بسم الله الرحمن الرحيم

ساختار پایگاه داده SQL / NoSQL ابرای داده های IoT

پارت سوم

معماریهای هیبریدی

معماری های هیبریدی به ترکیب پایگاه های داده SQL و NoSQL اشاره دارند.

کاربرد ها:

- 💠 SQL برای دادههای ساختاریافته (مثل تراکنشها و متاداده)
- ♦ NoSQL برای دادههای غیرساختاریافته (مثل فایلهای لاگ و محتوای شبکههای اجتماعی)

استراتژیهای یکپارچهسازی داده

همگامسازی و انتقال دادهها بین پایگاههای داده SQL و NoSQL.

مزايا:

اطمینان از سازگاری و انسجام دادهها در سراسر سیستم.

روش های یکپارچه سازی داده

1. ETL (Extract, Transform, Load):

دادهها از SQL استخراج، به فرمت مناسب تبدیل و به NoSQL بارگذاری می شوند.

2. CDC (Change Data Capture):

تغییرات داده ها به صورت بلادرنگ از SQL به NoSQL منتقل می شوند.

ملاحظات پیاده سازی

- مدلسازی داده: طراحی مناسب برای هر نوع پایگاه داده.
- بهینه سازی پرس و جو: استفاده از ایند کس ها و بهینه سازی ساختار داده.

تحلیل مقایسهای پایگاههای داده

SQL	NoSQL
Stands for Structured Query Language	Stands for Not Only SQL
Relational database management system (RDBMS)	Non-relational database management system
Suitable for structured data with predefined schema	Suitable for unstructured and semi-structured data
Data is stored in tables with columns and rows	Data is stored in collections or documents
Follows ACID properties (Atomicity, Consistency, Isolation, Durability) for transaction management	Does not necessarily follow ACID properties
Supports JOIN and complex queries	Does not support JOIN and complex queries
Uses normalized data structure	Uses denormalized data structure
Requires vertical scaling to handle large volumes of data	Horizontal scaling is possible to handle large volumes of data
Examples: MySQL, PostgreSQL, Oracle, SQL Server, Microsoft SQL Server	Examples: MongoDB, Cassandra, Couchbase, Amazon DynamoDB, Redis

ملاحظات امنیت و حریم خصوصی

رمز گذاری داده ها: استفاده از رمز گذاری متقارن و نامتقارن برای محافظت از داده ها.

کنترل دسترسی: استفاده از مکانیزمهای کنترل دسترسی مبتنی بر نقش و ویژگی.

تكنيكهاى حفظ حريم خصوصى: ناشناس سازى داده، شبه نام گذارى و حريم خصوصى تفاضلى.

ارزیابی عملکرد و نتایج تجربی

اهمیت ارزیابی عملکرد

ارزیابی کارایی، مقیاس پذیری و قابلیت اطمینان پایگاههای داده.

روشهای ارزیابی

راهاندازیهای تجربی شامل شبیهسازی بارهای کاری واقعی.

نتیجه گیری

چالشها و فرصتها

- ♦ مدیریت دادههای حجیم و متنوع در محیطهای .IoT
- استفاده از معماریهای هیبریدی برای پاسخگویی به نیازهای متنوع.
 - 💠 آینده پژوهی
 - ♦ اکتشاف تکنیکهای مدیریت داده پیشرفته برای محیطهای IoT.