INTELIGÊNCIA ARTIFICIAL

LÓGICA PROPOSICIONAL

Cálculo Proposicional - CP

- Cálculo Proposicional
- Lógica Proposicional
- Cálculo de Proposições
- Lógica de Proposições
- □ Apenas <u>enunciados/sentenças</u> **declarativos** <u>são permitidos</u>
- <u>Excluídas</u> sentenças exclamativas, imperativas e interrogativas

Proposição

É uma sentença declarativa que pode assumir os valores verdade (v) ou falso (f)

(valor verdade verdadeiro ou falso)

- Todo homem é mortal
- □ Meu carro é um fusca
- Está chovendo

Termo

É usado para designar objetos

- Paula
- □ Um filme de terror
- □ Triângulo retângulo

Proposição Atômica (Átomo)

Sentença que **não** contém conectivos (e, ou, se...então, ...)

- Todo homem é mortal
- □ Meu carro é um fusca
- Está chovendo

- Em geral, são designadas por letras latinas minúsculas (p, q, r, ...)
- Literal é um átomo ou a negação de um átomo

Proposição Composta

Sentença que contém um ou mais conectivos/operadores (e, ou, se...então, ...)

- Se Maria estuda então fará bons exames
- □ Ele come e dorme
- □ Pedro dança **ou** canta

Conectivos

Conectivos ou Operadores:

- □е
- □ não
- condicional
- bicondicional

- 🗥 (conjunção)
- (disjunção)
- ¬ (negação)
- → (implicação: se...então)
- ← (se e somente se)

Proposição - Cuidado!

As expressões:

Estó chevendo?

A viagem entre Ribeiras Preto e Guarujá

<u>não</u> são sentenças do CP pois
 não possuem um valor verdade
 verdadeiro (v) ou falso (f) associado

Conectivo: e (∧)

- A partir de duas proposições, obtém-se uma terceira denominada conjunção
- Exemplo:
 - (p) Maria estuda o problema
 - (q) José vai pescar
 - □ Conjunção de (p) e (q): p ∧ q
 - Maria estuda o problema e José vai pescar

Conectivo: ou (V)

- A partir de duas proposições, obtém-se uma terceira denominada disjunção
- □ Exemplo:
 - (p) Maria estuda o problema
 - (q) José vai pescar
 - □ Disjunção de (p) e (q): p ∨ q
 - Maria estuda o problema ou José vai pescar

Conectivo: não (¬)

- A partir de uma proposição, obtém-se uma segunda denominada negação
- Assim, a negação nega o valor-verdade de uma proposição
- Exemplo:
 - (p) Maria estuda o problema
 - Negação de (p): ¬p
 - não (Maria estuda o problema)

Conectivo: condicional (\rightarrow)

- Conectivo condicional lido como se...então
- A partir de duas proposições, obtém-se uma terceira denominada condicional ou implicação
- Proposição à:
 - esquerda de → denomina-se premissa ou antecedente: "se"
 - □ direita de → denomina-se conclusão ou conseqüente: "então"
- Exemplo:
 - (p) Eu estudo muito
 - (q) Eu aprendo
 - □ Condicional de (p) e (q): $p \rightarrow q$
 - Se eu estudo muito então eu aprendo

Conectivo: bicondicional (↔)

- □ Conectivo bicondicional é lido como se e somente se $(p \rightarrow q) \land (q \rightarrow p)$
- A partir de duas proposições, obtém-se uma terceira denominada bicondicional
- Equivale ao operador XNOR função coincidência
- Exemplo:
 - (p) Um triângulo é retângulo
 - (q) Um triângulo tem um ângulo reto
 - Bicondicional de (p) e (q): $p \leftrightarrow q$
 - Um triângulo é retângulo se e somente se tem um ângulo reto

Semântica dos Conectivos

р	q	p∧q	p∨q	¬р	p→q	p↔q
V	V	V	V	f	V	V
V	f	f	V	f	f	f
f	V	f	V	V	V	f
f	f	f	f	V	V	V

Simbolização

- Processo de substituição de frases em linguagem natural para letras proposicionais e conectivos lógicos
 - Ex: Se chove então Maria Angélica estuda o problema e se não faz frio Ana Laura está nadando
 - p: Maria Angélica estuda o problema
 - q: Ana Laura está nadando
 - r: chove
 - s: faz frio
 - Encontrar conectivos:
 - (Se chove então Maria Angélica estuda o problema) e (se (não faz frio) então Ana Laura está nadando)
 - 3. Substituir frases e conectivos:

$$(r \rightarrow p) \land (\neg s \rightarrow q)$$

Fórmulas Bem Formadas (wff)

