IP-based networking for the IoT

THREAD https://www.threadgroup.org/

Apple revolutionized personal technology with the introduction of the Macintosh in 1984. Today, Apple leads the w...

Visit Site →

Our mission is to organize the world's information and make it universally accessible and useful.

Visit Site →

Amazon is guided by four principles: customer obsession rather than competitor focus, passion for invention, comm...

Visit Site →

Founded in 1961, Lutron Electronics is headquartered in Coopersburg, Pennsylvania. From dimmers for the home, to

Visit Site →

Nordic Semiconductor is specializing in ultra-low power short-range wireless communication supporting Bluetooth® ...

Visit Site →

NXP Semiconductors N.V. (NASDAQ: NXPI) enables a smarter, safer and more sustainable world through innovation. As...

Visit Site →

The ams OSRAM Group (SIX: AMS) is a global leader in optical solutions. By adding intelligence to light and passi...

Visit Site →

Qualcom

Qualcomm is the world's leading wireless technology innovator and the driving force behind the development, launc...

Visit Site →

SmartThings is Samsung Electronics' premier IoT technology, focused on enabling and reimagining connected living ...

Visit Site →

SIEMENS

Siemens is a global powerhouse focusing on the areas of electrification, automation and digitalization. One of th...

Visit Site →

Silicon Labs (NASDAQ: SLAB) is a leader in secure, intelligent wireless technology for a more connected world. Ou...

Visit Site →

Somfy's leading smart management solutions for homes and buildings have been improving people's daily lives for o...

Visit Site →

A low-power and lowlatency wireless mesh networking protocol built using open and proven standards.

Protocol Stack

THREAD

Standard

Application Layer

UDP + DTLS

RFC 768, RFC 6347, RFC 4279, RFC 4492v RFC 3315, 5007

Distance Vector Routing

RFC 1058, RFC 2080

6LowPAN (IPv6)

RFC 4944, RFC 4862, RFC 6775

IEEE 802.15.4 MAC (including MAC security)

IEEE 802.15.4 (2006)

IEEE 802.15.4 PHY

IEEE 802.15.4 (2006)

THREAD Devices – types and roles

- ☐ Full Thread Device
 - Router: route packets, always active,
 - Leader elected role of one Router, always active
 - Routing-eligible End Device (REED): can become router
 - Full End Device (FED)
- Minimal Thread Device
 - Minimal End Device (MED), always on
 - Sleepy End Device, duty cycling
 - Synchronized Sleepy End Device, duty cycling at scheduled time
- Boarder Router

THREAD Topology may change

REED can be upgraded to operate as a Router

When a Router has no children, it can downgrade itself and operate as an End Device

THREAD Leader and Border Router

Thread Leader is dynamically self-elected for fault tolerance, aggregates and distributes network-wide configuration information.

A **Border Router** is a device that can forward information between a Thread network and a non-Thread network (for example, Wi-Fi).

- •THREAD network identified by:
- •2-byte Personal Area Network ID (PAN ID)
- •8-byte Extended Personal Area Network ID (XPAN ID)
- •A human-readable Network Name

THREAD Network Discovery

- 1. The device broadcasts an 802.15.4 Beacon Request on a specific Channel.
- 2. Any Routers (or REED) in range broadcast a Beacon that contains their Thread network PAN ID, XPAN ID, and Network Name.
- 3. The device repeats the previous two steps for each Channel

THREAD: Joining a Network (1)

The Child sends a multicast <u>Parent</u> <u>Request</u> to all neighboring Routers and REEDs in the target network.

All neighboring Routers and REEDs (if the Parent Request Scan Mask includes REEDs) send Parent Responses with information about themselves.

THREAD: Joining a Network (2)

Internet Protocol v6

- ☐ IPv6 (RFC 2460) = the next generation Internet Protocol
 - Complete redesign of IP addressing
 - Hierarchical 128-bit address with decoupled host identifier
 - Stateless auto-configuration
 - Simple routing and address management
- Majority of traffic not yet IPv6 but...
 - Most PC operating systems already have IPv6
 - Governments are starting to require IPv6
 - Most routers already have IPv6 support
 - So the IPv6 transition is coming
 - ☐ 1400% annual growth in IPv6 traffic (2009)

IPv4 vs. IPv6 Addressing

Image source: Indeterminant (Wikipeida) GFDL

IPv4: $7x10^{-6}$ [addresses/m²] IPv6: $666x10^{21}$ [addresses/m²]

