CALCULUS

RICCARDO CEREGHINO

Elementi di Calculus

DIBRIS

Informatica

Università di Genova

INDICE

INTRODUZIONE NOTAZIONE 1.1 Insiemistica Simboli logici 1.2.1 Intervalli 1.3 Insiemi 1.3.1 Relazioni tra insiemi 1.3.2 Operazioni tra insiemi 1.4 Numeri reali 1.5 Geometria 1.5.1 Circonferenza Ellisse 6 II FUNZIONI 2 FUNZIONI ELEMENTARI DI VARIABILE REALE 9 2.1 Il concetto di funzione 9 Operazioni tra funzioni 2.2 9 2.2.1 Nomenclatura 2.3 Funzioni pari e dispari 10 2.4 Funzioni monotone 10 2.5 Traslazioni, dilatazioni e riflessioni 10 2.5.1 Osservazioni 11 2.6 Simmetrie, traslazioni, compressioni e dilatazioni di grafici. 2.7 Funzione composta 2.8 Funzione inversa e sue proprietà. 12 2.8.1 Costruire l'inverso di f 2.9 Polinomi 12 3 FUNZIONI ESPONENZIALI E LOGARITMICHE 13 3.1 Potenze 13 3.1.1 Proprietà delle potenze 14 3.2 Esponenziale 14 3.2.1 Proprietà 15 3.3 Logaritmo 15 4 FUNZIONI TRIGONOMETRICHE 4.1 Radianti 17 4.2 Le funzioni seno e coseno 17 Simmetria 4.2.1 17 Monotonia 4.2.2 18 Formule trigonometriche 18 4.3 La funzione tangente 19 Simmetria 4.3.1

```
Monotonia
        4.3.2
                              19
       Funzioni trigonometriche inverse
                                            20
               Dominio ed immagine
               Parità
        4.4.2
                         20
               Monotonia
                              20
        4.4.3
               Relazioni
                            21
        4.4.4
III FUNZIONI CONTINUE E LIMITI
  FUNZIONI CONTINUE
   5.1 Funzioni continue
                              25
  LIMITI
              27
   6.1 Punto di accumulazione
                                    27
   6.2 Limite
                  27
        6.2.1
              Limite destro e sinitro
                                        28
   6.3
       Limiti agli estremi del dominio di definizione
                                                        30
        6.3.1
               Potenze
                           30
        6.3.2
              Esponenziali e logaritmi
               Funzioni trigonometriche ed inverse
        6.3.3
                                                      31
               Forme indeterminate del tipo o/o
        6.3.4
        6.3.5
               Forme indeterminate del tipo infinito/infinito o
               oinfinito
                           32
   6.4 Intorno
                   32
   6.5 Limiti di successioni
                                33
        Estremo superiore, inferiore, massimo e minimo asso-
        luto.
   6.7
       Teorema degli zeri
                              35
IV DERIVATE ED INTEGRALI
  DERIVATE
       Rette nel piano
        Derivata e retta tangente
                                    39
        Derivate delle funzioni elementari
   7.3
                                             40
   7.4
        Derivata destra e sinistra
        Proprietà delle funzioni derivabili.
   7.5
                                             41
   7.6 Derivata funzione inversa
       Estremi relativi
   7.7
                           42
   7.8 De l'Hopital
                        44
   7.9 Derivate di ordine successivo
                                        44
   7.10 Funzioni convesse e concave
                                        45
  INTEGRALI
       Integrali indefiniti
                              47
   APPENDIX
  STUDIO DI FUNZIONI
                             51
  LIMITI
              54
   B.1 Limiti notevoli
                          54
  INTEGRALI
                   55
```

	C.1	Integrali elementari 55					
	C.2	Integra	ali notevoli	56			
D	INT	TEGRALI FUNZIONI RAZIONALI 57					
	D.1	Abbassamento di grado 57					
		D.1.1	Esempio	57			

Parte I INTRODUZIONE

NOTAZIONE

1

Un richiamo alla notazione che verrà utilizzata nel documento.

1.1 INSIEMISTICA

- Ø Insieme vuoto
- \mathbb{N} | Insieme dei numeri naturali compreso lo 0
- ℤ Insieme dei numeri relativi
- Insieme dei numeri razionali
- \mathbb{R} Insieme dei numeri reali

1.2 SIMBOLI LOGICI

- | tale che
- \Rightarrow implica
- ⇔ se e solo se
- ∀ | per ogni
- ∃ esiste
- ∄ non esiste
- ∈ appartiene
- ∉ | non appartiene

1.2.1 Intervalli

intervallo limitato chiuso intervallo limitato aperto a destra intervallo limitato aperto a sinistra intervallo illimitato chiuso a sinistra intervallo illimitato aperto a sinistra intervallo illimitato chiuso a destra intervallo illimitato aperto a destra intervallo illimitato aperto a destra intervallo illimitato

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R} | a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} | a < x \le b\}$$

$$[a,+\infty) = \{x \in \mathbb{R} | x \ge a\}$$

$$(a,+\infty) = \{x \in \mathbb{R} | x > a\}$$

$$(-\infty,b] = \{x \in \mathbb{R} | x \le b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} | x < b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} | x < b\}$$

$$(-\infty,+\infty) = \mathbb{R}$$

1.3 INSIEMI

1.3.1 Relazioni tra insiemi

Dati due insiemi *A* e *B*:

INCLUSIONE: si dice che *A* è un sottoinsieme di *B*, o che è contenuto in *B*:

$$A \subseteq B$$

$$\forall x \in A \Rightarrow x \in B$$

INCLUSIONE PROPRIA:

$$A \subsetneq B$$

$$\begin{cases} \forall x \in A \Rightarrow x \in B \\ \exists x \in B | x \notin A \end{cases}$$

1.3.2 Operazioni tra insiemi

INTERSEZIONE:

$$A \cap B = \{x \in X | x \in A, x \in B\}$$

UNIONE:

$$A \cup B = \{x \in X | x \in Aorx \in B\}$$

DIFFERENZA INSIEMISTICA:

$$A \setminus B = \{x \in X | x \in A, x \notin B\}$$

COMPLEMENTARE:

$$A^C = \{ x \in X | x \notin A \}$$

PRODOTTO CARTESIANO: dove (x, y) denota la coppia ordinata

$$A \times B = \{(x, y) | x \in A, y \in B\}$$

1.4 NUMERI REALI

Dati $x, y, z \in \mathbb{R}$ sono definite le operazioni di:

- somma x + y
- prodotto *xy*

• relazione d'ordine x < y

Che soddisfano le seguenti proprietà:

ASSOCIATIVA.

$$(x + y) + z = x + (y + z) = x + y + z$$

$$(xy)z = x(yz) = xyz$$

COMMUTATIVA.

$$x + y = y + x$$

$$xy = yx$$

DISTRIBUTIVA.

$$x(y+z) = xy + xz$$

ESISTENZA DELL'ELEMENTO NEUTRO.

$$x + 0 = 0 + x = x$$

$$1x = x1 = x$$

ESISTENZA DELL'INVERSO.

$$\forall x \in \mathbb{R} \quad \exists! x = -x \in \mathbb{R} | x + (-x) = 0$$

$$\forall x \in \mathbb{R} \quad x \neq 0 \quad \exists ! y = \frac{1}{x} \in \mathbb{R} | x \frac{1}{x} = 1$$

RELAZIONE D'ORDINE TOTALE. per ogni $x,y,z\in\mathbb{R}$ una ed una sola delle seguenti relazioni è vera.

$$\begin{cases} x < y \\ x = y \\ x > y \end{cases}$$

TRANSITIVA.

$$(x < y) \cap (y < z) \Rightarrow (x < z)$$

COMPATIBILITÀ CON LA SOMMA.

$$x < y \Rightarrow x + z < y + z$$

COMPATIBILITÀ CON IL PRODOTTO.

$$x < y \cap z > 0 \Rightarrow xz < yz$$

$$x < y \cap z < 0 \Rightarrow xz > yz$$

1.5 GEOMETRIA

1.5.1 Circonferenza

Dato il centro di una circonferenza $C = (x_c, y_c)$ Si esprime l'equazione della circonferenza nella forma:

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

Oppure:

$$x^2 + y^2 + \alpha x + \beta y + \gamma = r^2$$

Per cui se O = (0,0)

$$x^2 + y^2 = r^2$$

1.5.1.1 Forma canonica:

$$\alpha = -2x_c \quad \beta = -2y_c \quad \gamma = x_c^2 + y_c^2 - r^2$$
$$x^2 + y^2 + \alpha x + \beta y + \gamma = r^2$$

Per ricavare il centro:

$$C = \left(-\frac{\alpha}{2}, -\frac{\beta}{2}\right)$$

Per ricavare il raggio:

$$r = \sqrt{\frac{\alpha^2}{4} + \frac{\beta^2}{4} - \gamma}$$

1.6 ELLISSE

Equazione dell'ellisse (con centro nell'origine degli assi)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \qquad a \neq 0, b \neq 0$$

Parte II

FUNZIONI

2.1 IL CONCETTO DI FUNZIONE

Definizione: una funzione $f:A\to\mathbb{R}$ dove $A\subseteq\mathbb{R}$ è una legge che assegna ad ogni $x\in A$ uno ed un solo valore $y=f(x)\in\mathbb{R}$

Nota: in questo caso, i valori di A sono chiamati variabile indipendente (x), mentre \mathbb{R} è la variabile dipendente y=f(x)

Nota: inoltre definiamo A = dom f come il dominio della funzione. **Definizione:** Il grafico di f:

$$f = \left\{ (x, y) \in \mathbb{R}^2 \middle| x \in A, y = f(x) \right\}$$

Definizione: L'immagine di *f* , Im f:

$$f(A) = \{ f(x) \in \mathbb{R} | x \in A \}$$

2.2 OPERAZIONI TRA FUNZIONI

Date due funzioni $f: A \to \mathbb{R}$ $g: B \to \mathbb{R}$

SOMMA E DIFFERENZA:
$$(f+g)(x) = f(x) + g(x)$$
 $dom(f+g) = A \cap B$

PRODOTTO:
$$(fg)(x) = f(x)g(x)$$
 $dom(fg) = (A \cap B)$

rapporto:
$$(\frac{f}{g})(x) = f(x)g(x)$$
 $dom(\frac{f}{g}) = \{x \in \mathbb{R} | x \in A, x \in B, g(x) \neq 0\}$

RECIPROCO:
$$\frac{1}{f}(x) = \frac{1}{f(x)} = [f(x)]^{-1} \quad dom(\frac{1}{f}) = x \in A | f(x) \neq 0$$

2.2.1 Nomenclatura

Data una funzione $f: A \to \mathbb{R}$, y = f(x)

- f è detta **iniettiva** se $\forall y_0 \in \mathbb{R}$, $f(x) = y_0$ ha al più una soluzione.
- f è detta **surgettiva** se $\forall y_0 \in \mathbb{R}, f(x) = y_0$ ha almeno una soluzione.
- f è detta **bigettiva** se $\forall y_0 \in \mathbb{R}, f(x) = y_0$ ha una ed una sola soluzione, ovvero se la funzione è sia iniettiva che surgettiva.

