МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Факультет прикладной математики, информатики и механики Кафедра прикладной механики и информатики

Отчет по лабораторной работе №3

на тему:

«Численные исследования способов приближения функции методом наименьших квадратов при увеличении степени многочлена»

Выполнил: студент 3 к. 1 гр. ПМИ в.о.

Бедарев Анатолий Андреевич

Проверил: к.ф-м.н, доц.

Гудович Николай Николаевич

Содержание

Постановка задачи	3
Указания к выполнению лабораторной работы	4
Ход выполнения работы	6
Выводы по работе	15
Список литературы	16
Приложение (листинг)	17

Постановка задачи

- 1. Составить и отладить программу приближенного нахождения значения функции с использованием полинома рассчитанного методом наименьших квадратов. Запрограммировать вычисление аппроксимирующего многочлена в произвольной точке х* отрезка [a, b] следующими тремя способами:
- непрерывным способом;
- дискретным способом;
- полудискретным способом (с использованием квадратурных формул приближенного вычисления формулы трапеций и формулы Симпсона).

Входные данные:

- отрезок [a, b];
- функция F(x), по которой производится расчет значений в узлах интерполяции (значения которой приближаются интерполяционным многочленом)

$$F(x) = \frac{1-x}{1+x^2}, x \in [-1;2]; (1)$$

- произвольная точка x^* отрезка [a, b], для которой считается значение интерполяционного многочлена.

В программе предусмотреть вычисление набора узловых точек x_0 , x_1 , ..., x_n (считать равноотстоящими друг от друга на отрезке [a, b]).

Выходные данные:

- значение многочлена в точке x^* (приближенное значение функции, $P_n(x^*)$).
- **2**. Составить и отладить программу построения графиков исходной функции F(x) и ее аппроксимирующего полинома $P_n(x)$, построенного по равноотстоящим узлам аппроксимации на отрезке [a, b] тремя указанными способами.
- 3. Провести численный эксперимент для выяснению вопроса о сходимости графика аппроксимирующего полинома к графику исходной функции и влиянии степени аппроксимирующего полинома и количества узловых точек на точность интерполяции. Выяснить, какой из способов применения метода наименьших квадратов более устойчив к влиянию ошибок округления.

Указания к выполнению лабораторной работы

Метод наименьших квадратов (МНК) — это другой способ приближения функции f, заданной на отрезке [a, b]. Он отличен от метода интерполяции. Общим у этих двух методов является то, что приближающая функция является многочленом степени не выше n, т.е. многочленом вида:

$$P_n(x) = c_0 + c_1 x + \dots + c_i x^i + \dots + c_n x^n$$
 (1)

степени не выше n.

В МНК в качестве меры близости приближающего многочлена P_n к приближаемой функции f используется среднеквадратичное уклонение:

$$\sqrt{\frac{1}{b-a}} \int_{a}^{b} \left(f(x) - P_n(x) \right)^2 dx \tag{2}$$

Далее ставится задача о таком подборе многочлена (1), т.е. о таком подборе его коэффициентов c_i , чтобы среднеквадратичное уклонение (2) было бы минимальным. Таким образом, осуществляется переход к оптимизационной задаче (в данном случае, к задаче нахождения минимума функции):

$$\sqrt{\frac{1}{b-a}} \int_{a}^{b} \left(f(x) - (c_0 + c_1 x + \dots + c_i x^i + \dots + c_n x^n) \right)^2 dx \leftarrow \min_{c_0, c_1, \dots, c_n} (3)$$

От квадратного корня в задаче (3) можно избавиться, это не поменяет результатов оптимизации:

$$\frac{1}{b-a} \int_{a}^{b} (f(x) - (c_0 + c_1 x + \dots + c_i x^i + \dots + c_n x^n))^2 dx \leftarrow \min_{c_0, c_1, \dots, c_n} (4)$$

Чтобы решить оптимизационную задачу (4), необходимо вычислить частные производные этой функции по переменным c_i и приравнять эти производные к нулю. В результате получится система уравнений для нахождения коэффициентов многочлена наилучшего среднеквадратичного приближения для функции f на отрезке [a, b].

Описанный способ относится к *непрерывному способу МНК* вычисления аппроксимирующего многочлена.

Кроме описанного выше существует также *дискретный вариант МНК*. Дискретность в этом наименовании означает, что этот вариант применяется не к функции, заданной на отрезке приближения [a, b], а к функции, заданной таблицей своих значений в точках x_0 , x_1 , ..., x_n .

