MATH-221: Probability and Statistics

Tutorial # 3 (Random Variables, PMF, PDF, CDF, Functions of Random variable)

1. Define $F: \mathbb{R} \to [0,1]$ by $F(x) = \begin{cases} 0 & \text{if} \quad x < 0 \\ \frac{x^2}{4} & \text{if} \quad 0 \le x \le 2 \\ 1 & \text{if} \quad x > 2 \end{cases}$. Show that F is a distribution

function. Find pdf or pmf (if exists). Also compute $P(1 \le X < 3)$, where X has distribution function F.

Solution: It is easy to verify (students please do verify!) that F satisfies three properties

- (a) $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$.
- (b) F is non-decreasing.
- (c) F is right-continuous.

Hence F is a distribution function of some random variable X. Since F is a continuous function on \mathbb{R} and differentiable everywhere except at x=2, also the derivative is continuous everywhere except at x=2 hence F has pdf as well, which is given by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x < 2\\ 0 & \text{otherwise} \end{cases}.$$

Now

$$P(1 \le X < 3) = P(X < 3) - P(X < 1) = F(3-) - F(1-)$$

$$= F(3) - F(1)(\because F \text{ is continuous})$$

$$= 1 - 1/4 = 3/4$$

2. Let X be a random variable with distribution function F. Find the distribution function of the following random variables in terms of F: (a) $\max\{X,a\}$, where $a \in \mathbb{R}$ (b) $|X|^{\frac{1}{3}}$ (c) |X| (d) e^X (e) $-\ln |X|$.

Solution: (a) For $x \in \mathbb{R}$,

$$\{\max\{X,a\} \le x\} = \{X \le x\} \cap \{a \le x\}$$

Note that if a > x then $\{a \le x\} = \emptyset$ and if $a \le x$ then $\{a \le x\} = \Omega$. Hence

$$\{\max\{X, a\} \le x\} = \begin{cases} \emptyset & \text{if } x < a \\ \{X \le x\} & \text{if } x \ge a \end{cases}$$

Hence distribution function of $Y = \max\{X, a\}$ is denoted by F_Y

$$F_Y(x) = \begin{cases} P(\emptyset) = 0 & \text{if } x < a \\ P\{X \le x\} = F(x) & \text{if } x \ge a \end{cases}$$

(b) For $x \in \mathbb{R}$,

$$\{|X|^{\frac{1}{3}} \le x\} = \begin{cases} \emptyset & \text{if } x < 0 \\ \{|X| \le x^3\} = \{-x^3 \le X \le x^3\} & \text{if } x \ge 0 \end{cases}$$

Hence distribution function of $Y = |X|^{\frac{1}{3}}$ is

$$F_Y(x) = \begin{cases} 0 & \text{if } x < 0 \\ F(x^3) - F((-x^3) -) & \text{if } x \ge 0 \end{cases}$$

(c) For $x \in \mathbb{R}$,

$$\{|X| \le x\} = \left\{ \begin{array}{ll} \emptyset & \text{if} \quad x < 0 \\ \{-x \le X \le x\} & \text{if} \quad x \ge 0 \end{array} \right.$$

Hence distribution function of |X| is

$$F_{|X|}(x) = \begin{cases} 0 & \text{if } x < 0 \\ F(x) - F((-x) -) & \text{if } x \ge 0 \end{cases}$$

(d) For $x \in \mathbb{R}$,

$${e^X \le x} = {\begin{cases} \emptyset & \text{if } x \le 0 \\ {X \le \ln x} & \text{if } x > 0 \end{cases}}$$

Hence distribution function of e^X is

$$F_{e^X}(x) = \begin{cases} 0 & \text{if } x \le 0 \\ F(\ln x) & \text{if } x > 0 \end{cases}$$

(e) We need to assume that $X \neq 0$. For $x \in \mathbb{R}$,

$$\{-\ln|X| \le x\} = \{\ln|X| \ge -x\} = \{|X| \ge e^{-x}\} = \{X \ge e^{-x}\} \cup \{X \le -e^{-x}\}$$

Hence distribution function of $Y = -\ln |X|$ is

$$F_Y(x) = [1 - F(e^{-x})] + F(-e^{-x})$$

3. Let X be the uniform random variable on [0, 1]. Then Determine pdf of (a) \sqrt{X} (b) $X^{\frac{1}{4}}$.

Solution: (a) Let $x \in \mathbb{R}$ be given.

