Jan Westerdiep, PhD janner@gmail.com LinkedIn/janwesterdiep GitHub/Jannertje

I am a busy bee, a fast learner, and always eager to explore new ideas. I tinker with everything I see and enjoy understanding "how it works". I have a heart for science, work best in a team, and would like to apply and deepen my knowledge in a field that might benefit society.

EXPERIENCE

Munich, DE Apple 2022-now

Software Engineer @ Hardware Test Engineering team

· High-performance numerical algorithms in C++

Google/Maps London, UK 2018

Software Engineering Intern @ Live Location team

· 13-week research project on scalable Reinforcement Learning algorithms in Python/TensorFlow

Google/YouTube Mountain View, California, USA Software Engineering Intern @ Watch Next team

· 14-week project in high-performance C++ for machine learning (scalable recommender systems)

EDUCATION

University of Amsterdam

Amsterdam, NL

PhD in Numerical Mathematics

2017-2021

2014-2017

- · Research at interface of mathematics, computer science, and physics under prof. dr. R. Stevenson
- · Co-author of 6 journal papers, 2 conference papers, 3 open-source software libraries in C++ and Python
- · Thesis: Space-time residual minimization for parabolic partial differential equations

MSc in Mathematics (GPA: 8.8/10; Cum Laude)

· ASML Technology Scholarship; 29th place at 2015 ICPC North-west European finals

· Thesis: Two-dimensional hp-adaptive finite elements in theory and practice, graded 9/10

BSc in Mathematics & BSc in Computer Science (GPA: 8.6/10; Cum Laude & Hon's) 2011-2014

· Thesis: An adaptive algorithm for piecewise polynomial approximation, graded 10/10

Barlaeus Gymnasium Amsterdam, NL 2006-2011

Pre-university education (GPA: 8.5/10; Cum Laude)

TEACHING EXPERIENCE

2021	Supervising year-3 BSc project Finite element method for elliptic eigenvalue problems
2019–'21	Co-creating & co-lecturing BSc course Training Benelux Algorithm Programming Contest
2019–'20	Supervising year-2 BSc projects Multilayer Perceptrons, Quasi-Monte Carlo integration
2018, '20	TA for MSc course Numerical Algorithms
2017–'20	TA for BSc courses Numerical Analysis, Numerical Linear Algebra, Intro Programming
2010–'12	Training track & field to pupils age 6–12, focusing on fun and creative trainings

PEER-REVIEWED SCIENTIFIC PUBLICATIONS

- **2022** Efficient space-time adaptivity for parabolic evolution equations using wavelets in time and finite elements in space, with R. van Venetië. In Numerical Linear Algebra with Applications. doi:10.1002/nla.2457 and doi:10.5281/zenodo.4700537.
- **2022** A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations, with R. Stevenson & R. van Venetië. In Advances in Computational Mathematics. doi:10.1007/s10444-022-09930-w.
- **2021** Space-time residual minimization for parabolic partial differential equations, Ph.D. thesis.
- **2021** Minimal residual space-time discretizations of parabolic equations: Asymmetric spatial operators, with R. Stevenson. In Computers & Mathematics with Applications. doi:10.1016/j.camwa.2021.09.014.
- 2021 Accuracy controlled data assimilation for parabolic problems, with W. Dahmen & R. Stevenson. In Mathematics of Computation. doi:10.1090/mcom/3680.
- 2020 A parallel algorithm for solving parabolic evolution equations, with R. van Venetië. In Parallelin-Time Integration Methods. doi:10.1007/978-3-030-75933-9_2 and doi:10.5281/zenodo.4475959.
- 2020 PACE Solver Description: tdULL, with R. Brokkelkamp, M. de Vries & R. van Venetië. In Proceedings of IPEC 2020. doi:10.4230/LIPIcs.IPEC.2020.29 and doi:10.5281/zenodo.3881472.
- 2019 Stability of Galerkin discretizations of a mixed space-time variational formulation for parabolic evolution equations, with R. Stevenson. In IMA Journal of Numerical Analysis. doi:10.1093/imanum/drz069.
- 2018 On p-Robust Saturation on Quadrangulations. In Computational Methods in Applied Mathematics. doi:10.1515/cmam-2018-0136.

SCIENTIFIC TALKS

- 2021 Parallel space-time residual minimization for parabolic evolution equations, PinT2021.
- 2021A parallel algorithm for solving parabolic evolution equations, YIC2021.
- Space-time adaptivity for parabolic evolution equations, PinT2020. 2020
- Stability of Galerkin discretizations of parabolic evolution equations, AANMPDE12. 2019
- Optimal hp-adaptive finite elements in practice, poster at WSC2018.

EXTRACURRICULARS

Jellinek Verslavingszorg

Amsterdam, NL

Peer Educator @ Unity Amsterdam

2014-2022

· Volunteer project for and by people in electronic music, providing harm reduction education at events

Phanos Amsterdam Amsterdam, NL Track & Field athlete

2007-2012

· Sprint (100m, 200m) and 4×100m relay; in Dutch relay team for 2012 Under-20 World Championships

SKILLS

Computer Languages C++, C, Python, MATLAB, Mathematica

vim, git, LATEX, Photoshop, MacOS, GNU Linux Computer Tools

Natural Languages Dutch (mother tongue), English (fully fluent), German (elementary)

INTERESTS

Live performances in electronic music genres, cooking, athletics, swimming, cycling, bouldering