A Truthfulness Stance Map for 2024 Election-Related Factual Claims

Caltech 2024 Election Integrity Project Information and Misinformation in Elections: 2025 Conference

Innovative Data Intelligence
Research Laboratory

Zhengyuan Zhu Zeyu Zhang Haiqi Zhang Supervisor: Chengkai Li

The Emphasis on Truthfulness Stance Detection

- We detect the stance taken by social media posts, specifically focusing on tweets, toward the truthfulness of election-related factual claims as the target.
- The truthfulness stances are classified into (1) **Positive stance**: The tweet believes the factual claim is true. (2) **Neutral stance or no stance**: The tweet expresses a neutral or no stance towards the factual claim's truthfulness. (3) **Negative stance**: The tweet believes the factual claim is false.

believe the claim is true believe the claim is false

Claim: California introduces a new bill that would allow mothers to kill their babies up to 7 days after birth.

Motivating Applications

- Use truthfulness stance as a tool to gauge public opinions expressed on social media toward election-related misinformation and comprehend how misinformation spreads and influences people's beliefs.
- Use truthfulness stance to identify demographics or communities that may be more susceptible to spreading misinformation.

TSD-CT Dataset

Claim collection:

- Built an automated fact-check collection tool for seven websites.
- Collected 50,279 fact-checks, including factual claims from 2007 to 2023.

Tweet collection:

- Queried the Twitter API v2 using claim keywords to gather tweets related to PolitiFact's factual claims.
- Sanitized tweet-claim pairs. 5,793 pairs were prepared for annotation.

Annotation collection:

- Built a web annotation interface for collecting human annotations.
- This resulted in 3,105 completed pairs.

Performance Comparison on TruthSD Dataset

Model	F_{\oplus}	F_{\odot}	F _{\to}	F _M
BUT-FIT	83.38	72.00	65.11	80.11
BLCU_NLP	85.37	71.43	63.29	73.36
BERTSCORE+NLI	88.68	72.53	81.04	80.75
BART+NLI	88.00	73.42	74.25	78.56
TESTED	84.09	72.37	67.90	74.75
RATSD _{Zephyr}	88.67	77.38	80.28	82.10
RATSD _{GPT-3.5}	93.27	80.24	87.90	87.13

The RATSD Framework

Truthfulness Stance Detection API

Case Study: Truthfulness Stance Map

Oct 06 Oct 13 Oct 20 Oct 27 Nov 03 Nov 10

Acknowledgements

This work is partially supported by the National Science Foundation award # 2346261. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources.