第6章 计算机的运算方法

- * 6.1 无符号数和有符号数
- * 6.2 数的定点表示和浮点表示
- * 6.3 定点运算
- * 6.4 浮点四则运算
- * <u>6.5 算术逻辑单元</u>

6.1 无符号数和有符号数

一、无符号数

寄存器的位数

反映无符号数的表示范围

8位

 $0 \sim 255$

16 位

 $0 \sim 65535$

二、有符号数

1. 机器数与真值

真值

带符号的数

+0.1011

-0.1011

+1100

-1100

机器数

符号数字化的数

小数点的位置

小数点的位置

小数点的位置

3

沙数点的位置_{实验室}

2. 原码表示法

(1) 定义

整数
$$[x]_{\mathbb{R}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^n - x & 0 \ge x > -2^n \end{cases}$$

x 为真值

n 为整数的位数

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > 1 \end{cases}$$

x 为真值

如 x = +0.1101

$$[x]_{\mathbb{R}} = 0$$
 1101

用 小数点 将符号 位和数值部分隔开

$$x = -0.1101$$

$$[x]_{\mathbb{R}} = 1 - (-0.1101) = 1 \cdot 1101$$

$$x = +0.1000000$$

$$[x]_{\mathbb{R}} = 0 + 1000000$$

用 小数点 将符号 -位和数值部分隔开

$$x = -0.1000000$$

$$[x]_{\text{\tiny fi}} = 1 - (-0.1000000) = 1 \ 1000000$$

(2) 举例

例
$$6.1$$
 已知 $[x]_{\mathbb{R}} = 1.0011$ 求 $x - 0.0011$

解: 由定义得

$$x = 1 - [x]_{\text{fi}} = 1 - 1.0011 = -0.0011$$

例
$$6.2$$
 已知 $[x]_{\mathbb{R}} = 1,1100$ 求 $x - 1100$

解: 由定义得

$$x = 2^4 - [x]_{\text{fi}} = 10000 - 1,1100 = -1100$$

例
$$6.3$$
 已知 $[x]_{\mathbb{R}} = 0.1101$ 求 x

解: 根据 定义 :
$$[x]_{\mathbb{R}} = 0.1101$$

$$x = +0.1101$$

例 6.4 求 x=0 的原码

解: 设
$$x = +0.0000$$

解: 设
$$x = +0.0000$$
 $[+0.0000]_{\text{原}} = 0.0000$

$$x = -0.0000$$

$$[-0.0000]_{\text{fi}} = 1.0000$$

$$[+0]_{\mathbb{R}} = 0,0000$$

$$[-0]_{\bar{\mathbb{R}}} = 1,0000$$

$$\cdot \cdot [+0]_{\mathbb{R}} \neq [\ _{7} \cdot 0]_{\mathbb{R}}$$

原码的特点:简单、直观

6.1

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数

就可使 减 —— 加

3. 补码表示法

6.1

(1)补的概念

• 时钟

逆时针

顺时针

可见-3可用+9代替 减法→加法

记作
$$-3 \equiv +9 \pmod{12}$$

同理
$$-4 \equiv +8 \pmod{12}$$

$$-5 \equiv +7 \pmod{12}$$

时钟以 12为模 结论

6.1

- >一个负数加上"模"即得该负数的补数
- ▶ 一个正数和一个负数互为补数时 它们绝对值之和即为 模 数
 - · 计数器(模 16) 1011 → 0000?

$$\frac{1011}{-1011}$$

 $\begin{array}{r}
 1011 \\
 + 0101 \\
 \hline
 10000
 \end{array}$

自然去掉

可见-1011 可用 + 0101 代替

记作-1011≡+0101

 $\pmod{2^4}$

同理 -011 = +101

 $\pmod{2^3}$

 $-0.1001 \equiv +1.0111^{10}$

(mod 2)

龙芯-东北大学(秦皇岛)联合

(2) 正数的补数即为其本身

2023/11/10

(3) 补码定义

整数

$$[x]_{\dot{\uparrow}|} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge 2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

如
$$x = 0$$

$$x = +1010$$

$$[x]_{\dot{\uparrow}\dot{\uparrow}} = 0,1010$$

用 逗号 将符号位 和数值部分隔开 -

$$x = -1011000$$

$$[x]_{\frac{1}{4}} = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$= 1011000$$

1,0101000

小数

$$[x]_{i} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge 4 \pmod{2} \end{cases}$$

x 为真值

如
$$x = +0.1110$$
 $x = -0.1100000$
$$[x]_{\stackrel{}{\uparrow}} = 0.1110 \qquad [x]_{\stackrel{}{\uparrow}} = 2 + (-0.1100000)$$

$$= 10.00000000$$

$$= 0.1100000$$

$$1.01000000$$

$$1.01000000$$

$$1.0000000$$

$$1.0000000$$

$$1.0000000$$

$$1.0000000$$

$$1.0000000$$

(4) 求补码的快捷方式

6.1

设
$$x = -1010$$
 时

又
$$[x]_{\mathbb{R}} = 1,1010$$

当真值为负时,补码可用原码除符号位外

每位取反,末位加1求得

(5) 举例

6.1

例
$$6.5$$
 已知 $[x]_{in} = 0.0001$ 求 x

解: 由定义得
$$x = +0.0001$$

例
$$6.6$$
 已知 $[x]_{\stackrel{?}{\rightarrow}} = 1.0001$ $[x]_{\stackrel{?}{\rightarrow}} = [x]_{\stackrel{@}{\oplus}}$ $[x]_{\stackrel{@}{\oplus}} = 1.111$

$$x = [x]_{\frac{1}{2}} - 2$$

$$= 1.0001 - 10.0000$$

$$= -0.1111_{5}$$

$$[x]_{ih} \xrightarrow{?} [x]_{fi}$$

$$[x]_{\text{\tiny \mathbb{R}}} = 1.1111$$

$$x = -0.1111$$

例
$$6.7$$
 已知 $[x]_{\stackrel{}{\nmid}\!\!\!\!/} = 1,1110$

6.1

求 x

解: 由定义得

$$[x]_{\stackrel{?}{\mapsto}}[x]_{\stackrel{}{\sqsubseteq}}$$

$$x = [x]_{\lambda h} - 2^{4+1}$$

$$[x]_{\mathbb{R}} = 1,0010$$

$$= 1,1110 - 100000$$

$$\therefore x = -0010$$

$$= -0010$$

当真值为负时,原码可用补码除符号位外

每位取反,末位加1求得

练习 求下列真值的补码

6.1

真值	$[x]_{\dot{\star} \dot{ert}}$	$[x]_{\bar{\mathbb{R}}}$
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{\dagger h} = [-$	[0.0000]	0.0000
x = -0.0000	0.0000	1.0000
x = -1.0000	1.0000	不能表示

由小数补码定义
$$[x]_{\stackrel{}{\nmid} \downarrow} = \begin{cases} x & 1 > x \ge 0 \\ 2+x & 0 > x \ge 4 \pmod{2} \end{cases}$$

