## 密码学原理与实践

(第三版)

### 

Third Edition



### 苏明

[加] Douglas R. Stinson 著 冯登国 等译



- ▶ 8. 1 引言与示例
- ▶ 8. 2 概率分布的不可区分性
- > 8. 3 Blum-Blum-Shub生成器
- > 8. 4 概率加密



■ 密码学很多场景需要随机数: 公平、安全

■ 投掷硬币、物理过程产生随机数费时且昂贵

■ 实用: 使用一个**伪随机比特生成器(PRBG)** 来产生随机数

## 8. 1 引言与示例

定义 8.1 设  $k,\ell$  为两个满足  $\ell \ge k+1$  的正整数。一个  $(k,\ell)$  比特生成器是一个可在多项式时间内 (作为 k 的函数) 计算的函数  $f:(\mathbb{Z}_2)^k \to (\mathbb{Z}_2)^\ell$ 。我们称输入  $s_0 \in (\mathbb{Z}_2)^k$  为种子,而将输出  $f(s_0) \in (\mathbb{Z}_2)^\ell$  称为生成的比特串。通常要求  $\ell \in k$  的一个多项式函数。



■ 完善保密性: 一次一密

■ 挑战?

- 密钥量与明文一样长
- 因此实用中采用了PRBG
- 看起来随机、不可预测

## 8. 1 引言与示例

■ 随机数生成器还应用于:模拟,Monte Carlo算法、采样、测试,...

### 如何衡量一个PRG的随机特征?

- 频率、游程、...等指标
- 经过统计测试,比如 $\chi^2$ 测试



■ 一个k阶LFSR(比如m序列)是否安全?

Berlekamp-Massey Algorithm

# 4

### 8. 1 引言与示例

### 线性同余发生器: See Knuth, Vol. 2

#### 算法 8.1 线性同余生成器

设 $M \ge 2$  是一个整数, $1 \le a,b \le M-1$ 。定义k=1+|lb M|,并令 $k+1 \le \ell \le M-1$ 。

种子是一个整数  $s_0$ ,这里  $0 \le s_0 \le M-1$ 。注意到一个种子的二元表示就是一个长度不超过 k 的比特串;然而,并非所有的 k 长比特串都是被允许使用的种子。现在,对  $1 \le i \le \ell$ ,定义

$$s_i = (as_{i-1} + b) \operatorname{mod} M$$

然后, 定义

$$f(s_0) = (z_1, z_2, \dots, z_\ell)$$

其中 $z_i = s_i \mod 2$ , $1 \le i \le \ell$ 。

因此,我们称 f 为一个 $(k,\ell)$  线性同余生成器。

# 4

## 8. 1 引言与示例

- 例子:
- M=31, a=3, b=5

■ 构造的(5,10)PRBG具有什么性质? (Z<sub>31</sub>上周期)

## 8. 1引言与示例

| 种 子    | 序 列        | 种 子 | 序 列               |
|--------|------------|-----|-------------------|
| 0      | 1010001101 | 16  | 0110100110        |
| 1      | 0100110101 | 17  | 1001011010        |
| 2      | 1101010001 | 18  | 0101101010        |
| 3      | 0001101001 | 19  | 0101000110        |
| 4      | 1100101101 | 20  | 1000110100        |
| 5 _ ,, | 0100011010 | 21  | 0100011001        |
| 6      | 1000110010 | 22  | 1101001101        |
| . 7 ,  | 0101000110 | 23  | 0001100101        |
| 8      | 1001101010 | 24  | 1101010001        |
| 9      | 1010011010 | 25  | 0010110101        |
| 10     | 0110010110 | 26  | 1010001100        |
| 11     | 1010100011 | 27  | 0110101000        |
| 12     | 0011001011 | 28  | 1011010100        |
| 13     | 1111111111 | 29  | 0011010100        |
| 14     | 0011010011 | 30  | 0110101000        |
| 15     | 1010100011 |     | 7 - 1 - 1 - 1 - 1 |

