周民强《实变函数论(第三版》:P78 思考题 5; P84 思考题 1; P86 思考题 2; P94-95 习题2: 1, 8, 9, 15, 16

78-5

Suppose $E \subset \mathbb{R}$, and $0 < \alpha < m(E)$. Prove that there exists a compact subset $F \subset E$ such that $m(F) = \alpha$. Proof: Take $\varepsilon \in (0, m(E) - \alpha)$, then there exists a closed set $F \subset E$ such that $m(E \setminus F) < \varepsilon$, so $m(F) > \alpha$. Let $f(x) = m(F \cap [-x, x])$ for all $x \geqslant 0$, then since $F \cap [-x, x]$ is compact, f is well-defined, monotonic, and

$$f(x+\varepsilon)-f(x)=m(F\cap[-x-\varepsilon,x+\varepsilon])-m(F\cap[-x,x])\leqslant 2\varepsilon$$

so f is continuous. Since f(0)=0, $\lim_{x\to\infty}f(x)=m(F)$, and $\alpha\in(0,m(F))$, there exists $x\in\mathbb{R}_{>0}$ such that $m(F\cap[-x,x])=\alpha$. Hence $F\cap[-x,x]\subset E$ is bounded and has measure α .

84-1

Suppose $E \subset \mathbb{R}^n$, and $m^*(E) < \infty$. If

$$m^*(E) = \sup\{m(F) : F \subset E \text{ is compact}\}.$$

Prove that E is measurable.

Proof: For any $\varepsilon > 0$ there exists $F \subset E$ compact such that $m^*(E) \leqslant m(F) + \varepsilon$, so $m^*(E \setminus F) \leqslant \varepsilon$, hence E is measurable.

86-2

Suppose $E\subset\mathbb{R}$ is measurable, $a\in\mathbb{R}$, $\delta>0$. If for any $|x|<\delta$, either $a+x\in E$ or $a-x\in E$, prove that $m(E)\geqslant\delta$.

Proof: Let E'=-E+2a, then $(a-\delta,a+\delta)\subset E\cup E'$, so $2\delta=m((a-\delta,a+\delta))\leqslant m(E\cup E')\leqslant 2m(E)$, hence $m(E)\geqslant \delta$.

94-1

Suppose $E \subset \mathbb{R}$, and there exists $q \in (0,1)$ such that for any (a,b) there exists a sequence $\{I_n\}$ of open intervals,

$$E\cap (a,b)\subset igcup_{n=1}^\infty I_n,\, \sum_{n=1}^\infty m(I_n)<(b-a)q,$$

prove that m(E) = 0.

Proof: We can suppose E is bounded by considering $E\cap [-M,M]$. If $m^*(E)>0$, take $0<\varepsilon<\frac{m^*(E)}{q^{-1}-1}$, then there exists open intervals C_k such that $E\subset \bigcup_{k\geqslant 1}C_k$, and $\sum_{k=1}^\infty |C_k|\leqslant m^*(E)+\varepsilon$. For any $k\geqslant 1$, take open intervals $I_n^{(k)}$ such that $E\cap C_k\subset \bigcup_{n\geqslant 1}I_n^{(k)}$ and $\sum_{n\geqslant 1}|I_n^{(k)}|< q|C_k|$. Then

$$E\subset igcup_{k\geqslant 1} C_k\cap E\subset igcup_{k\geqslant 1} igcup_{n\geqslant 1} I_n^{(k)},$$

so $m^*(E) \leqslant \sum_{k\geqslant 1} \sum_{n\geqslant 1} |I_n^{(k)}| < q \sum_{k\geqslant 1} |C_k| < q(m^*(E)+\varepsilon) < m^*(E)$, leading to contradiction.

94-8

Suppose $\{E_k\}$ are measurable sets in [0,1], and $m(E_k)=1$. Prove that

$$m\left(igcap_{k=1}^{\infty}E_k
ight)=1.$$

Proof: Note that $m(E_k) < \infty$, so

$$m\left(igcap_{k=1}^{\infty}E_k
ight)=\lim_{n o\infty}m\left(igcap_{k=1}^nE_k
ight).$$

We only need to show that $\bigcap_{k=1}^n E_k$ has measure 1. Clearly

$$m\left(igcap_{k=1}^n E_k
ight)\geqslant m([0,1])-\sum_{k=1}^n m(E_k^C)=1.$$

So $m\left(\bigcap_{k=1}^\infty E_k\right)=1$. (Or use the fact that the countable union of null sets are still null sets.)

94-9

Suppose E_1, \cdots, E_k are measurable sets in [0,1], and

$$\sum_{i=1}^k m(E_i) > k-1.$$

Prove that $m\left(\bigcap_{i=1}^k E_i\right)>0$.

Proof: Suppose $F_i=E_i^C$, then $\sum_{i=1}^k m(F_i)=\sum_{i=1}^k 1-m(E_i)<1$, so $m\left(\bigcup_{i=1}^k F_i\right)\leqslant\sum_{i=1}^k m(F_i)<1$. Hence $m\left(\bigcap_{i=1}^k E_i\right)=m([0,1])-m\left(\bigcup_{i=1}^k F_i\right)>0$.

95-15

Suppose $E \subset [0,1]$ is measurable, and

$$m(E)\geqslant arepsilon>0,\, x_i\in [0,1], i=1,2,\cdots,n.$$

where $n>2/\varepsilon$. Prove that E contains a pair of points whose distance is equal to the distance of a pair of points in $\{x_1, \dots, x_n\}$.

Proof: Otherwise, the sets $E+x_1, E+x_2, \cdots, E+x_n$ are disjoint subsets of [0,2], hence

$$m([0,2])\geqslant m\left(igcup_{k=1}^n(E+x_k)
ight)=\sum_{k=1}^n m(E+x_k)=n\cdot m(E),$$

which contradicts with $m(E) \geqslant \varepsilon > 2/n$.

95-16

Suppose W is an unmeasurable subset of [0,1]. Prove that there exists $\varepsilon\in(0,1)$ such that for any measurable set $E\subset[0,1]$ with $m(E)\geqslant \varepsilon$, $W\cap E$ is unmeasurable.

Proof: Otherwise suppose for any $\varepsilon=1-1/n$, there exists $E_n\subset [0,1]$ measurable such that $m(E_n)\geqslant \varepsilon$ and $W\cap E_n$ is measurable.

Let $E=\bigcup_{n\geqslant 1}E_n$, then $E\subset [0,1]$ is measurable and $m(E)\geqslant m(E_n)\geqslant 1-1/n$ so m(E)=1. Note that $W\cap E=\bigcup_{n\geqslant 1}(W\cap E_n)$ is the countable union of measurable sets, so $W\cap E$ is measurable. Also $m^*(W\cap E^C)=0$ since E^C is a null set, so $W=(W\cap E)\cup (W\cap E^C)$ is measurable, leading to contradiction.