Worksheet 9: Primes Again

- 1. Prove that there are infinitely many primes. One way to do this is by means of contradiction: assuming p_1, p_2, \dots, p_k are the only primes, consider the number $p_1p_2 \cdots p_k + 1$.
- 2. Prove that there are infinitely primes $\equiv 3 \mod 4$. (*Hint:* assuming p_1, p_2, \ldots, p_k are the only primes $\equiv 3 \mod 4$, consider the number $4p_1p_2\cdots p_k-1$.) Explain why this is much easier than to prove that there are infinitely primes $\equiv 1 \mod 4$.
- 3. Show that if n is composite, then so is $2^n 1$. Thus the Mersenne number $M_p := 2^p 1$ can only possibly be prime if p is prime. Find the first five Mersenne primes, and the first five composite Mersenne numbers M_p for which p is prime.
- 4. Prove that $p \in \mathbb{Z}_{>1}$ is prime if and only if $a^{p-1} \equiv 1 \mod p$ for all $a \not\equiv 0 \mod p$.³ Explain how this can be used for a test for *compositeness* of an integer without actually factoring it.
- 5. Write down a precise statement for each definition we have given this week. For each definition, give an example and a non-example.

¹Your proof probably uses two "obvious" but nontrivial facts, namely, (1) that every integer can be uniquely factored into primes, and (2) that two adjacent integers are relatively prime.

²There is a general result, known as *Dirichlet's Theorem*, which says that given $a, b \in \mathbb{Z}$ with gcd(a, b) = 1, there are infinitely primes $\equiv a \mod b$.

³The second condition is subtly different from that of a *Carmichael number*, which is a composite number n such that $a^{n-1} \equiv 1 \mod n$ whenever gcd(a, n) = 1.