Undergraduate Real Analysis References

Jake Thakur

Section 1.1: The Completeness Axiom

Definition

 $S\subseteq\mathbb{R}$ is inductive if

- (i) $1 \in S$
- (ii) $x \in S \Rightarrow x + 1 \in S$

Definition

 $\mathbb N$ is the intersection of all inductive subsets of $\mathbb R$

Principle of Mathematical Induction

For each $n \in N$ let S(n) be some mathematical assertion. Suppose also that

- (i) S(1) is true
- (ii) Whenever S(n) is true, then S(n+1) is true

Then S(n) is true $\forall n \in N$

Definition

$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n | n \in \mathbb{N}\}\$$

Fact

 $m, n \in \mathbb{Z} \Rightarrow$

- (i) $m+n \in \mathbb{Z}$
- (ii) $m n \in \mathbb{Z}$
- (iii) $mn \in \mathbb{Z}$

 $\mathbb{Q} = \{ \frac{m}{n} | m, n \in \mathbb{Z}, n \neq 0 \}$

Fact

- (i) Each $x \in \mathbb{Q} \Rightarrow x = \frac{m}{n}, m$ or n is odd
- (ii) n^2 is even $\Rightarrow n$ is even

Proposition 1.2

 $\exists \ \mathrm{No} \ x \in \mathbb{Q} \ \text{\ni} \ x^2 = 2$

Definition

 $S\subset\mathbb{R},S\neq\emptyset$ is Bounded Above if $\exists c\in\mathbb{R}\ \ni x\leq c\ \forall x\in S\Rightarrow c$ is an Upper Bound for S

Completeness Axiom

If $S \subset \mathbb{R}, S \neq \emptyset$, and S is Bounded Above, set $U_S = \{c \in \mathbb{R} | c \text{ is an upper bound for } S\}$

Then $\exists a \in U_S \ni a \leq c \ \forall c \in U_S$ $a = \sup S = \text{supremum of S (least upper bound)}$

("Given a bounded, nonempty set S, and the set of all upper bounds of S, U_S , then there exists a least element in U_S that is the least upper bound for S (its supremum)")

Proposition 1.3

If c > 0, then $\exists ! \ x > 0 \ \ni x^2 = c$

Theorem 1.4

 $S \subset \mathbb{R}, S \neq \emptyset$, and S is Bounded Below, set $L_S = \{b \in \mathbb{R} | b \text{ is an lower bound for } S\}$

Then $\exists d \in L_S \ni d \geq b \ \forall b \in U_S$ d = infS = infimum of S (greatest lower bound)

("Given a bounded, nonempty set S, and the set of all lower bounds of S, L_S , then there exists a greatest element in L_S that is the greatest lower bound for S (its infimum)")

Section 1.2: The Distribution of $\mathbb{Z} \ \& \ \mathbb{Q}$

Theorem 1.5 (Archimedian Property)

 $\begin{array}{l} \text{(i) } c>0 \Rightarrow \exists n \in \mathbb{N} \text{ } \ni n>c \\ \text{(ii) } \epsilon>0 \Rightarrow \exists n \in \mathbb{N} \text{ } \ni \frac{1}{n}<\epsilon \end{array}$

Proposition 1.6

Let $n \in \mathbb{Z}$, then \exists No $k \in \mathbb{Z} \ni k \in (n, n+1)$

Proposition 1.7

Suppose $S \neq \emptyset, S \subset \mathbb{Z}$, and S is Bounded Above, then S has a Maximum $m \in S$ Note: $m \in S \Rightarrow m = \sup S$

Theorem 1.8

For any $c \in \mathbb{R} \exists ! \ k \in \mathbb{Z} \ni k \in [c, c+1)$

Definition

 $S \subset \mathbb{R}$ is Dense in \mathbb{R} if for any $I = (a, b), a < b, S \cap I \neq \emptyset$

Theorem 1.9

 $\mathbb Q$ is Dense in $\mathbb R$

Corollary 1.10

 $\mathbb{R}\setminus\mathbb{Q}$ is Dense in \mathbb{R}

Section 1.3: Inequalities and Identities

$$x \in \mathbb{R}, |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Fact 1

$$d > 0, |c| \le d \Leftrightarrow -d \le c \le d$$

Fact 2

$$x \in \mathbb{R}, -|x| \le x \le |x|$$

Theorem 1.11 (Triangle Inequality)

If $a, b \in \mathbb{R}$, Then $|a + b| \le |a| + |b|$

Proposition 1.12

 $a, r \in \mathbb{R}, r > 0$, TFAE:

- (i) |x a| < r
- (ii) a r < x < a + r
- (iii) $x \in (a-r, a+r)$

Difference of Powers Formula

$$n\in\mathbb{N}$$
 and $a,b\in\mathbb{R},$ $a^n-b^n=(a-b)\sum_{k=0}^{n-1}a^{n-1-k}b^k$

Geometric Series Formula

$$r \in \mathbb{R}, r \neq 1,$$
 then $\frac{1-r^{n+1}}{1-r} = 1 + r + \cdots + r^n = \sum_{k=0}^n r^k$

Definition

$$n! = \begin{cases} 1, & n = 0, 1\\ n * (n-1) * \cdots * 2 * 1, & n > 1 \end{cases}$$

Definition

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial Formula

$$n \in \mathbb{N}$$
 and $a, b \in \mathbb{R}$,
 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Section 2.1: Convergence of Sequences

Definition

A sequence of real numbers is a function $f: \mathbb{N} \to \mathbb{R}$ set $a_n = f(n)$, then characterize f by $\{a_1, a_2, \dots\} = \{a_n\}_{n=1}^{\infty} = \{a_n\}$

Definition

 $\{a_n\}$ Converges to $a \in \mathbb{R}$ provided that for each $\epsilon > 0$ $\exists N \in \mathbb{N}$ $\ni |a_n - a| < \epsilon \ \forall n \ge N$

Proposition 2.6

 $\left\{\frac{1}{n}\right\}$ converges to 0

Fact

 $\left\{1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right\}$ converges to 2

Fact

 $a_n \to a, a_n \to b \Rightarrow a = b$ (limits are unique)

Fact

 $\{(-1)^n\}$ does not converge

Lemma 2.9 (Comparison Lemma)

Suppose we have $\{a_n\}, \{b_n\}$ with $a_n \to a$. Then $b_n \to b$ if $\exists c \geq 0$ and $N_1 \in \mathbb{N} \ni |b_n - b| \leq c|a_n - a| \ \forall n \geq N_1$

Theorem 2.10 (Sum Property)

 $a_n \to a, \ b_n \to b \Rightarrow a_n + b_n \to a + b$

Lemma 2.11

 $a_n \to a, \ \alpha \in \mathbb{R} \Rightarrow (\alpha)a_n \to (\alpha)a$

Theorem 2.13 (Product property)

 $a_n \to a, \ b_n \to b \Rightarrow a_n b_n \to ab$

Fact 1

 $a_n \to a \Rightarrow |a_n| \to |a|$

Proposition 2.14

 $b_n \to b \neq 0 \Rightarrow \frac{1}{b_n} \to \frac{1}{b}$

Theorem 2.15 (Quotient property)

 $a_n \to a, \ b_n \to b \neq 0 \Rightarrow \frac{a_n}{b_n} \to \frac{a}{b}$

Proposition 2.16 (Linear property)

 $a_n \to a, \ b_n \to b, \ \alpha, \beta \in \mathbb{R} \Rightarrow (\alpha)a_n + (\beta)b_n \to (\alpha)a + (\beta)b$

Fact 2

 $a_n = c \ \forall n \Rightarrow a_n \to c$

Proposition 2.17

 $P: \mathbb{R} \to \mathbb{R}, \ a_n \to a \Rightarrow P(a_n) \to P(a)$

Section 2.2: Sequences & Sets

Theorem 2.18

 $\{a_n\}$ converges $\Rightarrow \{a_n\}$ is bounded

Proposition 2.19

S is dense in $\mathbb{R} \Leftrightarrow \text{each } x \in \mathbb{R}$ is a limit of a sequence in S

Theorem 2.20 (Sequential Density of \mathbb{Q})

Every $x \in \mathbb{R}$ is the limit of a sequence of rational numbers

Lemma 2.21

 $d_n \to d, \ d_n \ge 0 \Rightarrow d \ge 0$

Theorem 2.22

 $\{c_n\} \subset [a,b], \ c_n \to c \Rightarrow c \in [a,b]$

Definition

 $S \subset \mathbb{R}$ is closed if whenever $\{a_n\} \subset S$ and $a_n \to a$ then $a \in S$

Fact

[a, b] is closed

Section 2.3: The Monotone Convergence Theorem

Definition

 $\{a_n\}$ is monotonically increasing if $a_{n+1} \geq a_n$ for each n

 $\{a_n\}$ is monotonically decreasing if $a_{n+1} \leq a_n$ for each n

Definition

 $\{a_n\}$ is monotone if it is either monotonically increasing or decreasing

Theorem 2.25 (Monotone Convergence Theorem)

```
If \{a_n\} is monotone, then \{a_n\} converges \Leftrightarrow \{a_n\} is bounded

Note: if \{a_n\} is monotonically increasing, a_n \to \sup\{a_n\}

Note: if \{a_n\} is monotonically decreasing, a_n \to \inf\{a_n\}
```

Proposition 2.28

```
Let c \in \mathbb{R}, |c| < 1 \Rightarrow \lim_{n \to \infty} c^n = 0
```

Theorem 2.29 (Nested Interval Theorem)

```
Let \{a_n\} and \{b_n\} be such that a_n < b_n and set I_n = [a_n, b_n].
Assume that I_{n+1} \subset I_n and that \lim_{n \to \infty} [b_n - a_n] = 0. Then \exists ! \ x \in \bigcap_{n=1}^{\infty} I_n
```

Section 2.4: The Sequential Compactness Theorem

Definition

For a given $\{a_n\}$ let $\{n_k\}$ be a sequence of natural numbers that is strictly increasing. Then the sequence $\{b_k\}$ defined by $b_k = a_{n_k}$, with $k = 1, 2, \cdots$ is called a subsequence of $\{a_n\}$, denoted $\{b_k\} = \{a_{n_k}\}_{k=1}^{\infty} = \{a_{n_k}\}$

Fact

Given a sequence $\{n_k\}_{k=1}^{\infty}$ of natural numbers that is strictly increasing, we have that $n_k \geq k$ for every $k \in \mathbb{N}$

Proposition 2.30

Let $\{a_n\}$ converge to a, i.e., $a_n \to a$ Then $\lim_{n\to\infty} a_{n_k} = a$ for every subsequence $\{a_{n_k}\}$ of $\{a_n\}$

Theorem 2.32

For every $\{a_n\} \exists \{n_k\} \ni \{a_{n_k}\}$ is monotone

Theorem 2.33

Every bounded sequence has a convergent subsequence

Definition

 $S \subseteq \mathbb{R}$ is sequentially compact if every sequence $\{a_n\} \subset S$ has a convergent subsequence whose limit is in S

Theorem 2.36 (Sequential Compactness Theorem)

 $a, b \in \mathbb{R}$ with $a < b \Rightarrow [a, b]$ is sequentially compact

Section 3.1: Continuity

Definition

For $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ if whenever $\{x_n\} \subset D$ and $x_n \to x_0$ then $f(x_n) \to f(x_0)$

 $(f: D \to \mathbb{R} \text{ is continuous if it is continuous } \forall x_0 \in D)$

Fact

 $P: \mathbb{R} \to \mathbb{R} \Rightarrow x_0 \in \mathbb{R}, \{x_n\} \subset \mathbb{R}, x_n \to x_0 \Rightarrow P(x_n) \to P(x_0) \Rightarrow P$ is continuous

Theorem 3.4

Suppose $f: D \to \mathbb{R}, g: D \to \mathbb{R}$ are continuous at $x_0 \in D$, then $f+g: D \to \mathbb{R}$ and $fg: D \to \mathbb{R}$ are continuous at $x_0 \in D$ and if $g(x) \neq 0 \ \forall \ x \in D$ then $\frac{f}{g}: D \to \mathbb{R}$ is continuous at $x_0 \in D$

Corollary 3.5

Let P and Q be polynomials, then $\frac{P}{Q}: D \to \mathbb{R}$ is continuous where $D = \{x \in \mathbb{R} \mid Q(x_0) \neq 0\}$

Theorem 3.6

 $f: D \to \mathbb{R}, g: U \to \mathbb{R}, f(D) \subseteq U$ and suppose that f is continuous at $x_0 \in D$ and g is continuous at $f(x_0) \in U$ then $g \circ f$ is continuous at x_0 ; namely, $g \circ f: D \to \mathbb{R}$

Fact

 $f(x) = \sqrt{x}$ is continuous on $D = [0, +\infty)$

Section 3.1 (Sup): Trigonometric Continuity

Fact 1

if $\theta_n \to 0$, then $\sin \theta_n \to 0$

Fact 2

if $\theta_n \to 0$, then $\cos \theta_n \to 1$

Fact

 $\begin{array}{l} \sin\theta \text{ is continuous,} \\ \cos\theta \text{ is continuous,} \\ \tan\theta \text{ is continuous at } \cos\theta \neq 0 \ (\theta \neq (2n+1)*\frac{\pi}{2}), \\ \csc\theta \text{ is continuous at } \sin\theta \neq 0 \ (\theta \neq n\pi), \\ \sec\theta \text{ is continuous at } \cos\theta \neq 0 \ (\theta \neq ((2n+1)*\frac{\pi}{2}), \\ \cot\theta \text{ is continuous at } \sin\theta \neq 0 \ (\theta \neq n\pi) \end{array}$

Section 3.2: Extreme Value Theorem

For $f: D \to \mathbb{R}$ we define $f(D) = \{y \in \mathbb{R} \mid y = f(x) \text{ for some } x \in D\}$ f(D) is the image of f

Definition

 $f:D\to\mathbb{R}$ attains a maximum (max value) if $\exists x_0\in D$ $\ni f(x)\leq f(x_0)$ $\forall x\in D$ Such a point x_0 is a maximizer of f

 $f:D\to\mathbb{R}$ attains a minimum (min value) if $\exists \ x_0'\in D\ \ni f(x_0')\le f(x)\ \forall x\in D$ Such a point x_0' is a minimizer of f

Lemma 3.10

If $f:[a,b]\to\mathbb{R}$ is continuous, then f([a,b]) is bounded above $(\exists m\ni f(x)\le m\;\forall x\in[a,b])$

Theorem 3.9 (Extreme Value Theorem)

If $f:[a,b]\to\mathbb{R}$ is continuous, then f attains both a max and a min

$$\exists x_0, x_0' \in [a, b] \ni f(x_0) \le f(x) \le f(x_0') \forall x \in [a, b]$$

Fact

Let $S \subset [a, b]$, then $infS \in [a, b]$, and $supS \in [a, b]$

Section 3.3: Intermediate Value Theorem

Theorem 3.11 (Intermediate Value Theorem)

Suppose $f : [a, b] \to \mathbb{R}$ is continuous and let $c \in \mathbb{R}$ be any number strictly between f(a) and f(b); i.e., f(a) < c < f(b) or f(b) < c < f(a), then $\exists x_0 \in (a, b) \ni f(x_0) = c$

Fact

Suppose $f: D \to \mathbb{R}$ is continuous. If $\exists [a, b] \subset D \ni f(a) < 0$ and f(b) > 0 (or vice-versa), then $\exists x_0 \in (a, b) \ni f(x_0) = 0$

"A real, continuous function that is positive on one side and negative on the other contains a root"

Definition

 $D \subseteq \mathbb{R}$ is convex if $u, v \in D$, $(u < v) \Rightarrow [u, v] \subset D$

Fact

If $D \subset \mathbb{R}$ is convex then D is an interval

Theorem 3.14

If I is an interval and $f: I \to \mathbb{R}$ is continuous then f(I) is an interval

Section 3.4: Uniform Continuity

Definition

 $f:D\to\mathbb{R}$ is uniformly continuous on D if whenever $\{u_n\},\{v_n\}\subset D\ni u_n-v_n\to 0$, then $f(u_n)-f(v_n)\to 0$

Note: if $v_n = x_0 \ \forall n$, then $u_n - v_n \to 0 \Rightarrow u_n \to x_0$, so uniform continuity \Rightarrow continuity at each $x_0 \in D$

Fact

f(x) = x is uniformly continuous but $f(x) = x^2$ is not

Theorem 3.17

 $f:[a,b]\to\mathbb{R}$ is continuous $\Rightarrow f$ is uniformly continuous on [a,b]

Fact

If $f: D \to \mathbb{R}$ satisfies Lipschitz Continuity: $|f(u) - f(v)| \le c|u - v|, \forall u, v \in D$ and for some $c \ge 0$, then f is uniformly continuous.

Fact

Let P be a polynomial. Then on each [a,b], $P:[a,b]\to\mathbb{R}$ is lipschitz continous

Section 3.5: The $\epsilon - \delta$ Criteria for Continuity

Definition

"The $\epsilon - \delta$ Criterion At a Point" - $f: D \to \mathbb{R}$ satisfies the $\epsilon - \delta$ criterion at a point $x_0 \in D$, if for each $\epsilon > 0 \exists \delta > 0$ for $x \in D$, $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$

Theorem 3.20

For $f: D \to \mathbb{R}$ and $x_0 \in D$, TFAE:

- (i) f is continuous at x_0
- (ii) The $\epsilon \delta$ criterion at x_0 holds

Definition

"The $\epsilon - \delta$ Criterion On the Domain of a Function" - $f: D \to \mathbb{R}$ satisfies the $\epsilon - \delta$ criterion on D, if for each $\epsilon > 0 \; \exists \; \delta > 0 \; \ni \; u, v \in D, \; |u - v| < \delta \Rightarrow |f(u) - f(v)| < \epsilon$

Theorem 3.22

For $f: D \to \mathbb{R}$, TFAE:

- (i) $f: D \to \mathbb{R}$ is uniformly continuous
- (ii) $f: D \to \mathbb{R}$ satisfies the $\epsilon \delta$ criterion on D

Fact

 $I = (a, b), f : I \to \mathbb{R}$ is continuous, then if $x_0 \in (a, b)$ with $f(x_0) > 0$, then $\exists I_1 = (a_1, b_1) \subset I \ni f(x) > 0 \ \forall \ x \in I_1$

Section 3.6: Images and Inverses; Monotone Functions

Definition

- (i) $f: D \to \mathbb{R}$ is monotonically increasing if $u, v \in D$ and $u < v \Rightarrow f(u) \leq f(v)$
- (ii) $f: D \to \mathbb{R}$ is monotonically decreasing if $u, v \in D$ and $u < v \Rightarrow f(u) \ge f(v)$
- (iii) $f: D \to \mathbb{R}$ is monotone if it is monotonically increasing or decreasing

Theorem 3.23

Suppose $f:D\to\mathbb{R}$ is monotone. If f(D) is an interval, then f is continuous

Corollary 3.25

Suppose $f: I \to \mathbb{R}$ is monotone, then f is continuous $\Leftrightarrow f(I)$ is an interval

Definition

- (i) $f: D \to \mathbb{R}$ is strictly increasing if $u, v \in D$ and $u < v \Rightarrow f(u) < f(v)$
- (ii) $f: D \to \mathbb{R}$ is strictly decreasing if $u, v \in D$ and $u < v \Rightarrow f(u) > f(v)$

Definition

 $f: D \to \mathbb{R}$ is one-to-one (injective) if for each $y \in f(D) \exists ! \ x \in D \ni f(x) = y$

"No element in the image may have more than one element in the domain mapping to it"

Fact

If f is strictly increasing or decreasing, then f is one-to-one

Fact

If $f: I \to \mathbb{R}$ is continuous and f is one-to-one, then f is strictly monotone

Suppose $f: D \to \mathbb{R}$ is one-to-one. If $y \in f(D)$, let $x \in D \ni f(x) = y$ Define $f^{-1}: f(D) \to D$ by $f^{-1}(y) = x$, so f^{-1} is well-defined since x is unique

Note:

(i) $f^{-1}(f(x)) = x$, where $x \in D$ (ii) $f(f^{-1}(y)) = y$, where $y \in f(D)$

Theorem 3.29

 $f:I\to\mathbb{R}$ is continuous and strictly increasing or decreasing \Rightarrow $f^{-1}:f(I)\to\mathbb{R}$ is continuous

Section 3.7: Limits

Definition

 $h(x)=\frac{f(x)-f(x_0)}{x-x_0}$ gives the slope of the line at point x_0 and h(x) is continuous on $[a,b]\setminus\{x_0\}$

Definition

 $D \subset \mathbb{R}, x_0 \in \mathbb{R}$ is a limit point of D if $\exists \{x_n\} \subset D \setminus \{x_0\} \ni x_n \to x_0$

Definition

If $f: D \to \mathbb{R}$ and x_0 is a limit point of D, then we denote $\lim_{x \to x_0} f(x) = l$ If whenever $\{x_n\} \subset D \setminus \{x_0\}$ and $x_n \to x_0$ we have that $\lim_{n \to \infty} f(x_n) = l$ $(x_0 \text{ may or may not be in } D)$

Example

$$D = \mathbb{R} \setminus \{x_0\}, \ f(x) = x^2 \Rightarrow h(x) = \frac{x^2 - (x_0)^2}{x - x_0} \text{ and suppose}$$

$$\{x_n\} \subset D, x_n \to x_0 \Rightarrow h(x_n) = \frac{(x_n)^2 - (x_0)^2}{x_n - x_0} = \frac{(x_n + x_0)(x_n - x_0)}{x_n - x_0} = x_n + x_0$$
So $\lim_{n \to \infty} h(x_n) = \lim_{n \to \infty} (x_n + x_0) = x_0 + x_0 = 2x_0$

Theorem 3.36

Suppose $f: D \to \mathbb{R}, g: D \to \mathbb{R}$, and x_0 is a limit point of D, so that

$$\lim_{x \to x_0} f(x) = A, \ \lim_{x \to x_0} g(x) = B \Rightarrow$$

- (i) $\lim_{x \to x_0} [f(x) + g(x)] = A + B$
- (ii) $\lim_{x \to x_0} [f(x)g(x)] = AB$
- (ii)(a) $\alpha \in \mathbb{R}$, $\lim_{x \to x_0} [\alpha f(x)] = \alpha A$
- (iii) $B \neq 0$, $g(x) \neq 0 \ \forall x \in D$, $\lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right] = \frac{A}{B}$

Theorem 3.37

 $f: D \to \mathbb{R}, \ g: U \to \mathbb{R}$ and x_0 is a limit point of $D \ni \lim_{x \to x_0} f(x) = y_0$, y_0 is a limit point of $U \ni \lim_{y \to y_0} g(y) = e$, and suppose that $f(D \setminus \{x_0\}) \subset U \setminus \{y_0\}$, then $\lim_{x \to x_0} (g \circ f)(x) = e$

Definition

 $x_0 \in D$ is an isolated point if $\exists r > 0 \ni (x_0 - r, x_0 + r) \cap D = \{x_0\}$

Fact

 $x_0 \in D \Rightarrow x_0$ is either a limit point or an isolated point of D

Limits and Continuity Theorem

For $f: D \to \mathbb{R}$, $x_0 \in D$, then f is continuous at $x_0 \Leftrightarrow x_0$ is an isolated point of D or $\lim_{x \to x_0} f(x) = f(x_0)$

So f is continuous at $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Fact in Review

If h(x) = g(x) on $D \setminus \{x_0\}$ where $g: D \to \mathbb{R}$ is continuous on D, then $\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = g(x_0)$

Section 4.1: The Algebra of Derivatives

 $x_0 \in \mathbb{R}, I \subset \mathbb{R} \ni I = (a, b)$ and $x_0 \in I \Rightarrow I$ is a neighborhood of x_0

Definition

 $x_0 \in \mathbb{R}$ and I is a neighborhood of $x_0 \Rightarrow f: I \to \mathbb{R}$ is differentiable at x_0 IF $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists. We say $f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ and is called the derivative of f at x_0

Definition

If $f: I \to \mathbb{R}$ is differentiable at each $x_0 \in I$ then f is differentiable and $f': I \to \mathbb{R}$ is the derivative of f

Definition

The line determined by $y = f(x_0) + f'(x_0)(x - x_0)$ is the tangent line to the graph of f at $(x_0, f(x_0))$

For
$$y_0 = f(x_0)$$
, $y - y_0 = f'(x_0)(x - x_0)$

Proposition 4.4

 $n \in \mathbb{N}, f(x) = x^n \ \forall x \in I = \mathbb{R} \Rightarrow f : \mathbb{R} \to \mathbb{R}$ is differentiable and $f'(x) = nx^{n-1}$

