Compte rendu du TP 1 MATH 4

par HARTMANN Matthias et BIENVENU Victor groupe 2A

Sommaire

Partie 1 :	
1)	
2)	
A) les schéma de l'intégrale de la fonction 2	
B) La largeur des rectangles en fonctions de b et n	
C) La hauteur du k ^{ième} rectangle.	
D) La fonction python associée	
E) Le tableau de valeurs	
3)	
A)	
B) La largeur des rectangles en fonctions de a, b et n	
C) Exprimer a _k en fonction de a, b, n et k :	
D) En déduire l'aire A _k du k ^{ième} rectangle :	
E) la fonction python	
F) Le tableau de valeur	
I J De adread de valearminisminisminisminisminisminisminismini	/

Partie 1:

1)

Les formules f_1 , f_2 et f_3 en python :

```
Paramètres :
          @param x : float => la variable x
       Retour de la fonction :
          @return float => l'image de x par la fonction 1
       Paramètres :
          @param x : float => la variable x
       Retour de la fonction :
       @return float => l'image de x par la fonction 2
       @brief Formule de la Fonction 3
       Paramètres :
         @param x : float => la variable x
       Retour de la fonction :
          @return float => l'image de x par la fonction 3
```

La fonction « somme_rectangles » :

```
def somme_rectangle(f, n : int) -> float:
    """!
    @brief Première approximation de l'air sous la courbe d'une fonction

Paramètres :
    @param f => Une fonction f
    @param n : int => le nombre de rectangles
    Retour de la fonction :
    @return float => l'approximation de l'air sous la courbe d'une foncti
    on

"""
    return sum([f(i) * 1 for i in range(n)])
```

Execution du code:

```
1 if __name__ == "__main__":
2  #Partie 1 : 1
3  print(somme_rectangle(f_1, 4))
4  print(somme_rectangle(f_2, 4))
```

Le résultat semble cohérent avec le résultat obtenu en le calculant à la main. Le programme retourne 18 et le calcule à la main retourne 18 aussi.

S'il on teste cette même fonction avec une fonction décroissante, nous pourrons observer que les rectangles suivent la courbe.

2)

A) les schéma de l'intégrale de la fonction 2

Par défaut :

Par Excès:

B) La largeur des rectangles en fonctions de b et n

Pour obtenir la largeur, nous devons faire la distance entre 0 et b puis la diviser par le nombre de rectangles. La distance entre 0 et b est équivalente à la valeur de b donc cela donne :

$$largeur = \frac{b}{n}$$

C) La hauteur du k^{ième} rectangle

Pour obtenir la hauteur du $k^{i\grave{e}me}$ rectangle il faut faire le calcul suivant :

$$hauteur(k) = fonction(k)$$

D) La fonction python associée

```
def methode_rectangle(f,b,n) -> float:
    """!
    @brief Deuxième approximation de l'air sous la courbe d'une fonction

    Paramètres:
        @param f => Une fonction f
        @param b => La borne haute de l'intégrale
        @param n => Le nombre de rectangles
    Retour de la fonction:
        @return float => l'approximation de l'air sous la courbe d'une fonc tion

    """
    largeur : float = b/n
    somme : float = 0
    iterator : float = 0
    for i in range(n):
        somme += f(iterator)*largeur
    iterator += largeur
    return somme
```

E) Le tableau de valeurs

	$\int_{0}^{4} (x^2+1) dx$	$J_1 = \int_0^5 \left(\frac{2}{x^2 + 3}\right) dx$	$J_2 = \int_0^{20} \left(\frac{5}{(x+2)^2} \right) dx$
n = 4	18	1,80	7.02
n = 10	22.24	1.58	3.87
n = 100	25.01	1.44	2.40
n = 1000	25.30	1.43	2.28
Valeur réelle	25,33	1,43	2,27

On peut conclure que le nombre de rectangles influe la précision de la valeur d'aire. Plus il y a de rectangles, plus l'aire est précise.

3)

A)

B) La largeur des rectangles en fonctions de a, b et n

Pour obtenir la largeur, nous devons faire la distance entre a et b puis la diviser par le nombre de rectangles:

$$largeur = \frac{b-a}{n}$$

C) Exprimer a_k en fonction de a, b, n et k:

$$a_k = \frac{b-a}{n} \cdot k$$

D) En déduire l'aire A_k du $k^{i \hat{e} m e}$ rectangle :

On en déduit la formule suivante :

$$A_k = \frac{(b-a)}{n} \cdot f\left(\frac{(b-a)}{n} \cdot k\right)$$

E) la fonction python

```
def methode_rectangle_v2(f,a,b,n) -> float:
       @brief Généralisation de l'approximation de l'air sous la courbe d'une
    fonction
       Paramètres :
          @param f => Une fonction f
           @param a => la borne basse de l'intégrale
           @param b => La borne haute de l'intégrale
           @param n => Le nombre de rectangles
       Retour de la fonction :
          @return float => l'approximation de l'air sous la courbe d'une fonc
       largeur : float = (b-a)/n
       somme : float = 0
       while iterator < b:</pre>
           somme += f(iterator)*largeur
           iterator += largeur
       return somme
```

F) Le tableau de valeur

```
J_3 = \int_1^{1} \arctan(\cos(x)) dx
0.9739302067788755
-0.5317241832872797
-1.1377426607432766
-1.1238968609042392
n = 10
n = 100
-0.5317241832872797
n = 100
-1.1377426607432766
n = 1000
-1.1238968609042392
Valeur réelle
-1,13
```