IM-Analytics Qualification Test

Gustavo Fuentes

October 2019

Contents

	Índi	ce general
L	The	x-files problem
		Introduction to the problem
	1.2	Data
		Some statistics
	1.4	Hypotheses and Modeling
	1.5	Conclusion and next steps

4 CONTENTS

Chapter 1

The X-files problem

1.1 Introduction to the problem

A man who collects UFO data wondering where he could go to see one of these events or interview people that claim sightings. Our work is to make his dream come true.

1.2 Data

The data has been collected from people around the world consequently, the data is impure and it has a lack of information or misinformation.

Data features description:

String	date and time of event	datetime
String	Name of the city	city
String	State code of event	state
String	Country code of event	country
String	Shape of the UFO	shape
Numeric	Durantion of the sighting in seconds	duration (seconds)
String	Durantion of the sighting in hours and minutes	duration (hours/min)
String	description of the event	comments
Date	Date when the event was reported	date posted
Numeric	Latitude of the city	latitude
Numeric	Longitude of the city	longitude

There are some missing values as NaN. These values could be either numeric or strings.

The data has 80332 samples by 11 features. If we find a NaN value we delete the entire row, doing this the lack of information represents around 18% the data.

We are looking for replace this values doing some statistics. As a first approx, we are going to deal with the 83% remaining and collect the data by the UFOs *shapes*.

Such as: 'light', 'triangle', 'circle', 'fireball', 'unknown', 'other', 'sphere', 'disk', 'oval', 'formation', 'cigar', 'changing', 'flash', 'rectangle', 'cylinder', 'diamond', 'chevron', 'teardrop', 'egg', 'cone', 'cross', 'delta', 'round', 'crescent', 'pyramid', 'flare', 'hexagon', 'changed'

ts	commen	duration (hours/min)	duration (seconds)	shape	country	state
	This event took place in early fa around 194	45 minutes	2700	cylinder	us	tx
	1949 Lackland AFB, TX. Ligh racing acros	1-2 hrs	7200	light	NaN	tx
	Green/Orange circular disc ov Chester, En	20 seconds	20	circle	gb	NaN
	My older brother and twin sistement were leaving	1/2 hour	20	circle	us	tx
	AS a Marine 1st Lt. flying an FJ4 fighter/att	15 minutes	900	light	us	hi

1.3 Some statistics

We will use mean μ and standard deviation σ to estimate a Gaussian distribution

Where the mean is the center, red line, and the standard deviation the width, in these case the black lines represents $\mu \pm \frac{1}{5}\sigma$

1.4 Hypotheses and Modeling

1.5 Conclusion and next steps

Conclusions so far, if you want to see some UFOs, the best a place is California with around 13% of chances, and you will see lights as the most probably shape. Why is this model bad ???. I would not say bad at all, apparently there is not relation between shape and time, I would see a ship or a similar object I would expect this object remains more time visible than a flashing light. Lights is the most probably shape due to in the night any brilliant object is very visible. My impressions so far, this data is impure. In my experience, It is frequently find patterns working with data and humans. I can do something else What is next ?? We can classify our data by state, country or shape given a state, what is the probability to see certain shape? or given a shape, what is the probability to see it in some state? This is called a Naive Bayes Method. I did clusters to collect duration given a shape. Time Series Analysis. This data in particular is sorted by dates, We can

obtain time series by states and look for correlation, trend, pattern and more.

