

Diseño, validación e implementación de una arquitectura RISC

por

Luciano César Natañe

Tesis presentada para optar al Título de

Ingeniero Electrónico

por la

Facultad de Ingeniería de la Universidad de Buenos Aires

Ing. Nicolás Alvarez	
Co-Director:	
Ing. Octavio Alpago Miembros del Jurado:	
Ing. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX
Ing. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX
Ing. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX
Colificación.	

Universidad de Buenos Aires, Facultad de Ingeniería

Diseño, valdiación e implementación de una arquitectura RISC

por

Luciano César Natale

Resúmen

El presente trabajo constituye la Tesis de Grado necesaria para obtener el título de Ingeniero Electrónico de la Facultad de Ingeniería de la Universidad de Buenos Aires.

El objetivo de este trabajo es el diseño, la validación y la implementación de una arquitectura RISC con el objetivo de generar un núcleo de procesamiento, sintetizable en FPGA, altamente configurable y suficientemente flexible y sencillo para ser utilizado en distintas aplicaciones dentro del ámbito de la investigación en los Laboratorios de Microelectrónica y de Sistemas Embebidos. Se presenta la teoría e historia necesaria para poder explicar las decisiones de diseño adoptadas en el desarrollo de la arquitectura. Se presentan vectores de prueba para las validaciones posteriores. Se verifica el diseño generado mediante emuladores. Se implementa el diseño en un lenguaje de descripción de hardware. Se sintetiza en FPGA el diseño y se contrastan los resultados con las emulaciones realizadas. Finalmente se analizan los resultados obtenidos, se contrastan los mismos contra trabajos similares, y se proponen trabajos futuros.

Agradecimientos

Agradecimientos Lucho.

Índice

1.	Intr	oducci	ón al trabajo de tesis	1
	1.1.	Objetiv	vo	2
	1.2.	Alcance	e	3
	1.3.	Organi	zación del trabajo	4
2.	Mar	co teói	rio: arquitectura de procesadores	5
	2.1.	Perspec	ctiva histórica	6
		2.1.1.	La revolución digital	7
		2.1.2.	Silicio, dispositivos semiconductores y transistores	8
		2.1.3.	Circuitos integrados y tencología CMOS	9
		914	Migraprogagadoros	10

Índice de Tablas

Índice de Figuras

2.1.	Esquema simplificado de un "sistema de procesamiento"	6
2.2.	Primer transistor desarrollado por John Bardeen y Walter Brattain bajo la dirección de William Shockley en los Laboratorios Bell de AT&T en el año 1947	ξ
2.3.	Primer circuito integrado presentado por Texas Instruments, Inc. el 12 de Septiembre de 1958	10

Capítulo 1

Introducción al trabajo de tesis

El presente trabajo se encuentra enfocado en el contexto del diseño de hardware digital. El mismo fue motivado por la necesidad de contar un con núcleo de procesamiento altamente configurable y suficientemente flexible y sencillo para distintas aplicaciones dentro del ámbito de la investigación en los Laboratorios de Microelectrónica y de Sistemas Embebidos; sintetizable en ¹. La arquitectura a desarrollar será del tipo RISC².

Desde la aparición de los microprocesadores a mediados de los años 70, la tendencia fue el aumento de la complejidad de las arquitecturas, generando un efecto de "bola de nieve", al ir superponiendo capas sobre un núcleo central. Existió, entonces, una reacción adversa a esta tendencia. Por ejemplo, la arquitectura experimental de IBM 801; y también en Berkeley, Patterson y Ditzel fueron los primeros en acuñar el término RISC, para descibir una nueva clase de arquitectura que deshacía el camino del resto de las arquitecturas hasta el momento, conocidas, en contraposición, como CISC³. A partir de este antecedente, los principales fabricantes de microprocesadores han lanzado al mercado sus propias implementaciones basadas en los principios establecidos en IBM y Berkeley.

