64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2012ws/vorlesung/rs

Kapitel 5 –

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

Wintersemester 2012/2013

Ziffern und Zahlen

Universität Hamburg

Konzept der Zahl

Stellenwertsystem

Umrechnung zwischen verschiedenen Basen

Zahlenbereich und Präfixe

Festkommazahlen

Darstellung negativer Zahlen

Gleitkomma und IEEE 754

Maschinenworte

Literatur

Konzept der Zahl

- ► Das Messen ist der Ursprung der Zahl
- ▶ als Abstraktion der Anzahl von Objekten
- ▶ die man abzählen kann
- ► Anwendung des Distributivgesetzes

$$2 \text{ Äpfel } + 5 \text{ Äpfel } = 7 \text{ Äpfel}$$

$$2 Birnen + 5 Birnen = 7 Birnen$$

$$\Rightarrow$$
 2 + 5 = 7

Eigenschaften eines Zahlensystems

- Zahlenbereich: kleinste und größte darstellbare Zahl?
- Darstellung negativer Werte?
- ► -"- gebrochener Werte?
- ► -"- sehr großer Werte?
- Unterstützung von Rechenoperationen? Addition, Subtraktion, Multiplikation, Division, etc.
- ► Abgeschlossenheit unter diesen Operationen?
- ► Methode zur dauerhaften Speicherung/Archivierung?
- Sicherheit gegen Manipulation gespeicherter Werte?

64-040 Rechnerstrukturen

Literaturtipp zur Historie der Zahlen

Georges Ifrah Universalgeschichte der Zahlen

[Ifr10]

Klassifikation verschiedener Zahlensysteme

Direkte Wahrnehmung vs. Zählen

Abb. 1: Auf einen Blick können wir mit unserer direkten Zahlenwahrnehmung feststellen, ob eine Gesamtheit ein, zwei, drei oder vier Elemente umfaßt; Mengen, die größer sind, müssen wir meistens »zählen» – oder mit Hilfe des Vergleichs oder der gedanklichen Aufteilung in Teilmengen erfassen –, da unsere direkte Wahrnehmung nicht mehr ausreicht, exakte Angahen zu machen.

Abstraktion: Verschiedene Symbole für eine Zahl

Abb. 11: Verschiedene, einer ganzen Zahl (hier der Zahl 5) zugeordnete

64-040 Rechnerstrukturen

5.1 Ziffern und Zahlen - Konzept der Zahl

Zählen mit den Fingern ("digits")

Abb. 12: Verschiedene Möglichkeiten des Zählens mit den Fingern.

[lfr10]

A. Mäder

Speicherung: Tonbörse: 15. Jh. v. Chr.

Gegenstände, Hammel und Ziegen betreffend

- 21 Mutterschafe
- 6 weibliche Lämmer
- 8 erwachsene Hammel
- 4 männliche Lämmer
- 6 Mutterziegen
- 1 Bock
- (2) Jungziegen

Abb. 3: Eiförmige Tonbörse (46 mm × 62 mm × 50 mm), entdeckt in den Ruinen des Palastes von Nuzi (mesopotamische Stadt; ca. 15. Jh. v. Chr.). (Harvard Semitic Museum, Cambridge.

Katalognummer SMN 1854)

48 Tonkügelchen im Inneren: tamper-proof

Speicherung: Kerbhölzer

Abb. 58: Kerbhölzer aus Bäckereien in Frankreich, wie sie in kleinen Ortschaften auf dem Lande üblich waren.

Abb. 59: Englische Kerbhölzer aus dem 13. Jahrhundert. (Sammlung Society of Antiquaries, London; Zeichnung nach Menninger 1957/58, 11, 42)

Speicherung: Knotenschnüre

Abb. 66: Interpretation eines quipu: Die Zahl 658 auf der Schnur E ist gleich der Summe der Zahlen auf den Schnüren A, B, C und D. Dieses Bündel ist das erste an einem peruanischen quipu. (American Museum of Natural History, New York, B 8713; vgl. Leland Locke 1923)

[Ifr10]

64-040 Rechnerstrukturer

Rechnen: Römische Ziffern

- ► Ziffern: I=1. V=5. X=10. L=50. C=100. D=500. M=1000
- ▶ Werte eins bis zehn: I, II, III, IV, V, VI, VII, VIII, IX, X
- Position der Ziffern ist signifikant:
 - ▶ nach Größe der Ziffernsymbole sortiert, größere stehen links
 - andernfalls Abziehen der kleineren von der größeren Ziffer
 - ► IV=4, VI=6, XL=40, LXX=70, CM=900
- heute noch in Gebrauch: Jahreszahlen, Seitennummern, usw. Beispiele: MDCCCXIII=1813, MMIX=2009
- keine Symbole zur Darstellung großer Zahlen
- Rechenoperationen so gut wie unmöglich

64-040 Rechnerstrukturen

5.1 Ziffern und Zahlen - Konzept der Zahl

Römischer Abakus

66)

Abb. 87: Römischer Handabakus. (Cabinet des Médailles, Bibliothèque Nationale Paris, br. 1925)

[lfr10]

Römischer Abakus (cont.)

Dagegen können im Rahmen einer entwickelten Stellenwertschrift nicht nur alle beliebigen Zahlen jeder Größenordnung mit einer beschränkten Anzahl von Ziffern dargestellt werden, sondern mit ihr kann auch sehr einfach gerechnet werden. Und eben deshalb ist unser Ziffernsystem eine der Grundlagen der geistigen Fähigkeiten der modernen Menschen.

Als Beweis dafür führen wir mit römischen Ziffern eine einfache Addition durch:

CCLXVI	266
MDCCCVII	1 807
DCL	650
MLXXX	1 080
MMMDCCCIII	3 803

Ohne Übertragung auf unsere Zahlschrift wäre das sehr schwierig, wenn nicht unmöglich – und dabei handelt es sich doch bloß um eine Addition! Wie verhielte sich das erst bei einer Multiplikation oder gar bei einer Division? Mit diesen Ziffernsystemen kann nicht gerechnet werden, da ihre Grundziffern einen festgelegten Zahlenwert haben. Diese Ziffern sind keine Recheneinheiten, sondern Abkürzungen, mit denen Ergebnisse von Rechnungen festgehalten werden können, die mit Gegenständen auf der Rechentafel, dem Abakus oder dem Kugelbrett bereits gelöst worden waren.

Stellenwertsystem ("Radixdarstellung")

- Wahl einer geeigneten Zahlenbasis b ("Radix")
 - ▶ 10: Dezimalsystem
 - 16: Hexadezimalsystem (Sedezimalsystem)
 - 2: Dualsystem
- ▶ Menge der entsprechenden Ziffern $\{0, 1, ..., b-1\}$
- inklusive einer besonderen Ziffer für den Wert Null
- Auswahl der benötigten Anzahl n von Stellen

$$|z| = \sum_{i=0}^{n-1} a_i \cdot b^i$$

b Basis a; Koeffizient an Stelle i

universell verwendbar, für beliebig große Zahlen

64-040 Rechnerstrukturen

5.2 Ziffern und Zahlen - Stellenwertsystem

Babylon: Einführung der Null, 3 Jh. v. Chr.

Abb. 289: Mathematische Tafel aus Uruk; sie wurde bei Schwarzgrabungen gefunden und stammt aus dem 2. oder 3. Jh. v. Chr. Es handelt sich um eines der ältesten bekannten Zeugnisse für die Verwendung der babylonischen Null.

(Musée du Louvre, Taf. AO 6484, Rückseite; Thureau-Dangin 1922, Nr. 33, Taf. 62; 1938, 76-81. Unveröffentl. Kopie d. Verf.)

A. Mäder

[lfr10]

28

64-040 Rechnerstrukturen

Babylon: Beispiel mit Satz des Pythagoras

Abb. 288: Rechentafel aus
der Zeit um 1800-1700 v.
Chr.; ihr Inhalt belegt, daß
die babylonischen Mathe-
matiker zur Zeit der 1. Dy-
nastie bereits den »Satz des
Pythagoras« kannten.»
(Columbia University of
New York, Tafel Plimpton
322; unveröffentl. Kopie d.
Verf.; vgl. Neugebauer/
Sachs 1945, 38-41, Taf. 25)

2	SA SA NA-AS-SÀ-HU-Ú-[MA SAC	i+i+ú		
3	1 90 11,15	1; 59	2,49	ΚI
4	11 08,56, 58, 14, 50,6,15	56 , 7	3,12,1	KI
5	55, 7 41, 15, 33, 45	1, 16, 41	1 .50 .49	KI
6	11 53 10 2,29 , 32 , 52 , 16	3,31,49	5,9,1	Kl
7	1 48 54 1 40	1.5	1 . 37	/18V 19
8	1,47, 6,41,40	5 . 19	8 .1	1801/
9	1 43, 11,56 , 28 , 26 , 40	38 . 11	59 , 1	KI
10	1,41,33,59, 3,45	13 , 19	20 : 49	KI
11	1 38, 33,36,36	9.1	12 : 49	KI :
12	1 ,35, 10 , 2 ,28 , 27 , 24 , 26 , 40	1,22,41	2 . 16 . 1	KI 1
13	1 33, 45	45	1 . 15	KI 1
14	11 29 . 21 , 54 . 2 , 15	27.59	48 . 49	KI 1:
15	1 27, # 3,45	7 , 12 ; 1	4 , 49	KI 1
16	1 25 , 48, 51 ,35 , 6 ,40	29,31	53 , 49	KI 4

Transkription

[lfr10]

64-040 Rechnerstrukturer

Babylon: Sexagesimalsystem

- ► Einführung vor ungefähr 4000 Jahren, erstes Stellenwertsystem
- ► Basis 60
- ▶ zwei Symbole: | = 1 und < = 10
- ▶ Einritzen gerader und gewinkelter Striche auf Tontafeln
- Null bekannt, aber nicht mitgeschrieben Leerzeichen zwischen zwei Stellen
- Beispiele
 - **▶** |||||
- 23
- ► <<||| 2
- ightharpoonup | <<< 90 = 1 · 60 + 3 · 10
- > | << | $3621 = 1 \cdot 3600 + 0 \cdot 60 + 2 \cdot 10 + 1$
- ▶ für Zeitangaben und Winkeleinteilung heute noch in Gebrauch

Dezimalsystem

Number =
$$\sum_{i=-k}^{n} d_i \times 10^i$$

[Tan09]

- das im Alltag gebräuchliche Zahlensystem
- Einer, Zehner, Hunderter, Tausender, usw.
- Zehntel, Hundertstel, Tausendstel, usw.

64-040 Rechnerstrukturer

Dualsystem

- ► Stellenwertsystem zur Basis 2
- braucht für gegebene Zahl ca. dreimal mehr Stellen als Basis 10
- für Menschen daher unbequem besser Oktal- oder Hexadezimalschreibweise, s.u.
- ▶ technisch besonders leicht zu implementieren weil nur zwei Zustände unterschieden werden müssen
 - z.B. zwei Spannungen, Ströme, Beleuchtungsstärken siehe Kapitel 4: Information - Binärzeichen
- + robust gegen Rauschen und Störungen
- + einfache und effiziente Realisierung von Arithmetik

Dualsystem: Potenztabelle

Stelle	Wert im Dualsystem	Wert im Dezimalsystem
2^{0}	1	1
2^1	10	2
2^2	100	4
2^{3}	1000	8
2^{4}	1 0000	16
2^{5}	10 0000	32
2^{6}	100 0000	64
2^{7}	1000 0000	128
2 ⁸	1 0000 0000	256
2^{9}	10 0000 0000	512
2^{10}	100 0000 0000	1024

64-040 Rechnerstrukturen

Addition im Dualsystem

- funktioniert genau wie im Dezimalsystem
- Addition mehrstelliger Zahlen erfolgt stellenweise
- Additionsmatrix:

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 10 \\ \end{array}$$

Beispiel

Multiplikation im Dualsystem

- ▶ funktioniert genau wie im Dezimalsystem
- $ightharpoonup p = a \cdot b$ mit Multiplikator a und Multiplikand b
- ▶ Multiplikation von a mit je einer Stelle des Multiplikanten b
- Addition der Teilterme
- Multiplikationsmatrix ist sehr einfach:

$$egin{array}{c|cccc} \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \hline \end{array}$$

 $= 1001\,0001\,0111$

= 0x917

Multiplikation im Dualsystem (cont.)

Beispiel

64-040 Rechnerstrukturer

Oktalsystem

- Basis 8
- ► Zeichensatz ist {0, 1, 2, 3, 4, 5, 6, 7}
- C-Schreibweise mit führender Null als Präfix:

$$\begin{array}{lll} \bullet & 0001 = & 1_{10} \\ & 0013 = & 11_{10} = & 1 \cdot 8 + 3 \\ & 0375 = 253_{10} = 3 \cdot 64 + 7 \cdot 8 + 5 \\ & \text{usw.} \end{array}$$

- ⇒ Hinweis: also führende Null in C für Dezimalzahlen unmöglich
- ▶ für Menschen leichter lesbar als Dualzahlen
- ▶ Umwandlung aus/vom Dualsystem durch Zusammenfassen bzw. Ausschreiben von je drei Bits:

$$00 = 000, 01 = 001, 02 = 010, 03 = 011,$$

$$04 = 100, 05 = 101, 06 = 110, 07 = 111$$

64-040 Rechnerstrukturer

5.2 Ziffern und Zahlen - Stellenwertsystem

Hexadezimalsystem

- Basis 16
- ► Zeichensatz ist {0, 1, 2, ..., 9, A, B, C, D, E, F}
- ► C-Schreibweise mit Präfix 0x Klein- oder Großbuchstaben

- viel leichter lesbar als entsprechende Dualzahl
- ▶ Umwandlung aus/vom Dualsystem: Zusammenfassen bzw. Ausschreiben von je vier Bits:

$$0x0 = 0000, 0x1 = 0001, 0x2 = 0010, \dots, 0x9 = 1001,$$

 $0xA = 1010, 0xB = 1011, 0xC = 1100, 0xD = 1101, 0xE = 1110, 0xF = 1111$

Beispiel: Darstellungen der Zahl 2012

Binär

Oktal 3 7 3 4
$$3 \times 8^3 + 7 \times 8^2 + 3 \times 8^1 + 4 \times 8^0$$
 $1536 + 448 + 24 + 4$

Umrechnung Dual-/Oktal-/Hexadezimalsystem

Example 1

Hexadecimal

Binary

Octal

Example 2

Hexadecimal

Binary

Octal

[Tan09]

- Gruppieren von jeweils 3 bzw. 4 Bits
- bei Festkomma vom Dezimalpunkt aus nach außen 句

Basis: 60

Umrechnung zwischen verschiedenen Basen

- ► Menschen rechnen im Dezimalsystem
- ► Winkel- und Zeitangaben auch im Sexagesimalsystem
- ► Digitalrechner nutzen (meistens) Dualsystem
- ► Algorithmen zur Umrechnung notwendig
- ► Exemplarisch Vorstellung von drei Varianten:
 - 1. vorberechnete Potenztabellen
 - 2. Divisionsrestverfahren
 - 3. Horner-Schema

Umwandlung über Potenztabellen

Vorgehensweise für Integerzahlen

- Subtraktion des größten Vielfachen einer Potenz des Zielsystems von der umzuwandelnden Zahl
 gemäß der vorberechneten Potenztabelle
- ▶ Notation dieses größten Vielfachen (im Zielsystem)
- Subtraktion wiederum des größten Vielfachen vom verbliebenen Rest
- ► Addition des zweiten Vielfachen zum ersten
- ▶ Wiederholen, bis Rest = 0

Potenztabellen Dual/Dezimal

Stelle	Wert	
2^{0}	1	
2^1	2	
2^2	4	
2^{3}	8	
2^{4}	16	
2^{5}	32	
2^{6}	64	
2^{7}	128	
2 ⁸	256	
2^{9}	512	
2^{10}	1 024	

Stelle	Wert im Dualsystem
10^{0}	1
10^{1}	1010
10^{2}	110 0100
10^{3}	111 1101 0000
10^{4}	10 0111 0001 0000
10^{5}	0×186A0
10^{6}	0xF4240
10 ⁷	0×989680
10 ⁸	0x5F5E100
10^{9}	0x369ACA00
10^{10}	0×2540BE400

Potenztabellen: Beispiel

Beispiel: Umwandlung Dezimal- in Dualzahl:

Annahme:
$$z = (163)_{10}$$

 $\frac{163}{-128}$ (2⁷) 1000 0000
 $\frac{35}{35}$
 $\frac{-32}{3}$ (2⁵) + 10 0000
 $\frac{2}{3}$ (2¹) + 10
 $\frac{-1}{0}$ (2⁰) + $\frac{1}{0}$
 $\frac{1}{0}$ (1010 0011)₂

Potenztabellen: Beispiel (cont.)

Beispiel: Umformung Dual- in Dezimalzahl:

gegeben: $z = (1010\ 0011)_2$

$$- \frac{11}{0} \frac{(3)_{10}}{(163)_{10}} = 3 \cdot 1 = 3 \cdot 10^{0}$$

Divisionsrestverfahren

- Division der umzuwandelnden Zahl im Ausgangssystem durch die Basis des Zielsystems
- Erneute Division des ganzzahligen Ergebnisses (ohne Rest) durch die Basis des Zielsystems, bis kein ganzzahliger Divisionsrest mehr bleibt
- Beispiel

 $(163)_{10} \longleftrightarrow (1010\ 0011)_2$

Divisionsrestverfahren: Beispiel

Beispiel: Umwandlung Dual- in Dezimalzahl:

$$(1010\ 0011)_2 \longleftrightarrow (163)_{10}$$

Hinweis: Division in Basis b folgt

5.3 Ziffern und Zahlen - Umrechnung zwischen verschiedenen Basen

Divisionsrestverfahren: Algorithmus

K. von der Heide [Hei05] Interaktives Skript T1 stellen2stellen

句

Takt

Resultat

Horner-Schema

Universität Hamburg

▶ Darstellung einer Potenzsumme durch ineinander verschachtelte Faktoren

$$|z| = \sum_{i=0}^{n-1} a_i \cdot b^i = (\dots((a_{n-1} \cdot b + a_{n-2}) \cdot b + a_{n-3}) \cdot b + \dots + a_1) \cdot b + a_0$$

Vorgehensweise:

- Darstellung der umzuwandelnden Zahl im Horner-Schema
- Durchführung der auftretenden Multiplikationen und Additionen im Zielsystem

Horner-Schema: Beispiel

$$163 = (1 \cdot 10 + 6) \cdot 10 + 3$$

Umsetzung von Faktoren und Summanden ins Zielzahlensystem:

$$\begin{array}{ccc} (10)_{10} & \longleftrightarrow & (1010)_2 \\ (1)_{10} & \longleftrightarrow & (0001)_2 \\ (6)_{10} & \longleftrightarrow & (0110)_2 \\ (3)_{10} & \longleftrightarrow & (0011)_2 \end{array}$$

Durchführung der arithmetischen Operation

Horner-Schema: Beispiel (cont.)

Rückumwandlung von Dual- in Dezimalzahl

$$(1010\ 0011)_2 = ((((((((1 \cdot 10_2) + 0) \cdot 10_2 + 1) \cdot 10_2 + 0) \cdot 10_2 + 0) \cdot 10_2 + 1) \cdot 10_2 + 1) \cdot 10_2 + 1) \cdot 10_2 + 1)$$

Umsetzung von Faktoren und Summanden

$$(0)_2 \longleftrightarrow (0)_{10}$$

$$(1)_2 \longleftrightarrow (1)_{10}$$

$$(10)_2 \longleftrightarrow (2)_{10}$$

Horner-Schema: Beispiel (cont.)

Berechnung:

Horner-Schema: Beispiel (cont.)

Zahlenbereich bei fester Wortlänge

Anzahl der Bits	=	Zahlenbereich jeweils von 0 bis $(2^n - 1)$
4-bit	$2^4 =$	16
8-bit	$2^8 =$	256
10-bit	$2^{10} =$	1 024
12-bit	$2^{12} =$	4 096
16-bit	$2^{16} =$	65 536
20-bit	$2^{20} =$	1 048 576
24-bit	$2^{24} =$	16 777 216
32-bit	$2^{32} =$	4 294 967 296
48-bit	$2^{48} =$	281 474 976 710 656
64-bit	$2^{64} =$	18 446 744 073 709 551 616

Präfixe

Für die vereinfachte Schreibweise von großen bzw. sehr kleinen Werten ist die Präfixangabe als Abkürzung von Zehnerpotenzen üblich. Beispiele:

- ► Lichtgeschwindigkeit: 300 000 Km/s = 30 cm/ns
- Ruheenergie des Elektrons: 0,51 MeV
- Strukturbreite heutiger Mikrochips: 22 nm
- IISW.

Es gibt entsprechende Präfixe auch für das Dualsystem. Dazu werden Vielfache von $2^{10} = 1024 \approx 1000$ verwendet.

Präfixe für Einheiten im Dezimalsystem

Faktor	Name	Symbol
10^{24}	yotta	Υ
10^{21}	zetta	Z
10^{18}	exa	Е
10^{15}	peta	Р
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	М
10^{3}	kilo	K
10^{2}	hecto	h
10^{1}	deka	da

Faktor	Name	Symbo
10^{-24}	yocto	у
10^{-21}	zepto	Z
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	р
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	С
10^{-1}	dezi	d

5.4 Ziffern und Zahlen - Zahlenbereich und Präfixe

Präfixe für Einheiten im Dualsystem

Faktor	Name	Symbol	Langname
2^{60}	exbi	Ei	exabinary
2^{50}	pebi	Pi	petabinary
2^{40}	tebi	Ti	terabinary
2^{30}	gibi	Gi	gigabinary
2^{20}	mebi	Mi	megabinary
2^{10}	kibi	Ki	kilobinary

1 kibibit = 1024 bit 1 kilobit = 1000 bitBeispiele: 1 megibit = 1048576 bit1 gibibit = 1073741824 bit

IEC-60027-2, Letter symbols to be used in electrical technology

5.4 Ziffern und Zahlen - Zahlenbereich und Präfixe

Präfixe für Einheiten im Dualsystem

In der Praxis werden die offiziellen Präfixe nicht immer sauber verwendet. Meistens ergibt sich die Bedeutung aber aus dem Kontext. Bei Speicherbausteinen sind Zweierpotenzen üblich, bei Festplatten dagegen die dezimale Angabe.

- ▶ DRAM-Modul mit 1 GB Kapazität: gemeint sind 2³⁰ Bytes
- ► Flash-Speicherkarte 4 GB Kapazität: gemeint sind 2³² Bytes
- ► Festplatte mit Angabe 1 TB Kapazität: typisch 10¹² Bytes
- die tatsächliche angezeigte verfügbare Kapazität ist oft geringer, weil das jeweilige Dateisystem Platz für seine eigenen Verwaltungsinformationen belegt.

Festkommadarstellung

Darstellung von **gebrochenen Zahlen** als Erweiterung des Stellenwertsystems durch Erweiterung des Laufindex zu negativen Werten:

$$|z| = \sum_{i=0}^{n-1} a_i \cdot b^i + \sum_{i=-\infty}^{i=-1} a_i \cdot b^i$$
$$= \sum_{i=-\infty}^{n-1} a_i \cdot b^i$$

mit $a_i \in N$ und $0 \le a_i < b$.

▶ Der erste Summand bezeichnet den ganzzahligen Anteil, während der zweite Summand für den gebrochenen Anteil steht.

Nachkommastellen im Dualsystem

- \triangleright 2⁻¹ = 0,5 $2^{-2} = 0.25$
 - $2^{-3} = 0,125$
 - $2^{-4} = 0.0625$
 - $2^{-5} = 0.03125$
 - $2^{-6} = 0,015625$
 - $2^{-7} = 0,0078125$
 - $2^{-8} = 0.00390625$

- ▶ alle Dualbrüche sind im Dezimalsystem exakt darstellbar (d.h. mit endlicher Wortlänge)
- dies gilt umgekehrt nicht

Nachkommastellen im Dualsystem (cont.)

- ▶ gebrochene Zahlen können je nach Wahl der Basis evtl. nur als unendliche periodische Brüche dargestellt werden
- ▶ insbesondere erfordern viele endliche Dezimalbrüche im Dualsystem unendliche periodische Brüche
- Beispiel Dezimalbrüche, eine Nachkommastelle

B=10	B=2	B=2	B=10
0,1	$0,0\overline{0011}$	0,001	0,125
0,2	$0,\overline{0011}$	0,010	$0,\!250$
0,3	$0,0\overline{1001}$	0,011	0,375
0,4	$0,\overline{0110}$	0,100	0,5
0,5	0,1	0,101	0,625
0,6	$0,\overline{1001}$	0,110	0,750
0,7	$0,1\overline{0110}$	0,111	0,875
0,8	$0,\overline{1100}$		
0,9	$0, 1\overline{1100}$		

Beispiel: Umrechnung dezimal 0,3 nach dual

Betrachtung von gebrochenen Zahlen im Dualsystem:

$$2^{-1} = 0.5$$
 $2^{-7} = 0.0078125$
 $2^{-2} = 0.25$ $2^{-8} = 0.00390625$
 $2^{-3} = 0.125$ $2^{-9} = 0.001953125$
 $2^{-4} = 0.0625$ $2^{-10} = 0.0009765625$
 $2^{-5} = 0.03125$ $2^{-11} = 0.00048828125$
 $2^{-6} = 0.015625$ $2^{-12} = 0.000244140625$

Beispiel:

$$(0,3)_{10} = 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0 \cdot 2^{-4} + 1 \cdot 2^{-5} + 1 \cdot 2^{-6} + \dots = 2^{-2} + 2^{-5} + 2^{-6} + 2^{-9} + \dots = (0,0\overline{1001})_2$$

5.6 Ziffern und Zahlen - Darstellung negativer Zahlen

Darstellung negativer Zahlen

Drei gängige Varianten zur Darstellung negativer Zahlen

- 1. Betrag und Vorzeichen
- 2. Exzess-Codierung (Offset-basiert)
- 3. Komplementdarstellung
- Integerrechnung häufig im Zweierkomplement
- Gleitkommadarstellung mit Betrag und Vorzeichen
- Exponent als Exzess-Codierung

Betrag und Vorzeichen

- Auswahl eines Bits als Vorzeichenbit
- ▶ meistens das MSB (engl. most significant bit)
- ► restliche Bits als Dualzahl interpretiert
- ► Beispiel für 4-bit Wortbreite:

- doppelte Codierung der Null: +0, -0
- Rechenwerke f
 ür Addition/Subtraktion aufwendig

▶ einfache Um-Interpretation der Binärcodierung

$$z = Z - offset$$

- ▶ mit z vorzeichenbehafteter Wert, Z binäre Ganzzahl,
- ► beliebig gewählter Offset
- Null wird also nicht mehr durch 000...0 dargestellt
- + Größenvergleich zweier Zahlen bleibt einfach
- Anwendung: Exponenten im IEEE-754 Gleitkommaformat
- ▶ und für einige Audioformate

