Roteiro do Objeto de Aprendizagem AI-0125

Dr. Ivan Ramos Pagnossin*

10 de setembro de 2011

Resumo

Este é o roteiro de produção e de orientação aos educadores do Objeto de Aprendizagem AI-0125, desenvolvido para o tópico 4 (Campos e suas propriedades) da disciplina de Fundamentações Matemáticas II (PLC0016) do módulo 2 do curso a distância de Licenciatura em Ciências da USP, do convênio UNIVESP.

No que segue, o texto em preto é aquele que será apresentado para o(a) cursista. O texto em verde é destinado à equipe de educadores e pedagogos, e o texto em vermelho é destinado à equipe técnica, de produção do OA.

Ao longo do texto, os colchetes [] indicam campos os quais o(a) cursista deve fornecer uma resposta, em geral respondendo a uma questão anterior. E os símbolos entre 〈 e 〉 representam valores numéricos que são preenchidos automaticamente pelo *software*.

Este documento pode ainda sofrer modificações.

Atenção: criar o HTML de modo que, se a execução de Javascript estiver desativada, nada aparece, a não ser a mensagem: "Você deve permitir a execução de código Javascript para realizar esta atividade *online*. Veja aqui como fazer."

Início da atividade (o título não aparece no OA)

Caro aluno(a), antes de executar esta atividade *online* estude o tópico "Campos e suas propriedades", no texto de referência. Utilize o fórum deste tópico para discutir suas conclusões, dificuldades e também para auxiliar seus colegas. Este texto deve aparecer na descrição do SCO, no imsmanifest.xml.

Frame 1

Caro aluno(a), o objetivo desta atividade é esclarecer o conceito de campo vetorial e explorar duas maneiras de representá-lo. Ademais, veremos brevemente um campo vetorial muito importante: o gradiente de uma função escalar f, representado por ∇f .

Como você aprendeu, uma função f de duas variáveis é uma regra que relaciona o par ordenado (x, y) a um número, representado por f(x, y). Vimos isto no contexto em que x e y representavam os lados de um retângulo e f(x, y) = xy, sua área. Outra possibilidade é, ao invés de um número, associar (x, y) a outro par ordenado. Por exemplo:

$$(x, y) \rightarrow (xy, x + y).$$

^{*}irpagnossin.elearning@gmail.com

Assim, dado um retângulo (x, y) podemos calcular sua área (xy) e seu semi-perímetro (x + y), e representar essas duas propriedades como um par ordenado.

Se interpretarmos os pares acima como vetores, podemos reescrever a relação acima de uma forma mais compacta, embora equivalente: $\mathbf{r} \to \mathbf{F}(\mathbf{r})$, onde $\mathbf{r} = (x, y)$ e $\mathbf{F}(\mathbf{r}) = (xy, x + y)$. Deste modo, \mathbf{F} é o **nome** da regra que relaciona \mathbf{r} com $\mathbf{F}(\mathbf{r})$, analogamente a f.

Quando executado num LMS, substituir "Caro aluno(a)" pelo nome do(a) aluno(a), acessível através da propriedade cmi.learner_name do SCORM.

Uma questão de menor importância que pode ser explorada no fórum é o porquê de usarmos semiperímetro ao invés de perímetro. A razão é apenas simplicidade nas expressões: como perímetro e semi-perímetro se relacionam por um fator constante (2), o que vale para um vale para o outro. Assim, do ponto de vista qualitativo, podemos trabalhar com semi-perímetro e expandir nossas conclusões para o perímetro.

Frame 2

Compreenda que $\mathbf{F}(\mathbf{r})$ não é \mathbf{um} vetor, mas uma infinidade deles (tantos quanto forem \mathbf{r}), permeando todo o plano cartesiano. Por este motivo, dizemos que $\mathbf{F}(\mathbf{r})$ é mais que um vetor; é um **campo vetorial**.

