A02 SC1 ISE4.7

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2007**

MSc and EEE/ISE PART IV: MEng and ACGI

DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

Tuesday, 15 May 10:00 am

Time allowed: 3:00 hours

There are FIVE questions on this paper.

Answer THREE questions.

CORRECTED COPY

All questions carry equal marks

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): A.G. Constantinides

Second Marker(s): M.K. Gurcan

The Questions

1

1.1. Define the root moments $\{S_m\}$ of the real polynomial $f(z) = K \prod_{i=1}^n \left(1 - r_i z^{-i}\right)$ where m is the degree of the moment, and comment on their dependence on r_i i=1,2,...,n as $m\to\infty$.

[2]

1.2. A Finite Impulse Response transfer function is of the form

$$H(z) = K \prod_{i=1}^{n_1} (1 - \alpha_i z^{-1}) \prod_{i=1}^{n_2} (1 - \beta_i z^{-1}),$$

where K is a constant, α_i are the zeros inside the unit circle and β_i are the zeros outside the unit circle.

Set
$$N_1(z) = \prod_{i=1}^{n_1} \left(1 - \alpha_i z^{-1}\right)$$
 and $N_2(z) = \prod_{i=1}^{n_2} \left(1 - \beta_i z^{-1}\right)$,

[2]

Show that if H(z) is real then the root moments of both $N_1(z)$ and $N_2(z)$ are also real.

1.3. Given the amplitude and phase responses are $A(\theta)$ and $\phi(\theta)$ of H(z) derive the Fundamental Relationships

$$\ln(A(\theta)) = \ln(K_1) - \sum_{m=1}^{\infty} \frac{S_m^{N_1} + S_{-m}^{N_2}}{m} \cos(m\theta),$$

$$\phi(\theta) = -n_2 \theta + \sum_{m=1}^{\infty} \frac{S_m^{N_1} - S_{-m}^{N_2}}{m} \sin(m\theta)$$

where K_1 is an appropriate real constant, $S_m^{N_1}$ are the root moments of the minimum phase factor and $S_{-m}^{N_2}$ the inverse root moments of the maximum phase factor of H(z).

[7]

1.4. Hence show that if the transfer function H(z) is linear phase then it must have zeros located outside the unit circle, and determine their number in relation to the number of zeros located inside the unit circle.

[4]

1.5. Determine the Fundamental Relationships for the allpass transfer function

$$H(z) = \prod_{i=1}^{m} A_i(z) \text{ where } A_i(z) = \left(\frac{z^{-1} - \alpha_i^*}{1 - \alpha_i z^{-1}}\right).$$
 [5]

- 2.
- **2.1.** Define the normalised group delay $\tau(\theta)$ of a discrete time system of transfer function H(z) and show that if on the unit circle $H(e^{j\theta}) = A(\theta)e^{j\phi(\theta)}$ then we may write $\tau(\theta) = -\operatorname{Im}\left[\frac{d}{d\theta}\left(\ln H(e^{j\theta})\right)\right].$
- **2.2.** Let the transfer function of a real allpass system of order m that has no real zeros be given by $H(z) = \prod_{i=1}^m A_i(z)$ where $A_i(z) = \left(\frac{1-\alpha_i^*z}{z-\alpha_i}\right)$, $\alpha_i = \rho_i e^{j\psi_i}$ and $\left|\rho_i\right| < 1$. Show that the phase response of $A_i(z)$ is given by $\arg(A_i(e^{j\theta})) = -\theta 2\arctan\frac{\rho_i\sin(\theta-\psi_i)}{1-\rho_i\cos(\theta-\psi_i)}$.
- **2.3.** Determine an expression for the overall group delay $\tau(\theta)$ of the real allpass H(z) defined as above. [4]
- **2.4.** Show that for ρ_i as above and for any ψ_i , $\int_0^{2\pi} \frac{d}{d\theta} \frac{\rho_i \sin(\theta \psi_i)}{1 \rho_i \cos(\theta \psi_i)} d\theta = 0$ [2]
- **2.5.** Hence determine the average group delay $\tau_{av} = \frac{1}{2\pi} \int_{0}^{2\pi} \tau(\theta) d\theta$ and explain the significance of this result. [5]
- **2.6.** Show that the group delay $\tau(\theta)$ of the real allpass is always positive.

[5]

- 3.
- **3.1.** A real digital filter transfer function $H_N(z)$ is given by

$$H_{\scriptscriptstyle N}(z) = \frac{p_0 + p_1 z^{-1} + \ldots + p_{\scriptscriptstyle N-1} z^{-(N-1)} + p_{\scriptscriptstyle N} z^{-N}}{1 + d_1 z^{-1} + \ldots + d_{\scriptscriptstyle N-1} z^{-(N-1)} + d_{\scriptscriptstyle N} z^{-N}} \,.$$

It is proposed to realise this transfer function as in Figure 1 where

$$H_N(z) = Y_1 / X_1$$
.

The subsystem S in the figure is linear and is characterised by the relationships $Y_1 = AX_2 + BY_2$ $X_1 = CX_2 + DY_2$. Express $H_N(z)$ as a function of $H_{N-1}(z)$ and A, B, C, D. Determine an expression for $H_{N-1}(z)$ in terms of $H_N(z)$ and the parameters A, B, C, D.

- **3.2.** By examining $\left[H_N(z) \frac{B}{D}\right]$, or otherwise, determine the condition under which $H_N(z)$ is independent of $H_{N-1}(z)$.
- 3.3. The parameters of S are chosen so as to make $H_{N-1}(z)$ of degree (N-1). Verify that the following choice satisfies the requirements: $A = p_N z^{-1}$, $B = p_0$, $C = d_N z^{-1}$, D = 1.
- 3.4. Discuss other possible and alternative non-trivial values for these parameters. [3]
- 3.5. For the given selection above derive the coefficients of $H_{N-1}(z)$ in terms of the coefficients of $H_N(z)$. Explain how such a procedure may be used iteratively to realise a given transfer function, assuming no terms become infinite. For the given selection of parameters as in 3.3 above, produce a minimal component realisable signal flow graph in terms of appropriate adders, multipliers and delays, indicating the first step of the iteration [7]

Figure 1

[5]

- 4
- **4.1.** Consider an ideal linear phase lowpass digital filter transfer function $\,H(z)\,.$ On the unit

circle
$$z = e^{j\theta}$$
, the function $H(z)$ takes the values $H(e^{j\theta}) = \begin{cases} e^{-jM\theta} & -\frac{\pi}{M} \le \theta \le \frac{\pi}{M} \\ 0 & elsewhere \end{cases}$

- where M is a positive integer. Sketch the amplitude response of $H(e^{j(\theta-\frac{2\pi}{M}r)})$ for r=0, r=1 and r=2.
- **4.2.** Show that the frequency response shown below is allpass and determine its phase response

$$G(e^{j\theta}) = \sum_{r=0}^{M-1} H(e^{j(\theta - \frac{2\pi}{M}r)}).$$

4.3. Let H(z) be expressed as $H(z) = \sum_{r=0}^{M-1} z^{-r} H_r(z^M)$ where $H_r(z)$ are some appropriate

subfilter transfer functions. By replacing
$$z$$
 by $ze^{-j\frac{2\pi}{M}k}$ in the expression above for $H(z)$ and summing over k , or otherwise, show that the subfilter transfer function

$$H_0(z^{\scriptscriptstyle M}) \text{ is given by the expression } H_0(e^{jM\theta}) = \frac{1}{M} \sum_{r=0}^{M-1} H(e^{j(\theta - \frac{2\pi}{M}r)}) \,.$$

4.4. What is the amplitude response of $H_0(z^M)$?

[10]

[3]

[4]

- 5.
- 5.1. Explain what is meant by terms computational complexity and twiddle factors in the context of evaluating the Discrete Fourier Transform (DFT), and derive the computational complexity of a N-point DFT.
- [4]
- **5.2.** It is given that $N=N_1N_2$ with N_1 and N_2 co-prime. It is proposed to carry out on the data array $\big\{x(n)\big\},\quad 0\leq n\leq N-1$, the following 1-D to 2-D mapping

$$n = \left\langle An_1 + Bn_2 \right\rangle_N \quad \begin{cases} 0 \leq n_1 \leq N_1 - 1 \\ 0 \leq n_2 \leq N_2 - 1 \end{cases} \quad k = \left\langle Ck_1 + Dk_2 \right\rangle_N \quad \begin{cases} 0 \leq k_1 \leq N_1 - 1 \\ 0 \leq k_2 \leq N_2 - 1 \end{cases} \quad \text{where} \quad k = \left\langle Ck_1 + Dk_2 \right\rangle_N \quad \begin{cases} 0 \leq k_1 \leq N_1 - 1 \\ 0 \leq k_2 \leq N_2 - 1 \end{cases}$$

