Step-1

Any vector $x = (x_1, x_2, x_3, x_4)$ is perpendicular to a = (1, 4, 4, 1) and b = (2, 9, 8, 2)

By definition of perpendicular, we have $x^T y = 0$ and $x^T z = 0$

$$\Rightarrow (x_1 \quad x_2 \quad x_3 \quad x_4) \begin{pmatrix} 1\\4\\4\\1 \end{pmatrix} = 0 \qquad (x_1 \quad x_2 \quad x_3 \quad x_4) \begin{pmatrix} 2\\9\\8\\2 \end{pmatrix} = 0$$
and

$$\Rightarrow x_1 + 4x_2 + 4x_3 + x_4 = 0$$
 and $2x_1 + 9x_2 + 8x_3 + 2x_4 = 0$

$$A = \begin{bmatrix} 1 & 4 & 4 & 1 \\ 2 & 9 & 8 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
 by making A square.

Step-2

Applying the row operation $R_2 \rightarrow R_2 - R_1$, we get $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

This is the row reduced form and so, we rewrite the homogeneous equations from this.

$$x_1 + 4x_2 + 4x_3 + x_4 = 0$$

 $x_2 = 0$

Consequently, we get $x_1 = -4x_3 - x_4$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -4x_3 - x_4 \\ 0 \\ x_3 \\ x_4 \end{pmatrix}$$

So, we write the solution as

Putting
$$x_3 = k$$
, $x_4 = m_{\text{parameters}}$, we get
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = k \begin{pmatrix} -4 \\ 0 \\ 1 \\ 0 \end{pmatrix} + m \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Step-3

Using
$$k = 1$$
, $m = 0$, we get $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ is a solution and using $k = 0$ and $m = 1$, we get $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ which are the fundamental solutions of the system.

Thus,
$$\begin{pmatrix} -4 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ are in the orthogonal space or null space of A .

The space spanned by these vectors is perpendicular to the given vectors.