Final Specification for Smart Home Guard System

Instructor: Prof. Seok-won Lee

Prepared by:

<Team 3>
Byungwook Lee
Hyesun Lim
Sunghoon Byun

Contents

Со	ntents		2
Fig	ure & Table	·	4
Re	vision Histor	ry	5
1.	Project Ov	verview	6
	1.1. Obj	jective	8
	1.2. Sco	pe	9
2.	Requireme	ents of SHGS	11
	2.1. Sup	pplementary Requirements	11
	2.1.1.	Goal-Graph of Smart Home Guard System	11
	2.1.2.	Non-Functional Requirements	12
	2.2. Cus	stomer Requirements	13
	2.2.1.	Actor	13
	2.2.2.	Essential Use Case Model	14
3.	Architectu	ral Design	15
	3.1. Pac	kage Diagram	15
	3.1.1.	TIZEN	15
	3.1.2.	Arduino	16
	3.1.3.	Raspberry Pi	17
	3.2. Dor	main Analysis and Design	18
	3.2.1.	Use Case with Class diagram, Sequence diagram	19
	3.3. Lay	ered Architecture	25
4.	User Inter	face Design	26
	4.1. TIZI	EN UI	26
5	Circuit Dia	agram	29

	5.1.	Ardui	no Circuit Diagram	29
	5.2.	Ardui	no and Raspberry Pi Connection Diagram	30
6.	Verifi	cation	and Validation Results	31
	6.1.	Testin	ng Strategy	31
	6.2.	Verifi	cation of Requirements	31
	6	5.2.1.	Functional Requirements Checklist	31
	6	5.2.2.	Qualitative Requirements Checklist	32
	6	5.2.3.	Use Case Checklist	33
	6.3.	Valida	ation of Implementation	35
	6	5.3.1.	Unit Testing	35
	6	5.3.2.	UI Testing	36
	6	5.3.3.	Integration Testing	37
7.	Proje	ct Sum	mary and Conclusion	39
8.	Refer	ence		41

Figure & Table

Figure 1. The rate of "Single household" is 23.9 percent in 2012, Rate of female is high than male [1]	
Figure 2. Seoul Foundation of Women & Family, Difficult to live alone. 2012 [3]	7
Figure 3. 45 people of 357 people among the female Single household in Seoul [3]	7
Figure 4. Conceptual Framework of the Smart Home Guard System	9
Figure 5. Scenario Flowchart of the Smart Home Guard System	10
Figure 6 Goal-graph of the Smart Home Guard System Requirements	11
Figure 7. Non-Functional Requirements in System Requirements	12
Figure 8. Identification of Actors of the Smart Home Guard System	13
Figure 9. Essential Use Case Model of the Smart Home Guard System	14
Figure 10. Package diagrams of TIZEN system	15
Figure 11. Package diagrams of Arduino system	16
Figure 12. Package diagrams of Raspberry Pi system	17
Figure 13. Layered Architecture of Smart Home Guard System	25
Figure 14. Arduino Circuit Diagram-Lab View	29
Figure 15. Arduino Circuit Diagram-Schematic View	29
Figure 16. Arduino and Raspberry Pi2 Connection Diagram	30
Table 1. Revision History	5
Table 2. TIZEN UI Design	26
Table 3. Functional Check List	31
Table 4.Qualitative Check List	32
Table 5.Use Case Check List	33
Table 6. Unit Testing - Test Case	35

	Advanced Software Engineering Fall 2015
Table 7. UI Testing - Test Case	36
Table 8. Integration Testing - Test Case	37
Table 9. Work break Structure of SHGS Project	39

Revision History

Doc. Name	Date	Reason For Changes	Version
Final	15 th of Nov	Initial version of Final Document	V 0.1
Final	23 th of Nov	Insert the contents of previous documents.	V 0.2
Final	27 th of Nov	Created Test case	V 0.3
Final	3 rd of Dec	Created Project summary	V 0.4
Final	4 th of Dec	Finish the Final Report	V 1.0

Table 1. Revision History

1. Project Overview

The population that live alone is increasing rapidly. This is mainly because the twenties tend to be "Sampo generation" who gives up courtship, marriage and childbirth. According to the Korea National Statistical Office, the ratio of single household is 23.9 percent in 2012, compared to 9.0 percent in 1990. The most recent research, which is conducted in August 2015, shows 26.0 percent of single household ratio, and it looks to be 34.3 percent in 2035 [1].

