Master in Artificial Intelligence

NERC Baseline

Baseline

Resources

Execution and Results

Conclusions

Advanced Human Language Technologies

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

1 NERC Baseline

Baseline
Baseline
Resources
Execution and
Results
Conclusions

- 2 Baseline
- 3 Resources
- 4 Execution and Results
- 5 Conclusions

NERC

the provided baseline recognizes and classifies drug names appearing in the sentences in given file.

\$ python3 ./baseline-NER.py data/devel index.json result.out

```
$ more result.out

DDI-DrugBank.d278.s0|0-9|Enoxaparin|drug

DDI-DrugBank.d278.s0|93-108|pharmacokinetics|group

DDI-DrugBank.d278.s0|113-124|eptifibatide|drug

DDI-MedLine.d88.s0|15-30|chlordiazepoxide|drug

DDI-MedLine.d88.s0|33-43|amphetamine|drug

DDI-MedLine.d88.s0|49-55|cocaine|drug

DDI-MedLine.d88.s1|82-95|benzodiazepine|drug

...
```

The output must be formatted like this, since it is the format expected by the evaluation script.

NERC Baseline

Baseline Resources

Execution and Results

Data particularities

Examples

NERC Baseline

Baseline Resources

Execution and

Results

Conclusions

```
<document id="DDI-DrugBank.d284">
   <sentence id="DDI-DrugBank.d284.s0"</pre>
           text="If additional adrenergic drugs are to be administered by any route, they should be used with caution because the
                pharmacologically predictable sympathetic effects of BROVANA may be potentiated.">
       <entity id="DDI-DrugBank.d284.s0.e0" charOffset="14-29" type="group" text="adrenergic drugs"/>
       <entity id="DDI-DrugBank.d284.s0.e1" charOffset="166-172"type="brand" text="BROVANA"/>
       <pair id="DDI-DrugBank.d284.s0.p0" e1="DDI-DrugBank.d284.s0.e0" e2="DDI-DrugBank.d284.s0.e1" ddi="true" type="advise"/>
   </sentence>
   (...)
   <sentence id="DDI-DrugBank.d284.s5"</pre>
            text="Although the clinical significance of these effects is not known, caution is advised in the co-administration
                  of beta-agonists with non-potassium sparing digretics.">
       <entity id="DDI-DrugBank.d284.s5.e0" charOffset="113-125" type="group" text="beta-agonists"/>
       <entity id="DDI-DrugBank.d284.s5.e1" charOffset="132-162" type="group" text="non-potassium sparing diuretics"/>
       </sentence>
   <sentence id="DDI-DrugBank.d284.s16"</pre>
            text="In this setting, cardioselective beta-blockers could be considered, although they should be administered
                  with caution.">
       <entity id="DDI-DrugBank.d284.s16.e0" charOffset="17-45" type="group" text="cardioselective beta-blockers"/>
   </sentence>
</document>
```

Drug names vary in number of words and tokenization elements.

NERC Baseline

Baseline

Resources

Execution and Results

- 1 NERC Baseline
- 2 Baseline
- 3 Resources
- 4 Execution and Results
- 5 Conclusions

Simple approach

NERC Baseline

Baseline

Resources

Execution and Results

- Create an index of known groups, and search tokens in input sentence in the index
- To deal with multi-token drug names, the index must be a prefix tree
- Tree nodes must correspond to tokens according to the same tokenizer used on input data

General structure

The program expects as argument the directory with XML files to process. Results are printed to stdout

```
NERC
Baseline
```

Baseline

Resources

Execution and Results

```
# Create prefix tree index of known drug names
index = DrugIndex(drugindex)
# create tokenizer
nlp = spacy.load("en_core_web_trf", disable=["parser"])
# parse XML file, obtaining a DOM tree
tree = parse(datafile)
# process each sentence in the file
sentences = tree.getElementsByTagName("sentence")
for s in sentences :
    sid = s.attributes["id"].value # get sentence id
    stext = s.attributes["text"].value  # get sentence text
    print(f"processing sentence {sid} \r", end="")
    # tokenize text with spacy tokenizer
    tokens = nlp(stext)
    # extract entities in text
    entities = extract entities(stext, tokens, index)
    # print sentence entities in format requested for evaluation
    for e in entities :
    print (sid,
          e["offset"],
          e["text"].
          e["type"],
          sep = "|",
          file = outf)
```

- NERC Baseline
- Baseline
- Resources
- Execution and Results
- Conclusions

- 1 NERC Baseline
- 2 Baseline
- 3 Resources
- 4 Execution and Results
- 5 Conclusions

Resources

NERC Baseline

Baseline

Resources

Execution and Results

Conclusions

The program uses:

- An XML parser: xml.dom.minidom (https://docs. python.org/3.7/library/xml.dom.minidom.html, included in python standard libray)
- A tokenizer for English text: SpaCy (check https://spacy.io/usage if you don't have it installed)
- The evaluator module to compute performance scores (provided in the lab project zipfile).

NERC Baseline

Baseline

Resources

Execution and Results

- 1 NERC Baseline
- 2 Baseline
- 3 Resources
- 4 Execution and Results
- 5 Conclusions

Executing the baseline

NERC Baseline

Baseline

Resources

Execution and Results

Conclusions

\$ python3 run.py Extracting drugs from train data Creating index with all known drug names Collecting drugs from HSDB Collecting drugs from DrugBank Collecting drugs from drugs-train Applying index to predict drugs Running baseline on devel Evaluating baseline on devel Running baseline on test Evaluating baseline on test

Results

Results on devel dataset

Ρ R F1 tp fp fn #pred #exp 75.7% 329 165 494 66.6% 87.7% brand 46 375 73.5% 92.6% 82.0% drug 1800 648 144 2448 1944 30.4% 7.0% 11.4% drug_n 7 16 93 23 100 508 389 198 897 706 56.6% 72.0% 63.4% group M.avg 56.8% 64.8% 58.1% 2644 1218 481 3862 3125 68.5% 84.6% 75.7% m.avg 1143 406 3862 3125 70.4% 87.0% 77.8%

Resources m.avg 2044 12. m.avg(no class) 2719 114 Execution and Results

NERC

Baseline

Baseline

Conclusions

Results on test dataset

		tp	fp	fn	#pred	#exp	P	R	F1
-	brand	261	180	14	441	275	59.2%	94.9%	72.9%
	drug	1915	582	236	2497	2151	76.7%	89.0%	82.4%
	drug_n	8	33	94	41	102	19.5%	7.8%	11.2%
	group	534	456	166	990	700	53.9%	76.3%	63.3%
	M.avg	-	-	-	-	-	52.3%	67.0%	57.4%
	m.avg	2718	1251	510	3969	3228	68.5%	84.2%	75.5%
	m.avg(no class)	2872	1097	356	3969	3228	72.4%	89.0%	79.8%

NERC Baseline

Baseline

Resources

Execution and Results

- 1 NERC Baseline
- 2 Baseline
- 3 Resources
- 4 Execution and Results
- 5 Conclusions

Conclusions

NERC Baseline

Baseline Resources

Execution and

Results

- A very simple approach based on knowledge bases (drug lists) has a pretty good performance (close to 60%macro-average, 80% micro-average).
- If we use machine learning for this task, we should aim to obtain significantly better results, or the additional complexity and cost won't pay off.
- Any ML project requires to start with a baseline that sets a threshold to calibrate cost/benefit ratio of the project.
 The baseline should be a simple knowledge-based or basic statistical approach.
- This will be the goal of the first lab task: Drug NERC with ML.