

By Deep

Minimum requirements for μC to work properly

Stable power source

μC generally requires voltage from 4.5 v to
5.5v DC.

- Battery
- Wall adapter
- USB

Batteries

A 100 mAh battery Life??

- 0.1hr for 1000mA
- 1hr for 100mA
- ▶ 10hrs for 10mA

Current * Time = mAh (Constant)

Wall Adapters

- Different ratings chargers are available having output voltages as 5V,9V,12 V etc.
- BUT we need 5V DC!!! How will we achieve this??
- Potential divider with resistors?
- Potential divider with Capacitors ?
- Zener diodes?
- Better solution is Voltage regulators (Buck regulators). E.g. 7805 for 5V.

USB

- USB runs at 5V.
- The max current you can draw is 500mA.
- Therefore the max load is $5V \times 0.5A = 2.5Watts$.

Voltage regulator

How to avoid Voltage dips near VCC pin???

DeCap is the solution...

Decap acts as a reservoir of charges & supplies them when needed.

Choice of Crystal oscillator over internal RC oscillator

- For an oscillator ,BW α phase noise.
- If BW¹, phase noise ¹, frequency constantly changes (due to temperature changes & jitter)
- Quality factor = $\frac{f_{centre}}{BW}$

$$\frac{Q_{crystal}}{Q_{internal\ RC\ oscillator}} \cong 1000$$

Crystal Vs Internal oscillator

Use Crystal oscillator when timing requirements are stringent otherwise you may go for internal oscillator.

E.g. For an Real time clock (RTC) application

Crystal oscillator	Internal RC oscillator
0.05% accuracy	2% accuracy
$0.05\% \text{ of } 365 \cong 0.1825 \text{ day}$	2% of 365 \cong 7.3 days
i.e. RESET clock after $5\left(\frac{1}{2}\right)$ years.	i.e. RESET clock after every 7 days.

Why to use caps along with crystal?

• Crystal are designed for a given C_{load} & they give maximum accuracy for that value.

uC

XTALOUT

XTALIN

$$C_{load} = \frac{C_{x1}.C_{x2}}{C_{x1}+C_{x2}} + C_{stray}$$

• Assuming that $C_{x1} = C_{x2}$ then the equation becomes:

$$C_{x1} = 2C_{load} - 2C_{stray}$$

• C_{load} is specified by the manufacturer & C_{stray} is generally from 2–5pf.

Reset Circuit

It should be kept low for 64 oscillator cycles i.e. $t_{reset} = \frac{64}{f_{crvstal}}$.

$$V_c(t_{reset}) = Vcc \left(1 - e^{-\frac{t_{reset}}{RC}}\right) < V_{IL}$$

 $V_{IL}(datasheet) = 0.2 \, Vcc - 1$. $For \, V_{cc} = 5v \, it \, is \, 0.9v$.

 R_{reset} (datasheet). Take min value to calculate for worst case. $R_{reset(min)} = 50 \text{K}\Omega$.

After calculations, we get C>0.269nF.

Dumping our Hex to uC

- Atmel chips can be programmed either by ISP (In-System Programming) or using Bootloader.
- For ISP, we require a programmer (hardware)
- Serial port programmer
- Parallel port programmer
- Smart ISP programmer
- A bootloader is a small piece of software that runs on the uC when it is reset.
- It does not require any programmer.
- It basically sits there waiting for a new program to be downloaded, and **load**s it into memory not used by the bootloader.

Pull-up Resistor

- The pin is configured as i/p & what if there is no pull-up or pull-down?
- Some ports have internal pull-up whereas some have open-drain configuration(pull-up is needed).
- Two Criteria's need to be met
- 1. Not too low value $(1k\Omega)$ to avoid Power dissipation.
- 2. Not too High value (1 M Ω) to avoid low switching speed.
- Generally a 10 K Ω resistor is used for open-drain ports.

Switches interfacing

Switch bouncing & remedies...

When the switch is closed, the two contacts actually separate and reconnect, typically 10 to 100 times over a period of about 1ms. This is called Switch bouncing!!!!

REMEDIES

- Additional hardware (a cap & resistor).
- Software debouncing...

Driving capabilities

- Let us say I_sourcemax(datasheet)=80mA, I_led= $\frac{5-3}{330}$ = 9.1mA
- $I_{total} = 8*9.1 + 1 = 73.8 \text{ mA}$
- (Still safe but there is possibility of blowing off if we don't take care.)