There is the other statistics that conducted a research on single household of women from 25-year-old to 49-year-old living in Seoul. It is conducted by Seoul municipal office with Ministry of Gender Equality and Family. The characteristics of single family is the highest portion is in elder people above 60 ages, and the portion of women increased a little from 66.1 percent in 2010 to 69.0 percent in 2014 [1].

Figure 1. The rate of "Single household" is 23.9 percent in 2012, Rate of female is higher than male [1]

Private security guards said that the most unsafe areas are daycare center, institution for people with disabilities, and single-women household. They said there is need to strengthen social security system, because the crime for the weak is increasing. The majority of security guards said that the most urgent people are the women who live alone [2].

While the single household has been increased, consumption for them has been too increased. Also, a neologism was economically formed which is called "Solo Economy". However, crimes which is targeting the single household has increased [3].

Figure 2. Seoul Foundation of Women & Family, Difficult to live alone. 2012 [3]

When asked a question 'Difficult to live alone', women responded that "Anxiety about crime, such as sexual assault" secondly high. That is, women who live alone are feeling uneasy. Due to the relentless news about female crime, they would anxious a lot. The crime for women who live alone is really happened much?

Figure 3. 45 people of 357 people among the female Single household in Seoul [3]

From the 20-year-old to the 50-year-old woman hit 12.6 percent of 357 respondents replied that the case went through the crime or injury. Also, they hit about 80 percent near the house (around the building (39 percent), inside building (29.3 percent) and in the home (19.5 percent)). This mean that about 13 women out of every 100 people living alone suffered crime. It was higher than previously thought. Now that most of the crimes occur near the house,

even what women living alone sleep fitfully is not an idle fear. The most comfortable and safe home more than anything that you need to place surely that cannot shake the "anxiety" is ironic [3].

In spite of the implementation of "women assured home services" and "women assured courier service" currently in Seoul, which is not enough to be away from crime. Surged the single household and sending most of the day while the house is empty for a long time for the company, a crime aiming for the elderly and socially disadvantaged women by increasing. So, it requires the introduction of the institutional system to prevent this kind of crime.

1.1. Objective

Socially the "Single Household" has increased dramatically. It is necessary to prevent unexpected intrusion, that causes greater damage and to get away from crime for women and the elderly. For this reason, we propose a "Smart Home Guard System (SHGS)" that prevents the sneak thief and sex crimes targeting women. And also, this system makes user control the house conveniently while they are out of the home.

During absence, Smart Home Guard System prevent crime target by controlled like someone in the house. When did intrusion detection, the attacker cannot get out of the house by lock is operated. So, police can catch the crime scene in the meantime.

- Lock the front door and windows by TIZEN phone through the wireless [4]
- Turn on the TV and lighting as people at home
- If someone ring a doorbell, user can watch a video of front door and talk over TIZEN phone
- If intrusion is detected, lock the front door and windows, and report to the police

When user is at home, it doesn't detect the motion in house. When it detect external intrusion, it reports to the police and family for preventing the bigger crime.

When it detect external intrusion, report the warning to the police and family

1.2. Scope

Figure 4 and Figure 5 represent the conceptual framework of the Smart Home Guard System and the scenario flowchart of the Smart Home Guard System, respectively. Our system consists of Raspberry Pi for main server and calculations, Arduino Uno for getting sensor values, and TIZEN Application for user's controller.

The Smart home Guard System is the core of the Home-IoT technologies which are sensing an activity of household, real time streaming for sending a video to user who has TIZEN phone and so on.

Figure 4. Conceptual Framework of the Smart Home Guard System

Figure 5. Scenario Flowchart of the Smart Home Guard System

2. Requirements of SHGS

This document represents only the top Goals of SHGS which is Functional Requirement Goal graph and Non-Functional Requirement Goal graph.

2.1. Supplementary Requirements

We derived the Functional Requirement Goal and Non-Functional Requirement Goal for Safety Home Guard System.

2.1.1. Goal-Graph of Smart Home Guard System

We represented the Sub-Goal and Task of implementing SHGS, based on the Goal derived from the above Stakeholder Requirement Goal.

