بسمه تعالى

- تمرین سری اول درس ساختمان داده ها و مبانی الگوریتم ها
- پاسخ تمرین در قالب یک فایل pdf تایپ شده یا دست نویس اسکن شده (مرتب و خوانا) و با نام StudentNumber_HW1.pdf آپلود شود.
 - مهلت ارسال تمرين تا ساعت 11:59 روز سه شنبه مورخ 29 آبان 1399 مي باشد.
 - در صورتی که درمورد این تمرین سوال یا ابهامی داشتید با ایمیل

dsfall1399@gmail.com با تدریس یاران در ارتباط باشید. لطفا برای ایمیل زدن فرمت زیر را در قسمت subject رعایت کنید:

برای سوال از مباحث مختلف:

«سوال_اسم مبحث» (مثال: «سوال_رشد توابع»)

برای سوال از یک تمرین خاص:

«تمرین_شماره تمرین_شماره سوال» (مثال: «تمرین_۱_۳»)

همچنین خواهشمند است در متن ایمیل به شماره دانشجویی خود اشاره کنید.

تحليل الگوريتم

۱- آرایه T شامل n عنصر متمایز را در نظر بگیرید. بین یک جفت اندیس مانند (j,i) از این آرایه یک نابه جایی وجود دارد اگر:

$$j > i$$
 σ $T[j] < T[i]$

الف) رابطه ی بین زمان اجرای insertion sort و تعداد نابه جاییها در آرایه ی ورودی چیست؟ i و i وجود داشته باشد، نشان دهید این آرایه دارای حداقل i-j نابه جایی است.

۲- زمان اجرای شبه کد زیر را (خط به خط) تحلیل کنید.

```
1. x=0;

2. for(i=1;i<=n;i++){

3. for(j=1;j<=n;j++) x++;

4. j=1;

5. while(j<n){

6. x++; j= j*2;

7. }
```

x- با استفاده از شبه کد زیر میخواهیم index عدد x را در آرایه ی x بیابیم. اگر بدانیم احتمال حضور x در تمام درایههای x ابتدایی آرایه برابر x باشد، در تمام درایههای x میانی برابر x و در تمام درایههای x پایانی برابر x باشد، شبه کد زیر را در بهترین، بدترین و حالت متوسط بررسی کنید(محاسبات را دقیق بنویسید)

```
for(i = 1; i <= n; i++)

if (A[i] == a)

return i
```

مرتب سازی

a + b = k در یک آرایه میخواهیم بررسی کنیم که آیا دو عدد مانند a, b موجود هستند بطوریکه a متغیر): a + b = k یک بار برای آرایه مرتب شده و بار دیگر برای آرایه نامرتب الگوریتمهایی پیشنهاد دهید و پیچیدگی زمانی آن ها را مقایسه کنید. (در حالت حل مساله با آرایهی مرتب شده پیچیدگی زمانی مرتب کردن آرایه را درنظر نگیرید)

رشد توابع

۵- موارد زیر را ثابت کنید.

نکته:

- در مواردی که میخواهید ثابت کنید $A=\Theta(B)$ باید هر دو عبارت A=O(B) و A=O(B) در مواردی که میخواهید ثابت کنید.
 - برای قسمت c و d از تقریب استرلینگ استفاده کنید

a)
$$lg(n!) = \Theta(lg(n^n))$$

b)
$$n^{\frac{1}{\lg n}} = \Theta(1)$$

c)
$$n! = \omega(2^n)$$

d)
$$n! = o(n^n)$$

۶- صحیح یا غلط بودن گزارههای زیر را اثبات کنید(در صورتی که گزاره ها غلط هستند مثال نقض کافیست)

a)
$$f(n) = O(g(n)) \Rightarrow g(n) = O(f(n))$$

b)
$$f(n) + g(n) = \Theta(min(f(n), g(n)))$$

c)
$$f(n) = O(g(n)) \Rightarrow lg(f(n)) = O(lg(g(n))), \forall n : lg(g(n)) \ge 1 \text{ and } f(n) \ge 1$$

d)
$$f(n) = O(g(n)) \implies 2^{f(n)} = O(2^{g(n)})$$

e)
$$f(n) = O(f(n^2))$$

f)
$$f(n) = O(g(n)) \implies g(n) = \Omega(f(n))$$

g)
$$f(n) = \Theta(f(\frac{n}{2}))$$

h)
$$f(n) + o(f(n)) = \Theta(f(n))$$

انند ردیف اول) کنید که به ازای هر جفت (A , B) آیا A از O,o,Ω,ω,Θ تابع B هست یا خیر (مانند ردیف اول) ۷- مشخص کنید که به ازای هر جفت

A	В	0	o	Ω	ω	Θ
n^2	n^3	yes	yes	no	no	no
lg ^k .n	n ^ε					
n^{k}	c ⁿ					
2 ⁿ	2 ^{n/2}					
n ^{lg c}	$c^{\log n}$					
4 ^{lg n}	n^2					
n!	n.2 ⁿ					
$\sqrt{2}^{lg n}$	$2^{\sqrt{2.lg(n)}}$					
(lg(n))!	2 2 "					
$n^{lg(lg(n))}$	$(lg(n))^{lg(n)}$					