$$P(\sqrt{X} \le x) = \begin{cases} P(\emptyset) & \text{if } x < 0 \\ P\{X \le x^2\} = P(0 \le X \le x^2) & \text{if } x \ge 0 \end{cases}$$

Now if $x \le 1$ then $x^2 \le 1$ hence

$$P(0 \le X \le x^2) = \int_0^{x^2} dt = x^2.$$

and if x > 1 then $x^2 > 1$ hence

$$P(0 \le X \le x^2) = \int_0^1 dt = 1.$$

Hence CDF of $Y = \sqrt{X}$ is

$$F_Y(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^2 & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$$

Since F is a continuous function on \mathbb{R} and differentiable everywhere except at x=1, also the derivative is continuous everywhere except at x=1 hence F has pdf, which is given by

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}.$$

(b) For $x \in \mathbb{R}$,

$$\{X^{\frac{1}{4}} \le x\} = \left\{ \begin{array}{ll} \emptyset & \text{if} \quad x < 0 \\ \{X \le x^4\} = \{0 \le X \le x^4\} & \text{if} \quad x \ge 0 \end{array} \right.$$

Hence distribution function of $Y = X^{\frac{1}{4}}$ is

$$F_Y(x) = \begin{cases} 0 & \text{if } x < 0\\ P(0 \le X \le x^4) & \text{if } x \ge 0 \end{cases}$$

Now if $x \le 1$ then $x^4 \le 1$ hence

$$P(0 \le X \le x^4) = \int_0^{x^4} dt = x^4.$$

and if x > 1 then $x^4 > 1$ hence

$$P(0 \le X \le x^4) = \int_0^1 dt = 1.$$

Hence

$$F_Y(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^4 & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$$

Since F is a continuous function on \mathbb{R} and differentiable everywhere except at x=1, also the derivative is continuous everywhere except at x=1 hence F has pdf as well, which is given by

$$f(x) = \begin{cases} 4x^3 & \text{if } 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}.$$

4. Let X be a random variable with PMF

$$f_X(x) = \begin{cases} \frac{x^2}{a} & \text{if } x = -3, -2, -1, 0, 1, 2, 3 \\ 0 & \text{otherwise} \end{cases}$$

Find a. What is the PMF of the random variable $Z = (X - a)^2$.

Solution: Since f_X is a pmf so

$$1 = \sum_{x=-3}^{3} f_X(x) = \sum_{x=-3}^{3} \frac{x^2}{a} = \frac{2(1+4+9)}{a} = \frac{28}{a} \implies a = 28$$

Range of X-28 is $\{-31, -30, -29, -28, -27, -26, -25\}$. Hence range of Z would be $\{n^2|n=25, \cdots, 31\}$. Now

$$P(Z = n^2) = P(X - 28 = n) + P(X - 28 = -n)$$

- 5. Let X be a binomial random variable with parameters (n, p). What value of p maximizes P(X = k), k = 0, 1, ..., n?
- 6. Let X be a Poisson random variable with parameter λ . If $P(X = 1 | X \le 1) = 0.8$, what is the value of λ ?
- 7. Let X be a normal random variable with parameters μ and σ^2 . Find (a) $P(\mu 2\sigma \le X \le \mu + 2\sigma)$, (b) $P(\mu 3\sigma \le X \le \mu + 3\sigma)$.
- 8. Let X have a geometric distribution with p = 0.8. Compute: (a) P(X > 3); (b) $P(4 \le X \le 7 \text{ or } X > 9)$; (c) $P(3 \le X \le 5 \text{ or } 7 \le X \le 10)$.

Solution: We have p = 0.8, q = 0.2 and the PMF as $f_X(x) = \begin{cases} q^{i-1}p \text{ if } x = i \text{ and } i = 1, 2, \cdots \\ 0, & \text{otherwise} \end{cases}$.

Then (a)
$$P(X > 3) = 1 - P(X \le 3) = 1 - \sum_{i=1}^{3} P(X = i) = 1 - (p + qp + q^2p) = 1 - 0.8(1 + 0.2 + 0.04) = 1 - 0.992 = 0.008$$

(b) Since the events are disjoint, $P(4 \le X \le 7 \text{ or } X > 9) = P(4 \le X \le 7) + P(X > 9)$

9) =
$$\sum_{i=4}^{7} P(X = i) + \sum_{i=10}^{\infty} P(X = i) = 1 - \sum_{i=1}^{3} P(X = i) - \sum_{i=8}^{9} P(X = i) = 1$$

