

Apenas Comunicação Oral	Apenas Poster	Comunicação Oral ou Poster	X	
----------------------------	---------------	----------------------------	---	--

(Assinalar com X a opção de submissão desejada)

MICMAC: UMA ALTERNATIVA OPEN SOURCE PARA FOTOGRAMETRIA COM RPAS

Óscar Moutinho; Ana Rodrigues; José Alberto Gonçalves (1) Joaquim João Sousa; Ricardo Bento (2, 3)

(1) Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n, Departamento de Geociências Edifício FC-3 Porto, Portugal;

up200704231@fc.up.pt; up200805757@fc.up.pt; jagoncal@fc.up.pt

- (2) Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; jjsousa@utad.pt; rbento@utad.pt
 - (3) INESC TEC INESC Technology and Science (formerly INESC Porto)

RESUMO

Os veículos aéreos não tripulados são cada vez mais usados para a aquisição de informação geográfica com óbvias vantagens, principalmente, em custos operacionais. Normalmente, recorre-se a soluções comerciais para realizar o processamento fotogramétrico das imagens, soluções, quase sempre, muito dispendiosas. Neste trabalho, apresenta-se uma alternativa Open Source, o MicMac. Os resultados obtidos permitem concluir que esta ferramenta é comparável às soluções comerciais mais utilizadas para os mesmos fins, permitindo, também, grande controlo e customização na produção de informação geográfica.

1. INTRODUÇÃO

No passado, a fotogrametria era puramente analógica e apenas acessível a um grupo de pessoas intimamente ligadas com essa técnica científica. Com as câmaras digitais os processos fotogramétricos foram simplificados e, com o aparecimento dos veículos aéreos não tripulados (VANT), a associação à produção de informação geográfica foi imediata, simplificando-a, "democratizando-a" e reduzindo, de forma substancial os custos de aquisição. Com o aparecimento, em 2009 [1], do *ArduPilot Mega*, plataforma controladora *Open Source*, o mercado de

drones "feitos em casa" sofreu um grande impulso e começaram a surgir no mercado os *Remotely Piloted Aerial Systems* (*RPAS*), denominação oficial da Organização Internacional de Aviação Civil (ICAO) [2].

São cada vez mais as aplicações de *RPAS*, recorrendo a câmaras digitais de pequenas dimensões: criação de ortofotos, modelos digitais de superfície, digitalização de edifícios, agricultura de precisão, gestão florestal, vigilância, etc..

No entanto, as soluções comerciais para processar a informação adquirida são, normalmente, muito dispendiosas, pois são muito específicas e destinadas a aplicações quase sempre profissionais. Entre estas soluções, destacam-se o *PhotoScan* da *Agisoft* [3] e o *Pix4Dmapper* da *Pix4D* [4], que tem uma uma parceria com a *Sensefly* [5] para integar a plataforma aérea desenvolvida por esta empresa, aquando da sua aquisição.

Pese embora o seu custo, estas soluções comerciais permitiram uma grande simplificação dos processos fotogramétricos e, em parte, eliminaram a necessidade de um grande conhecimento científico sobre essas técnicas, o que poderá levar à introdução de erros grosseiros na produção de informação geoespacial, no caso de operadores menos experientes e/ou conhecedores.

Recentemente, e para fazer face aos elevados preços das soluções comerciais, começaram a surgir soluções *Open Source* que já permitem um grande controlo sobre a informação gerada e que estão a evoluir a uma velocidade vertiginosa, fruto do contributo da cada vez mais extensa comunidade de utilizadores deste tipo de veículos.

Neste trabalho, apresentamos um estudo comparativo entre as duas soluções comerciais dominantes e uma solução *Open Source*, no sentido de avaliar o comportamento destas diferentes soluções quando aplicadas a diferentes áreas de estudo.

2. AS SOLUÇÕES ESTUDADAS

Como foi explicado na secção anterior, são duas as soluções comerciais que dominam o mercado, pelo que foi óbvia a sua escolha para este estudo. Relativamente às soluções *Open Source*, embora sejam cada vez mais, a nossa escolha recaiu sobre o *MicMac* por ser aquela que, do nosso ponto de vista, e depois de alguns testes realizados, está no estado mais avançado de maturação e desenvolvimento.

