Full name ____

ID NUMBER __

Read the directions.

- 1. (3 points) Find the constant of variation if y varies inversely as x and y = 34 when x = 0.5.
 - A. k = 23
 - B. k = 0
 - C. k = -856
 - **D.** k = 17
 - E. k = 1
- 2. (4 points) Solve the quadratic equation by factoring.

$$2x^2 + 5x - 3 = 0 (1)$$

Solution.

$$2x^{2} + 5x - 3 = 0 \Longrightarrow 2x^{2} + 6x - x - 3 = 0$$

$$\Longrightarrow 2x(x+3) - (x+3) = 0$$

$$\Longrightarrow (2x-1)(x+3) = 0$$

$$\Longrightarrow 2x - 1 = 0 \text{ or } x + 3 = 0$$

$$\Longrightarrow x = \frac{1}{2} \text{ or } x = -3.$$

3. (3 points) Multiply and simplify.

$$(3 - 4i)(6 + 2i) (2)$$

- **A.** 26 18i
- B. 0
- C. 57
- D. 2 + 5i
- E. 7*i*

4. (1 point) BONUS Solve $x^2+4=0$. Solution. $x^2+4=0 \implies x^2=-4 \implies x=\pm \sqrt{-4} \implies x=\pm 4i$. It might be ambiguous whether the last or second-to-last step is the solution here. If one makes the convention that answers can never contain negative numbers under square roots, then $\pm 4i$ is correct.

USEFUL FORMULAS

$$\bullet \quad m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\bullet \quad \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

$$\bullet \quad a^0 = 1$$

•
$$(x-h)^2 + (y-k)^2 = r^2$$

$$\bullet \quad \frac{a^m}{a^n} = a^{m-n}$$

$$\bullet \quad Ax + By = C$$

•
$$y - y_1 = m(x - x_1)$$
 • $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\bullet \quad (a^m)^n = a^{m \cdot n}$$

•
$$a^2 - b^2 = (a+b)(a-b)$$
 • $I = Prt$

$$\bullet$$
 $I = Prt$

$$\bullet \qquad (ab)^m = a^m b^m$$

•
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)^{\bullet}$$
 $A = P + Prt$

$$\bullet \quad \frac{1}{a^n} = a^{-n}$$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)^{\bullet}$$
 $a^2 + b^2 = c^2$

$$\bullet \quad \frac{}{a^n} = a^{-n}$$

$$(a+b)^2 = a^2 + 2ab + b^2$$
 • $\frac{f(x+h) - f(x)}{h}$

$$\bullet \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, (b \neq 0)$$

•
$$(a-b)^2 = a^2 - 2ab + b^2$$
 • $d = rt$

$$\bullet$$
 $d = rt$

•
$$i = \sqrt{-1}$$

•
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 • $a^m a^n = a^{m+n}$

$$a^m a^n = a^{m+n}$$

$$\bullet \qquad i^2 = -1$$