DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat (c) 2004 EPO. All rts. reserv.

18274569

Basic Patent (No, Kind, Date): JP 2002324966 A2 20021108 <No. of Patents: 001>

METHOD FOR FORMING CIRCUIT PATTERN UTILIZING INK-JET PRINTING

METHOD (English)

Patent Assignee: HARIMA CHEMICALS INC

Author (Inventor): GOTO HIDEYUKI; UEDA MASAYUKI; MATSUBA YORISHIGE;

HATA NORIAKI

IPC: *H05K-003/10; B41J-002/01; C09D-005/24; C09D-201/00

CA Abstract No: *137(23)344811X; 137(23)344811X

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 2002324966 A2 20021108 JP 2001125967 A 20010424 (BASIC)

Priority Data (No,Kind,Date):

JP 2001125967 A 20010424

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

07456451

METHOD FOR FORMING CIRCUIT PATTERN UTILIZING INK-JET PRINTING

METHOD

PUB. NO.:

2002-324966 [JP 2002324966 A]

PUBLISHED:

November 08, 2002 (20021108)

INVENTOR(s): GOTO HIDEYUKI

UEDA MASAYUKI

MATSUBA YORISHIGE

HATA NORIAKI

APPLICANT(s): HARIMA CHEM INC

APPL. NO.:

2001-125967 [JP 2001125967]

FILED:

April 24, 2001 (20010424)

INTL CLASS:

H05K-003/10; B41J-002/01; C09D-005/24; C09D-201/00

ABSTRACT

PROBLEM TO BE SOLVED: To provide a method for forming novel circuit pattern in which when a conductive metal paste is jetted and applied onto a ink-jet printing method, or baked, a an substrate by utilizing low-resistance and ultrafine circuit pattern can be formed with a superior adhesion and a smooth surface profile.

SOLUTION: When a circuit pattern of a wiring substrate is plotted by utilizing an ink-jet system as a conductive metal paste to be used, metal ultrafine particles having mean particle size of 1 to 100 nm are uniformly scattered in a resin composition, and the surface is clad with one kind or more of compounds having a group containing nitrogen, oxygen, and sulfur atoms as a group to be coupled with a metal element in a coordinative manner. The resin composition contains a thermosetting resin compound functioning as an organic binder, a compound having responsibility with a group containing nitrogen, oxygen, and sulfur atoms when heating, and at least one kind or more of organic solvent.

(19) 日本田特許庁 (JP)

co公開特許公報 (A)

(11)特許出願公開番号

特開2002-324966

(P2002-324966A) (43)公開日 平成14年11月8日(2002.11.8)

(51) Int. Cl. 7	識別記号	FΙ			テーマコート・	(参考)
H05K 3/10		H05K 3/10		D	2C056	
B41J 2/01		C09D 5/24			4J038	
CO9D 5/24		201/00			5E343	
201/00		B41J 3/04	101	Z		

		審査請求	未請求 請求項の数10 OL (全10頁)			
(21)出願番号	特願2001-125967(P2001-125967)	(71)出顧人	000233860 ハリマ化成株式会社			
(22) 出顧日	平成13年4月24日(2001.4.24)	(72)発明者	兵庫県加古川市野口町水足671番地の4 「後藤 英之 茨城県つくば市東光台5丁目9番の3 ハ リマ化成株式会社筑波研究所内			
		(72)発明者	上田 雅行 茨城県つくば市東光台5丁目9番の3 ハ リマ化成株式会社筑波研究所内			
		(74)代理人	100088328 弁理士 金田 暢之 (外2名)			

最終頁に続く

(54) 【発明の名称】インクジェット印刷法を利用する回路パターンの形成方法

(57)【要約】

【課題】 導電性金属ペーストをインクジェット印刷法 を利用して基板上に噴射・塗布し、また焼成した際、密 着力が良く、表面形状がなめらかで、低抵抗かつ超微細 な回路パターンを形成できる、新規な回路パターンの形 成方法の提供。

【解決手段】 インクジェット方式を利用して、配線基板の回路パターンの描画形成を行う際、用いる導電性金属ペーストは、樹脂組成物中に、平均粒子径が1~100nmのの金属超微粒子を均一に分散させ、その表面は、金属元素と配位的な結合が可能な基として、窒素、酸素、イオウ原子を含む基を有する化合物1種以上により被覆されたものとし、樹脂組成物は、有機パインダーとして機能する熱硬化性樹脂成分、加熱した際、窒素、酸素、イオウ原子を含む基との反応性を有する成分、ならびに少なくとも一種以上の有機溶剤を含んだものとする。

【特許請求の範囲】

金属ペーストにより配線基板の回路パターンの描画形成 を行う方法であって、

用いる前記導電性金属ペーストは、有機溶剤を含む樹脂 組成物中に、微細な平均粒子径の金属超微粒子を均一に 分散してなる導電性金属ペーストであり、

前記微細な平均粒子径の金属超微粒子は、その平均粒子 径が1~100nmの範囲に選択され、金凤超微粒子表 面は、かかる金属超微粒子に含まれる金属元素と配位的 10 な結合が可能な基として、窒素、酸素、イオウ原子を含 む基を有する化合物1種以上により被覆されており、

インクジェット方式の描画手段で微小な液滴として、基 板上に噴射・塗布して、前記導電性金属ペーストの塗布 膜からなる回路パターンを描画する工程と、

描画された導電性金属ペーストの塗布膜を、少なくとも 前記熱硬化性樹脂の熱硬化がなされる温度において、加 熱処理する工程とを有することを特徴とするインクジェ ット印刷法を利用する回路パターンの形成方法。

【請求項2】 前記樹脂組成物は、有機パインダーとし 20 法。 て機能する熱硬化性樹脂成分、加熱した際、前記窒素、 酸素、イオウ原子を含む基を有する化合物1種以上に対 して、その窒素、酸素、イオウ原子を含む基との反応性 を有する成分、ならびに少なくとも一種以上の有機溶剤 を含んでいることを特徴とする請求項1に記載される回 路パターンの形成方法。

【請求項3】 回路パターンを描画する工程において、 前記窒素、酸素、イオウ原子を含む基を有する化合物1 種以上により被覆された金属超微粒子を有機溶剤中に分 散してなる液と、

前記樹脂組成物を構成する、熱硬化性樹脂成分、窒素、 酸素、イオウ原子を含む基との反応性を有する成分、な らびに有機溶剤を含む液とを、

個々のインクジェット方式の描画手段を利用して、基板 上に噴射・塗布し、両液を基板上において混和して、導 電性金属ペーストによる塗布膜を形成することを特徴と する請求項2に記載される回路パターンの形成方法。

