ADVANCED MATHEMATICS

Trigonometry (Adv), T3 Trig Functions and Graphs (Adv)

Trig Graphs (Y12)

Trig Applications (Y12)

Teacher: Cathyanne Horvat

Exam Equivalent Time: 90 minutes (based on allocation of 1.5 minutes per mark)

T3 Trig Functions and Graphs

HISTORICAL CONTRIBUTION

- T3 Trig Functions and Graphs has contributed a meaningful 7.0% per new syllabus Adv exam since it was introduced in 2020.
- This topic has been split into two sub-topics for analysis purposes: 1-Trig Graphs (2.3%), and 2-Trig Applications (4.3%).
- This analysis looks at the sub-topic Trig Graphs.

HSC ANALYSIS - What to expect and common pitfalls

- Trig Graphs have been examined in each of the new syllabus exams with a multiple choice in 2020 and longer answer questions in 2021-22 (worth 2 marks each).
- The database size reflects our view that this area will be consistently examined going forward and numerous examples of all trig graph variations are covered.
- We recommend close revision of *T3 EQ-Bank 3 and 5* which are informed by the question style and difficulty level of NESA's sample questions. Also, special attention should be given to *2013 HSC 6 MC* which was surprisingly poorly answered.
- Note that more than half of students answered the 2016 multiple choice question on a tan function graph's *period* incorrectly. Deserves attention.

Questions

1. Trigonometry, 2ADV T3 2020 HSC 6 MC

Which interval gives the range of the function $y = 5 + 2\cos 3x$?

- A. [2, 8]
- B. [3, 7]
- C. [4, 6]
- D. [5, 9]

2. Trigonometry, 2ADV T3 SM-Bank 18 MC

The period of the function $f(x) = an\!\left(rac{\pi x}{2}
ight)$ is

- A. 2
- B. 4
- C. 2π
- D. 4π

3. Trigonometry, 2ADV T3 2013 HSC 6 MC

Which diagram shows the graph $y = \sin\left(2x + \frac{\pi}{3}\right)$?

(B)

(C)

(D)

4. Trigonometry, 2ADV T3 EQ-Bank 5

The function $f(x)=\sin\!x$ is transformed into the function $g(x)=rac{\sin(4x)}{3}$.
Describe in words how the amplitude and period have changed in this transformation. (2 marks)

5. Trigonometry, 2ADV T3 2010 HSC 8c

The graph shown is $y = A \sin bx$.

i. Write down the value of \boldsymbol{A} . (1 mark)

ii. Find the value of b. (1 mark)

iii. On the same set of axes, draw the graph $y=3{
m sin}x+1$ for $0\leq x\leq\pi$. (2 marks)

6. Trigonometry, 2ADV T3 SM-Bank 9

Let
$$f(x) = 2\cos(x) + 1$$
 for $0 \le x \le 2\pi$.

i. Solve the equation $2\cos(x)+1=0$ for $0\leq x\leq 2\pi$. (2 marks)

.....

ii. Sketch the graph of the function f(x) on the axes below. Label the endpoints and local minimum point with their coordinates. (3 marks)

7. Trigonometry, 2ADV T3 2017 HSC 14a	8. Trigonometry, 2ADV T3 2010 MET1 3
Sketch the curve $y=4+3{ m sin}2x$ for $0\leq x\leq 2\pi$. (3 marks)	Shown below is part of the graph of a period of the function of the form $y = \tan(ax + b)$.
	$y = \tan(ax + b)$
	Find the value of ${\it a}$ and the value of ${\it b}$, where ${\it a}>0$ and $0<{\it b}<1$. (3 marks)

Ω	Trigonometry.	3 V D V \	T2 2021	H6C 3U
J.	THUUMIUMIEM V.		10/20/1	

For what values of x, in the interval $0 \le x \le \frac{\pi}{4}$, does the line y=1 intersect the graph of $y=2\sin 4x$? (2 marks)

10. Trigonometry, 2ADV T3 2022 HSC 14

The graph of $y = k\sin(ax)$

What are the values of ${\pmb k}$ and ${\pmb a}$? (2 marks)

11. Trigonometry, 2ADV T3 SM-Bank 13

On any given day, the depth of water in a river is modelled by the function

$$h(t)=14+8\mathrm{sin}\left(rac{\pi t}{12}
ight),\;\;0\leq t\leq 24$$

where \boldsymbol{h} is the depth of water, in metres, and \boldsymbol{t} is the time, in hours, after 6 am.