## 8. 1引言与示例

### RSA 生成器

#### 算法 8.2 RSA 生成器

设 p,q 为两个 k/2 比特长的素数,定义 n=pq 。选择 b ,使其满足关系式  $\gcd(b,\phi(n))=1$  。 n 和 b 是公开的, p 和 q 是保密的。

在 $\mathbb{Z}_n^*$  中选择一个k 比特元素  $s_0$  作为种子。对 $i \ge 1$ ,定义

$$s_{i+1} = s_i^b \bmod n$$

然后定义

$$f(s_0) = (z_1, z_2, \dots, z_\ell)$$

这里,对1 $\leq$ i $\leq$ ℓ,有

$$z_i = s_i \mod 2$$

因此称 f 为一个 $(k,\ell)$  -RSA 生成器。



- 伪随机数发生器: 设计要求
- √ 快速
- ✓ 安全

安全:不能在 k(或者 l)的多项式时间内, 把由 PRBG产生的长为 l的比特串与 *真正随机的*长为 l的比特串 区分开来



例子:

■ 真随机序列 VS 2/3概率产生1的PRBG

■ 如何区分开来?

### ■ 概率分布的可区分性

定义 8.2 设  $\underline{p_0}$  和  $\underline{p_1}$  是长度为  $\ell$  的所有比特串之集 ( $\mathbb{Z}_2$ ) $^\ell$  上的两个概率分布。对 j=0,1 和  $z^\ell \in (\mathbb{Z}_2)^\ell$ ,  $p_j(z^\ell)$  表示比特串  $z^\ell$  在分布  $p_j$  下出现的概率。设  $\underline{dst}$ : ( $\mathbb{Z}_2$ ) $^\ell$  → {0,1} 是一个函数,  $\epsilon > 0$  。对 j=0,1,定义

$$E_{\mathrm{dst}}(p_j) = \sum_{\{z' \in (\mathbb{Z}_2)' : \mathrm{dst}(z') = 1\}} p_j(z^\ell)$$

我们称 dst 为一个  $p_0$  和  $p_1$  的  $\epsilon$  区分器, 如果

$$\left| E_{\rm dst}(p_0) - E_{\rm dst}(p_1) \right| \ge \epsilon$$

称  $p_0$  和  $p_1$  是  $\epsilon$  可区分的,如果存在这样一个  $p_0$  和  $p_1$  的  $\epsilon$  区分器。称dst 为多项式时间区分器,如果  $dst(z^{\ell})$  可以在  $\ell$  的多项式时间内计算出来。



■推广到随机算法情形

对比特串 $z'=(z_1,\cdots,z_\ell)$ ,一个区分器以概率p(依赖于z')猜测成0,因此以概率1-p猜测成1。在随机区分器的情况下,不难看出

$$E_{\text{dst}}(p_j) = \sum_{z' \in (\mathbf{Z}_2)'} \left( p_j(z^{\ell}) \times \Pr[\text{dst}(z^{\ell}) = 1] \right)$$

我们得到和证明的所有结果对随机区分器也同样成立。

- $p_u$ :均匀概率分布
- $p_f$ :由f产生的序列的概率分布

- 假设PRBG f产生的序列是平衡的,即
- l/2个比特为0, l/2个比特为1
- 请构造区分器(dst), 区分f和 真随机序列?

$$dst(z_1, \dots, z_\ell) = \begin{cases} 1 & \text{如果 } (z_1, \dots, z_\ell) \text{恰有} \ell/2 \text{ 个比特为 0} \\ 0 & \text{其他} \end{cases}$$

$$E_{\rm dst}(p_u) = \frac{\binom{\ell}{\ell/2}}{2^{\ell}}$$

$$E_{\rm dst}(p_f) = 1$$

$$\lim_{\ell \to \infty} \frac{\binom{\ell}{\ell/2}}{2^{\ell}} = 0$$

因此,对任意固定的 $\epsilon < 1$ ,如果 $\ell$ 是充分大的,那么 $p_u$ 和 $p_f$ 是 $\epsilon$ 可区分的。



### 8.2.1 下一比特预测器

nbp(Next Bit Predictor)

