EI5IS102 Traitement de l'Information

Lecture 3: Introduction to Machine Learning

Charles Brazier

Postdoctoral researcher Université de Bordeaux, CNRS, Bordeaux INP, LaBRI France

Machine Learning is everywhere

Series Recommenders

Self-driving cars

Image generators

Face recognition

Games

Artificial Intelligence

Artificial Intelligence (AI):

- Inspired by human abilities
- Perception, reasoning, learning

Why "Artificial intelligence"?

- What is **intelligence**?
- Must have something to do with thinking
- What are the mechanisms of thinking?
- How to construct a model of thinking?

Wiki

Thinking

William Blake (English poet, 1757–1827) about thinking:

"Man can only desire what he has already perceived"

Noam Chomsky (American linguist, 1928–) about intelligence: "Take two concepts and create a third one without impairing the two firsts"

Key concepts:

- Creation ex-nihilo cannot really exist*
- Intelligence involves assembling and recognizing patterns based on **prior observations**
- Intelligence is the ability to assemble two ideas that seemed heterogeneous
- But intelligence improves through **learning**

Learning

Past view of Al:

- Al was thought only about reasoning
- Programs with predefined rules
- Simulate intelligent decision-making

Current view of AI:

- Al is more about learning
- Systems that can improve through experience

Herbert Simon (American psychologist, 1916–2001) about learning:

"Learning is any process by which a system improves performance from experience"

Machine Learning algorithms:

- Programs that can learn from experience to deduce new facts

Early definition of machine learning by **Arthur Samuel** (American pioneer in AI, 1901–1990): "Field of study that gives computer the ability to learn without being explicitly programmed"

A.Samuel wrote the first self-learning program for checkers.

- Learning to improve its performance by playing against itself
- Invented alpha-beta pruning (decision tree searching)

How can we have the computer learn without being explicitly programmed?

Traditional Programming

How can we have the computer learn without being explicitly programmed?

Traditional Programming

Machine Learning

How can we have the computer learn without being explicitly programmed?

Traditional Programming

How to learn from data?

- Memorizing facts: limited by the time of observing facts, by the memory to store facts
- Generalizing: deduce new facts from old facts

Learning algorithm:

- A program that can infer useful information from implicit patterns in the data
- Need to figure out what those patterns are
- Then use those patterns to make predictions on new data

Training phase:

- Input: a set of observations → training data
- Process: learn patterns from the training data
- Output: a model capable of identifying patterns in the data

Inference phase:

- Input: new observations → unseen data / test data
- Process: use the model to make new predictions

3 major types of learning:

Supervised learning: labeled training data

- Training: learn a function to map inputs to their labels
- Inference: predict the label of new unseen inputs

Unsupervised learning: unlabeled training data

- Training: identify hidden structures in unlabeled data
- Inference: assign new inputs to the most appropriate group

Reinforcement learning: training data with global objective (actions)

- Training: interact with an environment to maximize a cumulative reward
- Inference: make decisions to guide an agent towards an objective

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Let's collect some data on fruits:

- Instances: peaches and plums
- Features: weight, size
- Labels: fruit name

Plums:

- Plum 1: [147.1g, 7.8cm]
- Plum 2: [143.2g, 7.7cm]
- Plum 3: [150.2g, 7.6cm]
- Plum 4: [155.7g, 7.7cm]
- Plum 5: [145.6g, 7.5cm]
- Plum 6: [150.8g, 8.0cm]

Peaches:

- Peach 1: [151.4g, 8.2cm]
- Peach 2: [160.5g, 8.8cm]
- Peach 3: [165.3g, 9.0cm]
- Peach 4: [164.8g, 8.6cm]
- Peach 5: [158.9g, 8.6cm]

2D plot:

Can we learn patterns from data?

2 natural groups of points How to separate them?

Clustering

2D plot:

Can we learn patterns from data?

2 natural groups of points How to separate them?

Clustering

1) Separation on size

2D plot:

Can we learn patterns from data?

2 natural groups of points How to separate them?

Clustering

- 1) Separation on size
- 2) Separation on weight

2D plot:

Can we learn patterns from data?

2 natural groups of points How to separate them?

Clustering

- 1) Separation on size
- 2) Separation on weight
- 3) Cluster into two groups using both attributes

2D plot with labels:

How to take advantage of knowing the labels to divide the two groups?

Classification

2D plot with labels:

How to take advantage of knowing the labels to divide the two groups?

Classification

1) Separation on size

2D plot with labels:

How to take advantage of knowing the labels to divide the two groups?

Classification

- 1) Separation on size
- 2) Separation using both attributes

A new data point is added. Which separator do we choose?

- 1) Dashed line: simple separator with errors
- 2) Solid line: complex separator without error

Option 2 performs well on training data But it may fail to generalize to new data

Avoid **overfitting**:

Trade-off between accuracy and simplicity

Machine Learning: learning and generalizing

Machine Learning consists in learning from examples:

- Training data: a set of examples (peaches, plums, etc.) labeled or not
- **Features**: descriptors that describe each example (weight, size, etc.)
- Distance measure: quantifies "similarity" between examples
- Objective function: evaluates the quality of any solution

During training, we aim at optimizing the objective function (minimizing or maximizing)

Machine Learning consists in generalizing on unseen data:

Test data: a set of additional examples, unknown during training

During inference, we hope to make accurate predictions on our test data

Unsupervised Learning

Unsupervised learning

Unsupervised learning:

- Unlabeled training data
- Goal: discover hidden structures in the data

Unsupervised Learning

Clustering:

- Group examples that are "close" together
- Assign the same label to all data points in each group
- Relies heavily on the choice of a distance metric
- The distance metric often matters more than the clustering algorithm itself.

Distance metric

Distances are used to measure the **similarity** or **dissimilarity** between two data points

 $d(x_i, x_j) = \sqrt[q]{|x_i^1 - x_j^1|^q + \ldots + |x_i^p - x_j^p|^q}$

Training data:

- n instances
- p features

$$X = \begin{pmatrix} x_1^1 & \dots & x_1^p \\ \vdots & \ddots & \vdots \\ x_n^1 & \dots & x_n^p \end{pmatrix}$$

Popular distance: **Minkowski**

- d=1: Manhattan distance
- d=2: Euclidean distance

Or weighted distance, ...

Clustering

K clusters $\{S_k\}$ with associate centroïds $\{C_k\}$. **Goal:** find the set S of clusters that minimize the within-cluster distance

$$\underset{S}{\operatorname{arg\,min}} \sum_{k=1}^{K} \sum_{\mathbf{x}_i \in S_k} d(\mathbf{x}_i, C_k)$$

Given centroids $\{C_k\}$, associate each data point to the closest cluster:

$$\forall i, x_i \in S_k \text{ where } k = \operatorname*{arg\,min}_j d(\mathbf{x}_i, C_j)$$

Given memberships of our data, update centroïds:

$$\forall k, C_k = \frac{1}{|S_k|} \sum_{x_i \in S_k} x_i$$

K-means algorithm

- 1) Start with a random guess of cluster centers
- Determine the membership of each data point
- 3) Adjust the cluster centers

Stopping criterion:

- Number of iterations
- Clustering quality criterion $\rightarrow \sum \sum d(\mathbf{x}_i, C_k)$

 $k=1 \mathbf{x}_i \in S_k$

- Evolution of the quality

In practice: we stop when $\{C_j\}^{(t+1)} = \{C_j\}^{(t)}$

K-means algorithm

1) Set K the number of clusters: here K=3

- 1) Set K the number of clusters: here K=3
- 2) Start with a random guess of cluster centers: select K random points

- 1) Set K the number of clusters: here K=3
- 2) Start with a random guess of cluster centers: select K random points
- 3) Associate each data point to its closest cluster

- 1) Set K the number of clusters: here K=3
- 2) Start with a random guess of cluster centers: select K random points
- 3) Associate each data point to its closest cluster
- 4) Adjust centroïds by computing their new mean

