一、判断题(每题1分,共15分)

- 1. 理想气体状态方程式,不仅适用于单一组分的理想气体,也适用于理想气体混合物。()
- 2. 当温度变化时, $\Delta_f G_m^{\Theta}(\text{NaCl}, s)$ 的改变量比 $S_m^{\Theta}(\text{NaCl}, s)$ 的改变量小。 ()
- 3. 反应的 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\Theta}$ 越小,反应速率越大。()
- 4. 因为 $E^{\Theta}(Cu^{2+}/Cu) > E^{\Theta}(Fe^{2+}/Fe)$,所以 $FeCl_3$ 不能与单质铜反应。()
- 5. ds区元素的原子价层电子构型均为 $(n-1)d^{10}ns^{1-2}$,都是金属元素。()
- 6. 色散力存在于一切分子之间。()
- 7. 在298 K下, $S_m^{\Theta}(H_2, g) = 0 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ 。()
- 8. 在相同温度下,若反应 A 的 K_A^{Θ} 大于反应 B 的 K_B^{Θ} ,则反应 A 的 $\Delta_r G_m^{\Theta}$ 值大于反应 B 的 $\Delta_r G_m^{\Theta}$ 值。 ()
- 9. 温度升高,任何反应的熵变都增大。()
- 10. 对可逆反应: $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$, $\Delta_r H_m^{\Theta} > 0$, 升高温度,使正反应速率增大,逆反应速率减小,平衡向右移动。 ()
- 11. 金属活动顺序是按 $E^{\Theta}(M^{n+}/M)$ 由小到大排列的。()
- 12. 若反应二的各化学计量数均为反应一的 1/2,则 $E_2^{\Theta} = \frac{1}{2}E_1^{\Theta}$ 。()
- 13. 价键理论可以预测共价化合物的分子结构。()
- 14. 通常含氧酸根的氧化能力随溶液的 pH 值减小而增强。()
- 15. 在某氧化还原反应方程式中,等号两边各元素的原子数分别相等,则该化学方程式必定是已经配平。()

二、选择题(每题2分,共30分)

1. 在热力学温度为0 K时,石墨的标准摩尔熵() A、等于零 B、大于零 C、小于零 D、不确定 2. 恒温下,下列反应中 $\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\Theta}$ 为负值的是()

A. $2AgNO_3(s) \rightarrow 2Ag(s) + 2NO_2(g) + O_2(g)$

 $B_1 \subset aCO_3(s) \rightarrow CaO(s) + CO_2(g)$

 $C_1 = 2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$

 $D_1 H_2(g) + F_2(g) \rightarrow 2HF(g)$

3. 已知反应 $2C_2H_4(g) + O_2(g) \rightarrow 2CH_3CHO(aq)$ 的 $\Delta_rG_m^{\Theta}(1)$, $C_2H_4(g) + \frac{1}{2}O_2(g) \rightarrow CH_3CHO(aq)$ 的 $\Delta_rG_m^{\Theta}(2)$,则在相同温度时,二者的关系是()

 $A \cdot \Delta_{r} G_{m}^{\Theta}(1) = \Delta_{r} G_{m}^{\Theta}(2); \qquad B \cdot \Delta_{r} G_{m}^{\Theta}(1) = \left[\Delta_{r} G_{m}^{\Theta}(2)\right]^{2};$

C, $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\ominus}(1) = \frac{1}{2}\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\ominus}(2);$ D, $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\ominus}(1) = 2\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\ominus}(2).$

4. 298 K时下列物质的 $\Delta_f H_m^{\Theta}$ 不为零的是()

 $A \cdot Fe(1)$

B、P₄(白磷, s) C、Ne(g)

 $D \cdot Cl_2(g)$

5. 某基元反应 2A(g)+B(g)→C(g),将 2 mol A(g)和 1 mol B(g)放在 1 L 容器 中混合,则初始反应速率与 A、B 都消耗一半时的反应速率之比为()

A, 1/4

B, 4

C, 8

D₁ 1

6. 在标准 Ag_2CrO_4/Ag 电极中,下列离子浓度正确的是()

A, $c(Ag^+) = 1.0 \text{ mol} \cdot L^{-1}$ B, $c(CrO_4^{2-}) = 1.0 \text{ mol} \cdot L^{-1}$;

 $C_{x} c(H^{+}) = 1.0 \text{ mol} \cdot L^{-1}$

 $D_{x} c(K^{+}) = 1.0 \text{ mol} \cdot L^{-1}$

7. 下列电极电势最小的是()

 $A \cdot E^{\Theta}(Ag^+/Ag)$ $B \cdot E^{\Theta}(AgI/Ag)$

 $C \cdot E^{\Theta}(AgCl/Ag)$ $D \cdot E^{\Theta}(AgBr/Ag)$

8. 根据 $E^{\Theta}(Fe^{3+}/Fe^{2+}) = 0.771V$, $E^{\Theta}(Fe^{3+}/Fe^{2+}) = -0.44V$, $E^{\Theta}(Cu^{2+}/Cu) =$ 0.337 V, 判断下列各对物质不能共存的是()

A、Cu²⁺和 Fe²⁺

B、Fe³⁺和 Cu

C、Fe³⁺和 Cu²⁺

D、Fe²⁺和 Cu

9.	25	5 ℃时,在原电池: $(-)$ Pt $ _{\mathrm{H}_{2}(p^{\Theta})} _{\mathrm{H}_{2}\mathrm{SO}_{4}(0.50\ \mathrm{mol\cdot L^{-1}})} _{\mathrm{CuSO}_{4}(0.010\ \mathrm{mol\cdot L^{-1}})} _{\mathrm{CuSO}_{4}(0.010\ \mathrm$						
	L ⁻¹	L-1) Cu(+)右边半电池中分别加入等体积的下列溶液,能引起电池电动势增加						
	的是	是()						
	A、	0.010 mol · I	L^{-1} CuSO ₄	В、	$0.10 \text{ mol} \cdot \text{L}^{-1} \text{ Na}$	a ₂ S		
	C,	$2.0 \ mol \cdot L^{-1}$	CuSO ₄	D,	$0.010~\mathrm{mol}\cdot\mathrm{L}^{-1}$	H ₂ SO ₄		
10.	己知	已知一给定反应的 $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\Theta}$,则下列各项中不能确定的是()						
	A、标准状态下自发反应的方向							
	В、	B、同一温度下的标准平衡常数						
	C,	C、标准状态下该反应可以产生的最大有用功						
	D,	任意状态下的	的反应方向					
11.	. 原电池: (–)Pt H ₂ (100 kPa) HCl(aq) CuSO ₄ (aq) Cu(+)的电动势与下列物理 无关的是()							
	A,	温度	B、盐酸浓度	C,	CuSO4浓度	D、铜电极的面积		
12.	由是	由反应3A ²⁺ + 2B ⇌ 3A + 2B ²⁺ 构成原电池,该电池在标准状态时的电动势为						
	$1.8\mathrm{V}$ 。在某一浓度时其电动势为 $1.6\mathrm{V}$,则此时该反应的 $\Delta_{\mathrm{r}}G_{\mathrm{m}}$ 等于()							
	A、	$-6 \times 1.8 \times 9$	96.485 kJ · mol ^{−1}	В、	$-3 \times 1.8 \times 96.4$	85 kJ · mol ^{−1}		
	C,	$-6 \times 1.6 \times 9$	$6.485 \text{ kJ} \cdot \text{mol}^{-1}$	D,	$-3 \times 1.6 \times 96.4$	85 kJ·mol ⁻¹		
13.	下列关于杂化轨道的叙述中正确的是()							
	A 、凡是中心原子采用 sp^3 杂化轨道成键的分子,都具有正四面体的空间构型							
	$B \times sp^2$ 杂化轨道是由同一原子的 $1 \land ns$ 轨道和 $2 \land np$ 轨道混合组成的三个新							
	的原子轨道							
	C,	C 、凡 AB_3 型分子,中心原子都采用 sp^3 杂化轨道成键						
	D、 CH_4 分子中的 sp^3 杂化轨道是由 H原子的 $1s$ 原子轨道和碳原子 $3 \land p$ 轨道							
	混合	今组成的						
14.	下列	下列各原子轨道能量最高的是()						
	A٠	$\Psi_{2,1,1}$	Β、Ψ _{3,1,1}	C,	$\Psi_{3,2,1}$	$D,\ \Psi_{4,0,0}$		

