G1 Graph in
$$(0, 1)$$

G1 Asymptote
$$x = 1$$

G1 Behaviour as
$$x \to \infty$$

At any stage:
$$I = \int_{a}^{b} \frac{1/x}{\ln x} dx$$
 $\underline{\mathbf{M2}} = \left[\ln(\ln x)\right]_{a}^{b}$ $\underline{\mathbf{A2}}$

OR Let $u = \ln x$ M1 for suitable substn. $\frac{du}{dx} = \frac{1}{x}$ B1

so that
$$I = \int_{a}^{b} \frac{x}{x \cdot u} du$$
 $\underline{\mathbf{A1}} = \left[\ln u \right]_{a}^{b} = \ln(\ln x)$ $\underline{\mathbf{A1}}$

(i) For
$$a = \frac{1}{4}$$
 and $b = \frac{1}{2}$, we require $\lambda \left\{ \ln \left| \ln \frac{1}{2} \right| - \ln \left| \ln \frac{1}{4} \right| \right\} = 1$ $\underline{\mathbf{M1}}$

$$\Rightarrow \lambda \ln \left| \frac{\ln \frac{1}{2}}{\ln \frac{1}{4}} \right| = 1 \Rightarrow \lambda \ln \left| \frac{-\ln 2}{-2\ln 2} \right| = 1 \Rightarrow \lambda \ln \frac{1}{2} = 1 \Rightarrow \lambda = \frac{1}{\ln \frac{1}{2}} \text{ or } -\frac{1}{\ln 2}$$

$$\underline{\mathbf{dM1}} \text{ (log. work)}$$

(ii) For $\lambda = 1$, we require $\ln (\ln b) - \ln (\ln a) = 1$ M1

$$\Rightarrow \ln \left| \frac{\ln b}{\ln a} \right| = 1 \Rightarrow \ln b = e \ln a \Rightarrow b = a^{e} \underline{\mathbf{A1}}$$

(iii) For $\lambda = 1$ and a = e, $b = e^e > e^2$.

$$p\left(e^{\frac{3}{2}} \le x \le e^{2}\right) = \left[\ln(\ln x)\right]_{e^{3/2}}^{e^{2}} = \ln 2 - \ln \frac{3}{2} = \ln \frac{4}{3} \quad \underline{\mathbf{M1}} \quad \underline{\mathbf{A1}}$$

$$= \ln\left(1 + \frac{1}{3}\right) = \frac{1}{3} - \frac{1}{2} \times \left(\frac{1}{3}\right)^{2} + \frac{1}{3} \times \left(\frac{1}{3}\right)^{3} - \frac{1}{4} \times \left(\frac{1}{3}\right)^{4} \dots \quad \underline{\mathbf{M1}} \quad \underline{\mathbf{A1}}$$

$$\approx \frac{1}{3} - \frac{1}{18} + \frac{1}{81} - \frac{1}{324} = \frac{31}{108} \quad \underline{\mathbf{A1}}$$
5

(iv) For
$$\lambda = 1$$
 and $a = e^{1/2}$, $b = e^{e/2} < e^{3/2}$ since $e < 3$. **B1** Explanation So $p\left(e^{\frac{3}{2}} \le x \le e^2\right) = 0$ **B1** Answer

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{a^2 + b^2 + c^2} \sqrt{x^2 + y^2 + z^2} \cos \theta \quad \underline{\mathbf{M1}} \quad \text{Sc.Prod. of these 2 vectors } \underline{\mathbf{A1}}$$

$$\Rightarrow \cos \theta = \frac{ax + by + cz}{\sqrt{a^2 + b^2 + c^2} \sqrt{x^2 + y^2 + z^2}}$$

4

2

<u>M1</u> for $|\cos \theta| \le 1 \implies |ax + by + cz| \le \sqrt{a^2 + b^2 + c^2} \sqrt{x^2 + y^2 + z^2}$

Squaring
$$\Rightarrow (ax + by + cz)^2 \le (a^2 + b^2 + c^2)(x^2 + y^2 + z^2)$$
 A1

[An algebraic approach which uses $(bx - ay)^2 + (cy - bz)^2 + (az - cx)^2 \ge 0$ scores **0** marks here since the question has not been answered. All remaining marks, however, may be gained.]