El concepto de las arquitecturas RISC se basa, principalmente, en el hecho de que al simplificar la lógica necesaria para la ejecución de una instrucción permite aumentar la frecuencia de operación de las compuertas que componen la lógica. Además, es posible dividir la ejecución de las instrucciones en etapas sencillas y consecutivas, permitiendo de esta manera implementar fácilmente optimizaciones como, por ejemplo, una arquitec-

 $^{^{1}}$ $Field\ Programmable\ Gate\ Array:$ dispositivo electrónico de compuertas lógicas reprogramables en campo

² Reduced Instruction Set Computer. Técnica de diseño de unidades de procesamiento basada en el hecho de que un conjunto de instrucciones simple provee una mayor performance al ser combinado con una arquitectura capaz de ejecutar dichas instrucciones en algunos pocos ciclos de máquina.

³ Complex Instruction Set Computer. Técnica de diseño de unidades de procesamiento basadas en el hecho de que el conjunto de instrucciones debe ser lo más poderoso posible.

2 1.1. OBJETIVO

tura de pipeline⁴. Es por esto que el conjunto de instrucciones es sencillo, permitiendo solamente operaciones básicas entre registros internos del microprocesador. El trabajo realizado por cada instrucción, en general, es menor que el generado por una instrucción CISC, pero se hace de manera sencilla y rápida. Es importante notar que no solamente la ganancia radica en poder aumentar la frecuencia de operación de la lógica, sino que estas condiciones facilitan el desarrollo de diseños de bajo consumo, característica muy valorada en el nicho de los sistemas embebidos.

El mercado de los sistemas embebidos es excesivamente amplio y está inserto en todas las industrias. En un automóvil, por ejemplo, podemos encontrar microprocesadores en el sistema de frenos, en la central de inyección electrónica, en el sistema de entretenimiento y navegación, etc. La otra arista de vital importancia para el mercado de los sistemas embebidos, es el de los dispositivos móviles, donde se vuelve vital el requerimiento de bajo consumo. Estamos viviendo la revolución de IoT⁵, que se trata básicamente de sistemas embebidos autónomos que estan conectados a "la nube" y pueden ser monitoreados y controlados remotamente a través de *Internet*.

Dentro del universo de las arquitecturas RISC, actualmente se destacan dos: MIPS y ARM. La primera, fue desarrollada por un grupo de investigadores de la Universidad de Stanford (entre ellos John L. Hennessy, pionero del concepto RISC junto a David Patterson, coautores de la bibliografía más relevante del área). Esta arquitectura, por su sencillez, es la predilecta al momento del desarrollo de cursos enfocados en la enseñanza de arquitectura de computadoras. Si bien MIPS posee gran relevancia académica, es muy popular en el mercado de los microprocesadores en sistemas embebidos como equipos de telecomunicaciones, decodificadores de TV digital, y consolas de entretenimiento, con ejemplos muy conocidos como Nintendo y PlaySation. ARM, por otro lado, ha ganado una importante porción del mercado de los sistemas embebidos (con un gran aporte de los dispositivos móviles), basando su modelo de negocios en la venta de la propiedad intelectual (IP, intellectual property) del diseño de los microprocesadores a las empresas que finalmente producen el microprocesador.

1.1. Objetivo

La Tesis tiene como objetivo principal el diseño, la validación e implementación de una arquitectura RISC y su conjunto de instrucciones.

El enfoque de la tesis se basará en un desarrollo teórico del conjunto de instrucciones y de las características de la arquitectura; y en el desarrollo práctico del emulador y la implementación en lenguaje descriptor de hardware.

El concepto central detrás del desarollo será el de **ortogonalidad**. Esto implica, por una

⁴ Técnica de diseño de arquitecturas de computadoras en la que se segmenta la ejecución de las instrucciones en múltiples etapas, permitiendo que múltiples instrucciones estén ejecutándose en paralelo.

⁵ Es un concepto que se refiere a la interconexión digital de objetos cotidianos con internet.

parte, que los bloques constructivos de la arquitectura que se repiten sean independientes e indiferenciables entre sí. Por otra parte, los formatos de las instrucciones, en la medida de lo posible, se diseñaran de manera tal que se pueda mantener el mismo ancho de campo para los datos inmediatos y los desplazamientos (excepto en los casos donde es explícitamente conveniente agrandarlos sin penalizar la complejidad del diseño).

El objetivo perseguido va a ser el de mantener la sencillez y la ortogonalidad, favoreciendo así la simplificación de la implementación. Se trabajará en el desarrollo de la definición de la arquitectura y su conjunto de instrucciones en favor de este objetivo. Se definirá la interfaz física para la conectividad con periféricos, los tipos de datos que maneja la arquitectura, la cantidad y tipos de registros internos, el acceso a memoria de programa y de datos con su organización y modo de direccionamiento, la interfaz con la ALU⁶ y la FPU⁷, mecanismos de manejos de excepeciones e interrupciones, modos de operación y manejo de periféricos. Luego se definirá el conjunto de instrucciones que ejecutará la arquitectura.

Una vez definida la arquitectura y su conjunto de instrucciones, se prodecerá a diseñar los vectores de prueba para poder validar las implementaciones. Se desarrollará un emulador de la arquitectura que deberá validar los vectores de prueba diseñados. Una vez concluida esta etapa, se implementará a nivel RTL el diseño en *Verilog*. Este diseño será validado mediante simulaciones y utilizando dispositivos programables. Se validará también contra los vectores de prueba. Se analizarán los recursos utilizados en dispositivos FPGA. Se realizará un análisis comparativo entre la arquitectura desarrollada y otras arquitecturas RISC.

1.2. Alcance

Como resultados a obtener de la tesis se tienen los siguientes:

- Especificación completa de la arquitectura
- Vectores de prueba
- Emulador de la arquitectura
- IP Core codificado en el lenguaje Verilog de la arquitectura completa
- \blacksquare Resultado de los vectores de prueba tanto en el emulador como en el IP Core
- Análisis comparativo entre la arquitectura desarrollada y otras arquitecturas RISC
- Proposición de trabajos futuros y/o mejoras.

 $^{^6}$ $Arithmetic \ Logic \ Unit.$ Bloque constructivo encargado de realizar las operaciones aritmético lógicas sobre los datos.

⁷ Floating Point Unit. Bloque constructivo encargado de realizar las operaciones en punto flotante sobre los datos.

1.3. Organización del trabajo

En esta sección se describe la organización de la presente tesis. Con el objetivo de que la misma sea autocontenida, los primeros capítulos se ocupan de presentar las bases o conocimientos necesarios para comprender la totalidad del trabajo.

El desarrollo de la tesis se organiza de la siguiente forma:

- En el capítulo 2 se presentará la teoría general de las arquitecturas de procesadores y una revisión histórica sobre el tema. Se estudiará la diferenciación entre los universos de procesadores CISC y RISC y se justificará la elección de diseñar una arquitectura RISC para la tesis. Se presentarán las técnicas de diseño de arquitecturas estudiadas. Además se presentarán reseñas de otras arquitecturas actuales y sus decisiones de diseño, para luego contrastarlas con los objetivos perseguidos por el presente trabajo.
- En el capítulo 3 se presentará la especificación completa de la arquitectura diseñada, explicitando los criterios y las decisiones de diseño tomadas. Además se presentará el diseño de los vectores de prueba que se utilizarán para validar las implementaciones de la arquitectura.
- En el capítulo 4 se desarrollarán las implementaciones del emulador de la arquitectura y del *IP Core* en RTL. Dicho RTL cumplirá con ciertas condiciones de portabilidad y legibilidad del código, para que el mismo sea efectivamente un IP core. Se evaluará y validará el *IP Core* utilizando simuladores. Se explicitarán las decisiones de diseño necesarias para pasar de la abstracción del diseño a la implementación real.
- En el caítulo 5 se validarán las implementaciones del capítulo 4 mediante los vectores de prueba diseñados para el capítulo 3. El *IP Core* será sintetizado para distintos dispositivos FPGA. Se analizará en cada caso el consumo de recursos utilizados, máxima frecuencia de operación y la potencia consumida
- En el capítulo 6 se extraerán las conclusiones pertinentes sobre los resultados obtenidos y se propondrán futuras mejoras de la arquitecturas a partir del análisis realizado.

Capítulo 2

Marco teório: arquitectura de procesadores

En líneas generales un procesador es un sistema que permite, por un lado ingresar instrucciones y datos obteniendo en consecuencia los resultados de operar lo indicado en las instrucciones sobre los datos. No es necesario para tal fin, definir ninguna tecnología que soporte este comportamiento; se trata más bien de un desarrollo teórico. Dicho desarrollo implica distinguir las distintas partes que lo componen. En un primera aproximación, en un sistema de procesamiento podemos distinguir cuatro componentes:

- Datos de entrada
- Instrucciones
- Unidad de procesamiento
- Datos de salida

Estos componentes se relacionan de la forma mostrada en la figura 2.1. Debe notarse que los datos de entrada y las instrucciones ingresan a la unidad de procesamiento, la cual genera datos de salida como resultado de operar las instrucciones sobre los datos de entrada.

