1. Prismatic Bars of Linearly Elastic Material

$$P \longrightarrow \sigma_{x}$$

Axial loading: $\sigma_x = \frac{P}{4}$

(a)

Torsion: $\tau = \frac{T\rho}{J}$, $\tau_{\text{max}} = \frac{Tr}{J}$ (b)

Bending: $\sigma_x = -\frac{My}{I}$, $\sigma_{\text{max}} = \frac{Mc}{I}$ (c)

Shear: $\tau_{xy} = \frac{VQ}{Ib}$ (d)

where

 σ_x = normal axial stress

 τ = shearing stress due to torque

 τ_{xy} = shearing stress due to vertical shear force

P = axial force

T = torque

V =vertical shear force

M =bending moment about z axis

A = cross-sectional area

y, z = centroidal principal axes of the area

I = moment of inertia about neutral axis (N.A.)

J =polar moment of inertia of circular cross section

b = width of bar at which τ_{xy} is calculated

r = radius

Q = first moment about N.A. of the area beyond the point at which τ_{xy} is calculated

2. Thin-Walled Pressure Vessels

Cylinder: $\sigma_{\theta} = \frac{pr}{t}$, $\sigma_{a} = \frac{pr}{2t}$ (e)

Sphere: $\sigma = \frac{pr}{2t}$ (f)

where

 σ_{θ} = tangential stress in cylinder wall

 σ_a = axial stress in cylinder wall

 σ = membrane stress in sphere wall

P = internal pressure

t =wall thickness

r = mean radius

^aDetailed derivations and limitations of the use of these formulas are discussed in Sections 1.6, 5.7, 6.2, and 13.14.