В дискретном варианте ищут минимум функции:

$$F(c_0, c_1, \dots, c_n) = \frac{1}{N+1} \sum_{i=0}^{N} \left(f(x_i) - (c_0 + c_1 x + \dots + c_i x^i + \dots + c_n x^n) \right)^2 \leftarrow \min_{c_0, c_1, \dots, c_n} (5)$$

Т.е. интеграл в ф.(4) заменяем суммой и ищем такой набор коэффициентов, который минимизирует величину F.

После этого подставляем найденные значения в выражение (1) и получаем искомый полином.

Кроме описанных выше, непрерывного и дискретного вариантов МНК имеется и **полудискретный вариант**. Суть его заключается в том, что скалярные произведения в левой части системы линейных алгебраических уравнений для нахождения коэффициентов c_i приближающего многочлена P_n определяются как и в непрерывном случае через определенные интегралы по отрезку [a, b], а скалярные произведения в правой части системы, выражающиеся через определенные интегралы от произведения приближаемой функции f на степени независимой переменной, находятся с помощью формул для приближенного вычисления определенных интегралов (квадратурные формулы).

Чаще всего используются следующие интерполяционные квадратурные формулы:

- локально-интерполяционная формула трапеций;
- формула Симпсона (формула парабол).

Ход выполнения работы

Выполнение лабораторной работы проводилось только на языке технического моделирования MatLab R2017a. Отказ от применения традиционных систем разработки приложений в пользу системы научно-технических расчетов MatLab обусловлен широкими возможностями последней в плане реализации работы с матрицами и символьными вычислениями.

Для выполнения поставленных задач было разработано несколько программных модулей (см. Приложение).

На первом этапе в среде MatLab реализованы три описанных выше алгоритма МНК для нахождения коэффициентов аппроксимирующего полинома; алгоритмы оформлены отдельными программными модулями в следующих файлах:

- *coefMNKSolid.m* модуль, реализующий вычисление коэффициентов непрерывным способом;
- *coefMNKDiscrete.m* модуль, реализующий вычисление коэффициентов дискретным способом;
- *coefMNKQuasiDiscrete.m* модуль, реализующий вычисление коэффициентов полудискретным способом.

Для вычисления значений функции F(x) для узла x использовался реализованный ранее в первых двух лабораторных работах модуль f.m.

Кроме того, поскольку в модулях непрерывного и полудискретного способов используются символьные вычисления, в отдельный модуль $f_sym.m$. была вынесена функция, возвращающая своим результатом символьное представление исходной функции f.

Модуль coefMNKSolid получает на вход в качестве параметров концы отрезка [a, b] и степень аппроксимирующего полинома n, возвращая массив коэффициентов полинома c_i . Внутри модуля задействованы символьные вычисления, которые осуществляют символьное интегрирование и дифференцирование с последующим решением системы алгебраических уравнений.

Модули coefMNKDiscrete и coefMNKQuasiDiscrete получают на вход в качестве параметров массивы координат узлов, например, следующего вида:

$$X = [1; 2; 3],$$

$$Y = [-2; 1; 6],$$

а также степень аппроксимирующего полинома n, возвращая массив коэффициентов полинома c_i . Кроме того, дополнительным параметром coefMNKQuasiDiscrete принимает typeQuadra — номер квадратурной формулы, применяемой для приближенного вычисления интегралов в правой части уравнений (1 — формула трапеций, 2 — формула Симпсона).

Вызов модулей осуществляется командами:

coefMNKSolid(a, b, n)
coefMNKDiscrete(X, Y, n)
coefMNKQuasiDiscrete(X, Y, n, typeQuadra)

В свою очередь, чтобы однозначно определить интерфейс, обеспечивающий доступ ко всем трем модулям, реализован промежуточный объединяющий модуль *coefMNKBase.m* с командой для его вызова следующего вида:

coefMNKBase(a, b, n, N, typeMNK, typeQuadra)

где передаваемые параметры a, b, n — соответственно границы отрезка [a, b] и степень интерполяционного полинома, а *typeMNK* — номер способа, которым рассчитываются коэффициенты аппроксимирующего полинома (1 - непрерывный, 2 - дискретный, 3 - полудискретный), *typeQuadra* — номер квадратурной формулы, применяемой для приближенного вычисления интегралов в правой части уравнений (1 — формула трапеций, 2 — формула Симпсона). Часть параметров опциональна и задействуется только в определенном методе.

Модуль возвращает матрицу коэффициентов С, чтобы затем на ее основе можно было рассчитать значение аппроксимирующего полинома в любой точке.

На втором этапе в среде MatLab разработан модуль *pointMNK.m*, реализующий вычисление значения интерполяционного многочлена в точке x, а также дополнительные модули для формирования графиков.

