第三章 高分子溶液

- 3.1 高分子的溶解性判据
- 3.2 高分子溶液的热力学-Flory-Huggins理论
- 3.3 稀溶液的热力学性质和高分子构象
- 3.4 亚浓溶液的热力学性质和高分构象
- 3.5 高分子凝胶的热力学
- 3.6 聚电解质溶液
- 3.7 高分子共混物的热力学
- 3.8 嵌段共聚物的热力学初步
- 3.9 高分子溶液的流体力学性质

Chapt. 3 Polymer Solutions

➤ The solution process

➤ This process is usually slower compared with small molecules, and strongly dependent on the chemical structures and condensed states of the samples.

Crosslinked polymer: only can be swelled.

Crystalline PE: dissolve at the temperature approached to its melting temperature.

Crystalline Nylon 6,6: dissolved at room temperature by using the solvent with strong hydrogen bonds.

3.1 Criteria (判据) of Polymer Solubility

➤ Gibbs free energy of mixing

$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

$$\Delta S_{mix} > 0$$

 \triangleright Solubility occurs only when the $\triangle G_{\text{mix}}$ is negative.

1. Hildebrand enthalpy of mixing (混合焓)

$$1-1 + 2-2 \longrightarrow 1-2 + 1-2$$
 1: solvent; 2: polymer

$$\Delta H_{mix} = \left(\frac{\Delta E_1}{v_1} + \frac{\Delta E_2}{v_2} - 2\sqrt{\frac{\Delta E_1 \Delta E_2}{v_1 v_2}}\right) P_{12} \quad (\Delta E/v) \text{ cohesive energy density}$$
 (内聚能密度)

$$\Delta H_{mix} = V_{m} \phi_{1} \left(\frac{n_{2} \overline{V_{1}}}{V_{m}} \right) \left(\left(\frac{\Delta E_{1}}{v_{1}} \right)^{1/2} - \left(\frac{\Delta E_{2}}{v_{2}} \right)^{1/2} \right)^{2} = V_{m} \phi_{1} \phi_{2} \left(\left(\frac{\Delta E_{1}}{v_{1}} \right)^{1/2} - \left(\frac{\Delta E_{2}}{v_{2}} \right)^{1/2} \right)$$

$$=V_{m}\phi_{1}\phi_{2}\left[\delta_{1}-\delta_{2}\right]^{2}$$

2. Huggin's Enthalpy

Different pairs in solution:

solvent-solvent molecule: [1-1], ε_{11}

solute-solute segment: [2-2], ε_{22}

solvent-solute: [1-2], ε_{12}

Mixing process:
$$\frac{1}{2}[1-1] + \frac{1}{2}[2-2] = [1-2]$$

$$\Delta \varepsilon_{12} = \varepsilon_{12} - \frac{1}{2} \left(\varepsilon_{11} + \varepsilon_{22} \right)$$

$$\Delta H_{mixing} = P_{12} \Delta \varepsilon_{12} P_{12}$$
 total pairs of [1-2]

$$P_{12} = \left[(Z-2)x + \frac{1}{2} \right] \phi_1 N_2 = (Z-2)N_1 \phi_2$$
cells surrounding number of polymers a polymer

volume fraction of solvent ~ Possibility of the cell occupied by solvent.

$$\phi_1 = \frac{N_1}{N_1 + xN_2}$$
 and $\phi_2 = \frac{xN_2}{N_1 + xN_2}$

$$\Delta H_{mixing} = kT \chi N_1 \phi_2 = RT \chi n_1 \phi_2$$

$$= \frac{V_m}{V_s} kT \chi \phi_1 \phi_2 = V_m \phi_1 \phi_2 \left[\delta_1 - \frac{\delta_2}{2} \right]^2 / \tilde{N}$$

$$\chi = \frac{(Z-2)\Delta\varepsilon_{12}}{kT} = \frac{V_s \left(\delta_1 - \delta_2\right)^2}{RT}$$

Flory-Huggins parameter: (interaction parameter)

3.2 Thermodynamics of Polymer Solutions

(1) Entropy of mixing for ideal solution

$$\Delta S_{mix}^{i} = -k (N_{1} \ln X_{1} + N_{2} \ln X_{2})$$

(2) Entropy of mixing for polymer solutions

- The lattice model assumes that the volume is unchanged during mixing.
- Each repeating unit of the polymer (segment) occupies one position in the lattice and so does each solvent molecule.
- ➤ The mixing entropy is strongly influenced by the chain connectivity of the polymer component.

Flory-Huggins theory (Lattice Model (格子模型))

体系中有 N_1 个溶剂分子 + N_2 个链段数为x的高分子

总格子数: $N=N_1+xN_2$

已有j个高分子放入,剩下N-xj个空格,求第j+1个高分子的放置方式 W_{j+1} ???

- 1. 放置第j+1个高分子的第1个链段的概率 N-xj
- 2. 放置第j+1个高分子的第2个链段的概率 Z(N-xj-1)/N
- 3. 放置第j+1个高分子的第3个链段的概率 (Z-1)(N-xj-2)/N

Entropy of mixing from FH theory

$$W_{j+1} = (N - xj) \times Z \left(\frac{N - xj - 1}{N}\right) \times (Z - 1) \left(\frac{N - xj - 2}{N}\right) \times (Z - 1) \left(\frac{N - xj - 3}{N}\right) \cdots (Z - 1) \left(\frac{N - xj - x + 1}{N}\right)$$

$$\frac{1^{\text{st}}}{2^{\text{nd}}} \frac{2^{\text{nd}}}{3^{\text{rd}}} \frac{3^{\text{rd}}}{4^{\text{th}}} \frac{4^{\text{th}}}{x^{\text{th}} \text{ segment}}$$

$$Z \approx Z - 1$$
 $W_{j+1} = \left(\frac{Z - 1}{N}\right)^{x-1} \frac{(N - xj)!}{(N - xj - x)!}$

总方式

$$\begin{split} \Omega &= \frac{1}{N_2!} \prod_{j=0}^{N_2-1} W_{j+1} = \frac{1}{N_2!} \left(\frac{Z-1}{N} \right)^{N_2(x-1)} \frac{N!}{(N-x)!} \frac{(N-x)!}{(N-2x)!} \frac{(N-x)!}{(N-2x)!} \\ &= \frac{1}{N_2!} \left(\frac{Z-1}{N} \right)^{N_2(x-1)} \frac{N!}{(N-xN_2)!} \frac{1^{\text{st}}}{(N-xN_2)!} \frac{2^{\text{st}}}{N_2^{\text{st}} \text{ chain}} \end{split}$$

Entropy of solution:

$$S_{solution} = k \ln \Omega = k \left[N_2(x-1) \ln \left(\frac{Z-1}{N} \right) + \ln N! - \ln N_2! - \ln (N-xN_2)! \right]$$

