Mathematics and Computation Glossary

Carlos María Rodríguez

May 3, 2021

1 Basics

Def. 1.1. I denotes the set of all binary sequences of all lengths. I_n denotes the sequence of all binary sequences in I, this is, $I_n = \{0, 1\}^n$.

Def. 1.2. (The class \mathcal{P}).

A function $f: \mathbf{I} \to \mathbf{I}$ is in the class \mathcal{P} if there is an algorithm computing f and positive constants, A, c, such that $\forall n \in \mathbb{N}, \forall x \in I_n$, the algorithm computes f(x) in at most An^c steps.

Def. 1.3. (The class \mathcal{NP}).

The set $C \in I$ is in the class \mathcal{NP} if there is a function $V_C \in \mathcal{P}$ and a constant $k \in \mathbb{R}$ such that:

- If $x \in \mathcal{C}$, then $\exists y \in \mathbb{R}$ with $|y| \leq k|x|^k$ and $V_C(x,y) = 1$.
- If $x \notin \mathcal{P}$, then $\forall y$ we have $V_C(x,y) = 0$.

The function V_C is called the *verification algorithm*, and the sequence y for which $V_C(x, y) = 1$ is called the *witness*.

Def. 1.4. (The class $co\mathcal{NP}$).

A set $C \in I$ is in the class coNP iff its complement $\bar{C} = I \setminus C$ is in P.

Def. 1.5. (Efficient reductions).

Let $C, D \subset \mathbf{I}$ be two classification problems. $f : \mathbf{I} \to \mathbf{I}$ is an efficient reduction from C to D if $f \in \mathcal{P}$ and $\forall x \in \mathbf{I}$ we have $x \in C \iff x \in D$.

We write $C \leq D$ if such a reduction exists.

Def. 1.6. (Hardness and completeness).

A problem D is called C-hard if $\forall C \in C$, we have $C \leq D$. If we further have that $D \in C$, then D is called C-complete.

Def. 1.7. (The SAT problem).

Given a logical expression over Boolean variables (can take values in $\{0,1\}$ with connectives \land, \lor, \neg), is it satisfiable? This is, is there a boolean assignment of the variables trough which the expression evalutates to 1? The set of all such expressions is denoted by SAT.

Theorem 1.1. SAT is \mathcal{NP} -complete.

Def. 1.8. (The 2DIO problem).

Given a Diophantine equations of the form $Ax^2 + By + C = 0$; $A, B, C \in \mathbb{Z}$, is it solvable with positive integers?

Theorem 1.2. 2DIO is \mathcal{NP} -complete.

Def. 1.9. (The 3COL problem).

Given a planar map, can you color it using only 3 different colors?

Theorem 1.3. 3COL is \mathcal{NP} -complete.

Def. 1.10. (The subset - sum problem).

Given a sequence $a_1, a_2, ..., a_n \in \mathbb{Z}$ and b, is there a subset J such that $\sum_{i \in J} a_i = b$?

Theorem 1.4. Subset - sum is \mathcal{NP} -complete.