Modelos de Datos y Diseño de Bases de Datos Relacionales

Tema 6. Diseño Lógico

Objetivos

- Comprender la conveniencia y ventajas de disponer de un esquema lógico de BD independiente del SGBD comercial particular
- Entender y aplicar las reglas de transformación de un esquema conceptual en Modelo Entidad-Relación (MER) en un esquema lógico en el Modelo Relacional (MR)
- Aprender cómo evitar la posible pérdida de semántica al traducir elementos del MER a elementos del MR
- Adquirir estrategias para elegir de la opción de diseño lógico más adecuada entre varias alternativas posibles
- Conocer guías y recomendaciones para traducir un esquema en el MR a un esquema en el modelo de datos específico soportado por el SGBD de implementación

Contenidos

- □ 6.1. Objetivos y fases del Diseño Lógico de BD
- □ 6.2. Diseño Lógico Estándar
- □ 6.3. Diseño Lógico Específico
 - Primeras indicaciones: lo practicaremos una vez conozcamos el SQL
- Ejemplos resueltos
- Boletines de ejercicios (exámenes AV)
 - Boletín 8. Diseño Lógico 1
 - Boletín 9. Diseño Lógico 2

Bibliografía

- [CB 2015] Connolly, T.M.; Begg C.E.: Database
 Systems: A Practical Approach to Design,
 Implementation, and Management, 6th Edition. Pearson.
 (Capítulo 17).
- [EN 2016] Elmasri, R.; Navathe, S.B.: Fundamentals of Database Systems, 7th Edition. Pearson. (Capítulo 9).

- ¿Cómo
 convertimos un
 esquema
 conceptual de
 datos...
- ... en un esquema lógico de base de datos?

EMPLEADO

nss	dni	nombre	apellido	fechanacim	ciudad	est_civil	salario	nssjefe	dep	cuantos_familiares

DEPARTAMENTO

nombre	<u>coddep</u>	nssdire
•••		

FAMILIAR

nssemp	numero	nombre	fechanacim	parentesco
•••				

Objetivos

- El objetivo principal es transformar el esquema conceptual (EC) de datos en el esquema lógico (EL) de datos
- Otros objetivos del diseño lógico son ...
 - Minimizar redundancias en los datos
 - Conseguir máxima simplicidad
 - Evitar cargas suplementarias de programación para lograr ...
 - una estructura lógica correcta, adecuada para los datos
 - y capaz de soportar las transacciones requeridas

Fases

- □ Diseño Lógico eStándar (DLS)
 - Traducción del EC independiente del SGBD específico
 - Se elige el Modelo de Datos Lógico, pero aún no el SGBD comercial concreto
 - Uso de un Modelo Lógico de Datos estándar
- EC (MER)

- Relacional
- Red
- Jerárquico
- Orientado a Objetos

ELS (MR)

- □ Obtiene el Esquema Lógico eStándar (ELS)
 - En el Modelo Relacional para describir el ELS se puede usar...
 - Pseudolenguaje [TABLA(colu1, colu2, ...) y especificaciones]
 - Lenguaje de Definición de Datos (LDD) de ANSI SQL

Fases

- □ Diseño Lógico Específico (DLE)
 - Ya elegido el SGBD específico (comercial)
 - Adaptación del ELS al SGBD
 - Uso del modelo lógico de datos particular del SGBD elegido____
 - Oracle, MySQL, MariaDB, PostgreSQL, SQLServer, etc.
 - Obtiene el **Esquema Lógico Específico** (ELE) y se describe con
 el lenguaje propio del SGBD (dialecto SQL)
 - **SQL** de **Oracle**, SQL de MySQL, SQL de MariaDB, etc.

ELS (MR)

Objetivos

- □ Dividir el Diseño Lógico en DLS+DLE garantiza que se realiza el diseño con la **máxima portabilidad**
 - Gracias a la introducción "tardía" del SGBD específico (en el DLE) es posible disminuir el esfuerzo para...
 - Implementar el esquema lógico en distintos SGBD
 - Migrar a nuevas versiones del mismo SGBD o a otro SGBD diferente, pero del mismo modelo de datos

Esquema Conceptual - ejemplo

Esquema Conceptual (en el MER) de partida

6.2 Diseño Lógico Estándar

Pasos o actividades

10

- 1. Obtener relaciones (tablas)
- 2. Validar las relaciones contra las transacciones de usuario
- 3. Revisar las restricciones de integridad
- 4. Validar el esquema lógico con los usuarios

1. Obtener Relaciones (tablas)

- Crear relaciones para representar tipos de entidad, tipos de relación, y ciertos atributos del esquema conceptual de datos
- Obtendremos relaciones (tablas) a partir de cada...
 - 1. Tipo de **entidad** [fuerte]
 - 2. Tipo de entidad débil
 - 3. Jerarquía
 - 4. Tipo de relación binaria 1:N y recursiva 1:N
 - 5. Tipo de relación binaria 1:1
 - 6. Tipo de relación binaria 1:1 recursiva
 - 7. Tipo de relación binaria M:N
 - 8. Tipo de relación **n-aria**
 - 9. Atributo multivalorado

1. Obtener Relaciones (tablas)

 Cada relación (tabla) obtenida la describiremos mediante una ficha, utilizando la siguiente plantilla:

```
TABLA_EJEMPLO (atributo 1, atributo 2, atributo 3, atributo 4, atributo 5, atributo 6,
                  atributo7, atributo8, atributo9)
Admiten NULL: atributo7, atributo9
Clave Primaria: atributo 2
Claves Alternativas (UNIQUE): 1. atributo3; 2. (atributo4, atributo5);
Claves Ajenas (FOREIGN KEY):
 1. (atributo7)
                         Referencia a UNATABLA(clave)
 2. (atributo8, atributo9) Referencia_a OTRATABLA(clave1,clave2)
Derivados:
 1. atributo6 = atributo2*20/100
Comprobar:
 1. atributo 1 IN ('SI', 'NO')
 2. atributo 6 > 0
 3. atributo7 >= atributo3
 •••
```

Resumen de la traducción MER -> MR

13

Elemento del MER	Elemento(s) del Modelo Relacional en el que se traduce		
Tipo de entidad fuerte	Relación (tabla)		
Tipo de entidad débil	Relación (tabla). Tras traducir el tipo de relación identificador, se podrá formar la clave primaria como la unión de la clave ajena y el discriminante		
Tipo de relación 1:N	Clave ajena (en la relación correspondiente al tipo de entidad "hijo" con cardinalidad máxima 1)		
Tipo de relación 1:N recursiva	Clave ajena en la relación que referencia a la misma relación (al "padre"). La relación juega el papel de "hijo"		
Tipo de relación 1:1 con participación opcional en un lado	Clave ajena (en la relación correspondiente al tipo de entidad "hijo" con cardinalidad mínima 1) ▶ La clave ajena también es clave alternativa		
Tipo de relación 1:1 con participación obligatoria en ambos lados	Clave ajena en una de las dos relaciones La clave ajena también es clave alternativa O, si los tipos de entidad son "sinónimos", integrar todo en una sola relación (tabla)		
Tipo de relación 1:1 con participación opcional en ambos lados	Clave ajena en una de las dos relaciones La clave ajena también es clave alternativa		

kesumen de id	a fraduction MER -> MK
14	
Elemento del MER	Elemento(s) del Modelo Relacional en el que se traduce

Tipo de **relación 1:1 recursiva** con participación obligatoria en ambos lados

Clave ajena que referencia a la propia relación La clave ajena también es clave alternativa

Tipo de **relación 1:1 recursiva** con

Relación (tabla) con 2 claves ajenas que referencian a la misma relación (la correspondiente al tipo de entidad)

participación opcional en ambos lados

▶ Una clave ajena es clave primaria; la otra, clave alternativa Elegir una de las opciones anteriores (clave ajena o nueva relación)

Tipo de **relación 1:1 recursiva** con

Relación (tabla) con 2 claves ajenas: una para cada relación correspondiente a cada tipo de entidad conectado La clave primaria es la combinación de las claves ajenas, o quizá haya que añadir un atributo (si error de diseño concep.) Relación (tabla) con n claves ajenas: una para cada relación

participación opcional en un lado

Tipo de relación M:N

correspondiente a cada tipo de entidad conectado La clave primaria es la concatenación de las claves ajenas, Tipo de relación n-aria o de algunas de ellas, o quizá haya que añadir un atributo (si error de diseño conceptual) Relación (tabla) con el atributo y con una clave ajena hacia la

atributo, o bien sólo el atributo

relación correspondiente al tipo de entidad al que pertenece Atributo multivalorado el atributo La clave primaria es la combinación de la clave ajena y el

Resumen de traducción MERE -> MR

15

Elemento del MERE	Elemento(s) del Modelo Relacional en el que se traduce			
Jerarquía Disjunta y Total	Una relación (tabla) por cada combinación tipo/subtipo + Restricción de integridad general (aserto) para garantizar la disyunción			
Jerarquía Disjunta y Parcial	 Una relación para el supertipo Una relación para cada subtipo con In una clave ajena que referencia a la relación supertipo La clave primaria es esa clave ajena 			
Jerarquía Solapada y Total	Una sola relación (tabla) con atributo(s) discriminante(s) + Restricciones de comprobación			
Jerarquía Solapada y Parcial	 2 Relaciones (tablas): una para el supertipo y otra para todos los subtipos; ésta última contiene > Uno o más discriminantes > Restricciones de comprobación > Clave ajena que referencia a la relación del supertipo > La clave primaria es dicha clave ajena 			

1.1. Tipo de entidad fuerte

- Se traduce a una relación (tabla)
 - Recomendado: usar el mismo nombre o uno muy similar
- La relación incluye estos atributos
 - Uno para cada atributo simple del tipo de entidad
 - Uno para cada componente de los atributos compuestos
- ☐ Y estas claves
 - La clave primaria se deriva del identificador principal
 - Una clave alternativa (UNIQUE) por cada identificador alternativo
- i Los atributos deben incluir sus restricciones: si admiten o no el nulo, si son calculados, etc.