- Fórmulas construídas mediante a combinação válida de símbolos
- Fórmulas Bem Formadas = Well Formed Formula = wff
- Para representar wff são usadas metavariáveis proposicionais representadas pelas letras α, β, γ, entre outras
- Cada expressão envolvendo α, β, γ, ... é
 chamada de forma sentencial

Fórmulas Bem Formadas (wff)

- (1) um átomo é uma wff
- (2) se α e β são wff, então são também wff:

wff	lê-se
$\neg \alpha$	não $lpha$
$\overline{\alpha \wedge \beta}$	α e β
$\overline{\alpha \vee \beta}$	α ou β
$\alpha \to \beta$	se α então β
$\alpha \leftrightarrow \beta$	α se e somente se β

(3) As únicas wff são definidas por (1) e (2)

Prioridade dos Conectivos

Prioridade dos Conectivos

Prioridade dos Conectivos

Exemplos:

- $\square \alpha \rightarrow \beta \vee \gamma$
- $\square \alpha \vee \beta \wedge \gamma$
- $\square \alpha \to \beta \land \neg \gamma \lor \delta$

significa
$$\alpha \rightarrow (\beta \lor \gamma)$$

significa
$$\alpha \vee (\beta \wedge \gamma)$$

significa
$$\alpha \rightarrow ((\beta \land (\neg \gamma)) \lor \delta)$$

 A precedência pode ser alterada pelo uso de parênteses, como ocorre em linguagens de programação

Semântica do CP

Consiste na interpretação de suas fórmulas, ou seja, atribuição dos valores-verdade (v ou f) às formulas atômicas, por exemplo:

$$(p \vee q) \rightarrow (p \wedge q)$$

- Como a fórmula possui 2 componentes atômicos, p e q, ela admite 2² interpretações
- Portanto, para uma fórmula de n componentes tem-se 2ⁿ interpretações

Semântica dos Conectivos

р	q	p∧q	p∨q	¬р	p→q	p↔q
V	V	V	V	f	V	V
V	f	f	V	f	f	f
f	V	f	V	V	V	f
f	f	f	f	V	V	V

Argumento Válido

Um argumento válido pode ser lido como:

- \square α_1 , α_2 , ..., α_{n-1} acarretam α_n ou
- \square α_n decorre de α_1 , α_2 , ..., α_{n-1} ou
- $\ \square \ lpha_{n}$ é conseqüência lógica de $lpha_{1}, \ lpha_{2}, \ ..., \ lpha_{n-1}$

□ Para n=1, o argumento é válido se e somente se α₁
 for tautológica – sempre verdadeira

A fórmula ¬(p ∧¬p) é uma tautologia

р	¬р	(p ∧¬p)	¬(p ∧ ¬p)
V	f	f	V
f	V	f	V

Princípio da Substituição

Subfórmulas: dada a fórmula

$$\alpha$$
: $(p \rightarrow q) \leftrightarrow r$, então $p \rightarrow q$, p , q , r , são as **subfórmulas** de α .

- O princípio afirma que uma subfórmula de uma fórmula α , ou toda a fórmula α , pode ser substituída por uma fórmula equivalente e que a fórmula resultante é equivalente a α
- Equivalente: fórmula que gera a mesma tabela-verdade

Princípio da Substituição

Exemplo: pelo princípio da substituição, a fórmula

$$\alpha$$
: (p v q) \wedge (p v r)

é equivalente a:

$$\Upsilon: (\neg p \to q) \land (\neg p \to r).$$

Propriedades

Existem várias propriedades da negação, conjunção e disjunção

 Estas propriedades podem ser verificadas como equivalências lógicas

 Para demonstrar cada uma, basta utilizar as tabelasverdade, constatando a tautologia

Equivalência Lógica

□ Uma fórmula α é logicamente equivalente (≡) a uma fórmula β quando α for conseqüência lógica de β e β for conseqüência lógica de α

 \square Assim, $\alpha \equiv \beta$ se e somente se $\alpha \leftrightarrow \beta$ é uma tautologia

□ Provar que (p \rightarrow q) é equivalente a (¬p \vee q)

p	q	$p \rightarrow q$	$\neg p \lor q$
V	V		
V	f		
f	V		
f	f		

□ Provar que (p \rightarrow q) é equivalente a (¬p \vee q)