2.1 PhotoScan

O workflow do PhotoScan da Agisoft desenvolve-se em 3 etapas principais. Na primeira etapa, é tratado o alinhamento das fotografias, sendo utilizados algoritmos de identificação de pontos comuns, que permitirão realizar a orientação relativa das imagens num sistema de coordenadas 3D arbitrário. Isto gera uma nuvem esparsa de pontos que permite fazer um controlo inicial sobre o conjunto de imagens. A calibração da câmara é também calculada nesta etapa, utilizando a distância focal e as dimensões da imagem. O tamanho do pixel, o centro de projeção e as distorções são calculadas nesta etapa.

Numa segunda etapa é construída uma nuvem de pontos densa baseada na posição relativa de cada câmara, o que possibilitará determinar informação de profundidade e completar a nuvem de pontos anterior. Normalmente, este processo gera milhões de pontos, semelhante ao obtido através do *LIDAR* [6] e podem ser classificados e editados para produzir Modelos de Elevação, eliminando edifícios e vegetação, se assim se entender.

A etapa final consiste na construção do modelo 3D onde os pontos da nuvem densa vão ser ligados, construindo uma malha de polígonos através de algoritmos de triangulação.

Este *workflow* é seguido independentemente dos dados utilizados, no entanto, para aplicações geográficas, existem ferramentas específicas para implementação de pontos de controlo e para exportação de ortomosaicos e de Modelos Digitais de Terreno.

2.2 Pix4Dmapper

O Pix4Dmapper é desenvolvido pela *Pix4D* e comercializado como um *software* para mapeamento específico por *RPAS*, sendo, o seu público-alvo, os proprietários desse tipo de veículos que pretendem fazer modelação de edifícios e produzir informação geográfica.

Cada solução aérea desenvolvida e comercializada pela *Sensefly* já vem equipada com uma versão modificada deste *software*, o *Postflight Terra 3D*. Depois de cada voo, recorre-se ao ficheiro *log* para georreferenciar as fotografias, cruzando a informação do disparo da câmara com a posição de veículo naquele momento. De seguida, o utilizador tem a possibilidade de escolher alguns parâmetros do processamento, no entanto, a sua intervenção no processo é reduzida, limitando-se à edição da nuvem de pontos obtida, área do mosaico, pontos de ligação e introdução de pontos de controlo.

2.3 MicMac

O *MicMac* [7] começou a ser desenvolvido, em 2005, por Pierrot-Deseilligny enquanto trabalhava no IGN (Institut National de l'Information Géographique et Forestière), no sentido de criar um *software* para vários propósitos, capaz de processar dados provenientes de diferentes sistemas, como imagens de satélite, fotografia aérea de RPAS, modelação de pequenos objetos, imagens multiespectrais, entre outros [8]. Isto permite estabelecer o *MicMac* como o *software* mais completo pelos seus desenvolvimentos no sentido de incorporar as mais diversas aplicações, sempre em constante desenvolvimento para trazer novas ferramentas. Os maiores obstáculos à utilização do *MicMac* são, sem dúvida, a falta de uma interface

gráfica que permita visualizar, em tempo real, a informação processada, o que torna a curva de aprendizagem bastante elevada, pois o utilizador é obrigado a ter alguns conhecimentos de fotogrametria e tem de despender algum tempo para assimilar os comandos do programa. Por outro lado, trata-se de um software desenvolvido por uma entidade pública reconhecida e com créditos firmados na área e que, desde recentemente, conta com o contributo do Centro Nacional de Estudos Espaciais (CNES). Em termos de

funcionalidades o *MicMac*, não fica atrás das alternativas comerciais, falhando apenas nas medidas de áreas e volumes e na visualização gráfica dos processamentos, pois obriga à exportação dos resultados para serem visualizados por programas externos.

O workflow do MicMac, para processar imagens aéreas para fotogrametria, segue vários passos, como indicado na Figura 1.