Entropy of mixing from FH theory

Using Stirling's approximation ($\ln x! \approx x \ln x - x$), we have:

$$S_{solution} = -k \left[N_1 \ln \frac{N_1}{N_1 + xN_2} + N_2 \ln \frac{N_2}{N_1 + xN_2} - N_2(x-1) \ln \frac{Z-1}{e} \right]$$

and pure polymer:

Entropy of the pure solvent and pure polymer:
$$S_{polymer} = kN_2 \left[\ln x + (x-1) \ln \frac{Z-1}{e} \right]$$
 $(N_1 = 0)$ and $S_{solvent} = 0$

Therefore,

$$\begin{split} \Delta S_{mixing} &= S_{solution} - (S_{solvent} + S_{polymer}) \\ &= -k \left[N_1 \ln \frac{N_1}{N_1 + x N_2} + N_2 \ln \frac{x N_2}{N_1 + x N_2} \right] = -k \left[N_1 \ln \phi_1 + N_2 \ln \phi_2 \right] \\ &= -R \left[n_1 \ln \phi_1 + n_2 \ln \phi_2 \right] \\ &= -k \frac{V_m}{V_s} \left[\phi_1 \ln \phi_1 + \frac{\phi_2}{x} \ln \phi_2 \right] \end{split}$$

where
$$\phi_1 = \frac{N_1}{N_1 + xN_2} = \frac{n_1}{n_1 + xn_2} = \frac{\tilde{N}n_1V_s}{V_m}$$
 and $\phi_2 = \frac{xN_2}{N_1 + xN_2} = \frac{xn_2}{n_1 + xn_2} = \frac{\tilde{N}xn_2V_s}{V_m}$

Free Energy of FH Theory

Huggins Enthalpy:

$$\Delta H_{mixing} = kT \chi N_1 \phi_2 = RT \chi n_1 \phi_2 = \frac{V_m}{V_s} RT \chi \phi_1 \phi_2$$

Gibbs Free Energy:

$$\Delta G_{mixing} = kT \left(N_1 \ln \phi_1 + N_2 \ln \phi_2 + \chi x_1 N_1 \phi_2 \right)$$
 分子数
$$\Delta G_{mixing} = RT \left(n_1 \ln \phi_1 + n_2 \ln \phi_2 + \chi x_1 n_1 \phi_2 \right)$$
 摩尔数
$$\Delta G_{mixing} = kT \frac{V_m}{V_s} \left(\frac{\phi_1}{x_1} \ln \phi_1 + \frac{\phi_2}{x_2} \ln \phi_2 + \chi \phi_1 \phi_2 \right)$$
 一般通式

$$\frac{\phi_{1} = \frac{x_{1}N_{1}}{x_{1}N_{1} + x_{2}N_{2}} = \frac{x_{1}n_{1}}{x_{1}n_{1} + x_{2}n_{2}} = \frac{\tilde{N}x_{1}n_{1}V_{s}}{V_{m}} \quad \phi_{2} = \frac{x_{2}N_{2}}{x_{1}N_{1} + x_{2}N_{2}} = \frac{x_{2}n_{2}}{x_{1}n_{1} + x_{2}n_{2}} = \frac{\tilde{N}x_{2}n_{2}V_{s}}{V_{m}}$$

For Polymer Solutions $x_1=1$

Chemical potentials (化学位):

$$\Delta \mu_{1} = \left[\frac{\partial \left(\Delta G_{mixing} \right)}{\partial n_{1}} \right]_{T,P,n_{2}} = RT \left[\ln \phi_{1} + \left(1 - \frac{1}{x} \right) \phi_{2} + \chi \phi_{2}^{2} \right] \quad \text{(for solvent)}$$

$$\Delta \mu_{2} = \left[\frac{\partial \left(\Delta G_{mixing} \right)}{\partial n_{2}} \right]_{T,P,n_{2}} = RT \left[\ln \phi_{2} - (x-1) \phi_{1} + x \chi \phi_{1}^{2} \right] \quad \text{(for polymer)}$$

In the case of
$$\phi_2 << 1$$
, $\ln \phi_1 = \ln (1 - \phi_2) \approx -\phi_2 - \frac{1}{2} \phi_2^2 \cdots$

$$\chi < 1/2$$
, good solvent
 $\chi = 1/2$, theta Θ solvent
 $\chi > 1/2$, poor solvent

Osmotic pressure (渗透压):

$$\mu_{s}\left(\phi_{2}, P+\pi, T\right) = \mu_{s}\left(0, P, T\right)$$

pure solvent

$$\Pi = \frac{RT}{\bar{V_1}} \left(\phi_2 \frac{\partial F_m}{\partial \phi_2} - F_m \right) =$$

$$-\frac{\Delta \mu_1}{\bar{V_1}} = \frac{RT}{\bar{V_1}} \left[\frac{1}{x} \phi_2 + \left(\frac{1}{2} - \chi \right) \phi_2^2 \right]$$

$$A_2 = \frac{\left(\frac{1}{2} - \chi \right)}{\bar{V_1}} \quad \text{second Virial coefficent}$$

当 ϕ_2 <<1/x(0.5- χ)或 χ =1/2

$$\Pi = \frac{RT}{\bar{V_1}} \left[\frac{1}{x} \phi_2 \right]$$

当 $\phi_2>>1/x$, 即 $\phi_2^2>>\phi_2/x$

Appendix: Osmotic pressure

$$V = (N_{p}x + N_{s})v_{s} \qquad \Delta G = kT \frac{V_{m}}{V_{s}}F$$

$$F(N_{p}, N_{s}, P, T) = F_{m} + PV = F_{m} + P(N_{p}x + N_{s})v_{s}$$

$$\mu_{s}(\phi, P, T) = \mu_{s}^{0} + kT \left(F_{m} - \phi \frac{\partial F_{m}}{\partial \phi}\right) + Pv_{s}$$

$$\therefore \mu_{s}(\phi, P + \Pi, T) = \mu_{s}(0, P, T)$$

$$\mu_{s}^{0} + kT \left(F_{m} - \phi \frac{\partial F_{m}}{\partial \phi}\right) + (P + \Pi)v_{s} = \mu_{s}^{0} + Pv_{s}$$

$$\therefore \Pi = \frac{kT}{v_{s}} \left(\phi \frac{\partial F_{m}}{\partial \phi} - F_{m}\right) = \frac{RT}{\overline{V}_{1}} \left(\phi \frac{\partial F_{m}}{\partial \phi} - F_{m}\right)$$

Polymer Shapes in Dilute Solutions

$$\Pi = \frac{RT}{\overline{V_1}} \left[\frac{1}{x} \phi_2 + \left(\frac{1}{2} - \chi \right) \phi_2^2 \right]$$

Expanded, unperturbed, and collapsed chains

The coil-globule transition in a solution of polystyrene in cyclohexane. The radius of gyration R_g and the hydrodynamic radius R_h of the polymer show a dramatic change as temperature passes through the Θ temperature. (Sun, S.T.; etc. *J. Chem. Phys.* 1980, 73, 5971.)

 $\chi \sim 1/kT!!!$

3.3 Chain Conformations in Dilute Solutions

(1) Flory-Krigbaum's Theory

有 N_2 个体积为u的"刚球"

两两刚球都不发生重叠的总概率

$$P \approx (V - u)^{(N_2 - 1)} (V - u)^{(N_2 - 2)} ... (V - u)^0$$

$$P \approx V^{N_2} \left(1 - \frac{u}{V} \right)^{N_2(N_2 - 1)/2} P \approx \prod_{i=0}^{N_2 - 1} (V - iu)$$

$$\Delta F \approx -T\Delta S = -kT \ln P$$

$$=-kT\left[N_2\ln V-\frac{N_2^2}{2}\frac{u}{V}\right]$$

$$\Pi = -\frac{\Delta \mu_1}{\tilde{V_1}} = -\frac{\partial \Delta F}{\partial V}$$

$$=RT\left[\frac{c}{M} + \frac{\tilde{N}u}{2M^2}c^2\right]$$

 $u \sim R_{_{o}}^{3} \sim T??$

 A_2

3.3 Chain Conformations in Dilute Solutions

(2) Flory 理论

ideal chain

$$W_0(h,x) = \left(\frac{3}{2\pi x l^2}\right)^{3/2} \exp\left(-\frac{3h^2}{2x l^2}\right) 4\pi h^2$$

real chain in solutions

$$Z(h,x) = W_0(h,x)P(h)\exp\left(-\frac{\overline{E}(h)}{kT}\right)$$

$$\text{$^{\text{$d$}}$}$$

能量权重修正

(1) P(h)

链包含的体积 h^3 链段的体积 v_c

一个链段占有的体积分数 v_c/h^3

其他链段不与之发生重叠的概率 $(1-v_c/h^3)$

整条链两两链段都不发生重叠的总概率

$$-P(h) \approx \prod_{i=0}^{x-1} \left(1 - i\frac{v_c}{h^3}\right) - P(h) \approx \left(1 - \frac{v_c}{h^3}\right)^{(x-1)} \left(1 - \frac{v_c}{h^3}\right)^{(x-2)} \dots \left(1 - \frac{v_c}{h^3}\right)^{0} - \frac{v_c}{h^3}$$

溶液中真实单链的末端距概率分布函数 W(h,x)

$$P(h) \approx \left(1 - \frac{v_c}{h^3}\right)^{x(x-1)/2} = \exp\left(\frac{1}{2}x(x-1)\ln\left(1 - \frac{v_c}{h^3}\right)\right) \approx \exp\left(-\frac{x^2}{2}\frac{v_c}{h^3}\right)$$

$$P(h) \approx \exp\left[\ln \prod_{i=0}^{x-1} \left(1 - i\frac{v_c}{h^3}\right)\right] = \exp\left[\sum_{i=0}^{x-1} \ln\left(1 - i\frac{v_c}{h^3}\right)\right] \approx \exp\left[-\frac{v_c}{h^3}\sum_{i=0}^{x-1} i\right]$$

(2) E(h)

$$\bar{E}(h) = (z-2)x\phi_1\Delta\varepsilon_{12} = (z-2)x(1-\phi_2)\Delta\varepsilon_{12}
= (z-2)x\Delta\varepsilon_{12} - (z-2)x\phi_2\Delta\varepsilon_{12}
= const. - (z-2)x\frac{xv_c}{h^3}\Delta\varepsilon_{12}
\bar{E}(h) = C' - \chi \frac{x^2v_c}{h^3}$$

$$Z(h,x) \propto h^2 \exp \left[-\frac{3h^2}{2xl^2} - \frac{x^2}{2} \frac{v_c}{h^3} (1-2\chi) \right]$$
 当 $\chi=1/2$,理想高

1. Polymer chain in good solvents – method I

$$\frac{\partial Z(h,x)}{\partial h} = 0$$

$$\frac{\partial Z(h,x)}{\partial h} = \exp\left[-\frac{3h^2}{2xl^2} - \frac{x^2}{2}\frac{v_c}{h^3}(1-2\chi)\right] \left\{2h + h^2\left[-\frac{3h}{xl^2} + \frac{3x^2}{2}\frac{v_c}{h^4}(1-2\chi)\right]\right\} = 0$$

$$1 - \frac{3h^{*2}}{2xl^2} + \frac{3x^2}{4} \frac{v_c}{h^{*3}} (1 - 2\chi) = 0 \implies \left(\frac{h^*}{h_0^*}\right)^3 - \left(\frac{h^*}{h_0^*}\right)^3 = \frac{9\sqrt{6}}{16} \frac{v_c}{l^3} x^{1/2} \left(1 - 2\chi\right)$$

 $W_0(h,x)$ 的极值 $h_0^*=(2xl^2/3)^{1/2}$

$$h^* \propto h_0^* \left(\frac{x^{1/2} v_c}{l^3} (1 - 2\chi) \right)^{1/5} \propto x^{\nu} (1 - 2\chi)^{1/5}$$

$$\chi = 1/2, \nu = 1/2$$

$$\chi$$
<1/2, v=3/5

1. Polymer chain in good solvents - method II

$$G \sim -kT \ln Z \qquad Z(h,x) \propto \exp\left[-\frac{3h^2}{2xl^2} - \frac{x^2}{2} \frac{v_c}{h^3} (1 - 2\chi) + ...\right]$$

$$G \sim kT \left(\frac{3h^2}{2xl^2} + \frac{x^2v_c}{2h^3} (1 - 2\chi) + ...\right) \qquad \phi_2 = \frac{xv_c}{h^3} \qquad \chi < 1/2$$

$$G/h^3 \sim kT \left(\frac{3}{2xl^2h} + \frac{x^2v_c}{2h^6} (1 - 2\chi) + ...\right) = kT \left(\frac{3}{2xl^2h} + \frac{\left(\frac{1}{2} - \chi\right)}{v_c} \phi_2^2 + ...\right)$$

$$\frac{\partial (G/h^3)}{\partial h} = 0 \qquad h \sim \chi^{3/5} \qquad \text{conformation to entropy} \qquad \text{two body interaction: excluded volume repulsion}$$

$$\text{solvent-segment interaction}$$

Two body interaction is very important

How to get ideal chain?

$$\chi=1/2$$
 \longrightarrow $h^2\sim N^1$

$$\chi_{\theta} = \frac{(Z-2)\Delta \varepsilon_{12}}{kT_{\theta}} = \frac{V_s \left(\delta_1 - \delta_2\right)^2}{RT_{\theta}} = \frac{1}{2}$$

 Θ Solution

$$T_{\theta} = \frac{2(Z-2)\Delta\varepsilon_{12}}{k} = \frac{2V_{s}}{R} (\delta_{1} - \delta_{2})^{2}$$

Θ Temperature

$$1 - 2\chi = 1 - \frac{\chi}{1/2} = \left(1 - \frac{T_{\theta}}{T}\right) = \tau$$

$$u = v_c (1 - 2\chi) \approx l^3 \tau$$

When does the freely jointed chain

works一等效自由连接链

(1)调节溶剂-链节的作用屏蔽掉体积排除效应和链节-链节相互 \rightarrow 达到 Θ 温度的溶液,测得无扰尺寸 $< h^2 >_0 \sim N$

(2) 降低高分子链的分辨率-消除局部刚性和旋转不自由

将链重新划分成有效链节数N。和有效链节长度l。

"Coarse-grained" (粗粒化) picture:

2. Polymer chain in poor solvents-Method I

$$G \sim kT \left(\frac{3h^2}{2xl^2} + \frac{x^2v_c}{2h^3} (1 - 2\chi) + ??? \right) \qquad \phi_2 = xv_c/h^3$$

$$G/h^{3} \sim \left(\frac{\frac{1}{2}-\chi}{v_{c}}\right) \phi_{2}^{2} + w\phi_{2}^{3} = \left[\frac{\frac{1}{2}-\chi}{v_{c}}\left(\frac{xv_{c}}{h^{3}}\right)^{2} + w\left(\frac{xv_{v}}{h^{3}}\right)^{3}\right]$$

second Virial coefficent **two body interaction:** excluded volume repulsion

solvent-segment interaction

third Virial coefficent
three body repulsion

Three body interactions becomes important

2. Polymer chain in poor solvents-Method II

$$\Delta\mu_1 = RT \left[-\frac{1}{x} \phi_2 + \left(\chi - \frac{1}{2} \right) \phi_2^2 + w \phi_2^3 \right]$$

Concentration in Coil:
$$\phi_{in} = \frac{xv_c}{h^3} \approx \phi_2$$
"

$$h \sim v_c^{1/3} x^{1/3} (\chi - 1/2)^{-1/3} \sim v_c^{1/3} x^{1/3} (-\tau)^{-1/3}$$

Polymer Shapes in Dilute Solutions

(1) Polymer in a good solvent

(2) Polymer in a Θ solvent

$$< h^2 > \sim < S^2 > \sim N^1$$

(3) Polymer in a poor solvent

$$< h^2 > \sim < S^2 > \sim N^{2/3} |\tau|^{-2/3}$$

Coil-globule transition

3.4 Semi-dilute Solutions of Polymers

$$\Pi = \frac{RT}{\overline{V_1}} \left[\frac{1}{x} \phi_2 + \left(\frac{1}{2} - \chi \right) \phi_2^2 \right]$$

Osmotic pressure measured for samples of poly(α -methylstyrene) dissolved in toluene (25 °C). Molecular weight vary between $M = 7 \times 10^4$ (uppermost curve) and $M = 7.47 \times 10^6$ (lowest curve). (Noda,I.; et al. *Macromolecules* 1981, *14*, 668.)

$$\phi_2 <<1$$
 $\phi_2^2 >> \phi_2/x$
 $\Pi/c \sim c^0$
 $\Pi/c \sim c^{5/4}$

overlap concentration c^*

Semi-dilute regime: $c = c^*$

$$c^* = \frac{M}{\langle S^2 \rangle^{3/2}} \sim \frac{N}{N^{3\nu}} \sim N^{1-3\nu} \sim N^{-4/5} \tau^{-3/5}$$

For good solvent, v = 3/5

Semi-dilute regime: $c > c^*$

Apparent correlation length (表现和关长度) 是

(表观相关长度) $\xi_{app}>>l_e$

Scaling Law of semi-dilute solution

➤ Osmotic pressure:

$$\Pi = \frac{c}{N} k_B T \qquad (c = c^*)$$

$$\Pi = \frac{c}{N} k_B T \left(\frac{c}{c^*}\right)^m$$

$$c^* \sim N^{1-3\nu} \qquad = \frac{c}{N} k_B T c^m N^{m(3\nu-1)} \quad (c \ge c^*)$$

In semi-dilute regime, Π is independent on N:

$$m(3v-1)-1=0$$

For good solvent, v = 3/5, therefore m = 5/4.

$$\Pi \propto c^{1+m} \propto c^{9/4}$$

Apparent correlation length ξ_{app} :

ξapp

$$\xi_{app} = Sf\left(\frac{c}{c^*}\right)$$

$$S = N^{\nu} \qquad (c = c^{*})$$

$$\xi_{app} \propto N^{\nu} \tau^{1/5} \left(\frac{c}{c^{*}}\right)^{m} \qquad \propto N^{\nu} c^{m} N^{m(3\nu-1)} \tau^{(1+3m)/5} \qquad (c \geq c^{*})$$

$$c^{*} \propto N^{1-3\nu} \qquad \propto N^{\nu} c^{m} N^{m(3\nu-1)} \tau^{(1+3m)/5} \qquad (c \geq c^{*})$$

$\xi_{\rm app}$ is independent on N:

$$v + m(3v - 1) = 0$$

For good solvent, v = 3/5, therefore m = -3/4.

$$\xi_{app} \propto c^{-3/4} au^{-1/4}$$

Polymer Shapes in Semi-dilute Solutions

blob model:

由N'个串滴单元组成的理想链

$$\langle S^2 \rangle = N'l'^2$$

串滴内-由**N**"个单元组成的扩张(良溶剂下)的短链

下)的短链
$$\left\langle \xi_{app}^{2} \right\rangle \sim N^{106/5} l^{2} \tau^{2/5}$$

串滴内有N"=g个链段单元,串滴数N'=N/g,每个串滴大小l'= ξ_{app}

$$\begin{cases} \xi_{\text{app}} \sim g^{3/5} \tau^{1/5} \\ g \sim \xi_{\text{app}}^{5/3} \tau^{-1/3} \sim c^{-5/4} \tau^{-3/4} \end{cases} \begin{cases} \langle S^2 \rangle_{\text{semi-dilute}} \sim \frac{N}{g} \xi_{\text{app}}^2 \sim \frac{N}{c^{-5/4}} c^{-6/4} \\ \langle S^2 \rangle_{\text{semi-dilute}} \sim N c^{-1/4} \tau^{1/4} \end{cases}$$

$$\xi_{\rm app} >> S$$

$$\xi_{\rm app} \leq S$$

$$\xi_{\rm app} \sim l_e << S$$

$$\langle S^2 \rangle_{\text{dilute}} \sim N^{2\nu}$$

$$\langle S^2 \rangle_{\text{dilute}} \sim N^{2\nu} \qquad \langle S^2 \rangle_{\text{semi-dilute}} \sim Nc^{-1/4} \qquad \langle S^2 \rangle_{\text{concentrated}} \sim N$$

$$\langle S^2 \rangle_{\text{concentrated}} \sim \Lambda$$

The presence of monomers from the other chains begins to "screen" (屏蔽) the intramolecular excluded volume interactions.

亚浓溶液: 串滴(blobs)在溶液中的分布达到均匀,链段分布未达均匀

浓溶液:链段在溶液中的分布完全均匀

Regions of the Polymer-Solvent Phase Diagram

3.5 Concentrated Solutions of Polymers

- 1. 高分子-增塑剂
- 2. 纺丝液
- 3. 凝胶和冻胶

Flory-Huggins free energy of a gel

Basic Equation of Gel Swelling

$$\mu_{1} = \mu_{1}^{0} \qquad \Delta \mu_{1} = \mu_{1}^{-1} - \mu_{1}^{0} = 0$$

$$\Delta \mu_{1} = \frac{\partial \Delta F}{\partial n_{1}} = \frac{\partial \Delta F}{\partial n_{1}} + \frac{\partial \Delta F}{\partial \phi_{2}} \frac{\partial \phi_{2}}{\partial n_{1}} = 0$$

$$\Delta \mu_{1} = \frac{\partial \Delta F}{\partial n_{1}} = \frac{\partial \Delta F}{\partial n_{1}} + \frac{\partial \Delta F}{\partial \phi_{2}} \frac{\partial \phi_{2}}{\partial n_{1}} = 0$$

$$\frac{\partial \Delta F}{\partial \rho_{2}} = RT \left[\ln(1 - \phi_{2}) + \left(1 - \frac{1}{x}\right)\phi_{2} + \chi\phi_{2}^{2} \right] \frac{\partial \Delta F}{\partial \phi_{2}} = -\frac{\rho_{2}V_{0}}{\overline{M}_{c}} RT \phi_{2}^{-5/3}$$

$$= RT \left(\chi - \frac{1}{2}\right)\phi_{2}^{2} \qquad \frac{\partial \Delta F}{\partial \phi_{2}} \frac{\partial \phi_{2}}{\partial n_{1}} = \frac{\rho_{2}V_{1}}{\overline{M}_{c}} RT \phi_{2}^{1/3}$$

$$\ln(1 - \phi_{2}) = -\phi_{2} - \frac{1}{2}\phi_{2}^{2} \qquad \chi \longrightarrow \infty$$

$$\Delta \mu_{1} = \left(\chi - \frac{1}{2}\right)\phi_{2}^{2} + \frac{\rho_{2}V_{1}}{\overline{M}_{c}}\phi_{2}^{1/3} = 0$$

$$\frac{\partial \phi_{2}}{\partial n_{1}} = \frac{\partial \left(\frac{V_{0}}{V_{0} + n_{1}V_{1}}\right)}{\partial n_{1}} = -\frac{V_{0}}{\left(V_{0} + n_{1}V_{1}\right)^{2}} V_{1} = -\phi_{2}^{2}\frac{V_{1}}{V_{0}}$$

$$Q = V/V_{0} = 1/\phi_{2}$$

$$(1) \Re \chi$$

$$(2) \Re M$$

Volume Phase Transition of Gels

Theory, $\tau=1-2\chi\sim 1-T_{\theta}/T$

3.6 Solutions of Polyelectrolytes

Theoretical Model of Polyelectrolytes

$$\frac{F(R_e)}{k_B T} = \frac{F_{\text{conf}}(R_e)}{k_B T} + \frac{F_{electr}(R_e)}{k_B T}$$

$$\frac{F_{\text{conf}}(R_e)}{k_B T} \approx \frac{R_e^2}{Nb^2} \qquad \frac{F_{electr}(R_e)}{kT} \approx \frac{l_B (fN)^2}{R_e} \ln\left(\frac{R_e}{N^{1/2}b}\right)$$

$$l_{\rm B}$$
为Bjerrum长度 $l_{\rm B} = e^2/(\varepsilon kT)$ $u = l_{\rm B}/b$

$$\frac{\partial F\left(R_{e}\right)}{\partial R_{e}} = 0$$

Polyelectrolytes in good or poor solvent

Good solvent, χ <1/2:

$$R_e \approx bNu^{1/3} f^{2/3} \left[\ln \left(eN \left(uf^2 \right)^{2/3} \right) \right]^{1/3} \sim N \left(\ln N \right)^{1/3} >> N^{1/2}$$

Poor solvent, $\chi > 1/2$:

3.7 Thermodynamics of Polymer Mixtures

Why are two kinds of polymers not compatible?

Entropy of Mixing

Polymer/Polymer
$$\Delta S_{x_1N_1, x_2N_2} = -k \left(N_1 \ln \frac{x_1N_1}{x_1N_1 + x_2N_2} + N_2 \ln \frac{x_2N_2}{x_1N_1 + x_2N_2} \right)$$

Solvent/Solvent $\Delta S_{N_1, N_2} = -k \left(N_1 \ln \frac{N_1}{N_1 + N_2} + N_2 \ln \frac{N_2}{N_1 + N_2} \right)$
Solvent/Solvent $\Delta S_{xN_1, xN_2} = -k \left(xN_1 \ln \frac{xN_1}{xN_1 + xN_2} + xN_2 \ln \frac{xN_2}{xN_1 + xN_2} \right)$
 $\Delta S_{xN_1, xN_2} \sim \Delta S_{N_1, N_2} << \Delta S_{N_1, xN_2}$

Phase Diagram

The Phase Behavior of Polymer Mixtures

How to judge it's homogeneous state or inhomogeneous state?

What is the mechanism of phase separation?

Phase Diagram and Phase Equilibrium

$$\Delta \mu_{1}^{1} = \Delta \mu_{1}^{2}$$

$$\Delta \mu_{2}^{1} = \Delta \mu_{2}^{2}$$

$$\phi_{1}^{1} + \phi_{2}^{1} = 1$$

$$\ln\left(1-\phi_2^1\right) + \left(1-\frac{x_1}{x_2}\right)\phi_2^1 + x_1\chi\left(\phi_2^1\right)^2 = \ln\left(1-\phi_2^2\right) + \left(1-\frac{x_1}{x_2}\right)\phi_2^2 + x_1\chi\left(\phi_2^2\right)^2$$

$$\ln \phi_2^1 + \left(1 - \frac{x_2}{x_1}\right) \left(1 - \phi_2^1\right) + x_2 \chi \left(1 - \phi_2^1\right)^2 = \ln \phi_2^2 + \left(1 - \frac{x_2}{x_1}\right) \left(1 - \phi_2^2\right) + x_2 \chi \left(1 - \phi_2^2\right)^2$$

$$\phi_1^2 + \phi_2^2 = 1$$

How to calculate the phase diagram from free energy?

