

G	ROUP ASSIGNMENT COV	ER SHEET	
Student ID Number	Surname	Given Names	
29940672	Tah	Wen Zhong	
29938767	Hor	Ethan, Sheng Jian	
* Please include the names of all other group	members.		
Unit name and code	FIT3143 Parallel computing		
Title of assignment	Assignment 2		
Lecturer/tutor	Shageenderan Sapai		
Tutorial day and time	Friday 9am – 11am	Campus Monash University	
Is this an authorised group assign	nment? ☑ Yes ☐ No		
Has any part of this assignment b	een previously submitted as part of	another unit/course? ☐ Yes ☑ No	
Due Date 18	3/10/2021	Date submitted 18/10/2021	
All work must be submitted by the d lecturer/tutor.	ue date. If an extension of work is gra	anted this must be specified with the signature of the	
1001011011	Signature of lectu	rer/tutor	
Please note that it is your responsib	ility to retain copies of your assessmer	nts.	
Intentional plagiarism or collusion and	nounts to cheating under Part 7 of the N	Ionash University (Council) Regulations	
	propriate acknowledgement. The material	of expressing them and passing them off as one's used can be from any source (staff, students or the	
Collusion : Collusion means unauthorise paying another person to complete all o		sessable written, oral or practical work and includes	
Associate Dean (Education) or delegate Faculty Discipline Panel for a hearing.		lusion has occurred, this will be reported to the prohibiting assessment or refer the matter to the	
Student Statement: • I have read the university's Student	Academic Integrity Policy and Procedures		
I understand the consequences of	engaging in plagiarism and collusion as de	escribed in Part 7 of the Monash University (Council)	
Regulations http://adm.monash.edu I have taken proper care to safegua	I/legal/legislation/statutes ard this work and made all reasonable effor	ts to ensure it could not be copied.	
	n previously submitted as part of another u		
 i. provide to another membe 	r of faculty and any external marker; and/o	poses of assessment, reproduce the assignment and: r	
ii. submit it to a text matching iii. submit it to a text matching		the assignment on its database for the purpose	
of future plagiarism checki	ng.		
Signature	ne work of others or participated in unauthor	orised collaboration when preparing this assignment.	
* delete (iii) if not applicable			
SignatureDate:	18/10/2021 Signature	Date:	
SignatureDate:	18/10/2021 Signature	Date:	
SignatureDate:	Signature	Date:	

The information on this form is collected for the primary purpose of assessing your assignment and ensuring the academic integrity requirements of the University are met. Other purposes of collection include recording your plagiarism and collusion declaration, attending to course and administrative matters and statistical analyses. If you choose not to complete all the questions on this form it may not be possible for Monash University to assess your assignment. You have a right to access personal information that Monash University holds about you, subject to any exceptions in relevant legislation. If you wish to seek access to your personal information or inquire about the handling of your personal information, please contact the University Privacy Officer: privacyofficer@adm.monash.edu.au

FIT3143 Semester 2, 2021 Assignment 2 - Report

Team Name (or Number): FIT3143_S2_2021_MA_LAB-04_Team_03

Student email address	Student First Name	Student Last Name	Contribution %	Contribution details*
wtah0001@stude nt.monash.edu	Wen Zhong	Tah	50	both
ehor0005@stude nt.monash.edu	Ethan, Sheng Jian	Hor	50	both

^{*}Your contribution details include the report, code, or both.

Note: Please refer to Assignment <u>specifications</u>, <u>FAQ</u> and marking rubric (<u>two member</u> or three member teams) for details to be included in the following sections of this report.

Include the word count here (for Sections A to C): ____1411____

A. Methodology

The system we devised utilizes multithreaded processes for the simulation of a WSN with a set of interconnected sensors.

Grid architecture

Figure 1: Cartesian grid layout

The WSN follows a cartesian grid layout, with one MPI process simulating each node. As such, we used MPI virtual topology to map the MPI process into a Cartesian virtual topology. Figure 1 illustrates an example of one such mapping for a 4 x 4 grid layout. Each node will only communicate with the base station and its adjacent nodes. For instance, the rank 6 node in Figure 1 can only communicate with the adjacent nodes highlighted, that is node 2, node 10, node 5 and node 7.

Initializing the Wireless Sensor Network

During initialization, a new MPI datatype will be created from a set of data types which will be the report sent by the sensor nodes to the base station. Following this, a new communicator will be created through splitting the default communicator. This subcommunicator contains all processes dedicated towards simulating the sensor nodes. In our system, only the rank 0 MPI process will be excluded as it simulates the base station. In addition, this will also create a POSIX thread which simulates the satellite altimeter.

