Introdução aos filtros analógicos: análise de circuitos, resposta em frequência e síntese

Osmar Tormena Júnior, Prof. Dr.

2025

Sumário

\mathbf{S}	Sumário			
Lista de Figuras				
1	Tra	nsformada de Laplace	4	
	1.1	Definição da transformada de Laplace	5	
	1.2	Transformada inversa de Laplace	6	
	1.3	Análise de redes através da transformada de Laplace	8	
	1.4	Alguns detalhes importantes	9	
2	Tra	nsformada de Fourier	11	
	2.1	A transformada generalizada de Fourier	11	
	2.2	A transformada inversa de Fourier	12	
	2.3	A tranformada unitária de Fourier	12	
	2.4	Cálculo simbólico da transformada de Fourier e sua inversa	13	
	2.5	A resposta em frequência de circuitos	13	
3	Res	sposta em frequência	15	

Lista de Figuras

1.1	Circuito RC.	4
1.2	Divisor "resistivo" de tensão	5
1.3	Resposta ao degrau do circuito RC.	7
1.4	Topologia de Cauer, ordem 3	9
2.1	Resposta em magnitude do circuito RC	14
2.2	Resposta em fase do circuito RC	14

Capítulo 1

Transformada de Laplace

Em unidades curriculares anteriores, foi abordado (dentre outras coisas) a análise de circuitos como o da Figura 1.1.

Figura 1.1: Circuito RC.

Pela Lei das Tensões de Kirchoff, a análise do circuito resulta no seguinte sistema de Equações Diferenciais Ordinárias Lineares e com Coeficientes Constantes (EDO)

$$\begin{cases} \frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{1}{RC}i(t) = \frac{1}{R}\frac{\mathrm{d}v_i(t)}{\mathrm{d}t} \\ \frac{\mathrm{d}v_o(t)}{\mathrm{d}t} = \frac{1}{C}i(t) \end{cases} , \tag{1.1}$$

cuja solução (para $t \ge 0$) deve satisfazer a condição inicial $v_o(0)$ — a tensão inicial do capacitor.

A grande maioria dos alunos não tem uma experiência agradável modelando e resolvendo circuitos dessa maneira. Sistemas de EDO são trabalhosos. Há a necessidade de uma apurada intuição para transformar a tensão inicial do capacitor numa condição adequada à solução da corrente de malha i(t) e, posteriormente, para a obtenção analítica de $v_o(t)$.

A transformada de Laplace (TL), é uma ferramenta útil que se aplica muito bem à solução de

EDO (ou sistemas de EDO), como a Eq. (1.1). A TL de uma função real x(t) é definida por

$$X(s) = \int_0^\infty x(t)e^{-st} dt, \qquad (1.2)$$

sendo s uma variável complexa e X(s) uma função complexa — correspondendo à representação de x(t) no domínio de Laplace. Dizemos que x(t) e X(s) formam um par transformado de Laplace $x(t) \longleftrightarrow X(s)$.

O domínio de Laplace não possui uma interpretação física simples. A variável s costuma ser apresentada por sua decomposição cartesiana: parte real (σ) e parte imaginária (ω) , na forma

$$s = \sigma + j\omega$$
,

com unidades de rad/s.

O poder e a utilidade da TL está na simplificação da trabalho matemático necessário para resolver sistemas como da Eq. (1.1). Por exemplo, pela propriedade de diferenciação da TL

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} \longleftrightarrow sX(s) - x(0). \tag{1.3}$$

Assim, aplicando a TL sobre as equações de tensão e corrente sobre um resitor

$$v(t) = Ri(t) \longleftrightarrow V(s) = RI(s)$$

e um capacitor

$$i(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t} \longleftrightarrow I(s) = C(V(s) - v(0)).$$

 $^{^1\}mathrm{A}$ prova da Eq. (1.3) envolve uma elaborada integração por partes além de uma análise de limites dependendo da continuidade de x(t) na origem (t=0).

Tomando condições iniciais nulas — v(0) = 0, para o capacitor — podemos definir as impedâncias (Z(s) = V(s)/I(s)) desses elementos como: Z(s) = R para o resistor; e Z(s) = 1/sC para o capacitor. Assim, o circuito da Figura 1.1 pode ser redesenhado como na Figura 1.2.

Figura 1.2: Divisor "resistivo" de tensão.