Первый модуль (pointMNK.m) получает в качестве передаваемых параметров матрицу коэффициентов С и значение x, для которого надо посчитать P(x):

$$Px = pointMNK(C, x)$$

Построение графиков выполняют следующие модули:

- *plotMNK.m* выводит одиночный график полинома, совмещенный с графиком функции и узловыми точками;
- *plotMNKFull.m* выводит совмещенные графики полиномов, коэффициенты которых посчитаны всеми тремя способами (для сравнения);

- *plotDeltaMNK.m* выводит совмещенные графики зависимости средней абсолютной ошибки аппроксимации от степени аппроксимирующего полинома n (для всех трех способов для сравнения);
- *plotDelta2MNK.m* выводит совмещенные графики зависимости средней абсолютной ошибки аппроксимации от количества узловых точек N (для всех трех способов для сравнения);
- *plot3DeltaMNK.m* выводит 3D графики зависимость точности аппроксимации MHK от n и N;
- *deltaMNK.m* впомогательный модуль для расчета средней абсолютной ошибки аппроксимации.

Вызываются эти модули следующим образом:

```
plotMNK(a, b, n, N, typeMNK, typeQuadra)

plotMNKFull(a, b, n, N, typeQuadra)

plotDeltaMNK(a, b, N, n_start, n_end, typeQuadra)

plotDelta2MNK(a, b, n, N_start, N_end, typeQuadra)

plot3DeltaMNK(a, b, n_start, n_end, N_start, N_end, typeMNK, typeQuadra)

deltaMNK(Y1, Y2)
```

где а и b - границы отрезка, n - степень полинома, typeMNK — номер способа, которым рассчитываются коэффициенты аппроксимирующего полинома (1 - непрерывный, 2 - дискретный, 3 - полудискретный), typeQuadra — номер квадратурной формулы, применяемой для приближенного вычисления интегралов в правой части уравнений (1 — формула трапеций, 2 — формула Симпсона), n_start и n_end — начальное и конечное значение диапазона перебора степени аппрокисмирующего полинома, N_start , N_end — начальное и конечное значение диапазона перебора числа узловых точек.

При построении графиков равноотстоящие узлы интерполяции дополняются промежуточными точками, поскольку узловых точек недостаточно для демонстрации расхождения графиков (в узловых точках они совпадают).

На третьем этапе для выяснения вопроса о сходимости графика аппроксимирующего полинома к графику исходной функции, влиянии степени аппроксимирующего полинома и способа расчета его коэффициентов, а также количества узловых точек на точность интерполяции выполнен численный эксперимент. Результаты представлены на рис. 1-10.

Рисунок 1 — Сравнение точности приближения при различных значениях степени аппроксимирующего полинома для всех трех способов

Рисунок 2 — Сравнение точности приближения при различных значениях степени аппроксимирующего полинома для всех трех способов

Изменяя степень аппроксимирующего полинома от 2 до 10 и количество узловых точек от 3 до 20, были получены сравнительные графики (рис. 1 и 2). Их анализ показал, прежде всего, что аппроксимирующий многочлен для нашей функции обладает сходимостью с точностью до некоторой постоянной ошибки.

В отношении зависимости от степени аппроксимирующего полинома дискретный и полудискретный способы расчета коэффициентов полинома МНК проявляют схожие свойства: при небольших значениях степени полинома с увеличением степени наблюдается постепенное улучшение приближения к функции. Затем этот рост сходимости замедляется, и, начиная с некоторого номера, увеличение степени полинома уже не приводит к существенному росту приближения, достигая устойчивой ошибки аппроксимации (см. рис. 3).

Рисунок 3 — Зависимость средней ошибки аппроксимации от степени аппроксимирующего полинома: из-за различий в алгоритмах расчета влияние ошибки округления начинает сказываться при разных значениях N

В то же время для *непрерывного способа* уже после достижения значения степени полинома n = 4 дальнейшее ее увеличение не дает никаких положительных результатов; это связано с особенностями непрерывного метода (следует заметить, однако, что при вычислении ошибки аппроксимации использовались дискретные методы, что явилось причиной накопления ошибок округления и в итоге установления некоторого значения ошибки аппроксимации на рис. 3 на отметке 0.05).

Для дискретного метода характерно более быстрое достижение точности приближения, чем для полудискретного метода. Это связано, очевидно, с большими ошибками округления у полудискретного метода, наличие которых

объясняет использование приближенных формул вычисления интеграла (квадратурные формулы).

Следует отметить также, что применение формул трапеций оказалось предпочтительнее для нашей функции, чем формулы Симпсона, поскольку для полудискретного способа это позволяет существенно увеличить сходимость (рис. 4).

