NC State University

Department of Electrical and Computer Engineering

ECE 463/521: Fall 2013 (Rotenberg)

Project #1: Cache Design, Memory Hierarchy Design

by

Joshua Stevens

NCSU Honor Pledge: "I have neither given nor received unauthorized aid on this test or assignment."		
Student's electronic signature: _	Joshua Stevens	
Course number: <u>521</u>		

Graph one:

Discussion:

- 1. The miss rate goes down as the cache size increase. For the associative, the increasing associative cause the miss rate to go down for a given cache.
- 2. The compulsory miss rate is going to be near the value of 0.022
- 3. conflict = miss rate compulsory

Map type	Conflict
1-way	.168
2-way	.133
4-way	.119
8-way	.116
Full-way	.115

Graph two:

1. The best configuration is a cache size of 16384B and Full-way associativity

Graph Three:

- 1. 2-way map has the second best average access time
- 2. Direct map has the lowers average access time, it is about .1 low than the optimal AAT.

Graph Four

Small cache size prefer small block sizes.
 Large cache size prefer large block sizes.
 If there is a dirty bit on a given set and it need to be replaced it cause many of other bytes that are not dirty to be replaced.

Graph 5:

9.4 1.