Compiler Construction					
Credit Hours:	it Hours: 3 Prerequisites: Theory of			f Automata	
Course Learning Outcomes (CLOs):					
At the end of the course the students will be able to:				Domain	BT
					Level*
1. Understand the basic techniques used in compiler construction such as lexical analysis, top-down, bottom-up parsing, context-sensitive analysis, and intermediate code generation					
2. Understand the basic data structures used in compiler construction such as abstract syntax trees, symbol tables, three-address code, and stack machines					
3. Design and implement a compiler using a software engineering approach					
4. Use generators (e.g. Lex and Yacc)					
* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain					

Course Content:

Introduction to interpreter and compiler. Compiler techniques and methodology; Organization of compilers; Lexical and syntax analysis; Parsing techniques. Types of parsers, top-down parsing, bottom-up parsing, Type checking, Semantic analyser, Object code generation and optimization, detection and recovery from errors.

Teaching Methodology:

Lectures, Written Assignments, Practical labs, Semester Project, Presentations

Course Assessment:

Sessional Exam, Home Assignments, Quizzes, Project, Presentations, Final Exam

Reference Materials:

- 1. Compilers: Principles, Techniques, and Tools, A. V. Aho, R. Sethi and J. D. Ullman, Addison-Wesley, 2^{nd} ed., 2006
- 2. Modern Compiler Design, D. Grune, H. E. Bal, C. J. H. Jacobs, K. G. Langendoen, John Wiley, 2003.
- **3.** Modern Compiler Implementation in C, A. W. Appel, M. Ginsburg, Cambridge University Press, 2004.