Contents

Background	2
Magnetic field at axis	2
Magnetic Field for long solenoid	3
Infinite long conductor	3
Application of Ampere's law	4
Solenoid	4
Application of ampere's law in solenoid	4
Derivation for the expression of magnetic field at the axis of solenoid from ampere's	
law	
Line integral in amperes law	
Magnitude of angle of parallel sides with the axis of magnetic field	
Evaluation of expression for side parallel ab to the magnetic field $\ldots \ldots$	6
Evaluation of expression for side parallel cd to the magnetic field $\ldots \ldots \ldots$	6
Magnitude of angle of perpendicular sides with the axis of magnetic field	6
Evaluation of expression for the side bc perpendicular to the magnetic field $$. $$	6
Evaluation of expression for the side \emph{da} perpendicular to the magnetic field $\ . \ .$	7
Sum of line integral of magnetic field across the closed loop	7
Equality of amperes law in solenoid	7
Expression for magnetic field at the axis of solenoid from ampere's law	7
Toroid	8
Structure of toroid	8
Magnetic field at the axis of toroid	8
Derivation for the expression of magnetic field at the axis of a toroidal coil from	
ampere's law	8
Expression of ampere's law in toroid	9
Expression for the magnetic field at the axis of a toroidal coil from ampere's law	9

Background

- · Solenoid is a coiled conductor.
- The magnetic field of solenoid is as that of bar magnet.

Magnetic field at axis

- The **magnetic field** is to be calculated at P.
- A small length segment dl is taken.
- Number of turns in dl = n

$$dB = \frac{\mu_0 N I a \sin \theta}{2r^2}$$

$$N = n d l$$

$$dB = \frac{\mu_0 n I a d l \sin \theta}{2r^2}$$

$$BC = d l \sin \theta$$

$$BC = r d \theta$$

$$dl \sin \theta = r d \theta$$

$$dB = \frac{\mu_0 n I a r d \theta}{2r^2}$$

$$dB = \frac{\mu_0 n I a d \theta}{2r}$$

$$\frac{a}{r} = \sin \theta$$

$$dB = \frac{\mu_0 n I \sin \theta d \theta}{2}$$

$$B = \int_{\alpha_1} dB$$

$$B = \int_{\alpha_1}^{\alpha_2} \frac{\mu_0 n I \sin \theta d \theta}{2r}$$

$$B = \frac{\mu_0 n I}{2} \int_{\alpha_1}^{\alpha_2} \sin \theta d \theta$$

$$B = \frac{\mu_0 n I}{2} [\cos \alpha_1 - \cos \alpha_2]$$

• The general **expression** for magnetic field at the axis of a **current** carrying **solenoid** is:

$$B = \frac{\mu_0 nI}{2} [\cos \alpha_1 - \cos \alpha_2]$$

Magnetic Field for long solenoid

- $\alpha_1 = 0$
- α₂ = π
- The expression for magnetic field at axis for long solenoid is given by:

$$B = \mu_0 n I$$

$$dB = \frac{u_0 I d l \sin \theta}{4\pi r^2}$$

$$dl \sin \theta = AN$$

$$d\phi = \frac{AN}{r}$$

$$AN = d\phi r$$

$$dB = \frac{u_0 I r d\phi}{4\pi r^2}$$

$$\cos \phi = \frac{a}{r}$$

$$r = \frac{a}{\cos \phi}$$

$$dB = \frac{u_0 I \cos \phi d\phi}{4\pi a}$$

$$B = \int_{\phi_1}^{-\phi_2} dB$$

$$B = \frac{u_0 I}{4\pi a} \int_{\phi_1}^{-\phi_2} \cos \phi d\phi$$

$$B = \frac{u_0 I}{4\pi a} [\sin \phi_1 + \sin \phi_2]$$

• The general expression for magnetic field due to a long straight conductor is given by:

$$B = \frac{u_0 I}{4\pi a} [\sin \phi_1 + \sin \phi_2]$$

Infinite long conductor

$$\phi_1 = \phi_2 = \frac{\pi}{2}$$

$$B = \frac{u_0 I}{4\pi a} \times 2$$

• The expression for **magnetic field** due to **infinitely** long magnetic field is given by:

$$B = \frac{u_0 I}{2\pi a}$$

Application of Ampere's law

Solenoid

Figure 1: Structure of a solenoid

Application of ampere's law in solenoid.

