Santé Publique France -OpenFoodFacts

Nettoyage et exploration des données en vue de développer un système d'autocomplétion

Préambule

- Open Food Facts
 - Base de données de produits alimentaires
 - Nombreux champs
 - Remplissage fastidieux
 - Conduit à des valeurs manquantes
- Santé Publique France
 - Souhaite améliorer cet outil
 - Projet d'autocomplétion lors de la saisie d'un produit
- Nettoyage et exploration des données
- Étude de faisabilité de l'outil

Sommaire

- Sélection des données
 - Cible
 - Features
- Nettoyage des données
 - Valeurs manquantes
 - Valeurs aberrantes
- Exploration des données
 - Analyses statistiques
 - Analyses de variance
 - Modèles prédictifs
- Conclusions

Sélection des données

- Premier passage en revue du jeu de données
 - 321000 produits environs
 - 162 caractéristiques
 - Constat du nombre de valeurs manquantes important

Sélection des données

	$I \rightarrow I / I / I / I$	
	index	valeurs
8	generic_name	16.458731
9	quantity	32.677104
10	packaging	24.615615
14	categories	26.314641
17	origins	6.917686
19	manufacturing_places	11.379110
21	labels	14.514671
24	emb_codes	9.136084
26	first_packaging_code_geo	5.861796
29	purchase_places	18.141546
30	stores	16.124225
35	allergens	8.836183
37	traces	7.591997
54	pnns_groups_1	28.528986
55	pnns_groups_2	29.457372
59	main_category	26.300924
Ι.		

- Simplification du dataset
 - Taux de remplissage
 - Informations redondantes
 - Informations personnelles (auteur)
- Cible
 - Taux de remplissage bas
 - Variable catégorielle
- Features
 - Taux de remplissage suffisant (supérieur à 50%)
 - Variable quantitatives

Nettoyage – Valeurs aberrantes

Nutriscore

- Valeurs comprises entre -15 et + 40
- Rien d'aberrant dans les valeurs constatées

Distribution des valeurs du nutriscore

Nettoyage – Valeurs aberrantes

- Valeurs nutritionnelles
 - Valeurs comprises entre 0 et 100
 - Peu de valeurs aberrantes
 - Remplacées par NaN

Distribution des valeurs des informations nutritionnelles

Nettoyage – Valeurs aberrantes

- Énergie
 - Dépend des autres valeurs nutritionnelles
 - Détection des valeurs aberrantes par la méthode de l'écart type
 - Valeur > moyenne + 3 écart type
 - Remplacées par NaN

Matrice de correlation des features

- Corrélations entre variables
 - Permet de définir des régressions linéaires envisageables
 - Régressions identifiées :

pnns groups 1	0.000000
energy_100g	0.060255
fat_100g	4.270543
saturated-fat_100g	0.251061
carbohydrates_100g	4.348372
sugars_100g	0.208380
fiber_100g	35.921769
proteins_100g	0.123020
salt_100g	0.007532
sodium_100g	0.005021
nutrition-score-fr_100g	1.119731
dtype: float64	

Imputations statistiques

- Nécessaires pour effectuer les régressions linéaires qui nécessitent une absence de valeurs manquantes
- Sélection de variables avec taux de valeurs manquantes faible
- Étude des distribution par groupe d'aliments

- Imputations statistiques
 - Utilisation de la moyenne par type d'aliment pour compléter les valeurs manquantes

- K plus proches voisins
 - Utilisé sur des variables avec faible taux de corrélation
 - Première approche avec 5 voisins pas forcément satisfaisante
 - Deuxième approche avec 3 voisins plus représentative

Distribution de la variable fiber_100g avec 5 voisins plus proches et 3 voisins plus proches

- Régressions linéaires
 - fat_100g ~ energy_100g + saturated-fat_100g
 - Première approche avec une régression linéaire simple
 - fat_100g ~ energy_100g + saturated-fat_100g + energy_100g² + saturated-fat_100g²
 - Deuxième approche avec régression polynomiale

```
La performance du Modèle pour le set de Training
l'erreur RMSE esst 8.11181749215141
le score est 0.7526348810013044

La performance du Modèle pour le set de Test
l'erreur RMSE est 8.280025762366726
le score est 0.7523761158567875
```

```
La performance du Modèle pour le set de Training
l'erreur RMSE esst 6.503083844866705
le score est 0.841020610560175

La performance du Modèle pour le set de Test
l'erreur RMSE est 6.4206795774890555
le score est 0.8511012164952003
```

Objectif

- Étayer le constat fait précédemment : chaque groupe d'aliments à une répartition propre des features
- Mettre en avant les différences entre groupes d'aliments

Méthode

- Comparer les statistiques des différents groupes d'aliments
- Comparer les corrélations des features pour chaque groupe d'aliments
- Analyser les résultats de l'ACP pour chacun des groupes d'aliments
- Exemple de résultats
 - Fruits et légumes VS Snacks salés

• Énergie :

