THE STRONG TREE PROPERTY AT SUCCESSORS OF SINGULAR CARDINALS (DRAFT)

LAURA FONTANELLA

ABSTRACT. We prove that successors of singular limits of strongly compact cardinals have the strong tree property. We also prove that $\aleph_{\omega+1}$ can consistently satisfy the strong tree property.

1. The Strong and the Super Tree Properties

We recall the definition of the tree property, for a regular cardinal κ .

Definition 1.1. Let κ be a regular cardinal,

- (1) a κ -tree is a tree of height κ with levels of size less than κ ;
- (2) we say that κ has the tree property if, and only if, every κ -tree has a cofinal branch (i.e. a branch of size κ).

The strong and the super tree property concern special objects that generalize the notion of κ -tree, for a regular cardinal κ .

Definition 1.2. Given $\kappa \geq \omega_2$ a regular cardinal and $\lambda \geq \kappa$, a (κ, λ) -tree is a set F satisfying the following properties:

- (1) for every $f \in F$, $f: X \to 2$, for some $X \in [\lambda]^{<\kappa}$
- (2) for all $f \in F$, if $X \subseteq \text{dom}(f)$, then $f \upharpoonright X \in F$;
- (3) the set $\text{Lev}_X(F) := \{ f \in F; \text{dom}(f) = X \}$ is non empty, for every $X \in [\lambda]^{<\kappa}$;
- (4) $|\text{Lev}_X(F)| < \kappa$, for all $X \in [\lambda]^{<\kappa}$.

When there is no ambiguity, we will simply write Lev_X instead of $\text{Lev}_X(F)$. The main difference between κ -trees and (κ, λ) -trees is the fact that, in the former, levels are indexed by ordinals, while in the latter, levels are indexed by sets of ordinals; ordinals are linearly ordered, sets of ordinals are not.

Definition 1.3. Given $\kappa \geq \omega_2$ a regular cardinal, $\lambda \geq \kappa$, and a (κ, λ) -tree F,

(1) a cofinal branch for F is a function $b: \lambda \to 2$ such that $b \upharpoonright X \in \text{Lev}_X(F)$, for all $X \in [\lambda]^{<\kappa}$;

²⁰¹⁰ Mathematics Subject Classification. 03E55.

Key words and phrases. tree property, large cardinals, forcing.

- (2) an F-level sequence is a function $D: [\lambda]^{<\kappa} \to F$ such that for every $X \in [\lambda]^{<\kappa}$, $D(X) \in \text{Lev}_X(F)$;
- (3) given an F-level sequence D, an ineffable branch for D is a cofinal branch $b: \lambda \to 2$ such that $\{X \in [\lambda]^{<\kappa}; b \upharpoonright X = D(X)\}$ is stationary.

Definition 1.4. Given $\kappa \geq \omega_2$ a regular cardinal and $\lambda \geq \kappa$,

- (1) (κ, λ) -TP holds if every (κ, λ) -tree has a cofinal branch;
- (2) (κ, λ) -ITP holds if for every (κ, λ) -tree F and for every F-level sequence D, there is an an ineffable branch for D;
- (3) we say that κ satisfies the strong tree property if (κ, μ) -TP holds, for all $\mu \geq \kappa$;
- (4) we say that κ satisfies the super tree property if (κ, μ) -ITP holds, for all $\mu \geq \kappa$;

2. A Partition Property for Strongly Compact Cardinals

Let μ be a regular cardinal and $\lambda \geq \mu$ any ordinal. For every set $S \subseteq [\lambda]^{<\mu}$ cofinal we denote by $[[S]]^2$ the set of all pairs $(X,Y) \in S \times S$ such that $X \subseteq Y$.

Definition 2.1. Let $\mu > \kappa$ be two regular cardinals and let $S \subseteq [\lambda]^{<\mu}$ be a cofinal set and $c : [[S]]^2 \to \gamma$ a function such that $\gamma < \kappa$. We say that a cofinal set $H \subseteq S$ is a quasi homogenous set of color $i < \gamma$ iff for every $X, Y \in H$ there is $W \supseteq X, Y$ in H such that c(X, W) = i = c(Y, W).

Theorem 2.2. Let κ be a strongly compact, and let $\nu > \kappa$ be a cardinal. If $\lambda \geq \nu^+$ and $S \subseteq [\lambda]^{<\nu^+}$ is a stationary set, then every function $c : [[S]]^2 \to \gamma$, with $\gamma < \kappa$, has a quasi homogenous set H which is also stationary.

Proof. Let \mathscr{U} be a $< \kappa$ -complete ultrafilter containing every set $C \cap S$ with $C \subseteq [\lambda]^{<\nu^+}$ club – such ultrafilter exists since κ is strongly compact. Note that every set of \mathscr{U} is stationary. First we show that for every $X \in S$, there is $i_X < \gamma$ and $H_X \subseteq S$ in \mathscr{U} such that every Y in H_X contains X as a subset and $c(X,Y)=i_X$. Assume by contradiction that for every $i<\gamma$, the set $K_i:=\{Y\in S;\ Y\supseteq X\ \text{and}\ c(X,Y)\neq i\}\in \mathscr{U}$ then, from the $<\kappa$ -completeness of \mathscr{U} , we have $\bigcap_{i<\gamma}C_i\in \mathscr{U}$, yet this is an empty set, a contradiction. From the fact that the ultrafilter is $<\kappa$ -complete, we also get that the function $X\mapsto i_X$ is constant on a set $H\in \mathscr{U}$; let i be such that $i=i_X$, for every $X\in H$. Now, it is easy to see that H is quasi-homogenous of color i. Indeed, if $X,Y\in H$, then $H_X\cap H_Y\cap H$ belongs to \mathscr{U} and it is, therefore, non empty. Let $Z\in H_X\cap H_Y\cap H$, then we have c(X,Z)=i=c(Y,Z) as required.

Remark 2.3. In the statement of Theorem 2.2, one can replace γ by any set of size γ .

We can consider the previous partition property as an independent property for a regular cardinal. **Definition 2.4.** For a regular cardinal κ we say that κ has the strong partition property if for every cardinal $\nu > \kappa$, for every $\lambda \geq \nu^+$ and for every stationary set $S \subseteq [\lambda]^{<\nu^+}$, every function $c : [[S]]^2 \to \gamma$, with $\gamma < \kappa$, has a quasi homogenous set H which is also stationary.

3. The Strong Tree Property at Successors of Singular Cardinals

The following result generalizes a theorem by Magidor and Shelah [8].

Theorem 3.1. Let ν be a singular limit of strongly compact cardinals, then ν^+ has the strong tree property.

Proof. Assume without loss of generality that ν has countable cofinality, so let $\langle \kappa_n \rangle_{n < \omega}$ be an increasing sequence of strongly compact cardinals such that $\nu = \lim_{n < \omega} \kappa_n$. Let $\mu \ge \nu^+$ and let F be a (ν^+, μ) -tree. For every $X \in [\mu]^{<\nu^+}$, we assume that $\text{Lev}_X(F) = \{f_i^X; i < |\text{Lev}_X(F)|\}$.

Lemma 3.2. (Spine Lemma) There exists $n < \omega$ and a stationary set $S \subseteq [\mu]^{<\nu^+}$, such that for all $X, Y \in S$, there are $\zeta, \eta < \kappa_n$ with $f_{\zeta}^X \upharpoonright (X \cap Y) = f_{\eta}^Y \upharpoonright (X \cap Y)$.

Proof. Given a function $f \in Lev_X$, we write #f = i for $i < \nu$, when $f = f_i^X$. Define $c : [[\mu]^{<\nu^+}]^2 \to \omega$ by $c(X,Y) = \min\{i; \#(f_0^Y \upharpoonright X) < \kappa_i\}$. Since κ_0 is strongly compact, by Theorem 2.2, there is $n < \omega$ and a stationary quasi homogenous set $S \subseteq [\mu]^{<\nu^+}$ of color n. Then, for every $X,Y \in S$, there is $Z \supseteq X,Y$ in S such that c(X,Z) = n = c(Y,Z). This means that $\#(f_0^Z \upharpoonright X)$, $\#(f_0^Z \upharpoonright Y) < \kappa_n$. So, let $\zeta, \eta < \kappa_n$ be such that $f_0^Z \upharpoonright X = f_\zeta^X$ and $f_0^Z \upharpoonright Y = f_\eta^Y$, then $f_\zeta^X \upharpoonright (X \cap Y) = f_0^Z \upharpoonright (X \cap Y) = f_\eta^Y \upharpoonright (X \cap Y)$, as required.

Let n and S be like in the Spine Lemma, we prove the following fact.

Lemma 3.3. There is a cofinal $S' \subseteq S$ and an ordinal $\zeta < \kappa_n$ such that for all $X, Y \in S'$, we have $f_{\zeta}^X \upharpoonright (X \cap Y) = f_{\zeta}^Y \upharpoonright (X \cap Y)$ (the set S' is even stationary).

