Weighted composition operators on Korenblum type spaces of analytic functions

Esther Gómez Orts Universitat Politècnica de València

Work supervised by José Bonet and Pablo Galindo

January 30, 2020

Contents

- 1 Introduction
 - Weighted Banach spaces
 - Korenblum type spaces
- 2 Properties of $W_{\psi,\varphi}$
 - Continuity
 - Compactness
 - Invertibility
- 3 Spectrum
 - Point spectrum of C_{φ}
 - Spectrum of $W_{\psi,\varphi}$
 - Spectrum of M_{ψ}
 - Spectra of C_{φ} when φ is a rotation

Contents

- 1 Introduction
 - Weighted Banach spaces
 - Korenblum type spaces
- 2 Properties of $W_{\psi,\varphi}$
 - Continuity
 - Compactness
 - Invertibility
- 3 Spectrum
 - Point spectrum of C_{φ}
 - Spectrum of $W_{\psi,\varphi}$
 - Spectrum of M_{ψ}
 - Spectra of C_{φ} when φ is a rotation

Precedents

- Weighted composition operator:
 - Bourdon
 - Contreras
 - Cowen
 - Eklund
 - Gunatillake
 - Hernández-Díaz
 - Kamowitz
 - Lindström

- McCluer
- Mleczko
- Montes-Rodríguez
- Rzeczkowski
- Shapiro
- Zhu
- ..

Precedents

- Weighted composition operator:
 - Bourdon
 - Contreras
 - Cowen
 - Eklund
 - Gunatillake
 - Hernández-Díaz
 - Kamowitz
 - Lindström

- McCluer
- Mleczko
- Montes-Rodríguez
- Rzeczkowski
- Shapiro
- Zhu
- .
- Korenblum and Korenblum type spaces:
 - Albanese
 - Bonet
 - Hedenmalm

- Korenblum
- Ricker
- ...

Weighted Banach spaces

 $H(\mathbb{D})$ space of all analytic functions on \mathbb{D} , endowed with the au_{co} topology.

Weighted Banach spaces

 $H(\mathbb{D})$ space of all analytic functions on \mathbb{D} , endowed with the au_{co} topology.

Definition

For each $\alpha > 0$,

- $\blacksquare \ H^{\infty}_{\alpha} := \big\{ f \in H(\mathbb{D}) \colon \|f\|_{\alpha} := \sup_{z \in \mathbb{D}} (1 |z|)^{\alpha} |f(z)| < \infty \big\},$
- $lacksquare H^0_{lpha} := ig\{ f \in H(\mathbb{D}) \colon \lim_{|z| o 1^-} (1 |z|)^{lpha} |f(z)| = 0 ig\}.$

Weighted Banach spaces

 $H(\mathbb{D})$ space of all analytic functions on \mathbb{D} , endowed with the au_{co} topology.

Definition

For each $\alpha > 0$,

- $\blacksquare \ H^{\infty}_{\alpha} := \big\{ f \in H(\mathbb{D}) \colon \|f\|_{\alpha} := \sup_{z \in \mathbb{D}} (1 |z|)^{\alpha} |f(z)| < \infty \big\},$
- $\blacksquare \ \, H^0_\alpha := \big\{ f \in H(\mathbb{D}) \colon \lim_{|z| \to 1^-} (1 |z|)^\alpha |f(z)| = 0 \big\}.$

If $0 < \alpha_1 < \alpha_2$, the inclusion $H_{\alpha_1}^{\infty} \hookrightarrow H_{\alpha_2}^0$ is compact.

