Rank-65613 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431659933

General information

Number of lines	11
Number of points	33
Number of singular points	2
Number of Eckardt points	0
Number of double points	15
Number of single points	16
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{11}
Type of lines on points	$5, 4, 2^{15}, 1^{16}$

Singular Points

The surface has 2 singular points:

$$\begin{aligned} 0: \ P_2 &= \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0) \\ 1: \ P_{23} &= \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1) \end{aligned}$$

The 11 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{PI}(0,1,1,0,0,0)_{6}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{341} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{341} = \mathbf{PI}(0,1,0,0,0,1)_{105}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & \omega^{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{351} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{351} = \mathbf{PI}(0,3,0,0,0,1)_{107}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & \omega \\ 0 & 0 & 1 & 0 \end{bmatrix}_{346} = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{346} = \mathbf{PI}(0,2,0,0,0,1)_{106}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \mathbf{PI}(1,1,0,0,1,1)_{177}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & \omega^{2} & 0 \\ 0 & 1 & 0 & \omega^{2} \end{bmatrix}_{75} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix}_{75} = \mathbf{PI}(2,3,0,0,1,1)_{178}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & 0 & \omega \end{bmatrix}_{50} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}_{50} = \mathbf{PI}(3,2,0,0,1,1)_{179}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \mathbf{PI}(1,1,1,1,1,0)_{74}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & \omega^{2} & \omega \end{bmatrix}_{95} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 3 & 2 \end{bmatrix}_{95} = \mathbf{PI}(3,2,2,3,1,0)_{97}$$

$$\ell_{10} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & \omega & \omega^{2} \end{bmatrix}_{98} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}_{98} = \mathbf{PI}(2,3,3,2,1,0)_{90}$$

Rank of lines: (16, 100, 341, 351, 346, 25, 75, 50, 89, 95, 98) Rank of points on Klein quadric: (2, 6, 105, 107, 106, 177, 178, 179, 74, 97, 90)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 15 Double points: The double points on the surface are:

$$\begin{array}{lll} P_8 = (1,0,1,0) = \ell_0 \cap \ell_5 & P_{65} = (0,3,2,1) = \ell_4 \cap \ell_9 \\ P_9 = (2,0,1,0) = \ell_0 \cap \ell_6 & P_{76} = (3,1,3,1) = \ell_5 \cap \ell_9 \\ P_{10} = (3,0,1,0) = \ell_0 \cap \ell_7 & P_{59} = (2,1,2,1) = \ell_5 \cap \ell_{10} \\ P_{26} = (0,1,0,1) = \ell_2 \cap \ell_5 & P_{64} = (3,2,2,1) = \ell_6 \cap \ell_8 \\ P_{42} = (0,1,1,1) = \ell_2 \cap \ell_8 & P_{47} = (2,2,1,1) = \ell_6 \cap \ell_9 \\ P_{30} = (0,2,0,1) = \ell_3 \cap \ell_6 & P_{83} = (2,3,3,1) = \ell_7 \cap \ell_8 \\ P_{77} = (0,2,3,1) = \ell_3 \cap \ell_{10} & P_{52} = (3,3,1,1) = \ell_7 \cap \ell_{10} \\ P_{34} = (0,3,0,1) = \ell_4 \cap \ell_7 & P_{52} = (3,3,1,1) = \ell_7 \cap \ell_{10} \end{array}$$

Single Points

The surface has 16 single points: The single points on the surface are:

```
\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_4 = (1,1,1,1) \ \text{lies on line} \ \ell_5 \\ 2: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_8 \\ 3: \ P_{18} = (3,2,1,0) \ \text{lies on line} \ \ell_9 \\ 4: \ P_{21} = (2,3,1,0) \ \text{lies on line} \ \ell_{10} \\ 5: \ P_{39} = (1,0,1,1) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_3 \\ 7: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_4 \\ 8: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_1 \end{array}
```

