"Introducción a la Estadística, Probabilidad e Inferencia"

Maestría en Estadística Aplicada
Facultad de Ciencias Económicas y Estadística
UNR

Unidad 4 – Parte 3 Complemento

Algunas distribuciones multivariadas usuales

Distribución multinomial (discreta):

Suponga que se tiene un experimento aleatorio con k posibles resultados distintos. Las probabilidades para cada uno de estos resultados son $p_1, p_2, ..., p_k$, donde $\sum_{i=1}^k p_i = 1$. Suponga que se realizan n ensayos sucesivos del experimento, independientes entre sí. Sean $X_1, X_2, ..., X_k$ las variables (discretas) que registran el número de veces que se presenta cada una de las k respuestas en los n ensayos.

Entonces, el vector $X = (X_1, X_2, ..., X_{k-1})$ tiene distribución multinomial de parámetros $(n, p_1, ..., p_{k-1})$, y su función de probabilidad viene dada por:

$$p(x_1, x_2, ..., x_{k-1}) = \frac{n!}{x_1! x_2! ... x_k!} p_1^{x_1} p_2^{x_2} ... p_k^{x_k}$$

siempre que $x_1, x_2, ..., x_k = 0, 1, 2, ..., n$ y tal que $\sum_{i=1}^k x_i = n$. (Notar que $p_k = 1 - \sum_{i=1}^{k-1} p_i$ y $x_k = n - \sum_{i=1}^{k-1} x_i$)

Distribución hipergeométrica extendida (discreta):

Suponga que se tienen N objetos de los cuales N_1 son de un tipo, N_2 de otro tipo y así sucesivamente hasta N_k de un último tipo $(N_1 + N_2 + \cdots + N_k = N)$. Se selecciona una muestra de n objetos, y se definen $X_1, \dots X_k$ la variables aleatorias que cuentan el número de elementos de cada tipo en la muestra.

Entonces, el vector $X = (X_1, X_2, ..., X_{k-1})$ tiene *distribución hipergeométrica extendida*, de parámetros $(N, N_1, ..., N_{k-1}, n)$ y su función de probabilidad viene dada por:

$$p(x_1, x_2, \dots, x_{k-1}) = \frac{\binom{N_1}{x_1} \binom{N_2}{x_2} \dots \binom{N_k}{x_k}}{\binom{N}{n}}$$

Siempre que $x_1, x_2, ..., x_k = 0,1,2,...,n$ sujeto a que $x_i \le N_i \ \forall i = 1,...k$ y tales que $\sum_{i=1}^k x_i = n$.

Distribución uniforme multivariada (continua):

Un vector aleatorio continuo tiene distribución uniforme multivariada en una región S del espacio \mathbb{R}^k , si su función de densidad conjunta es constante para todo vector $\mathbf{x} \in S$.

Esto es, el vector $X = (X_1, X_2, ..., X_k)$ tiene **distribución uniforme multivariada** si:

$$f(x_1, x_2, \dots, x_k) = c \quad \forall x \in S$$

Dado que esta densidad debe verificar la condición de cierre, la constante c deberá ser siempre igual al recíproco del área o volumen de la región S.

Distribución normal multivariada (continua):

Un vector aleatorio $X = (X_1, X_2, ..., X_k)$ continuo tiene distribución normal multivariada, si su función de densidad conjunta es:

$$f(x_1, x_2, \dots, x_k) = \frac{1}{(2\pi)^{n/2} \sqrt{|\boldsymbol{\Sigma}|}} \exp\left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}) \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})'\right] \forall \, \boldsymbol{x} \in \mathbb{R}^k$$

Donde $\boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_k)$ es un vector de números reales y $\boldsymbol{\Sigma}$ es una matriz

 $k \times k$ definida positiva.

Bibliografía

- Balakrishnan N., Lai C-D. (2009) Continuous Bivariate
 Distributions. 2° Ed. Springer Science.
- Meyer P. (1998). Probabilidad y Aplicaciones Estadísticas. Edición revisada. Addison-Wesley Iberoamericana.
- DeGroot M, Schervish M. (2012). Probability and Statistics. 4° Ed. Pearson Education Inc.
- Casella G., Berger R. (2002). Statistical Inference. 2° Ed. Duxbury Press.