4. 反码表示法

6.1

(1) 定义

整数

如
$$x = +1101$$
 $[x]_{\overline{b}} = 0,1101$ 用 逗号 将符号位

和数值部分隔开

$$x = -1101$$

$$[x]_{\overline{\mathbb{R}}} = (2^{4+1} - 1) - 1101$$

$$= 11111 - 1101$$

$$= 1,0010$$

小数

$$[x]_{\overline{\mathbb{R}}} = \begin{cases} x & 1 > x \ge 0 \\ (2 - 2^{-n}) + x & 0 \ge x > 1 \pmod{2} & 2^{-n} \end{cases}$$

x 为真值 n 为小数的位数

如

(2) 举例

6.1

例 6.8 已知 $[x]_{\overline{b}} = 0.1110$ 求 x

解: 由定义得 x = +1110

例 6.9 已知 $[x]_{\overline{x}} = 1,1110$ 求 x

解: 由定义得 $x = [x]_{\mathbb{Z}} - (2^{4+1} - 1)$

= 1,1110 -11111

= -0001

例 6.10 求 0 的反码

解: 设 x = +0.0000 [+0.0000]_反= 0.0000

x = -0.0000 $[-0.0000]_{\Xi} = 1.1111$

同理,对于整数 $[+0]_{\overline{b}} = 0,0000$ $[-0]_{\overline{b}} = 1,1111$

- ▶ 最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

例6.11 设机器数字长为8位(其中1位为符号位)**6.1** 对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
00000000	0	+0	±0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
:	:	•	•	•
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
	•	•	•	•
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例6.12 已知 $[y]_{i}$ 求 $[-y]_{i}$

6.1

解: 设 $[y]_{i} = y_0. y_1 y_2 ... y_n$

$$< I > [y]_{\dot{k}h} = 0. \ y_1 y_2 \dots y_n$$

$$[-y]_{\dot{\mathbf{y}}} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n}$$

$$< II > [y]_{\dot{\uparrow}h} = 1. y_1 y_2 \cdots y_n$$

$$[-y]_{k} = 0.\overline{y_1}\overline{y_2}^{23} \cdot \overline{y_n} + 2^{-n}$$

5. 移码表示法

补码表示很难直接判断其真值大小

十进制 二进制 补码 0,10101 **(** 1,01011 +10101x = +21-10101x = -21x = +31+111111x = -31-111111 $x + 2^{5}$ +10101 + 100000 = 110101-10101 + 100000 = 001011

+111111 + 1000000 = 1111111

 $-111111 + 1000000_4 = 000000$

2023/11/10

<mark>龙芯-东北大学(秦皇岛)联合实验室</mark>

(1) 移码定义

$$[x]_{8} = 2^{n} + x \quad (2^{n} > x \ge 2^{n})$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如
$$x = 10100$$

$$[x]_{8} = 2^5 + 10100 = 1,10100$$

 $x = -10100$

$$[x]_{3} = 2^5 - 10100 = 0,01100$$

用 逗号 将符号位 和数值部分隔开

(2) 移码和补码的比较

设
$$x = +1100100$$

 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$
 $[x]_{1} = 0,1100100$
设 $x = -1100100$
 $[x]_{8} = 2^{7} - 1100100 = 0,0011100$

补码与移码只差一个符号位

 $[x]_{\lambda h} = 1,0011100$

(3) 真值、补码和移码的对照表

6.1

真值 x (n=5)	$[x]_{\dot{\star} \cdot}$	[x] _移	[x] _移 对应的 十进制整数
-100000	100000	000000	0
- 11111	100001	000001	1
- 11110	100010	000010	2
:	:	:	:
- 00001	111111	011111	31
± 00000	$0\ 0\ 0\ 0\ 0\ 0$	$1\ 0\ 0\ 0\ 0\ 0$	32
+ 00001	$0\ 0\ 0\ 0\ 0\ 1$	100001	33
+ 00010	000010	100010	34
:	•	•	:
+ 11110	011110	111110	62
+ 11111	011111	111111	63

(4) 移码的特点

6.1

> 当
$$x = 0$$
 时 $[+0]_8 = 2^5 + 0 = 1,00000$ $[-0]_8 = 2^5 - 0 = 1,00000$

∴
$$[+0]_8 = [-0]_8$$

 \Rightarrow 当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 - 100000 = 000000$

可见,最小真值的移码为全0

用移码表示浮点数的阶码能方便地判断浮点数的阶码大小

6.2 数的定点表示和浮点表示

小数点按约定方式标出

一、定点表示

小数点位置

定点机

小数定点机

整数定点机

$$-(1-2^{-n}) \sim +(1-2^{-n})$$

$$-(2^n-1) \sim +(2^n-1)$$

$$-1 \sim +(1-2^{-n})$$

$$-2^{n} \sim +(2^{n}-1)$$

$$-(1-2^{-n}) \sim +(1-2^{-n})$$

$$-(2^n-1) \sim +(2^n-1)$$

$$N = S \times r^{j}$$
 浮点数的一般形式 S 尾数 j 阶码 r 基数 (基值) 计算机中 r 取 $2 \times 4 \times 8 \times 16$ 等 当 $r = 2$ $N = 11.0101$ $\checkmark = 0.110101 \times 2^{10}$ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$

1. 浮点数的表示形式

 $S_{\rm f}$ 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_f 和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

阶码 > 最大阶码

下溢 阶码 < 最小阶码 按 机器零 处理

最大负数

$$-2^{-(2^m-1)} \times 2^{-n}$$

$$-2^{-15} \times 2^{-10}$$

设
$$m=4$$
 $n=10$

龙芯-东北大学(秦皇岛)联合实验室

练习

6.2

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各 取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

·· 15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15}$$
 × 0.××× ···· ××× 15 位 $m = 4, 5, 6, \cdots$

满足 最大精度 可取 m=4, n=18

3. 浮点数的规格化形式

6.2

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高3位不全为0 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位、阶码减 1

右规 尾数右移 1 位, 阶码加 1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位, 阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数 r 越大,可表示的浮点数的范围越大

基数 r 越大,浮点数的精度降低

例如: 设m=4, n=10, r=2

6.2

尾数规格化后的浮点数表示范围

最大正数

$$=2^{15}\times(1-2^{-10})$$

最小正数

$$= 2^{-15} \times 2^{-1} = 2^{-16}$$

最大负数

$$2^{-1111} \times (-0.1000000000)$$

$$=-2^{-15} \times 2^{-1} = -2^{-16}$$

$$2^{+1111} \times (-0.11111111111)$$

$$=-2^{15}\times(1-2^{-10})$$

三、举例

6.2

例 6.13 将 $+\frac{19}{128}$ 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设 $x = + \frac{19}{128}$

二进制形式

x = 0.0010011

定点表示

x = 0.0010011 000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中

 $[x]_{\mathbb{R}} = [x]_{\stackrel{!}{\approx}} = [x]_{\stackrel{!}{\approx}} = 0.0010011000$

浮点机中

 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{\lambda h} = 1, 1110; 0.1001100000$

