

How to Operate the Code

Setup

Of course, ensure MATLAB is installed on your system.

1. Running the Script:

Open MATLAB

Navigate to the directory containing the script
Press the "Run" button or type the script name in the command window

2. Functionality:

The script performs forward kinematics Visualizes the robot in 3D space Calculates inverse kinematics

3. Outputs:

DH transformation matrix 3D visualization of the robot Joint angles from inverse kinematics

4. Modifying Parameters:

Adjust link lengths (l1 to l6) for different robot configurations Modify theta, d, a, and alpha arrays to change the DH parameters

5. Troubleshooting:

Ensure all required functions are in the same directory Check for any error messages in the MATLAB command window

Documentation of Major Functions

Forward Kinematics

The forward kinematics function uses the Denavit-Hartenberg (DH) convention to calculate the end-effector position and orientation.

Mathematical Methods used in this project:

• DH Transformation Matrix

Tabulation of Transformation Matrices from the D-H table

$$\begin{split} & \overset{i-1}{}_{i}T = \begin{bmatrix} \cos(\theta_{i}) & -\sin(\theta_{i}) & 0 & a_{i-1} \\ \cos(\alpha_{i-1})\sin(\theta_{i}) & \cos(\alpha_{i-1})\cos(\theta_{i}) & -\sin(\alpha_{i-1}) & -d_{i}\sin(\alpha_{i-1}) \\ \sin(\alpha_{i-1})\sin(\theta_{i}) & \sin(\alpha_{i-1})\cos(\theta_{i}) & \cos(\alpha_{i-1}) & d_{i}\cos(\alpha_{i-1}) \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & \alpha_{0} = 0, \quad a_{0} = 0, \quad d_{1} = 0 \\ & \alpha_{0} = 0, \quad a_{0} = 0, \quad d_{1} = 0 \\ & \alpha_{0} = 0, \quad a_{0} = 0, \quad d_{1} = 0 \end{split}$$

Chain Multiplication

The final transformation is computed by multiplying individual matrices

Inverse Kinematics

The inverse kinematics function calculates joint angles for a desired endeffector position and orientation.

Using the Geometric Approach:

In order to calculate the wrist angles:

Where R is the rotation matrix from the transformation matrix T06.

Visualization

The visualization function plots the robot's links and joint frames in 3D space using MATLAB's plotting capabilities.

Notable Matlab Syntax:

- plot3() for drawing links
- quiver3() for representing joint frames
- Color coding for easy identification of links and axes