21/7/2010 - MAT: Matemática.

OBS.: Correções, adaptações e melhorias serão feitas regularmente, a fim de deixar a tabela mais didática possível.

As principais notações utilizadas em Matemática.

Notação Matemática

Símbolos, Sinais, Letras, Fórmulas, Abreviações, Definições, Teoremas, Regras e etc.

Na coluna "Notação", <u>"ou"</u> será utilizado para variação do alvo.				
Notação:	Significado:	Definição / Descrição: Utiliza-se estes símbolos, que chamamos de algarismos (por homenagem ao matemático Al-Khowarizmi) para representar quantidades, objetos 0 para nenhuma unidade, 1 para uma unidade, 2 para duas unidades É usado internacionalmente na ciência e na maioria dos países.		
0, 1, 2, 3, 4, 5, 6, 7, 8, 9	O sistema decimal. Algarismos Indo-Arábicos			
\mathbb{N}	Naturais	N é o conjunto dos números naturais. São os números que vão de 0, 1, 2, 3 à +∞ (lê-se mais infinito). Todo número natural é seguido imediatamente por outro número natural chamado sucessor , ou seja: N = {0,1,2,3,4,}. O antecessor de 1 é 0, e a definição é o número que antecede, isto é que vem antes (sinônimo: predecessor). O símbolo N* é usado para indicar o conjunto de números naturais sem o zero, ou seja: N* = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,}		
\mathbb{Z}	Inteiros	O conjunto dos números inteiros é o conjunto dos números naturais acrescido dos seus opostos (os naturais negativos). É representado pela letra \mathbf{Z} , devido ao fato da palavra \mathbf{Z} en alemão significar "número". $Z = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ O símbolo \mathbb{Z}^* é usado para indicar o conjunto de números inteiros, sem o zero: $Z^* = \{\dots, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, \dots\}$ O símbolo \mathbb{Z}_+ é usado para indicar o conjunto de números inteiros não negativos: $\mathbb{Z}_+ = \{0,1,2,3,4,\dots\}$ O símbolo \mathbb{Z} é usado para indicar o conjunto de números inteiros, nãopositivos: $\mathbb{Z} = \{\dots, -3, -2, -1, 0\}$ O símbolo \mathbb{Z}_+^* é usado para indicar o conjunto de números inteiros positivos: $\mathbb{Z}_+^* = \{1,2,3,4,5,\dots\}$ O símbolo \mathbb{Z}_+^* é usado para indicar o conjunto de números negativos: $\mathbb{Z}_+^* = \{-1, -2, -3, -4, -5\dots\}$		

		Como todos os números naturais também são números inteiros, dizemos que N é um subconjunto de Z ou que N está contido em Z: N \(\subsetenz Z\).
	Racionais	Quando dividimos um número inteiro (a) por outro número inteiro (b) obtemos um número racional. Todo número racional é representado por uma parte inteira e uma parte fracionária. A letra Q deriva da palavra inglesa <i>quotient</i> , que significa quociente, já que um número racional é um quociente de dois números inteiros. Por exemplo, se a = 6 e b = 2, obtemos o número racional 3,0. Se a = 1 e b = 2, obtemos o número racional 0,5. Ambos têm um número finito de casas após a vírgula e são chamados de racionais de <i>decimal exata</i> . Existem casos em que o número de casas após a vírgula é infinito. Por exemplo, a = 1 e b = 3 nos dá o número racional 0,33333 É a chamada <i>dizima periódica</i> . Podemos considerar que os números racionais englobam todos os números inteiros e os que ficam situados nos intervalos entre os números inteiros. Q = {a/b a ∈ Z e b ∈ Z*}. Lembre-se que não existe divisão por zero!. O símbolo Q* é usado para indicar o conjunto de números racionais nãonegativos: Q* = {x ∈ Q x ≠0} O símbolo Q* é usado para indicar o conjunto de números racionais nãopositivos: Q* = {x ∈ Q x ≤0} O símbolo Q* é usado para indicar o conjunto de números racionais nãopositivos: Q* = {x ∈ Q x ≤0} O símbolo Q* é usado para indicar o conjunto de números racionais positivos: Q* + = {x ∈ Q x ≤0} O símbolo Q* é usado para indicar o conjunto de números racionais nãopositivos: Q* + = {x ∈ Q x ≤0} O símbolo Q* é usado para indicar o conjunto de números racionais positivos: Q* + = {x ∈ Q x < 0}
$I_{ou} I$	Irracionais	Quando a divisão de dois números tem como resultado um <i>número com infinitas casas depois da vírgula, que não se repetem periodicamente,</i> obtemos um número chamado irracional. O número irracional mais famoso é o pi (π).
\Re ou $\mathbb R$	Reais	O conjunto formado por todos os números racionais e irracionais é o conjunto dos números reais, indicado por R . Indicamos por R * o conjunto dos números reais sem o zero, ou seja, o símbolo R * é usado para representar o conjunto dos números reais não-

		nulos:
		nulos:
		$\mathbf{R}^* = \mathbf{R} - \{0\}$
		O símbolo R+ é usado para indicar o conjunto de números reais não- negativos: R+ = $\{x \in R \mid x \ge 0\}$
		O símbolo R- é usado para indicar o conjunto de números reais não- positivos: R- = {x ∈R x ≤0}
		O símbolo R^*+ é usado para indicar o conjunto de números reais positivos: $R^*+=\{x\in R\mid x>0\}$
		O símbolo R^* - é usado para indicar o conjunto de números reais negativos: R^* - = $\{x \in R \mid x < 0\}$
C ou C	Complexos	Um número complexo representa-se por a+b <i>i</i> , <i>sendo</i> a a parte real e b a parte imaginária. Unidade imaginária: define-se a unidade imaginária, representada pela letra i , como sendo a raiz quadrada de -1 . Pode-se escrever então: $i = \sqrt{-1}$.
Ø ou { }	Vazio	Significa que o conjunto não tem elementos, é um conjunto vazio. $ \underline{Ex}: $ $ A = \{1,2,3\} $ $ B = \{4,5,6\} $ $ A \cap B = \{\} $ ou $A \cap B = \emptyset$
U	União	Lê-se como "A união B" $\frac{\text{Ex}:}{A=\{5,7,10\}}$ $B=\{3,6,7,8\}$ $A \cup B = \{3,5,6,7,8,10\}$
	Interseção	Lê-se como "A interseção B" $\frac{Ex:}{A=\{1,3,5,7,8,10\}}\\ B=\{2,3,6,7,8\}$ A \cap B= $\{3,7,8\}$

€	Pertence	Indica relação de pertinência. Ex: 5 ∈N. Significa que o 5 pertence aos números naturais.			
∉	Não pertence	Não pertence . Ex: -1 [∉] N. Significa que o número -1 não pertence aos números naturais.			
	Esta contido	\underline{Ex} : N \subseteq Z, ou seja, o conjunto dos números naturais está contido no conjunto dos números inteiros.			
⊄	Não esta contido	Ex: R ⊄N, ou seja, o conjunto dos números reais não está contido no conjunto dos números naturais.			
\supset	Contém	Ex: Z N, ou seja, o conjunto dos números inteiros contém o conjunto dos números naturais.			
	Tal que	$\underline{\text{Barra reta (vertical)}}$ $\underline{\text{Ex}}: \ \text{R+} = \{ x \in \text{R} \mid x \geq 0 \} \ \text{significa que R+ \'e o conjuntos dos n\'umeros}$ pertencentes aos reais TAL QUE esses números sejam maiores ou iguais a zero.			
	Menos, sem	Barra para esquerda. Teoria dos conjuntos (Complemento teórico) $A \setminus B$, significa que é o conjunto que contém todos os elementos de A menos os elementos de B. Ex: $A = \{1,2,3,4,5\} \text{ e } B = \{1,3,5\}$ Então $A \setminus B = \{2,4\}$ OBS: A barra pra direita (/) indica divisão.			
\rightarrow	Se, Então	seentão p: José vai ao mercado q: José vai fazer compras p→q Se José vai ao mercado então ele vai fazer compras.			
\Rightarrow	Implica	A: São Paulo é capital de um estado brasileiro B: São Paulo é uma cidade brasileira A ⇒B Ex: sendo verdadeira a afirmação que está antes dele, então também será verdadeira a afirmação à sua direita. Por exemplo, "São Paulo é capital de um estado brasileiro" implica que "São Paulo é uma cidade			

	brasileira".			
		*Deve-se tomar cuidado na utilização deste sinal, para não aplica-lo desnecessariamente.		
\Leftrightarrow	Se, e somente se	se e somente se Ex: p: Maria vai para a praia q: Maria vai tirar notas boas p ← q Maria vai para a praia se e somente se ela tirar notas boas.		
∃ . ∄	Existe e Não existe	Indica existência. Ex: $\exists x \in \mathbb{Z} \mid x > 3$ Significa que: Existe x pertencente ao conjunto dos números inteiros tal que x é maior que 3 . (O "existe" pode aparecer ainda, como um "E" ao contrario e cortado, que representa inexistência. Ex: $\nexists x \to B$. (não existe x em B) Sendo $B = \{0,1,2,3\}$, e $x = 9$, não existe x no conjunto B .		
•••	Período	A reticência em matemática, genericamente será usada para representar o período de um numero racional ou irracional. (Período: parte que se repete). Ex: Q: 1,222 (Neste caso indica que o período, é 2)		
•••	Portanto	Utilizado em expressões, equações, e etc. Exemplo em logaritmos: $\log_2 4 = x \Leftrightarrow 2^x = 4$ $2^x = 4$ $2^x = 2^2$ $\therefore x = 2$		
\forall	Para todo	Significa "Para todo" ou "Para qualquer que seja". Ex: ∀x > 0, x é positivo. Significa que para qualquer x maior que 0, x é positivo.		
()	Parênteses - I	Por ordem de resolução é o primeiro a se resolver. O parênteses na matemática pode ter várias aplicações, vamos citar algumas: 1 − f(x) = 3x+2 Aqui está representando a função de 1ºgrau, ou função afim, o parênteses neste caso, guarda o espaço para valores que serão substituídos no lugar de "X". Veja: supondo que x = 3/2 + 4 ⇒ f(3/2+4) = 3(3/2 + 4) + 2		

		 ⇒ para resolver você pode aplicar a propriedade distributiva, ou tirar o mínimo antes de multiplicar, os dois caminhos levam ao mesmo lugar, pois a multiplicação é uma operação comutativa. Substituindo f(x) por y. y = 3(3/2+4) + 2 = 9/2 + 12 + 2 = 9/2 + 14 = (9 + 28)/2 = 37/2 Ou y = 3(11/2) + 2 = 33/2 + 2 = (33+4)/2 = 37/2 Pode também representar um intervalo aberto (igualmente o colchetes para fora). Veja X tal que x, está entre 3 e 4, inclusive 3 e exclusive 4. {x ∈ R 3 ≤ x < 4} Ou [3 , 4) = [3 , 4 [olha o parênteses aqui. Tem o mesmo papel que o colchetes para fora Ou seja representa um intervalo aberto, no qual os valores tendem a esse valor, mas não o atinge. Como se fosse o seu limite.
	Colchetes - II	Por ordem de resolução é o segundo a se resolver. Em funções/intervalos, representa inclusão; exemplo: [0;1] Entre 0 e 1. (inclusive o 0 e 1) 0 \le x \le 1 (Lê-se: x maior ou igual a zero e menor ou igual a 1)]2;4] Entre 2 e 4. (exclusive 2 e inclusive 4) 2 < x \le 4 (Lê-se: x maior que dois e menor ou igual a 4)]-6;2[Entre -6 e 2. (exclusive -6 e exclusive 2) -6 < x < 2 (Lê-se: x maior que menos seis e menor que 2)
{ }	Chaves - III	Por ordem de resolução é o terceiro a se resolver o conjunto de Ex: {a,b,c} representa o conjunto composto por a, b e c.
+	Adição	Lê-se como "mais" Ex: 2+3 = 5 (Lê-se: dois mais três é igual a cinco). Significa que se somarmos 2 e 3 o resultado é 5.
<u>+</u>	Mais ou Menos	Indicação de um valor "x" com duplo sinal. Ex: $\pm 5 = +5$ e -5 Quando delta é maior que zero, a equação de segundo grau apresenta duas raízes devido a presença do sinal "mais ou menos" contida na "fatoração da equação de segundo grau". Apenas no Brasil é conhecida como fórmula de Báskara (consulte a história)
	Subtração	Lê-se como "menos" Ex: 5-3 = 2, significa que se subtrairmos 3 de 5, o resultado é 2. O sinal - também denota um número negativo. Por exemplo: (-6) + 2 = -4. Significa que se somarmos 2 em -6, o resultado é -4.
/ ou - ou •	Divisão	Lê-se como "dividido" <u>Ex</u> : $6/2 = 3$, significa que se dividirmos 6 por 2, o resultado é 3.

		T A			
		Lê-se como "multiplicado" Ex: 8*2 = 16, significa que se multiplicarmos 8 por 2, o resultado é 16.			
		2*3 = 3*2 (Lê-se duas vezes três é igual a três vezes dois)			
* ou •	Multiplicação	2 e 3 são fatores , 6 é o resultado da multiplicação, também chamado de produto.			
		Implicação imediata da multiplicação: "A ordem dos fatores não altera o produto"			
%	Per cento, Por cento, Porcentagem	Indicador de fração por cento (100). Porcentagem = Por cento, ou seja um número por 100 (Sobre 100, dividido por cem). 10% = 10/100 = 0,1 20% = 20/100 = 0,2			
_	Igual, Igualdade	Lê-se como "igual a" <u>Ex</u> : x = y, significa que x e y possuem o mesmo valor. Por exemplo: 3+5 = 7+1			
		Ev. 13 \neq 31 (13 \(\delta\) differente de 31)			
	5.0				
#	Diferente	$Logo x \neq y$			
,					
~	Aproximadamente (π=3,1415) Pi é aprox. 3,14	Ex: π "Pi" é um número irracional, resultado da divisão do valor da circunferência pelo diâmetro, por ser um número indeterminado em casas após a vírgula, atribuímos a ele um valor simplificado que comumente é falado em matemática como 3,1415 para este podemos ler como aproximadamente 3,14 ($\pi \approx 3,14$).			
~	Equipolente	Utilizado em Álgebra Linear e Geometria Analítica Dois segmentos orientados AB e CD são equipolentes quando têm o mesmo módulo, a mesma direção e o mesmo sentido. A equipolência dos segmentos AB e CD é representada por AB ~ CD Não confundir com Negação (Lógica)			
		2/4=1/2			
		(Lê-se: é equivalente à, ou é equipolente à)			
$\equiv_{e} \neq$	Equivalente				
— e /	Equivalente	·			
		$\log x \equiv y$			
		-			
		Angulos Congruentes:			
\sim		Ex: π "Pi" é um número irracional, resultado da divisão do valor da circunferência pelo diâmetro, por ser um número indeterminado em casas após a vírgula, atribuímos a ele um valor simplificado que comumente é falado em matemática como 3,1415 para este podemos ler como aproximadamente 3,14 ($\pi \approx 3,14$). Utilizado em Álgebra Linear e Geometria Analítica Dois segmentos orientados AB e CD são equipolentes quando têm o mesmo módulo, a mesma direção e o mesmo sentido. A equipolência dos segmentos AB e CD é representada por AB ~ CD Não confundir com Negação (Lógica) 2/4 \equiv 1/2 (Lê-se: é equivalente à, ou é equipolente à) EX: $x = \sqrt{16}$, $y = 4$ logo $x \equiv y$ (o sinal cortado significa "não equivale") Ângulos Congruentes: Definição — Dois segmentos de reta são chamados congruentes quando tiverem a mesma medida, na mesma unidade.			
	Congruente à				
_		são congruentes.			
		4 cm B			
		4 cm AP T CD			
		C D Indica-se: $\overline{AB} \cong \overline{CD}$			

<>	Comparação	Desigualdade Estrita. É menor que, é maior que x < y significa que x é menor que y x > y significa que x é maior que y			
<u><></u>	Comparação	Desigualdade não estrita. é menor ou igual a, é maior ou igual a x≤y significa: x é menor ou igual a y; x≥y significa: x é maior ou igual a y			
$x^{n} = x \cdot x \cdot x$ $\dots = y$	Potenciação	Definição dos termos da potenciação Lê-se: x elevado à enésima potência é igual ao produto de x, "n" vezes, que é igual a y. x = base n = expoente ou potência (determina o número de fatores) x.x.x = produto de fatores (é determinado pelo expoente) y = produto (em alguns livros é definido como potência) Exemplos: $(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{9}$ $(-2)^{-1} = \frac{1}{(-2)^1} = -\frac{1}{2}$ $1^0 = 1$ $2^1 = 2$ $3^2 = 3 \cdot 3 = 9$ Existem várias propriedades, consulte Propriedades da Potenciação.			
$x^2 = n$	X ao quadrado é igual a n	É comum alunos terem dúvidas nesse caso, por isso destacamos com um exemplo: $x^2 = 9 ?$ Aqui vem a seguinte pergunta, que número elevado ao quadrado é igual a nove? E você responde 3! (certo), mas esquece que pode ser (-3) também. Portanto não cometa mais esse erro, existem dois números que elevados ao quadrado são iguais a nove. Isto é:			

		$x^2 = 9$ $x^2 - 9 = 0$ $ent\tilde{a}o: x^2 - 3^2 = 0$ diferença de $quadrados: veja a forma fatorada:(x + 3)(x - 3) = 0portanto x + 3 = 0$ ou $x - 3 = 0x = -3$ ou $x = 3Podendo ser escrita da seguinte forma:x^2 = nent\tilde{a}o: x = \pm \sqrt{n}exemplo: x^2 = 9ent\tilde{a}o: x = \pm \sqrt{9} = \pm 3S = \{-3,3\}$
!	Fatorial , n fatorial (n!)	O Símbolo / Sinal de exclamação na matemática é definido como fatorial. Fatorial que vêm da palavra fator. A definição de <i>n fatorial</i> é a seguinte: n!=n.(n-1).(n-2)3.2.1 Ex: Para n=6, teríamos: n! = 6*5*4*3*2*1
\	Radical	O símbolo do radical deriva da letra Γ devido ao nome em latim radix quadratum (raiz quadrada), interpreta-se geometricamente como o lado do quadrado. $\sqrt[n]{X}$ Lê-se: Raiz enésima de x. OBS: quando não houver número no índice esta será sempre quadrada: Ex: $\sqrt{16}$ = +4 (Raiz quadrada de 16) $\sqrt[3]{27}$ = +3 (Raiz cúbica de 27) $\sqrt[4]{16}$ = +2 (Raiz quarta de 16) $\sqrt[i]{\Gamma}$ = $\sqrt[i]{\Gamma}$ ($\sqrt[i]{\Gamma}$) Radical (sinal) (r) Radicando (dentro) (i) Índice (fora) (z) Raiz (resultado) Importante: A raiz quadrada de um número é sempre positiva. $\sqrt{\chi^2}$ = χ
log	Logaritmo	$\underline{\text{Ex}}$: $\log_2 8 = 3$ O logaritmo de 8 na base 2 é 3, pois elevando 2 ao expoente 3 obtemos 8. Nunca esqueça, se não tiver base no logarítmo, definimos como sendo na base 10.

ln	(l) Logaritmo (n) neperiano	logarítmo natural $log_e n = y$ Logarítimo neperiano é o logarítmo cuja base é o numero "e". $e = 2,718281828$ Ex: log $_e$ 8 = 2,079441542 porque $e^{2,079441542} = 8$			
e	Número de Euler	 e = 2,718 281 828 459 045 235 360 287 Lê-se "número de Óilar" ou também: número de Napier, constante de Néper, número neperiano, constante matemática e número exponencial. Publicado em 1618 por John Napier 			
γ	Constante de Euler- Mascheroni *letra grega "Gama" minúscula	À teoria dos números.			
i	Unidade imaginaria	$i = \sqrt{-1}$ i é utilizado para representar a raiz de menos um Consulte – Números Complexos			
π	Pi (Minúsculo) *letra grega	$\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\ 50288$ O número π é definido como sendo a razão entre a circunferência de um círculo e o seu diâmetro. Mas este número tem outras personalidades. É também um número irracional e um número transcendente. $\text{Em trigonometria}\ \pi = 180^{o}$ Também é conhecido como constante de Arquimedes ou número de Ludoph.			
$\sqrt{2}$	Constante de Pitágoras	*Raiz quadrada de dois. $\sqrt{2} = 1.41421\ 35623\ 73095\ 04880\ 16887\ \dots$			
φ	Número de Ouro Letra grega Fi minúscula	φ =1.61803 39887 49894 84820 45868 34365 63811			
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	Raízes da Equação de Segundo Grau	Ocorre de escrevermos Báskara, mas o certo é Bhaskara. É apenas aqui no Brasil, que comum tornou-se atribuir créditos ao Matemático Bhaskara, e o método para extrair as raízes, como fórmula de Bhaskara . (Consulte a história). Essa fórmula se obtém quando fatora-se a equação de segundo grau,			