Korenblum type spaces

$$\blacksquare \ A_+^{-\alpha} := \bigcap_{\beta > \alpha} H_\beta^\infty = \bigcap_{\beta > \alpha} H_\beta^0 = \underset{k}{\operatorname{proj}} \ H_{\alpha + \frac{1}{k}}^\infty = \underset{k}{\operatorname{proj}} \ H_{\alpha + \frac{1}{k}}^0.$$

Korenblum type spaces

$$\blacksquare \ A_+^{-\alpha} := \bigcap_{\beta > \alpha} H_\beta^\infty = \bigcap_{\beta > \alpha} H_\beta^0 = \mathop{\mathrm{proj}}_k H_{\alpha + \frac{1}{k}}^\infty = \mathop{\mathrm{proj}}_k H_{\alpha + \frac{1}{k}}^0.$$

$$\blacksquare A_{-}^{-\alpha} := \bigcup_{\beta < \alpha} H_{\beta}^{\infty} = \bigcup_{\beta < \alpha} H_{\beta}^{0} = \inf_{k} H_{\alpha - \frac{1}{k}}^{\infty} = \inf_{k} H_{\alpha - \frac{1}{k}}^{0}.$$

Korenblum type spaces

$$\blacksquare \ A_+^{-\alpha} := \bigcap_{\beta > \alpha} H_\beta^\infty = \bigcap_{\beta > \alpha} H_\beta^0 = \underset{k}{\operatorname{proj}} \ H_{\alpha + \frac{1}{k}}^\infty = \underset{k}{\operatorname{proj}} \ H_{\alpha + \frac{1}{k}}^0.$$

$$\blacksquare A_{-}^{-\alpha} := \bigcup_{\beta < \alpha} H_{\beta}^{\infty} = \bigcup_{\beta < \alpha} H_{\beta}^{0} = \inf_{k} H_{\alpha - \frac{1}{k}}^{\infty} = \inf_{k} H_{\alpha - \frac{1}{k}}^{0}.$$

$$\blacksquare A^{-\infty} := \bigcup_{k \in \mathbb{N}} H_k^{\infty} = \bigcup_{k \in \mathbb{N}} H_k^0 = \inf_k H_k^{\infty} = \inf_k H_k^0.$$

Weighted composition operator

Definition

Let $\varphi:\mathbb{D}\to\mathbb{D}$ and $\psi:\mathbb{D}\to\mathbb{C}$ be analytic.

$$W_{\psi, arphi}(f(z)) := \psi(z) f(arphi(z))$$
 , $z \in \mathbb{D}$.

Weighted composition operator

Definition

Let $\varphi:\mathbb{D}\to\mathbb{D}$ and $\psi:\mathbb{D}\to\mathbb{C}$ be analytic.

$$W_{\psi,arphi}(f(z)):=\psi(z)f(arphi(z))$$
 , $z\in\mathbb{D}$.

$$W_{\psi,\varphi}=M_{\psi}\circ C_{\varphi}.$$

Contents

- 1 Introduction
 - Weighted Banach spaces
 - Korenblum type spaces
- 2 Properties of $W_{\psi,\varphi}$
 - Continuity
 - Compactness
 - Invertibility
- 3 Spectrum
 - Point spectrum of C_{φ}
 - Spectrum of $W_{\psi,\varphi}$
 - Spectrum of M_d
 - Spectra of C_{φ} when φ is a rotation

Characterizations of continuity

From the characterization for H_{α}^{∞} of Contreras and Hernández-Díaz (2000) ...

Proposition

Let $\alpha \geq 0$. $W_{\psi,\varphi}: A_+^{-\alpha} \to A_+^{-\alpha}$ is continuous if and only if $\forall \varepsilon > 0$ $\exists \delta \in]0, \varepsilon]$ such that

$$\sup_{z\in\mathbb{D}}\frac{|\psi(z)|(1-|z|)^{\alpha+\varepsilon}}{(1-|\varphi(z)|)^{\alpha+\delta}}<\infty.$$

If this is the case, then $\psi \in A_{+}^{-\alpha}$.