EDITORIAL(nombre,calle,numero,cod_post,ciudad)

Admiten NULL: cod_post

Clave primaria: nombre

Ejemplo. Traducción de tipos de entidad fuertes

1/

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: **cod_post** Clave primaria: **nombre**

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admiten NULL: **DNI**, **fin_pena**

Clave primaria: codigo Clave alternativa: DNI

Derivados: penalizado,

fin_pena

(nota: faltan fórmulas de cálculo)

AUTOR(id, nombre, pais, año_nacim, num_premios, nombre, ape1, ape2)

Admiten NULL: ape2 Clave primaria: id

LIBRO(ISBN, titulo, año, edicion, num_copias)

Admiten NULL: Ninguno Clave primaria: **ISBN**

Derivado: num_copias (nota: falta fórmula de cálculo)

1.2. Tipo de entidad débil

- Se traduce a una relación (tabla) de igual modo que en el paso 1.1 (tipo de entidad fuerte)
- Puesto que la clave primaria del tipo de entidad débil se obtiene (total o parcialmente) de la de su tipo de entidad fuerte, NO puede ser definida <u>hasta traducir el</u> tipo de relación que la conecta a su fuerte

EJEMPLAR(numero, estante)

Admiten NULL: Ninguno

Clave primaria: < Pendiente >

(i) La clave primaria la podremos definir cuando se traduzca el tipo de relación identificador

Ejemplo. Traducción de tipos de entidad débil

19

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: **cod_post** Clave primaria: **nombre**

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admiten NULL: DNI, fin_pena

Clave primaria: codigo

Clave alternativa: **DNI** Derivados: **penalizado**,

fin_pena

(nota: faltan fórmulas de cálculo)

AUTOR(id, nombre, pais, año_nacim, num_premios, nombre, ape1, ape2)

Admiten NULL: ape2 Clave primaria: id

LIBRO(ISBN, titulo, año, edicion, num_copias)

Admiten NULL: Ninguno Clave primaria: **ISBN**

Derivado: num_copias (nota: falta fórmula de cálculo)

EJEMPLAR(numero, estante)

Admiten NULL: Ninguno Clave primaria: < Pendiente >

- □ La traducción depende del tipo de la jerarquía
 - Disjunta y Total
 - Disjunta y Parcial
 - Solapada y Total
 - Solapada y Parcial

Jerarquía disjunta y total

Da lugar a varias relaciones: una relación por cada combinación supertipo/subtipo

- Tantas relaciones como <u>subtipos</u>
- Cada relación contendrá todos los atributos del correspondiente subtipo y los del supertipo
 - ► El supertipo NO se traduce a relación
- Hay que definir una restricción de integridad general (aserto) para garantizar la disyunción

Ejemplo 1 de transformación de una jerarquía disjunta y total

ARTICULO (codigo, titulo, idioma, nom_revista) **Clave primaria**: codigo

LIBRO (codigo, titulo, idioma, año_edicion, editorial)

Clave primaria: codigo

Tenemos que añadir algo que garantice la disyunción

Se debe asegurar que
 Ninguna instancia de tipo ARTICULO
 puede ser a la vez instancia de tipo LIBRO

i El atributo discriminante no aparece en ninguna de las relaciones resultado de la traducción

Esto está redactado a **nivel Conceptual**Ahora **estamos en el nivel Lógico**, donde ¡sólo hay **relaciones** (tablas) **y claves ajenas** (vínculos)!

Hay que redactar ASERTOS

Inciso: Redactar ASERTOS

Un aserto es una restricción de integridad que afecta a más de una relación y expresa una condición que sus tuplas deben cumplir

¿Cómo redactar asertos?

- Expresar lo que NO puede ocurrir
- Usar como vocabulario los nombres de relación y de atributo
 - En el esquema lógico ya no hay tipos de entidad, ni tipos de relación, ni instancias
 - Tenemos relaciones, atributos, tuplas, valores...

Inciso: Redactar ASERTOS

- Aplicamos a nuestro ejemplo:
- ▶ Se debe comprobar que Ninguna instancia de tipo ARTICULO puede ser a la vez instancia de tipo LIBRO
- Eso ocurriría si hubiera un artículo y un libro con el mismo código
- 1) Redactamos el **aserto** usando el **vocabulario** correcto
- ➤ Se debe comprobar que ninguna tupla de la relación ARTICULO tiene el mismo valor en el atributo "codigo" que alguna tupla de la relación LIBRO ASERTO RI_

- 2) Mejoramos la **redacción** del aserto para que sea algo más **formal**
- ▶ Comprobar que no existe una tupla de ARTICULO tal que el valor de "codigo" esté entre los valores de "codigo" de las tuplas de LIBRO
- 3) Le damos un **nombre** al aserto y formateamos su redacción con estilo de **pseudocódigo**

ASERTO RI_articulo_xor_libro
COMPROBAR_QUE (
NO_EXISTE (una tupla de ARTICULO
tal que el valor de "codigo"
ESTÉ_ENTRE (valores de "codigo"
de LIBRO)));

¡Retomamos!

Ejemplo 1 de transformación de una jerarquía disjunta y total

ARTICULO (codigo, titulo, idioma, nom_revista)

Clave primaria: codigo

LIBRO (codigo, titulo, idioma, año_edicion, editorial)

Clave primaria: codigo

ASERTO RI_articulo_xor_libro

COMPROBAR_QUE (
NO_EXISTE (una tupla de ARTICULO
tal que el valor de "codigo"

ESTÉ_ENTRE (valores de "codigo" en LIBRO)));

Ejemplo 2 de transformación de una jerarquía disjunta y total

PROFESOR(dni, nombre, categoria)

Clave primaria: dni

BECARIO(dni, nombre, tipo_beca)

Clave primaria: dni

PAS(dni, nombre, actividad)

Clave primaria: dni

```
ASERTO RI_profesor_xor_becario_xor_pas
COMPROBAR_QUE (
NO_EXISTE ((valores de "dni" de PROFESOR)
INTERSECCION
(valores "dni" de BECARIO)
INTERSECCION
(valores "dni" de PAS)));
```

Jerarquía disjunta y parcial

 Da lugar a varias relaciones: una relación para el <u>supertipo</u>
 y una relación para <u>cada subtipo</u>

- Las relaciones correspondientes a los subtipos...
 - Contienen una clave ajena que referencia a la clave primaria de la relación correspondiente al supertipo
 - La clave primaria de cada relación (de subtipo) es dicha clave ajena
- Hay que definir una restricción de integridad general (aserto) para garantizar la disyunción

Ejemplo de traducción de una jerarquía disjunta y parcial

DOCUMENTO (codigo, titulo, idioma)

Clave primaria: codigo

ARTICULO (codigo, nom_revista)

Clave primaria: codigo

Clave ajena:codigo Referencia_a DOCUMENTO(codigo)

LIBRO (codigo, año_edicion, editorial)

Clave primaria: codigo

Clave ajena: codigo Referecia_a DOCUMENTO(codigo)

(i) El atributo discriminante no aparece en ninguna de las relaciones

resultado de la traducción

ASERTO RI_articulo_xor_libro

COMPROBAR_QUE (
NO_EXISTE (una tupla de ARTICULO
tal que el valor de "codigo"
ESTÉ_ENTRE (valores de "codigo"
en LIBRO)));

Jerarquía solapada y total

Da lugar a una única relación, que corresponde al <u>supertipo</u>

- Debe incluir <u>uno o más</u> **atributos discriminantes** para distinguir el tipo concreto de cada tupla
- Los atributos de los subtipos han de admitir el nulo
- Hay que definir restricciones de comprobación para asegurar la corrección de los datos para cada tupla según su tipo

Ejemplo de traducción de jerarquía solapada total OPCIÓN 1

UNIVERSITARIO(dni, nombre, *tipo*, titulacion, salario)

Admiten NULL: titulacion, salario

Clave primaria: dni

Comprobar:

- tipo IN ('Estudiante', 'Empleado', 'Est+Emp')
- ((tipo = 'Estudiante' AND titulacion IS NOT NULL)
 OR (tipo = 'Empleado' AND salario IS NOT NULL)
 OR (tipo = 'Est+Emp' AND titulacion IS NOT NULL)
 AND salario IS NOT NULL))

i Uso de un atributo discriminante, con un valor para cada subtipo ('Estudiante' o 'Empleado') y un valor extra para el solapamiento ('Est+Emp')

Ejemplo de traducción de jerarquía solapada total OPCIÓN 2

UNIVERSITARIO

Tipo

ESTUDIANTE EMPLEADO

Titulacion salario

i Uso de dos atributos discriminantes (uno por cada subtipo), con un valor SÍ/NO

UNIVERSITARIO (dni, nombre, estudia, trabaja, titulacion, salario)

Admiten NULL: titulacion, salario

Clave primaria: dni

Comprobar:

- estudia IN ('S', 'N')
- trabaja IN ('S', 'N')
- NOT (estudia = 'N' AND trabaja = 'N')
- (estudia='S' AND titulacion IS NOT NULL)
 OR (estudia='N' AND titulacion IS NULL)
- (trabaja='S' AND salario IS NOT NULL) OR (trabaja='N' AND salario IS NULL)

Contiene todas las tuplas, incluidas las que no pertenecen a ninguno

de los subtipos

que pertenecen a uno

1.3. Traducción de Jerarquías

- □ Jerarquía solapada y parcial
 - Da lugar a 2 relaciones: una relación para el <u>supertipo</u> y una relación para Contiene las tuplas todos los subtipos

o varios subtipos La relación que agrupa a los subtipos...