如果给定前i-1个比特,nbp能够至少以概率 $\frac{1}{2}$ + $\epsilon(\epsilon>0)$ 来预测所产生伪随机序列的第i个比特。

**定理 8.1** 设 f 是一个 $(k,\ell)$  比特生成器,那么函数 nbp 是一个关于 f 的  $\epsilon$  的第 i 比特预测器当且仅当

$$\sum_{z^{i-1} \in (\mathbf{Z}_2)^{i-1}} (p_f(z^{i-1}) \times \Pr[z_i = \text{nbp}(z^{i-1}) | z^{i-1}]) \ge \frac{1}{2} + \epsilon$$

## 8.2.1 下一比特预测器

### ■ nbp→Distinguish

```
算法 8.3 Distinguish (z^i)

external nbp

z \leftarrow \text{nbp}(z^{i-1})

if z = z_i

then return (1)

else return (0)
```

定理 8.2 假设 nbp 对  $(k,\ell)$  比特生成器 f 来说是一个多项式时间  $\epsilon$  的第 i 比特预测器。设  $p_f$  是由 f 导出的  $(\mathbb{Z}_2)^i$  上的概率分布,  $p_u$  是  $(\mathbb{Z}_2)^i$  上的均匀分布。那么算法 8.3 是一个  $p_f$  和  $p_u$  的多项式时间  $\epsilon$  区分器。



### 8.2.1 下一比特预测器

### ■ Distinguish → nbp

**定理 8.3** 假设 dst 是一个  $p_f$  和  $p_u$  的 (多项式时间)  $\epsilon$  区分器,这里  $p_f$  是由  $(k,\ell)$  比特生成器 f 导出的  $(\mathbb{Z}_2)^\ell$  上的概率分布,  $p_u$  是  $(\mathbb{Z}_2)^\ell$  上的均匀概率分布,那么对某一 i ,  $1 \leq i \leq \ell-1$  ,存在关于 f 的一个 (多项式时间)  $\epsilon/\ell$  的第 i 比特预测器。

### 8.3 Blum-Blum-Shub生成器

算法 8.5 Blum-Blum-Shub 生成器

设 p , q 是两个满足  $p \equiv q \equiv 3 \mod 4$  的 (k/2) 比特素数,定义 n = pq 。 QR (n) 表示模 n 的二次剩余的集合。

一个种子  $s_0$  是 QR (n) 中的任何一个元素。对  $0 \le i \le \ell-1$ ,定义

$$s_{i+1} = s_i^2 \bmod n$$

然后定义

$$f(s_0) = (z_1, z_2, \dots, z_\ell)$$

其中

$$z_i = s_i \mod 2$$

 $1 \le i \le \ell$ 。那么 f 是一个 $(k,\ell)$  PRBG,称为 Blum-Blum-Shub 生成器,简写为 BBS 生成器。

一种选择合适种子的方法是先选择一个  $s_{-1} \in \mathbb{Z}_n^*$ ,然后计算  $s_0 = s_{-1}^2 \mod n$ 。这保证了  $s_0 \in \mathrm{QR}(n)$ 。

### 8.3 Blum-Blum-Shub生成器

x 是模n 的二次剩余当且仅当

$$\left(\frac{x}{p}\right) = \left(\frac{x}{q}\right) = 1$$

定义

$$\widetilde{\mathrm{QR}}(n) = \left\{ x \in \mathbb{Z}_n^* \setminus \mathrm{QR}(n) \colon \left(\frac{x}{n}\right) = 1 \right\}$$

这样

$$\widetilde{QR}(n) = \left\{ x \in \mathbb{Z}_n^* : \left( \frac{x}{p} \right) = \left( \frac{x}{q} \right) = -1 \right\}$$
 (5)

$$|QR(n)| = |\widetilde{QR}(n)| = ?$$

## 8.3.1 Blum-Blum-Shub生成器安全性

■ 复合二次剩余(Composite Quadratic Residues)

**实例**: 正整数 n 是两个未知不同奇素数 p 和 q 之积,整数  $x \in \mathbb{Z}_n^*$  满足  $\left(\frac{x}{n}\right) = 1$  。问题:  $x \in QR(n)$  吗?

