model

```
In [1]: class NeuralNetMLP(object):
            def init (self, is sigmoid=True, initializer=None, dropout rate=1., n laye
                          n hidden=5, 12=0., epochs=100, eta=0.0005, shuffle=True,\
                          minibatch size=64, seed=666):
                self.random = np.random.RandomState(seed)
                self.is_sigmoid = is_sigmoid
                self.initializer = initializer
                self.dropout_rate = dropout_rate
                self.n layers = n layers
                self.n hidden = n hidden
                self.12 = 12
                self.epochs = epochs
                self.eta = eta
                self.shuffle = shuffle
                self.minibatch size = minibatch size
                self.k = locals()
                if n layers < 3:</pre>
                    raise Exception("n_layers must be >= 3 !!!")
            def _onehot(self, y, n_classes):
                 """Encode labels into one-hot representation
                Parameters
                y : array, shape = [n samples]
                Target values.
                Returns
                 -----
                onehot : array, shape = (n samples, n labels)
                onehot = np.zeros((n classes, y.shape[0]))
                for idx, val in enumerate(y.astype(int)):
                     onehot[val, idx] = 1.
                return onehot.T
            def sigmoid(self, z):
                 """Compute logistic function (sigmoid)"""
                 return 1. / (1. + np.exp(-np.clip(z, -250, 250)))
            def _forward(self, X, is_training=True):
                 """Compute forward propagation step"""
                    # step 1: net input of hidden layer
                if is training:
                    dropout rate = self.dropout rate
                else:
                    dropout rate = 1.
                for i in range(self.n layers - 2):
                    if i == 0:
                         # [n samples, n features] dot [n features, n hidden]
                         # -> [n samples, n hidden]
                         r = self.random.binomial(1, dropout_rate, size=X.shape)
                         X = r * X
                         self.k['z h {}'.format(i+1)] = 
                         np.dot(X, self.k['w_h_{{}}'.format(i+1)]) + self.k['b_h_{{}}'.format(i+1)])
                         # step 2: activation of hidden layer
                         if self.is sigmoid:
                             self.k['a_h_{}'.format(i+1)] = self._sigmoid(self.k['z_h_{}'.
                         else:
                             self.k['a h {}'.format(i+1)] = self.k['z h {}'.format(i+1)]
                     else:
```

```
# [n samples, n hidden] dot [n hidden, n hidden]
            # -> [n_samples, n_hidden]
            r = self.random.binomial(1, dropout_rate, size=self.k['a_h_{}'.fo
            self.k['a_h_{}'.format(i)] = r * self.k['a_h_{}'.format(i)]
            self.k['z h {}'.format(i+1)] = 
            np.dot(self.k['a_h_{}'.format(i)] , self.k['w_h_{}'.format(i+1)])
            + self.k['b_h_{{}}'.format(i+1)]
            # step 2: activation of hidden layer
            if self.is sigmoid:
                self.k['a h {}'.format(i+1)] = self. sigmoid(self.k['z h {}'.
            else:
                self.k['a_h_{{}'.format(i+1)}] = self.k['z_h_{{}'.format(i+1)}]
    # step 3: net input of output layer
    # [n_samples, n_hidden] dot [n_hidden, n_classlabels]
    # -> [n samples, n classlabels]
    z_out = np.dot(self.k['a_h_{}'.format(self.n_layers - 2)], self.w_out) +
    # step 4: activation output layer
    if self.regression problem:
        a out = z out
    else:
        a_out = self._sigmoid(z_out)
    return [self.k['z h {}'.format(i+1)] for i in range(self.n layers - 2)],
[self.k['a h {}'.format(i+1)] for i in range(self.n layers - 2)], z out, a ol
def compute cost(self, y enc, output):
    """Compute cost function.
    Parameters
    ______
    y_enc : array, shape = (n_samples, n_labels)
    one-hot encoded class labels.
    output : array, shape = [n samples, n output units]
    Activation of the output layer (forward propagation)
    Returns
    _____
    cost : float
    Regularized cost
    L2_{term} = (self.12 *
    (np.sum([np.sum(self.k['w_h_{{}}'.format(i+1)] ** 2.) for i in range(self.m)
    np.sum(self.w_out ** 2.)))
    term1 = -y enc * (np.log(output))
    term2 = (1. - y enc) * np.log(1. - output)
    if not self.regression problem:
        cost = np.sum(term1 - term2) + L2_term
    else:
        cost = np.sum((output - y enc) ** 2. )
    return cost
def predict(self, X):
    """Predict class labels
    Parameters
    _____
    X : array, shape = [n samples, n features]
    Input layer with original features.
    Returns:
    y_pred : array, shape = [n_samples]
    Predicted class labels.
```

```
z_h, a_h, z_out, a_out = self._forward(X, is_training=False)
    if self.regression_problem:
        y_pred = a_out
    else:
        y pred = np.argmax(z out, axis=1)
    return y_pred
def R square(self, output, targets):
      n = len(targets)
      MSE = (1 / n) * (np.sum((output - targets) ** 2))
      rMSE = MSE / np.var(targets)
      r 2 = 1 - rMSE
    return r2_score(targets, output)
def fit(self, X_train, y_train, X_valid, y_valid):
    """ Learn weights from training data.
    Parameters
    _____
    X_train : array, shape = [n_samples, n_features]
    Input layer with original features.
    y_train : array, shape = [n_samples]
    Target class labels.
    X valid : array, shape = [n samples, n features]
    Sample features for validation during training
    y_valid : array, shape = [n_samples]
    Sample labels for validation during training
    Returns:
    ------
    self
    if np.sum(y train % 1) == 0:
        n_output = np.unique(y_train).shape[0] # no. of class labels
        self.regression problem = False
    else:
        n \text{ output} = 1
        self.regression problem = True
    n features = X train.shape[1]
    #############################
    # Weight initialization
    ###################################
    for i in range(self.n layers - 2):
        # weights for input -> hidden
        self.k['b h {}'.format(i+1)] = np.zeros(self.n hidden)
        if i == 0:
            if self.initializer == 'Xavier':
                self.k['w_h_{{}}'.format(i+1)] = \
                self.random.normal(loc=0.0, \
                                    scale=(2 / (n_features + self.n_hidden))
                                    , size=(n_features, self.n_hidden))
            else:
                self.k['w_h_{{}}'.format(i+1)] = \
                self.random.normal(loc=0.0, scale=0.1\
                                    , size=(n features, self.n hidden))
        else:
            if self.initializer == 'Xavier':
```

```
self.k['w h {}'.format(i+1)] = \
            self.random.normal(loc=0.0, \
                               scale=(2 / (self.n_hidden + self.n_hidden)
                               , size=(self.n hidden, self.n hidden))
        else:
            self.k['w_h_{}'.format(i+1)] = \
            self.random.normal(loc=0.0, scale=0.1\
                                , size=(self.n_hidden, self.n_hidden))
# weights for hidden -> output
if self.regression problem:
    self.b_out = np.ones(n_output) * np.mean(y_train)
else:
    self.b out = np.zeros(n output)
if self.initializer == 'Xavier':
    self.w_out = self.random.normal(loc=0.0, \
                                     scale=(2 / (self.n hidden + n output)
                                     size=(self.n hidden, n output))
else:
    self.w out = self.random.normal(loc=0.0, scale=0.1, \
                                     size=(self.n hidden, n output))
epoch strlen = len(str(self.epochs)) # for progr. format.
self.eval_ = {'cost': [], 'train_acc': [], 'valid_acc': []}
if not self.regression_problem:
    y_train_enc = self._onehot(y_train, n_output)
else:
    y_train_enc = y_train
# iterate over training epochs
for i in range(self.epochs):
    # iterate over minibatches
    indices = np.arange(X_train.shape[0])
    if self.shuffle:
        self.random.shuffle(indices)
    for start idx in range(0, \
        indices.shape[0] -self.minibatch size +1, \
        self.minibatch size):
        batch_idx = indices\
        [start idx:start idx+self.minibatch size]
        # forward propagation
        # z_h: list(z_h_1, z_h_2, .....)
        z h, a h, z out, a out = \setminus
        self. forward(X train[batch idx])
        ###################
        # Backpropagation
        ##################
        # [n samples, n classlabels]
        sigma_out = a_out - y_train_enc[batch_idx]
        for 1 in range(self.n layers - 2):
            # [n_samples, n_hidden]
            # a_h: list(a_h_1, a_h_2, .....)
            sigmoid_derivative_h = a_h[-1-1] * (1. - a_h[-1-1])
            # [n_samples, n_classlabels] dot
            # [n classlabels, # n hidden]
            # -> [n_samples, n_hidden]
            if 1 == 0:
                  if self.regression problem:
