Banach-Tarski Paradox

Motivation.

Definition 1.1. Let G be a group acting on a set S. A subset $E \subseteq S$ is said to be G-paradoxical if there are pairwise disjoint subsets $A_1, \ldots, A_n, B_1, \ldots, B_m$ of E and elements $x_1, \ldots, x_n, y_1, \ldots, y_m$ of G such that

$$E = \bigcup_{j=1}^{n} x_j \cdot A_j \qquad E = \bigcup_{j=1}^{m} y_j B_j$$

Remark. The union $A_1 \cup \ldots \cup A_n \cup B_1 \cup \ldots \cup B_m$ need not be all of E. Example?

Theorem 1.2. \mathbb{F}_2 (the free group with two generators) is paradoxical.

Proof. Let a, b denote the generators of \mathbb{F}_2 . For $x \in \{a, b, a^{-1}, b^{-1}\}$, let $W(x) = \{\text{words starting with } x\}$, and denote ε the empty word. Observe that

$$\mathbb{F}_2 = \{\varepsilon\} \cup W(a) \cup W(b) \cup W(a^{-1}) \cup W(b^{-1})$$

Let $w \in \mathbb{F}_2 \setminus W(a)$. Since w does not start with an a, $a^{-1}w$ is in reduced form and $a^{-1}w \in W(a^{-1})$ so that $w \in aW(a^{-1})$. Thus, $\mathbb{F}_2 = W(a) \cup aW(a^{-1})$, and similarly $\mathbb{F}_2 = W(b) \cup bW(b^{-1})$.

Definition 1.3. We say a group G acts on S without non-trivial fixed points if, given $x \in G$ and $s \in S$ such that $x \cdot s = s$ then x = e.

Theorem 1.4. (AoC) Let G be a paradoxical group acting on S without non-trivial fixed points. Then, S is G-paradoxical.

Proof. Let $A_1, \ldots, A_n, B_1, \ldots, B_m$, and $x_1, \ldots, x_n, y_1, \ldots, y_m$ be as in Defn 1.1. Let $T \subset S$ be constructed by containing exactly one element from each G-orbit. By construction,

$$\bigcup\{g\cdot T\,:\,g\in G\}=S$$

holds. Let $x,y\in G$ be such that $x\cdot T\cap y\cdot T\neq\emptyset$. Pick $z\in x\cdot T\cap y\cdot T$ so that there are $s,t\in T$ such that $z=x\cdot s=y\cdot t$ and so $y^{-1}x\cdot s=t$, which reveals that s and t are in the same orbit, so that s=t by construction of T. Hence $y^{-1}x\cdot s=s$ and $y^{-1}x=e$, since G acts without non-trivial fixed points, whence x=y. Therefore, the sets $\{x\cdot T\}_{x\in G}$ disjointly partition S. Put, for $1\leq i\leq n$ and $1\leq j\leq m$

$$\tilde{A}_i = \bigcup \{x \cdot T \, : \, x \in A_i\} \qquad \tilde{B}_j = \bigcup \{x \cdot T \, : \, x \in B_j\}$$

Then the set $\tilde{A}_1, \ldots, \tilde{A}_n, \tilde{B}_1, \ldots, \tilde{B}_m$ are disjoint subsets of S such that

$$\bigcup_{i=1}^{n} x_{i} \cdot \tilde{A}_{i} = \bigcup_{i=1}^{n} \bigcup \{x_{i}x \cdot T : x \in A_{i}\} = \bigcup \{x \cdot T : x \in G\} = S$$

and similarly $\bigcup_{j=1}^{n} y_j \cdot \tilde{B}_j = S$

Remark. If it follows from the two theorems above that if \mathbb{F}_2 acts without non-trivial fixed points on a set S, then S is \mathbb{F}_2 -paradoxical.

Theorem 1.5. There are rotations A and B about lines through the origin in \mathbb{R}^3 such that the subgroup of SO(3) generated by A and B is isomorphic to \mathbb{F}_2 .

Proof. (Sketch) Set

$$A = \begin{pmatrix} \frac{1}{3} & -\frac{2\sqrt{2}}{3} & 0\\ \frac{2\sqrt{2}}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{3} & -\frac{2\sqrt{2}}{3}\\ 0 & \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$$

Compute A^{-1} and B^{-1} . To show that the subgroup generated by these two matrices is free, we must show that any non-empty reduced word in A, A^{-1}, B, B^{-1} cannot act as the identity. Casework...

Remark. SO(N) contains a copy of SO(3) for $N \geq 3$, so that SO(N) contains a subgroup isomorphic to \mathbb{F}_2 for $N \geq 3$.

Definition 1.6. For $N \geq 2$, write S^{N-1} for the **unit sphere** is \mathbb{R}^N .

Theorem 1.7. (Hausdorff paradox; AoC). There is a countable subset C of S^2 such that $S^2 \setminus C$ is SO(3)-paradoxical.

Proof. Let A and B be rotations about the origin that generate the subgroup G of SO(3) that they generate is isomorphic to \mathbb{F}_2 . Each rotation $x \in G \setminus \{e\}$ has two fixed points in S^2 (poles). Construct

$$F := \{ s \in S^2 : s \text{ is a fixed point for some } x \in G \setminus \{e\} \}$$

F is countable since G is. Set $C := \bigcup \{x \cdot F : x \in G\}$ (also countable). Then G acts on $S^2 \setminus C$ without non-trivial fixed points, so by Theorem 1.4, $S^2 \setminus C$ is SO(3)-paradoxical.

Remark. We are one step closer to showing that S^2 is SO(3)-paradoxical.

Definition 1.8. Let G be a group acting on a set S, and let A and B be subsets of S. Then, A and B are said to be G-equidecomposable if there are disjoint partitions $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_n\}$ of A and B, and elements $x_1, \ldots, x_n \in G$ such that $x_j \cdot A_j = B_j$.

Notation. If A and B are G-equidecomposable, we shall write $A \sim B$.

Remark. Equidecomposability is an equivalence relation.

Example 1.9. The line segments below are SO(2)-equidecomposable.

Example 1.10. Let C be a circle and $x \in C$. Then $C \sim C \setminus \{x\}$. To see this pick θ so that $\theta/2\pi$ is not rational, put R_{θ} a rotation by θ , and let $H = \{R_{\theta}^{n}(x) : n = 0, 1, 2, ...\}$. Observe that $C = (C \setminus H) \cup H$; $C \setminus \{x\} = (C \setminus H) \cup (H \setminus \{x\})$; and $H \setminus \{x\} = R \cdot H$.

Theorem 1.11. Let $C \subset S^2$ be countable. Then S^2 and $S^2 \setminus C$ are SO(3)-equidecomposable.

Proof. Given C, let ℓ be a line through the origin that does not meet C. Consider the angles $\theta \in [0, 2\pi)$ that satisfy the property:

"There are $x \in C$ and $n \in \mathbb{N}$ such that $\rho \cdot c \in C$ where ρ is a rotation about ℓ by the angle $n\theta$ "

Since C is countable, so is the set above, so we may pick $\theta_0 \in [0, 2\pi)$ lacking this property and let ρ be the rotation by θ_0 . Then, $\rho^n \cdot C \cap C = \emptyset$ for all $n \in \mathbb{N}$ and so

$$\rho^n \cdot C \cap \rho^m C = \emptyset \quad n \neq m$$

Construct $D = \bigcup_{n=0}^{\infty} \rho^n \cdot C$ and observe that

$$S^2 = D \cup (S^2 \setminus D) \sim \rho \cdot D \cup (S^2 \setminus D) = S^2 \setminus C$$

as desired. \Box

Definition 1.12. Let G be a group acting on a set S, with $A, B \subseteq S$. We write $A \preceq_G B$ if A and a subset of B are equidecomposable.

We present a Schroder-Bernstein analogue for the relation \leq .

Theorem 1.13. Let G be a group acting on a set S, and let A and B be subsets of S such that $A \leq_G B$ and $B \leq_G A$. Then $A \sim_G B$.

Proof. (Sketch) Pick bijections $\phi: A \to B_1$ and $\psi: B \to A_1$; set $C_0 = A \setminus A_1$ and $C_{n+1} = \psi(\phi(C_n))$ and $C = \bigcup_{n=0}^{\infty} C_n$. Then

$$A = (A \setminus C) \cup C \sim (B \setminus \phi(C)) \cup \phi(C) = B$$

Theorem 1.14. Let G be a group acting on a set S. Then $E \subset S$ is G-paradoxical if and only if there is a partition $\{A, B\}$ of E such that $A \sim_G E \sim_G B$.

Proof. (\Leftarrow) Duh.

 (\Longrightarrow) Let $A_1,\ldots,A_n,B_1,\ldots,B_m,\,x_1,\ldots,x_n,y_1,\ldots,y_m$ be as in Definition 1.1. Set

$$A = \bigcup_{j=1}^{n} A_j \qquad B = \bigcup_{j=1}^{m} B_j$$

We claim that $E \preceq_G A$ and $E \preceq_G B$. Set $\tilde{A}_1 = x \cdot A_1$ and inductively define

$$\tilde{A}_j = x_j \cdot A_j \setminus (\tilde{A}_1 \cup \ldots \cup \tilde{A}_{j-1})$$

Then $\{\tilde{A}_1,\ldots,\tilde{A}_n\}$ is a partition of E such that $x_j^{-1}\cdot\tilde{A}_j\subset A_j$ and so $E\sim_G\bigcup_{j=1}^n x_j^{-1}\cdot\tilde{A}_j\subset A$, so that $E\preceq_G A$. Likewise, obtain $E\preceq_G B$. Naturally, being subsets of E, A and B satisfy $A\preceq_G E$ and $B\preceq_G E$. Hence, $A\sim_G E$ and $B\sim_G E$.

Theorem 1.15. Let G be a group acting on a set S, and let E and E' be subsets of S with $E \sim_G E'$. Then, if E is G-paradoxical, so is E'.

Proof. Use Theorem 1.14 to get a partition $\{A,B\}$ of E, such that $A \sim_G E \sim_G B$. Then $A \sim_G E \sim_G E' \sim_G B$.

Theorem 1.16. S^2 is SO(3)-paradoxical.

Proof. S^2 and $S^2 \setminus C$ are SO(3)-equidecomposable (Theorem 1.11). Furthermore, $S^2 \setminus C$ is SO(3)-paradoxical (Theorem 1.5). Thus, by Theorem 1.15, we are done.

Theorem 1.17. (Weak Banach-Tarski; AoC) Every closed ball in \mathbb{R}^3 is paradoxical.

Proof. It is sufficient to show that $B = \overline{B}(0,1)$ is paradoxical. First, we show that $\overline{B}(0,1) \setminus \{0\}$ is SO(3)-paradoxical. Since S^2 is SO(3)-paradoxical, get $A_1, \ldots, A_n, B_1, \ldots, B_m \subset S^2$ and $x_1, \ldots, x_n, y_1, \ldots, y_m \in SO(3)$ satisfying Defn 1.1. Set

$$\tilde{A}_j = \{ta : t \in (0,1], a \in A_j\}$$
 $j = 1, \dots n$

and,

$$\tilde{B}_j = \{tb : t \in (0,1], b \in B_j\}$$
 $j = 1, \dots, m$

These sets are pairwise disjoint and satisfy

$$\overline{B}(0,1) \setminus \{0\} = \bigcup_{j=1}^{n} x_j \cdot \tilde{A}_j = \bigcup_{j=1}^{m} y_j \tilde{B}_j$$

so that $\overline{B}(0,1) \setminus \{0\}$ is SO(3)-paradoxical.

Now, we show that B and $B \setminus \{0\}$ are equidecomposable. Let ℓ be a line through $(0,0,\frac{1}{2})$ parallel to the xy-plane. Let ρ be a rotation about ℓ of infinite order. Set $C = \{\rho^n \cdot 0 : n = 0, 1, 2, \ldots\}$ and observe that $\rho \cdot C = C \setminus \{0\}$. Hence,

$$B = C \cup (B \setminus C) \sim \rho \cdot C \cup (B \setminus C) = B \setminus \{0\}$$

Victory!