- 1) Set K the number of clusters: here K=3
- 2) Start with a random guess of cluster centers: select K random points
- 3) Associate each data point to its closest cluster
- 4) Adjust centroïds by computing their new mean

- 1) Set K the number of clusters: here K=3
- 2) Start with a random guess of cluster centers: select K random points
- 3) Associate each data point to its closest cluster
- 4) Adjust centroïds by computing their new mean

Strengths:

- Relatively efficient algorithm: O(nkt) with n data points, k clusters and t iterations
- Find at least a local optimum

Weaknesses:

- Sensitive to initial values
- Applicable only when the mean is defined (qualitative data?)
- Number of clusters K needs to be fixed in advance: elbow method

Variants:

K-medoids, K-modes, ect.

Hierarchical Clustering

Hierarchical Clustering:

- Uses distances between data points as clustering criteria
- Does not require to determine a number of clusters
- Agglomerative vs. divisive

Step 0 Step 1 Step 2 Step 3 Step 4 **Agglomerative** a b abcde cde d e **Divisive** Step 3 Step 2 Step 1 Step 0

Hierarchical Clustering

Agglomerative Clustering

- Start with each point as individual cluster
- At each step, merge the closest pair
- Stop when only one cluster remains

Divisive Clustering

- Start with one cluster
- At each step, split a cluster
- Stop when each cluster contains a single point

How many clusters do we want?

Distance between two clusters?

1) **Single-link** distance: minimum distance between any points in S_i and S_j

$$d_{sl}(S_i, S_j) = \min_{x,y} \left\{ d(x, y) | x \in S_i, y \in S_j \right\}$$

Limitations: sensitive to noise and outliers

Distance between two clusters?

2) Complete-link distance: maximum distance between any points in S_i and S_j $d_{sl}(S_i, S_j) = \max_{x,y} \left\{ d(x,y) | x \in S_i, y \in S_j \right\}$

Limitations: all clusters tend to have same diameters → break large clusters

Two Clusters

Distance between two clusters?

3) **Group average** distance: average distance between any points in S_i and S_i

$$d_{ga}(S_i, S_j) = \frac{1}{|S_i| \times |S_j|} \sum_{x \in S_i, y \in S_i} d(x, y)$$

Compromise between single and complete links

4) Centroid distance

$$d_{centroids}(S_i, S_j) = d(C_i, C_j)$$

5) Ward's distance

$$d_{wards}(S_i, S_j) = \sum_{x \in S_i} (x - C_i)^2 + \sum_{x \in S_j} (x - C_j)^2 + \sum_{x \in S_i, j} (x - C_i)^2$$

Hierarchical Clustering

- Deterministic: always the same answer
- Greedy algorithm: local optima rather than global optimum
- Very long to compute

Complexity

- Space: O(n²) to store the distance matrix
- Time: O(n³)
 - n steps
 - at each step, the distance matrix of size n² must be updated

Supervised Learning

Supervised learning

Supervised learning:

- Labeled training data
- Goal: learn a function to map inputs to their labels

Classification:

- Labels are **discrete** classes (ex: peach/plum)
- Predict the correct class for each input

Regression:

- Labels are **continuous** values of a dependent variable (ex: ordinate)
- Make the best prediction based on a set of independent variables (ex: abscissa)

Classification

Our initial example: peaches vs. plums

- Features: weight, size

Labels: Fruit name

How to divide the space?

Classification

Our initial example: peaches vs. plums

- Features: weight, size

Labels: Fruit name

How to divide the space?

Many perfect separators exist... How to find the best separation?

- each separator defines a "street" (margin)
- Can we find the widest street?

Classification

Our initial example: peaches vs. plums

- Features: weight, size

Labels: Fruit name

How to divide the space?

Many perfect separators exist... How to find the best separation?

- each separator defines a "street" (margin)
- Can we find the widest street?

