

DNA quantitative assay using Fluorometry

Xueying Zhong

Abstract

The protocol follow the instruction manual from BIO-RAD of Catalog number 170-2480

Citation: Xueying Zhong DNA quantitative assay using Fluorometry. protocols.io

dx.doi.org/10.17504/protocols.io.ef5bbq6

Published: 03 Mar 2016

Protocol

Step 1.

Preparation of dye solutions:

Dilute the 10 mg/ml hoechst 33258 to 2 ug/ml for following steps, the ratio for dilution can follow the table:

1 mg/ml Hoechst 33258

10 mg/ml hoechst 33258 10 ul sterile water 90 ul

2 ug/ml Hoechst 33258

1 mg/ml hoechst 33258 6 ul 10x TEN assay buffer 30 ul sterile water 270 ul

NOTES

Xueying Zhong 03 Mar 2016

The mixture of 1 mg/ml Hoechst should be store in the dark at 4 degree, and the 2 ug/ml one should be make fresh before use and place in teh dark

Step 2.

Preparation of DNA standard:

1) Diulte the 1 mg/ml calf thymus DNA to 100 ug/ml and 10 ug/ml respectively, the ratio for dilution can follow the table:

100 ug/ml DNA standard

1 mg/ml calf thymus DNA 10 ul 10x TEN assay buffer 10 ul sterile water 80 ul

10 ug/ml DNA standard

1 mg/ml calf thymus DNA 10 ul 10x TEN assay buffer 100 ul sterile water 890 ul

NOTES

Xueying Zhong 03 Mar 2016

The mixture of DNA standard should be stored at 4 degree

Step 3.

Loading the microplate

- 1) Pipet 200 ul Hoechst 33258 dye to each well;
- 2) Add different amount calf thymus DNA to wells and mix the solutions using a disposable transfer pipet for each well;
- 3)Add the sample into wells and mix the solutions well
- 4) Measure the fluorescence using an excitation filter of 360-390nm and an emission filter of 450-470nm.

Cuvette	Total DNA	DNA Stock Solution	DNA Volume	2 μg/ml Hoechst Dye
1	2000 ng	1 mg/ml	2 µl	200 µl
2	1000 ng	$100 \mu \text{g/ml}$	$10 \mu l$	$200 \mu l$
3	500 ng	$100 \mu \mathrm{g/ml}$	5 µl	$200 \mu l$
4	100 ng	$10 \mu \mathrm{g/ml}$	$10 \mu l$	200 µl
5	50 ng	$10 \mu \mathrm{g/ml}$	5 μl	$200 \mu l$
6	20 ng	$10 \mu \mathrm{g/ml}$	$2 \mu l$	200 μl
7	Blank			0