Algebraic Geometry 1

So Murata

2024/2025 Winter Semester - Uni Bonn

1 Topology

1.1 Connected Sets

Definition 1.1. Let (X, \mathcal{T}) be a topological space. A subset A of X is said to be connected if for any $U, V \in \mathcal{T}$, $U \cap V = U \cup V \supset A$ then A is fully contained in one of U, V.

Definition 1.2. A connected component of a topological space is a maximal connected subset of a space.

Proposition 1.1. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological space and $f: X \to Y$ be a continuous function. Then for any connected subset A of X, f(A) is connected in Y.

Proof.

$$\begin{split} U, V \in \mathscr{T}_Y, U \cup V \supset f(A), U \cap V &= \emptyset, \\ \Rightarrow f^{-1}(U), f^{-1}(V) \in \mathscr{T}_X, \\ f^{-1}(U) \cup f^{-1}(V) \supset A, \\ f^{-1}(U) \cap f^{-1}(V) &= \emptyset, \\ \Rightarrow f^{-1}(U) \supset A \vee f^{-1}(V) \supset A, \\ \Rightarrow U \supset f(A) \vee V \supset f(A). \end{split}$$

Definition 1.3. Let X be a topological space. A point $\eta \in X$ is called a generic point if

$$\overline{\{\eta\}} = X.$$

2 Category Theory

2.1 Categories

Definition 2.1. A category \mathscr{A} consists of

- a collection $ob(\mathscr{A})$ of objects;
- for each $A, B \in ob(\mathscr{A})$, a collection $\mathscr{A}(A, B)$ of morphisms from A to B; such that
 - i). for each $A \in ob(\mathscr{A})$, the identity $1_A \in \mathscr{A}(A,A)$;
- ii). the composition $\mathscr{A}(B,C)\times\mathscr{A}(A,B)\ni (g,f)\mapsto g\circ f\in\mathscr{A}(A,C)$ is well-defined;

and they satisfy the following axioms

- I). Associativity : $f \in \mathcal{A}(A,B), g \in \mathcal{A}(B,C), h \in \mathcal{A}(C,D), (h \circ g) \circ f = h \circ (g \circ f).$
- II). Identity laws: $f \in \mathcal{A}(A, B)$ then $f \circ 1_A = 1_B \circ f$.

Definition 2.2. Let \mathscr{A} be a category. A terminal object $T \in ob(\mathscr{A})$ is an object such that for any $A \in ob(\mathscr{A})$, $\mathscr{A}(A,T)$ is a single element set.

Definition 2.3. Given two categories \mathscr{A}, \mathscr{B} , we say \mathscr{A} is a full-subcategory of \mathscr{B} if

- i). $\mathscr{A} \subset \mathscr{B}$,
- ii). $ob(\mathscr{A}) = ob(\mathscr{B})$.

Notation 2.1. Here we give notations to some important categories.

- (Sets): A category of sets equipped with set theoretic functions.
- (Ab) : A category of abelian groups with group homomorphisms.

Example 2.1. Given a partially ordered set (X, \leq) . This can be encoded to a category \mathcal{O} by

- i). ob(\mathcal{O}) = X,
- ii). For $x, y \in X$, $x \leq y \Rightarrow \mathcal{O}(x, y) = \{*\}$ otherwise the morphisms between x, y is an emptyset.

Definition 2.4. A opposite/dual category of a category \mathscr{A} is \mathscr{A}^{op} such that

- i). $ob(\mathscr{A}^{op}) = ob(\mathscr{A}),$
- $ii). \mathcal{A}^{op}(B,A) = \mathcal{A}(A,B).$

Definition 2.5. Let \mathscr{A} be a category and $\varphi_1, \varphi_2 \in \mathscr{A}(M, N)$. A morphism $\varphi : K \to M$ is called an equalizer of (φ_1, φ_2) if for any morphism $\psi : P \to M$ such that $\varphi_1 \circ \psi = \varphi_2 \circ \psi$, there is a unique morphism $\tilde{\psi} : P \to K$ such that $\varphi \circ \tilde{\psi} = \psi$.

Proposition 2.1. If an equalizer exists then it is unique up to unique isomorphism.

Proof. Suppose $\varphi: K \to M, \psi: L \to M$ be equalizers of (φ_1, φ_2) . Then we have

$$\varphi \circ \tilde{\psi} = \psi, \quad \psi \circ \tilde{\varphi} = \varphi$$

By the uniqueness, we have $\tilde{\varphi} \circ \tilde{\psi} = 1_L, \tilde{\psi} \circ \tilde{\varphi} = 1_K$.

Definition 2.6. Let \mathscr{A}, \mathscr{B} be categories. A functor $F : \mathscr{A} \to \mathscr{B}$ is a function such that for each $f \in \mathscr{A}(A,A')$, $F(f) : F(A) \to F(A')$. In other words, $f \mapsto F(f) : \mathscr{A}(A,A') \to \mathscr{B}(F(A),F(A'))$. Furthermore, F satisfies the following axioms.

- I). $F(f' \circ f) = F(f') \circ F(f)$ whenever $f: A \to A', f': A' \to A''$ in \mathscr{A} ,
- II). $F(1_A) = 1_{F(A)}$ whenever $A \in \mathscr{A}$.

Definition 2.7. Let F, G be functors between two categories \mathscr{A}, \mathscr{B} . A natural transformation $\alpha : F \to G$ is a family $(\alpha_A : F(A) \to G(A))_{A \in \mathscr{A}}$ such that

$$F(A) \xrightarrow{F(f)} F(A')$$

$$\alpha_A \downarrow \qquad \qquad \downarrow \alpha_{A'}$$

$$G(A) \xrightarrow{G(f)} G(A')$$

is a commutative diagram. Each α_A is called a component of α .

2.2 Direct Limits

Definition 2.8. A partially ordered set (X, \leq) is directed if for any $x, y \in X$ there is $z \in X$ such that $x \leq c$ and $y \leq c$.

Example 2.2. Let (X, \mathcal{T}) be a topological space. A partially ordered set (\mathcal{T}, \leq) such that

$$V \subseteq U \Rightarrow U \leq V$$

is directed. Since for any $U \in \mathcal{T}$, $U \leq \emptyset$. As a category this is $\mathbf{Ouv}_X^{\mathbf{op}}$.

Example 2.3. Let (X, \mathcal{T}) be a topological space. For $x \in X$, define $O_x = \{U \in \mathcal{T} \mid x \in U\}$. If we define an order as in the previous example, we get (O_x, \leq) is directed. This follows from for any $U, V \in O_x$, $U, V \leq U \cap V$.

Definition 2.9. Let I be a directed partially ordered set and \mathscr{A} be a category. A directed system of objects of \mathscr{A} indexed by I is a collection of objects $(A_i)_{i\in I}$ and morphisms $(\rho_{ij})_{i< j}$ of \mathscr{A} such that

$$i$$
). $\rho_{ii} = \mathbf{id}_{A_i}$,

ii). for $i, j, k \in I$, $i \leq j \leq k \Rightarrow \rho_{ik} = \rho_{jk} \circ \rho_{ij}$.

Remark 2.1. Categorically, the directed system of objects of \mathscr{A} indexed by I is a functor $\mathscr{O}^{op} \to \mathscr{C}$, where \mathscr{O} is a category which encodes the ordered set I as a category by the same procedure as in Example $\ref{eq:condition}$. Then a directed system if a functor $\mathscr{O}^{op} \to \mathscr{A}$.

Definition 2.10. Given a directed system $((A_i)_{i\in I}, \{\rho_{ij}\}_{i\leq j})$ of objects in \mathscr{A} indexed by I. A direct limit of the system is an object $\varinjlim A_n \in \mathbf{ob}(\mathscr{A})$ satisfying the following universal property.

Given a collection of morphisms $(f_i)_{i\in I}$ such that

- $i). \ f_i: A_i \to \underline{\lim} A_n \in \mathscr{A},$
- ii). for any $i \leq j$, $f_j \circ \rho_{ij} = f_i$.

For any $A \in \mathscr{A}$ where there is a collection of morphisms $(g_i)_{i \in I}$ satisfying the above condition, there is a unique map $\varphi : \varinjlim A_n \to A$ such that

is a commutative diagram.

Proposition 2.2. lim is an exact functor.

Proposition 2.3. In the cases where $\mathscr{A} = (\mathbf{Ab}), (\mathbf{Sets})$, there exist direct limits and for each category, such limit is constructed in the following ways.

- i). $\varinjlim A_n = (\bigoplus_{i \in I} A_i)/N$ where $N = \{a_i \rho_{ij}(a_i) \mid a_i, i \leq j\}$.
- ii). $\varinjlim_{and} A_n = (\coprod_{i \in I} A_i) / \sim \text{ where } a_i \sim a_j \text{ if there is } k \text{ such that } i \leq k \text{ } j \leq k,$

Furthermore, these two direct limits match as sets.

Proposition 2.4. \varinjlim is (left) exact in (**Ab**). In other words, given a exact sequence of directed $\overrightarrow{systems}$

$$0 \longrightarrow (M_i)_{i \in I} \longrightarrow (N_i)_{i \in I} \longrightarrow (P_i)_{i \in I} \longrightarrow 0$$

in which we have

There exists a short exact sequence

$$0 \longrightarrow \varinjlim M_n \longrightarrow \varinjlim N_n \longrightarrow \varinjlim P_n \longrightarrow 0$$

3 Commutative Algebra

3.1 Local Rings

Definition 3.1. The total ring of fraction of a ring A is a localization of A by the set of all non-zero divisors. It is denoted as Q(A).

Definition 3.2. A ring is said to be local if it has a unique maximal ideal.

