LAB #2

2-PAM system block diagram

TRANSMITTER - I

- Pattern generator: random bit generation using Matlab integer uniform distributed pseudo-random generator
 - BITS = RANDI([0 1],[Nbits,1])

TRANSMITTER - II

Driver

- It maps the logical signal into the electrical signal
- It depends on the signal s(t), i.e. the pulse
- It depends on α_k , i.e. unipolar or antipodal
- The signal at the output of the driver it is an analog signal: in Matlab we have a sampled version of it
 - How do we define the SAMPLING TIME?
 - We must respect the sampling theorem

TRANSMITTER - III

Signal bandwidth

Define sampling frequency

TRANSMITTER - III

From sampling frequency to sampling time

$$T_c = \frac{1}{f_c} \longrightarrow T_c = \frac{1}{2 \cdot k \cdot R_S}$$

- Simulation bandwidth $B_{SIM} = 2 \cdot k \cdot R_{S}$
- You can evaluate the number of samples per symbol

$$SpS = \frac{T_S}{T_c} = \frac{T_S}{\frac{1}{2 \cdot k \cdot R_S}} = 2 \cdot k \cdot R_S \cdot T_S = 2 \cdot k \qquad \Rightarrow \qquad B_{SIM} = SpS \cdot R_S$$

TRANSMITTER - III

AWGN CHANNEL - I

- Noise generator: white and Gaussian
 - NOISE = RANDN(N,1)
 - Matlab generated noise has the variance equal to 1
- Which it is the noise level (density)?

AWGN CHANNEL - II

- We MUST set a defined E_b/N₀
- ▶ How to evaluate N₀ and properly scale the noise variance?

$$\frac{E_b}{N_0} = \frac{P_{sig} \cdot T_b}{N_0} = \frac{P_{sig}}{N_0 \cdot R_b}$$

P_{sig} is the average power of the signal Psig = mean(abs(signal).^2)

$$N_0 = \frac{P_{sig}}{\left(\frac{E_b}{N_0}\right) \cdot R_b} \qquad \sigma_n^2 = \frac{N_0}{2} B_{SIM}$$

$$\sigma_n^2 = \frac{N_0}{2} B_{SIM}$$

AWGN CHANNEL - III

Let's evaluate the variance as a function of a given E_h/N_0

$$N_{0} = \frac{P_{sig}}{\left(\frac{E_{b}}{N_{0}}\right) \cdot R_{b}}$$

$$B_{SIM} = SpS \cdot R_{S}$$

$$\frac{P_{sig}}{\left(\frac{E_{b}}{N_{0}}\right) \cdot R_{b}} \cdot SpS \cdot R_{S} = \frac{P_{sig} \cdot SpS}{2 \cdot \left(\frac{E_{b}}{N_{0}}\right)} \frac{R_{S}}{R_{b}} = \frac{P_{sig} \cdot SpS \cdot BpS}{2 \cdot \left(\frac{E_{b}}{N_{0}}\right)}$$

$$NOISE = sigme*PANIDN(N.1)$$

NOISE = sigma*RANDN(N,1)

RECEIVER FILTER - I

- Filter
 - Apply it in the frequency domain: transfer function filters are given
- Matched filter: $H_{RX}(f) = k \cdot S^*(f) e^{-j2\pi f t_0}$

Single pole (RC) filter: $H_{RX}(f) = \frac{1}{1+j\frac{f}{f_p}}$

RECEIVER FILTER - II

- Frequency domain
 - Apply fft to obtain signal spectrum X(f)
 - Filter using H(f)

$$Y(f) = X(f) \cdot H(f)$$

- X(f) and H(f) must have the same length: we want to apply a sample by sample multiplication
- Then, return in time domain using ifft
- WARNING: be careful in using Matlab fft considering the proper positioning of frequency components in the output vector

MATCHED FILTER - I

$$H_{RX}(f) = k \cdot S^*(f) \cdot e^{-j2\pi f t_0}$$

- k is only a scaling factor: it does not affect performances
 - It multiply both signal and noise
- $e^{-j2\pi ft_0}$ is just a linear phase shift, a delay in time: it does not affect performances
 - It delays both signal and noise
- $S^*(f)$: what's that?

MATCHED FILTER - II

 \triangleright S(f) is the Fourier transform of s(t), the pulse

$$x_{TX}(t) = \sum_{k=-\infty}^{+\infty} \alpha_k s(t - kT_S)$$

Example

SAMPLING AND DECISION

Sampling

Determine the optimum sampling instant

Decision

- 2-PAM it is a binary system: compare detected samples with a threshold
- Which is the optimal threshold?

Error counting

Compare TX and RX bit sequences, counting errors

SYNCHRONIZATION: COMMENT

- If the simulation algorithm introduces a delay, you must synchronize the received sequence with respect to the transmitted one
- Suggested frequency domain filtering approach does not introduce a delay

EYE DIAGRAM

RC-filtered 2-PAM: received signal, no noise

RC-filtered 2-PAM: received signal, no noise

RC-filtered 2-PAM: eye diagram

EYE DIAGRAM - I

How to get an eyediagram in Matlab?

EYEDIAGRAM(SIGNAL,2*SpS,2*SpS)

- Be careful!
 - Eyediagram must be launched over a signal with a maximum of about 10⁴ samples otherwise your PC will get stuck

EYE DIAGRAM - II

How to get an eyediagram in Matlab?

EYEDIAGRAM(SIGNAL,2*SpS,2*SpS)

- Be careful!
 - Eyediagram must be launched over a signal with a maximum of about 10⁴ samples otherwise your PC will get stuck