Figure 6 Goal-graph of the Smart Home Guard System Requirements

2.1.2. Non-Functional Requirements

It arranged the relationship between the Non-Functional Requirement in SHGS. The system includes the properties of the Safety, Security, Performance, Convenience, Usability, Reliability, and Maintainability. We consider the interaction with the Functional Requirements and Non-Functional Requirements of the system.

Figure 7. Non-Functional Requirements in System Requirements

2.2. Customer Requirements

2.2.1. Actor

Figure 8. Identification of Actors of the Smart Home Guard System

- User with TIZEN: This is the user of the system. They have TIZEN device that controls the SHGS and contacts with the Police.
- Normal Visitor: Normal visitor is a trusted person based on user actor. They do not affect abnormal.
- Criminal: Criminal has an adverse effect on the SHGS.
- Police: Police can be a police station or a security office if user live in a small apartment. They receive user's request or request of the system.

2.2.2. Essential Use Case Model

Figure 9. Essential Use Case Model of the Smart Home Guard System

Figure 9 shows the Essential Use Case Model of SHGS. For each design is described in Use Case 3.2 Domain analysis and design.

3. Architectural Design

This section is written for developers who implement the system to provide more detailed technical help. This document contains the design diagrams of each requirement and the whole architecture of the system.

3.1. Package Diagram

We consider three packages to create our SHGS. There are TIZEN system, Arduino system and Raspberry Pi system. TIZEN system control the SHGS to monitor the situation with which user is confronted. Arduino system has two factors which are sensing environment and actuating system. Lastly, Raspberry Pi system can process the control of TIZEN system or Arduino system. Additionally, we draw package diagram using StarUML [5].

3.1.1. TIZEN

Figure 10. Package diagrams of TIZEN system

TIZEN system have 4 packages; each package performs below roles respectively.

- SHGS Information Manager: SHGS information manager sends processing information from Raspberry Pi system to TIZEN system for notification to user. Also, SHGS information manager receives user command for delivering to Raspberry Pi system.
- Control Home: Control home sends command information for manipulating the SHGS controlled by Raspberry Pi system. Also, Control home is set up by SetUp package for setting up control mode.

- Notify Alarm: Notify alarm receives the context from SHGS information manager, which is delivered from Raspberry Pi. Also, Notify alarm is set up by SetUp package for setting up notification information.
- Set Up: Set up controls the set up information for control home package and notify alarm package. In control set up, there are Lock the door, Turn on TV, Turn on light, and Sound Up. Also in notify alarm set up, there are safe mode window and danger mode window setting.

3.1.2. **Arduino**

Figure 11. Package diagrams of Arduino system

Arduino system has 3 packages; each package performs below roles respectively.

- Raspberry information: Raspberry information receive the sensing data from sensors which
 are infrared sensor and switch sensor, and they do perceive inside motion and notify
 doorbell information, respectively. Also, Raspberry information sends the command from
 TIZEN to actuators.
- Sensing: Sensing sends the sensing data from sensors which are infrared sensor and switch sensor, and they do perceive inside motion and notify doorbell information, respectively.
- Actuating: Actuating receives command from Raspberry information in order to act right

performance. There are LED light, Door lock (servo motor), and Piezo Buzzer.

3.1.3. Raspberry Pi

Figure 12. Package diagrams of Raspberry Pi system

Raspberry Pi system has 3 packages; each package performs below roles respectively.

- Processing: Processing receives command mode from TIZEN system in order to set the SHGS what the user want, and sends the command to Arduino information for actuating the actuators.
- TIZEN command: TIZEN command receives processing information from processing package, it means that TIZEN system will be notified by Raspberry Pi system. Also, TIZEN command sends the command from TIZEN to processing package, it is about the user's command, such as turning on TV, turning on the light, and so on.
- Arduino information: Arduino information receives actuator commands from processing package in order to perform the actuators. Also, Arduino information sends the sensing data to processing package, it will be processing in processing package and send the information to TIZEN system.

