

# **Discrete Mathematics** MH1812

**Topic 7 - Set Theory Summary** 

UNIVERSITY SINGAPORE Example / elements of A

**Set** 
$$A = \{1,2,3\}$$
 and  $B = \{2\}$ .

#### Find:

- AUB = 
$$A = \xi_{1,2,3} = \xi_{1,2,2,3} = \xi_{1,3,2}$$

$$-A-B = \{2,3\}$$

$$-B-A = \{ \} = \emptyset \neq \{ \emptyset \}$$

- BXA = 
$$\{(2,1), (2,2), (2,3)\}$$
  $\neq A \times B$ 

Notes\_ - \$\delta \xi \xi \xi \\ \left(\phi \right) Ep3 like folder containing empty folds -\$ 18 a subset of every set; \$\psi A \text{ set } A \\
-\$ 18 an element of every power set \\
\$\psi \text{SEP(A)} \text{ \text{ Yset } A} - BEP(A) => BSA

**Prove the set identity**  $(A - B) \cap (C - B) = (A \cap C) - B$ .

PO NOT USE MCMBERSHIP TABLE FOR CARTESIAN FROM

| A             | B | $\subset$ | A - B      | C-B        | $(A-B) \wedge (C-B)$     | Anc        | (Anc)-B |
|---------------|---|-----------|------------|------------|--------------------------|------------|---------|
| l             | 1 | }         | 0          | $\Diamond$ | 10                       | )          | 0       |
| 1             |   | 0         | 0          | 0          |                          | 0          | 10      |
|               | 0 | 1         | 1          | 1          | / 1                      | 1          | 1       |
|               | 6 | O         | ١          | 0          | 0                        | 0          |         |
| ()            | ı |           |            | 0          | 0                        | 0          | 0       |
| $\bigcirc$    | ' | 0         | 0          | 0          | 0                        | 0          | 0       |
|               |   |           | $\bigcirc$ | 1          |                          | 0          | 0 /     |
| 0             | 0 |           |            | (          |                          | $\bigcirc$ |         |
| $\mathcal{O}$ | 6 | 0         | 0          | 0          | $\setminus \mathcal{O}/$ |            |         |
|               | - |           | _          |            |                          |            |         |

**Prove the set identity**  $(A - B) \cap (C - B) = (A \cap C) - B$ .

LHS: 
$$(A-B) \cap (C-B) = (A \cap B) \cap (C \cap B)$$
 set diff  
 $= A \cap (B \cap C) \cap B$  assoc.  
 $= A \cap (C \cap B) \cap B$  comm.  
 $= (A \cap C) \cap (B \cap B)$  assoc.  
 $= (A \cap C) \cap B$  idempotent  
 $= (A \cap C) \cap B$  set diff

MH1812: Discrete Mathematics

L HS

**Prove the set identity**  $(A - B) \cap (C - B) = (A \cap C) - B$ .

S=T (=> SCT & TES

=) xeA-B & xeC-B

=> xe(A-B)n(C-B) = LHS

**Show that**  $(A \times B) \cup (B \times C) \subseteq (A \cup B) \times (B \cup C)$ .

Tate 
$$x \in (A \times B) \cup (B \times C)$$
 $\Rightarrow x \in (A \times B) \text{ or } x \in B \times C$ 

First suppose  $x \in (A \times B)$ 
 $\Rightarrow x = (x_1, x_2) \text{ where } x_1 \in A \times x_2 \in B$ 
 $\Rightarrow x = (x_1, x_2) \text{ where } x_2 \in B \cup C$ 
 $\Rightarrow x \in (A \cup B) \times (B \cup C) = PHS$ 

Finally suppose  $x \in B \times C$ 

MH1812: Discrete Mathematics

=) 
$$x = (x, x_2)$$
 where  $x \in \mathbb{R}$  &  $x_2 \in \mathbb{C}$   
=)  $x \in AUB$  &  $x_2 \in BUC$   
 $\therefore x \in (AUB) \times (BUC) = PHS$