ECE-124 Lab-3 Submission Form – Winter 2018							
GROUP NUMBER: 15	Lab3 Lab3 Demo Repor						
SESSION NUMBER: 205	Out of 10	10					
NAME: (Print)	Signature						
Partner A: Yeliang Shou Partner B: Yun Han Wa	gelianz						
Partner B: Yun Han Wa	(200						
LAB3 DE	Marks All	otted	A	В			
Desired Temp (sw[74]) is display	1		ę	1			
Current Temp (sw[30]) is display	1		1	1			
Doors/Windows (PB[20]) displa	1		(1			
Furnace, Blower, System At Temp	1		1	1			
A/C ON & Blower ON when Curre	1		1	1			
Furnace ON & Blower ON when O	1		1	1			
A/C, Furnace, Blower turn OFF w	1		1	1			
DISCUSSION: Comment on your \	3		3	3			
LAB3 DESIGN REPORT (see	Marks All	otted	TEAM				
All VHDL files (not the sever Structural VHDL design must be a	2						
Comparator must have a Boolean							
Truth Table for 4-Bit Comparator	2						
Part A Simulations of Comparator	2			8 /48			
RTL View of the Logic design (just	2	-					
Total Design Logic Elements Used							
	2		100				
relay in Report Submission (-1 pe							
LAB3 REF	Out of	10					

LogicalStep_Lab3.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity LogicalStep_Lab3_top is port (
                   : in std_logic;
: in std_logic_vector(3 downto 0);
: in std_logic_vector(7 downto 0);
: out std_logic_vector(7 downto 0);
    clkin_50
    pb
    SW
    leds
    seg7_data : out std_logic_vector(6 downto 0);
    seg7_char1 : out std_logic;
seg7_char2 : out std_logic
end LogicalStep_Lab3_top;
architecture Energy_Monitor of LogicalStep_Lab3_top is
-- Components Used
      component Compx4 port(
                             in std_logic_vector(3 downto 0);
           В
                            in std_logic_vector(3 downto 0);
                             out std_logic;
           GT
                            out std_logic;
out std_logic
           EO
           LE
      end component;
      component SevenSegment port (
          hex : in std_logic_vector(3 downto 0);
sevenseg : out std_logic_vector(6 downto 0)
      end component;
    component segment7_mux port(
                         : in std_logic := '0';

: in std_logic_vector(6 downto 0);

: in std_logic_vector(6 downto 0);

: out std_logic_vector(6 downto 0);

: out std_logic;
         c1k
         DIN2
         DIN1
        DOUT
         DIG2
                         : out std_logic
         DIG1
    );
    end component;
```

In this first part, we declared the component including the 4 bits comparators (Compx4) and the muxes necessary for Character Display.

```
component Thermostat port(
  CT : in std_logic_vector(3 downto 0);
  DT : in std_logic_vector(3 downto 0);
  OP : in std_logic_vector(2 downto 0);
  OTP : out std_logic_vector(6 downto 0)
    );
    end component;
-- Create any signals, or temporary variables to be used
    signal thermo_otp : std_logic_vector(6 downto 0);
    signal char1 : std_logic_vector(6 downto 0);
signal char2 : std_logic_vector(6 downto 0);
-- Here the circuit begins
begin
    -- Thermostat instance will implement the logic
            it also incorporate the comparator inside
            and output directly to the LEDS
   -- Displaying current and desired temperatures
     sevenmux1 : SevenSegment port map(sw(7 downto 4), char1);
sevenmux2 : SevenSegment port map(sw(3 downto 0), char2);
     display : segment7_mux port map(
                                             clkin_50,
                                             char1,
                                             char2,
                                             seg7_data,
seg7_char1,
seg7_char2
```

end Energy Monitor:

Here, we declared a Thermostat component which will be a sub-module responsible for handling the logic. We instantiate the Thermostat by mapping our input switches [7..4] as desired temperature and sw[3..0] as current temperature (each a 4 bit input). The output of the Thermostat will be directly mapped to the appropriate LED through the 7 bit LED vector. We have also instantiated the necessary components for the Seven Seg Display.

Compx4.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity Compx4 is port(
                      in std_logic_vector(3 downto 0);
in std_logic_vector(3 downto 0);
out std_logic;
out std_logic;
      В
      GT
      EQ
      LE
                  : out std_logic
end Compx4;
architecture logicCompx4 of Compx4 is
      component Compx1 port(
                         in std_logic;
in std_logic;
             ai :
             go:
                         out std_logic;
                         out std_logic;
             eo
                  :
                         out std_logic
      end component;
      -- For each bit's output by index
      signal g3, g2, g1, g0 : std_logic;
signal e3, e2, e1, e0 : std_logic;
signal l3, l2, l1, l0 : std_logic;
begin
                : Compx1 port map(A(0), B(0), g0, e0, 10);
: Compx1 port map(A(1), B(1), g1, e1, 11);
: Compx1 port map(A(2), B(2), g2, e2, 12);
: Compx1 port map(A(3), B(3), g3, e3, 13);
     inst0
     inst1
     inst2
     inst3
      EQ <= e0 and e1 and e2 and e3;
      GT <= g3 or
                         (e3 and g2) or
(e3 and e2 and g1) or
(e3 and e2 and e1 and g0);
      LE <= 13 or
                   (e3 and 12) or
                   (e3 and e2 and 11) or
                   (e3 and e2 and e1 and 10);
end architecture logicCompx4;
```

Here, we applied the 1-bit comparator to each of the 4 bits in input A and B, we then applied the necessary logical operation to obtain an overall result on Greater or Equal or Less.