Support Vector Machines

Let's consider $\mathbf{w} \perp (H0)$:

- For each point **x** in (H0): $\vec{w} \cdot \vec{x} = \mathtt{cste}$

Let's consider $\mathbf{w} \perp (H0)$:

- For each point **x** in (H0): $\vec{w} \cdot \vec{x} = \text{cste}$
- So we can find b such as: $\vec{w} \cdot \vec{x} + b = 0$

Let's consider $\mathbf{w} \perp (H0)$:

- For each point **x** in (H0): $\vec{w} \cdot \vec{x} = \text{cste}$
- So we can find b such as: $\vec{w} \cdot \vec{x} + b = 0$
- Thus: $\begin{cases} \vec{w} \cdot \vec{x} + b \geq 0 \Rightarrow \text{peach} \\ \vec{w} \cdot \vec{x} + b < 0 \Rightarrow \text{plum} \end{cases}$

Let's consider $\mathbf{w} \perp (H0)$:

- For each point **x** in (H0): $\vec{w} \cdot \vec{x} = \text{cste}$
- So we can find b such as: $\vec{w} \cdot \vec{x} + b = 0$
- Thus: $\begin{cases} \vec{w} \cdot \vec{x} + b \geq 0 \Rightarrow \texttt{peach} \\ \vec{w} \cdot \vec{x} + b < 0 \Rightarrow \texttt{plum} \end{cases}$

Equations of (H1) and (H2): $\begin{cases} \vec{w} \cdot \vec{x^+} + b = +k \\ \vec{w} \cdot \vec{x^-} + b = -k \end{cases}$

Let's consider $\mathbf{w} \perp (H0)$:

- For each point **x** in (H0): $\vec{w} \cdot \vec{x} = \text{cste}$
- So we can find b such as: $\vec{w} \cdot \vec{x} + b = 0$
- Thus: $\begin{cases} \vec{w} \cdot \vec{x} + b \geq 0 \Rightarrow \texttt{peach} \\ \vec{w} \cdot \vec{x} + b < 0 \Rightarrow \texttt{plum} \end{cases}$

Equations of (H1) and (H2): $\begin{cases} \vec{w} \cdot \vec{x^+} + b = +k \\ \vec{w} \cdot \vec{x^-} + b = -k \end{cases}$

Rescaling **w** and b gives:
$$\begin{cases} \vec{w} \cdot \vec{x^+} + b = +1 \\ \vec{w} \cdot \vec{x^-} + b = -1 \end{cases}$$

SVM maximizes the width of the margin:

$$\text{width} = \frac{\vec{w}}{||\vec{w}||} \cdot (\vec{x^+} - \vec{x^-})$$

SVM maximizes the width of the margin:

$$\text{width} = \frac{\vec{w}}{||\vec{w}||} \cdot (\vec{x^+} - \vec{x^-})$$

Also:

$$\vec{w} \cdot \vec{x^+} + b = +1$$

$$\vec{w} \cdot \vec{x^-} + b = -1$$

$$\Rightarrow \vec{w} \cdot (\vec{x^+} - \vec{x^-}) = 2$$

SVM maximizes the width of the margin:

$$\text{width} = \frac{\vec{w}}{||\vec{w}||} \cdot (\vec{x^+} - \vec{x^-})$$

Also:

$$\vec{w} \cdot \vec{x^+} + b = +1$$

$$\vec{w} \cdot \vec{x^-} + b = -1$$

$$\Rightarrow \vec{w} \cdot (\vec{x^+} - \vec{x^-}) = 2$$

Thus:

$$\text{maximize} \longrightarrow \text{width} = \frac{2}{||\vec{w}||} \longrightarrow \text{minimize}$$

So the goal is to solve min $||\mathbf{w}||$ under +1/-1 (y_i) constraints:

- Constrained optimization problem

So the goal is to solve min $||\mathbf{w}||$ under +1/-1 (y_i) constraints:

- Constrained optimization problem
- Solved via Lagrange Multiplier:

$$\mathcal{L}(\vec{w},b) = \frac{\vec{w} \cdot \vec{w}}{2} - \sum_i \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 constraints objective

So the goal is to solve min $||\mathbf{w}||$ under +1/-1 (y_i) constraints:

