SDM Final Homework

1.

(B) After filling the illegal edges and fitting the network with the new constraints we get the following graph.

(D) output - 0.838983050847458

2.

(a)

RED data

```
> print(dim(red))
[1] 1599 12
> print(dim(white))
[1] 4898 12
         > head(red)
fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
            fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
1 7.4 0.70 0.00 1.9 0.076
2 7.8 0.88 0.00 2.6 0.098
3 7.8 0.76 0.04 2.3 0.092
4 11.2 0.28 0.56 1.9 0.075
5 7.4 0.70 0.00 1.9 0.075
5 7.4 0.66 0.00 1.9 0.075
6 7.4 0.66 0.00 1.9 0.075
6 7.4 0.67 0.00 1.9 0.005
1.8 0.075
6 7.4 0.67 0.00 1.9 0.005
1.8 0.075
6 7.4 0.68 0.00 1.9 0.075
6 7.4 0.69 0.00 1.9 0.075
6 7.4 0.60 0.00 1.9 0.075
6 7.4 0.60 0.00 1.9 0.075
6 7.4 0.60 0.00 1.9 0.075
6 7.4 0.60 0.00 1.9 0.075
6 7.4 0.60 0.00 1.9 0.005
6 7.4 0.60 0.00 1.9 0.005
6 7.4 0.60 0.00 0.00 0.005
6 7.4 0.006 0.00 0.005
6 9.4 5
6 11 34 0.9978 3.51 0.56 9.4 5
6 11 34 0.9978 3.51 0.56 9.4 5
6 11 34 0.9978 3.51 0.56 9.4 5
```


WHITE DA	ΔΤΔ				
> plot(white)	11/1				
> head(white)					
	volatile.acidity	citric acid resi	dual sugar	ch] orides	
1 7.0	0.27	0.36	20.7	0.045	
2 6.3	0.30	0.34	1.6	0.049	
3 8.1	0.28	0.40	6.9	0.050	
4 7.2	0.23	0.32	8.5	0.058	
5 7.2	0.23	0.32	8.5	0.058	
6 8.1	0.28	0.40	6.9	0.050	
free.sulfur.di	oxide total.sulfu	r.dioxide densit	y pH sulp	hates alcohol	quality
1	45	170 1.001	0 3.00	0.45 8.8	6
2	14	132 0.994	0 3.30	0.49 9.5	6
3	30	97 0.995	1 3.26	0.44 10.1	6
4	47	186 0.995	6 3.19	0.40 9.9	6
5	47	186 0.995		0.40 9.9	
6	30	97 0.995	1 3.26	0.44 10.1	6
<pre>> summary(white)</pre>					
fixed.acidity	volatile.acidit		residual		
Min. : 3.800	Min. :0.0800	Min. :0.0000		0.600	
1st Qu.: 6.300	1st Qu.:0.2100				
Median : 6.800	Median :0.2600				
Mean : 6.855	Mean :0.2782			6.391	
3rd Qu.: 7.300 Max. :14.200	3rd Qu.:0.3200 Max. :1.1000	3rd Qu.:0.3900 Max. :1.6600		9.900 65.800	
chlorides		Max. :1.6600 oxide total.sulf		density	
Min. :0.00900				Min. :0.987	1
1st Qu.:0.03600				1st Ou.:0.991	
Median :0.04300				Median :0.993	
Mean :0.04577				Mean :0.994	
3rd Ou.:0.05000				3rd Qu.:0.996	
Max. :0.34600				Max. :1.039	
pH	sulphates	alcohol	quality		
Min. :2.720	Min. :0.2200	Min. : 8.00	Min. :3.	999	
1st Qu.:3.090	1st Qu.:0.4100	1st Qu.: 9.50	1st Qu.:5.	999	
Median :3.180	Median :0.4700	Median :10.40	Median :6.	999	
Mean :3.188	Mean :0.4898	Mean :10.51	Mean :5.		
3rd Qu.:3.280	3rd Qu.:0.5500	3rd Qu.:11.40	3rd Qu.:6.	300	
Max. :3.820	Max. :1.0800	Max. :14.20	Max. :9.	999	
<pre>> plot(white)</pre>					
>					

(b) Predictions

(C)

PC1

The silhouette plot reveals that the highest average distance occurs at 2, which aligns with the presence of two distinct types of wines in the dataset. Consequently, we can proceed with clustering the dataset using the k-means algorithm, specifying k as 2.

Silhouette average width plot

Kmeans with K = 2

(F) Based on the scree plot, it is evident that the first four principal components account for approximately 80% of the variation in the data. Therefore, we can utilize these four principal components to assess the performance of the k-means algorithm.

Kmeans with K = 2

(g)

The observations from both E and F indicate that there is minimal disparity in the data. In both cases, the clusters appear almost identical, making it challenging to distinguish between them. This similarity arises because PCA retains sufficient information that enables clearer differentiation between the clusters.

3.

(A)

Mapping plot

(B)

Mapping plot

4.

```
> head(titanic)
                                                                             Name Sex Age Siblings.Spouses.Aboard Parents.Children.Aboard
Mr. Owen Harris Braund male 22 1 0
   Survived Pclass
                            1 Mrs. John Bradley (Florence Briggs Thayer) Cumings female 38
                                                                                                                                                                                                                                    0 71.2833
3
                                                                                   Miss. Laina Heikkinen female 26
                                                                                                                                                                                                                                    0 7.9250
               1
                                            Mrs. Jacques Heath (Lily May Peel) Futrelle female 35
                                                                                                                                                                                                                                    0 53.1000
               1
5
                0
                                                                                 Mr. William Henry Allen male 35
                                                                                                                                                                                        0
                                                                                                                                                                                                                                    0 8.0500
6
                                                                                               Mr. James Moran male 27
                                                                                                                                                                                                                                    0 8.4583
> prop.table(table(titanic$Sex, titanic$Age, titanic$Survived), margin = c(1, 2))
                                                               0.67
                                                   0.00000000
    male 0.00000000 0.00000000
                                                             0.000000000 0.000000000 0.40000000 0.75000000 0.00000000 0.50000000 1.00000000 0.00000000 0.66666667
   19 20 20.5 21 22 23 23.5 24 24.5 25 26 27 female 0.1111111 0.66666667 0.5833333 0.12500000 0.16666667 0.1111111 0.6000000 0.3333333 0.14285714
    male 0.87500000 0.85000000 1.00000000 0.95454545 0.95652174 0.89473684 1.00000000 0.87500000 1.00000000 0.77777778 0.80000000 0.63157895
                                                                                    30 30.5 31 32 32.5
    \verb|male| = 0.92307692| 1.00000000| 0.66666667| 0.95454545| 1.00000000| 0.70000000| 0.52941176| 1.00000000| 1.00000000| 0.83333333| 1.00000000| 0.75000000| 0.75000000| 0.75000000| 0.750000000| 0.75000000| 0.75000000| 0.75000000| 0.75000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.75000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.75000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.75000000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.750000000| 0.7500000000| 0.7500000000| 0.750000000| 0.750000000| 0.7500000000| 0.75000000000| 0.75000000

      female
      36
      36.5
      37
      38
      39
      40
      40.5
      41
      42
      43
      44
      45

      female
      0.0000000
      1.0000000
      0.1666667
      0.33333333
      0.33333333
      0.40000000
      0.0000000
      0.5000000
      0.33333333
      0.50000000

      male
      0.75000000
      1.00000000
      0.72727273
      0.83333333
      0.9166667
      0.8888889
      1.00000000
      0.75000000
      1.00000000
      0.75000000
      0.83333333
      0.62500000

                                                                                              49 50
                                                                                 48
                   52
                                                                                                                                                                                  1.00000000 1.00000000 1.00000000
    male 1.00000000 0.80000000 0.87500000 0.40000000 0.66666667 0.80000000 0.83333333 0.75000000
                                                                                       60 61
0.000000000
    50 57 58 59 female 0.00000000 1.00000000 0.00000000 0 male 0.66666663 1.00000000 0.000000000 0
                                                                                                                            0.50000000 0.000000000
    male 0.66666667 1.000000000 1.000000000 0.75000000 1.000000000 0.66666667
                                                                                                                                                           70.5
                                                                  71
```

```
1.00000000 0.42857143 0.33333333 1.00000000 1.00000000 0.50000000 0.50000000
 female
                     1.00000000
                             1.00000000 1.00000000 0.60000000 0.25000000 1.00000000 0.50000000 0.00000000 1.00000000 0.33333333
 male 1.00000000 1.00000000
                           10
                                   11
                                           12
                                                   13
                                                           14
                                                                 14.5
                                                                           15
                                                                                   16
 male 0.50000000 0.50000000 0.00000000 0.33333333 1.000000000
                                                    0.00000000
                                                                     0.00000000 0.07692308 0.10000000 0.10526316
                                                         23.5
0.88888889
                         20.5
                                   21
                                                  23
                                                                         24.5
                             0.41666667 0.87500000 0.83333333
                                                                            0.50000000 0.66666667 0.85714286
 female 0.88888889 0.33333333
 male 0.12500000 0.15000000 0.00000000 0.04545455 0.04347826 0.10526316 0.00000000 0.12500000 0.00000000 0.22222222 0.20000000 0.36842105
                  female 0.72727273
 male 0.07692308 0.00000000 0.33333333 0.04545455 0.000000000 0.30000000 0.47058824 0.00000000 0.00000000 0.16666667 0.00000000 0.25000000
                                                        40.5 41 42 43 44 45
0.60000000 1.00000000 0.50000000 0.66666667 0.50000000
 female 1.00000000
                     0.00000000 0.83333333 0.66666667 0.66666667
 male 0.25000000 0.00000000 0.27272727 0.16666667 0.08333333 0.11111111 0.00000000 0.00000000 0.25000000 0.00000000 0.16666667 0.37500000
                                   48
                                           49
                                                   50
                                                                   52
             male 0,00000000 0.20000000 0.12500000 0.60000000 0.33333333 0.20000000 0.16666667 0.25000000
                                                                             0.00000000 0.00000000 0.00000000
                                                     0.50000000 1.00000000
 female 1.00000000 0.00000000 1.00000000
                                     1.00000000
 > titanic %>% filter(age_group == 1) %>% summarize(Child_Prob_Survived = mean(Survived))
        0.5443038
>> titanic %>% filter(age_group == 0) %>% summarize(Adult_Prob_Survived = mean(Survived))
 Adult_Prob_Survived
       0.3700495
> titanic %>% filter(age_group == 1, Sex == "female") %>% summarize(Female_Child_Prob_Survived = mean(Survived))
 Female_Child_Prob_Survived
> titanic %>% filter(age_group == 1, Sex == "male") %>% summarize(Male_Child_Prob_Survived = mean(Survived))
 Male_Child_Prob_Survived
           0.5609756
> prop.table(g, margin =1)
          female
                          male
   0 0.1486239 0.8513761
   1 0.6812865 0.3187135
> prop.table(age, margin =1)
                                  1
   0 0.93394495 0.06605505
   1 0.87426901 0.12573099
> class <- table(titanic$Survived, titanic$Pclass)</pre>
> prop.table(class, margin =1)
                 1
   0 0.1467890 0.1779817 0.6752294
```

1 0.3976608 0.2543860 0.3479532

5.

6.

> dim(statedata) [1] 50 8

> summary(statedata)

> Summary(Stateda	ta)						
Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
Min. :-0.8694	Min. :-2.1772	Min. :-1.0992	Min. :-2.1742	Min. :-1.6194	Min. :-1.89526	Min. :-2.0096	Min. :-0.8167
1st Qu.:-0.7094	1st Qu.:-0.7210	1st Qu.:-0.8941	1st Qu.:-0.5670	1st Qu.:-0.8203	1st Qu.:-0.62622	1st Qu.:-0.7351	1st Qu.:-0.3955
Median :-0.3154	Median : 0.1354	Median :-0.3609	Median :-0.1517	Median :-0.1430	Median : 0.01758	Median : 0.1931	Median :-0.1929
Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.00000	Mean : 0.0000	Mean : 0.0000
3rd Qu.: 0.1617	3rd Qu.: 0.6147	3rd Qu.: 0.6644	3rd Qu.: 0.7553	3rd Qu.: 0.8931	3rd Qu.: 0.74805	3rd Qu.: 0.6789	3rd Qu.: 0.1222
Max. : 3.7970	Max. : 3.0582	Max. : 2.6742	Max. : 2.0273	Max. : 2.0918	Max. : 1.75709	Max. : 1.6071	Max. : 5.8094
>							
> statedata = sca	le(statedata)						
> summary(stateda	ta)						
Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area

2 Summar y (Scaccaaca)							
Population	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
Min. :-0.8694	Min. :-2.1772	Min. :-1.0992	Min. :-2.1742	Min. :-1.6194	Min. :-1.89526	Min. :-2.0096	Min. :-0.8167
1st Qu.:-0.7094	1st Qu.:-0.7210	1st Qu.:-0.8941	1st Qu.:-0.5670	1st Qu.:-0.8203	1st Qu.:-0.62622	1st Qu.:-0.7351	1st Qu.:-0.3955
Median :-0.3154	Median : 0.1354	Median :-0.3609	Median :-0.1517	Median :-0.1430	Median : 0.01758	Median : 0.1931	Median :-0.1929
Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.00000	Mean : 0.0000	Mean : 0.0000
3rd Qu.: 0.1617	3rd Qu.: 0.6147	3rd Qu.: 0.6644	3rd Qu.: 0.7553	3rd Qu.: 0.8931	3rd Qu.: 0.74805	3rd Qu.: 0.6789	3rd Qu.: 0.1222
Max. : 3.7970	Max. : 3.0582	Max. : 2.6742	Max. : 2.0273	Max. : 2.0918	Max. : 1.75709	Max. : 1.6071	Max. : 5.8094

Codes plot

Cluster Dendrogram

d hclust (*, "average")

- $1. \quad 0.530222559638633 \quad 2. \quad 0.291425879300336 \quad 3. \quad 0.37803771005104 \quad 4. \quad 0.321126308804489$
- $5. \quad 0.272373298240413 \quad 6. \quad 0.251923480012512 \quad 7. \quad 0.256732418449407 \quad 8. \quad 0.237350663799007$
- 9. 0.233627900939559

Among the given clustering methods, hierarchical clustering demonstrates the highest average distance, reaching 0.53 when the number of clusters (k) is set to 2. Consequently, we will cut the hierarchical tree at 2 and employ this clustering solution to visualize and draw clusters on the self-organizing map (SOM).

Mapping plot

