Lecture 21: Exam 2 Review

Exam 2

- Exam Questions:
 - 3-4 Problems: Examples/Homework Problems
 - Only SI units [©]
 - Short Conceptual Questions: Lecture Slides
- What to bring:
 - Pen/Pencil
 - Fraser
 - Calculator
 - Formula Sheet is provided on Canvas and will be attached to the Exam
- Date/Time/Location:
 - Tuesday, November 12
 - 1:35-2:50 pm (75 Mins)
 - Gaige 121 (Our Regular Classroom)
- Office Hours:
 - Monday, 12:15-1:15pm, Gaige 245

Velocity and Acceleration

Velocity Vector:

$$\vec{V} = u\vec{i} + v\vec{j} + w\vec{k}$$

Substantial Derivative:

$$\vec{a} = \frac{D\vec{V}}{Dt} = \frac{\partial \vec{V}}{\partial t} + u \frac{\partial \vec{V}}{\partial x} + v \frac{\partial \vec{V}}{\partial y} + w \frac{\partial \vec{V}}{\partial z}$$

Shear Stress at wall (y-0):
$$\tau_{w} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \bigg|_{y=0} = \mu \frac{\partial u}{\partial y} \bigg|_{y=0}$$

Conservation of Mass for a Differential CV

Conservation of mass for a small CV:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$

 If the flow is incompressible: (steady or unsteady)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

In general, continuity equation cannot be used by itself to solve for flow field, however it can be used to:

- 1. Determine if velocity field is incompressible
- 2. Find missing velocity component

Navier Stokes Equations

Cartesian

X-Momentum Equation:
$$\rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right)$$

Y-Momentum Equation:
$$\rho g_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) = \rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right)$$

Z-Momentum Equation:
$$\rho g_z - \frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) = \rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right)$$

Steps to solve a problem:

- 1. Continuity & Navier Stokes Equations
- 2. Simplify the equations based on appropriate assumptions
- 3. Integrate the differential equation
- 4. Apply **Boundary Conditions** to find the final answer

Appropriate Assumptions

1D, 2D, 3D Flow

Steady State Flow

Incompressible Flow

Fully Developed Flow in One Direction

Pressure Changes

Gravity Effects

Boundary Conditions

Solid Surface:
$$\vec{V} = \vec{V}_{wall}$$

→ No slip condition, No transpiration

Inlet or Outlet: Known \overrightarrow{V} and P

Free Surface: P = P_{atm} and $\tau_{surface} = 0$

Fully developed flow in x direction: $\frac{\partial}{\partial x} = 0$

Fully developed flow in y direction: $\frac{\partial^2}{\partial y} = 0$

Examples

Dimensional Analysis Experimental Testing

Wanapum Dam on Columbia River

Physical Model at Iowa Institute of Hydraulic Research (IIHR)

DDG-51 Destroyer

1/20th scale model

Dimensional Analysis

A method for reducing the number and complexity of experimental variables that affect a given physical phenomenon

n dimensional variables $\rightarrow k$ non-dimensional variables

Dimensions and Units

<u>Dimension:</u> Measure of a physical quantity,

e.g.: length, time, mass

<u>Units:</u> Assignment of a number to a dimension, e.g., (m), (sec), (kg)

7 Primary Dimensions:

1.	Mass	m	(kg)
2.	Length	L	(m)
3.	Time	t	(sec)
4.	Temperature	T or θ	(K)
5.	Current	I	(A)
6.	Amount of Light	С	(cd)
7.	Amount of matter	N	(mol)

All non-primary dimensions can be formed by a combination of the 7 primary dimensions

Examples

- {Velocity} = {Length/Time} = {L/t}
- {Force} = {Mass Length/Time²} = {mL/t²}

Dimensions

Dimensions of Fluid Mechanics Properties
···opor···os

		Difficusions	
Quantity	Symbol	MLTΘ	FLTO
Length	L	L	L
Area	Α	L ²	L^2
Volume	V	L^3	L^3
Velocity	V	LT ⁻¹	LT ⁻¹
Acceleration	dV/dt	LT-2	LT -2
Speed of sound	а	LT -1	LT -1
Volume flow	Q	L^3T^{-1}	L^3T^{-1}
Mass flow	m	<i>MT</i> ^{−1}	FTL ⁻¹
Pressure, stress	ρ, σ, τ	$ML^{-1}T^{-2}$	FL ⁻²
Strain rate	έ	T ⁻¹	T ⁻¹
Angle	θ	None	None
Angular velocity	ω, Ω	T −1	T ⁻¹
Viscosity	μ	$ML^{-1}T^{-1}$	FTL ⁻²
Kinematic viscosity	ν	L^2T^{-1}	L^2T^{-1}
Surface tension	Υ	MT -2	FL ⁻¹
Force	F	MLT ⁻²	F
Moment, torque	M	ML^2T^{-2}	FL
Power	P	ML^2T^{-3}	FLT ⁻¹
Work, energy	W, E	ML^2T^{-2}	FL
Density	ρ	ML^{-3}	FT^2L^{-4}
Temperature	T	Θ	Θ
Specific heat	c_p , c_v	$L^2T^{-2}\Theta^{-1}$	$L^2T^{-2}\Theta^{-1}$
Specific weight	γ	$ML-^{2}T^{-2}$	FL ⁻³
Thermal conductivity	k	<i>MLT</i> − ³ Θ ^{−1}	FT ⁻¹ Θ ⁻¹
Thermal expansion coefficient	β	Θ ⁻¹	Θ ⁻¹

Method of Repeating Variables

- For most problems, there will be more than one dimensionless group. Need a systematic method to find groups.
- We will use the **Method of Repeating Variables (** Π Theorem)

Six steps:

- List the parameters in the problem and count their total number n.
- 2. List the primary dimensions of each of the n parameters. The number of primary dimensions appearing is j.
- 3. Calculate k, the expected number of Π groups, k = n j. (This is called the Buckingham Pi Theorem.)
- 4. Choose *j* repeating parameters.
- 5. Construct the $k \prod$ groups and manipulate as necessary.
- 6. Write the final functional relationship and check algebra.