Рисунок 4 — Сравнение точности аппроксимации при различных значениях степени аппроксимирующего полинома для всех трех способов (желтой линией нарисован график аппроксимирующего полинома): метод трапеций в полудискретном способе (слева) дает меньшую ошибку по сравнению с методом Симпсона (справа)

Особо интересно поведение аппроксимирующего полинома на пространстве переменных п и N. Для непрерывного метода зависимость ошибки аппроксимации от п и N представляет собой линии уровня, неизменные вдоль N (рис. 5).

Рисунок 5 — Зависимость ошибки аппроксимации от степени полинома n и количества узловых точек N: n = [3...15]; N = [3...15]

Таким образом, N совершенно точно не влияет на точность аппроксимации непрерывного метода (хотя это и ожидаемо, поскольку N не участвует в расчете коэффициентов полинома!).

Что касается дискретного и полудискретного методов, то для них зависимости точности аппроксимации от n и N носят более сложный характер. В частности, установлено, что увеличение n и N способствуют увеличению точности аппроксимации, но для участков, где N изменяется от 4 до 7, а n – от 10 и выше, наблюдаются резкие скачки с резким увеличение ошибки аппроксимации. Данную особенность хорошо иллюстрирует рис. 6.

Рисунок 6 – Характерные «всплески» роста ошибки аппроксимации (слева) при больших значениях п и малых значениях N и объясняющее их поведение графика аппроксимирующего полинома (справа)

Из рис. 6 видно, что «всплески» обусловлены колебательным поведением аппроксимирующего полинома, который начинает вести себя как интерполяционный полином Лагранжа (пересекает все узловые точки) при п превышающих N.

На рис. 7 и 8 показаны зависимости ошибки аппроксимации от n и N для дискретного и полудискретного методов расчета коэффициентов.

Зависимость точности аппроксимации МНК от n и N Остепень полинома, n

Рисунок 7 — Зависимость ошибки аппроксимации от n и N для дискретного метода расчета коэффициентов полинома: n = [2...15]; N = [7...15]

Число узловых точек, N

Рисунок 8 — Зависимость ошибки аппроксимации от n и N для полудискретного метода расчета коэффициентов полинома: n = [2...15]; N = [7...15]

Таким образом, для непрерывного метода в качестве достаточной степени можно рекомендовать n=4; в отношении полудискретного и дискретного способов, где влияние также оказывает количество узловых точек N, достаточно ограничится значениями n=8 и N=12 (для дискретного метода) и n=12 и N=16 (для полудискретного метода).

Выводы по работе

- 1. В ходе лабораторной работе рассмотрен способ нахождения значения функции с использованием полинома, рассчитанного методом наименьших квадратов, а также разработаны функциональные модули для системы MatLab, с помощью которых можно проводить аппроксимацию функций.
- 2. В результате численного эксперимента установлено, что аппроксимирующий полином для заданной функции обладает сходимостью с точностью до некоторой постоянной ошибки, при этом она тем меньше, чем выше степень полинома для непрерывного метода, и чем выше степень полинома и количество узловых точек для дискретного и полудискретного способов. Ошибка аппроксимации обусловлена как использованием приближенным методов расчета, так и ошибками округления.
- 3. Наилучшим в плане сходимости способом расчета является непрерывный; в силу особенностей расчета он не зависит от количества узловых точек N и дает хорошую сходимость при меньших значениях n, чем его дискретный и полудискретный аналоги. Однако непрерывный способ требует реализации на ЭВМ символьных вычислений, что в ряде случаев затруднено, т.к. налагает дополнительные требования к системе и используемым ресурсам.
- 4. Полудискретный метод расчета уступает по точности дискретному в силу использования приближенных методов вычисления интегралов; из-за этой особенности полудискретный метод сильнее зависит от количества узловых точек и ему требуется большее их количество для эффективного приближения полинома к исходной функции.
- 5. В полудискретном и дискретном способах существует особое соотношение количества узловых точек и степени полинома, для которого есть риск возникновения колебательного поведения аппроксимирующего полинома. В этом случае последний начинает вести себя как интерполяционный полином Лагранжа (пересекает все узловые точки). Поэтому при назначении п и N требуется тщательный анализ поведения аппроксимирующего полинома.

Список литературы

- 1. *Гудович А.Н., Гудович Н.Н.* Элементы численных методов: учебное пособие. Вып 3. Метод наименьших квадратов. Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2016 г. 32 с.
- 2. *Кетков, Ю.Л. и др.* Matlab 7: программирование, численные методы / Ю.Л. Кетков, А.Ю. Кетков, М.М. Шульц, СпБ.: БХВ-Петербург, 2005 г. 752 с.

