CSE 417T Introduction to Machine Learning

Instructor: Chien-Ju (CJ) Ho

Logistics

- Join Piazza
 - https://piazza.com/wustl/fall2022/cse417t
 - You are responsible for following the announcements on Piazza
- Homework
 - Homework 0 is a warm-up for you to see whether you are comfortable with the course content/requirements
 - Homework 1 will be announced next week
 - The questions in HW0 will appear in HW1 as well
- Probability cheatsheet
 - http://www.wzchen.com/probability-cheatsheet

Logistics: Grading and Exams

- Homework assignments (5 to 6): 50%
 - Mix of programming and pencil-and-paper problems
 - Worst score discounted by 50%
 - Programming language: Python
 - We don't teach how to program Python
 - 5 total late days, no more than 2 on any one assignment
- Two exams: 50% (25% each)
 - One in the middle of the semester (sometime in mid-to-late October)
 - One on the last lecture of the semester
 - Each exam covers around half of the materials. No separate final exam.
 - More details will be announced later

Logistics: Academic Integrity

• Discussion (conceptually) about course content and homework assignments is encouraged.

- How to make sure to not violate academic integrity?
- Rule of thumb:
 - You must write down the answers/codes entirely on your own.
 - Can't look at the write-up / codes by others.

Ask if you are not sure.

Recap

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$

Given by the learning problem

FINAL HYPOTHESIS $g \approx f$ (learned credit approval formula)

Goal of learning

Linear Hypothesis Space (Perceptron)

- Input $\vec{x} = (x_1, x_2, ..., x_d)$
- Output $y \in \{-1, +1\}$

Note that
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$
 is a column vector;
For convenience, we write $\vec{x} = (x_1, \dots, x_d)$

- A hypothesis h is a linear separator $\vec{w}^T \vec{x} = b$, characterized by
 - weight vector $\vec{w} = (w_1, ... w_d)$
 - threshold **b**
- $h(\vec{x}) = sign(\sum_{i=1}^{d} w_i x_i b) = sign(\vec{w}^T \vec{x} b)$
 - Predict +1 if $\vec{w}^T \vec{x} > b$
 - Predict -1 if $\vec{w}^T \vec{x} < b$

Linear Hypothesis Space (Perceptron)

- To simplify $h(\vec{x}) = sign(\vec{w}^T\vec{x} b)$, define
 - $x_0 = 1$
 - $w_0 = -b$
- And we implicitly let
 - $\bullet \ \vec{x} = (x_0, x_1, \dots, x_d)$
 - $\vec{w} = (w_0, w_1, ..., w_d)$

- A hypothesis can then be written as
 - $h(\vec{x}) = sign(\vec{w}^T \vec{x})$
 - We will interchangeably use h and \vec{w} to express a hypothesis in Perceptron

Perceptron Learning Algorithm (PLA)

- Given a dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
- Assume the dataset is linearly separable
- Want to find a hypothesis that separates data in D
- Perceptron Learning Algorithm
 - Initialize $\vec{w}(0) = \vec{0}$
 - For t = 0, ...
 - Find a misclassified data point $(\vec{x}(t), y(t))$ in D
 - That is, $sign(\vec{w}(t)^T \vec{x}(t)) \neq y(t)$
 - If no such data point exists
 - Return $\vec{w}(t)$
 - Else
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) + y(t)\vec{x}(t)$

Notation:

We use $\vec{w}(t)$ to denote the value of \vec{w} at step t of the algorithm.

Similarly, we use $(\vec{x}(t), y(t))$ to denote the data point found at step t.

Perceptron Learning Algorithm (PLA)

- Theorem (informal):
 - If a dataset *D* is linearly separable, PLA find a linear separator that separates the data in *D* within a finite number of steps.
- You will prove the above theorem in HW0 / HW1

Perceptron

Graphical Representation

Inspired by neurons:

The output signal is triggered when the weighted combination of the inputs is larger than some threshold

Deep learning (neural network with many layers)

Common Notations in This Course

- Data point with augmented x_0 : $\vec{x} = (x_0, ..., x_d)$
 - We often use d to specify the dimension of data points
 - We augment $x_0 = 1$ for each data point

```
Note that \vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} is a column vector;
For convenience, we write \vec{x} = (x_1, \dots, x_d)
```

- Dataset: $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - We often use N to specify the number of data points in the dataset
- Hypothesis set H
 - We use $h \in H$ to specify an arbitrary hypothesis
 - We use $g \in H$ to specify the hypothesis output by the learning algorithm
- Indicator variable:
 - $\mathbb{I}[\text{event}] = \begin{cases} 1 & \text{if event is true} \\ 0 & \text{if event is false} \end{cases}$

Example:
$$\mathbb{I}[h(\vec{x}) \neq f(\vec{x})] = \begin{cases} 1 & \text{if } h(\vec{x}) \neq f(\vec{x}) \\ 0 & \text{if } h(\vec{x}) = f(\vec{x}) \end{cases}$$

Lecture Today

The notes are not intended to be comprehensive. Let me know if you spot errors.

 $(set\ of\ candidate\ formulas)$

Given by the learning problem

learning model (example:

H: Perceptron

A: PLA)

How Do We Formally Characterize the Goal?

- Goal of learning: find $g \approx f$
 - *f*: unknown target function
 - g: output of the learning algorithm
 - What do we mean by $g \approx f$?
- Main idea: Generalization
 - Want g to make predictions similar to f for unseen data points

Focus of today's lecture:

- Feasibility of learning
- Can we achieve generalization?

Predict for unseen points (Generalization)

Training Dataset

f(x) = ???

$$h(x) = \begin{cases} +1 \text{ if symmetric} \\ -1 \text{ otherwise} \end{cases}$$

Hypothesis 1

$$f(x) = +1$$

$$f(x) = -1$$

$$f(x) = ???$$

Hypothesis 2

$$h\left(\begin{array}{c} \downarrow \\ \downarrow \\ h\left(\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \end{pmatrix} = -1$$

 $h(x) = \begin{cases} +1 & \text{if top left is white} \\ -1 & \text{otherwise} \end{cases}$

You can come up with many more hypothesis

Feasibility of Learning

- Is learning feasible (can we generalize the learning)?
 - Cannot know anything for sure about f outside the data without assumptions
 - We might need to give up the "for sure" and make additional assumptions
- Thought experiments: Which hypothesis would you choose? Why?

Key assumption of ML

Training data points and test data points are i.i.d. drawn from the same (unknown) distribution

Remarks

- Modern ML is built on probabilistic inference with this assumption
- The assumption is a reasonable approximation in many useful scenarios
- The assumption might not hold in other cases
 - There are various research efforts on this, but it's outside of the scope of this course

Let's discuss probability first

We'll then talk about how it connects back to machine learning

A Thought Experiment about Probability

What can we say about μ from ν ?

Law of large numbers

• When $N \to \infty$, $\nu \to \mu$

Hoeffding's Inequality

• $\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$ for any $\epsilon > 0$

Interpretations

$$\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

- Define $\delta = \Pr[|\mu \nu| > \epsilon]$
 - Probability of the bad event
 - Probability of the bad event is bounded by $2e^{-2\epsilon^2N}$
- A tradeoff between δ , ϵ , N
 - Fix ϵ , $\delta = O(e^{-N})$
 - Fix $N, \delta = O(e^{-\epsilon^2})$
 - Fix δ , $\epsilon = O(\sqrt{1/N})$
- For example, N=1000
 - $\mu 0.05 \le \nu \le \mu + 0.05$ with 99% chance
 - $\mu 0.10 \le \nu \le \mu 0.10$ with 99.999996% chance

Interpretations

$$\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

- Define $\delta = \Pr[|\mu \nu| > \epsilon]$
 - Probability of the bad event
- For example, N=1000
 - $\mu 0.05 \le \nu \le \mu + 0.05$ with 99% chance
 - $\mu 0.10 \le \nu \le \mu + 0.10$ with 99.999996% chance

- ν is approximately close to μ with high probability
- ν as an estimate of μ is **p**robably **a**pproximately **c**orrect (P.A.C.)

PAC learning is proposed by Leslie Valiant, who wins the Turing award in 2010.

Connection to Learning

- Let each marble represent a point \vec{x} , drawn from unknown $P(\vec{x})$
 - Dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - Recall that $y_n = f(\vec{x}_n)$ (will discuss noisy target function f later in the semester)
- "Fix" a hypothesis h
 - For each marble \vec{x} , color it as below
 - If $h(\vec{x}) = f(\vec{x})$, color it as green marble [h is correct on \vec{x}]
 - If $h(\vec{x}) \neq f(\vec{x})$, color it as red marble $[h \text{ is wrong on } \vec{x}]$

Connection to Learning

- Let each marble represent a point \vec{x} , drawn from unknown $P(\vec{x})$
 - Dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - Recall that $y_n = f(\vec{x}_n)$ (will discuss noisy target function f later in the semester)
- "Fix" a hypothesis h
 - For each marble \vec{x} , color it as below
 - If $h(\vec{x}) = f(\vec{x})$, color it as green marble [h is correct on \vec{x}]
 - If $h(\vec{x}) \neq f(\vec{x})$, color it as red marble $[h \text{ is wrong on } \vec{x}]$

With the above coloring

$$v = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$$

$$\stackrel{\text{def}}{=} E_{in}(h) \quad \text{[in-sample error of } h\text{]}$$

$$\mu = \Pr_{\vec{x} \sim P(\vec{x})} [h(\vec{x}) \neq f(\vec{x})]$$

$$\stackrel{\text{def}}{=} E_{out}(h) \quad \text{[Out-of-sample error of } h\text{]}$$

$\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$

Connection to Learning

- Look at the error again
 - $E_{out}(h)$: What we really care about but unknown to us
 - $E_{in}(h)$: What we can calculate from dataset D

• Fixed a h, What can we say about $E_{out}(h)$ from $E_{in}(h)$?

Hoeffding's Inequality

$$\Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

- Are we done?
 - Not really, this is verification, not learning

Verification vs. Learning

Verification

- I have a hypothesis h
- I know $E_{in}(h)$, i.e., how well h performs in my dataset
- I can infer what $E_{out}(h)$ (how well h will perform for unseen data) might be

Learning

- Given a dataset D and hypothesis set H
- Apply some learning algorithm, that outputs a $g \in H$
- Know $E_{in}(g)$
- Want to infer $E_{out}(g)$

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
 - For example, choosing the hypothesis that minimizes in-sample error
 - $g = argmin_{h \in H} E_{in}(h)$
- Can we apply Hoeffding's inequality and claim

$$\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

· No!

Consider this example

• If you toss a fair coin 10 times, the prob that you get heads 10 times is

$$2^{-10} = \frac{1}{1024}$$

• If you toss 1000 fair coins 10 times each, the probability that at least one coin comes up heads 10 times is

$$1 - \left(\frac{1023}{1024}\right)^{1000} \approx 62.36\%$$

- If each hypothesis is doing random guessing (i.e., tossing a fair coin), if we have 1000 hypothesis with 10 data points, more than 60% chance there will be at least one hypothesis with zero in-sample error
 - But that hypothesis is still random guessing and has 50% out-of-sample error

An Analogy

- Three fair coins, numbered by 1, 2, 3.
 - Flip each coin 10 times
- Question: (choosing from >5, =5, or <5)
- Ans: = 5 For coin 1, what's the expected number of heads among 10 flips?
- Ans: = 5 Randomly choose a coin, what's the expected number of heads for this coin?
- Look at the realized flips and choose the coin with the largest number of heads. What is the expected number of heads (on the already flipped results) for the coin?
- Ans: = 5 Without observing the flips, choose the coin anyway you like, what is the expected number of heads of the 10 flips for this coin?
 - You will simulate this process (with 1,000 coins) in HW1.

An Analogy

- Connects to learning
 - Coin -> Hypothesis
 - Coin flips -> Performance of hypothesis in training data D
- Choosing the hypothesis "before" or "after" looking at the data (knowing the realization of the data drawing) makes a big difference!

An Analogy

Hoeffding's Inequality

• $\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$ for any $\epsilon > 0$

Some graphical explanations

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
 - For example, choosing the hypothesis that minimizes in-sample error
 - $g = argmin_{h \in H} E_{in}(h)$
- Question: What can we say about $E_{out}(g)$ from $E_{in}(g)$?

Derivations

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
 - Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

For each fixed $h \in H$, we have $\Pr[B(h)] \leq 2e^{-2\epsilon^2 N}$

- Recall g is selected from H (it could be any $h \in H$)
- What can we say about Pr[B(g)]?

Derivations

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
 - Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

For each fixed $h \in H$, we have $\Pr[B(h)] \leq 2e^{-2\epsilon^2 N}$

- Recall g is selected from H (it could be any $h \in H$)
- What can we say about Pr[B(g)]?

```
If g is selected from \{h_1, h_2\} B(g) \subseteq B(h_1) \cup B(h_2) \Pr[B(g)] \leq \Pr[B(h_1) \text{ or } B(h_2)] \leq \Pr[B(h_1)] + \Pr[B(h_2)] (Union Bound)
```

Derivations

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
 - Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

For each fixed $h \in H$, we have $\Pr[B(h)] \leq 2e^{-2\epsilon^2 N}$

- Recall g is selected from H (it could be any $h \in H$)
- What can we say about Pr[B(g)]?

$$\Pr[B(g)] \le \Pr[B(h_1) \text{ or } B(h_2) \text{ or } \dots \text{ or } B(h_M)]$$

 $\le \Pr[B(h_1)] + \Pr[B(h_2)] + \dots + \Pr[B(h_M)]$
 $\le M \ 2e^{-2\epsilon^2 N}$

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- Question: What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

- M can be considered as a proxy of the "complexity" of the hypothesis set
 - Will talk about what happens when $M \to \infty$ in the next few lectures

Interpreting $\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$

Interpreting $\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$

- Playing around with the math
 - Define $\delta = \Pr[|E_{out}(g) E_{in}(g)| > \epsilon]$
 - We have $\delta \le 2Me^{-2\epsilon^2N} \implies \epsilon \le \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$
- This means, with probability at least $1-\delta$

•
$$E_{out}(g) \le E_{in}(g) + \epsilon \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

More Discussion

• With probability at least $1-\delta$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N}} \ln \frac{2M}{\delta}$$

Consider M as a proxy measure on the "complexity" of H

- Our ultimate goal is to have a small $E_{out}(g)$
 - There is a tradeoff of choosing M (what "learning model" to use)
 - Increase $M \rightarrow \text{Smaller } E_{in}(g)$ (more hypothesis to "fit" the training data)
 - Increase $M \rightarrow Larger \epsilon$
 - It also depends on N, the number of data points you have
 - A small number of data points => use simple models (e.g., linear models)
 - Complex models (e.g., deep learning) work when you have a lot of data