Let $0 < \alpha \le \infty$. $W_{\psi,\varphi} : A_{-}^{-\alpha} \to A_{-}^{-\alpha}$ is continuous if and only if $\forall \varepsilon > 0$ $\exists \delta \in]0, \varepsilon]$ such that

$$\sup_{z\in\mathbb{D}}\frac{|\psi(z)|(1-|z|)^{\alpha-\delta}}{(1-|\varphi(z)|)^{\alpha-\varepsilon}}<\infty.$$

If this is the case, then $\psi \in A_{-}^{-\alpha}$.

Conditions of continuity

Corollary

- For $\alpha \geq 0$, if $\psi \in A_+^{-0}$, then $W_{\psi,\varphi} \in \mathcal{L}(A_+^{-\alpha})$.
- lacksquare For lpha>0 , if $\psi\in A_+^{-0}$, then $W_{\psi,arphi}\in \mathcal{L}(A_-^{-lpha}).$

Conditions of continuity

Corollary

- For $\alpha \geq 0$, if $\psi \in A_+^{-0}$, then $W_{\psi,\varphi} \in \mathcal{L}(A_+^{-\alpha})$.

 For $\alpha > 0$, if $\psi \in A_+^{-0}$, then $W_{\psi,\varphi} \in \mathcal{L}(A_-^{-\alpha})$.

Example

Take $\varphi(z)=z/2$, for all $z\in\mathbb{D}$. For each $\psi\in A_+^{-\alpha}\setminus A_+^{-0}$, $W_{\psi,\varphi}$ is continuous on $A_{\perp}^{-\alpha}$. In the characterization take $\delta = \varepsilon$, then

$$\sup_{z\in\mathbb{D}}|\psi(z)|\frac{(1-|z|)^{\alpha+\varepsilon}}{(1-|z|/2)^{\alpha+\varepsilon}}\leq 2^{\alpha+\varepsilon}\sup_{z\in\mathbb{D}}|\psi(z)|(1-|z|)^{\alpha+\varepsilon}<\infty.$$

Conditions of continuity

Corollary

- For $\alpha \geq 0$, if $\psi \in A_+^{-0}$, then $W_{\psi,\varphi} \in \mathcal{L}(A_+^{-\alpha})$.

 For $\alpha > 0$, if $\psi \in A_+^{-0}$, then $W_{\psi,\varphi} \in \mathcal{L}(A_-^{-\alpha})$.

Example

Take $\varphi(z)=z/2$, for all $z\in\mathbb{D}$. For each $\psi\in A_+^{-\alpha}\setminus A_+^{-0}$, $W_{\psi,\omega}$ is continuous on $A_{\perp}^{-\alpha}$. In the characterization take $\delta = \varepsilon$, then

$$\sup_{z\in\mathbb{D}}|\psi(z)|\frac{(1-|z|)^{\alpha+\varepsilon}}{(1-|z|/2)^{\alpha+\varepsilon}}\leq 2^{\alpha+\varepsilon}\sup_{z\in\mathbb{D}}|\psi(z)|(1-|z|)^{\alpha+\varepsilon}<\infty.$$

Proposition $W_{\psi,\omega} \in \mathcal{L}(A^{-\infty})$ if and only if $\psi \in A^{-\infty}$.

Characterizations of compactness

Proposition

Let $\alpha \geq 0$. $W_{\psi,\varphi}: A_+^{-\alpha} \to A_+^{-\alpha}$ is compact if and only if it is continuous and $\exists \varepsilon > 0$ such that $\forall \delta \in]0, \varepsilon]$

$$\sup_{z\in\mathbb{D}}\frac{|\psi(z)|(1-|z|)^{\alpha+\delta}}{(1-|\varphi(z)|)^{\alpha+\varepsilon}}<\infty.$$

