Embeddings and Encodings

Preprocessing for LLM Fine Tuning

Attention is all you need

Bio

Name: Jayanthi Suryanarayana

https://www.linkedin.com/in/jayanthi-suryanarayana-2313841/

- Principal Al engineer with expertise in building transactional, data, ML engineering, LLM enterprise solutions.
- Curious and constantly learning in this fast evolving AI space.
- Hold an electronics engineering degree.

Built data platforms for enterprise, Passionate about the use of **synthetic data** to enable people who work with data (analysts, engineers, scientists anyone who wants to get value out of data)

Activities I enjoy:

Time with family, cooking and practicing yoga

Agenda

- Attention Here Please- Solve some math problems
- AI Historical understanding
- Default algorithm and architecture
- Concepts Embedding and Encodings
- Development paradigms
- Framework Emerging architecture for LLM based solutions
- ❖ SENTENCE TRANSFORMER
- Questions
- Hands on Build a Question Answer Application

High School Math Student

Cosine similarity and Dot Product _____

Homework - Math Problem Set 9th - Dot product

Find the dot product between two vectors:

Problem #1 : Vec A = [3,4,5] Vec B = [3,4,5]

Problem #2 : Vec A = [3,4,5] Vec B = [5,5,-7]

Hint: Use this calculator: https://www.omnicalculator.com/math/dot-product

Homework - Math Problem Set 9th - Dot product

Find the dot product between two vectors:

Problem #1 : Vec A = [3,4,5] Vec B = [3,4,5]

3*3 + 4*4 + 5*5 = 9+16+25 = 50 hint : angle between the vector = 0

Problem #2 : Vec A = [3,4,5] Vec B = [5,5,-7]

3*5+4*5+5*-7=15+20-35=0 hint : Orthogonal vectors

Hint: Use this calculator: https://www.omnicalculator.com/math/dot-product

Homework - Math Problem Set - Cosine similarity

Find the cosine similarity between two vectors: $a.b/|a|^*|b|$

Problem #1 : Vec A = [3,4,5] Vec B = [5,5,-7]

Problem #2 : Vec A = [3,4,5] Vec B = [-3,-4,-5]

Problem #3 : Vec A = [3,4,5] Vec B = [3,4,5]

Hint: Use this calculator: https://www.omnicalculator.com/math/cosine-similarity

Curious Grandma

What is chatGPT and AI

Al - when did it start - a timeline view

State of the art....

Nonlinear function and Gen Al architecture

Default Algorithm - Nonlinear Function approximation

Transformer architecture: Attention is all you need

Embedding vs Encoding

Embeddings are the A.I-native way to represent any kind of data, making them the perfect fit for working with all kinds of A.I-powered tools and algorithms. They can represent text, images, and soon audio and video. There are many options for creating embeddings, whether locally using an installed library, or by calling an API.

A.I Native way = Numbers the vector representation in the high school math.

Encoding

Transformation but has reverse process to decode

e.g. one hot encoding

Sometimes people use interchangeably, but one should understand the context

Industrial strength Embeddings Applications

Company	Application
Uber	Powering Recommendation Engine - eaters and stores
	Two tower embeddings
Google	Search - multimodal
Meta	Social Search

Al Tasks

Information retrieval

Clustering

Classification, requiring minimal additional feature engineering

Semantic Search, nn search

Multi modal applications

RAGs - Retrieval Augmented Generation

Multimodal approach convergence

Vision - CNN

Language - RNN era then transformer era

Default algorithm for any function approximation - Deep Learning

Default Generative architecture - Transformer architecture

What is common: Learning representation as number for the algorithm to process

Key Takeaways thus far

- Attention is all you need :
 - Common Architecture and Common Compute framework
- Multi model convergence:
 - Good learning representation of real world in numbers EMBEDDINGS
- New representation and new way to retrieve, need to build the ecosystem

Developer

— understand evolving paradigms

Programming Paradigms - Software 1.0 and 2.0

The "classical stack" of **Software 1.0** is what we're all familiar with — it is written in languages such as Python, C++, etc. It consists of explicit instructions to the computer written by a programmer. By writing each line of code, the programmer identifies a specific point in program space with some desirable behavior.

In contrast, **Software 2.0** is written in much more abstract, human unfriendly language, such as the weights of a neural network. No human is involved in writing this code because there are a lot of weights (typical networks might have millions), and coding directly in weights is kind of hard (I tried).