Figure 2: Flowchart of the WSN implementation

In addition to the altimeter, another POSIX thread will be created which will terminate the simulation. The user has the option to set a duration for the simulation, or end manually by entering -1. For our implementation, threads are terminated through shared flags whereas the nodes terminate after receiving a termination message. Once all the processes terminate successfully, the application ends.

Base station

Figure 3: Flowchart of the base station simulation

The production of reports is carried out by the base station node whenever an alert report matches the altimeter reading. Whenever the base station receives a report from one of the sensor nodes via MPI_Recv, it will cross-check the related contents of the report with the contents which are produced and stored in the global array by the satellite altimeter. Then, whenever a match is found, the base station uses the contents of both the global array and the node report to generate a report which is then written to a text file which compiles the reports generated during runtime.

An additional thing to note is that whenever the global array is being accessed by the base station for cross-checking, the code performs mutex lock on the global array until it finishes checking the values in the array to address race conditions. Once it is done, the mutex is unlocked so that the altimeter can continue updating values in the global array.

Sensor nodes

Figure 4: Flowchart of the sensor node simulation

As illustrated in Figure 4, each node will create a POSIX thread which will be responsible for handling value exchange between neighbour nodes. This is so all nodes can respond to these requests while performing its main process. Additionally, MPI_Barrier() is used to synchronize the processes which also prevents race conditions.

Figure 5: Flowchart of the sensor node's main thread

In every iteration, each node will generate a random value between a fixed range (5500, 7000) which will be used to calculate its simple moving average. Whenever a node is found to exceed the threshold value, a request will be sent to the adjacent nodes to retrieve the heights for those nodes as well. If the neighbour node's values match within a given tolerance range, the node begins to compile all the contents required for the report into a single struct, which is then sent to the base station node for cross-checking later on.

Simple Moving Average

The simple moving average of the sensor nodes is based on Equation (1), which is the formula for calculating the moving average. For the calculation of the initial k values, the cumulative moving average formula will be used, which is shown in Equation (2).

calculating the moving average. For the calculation of the initial k values, the average formula will be used, which is shown in Equation (2).
$$SMA_{k,next} = SMA_{k,prev} + \frac{1}{k} \left(p_{n+1} - p_{n-k-1} \right) \ (1)$$

$$CMA_{n+1} = CMA_n + \frac{x_{n+1} - CMA_n}{n+1} \ (2)$$

For code implementation, a queue data structure is required for retrieving the previously calculated n-kth value. As such, previous k values are stored in an array that is maintained using a FIFO approach, similar to the altimeter's shared global array.

Altimeter

Figure 6: Flowchart of the altimeter's simulation

The diagram above illustrates the behaviour of the altimeter. To elaborate, the altimeter's behaviour is simulated by creating a POSIX thread which runs a function that generates a random coordinate with a random height that is over 6000 m. The values used for generating the random height are as followed:

- x = random value
- y = threshold value
- z = max extra height

This random height is calculated through Equation (3) shown below.

Height =
$$y + (x \mod z)$$
 (3)

Once the height value is generated, it is added to a global array of maximum size 8 via the First In First Out (FIFO) method. Whenever the global array that stores the information becomes full, the code pushes the 2nd to 8th elements to the left (which gets rid of the 1st element), and makes space for a new report to be added at the last index of the array.

Each time it is doing this, the code performs mutex lock to prevent other threads from accessing the global array. It only unlocks the mutex once the array is finished with its updates.

B. Results Tabulation

Sample Log

Our results will be based on the log reports produced by the system at the end of execution. These log reports will be included in the compressed zip file submitted alongside the report.

```
Iteration: 3
Alert time: Mon Oct 18 01:58:35 2021
Alert type: Match
Reporting Node
                   Coord
                            Height (m)
                                            IPv4
                             6297.000
                                            172.16.227.105
                   (1,1)
Adjacent Nodes
                   Coord
                             Height (m)
                             6019.000
                   (0,1)
                             6251.334
                   (2,1)
                             6200.667
                   (1,0)
                   (1,2)
                             6648.000
Satelite altimeter reporting time: Mon Oct 18 01:58:33 2021
Satelite altimeter reporting height (m): 6129.829
Satelite altimeter reporting Coords: (1,1)
Communication Time (seconds): 0.00001023
Total Messages send between reporting node and base station: 1
Number of adjacent matches to reporing node: 3
Max. tolerance range between nodes readings (m): 300
Max. tolerance range between satelite altimeter and reporting nodes readings (m): 300
```

