Funkcje trygonometryczne

Wprowadzenie

- Trygonometria = "miara trójkątów"
- Początkowo trygonometria badała związki miarowe między bokami i kątami trójkątów
- Z rozwojem analizy matematycznej zastosowania trygonometrii poszerzyły się
 - fale dzwiękowe i świetlne
 - orbity planetarne
 - wibrujące stryny
 - ▶ wahadła ...

Miara kata

- kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara ($\alpha > 0$)
- \bullet kąt zgodny z ruchem wskazówek zegara jest ujemny $(\beta<0)$

Miara kata

Definicja

Miarą łukową kata w kole o promieniu r nazywamy stosunek długości łuku s do promienia

$$\alpha = \frac{s}{r}$$

Jednostka miary łukowej jest radian.

pełny obrót $(360^{\circ}) \Rightarrow$

pełny obrót (360°)
$$\Rightarrow \alpha = \frac{s}{r} = \frac{\text{obwód koła}}{r} =$$

pełny obrót (360°)
$$\Rightarrow \alpha = \frac{s}{r} = \frac{\text{obwód koła}}{r} = \frac{2\pi r}{r} =$$

pełny obrót (360°)
$$\Rightarrow \alpha = \frac{s}{r} = \frac{\text{obwód koła}}{r} = \frac{2\pi r}{r} = 2\pi \text{ rad}$$

pełny obrót (360°)
$$\Rightarrow \alpha = \frac{s}{r} = \frac{\text{obwód koła}}{r} = \frac{2\pi r}{r} = 2\pi \text{ rad}$$

miara stopniowa	miara łukowa
90°	$\frac{\pi}{2}$
180°	π
270°	$\frac{3\pi}{2}$
360°	2π

pełny obrót (360°)
$$\Rightarrow \alpha = \frac{s}{r} = \frac{\text{obwód koła}}{r} = \frac{2\pi r}{r} = 2\pi \text{ rad}$$

miara stopniowa	miara łukowa
90°	$\frac{\pi}{2}$
180°	π
270°	$\frac{3\pi}{2}$
360°	2π

$$180^{\circ} = \pi$$

$$180^{\circ} = \pi$$

Uwaga

Umownie przyjęto, że jeżeli podany kąt jest oznaczony liczbą bez podania miary, to będzie to oznaczać liczbę radianów.

np.
$$50 = 50 \text{ rad}$$
 $(50 \neq 50^{\circ})$

$$180^\circ = \pi \implies 1^\circ = \frac{\pi}{180}$$

$$180^{\circ} = \pi$$

Uwaga

Umownie przyjęto, że jeżeli podany kąt jest oznaczony liczbą bez podania miary, to będzie to oznaczać liczbę radianów.

np.
$$50 = 50 \text{ rad}$$
 $(50 \neq 50^{\circ})$

$$180^{\circ} = \pi \quad \Longrightarrow \quad 1^{\circ} = \frac{\pi}{180}$$

$$180^{\circ} = \pi \quad \Longrightarrow \quad 1 = \frac{180^{\circ}}{\pi}$$

Uwaga

Umownie przyjęto, że jeżeli podany kąt jest oznaczony liczbą bez podania miary, to będzie to oznaczać liczbę radianów.

np.
$$50 = 50 \text{ rad}$$
 $(50 \neq 50^{\circ})$

Funkcje trygonometryczne na trójkącie

Definicje

 \bullet sinusem kąta α nazywamy

$$\sin\alpha = \frac{a}{c}$$

 \bullet cosinusem kąta α nazywamy

$$\cos \alpha = \frac{b}{c}$$

 \bullet tangensem kąta α nazywamy

$$tg \alpha = \frac{a}{b}$$

• cotangensem kata α nazywamy

$$\operatorname{ctg} \alpha = \frac{b}{a}$$

Funkcje trygonometryczne na trójkącie

$$\frac{\alpha}{\sin \alpha} \begin{vmatrix} \frac{\pi}{6} = 30^{\circ} & \frac{\pi}{4} = 45^{\circ} & \frac{\pi}{3} = 60^{\circ} \\ \sin \alpha & \\ \cos \alpha & \\ tg \alpha & \\ ctg \alpha & \end{vmatrix}$$

Definicje

Jeżeli punktP(x,y)jest punktem (różnym od punktu (0,0))na końcowym ramieniu kąta $\alpha,\,r=\sqrt{x^2+y^2}$ jest promieniem wodzącym punktu P, to

