

Praktikum Elektrische Antriebe

Versuchsprotokoll zu Versuch 2: Gleichstrommaschine

Name: Johannes Nill

Datum: 11.07.2018

Testat:

Mitarbeiter: Sven Lux, Thanh Tam Tran

In dieser Aufgabe soll bei unseren fremderregten Gleichstrommaschine die Parameter $c_E\Psi_N$ und R_A ermittelt werden. Der Ankerstrom IA, die Ankerspannung UA und die Drehzahl N stehen uns dabei als Messgrößen zur Verfügung.

a) In der ersten Aufgabenstellung soll ein Verfahren bestimmt werden, wie man $c_E\Psi_N$ und R_A ermitteln kann. Dabei sind die Betriebszustände der Maschine zu beachten. Um $c_E\Psi_N$ und R_A auszurechnen bedienen wir uns den zwei Gleichungen (4.1) und (4.2).

$$N_{N0} = \frac{U_{AN}}{c_E \psi_N} \tag{4.1}$$

$$c_E \psi_N = \frac{U_{AN}}{N_{N0}} \tag{4.2}$$

$$U_A = R_A I_A + U_i \quad mit \ U_i = c_E \psi_N \tag{4.3}$$

daraus ergibt sich der Ankerwiderstand:

$$R_A = \frac{(U_A - c_E \psi_N)}{I_A} \tag{4.4}$$

Um $c_E\Psi_N$ zu ermitteln wenden wir die nun Gleichung (4.2) an. Man muss aber beachten, das der Ankerstrom hier 0 sein muss, damit $U_A = U_i$ (2.1) gilt. Dies erreichen wir, indem wir unsere Gleichstrommaschine mit dem Synchronmotor als Lastmaschine antreiben und somit unseren GM auf eine konstante Drehzahl N setzen. Um R_A zu bestimmen wird die GM im stationären Betrieb betrieben, weil wir hier den Ankerstrom benötigen überhaupt die Formel (4.4) anwenden zu können.

b) In dieser Teilaufgabe sind nun die Parameter $c_E\Psi_N$ und R_A durch unsere Annahmen im Aufgabenteil a) zu bestimmen.

Für unseren zu berechnetem Parameter $c_E\Psi_N$ haben wir unseren GM, mittels den Betrieb des Synchronmotors, auf eine konstante Drehzahl N versetzt. Die Ankerspannung wurde mithilfe eines Multimeters direkt gemessen. Weil die Messungen ungenau haben wir den Mittelwert von drei unterschiedliche Messgrößen gebildet. Die Tabelle 4.1 stellt unsere Messwerte mit den errechneten $c_E\Psi_N$ dar.

U_A/V	N/min^{-1}	N/s^{-1}	$c_E \Psi_N / V s$
73	1500	25	2.9200
87.5	1800	30	2.9167
77.9	1600	26.7	2.9213

Tabelle 4.1: Messungen von U_A und N zur Bestimmung von $c_E\Psi_N$

Der Mittelwert von $c_E\Psi_N$ aus Tabelle 4.1 ergibt hier:

$$c_E \psi_N = \frac{1}{3} \sum_{z=0}^3 \frac{U_{AN}}{N_{N0}} = 2.919 Vs \tag{4.5}$$

Bei dem zu berechneten Ankerwiderstand haben wir unseren GM im motorischen Betrieb betrieben. Der Ankerstrom I_A und die Drehzahl N konnten wir direkt auf unserer Bedienoberfläche ablesen. Die einstellbare Ankerspannung U_A haben wir auch hier auf mehrere Werte eingestellt und mit den wert der ermittelten Maschinenkonstante aus der Tabelle 4.1 in die Formel (4.4) eingesetzt und diese alles in der Tabelle 4.2 darstellt. Dabei ergibt der Mittelwert von R_A aus Tabelle 4.2:

I_A	U_A/V	N/min^{-1}	N/s^{-1}	R_A/Ω
2.65	100	1705	28.4	6.43
2.70	110	1908	31.8	6.36
2.74	120	2106	35.1	6.40

Tabelle 4.2: Messungen von I_A , U_A und N zur Bestimmung von R_A

$$R_A = \frac{1}{3} \sum_{z=0}^{3} \left(\frac{U_A - c_E \psi N}{I_A} \right) = 6.40\Omega \tag{4.6}$$

Für die fremderregte Gleichstrommaschine aus unserem Labor soll die Magnetisierungskennlinie $c_E\psi(I_E)$ der Erregerspule bestimmt werden.

a) In der Abbildung 5.1 können wir sehen, dass der Erregerfluss ψ abhängig vom Erregerstrom I_E ist. Da man hier erkennen kann, dass die beiden Größen nicht proportional zueinander sind, können wir die Magnetisierungskennlie nur wie in der Abbildung 5.1 dargestellt in einem Diagramm darstellen. Wir wissen auch, dass die Maschinenkonstante c_E eine Konstante ist und deswegen somit unser Magnetisierungskennline genauso wie das Schaubild aussehen soll. Die x-Achse stellt dabei den Erregerstrom I_E dar und die y-Achse $c_E\psi$. Es ist I_E variabel einzustellen und $c_E\psi$ anhand der Gleichung (4.2) auszurechnen.

Abbildung 5.1: Prinzipieller Zusammenhang $\psi(I_E)$ ohne Hysterese, Quelle: "Elektische Antriebe: Vorlesung zum Sommersemester 2018", Prof.-Dr.-Ing. Gernot Schullerus

- b) Wenn man den Erregerstrom I_E herabsetzt, wandert der Betriebspunkt des Motors in den Feldschwächebereich. Die Last kann im Feldschwächebereich jedoch nicht mehr so hoch gewählt werden, trotz dessen dass die Drehzahl des Motors ansteigt. Wird ein kritischer Punkt von I_E unterschritten, so wird die Drehzahl des Motors ins unendliche steigen. Dies führt unweigerlich zur mechanischen Selbstzerstörung des Motors. Aus diesem Grund wurde der Motor im generatorischen Betrieb mithilfe der Synchronmaschine betrieben. Somit erhält man eine konstante Drehzahl N.
- c) In diesem Aufgabenteil soll die Magnetisierungskennlinie durch eine Exceltabelle mit unseren Messwerten dargestellt werden. Wie in der Aufgabe 4 b) wollen wir hier auch kein Ankerstrom haben. Deshalb haben wir unseren GM mit unserer Lastmaschine betrieben. Dabei haben wir die Drehzahl N konstant auf 1000 Umdrehungen pro Minunte und den Ankerstrom mit einem Intervervall von 0,05A von 0 auf 0,5 A gesetzt. Die Ankerspannung haben wir nach jedem Intervall mit einem Multimeter ausgelesen und diese alle in der Tabelle 5.1 dargestellt. Anschließend haben wir die Werte in einem Diagramm Abbildung 5.2) dargestellt.

U_A/V	I_E	N/min^{-1}	N/s^{-1}	$c_E\Psi/Vs$
50.5	0.47	1000	16.7	3.030
50.1	0.45	1000	16.7	3.006
48.8	0.40	1000	16.7	2.928
47.4	0.35	1000	16.7	2.884
45.5	0.30	1000	16.7	2.730
42.9	0.25	1000	16.7	2.574
39.1	0.20	1000	16.7	2.346
33.0	0.15	1000	16.7	1.980
24.2	0.10	1000	16.7	1.452
13.2	0.05	1000	16.7	0.792
2.0	0.00	1000	16.7	0.120

Tabelle 5.1: Messwerte für die Magnetisierungskennlinie

Abbildung 5.2: Kurve der Magnetisierungskennlinie

d) In den letzten Aufgabenteil soll der Nennpunkt in die Magnetisierungskennlinie eingezeichnet werden und es soll begründet werden, warum der Nennfluss in diesem Bereich festgelegt liegt. Die Arbeitspunkte $I_{E1} = I_{EN}$ und $I_{E2} = \frac{1}{2}I_{EN}$ sind auch zu vergleichen. Der Nennpunkt liegt in unsere Magnetisierungskennlinie am Arbeitspunkt $I_{E1} = I_{EN}$ (Abbildung 5.3). Diese haben wir so bestimmt, indem wir den Erregerstrom so weit erhöht haben, bis sich die Ankerspannung nicht mehr ändert. Dies ist bei $I_{EN} = 0.47A$ der Fall.