	Bitmuster	Binärcode	Exzess-8	Exzess-6	(z =
	0000	0	-8	-6	
	0001	1	-7	-5	
	0010	2	-6	-4	
	0011	3	-5	-3	
	0100	4	-4	-2	
	0101	5	-3	-1	
	0110	6	-2	0	
	0111	7	-1	/// > 1//	
	1000	8	0	2	
	1001	9	1	2	
	1010	10	2	4	
	1011	11	3	5	
	1100	12	4	6	
	1101	13	5	7	
	1110	14	6	8	
	1111	15	7	9	
MAS	dor	4		=	

= Z - offset)

b-Komplement

Definition: das b-Komplement einer Zahl z ist

$$K_b(z) = b^n - z$$
, für $z \neq 0$
= 0, für $z = 0$

- b: die Basis (des Stellenwertsystems)
- ▶ n: Anzahl der zu berücksichtigenden Vorkommastellen
- mit anderen Worten: $K_b(z) + z = b^n$
- Stellenwertschreibweise

eibweise
$$z=-a_{n-1}\cdot b^{n-1}+\sum_{i=-m}^{n-2}a_i\cdot b^i$$

- Dualsystem: 2-Komplement
- ► Dezimalsystem: 10-Komplement

Universität Hamburg

b-Komplement: Beispiele

$$b = 10 \quad n = 4 \quad K_{10}(3763)_{10} = 10^4 - 3763 = 6237_{10}$$

$$n = 2 \quad K_{10}(0,3763)_{10} = 10^2 - 0,3763 = 99,6237_{10}$$

$$n = 0 \quad K_{10}(0,3763)_{10} = 10^0 - 0,3763 = 0,6237_{10}$$

$$b = 2 \quad n = 2 \quad K_2(10,01)_2 = 2^2 - 10,01_2 = 01,11_2$$

$$n = 8 \quad K_2(10,01)_2 = 2^8 - 10,01_2 = 11111101,11_2$$

(b-1)-Komplement

Definition: das (b-1)-Komplement einer Zahl z ist

$$K_{b-1}(z) = b^n - b^{-m} - z$$
, für $z \neq 0$
= 0, für $z = 0$

- ▶ b: die Basis des Stellenwertsystems
- ▶ n: Anzahl der zu berücksichtigenden Vorkommastellen
- m: Anzahl der Nachkommastellen
- Dualsystem: 1-Komplement
- ► Dezimalsystem: 9-Komplement

(b-1)-Komplement / b-Komplement: Trick

$$K_{b-1}(z) = b^n - b^{-m} - z$$
, für $z \neq 0$

- im Fall m=0 gilt offenbar $K_h(z)=K_{h-1}(z)+1$
- \Rightarrow das (b-1)-Komplement kann sehr einfach berechnet werden: es werden einfach die einzelnen Bits/Ziffern invertiert.

Dualsystem:	1-Komplement	1100 1001	
	alle Bits invertieren	0011 0110	

Dezimalsystem: 9-Komplement 24 453 alle Ziffern invertieren 75 546

 $0 \leftrightarrow 9 \ 1 \leftrightarrow 8 \ 2 \leftrightarrow 7 \ 3 \leftrightarrow 6 \ 4 \leftrightarrow 5$

Summe: 99999 = 100000 - 1

(b-1)-Komplement / b-Komplement: Trick (cont.)

⇒ das b-Komplement kann sehr einfach berechnet werden: es werden einfach die einzelnen Bits/Ziffern invertiert und 1 an der niedrigsten Stelle aufaddiert.

Dualsystem:	2-Komplement	1100 1001
	Bits invertieren +1	0011 0111
	Summe:	1 0000 0000

Dezimalsystem: 10-Komplement 24 453 Ziffern invertieren +175 547

 $0 \leftrightarrow 9 \ 1 \leftrightarrow 8 \ 2 \leftrightarrow 7 \ 3 \leftrightarrow 6 \ 4 \leftrightarrow 5$

Summe: 100 000

Subtraktion mit b-Komplement

▶ bei Rechnung mit fester Stellenzahl *n* gilt:

$$K_b(z) + z = b^n = 0$$

weil b^n gerade nicht mehr in n Stellen hineinpasst

▶ also gilt für die Subtraktion auch:

$$x - y = x + K_b(y)$$

- ⇒ Subtraktion kann also durch Addition des *b*-Komplements ersetzt werden
 - und für Integerzahlen gilt außerdem

$$x - y = x + K_{b-1}(y) + 1$$

Subtraktion mit Einer- und Zweierkomplement

► Subtraktion ersetzt durch Addition des Komplements

[Tan09]

句

Veranschaulichung: Zahlenkreis

Beispiel für 4-bit Zahlen

2-Komplement

1-Komplement

Betrag+Vorzeichen

Komplement-Arithmetik als Winkeladdition (siehe Kapitel 6)

A. Mäder

Darstellung negativer Zahlen: Beispiele

N	N	-N	-N	-N	-N
decimal	binary	signed mag.	1's compl.	2's compl.	excess 128
1	00000001	10000001	11111110	11111111	01111111
2	00000010	10000010	11111101	11111110	01111110
3	00000011	10000011	11111100	11111101	01111101
4	00000100	10000100	11111011	11111100	01111100
5	00000101	10000101	11111010	11111011	01111011
6	00000110	10000110	11111001	11111010	01111010
7	00000111	10000111	11111000	11111001	01111001
8	00001000	10001000	11110111	11111000	01111000
9	00001001	10001001	11110110	11110111	01110111
10	00001010	10001010	11110101	11110110	01110110
20	00010100	10010100	11101011	11101100	01101100
30	00011110	10011110	11100001	11100010	01100010
40	00101000	10101000	11010111	11011000	01011000
50	00110010	10110010	11001101	11001110	01001110
60	00111100	10111100	11000011	11000100	01000100
70	01000110	11000110	10111001	10111010	00111010
80	01010000	11010000	10101111	10110000	00110000
90	01011010	11011010	10100101	10100110	00100110
100	01100100	11100100	10011011	10011100	00011100
127	01111111	11111111	10000000	10000001	00000001
128	Nonexistent	Nonexistent	Nonexistent	10000000	00000000

990

Gleitkommaformat

Wie kann man "wissenschaftliche" Zahlen darstellen?

Masse der Sonne

 $1.989 \cdot 10^{30} \, \text{Kg}$

Masse eines Elektrons

 $0,000\,000\,000\,000\,000\,000\,16\,\mathrm{g}$

Anzahl der Atome pro Mol 602 300 000 000 000 000 000 000

Darstellung im Stellenwertsystem?

