

SCHOOL OF ADVANCED SCIENCES FALL SEMESTER 2021-2022 - CAT-1

S.No.	Question	Marks
1(a)	$\left(\begin{array}{cc} \frac{1}{2} & 1 < y < 0 \text{ then} \end{array}\right)$	5M
	(i) Test whether the Rolle's theorem holds for the function $f(x) = \begin{cases} -x^3, -1 \le x \le 0, \text{ then} \\ x^{\frac{1}{3}}, 0 < x \le 1 \end{cases}$	
	$x^{\frac{1}{3}}, 0 < x \le 1$	
	in the interval $[-1,1]$.	
	Ans: Clearly, the given function is not differentiable at $x = 0$, Therefore, Rolle's theorem	5M
	does not apply to f in $\begin{bmatrix} -1,1 \end{bmatrix}$	
	(ii) If $f(x)=(x-1)(x-3)(x-5)$, $a=0,b=4$. Find the value of c such that $f'(c)$ has the	
	same value as the slope of the chord joining the points for which $x = 0$ and $x = 4$.	
	Ans: We know that a polynomial function is continuous as well as differentiable for all x .	
	Since, $f(x) = (x-1)(x-3)(x-5)$ is a polynomial in x, therefore it is continuous in	
	[0,4] and differentiable in (0,4). Since, $f(x)$ satisfies all the conditions of Lagrange's	
	mean value theorem, therefore there must exist some $c \in (0,4)$, such that	
	$\frac{f(4)-f(0)}{4-0} = f'(c)$	
	$\Rightarrow 3c^2 - 18c + 23 = 3$	
	$\Rightarrow 3c^2 - 18c + 20 = 0$	
	$\therefore c = 3 \pm \frac{\sqrt{21}}{3}$	
	3 Or <i>c</i> = 4.5275252316519,1.4724747683481	
	Only, one value of c lie in the open interval. Therefore,	
	the slope to the curve at these points is not same as the slope of chord joining the points.	L
1(b)	(i) Test whether the Rolle's theorem holds for the function $f(x) = \begin{cases} x^2, & \text{if } 0 \le x \le 2\\ 6 - x, & \text{if } 2 < x \le 6 \end{cases}$	5M
	Ans: Clearly, the given function is not differentiable at $x = 2$, Therefore, Rolle's theorem	
	does not satisfied.	5M
	(ii) If $f(x) = x(x-1)$ in [1,2]. Find the value of c using Lagrange's mean value theorem.	
	Ans: We know that a polynomial function is continuous as well as differentiable for all x .	
	Since, $f(x) = x(x-1)$ is a polynomial in x , therefore it is continuous in [1,2] and	
	differentiable in (1,2). Since, $f(x)$ satisfies all the conditions of Lagrange's mean value	
	theorem, therefore there must exist some $c \in (1,2)$, such that $\frac{f(2)-f(1)}{2-1}=f'(c)$	
	$\Rightarrow 2c-1=2$	
	$\Rightarrow 2c = 3$	
	$\therefore c = \frac{3}{2}$	
1(c)	Identify the intervals on which the function $f(x) = 2x^3 - 9x^2 + 12x - 5$ is (i) Increasing	10M
	and decreasing, (ii) Stationary points, (iii) Absolute maximum and minimum, (iv) Points of local maxima and local minima.	
	Ans: Given function is $f(x) = 2x^3 - 9x^2 + 12x - 5$	
		Dago 1 of F

