilicon are added to the bath, and stainless steel scrap or appropriate steel scrap is added to reduce the temperature of the metal. Then the bath is mixed by purging with neutral gas and nitrogen.

From results of analysis of metal samples taken after decarburizing, the metal composition is corrected and the melt is tapped into a ladle without preliminary skimming of the slag. For a slag basicity no

less than 1.3, the steel is alloyed with titanium in the ladle. The steel is teemed by the conventional method.

Subject of the invention

A method for obtaining stainless steel, including melting a mix, decarburizing the melt, deoxidizing, alloying, and tapping the melt into a ladle under the primary slag, *distinguished* by the fact that, with the aim

of improving recovery of chromium, manganese, and nickle and increasing the throughput of the steel smelter, manganese oxides or carbonates are added to the bath before deoxidizing, after which the metal and slag are purged with inert gas, and the melt is tapped into the steel-teeming ladle with a slag basicity no less than 1.3, with simultaneous alloying of the metal with titanium.

Compiler R. Zel'tser
Editor Z. Ovcharenko Tech. Editor Z. Taranenko Proofreader Z. Tarasova

Order 2888/14 Pub. No. 1257 Run 406 Subscription edition

Central Scientific Research Institute of Patent Information and Technical and Economic
Research of the State Committee of the USSR Council of Ministers on Inventions and
Discoveries [TsNIIPI]
4/5 Raushskaya nab., Zh-35, Moscow

Printing Office, 2 pr. Sapunova

TRANSPERFECT | TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

RU2016345 C1
RU2039214 C1
RU2056201 C1
RU2064357 C1
RU2068940 C1
ATLANTA RU2068943 C1
BOSTON RU2079633 C1
BRUSSELS RU2083798 C1
CHICAGO RU2091655 C1
DALLAS RU2095179 C1
DETROIT RU2105128 C1
FRANKFURT RU2108445 C1
HOUSTON RU21444128 C1
LONDON SU1041671 A
LOS ANGELES SU1051222 A
MIAMI SU1086118 A
MINNEAPOLIS SU1158400 A
NEW YORK SU1212575 A
PARIS SU1250637 A1
PHILADELPHIA SU1295799 A1
SAN DIEGO SU1411434 A1
SAN FRANCISCO SU1430498 A1
SEATTLE SU1432190 A1
WASHINGTON, DC SU 1601330 A1
SU 001627663 A
SU 1659621 A1
SU 1663179 A2
SU 1663180 A1
SU 1677225 A1
SU 1677248 A1
SU 1686123 A1
SU 001710694 A
SU 001745873 A1
SU 001810482 A1
SU 001818459 A1
350833
SU 607950
SU 612004
620582
641070
853089
832049
WO 95/03476

Page 2
TransPerfect Translations
Affidavit Of Accuracy
Russian to English Patent Translations

Kim Stewart
Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
23rd day of January 2002.

Maria A. Serna
Signature, Notary Public

Stamp, Notary Public

Harris County
Houston, TX