$\begin{array}{c} \text{Maths refreshing course} \\ \text{HSLU, Semester 1} \end{array}$

Matteo Frongillo

September 2, 2024

Contents

Ι	Lesson 1	2
1	Algebraic definitions	2
2	Prime numbers	2
3	Positive powers 3.1 Property 1 3.2 Property 2 3.3 Property 3	2
4	Fractions 4.1 Property 1 4.2 Property 2 4.3 Property 3	3
5	Negative powers 5.1 Definition 5.2 Property 4 5.3 Property 5	3
6	Fractions and percentages (and back)	4
II	Lesson 2	5

Part I

Lesson 1

1 Algebraic definitions

- $\mathbb{N} := \text{Natural numbers (including 0)}$
- $\mathbb{Z} := \text{Integer numbers}$
- $\mathbb{Q} := \text{Rational numbers}$
- $\mathbb{R} := \text{Real numbers}$

We have that:

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$

2 Prime numbers

A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.

$$n \in \mathbb{N}, \ n \neq \{0, 1\}$$

3 Positive powers

Let $a \in \mathbb{R}, n \in \mathbb{R}^*$ and $a \subset \mathbb{R}$, then

$$a^1 := a \quad | \quad a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

3.1 Property 1

Let $a, b \in \mathbb{R}, n, m \in \mathbb{N}$, then

$$a^n \cdot a^m = a^{n+m}$$

3.2 Property 2

Let $a, b \in \mathbb{R}, n \in \mathbb{N}$, then

$$(a \cdot b)^n = a^n \cdot b^n$$

Notation: The power a^n , a is the base and n is the exponent.

3.3 Property 3

Let $a \in \mathbb{R}, \ m, n \in \mathbb{N}^*$, then

$$(a^n)^m = a^{n \cdot m}$$
, which is $\neq a^{(n^m)}$

2

4 Fractions

Notation 2: "a" is called numerator, "b" is called denominator.

Notation 3: $\frac{a}{b}$, $a, b \in \mathbb{R}$, $b \neq 0$

4.1 Property 1

Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

4.2 Property 2

Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

4.3 Property 3

Let $a, b \in \mathbb{R}^*$ and $c, d \in \mathbb{R}$, then

$$\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm c \cdot b}{b \cdot d}$$

5 Negative powers

5.1 Definition

$$\forall a \in \mathbb{R}, \ a \neq 0; \quad a^{-1} := \frac{1}{a}$$

5.2 Property 4

Let $\forall n \in \mathbb{N}, \ \forall a \in \mathbb{R}$, then

$$a^{-n} = \left(\frac{1}{a}\right)^n$$

This property implies that $\forall z \in \mathbb{Z}, \ \forall a \in \mathbb{R}, \ z \neq 0$ We can compute a^z

5.3 Property 5

Let $\forall a \in \mathbb{R}, \ a \neq 0, \ \forall n, m \in \mathbb{Z}$, then

$$\frac{a^n}{a^m} = a^{n-m}$$

3

Consequences:

- 1. Properties 1, 2 and 3 also hold for integer exponents:
 - $\forall a \in \mathbb{R}, \ \forall n, m \in \mathbb{Z} \Rightarrow a^n \cdot a^m = a^{n+m}$
 - $\forall b \in \mathbb{R}, \ (a \cdot b)^n = a^n \cdot b^n$
 - $(a^n)^m = a^{n \cdot m}$
- 2. $\forall a \in \mathbb{R}^*, \ a^0 = a^{1-1} = \frac{a^1}{a^1} = 1 \Rightarrow a^0 = 1$

6 Fractions and percentages (and back)

$$\alpha \in \mathbb{R}, \ n\% \text{ of } \alpha \Longleftrightarrow \frac{n}{100} \cdot \alpha$$

Part II

Lesson 2