





### Contenidos

- Introducción
- Selección
- Proyección
- Composición de operadores
- Producto cartesiano
- Unión y diferencia
- Reunión Natural
- Intersección
- División
- Eficiencia en las Consultas



- Un lenguaje de consulta:
  - Permite al usuario solicitar información de la base de datos.
  - Son normalmente de más alto nivel que los lenguajes de programación de propósito general.
  - Pueden clasificarse en:
    - Procedimentales
    - Declarativos



#### Procedimental:

- El usuario da instrucciones al sistema para que realice una secuencia de operaciones en la BD para calcular el resultado deseado.
  - Álgebra Relacional
    - "A Relational Model of Data for Large Shared Data Banks" E. F. Codd, Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

#### Declarativo:

- El usuario describe la información deseada sin dar un procedimiento específico para obtener esa información.
  - Cálculo Relacional (Codd, 1970)
    - "Relational Completeness of Data Base Sublanguages" E.F. Codd (presented at Courant Computer Science Symposia Series 6, "Data Base Systems," New York City, N.Y., May 24th-25th, 1971). IBM Research Report RJ987 (March 6th, 1972). Republished in Randall J. Rustin (ed.), Data Base Systems: Courant Computer Science Symposia Series 6. Englewood Cliffs, N.J.: Prentice-Hall (1972).



| Operador            | Notación         |
|---------------------|------------------|
| Selección           | σ                |
| Proyección          | $\pi$            |
| Unión               | U                |
| Intersección        | Λ                |
| Diferencia          | -                |
| Producto Cartesiano | ×                |
| Θ-Reunión           | $\Join_{\Theta}$ |
| División            | <u>÷</u>         |





- Las operaciones del Álgebra Relacional son internas dentro del conjunto de las relaciones:
  - Entrada:
    - · Una o más relaciones
  - Salida:
    - Una relación





- Clasificación de los operadores:
  - Con respecto al tipo de operador:
    - Operadores monarios
      - Selección
      - Proyección
    - Operadores binarios
      - Unión
      - Intersección
      - Diferencia
      - Producto Cartesiano
      - θ-reunión
      - · División.





- Con respecto a su relación con el modelo relacional:
  - Operadores de conjunto
    - Unión
    - Diferencia
    - Intersección
    - Producto
  - Operadores relacionales
    - Selección
    - Proyección
    - O-reunión
    - División



- Con respecto a su necesidad:
  - Operadores fundamentales (primitivos)
    - Selección
    - Proyección
    - Unión
    - Diferencia
    - Producto Cartesiano
  - Operadores no fundamentales (derivados)
    - Intersección
    - θ-reunión
    - · División.









- Definición:
  - Sea
    - R[A<sub>1</sub>, ..., A<sub>n</sub>] una relación cualquiera
    - $\Theta$  una propiedad asociada a  $\{A_1...A_n\}$
    - r una instancia de R
  - El operador Θ-selección aplicado a r obtiene aquellas tuplas de r para las que Θ es cierta.
  - Notación:
    - σ<sub>Θ</sub>(R)



| NRP      | NOM_PROF                | CATEGORIA | AREA   | COD_DEP |
|----------|-------------------------|-----------|--------|---------|
| 2428456  | Juan Sánchez Pérez      | AS        | COMPUT | CCIA    |
| 24283256 | Antonia Pérez Rodríguez | CU        | COMPUT | CCIA    |
| 242256   | Luis Pérez Pérez        | TE        | LENGUA | LSI     |
| 84256    | Carmen Pérez Sánchez    | TU        | LENGUA | LSI     |
| 324256   | David Pérez Jiménez     | CU        | ARQUIT | ATC     |
| 24256    | María López Ruiz        | TU        | ARQUIT | ATC     |
| 2842560  | José Álvarez Pérez      | CE        | ELECTR | ELEC    |
| 842560   | Adela Pérez Sánchez     | AS        | ELECTR | ELEC    |
| 84560    | Luis Martínez Pérez     | AS        | TSECAL | TESE    |
| 242560   | María Gómez Sánchez     | CU        | TSECAL | TESE    |





| NRP      | NOM_PROF                | CATEGORIA | AREA   | COD_DEP |
|----------|-------------------------|-----------|--------|---------|
| 2428456  | Juan Sánchez Pérez      | AS        | COMPUT | CCIA    |
| 24283256 | Antonia Pérez Rodríguez | CU        | COMPUT | CCIA    |
| 242256   | Luis Pérez Pérez        | TE        | LENGUA | LSI     |
| 84256    | Carmen Pérez Sánchez    | TU        | LENGUA | LSI     |
| 324256   | David Pérez Jiménez     | CU        | ARQUIT | ATC     |
| 24256    | María López Ruiz        | TU        | ARQUIT | ATC     |
| 2842560  | José Álvarez Pérez      | CE        | ELECTR | ELEC    |
| 842560   | Adela Pérez Sánchez     | AS        | ELECTR | ELEC    |
| 84560    | Luis Martínez Pérez     | AS        | TSEÑAL | TESE    |
| 242560   | María Gómez Sánchez     | CU        | TSEÑAL | TESE    |

### $\sigma_{categoria=AS}$ (profesores)

| NRP     | NOM_PROF            | CATEGORIA | AREA   | COD_DEP |
|---------|---------------------|-----------|--------|---------|
| 2428456 | Juan Sánchez Pérez  | AS        | COMPUT | CCIA    |
| 842560  | Adela Pérez Sánchez | AS        | ELECTR | ELEC    |
| 84560   | Luis Martínez Pérez | AS        | TSEÑAL | TESE    |





| NRP      | NOM_PROF                | CATEGORIA | AREA   | COD_DEP |
|----------|-------------------------|-----------|--------|---------|
| 2428456  | Juan Sánchez Pérez      | AS        | COMPUT | CCIA    |
| 24283256 | Antonia Pérez Rodríguez | CU        | COMPUT | CCIA    |
| 242256   | Luis Pérez Pérez        | TE        | LENGUA | LSI     |
| 84256    | Carmen Pérez Sánchez    | TU        | LENGUA | LSI     |
| 324256   | David Pérez Jiménez     | CU        | ARQUIT | ATC     |
| 24256    | María López Ruiz        | TU        | ARQUIT | ATC     |
| 2842560  | José Álvarez Pérez      | CE        | ELECTR | ELEC    |
| 842560   | Adela Pérez Sánchez     | AS        | ELECTR | ELEC    |
| 84560    | Luis Martínez Pérez     | AS        | TSECAL | TESE    |
| 242560   | María Gómez Sánchez     | CU        | TSECAL | TESE    |

### $\sigma_{categoria \neq ASA(area=COMPUTVarea=ELECTR)}$ (profesores)

| NRP      | NOM_PROF                | CATEGORIA | AREA   | COD_DEP |
|----------|-------------------------|-----------|--------|---------|
| 24283256 | Antonia Pérez Rodríguez | CU        | COMPUT | CCIA    |
| 2842560  | José Álvarez Pérez      | CE        | ELECTR | ELEC    |





