

语法分析

一自下向上

■ 自下而上语法分析

从给定的输入串r开始;不断寻找于串与某个产生式的候选式匹配;用产生式的左部代替候选式(归约);最终归约到S。

关键:

- 1) 确定可归约串 —— 归约条件;
- 2) 如何归约 一 归约原则。

Ch5 语法分析

- 5.1 "移进—归约"分析法
- 5.3 LR分析概述
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC(自学)

5.1 "移进—归约"分析法

- 5.1.1 直观的"移进—归约"分析法
- 5.1.2 规范归约与句柄

例: 文法G(S):

$$S \rightarrow aABe$$

$$A \rightarrow Abc/b$$

$$B \rightarrow d$$

分析串abbcde是该文法的合法句子。

Ch5 语法分析

5.1 移进—归约分析

 $A \rightarrow Abc/b$

 $B \rightarrow d$

/	步骤 分析栈		待分析串	动作		
	初始	# .	abbcde#	移进		
	(1)	# a	bbcde#	移进		
	(2)	#ab	bcde#	$A \rightarrow b$ 归约		
	(3)	#aA	bcde#	移进		
	(4)	#aAb	cde#	移进		
	(5)	#a <mark>Abc</mark>		$A \rightarrow Abc$ 归约		
	(6)	#aA	de#	移进		
	(7)	#aAd	e#	$B \rightarrow d$ 归约		
	(8)	#aAB		移进		
	\ /	# <mark>aABe</mark>	#	S→aABe归约		
	(10)	#5	#	分析成功		

规范推导:

$$S \Rightarrow \underline{aABe}$$

 $=>aA\underline{d}e$

 $\Rightarrow a\underline{Abc}de$

=> *a<u>b</u>bcde*

"移进一归约"分析 **5.1**

5.1.1 直观的"移进—归约"分析法

5.1.2 规范归约与句柄

- 则 β 是句型 $\alpha\beta\delta$ 相对于A的短语。
- 定义(直接短语) S是文法G的开始符号, $\alpha\beta\delta$ 是G的一个句型, 若 $S \stackrel{*}{=}>\alpha A \delta$ 且 $A \longrightarrow \beta$, 则 β 是句型 $\alpha\beta\delta$ 相对于A的直接短语。

定义(句柄)

一个句型的最左直接短语称为句柄。

- ◆直接短语是短语
- ◆句柄是直接短语且具有最左性
- ◆短语、直接短语是句型的子串
- ◆ 在规范句型的规范推导序列中,最后使用的 产生式的右部是句柄
- ◆ 句型对应的语法分析树中观察短语与句柄更 直观

例:设有文法G和串aPcB

G:
$$S \rightarrow aAcB$$
 $A \rightarrow P$ $P \rightarrow ab$ $B \rightarrow d$

<u>存在推导</u> $S \Rightarrow \underline{aAcB} \Rightarrow \underline{aPcB}$

P是句型aPcB相对于A的短语,

也是相对于A的直接短语。

aPcB是句型aPcB相对于S的短语。

P是句型aPcB的句柄。

例: 设有文法G和串aabcd

G: $S \rightarrow aAcB$ $A \rightarrow P$ $P \rightarrow ab$ $B \rightarrow d$

存在推导 S=>aAcB=>aAcd=>aPcd=>aabcd S=>aAcB=>aPcB=>aabcB=

ab是句子aabcd相对于P的直接短语;相对于A的短语;

d是句子aabcd相对于B的直接短语;aabcd是句子aabcd相对于S的短语 ab是是句子aabcd的句柄。

例: 设有文法G[A]:

$$A \rightarrow AB + |B \rightarrow BC^*|C \qquad C \rightarrow C \wedge |a|$$
 句型 $BBC \wedge * +$ 的直接短语是【 B 和 $C \wedge$ 】。

方法: 构造句型对应的语法分析树

$S => \underline{aABe} => aA\underline{d}e => a\underline{Abc}de => a\underline{b}bcde$

S

 $S \rightarrow aABe$ $A \rightarrow Abc/b$ $B \rightarrow d$

Ch5 语法分析

- 5.1 "移进—归约"分析法
- 5.3 LR分析概述
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

5.3 LR分析概述

5.3.1 LR分析

5.3.2 LR分析器结构、组成与工作原理

5.3.3 LR分析实例

- (1) 理论上比较完善;
- (2) 适用性强,对G限定少:
- (3) 便于自动生成。

5.3 LR分析概述

5.3.1 LR分析

5.3.2 LR分析器结构、组成与工作原理

5.3.3 LR分析实例

LR分析器逻辑结构

(1) 分析栈

辅助完成LR分析的数据结构。

状态 Q_i : 记录分析过程中每一步 的"历史"和"展望"信息; stack

文法符号 X_i : 分析过程中移进 (V_T) 和归约

 (V_N) 的符号;

stack初始化:

例如,设有文法G(L)

和G(L)的LR分析表

- $\bigcirc L \rightarrow E, L$
- $\bigcirc L \to E$
- \bigcirc $E \rightarrow a$
- $\textcircled{4} E \rightarrow b$ 输入字符串 a, b, a #

文法G(L)的LR分析表

(中大	ACTION表			GOTO表		
状态	a	b	,	#	E	L
0	S_3	S_4			2	1
1				acc		
2			S ₅	$\mathbf{r_2}$		
3			r_3	\mathbf{r}_3		
4			r_4	\mathbf{r}_{4}		
5	S_3	S ₄			2	6
6				\mathbf{r}_1		

5.3.2 LR分析器结构与工作原

(2) LR分析表

LR分析表是LR分析器的核心。

分析动作表(ACTION表)

状态转换表(GOTO表)

分析动作表 $\longrightarrow Q \times (V_T \cup \{\#\})$

状态转换表- $Q \times V_N$

LR分析表

state V _N	X_1	X_2	•••	X_n
Q_0	$goto(Q_0,X_1)$	$goto(Q_0, X_2)$	•••	$goto(Q_0, X_n)$
Q_1	$goto(Q_1,X_1)$	$goto(Q_1, X_2)$	•••	$goto(Q_1, X_n)$
•••	•••	•••	•••	•••
Q_m	$goto(Q_m,X_1)$	$goto(Q_m, X_2)$	•••	$goto(Q_m, X_n)$