- $\langle M \rangle_{\scriptscriptstyle N}$ means a reduction of the number M modulo N. Derive the conditions that must prevail on the products AC, BD, AD, and BC in order that all possible twiddle factors in the 2-D DFT computation are eliminated.
- [10]

[3]

- **5.3.** Show that the following set of parameters satisfies these conditions $A=N_2$, $B=N_1$, $C=N_2\left\langle N_2^{-1}\right\rangle_{N_1}$, $D=N_1\left\langle N_1^{-1}\right\rangle_{N_2}$ where $\left\langle L^{-1}\right\rangle_P$ denotes the multiplicative inverse of L evaluated modulo P.
- **5.4.** Hence outline the algorithm for the computation of the N-point DFT. [3]

	DIGITAL SIGNAL PROCESSING & DIGITAL FILTER	25
	Question 1. SCLUTIONS MASTER - 16/4/6	7
•	2007	
	1.1 The not moments Sm are defined as the	
	sum of powers of the viols	
	$Sm = \sum_{i=1}^{m} r_i^{m}$	
	1=1	
	$\frac{1}{\sqrt{ r_i }} \leq 1 \qquad Sm \rightarrow \infty \qquad as m \rightarrow \infty$	
	# 151 >1 Sm1 >0 a(m >00	
		2
	1.2 If H(2) is real then for weny complex or in in the RHS, Fanother factor containing &	
	'n in the RHS, Fanother factor containing di	
	Similarly with Bi. Hence $\sum_{i=1}^{n_1} a_i^{m_i} = \sum_{i=1}^{n_1/2} a_i^{m_i} + (a_i^{*})^{m_i} \rightarrow real$	
100-00-00-00-00-00-00-00-00-00-00-00-00-	Hence & dim = 2 dim +(di) >real	
	Sinistanty with Bi	
	Similarly with Bi	Susan,
	1.3 The Fundamental Relationships involve	
	to be I providence and there	
	taking logarithus and thus	
	In H(z) = lu K + \(\sum \text{lu (1-diz')} + \(\sum \text{lu (1-\beta;z')} \)	
	1=1	
	The infinite former series involve Taylor expansions but the last term needs to be re-expressed for convergence as $\sum_{j=1}^{n_2} \ln \left[(-\beta_j z^j) (1 - \frac{1}{2} z^j) \right]$	
	but the last term needs to be re-expressed	
	for convergence as 5 m [(-B; Z') (1-1-Z')	
	and hence m_{\perp} $m + \sum_{i=1}^{\infty} h_{i}(-(s_{i}) - n_{2}h_{2} - \sum_{i=1}^{\infty} \frac{s_{i}}{m} = \frac{s_{i}}$	
	MH(Z) = MK+ \(\lambda	
	with $z=e^{i\theta}$ and $H(e^{i\theta})=A(\theta)\exp(i\varphi(\theta))$	
	with z=e and H(e')=A(b) exp(jQ(t))	
	and imaginary with musimary $MA(B) = MK_1 - \sum_{i=1}^{\infty} S_{i} M_i^2 + \sum_{i=1}^{\infty} K_{i} + \sum_{i=1}^{\infty} K_{$	
•	and unaginary with unagraphy	
	$MA(B) = M(C_1 - 2) Sm + Sm, cosmb$	
	m=1 m	

and $\phi(\theta) = -n_2\theta + \sum_{m=1}^{\infty} \frac{S_m}{s_m} - \frac{S_m}{s_m} = \frac{N_2}{s_m}$ where $k_i = M_i k_i + \sum_{i=1}^{m-1} M_i(-\beta_i)$ seen that if Sm = - Sm then $\phi(\theta) = -n_2\theta$ ie the phase is precisely linear. The root moments of N, and N2 must have the above relationship &m. ie there are nots located outside 12/=1 when there are not inside 12/=1 6 on there are in the other in a reciprocal 1.5 If H(z) is allysoss then A(0)=1 since |Ai(z)|=1 For any allfon ly Ailz) = lm (z'-di) -lm (1-d; z') or lu Ailz) = lu(z')(1-diz) - lu (1-diz') = -hz + h(1-diz) - h(1-diz') = -hz - (diz + diz' + diz' + diz')+ (diz + diz + diz = + diz = +...) $= -MZ - \left[\alpha'(z-\bar{z}') + \alpha'^{2}(z^{2}-\bar{z}^{2}) + \alpha'^{3}(\bar{z}^{3}-\bar{z}^{3}) + \cdots \right]$ On z= e) 8 $mA_{i}(e^{j\theta}) = -j\theta - 2j\alpha_{i}\sin\theta + \alpha_{i}\sin\theta +$

where $S\mu = Si^{\mu}$ and fN + (2)SH = \(\sum \) \(\text{denominator} \) denominator. 5

	Question 2.	
	2.1 The group delay $\tau(0)$ is defined as	
	$T(\theta) = -d \frac{\phi(\theta)}{d\theta}$	
	where \$10) is the unwrapped phase response	
	Jon H(eig) = A(g). eig(a) pe hans	
	and hence is $h(\theta) = h(\theta) + h(\theta)$	
	TIE) = - In dhH(e/f)	2
	2.2	
	Set $z=e^{i\theta}$ $d_i=p_ie^{i\theta}$ in $A_i(z)$	
	so that $A_{i}(e^{i\theta}) = 1 - P_{i}e^{-i\psi_{i}+j\Phi}$	
	$A;(e') = \frac{1}{e'\theta} - p; e^{+j\psi}$	
	+i(b-V:)	
	= = i = 1 - P; e + i (b-\frac{1}{2};)	
	1-p.e. (B-Wi)	
	= e . Bi(0). e hi(0)	
4	Bile). etimica)	
6	Where B; (+) = 1-p; e -j(+	
	$\mu_i(\theta) = + \alpha \pi^i p_i' \sin(\theta - \forall i)$	
	1-p; cos(0-7/;)	
	Hence $\phi(\theta) = -\theta - 2 + a \pi^{-1} P_i \sin (\theta - v_i)$	
	1-p; cos(0-4;)	2
4	2.3 The group delay ussociated with \$10)	
C-	$T_{i}(\theta) = 1 + 2 \cdot \frac{d}{a\theta} \cdot \frac{tai'}{l - p_{i}c}$	
	ao I-pic	

5/17 where s=sin(0-2/i) c = cos(0-2/i) ω T;(θ)=1+ 2. 1 , p; [c(1-p;c)-sp;s] (+/Pis)2 (1-Pic)2 $= 1 + \frac{2 p_i(c - p_i)}{(1 - p_i c)^2 + (p_i s)^2}$ ce m $T(\theta) = \sum_{i=1}^{m} T_{i}(\theta) = m + 2\sum_{i=1}^{m} P_{i}(c-P_{i})$ i=1 i=1 $(1-P_{i}c)^{2} + (P_{i}s)^{2}$ $I = \int_{0}^{2\pi} \frac{d}{d\theta} \cdot \frac{p_{i} \sin(\theta - \psi_{i})}{1 - p_{i} \cos(\theta - \psi_{i})} d\theta$ $= \int_0^{2\pi} d\left[\frac{p_i \sin(\theta - \psi_i)}{1 - p_i \cos(\theta - \psi_i)} \right]$ It follows that 2π $T = \begin{cases} p_i \sin(\theta - V_i) \\ 1 - p_i \cos(\theta - V_i) \end{cases} = 0.$ $T_{AW} = \frac{1}{2\pi} \left(T(\theta) \cdot d\theta \right)$ $= \frac{1}{2\pi i} \left(\frac{1}{m+2} \frac{d}{d\theta} \left(\frac{\frac{P_i S}{1-p_i c}}{1-p_i c} \right) \cdot \frac{d\theta}{d\theta} \right)$

The ewerage group delay is equal to the 1/3 number of zeros or degree of the allpans 2.6 From 2.3 we have Ti(0)=1+2Pi((-Pi) (1-pic)2+ (pis)2 - (1-pic) 2 + (pis) 2 + 2pic - 2pi (1-Pic) + (Pis) = (1-Pic) 2+ (Pis)2 and since Defi 21 it follows that both numerator [(1-Pi)] and denominate (a sum of squares) are positive T; (0) >0 Hence TID)= Ti(0) >,0 5

then with the given expression for HN12) we have [1] HN-1(z) = B(1+d, z'+..+dNz') - D(potpiz'L-+pNz') C(potpiz'+..+pNz') - A(1+d, z'+..+dNz') For $A = \rho_N Z^{-1}$, $B = \rho_0$, $C = d_N Z^{-1}$ D = 1 we have HN-(Z)= O+ (Pod,-p)Z1+-+(PodN-pN)ZN (d, pN)z'+ (d, p, -pNd,)z'2+...

