Dimensionality Reduction using Principal Component Analysis

Sina Tootoonian

The Francis Crick Institute, London sina.tootoonian@crick.ac.uk

February 4, 2025

Section 1

Motivation

Neuroscience data arrive high dimensional

Figure: Response of 150 olfactory glomeruli to 48 odours (Tobias Ackels)

Visualization requires 2-3 dimensions

Figure: Odour responses of two ROIs, vs. two principal components.

High-D data can be embeddings of low-D manifolds

Figure: 'Swiss roll' dataset from Tenenbaum et al. 2000.

Data compression / approximation / denoising

Figure: Raw odour responses and 2-component approximation.

Key idea behind PCA

Find **directions** in data space that **maximize variance**.

- What do we mean by directions?
- What do we mean by variance?
- Why is maximizing a good idea?

Key idea behind PCA

Figure: Projecting data (A) along directions that capture much (B) or little (C) variance. From CS 229.

Outline

- Single neurons
 - Single neurons as coordinates.
 - Variance of single neurons, covariance of populations of neurons.
 - Variance of single neurons as covariance along standard coordinates.
- Pseudo-neurons
 - Other orthonormal coordinates define pseudo-neurons.
 - Variance of pseudo-neurons as covariance along their coordinates.
 - PCA = finding pseudo-neurons with maximum variance.
- PCA by Singular Value Decomposition
 - Some facts about matrices.
 - Singular Value Decomposition (SVD).
 - Maximum variance directions from SVD.
- Application to neural responses.
- Adjacent approaches: Kernel PCA, CCA, LDA.

Section 2

Variance of Single Neurons

Notions of dimensionality

- Extrinsic dimension
- Intrinsic dimension
 - Lower because of correlations in the data
- PCA: Find the intrinsic, linear dimension

The importance of coordinate systems

- Laws of physics don't depend on coordinates.
- Laws of neuroscience depends on having the **right** coordinates.
 - Usually not the ones your data is recorded in.
- PCA finds coordinates that are matched to the data.

Standard coordinates

Notice implicit coordinates:

$$\mathbf{x} = [x_1, x_2, \dots]$$
$$= x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots$$

ullet Each coordinate e_1 , e_2 corresponds to unit activity of one neuron.

Coordinates are orthonormal

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 \dots$$

- The coordinate system $\{e_1, e_2, \dots\}$ is:
 - Complete: We can represent any activity vector in it.
 - Ortho...

$$\mathbf{e}_1^T \mathbf{e}_2 = 0, \dots$$

• ... normal

$$\mathbf{e}_1^T \mathbf{e}_1 = 1, \quad \mathbf{e}_2^T \mathbf{e}_2 = 1, \dots$$

Extracting single unit responses by projection

$$x_1 = \mathbf{x}^T \mathbf{e}_1 = \mathbf{e}_1^T \mathbf{x}$$

Different ways of summarizing activity

Mean?

$$\overline{x}_1 = \frac{1}{\# \text{ stimuli}} \sum_{\mu} x_{1,\mu} = \langle x_{1,\mu} \rangle.$$

Absolute value?

$$\overline{|x_1|} = \langle |x_{1,\mu}| \rangle$$

• Absolute value relative to mean?

$$\overline{|x_1 - \overline{x}_1|} = \langle |x_{1,\mu} - \overline{x}_1| \rangle.$$

• Squared value?

$$\overline{x_1^2} = \langle x_{1,\mu}^2 \rangle$$

<ロト <回ト < 重ト < 重ト (重) を

Variance of a single neuron

$$\operatorname{var}(x_1) = \langle (x_{1,\mu} - \overline{x}_1)^2 \rangle.$$

- Average energy relative to the mean
- Mathematically tractable √
- Susceptible to outliers X

Covariance of neural populations

• Neurons don't respond independently, but frequently covary

Covariance measures covariation of a neuron with another:

$$cov(x_1, x_2) = \langle (x_{1,\mu} - \overline{x}_1)(x_{2,\mu} - \overline{x}_2) \rangle.$$

Variance is covariation of a neuron with itself!

