1. Equivalent: $\underbrace{E_{X}.1}_{}$

S[(7P, v, 7r)] = S[7P] + S[7r] + S[7P] S[7r]= 1+8Ep].+1+8[r]+(1+8[p])(1+8[r])

 $= \delta[p] + \delta[r] + 1 + \delta[p] + \delta[r] + \delta[p] \delta[r]$

2. Equivalent. Let S be an arbitrary truth assignment. By Lef. $S[(pnq) \land r)] = S[(pnq)] \cdot S[r]$

. S[(pn(gnr))]= S[p]·S[(gnr)].

Let S be an arbitrary truth assignment. By lef.

. = . S[p]+S[q]+S[p]S[q]+S[r]+(S[p]+S[q]+S[q]+S[p]S[q])S[r]

.

.

S[(Pv (qvr))]= S[P] + S[(qvr)] + S[P] S[(qvr)].

. . . = S[P] + S[q]+ S[r].+ S[q] S[r].+ S[P] (S[q]+S[r]+ S[q] S[r]).

 $= \mathcal{S}[p] + \mathcal{S}[q] + \mathcal{S}[r] + \mathcal{S}[q] \mathcal{S}[r] + \mathcal{S}[p] \mathcal{S}[q] + \mathcal{S}[p] \mathcal{S}[r] + \mathcal{S}[p] \mathcal{S}[r] + \mathcal{S}[p] \mathcal{S}[q] \mathcal{S}[r]$

```
4. Not Equivalent.

Consider truth assignment. So where So[P] = So[r] = 0
 S[(P\rightarrow (P\rightarrow r))] = 1+ S[P] + S[P]S[(P\rightarrow r)]
 . . . . = . | + S[P] + S[P] (. | + S[q] + S[q] S[r]). . . . . .
 Lemma 11. 77P = P. . clearly S[77P] = 1+ S.[7P] = 1+1+S[P] = S[P].
 1. Tautology. (PV7P) is in DNF.
  let s be any truth-assignment
   S[pv-p] = S[p] + S[p] + S[p] + S[p] = S[p] + (1+S[p]) + S[p] (1+S[p]).
   . = . 1 + S[P] + S[P] S[P] = 1+S[P]+S[P] = .1.
2. tantology. DNF: (9 VP V 7P). By lemma 1.2.9. and Corollary 1.2.7.
 (((p→9)179) → 7p)
\left(\left((7PV9)N79\right)\rightarrow P\right). \qquad (18)
\left(7\left((7PV9)N79\right)V7P\right). \qquad (18)
```

$$\left(\left(7(7PVQ) \vee 77Q \right) \vee 7P \right)$$

$$\left(\left((77PVQ) \vee 7Q \right) \vee 7P \right)$$

$$\left(\left((PVQ) \wedge (7Q \vee Q) \right) \vee 7P \right)$$

$$\left(\left((PVQ) \wedge (7Q \vee Q) \right) \vee 7P \right)$$

$$\left((PVQ) \wedge T \right) \vee 7P \right)$$

$$\left((PVQ) \wedge 7P \right)$$

$$\left((PVQ) \vee 7P \right)$$

$$\left((QVP) \vee 7P \right)$$

$$\left$$

```
4. Tedious.........
```

1. Fact. 8*[P] = 1+8[P] and S[P] = 1+8*[P] · fact. [7Ø]"= .7 Ø" and [(Ø.Φλ)]"=(Ø.* Φλ.*)......

Approach. Induction on formulas. Base Case. Fo. $\beta = P$ for some $p \in P$. Then $\mathcal{O}^{\mathcal{P}} = 7.P.$ It hollows......

 $= S^* \{ \emptyset^* \}.$

. Induction hypothesis. Assume the statement holds for NZO, On formulas Fn.

Induction Step. 46 Fn+1. Then.

· Case 1. 4=70, where ØE.tn. clearly $1^{+}=1703^{+}=70^{+}$

by ind. hypo. SEØ] = S*EØ*J. Then.

 $1+\delta [\phi] = 1+\delta^* [\phi^*]$

. Case 2. $Y = (\emptyset \emptyset \lambda)$, where \emptyset , $\lambda \in F_n$. . Clearely $4* = [(\emptyset \Diamond \lambda)]^{2} = (\emptyset * \Diamond \lambda^*)$.

by ind. hypo. $SEØJ = S^{*}EØ^{*}J$ and $S[\lambda] = S^{*}[\lambda^{*}J$.

Case 2.1. $\lozenge = \land$ Case 2.2 $\lozenge = \rightarrow$

 $S[H] = [\emptyset \wedge \lambda] = S[\emptyset] \cdot S[\lambda] \cdot S[H] = H S[\emptyset] + S[\emptyset] \cdot S[\lambda].$

 $= |S^*(\phi^*) S^*(\lambda^*)| = |+ S^*(\phi^*) + S^*(\phi^*) S^*(\lambda^*)|$

.

.

.

.

2. Observe $\mathcal{O}^{*} = \mathcal{O}(7^{p_1}/p_1, 7^{p_2}/p_2, ..., 7^{p_n}/p_n)$.

Consider truth-assignment λ where $\lambda[P_i] = S[-7P_i] = 1 + S[-P_i]$. (-) hiven Ø is a tautology. $S[\phi(7P/P_1,...,7Pn/P_n)] = \lambda[\phi]$ by thm 1.2.5 $S[\phi^*] = 1$ Since ϕ is a tautology · Since & was arbitrary, & is a tautology. (E) hiven D'és is a tautology Then [\$\psi] is a tartalogy as we have just proved but .77. Pi = Pi, and hence by Corollary 1.2.7. 0 = 0. So Ø is a tautology. · alt. Proof using (1). . (->). River ø is tautology.......... let 8 be any truth-assignment. . Construct St as given in the question. Then $S(p^*) = S^*(p^{**})$ By (1). ... = $5^{*}(\emptyset)$. Ø and \emptyset^{**} are logically equivalent. . (c) Symmetric alt Proof (By TA Ibrahim) . . . We have $T: S \rightarrow S$, $S = \{ truth-assignments \}$ We show T is surjective.

for SES, Consider S*, and observe T.(S*) = S** = S. . Now taking arbitrary S., We know there!s S' s.t S'(\$) = S(\$). but Ø is given tautology, So. S'(Ø)=1.