Pre-appello di Elettrotecnica, Ingegneria Chimica, 31 Maggio 2018

Cognome e nome:	
Matricola:	

Sezione I

Determinare le potenze attive P_I e P_V erogate dai generatori, e la potenza attiva P_R assorbita dal resistore.

Verificare quindi il teorema di Boucherot.

$i_s(t) = 2\cos\left(20t + \frac{n}{4}\right)A$
$v_{\scriptscriptstyle S}(t) = \sqrt{2} sin(20t) V$
$R = 3\Omega$
L = 100mH
C = 25mF

Determinare il circuito equivalente di Thevenin visto ai morsetti a,b				
$R_1 \rightleftharpoons R_2$ $R_1 \rightleftharpoons R_2$ R_2 R_3	$R_1 = 1\Omega$, $R_2 = 2\Omega$, $R_3 = 3\Omega$, $\alpha = 6\Omega$			
Soluzione in forma letterale e numerica	Disegnare il circuito equivalente di Thevenin			

Un carico monofase è caratterizzato dal in valore efficace). Selezionare la risposta	_		=		fasori espressi
$+\frac{\dot{i}}{\dot{V}}$	Il fattore di potenza cosφ del carico è				
$10A$ \dot{j}		-0.867 -0.728		□ 0.867 □ 0.728	
100V V	La pote	nza apparente (assorbita	ı dal carico è	
$3A$ $\Re e$		1000VA		1044VA	□ 300VA
	L'amme	ettenza del cario	co è (espr	ressa in S)	
		6.97-j6.57 0.14-j0.15		.97+j6.57 . 076+j0.072	□ 0.14+j0.15 □ 0.076-j0.072
	Se la fre	equenza è di 60	Hz, il carı	ico può essere	costituito da:
		36.8 mH		•	d un induttore da
		condensatore	da 190μ		
		da 404μF	ui 6.97 <u>1</u> 2	r III parallelo ac	d un condensatore

Il circuito trifase in figura è alimentato da una terna diretta di tensioni. Si determini:

- Il modulo delle correnti entranti nelle fasi del carico \bar{Z}_2
- Le potenze attive e reattive assorbite dal carico \bar{Z}_2 Il modulo delle tensioni di linea ai capi del carico \bar{Z}_3

Scrivere un sistema di equazioni per il seguente circuito utilizzando il metodo delle correnti di maglia.

Sezione II

La relazione costitutiva del condensatore ideale è tale che: ☐ La corrente e la tensione sono fra loro proporzionali ☐ L'energia immagazzinata è una funzione del tempo maggiore o uguale a zero ☐ La potenza assorbita è sempre maggiore di zero ☐ Il condensatore è classificato come un bipolo attivo
La pulsazione di risonanza di un bipolo che opera in regime sinusoidale è definita come ☐ La pulsazione della sorgente che comanda il bipolo ☐ La pulsazione alla quale la reattanza del bipolo risulta pari a zero ☐ La pulsazione alla quale la conduttanza del bipolo risulta pari a zero ☐ La pulsazione alla quale la parte reale e la parte immaginaria dell'impedenza sono uguali
In un carico trifase equilibrato a triangolo vale la seguente relazione fra le correnti $\square \ \text{La corrente di linea è} \sqrt{3} \text{volte la corrente di fase} \\ \square \ \text{La corrente di fase e di linea sono sfasate di un angolo di 120 gradi} \\ \square \ \text{La corrente di fase è} \sqrt{3} \text{volte la corrente di linea} \\ \square \ \text{La corrente di linea coincide con la corrente di fase (a causa dell'assenza del centro stella)}$
 Un circuito lineare contiene condensatori, induttori, resistori e sorgenti costanti. La soluzione di regime continuo si può determinare risolvendo un circuito ottenuto Sostituendo ad ogni condensatore un circuito aperto e ad ogni induttore un corto circuito Sostituendo a condensatori ed induttori la rispettiva impedenza ed operando nel dominio dei fasori Lavorando con il circuito ottenuto eliminando condensatori ed induttori Solo risolvendo l'equazione differenziale e calcolando il limite per t tendente ad infinito
Si considerino le equazioni risultanti dalla scrittura del primo principio di Kirchhoff (KCL) e del secondo principio di Kirchhoff (KVL). In un circuito connesso costituito da N nodi e R rami, vi sono N-1 KVL indipendenti, R-1 KCL indipendenti N+R-1 KVL indipendenti, N-R+1 KCL indipendenti R KVL indipendenti, N CKL indipendenti R-N+1 KVL indipendenti, N-1 KCL indipendenti

Sezione III

Di un trasformatore ideale monofase sono noti i seguenti dati: $S_n = 50kVA$, $V_{1n} = 10kV$, $V_{2n} = 200V$, $f = 50Hz$. Il trasformatore è alimentato alla tensione nominale ed il carico collegato al				
secondario consiste in un resistore di 10 Ω in serie ad un induttore di 10mH. Calcolare:				
 Il rapporto di trasformazione del trasformatore 				
a. Il modulo della correnta eccerbita del				
 Il modulo della corrente assorbita dal primario 				
La potenza apparente trasferita dal				
primario al secondario				
 Lo sfasamento fra corrente e tensione al primario. 				

Un motore asincrono trifase i cui dati di targa sono: $V_n=500V$, f=50Hz, p=2 (paia di poli), $P_n=10.5kW$ (con statore collegato a triangolo), è rappresentato dal suo circuito equivalente monofase approssimato, di cui sono noti i seguenti parametri

Il motore è alimentato alla sua tensione nominale; calcolare (Soluzione letterale e numerica):

- Il modulo della corrente assorbita a rotore libero
- La velocità del campo rotante di statore

- La potenza meccanica erogata dalla macchina
- La pulsazione delle correnti sul rotore

Di un generatore sincrono trifase è noto il suo circuito equivalente monofase secondo Behn-Eschemburg, in cui la reattanza sincrona di armatura vale $X_{sa}=3.3\Omega$ (le fasi sono collegate a stella). In determinate condizioni di funzionamento, la tensione di linea ai suoi capi vale $V_l=440V$, ed eroga su un carico una potenza attiva pari a $P=40kW$ con $cos \varphi=0.7$. Determinare (riportando svolgimento e valori numerici):				
Il modulo della corrente erogata dal generatore.	Il fasore della tensione E0 (si consiglia di prendere come riferimento nullo la tensione della singola fase)			
L'angolo di coppia nella suddetta condizione di funzionamento	Il valore della tensione di linea che si rileva ai morsetti della macchina scollegando il carico e lasciando inalterata la corrente di eccitazione.			
In una macchina asincrona la coppia all'avviamento: ☐ Dipende dal carico meccanico ad essa collegata ☐ Deve essere maggiore della coppia fornita dalla macchina stessa all'avviamento ☐ Deve essere maggiore della coppia resistente a velocità di rotazione nulla ☐ Deve essere maggiore di zero				
In un motore in corrente continua, indipendentemente dal tipo di eccitazione, la coppia fornita al rotore E' proporzionale al quadrato della corrente di armatura E' direttamente proporzionale alla velocità di rotazione del rotore E' direttamente proporzionale al flusso prodotto dagli avvolgimenti di statore E' indipendente dalla corrente di armatura				