STAT GR5243 Project 3

Group 2

Louis Cheng

Xiaoyuan Ge

Xinyun Li

Tianyu Yao

Ruiyu Zhang

Datasets

Human-verified, clean labels for first 10k images

Noisy labels for all images

noisy_labels.csv

50k Images

<u>Goal</u>

Build a Al predictive model that is:

1) Accurate

2) Portable/Easy to replicate

3) Computationally efficient

at multi-label classification of images.

Model 1 (VGG16):

Guidance: "Given a baseline model, create a more sophisticated model while still treating the noisy labels as clean ones"

Model 2:

Guidance: "Use exactly the same predictive model as in Model I, but add some extra models or procedures to address the label noise issue."

Still a VGG 16...

BUT WITH:

A <u>label correction network</u> to clean the noisy label

Our Proposal

Inspired by Inoue et al. (2017), we proposed a 2-stage model

Training Process & Performance

Stage 1: Label Cleaning Network

Stage 2: Image Classifier

Performance Improvement

Model 1

valuation(baseline_model,		, crean_1	clean_labels[.1000],		
	precision	recall	f1-score	support	
0	0.32	0.45	0.37	102	
1	0.18	0.25	0.21	112	
2	0.24	0.05	0.08	99	
3	0.23	0.15	0.18	92	
4	0.26	0.52	0.34	99	
5	0.18	0.12	0.14	85	
6	0.28	0.36	0.31	107	
7	0.55	0.06	0.11	102	
8	0.27	0.44	0.34	99	
9	0.23	0.12	0.15	103	
accuracy		1111	0.25	1000	
macro avg	0.27	0.25	0.22	1000	
eighted avg	0.27	0.25	0.23	1000	

- Model II <u>outperform</u> Model I
- Accuracy have a boost from 20% to 70%

Model 2

	precision	recall	f1-score	support
0	0.76	0.74	0.75	102
1	0.88	0.92	0.90	112
2	0.57	0.61	0.59	99
3	0.52	0.15	0.24	92
4	0.79	0.71	0.74	99
5	0.47	0.87	0.61	85
6	0.72	0.79	0.75	107
7	0.83	0.84	0.84	102
8	0.94	0.68	0.79	99
9	0.84	0.92	0.88	103
accuracy			0.73	1000
macro avg	0.73	0.72	0.71	1000
eighted avg	0.74	0.73	0.72	1000

Computational Cost Improvement

Model 1

Model 2

- Model II requires <u>less training time</u>:
 - Outperforms with 2 iteration of data, while Model I plateau at 5 iterations
- **Faster computational speed** for prediction

Intuition of Strategy

Find a mapping between noisy and clean labels

Exploit mapping to clean the labels

Thank You!