NMB - Oefenzitting 3: Eigenwaardenproblemen

Hendrik Speleers, Simon Telen

1 De QR-methode

Opgave 1. Construeer drie testmatrices:

• $A_1 = P_1 \Lambda_1 P_1^T$ met P_1 orthogonaal en

$$\Lambda_1 = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 4 \end{array}
ight]$$

- $A_2 = P_2 \Lambda_2 P_2^{-1}$ met $\kappa(P_2) = 10^5$ en $\Lambda_2 = \Lambda_1$
- $A_3 = P_3 \Lambda_3 P_3^{-1} \text{ met } P_3 = P_2 \text{ en}$

$$\Lambda_3 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{array} \right]$$

Om de QR-methode uit te voeren, gebruik je het commando

dat je op Toledo kan vinden. Deze routine drukt voor iedere stap de matrix A en de bekomen residunorm af. Deze normen worden ook bijgehouden in res. Bepaal voor de 3 testmatrices:

- a) Naar welke eigenwaarde convergeert de methode?
- b) Hoe snel is de convergentie?
- c) Verklaar.

2 Inverse iteratie

Opgave 2. De inverse iteratie-methode laat toe een benadering x te vinden voor een eigenvector van de matrix A indien een goede benadering μ van de eigenwaarde λ gekend is, door de iteratie

$$x = \frac{b}{\|b\|}$$

$$for \quad k = 1, 2, \dots$$

$$(A - \mu I)y = x$$

$$x = \frac{y}{\|y\|}$$

een of meerdere keren uit te voeren, waarbij b een willekeurige vector is.

Theoretisch gezien is de benadering x voor de eigenvector des te beter naarmate μ een betere benadering is voor de eigenwaarde λ . Indien μ echter een erg goede benadering is voor de eigenwaarde λ , is de matrix van het stelsel bijna singulier (m.a.w. het stelsel is slecht geconditioneerd). We verwachten dan grote relatieve fouten op de oplossing y veroorzaakt door afrondingsfouten. Nochtans blijkt de berekende x in dit geval steeds een goede benadering te zijn voor de eigenvector. Verklaar deze schijnbare tegenspraak. Voer hiervoor volgend experiment uit.

Neem $A = A_1$ en $\mu = 2 + 10^{-5}$.

- a) Wat is het conditiegetal van $A \mu I$?
- b) Voer een iteratiestap uit van de inverse machtsmethode met een willekeurig rechterlid voor het stelsel.
- c) Bepaal $||x eigvec||_2$.
- d) Breng een perturbatie van grootte-orde 10^{-8} aan op de matrix $A \mu I$. Bepaal $||y y_{\text{pert}}||_2$ en $||x x_{\text{pert}}||_2$. Wat besluit je?

3 Defectieve matrices

Opgave 3. Beschouw de $n \times n$ -matrix

$$A = \begin{bmatrix} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & 1 & \end{bmatrix}$$

2

- a) Wat zijn de eigenwaarden van deze matrix en wat is de multipliciteit ervan?
- b) Perturbeer het element $a_{n,1}$ van deze matrix. Wat zijn de eigenwaarden?
- c) Wat is je besluit?

4 Stelling van Bauer-Fike

Opgave 4. In deze oefening gaan we na wat de invloed is van een additieve perturbatie op een matrix A op het spectrum van A. We gaan er vanuit dat A diagonalizeerbaar (of niet defectief) is. Stel $\tilde{A} = A + \delta A$ en noem $\Lambda(A)$ het spectrum van A. We bestuderen volgende stelling.

Stelling 1 (Bauer-Fike) Beschouw een eigenwaarde $\tilde{\lambda}$ van \tilde{A} en noem V de matrix met als kolommen de eigenvectoren van A. Er bestaat een $\lambda \in \Lambda(A)$ zodanig dat

$$|\lambda - \tilde{\lambda}| \le \kappa_p(V) \|\delta A\|_p$$

met $p \geq 1$ en κ_p het conditiegetal ten opzichte van de p-norm.

- a) Genereer een random niet defectieve 7×7 matrix A in Matlab met eigenwaarden $0, 1, \ldots, 6$ en matrix van eigenvectoren V met $\kappa_2(V) = 7$. Bereken ook de geperturbeerde matrices $\tilde{A}_k = A + \delta A_k$ waarbij δA_k random matrices zijn met $\|\delta A_k\|_2 = 10^k \cdot \epsilon_{\text{mach}}$, $1 \le k \le 10$. Plot het verloop van de absolute verandering van de grootste eigenwaarde ten opzichte van k tesamen met de bovengrens van Bauer-Fike voor de 2-norm.
- b) Vervang de matrix A uit de eerste deelvraag door een matrix met eigenwaarden $1, 10, \dots 10^6$ en maak op dezelfde manier een figuur. Wat gebeurt er en hoe valt dit te verklaren?
- c) Bewijs dat voor een normale matrix $(A^{\top}A = AA^{\top})$ de waarde van $|\lambda \tilde{\lambda}|$ begrensd is door $||\delta A||_2$ en ga dit na op dezelfde manier als in de vorige deelvragen.