Damit wir den erforderlichen Ankerstrom in den jeweiligen Arbeitspunkte bestimmen können, nehmen wir die Gleichung (5.1) und formen es nach I_A (5.2) um. Das Nennmoment M_N haben wir aus den Daten auf dem Leistungsschild berechnet. Näheres dazu wird in der Aufgabenstellung 6 erläutert.

$$M_N = c_M \psi I_A \tag{5.1}$$

und stellen nach I_A um, somit ergibt sich die Formel:

$$I_A = \frac{2\pi M_N}{c_E \psi} \tag{5.2}$$

Die Werte in unsere Gleichung eingesetzt ergibt:

d 5

Abbildung 5.3: Kurve der Magnetisierungskennlinie mit Nennpunkt

$$I_A(I_{E1}) = \frac{2\pi*1.75Nm}{2.5V_s} = 4.40A$$

 $I_A(I_{E2}) = \frac{2\pi*1.75Nm}{3.03V_s} = 3.63A$

In der Abbildung 5.3 kann man im Arbeitspunkt I_{E1} erkennen, dass bei Änderungen von I_E von +-50mA, $\Delta\psi$ deutlich kleiner ist, als im Arbeitspunkt I_{E2} . Somit ist der AP1 günstiger, da es zum einen geringeren Ankerstrom erzeugt und sich somit die Maschine langsamer erwärmt - man muss die GM weniger kühlen. Auch kann man einen kleineren Querschnittsfläche für die Drähte, wegen des kleineren Ankerstroms benutzen. Die geringe Änderung von I_{E1} heißt auch, dass sie einen geringeren Einfluss auf den Fluss hat und es zu einer stabileren Drehzahl der Gleichstrommaschine führt.

a) Das Nennmoment lässt sich anhand (6.1) berechnen. Dabei lassen sich die benötigten Parameter vom Typenschild ablesen, wobei die Nenndrehzahl in s^{-1} umgerechnet werden muss.

$$M_N = \frac{P_N}{2\pi N_N} = \frac{550W}{2\pi * 3000min^{-1}} = \frac{550W}{2\pi * 50s^{-1}} \approx 1.75Nm$$
 (6.1)

Der Wirkungsgrad im Nennpunkt lässt sich wie in (6.2) durch die zu- und abgeführte Leistung berechnen. Die abgeführte Leistung lässt sich direkt vom Typenschild ablesen, die zugeführte Leistung ergibt sich aus dem Produkt von Ankerspannung und -strom addiert mit dem Produkt aus Erregerspannung und -strom.

$$\eta_N = \frac{P_{ab}}{P_{zu}} = \frac{P_{ab}}{U_A I_A + U_E I_E} = \frac{550W}{180V * 4.5A + 200V * 0.4A} \approx 61.8\%$$
(6.2)

SEA Ohmstraß	P 63225 Se 4 Tel.: 06	5 Langen 5103/59025
GC 79/30	1/DC/Mot.IP54	C€
180 V DC	A: 4,50 A	EN 60034
200 V DC	Err: 0,40 A	550 W S1
MNr. 715076	3000 min – 1	Nr. 11183 0513

Abbildung 6.1: Typenschild

- a) Abbildung 7.1 zeigt die Drehzahl-Drehmomentkennlinie, die beim Versuch im Labor Antriebstechnik aufgenommen wurde. Dabei befinden sich die blauen Linien im Ankerstellbereich und die roten im Feldschwächbereich.
- b) Nun soll anhand der in Aufgabe 4 ermittelten Parametern eine Drehzahl-Drehmomentkennlinie berechnet werden. Dabei wird in die Formel (7.1) folgende Werte eingetragen:

$$U_A = 60V$$
 $R_A = 6.4\Omega$ $c_E \Psi = 2.919 V s$
$$N = \frac{U_A}{c_E \Psi} - \frac{2\pi R_A}{c_E^2 \psi^2} M_{Mi}$$
 (7.1)

Die berechnete Kennlinie wird in Abbildung 7.1 in grün aufgetragen. Dabei ist zu erkennen, dass mit steigenden Lastmoment die (berechnete) Drehzahl sich weniger verringert als bei den gemessenen Linien. Dies ist auf unvermeidbare Verluste im Prüfstand zurückzuführen.

Abbildung 7.1: Drehzahl-Drehmomentkennlinie aus dem Labor Antriebstechnik

Abbildungsverzeichnis

5.1	Prinzipieller Zusammenhang $\psi(I_E)$ ohne Hysterese, Quelle: "Elektische Antriebe: Vor-	
	lesung zum Sommersemester 2018", ProfDrIng. Gernot Schullerus	3
5.2	Kurve der Magnetisierungskennlinie	4
5.3	Kurve der Magnetisierungskennlinie mit Nennpunkt	5
6.1	Typenschild	6
7.1	Drehzahl-Drehmomentkennlinie aus dem Labor Antriebstechnik	7