Proof. For every $(X,Y) \in [[S]]^2$, let $\bar{c}(X,Y)$ be the minimum couple $(\zeta,\eta) \in \kappa_n \times \kappa_n$, in the lexicografical order, such that $f_\eta^Y \upharpoonright X = f_\zeta^X$; the function is well defined by definition of n and S. Since κ_{n+1} is strongly compact, we can apply Theorem 2.2 to the function $\bar{c} : [[S]]^2 \to \kappa_n \times \kappa_n$. Hence, there exists a quasi homogenous set S' of color $(\zeta,\eta) \in \kappa_n \times \kappa_n$. It follows that for every $X,Y \in S'$, there is $Z \supseteq X,Y$ in S' such that $\bar{c}(X,Z) = (\zeta,\eta) = \bar{c}(Y,Z)$. This means that $f_\eta^Z \upharpoonright X = f_\zeta^X$ and $f_\eta^Z \upharpoonright Y = f_\zeta^Y$, hence $f_\zeta^X \upharpoonright (X \cap Y) = f_\eta^Z \upharpoonright (X \cap Y) = f_\zeta^Y \upharpoonright (X \cap Y)$.

Set $b = \bigcup_{X \in S'} f_{\zeta}^X$, by the previous lemma b is a function; b is a cofinal branch for F.

Remark 3.4. Our proof of Theorem 3.1 makes it clear that even if ν is just a singular limit of regular cardinals that satisfy the strong partition property, then ν^+ has the strong tree property.

4. Systems

Definition 4.1. Given $\lambda \geq \nu^+$, $D \subseteq [\lambda]^{<\nu^+}$ cofinal and $\mathscr{S} := \{S_i\}_{i \in I}$ a family of binary relations over $D \times \nu$, we say that \mathscr{S} is a system if the following hold:

- (1) if (X, ζ) S_i (Y, η) and $(X, \zeta) \neq (Y, \eta)$, then $X \subseteq Y$;
- (2) for every $X \subseteq Y$, if both (X,ζ) S_i (Z,θ) and (Y,η) S_i (Z,θ) , then (X,ζ) S_i (Y,η) ;
- (3) for every $X, Y \in D$, there is $Z \supseteq X, Y$ and $\zeta_X, \zeta_Y, \eta \in \nu$ such that for some $i \in I$ we have (X, ζ_X) S_i (Z, η) and (Y, ζ_Y) S_i (Z, η) (in particular, if $X \subseteq Y$, then (X, ζ) S_i (Y, ζ_Y)).

In the previous definition, the elements of $D \times \nu$ are called *nodes*. Given two nodes u and v, we say that they are S_i -incompatible, for some $i \in I$, if there is no $w \in D \times \nu$ such that $u S_i w$ and $v S_i w$. Sometimes we will say that a node u belongs to the X'th level if the first coordinate of u is X (i.e. $u = (X, \zeta)$, for some $\zeta \in \nu$).

Definition 4.2. Let $\{S_i\}_{i\in I}$ be a system on $D \times \nu$ and let $i \in I$, a partial function $b: D \to \nu$ is an S_i -branch if it satisfies the following conditions. For every $X \in \text{dom}(b)$ and for every $Y \in D$ with $Y \subseteq X$, we have:

- (1) $Y \in \text{dom}(b)$ iff there exists $\zeta < \nu$ such that (Y, ζ) $S_i(X, b(X))$,
- (2) b(Y) is the unique ζ witnessing this.

In the situation of the previous definition, we say that a branch b is cofinal if $X \in \text{dom}(X)$ for cofinally many X's.

Definition 4.3. Let $\{S_i\}_{i\in I}$ be a system on $D\times \nu$, a system of branches is a family $\{b_j\}_{j\in J}$ such that

- (1) every b_i is an S_i -branch for some $i \in I$;
- (2) for every $X \in D$, there is $j \in J$ such that $X \in \text{dom}(b_j)$.

The following two results (Lemma 4.4 and Theorem 4.5) generalize a theorem by Sinapova (see [10] Preservation Lemma). The proof of this theorem is very similar to the proof of Sinapova's Preservation Lemma, we have just to deal with sets of ordinals instead of ordinals.

Lemma 4.4. Let ν be a singular cardinal of countable cofinality, $\lambda \geq \nu$, and let $\{R_i\}_{i\in I}$ be a system on $D\times \tau$ with $D\subseteq [\lambda]^{<\nu^+}$ cofinal and $\max(|D|,\tau)<\nu$.

Suppose that \mathbb{P} is a κ -closed forcing, for a regular $\kappa > \max(|D|, \tau)^+$, and for some $p \in \mathbb{P}$, $\dot{b} \in V^{\mathbb{P}}$ and $i \in I$, we have

$$p \Vdash \dot{b}$$
 is a cofinal R-branch,

where $R = R_i$. If V has no cofinal branches for the system, then for all $\eta < \kappa$, we can find a sequence $\langle v_{\zeta}; \zeta < \eta \rangle$ of pairwise R-incompatible elements of $D \times \tau$ such that for every $\zeta < \eta$, there exists $q \leq p$ forcing $v_{\zeta} \in \dot{b}$.