- gleichzeitig sehr große und sehr kleine Zahlen notwendig
- entsprechend hohe Zahl der Vorkomma- und Nachkommastellen
- durchaus möglich (Java3D: 256-bit Koordinaten)
- aber normalerweise sehr unpraktisch
- typische Messwerte haben nur ein paar Stellen Genauigkeit

Gleitkomma: Motivation

Grundidee: halblogarithmische Darstellung einer Zahl:

- ▶ Vorzeichen (+1 oder -1)
- ► Mantisse als normale Zahl im Stellenwertsystem
- Exponent zur Angabe der Größenordnung

$$z = sign \cdot mantisse \cdot basis^{exponent}$$

- ▶ handliche Wertebereiche für Mantisse und Exponent
- arithmetische Operationen sind effizient umsetzbar
- Wertebereiche für ausreichende Genauigkeit wählen

Hinweis: rein logarithmische Darstellung wäre auch möglich, aber Addition/Subtraktion sind dann sehr aufwendig.

Gleitkomma: Dezimalsystem

$$z = (-1)^s \cdot m \cdot 10^e$$

- Vorzeichenbit
- Mantisse als Festkomma-Dezimalzahl
- Exponent als ganze Dezimalzahl
- ► Schreibweise in C/Java: ⟨Vorzeichen⟩ ⟨Mantisse⟩ E ⟨Exponent⟩
 - 6.023E23
- $6.023 \cdot 10^{23}$

Avogadro-Zahl

1.6E-19

- $1.6 \cdot 10^{-19}$
- Elementarladung des Elektrons

卣

Gleitkomma: Beispiel für Zahlenbereiche

Digits in fraction	Digits in exponent	Lower bound	Upper bound
3	1	10 ⁻¹²	10 ⁹
3	2	10 ⁻¹⁰²	10 ⁹⁹
3	3	10 ⁻¹⁰⁰²	10 ⁹⁹⁹
3	4	10 ⁻¹⁰⁰⁰²	10 ⁹⁹⁹⁹
4	1	10 ⁻¹³	10 ⁹
4	2	10 ⁻¹⁰³	10 ⁹⁹
4	3	10 ⁻¹⁰⁰³	10 ⁹⁹⁹
4	4	10 ⁻¹⁰⁰⁰³	10 ⁹⁹⁹⁹
5	1	10 ⁻¹⁴	10 ⁹
5	2	10 ⁻¹⁰⁴	10 ⁹⁹
5	3	10 ⁻¹⁰⁰⁴	10 ⁹⁹⁹
5	4	10 ⁻¹⁰⁰⁰⁴	10 ⁹⁹⁹⁹
10	3	10 ⁻¹⁰⁰⁹	10 ⁹⁹⁹
20	3	10 ⁻¹⁰¹⁹	10 ⁹⁹⁹

[Tan09]

5.7 Ziffern und Zahlen - Gleitkomma und IEEE 754

Gleitkomma: Historie

▶ 1937	Zuse: Z1 mit 22-bit Gleitkomma-Datenformat
▶ 195x	Verbreitung von Gleitkomma-Darstellung
	für numerische Berechnungen
▶ 1980	Intel 8087: erster Koprozessor-Chip, ca. 45 000 Transistoren, ca. 50K FLOPS/s
▶ 1985	IEEE-754 Standard für Gleitkomma
▶ 1989	Intel 486 mit integriertem Koprozessor
▶ 1995	Java-Spezifikation fordert IEEE-754
▶ 1996	ASCI-RED: 1TFLOPS (9152 PentiumPro)
▶ 2008	Roadrunner: 1 PFLOPS (12 960 Cell)

Gleitkomma: Zahlenbereiche

- Darstellung üblicherweise als Betrag+Vorzeichen
- negative und positive Zahlen gleichberechtigt (symmetrisch)
- separate Darstellung für den Wert Null
- sieben Zahlenbereiche: siehe Bild
- relativer Abstand benachbarter Zahlen bleibt ähnlich (vgl. dagegen Integer: 0/1, 1/2, 2/3, ..., 65 535/65 536, ...)

Gleitkomma: Normalisierte Darstellung

$$z = (-1)^s \cdot m \cdot 10^e$$

diese Darstellung ist bisher nicht eindeutig:

$$123 \cdot 10^0 = 12, 3 \cdot 10^1 = 1, 23 \cdot 10^2 = 0, 123 \cdot 10^3 = \dots$$

normalisierte Darstellung

- \triangleright Exponent anpassen, bis Mantisse im Bereich $1 \le m \le b$ liegt
- ⇒ Darstellung ist dann eindeutig
- ⇒ im Dualsystem: erstes Vorkommabit ist dann 1 und muss nicht explizit gespeichert werden
- evtl. zusätzlich sehr kleine Zahlen nicht-normalisiert

5.7 Ziffern und Zahlen - Gleitkomma und IEEE 754

IEEE-754 Standard

bis 1985 ein Wildwuchs von Gleitkomma-Formaten:

- unterschiedliche Anzahl Bits in Mantisse und Exponent
- Exponent mit Basis 2, 10, oder 16
- diverse Algorithmen zur Rundung
- ▶ jeder Hersteller mit eigener Variante
- Numerische Algorithmen nicht portabel
- ▶ 1985: Publikation des Standards IEEE-754 zur Vereinheitlichung
- ▶ klare Regeln, auch für Rundungsoperationen
- große Akzeptanz, mittlerweile der universale Standard

Details: unter anderem in en.wikipedia.org/wiki/IEEE 754 oder in Goldberg [Gol91]

IEEE-754: float und double

- ▶ 32-bit-Format: einfache Genauigkeit (single precision, float)
- ▶ 64-bit-Format: doppelte Genauigkeit (double precision, double)
- ▶ Mantisse als normalisierte Dualzahl: 1 < m < 2
- Exponent in Exzess-127 bzw. Exzess-1023 Codierung
- \triangleright einige Sonderwerte: Null (+0, -0), NaN, Infinity

IEEE-754: Zahlenbereiche

ltem	Single precision	Double precision				
Bits in sign	1	1				
Bits in exponent	8	11				
Bits in fraction	23	52				
Bits, total	32	64				
Exponent system	Excess 127	Excess 1023				
Exponent range	-126 to +127	-1022 to +1023				
Smallest normalized number	2 ⁻¹²⁶	2 ⁻¹⁰²²				
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴				
Decimal range	approx. 10 ⁻³⁸ to 10 ³⁸	approx. 10 ⁻³⁰⁸ to 10 ³⁰⁸				
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴				

[Tan09]

5.7 Ziffern und Zahlen - Gleitkomma und IEEE 754

Matlab-Demo: demoieee754

- Zahlenformat wählen (float=short real, double=long real)
- Dezimalzahl in oberes Textfeld eingeben
- Mantisse/Exponent/Vorzeichen in unteres Textfeld eingeben

卣

andere Werte werden jeweils aktualisiert

K. von der Heide [Hei05]. Interaktives Skript T1. demoieee754

Matlab-Demo: demoieee754 (cont.)

