序号	拉氏变换 <i>E</i> (s)	时间函数 e(f)	Z 变换 E(z)
1	1	$\delta(t)$	1
2	e ^{-nsT}	$\delta(t-nT)$	z^{-n}
3	<u>1</u> s	1(t)	$\frac{z}{z-1}$
4	$\frac{1}{s^2}$	f	$\frac{Tz}{(z-1)^2}$
5	$\frac{1}{s^3}$	$\frac{t^2}{2!}$	$\frac{T^2 z(z+1)}{2(z-1)^3}$
6	$\frac{1}{s^4}$	$\frac{t^3}{3!}$	$\frac{T^3 z(z^2 + 4z + 1)}{6(z - 1)^4}$
7	$\frac{1}{s - (1/T) \ln a}$	$a^{t/T}$	$\frac{z}{z-a}$
8	$\frac{1}{s+a}$	e^{-at}	$\frac{z}{z - e^{-aT}}$
9	$\frac{1}{(s+a)^2}$	te ^{-at}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
10	$\frac{1}{(s+a)^3}$	$\frac{1}{2}t^2e^{-at}$	$\frac{T^2 z e^{-aT}}{2(z - e^{-aT})^2} + \frac{T^2 z e^{-2aT}}{(z - e^{-aT})^3}$
11	$\frac{a}{s(s+a)}$	$1 - e^{-at}$	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$
12	$\frac{a}{s^2(s+a)}$	$t - \frac{1}{a}(1 - \mathrm{e}^{-aT})$	$\frac{Tz}{(z-1)^2} - \frac{(1-e^{-aT})z}{a(z-1)(z-e^{-aT})}$
13	$\frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(a-b)(c-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$	$\frac{z}{(b-a)(c-a)(z-e^{-aT})} + \frac{z}{(a-b)(c-b)(z-e^{-bT})} + \frac{z}{(a-c)(b-c)(z-e^{-cT})}$
14	$\frac{s+d}{(s+a)(s+b)(s+c)}$	$\frac{(d-a)}{(b-a)(c-a)}e^{-at} + \frac{(d-b)}{(a-b)(c-b)}e^{-bt} + \frac{(d-c)}{(a-c)(b-c)}e^{-ct}$	$\frac{(d-a)z}{(b-a)(c-a)(z-e^{-aT})} + \frac{(d-b)z}{(a-b)(c-b)(z-e^{-bT})} + \frac{(d-c)z}{(a-c)(b-c)(z-e^{-cT})}$
15	$\frac{abc}{s(s+a)(s+b)(s+c)}$	$1 - \frac{bc}{(b-a)(c-a)} e^{-at} - \frac{ca}{(c-b)(a-b)} e^{-bt}$ $- \frac{ab}{(a-c)(b-c)} e^{-ct}$	$\frac{z}{z-1} - \frac{bcz}{(b-a)(c-a)(z-e^{-aT})} - \frac{caz}{(c-b)(a-b)(z-e^{-bT})} - \frac{abz}{(a-c)(b-c)(z-e^{-cT})}$
16	$\frac{\omega}{s^2 + \omega^2}$	sin <i>∞</i> r	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$
17	$\frac{s}{s^2 + \omega^2}$	cos Øt	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$
18	$\frac{\omega}{s^2 - \omega^2}$	sinh <i>∞t</i>	$\frac{z \sinh \omega T}{z^2 - 2z \cosh \omega T + 1}$
19	$\frac{\omega}{s^2 - \omega^2}$	cosh ωt	$\frac{z(z-\cosh\omega T)}{z^2-2z\cosh\omega T+1}$
20	$\frac{\omega^2}{s(s^2-\omega^2)}$	1 – cos <i>wt</i>	$\frac{z}{z-1} - \frac{z(z-\cosh\omega T)}{z^2 - 2z\cosh\omega T + 1}$

21	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-aT}\sin \omega T$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
22	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-aT}\cos\omega T$	$\frac{z^2 + ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
23	$\frac{b-a}{(s+a)+(s+b)}$	$e^{-at} - e^{-bt}$	$\frac{z}{z - e^{-aT}} - \frac{z}{z - e^{-bT}}$
24	$\frac{a^2b^2}{s^2(s+a)(s+b)}$	$abt + (a+b) - \frac{b^2}{a-b} e^{-aT} + \frac{a^2}{a+b} e^{-bT}$	$\frac{abTz}{(z-1)^2} - \frac{(a+b)z}{z-1} - \frac{b^2z}{(a-b)(z-e^{-aT})} + \frac{a^2z}{(a-b)(z-e^{-bT})}$