1.)

a. Protein - Cellular tumor antigen p53

Gene - TP53

b. Organism - Human

Tax. ID - 9606 [NCBI]

- c. Reviewed Annotation score:(5/5) Experimental evidence at protein level
 - Reviewed (UniProtKB/Swiss-Prot)
- d. Mutated or turned off in 60% of cancers
 - TP53 defects are found in Barrett metaplasia
 - Esophageal cancer
 - Li-Fraumeni syndrome (LFS)
- e. Ubiquitous. Isoforms are expressed in a wide range of normal tissues but in a tissue-dependent manner.
- Isoform 2 is expressed in most normal tissues but is not detected in brain, lung, prostate, muscle, fetal brain, spinal cord and fetal liver.
 - Isoform 3 is expressed in most normal tissues but is not detected in lung, spleen, testis, fetal brain, spinal cord and fetal liver.
 - Isoform 7 is expressed in most normal tissues but is not detected in prostate, uterus, skeletal muscle and breast.
 - Isoform 8 is detected only in colon, bone marrow, testis, fetal brain and intestine.
 - Isoform 9 is expressed in most normal tissues but is not detected in brain, heart, lung, fetal liver, salivary gland, breast or intestine.

f. Integrated into UniProtKB/Swiss-Prot: August 13, 1987
Last sequence update: November 24, 2009
Last modified: March 15, 2017

2.) Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1.

Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-ARNTL/BMAL1-mediated transcriptional activation of PER2

a. 574 experimentally validated GO annotations

Cellular component 52 Molecular function 435

Biological process 87

b. Homo Sapien total protein count : 99287Homo Sapien total annotation count : 1059892

Homo Sapien proteins w/ experimental notation: 19952, 20.1% of all proteins Protein counts obtained from http://www.ebi.ac.uk/QuickGO/GProtein?ac=P04637 Where I removed the protein name filter and applied a taxonomy filter for human to get the human protein and annotation count. Then I filtered by manual experimental and by sub-ontology to get the other counts.

Number of annotations	1060643
Number of distinct proteins	99287

Currently selected additional filtering parameters:

tax	9606
protein	(No proteins)

Cellular Component annotations

Molecular Function annotations Biological Process annotations	322812 350929
Cellular Component proteins Molecular Function proteins	76439 70595
Biological Process proteins	77183

Cellular Component proteins w/ experimental notation

Molecular Function proteins w/ experimental notation

Biological Process proteins w/ experimental notation

16101, 21.0%

12042, 17.0%

8066, 10.4%

386902

c. Biological Process hierarchy picture GO: 0006119:

Molecular Function hierarchy pictureGO:0003924:

Cellular Component hierarchy pictureGO:0005739:

QuickGO - http://www.ebi.ac.uk/QuickGO

3.) SSEARCH against Shuffled SwissProt (550k)

The best scores are: s-w bits E(553474) %_id %_sim alen sp|shO60393|NOBOX_HUMAN_shuff Homeobox protein NOBOX OS (691) 158 44.1 0.0078 0.238 0.458 345 align sp|shQ0VG99|MESP2_HUMAN_shuff Mesoderm posterior protei (397) 144 40.9 0.041 0.266 0.463 188 align sp|shQ5G268|NETR_NOMLE_shuff Neurotrypsin OS=Nomascus I (875) 123 35.7 3.3 0.257 0.537 136 align sp|shQ8CHH5|GSC1L_MOUSE_shuff GLTSCR1-like protein OS=M (1074) 124 35.9 3.6 0.241 0.473 319 align sp|shQ9ERZ0|HEMGN_MOUSE_shuff Hemogen OS=Mus musculus G (503) 118 34.7 4 0.283 0.543 138 align

sp|shP9WKV8|Y477_MYCTO_shuff Uncharacterized protein MT (148) 109 32.9 4.1 0.341 0.553 85 align sp|shQ7TNF8|RIMB1_MOUSE_shuff Peripheral-type benzodiaz (1846) 126 36.3 4.9 0.294 0.516 126 align (these were the only hits given)

BLAST against SwissProtSelect seq sp|P04637.4|P53_HUMAN

Select seq sp P13481.1 P53_CHLAE	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
746 746 100% 0.0	96% P13481.1
Select seq sp P56424.1 P53_MACMU	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
739 739 100% 0.0	96% P56424.1
Select seq sp Q9TTA1.1 P53_TUPBE	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
707 707 100% 0.0	93% Q9TTA1.1
Select seq sp O36006.1 P53_MARMO	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
672 672 100% 0.0	86% O36006.1
Select seq sp Q95330.1 P53_RABIT	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
651 651 100% 0.0	86% Q95330.1
Select seq sp Q8SPZ3.1 P53_DELLE	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
632 632 100% 0.0	85% Q8SPZ3.1
Select seq sp Q9WUR6.1 P53_CAVPC	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
618 618 100% 0.0	78% Q9WUR6.1
Select seq sp Q00366.1 P53_MESAU	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
613 613 100% 0.0	78% Q00366.1
Select seq sp Q9TUB2.1 P53_PIG	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
612 612 100% 0.0	82% Q9TUB2.1
Select seq sp O09185.1 P53_CRIGR	RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53
612 612 100% 0.0	77% O09185.1

There were no sequences common to both the BLAST search and the SSEARCH

Topmost hit:

Protein: Cellular tumor antigen p53

Organism: Chlorocebus aethiops (Green monkey)

