DIMENSIONNEMENT SIMPLIFIÉ À FROID DES ASSEMBLAGES BOIS PAR TIGES

CONFORMÉMENT AUX EUROCODES

Call De Render de Caller d

FINANCEMENT

comité professionnel de développement des industries françaises de l'ameublement et du bois

AUTEUR

Antoine BARJOLLE Frédéric ROSSI

COMITE DE PILOTAGE

Nous remercions les membres du Comité de Pilotage qui ont su orienter au mieux la rédaction du présent guide pour qu'elle corresponde aux attentes réelles des concepteurs et réalisateurs de structures bois.

ROdolphe MAUFRONT UMB FFB
Guy-Noël POTRON CAPEB UNA CMA

Thomas FERET FIBC

GROUPE CONSULTATIF D'EXPERTS

Nous remercions les experts de Groupe Consultatif pour leurs apports tant scientifiques et techniques que pratiques à ce guide, sans lesquels il ne serait certainement pas aussi complet et juste.

Georges ADJANOHOUN **APAVE ENSTIB** Laurent BLERON Renaud BLONDEAU-PATISSIER WOODEUM Jean-François BOCQUET **ENSTIB** Soline BONNEVAL **ECSB** Philippe BONTEMPS **AFPA** BET CALVI Dominique CALVI Jean-Luc COUREAU 12M

Benoit DE TERNAY CHARPENTES FRANCAISES

Carole FAYE **FCBA** Gaëtan GENES **ECSB** Stéphane HAMEURY **CSTB** Laurent LE MAGOROU **FCBA** Etienne LEROY ITECH Florent LYON **CSTB** Sergio MEDEL MD BAT Benoît MOREL CMOI Damien QUIDET ITECH

Patrick RACHER POLYTECH CLERMONT-FERRAND

Jacques Long TRINH Consultant

Jean-Luc ZINS

Photo de couverture : © Hugh Lofting Timber Framing, Inc. - www.hughloftingtimberframe.com

© C4Ci, 2016. Tous droits réservés. En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le présent ouvrage, sur quelque support que ce soit, sans autorisation de l'éditeur ou du Centre français d'exploitation du droit de copie - 20 rue des Grands Augustins, 75006 Paris

PREAMBULE

Un des aspects essentiels à maîtriser pour concevoir une structure en bois est celui des assemblages. Qu'ils soient réalisés de manière traditionnelle en bois, ou par l'intermédiaire de connecteurs métalliques ou autres (tiges, plaques, assembleurs tridimensionnels, etc.), les assemblages sont stratégiques pour la performance fonctionnelle et économique des structures bois.

La performance des assemblages est d'autant plus importante dans les zones de fort vent, les zones sismiques, et dans les structures soumises à de fortes charges ou moments d'encastrement importants. La compétition de la structure bois, dont les assemblages sont relativement souples, avec d'autres structures telles les structures acier, béton ou la maçonnerie accentue encore l'importance des assemblages.

Les méthodes de justification des assemblages de structures bois introduites par l'Eurocode 5 permettent d'optimiser ces assemblages, en contrepartie d'un temps d'étude important. Pour les structures bois courantes le temps d'étude est difficilement valorisable et doit être limité.

C'est dans ce cadre que le CODIFAB (Comité professionnel de Développement des Industries Françaises de l'Ameublement et du Bois), à la demande des organisations professionnelles UMB FFB (Union des Métiers du Bois), CAPEB UNA CMA (Union Nationale Charpente Menuiserie Agencement) et FIBC (Fédération de l'Industrie Bois Construction), a confié à C4Ci le soin de réaliser un guide pour le dimensionnement simplifié à froid des assemblages de structures bois par tiges métalliques : pointes, boulons et broches, vis et tirefonds.

Le présent guide a pour objectif double de :

- Fournir des méthodes simplifiées de dimensionnement à froid des assemblages courants de structures bois par tiges métalliques conformes aux Eurocodes
- Les présenter de façon claire et illustrée dans un document aux parties indépendantes et autoportantes

La simplification des méthodes de dimensionnement a été réalisée par un compromis entre temps d'étude et précision du calcul. Les formules proposées sont volontairement du même type que celles présentes dans les Règles CB 71 (de forme k $d\sqrt{e}$), afin de permettre aux professionnels habitués à cette formules une transition facilitée vers les Eurocodes. Des domaines d'emploi restreints ont permis de limiter la perte de performance due à l'aspect sécuritaire des simplifications.

Les méthodes de dimensionnement fournies sont valables pour des assemblages soumis à des efforts limités et ne transmettant pas de moments. Des limites de nombre d'assembleurs et de surfaces d'assemblages sont données pour chaque typologie d'assemblage.

Ces méthodes sont à utiliser afin de vérifier la résistance des assemblages après vérification par le charpentier de la résistance et de la déformation globale de la structure bois qui inclus ces assemblages. Lors de cette vérification le modèle utilisé pour la structure doit considérer les assemblages comme des rotules (puisque ceux-ci ne doivent pas reprendre de moments).

Les éléments présentés dans les pages qui suivent sont basés sur la règlementation et les normes en vigueur à la date de publication de ce guide. Les schémas et informations ont valeur d'exemple et n'exonèrent pas le lecteur de sa responsabilité et de l'exercice de ses devoirs professionnels.

GLOSSAIRE

ABRÉVIATIONS

CODIFAB Comité professionnel de Développement des Industries Françaises de l'Ameublement et du Bois

CAPEB Confédération des Artisans et Petites Entreprises du Bâtiment

UNA CMA Union Nationale Charpente Menuiserie Agencement (fait partie de la CAPEB)

FFB Fédération Française du Bâtiment

UMB Union des Métiers du Bois (fait partie de la FFB)FIBC Fédération de l'Industrie Bois Construction

Règles CB 71 Ancien code de calcul des structures bois Français (remplacé par les Eurocodes)

BLC Bois Lamellé Collé

BMR Bois Massif Reconstitué

UNITÉS

kg Kilogramme

N Newton

daN Décanewton (1 daN = 10 N)

MPa MégaPascal (1 MPa = 1 N/mm²)

mm Millimètrecm Centimètre

° Degré

RÉFÉRENCES NORMATIVES

NF EN 1995-1-1 Eurocode 5 - Conception et calcul des structures en bois - Partie 1-1 : généralités - Règles

communes et règles pour les bâtiments (Novembre 2005)

NF EN 1995-1-1/A1 Amendement A1 à l'Eurocode 5 (Octobre 2008)
NF EN 1995-1-1/A2 Amendement A2 à l'Eurocode 5 (Juillet 2014)

NF EN 1995-1-1/NA Annexe Nationale Française à l'Eurocode 5 (Mai 2010)

SOMMAIRE

1. P0	DINTES	6
1.1.		
1.2.	Assemblages bois-panneau par pointes	11
2. BC	OULONS ET BROCHES	14
2.1.	7.002.11.020.000.000.000.000.000.000.000.	
2.2.	ASSEMBLAGES BOIS-MÉTAL PAR BOULONS ET BROCHES	
3. VIS	S ET TIREFONDS	22
3.1.	Assemblages bois-bois par Vis et tirefonds	24
3.2.	ASSEMBLAGES BOIS-PANNEAU PAR VIS ET TIREFONDS	
3.3.	ASSEMBLAGES BOIS-MÉTAL PAR VIS ET TIREFONDS	30
4. AN	NNEXES	34
4.1.	VÉRIFICATION SIMPLE DE LA TRACTION TRANSVERSALE DU BOIS	36
4.2.	RÈGLES COMPLÈTES D'ESPACEMENTS ET DE DISTANCES AUX BORDS	37
43	MÉTHODOLOGIE DE PROJET	39

POINTES

INTRODUCTION

Les méthodes simplifiées présentées dans la section ci-après ont pour objectif de permettre un dimensionnement simple à froid des assemblages de structures bois par pointes (bois-bois et bois-panneau), tout en assurant une conformité aux principes de l'Eurocode 5.

Ces méthodes simples sont présentées séparément pour chaque couple de matériaux à assembler (bois-bois et boispanneau). Elles ne sont valides que dans les limites des domaines de validité et pour les espacements et distances aux bords qui sont définis pour chaque couple de matériaux.

Pour chaque couple de matériaux à assembler, un schéma général introduit les principales notations utilisées dans les formules de calcul.

Le paragraphe « **Domaine de validité de la méthode simple** » donne les exigences à respecter (matériaux, types de pointes, critères d'exécution...) afin de pouvoir utiliser les formules simples et tableaux de valeurs.

Le paragraphe « Règles simplifiées d'espacements et de distances aux bords » permet de déterminer très simplement les espacements et distances aux bords requis. Si au contraire on souhaite optimiser le positionnement des pointes, il faut utiliser les règles complètes d'espacements et de distances aux bords de l'Eurocode 5 présentées en Annexe, page 37.

Le paragraphe « **Dimensionnement à l'aide de formules simples** » permet pour un assemblage connu de calculer sa résistance en cisaillement afin de la comparer à l'effort auquel il est soumis. Des applications numériques sont présentées.

Le paragraphe « **Dimensionnement à l'aide de tableaux de valeurs** » permet également pour un assemblage connu de calculer sa résistance en cisaillement, mais cette fois-ci par une lecture directe.

En complément de la vérification au cisaillement des pointes, il est nécessaire de **vérifier lorsque c'est pertinent la traction transversale** dans le bois autour des pointes. C'est le cas dès que l'effort est appliqué à un angle avec le fil du bois. La méthode de vérification est présentée en Annexe, page 36.

Les efforts mentionnés dans toute cette section sont des efforts réels. Ils sont issus directement de la descente de charges réelles appliquées sur la structure, sans besoin de les pondérer par des coefficients complémentaires. Les coefficients de sécurité sont déjà inclus dans les formules présentées. Si vous ne disposez pas des efforts réels appliqués à votre structure mais uniquement des efforts pondérés, divisez-les par 1,35 pour retrouver des efforts réels non-pondérés afin de pouvoir utiliser les formules de cette section.

1.1. ASSEMBLAGES BOIS-BOIS PAR POINTES

PRÉSENTATION DE L'ASSEMBLAGE

F	Effort de cisaillement <u>non pondéré</u>	[daN]
n	Nombre de pointes	
d	Diamètre des pointes	[mm]
b_1	Épaisseur de l'élément 1	[mm]
b_2	Épaisseur de l'élément 2	[mm]
t_{pen}	Longueur de pénétration	[mm]
e	Minimum entre b_{1} , b_{2} et t_{pen}	[mm]
t_{chev}	Longueur de chevauchement	[mm]

DOMAINE DE VALIDITÉ DE LA MÉTHODE SIMPLE

TYPE D'ASSEMBLAGE assemblage bois-bois par pointes soumis uniquement au cisaillement

pointes perpendiculaires au fil du bois

au moins 2 pointes par assemblage, 16 pointes maximum la surface de connexion ne doit pas excéder 300x300 mm²

■ NATURE DES BOIS UTILISÉS

- Massif/reconstitué résineux C18 à C30, feuillus D18 à D30

- Lamellé collé résineux GL20 à GL30

CHOIX DES POINTES

- Type pointes lisses, crantées, annelées, torsadées

Section circulaire ou carrée
 Diamètre de 2,5 à 6 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 600 \text{ N/mm}^2$

LONGUEUR DE PÉNÉTRATION DU CÔTÉ DE LA POINTE

 $\begin{array}{ll} \text{-} & \text{Pointes lisses} & t_{pen} \geq 8 \ d \\ \text{-} & \text{Autres pointes} & t_{pen} \geq 6 \ d \end{array}$

LONGUEUR DE CHEVAUCHEMENT POUR LE SIMPLE CISAILLEMENT DOUBLÉ (a*)

- $t_{chev} \ge 4 d$

Exécution

- Les zones sollicitées de l'assemblage doivent être exemptes de défauts rédhibitoires
- Les pointes disposées sur la même fibre de bois doivent être décalées pour éviter le fendage
- Les bois doivent être pré-percés lorsque leur épaisseur est inférieure à celle donnée par le tableau ci-dessous

Tableau 1 – Dimension minimale des bois sans pré-perçage

	•					
Essences	Dimension minimale des bois sans pré-perçage					
Résineux peu sensibles à la fissuration	8 d					
Feuillus peu sensibles à la fissuration	10 <i>d</i>					
Résineux particulièrement sensibles à la fissuration	17 d					
Feuillus particulièrement sensibles à la fissuration	21 <i>d</i>					

Essences particulièrement sensibles à la fissuration données par NF EN 1995-1-1/NA clause 8.3.1.2(7) : Douglas et Pin Maritime

Les méthodes présentées en pages 9 et 10 ne sont valables que si le domaine de validité présenté ici et les règles d'espacements et de distances aux bords présentées en page suivante sont respectés

RÈGLES SIMPLIFIÉES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Tableau 2 – Espacements et distances aux bords simplifiés

	Sans pré-	perçage	Avec pré-
	Résineux	Feuillus	perçage
a_{pointe}	12 <i>d</i>	15 <i>d</i>	5 <i>d</i>
a_{file}	5 <i>d</i>	7 d	4 d
$a_{extr \in mit}$ chargée	15 d	20 <i>d</i>	12 d
$a_{extr \in mit}$ non chargée	10 d	15 d	7 d
a_{rive} chargée	10 <i>d</i>	14 d	7 d
a_{rive} non chargée	5 <i>d</i>	7 d	3 <i>d</i>

Les règles d'espacements et de distances aux bords des pointes présentées ci-dessus sont simplifiées dans le but d'une application aisée. Si pour un dimensionnement d'assemblage les règles simplifiées ci-dessous ne vous permettent pas de placer vos pointes par manque de place, considérez la possibilité d'utiliser les règles complètes d'espacements et de distances aux bords des pointes de l'Eurocode 5 présentées en Annexe, page 37.

DIMENSIONNEMENT À L'AIDE DE FORMULES SIMPLES

Vérification du cisaillement des pointes : on doit avoir $R \geq F$ (effort non-pondéré)

Calcul de la résistance en simple cisaillement (a) [daN]

 $R=1,4 \ d \ \sqrt{e} imes n_{ef}$ pour les résineux $R=1,9 \ d \ \sqrt{e} imes n_{ef}$ pour les feuillus

Le pré-perçage augmente la résistance de 10%

Pour la connexion de 3 éléments en simple cisaillement doublé avec n pointes de chaque côté (a*), multiplier ces formules par 2 afin d'obtenir la résistance de l'assemblage complet Calcul de la résistance en double cisaillement (b) [daN]

(formules valable pour l'assemblage complet)

 $R = 3, 2 d \sqrt{e} \times n_{ef}$ pour les résineux

 $R=4,5~d~\sqrt{e} imes n_{ef}$ pour les feuillus

Le pré-perçage augmente la résistance de 25%

Avec: d diamètre des pointes

e épaisseur ou longueur de pénétration la plus petite (minimum entre b_1 , b_2 et t_{pen})

 n_{ef} nombre efficace de pointes donné par le Tableau 3 et le Tableau 4 ci-dessous

Tableau 3 – Nombre efficace de pointes pour les assemblages sans pré-perçage

- 1		•	_		_		_	0	0	10
	n	2	3	4	5	6	/	8	$9 \le n \le 12$	$13 \le n \le 16$
	n_{ef}	1,9	2,8	3,6	4,4	5,2	6,0	6,8	0,82 x n	0,81 x n

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

Tableau 4 – Nombre efficace de pointes pour les assemblages avec pré-percage

				y <u></u>	p p 1 - 9 -				
n	2	3	4	5	6	7	8	$9 \le n \le 12$	$13 \le n \le 16$
n_{ef}	1,5	1,9	2,2	2,5	2,8	3,0	3,2	0,34 x n	0,30 x n

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

Application Numérique :

Pour un assemblage en simple cisaillement réalisé pour assembler deux pièces en épicéa C24 de 45 mm d'épaisseur

En utilisant 2 pointes de diamètre 3,1 mm et de longueur 75 mm, pour reprendre un effort non-pondéré de cisaillement de 30 daN

Il n'est pas nécessaire de pré-percer puisque l'épaisseur des pièces est supérieure à 8 $d=8\times3,1=24,8~mm$

On a une épaisseur $b_1=b_2=45~mm$ et une longueur de pénétration $t_{pen}=75-45=30~mm$. e est le minimum entre b_1 , b_2 et t_{pen} soit 30 mm

 $F=30~daN~~et~~R=~1,4~d~\sqrt{e}\times n_{ef}=1,4~\times~3,1~\sqrt{30}\times~1,9=45,2~daN~~On~a~bien~R\geq F~~2,2.2,2.2$

Si l'assemblage réalisé sollicite le bois en traction transversale, elle doit être vérifiée tel que présenté en page 36.