- Definición:
  - Sea
    - R[A<sub>1</sub>..A<sub>n</sub>] una relación cualquiera
    - $\{A_i...A_i\}$  un subconjunto de sus atributos
    - r una instancia de R
  - El operador proyección sobre {A<sub>i</sub>...A<sub>j</sub>} aplicado a R obtiene tuplas de r eliminando de la tabla aquellos atributos no pertenecientes a {A<sub>i</sub>...A<sub>j</sub>} y suprimiendo las tuplas redundantes.
  - Notación:
    - $\pi_{Ai...Aj}(R)$



•  $\pi_{NRP,nom\_prof,categoria}$  (Profesores)

| NRP      | NOM_PROF                | CATEGORIA | AREA   | COD_DEP |
|----------|-------------------------|-----------|--------|---------|
| 2428456  | Juan Sánchez Pérez      | AS        | COMPUT | CCIA    |
| 24283256 | Antonia Pérez Rodríguez | CU        | COMPUT | CCIA    |
| 242256   | Luis Pérez Pérez        | TE        | LENGUA | LSI     |
| 84256    | Carmen Pérez Sánchez    | TU        | LENGUA | LSI     |
| 324256   | David Pérez Jiménez     | CU        | ARQUIT | ATC     |
| 24256    | María López Ruiz        | TU        | ARQUIT | ATC     |
| 2842560  | José Álvarez Pérez      | CE        | ELECTR | ELEC    |
| 842560   | Adela Pérez Sánchez     | AS        | ELECTR | ELEC    |
| 84560    | Luis Martínez Pérez     | AS        | TSEÑAL | TESE    |
| 242560   | María Gómez Sánchez     | CU        | TSEÑAL | TESE    |





•  $\pi_{NRP,nom\_prof,categoria}$  (Profesores)

| NRP      | NOM_PROF                | CATEGORIA |
|----------|-------------------------|-----------|
| 2428456  | Juan Sánchez Pérez      | AS        |
| 24283256 | Antonia Pérez Rodríguez | CU        |
| 242256   | Luis Pérez Pérez        | TE        |
| 84256    | Carmen Pérez Sánchez    | TU        |
| 324256   | David Pérez Jiménez     | CU        |
| 24256    | María López Ruiz        | TU        |
| 2842560  | José Álvarez Pérez      | CE        |
| 842560   | Adela Pérez Sánchez     | AS        |
| 84560    | Luis Martínez Pérez     | AS        |
| 242560   | María Gómez Sánchez     | CU        |





- Como una proyección produce como resultado una relación:
  - Si en el resultado de una proyección aparecen tuplas repetidas se deben descartar.
  - Esto suele ocurrir cuando, al proyectar, no se incluye una clave candidata en la lista de atributos.

| COMPUT | CCIA |
|--------|------|
| COMPUT | CCIA |
| LENGUA | LSI  |
| LENGUA | LSI  |
| ARQUIT | ATC  |
| ARQUIT | ATC  |
| ELECTR | ELEC |
| ELECTR | ELEC |
| TSEÑAL | TESE |
| TSEÑAL | TESE |

**AREA** 

• Ejemplo: Tabla Profesores

Clave primaria: NRP

Si proyectamos por {area,cod dep}





COD\_DEP

- Como una proyección produce como resultado una relación:
  - Si en el resultado de una proyección aparecen tuplas repetidas se deben descartar.
  - Esto suele ocurrir cuando, al proyectar, no se incluye una clave candidata en la lista de atributos.

| AREA   | COD_DEP |
|--------|---------|
| COMPUT | CCIA    |
| LENGUA | LSI     |
| ARQUIT | ATC     |
| ELECTR | ELEC    |
| TSEÑAL | TESE    |

- Ejemplo: Tabla Profesores
  - · Clave primaria: NRP
  - Si proyectamos por {area,cod\_dep}





- El AR se basa en la aplicación sucesiva de operadores hasta que obtenemos la tabla que contiene la solución a nuestra consulta.
- Como el resultado de una operación es siempre una relación, dicho resultado puede usarse como operando de otra operación.



#### Ejemplo:

- Obtener una lista con el NRP y el Nombre de aquellos profesores que pertenecen al departamento cuyo código es ELEC:
  - $\sigma_{\text{cod\_dep=ELEC}}$ (profesores)

| NRP     | NOM_PROF            | CATEGORIA | AREA   | COD_DEP |
|---------|---------------------|-----------|--------|---------|
| 2842560 | José Álvarez Pérez  | CE        | ELECTR | ELEC    |
| 842560  | Adela Pérez Sánchez | AS        | ELECTR | ELEC    |

•  $\pi_{NRP,nom\_prof}$  ( $\sigma_{cod\_dep=ELEC}$ (profesores))

| NRP     | NOM_PROF            |
|---------|---------------------|
| 2842560 | José Álvarez Pérez  |
| 842560  | Adela Pérez Sánchez |



#### Ejemplos:

- Encontrar los nombres de los profesores que no tienen categoría AS y pertenecen a las áreas de conocimiento TSEÑAL o ARQUIT.
  - $\Pi_{\text{nom\_prof}}(\sigma_{(\text{categoria} \neq AS)} \wedge (\text{area} = TSE\tilde{N}ALV \text{ area} = ARQUIT})(\text{profesores}))$
- Encontrar las áreas de conocimiento que tienen profesores con categoría CU o TU.
  - $\pi_{area}(\sigma_{(categoria=TU\ V\ categoria=CU)}(profesores))$



- Encontrar el DNI y el nombre de aquellos alumnos que nacieron antes del 1-1-80.
  - $\pi_{\text{DNI,nom\_alum}}(\sigma_{\text{fecha-nac} \leq 01-01-80}(\text{alumnos}))$
- Encontrar las provincias de las que vienen alumnos becados.
  - $\pi_{provincia}(\sigma_{beca=SI}(alumnos))$



- Definición:
  - Sea
    - R[A<sub>1</sub>..A<sub>n</sub>] y S[B<sub>1</sub>..B<sub>m</sub>] dos relaciones cualesquiera
    - r y s dos instancias de las mismas
  - El producto cartesiano de ambas instancias es el conjunto de tuplas resultante de hacer el producto cartesiano sobre los conjuntos de tuplas de las instancias.
  - Notación:
    - R × S



| A              | В              |
|----------------|----------------|
| $a_1$          | $b_1$          |
| a <sub>2</sub> | b <sub>2</sub> |
| a <sub>3</sub> | b <sub>3</sub> |

 $d_1$ 

×

d<sub>1</sub> d<sub>2</sub>

| A                     | В     | D     |
|-----------------------|-------|-------|
| $a_1$                 | $b_1$ | $d_1$ |
| $a_1$                 | $b_1$ | $d_2$ |
| $a_2$                 | $b_2$ | $d_1$ |
| $a_2$                 | $b_2$ | $d_2$ |
| <b>a</b> <sub>3</sub> | $b_3$ | $d_1$ |
| <b>a</b> <sub>3</sub> | $b_3$ | $d_2$ |



#### Propiedades:

- Propiedad 1:
  - Sean
    - R[A<sub>1</sub>..A<sub>n</sub>] y S[B<sub>1</sub>..B<sub>m</sub>] dos relaciones cualesquiera
    - $W = R \times S$
  - Entonces
    - $W[A_1..A_n,B_1..B_m]$ 
      - esquema(W) = esquema(R) U esquema(S).
- Propiedad 2:
  - Sean
    - R[A<sub>1</sub>..A<sub>n</sub>] y S[B<sub>1</sub>..B<sub>m</sub>] dos relaciones cualesquiera
    - $W = R \times S$
    - Sean r y s instancias de R y S respectivamente y w la correspondiente instancia de W.
  - Entonces:
    - $card(w) = card(r) \times card(s)$ .



