Exercice 1.

- **1.** On pose $C = \{(x, y) \in \mathbb{R}^2 ; x + y = 1, x \ge 0, y \ge 0\}.$
 - a) Dessiner C dans le plan \mathbb{R}^2 .
 - **b)** Montrer que si $(x,y) \in C$, alors $1 2\sqrt{xy} \ge 0$.
 - c) En déduire que pour tout $(x,y) \in \mathbb{R}^2, x \ge 0, y \ge 0$:

$$\sqrt{xy} \leqslant \frac{x+y}{2}$$
.

On cherche à généraliser l'expression précédente pour trois réels positifs x, y, z.

2. Soit $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x,y,z) = xyz. On cherche à maximiser f sous la contrainte

$$C = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 1, x \ge 0, y \ge 0, z \ge 0\}.$$

- a) Pourquoi le maximum de f est-il atteint pour $x \neq 0, y \neq 0, z \neq 0$?
- **b)** Écrire le lagrangien $L(x, y, z, \lambda)$ associé au problème sous contrainte où $\lambda \in \mathbb{R}$ est un multiplicateur de Lagrange.
 - c) Calculer le gradient de L.
 - d) Déterminer les conditions du premier ordre.
 - e) En déduire que le maximum de f sous la contrainte C est atteint pour x = y = z.
 - f) Quelle est la valeur de ce maximum?
- 3. Soit maintenant x, y, z trois réels positifs. Montrer que

$$\sqrt[3]{xyz} \leqslant \frac{x+y+z}{3}.$$