Università di Parma

Corso di Laura Magistrale in Ingegneria Informatica

Visione Artificiale

a.a. 2016/17

PROVA PRATICA 11-01-2017

NOME:						
COGNOME:						
MATRICOLA:						
WORKSTATION N°:						
Non è consentito l'accesso ad internet fuori dalla rete universitaria						
Non è consentito l'uso di portatili.						
Non è consentito l'uso di funzioni OpenCv di alto livello come cvtColor, calcHist e similari.						
USERNAME: nomemacchina (es. Labwork05)						
PASSWORD: noncopiare						
Salvare l'esame in un file COGNOME_MATRICOLA.zip e salvarlo sul DESKTOP della macchina virtuale						

Per chi deve svolgere la seconda prova parziale: solo la PARTE 2.

PARTE 1

Scrivere un programma C/C++ che esegua le seguenti operazioni:

1) DEINTERLACCIATURA

Nella cartella "bumble" è contenula un'immagine a 3 canali 8U. Possiamo immaginarli come R,G e B di un'immagine a colori. Separare i tre canali e metterli in 3 rispettive immagini 8UC1.

Le 3 immagini cosi' ottenute contengono in realtà il pattern di Bayer GBRG di 3 diverse immagini: left, center e right.

2) DEMOSAICATURA **GBRG** con metodo di DOWNSAMPLE_2X

Le tre immagini ottenute al passo precedente contengono i realtà il **pattern di Bayer GBRG** di **tre diverse immagini**: left, center e right. Effettuare la demosaicatura di queste tre immagini con il metodo DOWNSAMPLE 2X

GBRG				BGR	
G1	B1	G2	В2	D1 C1 D1	D2 C2 D2
R1	G1	R2	G2	B1 G1 R1	B2 G2 R2
G3	В3	G4	В4	D2 C2 D2	D4.54.D4
R3	G3	R4	G4	B3 G3 R3	B4 G4 R4
G5	B5	G6	В6		nc cc nc
R5	G5	R6	G6	B5 G5 R5	B6 G6 R6

L'immagine destinazione ha dimensioni pari alla **metà** di quella di partenza. Non e' necessario interpolare. G destinazione può essere la media di quelli di partenza o un valora a scelta.

Il risultato saranno **tre diverse immagini a colori BGR: left, center e right.** Nella cartella "bumble_out" trovate l'output atteso.

PARTE 2

Scrivere un programma C/C++ che esegua le seguenti operazioni:

- 1) Implementare **l'algoritmo K-Means** nel caso **RGB** utilizzando le immagini contenute nella cartella "bumble_out". Selezionare i centri iniziali in modo **uniforme**. Utilizzare la distanza euclidea in 3 dimensioni.
- 2) Qual è il numero di centri ideale? Verificare quando l'aumento del numero di centi iniziali non porta piu' a miglioramenti significativi nell'errore totale.