```
In [4]:
import pandas as pd
In [5]:
df = pd.read_csv('blueberry_yield.csv')
In [6]:
df.head()
Out[6]:
   id clonesize honeybee
                         bumbles andrena osmia
                                                MaxOfUpperTRange MinOfUpperTRange
                                                                                  AverageOfUpperTRange
                                                                                                       MaxOfLowerTRange
          25.0
                    0.50
                            0.25
                                     0.75
                                                             69.7
                                                                                                  58.2
                                                                                                                    50.2
                                           0.50
                    0.50
                                                                              42.1
                                                                                                  58.2
                                                                                                                    50.2
 1
   1
          25.0
                            0.25
                                    0.50
                                           0.50
                                                             69.7
2
   2
          12.5
                    0.25
                            0.25
                                    0.63
                                           0.63
                                                             86.0
                                                                              52.0
                                                                                                  71.9
                                                                                                                    62.0
3
   3
          12.5
                    0.25
                            0.25
                                    0.63
                                           0.50
                                                            77.4
                                                                              46.8
                                                                                                  64.7
                                                                                                                    55.8
 4
   4
          25.0
                    0.50
                            0.25
                                    0.63
                                           0.63
                                                             77.4
                                                                              46.8
                                                                                                  64.7
                                                                                                                    55.8
In [7]:
df.tail()
Out[7]:
          id clonesize honeybee bumbles andrena osmia MaxOfUpperTRange MinOfUpperTRange AverageOfUpperTRange MaxOfLowe
 15284 15284
                 12.5
                           0.25
                                   0.25
                                           0.38
                                                  0.50
                                                                   77.4
                                                                                    46.8
                                                                                                         64.7
                           0.25
 15285 15285
                 12.5
                                   0.25
                                           0.25
                                                  0.50
                                                                   86.0
                                                                                    52.0
                                                                                                         71.9
                                           0.38
      15286
                 25.0
                           0.50
                                   0.25
                                                  0.75
                                                                   77.4
                                                                                    46.8
                                                                                                         64.7
 15286
 15287 15287
                                                                                    42.1
                 25.0
                           0.50
                                   0.25
                                           0.63
                                                  0.63
                                                                   69.7
                                                                                                         58.2
 15288 15288
                 25.0
                           0.50
                                   0.25
                                           0.63
                                                  0.50
                                                                   77.4
                                                                                    46.8
                                                                                                         64.7
In [8]:
df.shape
Out[8]:
(15289, 18)
In [9]:
df.columns
Out[9]:
dtype='object')
In [10]:
df.duplicated().sum()
Out[10]:
```

0

```
In [11]:
```

```
df.isnull().sum()
Out[11]:
                        0
id
clonesize
                        0
honeybee
                        0
bumbles
                        0
andrena
                        0
osmia
                        0
MaxOfUpperTRange
                        0
MinOfUpperTRange
                        0
AverageOfUpperTRange
                        0
MaxOfLowerTRange
                        0
MinOfLowerTRange
                        0
AverageOfLowerTRange
                        0
RainingDays
AverageRainingDays
                        0
fruitset
                        0
fruitmass
                        0
seeds
yield
                        0
dtype: int64
In [12]:
df = df.drop('id', axis = 1)
```

In [13]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15289 entries, 0 to 15288
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype			
	-1	45200 11	C1 C4			
0	clonesize	15289 non-null	float64			
1	honeybee	15289 non-null	float64			
2	bumbles	15289 non-null	float64			
3	andrena	15289 non-null	float64			
4	osmia	15289 non-null	float64			
5	MaxOfUpperTRange	15289 non-null	float64			
6	MinOfUpperTRange	15289 non-null	float64			
7	AverageOfUpperTRange	15289 non-null	float64			
8	MaxOfLowerTRange	15289 non-null	float64			
9	MinOfLowerTRange	15289 non-null	float64			
10	AverageOfLowerTRange	15289 non-null	float64			
11	RainingDays	15289 non-null	float64			
12	AverageRainingDays	15289 non-null	float64			
13	fruitset	15289 non-null	float64			
14	fruitmass	15289 non-null	float64			
15	seeds	15289 non-null	float64			
16	yield	15289 non-null	float64			
dtypes: float64(17)						
memory usage: 2.0 MB						

