《数值计算方法》课程

矩阵的特征值和奇异值

奇异值分解定理应用 (非常重要)

胡建芳

(研究方向: 计算机视觉)

http://sdcs.sysu.edu.cn/content/5143

计算机学院

课程回顾

■ 奇异值分解定理:

定理 设 $A \in R^{m \times n}$,秩(A) = r,则存在m阶正交阵U和n阶正交阵V,使得 $U^TAV = \Sigma = \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix}$ 其中 $\Sigma_r = diag(\sigma_1, \sigma_2, ..., \sigma_r)$,且 $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$ 称 $A = U\Sigma V^T = U\begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix} V^T$ 为矩阵A的奇异值分解, $\Sigma = \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix}$ 为矩阵A的奇异值矩阵。

SVD的性质

性质 1 矩阵 $A = USV^{T}$ 的秩是 S 中非零元素的个数.

性质 2 如果 $A \in n \times n$ 矩阵, 那么 $|\det(A)| = s_1 \cdots s_n$.

性质 3 如果 A 是可逆 $m \times m$ 逆阵, 那么 $A^{-1} = VS^{-1}U^{T}$.

性质 4 $m \times n$ 矩阵 A 可以写成秩 1 矩阵之和:

$$\boldsymbol{A} = \sum_{i=1}^r s_i \boldsymbol{u}_i \boldsymbol{v}_i^{\mathrm{T}},$$

这里 r 是 A 的秩, 而 u_i 及 v_i 分别是 U 及 V 的第 i 列.

■ SVD的性质

证

$$A = USV^{T} = U\begin{bmatrix} s_{1} & & \\ & \ddots & \\ & s_{r} \end{bmatrix}V^{T}$$

$$= U\begin{bmatrix} \begin{bmatrix} s_{1} & & \\ & \\ & \end{bmatrix} + \begin{bmatrix} s_{2} & \\ & \\ & \end{bmatrix} + \cdots + \begin{bmatrix} & \\ & \\ s_{r} \end{bmatrix} V^{T}$$

$$= s_{1}u_{1}v_{1}^{T} + s_{2}u_{2}v_{2}^{T} + \cdots + s_{r}u_{r}v_{r}^{T}.$$

性质 4 是 SVD 的低秩近似性质. 通过保留 (12.31) 式的前面 p 项就提供了对 秩 $p \le r$ 的 A 的最佳最小二乘近似.

SVD的性质

例 12.8 求矩阵
$$\begin{bmatrix} 0 & 1 \\ 1 & \frac{3}{2} \end{bmatrix}$$
 的最佳秩 1 近似. 写出 (12.31) 就得到

$$\begin{bmatrix} 0 & 1 \\ 1 & \frac{3}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \end{pmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

$$= 2 \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{8}{5} \end{bmatrix} + \begin{bmatrix} -\frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & -\frac{1}{10} \end{bmatrix}.$$

■数据降维

SVD 给出了一个直接了当的方法执行降维. 把数据向量考虑为 $m \times n$ 矩阵 $A = (a_1 | \cdots | a_n)$ 的列, 并且计算奇异值分解 $A = USV^T$, 设 e_j 表示第 j 个基本基向量 (即第 j 个分量是 1, 其他分量全为 0). 于是 $Ae_j = a_j$. 利用性质 4 的秩 p 近似

$$oldsymbol{A} pprox oldsymbol{A}_p = \sum_{i=1}^p s_i oldsymbol{u}_i oldsymbol{v}_i^{\mathrm{T}},$$

我们可以通过

$$a_j = Ae_j \approx A_p e_j \tag{13.33}$$

把 a_j 投影到由 U 的列 u_1, \dots, u_p 所张成的 p 维空间中, 因为把一个矩阵乘以 e_j 恰好是把它的第 j 列挑选出来, 我们能更有效地叙述求解如下:

■ 数据降维

例 12.9 求拟合数据向量 [3,2], [2,4], [-2,-1], [-3,-5] 的最佳一维子空间.

图 12-4 用 SVD 降维. (a) 4 个数据向量被投影到最佳一维子空间. (b) 虚线表示最佳子空间. 箭头表明到子空间的正交投影

■ 数据降维

例 12.9 求拟合数据向量 [3,2], [2,4], [-2,-1], [-3,-5] 的最佳一维子空间.

$$\mathbf{A} = \left[\begin{array}{cccc} 3 & 2 & -2 & -3 \\ 2 & 4 & -1 & -5 \end{array} \right]$$

$$\begin{bmatrix} 0.588 \ 6 & -0.808 \ 4 \\ 0.808 \ 4 & 0.588 \ 6 \end{bmatrix} \begin{bmatrix} 8.280 \ 9 & 0 & 0 & 0 \\ 0 & 1.851 \ 2 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0.408 \ 5 & 0.532 \ 7 & -0.239 \ 8 & -0.701 \ 4 \\ -0.674 \ 1 & 0.398 \ 5 & 0.555 \ 4 & -0.279 \ 8 \\ 0.574 \ 3 & -0.189 \ 2 & 0.792 \ 4 & -0.080 \ 1 \\ 0.221 \ 2 & 0.722 \ 3 & 0.078 \ 0 & 0.650 \ 7 \end{bmatrix}.$$

$$m{S}_1 = \left[egin{array}{cccc} 8.280 & 9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}
ight]$$

$$\mathbf{A}_1 = \begin{bmatrix} 1.991 \ 2 & 2.596 \ 4 & -1.168 \ 9 & -3.418 \ 8 \\ 2.734 \ 6 & 3.565 \ 7 & -1.605 \ 2 & -4.695 \end{bmatrix}$$

■ 数据压缩

依旧从奇异值分解的表达式入手, $A=U\Sigma V^T$,我们展开成完整的矩阵形式:

 $r \leq n < m$.

这里展开就得到了:

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \sigma_3 u_3 v_3^T + \ldots + \sigma_r u_r v_r^T$$

■ 数据压缩

行近似:

$$A\Rightarrow \sigma_1u_1v_1^T+\sigma_2u_2v_2^T+\sigma_3u_3v_3^T+\ldots+\sigma_ku_kv_k^T$$
 .

原理示意图如图1所示:

数据压缩
with-the-svd-in-r/

■ 数据压缩

压缩是因为样本的相关性较大, 冗余成分较多对于多张图像, 怎么去压缩?

■ PCA 主成分分析 自主学习。

奇异值分解大作业

主成分分析(PCA)实验

一):人脸数据库

每个人拍摄10张照片(关掉美颜),不同照片拍摄角度轻微不同,拍摄角度可以参考以下照片。

二):实验

选择上述一个数据集进行主成分分析(PCA)实验。PCA算法 自行学习。实验结果包含如下内容:

1. 用PCA降维(压缩)后,所得到的人脸图片与原始人脸图片对比。

2. 结合最近邻分类器,测试PCA降维算法的识别率。

2-3人一小组, 1个月内完成。

THE END