Algoritmos para Juegos con Información Incompleta y No Determinismo

Rubmary Rojas

Universidad Simón Bolívar, Caracas, Venezuela

Enero 2020

1 Teoría de juegos.

- Teoría de juegos.
- 2 Juegos en forma normal:
 - Modelo y estrategias.
 - ► Equilibrio de Nash.
 - ▶ Regret Matching: algoritmo, experimentos y conclusiones.

- Teoría de juegos.
- 2 Juegos en forma normal:
 - Modelo y estrategias.
 - Equilibrio de Nash.
 - ▶ Regret Matching: algoritmo, experimentos y conclusiones.
- 3 Juegos en forma extensiva:
 - Modelo y estrategias.
 - Kuhn Poker.
 - Counterfactual Regret Minimization (CFR): algoritmo, experimentos y conclusiones.

- Teoría de juegos.
- 2 Juegos en forma normal:
 - Modelo y estrategias.
 - Equilibrio de Nash.
 - ▶ Regret Matching: algoritmo, experimentos y conclusiones.
- 3 Juegos en forma extensiva:
 - Modelo y estrategias.
 - Kuhn Poker.
 - Counterfactual Regret Minimization (CFR): algoritmo, experimentos y conclusiones.
- 4 Conclusiones y Recomendaciones.
- ⑤ Demo.

Teoría de Juegos

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Ciencias sociales Economía Matemática

Computación

Juegos no deterministas con información incompleta

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente.

Interrogantes

- ¿Qué significa que un juego sea resuelto?
- ¿Cuándo un jugador juega de forma óptima?

Objetivo General

Comprender los conceptos en el área de juegos de dos personas que involucran información incompleta y no determinismo, así como implementar los algoritmos para resolverlos, realizando experimentos sobre distintos juegos que son capturados por el modelo.

Forma Normal o Estratégica

Piedra, papel o tijera

	${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	${\mathcal S}$ (tijera)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\mathcal S}$ (tijera)	[-1, 1]	1,-1	0,0

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0,0	-1, 1	1, -1
${\cal P}$ (papel)	1, -1	0,0	-1, 1
$\setminus \mathcal{S}$ (tijera) $/$	-1, 1	1,-1	0,0

jugador 1

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\mathcal P}$ (papel)	\mathcal{S} (tijera)	jugador 2
${\cal R}$ (piedra)	0,0	-1, 1	1, -1	
${\cal P}$ (papel)	1, -1	0,0	-1, 1	
${\cal S}$ (tijera)	-1, 1	1,-1	0,0	

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0,0	-1, 1	1, -1
${\cal P}$ (papel)	1, -1	0,0	-1, 1
${\cal S}$ (tijera)	-1, 1	(1,-1)	0,0

primer jugador **gana** 1

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\cal S}$ (tijera)	-1, 1	(1,-1)	0,0
			1 1

segundo jugador **pierde** 1

Piedra, papel o tijera

\mathcal{R}	(piedra)
${\mathcal P}$	(papel)
${\cal S}$	(tijera)

${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Elementos

- Jugadores.
- **2** Acciones o estrategias puras: \mathcal{R} , \mathcal{P} , \mathcal{S} .
- 3 Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)
$\mathcal S$	(tijera)

${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Juego de dos jugadores de suma cero

Elementos

- Jugadores.
- **2** Acciones o estrategias puras: \mathcal{R} , \mathcal{P} , \mathcal{S} .
- 3 Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

 \mathcal{S} (tijera)

R (piedra)	P (papel)	S (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

 $\mathcal{D}(\mathcal{L}^{1},\mathcal{L}^{2})$ $\mathcal{D}(\mathcal{L}^{2},\mathcal{L}^{2})$ $\mathcal{C}(\mathcal{L}^{2},\mathcal{L}^{2})$

Juego de dos jugadores de suma cero

Elementos

- 1 Jugadores.
- **2** Acciones o estrategias puras: \mathcal{R} . \mathcal{P} . \mathcal{S} .
- 3 Función de pago o utilidades.

Estrategias

- 1 Estrategias puras: siempre se elige la misma acción.
- 2 Estrategias mixtas: cada acción se elige con cierta probabilidad.

Batalla de los sexos

		José		
		ballet	béisbol	
María	ballet	2,1	0,0	
	béisbol	0,0	1,2	

locá

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	2, 1	0,0	
	béisbol	(0,0)	1, 2	

Ninguno obtiene ganancia.

Batalla de los sexos

María obtiene una ganancia mayor que José.

Batalla de los sexos

María ballet béisbol

Jose			
ballet	béisbol		
2,1	0,0		
0,0	(1,2)		

1--4

José obtiene una ganancia mayor que María.

Batalla de los sexos

Conceptos

1 Ganancia Esperada

Valor promedio que un determinado jugador obtendría si jugara infinitas veces cuando cada jugador utiliza una estrategia dada.

1--4

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	2,1	0,0	
ivialia	béisbol	0,0	1,2	

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

Batalla de los sexos

		José		
		ballet	béisbol	
María	ballet	2,1	0,0	\supset
ivialia	béisbol	0,0	1, 2	

Si María siempre elige ballet.

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

Batalla de los sexos

Lo mejor para José es siempre elegir ballet.

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

Batalla de los sexos

María ballet béisbol

Juse		
ballet	béisbol	
2,1	0,0	
0,0	1,2	

1--4

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	(2,1)	0, 0	
ivialia	béisbol	0,0	(1,2)	

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

María no tiene motivos para cambiar su estrategia.

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

José no tiene motivos para cambiar su estrategia.

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	(2,1)	0, 0	
ivialia	béisbol	0,0	(1,2)	

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash

Batalla de los sexos

María

ballet béisbol

J03C		
ballet	béisbol	
2,1	0,0	
0,0	1,2	

locá

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Puede haber cooperación entre los jugadores.

Batalla de los sexos

María bállet béisbol

J056			
ballet	béisbol		
2, 1	0,0		
0,0	1, 2		
<u> </u>			

locá

Lanzar una moneda

- $\mathbf{0}$ cara \Longrightarrow ballet
- $\mathbf{2}$ sello \implies béisbol

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Puede haber cooperación entre los jugadores.

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0, 0	-1, 1	1,-1
${\mathcal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0, 0	-1, 1	1,-1
${\mathcal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

Piedra, papel o tijera

\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)

\mathcal{R}	(pied	Ira)

 \mathcal{P} (papel) \mathcal{S} (tijera)

, , (, (6-6-7)	- (,)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	(1,-1)	0, 0

Piedra, papel o tijera

	${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera
${\cal R}$ (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	(-1, 1)	1,-1	0, 0

Piedra, papel o tijera

\mathcal{R}	(piedra)

 \mathcal{P} (papel) \mathcal{S} (tijera)

\mathcal{R} (piedra)	\mathcal{P} (papel)	S (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

Piedra, papel o tijera

\mathcal{R}	(piedra)
, ,	(picula)

 \mathcal{S} (tijera)

R (piedra)	\mathcal{P} (papel)	S (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	(-1 , 1)
-1, 1	1,-1	0, 0

Piedra, papel o tijera

	${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

No todos los juegos tienen un equilibrio de Nash en estrategias puras.

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\mathcal P}$ (papel)	S (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

No todos los juegos tienen un equilibrio de Nash en estrategias puras.

Teorema de Nash

Todo juego finito tiene al menos un equilibrio de Nash (en estrategias mixtas).

• Equilibrio de Nash como principal concepto de solución.

- Equilibrio de Nash como principal concepto de solución.
- ullet Valor del juego (u): ganancia del primer jugador cuando ambos jugadores utilizan un equilibrio de Nash.

- Equilibrio de Nash como principal concepto de solución.
- ullet Valor del juego (u): ganancia del primer jugador cuando ambos jugadores utilizan un equilibrio de Nash.
- El juego "batalla de los sexos" no cumple estas condiciones.

Esquema General:

Esquema General:

 $oldsymbol{0}$ Se juega de forma repetida a través del tiempo $t=1,2,3,\ldots$

Esquema General:

- f 1 Se juega de forma repetida a través del tiempo $t=1,2,3,\ldots$
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta ${\bf determinada}.$

Esquema General:

- f 1 Se juega de forma repetida a través del tiempo t=1,2,3,....
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta ${\bf determinada}.$
- 3 La estrategia empírica converge a un equilibrio de Nash; en la práctica el algoritmo es detenido después de cierto número de iteraciones.

Esquema General:

- f 1 Se juega de forma repetida a través del tiempo t=1,2,3,...
- 2 A tiempo t+1 cada jugador elige una acción siguiendo una estrategia mixta ${\bf determinada}.$
- 3 La estrategia empírica converge a un equilibrio de Nash; en la práctica el algoritmo es detenido después de cierto número de iteraciones.

Diferentes formas de calcular la estrategia mixta conducen a diferentes algoritmos:

- Regret condicional.
- 2 Regret incondicional.
- 3 Vector invariante de probabilidad.

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Regret

Métrica de **arrepentimiento** de no haber elegido una acción en particular.

\mathcal{R},\mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Tres procedimientos

Regret condicional.

