hall effect Am: To study half effect he semicandenters
Sample and dessity of charge carriers
This experiment demostrates the effect of leventy
force. Apparatus Required: No Solewords, constant source of power too maintain may notic field; hall probe with semi conductor Sample, constant current supply with Annalter and Voltmeter, gang meter formula lived: RH = Ey = BY VHd - D TB Vy = RHBI -2 M=RHB Rn > md (90) -(3) Teacher's Signature _

Table !

S.No.	Hall Course , I (mA)	Hall vollage, VM(mv)	Hall coefficient	Density of chage corriers, n(1)
1234567	1.0505050	28.756 43.133 57.511 71.889 36.267 100.645 115.023	194.03.5	3.215×16

TORES

Parameters in Table!:

Current through Solenord = 1A

Resultant magnetic field (B) = 0.14829 = 0.14824 = 0.1482×167

Thickness of material (d) = 0.000/m

Change of the carrier 191 = 1.602×10-19

S-NO.	Hollowrent, I(mA)	Hall Voltage.	Hall coefficient, RH (2m orms)	carrier, n(1)
1234567	10505050	23.963 35.945 47.926 59.908 71.889 83.871 95.852	193.98	3-217

parameters used in Table?

Current through the Solenes d=2-87 Resultant Hoog vehicfold (B) = 0-3706×16-47 Thickness of material (d) =0.0003m Change of the Carroer (191) = 1.602×10-19

Page No.	
$RH = \frac{1}{9^{10}}$ Where $19 = 1.602 \times 10^{19}$	
Ey = transverse electric field J= current density 0 = 11000 + 11000 + 11000	
Rn= Hall coefficient. VH = Hall voltage m = Slope	
Calculations.	
from table (groph) Slope (m) = Ay = 43-134 = [28]	8·756s
Ru= md = 28.756× 0.000 B 0.1482×10-4	
$= 194.035 \Omega / T$	or m3/C
Teacher's Signature	