		completa-se os quadrados e isola-se a variável (x). Viète também propôs outro método para extração das raízes (devem existir mais), mas essa é a forma mais fácil mesmo, e como na matemática trabalha-se repetidamente com equações de segundo grau, será fácil a memorização. Essa é a equação de segundo grau igualada à zero: $ax^2 + bx + c = 0$ a, b, c são os coeficientes, e x a variável. E foi a partir dela que surgiu a fórmula, o problema consistia em achar os valores de x para os quais tornam a equação verdadeira, ou seja que valores de x tornam a equação nula. Publicamos um artigo demonstrando essa fórmula, verifique o índice de Matemática Básica.
Pesquisa de Raízes Racionais	Raízes da equação polinomial quando o grau é maior que 2.	Este método é chamado Pesquisa de raízes , por que raramente na primeira tentativa se acha uma solução para o problema. No entanto ele sugere um caminho, resumimos a definição abaixo. (A) Raízes Racionais: Seja a função polinomial P(x) = 0 de grau n. a₀ xⁿ +a₁ xⁿ¹¹ ++aₙ₂ x² +aₙ₁ x +aₙ = 0 (aռ ≠ 0 e a₀ ≠ 0) As possíveis raízes são o(s) número(s) x = p/q (p e q números primos), onde p é divisor Inteiro de aₙ (termo independente) e q é divisor Inteiro de aₙ (coeficiente do termo de maior grau). (B) Raízes Inteiras: Um caso particular é se aₙ divisível por a₀, for um número inteiro. Então obtemos sem tantas tentativas as raízes, que são os divisores inteiros de aռ. (Mas o teorema que abrange mais amplamente é o primeiro mesmo). Exemplo para (A): Determinar em ℂ as raízes da função polinomial: f(x) = 2x³ + x² + x − 1 Solução. I) 2x³ + x² + x − 1 = 0 II) As raízes possíveis são x = p/q, onde p é divisor inteiro de -1 e q é divisor inteiro de 2. III) D(-1) = { ±1} = p D(2) = {±1, ±2} = q IV) Raízes possíveis: x = p/q { ±1, ±1/2 }

V) Utilizando o dispositivo de Briot-Ruffini para dividir o polinômio e testar as possíveis raízes.

	2	1	1	-1	
1	2	3	4	3	
-1 1	2	2	2	-3	
2					

VI) Verifica-se que 1/2 é raiz do polinômio, e a função polinomial é dividida sem resto, assim re-escrevemos P(x):

$$P(x) = (2x^2+2x+2)(x-1/2)$$

VII) Com o Método para extração das raízes da eq. De segundo grau temos o conjunto solução, com duas raízes imaginárias:

$$S = \left\{ \frac{1}{2}, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i \right\}$$

Exemplo para (B):

Determinar as raízes:

$$f(x) = 2x^3 - 11x^2 + 17x - 6 = 0$$

De acordo com o teorema B, as raízes possíveis, já que -6 é divisível por 2, são apenas os divisores inteiros de -6.

$$D(-6) = \{\pm 1, \pm 2, \pm 3, \pm 6\}$$

Pesquisando as raízes pelo dispositivo de Briot-Ruffini:

Vemos que 2 é raiz, simplificando a função:

$$f(x) = (x-2)(2x^2 - 7x + 3)$$

S = {1/2, 2, 3}

Logo notamos também que existe outra raiz inteira, 3. E aqui se esclarece que se utilizarmos o teorema A, a raiz já seria sugerida, no entanto o conjunto das raízes possíveis aumentaria de oito raízes possíveis para doze.

Utilizando o método A, o conjunto das raízes possíveis é:

$$x = p/q = \{ -\frac{1}{2}, \frac{1}{2}, \pm 1, \pm 3/2, -2, 2, 3, -3, \pm 6 \}$$

Portanto esteja consciente de utilizar o método adequado.~

		Teorema Auxiliar: O Teorema de Bolzano sugere duas implicações e resumimos abaixo omitindo a demonstração: Considere a função polinomial de coeficientes Reais:
		$f(x) a_0 x^n + a_1 x^{n+1} + \dots + a_{n-2} x^2 + a_{n-1} x + a_n$
		E dois números tais que $a < b$, $f(a) \cdot f(b) \neq 0$
		$1-\operatorname{Se} f(a).f(b)<0$, Então em $f(x)$ existe um número impar de raízes no intervalo (a,b) . Dependendo do grau do polinômio. (se for três, então uma ou três raízes).
		2- Se $f(a)$. $f(b) > 0$, Então em $f(x)$ não existe, ou existe um número par de raízes no intervalo (a, b) . Dependendo do grau do polinômio. (se for seis, então não existem raízes, ou há duas, ou quatro ou seis raízes).
		Este teorema resolve questões de análise, por exemplo:
		Analise a função polinomial e verifique quantas raízes há no intervalo $(0, 1)$. $f(x) = x^5 - 2x^2 + 3x + 1$.
		Solução: Pelo teorema $P(0).P(1) > 0$, então não há raízes, ou há duas, ou quatro raízes no intervalo dado. (isto porque o polinômio é de quinto grau).
		1) Quadrado da soma ou diferença de dois termos: $(a + b)^2 = a^2 + 2ab + b^2$
		$(a+b)^2 = a^2 + 2ab + b^2$ $(a-b)^2 = a^2 - 2ab + b^2$
		2) Diferença de Quadrados:
		$a^2 - b^2 = (a + b) \cdot (a - b)$
Produto	os Notáveis	3) Cubo da soma ou diferença de dois termos:
		$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ $(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$
		4) Soma ou diferença de Cubos:
		$a^{3} + b^{3} = (a + b) \cdot (a^{2} - ab + b^{2})$
		$a^{3}-b^{3}=(a-b)\cdot(a^{2}+ab+b^{2})$
		Não se assuste com a seguinte fórmula, pois ela é muito simples, e foi desenvolvida com a intenção de facilitar o cálculo.
Binômic	de Newton	A forma $(x+a)^n \ \forall \ n>1 \in \mathbb{Z}$, é expandida da seguinte maneira e aplicável a todas as formas demonstradas anteriormente em Produtos notáveis.

