NLP - Fall 2019 - Sample Midterm Exam

This material is ©Anoop Sarkar 2019.

Only students registered for this course are allowed to download this material.

Use of this material for "tutoring" is prohibited.

(1) Language Models

Ms. Malaprop would like to build a spelling corrector focused on the particular problem of *there* vs *their*. The idea is to build a model that takes a sentence as input, for example:

- 1. He saw their football in the park
- 2. He saw their was a football in the park

For each instance of *their* or *there* Ms. Malaprop wants to predict whether the true spelling should be *their* or *there*. So for sentence (1) the model should predict *their*, and for sentence (2) the model should predict *there*. Note that for the second example the model would correct the spelling mistake in the sentence. Ms. Malaprop recently took some NLP classes so she wants to use a language model for this task. Given a language model $p(w_1, \ldots, w_n)$, return the spelling that gives the highest probability under the language model. So for example for the second sentence we would implement the rule: replace *there* with *their* and vice versa and compare the language model scores:

If p(He saw there was a football in the park) > p(He saw their was a football in the park)

Then return(there)

Else return(their)

Ms. Malaprop decides to use an unigram model: $p(w_1, ..., w_n) = \prod_{i=1}^n q(w_i)$ where $q(w_i) = \frac{\text{Count}(w_i)}{N}$ and $N = \sum_w \text{Count}(w)$. Count(·) returns the number of times a word was seen in the corpus and N is the sum of counts for all words in the corpus. Assume N = 10,000 and Count(there) = 110 and Count(their) = 50. Also assume that for every word w in the vocabulary Count(w) > 0.

- a. What does the Ms. Malaprop rule return for He saw their was a football in the park?
- b. Is the Ms. Malaprop rule a good solution to the *their* versus *there* problem? Say yes or no and give a short and precise one sentence justification for your answer.

(2) **Smoothing**:

Let c_{i+k}^i represent a sequence of characters $c_i, c_{i+1}, \ldots, c_{i+k}$. You are given a 4-gram character model: $P(c_i \mid c_{i-1}^{i-3})$. Assume that all the characters have been observed at least once in the training data such that $P(c_i)$ is never zero in unseen data.

a. Consider a backoff smoothing model \hat{P} which deals with events that have been observed zero times in the training data:

$$\hat{P}(c_i \mid c_{i-1}^{i-3}) = \begin{cases} P(c_i \mid c_{i-1}^{i-3}) & \text{if } f(c_i^{i-3}) > 0 \\ P(c_i \mid c_{i-1}^{i-2}) & \text{if } f(c_i^{i-3}) = 0 \text{ and } f(c_i^{i-2}) > 0 \\ P(c_i \mid c_{i-1}) & \text{if } f(c_i^{i-2}) = 0 \text{ and } f(c_i^{i-1}) > 0 \\ P(c_i) & \text{otherwise} \end{cases}$$

where $f(c_{i+k}^i)$ is the number of times the n-gram c_{i+k}^i was observed in the training data. What condition that holds in the original model $P(c_i \mid c_{i-1}^{i-3})$ is violated by $\hat{P}(c_i \mid c_{i-1}^{i-3})$?

1

b. The recursive definition of Jelinek-Mercer style interpolation smoothing is:

$$\hat{P}_4(c_i \mid c_{i-1}^{i-3}) = \lambda_3 \cdot P(c_i \mid c_{i-1}^{i-3}) + (1 - \lambda_3) \cdot \hat{P}_3(c_i \mid c_{i-1}^{i-2})$$

Note the difference between $P(\cdot)$ and $\hat{P}(\cdot)$ where $P(\cdot)$ is computed using the character frequencies in the training corpus. Based on the definition of $\hat{P}_4(\cdot)$ provide the definitions for $\hat{P}_3(\cdot)$, $\hat{P}_2(\cdot)$, and $\hat{P}_1(\cdot)$ using the interpolation parameters λ_2 , λ_1 .

- c. State the condition on values assigned to $\lambda_3, \lambda_2, \lambda_1$ in Question 2b in order to ensure that $\hat{P}_4(c_i \mid c_{i-1}^{i-3})$ is a well-defined probability model.
- d. Consider the bigram character model $P(c_i | c_{i-1})$ where

$$P(c_0, \dots, c_n) = P(c_0) \times \prod_{i=1,2,\dots,n} P(c_i \mid c_{i-1})$$
(1)

Based on this model, for the English word booking the probability would be computed as:

$$P(booking) = P(b) \times P(o \mid b) \times P(o \mid o) \times P(k \mid o) \times P(i \mid k) \times P(n \mid i) \times P(g \mid n)$$

Let us assume we want to generate the suffix *ing* after the stem *book* using a separate probability:

$$P(ing) = P(i) \times P(n \mid i) \times P(g \mid n)$$

In Semitic languages, like Arabic and Hebrew, the process of inflection works a bit differently. In Arabic, for a word like *kitab* the stem would be *k-t-b* where the place-holders '-' for inflection characters have been added for convenience. We will assume that each word is made up of a sequence of consonant-vowel sequences CVCVCV... and the vowels always form the inflection.

Provide the definition of an n-gram model that will compute the probability for the word kitab and k-t-b as follows:

$$P(kitab) = P(k) \times P(t \mid k) \times P(b \mid t) \times P(i) \times P(a \mid i)$$

$$P(k-t-b) = P(k) \times P(t \mid k) \times P(b \mid t) \times P(-) \times P(- \mid -)$$

Write down the equation for this n-gram model in the same mathematical notation as equation (1). You can assume that the input will be longer than some minimum length.