National University of Computer and Emerging Sciences Lahore Campus

Advance Database Concepts (CS4064) Date: Sat, 01 Mar 2025 Course Instructor(s) Muhammad Ishaq Raza, Muhammad Naveed		Sessional-1 Exam Total Time (Hrs.): Total Marks: 3 Total Questions: ed		
Roll No	Section	Student Signature	_	
Failure to do so n	nay result in a deduction of one i	and their respective parts in the specified omark for each incorrect part of a question. TION and approaches for building database systems.	rder.	
Q. No 1: Consider	the following schedule of action	: [4+2+2= 8]		
S : r1(X), v	v2(Z), r3(X), r1(Y), r3(Z), w1(Y), r2	(Y).		
conflict-seriali equivalent ser It is conflict-seria		1 11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

c. Describe the conflict equivalence of two schedules and a serializable schedule.

b. State whether this schedule is view-serializable or not. Justify your answer.

It is also view-serializable as it is conflict-serializable.

Two schedules are said to be conflict-equivalent if the relevant order of any two conflictingoperations is the same in both schedules.

Schedule (non-serial) S is said to be serializable if it is (conflict) equivalent to some serial schedule S'.

National University of Computer and Emerging Sciences Lahore Campus

CLO # 1: Understanding advance data models, technologies, and approaches for building database systems.

Q. No 2: Consider the following schedule of action: [15]

S: r1(X), w2(Z), r3(X), r1(Y), r3(Z), c3, w1(Y), r2(Y), c1, c2.

For each of the following concurrency control mechanisms, describe how the concurrency control mechanism handles the schedule. Assume that the timestamp of transaction *Ti* is *i*. For lock-based concurrency control mechanisms, add lock and unlock requests to the above schedule of actions as per the locking protocol. The DBMS processes actions in the order shown. If a transaction is blocked, assume that all its actions are queued until it is resumed; the DBMS continues with the next action (according to the listed schedule) of an unblocked transaction.

a. Rigorous 2PL with protocol based on a timestamp for deadlock avoidance (Use wound-wait policy)

T ₁	T ₂	T ₃
s1-lock(X)		
r1(X)	x2-lock(Z)	
	w2(Z)	
		s3-lock(X)
s1-lock(Y)		r3(X)
r1(Y)		
x1-lock(Y) <mark>upgrade-lock</mark> w1(Y)		s3-lock(Z)wait for T2
	S2-lock(Y)wait for T1	
c1, release all locks. unlock1(X) unlock1(Y)		
umocki(i)	r2(Y) <u>wake-up</u>	
	c2, release all locks. unlock2(Z)	
	unlock2(Y)	r3(Z) <u>wake-up</u>
	,,	c3, release all locks. unlock3(X)
		unlock3(Z)

National University of Computer and Emerging Sciences Lahore Campus

b. Strict Timestamp Ordering (Assume T1 < T2 < T3)

T1	T2	Т3	>	(Y		Z		
r1(X) r1(Y) w1(Y) c1	w2(Z) r2(Y) <u>wait</u> r2(Y) <u>wak</u>	r3(X) r3(Z)wait for T2 for T1	RTS TO {T1} {T3}	WTS {}	Y RTS T0 {T1}	T1	RTS TO	WTS {}	
	с3	r3(Z) <u>wake-up</u> c3					{T3}		

c. Optimistic concurrency control technique (Use defer the validation until a later time when the conflicting transactions have finished.)

T3 Validation: Successful

Backward: True (no overlapping transaction)

Forward: True (no write-set of T3 i.e. transaction being validated)

T1 Validation: Fail and Deferred until T2 end

Backward: True (no write-set of T3 i.e. committed overlapping transaction)

Forward: False; $WS(T1) \cap RS(T2) = \{Y\} \cap \{Y\} = \{Y\}$

T2 Validation: Successful

Backward: True (no write-set of T3 i.e. committed overlapping transaction)

Forward: True; WS(T2) \cap RS(T1) = {Z} \cap {X, Y} = \emptyset

T1 Re-validation: Successful

Backward: True; RS(T1) \cap (WS(T2) \cup WS(T3)) = {X, Y} \cap ({Z} \cup { \emptyset }) = \emptyset

Forward: True (no overlapping active transaction)

National University of Computer and Emerging Sciences

Lahore Campus

CLO # 1: Understanding advance data models, technologies, and approaches for building database systems.

Q. No 3: Consider the following log at the point of system crash. Suppose that we use ARIES recovery algorithm to answer the following questions. [1+2+1+1+2=7]

LSN	Last_LSN	Trans_ID	Туре	Page_ID	Other_Info
1	0	T1	Update	W	
2	0	T2	Update	Χ	
3	1	T1	Update	Υ	
4	0	T3	Update	Χ	
5	2	T2	Commit		
6	begin checkpoint				
7	end checkpoint				
8	4	T3	Update	Υ	
9	3	T1	Update	Z	
10	0	T4	Update	W	
11	9	T1	Commit		

a. Show the contents of transaction and dirty page table at the time of checkpoint.

Transection Table

Dirty Page Table

Trans_ID	LSN	Status
T1	3	in-progress
T2	5	Commit
T3	4	in-progress

Page_ID	LSN
W	1
X	2
Υ	3

b. What is done during Analysis? Be precise about the points at which Analysis begins and ends and show the contents of transaction and dirty page table reconstructed in this phase.

Analysis Phase: Start from LSN# 6 (i.e. begin checkpoint) till end of log file (i.e. LSN# 11).

Transection Table

Dirty Page Table

Trans_ID	LSN	Status
T1	11	Commit
T2	5	Commit
T3	8	in-progress
T4	10	in-progress

Page_ID	LSN
W	1
X	2
Υ	3
Z	9

c. What is done during Redo? Be precise about the points at which Redo begins and ends.

Redo Phase: Start from LSN# 1 (i.e. smallest LSN in DPT) till last update-operation (i.e. LSN# 10). LSNs (1,2,3,4,8,9,10) update the corresponding pages (W, X, Y, X, Y, Z, W).

d. What is done during Undo? Be precise about the points at which Undo begins and ends.

Undo Phase: Start from LSN# 10 (i.e. last update-operation of active transaction) till first update-operation of active transaction (i.e. LSN# 4).

Undo will perform on T4 and T3 transactions.

T4 undo operations: LSN# 10 (W) and T3 undo operations: LSN# 8, 4 (Y, X).

e. What do the terms steal/no-steal and force/no-force mean with regard to buffer management for transaction processing?

See Textbook DB Recovery Chapter.