

Inhaltsverzeichnis

1	Line	ineare Ausgleichsrechnung		
	1.1	Lernziele		
	1.2	Theorie		
	1.3	Aufträge		
	1.4	Abgabe		

1 Lineare Ausgleichsrechnung

1.1 Lernziele

- Sie erkennen, ob es sich bei einem gegebenem funktionalen Zusammenhang zu einer Reihe von Messungen um ein lineares Ausgleichsproblem handelt.
- Sie können die zum Ausgleichsproblem gehörende Normalgleichung formulieren.
- Sie kennen den Zusammenhang zwischen Normalgleichung und Minimierung der Fehlerquadratsumme.
- Sie können die Kleinste-Quadrate-Lösung durch Cholesky-Zerlegung von A^TA und Vorwärts- sowie Rückwärts- substitution berechnen.

1.2 Theorie

Das Praktikum fokusiert die lineare Ausgleichsrechnung, insbesondere auf die Abschnitte 2.2.1 bis 2.2.3 ohne QR-Zerlegung und Householder-Transformation.

Referenzen ous dem Skript von Herrn Stingelin

1.3 Aufträge

Auftrag 1

Wir betrachten das Beispiel 2.10 im Skript. Gegeben sei ein periodischer Vorgang zum Beispiel aus einer Messung $(t_i, u_i),$

für dessen Modellierung durch eine stetige Funktion f(t) mit **gegebener** Periode T eine Linearkombination der trigonometrischen Funktionen

$$cos(\omega k t), \quad k = 0, \dots, n$$

 $sin(\omega k t), \quad k = 1, \dots, n$

$$\omega = \frac{2\pi}{T}$$

verwendet wird. Gesucht sind daher die Koeffizienten a_k und b_k von

was ist die Variable?

was sind the Parameter?
$$f_n(t) = \frac{1}{2}a_0 + \sum_{k=1}^n \left(a_k \cos(\omega \, k \, t) + b_k \sin(\omega \, k \, t)\right).$$
 (thing. Polynom) Aufgaben:
$$\omega = \frac{2\pi}{T}$$

Aufgaben:

1. Laden Sie die gegebenen Messdaten aus dem File ,data.txt'

 $\begin{array}{ccc} (t') & \begin{pmatrix} x_4 & y_4 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} \in \mathbb{R}^{m \times 2}$ data = np.genfromtxt('data.txt') In matlab data = readmatrix('data.txt')

- 2. Visualisieren Sie die Messung. Wie gross ist die Abtastrate? Wie gross schätzen Sie die Grundfrequenz 1/T des periodischen Signals?
- 3. Welche Dimension hat die Systemmatrix für $f_n(t)$?
- 4. Berechnen Sie die Systemmatrix für $f_5(t)$ mit $\omega = 1$.
- 5. Welche Dimension hat die Normalgleichung?
- 6. Lösen Sie mit Hilfe der Cholesky-Zerlegung aus NumPy

from np.linalg import cholesky ATA = LLT L = cholesky(A)

In matlab

```
L = chol(A,"lower")
```

die Normalgleichung. Wie lautet $f_n(t)$?

a fbSubs appassen oder scipy. limby. solve. thiorgu

Achtung: Da L nicht normiert ist, erfordert das Vorwärtseinsetzen die Division durch das Diagonalelement. In der native SciPy Implementierung wird dies gemacht.

```
from scipy.linalg import solve_triangular
```

In matlab

```
opts.LT = true;
x = linsolve(L,b,opts);
```

- 7. Visualisieren Sie Ihre Lösung in den Messdaten. Welche Anteile sind massgebend vorhanden? (Optional: Vergleichen Sie das Resultat mit der FFT.)
- 8. Wie gross ist die quadratische Fehlersumme?
- 9. (Optional für Python interessierte Studierende nach der Bearbeitung des Auftrag 2!) Vervollständigen Sie die python Klasse mit Funktionalität.
 - Initialisierung speichert die Messdaten
 - computeCoefs(n) berechnet und speichert die Koeffizienten für das Modell $f_n(t)$.
 - *compute(t)* berechnet für ein *np.array* die Modellfunktionen mit den berechneten Koeffizienten.

Sie können sich an der folgenden Vorlage orientieren:

```
class myFit:
  def __init__(self, data):
      self.setData(data)
                          # Klassen Variable für die Modell Koeffizienten
      self.c = None
      self.omega = omega
 def setData(self, data):
      self.ti = data[:,0] # Zeitstempel
      self.ui = data[:,1] # Messwerte
 def computeCoefs(self, n=5):
      self.n = n
      <<snipp>>
      self.c = <<snipp>>
 def compute(self,t):
      if not type(mf.c) == np.ndarray:
          self.computeCoefs()
      y = <<snipp>>
      return y
```

Damit können wir Messdaten effizient analysieren:

```
# Objekt instanzieren
mf = myFit(data)
# Koeffizienten berechnen
mf.computeCoefs(5)
# Visualisieren
plt.plot(t,mf.compute(t))
plt.show()
```

Auftrag 2

Gegeben ist die Entladungskurve eines RC-Netzwerk Kondensators mit der Kapazität C. Der Innenwiderstand R_C beträgt $R_C=100\Omega$.

Zeit [ms]	Spannung [V]
0.0	5.0
0.03	2.94
0.05	1.73
0.08	1.01
0.10	0.6

Bestimmen Sie mit Hilfe eines RC-Glieds und der linearen Ausgleichsrechnung die Kapazität C des Kondensators.

- 1. Wie lautet die Differentialgleichung? Berechnen Sie die allgemeine Lösung als Basis für das Modell.
- 2. Wie lautet die Systemmatrix?
- 3. Wie gross ist die Kapazität?

1.4 Abgabe

- Auftrag 1: Lösungsfunktion mit Koeffizienten, Graph mit Messung und Modell, quadratische Fehlersumme.
- Auftrag 2: Modell, Kapazität.

Kurzer Bericht mit den Ergebnisse und python Code als Textfile.

Downloads:

- PDF-Dokumentation:
 - Anleitung Praktikum 4
 - data.txt