UIT2504 Artificial Intelligence Rational Agents

C. Aravindan <Aravindan C@ssn.edu.in>

Professor of Computing SSN College of Engineering

July 31, 2024

Al and Rational Agents

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

Al and Rational Agents

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

The textbook advocates "Acting Rationally"

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

- An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators
- Example Human agent: eyes, ears, and other organs for sensors; hands, legs, mouth, and other body parts for actuators

- An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators
- Example Human agent: eyes, ears, and other organs for sensors; hands, legs, mouth, and other body parts for actuators
- Example Robotic agent: cameras, infrared range finders, etc. for sensors; various motors for actuators

3/16

C. Aravindan (SSN) Al July 31, 2024

- An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators
- Example Human agent: eyes, ears, and other organs for sensors; hands, legs, mouth, and other body parts for actuators
- Example Robotic agent: cameras, infrared range finders, etc. for sensors; various motors for actuators
- Example Software agent: keystrokes, mouse clicks, file contents, network packets, etc. for sensors; display, writing files, sending packets, etc. for actuators

3/16

C. Aravindan (SSN) Al July 31, 2024

• The agent function maps from percept sequences to actions: $f: P^* \to A$

C. Aravindan (SSN) AI July 31, 2024

• The agent function maps from percept sequences to actions:

 $f:P^*\to A$

ullet An agent program runs on some physical architecture to compute f

- Percepts: pair of location and its contents. Eg. [A, dirty], [B, clean]
- Actions: Left, Right, Suck, Noop

- Percepts: pair of location and its contents. Eg. [A, dirty], [B, clean]
- Actions: Left, Right, Suck, Noop
- Given a percept sequence, what is the "right" thing to be done by the agent?

- Percepts: pair of location and its contents. Eg. [A, dirty], [B, clean]
- Actions: Left, Right, Suck, Noop
- Given a percept sequence, what is the "right" thing to be done by the agent?
- Can the agent function be computed by a simple look-up table?

• The "right" action is the one that will cause the agent to be successful

- The "right" action is the one that will cause the agent to be successful
- But, how to measure success?

- The "right" action is the one that will cause the agent to be successful
- But, how to measure success?
- Consequentialism evaluate an agent's behavior by its consequences

- The "right" action is the one that will cause the agent to be successful
- But, how to measure success?
- Consequentialism evaluate an agent's behavior by its consequences
- Performance Measure: an objective criterion for success of an agent

- The "right" action is the one that will cause the agent to be successful
- But, how to measure success?
- Consequentialism evaluate an agent's behavior by its consequences
- Performance Measure: an objective criterion for success of an agent
- Example: For vacuum-cleaner, performance measures could be amount of dirt cleaned up, time taken, electricity consumed, noise generated etc.

6/16

C. Aravindan (SSN) Al July 31, 2024

Rational Agents

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

• Rationality is not perfection and it is not omniscience

- Rationality is not perfection and it is not omniscience
- Rational agents can perform actions to gather information (exploration)

- Rationality is not perfection and it is not omniscience
- Rational agents can perform actions to gather information (exploration)
- Rational agents should learn from the percepts

8/16

C. Aravindan (SSN) Al July 31, 2024

- Rationality is not perfection and it is not omniscience
- Rational agents can perform actions to gather information (exploration)
- Rational agents should learn from the percepts
- Rational agents should be autonomous

• PEAS: Performance measure, Environment, Actuators, Sensors

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance:

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.
- Environment:

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.
- Environment: Roads, traffic, police, pedestrians, weather, etc.

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.
- Environment: Roads, traffic, police, pedestrians, weather, etc.
- Actuators:

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.
- Environment: Roads, traffic, police, pedestrians, weather, etc.
- Actuators: Steering, accelerator, brake, signal, horn, etc.

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.
- Environment: Roads, traffic, police, pedestrians, weather, etc.
- Actuators: Steering, accelerator, brake, signal, horn, etc.
- Sensors:

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.
- Environment: Roads, traffic, police, pedestrians, weather, etc.
- Actuators: Steering, accelerator, brake, signal, horn, etc.
- Sensors: Camera, radar, speedometer, GPS, odometer, engine sensors, etc.

