Presentation

Sri Sathwik Desaboina Al24BTECH11007

November 6, 2024

Problem

- Solution
 - Usage of variables
 - Parametric form
 - Matrix equation
 - Verification
 - Codes
 - Plot

Problem Statement

Show that the point $\begin{pmatrix} x \\ y \end{pmatrix}$ given by $x = \frac{2at}{1+t^2}$ and $y = \frac{a(1-t^2)}{1+t^2}$ lies on a circle for all real values of t such that $-1 \le t \le 1$, where a is any given real number.

Usage of variables

S.No	variables used	description
1	t	a variable which takes the real values in the range $\left(-1,1\right)$
2	а	it is a fixed real number
3	A(t)	it is a transformation matrix of parameter t
4	v(t)	it represent the parameter t and allows to define x and y
5	p(t)	a point with coordinates x and y.

Parametric form

Given x and y in the parametric form,

$$x = \frac{2at}{1+t^2},\tag{3.1}$$

$$y = \frac{a(1-t^2)}{1+t^2} \tag{3.2}$$

Let p(t) be equal to,

$$\mathbf{p}(t) = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{2at}{1+t^2} \\ \frac{a(1-t^2)}{1+t^2} \end{pmatrix}. \tag{3.3}$$

Matrix equation

The transformation matrix $\mathbf{A}(\mathbf{t})$ and $\mathbf{v}(\mathbf{t})$ with parameter t are,

$$\implies \mathbf{A}(t) = \begin{pmatrix} \frac{2a}{1+t^2} & 0\\ 0 & \frac{a(1-t^2)}{1+t^2} \end{pmatrix}, \tag{3.4}$$

$$\implies \mathbf{v(t)} = \begin{pmatrix} t \\ 1 \end{pmatrix}, \tag{3.5}$$

$$\mathbf{p}(\mathbf{t}) = \mathbf{A}(\mathbf{t})\mathbf{v}(\mathbf{t}),\tag{3.6}$$

$$\implies \mathbf{p}(t) = \begin{pmatrix} \frac{2a}{1+t^2} & 0\\ 0 & \frac{a(1-t^2)}{1+t^2} \end{pmatrix} \begin{pmatrix} t\\ 1 \end{pmatrix}, \tag{3.7}$$

(3.8)

Verification

Now, if we check the value of,

$$\mathbf{p}(t)^{\top} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{p}(t) \tag{3.9}$$

We get,

$$\mathbf{p}(t)^{\top} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{p}(t) = a^2 \tag{3.10}$$

 \implies We proved that the given points lie on a circle $x^2 + y^2 = a^2$.

Since we have the values of t in (-1,1), the y-coordinate of the points is always positive.

We get a semi-circle with those points.

Codes

The codes for verification:

1. The C-code which generates origin and the points by running t values in its domain. Generates points.dat file.

https://github.com/DESABOINASRISATHWIK/EE1030/blob/main/presentation/codes/code.c

2. The Python code which reads the points generated by C-code in points.dat file and plots them. Generates plot.png file.

https://github.com/DESABOINASRISATHWIK/EE1030/blob/main/presentation/codes/plot.py

Plot

Figure: Circle Points