

11th meeting of the BRICS Astronomy Working Group

13 to 17 October 2025

Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, São Paulo, Brasil

Multiwavelength Analysis of the Intermediate Polar Cataclysmic Variable IGR J17014-4306

Diego Carvalho

First Name:	Diego
Last Name:	Carvalho
Institution/Affiliation:	UNIVAP
Country of Residence:	Brasil
Preferred type of presentation	Poster
Will you attend in person or online?	_
Email	diegocarvalhodesouza@hotmail.com

Abstract

Cataclysmic variables (CVs) are the most abundant class of interacting binary systems containing compact stellar remnants, offering unique opportunities to investigate stellar evolution and accretion physics. Within this group, intermediate polars host magnetized white dwarfs and display rich variability signatures in both X-ray and optical domains. In this study, we present a multiwavelength investigation of the intermediate polar IGR J17014-4306. We employed X-ray spectral analysis using data from the NuSTAR, XMM-Newton, and Swift observatories, deriving key physical parameters such as the maximum temperature of the accretion column (kT_{max} = 50.3 \pm 5.5 keV), metallicity (0.56 \pm 0.10), mass accretion rate (9.7 \times 10⁻¹¹ M⊙/yr), and the equivalent radius of the emitting region (147 km). Time-series analysis of X-ray light curves was performed to explore the source's temporal variability. Additionally, optical photometric monitoring from the TESS satellite and spectroscopic observations with the SOAR telescope were analyzed to investigate light curve morphology and search for periodicities. The integration of these datasets enables a detailed characterization of the source, enhancing our understanding of accretion processes in magnetic CVs. Keywords: Stellar Astrophysics, Cataclysmic Variables, Intermediate Polars, X-ray Astronomy, Optical Spectroscopy, Photometry, Accretion