КРАТКИЙ КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ «ГРУБЫЕ ТРАЕКТОРИИ И РЕГУЛЯРНАЯ СТРУКТУРА»

ЛЕКЦИЯ 5

1. Итерации Пикара

Рассмотрим линейную систему уравнений

$$dy_t = Ay_t \, dx_t,$$

которая в координатной записи имеет вид

$$dy_t^i = \sum_{k,m} a_{km}^i y_t^k \, dx_t^m.$$

Здесь a_{km}^i — вещественные числа, x_t — непрерывно дифференцируемая кривая, причем $t \in [0, T]$.

При построении решения с начальным условием y_0 на достаточно малом отрезке [0,T] обычно к отображению

$$F(y) = y_0 + \int_0^{\cdot} Ay_s \, dx_s$$

применяется теорема Банаха о сжимающем отображении и решение является пределом последовательности итераций Пикара

$$y_{t,n} = F(y_{t,n-1}), \quad y_{t,0} = y_0.$$

Выпишем явный вид первых двух итераций Пикара:

$$\begin{split} y_{t,1}^i &= y_0^i + \int_0^t \sum_{k,m} a_{km}^i y_0^k \, dx_s^m = y_0^i + \sum_{k,m} a_{km}^i y_0^k \int_0^t dx_s^m, \\ y_{t,2}^i &= y_0^i + \int_0^t \sum_{k,m} a_{km}^i y_{s,1}^k \, dx_s^m = \\ &= y_0^i + \sum_{k,m} a_{km}^i y_0^k \int_0^t dx_{u_1}^m + \sum_{k,m,n} a_{km}^i a_{pq}^k y_0^p \int_0^t \int_0^{u_2} dx_{u_1}^p \, dx_{u_1}^q. \end{split}$$

Таким образом, каждая функция $y_{t,n}$ является линейной комбинацией выражений

1,
$$\int_0^t dx_{u_1}^{i_1}$$
, $\int_0^t \int_0^{u_2} dx_{u_1}^{i_1} dx_{u_2}^{i_2}$, ..., $\int_0^t \int_0^{u_n} \dots \int_0^{u_2} dx_{u_1}^{i_1} \dots dx_{u_n}^{i_n}$.

Пусть $x_t \colon [a,b] \to \mathbb{R}^d$ — непрерывно дифференцируемая кривая. Положим

$$X_{ab}^{i_1\dots i_n} = \int_a^b \int_a^{u_n} \dots \int_a^{u_2} dx_{u_1}^{i_1} \dots dx_{u_n}^{i_n} = \int_{a \le u_1 \le u_2 \le b} dx_{u_1}^{i_1} \dots dx_{u_n}^{i_n}.$$

Совокупность всех таких выражений обозначаем через $X_{ab}^{(n)}$ и бесконечную последовательность

$$1, \quad X_{ab}^{(1)}, \quad X_{ab}^{(2)}, \quad \dots, \quad X_{ab}^{(n)}, \quad \dots$$

называем сигнатурой кривой x_t на отрезке [a,b] и обозначается через S(x).

Свойства сигнатуры гладкой кривой исследовал в конце 50-х годов прошлого века Kuo-Tsai Chen.

2. Произведение элементов сигнатуры

Через shuffle(k,m) обозначим множество всех таких перестановок σ на

$$\{1, 2, \dots, k+m\},\$$

что $\sigma(1) < \sigma(2) < \ldots < \sigma(k)$ и $\sigma(k+1) < \sigma(k+2) < \ldots < \sigma(k+m)$. Такие перестановки описывают перетасовку карточной колоды, когда она разбивается на две части из k и m карт, которые потом без изменения их порядка вкладываются друг между другом.

Теорема 1. Пусть $x_t \colon [a,b] \to \mathbb{R}^d$ — непрерывно дифференцируемая кривая. Верно равенство

$$X_{ab}^{i_1\dots i_k}\cdot X_{ab}^{i_{k+1}\dots i_{k+m}} = \sum_{\sigma\in\operatorname{shuffle}(k,m)} X_{ab}^{i_{\sigma^{-1}(1)}i_{\sigma^{-1}(2)}\dots i_{\sigma^{-1}(k+m)}}.$$

Таким образом, произведение двух элементов сигнатуры выражается линейным образом через элементы сигнатуры.

