修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性 —低階数・低次元の場合—

氏名: 奥田 堯子

本修士論文は、小林俊行氏による次の予想 0.1 を G の実階数や H の次元が低い場合に証明した (記号は後述する).

予想 0.1 ベクトル空間としての分解 $\mathfrak{p} = (\mathfrak{p} \cap \mathfrak{h}) \oplus (\mathfrak{p} \cap \mathfrak{h}^{\perp})$ に沿って $X = X_1 + X_2$ と分解すると、 $\mathfrak{p}_{H.\mathrm{bdd.}} = \{X \in \mathfrak{p} \mid [X_1, X_2] \neq 0 \text{ or } X_1 = 0\}$ である.

記号や設定は以下の通りとする.

記号と定義 0.2

- G を非コンパクト実半単純 Lie 群, H を G の Cartan 対合 Θ に対する非コンパクトな簡約部分 Lie 群とする.
- $\mathfrak{g} := \operatorname{Lie} G$, $\mathfrak{h} := \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta := d\Theta$ による Cartan 分解とする.
- e_G を G の単位元とし、 $o_K := e_G K \in G/K$ とする.
- B(-,-)を \mathfrak{g} の Killing 形式とし、 $\mathfrak{h}^{\perp} \coloneqq \{W \in \mathfrak{p} \mid B(Y,W) = 0, \forall Y \in \mathfrak{h}\}$ とする.

以下の 定理 0.3 を用いて、 $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

定理 0.3 [?, Lemma 6.1]

 π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^Y e^Z \cdot o_K \in G/K$ は上への微分同相である.

参考文献