\mathcal{R},\mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Tres procedimientos

1 Regret condicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$egin{array}{c|cccc} \mathcal{S},\mathcal{S} & \mathcal{S},\mathcal{P} & \mathcal{S},\mathcal{S} & ar{u} \\ \hline 0 & 1 & 0 & rac{1}{3} \\ \hline \end{array}$$

$$R_1(\mathcal{R}, \mathcal{S}) = \frac{1}{3} - 0 = \frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Tres procedimientos

1 Regret condicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$\mathcal{P}$$
, \mathcal{S} \mathcal{P} , \mathcal{P} \mathcal{S} , \mathcal{S} \bar{u} -100 $-\frac{1}{3}$

$$R_1(\mathcal{R}, \mathcal{P}) = -\frac{1}{3} - 0 = -\frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional
- Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional
- 2 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$R_1(\mathcal{S}) = \frac{1}{3} - 0 = \frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional
- 2 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$\begin{array}{c|cccc}
\mathcal{P}, \mathcal{S} & \mathcal{P}, \mathcal{P} & \mathcal{P}, \mathcal{S} & \bar{u} \\
\hline
-1 & 0 & -1 & -\frac{2}{3}
\end{array}$$

$$R_1(\mathcal{P}) = -\frac{2}{3} - 0 = -\frac{2}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

			1.5	
Keg	rat	con		nal
1108	,100		IUI	

- Regret incondicional.
- 3 Vector invariante de probabilidad.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

1 Las probabilidades son elegidas proporcional a los regrets positivos.

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret positivo tiende a cero cuando el número de juegos tiende a infinito.

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret positivo tiende a cero cuando el número de juegos tiende a infinito.
- 3 Si el regret positivo es pequeño, la **estrategia empírica** es una aproximación a un equilibrio de Nash.

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret positivo tiende a cero cuando el número de juegos tiende a infinito.
- 3 Si el regret positivo es pequeño, la estrategia empírica es una aproximación a un equilibrio de Nash.

Estrategia Empírica

La probabilidad de que un determinado jugador elija una acción \boldsymbol{a} es igual a:

$$p(a) = \frac{\text{n\'umero de veces que el jugador eligi\'o}\ a}{\text{n\'umero total de juegos}}$$

1 4 juegos para dos jugadores de suma cero.

- 1 4 juegos para dos jugadores de suma cero.
- ${f 2}$ 10 corridas por cada uno de los juegos y cada uno de los procedimientos.

- 1 4 juegos para dos jugadores de suma cero.
- $\mathbf{2}$ 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0,005.

- 1 4 juegos para dos jugadores de suma cero.
- $\mathbf{2}$ 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0,005.
- 4 Gráficas del regret con respecto al número de iteraciones.

- 1 4 juegos para dos jugadores de suma cero.
- $\mathbf{2}$ 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0,005.
- 4 Gráficas del regret con respecto al número de iteraciones.
- 5 Verificación realizada con programación lineal.

- 1 4 juegos para dos jugadores de suma cero.
- ${f 2}$ 10 corridas por cada uno de los juegos y cada uno de los procedimientos.
- 3 Criterio de parada: regret incondicional menor que 0,005.
- 4 Gráficas del regret con respecto al número de iteraciones.
- 5 Verificación realizada con programación lineal.
- O Verificación: la explotabilidad mide la distancia entre la estrategia actual y un equilibrio de Nash.

Piedra, Papel o Tijera

Valor del juego (u): 0.

	А	В	С
Ganancia esperada $u(\sigma)$	-0,000012	0,000004	0,000022
Explotabilidad $arepsilon_{\sigma}$	0,006	0,010	0,009
Tiempo T	12,198	0,345	0,049
Iteraciones I	4.519.054, 1	6.601, 3	19.321, 1
T/I	$2,70{ imes}10^{-6}$	$5,23{ imes}10^{-5}$	$2,54 \times 10^{-6}$

Matching Pennies

- Cada jugador posee una moneda y elige cara o sello.
- 2 Misma elección: gana el primer jugador.
- 3 Elecciones diferentes: gana el segundo jugador.
- 4 Tabla de pagos.

	cara	sello
cara	1	-1
sello	-1	1

Matching Pennies

Valor del juego (u): 0.

	А	В	С
Ganancia esperada $u(\sigma)$	0,000	0,000	0,000
Explotabilidad $arepsilon_{\sigma}$	0,006	0,006	0,008
Tiempo T	10,276	0,777	0,042
Iteraciones I	3.892.550, 4	25.616, 6	16.260, 5
T/I	$2,64{\times}10^{-6}$	$3,03{ imes}10^{-5}$	$2,58{ imes}10^{-6}$

Jugador 2

Jugador 2

Jugador 1

Jugador 1

Jugador 2

Jugador 1

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Jugador 1

Jugador 2

Resultado

• La ficha y el dominó no se superponen: gana el jugador 1.

Jugador 1

Jugador 2

Resultado

- La ficha y el dominó no se superponen: gana el jugador 1.
- 2 La ficha y el dominó sí se superponen: gana el jugador 2.