- ii. Find the values of $\it t$ for which $\it h(t)=10$. (2 marks)

i. Find the minimum depth of the water in the river. (1 mark)

.....

12. Trigonometry, 2ADV T3 2018 HSC 15a

The length of daylight, $\boldsymbol{L(t)}$, is defined as the number of hours from sunrise to sunset, and can be modelled by the equation

$$L(t) = 12 + 2\cos\left(\frac{2\pi t}{366}\right),$$

where t is the number of days after 21 December 2015, for $0 \le t \le 366$. i. Find the length of daylight on 21 December 2015. (1 mark)
ii. What is the shortest length of daylight? (1 mark)
iii. What are the two values of $ t $ for which the length of daylight is 11? (2 marks)

13. Trigonometry, 2ADV T3 SM-Bank 10

The population of wombats in a particular location varies according to the rule
$n(t) = 1200 + 400\cos\left(\frac{\pi t}{3}\right)$, where n is the number of wombats and t is the number of months after 1
March 2018.
i. Find the period and amplitude of the function $m{n}$. (2 marks)
ii. Find the maximum and minimum populations of wombats in this location. (2 marks)
ii. Find $n(10)$. (1 mark)
v. Over the 12 months from 1 March 2018, find the fraction of time when the population of wombats in this location was less than $n(10)$. (2 marks)
location was less than 10(20). (2 mains)

4.	Trigonometry,	2ADV T3	3 2013 HSC 13a	
----	---------------	---------	----------------	--

The population of a herd of wild horses is given by

$$P(t) = 400 + 50 ext{cos} \left(rac{\pi}{6}t
ight)$$

where $m{t}$ is time in months.	
i. Find all times during the first 12 months when the population equals 375 horses	6. (2 marks)
ii. Sketch the graph of $P(t)$ for $0 \leq t \leq 12$. (2 marks)	
ii. Sketch the graph of 1 (b) for 0 \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}{2	

15. Trigonometry, 2ADV T3 EQ-Bank 3

By drawing graphs on the number plane, show how many solutions exist for the equation $\cos x = \left|\frac{x-\pi}{4}\right|$ in the domain $(-\infty,\infty)$ (3 marks)

16. Trigonometry, 2ADV T3 SM-Bank 8

$$f(x) = 2 \mathrm{sin}(2x)$$
 is defined in the domain $\left\{x \colon rac{\pi}{8} \le x < rac{\pi}{3}
ight\}$

What is the range of the function f(x)? (2 marks)

17. Trigonometry, 2ADV T3 2020 HSC 31

The population of mice on an isolated island can be modelled by the function.

$$m(t) = a\sin\left(\frac{\pi}{26}t\right) + b,$$

where t is the time in weeks and $0 \le t \le 52$. The population of mice reaches a maximum of 35 000 when t = 13 and a minimum of 5000 when t = 39. The graph of m(t) is shown.

a. What are the values of \boldsymbol{a} and \boldsymbol{b} ? (2 marks)

b. On the same island, the population of cats can be modelled by the function

$$c(t) = -\,80 ext{cos} \Big(rac{\pi}{26}(t-10)\Big) + 120$$

Consider the graph of m(t) and the graph of c(t).

Find the values of $t,~0 \leq t \leq 52$, for which both populations are increasing. (3 marks)

.....

c. Find the rate of change of the mice population when the cat population reaches a maximum. (2 marks)	18. Trigonometry, 2ADV T3 2009 HSC 7b
	Between 5 am and 5 pm on 3 March 2009, the height, \boldsymbol{h} , of the tide in a harbour was given by
	$h=1+0.7\mathrm{sin}\Big(rac{\pi}{6}t\Big) ext{for}\ \ 0\leq t\leq 12$
	where \boldsymbol{h} is in metres and \boldsymbol{t} is in hours, with $\boldsymbol{t}=\boldsymbol{0}$ at 5 am.
	i. What is the period of the function $ m{h} ? $ (1 mark)
	ii. What was the value of $m{h}$ at low tide, and at what time did low tide occur? (2 marks)
	iii. A ship is able to enter the harbour only if the height of the tide is at least 1.35 m. Find all times between 5 am and 5 pm on 3 March 2009 during which the ship was able to enter the harbour. (3 marks)
	Harbour. (3 marks)

