Vectors in \mathbb{R}^n

 $\begin{array}{c} {\rm Abdon\ Morales} \\ {\rm The\ University\ of\ Texas\ at\ Austin} \\ {\rm M\ 340L} \\ {\rm Kirk\ Blazek} \end{array}$

June 10, 2024 Lecture 3

A column vector is an $n \times 1$ matrix

Linear Algebra

Physics

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Vector Addition

If $\vec{u}, \vec{v} \in \mathbb{R}^n$, then $\vec{u} + \vec{v}$ is the vector in \mathbb{R}^n whose ith element is $u_i + v_i$.

$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \dots \\ u_n + v_n \end{bmatrix}$$
(1)

Example #1

$$\vec{u} + \vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -3 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

The vector addition below cannot be allowed and will be seen as not defined or in other words undefined,

$$\begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix} + \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \mathbf{not} \ \mathbf{defined}$$
$$+8 = \mathbf{not} \ \mathbf{defined}$$

Scalar Multiplication

If $\vec{u} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then the scalar multiple of c and \vec{u} , written as $c\vec{u}$ is the vector in \mathbb{R}^n whose ith component is cu_i .

$$c\vec{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \dots \\ cu_n \end{bmatrix}$$
 (2)

If $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ is a set of vectors in \mathbb{R}^n and $\{c_1, c_2, ..., c_k\}$ is a set of scalars in \mathbb{R} , then

$$c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 + \dots + c_k\vec{v}_k \tag{3}$$

is the linear combination of the \vec{v} 's using the c's as weights.

If $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ is a set of vectors in \mathbb{R}^n , then the span $s = \text{span}\{\vec{v}_1, ..., \vec{v}_k\}$ is the set of **ALL** linear combination of these vectors.

Example 2

$$\operatorname{span}\left\{\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}1\\3\\0\end{bmatrix}\right\} = \left\{c_1\begin{bmatrix}1\\1\\1\end{bmatrix} + c_2\begin{bmatrix}1\\3\\0\end{bmatrix} | c_1, c_2 \in \mathbb{R}\right\} \tag{4}$$

Problem Set 1

$$a_{1 1}x_{1} + a_{1 2}x_{2} + \dots + a_{1 n}x_{n} = b_{1}$$

$$a_{2 1}x_{1} + a_{2 2}x_{2} + \dots + a_{2 n}x_{2} = b_{2}$$

$$a_{m 1}x_{1} + \dots + a_{m n}x_{n} = b_{m}$$

If A is an $m \times x$ matrix and \vec{x} is a vector in \mathbb{R}^n then $A\vec{x}$ is the vector in \mathbb{R}^n which is the linear combination of the columns of A using the components of as weights.

$$A\vec{x} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n a_n$$
 (5)

Problem 1

$$\begin{bmatrix} -1 & 3 & 2 & 0 \\ 4 & 1 & 0 & -2 \\ 0 & 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 4 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -2 \\ 8 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \\ -3 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ 7 \\ -1 \end{bmatrix}$$

* can be written as $A\vec{x} = b$, can be written as a linear combination of the columns of A?

If
$$A = [\vec{a}_1 \ \vec{a}_2 \ ... \ \vec{a}_2]$$
, is \vec{b} in span $\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_n\}$?

Pivot in every row A= will always have a solution.

If A is an $m \times n$ matrix, then the following are equivalent.

- $\forall \vec{b} \in \mathbb{R}^m$, $A\vec{x} = b$ has a solution
- Each $\vec{b} \in \mathbb{R}^m$ is a linear combination of the columns of A
- \bullet The columns of A span $\mathbb{R}^m \mathbf{A} has a pivotine very row$