

LEHRPROBE ZUM THEMA BOOSTING

DR.-ING. ALEXANDER DOCKHORN

Postdoctoral Research Associate, School of Electronic Engineering and Computer Science, Queen Mary University of London

a.dockhorn@qmul.ac.uk

EINBETTUNG DIESES VORTRAGS IN EINE LEHRVERANSTALTUNG

EINBETTUNG DIESES VORTRAGS IN EINE LEHRVERANSTALTUNG

Vorlesungsblock Ensemble Algorithmen

Einführung in Ensemble Algorithmen

Boosting

Beispiel: Adaboost

Bagging

Beispiel: Random Forests

Vergleich von Ensemble Algorithmen Bias vs Variance

WELCHER JOKER IST BESSER?

Telefonjoker: 65% richtig Publikumsjoker: 90% richtig

GILT DAS AUCH FÜR KLASSIFIKATOREN?

EINFÜHRUNG IN ENSEMBLE ALGORITHMEN

Klassifikatoren im Funktionsraum

ENSEMBLE

= AGGREGATION MEHRERER KLASSIFIKATOREN

$$H_t(x) = \sum_{i=1}^t \alpha_i h_i(x)$$

Klassifikatoren im Funktionsraum

ENSEMBLE

= AGGREGATION MEHRERER KLASSIFIKATOREN

$$H_t(x) = \sum_{i=1}^t \alpha_i h_i(x)$$

BOOSTING

= ITERATIVE ENSEMBLE ALGORITHMEN

⇒ Gradientenabstieg im Funktionsraum:

Klassifikatoren im Funktionsraum

ENSEMBLE

= AGGREGATION MEHRERER KLASSIFIKATOREN

$$H_t(x) = \sum_{i=1}^t \alpha_i h_i(x)$$

BOOSTING

= ITERATIVE ENSEMBLE ALGORITHMEN

- ⇒ Gradientenabstieg im Funktionsraum:
 - A) Wahl des optimalen Klassifikators
 - B) Wahl des optimalen Klassifikatorgewichts
 - C) Anpassung der Trainingsdatengewichte

PRINZIP VON BOOSTING ALGORITHMEN

ADAPTIVE BOOSTING (ADABOOST)

- Basisklassifikator: Entscheidungsstümpfe
- ullet Zu jedem Zeitpunkt t wird dem Ensemble H ein Entscheidungsstumpf h_t hinzugefügt.

$$h_{t+1} = \underset{h_{t+1} \in \mathbb{H}}{\operatorname{argmin}} \mathcal{L}(H_{t+1}) = \underset{h_{t+1} \in \mathbb{H}}{\operatorname{argmin}} \mathcal{L}(H_t + \alpha_{t+1} h_{t+1})$$

ullet exponentieller Fehler über die gewichteten Trainingsdaten D:

$$\mathcal{L}(H_t|y) = \sum_{i}^{|D|} w_i^t e^{-\frac{1}{2}y_i H_t(x_i)}$$

A) WAHL DES OPTIMALEN KLASSIFIKATORS

$$\mathcal{L}(H_{t+1}|y) = \sum_{i}^{|D|} w_i^t e^{-\frac{1}{2}y_i a_{t+1} h_{t+1}(x_i)}$$

$$= \sum_{i:h_{t+1}(x_i) \neq y_i}^{|D|} w_i^t e^{-\frac{1}{2}y_i a_{t+1} h_{t+1}(x_i)} + \sum_{i:h_{t+1}(x_i) = y_i}^{|D|} w_i^t e^{-\frac{1}{2}y_i a_{t+1} h_{t+1}(x_i)}$$

$$= \sum_{i:h_{t+1}(x_i) \neq y_i}^{|D|} w_i^t e^{-\frac{1}{2}y_i a_{t+1} h_{t+1}(x_i)} + \sum_{i:h_{t+1}(x_i) = y_i}^{|D|} w_i^t e^{-\frac{a_{t+1}}{2}}$$

$$= \sum_{i:h_{t+1}(x_i) \neq y_i}^{|D|} w_i^t e^{\frac{a_{t+1}}{2}} + \sum_{i:h_{t+1}(x_i) = y_i}^{|D|} w_i^t e^{-\frac{a_{t+1}}{2}}$$