In [14]:

df.describe()

Out[14]:

	clonesize	honeybee	bumbles	andrena	osmia	MaxOfUpperTRange	MinOfUpperTRange	AverageOfUpperTRar
count	15289.000000	15289.000000	15289.000000	15289.000000	15289.000000	15289.000000	15289.000000	15289.0000
mean	19.704690	0.389314	0.286768	0.492675	0.592355	82.169887	49.673281	68.6562
std	6.595211	0.361643	0.059917	0.148115	0.139489	9.146703	5.546405	7.6418
min	10.000000	0.000000	0.000000	0.000000	0.000000	69.700000	39.000000	58.2000
25%	12.500000	0.250000	0.250000	0.380000	0.500000	77.400000	46.800000	64.7000
50%	25.000000	0.500000	0.250000	0.500000	0.630000	86.000000	52.000000	71.9000
75%	25.000000	0.500000	0.380000	0.630000	0.750000	86.000000	52.000000	71.9000
max	40.000000	18.430000	0.585000	0.750000	0.750000	94.600000	57.200000	79.0000
4								+

```
In [15]:
```

```
df.nunique()
Out[15]:
clonesize
                           6
honeybee
                           7
bumbles
                          11
andrena
                          16
osmia
                          14
MaxOfUpperTRange
                           6
MinOfUpperTRange
AverageOfUpperTRange
                           5
MaxOfLowerTRange
                           6
MinOfLowerTRange
AverageOfLowerTRange
                           5
RainingDays
                           6
AverageRainingDays
                           8
fruitset
                        1525
fruitmass
                        1515
seeds
                        2066
yield
                         776
dtype: int64
In [16]:
import matplotlib.pyplot as plt
```

```
import seaborn as sns
```

In [17]:

```
import numpy as np
```

In [18]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [19]:

```
for i in df.columns:
    plt.figure(figsize=(15,6))
    sns.histplot(df[i], kde = True, bins = 20, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
   10000
      0
             0.0
                           2.5
                                          2.0
                                                        7.5
                                                                       10.0
                                                                                     12.5
                                                                                                    15.0
                                                                                                                   17.5
                                                                honeybee
   14000
   12000
   10000
 ± 8000
```

In [20]:

```
for i in df.columns:
    plt.figure(figsize=(15,6))
    sns.distplot(df[i], kde = True, bins = 20)
    plt.xticks(rotation = 90)
    plt.show()
```

0.30 - 0.25 - 0.20 - 0.15 - 0.10 - 0.05 - 0.00 - 0.00 - 0.

In [21]:

```
for i in df.columns:
   plt.figure(figsize=(15,6))
   sns.boxplot(df[i], data = df, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.show()
```


In [45]:

```
for i in df.columns:
    fig = px.box(df, y=i)
    fig.update_layout(title=i + ' Distribution Box Plot', xaxis_title=i)
    fig.show()
```

clonesize Distribution Box Plot

In [22]:

```
for i in df.columns:
   plt.figure(figsize=(15,6))
   sns.violinplot(df[i], data = df, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.show()
```


In [46]:

```
for i in df.columns:
    fig = px.violin(df, y=i)
    fig.update_layout(title=i + ' Distribution Violin Plot', xaxis_title=i)
    fig.show()
```