DIMENSIONNEMENT À L'AIDE DE TABLEAUX DE VALEURS

Vérification du cisaillement des pointes : on doit avoir $R \ge F$ (effort non-pondéré)

R est donnée en daN par lecture directe des tableaux ci-dessous.

Les résistances sont données pour des assemblages sans pré-perçage. Le pré-perçage augmente la résistance de 10%. Les résistances sont données pour tout l'assemblage et non pas par plan de cisaillement.

Pour la connexion de 3 éléments en simple cisaillement doublé avec n pointes de chaque côté (a*), multiplier les valeurs fournies pour le simple cisaillement par 2 afin d'obtenir la résistance de l'assemblage complet. e est définie comme le minimum entre b_1 , b_2 et t_{pen} (cf. p.8)

Rappel : Il convient de vérifier que le domaine de validité en pages 8 et 9 est respecté, et de vérifier la traction transversale si pertinente

Tableau 5 – Résistance des assemblages bois-bois à l'aide de pointes sans pré-perçage (en daN)

	u 5 – Resis	Dimension minimale	<i>e</i> (en mm)		e = 36			e = 45			<i>e</i> = 60	
		Diamètre des pointes	d (en mm)	<i>d</i> = 3	d = 4	<i>d</i> = 5	d = 3	d = 4	<i>d</i> = 5	<i>d</i> = 3	d = 4	d = 5
	5	Nombre de pointes	n = 2	47	63	78	53	71	89	61	82	102
			n = 3	69	91	114	78	104	130	90	120	150
	SIMPLE CISAILLEMENT		n = 4	89	119	149	101	135	169	117	156	195
	<u>≥</u> ∃		n = 5	110	147	183	125	166	208	144	192	240
	SAI		n = 6	130	174	217	148	197	246	170	227	284
×	5		n = 7	143	190	238	162	216	270	187	249	311
\supset			n = 8	163	217	272	185	246	308	213	285	356
۳			n = 9	183	244	306	208	277	347	240	320	400
		Dimension minimale	e (en mm)		e = 36			e = 45			<i>e</i> = 60	
RESINEUX		Diamètre des pointes	d (en mm)	<i>d</i> = 3	d = 4	d = 5	d = 3	d = 4	<i>d</i> = 5	<i>d</i> = 3	d = 4	<i>d</i> = 5
~	늘	Nombre de pointes	n = 2	107	143	179	122	162	203	141	187	234
	# E		n = 3	157	209	261	178	237	296	205	274	342
			n = 4	204	273	341	232	309	386	268	357	446
	DOUBLE CISAILLEMENT		n = 5	252	335	419	285	380	475	329	439	549
	SA		<i>n</i> = 6	298	397	496	337	450	562	390	520	649
	Ö		n = 7	326	435	543	370	493	616	427	569	711
			n = 8	373	497	621	422	563	704	488	650	813
			n = 9	419	559	699	475	634	792	549	732	915
		Dimension minimale	e (en mm)		e = 36			e = 45			<i>e</i> = 60	
		Dimension minimale Diamètre des pointes	<i>e</i> (en mm) <i>d</i> (en mm)	d = 3	e = 36 d = 4	<i>d</i> = 5	d = 3	e = 45 $d = 4$	d = 5	d = 3	e = 60 $d = 4$	d = 5
	¥			d = 3 64	1	d = 5	d = 3 72		d = 5 120	d = 3 83	1	d = 5 139
	.E AENT	Diamètre des pointes	d (en mm)		d = 4			d = 4			d = 4	
	IPLE EMENT	Diamètre des pointes	d (en mm) n = 2	64	d = 4 85	106	72	d = 4 96	120	83	d = 4 111	139
	IMPLE	Diamètre des pointes	d (en mm) n = 2 n = 3	64 93	d = 4 85 124	106 155	72 106	d = 4 96 141	120 176	83 122	d = 4 111 162	139 203
	SIMPLE SAILLEMENT	Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4	64 93 121	d = 4 85 124 162	106 155 202	72 106 138	d = 4 96 141 184	120 176 229	83 122 159	d = 4 111 162 212	139 203 265
S	SIMPLE CISAILLEMENT	Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5	64 93 121 149	d = 4 85 124 162 199	106 155 202 249	72 106 138 169	d = 4 96 141 184 226	120 176 229 282	83 122 159 196	d = 4 111 162 212 261	139 203 265 326
Sn-	SIMPLE CISAILLEMENT	Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	64 93 121 149 177 194 221	d = 4 85 124 162 199 236 258 295	106 155 202 249 295 323 369	72 106 138 169 200 219 251	d = 4 96 141 184 226 267 293 334	120 176 229 282 334 366 418	83 122 159 196 231 253 290	d = 4 111 162 212 261 308 338 386	139 203 265 326 386 422 483
ILUS	SIMPLE CISAILLEMENT	Diamètre des pointes Nombre de pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9	64 93 121 149 177 194	d = 4 85 124 162 199 236 258 295 332	106 155 202 249 295 323	72 106 138 169 200 219	d = 4 96 141 184 226 267 293 334 376	120 176 229 282 334 366	83 122 159 196 231 253	d = 4 111 162 212 261 308 338 386 434	139 203 265 326 386 422
OILLUS	SIMPLE CISAILLEMENT	Diamètre des pointes Nombre de pointes Dimension minimale	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm)	64 93 121 149 177 194 221 249	d = 4 85 124 162 199 236 258 295 332 e = 36	106 155 202 249 295 323 369 415	72 106 138 169 200 219 251 282	d = 4 96 141 184 226 267 293 334 376 e = 45	120 176 229 282 334 366 418 470	83 122 159 196 231 253 290 326	d = 4 111 162 212 261 308 338 386 434 e = 60	139 203 265 326 386 422 483 543
EUILLUS		Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm)	64 93 121 149 177 194 221 249	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4	106 155 202 249 295 323 369 415	72 106 138 169 200 219 251 282 d = 3	d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4	120 176 229 282 334 366 418 470	83 122 159 196 231 253 290 326 d = 3	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4	139 203 265 326 386 422 483 543
FEUILLUS		Diamètre des pointes Nombre de pointes Dimension minimale	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2	64 93 121 149 177 194 221 249 d = 3 151	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4 201	106 155 202 249 295 323 369 415 d = 5 252	72 106 138 169 200 219 251 282 d=3 171	d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4 228	120 176 229 282 334 366 418 470 d = 5 285	83 122 159 196 231 253 290 326 d = 3 198	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4 264	139 203 265 326 386 422 483 543 d = 5 329
FEUILLUS		Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3	64 93 121 149 177 194 221 249 d = 3 151 220	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4 201 294	106 155 202 249 295 323 369 415 d = 5 252 367	72 106 138 169 200 219 251 282 d = 3 171 250	 d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4 228 333 	120 176 229 282 334 366 418 470 d = 5 285 417	83 122 159 196 231 253 290 326 d = 3 198 289	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4 264 385	139 203 265 326 386 422 483 543 d = 5 329 481
FEUILLUS		Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4	64 93 121 149 177 194 221 249 d = 3 151 220 288	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4 201 294 383	106 155 202 249 295 323 369 415 d = 5 252 367 479	72 106 138 169 200 219 251 282 d = 3 171 250 326	 d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4 228 333 435 	120 176 229 282 334 366 418 470 d = 5 285 417 543	83 122 159 196 231 253 290 326 d = 3 198 289 376	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4 264 385 502	139 203 265 326 386 422 483 543 d = 5 329 481 627
FEUILLUS		Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5	64 93 121 149 177 194 221 249 d = 3 151 220 288 354	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4 201 294 383 472	106 155 202 249 295 323 369 415 d = 5 252 367 479 590	72 106 138 169 200 219 251 282 d = 3 171 250 326 401	 d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4 228 333 435 535 	120 176 229 282 334 366 418 470 d = 5 285 417 543 669	83 122 159 196 231 253 290 326 d = 3 198 289 376 463	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4 264 385 502 618	139 203 265 326 386 422 483 543 d = 5 329 481 627 772
FEUILLUS		Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	64 93 121 149 177 194 221 249 d = 3 151 220 288 354 419	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4 201 294 383 472 558	106 155 202 249 295 323 369 415 d = 5 252 367 479 590 698	72 106 138 169 200 219 251 282 d = 3 171 250 326 401 475	 d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4 228 333 435 535 633 	120 176 229 282 334 366 418 470 d = 5 285 417 543 669 791	83 122 159 196 231 253 290 326 d = 3 198 289 376 463 548	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4 264 385 502 618 731	139 203 265 326 386 422 483 543 d = 5 329 481 627 772 913
FEUILLUS	LN.	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7	64 93 121 149 177 194 221 249 d = 3 151 220 288 354 419 458	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4 201 294 383 472 558 611	106 155 202 249 295 323 369 415 d = 5 252 367 479 590 698 764	72 106 138 169 200 219 251 282 d = 3 171 250 326 401 475 520	 d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4 228 333 435 535 633 693 	120 176 229 282 334 366 418 470 d = 5 285 417 543 669 791 866	83 122 159 196 231 253 290 326 d = 3 198 289 376 463 548 600	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4 264 385 502 618 731 800	139 203 265 326 386 422 483 543 d = 5 329 481 627 772 913 1000
FEUILLUS		Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	64 93 121 149 177 194 221 249 d = 3 151 220 288 354 419	d = 4 85 124 162 199 236 258 295 332 e = 36 d = 4 201 294 383 472 558	106 155 202 249 295 323 369 415 d = 5 252 367 479 590 698	72 106 138 169 200 219 251 282 d = 3 171 250 326 401 475	 d = 4 96 141 184 226 267 293 334 376 e = 45 d = 4 228 333 435 535 633 	120 176 229 282 334 366 418 470 d = 5 285 417 543 669 791	83 122 159 196 231 253 290 326 d = 3 198 289 376 463 548	d = 4 111 162 212 261 308 338 386 434 e = 60 d = 4 264 385 502 618 731	139 203 265 326 386 422 483 543 d = 5 329 481 627 772 913

Dans tout le document F est l'effort <u>non pondéré</u> appliqué à l'assemblage. Si vous disposez d'un effort F déjà pondéré, divisez-le par 1,35.

1. POINTES 2. BOULONS ET BROCHES 3. VIS ET TRIREFONDS 4. ANNEXES

1.2. ASSEMBLAGES BOIS-PANNEAU PAR POINTES

PRÉSENTATION DE L'ASSEMBLAGE

F	Effort de cisaillement <u>non pondéré</u>	[daN]
n	Nombre de pointes	
d	Diamètre des pointes	[mm]
b_1	Épaisseur de l'élément 1	[mm]
b_2	Épaisseur de l'élément 2	[mm]
t_{pen}	Longueur de pénétration	[mm]
e	Minimum entre b_{1} , b_{2} et t_{pen}	[mm]
t_{chev}	Longueur de chevauchement	[mm]

DOMAINE DE VALIDITÉ DE LA MÉTHODE SIMPLE

Type d'Assemblage assemblage bois-panneau par pointes soumis <u>uniquement au cisaillement</u>

pointes perpendiculaires au fil du bois

au moins 2 pointes par assemblage, 16 pointes maximum la surface de connexion ne doit pas excéder 300x300 mm²

■ NATURE DES MATÉRIAUX UTILISÉS

- Massif/reconstitué résineux C18 à C30, feuillus D18 à D30

- Lamellé collé résineux GL20 à GL30

- Panneaux de particules et OSB densité caractéristique $\rho_k \ge 480 \text{ kg/m}^3$

CHOIX DES POINTES

- Type pointes lisses, crantées, annelées, torsadées

Section circulaire ou carrée
 Diamètre de 2,5 à 6 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 600 \text{ N/mm}^2$

■ LONGUEUR DE PÉNÉTRATION DU CÔTÉ DE LA POINTE

 $\begin{array}{ll} \text{-} & \text{Pointes lisses} & t_{pen} \geq 8 \ d \\ \text{-} & \text{Autres pointes} & t_{pen} \geq 6 \ d \end{array}$

LONGUEUR DE CHEVAUCHEMENT POUR LE SIMPLE CISAILLEMENT DOUBLÉ (a*)

- $t_{chev} \geq 4 d$

Exécution

- Les zones sollicitées de l'assemblage doivent être exemptes de défauts rédhibitoires
- Les pointes disposées sur la même fibre de bois doivent être décalées pour éviter le fendage
- Les bois doivent être pré-percés lorsque leur épaisseur est inférieure à celle donnée par le tableau ci-dessous

Tableau 6 – Dimension minimale des bois sans pré-perçage

Essences	Dimension minimale des bois sans pré-perçage
Résineux peu sensibles à la fissuration	8 d
Feuillus peu sensibles à la fissuration	10 <i>d</i>
Résineux particulièrement sensibles à la fissuration	17 d
Feuillus particulièrement sensibles à la fissuration	21 <i>d</i>

Essences particulièrement sensibles à la fissuration données par NF EN 1995-1-1/NA clause 8.3.1.2(7): Douglas et Pin Maritime

Les méthodes présentées en pages 12 et 13 ne sont valables que si le domaine de validité présenté ici et les règles d'espacements et de distances aux bords présentées en page suivante sont respectés

RÈGLES SIMPLIFIÉES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Tableau 7- Espacements et distances aux bords simplifiés

	Bois sans pr	é-perçage	Bois		
	Résineux	Feuillus	avec pré- perçage	Panneaux	
a_{pointe}	12 <i>d</i>	15 d	13 d	13 d	
a_{file}	5 <i>d</i>	7 d	6 <i>d</i>	6 <i>d</i>	
$a_{extr ext{\'e}mit ext{\'e}}$ chargée	15 d	20 <i>d</i>	20 d	20 <i>d</i>	
$a_{extr \in mit}$ non chargée	10 d	15 <i>d</i>	15 d	15 <i>d</i>	
a_{rive} chargée	10 <i>d</i>	14 <i>d</i>	12 d	12 d	
a_{rive} non chargée	5 d	7 d	7 d	7 d	

Les règles d'espacements et de distances aux bords des pointes présentées ci-dessus sont simplifiées dans le but d'une application aisée. Si pour un dimensionnement d'assemblage les règles simplifiées ci-dessous ne vous permettent pas de placer vos pointes par manque de place, considérez la possibilité d'utiliser les règles complètes d'espacements et de distances aux bords des pointes de l'Eurocode 5 présentées en Annexe, page 37.

DIMENSIONNEMENT À L'AIDE DE FORMULES SIMPLES

Vérification du cisaillement des pointes : on doit avoir $R \ge F$ (effort non-pondéré)

Calcul de la résistance en simple cisaillement (a) [daN]

 $R = 1,5 \ d \sqrt{e} \times n_{ef}$ pour les résineux $R = 1,9 \ d \sqrt{e} \times n_{ef}$ pour les feuillus

Le pré-perçage augmente la résistance de 10%

Pour la connexion de 3 éléments en simple cisaillement doublé avec n pointes de chaque côté (a^*), multiplier ces formules par 2 afin d'obtenir la résistance de l'assemblage complet

Avec : d diamètre des pointes

e épaisseur ou longueur de pénétration la plus petite (minimum entre b_1 , b_2 et t_{pen})

 n_{ef} nombre efficace de pointes donné par le Tableau 8 et le Tableau 9 ci-dessous

Tableau 8 – Nombre efficace de pointes pour les assemblages sans pré-perçage

n	2	3	4	5	6	7	8	9 ≤ <i>n</i> ≤ 12	$13 \le n \le 16$
n_{ef}	1,9	2,8	3,6	4,4	5,2	6,0	6,8	0,82 x n	0,81 x n

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

Tableau 9 – Nombre efficace de pointes pour les assemblages <u>avec pré-perçage</u>

n	2	3	4	5	6	7	8	$9 \le n \le 12$	$13 \le n \le 16$
n_{ef}	1,5	1,9	2,2	2,5	2,8	3,0	3,2	0,34 x n	0,30 x n

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

Application Numérique :

Pour un assemblage en simple cisaillement doublé pour assembler une pièce en épicéa C24 de 60 mm et 2 panneaux OSB de 18 mm, en utilisant 2 pointes de diamètre 3,1 mm (une de chaque côté) et de longueur 75 mm, pour reprendre un effort non-pondéré de cisaillement de 30 daN

Il n'est pas nécessaire de pré-percer puisque l'épaisseur du bois C24 est supérieure à 10 $d=10\times 3,1=31~mm$

On a $b_1=18~mm$ et $b_2=60~mm$ et une longueur de pénétration $t_{pen}=75-18=57~mm$. e est le minimum entre b_1 , b_2 et t_{pen} soit 18~mm et une longueur de pénétration $t_{pen}=75-18=57~mm$.

 $F=30~daN~~et~~R=~\mathbf{2}\times 1,5~d~\sqrt{e}\times n_{ef}=\mathbf{2}\times 1,5~\times 3,1~\sqrt{18}\times 1=39,4~daN~~On~a~bien~R\geq F$

Si l'assemblage réalisé sollicite le bois en traction transversale, elle doit être vérifiée tel que présenté en page 36.

DIMENSIONNEMENT À L'AIDE DE TABLEAUX DE VALEURS

Vérification du cisaillement des pointes : on doit avoir $R \ge F$ (effort non-pondéré)

R est donnée en daN par lecture directe des tableaux ci-dessous.

Les résistances sont données pour des assemblages sans pré-perçage. Le pré-perçage augmente la résistance de 10%. Pour la connexion de 3 éléments en simple cisaillement doublé avec n pointes de chaque côté (a*), multiplier les valeurs fournies par 2 afin d'obtenir la résistance de l'assemblage complet.

e est définie comme le minimum entre $b_{\rm 1}$, $b_{\rm 2}$ et t_{pen} (cf. p.11)

Rappel : Il convient de vérifier que le domaine de validité en p. 11 et 12 est respecté, et de vérifier la traction transversale si pertinente

Tableau 10 – Résistance des assemblaaes hois-nanneaux à l'aide de nointes en simple cisaillement sans pré-percaae (en daN)

Tableau 10 – Résistance des assemblages bois-panneaux à l'aide de pointes en simple cisaillement <u>sans pré-perçage</u> (en daN)														
	Dimension minimale	<i>e</i> (en mm)		e =	10			e =	12			e =	15	
	Diamètre des pointes	d (en mm)	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6
	Nombre de pointes	n = 2	27	36	45	54	29	39	49	59	33	44	55	66
		n = 3	39	52	65	79	43	57	72	86	48	64	80	96
		n = 4	51	68	85	102	56	75	94	112	63	84	105	125
		n = 5	63	84	105	126	69	92	115	138	77	103	129	154
		n = 6	75	99	124	149	82	109	136	163	91	122	152	183
×		n = 7	82	109	136	163	89	119	149	179	100	133	167	200
\Box		n = 8	93	124	156	187	102	136	170	205	114	152	191	229
ä		n = 9	105	140	175	210	115	153	192	230	129	171	214	257
	Dimension minimale	<i>e</i> (en mm)		e =	20			e =	25			e =	30	
RESINE	Diamètre des pointes	d (en mm)	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6	d = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6	<i>d</i> = 3	d = 4	<i>d</i> = 5	<i>d</i> = 6
~	Nombre de pointes	n = 2	38	51	63	76	43	57	71	85	47	62	78	93
		n = 3	56	74	93	111	62	83	104	124	68	91	113	136
		n = 4	72	97	121	145	81	108	135	162	89	118	148	177
		n = 5	89	119	149	178	100	133	166	199	109	146	182	218
		n = 6	105	141	176	211	118	157	197	236	129	172	215	258
		n = 7	116	154	193	231	129	172	215	258	141	189	236	283
		n = 8	132	176	220	264	148	197	246	295	162	216	269	323
		n = 9	149	198	248	297	166	221	277	332	182	243	303	364
											_	-		
	Dimension minimale	<i>e</i> (en mm)		e =					12				15	
	Dimension minimale Diamètre des pointes	<i>e</i> (en mm) <i>d</i> (en mm)	d = 3	e = d = 4		d = 6	d = 3			<i>d</i> = 6	d = 3			d = 6
					10			<i>e</i> = <i>d</i> = 4 50	12 d = 5 62	d = 6 75		e =	15 d = 5 70	d = 6 83
	Diamètre des pointes	d (en mm)	d = 3	d = 4	10 d = 5	<i>d</i> = 6	d = 3	e = d = 4	12 d = 5	<i>d</i> = 6	d = 3	e = d = 4	15 d = 5	<i>d</i> = 6
	Diamètre des pointes	d (en mm) n = 2	d = 3 34	d = 4 45	10 d = 5 57	d = 6 68	d = 3 37	e = d = 4 50 73 95	12 d = 5 62	d = 6 75	d = 3 42	e = d = 4 56	15 d = 5 70	d = 6 83 122 159
	Diamètre des pointes	d (en mm) n = 2 n = 3	d = 3 34 50	d = 4 45 66	10 d = 5 57 83	d = 6 68 99	d = 3 37 54	e = d = 4 50 73	12 d = 5 62 91	d = 6 75 109	d = 3 42 61	e = d = 4 56 81	15 d = 5 70 102 132 163	d = 6 83 122
	Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	d = 3 34 50 65 80 94	d = 4 45 66 87 106 126	10 d = 5 57 83 108 133 157	d = 6 68 99 130 160 189	d = 3 37 54 71 87 103	e = d = 4 50 73 95 117 138	12 d = 5 62 91 118 146 172	d = 6 75 109 142 175 207	d = 3 42 61 79 98 116	e = d = 4 56 81 106 130 154	15 d = 5 70 102 132 163 193	d = 6 83 122 159 196 231
SI	Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7	d = 3 34 50 65 80 94 103	d = 4 45 66 87 106 126 138	10 d = 5 57 83 108 133 157 172	d = 6 68 99 130 160 189 207	d = 3 37 54 71 87 103 113	e = d = 4 50 73 95 117 138 151	12 d = 5 62 91 118 146 172 189	d = 6 75 109 142 175 207 227	d = 3 42 61 79 98 116 127	e = d = 4 56 81 106 130 154 169	15 d = 5 70 102 132 163 193 211	d = 6 83 122 159 196 231 253
SNT	Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8	d=3 34 50 65 80 94 103 118	d = 4 45 66 87 106 126 138	10 d = 5 57 83 108 133 157 172 197	d = 6 68 99 130 160 189 207 236	d = 3 37 54 71 87 103 113	e = d = 4 50 73 95 117 138 151 173	12 d = 5 62 91 118 146 172 189 216	d = 6 75 109 142 175 207 227 259	d = 3 42 61 79 98 116 127 145	e = d = 4	15 d = 5 70 102 132 163 193 211 241	d = 6 83 122 159 196 231 253 290
ILLUS	Diamètre des pointes Nombre de pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9	d = 3 34 50 65 80 94 103	d = 4 45 66 87 106 126 138 158 177	10 d = 5 57 83 108 133 157 172 197 222	d = 6 68 99 130 160 189 207	d = 3 37 54 71 87 103 113	e = d = 4 50 73 95 117 138 151 173 194	12 d = 5 62 91 118 146 172 189 216 243	d = 6 75 109 142 175 207 227	d = 3 42 61 79 98 116 127	e = d = 4 56 81 106 130 154 169 193 217	15 d = 5 70 102 132 163 193 211 241 272	d = 6 83 122 159 196 231 253
NILLUS	Diamètre des pointes Nombre de pointes Dimension minimale	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm)	d = 3 34 50 65 80 94 103 118 133	d = 4 45 66 87 106 126 138 158 177 e =	10 d = 5 57 83 108 133 157 172 197 222 20	d = 6 68 99 130 160 189 207 236 266	d = 3 37 54 71 87 103 113 130 146	e = d = 4 50 73 95 117 138 151 173 194 e =	12 d = 5 62 91 118 146 172 189 216 243	d = 6 75 109 142 175 207 227 259 291	d = 3 42 61 79 98 116 127 145 163	e = d = 4 56 81 106 130 154 169 193 217 e =	15 d = 5 70 102 132 163 193 211 241 272	d = 6 83 122 159 196 231 253 290 326
EUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm)	d = 3 34 50 65 80 94 103 118 133	d = 4 45 66 87 106 126 138 158 177 e = d = 4	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5	d = 6 68 99 130 160 189 207 236 266	d = 3 37 54 71 87 103 113 130 146	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5	d = 6 75 109 142 175 207 227 259 291	d = 3 42 61 79 98 116 127 145 163	e = d = 4 56 81 106 130 154 169 193 217 e = d = 4	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5	d = 6 83 122 159 196 231 253 290 326 d = 6
FEUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2	d = 3 34 50 65 80 94 103 118 133	d = 4 45 66 87 106 126 138 158 177 e = d = 4 64	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5 80	d = 6 68 99 130 160 189 207 236 266	d = 3 37 54 71 87 103 113 130 146 d = 3 54	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4 72	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5 90	d = 6 75 109 142 175 207 227 259 291 d = 6 108	d = 3 42 61 79 98 116 127 145 163 d = 3 59	e = d = 4 56 81 106 130 154 169 193 217 e = d = 4 79	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5 98	d = 6 83 122 159 196 231 253 290 326 d = 6 118
FEUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3	d = 3 34 50 65 80 94 103 118 133 d = 3 48	d = 4 45 66 87 106 126 138 158 177 e = d = 4 64 94	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5 80 117	d = 6 68 99 130 160 189 207 236 266 d = 6 96 141	d = 3 37 54 71 87 103 113 130 146 d = 3 54 79	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4 72 105	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5 90 131	d = 6 75 109 142 175 207 227 259 291 d = 6 108 157	d = 3 42 61 79 98 116 127 145 163 d = 3 59 86	e = d = 4 56 81 106 130 154 169 193 217 e = d = 4 79 115	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5 98 144	d = 6 83 122 159 196 231 253 290 326 d = 6 118 172
FEUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4	d = 3 34 50 65 80 94 103 118 133 d = 3 48 70 92	d = 4 45 66 87 106 126 138 158 177 e = d = 4 64 94 122	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5 80 117 153	d = 6 68 99 130 160 189 207 236 266 d = 6 96 141 184	d = 3 37 54 71 87 103 113 130 146 d = 3 54 79 103	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4 72 105 137	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5 90 131 171	d = 6 75 109 142 175 207 227 259 291 d = 6 108 157 205	d = 3 42 61 79 98 116 127 145 163 d = 3 59 86 112	e = d = 4 56 81 106 130 154 169 193 217 e = d = 4 79 115 150	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5 98 144 187	d = 6 83 122 159 196 231 253 290 326 d = 6 118 172 225
FEUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5	d = 3 34 50 65 80 94 103 118 133 d = 3 48 70 92 113	d = 4 45 66 87 106 126 138 158 177 e = d = 4 64 94 122 151	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5 80 117 153 188	d = 6 68 99 130 160 189 207 236 266 d = 6 96 141 184 226	d = 3 37 54 71 87 103 113 130 146 d = 3 54 79 103 126	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4 72 105 137 168	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5 90 131 171 210	d = 6 75 109 142 175 207 227 259 291 d = 6 108 157 205 253	d = 3 42 61 79 98 116 127 145 163 d = 3 59 86 112 138	e = d = 4 56 81 106 130 154 169 193 217 e = d = 4 79 115 150 184	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5 98 144 187 231	d = 6 83 122 159 196 231 253 290 326 d = 6 118 172 225 277
FEUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	d = 3 34 50 65 80 94 103 118 133 d = 3 48 70 92 113 134	d = 4 45 66 87 106 126 138 158 177 e = d = 4 64 94 122 151 178	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5 80 117 153 188 223	d = 6 68 99 130 160 189 207 236 266 4 = 6 96 141 184 226 267	d = 3 37 54 71 87 103 113 130 146 d = 3 54 79 103 126 149	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4 72 105 137 168 199	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5 90 131 171 210 249	d = 6 75 109 142 175 207 227 259 291 d = 6 108 157 205 253 299	d = 3 42 61 79 98 116 127 145 163 d = 3 59 86 112 138 164	e = d = 4	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5 98 144 187 231 273	d = 6 83 122 159 196 231 253 290 326 d = 6 118 172 225 277 327
FEUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7	d = 3 34 50 65 80 94 103 118 133 d = 3 48 70 92 113 134 146	d = 4 45 66 87 106 126 138 158 177 e = d = 4 64 94 122 151 178 195	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5 80 117 153 188 223 244	d = 6 68 99 130 160 189 207 236 266 d = 6 96 141 184 226 267 293	d = 3 37 54 71 87 103 113 130 146 d = 3 54 79 103 126 149 164	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4 72 105 137 168 199 218	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5 90 131 171 210 249 273	d = 6 75 109 142 175 207 227 259 291 d = 6 108 157 205 253 299 327	d = 3 42 61 79 98 116 127 145 163 d = 3 59 86 112 138 164 179	e = d = 4 56 81 106 130 154 169 193 217 e = d = 4 79 115 150 184 218 239	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5 98 144 187 231 273 299	d = 6 83 122 159 196 231 253 290 326 d = 6 118 172 225 277 327 358
FEUILLUS	Diamètre des pointes Nombre de pointes Dimension minimale Diamètre des pointes	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	d = 3 34 50 65 80 94 103 118 133 d = 3 48 70 92 113 134	d = 4 45 66 87 106 126 138 158 177 e = d = 4 64 94 122 151 178	10 d = 5 57 83 108 133 157 172 197 222 20 d = 5 80 117 153 188 223	d = 6 68 99 130 160 189 207 236 266 4 = 6 96 141 184 226 267	d = 3 37 54 71 87 103 113 130 146 d = 3 54 79 103 126 149	e = d = 4 50 73 95 117 138 151 173 194 e = d = 4 72 105 137 168 199	12 d = 5 62 91 118 146 172 189 216 243 25 d = 5 90 131 171 210 249	d = 6 75 109 142 175 207 227 259 291 d = 6 108 157 205 253 299	d = 3 42 61 79 98 116 127 145 163 d = 3 59 86 112 138 164	e = d = 4	15 d = 5 70 102 132 163 193 211 241 272 30 d = 5 98 144 187 231 273	d = 6 83 122 159 196 231 253 290 326 d = 6 118 172 225 277 327

Dans tout le document F est l'effort non pondéré appliqué à l'assemblage. Si vous disposez d'un effort F déjà pondéré, divisez-le par 1,35.

BOULONS ET BROCHES

INTRODUCTION

Les méthodes simplifiées présentées dans la section ci-après ont pour objectif de permettre un dimensionnement simple à froid des assemblages de structures bois par boulons et broches (bois-bois et bois-métal), tout en assurant une conformité aux principes de l'Eurocode 5.

Ces méthodes simples sont présentées séparément pour chaque couple de matériaux à assembler (bois-bois et boismétal). Elles ne sont valides que dans les limites des domaines de validité et pour les espacements et distances aux bords qui sont définis pour chaque couple de matériaux.

Pour chaque couple de matériaux à assembler, un schéma général introduit les principales notations utilisées dans les formules de calcul.

Le paragraphe « **Domaine de validité de la méthode simple** » donne les exigences à respecter (matériaux, critères d'exécution...) afin de pouvoir utiliser les formules simples et tableaux de valeurs.

Le paragraphe « Règles simplifiées d'espacements et de distances aux bords » permet de déterminer très simplement les espacements et distances aux bords requis. Si au contraire on souhaite optimiser le positionnement des boulons et broches, il faut utiliser les règles complètes d'espacements et de distances aux bords de l'Eurocode 5 présentées en Annexe, page 38.

Le paragraphe « **Dimensionnement à l'aide de formules simples** » permet pour un assemblage connu de calculer sa résistance en cisaillement afin de la comparer à l'effort auquel il est soumis. Des applications numériques sont présentées.

Le paragraphe « **Dimensionnement à l'aide de tableaux de valeurs** » permet également pour un assemblage connu de calculer sa résistance en cisaillement, mais cette fois-ci par une lecture directe.

En complément de la vérification au cisaillement des boulons et broches, il est nécessaire de **vérifier lorsque c'est pertinent la traction transversale** dans le bois autour des boulons et broches. C'est le cas dès que l'effort est appliqué à un angle avec le fil du bois. La méthode de vérification est présentée en Annexe, page 36.

Les efforts mentionnés dans toute cette section sont des efforts réels. Ils sont issus directement de la descente de charges réelles appliquées sur la structure, sans besoin de les pondérer par des coefficients complémentaires. Les coefficients de sécurité sont déjà inclus dans les formules présentées. Si vous ne disposez pas des efforts réels appliqués à votre structure mais uniquement des efforts pondérés, divisez-les par 1,35 pour retrouver des efforts réels non-pondérés afin de pouvoir utiliser les formules de cette section.