- Incluye una clave ajena que referencia a la relación correspondiente al supertipo
- La clave primaria es dicha clave ajena
- Incluye discriminante(s) para distinguir el tipo de cada tupla
- Debe contener restricciones de comprobación que garanticen la corrección de los datos
- Los atributos de los subtipos han de admitir el nulo

Ejemplo de traducción de jerarquía solapada parcial OPCIÓN 1

i Uso de un atributo discriminante, con un valor para cada tipo y un valor extra para el solapamiento

INDIVIDUO(dni, nombre, fechanac)

Clave primaria: dni

INDIVIDUO_ACTIVO(dni, actividad, titulacion, nss, sueldo)

Admiten NULL: titulacion, nss, sueldo

Clave primaria: dni Clave alternativa: nss

Clave ajena: dni Referencia_a INDIVIDUO(dni)

Comprobar:

- actividad IN ('Estudia', 'Trabaja', 'Est+Trab')
- ((actividad='Estudia' AND titulacion IS NOT NULL)

OR (actividad='Trabaja' AND nss IS NOT NULL AND sueldo IS NOT NULL)

OR (actividad='Est+Trab'
AND titulacion IS NOT NULL
AND nss IS NOT NULL AND sueldo IS NOT NULL))

Ejemplo de traducción de jerarquía solapada parcial OPCIÓN 2

i Uso de varios atributos discriminantes: uno por subtipo, con un valor SÍ/NO

INDIVIDUO(dni, nombre, fechanac)

Clave primaria: dni

INDIVIDUO_ACTIVO(dni, estudia, curra, titulacion, nss, sueldo)

Admiten NULL: titulacion, nss, sueldo

Clave primaria: dni

Clave alternativa: nss

Clave ajena: dni Referencia_a INDIVIDUO(dni)

Comprobar:

- estudia IN ('S', 'N') AND curra IN ('S', 'N')
- NOT (estudia = 'N' AND curra = 'N')
- ((estudia='S' AND titulacion IS NOT NULL)
 OR (estudia='N' AND titulacion IS NULL))
- ((curra='S' AND nss IS NOT NULL AND sueldo IS NOT NULL)

OR (curra='N' AND nss IS NULL AND sueldo IS NULL))

1.4. Tipo de relación 1:N

 Se traduce a una clave ajena que referencia desde una relación (tabla) a la otra

¿En qué relación se introduce la clave ajena?

- Hay que identificar los tipos de entidad 'padre' e 'hijo'
 - Tipo de entidad 'padre': el que participa muchas veces en el tipo de relación
 - □ Tipo de entidad 'hijo': el que participa sólo una vez

- En PUBLICADO_POR, cada LIBRO participa sólo una vez, pues es publicado por una y sólo una editorial, mientras que EDITORIAL participa muchas veces, pues puede haber editado muchos libros
- Padre: EDITORIAL; Hijo: LIBRO

- La clave ajena servirá para enlazar cada tupla (fila) 'hijo' con su correspondiente tupla 'padre'
 - □ Cada LIBRO indicará cuál es su EDITORIAL
- Hay que añadir al tipo relación 'hijo' una copia de la clave primaria del tipo relación 'padre'

- Es la "propagación de la clave": el padre transmite su clave al hijo, donde es una clave ajena que referencia al padre
- La clave ajena tendrá uno o varios atributos según tenga la clave primaria a la que referencia
 - Si sólo es un atributo puede llamarse como la relación a la que referencia (recomendado)
 - Pero cada atributo componente de la clave ajena puede tener el mismo nombre que el atributo del que es copia, o puede llamarse de otra forma

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: Ninguno

Clave primaria: nombre

LIBRO(ISBN, titulo, año, edicion, num_copias, editorial)

Admiten NULL: Ninguno **Clave primaria**: ISBN

Clave ajena: editorial Referencia_a EDITORIAL(nombre)

Derivado: num_copias (nota:falta fórmula de cálculo)

EDITORIAL

<u>nombre</u>	calle	numero	cod_post	ciudad
Espasa	Josefa Valcárcel	42	28027	Madrid
Santillana	Avenida de los Artesanos	6	28760	Tres Cantos, Madrid
Edebé	Paseo San Juan Bosco	62	08017	Barcelona

LIBRO

<u>ISBN</u>	titulo	año	edicion	num_copias	editorial
9788408217251	Un científico en el supermercado	2019	1	14	Espasa
9788491223542	Malamandra	2019	5	5	Santillana
978846831 <i>57</i> 7 <i>5</i>	Mentira	2015	4	12	Edebé
9788467009101	Divina comedia	2010	50	25	Espasa
9788468319612	La nueva vida del señor Rutin	2014	23	16	Edebé

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: cod_post Clave primaria: nombre

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admiten NULL: **DNI**, **fin_pena**

Clave primaria: codigo Clave alternativa: DNI

Derivados: penalizado, fin_pena

(nota: faltan fórmulas de cálculo)

AUTOR(id, nombre, pais, año_nacim, num_premios, nombre, ape1, ape2)

Admiten NULL: ape2 Clave primaria: id

LIBRO(ISBN,titulo,año,edicion,num_copias, editorial)

Admiten NULL: Ninguno Clave primaria: **ISBN**

Clave ajena: editorial REFERENCIA_A EDITORIAL(nombre)

Derivado: num_copias (nota: falta fórmula de cálculo)

EJEMPLAR(numero, estante) Admiten NULL: Ninguno Clave primaria: <*Pendiente*>

1.4. Tipo de relación 1:N identificador

Si el tipo de entidad 'hijo' es débil, se traduce igual y además, la clave ajena forma parte de la clave primaria

EJEMPLAR (numero, estante, **ISBN**)

Admiten NULL: Ninguno

Clave primaria: (ISBN, numero)

Clave ajena: ISBN Referencia a LIBRO(ISBN)

LIBRO(ISBN, titulo, año, edicion, num_copias, editorial)

Admiten NULL: Ninguno Clave primaria: ISBN

Clave ajena: editorial Referencia a EDITORIAL(nombre)

Derivado: num_copias [para cada tupla l contar tuplas e de EJEMPLAR

cuyo valor de e.ISBN es igual a l.ISBN] Podemos redactar la fórmula de cálculo

relación identificador

permite ipor fin! definir la

clave primaria de la

relación que corresponde

al tipo de entidad débil

1.4. Tipo de relación 1:N identificador

ISBN	titulo		año	edicion	num_cc	pias	ed	itorial
9788408217251	Un científico en el supermerc	ado	2019	1	14		Esp	asa
9788491223542	Malamandra		2019	5	5	:	San	tillana
978846831 <i>57</i> 7 <i>5</i>	Mentira		2015	4	12	J	Ede	bé
9788467009101	Divina comedia		2010	50	25		Esp	asa
9788468319612	La nueva vida del señor Rutir		ISBN		numero	estan	ite	bé
LIBRO		978	84082	17251	1	H4		
		978	84082	17251	2	H4		
		978	84082	17251	3	H5		
	EIEMDI AD	978	84670	09101	1	M2		
	EJEMPLAR	978	84670	09101	2	M2)	
	n ejemplar solo se gue de otro ejemplar	978	84683	19612	1	S 1		
conc	ciendo tanto el ISBN	978	84912	23542	1	S2		
	e su libro como su mero de ejemplar	978	84912	23542	2	А3		
110	mero de ejempiai	978	84683	15775	1	57		

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: cod_post Clave primaria: nombre

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admiten NULL: **DNI**, fin_pena

Clave primaria: **codigo** Clave alternativa: **DNI** Derivados: **penalizado**,

fin_pena

(nota: faltan fórmulas de cálculo)

AUTOR(id, nombre, pais, año_nacim, num_premios, nombre, ape1, ape2)

Admiten NULL: ape2 Clave primaria: id

LIBRO(ISBN, titulo, año, edicion, num_copias, editorial)

Clave primaria: ISBN

Clave ajena: editorial Referencia_a EDITORIAL(nombre)

Derivado: num_copias [para cada tupla l contar tuplas e de EJEMPLAR tal que e.ISBN= l.ISBN]

EJEMPLAR(numero, estante, **ISBN**)

Clave primaria: (ISBN, numero)

Clave ajena: ISBN Referencia_a LIBRO(ISBN)

1.4. Tipo de relación 1:N con atributos

- Si el tipo de relación contiene atributos, se añaden como atributos en el tipo de relación 'hijo'
 - "Persiguen" a la clave ajena

COMPAÑIA(nombre, año_fundacion, sede)

Clave primaria: nombre

ACTOR(codA, nombre,..., compañia, año_inicio, tipo_contrato)

Clave primaria: codA

Clave ajena: compañia Referencia_a COMPAÑIA(nombre)

1.4. Tipo de relación 1:N con atributos

COMPAÑIA

<u>nombre</u>	año_fundacion	sede
Galeras	1972	Almería
Café de las Artes	1965	Madrid
Quimera	2012	Valencia

ACTOR

codA	nombre	compañía	año_inicio	tipo_contrato
a01	Susana Sosa	Quimera	2013	temporada
a18	Vilma Valles	Café de las Artes	2000	fijo
a07	Manuel Mero	Quimera	2012	fijo
a43	Borja Bocas	Galeras	1990	temporada

La cardinalidad mínima 0 del tipo de entidad 'hijo' indica que la clave ajena SÍ admite NULO

Y con ella, el resto de atributos del tipo de relación

COMPAÑIA (nombre, año_fundacion, sede)

Admiten NULL: Ninguno **Clave primaria**: nombre

ACTOR(codA, nombre,..., compañia, año_inicio, tipo_contrato)

Admiten NULL: compañia, año_inicio, tipo_contrato

Clave primaria: codA

Clave ajena: compañia Referencia_a COMPAÑIA(nombre)

Comprobar: (compañia IS NULL AND año_inicio IS NULL AND tipo_contrato IS NULL)

OR (compañia IS NOT NULL AND año_inicio IS NOT NULL AND tipo contrato IS NOT NULL)

Los atributos
"compañía",
"año_inicio" y
"tipo_contrato"
deben cumplir que o
bien los 3 son nulos a
la vez, o bien los 3
tienen un valor

COMPAÑIA

nombre	año_fundacion	sede
Galeras	1972	Almería
Café de las Artes	1965	Madrid
Quimera	2012	Valencia

Hay que poder representar a actores/actrices que NO pertenecen a ninguna compañía teatral

ACTOR

codA	nombre	compañía	año_inicio	tipo_contrato
a01	Susana Sosa	Quimera	2013	temporada
a18	Vilma Valles	Café de las Artes	2000	fijo
a07	Manuel Mero	Quimera	2012	fijo
a43	Borja Bocas	Galeras	1990	temporada
a02	Clotilde Calle	NULL	NULL	NULL

La cardinalidad mínima 1 del tipo de entidad 'hijo' indica que la clave ajena NO admite NULO

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: Ninguno **Clave primaria**: nombre

LIBRO(ISBN, titulo, año, edicion, num_copias, editorial)

Admiten NULL: Ninguno Clave primaria: ISBN

Clave ajena: editorial Referencia_a EDITORIAL(nombre)

Derivado: num_copias [para cada tupla l, contar instancias e de EJEMPLAR

tales que e.ISBN=l.ISBN]

EDITORIAL

<u>nombre</u>	calle	numero	cod_post	ciudad
Espasa	Josefa Valcárcel	42	28027	Madrid
Santillana	Avenida de los Artesanos	6	28760	Tres Cantos, M
Edebé	Paseo San Juan Bosco	62	08017	Barcelona

Si un libro contuviera NULL en la clave ajena (atributo 'editorial') significaría que no tiene editorial, así que se incumpliría la cardinalidad mínima 1: TODO libro debe tener una

LIBRO

<u>ISBN</u>	titulo	año	edicion	num_copias	editorial	
9788408217251	Un científico en el supermercado	2019	1	14	Espasa	
9788491223542	Malamandra	2019	5	5	Santillana	1
978846831 <i>57</i> 7 <i>5</i>	Mentira	2015	4	12	NULL	K
9788467009101	Divina comedia	2010	50	25	Espasa	1
9788468319612	La nueva vida del señor Rutin	2014	23	16	Edebé	

La cardinalidad mínima 0 del tipo de entidad 'padre' indica que puede haber tuplas (filas) en la relación 'padre' no referenciadas mediante la clave ajena

SALA_EXPOSICION(nombre, ciudad,...)

