Machine Learning Course | Arabic Data Preprocessing

Level - 01

Link to Lecture on Youtube

Standard Deviation, Variance

Variance

The expected deviation
between values in a given
data set. Measures the
spread of each number from
the mean value of the data
set.

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Standard Deviation

Gives an indication of the actual far of a group of samples from their mean. and is the square root of the variance.

$$s = \sqrt{rac{\sum_{i=1}^{N}(x_i - \overline{x})^2}{N-1}}$$

X⁻: Mean

N : Number of samples

Y · Sample (i)

Different STD values

SLIDESMANIA.COM

Variance VsSTD

- The **standard deviation** shows the position of each value from the mean.
- However, a variance is indicated in larger units such as meters squared while the standard deviation is expressed in original units such as meters.
- Variance is used to "check outliers" by squaring each value.
 - $100 ^ 2 = 10000$ not like 100!!!

Ex.

An investor wants to calculate the standard deviation experience with their investment portfolio in the past four months. Here are some historical return numbers:

Month	Return
May-18	15%
Jun-18	-9%
Jul-18	10%
Aug-18	6%

Solution:

1- calculate the mean:

$$\frac{(0.15 - 0.09 + 0.10 + 0.06)}{4} = 0.055$$

So, The arithmetic mean of returns is 5.5%.

Ex.

An investor wants to calculate the standard deviation experience with their investment portfolio in the past four months. Here are some historical return numbers:

Month	Return
May-18	15%
Jun-18	-9%
Jul-18	10%
Aug-18	6%

Solution:

2- calculate the STD:

$$SD = \sqrt{\frac{(0.15 - 0.055)^2 + (-0.09 - 0.055)^2 + (0.10 - 0.055)^2 + (0.06 - 0.055)^2}{3}} = 0.1034$$

The standard deviation of returns is 10.34%.

Thus, the investor now knows that his returns change by about "10%" per month.

The information can be used to adjust and improve the investor's attitude to risk.

SLIDESMANIA.0

99

Thank You!

Do you have any questions?

Write them in the comments

hozaifazaki99@gmail.com

