Librerías

```
In [6]: 1 #Graficos
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 import plotly.express as px
5 #Dataframes
6 import numpy as np
7 import pandas as pd
8 #Verifica valores perdidos
In [7]:
```

Lectura / importación de datos

```
In [9]:
```

Urban

In [11]:

in [ii]:									
Out[11]:		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type
	0	9046	Male	67.0	0	1	Yes	Private	Urban
	1	51676	Female	61.0	0	0	Yes	Self- employed	Rural
	2	31112	Male	80.0	0	1	Yes	Private	Rural
	3	60182	Female	49.0	0	0	Yes	Private	Urban
	4	1665	Female	79.0	1	0	Yes	Self- employed	Rural
	5	56669	Male	81.0	0	0	Yes	Private	Urban
	6	53882	Male	74.0	1	1	Yes	Private	Rural
	7	10434	Female	69.0	0	0	No	Private	Urban
	8	27419	Female	59.0	0	0	Yes	Private	Rural
	9	60491	Female	78.0	0	0	Yes	Private	Urban
	10	12109	Female	81.0	1	0	Yes	Private	Rural
	11	12095	Female	61.0	0	1	Yes	Govt_job	Rural
	12	12175	Female	54.0	0	0	Yes	Private	Urban
	13	8213	Male	78.0	0	1	Yes	Private	Urban
	14	5317	Female	79.0	0	1	Yes	Private	Urban
	15	58202	Female	50.0	1	0	Yes	Self- employed	Rural
	16	56112	Male	64.0	0	1	Yes	Private	Urban
	17	34120	Male	75.0	1	0	Yes	Private	Urban
	18	27458	Female	60.0	0	0	No	Private	Urban

2 de 19 01/12/2022, 21:18

19 25226 Male 57.0 0 1 No Govt_job

In [12]:

Ο.	- 4-	Ги	\sim 1	١ .
())	IT.		,	
\mathbf{v}	<i>a</i> c	_	_	

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_typ
5100	68398	Male	82.0	1	0	Yes	Self- employed	Rura
5101	36901	Female	45.0	0	0	Yes	Private	Urba
5102	45010	Female	57.0	0	0	Yes	Private	Rura
5103	22127	Female	18.0	0	0	No	Private	Urba
5104	14180	Female	13.0	0	0	No	children	Rura
5105	18234	Female	80.0	1	0	Yes	Private	Urba
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urba
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rura
5108	37544	Male	51.0	0	0	Yes	Private	Rura
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urba

In [13]:

- 1 #El método "describe" devuelve información estadística de los datos del da
- 2 #(de hecho, este método devuelve un dataframe).
- 3 #Esta información incluye el número de muestras, el valor medio,
- 4 #la desviación estándar, el valor mínimo, máximo, la mediana y los valores

Out[13]:

1000
0000
3237
1067
0000
0000
0000
0000
0000
106 000 000 000

In [14]: 1 # Filas y columnas dataframe

Out[14]: (5110, 12)

Out[15]: RangeIndex(start=0, stop=5110, step=1)

```
In [16]:
           1 # Columnas del data frame
Out[16]: Index(['id', 'gender', 'age', 'hypertension', 'heart_disease', 'ever_married
                 'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',
                 'smoking_status', 'stroke'],
                dtype='object')
           1 # función longitud para saber el número de columnas
Out[17]: 12
In [18]:
           1 # Acceder a una columnas llamada gender
Out[18]:
         0
                    Male
         1
                  Female
          2
                    Male
         3
                  Female
         4
                  Female
         5
                    Male
         6
                    Male
         7
                  Female
         8
                  Female
         9
                  Female
         10
                  Female
         11
                  Female
         12
                  Female
         13
                    Male
         14
                  Female
         15
                  Female
         16
                    Male
         17
                    Male
         18
                  Female
```

Limpiar datos

In [19]:

Out[19]:		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	í
	0	9046	Male	67.0	0	1	Yes	Private	Urban	_
	1	51676	Female	61.0	0	0	Yes	Self- employed	Rural	
	2	31112	Male	80.0	0	1	Yes	Private	Rural	
	3	60182	Female	49.0	0	0	Yes	Private	Urban	
	4	1665	Female	79.0	1	0	Yes	Self- employed	Rural	

```
In [20]:
           1 # Tipos de variables de dataframe:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5110 entries, 0 to 5109
         Data columns (total 12 columns):
          #
              Column
                                  Non-Null Count Dtype
          - - -
                                  -----
          0
              id
                                  5110 non-null
                                                  int64
          1
              gender
                                  5110 non-null
                                                  object
          2
              age
                                  5110 non-null
                                                  float64
          3
              hypertension
                                  5110 non-null
                                                  int64
          4
                                                  int64
              heart_disease
                                  5110 non-null
          5
              ever_married
                                  5110 non-null
                                                  object
          6
                                  5110 non-null
                                                  object
              work_type
          7
              Residence type
                                  5110 non-null
                                                  object
          8
              avg_glucose_level
                                  5110 non-null
                                                  float64
          9
                                  4909 non-null
                                                  float64
          10
              smoking status
                                  5110 non-null
                                                  object
                                                  int64
          11
              stroke
                                  5110 non-null
         dtypes: float64(3), int64(4), object(5)
         memory usage: 479.2+ KB
In [21]:
           1 # Cambiar datatype:
           2 # cambiar una columna a objeto
             data["id"] = data["id"].astype("object")
             data["hypertension"]=data["hypertension"].astype("object")
             data["heart_disease"]=data["heart_disease"].astype("object")
             data["stroke"]=data["stroke"].astype("object")
           7 # cambiar una columna a entero
In [22]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5110 entries, 0 to 5109
         Data columns (total 12 columns):
          #
              Column
                                  Non-Null Count Dtype
          - - -
              ----
                                  -----
                                                  ____
          0
              id
                                  5110 non-null
                                                  object
          1
              gender
                                  5110 non-null
                                                  object
          2
              age
                                  5110 non-null
                                                  int64
          3
                                  5110 non-null
                                                  object
              hypertension
          4
              heart_disease
                                  5110 non-null
                                                  object
          5
              ever_married
                                  5110 non-null
                                                  object
          6
              work_type
                                  5110 non-null
                                                  object
          7
              Residence_type
                                  5110 non-null
                                                  object
          8
              avg_glucose_level
                                  5110 non-null
                                                  float64
          9
              bmi
                                  4909 non-null
                                                  float64
          10
                                  5110 non-null
                                                  object
              smoking_status
                                  5110 non-null
                                                  object
              stroke
         dtypes: float64(2), int64(1), object(9)
         memory usage: 479.2+ KB
```

In [23]:										
Out[23]:		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	a
	0	9046	Male	67	0	1	Yes	Private	Urban	
	1	51676	Female	61	0	0	Yes	Self- employed	Rural	
	2	31112	Male	80	0	1	Yes	Private	Rural	
	3	60182	Female	49	0	0	Yes	Private	Urban	
	4	1665	Female	79	1	0	Yes	Self- employed	Rural	
In [24]:	<pre>1 # Ejemplo de cómo poner una columna como índice: 2 data_ejemplo = data.copy() 3 data_ejemplo = data_ejemplo.set_index('id')</pre>									
	<pre>C:\Users\Alumne_mati1\anaconda3\lib\site-packages\pandas\core\indexes\base.p</pre>									

C:\Users\Alumne_mati1\anaconda3\lib\site-packages\pandas\core\indexes\base.p y:6982: FutureWarning: In a future version, the Index constructor will not in fer numeric dtypes when passed object-dtype sequences (matching Series behavi or)

return Index(sequences[0], name=names)

Out[24]:		gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_
	id								

iu							
9046	Male	67	0	1	Yes	Private	Urban
51676	Female	61	0	0	Yes	Self- employed	Rural
31112	Male	80	0	1	Yes	Private	Rural
60182	Female	49	0	0	Yes	Private	Urban
1665	Female	79	1	0	Yes	Self- employed	Rural

Buscar y corregir errores

Revisar datos anomalos

Out[25]: 82

```
In [26]: 1 # identificar outliers(valores anomalos que se salen mucho del rango):
2 fig = px.box(data, y="avg_glucose_level")
```

Analizar nans(valores perdidos)


```
In [29]:
               # Ejemplo de imputación con la media:
               data_ejemplo["bmi"] = data_ejemplo["bmi"].fillna(data_ejemplo["bmi"].mean(
               msno.bar(data_ejemplo)
                                                       5220
                         5220
                                                                                              5170
                                                5220
           1.0
                                                                                                   5110
                                                                                                   4088
           0.8
           0.6
                                                                                                   3066
           0.4
                                                                                                   2044
           0.2
                                                                                                   1022
           0.0
                                                                                           grove
In [30]:
             1 # Eliminar los nans:
             2 data = data.dropna()
Out[30]:
           (4909, 12)
```

In [31]: msno.bar(data)

In [32]: 1 # Criterios para elminar: # variable cuantitativa con datos iguales en casi todas las filas 2 # variable que tenga el 85% de nans

```
In [33]:
             1 columnas_borrar = ["id"]
             2 data = data.drop(columnas_borrar,axis = 1)
Out[33]:
              gender age hypertension heart_disease ever_married work_type Residence_type avg_gluc
           0
                 Male
                       67
                                                               Yes
                                                                       Private
                                                                                        Urban
           2
                                      0
                Male
                       80
                                                    1
                                                               Yes
                                                                       Private
                                                                                        Rural
                                      0
                                                    0
             Female
                       49
                                                               Yes
                                                                       Private
                                                                                        Urban
                                                                         Self-
              Female
                       79
                                                               Yes
                                                                                         Rural
                                                                     employed
                                      0
                                                    0
                                                                       Private
            5
                Male
                      81
                                                               Yes
                                                                                        Urban
```

