Towards a turnkey approach to unbiased Monte Carlo estimation of smooth functions of expectations

Francesca R. Crucinio

King's College London

Joint work with Nicolas Chopin & Sumeetpal S. Singh

The math problem

Given:

► A function *f*

generate unbiased estimates of f(m).

The math problem

Given:

- ► A function *f*
- \blacktriangleright a stream of IID random variables X_1,X_2,\ldots with expectation m and variance σ^2

generate unbiased estimates of f(m).

Motivation I: Log and MLE

In many situations (e.g. latent variable models), we have access to unbiased estimates of the likelihood $p(y|\theta)$, but we would like unbiased estimates of the log-likelihood (and its gradient).

Motivation I: Log and MLE

In many situations (e.g. latent variable models), we have access to unbiased estimates of the likelihood $p(y|\theta)$, but we would like unbiased estimates of the log-likelihood (and its gradient).

Often, unbiased estimates of $p(y|\theta)$ are available, but we would like to estimate unbiasedly $\log p(y|\theta)$, e.g. to use within **gradient descent**.

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

$$p(y|\theta) = g(y,\theta)/Z(\theta)$$

where $Z(\theta)$ is intractable.

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

$$p(y|\theta) = g(y,\theta)/Z(\theta)$$

where $Z(\theta)$ is intractable.

Often, unbiased estimates of $Z(\theta)$ are available, but we would like to estimate unbiasedly $1/Z(\theta)$, e.g. to implement a **pseudo-marginal MCMC** sampler.

Taylor expansion

Taylor expansion of f around some x_0 :

$$\begin{split} f(m) &= \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (m-x_0)^k \\ &= \sum_{k=0}^{\infty} \gamma_k \left(\frac{m}{x_0} - 1\right)^k \end{split}$$

where $\gamma_k := f^{(k)}(x_0) x_0^k / k!$

Taylor expansion

Taylor expansion of f around some x_0 :

$$\begin{split} f(m) &= \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (m - x_0)^k \\ &= \sum_{k=0}^{\infty} \gamma_k \left(\frac{m}{x_0} - 1\right)^k \end{split}$$

where $\gamma_k := f^{(k)}(x_0) x_0^k/k!.$

For $f(x) = \log(x)$, $\gamma_k = (-1)^{k-1}/k$ (sub-geometric).

For f(x)=1/x, $\gamma_k=(-1)^{k-1}$ (sub-geometric).

A Taylor-based sum estimator

This suggests using a **sum estimator** (McLeish, 2011; Glynn and Rhee, 2014; Rhee and Glynn, 2015):

$$\hat{f} = \sum_{k=0}^R \frac{\gamma_k U_{r,k}}{\mathbb{P}(R \geq k)} = \sum_{k=0}^\infty \gamma_k U_{r,k} \frac{\mathbf{1}\{R \geq k\}}{\mathbb{P}(R \geq k)}$$

where R takes values in $\mathbb{N} = \{0, 1, ...\}$, and

$$U_{r,k} = \prod_{i=1}^{k} (X_i/x_0 - 1).$$

Main points to address

Robust/automatic guidelines on how to choose:

Main points to address

Robust/automatic guidelines on how to choose:

- $ightharpoonup x_0$
- \blacktriangleright the distribution of R

Main points to address

Robust/automatic guidelines on how to choose:

- $ightharpoonup x_0$
- \blacktriangleright the distribution of R
- \blacktriangleright the form of the $U_{r,k}$'s (see later).

variance of estimate should be finite;

- variance of estimate should be finite;
- ► CPU time is random; make sure its variance is also finite (and has light tails).

- variance of estimate should be finite;
- ► CPU time is random; make sure its variance is also finite (and has light tails).

- variance of estimate should be finite;
- ► CPU time is random; make sure its variance is also finite (and has light tails).