Let $0 < \alpha \leq \infty$. $W_{\psi,\varphi}: A_{-}^{-\alpha} \to A_{-}^{-\alpha}$ is compact if and only if it is continuous and $\exists \varepsilon < 0$ such that $\forall \delta \in [0, \varepsilon[$

$$\sup_{z\in\mathbb{D}}\frac{|\psi(z)|(1-|z|)^{\alpha-\varepsilon}}{(1-|\varphi(z)|)^{\alpha-\delta}}<\infty.$$

Conditions of compactness

Corollary

- Let $\alpha \geq 0$. If $W_{\psi,\varphi}: A_+^{-\alpha} \to A_+^{-\alpha}$ is compact, then $\exists \eta > \alpha$ such that $W_{\psi,\varphi}: H_\eta^0 \to H_\eta^0$ is compact.
- Let $0 < \alpha \le \infty$. If $W_{\psi,\varphi} : A_{-}^{-\alpha} \to A_{-}^{-\alpha}$ is compact, then $\exists \gamma < \alpha$ such that $W_{\psi,\varphi} : H_{\gamma}^{0} \to H_{\gamma}^{0}$ is compact.

Conditions of compactness

Corollary

- Let $\alpha \geq 0$. If $W_{\psi,\varphi}: A_+^{-\alpha} \to A_+^{-\alpha}$ is compact, then $\exists \eta > \alpha$ such that $W_{\psi,\varphi}: H_\eta^0 \to H_\eta^0$ is compact.
- Let $0 < \alpha \le \infty$. If $W_{\psi,\varphi}: A_-^{-\alpha} \to A_-^{-\alpha}$ is compact, then $\exists \gamma < \alpha$ such that $W_{\psi,\varphi}: H_\gamma^0 \to H_\gamma^0$ is compact.

Corollary

Assume \exists 0 < r < 1, such that $|\varphi(z)| \leq r$ for all $z \in \mathbb{D}$. If $W_{\psi,\varphi}: A_+^{-\alpha} \to A_+^{-\alpha}$, $\alpha \geq 0$, (resp. $W_{\psi,\varphi}: A_-^{-\alpha} \to A_-^{-\alpha}$, $\alpha > 0$) is continuous, then $W_{\psi,\varphi}$ is compact.

Characterizations of invertibility

From Bourdon (2014) ...

Proposition

- For $\alpha \geq 0$, $W_{\psi,\varphi}$ is invertible on $A_+^{-\alpha}$ if and only if $\varphi \in \operatorname{Aut}(\mathbb{D})$ and ψ , $1/\psi \in A_+^{-0}$.
- For $\alpha > 0$, $W_{\psi,\varphi}$ is invertible on $A_-^{-\alpha}$ if and only if $\varphi \in \operatorname{Aut}(\mathbb{D})$ and $\psi, 1/\psi \in A_+^{-0}$.
- $W_{\psi,\varphi}$ is invertible on $A^{-\infty}$ if and only if $\varphi \in \operatorname{Aut}(\mathbb{D})$ and ψ , $1/\psi \in A^{-\infty}$.

Characterizations of invertibility

From Bourdon (2014) ...

Proposition

- For $\alpha \geq 0$, $W_{\psi,\varphi}$ is invertible on $A_+^{-\alpha}$ if and only if $\varphi \in \operatorname{Aut}(\mathbb{D})$ and ψ , $1/\psi \in A_+^{-0}$.
- For $\alpha>0$, $W_{\psi,\varphi}$ is invertible on $A_{-}^{-\alpha}$ if and only if $\varphi\in \operatorname{Aut}(\mathbb{D})$ and ψ , $1/\psi\in A_{-}^{-0}$.
- $extbf{W}_{\psi,\varphi}$ is invertible on $A^{-\infty}$ if and only if $\varphi \in \operatorname{Aut}(\mathbb{D})$ and $\psi, 1/\psi \in A^{-\infty}$.

Example

Consider $\psi(z) := \log(z+1) - 5$, $z \in \mathbb{D}$.

- $\psi \in A_+^{-0}$, $A^{-\infty}$,
- $1/\psi \in H^{\infty}$,
- $\psi \notin H^{\infty}$.