		$(x+a)^{n} = x^{n} + \frac{n}{1!} \cdot x^{n-1} \cdot a + \frac{n \cdot (n-1)}{2!} \cdot x^{n-2} \cdot a^{2} + \dots$
		$\dots + \frac{n \cdot (n-1) \cdot (n-2)}{3!} \cdot x^{n-3} \cdot a^3 + \dots$
		+ $\frac{n(n-1)(n-2)2}{(n-1)!} \cdot x \cdot a^{n-1} + a^n$
		Procedimento, para o lado direito da igualdade: 1 – o primeiro termo (x) é sempre elevado ao expoente n.
		2 – o segundo termo, é o expoente vezes x elevado a uma unidade a menos que o n inicial. Multiplique isso por a.
		3- o terceiro é o produto de n pelo expoente de x do segundo termo, ou seja: n e $(n-1)$. Divida isso pelo número de termos escritos, ou seja, dois. Multiplique por x elevado a duas unidades reduzidas do n inicial. Multiplique por a elevado a uma unidade a mais que a do segundo termo.
		A dica é memorizar os passos, deduzir os produtos notáveis (que possam ser) pelo Binômio de Newton, e por último demonstrar a fórmula até o quarto termo. Depois disso é repetição.
		Dados dois pontos distintos, chamamos de segmento de reta a figura (*) constituída por eles e por todos os pontos que estão entre eles. Exemplo
\overline{AB}	Segmento de reta	O segmento de reta determinado por A e B é representado por AB , dizemos que A e B são suas extremidades, e representamos por AB a medida de \overline{AB} .
		A
		$\overline{AB} = \{A, B\} \cup \{P \mid P \text{ está entre } A \in B\}$
		Geometria Analítica, Álgebra Linear. Vetor, verifique a definição formal. Segmento de reta orientado.
		$\vec{u} = \overrightarrow{AB} = B - A$
$\overrightarrow{AB}_{ou} \overrightarrow{u}$	Vetor	Ex: se $A(x_1, y_1, z_1)$ e $B(x_2, y_2, z_2)$
		então $\overrightarrow{AB} = B - A = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$
$<$ $\vec{\mathrm{u}}$, $\vec{\mathrm{v}}$ $>$	Produto escalar	Geometria Analítica, Álgebra Linear. Esta notação implica que devemos multiplicar as cordenadas do vetor u pelas de v, e então obter o produto escalar. Também representasse por: $\vec{u} \cdot \vec{v}$
		Exemplo:
		$\vec{\mathbf{u}} = (1,2,3) \ e \ \vec{\mathbf{v}} = (4,5,6)$
		$ent\tilde{a}o < \vec{u}, \vec{v} > = \vec{u} \cdot \vec{v} = (1,2,3) \cdot (4,5,6) = (4+10+18) = 32$

$d\left(P,\pi\right)$	Distância de um ponto a um Plano	$d\left(P,\pi\right) = \frac{\left ax_0 + by_0 + cz_0 + d\right }{\sqrt{a^2 + b^2 + c^2}}$ a,b,c são as coordenadas do vetor normal do plano x_0, y_0, z_0 são as cordenadas do ponto qualquer $d = -ax_1 - by_1 - cz_1$ onde (x_1, y_1, z_1) são as coordenadas de um ponto pertencente ao plano \cdot Ex: A distância entre o ponto P(-4,2,5) ao plano $\pi : 2x + y + 2z + 8 = 0$ $d\left(P,\pi\right) = \frac{\left 2\left(-4\right) + 1\left(2\right) + 2\left(5\right) + 8\right }{\sqrt{2^2 + 1^2 + 2^2}}$ $d\left(P,\pi\right) = 4uc$
$dig(P_1,P_2ig)$	Distância entre dois pontos	GEOMETRIA ANALÍTICA Utilizando como base o teorema de Pitágoras, pode-se calcular a facilmente a distancia entre dois pontos no plano cartesiano. $seja$: $P_1(x_1, y_1, z_1)$ e $P_2(x_2, y_2, z_2)$ $então$ a $distância$ $d(P_1, P_2) = \overrightarrow{P_1P_2} $ $d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ Ou seja a distância é o módulo do vetor $\overrightarrow{P_1, P_2}$ $Ex.$ A distância entre $P(7,3,4)$ e $Q(1,0,6)$ d $P(Q) = \sqrt{(1-7)^2 + (0-3)^2 + (6-4)^2} = \sqrt{49} = 7$ u.c. $P(1,0,6)$ u.c.: unidades de comprimento
$\sum_{i=m}^{i} f(i)$	Notação Sigma "Somatório" *Σ letra grega Sigma maiúscula	$\sum_{i=m}^{i} f(i) = f(m) + f(m+1) + f(m+2) + \dots + f(n)$ $i \neq 0 \text{ indice da soma (\(\phi \) um s\(\text{imbolo arbitr\(\arphi \) io, pode assumir o valor de qualquer letra)}$ $m \neq 0 \text{ limite inferior}$ $n \neq 0 \text{ limite superior}$ $f(i) \neq \text{ a funç\(\arphi \) out }$ $\text{Ex: } \sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$
Π	Produto (Aritmética) *letra grega Pi Maiúsculo	Produto em, até, de
x	Módulo / Valor absoluto de x	-5 = 5 Lê-se: o módulo de menos cinco é igual à cinco. Significa geometricamente a distancia do valor de x até zero. (veja a definição de módulo para mais informações).

	I	
		$ x = \sqrt{(x)^2}$ $ 9 = \sqrt{(9)^2} = 9$
		$ 9 = \sqrt{(9)^2} = 9$
		Definição: O módulo de x é x se x for maior ou igual a zero ou o módulo de x é -(x) se x for menor que zero.
		Definição em linguagem matemática:
		$ x \begin{cases} x, se \ x \ge 0 \\ -x, se \ x < 0 \end{cases}$
x	Norma de / comprimento de	Análise funcional. (verificar definição e teoria) $ x \text{ é a norma do elemento } x \text{ de um espaço vetorial } Ex: \\ x+y \leq x + y $
	Retas Perpendiculares	São as retas concorrentes. Se r e s, são retas perpendiculares indicamos por r⊥ s. (Retas perpendiculares são aquelas que possuem um único ponto em comum e formam entre si um ângulo de 90º).
	Ângulo reto 90°	Representa em geometria e trigonometria, ou em geral. A formação de um ângulo de noventa graus (90°) referente a uma outra reta, independente se for horizontal ou vertical e diagonal. Um ângulo reto é a metade de um ângulo raso.
//	Retas paralelas	Se r e s são duas retas paralelas indicamos por r // s. Retas paralelas são aquelas que não possuem ponto em comum, ou seja não se cruzam, não são concorrentes.
Ângulo raso	Ângulo raso	Um ângulo raso mede 180°, e é a metade do ângulo de uma volta completa (360°). A O B Raso: Adj.: De superfície plana; liso.
Ângulo agudo	Ângulo agudo	É o ângulo cuja medida esta entre 0° e 90°. Ou o mesmo que 0° < x < 90° Agudo: Adj.: Terminado em gume ou em ponta. (gume: lado afiado de um instrumento cortante)
Ângulo obtuso	Ângulo obtuso	É aquele cuja medida situa-se entre 90° e 180°. Ou o mesmo que 90° < x < 180° Obtuso: Adj.:Que não é aguçado ou agudo; que não é bicudo; arredondado, rombo.
Ângulos complementares	Ângulos complementares	São aqueles cujas medidas somam 90°, e diz-se que um é o complemento do outro. Ex: 34° é o complemento de 56° e vice-versa, pois 34° + 56° = 90° Complemento: s. m. 1. Ato ou efeito de completar.