A representação dos componentes de circuito através de suas impedâncias facilita a análise, pois as regras básicas de análise para redes puramente resistivas valem. Assim, aplicando o resultado do divisor resistivo de tensão, podemos escrever

$$V_o(s) = \frac{\frac{1}{sc}}{R + \frac{1}{sC}} V_i(s). \tag{1.4}$$

Por definição, a razão entre a TL de uma variável de saída e a TL de uma variável de entrada é chamada de função de transferência. Para nossos circuitos, as funções de transferência serão denotadas por H(s). Reescrevendo a Eq. (1.4)

$$\frac{V_o(s)}{V_i(s)} = H(s) = \frac{\frac{1}{sC}}{R + \frac{1}{sC}}$$

e simplificando

$$H(s) = \frac{1}{RCs + 1} = \frac{\frac{1}{RC}}{s + \frac{1}{RC}}.$$
 (1.5)

O circuito da Figura 1.1 é um dos circuitos nãotriviais mais simples que podemos esperar analisar. Um entendimento mais robusto da TL e suas aplicações em análise de circuitos são necessários para casos típicos mais intricados. Para fundamentar essa habilidade, uma mínima revisão teórica (ainda que limitada a aspectos práticos de utilidade imediata) é necessária.

1.1 Definição da transformada de Laplace

Retomando da definição da TL na Eq. (1.2), reescrita abaixo

$$X(s) = \int_0^\infty x(t)e^{-st} \, \mathrm{d}t,$$

podemos motivar sua necessidade através de um exemplo simples.

A função degrau unitário, também conhecida como função de Heaviside, representada comumente por u(t) é definida por

$$u(t) = \begin{cases} 0 & t < 0; \\ 1 & t \ge 0; \end{cases}, \tag{1.6}$$

é largamente utilizada para representar acionamentos em circuitos. Sua TL pode ser obtida por

$$U(s) = \int_0^\infty u(t)e^{-st} dt = \int_0^\infty e^{-st} dt$$
$$= \frac{e^{-st}}{-s} \Big|_0^\infty = \frac{e^{-s\infty} - e^{-s0}}{-s}.$$

Caso $\Re(s) > 0$, temos que $e^{-s\infty} \to 0$, então

$$U(s) = \frac{1}{s} \quad \Re(s) > 0.$$

A notação $\Re(s)>0$ representa a região de convergência da TL. Ou seja, os valores de s para os quais a relação

$$u(t) \longleftrightarrow \frac{1}{s} \tag{1.7}$$

vale. Em nossos estudos, não haverá a necessidade de considerarmos a região de convergência. Ademais, em várias aplicações, fica pressuposto que a análise se restringe exclusivamente para $t \geq 0$, ou mesmo t>0. Em ambos os casos, o degrau unitário se reduz à unidade (u(t)=1), conforme a Eq. (1.6). Assim, pode-se encontrar a Eq. (1.7) na notação alternativa

$$1 \longleftrightarrow \frac{1}{s}$$
. (1.8)

A obtenção de pares transformados de Laplace, como a Eq. (1.7) é um simples exercício em Cálculo Diferencial e Integral sobre funções reais. Há uma ampla disponibilidade de tabelas de pares transformados na literatura. Não está no escopo desta unidade curricular a derivação exaustiva desses pares transformados.

Cálculo simbólico da transformada de Laplace

Na eventualidade de um par transformado desconhecido ser necessário, eles podem ser calculados através do Symbolic Math Toolbox do Matlab[®]. Sua documentação pode ser encontrada em https://www.mathworks.com/help/symbolic/.

Como exemplo, vamos repetir a TL do degrau unitário:

```
>> syms s
>> syms t real
>> u = heaviside(t);
>> U = laplace(u, t, s)
U =
1/s
```

Maiores detalhes sobre o Symbolic Math Toolbox e suas funções serão abordadas em um material dedicado.

1.2 Transformada inversa de Laplace

Vamos tomar agora a função de transferência do circuito da Figura 1.1 e assumir que a tensão de entrada $v_i(t)$ é um degrau unitário. Assim, como $V_o(s) = H(s)V_i(s)$, podemos escrever

$$V_o(s) = \left(\frac{\frac{1}{RC}}{s + \frac{1}{RC}}\right) \left(\frac{1}{s}\right).$$

Embora seja possível expandir a multiplicação indicada, isso não avança nossa causa. Desejamos obter a tensão de saída $v_o(t)$ (para $t \geq 0$), porém o que temos é sua representação no domínio de Laplace. Precisamos da transformada inversa!

A transformada inversa de Laplace (TIL) é definida por

$$x(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st} \, \mathrm{d}s, \qquad (1.9)$$

que é substancialmente mais complicada que a Eq. (1.2) que define a TL. Mais importante, a integral é sobre uma variável complexa s e isso a torna (muito) diferente da integração real! Além disso, o parâmetro real σ nos limites de integração pode ser

qualquer valor dentro da região de convergência, o que é contraintuitivo².

A solução da Eq. (1.9) foge muito ao ferramental matemático de graduação para Engenharias. Tanto que soluções algebricamente trabalhosas são propostas para sua abordagem — expansão em frações parciais, seguida de busca em tabelas de pares transformados e propriedades. Aqui optarei por um caminho mais simples, do ponto de vista do trabalho algébrico envolvido.

O teorema dos resíduos de Cauchy estabelece a seguinte igualdade:

$$\frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st} \, \mathrm{d}s = \sum_{p_k} \mathrm{Res} \left(X(s)e^{st}; p_k \right), \tag{1.10}$$

onde p_k é cada um dos polos de X(s). Polos são as raízes do denominador. A notação $\operatorname{Res}(\cdot)$ representa um $\operatorname{residuo}$, dado por

$$\operatorname{Res}\left(X(s)e^{st}; p_k\right) = \lim_{s \to p_k} \left((s - p_k)X(s)e^{st}\right). (1.11)$$

Em nosso exemplo, os polos de $V_o(s)$ são dois: $p_1 = -\frac{1}{RC}$; e $p_2 = 0$. Assim, temos

$$\operatorname{Res}\left(V_{o}(s)e^{st}; \frac{-1}{RC}\right) = \lim_{s \to \frac{-1}{RC}} \left(s + \frac{1}{RC}\right) \frac{\frac{1}{RC}}{s + \frac{1}{RC}} \frac{1}{s} e^{st}$$

$$= \lim_{s \to \frac{-1}{RC}} \frac{\frac{1}{RC}}{s} e^{st}$$

$$= \frac{\frac{1}{RC}}{-\frac{1}{RC}} = -e^{-t/RC}$$

$$\operatorname{Res}\left(V_o(s)e^{st};0\right) = \lim_{s \to 0} s \frac{\frac{1}{RC}}{s + \frac{1}{RC}} \frac{1}{s} e^{st}$$
$$= \lim_{s \to 0} \frac{\frac{1}{RC}}{s + \frac{1}{RC}} e^{st}$$
$$= 1.$$

Assim, pelo teorema dos resíduos de Cauchy, $v_o(t)$ para $t \geq 0$ fica dado por

$$v_o(t) = 1 - e^{-t/RC},$$
 (1.12)

que possui o aspecto típico da equação de carga de um capacitor. Plotando a Eq. (1.12), produzimos a Figura 1.3.

 $^{^2{\}rm Afinal},$ aprendemos que o resultado da integral muda, se mudarmos os limites. Mas esse não é o caso para integrais sobre variáveis complexas.

Figura 1.3: Resposta ao degrau do circuito RC.

A análise da Figura 1.3 confirma a ideia da curva de carga de um capacitor. A resposta a um degrau unitário é uma análise temporal de grande relevância, pois o acionamento em degrau modela a mais simples das manobras em um circuito: ligar/desligar um interruptor.

A Eq. (1.12), conforme visualizada na Figura 1.3, também evidencia um aspecto particular da parametrização de circuitos de primeira ordem³: a grandeza RC possui dimensão de tempo, em s. É comum denominar a constante de tempo $\tau=RC$. Uma aproximação amplamente aceita na literatura especializada é que a resposta de um circuito de ordem unitária é dividida em duas partes: período transitório ou transiente; e regime permanente ou, simplesmente, regime. O limite entre essas duas regiões é arbitrário, porém amplamente aceito, com o valor de $t=5\tau$.

Há diferentes formas de chegarmos à essa (ou qualquer outra) solução:

- através do sistema de EDO da Eq. (1.1) explorando a resposta natural (solução homogênea) e a resposta forçada (solução particular), sendo capaz de resolver um problema de valor inicial (p.v.i.);
- através da aplicação da TL sobre o sistema de EDO, porém sem anular as condições iniciais
 ganha-se a solução do p.v.i. e perde-se a função de transferência;

- como foi feito (anulando as condições iniciais), obtendo uma função de tranferência, porém perdendo a solução do p.v.i.;
- através da integral de convolução, pela resposta impulsiva h(t).

