

FIG.1A

FIG.1B

FIG.1C

FIG.1D

FIG.2

Interaction of Bak with GST-Bcl-x in vitro

FIG.3A

Interaction of Bak with Bcl-x_L in COS cells

FIG.3B

FIG.4

FIG.5

+ + + + + + + + + + + + + + + + + + +	BCI-XI BINDING ACTIVITY + -/+ +	RAT-1 CELL KILLING ACTIVITY + +/ +	PLASMID Bak APS Bak AGD Bax
	1 + 1	ı + / +	Bip1a Bio1a AGD
Bak AGD -	+/-	-/+	Bak APS
3ak AGD -/+	+	+	3ak
3dk APS + + + -/+ 3dk AGD/+	BCI-XL BINDING ACTIVITY	RAT-1 CELL KILLING ACTIVITY	OLASMID.

FIG.6

FIG.7

COV 0 3 2003 AZ

				[SEQ. ID NO: 15] [SEQ. ID NO: 16)	W			[SEQ. ID NO: 17] [SEQ. ID NO: (189)	·8	[SEQ.ID NO: 19] [SEQ.ID NO: (29)
	270 ***	CGC TAT GAC TCA			250	CCT AGC AGC ACC ATG GGG CAG GGG CAG CTC GCC ATC GGG GAC GAC ATC P S S T M G Q V G R Q L A I I G D D I				· 88
	260 **	N CGA		103	240	ATC ATC I I			\$ *	CGA CGC R R
	250 **	G D D I N R R Y D S		CAG CCC ACG Q P T	230	CGG CAG CTC GCC R Q L A		24	250	GAC GAC ATC AAC D D I N
	240 ************************************		300	TG CAG CAC CTG O . Q H L	220	3G CAG GTG GGA G Q V G	280	AAC CGA CGC TAT GAC TCA GAG TTC CAG	240	CC ATC ATC GGG A I I G
\	230 *		30 290 *	GAG TTC CAG ACC ATG TTG C E F Q T M L	210	AGC ACC ATG G(S T M	270	CGC TAT GAC TI	230	CGG CAG CTC G R Q L
	220 *))))	%	GAG TTC E F			260	AAC CGA N R	220	GTG GGA V G
Bak	-					2. 62				3.

FIG. 8A

12 30 mg	[SEQ. ID NO: 21] [SEQ. ID NO(22)	
	. 55	
\$ *	TTC CAG F Q	
	TCA GAG S E	
270	GAC D	
	CGC TAT R Y	
260	CGA C	
	AAC N	
	ATC I	
250/	GAC D	
.,	G GAC	
	666 82 G	
	4. Ø	

	•			[SEQ.		[SEQ.
	210	CTG L				
	GA E				23	
		GAC D				
	8 *	999 3				
	2	ATC 1				AAC
		တ္ထ ~				AGT S
	0 *	AAG K				GAC D
180 190	19	CTC			210	CTG
		Т <u>БТ</u> С				GAA E
		GAG E			•	GAC
	180	AGC		17	200	විධිව ව
	CTG L			()	ATC 1	
		A AG	230	CAG		က္လ
	20*	AAG	7	CTG L	o *	AAG K
	∺	ACC →		GAG E	190	CTC
		25 S	o *	ATG M		TGT C
	0 *	900 P	220	N AAC		GAG E
	16	GAT D		AGT S	180	
		CAG O		GAC		CTG L
gax		5. 52				6. 59

FIG. 8B

ra.	[SEQ. ID NO: 27] [SEQ. ID NO: 28]	-b			[SEQ. ID NO: 29] [SEQ. ID NO: 39]		10 NO:31 J	<u> </u>	[SEQ. ID NO: 33] [SEQ. ID NO: 34]	ζ,
	9. G.				[SEQ.		[SEQ.		[SE0.	
	2 2 3		ATG M	=	<u> </u>					
			200 * GGG GAC GAG ATG							
			<i>y</i> 5 55				77			
			Ω.	4			AGC			
			190 * TGC AT	,		210	GAC GTG AGC D V S			
	,		၁၁ ၁၁				GAC D			
	Ħ		CTG	ı			G ATG M			
			180 * G CGG .		77	200	GAC GAG A			
	ပ္န		C CTG		_ TG		999 9			
요*	7G GA □		`` - ± 0 - ± 0	230	ည ည ည	- -	NTC G I		ant	
2	GAC GAA CTG GAC D E L D		170 * GCA TTG GCC (ς	AGG GCC CCG CGC CTG R A P R L	190	CTG GCC TGC ATC (C		89	
	3AC G D		160 * GGC AGT GAC GC) O*	0 V V		GCC A			
8 *	ဗ္ဟိ ဗ		\$6 * AGT	220	AGG R		CTG L		ATG M	
	CTC AAG CGC ATC		16 GAG GGC	,	GAC GTG AGC CTC A D V S L	180	. CGG	200	ATC GGG GAC GAG , I G D E	
	၁၁ မ		GAG	ן ער כי	s AGC S		C CTG		G GA(
) 061 *	A A		150 * TGC ATG G	21(C GT(ဂ A		99 2	
	CT _		15. To To)	GA O	170	ΕJ	190	AT	
	a	Bipla	č	∄		•	23		10. 64	
	۲.	9	ထ်				9.		1(
		v								

FIG. 8C

FIG.10

FIG.11

Inhibition of Bcl—xL protection of FAS/CHX—treated HcLa cells by Bak GD domain peptides

FIG.12