1. Тип 18 № <u>27415</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

2. Тип 18 № 27666

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

3. Тип 18 № <u>27667</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

4. Тип 18 № **27668**

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

5. Тип 18 № <u>27669</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

6. Тип 18 № 27670

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

7. Тип 18 № <u>27671</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

8. Тип 18 № <u>27672</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

9. Тип 18 № <u>27673</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

10. Тип 18 № 27674

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

11. Тип 18 № <u>27675</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

12. Tun 18 № 27676

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

13. Тип 18 № <u>27677</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

14. Tu⊓ 18 № **27678**

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

15. Тип 18 № <u>27679</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

16. Tu⊓ 18 № **27680**

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

17. Tu⊓ 18 № 27681

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

18. Тип 18 № **27682**

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

19. Тип 18 № <u>27683</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

20. Тип 18 № 27684

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из **левой нижней** клетки в **правую верхнюю**. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

21. Тип 18 № <u>27685</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Задание 18

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

22. Tun 18 № 29666

Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было меньше предыдущего. Какую максимальную сумму могут иметь выбранные числа?

В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.

Задание 18

Пример входных данных:

5,2
3,1
1,2
2,3
7,1
3,3

Для указанных входных максимально возможная сумма равна 10,4, в ответе надо записать число 10.

23. Тип 18 № <u>33097</u>

Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было больше предыдущего. Какую максимальную сумму могут иметь выбранные числа?

В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.

Задание 18

Пример входных данных:

5,2 3,1 6,2 2,3 3,1 3,3

Для указанных входных данных максимально возможная сумма равна 9,3, в ответе надо записать число 9.

24. Тип 18 № <u>33190</u>

Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 10. Какую максимальную сумму могут иметь выбранные числа?

В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.

<u>Задание 18</u>

Пример входных данных:

5,2 13,1 2,2 12,3 3,1 2,3

Для указанных входных данных ответом будет число 18.

25. Tuп 18 № <u>33488</u>

Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число отличалось от предыдущего не более чем на 8. Какую максимальную сумму могут иметь выбранные числа?

В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.

18.xlsx

Пример входных данных:

5,2
13,1
2,2
11,3
3,1

Для указанных входных данных ответом будет число 18.

26. Tu⊓ 18 № <u>**33520**</u>

Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит ладья. За один ход ладья может переместиться в пределах квадрата на любое количество клеток вправо или вниз (влево и вверх ладья ходить не может). Необходимо переместить ладью в правый нижний угол так, чтобы сумма чисел в клетках, в которых ладья останавливалась (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

-3	1	-3	-4
-4	-4	-2	2
6	1	2	-2
-6	7	6	-3

Для указанных входных данных ответом будет число 14 (ладья проходит через клетки с числами -3, 6, 1, 7, 6, -3).

27. Тип 18 № <u>**33763**</u>

Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит ладья. За один ход ладья может переместиться в пределах квадрата на любое количество клеток вправо или вниз (влево и вверх ладья ходить не может). Необходимо переместить ладью в правый нижний угол так, чтобы сумма чисел в клетках, в которых ладья останавливалась (включая начальную и конечную), была минимальной. В ответе запишите минимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

-6	3	-3	1
1	-3	3	-5
-4	4	-2	2
5	0	0	3

Для указанных входных данных ответом будет число -10 (ладья проходит через клетки с числами -6, 1, -3, -5, 3).

28. Тип 18 № <u>35476</u>

Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо, вниз или по диагонали вправо вниз. Выходить за пределы квадрата робот не может. Необходимо переместить робота в правый нижний угол так, чтобы сумма чисел в клетках, через которые прошёл робот (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

4	21	-36	11
37	-12	29	7
-30	24	-1	-5
8	-8	9	21

Для указанных входных данных ответом будет число 95 (робот проходит через клетки с числами 4, 37, 24, 9, 21).

29. Тип 18 № <u>35907</u>

Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В правом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку влево, вниз или по диагонали влево вниз. Выходить за пределы квадрата робот не может. Необходимо переместить робота в левый нижний угол так, чтобы сумма чисел в клетках, через которые прошёл робот (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

4	21	-36	11
37	-12	29	7
-30	24	-1	-5
8	-8	9	21

Для указанных входных данных ответом будет число 79 (робот проходит через клетки с числами 11, 7, 29, 24, 8).

30. Тип 18 № <u>35992</u>

Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит робот, включается в сумму, если оно больше числа в предыдущей клетке на пути робота. Если число в очередной клетке не больше числа в предыдущей, сумма не изменяется. Число в начальной клетке всегда включается в сумму. Необходимо переместить робота в правый нижний угол так, чтобы полученная сумма была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

44	42	89	37
18	35	50	20
6	41	26	64
7	9	70	85

Для указанных входных данных оптимальным маршрутом будет путь по клеткам 44, 42, 89, 50, 26, 70, 85. Итоговая сумма равна 44 + 89 + 70 + 85 = 288. Числа 42, 50 и 26 не включаются в сумму, так как 42 < 44, 50 < 89 и 26 < 50.

31. Тип 18 № <u>36031</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 26). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата указана плата за посещение в размере от 1 до 100. Посетив клетку, Робот платит за её посещение; это также относится к начальной и конечной клеткам маршрута Робота.

Определите минимальную и максимальную денежные суммы, которые заплатит Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа: сначала минимальную сумму, затем максимальную, без разделительных знаков. Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел: 22 и 41.

32. Тип 18 № <u>**36873**</u>

Дан квадрат 15×15 клеток, в каждой клетке которого записано целое число. В левом нижнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит робот, включается в сумму, если оно больше числа в предыдущей клетке на пути робота. Если число в очередной клетке не больше числа в предыдущей, сумма не изменяется. Число в начальной клетке всегда включается в сумму. Необходимо переместить робота в правый верхний угол так, чтобы полученная сумма была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

44	42	89	37
18	35	50	20
6	41	26	64
7	9	70	85

Для указанных входных данных оптимальным маршрутом будет путь по клеткам 7, 9, 70, 26, 50, 89, 37. Итоговая сумма равна 7 + 9 + 70 + 50 + 89 = 225. Числа 26 и 37 не включаются в сумму, так как 26 < 70 и 37 < 89.

33. Тип 18 № <u>37153</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается, при столкновении со стеной робот разрушается. В каждой клетке записано число — количество монет, которое добавляется к счету робота. Определите максимальное и минимальное значения счёта, которые может получить робот после окончания работы в лабиринте. Начальным значением счёта является значение стартовой клетки. Робот движется из левой верхней в правую нижнюю клетки.

Исходные данные записаны в электронной таблице. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальное значение счёта, затем минимальное.

Задание 18

Пример входных данных (для таблицы размером 4×4):

5	10	7	6
15	4	15	20
2	22	5	3
3	5	7	16

Для указанных входных данных ответом должна быть пара чисел 78 и 53.

34. Tu⊓ 18 № **38593**

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: **вправо** или **вниз**. По команде **вправо** Робот перемещается в соседнюю правую клетку, по команде **вниз** — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.

В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

18.xlsx

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячей-ка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

35. Тип 18 № <u>**38952**</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. После каждого шага робота запас энергии изменяется по следующим правилам: если число в очередной клетке больше, чем в предыдущей, запас увеличивается на величину этого числа, если меньше — уменьшается на эту же величину.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

200	8	69	50
87	35	7	17
32	1	9	32
44	12	80	43

При указанных входных данных максимальное значение получается при движении по маршруту 200 - 8 + 69 - 7 + 17 + 32 + 43 = 346, а минимальное при движении по маршруту 200 - 87 - 35 - 7 + 9 + 80 - 43 = 117.

Ответ	:		
			1

36. Tu⊓ 18 № <u>**39247**</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. После каждого шага робота запас энергии изменяется по следующим правилам: если число в очередной клетке меньше, чем в предыдущей, запас увеличивается на величину этого числа, если больше — уменьшается на эту же величину.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.

Исходные данные записаны в электронной таблице.

Задание 18

Пример входных данных (для таблицы размером 4×4):

200	8	69	50
87	35	7	17
32	1	9	32
44	12	80	43

При указанных входных данных максимальное значение получается при движении по маршруту 200 + 87 + 35 + 7 - 9 - 80 + 43 = 283, а минимальное при движении по маршруту 200 + 8 - 69 + 7 - 17 - 32 - 43 = 54.

Ответ:	

37. Тип 18 № <u>40734</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Между некоторыми клетками находятся стены, проходить сквозь стены робот не может.

В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. При каждом шаге робот расходует энергию. При шаге вправо расход энергии равен числу, записанному в клетке, в которую переходит робот, при шаге вниз — удвоенному числу, записанному в клетке, в которую переходит робот.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.

Исходные данные записаны в электронной таблице. Стены отмечены утолщёнными линиями.

Задание 18

Пример входных данных (для таблицы размером 4×4):

500	8	69	50
30	35	57	17
32	1	9	32
44	12	80	43

При указанных входных данных максимальное значение получается при движении по маршруту

$$500 - 8 - 2 \cdot 35 - 2 \cdot 1 - 2 \cdot 12 - 80 - 43 = 273$$

а минимальное при движении по маршруту

$$500 - 8 - 69 - 2 \cdot 57 - 17 - 2 \cdot 32 - 2 \cdot 43 = 142$$
.

Отве	т:

38. Тип 18 № <u>40993</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Между некоторыми клетками находятся стены, проходить сквозь стены робот не может.

В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. При каждом шаге робот расходует энергию. При шаге вниз расход энергии равен числу, записанному в клетке, в которую переходит робот, при шаге вправо — удвоенному числу, записанному в клетке, в которую переходит робот.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.

Исходные данные записаны в электронной таблице. Стены отмечены утолщёнными линиями.

Задание 18

Пример входных данных (для таблицы размером 4×4):

500	8	69	50
30	35	57	17
32	1	9	32
44	12	80	43

При указанных входных данных максимальное значение получается при движении по маршруту

$$500 - 2 \cdot 8 - 35 - 2 \cdot 57 - 2 \cdot 17 - 32 - 43 = 226$$

а минимальное при движении по маршруту

$$500 - 30 - 32 - 44 - 2 \cdot 12 - 2 \cdot 80 - 2 \cdot 43 = 124.$$

Ответ:	

39. Тип 18 № <u>45252</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

18.xlsx

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячей-ка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Отве	т:	

40. Тип 18 № <u>46976</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.

В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем — минимальное.

Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.

Задание 18

Пример входных данных (для таблицы размером 4×4):

13	8	69	50
30	35	57	17
32	90	55	32
44	12	80	43

При указанных входных данных максимальное значение получается при движении по маршруту

$$3000 - 13 - 8 + 35 - 57 - 17 - 32 - 43 = 2865$$

а минимальное — при движении по маршруту

$$3000 - 13 - 30 - 32 - 90 - 12 - 80 - 43 = 2700.$$

Ответ:

41. Тип 18 № <u>47015</u>

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.

В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую верхнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем — минимальное.

Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.

Задание 18

Пример входных данных (для таблицы размером 4×4):

13	8	69	50
30	35	57	17
32	90	55	32
44	12	80	43

При указанных входных данных максимальное значение получается при движении по маршруту

$$3000 - 44 - 12 + 90 - 55 - 32 - 17 - 50 = 2880$$

а минимальное — при движении по маршруту

$$3000 - 44 - 12 - 80 - 55 - 32 - 17 - 50 = 2710$$
.

Ответ:

42. Тип 18 № <u>47222</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

18.xlsx

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячей-ка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 38 и 22.

43. Тип 18 № 48439

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вниз, по диагонали вправо-вниз или по диагонали влево-вниз. Числа показывают расход энергии робота на прохождение клетки.

Определите максимальный и минимальный расход энергии при переходе робота в правую нижнюю клетку поля. В ответе запишите два числа: сначала минимальный расход энергии, затем — максимальный.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

42	90	2	44
72	30	36	63
62	6	61	42
21	84	49	50

При указанных входных данных минимальный расход получится при движении по маршруту

$$42 + 30 + 6 + 49 + 50 = 177$$

а максимальный — при движении по маршруту

$$42 + 90 + 72 + 30 + 36 + 63 + 61 + 84 + 49 + 50 = 577.$$

В ответе в данном случае надо записать числа 177 и 577.

Ответ:		
--------	--	--

44. Тип 18 № <u>48466</u>

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вверх, по диагонали вправо-вверх или по диагонали влево-вверх. Числа показывают расход энергии робота на прохождение клетки.

Определите максимальный и минимальный расход энергии при переходе робота в правую верхнюю клетку поля. В ответе запишите два числа: сначала минимальный расход энергии, затем — максимальный.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

42	90	2	44
72	30	36	63
62	6	61	42
21	84	49	50

При указанных входных данных минимальный расход получится при движении по маршруту

$$21 + 6 + 30 + 2 + 44 = 103$$

а максимальный — при движении по маршруту

$$21 + 84 + 49 + 50 + 61 + 42 + 36 + 90 + 2 + 44 = 479$$
.

В ответе в данном случае надо записать числа 103 и 479.

Ответ: [
----------	--	--

45. Тип 18 № <u>**51987**</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вниз, по диагонали вправо-вниз или по диагонали влево-вниз. Числа показывают расход энергии робота на прохождение клетки.

Определите максимальный расход энергии при переходе робота в правую нижнюю клетку поля и количество клеток с нечётными числами, через которые робот проходит на пути с максимальным расходом энергии.

В ответе запишите два числа: сначала максимальный расход энергии, затем — количество пройденных клеток с нечётными значениями.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

43	90	2	44
72	30	36	63
62	6	61	42
21	84	49	50

При указанных входных данных максимальный расход получится при движении по маршруту

$$43+90+72+30+36+63+61+84+49+51=579$$
.

При этом робот проходит через 5 клеток с нечётными числами (43, 63, 61, 49, 51). В ответе в данном случае надо записать числа 579 и 5.

0	
Ответ:	

46. Тип 18 № <u>52189</u>

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вверх, по диагонали вправо-вверх или по диагонали влево-вверх. Числа показывают расход энергии робота на прохождение клетки.

Определите максимальный расход энергии при переходе робота в правую верхнюю клетку поля и количество клеток с нечётными числами, через которые робот проходит на пути с максимальным расходом энергии.

В ответе запишите два числа: сначала максимальный расход энергии, затем — количество пройденных клеток с нечётными значениями.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

42	90	2	45
72	30	36	63
62	6	61	42
21	84	49	50

При указанных входных данных максимальный расход получится при движении по маршруту

$$21 + 84 + 49 + 50 + 61 + 42 + 36 + 90 + 2 + 45 = 480.$$

При этом робот проходит через 4 клетки с нечётными числами (21, 49, 61, 45). В ответе в данном случае надо записать числа 480 и 4.

Ответ:		
01201.		

47. Тип 18 № <u>55605</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вниз или по диагонали вправо вниз.

Шаг вправо разрешается сделать только в клетку с числом той же чётности, шаг вниз — только в клетку с числом другой чётности. Шаг по диагонали возможен всегда.

Необходимо перевести робота в правую нижнюю клетку поля. Определите максимальную сумму чисел в клетках, через которые можно провести такой маршрут. Определите также количество клеток поля, в которые робот не сможет попасть из-за ограничений на возможные перехолы

В ответе запишите два числа: сначала максимально возможное значение суммы входящих в маршрут чисел, затем количество недоступных клеток.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

53	63	18	80
12	55	62	98
2	64	59	87
86	47	50	13

При указанных входных данных максимальное значение 250 получится при движении по маршруту $53 \rightarrow 63 \rightarrow 62 \rightarrow 59 \rightarrow 13$. Недоступны для робота клетки с числами 18, 80, 2, 86 — всего 4 клетки. В ответе в данном случае надо записать числа 250 и 4.

Ответ:

48. Тип 18 № 55635

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вверх или по диагонали вправо вверх.

Шаг вправо разрешается сделать только в клетку с числом той же чётности, шаг вверх — только в клетку с числом другой чётности. Шаг по диагонали возможен всегда.

Необходимо перевести робота в правую верхнюю клетку поля. Определите максимальную сумму чисел в клетках, через которые можно провести такой маршрут. Определите также количество клеток поля, в которые робот не сможет попасть из-за ограничений на возможные переходы.

В ответе запишите два числа: сначала максимально возможное значение суммы входящих в маршрут чисел, затем количество недоступных клеток.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

61	76	28	31
15	49	11	33
39	50	37	12
6	2	17	53

При указанных входных данных максимальное значение 147 получится при движении по маршруту $6 \to 50 \to 49 \to 11 \to 31$. Недоступны для робота клетки с числами 61, 15, 12, 17, 53 — всего 5 клеток. В ответе в данном случае надо записать числа 147 и 5.

Ответ:

49. Тип 18 № <u>55814</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо и вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота. Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.

Задание 18

В ответе укажите два числа сначала максимальную сумму, затем минимальную. Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для данных из примера ответ 34 22.

Ответ:			
--------	--	--	--

50. Tu⊓ 18 № <u>**56518**</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вниз или по диагонали вправо вниз.

На каждый шаг вправо робот затрачивает 15 единиц энергии, на шаг вниз — 20 единиц, на шаг по диагонали — 10 единиц. В каждой клетке, включая начальную и конечную, робот пополняет запас энергии на величину, равную записанному в этой клетке числу. В начальный момент (до подзарядки в начальной клетке) запас энергии робота равен нулю.

Необходимо перевести робота в правый нижний угол поля. Определите максимальное и минимальное значения запаса энергии, который может быть у робота после завершения маршрута и подзарядки в последней клетке.

В ответе запишите два числа: сначала максимально возможное значение, затем минимально возможное.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

43	47	25	35
49	52	83	64
97	8	22	32
36	7	85	74

При указанных входных данных максимальное значение 303 получится при движении по маршруту $43 \rightarrow 49 \rightarrow 52 \rightarrow 83 \rightarrow 22 \rightarrow 85 \rightarrow R$ 9; 74, а минимальное значение 141 при движении по маршруту $43 \rightarrow 49 \rightarrow 8 \rightarrow 22 \rightarrow 74$. В ответе в данном случае надо записать числа 303 и 141.

Ответ:		

51. Tu⊓ 18 № <u>**56546**</u>

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо, вверх или по диагонали вправо вверх.

На каждый шаг вправо робот затрачивает 15 единиц энергии, на шаг вверх — 20 единиц, на шаг по диагонали — 10 единиц. В каждой клетке, включая начальную и конечную, робот пополняет запас энергии на величину, равную записанному в этой клетке числу. В начальный момент (до подзарядки в начальной клетке) запас энергии робота равен нулю.

Необходимо перевести робота в правый верхний угол поля. Определите максимальное и минимальное значения запаса энергии, который может быть у робота после завершения маршрута и подзарядки в последней клетке.

В ответе запишите два числа: сначала максимально возможное значение, затем минимально возможное.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

43	47	25	35
49	52	83	64
97	8	22	32
36	7	85	74

При указанных входных данных максимальное значение 311 получится при движении по маршруту $36 \rightarrow 97 \rightarrow 49 \rightarrow 52 \rightarrow 83 \rightarrow 64 \rightarrow 35$, а минимальное значение 83 при движении по маршруту $36 \rightarrow 7 \rightarrow 8 \rightarrow 52 \rightarrow 25 \rightarrow 35$.

В ответе в данном случае надо записать числа 311 и 83.

\sim		
Ответ:		
OIBCI.		

52. Tu⊓ 18 № <u>**57425**</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами.

Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

Задание 18

Определите максимальную и минимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячей-ка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Ответ:		
OIDCI.		

53. Тип 18 № <u>**58485**</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз.

Расход энергии на запуск робота равен числу, записанному в стартовой клетке. В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Определите минимальный и максимальный расход энергии при переходе робота в правую нижнюю клетку поля. В ответе запишите два числа: сначала минимальный расход энергии, затем — максимальный.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

45	54	20	86
68	46	27	71
83	26	98	82
23	80	25	48

При указанных входных данных минимальное значение получится при движении по маршруту $45 \rightarrow 54 \rightarrow 46 \rightarrow 27 \rightarrow 71 \rightarrow 82 \rightarrow 48$. Расход энергии на этом пути равен

$$45 + (54-45) + (54-46) + (46-27) + (71-27) + (82-71) + (82-48) = 170.$$

Максимальное значение получится при движении по маршруту $45 \rightarrow 68 \rightarrow 83 \rightarrow 26 \rightarrow 98 \rightarrow 25 \rightarrow 48$, расход энергии в этом случае равен 308. В ответе в данном примере надо записать числа 170 и 308.

Ответ	:

54. Tu⊓ 18 № <u>**58526**</u>

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх.

Расход энергии на запуск робота равен числу, записанному в стартовой клетке. В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Определите минимальный и максимальный расход энергии при переходе робота в правую верхнюю клетку поля. В ответе запишите два числа: сначала минимальный расход энергии, затем — максимальный.

Исходные данные записаны в электронной таблице. Пример входных данных (для таблицы размером 4×4):

Задание 18

45	54	20	86
68	46	27	71
83	26	98	82
23	80	25	48

При указанных входных данных минимальное значение получится при движении по маршруту $23 \to 83 \to 68 \to 46 \to 27 \to 71 \to 86$. Расход энергии на этом пути равен

$$23 + (83-23) + (83-68) + (68-46) + (46-27) + (71-27) + (86-71) = 198.$$

Максимальное значение получится при движении по маршруту $23 \rightarrow 83 \rightarrow 68 \rightarrow 46 \rightarrow 27 \rightarrow 71 \rightarrow 86$, расход энергии в этом случае равен 356. В ответе в данном примере надо записать числа 198 и 356.

O	1
Ответ:	
OIDCI.	

55. Тип 18 № <u>**59696**</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: **вправо** или **вниз**. По команде **вправо** Робот перемещается в соседнюю правую клетку, по команде **вниз** — в соседнюю нижнюю. Квадрат ограничен внешними стенами.

Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля — тех, которые справа и снизу ограничены стенами, Робот Не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая правую нижнюю клетку поля.

При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута.

Задание 18

В ответе укажите два числа — сначала минимальную сумму, затем максимальную. Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Ответ:	

56. Тип 18 № <u>**59723**</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз.

Команда вправо перемещает Робота в соседнюю правую ячейку, команда вниз — в соседнюю нижнюю. В случае если Робот выйдет за границы данного квадрата или пересечет внутренние границы — он разбивается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Ваша задача — найти максимальную и минимальную суммы монет, собранные исполнителем (это относится и к начальной, и к последней ячейке квадрата), если Робот начинает движение из левой верхней ячейки в конечную остановку. Конечная остановка робота — клетка, ограниченная стенкой справа и снизу. Из этой клетки робот ходить дальше не может, а накопленная сумма считается итоговой.

В ответ укажите 2 числа без пробела — сначала максимальную сумму, затем минимальную.

<u>Задание 18</u>		
Ответ:		

57. Тип 18 № <u>**59786**</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: **вправо** или **вниз**. По команде **вправо** Робот перемещается в соседнюю правую клетку, по команде **вниз** — в соседнюю нижнюю. Квадрат ограничен внешними стенами.

Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля — тех, которые справа и снизу ограничены стенами, Робот Не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая правую нижнюю клетку поля.

При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута.

Задание 18

В ответе укажите два числа — сначала минимальную сумму, затем максимальную. Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

0	
Ответ:	

58. Tu⊓ 18 № <u>**59787**</u>

Робот вправо вниз, за конечные клетки принимаются все тупики, т. е. все клетки, ограниченные внизу и справа, найти мин макс.

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: **вправо** или **вниз**. По команде **вправо** Робот перемещается в соседнюю правую клетку, по команде **вниз** — в соседнюю нижнюю. Квадрат ограничен внешними стенами.

Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля — тех, которые справа и снизу ограничены стенами, Робот Не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая правую нижнюю клетку поля.

При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута.

Задание 18

В ответе укажите два числа — сначала минимальную сумму, затем максимальную. Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

Ответ:	
01001.	

59. Tu⊓ 18 № <u>**59811**</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 25). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Между соседними клетками квадрата могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Откройте файл. Определите максимальную денежную сумму, которую может собрать Робот, начиная в верхнем левом углу. В ответ запишите одно число — максимальную сумму, которую может собрать Робот.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячей-ка которой соответствует клетке квадрата.

Задание	<u>18</u>
Ответ:	

60. Тип 18 № <u>60260</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля — тех, которые справа и снизу ограничены стенами, Робот не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных точек может быть несколько, включая правую нижнюю клетку поля. При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

18.xlsx

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячей-ка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщенными линиями.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Ответ:		
--------	--	--

61. Тип 18 № 61364

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Некоторые клетки выделены тёмным фоном. В эти клетки роботу заходить нельзя.

Клетка, из которой робот не может сделать допустимого хода (справа и снизу находятся границы поля или запрещённые клетки), называется финальной.

На поле может быть несколько финальных клеток.

В начальный момент робот обладает запасом энергии, которая расходуется на движение по клеткам. Расход энергии на прохождение каждой клетки, включая стартовую и финальную, равен числу, записанному в этой клетке.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

В обоих заданиях энергии должно хватить и на прохождение финальной клетки.

Ответ:	

62. Тип 18 № <u>61398</u>

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое положительное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Некоторые клетки выделены тёмным фоном. В эти клетки роботу заходить нельзя.

Клетка, из которой робот не может сделать допустимого хода (справа и сверху находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает запасом энергии, которая расходуется на движение по клеткам. Расход энергии на прохождение каждой клетки, включая стартовую и финальную, равен числу, записанному в этой клетке.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

В обоих заданиях энергии должно хватить и на прохождение финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:		

63. Тип 18 № 63034

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число -1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Клетка, из которой робот не может сделать допустимого хода (справа и снизу находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке.

В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

0	1	
Ответ:		
OIDCI.] [

64. Tu⊓ 18 № <u>**63067**</u>

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число -1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Клетка, из которой робот не может сделать допустимого хода (справа и сверху находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке.

В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:	

65. Тип 18 № <u>**64903**</u>

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число -1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Клетка, из которой робот не может сделать допустимого хода (справа и снизу находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке.

В дальнейшем расход энергии на шаг из одной клетки в другую равен максимальному из двух чисел, записанных в этих клетках.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

Ответ:		

66. Tun 18 № 64948

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число -1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Клетка, из которой робот не может сделать допустимого хода (справа и сверху находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке.

В дальнейшем расход энергии на шаг из одной клетки в другую равен максимальному из двух чисел, записанных в этих клетках.

Задание 18

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

_	1	
Ответ:		