1. POINTES 2. BOULONS ET BROCHES 3. VIS ET TIREFONDS 4. ANNEXES

2.1. ASSEMBLAGES BOIS-BOIS PAR BOULONS ET BROCHES

PRÉSENTATION DE L'ASSEMBLAGE

F Effort de cisaillement non pondéré [daN] Nombre de boulons/broches n d Diamètre des boulons/broches [mm] Épaisseur de l'élément 1 [mm] b_1 b_2 Épaisseur de l'élément 2 [mm] Minimum entre b_1 et b_2 [mm]

DOMAINE DE VALIDITÉ DE LA MÉTHODE SIMPLE

■ TYPE D'ASSEMBLAGE assemblage bois-bois par boulons et broches soumis <u>uniquement au cisaillement</u>

boulons et broches perpendiculaires au fil du bois

5 organes maximum

la surface de connexion ne doit pas excéder 300x300 mm²

■ NATURE DES BOIS UTILISÉS

Massif/reconstitué résineux C18 à C30, feuillus D18 à D30
 Lamellé collé résineux GL20 à GL30
 Épaisseur de 36 à 200 mm

CHOIX DES BOULONS

- Diamètre de 12 à 20 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 400 \text{ N/mm}^2$

Choix des Broches

- Diamètre de 8 à 18 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 400 \text{ N/mm}^2$

Exécution

- Les zones sollicitées de l'assemblage doivent être exemptes de défauts rédhibitoires

- Les boulons et broches disposés sur la même fibre de bois doivent être décalés pour éviter le fendage

Les méthodes présentées en pages 17 et 18 ne sont valables que si le domaine de validité présenté ici et les règles d'espacements et de distances aux bords présentées en page suivante sont respectés

RÈGLES SIMPLIFIÉES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Tableau 11 – Espacements et distances aux bords simplifiés

	Distances
a_{boulon} (ou a_{broche})	5 <i>d</i>
a_{file}	4 <i>d</i>
$a_{extr m \acute{e}mit m \acute{e}}$ chargée	7 d
$a_{extr ext{\'e}mit ext{\'e}}$ non chargée	7 d
a_{rive} chargée	4 <i>d</i>
a_{rive} non chargée	3 <i>d</i>

NOTE

Les règles d'espacements et de distances aux bords des boulons et broches présentées ci-dessus sont simplifiées dans le but d'une application aisée. Si pour un dimensionnement d'assemblage les règles simplifiées ci-dessous ne vous permettent pas de placer vos boulons et broches par manque de place, considérez la possibilité d'utiliser les règles complètes d'espacements et de distances aux bords des boulons et broches de l'Eurocode 5 présentées en Annexe, page 38.

DIMENSIONNEMENT À L'AIDE DE FORMULES SIMPLES

Vérification du cisaillement des boulons et broches : on doit avoir $R \ge F$ (effort non-pondéré)

Calcul de la résistance en simple cisaillement (a) [daN]

 $R=1,7~d~\sqrt{e} imes n_{ef}~~$ pour les résineux $R=2,5~d~\sqrt{e} imes n_{ef}~~$ pour les feuillus

Formules valables pour les boulons Pour les broches multiplier par 0,8 Calcul de la résistance en double cisaillement (b) [daN]

(formule valable pour l'assemblage complet)

 $R=3,2\;d\;\sqrt{e} imes n_{ef}$ pour les résineux

 $R=5,9~d~\sqrt{e} imes n_{ef}$ pour les feuillus

Formules valables pour les boulons Pour les broches multiplier par 0,8

Avec : d diamètre des boulons et broches

e épaisseur minimale des pièces

 n_{ef} nombre efficace de boulons et broches donné par le tableau ci-dessous

Tableau 12 – Nombre efficace de boulons ou broches

. ab.caa 12	romare egreace at acarons ou arounes								
n	1	2	3	4	5				
n_{ef}	1	1,5	2,1	2,7	3,4				

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

<u>Application Numérique :</u>

Pour un assemblage en simple cisaillement réalisé pour assembler deux pièces en épicéa C24 de 75 mm d'épaisseur En utilisant 2 boulons de diamètre 16 mm, pour reprendre un effort non-pondéré de cisaillement de 300 daN On a une épaisseur $b_1=b_2=75$ mm. e est le minimum entre b_1 et b_2 soit 75 mm

 $F=300~daN~et~R=1,7~d~\sqrt{e}\times n_{ef}=1,7~\times 16~\sqrt{75}\times 1,5=353~daN~On~a~bien~R\geq F$

Si l'assemblage réalisé sollicite le bois en traction transversale, elle doit être vérifiée tel que présenté en page 36.

DIMENSIONNEMENT À L'AIDE DE TABLEAUX DE VALEURS

Vérification du cisaillement des boulons et broches : on doit avoir $R \ge F$ (effort non-pondéré)

R est donné en daN par lecture directe des tableaux ci-dessous.

Les résistances sont données pour tout l'assemblage et non pas par plan de cisaillement.

Les valeurs sont données pour les boulons. Pour les broches multiplier par 0,8.

e est définie comme le minimum entre b_1 et b_2 et (cf. p.16)

Rappel : Il convient de vérifier que le domaine de validité en p. 16 et 17 est respecté, et de vérifier la traction transversale si pertinente

Tableau 13 – Résistance des assemblages bois-bois <u>à l'aide de boulons</u> (en daN)

	_	Épaisseur minimale	e (en mm)		e = 60			e = 75			<i>e</i> = 90	
	Ż	Diamètre des boulons	d (en mm)	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20
	SIMPLE CISAILLEMENT	Nombre de boulons	n = 1	158	211	263	177	236	294	194	258	323
			n = 2	232	310	387	260	346	433	284	379	474
×			n = 3	334	446	557	374	499	623	410	546	683
\supset	SIS,		n = 4	433	578	722	484	646	807	531	708	885
۳	U		n = 5	530	706	883	592	790	987	649	865	1081
	-	Épaisseur minimale	e (en mm)		e = 60			<i>e</i> = 75			<i>e</i> = 90	
RESINEUX	DOUBLE CISAILLEMENT	Diamètre des boulons	d (en mm)	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20	d = 12	<i>d</i> = 16	d = 20
~	DOUBLE	Nombre de boulons	n = 1	297	397	496	333	443	554	364	486	607
	5 4		n = 2	437	583	729	489	652	815	535	714	892
	\[\begin{array}{c} \b		n = 3	630	839	1049	704	939	1173	771	1028	1285
	SIS		n = 4	816	1088	1359	912	1216	1520	999	1332	1665
	J		n = 5	997	1329	1662	1115	1486	1858	1221	1628	2035
	SIMPLE	Épaisseur minimale	e (en mm)		e = 60			e = 75			<i>e</i> = 90	
		Diamètre des boulons	d (en mm)	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20	d = 12	<i>d</i> = 16	<i>d</i> = 20
	SIMPLE	Nombre de boulons	n = 1	232	310	387	260	346	433	285	379	474
	₩		n = 2	341	455	569	382	509	636	418	558	697
S	S H		n = 3	492	656	820	550	733	917	602	803	1004
\supset	SI		n = 4	637	850	1062	712	950	1187	780	1041	1301
5			n = 5	779	1039	1298	871	1161	1452	954	1272	1590
FEUILLUS	-	Épaisseur minimale	e (en mm)		e = 60			<i>e</i> = 75			<i>e</i> = 90	
Ē	u Z	Diamètre des boulons	d (en mm)	d = 12	<i>d</i> = 16	<i>d</i> = 20	d = 12	<i>d</i> = 16	<i>d</i> = 20	d = 12	<i>d</i> = 16	<i>d</i> = 20
ш	DOUBLE	Nombre de boulons	n = 1	548	731	914	613	818	1022	672	896	1119
			n = 2	806	1075	1343	901	1201	1502	987	1316	1645
	PC		n = 3	1161	1548	1935	1298	1730	2163	1422	1896	2370
	FEU DOUBLE CISAILLEMENT		n = 4	1504	2005	2507	1681	2242	2802	1842	2456	3070
	$\overline{\Box}$											

Dans tout le document F est l'effort <u>non pondéré</u> appliqué à l'assemblage. Si vous disposez d'un effort F déjà pondéré, divisez-le par 1,35.

2.2. ASSEMBLAGES BOIS-MÉTAL PAR BOULONS ET BROCHES

PRÉSENTATION DE L'ASSEMBLAGE

F Effort de cisaillement non pondéré [daN] Nombre de boulons/broches nDiamètre des boulons/broches d [mm] Épaisseur de la pièce métallique [mm] b_1 b_2 Épaisseur de la (des) pièce(s) bois [mm] $=b_2$ [mm] e

DOMAINE DE VALIDITÉ DE LA MÉTHODE SIMPLE

TYPE D'ASSEMBLAGE assemblage bois-métal par boulons et broches soumis <u>uniquement au cisaillement</u>

boulons et broches perpendiculaires au fil du bois

5 organes maximum

la surface de connexion ne doit pas excéder 300x300 mm²

Nature des bois utilisés

Massif/reconstitué résineux C18 à C30, feuillus D18 à D30
 Lamellé collé résineux GL20 à GL30

- Épaisseur de 36 à 200 mm

PLAQUES D'ACIER

- Épaisseur de 4 à 10 mm

CHOIX DES BOULONS

Diamètre de 12 à 20 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 400 \text{ N/mm}^2$

CHOIX DES BROCHES

- Diamètre de 8 à 18 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 400 \text{ N/mm}^2$

Exécution

Les zones sollicitées de l'assemblage doivent être exemptes de défauts rédhibitoires

- Les boulons et broches disposés sur la même fibre de bois doivent être décalés pour éviter le fendage

Les méthodes présentées en pages 20 et 21 ne sont valables que si le domaine de validité présenté ici et les règles d'espacements et de distances aux bords présentées en page suivante sont respectés

RÈGLES SIMPLIFIÉES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Tableau 14 – Espacements et distances aux bords simplifiés

	Distances
a_{boulon} (ou a_{broche})	5 <i>d</i>
a_{file}	4 d
$a_{extrémité}$ chargée	7 d
$a_{extrémité}$ non chargée	7 d
a_{rive} chargée	4 <i>d</i>
a_{rive} non chargée	3 <i>d</i>

Les règles d'espacements et de distances aux bords des boulons et broches présentées ci-dessus sont simplifiées dans le but d'une application aisée. Si pour un dimensionnement d'assemblage les règles simplifiées ci-dessous ne vous permettent pas de placer vos boulons et broches par manque de place, considérez la possibilité d'utiliser les règles complètes d'espacements et de distances aux bords des boulons et broches de l'Eurocode 5 présentées en Annexe, page 38.

DIMENSIONNEMENT À L'AIDE DE FORMULES SIMPLES

Vérification du cisaillement des boulons et broches : on doit avoir $R \ge F$ (effort non-pondéré)

Calcul de la résistance en <u>simple</u> cisaillement (a) [daN]

 $R=1,3~d~\sqrt{e} imes n_{ef}~~$ pour les résineux $R=1,7~d~\sqrt{e} imes n_{ef}~~$ pour les feuillus

Formules valables pour les boulons Pour les broches multiplier par 0,8 Calcul de la résistance en <u>double</u> cisaillement avec <u>métal à l'extérieur</u> (b) [daN]

(formules valables pour l'assemblage complet)

 $R = 2,7 \ d \sqrt{e} \times n_{ef}$ pour les résineux $R = 3,6 \ d \sqrt{e} \times n_{ef}$ pour les feuillus

Formules valables pour les boulons Pour les broches multiplier par 0,8 Calcul de la résistance en <u>double</u> cisaillement avec <u>métal au centre</u> (c) [daN]

(formules valables pour l'assemblage complet)

 $R=3,5~d~\sqrt{e} imes n_{ef}$ pour les résineux

 $extbf{\textit{R}} = extbf{\textit{4}}, extbf{\textit{8}} \; d \, \sqrt{ extbf{\textit{e}}} imes extbf{\textit{n}}_{ef} \quad ext{ pour les feuillus}$

Formules valables pour les boulons Pour les broches multiplier par 0,8

Avec : d diamètre des boulons et broches

e épaisseur minimale des pièces de bois

 n_{ef} nombre efficace de boulons et broches donné par le tableau ci-dessous

Tableau 15 – Nombre efficace de boulons ou broches

n	1	2	3	4	5
n_{ef}	1	1,5	2,1	2,7	3,4

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

<u>Application Numérique :</u>

Pour un assemblage en double cisaillement réalisé pour assembler deux pièces en épicéa de 75 mm avec une plaque métallique de 4 mm au centre. En utilisant 2 boulons de diamètre 12 mm, pour reprendre un effort non-pondéré de cisaillement de 500 daN

On a $e=b_2=75$ mm, et un assemblage double cisaillement avec métal au centre avec :

 $F=500~daN~et~R=3,5~d~\sqrt{e}\times n_{ef}=3,5~\times 12~\sqrt{75}\times 1,5=545~daN~On~a~bien~R\geq F$

Si l'assemblage réalisé sollicite le bois en traction transversale, elle doit être vérifiée tel que présenté en page 36.

DIMENSIONNEMENT À L'AIDE DE TABLEAUX DE VALEURS

Vérification du cisaillement des boulons et broches : on doit avoir $R \ge F$ (effort non-pondéré)

R est donné en daN par lecture directe des tableaux ci-dessous.

Les résistances sont données pour tout l'assemblage et non pas par plan de cisaillement.

Les valeurs sont données pour les boulons. Pour les broches multiplier par 0,8.

e est définie comme l'épaisseur minimale de la (des) pièce(s) de bois (cf. p.19)

Rappel : Il convient de vérifier que le domaine de validité en p. 19 et 20 est respecté, et de vérifier la traction transversale si pertinente

Tableau 16 – Résistance des assemblages bois-métal à l'aide de boulons (en daN)

rabicat	u 16 – Résistai	Épaisseur minimale	e (en mm)		e = 60	,		<i>e</i> = 90			<i>e</i> = 120	
	Þ	Diamètre des boulons	d (en mm)	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20
	# <u> </u>	Nombre de boulons	n = 1	121	161	201	148	197	247	171	228	285
	SIMPLE		n = 2	178	237	296	217	290	362	251	335	419
			n = 3	256	341	426	313	418	522	362	482	603
	S VSI		n = 4	331	442	552	406	541	676	469	625	781
	O		n = 5	405	540	675	496	661	827	573	764	955
	<u> </u>	Épaisseur minimale	e (en mm)		e = 60			<i>e</i> = 90			<i>e</i> = 120	
RESINEUX	DOUBLE CISAILLEMENT MÉTAL À L'EXTÉRIEUR	Diamètre des boulons	d (en mm)	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20
H	DOUBLE CISAILLEMENT ÉTAL À L'EXTÉRIEI	Nombre de boulons	n = 1	251	335	418	307	410	512	355	473	592
Z	DOUBLE AILLEME LÀ L'EXTÉ		n = 2	369	492	615	452	602	753	522	695	869
S	N N N N N N N N N N		n = 3	531	708	885	651	868	1084	751	1002	1252
ŭ	IS.		n = 4	688	918	1147	843	1124	1405	973	1298	1622
~	MÉ		n = 5	841	1122	1402	1030	1374	1717	1190	1586	1983
	. ш	Épaisseur minimale	e (en mm)		e = 60			<i>e</i> = 90			<i>e</i> = 120	
	DOUBLE CISAILLEMENT MÉTAL AU CENTRE	Diamètre des boulons	d (en mm)	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20
	DOUBLE AILLEME AL AU CEN	Nombre de boulons	n = 1	325	434	542	398	531	664	460	613	767
	2 3 3 8		n = 2	478	637	797	586	781	976	676	901	1127
	A PI		n = 3	689	918	1148	843	1125	1406	974	1299	1623
	CIS		n = 4	892	1190	1487	1093	1457	1821	1262	1682	2103
			n = 5	1091	1454	1818	1336	1781	2226	1542	2056	2571
		Épaisseur minimale	<i>e</i> (en mm)		e = 60			<i>e</i> = 90			<i>e</i> = 120	
		Lpaisseur minimale	- (- /									
	Z	Diamètre des boulons	d (en mm)	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20	d = 12	d = 16	d = 20
	'LE :MENT		• •	d = 12 158	d = 16 211	d = 20 263	d = 12 194	d = 16 258	d = 20 323	d = 12 223	d = 16 298	d = 20 372
	MPLE LLEMENT	Diamètre des boulons	d (en mm)									
	SIMPLE	Diamètre des boulons	d (en mm) n = 1	158	211	263	194	258	323	223	298	372
	SIMPLE	Diamètre des boulons	d (en mm) n = 1 n = 2	158 232	211 310	263 387	194 284	258 379	323 474	223 328	298 438	372 547
	SIMPLE	Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3	158 232 334	211 310 446	263 387 557	194 284 410	258 379 546	323 474 683	223 328 473	298 438 631	372 547 788
(0		Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm)	158 232 334 433	211 310 446 578	263 387 557 722	194 284 410 531	258 379 546 708	323 474 683 885	223 328 473 613	298 438 631 817	372 547 788 1021
NS		Diamètre des boulons Nombre de boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5	158 232 334 433	211 310 446 578 706	263 387 557 722	194 284 410 531	258 379 546 708 865	323 474 683 885	223 328 473 613	298 438 631 817 999	372 547 788 1021
TUS		Diamètre des boulons Nombre de boulons Épaisseur minimale	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm)	158 232 334 433 530 d = 12 335	211 310 446 578 706 e = 60 d = 16 446	263 387 557 722 883 d = 20 558	194 284 410 531 649 d = 12 410	258 379 546 708 865 e = 90 d = 16 546	323 474 683 885 1081 d = 20 683	223 328 473 613 749 d = 12 473	298 438 631 817 999 <i>e</i> = 120 d = 16 631	372 547 788 1021 1249 d = 20 789
IIILUS		Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm)	158 232 334 433 530 d = 12	211 310 446 578 706 e = 60 d = 16	263 387 557 722 883 d = 20	194 284 410 531 649 d = 12	258 379 546 708 865 <i>e</i> = 90 d = 16	323 474 683 885 1081 d = 20	223 328 473 613 749 d = 12	298 438 631 817 999 <i>e</i> = 120 d = 16	372 547 788 1021 1249 d = 20
SULLUS		Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1	158 232 334 433 530 d = 12 335 492 708	211 310 446 578 706 e = 60 d = 16 446 656 944	263 387 557 722 883 d = 20 558 820 1181	194 284 410 531 649 d = 12 410 602 868	258 379 546 708 865 <i>e</i> = 90 d = 16 546 803 1157	323 474 683 885 1081 d = 20 683 1004 1446	223 328 473 613 749 d = 12 473 695 1002	298 438 631 817 999 e = 120 d = 16 631 927 1336	372 547 788 1021 1249 d = 20 789 1159 1670
FEUILLUS		Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4	158 232 334 433 530 d = 12 335 492 708 918	211 310 446 578 706 e = 60 d = 16 446 656 944 1224	263 387 557 722 883 d = 20 558 820 1181 1529	194 284 410 531 649 d = 12 410 602 868 1124	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498	323 474 683 885 1081 d = 20 683 1004 1446 1873	223 328 473 613 749 d = 12 473 695 1002 1298	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730	372 547 788 1021 1249 d = 20 789 1159 1670 2163
FEUILLUS	. "	Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons Nombre de boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5	158 232 334 433 530 d = 12 335 492 708	211 310 446 578 706 e = 60 d = 16 446 656 944 1224 1496	263 387 557 722 883 d = 20 558 820 1181	194 284 410 531 649 d = 12 410 602 868	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498 1832	323 474 683 885 1081 d = 20 683 1004 1446	223 328 473 613 749 d = 12 473 695 1002	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730 2115	372 547 788 1021 1249 d = 20 789 1159 1670
FEUILLUS	DOUBLE CISAILLEMENT MÉTAL À L'EXTÉRIEUR	Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons Nombre de boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm)	158 232 334 433 530 d = 12 335 492 708 918 1122	211 310 446 578 706 e = 60 d = 16 446 656 944 1224 1496 e = 60	263 387 557 722 883 d = 20 558 820 1181 1529 1870	194 284 410 531 649 d = 12 410 602 868 1124 1374	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498 1832 e = 90	323 474 683 885 1081 d = 20 683 1004 1446 1873 2290	223 328 473 613 749 d = 12 473 695 1002 1298 1586	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730 2115 e = 120	372 547 788 1021 1249 d = 20 789 1159 1670 2163 2644
FEUILLUS	DOUBLE CISAILLEMENT MÉTAL À L'EXTÉRIEUR	Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm)	158 232 334 433 530 d = 12 335 492 708 918 1122 d = 12	211 310 446 578 706 e = 60 d = 16 446 656 944 1224 1496 e = 60 d = 16	263 387 557 722 883 d = 20 558 820 1181 1529 1870	194 284 410 531 649 d = 12 410 602 868 1124 1374 d = 12	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498 1832 e = 90 d = 16	323 474 683 885 1081 d = 20 683 1004 1446 1873 2290 d = 20	223 328 473 613 749 d = 12 473 695 1002 1298 1586 d = 12	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730 2115 e = 120 d = 16	372 547 788 1021 1249 d = 20 789 1159 1670 2163 2644 d = 20
FEUILLUS	DOUBLE CISAILLEMENT MÉTAL À L'EXTÉRIEUR	Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons Nombre de boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm)	158 232 334 433 530 d = 12 335 492 708 918 1122 d = 12 446	211 310 446 578 706 e = 60 d = 16 446 656 944 1224 1496 e = 60 d = 16 595	263 387 557 722 883 d = 20 558 820 1181 1529 1870 d = 20 744	194 284 410 531 649 d = 12 410 602 868 1124 1374 d = 12 546	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498 1832 e = 90 d = 16 729	323 474 683 885 1081 d = 20 683 1004 1446 1873 2290 d = 20 911	223 328 473 613 749 d = 12 473 695 1002 1298 1586 d = 12 631	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730 2115 e = 120 d = 16 841	372 547 788 1021 1249 d = 20 789 1159 1670 2163 2644 d = 20 1052
FEUILLUS	DOUBLE CISAILLEMENT MÉTAL À L'EXTÉRIEUR	Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2	158 232 334 433 530 d = 12 335 492 708 918 1122 d = 12 446 656	211 310 446 578 706 e = 60 d = 16 446 656 944 1224 1496 e = 60 d = 16 595	263 387 557 722 883 d = 20 558 820 1181 1529 1870 d = 20 744 1093	194 284 410 531 649 d = 12 410 602 868 1124 1374 d = 12 546 803	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498 1832 e = 90 d = 16 729 1071	323 474 683 885 1081 d = 20 683 1004 1446 1873 2290 d = 20 911 1338	223 328 473 613 749 d = 12 473 695 1002 1298 1586 d = 12 631 927	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730 2115 e = 120 d = 16 841 1236	372 547 788 1021 1249 d = 20 789 1159 1670 2163 2644 d = 20 1052 1545
FEUILLUS	DOUBLE CISAILLEMENT MÉTAL À L'EXTÉRIEUR	Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3	158 232 334 433 530 d = 12 335 492 708 918 1122 d = 12 446 656 944	211 310 446 578 706 e = 60 d = 16 446 656 944 1224 1496 e = 60 d = 16 595 874 1259	263 387 557 722 883 d = 20 558 820 1181 1529 1870 d = 20 744 1093 1574	194 284 410 531 649 d = 12 410 602 868 1124 1374 d = 12 546 803 1157	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498 1832 e = 90 d = 16 729 1071 1542	323 474 683 885 1081 d = 20 683 1004 1446 1873 2290 d = 20 911 1338 1928	223 328 473 613 749 d = 12 473 695 1002 1298 1586 d = 12 631 927 1336	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730 2115 e = 120 d = 16 841 1236 1781	372 547 788 1021 1249 d = 20 789 1159 1670 2163 2644 d = 20 1052 1545 2226
FEUILLUS	DOUBLE NT CISAILLEMENT TRE MÉTAL À L'EXTÉRIEUR	Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons Nombre de boulons Épaisseur minimale Diamètre des boulons	d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2 n = 3 n = 4 n = 5 e (en mm) d (en mm) n = 1 n = 2	158 232 334 433 530 d = 12 335 492 708 918 1122 d = 12 446 656	211 310 446 578 706 e = 60 d = 16 446 656 944 1224 1496 e = 60 d = 16 595	263 387 557 722 883 d = 20 558 820 1181 1529 1870 d = 20 744 1093	194 284 410 531 649 d = 12 410 602 868 1124 1374 d = 12 546 803	258 379 546 708 865 e = 90 d = 16 546 803 1157 1498 1832 e = 90 d = 16 729 1071	323 474 683 885 1081 d = 20 683 1004 1446 1873 2290 d = 20 911 1338	223 328 473 613 749 d = 12 473 695 1002 1298 1586 d = 12 631 927	298 438 631 817 999 e = 120 d = 16 631 927 1336 1730 2115 e = 120 d = 16 841 1236	372 547 788 1021 1249 d = 20 789 1159 1670 2163 2644 d = 20 1052 1545

Dans tout le document F est l'effort non pondéré appliqué à l'assemblage. Si vous disposez d'un effort F déjà pondéré, divisez-le par 1,35.

VIS ET TIREFONDS

INTRODUCTION

Les méthodes simplifiées présentées dans la section ci-après ont pour objectif de permettre un dimensionnement simple à froid des assemblages de structures bois par vis et tirefonds (bois-bois, bois-panneau et bois-métal), tout en assurant une conformité aux principes de l'Eurocode 5.

Ces méthodes simples sont présentées séparément pour chaque couple de matériaux à assembler (bois-bois, bois-panneau et bois-métal). Elles ne sont valides que dans les limites des domaines de validité et pour les espacements et distances aux bords qui sont définis pour chaque couple de matériaux.

Pour chaque couple de matériaux à assembler, un schéma général introduit les principales notations utilisées dans les formules de calcul.

Le paragraphe « **Domaine de validité de la méthode simple** » donne les exigences à respecter (matériaux, critères d'exécution...) afin de pouvoir utiliser les formules simples et tableaux de valeurs.

Le paragraphe « Règles simplifiées d'espacements et de distances aux bords » permet de déterminer très simplement les espacements et distances aux bords requis. Si au contraire on souhaite optimiser le positionnement des vis et tirefonds, il faut utiliser les règles complètes d'espacements et de distances aux bords de l'Eurocode 5 présentées en Annexe, page 38.

Le paragraphe « **Dimensionnement à l'aide de formules simples** » permet pour un assemblage connu de calculer sa résistance en cisaillement afin de la comparer à l'effort auquel il est soumis. Des applications numériques sont présentées.

Le paragraphe « **Dimensionnement à l'aide de tableaux de valeurs** » permet également pour un assemblage connu de calculer sa résistance en cisaillement, mais cette fois-ci par une lecture directe.

En complément de la vérification au cisaillement des vis et tirefonds, il est nécessaire de **vérifier lorsque c'est pertinent la traction transversale** dans le bois autour des vis et tirefonds. C'est le cas dès que l'effort est appliqué à un angle avec le fil du bois. La méthode de vérification est présentée en Annexe, page 36.

Les efforts mentionnés dans toute cette section sont des efforts réels. Ils sont issus directement de la descente de charges réelles appliquées sur la structure, sans besoin de les pondérer par des coefficients complémentaires. Les coefficients de sécurité sont déjà inclus dans les formules présentées. Si vous ne disposez pas des efforts réels appliqués à votre structure mais uniquement des efforts pondérés, divisez-les par 1,35 pour retrouver des efforts réels non-pondérés afin de pouvoir utiliser les formules de cette section.

3.1. ASSEMBLAGES BOIS-BOIS PAR VIS ET TIREFONDS

PRÉSENTATION DE L'ASSEMBLAGE

F	Effort de cisaillement <u>non pondéré</u>	[daN]
n	Nombre de vis/tirefonds	
d	Diamètre des vis/tirefonds	[mm]
b_1	Épaisseur de l'élément 1	[mm]
b_2	Épaisseur de l'élément 2	[mm]
t_{pen}	Longueur de pénétration	[mm]
e	Minimum entre b_{1} , b_{2} et t_{pen}	[mm]
t_{chev}	Longueur de chevauchement	[mm]

DOMAINE DE VALIDITÉ DE LA MÉTHODE SIMPLE

Type D'ASSEMBLAGE assemblage bois-bois par vis ou tirefonds soumis <u>uniquement au cisaillement</u>

vis et tirefonds perpendiculaires au fil du bois

au moins 2 vis/tirefonds par assemblage, 9 vis/tirefonds maximum $\,$

la surface de connexion ne doit pas excéder 300x300 mm²

■ NATURE DES BOIS UTILISÉS

- Massif/reconstitué résineux C18 à C30, feuillus D18 à D30

- Lamellé collé résineux GL20 à GL30

■ CHOIX DES VIS ET TIREFONDS

- Diamètre de 6 à 12 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 600 \text{ N/mm}^2$

- Longueur de pénétration de la partie fileté $t_{pen} \geq$ 6 d

■ LONGUEUR DE CHEVAUCHEMENT POUR LE SIMPLE CISAILLEMENT DOUBLÉ (a*)

 $- t_{chev} \ge 4 d$

■ Exécution

- Les zones sollicitées de l'assemblage doivent être exemptes de défauts rédhibitoires

- Les vis et tirefonds disposés sur la même fibre de bois doivent être décalés pour éviter le fendage

- Les bois doivent être pré-percés

Les méthodes présentées en pages 25 et 26 ne sont valables que si le domaine de validité présenté ici et les règles d'espacements et de distances aux bords présentées en page suivante sont respectés

RÈGLES SIMPLIFIÉES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Tableau 17 – Espacements et distances aux bords simplifiés

	Distances
a_{vis}	5 <i>d</i>
a_{file}	4 d
$a_{extr m \acute{e}mit m \acute{e}}$ chargée	7 d
$a_{extr m \acute{e}mit m \acute{e}}$ non chargée	7 d
a_{rive} chargée	4 d
a_{rive} non chargée	3 <i>d</i>

Les règles d'espacements et de distances aux bords des vis et tirefonds présentées ci-dessus sont simplifiées dans le but d'une application aisée. Si pour un dimensionnement d'assemblage les règles simplifiées ci-dessous ne vous permettent pas de placer vos vis et tirefonds par manque de place, considérez la possibilité d'utiliser les règles complètes d'espacements et de distances aux bords des vis et tirefonds de l'Eurocode 5 présentées en Annexe, page 38.

DIMENSIONNEMENT À L'AIDE DE FORMULES SIMPLES

Vérification du cisaillement des vis et tirefonds : on doit avoir $R \ge F$ (effort non-pondéré)

Calcul de la résistance en simple cisaillement (a) [daN]

 $R=2,6~d~\sqrt{e} imes n_{ef}$ pour les résineux $R=4,3~d~\sqrt{e} imes n_{ef}$ pour les feuillus

Pour la connexion de 3 éléments en simple cisaillement doublé avec n vis/tirefonds de chaque côté (a*), multiplier ces formules par 2 pour avoir la résistance de l'assemblage complet Calcul de la résistance en double cisaillement (b) [daN]

(formule valable pour l'assemblage complet)

 $R=4,1~d~\sqrt{e} imes n_{ef}$ pour les résineux $R=8,2~d~\sqrt{e} imes n_{ef}$ pour les feuillus

Avec : d diamètre des vis et tirefonds

e épaisseur ou longueur de pénétration la plus petite (minimum entre b_1 , b_2 et t_{pen})

 n_{ef} nombre efficace de vis et tirefonds donné par le tableau ci-dessous

Tableau 18 - Nombre efficace de vis ou tirefonds

n								
n_{ef}	1,5	2,1	2,7	3,4	3,9	4,5	5,1	5,7

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

Application Numérique :

Pour un assemblage en simple cisaillement réalisé pour assembler deux pièces en épicéa C24 de 45 mm d'épaisseur En utilisant 2 vis de diamètre 6 mm et de longueur 75 mm, pour reprendre un effort non-pondéré de cisaillement de 100 daN On a une épaisseur $b_1=b_2=45$ mm et une longueur de pénétration $t_{pen}=75-45=30$ mm. e est le minimum entre b_1 , b_2 et t_{pen} soit 30 mm F=100 daN et R=2,6 d $\sqrt{e}\times n_{ef}=2$,6 \times 6 $\sqrt{30}\times 1$,5 = 128 daN On a bien $R\geq F$

Si l'assemblage réalisé sollicite le bois en traction transversale, elle doit être vérifiée tel que présenté en page 36.

DIMENSIONNEMENT À L'AIDE DE TABLEAUX DE VALEURS

Vérification du cisaillement des vis et tirefonds : on doit avoir $R \ge F$ (effort non-pondéré)

R est donné en daN par lecture directe des tableaux ci-dessous.

Les résistances sont données pour tout l'assemblage et non pas par plan de cisaillement.

