

GGC5039 / ESS419

Academic Communication

Section 3-2: Writing and Publishing (Figures and Tables)

Instructor: Dikun Yang

Term: Fall 2020-2021

Outline

- Section 1: Introduction (2 hr)
- Section 2: International communications (2 hr)
- Section 3: Writing and publishing (8 hr) Assignment 15%
- Section 4: **Presentations at conferences** (6 hr) Assignment 15%
- Section 5: Writing proposals and applications (6 hr) Assignment 15%
- Section 6: **Interviews** (4 hr) Assignment 15%
- Section 7: **New media** (2 hr) Assignment 15%
- Section 8: Integrated practice (2 hr) Final defense/participation 25%

Figures

Purposes

- Representation of abstract info
- Convey ideas quickly
- Support results and claims
- Attract attentions: Readers, funders, public

A good figure

- Clean: No clutter
- Contrast: Color, symbol, line style/thickness
- Straightforward: Protocols
- Legible: Font and size
- Visual aid: Ticks, labels, colors scale
- Caption: Informative

Color Map

Necessary?

Better Presentations?

Fooling?

Layout

Adjust the Default Font Size

What Are We Supposed to Look at?

If I Print B/W

Vision Obstacles

Wastey Completeness

Which One Are you Referring to?

Fig. 14. First calculation result and the spectrum of the corresponding RRNPC.

Mergeable Subplots

Concealed Geology

Unclear Map

Busy Lines

Compressed in PDF

Original

View in PDF

Unused Space

Strange Symbols

Figure 1. A sequential workflow

Figure 2. A probabilistic workflow

The Simple Model

Figure 3. The 1D model with two layers.

Orientation

Figure 9 the schematic of the receivers. (a) Calibrating all the receivers used in this survey (b) the

acquisition mode for the single receiver

Tables

Purposes

- Repeated measurements/data
- Large amount of (necessary) data
- Be precise (compare with figures)
- Easy comparison

A good table

- Horizontal rules
- Long, not wide
- Well identified variables
- Concise headings and captions

Table 4. Population variation in hatch success (mean percent) of unfertilized eggs for females from populations sampled in 1997. N = number of females tested.

Population	mean (%)	Standard deviation	Range	N	<column th="" title<=""></column>
Beaver Creek ^T	7.31	13.95	0-53.16	15	- discourance
Honey Creck T	4.33	7.83	0-25.47	11	
Rock Bridge Gans Creek T	5.66	13.93	0-77.86	38	
Cedar Creek P	6.56	9.64	0-46.52	64	
Grindstone Creek F	8.56	14.77	0-57.32	19	
Jacks Fork River P	5.28	8.28	0-30.96	28	<table body<="" td=""></table>
Meramec River P	5.49	10.25	0-45.76	45	(data)
Little Dixie Lake i.	7.96	14.54	0-67.66	71	
Little Prairie Lake ^L	6.86	7.84	0-32.40	36	
Rocky Forks Lake L	3.31	4.12	0-16.14	43	
Winegar Lake L	10.73	17.58	0-41.64	5	
Whetstone Lake 1.	7.36	12.93	0-63.38	57	. Lines demonstries
					<lines demarcating<="" td=""></lines>

^{1 =} temporary stream, P = permanent streams, L = lakes. < -- footnotes

the different parts of the table

Numerical Table

Table 1. Summary of three synthetic inversions using different numbers of soundings. All inversions are carried out on 3 nodes of computer cluster, with 6 Intel Xeon E5410 CPUs and 96GB RAM available.

Inversion	Number of transmitter	Sounding spacing (inline and crossline)	Number of β iterations	CPU time of factorization	CPU time of a forward modeling	Total CPU time of inversion
Synthetic I	$16 (4 \times 4)$	400 m, 400 m	4	0:04:15	0:03:50	4:50:06
Synthetic II	$49 (7 \times 7)$	200 m, 200 m	5	0:04:15	0:13:00	18:28:13
Synthetic III	91 (7 × 13)	100 m, 200 m	5	0:04:15	0:22:00	32:31:33

Non-numerical Table

Table 2. List of geophysical electromagnetic surveys at Lalor since 2000 (in chronological order).

