Phong Lighting Model

Lighting components:

Surface parameters:

Diffuse color: $K_d = (K_d^R, K_d^G, K_d^B)$ fraction of light reflected diffusely Specular color: $K_s = (K_s^R, K_s^G, K_s^B)$ fraction of light reflected diffusely $\alpha = \text{shininess } (0,1)$: very rough, 10..20: mid smooth, 100..200: very shiny)

Light parameters:

Ambient light color and brightness: $I_a = (I_a^R, I_a^G, I_a^B)$ Light I color and brightness: $I_i = (I_i^R, I_i^G, I_i^B)$

Geometry parameters (all normalized to unit length):

Vector towards light: L_i Normal of surface: NDirection toward eye: V

Ambient calculation

Light from all directions scattered equally in all directions $I_a K_a$ which means

$$(I_a^R, I_a^G, I_a^B)(K_a^R, K_a^G, K_a^B) = (I_a^R K_a^R, I_a^G K_a^G, I_a^B K_a^B)$$

Diffuse (sub-surface) calculation

Light from a direction L_i scattered equally in all directions $I_i K_d(N \cdot L_i)_+$

where $(N \cdot L_i)_+$ means clamp negative values to zero: $\max(0, N \cdot L_i)$

Light reflected mirror-like (or nearly) in a lobe around the reflection direction $I_i K_s (V \cdot R_i)^{\alpha}_+$

Computing R

Project L to Q to be perpendicular to N:

$$Q = L - \frac{L \cdot N}{N \cdot N} N = L - (L \cdot N) N$$

$$R = L - 2Q$$

$$R = 2(L \cdot N) N - L$$

because b'=b/2

$$I_o = \overbrace{I_a K_a}^{\text{ambient}} + \overbrace{I_i K_d (N \cdot L_i)_+}^{\text{diffuse}} + \overbrace{I_i K_s (V \cdot R_i)_+}^{\text{specular}}$$

The halfway vector $H = (L_i+V)/\|L_i+V\|$ Use $H\cdot N$ rather than $R\cdot V$ Claim: $H\cdot N$ and $R\cdot V$ have similar behavior

$$I_o = \overbrace{I_a K_a}^{\text{ambient}} + \overbrace{I_i K_d (N \cdot L_i)_+}^{\text{diffuse}} + \overbrace{I_i K_s (N \cdot H_i)_+}^{\text{specular}}$$

Phong problems

$$I_o = I_a K_a + \sum_i I_i (K_d (N \cdot L_i)_+ + K_s (N \cdot H_I)_+^n)$$

Ambient:

Constant for all surfaces and directions.

Solution: None! We have no good solution for this (in low level real-time graphics).

Diffuse:

Diffuse is far too bright! Diffuse reflection is spread over a whole hemisphere - the eye sees only some of it.

Solution: K_d/π

Specular:

 K_s is constant

Solution: Any of several micro-facet lighting models.