Security & Artificial Intelligence Project

Authors:

- Alexandre Lemonnier
- Sarah Gutierez
- Victor Simonin

Project objectives

The goal of the project is to design, deploy and evaluate a data chain for the analysis of cybersecurity data. The data treatment will be performed as batch.

We chose Objective 1:

Anomaly detection for tracking attacks

Our dataset:

The UGR'16 Dataset

Data date:

• June - Week 1, Date range: 01/06/2016 - 05/06/2016

```
In [ ]:
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.preprocessing import OneHotEncoder
    import seaborn as sb
    import numpy as np
    import matplotlib.lines as mlines
    from sklearn.ensemble import IsolationForest
    from sklearn.neighbors import LocalOutlierFactor
```

Capture data

Here we import our train dataset from the first week of June.

	Date	Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Forwarding_Status	Service_Type	Packets	Bytes	Label
0	2016-06-01 00:05:01	39.364	211.62.96.220	42.219.158.212	55107	64188	UDP	.A	0	0	19	3958	background
1	2016-06-01 00:05:03	39.828	42.219.158.226	71.247.111.184	80	52475	TCP	.AP.S.	0	0	57	79635	background
2	2016-06-01 00:05:04	36.128	42.219.153.155	223.80.226.127	443	54691	TCP	.AP.S.	0	0	9	2791	background
3	2016-06-01 00:05:04	36.204	223.80.226.127	42.219.153.155	54691	443	TCP	.AP.S.	0	0	13	3896	background
4	2016-06-01 00:05:04	42.452	42.219.153.7	42.187.82.40	53	53	UDP	.A	0	0	2	175	background
999995	2016-06-01 00:15:20	0.636	42.219.156.182	253.139.127.225	51944	25	TCP	.APRS.	0	0	6	355	background
999996	2016-06-01 00:15:20	0.636	42.219.156.182	253.139.127.225	58625	25	TCP	.APRS.	0	0	6	355	background
999997	2016-06-01 00:15:20	0.636	42.219.156.182	253.139.127.227	36784	25	TCP	.APRS.	0	0	6	355	background
999998	2016-06-01 00:15:20	0.636	42.219.156.182	253.139.127.227	39940	25	TCP	.APRS.	0	0	7	395	background
999999	2016-06-01 00:15:20	0.636	42.219.156.182	253.139.127.227	39953	25	TCP	.APRS.	0	0	6	355	background

1000000 rows × 13 columns

In []: genuine_repartition = 0.96
 attack_repartition = 0.04
 train_data_size = 10000

Let's build our train dataset with **96%** of genuine netflow and **4%** of attack.

```
df_genuine = data_june[data_june['Label'] == 'background'].head(int(train_data_size * genuine_repartition)).copy()
df_attacks = data_june[data_june['Label'] != 'background'].head(int(train_data_size * attack_repartition)).copy()
train_df = pd.concat([df_genuine, df_attacks])
train_df
```

Out[]:	Da	e Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Forwarding_Status	Service_Type	Packets	Bytes	Label
	0 2016-06-01 00:05:0	1 39.364	211.62.96.220	42.219.158.212	55107	64188	UDP	.A	0	0	19	3958	background
	1 2016-06-01 00:05:0	3 39.828	42.219.158.226	71.247.111.184	80	52475	TCP	.AP.S.	0	0	57	79635	background
	2 2016-06-01 00:05:0	4 36.128	42.219.153.155	223.80.226.127	443	54691	TCP	.AP.S.	0	0	9	2791	background
	3 2016-06-01 00:05:0	4 36.204	223.80.226.127	42.219.153.155	54691	443	TCP	.AP.S.	0	0	13	3896	background
	4 2016-06-01 00:05:0	4 42.452	42.219.153.7	42.187.82.40	53	53	UDP	.A	0	0	2	175	background
2364	2016-06-01 00:07:	8 0.000	42.219.158.188	143.72.8.137	25469	53	UDP	.A	0	0	1	54	blacklist
2364	2016-06-01 00:07:	8 0.000	42.219.158.188	143.72.8.137	33316	53	UDP	.A	0	0	1	76	blacklist
2364	2016-06-01 00:07:	8 0.000	42.219.158.188	143.72.8.137	36503	53	UDP	.A	0	0	1	76	blacklist
2364	2016-06-01 00:07:	8 0.000	42.219.158.188	143.72.8.137	37345	53	UDP	.A	0	0	1	67	blacklist
2364	2 016-06-01 00:07:	8 0.000	42.219.158.188	143.72.8.137	37721	53	UDP	.A	0	0	1	67	blacklist

Here we import our test dataset from the fifth week of July.

