GEOMETRÍA DIFERENCIAL – 1ER CUATRIMESTRE 2017

PRÁCTICA 1: VARIEDADES Y FUNCIONES DIFERENCIABLES

Generalidades

- 1 Probar que los siguientes conjuntos tienen una estructura de variedad diferencial, exhibir un atlas y hallar la dimensión en cada caso.
 - **a.** Un espacio vectorial V sobre \mathbb{R} .
 - **b.** La esfera $S^n \subseteq \mathbb{R}^{n+1}$.
 - **c.** El espacio proyectivo $\mathbb{P}^n(\mathbb{R}) = S^n / \sim$, donde $x \sim y$ si x = -y.
 - **d.** El toro $T_n = S^1 \times \cdots \times S^1$.
 - **e.** El cilindro $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$
 - **f.** El grupo general lineal $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : \det(A) \neq 0\}.$
 - **g.** El grupo especial lineal $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : det(A) = 1\}.$
 - **h.** El grupo ortogonal $O_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : A \cdot A^{\intercal} = 1\}.$
 - **i.** El grupo especial ortogonal $SO_n(\mathbb{R}) = \{A \in O_n(\mathbb{R}) : det(A) = 1\}.$
- **2** Sea M una variedad diferencial de dimensión d y sea $U \subseteq M$ abierto.
 - **a.** Probar que U hereda una estructura de variedad con $\dim(U) = \dim(M)$ y que la inclusión $U \hookrightarrow M$ es diferenciable para esa estructura.
 - **b.** Probar que un subconjunto $S \subseteq M$ (con la topología subespacio) es una variedad de dimensión d si y sólo si S es abierto en M.
- Sea M una variedad diferencial conexa. Probar que para cada par de puntos $p, q \in M$ existe un camino suave $c : [0,1] \to M$ que los une (es decir, c es una función continua en [0,1], diferenciable en (0,1), y c(0) = p, c(1) = q).
- Sean M,N variedades diferenciales. Probar que una función $f:M\to N$ es diferenciable si y sólo si $g\circ f:N\to\mathbb{R}$ es diferenciable para toda $g:N\to\mathbb{R}$ diferenciable.
- Sea M una variedad diferencial y $\pi: S^n \to \mathbb{P}^n(\mathbb{R})$ la proyección canónica. Probar que $f: \mathbb{P}^n(\mathbb{R}) \to M$ es diferenciable si y sólo si $f \circ p: S^n \to M$ es diferenciable. Comparar el rango de f con el de $f \circ p$.
- 6 Sea M una variedad diferencial de dimensión d y (U, ϕ) una carta de M.
 - **a.** Probar que si $V\subseteq U$ es un abierto, entonces $(V,\phi|_V)$ es una carta compatible de M
 - **b.** Probar que si $f:\phi(U)\to V\subseteq\mathbb{R}^d$ es un difeomorfismo, $(U,f\circ\phi)$ es una carta compatible de M.
- 7 Sea *M* una variedad diferencial de dimensión *d*.
 - **a.** Probar que M admite un atlas $\mathscr{A} = \{(U_i, \phi_i) : i \in I\}$ tal que para todo $i \in I$ se tiene que $\phi_i(U_i)$ es un abierto acotado de \mathbb{R}^d .
 - **b.** Probar que M admite un atlas $\mathscr{B} = \{(V_j, \psi_j) : j \in J\}$ tal que para todo $j \in J$ se tiene que $\psi_j(V_i) = \mathbb{R}^d$.

- 8 Considerar en \mathbb{R} las cartas (\mathbb{R} , id) y (\mathbb{R} , ϕ) donde $\phi(t) = t^3$. Probar que las dos cartas no son compatibles pero que las variedades definidas por el atlas formado por cada una de las cartas son difeomorfas.
- 9 Sea M la imagen de la función $f:(0,2\pi)\to\mathbb{R}^2$ donde $f(t)=(\sin(t),\sin(2t))$ con la estructura inducida por la carta (M,f^{-1}) . Probar que la función $F:M\to M$ definida por F(x,y)=(x,-y) no es diferenciable.

