Chapter 1

Monodromy

1.1 Monodromy and realizability

Proposition 1.1. Let Σ_g be the connected sum of $g \geq 0$ tori, $d \geq 1$ an integer, $\pi_1, \ldots, \pi_n \in \Pi(d)$ partitions of d. Then there exists a realizable combinatorial datum $\mathcal{D} = (\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \ldots, \pi_n)$ if and only if there exist permutations $\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_n, \gamma_1, \ldots, \gamma_n \in \mathfrak{G}_g$ such that:

- (i) $[\alpha_i] = \pi_i$ for each $1 \le i \le n$;
- (ii) $[\beta_1, \gamma_1] \cdots [\beta_n, \gamma_n] \cdot \alpha_1 \cdots \alpha_n = 1$;
- (iii) the subgroup $\langle \alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_q, \gamma_1, \ldots, \gamma_q \rangle \leq \mathfrak{S}_d$ acts transitively on $\{1, \ldots, d\}$.

In this case, $\widetilde{\Sigma}$ is necessarily orientable.

Remark 1.1. Given Σ_g , d and π_1, \ldots, π_n , there is at most one surface $\widetilde{\Sigma}$ such that $\mathcal{D} = (\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \ldots, \pi_n)$ is a candidate datum. In fact, the ?? formula gives

$$\chi(\widetilde{\Sigma}) = d\chi(\Sigma_g) - v(\pi_1) - \dots - v(\pi_n)$$

which, in turn, uniquely determines the orientable surface $\widetilde{\Sigma}$.

Proposition 1.2. Let N_g be the connected sum of $g \ge 1$ projective planes, $d \ge 1$ an integer, $\pi_1, \ldots, \pi_n \in \Pi(d)$ partitions of d. Then there exists a realizable combinatorial datum $\mathcal{D} = (\widetilde{\Sigma}, N_g; d; \pi_1, \ldots, \pi_n)$ if and only if there exist permutations $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_g \in \mathfrak{S}_d$ such that:

- (i) $[\alpha_i] = \pi_i$ for each $1 \le i \le n$;
- (ii) $\beta_1^2 \cdots \beta_q^2 \cdot \alpha_1 \cdots \alpha_n = 1$;
- (iii) the subgroup $\langle \alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_g \rangle \leq \mathfrak{S}_d$ acts transitively on $\{1, \ldots, d\}$.

In this case, $\widetilde{\Sigma}$ is orientable if and only if ??.

Remark 1.2. Given N_g , d and π_1, \ldots, π_n , there are at most two surfaces $\widetilde{\Sigma}$, one orientable and one non-orientable, such that $\mathcal{D} = (\widetilde{\Sigma}, N_g; d; \pi_1, \ldots, \pi_n)$ is a candidate datum: like in remark 1.1, the ?? formula fixes $\chi(\widetilde{\Sigma})$ which, together with orientability, uniquely determines $\widetilde{\Sigma}$.

1.2 Non-positive Euler characteristic

Lemma 1.3. Let $\alpha \in \mathfrak{S}_d$ be a permutation. Set $r = d - v(\alpha)$, and let $t \geq 0$ be an integer such that $2t \leq v(\alpha)$. Then α can be written as the product of a (r + 2t)-cycle and a d-cycle.

Corollary 1.4. Let $\alpha \in \mathfrak{A}_d$ be an even permutation. Then α can be written as:

- (i) a commutator $[\beta, \gamma]$, where γ is a d-cycle;
- (ii) a product of two squares $\beta^2 \gamma^2$, where $\beta \gamma$ is a d-cycle.

Theorem 1.5. Let $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ be a candidate datum. If $\chi(\Sigma) \leq 0$, then \mathcal{D} is realizable.

1.3 Products in symmetric groups

Lemma 1.6. Let X, Y be finite sets; denote by h the cardinality of Y, and by k the cardinality of $X \cap Y$. Let $\alpha \in \mathfrak{S}(X)$, $\beta \in \mathfrak{S}(Y)$, $\gamma \in \mathfrak{S}(X \cap Y)$. Assume that $\beta = (b_1, \ldots, b_h)$ is a h-cycle, and that γ is a k-cycle of the form $\gamma = (b_{i_1}, \ldots, b_{i_k})$ with $1 \leq i_1 \leq \ldots \leq i_k \leq h$. Then $\alpha \in \mathfrak{S}(X)$ and $\alpha \gamma^{-1} \beta \in \mathfrak{S}(X \cup Y)$ have the same number of cycles.

