Walmart sales detailed project analysis report

Sql Queries:

```
create database siva_walmart_salesdata;
use siva_walmart_salesdata;
show tables;
select * from walmart_sales;
```


general analysis:

-- How many unique cities does the city have?

select COUNT(distinct City)

from walmart_sales;

3 unique cities does the city column have.

-- in which city is each branch?

select branch, city from walmart_sales order by branch;

product related questions:

-- how many unique product lines does the data have?

```
select Product_line,count(distinct Product_line)
from walmart_sales
group by Product_line;
```

	count(distinct Product_line)
•	6

-- what is the most common payment method?

```
with data as(select Payment_method, count( Payment_method) count from walmart_sales group by payment_method) select * from data where count=(select max(count) from data);
```


Ewallet is the most common payment method.

-- what is the most selling product line?

```
with data as(select Product_line,count( Product_line) count
from walmart_sales
group by Product_line
order by count desc)
select *
from data
where count=(select max(count) from data);
```


Fashion accessories is the most common product line.

-- what is the total revenue by month?

select Month_name,SUm(Total) as Total_revenue from walmart_sales

GROUP BY Month_name;

	Month_name	Total_revenue
•	January	116291.86800000005
	March	109455.50700000004
	February	97219.37399999997

-- what month had the largest cogs?

with data as (select Month_name,sum(cogs) cogs from walmart_sales group by Month_name

order by sum(cogs) desc)

select *

from data

where cogs=(select max(cogs) from data);

	Month_name	cogs
•	January	110754.16000000002

january month had the largest cogs

-- what product line had the largest revenue?

with data as(select Product_line,sum(Total) revenue

```
from walmart_sales
group by product_line
order by sum(Total) desc)
select * from data
where revenue=(select max(revenue) from data);
```


food and beverages had the largest revenue.

-- what is the city with largest revenue?

with data as(select City,sum(Total) revenue
from walmart_sales
group by City
order by sum(Total) desc)
select * from data
where revenue=(select max(revenue) from data);

naypyitaw city had the largest revenue.

-- what product line had the largest VAT?

with data as(select Product_line,sum(VAT) vat from walmart_sales group by product_line order by sum(VAT) desc)

select * from data

where vat=(select max(vat) from data);

Food and beverages had the largest vat.

-- Fetch each product line and add a column to those product line showing "Good""Bad" Good if its greaterthan average sales?

```
SELECT

product_line,

quantity,

CASE

WHEN quantity >= 5.5100 THEN 'Good'

ELSE 'Bad'

END AS sales_evaluation

from walmart_sales;
```

	product_line	quantity	sales_evaluation
١	Health and beauty	7	Good
	Electronic accessories	5	Bad
	Home and lifestyle	7	Good
	Health and beauty	8	Good
	Sports and travel	7	Good
	Electronic accessories	7	Good
	Electronic accessories	6	Good
	Home and lifestyle	10	Good
	Health and beauty	2	Bad
	Food and beverages	3	Bad

-- Which branch sold more products than average product sold?

select branch

from walmart_sales

where quantity>(select avg(quantity) from walmart_sales);

-- What is the most common product line by gender?

```
with femaledata as(select product_line, gender,count(gender) count
from walmart_sales
where gender='female'
group by product_line,gender
order by count desc),
maledata as(select product_line, gender,count(gender) count
from walmart_sales
where gender='male'
group by product_line,gender
order by count desc),
femalerank as (select *,dense_rank() over(order by count desc) as dr from
femaledata),
malerank as(select *,dense_rank() over(order by count desc) as dr from
maledata),
```

```
data as(select * from femalerank
union all
select * from malerank)
select * from data
where dr=1;
```

	product_line	gender	count	dr
•	Fashion accessories	Female	96	1
	Health and beauty	Male	88	1

Fashion accessories is the common_product line by female
Health and beauty is the common_product line by male

```
##-----##
```

with data as(select gender,product_line,count(gender) count
from walmart_sales
group by gender,product_line
order by count desc),
rankdata as(select *,dense_rank() over(partition by gender order by count
desc) as rnk from data)
select * from rankdata
where rnk =1;

-- What is the average rating of each product line?

```
select product line,avg(rating)
```

from walmart_sales group by product_line;

	product_line	avg(rating)	
þ	Health and beauty	7.003289473684212	
	Electronic accessories	6.92470588235294	
	Home and lifestyle	6.8375	
	Sports and travel	6.916265060240964	
	Food and beverages	7.11321839080459	
	Fashion accessories	7.029213483146067	