	-		
p	q	$p \rightarrow q$	$\neg p \lor q$
V	V	V	V
V	f	f	f
f	V	V	V
f	f	V	V

□ Provar que (p \rightarrow q) é equivalente a (¬p \vee q)

p	q	$p \rightarrow q$	$\neg p \lor q$	$(p\rightarrow q) \leftrightarrow (\neg p \lor q)$
V	V	V	V	V
V	f	f	f	V
f	V	V	V	V
f	f	V	V	V

 \square Portanto, $(p \rightarrow q) \equiv (\neg p \lor q)$

Propriedades

- Propriedades da Conjunção
 - □ comutativa $\alpha \land \beta \equiv \beta \land \alpha$
 - associativa $\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$
 - **□** idempotente $\alpha \wedge \alpha \equiv \alpha$
 - propriedade de (v)erdade $\alpha \wedge \mathbf{v} \equiv \alpha$
 - □ propriedade de (f)also $\alpha \wedge f \equiv f$

- Propriedades da Disjunção
 - comutativa $\alpha \lor \beta \equiv \beta \lor \alpha$
 - associativa $\alpha \lor (\beta \lor \Upsilon) \equiv (\alpha \lor \beta) \lor \Upsilon$
 - idempotente $\alpha \vee \alpha \equiv \alpha$
 - propriedade de (v)erdade $\alpha \lor \mathbf{v} \equiv \mathbf{v}$
 - □ propriedade de (f)also $\alpha \vee f \equiv \alpha$

Propriedades

- Distributiva
- Negação
 - $\Box \neg (\neg \alpha) \equiv \alpha$
- Absorção
 - $\square \alpha \vee (\alpha \wedge \beta) \equiv \alpha$
 - $\square \alpha \wedge (\alpha \vee \beta) \equiv \alpha$
- De Morgan
- Equivalência da Implicação
 - $\blacksquare \alpha \to \beta \equiv \neg \alpha \lor \beta$

Fórmulas Proposicionais Equivalentes

Exemplo da forma de leitura de uma fórmula proposicional equivalente denominada modus ponens:

$$\alpha, \alpha \rightarrow \beta = \beta$$

Caso α seja verdade e $\alpha \! \to \! \beta$ seja verdade, obrigatoriamente β será verdade

Fórmulas Proposicionais Equivalentes

Nome da Regra	Regra
modus ponens	α , $\alpha \rightarrow \beta /= \beta$
modus tollens	$\alpha \rightarrow \beta$, $\neg \beta \not= \neg \alpha$
silogismo hipotético ou regra da cadeia	$\alpha \to \beta$, $\beta \to \gamma /= \alpha \to \gamma$
silogismo disjuntivo	$\alpha \vee \beta$, $\neg \alpha \models \beta$
dilema construtivo	$\alpha \rightarrow \beta, \gamma \rightarrow \delta, \alpha \vee \gamma = \beta \vee \delta$
dilema destrutivo	$\alpha \rightarrow \beta, \gamma \rightarrow \delta, \neg \beta \lor \neg \gamma = \neg \alpha \lor \neg \gamma$
simplificação	$\alpha \wedge \beta \not= \alpha$
conjunção	α , $\beta \not= \alpha \wedge \beta$
adição	$\alpha = \alpha \vee \beta$
contraposição	$\alpha \rightarrow \beta = \neg \beta \rightarrow \neg \alpha$
exportação	$\alpha \to (\beta \to \gamma) /= (\alpha \land \beta) \to \gamma$
importação	$(\alpha \land \beta) \rightarrow \gamma /= \alpha \rightarrow (\beta \rightarrow \gamma)$

The Fox And The Grapes

https://www.deviantart.com/dreoilin/art/The-Fox-And-The-Grapes-352502178

Se as uvas caem, então a raposa as come.

Se a raposa as come, então estão maduras.

As uvas estão verdes ou caem.

Logo,

A raposa come as uvas se e só se as uvas caem.

 α_1 : Se as uvas caem, então a raposa as come.

 α_2 : Se a <u>raposa as come</u>, então estão maduras.

 α_3 : As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

 α_1 : Se as uvas caem, então a raposa as come.

 α_2 : Se a raposa as come, então estão maduras.

 α_3 : As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

Proposições:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

 α_1 : Se as uvas caem, então a raposa as come.

 α_2 : Se a <u>raposa as come</u>, então estão maduras.