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$ $(x \neq 0)$ $\operatorname{ctg} \alpha = \frac{x}{y}$ $(y \neq 0)$

- 4 ロ ト 4 団 ト 4 差 ト 4 差 ト 2 を 9 Q ()

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\sin \alpha = \frac{y}{r}$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{ctg} \alpha = \frac{x}{y}$$

$$\sin \alpha = \frac{y}{r}$$

$$\operatorname{tg}\alpha = \frac{y}{x},$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

Wzory redukcyjne

• $\sin(-\alpha) = \frac{-y}{r} =$

$$\sin \alpha = \frac{y}{r}$$

$$\operatorname{tg} \alpha = \frac{y}{x},$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

- \bullet $\sin(-\alpha) = \frac{-y}{r} =$
- $\cos(-\alpha) = \frac{x}{r} =$

$$\sin \alpha = \frac{y}{r}$$

$$\operatorname{tg} \alpha = \frac{y}{x},$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

- \bullet $\sin(-\alpha) = \frac{-y}{r} =$
- \bullet cos $(-\alpha) = \frac{x}{x} =$
- $tg(-\alpha) = \frac{-y}{x} =$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{tg} \alpha = \frac{y}{x},$$

$$\operatorname{ctg} \alpha = \frac{x}{y}$$

- \bullet $\sin(-\alpha) = \frac{-y}{r} =$
- \bullet cos $(-\alpha) = \frac{x}{r} =$
- $\operatorname{tg}(-\alpha) = \frac{-y}{x} =$
- $\operatorname{ctg}(-\alpha) = \frac{x}{-u} =$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{cg} \alpha = \frac{y}{x}, \qquad \operatorname{ctg} \alpha = \frac{3}{4}$$

- \bullet $\sin(-\alpha) = \frac{-y}{r} =$
- \bullet cos $(-\alpha) = \frac{x}{r} =$
- $\operatorname{tg}(-\alpha) = \frac{-y}{x} =$
- $\operatorname{ctg}(-\alpha) = \frac{x}{-n} =$
- $\sin \alpha = \sin (\alpha + 2k\pi), \quad k \in \mathbb{Z}$
- $\cos \alpha = \cos (\alpha + 2k\pi), \quad k \in \mathbb{Z}$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{tg} \alpha = \frac{y}{x},$$

$$\operatorname{ctg} \alpha = \frac{x}{y}$$

- \bullet $\sin(-\alpha) = \frac{-y}{r} =$
- \bullet cos $(-\alpha) = \frac{x}{r} =$
- $\operatorname{tg}(-\alpha) = \frac{-y}{x} =$
- $\operatorname{ctg}(-\alpha) = \frac{x}{-n} =$
- $\sin \alpha = \sin (\alpha + 2k\pi), \quad k \in \mathbb{Z}$
- $\cos \alpha = \cos (\alpha + 2k\pi), \quad k \in \mathbb{Z}$
- $\operatorname{tg} \alpha = \operatorname{tg} (\alpha + k\pi), \quad k \in \mathbb{Z}$
- $\operatorname{ctg} \alpha = \operatorname{ctg} (\alpha + k\pi), \quad k \in \mathbb{Z}$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\sin \alpha = \frac{y}{r} \qquad \cos \alpha = \frac{x}{r}$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\bullet \sin(\pi - \alpha) = \frac{y}{r} =$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{tg}\alpha = \frac{y}{x}, \qquad \operatorname{ctg}\alpha = \frac{3}{2}$$

- \bullet $\sin(\pi \alpha) = \frac{y}{r} =$
- \bullet cos $(\pi \alpha) = \frac{-x}{x} =$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{tg} \alpha = \frac{y}{x}, \qquad \operatorname{ctg} \alpha = \frac{3}{2}$$

- \bullet $\sin(\pi \alpha) = \frac{y}{r} =$
- \bullet cos $(\pi \alpha) = \frac{-x}{x} =$
- $\operatorname{tg}(\pi \alpha) = \frac{y}{\pi} =$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{tg} \alpha = \frac{y}{x}, \qquad \operatorname{ctg} \alpha = \frac{x}{y}$$

- \bullet $\sin(\pi \alpha) = \frac{y}{r} =$
- \bullet cos $(\pi \alpha) = \frac{-x}{x} =$
- $\operatorname{tg}(\pi \alpha) = \frac{y}{x} =$
- $\operatorname{ctg}(\pi \alpha) = \frac{-x}{y} =$

$$\sin \alpha = \frac{y}{r} \qquad \cos \alpha = \frac{x}{r}$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

