

- 8.1. Inheritance
- 8.2. The protected keyword
- 8.3. (Delegate) constructors and destructors
- 8.4. mutable, using, friend, and delete
- 8.5. Polymorphism

8.1. Inheritance https://isocpp.org/wiki/faq/basics-of-inheritance

- Generalization: Relationship between a more general class (base class, or superclass) and a more specialized class (subclass)
 - the specialized class is consistent with the base class, but contains additional attributes, operations and/or associations
 - an object of the subclass can be used wherever an object of the super class is permitted
- Generalization is not about just summarizing common properties and behaviors, but about generalizing in the literal sense:
 Every object of the subclass is an object of the superclass

8.1. Inheritance

```
class Person {
  private:
    std::string name;
    std::string address;
    int birthYear;
  public:
    void printBadge(); // prints name
    int getAge(); // returns age in years
};
```

```
int main() {
   Staff newStaff;
   Trainee newTrainee;
   // newStaff and newTrainee objects
   // can access Person public method
   newStaff.printBadge();
   newTrainee.getAge();
   return 0;
}
```

```
class Staff: public Person {
  private:
    double salary;
  public:
    void setSalary(double s);
};
```

```
class Trainee: public Person {
  private:
   int startDay;
  public:
   int daysInTraining();
};
```


8.2. The protected keyword

- Private members (attributes or methods) are only accessible within the class that has defined them
- Public members are accessible from anywhere
- Protected members are accessible in the class that defines them,
 and in classes that inherit from that class

8.2. The protected keyword: Inaccessible from outside the class...

```
class Person {
  private:
    std::string address;
    int birthYear;
  protected:
    std::string name;
  public:
    void printBadge(); // prints name
    int getAge(); // returns age in years
};
```

```
int main() {
   Staff newStaff;
   // newStaff object cannot access
   // Person protected attributes
   // or methods from outside class:
   // std::cout << newStaff.name;
   // -> ERROR
   return 0;
}
```

```
class Staff: public Person {
  private:
    double salary;
  public:
    void setSalary(double s);
};
```

```
class Trainee: public Person {
  private:
    int startDay;
  public:
    int daysInTraining();
};
```


8.2. The protected keyword: .. but accessible from child classes

```
class Person {
  private:
    std::string address;
    int birthYear;
  protected:
    std::string name;
  public:
    void printBadge(); // prints name
    int getAge(); // returns age in years
};
```

```
int Trainee::daysInTraining() {
   int returnVal;
   // Trainee cannot access Person's
   // private attributes:
   // returnVal = birthYear -> ERROR
   // but Trainee can access Person's
   // protected attributes in class:
   std::cout << name << std::endl;
   return (today()-startDay);
}</pre>
```

```
class Staff: public Person {
  private:
    double salary;
  public:
    void setSalary(double s);
};
```

```
class Trainee: public Person {
  private:
   int startDay;
  public:
   int daysInTraining();
};
```


8.3. (Delegate) constructors and destructors

Remember the special syntax in constructors, to initialize attributes:

```
class Example {
public:
 Example(int &aVar);
private:
 const int aConst; // a constant
 int &aRef;
                // a reference
  This would lead to errors:
  Example::Example(int &aVar) {
    aConst = 47; aRef = aVar;
  But this works:
Example::Example(int &aVar)
  : aConst(47), aRef(aVar) {
  // here can follow more code
```

Passing arguments to the base class constructor is possible with:

```
class BaseClass {
public:
 BaseClass(int var) : var(var) {}
 private:
  int var;
class SubClass : public BaseClass {
 public:
 SubClass(bool myBool)
   : BaseClass(7), myBool(myBool) {}
 private:
  bool myBool;
};
```


8.3. (Delegate) constructors and destructors

Passing arguments to a base class constructor is possible with:

```
class BaseClass {
public:
  BaseClass(int var) : var(var) {}
 private:
  int var;
class SubClass : public BaseClass {
 public:
  SubClass(bool myBool)
   : BaseClass(7), myBool(myBool) {}
 private:
  bool myBool;
```

Similarly, *delegate constructors* call others from the same class to reduce repetitive code (from C++11):

```
class MyClass {
 public:
 MyClass(int a1, bool b1) : a(a1), b(b1) {
    // lots of initialization work
 MyClass(int a1) : MyClass(a1, true) {}
 MyClass(bool b1) : MyClass(10, b1) {}
 private:
  int a;
  bool b;
```


8.3. (Delegate) constructors and destructors

Example (difficulty level:)

Creating 2D graphics elements such as the ones below as classes' objects

8.3. (Delegate) constructors and destructors Example

```
class Element { // class representing graphic element
public:
 Element(double x, double y) : x(x), y(y) {}
private:
 double x, y; // position of graphic element
};
class Rectangle : public Element { // class representing a rectangle
public:
 Rectangle(double x, double y, double a, double b) : Element(x, y), a(a), b(b) {}
private:
 double a, b; // width and height of rectangle
};
class Square : public Rectangle { // class representing a square
public:
 Square(double x, double y, double a) : Rectangle(x, y, a, a) {}
};
```

Add a method to Square that prints out its location: What needs changing?

8.4. mutable, using, friend, and delete

Any **mutable** data members of **const** class instances can be modified. This is useful if most of the class' members should be constant, but a few need to be modified.

```
#include <iostream>
class A { // class A
public:
 int x = 4;  // public attributes, default initialized (since C++11)
 mutable int v = 3;
int main() {
 const A a; // constant object of class A
 a.y = 7;  // this works, a.x would result in compile error
  std::cout << a.y << "\n";
  return 0;
```


8.4. mutable, using, friend, and delete

The **using** keyword can be used to change the inheritance properties of class attributes or methods:

```
class A { // class A
protected:
 int x = 4; // protected attribute
};
class B : A { // class A
public:
 using A::x; // inherits x and exposes it as a public attribute
};
int main() {
 B b;
             // this works, b.x is public (even though A.x is protected)
 b.x = 7;
  return 0;
```


8.4. mutable, using, friend, and delete

The **friend** keyword allows a class to access the private and protected attributes and methods of the class that is declared as a friend.

A **friend** relation is **not**:

symmetric: Class A as a friend of B does not imply class B being a friend of A

transitive: A is a friend of B and B is a friend of C does not imply A is a friend of C

inherited: Class Base as a friend of class X does not imply subclass Derived is a friend of class X; Class X as a friend of class Base does not imply class X is a friend of subclass Derived

8.4. mutable, using, friend, and delete

```
#include <iostream>
class A { // class A declares that B is a friend
private:
 friend class B;
 int x = 4; // private attribute
};
class B { // class B is a friend of A
public:
 B() { A a; y = a.x;} // and thus can access
 int f(A a) { return a.x; } // A's private attribute x
 private:
 int y;
int main() {
 A a; B b;
 std::cout << b.f(a) << "\n";
  return 0;
```


8.4. mutable, using, friend, and delete

A **friend** method can access the private and protected members of a class if it is declared a friend of that class.

```
#include <iostream>
class A { // class A declares funct as a friend method
 private:
  int x = 4; // private attribute
  friend int funct(A a);
int funct(A a) { return a.x; } // funct is not a class method
int main() {
  A a;
  std::cout << funct(a) << "\n";</pre>
  return 0;
```


8.4. mutable, using, friend, and delete

The **delete** keyword marks a class method as deleted. Calling that method (explicitly or implicitly) will result in a compiler error. The **delete** keyword prevents implicitly generating default copy constructors or assignments.

```
class Element { // class representing graphic element
public:
  Element(double x, double y): x(x), y(y) {} // default constructor is deleted
  Element(Element const &e) = delete; // copying gives a compiler error
 void setX(double x) { this->x = x;}
 void setX(float x) = delete; // calling with a float results in a compiler error
private:
 double x, y; // position of graphic element
};
int main() {
  Element e(2.0, 3.0);
 e.setX(5.0); // works, but: e.setX(5.0f) would fail (due to delete above)
```


8.5. Polymorphism

C++ provides a way to create a base object with methods that through overriding change their behavior. At run-time, objects of the base class behave as objects of a derived class

If **Sub** is a subclass of **Super**, then the following assignments are allowed:

```
Sub sub;
Super *superPtr = ⊂
Super &superRef = sub;
```

A base class pointer or reference can also point or refer to a subclass' object. The other way round is not allowed.

8.5. Polymorphism

For example: **Dog** and **Fish** are classes that inherit from **Animal**. We want any objects from these classes to have a **print()** method, which displays the values of the classes' attributes. Then an **Animal** object pointer could be used to flexibly point to a **Dog** or **Fish** object and access the right **print()** method:

```
Animal *animal;
animal = new Dog("Scooby");
animal->print(); // prints out: I am Scooby. Bark!
animal = new Fish("Salmon");
animal->print(); // prints out: I'm Salmon (fish)
```

For polymorphism to work in C++, the base class must declare the methods in question as being <u>virtual</u>

8.5. Polymorphism: Example (1/2)

```
polyDemo.cpp
#include <iostream>
#include <cstdlib>
class Animal { // Animal class stores the species and prints this in print()
 protected:
  std::string species;
 public:
  Animal(std::string species) { species = species; }
  virtual void print() { std::cout << "I'm " + species << std::endl; }</pre>
};
class Dog : public Animal { // Dogs inherit species from Animal and have a name
 protected:
  std::string name;
 public:
  Dog(std::string name) : Animal("dog"), _name(name) {}
  void print() { std::cout << "I am " << name << ". Bark!" << std::endl; }</pre>
};
```


8.5. Polymorphism: Example (2/2)

```
class Fish : public Animal { // Fishes have species and subspecies
                                                                         polyDemo.cpp
protected:
 std::string subspecies;
public:
 Fish(std::string subspecies) : Animal("fish"), _subspecies(subspecies) {}
 void print() { std::cout << "I'm " << _subspecies << " (fish)" << std::endl; }</pre>
};
int main() {
 Animal *animals[4];
  animals[0] = new Dog("Snowy");  // animals[] has pointers
 animals[1] = new Fish("Salmon"); // to objects of different
  animals[2] = new Dog("Scooby"); // subclasses (Dog, Fish, etc.)
  animals[3] = new Animal("some animal"); // or the animal base class
 for (int i=0; i<15; i++) {
  Animal *a = animals[rand() % 4]; // a is a polymorph variable: its
  a->print();
                                     // print's behavior depends on the
                                     // object that a points to
 return 0;
```


8.5. Polymorphism: Example

- Note that animals is an array of pointers to the base class (Animal)
- Yet, we can let the pointers point to a subclass of Animal (Dog, Fish, ...)
- And when we call print() from Animal pointer a, the right method executes

```
Animal *animals[4];
animals[0] = new Dog("Snowy");
animals[1] = new Fish("Salmon");
...
   Animal *a = animals[rand()%4];
   a->print();
```

```
~\> g++ polyDemo.cpp -o polymorph demo
~\> ./polymorph demo
I'm Salmon (fish)
I am Scooby. Bark!
I'm Salmon (fish)
 am Scooby. Bark!
 am Snowy. Bark!
I'm some animal
I am Scooby. Bark!
I'm Salmon (fish)
 am Snowy. Bark!
 am Scooby. Bark!
 am Snowy. Bark!
  am Scooby. Bark!
I'm some animal
I am Scooby. Bark!
I'm Salmon (fish)
~\>
```


8.5. Polymorphism: virtual and late binding

Connecting the function call to the function body is called *Binding*

Early / static / compile-time binding is done by the compiler through object type, letting the program jump to the function's address

Late / dynamic / run-time binding uses the object type while the executable is running and then matches the function call with the correct function definition: The program has to read the address held in the pointer and then jump to that address. This extra jump makes it less efficient.

C++ achieves late binding by declaring a virtual function

8.5. Polymorphism: virtual and late binding

C++ achieves late binding by declaring a virtual function:

```
#include <iostream>
class A { // class A has a virtual function funct:
 public:
 virtual void funct() { std::cout << "A \n"; };</pre>
class B : A { // class B inherits from A and overrides funct:
 public:
 virtual void funct() { std::cout << "B \n"; };</pre>
};
void g( A &a ) { a.funct(); } // g accepts A and B as parameter
int main() {
  A a; B b;
             // outputs first "A", and then "B"
  g(a); g(b);
  return 0;
```