9: $P_{57} = (0, 1, 2, 1)$ lies on line ℓ_2 10: $P_{61} = (0, 2, 2, 1)$ lies on line ℓ_3 11: $P_{66} = (1, 3, 2, 1)$ lies on line ℓ_7 12: $P_{70} = (1, 0, 3, 1)$ lies on line ℓ_1 13: $P_{73} = (0, 1, 3, 1)$ lies on line ℓ_2 14: $P_{78} = (1, 2, 3, 1)$ lies on line ℓ_6 15: $P_{81} = (0, 3, 3, 1)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456789	10
0	0111111100	
1	1011100011	1
	1101110010	
3	1110101000	1
	1111000101	
	1010000001	
	1001000011	
7	1000100010	1
8	0110001101	1
9	0100111010	1
10	0101010111	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_2	P_2	P_2	P_2	P_8	P_9	P_{10}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_8	ℓ_9	ℓ_{10}
in point	P_2	P_2	P_2	P_2	P_{23}	P_{23}	P_{23}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_8
in point	P_2	P_2	P_2	P_2	P_{26}	P_{42}

 ${\bf Line~3~intersects}$

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4	ℓ_6	ℓ_{10}
in point	P_2	P_2	P_2	P_2	P_{30}	P_{77}

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_7	ℓ_9
in point	P_2	P_2	P_2	P_2	P_{34}	P_{65}

Line 5 intersects

Line	ℓ_0	ℓ_2	ℓ_9	ℓ_{10}
in point	P_8	P_{26}	P_{76}	P_{59}

Line 6 intersects

Line	ℓ_0	ℓ_3	ℓ_8	ℓ_9
in point	P_9	P_{30}	P_{64}	P_{47}

Line 7 intersects

Line	ℓ_0	ℓ_4	ℓ_8	ℓ_{10}
in point	P_{10}	P_{34}	P_{83}	P_{52}

Line 8 intersects

Line	ℓ_1	ℓ_2	ℓ_6	ℓ_7	ℓ_9	ℓ_{10}
in point	P_{23}	P_{42}	P_{64}	P_{83}	P_{23}	P_{23}

Line 9 intersects

Line	ℓ_1	ℓ_4	ℓ_5	ℓ_6	ℓ_8	ℓ_{10}
in point	P_{23}	P_{65}	P_{76}	P_{47}	P_{23}	P_{23}

Line 10 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_7	ℓ_8	ℓ_9
in point	P_{23}	P_{77}	P_{59}	P_{52}	P_{23}	P_{23}

= (0, 3, 2, 1) = (1, 3, 2, 1) = (1, 0, 3, 1) = (0, 1, 3, 1) = (3, 1, 3, 1) = (0, 2, 3, 1) = (1, 2, 3, 1) = (0, 3, 3, 1) = (2, 3, 3, 1)

The surface has 33 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$12: P_{34} = (0, 3, 0, 1)$	$24: P_{65}:$
$1: P_2 = (0,0,1,0)$	$13: P_{39} = (1,0,1,1)$	$25: P_{66}:$
$2: P_4 = (1, 1, 1, 1)$	$14: P_{42} = (0, 1, 1, 1)$	$26: P_{70}:$
$3: P_8 = (1,0,1,0)$	$15: P_{45} = (0, 2, 1, 1)$	$27: P_{73}:$
$4: P_9 = (2,0,1,0)$	$16: P_{47} = (2, 2, 1, 1)$	$28: P_{76}:$
$5: P_{10} = (3,0,1,0)$	17: $P_{49} = (0, 3, 1, 1)$	$29: P_{77}:$
$6: P_{12} = (1, 1, 1, 0)$	$18: P_{52} = (3, 3, 1, 1)$	$30: P_{78}:$
$7: P_{18} = (3, 2, 1, 0)$	$19: P_{54} = (1, 0, 2, 1)$	$31: P_{81}:$
$8: P_{21} = (2,3,1,0)$	$20: P_{57} = (0, 1, 2, 1)$	$32:P_{83}:$
9: $P_{23} = (1,0,0,1)$	$21: P_{59} = (2, 1, 2, 1)$	
$10: P_{26} = (0, 1, 0, 1)$	$22: P_{61} = (0, 2, 2, 1)$	
11: $P_{30} = (0, 2, 0, 1)$	$23: P_{64} = (3, 2, 2, 1)$	