Los datos de entrada representan el dominio sobre el cual puede operar la unidad de procesamiento. Para definir un sistema de procesamiento debemos especificar, entonces, cuál es el dominio que puede manejar. Dicha definición deberá especificar el formato y cantidad de datos que acepta la unidad de procesamiento, así como los mecanismos para ingresarlos al sistema.

Las instrucciones definirán las operaciones que la unidad de procesamiento puede realizar sobre los datos de entrada. Por lo tanto, para definir un sistema de procesamiento, debemos definir qué operaciones será capaz de realizar sobre el dominio de entrada del

Figura 2.1: Esquema simplificado de un "sistema de procesamiento"

mismo. A su vez, se debe definir la salida esperada de las instrucciones; es por eso que al definir las instrucciones estamos definiendo intrínsecamente el dominio de salida del sistema. Es importante notar que la información sobre las instrucciones también representa una entrada para el sistema, es por eso que, como en el caso de los datos de entrada, se deberá especificar formato y cantidad que acepta la unidad de procesamiento, así como los mecanismos para ingresarlas.

Los datos de salida representan el dominio sobre el cuál las instrucciones vuelcan el resultado de las operaciones realizadas sobre los datos de entrada. El dominio de salida, como fue notado antes, queda definido al definir las instrucciones, pero debe definirse el formato y cantidad de los mismos, así como los mecanismos necesarios para extraerlos del sistema.

En este contexto la unidad de procesamiento es la encargada de recibir las instrucciones y datos, ejecutar las operaciones para finalmente presentar los resultados.

2.1. Perspectiva histórica

Desde épocas remotas, el hombre se ha destacado en el mundo animal por su capacidad de modificar su entorno para resolver problemas recurrentes. Es esta capacidad la fortaleza de la especie en la naturaleza. La película "2001: Odisea del esapcio" narra, desde un enfoque particular, parte de la evolución del ser humano, o al menos la interpretación de los autores sobre la misma. En la misma, ubicándose temporalmente varios millones de años atrás, un clan de cavernícolas prehumanos intentan sobrevivir en condiciones extremas. Comen los pocos hierbajos que pueden encontrar en el desolado paisaje, hierbajos que para colmo han de compartir con una manada de tapires que habita la misma zona. La única fuente de agua del clan —un simple charco— les es arrebatada por un

 $^{^12001\}colon \mathrm{Odisea}$ en el espacio es un film del año 1968 dirigida por Stanley Kubrick basada en la novela de Arthur C. Clarke.

clan rival. Por si fuera poco, este desdichado clan vive permanentemente amenazado por un leopardo que domina la región y que de vez en cuando caza a alguno de sus miembros. En resumen: este grupo de homínidos padece hambre, frío y miedo, y parecen condenados a una segura extinción. En ese contexto, y por motivos que no vienen al caso, aparece uno de los cavernícolas contemplando el esqueleto de un animal. Parece reflexionar sobre lo que tiene delante, como si estuviese viéndolo desde una nueva perspectiva. Hay algo nuevo en aquellos huesos. Algo que hasta entonces ni él ni ninguno de sus congéneres habían visto. Los huesos que hay tirados por el suelo pueden ser usados. El cavernícola toma el más robusto de los huesos y empieza a golpear el esqueleto; primero con precaución, más tarde con fuerza, hasta que termina consumido por un frenesí violento. Este cavernícola acaba de descubrir el primer arma —la primera herramienta— de la historia. O dicho de otro modo, acaba de aparecer el primer ser humano sobre la faz de la tierra. Gracias al uso del hueso —o de herramientas similares como palos o piedras— el clan que estaba a punto de extinguirse descubre que puede cazar a los tapires con los que convive y comérselos. Así que sus problemas de hambre han terminado. También gracias a sus armas pueden atacar al clan rival y recuperar el charco de agua, lo que soluciona también sus problemas de sed. Y deducimos que serán capaces incluso de defenderse del peligroso leopardo. Los miembros del clan ya no son prehumanos indefensos; ahora son humanos armados.

