「離散数学・オートマトン」演習問題 09 (解答例)

2020/12/8

1 最短経路

課題 1 以下のグラフに対して、始点を v_0 として、Dijkstra 法を用いて、各頂点への最短経路を求めなさい。各辺のラベルは、"辺の名前/重み"となっている。距離が同じ辺が複数ある場合には、番号の小さい辺を先に選びなさい。

解答は講義資料と同様に、以下の表を埋めなさい。一番左の列は、手順の番号、二番目の列は注目している頂点を表す。

解答例

		W	U	p	q
0		Ø	$\{v_0\}$	$p(v_0) = 0$	
1	v_0	$\{v_0\}$	$\{v_1,v_3\}$	$p(v_1) = 1$	$q(v_1) = v_0$
				$p(v_3) = 1$	$q(v_3) = v_0$
2	v_1	$\{v_0, v_1\}$	$\{v_2, v_3, v_4\}$	$p(v_2) = 3$	$q(v_2) = v_1$
				$p(v_4) = 4$	$q(v_4) = v_1$
3	v_3	$\{v_0,v_1,v_3\}$	$\{v_2,v_4\}$	$p(v_4) = 3$	$q(v_4) = v_3$
4	v_2	$\{v_0, v_1, v_2, v_3\}$	$\{v_4,v_5,v_6\}$	$p(v_5) = 6$	$q(v_2) = v_2$
				$p(v_6) = 4$	$q(v_6) = v_2$
5	v_2	$\{v_0, v_1, v_2, v_3, v_4\}$	$\{v_5,v_6,v_7\}$	$p(v_5) = 3$	$q(v_2) = v_4$
				$p(v_7) = 4$	$q(v_7) = v_4$
6	v_5	$\{v_0, v_1, v_2, v_3, v_4, v_5\}$	$\{v_6,v_7\}$		
7	v_6	$\{v_0, v_1, v_2, v_3, v_4, v_5, v_6\}$	$\{v_7\}$		
8	v_7	$\{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$	Ø		

得られた探索木を、得られた距離とともに示す。

課題 2 以下のグラフに対して、始点を v_0 として、Dijkstra 法を用いて、各頂点への最短経路を求めなさい。各辺のラベルは、"辺の名前/重み"となっている。距離が同じ辺が複数ある場合には、番号の小さい辺を先に選びなさい。

解答は講義資料と同様に、以下の表を埋めなさい。一番左の列は、手順の番号、二番目の列は注目している頂点を表す。

解答例

		W	U	p	q
1	v_0	$\{v_0\}$	$\{v_1,v_3\}$	$p(v_1) = 1$	$q(v_1) = v_0$
				$p(v_3)=3$	$q(v_3) = v_0$
2	v_1	$\{v_0, v_1\}$	$\{v_2,v_3,v_5\}$	$p(v_2) = 2$	$q(v_2) = v_1$
				$p(v_5) = 4$	$q(v_5) = v_1$
3	v_2	$\{v_0,v_1,v_2\}$	$\{v_3,v_5,v_6\}$	$p(v_5) = 3$	$q(v_5) = v_2$
				$p(v_6) = 3$	$q(v_6) = v_2$
4	v_3	$\{v_0, v_1, v_2, v_3\}$	$\{v_4,v_5,v_6\}$	$p(v_4) = 5$	$q(v_4) = v_3$
5	v_5	$\{v_0, v_1, v_2, v_3, v_5\}$	$\{v_4,v_6\}$	$p(v_4) = 4$	$q(v_4) = v_5$
6	v_6	$\{v_0, v_1, v_2, v_3, v_5, v_6\}$	$\{v_4, v_7\}$	$p(v_7) = 4$	$q(v_7) = v_6$
7	v_4	$\{v_0, v_1, v_2, v_3, v_4, v_5, v_6\}$	$\{v_7\}$		
8	v_7	$\{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$	Ø		

得られた探索木を、得られた距離とともに示す。