【請求項4】 前記窒素、酸素、イオウ原子を含む基と の反応性を有する成分として、有機の酸無水物またはそ の誘導体あるいは有機酸を用いることを特徴とする請求 40 項1または3に記載される回路パターンの形成方法。

【請求項5】 導電性金属ペーストに含有される、微細 な平均粒子径の金属超微粒子は、金、銀、銅、白金、パ ラジウム、タングステン、ニッケル、タンタル、ピスマ ス、鉛、インジウム、錫、亜鉛、チタン、アルミニウム からなる群より選択される、一種類の金属からなる微粒 子、または、2種類以上の金属からなる合金の微粒子で あることを特徴とする請求項1または3に配載される回 路パターンの形成方法。

【扇求項6】

なされる温度において、加熱処理する工程において、 更に、描画された塗布膜中の導電性金属ペーストに含有 される前記金属微粒子同士の焼結をも行うことを特徴と

する請求項1または3に記載される回路パターンの形成 方法。

【請求項7】 インクジェット方式の前記描画手段は、 加熱発泡により気泡を発生し、液滴の吐出を行うサーマ ル方式の描画手段であり、

用いる前記導電性金属ペースト中に含有される一種以上 の有機溶剤は、その沸点が、前記加熱発泡の加熱温度未 満であることを特徴とする請求項1または3に記載され る回路パターンの形成方法。

【請求項8】 インクジェット方式の前記描画手段は、 ピエゾ索子を利用する圧縮により、液滴の吐出を行うピ エゾ方式の描画手段であり、

用いる前記導電性金属ペースト中に含有される一種以上 の有機溶剤は、その沸点が、前記の少なくとも熱硬化性 樹脂の熱硬化がなされる温度以下であることを特徴とす る請求項1または3に記載される回路パターンの形成方

【請求項9】 前記導電性金属ペースト中、金属超微粒 子100質量部当たり、前記有機溶剤を含む樹脂組成物 が、50~300質量部の範囲で含まれ、

うち、前記有機溶剤は、20~270質量部の範囲で含 まれていることを特徴とする請求項1または3に記載さ れる回路パターンの形成方法。

【請求項10】 前記樹脂組成物に用いる、有機パイン ダーとして機能する熱硬化性樹脂成分は、前記有機の酸 無水物またはその誘導体あるいは有機酸を、重合剤とし て、加熱重合可能な熱硬化製樹脂であることを特徴とす る請求項3に記載される回路パターンの形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インクジェット印 刷法を利用する、導電性金属ペーストによる回路パター ンの形成方法に関し、より具体的には、リジッドおよび フレキシブルなプリント基板、ICチップ、ガラス基 板、セラミック基板等におけるデジタル高密度配線に対 応した低インピーダンスでかつ極めて微細な回路パター ンを、超ファイン印刷用導電性金属ペーストにより、イ ンクジェット印刷法を利用して形成する方法に関する。 [0002]

【従来の技術】プリント配線板上に回路パターンを描画 して形成する方法としては、多くの場合、スクリーン印 刷、特には、メタルマスクを用いて、導電性金属ペース トを塗布し、次いで加熱硬化させることにより、所望の 低抵抗な回路パターン形成を行っている。このスクリー ン印刷法を利用する描画方法は、形成される回路パター ンの線幅が極端に狭くない分野に広く適用され、用いる 少なくとも前記熱硬化性樹脂の熱硬化が 50 尊電性金属ペーストとしては、平均粒子径が0.5~2

0μmの金属粉を熱硬化性樹脂組成物に分散したものが 通常用いられている。また、描画される回路パターンの 膜厚は、形成される最小線幅に応じて、膜厚/最小線幅 の比、アスペクト比が極端に小さくならない範囲に選択 されている。

【0003】一方、近年の情報端末の急速な小型化に伴 い、それに搭載されるプリント配線板の配線ピッチの狭 小化も進み、具体的には、半導体内回路のファイン化に 伴い、プリント配線板上に形成される回路パターンの最 小線幅、膜厚もますます狭くなる。例えば、数ミクロン 10 程度の膜厚になると、平均粒子径が 0.5μm以上の金 **風粉を利用する従来の金属ペーストを利用する際には、** 含有される金属粉の粒径が相対的に大きすぎるため、十 分な対応ができなくなる。具体的には、場合によって は、数ミクロン程度しかない厚さ方向には、金属粒子が 2~3個しか存在しない状態になり、結果として、膜厚 分布が相対的に大きく、導通性のパラツキが顕著となる こともある。加えて、金属粒子が数個しか存在しない場 合、部分的に粒子同士の接触に不良が生じた際、導通性 が大きく損なわれる要因ともなる。

【0004】また、スクリーン印刷に用いるメタルマス ク自体、その構造上、所望の機械的強度を保持するた め、その薄膜化には限度があり、メタルマスク自体の厚 さに応じて、隣り合う回路間の幅にも自ずから限界があ る。例えば、回路間の間隔が0.3mm以下の高密度な 電子部品の実装を行うことを目指す際には、スクリーン 印刷法を利用する回路パターンの描画を、高い再現性で 行うことは困難となる。それに対して、インクジェット 方式の描画法、あるいは、ノズルまたはニードルを利用 して金属ペーストを吐出する方法では、吐射する微小な 30 液滴状の金属ペーストを用いて、直接描画を行うので、 描画可能な最小線幅、ならびに、回路間の最小間隔は、 噴射することにより塗布する液滴状の金属ペースト量の みに依存するものとなる。従って、吐射する液滴状の金 属ペーストをより微小なものとすると、選択的に、極め て狭い範囲のみに塗布することが可能となり、例えば、 回路間の間隔が 0. 3 mm以下の高密度な回路パターン の作製にも適用できる。

【0005】加えて、インクジェット方式の描画法を利 用すると、回路パターン形状が複雑なもの、例えば、細 40 い線幅部と広いベタ印刷領域が混在する際にも、原理的 には、その膜厚は、単位面積当たりに塗布する液滴状の 金属ペースト量のみで決定されるため、高い膜厚の均一 性を達成することも可能となる。なお、その際にも、例 えば、数ミクロン程度の膜厚になると、平均粒子径が 0. 5 μ m以上の金属粉を利用する従来の金属ペースト を利用すると、上述するスクリーン印刷法を用いる際と 同様に、含有される金風粉の粒径が相対的に大きすぎる ため、十分な対応ができなくなる。

