

Park Junho

박준호

010 8920 3089

pjh0063@gmail.com

About

안녕하세요 합리적이고 필요로 하는 엔지니어가 되고 싶은 박준호입니다.

Tools & Skills

OS skills

[Word, Excel, PPT]

- 전자설계 EDA Tool
- 회로 설계 및 Simulation [OrCAD, Ltspice]
- CodeVisionAVR
- 8bit 마이크로컨트롤러 IDE
- STM32CubeIDE
- STM32 마이크로컨트롤러 IDE
- Xilinx Vivado/Vitis
- Verilog, C 등을 활용한 FPGA 및 SoC 설계
- Cadence Virtuoso
- 아날로그 및 IC 설계
- Schematic, Simulation, Layout 등
- Git
- source code 관리 및 협업
- VS Code
- 확장성을 위한 code editor
- C/C++

Certification

2021.02 ~ 2031.12

Driver's License Class 1

1종 보통 운전면허

2022.11 취득

Engineer Electricity

전기기사

Education

2016.03 - 2022.02

Ulsan University

울산대학교 전기전자공학전공 졸업

2013.03 - 2016.02

Gijang High School

기장고등학교 졸업

Experience

2024.02 - 2024.08 예정 (진행 中)

[Harman] Semiconductor Academy- **반도체 설계 교육** 하만 세미콘 아카데미 부산 3기 교육 진행 중

Career

2023.04 ~ 2023.09

SoulbrainSLD 인턴

솔브레인SLD 생산팀 공정기술 파트 근무

Project Period

2024.03.15 - 2024.03.29

Project Goal

주파수를 활용하여 초음파 센서로 물체 간의 거리측정 및 Data Display.

• Tools & Skills / Components

LTspice, OrCAD Pspice / NE555, ILC555, HC-SR04

Design Spec

초음파 발진기 : 40kHz 초음파 Pulse 발진기 : 15Hz Counter Pulse 발진기: 17.2kHz

Block Diagram

동작 검증

회로 구성

1. 송신부

2. 수신부

3. 시간 측정부

4. 출력부

_결 과

거리(cm)	측정값	오차	오차율
0	20	20	100%
10	20	10	50%
20	25	5	20%
30	32	2	6.25%
40	42	2	4.762%
50	52	2	3.846%
60	61	1	1.639%
60 ~	측정불가		

<결과 분석 >

- 거리에 비례하여 측정값이 커지는 것을 확인.
- 따라서, 센서가 거리에 따라 신호를 잘 감지하여 송수신.

Project Period

2024.05.08 - 2024.05.30

Project Goal

주행모드(Auto/Manual) 제어 및 초음파 센서와 블루투스 모듈을 활용하여 자율 주행 구현.

Tools & Skills / Components

STM32CubeIDE, VS Code, Android Mobile, C/C++/ F411RE-Board, HW-095, HC-SR04, HC-06 등

주행 구상도

1) 초음파 센서

- 센서 전방 3개 + 측면 2개
- ① 전방 3개: 전진/후진, 코너링 제어
- ②측면 2개:코너링 방향제어

2)블루투스모듈

- ①속도제어
- ②수동조작

USART

USART1, 2

• USART 1: BLUETOOTH

USART 2: PUTTY

Pin Mapping

초음파 센서 (4PIN)

ECHO/TRIG/VCC/GND

- 1번 : 전방
- 2번 : 전방(좌측)
- 3번: 전방(우측)
- 4번:좌측
- 5번 : 우측

MOTOR (4EA)

D2, 3, 6, 7

- D2/D3:좌측 휠
- →TIM1_CH2
- D6/D7: 우측 휠
- → TIM3_CH1

작품 시연

➡ Auto / Manual MODE 시연 영상

개발 과정 및 성과

자율 주행 성능 테스트 통과 후 Model Design 과정에서 애로사항(자율 주행 오류) 발생.

특정 PORT에서 PWM 신호 약화 검출 → PORT 변경 후 개선 완료.

Motor Driver 1EA, Timer 2EA 연동 시, 동시 제어 오류(전압 공급 오차) 발생.

이로 인하여 양측 Motor 속도 차 발생 \rightarrow **Driver 2EA 사용** 후 균일한 전력인가 개선.

초음파 센서 3EA 사용 시, <mark>급커브 대응 불가</mark>.

정확한 벽 탐지를 위한 좌/우측 센서 2EA 추가.

Board **전원 공급 (5V) 오류** 발생.

초기 개발 시 Motor Driver 에서 Board로 5V 인가 (오류 발생) → 외부 전원(건전지)를 통해 6V 공급함 으로써 전원 정상 공급 개선.

외부전원(건전지) 인가 시 12V 공급 불가.

건전지(1.5V) 4EA x 2 를 병렬 연결하여 오류 발생 → 직렬 연결 변경 후 개선 완료.

기라 추가사함

차량 속도에 비례하여 초음파 센서 감지거리 조절

효율적인 후진 동작을 위해 → **좌/우측 후진** 기능 추가

돌발상황을 대비한 MANUAL MODE 구현

🌀 미흡하지만, 안전하게 완주하는데 성공

Project Period

2024.06.13 - 2024.06.25

• Project Goal

IP, SPI, UART, AMBA의 이해와 MicroBlaze를 이용한 Block Memory Interface, W5500 활용.

• Tools & Skills / Components

Xilinx Vivado&Vitis, Verilog HDL / Basys 3 Board

Block Memory Interface

User Logic Interface

LED Counter

Project Period

2024.06.03 - 2024.07.11 (진행中)

Project Goal

CMOS 집적회로 이론 및 One Chip Design 설계.

■ Tools & Skills / Components

Cadence Virtuoso Schematic, Editor, ADE, Layout, Assura DRC/LVS

ASIC Design Flow

One Chip Design [<mark>진행 中</mark>]

< Chip PAD Frame >

Simulation

< 16x1 MUX Transient Analysis >

Schematic

< 2x1 MUX >

< 16x1 MUX >

< 16x1 MUX Switch >

Layout

< 16x1 MUX Layout >