$$= e^{\frac{a_{t+1}}{2}} \sum_{i}^{|D|} w_i^t I(h_{t+1}(x_i) \neq y_i) + e^{-\frac{a_{t+1}}{2}} \sum_{i}^{|D|} w_i^t - e^{-\frac{a_{t+1}}{2}} \sum_{i}^{|D|} w_i^t I(h_{t+1}(x_i) \neq y_i)$$

$$= (e^{\frac{a_{t+1}}{2}} - e^{-\frac{a_{t+1}}{2}}) \sum_{i}^{|D|} w_i^t I(h_{t+1}(x_i) \neq y_i) + e^{-\frac{a_{t+1}}{2}} \sum_{i}^{|D|$$

Resultat: wähle den Klassifikator zur Minimierung des gewichteten Fehlers

B) WAHL DES OPTIMALEN KLASSIFIKATORGEWICHTS

$$\mathcal{L}(H_{t+1}|y) = \left(e^{\frac{\alpha_{t+1}}{2}} - e^{-\frac{\alpha_{t+1}}{2}}\right) \sum_{i}^{|D|} w_{i}^{t} I(h_{t+1}(x_{i}) \neq y_{i}) - e^{-\frac{\alpha_{t+1}}{2}} \underbrace{\sum_{i}^{|D|} w_{i}^{t}}_{=1}$$

$$\frac{d\mathcal{L}(H_{t+1}|y)}{d\alpha} = \frac{1}{2} \left(e^{\frac{\alpha_{t+1}}{2}} + e^{-\frac{\alpha_{t+1}}{2}}\right) \sum_{i}^{|D|} w_{i}^{t} I(h_{t+1}(x_{i}) \neq y_{i}) - \frac{1}{2} e^{-\frac{\alpha_{t+1}}{2}}$$

$$\varepsilon = \sum_{i}^{|D|} w_i^t I(h_{t+1}(x_i) \neq y_i)$$

$$e^{\frac{\alpha_{t+1}}{2}}\varepsilon + e^{-\frac{\alpha_{t+1}}{2}}\varepsilon - e^{-\frac{\alpha_{t+1}}{2}} = 0$$

$$|-(e^{-\frac{\alpha_{t+1}}{2}}\varepsilon - e^{-\frac{\alpha_{t+1}}{2}})$$

$$e^{\frac{\alpha_{t+1}}{2}}\varepsilon = e^{-\frac{\alpha_{t+1}}{2}} - e^{-\frac{\alpha_{t+1}}{2}}\varepsilon$$

$$e^{\frac{\alpha_{t+1}}{2}}\varepsilon = e^{-\frac{\alpha_{t+1}}{2}}(1 - \varepsilon)$$

$$|\ln; \quad \ln(xy) = \ln(x) + \ln(y)$$

$$\frac{\alpha_{t+1}}{2} + \ln(\varepsilon) = -\frac{\alpha_{t+1}}{2} + \ln(1 - \varepsilon)$$

$$|+\frac{\alpha_{t+1}}{2} - \ln \varepsilon|$$

$$\alpha_{t+1} = \ln(1 - \varepsilon) - \ln(\varepsilon)$$
 $\left| \ln(x) - \ln(y) = \ln(\frac{x}{y}) \right|$

$$\alpha_{t+1} = \ln\left(\frac{1-\varepsilon}{\varepsilon}\right)$$

AGGREGATION GELERNTER KLASSIFIKATOREN

Ausgabe des Ensembles: $H_t(x) = \sum_{i=1}^t \alpha_i h_i(x);$ Ausgabe als Label: $H_t(x) = \text{sign}\Big(\sum_{i=1}^t \alpha_i h_i(x)\Big)$