Análisis de los datos

Analisis univariado variables cuantitativas

```
In [35]:
Out[35]: Index(['gender', 'age', 'hypertension', 'heart_disease', 'ever_married',
                'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',
                'smoking_status', 'stroke'],
               dtype='object')
In [36]:
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 4909 entries, 0 to 5109
         Data columns (total 11 columns):
              Column
                                Non-Null Count Dtype
             -----
          0
                                4909 non-null
              gender
                                                object
                                4909 non-null int64
          1
              age
          2
              hypertension
                                4909 non-null object
              heart_disease
                                4909 non-null object
          3
                                4909 non-null object
          4
              ever_married
          5
              work_type
                                4909 non-null object
          6
              Residence_type
                                4909 non-null object
          7
              avg_glucose_level 4909 non-null float64
          8
                                4909 non-null
                                                float64
          9
              smoking_status
                                                object
                                4909 non-null
                                4909 non-null
                                                object
          10 stroke
         dtypes: float64(2), int64(1), object(8)
         memory usage: 460.2+ KB
In [37]:
          1 # Boxplot
          2 # Density plot - histograma
          3 # Mean plot - error plot
          4 # Stripchart
```

proyecto1 - Jupyter Notebook

In [38]:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4909 entries, 0 to 5109
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	gender	4909 non-null	object
1	age	4909 non-null	int64
2	hypertension	4909 non-null	object
3	heart_disease	4909 non-null	object
4	ever_married	4909 non-null	object
5	work_type	4909 non-null	object
6	Residence_type	4909 non-null	object
7	<pre>avg_glucose_level</pre>	4909 non-null	float64
8	bmi	4909 non-null	float64
9	<pre>smoking_status</pre>	4909 non-null	object
10	stroke	4909 non-null	object
	67		

dtypes: float64(2), int64(1), object(8)

memory usage: 589.3+ KB

```
In [41]:
           1 # gráficos y tablas de frecuencias de todas las variables cualitativas:
           2 #La frecuencia relativa es el cociente de la frecuencia absoluta y el núme
           3 #Para calcular la frecuencia relativa de cada dato dividimos
              #la frecuencia absoluta del dato entre el número total de datos.
           5
           6
           7
              var_cual = ['gender','hypertension', 'heart_disease', 'ever_married',
                      'work_type', 'Residence_type',
           8
           9
                      'smoking_status', 'stroke']
          10
          11
              for i in var_cual:
          12
          13
                  print("Variable = "+i)
          14
          15
                  # 1. Tabla
          16
                  pct = pd.DataFrame(data[i].value_counts(normalize=True))
                  pct.columns = ['Frecuencias Relativas']
          17
                  pct["Frecuencias Absolutas"] = data[i].value_counts()
          18
          19
                  print(pct)
          20
          21
                  # 2. Barplot
          22
                  sns.barplot(x=pct.index, y='Frecuencias Relativas', data=pct)
          23
                  plt.show()
          24
          25
                  # 3. Pieplot
                  frec_abs = data[i].value_counts() # grabo las frecuencias absolutas
          26
          27
                  labels = data[i].value_counts().index # cojo los nombres de los grupos
                  colors = sns.color_palette('pastel')[0:len(labels)] # defino los color
          28
          29
                  plt.pie(frec_abs, labels = labels, colors = colors, autopct='%.0f%%')
         Variable = gender
                  Frecuencias Relativas Frecuencias Absolutas
         Female
                                0.590141
                                                            2897
         Male
                                0.409656
                                                            2011
         0ther
                                0.000204
                                                               1
            0.6
            0.5
          Frecuencias Relativas
            0.4
            0.3
            0.2
```

Diagramas de dispersión variables cuantitativas

Scatter 3D

Matrixplot

```
In [45]:
```

In [46]: Out[46]: avg_glucose_level bmi age 228.69 36.6 105.92 32.5 171.23 34.4 174.12 24.0 186.21 29.0 In [47]: # Matrixplot columnas_plot = ["age","avg_glucose_level","bmi"] #sns.pairplot(data[var_num]) sns.pairplot(data[columnas_plot]) plt.show() avg_glucose_level bmi age bmi avg_glucose_level

Correlograma

Diagramas variables cualitativas

```
In [52]:
             # Diagramas de barras de dos factores de frecuencias condicionadas a Los g
             #(Son las frecuencias que posee una variable si sólo consideramos un valor
             #distribución bidimensional X-Y. En la práctica se traduce a considerar so
             #según el valor elegido.
           5
             x = 'stroke'
           6
           7
             vec_y = ['gender',
           8
               'hypertension',
           9
               'heart_disease',
          10
               'ever_married',
          11
               'work_type',
          12
               'Residence_type',
          13
               'smoking_status']
          14
          15
          16
              for i in vec_y:
          17
          18
                  y = i
          19
                  print(y + 'vs' + x)
          20
                  pct2 = (data.groupby([x,y]).size() / data.groupby([x]).size()).reset_i
          21
          22
                  sns.barplot(x=x, hue=y, y='Frecuencia Condicionada', data=pct2)
          23
                  plt.show()
          24
                  print(pct2)
```

gender vs stroke

In []: