Data Warehousing and Data Mining

Lecture 3
Data preprocessing

Outline

- What is ETL?
- Preprocessing data
- Introduction to SQL
- Application of SQL for simple data transformation and analytics

What is ETL?

- ETL stands extraction, transform and load
 - Extraction retrieve raw data
 - Transform manipulate data into our desired form
 - Load push the data into the warehouse
- Describes the process of doing the above steps, manually or through tools

Why preprocess data?

- Raw data may contain noise, junk, null values
- Data may need to be integrated together from multiple sources
- Data may need to be normalised
- Curse of dimensionality

Data cleaning

- To process the data such that it ensures
 - Validity conforms to **business rules** or constraints
 - Accuracy/Precision conforms to a known "true"
 value (the data is real)
 - Consistency measures are equivalent across systems
 - Completeness all required measures are known
 - Uniformity using the **same units** across all system

How to start cleaning data

- Overview the nature of your data
- Define and determine error types
- Search and identify error instances
- Fix the uncovered errors

Overview your data

- It is important to have big picture of your data
- Some metrics to get you acquainted with your data
 - Summary statistics
 - Simple plots

```
> summary(data)
           Country.or.Area
                                  Year
                                                 Count
                                                                   Rate
Dominican Republic: 17
                                    :1995
                                                             Min.
                                                                        0.000
 El Salvador
                    : 17
                            1st Qu.:2000
                                                                       1.600
Guatemala
                            Median :2004
                                            Median: 240
                                                                       4.200
Israel
                    : 17
                                    :2003
                                                    : 2183
                                                                        9.497
New Zealand
                            3rd Qu.:2007
                                            3rd Ou.: 879
                                                             3rd Qu.: 11.100
 Singapore
                    : 17
                                    :2011
                                                                     :139.100
 (Other)
                    :1617
                            Source.Type
                  Source
CTS
                     :403
                            CJ:1605
National police
                     :219
                            PH: 114
CTS/Eurostat
                     :202
NS<sub>0</sub>
                     :153
                     : 93
CTS/Transmonee
CTS/National police: 77
(Other)
                     :572
```


Fixing data: missing values

- **Ignore** it
- Fill in manually
- Fill in using a fixed value
- Fill in using the mean value
- Fill in using values from similar data points
- Fill in with the most probable values

Fixing data: noise

- Noise is random error or variance in the data
- Can be fixed by
 - Binning
 - Regression
 - Clustering

Data binning

- Grouping data points in a 'bin' (interval) together
- Replace all the values in the 'bin'
- Aims to reduce noise

Regression

- Fit a function to the data points
- Replace data points with fitted values

Clustering

- Groups can be discovered through clustering
- Noisy data are more likely to be thrown out of the cluster (outlier)
- These may be removed

Does noise need to be removed?

- As you may have noticed, a lot of the proposed methods use the same techniques as actual knowledge discovery
- Modern techniques will quantify noise for you

Advanced techniques in data cleansing

- Statistical used to detect anomalies
- Pattern-based ensures consistency
- Association rule ensure basic business rules

Tools to help clean data

- Data scrubbing tools helps by cross checking against "standard" values
- Data audit tools helps by allowing users to define business logic and run it through data
- ETL GUI frontends visualised user interface for running data through the ETL process

Data integration

- Combine data from multiple sources together
- Things to be careful of
 - Entity identification problem how can you be sure two fields from different files mean the same thing?
 - Redundancy it is not useful to have data that can be represented by another column (near perfect correlation)

Transformation

- Convert the data we have into appropriate forms
- Some conversion methods are
 - Smoothing (Data binning, regression, clustering)
 - Aggregation (Count, sum)
 - Generalisation (Move up the concept hierarchy)
 - Normalisation (Scale to fall into a range)
 - Attribute construction (New features are created)

Data reduction

- Curse of dimensionality!
- Methods of data reduction may include
 - Aggregation
 - Attribute subset selection
 - Dimensionality reduction
 - Concept hierarchy generation
 - Numerosity reduction

Numerosity Reduction

- Reduce dimensionality by reducing many attributes into function parameters
- One clear example is the use of Dynamic Time Warping (DTW) to reduce many time series

Data discretisation

- Convert continuous data into discrete
- Methods include
 - Data binning
 - Generating concept hierarchy
 - Other methods

How to apply all this?

- 1. Get your dataset
- 2. Understand your dataset
- 3. Open it in your favourite editor, ETL or tool for cleaning data
- 4. Select the features you want
- 5. Perform any transformation you may need immediately
- 6. Push it into a database or data warehouse, ready for analysis

Notable tools

- Previously called "Google Refine"
- Platform for data cleansing
- Memory efficient
- Can handle large datasets

What is SQL

- SQL stands for "Structured Query Language"
- Standard language for accessing databases
- Variations exist, but main functions are standard

What is SQLite

- A vendor of a very simple "database" system
- Designed to replace "fopen()"
- Uses flat file to store data

 We will use this to practice our SQL querying skills!

