CS 206 Homework 6

Fall 2020

- 1. We conduct an experiment of counting the number of tosses of a fair coin until getting three consecutive heads. We record the flips until we get three heads (for example, HTTTTHHH). Let's define a geometric random variable X that represents the number of tosses of a fair coin until we get three consecutive heads. Possible values for X are positive integers, such as $x \in \{1, 2, 3, 4...\}$.
 - (a) Enumerate all possible outcomes with length 3, 4, 5, or 6.
 - (b) These records give us a sample space Ω , and we can decompose Ω into four sets:
 - $A_1 = \{(H, H, H)\}$
 - $A_2 = \{(T, *, *, ..., *)\}$ (e.g., all records starting with T)
 - $A_3 = \{(H, T, *, *, ..., *)\}$ (e.g., all records starting with H, T)
 - $A_4 = \{(H, H, T, *, *, ..., *)\}$ (e.g., all records starting with H, H, T)

Please compute $\mathbb{P}(A_1)$, $\mathbb{P}(A_2)$, $\mathbb{P}(A_3)$, and $\mathbb{P}(A_4)$.

(E.g., $\mathbb{P}(A_2)$ is the probability that a randomly chosen record is in the set A_2 .)

- (c) Please find $\mathbb{E}[X]$ using these four decompositions.
 - Hint: You could write an equation using $\mathbb{E}[X]$, $\mathbb{E}[X+1]$, $\mathbb{E}[X+2]$, and $\mathbb{E}[X+3]$.
- 2. Suppose you design an algorithm to multiply two n-bit integers x and y. The general multiplication technique takes $T(n) = \mathcal{O}(n^2)$ time. For a more efficient algorithm, you first split each of x and y into their left and right halves, which are n/2 bits long. For example, if $x = 10001101_2$, then $x_L = 1000_2$ and $x_R = 1101_2$, and $x = 2^4 \cdot x_L + x_R$. Then the product of x and y can be re-written as the following:

$$x \cdot y = 2^n \cdot (x_L \cdot y_L) + 2^{n/2} \cdot (x_L \cdot y_R + x_R \cdot y_L) + (x_R \cdot y_R)$$

- (a) Based on the rewritten multiplication formula, write a recurrence relation for T(n), where all running time of summations/subtractions can be approximated by $\mathcal{O}(n)$. By using the Master theorem, find the $\mathcal{O}(\cdot)$ running time.
- (b) A clever person remarks that

$$(x_L \cdot y_R + x_R \cdot y_L) = (x_L + x_R) \cdot (y_L + y_R) - (x_L \cdot y_L) - (x_R \cdot y_R)$$

and this can be used to improve your recursion process. How does it change your recursion equation? Please write a new recurrence and use the Master theorem to find the corresponding $\mathcal{O}(\cdot)$.

3. Suppose a plant puts out a new shoot, and that shoot has to grow two months before it is strong enough to support branching. If it branches every month after that at the growing point, write a recursion equation to describe number of branches after n months, B(n), and find its closed form, where B(1) = 1 and B(2) = 1.

(Note: your answer should be more than just "this looks like X, which has closed form Y". If you think it's X, you should prove/derive that.)

See the following diagram of the plant at months n=0 through n=5:

