Práctica 6:

Lectura de datos analógicos usando Arduino y la Raspberry Pi

Fundamentos de Sistemas Embebidos

Autor: José Mauricio Matamoros de Maria y Campos

Martes 10 de Marzo, 2020

1. Objetivo

El alumno aprenderá a leer e interpretar señales analógicas con un microcontrolador.

2. Introducción

La presente práctica resume los pasos a seguir para leer una señal analógica con un microcontrolador. En particular, se interesa en la lectura de la temperatura registrada por un sensor LM35 mediante un Arduino UNO/Mega.

2.1. El sensor LM35

El circuito integrado LM35 es un sensor de temperatura cuya salida de voltaje o respuesta es linealmente proporcional a la temperatura registrada en escala centígrada. Una de las principales ventajas del LM35 sobre otros sensores lineales calibrados en Kelvin, es que no se requiere restar constantes grandes para obtener la temperatura en grados centígrados. El rango de este sensor va de -55°C a 150°C con una precisión que varía entre 0.5°C y 1.0°C dependiendo la temperatura medida [1].

Las configuraciones más comunes para este integrado se muestran en la Figura 1. La configuración (Figura 1a) básica, la más simple posible pues sólo requiere conectar al integrado LM35 entre VCC y tierra, permite medir temperaturas entre 2° C a 150° C. Por otro lado, la configuración (Figura 1a) clásica permite medir en todo el rango completo del sensor, es decir entre -55°C y 150° C, pero requiere de un par de diodos 1N914 y una resistencia de $18K\Omega$ para proporcionar los voltajes de referencia. En ambos casos, el LM35 ofrece una diferencial de $10mV/^{\circ}C$, por lo que los voltajes medidos rara vez excederán de 2V respecto a tierra.

Figura 1: Configuraciones típicas del LM35

Cuando opera en rango completo y las temperaturas registradas son inferiores a cero, se permite un flujo de corriente inverso entre los pines GND y V_{out} del LM35, es decir, una salida de voltaje negativo respecto a la referencia. Debido a que el LM35 no puede generar voltajes inferiores respecto a la referencia del circuito (tierra) se utilizan dos diodos 1N914 en serie colocados en el pin de referencia o tierra del LM35 (véase Figura 1b) para elevar el voltaje del subcircuito del LM35 aproximadamente 1.2V por encima del voltaje de referencia o tierra general. Así, cuando el LM35 entre en contacto con temperaturas negativas, el voltaje de diodo o $V_{\rm DD}$ referenciable mediante la resistencia de 18K hará posible que el voltaje de $V_{\rm out+}$ sea inferior al de $V_{\rm out-}$ y pueda calcularse la diferencia, tal como se muestra en la Cuadro 1.

2.2. Convertidor Analógico—Digital

Para leer la señal del LM35 se requiere de un Convertidor Analógico Digital o ADC (por sus siglas en inglés: Digital-Analog Converter). Un ADC se elige con base en dos factores clave: su precisión y su tiempo de muestreo. Debido a que la aplicación del ADC será convertir mediciones de temperatura y los cambios de temperatura son muy lentos, puede obviarse el tiempo de muestreo. En cuanto a la precisión, los convertidores A/D más comunes son de 8 y 10 bits, de los cuales ha de elegirse uno.

La precisión del ADC se calcula tomando en cuenta el rango de operación y la precisión del componente analógico a discretizar. El LM35 tiene un rango de 205°C, una diferencial de voltaje $\Delta V =$

Tabla 1: Salida de un LM35 en rango completo

Temp [°C]	V_{out+} [V]
-55	0.65
0	1.20
50	1.70
100	2.20
150	2.70

 $10mV/^{o}C$ y una precisión máxima de 0.5°C, por lo que el sensor entregará un máximo de 2.5V respecto al voltaje de referencia del mismo, con incrementos de 5mV. Debido a que 256 valores para un rango de 205°C en incrementos de 0.5°C (es decir 410 valores) es claramente insuficiente para este sensor, por lo que será conveniente utilizar un convertidor A/D de 10 bits.

Un ADC típico de 10 bits convertirá las señales analógicas entre voltajes de referencia V_{Ref-} y V_{Ref+} como un entero con valores entre 0 y 1023, interpretando los valores V_{Ref-} como 0 lógico y V_{Ref+} como 1023 de manera aproximadamente lineal. El decir, la lectura obtenida es directamente proporcional al voltaje dentro del rango, estimable mediante la fórmula:

$$V_{out} = value \times \frac{V_{Ref+} - V_{Ref-}}{1024} \tag{1}$$

En una configuración simple, V_{Ref-} y V_{Ref+} se conectan internamente dentro del Arduino a tierra y V_{CC} respectivamente. Esto simplifica la fórmula como:

$$V_{out} = value \times \frac{5V}{1024} = value \times 0.00488V \tag{2}$$

En lo concerniente al Arduino, éste incorpora un convertidor analógico-digital de 10 bits con soporte para voltaje de referencia V_{Ref+} , denominado AREF según las especificaciones del mismo [2]. Considerando que el LM35 en rango completo entrega hasta 2.05V $(10mV \times (150 - -55) = 2.05V)$ la mayor parte de los 1024 valores jamás serán ocupados. Por este motivo, conviene sacar partido del pin de voltaje de referencia AREF del Arduino mediante un divisor de voltaje (véase Figura 2). En consecuencia, el pin AREF requerirá de un divisor de voltaje con salida de 2.73V tal como se muestra en la Figura 2 para dar mayor precisión al convertidor A/D.

Con esta nueva configuración, se puede calcular de nueva cuenta la precisión del sensor digital una vez decodificado el valor analógico leído del LM35 dividiendo los 2.73V de referencia entre los 1024 valores posibles que entrega el ADC como sigue:

$$\Delta V = \frac{2.73V}{1024} = 0.00267V \tag{3}$$

Debido a que la resolución máxima del sensor LM35 determinada por su factor de incertidumbre es de 0.5° C equivalentes a 0.005V, ambas configuraciones (con y sin el divisor de voltaje) serán adecuadas para operar al sensor.

Figura 2: Circuito medidor de temperatura LM35 con Arduino

3. Material

- 1 Arduino UNO, Arduino Mega, o Convertidor A/D
- \blacksquare 1 sensor de temperatura LM35 en encapsulado TO-220 o TO-92
- 2 Diodos 1N914
- \blacksquare 2 resistencia de $10 \mathrm{k}\Omega$
- 1 resistencia de $12k\Omega^2$
- \blacksquare 1 resistencia de 18k Ω
- 1 Condensador de 0.1μ F
- 1 protoboard o circuito impreso equivalente
- 1 fuente de alimentación regulada a 5V y al menos 2 amperios de salida
- Cables y conectores varios

4. Referencias

Referencias

- [1] LM35 Precision Centigrade Temperature Sensors. Texas Instruments, August 1999. Revised: December, 2017.
- [2] The Arduino Project. Introduction to the arduino board. https://www.arduino.cc/en/reference/board, 2020. https://www.arduino.cc/en/reference/board, Last accessed on 2020-03-01.

 $^{^2}$ Puede reemplazarse con una resistencia de $13 \mathrm{k}\Omega$ o hasta de $20 \mathrm{k}\Omega,$ depende del voltaje de los diodos.