```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import statsmodels.api as sm
   from statsmodels.formula.api import ols
   from scipy import stats
   from scipy.stats import chi2_contingency
   %matplotlib inline

In [2]: df = pd.read_stata('data.dta')
   df.loc[(df['degree']==1) | (df['degree']==3) | (df['degree']==4), 'background'] = 'Medical'
   df.loc[(df['degree']==6), 'background'] = 'Biochemistry'

In [3]: df_med = df[(df['degree']==1) | (df['degree']==3) | (df['degree']==4)]
   df_bio = df[df['degree']==6]
```

Abilities related to mental health of students

```
In [4]: def gen_grouped_bar(data, columns, title=' ', xlab=' ', legend=' ', legend_name=[]):
    value_counts = data[columns].apply(pd.value_counts)
    percentages = (value_counts / value_counts.sum()) * 100

ax = percentages.plot(kind='bar', legend=True, figsize=(10, 5), width=.8)
    plt.ylabel('Percentage')
    plt.xlabel(xlab)
    plt.title(title)
    plt.xticks(rotation=0)
    plt.legend(title=legend, loc='upper center', labels=legend_name, bbox_to_anchor=(1.14, 1))
    plt.show()
```

```
In [5]: gen_grouped_bar(
    df_med, df.columns[2:14],
    title='Different ability level of Medical students (percent)',
    legend='Ability',
    legend_name = df.columns[2:14])
```



```
In [6]: gen_grouped_bar(
    df_bio, df.columns[2:14],
    title='Different ability level of Biochemistry students (percent)',
    legend='Ability',
    legend_name = df.columns[2:14])
```


Activities of students in leisure time


```
In [8]: gen_grouped_bar(
    df_bio, df.columns[14:21],
    title='Activities of Biochemistry students (percent)',
    legend='Activities',
    legend_name = legend_names)
```


Most effective stress relieving activities according to students

```
In [9]: | c_names = ['Mediation', 'Nutrition', 'Exercise', 'Social Support',
                     'Spirituality', 'Mindfulness', 'Social Media']
         df_mr = df_med[df.columns[22:29]]
         df_dummies = pd.get_dummies(df_mr, columns=df.columns[22:29])
         df_dummies.columns = c_names
         response_counts = df_dummies.sum()
         percentage = response_counts/np.shape(df_med)[0] * 100
         percentage.round(3)
 Out[9]: Mediation
                             3.026
         Nutrition
                             0.908
                            35.703
         Exercise
         Social Support
                            26.172
         Spirituality
                             6.203
         Mindfulness
                             2.874
         Social Media
                             2.874
         dtype: float64
In [10]: | percentage.plot(kind='bar', figsize=(10, 4), width=.7)
         plt.xticks(rotation=0)
         plt.xlabel('Activities')
         plt.ylabel('Number of cases')
         plt.title('Most effective at relieving stress according to Medical students (Percent of cases)')
         plt.show()
```


Most of the Medical students thinks that 'Exercise' (35.70%) and 'Social Support Activities' (26.17%) are effective on stress relieve.

```
In [11]: | df_mr = df_bio[df.columns[22:29]]
          df_dummies = pd.get_dummies(df_mr, columns=df.columns[22:29])
          df_dummies.columns = c_names
          response_counts = df_dummies.sum()
          percentage = response_counts/np.shape(df_bio)[0] * 100
          percentage.round(3)
Out[11]: Mediation
                              0.787
                              3,150
          Nutrition
          Exercise
                             33.465
          Social Support
                            13.780
          Spirituality
                             4.331
          Mindfulness
                              0.787
          Social Media
                              3.543
          dtype: float64
In [12]:
          percentage.plot(kind='bar', figsize=(10, 4), width=.7)
          plt.xticks(rotation=0)
         plt.xlabel('Activities')
plt.ylabel('Number of cases')
          plt.title('Most effective at relieving stress according to Biochemistry students (Percent of cases)')
          plt.show()
```


Most of the Medical students thinks that 'Exercise' (33.46%) and 'Social Support Activities' (13.78%) are effective on stress relieve.