[0006]

【発明が解決しようとする課題】つまり、回路パターン の形成にインクジェット方式の描画法を利用する際、そ の高い描画分解能を十分に発揮する上では、利用する導 電性金属ペーストとして、含有される金属粉の粒径も十 分に徴細なものとする必要がある。例えば、利用する導 電性金属ペーストとして、極めて粒子径の小さな金属超 徴粒子を含有するものを利用することが必要となる。

【0007】極めて粒子径の小さな金属超微粒子、少な くとも、平均粒子径が100mm以下である金属超微粒 子の製造方法の一つとして、特開平3-34211号公 報には、ガス中蒸発法を用いて調製される10 nm以下 の金属超微粒子をコロイド状に分散したものとその製造 方法が開示されている。また、特開平11-31953 8号公報などには、還元にアミン化合物を用いる還元析 出法を利用して、平均粒子径が数nm~数10nm程度 の金属超微粒子をコロイド状に分散したものとその製造 方法が開示されている。この特開平11-319538 号公報などに開示される平均粒子径数nm~数10nm 程度の金属超微粒子は、コロイド状態を維持するために その表面が高分子樹脂などで被覆されているものであ る。

【0008】このような平均粒子径が1~100nmと 非常に細かい金属微粒子で構成される金属ペーストを利 用すると、微細な線幅、それに対応する薄い膜厚とした 際にも、原理的には用いる金属粒子の粒子径に起因する 厚さの不均一性を大幅に低減することが可能となる。こ の利点を生かし、平均粒子径が数nm~数10nm程度 の金属超微粒子を含有する導電性金属ペーストを、回路 パターンの形成にインクジェット方式の描画法に利用す ることが望まれる。換言するならば、インクジェット方 式の描画法に利用するに適する形態の金属超微粒子を含 有する導電性金属ペーストとし、それを用いるインクジ エット印刷法を利用する回路パターンの形成方法の開発 が望まれる。

【0009】一般に平均粒子径数nm~数10nm程度 の金属超微粒子はその融点よりも格段に低い温度(例え ば、銀であれば200℃)で焼結することが知られてい る。この低温焼結は、金属の超微粒子においては、十分 にその粒子径を小さくすると、粒子表面に存在するエネ ルギー状態の高い原子の全体に占める割合いが大きくな り、金属原子の表面拡散が無視し得ないほど大きくなる 結果、この表面拡散に起因して、粒子相互の界面の延伸 がなされ焼結が行われるためである。一方、この性質 は、室温近傍においても、金属超微粒子の表面相互が直 接接触すると、凝集体を形成するという現象を生じさせ る。前配の凝集体形成は、極めて微細な金属微粒子が密 な充填状態を形成する結果達成される、厚さの均一性向 上効果を損なう要因となる。さらに、密な充填状態を形 成することで、全体として、所望の導電性を達成してい

50 る効果を、予め部分的に凝集体を形成した構造が混入す

5

ると、宿な充填状態を高い再現性で達成できなくなる一 因となる。

(0010) 加えて、金属の超微粒子表面では、通常の金属塊表面より、金属原子の表面拡散が活発であるだけでなく、化学的な反応性も増しており、例えば、酸素に曝されるとより速やかに表面酸化が進行する。その際には、金属の超微粒子表面における低温焼結の利点は損なわれ、表面酸化で形成される酸化皮膜の影響を排するに必要な、比較的高い温度での加熱処理によって、初めて、超微粒子相互の焼結が達成できる状態となる。従って、形成される酸化皮膜の多少に依存して、導電性のバラツキを生じさせる要因となる。

【0011】特に、インクジェット法を利用して、金属 超微粒子を含有する導電性金属ペーストを噴射・塗布す る際には、吐出される微細な液滴中に含有される金属超 微粒子量の均一性が不可欠である。すなわち、導電性金 属ペースト中に含有される金凤超微粒子は、分散溶媒中 に、均一に分散された状態であることも必須な要件とな る。具体的には、利用するインクジェット・プリンター ・ヘッドに付属する容器中に保持する間に、金属超微粒 20 子の凝集分離が生じる、あるいは、沈降分離を生じるな どの現象を抑制する必要もある。また、インクジェット ・プリンター・ヘッドの吐出ノズル先端などに、上述す る凝集体形成した金属超微粒子の塊が付着する事態が生 じてはならないことは勿論のことである。以上に述べた インクジェット法を利用する際に固有な不具合を回避で き、高い膜厚の均一性で、加えて、良好な導電性をも達 成できる、金属超微粒子を含有する導電性金属ペースト を用いるインクジェット印刷法を利用する回路パターン の形成方法の開発が望まれる。

【0012】本発明は前記の課題を解決するもので、本発明の目的は、導電性金属ペーストを構成する導電性媒体として、金属超微粒子を用いて、保管した際にも含有される金属超微粒子の凝集体形成、あるいは、沈降分離を抑制しつつ、かかる金属超微粒子を均一に分散する導電性金属ペーストを、インクジェット印刷法を利用して基板上に噴射・塗布し、また、焼成した際、密着力が良く、表面形状がなめらかで、また、低抵抗かつ超微細な回路パターンを形成できる、新規なインクジェット印刷法を利用する回路パターンの形成方法を提供することに40ある。

[0013]

【課題を解決するための手段】本発明者らは、前記の課題を解決すべく、鋭意研究を進めた結果、導電性金属ペーストを構成する導電性媒体として、平均粒子径が1~100nmの金属超微粒子を用いる場合、導電性金属ペースト自体を調製する際には、安定化されたコロイド状態は、耐凝集性を向上する上では好ましいものの、パインダー成分として含有される熱硬化性樹脂を加熱硬化させる際、前記コロイド状態の維持に貢献している、金属50

の超微粒子表面を被覆する分子層がそのまま残留してい ると、優れた導電性を達成する上で不可欠な、金属の超 徴粒子相互間での、低温度における焼結に因る接触界面 の融着が阻害を受けることを見出した。かかる知見に基 づき、さらなる研究・検討を進めた結果、導電性金属ペ ースト自体を調製し、室温近くで保管する間は、安定化 されたコロイド状態の維持に貢献する、金属の超微粒子 表面を被覆する分子層を設け、一方、低温硬化型の熱硬 化性樹脂を加熱硬化させる時点では、前記表面を被覆す る分子層を有効に除去することが可能な構成とすると、 適正な温度において加熱硬化させた熱硬化性樹脂(有機 パインダー)成分により、十分な基板との接着性を持 ち、均一にコロイド状に分散している金属超微粒子を用 いていることによる、表面形状の平滑性、また、インク ジェット法による超微細な回路描画性の利点を保持しつ つ、形成される薄膜配線パターンに付与される導電性は 十分に高く、またその再現性も高く保つことが可能であ ることを見出した。

