SBML Model Report

Model name: "Bertram2000-PancreaticBetaCells_Oscillations"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Ishan Ajmera¹ and Catherine Lloyd² at September 29th 2011 at 10:15 p.m. and last time modified at May 28th 2014 at 8:48 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	4
events	0	constraints	0
reactions	0	function definitions	0
global parameters	32	unit definitions	0
rules	15	initial assignments	0

Model Notes

This a model from the article:

The phantom burster model for pancreatic beta-cells.

Bertram R, Previte J, Sherman A, Kinard TA, Satin LS. <u>Biophys J</u>2000 Dec;79(6):2880-92 11106596,

¹EMBL-EBI, ajmera@ebi.ac.uk

²The University of Auckland, The Bioengineering Institute, c.lloyd@aukland.ac.nz

Abstract:

Pancreatic beta-cells exhibit bursting oscillations with a wide range ofperiods. Whereas periods in isolated cells are generally either a few seconds ora few minutes, in intact islets of Langerhans they are intermediate (10-60 s). We develop a mathematical model for beta-cell electrical activity capable ofgenerating this wide range of bursting oscillations. Unlike previous models, bursting is driven by the interaction of two slow processes, one with arelatively small time constant (1-5 s) and the other with a much larger timeconstant (1-2 min). Bursting on the intermediate time scale is generated withoutneed for a slow process having an intermediate time constant, hence phantombursting. The model suggests that isolated cells exhibiting a fast pattern maynonetheless possess slower processes that can be brought out by injecting suitable exogenous currents. Guided by this, we devise an experimental protocolusing the dynamic clamp technique that reliably elicits islet-like, mediumperiod oscillations from isolated cells. Finally, we show that strong electrical coupling between a fast burster and a slow burster can produce synchronized medium bursting, suggesting that islets may be composed of cells that are intrinsically either fast or slow, with few or none that are intrinsically medium.

This model was taken from the CellML repository and automatically converted to SBML. The original model was: **Bertram R, Previte J, Sherman A, Kinard TA, Satin LS.** (2000) - version02

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Compartment	Compartment		3	1	litre	Ø	

3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one litre.

Name Compartment

4 Species

This model contains four species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
					tion
V	V	Compartment	$\text{mol} \cdot 1^{-1}$		
n	n	Compartment	$\text{mol} \cdot 1^{-1}$		
s1	s1	Compartment	$\text{mol} \cdot 1^{-1}$		
s2	s2	Compartment	$\text{mol} \cdot 1^{-1}$		

5 Parameters

This model contains 32 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Cm	Cm	0000258	4524.000		Ø
Vm	Vm	0000009	-22.000		
VCa	VCa	0000009	100.000		
gCa	gCa	0000009	280.000		\square
minf	minf		0.057		
sm	sm	0000009	7.500		
ICa	ICa		-2295.260		☑ ⊟ ⊟
IK	IK		1443.000		
VK	VK	0000009	-80.000		
gK	gK		1300.000		
lambda	lambda	0000009	1.100		
tnbar	tnbar	0000009	8.300		\checkmark
Vn	Vn	0000009	-9.000		\square
sn	sn	0000009	10.000		
taun	taun		8.032		
ninf	ninf		0.032		
Is1	Is1		74.000		
gs1	gs1	0000009	20.000		
s1inf	slinf		0.002		
Vs1	Vs1	0000009	-40.000		
ss1	ss1	0000009	0.500		\checkmark
taus1	taus1	0000009	1000.000		
Vs2	Vs2	0000009	-42.000		
s2inf	s2inf		0.076		☑ ⊟
ss2	ss2	0000009	0.400		
gs2	gs2	0000009	32.000		
taus2	taus2	0000009	120000.000		
Is2	Is2		513.856		⊿ ⊟
Il	II		-75.000		
gl	gl	0000009	25.000		
Vl	Vl	0000009	-40.000		
parameter_1	I1+I2		587.856		

6 Rules

This is an overview of 15 rules.