- Denominación de atributos y uso de alias
  - Ahora interviene más de una relación.
  - Puede ocurrir que haya ambigüedad a la hora de referenciar atributos en las operaciones.
  - Solución:
    - · Anteponer un prefijo al nombre del atributo para indicar la tabla a la que nos referimos
      - · Profesor.NRP
      - Grupos.NRP



- Puede ocurrir incluso que una misma relación aparezca más de una vez en la consulta.
- Operador de redefinición:
  - Sea
    - R[A<sub>1</sub>, ...A<sub>n</sub>] una relación cualquiera
    - r una instancia de R
    - · El operador redefinición aplicado a R nos permite asignar un nuevo nombre a R
    - Notación
      - ρ(R)
      - ρ(R) = S nos permite referirnos a r como S
    - Se dice entonces que S es un alias de R.



- Consideremos nuestra base de datos de ejemplo y supongamos que deseamos saber, para cada departamento, el nombre de su director.
- Paso 1: profesores × departamentos

|                 |                         | _     |        |         |         |                              |         |
|-----------------|-------------------------|-------|--------|---------|---------|------------------------------|---------|
| NRP             | NOM_PROF                | CATG. | AREA.  | COD_DEP | COD_DEP | NOM_DEP                      | DIRECTO |
| 2428456         | Juan Sanchez Perez      | AS    | COMPUT | CCIA    | CCIA    | Ciencias de la Computacion   | 2428325 |
| 24283256        | Antonia Perez Rodriguez | CU    | COMPUT | CCIA    | CCIA    | Ciencias de la Computacion   | 2428325 |
| 242256          | Luis Perez Perez        | TE    | LENGUA | LSI     | CCIA    | Ciencias de la Computacion   | 2428325 |
| 84256           | Carmen Perez Sanchez    | TU    | LENGUA | LSI     | CCIA    | Ciencias de la Computacion   | 2428325 |
| 324256          | David Perez Jimenez     | CU    | ARQUIT | ATC     | CCIA    | Ciencias de la Computacion   | 2428325 |
| 24256           | Maria Lopez Ruiz        | TU    | ARQUIT | ATC     | CCIA    | Ciencias de la Computacion   | 2428325 |
| 2842560         | Jose Alvarez Perez      | CE    | ELECTR | ELEC    | CCIA    | Ciencias de la Computacion   | 2428325 |
| 842560          | Adela Perez Sanchez     | AS    | ELECTR | ELEC    | CCIA    | Ciencias de la Computacion   | 2428325 |
| 84560           | Luis Martinez Perez     | AS    | TSECAL | TESE    | CCIA    | Ciencias de la Computacion   | 2428325 |
| 242560          | Maria Gomez Sanchez     | CU    | TSECAL | TESE    | CCIA    | Ciencias de la Computacion   | 242832  |
| 2428456         | Juan Sanchez Perez      | AS    | COMPUT | CCIA    | LSI     | Lenguajes y Sistemas         | 84256   |
|                 |                         |       |        |         |         |                              |         |
| 2428456         | Juan Sanchez Perez      | AS    | COMPUT | CCIA    | ATC     | Arquitectura de Computadores | 32425   |
| •••             |                         |       |        |         |         |                              |         |
| 2428456         | Juan Sanchez Perez      | AS    | COMPUT | CCIA    | ELEC    | Electronica                  | 284256  |
|                 |                         |       |        |         |         |                              |         |
| 2428456         | Juan Sanchez Perez      | AS    | COMPUT | CCIA    | TESE    | Teoria de la Secal           | 84560   |
| 24283256        | Antonia Perez Rodriguez | CU    | COMPUT | CCIA    | TESE    | Teoria de la Secal           | 84560   |
| 242256          | Luis Perez Perez        | TE    | LENGUA | LSI     | TESE    | Teoria de la Secal           | 84560   |
| 84256           | Carmen Perez Sanchez    | TU    | LENGUA | LSI     | TESE    | Teoria de la Secal           | 84560   |
| 324256          | David Perez Jimenez     | CU    | ARQUIT | ATC     | TESE    | Teoria de la Secal           | 84560   |
| 24256           | Maria Lopez Ruiz        | TU    | ARQUIT | ATC     | TESE    | Teoria de la Secal           | 84560   |
| 2842560         | Jose Alvarez Perez      | CE    | ELECTR | ELEC    | TESE    | Teoria de la Secal           | 84560   |
| 842560          | Adela Perez Sanchez     | AS    | ELECTR | ELEC    | TESE    | Teoria de la Secal           | 84560   |
| 84560           | Luis Martinez Perez     | AS    | TSECAL | TESE    | TESE    | Teoria de la Secal           | 84560   |
| UNE UNE VORSIDA | D Maria Gomez Sanchez   | CU    | TSECAL | TESE    | TESE    | Teoria de la Secal           | 84560   |

• Paso 2:  $\sigma_{director=NRP}$  (profesores × departamentos)

| NRP      | NOM_PROF                | CATG. | AREA.  | COD_DEP | COD_DEP | NOM_DEP                      | DIRECTOR |
|----------|-------------------------|-------|--------|---------|---------|------------------------------|----------|
| 24283256 | Antonia Perez Rodriguez | CU    | COMPUT | CCIA    | CCIA    | Ciencias de la Computacion   | 24283256 |
| 84256    | Carmen Perez Sanchez    | TU    | LENGUA | LSI     | LSI     | Lenguajes y Sistemas         | 84256    |
| 324256   | David Perez Jimenez     | CU    | ARQUIT | ATC     | ATC     | Arquitectura de Computadores | 324256   |
| 2842560  | Jose Alvarez Perez      | CE    | ELECTR | ELEC    | ELEC    | Electronica                  | 2842560  |
| 84560    | Luis Martinez Perez     | AS    | TSECAL | TESE    | TESE    | Teoria de la Señal           | 84560    |

• Paso 3:  $\Pi_{\text{nom\_prof,nom\_dep}}(\sigma_{\text{director=NRP}} \text{ (profesores} \times \text{departamentos)})$ 

| NOM_PROF                | NOM_DEP                      |
|-------------------------|------------------------------|
| Antonia Perez Rodriguez | Ciencias de la Computacion   |
| Carmen Perez Sanchez    | Lenguajes y Sistemas         |
| David Perez Jimenez     | Arquitectura de Computadores |
| Jose Alvarez Perez      | Electronica                  |
| Luis Martinez Perez     | Teoria de la Señal           |