Compx1.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity Compx1 is port(
    ai : in std_logic;
    bi : in std_logic;

    go : out std_logic;
    eo : out std_logic;
    lo : out std_logic;
    lo : out std_logic
);
end compx1;

architecture logicCompx1 of Compx1 is
begin

    eo <= (ai and bi) or (not(ai) and not(bi));
    go <= ai and not(bi);
    lo <= not(ai) and bi;
end architecture logicCompx1;</pre>
```

The one bit comparator is straightforward and trivial, if both bits are one or both are zero, then they are equal, if the A bit is one while the B is zero, we then have greater, conversely we will output "Less".

Table 1: Logic Table for 4-bit Magnitude Comparator

A3 < B3	A3 = B3	A3 > B3	A2 < B2	A2 = B2	A2 > B2	A1 < B1	A1 = B1	A1 > B1	A0 < B0	A0 = B0	A0 > B0	A < B	A = B	A > B	
()	0	1 X	X	X	X	X	X	X	X	X		0	0	1
1	Ľ	0	0 X	X	X	X	X	X	X	X	X		1	0	0
()	1	0	0 0) 1	X	X	X	X	X	X		0	0	1
()	1	0	1 () (X	X	X	X	X	X		1	0	0
()	1	0	0 1		0) (0	1 X	X	X		0	0	1
()	1	0	0 1) 1	. (0	0 X	X	X		1	0	0
()	1	0	0 1) ()	1	0	0 ()	1	0	0	1
()	1	0	0 1		0) :	1	0	1 (0	0	1	0	0
()	1	0	0 1		0) :	1	0	0 :	1 (0	0	1	0

Thermostat.vhd

```
library ieee;
use ieee.std_logic_1164.all;
  use ieee.numeric_std.all;
⊟entity Thermostat is port(
     CT : in std_logic_vector(3 downto 0);
          in std_logic_vector(3 downto 0);
     OP : in std_logic_vector(2 downto 0);
     OTP : out std_logic_vector(6 downto 0)
 -):
 end Thermostat;
□architecture Logic of Thermostat is
ڧ
     component Compx4 port(
                          in std_logic_vector(3 downto 0);
           В
                         in std_logic_vector(3 downto 0);
           GT
                         out std_logic;
           EQ
                         out std_logic;
                         out std_logic
           LE
      end component;
      signal gt, eq, le : std_logic;
      signal tmp : std_logic_vector(2 downto 0);
signal all_closed : std_logic;
signal ctrl: std_logic_vector(3 downto 0);
      signal doors: std_logic_vector(2 downto 0);
 begin
     compx4inst : Compx4 port map(CT, DT, gt, eq, le);
      -- Comparing current temp with desired temp
     tmp <= gt & eq & le;
doors <= not(OP(2)) & not(OP(1)) & not(OP(0));
all_closed <= OP(2) and OP(1) and OP(0);</pre>
     -- Since PBs are active-low, we don't need to NAND it
     with tmp&all_closed select
                --LEDS[7..0]
"1001"
                                         tmp : gt&eq&le&ALL_CLOSED
                                                    "0011",
"1001",
     ctrl <=
                               when
                                                              -- Furnace ON
                   "1100"
                                                              -- A/C ON
                               when
                                                    "0101".
                    "0010"
                               when
                                                    "0100".
                    "0010"
                               when
                   "0000"
                               when
                                                    others:
     OTP <= doors & ctrl;
  end architecture Logic;
```

The Thermostat logic first compares desired and current temperature (each a 4 bit vector) using the 4 bit comparator declared earlier. We also inspect if all the windows/door are closed, to do so is fairly trivial, consider that the PBs are active-low, by applying AND to all 3 PB inputs, if such returns True, then we know all doors/windows are closed. For

implementing the logic of Thermostat, we used a straightforward case by case approach with our select statements.

Wave Simulation for 4-Bits Comparator

RTL Overview of LogicStep_3.vhd

Number of Logical Elements Used: 47 /8064

Flow Status	Successful - Thu Mar 08 14:44:57 2018						
Quartus Prime Version	15.1.0 Build 185 10/21/2015 SJ Standard Edition LogicalStep_Lab3_top LogicalStep_Lab3_top						
Revision Name							
Top-level Entity Name							
Family	MAX 10						
Device	10M08SAE144C8G						
Timing Models	Final						
Total logic elements	47 / 8,064 (< 1 %)						
Total combinational functions	47 / 8,064 (< 1 %)						
Dedicated logic registers	11 / 8,064 (< 1 %)						
l otal registers	11						
Total pins	30 / 101 (30 %)						
Total virtual pins	0						
Total memory bits	0 / 387,072 (0 %)						
Embedded Multiplier 9-bit elements	0 / 48 (0 %)						
Total PLLs	0/1(0%)						
UFM blocks	0/1(0%)						
ADC blocks	0/1(0%)						
Total memory bits Embedded Multiplier 9-bit elements Total PLLs UFM blocks ADC blocks	0/48(0%) 0/1(0%) 0/1(0%)						