Singular Value Analysis of Linear-Quadratic Systems

Robert Stengel
Optimal Control and Estimation MAE 546
Princeton University, 2015

- Multivariable Nyquist Stability Criterion
- Matrix Norms and Singular Value Analysis
- Frequency domain measures of robustness
 - Stability Margins of Multivariable Linear-Quadratic Regulators

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/MAE546.html
http://www.princeton.edu/~stengel/OptConEst.html

1

Scalar Transfer Function and Return Difference Function

 Unit feedback control law

 Block diagram algebra

$$y(s) = A(s) [y_C(s) - y(s)]$$

$$[1 + A(s)]y(s) = A(s)y_C(s)$$

$$\frac{y(s)}{y_C(s)} = \frac{A(s)}{1 + A(s)} = A(s)[1 + A(s)]^{-1}$$

A(s): Transfer Function

 $\lceil 1 + A(s) \rceil$: **Return Difference Function**

Relationship Between SISO Open- and ClosedLoop Characteristic Polynomials

$$\frac{y(s)}{y_C(s)} = \frac{kn(s)/\Delta_{OL}(s)}{\left[1 + kn(s)/\Delta_{OL}(s)\right]} = \frac{kn(s)}{\Delta_{OL}(s)\left[1 + kn(s)/\Delta_{OL}(s)\right]}$$
$$= \frac{kn(s)}{\left[\Delta_{OL}(s) + kn(s)\right]} = \frac{kn(s)}{\Delta_{CL}(s)}$$

 Closed-loop polynomial is open-loop polynomial multiplied by return difference function

$$\Delta_{CL}(s) = \Delta_{OL}(s) [1 + A(s)]$$

3

Return Difference Function Matrix for the Multivariable LQ Regulator

Open-loop system

$$s\Delta \mathbf{x}(s) = \mathbf{F}\Delta \mathbf{x}(s) + \mathbf{G}\Delta \mathbf{u}(s)$$
$$(s\mathbf{I} - \mathbf{F})\Delta \mathbf{x}(s) = \mathbf{G}\Delta \mathbf{u}(s)$$
$$\Delta \mathbf{x}(s) = (s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G}\Delta \mathbf{u}(s)$$

Linear-quadratic feedback control law

$$\Delta \mathbf{u}(s) = -\mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{P}\Delta\mathbf{x}(s) \triangleq -\mathbf{C}\Delta\mathbf{x}(s)$$
$$= -\mathbf{C}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G}\Delta\mathbf{u}(s) \triangleq -\mathbf{A}(s)\Delta\mathbf{u}(s)$$

Multivariable LQ Regulator Portrayed as a Unit-Feedback System

5

Broken-Loop Analysis of Unit-Feedback Representation of LQ Regulator

Cut the loop as shown

Analyze signal flow from $\delta(s)$ to $\delta(s)$

$$\delta(s) = \left[\mathbf{u}_{C}(s) - \mathbf{A}(s)\delta(s)\right]$$
$$\left[\mathbf{I}_{m} + \mathbf{A}(s)\right]\delta(s) = \mathbf{u}_{C}(s)$$
$$\delta(s) = \left[\mathbf{I}_{m} + \mathbf{A}(s)\right]^{-1}\mathbf{u}_{C}(s)$$

$$-\mathbf{u}(s) = \mathbf{A}(s)\delta(s) = \mathbf{A}(s)[\mathbf{I}_m + \mathbf{A}(s)]^{-1}\mathbf{u}_C(s)$$

Analogy to SISO closed-loop transfer function

Broken-Loop Analysis of Unit-Feedback Representation of LQ Regulator

Cut the loop as shown

Analyze signal flow from -u(s) to -u(s)

$$\mathbf{A}(s) = \mathbf{C}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$
$$-\mathbf{u}(s) = \mathbf{A}(s)\mathbf{\delta}(s) = \mathbf{A}(s)[\mathbf{u}_C(s) + \mathbf{u}(s)]$$

$$-\left[\mathbf{I}_{m} + \mathbf{A}(s)\right]\mathbf{u}(s) = \mathbf{A}(s)\mathbf{u}_{C}(s)$$
$$-\mathbf{u}(s) = \left[\mathbf{I}_{m} + \mathbf{A}(s)\right]^{-1}\mathbf{A}(s)\mathbf{u}_{C}(s)$$

7

Closed-Loop Transfer Function Matrix is Commutative

2nd-order example

$$\mathbf{A}[\mathbf{I} + \mathbf{A}]^{-1} = [\mathbf{I} + \mathbf{A}]^{-1} \mathbf{A}$$

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} a_1 + 1 & a_2 \\ a_3 & a_4 + 1 \end{bmatrix}^{-1} = \begin{bmatrix} a_1 + 1 & a_2 \\ a_3 & a_4 + 1 \end{bmatrix}^{-1} \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$$

$$= \begin{bmatrix} (a_1 a_4 - a_2 a_3 + a_1) & 1 \\ a_3 & (a_1 a_4 - a_2 a_3 + a_4) \end{bmatrix} / \det(\mathbf{I}_2 + \mathbf{A})$$

8

Relationship Between Multi-Input/Multi-Output (MIMO) Open- and Closed-Loop Characteristic Polynomials

$$\left| \mathbf{I}_{m} + \mathbf{A}(s) \right| = \left| \mathbf{I}_{m} + \mathbf{C}(s\mathbf{I}_{n} - \mathbf{F})^{-1} \mathbf{G} \right|$$
$$= \left| \mathbf{I}_{m} + \frac{\mathbf{C}Adj(s\mathbf{I}_{n} - \mathbf{F})\mathbf{G}}{\Delta_{\mathbf{OL}}(s)} \right|$$

$$\left| \Delta_{\mathbf{OL}}(s) \right| \mathbf{I}_m + \frac{\mathbf{C}Adj(s\mathbf{I}_n - \mathbf{F})\mathbf{G}}{\Delta_{\mathbf{OL}}(s)} \right| = \Delta_{\mathbf{OL}}(s) |\mathbf{I}_m + \mathbf{A}(s)| = \Delta_{\mathbf{CL}}(s) = 0$$

Closed-loop polynomial is open-loop polynomial multiplied by determinant of return difference function matrix

9

Multivariable Nyquist Stability Criterion

Ratio of Closed- to Open-Loop Characteristic Polynomials Tested in Nyquist Stability Criterion

Scalar Control

$$\frac{\Delta_{CL}(s)}{\Delta_{OL}(s)} = \left[1 + A(s)\right] = \left[1 + \frac{\mathbf{C}Adj(s\mathbf{I}_n - \mathbf{F})\mathbf{G}}{\Delta_{\mathbf{OL}}(s)}\right]$$
$$= a(s) + jb(s) \quad Scalar$$

Multivariate Control

$$\frac{\Delta_{\mathbf{CL}}(s)}{\Delta_{\mathbf{OL}}(s)} = \left| \mathbf{I}_m + \mathbf{A}(s) \right| = \left| \mathbf{I}_m + \frac{\mathbf{C}Adj(s\mathbf{I}_n - \mathbf{F})\mathbf{G}}{\Delta_{\mathbf{OL}}(s)} \right|$$
$$= a(s) + jb(s) \quad Scalar$$

Multivariable Nyquist Stability Criterion

$$\frac{\Delta_{\text{CL}}(s)}{\Delta_{\text{OL}}(s)} = |\mathbf{I}_m + \mathbf{A}(s)| \triangleq a(s) + jb(s) \quad Scalar$$

Same stability criteria for encirclements of –1 point apply for scalar and vector control

11

Limits of Multivariable Nyquist Stability Criterion

$$\frac{\Delta_{\mathbf{CL}}(s)}{\Delta_{\mathbf{OL}}(s)} = |\mathbf{I}_m + \mathbf{A}(s)| \triangleq a(s) + jb(s) \quad \mathbf{Scalar}$$

- Multivariable Nyquist Stability Criterion
 - Indicates stability of the <u>nominal system</u>
 - In the II + A(s)I plane, Nyquist plot depicts the ratio of closed-to-open-loop characteristic polynomials
- However, determinant is not a good indicator for the "size" of a matrix
 - Little can be said about robustness
 - Therefore, analogies to gain and phase margins are not readily identified