Worked Solutions

1. Trigonometry, 2ADV T3 2020 HSC 6 MC

$$-1 \leq \cos 3x \leq 1$$

$$-2 \leq 2 \cos 3x \leq 2$$

$$3 \le 5 + 2 \mathrm{cos} 3x \le 7$$

$$\Rightarrow B$$

2. Trigonometry, 2ADV T3 SM-Bank 18 MC

$$n=rac{\pi}{2}$$

$$\mathrm{Period} = \frac{\pi}{n} = \frac{\pi}{\frac{\pi}{2}} = 2$$

$$\Rightarrow A$$

3. Trigonometry, 2ADV T3 2013 HSC 6 MC

At
$$x=0, \ y=\sin\left(\frac{\pi}{3}\right) \ = \frac{\sqrt{3}}{2}$$

 \Rightarrow It cannot be A or C

Find x when y = 0,

$$\sin\!\left(2x + \frac{\pi}{3}\right) = 0$$

$$\therefore 2x + \frac{\pi}{3} = 0 \qquad (\sin 0 = 0)$$

$$2x=-\frac{\pi}{3}$$

$$x=-\frac{\pi}{6}$$

$$\Rightarrow D$$

4. Trigonometry, 2ADV T3 EQ-Bank 5

$$g(x) = \frac{1}{3}\sin(4x)$$

 \Rightarrow The new amplitude is one third of the original amplitude.

$$Period = \frac{2\pi}{n} \Rightarrow n = \frac{1}{4}$$

 $\Rightarrow~$ The new period is one quarter of the original period.

♦♦ Mean mark 34%

- 5. Trigonometry, 2ADV T3 2010 HSC 8c
- i. A = 4
- ii. Since the graph passes through $\left(\frac{\pi}{4},4\right)$

Substituting into $y = 4\sin bx$

$$4\sin\left(b imes rac{\pi}{4}
ight) = 4$$

$$\sin\Bigl(b\times\frac{\pi}{4}\Bigr)=1$$

$$b imesrac{\pi}{4}=rac{\pi}{2}$$

$$\therefore b = 2$$

MARKER'S COMMENT: Graphs are consistently drawn too small by many students. Aim to make your diagrams 1/3 to 1/2 of a page.

6. Trigonometry, 2ADV T3 SM-Bank 9

i.
$$2\cos(x) + 1 = 0$$

$$\cos(x) = -\frac{1}{2}$$

$$\Rightarrow \cos \frac{\pi}{3} = \frac{1}{2}$$
 and cos is negative

in 2nd/3rd quadrant

$$\therefore x = \pi - \frac{\pi}{3}, \pi + \frac{\pi}{3}$$
$$= \frac{2\pi}{3}, \frac{4\pi}{3}$$

7. Trigonometry, 2ADV T3 2017 HSC 14a

$$y = 4 + 3\sin 2x$$

$$\Rightarrow$$
 Amplitude of 3 about $y=4$

8. Trigonometry, 2ADV T3 2010 MET1 3

$$y = \tan(ax + b)$$

Substitute
$$(1, \sqrt{3}), (-1, -1)$$
 into equation:

$$\tan(a+b) = \sqrt{3}$$

$$\tan(b-a) = -1$$

$$a+b=\frac{\pi}{3}\,\ldots\,(1)$$

$$b-a=-\frac{\pi}{4}\,\ldots\,(2)$$

Add
$$(1) + (2)$$
:

$$2b = \frac{\pi}{3} - \frac{\pi}{4}$$

$$b=\frac{\pi}{24}$$

Substitute into (1):

$$a+\frac{\pi}{24}=\frac{\pi}{3}$$

$$a=rac{7\pi}{24}$$

9. Trigonometry, 2ADV T3 2021 HSC 20

Find x such that:

$$2\sin 4x = 1$$

$$\sin 4x = \frac{1}{2}$$

$$4x=\sin^{-1}\,\frac{1}{2}$$

$$4x=rac{\pi}{6},rac{5\pi}{6},rac{13\pi}{6},rac{17\pi}{6},\dots$$

$$\therefore x = \frac{\pi}{24}, \frac{5\pi}{24} \quad \left(0 \le x \le \frac{\pi}{4}\right)$$

10. Trigonometry, 2ADV T3 2022 HSC 14

$$Amplitude = 4$$

$$\Rightarrow k = 4$$

$$Period = 6\pi$$

$$\frac{2\pi}{a} = 6\tau$$

$$6\pi a=2\pi$$

$$\Rightarrow a = \frac{1}{3}$$

11. Trigonometry, 2ADV T3 SM-Bank 13

i.
$$h_{\min}$$
 occurs when $\sin\!\left(rac{\pi t}{12}
ight) = -1$

$$\therefore h_{\min} = 14-8$$
$$= 6 \text{ m}$$

MARKER'S COMMENT: Students who used calculus to find the minimum were less successful.