clonesize Distribution Violin Plot


```
In [24]:
```

```
for i in df.columns:
    for j in df.columns:
        if i != j:
             plt.figure(figsize=(15,6))
             sns.scatterplot(x=i, y=j, data=df, palette='hls')
             plt.xticks(rotation=90)
             plt.show()
  17.5
  15.0
  12.5
  10.0
   7.5
   5.0
   2.5
                   8
                                                              •
   0.0
                                                              50
In [25]:
for i in df.columns:
    for j in df.columns:
        if i != j:
             plt.figure(figsize=(15,6))
             sns.lineplot(x=i, y=j, data=df, palette='hls')
             plt.xticks(rotation=90)
             plt.show()
AverageOfUpper
   60
                                                           bumbles
         0.0
                                            0.2
                                                                                                 0.5
                                                                                                                  9.0
                           0.1
                                                                               0.4
  67.5
  65.0
   62.5
In [26]:
df1 = df[['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange
           'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange','RainingDays', 'AverageRainingDays']]
```

```
In [27]:
```

```
for i in df1.columns:
    print(i, ':')
   print(df1[i].unique())
   print('\n')
clonesize :
[25. 12.5 37.5 20. 10. 40.]
honeybee :
      0.25 0.75 0.537 0. 18.43 6.64 ]
[ 0.5
bumbles :
[0.25 0.38 0.117 0.058 0.56 0.065 0. 0.585 0.042 0.293 0.26 ]
andrena :
[0.75 0.5 0.63 0.38 0.25 0.409 0.707 0. 0.24 0.56 0.101 0.49
0.234 0.147 0.235 0.229]
osmia :
[0.5 0.63 0.75 0.25 0.38 0.058 0.117 0.62 0.585 0. 0.021 0.02
0.078 0.606]
MaxOfUpperTRange :
[69.7 86. 77.4 94.6 89. 79.]
MinOfUpperTRange :
[42.1 52. 46.8 57.2 39. ]
AverageOfUpperTRange :
[58.2 71.9 64.7 79. 65.6]
MaxOfLowerTRange :
[50.2 62. 55.8 68.2 66. 52.]
MinOfLowerTRange :
[24.3 30. 27. 33. 28. 25. 31.]
AverageOfLowerTRange :
[41.2 50.8 45.8 55.9 45.3]
RainingDays :
[24. 34. 1. 16. 3.77 26. ]
AverageRainingDays :
[0.39 0.56 0.1 0.26 0.06 0.25 0.07 0.14]
```

In [28]:

```
for i in df1.columns:
    print(i, ':')
    print(df1[i].value_counts())
    print('\n')
clonesize :
25.0
         8245
12.5
         6717
37.5
          265
20.0
           56
10.0
             4
            2
40.0
Name: clonesize, dtype: int64
honeybee :
0.500
            7832
0.250
            7285
0.750
             110
0.537
              38
0.000
              16
18.430
               5
6.640
               3
Name: honeybee, dtype: int64
```

In [30]:

```
for i in df1.columns:
    print(i, ':')
     plt.figure(figsize=(15,6))
     sns.countplot(x = df1[i], data = df1, palette = 'hls')
     plt.xticks(rotation = 90)
    plt.show()
    8000
    6000
    4000
    2000
       0
                        0.042
                                                                                            0.293 -
             0.0
                                    0.058
                                               0.065
                                                                                                       0.38
                                                                                                                   0.56
                                                                     0.25
                                                                                 0.26
                                                                                                                              0.585
                                                                    bumbles
andnana .
```

In [34]:

```
import plotly.express as px

for i in df1.columns:
    fig = px.histogram(df1, x=i, title=i, color_discrete_sequence=px.colors.qualitative.Dark2)
    fig.update_xaxes(tickangle=90)
    fig.show()
```

clonesize

In [31]:

clonesize

In [32]:

In [35]:

```
df_corr = df.corr()
```

In [36]:

df_corr

Out[36]:

	clonesize	honeybee	bumbles	andrena	osmia	MaxOfUpperTRange	MinOfUpperTRange	AverageOfUpperTRan
clonesize	1.000000	0.304130	0.080433	0.065131	-0.007607	0.016159	0.015838	0.0160
honeybee	0.304130	1.000000	-0.017937	0.030671	-0.010394	0.005840	0.005755	0.0058
bumbles	0.080433	-0.017937	1.000000	-0.164962	0.158001	-0.002104	-0.001813	-0.0017
andrena	0.065131	0.030671	-0.164962	1.000000	0.309556	-0.013061	-0.012928	-0.0129
osmia	-0.007607	-0.010394	0.158001	0.309556	1.000000	-0.031391	-0.030819	-0.0314
MaxOfUpperTRange	0.016159	0.005840	-0.002104	-0.013061	-0.031391	1.000000	0.998599	0.9998
MinOfUpperTRange	0.015838	0.005755	-0.001813	-0.012928	-0.030819	0.998599	1.000000	0.9990
AverageOfUpperTRange	0.016057	0.005892	-0.001769	-0.012993	-0.031415	0.999806	0.999004	1.0000
MaxOfLowerTRange	0.016343	0.005942	-0.001613	-0.012924	-0.031398	0.999503	0.998199	0.9994
MinOfLowerTRange	0.016026	0.005809	-0.001804	-0.013035	-0.031486	0.999829	0.998953	0.9999
AverageOfLowerTRange	0.015987	0.005485	-0.001644	-0.013071	-0.031337	0.999772	0.999040	0.9999
RainingDays	0.165770	0.046494	-0.063294	-0.026572	-0.079874	0.011322	0.011727	0.0112
AverageRainingDays	0.164823	0.037532	-0.060232	-0.027193	-0.078720	0.010352	0.010767	0.0102
fruitset	-0.406793	-0.120492	0.160447	0.073669	0.209495	0.007580	0.008409	0.0085
fruitmass	-0.377688	-0.135310	0.163987	0.064722	0.192210	0.146237	0.147203	0.1476
seeds	-0.396898	-0.139261	0.177022	0.063504	0.200597	0.060963	0.061812	0.0620
yield	-0.382619	-0.118001	0.161145	0.073969	0.198264	-0.022517	-0.021929	-0.0219
4								>

In [38]:

```
plt.figure(figsize=(30, 10))
matrix = np.triu(df_corr)
sns.heatmap(df_corr, annot=True, linewidth=.8, mask=matrix, cmap="rocket");
plt.show()
```


In [41]:

Correlation Matrix


```
In [47]:
```

```
X = df.drop('yield',axis=1)
Y = df['yield']
```

In [48]:

```
from sklearn.model_selection import train_test_split
```

In [49]:

```
from sklearn.linear_model import LinearRegression
```

In [50]:

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
```

```
In [51]:
regressor = LinearRegression()
regressor.fit(X_train, y_train)
Out[51]:
▼ LinearRegression
LinearRegression()
In [52]:
y_pred = regressor.predict(X_test)
mse = ((y_pred - y_test) ** 2).mean()
print("Mean squared error:", mse)
Mean squared error: 333169.7877732821
In [53]:
from sklearn.metrics import r2_score
In [54]:
r2 = r2_score(y_test, y_pred)
print('R-squared score:', r2)
R-squared score: 0.810476696897496
In [55]:
from sklearn.tree import DecisionTreeRegressor
In [56]:
tree_reg = DecisionTreeRegressor(random_state=42)
In [57]:
tree_reg.fit(X_train, y_train)
Out[57]:
          DecisionTreeRegressor
DecisionTreeRegressor(random_state=42)
In [58]:
y_pred = tree_reg.predict(X_test)
In [59]:
r2_score = r2_score(y_test, y_pred)
In [60]:
print("R-squared score of DecisionTreeRegressor:", r2_score)
R-squared score of DecisionTreeRegressor: 0.6389661625506569
In [61]:
from xgboost import XGBRegressor
In [62]:
model = XGBRegressor()
```

```
In [63]:
```

```
model.fit(X_train, y_train)
```

Out[63]:

In [64]:

```
y_pred = model.predict(X_test)
```

In [66]:

from sklearn.metrics import r2_score

In [67]:

```
r2 = r2_score(y_test, y_pred)
print("R2 score:", r2)
```

R2 score: 0.8144045120706109