Contents

- 1 Introduction
 - Weighted Banach spaces
 - Korenblum type spaces
- 2 Properties of $W_{\psi,\varphi}$
 - Continuity
 - Compactness
 - Invertibility
- 3 Spectrum
 - Point spectrum of C_{φ}
 - Spectrum of $W_{\psi,\varphi}$
 - Spectrum of M_{ψ}
 - Spectra of C_{φ} when φ is a rotation

- $T: X \to X$ continuous
- lacksquare $ho(T):=\{\lambda\in\mathbb{C}:(T-\lambda I)^{-1}\in\mathcal{L}(X)\}$

- \blacksquare $T: X \rightarrow X$ continuous
- lacksquare $ho(T):=\{\lambda\in\mathbb{C}:(T-\lambda I)^{-1}\in\mathcal{L}(X)\}$
- $\sigma(T) := \mathbb{C} \setminus \rho(T)$

- \blacksquare $T: X \rightarrow X$ continuous
- $ho(T) := \{\lambda \in \mathbb{C} : (T \lambda I)^{-1} \in \mathcal{L}(X)\}$
- $\sigma(T) := \mathbb{C} \setminus \rho(T)$
- $\sigma_{P}(T) := \{\lambda \in \mathbb{C} : Tx = \lambda x \text{ for some } x \neq 0\}$

- \blacksquare $T: X \rightarrow X$ continuous
- $lacksquare
 ho(T) := \{\lambda \in \mathbb{C} : (T \lambda I)^{-1} \in \mathcal{L}(X)\}$
- $\sigma(T) := \mathbb{C} \setminus \rho(T)$
- $\sigma_p(T) := \{\lambda \in \mathbb{C} : Tx = \lambda x \text{ for some } x \neq 0\}$
- lacksquare arphi(0)=0, 0<|arphi'(0)|<1

Essential norm and radius

Definition

Let X be a Banach space, $T \in \mathcal{L}(X)$. The essential norm of T is defined as

$$||T||_e := d(T, \mathcal{K}(X))$$
.

Essential norm and radius

Definition

Let X be a Banach space, $T \in \mathcal{L}(X)$. The essential norm of T is defined as

$$||T||_e := d(T, \mathcal{K}(X))$$
.

Theorem (Montes-Rodríguez)

The continuous weighted composition operators $W_{\psi,\varphi}: H^\infty_\alpha \to H^\infty_\alpha$ and $W_{\psi,\varphi}: H^0_\alpha \to H^0_\alpha$ satisfy that their essential norm is given by

$$||W_{\psi,\varphi}||_e = \lim_{r \to 1} \sup_{|\varphi(z)| > r} |\psi(z)| \frac{(1-|z|)^{\alpha}}{(1-|\varphi(z)|)^{\alpha}}.$$

Essential norm and radius

Definition

Let X be a Banach space, $T \in \mathcal{L}(X)$. The essential norm of T is defined as

$$||T||_e := d(T, \mathcal{K}(X))$$
.

Theorem (Montes-Rodríguez)

The continuous weighted composition operators $W_{\psi,\varphi}: H^\infty_\alpha \to H^\infty_\alpha$ and $W_{\psi,\varphi}: H^0_\alpha \to H^0_\alpha$ satisfy that their essential norm is given by

$$||W_{\psi,\varphi}||_e = \lim_{r \to 1} \sup_{|\varphi(z)| > r} |\psi(z)| \frac{(1-|z|)^\alpha}{(1-|\varphi(z)|)^\alpha}.$$

Essential spectral radius:

$$r_e(W_{\psi,\varphi},H_{\alpha}^{\infty}) = r_e(W_{\psi,\varphi},H_{\alpha}^0) = \lim_n ||W_{\psi,\varphi}^n||_e^{1/n}.$$

Point spectrum of C_{φ}

From Kamowitz (1979) ...