Definition 3.3. A ring homomorphism $\phi:(A,\mathfrak{m}_A)\to(B,\mathfrak{m}_B)$ of two local rings is said to be local if

$$\mathfrak{m}_A = \phi^{-1}(\mathfrak{m}_B).$$

Example 3.1. Let $i: \mathbb{Z}_{(p)} \to Q(\mathbb{Z}_{(p)})$ be an inclusion map. Then it is a homomorphism of local rings. However, If p is prime then $Q(\mathbb{Z}_{(p)})$ is a field thus its maximal ideal is (0). Obviously

$$i^{-1}((0) = (0).$$

Therefore, i is not a local ring homomorphism.

Proposition 3.1. Let $\phi: A \to B$ be a ring homomorphism. Recall that for any prime ideal $\mathfrak{q} \subseteq B$, we have $\mathfrak{p} = \phi^{-1}(\mathfrak{q})$ is a prime ideal in A. Thus ϕ induces a homomorphism between $A_{\mathfrak{p}}$ and $B_{\mathfrak{q}}$ which is a local ring homomorphism.

Proof. If $a \in A$, $\phi(a) = 0$ then $a \in \mathfrak{p}$. Thus $\phi(s) \neq 0$ for any $s \notin \mathfrak{p}$. Since $\mathfrak{p}, \mathfrak{q}$ are unique maximal ideals of $A_{\mathfrak{p}}$ and $B_{\mathfrak{q}}$, respectively. We derived the claim.

Lemma 3.1. Let k be an algebraically closed field and A be a k-algebra. A localization $A_{\mathfrak{m}}$ by a maximal(prime) ideal $\mathfrak{m} \subset A$, we have the following isomorphism.

$$k \cong A_{\mathfrak{m}}/\mathfrak{m}A_{\mathfrak{m}}.$$

Proof. Follows from the algebraically closedness of k.

3.2 Maximal Spec

Definition 3.4. Let R be a commutative ring. We define the maximal spec of R as

$$MaxSpec(R) = \{ \mathfrak{m} Spec(R) \mid \mathfrak{m} \text{ is a maximal ideal.} \}.$$

Lemma 3.2. Let k be an algebraically closed field. We have the following isomorphism

MaxSpec
$$k[x_1, \dots, x_n] \cong k^n$$
, $(x_1 - a_1, \dots, x_n - a - n) \leftrightarrow (a_1, \dots, a_n)$.

Proof. Surjectivity follows from the algebraically closedness of k.

3.3 Zariski Topology

Definition 3.5. Let k be a algebraically closed field. A subset X of k^n is called an affine algebraic set if there exists an ideal $\mathfrak{a} \subset k[x_1, \dots, x_n]$ such that

$$X = V(\mathfrak{a}) = \{(a_1, \cdots, a_n) \mid \forall f \in \mathfrak{a}, f(a_1, \cdots, a_n) = 0\}.$$

Definition 3.6. Let k be an algebraically closed. The Zariski topologi on k^n is a topology generated by affine algebraic sets as closed subsets.

Definition 3.7. Let X be the Zariski topology on k^n . A function $f: X \supseteq U \to k$ is said to be regular if for any $a = (a_1, \dots, c_n) \in U$, there exist a neighborhood $U_a \subseteq U$ and $f_1, f_2 \in k[x_1, \dots, x_n]$ such that

$$(b_1,\cdots,b_n)\in V_a\Rightarrow f(b_1,\cdots,b_n)=\frac{f_1(b_1,\cdots,b_n)}{f_2(b_1,\cdots,b_n)}.$$

Remark 3.1. A regular function f on the Zariski topology on k^n is continuous as they are locally equivalent to quotients of polynomial functions.

Lemma 3.3. Let $\mathfrak{a} \subset A$ be an ideal. Then we have the following are homeomorphic.

$$\operatorname{Spec}(A/\mathfrak{a}) \cong V(\mathfrak{a}).$$

4 Classical Algebraic Geometry

4.1 Affine Variety

Definition 4.1. An affine algebraic set X is called an affine variety if there exists a prime ideal $\mathfrak{p} \subseteq k[x_1, \dots, x_n]$ such that

$$X = V(\mathfrak{p}).$$

Definition 4.2. Let k be an algebraically closed field and $X \subseteq k^n$. The ideal of X is

$$I(X) = \{ f \in k[x_1, \dots, x_n] \mid \forall (a_1, \dots, a_n) \in X, f(a_1, \dots, a_n) = 0 \}.$$

Theorem 4.1. For any ideal $\mathfrak{a} \subset k[x_1, \dots, x_n]$, we have

$$I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}.$$

Definition 4.3. Let $X \subset k^n$ where k is an algebraically closed field. The affine coordinate ring with respect to X is

$$A(X) = k[x_1, \cdots, x_n]/I(X).$$

5 Sheaf Theory

5.1 Presheaves

Definition 5.1. Let (X, \mathcal{T}) be a topological space. We define the presheaf \mathcal{F} of a category \mathscr{A} on X such that

- $U \in \mathcal{T}, \mathcal{F}(U) \in ob(\mathcal{A}),$
- $U, V \in \mathcal{T}, V \subset U \Rightarrow there \ exists \ a \ map \ \rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ such that
- i). For any $U \in \mathcal{T}$, $\rho_{UU} = 1_{\mathscr{F}(U)}$.
- *ii*). $U, V, W \in \mathcal{T}, W \subset V \subset U \rightarrow \rho_{UW} = \rho_{VW} \circ \rho_{UW}$.

Remark 5.1. In the case $\mathscr{A} = (\mathbf{Sets}), (\mathbf{Ab}), \mathscr{F}(\emptyset) = \emptyset, \{1\}, respectively.$

Definition 5.2. An element of $\mathscr{F}(U)$ is called a local section of \mathscr{F} and $\Gamma(U,\mathscr{F})=\mathscr{F}(U)$ is called the space of sections over U. In particular $\Gamma(X,\mathscr{F})$ is called the space of global sections of \mathscr{F} .

Definition 5.3. Let (X, \mathscr{T}) be a topological space and \mathscr{F} be a presheaf of a category \mathscr{A} on X. Suppose we have two open sets $U, V \in \mathscr{T}$ such that $V \subset U$. Then for any section $s \in \mathscr{F}(U)$, $s|_{V} = \rho_{UV}(s)$ is called the restriction of s to V.

Example 5.1. Let (X, \mathcal{T}) be a topological space. We have a presheaf of continuous functions $\mathscr{C}_X(U) = \mathscr{C}^0(U, \mathbb{R})$. This is indeed a presheaf with restriction maps $\rho_{UV} : \mathscr{C}_X(U) \to \mathscr{C}_X(V)$. (Explicitly, $\rho_{UV}(f) = f \circ i_V$ where i_V is an inclusion map.) We note that we can introduce operations $+, \cdot$ to endow some algebraic structures (groups, rings, ...) on \mathbb{R} .

Example 5.2. Let (X, \mathcal{T}) be a topological space and suppose we have presheaves

• $\mathscr{C}_X^{diff}(U) = \{ f : U \to \mathbb{R} \mid f \text{ is differentiable.} \}.$

Then there is an inclusion relation $\mathscr{C}_X^{\text{diff}}(U) \subseteq \mathscr{C}_X(U)$ and this defines a presheaf.

Example 5.3. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces. Define a presheaf on X by

$$U \in \mathscr{T}_X, \mathscr{F}(U) = \mathscr{C}^0(X, Y).$$

And like the previous example, we define $\rho_{UV}(f) = f|_V$ for $U, V \in \mathscr{T}_X, V \subset U$. the restriction of f to V.

But this is a presheaf only of a set.

Example 5.4. Let (X, \mathcal{F}) be a topological space and G be an abelian group. The constant presheaf \mathbb{G} is such that

$$U \in \mathcal{T}, \mathbb{G}(U) = G,$$

with $\rho_U V = id_G$ for any $U, V \in \mathcal{T}, V \subset U$.

5.2 Presheaves as Categories

Definition 5.4. Let (X, \mathcal{T}) be a topological space then (\mathbf{Ouv}_X) is the category such that its objects are the open sets of X and for any $U, V \in \mathcal{T}$ we have

$$\mathbf{Ouv}_X(U,V) = \begin{cases} \emptyset & (V \not\subset U), \\ i_V & (V \subset U). \end{cases}$$

Definition 5.5. Let (X, \mathcal{T}) be a topological space and \mathscr{A} be a category. A presheaf of \mathscr{A} on X is a functor $F : \mathbf{Ouv}_X \to \mathscr{A}$.

Example 5.5. For \mathbf{Ouv}_X , we can define a presheaf of F to be

$$ob(\mathbf{Ouv}_X) \ni U \mapsto F(U) = \mathscr{C}^0(U, \mathbb{R}).$$

Example 5.6. Let A be a commutative ring with non-zero multiplicative identity and $X = \operatorname{Spec}(A)$. Let us consider the Zariski topology (X, \mathcal{T}) . Let us consider a category \mathcal{O}_X such that

- $ob(\mathscr{O}_X) = \mathscr{T}$,
- $\mathscr{O}_X(U) = \{s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}\},\$

where $s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$ is a function such that for any $\mathfrak{p} \in U$,

- i). $s(p) \in A_{\mathfrak{p}}$,
- ii). there exists an open set $V \subset U$ such that $\mathfrak{p} \in V$ and for any $\mathfrak{q} \in V$, $s(\mathfrak{q}) = \frac{a}{b}$ for $b \notin \mathfrak{q}$.

