sep and lar

Maximal and Minimal element

An element of a poset is called maximal if it is not less than any element of the poset. That is, a is maximal in the poset (S, \preceq) if there is no $b \in S$ such that $a \preceq b$. Similarly, an element of a poset is called minimal if it is not greater than any element of the poset. That is, a is minimal if there is no element $b \in S$ such that $b \preceq a$.

For example, let $A = \{1, 2, 3\}$ and the relation \leq is the set inclusion. Let P(A) is the set of all subsets of A. $P(A) = \{\phi, \{1\}, \{2,\}, \{3\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$. In the Pos

 $P(A) = \{\phi, \{1\}, \{2,\}, \{3\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$. In the Poset $(P(A), \preceq)$ the set $\{1,2,3\}$ is the maximal elements and ϕ is the minimal element.

Let $B = \{\phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}\}$, the collection of proper subsets of A, and the relation \preceq is the set inclusion. In the poset (B, \preceq) the set $\{1,2\}, \{1,3\}$ and $\{2,3\}$ are the maximal elements and ϕ is the minimal element.

Least Element and greatest element

If (A, \preceq) si a poset then an element $x \in A$ is called the greatest element of A if for all $a \in A$, $a \preceq x$.

If (A, \preceq) is a poset then an element $y \in A$ is called the least element of A if for all $b \in a$, $y \preceq b$.

For example, let $A = \{1, 2, 3\}$ and the relation R is the set inclusion. Let P(A) is the set of all subsets of A. In the Poset (P(A), R) the set $\{1, 2, 3\}$ is the greatest element and ϕ is the least element.

Upper bound and Lower bound

Let (A, \preceq) be a poset with $B \subseteq A$. An element $x \in A$ is called upper bound of B if $a \preceq x$ for all $a \in B$. Let (A, \preceq) be a poset with $B \subseteq A$. An element $y \in A$ is called lower bound of B if $y \preceq b$ for all $b \in B$.

Least upper bound (supremum)

Let (A, \preceq) is a poset with $B \subseteq A$. Any element $x \in A$ is a Least upper bound (lub) of B if x is an upper bound of B nad $x \preceq x'$ for all other upper bounds x' of B.

Greatest lower bound (infimum)

Let (A, \preceq) is a poset with $B \subseteq A$. Any element $y \in A$ is a Greatest lower bound (glb) of B if y is a lower bound of B and $y' \preceq y$ where y' is any lower bound of B.

For example, let $A = \{1, 2, 3, 6, 9, 18\}$ with the relation divisibility. Then (A, |) is a poset with $B = \{2, 3\} \subseteq A$. The upper bounds of $\{2, 3\}$ are 6, 18 and the least upper bound is 6.

The lower bounds of $\{2,3\}$ is 1 and the greatest lower bound is 1.

Lattice

A lattice is a partially ordered set (A, \leq) in which every pair of elements $a, b \in A$ the least upper bound of $\{a, b\}$ and greatest lower bound of $\{a, b\}$ both exist in A^2 .

We denote $lub\ \{a,\ b\}$ by $a\ \lor b$ or a+b and call it the join or sum of a and b and the $glb\ \{a,\ b\}$ by $a\ \land b$ or $a\cdot b$ and call it the meet or product of a and b. So, lattice $(A,\ \preceq)$ may be written as an algebraic system $(A,\ +,\ .)$. All posets are not lattice but all totally ordered set is a lattice.

Example 1

Find the maximal element, minimal element, greatest element and least element from the following

poset with Hasse diagram

max elements - æ, d misi relements - alb No N-

Example 2

Is there a greatest element and a least element in the poset $(Z \stackrel{\tau}{\Rightarrow}, |)$?

$$z^{+} = \left\{ \begin{array}{c} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \end{array} \right\}$$

· find the least upper bound of {2193 and the greatest lower bound of [60,72] for the

poset ({2,4,6,9,12,18,27,36,48,60,723,1)

G0 4 18 12

U13 = 4 LB-2

· 1s the given Hasse diagram a lattice?

Consider Incomproable pours

$$glb(e,q) = b$$

$$lob(e,q) = g$$

$$gib(cid) = b$$
 $iub(aid) = g$

$$g(b(e,f) = b$$

 $lub(gf) = g$

$$glblgf) = b$$
 $lob(gf) = 8$

Let (A, R) be a lattice and B is a subset of A. B is called sublattice of A if for any $a, b \in B$, then $a \lor b$ and $a \land b \in B$.

Example: The set all positive devisors of n, D_n with the relation 'divisibility' is a sublattice of (Z^+, \mid) .

Example 9

Draw a Hasse Diagram for the set of all divisors of 24. $(D_{24},\ |)$. Prove that it a lattice. Also find a sublattice of $D_{\scriptscriptstyle{24}}$. Also give an example of poset which is not a sublattice of $D_{\scriptscriptstyle{24}}$.

D24 = { 112131416, 8, 121243

Sublathe

$$(0b(8,24) = 24)$$
 $(0b(8,12) = 24)$ $(0b(8,16) = 24)$

$$glb(8124) = 8$$
 $glb(8112) = 4$ $glb(816) = 2$

$$10b(813) = 24$$
 $10b(213) = 6$ $10b(413) = 12$

$$3(b(8)3) = 1$$
 $3(b(2)3) = 1 3(b(4)3) = 1$

$$g(s(s(6)) = 2$$

Let (A, R) is a lattice, for any $x, y \in A$,

- 1) Idempotent Law x + x = x, $x \cdot x = x$. i.e., $x \lor x = x$, $x \land x = x$.
- 2) Commutative Law x + y = y + x, $x \cdot y = y \cdot x$. i.e., $x \lor y = y \lor x$, $x \land y = y \land x$.
- Associative Law x + (y + z) = (x + y) + z, i.e., $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ i.e., $x \lor (y \lor z) = (x \lor y) \lor z$, i.e., $x \land (y \land z) = (x \land y) \land z$.
- 4) Absorption Law $x + (x \cdot y) = x$ $x \cdot (x + y) = x$, i.e., $x \lor (x \land y) = x$ $x \land (x \lor y) = x$

Complemented Lattice

For a lattice an element b is said to be complement of a if $a \wedge b = 0$ and $a \vee b = 1$. If a is complement of b then b is the complement of a. Complement of a is denoted by a'. A lattice is said to be complemented lattice if every element has at least one complement.

Distributive Lattice

Lattice (A, +, .) is distributive lattice if for any $a, b, c \in A$,

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 + is distributive over.

i.e.,
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 \lor is distributive over \land .

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 · is distributive over +.

i.e.,
$$a \land (b \lor c) = (a \land b) \lor (a \land c)$$
 \(\lambda\) is distributive over \lor .

· An element a is called the complement of b if

(2)
$$anb = 0$$
 (glb(alb) = least element)

Examples

1. find the complements for the lattice (A,1) where A = {112,3,63

greatest element = C

least element = 1

Toral & sonox method

$$g1b(213) = 1 = leste$$
 $g1b(116) = 1$
 $10b(213) = 6 = geet$ $10b(116) = 6$
 $2! = 3$ $3! = 2$ $1! = 6$ $6! = 6$

M SIGMA GIKULAN

M SIGMA

2. Find the complements of each element of (D42,1). Is it a complemental lattice?

$$D_{42} = \{ 1, 2, 3, 6, 7, 14, 21, 42 \}$$

greatest element = 42 least element = 1

$$10b(1142) = 42 \quad 10b(2121) = 42$$

$$91b(1142) = 1 \quad 81b(2121) = 1$$

$$1'=42 \quad 42=1 \quad \overline{2}=21 \quad \overline{2}=2$$

$$10b(3114) = 42 \quad 10b(6,7) = 42$$

$$91b(3114) = 1 \quad 91b(6,7) = 1$$

$$\overline{3}=14 \quad 14=3$$

Show that the lattice is not distributive,

1. $a \wedge (b \vee c) = a \wedge 1 = a$, $(a \wedge b) \vee (a \wedge c) = b \vee 0 = b$. $a \wedge (b \vee c) \neq (a \wedge b) \vee (a \wedge c)$ Lattice is not distributive.

2.
$$a \wedge (b \vee c) = a \wedge d = a$$
, $(a \wedge b) \vee (a \wedge c) = e \vee e = e$
 $a \wedge (b \vee c) \neq (a \wedge b) \vee (a \wedge c)$

Lattice is not distributive.

Example

Show that every chain is a distributive lattice.

Solution:

Let (L, \leq) be a chain. For $a, b \in L$, either $a \leq b$ or $b \leq a$

If
$$a \le b$$
, $a \lor b = b$ and $a \land b = a$

If
$$b \leq a, \ a \vee b = a \ \ \text{and} \ \ a \wedge b = b$$

For $a,b,c\in L$ and $a\leq b\leq c$, $a\wedge (b\vee c)=a\wedge c=a$ and

$$(a \wedge b) \vee (a \wedge c) = a \vee a = a$$

Therefore, $a \wedge (b \vee c) = a \wedge b \vee a \wedge c$

Again,
$$a \lor (b \land c) = a \lor b = b$$
 and $(a \lor b) \land (a \lor c) = b$

Therefore,
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

Thus, every chain is a distributive lattice.