Доказательство. Рассмотрим сначала частный случай:

$$X_{ab}^{i_1} \cdot X_{ab}^{i_2} = \int_a^b dx_{u_1}^{i_1} \cdot \int_a^b dx_{u_2}^{i_2} = \int_a^b dx_{u_1}^{i_1} \cdot \int_a^b dx_{u_2}^{i_2} = \int_a^b \dot{x}_{u_1}^{i_1} du_1 \cdot \int_a^b \dot{x}_{u_2}^{i_2} du_2.$$

По теореме Фубини это выражение можно переписать в виде

$$\iint_{[a,b]\times[a,b]} \dot{x}_{u_1}^{i_1} \dot{x}_{u_2}^{i_2} \, du_1 \, du_2.$$

Разбивая квадрат на два треугольника и применяя теорему Фубини, получаем

$$\int_a^b \int_a^{u_1} \dot{x}_{u_1}^{i_1} \dot{x}_{u_2}^{i_2} \, du_2 \, du_1 + \int_a^b \int_a^{u_2} \dot{x}_{u_1}^{i_1} \dot{x}_{u_2}^{i_2} \, du_1 \, du_2 = \int_a^b \int_a^{u_1} \, dx_{u_2}^{i_2} \, dx_{u_1}^{i_1} + \int_a^b \int_a^{u_2} \, dx_{u_1}^{i_1} \, dx_{u_2}^{i_2}.$$
 Таким образом,

$$X_{ab}^{i_1} \cdot X_{ab}^{i_2} = X_{ab}^{i_1 i_2} + X_{ab}^{i_2 i_1}.$$

Теперь обоснуем общий случай. Имеем

$$X_{ab}^{i_1...i_k} \cdot X_{ab}^{i_{k+1}...i_{k+m}} =$$

$$= \int_{a < u_1 < ... < u_k < b} dx_{u_1}^{i_1} \dots dx_{u_k}^{i_k} \cdot \int_{a < u_k < ... < u_{k+m} < b} dx_{u_k}^{i_1} \dots dx_{u_{k+m}}^{i_{k+m}}.$$

По теореме Фубини это выражение равно

$$\int_{a< u_1 < \dots < u_k < b, a < u_k < \dots < u_{k+m} < b} dx_{u_1}^{i_1} \dots dx_{u_{k+m}}^{i_{k+m}}.$$

Заметим, что множество

$$\{(u_1, \dots, u_{k+m}): a < u_1 < \dots < u_k < b, a < u_k < \dots < u_{k+m} < b\}$$

является объединением множества меру нуль и множеств вида

$$\{(u_1, \ldots, u_{k+m}): a < u_{\sigma^{-1}(1)} < \ldots < u_{\sigma^{-1}(k+m)} < b\},\$$

где $\sigma \in \text{shuffle}(k,m)$. Действительно, мы перебираем здесь все возможные упорядочивания координат u_i точек из $[a,b]^{k+m}$, когда $u_1 < u_2 < \ldots < u_k$ и $u_{k+1} < \ldots < u_{k+m}$. Следовательно, получаем выражение

$$\sum_{\sigma \text{shuffle}(k,m)_{a < u_{\sigma^{-1}(1)} < \ldots < u_{\sigma^{-1}(k+m)} < b}} \int_{a < u_{\sigma^{-1}(1)} < \ldots < u_{\sigma^{-1}(k+m)} < b} dx_{u_{\sigma^{-1}(1)}}^{i_{\sigma^{-1}(1)}} \ldots dx_{u_{\sigma^{-1}(k+m)}}^{i_{\sigma^{-1}(k+m)}}.$$

3. Единственность

Следующее утверждение показывает, что сигнатура в определенном смысле однозначно задает кривую.

Теорема 2. Пусть $x_t \colon [0,1] \to \mathbb{R}^d$ и $y_t \colon [0,1] \to \mathbb{R}^d$ — непрерывно дифференцируемые инъективные отображения, причем $\dot{x}_t \neq 0$ и $\dot{y}_t \neq 0$ для всех $t \in [0,1]$ и $x_0 = y_0 = 0$. Тогда равенство $S(x_t) = S(y_t)$ влечет существование такого возрастающего гомеоморфизма $\psi \colon [0,1] \to [0,1]$, что $x_{\psi(t)} = y_t$.

Рассмотрим случай d=1. Справедливо равенство

$$X_{01}^{(k)} = \frac{(x_1 - x_0)^k}{k!}.$$

Из равенства сигнатур $S(x_0) = S(y_0)$ получаем равенство $x_1 = y_1$. Следовательно, $x_t \colon [0,1] \to [0,b], \ y_t \colon [0,1] \to [0,b], \ rde \ b = x_1 = y_1$ и отображение $\psi = x^{-1} \circ y$ — искомая замена параметра.

В многомерном случае рассуждение сложнее.

Доказательство. Достаточно проверить, что x.([0,1]) = y.([0,1]), так как в этом случае замена параметра ψ задается формулой $x^{-1} \circ y$. Отметим, что $\psi(0) = x^{-1}(y_0) = x^{-1}(x_0) = 0$ и ψ — возрастающее отображение.