	$h_1(x)$	$h_1(x); \alpha_1 = 1.1$			$h_2(x); \alpha_2 = 1.6$			$h_3(x); \alpha_3 = 1.1$			$h_4(x); \alpha_4 = 1.2$		
r h _t	-1.1	-1.1	1.1	1.6	1.6	1.6	-1.1	1.1	1.1	-1.2	-1.2	-1.2	
Klassifikator	-1.1	-1.1	1.1	-1.6	-1.6	-1.6	-1.1	1.1	1.1	-1.2	-1.2	-1.2	
Klassi	-1.1	-1.1	1.1	-1.6	-1.6	-1.6	-1.1	1.1	1.1	1.2	1.2	1.2	
H _t	-1.1	-1.1	1.1	0.5	0.5	2.7	-0.6	1.6	3.8	-1.8	0.4	2.6	
Ensemble	-1.1	-1.1	1.1	-2.7	-2.7	-0.5	-3.8	-1.6	0.6	-5.0	-2.8	-0.6	
Ense	-1.1	-1.1	1.1	-2.7	-2.7	-0.5	-3.8	-1.6	0.6	-2.6	-0.4	1.8	

C) ANPASSUNG DER TRAININGSDATENGEWICHTE

$$\mathcal{L}(H_{t+1}|y) = \sum_{i}^{|D|} e^{-\frac{1}{2}y_{i}H_{t+1}(x_{i})} \qquad |H_{t+1}(x_{i}) = H_{t}(x_{i}) + \alpha_{t+1}h_{t+1}(x_{i})$$

$$= \sum_{i}^{|D|} e^{-\frac{1}{2}y_{i}H_{t}(x_{i}) - \frac{1}{2}y_{i}\alpha_{t+1}h_{t+1}(x_{i})} \qquad |e^{a+b} = e^{a}e^{b}$$

$$= \sum_{i}^{|D|} e^{-\frac{1}{2}y_{i}H_{t}(x_{i})} e^{-\frac{1}{2}y_{i}\alpha_{t+1}h_{t+1}(x_{i})} \qquad |w_{i}^{t} = e^{-\frac{1}{2}y_{i}H_{t}(x_{i})}$$

$$= \sum_{i}^{|D|} w_{i}^{t} e^{-\frac{1}{2}y_{i}\alpha_{t+1}h_{t+1}(x_{i})} \qquad |\Rightarrow w_{i}^{0} = \frac{1}{|D|}; \quad w_{i}^{t+1} = w_{i}^{t} \cdot e^{-\frac{1}{2}\alpha_{t}y_{i}h_{t}(x_{i})}$$

Resultat: das Gewicht eines Datenpunktes ist proportional zum Fehler des aktuellen Ensembles

FORMELVERZEICHNIS ADABOOST

Initialisieren der Gewichte

$$w_i^0 = \frac{1}{|D|}$$

Lernen einen Klassifikator zur Minimierung des Fehlers

$$\underset{h_{t+1}\in\mathbb{H}}{\operatorname{argmin}} \mathcal{L}(H_{t+1}) = \underset{h_{t+1}\in\mathbb{H}}{\operatorname{argmin}} \sum_{i=1}^{|D|} w_i^t I(h_{t+1}(x_i) \neq y_i)$$

Bestimmung der Gewichtung des Klassifikators

$$a_t = \ln\left(\frac{1-\varepsilon}{\varepsilon}\right); \qquad \varepsilon = \sum_{i=1}^{|D|} w_i^t I(h_{t+1}(x_i) \neq y_i)$$

Aktualisieren und Normalisieren der Gewichte

$$w_i^{t+1} = w_i^t \cdot e^{-\frac{1}{2}\alpha_t y_i h_t(x_i)}$$

$$\sum_{i=1}^n w_i^{t+1} = 1$$

Klassifiziere Punkte anhand des Ensembles

$$H_t(x) = \operatorname{sign}\left(\sum_{i=1}^t \alpha_i h_i(x)\right)$$

ADABOOST BEISPIEL

Initialisierung der Gewichte:

$$w_i^0 = \frac{1}{n} = \frac{1}{8} = 0.125$$

Fehler des Klassifikators:

$$\varepsilon_1 = \sum_{i=1}^{|D|} w_i^0 I[h_1(x_i) \neq y_i] = 0.25$$

Schrittweite:

$$a_1 = \ln\left(\frac{1-\varepsilon_1}{\varepsilon_1}\right) = \ln\left(\frac{1-0.25}{0.25}\right) = \ln(3) \approx 1.1$$