Equality holds iff $\theta = 0^{\circ}$ (or 180°) when the two vectors are parallel **M1**

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ for some scalar } \lambda \text{: i.e. } x = \lambda a \text{, } y = \lambda b \text{ and } z = \lambda c \text{ } \underline{\mathbf{A1}}$$

OR
$$bx = ay$$
, $cy = bz$, $az = cx$

(i) Setting
$$a = 1$$
, $b = c = 2$ $\underline{\mathbf{M1}} \implies (x + 2y + 2z)^2 \le (1^2 + 2^2 + 2^2)(x^2 + y^2 + z^2)$
 $\implies (x + 2y + 2z)^2 \le 9(x^2 + y^2 + z^2)$ $\underline{\mathbf{A1}}$

Then choosing
$$y = z = 14 \implies (x + 56)^2 = 9(x^2 + 392)$$
 B1
Equality case requires $x = \lambda$, $y = 2\lambda$ and $z = 2\lambda$ **M1** $\implies x = 7$ **A1**

OR (since question does not preclude other approaches)

<u>M1</u> for creating and solving a quadratic eqn. $\underline{\mathbf{A1}}$ for $8(x^2 - 14x + 49) = 0$ $\underline{\mathbf{A1}}$ for x = 7

(ii)
$$\underline{\mathbf{M1}}$$
 for noting that $p^2 + 4q^2 + 9r^2 = |\mathbf{pi} + 2q\mathbf{j} + 3r\mathbf{k}|^2$ so that $8p + 8q + 3r = \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} p \\ 2q \\ 3r \end{pmatrix}$ $\underline{\mathbf{A1}}$

Use of
$$\begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} p \\ 2q \\ 3r \end{pmatrix} = \sqrt{8^2 + 4^2 + 1^2} \sqrt{p^2 + 4q^2 + 9r^2}$$
 M1

$$\Rightarrow (8p + 8q + 3r)^2 = 81(p^2 + 4q^2 + 9r^2)$$
 A1

Checking that LHS = $243^2 = (3^5)^2 = 3^{10}$ and RHS = $81 \times 729 = 3^4 \times 3^6 = 3^{10}$ **B1**

M1 for noting that, since this is the equality case of the above inequality, it follows that $p = 8\lambda$, $2q = 4\lambda$ and $3r = \lambda$ for some λ

<u>M1</u> for subst^g. into linear eqn. $[8p + 8q + 3r = 64\lambda + 16\lambda + \lambda = 243]$

$$\Rightarrow$$
 81 λ = 243 \Rightarrow λ = 3 **A1** and the unique solution is $p = 24$, $q = 6$, $r = 1$ **A1 10**

d.v. of line is $\overrightarrow{XY} = \mathbf{y} - \mathbf{x}$ M1 Then eqn. of line is $\mathbf{r} = \mathbf{x} + \alpha(\mathbf{y} - \mathbf{x}) = (1 - \alpha)\mathbf{x} + \alpha\mathbf{y}$ A1

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$

(i) Since CB // OA, $\overrightarrow{CB} = \lambda \mathbf{a}$ so that $\mathbf{b} = \mathbf{c} + \lambda \mathbf{a}$ M1 A1

2

2

(ii)
$$e = \frac{1}{3}a \ \underline{B1}$$
 $f = \frac{1}{2}(b + c) = c + \frac{1}{2}\lambda a \ \underline{B1}$

Eqn. of OC is $\mathbf{r} = \alpha_1 \mathbf{c} \mathbf{B1}$ and

Eqn. of *AB* is $\mathbf{r} = (1 - \alpha_2) \mathbf{a} + \alpha_2 \mathbf{b} = (1 - \alpha_2 + \lambda \alpha_2) \mathbf{a} + \alpha_2 \mathbf{c}$ **B1**

Lines meet at D when

 $\alpha_1 = \alpha_2$ (equating for **c**'s) and $0 = 1 - \alpha_2 + \lambda \alpha_2$ (equating for **a**'s) **M1**

Then
$$\alpha_1 = \alpha_2 = \frac{1}{1-\lambda}$$
 and $\mathbf{d} = \left(\frac{1}{1-\lambda}\right)\mathbf{c}$ **A1**

Eqn. of *OB* is $\mathbf{r} = \alpha_3 \mathbf{b} = \alpha_3 \mathbf{c} + \lambda \alpha_3 \mathbf{a}$ **B1**

