```
Homework 3
Problem 1
3^{220}mod221 = 55 following our modulus exponentiation algorithm. 220_{10}=11011100_2
W=3
b0=0
      Z=1
W=(3*3)mod221=9
b1=0
      Z=1
W=(9*9)mod221=81
b2=1
      Z=(1*81)mod221=81
W=(81*81)mod221=152
b3=1
      Z=(81*152)mod221=157
W=(152*152)mod221=120
b4=1
      Z=(157*120)mod221=55
W=(120*120)mod221=35
b5=0
      Z=55
```

W=(35*35)mod221=120

b6=1

Z=(55*120)mod221=191

W=(120*120)mod221=35

b7=1

Z=(191*35)mod221=55

W=(35*35)mod221=120

55

Problem 2

 $3^{101}+8^{101}$ is evenly divisible by 11.

5 +6 is everify divisible by 11.	
Z=1	Z=1
W=3	W=8
b0=1	b0=1
Z=(1*3)mod11=3	Z=(1*8)mod11=8
W=(3*3)mod11=9	W=(8*8)mod11=9
b1=0	b1=0
Z=3	Z=8
W=(9*9)mod11=4	W=(9*9)mod11=4
b2=1	b2=1
Z=(3*4)mod11=1	Z=(8*4)mod11=10
W=(4*4)mod11=5	W=(4*4)mod11=5
b3=0	b3=0
Z=1	Z=10
W=(5*5)mod11=3	W=(5*5)mod11=3
b4=0	b4=0
Z=1	Z=10
W=(3*3)mod11=9	W=(3*3)mod11=9
b5=1	b5=1
Z=(1*9)mod11=9	Z=(10*9)mod11=2
W=(9*9)mod11=4	W=(9*9)mod11=4
b6=1	b6=1
Z=(9*4)mod11=3	Z=(2*4)mod11=8
W=(4*4)mod11=5	W=(4*4)mod11=5
3	8
Thus, 3 ¹⁰¹ mod11 = 3	Thus, 8 ¹⁰¹ mod11 = 8

Based on the substitution rule of modular congruence which says if for integers A, B, C, D, N, if A \equiv C mod N and B \equiv D mod N, then A+B \equiv C+D mod N. I have shown that 3^{101} \equiv 3 mod 11 and that 8^{101} \equiv 8 mod 11. So 3^{101} + 8^{101} \equiv 3+8 mod 11 or 11 mod 11 which is 0 and 11| 3^{101} + 8^{101} with no remainder.

Problem 3

The greatest common divisor of x=392 and y=105 can be calculated with Euclid's Algorithm. $gcd(392, 105) = gcd(105, 392 \mod 105) = gcd(105, 77) = gcd(77, 105 \mod 77) = gcd(77, 28) = gcd(28, 77 \mod 28) = gcd(28, 21) = gcd(21, 28 \mod 21) = gcd(21, 7) = gcd(7, 21 \mod 7) = gcd(7, 0) -> thus 7 is the greatest common divisor of both 392 and 105.$

Part 1.

Does 105^{-1} mod 392 exist? gcd(392, 105) = 7. Thus 392 and 105 are not relatively prime, so no inverse exists for 105^{-1} =1mod392.

Kipling Gillespie CS 315

Part 2.

Since the greatest common divisor isn't 1 we can do this simply without using the extended Euclid's algorithm. X = 105/7 = 15. -> 392y + 105*15 = 7 -> 392y = 7 - 105*15 -> y = (7 - 105*15)/392 = -4 Thus 105*15 + (-4)392 = 7. X = 15, and Y = -4.

Part 3.

According to Bezout's identity, the greatest common divisor of a and b is also the smallest positive linear combination of the form ax+by = d where d is the greatest common divisor. Since the gcd(392, 105) = 7 and 1<7, there are no integers x, and y where 105x+392y=1.