 $1 - 0.992012288 \approx 0.0079877.$

(c) Since the events are disjoint,
$$P(3 \le X \le 5 \text{ or } 7 \le X \le 10) = P(3 \le X \le 5) + P(7 \le X \le 10) = \sum_{i=3}^{5} P(X=i) + \sum_{i=7}^{10} P(X=i) = \sum_{i=3(i \ne 6)}^{10} P(X=i) = \sum_{i=3}^{10} P(X=i) = \sum_$$

 $(q^{2}p + q^{3}p + q^{4}p + q^{6}p + q^{7}p + q^{8}p + q^{9}p) = 0.8(0.04 + 0.008 + 0.0016 + 0.000064 + 0.00064)$ 0.0000128 + 0.00000256 + 0.000000512 = 0.0397438976.

9. Let the random variable X denote the decay time of some radioactive particle and follows the exponential distribution function. Suppose λ is such that $P(X \ge 0.01) =$ $\frac{1}{2}$. Find a number t such that $P(X \ge t) = 0.9$.

Solution: We have the PDF of a exponential distribution with parameter λ as $f_X(x) =$ $\lambda e^{-\lambda x}$ if $x \ge 0$ otherwise

We calculate the CDF of it as $F_X(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

So, $\frac{1}{2} = P(X \ge 0.01) = e^{-\lambda 0.01}$. Or, $\lambda = 100 \log 2$. Then, $0.9 = P(X \ge t) = e^{-\lambda t} = e^{-100 \log 2t}$. Or, $-100 \log 2t = \log 0.9$. Or, $t = -\frac{\log 0.9}{100 \log 2} \approx 0.00152$

10. Let X have a normal distribution with parameters μ and $\sigma^2 = 0.25$. Find a constant c such that $P(|X - \mu| \le c) = 0.9$. (Hint: Use Table for standard normal distribution function).

Solution: Let $Y = \frac{X-\mu}{\sigma}$. Then Y is a standard normal variable. Then $0.9 = P(|X-\mu| \le c) =$ $P(\frac{|X-\mu|}{\sigma} \le \frac{c}{\sigma})$

$$=P(|Y| \leq \frac{c}{\sigma}) = P(-\frac{c}{\sigma} \leq Y \leq \frac{c}{\sigma})$$

$$=F_Y(\frac{c}{\sigma})-F_Y(-\frac{c}{\sigma})=F_Y(\frac{c}{\sigma})-(1-F_Y(\frac{c}{\sigma}))$$
 (since here $F_Y(y)$ is symmetric)

$$=2F_Y(\frac{c}{\sigma})-1$$
. Or, $F_Y(\frac{c}{\sigma})=0.95$.

From standard normal table, we get $\frac{c}{\sigma} = 1.65$. Or, $c = 0.5 \times 1.65 = 0.825$.

Input = Output
$$\iff$$
 X is even

$$L^{2J}$$

$$P(Input = Output) = \sum_{k=0}^{\infty} P(x=2k)$$

where
$$[x] = floor x = largest integer not greater than x.

$$f(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{2k}{n-2k} \int_{-\infty}^{\infty}$$$$

$$= (1-p) \sum_{k=0}^{m} C_{2k} \left(\frac{p}{1-p}\right) = \frac{1+(1-2p)}{2}$$

$$= \frac{1+(1-2p)}{2}$$

$$= \frac{n}{2} C_{2k} \left(\frac{p}{1-p}\right) = \frac{1+(1-2p)}{2}$$

$$= \frac{1+(1-2p)}{2}$$

$$= \frac{1+(1-2p)}{2}$$

$$= \frac{1+(1-2p)}{2}$$

$$= \frac{n}{2} C_{2k} \left(\frac{p}{1-p}\right) = \frac{n}{2} C_{2k} \left(\frac{p}{1-p}\right)$$

$$= \frac{n}{2} C_{2k} \left(\frac{p}{1-p}\right) = \frac{n}{2} C_{2k} \left(\frac{p}{1-p}\right)$$

$$= \frac{n}{2} C_{2k} \left(\frac{p}{1-p}\right) = \frac{n}{2} C_{2k} \left(\frac{p}{1-p}\right)$$

$$= \frac{n}{2} C_{2k} \left(\frac{p$$

$$P\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) = \sum_{k=0}^{\infty} C_{2k} P\left(1-P\right)^{2k}$$

$$= \left(1-P\right) \sum_{k=0}^{\infty} C_{2k} \left(\frac{P}{1-P}\right)^{2k} = \frac{1+\left(1-2P\right)^{\infty}}{2}$$