Proposition

Suppose $W_{\psi,\varphi}:A\to A$ is continuous where $A=A_+^{-\alpha}$, $\alpha\ge 0$ or $A=A_-^{-\alpha}$, $0<\alpha<\infty$. Then,

$$\{\varphi'(0)^n\}_{n=0}^{\infty}\setminus \overline{B}(0, r_e(C_{\varphi}, H_{\alpha}^{\infty}))\subseteq \sigma_p(C_{\varphi}, A)\subseteq \{\varphi'(0)^n\}_{n=0}^{\infty}.$$

Spectrum on $A_{+}^{-\alpha}$ and $A_{-}^{-\alpha}$

From Kamowitz (1979) and Aron, Lindström (2004) ...

Theorem

Suppose $W_{\psi,\varphi}:A\to A$ is continuous where $A=A_+^{-\alpha}$, $\alpha\geq 0$ or $A=A_-^{-\alpha}$, $0<\alpha<\infty$. Then,

$$\{0\} \cup \{\psi(0)\varphi'(0)^n\}_{n=0}^{\infty} \subseteq \sigma(W_{\psi,\varphi},A) \subseteq \overline{B}(0,L) \cup \{\psi(0)\varphi'(0)^n\}_{n=0}^{\infty},$$

where $L = \lim_{\beta \to \alpha} r_{\rm e}(W_{\psi,\varphi}, H_{\beta}^{\infty})$.

Spectrum on $A_{+}^{-\alpha}$ and $A_{-}^{-\alpha}$

From Kamowitz (1979) and Aron, Lindström (2004) ...

Theorem

Suppose $W_{\psi,\varphi}:A\to A$ is continuous where $A=A_+^{-\alpha}$, $\alpha\geq 0$ or $A=A_-^{-\alpha}$, $0<\alpha<\infty$. Then,

$$\{0\} \cup \{\psi(0)\varphi'(0)^n\}_{n=0}^{\infty} \subseteq \sigma(W_{\psi,\varphi},A) \subseteq \overline{B}(0,L) \cup \{\psi(0)\varphi'(0)^n\}_{n=0}^{\infty},$$

where $L = \lim_{\beta \to \alpha} r_{e}(W_{\psi,\varphi}, H_{\beta}^{\infty})$.

Corollary

If
$$A = A_+^{-\alpha}$$
, $\alpha \ge 0$ or $A = A_-^{-\alpha}$, $0 < \alpha < \infty$, then

$$\{0\} \cup \{\varphi'(0)^n\}_{n=0}^{\infty} \subseteq \sigma(C_{\varphi}, A) \subseteq \overline{B}(0, r_e(C_{\varphi}, H_{\alpha}^{\infty})) \cup \{\varphi'(0)^n\}_{n=0}^{\infty}.$$

Spectrum on $A^{-\infty}$

Theorem

$$\sigma_p(C_{\varphi}, A^{-\infty}) = {\{\varphi'(0)^n\}_{n=0}^{\infty}}$$
,

$$\sigma(C_{\varphi}, A^{-\infty}) = \{0\} \cup \{\varphi'(0)^n\}_{n=0}^{\infty}.$$

Spectrum and point spectrum of M_{ψ}

Proposition

If M_{ψ} is continuous on $A_{+}^{-\alpha}$, $\alpha \geq 0$, or $A_{-}^{-\alpha}$, $0 < \alpha \leq \infty$ for some non-constant function $\psi \in H(\mathbb{D})$, then $\sigma_{p}(M_{\psi}) = \emptyset$ and $\psi(\mathbb{D}) \subseteq \sigma(M_{\psi}) \subseteq \overline{\psi(\mathbb{D})}$.

