

地球物理勘探在地下矿产资源勘查中的作用与应用

慈增辉, 刘上, 李兴康

摘要:地下矿产资源是地球最宝贵的财富,对人类经济的发展、社会的进步具有重要意义。但是,地下矿产资源的勘探和开发并不容易,需要借助先进的技术手段对地下矿产资源进行精确有效的勘探。地球物理勘探以其高效、精确、经济的特点,在地下矿产资源勘查中占据重要地位。本文通过介绍地球物理勘探技术在地下矿产资源勘查中的重要性,最后结合当前矿产资源勘探的发展趋势,提出地球物理勘探技术在矿产资源勘查中的应用策略。

关键词:地球物理勘探;地下矿产;资源勘查;应用策略

地球物理勘探是通过观察与分析地球内部物质特征, 进而对地下矿产资源进行识别的一种技术。其对地下矿产 资源的勘探开发具有重要意义,并可为矿产资源的识别与 开发提供科学基础与技术支撑。地球物理探测技术能够探 测地下的重力场、地磁场、地电场等物理参数,从而发现 地下矿产资源的分布状况。该技术也可利用地震勘探技 术,探测出地下岩层结构及地质结构,从而确定矿体的位 置及分布。地球物理探测也可利用地电阻率、反射波等地 球成像技术获取深部物质结构信息,从而为矿产资源勘探 与评价提供重要数据支撑。

1 地球物理勘探在地下矿产资源勘查中的作用

1.1 地质结构勘查

地球物理勘探是地下矿产资源勘探的重要手段之一,而地质构造的勘探非常重要。地质构造勘探指的是通过探测、分析地下的岩石、矿体及构造等地质参数以及物理属性,从而识别其与矿产资源之间存在的关系。利用地球物理探测技术,可快速获得岩石的密度、电阻率、波速等物性参数,从而对地下矿产构造特征进行反复推断,以此为矿产资源勘探与开发提供重要依据。地球物理探查技术可用于地质构造勘查中,从而对矿床的形状、规模、分布规律等有价值的信息进行判断。利用地震勘探技术可获得深部地层速度结构,进而确定矿床的潜在位置;电磁探测技术可以用来探测地下矿体的电性特征,从而确定矿体的属性及规模。磁力勘探技术还经常用于地下找矿工作,主要

是通过对地下岩石磁学性质的测定来确定有磁性矿体的分布情况。

1.2 矿体定量评估

地下矿产资源勘查利用地球物理探测技术,勘探人员可利用地球物理现象来探测、识别地下矿体,其中定量评估是矿产资源勘查中的重要环节。进行矿体定量评估时,先利用物探数据获得有关矿体的有关信息,如矿体的种类、厚度和形状等。通过对这些数据的分析,可以初步估计矿体的储量,进而对矿体的经济价值及开发潜力进行评估。后续将地质数据与物探模型相结合,快速建立数学模型,深入分析矿体的物性特征。通过地震、电磁等地球物理探测技术,对矿体物性进行精细测量与定量分析,进一步提高矿体储量及开采条件的精度与可靠性。

2 地球物理勘探在地下矿产资源勘查中的重要性

2.1 提高勘查精度与效率

传统的地质勘探方法多限于表面观测、采样, 无法对 地下矿产的实际情况进行全面、准确的评估。借鉴地球物 理勘探技术,可直接深入到地下进行勘查,从而获得全面 且精确的地质模型,显著提高勘查的精度。利用地球物理 探测技术,勘探人员可综合运用地震波传播、地磁场测 量、重力场变化等地球物理现象与原理,对地下地质结构 及矿产资源进行综合探测与分析。物理勘探技术可以帮助 勘探者迅速获得地下矿产资源信息,借鉴地震勘探技术, 勘探人员可根据地震波在地层中的传播速度、传播路径等 信息,推断出地下地质构造的属性与分布,为找矿勘探提 供重要依据。地球物理探测也可利用地磁场、重力场等资 料,揭示岩石的物性,如密度、磁学等,帮助勘探人员准 确地确定矿产资源的位置与规模。物理勘探也能提高勘探 的准确性和效率,主要利用物探技术勘探人员能够在较大 范围内快速获取地下信息,结合地质钻探等勘探方法,从 多角度、多层面综合分析潜在的矿产资源,也可对矿产资 源的种类、品位及储量做出准确的判断。该方法既能降低 勘探成本投入,又能提高勘探结果的精度与可靠性,为矿 产资源开发与利用提供科学依据。

2.2 降低勘查成本

地球物理勘探在地下矿产资源勘探中的重要作用,不

仅在于准确地发现矿产资源,还能显著降低勘探成本。物 理勘探技术能精确测定地下介质的密度、电磁参数等物性 参数,有助于勘探人员迅速确定潜在的矿产资源。通过对 地下重、磁、电阻率等物性参数的测量,可对地下构造进 行三维建模,从而实现对矿产资源分布的准确定位,避免 不必要的勘探范围,显著降低勘探成本。物理勘探技术能 帮助勘探人员及时发现并解决勘探中存在的问题,以此降 低勘探成本。通过对地下信息变化的实时监测,勘测人员 能够及时调整勘探计划,提高勘探效率,从而缩短勘探周 期,减少不必要的勘探费用。利用地球物理勘探技术,工 作人员可了解地下潜在的矿产资源,直接缩小勘探范围 与距离,从而节约时间与费用。物理勘探是非侵入性的方 法,不仅可快速定位矿产资源的位置、规模,也可以帮助 工作人员规划出更有效的开采方案。物探技术相对于传统 地质勘查,能更精确识别地下矿产资源分布状况,避免盲 目开采造成环境污染等问题。利用物探方法工作人员能有 针对性地选择最具潜力的找矿地区,减少盲目找矿,从而 降低勘查成本。