Приложение (листинг)

Модуль MatLab f.m

```
function Y=f(X)
Y = (1-X.)/(1+X.^2);
end
```

Модуль MatLab f sym.m

```
function y=f(X) syms x; %Определение символьной переменной y = \text{sym } ((1-x)/(1+x^2)); end
```

Модуль MatLab coefMNKSolid.m

```
function cc = coefMNKSolid(a, b, n)
syms x; %Определение символьной переменной
c = sym('c', [1 n]); % Определяем массив символьных переменных c1, ..., cn
% 1 Собираем символьный многочлен р:
tmp = 0;
for i = 1:n % от c1 до cn-1
tmp = tmp + c(i)*x^{(i-1)}; %
end
p = sym(tmp);
% 2 Определяем нашу символьную функцию (из внешнего файла):
f = f_sym;
% 3 Формируем подынтегральную функцию:
g = sym((f-p)^2);
% 4 Вычисляем определенный интеграл на отрезке [a, b] по указанной
% переменной, отнормировав на длину аb:
F = 1/(b-a)^* int(g, x, a, b);
% 5 Производим символьное дифференцирование:
c_diff = sym('c_diff', [1 n]);
```

```
for i = 1:n % от c1 до cn-1

c_diff(i) = diff(F, c(i)); % символьное дифференцирование

end

% 6 Символьно решаем систему линейных алгебраических уравнений

c = solve (c_diff);

% 7 Получаем массив строк с именами всех полей структуры "c":

cname = fieldnames(c);

% 8 Получаем кодержимое каждого поля структуры, обращаясь по имени поля, и

% конвертируем в double, сохраняя в итоговый массив

for i = 1:n % от c1 до cn-1

%getfield(S, 'field') — возвращает содержимое поля структуры S, что эквивалентно S. field;

cname_cell = cname(i);

cc(i) = double(getfield(c, cname_cell{1})); % Фигурные скобки для обращения к содержимому ячейки
end
end
```

Модуль MatLab coefMNKDiscrete.m

```
function cc = coefMNKDiscrete(X, Y, n)

% Дискретный метод вычисления коэфиициентов аппроксимирующего полинома
N = length(X); % Количество узловых точек

syms x; %Определение символьной переменной
c = sym('c', [1 n]); % Определяем массив символьных переменных c1, ..., cn
% 1 Собираем матрицу уравнений:
u = sym('u', [1 n]); % Определяем массив символьных переменных u1, ..., un
% Для каждой символьной переменной формируем содержимое:
for k = 1:n % от u1 до u(n-1)
% 1.1 Считаем левую сумму:
summ_L = 0;
% Организуем цикл по переменным сі
for i = 1:n % от c1 до c(n-1)
% 1.1 Для каждой переменной сі организуем цикл по фј (считаем <фі,фк>):
for j = 1:N
```

```
summ_L = summ_L + (X(j)^{(i-1)})^* (X(j)^{(k-1)})^* c(i);
end
end
% 1.2 Нормируем
summ L = 1/N * summ L;
% 1.3 Считаем правую сумму:
summ_R = 0;
% Организуем цикл по по fj (считаем <f,фk>):
for j = 1:N
summ_R = summ_R + Y(j) * (X(j)^{k-1});
end
% 1.4 Нормируем
summ_R = 1/N * summ_R;
% 1.5 Вычитаем из левой суммы правую и окончательно формируем уравнение:
summ = summ L - summ R;
% 1.6 Переводим к символьному виду и записываем в соответсвующий
% элемент символьной матрицы уравнений
u(k) = sym(summ);
end
% 2 Символьно решаем систему линейных алгебраических уравнений
c = solve(u);
% 3 Получаем массив строк с именами всех полей структуры "с":
cname = fieldnames(c);
% 4 Получаем содержимое каждого поля структуры, обращаясь по имени поля, и
% конвертируем в double, сохраняя в итоговый массив
for i = 1:n % от c1 до cn-1
%getfield(S, 'field') — возвращает содержимое поля структуры S, что эквивалентно S. field;
cname_cell = cname(i);
cc(i) = double(getfield(c, cname_cell{1})); % Фигурные скобки для обращения к содержимому ячейки
end
end
```