2.2.1.1 Osservazioni

- 1. f è surgettiva se e solo se $IMf = \mathbb{R}$
- 2. f è iniettiva se e solo se $y_0 \in IMf$, $f(x) = y_0$ ha al più una soluzione.

Data una funzione $f: A \to \mathbb{R}$, y = f(x) sono fatti equivalenti:

- *f* è iniettiva
- $\forall x_1, x_2 \in A \cap x_1 \neq x_2$ allora $f(x_1) \neq f(x_2)$
- dati $x_1, x_2 \in A | f(x_1) = f(x_2)$ allora $x_1 = x_2$

2.3 FUNZIONI PARI E DISPARI

Data una funzione $f:A\to\mathbb{R},\quad y=f(x),\,\forall x\in A\quad -x\in A$ f è detta:

$$f(-x) = \begin{cases} f(x) & pari \\ -f(x) & dispari \end{cases}$$

2.4 FUNZIONI MONOTONE

Data una funzione $f: A \to \mathbb{R}$, y = f(x)

• $\forall x_1, x_2 \in A$ $x_1 < x_2$ f è detta:

$$\begin{cases} f(x_1) \le f(x_2) & crescente \\ f(x_1) \ge f(x_2) & decrescente \end{cases}$$

• $\forall x_1, x_2 \in A$ $x_1 < x_2$ f è detta:

$$\begin{cases} f(x_1) < f(x_2) & strettamentecrescente \\ f(x_1) > f(x_2) & strettamentedecrescente \end{cases}$$

2.5 TRASLAZIONI, DILATAZIONI E RIFLESSIONI

Data una funzione $f: A \to \mathbb{R}$, y = f(x):

TRASLAZIONI:
$$x_0 > 0$$
, $y_0 \in \mathbb{R}$

$$g(x) = f(x - x_0)$$
 Traslazione verso destra $g(x) = f(x + x_0)$ Traslazione verso sinistra $g(x) = f(x) + y_0$ Traslazione verso l'alto $g(x) = f(x) - y_0$ Traslazione verso il basso

dilatazioni: a > 0

$$g(x) = f(\frac{x}{a})$$
 Dilata su asse x

$$g(x) = a \times f(x)$$
 Dilata su asse y

RIFLESSIONI:

$$g(x) = f(-x)$$
 Riflette su asse y

$$g(x) = -f(x)$$
 Riflette su asse x

$$g(x) = -f(-x)$$
 Riflette rispetto l'origine

2.5.1 Osservazioni

Se f(x) è dispari e $0 \in \text{dom } f$

$$f(0) = f(-0) = -f(0) \Rightarrow f(0) = 0$$

Se $n \in \mathbb{N}$, $n \ge 1$

$$f(x) = x^n = \underbrace{x \times \dots \times x}_{\mathbf{n} \text{ volte}}$$

- se n è pari, f è pari
- se n è dispari, f è dispari
- 2.6 SIMMETRIE, TRASLAZIONI, COMPRESSIONI E DILATAZIONI DI GRAFICI.

Data una funzione $f: A \to \mathbb{R}$, y = f(x):

Traslazioni: $x_0 > 0$, $y_0 \in \mathbb{R}$

$$g(x) = f(x - x_0)$$
 Traslazione verso destra

$$g(x) = f(x + x_0)$$
 Traslazione verso sinistra

$$g(x) = f(x) + y_0$$
 Traslazione verso l'alto

$$g(x) = f(x) - y_0$$
 Traslazione verso il basso

dilatazioni: a > 0

$$g(x) = f(\frac{x}{a})$$
 Dilata su asse x

$$g(x) = a \times f(x)$$
 Dilata su asse y

RIFLESSIONI:

$$g(x) = f(-x)$$
 Riflette su asse y

$$g(x) = -f(x)$$
 Riflette su asse x

$$g(x) = -f(-x)$$
 Riflette rispetto l'origine

2.7 FUNZIONE COMPOSTA

Date due funzioni $f: A \to \mathbb{R}$ e $g: B \to \mathbb{R}$ la funzione:

$$g(y) = g(f(x)) = (g \circ f)(x)$$
 $x \in A$

Con dominio:

$$dom (g \circ f) = \{x \in \mathbb{R} | x \in A \cap f(x) \in B\}$$

2.8 FUNZIONE INVERSA E SUE PROPRIETÀ.

Data una funzione iniettiva $f: A \to \mathbb{R}$

$$\forall y \in f = f(A), \exists ! x \in A | f(x) = y$$

Da cui si ricava che:

$$x = f^{-1}(y)$$
 $f^{-1}: B \to \mathbb{R}$ $B = Imf$

2.8.1 Costruire l'inverso di f

- 1. Determinare Im f = B e $dom f^{-1} = B$
- 2. $y \in B$ determiniamo $x \in A | f(x) = y$
- 3. $x = f^{-1}(y)$
- 4. $y = f^{-1}(x)$ $x \rightleftharpoons y$

Il grafico di $y = f^{-1}(x)$ è simmetrico rispetto alla bisettrice x = y della funzione y = f(x)

2.8.1.1 Osservazioni

$$f(f^{-1}(y)) = y$$
 $\forall y \in dom^{f^{-1}} = Imf$
 $f^{-1}(f(x)) = x$ $\forall x \in domf = Imf^{-1}$

Inoltre f è invertibile se e solo se è iniettiva o surgettiva, da cui:

$$g^{-1}: Imf \to \mathbb{R}$$

2.9 POLINOMI

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{k=0}^n a_k x^k$$

 $a_0, a_1, \dots, a_n \in \mathbb{R}$ Coefficienti $a_n \neq 0$ n è il grado del polinomio Per cui:

$$n = 1$$
 $y = a_0 + a_1 x$ Rette

$$n = 2$$
 $y = a_0 + a_1 x + a_2 x^2$ Parabole

3

3.1 POTENZE

Fissato un esponente $a \in \mathbb{R}$ la funzione potenza è:

$$f(x) = x^a$$

la cui definizione e dominio dipendono dal valore dell'esponente a.

•
$$a = n \in \mathbb{N}$$

$$f(x) = x^n = \underbrace{x \times \dots \times x}_{\text{n volte}}$$
 dom $f = \mathbb{R}$ Im $f = \begin{cases} \mathbb{R} & \text{se n dispari} \\ [0, +\infty) & \text{se n pari } n \neq 0 \\ \{0\} & n = 1 \end{cases}$

•
$$a = -n \in \mathbb{Z}, n \in \mathbb{N}, n \ge 1$$

$$f(x) = x^{-n} = \frac{1}{x^n}$$
 dom $f = \mathbb{R} \setminus \{0\}$ Im $f = \begin{cases} \mathbb{R} \setminus \{0\} & \text{n dispari} \\ (0, +\infty) & \text{n pari} \end{cases}$

•
$$a = \frac{1}{n} \in \mathbb{Z}, n \in \mathbb{N}, n \geq 2$$

$$f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$$
 dom $f = \begin{cases} \mathbb{R} & \text{n dispari} \\ [0, +\infty) & \text{n pari} \end{cases}$ Im $f = \begin{cases} \mathbb{R} & \text{n dispari} \\ [0, +\infty) & \text{n pari} \end{cases}$

•
$$a = \frac{m}{n} \in \mathbb{Q}, n \in \mathbb{N}, n \ge 1, m \in \mathbb{Z}$$

$$f(x) = x^{\frac{m}{n}} = \sqrt[n]{m} \quad \text{dom } f = (0, +\infty) \quad \text{Im } f = (0, +\infty)$$

•
$$a \in \mathbb{R}$$

$$f(x) = x^{a} = \begin{cases} \sup\{x^{q} | q \in \mathbb{Q}, q \le a\} & x \ge 1\\ \inf\{x^{q} | q \in \mathbb{Q}, q \le a\} & 0 < x < 1 \end{cases} \quad \text{dom } f = (0, +\infty) \quad \text{Im } f = (0, +\infty)$$

Osserviamo che:

- f(0) = 0
- f(1) = 1
- se n pari f è pari
- se n dispari f è dispari

3.1.1 Proprietà delle potenze

•
$$x^{n+m} = x^n x^m$$

•
$$(x^n)^m = x^{nm}$$

OSSERVAZIONI

$$f(x) = x^0 = 1 \quad \forall x \in \mathbb{R}$$
$$0^0 = 1$$

3.1.1.1 Dimostrazioni

$$x^{n+m} = \underbrace{x \times \cdots \times x}_{\text{n+m volte}} = \underbrace{(x \times \cdots \times x)}_{\text{n volte}} \times \underbrace{x \times \cdots \times x}_{\text{m volte}} = x^{n+m}$$

$$(x^n)^m = \underbrace{x^n \times \cdots \times x^n}_{\text{m volte}}$$

$$x^n = x^{n+0} = x^n x^0 \qquad x \neq 0$$

$$x^0 = 1 \quad \forall x \in \mathbb{R}$$

Figura 3.1: Grafici di funzioni di potenze.

3.2 ESPONENZIALE

Fissata la base a > 0 con $a \neq 1$, la funzione esponenziale è

$$f(x) = a^x$$
 dom $f = \mathbb{R}$ Im $f = (0, +\infty)$

Se si sceglie come base il numero di Nepero $e=2.71828\cdots>1$, la funzione esponenziale si denota:

$$f(x) = e^x = \exp x$$

3.2.1 Proprietà

- 1. se a > 1, allora la funzzione a^x è strettamente crescente
- 2. se 0 < a < 1, allora la funzione a^x è strettamente decrescente
- 3. se $0 < a < b \text{ con } a, b \neq 1$

$$\begin{cases} a^x < b^x & x > 0 \\ a^x > b^x & x < 0 \end{cases}$$

- 4. valgono le seguenti proprietà:
 - $a^0 = 1$
 - $a^1 = a$
 - $a^{x_1+x_2} = a^{x_1+x_2}$ $x_1, x_2 \in \mathbb{R}$
 - $a^{-x} = (\frac{1}{a})^x$ $x \in \mathbb{R}$
 - $(a^x)^b = a^{bx}$ $x, b \in \mathbb{R}$

Figura 3.2: Grafici di funzioni esponenziali.

