

Проверил:

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	_				
ФАКУЛЬТЕТ	Фундаментальные науки				
КАФЕДРА	Прикладная математика				
Отчёт по лабораторной работе №1 Прямые методы решения систем линейных					
алгебраических уравнений					
Студент:	ΦH2-52Б		Ю. А. Сафронов		
	(Группа)	(Подпись, дата)	(И. О. Фамилия)		

(Подпись, дата)

(И.О. Фамилия)

Оглавление

1.	Краткое описание алгоритмов	. 3
	1.1. Метод Гаусса	. 3
2.	Исходные данные	. 4
3.	Результаты расчетов	. 5
4.	Анализ результатов	. 6
5.	Контрольные вопросы	. 7

1. Краткое описание алгоритмов

Дана система линейных алгебраических уравнений:

$$\sum_{i=1}^{n} a_{ij} x_i = f_i, \quad i = \overline{1, n}. \tag{1}$$

1.1. Метод Гаусса

Сначала система (1) приводится прямым ходом к верхнетреугольному виду:

$$\begin{cases} a_{11}^{(0)}x_1 + a_{12}^{(0)}x_2 + a_{13}^{(0)}x_3 + \dots + a_{1n}^{(0)}x_n = f_1^{(0)}, \\ a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = f_2^{(1)}, \\ \dots & \dots & \dots \\ a_{n-1,n-1}^{(n-2)}x_{n-1} + a_{n-1,n}^{(n-2)}x_n = f_{n-1}^{(n-2)}, \\ a_{nn}^{(n-1)}x_n = f_n^{(n-1)}. \end{cases}$$

Коэффициенты $a_{ij}^{(k)}$ и $f_i^{(k)}$ вычисляются следующим образом

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - c_{ik} a_{kj}^{(k-1)}, \quad f_i^{(k)} = f_i^{(k-1)} - c_{ik} f_k^{(k-1)},$$

где

$$c_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}, \quad a_{ij}^{(0)} = a_{ij}, \quad f_i^{(0)} = f_i, \quad k = \overline{1, n-1}, \quad j = \overline{k, n}, \quad i = \overline{k+1, n}.$$

Далее производится обратный ход метода, во время которого определяются неизвестные x_i , начиная с i=n:

$$x_i = \left(f_i^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} x_j\right) / a_{ii}^{(i-1)}, \quad i = \overline{n, 1}.$$

Общее количество делений и умножений в методе Гаусса: $\frac{1}{3}n(n^2+3n-1)\sim \frac{n^3}{3}$.

2. Исходные данные

3. Результаты расчетов

4. Анализ результатов

5. Контрольные вопросы

1. Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?

Метод Гаусса применим тогда и только тогда, когда все угловые миноры матрицы \mathcal{A} ненулевые, что равносильно условию $a_{ii}^{(i-1)} \neq 0$ для всех i=1,2,...,n, где $a_{ii}^{(i-1)}$ - элементы матрицы на главной диагонали после приведения ее к ступенчатому виду. Соотвественно, в противном случае метод Гаусса без выбора главного элемента в ходе работы может привести к делению на ноль, при этом матрица может быть и невырождена. Метод Гаусса с выбором главного элемента можно применять для любой невырожденной матрицы. Если матрица будет вырожденной, то в какой-то момент главный элемент будет равен нулю, что недопустимо.

2. Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.

Докажем от противного. Допустим, что возможна такая ситуация, когда при условии $\det \mathcal{A} \neq 0$, существует такой шаг k, для которого, соотвественно, в k-ом столбце все элементы не выше главной диагонали нулевые (на примере матрицы $n \times n$):

$$\mathcal{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,k-1} & a_{1k} & \dots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \dots & a_{2,k-1} & a_{2k} & \dots & a_{2,n-1} & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{k-1,k-1} & a_{k-1,k} & \dots & a_{k,n-1} & a_{kn} \\ 0 & 0 & \dots & 0 & 0 & \dots & a_{k+1,n-1} & a_{k+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

Определитель ступенчатой матрицы равен произведению элементов ее главной диагонали:

$$\det \mathcal{A} = a_{11} * a_{22} * \dots * a_{k-1,k-1} * 0 * a_{k+1,k+1} * \dots * a_{nn}, \quad a_{kk} = 0.$$

Противречие. Следовательно, либо матрица вырождена, либо существует ненулевой элемент не выше главной диагонали.

3. В методе Гаусса с полным выбором ведущего элемента приходится не только переставлять уравнения, но и менять нумерацию неиз-

вестных. Предложите алгоритм, позволяющий восстановить первоначальный порядок неизвестных.

Данную проблему можно решить вводом косвенной индексации. Вместо $\mathcal{A}[i][j]$ использовать $\mathcal{A}[row(i)][col(j)]$, где row и col — массивы (по сути своей являющиеся подстановками), в которых, например, для перемены местами двух строк или столбцов нужно поменять местами соотвествующие индексы.