Figura 1 - Sumário do workflow do software MicMac, com respetivas funções e resultados

Numa primeira fase são detetados vários pontos de ligação através do algoritmo SIFT (Scale-Invariant Feature Transform) [9], entre as várias fotografias. Segue-se a calibração da câmara e a orientação inicial

Segue-se a calibração da câmara e a orientação inicial do bloco de feixes. Tipicamente usa-se esta orientação relativa recursivamente de modo a reduzir os erros e afinar a posição relativa. Nesta fase, o utilizador tem a possibilidade de introduzir pontos de controlo numa interface gráfica para corrigir deformações geométricas do modelo, ajustando os feixes do bloco, e fornecer um sistema de referência absoluto.

Posteriormente efetua-se a retificação de cada imagem individualmente e a correlação densa com várias resoluções resultando na construção do Modelo Digital de Superfície, MDS. É também criada a ortofoto de cada imagem, bastando, no final, fazer uma equalização radiométrica e montar o mosaico completo.

O resultado final é, então, o MDS e o Ortomosaico da zona de interesse. Outros produtos podem ser exportados como nuvens densas de pontos que podem ser editadas noutros programas como o *MeshLab*.

Esta interligação com outros programas *Open Source* também fortalecem o *MicMac* como uma grande alternativa, fazendo uso de *ExifTool* para análise dos

parâmetros da câmara nas fotografias, *Proj.4* [10] para transformações de sistemas de coordenadas, *Meshlab* para visualização de nuvens de pontos e posições das câmaras, entre outros.

3. APRESENTAÇÃO E DISCUSSÃO DE RESULTADOS

Para avaliar o desempenho da solução *Open Source*, esta foi comparada, usando o mesmo conjunto de dados, com as duas soluções comerciais anteriormente apresentadas, utilizando um RPAS comercial: o eBee Sensefly, propriedade da Universidade de Trás-os-Montes e Alto Douro (UTAD).

Foram construídos ortomosaicos com tamanho de píxel de 10 centímetos do Campus da UTAD, a nossa zona de estudo, e com apoio de pontos de controlo, obtidos com recetor GNSS RTK de dupla frequência. O conjunto de dados é composto por 114 fotografias aéreas, obtidas pela câmara *Canon IXUS* 127 HS e georreferenciadas com posição 3D no cabeçalho de cada foto, num voo realizado dia 3 de Junho de 2015.

Figura 2 – Ortomosaico da zona de estudo com pontos de verificação a azul e pontos de comparação a vermelho

Para apoio da análise planimétrica, foram obtidos alguns pontos de verificação com o mesmo recetor que recolheu os pontos de controlo, de forma a efetuar uma análise de erro absoluta entre os vários *software*. Para

uma análise de erro relativa foram escolhidos pontos aleatórios distribuídos por toda a zona de estudo representados a vermelho na figura 2. No caso dos pontos de verificação a azul a sua distribuição foi limitada devido à dificuldade de encontrar pontos bem definidos e visíveis na zona de estudo.

Tabela 1 – Estatística comparativa entre software

Agisoft-Pix4D								
Média X	Desvio X	EMQ X						
0.036	0.058	0.066						
Média Y	Desvio Y	EMQ Y						
0.026	0.043	0.048						
Média XY	Desvio XY	EMQ XY						
0.059	0.037	0.068						
	Agisoft-MicMac							
Média X	Desvio X	EMQ X						
0.02	0.043	0.045						
Média Y	Desvio Y	EMQ Y						
0.03	0.045	0.052						
Média XY	Desvio XY	EMQ XY						
0.041	0.027	0.048						

Figura 2 – Detalhe de ortomosaico de Agisoft Photoscan, Pix4dmapper e MicMac, por essa ordem

