EE214 - Report 8 Clock Divider

 $\begin{array}{c} {\rm Harsh~S~Roniyar~(22B3942)} \\ {\rm FR-19/T-19} \end{array}$

14th October 2023

Contents

	0.1	Objective																	2
	0.2	Overview																	2
L	Lab	Design																	3
2	Clo	ck Divider	•																5
	2.1	ModelSim	and	RT	LS	\sin	ula	ati	on	S									5

Introduction

0.1 Objective

The aim of the assignment was to implement a clock divider which alternatively prints '0' and '1' at a specific frequency by using the Master Clock input of 50MHz. This was to be implemented using Behavioural modelling.

There is also a reset input that can be used to hold the new_clock to either '1' or '0'.

After that, we had to perform RTL Simulation with a Testbench to ensure that the design was correct.

Finally we also had to implement it on a Xen10 Board with proper pin planning.

0.2 Overview

In this report, I have presented my work done on Quartus using VHDL during the eighth lab.

I have also done design verification with pin planning on Xen-10 FPGA board and verified my design.

The circuit presented in the report has the ModelSim Waveform obtained from Quartus for frequencies of $250\,$ Hz and $0.5\,$ Hz.

Chapter 1

Lab Design

This section contains the outline of the logic made in the lab for implementing the clock divider and LED output.

		M T W T F S 3
10/2023	was as bottom Cot a	Date: YOUVA
-	Nuke: Inollem-Set 8	
	50MHz 250Hz	
	0.5Hz	
0	Count = 50M/2 = 100000	
	2A 250Hz	
(3	count = 50MHz = 50000000	
	2A 0:5HZ	
ilch (SV		
	For LED switching	
W 20		
_	= led-parity (default = 1)	
	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
	Implemented If-Asif-else block	
	if (led-panity =0); led-panity = 1)
	LED I AND LED 23	
	cleif (led-parity=1); led-parity = 2	Pseupocope
	LED 3 AND LED 4;	for implementation
	class (red-panely = 2); led-parely = 3	
	LEPS AND LEDG;	
	else; led-parity =0	
	LEDT AND LEDS	
w1=1		
	128 - 64	
	inf (counter <= 64)	
	counter < 128,5	
	3 (counter >= 64)	
•	counter = counter - 1;	
		(4)
	13 oct	0.023
	13 oct	

Chapter 2

Clock Divider

2.1 ModelSim and RTL Simulations

RTL simulations of Clock Divider gave the following ModelSim Waveforms for the frequencies 250~Hz and 0.5~Hz. The frequency can be verified by calculating the number of pulses in a given time interval.

Figure 2.1: f = 250 Hz

Figure 2.2: f = 0.5 Hz

THANK YOU!