Heart Attack Risk Prediction

PRESENTED BY: RASHI AGRAWAL, HUNTER DAVIS, JENIQUE FAHIE AND DANIEL O'MEARA

Features:

Patient ID | Age

Sex | Cholesterol

Blood Pressure | Heart Rate

Diabetes | Family History

Smoking | Obesity

Alcohol Consumption | Exercise Hours

Per Week

Diet | Previous Heart Problems

Medication Use | Stress Level

Sedentary Hours Per Day | Income

BMI | Triglycerides

Physical Activity Days Per Week | Sleep

Hours Per Day

Country | Continent

Hemisphere

Our Dataset

HEART ATTACK RISK PREDICTION

This is a synthetic AI-generated dataset sourced from

Kaggle.com. (https://www.kaggle.com/datasets/iamsouravbanerjee/heart-attack-prediction-dataset?resource=download)

The target variable we are trying to predict is **Heart Attack Risk**.

Contains:

- 8,763 rows
- 26 columns

Blood Pressure	Heart Rate	Diabetes	Family History	Smoking	Obesity	Alcohol Consumption	Exercise Hours Per Week	Diet	Previous Heart Problems	Medication Use	Stress Level	Sedentary Hours Per Day	Income	ВМІ	Triglycerides	Physical Activity Days Per Week	Sleep Hours Per Day	Country	Continent	Hemisphere	Heart Attack Risk
141/85	101	No	No	0	1	Light	14.744881	Unhealthy	0	1	4	10.922177	94152	30.589796	374	3	4	Nigeria	Africa	Northern Hemisphere	1
137/82	89	Yes	No	0	1	Light	16.228489	Unhealthy	0	1	7	1.208610	159792	31.584511	678	0	8	Australia	Australia	Southern Hemisphere	1
138/93	86	Yes	Yes	1	0	None	6.818887	Average	0	1	4	9.514556	254952	34.711478	736	1	5	Argentina	South America	Southern Hemisphere	1
132/94	109	Yes	No	1	1	Light	18.297860	Average	1	1	6	9.015221	25229	29.022289	152	2	5	Spain	Europe	Southern Hemisphere	1
91/89	84	Yes	Yes	1	0	Moderate	10.980701	Average	0	1	4	10.020410	229179	35.966244	744	5	8	Japan	Asia	Northern Hemisphere	1

Processing the Data

Dropped unnecessary columns:

Patient ID, Country, Continent, Hemisphere, Income

Reduced the number of unique values in several columns:

- Exercise Hours Per Week, Sedentary Hours Per Day, BMI, Blood Pressure
- Split Blood Pressure values (e.g., 120/80) into two separate columns.
- Converted remaining floating-point numbers to integers.

Converted categorical columns to numeric:

 Used get_dummies() to encode categorical columns (e.g., Diet: Average, Healthy, Unhealthy), creating binary columns.

Exported cleaned Data Frame into an SQLite Database

df.nunique() Previous Heart Problems Patient ID Medication Use Age Stress Level 10 Sex Sedentary Hours Per Day 8763 Cholesterol 8615 Blood Pressure BMI 8763 Heart Rate Triglycerides 771 Diabetes Physical Activity Days Per Week 8 Family History Sleep Hours Per Day Smoking 20 Country Obesity Continent Alcohol Consumption Hemisphere Exercise Hours Per Week Heart Attack Risk Diet Age Cholesterol 22 Triglycerides 771 Heart Rate Physical Activity Days Per Week 8 Diabetes Family History Sleep Hours Per Day Heart Attack Risk Smoking Systolic Pressure 91 Obesity Alcohol Consumption Diastolic Pressure Exercise Hours Per Week Sex Female Sex Male Previous Heart Problems Diet Average Medication Use Diet Healthy Stress Level Diet Unhealthy Sedentary Hours Per Day

Method 1: Logistic Regression

Initial Model Performance - Scaled:

- Accuracy: 0.53
- Takeaway: Low recall for Class 1 (Risk Present) suggests imbalance

Tuning Method 1: SMOTE/Over Sampling

- Goal: Address class imbalance by oversampling the minority class (1)
- Effect on Accuracy: No improvement (remained at 0.53)
- Takeaway: SMOTE alone did not improve model performance, indicating imbalance may not be the primary issue

Tuning Method 2: Feature Selection (RFE)

- Approach: Retained only important features based on RFE
- Effect on Accuracy: Improved to 0.64
- Takeaway: Higher accuracy but poor ability to predict minority class
 - Model became too biased towards Class 0, suggesting feature selection removed key predictors for Class 1