Proof. Let $E := \{u \in D \times \tau; \exists q \leq p(q \Vdash u \in \dot{b})\}$. First remark that, since p forces that \dot{b} is cofinal, the set $\{X \in D; \exists \zeta \in \tau \ (X, \zeta) \in E\}$ is cofinal. Since V has no cofinal branches for the system, we can find, for all $v \in E$ two R-incompatible nodes $w_1, w_2 \in E$ such that $v R w_1, v R w_2$.

We inductively define for all $\zeta < \eta$ two nodes $u_{\zeta}, v_{\zeta} \in E$ and a condition $p_{\zeta} \leq p$ such that:

- (1) $p_{\zeta} \Vdash u_{\zeta} \in \dot{b}$;
- (2) u_{ζ} and v_{ζ} are pairwise R-incompatible;
- (3) for all $\varepsilon < \zeta$, $u_{\varepsilon} R u_{\zeta}$ and $u_{\varepsilon} R v_{\zeta}$;
- (4) the sequence $\langle p_{\varepsilon}; \varepsilon \leq \zeta \rangle$ is decreasing;

Let u be any node in E. From the remark above, there are $u_0, v_0 \in E$ which are R-incompatible and both u R u_0 and u R v_0 . By definition of E, there is a condition $p_0 \leq p$ such that $p_0 \Vdash u_0 \in \dot{b}$.

Let $\zeta > 0$ and assume that u_{ε} , v_{ε} , p_{ε} are defined for every $\varepsilon < \zeta$. Let q be stronger than every condition in $\{p_{\varepsilon}; \ \varepsilon < \zeta\}$. By the inductive hypothesis (claim 3.), the nodes $\langle u_{\varepsilon}; \ \varepsilon < \zeta \rangle$ form an R-chain, so we can find a node h and a condition $q^* \leq q$ such that $u_{\varepsilon} R h$, for all $\varepsilon < \zeta$, and $q^* \Vdash h \in \dot{b}$. Since p force that \dot{b} is cofinal and there is no cofinal branch in V for the system, we can find two R-incompatible nodes $u_{\zeta}, v_{\zeta} \in E$ and a condition $p_{\zeta} \leq q^*$ such that $h R u_{\zeta}$, $h R v_{\zeta}$ and $p_{\zeta} \Vdash u_{\zeta} \in \dot{b}$. That completes the construction.

The sequence $\langle v_{\zeta}; \zeta < \eta \rangle$ is as required: for if $\zeta' < \zeta < \eta$, then by definition $u_{\zeta'}$ and $v_{\zeta'}$ are R-incompatible, and $u_{\zeta'}$ R v_{ζ} , hence $v_{\zeta'}$ and v_{ζ} are R-incompatible.

Theorem 4.5. (Preservation Theorem) Let ν be a singular cardinal of countable cofinality, $\lambda \geq \nu$, and let $\{R_i\}_{i\in I}$ be a system on $D \times \tau$ with $D \subseteq [\lambda]^{<\nu^+}$ cofinal and $\max(|D|,\tau) < \nu$. Suppose that $\mathbb P$ is a κ -closed forcing, for a regular $\kappa > \max(|D|,\tau)^+$, and assume that $\mathbb P$ forces a system of branches $\{\dot{b}_j\}_{j\in J}$ through $\{R_i\}_{i\in I}$ with $|J|^+ < \kappa$ and such that for some $j \in J$, the branch b_j is cofinal. Then, there exists in V a cofinal R_i -branch, for some $i \in I$.

Proof. Suppose for contradiction that V has no cofinal branches for the system. We start working in $V[\mathbb{R}]$. Let $B := \{j \in J; b_j \text{ is not cofinal}\}$. By the closure of \mathbb{P} (we have $|J|^+ < \kappa$), we can find a condition p deciding, for every $j \in J$ whether or not b_j is cofinal, hence $B \in V$. For every $j \in B$, fix $X_j \in [\lambda]^{<\nu^+}$ such that dom b_j has empty intersection with every $Y \supseteq X_j$. Since B has size less than ν , the set $X^* \bigcup X_j$ is in $[\lambda]^{<\nu^+}$. Let $C^* := \{Z \in D; X^* \subseteq Z\}$.