- Ejemplos
  - Obtener, para cada profesor, su NRP, su nombre y el nombre del departamento al que pertenece.
    - $\pi_{NRP,nom\_prof,nom\_dep}(\sigma_{departamentos.cod\_dep=profesores.cod\_dep}(departamentos \times profesores))$
  - Obtener el DNI y el nombre de aquellos alumnos matriculados de la asignatura de código BDI que son becarios.
    - $\pi_{\text{alumnos.DNI,nom\_alum}}(\sigma_{\text{alumnos.DNI=matriculas.DNI}}(\sigma_{\text{beca=SI}}(\text{alumnos}) \times \sigma_{\text{cod asig=BDI}}(\text{matriculas})))$
    - $\pi_{alumnos.DNI,nom\_alum}(\sigma_{(alumnos.DNI=matriculas.DNI)}) \wedge (beca=SI) \wedge (cod\_asig=BDI)$  (alumnos × matriculas))
  - Encontrar la lista de los profesores (NRP y nombre) que imparten la asignatura BDI.
    - $\pi_{\text{grupos.NRP,nom\_pro}}(\sigma_{\text{profesores.NRP=grupos.NRP}})$ (profesores ×  $\sigma_{\text{cod asig=BDI}}(\text{grupos})))$





#### Ejemplos

- Encontrar los códigos de las asignaturas de las que está matriculado el alumno de nombre 'Luis Martinez Perez'.
  - $\Pi_{cod\_asig}(\sigma_{alumnos.DNI=matricula.DNI}$  (matriculas ×  $\sigma_{nom\_alum=Luis\ Martinez\ Perez}$  (alumnos)))
- Encontrar los nombres de los profesores con categoría CU o TU que pertenecen al departamento de nombre Electrónica.
  - $\Pi_{\text{nom\_prof}}$  ( $\sigma_{\text{profesores.cod\_dep=departamentos.cod\_dep}}$  ( $\sigma_{\text{categoria=CUVcategoria=TU}}$ (profesores)× $\sigma_{\text{nom\_dep=Electronica}}$ (departamentos)))
- Encontrar los nombres de las asignaturas de las que está matriculado el alumno 'Luis Martinez Perez'.
  - $\Pi_{\text{nom\_asig}}(\sigma_{\text{alumnos.DNI=matricula.DNI}\land \text{matricula.cod\_asig=asignaturas.cod\_asig}}$  (matriculas  $\times \sigma_{\text{nom\_alum=Luis Martinez Perez}}(\text{alumnos}) \times \text{asignaturas}))$





#### Ejemplos

- Encontrar los nombres de los profesores que imparten prácticas en la asignatura Bases de Datos. Entendemos que los grupos de prácticas son los grupos de tipo P.
  - $\pi_{\text{nom\_prof}}$  ( $\sigma_{\text{profesores.NRP=grupos.NRP} \land \text{grupos.cod\_asig=asignaturas.cod\_asig}}$  ( $\sigma_{\text{tipo=P}}(\text{grupos}) \times \sigma_{\text{nom\_asig=Bases de Datos}}$  (asignaturas) × profesores))
- Encontrar el nombre y el DNI de aquellos alumnos cuya provincia es Almería y que están matriculados de alguna asignatura de primer curso.
  - $\pi_{\text{DNI,nom\_alum}}(\sigma_{\text{alumnos.DNI=matricula.DNI}\wedge \text{matricula.cod\_asig=asignaturas.cod\_asig}})$  (matriculas ×  $\sigma_{\text{provincia=Almeria}}(\text{alumnos}) \times \sigma_{\text{curso=1}}(\text{asignaturas})))$



#### Ejemplos:

- Encontrar los nombres de los profesores que pertenecen a la misma área de conocimiento que María López Ruiz.
  - ρ(profesores) = profes
  - $\pi_{profes.nom\_prof}$  ( $\sigma_{profesores.area=profes.area}$  ( $\sigma_{profesores.nom\_prof=Maria\ Lopez\ Ruiz}$  (profesores) × (profes)))
- Encontrar el DNI y el nombre de aquellos alumnos de edad mayor o igual que la del alumno 'Luís Martínez Pérez'.
  - ρ(alumnos) = alu
  - $\pi_{\text{alu.DNI,alu.nom\_alum}}(\sigma_{\text{alumnos.fecha-nac} \geq \text{alu.fecha-nac}}(\sigma_{\text{alumnos.nom\_alum=Luis Martinez Perez}}(\text{alumnos}) \times (\text{alu})))$
- Encontrar aquellas asignaturas optativas que están en cursos superiores a la asignatura de nombre 'Bases de Datos'.
  - ρ(asignaturas) = asis
  - $\pi_{asis.nom\_asig}(\sigma_{asignaturas.curso < asis.curso}(\sigma_{asignaturas.nom\_asig=Bases de Datos}(asignaturas) \times \sigma_{asis.caracter=op}(asis)))$





## Unión y diferencia

- Unión
  - Sean
    - $R[A_1..A_n]$ , y  $S[B_1..B_n]$  dos relaciones tales que  $\{A_1..A_n\} \equiv \{B_1...B_n\}$
    - r y s instancias de R y S
  - El operador unión aplicado sobre R y S es el resultado de hacer la unión de r y s como conjuntos de tuplas.
  - Notación:
    - RUS
- Diferencia
  - Sean
    - $R[A_1..A_n]$ , y  $S[B_1..B_n]$  dos relaciones tales que  $\{A_1..A_n\} \equiv \{B_1...B_n\}$
    - r y s instancias de R y S
  - El operador diferencia aplicado sobre R y S es el resultado de hacer la diferencia de r y s como conjuntos de tuplas.
  - · Notación:
    - R S





# Unión y diferencia

| A     | В     | C     |
|-------|-------|-------|
| $a_1$ | $b_1$ | $c_1$ |
| $a_2$ | $b_2$ | $c_2$ |
| $a_3$ | $b_1$ | $c_1$ |
| $a_4$ | $b_1$ | $c_1$ |
| $a_4$ | $b_2$ | $c_2$ |

| A                     | В     | C     |
|-----------------------|-------|-------|
| $a_1$                 | $b_1$ | $c_1$ |
| $a_2$                 | $b_2$ | $c_2$ |
| <i>a</i> <sub>3</sub> | $b_2$ | $c_2$ |
| $a_4$                 | $b_2$ | $c_2$ |
| $a_1$                 | $b_2$ | $c_2$ |

| A                     | В     | C     |
|-----------------------|-------|-------|
| $a_1$                 | $b_1$ | $c_1$ |
| $a_2$                 | $b_2$ | $c_2$ |
| $a_3$                 | $b_1$ | $c_1$ |
| $a_4$                 | $b_1$ | $c_1$ |
| $a_4$                 | $b_2$ | $c_2$ |
| <i>a</i> <sub>3</sub> | $b_2$ | $c_2$ |
| $a_1$                 | $b_2$ | $c_2$ |



