ResilientFl Panel Discussion "FL security: Old wine in new bottle, or NWNB?"

Shiva Kasiviswanthan, Amazon

About Me

Interests:

Theoretical Aspects of ML, especially

- (Distributed) Optimization
- Differential Privacy
- Algorithm Design

Question 1: Topics in resilient FL where we are working and we are making progress?

- 1. Modeling to Emerging Scenarios: Lots of research on relaxing assumptions
 - device (client) reliability
 - reducing communication
 - data distribution
 - data/device availability
 - device statefulness
 - # of devices supported
 - 0

Question 1: Topics in resilient FL where we are working and we are making progress?

- 1. Modeling to Emerging Scenarios: Lots of research on relaxing assumptions
 - device (client) reliability
 - reducing communication
 - data distribution
 - data/device availability
 - device statefulness
 - # of devices supported
 - 0

Led to

- 1. Practical deployment at scale
- 2. Easy to use tools and framework

Question 1: Topics in resilient FL where we are working and we are making progress?

2. Theoretical Understanding:

- Convergence results
- Rigorous privacy/security guarantees

Question 2: Topics in resilient FL where we have learned important lessons from existing literature?

- 1. Distributed optimization: Most of FL convergence analysis relies of existing results in distributed learning (techniques such as local SGD)
- 2. Differential privacy: Commonly used in FL for achieving privacy
- 3. Cryptographic Techniques: Secure MPC, Verifiability techniques such as ZK proofs
- 4. ...

Question 3: Topics in resilient FL which we should be working on but are not?

Current DP privacy:

- Central DP (requires trusted server)
- Local (hard to achieve, strong lower bounds)
- Shuffle model (trusted intermediary)

Privacy trust models: assumption on clients/server?

Question 3: Topics in resilient FL which we should be working on but are not?

Verifiability: enables parties to prove that they have executed their parts of a computation faithfully

Current techniques such as based on ZKP can still not be deployed at large scale

How can we simplify this with federated learning's unique computational model?

- realistic assumptions on adversary
- can we assume that only a small fraction of clients can be corrupted