Proof. Let $\gamma = (u_1, \dots, u_k)$, where $u_j = b_{i_j}$. Without loss of generality, assume that $i_1 = 1$. Then we can write

$$\beta = (u_1, \dots, w_1, u_2, \dots, w_2, u_3, \dots, w_{k-1}, u_k, \dots, w_k),$$

possibly with $u_j = w_j$ for some values of j. We immediately get that

$$\gamma^{-1}\beta = (u_1, \dots, w_1)(u_2, \dots, w_2) \cdots (u_k, \dots, w_k).$$

If we denote by $A_1, \ldots, A_r \subseteq X$ the orbits of α , it is then easy to see that the orbits of $\alpha \gamma^{-1} \beta$ are $A'_1, \ldots, A'_r \subseteq X \cup Y$, where

$$A'_j = A_j \cup \bigcup_{u_l \in A_j} \{u_l, \dots, w_l\}.$$

Proposition 1.7. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) < d$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $v(\alpha\beta) = v(\alpha) + v(\beta)$.

Proof. First of all, note that the conclusion is trivial whenever $v(\pi) = 0$ or $v(\rho) = 0$. This already solves the cases d = 1 and d = 2. We now proceed by induction on $d \ge 3$, assuming that $v(\pi) > 0$ and $v(\rho) > 0$. Write $\pi = [a_1, \ldots, a_r]$, $\rho = [b_1, \ldots, b_s]$; without loss of generality, assume that $b_1 > 1$. Fix

$$\beta = (1, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s),$$

where $b_1 = d_1 \ge 2$, $b_i = d_i - d_{i-1}$ for $2 \le i \le s$ (in particular, $d_s = d$). Note that

$$d-1 \ge v(\pi) + v(\rho) = (a_1-1) + \ldots + (a_r-1) + d - s \ge a_1 - 1 + d - s$$

hence $a_1 \leq s$. Fix $\alpha_1 = (1, d_1 + 1, \dots, d_{a_1 - 1} + 1)$, and let $A = \{1, d_1 + 1, \dots, d_{a_1 - 1} + 1\}$ be the support of α_1 . Define $Q = \{1, \dots, d_{a_1}\} \setminus A$; note that Q_1 is non-empty, since $d_1 + 1 \geq 3$ implies that $2 \in Q_1$. Consider the partitions

$$\pi' = [a_2, a_3, \dots, a_r],$$
 $\rho' = [|Q|, b_{a_1+1}, \dots, b_s].$

We have that

$$\sum \pi' = \sum \rho' = d - a_1, \qquad v(\pi') = v(\pi) - a_1 + 1, \qquad v(\rho') = v(\rho) - 1.$$

Since $d - a_1 < d$ and $v(\pi') + v(\rho') = v(\pi) + v(\rho) - a_1 < d - a_1$, by induction we find $\alpha', \beta' \in \mathfrak{S}(\{1, \ldots, d\} \setminus A)$ with $[\alpha'] = \pi'$ and $[\beta'] = \rho'$ such that $v(\alpha'\beta') = v(\alpha') + v(\beta')$. Up to conjugation, we may assume that

$$\beta' = \beta_1(d_{a_1} + 1, \dots, d_{a_1+1})(d_{a_1+1} + 1, \dots, d_{a_1+2}) \cdots (d_{s-1} + 1, \dots, d_s),$$

where β_1 is the |Q|-cycle whose entries are the elements of Q in increasing order. An easy computation shows that

$$\alpha_1 \beta = (1, \dots, d_{a_1})(d_{a_1} + 1, \dots, d_{a_1+1}) \cdots (d_{s-1} + 1, \dots, d_s).$$

Therefore, setting $\alpha = \alpha' \alpha_1$, we have that

$$\alpha\beta = \alpha_1 \alpha' \beta$$

$$= \alpha' (1, \dots, d_{a_1}) (d_{a_1} + 1, \dots, d_{a_1+1}) \cdots (d_{s-1} + 1, \dots, d_s)$$

$$= \alpha' \beta' \beta_1^{-1} (1, \dots, d_{a_s})$$

By lemma 1.6, this implies that $\alpha\beta$ has the same number of cycles as $\alpha'\beta'$, so that

$$v(\alpha\beta) = a_1 + v(\alpha'\beta')$$

= $a_1 + v(\alpha') + v(\beta')$
= $a_1 + (v(\pi) - a_1 + 1) + (v(\rho) - 1)$
= $v(\pi) + v(\rho)$.

Since $[\alpha] = \pi$ and $[\beta] = \rho$, the conclusion follows.