- \bullet $\sin(\pi \alpha) = \frac{y}{r} =$
- \bullet cos $(\pi \alpha) = \frac{-x}{x} =$
- $\operatorname{tg}(\pi \alpha) = \frac{y}{x} =$
- $\operatorname{ctg}(\pi \alpha) = \frac{-x}{y} =$
- \bullet $\sin(\pi + \alpha) = \frac{-y}{r} =$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{tg} \alpha = \frac{y}{x}, \qquad \operatorname{ctg} \alpha = \frac{x}{y}$$

Wzory redukcyjne

- \bullet $\sin(\pi \alpha) = \frac{y}{r} =$
- \bullet cos $(\pi \alpha) = \frac{-x}{x} =$
- $\operatorname{tg}(\pi \alpha) = \frac{y}{x} =$
- $\operatorname{ctg}(\pi \alpha) = \frac{-x}{y} =$
- \bullet $\sin(\pi + \alpha) = \frac{-y}{r} =$
- \bullet cos $(\pi + \alpha) = \frac{-x}{x} =$

11 / 31

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$tg \alpha = \frac{y}{x}, \quad tg \alpha = \frac{x}{y}$$

- \bullet $\sin(\pi \alpha) = \frac{y}{r} =$
- \bullet cos $(\pi \alpha) = \frac{-x}{\pi} =$
- $\operatorname{tg}(\pi \alpha) = \frac{y}{x} =$
- $\operatorname{ctg}(\pi \alpha) = \frac{-x}{y} =$
- \bullet $\sin(\pi + \alpha) = \frac{-y}{r} =$
- \bullet cos $(\pi + \alpha) = \frac{-x}{x} =$
- $\operatorname{tg}(\pi + \alpha) = \frac{-y}{x} =$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{tg} \alpha = \frac{y}{x}, \qquad \operatorname{ctg} \alpha = \frac{x}{y}$$

- \bullet $\sin(\pi \alpha) = \frac{y}{r} =$
- \bullet cos $(\pi \alpha) = \frac{-x}{\pi} =$
- $\operatorname{tg}(\pi \alpha) = \frac{y}{x} =$
- $\operatorname{ctg}(\pi \alpha) = \frac{-x}{y} =$
- \bullet $\sin(\pi + \alpha) = \frac{-y}{r} =$
- \bullet cos $(\pi + \alpha) = \frac{-x}{x} =$
- $\operatorname{tg}(\pi + \alpha) = \frac{-y}{x} =$
- $\operatorname{ctg}(\pi + \alpha) = \frac{-x}{-x} =$

$$\sin \alpha = \frac{y}{r}$$

$$\sin \alpha = \frac{y}{r}$$
 $\cos \alpha = \frac{x}{r}$ $\operatorname{tg} \alpha = \frac{y}{x}$, $\operatorname{ctg} \alpha = \frac{x}{y}$

$$\operatorname{ctg} \alpha = \frac{x}{y}$$

•
$$\sin\left(\frac{\pi}{2} + \alpha\right) =$$

•
$$\cos\left(\frac{\pi}{2} + \alpha\right) =$$

•
$$\operatorname{tg}\left(\frac{\pi}{2} + \alpha\right) =$$

•
$$\operatorname{ctg}\left(\frac{\pi}{2} + \alpha\right) =$$

•
$$\sin\left(\frac{3\pi}{2} + \alpha\right) =$$

•
$$\cos\left(\frac{3\pi}{2} + \alpha\right) =$$

•
$$tg(\frac{3\pi}{2} + \alpha) =$$

Regula jest prosta

$$f, g : \sin, \cos, \operatorname{tg}, \operatorname{ctg}$$

$$g(\alpha \pm x) = {\color{red} \pm} f(x)$$

Regula jest prosta

$$f, g : \sin, \cos, \operatorname{tg}, \operatorname{ctg}$$

$$g(\alpha \pm x) = \pm f(x)$$

Wzory redukcyjne

Regula jest prosta

$$f, g : \sin, \cos, \operatorname{tg}, \operatorname{ctg}$$

$$g(\alpha \pm x) = \pm f(x)$$

- dla $\alpha = \pi, 2\pi$: f = g , czyli funkcja bez zmian $\alpha = \frac{\pi}{2}, \frac{3\pi}{2}$: $\sin \longleftrightarrow \cos$, $\operatorname{tg} \longleftrightarrow \operatorname{ctg}$
- Znak \pm przed f(x) zależy od kąta $\alpha \pm x$ i funkcji g