13

Determinant is Not a Reliable Measure of Matrix "Size"

$$\mathbf{A}_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}; \quad |\mathbf{A}_{1}| = 2$$

$$\mathbf{A}_{2} = \begin{bmatrix} 1 & 100 \\ 0 & 2 \end{bmatrix}; \quad |\mathbf{A}_{2}| = 2$$

$$\mathbf{A}_{3} = \begin{bmatrix} 1 & 100 \\ 0.02 & 2 \end{bmatrix}; \quad |\mathbf{A}_{3}| = 0$$

- · Qualitatively,
 - $-A_1$ and A_2 have the same determinant
 - A₂ and A₃ are about the same size

Matrix Norms and Singular Value Analysis

15

Vector Norms

Euclidean norm

$$\|\mathbf{x}\| = \left(\mathbf{x}^T \mathbf{x}\right)^{1/2}$$

Weighted Euclidean norm

$$\|\mathbf{D}\mathbf{x}\| = \left(\mathbf{x}^T \mathbf{D}^T \mathbf{D}\mathbf{x}\right)^{1/2}$$

For fixed value of IIxII,
IIDxII provides a measure of the "size" of D

Spectral Norm (or Matrix Norm)

Spectral norm has more than one "size"

$$\|\mathbf{D}\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{D}\mathbf{x}\| \text{ is real-valued}$$
$$\dim(\mathbf{x}) = \dim(\mathbf{D}\mathbf{x}) = n \times 1; \quad \dim(\mathbf{D}) = n \times n$$

Also called Induced Euclidean norm If D and x are complex

$$\|\mathbf{x}\| = (\mathbf{x}^H \mathbf{x})^{1/2}$$

$$\|\mathbf{D}\mathbf{x}\| = (\mathbf{x}^H \mathbf{D}^H \mathbf{D}\mathbf{x})^{1/2}$$
where
$$\mathbf{x}^H \triangleq \text{complex conjugate transpose of } \mathbf{x}$$

$$= \text{Hermitian transpose of } \mathbf{x}$$

17

Spectral Norm (or Matrix Norm)

Spectral norm of D

$$\|\mathbf{D}\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{D}\mathbf{x}\|$$

 D^TD or D^HD has n eigenvalues Eigenvalues are all real, as D^TD is symmetric and D^HD is Hermitian

Square roots of eigenvalues are called singular values

Singular Values of D

Singular values of D

$$\sigma_i(\mathbf{D}) = \sqrt{\lambda_i(\mathbf{D}^T\mathbf{D})}, \quad i = 1, n$$

Maximum singular value of D

$$\sigma_{\max}(\mathbf{D}) \triangleq \overline{\sigma}(\mathbf{D}) \triangleq \|\mathbf{D}\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{D}\mathbf{x}\|$$

Minimum singular value of D

$$\sigma_{\min}(\mathbf{D}) \triangleq \underline{\sigma}(\mathbf{D}) = 1/\|\mathbf{D}^{-1}\| = \min_{\|\mathbf{x}\|=1}\|\mathbf{D}\mathbf{x}\|$$

19

Comparison of Determinants and Singular Values

$$\mathbf{A}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}; \quad |\mathbf{A}_1| = 2$$

$$\mathbf{A}_2 = \begin{bmatrix} 1 & 100 \\ 0 & 2 \end{bmatrix}; \quad |\mathbf{A}_2| = 2$$

$$\mathbf{A}_3 = \begin{bmatrix} 1 & 100 \\ 0.02 & 2 \end{bmatrix}; \quad |\mathbf{A}_3| = 0$$
• Singular values provide a be portrayal of matrix "size", b
• "Size" is multi-dimensional
• Singular values describe magnitude along axes of a redimensional ellipsoid
• e.g.