Define $A := \{j \in J; p \Vdash b_i \text{ is cofinal}\}$, then $A \in V$ and by hypothesis of the theorem A is non empty. Moreover, by strengthening p if necessary, we have $p \Vdash \forall X \in C^* \exists a \in A(X \in \text{dom}(b_i))$

(use condition (2) and the definition of C^*). Let η be a regular cardinal with $\max(|D|, \tau) < \eta < \kappa.$

Claim 4.6. Let \triangleleft be a well ordering of A. For every $a \in A$, we can define $\langle q_{\gamma}^a; \ \gamma < \eta \rangle$ and $\langle u_{\gamma}^a; \ \gamma < \eta \rangle$ such that

in such a way that for all $\gamma < \eta$, $\langle q_{\gamma}^a; a \in A \rangle$ is \lhd -decreasing.

Proof. We proceed by induction on $a \in A$. Assume that the sequences have been defined up to $a \in A$. For every $\gamma < \eta$, let r_{γ} be stronger than every condition in the set $\{q_{\gamma}^c; c \triangleleft a\}$, and let $E_{\gamma} := \{u \in D \times \tau; \exists q \leq r_{\gamma}(q \Vdash u \in b_a)\}.$ For all $\gamma < \eta$, let $\langle v_{\zeta}^{\gamma}; \zeta < \eta \rangle$ be as in the conclusion of Lemma 4.4 applied to r_{γ} and \dot{b}_a , and let $X_{\gamma} \in [\chi]^{<\mu^+}$ be such that the level of each v_{ζ}^{γ} is below X_{γ} . Let $X^* \supseteq \bigcup X_{\gamma}$ in D. We want to define the sequence $\langle u_{\gamma}^a; \gamma < \eta \rangle$ with each $u_{\gamma}^a \in E_{\gamma}$ belonging to a level above X^* . We proceed by induction: suppose we have defined $\langle u_{\gamma}^a; \gamma < \delta \rangle$ for some $\delta < \eta$. For every $\gamma < \delta$, there is at most one $\zeta < \eta$ such that $v_{\zeta}^{\delta} R u_{\gamma}^{a}$ (because the v_{ζ}^{δ} 's are pairwise R-incompatible). For all $\gamma < \delta$, let ζ_{γ} be that unique index if it exists and let ζ_{γ} be 0 otherwise. Choose $\zeta \in \eta \setminus \{\zeta_{\gamma}^{\delta}; \ \gamma < \delta\}$. Then, for all $\gamma < \delta$, the nodes v_{ζ}^{δ} and u_{γ} are R-incompatible. Let $u_{\delta}^a \in E_{\delta}$ be such that $v_{\zeta}^{\delta} R u_{\delta}^a$. Then, for all $\gamma < \delta$, the nodes u_{γ}^a and u_{δ}^a are R-incompatible. Since for every $\gamma < \eta$, we have $u_{\gamma}^a \in E_{\gamma}$, we can find a condition $q_{\gamma}^a \leq r_{\gamma}$ such that $q_{\gamma}^a \Vdash u_{\gamma}^a \in b_a$. That completes the construction.

We return to the proof of the theorem. For every $\gamma < \eta$, let p_{γ} be stronger than all the conditions $\langle q_{\gamma}^a; a \in A \rangle$, and let $Y_{\gamma} \in D$ be such that the nodes in $\{u^a_{\gamma};\ a\in A\}$ belong to levels below Y_{γ} . Fix $Y^*\in C^*$ such that $Y^*\supseteq\bigcup Y_{\gamma}$. For all $\gamma < \eta$, let $p_{\gamma}^* \leq p_{\gamma}$, let w_{γ} of level Y^* and $a_{\gamma} \in A$ such that $p_{\gamma}^* \Vdash w_{\gamma} \in \dot{b}_{a_{\gamma}}$. Since A has size less than η , there is w^* on level Y^* and $a^* \in A$ such that $w_{\gamma} = w^*$,

 $a_{\gamma} = a^*$, for almost all $\gamma < \eta$. Let $b^* := \dot{b}_{a^*}$. Given two distinct $\gamma, \delta < \eta$ large enough, if $u := u_{\gamma}^{a^*}$ and $v := u_{\delta}^{a^*}$, then the following hold:

- $(1) \ p_{\gamma}^* \Vdash u \in b^*, \, p_{\gamma}^* \Vdash w^* \in b^*;$
- (2) $p_{\delta}^* \Vdash v \in b^*, p_{\delta}^* \Vdash w^* \in b^*;$
- (3) both the level of u and the level of v are subsets of Y^* ;
- (4) u and v are R_{a^*} -incompatible,

that leads to a contradiction.

