#### UNIVERSITATEA DIN BUCUREȘTI

#### Facultatea de Matematică și Informatică

Disertație masterală

# Étale stuff

*Autor:* Andrei Sipoș

Profesor coordonator: Lect. dr. Victor Vuletescu

# **Cuprins**

| In | Introducere                       |   |  |  |  |
|----|-----------------------------------|---|--|--|--|
|    | Situl étale    1.1 Morfisme étale |   |  |  |  |
| 2  | 2 De la étale la l-adic           |   |  |  |  |
| 3  | Numărarea punctelor               | 5 |  |  |  |

iv CUPRINS

## Introducere

Acest text își propune să:

- enunțe cadrul de desfășurare al coomologiei étale
- prezinte versiuni étale ale unor rezultate fundamentale în topologie, precum dualitatea Poincaré sau formulele de tip Lefschetz
- aplice aceste rezultate la studiul funcțiilor zeta asociate varietăților peste corpuri finite

vi INTRODUCERE

### Capitolul 1

#### Situl étale

Pîs pîs pîs

#### 1.1 Morfisme étale

**Definiția 1.1.1.** Un morfism de inele  $A \to B$  se numește **plat** dacă functorul  $B \otimes_A \cdot : A\text{-Mod} \to B\text{-Mod}$  este exact.

**Definiția 1.1.2.** Un morfism de varietăți (sau scheme)  $\phi: Y \to X$  este **plat** dacă morfismele locale  $\mathcal{O}_{X, \phi(y)} \to \mathcal{O}_{Y,y}$  sunt plate pentru orice y din Y.

**Definiția 1.1.3.** Un morfism local de inele locale  $f: A \to B$  se numește **neramificat** dacă  $A/\mathfrak{m}_A \hookrightarrow B/f(\mathfrak{m}_A)B$  este o extindere finită și separabilă.

**Definiția 1.1.4.** Un morfism de varietăți (sau scheme)  $\phi: Y \to X$  este **neramificat** dacă este de tip finit și morfismele locale  $\mathcal{O}_{X, \phi(y)} \to \mathcal{O}_{Y,y}$  sunt neramificate pentru orice y din Y.

**Definiția 1.1.5.** Un morfism (regulat) între două varietăți este **étale** dacă este plat și neramificat.

Morfismele étale au următoarele proprietăți:

**Propoziția 1.1.6.** 1. Orice imersie deschisă este étală.

- 2. Compunerea a două morfisme étale este étală.
- 3. Un morfism care este schimbare de bază a unui morfism étale este étale.
- 4. Dacă  $\phi \circ \psi$  și  $\phi$  sunt étale, atunci și  $\psi$  este étale.

De acum încolo vom lucra cu o varietate X peste un corp algebric închis k.

O vecinătate étală a unui punct x din X este o aplicație étală  $\phi: U \to X$  împreună cu un punct  $u \in U$  cu  $\phi(u) = x$ . Un morfism de vecinătăți étale  $(V, v) \to (U, u)$  este o aplicație

regulată de la V la U care duce pe v în u (dacă există, este unică, din anumite proprietăți ale morfismelor étale). Am obținut astfel o categorie index și putem defini **inelul local în** x **pentru topologia étală** ca fiind:

$$\mathcal{O}_{X,\bar{x}} = \varinjlim_{(U,u)} \Gamma(U,\mathcal{O}_U)$$

Dat fiind că orice vecinătate Zariski, fiind imersie deschisă, este étală, din proprietatea limitei inductive avem un morfism natural

$$\mathcal{O}_{X,x} o \mathcal{O}_{X,\bar{x}}$$

1.2

# Capitolul 2

De la étale la l-adic

### Capitolul 3

# Numărarea punctelor

Problema pe care urmează să o formulăm a pornit de la cea a numărării punctelor de pe o curbă eliptică. Ne este cunoscută din studiul acelor curbe inegalitatea Hasse-Weil, care spune că pentru orice curbă eliptică X definită peste un corp finit  $\mathbb{F}_q$ , dacă notăm  $N_{\mathfrak{m}}(X) = \#X(\mathbb{F}_{q^{\mathfrak{m}}})$ , are loc relația:

$$|N_m(X) - (q^m + 1)| \le 2\sqrt{q^m}$$

Mai precis, există două numere algebrice  $\alpha_1$ ,  $\alpha_2$  de modul  $\sqrt{q}$  astfel încât pentru orice m:

$$N_{m}(X) = 1 - \alpha_{1}^{m} - \alpha_{2}^{m} + q^{m}$$

André Weil a propus următoarea generalizare:

**Teorema 3.0.1.** (Conjecturile Weil) Fie X o varietate proiectivă netedă definită peste  $\mathbb{F}_q$  de dimensiune d. Atunci:

1. există 2d numere naturale  $b_0, ..., b_{2d}$  și  $\{a_{j,s}\}_{\substack{j \in \overline{0,2d} \\ s \in \overline{1}, \overline{b_j}}}$  numere complexe astfel încât pentru orice m am:

$$N_{m}(X) = \sum_{i=0}^{2d} (-1)^{i} (\sum_{s=1}^{b_{i}} \alpha_{j,s}^{m})$$

Mai mult,  $b_0=b_{2d}=1, \alpha_{0,1}=1, \alpha_{2d,1}=q^d.$  Numărul  $\sum\limits_j (-1)^j b_j$  va fi notat cu  $\chi.$ 

- 2. pentru orice j,  $b_j = b_{2d-j}$ , iar  $(\frac{q^d}{\alpha_{2d-j,1}},...,\frac{q^d}{\alpha_{2d-j,b_j}})$  e o permutare a enumerării  $(\alpha_{j,1},...,\alpha_{j,b_j})$ .
- 3. pentru orice j, s,  $\alpha_{j,s}$  e număr algebric de modul  $q^{\frac{j}{2}}$ .

**Observația 3.0.2.** Se observă că dacă X este curbă eliptică se reconstituie relația de mai devreme, cu  $b_1 = 2 = \dim H^1(\mathbb{C}/\Lambda, \mathbb{Q})$  (pentru  $\Lambda$  o latice în planul complex).

Un mod mai pragmatic de a exprima conjecturile Weil este reprezentat de instrumentul funcțiilor generatoare.

Ne bazăm pe identitatea formală:

$$\log(\frac{1}{1-x}) = \sum_{m=1}^{\infty} \frac{x^m}{m}$$

sau

$$\frac{1}{1-x} = \exp(\sum_{m=1}^{\infty} \frac{x^m}{m})$$

ce se poate verifica via expansiune în serie Taylor în jurul lui zero.

Definind  $Z_X(t) = exp(\sum_{m=1}^{\infty} N_m \frac{t^m}{m})$ , obţinem din punctul 1 al conjecturilor:

$$\begin{split} Z_X(t) &= exp(\sum_{m=1}^{\infty} \sum_{j=0}^{2d} (-1)^j \sum_{s=1}^{b_j} \alpha_{j,s}^m \frac{t^m}{m}) \\ &= \prod_{j=0}^{2d} (\prod_{s=1}^{b_j} exp(\sum_{m=1}^{\infty} \frac{(\alpha_{j,s}t)^m}{m}))^{(-1)^j} \\ &= \prod_{j=0}^{2d} (\frac{1}{\prod\limits_{s=1}^{b_j} (1-\alpha_{j,s}t)})^{(-1)^j} \\ &= \prod_{j=0}^{2d} P_j(t)^{(-1)^{j+1}} \end{split}$$

unde am notat  $P_j(t) = \prod_{s=1}^{b_j} (1 - \alpha_{j,s}t)$  (și am  $P_0(t) = 1 - t$ ,  $P_{2d}(t) = 1 - q^d t$ ).

Vom deriva acum din punctul 2 o relație pe care o va satisface  $Z_X(t)$ . Aplicăm relația de permutare între enumerări și obținem:

$$\begin{split} P_{2d-j}(t) &= \prod_{s} (1 - \alpha_{2d-j,s} t) = \prod_{s} (1 - \frac{q^d}{a_{j,s}} t) \\ &= (\prod_{s} \alpha_{j,s})^{-1} \prod_{s} (\alpha_{j,s} - q^d t) \\ &= (\prod_{s} \alpha_{j,s})^{-1} (-1)^{b_j} (q^d t)^{b_j} \prod_{s} (1 - \frac{\alpha_{j,s}}{q^d t}) \\ &= (\prod_{s} \alpha_{j,s})^{-1} (-1)^{b_j} (q^d t)^{b_j} P_j (\frac{1}{q^d t}) \end{split}$$

Folosim acum atât simetria b<sub>i</sub>-urilor cât și permutarea enumerărilor:

$$\begin{split} P_{j}(t)P_{2d-j}(t) &= (q^{d}t)^{2b_{j}}(q^{d})^{-b_{j}}P_{j}(\frac{1}{q^{d}t})P_{2d-j}(\frac{1}{q^{d}t}) \\ &= (q^{d})^{\frac{b_{j}+b_{2d-j}}{2}}t^{b_{j}+b_{2d-j}}P_{j}(\frac{1}{q^{d}t})P_{2d-j}(\frac{1}{q^{d}t}) \end{split}$$

Însă 
$$(\prod\limits_s \alpha_{d,s})^2 = (q^d)^{b_d}$$
, deci  $\prod\limits_s \alpha_{d,s} = \pm (q^d)^{\frac{b_d}{2}}$ .

Deci pentru indicele d am relația:

$$P_d(t) = \pm (-1)^{b_d} (q^d t)^{b_d} (q^d)^{\frac{b_d}{2}} P_d(\frac{1}{q^d t})$$

Şi obţin astfel formula pentru funcţia  $Z_X$ :

$$\begin{split} Z_X(t) &= \prod_{j=0}^{2d} P_j(t)^{(-1)^{j+1}} \\ &= \pm \prod_{j=0}^{2d} P_j(\frac{1}{q^dt})^{(-1)^{j+1}} (q^d)^{-\frac{\sum\limits_{j} (-1)^{j+1} b_j}{2}} t^{-\sum\limits_{j} (-1)^{j+1} b_j} \\ &= \pm q^{\frac{d_X}{2}} t^X Z_X(\frac{1}{q^dt}) \end{split}$$

#### numită **ecuația funcțională** a lui $Z_X$ .

O altă reformulare ne este dată de următoarea substituție:

$$\zeta_X(s) = Z_X(q^{-s})$$

Notând pentru un punct închis  $x \in X$  cu  $\kappa(x)$  corpul rezidual al său, cu deg(x) gradul extinderii  $\kappa(x)$  :  $\mathbb{F}_q$  și cu

$$N_{\mathfrak{m}}(x) = \left\{ \begin{array}{ll} deg(x) & dac {deg}(x) \mid m \\ 0 & alt fel \end{array} \right.$$

avem din cele cunoscute de la teoria schemelor:

$$N_{\mathfrak{m}} = \sum_{x} N_{\mathfrak{m}}(x)$$

Obţinem rescrierile:

$$\begin{split} Z_X(t) &= exp(\sum_{m\geq 1} N_m \frac{t^m}{m}) = exp(\sum_{m\geq 1} \sum_x N_m(x) \frac{t^m}{m}) \\ &= exp(\sum_x \sum_{\substack{m\geq 1\\ deg(x)|m}} N_m(x) \frac{t^m}{m}) \\ &= exp(\sum_x \sum_{n\geq 1} deg(x) \frac{t^{n \cdot deg(x)}}{n \cdot deg(x)}) \\ &= exp(\sum_x \sum_{n\geq 1} \frac{(t^{deg(x)})^n}{n}) = exp(\sum_x log \frac{1}{1 - t^{deg(x)}}) \\ &= exp log \prod_x \frac{1}{1 - t^{deg(x)}} = \prod_x \frac{1}{1 - t^{deg(x)}} \end{split}$$

și deci

$$\zeta_X(s) = \prod_x \frac{1}{1 - (q^{\text{deg}(x)})^{-s}} = \prod_x \frac{1}{1 - (\#\kappa(x))^{-s}}$$

Ultima formulă are sens pentru o schemă oarecare, nu neapărat peste un corp finit. De pildă, înlocuind X cu  $Spec(\mathbb{Z})$ , apare:

$$\zeta_{\operatorname{Spec}(\mathbb{Z})}(s) = \prod_{\mathfrak{p} \in \operatorname{Max}(\mathbb{Z})} \frac{1}{1 - (\#(\frac{\mathbb{Z}}{\mathfrak{p}}))^{-s}} = \prod_{\operatorname{p prim}} \frac{1}{1 - \operatorname{p}^{-s}}$$

binecunoscuta funcție zeta a lui Riemann (punctele închise din  $Spec(\mathbb{Z})$  sunt precis idealele maximale ale lui  $\mathbb{Z}$ ).

Atenție, însă: funcția  $Z_X$  nu are sens decât pentru scheme definite pentru un corp finit!

Este clar că  $s \in \mathbb{C}$  este zerou, respectiv pol, pentru  $\zeta_X$  dacă și numai dacă  $q^{-s}$  va avea aceeași calitate pentru  $Z_X$ , proprietate ce va avea loc și invers (AICI TREBUIE REFORMULAT!!).