Comparison: (Social Media)

Only 2.87% of Medical students and 3.54% Biochemistry students thinks that 'Social Media' effective on stress relieve. This number is quite small than 'Exercise' and 'Social Support Activities' in both of the groups.

Analysing students stress score

By degree

```
In [13]: df['stressScore'].describe().round(2)
Out[13]: count
                   876.00
          mean
                    25.96
          std
                     4.34
                    12.00
          min
          25%
                    23.00
          50%
                    26.00
          75%
                    29.00
          max
                    37.00
         Name: stressScore, dtype: float64
```

```
In [14]:
    plt.figure(figsize=(7, 5))
    sns.boxplot(data=df, x='background', y='stressScore')
    plt.xlabel('Background')
    plt.ylabel('Stress Score')
    plt.title('Stress Score of Medical and Biochemistry students')
    plt.show()
```

Stress Score of Medical and Biochemistry students

We suspect a difference of score in the graph between tow cohort. We will do a two independent samples t-test to clarify the doubt.

Hypothesis testing of mean difference of score between Medical and Biochemistry students

 $H_0: \mu_{Med} = \mu_{Bio}$

```
H_1: \mu_{Med} \neq \mu_{Bio}
In [15]: med_score = df.loc[df["background"]=="Medical", 'stressScore']
         med_score = med_score[~np.isnan(med_score)]
         med_score.describe().round(2)
Out[15]: count
                   647.00
                    26.44
         mean
                     4.14
          std
         min
                    13.00
          25%
                    24.00
          50%
                    27.00
                    29.00
          75%
                    37.00
         max
         Name: stressScore, dtype: float64
In [16]: bio_score = df.loc[df["background"]=="Biochemistry", 'stressScore']
          bio_score = bio_score[~np.isnan(bio_score)]
         bio_score.describe().round(2)
Out[16]: count
                   229.00
                    24.62
         mean
          std
                     4.60
         min
                    12.00
          25%
                    22.00
          50%
                    25.00
         75%
                    28.00
         max
                    37.00
         Name: stressScore, dtype: float64
```

```
In [17]: t_statistic, p_value = stats.ttest_ind(med_score, bio_score)

print("t-Statistic:", t_statistic.round(3))
print("P-Value:", p_value.round(11))

alpha = 0.05
if p_value < alpha:
    print("Reject the null hypothesis: There is a significant difference between the samples.")
else:
    print("Fail to reject the null hypothesis: There is no significant difference between the samples.")</pre>
```

t-Statistic: 5.565 P-Value: 3.496e-08 Reject the null hypothesis: There is a significant difference between the samples.

So, it is now clear that Medical students have significantly higher score and Biochemistry students have less.

By year

```
In [18]: plt.figure(figsize=(8, 5))
    sns.boxplot(data=df, x='year', y='stressScore')
    plt.xlabel('Year')
    plt.ylabel('Stress Score')
    plt.title('Stress Score of Medical and Biochemistry students')
    plt.show()
```


Mean stress score of different year student may equal. We can predict this by the graph shown above. Let's check if the prediction is right.

Are mean stress scores of different year student same?

```
H_0: \mu_1 = \mu_2 = \mu_3 H_1: \mu_i 
eq \mu_j ; at least for one i 
eq j
```

```
In [19]: formula = 'stressScore ~ year'
model = ols(formula, data=df).fit()
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
```

Out[19]:

```
        sum_sq
        df
        F
        PR(>F)

        year
        18.665372
        2.0
        0.494706
        0.609921

        Residual
        16469.237596
        873.0
        NaN
        NaN
```

```
coef
                          std err
                                               P> |t|
                                                       [0.025
                                                                0.975]
Intercept
              25.8731
                          0.217
                                   119.435
                                               0.000
                                                       25.448 26.298
                                              0.349
               0.3374
                          0.360
                                     0.937
                                                       -0.369
                                                                1.044
Second year
```

Third year 0.0130 0.352 0.037 0.970 -0.677 0.703

Here, p-value>.05. So we may not reject the H_0 . So, means of score are equal in each year of students.