Valor del juego (u): $\frac{1}{3}$.

	А	В	С
Ganancia esperada $u(\sigma)$	0,333	0,334	0,334
Explotabilidad $arepsilon_{\sigma}$	0,010	0,007	0,004
Tiempo T	319,179	11,275	0,237
Iteraciones I	108.319.272, 4	75.250, 2	84.318, 5
T/I	$2,95{ imes}10^{-6}$	$1,50 \times 10^{-4}$	$2,81 \times 10^{-6}$

ullet S soldados por jugador.

- \bullet S soldados por jugador.
- ullet N campos de batalla.

 \bullet S soldados por jugador.

Jugador 1

ullet N campos de batalla.

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

- ullet S soldados por jugador.
- ullet N campos de batalla.

Jugador 1

- \bullet S soldados por jugador.
- ullet N campos de batalla.

- $u_1 = 1 2 = -1$
- $u_2 = 2 1 = 1$.

Jugador 1

Valor del juego (u): 0.

	А	В	С
Ganancia esperada $u(\sigma)$	0,000219	0,000150	0,000024
Explotabilidad $arepsilon_{\sigma}$	0,010	0,010	0,009
Tiempo T	875,533	70,453	0,166
Iteraciones I	190.222.305, 3	58.794, 4	48.613, 5
T/I	$4,60 \times 10^{-6}$	$1,20{ imes}10^{-3}$	$3,41{ imes}10^{-6}$

1 El equilibrio de Nash es un concepto de solución satisfactorio en juegos en forma normal de dos jugadores de suma cero.

- 1 El equilibrio de Nash es un concepto de solución satisfactorio en juegos en forma normal de dos jugadores de suma cero.
- 2 Los algoritmos de Regret Matching permiten encontrar aproximaciones de un equilibrio de Nash en este tipo de juegos.

- 1 El equilibrio de Nash es un concepto de solución satisfactorio en juegos en forma normal de dos jugadores de suma cero.
- 2 Los algoritmos de Regret Matching permiten encontrar aproximaciones de un equilibrio de Nash en este tipo de juegos.
- 3 El procedimiento "regret condicional" necesita mayor número de iteraciones, y por lo tanto mayor tiempo, para converger.

- 1 El equilibrio de Nash es un concepto de solución satisfactorio en juegos en forma normal de dos jugadores de suma cero.
- 2 Los algoritmos de Regret Matching permiten encontrar aproximaciones de un equilibrio de Nash en este tipo de juegos.
- 3 El procedimiento "regret condicional" necesita mayor número de iteraciones, y por lo tanto mayor tiempo, para converger.
- 4 El procedimiento "vector invariante de probabilidad" es el procedimiento con las iteraciones más costosas.

- 1 El equilibrio de Nash es un concepto de solución satisfactorio en juegos en forma normal de dos jugadores de suma cero.
- 2 Los algoritmos de Regret Matching permiten encontrar aproximaciones de un equilibrio de Nash en este tipo de juegos.
- 3 El procedimiento "regret condicional" necesita mayor número de iteraciones, y por lo tanto mayor tiempo, para converger.
- 4 El procedimiento "vector invariante de probabilidad" es el procedimiento con las iteraciones más costosas.
- **5** El procedimiento "regret incondicional" es el más eficiente.

- 1 El equilibrio de Nash es un concepto de solución satisfactorio en juegos en forma normal de dos jugadores de suma cero.
- 2 Los algoritmos de Regret Matching permiten encontrar aproximaciones de un equilibrio de Nash en este tipo de juegos.
- 3 El procedimiento "regret condicional" necesita mayor número de iteraciones, y por lo tanto mayor tiempo, para converger.
- 4 El procedimiento "vector invariante de probabilidad" es el procedimiento con las iteraciones más costosas.
- 5 El procedimiento "regret incondicional" es el más eficiente.
- 6 Si el regret incondicional es menor a 0,005 por jugador, la estrategia empírica tiene una explotabilidad no mayor que 0,01.

- 1 El equilibrio de Nash es un concepto de solución satisfactorio en juegos en forma normal de dos jugadores de suma cero.
- 2 Los algoritmos de Regret Matching permiten encontrar aproximaciones de un equilibrio de Nash en este tipo de juegos.
- 3 El procedimiento "regret condicional" necesita mayor número de iteraciones, y por lo tanto mayor tiempo, para converger.
- 4 El procedimiento "vector invariante de probabilidad" es el procedimiento con las iteraciones más costosas.
- **5** El procedimiento "regret incondicional" es el más eficiente.
- 6 Si el regret incondicional es menor a 0,005 por jugador, la estrategia empírica tiene una explotabilidad no mayor que 0,01.
- 7 Fue posible resolver diversos juegos en forma normal.