Eqn. of EF is $\mathbf{r} = (1 - \alpha_4) \mathbf{e} + \alpha_4 \mathbf{f} = (1 - \alpha_4) \frac{1}{3} \mathbf{a} + \alpha_4 (\mathbf{c} + \frac{1}{2} \lambda \mathbf{a})$

i.e.
$$\mathbf{r} = \alpha_4 \mathbf{c} + \left[\frac{1}{3}(1 - \alpha_4) + \frac{1}{2}\lambda \alpha_4\right] \mathbf{a}$$
 B1

Lines meet at G when

 $\alpha_3 = \alpha_4$ (equating for **c**'s) and $\lambda \alpha_3 = \frac{1}{3}(1 - \alpha_4) + \frac{1}{2}\lambda \alpha_4$ (equating for **a**'s) **M1**

Then
$$\alpha_3 = \alpha_4 = \frac{2}{2+3\lambda}$$
 and $\mathbf{g} = \left(\frac{2\lambda}{2+3\lambda}\right)\mathbf{a} + \left(\frac{2}{2+3\lambda}\right)\mathbf{c}$ **A1**

Eqn. of *OA* is $\mathbf{r} = \alpha_5 \mathbf{a} \cdot \mathbf{B1}$

Eqn. of
$$DG$$
 is $\mathbf{r} = (1 - \alpha_6) \mathbf{d} + \alpha_6 \mathbf{g} = \left(\frac{1 - \alpha}{1 - \lambda}\right) \mathbf{c} + \left(\frac{2\lambda \alpha}{2 + 3\lambda}\right) \mathbf{a} + \left(\frac{2\alpha}{2 + 3\lambda}\right) \mathbf{c}$ **B1**

Lines meet at *H* when $\alpha_5 = \left(\frac{2\lambda \alpha}{2+3\lambda}\right)$ (equating for **a**'s)

and $(1 - \alpha_6)(2 + 3\lambda) + 2\alpha_6(1 - \lambda) = 0$ (equating for c's) $\underline{\mathbf{M1}} + \underline{\mathbf{A1}}$ for both eqns. correct

Then
$$\alpha_6 = \left(\frac{2+3\lambda}{5\lambda}\right)$$
 and $\alpha_5 = \frac{2}{5}$ giving $\mathbf{h} = \frac{2}{5}\mathbf{a}$ **A1**

It follows that OH: HA = 2:3 **B1**

M1 for either
$$\frac{dy}{dx} = \frac{\frac{dy}{d\alpha}}{\frac{dx}{d\alpha}} = \frac{b\cos\alpha}{-a\sin\alpha}$$
 or $\frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{b^2x}{a^2y}$

<u>A1</u> for grad. tgt. = $-\frac{b}{a}$ cot α legitimately (answer given)

<u>M1</u> for attempt at eqn. tgt. $y - b \sin \alpha = -\frac{b}{a} \cot \alpha (x - a \cos \alpha)$

<u>B1</u> for establishing $\sin \alpha + \frac{\cos^2 \alpha}{\sin \alpha} = \csc \alpha$

<u>A1</u> for $y = -\frac{b}{a} \cot \alpha x + b \csc \alpha$ legitimately (answer given)

5

Grad. AP is
$$\frac{(k+1)b}{2a}$$
 B1

Grad.
$$AP$$
 is $\frac{(k+1)b}{2a}$ **B1** Eqn. l is $y = \frac{(k+1)b}{2a}(x+a)$ **B1**

M1 A1 for
$$l$$
 meets $y = b$ when $x = \frac{2a}{k+1} - a$ or $\frac{(1-k)a}{(1+k)}$ i.e. $Q = \left(\frac{(1-k)a}{(1+k)}, b\right)$

i.e.
$$Q = \left(\frac{(1-k)a}{(1+k)}, b\right)$$

Grad. PQ is $\frac{-(1-k^2)b}{2ka}$ or equivalent **<u>B1</u>** FT

Eqn.
$$PQ$$
 is $y - kb = \frac{-(1-k^2)b}{2ka}(x-a)$ M1 i.e. $y = \left(\frac{-(1-k^2)b}{2ka}\right)x + \frac{b(1+k^2)}{2k}$ A1

M1 for using the tan $\frac{1}{2}$ -angle identities: $k = \tan \frac{1}{2}\alpha$

$$\Rightarrow$$
 sin $\alpha = \frac{2k}{1+k^2}$ and tan $\alpha = \frac{2k}{1-k^2}$ **A1** both correct

<u>E1</u> for explaining that this equates to $y = -\frac{b}{a}\cot \alpha x + b \csc \alpha$ when $k = \tan \frac{1}{2}\alpha$ so that PQ is tgt. to the ellipse.