$$\operatorname{var}(x_1) = \langle (x_{1,\mu} - \overline{x}_1)^2 \rangle$$
$$= \langle (x_{1,\mu} - \overline{x}_1)(x_{1,\mu} - \overline{x}_1) \rangle.$$

Covariance matrix

• The covariance matrix tabulates covariance for all pairs of neurons.

$$cov(\mathbf{x}) = \begin{bmatrix} var(x_1) & cov(x_1, x_2) & \dots \\ cov(x_1, x_2) & var(x_2) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} = \langle (\mathbf{x}_{\mu} - \overline{\mathbf{x}})(\mathbf{x}_{\mu} - \overline{\mathbf{x}})^T \rangle$$

- Diagonals have variances
- Off-diagonals have covariances

Not just useful book keeping...

Section 3

Variance of Pseudo-Neurons

Where we're going

• Remember: PCA is about finding **directions** that maximize variance:

- The standard coordinate directions correspond to single neurons.
- The variance of single neurons is **co**variance along these directions.
- We can define other directions as **pseudo-neurons**.
- The variance of pseudo-neurons is **co**variance along these directions.
- PCA = find the pseudo-neurons with the largest variance.

Variance of a single neuron from covariance

- Previously we just 'took' the data $x_{1,\mu}$ for neuron 1.
- ullet This is projecting the population vector ${f x}_{\mu}$ along the first coordinate:

$$x_{1,\mu} = \mathbf{x}_{\mu}^T \mathbf{e}_1.$$

We can then compute the mean activity

$$\overline{x}_1 = \langle \mathbf{x}_{\mu}^T \mathbf{e}_1 \rangle = \langle \mathbf{x}_{\mu} \rangle^T \mathbf{e}_1 = \overline{\mathbf{x}}^T \mathbf{e}_1.$$

The variance is then

$$\operatorname{var}(x_{1}) = \langle (x_{1,\mu} - \overline{x}_{1})^{2} \rangle$$

$$= \langle (\mathbf{x}_{\mu}^{T} \mathbf{e}_{1} - \overline{\mathbf{x}}_{\mu}^{T} \mathbf{e}_{1})^{2} \rangle$$

$$= \langle ((\mathbf{x}_{\mu} - \overline{\mathbf{x}})^{T} \mathbf{e}_{1})^{2} \rangle$$

$$= \langle \mathbf{e}_{1}^{T} (\mathbf{x}_{\mu} - \overline{\mathbf{x}}) (\mathbf{x}_{\mu} - \overline{\mathbf{x}})^{T} \mathbf{e}_{1} \rangle$$

$$= \mathbf{e}_{1}^{T} \langle (\mathbf{x}_{\mu} - \overline{\mathbf{x}}) (\mathbf{x}_{\mu} - \overline{\mathbf{x}})^{T} \rangle \mathbf{e}_{1}$$

$$= \mathbf{e}_{1}^{T} \operatorname{cov}(\mathbf{x}) \mathbf{e}_{1}.$$

• So, the variance of neuron 1 is covariance along e_1 .

Other orthonormal coordinates define pseudo-neurons

• Previously we described population activity in terms of standard coordinates e_1, e_2, \ldots of neurons:

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots$$

• We can describe the same activity ${\bf x}$ in other orthonormal coordinates $\tilde{\bf e}_1, \tilde{\bf e}_2, \ldots$ of **pseudo-neurons**:

$$\mathbf{x} = \tilde{x}_1 \tilde{\mathbf{e}}_1 + \tilde{x}_2 \tilde{\mathbf{e}}_2 + \dots$$

Figure: Responses of neurons and pseudo-neurons to the first odour.