IPv4 vs. IPv6 Header

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63 Version Traffic Class Flow Label Payload Length Next Header Hop Limit Source Address Destination Address

IPv6 Header

Image source: Bino1000, Mkim (Wikipeida) GFDL

IPv6 Addressing

- 128-bit IPv6 address = 64-bit prefix + 64-bit Interface ID (IID)
- ☐ The 64-bit prefix is hierarchical
 - Identifies the network you are on and where it is globally
- ☐ The 64-bit IID identifies the network interface
 - Must be unique for that network
 - Typically is formed statelessly from the interface MAC address
 - ☐ Called Stateless Address Autoconfiguration (RFC2462)

- ☐ There are different kinds of IPv6 addresses depending on **scope** and **context**
 - Loopback (0::1) and Unspecified (0::0)
 - Unicast with global (e.g. 2001::) or link-local (FE80::) scope
 - Multicast addresses (starts with FF::)
 - Anycast addresses (special-purpose unicast address)

IPv6 Addresses in THREAD

- ☐ Scope
 - Link local: interfaces reachable by direct transmission fe80: :/16
 - Mesh local: interfaces reachable within the same Thread network fd00 : :/8
 - global

IP Addresses in THREAD – Routing Locator (RLOC)

Addressing Example - RLOC

Other THREAD Addresses

- ☐ Link Local Address (LLA)
 - Used to discover neighbors, configure links, and exchange routing information
 - Not a routable address
 - Based on IEEE802.15.4
- ☐ Mesh Local EID (ML-EID)
 - Random, chosen after commissioning is complete
 - Does not change as the topology changes
 - Should be used by applications
- Anycast Locator (ALOC)
- ☐ Global Unicast Address (GUA)
 - A public IPv6 address
 - IID manually assigned or DHCP
 - Always has a prefix of 2000::/3

What is 6LoWPAN?

- An Adaptation Layer to fit IPv6 over Low-Power wireless Area Networks
- Defined by IETF standards
 - RFC 4919, 4944
 - draft-ietf-6lowpan-hc and -nd
 - draft-ietf-roll-rpl
- ☐ Efficient header compression
 - IPv6 base and extension headers, UDP header
- □ Fragmentation
 - 1280 byte IPv6 MTU -> 127 byte 802.15.4 frames

6LowPAN Header Compression at a Glance

- Stateless compression
- Flow-independent compression
- ☐ Simple tricks on IPv6/UDP header
 - Common values for header fields => compact forms
 - Version is always 6
 - Traffic Class and Flow Label are zero
 - Payload Length always derived from L2 header
 - Source and Destination Addresses can be elided (linklocal) and/or compressed depending on the "context" of the transmission

Ver	Traffic Class	Flow Label			
Payload Length		Next Header	Hop Limit		
Source Address					
Destination Address					

6LoWPAN Addressing

- IPv6 addresses are compressed in 6LoWPAN
- □ Prefix
 - Addresses within 6LoWPAN typically contain common prefix
 - Nodes typically communicate with one or few central devices
 - Establish state (contexts) for such prefixes only state maintenance
 - Support for up to 16 contexts 6LoWPAN compresses IPv6 addresses by
- ☐ Interface ID
 - Typically derived from L2 addr during autoconfiguration
 - Elide when Interface Identifier can be derived from L2 header

The Header Compression header

- ☐ TF (Traffic Class and Flow Label)
 - 0: Carried Inline (ECN+DSCP+Flow), 1: ECN+Flow, 2: ECN+DSCP, 3: All zero
- □ NH (Next Header compression)
 - 0: Carried Inline, 1: Next Header is compressed
- HLIM (Hop Limit = Inline, 1, 64, 255)
 - 0: Carried Inline, 1: 1, 2: 64, 3: 255
- ☐ CID (Context Identifier Extension)
 - 0: No 1-byte CID identifier, 1: 1-byte identifier follows
- □ SAC/DAC (Source/Destination Address Compression)
 - 0: Stateless, 1: Context-based
- □ SAM/DAM (Source/Destination Address Mode)
 - 0: 16 bytes inline, 1: 8 bytes inline, 2: 2 bytes inline, 3: elided
- M (Multicast Destination)
 - 0: Destination is not multicast, 1: Destination is multicast