Proposition 1.8. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \geq d$, and let $t = v(\pi) + v(\rho) - d + 1$. Fix an integer $0 \leq k \leq t$ such that $k \equiv t \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $v(\alpha\beta) = d - 1 - k$ and the action of $\langle \alpha, \beta \rangle$ on $\{1, \ldots, d\}$ is transitive.

Proof. Write $\pi = [a_1, \dots, a_r]$. Since $v(\rho) \leq d-1$ and $v(\pi) + v(\rho) \geq d$, there exists a largest integer $0 \leq i \leq r$ such that $(a_1 - 1) + \dots + (a_i - 1) + v(\rho) \leq d-1$. Define

$$z = d - v(\rho) - (a_1 - 1) - \dots - (a_i - 1).$$

Consider the partition $\pi' = [a_1, \ldots, a_i, z, 1, \ldots, 1] \in \Pi(d)$. Since by construction $v(\pi') + v(\rho) = d-1$, thanks to proposition 1.7 we can find permutations $\alpha', \beta \in \mathfrak{S}_d$ with $[\alpha'] = \pi'$ and $[\beta] = \rho$ such that $v(\alpha'\beta) = d-1$; in other words, $\alpha'\beta$ is a d-cycle. Consider now the partition $\pi'' = [a_{i+1} - z + 1, a_{i+2}, \ldots, a_r]$, whose branching number is $v(\pi'') = t$. Let $v = \sum \pi''$; fix an element v = v of the v = v-cycle of v = v, and let v = v-cycle of v = v-cycle. Up to conjugation, we can assume that v = v-cycle of v = v-cycle. Up to conjugation, we can assume that v = v-cycle of v = v-cycle of v = v-cycle. Therefore, setting v = v-cycle of v = v-cycle. Therefore, setting v = v-cycle of v = v-cycle

$$\alpha\beta = (\alpha''\gamma)\gamma^{-1}(\alpha'\beta);$$

Maybe only k = 0 needed (in this case, transitivity is trivial)

Terminology?

ybe explain why?

by lemma 1.6, this implies that $\alpha\beta$ has the same number of cycles as $\alpha''\gamma \in \mathfrak{S}(\{u_1,\ldots,u_n\})$, that is $v(\alpha\beta) = d - (k+1)$. Since $[\alpha] = \pi$ and $[\beta] = \rho$, the only thing left to show is that the action of $\langle \alpha, \beta \rangle$ on $\{1,\ldots,d\}$ is transitive. Write

$$\alpha'\beta = (u_1, \dots, w_1, u_2, \dots, w_2, u_3, \dots, w_{n-1}, u_n, \dots, w_n)$$

as in the proof of lemma 1.6, where an explicit description of the orbits of $\alpha\beta = \alpha''\gamma\gamma^{-1}\alpha'\beta$ is given; from that description, it is clear that for each $1 \leq j \leq n$ the elements u_j, \ldots, w_j all belong to the same orbit. Moreover, since $\beta = (\alpha')^{-1}(u_1, \ldots, w_1, u_2, \ldots, w_n)$ and α' fixes u_2, \ldots, u_n , it follows that w_j and u_{j+1} belong to the same orbit for each $1 \leq j \leq n-1$; this completes the proof.

Corollary 1.9. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \geq d - 1$ and $v(\pi) + v(\rho) \equiv d - 1 \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $\alpha\beta$ is a d-cycle.

Proof. The conclusion immediately follows from proposition 1.7 if $v(\pi) + v(\rho) = d - 1$, or from proposition 1.8 if $v(\pi) + v(\rho) \ge d$.

Remark 1.3. Write $\pi = [a_1, \dots, a_r]$, $\rho = [b_1, \dots, b_s]$; assume that $b_1 \geq 2$. By directly examining the proof of proposition 1.7, we see that the proposed construction yields permutations $\alpha, \beta \in \mathfrak{S}_d$ such that 1 belongs to the a_1 -the cycle of α and to the b_1 -cycle of β . It is not hard to see, once again by inspecting the proof, that the same can be said for proposition 1.8. As a consequence, the statement of corollary 1.9 can be enhanced by adding the following line: α and β can be chosen in such a way that 1 belongs to the a_1 -the cycle of α and to the b_1 -cycle of β , provided that $b_1 \geq 2$. We will need this improvement for the upcoming proof.

