Simulation Tools

Repetition: Multistep Methods

Claus Führer

Spring 2021

Claus Führer Simulation Tools Spring 2021 1 / 25

Initial Value Problems

(Time-)Simulation requires the solution of so-called initial value problems:

$$\dot{y}(t) = f(t, x(t))$$
 $y(t_0) = y_0$ $y(t) \in \mathbb{R}^n$

- moderate size applications (this course): $n \leq 500$, rhs-function f expansive to evaluate, "linear algebra" subproblems cheap, problems stiff or nonstiff
- applications from PDE space discretization (not in this course): $1000 \le n \le 50000$, rhs-function f linear or cheap to evaluate, special algorithms for "linear algebra" subproblems, problems often stiff or highly oscillatory

Indata

Indata for a method:

- rhs-function: often given as a call to special purpose library functions
- ightharpoonup time horizon: t_0, t_e
- ightharpoonup initial value: y_0
- ightharpoonup Communication interval $\Delta t_{\rm out}$

Outdata:

- ightharpoonup Approximations to $y(t_{
 m out})$
- Error flags, performance statistics

Claus Führer Simulation Tools Spring 2021 3 / 25

Two method classes

Claus Führer Simulation Tools Spring 2021 4 / 25

Multistep methods

Multistep methods are methods, which require starting values from several previous steps.

There are two important families of multistep methods

- Adams methods (explicit: Adams-Bashforth as predictor, implicit: Adams-Moulton as corrector), used together with fixed point iteration for nonstiff problems,
- ▶ BDF methods (implicit), together with Newton iteration used for stiff problems

Claus Führer Simulation Tools Spring 2021 5 / 25

Adams methods

For deriving ADAMS methods we transform the ODE

$$\dot{y} = f(t, y)$$
 with $y(t_0) = y_0$

into its integral form

$$y(t) = y_0 + \int_{t_0}^t f(\tau, y(\tau)) d\tau$$

and partition the interval into

$$t_0 < t_1 < \dots < t_i < t_{i+1} = t_i + h_i < \dots < t_e$$

Claus Führer Simulation Tools Spring 2021 6 / 25

Thus

$$y_{n+1} = y(t_{n+1}) = y_n + \int_{t_n}^{t_{n+1}} f(\tau, y(\tau)) d\tau$$

Let $u_{n+1-i}, i=1,\dots,k$ be previously computed values and $\pi_k^{\rm p}$ the unique polynomial which interpolates

$$f(t_{n+1-i}, u_{n+1-i}), i = 1, \dots, k$$

The we define a method by

$$u_{n+1} = u_n + \int_{t_n}^{t_{n+1}} \pi_k^{\mathrm{p}}(\tau) d\tau$$

Claus Führer Simulation Tools Spring 2021 7 / 25

Example (2-step method, k = 2):

Using the concept of Lagrange polynomials gives

$$\pi_k^{\mathbf{P}}(t) = f(t_n, u_n) L_0(t) + f(t_{n-1}, u_{n-1}) L_1(t)$$

$$= f(t_n, u_n) \frac{t - t_{n-1}}{t_n - t_{n-1}} + f(t_{n-1}, u_{n-1}) \frac{t - t_n}{t_{n-1} - t_n}$$

Integration gives:

$$u_{n+1} = u_n + h(\frac{3}{2}f(t_n, u_n) - \frac{1}{2}f(t_{n-1}, u_{n-1}))$$

This is the Adams-Bashforth-2 method.

Claus Führer Simulation Tools Spring 2021 8 / 25

Adams-Bashforth methods are explicit, their general form is

$$u_{n+1} = u_n + h \sum_{i=1}^{k} \beta_{k-i} f(t_{n+1-i}, u_{n+1-i})$$

Adams-Moulton methods are constructed in a similar way.

Here the unknown value $f(t_{n+1},u_{n+1})$ is taken as an additional interpolation point.

This makes the method implicit.

Claus Führer Simulation Tools Spring 2021 9 / 25

Examples (Adams-Moulton):

$$k=0: \quad u_{n+1}=u_n+hf(t_{n+1},u_{n+1}) \qquad \qquad \text{implicit Euler method}$$

$$k=1: \quad u_{n+1}=u_n+h\left(\frac{1}{2}f(t_{n+1},u_{n+1})+\frac{1}{2}f(t_n,u_n)\right)$$
 Trapezoid

$$k = 2$$
: $u_{n+1} = u_n + h\left(\frac{5}{12}f(t_{n+1}, u_{n+1}) + \frac{8}{12}f(t_n, u_n) - \frac{1}{12}f(t_{n-1}, u_{n-1})\right)$

The general form is

$$u_{n+1} = u_n + h \sum_{i=0}^{k} \bar{\beta}_{k-i} f(t_{n+1-i}, u_{n+1-i})$$

Claus Führer Simulation Tools Spring 2021 10 / 25

Starting a multistep method

To start a multistep method one applies

- the initial value
- then a one-step method, to get two values
- then a two-step method, to get three values
- and so on ...

