Quiz 2.2	– Enthalpy
----------	------------

Name: Key

Ideal Gas Heat Capacities

- \circ Give the constant pressure heat capacities (in the low temperature limit) for perfect gases with the following geometries:
 - 1. Monoatomic $\frac{5}{2}$
 - 2. Linear Diatomic $\frac{7}{1}$ R
 - 3. Non-linear Polyatomic \mathcal{A}

Definition of Enthalpy

• What is the mathematical equation which relates enthalpy to internal energy?

 \circ Under what conditions is $\Delta_{rxn}Upprox \Delta_{rxn}H$

Angus = Ø, or even better, no gases ortall involved

Pressure-Volume Work

 \circ A gas expands under isobaric conditions at 0.75~atm from 0.50~L to 2.75~L. What is the work done (from the perspective of the system)?

W=-PAV =- 0.75 atm. 2.25L = -1.6875 Latm (101.35) = -17/ J

o A pressurized tank with $V=15.0\,L$ contains a gas at $140.0\,atm$. The tank is slowly leaking its gas into the atmosphere with a barometric pressure of $0.82\,atm$. The leak is slow enough that the temperature remains constant throughout. What is the total work (w_{sys}) for the gas as it leaks? (Note that although this process is isothermal, it is not reversible since $p\neq p_{ext}$)

 $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ atm}} = 2,561 \text{ L} \rightarrow \Delta V = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ L}} = 2.546L$ $V_{f} = V_{L} P_{L} = \frac{15.0L \cdot 140.0 \text{ atm}}{0.8 \text{ L}} = 2.546L$ $V_{f} = V_{L} P_{L} = 2.546L$ $V_{f} = V_{L} P_{L$

o A similar tank to the one above is mounted on the exterior of the international space station. This tank also experiences a leak like the one above. What is the total work (w_{sys}) for the gas as it leaks? (Note that although this process is isothermal, it is not reversible since $p \neq p_{ext}$)

In space, pex = 0, So NO work is done