Flow analysis

Network Security and Forensics

Flow analysis

- Defined
 - "Examination of sequences of related packets ("flows"). Flow analysis is typically conducted in order to identify traffic patterns, isolate suspicious activity, analyze higher-layer protocols, or extract data." (Davidoff & Ham, 2012)
- Flow defined
 - "In RFC 3679, a "flow" is defined as "a sequence of packets sent from a particular source to a particular unicast, anycast, or multicast destination that the source desires to label as a flow. A flow could consist of all packets in a specific transport connection or a media stream. However, a flow is not necessarily 1:1 mapped to a transport connection."" (Davidoff & Ham, 2012)
- Flow and stream are becoming interchangeable

Flow analysis tools

Wireshark: Follow TCP Stream

Other tools

- Tshark
- Tcpflow
 - Parses non-fragmented IP packets and reassembles TCP stream into a file
- Pcapcat
 - Lists all of the streams that it sees
 - It can dump individual streams
 - Use magic numbers
 - Magic number is a constant used to identify a file format 1

- Tcpxtract
 - Using file signatures it extracts and reconstructs payload data
 - Example
 - \$ tcpxtract -f capturefile.pcap -o output_dir/

Flow analysis techniques

- Lists Conversations and Flows
- Export a Flow
- File and Data Carving

Lists conversations and flows

- View packet conversations using tshark
 - \$ tshark -qn -z conv ,tcp -r evidence01.pcap

```
TCP Conversations
Filter:<No Filter >
                         | <- | -> | Total |
                            Frames Bytes Frames Bytes Frames Bytes
192.168.1.159:1271 <->
                      205.188.13.12:443 31 29717 16
                                                        1451 47 31168
192.168.1.159:1221 <-> 64.12.25.91:443.24
                                        4206 16
                                                    1799 40 6005
192.168.1.158:51128 <-> 64.12.24.50:443
                                         20 2622 20
                                                     1681 40
                                                                4303
192.168.1.158:5190 <-> 192.168.1.159:127
                                         9 1042 15 13100 24 14142
192.168.1.159:1273 <-> 64.236.68.246:80
                                         5 1545 5 1964 10
                                                                 3509
192.168.1.2:54419
                 <-> 192.168.1.157:80
                                         3 206 4
                                                                 478
192.168.1.2:55488 <-> 192.168.1.30:22 2
                                         292 3
                                                    246 5
                                                             538
```

List TCP flows

- Identify specific flow of interest
 - Look for IP and port
 - \$ pcapcat -r evidence01.pcap

```
[1] TCP 192.168.1.2:54419 -> 192.168.1.157:80
```

[2] TCP 192.168.1.159:1271 -> 205.188.13.12:443

[3] TCP 192.168.1.159:1272 -> 192.168.1.158:5190

[4] TCP 192.168.1.159:1273 -> 64.236.68.246:80

Enter the index number of the conversation to dump or press enter to quit:

Export a Flow

- Identify the file that most likely contains the evidence for export
 - \$ pcapcat -r evidence01.pcap -w internal -stream.dump -f 'host 192.168.1.158 and port 5190 ' [1] TCP 192.168.1.159:1272 -> 192.168.1.158:5190

Enter the index number of the conversation to dump or press enter to quit: 1

Dumping index value 1

- \$ tcpflow -r evidence01.pcap 'host 192.168.1.158 and port 5190 '
 - Example display:

tcpflow [25586]: tcpflow version 0.21 by Jeremy Elson <jelson@circlemud.org > tcpflow [25586]: looking for handler for datalink type 1 for interface

evidence01.pcap

tcpflow [25586]: found max FDs to be 16 using OPEN_MAX tcpflow [25586]: 192.168.001.159.01272 -192.168.001.158.05190: new flow tcpflow [25586]: 192.168.001.158.05190 -192.168.001.159.01272: new flow tcpflow [25586]: 192.168.001.158.05190 -192.168.001.159.01272: opening new

output file

tcpflow [25586]: 192.168.001.159.01272 -192.168.001.158.05190: opening new

output file

- Wireshark
 - Click on packet and right-click of "Follow TCP Stream"
 - "Save As" in raw format

Manual File and Data carving

- Carve the file out of the exported flow
 - Open in hex editor
 - Look for the magic numbers (file signatures)
 - •Examples:
 - Jpeg beginning 0xffd8 end 0xffd9
 - .docx beginning 0x504B
 - Figure file size to find end of file
 - add initial byte offset to expected size
- Gather hashes
 - •Example:
 - \$ sha256sum filename
 - •\$ md5sum filename
- Confirm file size
- Open a copy and confirm the file is correct