Veja o plano cartesiano (pressione o botão "área de exploração"): arraste o *mouse* sobre ele e observe $\mathbf{F}(\mathbf{r})$ em cada ponto. Note como ele varia dependendo das coordenadas x e y do mouse (o vetor \mathbf{r}). De fato, a componente x de $\mathbf{F}(\mathbf{r})$ é dada por xy (a área do retângulo), enquanto a componente y é definida por x + y (o semi-perímetro).

obs.: apesar de citarmos o exemplo do retângulo, não vamos mais nos preocupar com este problema em particular. Por este motivo, o domínio de \mathbf{F} agora é todo o plano cartesiano (\mathbb{R}^2), sem restrições.

obs.: f(x, y) também "permeia" todo o plano cartesiano, e por isso podemos chamá-lo de **campo escalar**. Campos vetoriais e escalares são muito comuns nas ciências, como o campo magnético da Terra (vetorial) e a pressão atmosférica (escalar).

Para discutir no fórum: o que distingue um campo escalar de um campo vetorial?

Frame 3

Podemos **representar** um campo vetorial desenhando vários vetores $\mathbf{F}(\mathbf{r})$ espalhados pelo plano cartesiano. Assim podemos "enxergar" este campo. Vamos fazer isso: escolha um ponto do plano cartesiano e calcule $\mathbf{F}(\mathbf{r})$ ali:

$$\mathbf{F}([\],[\])=([\],[\]).$$

dica: escolha um ponto próximo da origem (mas diferente dela) para facilitar o passo seguinte.

Antes de o usuário preencher os campos de texto acima, eles devem exibir os textos x, y, xy e x + y, respectivamente.

Frame 4

Agora vamos representar este vetor no plano cartesiano: arraste o botão para o plano. Isto criará um vetor arbitrário. Em seguida, arraste a cauda deste vetor para a posição (x, y) que você escolheu e redimensione-o (pela ponta) de modo que a componente x seja xy e a componente y seja x + y.

dica: $\mathbf{r} \in \mathbf{F}(\mathbf{r})$ aparecem ao arrastar a cauda e a ponta do vetor, respectivamente.

Frame 5

Agora crie outros 5 (ou mais) vetores F(r) distintos para exercitar.

Frame 6

Observe no plano cartesiano que adicionamos os vetores corretos, em vermelho, junto daqueles que você calculou. Compare-os.

Frame 6b

Se você contiuar criando outros vetores, obterá algo parecido com o que agora apresentamos no plano cartesiano (pressione o botão "área de exploração").

Embora nós tenhamos começado esta atividade com o já conhecido problema do retângulo, geralmente utilizamos campos vetoriais para representar **grandezas vetoriais**, isto é, aquelas que tem direção e intensidade, como velocidade, força *etc.* Imagine, por exemplo, que o campo vetorial em questão representasse o fluxo de água numa superfície, ou ainda o tráfego urbano...

Exibir o campo completo.

Frame 7

Agora você já sabe o que é um campo vetorial e como podemos representá-lo. Mas vamos além disso: o plano cartesiano agora exibe as curvas de nível da função f(x, y) = xy, um campo escalar. A partir dele podemos extrair um campo vetorial muito importante, chamado **gradiente de** f:

$$\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}).$$

Faça as contas e escreva a expressão de ∇f :

$$\nabla f = ([], []).$$

Os dois text-fields acima devem conter, quando não preenchidos pelo usuário, os valores $\partial f/\partial x$ e $\partial f/\partial y$, respectivamente.

Frame 8

Lerrou a resposta \sim A resposta correta é $\nabla f = (y, x)$. ☐ O gradiente de f guarda uma relação interessante com as curvas de nível de f. Procure identificá-la, criando três ou mais vetores do campo gradiente no plano cartesiano.

dica: escolha pontos r sobre as curvas de nível ou próximos dela, para facilitar.

Frame 9

Observe como todos os vetores são **perpendiculares** às curvas de nível. Isto é verdadeiro para qualquer f com duas ou mais variáveis. Assim, ∇f indica a direção (no nosso caso, no plano cartesiano) em que f varia mais rapidamente (recorde a atividade do tópico 2), daí a sua importância.

Pense e responda: se f(x, y) = xy representasse a distribuição de temperatura (°C) de uma chapa metálica (x e y em centímetros) e houvesse uma formiga na posição (2, 1), em que direção ela deveria andar para aquecer-se mais rapidamente?

