1. 累乗根

 $x^n=a$ となる x を a の n 乗根といい, $\sqrt[n]{a}$ と表す.

問題: 次の値を根号を用いて表せ

A. 7 の平方根

B. π の立方根

ℂ. −16 の 4 乗根

2. 累乗根の性質

- $\bullet \ (\sqrt[n]{a})^n = a$
- ullet $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$
- ullet $\sqrt[n]{a}\sqrt[n]{b}=\sqrt[n]{ab}$
- $\bullet \ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$

(a>0,b>0 で m,n が 2 以上の整数のとき)

問題: 次の式を簡単にせよ.

A. $\sqrt[4]{27}\sqrt[4]{3}$

B. $\frac{\sqrt[3]{2^4}}{\sqrt[3]{3}}$

C. $\frac{\sqrt[3]{147}\sqrt[3]{63}}{7}$

3. 指数の拡張

- $a^0 = 1$
- ullet $a^{-n}=rac{1}{a^n}$ (nは正の整数)
- $a^{rac{m}{n}}=\sqrt[n]{a^m}$ (a>0,m は整数,n は 2 以上の整数)

4. 指数法則

- $ullet \ a^pa^q=a^{p+q}$
- $ullet rac{a^p}{a^q}=a^{p-q}=rac{1}{a^{q-p}} \ ullet (a^p)^q=a^{pq}$
- $\bullet \ (ab)^p = a^p b^p$

(a>0,b>0 で p,q が 実数のとき)

問題 \mathbf{I} : 次の計算をせよ. (ただし x>0,y>0)

- A. $\{(x^{-2})^3\}^{-1}$
- B. $(x^2y)(xy^{-2})$

C.	x^{-3}
	$(x^2)^{-1}$

D.
$$15^{\frac{1}{2}} \cdot 5^{-\frac{1}{2}} \cdot 3^{\frac{1}{2}}$$

問題 ${f II}$: 次の各式を $\sqrt[n]{a^m}$ の形に表せ. (ただし a>0)

A. $a^{0.375}$

B. $\frac{1}{a^{0.75}}$

指数関数

 $y=a^x$ (ただし a>0, a
eq 1)

a > 1 のとき

0 < a < 1 のとき

問題

A. $y=(rac{8}{5})^x$ のグラフをかけ	
B. $y=(rac{5}{8})^x$ のグラフをかけ	
C. $y=2^x$ のグラフとの関係を考えて, $y=2\cdot 2^x$ のグラフをかけ	
D. 方程式 $3^{2x-1}-5\cdot 3^{x-1}=12$ を解け	

対数

$$m = \log_a N \iff N = a^m$$

対数の性質

基本性質

- $\log_a 1 = 0$, $\log_a a = 1$
- $ullet \ \log_a MN = \log_a M + \log_a N$, $\ \ \log_a rac{M}{N} = \log_a M \log_a N$
- $\bullet \, \log_a M^n = n \log_a M$

底の変換

$$ullet \ \log_a b = rac{\log_c b}{\log_c a}$$

$$(a>0, a
eq 1, \quad M,N>0$$
 のとき)

問題I: 次の値を求めよ

A. $\log_2 128$

B. $\log_2 0.25$

問題II: 次の式を計算せよ

A.
$$\log_3 6 + \log_3 \frac{3}{2}$$

B. $\log_7(49^{-2}) + \log_7(\sqrt{7})$

対数関数

 $m=\log_a x$ (ただし a>0, a
eq 1)

a > 1 のとき

0 < a < 1 のとき

問題I: 次の関数のグラフをかけ

A. $y = \log_5 x$

В. y =	$=\log_{\frac{1}{2}}(-x)$		
問題	題II: 次の方程式を解け		
	$\log_4 x = 1$		

B.
$$\log_{10}(x-48) + \log_{10}x = 2$$

最後に

この資料と解答はwebで公開しています:

情報工学科のサイト(「大分高専 情報」で検索)→ スタッフ紹介(教職員紹介) → 西村俊二 → 一番下のリンク ightarrow 2S ALH