3.3 LOGARITMO

Fissata la base a > 0 con $a \neq 1$, la funzione logaritmo

$$f(x) = \log_a x$$
 dom $f = (0, +\infty)$ Im $f = \mathbb{R}$

è definita come la funzione inversa della funzione esponenziale a^x . Se si sceglie come base il numero di Nepero e, il logaritmo si denota:

$$f(x) = \log_e = \log x = \ln x$$

- 1. se a > 1, allora la funzione $\log_a x$ è strettamente crescente
- 2. se 0 < a < 1, allora la funzione $\log_a x$ è strettamente decrescente
- 3. se $0 < a < b \text{ con } a, b \neq 1$

$$\begin{cases} \log_a x > \log_b x & sex > 1 \\ \log_a x < \log_b x & se0 < x < 1 \end{cases}$$

- 4. valgono le seguenti proprietà:
 - $\log_a a^x = x$ x > 1
 - $\bullet \ a^{\log_a x} = x \qquad x > 0$
 - $\log_a 1 = 0$
 - $\log_a a = 1$
 - $\log_a(x_1x_2) = \log_a x_1 + \log_a x_2$ $x_1, x_2 > 0$
 - $\log_a(\frac{x_1}{x_2}) = \log_a x_1 \log_a x_2$ $x_1, x_2 > 0$ $\log_a x^b = b \log_a x$ $x > 0, b \in \mathbb{R}$

 - $\log_a x = \frac{\log_b x}{\log_b a} = \frac{\ln x}{\ln a}$ $x > 0, b > 0, b \neq 1$
 - $a^x = e^{(\ln a)x}$ $x \in \mathbb{R}, a > 0, a \neq 1$

Figura 3.3: Grafici di funzioni logaritmiche.

4

4.1 RADIANTI

Sia γ una circonferenza di raggio 1 (detta circonferenza goniometrica) il cui centro O è anche l'origine di un sistema di assi cartesiani e sia A il punto (1,0). Partendo da A percorriamo la circonferenza in senso antiorario oppure in senso orario. Sia x un numero reale, denotiamo con P_x il punto su γ che si ottiene percorrendo la circonferenza a partire dal punto A per un arco di lunghezza |x|, in senso antorario se $x \geq 0$, oppure in senso orario se x < 0. Il punto P_x individua un angolo nel piano avente vertice O e delimitatio dalle semirette nel piano uscenti da O e passanti per A e per P_x . Il numero reale x rappresenta la misura dell'angolo in radianti.

La relazione tra radianti e gradi è data da:

$$\frac{\gamma_{\rm radianti}}{2\pi} = \frac{\gamma_{\rm gradianti}}{360}$$

Osserviamo che l'incremento della lunghezza x di 2π corrisponde a compiere un intero giro sulla circonferenza in senso antiorario ritornando al punto P_x (così come decrementare di 2π la lunghezza x). Quindi si ha:

$$P_{x\pm k2\pi} = P_x \qquad \forall x \in \mathbb{R}, k \in \mathbb{N}$$

Figura 4.1: Circonferenza goniometrica

4.2 LE FUNZIONI SENO E COSENO

Una funzione $f: \mathbb{R} \in \mathbb{R}$ è detta periodica di periodo T, T > 0 se:

$$f(x+T) = f(x) \forall x \in \mathbb{R}$$

La caratteristica fondamentale delle funzioni periodiche è che i suoi valori si ripetono dopo intervalli di ampiezza T.

4.2.1 Simmetria

Indichiamo con $\cos x$ e con $\sin x$ rispettivamente l'ascissa e l'ordinata del punto P_x . Le funzioni $y = \cos x$ e $y = \sin x$ sono definite su \mathbb{R} a

valori nell'intervallo [-1,1], sono periodiche di minimo periodo 2π e soddisfano la relazione:

$$\sin^2 x + \cos^2 x = 1$$

4.2.2 Monotonia

Per la periodicità di seno e coseno ci basta studiarne le proprietà nell'intervallo $[0,2\pi]$. Dalle definizioni segue subito che la funzione seno è dispari e la funzione coseno è pari; inoltre la funzione coseno è strettamente decrescente in $[0,\pi]$ e strettamente crescente in $[\pi,2\pi]$. La funzione seno è strettamente crescente in $[0,\frac{\pi}{2}] \cup [\frac{3}{2}\pi,2\pi)$ e strettamente decrescente in $[\frac{\pi}{2},\frac{3}{2}\pi]$.

Figura 4.2: Grafico delle funzioni: seno e coseno

4.2.3 Formule trigonometriche

4.2.3.1 Formule di addizione e sottrazione

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

4.2.3.2 Formule di duplicazione

$$\sin(2x) = 2\sin x \cos x$$
$$\cos(2x) = 2\cos^2 x - 1$$

4.2.3.3 Formule di potenza

$$(\sin x)^2 = \sin^2 x = \frac{1 - \cos(2x)}{2}$$
$$(\cos x)^2 = \cos^2 x = \frac{1 + \cos(2x)}{2}$$

4.2.3.4 Formule di bisezione

$$\sin(\frac{x}{2}) = \sqrt{\frac{1 - \cos x}{2}} \qquad 0 < x \le 2\pi$$

$$\cos(\frac{x}{2}) = \sqrt{\frac{1 + \cos x}{2}} \qquad -\pi < x \le \pi$$

4.2.3.5 Formule di prostaferesi

$$\sin x - \sin y = 2\sin(\frac{x-y}{2})\cos(\frac{x+y}{2})$$
$$\cos x - \cos y = -2\cos(\frac{x-y}{2})\sin(\frac{x+y}{2})$$

$$\cos(x + \pi) = -\cos x \qquad \sin(x + \pi) = -\sin x$$
$$\cos(x + \frac{\pi}{2}) = -\sin x \qquad \sin(x + \frac{\pi}{2}) = \cos x$$

4.3 LA FUNZIONE TANGENTE

La funzione tangente è:

$$\tan x = \frac{\sin x}{\cos x}$$

Definita nei punti di \mathbb{R} diversi da $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$ e, come vedremo in seguito, ha immagine \mathbb{R} . La funzione tangente è periodica per: $(x) = \tan(x + k\pi)$ per $k \in \mathbb{Z}$ cioè $\tan(x)$ è periodica di minimo periodo $T = \pi$.

Nella Figura 4.3 è evidenziata la tangente nel punto $(A, Q_x = \tan(x))$.

Figura 4.3: Tangente.

4.3.1 Simmetria

Dalle proprietà di simmetria delle

funzioni seno e coseno, si deduce che la funzione tangente è dispari: il rapporto di una funzione pari e di una funzione dispari è dispari.

4.3.2 Monotonia

La funzione tangente è strettamente crescente in ogni intervallo $(\frac{-\pi}{2} + k\pi, \frac{\pi}{2} + k\pi), k \in \mathbb{Z}$

Figura 4.4: Funzioni trigonometriche

4.4 FUNZIONI TRIGONOMETRICHE INVERSE

Le funzioni trigonometriche inverse sono definite come, il dominio della funzione di partenza è stato ristretto per permettere l'inversione della funzione.

$$\arcsin x = f^{-1}(x) \qquad f(x) = \sin(x) \qquad x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
$$\arccos x = f^{-1}(x) \qquad f(x) = \cos(x) \qquad x \in [0, \pi]$$
$$\arctan x = f^{-1}(x) \qquad f(x) = \tan(x) \qquad x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

4.4.1 Dominio ed immagine

dom
$$\arcsin x = [-1,1]$$
 dom $\arccos x = [-1,1]$ dom $\arctan x = \mathbb{R}$
Im $\arcsin x = [\frac{-\pi}{2}, \frac{\pi}{2}]$ Im $\arccos x = [0, \pi]$, Im $\arctan x = (\frac{-\pi}{2}, \frac{\pi}{2})$

4.4.2 Parità

$$\arcsin(-x) = -\arcsin x$$

 $\arctan(-x) = -\arctan x$

4.4.3 Monotonia

• la funzione $\arcsin x$ è strettamente crescente

- la funzione arccos x è strettamente decrescente
- la funzione arctan *x* è strettamente crescente

4.4.4 Relazioni

$$\arcsin x + \arccos x = \frac{\pi}{2}$$

$$\arccos(-x) = \pi - \arccos(x)$$

$$\arctan x + \arctan(\frac{1}{x}) = \begin{cases} \frac{\pi}{2} & x > 0\\ \frac{-\pi}{2} & x < 0 \end{cases}$$

Figura 4.5: Arcoseno.

Figura 4.6: Arcocoseno.

Figura 4.7: Arcotangente.

Parte III FUNZIONI CONTINUE E LIMITI

5

5.1 FUNZIONI CONTINUE

Data una funzione $f: A \to \mathbb{R}, y = f(x)$, ed un punto $x_0 \in A$, la funzione è detta continua in x_0 se per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che:

$$f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$$
 $\forall x \in A \cap x_0 - \delta < x < x_0 + \delta$

La funzione è detta continua se è continua in x_0 per ogni $x_0 \in A$.

Teorema 5.1 (Continuità funzioni elementari)

Le funzioni potenza x^a , esponenziali a^x , logaritmo $\log_a x$, trigonometriche e trigonometriche inverse, sono continue.

Teorema 5.2 (Algebra delle funzioni continue)

Date due funzioni $f, g: A \to \mathbb{R}$, y = f(x), y = g(x), continue, allora:

- 1. la somma f(x) + g(x) è una funzione continua;
- 2. il prodotto f(x)g(x) è una funzione continua;
- 3. il rapporto $\frac{f(x)}{g(x)}$ è una funzione continua sul suo dominio $x \in A|g(x) \neq 0$

Teorema 5.3 (Continuità funzione composta)

Date due funzioni continue $f:A\to\mathbb{R}\ e\ g:B\to\mathbb{R}$ allora la funzione composta:

$$g \circ f : x \in A | f(x) \in B \to \mathbb{R}$$
 $y = g(f(x))$

è continua.