15.	. 下列 AB ₂ 型分子中,具有直线形构型的是()								
	$A \sim CS_2$	B, NO ₂	C_{\searrow} OF ₂	D_{ν} SO_2					
三、	三、填空题(每空 2 分,共 30 分)								
1.	已知反应 $3H_2(g)+N_2(g)\to 2NH_3(g)$ 的 $\Delta_rG_m^\Theta=-33.0$ kJ·mol $^{-1}$,则 $\Delta_fG_m^\Theta$								
	$(NH_3, g) = kJ \cdot$	mol^{-1} , $\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\ominus}$	$(N_2, g) = kJ \cdot mol^{-1} \circ$						

- 2. 反应: $NO(g) + O_3(g) \rightleftharpoons NO_2(g) + O_2(g)$ 的 $\Delta_r H_m < 0$ 。若p, V不变,降低温度,则正反应速率常数将____; 正反应速率将_____; 反应的标准平衡常数将___; 平衡将___移动。
- 3. 半反应 $2H^+ + 2e \rightarrow H_2$ 的 $E^{\Theta} = 0.00 \text{ V}$,298 K下保持 $p(H_2) = 100 \text{ kPa}$,则纯水中 $E(H^+/H_2) = V$;若要使纯水中 $E(H^+/H_2)$ 增大,则氢气的分压应。
- 4. 在 HF、OF₂、H₂O、NH₃等分子中,键的极性最强的是_____, 最弱的是
- 5. 酸碱质子理论认为 是酸, 是碱。
- 6. 向 Al₂(SO₄)₃和 CuSO₄混合溶液中放入铁钉,将生成__和__。
- 7. 1s 轨道对应的波函数为__。

四、简答题(5分)

试简述核外电子排布需遵循的规则。

备用题: 试简述 Pauli 不相容原理及其意义。

五、计算题(每题5分,共20分)

- 1. 在某温度下,发生下列反应: $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ 。平衡混合物的总压为 $1.00 \times 10^5 \, \text{Pa}$, NO_2 的分压为 $5.00 \times 10^4 \, \text{Pa}$ 。
 - (1)求此温度下的标准平衡常数 K^{Θ} ;
 - (2)如果使系统体积缩小,平衡时总压为2.00×10⁵Pa,求此时各组分的分压。
- 2. 己知合成氨反应 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ 的 $\Delta H^{\Theta}(298 \text{ K}) = -91.8 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S^{\Theta}(298 \text{ K}) = -0.198 \text{ kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
 - (1) 分别计算 298 K 及 673 K 下, 合成氨反应的 ΔG^{Θ} 和 K^{Θ} ;
 - (2) 工业合成氨多在高温下进行,为什么?

- 3. 己知: $E^{\Theta}(MnO_4^-/Mn^{2+}) = 1.51V$,试计算, $MnO_4^- 和 Mn^{2+}$ 浓度均为1 mol/L,
 - (1) pH = 1时的 $E(MnO_4^-/Mn^{2+})$;
 - (2) pH = 4时的 $E(MnO_4^-/Mn^{2+})$ 。
- 4. 已知298 K时, E^{Θ} (Cu²⁺/Cu) = 0.337 V, E^{Θ} (Fe²⁺/Fe) = -0.44 V。计算在 $0.10 \text{ mol} \cdot \text{L}^{-1}$ Cu²⁺溶液中加入足量铁粉,反应达到平衡后,溶液中Cu²⁺的浓度。