ADABOOST BEISPIEL

Gewichtsänderung:

$$w_i^1 = w_i^0 \cdot e^{-\frac{1}{2}\alpha_1 y_i h_1(x_i)}$$

korrekt klassifiziert:

$$w_i^1 = w_i^0 \cdot e^{-\frac{1}{2}\alpha_1} = 0.125 \cdot e^{-0.55} \approx 0.072$$

falsch klassifiziert:

$$w_i^1 = w_i^0 \cdot e^{\frac{1}{2}\alpha_1} = 0.125 \cdot e^{+0.55} \approx 0.217$$

Normalisierungsfaktor:

$$\sum_{i=1}^{|D|} w_i^1 = 0.217 \cdot 2 + 0.072 \cdot 6 = 0.866$$

korrekt klassifiziert (normalisiertes Gewicht):

$$w'_{i}^{1} = \frac{0.072}{0.866} \approx 0.083$$

falsch klassifiziert (normalisiertes Gewicht):

$$w'_{i}^{1} = \frac{0.217}{0.866} \approx 0.25$$

ADABOOST BEISPIEL

Gewichtsänderung:

$$w_i^1 = w_i^0 \cdot e^{-\frac{1}{2}\alpha_1 y_i h_1(x_i)}$$

korrekt klassifiziert:

$$w_i^1 = w_i^0 \cdot e^{-\frac{1}{2}\alpha_1} = 0.125 \cdot e^{-0.55} \approx 0.072$$

falsch klassifiziert:

$$w_i^1 = w_i^0 \cdot e^{\frac{1}{2}\alpha_1} = 0.125 \cdot e^{+0.55} \approx 0.217$$

Normalisierungsfaktor:

$$\sum_{i=1}^{|D|} w_i^1 = 0.217 \cdot 2 + 0.072 \cdot 6 = 0.866$$

korrekt klassifiziert (normalisiertes Gewicht):

$$w'_{i}^{1} = \frac{0.072}{0.866} \approx 0.083$$

falsch klassifiziert (normalisiertes Gewicht):

$$w'_{i}^{1} = \frac{0.217}{0.866} \approx 0.25$$

AUSBLICK

- weitere Varianten von Boosting, z.B. Gradient Boosting
- Vergleich mit alternativen Ensemble Verfahren:

QUELLENVERZEICHNIS

- Surowiecki, J. (2004). The wisdom of crowds. Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. Abacus
 - das vorgestellte Beispiel und zahlreiche weitere Vergleiche von Gruppen- und Expertenentscheidungen
- Kearns, M. and Valiant, L.G. (1989). Cryptographic limitations on learning Boolean formulae and finite automata. Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (pp. 433-444). New York, NY: ACM Press.
 - https://www.cis.upenn.edu/~mkearns/papers/cryptojacm.pdf
 - Sind Weak und Strong Learnability unterschiedliche Klassen?
- Schapire, R. E. (1990). *The strength of weak learnability*. Machine learning, 5(2), 197-227.
 - https://link.springer.com/content/pdf/10.1007/BF00116037.pdf
 - erste Nachweis von effektiven Ensemblen aus "Weak learnern"
- Freund, Y., & Schapire, R. E. (1997). *A decision-theoretic generalization of on-line learning and an application to boosting*. Journal of computer and system sciences, 55(1), 119-139.
 - https://www.face-rec.org/algorithms/Boosting-Ensemble/decision-theoretic generalization.pdf
 - Vorstellung des AdaBoost Algorithmus, Gewichtung eines Weak Learners basierend auf seiner Korrektheit
- Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean (2000); Boosting Algorithms as Gradient Descent, in S. A. Solla, T. K. Leen, and K.-R. Muller, editors, Advances in Neural Information Processing Systems 12, pp. 512-518, MIT Press
 - https://papers.nips.cc/paper/1999/file/96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf
 - Boosting als Gradientenabstieg im Funktionsraum

LERNMATERIALIEN

Weitere Materialien zu diesem Vortrag gibt es auf https://adockhorn.github.io/Boosting/:

- interaktive Inhalte zum Thema des Fortrags
- eine Formelübersicht
- Links und Quellen zu diesen und verwandten Themen

