伊藤清三《ルベーグ積分入門》読書記録

最終更新: 2022年10月1日

<u>注意</u>: 記述の正確性は保証しません. ややこしいことになりたくないので, 本文の引用は最小限にしています. **?** マークは不明/自信なし/要復習を意味しています.

誤植と思われるもの (2018/6/5 新装第1版第2刷)

頁	行	誤	正
16	3	間 3	問 3
21	-7	$\sum_{i=1}^{n} m(J_j)$	$\sum_{j=1}^{n} m(J_j)$
25	10	ででもあるから	でもあるから
32	9	定理 5.3 により	定理 5.5 により
108	7	$\int_X f_j(x,y)d\mu_i(y) < \infty$	$\int_X f_j(x,y)d\mu_i(x) < \infty$
109	-6	$\int_{Z} f^{-}(z)dz = -\infty$	$\int_Z f^-(z)dz = +\infty$
147	-12	$\leq \beta$	$\leq \beta$.
147	-3	$\lim_{h \to -0} \frac{\Phi((x- h ,x])}{ h }$	$\lim_{h \to +0} \frac{\Phi((x- h ,x])}{ h }$
156	3	$\int_{a}^{b} = F(x)d\varphi(x)$	$\int_{a}^{b} F(x) d\varphi(x)$
185	8	(23.14) により	(24.14) により
196	5	$\frac{1}{n(n+1)}$	$\frac{1}{(n+1)(n+2)}$
196	7(3 箇所)	$E_n, < n, > \frac{1}{n}$	$E_{n+1}, < n+1, > \frac{1}{n+1}$
196	8(3 箇所)	$E_{n+1}, < n+1, > \frac{1}{n+1}$	$E_{n+2}, < n+2, > \frac{1}{n+2}$
196	10	> (n+1) - n = 1	> (n+2) - (n+1) = 1
196	12	$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$	$\frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}$
200	15	$\sum_{n=1}^{\infty} \geqq \chi_A$	$\sum_{n=1}^{\infty} f_n \geqq \chi_A$
? 207	1	$x \in S_{m_{k+2}}$	$x \in S_{m_{k+1}} - S_{m_k}$
300	6	$\sup_{f \in \mathbf{D}(T)} Tf _1 \le \sup_{f \in \mathbf{D}(T)} Tf _1 \le T $	$\sup_{\substack{f \in \mathbf{D}(T) \\ \ f\ =1}} \ Tf\ _1 \le \sup_{\substack{f \in \mathbf{D}(T) \\ \ f\ \le 1}} \ Tf\ _1 \le \ T\ $

参考文献

[1] 伊藤清三, ルベーグ積分入門, 2018/6/5 新装第 1 版第 2 刷