3.2. Domain Analysis and Design

In this section, we gave a very high-level view over our system. This section's objective is to provide the reader with a good understanding of the details of the logical architecture of our system. We want to explain the static structure of our system, using object-oriented design. We will explore each of our use cases, and we will elicit which classes are necessary. We will also provide a dynamic view over the requirement, so that to explain in what order each function should be called. We use UML class diagrams and UML sequence diagrams respectively to model the static and dynamic aspects of our design. We model using web tool, draw.io [6] and websequencediagrams.com [7].

3.2.1. Use Case with Class diagram, Sequence diagram

We draw the Class Diagram, Sequence Diagram based on use case which derived from Goal graph.

UC001: Controlling home in ordinary day

UC001 Class Description

- 1. User wants to pretend that there is someone at home.
- 2. User executes mobile application installed on TIZEN.
- 3. User turn on TV and volume up TV
- 4. User turn the light on.
- 5. If user want to change the status of the above, he can control them with TIZEN.

UC001 Class Diagram

UC001 Sequence Diagram

UC002: Communicating with visitors

UC002 Description

- 1. User is carrying his phone.
- 2. Normal visitor visits user's home.
- 3. Visitor pressed a doorbell.
- 4. A notification alarm arrives on the user's phone.
- 5. User presses 'confirm' button on the phone's screen.
- 6. User confirm who the visitor is and converse with him.
- 7. And then, user can deal with the reason why the visitor has visited.

UC002 Class Diagram

UC002 Sequence Diagram

UC003: Replying to malicious visitor

UC003 Description

- 1. User went out of the home at night.
- 2. User is carrying his phone.
- 3. A malicious visitor visits user's home.
- 4. Visitor pressed a doorbell.
- 5. A notification alarm arrives on the user's phone.
- 6. User presses 'confirm' button on the phone's screen.
- 7. User confirm the person who the visit home and notice that he is suspicious.
- 8. Turn on the TV and lighting as people at home

UC003 Class Diagram TIZEN Raspberry Pi Arduino phoneNum pinNum pinNum Actuator currentTime notifyTizen() recognizeMotion() operate() controlHome() communicateTizen() turnOnTv() recieveNotofication() processData() turnOnLight() reportPolice() startSoundAlarm() Sensor volumeUpTv() lockDoor() recognizeSmash()

UC004: Automatically protect home

UC004 Description

- 1. User is not able to check his phone's notification alarm.
- 2. A malicious visitor visits user's home.
- 3. Visitor pressed a doorbell.
- 4. A notification alarm arrives on the user's phone.
- 5. User cannot confirm the notification.
- 6. The pre-configured functions are automatically executed.
- 7. The malicious visitor cannot enter into user's home.

UC004 Class Diagram

UC004 Sequence Diagram

UC005: Automatically protect home

UC005 Description

- 1. While user is out of home, the window is opened.
- 2. User's phone receive an emergency alarm.
- 3. Alarm say that the motion is detected at home.
- 4. The police arrive at user's home.
- 5. The user arrive at home.
- 6. The police open the door with user's phone and enter into home.
- 7. The police arrests the thief.

UC005 Class Diagram

UC005 Sequence Diagram

UC006: protecting home during sleep

UC006 Description

- 1. User is sleeping.
- 2. A thief try to open the door forcibly.
- 3. The pre-configured functions are automatically executed.
- 4. Because of the system's functions, the thief cannot enter into use's home.

UC006 Class Diagram

UC006 Sequence Diagram

3.3. Layered Architecture

Figure 13. Layered Architecture of Smart Home Guard System

Figure 13 shows the layered architecture of SHGS. Each layer represents presentation, business and data access which are represented for TIZEN, Raspberry Pi, and Arduino, respectively. In each layer, packages are already explained before sections. Additionally, we draw package diagram using draw.io [6].

4. User Interface Design

We were used UI mockup tool [8] for UI design. It divided the Main Menu, SHGS settings and sub-menu.

4.1. TIZEN UI

Table 2. TIZEN UI Design

We will develop the TIZEN app to using UI shown here.

5. Circuit Diagram

In SHGS, we use various sensors and actuators. For smooth development at implementation phase, we made a circuit diagram that shows board and each of connected sensor and actuator. Additionally, we draw package diagram using 123d Circuits [9].

5.1. Arduino Circuit Diagram

Arduino use RGB LED(2,3,4 pin), Buzzer(5 pin) as TV function, LED(6 pin) as light function, Servo Motor(12 pin) as locking door function, Buzzer(10 pin) as warning function, pressure sensor(A0 pin) as detecting trespassing, PIR motion sensor(11pin) as moving detection.

Figure 14. Arduino Circuit Diagram-Lab View

Figure 15. Arduino Circuit Diagram-Schematic View

5.2. Arduino and Raspberry Pi Connection Diagram

Board uses RX and TX to process data between Raspberry Pi and Arduino.

Figure 16. Arduino and Raspberry Pi2 Connection Diagram

6. Verification and Validation Results

In this section, we describe the validation process of the actual implementation from verification of the requirement of SHGS.

6.1. Testing Strategy

In section 6.2, we verify that SHGS developed as a requirement specification based on the checklist. Section 6.3, validate the developed system with unit testing and integration testing. SHGS are many sensors and actuators are connected to each Device. So, we proceed to unit testing for each module. After that, we tested interaction between each devices and integration function.

6.2. Verification of Requirements

We verify that SHGS has developed as correct requirement by the below Checklist.

6.2.1. Functional Requirements Checklist

It enumerates the crucial functions for SHGS.

Table 3. Functional Check List

Cate	gory	TIZEN	equirement I	D	TIZEN_R	TIZEN_Req			
No		S	Response (Y, N, N/A)	Tester	Descrip tion	Note			
1	TIZEN	I should accept notification			Byun				
2	TIZEN	should have secure network	r	N/A	Byun	couldn't use 3G			
3	Only t	he authorized owner can TI			Byun				
4	There	should not be any delay of v		Y	Lee				
Cate	gory	Raspberry Pi	Test ID	FC_002	R	equirement I	D	Rasp_Re	q
No	NO Scenario					Response (Y, N, N/A)	Tester	Descrip tion	Note
1	Raspb	erry should process all the d	lata in a sec	ond		Υ	Lee		

Advanced Software Engineering Fall 2015

2	Raspb	erry should be running 24 h	Υ	Lee					
3	Raspb	erry should run in a consecu	Υ	Lee					
Cate	Category Arduino Uno Test ID FC-003 Re						D	Ardu_Re	q
No		S	Response (Y, N, N/A)	Tester	Descrip tion	Note			
1	Arduir	no should exactly detect the	motion		Υ	Lim			
2	There	should not be any error that	cause emer		Υ	Lim			
3	Arduir	no should run in a consecuti	ve time mor		Υ	Lim			

6.2.2. Qualitative Requirements Checklist

It enumerates the crucial qualities for SHGS.

Table 4.Qualitative Check List

Evaluation	Item			S	cor	е		
Item	to Examine		5	4	3	2	1	Note
Understandability	✓	Can readers of the document understand what	0					
(5)		the requirements mean?						
Redundancy	✓	Is information unnecessarily repeated in the	0					
(5)		requirements document?						
Completeness	✓	Does the checker know of any missing	0					
(5)		requirements or is there any information missing						
		from individual requirement descriptions?						
Ambiguity	✓	Are the requirements expressed using terms	0					
(10)		which are clearly define?						
	✓	Could readers from different backgrounds make	0					
		different interpretations of the requirements?						
Consistency	✓	Do the descriptions of different requirements		0				
(10)		include contradictions?						
	✓	Are there contradictions between individual		0				
		requirements and overall system requirements?						
Organization	✓	Is the document structured in a sensible way?	0					
(10)								
	✓	Are the descriptions of requirements organized	0					
		so that related requirements organized so that						
		related requirements are grouped?						
Conformance to	✓	Does the requirements document and individual		0				
standards		requirements conform to defined standards?						
(10)	✓	Are departures from the standards, justified?		0				

Traceability (5)	*	Are requirements unambiguously identified, include links to related requirements and to the reasons why these requirements have been	0				
		included?					
			Tota	al So	core	:	56/ 60
Total Discussion :	_						

6.2.3. Use Case Checklist

Table 5.Use Case Check List

1. The use-case name is meaningful and un-ambiguous	1.	The use-cas	se name is	s meaningfu	ıl and ເ	ın-ambiguous
---	----	-------------	------------	-------------	----------	--------------

- [0] 1.1 Does the use case have a unique name?
- [0] 1.2 Is the name a verb + noun phrase (for example, Withdraw Cash)?
- [0] 1.3 Does the name accurately summarize the main goal of the use case?
- [0] 1.4 Is the name "actor independent"?