The second point is related to the behaviour of

sum of random variables (when estimates are computed sequentially)

- variance of estimate should be finite;
- ► CPU time is random; make sure its variance is also finite (and has light tails).

The second point is related to the behaviour of

- sum of random variables (when estimates are computed sequentially)
- max of random variables (when estimates are computed in parallel)

Theoretical properties

Variance decomposition

$$\mathrm{var}[\hat{f}] = \mathrm{var}\left[\mathbb{E}[\hat{f}|R]\right] + \mathbb{E}\left[\mathrm{var}[\hat{f}|R]\right]$$

where:

▶ the first term measures the variability induced by the random truncation.

Variance decomposition

$$\mathrm{var}[\hat{f}] = \mathrm{var}\left[\mathbb{E}[\hat{f}|R]\right] + \mathbb{E}\left[\mathrm{var}[\hat{f}|R]\right]$$

where:

- ▶ the first term measures the variability induced by the random truncation.
- ▶ the second term measures the variability due to the $U_{r,k}$'s (the unbiased estimates of $(m/x_0-1)^k$).

Analysing the first term

$$\mathbb{E}\left[\hat{f}\middle|R=r\right] = \sum_{k=0}^{\infty} \gamma_k \frac{\mathbf{1}\{r \geq k\}}{\mathbb{P}(R \geq k)} \left(\frac{m}{x_0} - 1\right)^k.$$

Hence

$$\operatorname{var}\left[\mathbb{E}[\hat{f}|R]\right] = \sum_{k=0}^{\infty} \gamma_k^2 \left(\frac{m}{x_0} - 1\right)^{2k} \left(\frac{1}{\mathbb{P}(R \ge k)} - 1\right) + 2\sum_{k=0}^{\infty} \sum_{l=k+1}^{\infty} \gamma_k \gamma_l \left(\frac{m}{x_0} - 1\right)^{k+l} \left(\frac{1}{\mathbb{P}(R \ge k)} - 1\right).$$

Implications

These expressions suggest to take:

 $\blacktriangleright \ x_0 \text{ such that } \beta_0 := |m/x_0 - 1| < 1;$

Implications

These expressions suggest to take:

- $ightharpoonup x_0$ such that $\beta_0 := |m/x_0 1| < 1$;

Improving the $U_{r,k}$

Currently, we use the following unbiased estimate of $(m/x_0-1)^k$:

$$U_{r,k} = U_k = \prod_{i=1}^k (X_i/x_0 - 1).$$

Improving the $U_{r,k}$

Currently, we use the following unbiased estimate of $(m/x_0-1)^k$:

$$U_{r,k} = U_k = \prod_{i=1}^k (X_i/x_0 - 1).$$

Computing \hat{f} requires generating X_1,\dots,X_R in order to compute the last term $U_{R,R}$, but we use only the k first inputs to estimate $(m/x_0-1)^k$. Seems inefficient.

Cycling estimator

In order to use the **whole sample**, consider the following cycling estimator:

$$\begin{split} U_{r,k}^{\mathrm{C}} &:= \frac{1}{r} \Big[\prod_{i=1}^{k} \left(\frac{X_i}{x_0} - 1 \right) + \prod_{i=2}^{k+1} \left(\frac{X_i}{x_0} - 1 \right) \\ &+ \ldots + \left(\frac{X_r}{x_0} - 1 \right) \prod_{i=1}^{k-1} \left(\frac{X_i}{x_0} - 1 \right) \Big]. \end{split}$$

Second term of the decomposition

$$\begin{split} & \mathbb{E}\left[\mathrm{var}[\hat{f}|R]\right] = \sum_{k=0}^{\infty} \frac{\gamma_k^2}{\mathbb{P}(R \geq k)^2} \left\{ \sum_{r=k}^{\infty} \mathbb{P}(R=r) \, \mathrm{var}(U_{r,k}) \right\} \\ & + 2 \sum_{k=0}^{\infty} \sum_{l=k+1}^{\infty} \frac{\gamma_k \gamma_l}{\mathbb{P}(R \geq k) \mathbb{P}(R \geq l)} \left\{ \sum_{r=l}^{\infty} \mathbb{P}(R=r) \, \mathrm{cov}\left(U_{r,k}, U_{r,l}\right) \right\}. \end{split}$$

