Predicting Purchase Behavior

Take your marketing to the next level, keep your customers coming back, and help your business grow.

Importance of Predicting Customer Purchase Behavior

- Deep Understanding of Customer Behavior: Predicting customer behavior helps businesses understand preferences, habits, and decision-making processes.
- Personalized Marketing and Experiences: Predictive analytics enables businesses to create tailored marketing strategies, delivering personalized customer experiences.
- Improved Customer Acquisition and Retention: By anticipating customer needs, businesses can engage, retain, and build loyalty among their customers more effectively.
- Competitive Advantage: Predicting buying behavior helps identify emerging trends and market opportunities, giving businesses an edge over competitors.
- Enhanced Growth and Customer Satisfaction: Accurate predictions allow businesses to refine strategies, optimize the customer journey, and drive growth through improved customer satisfaction.

Customer Purchase Prediction Model Plus Feature Importance

- Problem to Solve: Develop a predictive model to determine the likelihood of a customer making a purchase based on historical behavior and other demographic data.
 - Model Selection: supervised learning approach, logistic regression, decision trees, or random forest, to predict whether a customer will make a purchase.
 - Evaluation: Using metrics like accuracy, precision, recall, F1-score, and ROC-AUC to evaluate model performance.
 - Optimization: Through random search, SMOTE, and stacking models
- Analyze the features to learn what does and does not lead, to customers making a purchase
 - Evaluation: Using feature importance, identify how each variable impacts potential purchase behavior
 - Technologies: Scikit-learn for the model, Pandas and Matplotlib for data handling and visualization, and Python for scripting.

Features					
Age	Customer's age	20 - 70 yrs old			
Gender	Customer's gender	0: Male 1: Female			
Annual Income	Customer's annual income in dollars	20k - 140k			
Number of Purchases	Total purchases made	0 - 20			
Product Category	Category of the purchased product	0: Electronics 1: Clothing 2: Home Goods 3: Beauty 4: Sports			
Time Spent on Website	Time spent in minutes	0 - 59			
Loyalty Program	Loyalty program participation	0: No 1: Yes			
Discounts Availed	Number of discounts availed by the customer	0, 1, 2, 3, 4, 5			

Target Variable					
Purchase Status	Likelihood of the customer making a purchase	0: No 1: Yes			

Data Preprocess

Dataset contained **recent** information on customer purchase behavior across various attributes, aiming to help data scientists and analysts **understand the factors influencing purchase decisions**

After removing Product Category and Gender, and with the exception of Loyal, we were left with numerical formats with no null values or rows

- Scaled numerical features to bring them to a similar range using StandardScaler.
- Conducted Exploratory Data Analysis (EDA) to understand the relationships in data
- Split Data into Training and Testing Sets

Exploratory Data Analysis (EDA)

Conducted EDA to understand the relationships in data

Correlation Matrix								
Age	1	0.016	-0.039	0.034	-0.006	0.004	-0.26	
AnnualIncome	0.016	1	0.00028	-0.00048	-0.045	0.016	0.19	- 0.8
NumberOfPurchases	-0.039	0.00028	1	0.024	0.055	0.03	0.22	- 0.6
TimeSpentOnWebsite	0.034	-0.00048	0.024	1	0.0057	0.00053	0.28	- 0.4
LoyaltyProgram	-0.006	-0.045	0.055	0.0057	1	-0.048	0.31	- 0.2
DiscountsAvailed	0.004	0.016	0.03	0.00053	-0.048	1	0.3	- 0.0
PurchaseStatus	-0.26	0.19	0.22	0.28	0.31	0.3	1	0.
	Age	Annualincome	NumberOfPurchases	TimeSpentOnWebsite	LoyaltyProgram	DiscountsAvailed	PurchaseStatus	

Implementation & Evaluation

Model Implementation

Model Selection

- Logistic Regression:
 Started with a simple model to establish a baseline performance
- Decision Trees:
 Great for understanding decision-making processes
 - Pandom Forest:
 Often provides the best performance by averaging out the decisions of multiple trees

Model Evaluation

Evaluated the performance of the selected models using specific metrics

Defined a Function for Evaluation

To avoid repetitive code, we created a function that evaluates and prints these metrics for any model.

- 1. Accuracy
- 2. Precision
- 3. Recall
- 4. F1-score
- 5. ROC-AUC

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve, confusion_matrix
def evaluate_model(y_true, y_pred, model_name):
   print(f"Evaluation Metrics for {model name}:")
   print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}")
   print(f"Precision: {precision score(y true, y pred):.4f}")
   print(f"Recall: {recall_score(y_true, y_pred):.4f}")
   print(f"F1 Score: {f1_score(y_true, y_pred):.4f}")
   print(f"ROC AUC Score: {roc auc score(y true, y pred):.4f}")
    # Confusion Matrix
   cm = confusion_matrix(y_true, y_pred)
   sns.heatmap(cm, annot=True, fmt='d', cmap='Pastel2', xticklabels=['No Purchase', 'Purchase'], yticklabels=['No Purchase'])
    plt.title(f'{model name} Confusion Matrix')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.show()
# Evaluate Logistic Regression
evaluate model(v test, v pred log reg, "Logistic Regression")
# Evaluate Decision Tree
evaluate_model(y_test, y_pred_tree, "Decision Tree")
# Evaluate Random Forest
evaluate_model(y_test, y_pred_forest, "Random Forest")
```

Evaluation Metrics Pre-Optimization

Evaluation Metrics for Logistic Regression:

Accuracy: 0.8433 Precision: 0.8857 Recall: 0.7266

F1 Score: 0.7983 ROC AUC Score: 0.8284 Evaluation Metrics for

Decision Tree:
Accuracy: 0.9067
Precision: 0.9386

Recall: 0.8359 F1 Score: 0.8843

ROC AUC Score: 0.8976

Evaluation Metrics for Random Forest:

Accuracy: 0.9567
Precision: 0.9915
Recall: 0.9062
F1 Score: 0.9469

ROC AUC Score: 0.9502

Model Optimization & Evaluation

Model Optimization

Hyperparameter Tuning

Random Search

Evaluation Metrics for Random Search Model:

Training: 0.9725
Accuracy: 0.9500
Precision: 0.9748
Recall: 0.9062
F1 Score: 0.9393

ROC AUC Score: 0.9444

Model Optimization Ensemble Methods

Stacking

Evaluation Metrics for Stacking Model:

Training: 0.9967Accuracy: 0.9533Precision: 0.9831

Recall: 0.9062

F1 Score: 0.9431

• ROC AUC Score: 0.9473

Model Optimization

Class Imbalance Handling SMOTE

Evaluation Metrics for SMOTE Model:

Training: 0.9742Accuracy: 0.9567Precision: 0.9752

• Recall: 0.9219

F1 Score: 0.9478

• ROC AUC Score: 0.9522

Results / Conclusions

Model Optimization Results

Random Forest Model Optimization Scores						
Score Type	Random Search	Stacking	SMOTE			
Training	97.25%	99.67%	97.42%			
Accuracy	95.00%	95.33%	95.67%			
Precision	97.48%	98.31%	97.52%			
Recall	90.62%	90.62%	92.19%			
F1 Score	93.93%	94.31%	94.78%			
ROC AUC	94.44%	94.73%	95.22%			

Feature Importance

Optimized Models Feature Important Values								
Model	Time Spent on Website	Age	Discounts	Annual Income	# of Purchases	Loyalty Program		
Initial	0.194094	0.193980	0.192347	0.143550	0.138833	0.137196		
Stacking	0.205891	0.190175	0.168159	0.177235	0.149491	0.10905		
Random Search	0.203998	0.185685	0.181936	0.156703	0.139254	0.132424		
SMOTE	0.194094	0.193980	0.192347	0.143550	0.138833	0.137196		

Next steps

1. Experiment with More Complex Models:

- Gradient Boosting (e.g., XGBoost, LightGBM):
 - Marketing teams can experiment with these models to capture more intricate patterns in behavior
 - Next Step: Run experiments with these models and compare them against existing models using the same evaluation metrics (accuracy, precision, recall, F1-score, ROC AUC).

2. Explore Time-Series Models:

- Time-Series Models (e.g., ARIMA, LSTM):
 - For customers with recurring purchase patterns, time-series models can predict future purchases based on historical trends.
 - Next Step: Implement models that account for temporal data, such as using past purchasing behaviors to predict future buying tendencies. Long Short-Term Memory (LSTM) networks are ideal for capturing sequential data patterns.

3. Use K-Nearest Neighbors (KNN) for Behavioral Similarity:

- KNN for Customer Segmentation:
 - KNN can identify customers with similar behaviors and segment them for targeted marketing campaigns.
 - Next Step: Cluster customers with KNN to identify similar profiles and adjust marketing strategies to target specific segments with similar purchase behaviors.

Questions?

