An Overview of Modern Data Analysis Strategies

Rob Cribbie Quantitative Methods Program Department of Psychology York University

Day Two

Part 4: Confidence Intervals, Effect Sizes, and Confidence Intervals for Effect Sizes

Part 5: Replication

Part 6: Bayesian Analysis

Part 4: Confidence Intervals, Effect Sizes and Confidence Intervals for Effect Sizes

- When we use a sample statistic (e.g., M) to estimate a population parameter (e.g., μ), an important question relates to how precisely we have measured the parameter
- A confidence interval can give us an estimate of that precision
 - X% Confidence Interval (CI)
 - Interpretation: If we sample repeatedly from a population, X% of the confidence intervals are expected to contain the population parameter

Confidence Intervals

- Example: 95% CI
 - If we sample repeatedly from a population (i.e., we extract thousands of samples from a given population), 95% of the confidence intervals computed from the samples are expected to contain the population parameter
- Note: We CANNOT say "there is a 95% chance that the true mean lies within our calculated CI"

Confidence Intervals

- $(1-\alpha)\%$ CI for the Mean $(\sigma \text{ known})$
 - To calculate the CI, we need to know the z values that cut off the most extreme α of the cases from the rest
 - We assume a two-tailed test and that the α is spread evenly across each tail
 - In R:
 - qnorm(.975, lower.tail=TRUE) = 1.96
 - qnorm(.025, lower.tail=TRUE) = -1.96

Confidence Interval for the Mean

- $M \pm z_{crit} * SEM$
- $M \pm Z_{\text{crit}} * \sigma / \sqrt{N}$
- Example PTSD
 - We sampled N=25 students from a population with $\sigma=5$ and gave them PTSD training
 - After the training we obtain M = 28
 - We are interested in how precisely we are estimating the true mean
 - Calculate and interpret the 95% confidence interval

Confidence Intervals

- ightharpoonup 95% CI = $M \pm SEM * z_{1-(.05/2)}$
- 95% CI = $M \pm \sigma / \sqrt{N} * z_{.975}$
- \mathbf{P} 95% CI = 28 ± $\frac{5}{\sqrt{25}}$ * 1.96
 - \circ 28 (1)(1.96) = 26.04
 - \circ 28 + (1)(1.96) = 29.96
- Thus, the 95% CI = (26.04, 29.96)
- Interpretation
 - If we conduct the study over and over again, 95% of the CIs are expected to include the population mean
 - Researcher's job: Determine if the precision (i.e., width) of the CI is acceptable
 - Researchers often don't report CIs because they are much wider than what they would like

Confidence Intervals

- What determines the width of a CI?
 - Recall: M $\pm \sigma / \sqrt{N} * z_{(1-(\alpha/2))}$
 - Size of the standard deviation
 - Less variability, narrower Cl
 - Sample Size
 - Larger N, narrower Cl
 - Level of Confidence (e.g., 95%)
 - Lower the confidence, the narrower the CI

Simulated CIs: N = 10, 25

Sample Size = 25

- 1) They are simply used to determine statistical significance
 - If the CI does not include the null value, then the effect is statistically significant
 - E.g., If testing H_0 : $\mu=10$, then if the CI does not include 10 then it is concluded that the mean is significantly different from 10
 - Logically then, if the CI does include 10, we cannot reject the null hypothesis
 - But that is not the primary purpose of CIs

- 2) Misinterpretations of CIs
 - Recall the correct interpretation:
 - If we conducted the study over and over again, X% of the CIs are expected to include the population parameter
 - However, many researchers wish/hope that they could say that there is an X% chance that the population parameter falls within their single computed CI

- 2) Misinterpretations of CIs
 - A recent study by Hoekstra, Morey, Rouder and Wagenmakers (2014) looked at misinterpretations of CIs
 - They presented participants with some details of a study, including the following statement:
 - "A researcher reports a 95% CI for the mean that ranges from 0.1 to 0.4"
 - They then asked the participants a series of T/F questions

Hoekstra et al. T/F questions

- 1. The probability that the true mean is greater than 0 is at least 95%
- 2. The probability that the true mean equals 0 is smaller than 5%
- 3. The "null hypothesis" that the true mean equals 0 is likely to be incorrect
- 4. There is a 95% probability that the true mean lies between 0.1 and 0.4
- 5. We can be 95% confident that the true mean lies between 0.1 and 0.4
- 6. If we were to repeat the experiment over and over, then 95% of the time the true mean falls between 0.1 and 0.4

