# Lending Club Case Study

Using EDA (Exploratory Data Analysis)

By - Seshu Kumar Bangaru

## **Problem Statement**

A **consumer finance company** which specialises in lending various types of loans to urban customers. When the company receives a loan application, the company has to make a decision for loan approval based on the applicant's profile. Two **types of risks** are associated with the bank's decision:

- If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
- If the applicant is **not likely to repay the loan,** i.e. he/she is likely to default, then approving the loan may lead to a **financial loss** for the company

The data given contains the information about past loan applicants and whether they 'defaulted' or not. The aim is to identify patterns which indicate if a person is likely to default, which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc.

The analysis has to be performed using EDA (Exploratory Data Analysis)

## **Steps Involving EDA**

- → Load the data
- → Check meta data / sanity check
- → Data Cleaning
- → Missing value imputation & outlier treatment
- → EDA
  - Univariate
  - Segmented Univariated
  - Bivariate

## Data Sanity, Cleaning and Imputation

- 1. Load the loan.csv file
- 2. Remove all the columns with NAs
- 3. Columns emp\_title, emp\_length, desc, title, mths\_since\_last\_delinq,mths\_since\_last\_record,revol\_util,last\_pymnt\_d,next\_pymnt\_d,last\_credit\_pull\_d,collecti ons\_12\_mths\_ex\_med,chargeoff\_within\_12\_mths,pub\_rec\_bankruptcies,tax\_liens
- 4. Based on the count of NA in each column we can drop following columns desc, mths\_since\_last\_deling,mths\_since\_last\_record,next\_pymnt\_d
- 5. Check if we can fill in the NA values for other columns.
- 6. We can see that there are 39678 of 0.0 in tax\_liens column. So filling the other rows does not give us any advantage. So drop this column
- 7. Assign pub\_rec\_bankruptcies with 0.0 for all the pub\_rec==0
- 8. Removing the 20 records which has pub\_rec\_bankruptcies=NA
- 9. Removing records which have emp\_length as NA
- 10. Dropping the emp\_title as we have large list of unique values
- 11. Drop the title column as we already have purpose column
- 12. Drop all the rows for revol\_util is NA
- 13. Drop rows with last\_credit\_pull\_d is NA
- 14. Drop rows with last\_pymnt\_d is NA
- 15. Drop columns url, desc

## Cleaning Continued...

#### Cleaning the data

- 1. term remove the "months" string
- 2. int\_rate remove % character

## **Univariate Analysis**

#### Analyse few columns individually Segregated into

- Categorical
  Ordered emp\_length,issue\_d
  Unordered home\_ownership,purpose,application\_type
- Quantitative/Numeric annual\_inc, loan\_amnt

#### We have three sub-data sets

- Data without columns which have all NAs/NULLs and not in "Current" loan status
- Data with "Charged Off" Loan Status
- Data with "Fully Paid" Loan Status

## Analysis for emp\_length column

The bar chart clearly shows that "10+ Years" has the maximum defaulters. Interesting to see Applicants with 6-9 years are less to default



## **Analysis for home\_ownership column**

The bar chart shows Applicants who is either in Rented House or with Mortgage are like to default



### **Analysis for purpose column**

The bar chart shows that loan with "debt\_consolidation" category likely to get defaulted



### Analysis for issue\_d column

In the chart we can see that Dec-11 is the issue month maximum default loans belong to. Lets see the trend of the count based on the Month



#### **Extracted Month from issue\_d column**

This chart shows that loans which are issued in Dec are higher when compared to other months



### **Extracted Year from issue\_d column**

In the chart we could see that count of defaulters have increased over the years.



#### **Distribution of Loan Amount**

In the chart we can could see that density is at from 900 to 25000. So defaults are more at this range



## **Analysis for issue\_d column**

In the chart we could see that count of defaulters have increased over the years.



#### **Distribution of Annual Income**

Trend shows that majority of the defaulters have Annual income < 100000



#### **Distribution of Statewise**

This will give us an idea that majority of the applicants come from CA sate



## Segmented Univariate Analysis

### Loan Status percentage w.r.t Loan Purpose

We can see that "small\_business" has maximum "Charged Off". Which should have major focus while giving loans



## Loan Status percentage w.r.t Loan Term

This shows that loan with 60 terms have maximum "Charged Off"



## Loan Status percentage w.r.t State of the Applicant

- All Applicants from states "IA"/"IN"/"ME", "Fully Paid"
- Maximum no of "Charged Off" is from "NE"



## **Bivariate Analysis**

### Impact of Loan Amount on Annual Income



## Impact of dti on Loan Amount



## Impact of Number of derogatory public records on Loan Amount



## **Conclusion**

- 1. Applicants who is either in Rented House or with Mortgage are like to default. So we can provide the loan with higher rate for these kind of Applicants
- 2. Small Business Applicants have to be more scrutinized
- 3. Loan Defaults have been increasing over the years from 2007 2011
- 4. Loans with Higher interest Rates can be provided for the states which have higher default rates