Portfolio Assignment 2

Candidate 25

Problem 1

(1a)

Figure 1: Decision boudary of a logistic descrimination classifier

In the plot above we see the points from the training set: $\{(\mathbf{x}^i, y^i)\}_{i=1}^6$ as red points. \mathbf{x}^i is the training data, and y^i is the ground truth. The line going somewhat diagonally across the plot is the decision boundary. This is used to classify the points above the line as $y^i = 0$, and points underneath the decision boundary as $y^i = 1$. This decision boundary is given by the equation:

$$C(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x} + w_0 \tag{1}$$

Which put simply, assigns a class to an vector \mathbf{x}^i . If the vector after being put into $C(\mathbf{x}) > 0 \implies \mathbf{x} \to C^1$ or the opposite case where $C(\mathbf{x}) < 0 \implies \mathbf{x} \to C^2$. Which means at $C(\mathbf{x}) = 0$ we are on the decision boundary. From this we can derive the equation of the decision

boundary, $x_2 = -\frac{w_1}{w_2} \cdot x_1 - \frac{w_0}{w_2}$. In my guess for the decision boundary i used $w_1 = -0.7, w_2 = 1$ and $w_0 = 4$ to give the decision boundary of $x_2 = -0.7 \cdot x_1 + 4$. Here we see that the weights, \boldsymbol{w} of the classifier determines the slope of the decision boundary, whereas the bias, w_0 determines the intercept with the second axis, x_2 .

To figure out the distance between the origin, O, and the decision boundary we can calulate this with the formula,

$$d = \frac{w_0}{\|\boldsymbol{w}\|} = \frac{4}{\sqrt{(-0.7)^2 + 1^2}} \approx \underline{3,277}$$

Now i shall demonstrate how this decision boundary could give us a decision rule, based on the estimated weights and biases. Consider a test point,

$$\mathbf{x}^t = \begin{bmatrix} x_1^t \\ x_2^t \end{bmatrix}$$

this point will from what I stated earlier follow the decision rule,

$$\begin{cases} C(\mathbf{x}^{t}) > 0, & y^{t} = 0 \\ C(\mathbf{x}^{t}) \le 0, & y^{t} = 1 \end{cases}$$

Here i have also made the assumption that if $C(\mathbf{x}^{\mathbf{t}}) = 0$ then $\mathbf{x}^{\mathbf{t}}$ is assigned to $y^t = 1$, althoug in reality this is quite rare.

(1b)

After having trained my logistic discrimination model on the seals_train.csv file, and the used the trained weights to classify the test data. I produce with the seals_test.csv file the confusion matrix:

confusion matrix =
$$\begin{bmatrix} 87 & 15 \\ 11 & 100 \end{bmatrix}$$
, and accuracy $\approx \underline{0.878}$

Which means the model classified 87 class 0's correctly, 11 class 1's as class 0's, 15 class 0's as class 1's and 100 class 1's correctly.

(1c)

Figure 2: The Reciever Operating Characteristic

The ROC curve represents the models performance at different classification tresholds. This means that by varying the treshold of where a previously classified class one would be classified as a one to a threshold where it instead would be classified as a zero. In other words, we can use an iterative approach, using values between 0 and 1, to see how the classifications change. The ROC then simply is the true positive rate against the false positive rate over all thresholds between 0 and 1. The AUC on the other hand, is the area under the ROC curve, which also is a number between 0 and 1, where a AUC score of 1 means the model has all predictions correct, while AUC of 0 means all predictions are incorrect.

For the Area Under the Curve score i got AUC ≈ 0.930 by using *sklearn.metrics* built-in function for calculating the AUC score.

(1d)

For this task I have created a function which classifies seal images corresponding to a given index, called *show_image*. Furthermore I use this function to show 5 random images which I know my classifier correctly classified in task (1b), and 5 random images I know are incorrectly classified.

Figure 3: Pictures of correctly classified seals

In Figure 3. the pictures are of either *Harp seal pups* or *Hooded seal pups*, where the algorithm has classified theese seals correctly. Whereas in Figure 4. the pictures are of either *Harp seal pups* classified as *Hooded seal pups*, or *Hooded seal pups* classified as *Harp seal pups*.

This leads to a question, what are the possible reasons as to why the pictures in Figure 4. are misclassified. By studying theese example photos I belive one reason to this comes from not the whole seal being present in the image. An example of this we see in Image 9. The seal is located between approximately pixel 50 to pixel 64 along the first axis, and pixels 10 to 30 along the second axis. Where not the whole seal is present, althoug we tell the classifier there is a seal in the image.

This leads to making a sort of edjucated guess, since not all of the features necessary to make a correct classification is present.

In image 8. it seems as though the lack of a good image resolution may be hiding a lot of the features the classifier needs to make a correct decision, and hence it misclassifies the seal.

Image 10. demonstrates a noisy image where a lot of the features of the seal is hidden due to lots of darker areas, and very bright areas making it hard to pinpoint where the seal begins and ends. In conclusion, the reason as to why the classifier fails to make a correct decision I belive arise when the images hides the distinct features of the seal.

Problem 2

(2a)

Figure 5: 2-dimensional plot of training set $\{(\mathbf{x}^i, y^i)\}_{i=1}^6$, and decision boundary of a decision tree.

This plot illustrates the two decision boundaries needed to classify the training set with zero errors. Here I have used two boundaries. The first going from $x_1 = 1.5$ spanning the second axis, and the second going from $x_2 = 1.5$ spanning the first axis.

Figure 6: Decision tree for training set.

From this decision tree we see that we can create a IF-THEN rule which describes how the tree would classify the datapoint:

$$\mathbf{x}^t = \left[\begin{array}{c} x_1^t \\ x_2^t \end{array} \right]$$

This means that we can assume a decision rule,

IF: $x_1^t < 1.5$, THEN $\mathbf{x}^t \to y^t = 0$

IF: $x_1^t \ge \text{AND } x_2^t < 1.5 \text{ THEN } y^t = 0$ IF: $x_1^t \ge \text{AND } x_2^t \ge 1.5 \text{ THEN } y^t = 1$

(2b)

In this task I have implemented a object oriented decision tree. The way this decision tree works, is by splitting the data into smaller and smaller pieces. To decide where to split the data we introduce a impurity measure: In this case I used entropy, and total entropy. This simply is a measure of uncertainty within our splitted datasets.

From the decision tree i got the confusion matrix,

confusion matrix =
$$\begin{bmatrix} 92 & 10 \\ 13 & 98 \end{bmatrix}$$
, and accuracy $\approx \underline{0.892}$

Also we need to set a maximum depth of a decisino tree. This is because the decision tree itself is prone to overfitting to data. In my implementation I have selected a maximum depth of 10. This means that the data can be splitted up to ten times, before it must declare a leaf node.

For determining a threshold when splitting a node, I have used a very inefficient way which loop throught all columns (features), of the dataset. Then it iterates through every value in each of the columns. Last step is to calculate the entropy of the potential new splitted dataset, as if one of the values of the columns were the threshold of the split, then we just select the threshold which has the lowest total entropy of each value of each column, to split the data. Because we do this recursively this means we end up doing this for every new splitted dataset, until we can declare a leaf node.

I have also implemented another way of declaring a leaf node. This just checks how many datapoints we have left on a branch. If this is smaller than a threshold, I have used 40 datapoints as this threshold, then we declare this node a leaf.

(kildehenvisning) I have also created another object called a node. The node object keeps track of important information on each node,

(2c)

Problem 3

(3a)

3a