Proposition 4.5

 $x_0 \in \mathbb{R}, I$ is a neighborhood of $x_0, I = (a, b)$ and $f: I \to \mathbb{R}$ is differentiable at $x_0 \Rightarrow f$ is continuous at x_0

Theorem 4.6

 $x_0 \in \mathbb{R}, I$ is a neighborhood of $x_0, f: I \to \mathbb{R}$ and $f: I \to \mathbb{R}$ is differentiable at x_0 , then

- (i) $f + g : I \to \mathbb{R}$ is differentiable at x_0 and $(f + g)'(x_0) = f'(x_0) + g'(x_0)$
- (ii) $fg: I \to \mathbb{R}$ is differentiable at x_0 and $(fg)'(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0)$
- (iii) If $g(x) \neq 0 \ \forall x \in I$ then $\frac{1}{g}: I \to \mathbb{R}$ is differentiable at x_0 and

$$(\frac{1}{g})'(x_0) = \frac{-g'(x_0)}{[g(x_0)]^2}$$

(iv) If $g(x) \neq 0 \ \forall x \in I$ then $\frac{f}{g}: I \to \mathbb{R}$ is differentiable at x_0 and $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}$

Fact

For $x_0, \alpha \in \mathbb{R}$, $(\alpha f)'(x_0) = \alpha f'(x_0)$

Fact

$$f(x) = c \Rightarrow f'(x) = 0 \ \forall x \in D$$

Proposition 4.7

 $n \in \mathbb{Z}, D = \mathbb{R}$ if $n \ge 0$ and $D = \mathbb{R} \setminus \{0\}$ if n < 0, then for $f : D \to \mathbb{R}$ defined by $f(x) = x^n$, f is differentiable and $f'(x) = nx^{n-1}$

Corollary 4.8

 $p, q : \mathbb{R} \to \mathbb{R}$ are polynomials, $D = \mathbb{R} \setminus \{x \mid q(x) = 0\}$, then $\frac{p}{q} : D \to \mathbb{R}$ is differentiable

Section 4.2: Differentiating Inverses & Compositions

Theorem 4.11

Suppose $x_0 \in I$, and $f: I \to \mathbb{R}$ is strictly monotone, continuous, differentiable at x_0 , and $f'(x_0) \neq 0$. Let J = f(I) then $f^{-1}: J \to \mathbb{R}$ is differentiable at $y_0 = f(x_0)$ and $(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

Corollary 4.12

Suppose $f: I \to \mathbb{R}$ is strictly monotone, differentiable, and f' is nonzero on I. Let J = f(I), then $(f^{-1}): J \to \mathbb{R}$ is differentiable and $\forall x \in J$ $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

Proposition 4.13

Let $g(g) = x^{\frac{1}{n}}$ where $n \in \mathbb{N}$ and x > 0, then $g: (0, \infty) \to \mathbb{R}$ is differentiable and $g'(x) = \frac{1}{n} x^{\frac{1}{n} - 1} \ \forall x > 0$

Theorem 4.14 (Chain Rule)

Suppose $x_0 \in I$ with $f: I \to \mathbb{R}$ is differentiable. Say $f(I) \subseteq J$ and suppose $g: J \to \mathbb{R}$ is differentiable at $f(x_0)$, then $g \circ f: I \to \mathbb{R}$ is differentiable at x_0 and $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

Proposition 4.15

For $r = \frac{m}{n}$ where $n \neq 0, m \in \mathbb{Z}, n \in \mathbb{N}$, set $h(x) = x^r$, where x > 0, then h is differentiable and $h'(x) = rx^{r-1} \ \forall x > 0$

Section 4.3: The Mean Value Theorem

Lemma 4.16

Suppose I is a neighborhood of x_0 and $f: I \to \mathbb{R}$ is differentiable at x_0 . If x_0 is a maximizer or a minimizer, then $f'(x_0) = 0$

Theorem 4.17 (Rolle's Theorem)

Suppose $f:[a,b]\to\mathbb{R}$ is continuous and $f:(a,b)\to\mathbb{R}$ is differentiable. Assume that f(a)=f(b), then $\exists x_0\in(a,b)\ni f'(x_0)=0$

Theorem 4.18 (Mean Value Theorem)

If $f:[a,b]\to\mathbb{R}$ is continuous and $f:(a,b)\to\mathbb{R}$ is differentiable, then $\exists\ x_0\in(a,b)\ \ni f'(x_0)=\frac{f(b)-f(a)}{b-a}$

Lemma 4.19

Suppose I = (a, b) and $f : I \to \mathbb{R}$ is differentiable. Then f is constant $\Leftrightarrow f'(x) = 0 \ \forall \ x \in I$

Proposition 4.20 (Identity Criterion)

Suppose $g, h: I \to \mathbb{R}$ are differentiable. Then $g = h + c \Leftrightarrow g'(x) = h'(x) \ \forall \ x \in I$

Corollary 4.21

- (i) $f: I \to \mathbb{R}$ is differentiable $\ni f'(x) > 0 \ \forall \ x \in I \Rightarrow f$ is strictly increasing
- (ii) $f:I\to\mathbb{R}$ is differentiable $\ni f'(x)<0\ \forall\ x\in I\Rightarrow f$ is strictly decreasing

Definition

Suppose $f: D \to \mathbb{R}$, then $x_0 \in D$ is a

- (i) local maximizer if $\exists \delta > 0 \ni x_0$ is a maximizer for f on $D \cap (x_0 \delta, x_0 + \delta)$
- (ii) local minimizer if $\exists \delta > 0 \ni x_0$ is a minimizer for f on $D \cap (x_0 \delta, x_0 + \delta)$

Definition

Suppose $f: I \to \mathbb{R}$ is differentiable on I. If $f': I \to \mathbb{R}$ is differentiable on I, then define $f'': I \to \mathbb{R}$ by $f''(x) = (f')'(x) = f^{(2)}(x)$ for each $x \in I$ Inductively define $f^{(k)}: I \to \mathbb{R}$, $k \in \mathbb{N}$

Theorem 4.22 (2nd Derivative Test)

Suppose $f, f': I \to \mathbb{R}$ are differentiable and $x_0 \in I \ni f'(x_0) = 0$. Then (i) $f''(x_0) > 0 \Rightarrow x_0$ is a local minimizer for f (concave up)

(ii) $f''(x_0) < 0 \Rightarrow x_0$ is a local maximizer for f (concave down)

Fact

If f is continuous on [a,b] and f is differentiable on (a,b), then f attains its max and min at either

- (i) The endpoints a or b
- (ii) $x_0 \in (a, b) \ni f'(x_0) = 0$

Section 4.4: Cauchy Mean Value Theorem

Theorem 4.23 (Cauchy Mean Value Theorem)

If $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are continuous on [a,b] and differentiable on (a,b) with $g'(x)\neq 0 \ \forall \ x\in (a,b)$, then $\exists \ x_0\in (a,b) \ \ni \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(x_0)}{g'(x_0)}$

Lemma 1

If
$$h_1(x) = (x - x_0)^n$$
, then $h_1^{(k)}(x) = \begin{cases} \frac{n!}{(n-k)!} \cdot (x - x_0)^{n-k}, & 0 \le k \le n \\ 0, & k > n \end{cases}$

Theorem 4.24

Suppose $f: I \to \mathbb{R}$ has n derivatives on I and suppose at $x_0 \in I$ that $f^{(k)}(x_0) = 0$ for $0 \le k \le n-1$, then for each $x \in I$ with $x \ne x_0 \exists z$ strictly between x and $x_0 \ni f(x) = \frac{f^{(n)}(z)}{n!} \cdot (x - x_0)^n$

Application

Let $g: I \to \mathbb{R}$ have n+1 derivatives and set for $x_0 \in I$ $h(x) = \sum_{j=0}^{n} \frac{g^{(j)}(x_0)}{j!} \cdot (x-x_0)^j$ Then $g(x) = h(x) + \frac{g^{(n+1)}(z)}{(n+1)!} \cdot (x-x_0)^{n+1}$ (Taylor's Formula with Remainder)

Section 4.4 (sup): Trigonometric Differentiability

Fact 1

 $\begin{array}{l} \text{(i)} \ \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \\ \text{(ii)} \ \sin \theta \to 0 \ \text{as} \ \theta \to 0 \\ \text{(iii)} \ \cos \theta \to 1 \ \text{as} \ \theta \to 0 \\ \text{(iv)} \ \sin(x+y) = \sin x \cos y + \cos x \sin y \\ \text{(v)} \ \cos(x+y) = \cos x \cos y - \sin x \sin y \\ \text{(vi)} \ \frac{d}{dx} \sin x = \cos x \\ \text{(vii)} \ \frac{d}{dx} \cos x = -\sin x \end{array}$

Section 6.1: Darboux Sums; Upper and Lower Integrals

Definition

The approximation of an area under a curve using rectangles over subintervals with $P = \{x_0, x_1, \cdots, x_n\}$ is a partition of [a, b] with $a = x_0 < x_1 < \cdots < x_n = b$. Then the total area of the rectangles is

$$\sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

Where $x_i - x_{i-1}$ is the width of the *i*th partition and M_i is the height $M_i = \sup\{f(x) \mid x \in [x_{i-1}, x_i]\}$

If f is continuous then $M_i = f(x_i^*)$ where x_i^* is a maximizer for f on $[x_{i-1}, x_i]$

We can also consider sums of the form

$$\sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

Where $m_i = \inf\{f(x) \mid x \in [x_{i-1}, x_i]\}$

Definition

 $U(f,P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$ is the Upper Darboux Sum

 $L(f,P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$ is the Lower Darboux Sum

Fact

$$L(f, P) \le U(f, P)$$

Lemma 6.1

Suppose $f:[a,b]\to\mathbb{R}$ is bounded and $\exists\ m,M\in\mathbb{R}$ $\ni\ m\le f(x)\le M\ \forall\ x\in[a,b]$

Then for any partition P of [a, b] we have

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$

Given a partition P of [a,b], another partition P^* of [a,b] is a refinement of P if $P \subset P^*$; i.e., if $P = \{x_0, x_1, \dots, x_n\}$ then each x_i is in P^* also

"A nontrivial refinement takes all the points in the given partition and adds at least one more"

Definition

Let $P_i = P^* \cap [x_{i-1}, x_i]$, then

$$U(f, P^*) = \sum_{i=1}^{n} U(f, P_i)$$

$$L(f, P^*) = \sum_{i=1}^{n} L(f, P_i)$$

Lemma 6.2 (Refinement Lemma)

Suppose $f:[a,b]\to\mathbb{R}$ is bounded and P is a partition of [a,b] and P^* is a refinement of P, then

$$L(f, P) \le L(f, P^*) \le U(f, P^*) \le U(f, P)$$

Definition

Let P_1, P_2 be two partitions of [a, b] and set $P^* = P_1 \cup P_2$, then P^* refines both P_1 and P_2 and is called a common refinement of P_1 and P_2

Lemma 6.3

Suppose $f:[a,b]\to\mathbb{R}$ is bounded, P_1,P_2 are partitions of [a,b], then

$$L(f, P_1) \le U(f, P_2)$$

"Any lower sum is less than or equal to any upper sum"

Definition

Lower Integral

$$\underline{\int}_a^b f \equiv \sup\{L(f,P) \mid P \text{ is a partition of } [a,b]\}$$

Upper Integral

$$\label{eq:final_def} \int_a^b f \equiv \inf\{U(f,P) \mid P \text{ is a partition of } [a,b]\}$$

Lemma 6.4

Suppose $f:[a,b]\to\mathbb{R}$ is bounded, then

$$\int_{a}^{b} f \le \int_{a}^{\bar{b}} f$$

Fact

A telescoping sum is a sum in which subsequent terms cancel each other and only leave the first and last terms

Example

$$m(b-a) = m \sum_{i=1}^{n} (x_i - x_{i-1}) = m[(x_1 - x_0) + (x_2 - x_1) + \dots + (x_{n-1} - x_{n-2}) + (x_n - x_{n-1})] = m(x_n - x_0) = m(b-a)$$

Definition

Dirichlet's function: $f:[0,1] \to \mathbb{R}$

$$\begin{cases} 0, & x \in [0,1] \ \ni x \in \mathbb{Q} \\ 1, & x \in [0,1] \ \ni x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Section 6.2: The Archimedes-Riemman Theorem

Fact (Comparison Lemma for Positive Sequences)

Suppose $\{a_n\}, \{b_n\}$ satisfy $0 \le a_n \le b_n \ \forall \ n \in \mathbb{N}$ and $b_n \to 0$, then $a_n \to 0$

Fact (Order Preserving Property for Sequences)

Suppose $\{a_n\}, \{b_n\}$ with $a_n \to a, \ b_n \to b \ \text{and} \ \forall \ n \in \mathbb{N} \ a_n \leq b_n$, then $a \leq b$

Definition

Suppose $f:[a,b]\to\mathbb{R}$ is bounded, then we say f is integrable (on [a,b]) if

$$\int_{a}^{b} f = \int_{a}^{\overline{b}} f = I$$

If this is the case then we define

$$\int_{a}^{b} f = I = \text{the integral of f on } [a, b]$$

Lemma 6.7

Suppose $f:[a,b]\to\mathbb{R}$ is bounded, and P is a partition of [a,b], then

(*)
$$L(f,P) \le \int_a^b f \le \int_a^b f \le U(f,P) \Rightarrow$$

(i)
$$0 \le \int_a^b f - \int_a^b f \le U(f, P) - L(f, P)$$

(ii)
$$0 \le U(f, P) - \int_{a}^{b} f \le U(f, P) - L(f, P)$$

(ii)
$$0 \le \int_a^b f - L(f, P) \le U(f, P) - L(f, P)$$

Theorem 6.8 (Archimedes-Riemann Theorem)

Suppose $f:[a,b]\to\mathbb{R}$ is bounded, then

f is integrable \Leftrightarrow \exists a sequence of partitions $\{P_n\}$ of [a,b] $\ni \lim_{n\to\infty} [U(f,P_n)-L(f,P_n)]=0$

Definition

 $f:[a,b]\to\mathbb{R}$ is bounded, $\{P_n\}$ is a sequence of partitions of [a,b], then $\{P_n\}$ is an Archimedian Sequence if $U(f,P_n)-L(f,P_n)\to 0$

Definition

A partition of $P_n=\{x_0,x_1,\cdots,x_n\}$ of [a,b] \ni $x_i=a+i(\frac{b-a}{n})$ is a regular partition of [a,b]

Definition

Let $P_n = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b], then $gap(P) = \max_{1 \le i \le n} (x_i - x_{i-1})$

Fact 1

 $f:[a,b] \to \mathbb{R}$ is bounded and f is monotonically increasing $\Rightarrow f$ is integrable

 $f:[a,b]\to\mathbb{R}$ is a step function if $\exists P^*=\{z_0,z_1,\cdots,z_k\}$ of [a,b] and $c_1,\cdots,c_k\in\mathbb{R}$ $\ni f(x)=c_k,x\in(z_{i-1},z_i)$ Note: $z_0=a,z_k=b$

Fact 2

 $f:[a,b] \to \mathbb{R}$ is a step function $\Rightarrow f$ is integrable

Fact 3

 $f:[a,b]\to\mathbb{R}$ is Lipschitz continuous $\Rightarrow f$ is integrable

Leibniz Notation

 $f:[a,b]\to\mathbb{R}$ is integrable

$$\int_a^b f = \int_a^b f(x)dx = \int_a^b f(*)d*$$

Section 6.3: Additivity, Monotonicity, Linearity

Theorem 6.12 (Additivity)

Suppose $f:[a,b]\to\mathbb{R}$ is integrable and $c\in(a,b),$ then f is integrable on [a,c] and [c,b] and

$$\int_a^b f = \int_a^c f + \int_c^b f$$

Theorem 6.13 (Monotonicity)

Suppose $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are integrable and that $f(x)\leq g(x)\ \forall\ x\in[a,b]$, then

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Lemma 6.14

 $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are bounded and P is a partition of [a,b], then

$$L(f,P) + L(g,P) \le L(f+g,P)$$

$$U(f+g,P) \le U(f,P) + U(g,P)$$

And for any $\alpha \in \mathbb{R}$

$$\begin{cases} U(\alpha f,P) = \alpha U(f,P) \text{ and } L(\alpha f,P) = \alpha L(f,P), & \alpha \geq 0 \\ U(\alpha f,P) = \alpha L(f,P) \text{ and } L(\alpha f,P) = \alpha U(f,P), & \alpha < 0 \end{cases}$$

Theorem 6.15 (Linearity)

Let $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ be integrable. Then for $\alpha,\beta\in\mathbb{R}$ $\alpha f+\beta g$ is integrable and

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Corollary 6.16

Let $f:[a,b] \to \mathbb{R}$ and $|f|:[a,b] \to \mathbb{R}$ be integrable. Then

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Fact A

Suppose a set $S \subseteq \mathbb{R}$ and S is bounded, let $\alpha S = {\alpha x \mid x \in S}$, then

$$\begin{cases} \sup \alpha S = \alpha \sup S, & \alpha \ge 0 \\ \sup \alpha S = \alpha \inf S, & \alpha < 0 \end{cases}$$

Section 6.4: Continuity and Integrability

Theorem 6.18

 $f:[a,b]\to\mathbb{R}$ is continuous $\Rightarrow f$ is integrable on [a,b]

Theorem 6.19

 $f:[a,b]\to\mathbb{R}$ is bounded and continuous on $(a,b)\Rightarrow f$ is integrable on [a,b] and $\int_a^b f$ does not depend on f(a),f(b)

Section 6.4 (sup): Continuity and Integrability

Theorem (6.3, 6)

 $f:[a,b] \to \mathbb{R}$ is bounded and a < c < b. If f is integrable on [a,c] and [c,b], then f is integrable on [a,b]

Definition

 $f:[a,b] \to \mathbb{R}$ is bounded and $a < c_1 < c_2 < \cdots < c_k < b$, then f is piecewise integrable if f is integrable on each of $[a,c_1],[c_1,c_2],\cdots,[c_k,b]$ So f is piecewise integrable $\Rightarrow f$ is integrable

Corollary

Suppose f is bounded and $a < c_1 < c_2 < \cdots < c_k < b$, then (i) f is continuous on $(a, c_1), (c_1, c_2), \cdots, (c_k, b) \Rightarrow f$ is integrable (f is piecewise continuous) (ii) f is monotone on $(a, c_1), (c_1, c_2), \cdots, (c_k, b) \Rightarrow f$ is integrable (f is piecewise monotone)

Section 6.5: First Fundamental Theorem of Calculus

Theorem 6.22 (FTC 1)

 $f:[a,b]\to\mathbb{R}$ is continuous and is differentiable on (a,b) and $f':(a,b)\to\mathbb{R}$ is continuous and bounded, then

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

Section 6.6: Second Fundamental Theorem of Calculus

Theorem 6.26 (MVT for Integrals)

Let $f:[a,b] \to \mathbb{R}$ be continuous. Then $\exists \ c \in (a,b) \ \ni f(c)(b-a) = \int_a^b f(a)(b-a) da$

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f$$

Proposition 6.27

For $f:[a,b]\to\mathbb{R}$ is continuous, set $F(x)=\int_a^x f(t)dt$ for $x\in[a,b]$, then F is continuous on [a,b]

Theorem 6.29 (FTC 2)

 $f:[a,b]\to\mathbb{R}$ is continuous, $F(x)=\int_a^x f(t)dt,$ then F is differentiable on (a,b) and F'(x)=f(x) for $x\in(a,b)$

Corollary 6.30

Suppose that the function $f:[a,b]\to\mathbb{R}$ is continuous. Then

$$\frac{d}{dx}\left[\int_x^b f\right] = -f(x) \text{ for all } x \in (a,b)$$

Definition

Let $f:[a,b]\to\mathbb{R}$ be integrable. Let $c,d\in[a,b]$ \ni c< d Set $\int_d^c f=-\int_c^d f,\int_c^c f=0$

Fact

For any $x_1, x_2, x_3 \in [a, b]$

$$\int_{x_1}^{x_3} f = \int_{x_1}^{x_2} f + \int_{x_2}^{x_3} f$$

Corollary 6.31

I = (a, b), f is continuous on $I, x_0 \in I \Rightarrow$

$$\frac{d}{dx} \int_{x_0}^x f = f(x) \ \forall \ x \in I$$

Corollary 6.32

I=(a,b), f is continuous on $J=(c,d), \phi: J\to I$ is differentiable and $\phi(J)\subseteq I$, then for $x_0\in I$

$$\frac{d}{dx} \int_{x_0}^{\phi(x)} f = f(\phi(x)) \cdot \phi'(x) \ \forall \ x \in J$$

Section 6.6 (sup): The Logarithm and Exponential Functions

Fact

Divergence of the Harmonic Series:

 $S_n = \sum_{k=1}^n \frac{1}{k}$ is a harmonic series and diverges (does not converge and grows without bound)

Definitions

$$\ln x = \int_1^x \frac{1}{t} dt, \ x > 0$$
$$\frac{d}{dx} \ln x = \frac{1}{x}$$
$$\ln 1 = \int_1^1 \frac{1}{t} dt = 0$$

Proposition 1

- (a) $\ln x$ is strictly increasing
- (b) $\ln x \to \infty$; $x \to \infty$
- (c) $\ln x \to -\infty$; $x \to 0$

Proposition 2

$$a,b>0,\ r\in\mathbb{Q},\ r>0$$

- (i) $\ln ab = \ln a + \ln b$
- (ii) $\ln a^r = r \ln a$
- (iii) $\ln \frac{1}{b} = -\ln b$

Definition

$$f(x) = \ln x \Rightarrow f^{-1}(x) = \exp x = e^x$$

 $\exp x$ is strictly increasing and

- (1) $\ln 1 = 0 \Rightarrow \exp 0 = 1$
- (1) In T (2) $D(f) = (0, +\infty) \Rightarrow R(f^{-1}) = (0, +\infty)$
- (3) $R(f) = (-\infty, +\infty) \Rightarrow D(f^{-1}) = (-\infty, +\infty)$

Proposition 3

- (i) $\exp(a+b) = \exp a \cdot \exp b$
- (ii) $\exp ab = (\exp a)^b, b \in \mathbb{Q}, b > 0$
- (iii) $\frac{d}{dx} \exp x = \exp x$ (iv) $\exp(-a) = \frac{1}{\exp a}$

Definition

$$e = \exp 1 = e^1 = \sum_{k=0}^{\infty} \frac{1}{k!}$$

Fact

$$x = b^y \Rightarrow y = \log_b(x)$$

Section 8.1: Taylor Polynomials

Definition

 $I=(a,b),\ x_0\in I.\ f:I\to\mathbb{R},\ g:I\to\mathbb{R},\ \text{have contact of order }n\ \text{at }x_0$ provided that f and g have derivatives of order n at x_0 and $f^{(k)}(x_0) = g^{(k)}(x_0)$, $k = 0, 1 \cdots, n$

Fact

$$\frac{d^k}{dx^k}(x-x_0)^l = \begin{cases} k!, & k=l\\ 0, & k \neq l \end{cases}$$

Proposition 8.2

 $I = (a, b), x_0 \in I, f : I \to \mathbb{R}$ has n derivatives (at x_0), set:

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)(x - x_0)^k}{k!}$$

Then P_n is the unique polynomial of degree $\leq n \ni P_n$ has a contact of order n at x_0 with f (P_n is the Taylor Polynomial for f)

Fact

$$f(x) = e^x \Rightarrow P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$

Fact

$$f(x) = \sin x \Rightarrow P_n(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1}$$

Section 8.2: Lagrange Remainder Theorem

Lemma 8.7

 $I=(a,b),\ x_0\in I,\ h:I\to\mathbb{R}$ has n+1 derivatives and $h^{(k)}(x_0)=0,$ $k=0,1\cdots,n.$ Then for $x\in I,\ x\neq x_0\ \exists\ z$ strictly between x and $x_0\ni x_0$

$$h(x) = \frac{h^{(n+1)}(z)(x - x_0)^{n+1}}{(n+1)!}$$

Theorem 8.8 (Lagrange Remainder Theorem)

 $I=(a,b),\ x_0\in I,\ f:I\to\mathbb{R}$ has n+1 derivatives. Then for $x\in I$ $x\neq x_0$ \exists c strictly between x and x_0 \ni

$$f(x) = P_n(x) + \frac{f^{(n+1)}(c)(x - x_0)^{n+1}}{(n+1)!} = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)(x - x_0)^k}{k!} + \frac{f^{(n+1)}(c)(x - x_0)^{n+1}}{(n+1)!}$$