- ■本质上需要区别模n的二次剩余、伪二次剩余
- 通常猜测: 若分解n不可行, 那么该问题难解

### 8.3.1 Blum-Blum-Shub生成器安全性

- pbp是一个 $\epsilon$ 前一比特预测器:若它正确猜测 $z_0$ 的概率至少为 $1/2+\epsilon$ (对所有可能种子 $s_0$ )
- 利用 $\delta$ 前一比特预测器**构造**概率算法,把模n二次剩余、伪二次剩余以 $1/2+\delta$ 区分开来

```
算法 8.6 QR-TEST (x,n)

external pbp

s_1 \leftarrow x^2 \mod n

comment: s_1是一个模 n 的二次剩余

z_1 \leftarrow s_1 \mod 2

由种子 s_1 使用 BBS 生成器计算出 z_2, \dots, z_\ell

z \leftarrow \text{pbp}(z_1, \dots, z_\ell)

if (x \mod 2) = z

then return (yes)

else return (no)
```

## 8.3.1 Blum-Blum-Shub生成器安全性

 $(k,\ell)$  -BBS 生成器与 $\ell$ 个随机比特是 $\epsilon$ 可区分的



对  $(k,\ell)$  -BBS 生成器的  $(\epsilon/\ell)$  前一比特预测器



正确概率至少为  $1/2 + \epsilon/\ell$  的关于复合二次剩余的区分算法



关于复合二次剩余的错误概率至多为  $1/2-\epsilon/\ell$  的无偏差 Monte Carlo 算法



对任 $-\gamma > 0$ ,关于复合二次剩余的错误概率至多为 $\gamma$ 的无偏差 Monte Carlo 算法

普遍相信对复合二次剩余问题不存在一个小错误概率的多项式时间Monte Carlo算法

因此相信BBS生成器是安全的



■ 密码体制的语义安全性

■ 密文不可区分性

定义 8.3 一个概率公钥密码体制定义为一个 6 元组( $\mathcal{P},\mathcal{C},\mathcal{K},\mathcal{E},\mathcal{D},\mathcal{R}$ ), 其中 $\mathcal{P}$ 是明文集, $\mathcal{C}$ 是密文集, $\mathcal{K}$ 是密钥空间, $\mathcal{R}$ 是随机化子的集合。对每一个密钥  $\mathcal{K} \in \mathcal{K}$ , $e_{\mathcal{K}} \in \mathcal{E}$ 是一个公开加密规则, $d_{\mathcal{K}} \in \mathcal{D}$ 是一个秘密解密规则。同时,要满足下列特性:

1. 每一个 $e_{\kappa}$ :  $\mathcal{P} \times \mathcal{R} \to \mathcal{C}$  和 $d_{\kappa}$ :  $\mathcal{C} \to \mathcal{P}$  是满足

$$d_K(e_K(b,r)) = b$$

的函数,对每一个明文 $b \in \mathcal{P}$ 和每一个 $r \in \mathcal{R}$  [特别地,它意味着如果 $x \neq x'$ ,那么 $e_K(x,r) \neq e_K(x',r)$ ]。

2. 该体制的安全性定义如下。设 $\epsilon$ 是一个指定的安全参数。对任意固定的  $K \in \mathcal{K}$  和任意的  $x \in \mathcal{P}$ ,定义一个 $\mathcal{C}$ 上的概率分布  $p_{K,x}$ ,这里  $p_{K,x}$ (y)表示给定 K 是密钥,x 是明文时,y 是密文的概率(这个概率的计算是在所有随机选择的  $r \in \mathcal{R}$  上进行的)。假设 x ,  $x' \in \mathcal{P}$  ,  $x \neq x'$  ,  $K \in \mathcal{K}$  , 那么概率分布  $p_{K,x}$  和  $p_{K,x'}$  不是多项式时间  $\epsilon$  可区分的。