- A gauche les fruits et légumes
- A droite les snacks salés

Gras :

- A gauche les fruits et légumes
- A droite les snacks salés

- Nutriscore :
 - A gauche les fruits et légumes
 - A droite les snacks salés

Matrice de correlation des features

Corrélations :

- A gauche les fruits et légumes
- A droite les snacks salés

ACP:

A gauche les fruits et légumes

19

A droite les snacks salés

Exploration – Analyse de variance

- Boîtes à moustaches :
 - A gauche l'énergie
 - A droite les carbohydrates

Exploration – Analyse de variance

- Résultats des tests :
 - A gauche l'énergie
 - A droite les carbohydrates

		ssion Results =======			==		
Dep. Variable: Model: Method:	energy_100g OLS Least Squares	Adj. R-squar		0.5 0.5 573	35		
Date: Fime:	Fri, 15 Nov 2024 10:55:27	Prob (F-stat Log-Likeliho	tistic):	0. -3.0647e+	00 -05		
No. Observations: Of Residuals: Of Model:	39831 39822 8	BIC:		6.130e+ 6.130e+			
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975
Intercept	and notatoes	247.7091 1134.5242		30.236 103.097	0.000	231.652 1112.955	263.76 1156.09
onns_groups_1[T.Cem onns_groups_1[T.Com		453.9133		40.653		432.028	475.79
onns_groups_1[T.Fat	and sauces]	1306.6815	13.367	97.753	0.000	1280.482	1332.88
onns_groups_1[T.Fis		604.2781		52.144	0.000	581.564	626.99
onns_groups_1[T.Fru:				12.182	0.000	128.681	178.02
onns_groups_1[T.Mill				52.086 122.552	0.000	543.741 1799.910	586.26
onns_groups_1[T.Saltonns_groups_1[T.Suga		1829.1647 1566.3429	10.064	155.631	0.000 0.000	1546.616	1858.41 1586.07
======================================	3635.985		on :	1.3	11		
Prob(Omnibus):	0.000		(JB):	10817.0			
Skew:	0.490			0.00			
Kurtosis: 	5.358 	Cond. No.).3 ===		
Notes: [1] Standard Errors	assume that the c	ovariance matri	iv of the er	core le corro	octly speci	fied	
	assume that the co um_sq df	F PR(>F)	ix or the err	ors is corre	ctty speci	ried.	
onns_groups_ 1 1.29469	4e+10 8.0 5731.	.500835 0.0					

	0LS Regres	sion Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	carbohydrates 100g OLS Least Squares Fri, 15 Nov 2024 10:55:29 39831 39822 8 nonrobust	R-squared: Adj. R-square F-statistic: Prob (F-stati Log-Likelihoo AIC: BIC:	.stic):	0.6 0.6 1.047e+ 0. -1.6531e+ 3.306e+ 3.307e+	578 -04 -00 -05 -05			
		coef	std err	t	P> t	[0.025	0.975]	
pnns_groups_1[T.Co pnns_groups_1[T.Fa pnns_groups_1[T.Fi pnns_groups_1[T.Fr pnns_groups_1[T.Mi pnns_groups_1[T.Sa pnns_groups_1[T.Sa	t and sauces] sh Meat Eggs] uits and vegetables] lk and dairy product lty snacks]	4.9256 -2.9739 -8.4996 3.9441 s] -1.0376 36.2420 46.6591	0.335 0.364 0.313 0.431 0.291	47.084 138.178 15.267 -7.700 -25.384 10.844 -3.310 84.037 160.449	0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000	10.681 43.312 4.293 -3.731 -9.156 3.231 -1.652 35.397 46.089	4.657 -0.423	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	5710.941 0.000 0.589 7.106	Durbin-Watson Jarque-Bera (Prob(JB): Cond. No.): JB):	1.3 30278.9 0.	395 349 00 3.3			
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. sum_sq								
pnns_groups_1 1.9750 Residual 9.3874	064e+07 8.0 10472 134e+06 39822.0	.910685 0.0 NaN NaN						

Exploration – Classifications supervisées

Régression logistique polynomiale :

```
La performance du Modèle pour le set de Training
le score est 0.8168465980416771

La performance du Modèle pour le set de Test
le score est 0.8152378561566461
```

ROC-AUC train 0.9699811556593525 ROC-AUC test 0.9686293820858565

Exploration – Classifications supervisées

Arbre de décision :

Exploration – Classifications supervisées

Arbre de décision :

```
La performance du Modèle pour le set de Training le score est 0.8551029374843083

La performance du Modèle pour le set de Test le score est 0.8392117484624074
```

ROC-AUC train 0.9784815403988705 ROC-AUC test 0.9652567391922423

Conclusions

- Forte corrélation entre les variables du dataset
- Prédictions possibles avec une bonne certitude
- Il est possible de développer l'application d'autocomplétion
- Premières modélisations à améliorer en explorant d'autres types de modèles
- Attention particulière à apporter aux variables moins liées aux qualités nutritionnelles