Now we define a presheaf by the restrictions of maps such that

$$s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}} \mapsto s|_{V}: V \to \coprod_{\mathfrak{q} \in V} A_{\mathfrak{q}}.$$

Definition 5.6. Let (X, \mathcal{T}) be a topological space and \mathscr{A} be a category. We define a set of presheaves of \mathscr{A} on X as

$$\operatorname{PreSh}_{\mathscr{A}}(X) = \operatorname{Fun}(\mathbf{Ouv}_X^{\mathbf{op}}, \mathscr{A}).$$

Definition 5.7. A morphism of presheaves is a natural transformation φ : $\mathscr{F} \to \mathscr{G}$ where $\mathscr{F}, \mathscr{G} \in \operatorname{PreSh}_{\mathscr{A}}(X) = \operatorname{Fun}(\mathbf{Ouv}_X^{\mathbf{op}}, \mathscr{A}).$ (See Definition ??).

Such
$$\varphi: \mathscr{F} \to \mathscr{G}$$
 is

i). injective if

Remark 5.2. PreSh(X) can be regarded as a category with its objects presheaves and morphisms defined above.

Notation 5.1. In the case $\mathscr{A} = (\mathbf{Ab})$ then we denote $\operatorname{PreSh}(X) = \operatorname{PreSh}_{\mathbf{Ab}}(X)$.

Example 5.7. Let X be a differential manifold(eg. $X \subset \mathbb{R}^n$). Let us define

$$\mathscr{C}^{\mathbf{diff}}(U) = \{ f : U \to \mathbb{R} \mid f \text{ is differentiable.} \}.$$

Then the inclusions $\mathscr{C}_X^{\mathbf{diff}}(U) \subset \mathscr{C}_X(U)$ defines the natural transformation.

Example 5.8. Let $X,Y=S^1$ be topological spaces and F be a presheaf such that for any open set $U\subset X$, $F(U)=\mathscr{C}^0(U,Y)$. Then we can introduce a natural transformation such that

$$\mathscr{C}_X(U) \ni f \mapsto \exp(2\pi f i).$$

5.3 Sheaves

Definition 5.8. A presheaf \mathscr{F} on (X,\mathscr{T}) is called a sheaf if the following holds. For any collection of open sets $(U_i)_{i\in I}\subset \mathscr{T}, U=\bigcup_{i\in I}U_i$, the map $\varphi:\mathscr{F}(U)\to\prod_{i\in I}\mathscr{F}(U_i)$ which is defined as

$$\varphi(s) = (s|_{U_i})_{i \in I}.$$

is the equalizer of the following functions $\varphi_1, \varphi_2 : \prod_{i \in I} \mathscr{F}(U_i) \to \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j)$,

$$\varphi_1((s_i)_{i \in I}) = (s_i|_{U_i \cap U_j})_{i,j \in I}, \quad \varphi_1((s_i)_{i \in I}) = (s_j|_{U_i \cap U_j})_{i,j \in I}.$$

Remark 5.3. In the case $I = \{1, 2\}$, we have $U = U_1 \cup U_2$, and for any $U' \in \mathscr{T}$ such that $U \subset U'$, we have for $\mathscr{F}(U') \ni s : U' \to \mathbb{R}$, $\psi(s) = (s|_{U_1}, s|_{U_2})$, as in \mathbf{Ouv}_X , morphisms are inclusions. Let $\tilde{\psi}(s) = s|_U$, then this satisfies the condition for the equalizer (ie. $\varphi \circ \tilde{\psi} = \psi$).

Remark 5.4. A presheaf \mathcal{O}_X with $X = \operatorname{Spec}(A)$ is a sheaf.

Example 5.9. Let (X, \mathcal{T}) be a topological space and G be a group. We define a constant presheaf $\mathbb{G}(U) = G$. In general, this is not a sheaf. Instead, we define a constant sheaf $\underline{\mathbb{G}}(U) = \mathcal{C}^0(U, G)$ where G is regarded as a topological space with the discrete topology. Then for any connected component of X is mapped to a single point set in G.

Definition 5.9. Let $\mathscr{F}_1, \mathscr{F}_2$ be sheaves. A mapping $\varphi : \mathscr{F}_1 \to \mathscr{F}_2$ is called a morphism of sheaves if it is a morphism of presheaves.

Definition 5.10. A set of sheaves of $\mathscr A$ on the topological space $(X,\mathscr T)$ is denoted as $\operatorname{Sh}_{\mathscr A}(X)$.

Remark 5.5. As in the case of presheaves, $Sh_{\mathscr{A}}(X)$ can be regarded as a category with sheaf morphisms.

Remark 5.6. $Sh_{\mathscr{A}}(X)$ is a full-subcategory of $PreSh_{\mathscr{A}}(X)$.

Notation 5.2. In the case $\mathscr{A} = (\mathbf{Ab})$, we denote $\mathrm{Sh}_{(\mathbf{Ab})}(X) = \mathrm{Sh}(X)$.

5.4 Stalks

Definition 5.11. Suppose we have a topological space (X, \mathscr{T}) and a category \mathscr{A} which admits direct limits. For a presheaf $\mathscr{F} \in \operatorname{PreSh}_{\mathscr{A}}(X)$, by inheriting the notations from Example ??, we define the stalk \mathscr{F}_x of \mathscr{F} at $x \in X$ by

$$\mathscr{F}_x = \varinjlim_{U \in \mathscr{O}_x} \mathscr{F}(U) = \varinjlim_{x \in U, U \in \mathscr{T}} \mathscr{F}(U).$$

Example 5.10. Let us assume that $\mathscr{A} = (\mathbf{Ab})$ in Definition ??. Then stalks and germs can be constructed explicitly in the following way.

$$\mathscr{F}_x = \{(s, U) \mid U \in \mathscr{O}_x, s \in \mathscr{F}(U)\}/\sim,$$

where \sim is an equivalent relation such that for (s, U), (t, V),

$$(s,U) \sim (t,V)$$
 if there is $W \in \mathcal{O}_x$ such that $W \subseteq U \cap V$, $\rho_{UW}(s) = \rho_{VW}(t)$.

Definition 5.12. Inheriting the notations from Definition ??, suppose we have $(f_U : \mathscr{F}(U) \to \mathscr{F}_x)_{U \in \mathscr{O}_x}$ such that for f_U, f_V are compatible with ρ_{UV} . Then we define the germ of $s \in \mathscr{F}(U)$ to be $s_x = f_U(s)$. By the universal property of the direct limit, such s_x is unique up to images under isomorphisms.

Example 5.11. In the case of Remark ??, we have for each $U \in \mathcal{F}$, $x \in U$, and $s \in \mathcal{F}(U)$,

$$s_x = \{(t, V) \mid \text{ There is } W \in \mathcal{O}_x \text{ such that } W \subseteq U \cap V, \rho_{UW}(s) = \rho_{VW}(t)\}.$$

Remark 5.7. In the above definition, if a category $\mathscr A$ admits products, we get a map

$$(s \mapsto (s_x)_{x \in U})$$
: $\mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}_x$. (5.1)

This is neither surjective nor injective in general.

Proposition 5.1. Suppose in the definition of stalks, \mathscr{F} is a sheaf. Then the map defined by Equation ?? is injective.

Proof. We prove the case when $\mathscr{A} = (\mathbf{Ab})$.

Suppose $s \in \mathscr{F}(U)$ is such that $s_x = 0$ in \mathscr{F}_x for all $x \in U$. Since for any restriction maps are group homomorphisms. We have that there is $V_x \in \mathscr{O}_x$ such that

$$V_x \subseteq U$$
, $\rho_{UV_x}(s) = 0$.

Therefore $\{V_x\}_{x\in U}$ is an open covering of U. Since \mathscr{F} is a sheaf, we derive that s=0 in $\mathscr{F}(U)$.

Example 5.12. Given (X, \mathscr{F}) , a topological space and G, an abelian group. We will consider the constant presheaf \mathbb{G} and the constant sheaf $\underline{\mathbb{G}}$ on X. For any open set U and $x \in U$ we have

$$\mathbb{G}_x \cong \underline{\mathbb{G}}_r \cong G.$$

For any U,V open such that $V \subset U$ we have, $\rho_{UV} = \mathbf{id}_G$. Thus by the construction, for $x \in U, V$, $(s,U) \sim (t,V)$ then $x \in U \cap V$ and $\rho_{UU \cap V}(s) = s = t = \rho_{VU \cap V}(t)$. Therefore, we proved the claim.

Definition 5.13. Suppose $\varphi: \mathscr{F} \to \mathscr{G}$ be a morphism of presheaves. Then we define

$$\varphi_x(s_x) = (\varphi(s)_U)_x.$$

This defines a morphism of presheaves.

Remark 5.8. Categorically, taking stalks is a functor for each $x \in X$. Suppose we have $\mathscr{F}, \mathscr{G} \in \operatorname{PreSh}_{\mathscr{A}}(X)$ and a morphism $\varphi : \mathscr{F} \to \mathscr{G}$,

Proposition 5.2. Let $\mathscr{F},\mathscr{G}\in \mathrm{Sh}_{(\mathbf{Ab})}(X)$ Then for any morphism $\varphi:\mathscr{F}\to\mathscr{G}$ we have

$$\varphi = 0 \Leftrightarrow \forall x \in X, \varphi_x = 0$$

Proof. \Rightarrow is trivial by its construction. We will prove \Leftarrow .

We first note that $\varphi = 0$ means that for any $U \in \mathcal{T}$, we have $\varphi_U \equiv 0$ as a group homomorphism. Let $U \in \mathcal{T}$ and $s \in \mathcal{F}(U)$. Then by the assumption and Proposition ??, we have proven the claim.