Section 8.3: Convergence of Taylor Polynomials

Lemma 8.20

Suppose $\{C_n\} \subset \mathbb{R} \ni \lim_{n \to \infty} \frac{|C_{n+1}|}{|C_n|} = l$, then

- (i) $l < 1 \Rightarrow C_n \to 0$
- (ii) $l > 1 \Rightarrow \{C_n\}$ is unbounded

Theorem 8.14

 $I=(a,b),\ f:I\to\mathbb{R}$ has derivatives up to all orders, $x_0\in I,\ r\ni [x_0-r,x_0+r]\subset I.$ Suppose also that $\exists\ m\ni$ for each $n\in\mathbb{N},\ x\in [x_0-r,x_0+r],\ |f^{(n)}(x)|\le M^n,$ then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \ x \in [x_0 - r, x_0 + r]$$

Section 8.7: The Weirstrass Approximation Theorem

Lemma 8.24

For each $x \in \mathbb{R}$ and each $n \in \mathbb{N}$, $n \geq 2$

$$\sum_{k=0}^{n} (x - kn^{-1})^2 \binom{n}{k} x^k (1 - x)^{n-k} - \frac{x(1-x)}{n}$$

Theorem 8.23 (Weirstrass Approximation)

Let I=[a,b] and suppose $f:I\to\mathbb{R}$ is continuous. Then for each $\epsilon>0$ there exists a polynomial $P:\mathbb{R}\to\mathbb{R}$ $\ni |f(x)-P(x)|<\epsilon$ \forall $x\in I$

Where

$$P(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k}$$

Fact

Let f be continuous on I = [a, b], then there exists a sequence of polynomials $\{P_n\}$ $\ni \{P_n\}$ converges uniformly to f

Section 9.1: Sequences and Series

Definition

 $\{a_n\}$ us a Cauchy Sequence if given $\epsilon>0$ ∃ N $\ni n,\ m\geq N \Rightarrow |a_n-a_m|<\epsilon$

Proposition 9.2

 $\{a_n\}$ converges $\Rightarrow \{a_n\}$ is a Cauchy Sequence

Lemma 9.3

 $\{a_n\}$ is a Cauchy Sequence $\Rightarrow \{a_n\}$ is bounded

Theorem 9.4

 $\{a_n\}$ converges $\Leftrightarrow \{a_n\}$ is a Cauchy Sequence

Definition

For a given $\{a_n\}$ set $S_n = \sum_{k=1}^n a_k$

If $\{S_n\}$ converges we write

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$$

Fact

The Harmonic Series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 diverges

Proposition 9.5

$$\sum_{n=1}^{\infty} a_n \text{ converges } \Rightarrow \lim_{n \to \infty} a_n = 0$$

Proposition 9.6

$$|r| < 1 \Rightarrow \sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

Theorem 9.7

Suppose $a_k \geq 1$, then

$$\sum_{k=0}^{\infty} a_k \text{ converges } \Leftrightarrow \exists M \ni \sum_{k=1}^{n} a_k \leq M$$

Corollary 9.8 (Comparison Test)

 $0 \le a_k \le b_k$

- (i) $\sum_{k=1}^{\infty} b_k$ converges $\Rightarrow \sum_{k=1}^{\infty} a_k$ converges
- (ii) $\sum_{k=1}^{\infty} a_k$ diverges $\Rightarrow \sum_{k=1}^{\infty} b_k$ diverges

Corollary 9.11 (Integral Test)

Suppose $a_k \ge 0$ and suppose $\exists f : [0, +\infty) \to \mathbb{R}$, f is continuous, $f(k) = a_k$, and f is monotonically decreasing, then

$$\int_{1}^{n} f \leq M \text{ for some } M \ \forall \ n \in \mathbb{N} \Leftrightarrow \sum_{k=1}^{\infty} a_{k} \text{ converges}$$

Corollary 9.13 (p-Test)

$$\sum_{k=1}^{\infty} \frac{1}{k^p} \text{ converges} \Leftrightarrow p > 1$$

Theorem 9.15 (Alternating Series Test)

Suppose $a_n \geq 0$, $\{a_n\}$ is monotonically decreasing, and $a_n \to 0$, then

$$\sum_{k=1}^{\infty} (-1)^{k+1} a_k \text{ converges}$$

Theorem 9.17 (Cauchy Convergence Criterion for Series)

$$\sum_{k=1}^{\infty} a_k \text{ converges} \Leftrightarrow \text{Given } \epsilon > 0 \ \exists \ N \ \ni n \geq N \text{ implies for each } k \in \mathbb{N} \ |a_{n+1} + \dots + a_{n+k}| < \epsilon$$

Definition

The series $\sum_{k=1}^{\infty} a_k$ is said to converge absolutely provided that the series $\sum_{k=1}^{\infty} |a_k|$ converges

Corollary 9.18 (Absolute Convergence Test)

$$\sum_{k=1}^{\infty} |a_k| \text{ converges} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ converges (absolutely)}$$

Theorem 9.20

Suppose for $\sum_{k=1}^{\infty} a_k$ that $\exists N$ and $r \in [0,1] \ni |a_{n+1}| \le r|a_n| \ \forall n \ge N$, then

$$\sum_{k=1}^{\infty} a_k \text{ converges absolutely}$$

Corollary 9.21 (Ratio Test)

For $\sum_{k=1}^{\infty} a_k$, suppose that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = l$$

- (i) $l < 1 \Rightarrow \sum_{k=1}^{\infty} a_k$ converges (absolutely)
- (ii) $l > 1 \Rightarrow \sum_{n=k}^{\infty} a_k$ diverges

Section 9.2: Pointwise Convergence of Sequences of Functions

Definition

 $\{f_n\}: D \to \mathbb{R}, \ f: D \to \mathbb{R}, \text{ then } \{f_n\} \text{ converges pointwise to } f \ (f_n \to f \text{ pointwise}) \text{ if } f_n(x) \to f(x) \text{ for each } x \in D$

Section 9.3: Uniform Convergence

Definition

 $\{f_n\}: D \to \mathbb{R}, \ f: D \to \mathbb{R}, \text{ then } \{f_n\} \text{ converges to } f \text{ uniformly}$ $(f_n \to f \text{ uniformly}) \text{ if given } \epsilon > 0 \ \exists \ N \ni n \ge N \Rightarrow |f_n(x) - f(x)| < \epsilon \ \forall \ x \in D$

Definition

 $\{f_n\}: D \to \mathbb{R}$ is uniformly cauchy if given $\epsilon > 0 \exists N \ni n \geq N$ and $k \in \mathbb{N} \Rightarrow |f_{n+k}(x) - f_n(x)| < \epsilon \ \forall \ x \in D$

Theorem 9.29 (Weirstrass Uniform Convergence Criterion)

 $\{f_n\}: D \to \mathbb{R}, \ f: D \to \mathbb{R}, \ f_n \to f \text{ uniformly } \Leftrightarrow \{f_n\} \text{ is uniformly cauchy }$

Section 9.4: The Uniform Limit of Functions

Theorem 9.31

 $\{f_n: D \to \mathbb{R}\}, \ f: D \to \mathbb{R}, \ f_n \text{ is continuous and } f_n \text{ converges to } f \text{ uniformly } \Rightarrow f \text{ is continuous on } D$

Theorem 9.32

 $\{f_n:[a,b]\to\mathbb{R}\},\ f:[a,b]\to\mathbb{R},\ f_n$ is integrable and f_n converges to f uniformly $\Rightarrow f$ is integrable and $\int_a^b f_n\to\int_a^b f$

Theorem 9.33

 $I=(a,b),\ \{f_n:I\to\mathbb{R}\}$ is continuously differentiable on I (f_n is continuous on I and f'_n is differentiable on I), $f:I\to\mathbb{R}$ and (i) $f_n(x)\to f(x)$ for each $x\in I$ (ii) $\exists\ g:I\to\mathbb{R}\ \ni\ f'_n\to g$ uniformly on Ithen f is continuously differentiable on I and f'(x)=g(x) for each $x\in I$

Theorem 9.34

 $I=(a,b), \{f_n:I\to\mathbb{R}\}$ is continuously differentiable and (i) $\{f_n\}$ converges uniformly to $f:I\to\mathbb{R}$ and (ii) $\{f'_n\}$ is uniformly Cauchy, then $f:I\to\mathbb{R}$ is continuously differentiable and $f'_n\to f'$ uniformly

Section 9.5: Power Series

Define
$$f: D \to \mathbb{R}$$
 by $f(x) = \lim_{n \to \infty} \left[\sum_{k=0}^{\infty} c_k x^k \right] = \sum_{k=0}^{\infty} c_k x^k$ for each $x \in D$

Section 10.1: The Linear Structure of \mathbb{R}^n and the Scalar Product

Properties

 $\mathbf{v} \in \mathbb{R}^{n}, \ \mathbf{V} = (v_{1}, \cdots, v_{n})$ (i) $\mathbf{u} = \mathbf{v} \Leftrightarrow u_{i} = v_{i}, \ i = 1, \cdots, n$ (ii) $\mathbf{u} + \mathbf{v} = (u_{1} + v_{1}, \cdots, u_{n} + v_{n})$ (iii) $\alpha \in \mathbb{R}, \ \alpha \mathbf{u} = (\alpha u_{1}, \cdots, \alpha u_{n})$ (iv) $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-1)\mathbf{v}$

Proposition 10.1

 $\mathbf{u}, \ \mathbf{v}, \ \mathbf{w} \in \mathbb{R}^n$, then

$$\begin{aligned} &(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) \\ &\mathbf{u} + \mathbf{0} = \mathbf{u}, \ \mathbf{0} = (0, \cdots, 0) \\ &\mathbf{u} - \mathbf{u} = \mathbf{0} \\ &\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \end{aligned}$$

Definition (Scalar Product)

$$\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
, then $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 \cdot v_1 + \dots + u_n \cdot v_n = \sum_{i=1}^n u_i v_i$

Proposition 10.2

 $\mathbf{u}, \ \mathbf{v}, \ \mathbf{w} \in \mathbb{R}^n, \ \alpha, \ \beta \in \mathbb{R}, \text{ then}$

(i)
$$\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$$
 and $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$

(ii)
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

(iii)
$$\langle \alpha \mathbf{u} + \beta \mathbf{w}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle + \beta \langle \mathbf{w}, \mathbf{v} \rangle$$

Definition (Norm)

$$\mathbf{w} \in \mathbb{R}^n, ||\mathbf{w}|| = \langle \mathbf{w}, \mathbf{w} \rangle^{\frac{1}{2}} = \sqrt{w_1^2 + \dots + w_n^2}$$

Definition (Distance)

$$\mathbf{u}, \ \mathbf{v} \in \mathbb{R}^n, \ \operatorname{dist}(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}$$

Proposition 10.3

$$\mathbf{u},\ \mathbf{v} \in \mathbb{R}^2, \, \text{then} \, \left\langle \mathbf{u}, \mathbf{v} \right\rangle = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$$

Definition (Orthogonality)

 $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then \mathbf{u} and \mathbf{v} are orthogonal iff. $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Lemma 10.4 (Orthogonality in \mathbb{R}^2)

$$\mathbf{u}, \ \mathbf{v} \in \mathbb{R}^2$$
, then $\mathbf{u} \perp \mathbf{v} \Leftrightarrow ||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$

Lemma 10.5 (Orthogonality in \mathbb{R}^n)

$$\mathbf{u}, \ \mathbf{v} \in \mathbb{R}^n, \ \mathbf{v} \neq \mathbf{0}, \ \lambda = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}, \text{ then for } \mathbf{w} = \mathbf{u} - \lambda \mathbf{v}, \ \mathbf{w} \perp \mathbf{v} \text{ and } \mathbf{u} = \mathbf{w} + \lambda \mathbf{v}$$

Theorem 10.6 (Cauchy-Schwartz Inequality)

$$\mathbf{u}, \ \mathbf{v} \in \mathbb{R}^n, \text{ then } |\langle \mathbf{u}, \mathbf{v} \rangle|| \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$$

Fact

 $\alpha \in \mathbb{R} \text{ then } ||\alpha \mathbf{u}|| = |\alpha| \cdot ||\mathbf{u}||$

Theorem 10.7 (Triangle Inequality in \mathbb{R}^n)

 $\mathbf{u}, \ \mathbf{v} \in \mathbb{R}^n$, then $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$

Section 10.2: Convergence of Sequences in \mathbb{R}^n

Definition

A sequence in \mathbb{R}^n is a function from \mathbb{N} to \mathbb{R}^n . We denote the functional value for each k by \mathbf{u}_k . The set of all such functional values is denoted by $\{\mathbf{u}_k\}_{k=1}^{\infty}$

Definition

$$\{\mathbf{u}_k\}_{k=1}^{\infty} \subset \mathbb{R}^n, \ \mathbf{u} \in \mathbb{R}^n, \text{ then we say } \{\mathbf{u}_k\}_{k=1}^{\infty} \text{ converges to } \mathbf{u} \}$$
 (Namely, $\mathbf{u}_k \to \mathbf{u}$ and $\lim_{k \to \infty} \mathbf{u}_k = \mathbf{u}$) If given $\epsilon > 0 \ \exists \ N \ni k \ge N \Rightarrow \|\mathbf{u}_k - \mathbf{u}\| < \epsilon \text{ (Namely, } \mathrm{dist}(\mathbf{u}_k, \mathbf{u}) < \epsilon)$

Corollary 10.8

$$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$$
, then $||\mathbf{u} - \mathbf{v}|| \le ||\mathbf{u} - \mathbf{w}|| + ||\mathbf{w} - \mathbf{v}||$

Fact 1

$$\mathbf{u}_k \to \mathbf{u} \text{ in } \mathbb{R}^n \Leftrightarrow ||\mathbf{u}_k - \mathbf{u}|| \to 0$$

Fact 2

$$\mathbf{u}_k \to \mathbf{u}, \ \mathbf{u}_k \to \mathbf{u}' \Rightarrow \mathbf{u} = \mathbf{u}'$$

Definition (ith Component Projection Function)

$$P_i: \mathbb{R}^n \to \mathbb{R}, \ i = 1, \dots, n \text{ is } P_i(\mathbf{u}) = \mathbf{u}_i$$

Note

- (i) $\mathbf{u} = (u_1, \dots, u_n) = (P_1(\mathbf{u}), \dots, P_n(\mathbf{u}))$
- (ii) $P_i(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha P_i(\mathbf{u}) + \beta P_i(\mathbf{v})$
- (iii) $|P_i(\mathbf{u})| \le ||\mathbf{u}||$

Definition

 $\{\mathbf{u}_k\} \in \mathbb{R}^n$ converges to $\mathbf{u} \in \mathbb{R}^n$ componentwise if $\lim_{k \to \infty} P_i(\mathbf{u}_k) = P_i(\mathbf{u})$

Theorem 10.9 (Componentwise Convergence Criterion)

 $\{\mathbf{u}_k\} \subset \mathbb{R}^n, \ \mathbf{u} \in \mathbb{R}^n, \text{ then } \mathbf{u}_k \to \mathbf{u} \Leftrightarrow \mathbf{u}_k \text{ converges to } \mathbf{u} \text{ componentwise}$

Theorem 10.10

$$\{\mathbf{u}_k\}, \ \{\mathbf{v}_k\} \subset \mathbb{R}^n, \ \mathbf{u}, \ \mathbf{v} \in \mathbb{R}^n, \ \mathbf{u}_k \to \mathbf{u}, \ \mathbf{v}_k \to \mathbf{v}, \text{ then for } \alpha, \ \beta \in \mathbb{R}, \ \alpha \mathbf{u}_k + \beta \mathbf{v}_k \to \alpha \mathbf{u} + \beta \mathbf{v}$$

Section 10.3: Open and Closed Sets in \mathbb{R}^n

Definition (Open Ball of Radius r)

$$\mathbf{u} \in \mathbb{R}^n, \ r > 0, \ B_r(\mathbf{u}) = \{ \mathbf{v} \in \mathbb{R}^n \mid ||\mathbf{v} - \mathbf{u}|| < r \}$$

Definition (Interior Point)

 $A \subset \mathbb{R}^n$, $\mathbf{u} \in A$, \mathbf{u} is an interior point of A if $\exists r > 0 \ni B_r(\mathbf{u}) \subset A$

int(A) is the set of all interior points of A and is called the interior of A

 $\operatorname{int}(A) = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{u} \text{ is an interior point of } A \}$

Definition (Open)

 $A \subset \mathbb{R}^n$, then A is open if int(A) = A

Proposition 10.13

 $\mathbf{u} \in \mathbb{R}^n$, r > 0, then $B_r(\mathbf{u})$ is open

Definition (Closed)

 $A \subset \mathbb{R}^n$ is closed if whenever $\{\mathbf{u}_k\} \subset A, \ \mathbf{u}_k \to \mathbf{u}, \ \text{then } \mathbf{u} \in A$

De Morgan's Laws

 $\{A_s\}_{s\in S}$, each $A_s \subset \mathbb{R}^n$ (a) $\mathbb{R}^n \setminus (\cap_{s\in S} A_s) = \cup_{s\in S} (\mathbb{R}^n \setminus A_s)$ (b) $\mathbb{R}^n \setminus (\cup_{s\in S} A_s) = \cap_{s\in S} (\mathbb{R}^n \setminus A_s)$

Theorem 10.16

 $A \subset \mathbb{R}^n$, then A is open $\Leftrightarrow \mathbb{R}^n \setminus A$ is closed

Proposition 10.17

- (i) $O_s \subset \mathbb{R}^n$, O_s is open, $s \in S \Rightarrow \bigcup_{s \in S} O_s = O$ is open (Infinite union of open sets is open)
- (ii) $C_s \subset \mathbb{R}^n$, C_s is closed, $s \in S \Rightarrow \bigcap_{s \in S} C_s = C$ is closed (Infinite intersection of closed sets is closed)

Proposition 10.18

- (i) $O_i \subset \mathbb{R}^n$, O_i is open, $i = 1, \dots, n \Rightarrow \bigcap_{i=1}^n O_i$ is open (Finite intersection of open sets is open)
- (ii) $C_i \subset \mathbb{R}^n$, C_i is closed, $i = 1, \dots, n \Rightarrow \bigcup_{i=1}^n C_i$ is closed (Finite union of closed sets is closed)

Definition (Exterior Point)

 $A \subset \mathbb{R}^n$, $\mathbf{u} \in \mathbb{R}^n$ is an exterior point of A if $\exists r > 0 \ni B_r(\mathbf{u}) \subset \mathbb{R}^n \setminus A$

Definition

 $\operatorname{ext}(A)$ is the set of all exterior points of A and is called the exterior of A $\operatorname{ext}(A) = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{u} \text{ is an exterior point of } A \}$

Definition (Boundary Point)

 $A \subset \mathbb{R}^n$, $\mathbf{u} \in \mathbb{R}^n$, is a boundary point of A if for each r > 0, $B_r(\mathbf{u}) \cap A \neq \emptyset$ and $B_r(\mathbf{u}) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$

Definition

 $\mathrm{bd}(A)$ is the set of all boundary points of A and is called the boundary of A

 $\mathrm{bd}(A) = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{u} \text{ is an boundary point of } A \}$

Note

 $\mathbb{R}^n = \operatorname{int}(A) \cup \operatorname{ext}(A) \cup \operatorname{bd}(A)$ (Disjoint Union)

Fact

$$int(A) = ext(\mathbb{R}^n \setminus A)$$
$$bd(A) = bd(\mathbb{R}^n \setminus A)$$

Lemma A

 $S \subset \mathbb{R}^n$, $\mathbf{u} \in \mathbb{R}^n$, then $B_r(\mathbf{u}) \cap S \neq \emptyset$ for each $r > 0 \Leftrightarrow \exists \{\mathbf{u}_n\} \subset S \ni \mathbf{u}_n \to \mathbf{u}$

Proposition 10.19

 $A \subset \mathbb{R}^n$, then

- (i) A is open $\Leftrightarrow A \cap \mathrm{bd}(A) = \emptyset$
- (ii) A is closed $\Leftrightarrow \operatorname{bd}(A) \subseteq A$

 $A \subset \mathbb{R}^n$, then the closure of A or $\mathrm{cl}(A)$ is defined by $\mathrm{cl}(A) = \mathrm{int}(A) \cup \mathrm{bd}(A)$

Fact 2

- (i) $A \subseteq cl(A)$
- (ii) cl(A) is closed
- (iii) A is closed $\Leftrightarrow A = \operatorname{cl}(A)$

Fact 3

 $A \subset \mathbb{R}^n$, then

- (i) int(A) is open
- (ii) ext(A) is open
- (iii) bd(A) is closed

Section 11.1: Continuous Functions and Mappings

Note

 $A \subseteq \mathbb{R}^n$ and $F: A \to \mathbb{R}^m$, then

- (i) m = 1 : F is a function
- (ii) m > 1 : F is a mapping

Definition

- (i) $F:A\to\mathbb{R}^m$ is continuous at $\mathbf{u}\in A$ if whenever $\{\mathbf{u}_k\}\subset A,\ \mathbf{u}_k\to\mathbf{u}$, then $F(\mathbf{u}_k)\to F(\mathbf{u})$
- (ii) $F:A\to\mathbb{R}^m$ is continuous if F is continuous at each $\mathbf{u}\in A$

Proposition 11.1

 $P_i: \mathbb{R}^n \to \mathbb{R}$ is continuous, $i = 1, \dots, n$

Theorem 11.3

 $\mathbf{u} \in A \subset \mathbb{R}^n, \ h: A \to \mathbb{R} \text{ and } g: A \to \mathbb{R} \text{ are continuous at } \mathbf{u}, \text{ then }$

- (i) $\alpha h + \beta g$ is continuous at $\mathbf{u}, \ \alpha, \beta \in \mathbb{R}$
- (ii) $h \cdot g$ is continuous at **u**
- (iii) if $g(\mathbf{v}) \neq 0 \ \forall \ \mathbf{v} \in A$, then $\frac{h}{g}$ is continuous at \mathbf{u}

Theorem 11.5

 $A \subset \mathbb{R}^n$, $\mathbf{u} \in A$, $G : A \to \mathbb{R}^n$ is continuous at \mathbf{u} , $B \subset \mathbb{R}^n \ni G(A) \subset B$, $H : B \to \mathbb{R}^k$ is continuous at $G(\mathbf{u})$, then $(H \circ G)(\mathbf{v}) = H(G(\mathbf{v}))$ is continuous at vu; namely, $H : A \to \mathbb{R}^k$ is continuous at \mathbf{u}

Example 11.7

 $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(\mathbf{u}) = ||\mathbf{u}||$ is continuous

Fact A (Reverse Triangle Inequality)

 $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then $||\mathbf{u} - \mathbf{v}|| \ge ||\mathbf{u}|| - ||\mathbf{v}||$

Fact B

 $f(\mathbf{u}) = ||\mathbf{u}||$ is continuous at each $\mathbf{u} \in \mathbb{R}^n$

Definition

 $A \subset \mathbb{R}^n$, $F: A \to \mathbb{R}^m$, $\mathbf{u} \in A$, set $F_i(\mathbf{u}) = P_i(F(\mathbf{u}))$, $i = 1, \dots, m$ Then $F(\mathbf{u}) = (F_1(\mathbf{u}), \dots, F_m(\mathbf{u}))$, and $F_i: A \to \mathbb{R}, i = 1, \dots, m$ is called the ith component function of F

Theorem 11.9 (Componentwise Continuity Criterion)

 $A \subset \mathbb{R}^n$, $\mathbf{u} \in A$, $F: A \to \mathbb{R}^n$ $(F = (F_1, \dots, F_n))$, then F is continuous at $\mathbf{u} \Leftrightarrow F_i$ is continuous at $\mathbf{u}, i = 1, \dots, n$

Corollary

 $F: O \to \mathbb{R}^n$ given by $F(\mathbf{u}) = \frac{\mathbf{u}}{||\mathbf{u}||}$ is continuous (Note that this called the unit vector in the direction of \mathbf{u})

Corollary 11.10

 $A \subset \mathbb{R}^n$, $\mathbf{u} \in A$, $H : A \to \mathbb{R}^m$ and $G : A \to \mathbb{R}^m$ are continuous at \mathbf{u} , then $\alpha H + \beta G : A \to \mathbb{R}^m$ is continuous at \mathbf{u}

Theorem 11.11 ($\epsilon - \delta$ Criterion)

 $A \subset \mathbb{R}^n$, $\mathbf{u} \in A$, $F: A \to \mathbb{R}^m$, then the following are equivalent:

- (i) F is continuous at \mathbf{u}
- (ii) Given $\epsilon > 0 \; \exists \; \delta > 0 \; \ni \mathbf{v} \in A, \; ||\mathbf{v} \mathbf{u}|| < \delta \Rightarrow ||F(\mathbf{v}) F(\mathbf{u})|| < \epsilon$

Theorem 11.12

 $O \subset \mathbb{R}^n$, O is open, $F: O \to \mathbb{R}^m$, then TFAE:

- (i) F is continuous on O
- (ii) $V \subset \mathbb{R}^m$, V is open $\Rightarrow F^{-1}(V)$ is open

Corollary 11.13

 $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, $c \in \mathbb{R}$, then

$$\{\mathbf{u} \in \mathbb{R}^n \mid f(\mathbf{u}) < c\} = O_{c^-}$$

$$\{\mathbf{u} \in \mathbb{R}^n \mid f(\mathbf{u}) > c\} = O_{c^+}$$

Are open sets

$$\{\mathbf{u} \in \mathbb{R}^n \mid f(\mathbf{u}) \le c\} = C_{c^-}$$

$$\{\mathbf{u} \in \mathbb{R}^n \mid f(\mathbf{u}) \ge c\} = C_{c^+}$$

Are closed sets

Section 11.2: Sequential Compactness / Extreme Values / Uniform Continuity

Definition

 $\{\mathbf{x}_k\} \subset \mathbb{R}^n, \ \{k_i\} \subset \mathbb{N}$ is strictly increasing, then $\{\mathbf{x}_{k_i}\} \subset \mathbb{R}^n$ is a subsequence of $\{\mathbf{x}_k\}$

Fact

$$\mathbf{x}_k \to \mathbf{x} \Rightarrow \mathbf{x}_{k_i} \to \mathbf{x}$$

 $A \subset \mathbb{R}^n$ is sequentially compact if $\{\mathbf{x}_k\} \subset A \Rightarrow \exists \{\mathbf{x}_{k_i}\}, \ \mathbf{x}_0 \in A \ni \mathbf{x}_{k_i} \to \mathbf{x}_0$

Definition

 $A \subset \mathbb{R}^n$ is bounded if $\exists M \ge 0 \ni ||\mathbf{u}|| \le M \ \forall \ \mathbf{u} \in A$

This is equivalent to saying $A \subset \overline{B_M(0)}$ "A is contained in the closed ball of radius M about 0"

Theorem 11.17

 $\{\mathbf{x}_k\} \subset \mathbb{R}^n, \{\mathbf{x}\}$ is bounded $\Rightarrow \{\mathbf{x}_k\}$ has a convergent subsequence

Theorem 11.18 (Sequential Compactness Theorem)

 $A \subset \mathbb{R}^n$ is sequentially compact $\Leftrightarrow A$ is closed and bounded

Fact (Closed Ball)

 $\overline{B_r(\mathbf{u})} = \{\mathbf{v} \mid ||\mathbf{v} - \mathbf{u}|| \leq r \text{ is bounded and closed } \Rightarrow \overline{B_r(\mathbf{u})} \text{ is sequentially compact}$

Corollary 11.19 (Generalized Rectangle)

 $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$ is sequentially compact

Theorem 11.20

 $A \subset \mathbb{R}^n$, A is sequentially compact, $F: A \to \mathbb{R}^m$ is continuous $\Rightarrow F(A)$ is sequentially compact in \mathbb{R}^m

Lemma 11.21

 $A \subset \mathbb{R}$ is sequentially compact $\Rightarrow A$ has a max and min

Theorem 11.22 (Extreme Value Theorem)

 $A\subset\mathbb{R}^n, A\neq\emptyset, A$ is sequentially compact, $f:A\to\mathbb{R}$ is continuous, then f attains its max and min on A

Definition (Extreme Value Property)

 $A \subset \mathbb{R}^n$ has the extreme value property if every continuous function $f: A \to \mathbb{R}$ attains its max and min on A

Theorem 11.24

 $A \subset \mathbb{R}^n$, then A has the extreme value property $\Leftrightarrow A$ is sequentially compact

Definition

 $A \subset \mathbb{R}^n, \ F: A \to \mathbb{R}^m$ is uniformly continuous if $\{\mathbf{u}_k\}, \ \{\mathbf{v}_k\} \subset A$, then $||\mathbf{u}_k - \mathbf{v}_k|| \to 0 \Rightarrow ||F(\mathbf{u}_k) - F(\mathbf{v}_k)|| \to 0$

Theorem 11.25

 $A \subset \mathbb{R}^n, A$ is sequentially compact, $F: A \to \mathbb{R}^m$ is continuous, then F is uniformly continuous

Theorem 11.27

 $A \subset \mathbb{R}^n$, $F: A \to \mathbb{R}^m$, then TFAE:

- (i) F is uniformly continuous
- (ii) Given $\epsilon > 0 \; \exists \; \delta > 0 \; \exists \; \mathbf{u}, \mathbf{v} \in A$, then $||\mathbf{u} \mathbf{v}|| < \delta \Rightarrow ||F(\mathbf{u}) F(\mathbf{v})|| < \epsilon$

Section 13.1: Limits

Definition

 $A \subset \mathbb{R}^n$, $\mathbf{x}_0 \in \mathbb{R}^n$, then \mathbf{x}_0 is a limit point of A if there exists $\{\mathbf{x}_k\} \subset A \setminus \{\mathbf{x}_0\}$ such that $\mathbf{x}_k \to \mathbf{x}_0$

 $A \subset \mathbb{R}^n, \mathbf{x}_0$ is a limit point of A, then for $f: A \to \mathbb{R}, l \in \mathbb{R}$, then we say

$$\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = l \text{ if whenever}$$
$$\{\mathbf{x}_k\} \subset A \setminus \{\mathbf{x}_0\}, \mathbf{x}_k \to \mathbf{x}_0, \text{ then } f(\mathbf{x}_k) \to l$$

Example

 $f: \mathbb{R}^n \to \mathbb{R}, f \text{ continuous at } \mathbf{x}_0 \in \mathbb{R}^n, \text{ if } \mathbf{x}_k \to \mathbf{x}_0, \mathbf{x}_k \in \mathbb{R}^n \setminus \{\mathbf{x}_0\}, \text{ then } f \text{ continuous } \Rightarrow$ $f(\mathbf{x}_k) \to f(\mathbf{x}_0)$, so for $l = f(\mathbf{x}_0)$ we have that $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$

Example

P is a polynomial, $P: \mathbb{R}^n \to \mathbb{R}$, then

$$\lim_{\mathbf{x}\to\mathbf{x}_0} P(\mathbf{x}) = P(\mathbf{x}_0) \text{ for all } \mathbf{x}_0 \in \mathbb{R}^n$$

Example

$$g(\mathbf{x}) = ||\mathbf{x}||$$
, then

$$\lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = g(\mathbf{x}_0) \text{ for all } \mathbf{x}_0 \in \mathbb{R}^n$$

Theorem 13.3

 $A \subset \mathbb{R}^n, \mathbf{x}_0$ is a limit point of A, then for $f: A \to \mathbb{R}, g: A \to \mathbb{R}$ such that

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = l_1 \text{ and } \lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = l_2$$

then we have the following:

- (i) $\lim_{\mathbf{x}\to\mathbf{x}_0} (f+g)(\mathbf{x}) = l_1 + l_2$
- (ii) $\lim_{\mathbf{x}\to\mathbf{x}_0} (fg)(\mathbf{x}) = l_1 \cdot l_2$ (iii) $\lim_{\mathbf{x}\to\mathbf{x}_0} (\frac{f}{g})(\mathbf{x}) = \frac{l_1}{l_2}$ for $l_2 \neq 0$

Theorem 13.7

 $A \subset \mathbb{R}^n$, \mathbf{x}_0 is a limit point of A, then for $f: A \to \mathbb{R}$ TFAE:

- (i) $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = l$
- (ii) Given $\epsilon > 0$, then there exists $\delta > 0$ such that $\mathbf{x} \in A \setminus \{\mathbf{x}_0\}$, then $||\mathbf{x} - \mathbf{x}_0|| < \delta \Rightarrow |f(\mathbf{x}) - l| < \epsilon$

 $\mathbf{x}_0 \in A$ is an isolated point of A if there exists some r > 0 such that $B_r(\mathbf{x}_0) \cap A \setminus \{\mathbf{x}_0\} = \emptyset$

Fact 1

 \mathbf{x}_0 is a limit point of $A \Leftrightarrow$ for every r > 0 there exists $\mathbf{x} \in A \setminus \{\mathbf{x}_0\}$ such that $\mathbf{x} \in B_r(\mathbf{x}_0)$

Fact 2

 $\mathbf{x} \in A$, then \mathbf{x} is a limit point of A or \mathbf{x} is an isolated point of A

Continuity and Limits Theorem

 $f: A \subset \mathbb{R}^n \to \mathbb{R}, \mathbf{x}_0 \in A$, then f continuous at $\mathbf{x}_0 \Leftrightarrow \lim \mathbf{x} \to \mathbf{x}_0 f(\mathbf{x}) = f(\mathbf{x}_0)$ whenever $\mathbf{x}_0 \in A$ and \mathbf{x}_0 is a limit point of A

Section 13.2: Partial Derivatives

Note

 $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n, \ f: \mathbb{R}^n \to \mathbb{R}$

Definition

 $f: \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \in \mathbb{R}^n, O$ open, $\mathbf{x} \in O$, then we say that f has a partial derivative with respect to the ith component at $\mathbf{x}, i \in \{1, 2, \dots, n\}$ if

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}_i) - f(\mathbf{x})}{t}$$
 exists

Where \mathbf{e}_i is the ith element of the standard basis for \mathbb{R}^n (the ith component of this vector is 1 and everything else is 0)

Here we have that $\frac{\partial f}{\partial x_i}(\mathbf{x})$ is the ith partial derivative of f at \mathbf{x}

Generalization

$$O \subset \mathbb{R}^n, \mathbf{x}_0 \in O, \mathbf{x}_0 = (x_1^0, \dots, x_n^0), \text{ then } \frac{f(\mathbf{x}_0 + t\mathbf{e}_i) - f(\mathbf{x}_0)}{t} = \frac{f(x_1^0, \dots, x_i^0 + t, \dots, x_n^0) - f(x_1^0, \dots, x_n^0)}{t}$$

$$= \frac{\phi_i(x_i^0 + t) - \phi_i(x_i^0)}{t}$$

Where $\phi_i(x_i^0) = f(x_1^0, \dots, x_i, \dots, x_n^0)$, thus the limit exists as $t \to 0$ if $\frac{d}{dx_i}\phi_i(x_i^0)$ exists, in which case $\frac{\partial f}{\partial x_i}(\mathbf{x}_0) = \frac{d}{dx_i}\phi_i(x_i^0)$

Definition

If the generalization holds for each $i = 1, \dots, n$ and each $\mathbf{x}_0 \in O$, then f has first-order partial derivatives

Definition

 $f:O\to\mathbb{R}$ is continuously differentiable if it has first order partial derivatives and each $\frac{\partial f}{\partial x_i}:O\to\mathbb{R}$ is continuous for $i=1,\cdots,n$

Fact

 $f: O \to \mathbb{R}$ is continuously differentiable $\Rightarrow f: O \to \mathbb{R}$ is continuous

Definition

 $f: O \to \mathbb{R}$

- (i) f has second-order partial derivatives if f has first-order partial derivatives and for each $i=1,\cdots,n$ then $\frac{\partial f}{\partial x_i}$ has first-order partial derivatives
- (ii) f has continuous second-order partial derivatives if (i) holds and for each $i=1,\cdots,n$ and $j=1,\cdots,n$ then $\frac{\partial^2 f}{\partial x_i\partial x_j}:O\to\mathbb{R}$ is continuous

Theorem 13.10

Suppose $f:O\to\mathbb{R}$ has continuous second-order partial derivatives. Then for any i,j with $1\leq i\leq n,\ 1\leq j\leq n$ and any $\mathbf{x}\in O$ we have that

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(\mathbf{x}) = \frac{\partial^2 f}{\partial x_i \partial x_i}(\mathbf{x})$$

Section 13.3: Mean Value Theorem and Directional Derivatives

Lemma 13.14 (Mean Value Lemma)

 $O \subset \mathbb{R}^n, \ O$ open and $f: O \to \mathbb{R}$ has $\frac{\partial f}{\partial x_i}$ for some i