Рассуждаем от противного. Предположим, что $x_{t_0} \notin y.([0,1])$ для некоторой точки $t_0 \in (0,1)$. Найдется открытый шар $B(x_{t_0},\delta)$, который не пересекается с y.([0,1]). Поскольку $\dot{x}_{t_0} \neq 0$, можно считать, что на некотором интервале

$$I = (t_0 - \alpha, t_0 + \alpha) \subset (0, 1)$$

выполнено $\dot{x}_t^1 > 0$. Поскольку отображение x.: $[0,1] \to x$.([0,1]) является гомеоморфизмом, то множество x.($I) = V \cap x$.([0,1]), где V открытое множество. Пусть $B(x_{t_0},r) \subset V \cap B(x_{t_0},\delta)$ и g — непрерывная неотрицательная функция, которая рана нулю вне $B(x_{t_0},r)$, причем $g(x_{t_0}) = 1$. Заметим, что $g(x_t) = 0$ вне I, так как $t \notin I$ влечет $x_t \notin x$.(I) и, значит, $x_t \notin V \cap x$.(I) и I0 и I1 и I2 вне I3 начит, I3 и I4 влечет I5 и I5 и I6 и I7 гом как функция I7 и I7 гом как функция I8 и I8 гом I9 и I9 и

$$\int_0^1 g(x_t) \, dx_t^1 > 0.$$

Поскольку шар $B(x_{t_0}, r)$ не пересекается с $y_{\cdot}([0, 1])$, то $g(y_t) \equiv 0$ и

$$\int_0^1 g(y_t) \, dy_t^1 = 0.$$

Можно считать, что множества x.([0,1]), y.([0,1]) и $B(x_{t_0},r)$ лежат внутри некоторого замкнутого куба. Приближая функцию g на этом кубе многочленом, находим многочлен, для которого справедливо неравенство

$$\int_0^1 P(x_t) \, dx_t^1 \neq \int_0^1 P(y_t) \, dy_t^1.$$

Следовательно, существует такой моном $(x^1)^{m_1}(x^2)^{m_2}\cdots(x^d)^{m_d}$, что

$$\int_0^1 (x_t^1)^{m_1} (x_t^2)^{m_2} \cdots (x_t^d)^{m_d} dx_t^1 \neq \int_0^1 (y_t^1)^{m_1} (y_t^2)^{m_2} \cdots (y_t^d)^{m_d} dy_t^1.$$

Так как $x_0 = y_0 = 0$, то

$$x_t^i = \int_0^t dx_{u_i}^i, \quad y_t^i = \int_0^t dy_{u_i}^i.$$

Таким образом, выражение $(x_t^1)^{m_1}(x_t^2)^{m_2}\cdots(x_t^d)^{m_d}$ является произведением элементов сигнатуры $S_{0t}(x)$, а выражение $(y_t^1)^{m_1}(y_t^2)^{m_2}\cdots(y_t^d)^{m_d}$ является произведением

элементов сигнатуры $S_{0t}(y)$. По доказанной выше теореме эти выражения представляются в виде суммы элементов сигнатур и, следовательно, интегралы

$$\int_0^1 (x_t^1)^{m_1} (x_t^2)^{m_2} \cdots (x_t^d)^{m_d} dx_t^1 \quad \int_0^1 (y_t^1)^{m_1} (y_t^2)^{m_2} \cdots (y_t^d)^{m_d} dy_t^1$$

являются линейными комбинациями элементов сигнатуры $S_{01}(x)$ и сигнатуры $S_{01}(y)$ соответственно, что влечет равенство этих интегралов и приводит к противоречию.

Приведем теперь без доказательства более общий результат, полученный Kuo-Tsai Chen.

Непрерывная кривая $x_t\colon [a,b]\to\mathbb{R}^d$ называется кусочно регулярной, если отрезок [a,b] разбивается на конечное число отрезков, на каждом из которых x_t является ограничением непрерывно дифференцируемой кривой, у которой в каждой точке $\dot{x}_t\neq 0$. Непрерывная кусочно регулярная кривая x_t называется неприводимой, если для всякой точки $s\in (a,b)$ выполнено условие: не существует таких отрезков $[s_1,s]$ и $[s,s_2]$, что x_t непрерывно дифференцируемая кривая с $\dot{x}_t\neq 0$ на каждом из этих отрезков и $x.([s_1,s])=x.([s,s_2])$. Две кривые $x_t\colon [a,b]\to\mathbb{R}^d$ и $y_t\colon [c,d]\to\mathbb{R}^d$ эквивалентны, если существует такой возрастающий гомеоморфизм $\psi\colon [c,d]\to [a,b]$ и $x_{\psi(t)}=y_t$.

Теорема 3. Пусть x_t и y_t — непрерывные кусочно регулярные и неприводимые кривые, причем $x_0 = y_0$. Если $S(x_t) = S(y_t)$, то кривые x_t и y_t эквивалентны.

На кривые ограниченной вариации этот результат обобщен в работе B.Hambly, T.Lyons в 2007 г.