- Hoekstra et al. T/F questions
 - 1. The probability that the true mean is greater than 0 is at least 95%
 - 2. The probability that the true mean equals 0 is smaller than 5%
 - 3. The "null hypothesis" that the true mean equals 0 is likely to be incorrect
- These discuss probabilities associated with a hypothesis, which is not allowed in a frequentist framework

- Hoekstra et al. T/F questions
 - 4. There is a 95% probability that the true mean lies between 0.1 and 0.4
 - 5. We can be 95% confident that the true mean lies between 0.1 and 0.4
 - 6. If we were to repeat the experiment over and over, then 95% of the time the true mean falls between 0.1 and 0.4
- These make reference to the specific interval, which is not how we interpret CIs
 - We reference hypothetical future intervals, but not the single current interval

Issue with CIs: Hoekstra et al.

Table 1 Percentages of students and teachers endorsing an item

Statement	First Years $(n = 442)$	Master Students $(n = 34)$	Researchers $(n = 118)$
The probability that the true mean is greater than 0 is at least 95 %	51 %	32 %	38 %
The probability that the true mean equals 0 is smaller than 5 %	55 %	44 %	47 %
The "null hypothesis" that the true mean equals 0 is likely to be incorrect	73 %	68 %	86 %
There is a 95 % probability that the true mean lies between 0.1 and 0.4	58 %	50 %	59 %
We can be 95 % confident that the true mean lies between 0.1 and 0.4	49 %	50 %	55 %
If we were to repeat the experiment over and over, then 95 % of the time the true mean falls between 0.1 and 0.4	66 %	79 %	58 %

Effect Size

- Nakagawa and Cuthill (2007) discuss how *effect* size encompasses:
 - (a) a statistic which estimates the magnitude of an effect (e.g., r)
 - (b) the actual values calculated from certain effect statistics (e.g., r = .3)
 - (c) a relevant interpretation of an estimated magnitude of an effect from the effect statistics (e.g., "medium")

Definitions of Effect Size

- Olejnik and Algina (2003) define an effect size measure as:
 - A standardized index that estimates a parameter that is independent of sample size and quantifies the magnitude of the difference between populations or the relationship between explanatory and response variables
- Grissom and Kim (2012)
 - Whereas a test of statistical significance is traditionally used to provide evidence (attained p level) that a null hypothesis is wrong, an effect size (ES) measures the degree to which such a null hypothesis is wrong (if it is wrong)

Definitions of Effect Size

- Cohen (1988)
 - The degree to which the null hypothesis is false
- Thompson (2004)
 - Effect sizes quantify by how much sample results diverge from the null hypothesis
- Kelley & Preacher (2012)
 - A quantitative reflection of the magnitude of some phenomenon that is used for the purpose of addressing a question of interest
- Summary: Lots of different ways of defining "effect size"

Definitions of Effect Size

- What about the sample size issue?
 - It is interesting that some definitions of effect sizes don't mention that they should be immune to any effects of sample size
 - One of the primary reasons to focus on effect sizes is that we want a statistic that is not related to N
 - Recall that many statistics (e.g., t, F) are highly related to sample size (larger N -> more extreme statistic)
- It is important that any measure of effect size be independent of the size of the sample

Characteristics of Effect Size

- Following Nakagawa and Cuthill, we can outline the following characteristics of effect size
 - Dimension
 - Abstract conceptualization regarding the effect of interest
 - E.g., "Difference in Central Tendencies" is a dimension (that could be measured by mean difference, median difference, trimmed mean difference, etc.)
 - Measure/Index
 - The operational definition of the dimension
 - E.g., "standardized mean difference" could be the measure of difference in central tendency
 - Value
 - The raw value calculated from the measure
 - E.g., the standardized mean difference is .5

Are Effect Sizes Descriptive or Inferential?

- Effect sizes quantify sample information, so the clearest answer is that an effect size value is descriptive
- However, since the sample effect size is an estimate of the population parameter, can we think of effect sizes as inferential?
 - A t-test is calculated on a sample, however we try to make inferences regarding mean differences in the population, so this could also apply to effect sizes

Should Effect Sizes be Standardized or Unstandardized

- One of the most interesting debates regarding effect sizes is whether unstandardized or standardized effect sizes are most useful
 - When the units of measurement are meaningful, most researchers recommend unstandardized effect sizes
 - E.g., Canadians spend 3 hours less a week watching TV relative to Americans
 - E.g., In academia, males earn \$5000 more than females for the same work
 - However, sometimes knowing something about the variability of the statistics/coefficients can be helpful

Mean Difference = 3, SDs = 1

Seems clear here that the groups differ meaningfully

Mean Difference = 3, SDs = 5

But what about here? Same raw mean difference

Example: Unstandardized vs Standardized Effect Sizes

- Multiple Regression
 - Effect of Years of Education (SD = 3) and Years on the Job (SD = 10) on Income
- Unstandardized Coefficients
 - Income' = 2150 + 201*YrsEd + 102*YrsJob
 - One more year of education increases income by about \$200, where one more year on the job increases income by about \$100 (holding the other constant)
- Standardized Coefficients
 - YrsEd = .45, YrsJob = .95
 - One SD increase in years of education (~ 3 years) increases income by about a half a SD, where one SD increase in years on the job (about 10 years) increases income by about a SD
- In the first case, YrsEd has the larger effect size, whereas in the second case, YrsJob has the larger effect size
 - Context (e.g., variability of the measure) is important to consider

Discussion Point

In the YrsEd/YrsJob example, does the unstandardized or standardized effect size measure best capture the (relative) magnitude of the effect?

Are Effect Sizes More Useful for Omnibus or for Specific Effects?

- We often observe that researchers provide an effect size for an omnibus test (e.g., effect size for a one-way ANOVA with 4 groups), but do not provide effect sizes for the specific comparisons of the means of each of the groups (e.g., Grp 1 vs Grp 2)
 - Another example would be providing an effect size for a multiple regression model (e.g., R²) instead of for each predictor
- It is more important to provide effect sizes for targeted effects than for omnibus effects

- Correlation/Percent of Variance Explained
 - $\cdot r/r^2$
 - Also encompasses partial/semi-partial r, which are popular in multiple regression
 - Most methodologists favor interpretations using r
 - Pratt Indices relative importance of predictors in linear models, in a correlation metric
 - Sum of the Pratt indices for the predictors = 1
 - $\circ \eta^2/\omega^2$
 - Biased/less biased estimates of the proportion of variability in the outcome that is explained by a predictor
 - Partial versions of η^2 and ω^2 are also available for multiple predictor models, however much caution should be used in interpreting these statistics
 - *f*²
 - Generally used for omnibus F tests

Mean Difference

- M₁ M₂ (unstandardized)
- $d = \frac{M_1 M_2}{s}$ (standardized)
 - There are also variations, such as Hedges *g*, but the differences are usually minor (e.g., the formula usually provided for Cohen's *d* is actually Hedges *g*)
 - s can vary depending on what measure of variability you feel is most appropriate for standardization
 - E.g., in a pre-post study we can use s_{pre} , $s_{post-pre}$, etc.

Regression Coefficients

- b (unstandardized) change in DV for all unit change in the predictor
- β (standardized) SD change in DV for a 1 SD change in predictor
- sr/sr² semi-partial correlation (squared)

Categorical Relations

- Odds Ratio/Relative Risk $\left(\frac{A/_{A+C}}{B/_{B+D}}\right)$
- Cramer's $V = \sqrt{\frac{\chi^2}{N[\min(r,c)-1]}}$
 - can be interpreted like a correlation

- Common Language Effect Size (CLES) Estimators
 - Differences Among Two Independent Groups
 - The probability that a randomly selected score from one population will be greater than a randomly sampled score from the other population
 - CLES = $\Phi(z) = \Phi\left(\frac{d}{\sqrt{2}}\right) = \Phi\left(\frac{M_1 M_2}{s_p\sqrt{2}}\right)$ $s_p = \sqrt{\frac{(n_1 1)s_1^2 + (n_2 1)s_2^2}{n_1 + n_2 2}}$
 - Φ = lower tail probability under the standard normal distribution
 - E.g., Heights of men (M = 69.7, SD = 2.8) and women (M = 64.3, SD = 2.6)
 - $\Phi\left(\frac{M_1 M_2}{s_p \sqrt{2}}\right) = \Phi\left(\frac{69.7 64.3}{2.7\sqrt{2}}\right) = \Phi(1.41) = .92$
 - Thus, there is a 92% chance that a randomly drawn male will be taller than a randomly drawn female

