# Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»



Кафедра прикладной математики

Лабораторная работа №2 по дисциплине «Уравнения математической физики»

# Решение эллиптических краевых задач методом конечных разностей



Факультет: ПМИ

**Группа:** ПМ-63

Студенты: Шепрут И.И.

Вариант: 10

Преподаватель: Патрушев И.И.

Новосибирск 2019

## 1 Цель работы

Разработать программу решения эллиптической краевой задачи методом конечных разностей. Протестировать программу и численно оценить порядок аппроксимации.

# 2 Задание

- 1. Выполнить конечноэлементную аппроксимацию исходного уравнения в соответствии с заданием. Получить формулы для вычисления компонент матрицы A и вектора правой части b для метода простой итерации.
- 2. Реализовать программу решения нелинейной задачи методом простой итерации с учетом следующих требований:
  - язык программирования С++ или Фортран;
  - предусмотреть возможность задания неравномерных сеток по пространству и по времени, разрывность параметров уравнения по подобластям, учет краевых условий;
  - матрицу хранить в ленточном формате, для решения СЛАУ использовать метод LU разложения;
  - предусмотреть возможность использования параметра релаксации.
- 3. Протестировать разработанную программу.
- 4. Провести исследования реализованных методов на различных зависимостях коэффициента от решения (или производной решения) в соответствии с заданием. На одних и тех же задачах сравнить по количеству итераци метод простой итерации. Исследовать скорость сходимости от параметра релаксации.

**Вариант 5:** уравнение  $-\operatorname{div}\left(\lambda(u)\nabla u\right)+\sigma\frac{\partial u}{\partial t}=f.$  Базисные функции - линейные.

# 3 Анализ задачи

Необходимо решить задачу:

$$-\operatorname{div}\left(\lambda(u)\nabla u\right) + \sigma \frac{\partial u}{\partial t} = f$$

Первые краевые условия записываются в виде:  $u(x,y)|_{\Gamma}=g_1(x,y)$ , где  $g_1(x,y)$  — известная функция.

На первом этапе решения задачи нужно построить сетку. Матрица формируется одним проходом по всем узлам, для регулярных узлов заполняется согласно пятиточечному шаблону, для прочих — в соответствии с краевыми условиями.

# 4 Исследования

Далее под точностью решения будет подразумеваться  $L_2$  норма между вектором q, полученным в ходе решения, на последнем моменте времени, и между реальным значением узлов, которые мы знаем, задавая функцию u. В исследованиях на порядок сходимости эта норма будет ещё делиться на число элементов, для нахождения среднего отклонения от идеального решения.

## 4.1 Точность для разных функций

Здесь показана точность решения и количество итераций в зависимости от функций u(x,t) и  $\lambda(u)$ . Запускается со следующими параметрами:

- sigma = 1.
- $\varepsilon = 0.001$ .
- iters $_{max} = 500$ .
- Функция правой части высчитывается автоматически.
- Сетка по пространству равномерная:  $(1,1.1,\cdots,1.9,2)$ . Сетка по времени равномерная:  $(0,0.1,\cdots,0.9,1)$ .
- Начальное приближение: для функций u, линейных по t начальное приближение (1,1,...).
- ullet Для функций u, нелинейных по t начальное приближение в момент  $t=0-(u(1,0),u(1.1,0),\cdots,u(1.9,0))$  то есть истинное решение.