Forma Extensiva

Juegos secuenciales

Juegos secuenciales

Juegos secuenciales

Elementos

 $\textbf{1} \ \, \text{Historias o nodos}. \\ \, \text{Ej: } \emptyset, \ LA, LBb, R. \\$

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBb, R.
- Función que asigna a cada historia (nodo) no terminal un jugador.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBb, R
- Función que asigna a cada historia (nodo) no terminal un jugador.
 - ▶ Nodos de azar.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBb, R
- Punción que asigna a cada historia (nodo) no terminal un jugador.
 - ▶ Nodos de azar.
- 3 Conjuntos de información.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBb, R
- Punción que asigna a cada historia (nodo) no terminal un jugador.
 - ▶ Nodos de azar.
- 3 Conjuntos de información.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBb, R
- Punción que asigna a cada historia (nodo) no terminal un jugador.
 - ▶ Nodos de azar.
- 3 Conjuntos de información.

Juegos secuenciales

- 1 Historias o nodos. Ej: \emptyset , LA, LBb, R
- Función que asigna a cada historia (nodo) no terminal un jugador.
 - Nodos de azar.
- 3 Conjuntos de información.
- 4 Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.

Juegos secuenciales

- Historias o nodos. Ej: \emptyset , LA, LBb, R
- Eunción que asigna a cada historia (nodo) no termina un jugador.
 - Nodos de azar.
- 3 Conjuntos de información.
- 4 Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.

Juegos secuenciales

- **1** Historias o nodos. Ej: \emptyset , LA, LBb, R.
- Función que asigna a cada historia (nodo) no terminal un jugador.
 - ▶ Nodos de azar.
- 3 Conjuntos de información.
- 4 Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.
- Oistribución de probabilidad sobre el conjunto de acciones en cada nodo de azar.

Juegos secuenciales

- **1** Historias o nodos. Ej: \emptyset , LA, LBb, R.
- Función que asigna a cada historia (nodo) no termina un jugador.
 - ▶ Nodos de azar.
- 3 Conjuntos de información.
- Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.
- 5 Distribución de probabilidad sobre el conjunto de acciones en cada nodo de azar.

Juegos secuenciales

Perfect Recall

Se recuerda de forma perfecta todo lo que se ha visto.

- 1 Historias o nodos. Ej: \emptyset , LA, LBb, R
- Función que asigna a cada historia (nodo) no terminal un jugador.
 - Nodos de azar.
- 3 Conjuntos de información.
- 4 Función que asigna por cada historia (nodo) terminal y cada jugador una utilidad.
- 6 Distribución de probabilidad sobre el conjunto de acciones en cada nodo de azar.

	Α	В	C
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1,1	1,1	1,1
(R, b)	1,1	1,1	1, 1

Estrategias

Estrategias Puras.

	Α	В	C
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1,1	1, 1	1,1
(R, b)	1,1	1, 1	1,1

Estrategias

Estrategias Puras.

	Α	В	C
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1,1	1,1	1, 1
(R, b)	1,1	1,1	1,1

Estrategias

Estrategias Puras.

	A	В	С
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1,1	1,1	1,1
(R, b)	1,1	1,1	1,1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

	Α	В	C
(L, a)	0,0	2,4	2, 2
(L, b)	2,4	0,0	2, 2
(R, a)	1,1	1,1	1,1
(R, b)	1,1	1,1	1,1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

	 (R, a) 0.00	

Α	В	C
0.25	0.25	0.50

	Α	В	C
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1, 1	1,1	1,1
(R, b)	1, 1	1,1	1,1

Forma Normal

	Α	В	C
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1, 1	1,1	1,1
(R, b)	1, 1	1,1	1,1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

•	,	•	,	•	,	(R, 0.2	,
_		_				0.2	<u> </u>
A		В 0.25	(_			
0.2	<i>y</i> (J. ZJ	0.				

3 Estrategias de Comportamiento.

Forma Normal

	Α	В	C
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1,1	1,1	1,1
(R, b)	1,1	1,1	1,1

Estrategias

- Estrategias Puras.
- 2 Estrategias Mixtas.

. ,	(L, t	, ,	,	(R, b) 0.25
A 0.25	B 0.25	C 0.50	-)	

3 Estrategias de Comportamiento.

L	R	a	b
0.65	0.35	0.40	0.60

Forma Normal

	Α	В	C
(L, a)	0,0	2,4	2,2
(L, b)	2,4	0,0	2,2
(R, a)	1,1	1,1	1,1
(R, b)	1,1	1,1	1,1

Estrategias

0.25

- Estrategias Puras.
- 2 Estrategias Mixtas.

0.25

(L, a)	(L, b)	(R, a)	(R, b)
0.45	0.30	0.00	0.25
Α	В	С	

0.50

3 Estrategias de Comportamiento.

L	R	a	b
0.65	0.35	0.40	0.60

Equilibrio de Nash

Mejor respuesta frente a la estrategias de sus oponentes.