Модуль MatLab coefMNKQuasiDiscrete.m

```
function cc = coefMNKQuasiDiscrete(X, Y, n, typeQuadra)
% Полудискретный метод вычисления коэфиициентов аппроксимирующего полинома
% Х - матрица узловых точек (иксы)
% Ү - матрица узловых точек (игреки)
% п - желаемая степень аппроксимирующего полинома
% N - вытаскиваем из размерности X
% type - тип квадратурной формулы для приближенного вычисления интеграла,
% если 1, то по формуле трапеций, если 2 - то по формуле Симпсона
N = length(X); % Количество узловых точек
syms x; %Определение символьной переменной
c = sym('c', [1 n]); % Определяем массив символьных переменных c1, ..., cn
% 1 Собираем матрицу уравнений:
u = sym('u', [1 n]); % Определяем массив символьных переменных u1, ..., un
% Для каждой символьной переменной формируем содержимое:
for k = 1:n \% от u1 до u(n-1)
% 1.1 Считаем левую сумму (как в дискретном варианте):
summ L = 0;
% Организуем цикл по переменным сі
for i = 1:n % от c1 до c(n-1)
% 1.1 Для каждой переменной сі организуем цикл по фј (считаем <фі,фк>):
for j = 1:N
summ_L = summ_L + (X(j)^{(i-1)})^* (X(j)^{(k-1)})^* c(i);
end
end
% 1.2 Нормируем
summ_L = 1/N * summ_L;
% 1.3 Считаем правую сумму:
summ R = 0;
if (typeQuadra == 1) % считаем по формуле трапеций
% 1.3.1 Собираем полудискретную сумму методом трапеций
```

```
for i = 1:N-1
summ_R = summ_R + (Y(i) * X(i)^(k-1) + Y(i+1) * X(i+1)^(k-1)) * (X(i+1)-X(i))/2;
end
% 1.3.2 Нормируем
summ R = 1/(X(N)-X(1)) * summ R;
end
if (typeQuadra == 2) % считаем по формуле Симпсона
% 1.3.3 Собираем полудискретную сумму методом трапеций
for i = 1:N-1
(X(i+1)-X(i))/6;
end
% 1.3.4 Нормируем
summ R = 1/(X(N)-X(1)) * summ R;
end
% 1.5 Вычитаем из левой суммы правую и окончательно формируем уравнение:
summ = summ_L - summ_R;
% 1.6 Переводим к символьному виду и записываем в соответсвующий
% элемент символьной матрицы уравнений
u(k) = sym(summ);
end
% 2 Символьно решаем систему линейных алгебраических уравнений
c = solve(u);
% 3 Получаем массив строк с именами всех полей структуры "с":
cname = fieldnames(c);
% 4 Получаем содержимое каждого поля структуры, обращаясь по имени поля, и
% конвертируем в double, сохраняя в итоговый массив
for i = 1:n % от c1 до cn-1
%getfield(S, 'field') — возвращает содержимое поля структуры S, что эквивалентно S. field;
cname_cell = cname(i);
cc(i) = double(getfield(c, cname_cell{1})); % Фигурные скобки для обращения к содержимому ячейки
end
end
```

Модуль MatLab coefMNKBase.m

```
function cc = coefMNKBase(a, b, n, N, typeMNK, typeQuadra)
% Интерфейсная функция для вызова всех других функций
% а - начало отрезка
% b - конец отрезка
% n - степень полинома
% N - количество точек разбиения
% typeMNK - тип МНК, 1 - непрерывный, 2 - дискретный, 3 - полудискретный
% typeQuadra (только для 3 типа МНК) - тип квадратурной формулы, 1 -
% трапеций, 2 - Симпсона
if (typeMNK == 1) % Если непрерывный способ, то
cc = coefMNKSolid(a, b, n); % вычисляем
end
if (typeMNK == 2) % Если дискретный способ, то
% Считаем значения X и Y в равноотстоящих точках на отрезке [a, b]
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
cc = coefMNKDiscrete(X, Y, n); % вычисляем
end
if (typeMNK == 3) % Если полудискретный способ, то
% Считаем значения X и Y в равноотстоящих точках на отрезке [a, b]
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
cc = coefMNKQuasiDiscrete(X, Y, n, typeQuadra); % вычисляем
end
% Во всех остальных случаях вернем как по первому случаю
if (typeMNK < 1)
cc = coefMNKSolid(a, b, n); % вычисляем
end
if (typeMNK > 3)
cc = coefMNKSolid(a, b, n); % вычисляем
```

end

Модуль MatLab pointMNK.m

```
function p = pointMNK(C, xx) % Функция рассчета значения аппроксимирующего полинома в точке xx % На вход получает матрицу коэффициентов C, матрицу узловых точек X и % значение xx, для которого надо посчитать P(xx) n = length(C); % Количество узловых точек p = C(1); % Начальное значение полинома в точке for i = 2 : n % Внешний цикл по коэффициентам C(i) p = p + C(i)*xx^{(i-1)}; end end
```