Esta cita cinematográfica pretende graficar la diferenciación del ser humano en la cadena alimenticia. Gracias al poder de la observación y el razonamiento hemos sido capaces de modificar nuestro entorno para asegurar la supervivencia de la especie en un mundo en el que la misma se encontraba en clara desventaja. En este contexto, el ser humano ha sido capaz de generar un desarollo tecnológico, que hoy en día es vertiginoso.

2.1.1. La revolución digital

La revolución digital es considerada la tercera revolución industrial. Sus comienzos se remontan a fines de los años 50. La adopción y proliferación de las computadoras digitales y el mantenimiento de registros digitales de información son las características que la definen. De manera implícita, esta revolución está relacionada con los cambios radicales provocados por la computación y las tecnologías de telecomunicaciones. Esta revolución dió orígen a lo que hoy conocemos como la "era de la información". En el corazón de este proceso encontramos dos componentes tecnológicas. Por un lado está la teoría, que puede remontarse a los primeros análisis matemáticos de la lógica, como el álgebra de Boole introducida por primera vez en un pequeño folleto publicado en 1847 bajo el nombre The Mathematical Analisis of Logic y la posterior publicación del libro An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, publicado en 1854. En estas publicaciónes George Boole² pretendió utilizar técnicas algebraicas para tratar expresiones de la lógica proposicional. En la actualidad,

²Nota sobre George Boole

el álgebra de Boole se aplica de forma generalizada en el ámbito del diseño electrónico. Claude Shannon³ fué el primero en aplicarla en el diseño de circuitos de conmutación eléctrica biestables, en 1948. Por el otro lado, se encuentra la revolución del silicio y la producción en masa y uso generalizado de circuitos lógicos digitales que permitieron el desarrollo en gran escala de circuitos electrónicos que implementan funciones lógicas basados en los desarrollos de Boole. Aproximadamente cien años pasaron desde que Boole publicó su teoría, hasta que la tecnología encontró el camino para implementar esos conocimientos de forma práctica y útil. La invención del transistor data del año 1947. En la figura 2.2 se muestra una imágen de una réplica de este primer transistor de la historia. Este invento fué el que permitió la creación de equipos digitales avanzados. En el contexto de la lógica digital, los transistores son utilizados como llaves de conmutación que permiten o no el paso de una señal eléctrica al ser excitados por otra señal. Previo a los transistores, la lógica era implementada con componentes electromecánicos y válvulas termoiónicas de vacío; tecnologías que por su naturaleza eran de dimensiones y consumos energéticos elevados y poco fiables. Para poner esta problemática en perspectiva, comparamos la primer computadora de propósito general electrónica, llamada ENIAC⁴ implementada con 18000 válvulas, con un consumo de 160 kW, capaz de realizar 5000 sumas/s, 385 multiplicaciones/s, con 5 millones de soldaduras y un peso de 30 Tn, contra un procesador Intel Core I7 que permite 177000 MIPS con un consumo de aproximadamente 100 W, es decir, 35 millones de veces más rápido. Para hacer la misma cantidad de sumas por segundo se requerirían 5 GW con la ENIAC; considerar que la capacidad actual instalada en argentina es de 30 GW.

2.1.2. Silicio, dispositivos semiconductores y transistores

Los semiconductores son materiales, que como bien indica su nombre, no son del todo conductores. En ellos, la capacidad de conducir una corriente eléctrica puede ser manipulada de diversas maneras. En 1931 Wolfgang Pauli -quien en 1945 fue premiado con el Nobel de Física- enunció: "Uno no debería trabajar en semiconductores, eso es un lío deleznable, quién sabe si realmente existen". Nada más alejado de la realidad que hoy nos rodea. Los materiales semiconductores permitieron la creación de los transistores y posteriormente los circuitos integrados, dispositivos que iniciaron la revolución digital. Los primeros dispositivos fueron fabricados sobre germanio y arsenurio de galio. Incluso, el primer circuito integrado, fue realizado en germanio. Pero fue el silicio el material que realmente revolucionó la industria, por su alta disponibilidad en la naturaleza y relativa fácil manipulación para la fabricación de dispositivos semiconductores en circuitos integrados. Puede afirmarse que el silicio es uno de los materiales mejor conocidos por el ser humano. Hace más de 50 años que se lo estudia en detalle para mejorar la tecnología, logrando importantes avances. También puede afirmarse que el los transistores hoy en día es el bien más abundante en el mundo. Una comparativa del año 2012 muestra que

³Nota sobre Claude Shannon

⁴Descripción de la ENIAC

Figura 2.2: Primer transistor desarrollado por John Bardeen y Walter Brattain bajo la dirección de William Shockley en los Laboratorios Bell de AT&T en el año 1947

durante año se produjeron en el órden de 10^{17} granos de arroz en la tierra, mientras que en el mismo período en se produjeron en el órden de 10^{19} transistores, según declaraciones de la *Semiconductor Industry Asociation* de los Estados Unidos de América. La clave de semejante número en la producción son los circuitos integrados.

2.1.3. Circuitos integrados y tencología CMOS

En la figura 2.3 puede verse el primer circuito integrado de la historia. Medía aproximadamente media pultada de ancho e implementaba dos transistores montados en una barra de germanio. La evolución de las técnicas de fabricación permitieron integrar en un mismo *chip* de silicio más de un dispositivo, permitiendo implementar circuitos relativamente complejos en una pequeña área de silicio, disminuyendo así los riesgos de fallas por interconexión entre dispositivos. A su vez, las técnicas de fabricación evolucionaron permitiendo escalar el tamaño de los dispositivos fabricados incrementando la cuenta de dispositivos integrados por unidad de área. Como consecuencia buscada de disminuir el tamaño de los dispositivos, se logró aumentar la velocidad máxima de conmutación que los mismos pueden lograr, redundando en generar lógica cada vez más compleja y rápida en un mismo *chip*. En simultáneo con estos avances se comenzaron a fabricar transistores MOS⁵, transistores de efecto de campo eléctrico, que como gran ventaja sobre los "antiguos" transistores de juntura, evitaban la disipación de potencia al mantenerse en un

 $^{^5}$ Transistor Metal-Oxido-Semiconductor: Nota

Figura 2.3: Primer circuito integrado presentado por Texas Instruments, Inc. el 12 de Septiembre de 1958

estado definido (encendido o apagado), es decir que sólo disipaban potencia al cambiar de estado. Es así que en el año 1978 aparece la tecnología CMOS⁶ la cual permitió elevar el nivel de integración en forma masiva, manteniendo bajos niveles de disipación de potencia. Debido a la relativa sencillez geométrica del diseño de los transistores MOS, se pueden reutilizar diseños escalándolos para las nuevas generaciones de tecnología. El 19 de abril de 1965 Gordon E. Moore⁷, cofundador de Intel⁸, estableció de forma empírica que la cantidad de dispositivos integrados en un circuito integrado se duplicaría cada año. Más tarde, en 1975, modificó su propia ley al corroborar que el ritmo bajaría, y que la capacidad de integración no se duplicaría cada 12 meses sino cada 24 meses aproximadamente. Esta progresión de crecimiento exponencial, duplicar la capacidad de los circuitos integrados cada dos años, es lo que se denomina ley de Moore. Sin embargo, en 2007 el propio Moore determinó una fecha de caducidad: "Mi ley dejará de cumplirse dentro de 10 o 15 años", no obstante también aseveró que una nueva tecnología vendrá a suplir a la actual. El cumplimiento se ha podido constatar hasta hoy.

La ley de Moore, no es una ley en el sentido científico, sino más bien una observación del ritmo de avance de la industria de aquellos momentos. Al momento de publicar esas declaraciones, Moore trabajaba en los Laboratorios de Fairchild Semiconductor, donde trabajaba junto a Robert Noyce. Ellos fueron los fundadores de Intel en 1968. El ritmo de crecimiento de la insdustria de los Semiconductores dió lugar así, entre otras cosas, a la creación de los microprocesadores.

2.1.4. Microprocesadores

 $^{^6\}mathrm{CMOS}$: Nota. Complementariedad. Sólo utiliza MOSFET-N y MOSFET-P para implementar cualquier función

⁷Nota sobre Gordon E. Moore

 $^{^8 {}m Nota}$ sobre Intel

Luciano César Natale