2. The brief description clearly describes the primary goal of the use case

- [0] 2.1 Is it clear from the brief description what the main purpose of the use case is?
- [0] 2.2 Is the "observable result of value" obvious?

3. Associated actors and information exchanged are clearly defined

- [0] 3.1 Is the use case associated with one or more actors?
- [0] 3.2 Is the primary, or initiating actor, defined?
- [0] 3.3 Is it clear who wishes to perform the use case?
- [0] 3.4 Is all information exchanged between the actor(s) and the system clearly specified?
- [0] 3.5 If a "time" actor is used, are you sure you did not miss an important actor and associated use cases (such as administrative or maintenance personnel that define schedule events)?

4. Pre-conditions have been specified

- [0] 4.1 Does each pre-condition represent a tangible state of the system (for example, the Withdraw Cash use case for an automated teller machine has a precondition that the user has an account)?
 - 5. The Basic Flow and Alternate Flows are complete, correct and consistent
- [0] 5.1 Is it clear how the use case is started?
- [0] 5.2 Is the triggering event clearly described?
- [0] 5.3 Does the flow have a definite ending?

- [X] 5.4 Does each step in the scenario contain the same level of abstraction?
- [0] 5.5 Does each step in the scenario describe something that can actually happen and that the system can reasonably detect?
- [0] 5.6 Does each step make progress towards the goal?
- [0] 5.7 Are there any missing steps? Is it clear how to go from one step to the next? Does the sequence of communication between the actors and the use case conform to the user's expectations?
- [0] 5.8 Does each step describe how the step helps the actor achieve their goal?
- [0] 5.9 Is each step technology independent? Is it free of technical details, and design decisions?
- [0] 5.10 Are the steps correctly numbered?
- [0] 5.11 For each alternate flow is the condition(s) for initiation of the flow clearly defined?
- [0] 5.12 For each alternate flow is it clear how the use case ends or where in the basic flow that the use case resumes?

6. Post-conditions have been specified

- [0] 6.1 If "Minimal Guarantees" are present, do they always happen when the use case completes, regardless of success? (A Minimal Guarantee represents a condition that will be true when the use case ends, regardless of how it terminates.)
- [0] 6.2 If "Success Guarantees" are present, do they always happen when the use case completes successfully? (A Success Guarantee represents a condition that will be true when the use case ends successfully, regardless of which path it takes.)

7. Applicable non-functional requirements have been captured

- [0] 7.1 Are non-functional requirements (such as performance criteria) that are applicable to the use case captured in the use case?
- [0] 7.2 Are these non-functional requirements applicable to many use cases? It they are, consider capturing them in the system-wide requirements specification to simplify maintenance.

6.3. Validation of Implementation

6.3.1. Unit Testing

TIZEN and Raspberry Pi connected by RX/TX and we check the operation to actuator by control command.

Table 6. Unit Testing - Test Case

Test Case	se Action/ Unit Expected Results Actual Results		Pass/Fail	
ID				
Arduino_1	TV operation - RGB	If "TV ON" command	RGB LED is turned on	PASS
	LED, Buzzer	from the Raspberry Pi,	and Piezo buzzer is	
		RGB LED is on and sound	play the melody.	
		is generated from the		
		buzzer.		
Arduino _2	Light operation – LED	If "Light ON" command	LED is turned on.	PASS
		from the Raspberry Pi,		
		LED is on.		
Arduino _3	DoorLock operation -	If control the Doorlock, it	Doorlock is moving of	PASS
	Servo Motor	will operate.	90 degrees by control.	
Arduino _4	Warning operation -	If "Warning" command	Beep occurred at the	PASS
	Buzzer	from the Raspberry Pi,	buzzer.	
		Beep occurs.		
Arduino _5	Recognition of	Detect the value, if press	It detected press value,	PASS
	Pressure sensor	the pressure sensor	and beep occurs.	
		(value>150, Intrusion		
		attempts)		
Arduino _6	Recognition of PIR	Detect the motion by PIR	It detected motion and	PASS
	motion sensor	Motion sensor, beep	beep occurs.	
		occurs.		
Arduino _7	Recognition of	Generating input value	Press the Button,	PASS
	Doorbell – Button	when press the Button.	Raspberry Pi is	
			recognized the input	
			value	
Rasp_1	Camera module	Check the Video to the	Checked the video to	PASS
	operation	web page	the web page	

6.3.2. UI Testing

We tested UI on TIZEN app. There was a change when applied to TIZEN. Because it was Change the control button the left and right on SHGS settings menu designed for and Android environment.

