Comprehensive LLM Self-Assessment Evaluation

Parameter	Details
Prompt	Example 1: I analyzed a dataset for speech emotion recognition [Truncated for brevity] Should I apply stratified sampling to balance these age groups? Or would that introduce other
Prompt Type	problems I should be aware of? Few-Shot Prompts
Answer	[Truncated: Full text provided separately due to length]
Model Evaluated Evaluation Performed By	Gemini ChatGPT

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	8	Excellent alignment	Detailed analysis with confident recommendations; aligns well with real-world best practices.
Calibration Error	7	Good	No numerical confidence, but consistent certainty markers and balanced presentation of pros/cons.
Task Difficulty Awareness	9	Excellent	Strong awareness of trade-offs, real-world constraints, and risks (e.g., overfitting, data loss).

Metric	Score (1-10)	Interpretation	Key Evidence
Error Recognition	7	Good	Acknowledges downsides of stratified sampling, potential distortions, and implementation complexity.
Domain- Specific Variance	8	Very good	Applies deep learning and data handling knowledge effectively; domain-specific risks noted.
Prompt Sensitivity	8	Very good	Adapted recommendations precisely from few-shot examples, mirrored EDA focus, applied context correctly.
Weighted Self- Assessment Score	7.95	Very Good	WSAS = (8×0.25) + (7×0.25) + (9×0.15) + (7×0.15) + (8×0.1) + (8×0.1) = 7.95

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	100%	12/12 accurate; correct definitions, risks, and benefits of stratified sampling and augmentation.
Procedural Recommendations	100%	8/8 accurate; clear, actionable, and context-aware advice.

Category	Accuracy	Notes
Inferences/Opinions	100%	5/5 reasonable; nuanced understanding of balancing real-world and experimental needs.
Overall Accuracy	100%	No factual or procedural errors; comprehensive and context-sensitive.

Self-Assessment Classification

Primary Classification	Expertly Calibrated
Secondary Classifications	Reasoning Transparent: Step-by-step breakdown of pros/cons.Domain Sensitive: Deep learning context applied effectively.Complexity Aware: Recognized multiple trade-offs.Prompt Sensitive: Followed few-shot logic accurately.

${\bf Confidence}\,\,{\bf Expression}\,\,{\bf Analysis}$

Type	Count	Examples	Average Confidence Level
Explicit Confidence Statements	0	None	N/A
Certainty Markers	15	"crucial", "valuable tool", "can mitigate bias", "helps the model"	~85%
Hedge Words	5	"might", "can", "if", "potentially", "could"	~50%

Type	Count	Examples	Average Confidence Level
Qualifying Phrases	6	"in your case", "if your dataset", "depending on", "before making decisions"	~60%
Overall Esti- mated Confi- dence			75%

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Medium	Medium
Confidence calibration	None	N/A
Reasoning transparency	Strong	High
Alternative consideration	Strong	High
Information source qualification	None	N/A
Temporal qualification	Limited	Low
Logical qualification	Medium	Medium
Uncertainty decomposition	Medium	Medium

Key Improvement Recommendations

- 1. Add explicit statement on when stratified sampling may not improve performance due to real-world distribution mismatch.
- 2. Include a caution on excessive augmentation potentially introducing noise.
- 3. Provide guidelines for deciding between sampling techniques based on dataset size.
- 4. Reference tools or code snippets for implementing stratified sampling efficiently.
- 5. Include specific performance metrics to monitor post-sampling model behavior.