LP09 – Modèle de l'écoulement parfait d'un fluide

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Le modèle de l'écoulement parfait

3. Conditions limites imposées à l'écoulement parfait

Type d'interface	Ecoulement parfait (Euler)	Ecoulement visqueux (Navier-Stokes)
Paroi solide	$(v_{\perp})_{fluide} = (v_{\perp})_{paroi} \ P_{fluide} = P_{paroi}$	$\overrightarrow{v_{fluide}} = \overrightarrow{v_{paroi}}$ $P_{fluide} = P_{paroi}$ + une équation sur la contrainte tangentielle
Interface fluide sans tension de surface	$(v_{\perp})_1 = (v_{\perp})_2$ $P_1 = P_2$	$\overrightarrow{v_1}=\overrightarrow{v_2}$ $P_1=P_2$ + une équation sur la contrainte tangentielle
Interface fluide avec tension de surface	$(v_{\perp})_1 = (v_{\perp})_2$ $P_1 - P_2 = \gamma \left(\frac{1}{R} + \frac{1}{R'}\right)$	$\overrightarrow{v_1} = \overrightarrow{v_2}$ + une équation sur la contrainte

Merci pour votre attention!

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

Type d'interface	Ecoulement parfait (Euler)	Ecoulement visqueux (Navier-Stokes)
Paroi solide	$(v_{\perp})_{fluide} = (v_{\perp})_{paroi}$ $p_{fluide} = p_{paroi}$	$ec{v}_{fluide} = ec{v}_{paroi}$ $p_{fluide} = p_{paroi}$ $\sigma_{xz} = \eta rac{\partial v_x}{\partial z}$
Interface fluide (sans tension de surface)	$(v_\perp)_1 = (v_\perp)_2$ $p_1 = p_2$	$\vec{v}_1 = \vec{v}_2$ $p_1 = p_2$ $\eta_1 \left(\frac{\partial v_x}{\partial z}\right)_1 = \eta_2 \left(\frac{\partial v_x}{\partial z}\right)_2$
Interface fluide (avec tension de surface)	$(v_{\perp})_1 = (v_{\perp})_2$ $P_1 - P_2 = \gamma \left(\frac{1}{R} + \frac{1}{R'}\right)$	$\vec{v}_1 = \vec{v}_2$ $(\sigma_{ij}n_j)_1 - (\sigma_{ij}n_j)_2 = -\gamma \left(\frac{1}{R} + \frac{1}{R'}\right)n_i + \left\{\vec{\nabla}\gamma\right\}_i$