[Watch out for those who only show gradients match; i.e. lines are parallel.]

10

B1 for decent sketch of the ellipse (somewhere)

When
$$k = 0$$
, $P = (a, 0)$ and $Q = (a, b)$ **M1**

and line PQ is vertical tgt. to the ellipse A1 (or sketched so)

When
$$k = 1$$
, $P = (a, b)$ and $Q = (0, b)$ **M1**

and line PQ is horizontal tgt. to the ellipse $\underline{\mathbf{A1}}$ (or sketched so)

- **G1** Usual parabola for $y = x^2 + 3x 1$
- **G1** Bits of parabola for $y = x^2 + 3[x] 1$
- G1 Obvious discontinuities at integers x (Vertical broken lines ok)

3

Method I

Area under $y = x^2 + 3x - 1$ is $\left[\frac{1}{3}x^3 + \frac{3}{2}x^2 - x\right]_1^n$ M1 Decent integration attempt

$$= \frac{1}{3}(n^3 - 1) + \frac{3}{2}(n^2 - 1) - (n - 1) \quad \underline{\mathbf{A1}} \text{ any form}$$

$$= \frac{1}{6}(n - 1)\left\{2(n^2 + n + 1) + 9(n + 1) - 6\right\} = \frac{1}{6}(n - 1)\left\{2n^2 + 11n + 5\right\}$$

$$= \frac{1}{6}(n - 1)(n + 5)(2n + 1) \quad \text{or} \quad \frac{1}{6}(2n^3 + 9n^2 - 6n - 5)$$

Area under $y = x^2 + 3[x] - 1$ is $\left[\frac{1}{3}x^3\right]_1^n + \left[2x\right]_1^2 + \left[5x\right]_2^3 + \dots + \left[(3n - 4)x\right]_{n - 1}^n$

 $\underline{M1}\,$ Must include attempt to deal with the [] bits

$$= \frac{1}{3}(n^3 - 1) + \{2 + 5 + 8 + \dots + (3n - 4)\} \quad \underline{\mathbf{dM1}} \quad \text{Identification of AP sum}$$

$$= \frac{1}{3}(n^3 - 1) + \frac{1}{2}(n - 1)\{2 + 3n - 4\} \quad \underline{\mathbf{A1}}$$

$$= \frac{1}{6}(n - 1)\{2(n^2 + n + 1) + 3(3n - 2)\}$$

$$= \frac{1}{6}(n - 1)\{2n^2 + 11n - 4\} \quad \text{or} \quad \frac{1}{6}(2n^3 + 9n^2 - 15n + 4)$$

<u>M1</u> Difference is $\frac{1}{6}(n-1) \times 9 = \frac{3}{2}(n-1)$ **<u>A1</u>**

7

Method II

$$\int_{1}^{n} (y_{1} - y_{2}) dx = 3 \int_{1}^{n} (x - [x]) dx \quad \underline{\mathbf{M2}} \ \underline{\mathbf{A1}}$$

Now note that x - [x] represents a "unit" triangle between consecutive integers $\underline{\mathbf{M1}}$ having area $\frac{1}{2}$. Answer is thus $3 \times (n-1) \cdot \frac{1}{2} = \frac{3}{2}(n-1)$ $\underline{\mathbf{M1}}$ $\underline{\mathbf{A1}}$

Usual parabola for $y = x^2 + 3x - 1$ as before

G1 Horizontal line segments for $y = [x]^2 + 3[x] - 1$

G1 Obvious discontinuities at integers *x* (Vertical broken lines ok)

2

Method I

Area under $y = x^2 + 3x - 1$ is $\frac{1}{6}(n-1)(n+5)(2n+1)$ or $\frac{1}{6}(2n^3 + 9n^2 - 6n - 5)$ from earlier

Area under $y = [x]^2 + 3[x] - 1$ is the sum of unit-width rectangles **M1**

$$= \sum_{r=1}^{n-1} \left(r^2 + 3r - 1 \right) \underline{\mathbf{A1}}$$
 (Ignore limits here)

$$= \sum_{r=1}^{n-1} r^2 + 3 \sum_{r=1}^{n-1} r - \sum_{r=1}^{n-1} 1$$
 M1 Splitting into separate series