5.5 Sheafification

Definition 5.14. Let $\mathscr{F} \in \operatorname{PreSh}_{\mathscr{A}}(X)$. The sheafification of \mathscr{F} is a presheaf \mathscr{F}^+ which is a set of all $(s_x)_{x \in U} \in \prod_{x \in U} \mathscr{F}_x$ such that for any $x \in U$ there is $x \in V_x \subset U$, such that there is $t \in \mathscr{F}(V_x)$ satisfying for any $y \in V_x$, $s_y = t_y$. We give them restrictions such that

$$\mathscr{F}^+(U) \ni (s_x)_{x \in U} \mapsto (s_x)_{x \in V} \in \mathscr{F}^+(V).$$

Proposition 5.3. Such \mathcal{F}^+ is indeed a sheaf.

Proof. later
$$\Box$$

Remark 5.9.

$$\mathscr{F} \mapsto \mathscr{F}^+ : \operatorname{PreSh}_{\mathscr{A}}(X) \to \operatorname{Sh}_{\mathscr{A}}(X)$$

is a functor. Indeed given $\varphi: \mathscr{F} \to \mathscr{G}$, a morphism of presheaves. We give

$$\varphi^+(U)((s_x)_{x\in U}) = (\varphi(s)_x)_{x\in U}.$$

later

Proposition 5.4. A mapping $\varphi : \mathscr{F} \to \mathscr{F}^+$ such that for each $U \in \mathscr{T}$,

$$\varphi_U : \mathscr{F}(U) \to \mathscr{F}^+(U), \quad \varphi(s) = (s_x)_{x \in U},$$

is a natural transformation thus a morphism of presheaves.

Proof. Later

Proposition 5.5. For any open set $U \in \mathcal{F}$ and a section $s \in \mathcal{F}^+(U)$, there is an open covering $(U_i)_{i \in I}$ which satisfies that there is a sequence $(s_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}(U_i)$ and for each i, the following holds.

$$\rho_{UU_i}(s) = s_i.$$

Proof. Later. \Box

Proposition 5.6. For each $x \in X$, there exists an isomorphism

$$\mathscr{F}_x \cong (\mathscr{F}^+)_x,$$

as presheaves.

Proof. later \Box

Proposition 5.7. Let (X, \mathscr{T}) be a topological group and \mathscr{F} be a presheaf of a category \mathscr{A} on X. Suppose for a sheaf \mathscr{G} of a category \mathscr{A} on X, there exists a morphism $\varphi: \mathscr{F} \to \mathscr{G}$. Then there exists a unique morphism $\varphi^+: \mathscr{F}^+ \to \mathscr{G}$, such that

is a commutative diagram.

Proof. Let $U \in \mathscr{T}$, then by Proposition ??, for any $s \in \mathscr{F}^+$, there exists an open covering $(U_i)_{i \in I}$ and $(s_i)_{i \in I} \in \prod_{i \in I} \mathscr{F}(U_i)$ such that $\rho_{UU_i}(s) = s_i$ for any $i \in I$. We define

$$t_i = \varphi(s_i) \in \mathscr{G}(U_i),$$

for each $i \in I$. Using the definition of natural transformation we derive that

$$\rho_{UU_i \cap U_j}^{\mathscr{G}}(t_i) = \varphi_{U_i \cap U_j}^{\mathscr{F}}(\rho_{UU_i \cap U_j}(s)) = \rho_{UU_i \cap U_j}^{\mathscr{G}}(t_j).$$

Thus we can glue $(t_i)_{i\in I}$ to a section $t\in \mathcal{G}(U)$.

We now define $\varphi^+: \mathscr{F}^+ \to \mathscr{G}$. Given $(s_x)_{x\in U}$ which is the germ of s,

$$\varphi_U^+((s_x)_{x\in U})=t.$$

Such φ^+ is unique since \mathscr{G} is a sheaf.

Corollary 5.1. Let $i: \operatorname{Sh}_{\mathscr{A}}(X) \to \operatorname{PreSh}_{\mathscr{A}}(X)$ be a forgetful functor. Then we have

$$\operatorname{PreSh}_{\mathscr{A}}(X)(\mathscr{F}, i(\mathscr{G})) \cong \operatorname{Sh}_{\mathscr{A}}(\mathscr{F}^+, \mathscr{G})$$

In other words, the sheafification is a left-adjoint functor of the inclusion map.

Proof. By Proposition ??, we define two maps Φ, Ψ such that

$$\begin{split} \Phi: \operatorname{PreSh}_{\mathscr{A}}(X)(\mathscr{F}, i(\mathscr{G})) &\to \operatorname{Sh}_{\mathscr{A}}(\mathscr{F}^+, \mathscr{G}), \\ \Phi(\varphi) &= \varphi^+, \\ \Psi: \operatorname{Sh}_{\mathscr{A}}(\mathscr{F}^+, \mathscr{G}) &\to \operatorname{PreSh}_{\mathscr{A}}(X)(\mathscr{F}, i(\mathscr{G})), \\ \Psi(\varphi^+) &= \varphi. \end{split}$$

Then these two are inverses of each other.

Proposition 5.8. Let $X = \operatorname{Spec}(A)$ and \mathcal{O}_X be the structure sheaf defined in Example ??. Then we have the following.

- 1). For any $\mathfrak{p} = x \in X$, $(\mathscr{O}_X)_x \cong A_{\mathfrak{p}}$.
- 2). For any $a \in A$, $\mathcal{O}_X(D(a)) \cong A_a$.

Proof. For a given $U \subset X$ open and $\mathfrak{p} \subset A$, there is $a,b \in A$ such that for $V \subset U$ open and $s \in \mathscr{O}_X(U), s : U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$.

$$s(\mathfrak{q}) = \frac{a}{b} \in A_{\mathfrak{q}}$$

holds for any $\mathfrak{q} \in V$.

5.6 Morphisms in $PreSh_{(\mathbf{Ab})}(X)$

Definition 5.15. Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a homomorphism of presheaves $\operatorname{PreSh}_{(\mathbf{Ab})}(X)$. Then we define the following.

- 1). $\operatorname{Ker}^{\mathbf{pre}}(\varphi)(U) = \operatorname{Ker} \varphi_U$,
- 2). $\operatorname{Im}^{\mathbf{pre}}(\varphi)(U) = \operatorname{Im} \varphi_U$,
- 3). $\operatorname{Coker}^{\mathbf{pre}}(\varphi)(U) = \operatorname{Coker} \varphi_U$.

Proposition 5.9. Such Ker^{pre}, Im^{pre}, Coker^{pre} are presheaves.

Proof. For the case of kernels. Let $U, V \in \mathcal{T}$ and $V \subset U$. We define $\rho_U V$: $\operatorname{Ker}^{\mathbf{pre}}(\varphi)(U) \to \operatorname{Ker}^{\mathbf{pre}}(\varphi)(V)$ to be such that

$$\rho_U V(s) = \rho^{\mathscr{F}}(s).$$

Such construction is justified as the diagram below is commutative.

$$\mathcal{F}(U) \xrightarrow{\rho_{UV}^{\mathscr{F}}} \mathcal{F}(V) \xrightarrow{\rho_{UV}^{\mathscr{F}}} \mathcal{F}(W)
\varphi_{U} \downarrow \qquad \qquad \downarrow \varphi_{V} \qquad \qquad \downarrow \varphi_{W}
\mathcal{G}(U) \xrightarrow{\rho_{UV}^{\mathscr{G}}} \mathcal{G}(V) \xrightarrow{\rho_{UV}^{\mathscr{G}}} \mathcal{F}(W)$$

Furthermore,

$$\rho_U W(s) = \rho_{UV}^{\mathscr{F}}(s) = \rho_{VW}^{\mathscr{F}} \circ \rho_{UV}^{\mathscr{F}}(s) = \rho_{VW} \circ \rho_{UV}(s).$$

Thus $\operatorname{Ker}^{\mathbf{pre}}(\varphi)(U)$ is a presheaf.

Corollary 5.2. If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves. Then $\operatorname{Ker}^{\mathbf{pre}}$ is also a sheaf.

Proof. Given $(s_i)_{i\in I}\in\prod_{i\in I}\operatorname{Ker}\varphi_{U_i}$ such that

$$\rho(s_i)_{U_iU_i\cap U_i} = \rho(s_j)_{U_iU_i\cap U_i}$$

for any $i, j \in I$. Then since \mathscr{F} is a sheaf, we can glue $(s_i)_{i \in I}$ to $s \in \mathscr{F}(U)$. For such s we have

$$\rho_{UU_i}^{\mathscr{G}}(\varphi_U(s)) = (\varphi_{U_i}(\rho_{UU_i}^{\mathscr{F}}(s))) = \varphi_{UU_i}(s_i) = 0.$$

Therefore, since \mathscr{G} is a sheaf, $\varphi_U(s) = 0$.

Remark 5.10. Let $\varphi: \mathscr{F}(U) \to \prod_{i \in I} \mathscr{F}(U_i), \varphi_1: \prod_{i \in I} \mathscr{F}(U_i) \to \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j), \varphi_2: \prod_{i \in I} \mathscr{F}(U_j) \to \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j).$ Then \mathscr{F} is a sheaf if and only if

$$\operatorname{Ker}(\varphi_1 \circ \varphi - \varphi_2 \circ \varphi) = \mathscr{F}(U),$$

holds for any open set U.

Remark 5.11. $\operatorname{Im}^{\mathbf{pre}} \varphi$, $\operatorname{Coker}^{\mathbf{pre}} \varphi$ are not in general sheaves even tho φ : $\mathscr{F} \to \mathscr{G}$ is a homomorphism of sheaves.

Example 5.13. Let $X = \{x_1, x_2\}$ and we assign the discrete topology to it. Let G be an abelian group. We define a sheaf $\mathscr{F}, \mathscr{G} \in \mathrm{Sh}_{(\mathbf{Ab})}(X)$ by such that

$$\mathscr{F}(U) = \mathscr{G}(U) = \begin{cases} G \times G & (U = X), \\ G & (|U| = 1), \\ 0 & (U = \emptyset). \end{cases}$$

Let us define a homomorphism of sheaves φ such that

$$\varphi_U = \begin{cases} \mathbf{id}_{G \times G} & (U = X) \\ 0 & (U \neq X). \end{cases}$$

Then we have

$$\operatorname{Coker}^{\mathbf{pre}}(\varphi)(U) = \begin{cases} 0 & (U = X), \\ G & (U \neq X). \end{cases}$$

By ??, we observe that

$$\operatorname{Coker}^{\mathbf{pre}}(\varphi)(X) = G \times G/\mathbf{id}_{G \times G}(G \times G) = \{0\}.$$

However,

later.

Definition 5.16. Given a morphism of sheaves $\varphi : \mathscr{F} \to \mathscr{G}$, we define the following.

- 1). $\operatorname{Ker}(\varphi) = \operatorname{Ker}^{\mathbf{pre}}(\varphi)$,
- 2). $\operatorname{Im}(\varphi) = (\operatorname{Im}^{\mathbf{pre}}(\varphi))^+,$
- 3). $\operatorname{Coker}(\varphi) = (\operatorname{Coker}^{\mathbf{pre}}(\varphi))^+$.

Proposition 5.10 (Universal property of kernels). Given a sheaf homomorphism $\varphi : \mathscr{F} \to \mathscr{G}$. For any sheaf homomorphism $\alpha : \mathscr{H} \to \mathscr{F}$, $\varphi \circ \alpha = 0$ if and only if there is a unique $\psi : \mathscr{H} \to \operatorname{Ker} \varphi$ such that

$$\begin{array}{ccc}
\mathcal{H} & \mathcal{H} \\
\downarrow^{\alpha} & \downarrow^{\alpha} & \downarrow^{\alpha}
\end{array}$$

$$\operatorname{Ker}(\varphi) & \longrightarrow \mathcal{F} \xrightarrow{\varphi} \mathcal{G}$$

is a commutative diagram.

Proof. We argue by each open set of the space.

$$\mathcal{H}(U) \\
\downarrow^{\alpha_U} \qquad \downarrow^{\alpha_U} \qquad \downarrow^{(\varphi_0)_U = 0} \\
\operatorname{Ker}(\varphi)(U) & \hookrightarrow \mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)$$

This is a universal property of the kernel in abelian groups. Thus the statement immediately follows from it. \Box

Proposition 5.11 (Universal property of Cokernels). Given a sheaf homomorphism $\varphi: \mathscr{F} \to \mathscr{G}$. For any sheaf homomorphism $\alpha: \mathscr{G} \to \mathscr{H}$, $\alpha \circ \varphi = 0$ if and only if there is a unique $\psi: \operatorname{Coker} \varphi \to \mathscr{H}$ such that

$$\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\pi} \operatorname{Coker}(\varphi)$$

$$\downarrow^{\alpha}_{\varphi_0 = 0} \exists ! \psi$$

 $is\ a\ commutative\ diagram.$

Proof. We argue for each open set $U \subset X$.

$$\mathscr{F}(U) \xrightarrow{\varphi_U} \mathscr{G}(U) \xrightarrow{\exists ! \psi_U^{\mathbf{pre}}} \operatorname{Coker}^{\mathbf{pre}}(\varphi)(U) \longrightarrow \operatorname{Coker}(\varphi)(U)$$

$$\downarrow^{\alpha_U} \xrightarrow{\exists ! \psi_U}$$

$$\mathscr{H}(U)$$

By the universal property of Cokernels of abelian groups, there is a unique $\varphi^{\mathbf{pre}}$. By the universal property of the sheafification operator, we derive a unique ψ .

Proposition 5.12. Let $x \in X$, then we have the following.

- 1). $Ker(\varphi)_x = Ker(\varphi_x)$,
- 2). $\operatorname{Im}(\varphi)_x = \operatorname{Im}(\varphi_x)$,
- 3). $\operatorname{Coker}(\varphi)_x = \operatorname{Coker}(\varphi_x)$.

Proof. By Definition, ??

Definition 5.17. Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a sheaf morphism. φ is called

1). a monomorphism if any morphism of sheaves $\varphi_0 : \mathcal{H} \to \mathcal{F}$, $\varphi \circ \varphi_0 = 0$ if and only if $\varphi_0 = 0$,

Proposition 5.13. Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves of (\mathbf{Ab}) . Then the following statements are equivalent.

- i). φ is a monomorphism.
- ii). Ker $\varphi = 0$.
- iii). For any open set $U \subset X$, φ_U is injective.
- iv). For any $x \in X$, $\varphi_x : \to \mathscr{F}_x \to \mathscr{G}_x$ is injective.

Proof. Here, I put the procedure of the proof.

$$i) \Rightarrow ii),$$

$$\operatorname{Ker}(\varphi)$$

$$\varphi_0 \Big| \underbrace{ 0}_{\varphi_0} \Big| \underbrace{ 0}_{\varphi} \Big| \mathscr{G}$$

Where $\varphi_0(U)$ is an inclusion map of abelian groups.

 $ii) \Leftrightarrow iii),$

$$\operatorname{Ker} \varphi = 0 \Leftrightarrow \forall U \in \mathscr{T}, \operatorname{Ker} \varphi(U) = 0 \Leftrightarrow \varphi_U \text{ is injective.}$$

 $iii) \Rightarrow iv$), Fix $x \in X$.

$$0 \longrightarrow \mathscr{F}(U) \xrightarrow{\varphi_U} \mathscr{G}(U)$$

is an exact sequence as φ_U is injective for any $U \subset X$ open. Since \varinjlim is left-exact we obtain,

$$0 \longrightarrow \mathscr{F}_x \stackrel{\varphi_x}{\longrightarrow} \mathscr{G}_x$$

is also an exact sequence.

Proposition 5.14. Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism in $\mathrm{Sh}(X)$. Then the following are equivalent.

- 1). φ is an epimorphism (for any $\varphi_1, \varphi_2 : \mathcal{H} \to \mathcal{F}$, such that $\varphi \circ \varphi_1 = \varphi \circ \varphi_2$ implies $\varphi_1 = \varphi_2$).
- 2). Coker $\varphi = 0$.
- 3). For any open set $U \subset X$,
- 4). For any $x \in X$, Coker $\varphi_x = 0$, (in other words, φ_x is a surjection).

Proof. Recall the definition of epimorphisms is such that $\varphi : \mathscr{F} \to \mathscr{G}$ is an epimorphism if for any morphism $\psi : \mathscr{G} \to \mathscr{G}_0$, we have,

$$\psi \circ \varphi = 0 \Rightarrow \psi = 0.$$

 $i) \Rightarrow iv$). Suppose φ is an epimorphism, then we have

By the assumption $\psi = 0$.

Let $\mathscr{O}_x = \{U \in \mathscr{T} \mid x \in U\}$. We consider an exact sequence,

$$0 \longrightarrow \operatorname{Ker}(\varphi_U) \hookrightarrow \mathscr{F}(U) \stackrel{\varphi}{\longrightarrow} \mathscr{G}(U) \stackrel{\pi}{\longrightarrow} \operatorname{Coker}(\varphi_U) \longrightarrow 0,$$

for each $U \in \mathcal{O}_x$. By Proposition ??,

$$0 \longrightarrow \operatorname{Ker}(\varphi)_x \hookrightarrow \mathscr{F}_x \xrightarrow{\varphi_x} \mathscr{G}_x \xrightarrow{\pi_x} \operatorname{Coker}(\varphi)_x \longrightarrow 0$$

is also exact. Thus we conclude

$$\operatorname{Coker}^{pre}(\varphi)_x = \operatorname{Coker}(\varphi_x).$$

And we conclude that φ_x is surjective by the exactness of the sequence.

 $iv) \Rightarrow ii$). Assume For each $x \in X$, $\operatorname{Coker}(\varphi_x) = 0$. By applying Proposition. ?? to $\operatorname{id} : \mathscr{F} \to \mathscr{F}$, we obtain

$$\mathscr{F} = 0 \Leftrightarrow \forall x \in X, \mathscr{F}_x = 0.$$

Apply this to $\operatorname{Coker} \varphi$, we derive that

$$\operatorname{Coker} \varphi = 0.$$

 $iv) \Rightarrow i$). Assume $\operatorname{Coker}(\varphi_x) = 0$ for any $x \in X$. Consider a commutative diagram of sheaves

By assumption $\varphi_x: \mathscr{F}_x \to \mathscr{G}_x$ is a surjection. Thus $\psi_x = 0$ for any $x \in X$ which is equivalent to $\psi = 0$.

- $ii) \Rightarrow i$). Suppose Coker $\varphi = 0$ if and only if $\operatorname{Coker}(\varphi)_x = \operatorname{Coker}(\varphi_x) = 0$ for any $x \in X$.
- $iii) \Rightarrow iv$). Assume $\varphi_U : \mathscr{F}(U) \to \mathscr{G}(U)$ is surjective for any $U \subset X$ open. By Proposition. ??, we conclude that

$$\varphi_x: \mathscr{F}_x \to \mathscr{G}_x$$

П

is also surjective.

Corollary 5.3. Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves. Then the following statements are equivalent.

- 1). φ is an isomorphism.
- 2). For all $x \in X$, φ_x is an isomorphism.

