

Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame Final

14 de Janeiro de 2008 Duração: 2 horas 30 minutos

Nome:							
Nº mecanográfico:	Curso:						
Caso pretenda desistir assine a seguinte declaração. Declaro que desisto.							

Questão	1a	1b	2a	2b	3a	3b	3c	3d	4	total
Cotação	15	10	10	10	15	10	10	10	15	105
Classificação										
Questão	5a	5b	6a	6b	7a	7b	7c	8a	8b	total
Questão Cotação	5a 10	5b 10	6a 15	6b 10	7a 10	7b 10	7c 10	8a 10	8b 10	total 95

IMPORTANTE: Justifique resumidamente todas as suas afirmações e indique os cálculos que efectuou.

1. Considere o seguinte sistema linear nas incógnitas x, y, z, onde a é um parâmetro real.

$$\begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases}$$

- (a) Determine os valores do parâmetro a para os quais o sistema é impossível.
- (b) Considere a=2. Resolva o sistema, pelo método de eliminação de Gauß-Jordan, e indique o espaço nulo da matriz dos coeficientes do sistema.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & a & 1 \\ 1 & b & 1 & 1 \end{bmatrix}$$

- (a) Utilizando propriedades dos determinantes, transforme a matriz A numa matriz triangular do tipo 4×4 cujo determinante seja igual a $\det(A)$.
- (b) Calcule $\det(A)$ e indique os valores de a e b para os quais A é invertível.

- 3. (a) Seja A uma matriz quadrada. Justifique que, se $2A^2 + A I = 0$, então A é invertível.
 - (b) Sendo B e C duas matrizes reais do tipo 4×4 , sabendo que $\det(A) = -2$ e $(A^{\mathrm{T}})^{-1} = C^{-1}BC$, determine $\det(B)$.
 - (c) Diga, justificando, se a seguinte afirmação é verdadeira. Se A é uma matriz quadrada com os elementos diagonais todos iguais a zero, então A é não invertível.
 - (d) Diga, justificando, se a seguinte afirmação é verdadeira. Se A é do tipo 20×25 e car(A) < 5, então a dimensão do espaço nulo de A é superior a 15.

4. Considere a matriz

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}.$$

Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ a transformação linear que é representada pela matriz A relativamente à base B = ((1,1,1),(0,1,1),(0,0,1)). Determine T(1,2,3).

5. Considere as rectas

$$\mathcal{R}: \quad \frac{x-3}{-2} = y - 4 = -z + 1,$$

$$S: \quad \frac{x-5}{2} = 1 - y = z - 4.$$

- (a) Determine a posição relativa das duas rectas.
- (b) Escreva a equação vectorial do plano $\mathcal P$ que as contém.

$$S = \{ M \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid M = M^{\mathrm{T}} \}.$$

- (a) Averigue se S é subespaço vectorial de $\mathrm{M}_{2\times 2}(\mathbb{R}).$
- (b) Verifique que $\dim(S) = 3$.

7. Considere a matriz

$$A = \begin{bmatrix} -2 & 1 & -3 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}.$$

- (a) Mostre que v=(-1,1,1) é um vector próprio de A.
- (b) Calcule os valores próprios de A.
- (c) A matriz A é diagonalizável? Justifique.

- 8. (a) Diagonalize a matriz $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$.
 - (b) Considere a cónica

$$3x^2 + 3y^2 + 4xy + \sqrt{2}x + \sqrt{2}y = 0.$$

Escreve a sua equação reduzida e classifique-a.