Thème: HABITAT

RESUME DE COURS DU CHAPITRE 8

Onde sonore

Un son est émis par un objet en vibration (membrane d'un haut-parleur, cordes vocales...). Les vibrations font osciller les molécules de l'air en contact avec l'objet et se communiquent aux molécules voisines qui oscillent à leur tour. La propagation d'un son nécessite donc un milieu matériel (gaz, liquide, solide). Le son ne pas se propage pas dans le vide.

La propagation du son dans un milieu se fait sous la forme d'une onde mécanique de pression. Dans le milieu, des zones de compression alternent périodiquement avec des zones de dépressions et progressent.

Caractéristiques d'une onde sonore

Hauteur d'un son

. . .

Plus la fréquence d'un son est élevée, plus le son est aigu. Plus la fréquence d'un son est faible, plus le son est grave.

Une onde périodique est caractérisé par sa période T en seconde (s). La période est lié à la fréquence f en hertz (Hz) par la relation :

Intensité sonore

On appelle intensité sonore I (ou intensité accoustique), la puissance P reçue par le récepteur par unité de surface S

watt par mètre carré (W.m⁻²)
$$\leftarrow I = \frac{\rho}{s}$$
 watt (W)
mètre carré (m²)

On note I_0 l'intensité sonore de référence. I_0 est la plus petit intensité sonore audible (seuil d'audibilité) pour un son de fréquence $1000\ Hz$

$$I_0 = 10^{-12} W.m^{-2}$$

Niveau sonore *L*

Correspondance entre l'intensité sonore I et le niveau sonore L.

Le niveau sonore L est une grandeur sans unité qui peut être calculé par :

$$L = 10 \log \left(\frac{I}{I_0}\right)$$

Log signifie logarithme décimal, fonction accessible avec la touche \log d'une calculatrice. Un niveau sonore s'exprime en décibels (dB)

Si on doit additionner plusieurs sources sonores, le niveau sonore totale est définit par :

$$L_{tot} = 10 log \left(\frac{I_1 + I_2 + I_3 + \cdots}{I_0} \right)$$

Perception d'un son

La perception d'un son par l'oreille humaine dépend de sa fréquence et de son niveau sonore.

Le diagramme de Fletcher et Munson présente des courbes d'égales sensations auditives (courbes isotoniques). Par exemple, un son de fréquence $100\,Hz$ et de niveau sonore $60\,dB$ provoque la même sensation auditive qu'un son de fréquence $500\,Hz$ et de niveau sonore $40\,dB$. La sensibilité de l'oreille est maximale vers $4000\,Hz$.

Transmission, réflexion, absorption d'une onde sonore

Lorsqu'un son incident arrive sur une paroi, une partie de l'énergie acoustique est transmise.

L'énergie non transmise est absorbée ou réfléchie.

Lors de la réflexion d'une onde sonore sur une paroi, l'angle d'incidence *i* est égal à l'angle de réflexion *r*.

Les sons sont réfléchis, absorbés et transmis par les matériaux qu'ils rencontrent.

Amortissement de l'onde sonore

Le niveau sonore diminue lorsqu'on s'éloigne de la source sonore. Chaque fois que la distance à la source est multiplié par 2, le niveau sonore L diminue de $6\ dB$.

Comment améliorer le confort acoustique dans l'habitat?

Dans l'habitat, les bruits génants se propagent dans l'air (bruits aériens) ou dans les planchers, les cloisons, les tuyauteries (bruits solidens).

Principe de l'isolation acoustique

Une cloison lourde isole mieux qu'une cloison plus légère

• La loi de masse : À épaisseur égale, une cloison en béton isolera mieux qu'une cloison en carreau de plâtre, car à volume égal, le béton est plus lourd que le plâtre.

Schéma d'une paroi « masse-ressort-masse »

• La loi masse-ressort-masse : De l'air, ou un matériau absorbant, situé entre deux parois joue le rôle de ressort amortisseur.

Fenêtre non étanche qui laisse passer les sons

• La loi de l'étanchéité : Une paroi doit être parfaitement étanche pour isoler du bruit : « Là où l'air passe, le bruit passe. »