Finding the phase equilibrium conditions

惟有同时通过两个切点的共切线

$$\Delta \mu_1^* = \Delta \mu_1^{**}$$

$$\mu_2^* = \Delta \mu_2^{**}$$

(1) Phase equilibrium curve – binodal

作 $T(\chi) \sim [\phi_2^*(T), \phi_2^{**}(T)]$ binodal curve

(2) Metastable/unstable limits - spinodal

(3) Critical point

Spinodal 和 binodal的交点: Critical point

$$\frac{\partial^3 \Delta G}{\partial \phi_2^3} = \frac{\partial}{\partial \phi_2} \left[\frac{1}{x_1 (1 - \phi_2)} + \frac{1}{x_2 \phi_2} - 2\chi \right] = 0$$

$$\phi_{2,c} = \frac{x_1^{1/2}}{x_1^{1/2} + x_2^{1/2}}, \quad \chi_c = \frac{1}{2} \left(\frac{1}{x_1^{1/2}} + \frac{1}{x_2^{1/2}} \right)^2$$

For symmetric blends $x_1 = x_2$

$$\chi_{\rm c} N = 2$$

For polymer solutions

$$\chi_{\rm c} \rightarrow \frac{1}{2}$$

For symmetric di-blocks *f*=0.5

$$\chi_{0}N = 10.5$$

Critical points dependence of N

For blends

$$\phi_{2,c} = \frac{x_1^{1/2}}{x_1^{1/2} + x_2^{1/2}}, \quad \chi_c = \frac{1}{2} \left(\frac{1}{x_1^{1/2}} + \frac{1}{x_2^{1/2}} \right)^2$$

$$x \uparrow \rightarrow \chi_c \downarrow, \quad T_c \uparrow$$

For solutions

$$|\phi_{2,c}| = \frac{1}{1 + x_2^{1/2}}, \quad \chi_c = \frac{1}{2} \left(1 + \frac{1}{x_2^{1/2}} \right)^2$$

$$x_2 \to \infty$$
, $\phi_{2c} \to 0$, $\chi_c \to \frac{1}{2}$

Poor solvent

$$\chi > 0.5$$

$UCST/LCST_{\chi} = \frac{(Z-2)\Delta\varepsilon_{12}}{kT}$

 $\Delta G = \chi \phi_1 \phi_2 - T \Delta S$

Upper critical solution temperature (UCST)

Lower critical solution temperature (LCST)

Endothermic symmetrical polymer mixture with lower miscibility gap.

Exothermal symmetrical polymer mixture with upper miscibility gap.

Why UCST or LCST

$$\Delta G_{mix} = RTV \left(\frac{\phi_A}{N_A} \ln \phi_A + \frac{\phi_B}{N_B} \ln \phi_B + \chi \phi_A \phi_B \right) \longrightarrow \chi \text{ is the key issue.}$$

\triangleright Effective interaction parameter $\chi_{\rm eff}$:

Dispersion forces

Free volume effects

Specific interactions

$$\chi_{\text{eff}} = \chi_{\text{disp}} + \chi_{\text{f.v.}} + \chi_{\text{s.i.}} = \frac{A}{T} + B \begin{vmatrix} A > 0 \text{ UCST} \\ A < 0 \text{ LCST} \end{vmatrix}$$

Free volume effect:
Monotonic increasing with *T*, —
small, but positive at low *T*.

Specific interaction: Always < 0, decreasing magnitude with increasing T.

Phase Equilibrium

1. 相平衡线

在某一温度下,达到热力学平衡的两相平衡点

(1)自由能曲线作共切线取两切点法

(2)数值解
$$\Delta \mu_1^1 = \Delta \mu_1^2 \qquad \phi_1^1 + \phi_2^1 = 1$$

$$\Delta \mu_2^1 = \Delta \mu_2^2 \qquad \phi_1^2 + \phi_2^2 = 1$$

$$\ln \phi_1^1 + \left(1 - \frac{x_1}{x_2}\right) \phi_2^1 + x_1 \chi \left(\phi_2^1\right)^2 = \ln \phi_1^2 + \left(1 - \frac{x_1}{x_2}\right) \phi_2^2 + x_1 \chi \left(\phi_2^2\right)^2$$

$$\ln \phi_2^1 + \left(1 - \frac{x_2}{x_1}\right) \phi_1^1 + x_2 \chi \left(\phi_1^1\right)^2 = \ln \phi_2^2 + \left(1 - \frac{x_2}{x_1}\right) \phi_1^2 + x_2 \chi \left(\phi_1^2\right)^2$$

2. spinodal线

与相分离机理和动力学有关

Phase Separation Dynamics

达到两相最终平衡的动力学过程

与初始状态的浓度有关

- (1) 在临界组成附近,不稳区, spinodal decomposition
- (2) 在相平衡线和spinodal线之间,亚稳区,nucleation and growth

Phase diagram and phase separation mechanisms

(1) 在临界组成附近,不稳区, spinodal decomposition

(2) 在相平衡线和spinodal线之间,

亚稳区, nucleation and growth

 $\frac{\partial^2 G}{\partial \phi^2} = 0$

Phase Separation Mechanisms

1. Nucleation and growth (成核生长) mechanism

In metastable region, separation can proceed only by overcoming the barrier with a large fluctuation in composition.

Nucleation barrier:
$$\Delta G(r) = -\frac{4\pi}{3}r^3\Delta g + 4\pi r^2\sigma$$
 with $\Delta g = g(\phi_0) - g(\phi'')$

r: radius of the nuclear; σ : excess free energy per unit surface area.

Phase Separation Mechanisms

2. Spinodal decomposition (亚稳极限分解) mechanism

In unstable region, separation can occur spontaneously and continuously without any thermodynamic barrier.

Examples of Phase Separation Dynamics

3.8 Theromodynamics of Block Copolymers

diblock

triblock

random multiblock

four arm starblock

graft copolymer

Self-assembly of Diblock Copolymers

> Melts

Microphase (mesophase, nanophase) separation (微相分离) is driven by chemical incompatibilities between the different blocks that make up block copolymer molecules.

Solutions

Micellization (胶束化) occurs when block copolymer chains associate into, often spherical, micelles (胶束) in dilute solution in a selective solvent (选择性溶剂). In concentrated solution, micelles can order into gels (凝胶).

> Solids

Crystallization of the crystalline block from melt often leads to a distinct (usually lamellar (片晶)) structure, with a different periodicity from the melt.

Microphase Separation of Diblock Copolymers (BCPs)

▶ Phase diagram

Homogeneous order disorder

- ➤ f is the volume fraction of one component. f controls which ordered structures are accessed beneath the order-disorder transition.
- > χN expresses the enthalpicentropic balance. It is used to parameterize block copolymer phase behavior, along with the composition of the copolymer.