• Another example: How can we describe an Internet shopping agent?

- Another example: How can we describe an Internet shopping agent?
- Performance:

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.
- Environment:

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.
- Environment: Current and future websites, vendors, shippers

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.
- Environment: Current and future websites, vendors, shippers
- Actuators:

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.
- Environment: Current and future websites, vendors, shippers
- Actuators: Display to user, follow links, fill-up forms, etc.

10 / 16

C. Aravindan (SSN) Al July 31, 2024

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.
- Environment: Current and future websites, vendors, shippers
- Actuators: Display to user, follow links, fill-up forms, etc.
- Sensors:

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.
- Environment: Current and future websites, vendors, shippers
- Actuators: Display to user, follow links, fill-up forms, etc.
- Sensors: Understand HTML pages (text, graphics, scripts)

10 / 16

C. Aravindan (SSN) Al July 31, 2024

Agent Type	Performance Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, tests, diagnoses, treatments	Touchscreen/voice entry of symptoms and findings
Satellite image analysis system	Correct categorization of objects, terrain	Orbiting satellite, downlink, weather	Display of scene categorization	High-resolution digital camera
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts; bins	Jointed arm and hand	Camera, tactile and joint angle sensors
Refinery controller	Purity, yield, safety	Refinery, raw materials, operators	Valves, pumps, heaters, stirrers, displays	Temperature, pressure, flow, chemical sensors
Interactive English tutor	Student's score on test	Set of students, testing agency	Display of exercises, feedback, speech	Keyboard entry, voice

- Fully observable Vs. partially observable
 - Can the agent sense all the relevant aspects of the environment?
 - Example: Chess playing agent
 - Example: Autonomous driving agent

- Fully observable Vs. partially observable
 - Can the agent sense all the relevant aspects of the environment?
 - Example: Chess playing agent
 - Example: Autonomous driving agent
- Single agent Vs. multiagent
 - How do we define other agents?
 - Example: Puzzle solver
 - Example: Chess playing agent
 - Example: Autonomous driving agent

- Deterministic Vs. nondeterministic
 - Is the next state completely defined by the current state and the action executed by the agent?
 - Example: Chess playing agent
 - Example: Autonomous driving agent

- Deterministic Vs. nondeterministic
 - Is the next state completely defined by the current state and the action executed by the agent?
 - Example: Chess playing agent
 - Example: Autonomous driving agent
- Episodic Vs. sequential
 - Does the action taken in one time duration (episode) depend on the actions taken in the previous episodes?
 - Example: Chess playing agent
 - Example: Part-picking robot

- Static Vs. dynamic
 - Does the environment change while the agent is deliberating?
 - Example: Chess playing agent
 - Example: Part-picking robot

- Static Vs. dynamic
 - Does the environment change while the agent is deliberating?
 - Example: Chess playing agent
 - Example: Part-picking robot
 - If the environment itself does not change, but the performance score changes, then it is semi-dynamic
 - Example: Chess with a clock

- Static Vs. dynamic
 - Does the environment change while the agent is deliberating?
 - Example: Chess playing agent
 - Example: Part-picking robot
 - If the environment itself does not change, but the performance score changes, then it is semi-dynamic
 - Example: Chess with a clock
- Discrete Vs. continuous
 - Can the environment be captured by a set of discrete states? time is discrete or continuous?
 - Example: Chess playing agent
 - Example: Part-picking robot

- Static Vs. dynamic
 - Does the environment change while the agent is deliberating?
 - Example: Chess playing agent
 - Example: Part-picking robot
 - If the environment itself does not change, but the performance score changes, then it is semi-dynamic
 - Example: Chess with a clock
- Discrete Vs. continuous
 - Can the environment be captured by a set of discrete states? time is discrete or continuous?
 - Example: Chess playing agent
 - Example: Part-picking robot
- Known Vs. unknown
 - Does the agent know the "laws of physics" of the environment?

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	Discrete
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete

Questions?

• Read chapter 2 of the textbook!