Implications

These expressions suggest to take:

$$\blacktriangleright \ x_0$$
 such that $\beta := \frac{\sigma^2}{x_0^2} + \beta_0^2 < 1;$

Implications

These expressions suggest to take:

- $\blacktriangleright \ x_0$ such that $\beta:=\frac{\sigma^2}{x_0^2}+\beta_0^2<1;$

Second term of the decomposition: cycling

For the cycling estimator, one has (under weak assumptions)

$$\mathbb{E}\left[\operatorname{var}(\hat{f}^{\mathrm{C}}|R)\right] = \mathcal{O}(p\log(1/p))$$

 $\text{ as } p \to 0.$

▶ Average number of required inputs is $\mathbb{E}[R] \approx 1/p$.

Second term of the decomposition: cycling

For the cycling estimator, one has (under weak assumptions)

$$\mathbb{E}\left[\mathrm{var}(\hat{f}^{\mathrm{C}}|R)\right] = \mathcal{O}(p\log(1/p))$$

as $p \to 0$.

- ▶ Average number of required inputs is $\mathbb{E}[R] \approx 1/p$.
- ▶ We can have $\mathrm{var}[\hat{f}] \to 0$ by taking $\mathbb{E}[R] \to +\infty$. (This is not the case for the simple estimator.)

Second term of the decomposition: cycling

For the cycling estimator, one has (under weak assumptions)

$$\mathbb{E}\left[\mathrm{var}(\hat{f}^{\mathrm{C}}|R)\right] = \mathcal{O}(p\log(1/p))$$

as $p \to 0$.

- Average number of required inputs is $\mathbb{E}[R] \approx 1/p$.
- ▶ We can have $var[\hat{f}] \to 0$ by taking $\mathbb{E}[R] \to +\infty$. (This is not the case for the simple estimator.)
- ▶ Up to log factor, standard Monte Carlo rate, i.e. $\operatorname{var}[\widehat{f}] = \mathcal{O}(\log \mathbb{E}[R]/\mathbb{E}[R])$.

Second term of the decomposition: without cycling

The simple estimator does not converge as $\mathbb{E}[R] \to +\infty$.

Calibration of tuning parameters

Tuning x_0

Must ensure that $\sigma^2/x_0^2 + |m/x_0 - 1|^2 < 1$, but m, σ^2 unknown.

Tuning x_0

Must ensure that $\sigma^2/x_0^2+|m/x_0-1|^2<1$, but m,σ^2 unknown.

 \Rightarrow pilot run, bootstrap to ensure this condition with high probability.

Tuning p

Less of an issue with the cycling estimator, because work-normalised variance depends weakly on $\ensuremath{p}\xspace$.

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ ;

$$p(y|\theta) = \int p(y|z,\theta)p(z|\theta)dz$$

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ ;

$$p(y|\theta) = \int p(y|z,\theta)p(z|\theta)dz$$

For a fixed θ , **importance sampling** gives unbiased estimates of the likelihood:

$$X_i = w_i = \frac{p(y|Z_i,\theta)p(Z_i|\theta)}{q(Z_i)}, \quad Z_i \sim q$$

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ ;

$$p(y|\theta) = \int p(y|z,\theta)p(z|\theta)dz$$

For a fixed θ , **importance sampling** gives unbiased estimates of the likelihood:

$$X_i = w_i = \frac{p(y|Z_i,\theta)p(Z_i|\theta)}{q(Z_i)}, \quad Z_i \sim q$$

To compute the MLE, use our approach to derive unbiased estimate of the **log-likelihood** and its **gradient** (stochastic gradient descent).

