TITLE - Verifications of Basic and Universal Grate integrated

OBJECTIVE - To verify the outputs of all Logic Grates along with their truth tables.

LIST OF APPARATUS - Digital Trainer Kit, wires, Integrated Circuits
We get this kinds of Logic Gates -

· Basic Gates

·Universal Gates

→ 4071 2-input OR

→ 4001 2-input NOR

→ 40381 2-Paput AND

-> 4011 2-input NAND

→ 4069 1-input NOT

→ 4070 2-input XOR

THEORY - The monipulation of binary information is done by logic Circuits called "gates". Grates are blocks of hardware that produce signals of 1 and 0 when the input logic requirements are met. This input output relationship of the binary variables for each gate can be represented in a tabular format which is referred as a truth table". These gates/logic gates can be classified into two types, based on their usage.

1) Basic Gates 2) Universal Gates

Now, these gates are also sub-divided. There are 4 kinds of Basic gates and 2 kinds of universal thates. The basic gates are OR, AND, XOR and NOT gate. While the universal gates are NOR and NAND gate.

figure 1 contains the schematic representation of the classification of logic gates.

LOGIC GATES

Fig 1: Schematic repersentation of the classifiation of Logic Gates

- · OR → The OR gate produces the output 1 if the input A or input B or both inputs are 1; otherwise the output is O.
- AND The AND gate produces the output 1 if input A and input B, both equals to 1; otherwise the output is O.
- •NOT → The NOT gate, also known as inverter, produced the output 1 if the single input A equals to O
- XOR → The output of the XOR gate is 1 if any input is 1 but excludes the combination when both inputs are 1.
- NOR > The NOR gate, or NOT-OR gate, produces the output O if input A or input B or both inputs are 1; others. the output is 1.
- NAND The NAND gate, or NOT-AND gate, produces the output

 O if input A and input B, both equal to 1 is other wise

 the output is 1.
- Figure 2 contains the graphical representation of each of the logic optes.

Fig 2: Graphical representation of the Igic Gates

PIN CONFIGURATONS - The following diagrams are the pin Configurations of the given integrated circuits:-

IC4071 → 2-input OR Gate

IC 4069 - 11 Input NOT Grate

IC4070 - 2 input-xOR gate

IC4011 -> 2-input NAND Gate

((i))

CIRCUIT DIAGRAM: Circuit diagrams for the verification of each legic gates , are as follows

Or Output

A,B > Inputs

OR Gute - A -

02A+B

AND Gote > A DO 0 = A.B

$$O = \overline{A \cdot B}$$

$$0 = ((A+B) + (A+B))$$

AND Using NOR Grate ->

NOT Using MAND Gate

$$A \qquad O = (A \cdot A)' = A'$$

XOR Using MAND Gate

$O = ((A \cdot (A \cdot B)')' \cdot (B \cdot (A \cdot B)')'$ = AB' + A'B

TRUTH TABLES

	OR GATE	
Α	В	0 = A+B
0	0	0
0	1	1
1	O ₍₁₎	1
1	1 8	1

AND Gate				
A	В	O = 600		
0	0	0		
0	1	0		
1	0	0		
1	2	1		

NOT	Gote	1
А	D, = A'	
0	a 1 0 =	(ON)
1	0	

	×OR Grate My			
~ YOU AT) -20	Α	B	O = ABB	
(64)	0	0	0	
	D	1	ı	
	l	0	1	
	1	1	O	

	7	OR Chate	
A	В	Q=A+B	D = (A+B)'
0	D	0	1
0	1		0
	0		0
	1	1	0

NAND Game					
A	B	Q = A·B	Q = (A.BY		
0	0	6	1		
0	1	0	1		
1	0	0	1		
1	J	1	0		

OR U	sing NOR	Chate ->		K	
A	B	A+B	(+B),	0 = ((A+B)+ (A+B))	
0	0	0	1	0	Hops & HAT TO BE EXPLO
0	1	1	٥	1	Steel THERE P.C.
1	0	4 4 M	0	1 1 1	(#'(A-A) = 8 . /
1	1	1	0	1	

AND Using NOR Gate-0 = AB (A'+B') (A'+B')' A' B' ATA BTB A B . (A. 1) ((A) O (OA) O

NOT Using NOR Grate:

A	A+A	0 = (A+A) = A'
0	0	1
1	1	0

XOR Using NOR Chate:

A	В	(A+B)	A'	B'	(A'+B')'=A.B	0 = ((A+B)' + A-B)'
, D	0	7 1	1	1	D	0
0	J	0	1	0	0	1
1	0	0	0	1	Ô	
)	1	0	Ö	D	1	· · · · · · · · · · · · · · · · · · ·
			\	10 L + Y	8116); = (1216)	6,1

MOT Using NAND Gate:

A	В	$(A \cdot A)' = A'$	(B·B), = B,	0= (A'.B')' = A+B
٥	0	1	1	0
D)	1	O	1
1	D	0	1	1
1	1	21.10	0 9	1 1818 617

AND Using NAND Gote:

A	В	(A·B)'	D = ((A · B)' · (A · B)')' = A · E	3
0	0	1	0	
0)	1	0	
1	0	1	0	
	1	0	1	

1

 \bigcirc

NOT	using	NAND Gate
A	A - A	D = (A-A)'
D	0	1
7	1	0

XOR	Using	DAND) (nate:		
Δ	B			(B.(A.B)')'	$0 = ((A \cdot (A \cdot B)')' \cdot (B \cdot (A \cdot B)')')'$ $= AB + AB = A \oplus B$
0	10	1	1	1	0
		1	1	0	1

CONCLUSION: In the lab, I explosed the function of the basic legic gates. I learned how to implement them on a breadboard with integrated circuits. I tested the output voltage of the Circuits and ensured the result corresponded with the truth table of the logic gate tested.

1