W pierwszej wszystkie dodatnie W drugiej tylko sinus W trzeciej tangens i contangens A w czwartej cosinus

Tożsamości trygonometryczne

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$tg \alpha \cdot ctg \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\sin(2\alpha) = 2\sin \alpha \cos \alpha$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

Sinus i Cosinus sumy i różnicy

• Ze wzorów na *sinus* i *cosinus* sumy można wyprowadzić wiele innych wzorów

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$
$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

Sinus i Cosinus sumy i różnicy

• Ze wzorów na *sinus* i *cosinus* sumy można wyprowadzić wiele innych wzorów

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$
$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$
$$\sin(u-v) = \sin u \cos v - \cos u \sin v$$

Sinus i Cosinus sumy i różnicy

• Ze wzorów na *sinus* i *cosinus* sumy można wyprowadzić wiele innych wzorów

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$

$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

$$\sin(u-v) = \sin u \cos v - \cos u \sin v$$

$$\cos(u-v) = \cos u \cos v + \sin u \sin v$$

Zamiana iloczynu na sumę i sumy na iloczyn

$$\sin u \sin v = \frac{1}{2} \left[\cos (u - v) - \cos (u + v) \right]$$

$$\cos u \cos v = \frac{1}{2} \left[\cos (u - v) + \cos (u + v) \right]$$

$$\sin u \cos v = \frac{1}{2} \left[\sin (u + v) + \sin (u - v) \right]$$

$$\cos u \sin v = \frac{1}{2} \left[\sin (u + v) - \sin (u - v) \right]$$

Zamiana iloczynu na sumę i sumy na iloczyn

$$\sin u \sin v = \frac{1}{2} \left[\cos (u - v) - \cos (u + v) \right]$$

$$\cos u \cos v = \frac{1}{2} \left[\cos (u - v) + \cos (u + v) \right]$$

$$\sin u \cos v = \frac{1}{2} \left[\sin (u + v) + \sin (u - v) \right]$$

$$\cos u \sin v = \frac{1}{2} \left[\sin (u + v) - \sin (u - v) \right]$$

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Definicje

Funkcja sinus, $f(x) = \sin x$, gdzie x jest miarą łukową kąta.

Definicje

Funkcja sinus, $f(x) = \sin x$, gdzie x jest miarą łukową kąta. Funkcja cosinus, $f(x) = \cos x$, gdzie x jest miarą łukową kąta. Dziedziną obu funkcji jest $D_f = \mathbb{R}$, zbiorem wartości $W_f = \langle -1, 1 \rangle$.

Definicja

Funkcja tangens, $f(x) = \operatorname{tg} x$, gdzie x jest miarą łukową kąta. Dziedziną funkcji jest $D_f = \mathbb{R} - \{\frac{\pi}{2} + k\pi\}$, zbiorem wartości $W_f = \mathbb{R}$.

Definicja

Funkcja tangens, $f(x) = \operatorname{tg} x$, gdzie x jest miarą łukową kąta. Dziedziną funkcji jest $D_f = \mathbb{R} - \{\frac{\pi}{2} + k\pi\}$, zbiorem wartości $W_f = \mathbb{R}$.

Definicja

Funkcja cotangens, $f(x) = \operatorname{ctg} x$, gdzie x jest miarą łukową kąta. Dziedziną funkcji jest $D_f = \mathbb{R} - \{k\pi\}$, zbiorem wartości $W_f = \mathbb{R}$.

$$\sin x = \frac{1}{2}$$

$$\sin x = \frac{1}{2}$$

$$\sin x = \frac{1}{2}$$

Rozwiązanie

$$\sin x = \frac{1}{2}$$

Rozwiazanie

$$x = \frac{\pi}{6} + 2k\pi$$
 \vee $x = \frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$

Przydatne równości

$$\sin \alpha = \sin \beta \quad \Leftrightarrow \quad \alpha = \beta + 2k\pi \quad \lor \quad \alpha = \pi - \beta + 2k\pi$$

Przydatne równości

$$\sin \alpha = \sin \beta \iff \alpha = \beta + 2k\pi \lor \alpha = \pi - \beta + 2k\pi$$