ii.
$$14 + 8\sin\left(\frac{\pi}{12}t\right) = 10$$

$$\sin\left(\frac{\pi}{12}t\right) = -\frac{1}{2}$$

Solve in general:

$$rac{\pi}{12}t = rac{7\pi}{6} + 2\pi n \quad ext{or} \quad rac{\pi}{12}t = rac{11t}{6} + 2\pi n, \ t = 14 + 24n \qquad \qquad t = 22 + 24n$$

Substitute integer values for n,

$$t = 14 \text{ or } 22, \quad (0 \le t \le 24)$$

- 12. Trigonometry, 2ADV T3 2018 HSC 15a
- i. $L(t)=12+2\cos\left(\frac{2\pi t}{366}\right)$ On 21 Dec 2015 $\Rightarrow t=0$

$$L(0) = 12 + 2\cos 0$$

= 14 hours

ii. Shortest length of daylight occurs when

$$\cos\!\left(rac{2\pi t}{366}
ight) = -1$$

 $\therefore \text{ Shortest length} = 12 + 2(-1)$ = 10 hours

iii. Find t such that L(t) = 11:

$$11=12+2\mathrm{cos}\bigg(\frac{2\pi t}{366}\bigg)$$

$$\cos\left(\frac{2\pi t}{366}\right) = -\frac{1}{2}$$

$$\frac{2\pi t}{366} = \frac{2\pi}{3}$$
 or $\frac{2\pi t}{366} = \frac{4\pi}{3}$
 $t = \frac{366}{3}$ $t = \frac{366 \times 2}{3}$
 $= 122$ $= 244$

t = 122 or 244

- 13. Trigonometry, 2ADV T3 SM-Bank 10
 2π 2π
- i. $\operatorname{Period} = \frac{2\pi}{n} = \frac{2\pi}{\frac{\pi}{3}} = 6 \text{ months}$ $\operatorname{Amplitude} = 400$
- ii. Max: 1200 + 400 = 1600 wombats Min: 1200-400 = 800 wombats
- iii. $n(10) = 1200 + 400\cos\left(\frac{10\pi}{3}\right)$ = $1200 + 400\cos\left(\frac{2\pi}{3}\right)$ = $1200 - 400 \times \frac{1}{2}$ = 1000 wombats

♦ Mean mark 43%.

iv. Find t when n(t) = 1000

$$1000 = 1200 + 400\cos\left(rac{\pi t}{3}
ight)$$
 $\cos\left(rac{\pi t}{3}
ight) = -rac{1}{2}$ $rac{\pi t}{3} = rac{2\pi}{3}, rac{4\pi}{3}, rac{8\pi}{3}, rac{10\pi}{3}, \ldots$ $t = 2, 4, 8, 10$

Since n(0) = 1600,

 $\Rightarrow n(t)$ drops below 1000 between t=2 and t=4, and between t=8 and t=10.

$$\therefore \text{ Fraction} = \frac{2+2}{12}$$
$$= \frac{1}{3} \text{ year}$$

14. Trigonometry, 2ADV T3 2013 HSC 13a

i.
$$P(t) = 400 + 50\cos\left(\frac{\pi}{6}t\right)$$

Need to find t when P(t) = 375

$$375 = 400 + 50\cos\left(\frac{\pi}{6}t\right)$$

$$50\cos\left(rac{\pi}{6}t
ight) = -25$$

$$\cos\Bigl(rac{\pi}{6}t\Bigr) = -rac{1}{2}$$

Since $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$, and \cos is

negative in 2nd/3rd quadrants:

$$\Rightarrow \frac{\pi}{6}t = \left(\pi - \frac{\pi}{3}\right), \left(\pi + \frac{\pi}{3}\right), \left(3\pi - \frac{\pi}{3}\right)$$
$$= \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}, \dots$$
$$\therefore t = 4, 8, 16, \dots$$

... In the 1st 12 months, P(t) = 375 when t = 4 months and 8 months.

