Processamento Digital de Sinal 2ª Chamada 2004/2005 (Eng. das Comunicações)

- 1. Considere um sistema de difusão TV onde o sinal de vídeo ocupa 4 MHz e o sinal de áudio com 20 kHz de largura de banda é modulado em amplitude por uma portadora de 4,5 MHz e somado ao sinal de vídeo. O conjunto assim obtido forma o sinal TV em banda base a enviar, pelo que este conjunto necessita de ser modulado para posterior emissão. Considere que dispõe deste sinal já em banda base (depois de recebido na antena receptora e desmodulado) à saída de um sistema de recepção. O passo seguinte consiste na separação do áudio e do vídeo. Considere que pretende aproveitar apenas o sinal de áudio.
 - a) Dos tipos de filtros analógicos que conhece qual o mais apropriado para a aplicação em causa? Justifique
 - b) Analise comparativamente em termos de vantagens/desvantagens os filtros de Chebyshev e elípticos.
 - c) Descreva os métodos que conhece de síntese de filtros digitais a partir de filtros analógicos. Quais as vantagens e desvantagens de cada um deles.
 - d) Suponha que o sinal TV é amostrado a 15 MHz. Determine a resposta impulsional do filtro capaz de retirar o áudio do vídeo admitindo que uma atenuação mínima de 36 dB na banda de rejeição é suficiente independentemente do "ripple" na banda passante. Admita que a frequência de corte é no limite da banda do áudio e projecte o filtro mais eficiente em termos de rejeição do ruído.

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Window Type	Peak Sidelobe Amplitude (Relative)	Approximate Width of Mainlobe	Peak Approximation Error 20 log ₁₀ δ (dB)	Equivalent Kaiser Window β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	1.81π/M
Bartlett	25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	41	$8\pi/M$	- 53	4.86	$6.27\pi/M$
Blackman	- 57	$12\pi/M$	74	7.04	$9.19\pi/M$

2. Considere um sistema discreto LTI caracterizado pela função de transferência

$$H(z) = \frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

e ao qual é aplicado um sinal ruído branco de média nula.

a) Mostre que a autocorrelação do sinal de saída é dada por

$$\varphi_{xx}(m) = \sum_{k=1}^{N} a_k \varphi_{xx}(m-k)$$

b) Considere que dispõe de uma amostra do sinal de saída de 5 pontos {-1, 0, 1, 0, -1}. Estime a sequência de autocorrelação do processo de saída para -4≤m≤4.

c) Determine o erro do preditor.

- d) Estime a sequência de autocorrelação do processo de saída para m>4 e m<9.
- e) Determine o espectro de máxima entropia do sinal de saída do sistema.

3. Suponha o caso da detecção da direcção de fontes radiantes ou puras superfícies reflectoras através de um agregado linear e uniforme de sensores.

 a) Em sua opinião o método da decomposição da matriz correlação espacial dos dados em valores singulares (SVD) é adequado para a resolução deste problema? Justifique.

b) Escreva na forma matricial, à luz do método SVD, um conjunto de equações lineares que permitam calcular as frequências espaciais das sinusoides que constituem o sinal. Justifique os cálculos que efectuar . Refira-se à relação entre o número de elementos do agregado, o número de fontes radiantes e eventualmente outros parâmetros, que garante a resolução do problema.

 c) Explique quais os fundamentos do método de máxima verosimilhança de Capon.

d) Determine o espectro de potência espacial obtido pelo método MLM de Capon.