Relation between stress score and social media usage

Stress Score in different level of social media usage


```
H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5
```

 $H_1: \mu_i
eq \mu_j$; at least for one i
eq j

```
In [21]: formula = 'stressScore ~ socialMedia'
    model = ols(formula, data=df).fit()
    anova_table = sm.stats.anova_lm(model, typ=2)
    anova_table
```

Out[21]:

	sum_sq	df	F	PR(>F)
socialMedia	70.073632	4.0	0.929572	0.446003
Residual	16376.896620	869.0	NaN	NaN

	coef	std err	t	P> t	[0.025	0.9751
Intercept	25.7000	1.373	18.721	0.000	23.006	28.394
Rarely	0.3889	1.518	0.256	0.798	-2.590	3.368
Sometimes	0.1963	1.414	0.139	0.890	-2.579	2.972
Quite a lot	0.5430	1.390	0.391	0.696	-2.186	3.272
Always	-0.1129	1.399	-0.081	0.936	-2.858	2.632

Here, p-value>.05. So we may not reject the H_0 . So, means of score are equal in each level of social media usage. So, it is unnessecary to check individual groups. (eg: Medical, Biochemistry)

Last month mental condition

Relationship between Social Media and Stress of Medical students

Out[24]:

	ChiSQ	p-value	alpha=5%	alpha=10%
Something happened unexpectedly	20.083040	0.216504	False	False
Practice Mindfulness	14.099832	0.591277	False	False
Doing things without paying attention	32.249270	0.009278	True	True
Nervous and stressed	42.368355	0.000348	True	True
Confident about ability to handle stress	25.103563	0.068020	False	True
Preoccupied with events	25.118775	0.067759	False	True
Angered because of things outside	25.453792	0.062215	False	True
Dificulties were piling up so high	19.495242	0.243819	False	False

```
True = Associated with social media
False = Not associated with social media
```

```
In [25]: stat['p-value'].plot(kind='bar')
    plt.axhline(y=.05, color='r', label='Horizontal Line at y=15')
    plt.axhline(y=.1, color='g', label='Horizontal Line at y=15')
    plt.xticks(rotation=85)
    plt.show()
```


Heatmap plot for significant pairs (Percent of cases)

From the plot above we can see 'Social Media' usage of Medical students is associated with 'Doing things without paying attention' and 'Nervous and stressed'. Let's visualise the association with the help of heatmap plot.

Relationship between Social Media and Stress of Biochemistry students

Nervous and stressed

Out[29]:

	ChiSQ	p-value	alpha=5%	alpha=10%
Something happened unexpectedly	15.203546	0.509784	False	False
Practice Mindfulness	13.593694	0.628954	False	False
Doing things without paying attention	14.727804	0.544658	False	False
Nervous and stressed	15.874324	0.461766	False	False
Confident about ability to handle stress	32.783452	0.007894	True	True
Preoccupied with events	15.138349	0.514530	False	False
Angered because of things outside	24.910255	0.071423	False	True
Dificulties were piling up so high	13.243192	0.654900	False	False

```
True = Associated with social media
False = Not associated with social media
```

```
In [30]: stat['p-value'].plot(kind='bar')
    plt.axhline(y=.05, color='r', label='Horizontal Line at y=15')
    plt.axhline(y=.1, color='g', label='Horizontal Line at y=15')
    plt.xticks(rotation=85)
    plt.show()
```


Heatmap plot for significant pairs

From the plot above we can see 'Social Media' usage of Biochemistry students is associated with 'Doing things without paying attention' and 'Nervous and stressed'. Let's visualise the association with the help of heatmap plot.

Cause of stress

```
In [32]: c_names = ['Finance', 'Course workload', 'Personal Relationships', 'Moving to university', 'Social/Rec
          df_mr = df_med[df.columns[107:113]]
          df_dummies = pd.get_dummies(df_mr, columns=df.columns[107:113])
          df_dummies.columns = c_names
response_counts = df_dummies.sum()
          percentage = response_counts/np.shape(df_med)[0] * 100
          percentage.round(3)
Out[32]: Finance
                                      13.767
          Course workload
                                      51.740
          Personal Relationships
                                      37.519
          Moving to university
                                      25.567
          Social/Recreational
                                       6.808
          Health
                                       5.144
          dtype: float64
```

```
In [33]: percentage.plot(kind='bar', figsize=(10, 4), width=.7)
    plt.xticks(rotation=0)
    plt.xlabel('Causes')
    plt.ylabel('Number of cases')
    plt.xticks(rotation=85)
    plt.title('Cause of stress of Medical students')
    plt.show()
```



```
In [34]: c_names = ['Finance', 'Course workload', 'Personal Relationships', 'Moving to university', 'Social/Rec

df_mr = df_bio[df.columns[107:113]]
    df_dummies = pd.get_dummies(df_mr, columns=df.columns[107:113])
    df_dummies.columns = c_names
    response_counts = df_dummies.sum()
    percentage = response_counts/np.shape(df_med)[0] * 100
    percentage.round(3)
```

Out[34]: Finance 7.716
Course workload 15.734
Personal Relationships 12.708
Moving to university 2.118
Social/Recreational 1.815
Health 2.723

dtype: float64

```
In [35]: percentage.plot(kind='bar', figsize=(10, 4), width=.7)
    plt.xticks(rotation=0)
    plt.xlabel('Causes')
    plt.ylabel('Number of cases')
    plt.xticks(rotation=85)
    plt.title('Cause of stress of Biochemistry students')
    plt.show()
```


In conclusion we can say. Social media may not be a cause to reduce stress. Also Exercise can be a good factor of reducing stress.

Relationship between Exercise and Stress of Medical students

Out[36]:

	ChiSQ	p-value	alpha=5%	alpha=10%
Something happened unexpectedly	25.229857	0.065874	False	True
Practice Mindfulness	23.191835	0.108702	False	False
Doing things without paying attention	9.877051	0.872970	False	False
Nervous and stressed	23.572497	0.099266	False	True
Confident about ability to handle stress	27.135178	0.040005	True	True
Preoccupied with events	14.923523	0.530247	False	False
Angered because of things outside	23.347316	0.104761	False	False
Dificulties were piling up so high	25.538748	0.060874	False	True

```
True = Associated with social media
False = Not associated with social media
```

```
In [37]: stat['p-value'].plot(kind='bar')
  plt.axhline(y=.05, color='r', label='Horizontal Line at y=15')
  plt.axhline(y=.1, color='g', label='Horizontal Line at y=15')
  plt.xticks(rotation=85)
  plt.show()
```


For 10% tollarence 'Exercise' is associated with 'Something happened unexpectedly', 'Nervous and stressed', 'Confident about ability to handle stress' and 'Difficulties were piling up so high' Let's have a look on heatmap.

In [39]: gen_heatmap(df_med, 'exercise', 'nervous_and_stressed')

In [40]: gen_heatmap(df_med, 'exercise', 'confident_about_ability_to_handl')

Relationship between Exercise and Stress of Biochemistry students

Dificulties were piling up so high

Out[42]:

	ChiSQ	p-value	alpha=5%	alpha=10%
Something happened unexpectedly	30.113206	0.017424	True	True
Practice Mindfulness	20.348091	0.204950	False	False
Doing things without paying attention	9.614803	0.885955	False	False
Nervous and stressed	19.575826	0.239936	False	False
Confident about ability to handle stress	32.058208	0.009827	True	True
Preoccupied with events	14.690695	0.547398	False	False
Angered because of things outside	14.878598	0.533548	False	False
Dificulties were piling up so high	29.393143	0.021416	True	True

```
True = Associated with social media
False = Not associated with social media
```

```
In [43]: stat['p-value'].plot(kind='bar')
   plt.axhline(y=.05, color='r', label='Horizontal Line at y=15')
   plt.axhline(y=.1, color='g', label='Horizontal Line at y=15')
   plt.xticks(rotation=85)
   plt.show()
```


For 5% tollarence 'Exercise' is associated with 'Something happened unexpectedly', 'Confident about ability to handle stress' and 'Dificulties were piling up so high' Let's have a look on heatmap.

In [45]: gen_heatmap(df_bio, 'exercise', 'confident_about_ability_to_handl')

In [46]: gen_heatmap(df_bio, 'exercise', 'dificulties_were_piling_up_so_hi')