Dimensional Analysis and Similarity

- Geometric Similarity the model must be the same shape as the prototype. Each dimension must be scaled by the same factor.
- Kinematic Similarity velocity at any point in the model and prototype must be proportional by the same factor
- Dynamic Similarity all forces in the model flow scale by a constant factor to corresponding forces in the prototype flow.
- Complete Similarity is achieved only if all 3 conditions are met. This is not always possible, e.g., river hydraulics models.

Modeling and Similarity

Flow conditions for a model test are completely similar if all relevant dimensionless parameters have the same corresponding values for the model and the prototype.

If
$$Re_m = Re_p$$
 then $C_{Fm} = C_{Fp}$

Table 5.2 Dimensionless Groups in Fluid Mechanics

Parameter	Definition	Qualitative ratio of effects	Importance
Reynolds number	$\mathrm{Re} = \frac{\rho UL}{\mu}$	Inertia Viscosity	Almost always
Mach number	$Ma = \frac{U}{a}$	Flow speed Sound speed	Compressible flow
Froude number	$\mathrm{Fr}=rac{U^2}{gL}$	Inertia Gravity	Free-surface flow
Weber number	$We = \frac{\rho U^2 L}{\Upsilon}$	Inertia Surface tension	Free-surface flow
Rossby number	$\mathrm{Ro} = \frac{U}{\Omega_{\mathrm{earth}} L}$	Flow velocity Coriolis effect	Geophysical flows
Cavitation number (Euler number)	$Ca = \frac{p - p_v}{\frac{1}{2}\rho U^2}$	Pressure Inertia	Cavitation
Prandtl number	$\Pr = rac{\mu c_p}{k}$	Dissipation Conduction	Heat convection
Eckert number	$Ec = \frac{U^2}{c_p T_0}$	Kinetic energy Enthalpy	Dissipation
Specific-heat ratio	$k = \frac{c_p}{c_v}$	Enthalpy Internal energy	Compressible flow
Strouhal number	$St = \frac{\omega L}{U}$	Oscillation Mean speed	Oscillating flow

Table 5.2 Dimensionless Groups in Fluid Mechanics

Parameter	Definition	Qualitative ratio of effects	Importance
Roughness ratio	$\frac{\varepsilon}{L}$	Wall roughness Body length	Turbulent, rough walls
Grashof number	$Gr = \frac{\beta \Delta T g L^3 \rho^2}{\mu^2}$	Buoyancy Viscosity	Natural convection
Rayleigh number	$Ra = \frac{\beta \Delta T g L^3 \rho^2 c_p}{\mu k}$	Buoyancy Viscosity	Natural convection
Temperature ratio	$\frac{T_w}{T_0}$	Wall temperature Stream temperature	Heat transfer
Pressure coefficient	$C_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2}$	Static pressure Dynamic pressure	Aerodynamics, hydrodynamics
Lift coefficient	$C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$	Lift force Dynamic force	Aerodynamics, hydrodynamics
Drag coefficient	$C_D = \frac{D}{\frac{1}{2\rho}U^2A}$	Drag force Dynamic force	Aerodynamics, hydrodynamics
Friction factor	$f = \frac{h_f}{(V^2/2g)(L/d)}$	Friction head loss Velocity head	Pipe flow
Skin friction coefficient	$c_f = rac{ au_{ m wall}}{ ho V^2/2}$	Wall shear stress Dynamic pressure	Boundary layer flow

Review Problems

P4.29: Differential Analysis

Consider a steady, two-dimensional, incompressible flow of a newtonian fluid in which the velocity field is known: u = -2xy, $v = y^2 - x^2$, w = 0. (a) Does this flow satisfy conservation of mass? (b) Find the pressure field, p(x, y) if the pressure at the point (x = 0, y = 0) is equal to p_a .

P4.80: Differential Analysis

Oil, of density ρ and viscosity μ , drains steadily down the side of a vertical plate, as in Fig. P4.80. After a development region near the top of the plate, the oil film speed will become independent of z and of constant thickness δ . Assume that w = w(x) only and that the atmosphere offers no shear resistance to the surface of the film. (a) Solve the Navier-Stokes equation for w(x), and sketch its approximate shape. (b) Suppose that film thickness δ and the slope of the velocity profile at the wall $[\partial w/\partial x]$ wall are measured with a laser-Doppler anemometer (Chap. 6). Find an expression for oil viscosity μ as a function of $(\rho, \delta, g, [\partial w/\partial x])$ wall).

Plate Oil film

P 5-22

As will be discussed in Turbomachinery, the power P developed by a wind turbine is a function of diameter D, air density ρ , wind speed V, and rotation rate ω . Viscosity effects are negligible. Rewrite this relationship in dimensionless form.

Assume ρ , V, and D are the repeating variable.

P 5-62

For the previous example, assume that a small model wind turbine of diameter 90 cm, rotating at 1200 r/min, delivers 280 watts when subjected to a wind of 12 m/s. The data is to be used for a prototype of diameter 50 m and winds of 8 m/s. For dynamic similarity, estimate (a) the rotation rate, and (b) the power delivered by the prototype. Assume sea-level air density.