Série 5

Exercice 1. Le plan est muni d'un repère orthonormé. Dans chacun des cas ci-dessous, déterminer la position relative des droites d et g:

a.
$$d: x + y = 1, g: \begin{cases} x = -1 + t \\ y = 2 - t \end{cases}, t \in \mathbb{R}.$$

b.
$$d:$$

$$\begin{cases} x=2+3t\\ y=-1-2t \end{cases}, t\in\mathbb{R}, g \text{ passe par } A(4,5) \text{ et } B(6,8).$$

c.
$$d: 3x - 4y + 3 = 0$$
, $g: \begin{cases} x = 1 + 4t \\ y = 4 + 3t \end{cases}$, $t \in \mathbb{R}$.

d. d passe par
$$A(1,2)$$
 et a pour pente 3, $g: \begin{cases} x=-1+t \\ y=2t \end{cases}$, $t \in \mathbb{R}$.

Exercice 2. Dans le plan muni d'un repère orthonormé, on donne les points A(-3, -1) et B(5, 9), ainsi que la droite d d'équation 2x - y + 12 = 0.

- a. Déterminer des équations paramétriques de la médiatrice m du segment AB.
- b. Chercher un point M de la droite d qui soit équidistant des points A et B.

Exercice 3. On se donne trois points A, B, C dans le plan muni d'un repère orthonormé.

- a. Les coordonnées de A, B, C sont : A(-3, -2), B(4, -5), C(5, 7). Le triangle ABC est-il isocèle?
- b. Même question en supposant maintenant que A(0,6), B(-5,3), C(3,3).
- c. Sachant que les coordonnées de A, B et C sont A (7,1), B (5,5), C (5,-3), calculer les coordonnées du centre du cercle circonscrit au triangle ABC.

Exercice 4. On considère trois points A, B, C dans le plan, ainsi qu'un nombre réel positif α .

- a. Localiser vectoriellement depuis le point A, en fonction des données, un point D tel que le segment AD soit parallèle à BC et qu'il ait pour longueur α .
- b. Application numérique : A(-2,-1), B(6,3), C(3,4) (dans un repère orthonormé du plan) et $\alpha = 10$.

Exercice 5. On considère trois points A, B et C dans le plan. On note δ la distance de C à la droite (AB). Soit α un réel strictement positif.

- a. Localiser vectoriellement depuis le point A, en fonction des données, le point D tel que ABCD soit un trapèze de base CD, et d'aire fixée α .
- b. Application numérique : A(2,4), B(-2,2), C(-3,-3) (dans un repère orthonormé du plan), $\delta = \frac{9}{5}$, et $\alpha = \frac{27\sqrt{5}}{5}$.

Exercice 6. Dans le plan muni d'un repère orthonormé, on considère un triangle ABC, isocèle de base BC, dont on connaît:

- une équation cartésienne de la hauteur issue de A: 3x + y 26 = 0,
- les coordonnées du sommet B(-4, -2),
- l'aire S = 120 unités d'aire.

Calculer les coordonnées des deux sommets A et C. Retenir pour A la solution d'ordonnée positive.

Exercice 7. Dans un plan, on considère un point A ainsi que deux vecteurs non colinéaires \vec{u} et \vec{v} . On note d (resp. g) la droite passant par A et dirigée par \vec{u} (resp. \vec{v}).

- a. Déterminer des équations vectorielles des bissectrices de l'angle formé par les deux droites d et g, vues depuis le point A.
- b. Déterminer des équations cartésiennes de ces bissectrices dans le repère (A, \vec{u}, \vec{v}) .
- c. On fixe un repère orthonormé du plan tel que A(8,-7), $\vec{u}\begin{pmatrix} -1\\3 \end{pmatrix}$ et $\vec{v}\begin{pmatrix} -3\\1 \end{pmatrix}$. Calculer des équations cartésiennes de ces bissectrices dans le repère utilisé.

Exercice 8. Dans le plan, on considère un triangle ABC (non aplati). On note d la bissectrice intérieure de l'angle \widehat{BAC} et g la parallèle à (AB) passant par C.

- a. Donner des équations vectorielles des droites d et q vues depuis le point A. Ces droites sont-elles parallèles?
- b. On note I le point d'intersection de d et g. Exprimer le vecteur \overrightarrow{AI} en fonction des données.
- c. Déterminer une équation vectorielle de la droite (BI) en fonction des données. Cette droite intersecte-t-elle la droite (AC)? Si oui, donner la valeur du paramètre correspondant au point d'intersection.

Éléments de réponse :

Ex. 1: a. confondues, b. perpendiculaires, c. parallèles, d. sécantes.

Ex. 2: a. $m: x = 1 + 5t, y = 4 - 4t, t \in \mathbb{R}$, b. $(-\frac{18}{7}, \frac{48}{7})$.

Ex. 3: a. oui, b. non, c. (2, 1).

Ex. 4: a. $\overrightarrow{AD} = \pm \frac{\alpha}{\|\overrightarrow{BC}\|} \overrightarrow{BC}$, b. $(-2 - 3\sqrt{10}, -1 + \sqrt{10}), (-2 + 3\sqrt{10}, -1 - \sqrt{10}).$

Ex. 5: a. $\overrightarrow{AD} = \overrightarrow{AC} - (\frac{2\alpha}{\delta} - ||\overrightarrow{AB}||) \frac{\overrightarrow{AB}}{||\overrightarrow{AB}||}$, b. D(5,1).

Ex. 6: A(5,11), C(20,6).

Ex. 7: a. $\overrightarrow{AM} = t(\frac{1}{\|\overrightarrow{u}\|}\overrightarrow{u} \pm \frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}), t \in \mathbb{R}$, b. $\|\overrightarrow{u}\|x \pm \|\overrightarrow{v}\|y = 0$, c.-x + y + 15 = 0, x + y - 1 = 0. **Ex.** 8: a. $d: \overrightarrow{AM} = t(\frac{1}{\|\overrightarrow{AB}\|}\overrightarrow{AB} + \frac{1}{\|\overrightarrow{AC}\|}\overrightarrow{AC}), t \in \mathbb{R}$, $g: \overrightarrow{AM} = \overrightarrow{AC} + t\overrightarrow{AB}, t \in \mathbb{R}$, b. $\overrightarrow{AI} = \frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|}\overrightarrow{AB} + \overrightarrow{AC}$, c. $(BI): \overrightarrow{AM} = \overrightarrow{AB} + t((\frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} - 1)\overrightarrow{AB} + \overrightarrow{AC}), t \in \mathbb{R}.$