 A
 B
 C

  $a_1$   $b_1$   $c_1$ 
 $a_2$   $b_2$   $c_2$ 
 $a_3$   $b_2$   $c_2$ 
 $a_4$   $b_2$   $c_2$ 
 $a_1$   $b_2$   $c_2$ 

S

r - s

| A                     | В     | C     |
|-----------------------|-------|-------|
| <i>a</i> <sub>3</sub> | $b_1$ | $c_1$ |
| $a_4$                 | $b_1$ | $c_1$ |



#### • Ejemplos:

- Encontrar las asignaturas de segundo ciclo; es decir, aquellas cuyo curso sea 4 ó 5.
  - $\sigma_{(curso=4 \lor curso=5)}$ (asignaturas)
  - $\sigma_{curso=4}$ (asignaturas) U  $\sigma_{curso=5}$ (asignaturas)
- Encontrar aquellos profesores que sean de categoría TU y no pertenezcan al área de conocimiento COMPUT.
  - $\sigma_{categoria=TU \ \land \ \neg(area=COMPUT)}(profesores)$
  - $\sigma_{categoria=TU}(profesores) \sigma_{area=COMPUT}(profesores)$





#### Ejemplos:

- Encontrar los códigos de aquellas asignaturas en las que no hay matriculado ningún alumno.
  - $\Pi_{\text{cod\_asig}}(\text{asignaturas}) \pi_{\text{cod\_asig}}(\text{matricula})$
- Encontrar los alumnos más jóvenes de la base de datos; es decir, aquellos cuya fecha de nacimiento es la mayor entre las de todos los alumnos.
  - ρ(alumnos) = alu
  - $\pi_{\text{alumnos.DNI,alumnos.nom\_alum}}(\text{alumnos}) \pi_{\text{alumnos.DNI,alumnos.nom\_alum}}(\sigma_{\text{alumnos.fecha-nac}}(\text{alumnos} \times \text{alu}))$
- Encontrar las asignaturas que sólo tienen un profesor.
  - $\Pi_{\text{cod\_asig}}$ (asignaturas) –
  - $\pi_{\text{grupos.cod\_asig}}(\sigma_{\text{grupos.cod\_asig=gru.cod\_asig} \land \text{grupos.NRP} <> \text{gru.NRP}} (\text{grupos} \times \text{gru}))$





#### • Ejemplos:

- Encontrar los códigos de aquellas asignaturas que o bien son de segundo ciclo o bien no tienen matriculado ningún alumno.
  - $\sigma_{(curso=4 \ V \ curso=5)}(asignaturas) \ U \ (\pi_{cod\_asig}(asignaturas) \pi_{cod\_asig}(matricula))$



## **Θ-Reunión**

- Θ -Reunión
  - Definición
    - Sea
      - $R[A_1..A_n]$ , y  $S[B_1..B_m]$  dos relaciones cualesquiera
      - Θ una propiedad que implica a atributos de ambas relaciones
      - r y s dos instancias de las mismas
    - Entonces la  $\Theta$ -Reunión de R y S equivale a  $\sigma_{\Theta}(R \times S)$ .
    - · Notación:
      - R ⋈ <sub>Θ</sub> S



## **Θ-Reunión**

profesores  $\bowtie_{director=NRP}$  departamentos =  $\sigma_{director=NRP}$  (profesores × departamentos)

| NRP      | NOM_PROF                | CATG. | AREA.  | COD_DEP | COD_DEP | NOM_DEP                      | DIRECTOR |
|----------|-------------------------|-------|--------|---------|---------|------------------------------|----------|
| 24283256 | Antonia Perez Rodriguez | CU    | COMPUT | CCIA    | CCIA    | Ciencias de la Computacion   | 24283256 |
| 84256    | Carmen Perez Sanchez    | TU    | LENGUA | LSI     | LSI     | Lenguajes y Sistemas         | 84256    |
| 324256   | David Perez Jimenez     | CU    | ARQUIT | ATC     | ATC     | Arquitectura de Computadores | 324256   |
| 2842560  | Jose Alvarez Perez      | CE    | ELECTR | ELEC    | ELEC    | Electronica                  | 2842560  |
| 84560    | Luis Martinez Perez     | AS    | TSECAL | TESE    | TESE    | Teoria de la Señal           | 84560    |



- Reunión natural
  - Definición
    - Sea
      - $R[A_1..A_n]$ ,  $y S[B_1..B_m]$  dos relaciones tales que existen  $\{A_i...A_j\} \subseteq \{A_1..A_n\}$   $y \{B_i...B_j\} \subseteq \{B_1..B_m\}$  de forma que  $\forall k \in \{i..j\}$ ,  $A_k = B_k$
      - r y s dos instancias de las mismas
    - Entonces la Reunión Natural de R y S equivale a:
      - $\pi_{(A1..An)\{B1..Bm\}\}-\{Ai...Aj\}}(\sigma_{(r.Ai=s.Ai)\Lambda...\Lambda(r.Aj=s.Aj)}(R \times S))$
    - Notación:
      - R ⋈ S



| A              | В                     | С                     |
|----------------|-----------------------|-----------------------|
| $a_1$          | b <sub>1</sub>        | C <sub>1</sub>        |
| a <sub>2</sub> | b <sub>2</sub>        | C <sub>2</sub>        |
| $a_3$          | b <sub>1</sub>        | <b>C</b> <sub>1</sub> |
| a <sub>4</sub> | b <sub>1</sub>        | C <sub>1</sub>        |
| $a_4$          | <b>b</b> <sub>2</sub> | c <sub>2</sub>        |
|                |                       |                       |



| A     | В     | С     | D     | E     |
|-------|-------|-------|-------|-------|
| $a_1$ | $b_1$ | $C_1$ | $d_1$ | $e_1$ |
| $a_1$ | $b_1$ | $C_1$ | $d_1$ | $e_3$ |
| $a_2$ | $b_2$ | $C_2$ | $d_2$ | $e_2$ |
| $a_3$ | $b_1$ | $C_1$ | $d_1$ | $e_1$ |
| $a_3$ | $b_1$ | $C_1$ | $d_1$ | $e_3$ |
| $a_4$ | $b_1$ | $C_1$ | $d_1$ | $e_1$ |
| $a_4$ | $b_1$ | $C_1$ | $d_1$ | $e_3$ |
| $a_4$ | $b_2$ | $C_2$ | $d_2$ | $e_2$ |



 $\bowtie$ 

- Ejemplos
  - Obtener, para cada profesor, su NRP, su nombre y el nombre del departamento al que pertenece.
    - $\pi_{NRP,nom\_prof,nom\_dep}(\sigma_{departamentos.cod\_dep=profesores.cod\_dep}(departamentos \times profesores))$
    - $\pi_{NRP,nom\ prof,nom\ dep}$  (departamentos  $\bowtie$  profesores)
  - Obtener el DNI y el nombre de aquellos alumnos matriculados de la asignatura de código BDI que son becarios.
    - $\pi_{\text{alumnos.DNI,nom\_alum}}(\sigma_{\text{alumnos.DNI=matriculas.DNI}}(\sigma_{\text{beca=SI}}(\text{alumnos}) \times \sigma_{\text{cod\_asig=BDI}}(\text{matriculas})))$
    - $\pi_{\text{alumnos.DNI,nom\_alum}}(\sigma_{\text{beca=SI}}(\text{alumnos}) \bowtie \sigma_{\text{cod\_asig=BDI}}(\text{matriculas}))$