- Constrained optimization problem
- Solved via Lagrange Multiplier:

$$\mathcal{L}(\vec{w},b) = \frac{\vec{w} \cdot \vec{w}}{2} - \sum_i \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 constraints objective

- Get global optimum:
$$\frac{\partial \mathcal{L}}{\partial \vec{w}} = 0 \Rightarrow \vec{w} = \sum_i \alpha_i y_i \vec{x_i}$$
 and also $\frac{\partial \mathcal{L}}{\partial \vec{b}} = 0$

So the goal is to solve min $||\mathbf{w}||$ under +1/-1 (y_i) constraints:

- Constrained optimization problem
- Solved via Lagrange Multiplier:

$$\mathcal{L}(\vec{w},b) = \frac{\vec{w} \cdot \vec{w}}{2} - \sum_i \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 constraints objective

- Get global optimum:
$$\frac{\partial \mathcal{L}}{\partial \vec{w}} = 0 \Rightarrow \vec{w} = \sum_i \alpha_i y_i \vec{x_i}$$
 and also $\frac{\partial \mathcal{L}}{\partial \vec{b}} = 0$

Very beautiful result !!

So the goal is to solve min $||\mathbf{w}||$ under +1/-1 (y_i) constraints:

- Constrained optimization problem
- Solved via Lagrange Multiplier:

$$\mathcal{L}(\vec{w},b) = \frac{\vec{w} \cdot \vec{w}}{2} - \sum_i \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 constraints objective

- Get global optimum:
$$\frac{\partial \mathcal{L}}{\partial \vec{w}} = 0 \Rightarrow \vec{w} = \sum_i \alpha_i y_i \vec{x_i}$$
 and also $\frac{\partial \mathcal{L}}{\partial \vec{b}} = 0$

Very beautiful result !!

- w linear combination of x_i

So the goal is to solve min $||\mathbf{w}||$ under +1/-1 (y_i) constraints:

- Constrained optimization problem
- Solved via Lagrange Multiplier:

$$\mathcal{L}(\vec{w},b) = \frac{\vec{w} \cdot \vec{w}}{2} - \sum_i \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 constraints objective

- Get global optimum:
$$\frac{\partial \mathcal{L}}{\partial \vec{w}} = 0 \Rightarrow \vec{w} = \sum_i \alpha_i y_i \vec{x_i}$$
 and also $\frac{\partial \mathcal{L}}{\partial \vec{b}} = 0$

Very beautiful result !!

- w linear combination of x_i
- In practice, a lot of $\alpha_i = 0 \rightarrow$ so most points are useless

So the goal is to solve min $||\mathbf{w}||$ under +1/-1 (y_i) constraints:

- Constrained optimization problem
- Solved via Lagrange Multiplier:

Lagrange Multiplier:
$$\mathcal{L}(\vec{w},b) = \frac{\vec{w} \cdot \vec{w}}{2} - \sum_i \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 constraints objective

Get global optimum:
$$\frac{\partial \mathcal{L}}{\partial \vec{w}} = 0 \Rightarrow \vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}}$$
 and also $\frac{\partial \mathcal{L}}{\partial \vec{b}} = 0$

Very beautiful result !!

- w linear combination of x,
- In practice, a lot of $\alpha_i = 0 \rightarrow$ so most points are useless
- Only points on the frontiers dictate the value of w

→ Support Vectors

The decision rule becomes:

$$|\vec{w} \cdot \vec{x} + b|$$
 $|\vec{w}| = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}} \cdot \vec{x} + b|$

All we need is:

- Optimize α_{i}
- Only requires the dot product

The decision rule becomes:

$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}}$$
 $\Rightarrow f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}} \cdot \vec{x} + b$

All we need is:

- Optimize α_i
- Only requires the dot product

What if there are **outliers** in the data?

The decision rule becomes:

$$|\vec{w} \cdot \vec{x} + b| \Rightarrow f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}} \cdot \vec{x} + b|$$

All we need is:

- Optimize α_{i}
- Only requires the dot product

What if there are **outliers** in the data?

