

我的容器安全吗?

有关容器漏洞的研究

Cecilia Hu, Yue Guan, Zhaoyan Xu <u>Palo Alto Networks</u>

议程

- ▶ <a href="mailt
- ▶ 基本统计数据
- >漏洞研究
- > 集群中的镜像
- > 实践建议

背景

- 容器已成为在云平台上配置微服务的流行方式。
- 随着越来越先进的云应用程序陆续部署,镜像的安全风险已成为 DevOps 团队最头疼的问题。
- 我们想知道具体情况到底有多糟糕,以及如何防范这些威胁。

动机

本次交流我们将涉及:

- 容器镜像安全性的最新现状是怎样的?
- 如何衡量您应用程序环境中容器镜像的安全性?
- 如何缓解容器镜像漏洞所造成的威胁?
- 镜像保护方面有何最佳实践?

日程

- ▶ 简介
- ▶ 基本统计
- > 漏洞研究
- 集群中的镜像
- > 实践建议

方法

我们通过系列方式研究这个问题:

第 1 步:针对诸如 DockerHub 和 GitHub 等不同来源,且公开可用的镜像仓库进行爬网。

第 2 步: 使用容器镜像扫描器扫描这些镜像, 了解其中包含的漏洞信息。

第3步:使用我们的 VulnerDB 分析这些漏洞信息并公布有关这些漏洞的趋势状况。

数据源

来源	描述	
DockerHub	可直接下载/爬网 Docker 镜像的镜像仓库	
Clair	可提供系统级漏洞信息的开源漏洞扫描器	
hub.docker.com	提供公开访问的镜像扫描结果	
Container Analysis API	Google Cloud 提供的镜像分析服务	
GitHub 的 Dockerfile	通过 Pull 计数我们可以了解能够作为容器部署的开源项目的流行程度	

数据收集

数据收集

类型	数据字段	描述
镜像信息	镜像 ID	每个唯一镜像的 Sha 256 值
镜像信息	公开下载量计数	每个镜像的总下载次数
镜像信息	更新时间	每个镜像最后一次更新的准确日期时间
镜像信息	命令/Dockerfile	构建镜像需要运行的命令

数据收集 (续)

类型	数据字段	描述
漏洞信息	时间	首次报告时间和最后更新时间
漏洞信息	可利用性	该漏洞可以如何利用(如net exploitable 等)
漏洞信息	严重程度评级	CVSS 3.0/2.0、PANW 分数、以往的签名 触发器
漏洞信息	相关软件包	有漏洞镜像的名称和版本
部署信息	使用情况	K8s/OpenShift 部署中与镜像有关的自定义字段

数据集基本状况统计

项目	统计结果	项目	统计结果
镜像仓库数量	151	镜像标签数量	22106
Dockerfile 数量	976	唯一漏洞数量	4259
发现有漏洞的镜像仓库所占比例 (最新结果)	81%	有漏洞镜像标签所占 比例	69.1%

数据集基本状况统计(续)

镜像仓库和镜像标签

发现:流行的镜像有着数量众多的标签(发布),大部分仓库都有逐月发布计划。

数据集基本状况统计(续)

标签在长时间范围内的增长情况

发现:流行的镜像有着数量众多的标签(发布),大部分仓库都有逐月发布计划。

议程

- ▶ 简介
- ▶ 基本统计
- ▶ 漏洞研究
- 集群中的镜像
- > 实践建议

发现:大部分公开提供的镜像均存在漏洞。81%的镜像至少包含一个漏洞。

可利用指数

时间敏感度

流行度和漏洞之间的趋势

议程

- ▶ 简介
- ▶ 基本统计
- > 漏洞研究
- **集群中的镜像**
- > 实践建议

K8s 风险评估

在K8s pod 使用有漏洞的镜像时,有些注意事项需要重视。

因素	问题	危险范例
部署环境	有漏洞的镜像是否部署到生产用名称空间?	有漏洞的镜像部署到生产用名称空间, 而非测试用名称空间。
Pod 特权	我们为与有漏洞镜像有关的 Pod 提供了哪些类型的特权?	使用高特权 Pod,或额外提供了非必须能力。
相关服务帐户	我们为有漏洞的 Pod/镜像关联了 怎样的服务帐户?	所关联服务帐户具备 ef

K8s 风险评估(续)

在K8s pod 使用有漏洞的镜像时,有些注意事项需要重视。

因素	问题	危险范例
暴露的服务	有漏洞的 Pod 是否暴露出可 从外部访问的服务?	Pod 被暴露至互联网上。
所连接的网络	Pod 被关联至那些虚拟/物理 网络?	Pod 可访问互联网。 Pod 可连接至高特权 Pod。

范例

apiVersion: vl

metadata:

kind: ServiceAccount

```
kind: ClusterRoleBinding
apiVersion:rbac.authorization.kBs.io/vlbeta
metadata:
name: test sa binding
subjects:
- kind: ServiceAccount
name: test sa
namespace: office
roleRef:
kind: ClusterRole
name: deployment-manager
...
```

使用高特权服务帐户的 Pod

```
apiversion: policy/vlbeta
kind: podsecuritypolicy
metadatar
                                   kind: ClusterRole
      name: privileged
                                   apiVersion: rbac.authorization.k8s.io/vl
                                   metadatas
Spec:
                                          name: Administrator
      privileged: true
             fsGroup:
                                   rulear
             rule: RunAsAny
                                         - apiGroups: ['policy']
                                            resources: ['podsecuritypolicies']
      seLinux:
                                            verbs: ['use']
            rule: RunAsAny
                                           resourceNames:
                                                 - privileged
   Define a Pod Security Policy
                                            Use a Pod Security Policy
```

High Privileged Pod Security Policy

缓解策略

解决方案	做法	优势	劣势
修补漏洞	安装补丁	从根本上解决问 题 ↑	· 补丁并非总是立即可用。 · 难以修补运行中的容器。
替换基准镜 像	更改 Dockerfile 中的基准镜像	易于实施	· 更安全的基准镜像并非总是可用。 ጎ· 为保证稳定性,需要额外的测试。 丛· 难以更改运行中的容器。
部署应用程序防火墙	部署应用程序 级防火墙	・ 防止在运行时 被利用・ 易于实施	可能无法适用于所有漏洞。

议程

- ▶ 简介
- ▶ 基本统计
- > 漏洞研究
- 集群中的镜像
- > 实践建议

容器漏洞管理核查单

建议的阶段	核查项	操作
集成阶段	镜像中的漏洞	使用镜像扫描器扫描漏洞
集成阶段	可替换的基准镜像	如果基准镜像有漏洞,查找可替换并且更安 全的基准镜像
集成阶段	定义风险条件	使用诸如 CVSS 分数、可利用向量等条件为漏洞定义风险级别

容器漏洞管理核查单 (续)

建议的阶段	核查项	操作
交付阶段	风险评估	为您的名称空间/服务/Pod/部署定义风险耐受条件
交付阶段	部署策略	定义能将漏洞与部署风险要求相匹配的策略
交付阶段	策略强制实施	使用工具强制实施您的安全策略

容器漏洞管理核查单 (续)

建议的阶段	核查项	操作
运行阶段	扫描镜像	在运行中的容器内寻找新发现的漏洞
运行阶段	部署应用程序级防 火墙	部署应用程序防火墙,获得及时更新的入侵 防御能力
运行阶段	监视流量	使用服务网格策略检测 Pod 间的异常流量
运行阶段	监视主机	部署基于主机的入侵检测系统, 防止基于主 机的特权提升

问答

我的容器安全吗?

有关容器漏洞的研究

Cecilia Hu, Yue Guan, Zhaoyan Xu <u>Palo Alto Networks</u>