Essa última opção oferece insights únicos, mas é bastante "esotérica". A TIL pode ser aplicada em H(s) para obter a resposta impulsiva h(t). Problemas de valor inicial necessitam de uma significativa sofisticação matemática e entendimento da função impulso unitário (também chamada de delta de Dirac), denotada por $\delta(t)$.

A função impulso unitário não é uma função no sentido estrito, mas sim uma distribuição. Foi desenvolvida originalmente para tratar cargas pontuais (como elétrons) na Física Quântica. Seu uso ganhou corrência na teoria de sinais e sistemas lineares e seus fundamentos. Junto da integral de convolução, dada por

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau, \qquad (1.13)$$

fornecem um resultado poderoso e fundamental.

A questão é: a TL é aplicada justamente para evitarmos as dificuldades com o impulso unitário $\delta(t)$, a resposta ao impulso h(t) e a necessidade de resolver a integral de convolução da Eq. (1.13). Por essa razão, focaremos na função de transferência H(s) e deixaremos as representações temporais em segundo plano.

Cálculo simbólico da transformada inversa de Laplace

Assim como na TL, a TIL também pode ser obtida por meios computacionais. Isso é últil em situações com muitos resíduos (alta ordem no denominador). Além disso, a Eq. (1.11) é, na verdade, apenas o caso mais simples na definição dos resíduos. Sua forma é mais intricada caso algum dos polos se repita.

Repetindo o cálculo já realizado através do Symbolic Math Toolbox, obtemos

```
>> syms s
>> syms t real
>> syms R C real positive
>> Vo = ((1/R/C)/(s+1/R/C))*(1/s);
```

 $^{^3{\}rm Circuitos}$ que possuem apenas um componente reativo, irredutível por associações.

confirmando o resultado obtido manualmente.

1.3 Análise de redes através da transformada de Laplace

Até o presente momento, nossa análise ficou limitada ao simples circuito da Figura 1.1. A análise simplificada através das impedâncias em s oferece um caminho algebricamente mais curto, ainda que trabalhe com um nível de abstração mais alto.

Caso a tensão de saída não seja tomada sobre o capacitor C, mas sobre o resitor R, toda a análise muda. Porém a obtenção da nova função de transferência é relativamente simples:

$$H(s) = \frac{R}{R + \frac{1}{sC}} = \frac{RCs}{RCs + 1} = \frac{s}{s + \frac{1}{RC}}.$$

Comparando as duas funções de transferência, vemos que ambas possuem um polo em s=-1/RC. Porém, enquanto a primeira possui um numerador constante (ordem zero), a segunda possui um zero — uma raiz do numerador da função de transferência — na origem.

Apesar de estarmos operando sobre o mesmo circuito, a escolha entre as variáveis de entrada ou de saída produzem funções de transferência distintas. Como veremos: o funcionamento e interpretação desses circuitos é completamente diferente.

Apenas para satisfazer uma eventual curiosidade, vamos obter a resposta ao degrau deste circuito:

>> syms s
>> syms t real
>> syms R C real positive
>> Vo =
$$(s/(s+1/R/C))*(1/s);$$

>> vo = ilaplace(Vo, s, t)
vo =
 $\exp(-t/(C*R))$
Ou seja
 $v_o(t) = e^{-t/RC},$

o que, após breve consideração, é o resultado óbvio⁴. Porém, se tivermos uma rede com muitas malhas, ou muitos nós, de maneira que mesmo a análise por

impedâncias ainda nos deixa com um significativo problema de Álgebra Linear nas mãos: um grande sistema de equações lineares. A experiência mostra que, mesmo um erro de sinal dos mais inocentes, jogam por terra horas de esforço e são a causa de muita frustração!

Uma ideia interessante é automatizar, computacionalmente, o levantamento da função de transferência a partir de um circuito. Para tal, será utilizada uma análise de nós modificada, através do Symbolic Math Toolbox do Matlab $^{\circledR}$.

A netlist

Vamos tomar por exemplo um circuito mais complexo, cuja análise de nós ou de malhas seria mais custosa (e propensa a erros) para fazer à mão. O circuito da Figura 1.4 representa uma topologia padrão para filtros passivos. A obtenção da sua função de transferência é um excelente exercício de avaliação para disciplinas de análise de circuitos elétricos. Porém, nós já estamos um pouco além disso.

Analisando a Figura 1.4, vemos que a rede possui todos os seus nós numerados. Começando pelo terra, com número 0. A sequência dos números é imaterial, desde que sejam valores distintos. Essa enumeração ajuda a descrever o circuito através de uma *netlist*. Até o início da década de 1990, quando computadores com recursos gráficos ainda não eram ubíquos, a descrição de circuitos em simuladores, como o SPICE, era feita dessa forma.

A netlist do circuito da Figura 1.4 pode ser escrita como

e armazenada em um arquivo de texto. Vamos chamá-lo de teste.cir⁵ por hora. O formato é simples, a primeira letra codifica o elemento de circuito, seguido por um número de identificação deste elemento. Os dois números subsequentes representam os nós para ligação do polo positivo e negativo, nesta ordem.

 $^{^4{\}rm Afinal},$ a soma das duas soluções deve resultar na unidade, que é o sinal de entrada.

 $^{^5{\}rm A}$ extensão .cir é histórica. Ela não muda nada, no entanto. Poderia ser .txt ou qualquer outra coisa.

Figura 1.4: Topologia de Cauer, ordem 3.

No Matlab $^{\tiny{\textcircled{\tiny{0}}}},$ vamos executar os seguintes comandos:

```
>> fname = "teste.cir";
>> scam
```

O arquivo teste.cir deve estar no caminho ou na pasta corrente. Idem para o *script* scam.m, que pode ser obtido em https://github.com/echeever/scam. Esse *script* processa a *netlist* e retorna, dentre outras coisas, variáveis simbólicas com a tensão de cada nó.

A função de transferência H(s) pode ser obtida pela razão entre a tensão do nó 3 e do nó 1:

```
>> H = v_3/v_1

H =

R2/(R1 + R2 + L2*s + ...

C1*L2*R1*s^2 + C3*L2*R2*s^2 + ...

C1*R1*R2*s + C3*R1*R2*s + ...

C1*C3*L2*R1*R2*s^3)
```

Assim, chegamos (sem sofrimento) à função de transferência da Eq. (1.14). Percebemos que H(s) é intricada em relação aos valores dos componentes de circuito. A escolha desses valores, a partir de uma característica de funcionamento desejada, não parece óbvia.

1.4 Alguns detalles importantes

A TL definida na Eq. (1.2) é propriamente chamada de transformada unilateral de Laplace. Isso porque seu limite inferior de integração é a origem (t=0). Essa transformada é útil para análise de funções de transferência em sistemas causais e também para a solução de p.v.i.

Existe a transformada bilateral de Laplace. Nela, o limite inferior de integração é $-\infty$. Ela é mais geral e pode analisar as funções de transferência de

sistemas $n\tilde{a}o$ -causais. Porém ela não é capaz de resolver p.v.i.

Quando buscamos uma propriedade ou par transformado de Laplace em alguma referência, é de suma importância averiguarmos qual versão da TL está sendo utilizada. Isso porque há algumas diferenças significativas. Nosso trabalho será feito sempre com a versão unilateral.

Quando expressamos sinais de entrada ou de saída no domínio do tempo, muitas vezes está implícito se o domínio é $-\infty < t < \infty$, ou se é $t \geq 0$. Isso está estreitamente relacionado com o uso do degrau unitário u(t) para segmentar adequadamente a resposta — além disso, também está relacionado com as versões unilateral ou bilateral da TL. Em nossos trabalhos sempre vamos assumir que $t \geq 0$.

Causalidade

Há alguns parágrafos você deve ter lido o termo "causalidade" e se perguntado sobre o significado disso. Um sistema causal é um sistema onde o sinal de saída só responde a uma mudança do sinal de entrada ao mesmo tempo, ou depois, que ela ocorre. Assim, a saída não antecipa a entrada.

Embora a causalidade pareça uma imposição das leis naturais da Física, ela tem implicações significativas na modelagem matemática dos circuitos. Ela define que a região de convergência da TL está sempre à direita do polo mais à direita (no plano s). Assim, a resposta impulsiva do sistema é sempre lateral direita — h(t)=0, para t<0. Por essa razão, podemos usar apenas a versão unilateral da TL e ignorar a versão bilateral.

$$H(s) = \frac{R_2}{C_1 C_3 L_2 R_1 R_2 s^3 + (C_1 L_2 R_1 + C_3 L_2 R_2) s^2 + (L_2 + C_1 R_1 R_2 + C_3 R_1 R_2) s + R_1 + R_2}$$

$$= \frac{\frac{1}{R_1 C_1 L_2 C_3}}{s^3 + \left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_3}\right) s^2 + \left(\frac{1}{R_1 C_1 R_2 C_3} + \frac{C_1 + C_3}{C_1 L_2 C_3}\right) s + \frac{R_1 + R_2}{R_1 C_1 L_2 R_2 C_3}}.$$
(1.14)

Estabilidade

Como veremos mais adiante, também desejamos sistemas que sejam *estáveis*. A estabilidade significa que, enquanto a entrada for um sinal de amplitude finita, a saída também será um sinal de amplitude finita. Mais uma vez, parece óbvio, porém há sistemas comuns que não são estáveis.