 $[x]_{rec} = 1$ 36 1101; 0. 1001地 0000 (x) 皇岛) 联合实验室

例 6.14 将 -58 表示成二进制定点数和浮点数,6.2并写出它在定点机和浮点机中的三种机器数及阶码 为移码、尾数为补码的形式(其他要求同上例)。

二进制形式

x = -111010

定点表示

x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

 $[x]_{\mathbb{R}} = 1,0000111010$

 $[x]_{\lambda h} = 1, 1111000110$

 $[x]_{\overline{\aleph}} = 1, 1111000101$

浮点机中

 $[x]_{\mathbb{R}} = 0,0110; 1.1110100000$

 $[x]_{\frac{1}{2}} = 0,0110; 1.0001100000$

 $[x]_{\overline{\bowtie}} = 0,0110; 1.0001011111$

例6.15 写出对应下图所示的浮点数的补码 6.2 形式。 设 n = 10, m = 4, 阶符、数符各取 1位。

解:

 $2^{15} \times (1-2^{-10})$

 $2^{-15} \times 2^{-10}$ 最小正数

 $-2^{-15} \times 2^{-10}$ 最大负数

 $-2^{15} \times (1-2^{-10})_{88}$ 2023/11/10最小负数

0,1111; 0.1111111111

1,0001; 0.0000000001

1,0001; 1.11111111111

机器零 6.2

- 当浮点数尾数为0时,不论其阶码为何值 按机器零处理
- 当浮点数 阶码等于或小于它所表示的最小 数 时,不论尾数为何值,按机器零处理

如
$$m=4$$
 $n=10$

当阶码和尾数都用补码表示时, 机器零为

$$\times, \times \times \times \times; \quad 0.00 \quad \cdots \quad 0$$

当阶码用移码, 尾数用补码表示时, 机器零为 0,0000; 0.00

2023/11/10 有利于机器中"判0"。电路的实现 成本东北大学

四、IEEE 754 标准

6.2

S	阶码(含阶符)	尾	数
数符	小数	点位置	

尾数为规格化表示

非 "0" 的有效位最高位为 "1" (隐含)

	符号位 S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

四、IEEE 754 标准

2023/11/10

类别	正负号	实际指数	有偏移指数	指数域	尾数域	数值
零	0	-127	0	0000 0000	000 0000 0000 0000 0000	0.0
负零	1	-127	0	0000 0000	000 0000 0000 0000 0000	-0.0
1	0	0	127	0111 1111	000 0000 0000 0000 0000 0000	1.0
-1	1	0	127	0111 1111	000 0000 0000 0000 0000 0000	-1.0
最小的非规约 数	*	-126	0	0000 0000	000 0000 0000 0000 0000 0001	$\pm 2^{-23} \times 2^{-126} =$ $\pm 2^{-149} \approx \pm 1.4 \times 10^{-45}$
中间大小的非 规约数	*	-126	0	0000 0000	100 0000 0000 0000 0000 0000	$\pm 2^{-1} \times 2^{-126} =$ $\pm 2^{-127} \approx \pm 5.88 \times 10^{-39}$
最大的非规约 数	*	-126	0	0000 0000	111 1111 1111 1111 1111	$\pm (1-2^{-23}) \times 2^{-126} \approx \pm 1.18 \times 10^{-38}$
最小的规约数	*	-126	1	0000 0001	000 0000 0000 0000 0000 0000	$\pm 2^{-126} \approx \pm 1.18 \times 10^{-38}$
最大的规约数	*	127	254	1111 1110	111 1111 1111 1111 1111	$\pm (2-2^{-23}) \times 2^{127} \approx \pm 3.4 \times 10^{38}$
正无穷	0	128	255	1111 1111	000 0000 0000 0000 0000 0000	+∞
负无穷	1	128	255	1111 1111	000 0000 0000 0000 0000	$-\infty$
<u>NaN</u>	*	128	255	1111 1111	non zero	NaN
* 符号位可以为	0或1.					

四、IEEE 754 标准

特殊值

这里有三个特殊值需要指出:

- 1.如果*指数*是0并且尾数的*小数部分*是0,这个数±0(和符号位相关)
- 2.如果指数 = 并且尾数的小数部分是0,这个数是±∞(同样和符号位相关)
- 3.如果指数= 并且尾数的小数部分非0,这个数表示为不是一个数(NaN)。

形式	指数	小数部分
零	0	0
非规约形式	0	大于0小于1
规约形式	1到2^{e}-2	大于等于1小于2
无穷	2^{e}-1	0
NaN	2^{e}-1	非の

6.3 定点运算

- 一、移位运算
 - 1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

2023/11/在计算机中,移位与加减配合,能够实现乘降运算实验室

2. 算术移位规则

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
	原 码	0
负数	补码	左移添0
以剱	作 ` 49	右移添1
	反 码	1

设机器数字长为 8 位(含 1 位符号位),写出 A = +26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = +26 = +11010$$

则 $[A]_{\bar{\mathbb{R}}} = [A]_{\dot{\mathbb{N}}} = [A]_{\bar{\mathbb{R}}} = 0.0011010$

移位操作	机 器 数 $[A]_{\bar{\mathbb{R}}} = [A]_{\bar{\mathbb{R}}} = [A]_{\bar{\mathbb{R}}}$	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+ 52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

设机器数字长为 8 位(含 1 位符号位),写出 A = -26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	- 26
左移一位	1,0110100	- 52
左移两位	1,1101000	- 104
右移一位	1, <mark>0</mark> 001101	- 13
右移两位	1,0000110	-6

6.3

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1, <mark>1</mark> 110011	- 13
右移两位	1,1111001	- 7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
左移一位	1,1001011	- 52
左移两位	1,0010111	- 104
右移一位	1,1110010	- 13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

6.3

4. 算术移位和逻辑移位的区别

6.3

算术移位 有符号数的移位

逻辑移位 无符号数的移位

低位添 0, 高位移丢 逻辑左移

高位添 0, 低位移丢 逻辑右移

例如 01010011

逻辑左移 10100110

算术左移 00100110

高位1移丢

逻辑右移

算术右移

01011001

10110010

11011001 (补码)

二、加减法运算

6.3

- 1. 补码加减运算公式
 - (1) 加法

整数
$$[A]_{\lambda h} + [B]_{\lambda h} = [A+B]_{\lambda h} \pmod{2^{n+1}}$$

小数
$$[A]_{\dot{\lambda}\dot{h}} + [B]_{\dot{\lambda}\dot{h}} = [A+B]_{\dot{\lambda}\dot{h}} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\dot{k}\dot{l}} = [A+(-B)]_{\dot{k}\dot{l}} = [A]_{\dot{k}\dot{l}} + [-B]_{\dot{k}\dot{l}} \pmod{2^{n+1}}$$

小数
$$[A - B]_{\dot{k}|} = [A + (-B)]_{\dot{k}|} = [A]_{\dot{k}|} + [-B]_{\dot{k}|} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

2. 举例

6.3

例 6.18 设 A = 0.1011, B = -0.0101 $\bar{\mathbf{x}} [A+B]_{\lambda h}$ 验证 $[A]_{\dot{k}} = 0.1011$ 解: 0.1011 $+[B]_{\lambda \mid \lambda} = 1.1011$ 0.0101 $[A]_{\dot{k}|} + [B]_{\dot{k}|} = 10.0110 = [A + B]_{\dot{k}|}$ 0.0110 A + B = 0.0110例 6.19 设 A = -9, B = -5求 $[A+B]_{i}$ 验证 解: $[A]_{\lambda h} = 1,01111$ -1001 $+[B]_{\lambda h} = 1, 1011$ +-0101

 $[A]_{\lambda h} + [B]_{\lambda h} = 1 \ 1 \ , \ 0 \ 0 \ 1 \ 0 = [A + B]_{\lambda h}$

$$A + B = -1110$$

-1110

例 6.20 设机器数字长为 8 位(含1位符号位) 6.3 且 A = 15, B = 24, 用补码求 A - B

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\dot{\uparrow}|_{1}} = 0,0001111$
 $[B]_{\dot{\uparrow}|_{2}} = 0,0011000$
 $+ [-B]_{\dot{\uparrow}|_{2}} = 1,1101000$
 $[A]_{\dot{\uparrow}|_{2}} + [-B]_{\dot{\uparrow}|_{2}} = 1,11101111 = [A-B]_{\dot{\uparrow}|_{2}}$

$$A = A - B = -100111 - [A - B]_{ij}$$

练习 1 设 $x = \frac{9}{16}$ $y = \frac{11}{16}$, 用补码求 x+y $x + y = -0.1100 = -\frac{12}{16}$ ##

练习2 设机器数字长为8位(含1位符号位) 且 A = -97, B = +41, 用补码求 A - B

$$A-B=+11102110=+118$$
 基本 (秦皇岛) 联合家

3. 溢出判断

(1) 进位位判溢出

若最高数值位向符号位的进位值与符号位产生的进位值不同,则溢出; $OVR=C_{n-1}\oplus C_n$

(2) 两位符号位判溢出

6.3

$$[x]_{\dot{r}|\dot{r}'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\dot{k}\dot{h}'} + [y]_{\dot{k}\dot{h}'} = [x + y]_{\dot{k}\dot{h}'} \pmod{4}$$

$$[x-y]_{\lambda h'} = [x]_{\lambda h'} + [-y]_{\lambda h'} \pmod{4}$$

结果的双符号位 相同

未溢出

 $00, \times \times \times \times \times$

 $11, \times \times \times \times$

结果的双符号位 不同

溢出

10, ×××××

 $01, \times \times \times \times \times$

最高符号位 代表其 真正的符号

(2) 两位符号位判溢出 (续)

方法2: 模4补码(双符号位补码、变形补码)

$$[x]_{\frac{1}{4}} = \begin{cases} x & 0 \leq x \leq 1 \\ 4+x & -1 \leq x \leq 0 \pmod{4} \end{cases}$$

例如:
$$x=0.1011$$
 $[x]_{\frac{1}{2}}=00 1011$ $[x]_{\frac{1}{2}}=11 0101$

溢出判断: 当符号位为 01 时, 表示两正数之和≥1, 正溢 当符号位为 10 时, 表示两负数之和<-1, 负溢 当符号位为 00, 11 时, 无溢出

00 1100

+ 00 1100

01 1000

(b)
$$x=y=-0.1100$$
 11 0100
 $[x]_{\stackrel{?}{\uparrow}}=[y]_{\stackrel{?}{\uparrow}}=11 0100$ + 11 0100
 $[x]_{\stackrel{?}{\uparrow}}+[y]_{\stackrel{?}{\uparrow}}=10 1000 (\cancel{\text{$\frac{1}{2}$}})$ 1000

4. 补码加减法的硬件配置

A、X均 n+1 位

用减法标记GS控制求补逻辑

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

0.1101 ×0.1011 1101

0000 1101

0.10001111

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

2. 笔算乘法改进

6.3

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

右移一位 =
$$0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$2^{-1}$$
{ $A + 2^{-1}$ [$0 \cdot A + 2^{-1}(A + 2^{-1}(A+0))$]}

第一步 被乘数A+0

第二步 右移一位,得新的部分积

第三步 部分积 + 被乘数

① ② ③

•

第八步 右移一位,得结果

3. 改进后的笔算乘法过程(竖式) 6.3

部分积	乘 数	说明
0.0000	1011	初态,部分积=0
+0.1101		乘数为1,加被乘数
0.1101		
0.0110	1 1 0 1	$\longrightarrow 1$,形成新的部分积
+0.1101		乘数为1,加被乘数
1.0011	1	
0.1001	1 1 1 0	$\longrightarrow 1$,形成新的部分积
+0.0000		乘数为 0, 加 0
0.1001	1 1	
0.0100	1 1 1 1	$\longrightarrow 1$,形成新的部分积
+ 0.1101		乘数为 1 , 加 被乘数
1.0001	1 1 1	
2023/11/10 0.1000	1 1 1 1 59	→1 ,得結果 大学 (秦皇岛) 联合

小结

6.3

- ightharpoonup 乘法 运算可用 加和移位实现 n=4,加 4 次,移 4 次
- ▶由乘数的末位决定被乘数是否与原部分积相加,然后→1位形成新的部分积,同时乘数 →1位
 (末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加
 - 硬件 3个寄存器,具有移位功能
 - 1个全加器

6.3

(1) 原码一位乘运算规则 以小数为例

乘积的符号位单独处理 $x_0 \oplus y_0$

数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

6.3

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*} + z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*} + z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*} + z_{n-1})$$

例6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ **6.3**

解:	数值部分 部分积	的运算	说 明
_	0.0000	1101	部分积 初态 $z_0 = 0$
_	+ 0.1110		+ x*
逻辑右移	0.1110 0.0111	0110	→1 , 得 z ₁
	+ 0.0000		+0
\m += + 18	-0.0111	0	
逻辑右移	0.0011	1011	$\underset{+ \ x^*}{\longrightarrow} 1$,得 z_2
_	+ 0.1110	_	$+x^*$
\\\\\ +\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\frac{1.0001}{1}$	1 0	
逻辑右移	0.1000	1 1 0 <u>1</u>	→1 , 得 z ₃
	+ 0.1110		+ x*
\	1.0110	1 1 0	
芝 2023/11/10	0.1011	0 1 1 30	→ 1 龙芯-孫号大名(本秦皇岛) 联合

例6.21 结果

6.3

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

6.3

A、X、Q均n+1位

(4) 原码两位乘

6.3

原码乘

符号位 和 数值位 部分 分开运算

两位乘

每次用 乘数的 2 位判断 原部分积 是否加 和 如何加 被乘数

乘数y _{n-1} y _n	新的部分积
0.0	加"0"— 2
0 1	加 1 倍的被乘数 → 2
1 0	加 2 倍的被乘数 → 2
1 1	加 3 倍的被乘数 → 2

先 减 1 倍 的被乘数 再 加 4 倍 的被乘数

(5) 原码两位乘运算规则

6.3

乘数判断位 $y_{n-1}y_n$	标志位 C_j	操作内容
0 0	0	$z = 2, y^* = 2, C_j$ 保持 "0"
0 1	0	$z+x^*$ -2, y^* -2, C_j 保持 "0"
10	0	$z+2x^*$ -2, y^* -2, C_j 保持 "0"
1 1	0	$z-x^* - 2, y^* - 2, C_j$ 置"1"
0 0	1	$z+x^* \rightarrow 2, y^*\rightarrow 2, C_j$ 置 "0"
0 1	1	$z+2x^* \to 2, y^* \to 2, C_j$ 置 "0"
10	1	$z-x^*$ $\rightarrow 2$, y^* $\rightarrow 2$, C_j 保持 "1"
1 1	1	$z \rightarrow 2, y^* \rightarrow 2, C_j$ 保持 "1"