Data types in SQL

- Dependent for each database vendor
- The following is for SQLite

- NULL. The value is a NULL value.
- INTEGER. The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending on the magnitude of the value.
- REAL. The value is a floating point value, stored as an 8-byte IEEE floating point number.
- TEXT. The value is a text string, stored using the database encoding (UTF-8, UTF-16BE or UTF-16LE).
- BLOB. The value is a blob of data, stored exactly as it was input.

Structure of SQL

- Contains a SELECT clause
- Contains a FROM clause
- Contains constraints (WHERE,LIMIT), joins (JOIN), aggregations (GROUP_BY) and others (ORDER)

Common SQL syntax and functions

- The following are essential to get started
 - SELECT
 - FROM
 - WHERE
 - GROUP_BY
 - LIMIT
 - JOIN...ON
 - Aggregation functions (COUNT, SUM, etc.)

Example: UN Data on crime rates and education

Country or A	Year	Count	Rate	Source	Source Type
Afghanistan	2008	712	2.4	WHO	PH
Albania	2010	127	4	CTS/Transmo	CJ
Albania	2009	85	2.7	CTS/Transmo	CI
Albania	2008	93	2.9	CTS/Transmo	CI
Albania	2007	105	3.3	CTS/Transmo	CI
Albania	2006	87	2.8	CTS/Transmo	CI
Albania	2005	131	4.2	CTS/Transmo	CI
Albania	2004	119	3.8	CTS/Transmo	CI
Albania	2003	144	4.6	CTS/Transmo	CI
Albania	2002	231	7.5	CTS/Transmo	CI
Albania	2001	208	6.8	CTS/Transmo	CI
Albania	2000	275	9	CTS/Transmo	CI
Albania	1999	496	16.1	CTS/Transmo	CI
Albania	1998	573	18.6	CTS/Transmo	CI
Albania	1997	1542	49.9	CTS/Transmo	CI
Albania	1996	248	8	CTS/Transmo	CJ
Albania	1995	210	6.7	CTS/Transmo	CI
Algeria	2008	516	1.5	CTS	CI
Algeria	2007	438	1.3	CTS	CI
Andorra	2004	1	1.3	Interpol	CI
Angola	2008	3426	19	WHO	PH
Anguilla	2008	1	6.8	NSO	CJ
Anguilla	2007	4	27.8	NSO	CI
Anguilla	2006	4	28.6	NSO	CI
Anguilla	2005	1	7.4	NSO	CJ
Anguilla	2004	1	7.6	NSO	CI

Reference Ar	Time Period		Age group	Units of measurement	Observation Value
Afghanistan	2012	All genders	Not applicable	Number	867551
Afghanistan		Female	Not applicable	Number	424123
Afghanistan	2012	Male	Not applicable	Number	443428
Afghanistan	2011	Male	Not applicable	Number	431278
Afghanistan	2011	All genders	Not applicable	Number	844028
Afghanistan	2011	Female	Not applicable	Number	412750
Afghanistan	2010	Female	Not applicable	Number	400150
Afghanistan	2010	Male	Not applicable	Number	417844
Afghanistan	2010	All genders	Not applicable	Number	817994
Afghanistan	2009	All genders	Not applicable	Number	782319
Afghanistan	2009	Male	Not applicable	Number	399593
Afghanistan	2009	Female	Not applicable	Number	382726
Afghanistan	2008	Female	Not applicable	Number	364876
Afghanistan	2008	All genders	Not applicable	Number	745702
Afghanistan	2008	Male	Not applicable	Number	380826
Afghanistan	2007	Male	Not applicable	Number	362980
Afghanistan	2007	All genders	Not applicable	Number	711133
Afghanistan	2007	Female	Not applicable	Number	348153
Afghanistan	2006	Male	Not applicable	Number	345132
Afghanistan	2006	Female	Not applicable	Number	331787
Afghanistan	2006	All genders	Not applicable	Number	676919
Afghanistan	2005	Female	Not applicable	Number	317457
Afghanistan	2005	Male	Not applicable	Number	329163
Afghanistan	2005	All genders	Not applicable	Number	646620
Afghanistan	2004	All genders	Not applicable		620239
Afghanistan	2004	Female	Not applicable		304453
Afghanistan		Male	Not applicable		315786
Afghanistan	2003	Male	Not applicable	Number	302841
Afghanistan	2003	Female	Not applicable	Number	291868
Afghanistan		All genders	Not applicable	Number	594709
Afghanistan		All genders	Not applicable		568671
Afghanistan	2002	Fomalo	Not applicable	Number	270005

Live demonstration

Quick references

- To import data from a simple csv file .mode list .separator , .import <filename> <tablename>
- .schema show schema
- .tables list tables
- .quit exit the shell

Assignment 1

- 1. Clean and prepare the file "Marital status of men and women.xls", and document your actions.
- 2. Create an SQLite database with your data and the CrimeRates data (you can use tools, but use wisely!)
- 3. Using SQL, query the data that may tell you
 - The effects of crime rates on the percentage of married men and women aged 20-24 and 25-29