Logistic Regression Accuracy: 0.53									
Classification Report: precision recall f1-score support									
0 1	0.64 0.35	0.61 0.38	0.63 0.37	1406 785					
accuracy macro avg weighted avg	0.50 0.54	0.50 0.53	0.53 0.50 0.53	2191 2191 2191					

Logistic Regression Accuracy after SMOTE: 0.53 Classification Report:									
	precision	recall	f1-score	support					
0	0.64	0.61	0.63	1406					
1	0.35	0.38	0.37	785					
accuracy			0.53	2191					
macro avg	0.50	0.50	0.50	2191					
weighted avg	0.54	0.53	0.53	2191					

Accuracy after feature selection: 0.64 Classification Report:									
Ctd55111cdc10	precision	recall	f1-score	support					
0 1	0.64 0.00	1.00 0.00	0.78 0.00	1406 785					
accuracy macro avg weighted avg	0.32 0.41	0.50 0.64	0.64 0.39 0.50	2191 2191 2191					

Method 2: Random Forrest

Each decision tree in the Random Forest is trained on a subset of the data and makes predictions independently. For classification, the final prediction is based on majority voting among the trees, while for regression, the predictions are averaged.


```
# StandardIze tne teatures
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Initialize the Random Forest model ( good for classification tasks)
model = RandomForestClassifier(n_estimators=100, random_state=42)
```

Accuracy: 0.64

Steps Taken to Improve Random Forest Model

Training model with n_estimators=100 Accuracy: 0.64

Training model with n_estimators=500 Accuracy: 0.64

Training model with n_estimators=1000 Accuracy: 0.64

```
# Experiment with different values for max_features
for max_features in ['sqrt', 'log2', 0.5, 1, None]:
    print(f"Training model with max_features={max_features}")

# Initialize the Random Forest model with different max_features
    model = RandomForestClassifier(n_estimators=100, max_features=max_features, random_state=42)
```

Training model with max_features=0.5 Accuracy: 0.63

Training model with max_features=1
Accuracy: 0.64

Training model with max_features=sqrt Accuracy: 0.64 Training model with max_features=log2 Accuracy: 0.64

Training model with max_features=None Accuracy: 0.63

Random Forest Model Improvement

Training model with max_depth=500

Accuracy: 0.64

Training model with max_depth=100

Accuracy: 0.64

Training model with max_depth=10

Accuracy: 0.64

Training model with max_depth=50

Accuracy: 0.63

Method 3: XGBoost

DEPENDENCIES

- 1 \vee import pandas as pd
- 2 import numpy as np
- 3 from sklearn.model_selection import train_test_split
- 4 from sklearn.preprocessing import StandardScaler
- 5 from xgboost import XGBClassifier
- 6 from sklearn.metrics import accuracy_score

XGBOOST KNOWN AS EXTREME GRADIENT BOOSTING: A MACHINE LEARNING LIBRARY THAT USES GRADIENT BOOSTED DECISION TREES, A SUPERVISED LEARNING BOOSTING ALGORITHM THAT MAKES USE OF GRADIENT DESCENT. IT IS KNOWN FOR ITS SPEED, EFFICIENCY AND ABILITY TO SCALE WELL WITH LARGE DATASETS

Results:

\$ python exectest.py Model Accuracy: 61.61%

Optimized Model Accuracy: 64.18%

Best Parameters: {'colsample_bytree': 0.6, 'learning_rate': 0.1, 'max_depth': 1, 'n_estimators': 200, 'subsample': 0.8}

GRID SEARCH IS USED TO FIND THE BEST COMBINATION OF **HYPERPARAMETERS**.

- TRIES DIFFERENT VALUES FOR:
 - N_ESTIMATORS (<u>NUMBER OF TREES</u>)
 - LEARNING_RATE (<u>ADJUSTS STEP SIZE</u>)
 - MAX_DEPTH (TREE DEPTH)
 - SUBSAMPLE (PERCENTAGE OF SAMPLES USED PER TREE)
 - COLSAMPLE_BYTREE (<u>PERCENTAGE OF FEATURES USED</u> <u>PER SPLIT</u>)

THE BEST MODEL IS SELECTED BASED ON HIGHEST ACCURACY.

```
# Hyperparameter tuning using Grid Search
from sklearn.model_selection import GridSearchCV
```

```
param_grid = {
    'n_estimators': [50, 100, 150, 200, 300],
    'learning_rate': [0.05, 0.1, .2],
    'max_depth': [1, 2, 4, 5, 6],
    'subsample': [.2, .5, 0.8, 1.0],
    'colsample_bytree': [.3, .6, 0.8, 1.0]
}
```

Thank you for your time!