HOMEWORK 9 SOLUTIONS - MATH 4341

Problem 1. Let X be a topological space. Suppose $\{x_n\}_n$ is a sequence in X converging to $x \in X$. Show that the set $A = \{x_n\}_n \cup \{x\}$ is a compact subspace of X.

Proof. Let \mathcal{U} be an arbitrary open cover of $A = \{x_n\}_n \cup \{x\}$. Then there is an open set $U \in \mathcal{U}$ so that $x \in \mathcal{U}$. Since $x_n \to x$, U contains the points x_n for all large enough n, say all n > N for some N.

Since \mathcal{U} is an open cover, we can also find open sets $U_1, \ldots, U_N \in \mathcal{U}$ so that $x_k \in U_k$ for all $k = 1, \ldots, N$. We now see that the collection U, U_1, \ldots, U_N together form a finite subcover of A. Hence A is compact.

Problem 2. Show that any finite union of compact subspaces of a topological space X is a compact subspace of X.

Proof. Suppose K_1, \ldots, K_n are compact subspaces of X. Let \mathcal{U} be an open cover of $K_1 \cup \cdots \cup K_n$. For each $i = 1, \ldots, n$, $\{U \cap K_i\}_{U \in \mathcal{U}}$ is an open cover of K_i . Since K_i is compact, there exists $U_1^i, \ldots, U_{n_i}^i$ such that $K_i = (U_1^i \cap K_i) \cup \cdots \cup (U_{n_i}^i \cap K_i)$. Then

$$\{U_i^i \mid i = 1, \dots, n, j = 1, \dots, n_i\} \subset \mathcal{U}$$

is a finite open cover of $K_1 \cup \cdots \cup K_n$. So $K_1 \cup \cdots \cup K_n$ is a compact subspace of X. \square

Problem 3. Show that any intersection of compact subspaces of a Hausdorff space X is a compact subspace of X.

Proof. Suppose $\{K_i\}_{i\in I}$ is a family of compact subspaces of a Hausdorff space X. For each $i, K_i \subset X$ is closed since K_i is a compact subspace of a Hausdorff space X. Then $\bigcap_{i\in I} K_i$ is closed. Since $\bigcap_{i\in I} K_i$ is a closed subspace of the compact space K_1 , it is compact. \square

Problem 4. Suppose \mathbb{R} has the topology consisting of all subsets A such that $\mathbb{R} \setminus A$ is either finite or all of \mathbb{R} . Show that every subspace of \mathbb{R} is compact.

Proof. Suppose $A \subset X$ and let \mathcal{U} be an open cover of A. Take any $U_0 \in \mathcal{U}$. Since U_0 is open in A, it covers all but a finite number of points in A. Choose a finite number of sets from \mathcal{U} covering $A \setminus U_0$. These sets and U_0 form a finite subcover, hence A is compact. \square

Problem 5. Show that a compact subspace of a topological space is not always closed.

Proof. Consider \mathbb{R} with the topology consisting of all subsets A such that $\mathbb{R} \setminus A$ is either finite or all of \mathbb{R} . By problem 4, every subspace of \mathbb{R} is compact. However, not all subspaces of \mathbb{R} are closed, since closed sets in \mathbb{R} are exactly finite sets and \mathbb{R} .