α₃: As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

$\overline{}$		~
Prop	വവ	᠔႖ၺ
ιιυρ	USIŲ	OCS.
,		

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

Premissas	
α_1 :	$p \rightarrow q$
α_2 :	$q \rightarrow r$
α_3 :	$\neg r \lor p$

	Conclusão		
	β:	$p \leftrightarrow q$	
•			

Provar que:

$$\alpha_1, \ \alpha_2, \ \alpha_3 \models \beta$$

 $p \rightarrow q, \ q \rightarrow r, \ \neg r \lor p \models p \leftrightarrow q$

 α_1 : Se <u>as uvas caem</u>, então a <u>raposa as come</u>.

 α_2 : Se a <u>raposa as come</u>, então estão maduras.

 α_3 : As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

Proposições:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

Premissas	
α_1 :	$p \rightarrow q$
α_2 :	$q \rightarrow r$
α_3 .	$\neg r \lor p$

Conclusão	
β:	$p \leftrightarrow q$
ρ .	$\rho \leftrightarrow q$

Deduz-s	se que:	
C ₁ :	$r \rightarrow p$	($lpha_3$: equivalência)

Provar que:

$$\alpha_1, \ \alpha_2, \ \alpha_3 \models \beta$$

 $p \rightarrow q, \ q \rightarrow r, \ \neg r \lor p \models p \leftrightarrow q$

 α_1 : Se as uvas caem, então a raposa as come.

 α_2 : Se a <u>raposa as come</u>, então estão maduras.

α₃: As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

$\overline{}$		~
Prop	വവ	᠔႖ၺ
ιιυρ	USIŲ	OCS.
,		

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

Premissas		
α_1 :	$p \rightarrow q$	/
α_2 :	$q \rightarrow r$	
α_3 :	$\neg r \lor p$	

Deduz-s	se que:	
C ₁ :	$r \rightarrow p$	$(lpha_3$: equivalência)
C ₂ :	$q \rightarrow p$	$(\alpha_2 + C_1$: regra da cadeia)

Provar que:

$$\alpha_1, \alpha_2, \alpha_3 \models \beta$$

 $p \rightarrow q, q \rightarrow r, \neg r \lor p \models p \leftrightarrow q$

 α_1 : Se as uvas caem, então a raposa as come.

 α_2 : Se a <u>raposa as come</u>, então estão maduras.

 α_3 : As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

$\overline{}$		~
Prop	വവ	᠔႖ၺ
ιιυρ	USIŲ	OCS.
,		

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

Premissas	
α_1 :	$p \rightarrow q$
α_2 :	$q \rightarrow r$
α_3 :	$\neg r \lor p$

Conclusão	
β:	$p \leftrightarrow q$

Provar que: α_1 , α_2 , $\alpha_3 \models \beta$ $p \rightarrow q$, $q \rightarrow r$, $\neg r \lor p \models p \leftrightarrow q$

Deduz-se que:		
C ₁ :	$r \rightarrow p$	$(lpha_3$: equivalência)
C ₂ :	$q \rightarrow p$	$(\alpha_2 + C_1$: regra da cadeia)
C ₃ :	$p \to q \land q \to p$	$(\alpha_1 + C_2$: conjunção)

 α_1 : Se as uvas caem, então a raposa as come.

 α_2 : Se a <u>raposa as come</u>, então estão maduras.

 α_3 : As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

		~
Prop	വവ	\mathcal{O}
ιιυρ	USIŲ	OCS.
,		

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

Premissas	
α_1 :	$p \rightarrow q$
α_2 :	$q \rightarrow r$
α_3 :	$\neg r \lor p$

Conclusão	
β:	$p \leftrightarrow q$
,-	P 17 9

Provar que: $\alpha_1, \ \alpha_2, \ \alpha_3 \models \beta$ $p \rightarrow q, \ q \rightarrow r, \ \neg r \lor p \models p \leftrightarrow q$

Deduz-se que:		
C ₁ :	$r \rightarrow p$	$(lpha_3$: equivalência)
C ₂ :	$q \rightarrow p$	$(\alpha_2 + C_1$: regra da cadeia)
C ₃ :	$p \to q \land q \to p$	$(\alpha_1 + C_2: conjunção)$
C ₄ (≡β):	$p \leftrightarrow q$	(C ₃ : equivalência)