Spectrum and point spectrum of M_{ν}

Proposition

If M_{ψ} is continuous on $A_{+}^{-\alpha}$, $\alpha \geq 0$, or $A_{-}^{-\alpha}$, $0 < \alpha \leq \infty$ for some nonconstant function $\psi \in H(\mathbb{D})$, then $\sigma_p(M_{\psi}) = \emptyset$ and $\psi(\mathbb{D}) \subseteq \sigma(M_{\psi}) \subseteq \overline{\psi(\mathbb{D})}$.

Example

Take $\psi(z):=\frac{1}{1-z},\ z\in\mathbb{D}.\ M_{\psi}$ is continuous on $A^{-\infty}$. Observe $\frac{1}{2}=\psi(-1)\in$ $\overline{\psi(\mathbb{D})}$, but $\frac{1}{2}\in
ho(M_{\psi}$, $A^{-\infty})$ because $M_{\frac{1}{4b-\frac{1}{k}}}\in A^{-\infty}$ and is the inverse.

Spectrum and point spectrum when φ is a rotation

Lemma

Let $\varphi \in H(\mathbb{D})$, $\varphi(z) = cz$, $z \in \mathbb{D}$, with |c| = 1. Then

- (i) $\sigma_p(C_{\varphi}, H_{\alpha}^{\infty}) = \{c^n\}_{n=0}^{\infty}$,
- (ii) If c is a root of unity, then $\sigma(C_{\varphi}, H_{\alpha}^{\infty}) = \sigma_p(C_{\varphi}, H_{\alpha}^{\infty}) = \{c^n\}_{n=0}^{\infty}$,
- (iii) If c is not a root of unity, then $\sigma(C_{\varphi}, H_{\alpha}^{\infty}) = \partial \mathbb{D}$.

Spectrum and point spectrum when φ is a rotation

Lemma

Let $\varphi \in H(\mathbb{D})$, $\varphi(z) = cz$, $z \in \mathbb{D}$, with |c| = 1. Then

- (i) $\sigma_p(C_{\varphi}, H_{\alpha}^{\infty}) = \{c^n\}_{n=0}^{\infty}$,
- (ii) If c is a root of unity, then $\sigma(C_{\omega}, H_{\alpha}^{\infty}) = \sigma_{p}(C_{\omega}, H_{\alpha}^{\infty}) = \{c^{n}\}_{n=0}^{\infty}$
- (iii) If c is not a root of unity, then $\sigma(C_{\varphi}, H_{\alpha}^{\infty}) = \partial \mathbb{D}$.

Theorem

Let $\varphi(z)=cz$, $z\in\mathbb{D}$, with |c|=1. If A is $A_+^{-\alpha}$, $\alpha\geq 0$ or $A_-^{-\alpha}$, $0<\alpha\leq \infty$, then

- (i) $\sigma_p(C_{\varphi}, A) = \{c^n\}_{n=0}^{\infty}$,
- (ii) if c is a root of unity, $\sigma(C_{\varphi}, A) = \sigma_p(C_{\varphi}, A) = \{c^n\}_{n=0}^{\infty}$,
- (iii) if c is not a root of unity, $\{c^n\}_{n=0}^{\infty} \subseteq \sigma(C_{\omega}, A) \subseteq \partial \mathbb{D}$.

Case $c^n \neq 1 \ \forall n \in \mathbb{N}$, in $A^{-\infty}$

Theorem

Let $\varphi(z)=cz$, $z\in\mathbb{D}$, |c|=1 and c is not a root of unity. Take $\lambda\neq 1$, $|\lambda|=1$. Then, the following are equivalent:

- $\lambda \in \rho(C_{\varphi}, A^{-\infty}),$
- $\exists s \geq 1 \text{ and } \varepsilon > 0 \text{ such that } |c^n \lambda| \geq \varepsilon n^{-s} \text{ for each } n \in \mathbb{N}.$

Case $c^n \neq 1 \ \forall n \in \mathbb{N}$, in $A^{-\infty}$

Theorem

Let $\varphi(z)=cz$, $z\in\mathbb{D}$, |c|=1 and c is not a root of unity. Take $\lambda\neq 1$, $|\lambda|=1$. Then, the following are equivalent:

- $\lambda \in \rho(C_{\varphi}, A^{-\infty}),$
- $\exists s \geq 1 \text{ and } \varepsilon > 0 \text{ such that } |c^n \lambda| \geq \varepsilon n^{-s} \text{ for each } n \in \mathbb{N}.$

Theorem (Bonet)

Let $\varphi(z)=cz$, $z\in\mathbb{D}$, |c|=1 and c is not a root of unity. Take $\lambda\in\mathbb{C}$ with $|\lambda|=1$. Then, the following are equivalent:

- $\lambda \in \rho(C_{\varphi}, H_0(\mathbb{D})),$
- $\qquad \text{for each } 0 < \varepsilon < 1 \ \exists \delta(\varepsilon) > 0 \ \text{such that} \ |c^n \lambda| \geq \delta(\varepsilon) \varepsilon^n, \forall n \in \mathbb{N}.$

Case $c^n eq 1 \ orall n \in \mathbb{N}$, $\lambda = 1$

Proposition

Let $\varphi(z)=cz$, $z\in\mathbb{D}$, |c|=1 and c is not a root of unity. Then, the following are equivalent:

- lacksquare $1 \in
 ho(C_{\varphi}, A_0^{-\infty})$,
- $\exists \, s \geq 1 \text{ and } arepsilon > 0 \text{ such that } |c^n 1| \geq arepsilon n^{-s} \text{ for each } n \in \mathbb{N}$,
- $c = e^{i2\pi x}$, where x is a Diophantine number.

Case $c^n eq 1 \ orall n \in \mathbb{N}$, $\lambda = 1$

Proposition

Let $\varphi(z)=cz$, $z\in\mathbb{D}$, |c|=1 and c is not a root of unity. Then, the following are equivalent:

- $\blacksquare 1 \in \rho(C_{\varphi}, A_0^{-\infty}),$
- $\exists s \geq 1 \text{ and } \varepsilon > 0 \text{ such that } |c^n 1| \geq \varepsilon n^{-s} \text{ for each } n \in \mathbb{N},$
- $c = e^{i2\pi x}$, where x is a Diophantine number.

Definition

A real number $x \in \mathbb{R}$ is called *Diophantine* if $\exists \delta \geq 1$ and d(x) > 0 such that

$$\left|x-\frac{p}{q}\right|\geq \frac{d(x)}{q^{1+\delta}}$$

for all rational numbers p/q.

References

- [1] A. A. Albanese, J. Bonet, W. J. Ricker, *The Cesàro operator on Korenblum type spaces of analytic functions*. Collect. Math., **69**(2) (2018), 263–281.
- [2] R. Aron, M. Lindström, Spectra of weighted composition operators on weighted Banach spaces of analytic funcions. Israel J. of Math., **141** (2004), 263–276.
- [3] M. Contreras, A.G. Hernández-Díaz, Weighted composition operators in weighted Banach spacs of analytic functions. J. Austral. Math. Soc., Ser. A, **69** (2000), 41–60.
- [4] T. Eklund, P. Galindo, M. Lindström, Königs eigenfunction for composition operators on Bloch and H^{∞} spaces. J. Math. Anal. Appl. **445** (2017), 1300–1309.
- [5] A. Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions. J. London Math. Soc. **61**(2) no. 3 (2000), 872–884.
- [6] E. Gómez-Orts, Weighted composition operators on Korenblum type spaces of analytic functions. (2020), Preprint.

Weighted composition operators on Korenblum type spaces of analytic functions

Esther Gómez Orts Universitat Politècnica de València

Work supervised by José Bonet and Pablo Galindo

January 30, 2020

5º Congreso de Jóvenes Investigadores Real Sociedad Matemática Española

