WiSe 2023/2024 TU Berlin 18.12.2023

Hausaufgabenblatt

Hinweise:

- Die Hausaufgabe kann ab dem 17.01.2024, 12:00 Uhr bis zum 19.01.2024, 23:59 Uhr auf ISIS hochgeladen werden.
- Die Hausaufgabe sollte möglichst in Dreiergruppen bearbeitet werden. Bitte tragen Sie sich in ISIS bis zum 17.01.2024, 11:00 Uhr in der Gruppenwahl ein. Die Hausaufgabe kann nur von eingetragenen Gruppen abgegeben werden.
- Bitte verwenden Sie die LATEX-Vorlage auf ISIS für Ihre Abgabe.
- Plagiate werden nicht toleriert und werden scharf geahndet.
- Es können bis zu **25 Portfoliopunkte** erreicht werden.
- Alle Antworten sind zu begründen. Antworten ohne Begründung erhalten **0 Punkte**. Einzige Einschränkungen:
 - Um zu zeigen, dass eine Funktion (Sprache) von einer Turing-Maschine berechnet (akzeptiert) werden kann, reicht es aus, das Verhalten der Maschine algorithmisch zu beschreiben. Das Gleiche gilt für WHILE- und GOTO-Programme.
 - Sätze, die in der Vorlesung oder Modulkonferenz bewiesen wurden (auch skizzenhaft) dürfen verwendet werden, aber unbewiesene Mitteilungen und Lösungen zu Tutoriumsaufgaben dürfen nicht verwendet werden (bzw. Beweis muss erbracht werden).
 - Sie können die Existenz einer universellen Turing-Maschine (eine Maschine, die bei Eingabe w#x die Maschine M_w auf Eingabe x simuliert) annehmen.
 - Sie können verwenden, dass das allgemeine Halteproblem H (Definition siehe unten) semientscheidbar ist.
- Wir behalten uns vor, pro Aufgabe mit x erreichbaren Punkten nicht mehr als x/2 Seiten zu lesen.

Erinnerungen:

- Alle in den Aufgaben vorkommenden Turing-Maschinen sind deterministisch.
- Σ ist ein beliebiges, endliches Alphabet. Das Symbol # ist ein Trennzeichen.
- Für jede Sprache $L \subseteq \Sigma^*$ ist $\overline{L} := \Sigma^* \setminus L$ ihr Komplement.
- Das allgemeine Halteproblem ist $H := \{ w \# x \mid w, x \in \{0,1\}^* \text{ und } M_w \text{ hält bei Eingabe } x \}.$
- Das spezielle Halteproblem ist $K := \{w \in \{0,1\}^* \mid w \# w \in H\}.$
- Das Halteproblem auf leerem Band ist $H_0 := \{w \in \{0,1\}^* \mid w \# \in H\}.$
- Eine Turing-Maschine heißt "Rechtsdrall-Turing-Maschine" falls alle definierten Übergänge den Kopf nach rechts bewegen, also in der Form $\delta(z_i, x) = (z_i, y, \mathbb{R})$ sind.

Zeigen oder widerlegen Sie für jede der folgenden Sprachen jeweils Semi-Entscheidbarkeit und Entscheidbarkeit.

- $A := \{w \in \{0,1\}^* \mid \text{es gibt eine Eingabe } x \text{ auf der } M_w \text{ die Ausgabe 0 produziert}\}$
- $B := K \cap \{w \in \{0,1\}^* \mid M_w \text{ ist eine Rechtsdrall-Turing-Maschine}\}$
- $C := \{ w \# q \mid w, q \in \{0, 1\}^* \text{ und } T(M_w) \subseteq T(M_q) \}$

Lösung:

• A ist semi-entscheidbar, aber nicht entscheidbar.

Nicht-entscheidbar wegen des Satzes von Rice auf $S = \{f \mid \text{es gibt ein } x \text{ mit } f(x) = 0\}$ (offensicht-lich eine nicht-triviale Menge).

Semi-entscheidbar, weil die folgende TM genau A akzeptiert.