#### Ejemplos

- Encontrar la lista de los profesores (NRP y nombre) que imparten la asignatura BDI.
  - $\pi_{\text{grupos.NRP,nom\_pro}}(\sigma_{\text{profesores.NRP=grupos.NRP}})$ (profesores ×  $\sigma_{\text{cod asig=BDI}}(\text{grupos})))$
  - $\pi_{grupos.NRP,nom\ pro}$  (profesores  $\bowtie \sigma_{cod\ asig=BDI}$  (grupos))
- Encontrar los códigos de las asignaturas de las que está matriculado el alumno de nombre 'Luis Martinez Perez'.
  - $\Pi_{\text{cod\_asig}}(\sigma_{\text{alumnos.DNI=matricula.DNI}}(\text{matriculas} \times \sigma_{\text{nom\_alum=Luis Martinez Perez}}(\text{alumnos})))$
  - $\Pi_{\text{cod\_asig}}(\text{matriculas} \bowtie \sigma_{\text{nom\_alum=Luis Martinez Perez}}(\text{alumnos}))$





#### Ejemplos

- Encontrar los nombres de los profesores con categoría CU o TU que pertenecen al departamento de nombre Electrónica.
  - $\Pi_{\text{nom\_prof}}$  ( $\sigma_{\text{profesores.cod\_dep=departamentos.cod\_dep}}$  ( $\sigma_{\text{categoria=CUVcategoria=TU}}$  (profesores)× $\sigma_{\text{nom\_dep=Electronica}}$  (departamentos)))
  - $\Pi_{\text{nom\_prof}}$  ( $\sigma_{\text{categoria=CUVcategoria=TU}}$  (profesores)  $\bowtie$   $\sigma_{\text{nom\_dep=Electronica}}$  (departamentos)))
- Encontrar los nombres de las asignaturas de las que está matriculado el alumno 'Luis Martinez Perez'.
  - $\Pi_{\text{nom\_asig}}(\sigma_{\text{alumnos.DNI=matricula.DNI}\land \text{matricula.cod\_asig=asignaturas.cod\_asig}}$  (matriculas ×  $\sigma_{\text{nom\_alum=Luis Martinez Perez}}(\text{alumnos}) \times \text{asignaturas}))$
  - $\Pi_{nom\_asig}(matriculas \bowtie \sigma_{nom\_alum=Luis\ Martinez\ Perez}(alumnos) \bowtie asignaturas)$





#### Ejemplos

- Encontrar los nombres de los profesores que imparten prácticas en la asignatura Bases de Datos. Entendemos que los grupos de prácticas son los grupos de tipo P.
  - $\Pi_{\text{nom\_prof}}$  ( $\sigma_{\text{profesores.NRP=grupos.NRP} \land \text{grupos.cod\_asig=asignaturas.cod\_asig}}$  ( $\sigma_{\text{tipo=P}}(\text{grupos}) \times \sigma_{\text{nom\_asig=Bases de Datos}}$  (asignaturas) × profesores))
  - $\Pi_{\text{nom\_prof}}$  ( $\sigma_{\text{tipo=P}}$ (grupos)  $\bowtie \sigma_{\text{nom\_asig=Bases de Datos}}$  (asignaturas)  $\bowtie$  profesores)
- Encontrar el nombre y el DNI de aquellos alumnos cuya provincia es Almería y que están matriculados de alguna asignatura de primer curso.
  - $\pi_{\text{DNI,nom\_alum}}(\sigma_{\text{alumnos.DNI=matricula.DNI}\wedge \text{matricula.cod\_asig=asignaturas.cod\_asig}))$  (matriculas ×  $\sigma_{\text{provincia=Almeria}}(\text{alumnos}) \times \sigma_{\text{curso=1}}(\text{asignaturas})))$
  - $\pi_{DNI,nom\_alum}$  (matriculas  $\bowtie \sigma_{provincia=Almeria}$  (alumnos)  $\bowtie \sigma_{curso=1}$  (asignaturas))





- Definición
  - Sean
    - $R[A_1..A_n]$ , y  $S[B_1..B_n]$  dos relaciones tales que  $\{A_1..A_n\} \equiv \{B_1...B_n\}$
    - r y s instancias de R y S
  - El operador intersección aplicado sobre R y S es el resultado de hacer la intersección de r y s como conjuntos de tuplas.
  - Notación:
    - $R \cap S$



 
 A
 B
 C

  $a_1$   $b_1$   $c_1$ 
 $a_2$   $b_2$   $c_2$ 
 $a_3$   $b_2$   $c_2$ 
 $a_4$   $b_2$   $c_2$ 

S

| A     | В     | C     |
|-------|-------|-------|
| $a_1$ | $b_1$ | $c_1$ |
| $a_2$ | $b_2$ | $c_2$ |
| $a_4$ | $b_2$ | $c_2$ |



- Ejemplos:
  - Encontrar los alumnos becarios que vienen de Almería.
    - $\sigma_{beca=SI \land provincia=ALMERIA}$  (alumnos)
    - $\sigma_{beca=SI}(alumnos) \cap \sigma_{provincia=ALMERIA}(alumnos)$
  - Encontrar las asignaturas optativas de segundo ciclo; es decir, aquellas cuyo curso sea 4 ó 5.
    - $\sigma_{caracter=op \land (curso=4 \lor curso=5)}(asignaturas))$
    - $\sigma_{caracter=op}(asignaturas) \cap (\sigma_{curso=4}(asignaturas) \cup \sigma_{curso=5}(asignaturas))$





#### • Ejemplos:

- Encontrar los profesores que tienen categoría 'TU' o 'CU' y dan clase en asignaturas de segundo ciclo.
  - $\pi_{NRP,nom\_prof}(\sigma_{categoria=TUVcategoria=CU}(profesores)) \cap \\ \pi_{profesores.NRP,profesores.nom\_prof}((profesores) \bowtie (grupos) \bowtie \sigma_{curso=4Vcurso=5}(asignaturas))$



- Propiedad:
  - Sean R y S relaciones cualquiera y r y s dos instancias de las mismas.
  - Se verifica que:

• 
$$R \cap S = R - (R - S)$$

$$\begin{array}{c|cccc} A & B & C \\ \hline a_3 & b_1 & c_1 \\ \hline a_4 & b_1 & c_1 \\ \end{array}$$



- Propiedad:
  - Sean R y S relaciones cualquiera y r y s dos instancias de las mismas.
  - Se verifica que:

• 
$$r \cap s = r - (r - s)$$

$$= \mathbf{r} \cap \mathbf{s} = \begin{vmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_4 & b_2 & c_2 \end{vmatrix}$$



- Problemas de la representación mediante dominios atómicos:
  - Consultas relacionadas con la conexión de un elemento de un conjunto con "todos" los elementos de otro.
  - Encontrar los alumnos que están matriculados de todas las asignaturas de primer curso.
  - Encontrar las asignaturas en las que dan clase todos los profesores del área 'COMPUT' que sean de categoría 'CU'.
  - Encontrar los profesores que dan clase a todos los grupos de la asignatura de código 'BDI'.
  - Encontrar las aulas que están ocupadas todos los días de la semana.



