

Data Science Approach / Philosophy

Danielle Dean

TL;DR

Data science isn't magic, but there are tricks and secrets.

You can't use just any data.

Recipe

Crispy crust
Marinara sauce
Fresh mozzarella
Thick cut pepperoni
Fresh tomato

Recipe
Data that is

Relevant

Connected

Accurate

Enough

and a Sharp Question

Irrelevant data

Price of milk Red Sox Blood (\$/gal) batting avg. alcohol content (%) 3.79 .304 .03 3.45 .320 .09 4.06 .259 .01 3.89 .298 .05 4.12 .332 .13 3.92 .270 .06 3.23 .294 .10

Relevant data

Body mass (kg)	Margaritas	Blood alcohol content (%)					
103	3	.03					
67	5	.09					
87	1	.01					
52	2	.05					
73	5	.13					
79	3	.06					
110	7	.10					

[data points] [rows] [samples] [features] [columns] [attributes] [table] [database]

Disconnected data Connected data

Grill temperature (F)	Weight of beef patty (lb)	Burger rating (out of 10)				
	.33	8.2				
	.24	5.6				
550		7.8				
725	.45	9.4				
600		8.2				
625		6.8				
	.49	4.2				

Grill temperature (F)	Weight of beef patty (lb)	Burger rating (out of 10)					
575	.33	8.2					
550	.24	5.6					
550	.69	7.8					
725	.45	9.4					
600	.57	8.2					
625	.36	6.8					
550	.49	4.2					

[missing values]

Disconnected data Connected data

Grill temperature (F)	Weight of beef patty (lb)	Burger rating (out of 10)
	.33	8.2
	.24	5.6
550		7.8
725	.45	9.4
600		8.2
625		6.8
	.49	4.2

Grill temperature (F)	Weight of beef patty (lb)	Burger rating (out of 10)
575	.33	8.2
550	.24	5.6
550	.69	7.8
725	.45	9.4
600	.57	8.2
625	.36	6.8
550	.49	4.2

[missing values]

Inaccurate data

Accurate data

[precision] [accuracy] [bias]

Not enough data

Vague questions vs.

Can't be answered with a name or a number

What can my data tell me about my business?

What should I do?

How can I increase my profits?

Sharp questions

Can be answered with a name or a number.

How many Model Q Gizmos will I sell in Montreal during the third quarter?

Which car in my fleet is going to fail first?

Are we ready for ML?

Question is sharp.

Data measures what they care about.

Data is accurate.

Data is connected.

A lot of data.

E.g. Predict whether component X will fail in the next Y days

E.g. Identifiers at the level they are predicting E.g. Failures are really failures, human labels on root causes

E.g. Machine information linkable to usage information

E.g. Will be difficult to predict failure accurately with few examples

Predictive Maintenance – Data Science Approach

Qualification Criteria Goal is to create a generalizable model

For ML-based solution:

- 1. Problem is predictive in nature
- 2. Clear path of action if potential failures detected
- 3. Data with sufficient quality
 - For predicting time left to failure, do you have failures or some proxy recorded?
 - Do you have enough failures to be able to model?
 - Is the "non-IoT" data in usable format?
 - Can the domain knowledge, such as timing of maintenance recordings, be translated into usable data for modeling?

Data Sources

FAILURE HISTORY

The failure history of a machine or component within the machine.

MACHINE FEATURES

The features of machine or components, e.g. production date, technical specifications.

REPAIR HISTORY

The repair history of a machine, e.g. previous maintenance records, components replaced, maintenance activities performed. Maintenance types.

OPERATING CONDITIONS

Environmental features that may influence a machine's performance, e.g. location, temperature, other interactions.

MACHINE CONDITIONS

The operation conditions of a machine, e.g. data collected from sensors.

OPERATOR ATTRIBUTES

The attributes of the operator who uses the machine, e.g. driver.

Feature Engineering

The process of creating features that provide better or additional predictive power to the learning algorithm.

id		cycle	setting1	setting2	setting3	s1	s2	s3	 s19	s20	s21	a1	a2	 a21	sd1	sd2	 S
	1	1	-0.0007	-0.0004	100	518.67	641.82	1589.7	100	39.06	23.419						
	1	2	0.0019	-0.0003	100	518.67	642.15	1591.82	100	39	23.4236						
	1	3	-0.0043	0.0003	100	518.67	642.35	1587.99	100	38.95	23.3442						
	1	191	0	-0.0004	100	518.67	643.34	1602.36	100	38.45	23.1295						
	1	192	0.0009	0	100	518.67	643.54	1601.41	100	38.48	22.9649						
	2	1	-0.0018	0.0006	100	518.67	641.89	1583.84	100	38.94	23.4585						
	2	2	0.0043	-0.0003	100	518.67	641.82	1587.05	100	39.06	23.4085						
	2	3	0.0018	0.0003	100	518.67	641.55	1588.32	100	39.11	23.425						
	2	286	-0.001	-0.0003	100	518.67	643.44	1603.63	100	38.33	23.0169						
	2	287	-0.0005	0.0006	100	518.67	643.85	1608.5	100	38.43	23.0848						

Other potential features: change from initial value, velocity of change, frequency count over a predefined threshold

Good to utilize domain knowledge, often better than "auto-featurizing"

Example Feature Engineering Methods

1- Rolling aggregates:

For each labelled record of an asset, pick a rolling window of size w, compute rolling aggregate features for the periods before the labelling date and time of that record.

2- Lag features for short term:

For each labelled record of an asset, pick a window of size w and use tumbling windows to create aggregate features for the periods before the labelling date and time.

Create features that capture degradation over time.

3- Lag features for long term:

For each labelled record, find aggregated features for a larger window than w reflecting the long term effects.

Modelling Techniques

BINARY CLASSIFICATION

Predict failures within a future period of time

MULTICLASS CLASSIFICATION

Predict failures with their causes within a future time period.

Predict remaining useful life within ranges of future periods

REGRESSION or SURVIVAL ANALYSIS

Predict remaining useful life, the amount of time before the next failure

ANOMALY DETECTION

Identify change in normal trends to find anomalies

ML Process

