Let X be a normed space space over $\mathbb R$ and suppose the parallelogram law holds, *i.*e.

$$|x+y|^2 + |x-y|^2 = 2|x|^2 + 2|y|^2 \tag{*}$$

for all $x,y\in X$. This is a necessary condition for X to be an inner product space. I will show it is also a sufficient condition

Let $\langle x,y\rangle:=|x+y|^2-|x|^2-|y|^2$. Note that $\langle x,y\rangle=\langle y,x\rangle$, so this is symmetric. Note also that $\langle x,y\rangle$ is continuous as a map from $X^2\to\mathbb{R}$.

Lemma 1. $\langle -x,y \rangle = -\langle x,y \rangle$

Proof. Observe that

$$\langle x, y \rangle = |x + y|^2 - |x|^2 - |y|^2$$

 $\langle -x, y \rangle = |-x + y|^2 - |x|^2 - |y|^2$

So

$$\langle x, y \rangle + \langle -x, y \rangle = |x + y|^2 + |x - y|^2 - 2|x|^2 - 2|y|^2$$

By (*), this is zero.

Lemma 2. $\langle a+b,c\rangle=\langle a,c\rangle+\langle b,c\rangle$

Proof. Observe that

$$\langle x + y, z \rangle = |x + y + z|^2 - |x + y|^2 - |z|^2$$

 $\langle x - y, z \rangle = |x - y + z|^2 - |x - y|^2 - |z|^2$

and consider the sum

$$\langle x + y, z \rangle + \langle x - y, z \rangle = |x + z + y|^2 + |x + z - y|^2 - (|x + y|^2 + |x - y|^2) - 2|z|^2$$

By (*),
$$|x+y|^2 + |x-y|^2 = 2|x|^2 + 2|y|^2$$
 and $|x+y+z|^2 + |x+y-z|^2 = 2|x+y|^2 + 2|z|^2$, so we get

$$\langle x + y, z \rangle + \langle x - y, z \rangle = 2|x + y|^2 - 2|x|^2 - 2|y|^2$$

which by (*) is

$$|x+y|^2 - |x-y|^2 = |x+y|^2 - 2|x|^2 - 2|y|^2 - (|x-y|^2 - 2|x|^2 - 2|y|^2)$$

By (*) a final time, we get

$$\langle x + y, z \rangle + \langle x - y, z \rangle = \langle x, z \rangle - \langle -x, z \rangle = 2 \langle x, z \rangle$$

Now note that $\langle 2x,y\rangle=\langle x+x,y\rangle-\langle x-x,y\rangle=2\langle x,y\rangle$ by the above. Thus

$$\langle x + y, z \rangle + \langle x - y, z \rangle = \langle 2x, y \rangle$$

Letting $x = \frac{a+b}{2}$, $y = \frac{a-b}{2}$, and z = c proves the lemma.

Theorem 1 (Linearity). $\langle kx + y, z \rangle = k \langle x, z \rangle + \langle y, z \rangle$

Proof. By lemma 2, it suffices to show that $\langle kx, y \rangle = k \langle x, y \rangle$. To see this, first note it is trivial when k = 0. Then consider the case where k is a positive integer. We have

$$\langle kx, y \rangle = \langle x + (k-1)x, y \rangle = \langle x, y \rangle + \langle (k-1)x, y \rangle$$

so it follows by induction that $\langle kx,y\rangle=k\langle x,y\rangle$. Now consider $\langle k^{-1}x,y\rangle$. By the previous result, we know $k\langle k^{-1}x,y\rangle=\langle x,y\rangle$, concluding $\langle k^{-1}x,y\rangle=k^{-1}\langle x,y\rangle$. As any rational number $q=ab^{-1}$ where $a,b\in\mathbb{Z},\ b\neq 0$, we see that $\langle qx,y\rangle=\langle ab^{-1}x,y\rangle=ab^{-1}\langle x,y\rangle=q\langle x,y\rangle$. By continuity, we can extend this to the case where $r\in\mathbb{R}$ is arbitrary, giving $\langle rx,y\rangle=r\langle x,y\rangle$.