COM-440, Introduction to Quantum Cryptography, Fall 2025

Exercise Solution # 4

1. Using the Pretty-Good Measurement

- (a) The overall success probability is $\frac{1}{3}\langle +|\rho_0|+\rangle + \frac{1}{3}\langle -|\rho_2|-\rangle = \frac{1}{3}$.
- (b) Bob's overall success probability is $\frac{1}{3}\langle 0|\rho_0|0\rangle + \frac{1}{3}\langle 1|\rho_2|1\rangle = \frac{2}{3}$.
- (c) Let $\rho = \frac{1}{3}(\rho_0 + \rho_1 + \rho_2) = \frac{1}{2}\mathbb{I}$. The elements of the pretty-good measurement are $M_i = \frac{1}{3}\rho^{-1/2}\rho_i\rho^{-1/2}$. Since $\rho = \frac{1}{2}id$, we have that $\rho^{-1/2} = \sqrt{2}id$. The overall success probability is

$$\frac{1}{3}\sum_{i} \text{Tr}(M_{i}\rho_{i}) = \frac{2}{9}\sum_{i} \text{Tr}(\rho_{i}^{2}) = \frac{2}{9}\left(1 + \frac{1}{2} + 1\right) = \frac{5}{9}.$$

(d) We check that for each i, $\frac{1}{3}\rho_i \leq \sigma = \frac{1}{3}id$. Indeed,

$$\frac{1}{3}\rho_0 = \frac{1}{3} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \le \frac{1}{3}id , \qquad \frac{1}{3}\rho_1 = \frac{1}{6}id \le \frac{1}{3}id , \qquad \frac{1}{3}\rho_2 = \frac{1}{3} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \le \frac{1}{3}id .$$

Thus the upper bound on the guessing probability is thus $\operatorname{Tr} \sigma = \frac{2}{3}$.

(e) If the optimal measurement has POVM elements $\{M_i\}$, then we observe that

$$\sum_{i} p_{i} \operatorname{Tr}(M_{i}\sigma_{i}) = \sum_{i} \operatorname{Tr}(M_{i} \cdot (p_{i}\sigma_{i}))$$

$$\leq \sum_{i} \operatorname{Tr}(M_{i}\sigma)$$

$$= \operatorname{Tr}\left(\left(\sum_{i} M_{i}\right)\sigma\right)$$

$$= \operatorname{Tr}(\sigma).$$

Here, for the second line we used that if $\rho \leq \sigma$ then for any positive semidefinite M, $\text{Tr}(M(\sigma - \rho)) \geq 0$, i.e. $\text{Tr}(M\rho) \leq \text{Tr}(M\sigma)$.

2. Deterministic Extractors on Bit-Fixing Sources

- (a) We can think of generating X_0 by n-t independent fair coin flips, so each of its strings occurs with equal probability 2^{t-n} and $H_{\min}(X_0) = -\log 2^{t-n} = n-t$.
- (b) The number of strings with an even number of 0s is equal to the number of strings with an odd number of 0s, so each of these is equal to 2^{n-1} . Thus the min-entropy of X_1 is $-\log \frac{1}{2^{n-1}} = (n-1)$.

- (c) As before, think of generating X_2 through a series of independent fair coin flips: it is fully determined by $\frac{n}{2}$ of them and so $H_{\min}(X_2) = \frac{n}{2}$.
- (d) Let us look at all the proposed answers consecutively. We're interested in finding which ones are not constant.
 - $f_1(X_1)$ true. The string X_1 can be seen as n-1 random bits followed by a bit that is fully determined by the previous n-1 bits. Since there are n-1 random bits, performing $x_L \cdot x_R$ will generate a random bit. Notice that this is not uniformly random; for example, if n=4, then an output of 0 is 3 times more likely than an output of 1.
 - $f_1(X_2)$ true. Since the first $\frac{n}{2}$ bits of X_2 are the same as the second half, we have $x_L \cdot x_R = XOR(x_L) = XOR(x_R)$ which is a uniformly random bit since the strings $x_L = x_R$ are random.
 - $f_2(X_0)$ true. Since the last n-k bits of X_0 are fully random, the XOR of the entire string will result in a uniformly random bit.
 - $f_2(X_1)$ false. Since the number of 0's in the string is known the parity of the string (computed by the XOR) is 0 for n even.
 - $f_2(X_2)$ false. Since the first $\frac{n}{2}$ bits of X_2 are the same as the second half, the parity of the bit string is zero.
- (e) The XOR of all of the bits is equal to $b \oplus r$, for r equal to the XOR of the bits learned by Eve and b equal to the XOR of all of the other bits. Regardless of the distribution of r, $b \oplus r$ is uniform independent of Eve's knowledge.
- (f) t = n 1. In this case there is at least one bit that Eve did not get access to. Call this bit b. From Eve's point of view, b is uniformly distributed and independent of everything else. We only require the existence of one bit that Eve does not get access to.
- (g) Following the last question, each subsource must have at least t+1 bits. They can make at most $\lfloor \frac{n}{t+1} \rfloor$ such subsources.