BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI - HYDERABAD CAMPUS ACADEMIC-GRADUATE STUDIES AND RESEARCH DIVISION FIRST SEMESTER 2022-2023 COURSE HANDOUT (PART-II)

Date: 27/07 /2023

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : EEE G626

Course Title : Hardware and Software Co-design

Instructor-in-charge : Dr. Amit Kumar Panda

1. Scope and Objective:

FPGA and ASIC based design, Low-Power Techniques in RT Embedded Systems On-chip networking. Hardware Software partitioning and scheduling, Co-simulation, synthesis and verifications, Architecture mapping, HW-SW Interfaces and Re-configurable computing.

This course deals with the system-level design of embedded systems comprised of both hardware and software; investigate topics ranging from system modeling to hardware-software implementation; explore analysis and optimization processes in support of algorithmic and architectural design decisions; and gain design experience with case studies using contemporary high-level methods and tools. The course emphasizes a top-down design methodology driven by bottom-up constraints. The topics covered will include Co-design of hardware and software. Concurrency, real-time control, hardware/software interfaces, and error handling.

2. Text Book:

- (T1) Daniel D Gajski, Frank Vahid, Sanjay Narayan, Jie Gong, Specification and Design of Embedded Systems, Prentice Hall, 1994.
- (T2) Jorgen Staunstrup, Wayne Wolf, *Hardware / Software Co-Design: Principles and Practice*, Kluwer Academic, 1997
- (T3) Patrick R. Schaumont, A Practical Introduction to Hardware/Software Codesign, Springer, 2010

3. Reference Books:

- 1. G. DeMicheli, R. Ernst and W. Wolf, Readings in Hw/Sw Co-design, M. Kaufmann, 2002.
- 2. Ahmed A. Jerraya and Jean Mermet eds.: System Level Synthesis, Kluwer 1999.
- 3. Hardware/Software Codesign. G. DeMicheli and M. Sami (eds.), NATO ASI Series E, Vol. 310, 1996.
- 4. Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and Wm. A. Wulf. The Codesign of Embedded Systems. Kluwer, 1995

4. Course Plan:

Lecture No.	Topics to be covered	Reference to T1
01-03	Hardware Software Co-Design Overview: Brief introduction to Embedded System Design and Challenges	T1/T2/T3/ class notes
04-05	Hardware Software Co-Design Overview: Motivation and driving factors of HSCD, Co-design problems	T1/T2/T3/ class notes
06-07	Hw-Sw Co-design Flow, process steps, requirements	T1/T2/T3/ class notes
08	Cross-fertilization Between Hardware and Software Design	T1/T2/T3/ class notes
09	System Design: Specification, Synthesis, Simulation, Estimation	T1/T2/T3/ class notes
10, 11	Introduction to Specification and Model	T1/T2/T3/ class notes
12-21	Different type of Hw-Sw System Models: State-, Activity-, Structure-, Data –Oriented Models and Heterogeneous Models	T1/T2/T3/ class notes
22-24	Architectural Models: Top-Down and Bottom-Up approach, Different types Architectures	T1/T2/T3/ class notes
25-28	Introduction to Specification Languages	T1/T2/T3/ class notes
29-31	System Synthesis: Partitioning and Mapping, HW/SW Co-synthesis and Synthesis Flow	T1/T2/T3/ class notes
33-33	System Partition: Hw/Sw Partition, Partitioning issues, Partitioning approaches: Structural and Functional	T1/T2/T3/ class notes
34-39	Partitioning Metrics, Cost functions, Partitioning algorithm classes Basic partition methods	T1/T2/T3/ class notes
40-42	Design Estimation: Quality metrics, Performance estimation methods, clock cycle estimation	T1/T2/T3/ class notes

5. Evaluation Scheme:

EC No.	Evaluation Component	Type	Duration	Weight	Date
1	Mid Examination	Close Book	90 Min	20% (40 M)	14/10
					4.00 - 5.30PM
2	Lab Demonstration/	Open Book	-	10% (20 M)	To be announced
	Experiments/ Seminar				
3	Research Assignment/ Open	Open Book	-	15% (30 M)	To be announced
	Challenge / Design Contest				
4	Quizes	Close Book	20 Min	5% (10 M)	To be announced
5	Live Project (FPGA prototype)	Open Book	-	20% (40 M)	To be announced
6	Comprehensive Exam	Close Book	180 Min	30% (60 M)	21/12 AN

6. Chamber Consultation Hour: To be announced in Class

7.Notices: All notices regarding the course will be put up in CMS and Google Classroom.

8.Make-up Policy: No make-up will be allowed unless the student is hospitalized for serious medical issue.

9.Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.