RP Optomechanics theory questions

Marijn van Dam and Stan de Haas* Applied Physics, Delft University of Technology (Dated: October 25, 2024)

I. THEORY QUESTIONS

A. II.A1

 $\delta = \frac{4\pi}{\lambda} n' L \cos \theta'$ with n' = 1 and $\theta' = 0$ gives $\delta = \frac{4\pi L}{\lambda}$. To have constructive interference we must have $\delta = 2\pi m$ where $m \in \mathbb{N}$. This gives $L = \frac{m\lambda}{2}$. For destructive interference we must have $\delta = \pi(2m+1)$ where $m \in \mathbb{N}$. This gives $L = \frac{(2m+1)\lambda}{4}$

B. II.B1

Substituting $Z(x,t)=u(x)e^{i\omega t}$ In the Differential equation gives $EI_z\frac{\partial^4\left(u(x)e^{i\omega t}\right)}{\partial x^4}+\rho A\frac{\partial^2\left(u(x)e^{i\omega t}\right)}{\partial t^2}=0$. Calculating the derivatives gives $EI_zu(x)^{\prime\prime\prime\prime}e^{i\omega t}-\rho A\omega^2u(x)e^{i\omega t}=0$. Rearranging and dividing by $e^{i\omega t}$ gives $u^{\prime\prime\prime\prime}-\frac{\rho A\omega^2}{EI_z}u=0$. So from this it follows that $k=\sqrt[4]{\frac{\rho A\omega^2}{EI_z}}$. This gives $\omega=\sqrt{\frac{k^4EI_z}{\rho A}}$.

C. II.B2

Since there are 4 unknown parameters there must be (at least) 4 boundary conditions (BCs). At the fixed end (x = 0) we have u(0) = 0 (1) and u'(0) = 0 (2) and at the free end (x = L) we have u''(L) = 0 (3) and u'''(L) = 0 (4), as given by the question. In order to solve this we need the derivatives of the general solution for u(x). Solving this gives:

$$u(x) = a_1 \cosh(kx) + a_2 \sinh(kx) + a_3 \cos(kx) + a_4 \sin(kx)$$

$$u'(x) = a_1 k \sinh(kx) + a_2 k \cosh(kx) - a_3 k \sin(kx) + a_4 k \cos(kx)$$

$$u''(x) = a_1 k^2 \cosh(kx) + a_2 k^2 \sinh(kx) - a_3 k^2 \cos(kx) - a_4 k^2 \sin(kx)$$

$$u'''(x) = a_1 k^3 \sinh(kx) + a_2 k^3 \cosh(kx) + a_3 k^3 \sin(kx) - a_4 k^3 \cos(kx)$$

BC 1 gives that $a_1 + a_3 = 0$ and BC 2 gives that $a_2 + a_4 = 0$. BC 3 together with $a_1 = -a_3$ and $a_2 = -a_4$ gives that $a_3 (\cosh(kL) + \cos(kL)) + a_4 (\sinh(kL) + \sin(kL)) = 0$.

BC 4 together with $a_1 = -a_3$ and $a_2 = -a_4$ gives that $a_3 \left(\sinh(kL) - \sin(kL) \right) + a_4 \left(\cosh(kL) + \cos(kL) \right) = 0$ Since we do not want to the find the trivial solutions the determinant of the following matrix must be zero:

$$\begin{bmatrix} \cosh(kL) + \cos(kL) & \sinh(kL) + \sin(kL) \\ \sinh(kL) - \sin(kL) & \cosh(kL) + \cos(kL) \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}$$

Calculating the determinant we find $\cosh^2(kL) + \cos^2(kL) + 2\cosh(kL)\cos(kL) - \sinh^2(kL) + \sin^2(kL)$. Using the identity $\sin^2(x) + \cos^2(x) = 1$ and $\cosh^2(x) - \sinh^2(x) = 1$ we find that $1 + \cosh(kL)\cos(kL) = 0$ so for $\alpha_n = k_n L = kL$ we see that $1 + \cosh(\alpha_n)\cos(\alpha_n) = 0$ is valid for arbitrary numbers of L.

D. II.B3

Numerically we can solve the equation $1 + \cosh(\alpha_n) \cos(\alpha_n) = 0$ using the following code:

```
import numpy as np
from scipy.optimize import brentq
def f(alpha):
    return np.cos(alpha) * np.cosh(alpha) + 1
def roots(f):
    roots = []
    alpha_range = np. linspace (0, 30, 1000)
    # since there are multiple roots we can't
    # use brentq immidiatelly but must split it
    # in for example multiple intervals, and
    # check if these contain a 0
    for i in range (len (alpha_range) -1):
        alpha0 = alpha_range[i]
        alpha1 = alpha\_range[i+1]
        # just to chech if it went through the
        # zero-line
        if f(alpha0)*f(alpha1) < 0:
            root = brentq(f, alpha0, alpha1)
            roots.append(root)
    return roots
```

 $alpha_roots = roots(f)$

print(alpha_roots)

^{*} m.j.vandam@student.tudelft.nl s.s.f.dehaas@student.tudelft.nl

this gives use the following results for α_0 within the range [0,30]:

$$\begin{bmatrix} 1.875 \,,\; 4.694 \,,\; 7.855 \,,\; 10.996 \,,\; 14.137 \,,\\ 17.279 \,,\; 20.420 \,,\; 23.562 \,,\; 26.706 \,,\; 29.845 \end{bmatrix}$$

E. II.B4

The moment of inertia I_z is $I_z = \int_A Rz^2 dA = \int_0^w R \, dy \int_{-h/2}^{h/2} z^2 \, dz = [y]_0^\omega [z^2/3]_{-h/2}^{h/2} = \frac{wh^3}{12}$

F. II.B5

Using $\omega=2\pi f$ and $A=wh,\ k=k_n/L,\ I_z=\frac{wh^3}{12}$ and the formula found in IB, we find that $f=\frac{\omega}{2\pi}=\sqrt{\frac{k^4EI_z}{4\pi^2\rho A}}=\sqrt{\frac{k_n^4Ewh^3}{4\pi^2\cdot 12L^4\rho wh}}=\frac{k_n^2}{2\pi}\sqrt{\frac{Eh^3}{12\rho L^4}}$

G. II.B6

Using the following code the first 5 resonance frequencies of the cantilever are calculated. Here the α_0 from

ID are used and its assumed that $E = 300 \cdot 10^9 \ Pa$ and $rho = 3170 \ kg/m^3$.

 $\begin{array}{ll} frequencies = frequency (np.array (alpha_roots), E, rho, L, h) \\ print (frequencies) \end{array}$

From this code it follows that the first 5 resonance frequencies are:

[125719, 787868, 2206054, 4322984, 7146203]