Admiten NULL: Ninguno Clave primaria: nombre

CUADRO(codC, titulo,..., sala, fecha_inicio_expo, fecha_fin_expo)

Admiten NULL: sala, fecha_inicio_expo, fecha_fin_expo

Clave primaria: codC

Clave ajena: sala Referencia_a SALA_EXPOSICION(nombre)

Comprobar: (sala IS NULL AND fecha_inicio_expo IS NULL AND fecha_fin_expo IS NULL)

OR (sala IS NOT NULL AND fecha_inicio_expo IS NOT NULL AND fecha fin expo IS NOT NULL)

La clave ajena 'sala' y
los atributos del tipo
de relación admiten
nulos porque la
cardinalidad mínima
de CUADRO (hijo) es 0

las relaciones tras la traducción

SALA_EXPOSICION

<u>nombre</u>	ciudad	
Babel	Murcia	
Estampa	Madrid	
La Aurora	Murcia	

Hay salas de exposición no referenciadas por ningún cuadro ('Estampa' por ejemplo) OK cardinalidad mínima 0 de SALA EXPOSICION i Recordamos:
CUADRO (hijo) tiene
cardinalidad mínima 0
en EXPUESTO_EN, por
lo que la clave ajena
"sala" y los atributos
"fecha_inicio_expo" y
"fecha_fin_expo"
admiten nulos, y o
bien los 3 atributos son
nulos a la vez, o
ninguno es nulo

CUADRO

codC	titulo	sala	fecha_inicio_expo	fecha_fin_expo
c01	Mao Zoup	Babel	20/10/2019	30/10/2019
c30	Atardecer otoñal	NULL	NULL	NULL
c17	Canned Love	Babel	10/11/2019	20/11/2019
c23	La alegría de vivir	La Aurora	05/11/2019	25/11/2019
c04	Paisaje veraniego	NULL	NULL	NULL
c08	Nocturno Festivo	La Aurora	15/10/2019	31/10/2019

 La cardinalidad mínima 1 del tipo de entidad 'padre' debe representarse mediante una restricción de integridad general (Aserto)

Esa cardinalidad mínima representa que

"Toda EDITORIAL ha publicado al menos un LIBRO".

► Hay que asegurar que no existe una EDITORIAL que no esté vinculada con al menos un LIBRO vía PUBLICADO_POR.

Pero este texto no sirve para el Esquema Lógico, porque PUBLICADO_POR "ya no existe". Sólo tenemos **relaciones** (tablas) **y claves ajenas** (vínculos)...

 (cont.) Traducción de la cardinalidad mínima 1 del tipo de entidad 'padre' a un aserto

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

LIBRO(ISBN, titulo, año, edicion, num_copias, editorial)

Clave ajena: editorial Referencia_a EDITORIAL(nombre)

En el Esquema Lógico tenemos las relaciones EDITORIAL y LIBRO:

- No debe existir una tupla de EDITORIAL que no esté referenciada desde LIBRO.
- ► Es decir, hay que comprobar que no existe una tupla en EDITORIAL donde el valor de "nombre" (PK) no sea uno de los valores de "editorial" (FK) de las tuplas de LIBRO.

EDITORIAL

nombre 🦟	calle	numero	cod_post	ciudad
Espasa	Josefa Valcárcel	42	28027	Madrid
Santillana	Avenida de los Artesanos	6	28760	Tres Cantos, Madrid
Edebé	Paseo San Juan Bosco	82	08017	Barcelona
Fandom Books	C/ Valentín Beato	21	28037	Madrid

Esto es lo
que NO
debe
ocurrir: no
hay ningún
libro cuya
editorial
sea
"Fandom
Books"

LIBRO

<u>ISBN</u>	titulo	año	edicion	num_copias	editorial
9788408217251	Un científico en el supermercado	2019	1	14	Espasa
9788491223542	Malamandra	2019	5	5	Santillana
978846831 <i>57</i> 7 <i>5</i>	Mentira	2015	4	12	Edebé
9788467009101	Divina comedia	2010	50	25	Espasa
9788468319612	La nueva vida del señor Rutin	2014	23	16	Edebé

 (cont.) Traducción de la cardinalidad mínima 1 del tipo de entidad 'padre' a un aserto

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

...

LIBRO(ISBN, titulo, año, edicion, num_copias, editorial)

Clave ajena: editorial Referencia_a EDITORIAL(nombre)

La redacción más adecuada es esta:

► ASERTO RI_editorial_publica_libros

COMPROBAR_QUE (NO_EXISTE (una tupla en EDITORIAL

donde el valor de "nombre" NO_ESTÉ_ENTRE (valores de "editorial" en LIBRO)));

ACTOR(codA, nombre,..., *compañia*, año_inicio, tipo_contrato)

Admiten NULL: compañia, año_inicio, tipo_contrato

Clave primaria: codA

Clave ajena: compañia Referencia_a COMPAÑIA(nombre)

Comprobar: (compañia IS NULL AND año_inicio IS NULL AND tipo_contrato IS NULL)

OR (compañia IS NOT NULL AND año_inicio IS NOT NULL

AND tipo_contrato IS NOT NULL)

ASERTO RI_compañía_tiene_actores

COMPROBAR_QUE (NO_EXISTE (una tupla en COMPAÑIA donde el valor de "nombre" NO_ESTÉ_ENTRE (valores de "compañía" en ACTOR)));

56

EMPLEADO(codE, nombre, dni, direccion,..., jefe)

Admiten NULL: Ninguno

Clave primaria: codE Clave alternativa: dni

Clave ajena: jefe Referencia_a EMPLEADO(codE)

Comprobar: codE <> jefe

... y contiene una
clave ajena que es
una referencia al
"padre", de ahí que
la FK tome el nombre
del rol con
cardinalidad "muchos"

(0,1) componente

PRODUCTO (0,n) COMPUESTO POR POR

PRODUCTO(codP, nombre, descripcion,..., agregado)

Admiten NULL: agregado **Clave primaria**: codP

Clave ajena: agregado Referencia_a PRODUCTO(codP)

Comprobar: codP <> agregado

Deducir los **roles** "padre" e "hijo" según cardinalidades máximas (como siempre):
Padre: jefe (lado "muchos")
Hijo: subordinado (lado "1")

La relación (tabla) ya definida para el tipo de entidad SIEMPRE debe corresponder al "hijo"

EMPLEADO = subordinado

PRODUCTO = componente

- □ Se traduce a una clave ajena
- ¿En qué relación se incluye la clave ajena? Se decide con base en la participación de cada tipo de entidad
 - Cardinalidad mínima 0 = participación opcional o parcial
 - Cardinalidad mínima 1 = participación obligatoria o total
- Casos que nos podemos encontrar:

a. Participación obligatoria en un lado

- □ Tipo de entidad 'padre': la de participación opcional
 - Cardinalidad mínima 0
- □ Tipo de entidad 'hijo': la de participación obligatoria o total
 - Cardinalidad mínima 1
- Traducir a una clave ajena en la relación correspondiente al tipo de entidad hijo
 - Igual que las relaciones 1:N

EMPLEADO(codE, dni, nombre,...)

Admiten NULL: Ninguno

Clave primaria: codE Clave alternativa: dni

DEPARTAMENTO(coddep, nombre, ..., *director*, f_inicio_direccion)

Admiten NULL: Ninguno Clave primaria: coddep

Clave alternativa: director

Clave ajena: director Referencia_a EMPLEADO(codE)

Diferencia con la traducción de las 1:N

i La cardinalidad máxima 1 del tipo de entidad "padre" hace que la clave ajena en la relación "hijo" también sea Clave Alternativa... Veámoslo...

EMPLEADO

codE	nombre	
e1	Laura López	
e2	María Martínez	
e3	Abel Ayala	
e4	Pedro Palao	
e5	Simona Sánchez	
•••		

Si el d Sí re signific emple

Si el atributo "director"
SÍ repitiera valores,
significaría que el mismo
empleado puede dirigir
varios departamentos

DEPARTAMENTO

<u>coddep</u>	nombre	director	f_inicio_direccion
d1	Informática	e2	23/02/2015
d2	Sistemas	e2	15/04/2016
d3	Administración	e1	01/02/2013

EMPLEADO

codE	nombre	
e1	Laura López	
e2	María Martínez	
e3	Abel Ayala	
e4	Pedro Palao	
e5	Simona Sánchez	
•••		

El atributo "director" debe ser clave. Así se asegura que no puede repetir valores (un mismo empleado no puede dirigir varios departamentos):

DEPARTAMENTO

<u>coddep</u>	nombre	director	f_inicio_direccion
d1	Informática	e2	23/02/2015
d2	Sistemas	e3	15/04/2016
d3	Administración	e1	01/02/2013

62

¿Sería correcto
traducir AL REVÉS?
(añadir la clave ajena en la
de participación opcional
-- padre)

Recordamos: la clave ajena no puede repetir valores (cardinalidad máxima 1 del padre)

EMPLEADO

codE	nombre	depto_dirigido	f_inicio_direccion
e1	Laura López	d3	01/02/2013
e2	María Martínez	d1	23/02/2015
e3	Abel Ayala	d2	15/04/2016
e4	Pedro Palao	NULL	NULL
e5	Simona Sánchez	NULL	NULL
•••			

KO: Demasiados NULL en "depto_dirigido" y "f_inicio_direccion" (para todos aquellos empleados que NO son directores, que serán la MAYORÍA)

DEPARTAMENTO

<u>coddep</u>	nombre
d1	Informática
d2	Sistemas
d3	Administración

- b. Participación obligatoria en ambos lados.
 - Traducir a una clave ajena, que se puede incluir en <u>cualquiera</u> de las dos relaciones
 - Aunque lo habitual es que tenga más sentido que sea una concreta la que referencie a la otra (usar el sentido común)

HISTORIAL(numero, medico, hospital, paciente, fecha_apertura)

Admiten NULL: Ninguno

Clave primaria: numero. Clave alternativa: paciente 🖈

Clave ajena: paciente Referencia_a PACIENTE(NSS)

Hay que añadir un ASERTO para asegurar que todo paciente tiene un historial

- c. Participación opcional en ambos lados
 - Elegir "al azar" pero "con sentido común" los tipos de entidad 'padre' e 'hijo' y traducir a clave ajena

Admiten NULL: conductor

© Recordamos:

(i) Recordamos: la clave ajena admite nulos por la cardinalidad mínima 0 del tipo de entidad hijo (COCHE)

Clave alternativa: conductor

Clave primaria: matricula

(i) Recordamos: la clave ajena también es Clave Alternativa por la cardinalidad máxima 1 del padre (EMPLEADO)

Clave ajena: conductor Referencia_a EMPLEADO(codE)

- ¿Incluir una clave ajena en la relación o crear una nueva relación (tabla) para el tipo de relación?
- Decidir con base en la participación de cada tipo de entidad (cardinalidad mínima)
 - a. Obligatoria en ambos lados
 - b. Opcional en ambos lados
 - c. Obligatoria en un lado

a. Participación obligatoria en ambos lados

- Añadir a la relación correspondiente al tipo de entidad una copia de su propia clave primaria
- Dicha copia es una clave ajena que referencia a la misma relación, y debe renombrarse adecuadamente (usar roles)

Y por la cardinalidad mínima 1 de "supervisor" hay que añadir un ASERTO para asegurar que **todo empleado supervisa a un empleado** (1,1) supervisado

(1,1) SUPERVISA_A

supervisor

Decidimos que

"supervisor" es el padre y

EMPLEADO(codE, nombre, dni, direccion,..., supervisor)

Admiten NULL: Ninguno

Clave primaria: codE

Claves alternativas: (dni), (supervisor)

(i) Recordamos: la clave ajena también es Clave Alternativa (por traducir una 1:1)

"supervisado" es el **hijo**

Clave ajena: supervisor Referencia_a EMPLEADO(codE)

Comprobar: --

(cuando es el jefe de todos los demás)

- b. Participación opcional en ambos lados
 - Crear una nueva relación para el tipo de relación
 - Con 2 copias de la clave primaria de la relación en la que se ha traducido el tipo de entidad
 - Las dos son claves ajenas a la misma relación
 - Renombrar adecuadamente dichas claves ajenas (usar roles)

ALUMNO(dni,num_expediente,nombre,...)

Admiten NULL: Ninguno

Clave primaria: dni

Clave alternativa: num_expediente

ES_TUTOR(tutor, pupilo, fecha_inicio)

Admiten NULL: Ninguno

Clave primaria: tutor; Clave alternativa: pupilo Clave ajena: tutor Referencia_a ALUMNO(dni) Clave ajena: pupilo Referencia_a ALUMNO(dni)

Comprobar: tutor <> pupilo

Añadimos: un alumno no se puede tutorizar a sí mismo

(0,1) pupilo

ALUMNO (0,1) ES_TUTOR tutor fecha_inicio

i En la nueva relación, una de las claves ajenas será la clave primaria, y la otra será clave alternativa

- c. Participación obligatoria en un lado
 - □ Traducir a clave ajena, como en el caso a.
 - Tipo de entidad 'padre': la de participación opcional (0,1)
 - Tipo de entidad 'hijo': la de participación obligatoria (1,1)

Recordamos: la **relación** ya definida para el tipo de entidad, siempre **corresponde al "hijo"**:

MONARCA = sucesor

MONARCA(nombre, casa, f_coronacion, fin_reinado, consorte, ..., antecesor)

Admiten NULL: fin_reinado, consorte

Clave primaria: nombre

(por la cardinalidad máxima 1 del 'padre')

Clave alternativa: antecesor <

Clave ajena: antecesor Referencia_a MONARCA(nombre)

Comprobar: nombre <> antecesor Añadimos: un monarca no puede ser su propio antecesor

1.7. Tipo de relación M:N

- Crear una nueva relación (tabla)
 - Añadir una copia de las claves primarias de los tipos de entidad conectados: serán claves ajenas a cada una de las relaciones correspondientes a dichos tipos de entidad
 - Incluir atributos (columnas) para los atributos del tipo de relación
 - La clave primaria de la nueva relación será la concatenación de ambas claves ajenas
 - Añadir un aserto por cada cardinalidad mínima 1

1.7. Tipo de relación M:N

TRABAJA_EN(empleado, proyecto, horas_semana)

Admiten NULL: Ninguno

Clave primaria: (empleado, proyecto)

Clave ajena: empleado Referencia_a EMPLEADO(codE)
Clave ajena: proyecto Referencia_a PROYECTO(idP)

ASERTO RI_empleado_trabaja_en_proyectos COMPROBAR_QUE

(NO_EXISTE (una tupla en EMPLEADO

donde el valor de "codE" NO_ESTÉ_ENTRE (valores de "empleado" en TRABAJA_EN))**);**

ASERTO RI_proyecto_tiene_empleados COMPROBAR_QUE

(NO_EXISTE (una tupla en PROYECTO

donde el valor de "idP" NO_ESTÉ_ENTRE (valores de "proyecto" en TRABAJA_EN)));

Las cardinalidades
mínimas 1 de los tipos
de entidad conectados
por la M:N hacen
necesaria la definición
de 2 asertos

e2 25 p4 e3 35 **p**3 30 e1 **p**1 20 e4 **p**1 35 e5 **p2** 15 e4 p4

Cada fila de TRABAJA_EN se distingue de las demás mediante los valores de los atributos (empleado, proyecto): esa es su clave

Ejemplo. Traducción de tipos de relación M:N

calle

telefono

DNI

numero

año_ nacim titulo edicion RI3 (0,n)(1,m)num_ premios ESCRITO POR **AUTOR** COPIA DE LIBRO (1,1)num copias nombre_completo numero (1,1)(0,1)nombre PUBLICADO POR estante ape2) **EJEMPLAR** fecha (1,n)(0,n)nombre **EDITORIAL FECHA** (fin pena direccion

(penalizado)

nombre

SOCIO

ESCRITO_POR(libro, autor)

(f devolucion

Admiten NULL: Ninguno

RI1 RI2

PRESTADO A

(maxdevolucion)

(0,p)

Clave primaria: (libro, autor)

(0,m)

Clave ajena: **libro** Referencia_a **LIBRO(ISBN)**Clave ajena: **autor** Referencia_a **AUTOR(id)**

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: cod_post Clave primaria: nombre

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admiten NULL: DNI, fin_pena

Clave primaria: codigo Clave alternativa: DNI

ciudad)

Derivados: **penalizado, fin_pena** [fórmulas de cálculo]

AUTOR(id, nombre, pais, año_nacim, num premios, nombre, ape1, ape2)

Admiten NULL: **ape2** Clave primaria: **id**

LIBRO(ISBN, titulo, año, edicion, num_copias,

editorial)

Admiten NULL: Ninguno Clave primaria: **ISBN** Clave ajena: **editorial**

Referencia_a **EDITORIAL(nombre)**Derivado: **num_copias** [para cada...]

EJEMPLAR(numero, estante, **ISBN**)

Admiten NULL: Ninguno

Clave primaria: (ISBN, numero)

Clave ajena: ISBN Referencia_a LIBRO(ISBN)

ESCRITO_POR(*libro*, *autor*)

Admiten NULL: Ninguno

Clave primaria: (libro, autor)

Clave ajena: libro Referencia_a LIBRO(ISBN)
Clave ajena: autor Referencia a AUTOR(id)

ASERTO RI_autor_escribe_libros COMPROBAR_QUE

(NO_EXISTE (una tupla de AUTOR donde el valor de "id" NO_ESTÉ_ENTRE (valores de "autor" en ESCRITO_POR)));

La cardinalidad
mínima 1 del tipo de
entidad AUTOR hace
necesaria la definición
de un aserto

LIBRO

<u>ISBN</u>	titulo	•••
9788497404518	La Celestina	
9788467006971	Para Ana (de tu muerto)	
9788497939072	Crimen y Castigo	
9788498003116	Fundación	
9788493806125	Don Quijote de la Mancha	
9788435018364	Yo, robot	
A		

AUTOR

ic	<u> </u>	•••	apellido1	•••
a	1		Cervantes	
a	2		Del Val	
a	3		Dostoievski	
a	4		Asimov	
a	5		De Rojas	
a	6		Roca	

ESCRITO_POR

libro	<u>autor</u>
9788497404518	a 5
9788467006971	a2
9788467006971	a6
9788497939072	a3
9788498003116	a4
9788493806125	a1
9788435018364	a4

El atributo "libro" puede tener valores repetidos: hay libros con varios autores

El atributo "autor"
puede tener valores
repetidos: hay
autores con varios
libros

Cada fila de ESCRITO_POR se distingue de las demás mediante los valores de los atributos (libro, autor): esa es su clave, compuesta

LIBRO

<u>ISBN</u>	titulo	•••
9788497404518	La Celestina	
9788467006971	Para Ana (de tu muerto)	
9788497939072	Crimen y Castigo	
9788498003116	Fundación	
9788493806125	Don Quijote de la Mancha	
9788435018364	Yo, robot	
9788408055785	Las mil y una noches	

ESCRITO_POR

libro	autor_
9788497404518	a5
9788467006971	a2
9788467006971	a6
9788497939072	a3
9788498003116	a4
9788493806125	al
9788435018364	a4

AUTOR

id	•••	apellido1	•••
al		Cervantes	
a2		Del Val	
a3		Dostoievski	
a4		Asimov	
a5		De Rojas	
a6		Roca	

a) ¿Cómo se representa la cardinalidad mínima 0 de LIBRO en ESCRITO_POR?
b) ¿Cómo se representa un LIBRO cuyo autor se desconoce (libro anónimo, sin autor registrado)? Veámoslo en la siguiente diapositiva

KO!

77

LIBRO

<u>ISBN</u>	titulo	•••
9788497404518	La Celestina	
9788467006971	Para Ana (de tu muerto)	
9788497939072	Crimen y Castigo	
9788498003116	Fundación	
9788493806125	Don Quijote de la Mancha	
9788435018364	Yo, robot	
9788408055785	Las mil y una noches	

ESCRITO_POR

AUTOR

¿¿Mediante una fila en ESCRITO_POR con un NULL en el "autor"??

La clave primaria de
ESCRITO_POR es
(libro, autor), por lo que
NINGUNO de esos atributos
puede contener un NULL

78

LIBRO

<u>ISBN</u>	titulo	•••
9788497404518	La Celestina	
9788467006971	Para Ana (de tu muerto)	
9788497939072	Crimen y Castigo	
9788498003116	Fundación	
9788493806125	Don Quijote de la Mancha	
9788435018364	Yo, robot	
9788408055785	Las mil y una noches	

AUTOR

<u>id</u>	•••	apellido1	•••
a1		Cervantes	
a2		Del Val	
a3		Dostoievski	
a4		Asimov	
a5		De Rojas	
a6		Roca	

ESCRITO POR

libro	autor
9788497404518	a5
9788467006971	a2
9788467006971	a6
9788497939072	a3
9788498003116	a4
9788493806125	a1
9788435018364	a4

El libro anónimo 'Las mil y una noches' simplemente no aparece en la relación ESCRITO_POR: ninguna fila le hace referencia (lógico, porque no tiene autores)

Admiten NULL: Ninguno

Clave primaria: (paciente, doctor)

Pero... ¿Esto ES clave?

Clave ajena: paciente Referencia_a PACIENTE(NSS)

Clave ajena: doctor Referencia a MEDICO(num colegiado)

ASERTO RI_paciente_visita COMPROBAR_QUE

(NO EXISTE (una tupla en PACIENTE donde el valor de "NSS" NO ESTÉ ENTRE (valores de "paciente" en VISITA)));

ASERTO RI medico visita COMPROBAR QUE

(NO EXISTE (un MEDICO donde el valor de "num_colegiado" NO_ESTÉ_ENTRE (valores de "doctor" en VISITA)));

PACIENTE

NSS	nombre
123456789012	Higinia Hernández
456789012345	Torcuato Torres
678901234567	Bonifacia Berza
234567890123	Lucrecio Lorente
567890123456	Zacarías Zornoza
345678901234	Damiana Díaz
1	

VISITA

<u>paciente</u>	<u>doctor</u>	día_hora
123456789012	12345	04/11/2019 10:05
456789012345	12345	04/11/2019 11:35
456789012345	12345	08/11/2019 12:20
678901234567	11223	04/11/2019 10:05
234567890123	44332	04/11/2019 10:05
567890123456	12345	09/11/2019 09:15
345678901234	44332	05/11/2019 13:00
567890123456	11223	06/11/2019 11:45
	123456789012 456789012345 456789012345 678901234567 234567890123 567890123456 345678901234	123456789012 12345 456789012345 12345 456789012345 12345 678901234567 11223 234567890123 44332 567890123456 12345 345678901234 44332

MEDICO

7	<u>num_</u>		•••
	<u>colegiado</u>	nombre	
	12345	Sonsoles Sáez	
	11223	Vilma Val	
	44332	Jonás Jaén	

El atributo "paciente" puede tener valores repetidos: hay pacientes que acuden a varias visitas

El atributo "doctor" puede tener valores repetidos: los médicos atienden varias visitas

Pero un mismo paciente puede visitar varias veces al mismo médico: cada VISITA concreta NO se distingue de las demás sólo con los valores (paciente, doctor)

(paciente,doctor) **NO** es CLAVE

- A veces (sólo a veces), la concatenación de las claves ajenas no forma una clave
- Eso significa que en el esquema conceptual se omitió un tipo de entidad conectado al tipo de relación
 - Es un error de diseño que se puede rectificar ahora:
 - Añadir alguno de los atributos de la relación para conseguir una clave

matricula

(0,1)

(0,p)

BANCO

CLIENTE (1,n) VENTA

COCHE

fecha_venta

idB

VENDEDOR

1.8. Tipo de relación n-aria

- Crear una nueva relación (tabla)
 - Incluir atributos (columnas) para los atributos del tipo de relación
 - Añadir una copia de las claves primarias de los tipos de entidad conectados: serán claves ajenas a cada relación correspondiente
 - La clave primaria de la nueva relación será <u>una de estas</u>:
 - Concatenación de las claves ajenas
 - Combinación de algunas claves ajenas
 - (Subsanación de error de diseño conceptual)
 La concatenación de varias claves ajenas y algún atributo
 - Añadir un aserto por cada cardinalidad mínima 1

Incluye una **clave ajena** que referencia **a** la clave primaria de **cada relación** correspondiente a cada tipo de entidad que conecta

Importante: ninguna clave ajena
admite nulos para evitar ventas sin
coche, sin cliente, sin vendedor o sin
banco
èEsto se entiende, o

¿Esto se entiende, a pesar de las cardinalidades mínimas 0 de COCHE, VENDEDOR y BANCO?

VENTA(matricula, vendedor, cliente, banco, fecha_venta)

Admiten NULL: ninguno

Clave primaria:

(matricula, vendedor, cliente, banco)

Clave ajena: matricula

Referencia_a COCHE(matricula)

Clave ajena: vendedor

Referencia_a VENDEDOR(DNI)

Clave ajena: cliente

Referencia_a CLIENTE(DNI)

Clave ajena: banco

Referencia_a BANCO(idB)

ASERTO RI_cliente_venta COMPROBAR_QUE

(NO_EXISTE (una tupla de CLIENTE donde el valor de "DNI"

NO_ESTÉ_ENTRE (valores de

"cliente" en VENTA))**);**

1.8. Tipo de relación n-aria

COCHE matricula marca ... 0102BCD Toyota 2233VVB Seat VENDEDOR DNI nombre ... 56789012S Salvadora Sueño 67890123V Viriato Valles

4455PKQ Toyota
3366QWR Mercedes

Seat

VENTA

1234MNP Peugeot

matricula	vendedor	cliente	banco	fecha_venta
0102BCD	56789012S	22334455D	B02	01/11/2019
2233VVB	67890123V	11223344B	B04	10/12/2018
9988LDF	56789012S	44556677K	BO1	06/09/2019
4455PKQ	67890123V	11223344B	B04	22/02/2019
1234MNP	56789012S	33445566G	B04	30/10/2019

BANCO

CLIENTE

9988LDF

<u>DNI</u>	nombre	•••
11223344B	Bonifacio Baños	
22334455D	Dionisia Dimas	
33445566G	Gregoria Güell	
44556677K	Karino Kent	

¿Qué atributos pueden tener **valores repetidos**? ¿Cuáles no?

<u>id</u>	nombre	•••
B02	BBVA	
B04	Banco Santander	
B01	Bankia	
в03	Evo Banco	
B05	Banco Sabadell	
B06	Caixa Bank	

78901234M Melania Mirón

1.8. Tipo de relación n-aria

- □ A veces, la clave primaria puede reducirse:
 - La cardinalidad máxima de COCHE en VENTA es 1, lo que significa que un coche participa, como mucho, en una relación de tipo VENTA (es adquirido una única vez).
 - Esto indica que un coche identifica unívocamente la venta en la que participa, de forma que "matricula" puede ser la clave primaria de VENTA

VENTA(*matricula*, *vendedor*, *cliente*, *banco*, fecha_venta)

Admiten NULL: ninguno

Clave primaria: matricula

Clave ajena: matricula Referencia_a COCHE(matricula)

Clave ajena: vendedor Referencia_a VENDEDOR(DNI)

Clave ajena: cliente Referencia_a CLIENTE(DNI)

Clave ajena: banco Referencia_a BANCO(idB)

Ejemplo. Traducción de tipos de relación n-arias

86

ESCRITO_POR(*libro*, *autor*)

Admiten NULL: Ninguno

Clave primaria: (libro, autor)

Clave ajena: libro Referencia_a LIBRO(ISBN) Clave ajena: autor Referencia_a AUTOR(id)

PRESTAMO(socio, libro, ejemplar, fecha, maxdevolucion, f_devolucion)

Admiten NULL: f_devolucion

Clave primaria: (socio, libro, ejemplar, fecha)

Clave ajena: socio Referencia_a SOCIO(codigo)

Clave ajena: (libro, ejemplar)

Referencia_a EJEMPLAR(ISBN, numero)

Derivado: maxdevolucion=fecha+15dias

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: cod_post Clave primaria: nombre

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin pena)

Admiten NULL: **DNI**, fin_pena

Clave primaria: codigo Clave alternativa: DNI

Derivados: penalizado, fin_pena

[fórmulas de cálculo]

AUTOR(id, nombre, pais, año_nacim, num premios, nombre, ape1, ape2)

Admiten NULL: **ape2** Clave primaria: **id**

LIBRO(ISBN, titulo, año, edicion, num_copias, editorial)

Admiten NULL: Ninguno Clave primaria: **ISBN**

Clave ajena: editorial Referencia_a EDITORIAL(nombre)

Derivado: num_copias [fórmula de cálculo]

EJEMPLAR(numero, estante, **ISBN**)

Admiten NULL: Ninguno

Clave primaria: (ISBN, numero)

Clave ajena: ISBN Referencia_a LIBRO(ISBN)

1.8. Tipo de relación n-aria

PRESTAMO(socio, libro, ejemplar, fecha, maxdevolucion, f_devolucion)

Admiten NULL: f_devolucion

Clave primaria: (socio, libro, ejemplar, fecha)

Clave ajena: socio Referencia_a SOCIO(codigo)

Clave ajena: (libro, ejemplar) Referencia_a EJEMPLAR(ISBN, numero)

Derivado: maxdevolucion=fecha+15días

¿Merece la pena **crear**la relación (tabla)

FECHA?

