We encounter and learn knowledge from our surroundings every day. The concept of "knowledge" first frequently emerged in one of my research projects regarding movie recommendations, and I am attracted to it immediately. In this project, I realized that daily events could be transferred to "knowledge" and help us resolve real-world problems. It guides me to consider how to efficiently connect 'knowledge' to an AI algorithm, hence better serving our daily lives. After I gained a few years of research and work experience in different areas, including computer vision, recommendation systems, knowledge graphs, and data mining, these experiences enriched my understanding of machine learning. They shaped my interests in natural language processing(NLP), especially in natural language understanding(NLU), information extraction(IE), information representation(IR), and their connection to our real world. The texts contain rich implicit information and potential bias that is critical to help us understand our society, such as fighting against toxic online comments, gender bias and prejudice. I am eager to make bigger impacts in these research areas, and there are three major guided research questions:

- *NLU*: How can we better understand the implication and connection of text? How do we solve the bias or inadequate evidence in the text?
- IE & IR: How can we efficiently explore and represent text information?
- **Real-World QA:** How can we collaborate our models with humans or society systems robustly and equivalently? How do we explain our model in the real-world?

I received my Bachelor's and Master's degrees in computer science and was lucky to participate in a few relevant research projects. With these prior experiences, I am passionate about furthering my interest and pursuing a Ph.D. The following describes my research journey.

Research in Knowledge Tracing(TAL AI Lab)

As human beings, we are challenging to keep track of knowledge, and I was wondering how we can build a model to tackle this issue. My research proposed a deep knowledge tracing (DKT) model to monitor student knowledge state or skill acquisition level based on historical question-answer series. Even though deep neural networks already grasp the sequential dependencies, the **intrinsic relation** of information can develop our understanding of knowledge states and advance knowledge tracing. We built a question graph based on semantic and feature-based knowledge, obtained the representation combined with graph embedding, and finally, as supervision information for DKT. This approach demonstrates the importance of the side relation information, and the proposed framework outperforms state-of-the-art baselines significantly.

In the meantime, I innovatively extend my results to another research project regarding adaptive learning, which is critical for tutoring systems. In this research, I was involved in data mining, knowledge graph, graph representation learning, etc. Eventually, we submitted a conference to *AIED 2019* (top conference in education AI). After realizing that question-answer series could be explored as the intrinsic relation and graphs could be used as a knowledge network, both of them contribute to predict people's future state precisely, this research area deeply interests me to develop more results. Hence, I am eager to bring up more ideas in information extraction and representation by combining knowledge graphs.

Research in Semantic & Emotional NLP(Mobvoi AI Lab):

Apart from knowledge information, I also studied **language understanding** regarding semantics and emotions. In 2019, I joined Mobvoi AI Lab as a speech algorithm engineer(now senior). Since then, I have mainly been involved in research projects that focus on **text information extraction** of text-to-speech(TTS), including semantic NLP and emotional NLP.

For semantic NLP, my work converts non-standard text into representations with accurate pronunciation, prosody, and spoken events based on crosslingual (Mandarin, English, etc.). I led the construction or optimization of these modules. I proposed the "Unified Frontend" to mitigate the problems of out-of-vocabulary, imbalance, ambiguity, and performance of the online system, which combined with a pre-trained language model, multi-task training, and knowledge distillation as well as linguistic knowledge. In **multi-level prosody prediction**, I imposed prompt learning, a general method, to alleviate data imbalance and inconsistency, which led to a co-author conference submission to *PRML 2022*.

The emotional NLP, on the other hand, focuses on the intrinsic aspect of language understanding, such as style, stress, and emotion. These tasks are subjective without precise definitions and benchmarks. In this regard, I investigated and established the model solutions using an incremental verification approach, and covered criterion establishment, cross-validation, linguistic knowledge, and contrastive learning, etc. For instance, in **text stress prediction**, I proposed a two-stage pipeline to construct the coarse-to-fine model with auxiliary granularity supervision to decrease deviation and ensure global diversity. As a result, I submitted a first-author paper to *ICASSP 2023* (under review, top conference in speech). Deriving inspiration from **data mining**, **supervision**(semi- or non-) and **linguistic learning**, I am interested in extending my experience in unstructured, multi- or cross- lingual **text information extraction and understanding**.

Conclusion

In summary, I am deeply motivated and passionate about pursuing a Ph.D. In the past few years, I came across several excellent researchers and Ph.D. students, and I wish to collaborate heavily with salient researchers and contribute to my fields with fulfillment. In terms of developing soft skills, I mentored five interns, where I enhanced my teamwork and communication skills. Getting research results inspires and motivates me to seek the next career stage and develop research impact in NLP.

At USC, several professors' projects are especially appealing to me. Professor Jieyu Zhao's research about efficiently learning knowledge, robust learning(bias investigation and reduction), and applications interests me. Linked to this, I am also interested in Professor Muhao Chen's research on knowledge acquisition, language understanding, and knowledge-driven intelligent systems and Professor Sean(Xiang) Ren's research on knowledge acquisition, information extraction and representation. My related research experience, solid engineering and willingness to develop real and cutting-edge technology and collaborative mindset make me a clear fit for USC. Moreover, I hope USC can be the launchpad for my journey in further exploring and contributing to NLP research. Thank you very much for taking the time to consider my application, and I wish you great success in your current and future research.