| $u(x,t) \qquad \lambda(u)$ | 1                                                       | u                         | $u^2$                      | $u^2 + 1$                 | $u^3$                     | $u^4$                     | $e^u$                       | $\sin u$                   |
|----------------------------|---------------------------------------------------------|---------------------------|----------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|----------------------------|
| 3x + t                     | 10<br>0.01                                              | $0.28 \cdot 10^{-7}$      | $48 \\ 0.44 \cdot 10^{-4}$ | $46$ $0.38 \cdot 10^{-4}$ | $51$ $0.63 \cdot 10^{-3}$ | $62$ $0.67 \cdot 10^{-3}$ | $86$ $0.1 \cdot 10^{-2}$    | 2704<br>19                 |
| $2x^2 + t$                 | 10<br>0.01                                              | $40$ $0.35 \cdot 10^{-3}$ | $53$ $0.31 \cdot 10^{-2}$  | $50$ $0.27 \cdot 10^{-2}$ | $72$ $0.4 \cdot 10^{-2}$  | 5010<br>20                | $16$ $2.4 \cdot 10^{5}$     | $5010$ $2.8 \cdot 10^{2}$  |
| $x^3 + t$                  | $\begin{array}{c} 10 \\ 0.75 \cdot 10^{-2} \end{array}$ | $39$ $0.13 \cdot 10^{-2}$ | $64$ $0.84 \cdot 10^{-2}$  | $58$ $0.61 \cdot 10^{-2}$ | 106<br>0.01               | 5010<br>18                | $\frac{12}{3.8 \cdot 10^5}$ | 5010<br>62                 |
| $x^4 + t$                  | 10<br>0.014                                             | $49$ $0.46 \cdot 10^{-2}$ | 70<br>0.044                | 64<br>0.037               | 3074<br>0.061             | 5010<br>29                | 5010<br>nan                 | $5010$ $4.5 \cdot 10^{2}$  |
| $e^x + t$                  | 10<br>0.01                                              | $36$ $0.18 \cdot 10^{-3}$ | $46$ $0.99 \cdot 10^{-3}$  | $45$ $0.87 \cdot 10^{-3}$ | $55$ $0.29 \cdot 10^{-2}$ | $70$ $0.71 \cdot 10^{-2}$ | $24 \\ 1.2 \cdot 10^{5}$    | 5010<br>$1.1 \cdot 10^2$   |
| $3x + t^2$                 | 10<br>0.38                                              | 17<br>0.062               | 38<br>0.011                | 38<br>0.01                | $46$ $0.19 \cdot 10^{-2}$ | $56$ $0.3 \cdot 10^{-3}$  | $64$ $0.38 \cdot 10^{-3}$   | 5010<br>63                 |
| $3x + t^3$                 | 10<br>1.4                                               | 20<br>0.22                | 36<br>0.04                 | 36<br>0.039               | $43$ $0.74 \cdot 10^{-2}$ | $49$ $0.6 \cdot 10^{-3}$  | $61$ $0.38 \cdot 10^{-2}$   | 5010<br>$2.4 \cdot 10^4$   |
| $3x + e^t$                 | 10<br>0.65                                              | 20<br>0.081               | 40<br>0.011                | 40<br>0.011               | $0.19 \cdot 10^{-2}$      | $50$ $0.31 \cdot 10^{-3}$ | $74$ $0.15 \cdot 10^{-2}$   | 5010<br>48                 |
| 3x + sin(t)                | 10<br>0.17                                              | 11<br>0.029               | $38$ $0.51 \cdot 10^{-2}$  | $38$ $0.49 \cdot 10^{-2}$ | $45$ $0.67 \cdot 10^{-3}$ | $56$ $0.42 \cdot 10^{-3}$ | $68$ $0.11 \cdot 10^{-2}$   | 5010<br>24                 |
| $e^x + t^2$                | 10<br>0.38                                              | 29<br>0.06                | 38<br>0.013                | 38<br>0.012               | $51$ $0.27 \cdot 10^{-2}$ | $64$ $0.32 \cdot 10^{-2}$ | 81<br>0.011                 | 5010<br>$2.7 \cdot 10^{2}$ |
| $e^x + t^3$                | 10<br>1.4                                               | 27<br>0.22                | 35<br>0.044                | 35<br>0.042               | $45$ $0.86 \cdot 10^{-2}$ | $59$ $0.26 \cdot 10^{-2}$ | 71<br>0.022                 | $5010$ $2.2 \cdot 10^{3}$  |
| $e^x + e^t$                | 10<br>0.65                                              | 30<br>0.081               | 40<br>0.012                | 40<br>0.012               | $50$ $0.3 \cdot 10^{-2}$  | $60$ $0.24 \cdot 10^{-2}$ | 98<br>0.025                 | $5010$ $7.7 \cdot 10^{3}$  |
| $e^x + sin(t)$             | 10<br>0.17                                              | 30<br>0.028               | $39$ $0.52 \cdot 10^{-2}$  | $39$ $0.49 \cdot 10^{-2}$ | $50$ $0.28 \cdot 10^{-2}$ | $64$ $0.95 \cdot 10^{-2}$ | 82<br>0.032                 | $5010$ $2.5 \cdot 10^{3}$  |

## 4.2 Зависимость точности от нелинейной сетки

#### 4.2.1 Функции нелинейной сетки

В ходе выполнения лабораторной работы были обнаружены функции, позволяющие легко задавать неравномерную сетку, сгущающуюяся к одному из концов.

Если у нас задано начало сетки — a, конец — b, а количество элементов n, тогда сетку можно задать следующим образом:

$$x_i = a + m\left(\frac{i}{n}\right) \cdot (b - a), i = \underline{0, n},$$

где m(x) — некоторая функция, задающая неравномерную сетку. При этом x обязаны быть принадлежать области [0,1], а функция m возвращать значения из той же области, и при этом быть строго монотонной на этом участке. Тогда гарантируется условие на сетке, что  $x_j \leqslant x_i$  при  $j \leqslant i$ .

*Пример:* при m(x) = x, сетка становится равномерной. Найденные функции:

$$m_{1,t}(x) = x^t$$

$$m_{2,t}(x) = x^{\frac{1}{t}}$$

$$m_{3,t}(x) = \frac{t^x - 1}{t - 1}$$

$$m_{4,t}(x) = \frac{\frac{1}{t^x}}{\frac{1}{x} - 1}$$

Что интересно, эти функции вырождаются в x при t=1, а при t=0, они вырождаются в сетку, полностью находящуюся на одном из концов: 1, 3 фукнции стремятся к концу b; а функции 2, 4 стремятся к концу a. 1 и 2 функции симметричны, как 3 и 4.

Таким образом, можно исследовать различные неравномерные сетки на итоговую точность и число итераций, изменяя параметр от 0 до 1.

#### 4.2.2 Описание исследований

Параметры остаются прежними, с небольшими изменениями:

- iters $_{max} = 100$ .
- Сетка по пространству неравномерная, если исследование происходит по сетке пространству, и равномерная, если исследование происходит по сетке времени.

Исследуется скорость и качество сходимости в зависимости от параметра неравномерной сетки.

#### 4.2.3 Сетка по пространству

В данных исследованиях неравномерность применяется к сетке по пространству.

#### 4.2.3.1 u = x4 + t





## 4.2.3.2 $u = \exp(x) + t$





## 4.2.4 Сетка по времени

В данных исследованиях неравномерность применяется к сетке по времени.

## 4.2.4.1 u = exp(x) + t3





## 4.2.4.2 $u = \exp(x) + \exp(t)$



# 4.3 Точность в зависимости от размера сетки

## 4.3.1 Сетка по пространству



## 4.3.2 Сетка по времени