Teorema 5.4 (Continuità funzioni inversa)

Data una funzione $f: I \to \mathbb{R}$, y = f(x), tale che:

- 1. f è iniettiva;
- 2. f è continua;
- 3. il dominio di I è un intervallo;

allora, posto B = Im f, la funzione inversa $f^{-1}: B \to \mathbb{R}$ è continua.

6

6.1 PUNTO DI ACCUMULAZIONE

Dato un insieme $A \subseteq \mathbb{R}$ e:

1. un punto $x_0 \in \mathbb{R}$ è detto punto di accumulazione per A se per ogni $\delta > 0$ esiste $x \in A$ tale che:

$$x_0 - \delta < x < x_0 + \delta$$
 $x \neq x_0$

- 2. $+\infty$ è detto punto di accumulazione per A se per ogni R>0 esiste $x\in A$ tale che x>R
- 3. $-\infty$ è detto punto di accumulazione per A se per ogni R>0 esiste $x\in A$ tale che x<-R

6.2 LIMITE

Data una funzione $f: A \to \mathbb{R}$, un punto di accumulazione $x_0 \in \mathbb{R} \cup \{\pm \infty\}$ per A ed $\ell \in \mathbb{R} \cup \{\pm \infty\}$, si scrive

$$\lim_{x \to x_0} f(x) = \ell$$

Si distinguono i casi:

1. $x_0 \in \mathbb{R}$ e $\ell \in \mathbb{R}$: se per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che:

$$\ell - \epsilon < f(x) < \ell + \epsilon$$
 $\forall x \in A, x \neq x_0 \cap x_0 - \delta < x < x_0 + \delta$

2. $x_0 \in \mathbb{R}$ e $\ell = \pm \infty$: se per ogni M > 0 esiste $\delta > 0$ tale che:

$$\begin{cases} f(x) > M & \text{se } \ell = +\infty \\ f(x) < -M & \text{se } \ell = -\infty \end{cases} \quad \forall x \in A, x \neq x_0 \cap x_0 - \delta < x < x_0 + \delta$$

3. $x_0 = \pm \infty$ e $\ell = \in \mathbb{R}$: se per ogni $\epsilon > 0$ esiste R > 0 tale che:

$$\ell - \epsilon < f(x) < \ell + \epsilon \quad \forall x \in A \cap \begin{cases} x > R & \text{se } x_0 = +\infty \\ x < -R & \text{se } x_0 = -\infty \end{cases}$$

4. $x_0 = \pm \infty$ e $\ell = \in \mathbb{R}$: se per ogni M > 0 esiste R > 0 tale che:

$$\begin{cases} f(x) > M & \text{se } \ell = +\infty \\ f(x) < -M & \text{se } \ell = -\infty \end{cases} \forall x \in A \cap \begin{cases} x > R & \text{se } x_0 = +\infty \\ x < -R & \text{se } x_0 = -\infty \end{cases}$$

In tal caso, si dice che esiste finito il limite di f per x che tende a x_0 e vale ℓ oppure che f(x) tende ad ℓ per x che tende a x_0 .

Proposizione 6.1 (Continuità dei limiti)

Data $f: A \to \mathbb{R}$ ed $x_0 \in A$ punto di accumulazione per A, f è continua in x_0 se e solo se:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

6.2.1 *Limite destro e sinitro*

Data una funzione $f:A\to\mathbb{R}$ ed un punto $x_0\in\mathbb{R}$ per A tale che per ogni $\delta>0$

$$A \cap (-\delta, x_0) \neq \emptyset$$
 e $A \cap (x_0, \delta) \neq \emptyset$

si scrive:

$$\begin{cases} \lim_{x \to x_{0^+}} f(x) = \ell_1 \in \mathbb{R} & \text{limite destro} \\ \lim_{x \to x_{0^-}} f(x) = \ell_2 \in \mathbb{R} & \text{limite sinistro} \end{cases}$$

Se per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che:

$$\begin{cases} \ell_1 - \epsilon < f(x) < \ell_1 + \epsilon \\ \ell_2 - \epsilon < f(x) < \ell_2 + \epsilon \end{cases} \quad \forall x \in A \cap \begin{cases} x_0 < x < x_0 + \delta & \text{limite destro} \\ x_0 - \delta < x < x_0 & \text{limite sinistro} \end{cases}$$

Analoghe definizioni valgono se $\ell_{1,2}=\pm\infty$

Proposizione 6.2

Data una funzione $f:A\to\mathbb{R}$, un punto $x_0\in\mathbb{R}$ tale che per ogni $\delta>0$

$$A \cap (-\delta, x_0) \neq \emptyset$$
 $e \quad A \cap (x_0, \delta) \neq \emptyset$

Allora x_0 è un punto di accumulazione per A e:

esiste
$$\lim_{x \to x_0} f(x) = \ell$$
 \Leftrightarrow esistono
$$\begin{cases} \lim_{x \to x_{0^+}} f(x) = \ell \\ \lim_{x \to x_{0^-}} f(x) = \ell \end{cases}$$

Teorema 6.1 (Algebra dei limiti)

Date due funzioni f, $g: A \to \mathbb{R}$ *ed un punto* $x_0 \in \mathbb{R}$ *di accumulazione per* A, *se esitono*:

$$\lim_{x \to x_0} f(x) = \ell_1 \in \mathbb{R} \cup \{ \pm \infty \}$$

$$\lim_{x \to x_0} f(x) = \ell_2 \in \mathbb{R} \cup \{ \pm \infty \}$$

allora:

SOMMA:

$$\lim_{x \to x_0} f(x) + g(x) = \frac{ \begin{vmatrix} \ell_1 \in \mathbb{R} & \ell_2 = +\infty & \ell_2 = -\infty \\ \ell_1 \in \mathbb{R} & \ell_1 + \ell_2 & +\infty & -\infty \\ \end{vmatrix}}{ \begin{vmatrix} \ell_1 = +\infty & +\infty & +\infty & f.i. \\ \end{vmatrix}}$$

Dove f.i.= forma indeterminata $+\infty - \infty$

PRODOTTO:

$$\lim_{x \to x_0} f(x)g(x) = \begin{vmatrix} & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Dove f.i.= forma indeterminata 0∞

RAPPORTO:

		$\ell_2 < 0$	$\mid \ell_2 = 0^{\pm}$	$ \ell_2>0$	$\mid \ell_2 = +\infty \mid$	$\left \ \ell_2 = -\infty \ \right $
	$\ell_1 < 0$	$rac{\ell_1}{\ell_2}$	∓∞	$\frac{\ell_1}{\ell_2}$	0	0
$\lim \frac{f(x)}{f(x)} =$	$\left \ell_1 = 0 \right $		f.i.		0	0
$\lim_{x\to x_0}\frac{1}{g(x)}=$	$\ell_1 > 0$	$rac{\ell_1}{\ell_2}$		$\frac{\ell_1}{\ell_2}$	0	0
	$\ell_1 = +\infty$	$-\infty$	<u>+∞</u>	+∞	f.i.	f.i.
	$\ell_1 = -\infty$	+∞	∓∞	$-\infty$	f.i.	f.i.

Dove f.i.= forma indeterminata $\frac{0}{0}$ o $\frac{\infty}{\infty}$ e la notazione $l_2=0^{\pm}$ significa che:

1. esiste il limite

$$\lim_{x \to x_0} g(x) = 0$$

2. esiste $\delta > 0$ tale che per ogni $x \in A \cap (x_0 - \delta, x_0 + \delta), x \neq x_0$

$$\begin{cases} g(x) > 0 & \ell_2 = 0^+ \\ g(x) < 0 & \ell_2 = 0^- \end{cases}$$

Se $x_0 \in \mathbb{R}$ (analoga definizione se $x_0 = \pm \infty$).

Teorema 6.2 (Limite funzione composta.)

Date due funzioni $f: A \to \mathbb{R}, y = f(x)$ e $g: B \to \mathbb{R}, z = g(y)$, tali che:

- 1. per ogni $x \in A$, allora $f(x) \in B$,
- 2. il punto x_0 è di accumulazione per A ed esiste:

$$\lim_{x\to x_0} f(x) = y_0 \in \mathbb{R} \cup \{+\infty\},\,$$

3. il punto y_0 è di accumulazione per B ed esiste:

$$\lim_{y \to y_0} g(x) = \ell \in \mathbb{R} \cup \{+\infty\},\,$$

Allora esiste:

$$\lim_{x \to x_0} g(f(x)) = \ell$$

NOTA: Le condizioni del teorema non sono sufficienti per assicurare l'esistenza del limite $\lim_{x\to x_0} g(f(x)) = \ell$. Occorre aggiungere delle ipotesi tecniche, che però sono sempre verificate negli esercizi. Ad esempio, è sufficiente richiedere che una delle seguenti tre condizioni sia soddisfatta:

- 1. il punto y_0 non appartiene a dom g;
- 2. la funzione g è continua in y_0 ;
- 3. esiste $\delta > 0$ tale che $f(x) \neq y_0$ per ogni $x \in A$, $x \neq x_0$ e $x_0 \delta \leq x \leq x_0 + \delta$.

6.3 LIMITI AGLI ESTREMI DEL DOMINIO DI DEFINIZIONE

6.3.1 Potenze

$$\lim_{\substack{x \to +\infty}} x^b = +\infty \qquad \qquad b > 0$$

$$\lim_{\substack{x \to +\infty}} x^b = 0 \qquad \qquad b < 0$$

$$\lim_{\substack{x \to +\infty}} x^n = +\infty \qquad \qquad n \in \mathbb{N}, \text{ n pari}$$

$$\lim_{\substack{x \to -\infty}} x^n = -\infty \qquad \qquad n \in \mathbb{N}, \text{ n dispari}$$

$$\lim_{\substack{x \to +\infty}} x^{-n} = 0 \qquad \qquad n \in \mathbb{N}, n \geq 1$$

$$\lim_{\substack{x \to +\infty}} \sqrt[n]{n} = -\infty \qquad \qquad n \in \mathbb{N}, \text{ n dispari}$$

6.3.2 Esponenziali e logaritmi

$$\lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to +\infty} \ln x = +\infty$$

$$\lim_{x \to +\infty} \ln x = -\infty$$

6.3.3 Funzioni trigonometriche ed inverse

$$\lim_{x \to \frac{\pi}{2}^{-}} \tan x = +\infty$$

$$\lim_{x \to \frac{\pi}{2}^{+}} \tan x = -\infty$$

$$\lim_{x \to -\frac{\pi}{2}^{-}} \tan x = +\infty$$

$$\lim_{x \to -\frac{\pi}{2}^{-}} \tan x = -\infty$$

$$\lim_{x \to +\infty} \sin x$$

$$\lim_{x \to \pm \infty} \sin x$$

$$\lim_{x \to \pm \infty} \cos x$$

$$\lim_{x \to \pm \infty} \tan x$$

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$$

6.3.4 Forme indeterminate del tipo o/o

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac{1}{6}$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \ln a \quad a > 0$$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a} \quad a > 0, a \neq 1$$

$$\lim_{x \to 0} \frac{(1+x)^b - 1}{x} = b \quad b \in \mathbb{R}$$

6.3.5 Forme indeterminate del tipo infinito/infinito o oinfinito

$$\lim_{x \to +\infty} \frac{a^x}{x^b} = +\infty \qquad a > 1, b > 0$$

$$\lim_{x \to +\infty} \frac{x^b}{\log_a x} = +\infty \qquad a > 1, b > 0$$

$$\lim_{x \to -\infty} |x|^b a^x = 0 \qquad a > 1, b > 0$$

$$\lim_{x \to 0} |x|^b \log_a x = 0 \qquad a, b > 0, a \neq 1$$

6.4 INTORNO

Dato $x_0 \in \mathbb{R} \cup \{\pm \infty\}$, un insieme *I* della forma:

$$I = \begin{cases} (x_0 - r, x_0 + r) & r > 0 \quad sex_0 \in \mathbb{R} \\ (\mathbb{R}, +\infty) & R > 0 \quad sex_0 = +\infty \\ (-\infty, -\mathbb{R}) & R > 0 \quad sex_0 = -\infty \end{cases}$$

è detto intorno di x_0 .

Teorema 6.3 (Teorema del confronto.)

Data una funzione $f: A \to \mathbb{R}$ ed un punto x_0 di accumulazione per A, se:

1. esistono due funzioni $g, h : A \to \mathbb{R}$ tali che:

$$g(x) \le f(x) \le h(x)$$
 $\forall x \in A \cap I, x \ne x_0$

dove I è un opportuno intorno di x_0 .

2. esistono i limiti:

$$\lim_{x\to x_0} g(x) = \ell \qquad e \qquad \lim_{x\to x_0} h(x) = \ell$$
 dove $\ell \in \mathbb{R} \cup \{\pm \infty\}$.

Allora esiste:

$$\lim_{x \to x_0} f(x) = \ell$$

6.5 LIMITI DI SUCCESSIONI

Una successione è una funzione definita sui numeri naturali:

$$f: \mathbb{N} \to \mathbb{R}$$
 $f(n) = a_n$ $n \in \mathbb{N}$,

denotata con $(a_n)_{n\in\mathbb{N}}$ oppure:

$$a_0, a_1, a_2, \ldots, a_n$$

Poichè \mathbb{N} non è superiormente limitato, $x_0 = +\infty$ è un punto di accumulazione per \mathbb{N} e, se esiste, si denota con:

$$\lim_{n\to+\infty}a_n=\ell\in\mathbb{R}\cup\{\pm\infty\}$$

Valgono tutti i teoremi visti per i limiti di funzioni.

Teorema 6.4 (Caratterizzazione per successioni.)

Data uan funzione $f: A \to \mathbb{R}$, y = f(x), ed un punto x_0 di accumulazione per A sono fatti equivalenti:

A. esiste:

$$\lim_{x \to x_0} f(x) = \ell \in \mathbb{R} \cup \{\pm \infty\}$$

B. per ogni successione $(a_n)_{n\in\mathbb{N}}$ tale che:

$$a_n \in A$$

$$a_n \neq x_0 \qquad \lim_{n \to +\infty} a_n = x_0$$

allora esiste:

$$\lim_{n\to+\infty} f(a_n) = \ell \in \mathbb{R} \cup \{\pm\infty\}$$

6.6 ESTREMO SUPERIORE, INFERIORE, MASSIMO E MINIMO ASSOLUTO.

Data una funzione $f: A \to \mathbb{R}$,

1. un elemento $y_0 \in \mathbb{R}$ è detto un maggiorante di Im f se:

$$f(x) \le y_0 \quad \forall x \in A$$

inoltre, se esiste un maggiorante, f si dice superiormente limitata.

2. un elemento $M \in \mathbb{R}$ è detto estremo superiore di f se:

$$\begin{cases} f(x) \le M & \forall x \in A \\ \forall \epsilon > 0 \exists x \in A | f(x) > M - \epsilon \end{cases}$$

e si scrive $M = \sup_{x \in A} f(x)$. Se f non è superiormente limitata, si pone:

$$\sup_{x \in A} f(x) = +\infty$$

3. $x_M \in A$ è detto punto di massimo assoluto se:

$$f(x) \le f(x_M) \qquad \forall x \in A$$

e $f(x_M) = \max_{x \in A} f(x)$ è detto massimo assoluto di f.

4. un elemento $y_0 \in \mathbb{R}$ è detto un minorante di A se:

$$f(x) \ge y_0 \quad \forall x \in A$$

e, se esiste un minorante, f si dice inferiormente limitata.

5. un elemento $x_m \in \mathbb{R}$ è detto punto di minimo assoluto di f se:

$$f(x) \ge f(x_m) \quad \forall x \in A$$

e $f(x_m) = \min_{x \in A} f(x)$ è detto minimo assoluto di f

6. un elemento $m \in \mathbb{R}$ è detto estremo inferiore se:

$$\begin{cases} f(x) \ge m & \forall x \in A \\ \forall \epsilon > 0 \exists x \in A | f(x) < m + \epsilon \end{cases}$$

e si scrive $m = \inf_{x \in A} f(x)$. Se f non è inferiormente limitata, si pone:

$$\inf_{x \in A} f(x) = -\infty$$

7. f è detta limitata se è inferiormente e superiormente limitata, cioè se esistono $m, M \in \mathbb{R}$ tali che:

$$m \le f(x) \le M \qquad \forall x \in I$$

OSSERVAZIONE Data una funzione $f: A \to \mathbb{R}$,

A. se $x_m \in A$ è un punto di minimo assoluto, allora:

$$\min_{x \in A} f(x) = \inf_{x \in A} f(x) = f(x_m)$$

в. se $x_M \in A$ è un punto di massimo assoluto, allora:

$$\max_{x \in A} f(x) = \sup_{x \in A} f(x) = f(x_M)$$

c. se f è limitata, allora:

$$\operatorname{Im} f \subseteq [\inf_{x \in A} f(x), \sup_{x \in A} f(x)]$$

6.7 TEOREMA DEGLI ZERI

Data una funzione $f: I \to \mathbb{R}$ tale che:

- A. il dominio di I è un intervallo;
- в. la funzione f è continua;
- c. esistono $x_0, x_1 \in I, x_0 < x_1$, tali che:

$$f(x_0)f(x_1) < 0$$

Allora esiste $x^* \in I$ tale che:

$$f(x^*) = 0$$

$$f(x^*) = 0$$
 e $x_0 < x^* < x_1$

Parte IV DERIVATE ED INTEGRALI

7

7.1 RETTE NEL PIANO

Dato un punto $P_0=(x_0,y_0)\in\mathbb{R}^2$ le rette passanti per P_0 hanno equazione:

$$y = m(x - x_0) + y_0$$
 oppure $x = x_0$ retta verticale,

dove $m = tan\theta$ è il coefficiente angolare e $\theta \in (\frac{-\pi}{2}, \frac{\pi}{2})$ è l'angolo che la retta forma con la retta $y = y_0$, parallela all'asse delle ascisse.

Dati due punti $P_0 = (x_0, y_0)$ e $P_1 = (x_1, y_1)$, la retta passante per P_0 e P_1 ha equazione:

$$\begin{cases} y = \frac{y_1 - y_0}{x_1 - x_0} (x - x_0) + y_0 & x_0 \neq x_1 \\ x = x_0 & x_0 = x_1 \end{cases}$$

Data una funzione $f: I \to \mathbb{R}$ definita su intervallo I ed $x_0 \neq x_1 \in I$, l'equazione della retta secante il grafico di f nei punti $P_0 = (x_0, f(x_0))$ e $P_1 = (x_1, f(x_1))$ è:

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

In particolare, la retta secante non è parallela all'asse delle ordinate ed il suo coefficiente angolare è:

$$m = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

7.2 DERIVATA E RETTA TANGENTE

Data una funzione $f: I \to \mathbb{R}$ definita su un intervallo I

A. fissato $x_0 \in I$, si dice che f è derivabile in x_0 se esiste finito:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} =: f'(x_0),$$

il valore del limite $f'(x_0)$ si chiama derivata della funzione f nel punto x_0 .

B. la funzione f si dice derivabile se è derivabile in x_0 per ogni $x_0 \in I$ e la funzione:

$$f': I \to \mathbb{R}$$
 $y = f'(x)$,

è detta derivata prima.

NOTA La definizione di funzione derivabile si estende al caso di funzioni definite su un unione di intervalli disgiunti.

7.3 DERIVATE DELLE FUNZIONI ELEMENTARI

f(x)		f'(x)	I
x^b	$b \in \mathbb{R}$	bx^{b-1}	$(0, +\infty)$
С	$c\in\mathbb{R}$	0	\mathbb{R}
x^n	$n \in \mathbb{N}, n \ge 1$	nx^{n-1}	\mathbb{R}
$\frac{1}{x^n} = x^{-n}$	$n \in \mathbb{N}, n \ge 1$	$-n\frac{1}{x^{n+1}}$	$\mathbb{R}ackslash\{0\}$
$\sqrt[n]{x} = x^{\frac{1}{n}}$	$n \in \mathbb{N}, n \ge 1$	$\frac{1}{n}x^{\frac{1-n}{n}}$	$n \operatorname{pari}(0,+\infty), n \operatorname{dispari}\mathbb{R}\setminus\{0\}$
e^x		e^{x}	\mathbb{R}
a^x	a > 0	$\log a \ a^x$	\mathbb{R}
$\log x$		$\frac{1}{x}$	$(0, +\infty)$
$\log_a x$	$a > 0, a \neq 1$	$\frac{1}{\log a} \frac{1}{x}$	(0, +∞)
$\sin x$		$\cos x$	\mathbb{R}
$\cos x$		$-\sin x$	\mathbb{R}
tan x		$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\mathbb{R}\backslash\{\tfrac{\pi}{2}+k\pi k\in\mathbb{Z}\}$
arcsin x		$\frac{1}{\sqrt{1-x^2}}$	(-1,1)
arccos x		$\frac{-1}{\sqrt{1-x^2}}$	(-1,1)
arctan x		$\frac{1}{1+x^2}$	\mathbb{R}

OSSERVAZIONE. Se si pone $h = x - x_0$ la definizione di derivata diventa:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

dove è inteso che il limite esiste finito. La quantità:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + h) - f(x_0)}{h},$$

è detta rapporto incrementale della funzione ed è il coefficiente angolare della retta secante il grafico di f(x) nei punti $P_0 = (x_0, f(x_0))$ e $P_h = (x_0 + h, f(x_0 + h))$.