Proof. \Box

6 Scheme Theory

6.1 Ringed Spaces

Definition 6.1. Let (X, \mathcal{T}) be a topological space. A ringed space is a sheaf \mathcal{O}_X of rings on X.

Definition 6.2. A morphism of ringed spaces between $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ is a tuple $(f, f^{\#})$ where $f: X \to Y$ is a continuous map and $f: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a morphism of sheaves of rings.

Example 6.1. Let (X, \mathcal{T}) be a topological space. The sheaf of continuous functions \mathcal{C}_X is a ringed space and any continuous map $f: X \to Y$ defines a morphism of ringed spaces.

Example 6.2. Let X is a differentiable manifold then the differentiable functions $\mathscr{C}_X^{\mathbf{diff}}$ is a ringed space. A morphism of ringed spaces $f: X \to Y$, for this case must satisfy the following condition.

Example 6.3. Let $X \subseteq \mathbb{C}^n$ be open subset. A sheaf of holomorphic functions \mathscr{O}_X over X is a ringed space. And a morphism of such ringed spaces must be a holomorphic functions

Example 6.4. Given the Zariski topology on $X = k^n$ and the sheaf $\mathcal{O}_X(U) = \{f: U \to k \mid f \text{ is regular }\}, (X, \mathcal{O}_X) \text{ is a ringed space.}$

Definition 6.3. By Remark ??, the sheaf of regular functions \mathcal{O}_X is contained in the sheaf of continuous functions \mathcal{C}_X . Given two Zariski topologies X, Y, and a continuous function $f: X \to Y$, f is said to be regular if for any regular function $g: U \to k$ for an open set $U \subseteq Y$, $g \circ f: f^{-1}(U) \to k$ is also regular. In other words, f is said to be regular if it defines a morphism of ringed spaces between two ringed spaces of regular functions.

Definition 6.4. A locally ringed space is a ringed space (X, \mathcal{O}_X) such that for any $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.

Example 6.5. A sheaf of continuous functions on a topological space X is a locally ringed space. Indeed, for each $x \in X$ and the stalk $\mathcal{C}_{X,x}$, the ideal

$$\mathfrak{m}_x = \{ (f: U \to \mathbb{R}, U) \mid f(x) = 0 \}$$

is a unique maximal ideal. In order to prove this, we recall that an ideal $\mathfrak m$ is a unique maximal ideal if any element not in $\mathfrak m$ is a unit.

For each $(f: U \to \mathbb{R}, U) \in \mathscr{C}_{X,x}$, $f(x) \neq 0$ implies that there exists a neighborhood $V \subset U$ such that $f(x) \neq 0$ for any $x \in V$. Thus $(f|_V: V \to \mathbb{R}, V)$ is invertible, therefore a unit.

Example 6.6. In similar manner, the following are also locally ringed spaces.

1. X is a differentiable manifold and $(X, \mathscr{C}_X^{\mathbf{diff}})$.

- 2. $X \subseteq \mathbb{C}^n$ be an open set, and (X, \mathcal{O}_X) be a sheaf of holomorphic functions.
- 3. A sheaf of regular functions on $X = k^n$.

Definition 6.5. A morphism $(f, f^{\#}): (X, \mathcal{O}_X \to (Y, \mathcal{O}_Y))$ between ringed spaces is a morphism of locally ringed space if $f^{\#}$ is local as a ring homomorphism.

Example 6.7. Let A be a commutative ring and consider the Zariski topology on $X = \operatorname{Spec}(A)$ and the structure sheaf (X, \mathcal{O}_X) . We have proven that

$$\mathfrak{O}_{X,\mathfrak{p}}\cong A_{\mathfrak{p}}.$$

Therefore, (X, \mathscr{O}_X) is a locally ringed space and for any ring homomorphism $\phi: A \to B$, it induces a morphism of locally ringed spaces $(f, f^{\#}): (\operatorname{Spec}(B), \mathscr{O}_{\operatorname{Spec}(B)}) \to (\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)})$ such that

$$\mathfrak{q} \in \operatorname{Spec}(B), f(\mathfrak{q}) = \phi^{-1}(\mathfrak{q}) \in \operatorname{Spec}(A).$$

This is indeed a morphism of locally ringed spaces.

Proposition 6.1. Let A, B be commutative rings. Then the map $\phi \mapsto (f, f^{\#})$ is a bijection between

$$\operatorname{Hom}(A, B) \leftrightarrow \operatorname{Hom}_{\mathbf{loc}}(\operatorname{Spec}(B), \mathscr{O}_{\operatorname{Spec}(B)}), (\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)}))$$

Definition 6.6. A category of ringed spaces is denoted by (RingedSpaces) with morphisms $(f, f^{\#})$ morphisms of ringed spaces.

Definition 6.7. A category of ringed spaces is denoted by (RingedSpaces) with morphisms $(f, f^{\#})$ morphisms of locally ringed spaces.

Remark 6.1. A composition of two morphisms locally ringed space is indeed a morphism of locally ringed spaces thus the above construction is justified.

Definition 6.8. Two locally ringed spaces (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are isomorphic if there exists morphisms $(f, f^{\#}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ and $(g, g^{\#}) : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ such that f and g are inverses of each other. (ie. there exists a morphism of locally ringed spaces $(f, f^{\#})$ where f is a homeomorphism).

Example 6.8. (A morphism of locally ringed spaces induced by homeomorphism but not an isomorphism of locally ringed spaces).

Let $X = \mathbb{R}^n$ and consider the sheaf of continuous functionals \mathcal{C}_X and the sheaf of smooth functionals $\mathcal{C}_X^{\text{diff}}$. Furthermore, we consider $f = id_X$ then $f^\#$ is an inclusion as smooth functions are continuous. However, $(f, f^\#)$ is not an isomorphism of locally ringed spaces.

Example 6.9. Let us consider $X = \mathbb{C}^n$ and the sheaf of holomorphic functions \mathscr{O} on X and the structure sheaf \mathscr{O}_X . Then consider the morphism of locally ringed spaces $(f, f^{\#})$ by the identity map. However, f is not continuous as the topology defined on the image is the Zariski topology.

Definition 6.9. Let $X = \mathbb{C}^n$ and $Y = \operatorname{MaxSpec}(\mathbb{C}[x_1, \dots, x_n])$. Let $f: X \to Y$ be such that

$$f(z_1, \dots, z_n) = (x_1 - z_1, \dots, x_n - z_n).$$

This is a bijection. Furthermore, f is continuous because polynomials are continuous functions.

We define $f^{\#}$ to be

6.2 Schemes

Definition 6.10. An affine scheme is a locally ringed space (X, \mathcal{O}_X) which is isomorphic to a structure sheaf $(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$ for some commutative ring A.

Example 6.10. We consider the Zariski topology on $\mathrm{Spec}(\mathbb{Z})$ and a sheaf $\mathscr O$ such that

$$\mathscr{O}(D(\mathfrak{a})) = \mathbb{Z}_{\mathfrak{a}}.$$

is an affine scheme.

Example 6.11. Let k be a field. Then $\operatorname{Spec}(k)$ is a single point set. And we consider the sheaf $\mathscr O$ such that $\mathscr O(\operatorname{Spec}(k)) = k$.

Definition 6.11. For a field A be a commutative ring and n a natural number, we define

$$\mathbb{A}_A^n = (\operatorname{Spec}(A[x_1, \cdots, x_n]), \mathscr{O}).$$

Example 6.12. Let A be a discrete valuation ring in other words $k[t]_{(t)}$.

Example 6.13. Let k be a field and $A = k[x]/(x^2)$. Then $\operatorname{Spec}(A) = \{(x)\}$. Thus a single point set. However, this is not isomorphic to $(\operatorname{Spec}(k), \mathcal{O})$ introduced in Example ??.

Definition 6.12. A scheme is a ringed space (X, \mathcal{O}_X) which is locally isomorphic t an affine scheme. In other words, for any $x \in X$, there is a neighborhood U of X such that there exists a commutative ring A and $(U, \mathcal{O}|_U)$ is isomorphic to $(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$.

Definition 6.13. A category of affine schemes is (AffSch) where

- i). $\mathbf{ob}(\mathbf{AffSch}) = \{(\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)}) | A \text{ is a commutative ring and } \mathscr{O}_{\operatorname{Spec}(A)} \text{ is a structure sheaf} \}.$
- ii). (AffSch)((Spec(A), $\mathcal{O}_{Spec(A)}$), (Spec(B), $\mathcal{O}_{Spec(B)}$)) = { morphisms of locally ringed spaces}.

Definition 6.14. A category of schemes is (Sch) where

- i). $\mathbf{ob}(\mathbf{Sch}) = \{(X, \mathcal{O}_X) \mid Schemes\}.$
- ii). (AffSch)($(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$) = { morphisms of locally ringed spaces}.

Remark 6.2. We have the inclusion relations

$$(AffSch) \subset (Sch) \subset (LocallyRingedSpaces)$$

which are all full subcategories however,

$$(LocallyRingedSpaces) \subset (RingedSpaces)$$

is not a full subcategory

6.3 Connection with Classical Algebraic Geometry

Proposition 6.2. Let X be an affine variety. The regular functions $\mathcal{O}_X(U)$

$$\mathcal{O}_X(U) = \{h : U \to k \mid h \text{ is a regular function.}\}.$$

defined on open subset U of X form a sheaf. Furthermore, it is a locally ringed space.

Proof.
$$\Box$$

Proposition 6.3. Let X be an affine variety and Y = A(X) be a coordinate ring. Let us consider the sheaf of regular functions (X, \mathcal{O}_X) and an affine scheme (Y, \mathcal{O}_Y) . There exists a natural morphism of locally ringed spaces $(f, f^{\#})$: $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$.