- Common Language Effect Size Estimators
 - Correlation
 - Assume that we have randomly sampled two individuals' scores on X and Y
 - If individual one is defined as the individual with the larger score on X, then the CLES statistic is the probability that individual one also has the larger score on Y
 - CLES = $\frac{\sin^{-1}(r)}{\pi} + .5$
 - E.g., father's and son's heights have r = .4
 - CLES = $\frac{\sin^{-1}(.4)}{\pi}$ + .5 = .63
 - If father A is taller than father B, there is a 63% chance that son A will be taller than son B

- Although effect sizes are extremely meaningful on their own, without a CI we have no information regarding the precision of the effect size
 - Without a measure of precision, of what value is an effect size?
 - E.g., say we measured depression for two males and two females and calculated Cohen's d to be .4
 - Would you be confident in reporting that effect size to others? Could we make any inferences to the population of males and females?
 - The CI could be {.39, .41} or {-3.6,4.4}

- CI for Cohen's d
 - Noncentral t distribution for one sample

$$t = \frac{M - \mu_0}{s_M} + \frac{\mu - \mu_0}{\sigma_M} = \frac{M - \mu_0}{s_{/\sqrt{N}}} + \frac{\mu - \mu_0}{\sigma_{/\sqrt{N}}} = \frac{M - \mu_0}{s_M} + ncp$$

- ncp = noncentrality parameter
- The left part of the equation is the usual t (central t) statistic, whereas the right part is the ncp
- The *ncp* "shifts" the distribution right or left depending on the sign of $\mu \mu_0$
- We know that the population value of d (let's call it d^*) is $\frac{\mu-\mu_0}{\sigma}$, so $d^*=\text{ncp}\sqrt{N}$
 - If we can get the CI for the ncp, we can easily find the CI for d

CI for ncp

- To find the CI for *ncp*, we are looking for the values of *ncp* that cutoff the lower $\alpha/2$ and upper $\alpha/2$ from the noncentral t distribution
 - This is messy, so let's cheat and use R
- pt(t,df,ncp) can be used to find the value of ncp that cutoff the upper and lower tails
- E.g., let say we want to know if the depression scores for a group of prison inmates differ from 10 (a previously published value). We sample 20 inmates, and M = 9.2, s = 1.4

•
$$t = \frac{9.2-10}{1.4/\sqrt{20}} = -2.56$$
, $d = \frac{9.2-10}{1.4} = -.57$

- CI for ncp ... by trial and error
 - Lower tail
 - \cdot > pt(-2.56,df=19,ncp=-1)
 - [1] 0.07886299
 - > pt(-2.56,df=19,ncp=-.45)
 - · [1] 0.0271863
 - \cdot > pt(-2.56,df=19,ncp=-.41)
 - [1] 0.02493609
 - Upper Tail
 - \cdot > pt(-2.56,df=19,ncp=-2)
 - [1] 0.3136319
 - > pt(-2.56,df=19,ncp=-4.75)
 - [1] 0.9798424
 - > pt(-2.56,df=19,ncp=-4.65)
 - · [1] 0.9749218

- Thus, the 95% CI for *ncp* is:
 - -4.65,-.41
- CI for d
 - $d_{lower} = ncp_{lower} / \sqrt{N} = -4.65 / \sqrt{20} = -1.04$
 - $d_{upper} = ncp_{upper} / \sqrt{N} = -.41 / \sqrt{20} = -.09$
 - \circ 95% CI for d = {-1.04, -.09}

- CI for d
 - An easier way to compute the CI for d is to use a built-in function from R

CI for d

- A more general way, that works for most statistics, is to bootstrap
- Another advantage is that this method is often better when the distributional assumptions (e.g., normality) are not met
 - E.g., we can do this via a for loop in R

```
Depression Example:
dep_bs_d<-numeric(1000)
for (i in 1:1000) {
    samp<-sample(dep, replace=TRUE)
    dep_bs_d[i]<-(mean(samp)-10)/sd(samp)
}
quantile(dep_bs_d,c(.025,.975))
    2.5% 97.5%
    -1.0181445 -0.1685463</pre>
```

Summary

- Confidence Intervals should be included for each effect of interest
- Effect size values should be included for each effect of interest
 - Effect sizes must be scaled appropriately, given the measurement and the question of interest
 - The point estimate of the population effect size value should be independent of sample size
 - Effect size values should be accompanied with confidence intervals
 - Estimates of effect sizes values should have desirable estimation properties; namely, they should be:
 - unbiased (their expected values should equal the corresponding population values)
 - consistent (they should converge to the corresponding population value as sample size increases)
 - efficient (they should have minimal variance among competing measures)