

Tarefa 5 – Módulos 11, 12 e 13

Apresente o desenvolvimento em todas as resoluções das questões propostas.

Questão 1: (1 ponto) Demonstre que se a é um número par qualquer e b é um número ímpar qualquer, então a soma 5a + 3b é sempre um número ímpar.

Questão 2: (1 ponto) Demonstre, por contraposição, que se $7a^2$ é par, então o inteiro a é par.

Questão 3: (4 pontos) Utilize o Princípio de Indução Matemática para demonstrar que as igualdades abaixo são verdadeiras:

(a)
$$3 + 11 + 19 + 27 + ... + (8n - 5) = n(4n - 1), \forall n \ge 1.$$

(b) $6^n + 4$ é divisível por 10, $\forall n \ge 1$.

Questão 4: (1 ponto) Utilizando a definição da função fatorial, determine o valor de:

(a)
$$5! \cdot 4! + 3!$$

(b)
$$\frac{20!}{17! \cdot 3!}$$

Questão 5: (3 pontos) Considere a sequência de números naturais definida recursivamente por:

$$F_0 = 2;$$

 $F_n = 4 \cdot F_{n-1} - 3, \quad para \ n \ge 1.$

- (a) Determine os quatro primeiros termos da sequência F_0 , F_1 , F_2 , F_3 .
- **(b)** Prove por indução que $F_n = 4^n + 1$, $\forall n \ge 0$.