Out[]:	Date	Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Forwarding_Status	Service_Type	Packets	Bytes	Label
	0 2016-07-27 13:43:21	48.380	187.96.221.207	42.219.153.7	53	53	UDP	.A	0	0	2	209	background
	1 2016-07-27 13:43:21	48.380	42.219.153.7	187.96.221.207	53	53	UDP	.A	0	0	2	167	background
	2 2016-07-27 13:43:25	50.632	42.219.153.191	62.205.150.146	80	1838	TCP	.AP	0	0	9	2082	background
	3 2016-07-27 13:43:25	51.052	62.205.150.146	42.219.153.191	1838	80	TCP	.AP	0	0	9	7118	background
	4 2016-07-27 13:43:27	46.996	92.225.28.133	42.219.155.111	443	59867	TCP	.AP	0	0	4	674	background
9999	95 2016-07-27 13:52:59	16.928	42.219.153.89	104.235.226.45	52418	443	TCP	.AP.SF	0	0	6	816	background
9999	96 2016-07-27 13:52:59	16.932	42.219.153.89	104.235.226.45	52419	443	TCP	.AP.SF	0	0	6	816	background
9999	97 2016-07-27 13:52:59	1.704	42.219.154.121	192.22.7.102	38718	25	TCP	.AP.SF	0	0	3305	4711799	background
9999	98 2016-07-27 13:52:59	1.708	42.219.154.123	194.233.64.116	80	52656	TCP	.AP.S.	0	0	74	100883	background
9999	99 2016-07-27 13:52:59	1.748	133.18.60.180	42.219.159.82	51347	10021	TCP	.AP.SF	0	64	10	446	background

1000000 rows × 13 columns

```
genuine_repartition_test = 0.90
attack_repartition_test = 0.10
test_data_size = 10000
df_genuine_test = data_july['Label'] == 'background'].head(int(test_data_size * genuine_repartition_test)).copy()
df_attacks_test = data_july[data_july['Label'] != 'background'].head(int(test_data_size * attack_repartition_test)).copy()
test_df = pd.concat([df_genuine_test, df_attacks_test])
test_df
```

Out[]:		Date	Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Forwarding_Status	Service_Type	Packets	Bytes	Label
	0	2016-07-27 13:43:21	48.380	187.96.221.207	42.219.153.7	53	53	UDP	.A	0	0	2	209	background
	1	2016-07-27 13:43:21	48.380	42.219.153.7	187.96.221.207	53	53	UDP	.A	0	0	2	167	background
	2	2016-07-27 13:43:25	50.632	42.219.153.191	62.205.150.146	80	1838	TCP	.AP	0	0	9	2082	background
	3	2016-07-27 13:43:25	51.052	62.205.150.146	42.219.153.191	1838	80	TCP	.AP	0	0	9	7118	background
	4	2016-07-27 13:43:27	46.996	92.225.28.133	42.219.155.111	443	59867	TCP	.AP	0	0	4	674	background
	•••													
31	14398	2016-07-27 13:46:47	0.000	77.136.155.124	42.219.158.188	36115	80	TCP	.A.R	0	0	1	40	blacklist
31	14399	2016-07-27 13:46:47	0.000	77.136.155.124	42.219.158.188	36116	80	TCP	.A.R	0	0	1	40	blacklist

	Date	Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Forwarding_Status	Service_Type	Packets	Bytes	Label
314400	2016-07-27 13:46:47	0.000	77.136.155.124	42.219.158.188	36162	80	TCP	.A.R	0	0	1	40	blacklist
314401	2016-07-27 13:46:47	0.000	77.136.155.124	42.219.158.188	36163	80	TCP	.A.R	0	0	1	40	blacklist
314402	2016-07-27 13:46:47	0.000	77.136.155.124	42.219.158.188	36164	80	TCP	.A.R	0	0	1	40	blacklist

10000 rows × 13 columns

Destination_Port

Protocol

6

7

10000 non-null int64

10000 non-null object

10000 non-null object

Forwarding_Status 10000 non-null int64

We stock the dataframes in the data list to apply the same cleaning:

```
In [ ]: data = { "train" : train_df, "test": test_df}
```

```
General overview
 data["train"].info()
 print('_'*40)
 data["test"].info()
 <class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 0 to 236470
Data columns (total 13 columns):
     Column
                      Non-Null Count Dtype
                      -----
     Date
                      10000 non-null object
 1
     Duration
                      10000 non-null float64
 2
     Source_IP
                      10000 non-null object
     Destination IP
                      10000 non-null object
     Source_Port
                      10000 non-null int64
     Destination Port
                      10000 non-null int64
 6
     Protocol
                      10000 non-null object
     Flag
                      10000 non-null object
    Forwarding Status 10000 non-null int64
     Service Type
                      10000 non-null int64
 10 Packets
                      10000 non-null int64
 11 Bytes
                      10000 non-null int64
 12 Label
                      10000 non-null object
dtypes: float64(1), int64(6), object(6)
memory usage: 1.1+ MB
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 0 to 314402
Data columns (total 13 columns):
     Column
                      Non-Null Count Dtype
                      -----
     Date
                      10000 non-null object
     Duration
                      10000 non-null float64
     Source IP
                      10000 non-null object
     Destination_IP
                      10000 non-null object
     Source_Port
                      10000 non-null int64
```

```
9 Service_Type 10000 non-null int64
10 Packets 10000 non-null int64
11 Bytes 10000 non-null int64
12 Label 10000 non-null object
dtypes: float64(1), int64(6), object(6)
memory usage: 1.1+ MB
```

Which features are categorical?

These values classify the samples into sets of similar samples.

• Categorical: Date, Source_IP, Destination_IP, Source_Port, Destination_Port, Protocol, Flag, Label.

Source_Port and Destination_Port are of int64 type, so we will have to categorize them.

Which features are numerical?

These values change from sample to sample.

