Ziel Umgang mit Ultrasdnallgeräten erlernen

Theorie

- > Ultraschall Fortbewegung Outgrund von Druckschwankungen, desaggen harmlos für den korper
- > gleichseitig Verhalten wie Eu wellen
- > akustische Impedanz: Z = C·P (c: Schallgeschw. im Naterial, (): Dichte des durchströmten Vaterials)
 - 46 Mars für Ausbreitungswiderstand des Wediums
- > in Flüssigkeiten:
- > in featkorpem:
 - Longitudinal & Transversaludlen -> CTE = V (E: Elastizitats modul)
- > Intensitat dur Walle: I(x) = Io e (d: Absoptionskoessizient)
 - in Ruft ist a gros, deswegen Kontaktmittel
- > reziproke piezo-elektrischer Effekt -> für Erzeugung
 - -piezoelektrischer Kristall in el. Wechselfeld -> wird zur Schwingung angenegt, wenn polare Achse in -dabei strahlt er Ultraschallwellenab
 - -wenn Annegungsfrequenz = Eigenfrequenz -> großere Schwingungsamplituden
 - -als Empfänger: Prozess umdrehen
- > Laufzeit messung:
 - S= 1/2 Ct (1/2, weil (Neg wird 2x durückgelegt, Sender & Empfanger)
- > Darstellung:
 - -A-Scan (Amplituden): Echoamplitude als Fkt den Raufzeit DAbtasten von Strukturen
 - -B-Scan (Brightness): Laufzeitdiagramm im zwoidimensionalem Bild → Echocumpl haben Helligkeitstafen
 - -TM-Scan (Time-Motion): macht Bewegungen sichtbar -> zeitliche Bildfalge

Durchführung

- > 2 UHZ Sonde: 1= = = = = , T= = = AHHZ
- > Autbau: Sonde ist mit computer verbunden , der unterschiedt. Scantechniken kann
- >Acrylblock:
 - Position der döcher mit Schieblehre bestimmen
 - Position von beiden seiten mit A-scan (Amplitude in Volt gegen Laufzeit in Ms)
 - -Kontaktmittel destiliertes Wasser
- > Augenmodell:
 - -mit A-scan eindim. Bild eines 3:1 Augenmodells (Iris, Rinse und Retina)
- 3 Brushmodell:
 - Position von a Tumoren durch ablasten bestimmen
 - B-scan von beiden Tumoren
 - 40 ist in Abhaniqueit der Zeit, die bem Überbahren der Brust mit Gerät verstrichen ist
- > Herzmodell:
 - -Plastikevlinder, der an Handluftpumpe angeschlossen ist
 - -durch betatigen bewegt sich gummiartige Schicht
 - Wasser in oberen toil des dylinder A-scan zur Bestimmung der Wasserdiebe
 - dann TH-scan, worend mögl. gleichmößig gepumpt wird, Sonde ruhig halten

Auswertung weg-Zeit-	
>Acrylblock: Sesetz	
- Darstellung Wesswerte: Schieblehre, sowie Raufzeiten und dann umgerechnete Jängen (S= = tc)	
-plotten: gemessener Abstand mit Schieblere gegen t von Sonde	
Lo lineare Reg. 01 = c · t + ch wolcei c die Schallgeschw. in Acryl ist, d · systemalischer Hess	stehler
7 Augenmodeil:	
-unterschiedliche Schallgeschw. im Modell beachten,	tina
C_=2500 M/S, CGk=1410 M/S (Glaskorper) > Brushmedall.	$\sqrt{}$
7 DI USTITUUUII ·	<u>*</u>
- Große and lieft Singeben	/ -
- Art des Tumors (Wassereinlageungen/festes Gewebe) CL	
> Heremodell:	
- Breite der Peaks amittel	_
- Herefrequenz: 2/Herz = 60 amiller	
- Höhe der Peaks muss von Basistevel abgezogen werden Jahn mit Weg-Zeit-Gesetz:ho	?aks
- Herz: Annahme kegelförmig	
- Schlavolumen: SV = = g · hpeaks g= mr2	
-Herzschlagvolumen: HSV = SV·g	
Diskussion	
> bei schallgeschw. Gule Ergebnisse	
> bei Röchern hohe Abweichung für Durchmesserbest.	
45 weil beim kessen nicht genau der Kittelpunkt getroßen worden konnte	
> Auge:	
- genaver winkel auf die Netzhaut um alle Bestandteile aufzunehmen	
> Brust:	
- Schwierig eine konstante geschw. zu halten	
- große & Position gut erkennbar	
> Her 2	
-Schwierig mögl. gleichmāßig zu pumpen	
- Sonde nur per Hand festgenalten - Unsicherheit	