- Ampere's law is valid only under closed path.
- A closed path is formed in a solenoid in the form of a rectangle.

Derivation for the expression of magnetic field at the axis of solenoid from ampere's law

Figure 2: Magnetic field of closed loop in a solenoid

- The solenoid has turns.
- The turns of solenoid are ring shaped.

Line integral in amperes law

$$\oint \vec{B}.\vec{dl} = \oint_a^b \vec{B}.\vec{dl} + \oint_b^c \vec{B}.\vec{dl} + \oint_c^d \vec{B}.\vec{dl} + \oint_d^a \vec{B}.\vec{dl}$$

Magnitude of angle of parallel sides with the axis of magnetic field

The angle between side of rectangle parallel to the axis of magnetic field with the magnetic field is

.

Evaluation of expression for side parallel $\it ab$ to the magnetic field

$$\oint_{a}^{b} Bdl \cos \theta$$

$$= \oint_{a}^{b} Bdl \cos(0)$$

$$= \oint_{a}^{b} Bdl$$

$$= B \oint_{a}^{b}$$

$$= B[l]_{a}^{b}$$

$$= B(b - a)$$

$$= Bl$$

Evaluation of expression for side parallel cd to the magnetic field

- The side cd doesnot lie on the axis of magnetic field.
- The magnetic field present across *cd* is negligible compared to the field present inside.

Magnitude of angle of perpendicular sides with the axis of magnetic field

The angle between side of rectangle perpendicular to the axis of magnetic field with the magnetic field is

.

90

Evaluation of expression for the side bc perpendicular to the magnetic field

$$\oint_{b}^{c} \vec{B}.dl = \oint_{b}^{c} Bdl \cos \theta$$
$$= \oint_{b}^{c} Bdl \cos(90)$$
$$= 0$$

Evaluation of expression for the side da perpendicular to the magnetic field

$$\oint_{d}^{a} \vec{B} \cdot dl = \oint_{d}^{a} B dl \cos \theta$$
$$= \oint_{d}^{a} B dl \cos(90)$$
$$= 0$$

Sum of line integral of magnetic field across the closed loop

$$\oint \vec{B} \vec{dl} = Bl$$

Equality of amperes law in solenoid

The expression of amperes law is

$$\oint \vec{B}\vec{dl} = \mu_0 I$$

The expression for N number of turns is

$$\oint \vec{B}\vec{dl} = \mu_0 NI$$

$$\oint \vec{B} d\vec{l} = \mu_0 N I$$

$$\oint \vec{B} d\vec{l} = B l$$

$$B l = \mu_0 N I$$

$$B = \mu_0 I \frac{N}{l}$$

$$B = \mu_0 n I$$

Expression for magnetic field at the axis of solenoid from ampere's law

The expression for magnetic field at the axis of solenoid from ampere's law is

$$B = \mu_0 nI$$

Toroid

Structure of toroid

- · Toroid is a circular structure.
- The circular structure is a form of bent solenoid.
- Toroid is a bent solenoid.

Magnetic field at the axis of toroid

- The magnetic field at the axis of toroid is circular.
- The axis is distributed over the circle.
- The length of the distribution of the axis is the circumference of circle.
- The length of the distribution of axis is $2\pi r$.

Derivation for the expression of magnetic field at the axis of a toroidal coil from ampere's law

$$\oint_0^{2\pi r} \vec{B} \cdot d\vec{l} = \oint_0^{2\pi r} B dl \cos \theta$$

$$= \oint_0^{2\pi r} B dl \cos(0)$$

$$= \oint_0^{2\pi r} B dl$$

$$= B \oint_0^{2\pi r} dl$$

$$= B[l]_0^{2\pi r}$$

$$= B(2\pi r - 0)$$

$$= B(2\pi r)$$

Expression of ampere's law in toroid

$$\oint_0^{2\pi r} \vec{B} \cdot d\vec{l} = B2\pi r$$

$$\oint_0^{2\pi r} \vec{B} \cdot d\vec{l} = \mu_0 NI$$

$$B2\pi r = \mu_0 NI$$

$$B = \frac{\mu_0 NI}{2\pi r}$$

Expression for the magnetic field at the axis of a toroidal coil from ampere's law

The expression for the magnetic field at the axis of a toroidal coil from ampere's law is

$$B = \frac{\mu_0 NI}{2\pi r}$$