6.1 Rule slinf

Rule slinf is an assignment rule for parameter slinf:

$$s1\inf = \frac{1}{1 + \exp\left(\frac{Vs1 - [V]}{ss1}\right)} \tag{1}$$

6.2 Rule minf

Rule minf is an assignment rule for parameter minf:

$$\min f = \frac{1}{1 + \exp\left(\frac{Vm - [V]}{sm}\right)}$$
 (2)

6.3 Rule ICa

Rule ICa is an assignment rule for parameter ICa:

$$ICa = gCa \cdot minf \cdot ([V] - VCa)$$
(3)

6.4 Rule IK

Rule IK is an assignment rule for parameter IK:

$$IK = gK \cdot [n] \cdot ([V] - VK) \tag{4}$$

6.5 Rule taun

Rule taun is an assignment rule for parameter taun:

$$taun = \frac{tnbar}{1 + exp\left(\frac{[V] - Vn}{sn}\right)}$$
 (5)

6.6 Rule ninf

Rule ninf is an assignment rule for parameter ninf:

$$ninf = \frac{1}{1 + exp\left(\frac{Vn - [V]}{sn}\right)}$$
 (6)

6.7 Rule Is1

Rule Is1 is an assignment rule for parameter Is1:

$$Is1 = gs1 \cdot [s1] \cdot ([V] - VK) \tag{7}$$

6.8 Rule s2inf

Rule s2inf is an assignment rule for parameter s2inf:

$$s2\inf = \frac{1}{1 + \exp\left(\frac{Vs2 - [V]}{ss2}\right)}$$
 (8)

6.9 Rule Is2

Rule Is2 is an assignment rule for parameter Is2:

$$Is2 = gs2 \cdot [s2] \cdot ([V] - VK) \tag{9}$$

6.10 Rule I1

Rule I1 is an assignment rule for parameter I1:

$$Il = gl \cdot ([V] - Vl) \tag{10}$$

6.11 Rule parameter_1

Rule parameter_1 is an assignment rule for parameter parameter_1:

$$parameter_1 = Is1 + Is2$$
 (11)

6.12 Rule V

Rule V is a rate rule for species V:

$$\frac{\mathrm{d}}{\mathrm{d}t}V = \frac{(\mathrm{ICa} + \mathrm{IK} + \mathrm{Il} + \mathrm{Is1} + \mathrm{Is2})}{\mathrm{Cm}}$$
(12)

6.13 Rule n

Rule n is a rate rule for species n:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{n} = \frac{\mathrm{ninf} - [\mathbf{n}]}{\mathrm{taun}} \tag{13}$$

6.14 Rule s1

Rule \$1 is a rate rule for species \$1:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}1 = \frac{\mathrm{s1inf} - [\mathrm{s1}]}{\mathrm{taus1}} \tag{14}$$

6.15 Rule s2

Rule s2 is a rate rule for species s2:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}2 = \frac{\mathrm{s}2\mathrm{inf} - [\mathrm{s}2]}{\mathrm{taus}2} \tag{15}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species V

Name V

SBO:0000259 voltage

Initial amount -43 mol

Involved in rule V

One rule which determines this species' quantity.

7.2 Species n

Name n

Initial amount 0.03 mol

Involved in rule n

One rule which determines this species' quantity.

7.3 Species s1

Name s1

Initial amount 0.1 mol

Involved in rule s1

One rule which determines this species' quantity.

7.4 Species s2

Name s2

Initial amount 0.434 mol

Involved in rule s2

One rule which determines this species' quantity.

A Glossary of Systems Biology Ontology Terms

SBO:000009 kinetic constant: Numerical parameter that quantifies the velocity of a chemical reaction

SBO:0000258 capacitance: Measure of the amount of electric charge stored (or separated) for a given electric potential. The unit of capacitance id the Farad

SBO:0000259 voltage: Difference of electrical potential between two points of an electrical network, expressed in volts

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany