When to use linear regression

- 1: Your two variables should be measured at the **continuous** level.
- **2:** There needs to be a **linear relationship** between the two variables.
- **3:** There should be **no significant outliers**.
- 4: You should have independence of observations,
- 5: Your data needs to show homoscedasticity

Dataset

Variable			Ty	/pe	Description					
Number_claims			Di	iscrete	Number of claims received from the insured per year					
Industrial_city			Bi	nary	Takes the value 1 if insured lives in industrial city (Casablanca, Mohammedia, Kenitra or Tanger), 0 otherwise.					
Gender_male			Bi	nary	Takes the value 1 if the insured is male, 0 if the inured is female					
Industrial_activity			Bi	nary	Takes the value 1 if insured works in industrial firm, 0 otherwise					
Services_activity				Bi	nary	Takes the value 1 if the insured works in the services company (e.g insurance and bank), 0 otherwise				
Age_30				Bi	nary	Takes the value 1 if the insured have an age less than 3 0 otherwise			an 30 years,	
Age_40				Bi	nary	Takes the value 1 if the age of insured varies between 30 and 40 years, 0 otherwise				
Age_60				Binary		Takes the value 1 if the age of insured varies between 40 and 60 years, 0 otherwise				
Status_married				Binary		Takes the value 1 if insured is married, 0 otherwise				
Status_single				Binary		Takes the value 1 if insured is single, 0 otherwise				
Size_family				Discrete		Indicates the size of the family of the insured person				
Exposure			Continuous Indicates coverage period of the insured in 0 and 1				red in the year.	It varies between		
	age	bmi	child	ren	charges	sex_male	smoker_yes	region_northwest	region_southeast	region_southwest
0	19	27.900		0	16884.92400	0	1	0	0	1
1	18	33.770		1	1725.55230	1	0	0	1	0
2	28	33.000		3	4449.46200	1	0	0	1	0
3	33	22.705		0	<u>21984.47061</u>	1	0	1	0	0
4	32	28.880		0	<u>3866.85520</u>	1	0	1	0	0

When to use Logistic regression

- 1) When two Class prediction problem like (0/1 or male/female or yes/no)
- 2) Dataset with High Variance and Low Bias
- 3) NO Significant Outliers
- 4) Required Large Dataset
- 5) Absence of multicollinearity
- 6) Remove correlated inputs

Dataset

object customerID object gender SeniorCitizen int64 Partner object **Dependents** object tenure int64 PhoneService object MultipleLines object InternetService object OnlineSecurity object OnlineBackup object DeviceProtection object **TechSupport** object StreamingTV object object StreamingMovies Contract object **PaperlessBilling** object PaymentMethod object **MonthlyCharges** float64 **TotalCharges** object Churn object

When to use Kmeans Clustering

- 1. Unlabeled Data Sets.
- 2. Nonlinearly Separable Data.
- 3. Speed.
- 4. K-Means Clustering is a simple yet powerful algorithm in data science.
- 5. Scales to large data sets.
- 6. Easily adapts to new examples.
- 7. Guarantees convergence.
- 8. Generalizes to clusters of different shapes and sizes, such as elliptical clusters. class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='deprecated', verbose=0, random_state=None, copy_x=True, n_jobs='deprecated', algorithm='auto')

Interesting use cases for k-means clustering in business

- Consumer segmentation
- Delivery optimisation
- Document sorting and grouping
- Customer retention
- Discount analysis

Dataset:

Spending Score (1-100)

Score assigned by the mall based on customer behavior and spending nature

CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
1	Male	19	15	39

InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product.

Description: Product (item) name. Nominal.

Quantity: The quantities of each product (item) per transaction. Numeric.

InvoiceDate: Invoice Date and time. Numeric, the day and time when each transaction was generated.

UnitPrice: Unit price. Numeric, Product price per unit in sterling.

CustomerID: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer.

Country: Country name. Nominal, the name of the country where each customer resides.

When to use Random Forest Algorithm

- 1. Random forest algorithm can be used for both classifications and regression task.
- 2. It provides higher accuracy through cross validation.
- 3. Random forest classifier will handle the missing values and maintain the accuracy of a large proportion of data.
- 4. If there are more trees, it won't allow over-fitting trees in the model.
- 5. It has the power to handle a large data set with higher dimensionality class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class weight=None, ccp_alpha=0.0, max_samples=None)

Dataset

object customerID gender object SeniorCitizen int64 object Partner object Dependents tenure int64 PhoneService object **MultipleLines** object InternetService object OnlineSecurity object OnlineBackup object DeviceProtection object object **TechSupport** StreamingTV object StreamingMovies object object Contract **PaperlessBilling** object PaymentMethod object **MonthlyCharges** float64 **TotalCharges** object object Churn