1 Error measurement

Absolute error $E_x = \frac{\tilde{x} - x}{\tilde{x} - x}$ Relative error $R_x = \frac{\tilde{x} - x}{x}$

2 Linear Algebra

2.1 Matrices

 $A \in \mathbb{R}^{n \times n}$; \vec{x} right eigenvector $\Leftrightarrow A\vec{x} = \lambda \vec{x}$; \vec{x} left eigenvector $\Leftrightarrow A\vec{x} = \lambda \vec{x}$. λ are eigenvalues.

A triangular or symmetric \Rightarrow eigenvalues are on the main diagonal.

Spectrum $\sigma(A) = \{\vec{x} : \vec{x} \text{ eigenvector of } A\}$. Spectral norm $\rho(A) = max(\lambda)$

 $C \in \mathbb{R}^{n \times n}$ singular $\Leftrightarrow \det(C) = 0$

Similarity transformation: $A, C \in \mathbb{R}^{n \times n}$, C non-singular $\Rightarrow A$ and $C^{-1}AC$ are similar (same spectrum and eigenvalues).

TODO

 $A \in \mathbb{R}^{mxn} \Rightarrow A^T A \in \mathbb{R}^{nxn}$ is positive semi-definite.

 $A \in \mathbb{R}^{mxn}$ with maximum rank $(rk(A) = min(m, n)) \Rightarrow A^T A \in \mathbb{R}^{nxn}$ is positive definite.

Spectral theorem: $A \in \mathbb{R}^{n \times n}$ symmetric \Rightarrow eigenvalues are real, eigenvectors create an orthogonal basis.

2.2 Projections

TODO

3 Matrix decompositions / factorizations

3.1 LU decomposition

 $A \in \mathbb{R}^{nxn}$ non-singular $(det(A) \neq 0)$ with all principal minors non-singular $\Rightarrow A = LU$ with $L \in \mathbb{R}^{nxn}$ lower triangular and $U \in \mathbb{R}^{nxn}$ upper triangular.

3.2 Cholesky factorization

 $A \in \mathbb{R}^{nxn}$ positive definite $\Rightarrow A = LL^T$ with $L \in \mathbb{R}^{nxn}$ lower triangular.

3.3 Singular Value Decomposition (SVD)

 $A \in \mathbb{R}^{mxn}, r = rk(A) \in [0, min(m, n)] \Rightarrow A = U\Sigma V^T \text{ with}$

- $U \in \mathbb{R}^{mxm}$ orthogonal.
- $V \in \mathbb{R}^{nxn}$ orthogonal.
- $\Sigma \in \mathbb{R}^{mxn}$ with $\Sigma_{ii} = \sigma_i$ ("singular value") and $i \neq f \Rightarrow \Sigma_i j = 0$.

 $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > \sigma_{r+1} = \sigma_{r+2} = \ldots = \sigma_n = 0.$

 $\lambda_i(A)$ is the i-th eigenvalue of A by value. $\sigma_i = \sqrt{\lambda_i(A^T A)}$.

$$\sigma_1 = \sqrt{\rho(A^T A)} = ||A||_2. \ |A^{-1}|_2 = \frac{1}{\sigma_r}. \ K_2(A) = \frac{\sigma_1}{\sigma_r}.$$

3.3.1 Rank-k-approximation

 $A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T = \sum_{i=1}^r \sigma_i A_i \text{ with } u_i \in \mathbb{R}^m \text{ column of } U \text{ and } v_i \in \mathbb{R}^n \text{ column of } V. \quad \hat{A}_k = \sum_{i=1}^k \sigma_i u_i v_i^T = \sum_{i=1}^k \sigma_i A_i \text{ with } k < r \text{ is the rank-k-approximation of } A.$

1