Kuhn Poker

1 El árbol del juego se recorre repetidamente.

- 1 El árbol del juego se recorre repetidamente.
- 2 Inicia con una estrategia uniforme en cada conjunto de información.

- 1 El árbol del juego se recorre repetidamente.
- 2 Inicia con una estrategia uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.

- 1 El árbol del juego se recorre repetidamente.
- 2 Inicia con una estrategia uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash; en la práctica el algoritmo es detenido después de cierto número de iteraciones.

- 1 El árbol del juego se recorre repetidamente.
- 2 Inicia con una estrategia uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash; en la práctica el algoritmo es detenido después de cierto número de iteraciones.

¿Cómo se mejora la estrategia en cada iteración?

- 1 El árbol del juego se recorre repetidamente.
- 2 Inicia con una estrategia uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash; en la práctica el algoritmo es detenido después de cierto número de iteraciones.

¿Cómo se mejora la estrategia en cada iteración?

 Sumar el regret contrafactual que se tiene en cada conjunto de información por cada acción.

- 1 El árbol del juego se recorre repetidamente.
- 2 Inicia con una estrategia uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash; en la práctica el algoritmo es detenido después de cierto número de iteraciones.

¿Cómo se mejora la estrategia en cada iteración?

- Sumar el regret contrafactual que se tiene en cada conjunto de información por cada acción.
- Regret contrafactual: cuánto mejor lo habría hecho en todos los juegos hasta ahora si siempre hubiera jugado esta acción en este conjunto de información.

- 1 El árbol del juego se recorre repetidamente.
- 2 Inicia con una estrategia uniforme en cada conjunto de información.
- 3 En cada iteración se elige una mejor estrategia revisando las decisiones pasadas, utilizando las métricas de regret.
- 4 La estrategia promedio converge a un equilibrio de Nash; en la práctica el algoritmo es detenido después de cierto número de iteraciones.

¿Cómo se mejora la estrategia en cada iteración?

- Sumar el regret contrafactual que se tiene en cada conjunto de información por cada acción.
- Regret contrafactual: cuánto mejor lo habría hecho en todos los juegos hasta ahora si siempre hubiera jugado esta acción en este conjunto de información.
- Regret Matching: en la nueva estrategia las acciones son elegidas con probabilidades proporcionales a los regrets positivos.

1 CFR con muestreo en los nodos de azar.

- 1 CFR con muestreo en los nodos de azar.
- 2 Implementación propia del algoritmo.

- OFR con muestreo en los nodos de azar.
- 2 Implementación propia del algoritmo.
 - Input: definición del juego.
 - ▶ **Definición del juego**: implementación de las funciones que permiten recorrer el árbol de forma ímplicita.

- 1 CFR con muestreo en los nodos de azar.
- 2 Implementación propia del algoritmo.
 - Input: definición del juego.
 - ▶ **Definición del juego**: implementación de las funciones que permiten recorrer el árbol de forma ímplicita.
- 3 Tres clases de juegos, cada uno con diferentes parámetros.

- 1 CFR con muestreo en los nodos de azar.
- 2 Implementación propia del algoritmo.
 - Input: definición del juego.
 - Definición del juego: implementación de las funciones que permiten recorrer el árbol de forma ímplicita.
- 3 Tres clases de juegos, cada uno con diferentes parámetros.
- 4 10 horas de entrenamiento.

- 1 CFR con muestreo en los nodos de azar.
- 2 Implementación propia del algoritmo.
 - Input: definición del juego.
 - ▶ **Definición del juego**: implementación de las funciones que permiten recorrer el árbol de forma ímplicita.
- 3 Tres clases de juegos, cada uno con diferentes parámetros.
- 4 10 horas de entrenamiento.
- **6** Gráfica del regret con respecto al número de iteraciones.

- 1 CFR con muestreo en los nodos de azar.
- 2 Implementación propia del algoritmo.
 - Input: definición del juego.
 - ▶ **Definición del juego**: implementación de las funciones que permiten recorrer el árbol de forma ímplicita.
- 3 Tres clases de juegos, cada uno con diferentes parámetros.
- 4 10 horas de entrenamiento.
- **5** Gráfica del regret con respecto al número de iteraciones.
- 6 Verificación: la explotabilidad mide la distancia entre la estrategia actual y un equilibrio de Nash.

- 1 CFR con muestreo en los nodos de azar.
- 2 Implementación propia del algoritmo.
 - Input: definición del juego.
 - ▶ **Definición del juego**: implementación de las funciones que permiten recorrer el árbol de forma ímplicita.
- 3 Tres clases de juegos, cada uno con diferentes parámetros.
- 4 10 horas de entrenamiento.
- **5** Gráfica del regret con respecto al número de iteraciones.
- 6 Verificación: la explotabilidad mide la distancia entre la estrategia actual y un equilibrio de Nash.
- 7 Un juego se considera resuelto si la explotabilidad es menor que el 1% de la mínima ganancia positiva posible.