- **10** Probar que $SO_3(\mathbb{R})$ es difeomorfo al espacio proyectivo $\mathbb{P}^3(\mathbb{R})$.
- 11 Probar que \mathbb{R} y S^1 son las únicas variedades diferenciales conexas de dimensión 1 salvo difeomorfismo.

Construcción de variedades

- **12 Preimagen de valor regular:** Sean $U \subseteq \mathbb{R}^n$ un abierto y $F: U \to \mathbb{R}^m$ ($n \ge m$) una función diferenciable tal que $c \in \mathbb{R}^m$ es un valor regular de F (es decir, para cada punto $x \in U$ con F(x) = c el rango de DF(x) es m). Probar que $M = F^{-1}(c)$ es una variedad de dimensión n m y la inclusión $M \hookrightarrow U$ es diferenciable.
- **13 Producto cartesiano:** Sean *M* y *N* variedades diferenciales.
 - **a.** Probar que el producto cartesiano $M \times N$ es naturalmente una variedad diferencial con $\dim(M \times N) = \dim(M) + \dim(N)$ y que las proyecciones canónicas $\pi_1 : M \times N \to M$ y $\pi_2 : M \times N \to N$ son diferenciables.
 - **b.** El producto de variedades diferenciales está caracterizado por la siguiente *propiedad universal*: Si P es una variedad diferencial junto con funciones diferenciables $p_1: P \to M, p_2: P \to N$ entonces existe una única función diferenciable $f: P \to M \times N$ tal que $\pi_1 \circ f = p_1$ y $\pi_2 \circ f = p_2$.
- **Pegado de variedades:** Sea $(M_i)_{i \in I}$ una familia numerable de variedades diferenciales, todas de dimensión n. Supongamos que para cada par $i \neq j$ están dados: dos abiertos $U_{ij} \subseteq M_i$ y $U_{ji} \subseteq M_j$, y un difeomorfismo $f_{ij}: U_{ij} \to U_{ji}$ que no puede extenderse continuamente a ningún punto de ∂U_{ij} , tales que se satisfacen las siguientes propiedades:
 - $\bullet f_{ji} = f_{ij}^{-1}.$
 - $\bullet f_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}.$
 - $f_{ik} = f_{jk} \circ f_{ij}$ en $U_{ij} \cap U_{ik}$.

Mostrar que existe una variedad diferencial M y morfismos $\psi_i: M_i \to M$ tales que ψ_i es un difeomorfismo entre M_i y un abierto de M y

- **a.** los abiertos $\psi_i(M_i)$ cubren M,
- **b.** $\psi_i(U_{ij}) = \psi_i(M_i) \cap \psi_j(M_j)$,
- **c.** $\psi_i = \psi_j \circ f_{ij}$ en U_{ij} .

Suma conexa de variedades: Sean M y N dos variedades conexas de la misma dimensión d. Se consideran cartas (U,ϕ) y (V,ψ) de M y N respectivamente tales que $\phi(U) = \psi(V) = B(0,1)$ y pongamos $p = \phi^{-1}(0)$ y $q = \psi^{-1}(0)$. Definimos una nueva variedad M#N como el pegado de $M \setminus \{p\}$ y $N \setminus \{q\}$ por los abiertos U y V a través del difeomorfismo $f: U \to V$ determinado por la ecuación

$$\psi f \phi^{-1}(x) = \frac{1 - \|x\|}{\|x\|} x \ \forall x \in B(0, 1) \setminus \{0\}.$$

La variedad *M*#*N* se llama la suma conexa de *M* y *N*. Convencerse de que esta construcción no depende de las cartas utilizadas.

Probar que $M#S^d$ es difeomorfa a M y que la operación # es conmutativa y asociativa.

Observación: Se puede probar que cualquier variedad compacta de dimensión 2 es difeomorfa a la esfera S^2 , a la suma de n toros $T\#\cdots\#T$ o a la suma de n planos proyectivos $\mathbb{P}(\mathbb{R})^2\#\cdots\#\mathbb{P}(\mathbb{R})^2$. Es más, estas variedades no son homeomorfas entre sí.

- **16 Cociente por la acción de un grupo:** Sea M una variedad diferencial y G un grupo que actúa en M por difeomorfismos: para cada $g \in G$ se tiene $\phi_g : M \to M$ difeomorfismo de modo que $\phi_{1_G} = 1_M$ y $\phi_g \phi_h = \phi_{gh}$. Supongamos además que la acción es propiamente discontinua (es decir, todo $p \in M$ está contenido en un abierto U tal que $\phi_g(U) \cap U = \emptyset$ para todo $g \neq 1_G$) y para todos $p, q \in M$ en distintas órbitas existen abiertos U y V que los contienen respectivamente tales que $\phi_g(U) \cap V = \emptyset$ para todo $g \in G$.
 - **a.** Probar que el conjunto de órbitas M/G es una variedad diferencial con la estructura inducida por M, la proyección canónica $M \to M/G$ es diferenciable y $\dim(M) = \dim(M/G)$.
 - **b.** Expresar el espacio proyectivo $\mathbb{P}^n(\mathbb{R})$ y el toro n-dimensional T_n como cocientes S^n/G y \mathbb{R}^n/H para grupos y acciones convenientes.

Álgebras de funciones

- 17 Probar que $\mathscr{C}^{\infty}(M,\mathbb{R}) = \{f: M \to \mathbb{R} : f \text{ es diferenciable}\}$ es un anillo con la suma y el producto punto a punto. Probar que si $g: M \to N$ es diferenciable, entonces $g^*: \mathscr{C}^{\infty}(N,\mathbb{R}) \to \mathscr{C}^{\infty}(M,\mathbb{R})$ es un morfismo de anillos.
- **18** Dadas *M* y *N* variedades diferenciales compactas, probar que:
 - **a.** Los ideales maximales de $\mathscr{C}^{\infty}(M,\mathbb{R})$ son de la forma

$$\mathfrak{m}_p=\{f\in\mathscr{C}^\infty(M,\mathbb{R}):f(p)=0\}.$$

b. Todo morfismo de \mathbb{R} -álgebras $\mathscr{C}^{\infty}(N,\mathbb{R}) \to \mathscr{C}^{\infty}(M,\mathbb{R})$ viene de una función diferenciable $M \to N$.

Observación: Por **a.** podemos recuperar la variedad M como conjunto a partir de $\mathscr{C}^{\infty}(M,\mathbb{R})$, por **b.** también recuperamos su estructura diferenciable. ¿Qué pasa si M y N no son compactas? ¿Vale **b.** si sólo pedimos morfismo de anillos?

- 19 Probar que el conjunto $\mathscr{D}_p(M)$ de gérmenes de funciones diferenciables a valores reales alrededor de un punto $p \in M$ es un anillo y si $g : M \to N$ es diferenciable entonces $g^* : \mathscr{D}_{g(p)}(N) \to \mathscr{D}_p(M)$ es un morfismo de anillos.
- 20 Dado $p \in M$ probar que la aplicación cociente $f \mapsto \overline{f}$ da un isomorfismo de \mathbb{R} -álgebras $\mathscr{C}^{\infty}(M,\mathbb{R})/\mathfrak{m}^0_p \to \mathscr{D}_p(M)$

donde $\mathfrak{m}_p^0 = \{ f \in \mathscr{C}^\infty(M, \mathbb{R}) : f \text{ se anula en un entorno de } p \}.$

Observación: Las \mathbb{R} -álgebras $\mathcal{D}_p(M)$ son anillos locales cuyo único ideal maximal son los gérmenes de funciones que se anulan en p. Más aún, $\mathcal{D}_p(M)$ es la localización de $\mathscr{C}^{\infty}(M,\mathbb{R})$ en el complemento del ideal maximal \mathfrak{m}_p .