

CUDA Tools

Marc-Antoine Le Guen

Timing nvprof

- línea de comando
- nvprof ./sumArraysOnGPU-timer

```
./sumArraysOnGPU-timer Starting... Using Device 0: Tesla M2070 ==17770== NVPROF is profiling process 17770, command: ./sumArraysOnGPU-timer Vector size 16777216 sumArraysOnGPU <<<16384, 1024>>> Time elapsed 0.003266 sec Arrays match.

==17770== Profiling application: ./sumArraysOnGPU-timer
==17770== Profiling result: Time(%) Time Calls Avg Min Max Name
70.35% 52.667ms 3 17.556ms 17.415ms 17.800ms [CUDA memcpy HtoD]
25.77% 19.291ms 1 19.291ms 19.291ms 19.291ms [CUDA memcpy DtoH]
3.88% 2.9024ms 1 2.9024ms 2.9024ms 2.9024ms sumArraysOnGPU (float*, float*, int)
```


Manejar errores

- cudaMalloc
- cudaHostAlloc
- cudaMemcpy
- cudaEventCreate
- cudaStreamCreate
- cuda*****

LIBRARY NAME	DOMAIN
NVIDIA cuFFT	Fast Fourier Transforms
NVIDIA cuBLAS	Linear Algebra (BLAS Library)
CULA Tools	Linear Algebra
MAGMA	Next generation Linear Algebra
IMSL Fortran Numerical Library	Mathematics and Statistics
NVIDIA cuSPARSE	Sparse Linear Algebra
NVIDIA CUSP	Sparse Linear Algebra and Graph Computations
AccelerEyes ArrayFire	Mathematics, Signal and Image Processing, and Statistics
NVIDIA cuRAND	Random Number Generation
NVIDIA NPP	Image and Signal Processing
NVIDIA CUDA Math Library	Mathematics
Thrust	Parallel Algorithms and Data Structures
HiPLAR	Linear Algebra in R
Geometry Performance Primitives	Computational Geometry
Paralution	Sparse Iterative Methods
AmgX	Core Solvers

Para la instalación y uso de la librería

Profesional CUDA Programming Chapt. 8

- CUFFT
- Una de las dos librerías incluidas en el CUDA toolkit
- Fast Fourier Transform
 - 2D 3D transform hasta 16, 384 elementos por dimensión
 - o 1D 128 millones de elementos
- Librería de uso libre

- CUBLAS (Basic Linear Algebra Subprograms)
- Segunda librería del CUDA toolkit
- 152 Rutinas de Álgebra lineal
 - Vectores
 - Matrices
- Single / Double precision
- Real / Complex data
- Fácil de acceso para los usuarios de BLAS

- Nvidia Performance Primitives
- Image, video and signal processing
 - 1900 image processing primitives
 - 600 signal processing primitives

- Nvidia GPU Computing SDK
 - Samples
 - Simple
 - Utilities
 - Graphics
 - Finance
 - Imaging
 - Simulation
 - Advanced
 - Librerías CUDA

Ocean FFT

Fluid OpenGL

Smoke OpenGL

- Debugging
 - No es posible depurar el código con herramientas tradicionales
 - printf : compute capabilities >=2.0
 - CUDA-GDB -> Linux based system
 - Ver el estado de CUDA -> GPU + capabilities
 - Breakpoint CUDA C
 - GPU memory : all global and shared memory
 - Single stepping a warp of threads
 - cuda-memcheck
 - violación de acceso

- Debugging Nsight 4.1
- Mismas funciones que GDB
- Visual Studio Windows
- Eclipse Mac + Linux

Debugging - Nsight 4.1

CUDA Visual Profiler

Documentación y lectura

- Documentación y lectura
- Nvidia cuda Programming guide
 - http://docs.nvidia.com/cuda/cuda-c-programming-guide/#ab stract
- Programming Massively Parallel Processors: A Hands-on Approach
 - O David Kirk y Wen-mei W. Hwu
- Cuda by example (2010)
 - Jason Sanders y Edward Kandrot
- Professional CUDA C programming (2014)
 - John Cheng, Max Grossman, Ty McKercher
- Cuda Education and Training
 - materiales : cursos, ejercicios, etc.
 - https://developer.nvidia.com/cw/a-educ-won-training