Variance of a pseudo-neuron along \mathbf{u}_1

• Activity of the pseudoneuron:

$$\tilde{x}_{1,\mu} = \mathbf{x}_{\mu}^T \mathbf{u}_1.$$

Mean activity of the pseudoneuron:

$$\overline{\tilde{x}}_1 = \langle \mathbf{x}_{\mu}^T \mathbf{u}_1 \rangle = \langle \mathbf{x}_{\mu} \rangle^T \mathbf{u}_1 = \overline{\mathbf{x}}^T \mathbf{u}_1.$$

The variance is then

$$\operatorname{var}(\tilde{x}_{1}) = \langle (\tilde{x}_{1,\mu} - \overline{\tilde{x}}_{1})^{2} \rangle$$

$$= \langle (\mathbf{x}_{\mu}^{T} \mathbf{u}_{1} - \overline{\mathbf{x}}_{\mu}^{T} \mathbf{u}_{1})^{2} \rangle$$

$$= \langle ((\mathbf{x}_{\mu} - \overline{\mathbf{x}})^{T} \mathbf{u}_{1})^{2} \rangle$$

$$= \langle \mathbf{u}_{1}^{T} (\mathbf{x}_{\mu} - \overline{\mathbf{x}}) (\mathbf{x}_{\mu} - \overline{\mathbf{x}})^{T} \mathbf{u}_{1} \rangle$$

$$= \mathbf{u}_{1}^{T} \langle (\mathbf{x}_{\mu} - \overline{\mathbf{x}}) (\mathbf{x}_{\mu} - \overline{\mathbf{x}})^{T} \rangle \mathbf{u}_{1}$$

$$= \mathbf{u}_{1}^{T} \operatorname{cov}(\mathbf{x}) \mathbf{u}_{1}.$$

ullet So, the variance of the pseudoneuron is **covariance along** ${f u}_1$.

Variance of any pseudoneuron

ullet Following the pattern, variance of a pseudoneuron $\tilde{x}=\mathbf{x}^T\mathbf{u}$ is

$$\operatorname{var}(\tilde{x}) = \mathbf{u}^T \operatorname{cov}(\mathbf{x})\mathbf{u}.$$

- ullet PCA now becomes finding the ${f u}$ that maximizes this variance.
- How do we do this? By decomposing the covariance matrix!
- But first...

Section 4

Some Facts about Matrices

Matrices

• Some matrices we've already encountered:

- Data matrix (rectangular)
- Covariance matrix (square, symmetric)
 - Why is it symmetric?

Different ways to view matrices

$$\mathbf{A} = \underbrace{\begin{bmatrix} A_{11}, & A_{12}, & \dots \\ A_{21}, & A_{22} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}}_{\text{Table of elements}} = \underbrace{\begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_M^T \end{bmatrix}}_{\text{Stacked rows}} = \underbrace{\begin{bmatrix} \mathbf{c}_1, & \mathbf{c}_2, & \mathbf{c}_3, & \dots & \mathbf{c}_N \end{bmatrix}}_{\text{Stacked rows}}.$$

Matrix operations

ullet Linearly transform N-dimensional inputs ${f x}$ into M-dimensional outputs ${f y}$,

$$y = Ax$$
.

Can think of this element-wise:

$$y_i = \sum_{j=1}^N A_{ij} x_j.$$

• Can think of this as projecting x on each row,

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \mathbf{x} \\ \mathbf{r}_2^T \mathbf{x} \\ \vdots \\ \mathbf{r}_M^T \mathbf{x} \end{bmatrix}.$$

ullet Can think of this as summing the columns, weighted by ${f x}$,

$$\mathbf{y} = \sum_{i=1}^{N} \mathbf{c}_i x_i.$$

Example Matrices

Name	Matrix A	$\textbf{Action}\ \mathbf{y} = \mathbf{A}\mathbf{x}$
Zero	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	y = 0
Identity	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\mathbf{y} = \mathbf{x}$
All ones	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\mathbf{y} = \begin{bmatrix} \sum_{i} x_i \\ \sum_{i} x_i \end{bmatrix}$
Uniform scaling	$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$	$\mathbf{y} = \begin{bmatrix} kx_1 \\ kx_2 \end{bmatrix}$
Diagonal	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$	$\mathbf{y} = \begin{bmatrix} ax_1 \\ bx_2 \end{bmatrix}$
Permutation	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\mathbf{y} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$
Rotation	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	${f y}$ is ${f x}$ rotated by ${f heta}.$

Composing transformations

- We can form complex transformations by composing simple ones.
- For example, a scaling and a rotation:

$$\mathbf{y} = \underbrace{\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}}_{\text{scaling}} \underbrace{\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}}_{\text{rotation}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underbrace{\mathbf{D}}_{\mathbf{A}} \mathbf{x}.$$

Section 5

Singular Value Decomposition

All matrices are diagonal matrices (in the right coordinates)

Diagonal matrices were easy to work with

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 \\ bx_2 \end{bmatrix}$$

What about an arbitrary matrix? Looks complex...

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \sum_j A_{1j} x_j \\ \sum_j A_{2j} x_j \end{bmatrix}.$$

• Surprise: Every matrix A is the composition of just three operations!

$$\mathbf{A} = \underbrace{\mathbf{U}}_{\text{rotate scale project}} \underbrace{\mathbf{V}^T}_{\text{rotate scale project}}.$$

Three parts of Singular Value Decomposition

$$\mathbf{A} = \underbrace{\mathbf{U}}_{\text{rotate scale project}} \mathbf{V}^T$$
 .

- Columns of V form orthonormal coordinates for the **input** space.
- Columns of U form orthonormal coordinates for the **output** space
- ullet Diagonal matrix S of non-negative **singular values** apply a scaling.
- If we:
 - Use V coordinates for the input, and
 - ullet Use ${f U}$ coordinates for the output, then
 - A is a scaling!

Three transformations in Singular Value Decomposition

Figure: Three transformations in Singular Value Decomposition (Wikipedia).

Three matrices of Singular Value Decomposition

Figure: Three matrices of Singular Value Decomposition (Wikipedia).

Three steps of Singular Value Decomposition

$$\mathbf{A}\mathbf{x} = \underbrace{\mathbf{U}}_{\text{rotate scale project}} \mathbf{Y}^T \mathbf{x}.$$

Project x onto the input coordinates:

$$\mathbf{V}^T \mathbf{x} = \begin{bmatrix} \mathbf{v}_1^T \mathbf{x} \\ \dots \\ \mathbf{v}_N^T \mathbf{x} \end{bmatrix} = \begin{bmatrix} \tilde{x}_1 \\ \dots \\ \tilde{x}_N \end{bmatrix}$$

② Scale by S:

$$\mathbf{S}\mathbf{V}^{T}\mathbf{x} = \begin{bmatrix} s_{1} & 0 & \dots \\ 0 & s_{2} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \tilde{x}_{1} \\ \dots \\ \tilde{x}_{N} \end{bmatrix} = \begin{bmatrix} s_{1}\tilde{x}_{1} \\ s_{2}\tilde{x}_{2} \\ \dots \\ s_{N}\tilde{x}_{N} \end{bmatrix}$$

Project out using the output coordinates

$$\mathbf{U}\mathbf{S}\mathbf{V}^T\mathbf{x} = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N] \begin{bmatrix} s_1\tilde{x}_1 \\ s_2\tilde{x}_2 \\ \dots \\ s_N\tilde{x}_N \end{bmatrix} = \mathbf{u}_1s_1\tilde{x}_1 + \mathbf{u}_2s_2\tilde{x}_2 + \dots$$

SVD of simple matrices

Name	${f A}$	\mathbf{U}	\mathbf{s}	\mathbf{V}
Zero	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	[0, 0]	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Identity	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1, & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Negation	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 1, & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
All ones	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 2, & 0 \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$
Diagonal	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 2, & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Permutation	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1, & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Rotation by θ	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$\begin{bmatrix} 1, & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

SVD of covariance matrices

• Remember why we care: we're after the variance of pseudoneurons

$$\mathbf{u}^T \operatorname{cov}(\mathbf{x}) \mathbf{u}$$
.

