Insertion sext - solves the sorting problem Shout: A sequence of n numbers 29,93-- 9n7 Output: A permutation (secondering) of the input sequent L.e. < 9,1,92' -- 9,7 such that $a_1' \leq a_2' \leq --- a_n'$ it works the way many people sort a hand of playing cards Analogy Wescription: Refer book

```
GNSERTION SURT(A)
      for j = 2 to length[A]
               do key - A[j]
               i - j-1
              while i > 0 and A[i] > key
                   do A[i+1] - A[i]
                       i - i-1
            A Li+1] - key
          1) rearranged within the away and
            at any time, at most, a constant number of
Sorted in place
              etems are stored outside the away.
                - it was an incremental design approach.
                => Having sorted subanay A[1-1-1], we insert
Design Method
                   the single element A[j] ento its proper place
                   to obtain the subanay ACI. I
```

Loop envasiants (LI) j: current cased being enserteed into the hand. At the beginning of each steation of the order for loop, the subanay A[1. J-1] :- currently sorted hand A[j+1.n]:- pile of rands still on the table ⇒ In fact, elements A[1-. J-1] are the elements originally in positions I trough J-I, but now in there properties of A[1.. J-1] may be used to define as a loop invasient a At the stast of each iteration of the for loop of the elements originally is A[1.j-1] but in scrited order. Lux envasient is used to understand the correctness of an algorithm

- we must sh	on 3 things about a loop invarient:
i) Enchalization:	et is true prior to the 1st iteration of
	He loop
ii) Mombenance:	If it is true before an iteration of the
	loop, if remains.
iii) Fermination:	when the loop terminates, the loop when the loop terminates, the loop envarient gives us a unful property envarient gives us a unful property that helps to show that the algo is correct that helps to show that the algo is
- When the first t	that their to the loop invarient is no properties hold, then the loop invarient is every iteration of the loop.
time perior to	Le wantal Induction (M.L.
- Note the similar	, r. f.
	base case tegers to iterate
	enclucture step is enduction is stopped and when is stopped when the step is when look terminate when look terminate

het us see how these projectes hold for ensertion sort. (2.2. holds before 1st iteration) because i) Inchal reatur when j=2, the subarray A[1.-5-1] consists of just single element ACII, which is also originally at position A[1]. Moreover, this subarray is sorted trivially. > hence the L.I. holds prior to the 1st stration of the loop (Each deration maintains the L.L.) (ii) Maintenance: the body of the outer for loop works by moving A[j-1], A[j-2], and so on by one position to the right until the proper position for ArjJ is found (lines 4-7), at which point the value of A[j] is inserted (line 8). 1.e 1st desurer is basically placing NEZ] at the right position so that A[1] and A[2] are in sorted order and ariginally at positions 182. this means the loop body is maintaining the L.T.

Scanned with CamScanner

Finally, we examine what happens when ii) Termination: loop terminats Here, outer for loop ends when I > n i.e. Now, we will use j= n+1 is the statement of L.E. so we have:-" the subanay A[1. n] consists of the elements originally in A[1.n], but in sonted order." => But the subarray A[1. n] is the entire away. Hence, the entire away is sorted. > This emplies that the algo is correct.