(9) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenl gungsschrift[®] DE 3501199 A1

C 09 B 67/38 C 09 B 33/153 C 08 K 5/23 D 01 F 1/04 D 01 F 6/06

PATENTAMT

26.01.84 DE 34 02 600.2

DEUTSCHES

 (2) Aktenzeichen:
 P 35 01 199.8

 (2) Anmeldetag:
 16.
 1. 85

 (3) Offenlegungstag:
 1. 8. 85

(3) Innere Priorität: (3) (3) (3) (7) Erfinder:

Anmelder: Sandoz-Patent-GmbH, 7850 Lörrach, DE Goldmann, Jürgen, Münchenstein, CH

(A) AZO-Pigmentfarbstoffe

Pigmentfarbstoffgemische mit besonders guter Dispergierbarkeit, hergestellt durch Kuppeln einer Verbindung der Formel

 $\mathbf{H_{3}C\text{-}CO\text{-}CH}_{2}\text{-}\mathbf{CO}\text{-}\mathbf{NH}\text{-}\mathbf{R}_{2}\text{-}\mathbf{NH}\text{-}\mathbf{CO}\text{-}\mathbf{CH}_{2}\text{-}\mathbf{CO}\text{-}\mathbf{CH}_{3}}$

mit 8 bis 20 Molprozenten diazotiertem Anthranilsäure-C_{1.4}-Alkylester und 80 bis 92 Molprozenten diazotiertem Aminoterephthalsäure-di-C_{1.4}-alkylester.

3501199

SANDOZ-PATENT-GMBH
7850 Lörrach

Case 150-4871/W

AZO - PIGMENTFARBSTOFFE

<u>Patentansprüche</u>

 Pigmentfarbstoffgemisch, enthaltend Verbindungen der Formeln I a, I b und I c

$$R_10-C0$$
 R_10-C0 R_10

- 2 -

Case 150-4871

3501199

worin die R₁ unabhängig voneinander C₁₋₄-Alkylreste und
R₂ unabhängig voneinander je einen 1,4-Phenylenrest, der
bis zu zwei Substituenten tragen kann und zwar bis zu
zwei Methyl, Methoxy, Chlor oder Brom und/oder ein Trifluormethyl oder Nitro, je einen 4,4'-Biphenylenrest,
der in 3 und 3'-Stellung durch Chlor, Brom, Methyl
und/oder Methoxy substituiert ist, oder je einen 1,4oder 1,5-Naphthylenrest bedeuten,

wobei im Gemisch 8 bis 20 Molprozente Benzoesäureesterreste und 92 bis 80 Molprozente Terephthalsäureesterreste vorhanden sind.

- 2. Pigmentfarbstoffgemisch gemäss Anspruch 1, worin in den Formel I a, I b und I c
 - R_1 C_{1-2} -Alkylreste und
 - R2 gegebenenfalls ein oder zwei Substituenten aus der Reihe Chlor, Methyl und Methoxy tragendes 1,4-Phenylen, 3,3'-Di-chlor-, -Dimethoxy- oder -Dimethyl-4,4'-biphenylen oder 1,5-Naphthylen bedeuten.
- 3. Pigmentfarbstoffgemische gemäss Anspruch 1, worin in den Formeln I a, I b und I c R_1 C_{1-2} -Alkylreste und R_2 unsubstituiertes 1,4-Phenylen bedeuten.

RAD ORIGINAL

- 3 -

Case 150-4871

3501199

- 4. Pigmentfarbstoffgemisch gemäss Anspruch 1, 2 oder 3, das im Gemisch 8 bis 12 Molprozente Benzoesäurereste und 92 bis 88 Molprozente Terephthalsäurereste enthält.
- Herstellung der Pigmentfarbstoffgemische gemäss Anspruch 1, dadurch gekennzeichnet, dass man 0,8 bis 2 Mol eines diazotierten Amins der Formel II a

und 9,2 bis 8 Mol eines diazotierten Amins der Formel II b

$$R_1^0 - C_0$$

$$NH_2$$

$$COOR_1$$
(II b)

mit 5 Mol einer Verbindung der Formel III

$$H_3C-CO-CH_2-CO-NH-R_2-NH-CO-CH_2-CO-CH_3$$
 (III)

kuppelt.

- Verwendung der Pigmentfarbstoffgemische gemäss den Ansprüchen 1,
 3 oder 4 zum Färben von Kunststoffmassen.
- 7. Verwendung der Pigmentfarbstoffgemische gemäss den Ansprüchen 1,2, 3 oder 4, zum Spinnfärben von Polypropylenfasern.

3700/HW/HB

- 4 -

Case 150-4871

350119,9

AZO - PIGMENTFARBSTOFFE

Es wurde gefunden, dass sich Gemische von Azo-Pigmentfarbstoffen der Formel I a, I b und I c

1

- 5 -

Case 150-4871

3501199

worin die R₁ unabhängig voneinander C₁₋₄-Alkylreste und die R₂ unabhängig voneinander je einen 1,4-Phenylrest, der bis zu zwei Substituenten tragen kann und zwar bis zu zwei Methyl, Methoxy, Chlor oder Brom und/oder ein Trifluormethyl oder Nitro, je einen 4,4'-Biphenylenrest, der in 3 und 3'-Stellung durch Chlor, Brom, Methyl und/oder Methoxy substituiert ist, oder je einen 1,4- oder 1,5-Naphthylenrest bedeuten,

wobei im Gemisch der Farbstoffe dieser drei Formeln 8 bis 20 Molprozente Benzoesäureesterreste und 92 bis 80 Molprozente Terephthalsäureesterreste vorhanden sind, ausgezeichnet zum Färben von Kunststoffmassen, und insbesondere zum Spinnfärben von Polypropylen-Fasern eignen. Die erfindungsgemässen Gemische weisen, neben den sehr guten allgemeinen Echtheitseigenschaften, vor allem der Lichtechtheit, eine hervorragende Dispergierbarkeit auf, durch die es erst möglich wird, sie für das Spinnfärben zu verwenden, weil damit eine grosse Reissfestigkeit der Spinnfasern verbunden ist. Vor allem in dieser Eigenschaft sind sie den Einzelbestandteilen der erfindungsgemässen Mischungen überlegen. Zu erwähnen ist auch die hohe Farbstärke der neuen Pigmentgemische.

Besonders bevorzugt sind die Pigmentfarbstoff-Gemische, worin in den Formeln I a, I b und I c

- R₁ C₁₋₂-Alkylreste und
- R2 gegebenenfalls ein oder zwei Substituenten aus der Reihe Chlor, Methyl und Methoxy tragendes 1,4-Phenylen, 3,3'-Dichlor-, -Dimethoxy- oder -Dimethyl-4,4'-biphenylen oder 1,5-Naphthylen bedeuten.

Insbesondere bevorzugt sind die Pigmentfarbstoff-Gemische, in denen R_1 C_{1-2} -Alkylreste und R_2 unsubstituiertes 1,4-Phenylen ist und die 8 bis 12 Molprozente Benzoesäureesterreste und 92 bis 88 Molprozente Terephthalsäureesterreste enthalten.

Case 150-4871

3501199

Die Herstellung der neuen Pigmentgemische ist dadurch gekennzeichnet, dass mnan 0,8 bis 2 Mol eines diazotierten Amins der Formel II a

$$\begin{array}{c}
\text{COOR}_{1} \\
\text{NH}_{2}
\end{array}$$

und 9,2 bis 8 Mol eines diazotierten Amins der Formel II b

$$R_1 0 - C0 \\ NH_2 \\ mit 5 Mol einer Verbindung der Formel III \\ COOR_1$$

$$H_3C-CO-CH_2-CO-NH-R_2-NH-CO-CH_2-CO-CH_3$$
 (III)

kuppelt.

Die Verbindungen der Formeln II a, II b und III sind bekannt. Diazotieren und Kuppeln werden nach allgemein gebräuchlichen Methoden durchgeführt.

In den folgenden Beispielen bedeuten die Teile Gewichtsteile und die Prozente Gewichtsprozente. Die Temperaturen sind in Celsiusgraden angegeben.

Beispie 1

a) 76,0 Teile 2-Aminoterephthalsäuredimethylester und 6,1 Teile Anthranilsäuremethylester werden mit 10 Teilen Wasser und 100Volumenteilen konz. Salzsäure vier Stunden verrührt. Man kühlt in einem Eis-/ Wasserbad und durch Zugabe von 125 Teilen Eis auf 0° ab und versetzt die Mischung mit 105 Volumenteilen 4-n-wässriger Natriumnitritlösung. Diese Lösung wird noch eine Stunde bei 0 bis 5° nachgerührt, geringe Mengen überschüssiges Nitrit mit Aminosulfonsäure zerstört und schliesslich klarfiltriert.

Case 150-4871

3501199

- b) 55,2 Teile N,N-Diacetessigsäure-para-Phenylendiamid werden in 400 Teilen Wasser und 60 Volumenteilen 30-prozentiger Natriumlauge bei ca. 50° gelöst und die Lösung filtriert.
- c) Die Diazoniumsalzlösung (nach a) wird mit 1000 Teilen Wasser und 600 Teilen Eis versetzt und mit Natriumacetatlösung auf pH 4,0 gestellt. Sodann lässt man die Lösung der Kupplungskomponente (nach b) im Verlaufe von ca. 30 Minuten zufliessen. Es entsteht eine zitronengelbe Suspension, die noch 2 Stunden bei 5 bis 10°, 1 Stunde bei 40 bis 45° und 1 Stunde bei 80 bis 85° gerührt wird. Darauf wird die Suspension filtriert, der Presskuchen salzfrei gewaschen, getrocknet und gemahlen. Er färbt Kunststoffe in sehr echten, gelben Tönen.

Durch Variation der molaren Anteile 2-Aminoterephthalsäuredimethylester (oder anderer, C₂₋₄-Alkylester) und Anthranilsäuremethyl- (oder einem C₂₋₄-Alkyl-)ester in den oben angegebenen Grenzen erhält man Pigmentfarbstoffgemische mit sehr ähnlichen Eigenschaften. Verwendet man an Stelle des N,N-Diacetessigsäure-para-phenylendiamid das im Kern durch Methyl substitueirte Produkt, erhält man ein stark rotstichiges Pigment, durch Methoxy substituiertes para-Phenylendiamid gibt orange Pigmente und das durh Chlor substituierte Produkt ein grünstichig-gelbes Pigment.

Im allgemeinen können die Pigmenteigenschaften, insbesondere die Lichtechtheit und die Dispergierbarkeit, der erfindungsgemässen Gemische, durch eine Behandlung der Rohfarbstoffe in einem hochsiedenden Lösungsmittel, insbesondere Dimethylformamid oder 1,2-Dichlorbenzol, noch verbessert werden. - 8 -

Case 150-4871

3501199

ANWENDUNGSBEISPIEL

70 Teile handelsübliches Polyäthylen mit niedermolekularem Anteil und 30 Teile des gemäss obigem Beispiel hergestellten Pigmentfarbstoffgemisches werden in einem Extruder zu einem Farbstoffkonzentrat verarbeitet. Dieses Konzentrat wird dann im Verhältnis 1:50 mit handelsüblichem Polypropylen vermischt und auf übliche Weise zu Fasern versponnen. Mit Polyäthylen im selben Verhältnis vermischt, kann es auch zu Blasfolien verarbeitet werden.