共有操作 $+x^*$

+2x*

 $-x^*$

实际操作 $+[x^*]_{\stackrel{}{\text{\lambda}}}$ $+[2x^*]_{\stackrel{}{\text{\lambda}}}$ $+[-x^*]_{\stackrel{}{\text{\lambda}}}$ $+[-x^*]_{\stackrel{}{\text{\lambda}$

例6.22 已知 x = 0.1111111 y = -0.111001 求 $[xy]_{原}$ **6.3**

解:数值部份和运算	乘 数	C_j	说明
补 000.00000	00.1110 <u>01</u>	0	初态 $z_0 = 0$
码 +000.111111			$+x^*$, $C_j=0$
右 000.111111			
000.001111	11 001110	0	→ 2
ト + 0 0 1 . 1 1 1 1 1 0			$+2x^, C_j = 0$
码 010.001101	1 1		
右 2000.100011	$0111 \ 0011$	0	→ 2
+111.000001			$-x^*, C_j = 1$
补 111.100100	0 1 1 1		
码 111.111001	000111 00	1	→ 2
右 +000.111111			$+x^*$, $C_j=0$
移 2023/11/10000.111000	0001 & 1		龙芯-东北大学(秦皇岛)联合实验室

- ① 乘积的符号位 $x_0 \oplus y_0 = 0 \oplus 1 = 1$
- ② 数值部分的运算

$$x^* \cdot y^* = 0.111000000111$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.1110000001111$$

特点绝对值的补码运算

用移位的次数判断乘法是否结束

算术移位

(6) 原码两位乘和原码一位乘比较 6.3

原码一位乘

原码两位乘

符号位

 $x_0 \oplus y_0$

 $x_0 \oplus y_0$

操作数

绝对值

绝对值的补码

移位

逻辑右移

算术右移

移位次数

n

 $\frac{n}{2}$ (n为偶数)

最多加法次数

n

 $\frac{n}{2}+1$ (n为偶数)

思考 n 为奇数时,原码两位乘 移?次 最多加?次

5. 补码乘法

6.3

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i_1} = x_0. x_1 x_2 ... x_n$ 乘数 $[y]_{i_1} = y_0. y_1 y_2 ... y_n$

① 被乘数任意,乘数为正

同原码乘 但加和移位按补码规则运算乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同①

最后 $m[-x]_{i}$,校正

③ Booth 算法(被乘数、乘数符号任意) 6.3

设
$$[x]_{\dagger h} = x_0.x_1x_2 \cdots x_n$$
 $[y]_{\dagger h} = y_0.y_1y_2 \cdots y_n$ $[x \cdot y]_{\dagger h}$ $[x \cdot y]_{\dagger$

④ Booth 算法递推公式

6.3

$$\begin{split} &[z_0]_{\dot{\imath} h} = 0 \\ &[z_1]_{\dot{\imath} h} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\dot{\imath} h} + [z_0]_{\dot{\imath} h} \} \qquad y_{n+1} = 0 \\ &\vdots \\ &[z_n]_{\dot{\imath} h} = 2^{-1} \{ (y_2 - y_1)[x]_{\dot{\imath} h} + [z_{n-1}]_{\dot{\imath} h} \} \end{split}$$

$$[x \cdot y]_{\dot{\lambda}} = [z_n]_{\dot{\lambda}} + (y_1 - y_0)[x]_{\dot{\lambda}}$$

最后一步不移位

如何实现 $y_{i+1}-y_i$?

$y_i y_{i+1}$	$y_{i+1} - y_i$	操作
0 0	0	→ 1
0 1	1	$+[x]_{\dot{\star}\dot{\wedge}} \longrightarrow 1$
1 0	-1	$+[-x]_{\dot{k}\dot{l}} \rightarrow 1$
1 1	0	→ 1

例6.23 已知 x = +0.0011 y = -0.1011 求 $[xy]_{*}$ **6.3**

解: 00.000	1.0101	0	ا د ما	$[x]_{\dagger h} = 0.0011$
+ 1 1 . 1 1 0 1 2 1 1 . 1 1 0 1			$+[-x]_{ih}$	$[y]_{\dot{*}} = 1.0101$
<u>补码 </u>	1 1010	1	→ 1	$[-x]_{\lambda} = 1.1101$
+00.0011			$+[x]_{\dot{\star}\dot{\uparrow}}$	
补码 00.0001 右移 00.000	1 1 1 1 0 <u>1</u>	0	→ 1	
+11.1101			$+[-x]_{\dot{\star}\dot{\vdash}}$	
計码 11.1101 古移 11.1101	$\begin{bmatrix} 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$	1	→ 1	$\therefore [xy]_{\dot{\imath} \imath}$
+00.0011			$+[x]_{\dot{\star}\dot{h}}$	=1.11011111
沙码 00.0001	111			
右移 >00.000 +11.1101	1111 <u>1</u>	0	$\rightarrow 1$ + $[-x]_{ih}$	
2023/11/10 1 1 . 1 1 0 1	1 1 1 1 74			不移位。 宋書 宋書 宋書 宋書 宋書 宋書 宋書 宋書 宋書 宋

(2) Booth 算法的硬件配置

6.3

 $A \times X \times Q$ 均 n+2 位 移位和加受末两位乘数控制

乘法小结

- 整数乘法与小数乘法完全相同可用 逗号 代替小数点
- ▶ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

四、除法运算

1. 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001101 \\ \hline 0.000001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ? 余数不动低位补 "0" 减右移一位的除数
- ? 上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.00000111

2. 笔算除法和机器除法的比较

笔算除法

商符单独处理 心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器 上商位置 不固定

机器除法

符号位异或形成

$$|x| - |y| > 0$$
上商 1

$$|x| - |y| < 0$$
上商 0

余数 左移一位 低位补 "0" 减 除数

1 倍字长加法器 在寄存器 最末位上商

3. 原码除法

以小数为例

$$[x]_{\mathbb{R}} = x_0. x_1 x_2 \dots x_n$$

$$[y]_{\mathbb{R}} = y_0. y_1 y_2 \dots y_n$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_0 \oplus y_0). \frac{x^*}{y^*}$$

式中
$$x^* = 0. x_1 x_2 \cdots x_n$$
 为 x 的绝对值 $y^* = 0. y_1 y_2 \cdots y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0

除数不能为0

(1) 恢复余数法

例6.24
$$x = -0.1011$$
 $y = -0.1101$ 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解:
$$[x]_{\mathbb{R}} = 1.1011$$
 $[y]_{\mathbb{R}} = 1.1101$ $[y^*]_{\overset{1}{N}} = 0.1101$ $[-y^*]_{\overset{1}{N}} = 1.0011$

①
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

② 被除数(余数)	商	说 明
0.1011	0.0000	
+ 1.0011		$+[-y^*]_{\lambda}$
1.1110	0	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	← 1
+ 1.0011		+[-y*] _{*h}
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	←1
+ 1.0011	80	十[一 火*]烧芯-东北大学(秦皇岛)联合实验室