- 1. Sei w die Eingabe.
- 2. Zähle alle Wörter in Σ^* auf, und simuliere M_w parallel auf jeder Eingabe $x \in \Sigma^*$.
- ullet B ist entscheidbar. Das können wir wie folgt sehen.

Sei $w \in \Sigma^*$. Wir können feststellen, ob M_w eine RTM ist, indem wir all die Übergänge von M_w überprüfen.

Nun unter der Annahme, dass M_w eine RTM ist, können wir feststellen, ob M_w auf jeder Eingabe x hält, d.h. ob $w\#x\in H$ (insbesondere ob $w\in K$). Innerhalb von |x|+1 Schritten wird entweder M_w halten, oder wird ihr Kopf in Schritt |x|+1 über einem Blanksymbol sein. Sei s die Anzahl der Zustände, die M_w hat. Es ist leicht zu sehen, dass entweder in den nächsten s Schritten wird M_w halten, oder in einen früher-erreichten Zustand landen. Im letzteren Fall wird M_w nie halten.

Jetzt können wir eine TM für B aufbauen.

- 1. Sei w die Eingabe und s die Anzahl der Zustände in M_w .
- 2. Überprüfe, ob all die Übergänge von M_w den Kopf nach rechts bewegen. Wenn nicht, lehne w ab.
- 3. Simuliere M_w auf w für s+|w|+1 Schritte. Wenn M_w innerhalb dieser Schritten hält, akzeptiere w. Sonst lehne w ab.
- C ist weder entscheidbar noch semi-entscheidbar. Wir zeigen dies mit zwei Reduktionen.

Zunächst zeigen wir $H_0 \leq C$. Dazu sei $f \colon \Sigma^* \to \Sigma^*$ eine Reduktionsfunktion mit $x \mapsto w \# q$, wobei M_w jede Eingabe akzeptiert (also ist $T(M_w) = \Sigma^*$). Klar gilt $T(M_w) \subseteq T(M_q)$ nur dann wenn $T(M_w) = T(M_q) = \Sigma^*$. Die Maschine M_q soll auf jeder Eingabe die Maschine M_x auf leerer Eingabe simuliert und dann akzeptiert wenn M_x hält. Dann gilt:

$$x \in H_0 \iff M_x$$
 hält auf leerer Eingabe
$$\iff M_q \text{ akzeptiert jede Eingabe}$$

$$\iff T(M_w) \subseteq T(M_q)$$

$$\iff w \# x \in C.$$

Nun zeigen wir $\overline{H}_0 \leq C$. Dazu sei $g \colon \Sigma^* \to \Sigma^*$ eine Reduktionsfunktion mit $x \mapsto w \# q$, wobei M_w jede Eingabe akzeptiert (also ist $T(M_w) = \Sigma^*$). Wie vorher gilt dann $T(M_w) \subseteq T(M_q)$ nur dann wenn $T(M_w) = T(M_q) = \Sigma^*$. Die Maschine M_q soll auf Eingabe y die Maschine M_x für n_y Schritte auf leerer Eingabe simulieren. Wenn in der Simulation die Maschine M_x hält, dann verwirft M_q die Eingabe. Wenn in der Simulation die Maschine M_x nicht hält, dann akzeptiert M_q die Eingabe.

Nun gilt:

 $x \in \overline{H_0} \iff M_x$ hält *nicht* auf leerer Eingabe

 \iff es gibt kein $n \in \mathbb{N}$, sodass M_x auf leerer Eingabe innerhalb von n Schritten hält

 \iff für jede Eingabe ysimuliert M_q für n_y Schritte und akzeptiert anschließend

 $\iff M_q$ akzeptiert jede Eingabe

 $\iff T(M_q) = \Sigma^*$

 $\iff T(M_w) \subseteq T(M_q)$

 $\iff w \# x \in C.$

Aufgabe 2. Reduktionen

8 P.

Sei $c_0: \{0,1\}^* \to \{0,1\}^*$ die konstante 0-Funktion (d.h. $c_0(x)=0$ für alle $x \in \{0,1\}^*$) und sei

 $L := \{w \in \{0,1\}^* \mid M_w \text{ berechnet die Funktion } c_0\}.$

- 1. Reduzieren Sie H auf L.
- 2. Reduzieren Sie \overline{H} auf L.
- 3. Zeigen oder widerlegen Sie, dass $L \leq H_0$ gilt.