 $Q_i \in$ 状态; $X_i \in$ 非终结符集;

$$goto(Q_i, X_i) = \begin{cases} \\ \end{cases}$$

 Q_j (移进:将 Q_j 状态压入状态栈)

空(不会出现的情况,没有动作)

 $goto(Q_i, X_i)$ 的 Q_i 、 X_i 意指当前栈顶 的 X_i 和次栈顶的 Q_i 元素。

V_T	a_1	a_2	•••	a_n
Q_0	$action(Q_0,a_1)$	$action(Q_0,a_2)$	•••	$action(Q_0,a_n)$
Q_1	$action(Q_1,a_1)$	action (Q_1,a_2)	•••	action (Q_1,a_n)
	•••	•••	•••	
Q_n	$action(Q_n,a_1)$	$action(Q_n,a_2)$	•••	action (Q_n, a_n)

 $Q_i \in$ 状态; $a_i \in$ 终结符集或#;

$$S_{Q_j}$$
 (移进:将 a_i 和 Q_j 状态压入栈)

$$action(Q_i, a_i) = \langle$$

$$action(Q_m, a_i) = S_{Qk}$$

$$a_1 a_2 \dots a_i a_{i+1} \dots a_n \#$$

$$action(Q_i, a_i) = \langle$$

 S_{Qj} (移进:将 a_i 和 Q_j 状态压入栈)

 \mathbf{r}_{j} (归约:用第j个产生式归约)

 $action(Q_m, a_i) = \mathbf{r}_j$

① 归约。设G第j个产生式为: $A \rightarrow X_{m-r+1} X_{m-r+2} ... X_m$

② 查goto表。 goto(Q_{m-r} , A) = Q_i

$$\$: a_1 a_2 \dots a_i a_{i+1} \dots a_n \#$$
 (扫描指针不变)

 $action(Q_i, a_i) =$

 S_{Qj} (移进:将 a_i 和第j个状态压入栈) r_j (归约:用第j个产生式归约)

acc (接受: 分析成功)

error (出错:语法错,调出错 处理程序)

文法G(L)的LR分析表

小下子	ACTION表				GOTO表	
状态	a	b	,	#	E	
0	S_3	S_4			2	1
1				(acc)		
2			$\langle S_5 \rangle$	r_2		
3			$\mathbf{r_3}$	\mathbf{r}_3		
4			r_4	$ \mathbf{r}_4 $		
5	S_3	S ₄			2	6
6				$\mathbf{r_1}$		

(3) LR分析总控程序

- ① 分析开始,将开始状态 Q_0 及"#"压入分析栈; //初始化
- ②据当前分析栈栈顶 Q_m ,当前输入符号 a_i 查action 表:
 - i)若 $action(Q_m, a_i) = S_{Oi}$,完成移进动作;
 - ii) 若action $(Q_m, a_i) = \mathbf{r}_i$,完成归约动作。
 - iii) 若 $action(Q_m, a_i) = acc$,分析成功;
 - iv) $\text{ Haction}(Q_m, a_i) = \text{error}$,出错处理。
 - ③转②。

5.3 LR分析概述

- 5.3.1 LR分析
- 5.3.2 LR分析器结构、组成与工作原理
- 5.3.3 LR分析实例

例:设有文法G(L)和

G(L)的LR分析表。

- ① $L \rightarrow E$, L
- ② $L \rightarrow E$
- \odot $E \rightarrow a$
- $\textcircled{4} E \rightarrow b$

分析字符串 a, b, a

文法G(L)的句子a, b, a的分析过程

JE.	栈		த ன்க	△+=+/
步	符号栈	状态栈	余留串	分析动作
0	#	0	<i>a,b,a</i> #	S_3
1	#a	03	, b ,a#	$\mathbf{r_3}$
2	# E	02	, b ,a#	r ₃ S ₅
3	#E,	025	b, a#	S_4
4	# E , b	0254	,a #	\mathbf{r}_{4}
5	# E , E	0252	,a #	S_5
6	# E , E ,	02525	a #	S_3
7	#E,E,a	025253	#	r_3
8	# E , E , E	025252	#	\mathbf{r}_{2}
9	# <i>E</i> , <i>E</i> , <i>L</i>	025256	#	$\mathbf{r_1}$
10	# E , L	0256	#	$\mathbf{r_1}$
11	# L	01	#	acc

 \odot $E \rightarrow a$

 $\textcircled{4} E \rightarrow b$

综述:

- (1) 处理直观简单;
- (2) 基本实现思想:引入状态,状态埋伏了 分析的"历史"和"展望"信息:
- (3) 应用范围广,对G限定少;
- (4) LR分析的关键 LR分析表:集成了全 部分析信息。

Ch5 语法分析

- 5.1 "移进—归约"分析法
- 5.3 LR分析概述
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

5.4 LR (0)分析

5.4.1 LR(0)分析实现思想

- 5.4.2 构造LR(0)项目集规范族
- 5.4.3 LR (0)分析表的构造

定义(活前缀)规范句型的不

规范句型的不含句柄之后任何符号的前缀,称为该句型的活前缀。

- (1) $\exists S \stackrel{\sim}{\Rightarrow} \alpha A \omega \stackrel{\sim}{\Rightarrow} \alpha \beta \omega$,若串 $\gamma \neq \alpha \beta$ 的前缀,则 $\gamma \neq \lambda \pi$ 的前缀;则 $\gamma \neq \lambda \pi$ 的前缀;
 - (2) 活前缀特点: 不含句柄之后的任何符号;
- (3) LR分析中栈中符号始终是活前缀,当构成刚好包含句柄的活前缀(可归前缀)时,实施归约。

文法G(L)的句子a, b, a的分析过程

	. V			
步	符号栈	找 状态栈	余留串	分析动作
0	#	0	a,b,a #	S ₃
1	#a	03	,b,a #	$r_3(E \rightarrow a)$
2	# E	02	,b,a #	S_5
3	# E ,	025	b, a#	S_4
4	#E,b	0254	,a #	$\mathbf{r}_4(E \rightarrow b)$
5	# E , E	0252	,a #	S_5
6	# E , E ,	02525	a #	S_3
7	#E,E,a	025253	#	$\mathbf{r}_{3}(E \rightarrow a)$
8	# <i>E</i> , <i>E</i> , <i>E</i>	025252	#	$\mathbf{r}_2(L \rightarrow E)$
9	# <i>E</i> , <i>E</i> , <i>L</i>	025256	#	$r_1(L \rightarrow E, L)$
10	# E , L	0256	#	$\mathbf{r}_{1}(L \rightarrow E, L)$
11	# L	01	#	acc

- ① $L \rightarrow E$, L
- ② $L \rightarrow E$
- $\odot E \rightarrow a$
- $\textcircled{4} E \rightarrow b$

■ 定义: (LR(0)项目)

在文法G的每个产生式的右部(候选式)的任何位置上添加一个圆点,这样构成的每个产生式称为LR(0)项目。

约定: 若产生式形式为 $A \rightarrow \varepsilon$ 则其LR(0)项

目为: A→·

圆点的位置标记相应的候选式已被匹配(放入栈中)了多少。

例:设文法G(S)

$$S' \rightarrow S$$

$$S \rightarrow A \mid B$$

$$S' \rightarrow S$$
 $S \rightarrow A \mid B$ $A \rightarrow aA \mid b \mid \varepsilon \quad B \rightarrow c$

则G(S)的LR(0)项目有:

$$S' \rightarrow \cdot S$$

$$S \rightarrow S \bullet$$

$$S \rightarrow \bullet A$$

$$S \rightarrow A$$
 •

$$S \rightarrow \bullet B \qquad S \rightarrow B \bullet$$

$$S \rightarrow B \bullet$$

$$A \rightarrow \bullet aA$$

$$A \rightarrow \bullet aA \qquad A \rightarrow a \bullet A$$

$$A{
ightarrow}aA$$
 •

$$A \rightarrow \bullet b \qquad A \rightarrow b \bullet$$

$$A{
ightarrow} b$$
 $ullet$

$$A \rightarrow \bullet$$

$$B \rightarrow \bullet c \qquad B \rightarrow c \bullet$$

$$B{
ightarrow}c$$
 •

LR (0) 项目分类

(1)接受项目: $S \rightarrow \alpha$ · (S是开始符号) 唯一项目

分析栈中内容恰好为开始符号S的候选式 α ,用 $S \rightarrow \alpha$ 进行归约, 则整个分析成功。

(2) 归约项目: $A \rightarrow \alpha$ ·(A不是开始符号)

句柄 α 恰好包含在栈中,即当前栈中的内容构成了刚好含句柄 α 的活前缀, 应按 $A \rightarrow \alpha$ 进行归约。

(3) 移进项目: $A \rightarrow \alpha \cdot a\beta (a \in V_T)$

分析栈中是不完全包含句柄的活前缀,为构成含有句柄 $\alpha\alpha\beta$ 的活前 缀,需将a 移进分析栈。

(4) 待约项目: $A \rightarrow \alpha \cdot B\beta (B \in V_N)$

分析栈中是不完全包含句柄的活前缀,为构成含有句柄 $\alpha B \beta$ 的活 前缀,应先把当前分析的字符串中的相应内容归约到B。 第 46 页 例:设文法G(S)

$$S' \rightarrow S$$

$$S \rightarrow A \mid B$$

$$S' \rightarrow S$$
 $S \rightarrow A \mid B \mid A \rightarrow aA \mid b \mid \varepsilon \mid B \rightarrow c$

$$B \rightarrow c$$

则G(S)的LR(0)项目有:

$$S' \rightarrow \bullet S$$

$$S \rightarrow {}^{\bullet}A$$

$$S \rightarrow \bullet B$$

$$A \rightarrow \bullet aA$$

$$A \rightarrow b$$

$$A \rightarrow \bullet$$

$$B \rightarrow \cdot c$$

$$S' \rightarrow S$$

$$S \rightarrow A$$

$$S \rightarrow B$$

$$A \rightarrow a \cdot A$$

$$A \rightarrow b$$
 •

$$B \rightarrow c$$

$$A \rightarrow aA \bullet$$

基本项目

- ①所有LR(0)项目分别对应NFA的一个状态。
- ②开始符号的第一个LR(0)项目对应的状态为NFA的初态。

圆点在候选式的最左侧的LR(0)项目

③LR(0)项目为归约或接受项目的状态为NFA的 终态。 ④若状态i和状态j出自同一产生式,两个状态的

LR(0) 项目的圆点只相差一个位置,即:

i中项目为: $A \rightarrow \alpha \cdot X\beta$; j中项目为: $A \rightarrow \alpha X \cdot \beta$

则状态i为状态i识别字符X的后继状态,即在状态图中

有:

(i) X⑤若状态i为待约项目,(设待约到的非终结符号为B,

即 $A \rightarrow \alpha \cdot B\beta$),状态j为待约到的非终结符号对应的第一

个LR(0)项目(即 $B \rightarrow \bullet \gamma$),则状态j为状态i识别 ϵ 的后继

状态,即在状态图中有:

$$i$$
 ε j

其中 α , $\beta \in V^*$, $X \in V$, A, $B \in V_N$

识别文法G的所有可归前缀的NFA

NFA
$$M=(Q, \Sigma, f, q_0, Z)$$

LR(0)项目 G的V

基本项目

归约+接受项目

若 i 为: $A \rightarrow \alpha \cdot X\beta$

i为: $A \rightarrow \alpha X \cdot \beta$

则 $j \in f(i,X)$ 。

若i为: $A \rightarrow \alpha \cdot B\beta(B \in V_N)$,

j为: $B \rightarrow \bullet \gamma$

则 $j \in f(i, \varepsilon)$ 。

其中 α , $\beta \in V^*$, $X \in V$, A, $B \in V_N$

例:设文法G(S)

$$S \rightarrow A$$

$$A \rightarrow aA \mid b$$

构造识别文法G(S)的所有可归前缀的NFA。

 $\boldsymbol{\mathcal{E}}$

识别文法G(S)的 所有可归前缀的

DFA:

		(3) b (4)		
I	I _a	I_A	I_b	
0 {0,1,3}	1 {2,1,3}	2{5}	3 {4}	
1 {2,1,3}	1 {2,1,3}	4 { 6 }	3 {4}	
2* { 5 }	Ø	Ø	Ø	
3 * { 4 }	Ø	Ø	Ø	
4* { 6 }	Ø	Ø	Ø	

0

识别可归前缀的DFA 句子ab的分析:

0→1 →3 ab (b归约到A)

 $0 \rightarrow 1 \rightarrow 4$ aA (aA 归约到A)

A (A 归约到S) $0 \rightarrow 2$

5.4 LR (0)分析

- 5.4.1 LR(0)分析实现思想
- 5.4.2 构造LR(0)项目集规范族

定义

上节例文法G(S')的LR(0)项目集规范族C为:

$$C = (\{S \rightarrow \cdot A, A \rightarrow \cdot aA, A \rightarrow \cdot b\})$$
 $\{A \rightarrow a \cdot A, A \rightarrow \cdot aA, A \rightarrow \cdot b\}$
 $\{S' \rightarrow A \cdot \} \{A \rightarrow b \cdot \} \{A \rightarrow aA \cdot \})$

构造LR(0)项目集规范族的方法(之一)

第一步: 构造文法G的LR(0)项目;

第二步: 基于LR(0)项目,构造识别文法 G所有可归前缀的NFA:

第三步: NFA确定化为DFA,该DFA的所有 状态所对应的项目集的集合,即构成了G的 LR(0)项目集规范族。

构造LR(0)项目集族

构造LR(0)项目集规范族的方法(之二)

closure(项目集闭包)函数

引入两个函数

GO(项目集转移)函数

项目集闭包closure

- ① I中的每一个项目皆属于closure(I);
- ② 若形如 $A \rightarrow \alpha \cdot B\beta (B \in V_N)$ 的项目属于I, 则对G中的任何产生式 $B \rightarrow \gamma$ 的第一个 LR(0)项目(B→・火)也属于closure(I);
- ③ 重复上述步骤,直至不再有新的项目加入 closure(I)为止;

项目集转移函数GO(I,X):

定义

若 I 是文法G的一个项目集,X为G 的符号,则GO(I,X)=closure(J)。

其中

 $J={\mathbb{Z}}$ 影如 $A \to \alpha X \cdot \beta$ 的项目 $\exists A \to \alpha \cdot X \beta \in I$ 。

亦作为方法一的第一步

第一步: 拓广文法

设文法G的开始符号是S,则G的拓广文法G'为:

在G的基础上增加一新的产生式 $S' \rightarrow S$,

S'为 G'的开始符号。

目的: 用来指示语法分析器什么时候应该停止分析并宣布接受输入(已把分析串归约到了S)。

 $B \rightarrow c$

例,设文法G(S)为:

$$S \rightarrow A \mid B$$

$$S \rightarrow A \mid B \qquad A \rightarrow aA \mid b \mid \varepsilon$$

则文法
$$G(S)$$
的拓广文法 $G'(S')$ 为

$$S' \rightarrow S$$

$$S \rightarrow A \mid B$$

$$S \rightarrow A \mid B \qquad A \rightarrow aA \mid b \mid \varepsilon$$

$$B \rightarrow c$$

例,设文法G(A)为:

$$A \rightarrow aA \mid b$$

则文法G(A)的拓广文法G'(S)为

$$S \to A$$

$$A \rightarrow aA \mid b$$

第二步: 构造文法G的LR(0)项目集规范族。

利用函数closure和GO,完成LR(0)项目集 规范族的构造:

```
itemsets(G')
{ C = \{ closure \{ S' \rightarrow S \} \};
    do{
   if(对C的每个项目集I和每个文法符号X,
      若GO(I, X) 非空且不在C中)
      把 GO(I, X)加入C中;
 } while (没有更多的项目集可以加入C);
```

 $GO(I_2,a) = closure(A \rightarrow a.A) = I_2$

 $GO(I_2,b) = closure(A \rightarrow b.) = I_3$

拓广文法为:
$$S \rightarrow A$$
 $A \rightarrow aA \mid b$ closure($S \rightarrow A$)={ $S \rightarrow A$, $A \rightarrow .aA \mid .b$ }= I_0 GO(I_0 , A)=closure($S \rightarrow A$.)={ $S \rightarrow A$.}= I_1 GO(I_0 , a)=closure($A \rightarrow aA$)={ $A \rightarrow aA$, $A \rightarrow .aA \mid .b$ }= I_2 GO(I_0 , b)=closure($A \rightarrow b$.)={ $A \rightarrow b$.}= I_3 GO(I_2 , A)=closure($A \rightarrow aA$.)={ $A \rightarrow aA$.}= I_4

求得项目集规范族为:

$$\{I_0, I_1, I_2, I_3, I_4\}$$

$$= \{\{S' \to A, A \to .aA \mid .b\}, \{S' \to A.\},$$

$$\{A \to aA, A \to .aA \mid .b\}, \{A \to b.\}, \{A \to aA.\}\}$$

项目集GO函数为:

	a	b	A
0	2	3	1
1			
2	2	3	4
3			
4			

应用求项目集规范族的方法二直接得出识别可 归前缀的DFA={Q, Σ , f, q_0 , Z}。

$$1.Q=C$$

$$2. \Sigma = V$$

- 4. q。为基本项目的闭包对应的状态。
- 5. 包含归约或接受项目的项目集构成终态集Z。

- 1. 拓广文法。
- 2. 利用函数closure和GO,构造DFA:

初始状态 $0 = \{ closure(S' \rightarrow S) \}$

do{

if (对每个状态i 和每个文法符号X

若GO(i, X)=i非空且不在Q中)

把j加入Q中且f(i,X)=j;

- } while (没有更多的状态可以加入Q); }
- 3. 包含归约或接受项目的状态为终态。

应用求项目集规范族的方法二直接

求出识别可归前缀的DFA。 拓广文法为: $S \rightarrow A$ $A \rightarrow aA \mid b$ $4:A \rightarrow aA$. $0:S \rightarrow A$ $A \rightarrow . aA/. b$ $3:A \rightarrow b$. $1:S \rightarrow A$.

5.4 LR (0)分析

- 5.4.1 LR(0)分析实现思想
- 构造LR(0)项目集规范族
- 5.4.3 LR (0)分析表的构造 <

定义

- ① 即含移进项目又含归约项目;
- 或②含有多个归约项目; 归约-归约冲突 则每个项目集的项目相容,称G是一个 LR(0)文法。

句子ab的归约:

0→2 →3 ab (b归约到A)

 $0 \rightarrow 2 \rightarrow 4$ aA (aA 归约到A)

 $0\rightarrow 1$ A (分析完成)

识别可归前缀的DFA与LR(0)分析的对比

状态 N;

栈顶还没有出现句柄,分析表中action $(M,a)=S_N$

②在DFA中从状态M出发,经过一条 $B(B \in V_N)$ 弧到达

状态N;

栈顶归约出非终结符号,对分析表中 $GOTO(M,B) \neq N$

③在DFA中M为终态(含归约项目),该状态中的文法

产生式编号为n:

栈顶出现句柄,分析表中 $action(M,a) = r_n;$

④在DFA中M是终态(接受项目对应的状态)。

栈中为开始符号,分析表中action(M, #) = "acc"

算法: 构造LR(0)分析表

输入: 文法G识别可归前缀的DFA。

输出: 文法G的LR(0)分析表

方法:

分析表的状态集为DFA的状态集 设为 $Q = \{0, 1, 2, ...n\}$

① 若 $f(K, a) = J(a \in V_T)$,则置 $action(K, a) = S_I$;

②若 $f(K, A) = J(A \in V_N)$,则置GOTO(K, A)=J;

置action(K, a)= \mathbf{r}_{j} 和 action(K, #)= \mathbf{r}_{j} 。 (其中假设产生式 $A \rightarrow \alpha$ • 是文法第j个产生式)

④ 若 $S' \rightarrow S \cdot (S'$ 是拓广文法的开始符号) $\in K$,(含接 受项目状态)

置action(K, #) = acc

⑤ action表中空白置出错标志。

例:对前例文法G(A)有识别可归前缀的DFA如下

从LR(0)项目集规范族C和GO函数构造LR(0)分析表

■ 算法 构造LR(0)分析表

输入: 文法G和文法G的LR(0)项目集规范族 C和GO函数

输出: 文法G的LR(0)分析表

方法:

设 $C = \{I_0, I_1, ..., I_n\}$,每个项目集 I_K 的下标 K作为分析器的状态。

① 若GO $(I_{K,a})=I_{J}(a \in V_{T})$,则置 action $(K,a)=S_{J}$;

- ② 若GO $(I_K, A) = I_J (A \in V_N)$,则置GOTO(K, A) = J;

 $(其中假设产生式<math>A \rightarrow \alpha$ · 是文法第j个产生式并且

A不是文法的开始符号)

- ④ $\mathsf{Z}S' \to S \cdot \in I_K$, S'是文法的开始符号,
- 则置action(K, #) = acc;
 - ⑤ action表中空白置出错标志。

对例5.12的文法G(S')有LR(0)项目集规范族及GO函数为

$$I_0: \{S' \rightarrow \bullet A, A \rightarrow \bullet aA, A \rightarrow \bullet b\}$$

$$I_1: \{S' \rightarrow A \bullet \}$$

$$I_2: \{A \rightarrow a \cdot A, A \rightarrow a \cdot aA, A \rightarrow b\}$$

$$I_3: \{A \rightarrow h \bullet \}$$

$$I_{A}: \{A \rightarrow aA \bullet \}$$

文法G(S')的LR(0)分析表

	state	ACTION表			GOTO表	
	State	a	b	#	A	
	0	s2	s3		1	
\	1			acc		
<u></u>	2	s2	s 3		4	
	3	r2	r2	r2		
	4	r1	r1	r1		

$S' \rightarrow A$		
$A{ ightarrow}a$ A	4 1 1	b 2

GO函数:

	a	b	A
0	2	3	1
1			
2	2	3	4
3			
4			

例: 有文法G(S):

 $S \rightarrow aABe$

 $A \rightarrow Abc/b$

 $B \rightarrow d$

分析串abbcde是该文法的合法句子。

Ch5 语法分析

5.1 移进—归约分析

/	步骤	分析栈	待分析串	动作
	初始	#	abbcde#	移进
	(1)	# <i>a</i>	bbcde#	移进
	(2)	#ab	bcde#	$A \rightarrow b$ 归约
	(3)	# aA	bcde#	移进
	(4)	#aAb	cde#	移进
	(5)	#aAbc	de#	$A \rightarrow Abc$ 归约
	(6)	# aA	de#	移进
	(7)	#aAd	e#	$B \rightarrow d$ 归约
	(8)	# aA B	e#	移进
	(9)	# <mark>aABe</mark>	#	S→aABe归约
	(10)	# <u>S</u>	#	分析成功

规范推导:

$$S \Rightarrow \underline{aABe}$$

 $=>aA\underline{d}e$

 $\Rightarrow a\underline{Abc}de$

=> *a<u>b</u>bcde*

构造文法G的识别可归前缀的DFA

拓广文法为:

$$S' \rightarrow S$$

$$S \rightarrow aABe$$

$$A \rightarrow Abc 2 / b 3$$

$$B \rightarrow d(4)$$

步骤 分析栈 待分析串 动作 $S' \rightarrow S S \rightarrow aABe \ 1 A \rightarrow Abc \ 2/b \ 3 B \rightarrow abb \ de \ 4$ 移进 $LR(0)$ 分析表	14
初始 # abbcde # 移进 LR(0)分析表	
102 ACTION ACTION	
(1) # a bbcde # 移进 ACTION GOT	O'.
(2) 024 bcde # A→b归约 a b c d e # AB 0 S c d e # AB 0 S	S
(3) #aA bcde# 移进	1
(4) #aAb cde # 移进 2 S4 3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(6)	
$e \# B \rightarrow d$ 归约 S_8	
(8) #aAB e# 移进 6 S ₉ 7 r r r r r	
(9) # $aABe$ # $S \rightarrow aABe$ 归约 $7 r_4 r_4 r_4 r_4 r_4 r_4 r_4$ $8 r_1 r_1 r_1 r_1 r_1$	
(10) #S # 分析成功 9 r ₂ r ₂ r ₂ r ₂ r ₂ r ₂	

Ch5 语法分析

- 5.1"移近—归约"分析法
- 5.3 LR分析鸟瞰
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

例: G: $A \rightarrow aA \mid a$

构造文法G的LR(0)分析表。

首先文法G拓广为

G':

$$S' \rightarrow A$$

$$A \rightarrow aA \bigcirc | a \bigcirc$$

构造文法G'的识别可归前缀的DFA

即有移进项 $A \rightarrow \cdot aA \mid \cdot a$,又有归约项 $A \rightarrow a \cdot$,

文法G'是非LR(0)文法

- 在识别可归前缀的DFA某一状态(项目集规范 族的某一项目集)中,
- 1. 若既含有移进项目,又含有归约项目, 该状态(项目集)存在移进一归约冲突。
- 2. 若含有两个或两个以上的归约(接受)项目, 该状态(项目集)存在归约一归约冲突。

△ 注意:

冲突情况都与归约动作相关。

- 分析:

LR(0)分析表构造算法对含有归约项目 $A \rightarrow \beta$ ·的项目集(状态) I_i ,不管当前输入符号为何,皆把action子表相应于状态 i的那一行的诸元素都指定为 \mathbf{r}_j (其中j 为产生式 $A \rightarrow \beta$ ·的编号)。

	a_1	a_2	•••	a_n	
•••					
i	r_j	r_j	•••	r_j	
•••					

$action(i, a) = \{A \to \beta\} \qquad (\forall a \in V_T \cup \{\#\}\})$

归约未必有效!

- : 可能不存在一个规范句型为...Aa...形式。
- :. 用 $A \rightarrow \beta$ 归约不一定有效。
- 定义 (回顾)

设上下文无关文法G,S是文法的开始符号, 对于文法G的任何非终结符A

 $FOLLOW(A) = \{a \mid S = > ... A a ..., a \in V_T\}$ 若S=>...A,则令# \in FOLLOW(A)。

对含有归约项目的项目集 I_i :

$$I_i = \{A \rightarrow \beta \cdot , B \rightarrow \delta \cdot , \ldots \}$$

填写归约动作时,首先求解FOLLOW(A),

FOLLOW(B),再对任何输入符号a:

- (1) 当 $a \in FOLLOW(A)$ 时,置 action $(i, a) = \{ 按产生式 A \rightarrow \beta$ 归约 };
- (2) 当 $a \in FOLLOW(B)$ 时,置 action $(i,a) = \{按产生式 B \rightarrow \delta 归约 \}$;
- (3) 当a不属于上述情况时,不填写归约动作。

SLR(1)冲突解决方法,SLR(1)规则。

从识别可归前缀的DFA构造SLR(1)分析表

■ 算法 构造SLR(1)分析表

输入: 文法G及其识别可归前缀的DFA。

输出: 文法G的SLR(1)分析表

方法:

分析表的状态集为DFA的状态集 设为 $Q = \{0, 1, 2, ...n\}$

 $action(K, a) = S_I$;

- GOTO(K, A) = J;
 - 置 $action(K, a) = r_i$ 。

 $(其中假设产生式<math>A \rightarrow \alpha \cdot 是文法第j$ 个产生式并且 A不是文法的开始符号)

- ④ 若 $S' \rightarrow S \cdot \in K$, S'是文法的开始符号, 则置action(K, #) = acc;
 - ⑤表中空白置出错标志。

从LR(0)项目集规范族C和GO函数构造SLR(1)分析

算法 构造SLR(1)分析表

输入:文法G和文法G的LR(0)项目集规范族 C和GO函数

输出: 文法G的SLR(1)分析表

方法:

设 $C = \{I_0, I_1, ..., I_n\}$,每个项目集 I_K 的下标 K作为分析器的状态。

① 若GO $(I_{K,a}) = I_{J} (a \in V_{T})$,则置 action $(K,a) = S_{J}$;

Ch5 语法分析 <u>5.5 SLR(1)分析与SLR(1)分析表的构造</u>

- ② 若GO $(I_K, A) = I_J (A \in V_N)$,则置GOTO(K, A) = J;

 $(其中假设产生式<math>A \rightarrow \alpha \cdot 是 \chi x$ 文法第j 个产生式并且A 不是文法的开始符号)

- ④ $\exists S' \to S \cdot \in I_K$, S'是文法的开始符号, 则置action(K, #)=acc;
- ⑤表中空白置出错标志。

定义

如果文法G的SLR(1)分析表不含多重定义入口,则<u>称文法G为SLR(1)文法。</u> 位用SLR(1)分析表的语法分析器称作SLR(1)分析器。

SLR(1)分析表构造= SLR(1)方法+ LR(0)分析表构造 SLR(1)方法=有归约项目的状态中归约动作的设置。

例5.14 设有文法G以及识别可归前缀的DFA如下

 $G': S' \rightarrow A$

$$A \rightarrow aA$$

1

$$FOLLOW(A) = \{\#\}$$

$$A \rightarrow a$$

2

state	acti	goto	
	a	#	A
0	S_2		1
1		acc	
2	$\mathbf{S_2}$	\mathbf{r}_{2}	3
3		\mathbf{r}_1	

Ch5 语法分析

- 5.1 "移近—归约"分析法
- 5.3 LR分析鸟瞰
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析

- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

5.6 LR (1)分析

5.6.1 SLR(1)分析的缺陷

- 5.6.2 LR(1)分析的实现思想
- 5.6.3 LR (1)项目集规范族的构造
- 5.6.4 LR (1)分析表的构造

例:设有文法G(S)为

$$S \rightarrow L=R/R$$
 $L \rightarrow R/i$
 $R \rightarrow L$

构造文法G(S)的识别可归前缀的DFA:

首先文法拓广为

G'(S'),增加一产生式 $S' \rightarrow S$

$$S' \rightarrow S$$
 $S \rightarrow L=R / R$

$$L \rightarrow *R / i$$

存在移进一归约冲突,据SLR(1)方法:

$$FOLLOW(R) = \{=, \#\}$$

有 $FOLLOW(R) \cap \{=\} \neq \Phi$

: 文法G是非SLR(1)文法

对SLR(1)分析,存在 $I_k: A \to \beta$ •

若 $a \in FOLLOW(A)$ \Rightarrow action $(k, a) = \{A \rightarrow \beta\}$

$$S' \rightarrow S$$

$$S \rightarrow L = R / R$$

$$L \rightarrow *R / i$$

PE

归约未必有效!

- : 可能不存在一个规范句型含有前缀 δAa
- ∴ $用A \rightarrow \beta$ 归约不一定有效。

$$FOLLOW(A) = \{a \mid S \stackrel{*}{=} > ... A a ..., a \in V_T \}$$

此推导不考虑A前面的符号串

\$: ... *a* ... # 得到δ*Aa*... 形式 的规范句型。

5.6 LR (1)分析

- 5.6.1 SLR(1)分析的缺陷
- 5.6.2 LR(1)分析的实现思想

5.6.4 LR (1)分析表的构造

■ 定义(LR(k)项目)

文法G的一个LR(k)项目是

$$[A \rightarrow \alpha \beta, a_1 a_2 \dots a_k]$$

其中:

 $A \rightarrow \alpha \cdot \beta$ 是一个LR(0)项目;

$$a_i \in V_T \cup \{\#\}$$
;

 $a_1 a_2 \dots a_k$: 搜索符串;

■ 定义(LR(1)有效项目)

若文法G的一个LR(1)项目 $[A \rightarrow \alpha \cdot \beta, a]$

对活前缀/是有效的,当且仅当存在规范推导

 $S_{\mathbb{R}}^{*} > \delta A \omega_{\mathbb{R}} > \underline{\delta \alpha} \beta \omega$

其中: $\omega \in V_T^*$, $\gamma = \delta \alpha$, $a \in FIRST(\omega)$ 或

a为'#'(当 $\omega = \varepsilon$),称a为搜索符。

例: 设有文法G

 $S \rightarrow BB$ $B \rightarrow aB \mid b$ LR(1)项目 [$B \rightarrow a.B$, a] 对活前缀aaa有效

∃ 规范推导 S => BB => BaB => Bab => aBab

LR(1)项目 [$B \rightarrow .aB$, a] 对活前缀aa有效

LR(1)项目 $[B \rightarrow a.B, (#)]$ 对活前缀Baa有效

 \exists 规范推导 $S \Longrightarrow BB \Longrightarrow BaB \Longrightarrow BaaB$

例如,对例5.15有

$$I_2 = \{ S \rightarrow L := R, R \rightarrow L \cdot \}$$

FOLLOW(R)= {=, #}

从 $[R \rightarrow L \cdot, \#]$ 项目考察知,它对L有效。

而[$R \rightarrow L$,=]项目考察知,它对L无效。

$$\exists S' \Rightarrow S \Rightarrow R \Rightarrow L$$

$$\exists S' \Rightarrow S \Rightarrow L = R$$

等号前不可能只出现一个R即不可能有规范句型 $R = \omega$

$$S' \rightarrow S$$

$$S \rightarrow L = R / R$$

$$L \rightarrow *R / i$$

$$R \rightarrow L$$

■ LR(0)有效项目

若文法G的一个LR(0)项目 $[A \rightarrow \beta_1 \cdot \beta_2]$ 对活前缀 $\delta\beta_1$ 是有效的,当且仅当存在规范推导

$$S_{\overline{R}}^* > \delta A \omega_{\overline{R}}^* > \underline{\delta \beta_1} \beta_2 \omega$$

例如,对例5.12的文法G(S')有识别可归前缀

5.6 LR (1)分析

- SLR(1)分析的缺陷 **5.6.1**
- 5.6.2 LR(1)分析的实现思想
- 5.6.3 LR (1)项目集规范族的构造
- 5.6.4 LR (1)分析表的构造

构造LR(1)项目集规范族C

两个函数

- 1: 函数 closure(I);
- 2: GO函数;

算法5.7 closure(I) {

do {

*注意:待约项目扩展的项目的搜索符的求法。

if (对 I 的每个项目 $[A \rightarrow \alpha \cdot B\beta, \alpha]$, 及文法中的 每个产生式 $B \rightarrow \gamma \pi$ FIRST(βa)的每个符号 b, 若项目[$B \rightarrow \bullet \gamma$, b]不在I中) 则把 $[B\rightarrow \bullet \gamma, b]$ 加到I中; } while (没有更多的项目可以加入I); return I;


```
算法5.8
GO(I,X)
{
\diamondsuit J = \{[A \rightarrow \alpha X \cdot \beta, a] | [A \rightarrow \alpha \cdot X\beta, a] \in I\};
return closure(J);
}
```

LR(1)项目集I的GO函数: GO(I, X)是I中LR(0)的项目圆点右移一个位置的项目且搜索符不变,然后对项目集求closure。

算法5.9

items(G')

//LR(1)的C的构造

```
C = closure (\{S' \rightarrow \bullet S, \#\}); //初始化 do {
```

if (对*C*的每个项目集*I*和每个文法符号 *X*, 若GO(*I*, *X*) 非空且不在*C*中) 把GO(*I*, *X*) 加入*C*中;

} while (没有更多的项目集可以加入C中);

算法5.9°

构造识别LR(1)项目有效可归前缀的DFA 初态0= closure ($\{S' \rightarrow \bullet S, \#\}$); //初始化 **do** { if (对每个状态i和每个文法符号 X, 若GO(i, X) = j 非空且不在DFA中) j加入DFA中且f(i, X)=j; } while (没有更多的状态可以加入DFA中);

例5.15

$$S' \rightarrow S$$

$$L \rightarrow *R @/i@$$

$$R \rightarrow L$$
 (5)

构造识别LR(1)项目有效可归前缀的DFA。

5.6 LR (1)分析

- 5.6.1 SLR(1)分析的缺陷
- 5.6.2 LR(1)分析的实现思想
- 5.6.3 LR (1)项目集规范族的构造
- 5.6.4 LR (1)分析表的构造

■ 算法 (LR(1)分析表构造)

输入: 文法G 和文法G的识别LR(1)项目 有效可归前缀的DFA。

输出: 文法G的LR(1)分析表

方法: 设G的识别LR(1)项目有效可归前缀的

DFA的

$$Q = \{0, 1, ..., n\}$$

令Q的每个状态k为分析表的状态。 初始 状态0为分析表的初态。

则有:

- ① 对于每个状态k,若 $f(k, a)=j(a \in V_T)$, 则置Action $(k, a)=S_j$;若 $f(k, A)=j(A \in V_N)$, 则置GOTO(k, A)=j;
- ②若归约项目 $[A \rightarrow \alpha \cdot \alpha] \in k$,则置 $action[k,\alpha] = r_j$ 。 (其中假设产生式 $A \rightarrow \alpha$ • 是文法第j个产生式并且 A不是文法的开始符号)
- ③ 若接受项目 $[S' \rightarrow S \cdot, \#] \in k, S'$ 是文法的开始符号,则置 action(k, #) = acc;
- ④ 对分析表中不能按上述规则填入信息的元素,则置"出错"标志。

■ 算法 (LR(1)分析表构造)

输入: 拓广的文法G'和文法G'的LR(1)项目集规范族C和GO函数

输出: 文法G'的LR(1)分析表

方法: 设G'的LR(1)项目集规范族

$$C = \{I_0, I_1, ..., I_n\}$$

令每个 I_k 的下标k为分析表的状态。并含有 $[S' \rightarrow \cdot S, \#]$ 的项目集为分析表的初态。

则有:

- ①对于每个项目集 I_i 中形如 $[A \rightarrow \alpha \cdot X\beta, b]$ 的项目,若 $GO(I_i, X) = I_j$,且 $X \in V_T$,置 action $[i, X] = S_j$ 。 若 $X \in V_N$ 时,则置: GOTO[i, X] = j。
- ②若归约项目 $[A \to \alpha \cdot \alpha] \in I_i$, $A \to \alpha$ 为文法的第j个产生式并且A不是文法的开始符号,则置 $action[i(a)=r_j]$ 。
- ③若接受项目[$S' \rightarrow S \cdot , \#$] $\in I_i$, S' 是文法的开始符号,则置 action [i, #] = `acc''。
- ④ 对分析表中不能按上述规则填入信息的元素,则置"出错"标志。

按照LR(1)的项目集规范族(识别LR(1)项 目有效可归前缀的DFA)构造的文法G的LR(1)分 析表,如果每个入口不含多重定义,则称文法G为LR(1)文法。使用LR(1)分析表的语法分析器 称作LR(1)分析器。

Ch5 语法分析 5.7 LALR(1)分析 5.7.1 $S \rightarrow L = \bullet R \#$ $S \rightarrow S \bullet$, $R \rightarrow \bullet L$, # $S' \rightarrow \bullet S, \#$ $S \rightarrow L \bullet = R$, $L \rightarrow \bullet *R / \bullet i , \# 6$ $S \rightarrow \bullet L = R/\bullet R, \#$ $R \rightarrow L \bullet$, # 2 $L \rightarrow \bullet *R/\bullet i, =/\#$ $R \rightarrow \bullet L$, # $S \rightarrow R \bullet$, $12L \rightarrow i \bullet$, # $R \rightarrow L \bullet$, # $L \rightarrow *R \bullet *\#$ $L \rightarrow * \bullet R$, # $L \rightarrow i \bullet$, =/#5 $R \rightarrow \bullet L$, #11 $R|L\rightarrow *\bullet R, =/\#$ $L \rightarrow \bullet *R/\bullet i,\#$ $L \rightarrow R \bullet , = /\#7$ $R \rightarrow \bullet L$, =/# 4 $L \rightarrow \bullet *R/\bullet i, =/#$ $8R \rightarrow L \bullet$, =/# $L \rightarrow *R \stackrel{\text{\tiny (3)}}{}/i\stackrel{\text{\tiny (4)}}{}$ $S \rightarrow L = R (1)/R (2)$ $R \rightarrow L(5)$ $S' \rightarrow S$

	Ch5 语法分析		5.6 LR(1)分析		近 <u>5.0</u>	5.6.4 LR(1)分析表的构造			
	state	action			goto				
LR			*	$ i \rangle$	#		R	S	
	0		S_4	S_5		2	3	1	
	1				acc				
(1) 分析表	2	S ₆			r5				
析	3				r2				
表	4		S_4	S_5		8	7		
	5	r4			r4				
DIA	6		S_{11}	S_{12}		10	9		
	7	r3			r3				
	8	r5			r3 r5				
	9				r1				
	10				r5				
	11		S_{11}	S_{12}		10	13		
	12				r4				
	13				r3			第 124	

5.6 LR(1)分析 Ch5 语法分析

例:设有文法G(A)

$$A \rightarrow BB$$

$$B \rightarrow aB/b$$

构造该文法的LR(1)分析表

首先对文法进行拓广

$$S' \rightarrow A$$

$$A \rightarrow BB$$
 ①

$$B \rightarrow aB \ 2/b \ 3$$

Ch5 语法分析	5.6	LR(1)分析	<u>5.6.4</u>	LR(1)分 ⁷	折表的构造			
$\{S' \rightarrow A \cdot , \#\} I_1$	LR(1)分析表							
$\{B \rightarrow b \cdot ,a/b\}I_4$	state	A(CTION	 GO				
${A \rightarrow BB \cdot ,\#} I_5$		a	b	#	B	A		
$\{B \rightarrow b \cdot, \#\} I_7$	0	S_3	S ₄		2	1		
$\{B \rightarrow aB \cdot ,a/b\}I_8$ $\{B \rightarrow aB \cdot ,\#\}I_9$	1			acc				
$S' \rightarrow A$	2	S ₆	S ₇		5			
$A \rightarrow BB$ ①	3	S ₃	S ₄		8			
$B \rightarrow aB 2/b 3$	4	$ \mathbf{r_3} $	\mathbf{r}_3					
a b B A	5			\mathbf{r}_1				
0 3 4 2 1	6	S_6	S ₇		9			
2 6 7 5	7			r_3				
3 3 4 8	8	r ₂	\mathbf{r}_{2}					
6 6 7 9	9			\mathbf{r}_2		第 127 五		

end