=
$$\frac{1}{6}(n-1)(n)(2n-1)$$
 A1 First series + $\frac{3}{2}n(n-1)-(n-1)$ A1 Other two series

$$= \frac{1}{6}(n-1)\left\{2n^2 + 8n - 6\right\} \text{ or } \frac{1}{6}(2n^3 + 6n^2 - 14n + 6) \underline{\mathbf{A1}}$$

<u>M1</u> Difference is $\frac{1}{6}(3n^2 + 8n - 11) = \frac{1}{6}(n - 1)(3n + 11)$ <u>A1</u> (Must use their previous result) 8

Method II

$$\int_{1}^{n} (y_{3} - y_{4}) dx = \int_{1}^{n} x^{2} dx - \int_{1}^{n} [x]^{2} dx + 3 \int_{1}^{n} (x - [x]) dx \quad \underline{\mathbf{M2}}$$

$$= \frac{1}{3} (n^{3} - 1) \quad \underline{\mathbf{A1}} \text{ possibly } \mathbf{ft} \text{ from (i)} \quad - \sum_{r=1}^{n-1} r^{2} \quad \underline{\mathbf{M1}} \quad + \frac{3}{2} (n - 1) \quad \underline{\mathbf{A1}} \quad \mathbf{ft (i)} \text{'s answer}$$

$$= \frac{1}{3} (n^{3} - 1) \quad - \frac{1}{6} (n - 1)(n)(2n - 1) \quad + \frac{3}{2} (n - 1)$$

$$\underline{\mathbf{dM1}} \quad \Sigma r^{2} \text{ series used; } \underline{\mathbf{A1}} \text{ correct}$$

$$= \frac{1}{6} (n - 1) \left\{ 2(n^{2} + n + 1) - (2n^{2} - n) + 9 \right\}$$

$$= \frac{1}{6} (n - 1)(3n + 11) \quad \underline{\mathbf{A1}} \text{ legitimately}$$

Method III

Each strip =
$$\int_{k}^{k+1} (x^2 + 3x - 1) dx - (k^2 + 3k - 1) = \left[\frac{1}{3} x^3 + \frac{3}{2} x^2 - x \right]_{k}^{k+1} - k^2 - 3k + 1 \quad \underline{\mathbf{M1}} \quad \underline{\mathbf{M1}}$$

$$= \frac{1}{3} (k+1)^3 + \frac{3}{2} (k+1)^2 - (k+1) - \frac{1}{3} k^3 - \frac{3}{2} k^2 + k - k^2 - 3k + 1 \quad \underline{\mathbf{A1}}$$

$$= \frac{1}{6} \left\{ 6k + 11 \right\} \quad \underline{\mathbf{A1}} \quad \underline{\mathbf{A1}}$$

Summing from k = 1 to k = n - 1 M1

$$= \frac{1}{6} \left\{ 6^{\frac{n(n-1)}{2}} + 11(n-1) \right\} \quad \underline{\mathbf{A1}} \quad \underline{\mathbf{A1}}$$
$$= \frac{1}{6} (n-1)(3n+11) \quad \underline{\mathbf{A1}}$$

Setting $x = \pi - t \implies dx = -dt$ and $(0, \pi) \rightarrow (\pi, 0)$ so that

$$\int_{0}^{\pi} x \, f(\sin x) \, dx = \int_{\pi}^{0} (\pi - t) \, f(\sin x [\pi - t]) \cdot - dt = \int_{0}^{\pi} \pi \, f(\sin t) \, dt - \int_{0}^{\pi} t \, f(\sin t) \, dt$$

M1 Full substn.

M1 Splitting into 2 integrals

$$\Rightarrow \int_{0}^{\pi} x f(\sin x) = \frac{1}{2} \pi \int_{0}^{\pi} f(\sin x) dx \underline{\mathbf{A1}}$$

(i)
$$\int_{0}^{\pi} \frac{x \sin x}{3 + \sin^{2} x} dx = \frac{1}{2} \pi \int_{0}^{\pi} \frac{\sin x}{3 + \sin^{2} x} dx$$
 B1 Use of above result $= \frac{1}{2} \pi \int_{0}^{\pi} \frac{\sin x}{4 - \cos^{2} x} dx$