Lösung:

- 1. $H \leq L$: Wir definieren die Reduktionsfunktion $f: \{0, 1, \#\}^* \to \{0, 1\}^*$ wie folgt. Für s = w # x mit $w, x \in \{0, 1\}^*$ sei $f(s) \coloneqq \langle M^s \rangle$, wobei M^s eine Turing-Maschine ist, die das Folgende tut:
 - Überschreibe das Eingabewort mit x.
 - Verfahre wie M_w auf dem Eingabewort x. Falls M_w hält, so gib den Funktionswert 0 aus.

Für alle anderen $s \in \{0, 1, \#\}^*$ sei $f(s) \coloneqq \epsilon \notin L$. Die Funktion f ist offensichtlich total und berechenbar (Kodieren von TM).

Korrektheit: Sei s = w # x (für alle anderen s ist Korrektheit klar).

Falls $s \in H$, so hält M_w auf x. Also gibt die TM M^s für alle Eingaben eine 0 aus. Somit gilt $f(s) \in L$.

Falls $f(s) \in L$, so berechnet M^s die Funktion c_0 . Per Konstruktion muss dann M_w auf x gehalten haben. Also gilt $s \in H$.

2. $\overline{H} \leq L$: Wir definieren die Reduktionsfunktion $f: \{0,1,\#\}^* \to \{0,1\}^*$ wie folgt. Für alle $s \in \{0,1,\#\}^*$, die nicht die Form s=w#x mit $w,x\in\{0,1\}^*$ haben, sei $f(s):=\langle M^0\rangle\in L$, wobei M^0 eine feste TM ist, die c_0 berechnet. Eine solche TM existiert.

Für s = w # x sei $f(s) := \langle M^s \rangle$, wobei M^s eine Turing-Maschine ist, die bei Eingabe $a \in \{0,1\}^*$ das Folgende tut:

- Simuliere M_w auf Eingabe x für $n := |a|_2$ Schritte.
- Falls M_w innerhalb dieser n Schritte hält, gib 1 aus. Sonst gib 0 aus.

Korrektheit: Sei s = w # x (für alle anderen s ist Korrektheit klar).

Falls $s \in \overline{H}$, so hält M_w nicht auf x. Also gibt die TM M^s für alle Eingaben eine 0 aus. Somit gilt $f(s) \in L$.

Falls $f(s) \in L$, so berechnet M^s die Funktion c_0 . Per Konstruktion gilt also, dass M_w auf Eingabe x für kein $n \in \mathbb{N}$ nach n Schritten hält. Also gilt $s \in \overline{H}$.

3. $L \leq H_0$ gilt nicht. Da H semi-entscheidbar aber unentscheidbar ist, ist \overline{H} nicht semi-entscheidbar (Satz VL). Wenn nun $L \leq H_0$, dann hätten wir mit 2.

$$\overline{H} \le L \le H_0 \le H$$

(die Reduktion $H_0 \leq H$ ist trivial gegeben durch $f(w) \to w\#$). Somit wäre \overline{H} semi-entscheidbar. Widerspruch.

Aufgabe 3. Postsches Korrespondenzproblem

7 P.

1. Welche der drei folgenden Wörter sind in der Sprache PCP mit Alphabet $\{a, b\}$ enthalten?

$$I_1 = \langle ((aa, ab), (aaa, ab)) \rangle$$
 $I_2 = \langle ((aaab, aa), (b, abb)) \rangle$ $I_3 = \langle ((aa, a), (a, aaa)) \rangle$

Lösung:

 I_1 ist nicht in PCP, da man mit keinem der beiden Tupel beginnen kann.

 I_2 hat die Lösung $i_1 = 1, i_2 = 2$.

 I_3 hat die Lösung $i_1 = i_2 = 1$, $i_3 = 2$.

