信息与电子工程学院 2022-2023 学年秋冬学期

模拟与数模混合集成电路

赵梦恋 谭志超 2022 年 10 月

习题2

- 2-1. An N-type current source folded as in Fig. 2.1 must operate with drain-source voltage $V_{\rm DS}$ as low as 0.4V. I_D is 0.5mA. Assume that L=0.5 μ m and E=3 μ m.
 - (a) If the minimum required output resistance is 20 K Ω , determine the width of the device.
 - (b)With the width in (a), calculate the gate-source, gate-drain, and drain-substrate capacitance. Use the parameters in Table 2.1 and $C_{\rm ox}=3.8\times10^{-3}~{\rm F/m^2}$, $V_{\rm R}=0.6{\rm V}$.

Figure 2-1

Answer:

(a)

$$\begin{cases} r_o = \frac{1}{\lambda I_D} = 20K\Omega \\ I_D = 0.5mA \end{cases} \Rightarrow \lambda = 0.1$$

From the table 2.1,

$$L_{eff} = L - 2L_D = 0.5 \mu m - 2 \times 0.08 \mu m = 0.34 \mu m$$

Calculating W

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^2, \quad V_{GS} - V_{TH} = V_{DSAT} = 0.4V$$

$$\frac{W}{L_{eff}} = \frac{I_D}{\frac{1}{2} \mu_n C_{ox} (V_{GS} - V_{TH})^2} = \frac{0.5 \times 10^{-3}}{\frac{1}{2} \times 350 \times 10^{-4} \times 3.8 \times 10^{-3} \times 0.4^2} = 47$$

$$\therefore W = 47L_{eff} = 16\mu m$$

(b)
$$C_{j0} = 0.56 \times 10^{-3} \ F/m^2, C_{jsw0} = 0.35 \times 10^{-11} \ F/m, m_j = 0.45, m_{jsw} = 0.2, \\ C_{ov} = 0.4 \times 10^{-9} \ F/m, W = 16 \mu m, L = 0.5 \mu m, L_D = 0.08 \mu m, E = 3 \mu m, \\ V_R = 0.6 V, 2 \Phi_F = 0.9 V, C_{ox} = 3.8 \times 10^{-3} \ F/m^2, P_{SUB} = 9 \times 10^8 m^{-3},$$

$$\varepsilon_{si} = 11.9 \times 8.85 \times \frac{10^{-12} F}{m}, q = 1.6 \times 10^{-19} C$$

$$C_{j} = \frac{C_{j0}}{(1 + V_{R}/2\Phi_{F})^{m_{j}}} = 4.45 \times 10^{-4} \frac{F}{m^{2}}, C_{jsw} = \frac{C_{jsw0}}{(1 + V_{R}/2\Phi_{F})^{m_{jsw}}} = 3.16 \times 10^{-12} F/m$$

$$L_{eff} = L - 2L_{D} \qquad C_{d} = WL_{eff} \sqrt{\frac{q \varepsilon_{si} P_{SUB}}{4\Phi_{F}}}$$

$$C_{DB} = \frac{W}{2} EC_{j} + 2\left(\frac{W}{2} + E\right) C_{jsw} = 10.7 fF$$

$$C_{SB} = 2\left(\frac{W}{2} EC_{j} + 2\left(\frac{W}{2} + E\right) C_{jsw}\right) = 21.5 fF$$

$$C_{GD} = 2\left(\frac{W}{2} C_{ov}\right) = 6.4 fF$$

$$C_{GS} = \frac{2}{3} WL_{eff} C_{ox} + WC_{ov} = 20.2 fF$$

C_{GB}: 栅-衬底电容在三极管区和饱和区通常被忽略,因为反型层在栅和衬底之间起了"屏蔽"的作用。换句话说,如果栅电压发生变化,电荷是由源和漏提供,而不是由衬底提供。

2-2. The layout of an n-channel MOSFET is shown in Fig.2.2. What is this device's channel width and length?

Figure 2.3

Answer:

$$Length = 5 \times 25 \mu m = 125 \mu m$$

$$Width = 4 \mu m$$

2-3. A "ring" MOS structure is shown in Fig. 2.3. Explain how the device operations and estimate its equivalent aspect ratio. Calculate the drain junction capacitance of the structure (using C_j and C_{jsw})

Figure 2.4

Answer:

Width/length ratio is 4W/L

$$C_{DB} = W^2 C_i + 4W C_{isw}$$

2-4. An NMOS device operating in the subthreshold region has a ζ of 1.5. What variation in V_{GS} results in a tenfold change in I_D? If I_D = 10 μ A, what is g_m ?

Answer:

$$\begin{split} I_D &= I_0 \exp \frac{V_{GS}}{\xi V_T} \\ \frac{I_{D2}}{I_{D1}} &= \exp \frac{V_{GS2} - V_{GS1}}{\xi V_T}, \quad \frac{I_{D2}}{I_{D1}} = 10 \Rightarrow \Delta V_{GS} - \xi V_T \ln 10 \\ \Delta V_{GS} &= 1.5 \times \ln 10 \times 26 \text{mV} = 89.8 \text{mV} \\ g_m &= \frac{I_D}{\xi V_T} = \frac{10 \mu A}{1.5 \times 26^{mV}} = 0.26 \text{mA/V} \end{split}$$

2-5. Consider an NMOS device with $V_G = 1.5 \text{ V}$ and $V_S = 0$. Explain what happens if we continually decrease V_D below zero or increase V_{sub} above zero.

Answer.

- a) If we decrease V_D below zero, Source and drain exchange their roles and device operates in the triode region.
- b) If we increase V_B , V_{TH} decreases, because $\Delta V_{TH} = \gamma \left(\sqrt{2\Phi_F V_B} \sqrt{2\Phi_F} \right)$ is negative. Therefore, I_D increases.
- 2-6. The layout of a circuit fabricated in n-well technology is shown as Fig.2.6. Give the corresponding schematic and mark the W/L sizes of each transistor. Then give the output expression of the schematic (use A, B and C). Assume $L=2\lambda$, $\lambda=0.4\mu m$.

Figure 2.5

Answer:

Schematic

$$Out = \overline{AB + C}$$

$$\frac{6\lambda}{2\lambda} = \frac{6 \times 0.4}{2 \times 0.4} = \frac{2.4}{0.8}$$

$$\frac{8\lambda}{2\lambda} = \frac{8 \times 0.4}{2 \times 0.4} = \frac{3.2}{0.8}$$

Table 2.1

NMOS Model				
LEVEL=1	VTO=0.7	GAMMA=0.45	PHI=0.9	
PSUB=9e+14	LD=0.08e-6	UO=350	LAMBDA=0.1	
TOX=9e-9	PB=0.9	CJ=0.56e-3	CJSW=0.35e-11	
MJ=0.45	MJSW=0.2	CGDO=0.4e-9	JS=1.0e-8	
PMOS Model				
LEVEL=1	VTO=-0.8	GAMMA=0.4	PHI=0.8	
PSUB=5e+14	LD=0.09e-6	UO=100	LAMBDA=0.2	
TOX=9e-9	PB=0.9	CJ=0.94e-3	CJSW=0.32e-11	
MJ=0.5	MJSW=0.3	CGDO=0.3e-9	JS=0.5e-8	

上表给出的是 $0.5\mu m$ 工艺 level 1 MOS SPICE 模型参数的典型值,其中的参数定义如下:

VTO:	VSB=0 时的阈值电压	(单位: V)
GAMMA:	体效应系数	(单位: V ^{1/2})
PHI:	$2\Phi_{\mathrm{F}}$	(单位: V)
TOX:	栅氧厚度	(单位: m)
NSUB:	衬底掺杂浓度	(单位: cm ⁻³)
LD:	源/漏侧扩散长度	(单位: m)
UO:	沟道迁移率	(单位: cm2/(v/s))
LAMBDA:	沟道长度调制系数	(单位: V ⁻¹)
CJ:	单位面积的源/漏结电容	(单位: F/m ²)
CJSW:	单位长度的源/漏侧壁结电容	(单位: F/m)
PB:	源/漏结内建电势	(单位: V)
MJ:	CJ 公式中的幂指数	(无单位)
MJSW:	CJSW 等式中的幂指数	(无单位)
CGDO:	单位宽度的栅/漏交叠电容	(单位: F/m)
CGSO:	单位宽度的栅/源交叠电容	(单位: F/m)
JS:	源/漏结单位面积的漏电流	(单位: A/m²)