• **Numerical**: Duration, Forwarding Status, Type of Service, Packets, Bytes

```
In [ ]:
         for _, df in data.items():
             df['Source_Port'] = df['Source_Port'].astype(object)
             df['Destination_Port'] = df['Destination_Port'].astype(object)
In [ ]:
         cat col = list(train df.select dtypes(include=object).columns.values)
          cat_col
        ['Date',
          'Source_IP',
          'Destination IP',
          'Source_Port',
          'Destination Port',
          'Protocol',
          'Flag',
          'Label']
In [ ]:
         num col = list(train df. get numeric data().columns.values)
          num_col
        ['Duration', 'Forwarding Status', 'Service Type', 'Packets', 'Bytes']
Out[]:
```

Which features may contain errors or typos?

We know that data come from a consistent netflow so they should be quite accurate.

Which features contain blank, null or empty values?

We can observe that dataframes do not contain any null value.

```
Duration 0
Source_IP 0
Destination_IP 0
Source_Port 0
Destination_Port 0
Protocol 0
Flag 0
Forwarding_Status 0
Service_Type 0
Packets 0
Bytes 0
Label 0
dtype: int64
```

Data analysis

Out[]:

Let's get statistics about the numerical data:

```
In [ ]: data["train"].describe()
```

	Duration	Forwarding_Status	Service_Type	Packets	Bytes
count	10000.000000	10000.0	10000.000000	10000.000000	1.000000e+04
mean	1.267133	0.0	1.967500	17.802200	1.305524e+04
std	6.917004	0.0	12.731742	784.207307	9.818564e+05
min	0.000000	0.0	0.000000	1.000000	2.900000e+01
25%	0.000000	0.0	0.000000	1.000000	8.600000e+01
50%	0.148000	0.0	0.000000	3.000000	2.255000e+02
75%	0.789000	0.0	0.000000	7.000000	9.350000e+02
max	261.412000	0.0	208.000000	68650.000000	9.814513e+07

There is not numerical data with a negative value. That's a good point because all expected to be strictly positive.

However, we observe that Forwarding_Status column is full of zeroes. We decide to drop it.

Out[]:		Date	Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Service_Type	Packets	Bytes	Label
	0	2016-06-01 00:05:01	39.364	211.62.96.220	42.219.158.212	55107	64188	UDP	.A	0	19	3958	background
	1	2016-06-01 00:05:03	39.828	42.219.158.226	71.247.111.184	80	52475	TCP	.AP.S.	0	57	79635	background
	2	2016-06-01 00:05:04	36.128	42.219.153.155	223.80.226.127	443	54691	TCP	.AP.S.	0	9	2791	background
	3	2016-06-01 00:05:04	36.204	223.80.226.127	42.219.153.155	54691	443	TCP	.AP.S.	0	13	3896	background
	4	2016-06-01 00:05:04	42.452	42.219.153.7	42.187.82.40	53	53	UDP	.A	0	2	175	background

Let's get statistics about the categorical data:

```
In [ ]: train_df.describe(include=['0'])
```

]:		Date	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Label
	count	10000	10000	10000	10000	10000	10000	10000	10000
	unique	103	1704	2830	4435	4775	4	19	2
	top	2016-06-01 00:05:16	42.219.156.211	42.219.156.211	53	53	TCP	.A	background
	freq	1182	1161	940	1947	1447	6415	3859	9600

We can see that Ips and Ports are not all unique and appears multiple times in the dataset.

Preprocessing data

```
data["train"]['Label'].unique()

Out[]: array(['background', 'blacklist'], dtype=object)
```

Let's numerize Label column with 0 value is the netflow is normal and 1 otherwise.

```
for _, df in data.items():
    df['Label'] = np.where(df['Label'] == 'background', 0, 1)
    print("Train dataset \'Label\' unique value:", data["train"]['Label'].unique())
    print("Test dataset \'Label\' unique value:", data["test"]['Label'].unique())
Train dataset 'Label' unique value: [0 1]
```

Test dataset 'Label' unique value: [0 1]

Let's divide Date column in multiple attributes, to analyse which one is relevant with the Label value.

```
for _, df in data.items():
    df['Date'] = pd.to_datetime(df['Date'], format="%Y-%m-%d %H:%M:%S")
    df['year'] = df['Date'].dt.year
    df['month'] = df['Date'].dt.month
    df['day'] = df['Date'].dt.isocalendar().week
    df['hour'] = df['Date'].dt.hour
    df['minute'] = df['Date'].dt.minute
    df['second'] = df['Date'].dt.second
    df['dayOfWeek'] = df['Date'].dt.dayofweek
    df.drop(columns='Date', inplace=True)
```

Dataframes should look like that now:

```
In [ ]: data["train"].head()
```

	Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Service_Type	Packets	Bytes	Label	year	month	day	week	hour	minute	second	dayOfWeek
0	39.364	211.62.96.220	42.219.158.212	55107	64188	UDP	.A	0	19	3958	0	2016	6	1	22	0	5	1	2
1	39.828	42.219.158.226	71.247.111.184	80	52475	TCP	.AP.S.	0	57	79635	0	2016	6	1	22	0	5	3	2
2	36.128	42.219.153.155	223.80.226.127	443	54691	TCP	.AP.S.	0	9	2791	0	2016	6	1	22	0	5	4	2
3	36.204	223.80.226.127	42.219.153.155	54691	443	TCP	.AP.S.	0	13	3896	0	2016	6	1	22	0	5	4	2
4	42.452	42.219.153.7	42.187.82.40	53	53	UDP	.A	0	2	175	0	2016	6	1	22	0	5	4	2

```
In []:
    corr = data["train"].corr()
    corr.style.background_gradient(cmap='coolwarm')
```

