MATLAB: Session 1

Brian Higgins Ciaran Rogers

Outline

- 1. Recap functions from Preliminary Problem Set
- 2. Solve Endowment Economy Numerically
- 3. Introduce Finite Horizon Dynamic Programming

Example 1: Fibonacci

$$f(1) = 1; f(2) = 1$$

 $f(n) = f(n-1) + f(n-2)$

Write code that returns the nth element

- 1. Recursion
- 2. Loop
- 3. Comparison of Performance
 - Write code that returns first n elements (in loop and recursion)
 - \bullet Use tic/toc to time recursion and loop functions; plot the differences up to n=30
 - Question: Why is one faster than the other?

Example 2: Numerical Integration/Pareto Distribution

$$F_X(x) = \begin{bmatrix} 1 - \frac{x_m}{x}^{\alpha} & \text{if } x \ge x_m \\ 0 & \text{if } x < x_m \end{bmatrix}$$

$$f_X(x) = \begin{bmatrix} \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}} & \text{if} & x \ge x_m \\ 0 & \text{if} x < x_m \end{bmatrix}$$

EXERCISES

- 1. Write a function for the Pareto PDF ($\alpha = 2$; $x_m = 1$)
- 2. Write a function for the Pareto CDF
- 3. Plot the Pareto PDF
- 4. Define a grid x that covers (3,4), with step size d
- 5. Evaluate Pareto density on x, store as fx
- 6. Using the grid from 4., and fx, figure out a way to approximate the likelihood of the Pareto distributed random variable to lie within [34]

Market Equilibrium Without FOCs

Core Problem: Perfectly Competitive Exchange Economy

- Two consumers: A,B
- Two goods: x_1, x_2
- Utility: $[x_1^r + x_2^r]^{\frac{1}{r}}$
- Endowments: $\{(y_1^A, y_2^A), (y_1^B, y_2^B)\} = \{(10, 5), (5, 40)\}$

GOAL: Find equilibrium prices and allocation

TOOLS: Dynamic Programming

Outline of Process

- 1. Construct Edgeworth Box
- 2. Draw Indifference Curves at endowment
- 3. Calculate individual demands given prices
- 4. Draw individual demand points on Edgeworth Box
- 5. Calculate Total Demand (fixed supply) given prices
- 6. Find equilibrium prices and allocations

Step 1: Draw Edgeworth Box

Step 2: Construct Indifference Curves

- cesutility.m
- cesindiff.m
- Make two new functions with r as given, not as argument
- Find utility of Agent A at endowment point
- Draw indifference curve through the endowment point

Practice 1: Plot indifference curve for B HINT: What does a point in the box represent?

Practice 2: Plot budget constraint of Agent A, assuming $p_1 = 1$ and $p_2 = 0.5$

Step 3: Derive Individual Demands

$$\max_{x_1, x_2} [x_1^r + x_2^r]^{\frac{1}{r}}$$

$$s.t. x_1 p_1 + x_2 p_2 \le y_1 p_1 + y_2 p_2 \equiv m$$

Useful matlab function: fmincon

- What is the objective?
- What is A? What is b?
- What is a good guess?

Step 4: Demand in Box

Practice 1: Make a new box, with the endowment point, the budget constraint, and two demand points

Practice 2: Add indifference curve at each of individual demand points.

Step 5: Total Demand

Construct a function that calculates total demand for both goods.

Practice 1: Draw the demand curve on a graph

Practice 2: Add the supply curve to the graph

Step 6: Find Equilibrium Prices and Allocation

Step 6: Find Equilibrium Prices and Allocation

Practice 1: Draw equilibrium point and the Indifference Curves

Practice 2: Run code for r = 0.2 and r = 0.9. What is the difference? What is the intuition for it?

Introduction to Dynamic Programming

- Very general and useful method in economics
- Heavily featured in Labour, IO, Macro, Finance, etc
- In programming camp informal introduction through 3 examples:
 - Cake-eating problem
 - Patent Renewal
 - PCF Championship

Note: No proofs, only methods!

Finite Horizon Problem

Consider the following general problem:

$$V(y_0, 0) = \max_{\{x_t\}_{t=0}^{T-1}} \sum_{t=0}^{T-1} \beta^t u(x_t, y_t)$$

s.t.
$$y_{t+1} = f(x_t, y_t)$$

where y_t is the state variable and x_t is the control variable.

Solution Method: Backward Induction

Backward Induction

$$V(y_0, 0) = \max_{\substack{\{x_t\}_{t=0}^{T-1} \\ x_t\}_{t=0}^{T-1}}} \sum_{t=0}^{T-1} \beta^t u(x_t, y_t)$$

$$= \max_{\substack{\{x_t\}_{t=0}^{T-1} \\ x_t\}_{t=0}^{T-1}}} u(x_0, y_0) + \beta \sum_{t=0}^{T-2} \beta^t u(x_{t+1}, y_{t+1})$$

$$= \max_{\substack{\{x_t\}_{t=0}^{T-1} \\ x_t\}_{t=0}^{T-1}}} u(x_0, y_0) + \beta V(y_1, 1)$$

There, we can solve the problem, if and only if we knew V(.,1)!

BUT, we know that
$$V(.,T)=0!!$$
 \rightarrow solve for $V(.,T-1)...$

Cake-Eating Problem

$$V(y_0) = \max_{\{x_t\}_{t=0}^T} \sum_{t=0}^T \beta^t \log(x_t)$$

subject to

- $\bullet \ \ y_{t+1} = y_t x_t$
- $x_t = 0$; $y_{t+1} = 0$
- $y_0 = A$

Backward Induction: Solution Method

Steps

- 1. Set up V-grid that defines the value function over T states
- 2. Define state variable grid on which you will evaluate V(.,t)
- 3. Set up the loop over backward induction
 - at each t
 - Construct a spline function for V(., t+1)
 - Set up grid of potential x_t choices (and satisfies constraints !!)
 - Find optimal choices, saving it as well as the value function