THÉORIE GÉNÉRALE

Soit $n \in \mathbb{N}$ et $f: \Omega \longrightarrow \mathbb{R}$ avec $\Omega \subseteq \mathbb{R} \times \mathbb{R}^n$. On considère l'EDO d'ordre n suivante:

$$(E): y^{(n)} = f(t, y, y', \dots, y^{n-1})$$

Montrons que y est une solution de E si et seulement $Y=(y,\ldots,y^{(n-1)})$ est solution de l'équation d'ordre 1 suivante:

$$(\widetilde{E}): Y' = F(t, Y)$$

Avec F définie par:

$$F: \Omega \longrightarrow \mathbb{R}$$

$$(t, X_1, \dots, X_n) \longmapsto (X_2, \dots, X_{n-1}, f(t, X_1, \dots, X_n))$$

<u>Sens direct</u>: Si $y \in C^n(I)$ est solution de (E), alors pour tout $t \in I$, on a $(t, y(t), \dots, y^{(n-1)}(t)) \in \Omega$ et elle vérifie l'équation. Posons:

$$\forall t \in I \; ; \; Y(t) = \begin{pmatrix} y(t) \\ \vdots \\ y^{(n-1)}(t) \end{pmatrix}$$

Alors pour tout $t \in I$, on a bien $(t, Y(t)) \in \Omega$ et en dérivant on trouve bien que Y vérifie:

$$Y'(t) = F(t, Y(t))$$

Sens réciproque: Si $Y = (y, \dots, y^{(n-1)})$ est solution de \widetilde{E} pour $y \in \mathcal{C}^n$, alors on a:

$$\forall t \in I ; (t, Y(t)) \in \Omega \text{ et } Y'(t) = F(t, Y(t))$$

Et donc par définition de F:

$$(t, y(t), \dots, y^{(n-1)}(t)) \in \Omega$$
 et $y^{(n)}(t) = f(t, y(t), \dots, y^{(n-1)}(t))$

En d'autres termes, y est bien solution de (E).