2.3 环境友好与可持续发展

地球物理勘探是一项先进的地球科学技术, 其对地 下矿产资源的勘探具有重要作用。利用地球物理勘查技 术,工作人员可获得矿产资源的分布、性质、规模等重要 信息,从而为矿产资源开发与利用提供有效依据。立足当 下环境友好与可持续发展理念下,地球物理勘探的应用可 发挥积极作用。与地表钻探等传统勘探方法相比, 地球物 理勘探方法具有无需对地表造成大范围破坏、对自然环境 影响小的特点,可有效地保护生态系统完整性。这种非侵 入性的勘探方法,既保护了自然环境,又可为实现可持续 发展奠定基础。地球物理勘探技术可以提高勘探效率,从 而降低资源浪费。利用物探方法可在较短的时间内获得较 为全面和精确的地质数据,对合理开发矿产资源具有重要 的指导意义。这种方法不仅可以提高勘探效率、降低勘探 成本,同时可以减少资源浪费,达到资源可持续利用的目 的。物探技术还能为矿业行业降低潜在的环境风险提供帮 助,通过详细的地质构造和水文地质调查,对矿产资源开 采可能产生的环境影响进行评估,从而采取有效的环境保 护措施,减少环境风险的发生,从而维持资源开发和环境 保护之间的平衡。

3 地球物理勘探在地下矿产资源勘查中的应用策略

3.1 多技术联合应用

地球物理勘探是地下矿产资源勘探的重要手段之一, 在实际应用过程中,往往采用多种技术相结合的方法。其 核心是综合运用多种物探手段,获得全面且精确的地质信息,从而提高勘探效率与成功率。多技术联合应用能够弥补单一技术的不足。各种物探方法都有各自的特点和应用范围,如地震勘探适合深部找矿;电磁法适合浅层找矿等。综合运用多种技术手段,可充分发挥其各自的优势,提高勘探的全面性与精确性。综合运用多技术可提高资料解释的可信度。利用多种物探方法获得的资料可相互印证、验证,降低解释的主观性与误差,提高勘探成果的可靠性。综合运用多技术可降低勘探成本,从而降低风险。由于多种物探方法在设备、操作等方面存在差异,将多种物探方法结合起来,既可节省勘探费用,又能显著降低勘探风险,从而提高勘探经济效益。现列举几种常用的物探方法,并对其应用做详细分析。

- (1) 重力探测技术。重力探测技术便是利用地球重力 场的变化,对地下密度异常进行识别,以识别矿产资源的 分布状况。重力法是找矿勘探中常用的一种方法,主要应 用于寻找高密度矿物,如铁、铜等。
- (2) 电磁勘探技术。电磁勘探技术就是通过测定地下的电磁场变化,从而找出可能含矿的地质结构。勘探工作中,电磁勘探技术常用来寻找铅锌矿、金矿等导电矿物。
- (3) 地震勘探技术。地震勘探就是利用地震波在地层中的传播过程,分析其速度、密度的变化,从而识别出地下结构及可能含矿的位置。地下矿产资源勘查中,经常采用地震勘探的方法来寻找油气藏、地下矿产监测等。

3.2 优化数据采集与预处理

地球物理勘探作为一种重要的地下勘查手段, 在地下 矿产资源勘查中得到广泛应用。地球物探期间数据的采集 和预处理工作是重要环节,可有效提高勘探的效率和精 度。物探工作中数据的最优获取是基础。为得到更加精确 的地质数据,勘探人员必须对勘探线路进行合理规划,从 而布设观测点,以保证对目标地区的全面覆盖。通过合理 设计勘探参数及仪器配置,使采集效率与质量达到最佳。 为保证物探数据的质量,对数据进行预处理是关键环节。 数据采集结束后需要对其进行处理、解译,滤除干扰、消 除噪声,从而提取目标地质数据。地球物理勘探中只有通 过最优的数据采集和预处理,才能更精确地揭示地下矿产 资源的空间分布、属性及规模。根据不同的采样密度采用 不同设备预处理算法,如针对100m×100m的密度,可设 置间距在50m,可采用电磁探测器进行采集,再利用盲源 分离算法进行计算;针对50m×50m的采样密度,可设置 间距为25m,利用重力测量仪进行采集,以有限元反演算 法进行计算;针对25m×25m的采样密度,可设置10m的 间距,利用地震勘探仪进行采集,结合傅立叶变换算法进

地质勘探 Teological Prospecting

行计算。通过结合分析多种地球物理数据,对目标地区进行精细的地质解释与勘探评价,从而为下一步的矿产开发工作提供参考。

3.3 保证定位技术精确定位

地球物理勘探是地下矿产资源勘探的重要手段,确保 高精度定位是实现高效勘探的关键。地球物探工作中,准 确的定位可以帮助勘探人员更好发现目标区域,从而提高 勘探效率与精度。为实现高精度定位,通常采用全球定位 系统(GPS)、地面控制点、无人驾驶飞机等。其中GPS技 术优势在于定位精度高、使用范围广等,但是应用在有遮 挡物的地区可能受信号干扰,非常适用于户外环境、远程 地区勘探领域;地面标记法技术具备无需额外设备、简 单易操作等优势,但是该技术定位精度相对较低,需要频 繁布设地标,适用于地形复杂、密集建筑区域的勘探;卫 星雷达测距技术具备高精度、高分辨率,适用于复杂地质 环境等优势,但是实际应用设备昂贵,对操作人员技术要 求高,适用于需要高精度定位的矿产勘查项目。这些技术 的综合应用, 使勘探小组能够准确地确定目标地段的具 体位置与深度,从而为下一步的勘探工作提供精确的基 础资料。为保证勘探结果的准确,应充分考虑地质构造和 岩石属性等因素。高精度定位也离不开先进的仪器设备 与数据处理技术,先进探查设备以其高精度、高灵敏的特 点,能够实时监测地下介质的物性信息,并将其传输至数 据处理中心,从而用于分析处理。通过建立准确的地下模 型,有助于确定矿产资源的空间分布。另外,为提高定位 精度, 需勘查人员现场实地验证。勘探人员需要根据情况 深入地下,从而对地质结构、岩石属性等数据进行验证, 并结合野外观测与取样工作,进一步确定矿产资源的位置 与属性。例如, 地下勘探设备达到的最大深度2000m, 其 中地下勘探设备的分辨率为0.1m, 定位结果的准确程度 在±5m,以单位时间内采集的数据量达到1000数据点/s, 数据处理完成所需的时间24h。由以上所列参数可知,定 位精度与实时性对地下矿产资源勘查具有重要意义。勘探 深度、分辨率、精度等参数的确定,直接关系到勘探成果 的精度与可靠性。精确定位有助于勘探人员合理规划勘探 线路,从而制定勘探方案,保证勘探仪器能覆盖目标地区 各个角落。通过对地下地质结构及特征的详细分析,可加 深对地下矿产资源分布规律的认识,从而有针对性地选择 勘探方法与手段,显著提高勘探效率。

3.4 提升深部探测能力

地球物探技术是地下矿产资源勘探的重要手段,为提

高深部探测能力,物探工作必须采取多种先进技术手段。 针对深部矿产资源勘探需求,利用地震勘探技术对深部地 质构造进行高分辨率成像,有助于勘探人员对地下结构的 精确认识,为后续勘探工作提供重要依据。另外,物探方 法可综合运用地电、地磁及重力等多种探测手段,从而提 高深部探测精度。采用先进的数据处理与解释技术,对提 高深部探测能力具有重要意义。将人工智能、机器学习等 技术引入到物探工作中,从而提高勘探效率,挖掘更多有 价值的信息,不仅能提高勘探速度,也可提高勘探的准确 性和可靠性。物探工作也要注意多学科的交叉运用,通过 与地质学、地球化学等多学科的交叉合作,深化对地下矿 产资源形成机理及分布规律的认识,从而为矿产资源勘查 提供综合支撑。除常见的电磁法、重力法、地震法外,目 前还有诸多新的方法用于资源勘探。例如,地震断层成像 技术是一种通过记录、分析地震波在地层中传播特性的方 法,能够有效地揭示地层结构及变化规律,从而为勘探提 供有价值的信息。该技术在深部找矿方面有其独特的优 势,有助于进一步探索深部矿产资源。另外,磁力异常成 像技术也具有一定的应用前景,利用磁异常成像技术测定 地下岩石的磁学特性,可以确定矿体的位置、形态、规模, 也为勘查工作提供依据。该方法常与其他物探方法联合应 用,显著提高勘探的效率和精度。地电阻率成像技术在该 领域中也逐渐成为热门研究方向, 该方法是通过测量地下 岩层的电性差异,从而绘制出地下岩层的电阻率分布图, 以此确定矿体及矿化区域。地电阻率成像技术具有分辨 率高、探测深度大等优点,适合于深部矿产资源的精细勘 探。

4 结语

综上所述,地球物理勘探作为一项重要的勘探手段,对地下矿产资源的勘探具有不可替代的作用。地球物理勘探是一种利用地下电磁、重力场、地震波进行勘探的有效手段。相信未来,随着科技的不断创新与发展,地球物理勘探工作将向高精度、高效率方向发展,从而为矿产勘查提供强有力的支撑。同时地球物理勘探在环境保护、资源可持续利用等方面扮演着越来越重要的角色。因此,相关行业应加强物探技术的研究与应用,持续提高技术水平,从而为地下矿产资源的勘探与开发作出贡献。

(作者单位:山东省煤田地质局第五勘探队)