- Singular values provide a better portrayal of matrix "size", but ...
- magnitude along axes of a multidimensional ellipsoid

$$\mathbf{A}_1: \ \overline{\sigma}(\mathbf{A}_1) = 2; \ \underline{\sigma}(\mathbf{A}_1) = 1$$

$$\mathbf{A}_2$$
: $\overline{\sigma}(\mathbf{A}_2) = 100.025$; $\underline{\sigma}(\mathbf{A}_2) = 0.02$

$$\mathbf{A}_3: \ \overline{\sigma}(\mathbf{A}_3) = 100.025; \ \underline{\sigma}(\mathbf{A}_3) = 0$$

20

Stability Margins of Multivariable LQ Regulators

21

Bode Gain Criterion and the Closed-Loop Transfer Function

- Bode magnitude criterion for scalar open-loop transfer function
 - High gain at low input frequency
 - Low gain at high input frequency
- Behavior of unit-gain closed-loop transfer function with high and low open-loop amplitude ratio

Additive Variations in A(s)

$$\mathbf{A}_{o}(s) = \mathbf{C}_{o}(s\mathbf{I}_{n} - \mathbf{F}_{o})^{-1}\mathbf{G}_{o} \qquad \mathbf{A}(s) = \mathbf{A}_{o}(s) + \Delta\mathbf{A}(s)$$

$$\mathbf{A}(s) = \mathbf{A}_o(s) + \Delta \mathbf{A}(s)$$

Connections to LQ open-loop transfer matrix

Gain Change

$$\Delta \mathbf{A}_{C}(s) = \Delta \mathbf{C}(s\mathbf{I}_{n} - \mathbf{F}_{o})^{-1}\mathbf{G}_{o}$$

Control Effect Change

$$\Delta \mathbf{A}_{G}(s) = \mathbf{C}_{o}(s\mathbf{I}_{n} - \mathbf{F}_{o})^{-1} \Delta \mathbf{G}$$

Stability Matrix Change

$$\Delta \mathbf{A}_{F}(s) = \mathbf{C}_{o} \left\{ \left[s \mathbf{I}_{n} - \left(\mathbf{F}_{o} + \Delta \mathbf{F} \right) \right]^{-1} - \left[s \mathbf{I}_{n} - \left(\mathbf{F}_{o} \right) \right]^{-1} \right\} \mathbf{G}_{o}$$

Conservative **Bounds for Additive** Variations in A(s)

Assume original system is stable

$$\mathbf{A}_{o}(s) \left[\mathbf{I}_{m} + \mathbf{A}_{o}(s) \right]^{-1}$$

"Worst-case" additive variation does not de-stabilize if

$$\overline{\sigma} \left[\Delta \mathbf{A} (j\omega) \right] < \underline{\sigma} \left[\mathbf{I}_m + \mathbf{A}_o (j\omega) \right], \quad 0 < \omega < \infty$$

Sandell, 1979

"Bode" Plot of Singular Values

Singular values have magnitude but not phase

Stability guaranteed for changing $\bar{\sigma}[\Delta \mathbf{A}(j\omega)]$ up to the point that it touches $\underline{\sigma}[\mathbf{I}_m + \mathbf{A}_o(j\omega)]$

25

Multiplicative Variations in A(s)

$$\mathbf{A}_{o}(s) = \mathbf{C}_{o}(s\mathbf{I}_{n} - \mathbf{F}_{o})^{-1}\mathbf{G}_{o}$$

$$\mathbf{A}(s) = \mathbf{L}_{PRE}(s)\mathbf{A}_{o}(s) \text{ or } \mathbf{A}(s) = \mathbf{A}_{o}(s)\mathbf{L}_{POST}(s)$$

Very complex relationship to system equations; suppose

$$\mathbf{L}(s) = \mathbf{I}_3 + \begin{bmatrix} l_{11}(s) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{I}_3 + \Delta \mathbf{L}(s)$$

 $\Delta \mathbf{L}(s)$ affects first row of $\mathbf{A}_{o}(s)$ for pre-multiplication

 $\Delta \mathbf{L}(s)$ affects first column of $\mathbf{A}_{o}(s)$ for post-multiplication

Bounds on Multiplicative Variations in A(s)

$$\mathbf{A}_o(s) = \mathbf{C}_o(s\mathbf{I}_n - \mathbf{F}_o)^{-1}\mathbf{G}_o$$

$$\bar{\sigma}[\Delta \mathbf{L}(j\omega)] < \underline{\sigma}[\mathbf{I}_m + \mathbf{A}_o^{-1}(j\omega)], \quad 0 < \omega < \infty$$

Desirable "Bode Gain Criterion" Attributes

At low frequency

$$\underline{\sigma}[\mathbf{I}_m + \mathbf{A}(j\omega)] > \sigma_{\min}(\omega) > 1$$

At high frequency

$$\overline{\sigma}\left\{\left[\mathbf{I}_{m}+\mathbf{A}^{-1}(j\omega)\right]^{-1}\right\}=\frac{1}{\underline{\sigma}\left[\mathbf{I}_{m}+\mathbf{A}^{-1}(j\omega)\right]}<\sigma_{\max}(\omega)$$

Desirable "Bode Gain Criterion" Attributes

29

Next Time: Probability and Statistics

Supplemental Material

31

Sensitivity and Complementary Sensitivity Matrices of A(s)

Sensitivity matrix

$$\mathbf{S}(s) \triangleq \left[\mathbf{I}_m + \mathbf{A}(s)\right]^{-1}$$

Inverse return difference matrix

$$\left[\mathbf{I}_m + \mathbf{A}^{-1}(s)\right]$$

Complementary sensitivity matrix

$$\mathbf{T}(s) \triangleq \mathbf{A}(s) \left[\mathbf{I}_m + \mathbf{A}(s) \right]^{-1}$$

Sensitivity and Complementary Sensitivity Matrices of A(s)

Small $S(j\omega)$ implies low sensitivity to parameter variations as a function of frequency

$$\mathbf{S}(j\omega) \triangleq \left[\mathbf{I}_m + \mathbf{A}(j\omega)\right]^{-1}$$

Small $T(j\omega)$ implies low noise response as a function of frequency

$$\mathbf{T}(j\omega) \triangleq \mathbf{A}(j\omega) \left[\mathbf{I}_m + \mathbf{A}(j\omega) \right]^{-1}$$

33

Sensitivity and Complementary Sensitivity Matrices of A(s)

But

$$\mathbf{S}(j\omega) + \mathbf{T}(j\omega) \triangleq \left[\mathbf{I}_m + \mathbf{A}(j\omega)\right]^{-1} + \mathbf{A}(j\omega)\left[\mathbf{I}_m + \mathbf{A}(j\omega)\right]^{-1}$$
$$= \left[\mathbf{I}_m + \mathbf{A}(j\omega)\right]\left[\mathbf{I}_m + \mathbf{A}(j\omega)\right]^{-1} = \mathbf{I}_m$$

 Therefore, there is a tradeoff between robustness and noise suppression

Alternative Criteria for Multiplicative Variations in A(s)

Definitions

 $\Delta_{OL}(s)$: Open-loop characteristic polynomial of original system

 $\tilde{\Delta}_{OL}(s)$: Perturbed characteristic polynomial of original system

 $\Delta_{CL}(s)$: Stable closed-loop characteristic polynomial of original system

$$\begin{split} \left\{ \tilde{\Delta}_{OL} \left(j \omega \right) = 0 \right\} & \text{ implies that } \Delta_{OL} \left(j \omega \right) = 0 \\ & \text{ for any } \omega \text{ on } \Omega_R \text{ (i.e., vertical component of "D contour")} \\ \alpha = \underline{\sigma} \left[\mathbf{I}_m + \mathbf{A}_o \left(j \omega \right) \right] \text{ for any } \omega \text{ on } \Omega_R \end{split}$$

Lehtomaki, Sandell, Athans, 1981

35

Alternative Criteria for Multiplicative Variations in A(s)

Perturbed closed-loop system is stable if

$$\overline{\sigma} \left[\mathbf{L}^{-1} (j\omega) - \mathbf{I}_{m} \right] < \alpha = \underline{\sigma} \left[\mathbf{I}_{m} + \mathbf{A}_{o} (j\omega) \right]$$

And at least one of the following is satisfied:

- $\alpha < 1$
- $\mathbf{L}^{H}(j\omega) + \mathbf{L}(j\omega) \geq 0$
- $4(\alpha^2 1)\underline{\sigma}^2[\mathbf{L}(j\omega) \mathbf{I}_m] > \alpha^2\overline{\sigma}^2[\mathbf{L}(j\omega) + \mathbf{L}^H(j\omega) 2\mathbf{I}_m]$

