Intégration de données multi-omiques

Nous nous présentons

Comment en sommes-nous arrivés à intégrer des données ?

- Vincent Guillemot (Institut Pasteur) « pour programmer en R de nouvelles supers méthodes »
- Cathy Philippe (Neurospin) « on m'a forcée »
- Lucie Khamvongsa-Charbonnier (IFB) « je voulais voir ce qui se passait en cis et après »
- Rachel Legendre (Institut Pasteur) « Je connais bien Kohonen le barbare »

Neurospin

BAOBAB

MRI physics, image analysis, population imaging, imaging-genetics.

UNIACT

- Clinical neuroscience

UNICOG

Cognitive neuroscience

Biostatisticien au Hub

- Analyser des données biologiques de toute sorte
- Transmettre ses connaissances (statistiques, R, etc.)
- Rechercher et développer de nouvelles méthodes

Bâtiment Yersin

Objectif(s) de la journée

- Discuter autour de l'intégration de données
- Réviser l'ACP
- Faire « comme l'ACP » (aka RGCCA) mais avec plusieurs jeux de données
- Pouvoir appliquer RGCCA à des données multi-omiques
- Démystifier l'intégration

Intégration de données

Le contexte multi-omique

Transcription Factors

microRNAs

Credits: Laura Cantini.

https://doi.org/10.1016/bs.adgen.2015.11.004

Typologie de l'analyse intégrative

Nature Reviews | Genetics

Credits: Nathalie Vialaneix.

https://www.nature.com/articles/nrg3868

Le benchmark de Laura Cantini et al.

jDR approach	Underlying approach	Constraints on the factors	Features or samples matching requirements	Implementation
RGCCA	Canonical Correlation Analysis (CCA)	omics-specific factors	matching of samples	R package RGCCA
MCIA	Co-Inertia Analysis (CIA)	omics-specific factors	matching of samples	R package omicade4
MOFA	Factor Analysis (FA) (Bayesian)	mixed factors	matching of samples (partial matching allowed)	R code on github bioFAM/MOFA
MSFA	Factor Analysis (FA) (Bayesian)	mixed factors	matching of samples	R code on github rdevito/MSFA
intNMF	Non-Negative Matrix Factorization (NMF)	shared factors	matching of samples	R package intNMF
iCluster	Gaussian latent variable model	shared factors	matching of samples	R package iCluster
JIVE	Principal Component Analysis (PCA)	mixed factors	matching of samples (partial matching allowed)	R package r.jive
tICA	Independent Component Analysis (ICA)	shared factors	matching of both samples and features (tensor)	R scripts in supplementary material of Teschendorff et al.
Scikit-fusion	Matrix tri-factorization	shared factors	matching of samples	Python scripts on github marinkaz/scikit-fusion

Les gliomes malins pédiatriques

- Les tumeurs cérébrales malignes représentent 20 % des cancers pédiatriques
- Parmi elles, les tumeurs gliales sont les plus fréquentes (60%)
- Survie médiane de 12 à 14 mois
- Survie globale à 5 ans :
 20 %
- Traitement : exérèse chirurgicale + radiothérapie

Les gliomes malins pédiatriques

- Les tumeurs cérébrales malignes représentent 20 % des cancers pédiatriques
- Parmi elles, les tumeurs gliales sont les plus fréquentes (60%)
- Survie médiane de 12 à 14 mois
- Survie globale à 5 ans :
 20 %
- Traitement : exérèse chirurgicale + radiothérapie

Pourquoi une classification?

- Classification de référence : OMS 2007 (adultes)
 - Rôle histo-pronostique
 - Choix d'un traitement adapté
 - Optimisation de la prise en charge du patient

Tentatives de nouvelles classifications

Emplacement et niche tumorale

Hémisphère

Ligne médiane

Tronc cérébral

Critères d'inclusion

- Tumeur gliale primaire
- Grade OMS III et IV + relecture
- 0 < âge < 18 ans
- Toutes localisations
- ADN + ARN

N=53 patients Survie médiane = 17 mois

CGH et GE

Le jeu de données pHGG

gènes 1 ... 15702 1 patients .

Le jeu de données pHGG

gènes 1 ... 15702 1 patients

Le jeu de données pHGG

Questions

- Emplacement de la tumeur (hémisphères, ligne médiane, tronc cérébral)
 - Quels sont les gènes et les segments caractéristiques
 - de chaque localisation, qui pourraient nous renseigner
 - sur la cellule d'origine des tumeurs ?

Questions

- Emplacement de la tumeur (hémisphères, ligne médiane, tronc cérébral)
 - Quels sont les gènes et les segments caractéristiques
 - de chaque localisation, qui pourraient nous renseigner
 - sur la cellule d'origine des tumeurs ?

Survie globale

 L'expression des gènes et les aberrations du nombre de copies ont-elles une influence sur la survie globale ? si oui, laquelle ?

Questions

- Emplacement de la tumeur (hémisphères, ligne médiane, tronc cérébral)
 - Quels sont les gènes et les segments caractéristiques
 - de chaque localisation, qui pourraient nous renseigner
 - sur la cellule d'origine des tumeurs ?

Survie globale

 L'expression des gènes et les aberrations du nombre de copies ont-elles une influence sur la survie globale ? si oui, laquelle ?

Améliorer la classification des gliomes malins pédiatriques, notamment son pouvoir pronostique.

Méthodes d'intégration de données

Méthodes d'intégration de données

