Round A 2022 - Kick Start 2022

Challenge Nine

PROBLEM ANALYSIS

Problem

Ada gives John a positive integer N N. She challenges him to construct a new number (without leading zeros), that is a multiple of 99, by inserting *exactly* one digit $(0 \dots ... 9)$ anywhere in the given number N N. It is guaranteed that N N does not have any leading zeros.

As John prefers smaller numbers, he wants to construct the smallest such number possible. Can you help John?

Input

The first line of the input gives the number of test cases, T T. T T test cases follow.

Each test case has a single line containing a positive integer N N: the number Ada gives John.

Output

For each test case, output one line containing Case #xx: yy, where xx is the test case number (starting from 1) and yy is the new number constructed by John. As mentioned earlier, yy cannot have leading zeros.

Limits

Memory limit: 1 GB.

 $1 \le T \le 100$ $1 \le T \le 100$.

Test Set 1

Time limit: 20 seconds.

 $1 \le N \le 10^5$ $1 \le N \le 105$.

Test Set 2

Time limit: 40 seconds.

For at most 10 cases:

 $1 \le N \le 10^{123456}$ 1 \le N \le 10123456.

For the remaining cases:

 $1 \le N \le 10^5$ $1 \le N \le 105$.

Sample

Sample Input	save_alt content_copy
3 5 33 12121	

Sample Output	save_alt content_copy
Case #1: 45 Case #2: 333 Case #3: 121212	

In Sample Case #1, there are only two numbers that can be constructed satisfying the divisibility constraint: 4545 and 5454. John chooses the smaller number.

In Sample Case #2, 333333 is the only number possible.

In Sample Case #3, there are four possible options - 212121212121, 122121122121, 1212211212121 and 121212121212 - out of which the smallest number is 121212121212.