- ► Genauigkeit bei float: 23+1 bits, ca. 6...7 Dezimalstellen
- ► Genauigkeit bei double: 52+1 bits, ca. 16 Dezimalstellen Erinnerung: $\ln_2(10) = \ln(10) / \ln(2) \approx 3,322$

Beispiele: float

- ▶ 1-bit Vorzeichen 8-bit Exponent (Exzess-127), 23-bit Mantisse $z = (-1)^s \cdot 2^{(eeee\ eeee-127)} \cdot 1$, mmmm mmmm mmmm . . . mmm

$$z = -1 \cdot 2^{(128-127)} \cdot (1+0,5+0,25+0,125+0)$$

= -1 \cdot 2 \cdot 1,875 = -3,750

$$z = +1 \cdot 2^{(254-127)} \cdot (1 + 2^{-4} + 2^{-7} + 2^{-8})$$
$$= 2^{127} \cdot 1,07421875 = 1,953965 \cdot 10^{38}$$

Beispiele: float (cont.)

$$z = (-1)^s \cdot 2^{(\text{eeee eeee}-127)} \cdot 1$$
, mmmm mmmm mmmm . . . mmm

$$z = -1 \cdot 2^{(1-127)} \cdot (1+0+0+\cdots+0)$$
$$= -1 \cdot 2^{-126} \cdot 1, 0 = -1, 1755 \cdot 10^{-38}$$

$$z = +1 \cdot 2^{(127-127)} \cdot (1 + 2^{-23})$$
$$= 1 \cdot (1 + 0,0000001) = 1,0000001$$

BitsToFloat.java

```
public static void main( String[] args ) {
 public void p( String s, String e, String m ) {
 int
         sign = (Integer.parseInt( s, 2 ) & 0x1) << 31;</pre>
 int exponent = (Integer.parseInt(e, 2) & 0xFF) << 23;</pre>
 int mantisse = (Integer.parseInt( m, 2 ) & 0x007FFFFF);
 int bits = sign | exponent | mantisse;
 float f = Float.intBitsToFloat( bits );
 System.out.println( dumpIntBits(bits) + " " + f );
public String dumpIntBits( int i ) {
 StringBuffer sb = new StringBuffer();
 for( int mask=0x80000000; mask != 0; mask = mask >>> 1 ) {
   sb.append( ((i & mask) != 0) ? "1" : "0" );
 }
 return sb.toString();
```

5.7 Ziffern und Zahlen - Gleitkomma und IEEE 754

Beispiele: BitsToFloat

```
1.0
1.0000001
3.0
010000000110000000000000000000000
                   3 5
0100000001110000000000000000000000
                   3.75
010000000111111111111111111111111111
                   3.9999998
010000001100000000000000000000000
                   6.0
256.0
00000000100000000000000000000000
                   1.17549435E-38
110000000111000000000000000000000
                   -3.75
2.5521178E38
01111111100001001100000000000000000
                   1.8276885E38
011111110111111111111111111111111111
                   3.4028235E38
Infinity
                   -Infinity
NaN
NaN
```

Gleitkomma: Addition, Subtraktion

Addition von Gleitkommazahlen $y = a_1 + a_2$

- ► Skalierung des betragsmäßig kleineren Summanden
- ▶ Erhöhen des Exponenten, bis $e_1 = e_2$ gilt
- ▶ gleichzeitig entsprechendes Skalieren der Mantisse ⇒ schieben
- Achtung: dabei verringert sich die effektive Genauigkeit des kleineren Summanden
- anschließend Addition/Subtraktion der Mantissen
- ▶ ggf. Normalisierung des Resultats
- ► Beispiele in den Übungen

Gleitkomma-Addition: Beispiel

$$a = 9,725 \cdot 10^7$$
 $b = 3,016 \cdot 10^6$

$$y = (a + b)$$

$$= (9,725 \cdot 10^{7} + 0,3016 \cdot 10^{7})$$

$$= (9,725 + 0,3016) \cdot 10^{7}$$

$$= (10,0266) \cdot 10^{7}$$

$$= 1,00266 \cdot 10^{8}$$

$$=1,003\cdot 10^8$$

Angleichung der Exponenten Distributivgesetz Addition der Mantissen Normalisierung

Runden bei fester Stellenzahl

normalerweise nicht informationstreu!

Achtung: Auslöschung

Probleme bei Subtraktion zweier Gleitkommazahlen

Fall 1 Exponenten stark unterschiedlich

- kleinere Zahl wird soweit skaliert, dass von der Mantisse (fast) keine gültigen Bits übrigbleiben
- kleinere Zahl geht verloren, bzw. Ergebnis ist stark ungenau
- ► Beispiel: 1.0E20 + 3.14159 = 1.0E20

Fall 2 Exponenten und Mantisse fast gleich

- fast alle Bits der Mantisse löschen sich aus
- Resultat hat nur noch wenige Bits effektiver Genauigkeit

Gleitkomma: Multiplikation, Division

Multiplikation von Gleitkommazahlen $y = a_1 \cdot a_2$

- Multiplikation der Mantissen und Vorzeichen Anmerkung: Vorzeichen s_i ist hier -1^{sBit} , in der Logik gilt: $sBit_1$ XOR $sBit_2$
- Addition der Exponenten
- ▶ ggf. Normalisierung des Resultats

$$y = (s_1 \cdot s_2) \cdot (m_1 \cdot m_2) \cdot b^{e_1 + e_2}$$

Division entsprechend:

- Division der Mantissen und Vorzeichen
- Subtraktion der Exponenten
- ggf. Normalisierung des Resultats

$$y = (s_1/s_2) \cdot (m_1/m_2) \cdot b^{e_1-e_2}$$

IEEE-754: Infinity Inf, Not-a-Number NaN, ± 0

- schnelle Verarbeitung großer Datenmengen
- Statusabfrage nach jeder einzelnen Operation unbequem
- trotzdem Hinweis auf aufgetretene Probleme wichtig
- ⇒ Inf (infinity): spezieller Wert für plus/minus Unendlich Beispiele: $2/0, -3/0, arctan(\pi), usw.$
- ⇒ NaN (not-a-number): spezieller Wert für ungültige Operation Beispiele: $\sqrt{-1}$, arcsin(2,0), Inf/Inf, usw.

IEEE-754: Infinity Inf, Not-a-Number NaN, ± 0 (cont.)