(or)

select product_line,avg(rating) over(partition by product_line) avg_rating from walmart_sales;

sales analysis:

-- Number of sales made in each time of the day per weekday?

```
select day_name,time_of_day,count(*) as sales_count
from walmart_sales
group by day_name,time_of_day
order by
```

field(day_name, "Monday", "Tuesday", "wednesday", "Thursday", "Friday",
"Saturday", "Sunday");

	day_name	time_of_day	sales_count	
١	Monday	morning	23	
	Monday	afternoon	64	
	Monday	evening	45	
	Tuesday	evening	55	
	Tuesday	morning	23	
	Tuesday	afternoon	72	
	Wednesday	afternoon	71	
	Wednesday	morning	27	
	Wednesday	evening	43	
	Thursday	afternoon	62	

-- Which of the customer types brings the most revenue?

```
with data as(select customer_type,sum(total) total from walmart_sales group by customer_type) select * from data where total= (select max(total) from data);
```


member customer type brings the most revenue.

-- Which city has the largest tax percent/ VAT (Value Added Tax)?

with data as(select City,sum(vat) vat
from walmart_sales
group by city)
select * from data
where vat=(select max(vat) from data);

naypyitaw city has the largest tax percent.

-- Which customer type pays the most in VAT?

```
with data as(select customer_type,sum(vat) vat
from walmart_sales
group by customer_type)
select * from data
```

where vat=(select max(vat) from data);

member customer type pays the most vat.

customer related analysis:

-- How many unique customer types does the data have?

select count(distinct customer_type)
from walmart sales;

2 unique customers does the data have.

-- How many unique payment methods does the data have?

select count(distinct payment_method)
from walmart sales;

3 unique payment methods does the data have.

-- What is the most common customer type?

with data as(select customer_type, count(customer_type) count from walmart_sales group by(customer_type)) select * from data where count=(select max(count) from data);

member is the most customer type.

-- Which customer type buys the most?

```
with data as(select customer_type,sum(quantity) quantity
from walmart_sales
group by (customer_type))
select * from data
where quantity=(select max(quantity) from data);
```


member customer type buys the most.

-- What is the gender of most of the customers?

with data as(select gender,count(gender) count
from walmart_sales
group by gender)
select *
from data
where count=(select max(count) from data);

most of the customers gender is female.

-- What is the gender distribution per branch?

```
select branch,gender, count(gender) as frequency from walmart_sales group by branch,gender
```

order by branch, frequency desc;

	branch	gender	frequency
Þ	A	Male	179
	A	Female	161
	В	Male	170
	В	Female	162
	C	Female	178
	C	Male	150

-- Which time of the day do customers give most ratings?

```
with data as(select Time_of_day,count(rating) rating
from walmart_sales
group by Time_of_day)
select * from data
where rating=(select max(rating) from data);
```


from rankdata

afternoon time customers give most ratings.

-- Which time of the day do customers give most ratings per branch?

```
with data as(select time_of_day,branch,count(rating) rating
from walmart_sales
group by time_of_day,branch
order by branch,count(rating) desc),
    rankdata as(select *,dense_rank() over(partition by branch order by rating desc) as dr from data)
select *
```

where dr=1;

	time_of_day	branch	rating	dr
•	afternoon	Α	152	1
	afternoon	В	137	1
	afternoon	С	150	1

-- Which day of the week has the best avg ratings?

```
with data as(select day_name, avg(Rating) rating
from walmart_sales
group by day_name)
select *
from data
where rating=(select max(rating) from data);
```


wednesday has the best avg rating.

-- Which day of the week has the best average ratings per branch?

```
with data as( select branch,day_name,avg(rating) rating
from walmart_sales
group by branch,day_name
order by avg(rating) desc),
rankdata as( select *,dense_rank() over(partition by branch order by rating desc) as rnk from data)
select * from rankdata where rnk=1;
```

	branch	day_name	rating	rnk
•	A	Tuesday	7.234042553191487	1
	В	Friday	7.226190476190476	1
	C	Sunday	7.480434782608695	1

Possible insights from this data:

- There are 3 unique cities in this data those are "yangon", "mandalay", "Naypyitaw".
- This data consists of 6 unique product_lines.
- E-wallet is the most common payment method used by everyone.
- Fashion accessories is the most selling product in this data.
- Food and beverages created the largest revenue in this data.
- Naypyitaw city collected largest tax.
- Member customer type payed higher amount of VAT.
- Most of the customers are from female category.
- Most of the customers given rating in afternoon.