¿Sobra 'socio' de la Clave Primaria? Recordamos: esta clave ajena debe ser compuesta, porque lo es la clave primaria a la que referencia (la relación EJEMPLAR viene de un tipo de entidad débil)

1.8. Tipo de relación n-aria

88								
K							SOCI	0
		EJEMPLA	R		<u>codigo</u>	n	ombre .	•••
<u>ISBN</u>	numero	estante			s01 \	Mariar	nela Morales	
9788408217251	1	H4			s02	Nicano	r Nogales	
9788408217251	2	H4			s03	Clodon	nira Clares	
9788408217251	3	H5			s04	Herme	negildo Hoz	
9788467009101	1	M2			s05	Sinforo	sa Sales	
9788467009101	2	M2			s06	Anacle	to Ares	
9788468319612	1	S 1	i			\		
9788491223542	1	S2				<u> </u>	PRESTA	/MO
9788491223542	2	A3	libro		ejemplar	socio	fecha	•••
978846831 <i>5775</i>	1	S7	97884082172	51	1	s02	14/09/2019	7
Un mismo ejempla	r puede p	restarse	97884082172	51	2	s03	14/09/2019	7
varias veces al mismo socio: (libro,ejemplar,socio) NO es clave. Cada préstamo concreto sólo se		97884082172	51	3	s06	15/10/2019	7	
		7 97884670091	01	1	s04	09/09/2019	7	
distingue del resto			97884670091	01	1	s04	19/10/2019	7
16'	IEA ADL AD		97884082172	51	3	s02	20/10/2019	7
¿Cómo representar un EJEMPLAR nunca prestado? ¿Y un SOCIO que aún no se ha llevado libros?		97884912235	42	2	s03	09/10/2019	7	
C. 41. 55 515 que 441 110	oo na nevade		97884912235	42	2	s01	18/11/2019	7

1.9. Atributo multivalorado

- Crear una nueva relación (tabla)
 - Incluir un atributo (columna) con el mismo nombre que el atributo multivalorado
 - Añadir una copia de la clave primaria del tipo de entidad a la que está conectado: será una clave ajena
 - La clave primaria de la nueva relación será uno de estas:
 - La concatenación de la clave ajena y el atributo
 - El atributo "en solitario"
 - Añadir un aserto si la cardinalidad mínima del atributo es
 1, o si la cardinalidad máxima es conocida (no es "n")

TELEFONO_EMPLEADO(empleado, telefono)

Admiten NULL: ninguno

Clave primaria: (empleado, telefono)

Clave ajena: empleado Referencia_a EMPLEADO(codE)

La clave primaria es
compuesta porque es posible
que varios empleados tengan
el número de teléfono (el fijo
del despacho compartido).
Si cada teléfono sólo pudiera
pertenecer a un empleado, la
clave primaria sería "telefono"

1.9. Atributo multivalorado

90

EMPLEADO

codE	nombre	•••
e1	Laura López	
e2	María Martínez	
e3	Abel Ayala	
e4	Pedro Palao	
e5	Simona Sánchez	

TELEFONO_EMPLEADO

empleado	telefono
e2	555111222
e2	555333666
e3	555111222
e4	555777888
e4	555999888
e5	555000444
e4	555777666

Un empleado puede tener varios teléfonos distintos: si tiene 3 teléfonos, habrá 3 filas para ese empleado en TELEFONO_EMPLEADO

Varios empleados pueden tener el mismo teléfono (por ejemplo si comparten despacho, y en él hay un teléfono fijo)

Si un empleado "e" pudiera NO tener teléfono (cardinalidad mínima 0 del atributo), no haría falta el ASERTO: "e" sería una tupla en EMPLEADO cuyo valor de "codE" NO aparecería en TELEFONO_EMPLEADO (ninguna fila le haría referencia)

La cardinalidad mínima de "telefono"
es 1: todo empleado debe tener al
menos un teléfono, por lo que es
necesario un aserto

ASERTO RI_telefono_empleado COMPROBAR_QUE

(NO_EXISTE (una tupla de EMPLEADO donde el valor de "codE"

NO_ESTÉ_ENTRE (valores de

"empleado" en TELEFONO_EMPLEADO)));

Ejemplo. Resultado de la Traducción

ESCRITO_POR(libro, autor)

Admiten NULL: Ninguno

Clave primaria: (libro, autor)

Clave aiena: libro Referencia a LIBRO(ISBN)

Clave aiena: autor Referencia a AUTOR(id)

PRESTAMO(socio, libro, ejemplar, fecha, maxdevolucion, f devolucion)

Admiten NULL: f devolucion

Clave primaria: (socio, libro, ejemplar, fecha)

Clave ajena: socio Referencia_a SOCIO(codigo)

Clave ajena: (libro, ejemplar)

Referencia a EJEMPLAR(ISBN, numero)

Derivado: maxdevolucion = fecha+15dias

EDITORIAL(nombre, calle, numero, cod_post, ciudad)

Admiten NULL: cod post Clave primaria: nombre

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin pena)

Admiten NULL: DNI, fin pena

Clave primaria: codigo Clave alternativa: DNI

Derivados: penalizado, fin pena

[fórmulas de cálculo]

AUTOR(id, nombre, pais, año nacim, num premios, nombre, ape1, ape2)

Admiten NULL: ape2 Clave primaria: id

LIBRO(ISBN, titulo, año, edicion, num copias, editorial)

Admiten NULL: Ninguno

Clave primaria: ISBN

Clave ajena: editorial Referencia a **EDITORIAL**(nombre)

Derivado: num copias [fórmula de cálculo]

EJEMPLAR(numero, estante, **ISBN**)

Admiten NULL: Ninguno

Clave primaria: (ISBN, numero)

Clave ajena: ISBN Referencia a LIBRO(ISBN)

i En las diapositivas "Ejemplos" al final del tema se describe con más detalle este esquema lógico estándar

Reajustes de la traducción

- Estas son las pautas generales que podemos aplicar para traducir esquemas conceptuales a esquemas relacionales
- Pero siempre hay que tener en cuenta que, según los tipos de relación en los que participen los tipos de entidad y la existencia de jerarquías, a veces habrá que adaptar la traducción para conseguir un resultado (esquema lógico) correcto
- □ Veámoslo con un ejemplo...

Reajuste de la traducción

Traducimos los tipos de entidad:

PROPIEDAD_EN_ALQUILER (codigo, direccion, num_habitaciones, precio_mes)

PROPIETARIO_PARTICULAR(codigo, telefono, direccion, nombre, ape1, ape2)

PROPIETARIO_EMPRESA(codigo, telefono, direccion, nombre_empresa, tipo_empresa, nombre_persona_contacto)

Al ser disjunta y total, la jerarquía se traduce a una relación por cada combinación supertipo/subtipo, más un ASERTO que asegure que un PROPIETARIO_PARTICULAR no puede tener el mismo código que un PROPIETARIO_EMPRESA

Reajuste de la traducción

- Traducimos el tipo de relación 1:N, y vemos que
 - Hijo:
 PROPIEDAD_EN_ALQUILER
 - □ Padre: PROPIETARIO

PROPIEDAD_EN_ALQUILER (codigo, direccion, num_habitaciones, precio_mes, propietario)
Clave ajena: propietario
REFERENCIA_A ¿¿??

- □ ¿A qué tabla debe referenciar? ¡Tenemos dos <u>tipos</u> de propietarios!
 - Una clave ajena sólo puede referenciar a UNA tabla y no a DOS

Reajuste de la traducción

2. Validar las relaciones contra las transacciones de usuario

- Objetivo: asegurar que el esquema lógico (EL)
 soporta las transacciones requeridas
- "Ejecutar manualmente" las transacciones usando las relaciones (tablas), vínculos clave-primaria/clave ajena y el diccionario de datos

- Si alguna no se puede resolver
 - Se ha cometido algún error en el DC o en la traducción al MR
 - Retroceder y comprobar a qué áreas del EC accede la transacción para identificar y resolver el problema

•••

C6. Listar detalles de los préstamos en curso (título del libro, nombre del socio y fechas de préstamo y devolución).

• • •

3. Revisar las restricciones de integridad

- □ Objetivo: evitar la pérdida de semántica inherente a la traducción Esquema Conceptual → Esquema Lógico
- Asegurar que se ha documentado toda restricción de integridad necesaria para impedir que la BD pueda llegar a estar incompleta, imprecisa o incoherente
- Comprobar estos tipos de Restricciones de Integridad
 - 1. Datos requeridos u obligatorios
 - 2. Restricciones de dominio de atributos
 - 3. Integridad de entidad
 - Integridad referencial (claves ajenas)
 - 5. Restricciones generales

Revisión de lo que ya hemos hecho

3.1. Datos requeridos

- Comprobar que los atributos de tipos de entidad que no admiten NULL en el Esquema Conceptual se han traducido correctamente a atributos de relaciones (tablas) que no admiten NULL
 - Ídem para los atributos que sí lo admiten
- Comprobar que los atributos de tipos de relación han sido traducidos correctamente, de forma que admiten nulos o no en función de las cardinalidades mínimas
- Revisar el campo "Admite nulos" de las fichas de descripción correspondientes

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admite nulos: DNI, fin_pena 👡

...