Pour la connexion de 3 éléments en simple cisaillement doublé avec n vis/tirefonds de chaque côté (a*), multiplier les valeurs fournies pour le simple cisaillement par 2 afin d'obtenir la résistance de l'assemblage complet. e est définie comme le minimum entre b_1 , b_2 et t_{pen} (cf. p.24)

Rappel : Il convient de vérifier que le domaine de validité en p. 24 et 25 est respecté, et de vérifier la traction transversale si pertinente

Tableau 19 – Résistance des assemblaaes bois-bois à l'aide de vis et tirefonds (en daN)

Tableau 19 – Résistance des assemblages bois-bois à l'aide de vis et tirefonds (en daN)												
		Dimension minimale	e (en mm)		e = 60			e = 75			<i>e</i> = 90	
		Diamètre des vis	d (en mm)	d = 6	d = 8	d = 10	d = 6	d = 8	<i>d</i> = 10	<i>d</i> = 6	d = 8	<i>d</i> = 10
	늘	Nombre de vis	n = 2	178	237	296	199	265	331	217	290	362
	⊒. <u>⊟</u>		n = 3	256	341	426	286	381	477	313	418	522
	SIMPLE CISAILLEMENT		n = 4	331	442	552	370	494	617	406	541	676
	⋛⊒		n = 5	405	540	675	453	604	755	496	661	827
	S		<i>n</i> = 6	477	636	796	534	712	889	585	779	974
Š	5		n = 7	548	731	914	613	817	1022	672	895	1119
ب			n = 8	618	824	1031	691	922	1152	757	1010	1262
RESINE			n = 9	688	917	1146	769	1025	1281	842	1123	1403
<u> </u>		Dimension minimale	e (en mm)	l e	e = 60			<i>e</i> = 75			<i>e</i> = 90	
й		Diamètre des vis	d (en mm)	<i>d</i> = 6	d = 8	d = 10	<i>d</i> = 6	d = 8	<i>d</i> = 10	<i>d</i> = 6	d = 8	<i>d</i> = 10
~	눌	Nombre de vis	n = 2	280	373	467	313	417	522	343	457	572
	# #		n = 3	403	538	672	451	601	752	494	659	823
	DOUBLE		n = 4	523	697	871	584	779	974	640	853	1067
	o I		n = 5	639	852	1065	714	952	1190	782	1043	1304
	DOUBLE CISAILLEMENT		<i>n</i> = 6	753	1004	1254	842	1122	1403	922	1229	1536
	ō		n = 7	865	1153	1441	967	1289	1611	1059	1412	1765
			n = 8	975	1300	1625	1090	1454	1817	1194	1592	1990
			n = 9	1084	1446	1807	1212	1616	2020	1328	1770	2213
									2020	1020		
		Dimension minimale	e (en mm)		e = 60			e = 75			e = 90	
		Diamètre des vis	<i>e</i> (en mm) <i>d</i> (en mm)	d = 6	e = 60 d = 8	d = 10	<i>d</i> = 6	e = 75 d = 8	d = 10	<i>d</i> = 6	e = 90 d = 8	d = 10
	F		e (en mm) d (en mm) n = 2	d = 6 294	e = 60 d = 8 392	<i>d</i> = 10 489	<i>d</i> = 6	<i>e</i> = 75 <i>d</i> = 8 438	<i>d</i> = 10 547	<i>d</i> = 6 360	<i>e</i> = 90 <i>d</i> = 8 480	<i>d</i> = 10 599
	LE MENT	Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3	d = 6 294 423	e = 60 d = 8 392 564	<i>d</i> = 10 489 705	d = 6 328 473	<i>e</i> = 75 <i>d</i> = 8 438 631	d = 10 547 788	<i>d</i> = 6 360 518	<i>e</i> = 90 <i>d</i> = 8 480 691	<i>d</i> = 10 599 863
	1PLE LEMENT	Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4	d = 6 294 423 548	e = 60 d = 8 392 564 731	<i>d</i> = 10 489 705 913	d = 6 328 473 613	 e = 75 d = 8 438 631 817 	d = 10 547 788 1021	d = 6 360 518 671	 e = 90 d = 8 480 691 895 	d = 10 599 863 1119
	SIMPLE	Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5	d = 6 294 423 548 670	e = 60 d = 8 392 564 731 893	d = 10 489 705 913 1117	d = 6 328 473 613 749	 e = 75 d = 8 438 631 817 999 	d = 10 547 788 1021 1248	d = 6 360 518 671 820	 e = 90 d = 8 480 691 895 1094 	d = 10 599 863 1119 1367
	SIMPLE ISAILLEMENT	Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	d = 6 294 423 548 670 789	e = 60 d = 8 392 564 731 893 1053	d = 10 489 705 913 1117 1316	d = 6 328 473 613 749 883	 e = 75 d = 8 438 631 817 999 1177 	d = 10 547 788 1021 1248 1471	d = 6 360 518 671 820 967	 e = 90 d = 8 480 691 895 1094 1289 	d = 10 599 863 1119 1367 1611
Sr	SIMPLE	Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7	d = 6 294 423 548 670 789 907	e = 60 d = 8 392 564 731 893 1053 1209	d = 10 489 705 913 1117 1316 1511	d = 6 328 473 613 749 883 1014	e = 75 d = 8 438 631 817 999 1177 1352	d = 10 547 788 1021 1248 1471 1690	d = 6 360 518 671 820 967 1111	e = 90 d = 8 480 691 895 1094 1289 1481	d = 10 599 863 1119 1367 1611 1851
SN1	SIMPLE CISAILLEMENT	Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8	d = 6 294 423 548 670 789 907 1023	e = 60 d = 8 392 564 731 893 1053 1209 1364	d = 10 489 705 913 1117 1316 1511 1704	d = 6 328 473 613 749 883 1014 1143	e = 75 d = 8 438 631 817 999 1177 1352 1524	d = 10 547 788 1021 1248 1471 1690 1906	d = 6 360 518 671 820 967 1111 1253	e = 90 d = 8 480 691 895 1094 1289 1481 1670	d = 10 599 863 1119 1367 1611 1851 2088
ILLUS	SIMPLE CISAILLEMENT	Diamètre des vis Nombre de vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9	d = 6 294 423 548 670 789 907	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516	d = 10 489 705 913 1117 1316 1511	d = 6 328 473 613 749 883 1014	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695	d = 10 547 788 1021 1248 1471 1690	d = 6 360 518 671 820 967 1111	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857	d = 10 599 863 1119 1367 1611 1851
NILLUS	SIMPLE CISAILLEMENT	Diamètre des vis Nombre de vis Dimension minimale	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm)	d = 6 294 423 548 670 789 907 1023 1137	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60	d = 10 489 705 913 1117 1316 1511 1704 1895	d = 6 328 473 613 749 883 1014 1143	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75	d = 10 547 788 1021 1248 1471 1690 1906 2119	d = 6 360 518 671 820 967 1111 1253 1393	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90	d = 10 599 863 1119 1367 1611 1851 2088 2321
-EUILLUS		Diamètre des vis Nombre de vis Dimension minimale Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm)	d = 6 294 423 548 670 789 907 1023 1137	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8	d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10	d = 6 328 473 613 749 883 1014 1143 1271 d = 6	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10	d = 6 360 518 671 820 967 1111 1253 1393	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10
FEUILLUS		Diamètre des vis Nombre de vis Dimension minimale	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2	d = 6 294 423 548 670 789 907 1023 1137 d = 6 560	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8 747	d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10 933	d = 6 328 473 613 749 883 1014 1143 1271 d = 6 626	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8 835	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10 1044	d = 6 360 518 671 820 967 1111 1253 1393 d = 6	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8 915	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10 1143
FEUILLUS		Diamètre des vis Nombre de vis Dimension minimale Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3	d = 6 294 423 548 670 789 907 1023 1137 d = 6 560 807	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8 747 1076	d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10 933 1344	d = 6 328 473 613 749 883 1014 1143 1271 d = 6 626 902	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8 835 1203	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10 1044 1503	d = 6 360 518 671 820 967 1111 1253 1393 d = 6 686 988	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8 915 1317	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10 1143 1647
FEUILLUS		Diamètre des vis Nombre de vis Dimension minimale Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4	d = 6 294 423 548 670 789 907 1023 1137 d = 6 560 807 1045	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8 747 1076 1393	d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10 933 1344 1742	d = 6 328 473 613 749 883 1014 1143 1271 d = 6 626 902 1168	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8 835 1203 1558	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10 1044 1503 1947	d = 6 360 518 671 820 967 1111 1253 1393 d = 6 686 988 1280	<pre>e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8 915 1317 1707</pre>	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10 1143 1647 2133
FEUILLUS		Diamètre des vis Nombre de vis Dimension minimale Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5	d = 6 294 423 548 670 789 907 1023 1137 d = 6 560 807 1045 1278	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8 747 1076 1393 1703	d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10 933 1344 1742 2129	d = 6 328 473 613 749 883 1014 1143 1271 d = 6 626 902 1168 1428	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8 835 1203 1558 1904	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10 1044 1503 1947 2381	d = 6 360 518 671 820 967 1111 1253 1393 d = 6 686 988 1280 1565	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8 915 1317 1707 2086	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10 1143 1647 2133 2608
FEUILLUS		Diamètre des vis Nombre de vis Dimension minimale Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	d = 6 294 423 548 670 789 907 1023 1137 d = 6 560 807 1045 1278 1505	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8 747 1076 1393 1703 2007	 d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10 933 1344 1742 2129 2509 	d = 6 328 473 613 749 883 1014 1143 1271 d = 6 626 902 1168 1428 1683	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8 835 1203 1558 1904 2244	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10 1044 1503 1947 2381 2805	d = 6 360 518 671 820 967 1111 1253 1393 d = 6 686 988 1280 1565 1844	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8 915 1317 1707 2086 2458	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10 1143 1647 2133 2608 3073
FEUILLUS	L.	Diamètre des vis Nombre de vis Dimension minimale Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7	d = 6 294 423 548 670 789 907 1023 1137 d = 6 560 807 1045 1278 1505 1729	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8 747 1076 1393 1703 2007 2306	d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10 933 1344 1742 2129 2509 2882	d = 6 328 473 613 749 883 1014 1143 1271 d = 6 626 902 1168 1428 1683 1933	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8 835 1203 1558 1904 2244 2578	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10 1044 1503 1947 2381 2805 3222	d = 6 360 518 671 820 967 1111 1253 1393 d = 6 686 988 1280 1565 1844 2118	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8 915 1317 1707 2086 2458 2824	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10 1143 1647 2133 2608 3073 3530
FEUILLUS		Diamètre des vis Nombre de vis Dimension minimale Diamètre des vis	e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 e (en mm) d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	d = 6 294 423 548 670 789 907 1023 1137 d = 6 560 807 1045 1278 1505	e = 60 d = 8 392 564 731 893 1053 1209 1364 1516 e = 60 d = 8 747 1076 1393 1703 2007	 d = 10 489 705 913 1117 1316 1511 1704 1895 d = 10 933 1344 1742 2129 2509 	d = 6 328 473 613 749 883 1014 1143 1271 d = 6 626 902 1168 1428 1683	e = 75 d = 8 438 631 817 999 1177 1352 1524 1695 e = 75 d = 8 835 1203 1558 1904 2244	d = 10 547 788 1021 1248 1471 1690 1906 2119 d = 10 1044 1503 1947 2381 2805	d = 6 360 518 671 820 967 1111 1253 1393 d = 6 686 988 1280 1565 1844	e = 90 d = 8 480 691 895 1094 1289 1481 1670 1857 e = 90 d = 8 915 1317 1707 2086 2458	d = 10 599 863 1119 1367 1611 1851 2088 2321 d = 10 1143 1647 2133 2608 3073

Dans tout le document F est l'effort <u>non pondéré</u> appliqué à l'assemblage. Si vous disposez d'un effort F déjà pondéré, divisez-le par 1,35.

1. POINTES 2. BOULONS ET BROCHES 3. VIS ET TRIREFONDS 4. ANNEXES

3.2. ASSEMBLAGES BOIS-PANNEAU PAR VIS ET TIREFONDS

PRÉSENTATION DE L'ASSEMBLAGE

F	Effort de cisaillement <u>non pondéré</u>	[daN]
n	Nombre de vis/tirefonds	
d	Diamètre des vis/tirefonds	[mm]
b_1	Épaisseur de l'élément 1	[mm]
b_2	Épaisseur de l'élément 2	[mm]
t_{pen}	Longueur de pénétration	
e	Minimum entre b_1 , b_2 et $t_{\it pen}$	[mm]
t_{chev}	Longueur de chevauchement	[mm]

DOMAINE DE VALIDITÉ DE LA MÉTHODE SIMPLE

TYPE D'ASSEMBLAGE assemblage bois-panneau par vis ou tirefonds soumis <u>uniquement au cisaillement</u> vis perpendiculaires au fil du bois

au moins 2 vis/tirefonds par assemblage, 9 vis/tirefonds maximum la surface de connexion ne doit pas excéder 300x300 mm²

NATURE DES MATÉRIAUX UTILISÉS

- Massif/reconstitué résineux C18 à C30, feuillus D18 à D30 - Lamellé collé résineux GL20 à GL30 - Panneaux de particules et OSB densité caractéristique $\rho_k \ge 480 \text{ kg/m}^3$

■ CHOIX DES VIS ET TIREFONDS

- Diamètre de 2,5 à 6 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 600 \text{ N/mm}^2$

- Longueur de pénétration de la partie fileté $t_{pen} \geq$ 6 d

■ LONGUEUR DE PÉNÉTRATION DU CÔTÉ DE LA POINTE

- $t_{pen} \ge 6 d$

■ LONGUEUR DE CHEVAUCHEMENT POUR LE SIMPLE CISAILLEMENT DOUBLÉ (a*)

- $t_{chev} \geq 4 d$

Exécution

- Les zones sollicitées de l'assemblage doivent être exemptes de défauts rédhibitoires
- Les vis et tirefonds disposés sur la même fibre de bois doivent être décalés pour éviter le fendage
- Les bois doivent être pré-percés lorsque leur épaisseur est inférieure à celle donnée par le tableau ci-dessous

Tableau 20 – Dimension minimale des bois sans pré-perçage

Essences	Dimension minimale des bois sans pré-perçage
Résineux peu sensibles à la fissuration	8 d
Feuillus peu sensibles à la fissuration	10 <i>d</i>
Résineux particulièrement sensibles à la fissuration	17 d
Feuillus particulièrement sensibles à la fissuration	21 <i>d</i>

Essences particulièrement sensibles à la fissuration données par NF EN 1995-1-1/NA clause 8.3.1.2(7) : Douglas et Pin Maritime

Les méthodes présentées en pages 28 et 29 ne sont valables que si le domaine de validité présenté ici et les règles d'espacements et de distances aux bords présentées en page suivante sont respectés

RÉGLES SIMPLIFIÉES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Tableau 21 – Espacements et distances aux bords simplifiés

	Bois sans pr	é-perçage	Bois		
	Résineux Feuillus		avec pré- perçage	Panneaux	
a_{vis}	12 <i>d</i>	15 d	13 <i>d</i>	13 d	
a_{file}	5 <i>d</i>	7 d	6 <i>d</i>	6 <i>d</i>	
$a_{extr \in mit}$ chargée	15 d	20 d	20 <i>d</i>	20 <i>d</i>	
$a_{extr \in mit}$ e non chargée	10 d	15 d	15 d	15 d	
a_{rive} chargée	10 d	14 d	12 d	12 d	
a_{rive} non chargée	5 <i>d</i>	7 d	7 d	7 d	

Les règles d'espacements et de distances aux bords des vis et tirefonds présentées ci-dessus sont simplifiées dans le but d'une application aisée. Si pour un dimensionnement d'assemblage les règles simplifiées ci-dessous ne vous permettent pas de placer vos vis et tirefonds par manque de place, considérez la possibilité d'utiliser les règles complètes d'espacements et de distances aux bords des pointes de l'Eurocode 5 présentées en Annexe, page 37.

