

EVENT PROBABILITIES

Why

Since one and only one outcome occurs, given a distribution on outcomes, we define the probability of a set of outcomes as the sum of their probabilities.

Definition

Given a distribution $p: \Omega \to \mathbb{R}$, the probability of an event $A \subset \Omega$ is $\sum_{a \in A} p(a)$, the sum of probabilities of its outcomes.

Notation

Define define $P: \mathcal{P}(\Omega) \to R$ by

$$P(A) = \sum_{a \in A} p(a).$$

We call \mathbf{P} the event probability function (or probability measure) of (or induced by) p.

Example: die

Define $p:\{1,\ldots,6\}\to \mathbf{R}$ by $p(\omega)=1/6$ for $\omega=1,\ldots,6$. Define the event $E=\{2,4,6\}$. Then

$$P(E) = \sum_{\omega \in E} p(\omega) = p(2) + p(4) + p(6) = \frac{1}{2}$$

Probability measures

Notice that for all $A \subset \Omega$, (i) $\mathbf{P}(A) \geq 0$. In particular, (ii) $\mathbf{P}(\Omega) = 1$ (and $\mathbf{P}(\emptyset) = 0$). For all $A, B \subset \Omega$, $\mathbf{P}(A \cup B) = 0$

 $P(A) + P(B) - P(A \cap B)$. In particular, if $A \cap B = \emptyset$, (iii) $P(A \cup B) = P(A) + P(B)$.

Conversely, suppose $f: \mathcal{P}(\Omega) \to \mathbf{R}$ satisfies (i), (ii), (iii). These three conditions are sometimes called the *axioms of probability* (for finite sets). Define $p: \Omega \to \mathbf{R}$ by

$$p(\omega) = f(\{\omega\}).$$

In case f satisfies the axioms, p is a probability distribution (nonnegative and sums to one). For this reason we call f satisfying (i)-(iii) an event probability function (or probability measure). In the case that we think of a probability event function \mathbf{P} as induced by a distribution p, we write \mathbf{P}_p .

We conclude that p and \mathbf{P} are two perspectives. We can think of elementary events (outcomes) and define their probabilities individually in a way that they sum to one and are nonnegative. Or we can think of the compound events, and define their probabilities in a way consistent with (i)-(iii).

Probability by cases

Let **P** be a probability event function. Suppose A_1, \ldots, A_n partition Ω . Then for any $B \subset \Omega$,

$$\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}(A_i \cap B).$$

Some authors call this the *law of total probability*.

