EXAM - General instructions

- 1. The first page of the exam file must contain your name, group, and a list of unsolved exercises (e.g.,: $Unsolved\ exercises:\ 1(a),\ 1(c),\ 3(b).$ or -).
- 2. Partial scores are awarded. For wrong answers at the written exam you will NOT be subtracted any extra points.
- 3. To pass the exam, it is mandatory to obtain minimum 22.5 points in the final exam and minimum 45 points as the final grade.

Good luck!

EXAM - Exercises

1. True of False

Respond with true or false. If the claim is false, make it true by enforcing a minimal change (keep the same context, but do not simply negate).

Example: RC4 is used as a building block in CCMP.

Expected answer: False. AES is used as a building block in CCMP.

- (a) A Sequence Number (SEQ) normally offers integrity protection. (2p)
- (b) In general, it is easier to mount an eavesdropping attack in a wireless network rather than in a wired network. (2p)
- (c) WPA Enterprise performs authentication using a single password for all the devices in a network. (2p)
- (d) The NAS security context is established between the UE and the NodeB. (2p)
- (e) SUCI is the concealed form of the SUPI. (2p)
- (f) AI/ML threats become an important security concern in 6G. (2p)
- (g) The consensus protocol in Bitcoin assumes that all nodes have to agree to publish a block. (2p)
- (h) Cryptographically Generated Address (CGA) are IPv6 addresses. (2p)
- (i) Identifiable Random MAC (IRM) addresses aim to prevent the identification of the station by all parties. (2p)
- (j) The handshake protocol in TLS always uses ECDH to setup the cryptographic keys. (2p)

2. WPA2 Keys

In WPA2 CCMP, the Pairwise Transient Key (PTK) is derived from the Pairwise Master Key (PMK) as

$$PTK = f(PMK, NonceA, NonceB, AddressA, AddressB),$$

where NonceA and NonceB are two nonces chosen by the communication parties A and B.

- (a) Explain what do Address A and Address B refer to. (5p)
- (b) Explicitly mention one security property f must have. (5p)
- (c) Let PTK = A303D7FFD553F2967CE6EA3B00D0EEF3453226B6FCCDC5DD96DF79910B667C0FDAB235449468A8F9D7D8DC3BE64F08A6. What is the value of the key used in CCMP? (5p)
- (d) Give one strong reason for which deriving PTK from PMK is favourable (instead of, for example, using PMK directly). (5p)

3. Authentication similitudes in Bluetooth and Mobile Networks

Reason about similtudes in the authentication procedure in Bluetooth and Mobile networks, more precisely **Bluetooth Classic Secure Authentication** and **EPS AKA**, respectively. For this, refer to Figures 1 and 2.

Figure 1: Bluetooth Classic Secure Auth [1]

Figure 2: EPS AKA [2]

- (a) Both procedures use a challenge-response mechanism. Name the challenge values in each procedure (refer to the names as they appear in the figures). (5p)
- (b) Explicitly name one type of attack the challenge-response mechanism mitigates/stand against and explain why is this (max.1 paragraph). (5p)
- (c) Both procedures make use of a secret key shared between the two corresponding parties. Name the two keys, one for each of the two procedures. (5p)
- (d) State if both procedures accept mutual authentication. Briefly motivate your answer (max.1 paragraph). (5p)
- [1] Padgette, J., Bahr, J., Batra, M., Holtmann, M., Smithbey, R., Chen, L., Scarfone, K. (2022). Guide to Bluetooth Security (No. NIST Special Publication (SP) 800-121 Rev. 2). National Institute of Standards and Technology.
- [2] Forsberg, D., Horn, G., Moeller, W. D., Niemi, V. (2012). LTE security. John Wiley and Sons.

TOTAL available: 60p