Formas Normais

 Há várias maneiras de escrever uma mesma fórmula

Ex:
$$(p \rightarrow q) \land m \equiv (\neg p \lor q) \land m$$

- A Forma Normal é usada para uniformizar a notação
 - Forma Normal Disjuntiva (FND)
 - Forma Normal Conjuntiva (FNC)
- Um enunciado do Cálculo Proposicional sempre pode ser escrito na FN

Forma Normal Disjuntiva

Uma fórmula proposicional lpha está na FND quando:

$$\alpha$$
 é uma disjunção $\beta_1 \vee \beta_2 \vee ... \vee \beta_n$, (n \geq 1),

em que cada β_i ($1 \le i \le n$) é uma conjunção de literais, ou um literal, ou seja:

$$\beta_i$$
 é da forma $p_1 \land \neg p_2 \land ... \land p_m$ (m ≥ 1)

Forma Normal Disjuntiva

A fórmula α está na FND se e somente se:

- contém como conectivos apenas ∨, ∧, ¬
- ¬ só opera sobre proposições atômicas (não tem alcance sobre ∨, ∧)
- não aparecem negações sucessivas (¬¬)
- \wedge não tem alcance sobre \vee , ou seja, não existe expressão do tipo: p \wedge (q \vee r)

Forma Normal Disjuntiva

Forma geral

$$(p_1 \wedge p_2 \wedge ... \wedge p_k) \vee (q_1 \wedge q_2 ... \wedge q_l) \vee (r_1 \wedge r_2 \wedge r_3 \wedge ... \wedge r_s) \vee ...$$

Exemplo:

$$\alpha$$
: $\neg p \lor q \to r$
FND(α): $(p \land \neg q) \lor r$

Obtenção da FND por:

tabela verdade ou por equivalência

Forma Normal Conjuntiva

Uma fórmula proposicional α está na FNC quando:

$$\alpha$$
 é uma conjunção $\beta_1 \wedge \beta_2 \wedge ... \wedge \beta_n$, (n ≥ 1),

em que cada β_i ($1 \le i \le n$) é uma disjunção de literais, ou um literal, ou seja:

 β_i é da forma

$$p_1 \lor \neg p_2 \lor \dots p_m$$
 (m ≥ 1)

Átomo ou negação de uma átomo

Forma Normal Conjuntiva

A fórmula α está na FNC se e somente se:

- contém como conectivos apenas ∨, ∧, ¬
- ¬ só opera sobre proposições atômicas (não tem alcance sobre ∨, ∧)
- não aparecem negações sucessivas (¬¬)
- ∨ não tem alcance sobre ∧, ou seja, não existe expressão do tipo: p ∨ (q ∧ r)

Forma Normal Conjuntiva

Forma geral

$$(p_1 \lor p_2 \lor ... \lor p_k) \land (q_1 \lor q_2 ... \lor q_l) \land (r_1 \lor r_2 \lor r_3 \lor ... \lor r_s) \land ...$$

Exemplo:

$$\alpha \colon \neg p \lor q \to r$$
 FNC(\alpha): (\neg p \varthinds \neg q \varthinds r) \wedge (p \varthinds \neg q \varthinds r)

Obtenção da FNC por:

tabela verdade ou por equivalência

Notação Clausal

Cláusula: disjunção de literais:

$$F_i = L_1 \vee L_2 \vee ... \vee L_r$$

Fórmula na FNC: escrita como conjunção de cláusulas:

$$F_1 \wedge F_2 \wedge ... \wedge F_n$$

A FNC é uma coleção de cláusulas, porque a conjunção \wedge tem propriedade associativa. Por isso, pode-se escrever uma fórmula α na forma:

$$\{F_1, F_2, ... F_n\} \equiv F_1 \wedge F_2 \wedge ... \wedge F_n$$

A disjunção também tem a propriedade associativa, e por isso, também podemos escrever uma cláusula F_i na forma:

$$F_{i} = \{L_{1}, L_{2}, ..., L_{n}\} \equiv L_{1} \vee L_{2} \vee ... \vee L_{n}$$

Notação Clausal

Exemplo

```
\mathsf{FNC}(((\mathsf{p} \vee \mathsf{q}) \wedge (\neg \mathsf{p} \vee \mathsf{r})) \to \mathsf{s}):
((\mathsf{s} \vee \neg \mathsf{q} \vee \mathsf{p}) \wedge (\mathsf{s} \vee \neg \mathsf{p} \vee \neg \mathsf{r}) \wedge (\mathsf{s} \vee \neg \mathsf{q} \vee \neg \mathsf{r}))
```