Table 7. UI Testing - Test Case

Test Case	UI	Expected Results	Actual Results	Pass/Fail
ID				
UI_1	Check the Main menu UI	SMGS © ©	of Y OSSS BIT 2 SHGS SHGS smart Home Gund System (see notification) (control (settings) (smergency)	Pass
UI_2	Change the control button the left and right on SHGS settings menu.	Check the UI, if change the control button the left and right on SHGS settings menu.	setting mode setting mode -turn on TV -turn on Sight -ting salum sound -ting salum sound -ting salum sound -ting salum sound	Pass
UI_3	Check the value you changed in UI_2	Make sure maintain the value you changed in UI_2		Fail
UI_4	Check the "Add emergency Contact list"	Emergency Contact Name : Police PHONE No: 031-112-8282 Message Here is Paldat-gwan 2001ho. Someone tried to break into my house.	Contact setting (smb) (smb) please enter phone number please input message.	Fail
UI_5	Check the "Add time settings"	Set in Time Name : Evening On Turn on TV Turn on Light Sound up	os48 & F B = x 2 new time setting start time os48 end time (s522 sove	Fail
UI_6	Main Menu -> Notification	C Notification Today 10.09 TV on By Tizen 11.01AM The doorbell chime From Home 11.00AM Protect mode on	ee notification	Pass
UI_7	Main menu -> Control	Control mode Lock the door Turn on TV Turn on Light Sound up	lock door lock door arr turn on TV turn on TV turn on Tight on ring alarm sound	Pass

6.3.3. Integration Testing

We tested that operation in Arduino, Raspberry Pi by Control in TIZEN APP. And we tested that receiving normal value from the Arduino sensor at TIZEN app.

Table 8. Integration Testing - Test Case

Test Case	Function	Expected Results	Actual Results	Pass/Fail		
ID	Cat the area area and area d	The manner of in out				
Tizen_Set1	Set the password used to authenticate the app.	The password is set properly.	-	Fail		
Tizen_Set2	It can run the app after	Entered correct				
Tizeti_Setz	enter the password.	password then, it can approach the Main menu.	-	Fail		
Tizen_Set3	Set 3 Set the actuator It operated as control operation and time in set at the specified time.		-	Fail		
Tizen_Set4	Enter the contact number on the "Emergency contact menu".	Contact number and the message is entered correctly.	-	Fail		
Tizen_Set5	Press the Emergency button for 2 seconds or more.	The emergency message is sent to set up contact number.	-	Fail		
Tizen_Set6	Lock the door from the control mode menu.	The door is locked by the servo motor rotation.	When user send the command 'lock the door', the servo motor rotate 180degree.	Pass		
Tizen_Set7	Open the door from the control mode menu.	The door is opened by the servo motor rotation.	When user send the command 'lock the door', the servo motor rotate 180degree.	Pass		
Tizen_Set8	Turn on the TV from the control mode menu.	RGB LED is turned on and Piezo buzzer is play the melody.	When user send the command 'turn on the TV', the RGB LED and Piezo buzzer is on.	Pass		
Tizen_Set9	Turn off the TV from the control mode menu.	RGB LED is turned on and Piezo buzzer is play the melody.	-	Fail		
Tizen_Set10	Turn on the Light from the control mode menu.	LED is turned on.	When user send the command 'turn on the	Pass		