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

$$\ell_k(\theta) = \log\left(\frac{1}{k} \sum_{i=1}^k w_i\right)$$

The SUMO estimator is a sum estimator based on the series:

$$\log p(y|\theta) = \mathbb{E}[\ell_1(\theta)] + \sum_{k=1}^{\infty} \mathbb{E}[\Delta_k], \quad \Delta_k = \ell_{k+1}(\theta) - \ell_k(\theta)$$

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

$$\ell_k(\theta) = \log\left(\frac{1}{k} \sum_{i=1}^k w_i\right)$$

The SUMO estimator is a sum estimator based on the series:

$$\log p(y|\theta) = \mathbb{E}[\ell_1(\theta)] + \sum_{k=1}^{\infty} \mathbb{E}[\Delta_k], \quad \Delta_k = \ell_{k+1}(\theta) - \ell_k(\theta)$$

Main issue: infinite variance.

Alternative approach: MLMC (Shi & Cornish, 2021)

Adaptation of SUMO, truncation at ${\cal R}=2^K.$

Alternative approach: MLMC (Shi & Cornish, 2021)

Adaptation of SUMO, truncation at $R = 2^K$.

Variance is finite, but the random CPU time may have infinite variance (and has always heavy tails).

Comparison on a toy model from Rob & Cornish (2021)

mlmc

expected cost

truth

Figure 1:

simple

cycling

$$y = \sum_{j=1}^{k} z_j a_j + \sigma \epsilon$$
 where

 \blacktriangleright y is a high-dim object (e.g. image)

$$y = \sum_{j=1}^{k} z_j a_j + \sigma \epsilon$$
 where

- ightharpoonup y is a high-dim object (e.g. image)
- \blacktriangleright the z_i are independent latent variables

$$y = \sum_{j=1}^{k} z_j a_j + \sigma \epsilon$$
 where

- \triangleright y is a high-dim object (e.g. image)
- lackbox the z_i are independent latent variables
- $lackbox{ } \theta=(A,\sigma)$, with $A=(a_j)j=1,\ldots,k$.

$$y = \sum_{j=1}^{k} z_j a_j + \sigma \epsilon$$
 where

- \triangleright y is a high-dim object (e.g. image)
- lackbox the z_i are independent latent variables
- $lackbox{ } \theta=(A,\sigma)$, with $A=(a_j)j=1,\ldots,k$.

$$y = \sum_{j=1}^{k} z_j a_j + \sigma \epsilon$$
 where

- \triangleright y is a high-dim object (e.g. image)
- lacktriangle the z_i are independent latent variables
- $lackbox{ } \theta=(A,\sigma)$, with $A=(a_{j})j=1,\ldots,k.$

Aim is to estimate θ using SGD.

Stochastic gradient descent

Given data (y_1,\ldots,y_n) , do gradient descent, where at east step, the gradient is replaced by an unbiased estimate of the gradient of a **single** term (chosen uniformly).

Stochastic gradient descent

Given data (y_1,\ldots,y_n) , do gradient descent, where at east step, the gradient is replaced by an unbiased estimate of the gradient of a **single** term (chosen uniformly).

A good illustration on the need for automation, i.e. at each iteration, the actual value of $m,\ \sigma^2,$ and thus x_0 and p must change.

Estimated images

Figure 2: true Figure 3: simple Figure 4: cycling Figure 5: SAEM

Exponential random graph model

Figure 6: Florentine family business network

$$p(y|\theta) = \exp\{\theta^T s(y)\}/Z(\theta)$$
 where

 $lackbox{y}=(y_{ij})$, with $y_{ij}=1$ (resp. 0) if nodes i and j are connected

Exponential random graph model

Figure 6: Florentine family business network

$$p(y|\theta) = \exp\{\theta^T s(y)\}/Z(\theta)$$
 where

- $lackbox{$>$} y=(y_{ij})$, with $y_{ij}=1$ (resp. 0) if nodes i and j are connected
- ightharpoonup s(y) is a collection of network statistics (number of edges, number of k-stars, etc.)

