

MODULE TITLE	Partial Differential Equations	CREDIT VALUE	15
MODULE CODE	мтн3008	MODULE CONVENER	Prof Vadim N Biktashev (Coordinator)
DURATION: TERM	1	2	3
DURATION: WEEKS	0	11	0
Number of Students Taking Module (anticipated)		88	

DESCRIPTION - summary of the module content

A PDE is a differential equation in which the unknown function is a function of multiple independent variables and the equation involves its partial derivatives. The order is defined similarly to the case of ordinary differential equations, but further classification into elliptic, hyperbolic, and parabolic equations, especially for second order linear equations, is of utmost importance. Some partial differential equations do not fall into any of these categories over the whole domain of the independent variables and they are said to be of mixed type.

In this module, you will learn how PDEs can be well-posed or ill-posed, and will find out about a range of analytical techniques used to solve PDEs. The module will strengthen your ability to interpret theoretical mathematical concepts, and acquire a deeper understanding of how mathematics relates to real world problems. The module builds on material in the Differential Equation module MTH2003, in particular separation of variables and Fourier series.

AIMS - intentions of the module

Partial differential equations (PDEs) form a central part of mathematics. The laws of physics are formulated in terms of PDEs, so the subject is of great practical importance. However, the range of application of PDEs goes beyond the physical world into the modelling of subjects as diverse as ecology and economics. This leads to interesting connections between subjects that at first seem unrelated. The purpose of this module is to develop some of the main analytical and numerical techniques used to solve PDEs, building on the work done in MTH2003 and MTH2004. We will illustrate the topic using a range of real world examples.

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module, you should be able to:

Module Specific Skills and Knowledge:

- 1 demonstrate understanding of the classification of linear partial differential equations (PDEs) of first and second order;
- 2 apply a range of analytical techniques and a wider knowledge and appreciation of applications of PDEs in mathematics;
- 3 exhibit detailed knowledge of specific parabolic, elliptic and hyperbolic second order PDEs.

Discipline Specific Skills and Knowledge:

- 4 complete extended multi-step calculations using a variety of mathematical techniques;
- ${\bf 5}$ translate unfamiliar problems into ones that can be tackled by familiar techniques;
- 6 show a knowledge of the relevance of PDEs in applications.

Personal and Key Transferable/ Employment Skills and Knowledge:

7 illustrate self-management and time management skills;

8 express complex abstract arguments in a logical and coherent manner;

9 use learning resources, including e-learning resources to extend their knowledge.

SYLLABUS PLAN - summary of the structure and academic content of the module

- Introduction. Examples of PDE models. First order PDEs. Linear, quasilinear and nonlinear cases;
- Second-order linear PDEs and their classification into elliptic, hyperbolic and parabolic classes. Domains, boundary conditions and well-posedness;
- Hyperbolic equations: method of characteristics, canonical form, wave equation in one and three dimensions, conservation of energy, D'Alembert and Kirchhoff formulas;
- Parabolic equations: canonical form, uniqueness and stability theorems, diffusion equation on finite and infinite domains, solution by transform methods;
- Elliptic equations: canonical form, uniqueness theorem, Laplace equation in finite and infinite domains, solution by transform methods;
- Green's function methods for solving non-homogeneous linear equations;
- Selected examples of solutions to nonlinear PDEs.

LEARNING AND TEACHING							
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)							
Scheduled Learning & Teaching Activities	33.00	Guided Independent Study		117.00	Placement / Study Abroad	0.00	
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS							
Category		Hours of study time	Description	on			
Scheduled learning and teaching activities		33	Lectures/	example	classes		
Guided independent study		30	Assessme	ent prepa	ration		
Guided independent study		57	Study of I	notes and	formative examples		
Guided independent study		30	Wider rea	ding			

ASSESSMENT							
FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade							
Form of Assessment	Size of Assessment (e.g. duration/length)	ILOs Assessed	Feedback Method				
Examples Sheets	5 during semester	All	Oral at lecture sessions. Solutions posted on ELE				
SUMMATIVE ASSESS	MENT (% of credit)						

Coursework	20	Written Exams	80	Practical Exams	0

DETAILS OF SUMMATIVE ASSESSMENT

Form of Assessment	% of Credit	Size of Assessment (e.g. duration/length)	ILOs Assessed	Feedback Method
Coursework 1- based on questions submitted for assessment	10	15 hours	All	Annotated script and written/verbal feedback
Coursework 2- based on questions submitted for assessment	10	15 hours	All	Annotated script and written/verbal feedback
Written Exam - closed book	80	2 hours (Summer)	All	Written/verbal on request, SRS

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)

Original Form of Assessment	Form of Re-assessment	ILOs Re-assessed	Time Scale for Re-reassessment			
Written Exam *	Written Exam (2 hours) (80%)	All	August Ref/Def Period			
Coursework 1 *	Coursework 1 (10%)	All	August Ref/Def Period			
Coursework 2 *	Coursework 2 (10%)	All	August Ref/Def Period			
*Disease refer to reconstruction for details an defendable Defendable Defendable						

^{*}Please refer to reassessment notes for details on deferral vs. Referral reassessment

RE-ASSESSMENT NOTES

Deferrals: Reassessment will be by coursework and/or written exam in the deferred element only. For deferred candidates, the module mark will be uncapped. Referrals: Reassessment will be by a single written exam worth 100% of the module only. As it is a referral, the mark will be capped at 40%.

RESOURCES

Search

[Library]

0198527718 [Library]

INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of information that you are expected to consult. Further guidance will be provided by the Module Convener

ELE - http://vle.exeter.ac.uk Reading list for this module:

	_					
Туре	Author	Title	Edition	Publisher	Year	ISBN
Set	Ockendon, J., Howison, S. , Lacey, A. & Movchan, A.	Applied Partial Differential Equations		Oxford University Press	2003	978- 019852
Set	Sneddon I.M.	Elements of Partial Differential Equations		McGraw-Hill	1957	
Set	Smith, G.D.	Numerical Solution of Partial Differential Equations: Finite Difference Methods		Oxford University Press	1985	978- 019859

978-0198596509 [Library] 978-Williams, W.E. Partial Differential Equations Clarendon Press 1980 0198596332 [Library] Introduction to partial differential equations: A computational 978-3540887041 [Library] Tveito, A, Winther, R 2008 Springer-Verlag 2009 approach 978-0387209531 [Library] Set Logan, D.J. **Applied Partial Differential Equations** 2nd Springer 2004

CREDIT VALUE ECTS VALUE 15 7.5

PRE-REQUISITE MODULES MTH2003 **CO-REQUISITE MODULES**

NQF LEVEL (FHEQ) AVAILABLE AS DISTANCE LEARNING No

ORIGIN DATE Tuesday 10 July 2018 LAST REVISION DATE Thursday 26 January 2023

KEY WORDS SEARCH Partial differential equations; parabolic equations; elliptic equations; hyperbolic equations; boundary value; initial value.