1. $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$

 $l, pv(p \land q) = p$

$$7. \quad \neg p \leftrightarrow q = p \leftrightarrow \neg q$$

11.
$$(p \rightarrow q) \wedge (q \rightarrow r) \rightarrow (p \rightarrow r) = T$$

parl	ا ا به لا درا	1 2-2r	(p+a)n(a+r)	l p>r	1(D+a)^(0	24->r)	>(p>r)
WWW 14	D 7 9	W	W	W		1 W	
wwt	W	+	+	4		W	1
wtw wtw	+	V w	f	(w	
tww	w	W	W	W		W	
fwt	W	+	+	8		$\sqrt[\infty]{}$	
f++	*	₩	\ \w	\w \	- 1	$\sqrt[3]{}$	
7771	, ,		•	•	L	I =	= T

3.
$$(p \rightarrow r) \wedge (q \rightarrow r) = (p \vee q) \rightarrow r$$

4.
$$\neg (p \Rightarrow q) = p \land \neg q$$

 $\neg (\neg p \lor q) = p \land \neg q$
 $p \land \neg q = p \land \neg q$

$$S. \neg (p \lor (\neg p \land q)) = \neg p \land \neg q$$

$$LHS = \neg p \land \neg (\neg p \land q)$$

$$= \neg p \land (p \lor \neg q)$$

$$= (\neg p \land p) \lor (\neg p \land \neg q)$$

$$= \neg p \land \neg q$$

$$= \neg p \land \neg q$$

6.
$$(p \wedge q) \rightarrow (p \vee q) = T$$

= $\tau(p \wedge q) \vee (p \vee q)$
= $\tau(p \wedge q) \vee (p \vee q)$
= $\tau(p \wedge q) \vee (p \vee q)$
= $\tau(p \wedge p) \vee (p \vee q)$
= $\tau(p \wedge q) \vee (p \vee q)$
= $\tau(p \wedge q) \vee (p \vee q)$
= $\tau(p \wedge q) \vee (p \vee q)$

III.
$$(p \rightarrow q) \wedge (q \rightarrow r) \rightarrow (p \rightarrow r) \equiv T$$

$$\equiv \neg ((\neg p \lor q) \wedge (\neg q \lor r)) \vee (\neg p \lor r)$$

$$\equiv \neg (\neg p \lor q) \vee \neg (\neg q \lor r) \vee (\neg p \lor r)$$

$$\equiv (p \wedge \neg q) \vee (q \wedge \neg r) \vee (\neg p \lor r) \qquad \text{Associativy}.$$

$$\equiv (p \wedge \neg q) \vee (q \wedge \neg r) \vee \neg p \vee r$$

$$= (p \wedge \neg q) \vee (q \wedge \neg r) \vee (\neg p \vee r)$$

$$= (p \wedge \neg q) \vee (q \wedge \neg r) \vee \neg p \vee r$$

$$= \neg p \vee (p \wedge \neg q) \vee r \vee (q \wedge \neg r)$$

$$= \langle (\neg \rho \vee \rho) \wedge (\neg \rho \vee \neg q) \rangle \vee ((r \vee q) \wedge (r \vee \neg r))$$

$$= \langle (\neg \rho \vee \rho) \wedge (\neg \rho \vee \neg q) \rangle \vee ((r \vee q) \wedge T)$$

$$\equiv (T \wedge (\neg p \vee \neg q)) \vee ((r \vee q) \wedge T)$$

$$\equiv (\neg p \vee \neg q) \vee (r \vee q)$$

$$= \neg \rho \vee \neg q \vee r \vee q$$

$$= \neg \rho \vee \neg q \vee r \vee q$$

$$= (\neg p \vee r) \vee T$$

= 1

$$= 1(744(704) \times 70)$$

$$= 1(7444) \times (74470) \times 70$$

$$= 7(F \times (74470)) \times 70$$

$$= T \times 7(74470) \times 70$$

$$= T \times (4 \times 10) \times 70$$

$$= T \times ((4 \times 10) \times 70)$$

ET

$$N=7$$
 , $N+1=3$ 3=2 $\sqrt{}$ $N=10$, $N+1=11$ $11>10$ $\sqrt{}$

b)
$$\exists n (2n = 3n)$$

$$c)$$
 $\exists n (n = -n)$

d)
$$\forall n (n^2 \ge n)$$

$$0^2 = 0 , 0 \ge 0$$

$$1^{2} = 1$$
, $1 \ge 1$ $\sqrt{2^{2}} = 4$, $4 \ge 2$ $\sqrt{2^{2}} = 4$

$$-2^2 = 4$$
, $4 \ge -2$

8. b) $\exists n \exists m (n+m=4 \land n-m=1)$ |n+m=4| |n-m=1| 1+m+m=4 m+m=3 m>1.5 m = 1.5 m = 1.5

a) $\forall n \exists m (n^2 < m)$ n=2 $2^2=4$ m=5 m=5 n=-8 $-8^2=64$ m>64 m=65

7

74 eintach -

9 $\forall x \exists y (xy = 1)$ a) $|K| \le 03$ b) |Z| c) $|Z|^{+}$ |X| = 5 |X| = 5 |X| = 4 |X| = 4

VI. 25 Meetings and 12 Monake ergibt >2 Meetings / Monat also egal wie gleichmassig may sie verteilts mind 1 Monat hat 3 Meetings