A Book of Abstract Algebra (2nd Edition)

Chapter 30, Problem 5EF

Bookmark

Show all steps: ON

Problem

By de Moivre's theorem,

$$\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$

is a complex seventh root of unity. Since

$$x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$

 ω is a root of $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.

Prove that $2\pi/7$ is not a constructible angle.

Step-by-step solution

Step 1 of 3

Here, objective is to prove that $\frac{2\pi}{7}$ is a constructible angle.

Comment

Step 2 of 3

An angle $\frac{2\pi}{N}$ is constructible if and only if *N* is either a power of two or product of power of two and a set of distinct Fermat primes.

Fermat prime:

It is also a prime number, which is of the form $2^m + 1$ Where $m = 2^n$; n is integer

Comment

Step 3 of 3

To verify $\frac{2\pi}{7}$ is constructible or not:

$$\frac{2\pi}{N} = \frac{2\pi}{7}$$

$$N = 7$$

7 is not a Fermat prime.

Since 7 cannot be written in the form of $2^{2^n} + 1$

Therefore, $\frac{2\pi}{7}$ is not a constructible angle,

Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Honor Shield

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy