Przykład 1

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ p(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x(t) \\ p(t) \end{bmatrix}, \quad \begin{bmatrix} x(t=0) \\ p(t=0) \end{bmatrix} = \begin{bmatrix} x_0 \\ p_0 \end{bmatrix}.$$

$$\begin{bmatrix} x(t) \\ p(t) \end{bmatrix} = e^{(t-0)} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_0 \\ p_0 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

$$w(\lambda) = \det \begin{bmatrix} 1 - \lambda & 0 \\ 0 & -1 - \lambda \end{bmatrix} = -(1 - \lambda)(1 + \lambda) = -(1 - \lambda^2) = 0 \iff \lambda_1 = 1, \lambda_2 = 1.$$

$$f(\lambda) = e^{\lambda t}, f(\lambda) = q(\lambda)w(\lambda) + a\lambda + b.$$

$$f(-1) = -a + b, f(1) = a + b.$$

$$b = \frac{f(-1) + f(1)}{2} = \frac{e^{-t} + e^t}{2}, a = \frac{f(1) - f(-1)}{2} = \frac{e^t - e^{-t}}{2}.$$

$$\begin{bmatrix} x(t) \\ p(t) \end{bmatrix} = \underbrace{\begin{pmatrix} e^t - e^{-t} \\ 2 \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \frac{e^t + e^{-t}}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{R(t, t_0)} \begin{bmatrix} x_0 \\ p_0 \end{bmatrix}.$$

Pytanie 1 Czy można znaleźć rozwiązanie bez liczenia $R(t,t_0)$?

Obserwacja 1 Załóżmy, że macierz $A: \mathbb{R}^n \to \mathbb{R}^n$ ma n różnych wartości własnych.

$$\lambda_1,$$
 $\lambda_2, \lambda_3, \dots$ $v_1,$ v_2, v_3, \dots

Obserwacja 2 Jeśli $v \in ker(A - \lambda \mathbb{I})$, to znaczy, że

$$Av = \lambda v$$

$$A^{2}v = \lambda^{2}v$$

$$A^{n}v = \lambda^{n}v$$

$$e^{A}v = e^{\lambda t}v.$$

Jeżeli zatem przdstawimy warunek początkowy jako sumę:

$$\overline{x_0} = x_0' + x_0^2 + \dots + x_0^n$$

$$e^{A(t-t_0)}\overline{x_0} = sum_{i=1}^n e^{A(t-t_0)} x_0^i = sum_{i=1}^n e^{\lambda_i (t-t_0)} x_0^i$$

Obserwacja 3 najogólniesza postać λ_j (pierwiastki równania $w(\lambda) = 0$) to

$$\lambda_i = a_i + ib_i$$
.

Zatem dowolne rozwiązanie problemu jednorodnego przy n różnych wartościach własnych może być jedynie kombinacją funkcji typu

$$\cos(bt)$$
, $\sin(bt)$, e^{at} , $ch(at)$, $sh(at)$, $e^{at}\sin(bt)$, $e^{at}\cos(bt)$.

I niewiele więcej.

$$\ddot{x} + a\dot{x} + \omega^2 x = 0$$

$$\dot{x} = p$$

$$\dot{p} = \ddot{x} = -a\dot{x} - \omega^2 x$$

$$\frac{d}{dt} \begin{bmatrix} x \\ p \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -a \end{bmatrix} \begin{bmatrix} x \\ p \end{bmatrix}.$$

Załóżmy, że macierz $A\in M_n^n$ ma króżnych wartości własnych i Anie zależy od czasu

$$\begin{aligned} \lambda_1 &\to n_1 \\ \lambda_2 &\to n_2 \end{aligned} \vdots$$

$$\vdots \\ \lambda_k &\to n_k - V_k = ker(A - \lambda_k \mathbb{I})^{n_k}.$$

 $(\text{gdzie } n_1 + n_2 + \ldots + n_k = n)$

$$\mathbb{R}^n = V_{\lambda_1} \bigoplus V_{\lambda_2} \bigoplus .. \bigoplus V_{\lambda_k}.$$

i teraz rozkładamy warunek początkowy:

$$x_0 = x_0^1 + x_0^2 + \ldots + x_0^k.$$

$$V_{\lambda_1} \quad V_{\lambda_2} \quad V_{\lambda_2}$$

Wówczas

$$x(t) = e^{A(t-t_0)} x_0 = \sum_{i=1}^k e^{A(t-t_0)} x_0^i = \sum_{i=1}^k e^{\lambda_i (t-t_0) \mathbb{I} + A(t-t_0) - \lambda \mathbb{I}(t-t_0)} x_0^i =$$

$$= \sum_{i=1}^k e^{\lambda_i (t-t_0) \mathbb{I}} e^{(A-\lambda \mathbb{I})(t-t_0)} x_0^i =$$

$$= \sum_{i=1}^k e^{\lambda_i (t-t_0) \mathbb{I}} \left(\sum_{j=0}^\infty \frac{(t-t_0)^j (A-\lambda_j \mathbb{I})^j}{j!} x_0^i \right)$$
ale $x_0^i \in \ker(A-\lambda_i \mathbb{I}^{n_i}) = \lambda_\lambda =$

$$= \sum_{i=1}^k e^{\lambda_i (t-t_0) \mathbb{I}} \left(\sum_{j=0}^{n-1} \frac{(t-t_0)^j}{j!} (A-\lambda_i \mathbb{I})^j \right) x_0^i.$$

Przykład 2 Rozwiązać równanie:

$$\frac{dx_1}{dt} = x_1 + x_2 + 2x_3$$

$$\frac{dx_2}{dt} = x_2 + x_3$$

$$\frac{dx_3}{dt} = 2x_3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}, w(\lambda) = det \begin{pmatrix} \begin{bmatrix} 1 - \lambda & 1 & 2 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{bmatrix} \end{pmatrix}.$$

$$w(\lambda) = (2 - \lambda)(1 - \lambda)^2.$$

$$\lambda_1 = 1, n_1 = 2$$

$$\lambda_2 = 2, n_2 = 1.$$

$$ker(A - \lambda_2 \mathbb{I}).$$

0.1 Baza rozwiązań

Obserwacja 4 Jeżeli $x(t)=R(t,t_0)x_0$ i $R(t,t_0)\in M_n^n$, to znaczy, że

$$x(t) = \left[\|\|\|\| \right] \begin{bmatrix} x_0^1 \\ \vdots \\ x_0^n \end{bmatrix} = x_0^1 \left[| \right] + x_0^2 \left[| \right] + \ldots + x_0^n \left[| \right].$$

Pytanie 2 $Czy \det(R(t,t_0)) \neq 0$?

Jeżeli tak, to kolumny $R(t,t_0)$ możemy potraktować jako wektory rozpinające przestrzeń rozwiązań i det $R(t,t_0) \neq 0 \ \forall t \in [a,b]$.

W bazie wektorów własnych macierz $e^{\dot{A}t}$ wygląda tak (zakładamy n wartości własnych):

$$\det \begin{bmatrix} e^{\lambda_1 t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n t} \end{bmatrix} = e^{t(\lambda_1 + \dots + \lambda_n)} = e^{t*TrA} \neq 0.$$