【0014】すなわち、本発明のインクジェット印刷法 を利用する回路パターンの形成方法は、インクジェット 方式を利用して、導電性金属ペーストにより配線基板の 回路パターンの描画形成を行う方法であって、用いる前 記導電性金属ペーストは、有機溶剤を含む樹脂組成物中 に、微細な平均粒子径の金属超微粒子を均一に分散して なる導電性金属ペーストであり、前記微細な平均粒子径 の金属超微粒子は、その平均粒子径が1~100nmの **範囲に選択され、金属超微粒子表面は、かかる金属超微** 粒子に含まれる金属元素と配位的な結合が可能な基とし て、窒素、酸素、イオウ原子を含む基を有する化合物1 種以上により被覆されており、インクジェット方式の描 画手段で微小な液滴として、基板上に噴射・塗布して、 前記導電性金属ペーストの塗布膜からなる回路パターン を描画する工程と、描画された導電性金属ペーストの塗 布膜を、少なくとも前記熱硬化性樹脂の熱硬化がなされ る温度において、加熱処理する工程とを有することを特 徴とするインクジェット印刷法を利用する回路パターン の形成方法である。その際、前記樹脂組成物は、有機パ インダーとして機能する熱硬化性樹脂成分、加熱した 際、前記窒素、酸素、イオウ原子を含む基を有する化合 物1種以上に対して、その窒素、酸素、イオウ原子を含 む基との反応性を有する成分、ならびに少なくとも一種 以上の有機溶剤を含んでいることが好ましい。

【0015】さらには、回路パターンを描画する工程において、前記窒素、酸素、イオウ原子を含む基を有する化合物1種以上により被覆された金属超微粒子を有機溶剤中に分散してなる液と、前記樹脂組成物を構成する、熱硬化性樹脂成分、窒素、酸素、イオウ原子を含む基との反応性を有する成分、ならびに有機溶剤を含む液とを、個々のインクジェット方式の描画手段を利用して、基板上に噴射・塗布し、両液を基板上において混和し

て、導電性金属ペーストによる塗布膜を形成することを 特徴とする回路パターンの形成方法とすることもでき る。なお、前記窒素、酸素、イオウ原子を含む基との反 応性を有する成分として、有機の酸無水物またはその誘 導体あるいは有機酸を用いることが好ましい。

【0016】一方、導電性金属ペーストに含有される、 徴細な平均粒子径の金属超微粒子は、金、銀、銅、白 金、パラジウム、タングステン、ニッケル、タンタル、 ピスマス、鉛、インジウム、錫、亜鉛、チタン、アルミ ニウムからなる群より選択される、一種類の金属からな 10 る微粒子、または、2種類以上の金属からなる合金の微 粒子であることを特徴とする回路パターンの形成方法と することができる。

【0018】例えば、インクジェット方式の前記描画手 20 段は、加熱発泡により気泡を発生し、液滴の吐出を行うサーマル方式の描画手段であり、用いる前記導電性金属ペースト中に含有される一種以上の有機溶剤は、その沸点が、前記加熱発泡の加熱温度未満であることを特徴とする回路パターンの形成方法とすることができる。あるいは、インクジェット方式の前記描画手段は、ピエゾ素子を利用する圧縮により、液滴の吐出を行うピエゾ方式の描画手段であり、用いる前記導電性金属ペースト中に含有される一種以上の有機溶剤は、その沸点が、前記の少なくとも熱硬化性樹脂の熱硬化がなされる温度以下で 30 あることを特徴とする回路パターンの形成方法とすることもできる。

【0019】好ましくは、回路パターンの形成に用いる前記導電性金属ペースト中、金属超微粒子100質量部当たり、前記有機溶剤を含む樹脂組成物が、50~300質量部の範囲で含まれ、うち、前記有機溶剤は、20~270質量部の範囲で含まれていることが好ましい。

【0020】本発明の回路パターンの形成方法では、例えば、前記樹脂組成物に用いる、有機パインダーとして機能する熱硬化性樹脂成分は、前記有機の酸無水物またはその誘導体あるいは有機酸を、重合剤として、加熱重合可能な熱硬化製樹脂であることがより好ましい。

[0021]

【発明の実施の形態】以下に、本発明のインクジェット 印刷法を利用する回路パターンの形成方法をより詳細に 説明する。

【0022】本発明の回路パターンの形成方法は、その主な用途は、従来のスクリーン印刷法やディスペンス印刷法では高い再現性で描画することが容易ではなかった、最小ドット状の印刷を用いて、デジタル高密度配線 50

に対応した低インピーダンスでかつ極めて微細な回路形成、層間接合の形成に利用される超ファイン印刷用であるため、導電性媒体として含有する金属超微粒子は、目標とする超ファイン印刷の線幅、ならびに、加熱硬化後の膜厚に応じて、その平均粒子径は1~100nmの範囲に選択する。好ましくは、平均粒子径を2~10nmの範囲に選択する。

【0023】このように、極めて微細な金属超微粒子を用いる際には、分散溶媒中に浸された状態であっても、金属粒子同士が接触すると、各々の金属超微粒子が付着することにより凝集をおこし、そのような凝集体は、本発明が目的とする超ファイン印刷用には適さないものとなる。この粒子同士の凝集を防ぐために、金属超微粒子の表面に低分子による被覆層を設け、熱硬化性樹脂成分を溶解する溶液中に分散された状態となっているものを利用する。

【0024】加えて、本発明の回路パターンの形成方法においては、基板上に塗布された導電性金属ペーストについて、含有される熱硬化性樹脂成分を加熱硬化する際、導電性媒体として含有する金属超微粒子同士、その接触界面における融着を起こすように、金属超微粒子の表面には、酸化膜が実質的に存在しない状態となっているものを利用する。具体的には、金属超微粒子自体の表面は酸化皮膜は存在しないものの、かかる金属超微粒子に含まれる金属元素と配位的な結合が可能な基として、窒素、酸素、イオウ原子を含む基を有する化合物1種以上により被覆された状態とすることで、金属超微粒子が互いにその金属表面が直接接触しない状態とする。

