Data Acquisition and learning aspects in Al

- 1. Knowledge discovery: Data mining and Machine learning
- 2. Computational Logic Theory(COLT): Formal mathematical problems are defined. These models helps in analyzing and predicting the efficiency in terms of feasibility of algorithm.
- **3. Neural and evolutionary computation**: used to speedup the mining of data.
- 4. Intelligent agents and Multi agents systems: IA are flexible in terms of action and get the desired outcome. Multi agents (group of IA)deals with the complex task. Overall performance is improved.
- **5. Multi perspective integrated intelligence:** Different perspective used for decision-making.

Problem Solving

A problem-solving refers to a state where we wish to reach to a definite goal from a present state or condition.

Steps for Problem solving:

➤ Goal Formulation: organizes the steps required to formulate one goal out of multiple goals.

> Problem Formulation:

- ➤ Initial state: starting step towards goal.
- >Actions: description of possible agents.
- >Transition model: describes model function.
- ➤ Goal test: determines if current state is goal state.
- ➤ Path cost: it assigns a numeric cost to each path that follows goal and the agent selects a cost function which reflects its performance measure.
- * An optimal solution has minimum path cost.

Ex: Travelling salesman, N-queens problem, water jug problem, 8 puzzle problem etc.

Formulating Problems

Toy Problem: Ex: 8-Puzzle Problem

1	2	3	
	4	6	
7	5	8	

Initial state

		R	/			_	D	<u>_</u> ,	
1	2	3		ار	J		1	2	3
4		6		2	3		7	4	6
7	5	8	1	4	6	·		5	8

1	2	3
4	5	6
7	8	

Goal state

*Possible moves (Up, Down, Left, Right)

-----(continue until goal state obtained)

Algorithm

- Step 1:- State= Initial state; existing state= state
- Step 2:- while state ≠ final state
 - i. Existing state= state
 - ii. Apply operations from set{U, D, L, R}
 - iii. If new state → existing state ≠ φ
 - *existing state= existing state U new states
 - *state= new state

End while.

Problems type and Characterstics

- 1. Deterministic or observable: Each state is fully observed and goes to definite state after taking any action. Here the goal state is reachable at a single or sequence of states. Ex: doors with sensor, Sudoku game.
- 2. Non- observable: It comes under multiple state problem. Agent has no information about the state which may leads to multiple state in reaching to the goal state. Ex: Vacuum cleaner with sensor.
- 3. Non-deterministic or partially observable: Effect of the action is not clear. At every state some new information is added and then operator acts on it.
- **4. Unknown state space:** Typically based on the exploration i.e., without having complete knowledge of the new search state. Ex: Online search portal