

Deep Learning

Content

- Vanishing Gradient & Activation Functions
- Dropout
- Batch Normalization

Gradient Vanishing & Activation Functions

Gradient Vanishing & Exploding

Gradient is easy to vanish or explode

- To many terms are multiplied.
- If some are small numbers, gradient becomes very small.
- If some are large numbers, gradient becomes very large.

Vanishing Gradient

The major terms are the derivatives of the activation function

Using another functions instead of sigmoid

Rectified Linear Unit (ReLU)

$$f(x) = \begin{cases} x & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Advantage

- No vanishing gradient problems.
 - Deep networks can be trained without pre-training
- Sparse activation
 - In a randomly initialized network, only about 50% of hidden units are activated
- Fast computation:
 - 6 times faster than sigmoid function

Disadvantage

Knockout Problem

You may use another

Leaky ReLU

$$f(x) = \begin{cases} x & \text{if } x > 0\\ 0.01x & \text{otherwise} \end{cases}$$

Swish (or SiLU-Sigmoid Linear Unit)

$$f(x) = \frac{x}{1 + e^{-x}}$$

Other Activation Functions

Summary

- Sigmoid functions and their combinations generally work better but are sometimes avoided due to the vanishing gradient problem
- ReLU function is a general activation function and is used in most cases these days
- If we encounter a case of dead neurons in our networks the leaky ReLU function is the best choice
- ReLU function is usually used in the hidden layers
- As a rule of thumb, you can begin with using ReLU function and then move over to other activation functions in case ReLU doesn't provide with optimum results

Regularization

Overfitting

Overfitting

Regularization

What is Regularization

Introducing additional information to prevent over-fitting

Approaches

Proper Learning: Early stopping

Proper Structure: Weight decay, Dropout,

DropConnect, Stochastic pooling

Early Stopping

Split data into 3 groups

of updates

Training Error

L1 Regularization

- Leading most weights very close to zero
- Choosing a small subset of most important inputs
- Resistant to noise in the inputs.

$$\widetilde{E}(\mathbf{w}) = E(\mathbf{w}) + \frac{\lambda}{2} |\mathbf{w}|$$

L2 Regularization

- Penalizing peaky weights
- Encouraging to use all of its inputs a little rather than using only some of its inputs a lot.

$$\widetilde{E}(\mathbf{w}) = E(\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

Complex Structure vs Simple Structure

Node Pruning

Link Pruning

Complex Structure vs Simple Structure

Set many links to zero

|w| is large <-> NN is Complex

|w| is small \leftarrow NN is Simple

Example: Separating green and red

L2 regularization strengths of 0.01, 0.1, and 1

In a complex Neural Network

- All nodes do not take the same amount of responsibility
 - While training, some nodes are correlated
- All nodes are not equally trained
 - Some nodes are trained much, but some are not

- If the output of the node is bad, the connection weight will decrease.
- If connection weight is close to 0, precedent connection weights are hardly trained.

How can we reduce the structural complexity?

- Let's simply remove some nodes, and
- Train the simplified neural network
- Hmm??

Do this at every epoch

- Randomly choose nodes with a probability of p
 - Usually p = 0.5
- Train the simplified neural network
 - At every epoch, we train different neural network which share connection weight each other

Testing

Use all the nodes without dropout

Testing

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

The effect of the dropout rate p:

- An architecture of 784-2048-2048-2048-10 is used on the MNIST dataset.
- The dropout rate p is changed from small numbers (most units are dropped out) to 1.0 (no dropout).

The effect of data set size:

 An architecture of 784-1024-1024-2048-10 is used on the MNIST dataset.

Summary

- Dropout is a very good and fast regularization method.
- Dropout is a bit slow to train (2-3 times slower than without dropout).
- If the amount of data is average-large dropout excels.
 When data is big enough, dropout does not help much.
- Dropout achieves better results than former used regularization methods (Weight Decay).

Covariate Shift

A change in the distribution of a function's domain.

– Can your model work properly?

Internal Covariate Shift

Input distribution of the red node

- While learning, red connection weights will change based on the input distribution
- After learning, the whole connection weights changes, which cause the change of the input distribution

The assumption of the learning is broken

Internal Covariate Shift

- It disturbs the learning process,
- Learning is getting slow down

What shall we do?

Why don't we normalize the distribution of inputs

For a Single Node

Testing

- For Training, the mean and variance of each batch are used for normalization
- For Testing, of which data the mean and variance will be used?
 - Estimated with those of batches in the training

Advantage

- Reduces internal covariant shift.
- Reduces the dependence of gradients on the scale of the connection weights.
- Regularizes the model and reduces the need for regularization techniques.
 - It adds some stochastic noise to the activations as a result of using noisy estimates computed on the mini-batches. This has a regularization effect in some applications,

Performance with BN

Disadvantage

- Expensive: Memory and time
 - Must keep interim results of all instances in a batch
 - Especially in CNN, usually an image is large
- Hard to apply when the batch size is small
 - If batches are small, the means and variances cannot approximate the global ones.
- Hard to apply to recurrent networks
 - It doesn't match to structure of recurrent networks
 - Hard to implement with recurrent networks

Recap: Batch Normalization

Normalization of each node output

Batch normalization

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{ij}
\sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{ij} - \mu_{j})^{2}
\hat{x}_{ij} = \frac{x_{ij} - \mu_{j}}{\sqrt{\sigma_{j}^{2} + \epsilon}}$$

i, j: index of the batch and the node of hidden layers

Recap: Batch Normalization

Normalization of each node output

Proposed as an alternative to Batch Normalization

- Works regardless of batch size (batch size = 1)
- Performs well with RNNs

Layer normalization:

$$\mu_{i} = \frac{1}{m} \sum_{j=1}^{m} x_{ij}
\sigma_{i}^{2} = \frac{1}{m} \sum_{j=1}^{m} (x_{ij} - \mu_{i})^{2}
\hat{x}_{ij} = \frac{x_{ij} - \mu_{i}}{\sqrt{\sigma_{i}^{2} + \epsilon}}$$

i, j: index of the batch and the node of hidden layers

Group Normalization shows consistent accuracy with smaller batches

Tested on ImageNet (1000 Classes, 1.28M training, 50K validation), ResNet-50