Proof. Notice that we have the following isomorphisms.

$$X \cong \operatorname{MaxSpec}(A(X)), \quad k^n \cong \operatorname{MaxSpec}(k[x_1, \cdots, x_n]).$$

For any maximal ideal $\mathfrak{m} \subset k[x_1, \cdots, x_n]$,

$$I(X) \subseteq \mathfrak{m} = (x_1 - a_1, \cdots, x_n - a_n) \Leftrightarrow \forall f \in I(X), f(a_1, \cdots, a_n) = 0.$$

Let $\pi: Y \to X$ to be the canonical map by I(X), then the map $f: X \to Y, (\mathfrak{m}) = \pi^{-1}(\mathfrak{m})$ is an inclusion. Then f is continuous.

Let us define $f^{\#}: \mathscr{O}_{Y} \to f_{*}(\mathscr{O}_{X})$. For an open set $U \subseteq Y$, we have

$$(s:U\to\coprod_{\mathfrak{p}\in U}A(x)_{\mathfrak{p}})\mapsto (s:U\to\coprod_{\mathfrak{m}\in U\cap\operatorname{MaxSpec}A(x)}A(x)_{\mathfrak{m}}).$$

By Lemma ?? and applying canonical maps $\pi_{\mathfrak{m}}: A(X)_{\mathfrak{m}} \to A(X)_{\mathfrak{m}}/\mathfrak{m}A(X)_{\mathfrak{m}}$ locally, we get

$$s: U \to \coprod_{\mathfrak{m} \in U \cap \operatorname{MaxSpec} A(x)} \to \coprod_{\mathfrak{m} \in U \cap \operatorname{MaxSpec} A(x)} A(X)_{\mathfrak{m}}/\mathfrak{m} A(X)_{\mathfrak{m}} = k.$$

Thus we obtained a map $s: U \to k$. Locally, we have

$$s = \frac{g_1 + I(X)}{g_2 + I(X)},$$

for $g_1 + I(X), g_2 + I(X) \in A(X)$. We conclude, locally

$$t = \frac{g_1}{g_2}.$$

We now claim that $(f, f^{\#})$ is a local morphism of ringed spaces. By the correspondence of a maximal ideal \mathfrak{m} of $k[x_1, \dots, x_n]$ and a point (a_1, \dots, a_n) , we have the isomorphism

$$\mathscr{O}_{X,\mathfrak{m}} \stackrel{\sim}{\to} \mathscr{O}_{Y,\mathfrak{m}} = A(X)_{\mathfrak{m}}.$$

Remark 6.3. Since X is an algebraic variety, there is a prime ideal \mathfrak{p} of $k[x_1, \dots, x_n]$ such that

$$X = V(\mathfrak{p}).$$

Let us define $(Y', \mathcal{O}_{Y'}) = (\operatorname{Spec}(k[x_1, \dots, x_n]), \mathcal{O})$, where $I(X) = \mathfrak{a}$. Since k is field, $k[x_1, \dots, x_n]$ is Noetherian, thus the primary decomposition exists for any ideal. Thus there is a bijection between

$$\operatorname{Spec}(k[x_1,\cdots,x_n]/\mathfrak{a}) \leftrightarrow \operatorname{Spec}(A(X)).$$

Example 6.14. Let K be any field and $A = k[x]/(x^2)$. A is called the ring of dual numbers. Observe that

$$(\operatorname{Spec} k, \mathscr{O}_{\operatorname{Spec} k}), (\operatorname{Spec} A, \mathscr{O}_{\operatorname{Spec} A}),$$

both consist of single points. Let us define $(f, f^{\#})$: (Spec k, $\mathscr{O}_{\operatorname{Spec} k}$) \to (Spec A, $\mathscr{O}_{\operatorname{Spec} A}$). By the previous observation, the function f: Spec $A \to \operatorname{Spec} k$ is unique map sending the unique point to the unique point.

6.4 Properties of Schemes

Theorem 6.1 (Topological properties of schemes).

Definition 6.15. A scheme is said to be locally Noetherian if there exists an open cover $(U_i)_{i\in I}$ such that for each $i\in I$,

$$U_i \cong \operatorname{Spec}(A_i)$$
 (6.1)

for some Noetherian ring A_i .

Lemma 6.1. Let A, B be rings and $\varphi : A \to B$ be a ring homomorphism. Let $a \in A$ and $b = \varphi(a)$, then we have

$$\operatorname{Spec}(A_a) = \operatorname{Spec}(B_b)$$

as sets.

Proof. Let $\mathfrak{q} \subset B$ be a prime ideal not containing b and $\mathfrak{p} \subset A$ be a contraction of \mathfrak{q} by φ . φ^{-1} is the inclusion from $\operatorname{Spec}(B)$ to $\operatorname{Spec}(A)$. Also we have

$$\operatorname{Spec}(A_a) \cong D_A(a) \subset \operatorname{Spec}(A)$$

for an arbitrary ring and an element. And by φ^{-1} we have

$$D_B(b) \subset D_A(a)$$
.

Thus we have an inclusion

$$\operatorname{Spec}(B_b) \subset \operatorname{Spec}(A_a).$$

Proposition 6.4. Let A, B be rings and $\varphi : A \to B$ be a ring homomorphism. Let $a \in A$ and $b = \varphi(a)$, then we have

$$\operatorname{Spec}(A_a) = \operatorname{Spec}(B_b)$$

as affine schemes.

Proof. By Lemma $\ref{lem:proof:eq:pr$

$$\mathscr{O}_{\operatorname{Spec}(A)}|_{\operatorname{Spec}(B)} = \mathscr{O}_{\operatorname{Spec}(B)}.$$

Therefore, by the lemma we have

$$\mathscr{O}_{\operatorname{Spec}(A_a)} = \mathscr{O}_{\operatorname{Spec}(B_b)}.$$

Lemma 6.2. A scheme (X, \mathcal{O}_X) is locally Noetherian if and only if for any open affine set $U \subset X, U = \operatorname{Spec}(A)$ for some Noetherian ring A.

Proof. By definition, \Leftarrow is trivially true. We will prove \Rightarrow direction.

Let $X = \bigcup_{i \in I} \operatorname{Spec}(A_i)$ be an open affine Noetherian covering of X and $U = \operatorname{Spec}(A)$ be an open affine set. Let us define an open covering of U by

$$U_i = U \cap \operatorname{Spec}(A_i), \quad U = \bigcup_{i \in I} U_i.$$

By Theorem ?? and the assumption on U, U is quasi-compact. By arranging I, there exists a large enough $n \in \mathbb{N}$ such that

$$U = \bigcup_{i=1}^{n} U_i.$$

Since each $i=1,\dots,n,$ U_i is open in $\operatorname{Spec}(A_i,$ thus there is $\{a_{ij}\}_{j=1,\dots,n_i}\subset A_i$ such that

$$U_i = \bigcup_{i=1}^{n_i} \operatorname{Spec}(A_{i,a_{ij}}).$$

Thus substituting this to (??), we get

$$U = \bigcup_{i=1}^{n} \bigcup_{j=1}^{n_i} \operatorname{Spec}(A_{i,a_{ij}}).$$

Again by the quasi-compactness of U, we conclude finitely many $A_{i,a_{ij}}$ cover U.

Since A_i is Noetherian for each $i \in I$, this means that any localization of it is also Noetherian. Thus we $\{\operatorname{Spec}(A_{i,a_{ij}}) \text{ is an open Noetherian covering of } U$. By rearranging $\{a_{ij}\}$, we let $\{a_1, \dots, a_n\}$ to be the elements which spectrums of their localizations cover U. We then show that

$$\mathfrak{a} = \bigcap_{i=1}^{n} \pi_i^{-1}(\pi_i(\mathfrak{a}) A_{a_i}).$$

where $\pi_i: A \to A_{a_i}$ is the canonical inclusion for each $i = 1, \dots, n$.

 $\mathfrak{a} \subseteq \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a})A_{a_i})$ is trivial, thus we prove $\mathfrak{a} \supset \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a})A_{a_i})$. Let $b \in \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a})A_{a_i})$ be arbitrary. By definition, for each $i=1,\cdots,n$, there exists $b_i \in \mathfrak{a}$ and n_i such that

$$\pi_i(b) = \frac{b_i}{a_i^{n_i}}.$$

Using that \mathfrak{a} is an ideal, we derive that for big enough N, we have

$$\pi_i(b) = \frac{b_i}{a_i^N}.$$

Using the definition of localization, for each $i = 1, \dots, n$, there is m_i such that

$$(b_i - a_i^N b) a_i^{m_i} = 0.$$

Taking large enough M, for each $i = 1, \dots, n$, we derive

$$(b_i - a_i^N b) a_i^M = 0.$$

Thus for all $i = 1, \dots, n$, we know

$$a_i^{N+M}b\in\mathfrak{a}. \tag{6.2}$$

Since $\{D_A(a_i)\}_{i=1,\dots,n}$ covers Spec A, we have

$$\bigcap_{i=1}^{n} V(a_i) = \emptyset \Leftrightarrow V((a_1, \cdots, a_n)) = \emptyset \Leftrightarrow (a_1, \cdots, a_n) = (1).$$

Therefore, for any $k \in \mathbb{N}_0$ we have $(a_1^k, \dots, a_n^k) = (1)$. By Equation (??), we derive that for some $c_1, \dots, c_n \in A$,

$$b = \sum_{i=1}^{n} c_i a_i^k \in \mathfrak{a}.$$

Finally, we prove that A is Noetherian. Given an ascending chain of ideal

$$\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots$$
.

