Course Overview

Computer Organization

Adapted from Ricardo Chaves

The Computer Revolution

- Progress in computer technology
 - Reinforced by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

Desktop Computer

Classes of Computers

- Desktop
 - single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen

Critical: power, cost

The Post-PC Era

The Post-PC Era Has Arrived Global smartphone, tablet and PC shipments (in millions) Portable PCs Desktop PCs Smartphones **Tablets** 1,359 1,226 1,200 1,083 938 900 766 600 518 484 446 406 371 353 347 324 300 2010 2011 2012* 2013* 2014* 2015* 2016* * Forecast data Source: IDC

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen
 Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Server

Server

Rack

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen

Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Supercomputers

 clusters with hundreds to thousands of processors, terabytes of memory and petabytes of storage

Critical: performance, capacity, expandability

Supercomputer

Summit, an IBM-built supercomputer running at the Department of Energy's (DOE)

Currently the world most powerful supercomputer (4,356 nodes each with 22-core Power9 and 6 NVIDIA Tesla V100 GPUs) with a performance of **122.3 petaflops**

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen
 Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Supercomputers

 clusters with hundreds to thousands of processors, terabytes of memory and petabytes of storage

Critical: performance, capacity, expandability

Embedded

hidden component of a system, running a predefined program
 Critical: cost, power, performance

Embedded Computers

Over 99% of processor sales are for embedded systems!

Issues in Embedded Systems

Specific issues when programming embedded systems:

- Real-time requirements
 - Often worst-case is more important than average-case
- Resource constraints
 - Power and memory
- Reliability
 - Safety critical systems
 - Difficult access
- Diversity
 - Heterogeneity of computing architectures
 - Diverse set of input/output devices

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen
 Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Supercomputers

 clusters with hundreds to thousands of processors, terabytes of memory and petabytes of storage

Critical: performance, capacity, expandability

Embedded

hidden component of a system, running a predefined program
 Critical: cost, power, performance

Technology Trends

- The transistor density increases about 35% per year.
- The circuits area increases about 10% to 20% per year.
- The number of transistors per circuit increases about 55% per year.

Moore's Law (1965):

"The number of transistors per square-centimeter of integrated circuit doubles every 18 months."

 In practice, the density increased about 1,000,000x in the last 45 years!

Moore's Law in Practice

Inside the Processor

Intel Core i7:

4 processor cores, 1.3x10⁹ transistors

Technology Trends

Year	Technology	Relative performance/cost		
1951	Vacuum tube	1		
1965	Transistor	35		
1975	Integrated circuit (IC)	900		
1995	Very large scale IC (VLSI)	2,400,000		
2013	Ultra large scale IC	250,000,000,000		

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

Technology Trends

Power Density

Power Trends

In CMOS IC technology

Multiprocessors

The power wall:

- can't reduce voltage further
- can't remove more heat

How else can we improve performance?

- **→** Multicore microprocessors
 - More than one processor per chip

New paradigm!

Requires explicitly parallel programming:

- Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
- Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

Processor Performance

Trends in Technology

- Integrated circuit technology
 - Transistor density: 35%/year
 - Die size: 10-20%/year
 - Integration overall: 40-55%/year
- DRAM capacity: 25-40%/year (slowing)
- Flash capacity: 50-60%/year
 - 15-20X cheaper/bit than DRAM
- Magnetic disk technology: 40%/year
 - 15-25X cheaper/bit then Flash
 - 300-500X cheaper/bit than DRAM

Bandwidth and Latency

- Bandwidth or throughput
 - Total work done in a given time
 - 10,000-25,000X improvement for processors
 - 300-1200X improvement for memory and disks
- Latency or response time
 - Time between start and completion of an event
 - 30-80X improvement for processors
 - 6-8X improvement for memory and disks

What You Will Learn

- Architecture of current processors
 - Performance metrics
- Integrated view of the computer system
 - Memory hierarchy
 - Input/Output system
- How to improve program performance
- Features related to embedded systems
- What is parallel processing
- Future trends

Teaching Staff

Theoretical lectures:

Alberto Cunha

alberto.cunha@tecnico.ulisboa.pt

Sub:[OC] ...

Practice/Lab classes:

David Martins

Course email:

oc-a-leic@tecnico.ulisboa.pt

Sub:[OC] ...

Class Schedule

	Seg 9/21	Ter 9/22	Qua 9/23	Qui 9/24	Sex 9/25	Sáb 9/26	Dom 9/27
07:00	_						
08:00							
09:00							
			40.00 44.00				
10:00			10:00 - 11:30 T				
11:00			A4				
11.00	11:30 - 13:00						
12:00	T A4						
	Α4						
13:00							
14:00	14:00 - 15:30 L			14:00 - 15:30 I			
	1 - 15			1 - 15			
15:00		45.00 47.00	_				
40.00	15:30 - 17:00 L	15:30 - 17:00 L					
16:00	1 - 15	1 - 15					
17:00							
18:00							

- L shifts are currently almost full.
- We are waiting for indications from the Taguspark management (more capacity and, possibly, other rooms → check OC page).

Grade assessment

Final grade = 50% x Exam + 24% x Labs + 26% x Exercises

- Exam = $max(Ex_1, Ex_2)$, Min. grade = 7 • Labs = (L1 + L2 + L3) / 3 , Min. grade = 9
- Exercises = $(\sum 5 \text{ best P_i}) / 5$, Min. grade = 9

Exam (50%):

- 1st Exam: January 11, 9h30
- 2nd Exam: February 3, 15h00
- minimum grade in the exam ≥ 7
- recovery exam can be used to improve grade (best grade used).

Grade assessment: Labs

Labs (25%)

- 3 lab works, 8% each
- groups of 3 elements (odd or even)
- lab grade defined individually at the oral discussions
- minimum grade of 9
- can be reused from the last 2 years (2018/2019 and 2019/2020)

Important dates (weeks):

Publication Lab1 & 2 : 12 Oct

Delivery of Lab 1 : 19 Oct

– Publication Lab3 : 2 Nov

Delivery of Lab 2 : 9 Nov

Defense of Labs 1 & 2 : 16 Nov

Delivery of Lab 3 : 30 Nov

Defense of Lab 3 : 7 Dec

Grade assessment: Exercises

Exercises (25%)

- 6 exercises, counting the best 5
 - Starting from the 3rd practical class
 - Handwritten, 2 submissions by each student in the group
- groups of 3 elements (odd or even)
 - Does not have to be the same group as the one for the labs (but highly recommended)
 - Can be separate groups. especially for those that already have the grade for the labs (from the previous 2 years)
- the grade is defined individually at the oral discussions
 - 3 during the semester (each discussion will consider 2 exercises)
 - Zoom authenticated via IST, and with camera ON
 - Can be in-person, rather than remote
- minimum grade of 9
- All students must do it. (NEW. Exercises are not TPCs of 2019/20.)

Lectures

Theoretical lectures:

- Remote lectures via Zoom
 - Do use your cameras...
 - Lectures are interactive
- First 3 weeks
 - 1h30 lecture
- Following weeks
 - 1h00 lecture
 - 30 min exercise solving

Teaching logistics

Theoretical lectures

- Remote via zoom
 - With camera on, please!!
 - We need some visual feedback

Practice/Lab lectures

Hybrid (in-person + zoom + discord)
 David Martins

Bibliography

Main book:

Computer Organization and Design: The Hardware/Software Interface D. Patterson, J. Hennessy Morgan Kaufmann, 5th Edition, 2014, ISBN: 978-0-12-407726-3

Secondary Bibliography:

- Structured Computer Organization
 A. Tanenbaum, T. Austin
 Prentice-Hall, 6th Edition, 2013, ISBN: 978-0273769248
- Embedded Computing: A VLIW Approach to Architecture, Compilers and Tools
 J. Fisher, P. Faraboschi, C. Young
 Morgan Kaufmann, 4th Edition, 2005, ISBN: 978-1558607668
- Computer Architecture: A Quantitative Approach
 J. Hennessy, D. Patterson
 Morgan Kaufmann, 5th Edition, 2011, ISBN: 978-0123838728

Next Class

Review of basic concepts on computer architecture

Performance metrics

Course Overview

Computer Organization

