Отчет

Архитектура вычислительной системы

Описание задания

Вариант 211

Обобщенный	Базовые альтернативы	Общие для всех	Общие для всех
артефакт,	(уникальные	альтернатив	альтернатив
используемый в	параметры, задающие	переменные	функции
задании	отличительные		
	признаки альтернатив)		
1. Плоская	1. Круг (целочисленные	Цвет фигуры	Вычисление
геометрическая	координата центра	(перечислимый тип) =	площади фигуры
фигура,	окружности, радиус)	{красный, оранжевый,	(действительное
размещаемые в	2. Прямоугольник	желтый, зеленый,	число)
координатной	(целочисленные	голубой, синий,	
сетке.	координаты левого	фиолетовый}	
	верхнего и правого		
	нижнего углов)		
	3. Треугольник		
	(целочисленные		
	координаты трех углов)		

16. Упорядочить элементы контейнера по убыванию используя сортировку методом деления пополам (Binary Insertion). В качестве ключей для сортировки и других действий используются результаты функции, общей для всех альтернатив.

Описание работы программы

В папке input находятся файлы с тестами (input1.txt input2.txt, ...). В командной строке необходимо ввести путь до входного файла и до выходного, разделенные пробелом, например, если папка input находится в папке проекта, входные данные будут выглядеть следующим образом: input\input1.txt output.txt. При выборе опции "считывание из файла" обрабатывается тест из входного файла, и в выходной файл выводится результат: сначала все фигуры контейнера по порядку, а затем отсортированный контейнер. При выборе опции "рандомный ввод" будет сформирован один контейнер с рандомными фигурами, его элементы будут выведены сначала по порядку, а затем в соответствии со значением площади (по убыванию).

Формат одного теста:

<ключ фигуры – целое число от 1 до 3, 1 – прямоугольник, 2 – треугольник, 3 - круг>

<параметры фигуры>

Если треугольник, то: <цвет – целое число от 1 до 7> <ax> <ay> <bx> <by> <cx> <cy>

Если прямоугольник, то: <цвет> <left_up_x> <left_up_y> <right_down_x> <right_down_y>

Если круг, то: <цвет> <center_x> <center_y> <radius>

Далее с новой строки ключ следующей фигуры и с новой строки ее параметры, и так далее.

Отображение содержимого классов Container, Rectangle, Triangle, Circle

Отображение некоторых методов классов на память

main.py	
ifile	file – Filename
str	list — []
strArray	list — []
container	container -container.py
ofile	file – Filename
command_number	int - <number></number>
figNum	int - <number></number>
container.binarySearch	
fig	shape – shape.py
left	int - <number></number>
right	int - <number></number>
middle	int - <number></number>
container.binarySort	
size	Int - <number></number>
i	Int- <number></number>
position	Int - <number></number>
right_bound	Int - <number></number>
selected_figure	Shape – shape.py
containerinit	
store	list — []

Stack вызовов функций

1) При вводе из файла

2) При случайном вводе

Характеристики программы

Число заголовочных файлов - 0

Число файлов реализации – 9

Размер исходных текстов программы – 14.5 КБ

Случайное заполнение:

97 элементов – 1.90363 s

88 элементов - 1.88191 s

39 элементов 13.1419 s

14 элементов **2.17994** s

5754 элементов – 3.18884 s

1129 элементов – 2.32473 s

Тесты из папки input:

Test 1	1.88728 s
Test 2	1.99841 s
Test 3	1.75441 s
Test 4	1.79149 s
Test 5	1.85115 s
Test 6	2.32263 s
Test 7	1.7617 s

Test 8	2.03015 s
Test 9	1.77128 s
Test 10	1.86829 s

ооп:

Test 1	0.015625 s
Test 2	0.015625 s
Test 3	0 s
Test 4	0.015625 s
Test 5	0.031250 s
Test 6	0.015625 s
Test 7	0.031250 s
Test 8	0.015625 s

4771 элементов — 0.03125 s 7801 элементов — 0.078125 s 8973 элементов — 0.125 s 137 элементов — 0.015625 s

Процедурное:

7801 элементов — 0.093750 s 3473 элементов — 0.015625 s 4196 элементов — 0.031250 s 137 элементов — 0.0000001 s 6430 элементов — 0.046875 s

Сравнение

- 1. Программа на питоне работает намного медленнее, чем в предыдущих реализациях на С и C++
- 2. Непривычно не указывать типы переменных, тем не менее, код стал выглядеть намного проще
- 3. Отсутствие фигурных скобок тоже непривычно
- 4. Размер исходных текстов программы стал меньше