```

```
#
                               self.k['sigma_h_{{}}'.format(self.n_layers-2-l)] = \
#
                               (np.dot(sigma_out, self.w_out.T))
#
                          else:
                               self.k['sigma_h_{{}}'.format(self.n_layers-2-l)] = \
#
#
                               (np.dot(sigma out, self.w out.T) * sigmoid derivati
                        if self.is sigmoid:
                             self.k['sigma h {}'.format(self.n layers-2-1)] = \
                             (np.dot(sigma out, self.w out.T) * sigmoid derivativ€
                        else:
                             self.k['sigma h {}'.format(self.n layers-2-1)] = \
                             (np.dot(sigma out, self.w out.T))
                    else:
                        if self.is sigmoid:
                            self.k['sigma_h_{{}}'.format(self.n_layers-2-1)] = \
                             (np.dot(self.k['sigma h {}'.format(self.n layers-1-1)
                                     self.k['w_h_{{}}'.format(self.n_layers-1-1)].T)
                             sigmoid derivative h)
                        else:
                            self.k['sigma h {}'.format(self.n layers-2-1)] = \
                             (np.dot(self.k['sigma h {}'.format(self.n layers-1-1)
                                     self.k['w_h_{{}}'.format(self.n_layers-1-1)].T)
                for 1 in range(2, self.n layers - 1):
                        # [n features, n samples] dot [n samples, n hidden]
                        # -> [n_features, n_hidden]
                        self.k['grad_w_h_{\{\}'}.format(1)] = np.dot(a_h[1-2].T, self.
                        self.k['grad_b_h_{{}}'.format(1)] = np.sum(self.k['sigma_h]
                # [n features, n samples] dot [n samples, n hidden]
                # -> [n features, n hidden]
                self.k['grad w h 1'] = np.dot(X train[batch idx].T, self.k['sigma
                self.k['grad_b_h_1'] = np.sum(self.k['sigma_h_1'], axis=0)
                # [n hidden, n samples] dot [n samples, n classlabels]
                # -> [n hidden, n classlabels]
                grad w out = np.dot(a h[-1].T, sigma out)
                grad b out = np.sum(sigma out, axis=0)
                # Regularization and weight updates
                for 1 in range(self.n layers - 2):
                    self.k['delta w h {}'.format(l+1)] = (self.k['grad w h {}'.fo
                                                    self.12*self.k['w h {}'.format
                    self.k['delta_b_h_{{}}'.format(1+1)] = self.k['grad_b_h_{{}}'.for
                    self.k['w h {}'.format(l+1)] -= self.eta * self.k['delta w h
                    self.k['b h {}'.format(l+1)] -= self.eta * self.k['delta b h
                delta w out = (grad w out + self.12*self.w out)
                delta_b_out = grad_b_out # bias is not regularized
                self.w out -= self.eta * delta w out
                self.b_out -= self.eta * delta_b_out
            #############
            # Evaluation
            ############
            # Evaluation after each epoch during training
            z h, a h, z out, a out = self. forward(X train)
            cost = self._compute_cost(y_train_enc,a_out)
            y train pred = self.predict(X train)
            y valid pred = self.predict(X valid)
```

```
if not self.regression problem:
            train_acc = ((np.sum(y_train == \
            y train pred)).astype(np.float) /
            X train.shape[0])
            valid acc = ((np.sum(y valid ==\)
            y_valid_pred)).astype(np.float) /
            X valid.shape[0])
        else:
            train_acc = self.R_square(output=y_train_pred, targets=y_train)
            valid acc = self.R square(output=y valid pred, targets=y valid)
        self.eval_['cost'].append(cost)
        self.eval_['train_acc'].append(train_acc)
        self.eval ['valid acc'].append(valid acc)
      return self
def get weights(self):
    for i in range(self.n layers - 2):
        print('w_h_{}): {}'.format(i + 1, self.k['w_h_{}'.format(i + 1)].shape
              self.k['w_h_{}]'.format(i + 1)])
    print('w out: {}'.format(self.w out.shape), self.w out)
def get_loss_plot(self):
    plt.plot(range(self.epochs), self.eval_['cost'])
    plt.ylabel('Cost')
    plt.xlabel('Epochs')
    plt.show()
```

```
In [2]: import warnings
    warnings.filterwarnings('ignore')
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    from sklearn.metrics import r2_score
```