/usr/lib/python3.10/site-packages/pandas/io/formats/style.py:3554: RuntimeWarning: All-NaN slice encountered smin = np.nanmin(gmap) if vmin is None else vmin

/usr/lib/python3.10/site-packages/pandas/io/formats/style.py:3555: RuntimeWarning: All-NaN slice encountered smax = np.nanmax(gmap) if vmax is None else vmax

Out[]:		Duration	Service_Type	Packets	Bytes	Label	year	month	day	week	hour	minute	second	dayOfWeek
	Duration	1.000000	-0.018325	0.512220	0.383358	0.066698	nan	nan	nan	nan	nan	0.044027	0.000970	nan
	Service_Type	-0.018325	1.000000	-0.002071	-0.001800	0.076680	nan	nan	nan	nan	nan	0.078836	0.036927	nan
	Packets	0.512220	-0.002071	1.000000	0.883493	-0.002526	nan	nan	nan	nan	nan	-0.001886	-0.014319	nan
	Bytes	0.383358	-0.001800	0.883493	1.000000	-0.001875	nan	nan	nan	nan	nan	-0.001505	-0.010885	nan
	Label	0.066698	0.076680	-0.002526	-0.001875	1.000000	nan	nan	nan	nan	nan	0.827848	0.397177	nan
	year	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
	month	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
	day	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
	week	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
	hour	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
	minute	0.044027	0.078836	-0.001886	-0.001505	0.827848	nan	nan	nan	nan	nan	1.000000	0.247712	nan
	second	0.000970	0.036927	-0.014319	-0.010885	0.397177	nan	nan	nan	nan	nan	0.247712	1.000000	nan
	dayOfWeek	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan

We can observe that we have a lot of NaN corresponding to the different attribute of the date.

In our batch of data, day is not relevant at all because we are only focusing on one week. We drop day0fWeek because here we are training on only one day.

```
for _, df in data.items():
    df.drop(columns=['year', 'month', 'week', 'day', 'dayOfWeek'], inplace=True)
```

Feature engineering

Moreover, we decide to replace hour, minute, second column with a delta from the beginning of the day.

Out[]:		Duration	Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Service_Type	Packets	Bytes	Label	timeDelta
	0	39.364	211.62.96.220	42.219.158.212	55107	64188	UDP	.A	0	19	3958	0	301
	1	39.828	42.219.158.226	71.247.111.184	80	52475	TCP	.AP.S.	0	57	79635	0	303
	2	36.128	42.219.153.155	223.80.226.127	443	54691	TCP	.AP.S.	0	9	2791	0	304
	3	36.204	223.80.226.127	42.219.153.155	54691	443	TCP	.AP.S.	0	13	3896	0	304
	4	42.452	42.219.153.7	42.187.82.40	53	53	UDP	.A	0	2	175	0	304
	236466	0.000	42.219.158.188	143.72.8.137	25469	53	UDP	.A	0	1	54	1	458
	236467	0.000	42.219.158.188	143.72.8.137	33316	53	UDP	.A	0	1	76	1	458
	236468	0.000	42.219.158.188	143.72.8.137	36503	53	UDP	.A	0	1	76	1	458
	236469	0.000	42.219.158.188	143.72.8.137	37345	53	UDP	.A	0	1	67	1	458
	236470	0.000	42.219.158.188	143.72.8.137	37721	53	UDP	.A	0	1	67	1	458

10000 rows × 12 columns

We decide to replace Duration, Packets, Bytes column with a ratio corresponding to the number of bytes by packets by minutes.

```
for _, df in data.items():
    df['transfered_ratio'] = (df['Bytes'] / df['Packets']) / (df['Duration'] + 1)
    df.drop(columns=['Duration', 'Packets', 'Bytes'], inplace=True)
    data["train"]
```

Out[]:		Source_IP	Destination_IP	Source_Port	Destination_Port	Protocol	Flag	Service_Type	Label	timeDelta	transfered_ratio
	0	211.62.96.220	42.219.158.212	55107	64188	UDP	.A	0	0	301	5.160930
	1	42.219.158.226	71.247.111.184	80	52475	TCP	.AP.S.	0	0	303	34.219292
	2	42.219.153.155	223.80.226.127	443	54691	TCP	.AP.S.	0	0	304	8.352486
	3	223.80.226.127	42.219.153.155	54691	443	TCP	.AP.S.	0	0	304	8.055379
	4	42.219.153.7	42.187.82.40	53	53	UDP	.A	0	0	304	2.013716
	236466	42.219.158.188	143.72.8.137	25469	53	UDP	.A	0	1	458	54.000000
	236467	42.219.158.188	143.72.8.137	33316	53	UDP	.A	0	1	458	76.000000
	236468	42.219.158.188	143.72.8.137	36503	53	UDP	.A	0	1	458	76.000000
	236469	42.219.158.188	143.72.8.137	37345	53	UDP	.A	0	1	458	67.000000
	236470	42.219.158.188	143.72.8.137	37721	53	UDP	.A	0	1	458	67.000000

```
corr = data["train"].corr()
          corr.style.background_gradient(cmap='coolwarm')
Out[ ]:
                        Service_Type
                                       Label timeDelta transfered_ratio
                                                            -0.047649
           Service_Type
                           1.000000 0.076680 0.080787
                                                             0.030599
                  Label
                           0.076680 1.000000 0.850875
                                             1.000000
                                                             0.012505
              timeDelta
                           0.080787 0.850875
         transfered_ratio
                           -0.047649 0.030599 0.012505
                                                             1.000000
In [ ]:
         data["train"][["Source IP", "Label"]].groupby(["Source IP"], as index=False).mean().sort values(by='Label', ascending=False).head()
Out[]:
                  Source_IP Label
         1292 50.33.218.194
                              1.0
          839 222.11.231.252
          695 213.30.31.179
          836 221.17.125.37
         1293 50.33.218.239
                             1.0
         data["train"][["Destination_IP", "Label"]].groupby(['Destination_IP'],as_index=False).mean().sort_values(by='Label', ascending=False).head()
Out[]:
               Destination_IP Label
        2103
                  51.210.95.1
                             1.0
                204.97.46.104
                213.30.31.179
         2523 71.161.145.125
                              1.0
         2522 71.161.116.194
                              1.0
In [ ]:
         data["train"][["Source_Port", "Label"]].groupby(['Source_Port'],as_index=False).mean().sort_values(by='Label', ascending=False).head()
Out[]:
               Source_Port Label
        3615
                    56920
                            1.0
        1774
                    41416
                            1.0
         2643
                    49678
                            1.0
         1290
                    36503
                            1.0
```

```
2649
                    49747
                           1.0
In [ ]:
         data["train"][["Destination_Port", "Label"]].groupby(['Destination_Port'],as_index=False).mean().sort_values(by='Label', ascending=False).head()
Out[]:
               Destination_Port Label
          973
                        31308
                                1.0
          802
                        25469
                                1.0
         1400
                        37563
                                1.0
        1100
                        33892
                                1.0
          788
                        25089
                                1.0
In [ ]:
         data["train"][["Protocol", "Label"]].groupby(['Protocol'],as_index=False).mean().sort_values(by='Label', ascending=False)
Out[ ]:
           Protocol
                       Label
               UDP 0.042237
        3
                TCP 0.039283
                ESP 0.000000
              ICMP 0.000000
In [ ]:
         data["train"][["Flag", "Label"]].groupby(['Flag'],as_index=False).mean().sort_values(by='Label', ascending=False)
Out[]:
              Flag
                      Label
              .A...F 0.257732
             .A.RS. 0.181818
            .APR.F 0.142857
             .A.R.. 0.120690
        17 .APRS. 0.100000
             .AP.S. 0.094456
              .AP... 0.072727
             .A..SF 0.065657
               .A.... 0.040425
               ...R.. 0.030675
               ....S. 0.028281
        15 .APR.. 0.023256
```

Source_Port Label

```
        Flag
        Label

        14
        .AP.SF
        0.018586

        18
        .APRSF
        0.015217

        12
        .AP.F
        0.013333

        5
        .A.S.
        0.009901

        10
        .A.RSF
        0.000000

        8
        .A.R.F
        0.000000

        0
        .....
        0.000000
```

Out[]:

```
data["train"][["Service_Type", "Label"]].groupby(['Service_Type'],as_index=False).mean().sort_values(by='Label', ascending=False)
```

	Service_Type	Label			
8	28	1.000000			
13	72	0.397059			
10	40	0.168539			
1	2	0.117647			
0	0	0.034931			
2	8	0.024390			
11	64	0.000000			
16	200	0.000000			
15	192	0.000000			
14	184	0.000000			
12	66	0.000000			
9	32	0.000000			
7	26	0.000000			
6	24	0.000000			
5	23	0.000000			
4	20	0.000000			
3	16	0.000000			
17	208	0.000000			

We can observe that for Source_IP, Destination_IP, Source_Port and Destination_Port column data is relevant for finding attacks because some IP and Port are only used for this type of netflow.

We will have to transform our categorical data in numerical data to use them in our classification model.

We will use a **One Hot Encoder** transformer to numerize our categorical data.

Graphical analysis

```
def show3D_netflow_data(netflow_dataset, x_axis_name, y_axis_name, z_axis_name, only_error):
   X = netflow_dataset.drop(columns=['Label'])
   Y = netflow_dataset['Label']
   x = x_axis_name
   y = y_axis_name
   z = z_axis_name
   limit = len(X)
   sb.reset orig()
   fig = plt.figure(figsize = (10, 12))
   ax = fig.add_subplot(111, projection='3d')
   if not only_error:
        ax.scatter(np.log10(X.loc[Y == 0, x][:limit]),
                   (X.loc[Y == 0, y][:limit] + 0.1),
                   -np.log10(X.loc[Y == 0, z][:limit] + 0.1),
                   c = 'g',
                   marker = '.',
                   s = 1,
                   label = 'genuine')
   ax.scatter(np.log10(X.loc[Y == 1, x][:limit]),
              (X.loc[Y == 1, y][:limit] + 0.1),
              -np.log10(X.loc[Y == 1, z][:limit] + 0.1),
              c = 'r',
              marker = '.',
              s = 1,
              label = 'attack')
   ax.set_xlabel(x, size = 16)
   ax.set ylabel(y + ' [hour]', size = 16)
   ax.set_zlabel('-log10(' + z + ')', size = 16)
   ax.set_title('Error-based features separate out genuine and attack netflow', size = 20)
   plt.axis('tight')
   ax.grid(1)
   noFraudMarker = mlines.Line2D([],
                                  linewidth = 0,
                                  color = 'g',
                                  marker = '.',
                                  markersize = 10,
                                  label = 'genuine')
   fraudMarker = mlines.Line2D([],
                               [],
                               linewidth = 0,
                               color = 'r',
                               marker = '.',
                               markersize = 10,
                               label = 'attack')
```

```
plt.legend(handles = [noFraudMarker, fraudMarker],
              bbox_to_anchor = (1.20, 0.38),
              frameon = False,
              prop = {'size': 16})
show3D_netflow_data(data["train"], 'timeDelta', 'Source_Port', 'transfered_ratio', False)
```



```
show3D_netflow_data(data["train"], 'timeDelta', 'Source_Port', 'transfered_ratio', True)
```



```
In [ ]: show3D_netflow_data(data["train"], 'timeDelta', 'Destination_Port', 'transfered_ratio', False)
```



```
In [ ]: show3D_netflow_data(data["train"], 'timeDelta', 'Destination_Port', 'transfered_ratio', True)
```


We can observe that Source_Port and Destination_Port are relevant to find if a netflow is genuine or not.

Supervised machine learning model benchmarking

```
import xgboost as xgb
from sklearn.compose import make_column_transformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, precision_recall_curve, confusion_matrix, mean_squared_error, average_precision_score, plot_confusion_matrix
```

/home/leme/.local/lib/python3.10/site-packages/pkg_resources/__init__.py:122: PkgResourcesDeprecationWarning: 2.0.5-build-libtorrent-rasterbar-src-libtorrent-rasterbar-2.0.5-bindi ngs-python is an invalid version and will not be supported in a future release

```
warnings.warn(
         cat_col = ['Source_IP', 'Destination_IP', 'Source_Port', 'Destination_Port', 'Protocol', 'Flag', 'Service_Type']
         cat_col
        ['Source_IP',
          'Destination IP',
          'Source Port',
          'Destination_Port',
          'Protocol',
         'Flag',
          'Service_Type']
         num_col = ['Duration', 'Packets', 'Bytes', 'timeDelta']
         num_col
         ['Duration', 'Packets', 'Bytes', 'timeDelta']
In [ ]:
         transformer = make_column_transformer(
             (OneHotEncoder(handle_unknown='ignore'), cat_col))
In [ ]:
         X train = data["train"].drop(columns=['Label'])
         Y train = data["train"]['Label'].copy()
In [ ]:
         X_test = data["test"].drop(columns=["Label"])
         Y_test = data["test"]['Label'].copy()
       Let's benchmark some model with their default parameters
         classifier_score = {}
         def classifier testing(classifier):
             print(f"Testing {classifier[0]}...")
             pipeline = Pipeline([
                 ('transformer', transformer),
                 ('classifier', classifier[1]),
             ])
             print("Fitting...")
             pipeline.fit(X_train, Y_train)
             print("Predicting...")
             y_pred = pipeline.predict(X_test)
             print("Scoring...")
             score = f1_score(Y_test, y_pred)
             print(f"{classifier[0]} score : {score}")
             classifier_score[classifier[0]] = score
         classifiers = {
             "SVC": SVC(),
             "LinearSVC": LinearSVC(),
```

```
"LogisticRegression": LogisticRegression(),
             "RandomForest": RandomForestClassifier(),
             "Perceptron" : Perceptron(),
             "SGD" : SGDClassifier(),
             "DecisionTree" : DecisionTreeClassifier()
In [ ]:
         for key, value in classifiers.items():
             classifier testing((key, value))
        Testing SVC...
        Fitting...
        Predicting...
        Scoring...
        SVC score : 0.9055161114145276
        Testing LinearSVC...
        Fitting...
        Predicting...
        Scoring...
        LinearSVC score : 0.9074074074074073
        Testing LogisticRegression...
        Fitting...
        Predicting...
        Scoring...
        LogisticRegression score: 0.8872848417545809
        Testing RandomForest...
        Fitting...
        Predicting...
        Scoring...
        RandomForest score : 0.9010989010989011
        Testing Perceptron...
        Fitting...
        Predicting...
        Scoring...
        Perceptron score : 0.9150599270453361
        Testing SGD...
        Fitting...
        Predicting...
        Scoring...
        SGD score : 0.9059271343121261
        Testing DecisionTree...
        Fitting...
        Predicting...
        Scoring...
        DecisionTree score : 0.9109552077711818
In [ ]:
         for i, test in enumerate(classifier_score.items()):
             plt.bar(i, test[1], label=test[0])
         plt.legend(bbox_to_anchor=(1, 0.25, 0.5, 0.5))
        <matplotlib.legend.Legend at 0x7fec38f0d930>
```



```
In [ ]:
         trainX, testX, trainY, testY = train_test_split(data["train"].drop(columns='Label').copy(), data["train"]['Label'].copy(), test_size=0.2, random_state=42)
         weights = (trainY == 0).sum() / (1.0 * (trainY == 1).sum())
         xgb_model = xgb.XGBClassifier(max_depth=3, scale_pos_weight=weights, n_jobs=4, random_state=42)
         pipeline = Pipeline([
                 ('transformer', transformer),
                 ('classifier', xgb_model),
             1)
         proba = pipeline.fit(trainX, trainY).predict_proba(testX)
         y_pred = pipeline.predict(testX)
         auprc = average_precision_score(testY, proba[:, 1])
         print(f"Xgboost score: {auprc}")
         confusion matrix(testY, y pred)
        Xgboost score: 0.9601196179638286
        array([[1930,
                        0],
Out[ ]:
                [ 3, 67]])
In [ ]:
         def print confusion matrix(cf matrix):
             group names = ['True Neg', 'False Pos', 'False Neg', 'True Pos']
             group counts = ['{0:0.0f}'.format(value) for value in
                         cf matrix.flatten()]
             group percentages = ['{0:.2%}'.format(value) for value in
                              cf matrix.flatten()/np.sum(cf matrix)]
             labels = [f''(v1)\n(v2)\n(v3)'' for v1, v2, v3 in
                   zip(group_names,group_counts,group_percentages)]
             labels = np.asarray(labels).reshape(2,2)
             sb.heatmap(cf matrix, annot=labels, fmt='', cmap='Blues')
         weights = (Y_train == 0).sum() / (1.0 * (Y_train == 1).sum())
         xgb_model = xgb.XGBClassifier( scale_pos_weight=weights, n_jobs=4, random_state=42)
         pipeline = Pipeline([
                 ('transformer', transformer),
                 ('classifier', xgb_model),
             1)
         proba = pipeline.fit(X train, Y train).predict proba(X test)
```

```
y_pred = pipeline.predict(X_test)
auprc = average_precision_score(Y_test, proba[:, 1])
print(f"Xgboost score: {auprc}")
print_confusion_matrix(confusion_matrix(Y_test, y_pred))
```

Xgboost score: 0.9468087123751252

```
8000
            True Neg
8989
89.89%
                                       False Pos
                                                                7000
                                        11
0.11%
0
                                                                6000
                                                                5000
                                                                4000
                                                               3000
                                       True Pos
878
            False Neg
                                                               - 2000
                                        8.78%
             1.22%
                                                              - 1000
                                          i
                0
```

Text(0.5, 1.0, 'Ordering of features by importance to the model learnt - using gain')


```
In [ ]: xgb.to_graphviz(xgb_model)
```

Out[]:


```
In []: dT_results = X_test.copy()
dT_results["is_attack"] = y_pred == -1
In []: precision, recall, thresholds = precision_recall_curve(Y_test, y_score)
#rreate precision recall curve
fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')

#add axis Labels to plot
ax.set_title('Precision-Recall Curve')
ax.set_ylabel('Precision')
ax.set_xlabel('Recall')

#display plot
plt.show()
```


Unsurpervised machine learning model

Isolation Forest

```
OneHotEncoder(handle_unknown='ignore'),
                                                            ['Source_IP',
                                                             'Destination_IP',
                                                             'Source_Port',
                                                             'Destination_Port',
                                                             'Protocol', 'Flag',
                                                             'Service_Type'])])),
                         ('classifier',
                         IsolationForest(contamination=0.04, random_state=42))])
          if attack = pipeline.predict(data["train"])
In [ ]:
          if results = data["train"].copy()
          if results["if attack"] = if attack == -1
In [ ]:
          nb attacks = len(data["train"][data["train"].Label == 1])
          nb genuine = len(data["train"][data["train"].Label == 0])
         true positive = len(if results[(if results["Label"] == 1) & (if results["if attack"] == True)])
         false_positive = len(if_results[(if_results["Label"] == 0) & (if_results["if_attack"] == True)])
         true negative = len(if results[(if results["Label"] == 0) & (if results["if attack"] == False)])
          false negative = len(if results[(if results["Label"] == 1) & (if results["if attack"] == False)])
         print("True positive : ", len(if_results[(if_results["Label"] == 1) & (if_results["if_attack"] == True)]), "/", nb_attacks)
         print("False positive :" , len(if results[(if results["Label"] == 0) & (if results["if attack"] == True)]), "/", nb genuine)
         print("True negative :" , len(if_results[(if_results["Label"] == 0) & (if_results["if_attack"] == False)]), "/", nb_genuine)
         print("False negative :" , len(if results[(if results["Label"] == 1) & (if results["if attack"] == False)]), "/", nb attacks)
         print_confusion_matrix(np.array([[true_negative, false_positive],[false_negative, true_positive]]))
        True positive : 52 / 400
        False positive : 348 / 9600
        True negative : 9252 / 9600
        False negative : 348 / 400
                                                       8000
                  True Neg
                                     False Pos
                  9252
92.52%
                                      348
3.48%
         0
                                                       6000
                                                       4000
                  False Neg
                                     True Pos
                                       52
                   3.48%
                                      0.52%
                                                       2000
          if results.groupby(by=['if attack', 'Label']).count()
```

Out[]: Source_IP Destination_IP Source_Port Destination_Port Protocol Flag Service_Type timeDelta transfered_ratio

if_attack Label

Source_IP Destination_IP Source_Port Destination_Port Protocol Flag Service_Type timeDelta transfered_ratio

if_attack Label

```
False
               9252
                            9252
                                       9252
                                                     9252
                                                              9252 9252
                                                                               9252
                                                                                        9252
                                                                                                      9252
               348
                            348
                                       348
                                                      348
                                                              348
                                                                  348
                                                                               348
                                                                                         348
                                                                                                       348
                348
                            348
                                       348
                                                      348
                                                              348
                                                                  348
                                                                               348
                                                                                         348
                                                                                                       348
True
                             52
                                        52
                                                       52
                                                                                                        52
                52
                                                                52
                                                                   52
                                                                                52
                                                                                          52
```

```
def show3D_netflow_if_attack_only(transac_dataset, x_axis_name, y_axis_name, z_axis_name):
   X = transac dataset.drop(columns=['if attack'])
   Y = transac_dataset['if_attack']
   x = x axis name
   y = y_axis_name
   z = z_axis_name
   limit = len(X)
   sb.reset orig()
   fig = plt.figure(figsize = (10, 12))
   ax = fig.add_subplot(111, projection='3d')
   ax.scatter(X.loc[Y == 1, x][:limit],
              X.loc[Y == 1, y][:limit],
              np.log10(X.loc[Y == 1, z][:limit]),
              c = 'r',
              marker = '.',
              s = 1,
              label = 'if_attack')
   ax.set_xlabel(x, size = 16)
   ax.set_ylabel(y + ' [hour]', size = 16)
   ax.set_zlabel('- log_{10} (' + z + ')', size = 16)
   ax.set_title('Features separate for attacks netflow', size = 20)
   plt.axis('tight')
   ax.grid(1)
   fraudMarker = mlines.Line2D([], [], linewidth = 0, color = 'r', marker = '.', markersize = 10, label = 'if attack')
   plt.legend(handles= [fraudMarker], bbox to anchor = (1.20, 0.38), frameon = False, prop = {'size': 16})
```

In []: show3D_netflow_if_attack_only(if_results, 'timeDelta', 'Source_Port', 'transfered_ratio')

Features separate for attacks netflow


```
In [ ]: show3D_netflow_if_attack_only(if_results, 'timeDelta', 'Destination_Port', 'transfered_ratio')
```

Features separate for attacks netflow

Local Outlier Factor

```
false_positive = len(lof_results[(lof_results["Label"] == 0) & (lof_results["lof_attack"] == True)])
true_negative = len(lof_results[(lof_results["Label"] == 0) & (lof_results["lof_attack"] == False)])
false_negative = len(lof_results[(lof_results["Label"] == 1) & (lof_results["lof_attack"] == False)])
print("True positive : ", len(lof_results[(lof_results["Label"] == 1) & (lof_results["lof_attack"] == True)]), "/", nb_attacks)
print("False positive :" , len(lof_results[(lof_results["Label"] == 0) & (lof_results["lof_attack"] == True)]), "/", nb_genuine)
print("True negative :" , len(lof_results[(lof_results["Label"] == 0) & (lof_results["lof_attack"] == False)]), "/", nb_genuine)
print("False negative :" , len(lof_results[(lof_results["Label"] == 1) & (lof_results["lof_attack"] == False)]), "/", nb_attacks)
print_confusion_matrix(np.array([[true_negative, false_positive],[false_negative, true_positive]]))
```

True positive : 5 / 400 False positive : 395 / 9600 True negative : 9205 / 9600 False negative : 395 / 400

In []: lof_results.groupby(by=['lof_attack', 'Label']).count()

Out[]: Source_IP Destination_IP Source_Port Destination_Port Protocol Flag Service_Type timeDelta transfered_ratio

lof_attack	Label									
False	0	9205	9205	9205	9205	9205	9205	9205	9205	9205
	1	395	395	395	395	395	395	395	395	395
True	0	395	395	395	395	395	395	395	395	395
	1	5	5	5	5	5	5	5	5	5

```
-np.log10(X.loc[Y == 1, z][:limit]),
    c = 'r',
    marker = '.',
    s = 1,
    label = 'lof_attack')

ax.set_xlabel(x, size = 16)
ax.set_ylabel(y + ' [hour]', size = 16)
ax.set_zlabel('- logs_[10]$ (' + z + ')', size = 16)
ax.set_zlabel('Features separate for attacks netflow', size = 20)

plt.axis('tight')
ax.grid(1)

fraudMarker = mlines.Line2D([], [], linewidth = 0, color = 'r', marker = '.', markersize = 10, label = 'lof_attack')

plt.legend(handles= [fraudMarker], bbox_to_anchor = (1.20, 0.38), frameon = False, prop = {'size': 16})
```

```
show3D_netflow_lof_attack_only(lof_results, 'timeDelta', 'Source_Port', 'transfered_ratio')
```

Features separate for attacks netflow

Features separate for attacks netflow

