

Testing Explanation Algorithms on Transformers

Mingqi Jiang, Saeed Khorram, Li Fuxin

Introduction

Comparing the underlying decision making process of Transformers and CNNs(ResNet50 and VGG19) by causally perturbing the image regions and observing the change in the output confidence.

Method

Cross-Testing

- Utilize one specific deep model to generate an attribution map by iGOS++, and use another deep model to assess the insertion/deletion metrics
- Insertion metric(Deletion is input image I and the baseline image I are swapped):

$$insertion = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t+1)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

$$operation = \frac{1}{T} \left\langle \sum_{t=0}^{T} \frac{1}{2} \left(f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) + f_c \left(\emptyset^{(t)} (I, \tilde{I}, M) \right) \right) \right\rangle_{p_{data}}$$

Perturbation Ratio $(\frac{t}{T})$

• Fair comparison: normalization $\overline{score} = \frac{(score - b)}{(t - b)}$ where t/b are the top-1/fully-blurred confidences

Minimal Sufficient Explanations(MSEs)

Perturbation Ratio $(\frac{t}{T})$

 \circ Using beam search method of SAG to find diverse set of MSEs:a minimal conjunction /region that achieves a certain high classification confidence P_h

$$f_c(N_i) \ge P_h f_c(I), \max_{n_j \subset N_i} f_c(n_i) < P_h f_c(I)$$

Sub-Explanation Counting

- Construct a tree for each MSE by deleting one patch at a time from a parent node to generate child nodes.
- Stop expansion when the nodes are with a confidence less than 50% compared to the classification confidence on the original image.

Robustness in terms of Insertion and Deletion

_							_								
	Model	l 1	Deletio	on↓	Insertio	n \uparrow	_	Model Pa	ir		Deleti	on↓	Iı	nsertion ↑	
_ Q	Swin-' ResNe VGG1 uantita	et50 9	0.129 0.110 0.125 sults of)9 54	0.943 0.943 0.925 on/inser	7 5	_	Swin-T – ResNet50 Swin-T – VGG19 – using th) → Sw → VGG → Swin	in-T 19 -T	0.1771 (+ 0.2322 (+ 0.1731 (+ 0.2449 (+ nd their	0.1068) 0.0440) 0.1340)	0.81 0.71 0.82	70 (-0.170 79 (-0.10 51 (-0.22 36 (-0.10 heat ma	76) 82) 19)
	Sea Snake				Bakery			Cradle			Cougar		-	Shetlan	-
Origin			© Terr W 2010									e non constituti di di verre da la constituti di da chia di			
Occluded						The State of						The Char			
	VGG19	ResNet50	Swin-T	VGG19	ResNet50	Swin-T	VGG19	ResNet50	Swin-T	VGG19	ResNet50	Swin-T	VGG19	ResNet50	Swin-T

Minimal Sufficient Explanations

Qualitative Cross-Testing Results

 0.8593
 0.0775
 0.0794
 0.8345
 0.1646
 0.0914
 0.9573
 0.1609
 0.1841
 0.7739
 0.4301
 0.3113
 0.8467

		MSEs		(Overlap	=0	Overlap=1		
Model	Mean	Std	Median	Mean	Std	Median	Mean	Std	Median
Swin-T	14.66	5.12	13.00	1.26	0.67	1.00	2.12	2.04	1.00
ResNet50	13.52	4.42	12.00	1.25	0.66	1.00	1.98	1.96	1.00
VGG19	14.10	4.97	12.00	1.27	0.69	1.00	2.08	2.12	1.00

Number of diverse MSEs obtained and by allowing for different degrees of overlap

Sub-Explanation Counting

	Confidence										
Model	$\geq 90 \%$	$\geq 80\%$	$\geq 70\%$	$\geq 60\%$	$\geq 50\%$						
Swin-T	3.16	21.01	85.19	255.47	601.72						
ResNet50	3.21	11.17	40.70	145.19	373.76						
VGG19	3.19	13.86	57.59	158.42	439.52						

Quantitative results of Sub-Explanation Counting

A few example distributions of MSE sizes for different algorithms on random images

(a) Swin-T (b) VGG19 (c) ResNet50 Sub-explanations of different models on an image of the *Spoonbill* class

Conclusion

- Swin-T is more robust to occlusion than CNNs using informative regions generated by iGOS++ and beam search method of SAG
- Swin-T can handle CNNs regions but CNNs can not handle Swin-T regions

This research is supported by National Science Foundation (1751402)