Project 2 Report

Team 10: Bhavesh Poddar, Nanda Kishore Sunki, Vineeth Chennapalli, Chuji Luo

1 Member Roles

	Train	MyClass	sifier	MyCrossValidate	TestMyClassifier			MyConfusionMatrix	
	RVM	SVM	GPR	iviyCiOssvaiidate	RVM	SVM	GPR	iviy com asiom viacinx	
B. Poddar		1				1			
N. K. Sunki			1				1		
V. Chennapalli	1				1				
C. Luo				1				1	

2 Observations

In this project, all the three algorithms were trained using all-pairs methods. Because of time limit, we performed 5-fold cross validation only on a random subset (5000 samples) of the dataset provided by Dr. Gader and compared the 3 algorithms based on this subset.

Note that the 'NaN' in confusion matrix represents there is no sample from the unseen class.

2.1 Support Vector Machines

	C	C	C	C	C	Uns
	C_1	C_2	C_3	C_4	C_5	een
C_1	0.99	0.00	0.00	0.00	0.00	0.00
C_2	0.01	0.96	0.00	0.02	0.00	0.01
C_3	0.00	0.00	0.98	0.00	0.00	0.01
C_4	0.00	0.02	0.00	0.96	0.01	0.01
C_5	0.00	0.00	0.00	0.01	0.98	0.00
Uns	NaN	NaN	NaN	NaN	NaN	NaN
een	INCIN	INGIN	INGIN	INCIN	INGIN	INCIN

	# of support vectors
1st Fold	366
2nd Fold	362
3rd Fold	353
4th Fold	355
5th Fold	358

Table 1 Overall Confusion Matrix for SVM.

Overall Accuracy = 97.29%. (5,000 samples)

Table 2 Number of Support Vectors for Each Fold (5,000 samples)

2.2 Relevance Vector Machines

	C_1	\mathcal{C}_2	\mathcal{C}_3	C_4	C_5	Uns
	^L 1	C ₂	L3	64	C ₅	een
C_1	0.71	0.05	0.08	0.13	0.00	0.03
C_2	0.11	0.68	0.03	0.13	0.01	0.04
C_3	0.02	0.08	0.66	0.04	0.16	0.04
C_4	0.10	0.14	0.07	0.61	0.03	0.05
C_5	0.01	0.01	0.13	0.05	0.77	0.04
Uns	NaN	NaN	NaN	NaN	NaN	NaN
een	INGIN	INGIN	INGIN	INGIN	INGIN	INGIN

	# of relevance
	vectors
1st Fold	
2nd Fold	
3rd Fold	
4th Fold	
5th Fold	

Table 3 Overall Confusion Matrix for RVM.

Overall Accuracy = 68.41%. (5,000 samples)

Table 4 Number of Relevance Vectors for Each Fold (5,000 samples)

2.3 Gaussian Process Regression

	_	_	_	_	_	
	C_1	C_2	C_3	C_4	C_5	Uns
						een
C_1	1.00	0.00	0.00	0.00	0.00	0.00
C_2	0.00	0.96	0.01	0.03	0.00	0.00
C_3	0.04	0.00	0.89	0.00	0.07	0.00
C_4	0.00	0.01	0.00	0.95	0.03	0.00
C_5	0.01	0.00	0.00	0.00	0.98	0.00
Uns	NaN	NaN	NaN	NaN	NaN	NaN
een						

Table 5 Overall Confusion Matrix for GPR. Overall Accuracy = 95.63% (5,000 samples)

3 Conclusion

<u>Accuracy:</u> Based on 5000 random samples, the accuracy for SVM, RVM and GPR are respectively 97.29%, 68.41% and 95.63%. Thus, SVM is the best.

Speed: From both time complexity and our experiments, SVM is the fastest algorithm.

Hence, SVM is the best algorithm in terms of accuracy and speed. To end this report, we provided the results of SVM for the whole dataset (25,000 samples) below.

	C_1	\mathcal{C}_2	\mathcal{C}_3	C_4	C_5	Uns
	ι ₁	C ₂	υ ₃	C ₄	C ₅	een
C_1	0.99	0.00	0.00	0.00	0.00	0.00
C_2	0.00	0.97	0.00	0.02	0.00	0.00
C_3	0.01	0.00	0.98	0.00	0.01	0.00
C_4	0.00	0.01	0.00	0.97	0.01	0.01
C_5	0.00	0.00	0.00	0.00	0.99	0.00
Uns	NaN	NaN	NaN	NaN	NaN	NaN
een	INGIN	INGIN	INGIN	INGIN	INGIN	INGIN

Table 6 Overall Confusion Matrix for SVM.

Overall Accuracy = 98.18% (25,000 samples)

	# of support vectors
1 st Fold	1143
2 nd Fold	1201
3 rd Fold	1182
4 th Fold	1183
5 th Fold	1182

Table 7 Number of Support Vectors for Each Fold. (25,000 samples)