Pode-se escrever:

$$FNC(((p \lor q) \land (\neg p \lor r)) \rightarrow s): F_1 \land F_2 \land F_3$$

onde

```
F_1: (s\vee \neg q \vee p), F_2: (s\vee \neg p \vee \neg r), F_3: (s\vee \neg q \vee \neg r) que pode ser representado por F = \{F_1, F_2, F_3\}, onde a conjunção está implícita
```

Notação de Kowalsky

A separação de literais positivos e negativos prepara a cláusula para a notação definida por Kowalsky, em que as conclusões vem antes das premissas:

FNC	FNC Kowalsky	CP
$F_1: s \lor p \lor \neg q$	F_1 : s, $p \leftarrow q$	$q \rightarrow s \vee p$
F_2 : s $\vee \neg p \vee \neg r$	F_2 : s \leftarrow p, r	$p \wedge r \rightarrow s$
F_3 : s $\vee \neg q \vee \neg r$	F_3 : s \leftarrow q, r	$q \wedge r \rightarrow s$

Observar que todas as notações são equivalentes

Notação de Kowalsky

Há uma disjunção (∨) implícita à esquerda de ←, chamada de conclusão(ões)

F₁: s, p ← q

F₂: s ← p, r

F₃: s ← q, r

Há uma conjunção (∧) implícita à direita de ←, chamada de premissa(s) ou condição(ões)

Notação de Kowalsky

São equivalentes as seguintes notações:

(1)
$$B_1$$
, B_2 , ..., B_n $\rightarrow A_1$, A_2 , ..., A_m
(2) A_1 , A_2 , ..., A_m $\leftarrow B_1$, B_2 , ..., B_n
(3) $A_1 \lor A_2 \lor ... \lor A_m \lor \neg (B_1 \land B_2 \land ... \land B_n)$
(4) $A_1 \lor A_2 \lor ... \lor A_m \lor \neg (B_1 \land B_2 \lor ... \land B_n)$
(5) $A_1 \lor A_2 \lor ... \land A_m \lor \neg (B_1 \lor \neg (B_2 \lor ... \lor \neg (B_n \lor$

A cláusula (2) é uma cláusula genérica na notação de Kowalsky

Dependendo do número de literais, tem-se:

- 1. Se m>1, as conclusões são indefinidas, ou seja, há várias conclusões
- 2. Se m≤1, tem-se as Cláusulas de Horn

```
m=1 e n > 0, (A \leftarrow B<sub>1</sub>, B<sub>2</sub>, ..., B<sub>n</sub>) chamada <u>cláusula definida</u>, onde só existe uma solução
```

m=1 e n=0, (A \leftarrow) é a <u>cláusula indefinida incondicional</u>, ou <u>fato</u>. Neste caso, o símbolo \leftarrow é abandonado

m=0 e n>0, (\leftarrow B₁, B₂, ..., B_n) é a <u>negação pura</u> de B₁, B₂, ..., B_n

m=0 e n=0, (\leftarrow) é a <u>cláusula vazia</u>, denotada por []

Kowalski mostrou que uma cláusula de Horn do tipo

$$A \leftarrow B_1, B_2, ..., B_n$$

pode ser executada numa linguagem de programação recursiva, na qual A é a cabeça do procedimento e os B_i's o seu corpo

$$A \leftarrow B_1, B_2, ..., B_n$$
 pode ser lido como:
para resolver (executar) A, resolva (execute) $B_1 \in B_2$
 $e ... e B_n$

Em Prolog

 $A \leftarrow B_1, B_2, ..., B_n$ é representado como

= é chamado *neck*

Pode-se ler "A := B_1 , B_2 , ..., B_n ." do seguinte modo:

A é verdade se B_1 é verdade e B_2 é verdade e ... e B_n é verdade

As únicas cláusulas que podem ser representadas em Prolog são as Cláusulas de Horn

Assim, se um determinado conhecimento puder ser expresso mediante o cálculo proposicional, somente a parte formada por cláusulas de Horn poderá ser representada em Prolog. Ou seja, um sub-conjunto do cálculo proposicional

Slides baseados em:

Monard, M.C., Nicoletti, M.C., Noguchi.R.H.,
O Cálculo Proposicional: Uma abordagem voltada à compreensão da
linguagem Prolog,
Notas Didáticas do ICMC-USP, 1992

(http://labic.icmc.usp.br/didatico/pdf/Cproposicional_pdf.zip)

Material elaborado por José Augusto Baranauskas

Adaptado por Huei Diana Lee