Claus Führer Simulation Tools Spring 2021 11 / 25

Multistep methods in General

The general form of a linear multistep method reads

$$\sum_{i=0}^{k} \alpha_{k-i} u_{n+1-i} - h_n \sum_{i=0}^{k} \beta_{k-i} f(t_{n+1-i}, u_{n+1-i}) = 0.$$

For starting a multistep method k starting values u_0,\ldots,u_{k-1} are required.

Claus Führer Simulation Tools Spring 2021 12 / 25

Global Error

The quantity of interest is the *global error* of the method at a given time point t_n

$$e_n := y(t_n) - u_n,$$

with $n = t_n/h$.

If for exact starting values $e_n = \mathcal{O}(h)$, then the method is said to be convergent. More precisely, a method is convergent of order p, if

$$e_n = \mathcal{O}(h^p).$$

Claus Führer Simulation Tools Spring 2021 13 / 25

Local Residual

To make a statement about the behavior of the global error, we have to introduce and study first the *local residual*:

Let y be a differentiable function, then the quantity

$$l(y, t_n, h) := \sum_{i=0}^{k} \alpha_{k-i} y(t_{n-i}) - h \sum_{i=0}^{k} \beta_{k-i} \dot{y}(t_{n-i})$$

is called the *local residual* of the method.

Claus Führer Simulation Tools Spring 2021 14 / 25

Asymptotic Form of Local Residual

The local residual of a method with order of consistency p takes the form

$$l(y,t,h) = c_{p+1}h^{p+1}y^{(p+1)}(t) + \mathcal{O}(h^{p+2}).$$

Adams–Bashforth methods have order of consistency k, Adams–Moulton methods have order of consistency k+1, and BDF methods have order of consistency k

Claus Führer Simulation Tools Spring 2021 15 / 25

The Global Error Increment

Every step contributes to the global error by the *global error increment*. These increments are amplified or damped by the differential equation's and method's stability properties.

The global error increment is defined as the difference between the numerical solution and the locally exact solution:

$$\varepsilon_n := \bar{y}_n - y(t_n)$$

where

$$0 = \alpha_k \bar{y}_n - hf(t_n, \bar{y}_n) + \sum_{i=1}^k \alpha_{k-i} y(t_{n-i}) - h \sum_{i=1}^k \beta_{k-i} f(t_{n-i}, y(t_{n-i}))$$

Claus Führer Simulation Tools Spring 2021 16 / 25

The Global Error Increment and Local Residual

The is a method dependent matrix A_k such that

$$\varepsilon_n = A_k^{-1} l(y, t_n, h) + \text{higher order terms}$$

or alternatively

$$\varepsilon_n = A_k^{-1} c_{p+1} h^{p+1} y^{(p+1)} (t_n) + \mathcal{O}(h^{p+2})$$

Claus Führer Simulation Tools Spring 2021 17 / 25

Iterations

Nonlinear System

$$y_n = h\beta_k f(y_n) + \text{old values}$$

Fixed point iteration (functional iteration, CV_FUNCTIONAL)

$$y_n(i+1) = h\beta_k f(y_n^{(i)}) + \text{old values}$$

Newton iteration (CV_NEWTON)

$$G'(y_n^{(i+1)})\Delta y = -G(y_n^{(i)})$$

with $G(y) = y - h\beta_k f(y)$ – old values.

Claus Führer Simulation Tools Spring 2021 18 / 25

variable coefficient vs fixed leading coefficient

Coefficients depend on step size ratios:

$$r_i = \frac{h_{n-i}}{h_{n-i-1}}$$

$$\alpha_{k-i} = \alpha_{k-i}(r_0, r_1, \dots, r_k) \quad \beta_{k-i} = \beta_{k-i}(r_0, r_1, \dots, r_k)$$

In CVODE fixed leading coefficient, i.e.

$$\beta_k = \beta_k(r_0)$$

(saves Jacobian evaluations).

Claus Führer Simulation Tools Spring 2021 19 / 25

Tolerances and Norms

SUNDIALS uses weighted norms (state dependent weights)

Weights

$$W_i = \text{RTOL} \cdot |y_i| + \text{ATOL}_i$$

Weighted root mean square norm

$$||v|| = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\frac{v_i}{W_i})^2}$$

Flowchart 1: Generic integrator call

Claus Führer Simulation Tools Spring 2021 21 / 25

Flowchart 1.2: Generic single step integrator call

Flowchart 1.3: Generic integrator organisation

Predict			
Yes No			
Compute 3	Jacobian		_
Jac _{new} = 1		Jac _{new} = 0	
Corrector iteration (Newton iteration) return: solution or error code Yes convergence? No			
Estimate Error		γ Jac _{new} = 0 N	
YError	< Tol N	Redo the step	Redo the step
Accept step increase step size	Reject step decrease step size	with h=h/2 and require a new Jacobian	step size and require a new Jacobian

