Real Analysis Mid-Sem 2022 Full marks 50 (10 × 5)

a) If A and B are sets, then show that

$$(i)\mathcal{P}(A)\cup\mathcal{P}(B)\subseteq\mathcal{P}(A\cup B),\quad ii)\quad \mathcal{P}(A)\cap\mathcal{P}(B)=\mathcal{P}(A\cap B).$$

Here P denotes powerset.

- b) Prove that a set and its powerset do not have the same cardinality.
- 2. Prove that for $p \in (1, \infty)$, we have $xy \leq \frac{x^p}{p} + \frac{y^q}{q}$, with $(x, y) \in \mathbb{R}^+$ and $\frac{1}{p} + \frac{1}{q} = 1$.
- 3. Let S be a nonempty subset of \mathbb{R} which is bounded above. Set $s = \sup S$. Show that there exists a sequence $\{x_n\}$ in S with $n \in \mathbb{N}$, which converges to s.
- 4. Show that $\{x_n\}$ defined by

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - log_e n,$$

is convergent.

5. Let $\{x_n\}$ be a sequence defined by

$$x_1 = 1$$
 and $x_{n+1} = \sqrt{x_n^2 + \frac{1}{2^n}}$.

Show that the sequence is convergent.