White-Box Testing

Tutorial Outline

- What is White Box Testing?
- Flow Graph and Coverage Types
- Symbolic Execution:
 - Formal Definition
 - Examples

White-Box means Testing by Implementation

- Execution-based testing that uses the program's inner structure and logical properties
 - A.K.A Clear Box, Glass Box and Structural Testing
- There are different types of white-box testing
 - For example statement coverage where each statement is executed at least once
- Flow Graph helps us model an analyze different types of coverage

Flow Graph

G = (V, E) where

- V is the set of basic blocks
- E is the set of control branches

Example:

- 1. a = Read(b)
- 2. C = 0
- 3. while (a > 1)
- 4. If $(a^2 > c)$
- 5. C = C + Q
- 6. a = a 2

Input: b = 2

Output: a = 0, c = 2

White Box Testing

White Box Coverage Types

- Statement Coverage: Every statement is executed
- Branch Coverage: Every branch option is chosen
- Path Coverage: Every path is executed
- Basic Path Coverage:
 - We need to define basic path set first

Loops?

Basic Path Set

- An <u>execution path</u> is a set of nodes and directed edges in a flow graph that connects (in a directed fashion) the start node to a terminal node.
- Two execution paths are said to be <u>independent</u> if they do not include the same set of nodes and edges.
- A <u>basic</u> set of execution paths for a flow graph is an independent maximum set of paths in which all nodes and edges of the graph are included at least once.

Basic Path Coverage

The number of Basic paths is
 E - N + 2 (Linear Complexity)

Example

$$p1 = start - 1,2 - 3 - end$$

$$p2 = start - 1,2 - 3 - 4 - 6 - 3 - end$$

$$p3 = start - 1,2 - 3 - 4 - 5 - 6 - 3 - end$$

$$E - N + 2 = 8 - 7 + 2 = 3$$

Path Function

- A function $f: D^n \to D^n$ represents the current values of the variables as function of their initial values
- Each variable X is represented by a projection function $f_X: D^n \to D$
- Function composition $(g \circ f)(\overline{v}) = g(f_{X_1}(\overline{v}), ..., f_{X_n}(\overline{v}))$
 - For example

$$f(X,Y,Z) = (X+Y,X-Y,XZ)$$

$$f_X(X,Y,Z) = X+Y \qquad f_Y(X,Y,Z) = X-Y \qquad f_Z(X,Y,Z) = XZ$$

$$g(X,Y,Z) = (XY,X + Z,Z)$$

$$(g \circ f)(X,Y,Z) = g(f_X(X,Y,Z), f_Y(X,Y,Z), f_Z(X,Y,Z)) =$$

$$= g(X + Y, X - Y, XZ) = ((X + Y)(X - Y), (X + Y) + XZ, XZ)$$

Path Condition

- A condition that ensures the execution of a path
- A constraint on the initial values of the variables

For Example:
$$p = start - 1,2 - 3 - end$$
.

1.
$$a = Read(b)$$

2.
$$C = 0$$

3. while
$$(a > 1)$$

4. if
$$(a^2 > c)$$

5.
$$C = C + Q$$

6.
$$a = a - 2$$

The path condition is $B \le 1$, where B is the initial value of b

start

Symbolic Execution

- A method for deriving test cases which satisfy a given path
 - Outputs path condition (input) and path function (expected result)
- Initially
 - Path function is the Identity function
 - Path condition is true
- Each step in the path induce a **symbolic composition** on the path function or a **logical constraint** on the path condition
 - Simple block g(x): $f \leftarrow g \circ f$
 - Control branch: C ← C ∧ branch condition

- 1. a = Read(b)
- 2. C = 0
- 3. while (a > 1)
- 4. if $(a^2 > c)$
- 5. C = C + a
- 6. a = a 2

Find test case for path:

$$p = start - 1,2 - 3 - 4 - 5 - 6 - 3 - 4 - 5 - 6 - 3 - end$$

start

- 1. a = Read(b)
- 2. C = 0
- 3. while (a > 1)
- 4. if $(a^2 > c)$
- 5. C = C + Q
- 6. a = a 2

vertex path function

start: (A, B, C) 1,2 (A, B, C)

3 (B, B, 0)

(B, B, 0)

(B, B, 0)

path condition

true

true

true

(true Λ B>1) \leftrightarrow B>1

(B>1 ∧ B^2>0) ↔ B>1

start

- 1. a = Read(b)
- 2. C = 0
- 3. while (a > 1)
- 4. if $(a \land 2 > c)$
- 5. C = C + Q
- 6. q = q 2

Hence the test case is B = 5and the expected result is 2B-2 = 8