♦ Mean mark 39%

15. Trigonometry, 2ADV T3 EQ-Bank 3

Sketch:

$$y = \cos x$$

$$y = \left| \frac{x - \pi}{4} \right|$$

Translate π units to the right:

$$y = |x| \Rightarrow y = |x - \pi|$$

Multiply by $\frac{1}{4}$:

$$y=|x-\pi| \;\Rightarrow\; y=rac{1}{4}|x-\pi|=\left|rac{x-\pi}{4}
ight|$$

... There are 4 solutions.

16. Trigonometry, 2ADV T3 SM-Bank 8

$$\sin(2x)_{
m max}$$
 occurs when $x=rac{\pi}{4}$ (within domain) $\Rightarrow f(x)_{
m max} \ = 2\sin\Bigl(rac{\pi}{2}\Bigr) = 2$

Checking endpoints:

When
$$x = \frac{\pi}{8} \Rightarrow y = 2\sin\left(\frac{\pi}{4}\right) = \sqrt{2}$$

When
$$x = \frac{\pi}{3} \implies y = 2\sin\left(\frac{2\pi}{3}\right) = \sqrt{3}$$

$$\therefore$$
 Range = $\left[\sqrt{2}, 2\right]$,

♦ Mean mark 45%

a.
$$b = \frac{35\ 000 + 5000}{2}$$

= 20 000

$$a = \text{amplitude of sin graph}$$

= 35 000-20 000
= 15 000

b. By inspection of the $\,m(t)\,$ graph $m\prime(t)>0\,$ when $\,0\leq t<13\,$ and $\,39< t\leq 52\,$ Sketch $\,c(t)$:

17. Trigonometry, 2ADV T3 2020 HSC 31

Minimum (cos0) when t = 10Maximum (cos π) when t = 36 $\therefore c'(t) > 0$ when 10 < t < 36

 \therefore Both populations are increasing when $\ 10 < t < 13$

c. c(t) maximum when t=36

$$m(t) = 15 \, 000 \sin\left(\frac{\pi}{26}t\right) + 20 \, 000$$
 $m'(t) = \frac{15 \, 000\pi}{26} \cos\left(\frac{\pi}{26}t\right)$
 $m'(36) = \frac{15 \, 000\pi}{26} \cdot \cos\left(\frac{36\pi}{26}\right)$
 $= -642.7$

... Mice population is decreasing at 643 mice per week.

♦♦ Mean mark part (b) 30%.

♦♦♦ Mean mark part (c) 27%.

- 18. Trigonometry, 2ADV T3 2009 HSC 7b
- i. $h=1+0.7\mathrm{sin}\Big(rac{\pi}{6}t\Big)$ for $0\leq t\leq 12$

$$T=rac{2\pi}{n} \; ext{ where } n=rac{\pi}{6}$$
 $=2\pi imesrac{6}{\pi}$ $=12 ext{ hours}$

- \therefore The period of h is 12 hours.
- ii. Find h at low tide

$$\Rightarrow h$$
 will be a minimum when

$$\sin\!\left(\frac{\pi}{6}t\right) = -1$$

$$h_{\min} = 1 + 0.7(-1)$$

$$= 0.3$$
 metres

Since
$$\sin x = -1$$
 when $x = \frac{3\pi}{2}$

$$\frac{\pi}{6}t=\frac{3\pi}{2}$$

$$t=rac{3\pi}{2} imesrac{6}{\pi}$$

- = 9 hours
- \therefore Low tide occurs at 2pm (5 am + 9 hours)
- iii. Find t when $h \ge 1.35$

$$1+0.7\mathrm{sin}\Big(rac{\pi}{6}t\Big)\geq 1.35$$

$$0.7\mathrm{sin}\!\left(rac{\pi}{6}t
ight) \geq 0.35$$

$$\sin\!\left(rac{\pi}{6}t
ight) \geq rac{1}{2}$$

$$\sin\!\left(rac{\pi}{6}t
ight)=rac{1}{2}$$
 when

$$\frac{\pi}{6}t = \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}, \ \text{etc} \dots$$

$$t = 1, 5$$
 $(0 \le t \le 12)$

IMPORTANT: Using $\sin x = -1$ for a minimum here is very effective and time efficient. This property of trig functions is *often very useful* in harder questions.

From the graph,

$$\sin\left(\frac{\pi}{6}t\right) \geq \frac{1}{2}$$
 when $1 \leq t \leq 5$

... Ship can enter the harbour between 6 am and 10 am.

Copyright © 2016-2024 M2 Mathematics Pty Ltd (SmarterMaths.com.au)