+ (d, pN-1-pNdN-1)z' + 0

There is a common factor of z'1 beliver the numerator and denominator, which upon Cancellatin makes HV-1(z) of degree N. 3 The Selection of [A,B,C,D] must be such that a) AD-BC to as seen in 3.2. This ensures the dependence of $H_N(z)$ on $H_N(z)$ and hence the possibility of selecting $H_{N-1}(z)$ appropriately for a given $H_N(z)$ b) There needs to be a Trommon factor for cancellatin as in 3.3. The selection given is not unique, but it is one that makes the common factor very sniple il z1. Other Selections are possible for example by making these parameters second order Thurty reducing the degree of HN-1(2) by 2 less than the degree of HN(2). 3.5. The coefficients of Hw-, 12) are given already above. The procedure may be iterated now

10/17 Question 4 4.1 Since | H(e) =1 in the range -T <+ T the function H(e)(0-211.1) will be mity in the suited range (-II+2II) For r=0 For Y= 1 r=2 35 45 55 4.2 From the given form for H(z) we have $G(e^{j\theta}) = \sum_{r=0}^{M-1} e^{jM\theta} - e^{jM\theta} \sum_{r=0}^{M-1} e^{jM\theta} \cdot \sum_{r=0}^{M-1}$ M constant for all frequencies. Its phase response \$10) = MO

Set M-1 $H(z) = \sum_{i=1}^{n} z^{-i}$ $H_{i}(z^{M})$ Now replace z by zej m.k H(ze M-1 = Z. e M-1 . Hr (zm) Note that Hr(2M) remain the same Now sum over k = 0,1, ..., M. $\frac{M-1}{\sum H(ze^{\frac{1}{2}}Mk)} = \frac{M-1}{\sum z^{r}, H_{r}(z^{M})} = \frac{2\pi kr}{k}$ k=0 k=0 k=0But $\sum_{i=1}^{M-1} e^{j\frac{2\pi}{M} \cdot r_{i}M} = 1 - e^{j\frac{2\pi}{M} \cdot r_{i}M} = 1$ For r=0 $\geq e^{j}M$ $= 1+1+\cdots+1=M$ k=0 $= 1+1+\cdots+1=M$ ie. N-1
\[\frac{1}{2\pi} \cdot \frac{2\pi}{M} \cdot \cdot \) = M \cdot \frac{4}{0} (\begin{cases} \begin{cases} \frac{2\pi}{M} \cdot \cdot \end{cases} \] A HO(ZM) = I > H(Ze Mk) 4.4. Refer to 4.2. It is seen that the expressions are the same and hence

austin 5 5.1 The DFT requires complex multiplications and addition, for its evaluation. Thus for $X(k) = \sum_{i=0,1,..,N-1}^{N-1} x^{i} = \sum_{i=0,1,...,N-1}^{N-1} x^{i$ we require N complex multiplications for each value of R. The Tinddle factors one the of the confutational scheme.

For a length N we Therefore need N Times as many mulifications thereby producing a emphatational complexity of O(N2). 4 5.2 It is observed for S-1 that n and k &nk need only be taken mudulo N. For n= An, + Bn2 and k= CK, +DK2 nk = (An, +Bn2) (Ck,+Dk2) = Acn, k, + Adn, k2 + BCn2k, + BDn2k2 possible DAT possible in n. DAT in n. Twiddle factors 60. (AC) = N,-1. $\langle Acn_ik_i \rangle_N \equiv n_ik_i$ or AC = N2 (AD) = 0

and CDD niho = $\frac{n_2h_2}{N}$ n_2h_3 = $\frac{n_2h_2}{N}$ = $\frac{n_2h_2}{N}$ = $\frac{n_2h_2}{N}$ or BD = N, 5.3 Fram AC = N2. N2 (N2) > = N2 mod X $AD = N_1 N_2 < N_1^{-1} > 0 = 0 - u - 1$ BC= N, N, CNTSN, EU -4-BD = N, N, <N, >N, = N, Hence the given values satisfy the required The aborithm proceeds as follows. and placed as assecutive nows (wheremy) in a 2-D away. b) The 1-D DFT of each orw (whem) is carried out and placed in the same location. c) The 1-D DFT of each Column (Now) is carried out and flowed in the same boation. a) This 1-D DFT is read out from the 2-D away according to k-Ck, +Dk, Where now the rows and column are labelled gs k, and kz