2 Методи розв'язання нелінійних рівнянь

Постановка задачі. Нехай маємо рівняння f(x) = 0, \bar{x} – його розв'язок, тобто $f(\bar{x}) = 0$.

Задача розв'язання цього рівняння розпадається на етапи:

- 1. Існування та кількість коренів.
- 2. Відділення коренів, тобто розбиття числової вісі на інтервали, де знаходиться один корінь.
- 3. Обчислення кореня із заданою точністю ε .

Для розв'язання перших двох задач використовуються методи математичного аналізу та алгебри, а також графічний метод. Далі розглядаються методи розв'язання третього епату.

2.1 Метод ділення навпіл

Припустимо, що на [a, b] знаходиться лише один корінь рівняння

$$f(x) = 0 (1)$$

для $f(x) \in C([a,b])$ який необхідно визначити. Нехай f(a)f(b) < 0. Припустимо, що f(a) > 0, f(b) < 0. Покладемо $x_1 = \frac{a+b}{2}$ і обчислимо $f(x_1)$. Якщо $f(x_1) < 0$, то шуканий корінь \bar{x} знаходиться на інтервалі (a,x_1) . Якщо ж $f(x_1) > 0$, то $\bar{x} \in (x_1,b)$. З двох інтервалів (a,x_1) і (x_1,b) вибираємо той, на границях якого f(x) має різні знаки, знаходимо точку x_2 – середину вибраного інтервалі, обчислюємо $f(x_2)$, і повторюємо вказаний процес.

В результаті отримуємо послідовність інтервалів, що містять шуканий корінь \bar{x} , причому довжина кожного натсупного інтервалу вдвічі менше.

Цей процес продовжується доки довжина $b_n - a_n$ отриманого інтервалу (a_n, b_n) не стане меншою за 2ε . Тоді x_{n+1} , як середина інтервалу (a_n, b_n) , пов'язана з \bar{x} нерівністю

$$|x_{n+1} - \bar{x}| < \varepsilon. \tag{2}$$

За теоремою Больцано-Коші, ця умова буде виконуватися для деякого n. Справді, оскільки

$$|b_{k+1} - a_{k+1}| = \frac{1}{2}|b_k - a_k|,$$

TO

$$|x_{n+1} - \bar{x}| \le \frac{1}{2^{n+1}}(b - a). \tag{3}$$

Звідси ж отримуємо нерівність для обчислення кількості ітерацій n для виконання умови (2):

$$n = n(\varepsilon) \ge \left[\log\left(\frac{b-a}{\varepsilon}\right)\right] + 1.$$

Степінь збіжності лінійна, тобто геометричної прогресії зі знаменником q = 1/2.

Переваги методу: простота, надійність. Недоліки методу: низька швидкість збіжності, метод не узагальнюється на системи.