5. The Strong Tree Property at $\aleph_{\omega+1}$

Theorem 5.1. Let $\langle \kappa_n \rangle_n < \omega$ be an increasing sequence of indestructibly supercompact cardinals. There is a strong limit cardinal $\mu < \kappa_0$ of cofinality ω such that by forcing over V with the poset

$$\operatorname{Coll}(\omega, \mu) \times \operatorname{Coll}(\mu^+, <\kappa_0) \times \Pi_{n<\omega} \operatorname{Coll}(\kappa_n, <\kappa_{n+1}),$$

one gets a model where the strong tree property holds at $\aleph_{\omega+1}$.

Proof. Let κ denote κ_0 , for every $\mu < \kappa$ we let

- (1) $\mathbb{R}(\mu) := \text{Coll}(\omega, \mu) \times \text{Coll}(\mu^+, <\kappa_0) \times \Pi_{n < \omega} \text{Coll}(\kappa_n, <\kappa_{n+1}),$
- (2) $\mathbb{L}(\mu) := \operatorname{Coll}(\omega, \mu) \times \operatorname{Coll}(\mu^+, < \kappa_0),$
- (3) $\mathbb{C} := \prod_{n < \omega} \operatorname{Coll}(\kappa_n, < \kappa_{n+1}).$

Assume that $\nu = \sup_n \kappa_n$, then the forcing $\mathbb{R}(\mu)$ produces a model where $\aleph_{\omega+1} = \nu^+$. We fix $H := \prod_{n<\omega} H_n \subseteq \mathbb{C}$ generic over V. We work in W := V[H]. Assume for contradiction that in every extension of W by $\mathbb{L}(\mu)$ with $\mu < \kappa$ strong limit of cofinality ω , the strong tree property fails at ν^+ . For every such μ , let λ_μ and $\dot{F}(\mu) \in W^{\mathbb{L}(\mu)}$ be a name for a (ν^+, λ_μ) -tree with no cofinal branches. Let $\lambda = \sup_{n<\omega} \lambda_\mu$, without loss of generality we can assume that $\lambda_\mu = \lambda$ for every μ , since a (ν^+, λ_μ) -tree with no cofinal branches can be extended to a (ν^+, λ) -tree with no cofinal branches. Given $X, Y \in [\lambda]^{<\nu^+}$ and $\zeta, \eta < \nu$, we will write $\Vdash_{\mathbb{L}(\mu)} (X, \zeta) <_{\dot{F}_\mu} (Y, \eta)$ when

 $\Vdash_{\mathbb{L}(\mu)}$ the η 'th function on level Y extends the ζ 'th function on level X.

Consider the following set

$$I := \{(a, b, \mu); \ \mu < \kappa \text{ is strong limit of cof } \omega \text{ and } (a, b) \in \mathbb{L}(\mu)\}.$$

We define a system $\mathscr{S} = \{S_i\}_{i \in I}$ on $[\lambda]^{<\nu^+} \times \nu$ as follows. Given $i = (a, b, \mu) \in I$, for every $X, Y \in [\lambda]^{<\nu^+}$ and for every $\zeta, \eta < \nu$, we let

$$(X,\zeta)$$
 S_i $(Y,\eta) \iff (a,b) \Vdash (X,\zeta) <_{\dot{F}_{\mu}} (Y,\eta).$

Lemma 5.2. There is, in W, an integer $n < \omega$ and a cofinal set $D \subseteq [\lambda]^{<\nu^+}$ such that $\{S_i \mid D \times \kappa_n\}_{i \in I}$ is a system.

Proof. Using the supercompactness of κ fix $j: W \to W^*$ an elementary embedding with critical point κ such that for σ large enough $j(\kappa) > \sigma$ and W^* is closed by sequences of length σ . In particular, $a^* := j[\lambda] \in W^* \cap [j(\lambda)]^{< j(\nu^+)}$.

Let $G_0^* \times G_1^*$ be generic for $\operatorname{Coll}(\omega, \nu)^{W^*} \times \operatorname{Coll}(\nu^+, < j(\kappa))^{W^*}$ over W, hence also over W^* . We let F^* be the interpretation of $j(\dot{F})(\nu)$ in $W[G_0^* \times G_1^*]$, where \dot{F} is the map $\mu \mapsto \dot{F}(\mu)$. We denote by $\ll \lambda \gg^{<\nu^+}$ the set of all the strictly increasing sequences $X: \alpha \to \lambda$ such that $\alpha < \nu^+$. For every $X \in \ll \lambda \gg^{<\nu^+}$, the image of X, that we denote Im(X), is a subset of $[\lambda]^{<\nu^+}$; by abuse of notation, we will sometime write just X instead of Im(X). Now, we define a sequence $\langle (p_X, q_X, \zeta_X, n_X); X \in \ll \lambda \gg^{<\nu^+} \rangle$ such that

- (1) $(p_X, q_X) \in \text{Coll}(\omega, \nu) \times \text{Coll}(\nu^+, < j(\kappa)), n_X < \omega, \text{ and } \zeta_X < j(\kappa_{n_X});$
- (2) $(p_X, q_X) \Vdash (j[X], \zeta_X) <_{F^*} (a^*, 0);$
- (3) for every $X \sqsubseteq Y$ in $\ll \lambda \gg^{<\nu^+}$, we have $q_Y \leq q_X$.

The sequence is inductively defined as follows. Let $X: \alpha \to \lambda$ be a strictly increasing sequence, assume by inductive hypothesis that $\langle (p_X, q_X, \zeta_X, n_X); X \in \langle \lambda \rangle^{<\alpha}$ is defined. By condition (3), the sequence $\langle q_{X \mid \beta}; \beta < \alpha \rangle$ is decreasing and $\operatorname{Coll}(\nu^+, \langle j(\kappa))$ is ν^+ -closed, so there exists a lower bound q_X . By strengthening q_X if necessary, we can find p_X, ζ_X, n_X satisfying conditions (1) and (2) for the sequence X. That completes the definition.

The poset $\operatorname{Coll}(\omega, \nu)$ has size less than $\lambda^{<\nu^+}$, hence there is a condition p and a cofinal set D such that for every $X \in D$, we have $p = p_{\bar{X}}$, where $\bar{X} \in \ll \lambda \gg^{<\nu^+}$ is the unique increasing sequence whose image is X. By shrinking D, we can also assume that there exists $n < \omega$ such that $n = n_{\bar{X}}$, for every $X \in D$.

Claim 5.3. $\{ S_i \upharpoonright D \times \kappa_n \}_{i \in I} \text{ is a system.}$

Proof. We just have to prove that it satisfies condition (3) of Definition 4.1. Fix $X, Y \in D$, then we have $(p_X, q_X) \Vdash (j[X], \zeta_X) <_{F^*} (a^*, 0)$ and $(p_Y, q_Y) \Vdash (j[Y], \zeta_Y) <_{F^*} (a^*, 0)$. If $Z \supseteq X, Y$ is any set in D, then q_Z is stronger than both q_X and q_Y . Therefore, condition (p, q_Z) forces that:

- (i) $(j[X], \zeta_X) <_{F^*} (a^*, 0);$
- (ii) $(j[Z], \zeta_Z) <_{F^*} (a^*, 0);$
- (iii) $(j[Z], \zeta_Z) <_{F^*} (a^*, 0);$
- (iv) $(j[Y], \zeta_Y) <_{F^*} (a^*, 0).$

From (i) and (ii) follows that $(p, q_Z) \Vdash (j[X], \zeta_X) <_{F^*} (j[Z], \zeta_Z)$; from (iii) and (iv) follows that $(p, q_Z) \Vdash (j[Y], \zeta_Y) <_{F^*} (j[Z], \zeta_Z)$. Then, by elementarity, there exists $\mu < \kappa$ and $(\bar{p}, \bar{q}) \in \mathbb{L}(\mu)$ and $\bar{\zeta}_X, \bar{\zeta}_Y, \bar{\zeta}_Z < \kappa_n$ such that $(\bar{p}, \bar{q}) \Vdash (X, \bar{\zeta}_X) <_{\dot{F}_{\mu}} (Z, \bar{\zeta}_Z)$ and $(Y, \bar{\zeta}_Y) <_{\dot{F}_{\mu}} (Z, \bar{\zeta}_Z)$. If we let $i = (\bar{p}, \bar{q}, \mu)$, then we just proved $(X, \bar{\zeta}_X) S_i (Z, \bar{\zeta}_Z)$ and $(Y, \zeta_Y) S_i (Z, \bar{\zeta}_Z)$.

That completes the proof of the lemma.

To simplify the notation, we define $R_i := S_i \upharpoonright D \times \kappa_n$, for every $i \in I$. Let m = n + 2. By indestructibility of κ_m , forcing over W = V[H] with $\operatorname{Coll}(\kappa_m, \gamma)^V$ for γ sufficiently large, adds an elementary embedding $\pi : V[H] \to M[H^*]$ with critical point κ_m and such that $\pi(\kappa_m)$ is large enough. So $H^* \subseteq \pi(\mathbb{C}) = \mathbb{C} * \mathbb{C}_{tail}$ where \mathbb{C}_{tail} is κ_m -closed.

Lemma 5.4. There is in $V[H^*]$ a system of branches $\{b_j\}_{j\in J}$ for the system $\{R_i\}_{i\in I}$ with $J=I\times\kappa_n$, such that for some $j\in J$, the branch b_j is cofinal.