3.2. Restricciones de dominio

- Recordatorio: en el paso 3 del Diseño Conceptual se documentó el tipo de datos y longitud de cada atributo
- Para algunos de ellos pueden existir restricciones que afectan a sus valores legales
 - Restricciones que pudieron identificarse en el Diseño Conceptual
 - Ejemplos
 - "penalizado" de SOCIO sólo permite los valores 'Sĺ' y 'NO'
 - "num_premios" de AUTOR, permite n°s sin decimales entre 0 y 99
 - "num_copias" de LIBRO, admite números iguales o superiores a 1
 - "salario" de EMPLEADO, admite números con dos decimales superiores o iguales a 600,00
- Ahora deben expresarse en el Esquema Lógico de datos

100

Indicar estas restricciones en el campo "Comprobar"
 de las fichas de descripción correspondientes

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admite nulos: DNI, fin_pena

Clave primaria: codigo Clave alternativa: DNI

Valor por defecto calculado:

fin_pena = PRESTAMO.devolucion+10 días

Comprobar: penalizado IN ('SI', 'NO')

 Una restricción de comprobación debe ser cierta para todas y cada una de las tuplas de la relación

3.3. Integridad de Entidad

- Verificar que ningún atributo componente de una clave primaria de cualquier relación (tabla) admite el nulo
- Comprobar cada clave alternativa para asegurar que se indicó correctamente si puede o no contener nulo
- Revisar el campo "Admite nulos" de las fichas de descripción correspondientes

SOCIO(codigo, DNI, nombre, telefono, penalizado, fin_pena)

Admite nulos: DNI, fin_pena

Clave primaria: codigo Clave alternativa: **DNI**

3.4. Integridad Referencial

- □ Comprobar que cada clave ajena está bien definida
 - Debe tener tantos atributos como la clave primaria a la que referencia
 - Si la clave primaria es compuesta entonces la clave ajena también debe serlo y tener el mismo número de atributos

- Confirmar que está bien indicado si admite nulos o no
 - Con base en la cardinalidad mínima del tipo de entidad hijo en la relación que se ha traducido a la clave ajena
- Revisar cada campo "Clave ajena" de las fichas de descripción correspondientes

3.5. Restricciones Generales (Asertos)

- Comprobar si las restricciones de integridad generales incluidas en los requisitos, o de forma textual en el EC o Diccionario de datos, ya están redactadas utilizando como vocabulario los nombres de relaciones y atributos del esquema lógico
- □ Si no es así, definir los asertos necesarios
 - Ejemplo: Impedir que un socio penalizado tenga préstamos en curso (todos deben ser pasados)

4. Validar el esquema lógico con los usuarios

- Objetivo: Asegurar que el esquema lógico estándar (ELS) y el diccionario de datos están completos y documentados
- Hay que confirmar que es así, repasándolos con los usuarios para que verifiquen que lo consideran una representación verdadera de los requisitos de datos
 - Si no les satisface, hay que volver atrás y repetir algunos pasos para modificarlo convenientemente

6.3 Diseño Lógico Específico

Especificación del Esquema Lógico en un SGBD real

- Ya tenemos el Esquema Lógico eStándar definido en el Modelo Relacional
 - Cada relación descrita en una ficha, y los asertos y resto de información en el Diccionario de Datos
- Y ha sido elegido el SGBD Relacional comercial para la implementación
 - Oracle, MySQL, PostgreSQL, etc.

- □ ¿Cómo creamos las tablas en la BD?
- Pues hay que especificar el Esquema
 Lógico con la sintaxis propia del modelo de datos específico del SGBD: el ELE

Especificación del Esquema Lógico en un SGBD real

- Los SGBD relacionales comerciales (Oracle, MySQL, MariaDB, MS Access, SQL Server, PostgreSQL, etc.)
 ofrecen un dialecto particular del lenguaje SQL
- El SQL permite crear esquemas lógicos de datos compuestos por una colección de tablas vinculadas entre sí mediante claves ajenas
- En el tema siguiente estudiaremos el estándar ANSI SQL, y en prácticas programaremos con Oracle SQL
 - Utilizaremos sentencias CREATE TABLE para definir/crear cada una de las tablas componentes de un esquema lógico de BD


```
create table CUENTA (
numero NUMERIC(20),
saldo NUMERIC(9,2),
titular CHAR(12),
sucursal CHAR(4),
PRIMARY KEY(numero),
FOREIGN KEY(titular)
REFERENCES CLIENTE(DNI)...,
[ ... ] );
```

107 Ejemplos

- Esquema Lógico Estándar del ejemplo
- Más ejemplos de Diseño Lógico

Esquema Conceptual de partida

EDITORIAL (nombre, calle, numero, cod_post, ciudad)

Admiten NULL: codpost Clave primaria: nombre

LIBRO (ISBN, titulo, año, edicion, num_copias, editorial)

Admiten NULL: Ninguno

Clave primaria: ISBN

Clave ajena: editorial Referencia_a EDITORIAL(nombre)

Derivado: num copias [para cada tupla b de LIBRO contar tuplas e de EJEMPLAR

tales que b.ISBN = e.ISBN]

EJEMPLAR (numero, estante, *ISBN*)

Admiten NULL: Ninguno

Clave primaria: (ISBN, numero)

Clave ajena: ISBN Referencia_a LIBRO(ISBN)

SOCIO (codigo, nombre, telefono, DNI, penalizado, fin_pena)

Admiten NULL: DNI, fin_pena

Clave primaria: codigo Clave alternativa: DNI

Atributo Derivado:

fin_pena = PRESTAMO.devolucion + 10 penalizado = ...

Comprobar: penalizado IN ('SI', 'NO')

PRESTAMO (libro, ejemplar, socio, fecha, maxdevolucion, f_devolucion)

Admiten NULL: f_devolucion

Clave primaria: (libro, ejemplar, socio, fecha)

Clave ajena: (libro, ejemplar) Referencia_a EJEMPLAR(ISBN, numero)

Clave ajena: socio Referencia_a SOCIO(codigo)

Atributo Derivado: maxdevolucion = fecha + 15

AUTOR (id, nombre, apellido1, apellido2, año_nacim, pais, num_premios)

Admiten NULL: apellido2

Clave primaria: id

Comprobar: (num_premios>0 AND num_premios<99) /* También así: num_premios BETWEEN 0 AND 99 */

ESCRITO_POR (libro, autor)

Admiten NULL: Ninguno

Clave primaria: (libro, autor)

Clave ajena: libro Referencia_a LIBRO(ISBN)

Clave ajena: autor Referencia_a AUTOR(id)

Restricciones surgidas de la Traducción

```
ASERTO RI_editorial_publica_libros
COMPROBAR QUE (
 NO_EXISTE (una tupla en EDITORIAL
            donde el valor de "nombre" NO_ESTÉ ENTRE
              (valores de "editorial" en LIBRO)));
ASERTO RI_libro_tiene_copias
COMPROBAR_QUE (
 NO_EXISTE (una tupla en LIBRO
            donde el valor de "ISBN" NO_ESTÉ_ENTRE
              (valores de "ISBN" en EJEMPLAR)));
ASERTO RI autor escribe libros
COMPROBAR QUE (
NO_EXISTE (una tupla de AUTOR
            donde el valor de "id" NO_ESTÉ_ENTRE
```

(valores de "autor" en ESCRITO_POR)));

Restricciones detectadas en el Diseño Conceptual

ASERTO RI_socio_penalizado COMPROBAR_QUE

(NO EXISTE (una tupla en SOCIO donde "penalizado"='SI' y el valor de "codigo" ESTÉ ENTRE

(valores de "socio"

de tuplas en PRESTAMO

donde "f_devolucion" ES_NULL

y "maxdevolucion">=fecha_actual)));

y "maxdevolucion">=fecha_actual)));

Un socio
penalizado no
puede tener
préstamos activos

ASERTO RI_socio_maximo_prestamos COMPROBAR_QUE

(4 >= MÁXIMO(CUENTA PARA_TODA_TUPLA_DE SOCIO S (tuplas en PRESTAMO donde "socio" = S.codigo y "f_devolucion" ES_NULL

Un socio puede tener activos un máximo de 4 préstamos

GRANJA (codigo, nombre)

Admiten NULL: ninguno

Clave primaria: codigo

ANIMAL (id, año_nacim, granja)

Admiten NULL: ninguno

Clave primaria: id

Clave ajena: granja Referencia_a GRANJA(codigo)

GRANJA

codigo 4	nombre
g1	Los pioneros
g2	La solana
g3	El girasol

<u>id</u>	año_nacim	granja	
al	2013	g1	
a2	2016	g1	
a3	2014	g2	
a4	2016	g3	
a5	2018	g2	

GRANJA

<u>codigo</u>	nombre	animal			
g1	Los pioneros	a1, a2		7	ANIMAL
g2	La solana	a3, a5	—ко !	<u>id</u>	año_nacim
g3	El girasol	a4	0	al	2013
			Ok	a2	2016
			R	a3	2014
				a4	2016
				a5	2018

COLEGIO(codigo, nombre, enfermera)

Admiten NULL: enfermera

Clave primaria: codigo

Clave ajena: enfermera

Referencia_a ENFERMERA(idEnf)

ENFERMERA (idEnf, nombre)

Admiten NULL: ninguno

Clave primaria: DNI

(i) La cardinalidad mínima O ENFERMERA (tipo de entidad padre) no afecta La mayoría de los colegios tienen una enfermera. Hay colegios sin enfermera. No todas las enfermeras están asignadas a colegios.

(i) La cardinalidad mínima 0 de COLEGIO (tipo de entidad hijo) hace que la clave ajena pueda contener NULL

COLEGIO

<u>codigo</u>	nombre	enfermera
c1	CEEIP Giner de los ríos	null
c2	CEEIP Antonio Machado	enf3
c3	CEEIP Rosalía de Castro	enf1
c4	CEEIP María Montessori	enf3

ENFERMERA

<u>idEnf</u>	nombre
enf1	Ana Ayala
enf2	Juan Jara
enf3	Luisa Lira
enf4	Paula Pina

ACTOR(codigo, nombre) Admiten NULL: ninguno Clave primaria: codigo

PELICULA(idPel, titulo) Admiten NULL: ninguno Clave primaria: idPel ACTUA_EN(actor, pelicula, papel, salario)

Admiten NULL: ninguno

Clave primaria: (actor, pelicula)

Clave ajena: actor

Referencia_a ACTOR(codigo)

Clave ajena: pelicula

Referencia_a PELICULA(idPel)

ACTOR

10	and the second second		
<u>codigo</u>	nombre		p1
al	Richard Armitage		p2
a2	Sandra Bullock		<u> </u>
a3	Melissa McCarthy	0	р3
a4	Bill Murray	~O/	
		2	
		•	

PELICULA

<u>idPel</u>	titulo	actor	
p1	Ocean's 8	a1, a2	
p2	Gravity	a2	-ко!
р3	St. Vincent	a3, a4	