Confinamento della radiazione Cherenkov

Manuel Deodato

ABSTRACT

Determinare le condizioni sulla velocità β e l'indice di rifrazione n affinché la radiazione Cherenkov emessa da una particella, che incide perpendicolarmente su una lastra di materiale trasparente con indice di rifrazione n=1.5, possa restare contenuta nel mezzo stesso. Scrivere un programma che calcoli la frazione di luce che resta confinata nel mezzo in funzione dell'angolo di incidenza, con velocità arbitraria.

1. Condizioni su β e n per il confinamento.

Si sa che cos $\theta_c = \frac{1}{\beta n(\omega)}$, quindi:

$$\frac{1}{\beta^2 n^2(\omega)} = \cos^2 \theta_c = 1 - \sin^2 \theta_c \rightarrow \sin \theta_c = \left(1 - \frac{1}{\beta^2 n^2(\omega)}\right)^{1/2}, con \ n(\omega) \equiv 1.5$$

L'indice del mezzo radiatore è $n_r = 1.5$; si cerca n_a indice di rifrazione dell'ambiente circostante il mezzo radiatore tale che la radiazione rimane confinata nel mezzo. Evidentemente, $n_a = n_a(\beta)$.

Usando la legge di Snell per mettere in relazione il radiatore con il mezzo circostante, si ha: $n_a \sin \theta_a = 1.5 \sin \theta_c$. La richiesta è che la radiazione rimanga confinata, quindi si prende $\theta_a = \pi/2 \rightarrow \sin \theta_a = 1$, quindi si trova la relazione

$$n_a(\beta) = 1.5 \cdot \left(1 - \frac{1}{\beta^2 n^2(\omega)}\right)^{1/2} = \left(1.5^2 - \frac{1}{\beta^2}\right)^{1/2}$$

2. Frazione di luce confinata

La radiazione Cherenkov è omogenea rispetto all'angolo azimutale ed è emessa su un intero angolo solido, il cui differenziale è $d\Omega = 2\pi \sin\theta \,d\theta$. Allora, la radiazione complessiva è emessa su tutto l'angolo solido, quindi

$$\Omega_{tot} = \int_{0}^{\theta_c} 2\pi \sin\theta \, d\theta = 2\pi (1 - \cos\theta_c)$$

mentre la parte di radiazione confinata nel mezzo è ottenuta tramite

$$\Omega_{conf} = \int_{\theta_{crit}}^{\theta_c} 2\pi \sin\theta \, d\theta = 2\pi (\cos\theta_{crit} - \cos\theta_c)$$

Si trova la frazione di radiazione confinata dal rapporto:

$$f_{conf} \equiv \frac{\Omega_{conf}}{\Omega_{tot}} = \frac{\cos \theta_{crit} - \cos \theta_c}{1 - \cos \theta_c}$$

In questa, si possono esplicitare i valori

$$\cos \theta_c = \frac{1}{\beta n}$$
, $\cos \theta_{crit} = \left(1 - \frac{n_{rad}}{n_a}\right)^{1/2}$

$$\rightarrow f = \frac{(1 - n_{rad}/n_a)^{1/2} - 1/\beta n}{1 - 1/\beta n}$$