For covariance matrices, the input and output coordinates are the same

$$cov(\mathbf{x}) = \mathbf{V}\mathbf{S}\mathbf{V}^T$$

Equalizer: Inputs are analyzed in V coordinates and scaled.

$$cov(\mathbf{x})\mathbf{u} = \sum_{i} \mathbf{v}_{i} \underbrace{\mathbf{s}_{i}}_{\text{scale project}} \mathbf{v}_{i}^{T} \mathbf{u}$$

SVD and eigendecomposition

- All matrices have SVDs: $X = USV^T$
- For covariance matrices, the input and output coordinates are the same: $cov(\mathbf{x}) \propto \mathbf{V}\mathbf{S}^2\mathbf{V}^T$
- Also known as the eigendecomposition of the covariance matrix.
- ullet The right singular vectors ${f V}$ of the data matrix are the eigenvectors/singular vectors of the covariance matrix.
- The singular values of the data matrix and the cov. matrix are closely related:

Singular values of cov. matrix = Eigenvalues of the cov. matrix $\propto \textbf{Squared} \text{ sing. values of the data matrix}.$

Maximum variance direction from SVD

- We can use SVD to read-off the maximum variance direction(s) we need!
- Variance along a direction u

$$\mathbf{u}^{T} \operatorname{cov}(\mathbf{x}) \mathbf{u} = \mathbf{u}^{T} \underbrace{\left(\sum_{i} \mathbf{v}_{i} s_{i} \mathbf{v}_{i}^{T}\right)}_{\mathsf{SVD}} \mathbf{u}$$

$$= \sum_{i} (\mathbf{u}^{T} \mathbf{v}_{i}) s_{i} (\mathbf{v}_{i}^{T} \mathbf{u})$$

$$= \sum_{i} s_{i} (\mathbf{v}_{i}^{T} \mathbf{u})^{2}$$

- ullet Maximum variance direction is ${f v}_1$
- Next highest variance direction is v_2 , etc.

Dimensionality Reduction with PCA

Finally: Dimension Reduction with PCA

• Project data onto maximum variance directions: $\widetilde{\mathbf{X}} = \mathbf{X}\mathbf{V}$.

Notice: projections are decorrelated

Examining the Principal Components

Measuring dimensionality with Participation Ratio

- Variances tell us energy in each direction
- Use this as a measure of dimensionality

$$PR = \frac{(\sum_i s_i)^2}{\sum_i s_i^2}.$$

Approximation/Denoising with PCA

ullet Approximate using first K projections

$$\begin{split} \mathbf{x} &\approx \underbrace{\sum_{i=1}^K (\mathbf{x}^T \mathbf{v}_i) \mathbf{v}_i}_{\text{Exact}} + \underbrace{\sum_{i=K+1}^D (\overline{\mathbf{x}}^T \mathbf{v}_i) \mathbf{v}_i}_{\text{Approximation}}. \\ &\approx \overline{\mathbf{x}} + \sum_{i=1}^K (\mathbf{x} - \overline{\mathbf{x}})^T \mathbf{v}_i \mathbf{v}_i \end{split}$$

Figure: Approximating digits data using PCA (Bishop Fig 12.5)

Approximation/Denoising with PCA

Figure: Approximating odour responses using PCA.

How many dimensions to keep?

- The singular values tell us how much variance is explained by each dimension.
- We can use this to decide how many dimensions to keep.
- ullet Explained variance measures the fraction of variance explained by the first K dimensions:

$$EV(K) = \frac{\sum_{i=1}^{K} s_i}{\sum_{i=1}^{D} s_i}.$$

Figure: Explained variance for odour responses dataset.

Adjacent Approaches

Exploiting nonlinearity with Kernel PCA

- PCA can be expressed in terms of similarity $k(\mathbf{x}, \mathbf{y})$ between data points.
- PCA uses linear similarity $k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$.
- Kernel PCA generalises this to allow other similarity measures.
- Nonlinear measures are sometimes appropriate.

Figure: ISOMAP computes similarity as distance on the manifold.

Comparing different datasets with CCA

- PCA finds maximum variance directions in one dataset
- CCA finds maximum co-variance directions in two datasets

Supervised learning with LDA

- PCA doesn't care about class labels.
- Maximum variance isn't always best for discrimination.
- LDA: Finds directions that best discriminate data.

Figure: (Bishop Fig. 12.7) The first PC isn't always best for discrimination.

Summary

Summary

- Neural data arrive in single neuron coordinates.
- Other coordinates may be more informative about the data.
- PCA finds coordinates that capture most variance.
- Can be found through SVD.
- Can be used for dimensionality reduction and visualization.
- Can be used for approximation and denoising.
- Many extensions, including Kernel PCA, CCA, LDA.

Thanks for listening!