Ângulos suplementares	Ângulos suplementares	São aqueles cujas medidas somam 180º e diz-se que um é o suplemento do outro. Ex: 48º é o suplemento de 132º e vice-versa, pois 48º + 132º = 180º Suplemento: s. m. Aquilo que serve para suprir qualquer falta.
Ângulo de depressão	Ângulo de depressão	É o ângulo que se forma abaixo da linha horizontal. Neste caso o ângulo alfa " α " horizontal
Ângulo de elevação	Ângulo de elevação	É o ângulo que se forma acima da linha horizontal. Neste caso o ângulo alfa " α " horizontal
Bissetriz de um ângulo	Bissetriz de um angulo	Bissetriz de um ângulo – é a semi-reta que partindo do vértice, determina dois ângulos congruentes (ou seja, de mesma medida). B OC=bissetriz A Axioma: todo ângulo possui uma única bissetriz
O	Grau	Indicação para ângulos e coordenadas em geometria / trigonometria, temperatura em graus Celsius e etc. OBS: 1 grau é igual a 60 minutos que é igual a 3600 segundos. 1°=60'=3600" MAT: Por definição, 1 grau é o arco equivalente a 360 da circunferência, ou seja, em um arco de volta completa, ou de uma volta, cabem 360°.
6	Minuto	Indicação abreviada de minuto. Ex: 1' = 60" (Um minuto igual a sessenta segundos).
66	Segundo	Indicação abreviada de segundo. Ex: 20 segundos = 20"

gr	Grado	Definimos como 1 grado o arco equivalente a $\frac{1}{400}$ da circunferência, isto é, em uma circunferência ou arco de uma volta cabem 400 gr.
rad	Radiano	Um radiano é definido como o arco cujo comprimento é igual ao do raio da circunferência onde tal arco foi determinado.
arc	Arco AB / \widehat{AB}	Definimos como arco de circunferência cada uma das partes em que ela é dividida por dois de seus pontos. AB: Um Arco é representado dessa forma, e lê-se: Arco AB Se dois pontos coincidem, há portanto dois arcos, um é o arco nulo, e outro é o arco de uma volta. Atenção: Não confundir com segmento de reta. AB'
sin ou sen e	Seno e Co-seno	Muitas pessoas tem dificuldade com trigonometria, por não entender o significado das abreviações sen, cos, tg, etc. Então para esclarecer, isso representa uma medida, que se projeta em algum eixo. Por exemplo o seno de um ponto P(x,y) é dado pela relação abaixo, e significa uma medida. sen (α) =

	seja Px o ponto da circunferência correspondente a x, então:
	$\frac{\text{Cos } x = \text{abscissa de } Px}{\text{Portanto } Px = (\cos x, \sin x)}$
	Obs: o símbolo da função seno é sen, então deveríamos escrever sen(x), e da mesma forma para cos x, cos(x). A omissão dos parênteses é tradicional, e serve para aliviar a notação. Contudo não vá pensar que sen x, é um produto de sen por x. E isso não tem sentido, pois sen e cos é uma correspondência (função) e não um número:
	sen x não é produto de sen por x; cos x não é produto de cos por x.
	Expliquemos o significado da partícula co, que inicia o nome das relações co-seno , co-tangente e co-secante . Ela foi introduzida por Edmund Gunter, em 1620, querendo indicar a razão trigonométrica do complemento . Por exemplo, co-seno de 22° tem valor idêntico ao seno de 68° (complementar de 22°).
	Assim, as relações co-seno , co-tangente e co-secante de um ângulo indicam, respectivamente, seno , tangente e secante do complemento desse ângulo.
	Assim, indicando seno, tangente e secante simplesmente pelo nome de razão, podemos dizer que
	$co-razão x = razão (90^o - x)$
Co-razão x O complemento de x	Exemplos: $I) sen\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{2} - \frac{\pi}{3}\right) = \cos\left(\frac{3\pi - 2\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)$ $II) sen\left(37^{\circ}\right) = \cos\left(90^{\circ} - 37^{\circ}\right) = \cos\left(53^{\circ}\right)$
	Fig. A a b b c A
	Com base no triângulo apresentado na figura A, conclui-se que:
	$sen \alpha = cos \beta$ e $sen \beta = cos \alpha$
	$tg \alpha = \cot \beta$ $tg \beta = \cot \alpha$
	$\sec \alpha = \csc \beta$ $\sec \beta = \csc \alpha$
Tangente	tg = (cateto Oposto)/(cateto adjacente) = co/ca $tg \; x = \frac{senx}{cosx}$ Interpretação geométrica no ciclo trigonométrico:
	O complemento de x

		tg(x)
		$\cot x = \frac{\cos x}{sen x} = \frac{1}{tg x}$ Sabendo as três primeiras "sen, cos e tg", o resto não fica difícil de memorizar veja:
cot ou cotg	Co-tangente	Quando aparecer "Co" pode se para memorização interpretar como: "inverso de". Tg é sen sobre cos, então cotg é o inverso de tg, e fica cos sobre sen.
COLou COLG		Geometricamente: cotg(x)
		$\sec x = \frac{1}{\cos x}$ "Secante lembra Seno, mas é um sobre cosseno"
sec	Secante	Geometricamente
		$\csc x = \frac{1}{sen x}$ "Co-secante lembra cosseno, mas é um sobre seno"
CSC ou cossec	Co-secante	(x) Oosec(x)

	Interpretação geométrica das funções trigonométricas no ciclo trigonométrico	cot(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)
Sinh ou senh	Seno hiperbólico	Definimos a seguinte função exponencial como Seno hiperbólico, e suas demais consequentes abaixo. $f:\mathbb{R}\to\mathbb{R} \ , \ \sinh{(x)}=\frac{e^x-e^{-x}}{2}$
cosh	Co-seno hiperbólico	$f:\mathbb{R} \to [1, +\infty)$, $\cosh(x) = \frac{e^x + e^{-x}}{2}$
tanh ou tgh	Tangente hiperbólica	$f:\mathbb{R} \to (-1,1)$, $\frac{\sinh(x)}{\cosh(x)} = tgh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
coth ou cotgh	Co-tangente hiperbólica	$f: \mathbb{R}^* \to \left[\left(-\infty, -1 \right) \cup \left(1, +\infty \right) \right] ,$ $\frac{1}{tgh(x)} = \coth(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$
sech	Secante hiperbólica	$f: \mathbb{R} \to (0, 1)$, $\frac{1}{\cosh(x)} = \operatorname{sech}(x) = \frac{2}{e^x + e^{-x}}$
csch ou cossech	Co-secante hiperbólica	$f:\mathbb{R}^* \to \mathbb{R}^*$, $\frac{1}{\sinh(x)} = \operatorname{csch}(x) = \frac{2}{e^x - e^{-x}}$
Relações	Hiperbólicas	Aqui está uma analogia às relações trigonométricas, onde alguns casos também são verificados nas funções hiperbólicas. Abaixo estão algumas identidades: 1) $\cosh^2 x - \sinh^2 x = 1$ 2) $\sinh(-x) = -\sinh(x)$ 3) $\cosh(-x) = \cosh(x)$

