Ve203 Discrete Mathematics (Spring 2022)

Assignment 7

Exercise 7.1

Consider the functions $f: B \to U$, count the number of functions and fill in the blanks below. Express the results in binomial coefficients, factorials, or powers (**AVOID** double bracket notation).

Elements of Domain	Elements of Codomain	Any f	Injective f	Surjective f
distinguishable	distinguishable			
indistinguishable	distinguishable			

where

1.
$$B = \{1, 2, 3\}$$
 and $U = \{1, 2, 3, 4, 5\}$.

2.
$$B = \{1, 2, 3, 4, 5\}$$
 and $U = \{1, 2, 3\}$.

Exercise 7.2

Derive the following formula for the Euler's totient function φ

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

by applying the inclusion-exclusion principle to the set $\{1, 2, \dots, n\}$.

Exercise 7.3

Consider

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \le 100$$

What are the number of integer solutions if

(i)
$$x_i > 0$$
 and = holds;

(ii)
$$x_i \ge 0$$
 and = holds;

(iii)
$$x_i > 0$$
 and $<$ holds;

(iv)
$$x_i \ge 0$$
 and $<$ holds;

(v)
$$x_i \geq 0$$
.

AVOID double bracket notation in the final solution.

Exercise 7.4

Find the Θ bound of T(n) for the following recurrence relation.

(i)
$$T(n) = 4T(n/4) + 5n$$
.

(ii)
$$T(n) = 4T(n/5) + 5n$$
.

(iii)
$$T(n) = 5T(n/4) + 4n$$
.

(iv)
$$T(n) = 4T(\sqrt{n}) + \log^5 n$$

(v)
$$T(n) = 4T(\sqrt{n}) + \log^2 n$$

Exercise 7.5

The purpose of this problem is to prove that the number of spanning trees of the complete graph K_n , $n \ge 2$, is n^{n-2} , a formula due to Cayley (1889).

(i) Let $T(n; d_1, \ldots, d_n)$ be the number of trees with $n \geq 2$ vertices v_1, \ldots, v_n , and degrees $d(v_1) = d_1$, $d(v_2) = d_2$, \ldots , $d(v_n) = d_n$, with $d_i \geq 1$. Show that

$$T(n; d_1, \dots, d_n) = \binom{n-2}{d_1 - 1, d_2 - 1, \dots, d_n - 1}$$

(ii) Show that d_1, \ldots, d_n , with $d_i \geq 1$, are degrees of a tree with n vertices iff

$$\sum_{i=1}^{n} d_i = 2(n-1)$$

(iii) Use (i) and (ii) prove that the number of spanning trees of K_n is n^{n-2} .

¹For hints, see Gallier, p. 254