Estabilidade é uma condição necessária para a convergência da tranformada de Fourier e, por consequência, para que um circuito possua resposta em frequência definida. No projeto de filtros, sempre buscamos sistemas estáveis.

A combinação de causalidade e estabilidade implica que as funções de transferência desejáveis possua todos os polos com parte real estritamente negativa. Isso produz polinômios em s que são definidos positivos e são uma condição para a realizabilidade do circuito, já que resistências, capacitâncias e indutâncias são sempre positivas.

Capítulo 2

Transformada de Fourier

No Capítulo anterior foi apresentada uma breve introdução teórica e prática sobre a TL. Como dito, a TL traz várias vantagens na tratativa matemática de um circuito: evita a solução direta das EDO; contorna a necessidade de analisar a integral de convolução, a resposta impulsiva e a singularidade do impulso unitário; além de introduzir o útil conceito de impedância, generalizando a resistência para componentes reativos. Tudo isso tem um custo: a interpretação física da TL não é óbvia; e o fato da Análise Complexa fazer parte dos seus fundamentos torna a transformada inversa um tanto "esotérica".

A TL é uma transformação bastante generalista. Quase todas as funções reais x(t) (interessantes num contexto de Engenharia) possuem uma TL X(s) para alguma região de convergência no plano s. A transformada de Fourier (TF), por sua vez, converge apenas para um tipo mais restrito de função. No entanto, a TF descarta a necessidade de Análise Complexa, sendo necessários apenas os fundamentos de Análise Real comuns nos cursos de Cálculo Diferencial e Integral para Engenharias. Além disso, a interpretação física da TF é simples e muito útil, com veremos a seguir.

A forma mais comumente utilizada da TF é definida por

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt, \qquad (2.1)$$

onde $X(\omega)$ é uma função complexa sobre a variável real ω . A variável ω possui dimensão de rad/s e pode ser interpretada como frequência. Ou seja, a TF pode ser vista como uma transformação que relaciona uma representação no tempo x(t) com uma

representação na frequência $X(\omega)$, através de um par transformado $x(t) \longleftrightarrow X(\omega)$.

São evidentes os paralelos entre a TL, definida na Eq. (1.2) e a TF, definida na Eq. (2.1). A TF parece ser a TL bilateral tomando $s=j\omega$ (ou seja, anulando a parte real σ . Essa análise possui as seguintes implicações:

- 1. Para um sinal de tensão v(t) ou de corrente i(t), a $\mathrm{TF^1}$ $(V(\omega)$ ou $I(\omega))$ pode ser interpretada como o conteúdo de frequência (ou espectro deste sinal:
- 2. Para um circuito com resposta impulsiva h(t), caso a Eq. (2.1) seja convergente, sua TF $H(\omega)$ pode ser interpretado como a sua resposta em frequência.

Assim, de forma simples, caso a função de transferência H(s) represente um sistema causal e estável, $\sigma=0$ pertence à região de convergência da TL, de maneira que a substituição

$$s = j\omega, \tag{2.2}$$

é válida. Assim, para esses sistemas, a TF não traz nada de novo: ela é um caso particular da TL. A mesma coisa ocorre para a ampla maioria dos sinais de interesse. Porém, há excessões importantes.

2.1 A transformada generalizada de Fourier

Existem três situações onde a integral de Riemann da Eq. (2.1) não é convergente, porém onde a im-

 $^{^1\}mathrm{Para}$ sinais fisicamente realizáveis, a Eq. (2.1) é sempre convergente.

portância do resultado (até pela obviedade na interpretação) exige ferramentas matemáticas mais sofisticadas: integração de Lebesgue e teoria das distribuições.

No escopo desta unidade curricular, não há justificativa para abordar essas provas em detalhe, de maneira que vamos apenas considerar os seguintes pares como válidos:

$$\delta(t) \longleftrightarrow 1$$
 (2.3)

$$1 \longleftrightarrow 2\pi\delta(\omega) \tag{2.4}$$

$$u(t) \longleftrightarrow \frac{1}{j\omega} + \pi\delta(\omega)$$
 (2.5)

$$e^{j\omega_0 t} \longleftrightarrow 2\pi\delta(\omega - \omega_0)$$
 (2.6)

2.2 A transformada inversa de Fourier

A transformada inversa de Fourier (TIF) fica definida pela substituição de $s=j\omega$ na Eq. (1.9), resultando em

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega.$$
 (2.7)

Como ω é uma variável real, não há nada de especial nesta integração, como ocorre com a TIL da Eq. (1.9).