- Definición
  - Sean
    - $R[A_1..A_n, B_1..B_m] y S[B_1..B_m]$
    - y las instancias r y s
  - La división de R con respecto a S es la instancia w de una relación  $W[A_1..A_n]$ , que verifica:
    - $\forall u \in w ; \forall v \in s$ 
      - $\exists t \in r | t[A_1..A_n] = u$ ,  $t[B_1..B_m] = v$
  - Notación
    - R ÷ S



| A     | В              | С                     | D              | ÷ | D              | = | A                     |   |
|-------|----------------|-----------------------|----------------|---|----------------|---|-----------------------|---|
| $a_1$ | $b_1$          | <b>C</b> <sub>1</sub> | $d_1$          |   | $d_1$          |   | $a_1$                 | t |
| $a_1$ | $b_1$          | C <sub>1</sub>        | d <sub>2</sub> |   | d <sub>2</sub> |   | <b>a</b> <sub>3</sub> | Ł |
| $a_1$ | b <sub>1</sub> | <b>C</b> <sub>3</sub> | d <sub>3</sub> |   |                |   |                       |   |
| $a_2$ | b <sub>2</sub> | <b>C</b> <sub>2</sub> | $d_2$          |   |                |   |                       |   |
| $a_2$ | b <sub>2</sub> | <b>C</b> <sub>2</sub> | d <sub>3</sub> |   |                |   |                       |   |
| $a_3$ | b <sub>3</sub> | <b>C</b> <sub>3</sub> | $d_1$          |   |                |   |                       |   |
| $a_3$ | b <sub>3</sub> | <b>C</b> <sub>3</sub> | $d_2$          |   |                |   |                       |   |



| A     | В     | С     | D     |
|-------|-------|-------|-------|
| $a_1$ | $b_1$ | $c_1$ | $d_1$ |
| $a_1$ | $b_1$ | $c_1$ | $d_2$ |
| $a_1$ | $b_1$ | $c_3$ | $d_3$ |
| $a_2$ | $b_2$ | $c_2$ | $d_2$ |
| $a_2$ | $b_2$ | $c_2$ | $d_3$ |
| $a_3$ | $b_3$ | $c_3$ | $d_1$ |
| $a_3$ | $b_3$ | $c_3$ | $d_2$ |

| A     | В     | С     | D     |
|-------|-------|-------|-------|
| $a_1$ | $b_1$ | $c_1$ | $d_1$ |
| $a_1$ | $b_1$ | $c_1$ | $d_2$ |
| $a_1$ | $b_1$ | $c_3$ | $d_3$ |
| $a_2$ | $b_2$ | $c_2$ | $d_2$ |
| $a_2$ | $b_2$ | $c_2$ | $d_3$ |
| $a_3$ | $b_3$ | $c_3$ | $d_1$ |
| $a_3$ | $b_3$ | $c_3$ | $d_2$ |

$$\begin{array}{c|cc}
 & C & D \\
\hline
c_2 & d_2 \\
\hline
c_2 & d_3
\end{array}$$

$$= \begin{array}{c|cc} A & B \\ \hline a_2 & b_2 \end{array}$$

#### Ejemplos:

- Encontrar el nombre y el DNI de los alumnos que están matriculados de todas las asignaturas de primer curso.
- Dividendo:
  - $\pi_{DNI,cod\ asig}(matriculas)$
- Divisor:
  - $\Pi_{cod\ asig}(\sigma_{curso=1}(asignaturas))$
- División:
  - $\pi_{DNI,cod\_asig}(matriculas) \div \pi_{cod\_asig}(\sigma_{curso=1}(asignaturas))$
- $\pi_{\text{alumnos.DNI,alumnos.nom\_alum}}(\text{alumnos}) \bowtie$  $\pi_{\text{DNI,cod asig}}(\text{matriculas}) \div \pi_{\text{cod asig}}(\sigma_{\text{curso}=1}(\text{asignaturas})))$



- Ejemplos
  - Encontrar las asignaturas en las que dan clase todos los profesores del área 'COMPUT' que sean de categoría 'CU'.
  - Dividendo:
    - ⊓<sub>cod asig,NRP</sub> (grupos)
  - Divisor:
    - $\pi_{NRP}$  ( $\sigma_{area=COMPUTAcategoria=CU}$ (profesores))
  - División:
    - $\Pi_{\text{cod\_asig,NRP}}$  (grupos) ÷  $\pi_{\text{NRP}}$  ( $\sigma_{\text{area=COMPUT} \land \text{categoria=CU}}$  (profesores)



#### Ejemplos:

- Encontrar los profesores que dan clase a todos los grupos de la asignatura de código 'BDI'.
  - $\pi_{\text{NRP,cod\_grup,tipo,cod\_asig}}(\text{grupos}) \div$  $\pi_{\text{cod\_grup,tipo,cod\_asig}}(\sigma_{\text{cod\_asig=BDI}}(\text{grupos}))$
- Encontrar las aulas que están ocupadas todos los días de la semana.
  - $\pi_{dia,cod\_aula}(clase) \div \pi_{dia}(clase)$
- Encontrar aquellas aulas que no tienen ninguna hora libre; es decir, aquéllas que están ocupadas todos los días a todas horas.
  - $\pi_{dia,hora,cod\ aula}(clase) \div \pi_{dia,hora}(clase)$



#### Ejemplos:

- Encontrar los días y horas en los que no hay aulas libres; es decir, los días y las horas en los que hay clase en todas las aulas.
  - $\pi_{\text{dia},\text{hora},\text{cod}\_\text{aula}}(\text{clase}) \div \pi_{\text{cod}\_\text{aula}}(\text{aulas})$
- Encontrar las áreas de conocimiento en las que hay profesores de todas las categorías.
  - $\pi_{\text{area,categoria}}(\text{profesores}) \div \pi_{\text{categoria}}(\text{profesores})$
- Encontrar los departamentos que tienen profesores de todas las categorías.
  - $\Pi_{\text{cod dep,categoria}}(\text{profesores}) \div \pi_{\text{categoria}}(\text{profesores})$