Proposition 1.10. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \geq d$ and $v(\pi) + v(\rho) \equiv d \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $\langle \alpha, \beta \rangle$ acts transitively on $\{1, \ldots, d\}$ and

$$[\alpha\beta] = \begin{cases} [d/2, d/2] & if \ \pi = \rho = [2, \dots, 2], \\ [1, d-1] & otherwise. \end{cases}$$

Proof. Assume first that $\pi = \rho = [2, \dots, d]$. We can choose

$$\alpha = (2,3)(4,5)\cdots(d,1) \qquad \beta = (1,2)(3,4)\cdots(d-1,d).$$

The action of $\langle \alpha, \beta \rangle$ is obviously transitive, and

$$\alpha\beta = (1, 3, \dots, d - 1)(2, 4, \dots, 2).$$

Otherwise, since $v(\pi) + v(\rho) \ge d$, at least one of π and ρ has an entry which is greater than 2; without loss of generality, we can assume it is ρ . Write $\pi = [a_1, \ldots, a_r], \ \rho = [b_1, \ldots, b_s]$ with $a_1 \ge 2$ (since $v(\pi) \ge 1$) and $b_1 \ge 3$. Fix

$$\beta = (1, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s),$$

where $b_1 = d_1 \ge 3$, $b_i = d_i - d_{i-1}$ for $2 \le i \le s$ (in particular, $d_s = d$). Consider the partitions

$$\pi' = [a_1 - 1, \dots, a_r],$$
 $\rho' = [b_1 - 1, \dots, b_s].$

Since $\sum \pi' = \sum \rho' = d-1$ and $v(\pi') + v(\rho') = v(\pi) + v(\rho) - 2$, by corollary 1.9 we can find permutations $\alpha', \beta' \in \mathfrak{S}(\{2, \ldots, d\})$ with $[\alpha'] = \pi'$ and $[\beta'] = \rho'$ such that $\alpha'\beta'$ is a (d-1)-cycle. Up to conjugation, we can assume that

$$\beta' = (2, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s)$$

or, in other words, $\beta = (1,2)\beta'$; moreover, as explained in remark 1.3, we can choose α' in such a way that its $(a_1 - 1)$ -cycle contains 2. By setting $\alpha = \alpha'(1,2)$, we immediately get that $\alpha\beta = \alpha'\beta'$ is a (d-1)-cycle fixing 1. Finally, the action of $\langle \alpha, \beta \rangle$ is transitive since α does not fix 1.

Corollary 1.11. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \ge d - 1$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$, $[\beta] = \rho$ such that $\langle \alpha, \beta \rangle$ acts transitively on $\{1, \ldots, d\}$ and

$$[\alpha\beta] \in \{[d], [1, d-1], [d/2, d/2]\}.$$

Proof. The conclusion follows immediately from proposition 1.8 or proposition 1.10 depending on the parity of $v(\pi) + v(\rho) + d$.

1.4 Projective plane

Theorem 1.12. Let $\mathcal{D} = (\widetilde{\Sigma}, \mathbb{RP}^2; d; \pi_1, \dots, \pi_n)$ be a candidate datum. If $\widetilde{\Sigma}$ is non-orientable, then \mathcal{D} is realizable.

Proof. First of all, since \mathcal{D} is a candidate datum, the ?? formula implies that

$$v(\pi_1) + \ldots + v(\pi_n) = d\chi(\mathbb{RP}^2) - \chi(\widetilde{\Sigma}) \ge d - 1$$

(recall that $\widetilde{\Sigma}$ is non-orientable, so $\chi(\widetilde{\Sigma}) \leq 1$). Moreover, the total branching $v(\pi_1) + \ldots + v(\pi_n)$ is even. In order to make use of proposition 1.2, we will now inductively define representatives $\alpha_i \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$, satisfying the following invariant: for every $0 \leq i \leq n$, either

$$v(\alpha_1 \cdots \alpha_i) = v(\pi_1) + \ldots + v(\pi_i)$$

or

$$[\alpha_1 \cdots \alpha_i] \in \{[d], [1, d-1], [d/2, d/2]\}$$
 and $\langle \alpha_1, \ldots, \alpha_i \rangle$ acts transitively.

Assume we have already defined $\alpha_1, \ldots, \alpha_{i-1}$; we want to suitably choose α_i . Let $\alpha = \alpha_1 \cdots \alpha_{i-1}$; there are two cases.