<u>M1</u> for substn. $c = \cos x \implies dc = -\sin x \, dx$ and $(0, \pi/2) \rightarrow (1, -1)$

$$= \frac{1}{2} \pi \int_{1}^{-1} \left(\frac{-1}{4 - c^{2}} \right) dc \quad \underline{\mathbf{A1}}$$

$$= \frac{1}{2} \pi \int_{-1}^{1} \left(\frac{1}{(2-c)(2+c)} \right) dc = \frac{1}{8} \pi \int_{-1}^{1} \left(\frac{1}{2-c} + \frac{1}{2+c} \right) dc \quad \underline{\mathbf{M1}} \text{ Use of PFs } \underline{\mathbf{A1}} \text{ correct}$$

or by use of formulae books

$$= \frac{1}{8} \pi \left[\ln \left(\frac{2+c}{2-c} \right) \right]_{-1}^{1} \underline{\mathbf{A1}} = \frac{1}{4} \pi \ln 3 \text{ or } \frac{1}{2} \pi \tanh^{-1} \frac{1}{2} \underline{\mathbf{A1}}$$

(ii)
$$\int_{0}^{2\pi} \frac{x \sin x}{3 + \sin^{2} x} dx = \int_{0}^{\pi} \frac{x \sin x}{3 + \sin^{2} x} dx + \int_{\pi}^{2\pi} \frac{x \sin x}{3 + \sin^{2} x} dx \quad \underline{\mathbf{B1}} = \frac{1}{4} \pi \ln 3 + \mathbf{I}$$

$$I = \int_{0}^{\pi} \frac{(\pi + y)\sin(\pi + y)}{3 + \sin^{2}(\pi + y)} dy = \int_{0}^{\pi} \frac{-\pi \sin y}{3 + \sin^{2} y} dy + \int_{0}^{\pi} \frac{-y \sin y}{3 + \sin^{2} y} dy = -\pi \cdot \frac{1}{2} \ln 3 - \frac{1}{4} \pi \ln 3$$

M1 Substn.

dM1 Splitting

<u>A1</u> Use of previous results

giving answer $-\frac{1}{2}\pi \ln 3$ **A1**

OR
$$\int_{0}^{2\pi} \frac{x \sin x}{3 + \sin^{2} x} dx = \int_{0}^{\pi} \frac{x \sin x}{3 + \sin^{2} x} dx + \int_{\pi}^{2\pi} \frac{x \sin x}{3 + \sin^{2} x} dx \quad \underline{\mathbf{B1}} = \frac{1}{4} \pi \ln 3 + \mathbf{I}$$

$$I = \int_{\pi}^{0} \frac{(2\pi - y) \cdot -\sin y}{3 + \sin^{2} y} \cdot -dy = \int_{0}^{\pi} \frac{-2\pi \sin y}{3 + \sin^{2} y} dy + \int_{0}^{\pi} \frac{y \sin y}{3 + \sin^{2} y} dy = -2\pi \cdot \frac{1}{2} \ln 3 + \frac{1}{4} \pi \ln 3$$

M1 Substn.

dM1 Splitting

<u>A1</u> Use of previous results

giving answer $-\frac{1}{2}\pi \ln 3$ **A1**

(iii) Since $|\sin 2(\pi - x)| = |\sin 2x|$,

$$\int_{0}^{\pi} \frac{x |\sin 2x|}{3 + \sin^{2} x} dx = \pi \int_{0}^{\pi} \frac{\sin x |\cos x|}{3 + \sin^{2} x} dx \quad \text{or} \quad \pi \int_{0}^{\pi} \frac{\sin x |\cos x|}{4 - \cos^{2} x} dx \quad \underline{\mathbf{B1}} \quad \text{Use of given result}$$

$$= \pi \int_{0}^{\pi/2} \frac{\sin x \cos x}{4 - \cos^{2} x} dx \quad + \pi \int_{\pi/2}^{\pi} \frac{-\sin x \cos x}{4 - \cos^{2} x} dx \quad \underline{\mathbf{M1}} \quad \text{Substn. or equivalent}$$

$$= \pi \int_{0}^{1} \left(\frac{c}{4 - c^{2}}\right) dc \quad + \pi \int_{0}^{1} \left(\frac{c}{4 - c^{2}}\right) dc \quad \underline{\mathbf{dM1}} \quad \text{or equivalent PFs form etc.}$$

$$= \frac{1}{2} \pi \left[-\ln\left(4 - c^{2}\right)\right]_{0}^{1} \quad + \frac{1}{2} \pi \left[\ln\left(4 - c^{2}\right)\right]_{-1}^{0}$$

$$= \frac{1}{2} \pi \ln \frac{4}{3} + \frac{1}{2} \pi \ln \frac{4}{3} = \pi \ln \frac{4}{3} \quad \underline{\mathbf{A1}}$$