DIMENSIONNEMENT À L'AIDE DE FORMULES SIMPLES

Vérification du cisaillement des vis et tirefonds : on doit avoir $R \ge F$ (effort non-pondéré)

Calcul de la résistance en simple cisaillement (a) [daN]

 $R = 1,3 \ d \sqrt{e} \times n_{ef}$ pour les résineux $R = 1,7 \ d \sqrt{e} \times n_{ef}$ pour les feuillus

Le pré-perçage augmente la résistance de 10%

Pour la connexion de 3 éléments en simple cisaillement doublé avec n vis/tirefonds de chaque côté (a*), multiplier ces formules par 2 pour avoir la résistance de l'assemblage complet

Avec : diamètre des vis et tirefonds d

épaisseur ou longueur de pénétration la plus petite (minimum entre b_1 , b_2 et $t_{\it pen}$)

nombre efficace de pointes donné par le Tableau 8 et le Tableau 9 ci-dessous n_{ef}

Tableau 22 – Nombre efficace de vis ou tirefonds pour les assemblages sans pré-perçage

	•••								
n	2	3	4	5	6	7	8	$9 \le n \le 12$	$13 \le n \le 16$
n_{ef}	1,9	2,8	3,6	4,4	5,2	6,0	6,8	0,82 x n	0,81 x n

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

Tableau 23 – Nombre efficace de vis ou tirefonds pour les assemblages avec pré-perçage

n	2	3	4	5	6	7	8	9 ≤ <i>n</i> ≤ 12	13 ≤ <i>n</i> ≤ 16
n_{ef}	1,5	1,9	2,2	2,5	2,8	3,0	3,2	0,34 x n	0,30 x n

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

Application Numérique :

Pour un assemblage en simple cisaillement réalisé pour assembler une pièces en épicéa C24 de 60 mm d'épaisseur et un panneau OSB de 18mm d'épaisseur, en utilisant 2 vis de diamètre 6 mm et de longueur 75 mm, pour reprendre un effort non-pondéré de cisaillement de 30 daN On a $b_1=18mm$ et $b_2=60mm$ et une longueur de pénétration $t_{pen}=75-18=57$ mm. e est le minimum entre b_1 , b_2 et t_{pen} soit 18 mm F=60~daN et $R=1.7~d~\sqrt{e}\times n_{ef}=1.7~\times 6~\sqrt{18}\times 1.9=82~daN$ On a bien $R\geq F$

Si l'assemblage réalisé sollicite le bois en traction transversale, elle doit être vérifiée tel que présenté en page 36.

DIMENSIONNEMENT À L'AIDE DE TABLEAUX DE VALEURS

Vérification du cisaillement des vis et tirefonds : on doit avoir $R \ge F$ (effort non-pondéré)

R est donné en daN par lecture directe des tableaux ci-dessous.

Les résistances sont données pour des assemblages sans pré-perçage. Le pré-perçage augmente la résistance de 10%. Pour la connexion de 3 éléments en simple cisaillement doublé avec n vis/tirefonds de chaque côté (a*), multiplier les valeurs fournies par 2 afin d'obtenir la résistance de l'assemblage complet. e est définie comme le minimum entre b_1 , b_2 et t_{pen} (cf. p.27)

Rappel : Il convient de vérifier que le domaine de validité en p. 27 et 28 est respecté, et de vérifier la traction transversale si pertinente

Tableau 24 – Résistance des assemblages bois- panneau à l'aide de vis et tirefonds en simple cisaillement <u>sans pré-perçage</u> (en daN)

	Dimension minimale	<i>e</i> (en mm)	-	e =	10			e =	12			e =	15	
	Diamètre des vis	d (en mm)	d = 3	d = 4	d = 5	= 6	d = 3	d = 4	d = 5	<i>d</i> = 6	d = 3	d = 4	d = 5	d = 6
×	Nombre de vis	n = 2	25	33	42	50	27	37	46	55	31	41	51	61
\supset		n = 3	37	49	61	73	40	54	67	80	45	60	75	90
빌		n = 4	48	64	80	96	52	70	87	105	59	78	98	117
ESIN		n = 5	59	78	98	118	64	86	107	129	72	96	120	144
ES		<i>n</i> = 6	70	93	116	139	76	102	127	152	85	114	142	170
~		n = 7	76	102	127	152	84	111	139	167	93	124	156	187
		n = 8	87	116	145	174	95	127	159	191	107	142	178	213
		n = 9	98	131	163	196	107	143	179	215	120	160	200	240
	Dimension minimale	<i>e</i> (en mm)		e =	10			e =	12			e =	15	
	Dimension minimale Diamètre des vis	<i>e</i> (en mm) <i>d</i> (en mm)	<i>d</i> = 3	e = d = 4	10 d = 5	d = 6	<i>d</i> = 3	e = d = 4	12 d = 5	d = 6	d = 3	e = d = 4	15 d = 5	d = 6
S		- 	<i>d</i> = 3			<i>d</i> = 6	<i>d</i> = 3			<i>d</i> = 6	<i>d</i> = 3			<i>d</i> = 6
	Diamètre des vis	d (en mm)		d = 4	d = 5			d = 4	d = 5			d = 4	d = 5	
	Diamètre des vis	d (en mm) n = 2	30	d = 4 41	<i>d</i> = 5	61	33	<i>d</i> = 4	d = 5	67	37	<i>d</i> = 4 50	<i>d</i> = 5	75
ILLU	Diamètre des vis	d (en mm) n = 2 n = 3	30 45	<i>d</i> = 4 41 59	<i>d</i> = 5 51 74	61 89	33 49	<i>d</i> = 4 45 65	<i>d</i> = 5 56 81	67 98	37 55	<i>d</i> = 4 50 73	d = 56291	75 109
EUILLU	Diamètre des vis	d (en mm) n = 2 n = 3 n = 4	30 45 58	d = 4 41 59 77	d = 5 51 74 97	61 89 116	33 49 64	d = 4456585	d = 5 56 81 106	67 98 127	37 55 71	d = 4 50 73 95	d = 5 62 91 119	75 109 142
ILLU	Diamètre des vis	d (en mm) n = 2 n = 3 n = 4 n = 5	30 45 58 71	d = 4 41 59 77 95	d = 5 51 74 97 119	61 89 116 143	33 49 64 78	d = 4 45 65 85 104	d = 5 56 81 106 130	67 98 127 157	37 55 71 88	d = 4 50 73 95 117	d = 5 62 91 119 146	75 109 142 175
EUILLU	Diamètre des vis	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	30 45 58 71 85	d = 441597795113	d = 5 51 74 97 119 141	61 89 116 143 169	33 49 64 78 93	d = 4 45 65 85 104 123	d = 5 56 81 106 130 154	67 98 127 157 185	37 55 71 88 104	d = 4 50 73 95 117 138	d = 5 62 91 119 146 173	75 109 142 175 207

Dans tout le document F est l'effort non pondéré appliqué à l'assemblage. Si vous disposez d'un effort F déjà pondéré, divisez-le par 1,35.

3.3. ASSEMBLAGES BOIS-MÉTAL PAR VIS ET TIREFONDS

PRÉSENTATION DE L'ASSEMBLAGE

\boldsymbol{F}	Effort de cisaillement <u>non pondéré</u>	[daN]
n	Nombre de vis	
d	Diamètre des vis	[mm]
b_1	Épaisseur de l'élément 1 (métal)	[mm]
b_2	Épaisseur de l'élément 2 (bois)	[mm]
t_{pen}	Longueur de pénétration	
e	Minimum entre b_2 et $t_{\it pen}$	[mm]
t_{chev}	Longueur de chevauchement	[mm]

DOMAINE DE VALIDITÉ DE LA MÉTHODE SIMPLE

■ TYPE D'ASSEMBLAGE assemblage bois-métal par vis et tirefonds soumis <u>uniquement au cisaillement</u>

vis et tirefonds perpendiculaires au fil du bois au moins 2 vis par assemblage, 9 vis maximum la surface de connexion ne doit pas excéder 300x300 mm²

Nature des matériaux utilisés

- Massif/reconstitué résineux C18 à C30, feuillus D18 à D30

- Lamellé collé résineux GL20 à GL30

CHOIX DES VIS ET TIREFONDS

- Diamètre de 6 à 12 mm

- Qualité d'acier résistance caractéristique en traction $f_{u,k} \ge 600 \text{ N/mm}^2$

- Longueur de pénétration de la partie fileté $t_{pen} \geq$ 6 d

■ LONGUEUR DE CHEVAUCHEMENT POUR LE SIMPLE CISAILLEMENT DOUBLÉ (a*)

- $t_{chev} \ge 4 d$

PLAQUES D'ACIER

- Épaisseur de 4 à 10 mm

- Exécution

Les zones sollicitées de l'assemblage doivent être exemptes de défauts rédhibitoires

- Les vis et tirefonds disposés sur la même fibre de bois doivent être décalés pour éviter le fendage

Les méthodes présentées en pages 31 et 32 ne sont valables que si le domaine de validité présenté ici et les règles d'espacements et de distances aux bords présentées en page suivante sont respectés

RÈGLES SIMPLIFIÉES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Tableau 25 – Espacements et distances aux bords simplifiés

	Distances
a_{vis}	5 <i>d</i>
a_{file}	4 <i>d</i>
$a_{extr ext{\'e}mit ext{\'e}}$ chargée	7 d
$a_{extr ext{\'e}mit ext{\'e}}$ non chargée	7 d
a_{rive} chargée	4 <i>d</i>
a_{rive} non chargée	3 <i>d</i>

Les règles d'espacements et de distances aux bords des vis et tirefonds présentées ci-dessus sont simplifiées dans le but d'une application aisée. Si pour un dimensionnement d'assemblage les règles simplifiées ci-dessous ne vous permettent pas de placer vos vis et tirefonds par manque de place, considérez la possibilité d'utiliser les règles complètes d'espacements et de distances aux bords des vis et tirefonds de l'Eurocode 5 présentées en Annexe, page 38.

DIMENSIONNEMENT À L'AIDE DE FORMULES SIMPLES

Vérification du cisaillement des vis et tirefonds : on doit avoir $R \ge F$ (effort non-pondéré)

Calcul de la résistance en simple cisaillement (a) [daN]

 $R = 2, 1 d \sqrt{e} \times n_{ef}$ pour les résineux $R = 2, 9 d \sqrt{e} \times n_{ef}$ pour les feuillus

Pour la connexion de 3 éléments en simple cisaillement doublé avec n vis/tirefonds de chaque côté (a*), multiplier ces formules par 2 pour avoir la résistance de l'assemblage complet

Avec : d diamètre des vis et tirefonds

e épaisseur de bois ou longueur de pénétration la plus petite (minimum entre b_2 et t_{pen})

 n_{ef} nombre efficace de vis et tirefonds donné par le tableau ci-dessous

Tableau 26 - Nombre efficace de vis ou tirefonds

	2				6	7	8	9
n_{ef}	1,5	2,1	2,7	3,4	3,9	4,5	5,1	5,7

Valeurs de n_{ef} simplifiées ; pour un calcul plus fin, voir page 40.

<u>Application Numérique :</u>

Pour un assemblage en simple cisaillement doublé réalisé pour assembler une pièce en épicéa C24 de150 mm d'épaisseur avec deux plaques métalliques de 4 mm (une de chaque côté).

En utilisant de chaque côté 2 vis de diamètre 6 mm et de longueur 120 mm, pour reprendre un effort non-pondéré de cisaillement de 300 daN On a une épaisseur $b_2=150$ mm et une longueur de pénétration $t_{pen}=120-4=116$ mm. e est le minimum entre b_2 et t_{pen} soit 116 mm.

 $F = 300 \ daN$ et $R = 2 \times 2.9 \ d\sqrt{e} \times n_{ef} = 2 \times 2.9 \times 6\sqrt{116} \times 1.5 = 562 \ daN$ On a bien $R \ge F$

Si l'assemblage réalisé sollicite le bois en traction transversale, elle doit être vérifiée tel que présenté en page 36.

DIMENSIONNEMENT À L'AIDE DE TABLEAUX DE VALEURS

Vérification du cisaillement des vis : on doit avoir $R \ge F$ (effort non-pondéré)

R est donné en daN par lecture directe des tableaux ci-dessous.

Pour la connexion de 3 éléments en simple cisaillement doublé avec n vis/tirefonds de chaque côté (a*), multiplier les valeurs fournies par 2 afin d'obtenir la résistance de l'assemblage complet.

e est définie comme le minimum entre b_2 et t_{pen} (cf. p.30)

Rappel : Il convient de vérifier que le domaine de validité en p. 30 et 31 est respecté, et de vérifier la traction transversale si pertinente

Tableau 27 – Résistance des assemblages bois-métal à l'aide de vis et tirefonds <u>en simple cisaillement</u> (en daN)

	Dimension minimale	e (en mm)		e = 60			e = 75			<i>e</i> = 90	
	Diamètre des vis	d (en mm)	d = 6	d = 8	d = 10	d = 6	d = 8	d = 10	d = 6	d = 8	d = 10
×	Nombre de vis	n = 2	143	191	239	160	214	267	176	234	293
\supset		n = 3	207	275	344	231	308	385	253	337	422
Z		n = 4	268	357	446	299	399	499	328	437	546
SIL		n = 5	327	436	545	366	488	610	401	534	668
ES		n = 6	386	514	643	431	575	718	472	630	787
~		n = 7	443	591	738	495	660	825	542	723	904
		n = 8	499	666	832	558	745	931	612	816	1019
		n = 9	555	740	925	621	828	1035	680	907	1133
	Dimension minimale	e (en mm)		e = 60			e = 75			e = 90	
	Dimension minimale Diamètre des vis	e (en mm) d (en mm)	<i>d</i> = 6	e = 60 d = 8	d = 10	<i>d</i> = 6	e = 75 d = 8	d = 10	d = 6	e = 90 d = 8	d = 10
S		•	<i>d</i> = 6	,	<i>d</i> = 10	d = 6 221		<i>d</i> = 10 369	d = 6 243	·	<i>d</i> = 10 404
	Diamètre des vis	d (en mm)		d = 8			d = 8			d = 8	
	Diamètre des vis	d (en mm) n = 2	198	<i>d</i> = 8 264	330	221	d = 8 295	369	243	d = 8	404
ILLU	Diamètre des vis	d (en mm) n = 2 n = 3	198 285	d = 8 264 380	330 475	221 319	d = 8 295 425	369 532	243 349	d = 8 323 466	404 582
UILLU	Diamètre des vis	d (en mm) n = 2 n = 3 n = 4	198 285 370	d = 8 264 380 493	330 475 616	221 319 413	d = 8 295 425 551	369 532 689	243 349 453	d = 8 323 466 604	404 582 754
ILLU	Diamètre des vis	d (en mm) n = 2 n = 3 n = 4 n = 5	198 285 370 452	d = 8 264 380 493 602	330 475 616 753	221 319 413 505	d = 8 295 425 551 674	369 532 689 842	243 349 453 553	d = 8 323 466 604 738	404 582 754 922
EUILLU	Diamètre des vis	d (en mm) n = 2 n = 3 n = 4 n = 5 n = 6	198 285 370 452 532	d = 8 264 380 493 602 710	330 475 616 753 887	221 319 413 505 595	d = 8 295 425 551 674 794	369 532 689 842 992	243 349 453 553 652	d = 8 323 466 604 738 869	404 582 754 922 1087

Dans tout le document F est l'effort non pondéré appliqué à l'assemblage. Si vous disposez d'un effort F déjà pondéré, divisez-le par 1,35.

Page laissée blanche intentionnellement

ANNEXES

INTRODUCTION

Ce projet confié par le CODIFAB à la société C4Ci a eu pour objectif principal la simplification des formules de calcul de l'Eurocode 5 concernant la résistance en cisaillement des assemblages par tiges métalliques. Ces méthodes simplifiées ont été présentées dans les parties précédentes.

En complément de la vérification au cisaillement des organes, il est nécessaire de vérifier la traction transversale dans le bois autour des boulons et broches, dès que l'effort est appliqué à un angle avec le fil du bois. La méthode de vérification de la traction transversale est présentée en Annexe au §4.1, page 36.

Il peut être utile dans certains cas où la simplification concernant les règles d'espacements et de distances aux bords est jugée trop conservatrice de s'appuyer sur les règles complètes de l'Eurocode 5, §8. Les règles complètes d'espacements et de distances au bord de l'Eurocode 5, §8, réorganisées de manière synthétique par typologie d'assemblage pour en faciliter la lecture, sont présentées en Annexe au §4.2.

Enfin, l'objectif souhaité par le comité de pilotage du projet était d'aboutir à des formules aussi simples à utiliser que celles des Règles CB 71, tout en restant en sécurité par rapport à un calcul strictement conforme à l'Eurocode 5. Pour atteindre cet objectif, une démarche en trois temps a été engagée. Il a été jugé utile de permettre au lecteur de comprendre la démarche qui a été suivie et d'appréhender la manière dont ces règles simplifiées se positionnent vis-à-vis du calcul précis selon l'Eurocode 5, §8. La méthodologie suivie pour aboutir aux règles simplifiées de ce guide est présentée en Annexe au §4.3.

4.1. VÉRIFICATION SIMPLE DE LA TRACTION TRANSVERSALE DU BOIS

Cette vérification n'est à effectuer que lorsqu'au moins une des pièces de bois assemblées est soumise à la traction transversale, c'est-à-dire lorsqu'il existe un angle entre l'effort et le fil du bois d'une des pièces assemblées. Cet angle est noté α .

Dans le cas où l'élément soumis à la traction transversale est en deux parties (moises), la largeur b à prendre en compte est la largeur totale des deux parties

On doit avoir $R \geq F \times \sin \alpha$

Calcul de la résistance à la traction transversale [daN]

$$R = 8,6 \times \frac{b \times h_{trac}}{h}$$

Avec : b largeur de l'élément soumis à la traction transversale

h hauteur de l'élément soumis à la traction transversale

 h_{trac} hauteur soumise à la traction transversale

 $\sin \alpha$ donné par le tableau 7 ci-dessous

La formule est valable si la poutre de hauteur h est continue des deux côtés de l'assemblage. Dans le cas contraire, diviser la résistance par 2.

Tableau 28 – Sinus de l'angle α

α [°]	5	10	15	20	25	30	35	40	45	50	55	60	65	70	80	90
sin α	0,09	0,17	0,26	0,34	0,42	0,50	0,57	0,64	0,71	0,77	0,82	0,87	0,91	0,94	0,98	1,00

<u>Application Numérique :</u>

Pour un assemblage en double cisaillement en C24 avec un élément central en 100×150 et deux éléments latéraux en 75×180

L'effort F non pondéré auquel est soumis l'assemblage réalisés à l'aide de 2 boulons de diamètre 16 est de 500 daN

Ce sont les éléments latéraux qui sont soumis à la traction transversale et l'angle est de 45°

Et la hauteur soumise à la traction transversale est de 120 mm

Vérification de la traction transversale :

 $F \times sin \propto = 500 \times 0.71 = 355 \, daN$

 $R = 8.6 \times \frac{b \times h_{trac}}{h} = 8.6 \times \frac{(75 \times 2) \times 120}{180} = 860 \ daN$

V'erification du double cisaillement:

 $R = 3.2 \ d \sqrt{e} \times n_{ef} = 3.2 \times 16 \sqrt{75} \times 1.5 = 665 \ daN$

On a bien $R \ge F$

4.2. RÈGLES COMPLÈTES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Les règles complètes d'espacements et de distances aux bords de l'Eurocode 5 sont présentées aux paragraphes suivants.

Notations utilisées dans le présent guide (exemple des pointes)

POINTES

Tableau 29 – Règles complètes d'espacements de distances aux bords pour un assemblage par pointes

Notation utilisée dans	Notation	Sans pré	Avoc pró porcago	
le présent guide	Eurocode 5	$ ho_k \leq 420[ext{kg/m}^3]$	$420 < ho_k \leq 500\mathrm{[kg/m^3]}$	Avec pré-perçage
a_{pointe}	a_1	$d < 5mm : (5 + 5 \cos \alpha) \cdot d$ $d \ge 5mm : (5 + 7 \cos \alpha) \cdot d$	$(7+8 \cos\alpha)\cdot d$	$(4+ \cos\alpha)\cdot d$
a_{file}	a_2	5 <i>d</i>	7 <i>d</i>	$(3 + \sin \alpha) \cdot d$
$a_{extr cute{e}mit cute{e}}$ chargée	$a_{3,t}$	$(10+5\cdot\cos\alpha)\cdot d$	$(15+5\cdot\cos\alpha)\cdot d$	$(7+5\cdot\cos\alpha)\cdot d$
$a_{extr m \acute{e}mit m \acute{e}}$ non chargée	$a_{3,c}$	10 <i>d</i>	15 <i>d</i>	7 <i>d</i>
a_{rive} chargée	$a_{4,t}$	$d < 5mm : (5 + 2 \cdot \sin \alpha) \cdot d$ $d \ge 5mm : (5 + 5 \cdot \sin \alpha) \cdot d$	$d < 5mm : (7 + 2 \cdot \sin \alpha) \cdot d$ $d \ge 5mm : (7 + 5 \cdot \sin \alpha) \cdot d$	$d < 5mm : (3 + 2 \cdot \sin \alpha) \cdot d$ $d \ge 5mm : (3 + 4 \cdot \sin \alpha) \cdot d$
a_{rive} non chargée	$a_{4,c}$	5 <i>d</i>	7 <i>d</i>	3 <i>d</i>

NOTE 1 : ρ_k est la densité caractéristique de la pièce considérée

NOTE 2 : dans les panneaux : les distances a_{pointe} et $\,a_{file}$ peuvent être réduites de 15%

BOULONS ET BROCHES

Tableau 30 – Règles complètes d'espacements de distances aux bords pour un assemblage par boulons

Notation utilisée dans le présent guide	Notation Eurocode 5	Distance minimum
a_{boulon}	a_1	$(4 + \cos \alpha) \cdot d$
a_{file}	a_2	4d
$a_{extr cute{mit}cute{e}}$ chargée	$a_{3,t}$	max(7 <i>d</i> ; 80 <i>mm</i>)
$a_{extrémit\acute{e}}$ non chargée	$a_{3,c}$	$90^{\circ} \le \alpha < 150^{\circ}$ $(1 + 6 \sin \alpha)d$ $150^{\circ} \le \alpha < 210^{\circ}$ $4d$ ° $210^{\circ} \le \alpha < 270^{\circ}$ $(1 + 6 \sin \alpha)d$
a_{rive} chargée	$a_{4,t}$	$\max([2+2\sin\alpha]d;3d)$
a_{rive} non chargée	$a_{4,c}$	3d

Tableau 31 – Règles complètes d'espacements de distances aux bords pour un assemblage par broches

Notation utilisée dans le présent guide	Notation Eurocode 5	Distance minimum
a_{broche}	a_1	$(3 + 2\cos\alpha) \cdot d$
a_{file}	a_2	3d
$a_{extrémité}$ chargée	$a_{3,t}$	max(7 <i>d</i> ; 80 <i>mm</i>)
$a_{extr émit \acute{ ext{e}}}$ non chargée	$a_{3,c}$	$90^{\circ} \le \alpha < 150^{\circ} \max(a_{3,t} \sin \alpha d; 3d)$ $150^{\circ} \le \alpha < 210^{\circ} 3d$ $210^{\circ} \le \alpha < 270^{\circ} \max(a_{3,t} \sin \alpha d; 3d)$
a_{rive} chargée	$a_{4,t}$	$\max([2+2\sin\alpha]d;3d)$
a_{rive} non chargée	$a_{4,c}$	3d

VIS ET TIREFONDS

Les règles d'espacements de distances aux bords pour les tirefonds sont identiques aux règles pour les boulons, tant que le domaine de validité couvert dans ce document est respecté.

Tableau 32 – Règles complètes d'espacements de distances aux bords pour un assemblage par vis et tirefonds

Notation utilisée dans le présent guide	Notation Eurocode 5	Distance minimum	
a_{vis}	a_1	$(4 + \cos \alpha) \cdot d$	
a_{file}	a_2	4d	
$a_{extr cute{mit}cute{e}}$ chargée	$a_{3,t}$	max(7 <i>d</i> ; 80 <i>mm</i>)	
$a_{extr \acute{e}mit \acute{e}}$ non chargée	$a_{3,c}$	$90^{\circ} \le \alpha < 150^{\circ}$ $(1 + 6 \sin \alpha)d$ $150^{\circ} \le \alpha < 210^{\circ}$ $4d$ ° $210^{\circ} \le \alpha < 270^{\circ}$ $(1 + 6 \sin \alpha)d$	
a_{rive} chargée	$a_{4,t}$	$\max([2+2\sin\alpha]d;3d)$	
a_{rive} non chargée	$a_{4,c}$	3 <i>d</i>	

4.3. MÉTHODOLOGIE DE PROJET

Le présent guide est le fruit d'un projet qui a couru sur l'ensemble de l'année 2015. Ce projet confié par le CODIFAB à la société C4Ci a eu pour objectif principal la simplification des formules de calcul de l'Eurocode 5 concernant la résistance en cisaillement des assemblages par tiges métalliques.

Les paragraphes ci-après présentent de façon synthétique les différentes méthodes de simplification qui ont été utilisées, afin que le lecteur curieux ou averti puisse en comprendre les tenants et les aboutissants. Ces paragraphes seront utiles également dans l'éventualité d'une future révision du présent guide et des méthodes de calcul qui y sont présentées.

SIMPLIFICATION DU CALCUL DE LA RÉSISTANCE EN CISAILLEMENT

L'objectif souhaité par le comité de pilotage du projet était d'aboutir à des formules aussi simples à utiliser que celles des Règles CB 71, tout en restant en sécurité par rapport à un calcul strictement conforme à l'Eurocode 5. Pour atteindre cet objectif, une démarche en trois temps a été engagée.

Dans un premier temps, pour chaque type d'assembleur, les résultats des calculs de la résistance caractéristique au cisaillement $F_{v,Rk}$ réalisés strictement suivant l'Eurocode 5 ont été comparés sur le domaine de validité visé à ceux réalisés suivant un ensemble de formules génériques simples :

$$e, d, d^2, d \times e, d^2 \times e, \sqrt{e}, d\sqrt{e}$$
 et $d^2\sqrt{e}$

La justesse des approximations par ces formules simples a été évaluée en mesurant les coefficients de corrélation. C'est la forme connue des Règles CB 71 en $d\sqrt{e}$ qui a présenté dans tous les cas la meilleure approximation de l'Eurocode 5 (coefficients de corrélation r^2 supérieurs à 0,85).

Dans un second temps, le coefficient k de la formule k $d\sqrt{e}$ a été calibré :

- pour chaque type d'assembleur : pointes, boulons, broches, vis, tirefonds ;
- pour chaque mode de sollicitation : simple cisaillement, double cisaillement ;
- pour chaque couple de matériaux pertinent : bois-bois, bois-panneau, bois-métal ;
- pour chaque type de bois : résineux massif, résineux lamellé, feuillus massif ;
- et pour d'autres options selon les cas : pointes avec/sans pré-perçage, plaques métalliques minces/épaisses...

Comme illustré par le schéma ci-dessous, la calibration du coefficient k a été faite dans un souci de sécurité des formules simplifiées vis-à-vis d'un calcul de $F_{v,Rk}$ suivant l'Eurocode 5. Cette calibration a été effectuée sur la résistance caractéristique de l'assemblage complet, et non par plan de cisaillement, ceci afin de permettre un calcul direct.

Dans un troisième et dernier temps, le coefficient k a été transformé en k' :

- pour permettre le calcul d'une résistance de calcul et non caractéristique, et
- pour permettre l'utilisation d'efforts non pondérés,

avec : $k'=k\times \frac{k_{mod}}{\gamma_M\times 1,35}$ où : k_{mod} = 0,6 et γ_M = 1,25 pour le lamellé collé et 1,3 pour le bois massif

SIMPLIFICATION DES RÈGLES D'ESPACEMENTS ET DE DISTANCES AUX BORDS

Les règles complètes d'espacements et de distances aux bords présentées en page 37 ont été simplifiées de manière conservatrice en considérant pour chaque situation le cas le plus défavorable possible : l'angle α de la force par rapport au fil du bois est pris tel que $\cos\alpha = \sin\alpha = 1$ dans tous les cas.

Tableau 33 : Exemple de valeurs de l'angle α pour la simplification des règles pour les pointes

Notation utilisée dans le présent guide	Notation Eurocode 5	Situation la plus défavorable obtenue pour
a_{pointe}	a_1 (parallèle au fil)	$\alpha=0^{\circ}$
a_{file}	a_2 (perpendiculaire au fil)	_
$a_{extr émit \acute{e}}$ chargée	$a_{3,t}$ (extrémité chargée)	_
$a_{extr m \acute{e}mit m \acute{e}}$ non chargée	$a_{3,c}$ (extrémité non chargée)	$\alpha = 90^{\circ}$
a_{rive} chargée	$a_{4,t}$ (rive chargée)	$\alpha = 90^{\circ}$
a_{rive} non chargée	$a_{4,c}$ (rive non chargée)	-

SIMPLIFICATION DU CALCUL DU NOMBRE EFFICACE D'ORGANES

Pointes :

Soit n_{90} files de n_0 pointes de diamètre d parallèles au fil du bois, il convient de calculer la capacité résistante parallèle au fil, à partir du nombre efficace d'organes n_{ef} défini par :

$$n_{ef} = n_{90} \left(n_0^{k_{ef}} \cdot \frac{90 - \alpha}{90} + n_0 \cdot \frac{\alpha}{90} \right)$$
 (1)

Avec : α angle entre la fibre du bois et la direction de la force k_{ef} défini par le tableau ci-dessous

Tableau 34 – Valeurs de k

rubiedu 34 – Valeurs de Kef					
Espacement	k_{ef}				
	Sans pré-perçage	Avec pré-perçage			
$a_1 \ge 14d$	1,0	1,0			
$a_1 = 10d$	0,85	0,85			
$a_1 = 7d$	0,7	0,7			
$a_1 = 4d$	-	0,5			

Note : pour des espacements intermédiaires, une interpolation linéaire est autorisée

La formule (1) est adaptée pour l'Eurocode 5 à partir de la formule n°210 de la DIN 1052 : 2004-08

Suite à la simplification des règles d'espacements, $a_1=12d$ au minimum sans pré-perçages, et $a_1=5d$ au minimum avec pré-perçages, ce qui conduit aux valeurs conservatrices de k_{ef} (obtenue par interpolation linéaire) :

$$k_{ef} = \begin{cases} 0.925 & sans\ pr\'e\ perçages \\ 0.567 & avec\ pr\'e\ perçages \end{cases}$$

En considérant ensuite de manière conservatrice que toutes les n pointes sont parallèles au fil du bois (d'où $n_0=n$ et $n_{90}=1$) et que l'angle α entre la fibre du bois et la direction de la force est nul, on obtient :

$$n_{ef} = n^{k_{ef}}$$

• Boulons, broches, vis et tirefonds :

Les règles suivantes sont communes pour les boulons, broches, vis et tirefonds dans les domaines de validité de chacun de ces assembleurs.

Soit n_{90} files de n_0 organes de diamètre d parallèles au fil du bois, il convient de calculer la capacité résistante parallèle au fil, à partir du nombre efficace d'organes n_{ef} tel que :

$$n_{ef} = n_{90} \left(\left[\min \left\{ n_0^{0,9} \cdot \sqrt[4]{\frac{a_1}{13d}} \right\} \right] \cdot \frac{90 - \alpha}{90} + n_0 \cdot \frac{\alpha}{90} \right)$$
 (2)

Avec : α angle entre la fibre du bois et la direction de la force (entre 0° et 90°)

La formule (2) est adaptée pour l'Eurocode 5 à partir de la formule n°210 de la DIN 1052 : 2004-08

Suite à la simplification des règles d'espacements, $a_1 = 5d$ au minimum, ce qui conduit à :

$$n_{ef} = n_{90} \left(0.788 \times n_0^{0.9} \cdot \frac{90 - \alpha}{90} + n_0 \cdot \frac{\alpha}{90} \right)$$

En considérant ensuite de manière conservatrice que toutes les n pointes sont parallèles au fil du bois (d'où $n_0=n$ et $n_{90}=1$) et que l'angle α entre la fibre du bois et la direction de la force est nul, on obtient :

$$n_{ef} = 0.788 \times n^{0.9}$$

DIMENSIONNEMENT SIMPLIFIÉ A FROID DES ASSEMBLAGES BOIS PAR TIGES

CONFORMÉMENT AUX EUROCODES

Ce guide s'adresse aux professionnels de la filière bois, qui, dans le cadre de chantiers de structures bois courantes, se trouvent confrontés à des problématiques de dimensionnement des assemblages par tiges métalliques (pointes, boulons, broches, vis et tirefonds).

Le lecteur trouvera dans ces pages des méthodes simples de dimensionnement à froid pour ces assemblages : simple et double cisaillement, bois-bois, bois-panneau et/ou bois-métal selon les cas. Chaque technique d'assemblage fait l'objet d'une section à part. Dans chaque section une introduction présente les notations utilisées, les règles simplifiées d'espacements et de distances aux bords, et le domaine de validité des méthodes simples. Ces méthodes sont par la suite déclinées en formules simples et tableaux de valeurs, et illustrées par des applications numériques.

Le lecteur trouvera dans la section annexe de ce guide une méthode simple de justification de la traction transversale du bois autour de l'assemblage, les règles complètes d'espacements et de distances aux bords de l'Eurocode, et la méthodologie utilisée pour créer le présent guide.

Notons que ces points de repère n'ont qu'une valeur d'exemple et n'exonèrent pas le professionnel de sa responsabilité de l'exercice de ses devoirs professionnels.

AUTEUR:

2, rue Thomas Edison 67450 Mundolsheim Tel +33 (0) 821 20 85 13 Fax +33 (0) 355 03 56 20 contact.FR@c4ci.eu www.c4ci.fr **FINANCEMENT:**

