Oefeningen Numerieke Wiskunde

Oefenzitting 11: substitutiemethodes en Newton-Raphson

1 Theorie

We benaderen de wortels van de niet-lineaire vergelijking f(x) = 0 m.b.v. substitutiemethodes. Een substitutiemethode zet de vergelijking f(x) = 0 om in een vast punt vergelijking x = F(x). De iteratieformule ziet er dan uit als

$$x^{(k+1)} = F\left(x^{(k)}\right). \tag{1}$$

Een punt x^* dat voldoet aan $x^* = F(x^*)$ heet een vaste punt van F.

Consistentie

Door het gebruik van een substitutiemethode kunnen er nulpunten verdwenen of bijgevoegd zijn. In dit verband worden de volgende begrippen gedefinieerd:

- (i) F(x) is **consistent** met de vergelijking f(x) = 0 als alle nulpunten van f(x) ook vaste punten van F(x) zijn $\longrightarrow f(x) = 0 \Longrightarrow F(x) = x$
- (ii) F(x) is **reciprook consistent** met de vergelijking f(x) = 0 als alle vaste punten van F(x) ook nulpunten van f(x) zijn $\longrightarrow f(x) = 0 \Longleftrightarrow F(x) = x$
- (iii) F(x) is **volledig consistent** als F(x) consistent en reciprook consistent is $\longrightarrow f(x) = 0 \iff F(x) = x$.

Convergentie

Voor een differentieerbare F(x) geldt **Stelling 14.2**: het iteratieproces (1) convergeert naar een vast punt x^* van F(x) indien $|F'(x)| \leq M < 1$ in een bepaald interval rond $x^{(0)}$ en x^* . Het teken van F'(x) bepaalt of de convergentie monotoon zal verlopen (+) of volgens een vierkante spiraal (-).

Zij $\{x^{(k)}\}_0^\infty$ een rij van getallen die convergeert naar x^* . De fout van de k-de benadering is $\varepsilon^{(k)}=x^{(k)}-x^*$. Zij

$$\rho^{(k)} = \frac{x^{(k)} - x^*}{x^{(k-1)} - x^*} = \frac{\varepsilon^{(k)}}{\varepsilon^{(k-1)}}.$$
 (2)

Op voorwaarde dat de limiet bestaat noemen we $\rho = \lim_{k\to\infty} \rho^{(k)}$ de **convergentiefactor** van het benaderingsproces. Voor differentieerbare F(x) met vast punt x^* en iteratieproces (1) is de convergentiefactor gelijk aan $\rho = F'(x^*)$ (zie **Stelling 15.2**).

Voor convergentie moet $|\rho| < 1$. Hoe kleiner $|\rho|$ is, des te sneller de convergentie. Als $\rho = 0$, dan kan men convergentiesnelheden vergelijken door de convergentieorde te definiëren. De **orde van convergentie** van het benaderingsproces is het getal $p, 1 \le p \in \mathbb{R}$, zodat¹

$$\varepsilon^{(k+1)} = O([\varepsilon^{(k)}]^p) \quad \text{en} \quad \varepsilon^{(k+1)} \neq o([\varepsilon^{(k)}]^p).$$
 (3)

Dit getal p bepaalt ergens een grens. Zij

$$\lambda(n) = \lim_{k \to \infty} \frac{\varepsilon^{(k+1)}}{[\varepsilon^{(k)}]^n},$$

dan geldt er

$$\lambda(n) = \begin{cases} 0 & n p \end{cases}$$

$$\tag{4}$$

met $0 \le \rho_p \le \infty$.

Als de orde 1 is, dan is ρ_1 de convergentiefactor zoals wij hem hierboven gedefinieerd hebben. De orde van een substitutiemethode is altijd een natuurlijk getal. Om de orde van een substitutiemethode te bepalen, kan je **Stelling 15.3** gebruiken. We noemen een benaderingsproces van orde 1 lineair, een benaderingsproces van orde 2 kwadratisch en een benaderingsproces van orde 3 kubisch.

De methode van Newton-Raphson is een substitutiemethode met

$$F(x) = x - \frac{f(x)}{f'(x)},$$

zoals uitgelegd in Sectie 6. In Sectie 14.4 wordt de consistentie en convergentie van deze methode nagegaan.

2 Oefeningen

Probleem 1. Bewijs vergelijking (4).

Probleem 2. Beschouw de volgende substitutiemethodes voor de wortel van $f(x) = x + \log(x) = 0$.

(a)
$$x^{(k)} = -\log(x^{(k-1)})$$

(b)
$$x^{(k)} = e^{-x^{(k-1)}}$$

Ga voor beide methodes de consistentie en de convergentie na. Schets F(x) en geef grafisch de convergentie weer voor de startwaarde $x^{(0)} = 0.9$. (De wortel is $x^* = 0.56714$.)

 $^{^1{\}rm Zie}$ de Appendix van Hoofdstuk 2 van Deel 1 van het handboek voor de definities van $\mathit{grote}\ O$ en $\mathit{kleine}\ O.$

Probleem 3. (\sqrt{a} m.b.v. Newton-Raphson) Pas Newton-Raphson toe op de vergelijking $f(x) = 1 - \frac{a}{x^2}$.

- (a) Onderzoek de consistentie.
- (b) Onderzoek de convergentie. Wat is de orde?
- (c) Schets F(x).
- (d) Voor welke startwaarden is er convergentie?

Probleem 4. Als x^* een m-voudige wortel is van f(x) = 0, dan geldt voor de Newton-Raphson methode dat ze lineair is als m > 1 en minstens kwadratisch als m = 1. Toon aan dat de volgende aangepaste methode minstens van tweede orde is

$$F(x) = x - m \frac{f(x)}{f'(x)},$$

als m de multipliciteit is van de wortel x^* van f(x) = 0. Maak gebruik van de afleiding in het handboek bij de gevalstudie van de methode van Newton-Raphson (Sectie 14.4) om niet al het rekenwerk opnieuw te moeten doen.

(Denkvraagje: Als deze methode hogere orde heeft dan NR, waarom wordt ze dan niet verkozen boven NR?)

Probleem 5. Beschouw de volgende substitutiemethodes voor de wortel van $f(x) = x + \log(x) = 0$.

(a)
$$x^{(k)} = \frac{x^{(k-1)} + e^{-x^{(k-1)}}}{2}$$

(b)
$$x^{(k)} = \sqrt{-x^{(k-1)}\log(x^{(k-1)})}$$

Ga voor beide methodes de consistentie en de convergentie na. Schets F(x) en geef grafisch de convergentie weer voor de startwaarde $x^{(0)} = 0.9$. (De wortel is $x^* = 0.56714$.)

Probleem 6. (\sqrt{a} m.b.v. Newton-Raphson) Pas Newton-Raphson toe op de vergelijking $f(x) = x - \frac{a}{x}$.

- (a) Onderzoek de consistentie.
- (b) Onderzoek de convergentie. Wat is de orde?
- (c) Schets F(x).
- (d) Voor welke startwaarden is er convergentie?