Normalized	±	0 < Exp < Max	Any bit pattern
Denormalized	±	0	Any nonzero bit pattern
Zero	±	0	0
Infinity	±	1111	0
Not a number	±	1 1 11	Any nonzero bit pattern
	7	Sign bit	III (ATI (= 25 3 PERENT ETT)

- ▶ Rechnen mit *Inf* funktioniert normal: 0/Inf = 0
- ▶ jede Operation mit NaN liefert wieder NaN

[Tan09]

5.7 Ziffern und Zahlen - Gleitkomma und IEEE 754

IEEE-754: FloatInfNaNDemo.java

java FloatInfNaNDemo

```
0 / 0 = NaN
1 / 0 = Infinity
-1 / 0 = -Infinity
1 / Infinity = 0.0
Infinity + Infinity = Infinity
Infinity + -Infinity = NaN
Infinity * -Infinity = -Infinity
Infinity + NaN = NaN
sqrt(2) = 1.4142135623730951
sqrt(-1) = NaN
0 + NaN = NaN
NaN == NaN? = false
Infinity > NaN? = false
```

Achtung Achtung

ULP: Unit in the last place

- die Differenz zwischen den beiden Gleitkommazahlen. die einer gegebenen Zahl am nächsten liegen
- ▶ diese beiden Werte unterscheiden sich im niederwertigsten Bit $der Mantisse \Rightarrow Wertigkeit des LSB$
- daher ein Maß für die erreichbare Genauigkeit
- ▶ IEEE-754 fordert eine Genauigkeit von 0,5 ULP für die elementaren Operationen: Addition, Subtraktion, Multiplikation, Division, Quadratwurzel
 - = der bestmögliche Wert
- ▶ gute Mathematik-Software garantiert ≤ 1 ULP auch für höhere Funktionen: Logarithmus, Sinus, Cosinus usw.
- ▶ Progr.sprachenunterstützung, z.B. java.lang.Math.ulp(double d)

Rundungsfehler

- sorgfältige Behandlung von Rundungsfehlern essentiell
- ▶ teilweise Berechnung mit zusätzlichen Schutzstellen
- dadurch Genauigkeit $\pm 1\, \text{ULP}$ für alle Funktionen
- ziemlich komplexe Sache
- ▶ in dieser Vorlesung nicht weiter vertieft
- beim Einsatz von numerischen Algorithmen essenziell

- ▶ die meisten Rechner sind für eine Wortlänge optimiert
- ▶ 8-bit, 16-bit, 32-bit, 64-bit, ... Maschinen
- ▶ die jeweils typische Länge eines Integerwertes
- und meistens auch von Speicheradressen
- zusätzlich Teile oder Vielfache der Wortlänge unterstützt
- 32-bit Rechner
 - Wortlänge für Integerwerte ist 32-bit
 - adressierbarer Speicher ist 2³² Bytes (4 GiB)
 - bereits zu knapp für speicherhungrige Applikationen
- ▶ derzeit Übergang zu 64-bit Rechnern (PCs)
- kleinere Wortbreiten: embedded-Systeme (Steuerungsrechner), Mobilgeräte etc.

Datentypen auf Maschinenebene

- ▶ gängige Prozessoren unterstützen mehrere Datentypen
- entsprechend der elementaren Datentypen in C, Java, ...
- void* ist ein Pointer (Referenz, Speicheradresse)
- ► Beispiel für die Anzahl der Bytes:

C Datentyp	DEC Alpha	typ. 32-bit	Intel IA-32 (x86)
int	4	4	4
long int	8	4	4
char	1	/// \	1
short	2	2	2
float	4	4	4
double	8	8	8
long double	8	8	10/12
void *	8	4	4

Datentypen auf Maschinenebene (cont.)

Abhängigkeiten (!)

- Prozessor
- Betriebssystem
- Compiler

segment word size	16 bit			32 bit						64 bit			
compiler	Microsoft	Borland	Watcom	Microsoft	Intel Windows	Borland	Watcom	Gnu v.3.x	Intel Linux	Microsoft	Intel Windows	Gnu	Intel Linux
bool	2	1	1	1	1	1	1	1	1	1	1	1	1
char	1	1	1	1	1	1	1	1	1	1	1	1	1
wchar_t		2		2	2	2	2	2	2	2	2	4	4
short int	2	2	2	2	2	2	2	2	2	2	2	2	2
int	2	2	2	4	4	4	4	4	4	4	4	4	4
long int	4	4	4	4	4	4	4	4	4	4	4	8	8
int64				8	8			8	8	8	8	8	8
enum	2	2	1	4	4	4	4	4	4	4	4	4	4
float	4	4	4	4	4	4	4	4	4	4	4	4	4
double	8	8	8	8	8	8	8	8	8	8	8	8	8
long double	10	10	8	8	16	10	8	12	12	8	16	16	16
m64			7.4	8	8				8		8	8	8
m128				16	16				16	16	16	16	16
m256				7	32				32		32		32
pointer	2	2	2	4	4	4	4	4	4	8	8	8	8
far pointer	4	4	4										
function pointer	2	2	2	4	4	4	4	4	4	8	8	8	8
data member pointer (min)	2	4	6	4	4	8	4	4	4	4	4	8	8
data member pointer (max)		4	6	12	12	8	12	4	4	12	12	8	8
member function pointer (min)	2	12	6	4	4	12	4	8	8	8	8	16	16
member function pointer (max)	Ω.	12	6	16	16	12	16	8	8	24	24	16	16

www.agner.org/optimize/ calling_conventions.pdf

Table 1 shows how many bytes of storage various objects use for different compilers.

5.9 Ziffern und Zahlen - Literatur

Literatur

- [BO11] R.E. Bryant, D.R. O'Hallaron:

 Computer systems A programmers perspective.

 2nd edition, Pearson, 2011. ISBN 0-13-713336-7
- [Tan06] A.S. Tanenbaum: Computerarchitektur: Strukturen, Konzepte, Grundlagen. 5. Auflage, Pearson Studium, 2006. ISBN 3-8273-7151-1
- [Tan09] A.S. Tanenbaum: Structured Computer Organization. 5th rev. edition, Pearson International, 2009. ISBN 0-13-509405-4

5.9 Ziffern und Zahlen - Literatur

Literatur (cont.)

- [Ifr10] G. Ifrah: *Universalgeschichte der Zahlen*. Tolkemitt bei Zweitausendeins, 2010. ISBN 978-3-942048-31-6
- [Hei05] K. von der Heide: Vorlesung: Technische Informatik 1 interaktives Skript. Universität Hamburg, FB Informatik, 2005. tams.informatik.uni-hamburg.de/lectures/2004ws/vorlesung/t1 Float/Double-Demonstration: demoieee754
- [Gol91] D. Goldberg: What every computer scientist should know about floating-point. in: ACM Computing Surveys 23 (1991), March, Nr. 1, S. 5-48.
 www.validlab.com/goldberg/paper.pdf

Literatur (cont.)

[Knu08] D.E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 0, Introduction to Combinatorial Algorithms and Boolean Functions. Addison-Wesley Professional, 2008. ISBN 978-0-321-53496-5

[Knu09] D.E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 1, Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 2009. ISBN 978-0-321-58050-4

Literatur (cont.)

[Omo94] A.R. Omondi: Computer Arithmetic Systems – Algorithms, Architecture and Implementations. Prentice-Hall International, 1994. ISBN 0-13-334301-4

[Kor93] I. Koren: *Computer Arithmetic Algorithms*. Prentice-Hall, Inc., 1993. ISBN 0-13-151952-2

[Spa76] O. Spaniol: *Arithmetik in Rechenanlagen*. Teubner, 1976. ISBN 3-519-02332-6