Syllabus

Types of relations:

transitive and equivalence

reflexive, symmetric,

relations. One to one

and onto functions.

Relations and **Functions**

CASE STUDY / PASSAGE BASED QUESTIONS

A relation R on a set A is said to be an equivalence relation on A iff it is

- Reflexive *i.e.*, $(a, a) \in R \ \forall \ a \in A$.
- Symmetric i.e., $(a, b) \in R \implies (b, a) \in R \ \forall \ a, b \in A$.
- Transitive i.e., $(a, b) \in R$ and $(b, c) \in R \implies (a, c) \in R \ \forall \ a, b, c \in A$.

Based on the above information, answer the following questions.

- (i) If the relation $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ defined on the set $A = \{1, 2, 3\}$, then R is
 - (a) reflexive
- (b) symmetric (c) transitive
- (d) equivalence
- (ii) If the relation $R = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$ defined on the set $A = \{1, 2, 3\}$, then R is
 - (a) reflexive
- (b) symmetric
- (c) transitive
- (d) equivalence
- (iii) If the relation R on the set N of all natural numbers defined as $R = \{(x, y) : y = x + 5\}$ and x < 4, then R is
 - (a) reflexive
- (b) symmetric (c) transitive
- (d) equivalence
- (iv) If the relation R on the set $A = \{1, 2, 3, \dots, 13, 14\}$ defined as $R = \{(x, y) : 3x y = 0\}$, then R is
 - (a) reflexive
- (b) symmetric
- (c) transitive
- (d) None of these
- (v) If the relation R on the set $A = \{1, 2, 3\}$ defined as $R = \{(1, 1), (1, 2), (1, 3), (2, 1), (1, 3), (2, 1), (2, 1), (3, 2), (4, 3), (4,$ (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), then R is
 - (a) reflexive only

(b) symmetric only

(c) transitive only

(d) equivalence

Consider the mapping $f: A \to B$ is defined by $f(x) = \frac{x-1}{x-2}$ such that f is a bijection.

Based on the above information, answer the following questions.

- (i) Domain of f is
 - (a) R − {2}
- (b) R
- (c) R − {1, 2}
- (d) R − {0}

(ii) Range of f is

(a) R

- (b) R − {1}
- (c) $R \{0\}$
- (d) R − {1, 2}

(iii) If $g: R - \{2\} \rightarrow R - \{1\}$ is defined by g(x) = 2f(x) - 1, then g(x) in terms of x is

- (a) $\frac{x+2}{r}$
- (b) $\frac{x+1}{x-2}$
- (c) $\frac{x-2}{x}$
- (d) $\frac{x}{x-2}$

(iv) The function g defined above, is

- (a) One-one
- (b) Many-one
- (c) into
- (d) None of these

(v) A function f(x) is said to be one-one iff

- (a) $f(x_1) = f(x_2) \Rightarrow -x_1 = x_2$
- (c) $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

- (b) $f(-x_1) = f(-x_2) \implies -x_1 = x_2$
- (d) None of these

HINTS & EXPLANATIONS

1. (i) (a): Clearly, (1, 1), (2, 2), (3, 3), $\in R$. So, R is reflexive on A.

Since, $(1, 2) \in R$ but $(2, 1) \notin R$. So, R is not symmetric on A.

Since, $(2, 3) \in R$ and $(3, 1) \in R$ but $(2, 1) \notin R$. So, R is not transitive on A.

(ii) (b): Since, (1, 1), (2, 2) and (3, 3) are not in *R*. So, *R* is not reflexive on *A*.

Now, $(1, 2) \in R \implies (2, 1) \in R$ and $(1, 3) \in R \Rightarrow (3, 1) \in R$.

So, R is symmetric

Clearly, $(1, 2) \in R$ and $(2, 1) \in R$ but $(1, 1) \notin R$. So, R is not transitive on A.

(iii) (c): We have, $R = \{(x, y) : y = x + 5 \text{ and } x < 4\},\$ where $x, y \in N$.

 \therefore R = {(1, 6), (2, 7), (3, 8)}

Clearly, (1, 1), (2, 2) etc. are not in R. So, R is not reflexive.

Since, $(1, 6) \in R$ but $(6, 1) \notin R$. So, R is not symmetric. Since, $(1, 6) \in R$ and there is no order pair in R which has 6 as the first element. Same is the case for (2, 7) and (3, 8).

So, R is transitive.

(iv) (d): We have, $R = \{(x, y) : 3x - y = 0\}$, where $x, y \in A = \{1, 2, \dots, 14\}$

 \therefore R = {(1, 3), (2, 6), (3, 9), (4, 12)}

Clearly, $(1, 1) \notin R$. So, R is not reflexive on A.

Since, $(1, 3) \in R$ but $(3, 1) \notin R$. So, R is not symmetric on A.

Since, $(1,3) \in R$ and $(3,9) \in R$ but $(1,9) \notin R$. So, R is not transitive on A.

(v) (d): Clearly, (1, 1), (2, 2), $(3, 3) \in R$. So, R is reflexive on A.

We find that the ordered pairs obtained by interchanging the components of ordered pairs in R are also in R. So, R is symmetric on A.

For 1, 2, $3 \in A$ such that (1, 2) and (2, 3) are in R implies that (1, 3) is also, in R. So, R is transitive on A. Thus, R is an equivalence relation.

- 2. (i) (a): For f(x) to be defined $x 2 \neq 0$ i.e., $x \neq 2$
- Domain of $f = R \{2\}$

(ii) (b): Let y = f(x), then $y = \frac{x-1}{x-2}$ $\Rightarrow xy - 2y = x - 1 \Rightarrow xy - x = 2y - 1 \Rightarrow x = \frac{2y - 1}{y - 1}$ Since, $x \in R - \{2\}$, therefore $y \neq 1$ Hence, range of $f = R - \{1\}$

(iii) (d): We have, g(x) = 2f(x) - 1 $=2\left(\frac{x-1}{x-2}\right)-1=\frac{2x-2-x+2}{x-2}=\frac{x}{x-2}$

(iv) (a): We have, $g(x) = \frac{x}{x-2}$

Let $g(x_1) = g(x_2) \implies \frac{x_1}{x_1 - 2} = \frac{x_2}{x_2 - 2}$

 $\Rightarrow x_1x_2 - 2x_1 = x_1x_2 - 2x_2 \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2$ Thus, $g(x_1) = g(x_2) \implies x_1 = x_2$

Hence, g(x) is one-one.

(v) (c)