2. Zeigen oder widerlegen Sie die Entscheidbarkeit folgender Sprache:

$$P^* \coloneqq \{ \langle ((x_1, y_1), \dots, (x_k, y_k)) \rangle \mid k \geq 1, x_i, y_i \in \{0, 1\}^* \text{ für alle } i \in \{1, \dots, k\},$$
 wobei x_i und y_i keine zwei 1'en hintereinander enthalten, und es existieren $n \geq 1$ und $i_1, \dots, i_n \in \{1, \dots, k\},$ sodass $x_{i_1} \cdot \dots \cdot x_{i_n} = y_{i_1} \cdot \dots \cdot y_{i_n} \}$

Lösung:

 P^* ist unentscheidbar. Beweis mittels Reduktion PCP $\leq P^*$. Sei $\Sigma = \{a_1, \ldots, a_m\}$ ein endliches Alphabet. Wir definieren

$$h \colon \Sigma \to \{0,1\}^*, \quad h(a_i) \coloneqq 10^i$$

und

$$g: \Sigma^* \to \{0, 1\}^*, \quad g(w_1 w_2 \dots w_\ell) := h(w_1) h(w_2) \dots h(w_\ell).$$

Die Funktionen h und g sind offensichtlich total und berechenbar. Außerdem ist h injektiv, da jeder Buchstabe mit einer anderen Anzahl 0'en kodiert wird. Daher ist auch g injektiv.

Wir definieren die Reduktionsfunktion $f: \{0,1\}^* \to \{0,1\}^*$ wie folgt: Für alle $x \in \{0,1\}^*$, die keine korrekt kodierte PCP Instanz darstellen, setzen wir $f(x) := \epsilon \notin P^*$. Für $x = \langle ((x_1,y_1), \dots, (x_k,y_k)) \rangle$ definieren wir $f(x) := \langle ((g(x_1),g(y_1)),\dots,(g(x_k),g(y_k))) \rangle$.

Korrektheit: Sei $x = \langle ((x_1, y_1), \dots, (x_k, y_k)) \rangle$ (für ungültige Kodierungen x gilt $x \notin PCP$ und $f(x) \notin P^*$).

Falls $x \in PCP$, so gibt es $i_1, \ldots, i_n \in \{1, \ldots, k\}$ mit $x_{i_1} \cdot \ldots \cdot x_{i_n} = y_{i_1} \cdot \ldots \cdot y_{i_n}$. Zu zeigen: $f(x) \in P^*$. Zunächst stellen wir fest, dass $g(x_j) \in \{0, 1\}^*$ und $g(y_j) \in \{0, 1\}^*$ für alle $j \in \{1, \ldots, k\}$ per Konstruktion keine zwei 1'en hintereinander enthalten. Außerdem gilt per Konstruktion, dass

$$g(x_{i_1}) \cdot \ldots \cdot g(x_{i_n}) = g(x_{i_1} \cdot \ldots \cdot x_{i_n}) = g(y_{i_1} \cdot \ldots \cdot y_{i_n}) = g(y_{i_1}) \cdot \ldots \cdot g(y_{i_n})$$

und somit $f(x) \in P^*$.

Falls $f(x) \in P^*$, so gibt es $i_1, \ldots, i_n \in \{1, \ldots, k\}$ mit $g(x_{i_1}) \cdot \ldots \cdot g(x_{i_n}) = g(y_{i_1}) \cdot \ldots \cdot g(y_{i_n})$. Da g injektiv ist, gilt

$$x_{i_1} \cdot \ldots \cdot x_{i_n} = g^{-1}(g(x_{i_1} \cdot \ldots \cdot x_{i_n})) = g^{-1}(g(x_{i_1}) \cdot \ldots \cdot g(x_{i_n})) = g^{-1}(g(y_{i_1}) \cdot \ldots \cdot g(y_{i_n})) = g^{-1}(g(x_{i_1} \cdot \ldots \cdot y_{i_n})) = g^{-1}(g(x_{i_1} \cdot$$

Somit gilt $x \in PCP$.