МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

Институт интеллектуальных кибернетических систем Кафедра Кибернетики

Лабораторная работа №3 «Оценивание параметров нелинейного стационарного объекта методом наименьших квадратов»

Выполнил студент группы Б15-501: Огнянович Павел

Проверила: Воробьева Д.В.

Цель работы

Оценка параметров A, B, C, D, E нелинейного объекта с помощью применения МНК к линеаризованному объекту.

Описание метода

Уравнение исследуемого в лабораторной работе объекта имеет вид:

$$y = f(t, A, B, C, D, E) = A \exp(Dt) \cos(Bt + C) + E + \eta$$

Уравнение модели объекта:

$$\tilde{y} = \tilde{A} * \exp(\tilde{D}t) * \cos(\tilde{B}t + \tilde{C}) + \tilde{E}$$

Очевидно, что рассматриваемый объект нелинейный по параметрам A,B,C,D,E. Данные параметры подлежат оцениванию, t — единственная предикторная переменная, а η — случайная ошибка, удовлетворяющая обычным предположениям: $E(\eta)=0$, $D(\eta)=\sigma^2$.

Найти оценки параметров A, B, C, D, E предлагается с помощью применения МНК к линеаризованному объекту. Линеаризацию производят при помощи частных производных от уравнения модели объекта по каждому из параметров.

Задание

Частные производные:

$$\frac{dF}{dA} = e^{Dt} * cos(Bt + C)$$

$$\frac{dF}{dB} = -A * t * e^{Dt} * sin(Bt + C)$$

$$\frac{dF}{dC} = -A * e^{Dt} * sin(Bt + C)$$

$$\frac{dF}{dD} = A * t * e^{Dt} * cos(Bt + C)$$

$$\frac{dF}{dE} = 1$$

Начальные приближения:

Рис. 1. График зависимости выхода объекта от времени.

Результаты работы

A = 2.42782652

B = 0.44100006

C = 1.6383663

D = -0.02388079

E = -0.16615771

Рис. 2. Сравнительный график зависимости выхода объекта и модели от времени.

Синий – выход объекта

Красный – выход полученной модели

Рис. 3. График остатков.

Заключение

В данной работе были получены оценки параметров А, В, С, D, Е нелинейного объекта с помощью применения метода наименьших квадратов к линеаризованному объекту. В ходе выполнения лабораторной работы была произведена линеаризация модели нелинейного объекта, после чего с помощью метода наименьших квадратов были получены оценки параметров модели. При работе были использованы достаточно близкие начальные приближения:

	Начальное приближение	Полученная оценка
Α	2.2	2.42782652
В	0.4381395348837209	0.44100006
С	1.57	1.6383663
D	-0.02	-0.02388079
E	-0.2	-0.16615771

При данных начальных приближениям метод сошелся за 4 итерации.

На основании полученных результатов были сделаны следующие выводы:

- Метод очень чувствителен к начальным приближениям.
- Модель с рассчитанными оценками параметров является адекватной и точно отражает характеристики моделируемого объекта.