	Differentiating the above polynomial and equating to zero, we get $x = 1, 2$	
	(i) Increasing on $(-\infty,1)\cup(2,\infty)$ and decreasing on $(1,2)$	
	(ii) Stationary points are 1, 2	
	(iii) Absolute maxima is 0 and minima is -1, (iv) Points of local maxima is $(1,0)$ and local minima is $(2,-1)$	
1(d)		10M
1(u)	Identify the intervals on which the function $f(x) = -2x^3 - 9x^2 - 12x + 1$ is (i) Increasing and decreasing, (ii) Stationary points, (iii) Absolute maximum and minimum, (iv) Points	10111
	of maxima and minima.	
	Ans: Given function is $f(x) = -2x^3 - 9x^2 - 12x + 1$	
	Differentiating the above polynomial and equating to zero, we get $x = -2, -1$	
	(i) Increasing on $(-2,-1)$ and decreasing on $(-\infty,-2) \cup (-1,\infty)$	
	(ii) Stationary points are $-2, -1$	
	(iii) Absolute maxima is 6 and minima is 5	
	(iv) Points of local maxima is $(-2,5)$ and local minima is $(-1,6)$	107.5
2(a)	Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{3}$, $x = 3$.10M
	and $x = 3 - y^2$ about the $x - axis$.	
	Ans: Volume $V = \frac{9\pi}{2}$ cubic units	
2(b)	Find the volume of the solid obtained by rotating the region bounded by $y = 2\sqrt{x-1}$ and	10M
	y = x - 1 about the line $x = -1$.	
	Ans: Inner radius is $\frac{y^2}{4} + 1 + 1 = \frac{y^2}{4} + 2$ and Outer radius is $y + 1 + 1 = 2$	
	$A(y) = \pi \left[(y+2)^2 - \left(\frac{y^2}{4} + 2 \right)^2 \right] = \pi \left(4y - \frac{y^2}{16} \right)$	
	$V = \pi \int_0^4 \left(4y - \frac{y^4}{16} \right) dy = \frac{96}{5} \pi$	
2(c)	Find the volume of the region obtained by rotating the region bounded by $y = 6e^{-2x}$ and	10M
	$y = 6 + 4x - 2x^2$ between $x = 0$ and $x = 1$ about the line $y = -2$.	>
	Ans: Inner radius is $2+6e^{-2x}$ and Outer radius is $8+4x-2x^2$	
	$A(x) = \pi \left \left(\text{Outer radius} \right)^2 - \left(\text{Inner radius} \right)^2 \right $	
	$= \pi \left[60 + 64x - 16x^2 - 16x^3 + 4x^4 - 24e^{-2x} - 36e^{-4x} \right]$	
	$V = \int_0^1 \pi \left[60 + 64x - 16x^2 - 16x^3 + 4x^4 - 24e^{-2x} - 36e^{-4x} \right] dx$	
	$= \left(\frac{937}{15} + 12e^{-2} + 9e^{-4}\right)\pi$	
2(d)	Find the volume of the region obtained by rotating the region bounded by	10M
	$y = 10 - 6x + x^2$ and $y = -10 + 6x - x^2$, $x = 1$ and $x = 5$ about the line $y = 8$.	
3(a)	(i) Find the values of the constant parameter λ for which the functions $y = \cos x \cos y + \lambda \sin x \sin y$, $y = \sin x \cos y + \lambda \cos x \sin y$ are functionally dependent	5M
	$u = \cos x \cos y - \lambda \sin x \sin y$, $v = \sin x \cos y + \lambda \cos x \sin y$ are functionally dependent. Ans: Given that $u = \cos x \cos y - \lambda \sin x \sin y$, $v = \sin x \cos y + \lambda \cos x \sin y$	
		5 N /I
	We know that if u and v are functionally related, then $\frac{\partial(u,v)}{\partial(x,y)} = 0$	5M

Now
$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = 0$$

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} -\sin x\cos y - \lambda\cos x\sin y & -\cos x\sin y - \lambda\sin x\cos y \\ \cos x\cos y - \lambda\sin x\sin y & -\sin x\sin y + \lambda\cos x\cos y \end{vmatrix} = 0$$

$$\Rightarrow (-\sin x\cos y - \lambda\cos x\sin y)(-\sin x\sin y + \lambda\cos x\cos y) = 0$$

$$\Rightarrow (-\sin x\cos y)(-\sin x\sin y) = \sin^2 x\sin y\cos y,$$

$$\Rightarrow (-\sin x\cos y)(\lambda\cos x\cos y) = -\lambda\sin x\cos x\cos^2 y$$

$$\Rightarrow (-\lambda\cos x\sin y)((-\sin x\sin y) = \lambda\sin x\cos x\cos^2 y,$$

$$\Rightarrow (-\lambda\cos x\sin y)((-\sin x\sin y) = \lambda\sin x\cos x\sin^2 y,$$

$$\Rightarrow (-\lambda\cos x\sin y)((\cos x\cos y) = -\lambda^2\cos^2 x\sin y\cos y,$$

$$\Rightarrow (-\cos x\sin y)(\cos x\cos y) = -\cos^2 x\sin x\cos x\sin^2 y - \lambda^2\cos^2 x\sin y\cos y,$$

$$\Rightarrow (-\cos x\sin y)(\cos x\cos y) = -\cos^2 x\sin x\cos x\sin^2 y - \lambda^2\cos^2 x\sin y\cos y,$$

$$\Rightarrow (-\cos x\sin y)((\cos x\cos y) = -\lambda\sin x\cos x\sin^2 y - \lambda\sin x\cos x\cos^2 y + \lambda\sin x\cos x\cos^2 y + \lambda\sin x\cos x\sin^2 y - \lambda\sin x\cos y)((-\lambda\sin x\sin y) = \lambda\sin x\cos x\sin^2 y - \lambda\sin x\cos x\cos^2 y + \lambda\sin x\cos x\sin^2 y - \lambda\cos x\sin y\cos y + \cos^2 x\sin$$