- Soft margin SVM
- Constrained equations: $y_i(\vec{w} \cdot \vec{x_i} + b) \ge 1 \zeta_i$
- L1 regularization: penalizing large values of ζ_{i}
- Optimization function: $\dfrac{ec{w}\cdotec{w}}{2}+\dfrac{C}{\sum_{i}\zeta_{i}}$

Controlling C → controlling classification error

SVM finds the best **straight** line

What to do when the data is **non-linearly** separable?

SVM finds the best **straight** line

What to do when the data is **non-linearly** separable?

- If the problem is hard in a given space S₁
- It is usual to go to a second space S₂ where it is easier to solve
- And then apply the inverse transformation (from S₂ to S₁)

Same here: if we don't have a straight line in S₁, maybe we have one in S₂

Limitations:

- Dimensionality of Φ can be very large
- High computational costs

Solution:

- No need to compute the transform Φ
- Only need to compute its dot product!
- Kernel trick: $k(x,y) = \phi(x) \cdot \phi(y)$
- New problem formulation:

$$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}} \cdot \vec{x} + b \Rightarrow f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} \phi(\vec{x_{i}}) \cdot \phi(\vec{x}) + b$$

Solved via SMO algorithm (Sequential Minimal Optimization)

Most used kernel functions:

- Polynomial: $K(x,y) = (x^Ty + 1)^d$

- Gaussian: $K(x,y) = \exp(-\psi(x-y)^2)$

- Radial Basis: $K(x,y) = \exp{(rac{-||x-y||^2}{2\sigma^2})}$

- Sigmoid: $K(x,y) = \tanh(kx^Ty - \Theta)$

Regression

Regression:

- In classification we aim at predicting a discrete value (label)
- Here we aim at predicting a **real number** from a set of features

Regression

Objective: Learn a function f that predicts, for each input x, an output $f(x,\theta)$ that is closed to the desired value y

Regression

Let's assume a polynomial relationship between input and output:

$$f(x_i, \mathbf{w}) = w_0 + w_1 x_i + w_2 x_i^2 + \ldots + w_M x_i^M = \sum_{m=0}^M w_m x_i^m$$

Objective: find parameter w

Regression

Learning parameters:

- Loss function: quantifies the error between predicted and desired values to minimize

Example: Mean Square Error
$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, \theta))^2$$

Regression

Learning parameters:

- Loss function: quantifies the error between predicted and desired values to minimize

Example: Mean Square Error
$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, \theta))^2$$

- Iterative optimization: gradient descent
 - Compute the gradient of the loss function: $\frac{\partial \mathcal{L}}{\partial w_i}(m{w})$
 - Update parameters: $w_i \leftarrow w_i \eta \frac{\partial \mathcal{L}}{\partial w_i}$ | learning rate

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Input data: pairs of coordinates (x,y)

Model: f(x) = ax + b

Learning: epoch 100

Deep Learning reuse the same methodology but with extremely nonlinear models

Methods

- Unsupervised Learning: K-means clustering, hierarchical clustering
- Supervised Learning: SVM, regression

Methods

- Unsupervised Learning: K-means clustering, hierarchical clustering
- Supervised Learning: SVM, regression

Generalization and performance evaluation

- All methods are applied on a training set
- How do they perform on unseen data?
- Split dataset into train/dev/test sets to avoid overfitting

Methods

- Unsupervised Learning: K-means clustering, hierarchical clustering
- Supervised Learning: SVM, regression

Generalization and performance evaluation

- All methods are applied on a training set
- How do they perform on unseen data?
- Split dataset into train/dev/test sets to avoid overfitting

Curse of dimensionality

- We have seen that adding dimensions helps finding a separator
- Yes but overfitting!
- Growing number of features ⇒ amount of data to generalize grows exponentially!
 Maybe PCA? ⊚

From Machine Learning to Deep Learning

Going deeper:

- Apprentissage et Deep Learning (S7,S8)
- Traitement d'images (S8), Intelligence Artificielle (S8)
- Vision Artificielle (S9).

Questions?

Charles Brazier charles.brazier@u-bordeaux.fr