CHAPTER 14 DISCUSSIONS 2

Explain the distinction between the terms *serial schedule* and *serializable schedule*.

Give an example of a *serializable schedule* with two transactions such that the order in which the transactions commit is different from the serialization order.

What are the values of A and B after the execution of each of these schedules, with A=B=100 initially.

The two schedules are both serializable but yield different results. Is this a discrepancy?

T_1	T_2		T_1	T_2
read(A) $A := A - 50$ $write(A)$	read(A) temp := A * 0.1 A := A - temp write(A)		read(A) $A := A - 50$ $write(A)$	
read(B) $B := B + 50$ write(B)				read(B) $B := B + temp$ write(B)
` '	read(B) $B := B + temp$ write(B)		read(B) B := B + 50 write(B)	
Scheo		Intro to D	DD	hedule 2

Draw a precedence graph for the schedule shown on the right, and determine whether it is serializable.

T_1	T_2	T_3	T_4	T_5
read(Y) read(Z)	read(X)			
				read(V) read(W) read(W)
	read(Y) write(Y)	write(Z)		
read(U)			read(Y) write(Y) read(Z) write(Z)	
read(U) write(U)				

Intro to DB Copyright © by S.-g. Lee

Define recoverable schedule.

Is the following schedule recoverable?

When is a schedule recoverable?

T_1	T_2
read(A)	
A := A - 50	
write(A)	
	read(A)
	temp := A * 0.1
	A := A - temp
	write(A)
read(B)	
B := B + 50	
write(B)	L/D)
	read(B)
	B := B + temp
	write(B)
	commit
abort	

Define cascadeless schedule.

Is the following schedule cascadeless?

When is a schedule cascadeless?

T_1	T_2
read(A)	
A := A - 50	
write(A)	
	read(A)
	temp := A * 0.1
	A := A - temp
	write(A)
read(B)	
B := B + 50	
write(B)	
	read(B)
	B := B + temp
	write(B)
abort	

Show that every cascadeless schedule is also recoverable.