Модуль MatLab plotMNK.m

```
function plotMNK(a, b, n, N, typeMNK, typeQuadra)
% Основная функция, вычисляет коэффициенты аппроксимирующего полинома по одному из
% методов рассчета и строит сравнительные графики для исходной функции и
% аппроксимирующего полинома, с нанесением узловых точек
% 1 Создаем новое окно для графика и подписываем оси
figure;
xlabel('x');
ylabel('y');
hold on;
grid on;
% 2 Вычисляем коэффициенты аппроксимирующего полинома и узловые точки через базовую
% функцию:
C = coefMNKBase(a, b, n, N, typeMNK, typeQuadra);
% 3 Печатаем узловые точки:
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
```

```
plot (X, Y, 'ro');
% 3 Печатаем график аппроксимирующего полинома:
XX = linspace(a, b, 10000);
LX = XX * 0;
for i = 1:length(XX)
LX(i) = pointMNK(C, XX(i));
end
plot(XX, LX, 'b');
% 4 Печатаем график функции:
X = XX;
Y = f(X);
plot(X, Y, 'r--');
% 5 Подписываем легенду
title('Аппроксимация методом наименьших квадратов (МНК)', 'FontName', 'Courier');
name = strcat('Аппроксимирующий полином');
h1 = legend('Узловые точки', 'Аппроксимирующий полином', 'Функция');
set(h1, 'FontName', 'Courier');
% 6 Выставляем более-менее приемлемый масштаб:
axis([a b min(Y)-0.2 max(Y)+0.2])
end
```

Модуль MatLab plotMNKFull.m

```
function plotMNKFull(a, b, n, N, typeQuadra)

% Основная функция, вычисляет коэффициенты аппроксимирующего полинома по каждому из

% методов рассчета и строит сравнительные графики для исходной функции и

% трех аппроксимирующих полиномов, с нанесением узловых точек

% 1 Создаем новое окно для графика и подписываем оси

figure;

xlabel('x');

ylabel('y');

hold on;

grid on;
```

```
% 2 Вычисляем коэффициенты аппроксимирующего полинома №1 (непрерывный метод)
% и узловые точки через базовую функцию:
C1 = coefMNKBase(a, b, n, N, 1, typeQuadra);
% 3 Печатаем узловые точки:
X = linspace(a, b, N+1); % N+1 узловых точек
Y = f(X);
plot (X, Y, 'ro');
% 4 Вычисляем коэффициенты аппроксимирующего полинома №2 (дискретный метод)
% через вспомогательную функцию:
C2 = coefMNKBase(a, b, n, N, 2, typeQuadra);
% 5 Вычисляем коэффициенты аппроксимирующего полинома №3 (полудискретный)
% через вспомогательную функцию:
C3 = coefMNKBase(a, b, n, N, 3, typeQuadra);
% 6 Печатаем график полинома №1:
XX = linspace(a, b, 10000);
LX = XX * 0;
for i = 1:1:length(XX)
LX(i) = pointMNK(C1, XX(i));
end
plot(XX, LX, 'b');
% 7 Печатаем график полинома №2:
for i = 1:1:length(XX)
LX(i) = pointMNK(C2, XX(i));
end
plot(XX, LX, 'g--.');
% 8 Печатаем график полинома №3:
for i = 1:1:length(XX)
LX(i) = pointMNK(C3, XX(i));
end
plot(XX, LX, 'y-..');
% 9 Печатаем график функции:
Y = f(XX);
```

```
plot(XX, Y, 'r--');

% 10 Подписываем легенду

title('Аппроксимация методом наименьших квадратов (МНК)', 'FontName', 'Courier');

h1 = legend('Узловые точки', 'Полином №1 (непрерывный)', 'Полином №2 (дискретный)', 'Полином №3 (полудискр.)', 'Функция');

set(h1, 'FontName', 'Courier');

% 11 Выставляем более-менее приемлемый масштаб:

axis([a b min(Y)-0.2 max(Y)+0.2])

end
```

Модуль MatLab deltaMNK.m

```
function d = deltaMNK(Y1, Y2)
% Функция вычисления погрешности между значениями функции и значениями
% аппроксимирующего полинома
n = length(Y1); % Количество узловых точек
D = Y1 * 0; % Матрица разности
for i = 1 : n
D(i) = Y1(i) - Y2(i);
end
d = 0;
for i = 1 : n
d = d + abs(D(i));
end
d = d / n;
end
```