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 1 1 TF NH HLIM CID SAC SAM M DAC DAM In-line IPv6 Header Bits

Traffic Class and Flow Label Compression

UDP Header Compression

"Compressed IPV6" seed

"HOW UDP is compressed"

UDP Header Compression

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 2 3 4

- Assume common values for header fields and define compact forms
 - Ports within 61616 to 61632 (4 bits)
 - Length derived from IPv6 Length
 - Checksum may be elided if other integrity checks are in use (e.g. Ipsec)

- C (Checksum): 0: Inline, 1: Elide
- P (Ports):
 - O: Inline
 - 1: Elide first 8 bits of Dest Port
 - 2: Elide first 8 bits of Source Port
 - ☐ 3: Elide first 12 bits of Source and Dest Ports

Link Local

Fragmentation

- ☐ IPv6 requires a minimum 2-PDU of 1280 bytes
- □ 802.15.4 has a maximum payload of 127 bytes
- IPv6 packets should be fragmented by 6LowPAN adaptation layer

Fragmentation Header

- □ *dgram_size*: size of the fragment in bytes
- dgram_tag: fragmentation ID (common to all fragments)
- ☐ dgram_offset: fragmentation offset (word of 8 bytes). Elided in the 1° fragment

Fragmentation in Practice

- ☐ The performance of large IPv6 packets fragmented over low-power wireless mesh networks is poor!
 - Lost fragments cause whole packet to be retransmitted
 - Low-bandwidth and delay of the wireless channel
 - 6LoWPAN application protocols should avoid fragmentation
 - Fragmentation handled at the application layer (COAP)
 - Compression should be used on existing IP application protocols when used over 6LoWPAN if possible

Types of Routing Protocols

- Algorithm classes
 - Distance-vector Links are associated with cost, used to find the shortest route. Each router along the path store local next-hop information about its route table.
 - Link-state Each node acquires complete information about the network, typically by flooding. Each node calculated a shortest-path tree calculated to each destination.
- ☐ Types of Signaling
 - Proactive Routing information acquired before it is needed.
 - Reactive
 Routing information discovered dynamically when needed.
- Route metrics are an important factor

The Most Common Routing Metric

- Node
 - Residual Energy (node)
 - CPU, Storage, WorkLoad, Battery/Mains
- ☐ Link
 - Throughput (local/global metric)
 - Latency (local/global metric)
 - Reliability (local/global metric)
 - Expected Transmission Count (ETX)
 - ☐ Link Quality Level (LQL)
- ☐ Hop Count

The ETX

- "The average number of packet transmissions to successfully transmit a packet"
- Ex:
 - Being the packet error probability from A to B and from B to A p and q, respectively, the ETX is: 1/[(1-p)(1-q)]
 - p and q can be estimated through periodic beaconing

THREAD routing, Proactive, distance vector

- ☐ Each router has a routing data base
 - Route id set: list of routers ID and SN
 - *Link set*: list of current/recent neighbors
 - <l_router_id, l_link_marging, l_incoming_quality, l_outgoing_quality, l_age>
 - **Route set**: routing table
 - <destination, next_hop, route_cost>
- Periodic signalling messages
 - Router ID, incoming_quality, outgoing_quality, route cost, sequence_number

Routing metrics

Link margin and link quality

Link Margin	Quality	Link Cost
> 20dB	3	1
> 10dB	2	2
> 2dB	1	4
≤ 2dB	0	infinite

- ☐ Link margin is obtained through the exchange of periodic messages (64Route TLV advertisment)
- Link margin values are low-pass filtered
- Link quality is min(incoming_quality, outgoing:quality)

Distributed Bellman-Ford

Upon receiving a Route64 TLV (Distance Vector)

- Update link quality
- For each destination in Route64 TLV
 - If destination not in route set
 - ☐ Add destination/cost in *route set*
 - Altrimenti
 - ☐ If next hop route set is equal to *Rout64 TLV* sender
 - Modify route set entry with new info in Route64 TLV
 - Otehrwise
 - If cost Rout64 TLV is lower than the one store in route set
 - Modify route set entry with new info in Route64 TLV
- 3. Return

Modifica delle tabelle di routing

Rules

Net1: No news, don't change

Net2: Same next hop, replace

Net3: A new router, add

Net6: Different next hop, new hop count smaller, replace

Net8: Different next hop, new hop count the same, don't change

Net9: Different next hop, new hop count larger, don't change