

INFORME 13 LABORATORIO: CAVITACIÓN

Estudiante:

Teresa Almonacid F

Alumna Ing. Civil Mecánica

Docentes:

Cristóbal Galleguillos K.

Tomás Herrera M.

Escuela Ingeniería Mecánica PUCV

11 de diciembre del 2020

Contenido

1.	INTRODUCCIÓN	3
1.1.	OBJETIVO DEL ENSAYO	3
2.	INSTRUMENTOS UTILIZADOS	4
3.	TABLA VALORES MEDIDOS:	5
4.	FÓRMULAS	6
4.1.	DATOS CALCULADOS	7
4.2.	GRÁFICOS	9
4.3.	GRÁFICO CAUDAL V/S ALTURA V/S VELOCIDAD	9
4.3.1	PREGUNTAS	11
4.4.	GRÁFICO DE CNSPD V/S POTENCIA ELÉCTRICA V/S RENDIMIENTO V/S ALTURA	12
4.4.1	PREGUNTAS	14
4.5.	GRÁFICO DE CAUDAL V/S CNSPD	15
4.5.1	PREGUNTA	17
CON	CLUSIÓN	18

1. INTRODUCCIÓN

El siguiente informe se abordará el comportamiento de la bomba centrífuga Leader M18 en condiciones de cavitación.

1.1. OBJETIVO DEL ENSAYO

- Determinar la columna neta de succión positiva disponible y requerida
- Calcular valores más relevantes de este ensayo
- Trazar curvas características de la cavitación

2. INSTRUMENTOS UTILIZADOS

Los instrumentos utilizados para este ensayo son los mismos que se detallaron en el ensayo de curva característica de la bomba. A continuación, se presenta un esquema de la instalación donde se presentan los instrumentos utilizados.

Ilustración 1, Esquema instalación de la bomba

3. TABLA VALORES MEDIDOS:

Los datos conseguidos en el ensayo fueron los siguientes:

Tabla 1

			VAL	ORES MED	IDOS 2900	(curva H	vs Q)					
	n cpax cpdx nx pax pdx ∆hx Fx T											
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]		
1	2900	0,115	0,165	2899	91,8	5,6	140	1,19	18	757,1		
2	2900	0,115	0,165	2899	93,8	10,2	128	1,27	18	757,1		
3	2900	0,115	0,165	2898	96,3	14,6	115	1,34	18	757,1		
4	2900	0,115	0,165	2899	98,6	19,4	101	1,42	18	757,1		
5	2900	0,115	0,165	2898	100,8	24	87	1,48	18	757,1		
6	2900	0,115	0,165	2897	103,2	28,5	74	1,53	18	757,1		
7	2900	0,115	0,165	2899	104,8	32,2	63	1,53	18	757,1		
8	2900	0,115	0,165	2896	107,3	37,7	50	1,57	18	757,1		
9	2900	0,115	0,165	2897	109,7	42,2	36	1,53	18	757,1		
10	2900	0,115	0,165	2898	112,2	46,5	22	1,45	18	757,1		
11	2900	0,115	0,165	2899	115,2	50,3	9	1,21	19	757,1		
12	2900	0,115	0,165	2900	121,1	54,3	0	0,82	19	757,1		

Tabla 2

	PUNTO 1														
	n cpax cpdx nx pax pdx ∆hx Fx T														
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,1					
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,1					
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,1					
4	2900	0,115	0,165	2913	53,5	5,2	105	1,38	16	757,1					
5	2900	0,115	0,165	2916	50,4	5	98	1,35	16	757,1					
6	2900	0,115	0,165	2917	39,4	4,9	89	1,4	16,5	757,1					
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,1					

Tabla 3

	PUNTO 2														
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0,115	0,165	2917	102,3	27,8	78	1,52	17	757,1					
2	2900	0,115	0,165	2917	74	20,5	78	1,52	17	757,1					
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,1					
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,1					
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,1					
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,1					
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,1					

Tabla 4

	PUNTO 3														
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]					
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,1					
2	2900	0,115	0,165	2917	86,1	36,8	35	1,55	18	757,1					
3	2900	0,115	0,165	2918	26,8	4	35	1,28	18	757,1					
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1					
5	2900	0,115	0,165	2917	29,3	3,6	31	1,2	18,5	757,1					