Facendo tendere h a zero, il punto P_h tente a P_0 e la corrispondente retta secante converge alla retta tangente, se f è derivabile.

Ne segue che l'equazione della retta tangente al grafico di f(x) nel punto $P_0=(x_0,f(x_0))$ è:

$$y = f'(x_0)(x - x_0) + f(y_0)$$

In particolare la derivata $f'(x_0)$ rappresenta il coefficiente angolare della retta tangente.

7.4 DERIVATA DESTRA E SINISTRA

Data una funzione $f: I \to \mathbb{R}$ definita su un intervallo I di estremo sinistro $a \in \mathbb{R} \cup \{-\infty\}$ ed estremo destro $b \in \mathbb{R} \cap \{+\infty\}$, ed un punto $x_0 \neq a$, se esiste finito:

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} =: f'_-(x_0)$$

Il valore $f'_{-}(x_0)$ si chiama derivata sinistra. Se $x_0 \neq b$ se esiste finito:

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} =: f'_+(x_0)$$

OSSERVAZIONE. Data una funzione $f:I\to\mathbb{R}$ definita su un intervallo I di estremo sinistro $a\in\mathbb{R}\cup\{-\infty\}$ ed estremo destro $b\in\mathbb{R}\cap\{+\infty\}$, ed un punto $x_0\in I, x_0\neq a, x_0\neq b$, allora sono fatti equivalenti:

- A. la funzione f è derivabile in x_0 ;
- B. la funzione f ammette derivata sinistra e destra in x_0 e sono uguali tra loro.

In tal caso

$$f'(x_0) = f'_{-}(x_0) = f'_{+}(x_0)$$

7.5 PROPRIETÀ DELLE FUNZIONI DERIVABILI.

Teorema 7.1 (Continuità funzioni derivabili.)

Sia: $f: I \to \mathbb{R}$ una funzione definita su un intervallo I. Se f(x) è derivabile in $x_0 \in I$, allora f(x) è continua in x_0 . Da notare che esistono funzioni continue non derivabili come f(x) = |x|.

Teorema 7.2 (Algebra delle funzioni derivabili.)

Date due funzioni $f,g:I\to\mathbb{R}$ *definite su un intervallo I e derivabili, allora:*

A. dati $\alpha, \beta \in \mathbb{R}$ la combinazione lineare $\alpha f(x) + \beta g(x)$ è derivabile e vale

$$(\alpha f(x) + \beta g(x))' = \alpha f'(x) + \beta g'(x);$$

in particolare:

$$(\alpha f(x))' = \alpha f'(x)$$
 $(f(x) + g(x))' = f'(x) + g'(x).$

B. il prodotto f(x)g(x) è derivabile e vale:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x);$$

c. se $g(x) \neq 0$ per ogni $x \in I$, allora il rapporto $\frac{f(x)}{g(x)}$ è derivabile e vale:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'g(x) - f(x)(x)g'(x)}{g(x)^2},$$

in particolare:

$$\left(\frac{1}{g(x)}\right)' = -\frac{g'(x)}{g(x)^2}.$$

Teorema 7.3 (Derivata funzione composta.)

Date due funzioni $f: I \to \mathbb{R}, y = f(x), g: J \to \mathbb{R}, z = g(y)$, dove $I \in J$ sono due intervalli, tali che:

- A. per ogni $x \in I$ allora $f(x) \in I$
- B. le funzioni f e g sono derivabili

allora la funzione composta $g \circ f : I \to \mathbb{R}, z = g(f(x)),$ è derivabile e:

$$g(f(x))' = g'(f(x))f'(x)$$
 regola di derivazione in catena.

7.6 DERIVATA FUNZIONE INVERSA

Data una funzione $f: I \to \mathbb{R}$ tale che:

- A. il dominio *I* è un intervallo;
- в. f è iniettiva;
- c. *f* è derivabile;
- D. per ogni $x \in I$, $f'(x) \neq 0$

allora, posto J = Im f, la funzione inversa $f^{-1}: J \to \mathbb{R}$ è derivabile e:

$$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$

7.7 ESTREMI RELATIVI

Data una funzione $f:A\to\mathbb{R}$, un punto $x_0\in A$ è detto punto di estremo relativo se esiste $\delta > 0$ tale che:

• minimo relativo:

$$f(x) \ge f(x_0)$$
 $\forall x \in (x_0 - \delta, x_0 + \delta) \cap A$

• massimo relativo:

$$f(x) \le f(x_0)$$
 $\forall x \in (x_0 - \delta, x_0 + \delta) \cap A$

Il valore $f(x_0)$ è detto estremo (minimo/massimo) relativo.

Teorema 7.4 (Condizione necessaria del I ordine)

Data $f: I \to \mathbb{R}$ definita su un intervallo I di estremo sinistro $a \in \mathbb{R} \cup \{-\infty\}$ ed estremo destro $b \in \mathbb{R} \cup \{+\infty\}$ ed un punto $x_0 \in I$ tali che:

- 1. la funzione f è derivabile in x_0 ;
- 2. x_0 è un punto di estremo relativo per f;
- 3. $x_0 \neq a \ e \ x_0 \neq b;$ allora $f'(x_0) = 0.$

OSSERVAZIONE. Il teorema assicura che la retta tangente al grafico di f(x) nel punto $P_0 = (x_0, f(x_0))$ è parallela all'asse delle ascisse purchè:

- 1. f sia derivabile in x_0 e quindi ammette retta tangente;
- 2. il punto x_0 sia di minimo o massimo relativo;
- 3. x_0 non coincida con gli estremi a e b, cioè $x_0 \in (a,b)$

Teorema 7.5 (Teorema di Lagrange.)

Data una funzione f : $[a,b] \rightarrow \mathbb{R}$ *tale che*:

- 1. $f \ e$ continua in x_0 per ogni $x_0 \in [a, b]$;
- 2. $f \ e$ derivabile in x_0 per ogni $x_0 \in (a,b)$;

allora esiste $x_0 \in (a, b)$ tale che:

$$f(b) - f(a) = f'(x_0)(b - a).$$

OSSERVAZIONE. Dal punto di vista grafico, significa che esiste un punto $x_0 \in (a,b)$ tale che la retta tangente al grafico di f(x) nel punto $P_0 = (x_0, f(x_0))$ è parallela alla retta secante passante per i punti $P_1 = (a, f(a))$ e $P_2 = (b, f(b))$.

Nota: nel caso in cui f(a) = f(b) il teorema di Lagrange implica che esiste $x_0 \in (a, b)$ tale che $f'(x_0)$ (teorema di Rolle.)

Teorema 7.6 (Caratterizzazione monotonia.)

Data $f: I \to \mathbb{R}$ definita su un intervallo I di estremo sinistro $a \in \mathbb{R} \cup \{-\infty\}$ ed estremo destro $b \in \mathbb{R} \cup \{+\infty\}$ tale che:

- 1. f è continua in x_0 per ogni $x_0 \in I$;
- 2. $f \ e$ derivabile in x_0 per ogni $x_0 \in (a,b)$;

allora:

Nota: Se il dominio nella funzione f non è un intervallo, il segno della derivata prima non permette di caratterizzare la monotonia della funzione. Infatti, se $f(x) = \frac{1}{x}$ con dominio $\mathbb{R}\setminus\{0\}$, la sua derivata $f'(x) = -\frac{1}{x^2} < 0$ per ogni $x \neq 0$. Il grafico f(x) è l'iperbole equilatera xy = 1, per cui la funzione è strettamente decrescente nell'intervallo $(-\infty,0)$ così come nell'intervallo $(0,+\infty)$. Tuttavia non è decrescente sull'unione dei due intervalli $\mathbb{R}\setminus\{0\}$: infatti:

$$f(x_1) < 0 < f(x_2)$$
 se $x_1 < 0 < x_2$

.

7.8 DE L'HOPITAL

Teorema 7.7 (Teorema di De l'Hopital.)

Date due funzioni $f,g: I \setminus \{x_0\} \to \mathbb{R}$ dove I è un intervallo e $x_0 \in I$ tali che:

- A. f e g sono derivabili;
- B. vale una delle due seguenti condizioni:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0,$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty;$$

- c. per ogni $x \in I$, $x \neq x_0$, allora $g'(x) \neq 0$;
- D. esiste:

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R} \cup \{\pm \infty\};$$

allora esiste:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell.$$

7.9 DERIVATE DI ORDINE SUCCESSIVO

Una funzione $f: I \to \mathbb{R}$ su un intervallo I si dice derivabile due volte se:

- A. la funzione f è derivabile;
- в. la derivata prima f' è derivabile;

inoltre la funzione:

$$f'': I \to \mathbb{R}$$
 $f''(x) = (f'(x))'$

si chiama derivata seconda.

In modo analogo si definiscono le derivate di ordine successivo:

$$f''' = (f'')', \quad f^{(4)} = (f''')', \quad f^{(k+1)} = (f^{(k)})',$$

dove l'indice $k \in \mathbb{N}$ è detto ordine di derivazione (se k = 0 si pone $f^{(0)} = f$).