Exponential random graph model

Figure 6: Florentine family business network

$$p(y|\theta) = \exp\{\theta^T s(y)\}/Z(\theta)$$
 where

- $lackbox{$\psi$} y=(y_{ij})$, with $y_{ij}=1$ (resp. 0) if nodes i and j are connected
- \blacktriangleright s(y) is a collection of network statistics (number of edges, number of k-stars, etc.)
- ightharpoonup Z(heta) is a sum over $2^{{k \choose 2}}$ terms (intractable)

Typically the dimension of θ is 2-3, so even importance sampling could work reasonably well to approximate the posterior:

▶ Sample $\theta_j \sim q$

Typically the dimension of θ is 2-3, so even importance sampling could work reasonably well to approximate the posterior:

- ▶ Sample $\theta_j \sim q$
- \blacktriangleright compute $w_j = \frac{p(\theta_j) \exp\{\theta_j^T s(y)\}}{q(\theta_j)} \times \frac{1}{Z(\theta_j)}$

Typically the dimension of θ is 2-3, so even importance sampling could work reasonably well to approximate the posterior:

- ▶ Sample $\theta_j \sim q$
- \blacktriangleright compute $w_j = \frac{p(\theta_j) \exp\{\theta_j^T s(y)\}}{q(\theta_j)} \times \frac{1}{Z(\theta_j)}$

Typically the dimension of θ is 2-3, so even importance sampling could work reasonably well to approximate the posterior:

- ightharpoonup Sample $\theta_j \sim q$
- \blacktriangleright compute $w_j = \frac{p(\theta_j) \exp\{\theta_j^T s(y)\}}{q(\theta_j)} \times \frac{1}{Z(\theta_j)}$

Pseudo-marginal approach: replace $1/Z(\theta)$ by an unbiased estimate.

Details

For a fixed θ , run a tempering SMC algorithm to obtain an unbiased estimate of $Z(\theta)$.

Cycling vs simple estimator

Table 1: Efficiency and proportion of negative estimates out of 10^3 replicates in a moderate variance setting.

	$\begin{array}{c} Simple \\ \mathbb{E}[R] = 1 \end{array}$	$\begin{array}{c} Cycling \\ \mathbb{E}[R] = 1 \end{array}$	$\begin{array}{c} {\sf Simple} \\ \mathbb{E}[R] = 10 \end{array}$	$\begin{array}{c} \text{Cycling} \\ \mathbb{E}[R] = 10 \end{array}$
WNV	111	102	61	24
$\mathbb{P}(-)$	0.026	0.028	0.027	0.01

The CPU cost of cycling is less than 0.01 seconds higher than that of the simple estimator.

Posterior approximation

Figure 9: Bivariate weighted histograms approximating the posterior distributions obtained with the simple and the cycling estimator using n=1024 samples from proposal q.

Cycling gives better performance II

Figure 10: ESS for 100 repetitions.

Conclusion

Concluding remarks

► A step towards making unbiased estimates of smooth function more **reliable** and **user-friendly**.

Concluding remarks

- ► A step towards making unbiased estimates of smooth function more **reliable** and **user-friendly**.
- No free lunch. Cannot work without pilot runs.

Concluding remarks

- ► A step towards making unbiased estimates of smooth function more **reliable** and **user-friendly**.
- No free lunch. Cannot work without pilot runs.
- ► Garbage in, garbage out: if the variance of the inputs is very large, the variance of our estimator will be large as well.

Paper

Chopin N., Crucinio F.R. and S. S. Singh (2024). Towards a turnkey approach to unbiased Monte Carlo estimation of smooth functions of expectations, arxiv 2403.20313.