Analisando as Eqs. (2.1) e (2.7), percebemos que, exceto pelo fator $\frac{1}{2\pi}$, há uma similaridade em sua estrutura: essa similaridade nos leva ao conceito de dualidade. Esse conceito é útil para a obtenção de alguns pares transformados de Fourier, bem como na obtenção e interpretação de algumas das propriedades da TF. Existe uma versão unitária da TF que, além de deixar a dualidade mais clara, também nos permite visualizar a frequência em uma unidade muito mais conveniente: Hz.

2.3 A tranformada unitária de Fourier

Vocês devem estar familiares com a equação $\omega=2\pi f$, onde ω representa uma frequência radial, dada em rad/s, e f representa a frequência em Hz. Estamos habituados a trabalhar em hertz e a interpretação dos resultados fica muito mais direta, ademais, temos uma dualidade mais limpa.

A TF unitária pode ser definida por

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt, \qquad (2.8)$$

enquanto a TIF unitária fica da forma

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} \,\mathrm{d}f. \tag{2.9}$$

Nesta notação, os pares transformados da versão generalizada de Fourier podem ser reescritos como:

$$\delta(t) \longleftrightarrow 1$$
 (2.10)

$$1 \longleftrightarrow \delta(f) \tag{2.11}$$

$$u(t) \longleftrightarrow \frac{1}{j2\pi f} + \frac{\delta(f)}{2}$$
 (2.12)

$$e^{j2\pi f_0 t} \longleftrightarrow \delta(f - f_0)$$
 (2.13)

Assim, podemos estabelecer a seguinte estratégia:

- Usaremos a TL com a notação em s para todas as manipulações algébricas envolvendo sinais e funções de transferência;
- 2. Quando possível e conveniente, tomaremos $s\mapsto j\omega$ para buscar uma interpretação espectral em nossas análises;
- 3. Sempre que necessário, para refinar e/ou trazer inteligibilidade à nossa notação, vamos tomar $\omega \mapsto 2\pi f$, especialmente nos passos finais da análise.

Confusão entre as notações

Ao buscar uma referência sobre TF e suas aplicações, pares transformados e suas propriedades, é muito importante prestar atenção na definição usada na TF e TIF. Assim como no caso das versões unilateral e bilateral da TL, a notação pode ser diferente, ambígua e exatamente o oposto do definido aqui.

É comum representar a frequência radial (em rad/s) tanto usando ω , quanto por outra letra grega ν (nu). Por outro lado, a frequência comum (em Hz) é comumente dada por f, porém em alguns contextos, por ν . Não se prenda às variáveis. Averigue sempre a forma das equações das transformadas direta e inversa.

Frequências negativas?

O estudante atento pode ter notado uma curiosidade: a TF prevê a existência de frequências negativas. Elas existem de fato?

Sinais fisicamente realizáveis (assim como sistemas fisicamente realizáveis) são reais, pois o Universo é real. No entanto, os número complexos nos permitem algumas vantagens algébricas e nós nos valemos deles, porém com alguma perda interpretativa por abstração matemática.

Historicamente, a análise de Fourier foi desenvolvida utilizando senos e cossenos. Nesses casos, percebemos que a interpretação de frequências negativas é uma questão sem sentido, pois:

$$cos(-\omega t) = cos(\omega t);$$

 $sen(-\omega t) = -sen(\omega t).$

Para um cosseno, a paridade da função torna qualquer frequência negativa indistinguível da frequência positiva correspondente. Já no caso na função seno, uma frequência negativa é indistinguível de uma inversão de fase de 180°. Ou seja, em ambos os casos, não há *observabilidade* de uma frequência negativa.

Os senos e cossenos possuem expressões complicadas quando são multiplicados entre si. Isso torna a análise de uma transformada trigonométrica de Fourier de difícil tratamento analítico. Funções exponenciais, por outro lado, possuem simples propriedades quando são multiplicadas entre si e estão estreitamente relacionadas às funções trigonométricas, pois

$$e^{\pm j\theta} = \cos\theta \pm j \sin\theta,$$
 (2.14)

de maneira que a transformada *exponencial* de Fourier ganhou destaque em sua utilização.