4. FÓRMULAS

Caudal corregido:

$$Q = Q_x * \frac{n}{n_x}$$
 [m3/s] Ecuación 5.1

Donde: Qx= caudal

Presión aspiración:

$$p_{ax} = 0.1 * pax\% - 10 - \frac{cpax}{1000}$$
 mca Ecuación 5.2

Donde: cpax=115 mm

Presión de descarga:

$$pdx = 0.4 * pdx\% + \frac{cpdx}{1000}$$
 mca Ecuación 5.3

Donde: cpdx=165 mm

Altura:

$$H_x = -pax + pdx$$
 m_{ca} Ecuación 5.4

Altura corregida:

$$H = H_{\chi} * \left(\frac{n}{n_{\chi}}\right)^2$$
 m_{ca} Ecuación 5.5

Potencia eléctrica:

$$N_{Elec} = 0.007355 * F_x * n_x kW$$
 Ecuación 5.6

Potencia eléctrica corregida

Ne=
$$N_{ex} * \left(\frac{n}{n_x}\right)^3$$
 kW Ecuación 5.7

Potencia hidráulica:

$$N_h = \gamma * Q * H kW$$
 Ecuación 5.8

Donde: γ: peso específico del agua N/m3

Rendimiento global:

$$\eta_{gl} = \frac{N_h}{N_{Elec}} * 100 \%$$
 Ecuación 5.9

Velocidad:

$$V = \frac{4*Q}{3600*\pi D_A^2}$$
 m/s Ecuación 5.10

Donde D_A=0,1023 m

Columna neta de succión positiva disponible:

$$CNSPD = pax + \frac{13,54*P_{atm}}{1000} + \frac{V^2}{2*g} - Pv \text{ m}_{ca}$$
 Ecuación 5.11

Donde: Pv1= presión de vapor del líquido bombeado en [mca]

Columna neta de succión positiva requerida:

$$CNSPR = CNSPD_{Critica}$$
 Ecuación 5.12

4.1. DATOS CALCULADOS

Los datos se calcularon en base a las ecuaciones mostradas en el apartado anterior.

Tabla 5

	VALORES CALCULADOS 2900 (curva H vs Q)														
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	V	CNSPD	CNSPR			
m3/s	m3/s	mca	mca	mca	mca	kW	kW	kW	-	m/s	mca	mca			
0,03401	0,03402173	-0,935	2,405	3,34	3,34230464	2,53733526	2,5399619	1,11436772	43,873403%	4,13918908	9,97863969	10,8145			
0,031102	0,03111273	-0,735	4,245	4,98	4,98343626	2,70791242	2,71071564	1,51947334	56,05432%	3,78527077	10,0356931	10,8145			
0,02563	0,02564769	-0,485	6,005	6,49	6,49896099	2,85618186	2,86209936	1,63349658	57,073371%	3,12037704	10,0516706	10,8145			
0,02563	0,02563884	-0,255	7,925	8,18	8,1856443	3,02774459	3,0308789	2,05673024	67,859202%	3,11930068	10,2813283	10,8145			
0,02476	0,02477709	-0,035	9,765	9,8	9,81353124	3,15458892	3,16112467	2,38287709	75,381%	3,0144571	10,4685513	10,8145			
0,02369	0,02371453	0,205	11,565	11,36	11,38354	3,26003756	3,27017588	2,64556219	80,899691%	2,88518333	10,6696793	10,8145			
0,02328	0,02328803	0,365	13,045	12,68	12,6887494	3,26228819	3,26566529	2,8958606	88,675977%	2,83329379	10,8145555	10,8145			
0,02248	0,02251105	0,615	15,245	14,63	14,6704423	3,34411256	3,35798853	3,23642114	96,379756%	2,73876392	8,53770909	10,8145			
0,02163	0,0216524	0,855	17,045	16,19	16,2235486	3,26003756	3,77017588	3,44253173	91,3096%	2,63429783	8,74910038	10,8145			
0,02076	0,02077433	1,105	18,765	17,66	17,6843838	3,09064455	3,99704782	3,60033551	90,0749%	2,52746888	8,97099507	10,8145			
0,0062	0,00620214	1,405	20,285	18,88	18,8930274	2,57997955	2,58265033	1,14833632	44,463484%	0,75457137	8,97442418	10,8145			
0	0	1,995	21,885	19,89	19,89	1,749019	1,749019	0	0%	0	7,53540389	10,8145			

¹ Valor sacado de las tablas termodinámicas del Cengel, entrando a la temperatura del ensayo.

Tabla 6

	CALCULOS PUNTO 1														
Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ηgl	V	CNSPD	CNSPR			
m3/s	m3/s	mca	mca	mca	mca	kW	kW	kW	-	m/s	mca	mca			
0,025876	0,02580481	-0,375	7,205	7,58	7,53835173	2,9943676	2,96972272	1,90635251	64,192946%	3,13949351	10,1936013	6,75222			
0,025876	0,02576937	-2,165	5,285	7,45	7,38872541	2,9984864	2,96156975	1,8659473	63,005347%	3,13518102	8,40222208	6,75222			
0,025876	0,02576937	-3,815	3,605	7,42	7,35897216	2,9984864	2,96156975	1,85843341	62,751634%	3,13518102	6,75222208	6,75222			
0,025876	0,02576052	-4,765	2,245	7,01	6,94757181	2,95666587	2,91725765	1,75393614	60,122771%	3,13410475	5,80187817	6,75222			
0,02544	0,02530041	-5,075	2,165	7,24	7,16076667	2,8953693	2,84796993	1,77546937	62,341577%	3,07812631	5,47415386	6,75222			
0,02489	0,02474494	-6,175	2,125	8,3	8,20353868	3,0036349	2,95142566	1,98936178	67,403418%	3,01054634	4,33908045	6,75222			
0,0243739	0,02424016	-6,495	2,045	8,54	8,44653969	3,0026052	2,9534503	2,00650574	67,937684%	2,94913297	4,00042581	6,75222			