被除数(余数)	商	说明
0.0101	0 1 1	余数为正,上商1
逻辑左移 0.1010	0 1 1	← 1
+ 1.0011		$+[-y^*]_{i \nmid k}$
1.1101	0 1 1 0	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1010	0 1 1 0	恢复后的余数
逻辑左移 1.0100	0110	← 1
+ 1.0011		$+[-y^*]_{\dot{\imath}\dot{\backprime}}$
0.0111	01101	余数为正,上商1

$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

余数为正 上商1

上商5次

第一次上商判溢出

移4次

2023/11/10 余数为负 上商 0,恢复余数

龙芯-东北大学(秦皇岛)联合实验室

(2) 不恢复余数法(加减交替法)

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$ 余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

上商"1"
$$2R_i - y^*$$

$$2R_i + y^*$$

加减交替

例6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: 0.1011	0.0000	
+1.0011		+[-y*] _{*\}
逻 1.1110	0	余数为负,上商0
辑 1.1100	0	← 1
左 +0.1101		$+[y^*]_{\dot{\imath}\dot{\backprime}}$
後 0.1001	0 1	余数为正,上商1
1.0010	0 1	← 1
左 +1.0011 逻 0.0101		$+[-y^*]_{i \nmid i}$
逻 0.0101	0 1 1	余数为正,上商1
辑 0.1010 左 ±1.0011	0 1 1	←1
**************************************		+[- y*] _*
************************************	0110	余数为负,上商0
辑 1.1010	0110	← 1
左 +0.1101		$+[y^*]_{\dot{\imath}\dot{\backprime}}$
$\frac{13}{2023/11/10} 0.0111$	01101	。余数为正,上商 1 _{龙芯-}

 $[x]_{\text{\tiny [R]}} = 1.1011$

 $[y]_{\bar{\mathbb{R}}} = 1.1101$

 $[x^*]_{\dagger h} = 0.1011$

 $[y^*]_{\dot{*}} = 0.1101$

 $[-y^*]_{\dagger h} = 1.0011$

龙芯-东北大学(秦皇岛)联合实验室

例6.25 结果

①
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

$$2 \frac{x^*}{y^*} = 0.1101$$

$$\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1次

第一次上商判溢出

移 n 次,加 n+1 次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

 $A \times X \times Q$ 均 n+1 位用 Q_n 控制加减交替

4. 补码除法

(1) 商值的确定

① 比较被除数和除数绝对值的大小 x 与 y 同号

$$x = 0.1011$$
 $[x]_{\frac{1}{2}h} = 0.1011$ $[x]_{\frac{1}{2}h} = 0.1011$ "够减"

$$x = -0.0011$$
 $[x]_{*\!\!\!\!/} = 1.1101$ $[x]_{*\!\!\!\!/} = 1.1101$ $x^* < y^*$ $y = -0.1011$ $[y]_{*\!\!\!\!/} = 1.0101$ $+[-y]_{*\!\!\!/} = 0.1011$ $[R_i]_{*\!\!\!/} = [R_i]_{*\!\!\!/} = [R$

x与y异号

$$x = 0.1011$$
 $[x]_{*h} = 0.1011$ $[x]_{*h} = 0.1011$ $[x]_{*h} = 0.1011$ $[x]_{*h} = 0.1011$ $[x]_{*h} = 1.1101$ $[x]_{*h} = 1.1101$ $[x]_{*h} = 0.1000$ "够减" $[x]_{*h} = 0.1011$ $[x]_{*h} = 0.1000$ "不够减"

小结

$[x]_{ih}$ 和 $[y]_{ih}$	$ \bar{ \mathbf{x} } \left[R_i \right]_{ i h }$	$[R_i]_{\dot{\uparrow}\dot{\uparrow}} = [y]_{\dot{\uparrow}\dot{\uparrow}}$
同号	$[x]_{\dot{\imath}\dot{\backprime}} - [y]_{\dot{\imath}\dot{\backprime}}$	同号,"够减"
异号	$[x]_{\dot{\star}\dot{h}} + [y]_{\dot{\star}\dot{h}}$	异号,"够减"

② 商值的确定 末位恒置"1"法

$$\times.\times\times\times1$$

按原码上商

"够减"上"1" "不够减"上"0"

按反码上商

"够减"上"0"

長皇岛) 联合实验室

"不够减"上"1"

小结

$[x]_{ih}$ 与 $[y]_{ih}$	商	$[R_i]_{\dot{\imath}\dot{\uparrow}}$ 与 $[y]_{\dot{\imath}\dot{\uparrow}}$		商值
同号	出	够减 (同号) 不够减(异号)	1 0	原码上商
异 号	负	够减 (异号) 不够减(同号)	0	反码上商

简化为

$[R_i]_{i}$ 与 $[y]_{i}$	商值
同号	1
异号	龙芯-东北大学(

2023/11/10

(2) 商符的形成

除法过程中自然形成

(3) 新余数的形成

加减交替

$[R_i]$ 补和 $[y]$ 补	商	新余数
同号	1	$2[R_i]_{\dot{\imath}\dot{\uparrow}} + [-y]_{\dot{\imath}\dot{\uparrow}}$
异 号	0	$2[R_i]_{\dot{\ast}\dot{\uparrow}} + [y]_{\dot{\ast}\dot{\uparrow}}$

例6.26 设x = -0.1011 y = 0.1101 求 $\left[\frac{x}{y}\right]_{i}$ 并还原成真值

解:
$$[x]_{\stackrel{1}{N}} = 1.0101$$
 $[y]_{\stackrel{1}{N}} = 0.1101$ $[-y]_{\stackrel{1}{N}} = 1.0011$ 1.0101 0.0000 1.0000

(4) 小结

- ightharpoonup补码除法共上商 n+1 次(末位恒置 1) 第一次为商符
- > 第一次商可判溢出
- ▶加 n 次 移 n 次
- ▶用移位的次数判断除法是否结束
- ▶精度误差最大为 2⁻ⁿ

(5) 补码除和原码除(加减交替法)比较

(2) 作用目标作品	(11月)赤(川水义)	百万八儿我
	原码除	补码除
商符	$x_0 \oplus y_0$	自然形成
操作数	绝对值补码	补码
上商原则	余数的正负	比较余数和除数的符号
上商次数	n+1	n+1
加法次数	n+1	n
移位	逻辑左移	逻辑左移
移位次数	n	n
第一步操作	$[x^*]_{\dot{\star}\dot{\vdash}} - [y^*]_{\dot{\star}\dot{\vdash}}$	同号 $[x]_{{h}}-[y]_{{h}}$
	00	

2023/11/10

93 **异号**[x] 龙芯 新 (秦皇岛) 联合实验室

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 求阶差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \end{cases} \begin{cases} x \text{ 向 } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \end{cases}$$

$$< 0 & j_x < j_y \end{cases} \begin{cases} x \text{ 向 } y \text{ 看齐} & \checkmark S_x \rightarrow 1, j_x + 1 \\ y \text{ 向 } x \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \end{cases}$$

94

(2) 对阶原则

小阶向大阶看齐

例如
$$x = 0.1101 \times 2^{01}$$
 $y = (-0.1010) \times 2^{11}$ 求 $x + y$

解:
$$[x]_{\dagger} = 00, 01; 00.1101$$
 $[y]_{\dagger} = 00, 11; 11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\dot{N}} = [j_x]_{\dot{N}} - [j_y]_{\dot{N}} = 00,01$$

$$\frac{+ 11,01}{11,10}$$
阶差为负 (-2) ∴ $S_x \rightarrow 2$ $j_x + 2$

② 对阶 $[x]_{\lambda h'} = 00, 11; 00.0011$

2. 尾数求和

$$[S_x]_{\dot{\imath}\dot{\backprime}'} = 00.0011$$
 对阶后的 $[S_x]_{\dot{\imath}\dot{\backprime}'}$ + $[S_y]_{\dot{\imath}\dot{\backprime}} = 11.0110$ 11.1001

 $[x+y]_{\lambda h} = 00, 14; 11.1001$

3. 规格化

(1) 规格化数的定义

$$r = 2 \qquad \frac{1}{2} \le |S| < 1$$

(2) 规格化数的判断

S > 0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1 \times \times \cdots \times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots \times$	反码	$1.0 \times \times \cdots \times$

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1 . 1 0 0 \cdots 0$$

$$[S]_{\lambda} = [1.1]00 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i}$ 不是规格化的数

$$S = -1$$

$$[S]_{\dot{*}|} = [0.000 \dots 0]$$

∴ [-1]_¾ 是规格化的数

(3) 左规

尾数左移一位, 阶码减1, 直到数符和第一数位不同为止

上例
$$[x+y]_{\dot{\uparrow}\dot{\uparrow}} = 00, 11; 11.1001$$

左规后
$$[x+y]_{\dot{\uparrow}} = 00, 10; 11.0010$$

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 01. ×× ···×或 10. ×× ···×时

尾数右移一位, 阶码加1

例6.27
$$x = 0.1101 \times 2^{10}$$
 $y = 0.1011 \times 2^{01}$

 \mathbf{x} x+y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:
$$[x]_{\dot{\uparrow}\uparrow} = 00, 010; 00. 110100$$

 $[y]_{\dot{\uparrow}\uparrow} = 00, 001; 00. 101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\nmid h}} = [j_x]_{\stackrel{?}{\nmid h}} - [j_y]_{\stackrel{?}{\nmid h}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $S_y \longrightarrow 1, j_y + 1$

$$\therefore [y]_{\stackrel{?}{\nmid h'}} = 00,010;00.010110$$

② 尾数求和

$$[S_x]_{\dot{i}h} = 00.110100$$

+ $[S_y]_{\dot{i}h'} = 00.010110$ 对阶后的 $[S_y]_{\dot{i}h'}$

01. 001010

尾数溢出需右规

③右规

$$[x+y]_{\lambda} = 00, 010; 01.001010$$

右规后

$$[x+y]_{\lambda} = 00, 011; 00. 100101$$

$$\therefore x + y = 0.100101 \times 2^{11}$$

4. 舍入

在 对阶 和 右规 过程中,可能出现 尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置 "1" 法

例 6.28
$$x = (-\frac{5}{8}) \times 2^{-5}$$
 $y = (\frac{7}{8}) \times 2^{-4}$

$$y = (\frac{7}{8}) \times 2^{-4}$$

求 x-y (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:

$$x = (-0.101000) \times 2^{-101}$$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{\lambda} = 11,011;11.011000$$

$$[y]_{\lambda} = 11, 100; 00. 111000$$

① 对阶

$$[\Delta j]_{\dot{\uparrow}\uparrow} = [j_x]_{\dot{\uparrow}\uparrow} - [j_y]_{\dot{\uparrow}\uparrow} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 : $S_x \longrightarrow 1$, $j_x + 1$

$$\therefore$$
 [x] _{$\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4$}

② 尾数求和

$$[S_x]_{\dot{\uparrow}\dot{\uparrow}} = 11.\ 101100$$

+ $[-S_y]_{\dot{\uparrow}\dot{\uparrow}} = 11.\ 001000$
110. 110100

③右规

$$[x-y]_{\dot{\uparrow}\dot{\uparrow}} = 11, 100; 10. 110100$$

右规后

$$[x-y]_{\lambda} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

5. 溢出判断

设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码 在数轴上的表示为

二、浮点乘除运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 乘法

$$x \cdot y = (S_x \cdot S_y) \times 2^{j_x + j_y}$$

2. 除法

$$\frac{x}{y} = \frac{S_x}{S_y} \times 2^{j_x - j_y}$$

- 3. 步骤
 - (1) 阶码采用 补码定点加(乘法)减(除法)运算
 - (2) 尾数乘除同 定点 运算
 - (3) 规格化
- 4. 浮点运算部件

阶码运算部件, **尾数运算部件** 成本 (秦皇岛)

6.5 算术逻辑单元

一、ALU 电路

组合逻辑电路

 K_i 不同取值

 F_i 不同

四位 ALU 74181

M=0 算术运算

M=1 逻辑运算

 $S_3 \sim S_0$ 不同取值,可做不同运算

2.6.1 加法器

1. 一位加法器

	功能	能表			A _n		
A_n	B _n C	'n-1	F _n C	n	B_n		F_n
0	0	0	0	O	C _{n-1} —		
0	0	1	1	0			
0	1	0	1	0		— 位立	
0	1	1	0	1		加法器	
1	0	O	1	0			C_n
1	0	1	0	1			— —
1	1	0	0	1			
1	1	1	1	1			

2.6.1 加法器 (续)

2. 串行加法器

2.6.1 加法器 (续)

3. 超前(并行、先行)进位加法器

$$\begin{split} & \textbf{C}_1 = \textbf{A}_1 \textbf{B}_1 + (\textbf{A}_1 + \textbf{B}_1) \textbf{C}_0 \\ & \textbf{C}_2 = \textbf{A}_2 \textbf{B}_2 + (\textbf{A}_2 + \textbf{B}_2) \textbf{C}_1 \\ & = \textbf{A}_2 \textbf{B}_2 + (\textbf{A}_2 + \textbf{B}_2) \textbf{A}_1 \textbf{B}_1 + (\textbf{A}_2 + \textbf{B}_2) (\textbf{A}_1 + \textbf{B}_1) \textbf{C}_0 \\ & \textbf{C}_3 = \textbf{A}_3 \textbf{B}_3 + (\textbf{A}_3 + \textbf{B}_3) \textbf{C}_2 \\ & = \textbf{A}_3 \textbf{B}_3 + (\textbf{A}_3 + \textbf{B}_3) \textbf{A}_2 \textbf{B}_2 + (\textbf{A}_3 + \textbf{B}_3) (\textbf{A}_2 + \textbf{B}_2) \textbf{A}_1 \textbf{B}_1 \\ & + (\textbf{A}_3 + \textbf{B}_3) (\textbf{A}_2 + \textbf{B}_2) (\textbf{A}_1 + \textbf{B}_1) \textbf{C}_0 \\ & \textbf{C}_4 = \textbf{A}_4 \textbf{B}_4 + (\textbf{A}_4 + \textbf{B}_4) \textbf{C}_3 \\ & = \textbf{A}_4 \textbf{B}_4 + (\textbf{A}_4 + \textbf{B}_4) \textbf{A}_3 \textbf{B}_3 + (\textbf{A}_4 + \textbf{B}_4) (\textbf{A}_3 + \textbf{B}_3) \textbf{A}_2 \textbf{B}_2 \\ & + (\textbf{A}_4 + \textbf{B}_4) (\textbf{A}_3 + \textbf{B}_3) (\textbf{A}_2 + \textbf{B}_2) \textbf{A}_1 \textbf{B}_1 \\ & + (\textbf{A}_4 + \textbf{B}_4) (\textbf{A}_3 + \textbf{B}_3) (\textbf{A}_2 + \textbf{B}_2) (\textbf{A}_1 + \textbf{B}_1) \textbf{C}_0 \end{split}$$