Let $\mathbf{x} \in O$ and $a \in \mathbb{R}$ such that $\gamma(t) = \mathbf{x} + ta\mathbf{e}_i \in O$, $0 \le t \le 1$, then there exists some $\theta \in (0,1)$ such that

$$f(\mathbf{x} + a\mathbf{e}_i) - f(\mathbf{x}) = \frac{\partial f}{\partial x_i}(\mathbf{x} + \theta a\mathbf{e}_i)a$$

Proposition 13.15 (Mean Value Proposition)

 $\mathbf{x} \in \mathbb{R}^n$, r > 0, and say that $f : B_r(\mathbf{x}) \to \mathbb{R}$ has first-order partial derivatives. Then for $\mathbf{h} \in \mathbb{R}^n$ such that $\mathbf{x} + \mathbf{h} \in B_r(\mathbf{x})$; namely, $||\mathbf{h}|| < r$, then there exists some $\mathbf{z}_1, \dots, \mathbf{z}_n \in B_r(\mathbf{x})$ such that

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(\mathbf{z}_i) \text{ and } ||\mathbf{x} - \mathbf{z}_i|| < ||\mathbf{h}||$$

Definition (Directional Derivative)

 $f: O \to \mathbb{R}, \ \mathbf{x} \in O, \mathbf{p} \in \mathbb{R}^n$, then the directional derivative of f in the direction of \mathbf{p} at \mathbf{x} is given by the following limit if it exists:

$$\lim_{t\to 0} \frac{f(\mathbf{x}+t\mathbf{p})-f(\mathbf{x})}{t} = \frac{\partial f}{\partial \mathbf{p}}(\mathbf{x})$$

Definition (Gradient)

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$

Theorem 13.16 (Directional Derivative Theorem)

 $f: O \to \mathbb{R}, \ \mathbf{x} \in O, \mathbf{p} \in \mathbb{R}^n, f$ continuously differentiable, then for each $\mathbf{x} \in O$ and each $\mathbf{p} \in \mathbb{R}^n$ then $\frac{\partial f}{\partial \mathbf{p}}(\mathbf{x})$ exists and we have that

$$\frac{\partial f}{\partial \mathbf{p}}(\mathbf{x}) = \sum_{i=1}^{n} p_i \frac{\partial f}{\partial x_i}(\mathbf{x}) = \langle \nabla f(\mathbf{x}), \mathbf{p} \rangle$$

Theorem 13.17 (Mean Value Theorem)

 $f: O \to \mathbb{R}$ is continuously differentiable, $\mathbf{x} \in O, \mathbf{h} \in \mathbb{R}^n$ such that $\mathbf{x} + t\mathbf{h} \in$) for each $0 \le t \le 1$, then there exists some $\theta \in (0,1)$ such that $f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \langle \nabla f(\mathbf{x} + \theta \mathbf{h}), \mathbf{h} \rangle$

Note that $\mathbf{x} + \theta \mathbf{h}$ is on the line segment joining \mathbf{x} to $\mathbf{x} + \mathbf{h}$ and $\mathbf{h} = (\mathbf{x} + \mathbf{h}) - \mathbf{x}$

Corollary 13.18

 $f: O \to \mathbb{R}$ is continuously differentiable, $\mathbf{x} \in O, \nabla f(\mathbf{x}) \neq 0$, then for $||\mathbf{p}|| = 1$, we have that $|\frac{\partial f}{\partial \mathbf{p}}(\mathbf{x})|$ is maximum when $\mathbf{p} = \mathbf{p}_0 = \frac{\nabla f(\mathbf{x})}{||\nabla f(\mathbf{x})||}$

Theorem 13.20

 $f: O \to \mathbb{R}$ is continuously differentiable $\Rightarrow f$ is continuous at each $\mathbf{x} \in O$

Section 14.1: First-Order Approximation and Tangent Planes

Note

Recall for $n=1,\ f:I\to\mathbb{R}$ is differentiable if for each $x\in I$ we have that the following limit exists

$$\lim_{h \to 0} \frac{f(x+h) - f(x_0)}{h} = f'(x)$$

Where $x = x_0$, x + h = x, and $h = x - x_0 = (x + h) - x$

Now rewrite as follows

$$0 = \lim_{h \to 0} \frac{f(x+h) - f(x_0)}{h} - f'(x)$$
$$= \lim_{h \to 0} \frac{f(x+h) - [f(x) + f'(x) \cdot h]}{h}$$

Definition

 $f:O\to\mathbb{R},\ g:O\to\mathbb{R},\mathbf{x}\in O\subset\mathbb{R}^n$, then f and g are kth-order approximations of each other at \mathbf{x} if

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{h}) - g(\mathbf{x}+\mathbf{h})}{||\mathbf{h}||^k} = 0$$

Theorem 14.2 (First-Order Approximation)

 $f: O \to \mathbb{R}$ is continuously differentiable, $\mathbf{x} \in O$, then

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{h}) - [f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{h} \rangle]}{||\mathbf{h}||} = 0$$

Corollary 14.3

Suppose that O is an open subset of the plane \mathbb{R}^2 that contains the point (x_0, y_0) and that the function $f: O \to \mathbb{R}$ is continuously differentiable. Then there exists a tangent plane to the graph of the function $f: O \to \mathbb{R}$ at the point $(x_0, y_0, f(x_0, y_0))$.

Then the tangent plane is the graph of the function $\psi:\mathbb{R}^2\to\mathbb{R}$ defined for $(x,y)\in\mathbb{R}^2$ by

$$\psi(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Note (Tangent Hyperplanes)

 $f(\mathbf{x} + \mathbf{h}) \cong f(\mathbf{x}) + (\nabla f(\mathbf{x}), \mathbf{h})$ for $||\mathbf{h}||$ close to zero; i.e., $\mathbf{x} + \mathbf{h}$ is nearby \mathbf{x} , then set $\mathbf{x} = \mathbf{x}_0, \mathbf{h} = \mathbf{x} - \mathbf{x}_0$, then $\mathbf{x} = \mathbf{x}_0 + \mathbf{h} \Rightarrow$ $f(\mathbf{x}) \cong f(\mathbf{x}_0) + (\nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0); \text{ namely,}$ $f(\mathbf{x}) \cong f(\mathbf{x}_0) + \sigma_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)_i$

Note that this generates the tangent (hyper) plane

Section 15.1: Linear Algebra

Definition

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if for each $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$, then $T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \cdot T(\mathbf{u}) + \beta \cdot T(\mathbf{v})$

Example

 $T: \mathbb{R}^n \to \mathbb{R}$ defined by $P_i(\mathbf{u})$, for $i = 1, \dots, n$ is linear

Proposition 15.2

 $T: \mathbb{R}^n \to \mathbb{R}$ is any linear mapping, then $T(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$ where $P_i(\mathbf{a}) = T(\mathbf{e}_i \text{ for } i = 1, \dots, n$

Theorem 15.6

 $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is linear

Matrix Products

Suppose $\mathbf{x} \in \mathbb{R}^n$, and $A \in \mathbb{R}_{n \times n}$; namely,

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \Rightarrow A\mathbf{x} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \langle \mathbf{A}_1, \mathbf{x} \rangle \\ \vdots \\ \langle \mathbf{A}_n, \mathbf{x} \rangle \end{bmatrix}$$

Corollary 15.20

 $T: \mathbb{R}^n \to \mathbb{R}^n$ for the $n \times n$ matrix A, then TFAE:

- (i) $\det A \neq 0$
- (ii) A is invertible
- (iii) T is invertible

Fact

For any $A \in \mathbb{R}_{n \times n}$ we have that there exists some $c_1 > 0$ such that $||A\mathbf{x}|| \le c_1 ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$

Corollary 15.21

Suppose $A \in \mathbb{R}_{n \times n}$ is invertible then it is equivalent to say that that there exists some $c_2 > 0$ such that $||A\mathbf{x}|| \ge c_2 ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$

Namely, by Fact 1, we have A invertible $\Rightarrow c_2||\mathbf{x}|| \le ||A\mathbf{x}|| \le c_1||\mathbf{x}||$

Section 15.2: Derivative Matrix

Note

$$\mathbf{F}: O \to \mathbb{R}^m, \ O \subset \mathbb{R}^n, \ \mathbf{F} = (F_1, \cdots, F_m)$$

Definition

- (i) **F** has first-order partial derivatives at $\mathbf{x} \in O$ if each F_i has first-order partial derivatives at \mathbf{x} , for $i = 1, \dots, m$
- (ii) **F** has first-order partial derivatives if each F_i has first-order partial derivatives, for $i = 1, \dots, m$
- (iii) **F** is continuously differentiable if each F_i is continuously differentiable, for $i=1,\cdots,m$

Proposition 15.25

 $\mathbf{F}: O \to \mathbb{R}^m$ is continuously differentiable $\Rightarrow \mathbf{F}$ is continuous

Definition

 $\mathbf{F}: O \to \mathbb{R}^m$ has first-order partial derivatives at $\mathbf{x} \in O$, then the derivative matrix is defined by $\mathbf{DF}(\mathbf{x}) \in \mathbb{R}_{m \times n}$ as follows:

$$\mathbf{DF}(\mathbf{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla F_1(\mathbf{x}) \\ \vdots \\ \nabla F_m(\mathbf{x}) \end{bmatrix}$$

Example

Suppose
$$\mathbf{F}(x,y) = (2xy, x^2 - y^2)$$
, then $\mathbf{DF}(x,y) = \begin{bmatrix} 2y & 2x \\ 2x & -2y \end{bmatrix}$

Theorem 15.29 (Mean Value Theorem)

 $\mathbf{F}: O \to \mathbb{R}^m$ is continuously differentiable, \mathbf{x} and $\mathbf{x} + t\mathbf{h} \in O$, $0 \le t \le 1$, then there exists some $\theta_1, \dots, \theta_m \in (0, 1)$ such that $F_i(\mathbf{x} + \mathbf{h}) - F_i(\mathbf{x}) = \langle \nabla F_i(\mathbf{x} + \theta_i \mathbf{h}), \mathbf{h} \rangle$ for all $i = 1, \dots, m$

Namely,
$$\mathbf{F}(\mathbf{x} + \mathbf{h}) - \mathbf{F}(\mathbf{x}) = A\mathbf{h}$$
, where $A = \begin{bmatrix} \nabla F_1(\mathbf{x} + \theta_1 \mathbf{h}) \\ \vdots \\ \nabla F_m(\mathbf{x} + \theta_m \mathbf{h}) \end{bmatrix}$

Theorem 15.31

 $\mathbf{F}: O \to \mathbb{R}^m$ is continuously differentiable and $\mathbf{x} \in O$, then

$$\lim_{\mathbf{h} \to \mathbf{0}} \frac{||\mathbf{F}(\mathbf{x} + \mathbf{h}) - [\mathbf{F}(\mathbf{x}) + \mathbf{D}\mathbf{F}(\mathbf{x})\mathbf{h}]||}{||\mathbf{h}||} = 0$$

Theorem 15.32

 $\mathbf{F}: O \to \mathbb{R}^m$ and $\mathbf{x} \in O$ and suppose $A \in \mathbb{R}_{m \times n}$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{||\mathbf{F}(\mathbf{x}+\mathbf{h})-[\mathbf{F}(\mathbf{x})+A\mathbf{h}]||}{||\mathbf{h}||}=0$$

Then **F** has first-order partial derivatives at **x** and we have that $A = \mathbf{DF}(\mathbf{x})$

Example

Find the first-order approximation $\mathbf{F}(\mathbf{x}_0) + \mathbf{DF}(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$ to $\mathbf{F}(\mathbf{x})$ for $\mathbf{F}(x,y) = (2xy, x^2 - y^2)$ and $\mathbf{x}_0 = (1,2)$

$$\mathbf{h} = (\mathbf{x} - \mathbf{x}_0) = (x - 1, y - 2), \ \mathbf{DF}(\mathbf{x}) = \begin{bmatrix} 2y & 2x \\ 2x & -2y \end{bmatrix}, \ \mathbf{DF}(\mathbf{x}_0) = \begin{bmatrix} 4 & 2 \\ 2 & -4 \end{bmatrix},$$
$$\mathbf{F}(1, 2) = (4, -3) \Rightarrow \mathbf{F}(x, y) \cong \begin{bmatrix} 4 \\ -3 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 2 & -4 \end{bmatrix} \cdot \begin{bmatrix} x - 1 \\ y - 2 \end{bmatrix} \cong \begin{bmatrix} 4x + 2y - 4 \\ 2x - 4y + 3 \end{bmatrix}$$