Tabela 2 – Estatística comparativa com pontos de verificação

Agisoft			Pix4D			MicMac		
Média X	Desvio X	EMQ X	Média X	Desvio X	EMQ X	Média X	Desvio X	EMQ X
-0.019	0.037	0.038	-0.012	0.031	0.030	-0.018	0.017	0.023
Média Y	Desvio Y	EMQ Y	Média Y	Desvio Y	EMQ Y	Média Y	Desvio Y	EMQ Y
-0.066	0.039	0.074	-0.061	0.02	0.064	-0.022	0.031	0.035
Média XY	Desvio XY	EMQ XY	Média XY	Desvio XY	EMQ XY	Média XY	Desvio XY	EMQ XY
0.035	0.028	0.043	0.031	0.014	0.034	0.019	0.017	0.025

Na tabela 1 estão representados elementos estatísticos relativamente à precisão relativa dos ortomosaicos produzidos pelos diferentes programas, tomando como referência o *Agisoft PhotoScan*. Tendo em conta os resultados, é possível afirmar que todas as soluções dão origem a produtos com um rigor posicional semelhante e com diferenças abaixo do tamanho do pixel.

Por outro lado, na comparação absoluta de coordenadas no terreno com coordenadas no ortomosaico, avaliação estatística da tabela 2, verifica-se que, novamente, as diferenças estão abaixo do pixel e que o mais próximo da realidade do terreno é o *MicMac*.

Também ao nível de ortorretificação, principalmente nos limites dos edifícios é possível detetar diferenças substanciais entre as três soluções apresentadas. Na figura 3 estão ilustradas essas variações, representadas através da digitalização de um edifício pelo seu limite. *Agisoft PhotoScan* e *MicMac* apresentam resultados bastante próximos do limite real do edifícios, enquanto que no caso do *Pix4Dmapper*, existe bastante ruído que terá origem na nuvem de pontos densa e que pode dificultar processos de vetorização automática.

4. CONCLUSÕES

Este estudo teve por objetivo principal avaliar o desempenho de uma aplicação fotogramétrica *Open Source*, face às soluções comerciais mais utilizadas. Foi possível concluir que os desenvolvimentos verificados ao longo dos últimos anos colocam o *MicMac* num patamar muito próximo das soluções comercias, com tendência para o nivelamento, estando previstos mais desenvolvimentos, nomeadamente, opções avançadas de correção às fotografias e novos módulos para integração de imagens de satélite.

As suas aplicações são as mais diversas, desde a fotogrametria terrestre com modelação de edifícios e objetos, até à produção de ortomosaicos e modelos digitais de superfície que têm bom rigor posicional e permitem a sua exploração por milhares de utilizadores de informação geográfica de modo a criar ligações entre vários ramos, desde as imagens de satélite, fotografia aérea e a modelação dos objetos neles contidos. As vantagens na sua utilização são também evidentes quando o utilizador quer ter o total controlo sobre o processamento e saber exatamente aquilo que está a acontecer de modo a minimizar os erros que possam ser cometidos.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] History of Ardupilot (Acedido em Maio de 2015) Site oficial do Ardupilot. Acessível em: http://dev.ardupilot.com/wiki/history-of-ardupilot/
- [2] ICAO (2011) Circular 328 AN/190 Unmanned Aircraft Systems (UAS)
- [3] Agisoft (Acedido em Maio de 2015) Site oficial da empresa Agisoft. Acessível em: http://www.agisoft.com/
- [4] Pix4D (Acedido em Maio de 2015) Site oficial da empresa Pix4D. Acessível em: https://pix4d.com/products/
- [5] Sensefly (Acedido em Maio de 2015) Site oficial da empresa Sensefly. Acessível em: https://www.sensefly.com/about/company-profile.html
- [6] Agisoft PhotoScan User Manual (2014), Standart Edition, Version 1.1, pp. 11
- [7] IGN MicMac (Acedido em Maio de 2015) Site official da IGN para o programa MicMac. Acessível em: http://logiciels.ign.fr/?-MicMac,3-
- [8] M Pierrot-Deseilligny (2015) MicMac, Apero, Pastis and Other Beverages in a Nutshell!
- [9] Lowe, David G. (1999) Object recognition from local scale-invariant features. Proceedings of the International Conference on Computer Vision 2. pp. 1150–1157

[10] PROJ.4 (2015) - Cartographic Projections Library. https://trac.osgeo.org/proj/ (acedido em maio de 2015)