1.http://www.korelogic.com/Resources/Projects/dfrws_c hallenge_2006/DFRWS_2006_File_Carving_Challenge.p df

Automatic file carving

\$ tcpxtract -f evidence01.pcap Found file of type "zip" in session [192.168.1.158:17940 -> 192.168.1.159:63492], exporting to 00000023. zip Found file of type "zip" in session [192.168.1.158:17940 -> 192.168.1.159:63492], exporting to 00000024. zip Found file of type "zip" in session [192.168.1.158:17940 -> 192.168.1.159:63492], exporting to 00000025. zip \$ Is -I -rwx ----- 1 student student 12020 2011 -01 -08 11:22 00000023. zip -rwx ----- 1 student student 11068 2011 -01 -08 11:22 00000024. zip

-rwx ----- 1 student student 10264 2011 -01 -08 11:22 00000025. zip

Higher-layer traffic analysis

- Hypertext Transfer Protocol (HTTP)
- Simple Mail Transfer Protocol (SMTP)
- Domain Name System (DNS)
- Dynamic Host Configuration Protocol (DHCP)
- Etc

http

- RFC 2616 defined methods
 - OPTIONS obtain information about communication
 - GET retrieve information ID by Uniform Resource Identifier (URI)
 - HEAD retrieves information without message body
 - POST send data to URI for processing
 - PUT upload information to specified URI
 - DELETE delete resource specified
 - TRACE echo request message back to client, helpful for debugging
 - CONNECT reserved

DHCP

,

SMTP

- Important vocabulary
 - Mail User Agent (MUA) end-users mail client
 - Mail Submission Agent ((MSA) Local mail submissions
 - Mail Transfer Agent (MTA) transfers mail between mail servers
 - Mail eXchanger (MX) accepts incoming messages for a domain
 - Mail Delivery Agent (MDA) local mail delivery
- Basic commands
 - HELO opens connection
 - MAIL identifies return address
 - RCPT identifies recipient address
 - DATA message content

DNS

- Query-response protocol
 - Client question = single UDP packet
 - Server response = single UDP packet

DNS Header

| DNS Header | DNS Flags | DNS

Higher-layer analysis tools

- Oftcat
- Input = reassembled single flow of transport layer payload (ex: tcpflow or pcapcat)
- Output = protocol summary of all OFT activity and any recovered files transferred
- http://blog.kiddaland.net/dw/oftcat
- Smtpdump

```
$ smtpdump
    smtpdump version 0.1.
    Copyright (C) 2009 Franck GUENICHOT
    smtpdump comes with ABSOLUTELY NO WARRANTY;
    This is free software, and you are welcome
    to redistribute it under certain conditions.
    (GPL v3)
    Usage: smtpdump [$options] -r <pcap_file>
    -A. --auth
                                      Display SMTP Auth informations (only
       LOGIN method)
   -e, --info
                                      Display E-mail informations
    -b. --brief
                                      Display minimum e-mail informations
    -x. --xtract
                                      Extract e-mail attachments
    -m. --md5
                                      Display extracted attachment MD5 Hash
    -f. --flow-index <index>
                                      Filters only given index flow
    -r, --read <pcap_file>
                                      Read the given pcap file [REQUIRED]
    -v. --version
                                      Display version information
    -h. --help
                                      Display this screen
```

Higher-layer analysis tools

- Findsmtpinfo.py
 - Input = pcap file
 - Output = extracted authentication data, credentials, mail header info, attachments, MD5 sum and produces a report

http://forensicscontest.com/contest02/Finalists/Jeremv_Rossi/findsmtninfo.pv

- NetworkMiner
 - Multipurpose traffic analyzer

Higher-layer analysis techniques

- Small specialized tools
 - Great for higher-layer protocol analysis
 - Best to use if you have a good idea of what the packet contains
 - Most interface easily with other tools
 - Example:
 - Oftcat
 - smtpdump
- Multipurpose tools
 - Best when a wide range of information is needed
 - Gather lots of different information
 - Example:
 - NetworkMiner

Works Cited Davidoff, S., & Ham, J. (2012). *Network Forensics Tracking Hackers Through Cyberspace*. Boston: Prentice Hall.