Finalmente: sinais reais não possuem frequências negativas e sua representação é um artefato da TF. Por outro lado, sinais complexos têm sim frequências positivas e negativas distintas. Porém sinais complexos não existem na prática — apesar de serem um bom modelo matemático em diversas aplicações, especialmente em Telecomunicações.

2.4 Cálculo simbólico da transformada de Fourier e sua inversa

Novamente, assim como na TL e TIL, o Symbolic Math Toolbox do Matlab[®] nos fornece as funções fourier() e ifourier() para o cômputo da TF e TIF, respectivamente.

Por padrão, o Matlab[®] utiliza as definições das Eqs. (2.1) e (2.7). Caso o usuário deseje mudar isso para as definições das Eqs. (2.8) e (2.9), ele deve executar:

alternativamente, caso queria voltar ao default, basta executar:

Maiores detalhes sobre o uso dessas funções serão abordados em um material à parte.

2.5 A resposta em frequência de circuitos

Retomando a análise do circuito da Figura 1.1, cuja função de transferência da Eq. (1.5) é repetida abaixo para simples referência (lembrando que $\tau = RC$):

$$H(s) = \frac{1}{RCs+1} = \frac{1}{\tau s+1}.$$

Como se trata de uma função de transferência causal e estável — o polo $s=-1/\tau<0$ — vale a substituição $s\mapsto j\omega,$ de maneira que podemos obter a TF na forma radial

$$H(\omega) = \frac{1}{j\tau\omega + 1}. (2.15)$$

A mistura de uma parametrização temporal τ com uma variável espectral ω não promove a maior clareza. Vamos definir uma frequência $\omega_c=1/\tau$, dada em rad/s e reescrever a TF

$$H(\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}}.$$
 (2.16)

Como veremos mais adiante, o parâmetro ω_c é chamado de frequência de corte. Porém, sua relação

com ω e o valor de $H(\omega)$ não é muito clara, pois $H(\omega)$ é uma função complexa sobre a variável real ω .

Fazendo a decomposição cartesiana² de $H(\omega)$,

$$\begin{split} H(\omega) &= \frac{1}{1 + j\frac{\omega}{\omega_c}} \cdot \frac{1 - j\frac{\omega}{\omega_c}}{1 - j\frac{\omega}{\omega_c}}; \\ &= \frac{1 + j\frac{-\omega}{\omega_c}}{1 + \left(\frac{\omega}{\omega_c}\right)^2}, \end{split}$$

obtemos sua parte real

$$\Re(H(\omega)) = \frac{1}{1 + \left(\frac{\omega}{\omega_0}\right)^2} \tag{2.17}$$

e sua parte imaginária

$$\Im(H(\omega)) = \frac{-\frac{\omega}{\omega_c}}{1 + \left(\frac{\omega}{\omega_c}\right)^2}.$$
 (2.18)

A decomposição cartesiana de $H(\omega)$ não possui interpretação física óbvia, porém costuma ser um passo necessário para chegar à decomposição polar³, dadas por

$$|H(\omega)| = \sqrt{\Re(H(\omega))^2 + \Im(H(\omega))^2};$$
 (2.19)

$$\angle H(\omega) = \tan^{-1}\left(\frac{\Im(H(\omega))}{\Re(H(\omega))}\right).$$
 (2.20)

Veremos que, na prática, é preferível trabalhar com $|H(\omega)|^2$, pois ele representa o ganho de energia/potência do sistema, trazendo assim uma interpretação física clara. A fase $\angle H(\omega)$ (em rad), embora clara o bastante em seu significado, possui dificuldades interpretativas no impacto de seu resultado.

Para nosso circuito da Figura 1.3, temos então

$$|H(\omega)|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_c}\right)^2}; \tag{2.21}$$

$$\angle H(\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_c}\right),$$
 (2.22)

que podem ser visualizadas nas Fig
s2.1e2.2,respectivamente.

Figura 2.1: Resposta em magnitude do circuito RC.

Figura 2.2: Resposta em fase do circuito RC.

A análise das Figs 2.1 e 2.2 evidenciam o comportamento "passa-baixas" da resposta em magnitude do circuito da Figura 1.3. A interpretação da resposta em fase, no entanto, permanece elusiva.

 $[\]frac{{}^{2}H(\omega) = \Re(H(\omega)) + j\Im(H(\omega))}{{}^{3}H(\omega) = |H(\omega)| \angle H(\omega)}$

Capítulo 3

Resposta em frequência