Notazioni alternative per le derivate sono:

$$f' = \frac{df}{dx'}, \quad f'' = \frac{d^2f}{dx^2}, \quad f^{(k)} = \frac{d^kf}{dx^k}$$

Inoltre, si definiscono i seguenti spazi di funzioni:

$$C^0(I) = \{ f : I \to \mathbb{R} \mid f \text{ continua} \}$$

$$C^1(I) = \{ f : I \to \mathbb{R} \mid f \text{ derivabile ed } f' \text{ continua} \}$$

. . .

$$C^k(I) = \{ f : I \to \mathbb{R} \mid f \text{ derivabile k-volte ed } f^{\{(k)\}} \text{ continua} \}$$

$$C^{\infty}(I) = \{ f : I \to \mathbb{R} \mid f \text{ ammette derivata k-esima per ogni } k \in \mathbb{N} \}$$

e si definisce $\mathcal{C}^k(I)$ come lo spazio delle funzioni di classe \mathcal{C}^k sull'intervallo I. Dalle proprietà delle funzioni derivabili segue che $\mathcal{C}^k(I)$ è uno spazio vettoriale e:

$$\mathcal{C}^{\infty}(I) \subsetneq \mathcal{C}^k(I) \subsetneq \mathcal{C}^{\{k-1\}}(I) \subsetneq \mathcal{C}^1(I) \subsetneq \mathcal{C}^0(I)$$

7.10 FUNZIONI CONVESSE E CONCAVE

Una funzione $f: I \to \mathbb{R}$ definita su un intervallo I è detta:

• convessa se per ogni $x_1, x_2 \in I$ e per ogni $t \in [0, 1]$

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2)$$

• concava se per ogni $x_1, x_2 \in I$ e per ogni $t \in [0, 1]$

$$f((1-t)x_1 + tx_2) \ge (1-t)f(x_1) + tf(x_2)$$

Dal punto di vista geometrico le due condizioni affermano che, dati due punti $P_1 = (x_1, f(x_1))$ e $P_2 = (x_2, f(x_2))$ sul grafico di f, il segmento di estremi P_1 e P_2 sta sopra il grafico di f. Infatti:

• al variare di $t \in [0,1]$

$$x_t = (1-t)x_1 + tx_2 = x_1 + t(x_2 - x_1)$$

descrive i punti sull'asse delle ascisse compresi tra x_1 e x_2 ;

• al variare di $t \in [0, 1]$

$$((1-t)x_1+tx_2), f((1-t)x_1+tx_2)=(x_t, f(x_t))$$

parametrizza i punti sul grafico di f compresi tra P_1 e P_2 ;

• al variare di $t \in [0, 1]$

$$((1-t)x_1+tx_2), (1-t)f(x_1)+tf(x_2)$$

parametrizza i punti del piano che stanno sul segmento di estremi P_1 e P_2 . Infatti la retta secante passante per P_1 e P_2 ha equazione:

$$y = \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1) + f(x_1) = (1 - t)f(x_1) + tf(x_2)$$

Teorema 7.8 (Caratterizzazione convessità.)

Data una funzione $f : \to \mathbb{R}$ definita su un intervallo I e derivabile due vole, sono fatti equivalenti:

- A. la funzione f è convessa;
- в. fissato $x_0 \in I$;

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$
 per ogni $x \in I$

c. per ogni
$$x \in I$$
, $f''(x) \ge 0$

Dal punto di vista geometrico la seconda condizione afferma che, dato un punto qualunque $P_0 = (x_0, f(x_0))$ sul grafico di f, la retta tangente al grafico di f in P_0 sta sotto il grafico di f. Un' analoga caratterizzazione vale per le funzioni concave (baste cambiare il verso delle disequazioni).

Corollario 7.1 (Condizione sufficiente del secondo ordine per estremi relativi.)

Data una funzione $f: I \to \mathbb{R}$ definita su un intervallo I e derivabile due volte ed un punto $x_0 \in I$:

se
$$f'(x_0) > 0$$
 allora x_0 è un punto di minimo relativo
se $f'(x_0) < 0$ allora x_0 è un punto di massimo relativo

8

8.1 INTEGRALI INDEFINITI

Data una funzione $f:I\to\mathbb{R}$ definita su un intervallo I, si chiama primitiva di f una funzione $F:I\to\mathbb{R}$ derivabile tale che:

$$F'(x) = f(x) \quad \forall x \in I.$$

L'insieme di tutte le primitive di f è detto integrale indefinito di f e si denota con:

$$\int f(x)dx = \{F: I \to \mathbb{R} \mid F \text{ derivabile e } f'(x) = f(x) \quad \forall x \in I\}.$$

OSSERVAZIONE. Se F è una primitiva di f, F è continua, poichè è derivabile. Inoltre anche F+c è una primitiva di f. Viceversa, se G è un altra primitiva di f, allora:

$$(G(x) - F(x))' = G'(x) - F'(x) = f(x) - f(x) = 0 \quad x \in I.$$

Poichè I è un intervallo, allora esiste $c \in \mathbb{R}$ tale che G(x) = F(x) + c per ogni $x \in I$. Ne segue che:

$$\int f(x) dx = F(x) +$$
costante,

dove con lieve abuso di notazione F(x)+ costante denota l'insieme:

$$\{G: I \to \mathbb{R} \mid G(x) = F(x) + c \text{ dove } c \in \mathbb{R}.\}$$

Inoltre, per definizione di primitiva:

$$\left(\int f(x)dx\right)' = f(x)$$
 $e \int f'(x)dx = f(x) + c$,

NOTA: la definizione di primitiva si può estendere a funzioni definite su unione di intervalli. Tuttavia in tal caso non è più vero che dure primitive della stessa funzione differiscono per una costante. Ad esempio, se $f(x) = x^{-1}$ con dom $f = \mathbb{R} \setminus \{0\}$ allora l'integrale generale è:

$$\int f(x)dx = \begin{cases} \ln(x) + c_1 & x > 0\\ \ln(-x) + c_2 & x < 0 \end{cases}$$

NOTA: Esistono funzioni f che non ammettono primitive. Ad esempio la funzione:

$$\begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

Infatti, se *F* fosse una primitiva, allora:

$$F(x) = \begin{cases} c_1 & x < 0 \\ x + c_2 & x > 0 \end{cases}$$

con $c_1, c_2 \in \mathbb{R}$. La continuità di F in $x_0 = 0$ implica che $F(0) = c_1 = c_2 = c$. Tuttavia, per qualunque scelta di $c \in \mathbb{R}$, F non è derivabile in $x_0 = 0$. Il teorema fondamentale del calcolo integrale assicura che, se f è continua, allora ammentte sempre una primitiva.

Teorema 8.1 (Linearità.)

Date due funzioni $f,g:I\to\mathbb{R}$ continue definite su un intervallo I, allora per ogni $\alpha,\beta\in\mathbb{R}$:

$$\int (\alpha f(x) + \beta g(x)) dx = (\alpha \int f(x) dx + \beta \int g(x) dx).$$

Teorema 8.2 (Formula di integrazione per parti.)

Siano $f,g:I\to\mathbb{R}$ due funzioni definite su un intervallo I, derivabili e derivate f' e g' sono funzioni continue. Allora:

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$

Teorema 8.3 (Formula di inegrazione per sostituzione.)

Date due funzioni $f: I \to \mathbb{R}$ *e* $g: J \to \mathbb{R}$ *tali che*:

- A. i domini I e J sono intervalli e $g(x) \in I, \forall x \in J;$
- в. la funzione f è continua;
- c. la funzione g è derivabile e la derivata g' è continua,

allora:

$$\left(\int f(t)dt\right)_{t=g(x)} = \int f\underbrace{(g(x))}_{t=g(x)} \underbrace{g'(x)dx}_{dt=g'(x)dx}$$

Parte V

APPENDIX

STUDIO DI FUNZIONI

Lo schema seguente indica i passi principali da seguire per svolgere lo studio di funzioni.

Ogni volta che si è risolto un punto occorre rappresentare l'informazione sul grafico e verificare che sia in accordo con quanto dedotto precedentemente.

1. Determinare il dominio della funzione f e scriverlo come unione di intervalli:

$$dom f = I_0 \cup I_1 \cup \dots$$

- 2. Studiare il segno della funzione e calcolare le intersezioni con gli assi cartesiani: f(0) se $0 \in \text{dom } f$ e risolvere l'equazione f(x) = 0.
- 3. Stabilire se la funzione è continua, quante vole è derivabile e calcolare f' ed f''.
- 4. Calcolare i limiti di f agli estremi di ciascun intervallo, $I_1, I_2 \dots$
- 5. Studiare il segno della derivata prima f' calcolando i punti critici, deducendo gli intervalli di monotonia della funzione (teorema della caratterizzazione della monotonia).
- 6. Determinare i punti di massimo e minimo relativi, ricordando che il teorema della condizione necessaria del I ordine dà solo una condizione necessaria affinchè un punto sua un estremo relativo.
 - a) I punti critici x_0 (non coincidenti con gli estremi degli intervalli $I_1, I_2 ...$) in cui la derivata *cambia segno* sono punti di estremo relativo. Infatti, se:

$$\begin{cases} f'(x) < 0 \text{ se } x_0 < \delta < x < x_0 \\ f'(x) > 0 \text{ se } x_0 < \delta < x < x_0 \end{cases}$$

allota x_0 è un punto di minimo relativo. Analogamente se:

$$\begin{cases} f'(x) > 0 \text{ se } x_0 < \delta < x < x_0 \\ f'(x) < 0 \text{ se } x_0 < \delta < x < x_0 \end{cases}$$

allora x_0 è un punto di massimo relativo. Per tali valori, calcolare il corrispondente estremo relativo $f(x_0)$.

b) Verificare se gli estremi degli intervalli $I_1, I_2...$, purchè appartenenti al dominio, siano punti di estremi relativi (in tali punti in generale la derivata prima non si annulla). Ad esempio se $I_1 = [a, b)$ e:

$$f'(x) > 0$$
 $a < x < a + \delta$

allora $x_0 = a$ è un punto di minimo relativo, mentre $b \notin \text{dom } f$ per cui non ha senso chiedersi se sia un punto di estremo relativo.

- c) Se lo studio del segno di f' non si può svolgere, ma si riesce a calcolare i punti critici $f'(x_0) = 0$, allora il segno di $f''(x_0)$ permette di stabilire se è un punto di estremo relativo (Corollario della condizione sufficiente del secondo ordine per estremi relativi).
- 7. Determinare $\inf f$ e $\sup f$, stabilendo se sono o meno minimo e massimo assoluti.
- 8. Determinare l'immagine di *f* utilizzando il teorema dei valori intermedi.
- 9. Studiare il segno della derivata seconda f'' e dedurne gli intervalli di convessità e concavità della funzione (teorema della caratterizzazione convessità). In particolare i punti in cui f'' cambia segno, son odetti punti di flesso e, in tali punti, può essere utile calcolare la derivata e tracciare la retta tangente.

In molti casi non si riescono a svolgere esplicitamente i calcoli per tutti i punti e si dovrà dedurre l'andamento del grafico solo attraverso i punti svolti.