■ 如果 $x \neq x'$ , 那么x的所有加密的概率分布与 x'的所有加密的概率分布是(多项式时间) 不可区分的

#### 密码体制 8.1 Goldwasser-Micali 公钥密码体制

设 n=pq , 其中 p 和 q 是不同的奇素数。设  $m\in \widetilde{QR}(n)^a$  , 整数 n 和 m 是公开的, n=pq 的分解是保密的。设  $\mathcal{P}=\{0,1\}$  ,  $\mathcal{C}=\mathcal{R}=\mathbb{Z}_n^*$  , 定义  $\mathcal{K}=\{(n,p,q,m)\}$  , 其中 n , p , q 和 m 如上定义。

对 K = (n, p, q, m), 定义

$$e_K(x,r) = m^x r^2 \mod n$$

和

$$d_{K}(y) = \begin{cases} 0, & \text{如果}y \in QR(n) \\ 1, & \text{如果}y \in \widetilde{QR}(n) \end{cases}$$

此处x=0或 1,r和  $y \in \mathbb{Z}_n^*$ 。

"如果  $p \equiv 3 \pmod{4}$  且  $q \equiv 3 \pmod{4}$ ,那么,我们可以取 m = -1 。这将提高加密的效率,这是因为不再需要进行  $m^x$  的指数运算。



### **Pros and Cons**

■ 优点 可证明安全性

■ 缺点 密文膨胀大

#### 密码体制 8.2 Blum-Goldwasser 公钥密码体制

设 n=pq ,其中 p 和 q 是素数,  $p\equiv q\equiv 3 \pmod{4}$ 。整数 n 是公开的, n=pq 的分解是保密的。设  $\mathcal{P}=(\mathbb{Z}_2)^\ell$  ,  $\mathcal{C}=(\mathbb{Z}_2)^\ell\times\mathbb{Z}_n^*$  ,  $\mathcal{R}=\mathbb{Z}_n^*$  。定义  $\mathcal{K}=\{(n,p,q)\}$  ,其中 n , p 和 q 如上定义。对 K=(n,p,q) ,  $x\in(\mathbb{Z}_2)^\ell$  ,  $r\in\mathbb{Z}_n^*$  ,加密 x 如下:

- 1. 使用 BBS 生成器从种子  $s_0 = r$  计算出  $z_1, \dots, z_\ell$  。
- 2. 计算出  $s_{t+1} = s_0^{2^{t+1}} \mod n$  。
- 3. 对 $1 \le i \le \ell$  计算出  $y_i = (x_i + z_i) \mod 2$ 。
- 4. 定义 $e_K(x,r)=(y_1,\cdots,y_\ell,\underline{s_{\ell+1}})$ 。

为了解密 y, Bob 完成下列步骤:

- 1. 计算出  $a_1 = ((p+1)/4)^{\ell+1} \mod (p-1)$ 。
- 2. 计算出  $a_2 = ((q+1)/4)^{\ell+1} \mod (q-1)$ 。
- 3. 计算出  $b_1 = s_{\ell+1}^{a_1} \mod p$ 。
- 4. 计算出  $b_2 = s_{t+1}^{a_2} \mod q$  。
- 5. 使用中国剩余定理找到 r 满足

$$r \equiv b_1 \pmod{p}$$
  $\not\exists l \ r \equiv b_2 \pmod{q}$ 

- 6. 利用 BBS 生成器从种子  $s_0 = r$  计算出  $z_1, \dots, z_\ell$ 。
- 7. 对 $1 \le i \le \ell$  计算出  $x_i = (y_i + z_i) \mod 2$ 。
- 8. 明文 $x = (x_1, \dots, x_\ell)$ 。



 $x^{((p+1)/4)^{(+)}}$ 将是x模p的主 $2^{\ell+1}$ 次根

- Blum-Goldwasser公钥密码体制: 公钥流密码
- · 加密时:  $s_{l+1}$ 作为密文的一部分进行传输
- 解密时:  $As_{l+1}$ 计算出 $s_0$ , 重构出密钥流

数据扩展还算合理