		4) $\cosh x + \sinh x = e^x$
		$5) \cosh x - \sinh x = e^{-x}$
		$\mathbf{6)} \operatorname{sech}^{2} x = 1 - \operatorname{tgh}^{2} x$
		7) $\begin{cases} -\operatorname{csch}^2 x = 1 - \coth^2 x \\ \operatorname{csch}^2 x = \coth^2 x - 1 \end{cases}$
		8) $\sinh(x + y) = \sinh x \cdot \cosh y + \sinh y \cdot \cosh x$
		9) $\cosh(x + y) = \cosh x \cdot \cosh y + \sinh x \cdot \sinh y$
		10) $\sinh(2x) = \sinh(x + x) = 2 \cdot \sinh x \cdot \cosh x$
		11) $\begin{cases} \cosh(2x) = \cosh(x+x) \\ = \cosh^2 x + \sinh^2 x \\ = 2 \cdot \sinh^2 x + 1 \\ = 2 \cdot \cosh^2 x - 1 \end{cases}$
		$= 2 \cdot \cosh^2 x - 1$
		12) $\sinh^2 x = \frac{\cosh x - 1}{2}$
		$13) \cosh^2 x = \frac{\cosh x + 1}{2}$
		Fig. A β β β A
Relações Trigonométricas	Relação fundamental	Partindo da figura A e da relação de Pitágoras: $a^2 = b^2 + c^2$ (dividindo por a^2) $1 = (b/a)^2 + (c/a)^2$
		Tomando em relação ao Ângulo B. Sabemos que $sen^2 x = (c.o./h)^2 = (b/a)^2$ e $cos^2 x = (ca/h)^2 = (c/a)^2$
		$sen^2 x + \cos^2 x = 1$
		Outras relações, não tanto importantes:
		$\sec^2 x = 1 + tg^2 x mas cosx \neq 0$
		$cossec^2 x = 1 + cotg^2 x mas senx \neq 0$

Relações Trigonométricas	Em senos	Algumas fórmulas que podem ser úteis na vida dos estudantes de cálculo. Quando aparece: cos a cos b , isto implica que estamos multiplicando o co-seno de a pelo co-seno de b, e isto se aplica a todas as fórmulas apenas mudando as funções em sen, cos, tg, etc. 1: sen(a + b) = sen a cos b + cos a sen b 2: sen(a - b) = sen a cos b - cos a sen b "Decoreba" para 1 e 2: Minha terra tem palmeiras onde canta o sabiá, seno a co-seno b, seno b co-seno a. Sinais iguais 3: sen(2a) = sen (a + a) = sen a cos a + sen a cos a sen(2a) = 2 sen a cos a 4: sen a sen b = $-\frac{1}{2}$ [cos (a + b) - cos (a - b)] 5: sen a cos b = $\frac{1}{2}$ [sen (a + b) + sen (a - b)] Não recomendo a memorização, mas você deve saber que existem essas relações, saber aplicar e ter em mãos quando for necessário.
Relações Trigonométricas	Em co-senos	 cos(a + b) = cos a cos b - sen a sen b cos(a - b) = cos a cos b + sen a sen b Decoreba" para 1 e 2: coça-coça, senta-senta. Sinais contrários. cos(2a) = cos (a + a) = cos a cos a - sen a sen a cos(2a) = cos²a - sen²a cos(2a) = 1 - 2sen²a cos (2a) = 2cos² a - 1 OBS: 3b e 3c são obtidas por substituição da relação fundamental. E a partir dessas duas relações pode-se chegar a outras por manipulação algébrica. cos a cos b = 1/2 [cos (a + b) + cos (a - b)]
Relações Trigonométricas	Em tangente	1: $\operatorname{tg}(a+b) = \frac{\operatorname{sen}(a+b)}{\operatorname{cos}(a+b)}$ $\operatorname{tg}(\mathbf{a}+\mathbf{b}) = \frac{\operatorname{tga} + \operatorname{tgb}}{1 - \operatorname{tga} \cdot \operatorname{tgb}} \Leftrightarrow \operatorname{cos}(a+b) \neq 0$ 2: $\operatorname{tg}(a-b) = \frac{\operatorname{sen}(a-b)}{\operatorname{cos}(a-b)}$ $\operatorname{tg}(a-b) = \frac{\operatorname{tga} - \operatorname{tgb}}{1 + \operatorname{tga} \cdot \operatorname{tgb}} \Leftrightarrow \operatorname{cos}(a-b) \neq 0$ 3: $\operatorname{tg}(2a) = \frac{2\operatorname{tga}}{1 - \operatorname{tg}^2 a} \Leftrightarrow \operatorname{cos}(2a) \neq 0$

Relações Trigonométricas	Em metades. Soma e diferença de	1: $sen^2\left(\frac{a}{2}\right) = \frac{1-\cos a}{2}$ 2: $\cos^2\left(\frac{a}{2}\right) = \frac{1+\cos a}{2}$ 3: $tg^2\left(\frac{a}{2}\right) = \frac{1-\cos a}{1+\cos a} \Leftrightarrow \cos a \neq -1$ 1: $\operatorname{sen} p + \operatorname{sen} q = 2\operatorname{sen}\left(\frac{p+q}{2}\right) \cdot \cos\left(\frac{p-q}{2}\right)$
Trigonométricas	senos	2: $\operatorname{sen} p - \operatorname{sen} q = 2\operatorname{sen}\left(\frac{p-q}{2}\right) \cdot \cos\left(\frac{p+q}{2}\right)$ 1: $\operatorname{sen} p + \operatorname{sen} q = 2\operatorname{sen}\left(\frac{p+q}{2}\right) \cdot \cos\left(\frac{p-q}{2}\right)$
Relações Trigonométricas	Soma e diferença de co-senos	1: $\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right) \cdot \cos\left(\frac{p-q}{2}\right)$ 2: $\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right) \cdot \sin\left(\frac{p-q}{2}\right)$
Relações Trigonométricas para qualquer triângulo	Lei dos senos.	A medida de um lado (x) é igual ao dobro do raio (2R) vezes o seno do ângulo oposto ao lado (\hat{X}): ($x = 2R \operatorname{sen} \hat{X}$). Ou também: $\frac{a}{\operatorname{sen} \hat{A}} = \frac{b}{\operatorname{sen} \hat{B}} = \frac{c}{\operatorname{sen} \hat{C}} = 2R$ Obs: O Triângulo não precisa ser eqüilátero (ter os lados iguais).
Relações Trigonométricas para qualquer triângulo	Lei dos co-senos.	Lei dos co-senos: $a^{2} = b^{2} + c^{2} - 2bc \cdot \cos \hat{A}$ $b^{2} = a^{2} + c^{2} - 2ac \cdot \cos \hat{B}$ $c^{2} = a^{2} + b^{2} - 2ab \cdot \cos \hat{C}$ Mais informações consulte a teoria.
$a^2 = b^2 + c^2$	Teorema de Pitágoras	Consulte trigonometria. Relação trigonométrica de Pitágoras para o Triangulo Retângulo (T.R. é aquele que possui um ângulo de noventa graus ou ângulo reto). a, b e c são as medidas dos catetos. Cateto: Cada um dos lados do ângulo reto no triângulo retângulo. Adjacente: próximo, vizinho, ao lado. Hipotenusa: em geometria, é o nome do lado do triangulo que esta

		oposto ao ângulo reto.	
		hipotenusa x b cateto adjacente ao angul	cateto oposto ao angulo x
		A hipotenusa ao quadrado (a²) é igual (=) a soma dos quadrados dos catetos ($b^2 + c^2$).	
		CO = cateto oposto ao ângulo CA = cateto adjacente ao ângulo	
		Outras relações:	Altura h: $\mathbf{a.h} = \mathbf{b.c}$ $\mathbf{h^2} = \mathbf{m.n}$
		n a	Projeções m e n: $\mathbf{b}^2 = \mathbf{a.n}$ $\mathbf{c}^2 = \mathbf{a.m}$
Polígonos regulares	Tabela de polígonos	iguais). Obs: Polígono	ométricas com n número de lados o regular é todo polígono convexo que ntes e os ângulos coincidentes (ângulos
		Número de lados, Polígo 3 - Triangulo 4 - Quadrilátero 5 - Pentágono 6 - Hexágono 7 - Heptágono 8 - Octógono 10 - Decágono	ono:
		11 - Undecágono 12 - Dodecágono 15 - Pentadecágono 20 - Icoságono	
$d = \frac{n \cdot (n-3)}{2}$	Número de diagonais. Polígonos	A diagonal é a reta qu O número de diagon	e liga vértices não consecutivos: ais (d) é dado por:
		(n) é o número de la	$d = \frac{n \cdot (n-3)}{2}$ dos do polígono. Para este polígono temos 5 lados, e substituindo na fórmula temos o número de diagonais que é 5. Mas
		E C B	nem sempre o número de lados é igual ao número de diagonais. As diagonais desde pentágono são as retas coloridas.

$S_i = (n-2) \cdot 180^{\circ}$	Soma de ângulos internos. Polígonos	Essa fórmula determina a soma dos ângulos internos de um polígono convexo, mas não necessariamente regular. $S_i = (n-2) \cdot 180^{\rm o}$	
î 1	Ângulo interno	Em polígonos regulares, como todos os ângulos são coincidentes, podemos calcular cada ângulo interno utilizando a formula da soma de ângulos internos (S_i) dividida pelo número de lados (n) do polígono. $ \hat{i} = \frac{S_i}{n} \Rightarrow \hat{i} = \frac{(n-2)\cdot 180^o}{n} $	
$\frac{AB}{BC} = \frac{DE}{EF}$	Teorema de Tales	Um feixe de retas paralelas (a, b, c) determina, sobre duas transversais quaisquer, que segmentos de uma $(\frac{AB}{BC})$ são proporcionais aos segmentos correspondentes da outra $(\frac{DE}{EF})$.	
∆ABC ~ ∆DEF	Semelhança de triângulos	O til (~) neste caso pode ser lido como "é semelhante" $ \begin{array}{c} $	

		Decorrência:	
		$\frac{A}{B}$ No Triângulo ABC, se \overline{PQ} // \overline{BC} , então $\Delta APQ \sim \Delta ABC$	
y = mx + n	Equação da reta ou Função do primeiro grau.	Ex: $y = 0.5x + 1$ m é o coeficiente angular, e intercepta o eixo das abscissas (Ox). n é o coeficiente linear e intercepta o eixo das ordenadas (Oy). $ \frac{x}{y = 0.5x + 1} - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 $	
ax + by + c = 0	Equação geral da reta	GEOMETRIA ANALITICA	
$y = \frac{-a}{b}x - \frac{c}{b}$	Equação reduzida da reta	GEOMETRIA ANALITICA	
^	E (lógico)	Ex: p: Cláudia tem um cachorro q: Cláudia tem um gato p ^q Cláudia tem um cachorro e um gato.	
\	Ou (lógico)	Ex: p: José gosta de jogar futebol q: José gosta de jogar tênis p ∨q José gosta de jogar futebol ou tênis.	
~ _e ¬	Negação, (Lógica)	Ex: p: Os alunos irão passear ~p: Os alunos não irão passear.	
∞	Infinito	O "oito deitado" representa o infinito. Este símbolo foi criado pelo matemático Inglês John Wallis (1616-1703) para representar a "aritmética Infinitorum".	

~	Proporcional à	à definir
$f:A \longrightarrow B$	Função de A em B	f = função : = de A = Conjunto de saída (Domínio) → = em B = Conjunto de chegada (Contra-domínio) Ou interpretasse com associação, "Se associa ao elemento". Exemplo de utilização em funções: f:R→R x→y y = a.x + b, a≠0 Lê-se: F de R em R, associa a cada x o elemento y igual à "a" vezes "x" mais "b" com "a" diferente de zero.
f(x)	Função de x	Consulte a teoria de Funções: Lê-se: "f" de "x" Exemplo: $f(x) = ax + b$ (Lê-se: "f" de "x" é igual a "ax" mais "b") Essa é uma função de primeiro grau, ou também chamada de função afim quando b for diferente de zero. Podendo variar entre f , f , F e não se restringindo à x, podendo ser y, z, t, e qualquer outra letra.
lim	Limite	Verificar tabela de limites no índice de Calculo Dif. E integral. Ex: $ \lim_{x \to 1} (2x + 1) = 3 $ Indica que 3 é o limite da função 2x+1 quando x tende a 1.
f'	Derivada	f' é a notação para a derivada de uma função, outras notações também são usadas freqüentemente: Se y é uma função de x $\left(y=f(x)\right)$, então a derivada de x é indicada por: $f'(x) = \frac{dy}{dx} = D_x y$ A definição: $f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$
ſ	Integral	Existem várias regras de integração. Exemplo de uma das regras: A integral do seno é "menos" o cosseno "mais" a constante $\int \operatorname{sen} x dx = -\cos x + c_a$