Problem

Let $CNF_H = \{$ is a satisfiable cnf-formula where each clause contains any number of literals, but at most one negated literal}. Problem 7.25 asked you to show that CNF_H ? P. Now give a log-space reduction from $CIRCUIT\ VALUE$ to CNF_H to conclude that CNF_H is P-complete.

Step-by-step solution

Step 1 of 4

Consider the following CNF_H statement:

 $\mathit{CNF}_H = \{<\varnothing>|\varnothing|$ is a satisfiable cnf-formula, where every clause consists any number of literals, but is consists maximum one negated literals $\}$

It is known that $CNF_H \in P$

Comment

Step 2 of 4

Now, consider the **circuit evaluation** CIRCUIT-VALUE. For a circuit C and input string w, the value of C on w can be written as C(w). Then, CIRCUIT-VALUE is given by

 $CIRCUIT - VALUE = \{\langle C, x \rangle | C \text{ is a Boolean circuit and } C(x) = 1 \}$

Comment

Step 3 of 4

Consider the given theorem, which says that "suppose $t: M \to M$ be a function, where $t^{\ell}(m) \ge m$. If $W \in TIME(t^{\ell}(m))$, then the complexity of the circuit A is given by $O(t^2(m))$

· Now, consider the figure which is given below:

- The above figure shows the construction of the theorem, which is discussed above. It shows the way of **reduction of a language** W (which is in P) to CIRCUIT-VALUE.
- On input w, the production of a circuit takes place by the reduction. The process reduction simulates the Turing machine for W in polynomial time. The w itself can be taken as an input to the circuit.
- A log-space is used to carry out the reduction because the circuit produced by it contains a repetitive and a simple structure. It shows that " CIRCUIT -VALUE is P-complete.

	Step 4 of 4
The above explanation	gives a log-space reduction from $CIRCUIT-VALUE$ to CNF_H . Hence, from the above discussion it can be concluded that
CNF _H is P - complete	n •