

Composition musicale par réseau de neurones

Etudiants:
Jeremy CATELAIN
Claire DRIGUEZ
Lucas RAMAGE

Professeur : M. Knippel

Plan

- 1. Introduction
- 2. Réseaux de neurones et Apprentissage
- 3. Les fichiers MIDI
- 4. Les données
- 5. Création du réseau
- 6. Tests
- 7. Prédiction
- 8. Conclusion

Introduction

Introduction

Objectifs:

- Comprendre le fonctionnement des réseaux de neurone
- Extraire les données à partir d'un fichier MIDI et le rendre utilisable par le réseau de neurone
- Construire et implémenter le réseau de neurone
- Appliquer les méthodes d'apprentissage automatique pour prédire des notes de musique

Réseaux de neurones et Apprentissage

Réseaux de neurones et Apprentissage

Un signal de fréquence et d'amplitude variable

Un signal de fréquence et d'amplitude variable

Comment récupérer ces fréquences et ces amplitudes ?

MIDI

Les touches du piano sont utilisées comme référence

Il est possible d'atteindre d'autres fréquences en ajoutant un pitch

Début de la piste				Le meta événement					
MTrk	taille			Ticks	Туре		taille	dépend du type	
4D 54 72 6B	00	00	ОВ	F9	00	FF	03	<n></n>	<contenu></contenu>
	La taille totale de la piste est 3 065 octets			•	La piste commence 0 ticks après la précédente	FF03 = la p	nom de iste	la nom de la piste prendra N octets	N octets en ASCII pour donner le nom de la piste

L'événement NoteOnEvent

Type d'év	vénement	Données	
NoteOnEvent	Canal	Note	Volume
9	0 - 15	0 - 127	0 - 127
0x9	0x0 - 0xF	0x0 - 0x7F	0x0 - 0x7F

Le volume est appelé « velocity »

L'événement NoteOnEvent : Exemple du Do « milieu »

Type d'év	rénement	Données		
NoteOnEvent	Canal	Note	Volume	
9	0 - 15	0 - 127	0 - 127	
0x9	0x0 - 0xF	0x0 - 0x7F	0x0 - 0x7F	
0x9 _	0x0	0x3C	0x3F ✓	

Cet exemple permet de jouer la note Do au volume moyen

Stopper la lecture d'une note

Type d'évé	enement	Données		
NoteOnEvent	Canal	Note	Volume	
0x9	0x0	0x3C	0x0	
NoteOffEvent	Canal	Note	Volume	
0x8	0x0	0x3C	0x3F	

Ces deux expressions sont équivalentes Nous utiliserons la première

Le tempo en MIDI

Structure hiérarchique

Le délai est appelé « tick » ou « delta-time » Début de piste

délai

Événement 1

Délai

Événement 2

Etc...

Représentation d'une note

On ne tiendra donc pas compte du pitch

Créer un script python avec des évenements MIDI

Bibliothèque : https://github.com/vishnubob/python-midi mididump.py mozart.mid

Créer un fichier MIDI

Bibliothèque : midi

→ sortie : un fichier .mid

midi.NoteOnEvent(tick=60, channel=0, data=[86, 0]),

midi.NoteOnEvent(tick=60, channel=0, data=[86, 0]),


```
240 81 60
240 81 0
    66
1560 88 0
 86 55
60 86 0
  88 47
60 88 0
 86 62
```

240

```
0.0 0.0 0.05511811023622047167602744366377010010182857513427734375 0.787401574803 0.0 0.0 0.0787401574803149595371820623768144287168979644775390625 0.5039370078740 0.0 0.0 0.71653543307086609015499334418564103543758392333984375 1.0 0.0 0.0 0.50393700787401574103796519921161234378814697265625 0.0 0.5 0.001543209876543209790877853038182365708053112030029296875 0.637795275590551 0.472440944881889757223092374260886572301387786865234375 0.5 0.001543209876543209790877853038182365708053112030029296875 0.637795275590551 0.5 0.0 0.69291338582677164392720214891596697270870208740234375 0.519685039370078 0.5 0.0 0.67716535433070867977534135206951759755611419677734375 0.433070866141732 0.5 0.00038580246913580244771946325954559142701327800750732421875 0.6771653543307 0.5 0.0 0.69291338582677164392720214891596697270870208740234375 0.370078740157480
```

Normalisation (min-max)

Apprentissage contenant 241 musiques

Tests contenant 94 musiques

Création du réseau

Création du réseau

Réseau de neurones récurrent (LSTM)

Taille de la séquence

Transformation des données

Création du réseau

Création de modèles

Apprentissage et tests

Paramètres

Tests

Tests

Paramètres constants:

Paramètre	Valeur
Taille séquence	10
Taille batch	15
Nombre epochs	10
Taux apprentissage	0,01
Taux decay	0,001
Patience	2

Tests X LSTM Y

Activation linéaire

→ Précision très faible

Activation Hard Sigmoïd

→ Précision très élevée

Précision 94,9 %

Avec la méthode RMSprop

Lors de l'apprentissage l'algorithme peut s'arrêter s'il n'y a pas d'amélioration

On obtient aussi 94 % de précision avec une couche Dense linéaire

Avec une activation linéaire

Précision 94,98 %

Afin d'essayer d'obtenir de meilleurs résultats nous avons placé deux LSTM à la suite

On a une précision toujours très bonne

Comme pour le réseau précédent, on a deux LSTM à la suite mais on ajoute une couche Dense avec une activation softmax

On obtient là encore une précision de 94,98 %

Prédiction

Prédiction

Modele 1

LSTM+Dense(linear)

Modele 2

LSTM(dropout=0.2) + Dense(sigmoid)

Conclusion

Conclusion: les difficultés

Aucunes connaissances au départ

Sujet très complexe

Peu de ressources explicites

Peu de temps

Mais résultats avec de la persévérance!

Conclusion: les apports

Beaucoup de nouvelles connaissances

Méthodologie

L'envie de continuer et d'en apprendre plus !

Merci!

Etudiants : Jeremy CATELAIN Claire DRIGUEZ Lucas RAMAGE Professeur : M. Knippel