data

```
In [3]: from sklearn.datasets import load boston
        X, y = load boston(return X y=True)
        boston = load boston()
        print(boston.DESCR)
        .. boston dataset:
        Boston house prices dataset
        **Data Set Characteristics:**
            :Number of Instances: 506
            :Number of Attributes: 13 numeric/categorical predictive. Median Value (att
        ribute 14) is usually the target.
            :Attribute Information (in order):
                - CRIM
                           per capita crime rate by town
                           proportion of residential land zoned for lots over 25,000 s
                - ZN
        q.ft.
                - INDUS
                            proportion of non-retail business acres per town
                           Charles River dummy variable (= 1 if tract bounds river; 0 o
                - CHAS
        therwise)
                - NOX
                           nitric oxides concentration (parts per 10 million)
                - RM
                           average number of rooms per dwelling
                           proportion of owner-occupied units built prior to 1940
                - AGE
                - DIS
                           weighted distances to five Boston employment centres
                           index of accessibility to radial highways
                - RAD
                           full-value property-tax rate per $10,000
                - TAX
                - PTRATIO pupil-teacher ratio by town
                           1000(Bk - 0.63)^2 where Bk is the proportion of blacks by to
        wn
                           % lower status of the population

    LSTAT

                           Median value of owner-occupied homes in $1000's
                MEDV
            :Missing Attribute Values: None
            :Creator: Harrison, D. and Rubinfeld, D.L.
        This is a copy of UCI ML housing dataset.
```

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ (https://arc hive.ics.uci.edu/ml/machine-learning-databases/housing/)

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression

problems.

- .. topic:: References
- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Da ta and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

```
In [4]: df = pd.DataFrame(X, columns=boston.feature_names)
    df.head(2)
```

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.9	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.9	9.14

In [5]: df.describe()

Out[5]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.79
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.10
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.12
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.10
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.20
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.18
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.12

```
In [6]: f_dummy = np.array(df['CHAS'])[:, np.newaxis]
del df['CHAS']
f = np.array(df)
```

```
In [7]: from sklearn.preprocessing import StandardScaler
    scalar = StandardScaler()
    f = scalar.fit_transform(f)

X = np.concatenate((f, f_dummy), axis=1)
X.shape
```

Out[7]: (506, 13)

```
In [8]: split_idx = int(len(X) * 0.9)
y = y[:, np.newaxis]
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
```

train

```
In [9]: idx = int(len(X train) * 0.9)
       nn = NeuralNetMLP(epochs=50,dropout rate=0.5, n hidden=5, n layers=3,minibatch si
       nn.fit(X train=X train[:idx],\
       y train=y train[:idx],\
       X valid=X train[idx:],\
       y valid=y train[idx:])
In [10]: |nn.get weights()
       [-1.21793391 -1.08328517 0.95387523 1.35420732 0.98387599]
        0.497263
                  0.74107993 -1.10802003 -0.90549064 -1.04737985]
        [-8.7014977 -6.9412538
                           6.40470926 7.88121075 6.3499206 ]
        [-1.12869033 -0.57984266 0.24115697 0.87340431 0.36835915]
        [ 0.25562907  0.72781903  -0.74809453  -0.46790867  -0.79915811]
        [ 2.40805552  2.42575578 -2.17382311 -2.6261473 -1.94778534]
        [-0.16453019 -0.13731082 0.39379391 0.17459239 0.49863058]
        [ 5.78599162  4.96261853 -4.93909243 -5.50816472 -4.71470803]
        [-0.89176109 -0.1819256
                           0.49315658 0.43121306 0.5519309 ]]
       w_out: (5, 1) [[-3.31570253]
        [-2.58439414]
        [ 2.41904997]
        [ 2.94974384]
        [ 2.42346269]]
```

```
In [11]: nn.get_loss_plot()
```



```
In [12]: kk = locals()
         n models = 3
         def nns(X train, y train, fig, axs, is sigmoid=True, dropout rate=0.8, n layers=1
             if is sigmoid:
                 kk['nn_0'] = NeuralNetMLP(n_layers=n_layers)
                 kk['nn 1'] = NeuralNetMLP(initializer='Xavier', n layers=n layers)
                 kk['nn 2'] = NeuralNetMLP(dropout rate=dropout rate, n layers=n layers)
             else:
                 kk['nn 0'] = NeuralNetMLP(is sigmoid=False, n layers=n layers)
                 kk['nn_1'] = NeuralNetMLP(is_sigmoid=False, initializer='Xavier', n_layer
                 kk['nn_2'] = NeuralNetMLP(is_sigmoid=False, dropout_rate=dropout_rate, n]
             for i in range(n models):
                 kk['nn_{}'.format(i)].fit(X_train=X_train[:idx],\
                 y_train=y_train[:idx],\
                 X valid=X train[idx:],\
                 y_valid=y_train[idx:])
             title = ['default', 'Xavier', 'dropout']
             col = ['red', 'blue']
             label = ['train', 'valid']
             for i in range(n models):
                 acc = [kk['nn {}'.format(i)].eval ['train acc'], \
                        kk['nn_{}'.format(i)].eval_['valid_acc']]
                 axs[0, i].set_title('R_square_' + title[i])
                 axs[0, i].set_ylim([-6, 2])
                 for 1 in range(len(col)):
                     axs[0, i].plot(acc[1], color=col[1], label=label[1])
                     axs[0, i].legend(frameon=True)
                 axs[1, i].set_title('loss_' + title[i])
                 axs[1, i].plot(range(kk['nn_{{}}'.format(i)].epochs), \
                              kk['nn {}'.format(i)].eval ['cost'])
             fig.suptitle('n_layers: {}, n_hidden: {}'.format(n_layers, nn_0.n_hidden))
             return fig
```

```
In [13]: n_n_layers = 3
    for i in range(n_n_layers):
        n_layers = 3 + i*2
        kk['fig_{}'.format(i)], kk['axs_{}'.format(i)] = \
              plt.subplots(2, n_models, constrained_layout=True, figsize = (10, 10))
        kk['fig_{}'.format(i)] = nns(X_train, y_train, kk['fig_{}'.format(i)], kk['axs_train, y_train, kk['fig_{}'].format(i)], kk['axs_train, y_train, kk['axs_tr
```


n_layers: 5, n_hidden: 5

In [14]: y_fake = nn_0.predict(X_train) + np.random.normal(0, 1, y_train.shape)

```
In [15]: nn_0.predict(X_train)
                 [24.02514305],
                 [24.02514302],
                 [24.02514303],
                 [24.02514304],
                 [24.02514305],
                 [24.02514305],
                 [24.02514305],
                 [24.02514305],
                 [24.02514309],
                 [24.0251431],
                 [24.02514308],
                 [24.02514307],
                 [24.02514307],
                 [24.02514306],
                 [24.02514306],
                 [24.02514305],
                 [24.02514305],
                 [24.02514301],
                 [24.02514305],
                 [24.02514306],
In [16]: y_fake
                 [23.61092158],
                 [23.92484121],
                 [24.04835094],
                 [24.43245537],
                 [24.74404654],
                 [22.28661864],
                 [23.30150156],
                 [23.90328032],
                 [23.64474879],
                 [22.88075889],
                 [24.48316083],
                 [25.86448235],
                 [23.48361724],
                 [23.90861607],
                 [25.91920143],
                 [24.75466232],
                 [24.30764747],
                 [24.05531628],
                 [25.84156892],
```

```
In [17]: n_n_layers = 3
    for i in range(n_n_layers):
        n_layers = 3 + i*2
        kk['fig_{}'.format(i)], kk['axs_{}'.format(i)] = \
              plt.subplots(2, n_models, constrained_layout=True, figsize = (10, 10))
        kk['fig_{}'.format(i)] = nns(X_train, y_fake, kk['fig_{}'.format(i)], kk['axs_train, standard in the standard
```