System	Type	Source	Receiver	Year(s) of survey
PULSE EM	Surface time-domain	Large loops on surface	Small coils roaming on surface	2002, 2003, 2005
PULSE EM*	Surface-borehole time-domain	Large loops on surface	Small coils in boreholes	2007-2010
VTEM	Airborne time-domain	Small loop towed by helicopter	Small coil towed by helicopter	2007
ZTEM*	Airborne frequency-domain	Natural source	Small coil towed by helicopter with coils at the base station on surface	2009
DC resistivity and induced polarization (DCIP)	Surface time-domain	Grounded electrode arrays on surface	Grounded electrode arrays on surface	2009
Magnetotelluric (MT)	Surface frequency-domain	Natural source	Small coils and electrodes roaming on surface	2009
JESSY HTS SQUID*	Surface time-domain	Large loops on surface	Small SQUID magnetometers roaming on surface	2009
DigiAtlantis	Surface-borehole time-domain	Large loops on surface	Small fluxgate magnetometers in boreholes	2010
PULSE EM	Surface-borehole time-domain	Large loops on surface	Small fluxgate magnetometers in boreholes	2010
Extremely Low Frequency (ELF) EM	Surface frequency-domain	Natural source	Small coils roaming on surface	2010
Boliden EM3-2001	Surface frequency-domain	Large loop on surface	Small coils roaming on surface	2010
UTEM3	Surface time-domain	Large loops on surface	Small coils roaming on surface	2011
VTEMMAX	Airborne time-domain	Small loop towed by helicopter	Small coil towed by helicopter	2012
HELITEM*	Airborne time-domain	Small loop towed by helicopter	Small coil towed by helicopter	2012
Audio Magnetotelluric (AMT)	Surface frequency-domain	Natural source	Small coils and electrodes roaming on surface	2014
UTEM5	Surface time-domain	Large loops on surface	Small coils roaming on surface	2014
Volterra (EM)	Surface and surface-borehole time-domain		Small coils and fluxgate magnetometers roaming on surface and in boreholes	2014
Volterra (IP)	Surface time-domain	Grounded electrode arrays on surface	Grounded electrode arrays on surface	2014
HeliSAM	Surface-airborne time-domain		Total-field magnetometer towed by helicopter	2014

^{*}Datasets presented in this paper.

Table or Text?

Table 1 Computational costs of COMSOL and MoM for the model tested in this study

	Number of unknowns	Memory cost	CPU time
COMSO			
L	3041992	11 GB	606 s
MoM	345	3.2 MB	96 s

A Verbose Table

Table 6: Specifications of grids

	Grids	Parameters	
Type a	Number of cells (Nn×Ne×Nz)	37×39×28 = 40 404	
	Min/max cell size	25m, 50m	
Type b	Number of cells (Nn×Ne×Nz)	44×42×43 = 79 464	
	Min/max cell size	10m, 50m	
Туре с	Number of cells (Nn×Ne×Nz)	45×57×52 = 133 380	
	Min/max cell size	10m, 50m	

Caption Too Brief

f(Hz)	δ (m)	λ (m)
0.10	873.0	5484.9
0.15	712.8	4478.4
0.20	617.3	3878.4
0.25	552.1	3469.0
0.30	504.0	3166.7
0.35	466.6	2931.8
0.40	436.5	2742.5
0.45	411.5	2585.6
0.50	390.4	2452.9

Table 1. δ and λ in the seawater.

Arrangement of Columns

ρ_{\min}	ρ_{max}	ρ_{avg}	h _{min}	h _{max}	havg	\mathbf{h}_{true}	(QC-47)
4.0	4.5	4.2	1.0	1.1	1.0	1	Top soil
16.8	18.8	17.7	13	17.2	15.0	12	Marl
4.9	7.6	6.4	32.9	49.2	41.2	46	Marl to clayey marl
4.1	7.2	5.2	19.9	27.5	23.1	23	Bituminous marl (Oil shale)
6.3	7.9	6.9	21	28	24.5	33	Bituminous, phosphatic marl, cher
						65.3	(QC-46)
5.5	7.3	6.2	0.8	1.16	1.0	1	Top soil
18.6	20	19.5	16.7	30.1	22.6	24	Marl
10.9	13.1	12.1	35	56.2	46.4	50	Marl to clayey marl
4.6	7.0	5.4	18.5	29.3	23.8	23	Bituminous marl (Oil shale)
6.3	20	9.7	19.3	46.4	31.9	21	Bituminous, phosphatic marl, cher

Discussion – Bathymetry Data

- Water depth data at 100,000 locations in a lake were measured.
 What would be the best way of presenting them?
 - 1. In a study testing the consistency of the instruments
 - 2. In an exploration survey that requires topographical correction of data
 - 3. Investigation of lakebed sediments
 - 4. Correlation between water depth and heavy metal contamination

Assignment

- Make up some data in your assignment
- Choose to use figures or tables to serve your purpose