【0026】利用可能なアミノ基を有する化合物の代表として、アルキルアミンを挙げることができる。なお、かかるアルキルアミンは、金属元素と配位的な結合を形成した状態で、通常の保管環境、具体的には、40℃に達しない範囲では、脱離しないものが好適であり、沸点が60℃以上の範囲、好ましくは100℃以上となるものが好ましい。ただし、焼結・合金化を行う際には、速やかに、表面から離脱することが可能であることが必要であり、少なくとも、沸点が300℃を超えない範囲、通常、250℃以下の範囲となるものが好ましい。例えば、アルキルアミンとして、そのアルキル基は、C4~C20が用いられ、さらに好ましくはC8~C18の範囲に選択され、アルキル鎖の末端にアミノ基を有するも

のが用いられる。例えば、前配C8~C18の範囲のアルキルアミンは、熱的な安定性もあり、また、その蒸気 圧もさほど高くなく、室温等で保管する際、含有率を所望の範囲に維持・制御することが容易であるなど、ハンドリング性の面から好適に用いられる。一般に、かかる配位的な結合を形成する上では、第一級アミン型のものがより高い結合能を示し好ましいが、第二級アミン型、ならびに、第三級アミン型の化合物も利用可能である。また、1、2-ジアミン型、1、3-ジアミン型など、近接する二以上のアミノ基が結合に関与する化合物も利 10用可能である。

【0027】また、利用可能なスルファニル基(-S H) を有する化合物の代表として、アルカンチオールを 挙げることができる。なお、かかるアルカンチオール も、金属元素と配位的な結合を形成した状態で、通常の 保管環境、具体的には、40℃に達しない範囲では、脱 離しないものが好適であり、沸点が60℃以上の範囲、 好ましくは100℃以上となるものが好ましい。ただ し、焼結・合金化を行う際には、速やかに、表面から離 脱することが可能であることが必要であり、少なくと も、沸点が300℃を超えない範囲、通常、250℃以 下の範囲となるものが好ましい。例えば、アルカンチオ ールとして、そのアルキル基は、C4~C20が用いら れ、さらに好ましくはC8~C18の範囲に選択され、 アルキル鎖の末端にスルファニル基(-SH)を有する ものが用いられる。例えば、前記C8~C18の範囲の アルカンチオールは、熱的な安定性もあり、また、その 蒸気圧もさほど高くなく、室温等で保管する際、含有率 を所望の範囲に維持・制御することが容易であるなど、 ハンドリング性の面から好適に用いられる。一般に、第 30 一級チオール型のものがより高い結合能を示し好ましい が、第二級チオール型、ならびに、第三級チオール型の 化合物も利用可能である。また、1,2-ジチオール型 などの、二以上のスルファニル基(-SH)が結合に関 与するものも、利用可能である。

【0028】また、利用可能なヒドロキシ基を有する化合物の代表として、アルカンジオールを挙げることができる。なお、かかるアルカンジオールも、金属元素と配位的な結合を形成した状態で、通常の保管環境、具体的には、40℃に達しない範囲では、脱離しないものが好適であり、沸点が60℃以上の範囲、通常、100℃以下の範囲となるものが好ましい。ただし、焼結・合金化を行う際には、速やかに、表面から離脱することが可能であることが必要であり、少なくとも、沸点が300℃を超えない範囲、通常、250℃以下の範囲となるものが好ましい。例えば、1、2-ジオール型などの、二以上のヒドロキシ基が結合に関与するものなどが、より好適に利用可能である。

【0029】加えて、本発明の回路パターンの形成方法 たは酸無水物誘導体は、その硬化剤となる場合もある。 においては、利用する導電性金属ペーストには、有機パ 50 その際には、この酸無水物または酸無水物誘導体は、熱

インダーとして機能する熱硬化性樹脂成分が必須成分と して含有される。かかる熱硬化性樹脂成分は、塗布され た導電性金属ペーストを加熱・硬化した際、含まれる金 凤超微粒子相互の接触と、基板に対する接着性を付与す る機能を有する。従って、一般の導電性金属ペーストに 利用される有機パインダー、熱硬化性樹脂を利用するこ とができる。例えば、以下に例示する熱硬化性樹脂成分 から、目標とする加熱・硬化温度に応じて、かかる温度 での加熱処理により、十分な硬化がなされる樹脂成分を 1種類以上選択して利用するとよい。具体的には、熱硬 化性樹脂としては、フェノール樹脂、エポキシ樹脂、不 飽和ポリエステル樹脂、ピニルエステル樹脂、ジアリル フタレート樹脂、オリゴエステルアクリレート樹脂、キ シレン樹脂、ピスマレイミドトリアジン樹脂、フラン樹 脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、シ リコン樹脂などを挙げることができる。なかでも、フェ ノール樹脂、エポキシ樹脂は、超微細な回路形成をする 際にも、密着性が良好であり、勿論、硬化物物性も導電 性ペーストに適するので、本発明に利用する樹脂成分と してより好ましいものである。

【0030】これら熱硬化性樹脂成分の含有量は、金属超微粒子の全体体積と、その粒子間に存在する空隙の比率に応じて、適宜選択すべきものであるが、通常、金属超微粒子100質量部当たり、1~30質量部、好ましくは、3~20質量部の範囲に選択するとよい。この有機パインダーとして機能する熱硬化性樹脂に加えて、加熱した際、前記金属超微粒子の表面を被覆する分子層を形成する窒素、酸素、イオウ原子を含む基を有する化合物1種以上に対して、その窒素、酸素、イオウ原子を含む基との反応性を有する成分、例えば有機の酸無水物またはでの誘導体あるいは有機酸、好ましくは、酸無水物または酸無水物誘導体を含有させる。

【0031】この窒素、酸素、イオウ原子を含む基との 反応性を有する成分、例えば酸無水物または酸無水物誘 導体は、主に、上述する金属超微粒子の表面を被覆す る、金属元素と配位的な結合が可能な基として、窒素、 酸索、イオウ原子を含む基を有する化合物による付着層 を除去するために利用される。すなわち、加熱した際、 室温付近では付着層を形成している化合物中の、窒素、 酸素、イオウ原子を含む基と反応する結果、その反応 後、前記窒素、酸素、イオウ原子を含む基は、金属超微 粒子表面において、表面の金属原子と配位的な結合を形 成することが困難となり、結果的に除去がなされる。こ の除去機能は、導電性金属ペーストの塗布膜形成を終了 するまでは発揮されず、その後、含有される熱硬化性樹 脂成分の熱硬化を行う加熱過程において、初めて発揮さ れるものとなる。なお、用いられる熱硬化性樹脂がエポ キシ樹脂などでは、かかる用途で含有される酸無水物ま たは酸無水物誘導体は、その硬化剤となる場合もある。