3(b)	(i) Find the values of the constant parameter k for which	5M
	$u = kx^2 + 4y^2 + z^2$, $v = 3x + 2y + z$, $w = 2yz + 3zx + 6xy$ are functionally related, and obtain	
	the corresponding relation.	
	Ans: Given that $u = kx^2 + 4y^2 + z^2$, $v = 3x + 2y + z$, $w = 2yz + 3zx + 6xy$	5M
	We know that if u and v are functionally related, then $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 0$	
	Now $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \end{vmatrix} = 0$	
	$\left \begin{array}{cccc} \partial x & \partial y & \partial z \\ \partial x & \partial y & \partial z \end{array}\right $	
	Now $\frac{\partial(u,v,w)}{\partial(x,v,z)} = \begin{vmatrix} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \end{vmatrix} = 0$	
	$\partial(x,y,z)$ ∂x ∂y ∂z	
	$ \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \frac{\partial w}{\partial z} $	
	$\frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} 2kx & 8y & 2z \\ 3 & 2 & 1 \\ 3z + 6y & 2z + 6x & 2y + 3x \end{vmatrix} = 0$	
	$\Rightarrow 2kx \Big[2(2y+3x) - (2z+6x) \Big] - 8y \Big[3(2y+3x) - (3z+6y) \Big]$	
	+2z[3(2z+6x)-2(3z+6x)]=0	
	$\Rightarrow 2kx[4y+6x-2z-6x]-8y[6y+9x-3z-6y]+2z[6z+18x-6z-12x]=0$	
	$\Rightarrow 2kx[4y-2z]-8y[9x-3z]+2z[18x-12x]=0$	
	$\Rightarrow 2kx[4y-2z]-8y[9x-3z]+12xz=0$	
	$\Rightarrow 8kxy - 4kxz - 72xy + 24yz + 12xz = 0$	
	$\Rightarrow 8kxy - 72xy - 4kxz + 12xz + 24yz = 0$ $\Rightarrow 8xy(k-9) - 4xz(k-3) + 24yz = 0$	
	Therefore $k = 3$ or 9	
	(ii) If $f(x,y) = \begin{cases} \frac{x^2 - xy}{x + y}; (x,y) \neq (0,0) \\ 0; (x,y) = (0,0) \end{cases}$, Then $f_x(0,0), f_y(0,0)$.	
	0;(x,y)=(0,0)	\
	Ans: $f_x(0,0) = 1$; $f_y(0,0) = 0$	
3(c)	(i) Verify the variables x and y are given by $x = \frac{s+t}{s}$, $y = \frac{s+t}{t}$ are functionally	5M
	dependent, and obtain the relationship $f(x, y)$.	
	(ii) If $f(x, y) = \begin{cases} xy \tan\left(\frac{y}{x}\right); (x, y) \neq (0, 0) \\ \end{cases}$, Then find $xf_x + yf_y$ at $(0, 0)$	
	(ii) If $f(x,y) = \begin{cases} xy \tan\left(\frac{y}{x}\right); (x,y) \neq (0,0) \\ 0; (x,y) = (0,0) \end{cases}$, Then find $xf_x + yf_y$ at $(0,0)$ Ans: $xf_x + yf_y = 2f$	5M
3(d)	(i) If the thermodynamics variables P,V,T are connected by a relation $f(P,V,T)=0$,	5M
	Then find the value of $\frac{\partial P}{\partial T} \times \frac{\partial T}{\partial V} \times \frac{\partial V}{\partial P}$.	
	Ans: $\left(\frac{\partial P}{\partial T}\right) \times \left(\frac{\partial T}{\partial V}\right) \times \left(\frac{\partial V}{\partial P}\right) = -1$	
	(ii) The power consumed in an electric resistor is given by $P = \frac{E^2}{R}$ (in Watts). If $E = 80$	5M
	Volts and $R = 5$ ohms, by how much the power consumption will charge if E is increased	

