_ ----

Objective

To develop a robust ML/DL pipeline for predicting DON (vomitoxin) concentration in corn samples using hyperspectral reflectance data.

1. Data Preprocessing

- Dataset: 500 corn samples with 448 spectral features and DON concentration as target.
- Preprocessing Steps:
- Missing value inspection (None found).
- Normalization using StandardScaler for spectral features.
- Visualization: Average reflectance plot and heatmap of first 20 samples.

2. Dimensionality Reduction

- Technique: Principal Component Analysis (PCA)
- Key Insights:
- PCA reduced features to ~95% variance explained using fewer components.
- 2D PCA scatter plot shows partial separation of samples.

3. Model Training

- Dataset split: 80% training / 20% testing.
- Models Used:
- Random Forest
- XGBoost
- MLP Neural Network (with target scaling)
- Optimization Techniques:
- Early stopping for MLP

4. Model Evaluation

- Metrics: MAE, RMSE, R² Score

- Visualization: Actual vs Predicted scatter plots

Model	MAE	RMSE	R ² Score
Random Forest	1798.10	3751.89	0.9496
XGBoost	1805.82	4221.16	0.9363
MLP Neural Nerwork	2061.37	3991.98	0.9430

Conclusion

This project demonstrated a robust pipeline to preprocess, visualize, reduce, model, and evaluate hyperspectral data using both traditional ML and feedforward neural models.