We get an ascending chain of extended ideals

$$\pi(\mathfrak{a}_1)A_{a_i} \subset \pi(\mathfrak{a}_2)A_{a_i} \subset \cdots$$

for each $i=1,\dots,n$. Since each A_{a_i} is Noetherian, we conclude that there is large enough N such that

$$\pi_i(\mathfrak{a}_N)A_{a_i} = \pi_i(\mathfrak{a}_{N+1})A_{a_i}$$

for each $i = 1, \dots, n$. By Equation (??), we conclude that

$$\mathfrak{a}_N = \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a}_N)A_{a_i}) = \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a}_{N+1})A_{a_i}) = \mathfrak{a}_{N+1}.$$

Corollary 6.1. An affine scheme (Spec A, $\mathcal{O}_{\operatorname{Spec} A}$) is a Noetherian scheme, then A is Noetherian.

Remark 6.4. A Sheaf is noetherian then its base space is Noetherian as topological space. The converse is not true.

Definition 6.16. A scheme (X, \mathcal{O}_X) is said to be reduced if for any open subset $U \subseteq X$, $\mathcal{O}_X(U)$ is a reduced ring.

Proposition 6.5. A scheme (X, \mathcal{O}_X) is reduced if and only if for any $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a reduced ring.

Definition 6.17. A scheme is integral if every section of it is an integral domain.

Proposition 6.6. A scheme (X, \mathcal{O}_X) is reduced then for any $x \in X$, the stalk $\mathcal{O}_{X,x}$ is an integral domain.

Remark 6.5. The converse is not true.

Let k be a field and R be a k-algebra.

Remark 6.6. By the definition of reduced rings, it is obvious that integral schemes are reduced.

Example 6.15. An affine scheme on a field k is integral.

Example 6.16. Let k be a field. (Spec $k[x]/(x^2)$, $\mathcal{O}_{\text{Spec }k[x]/(x^2)}$) is neither integral nor reduced.

Example 6.17. Let k be a field. (Spec k[x,y]/(x,y), $\mathcal{O}_{\operatorname{Spec} k[x,y]/(x,y)}$) is reduced but not integral.

Lemma 6.3. Let (X, \mathcal{O}_X) is a scheme and fix $s \in \mathcal{O}_X(U)$ for some open set U. For each $x \in U$, define \mathfrak{m}_x to be a unique maximal ideal in the stalk. Then the set

$$F = \{ x \in U \mid s \in \mathfrak{m}_x \}$$

is a closed subset of X.

Proof. First, let us assume that $U = \operatorname{Spec}(A)$ for some ring A. We will prove that T^c is open

Lemma 6.4. A scheme (X, \mathcal{O}_X) is integral if and only if it is a reduced scheme on an irreducible topological space.

Proof. Since integral schemes are reduced. We first prove that X is not irreducible then (X, \mathcal{O}_X) is not integral.

Since X is not irreducible, there is non-empty disjoint open subsets U_1, U_2 of X. Then

$$\mathscr{O}_X(U_1 \cup U_2) \cong \mathscr{O}_X(U_1) \times \mathscr{O}_X(U_2).$$

Therefore, this is not an integral domain.

Suppose X is irreducible and (X, \mathcal{O}_X) is reduced. Given an arbitrary open set $U \subset X$, and $s_1, s_2 \in \mathcal{O}_X(U)$, we will show that

$$s_1 s_2 = 0 \Rightarrow s_1 = 0 \lor s_2 = 0.$$

By Lemma ??,

$$X_1 = \{x \in U \mid s_1 \in \mathfrak{m}_x\}, \quad X_2 = \{x \in U \mid s_2 \in \mathfrak{m}_x\},\$$

are closed subsets.

By the sheaf property, we have $s_1s_2=0$ implies for all $x\in U$,

$$(s_1s_2)_x = s_{1,x}s_{2,x} = 0.$$

Since each \mathfrak{m}_x is prime and $s_{1,x}s_{2,x}=0\in\mathfrak{m}_x,\,s_{1,x}\in\mathfrak{m}_x$ or $s_{2,x}\in\mathfrak{m}_x$. Therefore, this show that

$$U = X_1 \cup X_2$$
.

Since X is irreducible, so is U, Without the loss of generality, we assume $U = X_1$. Let $\text{Spec}(A) \subset U$ be an open affine set. Let us define

$$t = s_1|_{\operatorname{Spec}(A)} \in A$$
.

for all $x = \mathfrak{p} \in \operatorname{Spec}(A) \subset U$, we have

$$t_x \in \mathfrak{m}_x \in \mathscr{O}_{X,x}$$
.

In other words,

$$\frac{t}{1} \in \mathfrak{p}A_{\mathfrak{p}} \subset A_{\mathfrak{p}}.$$

Therefore, $t \in \mathfrak{p}$ for any prime ideal of A, thus t is a nilpotent. Furthermore, X is reduced, thus t = 0.

Thus any section $s_1|_{\operatorname{Spec}(A)}=0$ for all $\operatorname{Spec}(A)$. By the sheaf property, we conclude $s_1=0$.

Corollary 6.2. If X is integral, then there exists a unique generic point $\eta \in X$.

Proof. For any $\operatorname{Spec}(A) \subseteq X$, A is an integral domain. Let $\eta = (0) \in \operatorname{Spec}(A)$. Then η is a generic point of $\operatorname{Spec}(A)$. By the irreducibility of X, we have η is a generic point of X.

For the uniqueness, assume ζ, η be generic points of X. Let us pick an open affine set $\operatorname{Spec}(A)$ containing η . By closedness of $X \setminus \operatorname{Spec}(A)$ and that ζ is also a generic point, we conclude that $\zeta \in \operatorname{Spec}(A)$.

Without the loss of generality, we assume that $\eta = (0) \subset A$. Since $\eta \neq \zeta$, $\zeta = \mathfrak{p} \subset A$ for some prime ideal. However

$$\eta \in V(\mathfrak{p}) \Leftrightarrow \mathfrak{p} = (0) \Rightarrow \eta = \zeta.$$

6.5 Open and Closed Subschemes

Definition 6.18. Let (X, \mathcal{O}_X) be a scheme and $U \subseteq X$ be open. Then

$$(U, \mathscr{O}_X|_U)$$

is called an open subscheme of X.

Remark 6.7. If $Spec(B) \subseteq Spec(A)$ is an open subscheme then

$$\operatorname{Spec}(B) = \bigcup_{i=1}^{n} \operatorname{Spec}(A_{a_i}) = \bigcup_{i=1}^{n} \operatorname{Spec}(B_{b_i}),$$

with morphisms $A \ni a_i \mapsto b_i \in B$.

Definition 6.19 (1st definition of closed subschemes). Let (X, \mathcal{O}_X) be a scheme and M be a set of morphisms of schemes such that for each $(i, i^{\#}) \in M$,

- 1. $i: Z \to X$, is a homeomorphism of Z and some closed subset i(Z) of X.
- 2. $i^{\#}: \mathscr{O}_X \to i_*\mathscr{O}_Z$ is surjective. In other words, for any $z \in Z$, $\mathscr{O}_{X,i(z)} \to \mathscr{O}_{Z,z}$ is a surjection.

We now define an equivalence relation \sim such that $(i, i^{\#}): Y \to X \sim (j, j^{\#}): Z \to X$ if Y and Z are homeomorphic and the following diagram is commutative.

$$(Y, \mathscr{O}_Y) \xrightarrow{(i, i^{\#})} (X, \mathscr{O}_X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Definition 6.20 (Second definition of closed subschemes). A closed subscheme of a scheme (X, \mathcal{O}_X) consists of a closed subset $i: Z \hookrightarrow X$ and a sheaf \mathcal{O}_Z such that there is a sheaf of ideals (Z, \mathscr{I}_Z) which is a subsheaf of \mathcal{O}_X such that

$$\mathscr{O}_X|_{\mathscr{I}_Z} \cong i_*\mathscr{O}_X.$$

Lemma 6.5. Let $X = \operatorname{Spec}(A)$ for a commutative ring and consider a scheme (X, \mathcal{O}_X) . Consider a closed subscheme (Z, \mathcal{O}_Z) of (X, \mathcal{O}_X) and an ideal

$$\mathfrak{a}_Z = \operatorname{Ker}(A \to Z).$$

Then we have the inclusions of set,

$$Z \subseteq V(\mathfrak{a}_Z) \subseteq \operatorname{Spec}(A)$$
.

Lemma 6.6. The second claim of the preceding lemma.

Lemma 6.7. Let A be a ring then there exists a natural bijection between

 $\{\mathfrak{a} \subseteq A \mid \mathfrak{a} \text{ is an ideal of } A\} \leftrightarrow \{Z \subseteq \operatorname{Spec}(A) \mid Z \text{ is a closed subscheme}\}.$

Proof.

6.6 Fiber Products

Definition 6.21. Let X, S be schemes. X is called a S-scheme if there exists a morphism of schemes $\varphi: X \to S$.

Definition 6.22. Let S be a scheme. The category of S-schemes is (\mathbf{Sch}/S) where

- 1. $\mathbf{ob}(\mathbf{Sch}/S) = \{ \varphi : X \to S \mid \varphi \text{ is a morphism of schemes} \}.$
- 2. $(\mathbf{Sch}/S)(\varphi: X \to S, \psi: Y \to S) = \{f: X \to Y \mid f \text{ is a morphism of schemes such that } \varphi = f \circ \psi\}.$

Remark 6.8. Clearly we have

$$(\mathbf{Sch}/\operatorname{Spec}(\mathbb{Z})) = (\mathbf{Sch}).$$

For a field k we have,