硬化の際、前部窒素、酸素、イオウ原子を含む基を有する化合物、例えば、アミン化合物、チオール化合物、ジオール化合物などと反応し、アミド、チオエステル、エステルを形成するために利用される以外に、エポキシ樹脂などに対する硬化剤としても消費される。従って、上部アミン化合物、チオール化合物、ジオール化合物などに含まれる末端アミノ基、スルファニル基(-SH)、ヒドロキシ基の総和に従って定まる添加量を超えてをおいまれる。のでは、アミン化合物の末端アミノ基も、エポキシ樹脂などと反応するため、この酸無水物または酸無水物誘導体の含有量に応じて、さらには、利用される熱硬化性樹脂の種類、その反応性をも考慮に入れ、適宜選択される。

【0032】従って、金属超微粒子表面を被覆する化合物を、前記熱硬化性樹脂成分に対する加熱硬化時に、熱的な離脱に加えて、前記窒素、酸素、イオウ原子を含む基との反応性を有する成分、例えば、酸無水物または酸無水物誘導体と反応させて、効率的にかかる被覆層を排除して、金属超微粒子が相互に直接接触可能とする。そ20の結果、熱硬化性樹脂成分の硬化とともに、金属超微粒子自体の特質である、低温での焼結が進行し、全体として、金属微粒子は密に充填した状態で、焼結による融着が達成でき、形成される緻密なネットワーク状の導通経路が、良好な電導性を与える。

【0033】前記の反応性を示す限り、利用される有機

の酸無水物またはその誘導体あるいは有機酸は特に限定

されるものではない。例えば、利用可能な有機酸として は、ギ酸、酢酸、プロピオン酸、プタン酸、ヘキサン 酸、オクチル酸などのC1~C10の直鎖または分岐し た飽和カルボン酸、ならぴにアクリル酸、メタクリル 酸、クロトン酸、ケイ皮酸、安息香酸、ソルビン酸など の不飽和カルボン酸、ならびに、シュウ酸、マロン酸、 セパシン酸、マレイン酸、フマル酸、イタコン酸などの 二塩基酸など、種々のカルポン酸に加えて、カルポキシ ル基に代えて、リン酸基(-0-P(0)(OH),)あるい は、スルホ基 (-SO, H) を有する、リン酸エステル、ス ルホン酸などのその他の有機酸を挙げることができる。 【0034】また、好適に利用できる有機の酸無水物も しくは酸無水物の誘導体として、無水フタル酸、無水ト リメリット酸、無水ピロメリット酸、無水ベンゾフェノ ンテトラカルボン酸、エチレングリコールピス(アンヒ ドロトリメリテート)、グリセロールトリス(アンヒド ロトリメリテート) などの芳香族酸無水物、無水マレイ ン酸、無水コハク酸、テトラヒドロ無水フタル酸、メチ ルテトラヒドロ無水フタル酸、無水メチルナジック酸、 アルケニル無水コハク酸、ヘキサヒドロ無水フタル酸、 メチルヘキサヒドロ無水フタル酸、メチルシクロヘキセ ンテトラカルボン酸無水物などの環状脂肪族酸無水物、 ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリ セパシン酸無水物などの脂肪族酸無水物を挙げることができる。この中でも、メチルテトラヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、およびこれらの誘導体は、本発明が目的とする比較的に低い加熱硬化温度においても、例えば、アミン化合物の末端アミノ基などに対して適度な反応性を有することから好適に用いられる。

【0035】本発明の回路パターンの形成方法において、利用する導電性金属ペーストは、塗布後に加熱硬化処理を行うものの、その塗布する際には、前記表面に分子の被覆層を設けた金属超微粒子を、溶液形状の樹脂組成物、すなわち、上記有機パインダーとして機能する熱硬化性樹脂成分、加熱した際、窒素、酸素、イオウ原子を含む基との反応性を有する成分、例えば有機の酸素、ならびに少なくとも一種以上の有機溶剤を含んでいる溶液を分散媒体として、その中に均一に分散したものとする。その際に利用する有機溶剤は、樹脂組成物を調製する際、その溶媒としての機能を有し、また、用いる金属超微粒子の表面を被覆している、アミン化合物などの化合物の付着層を溶出することのない有機溶剤が好適に利用される。

【0036】この二種の用途に用いられる有機溶剤は、 異なる種類のものを用いることもできるが、同じ有機溶 剤を用いることが好ましい。なお、前記の二種の用途に 利用できる限り、その種類は限定されるものではない が、金属超微粒子の表面に付着層を形成している化合 物、例えば、アルキルアミンなどの溶解性が高すぎ、金 **属超微粒子表面の付着層が消失するような高い極性を有** する溶剤ではなく、非極性溶剤あるいは低極性溶剤を選 択することが好ましい。加えて、本発明の回路パターン の形成方法では、塗布後、導電性金属ペーストを加熱硬 化を行う温度において、かかる有機溶剤は、比較的速や かに蒸散でき、その間に熱分解などを起こすことがない 程度には熱的な安定性を有することが好ましい。また、 微細なラインを形成する際、その塗布の工程において、 導電性金属ペーストをインクジェット法を利用して、微 小な液滴として噴射・塗布するため、前配の吐出に好適 な液粘度範囲に維持することも必要となる。そのハンド リング性の面を考慮すると、室温付近では容易に蒸散す ることのない、比較的に高沸点な非極性溶剤あるいは低 極性溶剤、例えば、テルピネオール、ミネラルスピリッ ト、キシレン、トルエン、エチルペンゼン、メシチレン などが好適に利用でき、さらには、ヘキサン、ヘプタ ン、オクタン、デカン、ドデカン、シクロヘキサン、シ クロオクタンなども用いることができる。

【0037】かかる有機溶剤の含有量は、それが溶解すべき、前配熱硬化性樹脂成分、有機の酸無水物またはその誘導体あるいは有機酸などの量に拠って選択させる。その際、通常、回路パターンの形成に用いる前配導電性金属ペースト中、金属超微粒子100質量部当たり、前

50

記有機溶剤を含む樹脂組成物が、50~300質量部の 範囲で含まれ、うち、前記有機溶剤は、20~270質 **量部の範囲で含まれていることが好ましい。この樹脂組** 成物は、熱硬化性樹脂成分として、上配の熱硬化性樹脂 と、必要に応じて、硬化剤、硬化促進剤、さらには、そ の他の汎用される添加成分をも含むことができる。例え ば、重合剤(硬化剤)として、有機の酸無水物またはそ の誘導体を利用して、加熱重合可能な熱硬化性樹脂など も好ましい。