超前(并行、先行)进位加法器

一
$$C_1 = G_1 + P_1 C_0$$

 $C_2 = G_2 + P_2 G_1 + P_2 P_1 C_0$
 $C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_0$
 $C_4 = G_4 + P_4 G_3 + P_4 P_3 G_2 + P_4 P_3 P_2 G_1 + P_4 P_3 P_2 P_1 C_0$
 $C_1 = \overline{P_1 + G_1 C_0}$
 $C_2 = \overline{P_2 + G_2 P_1 + G_2 G_1 C_0}$
 $C_3 = \overline{P_3 + G_3 P_2 + G_3 G_2 P_1 + G_3 G_2 G_1 C_0}$
 $C_4 = \overline{P_4 + G_4 P_3 + G_4 G_3 P_2 + G_4 G_3 G_2 P_1 + G_4 G_3 G_2 G_1 C_0}$

4位并行进位链

4位并行进位加法器

分组先行进位电路

快速进位链

1. 并行加法器

$$C_{i} = \overline{A}_{i} B_{i} C_{i-1} + A_{i} \overline{B}_{i} C_{i-1} + A_{i} B_{i} \overline{C}_{i-1} + A_{i} B_{i} C_{i-1}$$

$$= A_{i} B_{i} + (A_{i} + B_{i}) C_{i-1}$$

$$d_i = A_i B_i$$
 本地进位

$$t_i = A_i + B_i$$
 传送条件

2. 串行进位链

进位链

传送进位的电路

串行进位链

进位串行传送

以 4 位全加器为例,每一位的进位表达式为

$$C_0 = d_0 + t_0 C_{-1} = \overline{d_0 \cdot t_0 C_{-1}}$$

$$C_1 = d_1 + t_1 C_0$$

$$C_2 = d_2 + t_2 C_1$$

设与非门的级延迟时间为t_v

$$C_3 = d_3 + t_3 C_2$$

4位 全加器产生进位的全部时间为 8t_v

n位全加器产生进位的全部时间为 $2nt_v$

3. 并行进位链(先行进位, 跳跃进位)

n 位加法器的进位同时产生 以 4 位加法器为例

$$C_0 = d_0 + t_0 C_{-1}$$
 当 $d_i t_i$ 形成后,只需 $2.5t_y$ $C_1 = d_1 + t_1 C_0 = d_1 + t_1 d_0 + t_1 t_0 C_{-1}$ 产生全部进位 $C_2 = d_2 + t_2 C_1 = d_2 + t_2 d_1 + t_2 t_1 d_0 + t_2 t_1 t_0 C_{-1}$ $C_3 = d_3 + t_3 C_2 = d_3 + t_3 d_2 + t_3 t_2 d_1 + t_3 t_2 t_1 d_0 + t_3 t_2 t_1 t_0 C_{-1}$

(1) 单重分组跳跃进位链

n 位全加器分若干小组,小组中的进位同时产生,小组与小组之间采用串行进位 以n = 16 为例

(2) 双重分组跳跃进位链

n 位全加器分若干大组,大组中又包含若干小组。每个大组中小组的最高位进位同时产生。大组与大组之间采用串行进位。

以 n = 32 为例

龙芯-东北大学(秦皇岛)联合实验室

(3) 双重分组跳跃进位链 大组进位分析

以第8小组为例

$$C_{3} = d_{3} + t_{3}C_{2} = \underbrace{d_{3} + t_{3}d_{2} + t_{3}t_{2}d_{1} + t_{3}t_{2}t_{1}d_{0}}_{D_{8}} + \underbrace{t_{3}t_{2}t_{1}t_{0}C_{-1}}_{+ \underbrace{T_{8}C_{-1}}}$$

D₈ 小组的本地进位 与外来进位无关

T₈ 小组的传送条件 与外来进位无关 传递外来进位

同理 第
$$7$$
 小组 $C_7 = D_7 + T_7 C_3$

第 6 小组
$$C_{11} = D_6 + T_6 C_7$$

第 5 小组
$$C_{15} = D_5 + T_5 C_{11}$$

进一步展开得

$$C_3 = D_8 + T_8 C_{-1}$$

$$C_7 = D_7 + T_7 C_3 = D_7 + T_7 D_8 + T_7 T_8 C_{-1}$$

$$C_{11} = D_6 + T_6 C_7 = D_6 + T_6 D_7 + T_6 T_7 D_8 + T_6 T_7 T_8 C_{-1}$$

2023/11/10
$$C_{15} = D_5 + T_5 C_{11} = D_5 + T_5 D_6 + T_5 T_6 D_7 + T_5 T_6 T_7 D_8$$
本不式不完了。
東合实验室

(4) 双重分组跳跃进位链的 大组 进位线路 以第 2 大组为例

(5) 双重分组跳跃进位链的 小组 进位线路

以第8小组为例 只产生低3位的进位和本小组的 D_8 T_8

(6) n = 16 双重分组跳跃进位链

当 $d_i t_i$ 和 C_{-1} 形成后 经 2.5 t_y 产生 C_2 、 C_1 、 C_0 、 D_5 ~ D_8 、 T_5 ~ T_8

经 $5 t_y$ 产生 C_{15} 、 C_{11} 、 C_7 、 C_3

经 $7.5 t_y$ 产生 $C_{14} \sim C_{12}$ 、 $C_{10} \sim C_8$ 、 $C_6 \sim C_4$

串行进位链 经32tv 产生 全部进位

202单重分组跳跃进位链 经10 t, 产生1 全部进位

龙芯-东北大学(秦皇岛)联合实验室

(7) n=32 双重分组跳跃进位链

当
$$d_i t_i$$
 形成后 经 $2.5 t_y$ 产生 C_2 、 C_1 、 C_0 、 D_1 ~ D_8 、 T_1 ~ T_8 5 t_y 产生 C_{15} 、 C_{11} 、 C_7 、 C_3 7.5 t_y 产生 C_{18} ~ C_{16} 、 C_{14} ~ C_{12} 、 C_{10} ~ C_8 、 C_6 ~ C_4 C_{31} 、 C_{27} 、 C_{23} 、 C_{19}

 $10t_y$ 产生 C_{30} 之 C_{28} 、 C_{26} \sim C_{24} 、 C_{25} \sim C_{26} 大学 (秦皇岛) 联合实验室