>P13481.1 RecName: Full=Cellular tumor antigen p53; AltName: Full=Tumor suppressor p53

Score	Expect	Method	Identities	Positives	Gaps
813 bits(2101)	0.0	Compositional matrix adjust.	393/393(100%)	393/393(100%)	0/393(0%)

Query 1 MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP 60 MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP 60 Sbjct 1 MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP 60

Query 61 DEAPRMPEAAPPVAPAPAPAPAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK 120 DEAPRMPEAAPPVAPAPAPAPAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK Sbjct 61 DEAPRMPEAAPPVAPAPAPAPAPAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK 120

Query 121 SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE 180 SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE Sbjct 121 SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE 180

Query 181 RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS 240 RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS Sbjct 181 RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS 240

Query 241 SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP 300 SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP Sbjct 241 SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP 300

Query 301 PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPG 360 PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPG Sbjct 301 PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPG 360

Query 361 GSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD 393 GSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD Sbjct 361 GSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD 393

These two proteins share a single experimentally validated GO catagory, GO:0005515 This GO category belongs to the sub ontology of Molecular function

Code	Name	%	Count	<u></u>
GO:0005515	ALAN TOTAL CO.	100.00	2	
GO:2001244	positive regulation of intrinsic apoptotic signaling pathway	50.00	1	
GO:2000379	positive regulation of reactive oxygen species metabolic process	50.00	1	
GO:1900119	positive regulation of execution phase of apoptosis	50.00	1	
GO:0097718	disordered domain specific binding	50.00	1	
GO:0097252	oligodendrocyte apoptotic process	50.00	1	
GO:0090403	oxidative stress- induced premature senescence	50.00	1	
GO:0090399	replicative senescence	50.00	1	
GO:0090 2 00	positive regulation of release of cytochrome c from mitochondria	50.00	1	
GO:0072717	cellular response to actinomycin D	50.00	1	
GO:0072332	intrinsic apoptotic signaling pathway by p53 class mediator	50.00	1	
GO:0072331	signal transduction by p53 class mediator	50.00	1	
GO:0071480	cellular response to gamma radiation	50.00	1	
GO:0071479	cellular response to ionizing radiation	50.00	1	
GO:0071456	cellular response to hypoxia	50.00	1	
GO:0071158	positive regulation of cell cycle arrest	50.00	1	
GO:0051974	negative regulation of telomerase activity	50.00	1	
GO:0051721	protein phosphatase 2A binding	50.00	1	
GO:0051289	protein homotetramerization	50.00	1	
GO:0051087	chaperone binding	50.00	1	
GO:0048147	negative regulation of fibroblast proliferation	50.00	1	
GO:0047485	protein N-terminus binding	50.00	1	
GO:0046982	protein heterodimerization activity	50.00	1	
GO:0046677	response to	50.00	1	

4.)

5.)

Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) Homo sapiens (Human).

The parameters have been computed for the following feature:

FT CHAIN

1 393

Cellular tumor antigen p53.

The computation has been carried out on the complete sequence (393 amino acids).

Molecular weight (Da): 43653.18 (average mass), 43625.38 (monoisotopic mass)

Theoretical pl: 6.33

7.) First I would go to https://www.uniprot.org/uniprot/P04637#structure to find what gene expresses it. That gene is TP53. I would then search for TP53 at https://ghr.nlm.nih.gov/gene/TP53 where I can find good information on diseases associated with this gene as well as other links to more material on this gene. After looking through that site and the associated links I would then go to https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/ and search for TP53 which would lead me here https://www.ncbi.nlm.nih.gov/gene/7157. From here I can get large amounts of more detailed, more in depth knowledge of the gene including statistical data on what tissues are most likely to express the gene, where this gene sits on the chromosome in relation to other genes, research papers written about this gene and much more info. I would probably be able to find everything i need to know about this gene here.

Q2

Humans: 367 receptors / 99287 total proteins= .003696% of total proteome Mice: 392 receptors / 66017 total proteins = .005937% of total proteome Total protein counts were obtained as described in Q1) 2 b
 Receptor counts were taken from this paper linked to by InterPro http://europepmc.org/abstract/MED/12679517

2.) Top 15 most common protein domains for Escherichia coli (strain K12)

Pfam	Description	Number of sequences	Number of occurrences
ABC tran	ABC transporter	78	95
MFS 1	Major Facilitator Superfamily	57	72
BPD transp 1	Binding-protein-dependent transport system inner membrane component	51	52
LysR substrate	LysR substrate binding domain	47	47
HTH 1	Bacterial regulatory helix-turn-helix protein, lysR family	46	46
Response reg	Response regulator receiver domain	38	38
HATPase c	Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase	32	32
RHS repeat	RHS Repeat	5	28
<u>Fimbrial</u>	Fimbrial protein	28	28
Fer4	4Fe-4S binding domain	20	26
Hexapep	Bacterial transferase hexapeptide (six repeats)	13	24
DDE Tnp 1	Transposase DDE domain	21	21
GntR	Bacterial regulatory proteins, gntR family	21	21
HTH AraC	Bacterial regulatory helix-turn-helix proteins, AraC family	12	20
GerE	Bacterial regulatory proteins, luxR family	20	20

Yes the following domains are present in humans as well:

ABC tran	ABC transporter	107	155
MFS 1	Major Facilitator Superfamily	133	148