Programming Paradigm Software 2.0

Andrej Karpathy:

www.youtube.com/watch?v=y57wwucbXR8

https://karpathy.medium.com/software-2-0-a64152b37c35

Software 1.0 : Explicit - Code only

Software 2.0: Abstract - Code + Data (Machine Learning mostly deep learning)

most of the active "software development" takes the form of curating, growing, massaging and cleaning labeled datasets. This is fundamentally altering the programming paradigm

2.0

Machine Learning Systems - Software 2.0

Data Centric Al

Andrew Ng:

Momentum Since couple of years

Data-Centric Al is the discipline of systematically engineering the data used to build an Al system.

https://landing.ai/data-centric-ai/#:~:text=Data%2DCentric%20Al%20is%20the,on%20data%20instead%20of%20code.

Data Centric AI - Software 2.0

New Programming Language -- English is that all?

Post

See new posts

Andrej Karpathy

@karpathy

The hottest new programming language is English

2:14 PM · Jan 24, 2023

Software Enterprise Development - Software 1.0 - 2.x

Application Category	Paradigm	Ownership
Transactional/Fullstack	1.0	Code
Traditional ML apps	2.0	Code and Data (Train and inference time)
Prompt Engineered	English	Inference time data
RAG	2.0 for embedding 1.0 for CRUD of embeddings	New store, building Inference time data
Fine Tuning	2.x	Train time data

Al Engineer

building state of the art Al applications

Emerging LLM App Stack

Gray boxes show key components of the stack, with leading tools/systems listed Arrows show the flow of data through the stack - - - Contextual data provided by app developers to condition LLM outputs Prompts and few-shot examples that are sent to the LLM Queries submitted by users Output returned to users

Credit: https://a16z.com/emerging-architectures-for-llm-applications/

Embeddings - Create embedding model

https://keras.io/api/layers/core_layers/embedding/

Persisting Embeddings

New Storage Type : Vector stores

Capability:

Store embedding

Retrieve them with various techniques and performance suited for applications (similarity search, distance search etc.)

e.g. Budding ecosystem Chromadb, pinecone and a lot of others in variety of models

Embeddings Retrieval - Vector search techniques

Distance Based

Similarity

Other

- L1 distance,
- L2 distance
- Tanimoto
- Jaccard distance

- Cosine similarity
- Floating point vector similarity metrics
- Binary vector similarity metrics

- Space partitioning
- k-dimensional trees, inverted file index

Storage and new retrieval framework for representations

Representation Type	Storage	Retrieval mechanism
Rows and columns - Structured	RDBMS	SQL - Set Theory
Columnar,key value	NOSQL (cassandra,HBASE,redis)	CQL/SQL Wrappers/APIs(set theory and custom ops)
Relationships	Graph	cypher,SPARQL (predicate logic)
Inverted index	Bag of Words - Elastic	APIs keyword search
Embeddings	Vector DB	Semantic search (Cosine similarity, distance measures)

Embedding Models - what to look for

It depends on the application. But generally...

Language: Words vs Sentences vs documents

Size of the model

Hosting models and costs

Embedding length

Architecture

Explore Embedding models

Sentence Transformer

https://www.sbert.net/docs/pretrained models.html#model-overview

Al's Share Of US Startup Funding Doubled In 2023

- Source

https://news.crunchbase.com/ai-robotics/us-startup-funding-doubled-openai-anthropic-2023/

New programming paradigm, New representation, New retrieval mechanisms....

- Vector Stores
- Embeddings Multi Model
- LLMs
- Fine tuning
- Inference management RAGs, Prompt Engineering

Resources/References

Industrial strength embedding papers:

https://research.facebook.com/publications/embedding-based-retrieval-in-facebook-search/

https://cloud.google.com/blog/topics/developers-practitioners/meet-ais-multit ool-vector-embeddings

https://www.uber.com/blog/innovative-recommendation-applications-using-two-tower-embeddings/

https://engineering.linkedin.com/blog/2023/how-linkedin-is-using-embeddings-to-up-its-match-game-for-job-se

My inspiration - Women in Al pioneering to modern - 1852 - current

- The Dawn of Computing and AI: Ada Lovelace
- The Emergence of AI: Elaine Rich
- The Advent of Social Robotics: Cynthia Breazeal
- Privacy-Preserving Data Analysis: Cynthia Dwork
- Computer Vision Dr. Fei-Fei Li, a computer science professor at Stanford
- Ethical AI Timnit Gebru
- Open Al Mira Murati
 - o and many many more......

Hands on Workshop

Build a QA System - Vanila and with RAG

Building a Q/A application - Part I

Building a Q/A application RAG - Part II

Workshop

Build a QA app

Go to Collab

Follow along:

https://github.com/jaynetra/AppliedAlConf2023