A resposta para a pergunta da formiga é $\nabla f = (1,2)$. Mas atenção: esta direção é correta apenas no ponto $\mathbf{r} = (2,1)$. De qualquer modo, a formiga deve sempre andar perpendicularmente às curvas de nível. A atividade fornece um recurso interessante para observar isso: o botão o permite inserir uma partícula que se move seguindo o campo. Ela pode ser entendida como a formiga do exemplo.

O gradiente também pode ser utilizado para calcular a derivada direcional de f (atividade do tópico 2):

$$\frac{df}{d\mathbf{u}} = \mathbf{u} \cdot \nabla f,$$

onde \mathbf{u} é o versor que aponta para a direção que queremos calcular a derivada. Por exemplo, a derivada de f(x, y) = xy no ponto $\mathbf{r} = (2, 1)$ na direção $\mathbf{u} = (1, 0)$ é:

$$\frac{df}{d\mathbf{u}} = (1,0) \cdot (1,2) = 1 \,^{\circ}\text{C/cm}.$$

Ou seja, se a nossa formiga andasse na direção (1,0) ela aqueceria apenas 1 °C a cada centímetro. Mas como ela é uma formiga esperta e andou na direção de $\nabla f = (1,2)$, ela aqueceu

$$\frac{df}{d\mathbf{u}} = \frac{(1,2)}{\sqrt{5}} \cdot (1,2) = \sqrt{5} = 2,2 \,^{\circ}\text{C/cm}.$$

A $\sqrt{5}$ serve para fazer de **u** um vetor de comprimento unitário, isto é, um versor.

A partir daqui deixar disponível para o usuário o botão de exibição/ocultação do campo vetorial.

Frame 10

Outra maneira de representar um campo vetorial é através das chamadas **linhas de campo**. Nesta representação, desenhamos uma linha contínua, a partir de um ponto **r** qualquer, cuja inclinação é sempre aquela do campo vetorial.

Para entender melhor, clique no botão e, em seguida, no plano cartesiano. Esta ação criará uma bolinha que percorre o plano seguindo o campo vetorial. A linha de campo é essencialmente a trajetória dessa bolinha.

Vamos construir uma linha do campo vetorial $\nabla f = (y, x)$.

Frame 11

Arraste o botão para o plano cartesiano, criando ali uma agulha que indica a orientação do campo vetorial. Experimente mover a agulha pelo plano para ver como ela funciona.

obs.: a agulha criada é similar àquela que vemos numa bússola. Mas cuidado: não estamos falando de campo magnético, que é um caso particular de campo vetorial.

Exibir o campo vetorial.

Frame 12

Escolha um ponto **r** para começar, arraste a agulha para lá e pressione o botão $^{\varnothing}$. Isto criará uma marca em **r**, indicando que aquele é um ponto da nossa linha de campo. Além disso, aparecerá uma reta com a orientação do campo naquele ponto.

Frame 12b

Em seguida, mova ligeiramente a agulha **sobre a reta** até algum outro ponto **próximo** do primeiro e marque-o com [27]. Este é o segundo ponto da nossa linha de campo.

Quanto menor a distância entre os pontos, melhor será a linha de campo. Isto ocorre por que, na verdade, estamos fazendo uma aproximação da linha de campo através de segmentos de reta.

Frame 13

Prossiga desta maneira, criando outros 20 ou mais pontos, sempre tomando o cuidado de dar passos pequenos.

Frame 14

Agora exibimos também, no plano cartesiano, a linha de campo correta para o ponto \mathbf{r} que você escolheu. Compare-a com a sua e experimente colocar algumas bolinhas em \mathbf{r} para ver o que acontece.

Finalmente, note que esta representação não leva em consideração a intensidade do campo vetorial. Para resolver isso, costuma-se desenhar mais linhas de campo onde o campo é mais intenso. Mas não vamos fazer isso aqui.

obs.: é possível ter uma ideia da intensidade do campo através da velocidade com que a bolinha percorre o campo. Mas isto só é possível com uma animação.