Problem statement

Data collection

Importing libraries

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Importing dataset

In [2]:

data=pd.read_csv(r"C:\Users\user\Downloads\6_Salesworkload1 - 6_Salesworkload1.csv")
data

() i i +-	1 ')	
UILL	1 / 1	-
000		

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
•••		•••		•••					•••
7653	6.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	0.0 3
7654	6.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	0.0
7655	6.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	0.0
7656	6.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	0.0
7657	6.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	0.0 3

7658 rows × 14 columns

head

```
In [3]:  # to display first 8 dataset values
da=data.head(8)
da
```

Out[3]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease	Sale unit
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0	398560.
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0	82725.
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0	438400.
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0	309425.
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0	165515.
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0	1713310.
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0	3107935.
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0	213680.
4										>

info

In [4]:

to identify missing values
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7658 entries, 0 to 7657
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	MonthYear	7658 non-null	object
1	Time index	7650 non-null	float64
2	Country	7650 non-null	object
3	StoreID	7650 non-null	float64
4	City	7650 non-null	object
5	Dept_ID	7650 non-null	float64
6	Dept. Name	7650 non-null	object
7	HoursOwn	7650 non-null	object
8	HoursLease	7650 non-null	float64
9	Sales units	7650 non-null	float64
10	Turnover	7650 non-null	float64
11	Customer	0 non-null	float64
12	Area (m2)	7650 non-null	object

```
13 Opening hours 7650 non-null object dtypes: float64(7), object(7) memory usage: 837.7+ KB
```

describe

```
In [5]: # to display summary of the dataset
    data.describe()
```

Out[5]:		Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Customer
	count	7650.000000	7650.000000	7650.000000	7650.000000	7.650000e+03	7.650000e+03	0.0
	mean	5.000000	61995.220000	9.470588	22.036078	1.076471e+06	3.721393e+06	NaN
	std	2.582158	29924.581631	5.337429	133.299513	1.728113e+06	6.003380e+06	NaN
	min	1.000000	12227.000000	1.000000	0.000000	0.000000e+00	0.000000e+00	NaN
	25%	3.000000	29650.000000	5.000000	0.000000	5.457125e+04	2.726798e+05	NaN
	50%	5.000000	75400.500000	9.000000	0.000000	2.932300e+05	9.319575e+05	NaN
	75 %	7.000000	87703.000000	14.000000	0.000000	9.175075e+05	3.264432e+06	NaN
	max	9.000000	98422.000000	18.000000	3984.000000	1.124296e+07	4.271739e+07	NaN

columns

ut[7]:		MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease	Sale unit
	0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0	398560.
	1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0	82725.
	2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0	438400.
	3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0	309425.
	4	10.2016	1.0	United	88253.0	London	5.0	Fruits &	1759.173	0.0	165515.

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease	Sale unit
			Kingdom		(I)		Vegetables			
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0	1713310.
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0	3107935.
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0	213680.

EDA and Visualization

```
In [9]: sns.pairplot(da)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x1ef5ac87100>

distribution plot

```
In [10]: sns.displot(a['Turnover'])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1ef5c9be460>

correlation

Out[11]: <AxesSubplot:>

To train the model-Model Building

```
In [13]:
           # to split my dataset into training and test data
          from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [14]:
           from sklearn.linear_model import LinearRegression
           lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]:
           print(lr.intercept_)
          6.0
In [16]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[16]:
                  Co-efficient
          StoreID
                         0.0
In [17]:
           prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x1ef5e9eeb50>
          6.3
          6.2
          6.1
          6.0
          5.9
          5.8
          5.7
                      2.5
                              3.0
                                     3.5
                                             4.0
                                                    4.5
              2.0
                                                            5.0
In [18]:
           print(lr.score(x_test,y_test))
          -3.5000000000000001
In [19]:
          lr.score(x_train,y_train)
Out[19]: 0.0
```

Ridge regression

```
In [20]: from sklearn.linear_model import Ridge,Lasso

In [21]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
    rr.score(x_test,y_test)

Out[21]: -3.5000000000000001

In [22]: rr.score(x_train,y_train)

Out[22]: 0.0
```

Lasso regression

```
In [23]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
          la.score(x train,y train)
Out[23]: 0.0
In [24]:
          la.score(x test,y test)
         -3.5000000000000001
Out[24]:
In [25]:
          from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[25]: ElasticNet()
In [26]:
          print(en.coef_)
         [0.]
In [27]:
          print(en.intercept_)
         6.0
In [28]:
          predict=en.predict(x_test)
In [29]:
          print(en.score(x_test,y_test))
```

-3.5000000000000001