LIMITI

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad (b.1)$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \qquad (b.2)$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \qquad (b.3)$$

$$\lim_{x \to 0} \left(1 + \frac{1}{x}\right)^x = e \qquad (b.4)$$

$$\lim_{x \to -1^-} \left(1 + \frac{1}{x}\right)^x = +\infty \qquad (b.5)$$

$$\lim_{x \to -1^+} (1 + x)^{x^{-1}} = +\infty \qquad (b.5)$$

$$\lim_{x \to -1^+} (1 + x)^{x^{-1}} = e^x \qquad (b.8)$$

$$\lim_{x \to 0} (1 + ax)^{x^{-1}} = e^x \qquad (b.8)$$

$$\lim_{x \to 0} (1 + ax)^{x^{-1}} = 1 \qquad (b.9)$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad a > 0 \qquad (b.10)$$

$$\lim_{x \to 0} \frac{\log_a (1 + x)}{x} = \frac{1}{\ln a} \qquad (b.11)$$

$$\lim_{x \to 0} \frac{(1 + x)^{\lambda - 1}}{x} = \lambda \qquad (b.12)$$

$$\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1 \qquad (b.13)$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \qquad (b.14)$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1 \qquad (b.15)$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1 \qquad (b.16)$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1 \qquad (b.17)$$

$$\lim_{x \to 0} \frac{(\arccos x)^2}{1 - x} = 2 \qquad (b.18)$$

$$\lim_{x \to \infty} \log_a \left(1 + \frac{1}{x}\right)^x = \log_a e \qquad (b.19)$$

 $\lim_{x \to 0} \frac{x}{\log_{\alpha}(1+x)} = \frac{1}{\log_{\alpha} e}$ (b.21) $\lim \log_a x = +\infty$ (b.22) $x \rightarrow x \rightarrow x$ maggio 2019 at 15:39 – classicthesis v4.6]

(b.20)

(b.23)

 $\lim_{x \to \infty} \ln\left(1 + \frac{1}{x}\right)^x = \ln e = 1$

INTEGRALI

C.1 INTEGRALI ELEMENTARI

$$\int x^a dx = \frac{x^{a+1}}{a+1} + c \qquad a \neq 1$$
 (c.1)

$$\int \frac{1}{x} \mathrm{d}x = \ln|x| + c \tag{c.2}$$

$$\int e^x \mathrm{d}x = e^x + c \tag{c.3}$$

$$\int \sin x \mathrm{d}x = -\cos x + c \tag{c.4}$$

$$\int \cos x \, \mathrm{d}x = \sin x + c \tag{c.5}$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + c \tag{c.6}$$

$$\int \frac{1}{\sin^2 x} dx = -\frac{\cos x}{\sin x} + c \tag{c.7}$$

$$\int \frac{1}{1+x^2} dx = \arctan x + c \tag{c.8}$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c = -\arccos x + c \tag{c.9}$$

C.2 INTEGRALI NOTEVOLI

$$\int \ln x dx = x(\log x - 1) + c \tag{c.10}$$

$$\int \tan x \mathrm{d}x = -\log|\cos x| + c \tag{c.11}$$

$$\int \frac{1}{x^2 + a} dx = \frac{1}{\sqrt{a}} \arctan\left(\frac{x}{\sqrt{a}}\right) + c \qquad a > 0$$
 (c.12)

$$\int \frac{1}{x^2 - a} dx = \frac{1}{2\sqrt{a}} \log \frac{|x - \sqrt{a}|}{|x + \sqrt{a}|} + c \qquad a > 0$$
 (c.13)

$$\int \frac{x}{x^2 + a} dx = \frac{1}{2} \log|x^2 + a| + c \qquad a \in \mathbb{R}$$
 (c.14)

$$\int \frac{1}{\sqrt{a-x^2}} dx = \arcsin\left(\frac{x}{\sqrt{a}}\right) + c \qquad a > 0$$
 (c.15)

$$\int \frac{1}{\sqrt{x^2 + a}} dx = \log\left(x + \sqrt{x^2 + a}\right) + c \qquad a \neq 0$$
 (c.16)

$$\int \sqrt{a - x^2} dx = \frac{a}{2} \left(\arcsin \left(\frac{x}{\sqrt{a}} \right) + \frac{x}{a} \sqrt{a - x^2} \right) + c$$
 (c.17)

$$\int \sqrt{x^2 + a} dx = \frac{1}{2} \left(x \sqrt{x^2 + a} + a \log \left(x + \sqrt{x^2 + a} \right) \right) + c$$
(c.18)

d

INTEGRALI FUNZIONI RAZIONALI

Integrali funzioni razionali In questa appendice, si accenna all'integrazione di alcune funzioni razionali, cioè della forma $\frac{N(x)}{D(x)}$ dove sia il numeratore N(x), sia il denominatore D(x) sono polinomi.

D.1 ABBASSAMENTO DI GRADO

Se il grado del numeratore è maggiore o uguale al grado del denominatore, il primo passo è quello di abbassare il grado del numeratore.

Posto $n = \operatorname{grado} N(x)$ e $d = \operatorname{grado} D(x)$, si determinano due polinomi Q(x) e R(x) tali che:

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)},$$

dove Q(x) ha grado $n-d \ge 0$ e R(x) ha grado minore o uguale a d-1.

I coefficienti di Q(x) e R(x) si calcolano applicando il principio di identità dei polinomi all'uguaglianza:

$$N(x) = Q(x)D(x) + R(x).$$

D.1.1 Esempio

Se:

$$N(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 = (A + Bx)(b_0 + b_1 x + b_2 x^2) + (C + Dx),$$

da cui:

$$\begin{cases} a_0 = Ab_0 + C \\ a_1 = Ab_1 + Bb_0 + D \\ a_2 = Ab_2 + Bb_1 \\ a_3 = Bb_2 \end{cases}$$

Dalla linearità dell'integrale ne segue che:

$$\int \frac{N(x)}{D(x)} dx = \int Q(x) dx + \int \frac{R(x)}{D(x)} dx.$$

Poichè Q(x) è un polinomio, il primo integrale è elementare. Consideriamo il secondo, trattiamo solo due casi: il denominatore D(x) è un polinomio di primo grado (e R(x) è una costante) oppure D(x) è di secondo grado (ed R(x) = mx + q).

D.1.1.1 Denominatore di grado 1

Se il grado del denominatore è 1, allora:

$$D(x) = ax + b$$
 $R(x) = c$ $a \neq 0$.

Con il cambio di variabile t = ax + b:

$$\int \frac{c}{ax+b} dx = \frac{c}{a} \int \frac{1}{t} dt = \frac{c}{a} \log|ax+b| + costante.$$

D.1.1.2 Denominatore di grado 2

Se il grado Q(x) è 2, allora:

$$R(x) = mx + q$$
 $D(x) = ax^2 + bx + c$ $a \neq 0$.

Si calcola il discriminante dell'equazione $D(x) = ax^2 + bx + c = 0$. In base al segno di Δ ci sono tre casi distinti.

A. $\Delta > 0$. Denotiamo con x_1 ed x_2 le due soluzioni reali distinte dell'equazione di secondo grado $ax^2 + bx + c = 0$, per cui:

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}).$$

Poichè:

$$\frac{mx+q}{ax^2+bx+c} = \frac{1}{a} \left(\frac{A}{x-x_1} + \frac{B}{x-x_2} \right),$$

dove le costanti A, B si determinano imponendo che:

$$mx + q = A(x - x_2) + B(x - x_1),$$

allora dall'equazione precedente:

$$\int \frac{mx+q}{ax^2+bx+c} dx = \frac{1}{a} \left(A \int \frac{1}{x-x_1} dx + B \int \frac{1}{x-x_2} dx \right)$$

$$= \frac{A}{a} \ln|x-x_1| + \frac{B}{a} \ln|x-x_2| + c.$$
(d.1)

B. $\Delta=0$. Denotiamo con $x^*=x_1=x_2$ le due soluzioni reali coincidenti all'equazione di secondo grado $ax^2+bx+c=0$, per cui:

$$ax^2 + bx + c = a(x - x^*)^2$$
.

Poichè:

$$\frac{mx+q}{ax^2+bx+c} = A \frac{2ax+b}{ax^2+bx+c} + \frac{B}{a} \frac{1}{(x-x^*)^2},$$

dove le costanti *A* e *B* si determinano imponendo che:

$$mx + q = A(2ax + b) + B,$$

allora dall'equazione precedente:

$$\int \frac{mx+q}{ax^2+bx+c} dx = \left(A \int \frac{2ax+b}{ax^2+bx+c} dx + \frac{B}{a} \int \frac{1}{(x-x_1)^2} dx \right)$$

$$= \left(A \int \frac{1}{t} dt + \frac{B}{a} \int \frac{1}{(x-x_1)^2} dx \right)$$

$$= A \ln(ax^2+bx+c) - \frac{B}{a} \frac{1}{x-x^*} + c,$$
(d.2)

dove nel primo integrale si è fatto il cambio di variabili $t = ax^2 + bx + c$ e dt = (2ax + b)dx.

c. $\Delta < 0$. Senza perdita di generalità supponiamo che a > 0, poichè:

$$ax^2 + bx + c = \beta^2 + (\alpha x + \gamma)^2,$$

dove le costanti α , β , γ si determinano imponendo che:

$$ax^{2} + bx + c = \alpha^{2}x^{2} + 2\alpha\gamma x + (\beta^{2} + \gamma^{2}).$$

Inoltre, analogamente a sopra:

$$\frac{mx + q}{ax^2 + bx + c} = A \frac{2ax + b}{ax^2 + bx + c} + B \frac{1}{ax^2 + bx + c},$$

dove le costanti A, B si determinano imponendo che:

$$mx + q = A(2ax + b) + B,$$

allora, dall'equazione precedente:

$$\int \frac{mx+q}{ax^2+bx+c} dx = \left(A \int \frac{2ax+b}{ax^2+bx+c} dx + B \int \frac{1}{\beta^2+(\alpha x+\gamma)^2} dx \right)$$

$$= \left(A \int \frac{2ax+b}{ax^2+bx+c} dx + \frac{B}{\beta^2} \int \frac{1}{1+(\frac{\alpha x+\gamma}{\beta})^2} dx \right)$$

$$= A \ln(ax^2+bx+c) + \frac{B}{\alpha\beta} \arctan(\frac{\alpha x+\gamma}{\beta}) + c,$$
(d.3)

dove nel primo integrale si è fatto il cambio di variabili $t=ax^2+bx+c$ e dt=2ax+b e nel secondo il cambio di variabili $t=\frac{\alpha x+\gamma}{\beta}$ e d $t=(\frac{\alpha}{\beta})$ dx.