 $\cos \alpha = \cos \beta \iff \alpha = \pm \beta + 2k\pi$

Przydatne równości

$$\sin \alpha = \sin \beta \quad \Leftrightarrow \quad \alpha = \beta + 2k\pi \quad \lor \quad \alpha = \pi - \beta + 2k\pi$$

$$\cos \alpha = \cos \beta \quad \Leftrightarrow \quad \alpha = \pm \beta + 2k\pi$$

$$\operatorname{tg} \alpha = \operatorname{tg} \beta \quad \Leftrightarrow \quad \alpha = \beta + k\pi, \quad \alpha, \beta \neq \frac{\pi}{2} + k\pi$$

$$\operatorname{ctg} \alpha = \operatorname{ctg} \beta \quad \Leftrightarrow \quad \alpha = \beta + k\pi, \quad \alpha, \beta \neq k\pi$$

$$\sin x > \frac{1}{2}$$

$$\sin x > \frac{1}{2}$$

$$\sin x > \frac{1}{2}$$

$$\sin x > \frac{1}{2}$$

Przykład

$$\sin x > \frac{1}{2}$$

$$x \in \left(\frac{\pi}{6} + 2k\pi\right), \quad \frac{5\pi}{6} + 2k\pi\right)$$

Funkcje cyklometryczne czyli

odwrotne do trygonometrycznych

• Funkcja jest odwracalna jeżeli jest wzajemnie jednoznaczna (jest bijekcją)

- Funkcja jest odwracalna jeżeli jest wzajemnie jednoznaczna (jest bijekcją)
- Funkcje trygonometryczne nie są różnowartościowe w swoich dziedzinach.

- Funkcja jest odwracalna jeżeli jest wzajemnie jednoznaczna (jest bijekcją)
- Funkcje trygonometryczne nie są różnowartościowe w swoich dziedzinach.
- Zatem ograniczamy ich dziedziny

- Funkcja jest odwracalna jeżeli jest wzajemnie jednoznaczna (jest bijekcja)
- Funkcje trygonometryczne nie są różnowartościowe w swoich dziedzinach.
- Zatem ograniczamy ich dziedziny

$$y = \sin x, \quad x \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$$

$$y = \cos x, \quad x \in \langle 0, \pi \rangle$$

Definicja

Funkcję odwrotną do funkcji $f(x) = \sin x$ w przedziale $x \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$ nazywamy funkcją arcus sinus i oznaczamy symbolem arcsin,

$$f^{-1}(x) = \arcsin x, \quad x \in \langle -1, 1 \rangle$$

Funkcję odwrotną do funkcji $f(x) = \sin x$ w przedziale $x \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$ nazywamy funkcją arcus sinus i oznaczamy symbolem arcsin,

$$f^{-1}(x) = \arcsin x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arcsin x \quad \Leftrightarrow \quad \sin y = x, \qquad x \in \langle -1, 1 \rangle \,, \quad y \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$$

Funkcję odwrotną do funkcji $f(x) = \sin x$ w przedziale $x \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$ nazywamy funkcją **arcus sinus** i oznaczamy symbolem arcsin,

$$f^{-1}(x) = \arcsin x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arcsin x \quad \Leftrightarrow \quad \sin y = x, \qquad x \in \langle -1, 1 \rangle, \quad y \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$$

Przykład

• $\arcsin \frac{\sqrt{3}}{2} = \alpha \Leftrightarrow$

Funkcję odwrotną do funkcji $f(x) = \sin x$ w przedziale $x \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$ nazywamy funkcją arcus sinus i oznaczamy symbolem arcsin,

$$f^{-1}(x) = \arcsin x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arcsin x \quad \Leftrightarrow \quad \sin y = x, \qquad x \in \langle -1, 1 \rangle, \quad y \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$$

Przykład

• $\arcsin \frac{\sqrt{3}}{2} = \alpha \Leftrightarrow \sin \alpha = \frac{\sqrt{3}}{2} \land \alpha \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle \Rightarrow$

Funkcję odwrotną do funkcji $f(x) = \sin x$ w przedziale $x \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$ nazywamy funkcją arcus sinus i oznaczamy symbolem arcsin,

$$f^{-1}(x) = \arcsin x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arcsin x \quad \Leftrightarrow \quad \sin y = x, \qquad x \in \langle -1, 1 \rangle, \quad y \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$$

Przykład

• $\arcsin \frac{\sqrt{3}}{2} = \alpha \Leftrightarrow \sin \alpha = \frac{\sqrt{3}}{2} \land \alpha \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle \Rightarrow \alpha = \frac{\pi}{3}$, wiec $\arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{2}$

Wykres Arcus sinusa

• Wykresy f i f^{-1} są symetryczne względem y = x.

Funkcje cyklometryczne

Definicja

Funkcję odwrotną do funkcji $f(x) = \cos x$ w przedziale $x \in \langle 0, \pi \rangle$ nazywamy funkcją **arcus cosinus** i oznaczamy symbolem arccos,

$$f^{-1}(x) = \arccos x, \quad x \in \langle -1, 1 \rangle$$

Definicja

Funkcję odwrotną do funkcji $f(x) = \cos x$ w przedziale $x \in \langle 0, \pi \rangle$ nazywamy funkcją **arcus cosinus** i oznaczamy symbolem arccos,

$$f^{-1}(x) = \arccos x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arccos x \iff \cos y = x, \qquad x \in \langle -1, 1 \rangle, \quad y \in \langle 0, \pi \rangle$$

Definicja

Funkcję odwrotną do funkcji $f(x) = \cos x$ w przedziale $x \in \langle 0, \pi \rangle$ nazywamy funkcją **arcus cosinus** i oznaczamy symbolem arccos,

$$f^{-1}(x) = \arccos x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arccos x \iff \cos y = x, \qquad x \in \langle -1, 1 \rangle, \quad y \in \langle 0, \pi \rangle$$

Przykład

• $\arccos \frac{\sqrt{3}}{2} = \alpha \iff$

Definicja

Funkcję odwrotną do funkcji $f(x) = \cos x$ w przedziale $x \in \langle 0, \pi \rangle$ nazywamy funkcją **arcus cosinus** i oznaczamy symbolem arccos,

$$f^{-1}(x) = \arccos x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arccos x \iff \cos y = x, \qquad x \in \langle -1, 1 \rangle, \quad y \in \langle 0, \pi \rangle$$

Przykład

• $\arcsin \frac{\sqrt{3}}{2} = \alpha \iff \cos \alpha = \frac{\sqrt{3}}{2} \land \alpha \in \langle 0, \pi \rangle \Rightarrow$

Definicja

Funkcję odwrotną do funkcji $f(x) = \cos x$ w przedziale $x \in \langle 0, \pi \rangle$ nazywamy funkcją **arcus cosinus** i oznaczamy symbolem arccos,

$$f^{-1}(x) = \arccos x, \quad x \in \langle -1, 1 \rangle$$

Czyli,
$$y = \arccos x \iff \cos y = x, \qquad x \in \langle -1, 1 \rangle, \quad y \in \langle 0, \pi \rangle$$

Przykład

• $\arcsin \frac{\sqrt{3}}{2} = \alpha \iff \cos \alpha = \frac{\sqrt{3}}{2} \land \alpha \in \langle 0, \pi \rangle \Rightarrow \alpha = \frac{\pi}{6}$, wiec $\arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{6}$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ ○壹 ・ 釣Q ○

Definicja

Funkcję odwrotną do funkcji $f(x) = \operatorname{tg} x$ w przedziale $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ nazywamy funkcją **arcus tangens** i oznaczamy symbolem arctg,

$$f^{-1}(x) = \operatorname{arctg} x, \quad x \in \mathbb{R}$$

Czyli,
$$y = \operatorname{arc} \operatorname{tg} x \quad \Leftrightarrow \quad \operatorname{tg} y = x, \qquad x \in \mathbb{R}, \quad y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Definicja

Funkcję odwrotną do funkcji $f(x) = \operatorname{tg} x$ w przedziale $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ nazywamy funkcją **arcus tangens** i oznaczamy symbolem arctg,

$$f^{-1}(x) = \operatorname{arctg} x, \quad x \in \mathbb{R}$$

Czyli,
$$y = \operatorname{arc} \operatorname{tg} x \quad \Leftrightarrow \quad \operatorname{tg} y = x, \qquad x \in \mathbb{R}, \quad y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Definicja

Funkcję odwrotną do funkcji $f(x)=\operatorname{ctg} x$ w przedziale $x\in(0,\pi)$ nazywamy funkcją **arcus cotangens** i oznaczamy symbolem arcctg,

$$f^{-1}(x) = \operatorname{arcctg} x, \quad x \in \mathbb{R}$$

Czyli, $y = \operatorname{arcctg} x \iff \operatorname{ctg} y = x, \qquad x \in \mathbb{R}, \quad y \in (0, \pi)$

$$\begin{array}{ccc} Funkcja & D_f & W_f \\ \hline y = \arcsin x & \Leftrightarrow & \sin y = x & \langle -1, 1 \rangle & \langle -\pi/2, \pi/2 \rangle \end{array}$$

Funkcja			D_f	W_f
$y = \arcsin x$	\Leftrightarrow	$\sin y = x$	$\langle -1, 1 \rangle$	$\langle -\pi/2,\pi/2\rangle$
$y = \arccos x$	\Leftrightarrow	$\cos y = x$	$\langle -1, 1 \rangle$	$\langle 0, \pi \rangle$

Funkcja			D_f	W_f
$y = \arcsin x$	\Leftrightarrow	$\sin y = x$	$\langle -1, 1 \rangle$	$\langle -\pi/2, \pi/2 \rangle$
$y = \arccos x$	\Leftrightarrow	$\cos y = x$	$\langle -1, 1 \rangle$	$\langle 0,\pi \rangle$
$y = \operatorname{arc} \operatorname{tg} x$	\Leftrightarrow	$\operatorname{tg} y = x$	$(-\infty,\infty)$	$(-\pi/2,\pi/2)$

Informatyka

Funkcja			D_f	W_f
$y = \arcsin x$	\Leftrightarrow	$\sin y = x$	$\langle -1, 1 \rangle$	$\langle -\pi/2, \pi/2 \rangle$
$y = \arccos x$	\Leftrightarrow	$\cos y = x$	$\langle -1, 1 \rangle$	$\langle 0, \pi \rangle$
$y = \operatorname{arc} \operatorname{tg} x$	\Leftrightarrow	tg y = x	$(-\infty,\infty)$	$(-\pi/2,\pi/2)$
$y = \operatorname{arc} \operatorname{ctg} x$	\Leftrightarrow	$\operatorname{ctg} y = x$	$(-\infty,\infty)$	$(0,\pi)$

Z własności funkcji odwrotnych mamy ...

$$\arcsin(\sin x) = x \text{ dla } x \in \left\langle -\frac{\pi}{2}, \frac{\pi}{2} \right\rangle$$
$$\sin(\arcsin x) = x \text{ dla } x \in \left\langle -1, 1 \right\rangle$$
$$\arctan(\operatorname{tg}(\operatorname{tg} x)) = x \text{ dla } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
$$\operatorname{tg}(\operatorname{arc}\operatorname{tg} x) = x \text{ dla } x \in \mathbb{R} \quad \text{etc.}$$

Przydatne równości kiedyś ...

Przydatne równości kiedyś ...

$$\sin x = \sin \alpha \quad \Leftrightarrow \quad x = \alpha + 2k\pi \quad \lor \quad x = \pi - \alpha + 2k\pi$$

$$\sin x = a \land a \in \langle -1, 1 \rangle \Leftrightarrow x = \arcsin a + 2k\pi \lor$$

 $x = \pi - \arcsin a + 2k\pi$

Przydatne równości kiedyś ...

$$\sin x = \sin \alpha \iff x = \alpha + 2k\pi \lor x = \pi - \alpha + 2k\pi$$

 $\cos x = \cos \alpha \iff x = \pm \alpha + 2k\pi$

$$\sin x = a \ \land \ a \in \langle -1, 1 \rangle \quad \Leftrightarrow \quad x = \arcsin a + 2k\pi \lor$$

$$x = \pi - \arcsin a + 2k\pi$$

$$\cos x = a \ \land \ a \in \langle -1, 1 \rangle \quad \Leftrightarrow \quad x = \pm \arccos a + 2k\pi$$

Przydatne równości kiedyś ...

$$\sin x = \sin \alpha \quad \Leftrightarrow \quad x = \alpha + 2k\pi \quad \lor \quad x = \pi - \alpha + 2k\pi$$

$$\cos x = \cos \alpha \quad \Leftrightarrow \quad x = \pm \alpha + 2k\pi$$

$$\operatorname{tg} x = \operatorname{tg} \alpha \quad \Leftrightarrow \quad x = \alpha + k\pi, \quad x, y \neq \frac{\pi}{2} + k\pi$$

$$\sin x = a \ \land \ a \in \langle -1, 1 \rangle \quad \Leftrightarrow \quad x = \arcsin a + 2k\pi \lor$$

$$x = \pi - \arcsin a + 2k\pi$$

$$\cos x = a \ \land \ a \in \langle -1, 1 \rangle \quad \Leftrightarrow \quad x = \pm \arccos a + 2k\pi$$

$$\operatorname{tg} x = a \ \land \ a \in \mathbb{R} \qquad \Leftrightarrow \quad x = \arctan \operatorname{tg} a + k\pi$$

Przydatne równości kiedyś ...

$$\sin x = \sin \alpha \quad \Leftrightarrow \quad x = \alpha + 2k\pi \quad \lor \quad x = \pi - \alpha + 2k\pi$$

$$\cos x = \cos \alpha \quad \Leftrightarrow \quad x = \pm \alpha + 2k\pi$$

$$\operatorname{tg} x = \operatorname{tg} \alpha \quad \Leftrightarrow \quad x = \alpha + k\pi, \quad x, y \neq \frac{\pi}{2} + k\pi$$

$$\operatorname{ctg} x = \operatorname{ctg} \alpha \quad \Leftrightarrow \quad x = \alpha + k\pi, \quad x, y \neq k\pi$$

$$\sin x = a \ \land \ a \in \langle -1, 1 \rangle \quad \Leftrightarrow \quad x = \arcsin a + 2k\pi \lor$$

$$x = \pi - \arcsin a + 2k\pi$$

$$\cos x = a \ \land \ a \in \langle -1, 1 \rangle \quad \Leftrightarrow \quad x = \pm \arccos a + 2k\pi$$

$$\operatorname{tg} x = a \ \land \ a \in \mathbb{R} \qquad \Leftrightarrow \quad x = \arctan \operatorname{tg} a + k\pi$$

$$\operatorname{ctg} x = a \ \land \ a \in \mathbb{R} \qquad \Leftrightarrow \quad x = \operatorname{arc} \operatorname{tg} a + k\pi$$

Strategie

• Użyj definicji i zamień na równanie trygonometryczne

$$\arccos(x+2) = \frac{\pi}{3} \quad \Leftrightarrow$$

Strategie

• Użyj definicji i zamień na równanie trygonometryczne

$$\arcsin(x+2) = \frac{\pi}{3} \quad \Leftrightarrow \quad \cos\left(\frac{\pi}{3}\right) = x+2$$

Strategie

• Użyj definicji i zamień na równanie trygonometryczne

$$\arcsin(x+2) = \frac{\pi}{3} \quad \Leftrightarrow \quad \cos\left(\frac{\pi}{3}\right) = x+2$$

• Użyj monotoniczności

$$\operatorname{arcctg}(x-4) > \operatorname{arcctg}(x^2) \Leftrightarrow$$

Strategie

• Użyj definicji i zamień na równanie trygonometryczne

$$\arcsin(x+2) = \frac{\pi}{3} \quad \Leftrightarrow \quad \cos\left(\frac{\pi}{3}\right) = x+2$$

• Użyj monotoniczności

$$\operatorname{arcctg}(x-4) > \operatorname{arcctg}(x^2) \quad \Leftrightarrow \quad x-4 < x^2$$

Strategie

• Użyj definicji i zamień na równanie trygonometryczne

$$\arcsin(x+2) = \frac{\pi}{3} \quad \Leftrightarrow \quad \cos\left(\frac{\pi}{3}\right) = x+2$$

Użyj monotoniczności

$$\operatorname{arcctg}(x-4) > \operatorname{arcctg}(x^2) \quad \Leftrightarrow \quad x-4 < x^2$$

• Użyj monotoniczności i własności funkcji odwrotnych

$$\arcsin(x-4) < \frac{\pi}{5} \quad \Leftrightarrow$$

Strategie

• Użyj definicji i zamień na równanie trygonometryczne

$$\arcsin(x+2) = \frac{\pi}{3} \quad \Leftrightarrow \quad \cos\left(\frac{\pi}{3}\right) = x+2$$

Użyj monotoniczności

$$\operatorname{arcctg}(x-4) > \operatorname{arcctg}(x^2) \quad \Leftrightarrow \quad x-4 < x^2$$

• Użyj monotoniczności i własności funkcji odwrotnych

$$\arcsin(x-4) < \frac{\pi}{5} \quad \Leftrightarrow \quad \sin(\arcsin(x-4)) < \sin(\frac{\pi}{5})$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 り९@