Tabla 7

	CALCULOS PUNTO 2														
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	V	CNSPD	CNSPR			
m3/s	m3/s	mca	mca	mca	mca	kW	kW	kW	-	m/s	mca	mca			
0,0242123	0,02407119	0,115	11,285	11,17	11,040184	3,26108932	3,204405	2,60435391	81,274181%	2,92857578	10,6042673	7,77426			
0,0242123	0,02407119	-2,715	8,365	11,08	10,9512299	3,26108932	3,204405	2,58336986	80,619331%	2,92857578	7,77426734	7,77426			
0,0242123	0,02407119	-5,275	4,405	9,68	9,56750053	3,17527118	3,12007855	2,25695129	72,336361%	2,92857578	5,21426734	7,77426			
0,0242123	0,02407119	-6,345	2,045	8,39	8,29249271	3,02508944	2,97250727	1,95617989	65,809087%	2,92857578	4,14426734	7,77426			
0,023904	0,02378099	-6,525	2,005	8,53	8,44243856	3,0015755	2,95547703	1,96754196	66,572737%	2,89326938	3,95379086	7,77426			
0,0236575	0,02351963	-6,535	2,045	8,58	8,48028456	2,96072583	2,90926243	1,95464062	67,186810%	2,86147047	3,92273383	7,77426			
0,023349	0,02322088	-6,505	1,925	8,43	8,33774351	2,8953693	2,84796993	1,89737586	66,622047%	2,82512465	3,94219948	7,77426			

Tabla 8

	CALCULOS PUNTO 3														
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	V	CNSPD	CNSPR			
m3/s	m3/s	mca	mca	mca	mca	kW	kW	kW	-	m/s	mca	mca			
0,0215561	0,02143782	0,865	17,685	16,82	16,6359248	3,69562982	3,63512959	3,4950524	96,14657%	2,60819176	11,2521248	8,88188			
0,0215561	0,02143047	-1,505	14,885	16,39	16,1995179	3,82545293	3,75895882	3,40220067	90,50912%	2,60729763	8,88188712	8,88188			
0,0215561	0,02142313	-7,435	1,765	9,2	9,08684768	2,74712192	2,69659711	1,90775335	70,74670%	2,60640411	2,95164968	8,88188			
0,0215	0,02136737	-7,335	1,645	8,98	8,86955349	2,68273625	2,63339562	1,85728693	70,52822%	2,59962091	3,04984981	8,88188			
0,0141	0,01401783	-7,185	1,605	8,79	8,68784397	2,5745442	2,52979342	1,19348996	47,17737%	1,70545213	3,0036489	8,88188			

4.2. GRÁFICOS

4.3. GRÁFICO CAUDAL V/S ALTURA V/S VELOCIDAD

4.3.1. PREGUNTAS

¿Qué significan las desviaciones que se producen?

Las desviaciones indican las curvas donde se produce la cavitación, en el punto donde se produce la cavitación comienza la altura a disminuir, esto se puede deber a las burbujas de vapor que se pueden arrastrar hacia la descarga. En ese punto las pérdidas aumentarán y la presión disminuirá.

4.4. GRÁFICO DE CNSPD V/S POTENCIA ELÉCTRICA V/S RENDIMIENTO V/S ALTURA

4.4.1. PREGUNTAS

¿Cómo determina la CNSPD crítica y qué representa?

Se puede determinar mediante la presión atmosférica, velocidad, presión de vapor y la presión de aspiración. La CNSPD es el mínimo valor que puede tener CNSP para que la bomba no cavite, en donde el CNSPD critico es igual a la CNSPR.

4.5. GRÁFICO DE CAUDAL V/S CNSPD

4.5.1. PREGUNTA

¿La curva obtenida tiene la forma característica?

No, debido a que las curvas deberían ir ascendiendo constantemente lo que no se en ninguno de los gráficos

¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Si bien las curvas no tienen la forma característica que deberían tener, los valores de CNSPR si son coherentes con los del informe anterior de las curvas características de las bombas.

CONCLUSIÓN

Se puede decir que varios de los valores y gráficos no eran los esperados para el ensayo, esto puede deberse a un error en los cálculos realizados o aun incorrecto funcionamiento de la bomba. Lo cual no tendría concordancia con el informe anterior el cual arrojó valores y curvas esperadas.