- If $v(\alpha) + v(\pi_i) < d$, by proposition 1.7 we can find $\alpha_i \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ such that $v(\alpha\alpha_i) = v(\alpha) + v(\alpha_i)$. The invariant is still satisfied: if $v(\alpha) = v(\pi_1) + \ldots + v(\pi_{i-1})$ then obviously $v(\alpha\alpha_i) = v(\pi_1) + \ldots + v(\pi_i)$. If instead $[\alpha] \in \{[d], [1, d-1], [d/2, d/2]\}$, then either α_i is the identity, or $\alpha\alpha_i$ is a d-cycle; either way, $[\alpha\alpha_i] \in \{[d], [1, d-1], [d/2, d/2]\}$. Note that if the action of $\langle \alpha_1, \ldots, \alpha_{i-1} \rangle$ is transitive, then the action of $\langle \alpha_1, \ldots, \alpha_i \rangle$ is transitive as well
- If $v(\alpha) + v(\alpha_i) \geq d$, corollary 1.11 gives a permutation $\alpha_i \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ such that $[\alpha \alpha_i] \in \{[d], [1, d-1], [d/2, d/2]\}$ and the action of $\langle \alpha, \alpha_i \rangle$ is transitive. The invariant is obviously satisfied.

By induction, we can find $\alpha_1, \ldots, \alpha_n \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ such that

$$[\alpha_1 \cdots \alpha_n] \in \{[d], [1, d-1], [d/2, d/2]\}$$

and $\langle \alpha_1, \dots, \alpha_n \rangle$ acts transitively on $\{1, \dots, d\}$ (note that $v(\alpha_1 \cdots \alpha_n) = v(\alpha_1) + \dots + v(\alpha_n)$ also implies that $[\alpha_1 \cdots \alpha_n] = [d]$). Note that

$$v(\alpha_1 \cdots \alpha_n) \equiv v(\alpha_1) + \ldots + v(\alpha_n) \equiv 0 \pmod{2}$$
.

We now prove that $\alpha = \alpha_1 \cdots \alpha_n$ is a square.

- If $[\alpha] = [d]$, then d is odd, so α is the square of $\alpha^{(d+1)/2}$.
- If $[\alpha] = [1, d-2]$, then d is even, so α is the square of $\alpha^{d/2}$.
- If $[\alpha] = [d/2, d/2]$, then d is even, and it is easy to see that α is the square of a d-cycle.

By proposition 1.2, this implies that there exists a realizable candidate datum $\mathcal{D}' = (\widetilde{\Sigma}', \mathbb{RP}^2; d; \pi_1, \dots, \pi_n)$. To see that $\widetilde{\Sigma}'$ is non-orientable (and, therefore, equal to $\widetilde{\Sigma}$, as shown in remark 1.2), simply note that ??.

1.5 Prime-degree conjecture

Proposition 1.13. Let d be a positive integer. Assume that every candidate datum $(\Sigma_g, S^2; d; \pi_1, \pi_2, \pi_3)$ is realizable. Then every candidate datum $(\Sigma_g, S^2; d; \pi_1, \dots, \pi_n)$ with $n \geq 3$ is realizable.

Proof. We proceed by induction on $n \geq 4$. Assume that every candidate datum with at most n-1 partitions is realizable. Fix a candidate datum $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \dots, \pi_n)$; there are two cases.

- Assume that there are two indices $1 \leq i < j \leq n$ such that $v(\pi_i) + v(\pi_j) \leq d 1$; without loss of generality, consider i = 1 and j = 2. By proposition 1.7, we can find permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1\alpha_2) = v(\alpha_1) + v(\alpha_2)$. Consider the candidate datum $\mathcal{D}' = (\Sigma_g, S^2; d; [\alpha_1\alpha_2], \pi_3, \dots, \pi_n)$. By induction, \mathcal{D}' is realizable; proposition 1.1 then gives permutations $\alpha_3, \dots, \alpha_n \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ such that $(\alpha_1\alpha_2)\alpha_3 \cdots \alpha_n = 1$ and the action of $\langle \alpha_1\alpha_2, \alpha_2, \dots, \alpha_n \rangle$ on $\{1, \dots, d\}$ is transitive. It is trivial to see that the permutations $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ imply the realizability of \mathcal{D} , again by proposition 1.1.
- Otherwise, $v(\pi_i) + v(\pi_j) \ge d$ for every $1 \le i < j \le n$. By corollary 1.11, we can find permutations α_1, α_2 with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1 \alpha_2) \ge d 2$. Let

$$g' = \frac{1}{2}(v(\alpha_1\alpha_2) + v(\alpha_3) + \ldots + v(\alpha_n)) - d + 1 \ge \frac{1}{2}(d - 2 + d) - d + 1 \ge 0.$$

It is easy to see that $\mathcal{D}' = (\Sigma_{g'}, S^2; d; [\alpha_1 \alpha_2], \pi_3, \dots, \pi_n)$ is a candidate datum, so it is realizable by induction. Similarly to the case above, this implies that \mathcal{D} is realizable.

ere it is crucial that ≥ 4 .