Guaranteed Gain and Phase Margins

Guaranteed Gain Margin

$$K = \frac{1}{1 \pm \alpha_o}$$

· Guaranteed Phase Margin

$$\varphi = \pm \cos \left(1 - \frac{\alpha_o^2}{2} \right)$$

In each of *m* control loops

37

Guaranteed Gain and Phase Margins

and
$$\mathbf{A}_{o}^{H}(j\omega) + \mathbf{A}_{o}(j\omega) \ge 0$$

· Guaranteed Gain Margin · Guaranteed Phase Margin

$$K = (0, \infty)$$

$$\varphi = \pm 90^{\circ}$$

In each of *m* control loops

Control Design for Increased Gain Margin

- Obtain lowest possible LQ control gain matrix, C, by choosing large R
 - Gain margin is 1/2 of these gains
 - Speed of response (e.g., bandwidth) may be too slow
- Increase gains to restore desired bandwidth
- Control system is sub-optimal but has higher gain margin than LQ system designed for same bandwidth

39

Control Design for Increased Gain Margin

High R, low-gain optimal controller

$$\mathbf{R} \triangleq \rho^{2} \mathbf{R}_{o}$$

$$\mathbf{F}^{T} \mathbf{P} + \mathbf{P} \mathbf{F} + \mathbf{Q} - \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P} = \mathbf{0}$$

$$\mathbf{C}_{opt} = \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P}$$

 Increased gain to restore bandwidth

$$\mathbf{C}_{sub-opt} = \mathbf{R}_o^{-1} \mathbf{G}^T \mathbf{P} = \rho^2 \mathbf{C}_{opt}$$

 Increased gain margin for high-bandwidth controller

$$K_{sub-opt} = \left(\frac{1}{2\rho^2}, \infty\right)$$

Example: Control Design for Increased Robustness

(Ray, Stengel, 1991)

Open-loop longitudinal eigenvalues

$$\lambda_{1-4} = -0.1 \pm 0.057 j, -5.15, \frac{3.35}{2}$$

- Three controllers
 - a) Q = diag(1 1 1 0) and R = 1
 - **b)** R = 1000
 - c) Case (b) with gains multiplied by 5

TABLE I Parameters for Forward-Swept-Wing Demonstrator Aircraft Example				
Case (a)	$C = \begin{bmatrix} 0.1714 \\ 0.984 \end{bmatrix}$	130.26 -11.387	33.165 -2.968	$ \begin{array}{c} 0.364 \\ -1.133 \end{array} \hspace{0.2cm} Q = \operatorname{diag}(1,1,1,0) \hspace{0.2cm} R = \operatorname{diag}(1,1) \hspace{0.2cm} \lambda = -35.0, -5.14, -3.32, -0.0183 $
Case (b)	$C_{0} = \begin{bmatrix} 0.0270 \\ 0.0107 \end{bmatrix}$	82.659 -62.623	20.927 -16.203	$ \begin{array}{c} -0.0638 \\ -1.902 \end{array} \bigg] \textit{Q} = \mathrm{diag}(1,1,1,0) \textit{R} = 1000\mathrm{diag}(1,1) \lambda = -5.15, -3.36, -1.09, -0.0186 \\ \end{array}$
Case (c)	$C = \begin{bmatrix} 0.1349 \\ 0.0535 \end{bmatrix}$	413.294 -313.112	104.633 - 81.015	$\begin{bmatrix} -0.3191 \\ -9.509 \end{bmatrix} \lambda = -32.21, -5.15, -3.44, -0.01$

41

Root Loci for Three Cases

Transmission zeros

 $z_{1,2} = \begin{bmatrix} 0 & -1.2 \end{bmatrix}$

- 2 roots to transmission zeros
- 2 roots to -∞, multiple Butterworth spacing

Loop Transfer Function Frequency Response with Elevator Control

Loop Transfer Function Nyquist Plots with Elevator Control

Loop Transfer Function Nichols Charts with Elevator Control

Probability of Instability Describes Robustness to Parameter Uncertainty

(Ray, Stengel, 1991)

- Distribution of closed-loop roots with
 - Gaussian uncertainty in 10 parameters
 - Uniform uncertainty in velocity and air density
- 25,000 Monte Carlo evaluations

- Probability of instability
- a) Pr = 0.072
- b) Pr = 0.021
- c) Pr = 0.0076