Proof. First note that since $\kappa_n, |I| < cr(\pi)$, we may assume that $\pi(I) = I$ and $\pi(\{R_i\}_{i \in I}) = \{\pi(R_i)\}_{i \in I}$. This is a system on $\pi(D) \times \kappa_n$. Let a^* be a set in $\pi(D)$ such that $\pi[\lambda] \subseteq a^*$. For every $(i, \delta) \in I \times \kappa_n$, let $b_{i,\delta}$ be the partial map sending $X \in D$ to the unique $\zeta < \kappa_n$ such that $(\pi[X], \zeta) \pi(R_i)$ (a^*, δ) if such ζ exists. By definition of system, every $b_{i,\delta}$ is an R_i -branch. Condition (2) of Definition 4.3 is satisfied as well: indeed, if $X \in D$, then by condition (3) of Definition 4.1, there exists $\zeta, \eta < \kappa_n$ and $i \in I$ such that $(\pi[X], \zeta) \pi(R_i)$ (a^*, η) , hence $X \in \text{dom}(b_{i,\eta})$. It remains to prove that for some $j \in J$, b_j is cofinal. For every $X \in D$, we fix i_X, δ_X such that $X \in \text{dom}(b_{i_X,\delta_X})$. The set I has size less than κ_m in W, moreover ν^+ is regular and \mathbb{C}_{tail} does not add sequences of length less than κ_m , so there are $D' \subseteq D$ cofinal and i, δ in $V[H^*]$ such that $i = i_X$ and $\delta = \delta_X$, for every $X \in D$. This means that $X \in \text{dom}(b_{i,\delta})$ for every $X \in D$, namely $b_{i,\delta}$ is a cofinal branch.

By the Preservation Theorem, a cofinal R_i -branch b exists in W, for some $i \in I$. Assume that $i = (a, b, \mu)$, for every $X \subseteq Y$ in dom(b), we have $(a, b) \vdash (X, b(X)) <_{\dot{F}_{\mu}} (Y, b(Y))$. If $G_0 \times G_1 \subseteq \mathbb{L}(\mu)$ is any generic filter containing the condition (a, b), then the branch b determines a cofinal branch for \dot{F}_{μ} in $W[G_0 \times G_1]$, contradicting the fact that \dot{F}_{μ} is a name for a (ν^+, λ) -tree with no cofinal branches.

References

- [1] J. Cummings and M. Foreman. The Tree Property, Advances in Mathematics 133: 1-32 (1998).
- [2] L. Fontanella. Strong Tree Properties for Two Successive Cardinals, to appear in the *Archive for Mathematical Logic*.
- [3] T. Jech. Some Combinatorial Problems Concerning Uncountable Cardinals, *Annals of Mathematical Logic* 5: 165-198 (1972/73).
- [4] A. Kanamori. The Higher Infinite. Large Cardinals in Set Theory from their Beginnings, Perspectives in Mathematical Logic. Springer-Verlag, Berlin, (1994).
- [5] R. Laver. Making the supercompactness of κ indestructible under κ -directed closed forcing, Israel Journal of Mathematics 29: 385-388 (1978).
- [6] M. Magidor. Combinatorial Characterization of Supercompact Cardinals, Proc. American Mathematical Society 42: 279-285 (1974).

- [7] W. J. Mitchell, Aronszajn Trees and the Independence of the Transfer Property, *Annals of Mathematical Logic* 5: 21-46 (1972).
- [8] M. Magidor and S. Shelah. The Tree Property at Successors of Singular Cardinals, *Archive for Mathematical Logic* 35 (5-6): 385-404 (1996).
- [9] I. Neeman. The Tree Property up to $\aleph_{\omega+1}$ (submitted).
- [10] D. Sinapova. The Tree Property at $\aleph_{\omega+1}$, to appear in the Journal of Symbolic Logic (2012).
- [11] M. Viale. On the Notion of Guessing Model, to appear in the *Annals of Pure and Applied Logic*.
- [12] M. Viale and C. Weiss. On the Consistency Strength of the Proper Forcing Axiom, submitted.
- [13] C. Weiss. Subtle and Ineffable Tree Properties, Phd thesis, Ludwig Maximilians Universitat Munchen (2010)
- [14] C. Weiss. The Combinatorial Essence of Supercompactness, submitted to the *Annals of Pure and Applied Logic*.

Equipe de Logique Mathématique, Université Paris Diderot Paris 7, UFR de mathématiques case 7012, site Chevaleret, 75205 Paris Cedex 13, France *E-mail address*: fontanella@logique.jussieu.fr