Generalización del Juego Kuhn Poker.

- Generalización del Juego Kuhn Poker.
- N: número de cartas.

- Generalización del Juego Kuhn Poker.
- N: número de cartas.
- ullet OCP(N).

- Generalización del Juego Kuhn Poker.
- N: número de cartas.
- ullet OCP(N).

Tabla de Resultados

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
OCP(3)	55	12	1.181.763.638	-0,056	0,0098	✓
OCP(12)	1.189	48	1.147.919.240	-0,062	0,0032	✓
OCP(50)	22.051	200	1.145.291.974	-0,058	0,0099	✓
OCP(200)	358.201	800	1.128.993.847	-0,056	0,0078	✓
OCP(1000)	8.991.001	4.000	1.087.573.694	-0,056	0,0098	✓
OCP(5000)	224.955.001	20.000	1.038.367.354	-0,056	0,0241	✓

Juego de dados y apuestas.

- Juego de dados y apuestas.
- K: número de caras de los dados.

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.
- Dudo (K, D_1, D_2) .

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.
- ullet Dudo (K, D_1, D_2) .

Tabla de Resultados

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Dudo(4,1,1)	8.177	512	18.697.532	-0,125	0,0259	✓
Dudo(4,1,2)	327.641	14.366	1.215.600	-0,508	0,0971	✓
Dudo(4,2,1)	327.641	14.366	1.213.799	0,552	0,3701	✓
Dudo(4,2,2)	13.107.101	327.680	63.109	0,0069	2,1132	X
Dudo(5,1,1)	51.176	2.560	4.521.208	-0,120	0,1186	✓
Dudo(5,1,2)	4.915.126	163.840	151.235	-0,565	0,6197	✓
Dudo(5,2,1)	4.915.126	163.840	143.698	0,581	0,0122	✓
Dudo(5,2,2)	471.858.976	7.864.320	3.826	0,836	15,1963	X
Dudo(6,1,1)	294.877	12.288	1.067.782	-0,111	0,0975	✓
Dudo(6,1,2)	66.060.163	1.769.472	17.702	-0,593	4,5781	X
Dudo(6,2,1)	66.060.163	1.769.472	17.221	0,592	3,9594	×

- Juego de dados y apuestas.
- K: número de caras de los dados.
- ullet D_1, D_2 : número de dados del primer y segundo jugador, respectivamente.
- ullet Dudo (K, D_1, D_2) .

Tabla de Resultados

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Dudo(4, 1, 1)	8.177	512	18.697.532	-0,125	0,0259	√
	327.641	14.366	1.215.600		0,0971	√
	327.641	14.366	1.213.799		0,3701	√
Dudo(4,2,2)	13.107.101	327.680	63.109	0,0069	2,1132	Х
	51.176	2.560	4.521.208	-0,120	0,1186	√
	4.915.126	163.840	151.235			√
	4.915.126	163.840	143.698	0,581		√
Dudo(5,2,2)	471.858.976	7.864.320	3.826	0,836	15,1963	Х
	294.877	12.288	1.067.782	-0,111		√
Dudo(6,1,2)	66.060.163	1.769.472	17.702	-0,593	4,5781	X
Dudo(6,2,1)	66.060.163	1.769.472	17.221	0,592	3,9594	X

Versión para dos jugadores.

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- ullet N: número de piezas de la mano inicial para cada jugador.

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- lacktriangle N: número de piezas de la mano inicial para cada jugador.
- ullet Domino(M, N).

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- ullet N: número de piezas de la mano inicial para cada jugador.
- lacksquare Domino(M, N).

Tabla de Resultados

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Domino(2,2)	7.321	102	540.186.366	2,4000	0,0000	✓
Domino(3,2)	46.534.657	88.947	400.047.334	2,8767	0,0315	✓
Domino(3,3)	246.760.993	107.854	72.492.951	2,1539	0,3854	✓
Domino(3,4)	1.547.645.185	104.050	11.213.463	3,2034	1,4871	X

- Versión para dos jugadores.
- M: máximo número de puntos en una cara de una pieza.
- ullet N: número de piezas de la mano inicial para cada jugador.
- ullet Domino(M,N).

Tabla de Resultados

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Domino(2,2)	7.321	102	540.186.366	2,4000		/
	46.534.657	88.947	400.047.334	2,8767		/
	246.760.993	107.854	72.492.951	2,1539	0,3854	/
Domino(3,4)	1.547.645.185	104.050	11.213.463	3,2034	1,4871	X

• Juegos no resueltos con 10 horas de entrenamiento.

