# Towards Nonmonotonic Relational Learning from Knowledge Graphs

Hai Dang Tran<sup>1</sup>, Daria Stepanova<sup>1</sup>, Mohamed Gad-elrab<sup>1</sup>, Francesca A. Lisi<sup>2</sup>, Gerhard Weikum<sup>1</sup>

{htran,dstepano,gadelrab,weikum}@mpi-inf.mpg.de, francesca.lisi@uniba.it



<sup>1</sup>Max Planck Institute for Informatics, Saarbrücken, Germany <sup>2</sup>Università degli Studi di Bari "Aldo Moro", Bari, Italy



### 1. Motivation

Knowledge Graphs: huge collections of triples encoding un(bin-)ary facts under Open World Assumption \( \alice is Married To bob \), \( \lambda mat type researcher \) isMarriedTo(alice,bob) researcher(mat)



→ Ann — hasBrother John isMarriedTo Kate

- Automatically constructed, thus incomplete / inaccurate
- ► Horn rule mining to complete / clean KGs e.g., [Galaraga, *et al.*, 2015]
- But: exceptions are not captured by Horn rules, thus erroneous predictions
- ► Aim of this work: methods for nonmonotonic rule learning from KGs under OWA
- ► Challenges: OWA, huge size of KGs

Researcher

Amsterdam

#### **▶** Contributions:

- Quality-based Horn theory revision framework
- Exception ranking method based on cross-talk among the rules
- Preliminary experiments on a real-world KG

### 3. Approach Overview



### 5. Exception Ranking

$$r_1 \dots \{\underline{e_1}|e_2|e_3|\dots\}$$
 $r_2 \dots \{\underline{e_1}|\underline{e_2}|e_3|\dots\}$ 
 $r_3 \dots \{\underline{e_1}|e_2|e_3|\dots\}$ 

- ▶ Naive: pick for  $r \in \mathcal{R}_H$  a revision r' with the highest  $conv(r', \mathcal{G})$
- Partial materialization: first cautiously materialize all rules with all of their exception candidates from  $\mathcal{R}_H \backslash r$ , get a KG  $\mathcal{G}'$ , and then pick a revision r' for r with the highest  $\frac{conv(r',\mathcal{G}')+conv(r'^{aux},\mathcal{G}')}{r'}$
- Ordered partial materialization: same as partial materialization, but materialize only rules ordered higher than r based on conv

## 7. References

- ► Fast Rule Mining in Ontological Knowledge Bases with AMIE+ *VLBD journal*, 2015.
- ► S. Wrobel. First Order Theory Refinement In proc. *Advances in Inductive Logic Programming*, 1996.
- Gad-elrab, D. Stepanova, J. Urbani, G. Weikum. Exception-enriched Rule Learning from Knowledge Graphs In proc. ISWC, 2016.

#### 2. Problem Statement

# **Quality-based Horn Theory Revision (QHTR)**

#### Given:

- Knowledge Graph G
- ightharpoonup Set of Horn rules  $\mathcal{R}_H$

#### Find:

- Nonmonotonic revision  $\mathcal{R}_{NM}$ , s.t.
  - conflicting predictions made by  $\mathcal{R}_{NM}^{aux}$  are minimal
  - average conviction is maximal  $conv(r, \mathcal{G}) = rac{1 - supp(r, \mathcal{G})}{1 - conf(r, \mathcal{G})}$



**Conflicting predictions:** 

$$\mathcal{R}_{NM}^{\mathsf{Amsterdam}}$$
 
$$\mathcal{R}_{NM}^{\mathsf{aux}} = \begin{cases} r_1 : \mathit{livesIn}(X,Z) \leftarrow \mathit{isMarriedTo}(Y,X), \mathit{livesIn}(Y,Z), \mathit{not} \ \mathit{res}(X) \\ r_1^{\mathit{aux}} : \mathit{not\_livesIn}(X,Z) \leftarrow \mathit{isMarriedTo}(Y,X), \mathit{livesIn}(Y,Z), \mathit{res}(X) \\ r_2 : \mathit{livesIn}(X,Z) \leftarrow \mathit{bornIn}(X,Z), \mathit{not} \ \mathit{emmigrant}(X) \\ r_2^{\mathit{aux}} : \mathit{not\_livesIn}(X,Z) \leftarrow \mathit{bornIn}(X,Z), \mathit{emmigrant}(X) \end{cases}$$

 $\{livesIn(c,d), not\_livesIn(c,d)\} \in \mathcal{G}_{\mathcal{R}_{NM}^{aux}}$  are conflicting predictions

**Intuition:** researcher might be a strong exception for  $r_1$ , but application of  $r_2$  to the KG could weaken it; less conflicts less weak exceptions

### 4. (Ab)normal Substitutions and Exception Candidates



 $r: livesIn(X,Z) \leftarrow isMarriedTo(Y,X), livesIn(Y,Z) \{not\ researcher(X) | not\ artist(Y)\}$ exception candidates

### 6. Preliminary Experiments

- ▶  $\mathcal{G}_{appr}^{i}$ : IMDB (movie) ≈600.000 facts, ≈40 relations
- $\triangleright$   $\mathcal{G}$ : random. rem. 20% from  $\mathcal{G}_{appr}^{i}$  for every relation
- $ightharpoonup \mathcal{R}_H: h(X,Y) \leftarrow p(X,Z), q(Z,Y)$  mined from  $\mathcal{G}$
- ightharpoonup Exception types:  $e_1(X), e_2(Y), e_3(X, Y)$
- ► OPM ranker, predictions are computed by answer set solver dlv

| k  | avg. conv.      |                    | confl.             | number of predictions |                             |                    |                             |                                        |                             |
|----|-----------------|--------------------|--------------------|-----------------------|-----------------------------|--------------------|-----------------------------|----------------------------------------|-----------------------------|
|    |                 |                    |                    | $\mathcal{K}_H$       |                             | $\mathcal{R}_{NM}$ |                             | $\mathcal{R}_H$ not $\mathcal{R}_{NM}$ |                             |
|    | $\mathcal{R}_H$ | $\mathcal{R}_{NM}$ | $\mathcal{R}_{NM}$ | all                   | in $\mathcal{G}_{appr}^{i}$ | all                | in $\mathcal{G}_{appr}^{i}$ | false √                                | in $\mathcal{G}_{appr}^{i}$ |
| 5  | 4.08            | 6.16               | 0.28               | 345                   |                             | 331                | 156                         |                                        | 14                          |
| 10 | 2.91            | 4.21               | 0.08               | 2178                  | 456                         | 2118               | 450                         | 27                                     | 33                          |
| 15 | 2.5             | 3.42               | 0.09               | 3482                  | 629                         | 3348               | 622                         | 86                                     | 48                          |
| 20 | 2.29            | 3.0                | 0.13               | 5278                  | 848                         | 5046               | 835                         | 157                                    | 75                          |

Table: Top k rule revision results

# **Examples of mined rules:**



Appr. ideal KG  $\mathcal{G}_{appr}^{i}$ 

 $\mathcal{R}_{\mathit{NM}}$  predictions

 $\mathcal{R}_H$  predictions  $(\mathcal{G}_{\mathcal{R}_H})$ 

 $r_1: writtenBy(X,Z) \leftarrow hasPredecessor(X,Y), writtenBy(Y,Z), not American_film(X)$  $r_2: actedIn(X, Z) \leftarrow isMarriedTo(X, Y), directed(Y, Z), not is\_silent\_film\_actor(X)$