- Propiedad
  - Sean
    - $R[A_1..A_n,B_1..B_m] y S[B_1..B_m]$
    - y las instancias r y s
  - Entonces
    - $R \div S = \Pi_{A1..An} (S) \Pi_{A1..An} ((\Pi_{A1..An} (R)xS) R)$



$$R \div S = \prod_{A,B,C} (R) - \prod_{A,B,C} ((\prod_{A,B,C} (R) \times S) - R)$$

| A                          | В     | С                     | D     |
|----------------------------|-------|-----------------------|-------|
| $a_{\scriptscriptstyle 1}$ | $b_1$ | C <sub>1</sub>        | $d_1$ |
| $a_1$                      | $b_1$ | C <sub>1</sub>        | $d_2$ |
| $a_1$                      | $b_1$ | <b>C</b> <sub>3</sub> | $d_3$ |
| $a_2$                      | $b_2$ | $C_2$                 | $d_2$ |
| $a_2$                      | $b_2$ | $C_2$                 | $d_3$ |
| $a_3$                      | $b_3$ | <b>C</b> <sub>3</sub> | $d_1$ |
| <b>a</b> <sub>3</sub>      | $b_3$ | <b>C</b> <sub>3</sub> | $d_2$ |

| <del>-</del> | D     | = |
|--------------|-------|---|
|              | $d_1$ |   |
|              | $d_2$ |   |

| A     | В     | С              |
|-------|-------|----------------|
| $a_1$ | $b_1$ | $C_1$          |
| $a_3$ | $b_3$ | C <sub>3</sub> |



$$r \div s = \prod_{A,B,C} (r) - \prod_{A,B,C} ((\prod_{A,B,C} (r) \times s) - r)$$

| A              | В              | С                     | D           |
|----------------|----------------|-----------------------|-------------|
| $a_1$          | b <sub>1</sub> | C <sub>1</sub>        | $d_1$       |
| $a_1$          | $b_1$          | $C_1$                 | $d_2$       |
| $a_1$          | $b_1$          | <b>C</b> <sub>3</sub> | $d_3$       |
|                |                |                       |             |
| $a_2$          | b <sub>2</sub> | C <sub>2</sub>        | $d_2$       |
| a <sub>2</sub> | b <sub>2</sub> | C <sub>2</sub>        | $d_2$ $d_3$ |
|                |                |                       | _           |

| * |
|---|
|   |



$$d_2$$

| $a_1$                 | $b_1$ | C <sub>1</sub>        | $d_1$ |
|-----------------------|-------|-----------------------|-------|
| $a_1$                 | $b_1$ | $c_1$                 | $d_2$ |
| $a_1$                 | $b_1$ | <b>C</b> <sub>3</sub> | $d_1$ |
| $a_1$                 | $b_1$ | <b>C</b> <sub>3</sub> | $d_2$ |
| a <sub>2</sub>        | $b_2$ | C <sub>2</sub>        | $d_1$ |
| $a_2$                 | $b_2$ | C <sub>2</sub>        | $d_2$ |
| <b>a</b> <sub>3</sub> | $b_3$ | <b>C</b> <sub>3</sub> | $d_1$ |
| <b>a</b> <sub>3</sub> | $b_3$ | <b>C</b> <sub>3</sub> | $d_2$ |





$$r \div s = \prod_{A,B,C} (r) - \prod_{A,B,C} ((\prod_{A,B,C} (r) \times s) - r)$$

| A              | В                     | С                     | D              |
|----------------|-----------------------|-----------------------|----------------|
| a <sub>1</sub> | b <sub>1</sub>        | C <sub>1</sub>        | $d_1$          |
| $a_1$          | $b_1$                 | C <sub>1</sub>        | d <sub>2</sub> |
| $a_1$          | $b_1$                 | <b>C</b> <sub>3</sub> | $d_1$          |
| $a_1$          | $b_1$                 | <b>C</b> <sub>3</sub> | $d_2$          |
| a <sub>2</sub> | b <sub>2</sub>        | <b>C</b> <sub>2</sub> | $d_1$          |
| a <sub>2</sub> | b <sub>2</sub>        | <b>C</b> <sub>2</sub> | d <sub>2</sub> |
| a <sub>3</sub> | b <sub>3</sub>        | <b>C</b> <sub>3</sub> | $d_1$          |
| a <sub>3</sub> | <b>b</b> <sub>3</sub> | <b>C</b> <sub>3</sub> | $d_2$          |

| A                     | В              | C                     | D              |
|-----------------------|----------------|-----------------------|----------------|
| a <sub>1</sub>        | $b_1$          | <b>C</b> <sub>1</sub> | $d_1$          |
| $a_1$                 | $b_1$          | C <sub>1</sub>        | d <sub>2</sub> |
| $a_1$                 | $b_1$          | <b>C</b> <sub>3</sub> | d <sub>3</sub> |
| a <sub>2</sub>        | b <sub>2</sub> | C <sub>2</sub>        | d <sub>2</sub> |
| a <sub>2</sub>        | b <sub>2</sub> | <b>C</b> <sub>2</sub> | d <sub>3</sub> |
| <b>a</b> <sub>3</sub> | b <sub>3</sub> | C <sub>3</sub>        | $d_1$          |
| $a_3$                 | b <sub>3</sub> | <b>C</b> <sub>3</sub> | d <sub>2</sub> |

$$r \div s = \prod_{A,B,C} (r) - \prod_{A,B,C} ((\prod_{A,B,C} (r) \times s) - r)$$

| A              | В              | С                     |
|----------------|----------------|-----------------------|
| $a_1$          | b <sub>1</sub> | <b>C</b> <sub>1</sub> |
| a <sub>1</sub> | b <sub>1</sub> | <b>C</b> <sub>3</sub> |
| a <sub>2</sub> | b <sub>2</sub> | C <sub>2</sub>        |
| $a_3$          | $b_3$          | <b>C</b> <sub>3</sub> |

| A              | В              | С                     | D     |
|----------------|----------------|-----------------------|-------|
| $a_1$          | b <sub>1</sub> | <b>C</b> <sub>3</sub> | $d_1$ |
| $a_1$          | $b_1$          | <b>C</b> <sub>3</sub> | $d_2$ |
| a <sub>2</sub> | b <sub>2</sub> | <b>C</b> <sub>2</sub> | $d_1$ |



#### Eficiencia en las consultas

- Con Álgebra Relacional:
  - · A cada expresión le corresponde una única tabla
  - · Cada consulta puede resolverse con más de una expresión
    - · Hay que elegir en términos de eficiencia
  - Ejemplo:
    - $\sigma_{beca=SI\Lambda provincia=ALMERIA}$ (alumnos)
    - $\sigma_{beca=SI}(alumnos) \cap \sigma_{provincia=ALMERIA}(alumnos)$



#### Eficiencia de las consultas

- En un SGBD hay un componente que se encarga de paliar los efectos de un mal usuario:
  - Optimizador de consultas
- Existen algunas reglas básicas:
  - Ejemplo:
    - Selecciones, cuanto antes
      - Limitan el número de tuplas
    - Proyecciones, cuanto antes
      - Limitan el tamaño de las tuplas
  - Normalmente:
    - Los SGBDs no publican sus estrategias de optimización
    - Ventaja competitiva





#### **Contenidos**

- Introducción
- Selección
- Proyección
- Composición de operadores
- Producto cartesiano
- Unión y diferencia
- Reunión Natural
- Intersección
- División
- Eficiencia en las Consultas