Microphase Separation of Triblock Copolymers

Thermodynamics of Microphase Separation

➤ Minimize interfacial area and Maximize chain conformational entropy (MIN-MAX Principle)

F: free energy per chain

N: number of segments (= $N_A + N_B$)

a: Kuhn length $v_a \sim a^3$, $a_A \sim a_B$

L: domain periodicity

 Σ : interfacial area per chain

 γ_{AB} : interfacial energy per area

 χ_{AB} : segment-segment interaction parameter

$$L/2$$
 Lamellar structure

$$\gamma_{AB} = \frac{kT}{a^2} \sqrt{\frac{\chi_{AB}}{6}}$$
 (Helfand, E.; Tagami, Y. *Polymer Letters*, **1971**, 9, 741)
$$\chi_{AB} = \frac{Z-2}{kT} \left(\varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} - \varepsilon_{BB}) \right) \text{ and } \chi_{AB} \sim \frac{A}{T} + B$$

Thermodynamics of Microphase Separation

Free energy of lamellae:
$$F_{LAM} = \gamma_{AB} \Sigma + \frac{3}{2} kT \frac{(L/2)^2}{Na^2}$$
 See Appendix

Using $Na^3 = V = \frac{L}{2} \Sigma$ enthalpic term entropic spring term

we have $F_{LAM} = \frac{kT}{a^2} \sqrt{\frac{\chi_{AB}}{6}} \frac{Na^3}{(L/2)} + \frac{3}{2} kT \frac{(L/2)^2}{Na^2} = \frac{\alpha}{L} + L^2 \beta$

$$\frac{\partial F_{LAM}}{\partial L} = 0 \longrightarrow -\frac{\alpha}{L} + 2L_{opt}\beta = 0$$

Thus, the optimum period of the lamellae and the lamellar free energy are:

$$L_{opt} = \sqrt[3]{\frac{\alpha}{2\beta}} \cong aN^{2/3}\chi_{AB}^{1/6} \quad \text{and} \quad F_{LAM}(L_{opt}) = \frac{\alpha}{L_{opt}} + L_{opt}^2\beta \qquad F_{LAM} \cong 1.2kTN^{1/3}\chi_{AB}^{1/3}$$

Assume
$$F_{disorder} \approx \frac{\widetilde{V_m}}{\widetilde{V_s}} \chi_{AB} \phi_A \phi_B kT = N \chi_{AB} \phi_A \phi_B kT$$

At the order-disorder transition: $F_{LAM} = F_{disordered}$

For a 50/50 volume fraction,
$$\phi_A \phi_B = 1/4$$
, so: $-1.2kTN^{1/3} \chi_{AB}^{1/3} = \frac{1}{4} N \chi_{AB} kT$ ______

BCPs $[(\chi N)_c = (4.8)^{3/2} \sim 10.5]$ Critical point Symmetric blends $[\chi_c N^{62}] \simeq 2$

Appendix

$$\begin{split} S_{el}(h) &= k \ln \Omega = k \ln \Phi(h, N) = k \ln \left[\left(\frac{3}{2\pi N a^2} \right)^{3/2} \exp\left(-\frac{3h^2}{2Na^2} \right) \right] \\ &= k \ln \left(\frac{3}{2\pi N a^2} \right)^{3/2} + k \ln \left[\exp\left(-\frac{3h^2}{2Na^2} \right) \right] \\ &= -k \frac{3h^2}{2Na^2} + const. \end{split}$$

$$F_{el}(h = L/2) = \frac{3}{2}kT\frac{\left(L/2\right)^{2} - Na^{2}}{Na^{2}} = \frac{3}{2}kT\left(\frac{\left(L/2\right)^{2}}{Na^{2}} - 1\right) \approx \frac{3}{2}kT\frac{\left(L/2\right)^{2}}{Na^{2}}$$

χ- the key parameter in polymer physics

- (1) 溶液中链的构象
- (2) 凝胶的体积相变
- (3) 高分子溶液和共混物的相平衡
- (4) 高分子溶液和共混物的相分离
- (5) 高分子嵌段共聚物的微相分离

• • •

3.9 Hydrodynamics Properties of Polymer Solutions

$$v(r) = \sum_{m} H_{nm} \cdot F_{m}$$

$$v(r) = \int dr' H(r-r') \cdot g(r')$$

Correlation function: $oldsymbol{H}_{nm}$ or $oldsymbol{H}\left(oldsymbol{r}-oldsymbol{r}'
ight)$

v + dv

For Newtonian fluids

3D
$$\frac{\boldsymbol{F}}{A} = \boldsymbol{\sigma} = \eta \left[\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T \right]$$

$$2D \quad -\boldsymbol{\sigma} = \eta \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}\boldsymbol{y}}$$

Velocity and Oseen Tensor

The Momentum Equation – Navier-Stokes Equation

$$\rho \frac{\partial \mathbf{v}}{\partial t} = \eta \nabla \cdot \boldsymbol{\sigma} + \nabla P + g(\mathbf{r}) = \eta \nabla^2 \mathbf{v} + \nabla P + g(\mathbf{r})$$

$$\nabla \cdot \mathbf{v} = 0$$

Stokes Approximation:

$$\eta \nabla^2 \mathbf{v} + \nabla P = -g(\mathbf{r})$$

$$\nabla \cdot \mathbf{v} = 0$$

In Fourier Space: $\nabla \rightarrow -ik$ $\nabla^2 \rightarrow (-ik)^2$

$$\nabla \rightarrow -ik$$

$$\nabla^2 \rightarrow (-ik)^2$$

$$-\eta k^2 v_k - ikP_k = -g_k$$

$$-\eta k^2 v_k - ik P_k = -g_k \qquad \qquad \left(-\eta k^2 v_k + g_k\right)_{\perp} = 0$$

$$k -ik \cdot v_k = 0$$

$$T = (I - k\hat{k})$$

$$v_{k} = \frac{1}{\eta k^{2}} \left(\mathbf{I} - \hat{\mathbf{k}} \hat{\mathbf{k}} \right) \cdot g_{k} = \mathbf{H} \left(\mathbf{k} \right) \cdot g_{k}$$

$$v(\mathbf{r}) = \int d\mathbf{r}' \mathbf{H} (\mathbf{r} - \mathbf{r}') \cdot g(\mathbf{r}')$$

$$v(r) = \int dr' H(r-r') \cdot g(r')$$

$$\left| \boldsymbol{H} \left(\boldsymbol{r} \right) = \frac{1}{\left(2\pi \right)^{3}} \int d\boldsymbol{k} \, \frac{1}{\eta \boldsymbol{k}^{2}} \left(\boldsymbol{I} - \hat{\boldsymbol{k}} \hat{\boldsymbol{k}} \right) e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} = \frac{1}{8\pi\eta r} \left(\boldsymbol{I} + \hat{\boldsymbol{r}}\hat{\boldsymbol{r}} \right) \right|$$

Diffusion of Suspensions in Solution

Stokes formula

$$F = -6\pi R\eta v = -\zeta v$$

Stokes-Einstein relation

$$D = k_B T / \zeta = \frac{k_B T}{6\pi \eta R}$$

$$D = D_0 \left(1 + k_D c + \dots \right)$$

Fick's law

flux
$$\vec{J} = -D \frac{\partial c}{\partial r}$$

$$\frac{\partial c}{\partial t} = -\vec{\nabla} \cdot \vec{J} = D \frac{\partial^2 c}{\partial r^2}$$

$$D_{0} = k_{D} M^{-b} = \frac{k_{B} T}{6\pi \eta R_{h}} \qquad b \approx \frac{1+a}{3} \\ [\eta] = K_{MH} M^{a}$$

hydrodynamics radius: R_h

Effective viscosity of suspensions

For the solution of impenetrable spheres of radius R, Einstein derived the Effective viscosity of suspensions

$$\eta = \eta_0 \left(1 + 2.5 \Phi \right)$$

 η_0 : viscosity of pure solvent

 Φ : volume fraction occupied by the suspensions in the solution.

If each sphere consists of *n* particles (monomer units) of mass m, and their density is c, we have

$$\Phi = N \frac{4}{3} \pi R^3 / V = \frac{N_A c}{M} \frac{4}{3} \pi R^3$$

nm=M

Instrinsic viscosity (特性粘数)

$$[\eta] = \left[\frac{\eta - \eta_0}{\eta_0 c}\right]_{c \to 0}$$

 N_A : Avogadro Number

$$--[\eta] = \frac{2.5\Phi}{c} = 2.5N_A \frac{4\pi R^3/3}{M} = 2.5N_A \frac{V_h}{M} - V_h \text{ hydrodynamics volume}$$

$[\eta]$ dependence of MW: Flory-Fox

equation

$$\left[\eta\right] = \phi \frac{\left\langle h^2 \right\rangle^{3/2}}{M} = \phi \left[\frac{\left\langle h^2 \right\rangle}{M}\right]^{3/2} M^{1/2}$$
 by experiments

 ϕ_0 is calculated by Rouse-Zimm Theory and confirmed by experiments

$$\alpha = (h^2/h_0^2)^{1/2} \sim N^{\nu-0.5}$$
 扩张因子

$$[\eta] = \phi \left\lceil \frac{\langle h_0^2 \rangle}{M} \right\rceil^{3/2} M^{1/2} \alpha^3$$

$$[\eta]_{\Theta} = \phi_0 \left[\frac{\langle h_0^2 \rangle}{M}\right]^{3/2} M^{1/2}$$

$$\chi = 1/2$$

$$\phi_0 = 2.84 \times 10^{23} mol^{-1}$$

Mark-Houwink Relation $[\eta] = KM^a$

For Θ solution

$$\langle h_0^2 \rangle \sim M^1 \qquad [\eta] \sim M^{0.5}$$

For flexible chain in good solvent

$$\langle h^2 \rangle \sim M^{6/5} \quad [\eta] \sim M^{0.8}$$

For stiff chain

$$\langle h^2 \rangle \sim M^2 \qquad [\eta] \sim M^2$$

For flexible chain $a=0.5\sim0.8$

For stiff chain

 $a=0.8\sim1.2$

Brief Review of Gaussian Model

小高斯链段的末端距分布
$$\psi = \left(\frac{3}{2\pi l_k^2}\right)^{3/2} \exp\left(-\frac{3r_n^2}{2l_k^2}\right) = A \exp\left(-\frac{u_0(r_n)}{k_B T}\right)$$

$$u_0(\mathbf{r}_n) = \frac{3}{2I^2} k_B T (\mathbf{R}_n - \mathbf{R}_{n-1})^2$$
 熵弹簧

$$u_{0}(\mathbf{r}_{n}) = \frac{3}{2\overline{l_{k}^{2}}} k_{B}T (\mathbf{R}_{n} - \mathbf{R}_{n-1})^{2}$$
 熔弹簧
高斯长链 $\Phi(\mathbf{R}) = \prod_{n=1}^{n_{g}} \psi = \left(\frac{3}{2\pi \overline{l_{g}^{2}}}\right)^{3n_{g}/2} \exp\left(-\frac{1}{k_{B}T} \sum_{n=1}^{n_{g}} u_{0}(\mathbf{r}_{n})\right)$

$$= \left(\frac{3}{2\pi \overline{l_{g}^{2}}}\right)^{3n_{g}/2} \exp\left(-\frac{U_{0}\left(\left\{\boldsymbol{r}_{n_{g}}\right\}\right)}{k_{B}T}\right) \quad U_{0}\left(\left\{\boldsymbol{r}_{n_{g}}\right\}\right) = \frac{3}{2\overline{l_{g}^{2}}} k_{B}T \sum_{n=1}^{n_{g}} \left(\boldsymbol{R}_{n} - \boldsymbol{R}_{n-1}\right)^{2}$$

Rouse-Zimm Model

Spring force

$$F_n^s = -\frac{\partial U}{\partial \mathbf{R}_n} = k \frac{\partial^2 \mathbf{R}_n}{\partial n^2}$$

Local drag

$$F_n^d = -\zeta \mathbf{v}_n = -\zeta \frac{\partial \mathbf{R}_n}{\partial t}$$

Random force of Brownian Motion

$$\langle f_{\alpha}(n,t)f_{\beta}(m,t')\rangle = 2\zeta k_{B}T\delta_{\alpha\beta}\delta(n-m)\delta(t-t')$$

$$\langle f(n,t)\rangle = 0$$

$$k \frac{\partial^2 \mathbf{R}_n}{\partial n^2} - \zeta \frac{\partial \mathbf{R}_n}{\partial t} + f(n, t) = 0$$

Rouse-Zimm Model

$$R_H = \frac{1}{8} \sqrt{\frac{3\pi}{2}} \sqrt{Nb} = 0.66467 R_g$$

$$D_G = \frac{k_B T}{\zeta_0} = \frac{k_B T}{6\pi \eta R_H} = 0.196 \frac{k_B T}{6\pi \eta \sqrt{Nb}}$$

$$[\eta] = 0.425 \frac{N_A}{M} \left(\sqrt{N}a\right)^3 = \frac{\phi}{M} \left(\sqrt{6}R_g\right)^3$$

$$\phi_{0(RZ)} = 0.425N_A = 2.56 \times 10^{23}$$

$$\phi_{0(\text{exp})} = 2.2 \sim 2.87 \times 10^{23}$$