Figure 7: Sample log that is written to the text file for reports

The system will output messages to the terminal to inform users of its current state. Figure 8 shows a sample of these messages.

```
Duration parameter provided, base station will run for 60 seconds.

Time limit reached, base station will now begin shut down sequence
Altimeter terminated successfully

Termination message successfully sent to sensor nodes

Sensor nodes terminated successfully

Base station will now shut down
```

Figure 8: Sample terminal output during code execution

System specifications

Table 1: Details of parameters used and defined constants

Parameter	Value	Description
Width	3	Number of columns in the grid layout
Height	3	Number of rows in the grid layout
Duration	60	Duration which the system will run before termination
Threshold	6000	Threshold value
Defined constants	Value	Description
Interval	1	Time interval between iterations
Node Tolerance	300	Tolerance range for both nodes to be considered matching
Altimeter Tolerance	300	Tolerance range for node report and altimeter reading to be considered matching
Random max	7000	Upper bound for random height value generation
Random min	5500	Lower bound for random height value generation

Table 2: Specifications of local machine

Specification	Value
Processor(s)	4
Base Memory	8192

Table 3: Specifications of parameters used for running MonARch job script

Specification	Value	Description
ntasks	10	Number of tasks
cpus-per-task	3	CPU cores per task

Summary of results

Table 4: Summary of results when running using local machine

Run	Reported events	Total communication time
1	106	0.276273
2	91	0.383401
3	111	0.370016
Max	111	0.383401
Min	91	0.276273
Average	102.667	0.34323

Table 5: Summary of results when running using MonARch

Run	Reported events	Total communication time
1	121	0.003009
2	121	0.003715
3	96	0.002705
Max	121	0.003715
Min	96	0.002705
Average	113	0.003143

Line charts

Figure 9: Cumulative communication time after each iteration (Run 1 - Run 3) (Program ran using MonARch)

Figure 10: Cumulative communication time after each iteration (Run 1 - Run 3) (Program ran using local machine)

Bar charts

Figure 11: Number of reports logged in each interval of iterations (Run 1 - Run 3) (Program ran using MonARch)

Figure 12: Number of reports logged in each interval of iterations (Run 1 - Run 3) (Program ran using local machine)

C. Analysis & Discussion

We hypothesized that the average number of matches reported by the base station would increase until it reaches the 8th iteration, as the global array would be fully populated at that iteration. With this in mind, we proceeded to run the program with the parameters specified in Table 1. After retrieving the results of the program, we would then tabulate the results of the run. This process is then repeated 3 times so that we could more accurately compare and analyse the results. Once all the results have been tabulated, a grouped bar chart is created to analyse the results. The grouped bar chart in Figure 8 shows the results of the 3 runs of the program on MonARCH.

When analysing Figure 8, we can see that the grouped bar chart supports the hypothesis we stated earlier. Around iterations 1 to 5, we can see that there is a very low average number of reports being logged, with some runs having no reports to make at all. Once the iterations go past the 6 to 10 mark, we can see that the average number of reports being logged starts to become more stable.

An additional hypothesis we have is where the communication time will grow in a linear manner, while the probability for events to occur are the same for any iteration. However, based on the results shown in Figure 10, we can observe that the cumulative growth between intervals is inconsistent. If we analyze run 2 we can observe that the rate of increase spikes after the 30th iteration. We believe that a possible cause would be how the alerts are usually clustered when one node exceeds the threshold. To elaborate, when a node matches the neighbour node, there is a high possibility that the neighbour node may exceed the threshold as well. Due to this, the number of requests would increase greatly for a small part of the cartesian grid. As such, each node may require handling the request from all its neighbors. This causes communication to be close to a serialized process as our implementation has each node's thread handle at most one neighbour node's request at any given time. A similar issue may be possible on the base station as well as only the main thread handles reports from sensor nodes. A possible fix to mitigate this issue would be to increase the number of threads for handling communication requests between the nodes and base station.

In terms of analysing the communication time behaviour of the sensor nodes, we created line graphs to illustrate the cumulative communication time between nodes. These graphs can be referred to at Figure 8 and Figure 9. If we relate these line graphs to the grouped bar charts at Figure 10 and 11, we can see that the increase in communication time is proportional to the number of matches found at each iteration interval. This is because the more node values that are found to have exceeding thresholds, the more inter-node communication required before the report is sent to the base station, therefore increasing the cumulative communication greatly.

D. References

Note: You may opt to customize this report to include additional sub-sections or any additional formatting where necessary.

Declaration:

I declare that this assignment report and the submitted code represent work within my team. I have not copied from any other teams' work or from any other source except where due acknowledgment is made explicitly in the report and code, nor has any part of this submission been written for me by another person outside of my team.

Signature of student 1:	A Company of the Comp
Signature of student 2:	#
Signature of student 3:	