【0038】その際、導電性金属ペーストに含有され る、微細な平均粒子径の金属超微粒子は、金、銀、銅、 白金、パラジウム、タングステン、ニッケル、タンタ ル、ピスマス、鉛、インジウム、錫、亜鉛、チタン、ア ルミニウムからなる群より選択される、一種類の金属か らなる微粒子、または、2種類以上の金属からなる合金 の微粒子を、目的に応じて、適宜選択することができ る。通常の目的では、金、銀、銅、白金など、それ自体 の電気伝導性に優れる金属からなる微粒子を利用するこ とが多い。なお、合金微粒子を用いる際には、通常、熱 硬化性樹脂成分の熱硬化温度より、かかる合金の融点が 20 高いものを用いる際に、本発明の効果が発揮されるもの となる。

【0039】本発明の回路パターンの形成方法では、こ れらの成分を含む導電性金属ペーストをインクジェット 法を利用して、微小な液滴として、基板上に目的とする パターン形状となるように噴射・塗布する。目標とする 最小線幅、ライン間隔に応じて、例えば、塗布されるド ットの平均径を10~20μmの範囲に選択し、また、 このドットの平均径の選択に併せて、前記微小な液滴量 は自ずから定まる。すなわち、インクジェット法を利用 30 して微小な液滴を吐出する際、その微小な液滴量は、利 用するインクジェット・プリンター・ヘッド自体の性能 に依存するため、目的とする液滴量に適合するプリンタ ー・ヘッドを選択して用いる。例えば、吐出用のノズル 内径は、平均液滴量を2~100plの範囲とする際、 それに対応させて、適宜選択する。

【0040】なお、塗布膜を形成する導電性金属ペース トは、予め樹脂組成物中に、微細な平均粒子径の金属超 微粒子を均一に分散してなる導電性金属ペーストとした 上で、インクジェット法を利用して描画する形態をとる 40 ことができるのは勿論のことであるが、例えば、金属超 微粒子を有機溶剤中に分散した液と、その他の樹脂組成 物を構成する成分を含む液とに分け、この二液を個々に 微小な液滴として塗布し、両液を混和して、導電性金属 ペーストの塗布膜とすることも可能である。この二液混 合型の導電性金属ペースト塗布膜形成法を用いる際に は、両液滴の密な接触・重ね合わせが達成されるよう に、利用するインクジェット・プリンター・ヘッドそれ ぞれの吐出用のノズルの位置合わせ制御を行う。また、 両液の液滴量は、混和がなされた状態において、各成分 50 においては、前記する有機の酸無水物などと金属微粒子

が所望とする含有比率となるように調整することは勿論 のことである。その後、加熱し、熱硬化樹脂成分の熱硬 化と、金凤超微粒子相互の低温焼結・融着は、予め混合 した一液型の導電性金属ペーストを用いる際と、実質的 に同じものとなる。

【0041】加えて、かかる二液混合型の導電性金属ペ ーストを利用する際には、金属超微粒子を有機溶剤中に 分散した液と、その他の樹脂組成物を構成する成分を含 む液とを個々に噴射・塗布するため、それぞれの液粘度 10 は、適正な吐出が達成可能な範囲に選択することが必要 となる。場合によっては、それぞれに含有される有機溶 剤の量を合計すると、予め混合した一液型の導電性金属 ペーストにおける有機溶剤の量と比較して、より多くな ることもあるが、その際には、塗布膜形成中、あるい は、塗布膜形成後、後の加熱工程において、好適となる 有機溶剤の含有比率まで減ずるため、有機溶剤の蒸散を 行う工程を設けることが好ましい。

【0042】また、利用するインクジェット・プリンタ ー・ヘッドには、加熱発泡(パプル)を利用してインク を吐出するサーマル方式と、圧電素子を利用してインク の吐出を行うピエゾ方式の二つがあり、本発明の回路パ ターンの形成方法では、用いる金属微粒子ペーストのド ット状噴射・塗布による描画には、前記サーマル方式、 ピエゾ方式のいずれの方法をも用いることができる。利 用するインクジェット・プリンター・ヘッドの方式に依 存して、利用する導電性金属ペーストの液粘度を調製す る必要があり、例えば、有機溶剤の添加量を調整して、 最終液粘度を、0.5~30Pa·sの範囲、好ましく は、1~5Pa・sの範囲に選択することが望ましい。 また、サーマル方式を利用する場合、加熱発泡(パブ ル) が可能な有機溶剤、具体的には、その沸点がサーマ ル方式の加熱温度より低い有機溶剤を選択する必要があ

【0043】本発明の回路パターンの形成方法において は、以上に述べたインクジェット法を利用する際に適合 する組成を選択した導電性金属ペーストを、インクジェ ット・プリンター・ヘッドの液溜(容器)に入れ、前記 する微細なドッド状の塗布を行い、各ドットが互いに重 なり合うようにすることで、所望の最小線幅から、広い 範囲のパターンまで、パターンの形状に依らず、同じ精 度で回路形成を行うことができる。加えて、形成される 回路膜厚に関しても、複数層の塗布を行うことで、高い 自由度で膜厚を選択できる利点をも有する。さらには、 同一工程において作製される回路パターン中に、設計膜 厚が異なる領域を有する際にも、それらを同じ精度で形 成することが可能となる。

【0044】一方、インクジェット・プリンター・ヘッ ドの液溜(容器)に入れられる導電性金属ペーストは、 室温あるいは、保管する際、想定される上限温度の範囲

16

安置を枝覆する化合物の末端アミノ基などとの反応は実質的に進行しないため、本発明の導電性金属ペーストにおいて、含有される熱硬化性樹脂成分を加熱硬化するため、所定の温度まで加熱しない限り、金属超微粒子の表面を緻密に枝覆しているアミン化合物などの分子層は安定に維持される。その作用により、保管時の耐凝集性は高く維持され、また、水分や大気中の酸素分子に因る。加えて、含有されている金属超微粒子は、吐出されるまでの間、均一な分散状態を維持されているので、吐出用ノズル部に付着して、塗布液滴量のバラツキを起こすこともなく、凝集分離や沈降により、分散濃度のバラツキを生じさせることもないものとなる。

[0045]

【実施例】以下に、実施例を示し、本発明をより具体的 に説明する。この実施例は、本発明の最良の実施の形態 の一例ではあるものの、本発明はこの実施例により限定 を受けるものではない。

【0046】(実施例1)市販されている銀の超微粒子分散液(商品名:独立分散超微粒子パーフェクトシルパ 20一、真空冶金(株))、具体的には、銀微粒子100質量部、アルキルアミンとして、ドデシルアミン15質量部、有機溶剤として、ターピネオール75質量部を含む平均粒径8nmの銀微粒子の分散液を利用して、銀超微粒子の導電性金属ペースト(インク)を調製した。

【0047】 導電性金属インクは、銀微粒子の分散液と、その分散液中の銀微粒子100質量部当たり、樹脂組成物を形成する各成分として、酸無水物として、メチルヘキサヒドロ無水フタル酸(Me-HHPA)を6.8質量部、熱硬化性樹脂として、レゾール型フェノール樹脂(群栄化学(株)製、PL-2211)を5質量部、有機溶剤として、トルエン35質量部とを混合し、攪拌して、均一化を図った。混合して得られる、樹脂組成物中に銀微粒子が均一に分散した状態とした後、調製された導電性金属インクを、メッシュサイズ:0.5μmのポリテトラエチレンフィルターを用いてろ過し、混入している気泡を除く処理を施した。なお、調製された導電性金属インクの液粘度は、10Pa・sである。

【0048】次いで、インクジェット方式のプリント・ヘッドのインクカートリッジに、脱気泡処理済みの導電 40 性金属インクを充填した。この導電性金属インクを充填したプリント・ヘッドは、専用のプリンターに装着した。本実施例では、このインクジェット方式のプリント・ヘッドとして、サーマル方式とピエゾ方式の双方について、それぞれ印刷性を検証した。サーマル方式ならびにピエゾ方式では、それぞれ、噴射される液滴の平均液量は4plならびに4plである。従って、この液滴の噴射・塗布により、それぞれ平均外径16μmならびに18μmのドット状の印字が可能である。サーマル方式ならびにピエゾ方式のそれぞれにおいて、この導電性金 50

属インクを用いて、ガラス基板上に、膜厚 $\underline{5}$ μ m、 $\underline{1}$ 0 μ mの線幅の直線パターンをインクジェット方式で印刷した。この印刷後、ガラス基板上の導電性金属インクを、 $\underline{1}$ $\underline{5}$ 0 \mathbb{C} \times $\underline{3}$ 0 \mathcal{G} 、 $\underline{1}$ 0 \mathbb{C} \times 0 \mathbb{C} \times 0 \mathbb{C} $\mathbb{C$

【0049】熱硬化処理後、線幅、ライン間隔、熱硬化 後の表面平坦性、膜厚などの項目を測定し、その印刷性 を評価した。描画されたパターンの形状・寸法の再現性 は非常に高く、また、目標との変移なく、安定してい る。より具体的には、線幅の変移は、前記サーマル方式 ならびにピエゾ方式のそれぞれにおけるドット状の印字 の密度(分解能)、600dpiと720dpi(ドッ ト/インチ)の条件下で、最大で、前記ドット径の10 %以下であり、また、熱硬化に伴い、若干の収縮はある ものの、平均膜厚は 3μ m、膜厚のパラツキは20%以 下である。加えて、用いたインクジェット方式のプリン ト・ヘッドの吐出ノズル部における、導電性金属インク の目詰まりも全く生じなかった。なお、前記の二段階熱 処理により、得られる金属配線パターンの比抵抗は、 2. 8×10⁻⁶ Ω·cmと良好な値を、高い再現性で 示した。

[0050]

【発明の効果】本発明のインクジェット印刷法を利用す る回路パターンの形成方法では、インクジェット方式を 利用して、導電性金属ペーストにより配線基板の回路パ ターンの描画形成を行う際、用いる導電性金属ペースト は、樹脂組成物中に、微細な平均粒子径の金属超微粒子 を均一に分散してなる導電性金属ペーストであり、微細 な平均粒子径の金属超微粒子は、その平均粒子径が1~ 100nmの範囲に選択され、金凤超微粒子表面は、か かる金属超微粒子に含まれる金属元素と配位的な結合が 可能な基として、窒素、酸素、イオウ原子を含む基を有 する化合物 1 種以上により被覆された状態とし、一方、 樹脂組成物は、有機パインダーとして機能する熱硬化性 樹脂成分、加熱した際、窒素、酸素、イオウ原子を含む 基との反応性を有する成分、例えば有機の酸無水物また はその誘導体あるいは有機酸、ならびに少なくとも一種 以上の有機溶剤を含んだものとした上で、インクジェッ ト方式の描画手段で導電性金属ペーストを微小な液滴と して、基板上に噴射・塗布して、回路パターンを描画す る工程、描画された導電性金属ペーストの塗布膜を、少 なくとも前記熱硬化性樹脂の熱硬化がなされる温度にお いて、加熱処理する工程とを経て、回路パターンを形成 する結果、熱硬化性樹脂成分の熱硬化に併せて、金属超 微粒子表面を被覆する化合物分子層を、例えば、有機の 酸無水物またはその誘導体あるいは有機酸との反応によ って除去し、金凤超微粒子相互の低温での融着を行わ せ、緻密な電気的接触を有するネットワーク状の導電性

18

い、微細な線幅のパターンを高い精度で、また、優れた 導電性を示す配線回路を高い再現性で作製できる利点を 有する。加えて、前記構成の導電性金属ペーストを用い ることに付随して、単なる粒子の接触による導通経路に

おいては得られない、高い導通安定性とその再現性が確保でき、さらには、加熱硬化する樹脂を含むので、基板に対する密着力も良く、しかも、膜厚のパラツキも実質的にない超ファイン回路を簡便に印刷作製できる。

フロントページの続き

(72)発明者 松葉 頼重

茨城県つくば市東光台5丁目9番の3 ハ

リマ化成株式会社筑波研究所内

(72)発明者 畑 憲明

茨城県つくば市東光台5丁目9番の3 ハ

リマ化成株式会社筑波研究所内

Fターム(参考) 2C056 EA04 FA03 FA04 FB05

4J038 CF001 DA041 DA101 DA141

DA161 DB001 DD181 DJ021

DL031 GA02 GA08 GA13

HA066 JA02 JA03 JA12

JA37 JA39 JB03 JC02 JC12

KA03 KA06 KA08 KA20 NA20

PA19 PB09 PC03 PC08

5E343 BB22 BB23 BB24 BB25 BB28

BB34 BB40 BB44 BB48 BB49

BB72 BB76 DD14 ER33 ER39

FF02 GG02

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.