# Basic tools: orientation tests

Rodrigo Silveira

Computational Geometry Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

Consider a sequence of 3 points: p, q, r



Consider a sequence of 3 points: p, q, r



#### Consider a sequence of 3 points: p, q, r



Basic question: do they make a right turn?

A left turn?

Or perhaps they are colinear?

#### Consider a sequence of 3 points: p, q, r



Basic question: do they make a right turn?

A left turn?

Or perhaps they are colinear?

#### Consider a sequence of 3 points: p, q, r



Basic question: do they make a right turn?

A left turn?

Or perhaps they are colinear?

This is a fundamental basic operation in geometric algorithms. Requires a solution that is

- Efficient
- Numerically robust

#### Consider a sequence of 3 points: p, q, r



Basic question: do they make a right turn?

A left turn?

Or perhaps they are colinear?

This is a fundamental basic operation in geometric algorithms. Requires a solution that is

- Efficient
- Numerically robust

Solution: **signed area of triangle**  $\triangle pqr$ 

#### **Signed** area of $\triangle pqr$



The signed area of  $\triangle pqr$  tells us the area of the triangle, and the **sign** gives the orientation (left-turning or right-turning)

• Can the area be zero?

#### **Signed** area of $\triangle pqr$



The signed area of  $\triangle pqr$  tells us the area of the triangle, and the **sign** gives the orientation (left-turning or right-turning)

• Can the area be zero?

#### Computing $A(\triangle pqr)$

- $A(\triangle pqr)$  is twice the area of the parallelogram defined by vectors  $\overline{pq}$  and  $\overline{w}$
- ullet Recall: in 2-dimensions, the area of the parallelogram defined by two vectors is the determinant of a  $2\times 2$  matrix whose columns are the two vectors



#### **Signed area of** $\triangle pqr$

$$A(\triangle pqr) = \frac{1}{2} \begin{vmatrix} \overline{pq}_x & \overline{w}_x \\ \overline{pq}_y & \overline{w}_y \end{vmatrix}$$



#### **Signed area of** $\triangle pqr$

$$A(\triangle pqr) = \frac{1}{2} \begin{vmatrix} \overline{pq}_x & \overline{w}_x \\ \overline{pq}_y & \overline{w}_y \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} (q-p)_x & (r-p)_x \\ (q-p)_y & (r-p)_y \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} q_x - p_x & r_x - p_x \\ q_y - p_y & r_y - p_y \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} p_x & q_x & r_x \\ p_y & q_y & r_y \\ 1 & 1 & 1 \end{vmatrix}$$



#### **Signed area of** $\triangle pqr$

$$A(\triangle pqr) = \frac{1}{2} \begin{vmatrix} \overline{pq}_x & \overline{w}_x \\ \overline{pq}_y & \overline{w}_y \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} (q-p)_x & (r-p)_x \\ (q-p)_y & (r-p)_y \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} q_x - p_x & r_x - p_x \\ q_y - p_y & r_y - p_y \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} p_x & q_x & r_x \\ p_y & q_y & r_y \\ 1 & 1 & 1 \end{vmatrix}$$



#### Does it turn right or left?

Fact: (check it yourself!)  $A(\triangle pqr)>0 \mbox{ if and only if } p,q,r \mbox{ are in } {\bf counter-clockwise} \mbox{ order}$ 





Equivalent question: do p, q, r turn right or left?



Equivalent question: do p, q, r turn right or left?

#### Line-segment intersection test





Equivalent question: do p, q, r turn right or left?

#### **Line-segment intersection test**



 $\overline{rs}$  intersects line  $\ell \leftrightarrow r$  and s are on opposite sides of  $\ell$ 

 $\leftrightarrow$  (r is to the left and s is to the right of  $\ell$ ) OR (r is to the right and s is to the left of  $\ell$ )











#### **Segment-segment intersection**



Does segment pq intersect segment rs?

#### **Segment-segment intersection**



#### **Segment-segment intersection**



• r and s are on opposite "sides" of  $\overline{pq}$ 

#### **Segment-segment intersection**



#### **Segment-segment intersection**



## **Summary**

#### Things we can do with the orientation test

- Test if p, q, r make a right turn
- Test if a point is to the left of a line
- Test if a segment and a line intersect
- Test if a segment and a halfline intersect
- Test if two segments intersect
- Test if a point is inside a triangle

All by evaluating the sign of a couple of determinants!

## **Summary**

#### Things we can do with the orientation test

- Test if p, q, r make a right turn
- Test if a point is to the left of a line
- Test if a segment and a line intersect
- Test if a segment and a halfline intersect
- Test if two segments intersect
- Test if a point is inside a triangle

All by evaluating the sign of a couple of determinants!

#### Another useful test: point in circle

See notes on course webpage

# **Summary**

#### Things we can do with the orientation test

- Test if p, q, r make a right turn
- Test if a point is to the left of a line
- Test if a segment and a line intersect
- Test if a segment and a halfline intersect
- Test if two segments intersect
- Test if a point is inside a triangle

All by evaluating the sign of a couple of determinants!

#### Another useful test: point in circle

See notes on course webpage

