

Nota: a) d) à frequência de ressonância (f_r), a impedância (Z) do circuito LC é máxima, pelo que a corrente I é mínima.

Então, se f $< f_r$, Z diminui e I aumenta.

b) Como I
$$_{C}=\frac{V}{X_{C}}=X_{C}=\frac{1}{2\pi^{2}fC}$$
, se f diminui,

 $X_{\mathbb{C}}$ aumenta e $I_{\mathbb{C}}$ diminui

c) a tensão aplicada aos terminais de L é sempre V

3, 2, 12, 2

Se a frequência da tensão aplicada a um circuito paralelo LC eumenta, em relação à frequência de ressonância, a corrente que atravessa o circuito

a)	dimin	NUI	.				• •		• • • • • • • •	 ٠.	•	• •	• •	
b)	೧೬೦ ಕ	e altera								 ٠.			• •	Ī
c)	fice	exfesada	BATI	atraso	8 0	relação	ħ	tensão	aplicada	 		• •		Ī
d)	и	ıı	17	avanço	"	11	"	**	17	 			• •	

Nota: a)b) se f > f_r, Z diminui e I aumenta (ver "Nota" da pergunta n9.3.2.12.1) c)d) à frequência de ressonância (f_r), o circuito paralelo LC comporta-ae como uma resistência, pelo que a corrente I e a tensão V estão ex fase (ver figura da pergunta nº.3.2.12.1)

Se f > f_r, então $X_L \times 2\pi$ fL aumenta e $X_C = \frac{1}{2\pi} \frac{1}{fC}$ diminui, pelo que a corrente passa mais facilmente pelo ramo que contêm o condensador, e o circuito comporta-se como um condensador, o que leva a corrente I a ficar exfesada em avanço em relação a V.