Модуль MatLab plotDeltaMNK.m

```
function plotDeltaMNK(a, b, N, size_start, size_end, typeQuadra)

color = ['b'; 'g'; 'r']; % Матрица цветов

% 1 Создаем новое окно для графика и подписываем оси

figure;

xlabel('Степень аппроксимирующего полинома, n');

ylabel('Средняя абсолютная погрешность');
```

```
grid on; hold on;
NN = N;
for typeMNK = 1:3 % Для все трех способов расчета
EN = size_start : size_end;
E = EN * 0; % Создаем матрицу ошибок
k = 1;
for n = size_start : size_end
try
C = coefMNKBase(a, b, n, NN, typeMNK, typeQuadra);
% Считаем значения X и Y в равноотстоящих точках на отрезке [a, b]
X1 = linspace(a, b, 10000); % 10000 узловых точек
Y1 = f(X1);
% Считаем значения полинома в этих 10000 точках:
Y2 = Y1 * 0;
for i = 1:length(X1)
Y2(i) = pointMNK(C, X1(i));
end
% Считаем значения ошибок
E(k) = deltaMNK(Y1, Y2);
catch ME
E(k) = E(k-1);
end
k = k+1;
end
% 3 Печатаем график:
plot (EN, E, color(typeMNK));
end
% 5 Подписываем легенду
title('Точность аппроксимации МНК', 'FontName', 'Courier');
h1 = legend('для полинома №1 (непрерывн.)', 'для полинома №2 (дискретн.)', 'для полинома №3 (полудискр.)');
set(h1, 'FontName', 'Courier');
end
```

Модуль MatLab plotDelta2MNK.m

```
function plotDelta2MNK(a, b, n, N_start, N_end, typeQuadra)
color = ['b'; 'g'; 'r']; % Матрица цветов
% 1 Создаем новое окно для графика и подписываем оси
figure;
xlabel('Степень аппроксимирующего полинома, n');
ylabel('Средняя абсолютная погрешность');
grid on; hold on;
for typeMNK = 1:3 % Для все трех способов расчета
EN = N_start : N_end;
E = EN * 0; % Создаем матрицу ошибок
k = 1;
for N = N_start : N_end
try
C = coefMNKBase(a, b, n, N, typeMNK, typeQuadra);
% Считаем значения X и Y в равноотстоящих точках на отрезке [a, b]
X1 = linspace(a, b, 10000); % 10000 узловых точек
Y1 = f(X1);
% Считаем значения полинома в этих 10000 точках:
Y2 = Y1 * 0;
for i = 1:length(X1)
Y2(i) = pointMNK(C, X1(i));
end
% Считаем значения ошибок
E(k) = deltaMNK(Y1, Y2);
catch ME
E(k) = E(k-1);
end
k = k+1;
end
% 3 Печатаем график:
```

```
plot (EN, E, color(typeMNK));
end
% 5 Подписываем легенду
title('Точность аппроксимации МНК', 'FontName', 'Courier');
h1 = legend('для полинома №1 (непрерывн.)', 'для полинома №2 (дискретн.)', 'для полинома №3 (полудискр.)');
set(h1, 'FontName', 'Courier');
% 6 Выставляем более-менее приемлемый масштаб:
axis([N_start N_end 0 0.24])
```

Модуль MatLab plot3DeltaMNK.m

```
function plot3DeltaMNK(a, b, n_start, n_end , N_start, N_end, typeMNK, typeQuadra)
% Формируем сетку (плоскость независимых переменных)
[n, N] = meshgrid(n_start:1:n_end, N_start:1:N_end);
% Формируем заготовку для матрицы ошибок, покрывающей сетку
E = n + N;
% Считаем значения X и Y в равноотстоящих точках на отрезке [a, b]
X1 = linspace(a, b, 10000); % 10000 узловых точек (a, b, 10000)
Y1 = f(X1);
for i = 1:size(E, 2) %
nn = n(1, i);
for j = 1 : size(E, 1) %
NN = N(j, 1);
try
C = coefMNKBase(-1, 2, nn, NN, typeMNK, typeQuadra);
% Считаем значения полинома в этих 10000 точках:
Y2 = Y1 * 0;
for k = 1:length(X1)
Y2(k) = pointMNK(C, X1(k));
end
% Считаем значения ошибок
E(j, i) = deltaMNK(Y1, Y2);
```

```
catch ME

E(j, i) = E(j-1, i-1);
end
end
end
figure;
xlabel('Степень полинома, n');
ylabel('Число узловых точек, N');
zlabel('Абсолютная погрешность');
grid on; hold on;
surf(n, N, E) % Строим график
% 5 Подписываем легенду
title('Зависимость точности аппроксимации МНК от n и N', 'FontName', 'Courier');
end
```