- Juegos no resueltos con 10 horas de entrenamiento.
- **2**00 horas de entrenamiento.

- Juegos no resueltos con 10 horas de entrenamiento.
- **2**00 horas de entrenamiento.

Tabla de Resultados

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
Dudo(4,2,2)	13.107.101	327.680	2.276.259	0,00875	0,2382	✓
Dudo(5,2,2)	471.858.976	7.864.320	133.863	-0,00004	1,7695	X
Dudo(6,1,2)	66.060.163	1.769.472	543.485	-0,597	0,5102	✓
Dudo(6,2,1)	66.060.163	1.769.472	513.786	0,597	0,6727	✓
Domino(3,4)	1.547.645.185	104.050	365.484.932	3.2027	0,1812	✓

- Juegos no resueltos con 10 horas de entrenamiento.
- 200 horas de entrenamiento.

Tabla de Resultados

Juego	N	I	Iteraciones	$u(\sigma)$	ε_{σ} (%)	Resuelto
	13.107.101		2.276.259			/
Dudo(5,2,2)	471.858.976	7.864.320	133.863	-0,00004	1,7695	X
	66.060.163	1.769.472				√
	66.060.163	1.769.472	513.786		0,6727	√
Domino(3,4)	1.547.645.185	104.050	365.484.932	3.2027	0,1812	√

CFR: Conclusiones

- 1 La forma extesiva es un modelo adecuado para representar juegos secuenciales con información incompleta y no determinismo.
- 2 El algoritmo CFR permite encontrar un equilibrio de Nash en juegos en forma extensiva de dos jugadores de suma cero.
- 3 Se resolvieron diversos juegos captados por el modelos:
 - ▶ OCP: el segundo tiene ventaja sobre el primer jugador: $u \in (-0.7, -0.5)$.
 - Dudo: el jugador con mayor número de dados tiene ventaja.
 - ▶ Domino: el primer jugador tiene ventaja sobre el segundo jugador: $u \in (2, 3.5)$.

Conclusiones

1 Los modelos utilizados son adecuados para los juegos planteados.

Conclusiones

- 1 Los modelos utilizados son adecuados para los juegos planteados.
- 2 El equilibrio de Nash es un concepto de solución satisfactorio en juegos de dos jugadores de suma cero. No lo es cuando el juego no es de suma cero o tiene más de dos jugadores.

Conclusiones

- 1 Los modelos utilizados son adecuados para los juegos planteados.
- ② El equilibrio de Nash es un concepto de solución satisfactorio en juegos de dos jugadores de suma cero. No lo es cuando el juego no es de suma cero o tiene más de dos jugadores.
- 3 Se utilizó la explotabilidad como métrica para medir la distancia entre la estrategia obtenida y un equilibrio de Nash.

Conclusiones

- 1 Los modelos utilizados son adecuados para los juegos planteados.
- ② El equilibrio de Nash es un concepto de solución satisfactorio en juegos de dos jugadores de suma cero. No lo es cuando el juego no es de suma cero o tiene más de dos jugadores.
- 3 Se utilizó la explotabilidad como métrica para medir la distancia entre la estrategia obtenida y un equilibrio de Nash.
- 4 Resolución de juegos: se encontraron aproximaciones con una explotabilidad no mayor que el 1% de la mínima ganancia positiva posible.

Conclusiones

- 1 Los modelos utilizados son adecuados para los juegos planteados.
- ② El equilibrio de Nash es un concepto de solución satisfactorio en juegos de dos jugadores de suma cero. No lo es cuando el juego no es de suma cero o tiene más de dos jugadores.
- 3 Se utilizó la explotabilidad como métrica para medir la distancia entre la estrategia obtenida y un equilibrio de Nash.
- 4 Resolución de juegos: se encontraron aproximaciones con una explotabilidad no mayor que el 1% de la mínima ganancia positiva posible.

Recomendaciones

1 Resolver instancias mayores del juego de dominó para 2 personas considerando abstracciones.

Conclusiones

- 1 Los modelos utilizados son adecuados para los juegos planteados.
- ② El equilibrio de Nash es un concepto de solución satisfactorio en juegos de dos jugadores de suma cero. No lo es cuando el juego no es de suma cero o tiene más de dos jugadores.
- 3 Se utilizó la explotabilidad como métrica para medir la distancia entre la estrategia obtenida y un equilibrio de Nash.
- 4 Resolución de juegos: se encontraron aproximaciones con una explotabilidad no mayor que el 1% de la mínima ganancia positiva posible.

Recomendaciones

- 1 Resolver instancias mayores del juego de dominó para 2 personas considerando abstracciones.
- 2 Experimentos sobre el juego para 4 personas considerando cada pareja como un único jugador.

Demo

Gracias por su atención

¿Preguntas?