Übungen zur Vorlesung "Stochastik für Studierende der Informatik"

Blatt 8

Abgabetermin: Montag, 01.07.2019, bis 10:15 Uhr in den Briefkästen im Gebäude 051 (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (6 Punkte)

Eine reellwertige Zufallsvariable X heißt gammaverteilt zu den Parametern a>0 und b>0 (kurz: $X\sim\Gamma(a,b)$), falls sie die Dichte

$$\frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx} \mathbb{1}_{[0,\infty)}(x)$$

besitzt. Dabei ist die Gammafunktion Γ für x>0 definiert durch

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt.$$

- (a) Zeigen Sie, dass es sich bei der obigen Funktion tatsächlich um eine Dichte handelt.
- (b) Bestimmen Sie $\mathbb{E}[X]$ für $X \sim \Gamma(a, b)$.
- (c) Bestimmten Sie Var[X] für $X \sim \Gamma(a, b)$.

Aufgabe 2 (3 Punkte)

Eine Zufallsvariable X heißt symmetrisch um a verteilt, wenn X-a und a-X die gleiche Verteilung besitzen. Es sei X symmetrisch um a verteilt. Zeigen Sie:

- (a) Existiert der Erwartungswert von X, so gilt $\mathbb{E}[X] = a$.
- (b) Ist X stetig mit Verteilungsfunktion F, so gilt $F(a) = \frac{1}{2}$.
- (c) Die $\mathcal{N}(\mu, \sigma^2)$ -Verteilung ist symmetrisch um μ verteilt.

Aufgabe 3 (3 Punkte)

Es seien $X_1, ..., X_n$ unabhängige normalverteilte Zufallsvariablen mit

$$\mathbf{E}[X_i] = \mu_i$$
 und $\mathbf{Var}[X_i] = \sigma_i^2$.

Weiter sei $\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$ das arithmetische Mittel dieser Zufallsvariablen.

- (a) Bestimmen Sie die Verteilung von \bar{X} .
- (b) Es sei nun $\mu_i = \mu$ und $\sigma_i^2 = \sigma^2$ für alle $1 \le i \le n$. Bestimmen Sie die Verteilung von $X_i \bar{X}$ für ein beliebiges $i \in \{1, ..., n\}$.

Aufgabe 4 (4 Punkte)

Es seien X_1, \ldots, X_n unabhängige $\operatorname{Exp}(\lambda)$ -verteilte Zufallsvariablen. Zeigen Sie, dass

$$X_1 + X_2 + \cdots + X_n \sim \Gamma(n, \lambda).$$

Dabei bezeichnet $\Gamma(n,\lambda)$ die Gammaverteilung von Aufgabe 1.

HINWEIS: Sie dürfen ohne Beweis verwenden, dass für x, y > 0 die folgende Identität gilt:

$$\int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Überlegen Sie sich außerdem, was für ein Zusammenhang zwischen der Exponentialverteilung und der Gammaverteilung besteht.