

ANALIZA MATEMATYCZNA I (Lista 1, 03.10.2022)

Elementy logiki, teorii zbiorów, kresy, symbole Newtona.

Zad. 1. Niech *p*,*q*,*r* będą zdaniami:

p="pada deszcz" *q*="świeci słońce" *r*="na niebie są chmury".

Zapisać poniższe zdania za pomocą symboli logicznych, używając zmiennych p,q,r oraz spójników logicznych.

- (a) Pada deszcz i świeci słońce.
- b Jeśli pada deszcz, to na niebie są chmury.
- C Jeśli nie pada deszcz, to nie świeci słońce i na niebie są chmury.
- d) Słońce świeci wtedy i tylko wtedy, gdy nie pada deszcz.
- e) Jeśli nie ma chmur na niebie, to świeci słońce.

Zad. 2. Tak, jak w poniższym schemacie dokończyć zdania:

$$(a \le b) \Leftrightarrow (a < b) \lor (a = b), \ a, b \in R$$

- (a) $(a \ge b) \Leftrightarrow \dots$ (b) $(a \cdot b = 0) \Leftrightarrow \dots$ (c) $(a \cdot b \ge 0) \Leftrightarrow \dots$ (d) $(a \cdot b > 0) \Leftrightarrow \dots$
- (e) $(a \cdot b < 0) \Leftrightarrow \dots$ (f) $(a/b = 0) \Leftrightarrow \dots$ (g) $(a/b < 0) \Leftrightarrow \dots$ (h) $(a/b > 0) \Leftrightarrow \dots$

Zad. 3. Dla jakich wartości logicznych prawdziwe jest wyrażenie:

- (a) $(p \land q) \Rightarrow p$.

Zad. 4. Zbadać, czy prawdziwe są formuły zdaniowe:

- (a) $\exists x \in R \ x^x = 27$; (b) $\forall x \in R \ x^2 + 4x + 1 > 0$; (c) $\forall x \in R \ \exists y \in R \ x^2 + y^3 = 0$;
- (d) $\exists y \in R \ \forall x \in R \ xy = 0$; (e) $\forall x \in R \ \forall y \in R \ (x \le y) \lor (y > x)$;

Zad. 5. Czy może się zdarzyć, że:

- (a) zdanie $p \Rightarrow q$ jest prawdziwe, a zdanie $(\neg p) \Rightarrow (\neg q)$ jest fałszywe,
- (b) zdanie $q \Rightarrow p$ jest prawdziwe, a zdanie $(\neg p) \Rightarrow (\neg q)$ jest fałszywe.

Zad. 6. Podane stwierdzenia zapisać za pomocą kwantyfikatorów i funkcji zdaniowych:

- a) każda liczba rzeczywista jest dodatnia;
- b) równanie f(x)=1 ma rozwiązanie rzeczywiste;
- c) zbiór liczb naturalnych nie jest ograniczony z góry;
- d zbiór A ⊂ R ma element największy;
- e w zbiorze B ⊂ R nie ma elementu najmniejszego;
- h każda liczba rzeczywista jest parzysta;
- g) równanie $x^2 + x + 1 = 0$ nie ma rozwiązania rzeczywistego;
- n) równanie $x^5 + x = 3$ ma tylko jedno rozwiązanie rzeczywiste.

Zad. 7. Zapisać korzystając z kwantyfikatorów:

- (a) dla każdej dodatniej liczby rzeczywistej a istnieje liczba rzeczywista b taka, że $a = b^2$,
- b) dla każdej pary dodatnich liczb rzeczywistych a,b istnieje dodatnia liczba rzeczywista x taka, że a < b + x lub a > b + x,
- c) dany jest ciąg nieskończony liczb naturalnych a_1, a_2, \dots Zapisać:

dla każdej liczby rzeczywistej A istnieje indeks n_0 taki, że dla każdej liczby naturalnej

$$n$$
 większej od n_0 zachodzi $\sum_{i=1}^{n} a_i > A$.

Zadania pochodzą, między innymi, z podręczników:

- 1. Gewert M., Skoczylas Z., Analiza matematyczna 1, przykłady i zadania.
- 2. Krysicki L., Włodarski L., Analiza matematyczna w zadaniach, cz. 1.

Zad. 8. Dla pary liczb całkowitych x,y ($x\neq 0$), symbol x | y oznacza, że x jest dzielnikiem y.

Twierdzenie. $(2 | a \land 2 | b) \Rightarrow 2 | (a + b)$.

Napisać twierdzenie:

- a) odwrotne,
- przeciwne,
- c) przeciwstawne,

Zbadać, które z tych twierdzeń są prawdziwe, a które fałszywe?

Zad. 9. Niech przestrzeń $X = \{1, 2, 3, ..., 12\}$, zbiór $A = \{1, 3, 5, 7, 11\}$, $B = \{2, 3, 5, 7, 11\}$,

 $C = \{2,3,6,12\}$ oraz $D = \{2,4,8\}$. Wyznaczyć następujące zbiory:

- a) $A \cup B$, $A \cap C$, $(A \cup B) \cap C'$, $A \setminus B$, $C \setminus D$, $(A \cup B) \cap (C \cup D)$.
- $(b)A \times D, D \times C.$

Zad. 10. Pokazać, że dla dowolnych zbiorów A,B, $A \cap B \subset A$, $A \cap B \subset B$.

Zad. 11. Podać przykłady zbiorów, dla których zachodzi inkluzja: $A \cup B \subset A$, $B \subset A \cap B$ oraz takich, dla których to nie zachodzi.

Zad. 12. Wyznaczyć, jeżeli istnieją, kresy zbiorów:

- a) $A = \{x: \ x = \left(\frac{1}{2}\right)^n, \ n \in N\},\$ b) $B = \{x: \ x = t^2 t, \ t \in R\},\$ c) $C = \{x: \ x = \frac{t}{t^2 t}, \ t \in R\},\$ d) $D = \{x: \ x = 1 + \frac{1}{n^2}, \ n \in N\},\$ e) $E = \{x: \ |x| > 1, \ x \in R\},\$ f) $F = \{x: \ x \in [-1,3), \ x \in R\}.$

Zad. 13. Obliczyć:

(a)
$$\frac{3!5!}{8!}$$
, (b) $\frac{(n+2)!}{(n+1)!}$, (c) $\binom{14}{12}$, (d) $\binom{9}{7}$.

Zad. 14. Korzystając ze wzoru Newtona wykonać potęgowania:

(a) $(x+y)^7$, (b) $(x-y)^7$, (c) $(x+1/x)^5$, (d) $(1-\sqrt{x})^6$.