Advanced Software Engineering Fall 2015

			1	run 201		
			light', the LED is on.			
Tizen_Set11	Turn off the Light from	LED is turned off.	When user send the			
	the control mode menu.		command 'turn on the	Pass		
			light', the LED is off.			
Tizen_Set12	Turn on the Sound from	Beep occurred at the		Fail		
	control mode menu.	buzzer.	-	raii		
Arduino _8	Press the pressure	a. Check the "External	When the pressure			
	sensor on Arduino.	intrusion" message in	sensor detect, "danger"			
		the Notification	message is printed on	- 5		
		the client.	a. Pass			
		b. The emergency		b. Fail		
		message is sent to set				
		up contact number.				
Arduino _9	Detected the movement	a. Check the "External	When the PIR motion			
	to PIR Motion sensor.	intrusion" message in	sensor detect, "danger"			
		the Notification	message is printed on	- D		
		menu.	the client.	a. Pass		
		b. The emergency		b. Fail		
		message is sent to set				
		up contact number.				
Arduino _10	Press the doorbell.	Check the "Pressing	When the switch is			
		the doorbell"	clicked, "someone come"			
		message in the	message is printed on	D		
	Notification me		the client and also	Pass		
			camera module is			
			executed.			
Rasp_2	Press the doorbell from	a. Check the "Visitor"	When the switch is			
	Arduino, the camera	message in the	clicked, "someone come"			
	module is operating.	Notification menu	message is printed on			
		b. If it click the "OK"	the client and also	Pass		
		button, It connected	camera module is			
		Video on the Web	executed.			
		Page.				

7. Project Summary and Conclusion

We had opportunity to learn new technologies that was TIZEN, Arduino, Raspberry-Pi, Node-js, Java script. We tried to follow the Software Engineering process.

We divided the work into respective task by using Work Breakdown Structure based on Gantt chart

Table 9. Work break Structure of SHGS Project

Step	Specific Task perform	porformor	9		10			11				12				
		perioriller	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Anlalysis	Idea Derivation	All														
	Purpose Specification	All														
Design	Requirement Analysis	All		1												
	System Achitecture Design	All														
	Server Design	All														
	Database Design	All														
Implementation	TIZEN App Development	Sunghoon														
	Arduino Uno Development	Hyesun														
	Rasperry Pi Development	Byungwook														
	Database Construct	Hyesun														
	Server Construct	Byungwook														
	Server / DB Integration	Sunghoon														
	System Integration	All														
V&V	Testing	All														
	Problem Solving	All														
	Consecutive Maintenance	All														

In Proposal phase, we have tried to propose a project to help people. Thus, we proposed SHGS which is Home Guard System for Single Household's safety and comfortable

In Requirement specification phase, we elicit the requirement from various stakeholders. We have designed our requirement with the UML. We represented by Goal graph, Scenario Flow Chart, Use Case Diagram, Use Case Description. And we verified requirement by Checklist, Traceability Table.

In Design phase, we designed interaction between each device, User Interface, Circuit Diagram, Class Architecture.

In Implementation Phase, we have met technical issues from TIZEN. We have no TIZEN development experience. In addition, we couldn't find reference material what we need. We have reduced the implementation of overlapped use case.

Advanced Software Engineering Fall 2015

8. Reference

- [1] STATISTICS KOREA, "Current situation of live alone," 9 2015. [Online]. Available: https://kostat.go.kr/portal/korea/kor_nw/2/1/index.board?bmode=read&aSeq=269194&page No=&rowNum=10&amSeq=&sTarget=&sTxt=. [Accessed 19 9 2015].
- [2] S.-e. Kang, "Digital Times," Economic Daily, 8 9 2015. [Online]. Available: http://www.dt.co.kr/contents.html?article_no=2015090802109960800004. [Accessed 9 2015].
- [3] STATISTICS KOREA, "Statistics Blog," 4 2015. [Online]. Available: http://blog.naver.com/hi_nso/220337287919. [Accessed 9 2015].
- [4] M. Li and H.-J. Lin, "Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications," in *Industrial Electronics, IEEE Transactions*, 2014.
- [5] MKLab, Co., StarUML, MKLab, Co., 2015.
- [6] JGraph Ltd, draw.io, JGraph Ltd.
- [7] Hanov Solutions Inc., "Web sequence diagrams," [Online]. Available: https://www.websequencediagrams.com/#. [Accessed 11 2015].
- [8] UXPin Sp., UXPin, UXPin Sp..
- [9] 123d Circuits, "123d Circuits," [Online]. Available: https://123d.circuits.io/. [Accessed 11 2015].