LINEAR REGRESSION

Applied Analytics: Frameworks and Methods 1

Outline

- About Regression
- Mechanics of Estimation
- Prediction and Inference
- Regression Models using Wages Data
- Regression Assumptions

Linear Regression

- Oldest, most basic predictive modeling (or supervised learning) technique
- Yet, it remains a useful tool for predicting a numerical outcome and continues to be widely used
- Many modern machine learning approaches are generalizations or extensions of linear regression

Consider this Advertising Data

Source: James et al (2017), Introduction to Statistical Learning with Applications in R

Questions Regression May Answer

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales?
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Regression

- 1. Estimate Regression Equation
- 2. Prediction
- 3. Inference

Let's begin by examining the estimation process

MECHANICS OF ESTIMATION

Estimate Regression Equation

- Estimate parameters of the population regression equation
- = Y = $β_0$ + $β_1$ X + ε
 - where *X* is the predictor,
 - Y is the outcome,
 - β_0 and β_1 are regression coefficients
 - ε is random error
- Coefficients estimated using an optimization procedure like Ordinary Least Squares (OLS)
 - Construct a linear combination of predictors such that $\Sigma e_i = 0$ and Σe_i^2 is minimum
- Next few slides will illustrate this optimization process using an example.

Example

- Deal proneness is the tendency of shoppers to buy products that that offer a good deal such as coupon discounts, sales and buy-one get-one free offers.
- Does deal proneness of parents affect deal proneness of children?
- Schindler, Lala, and Grussenmeyer (2014) gathered data on deal proneness of parents and their children using a 32-item scale for deal proneness. The scores were averaged to construct an index.

Source: Schindler, Robert. M., Vishal Lala, and Colleen Corcoran (2014). "Intergenerational Influence in Consumer Deal Proneness," Psychology & Marketing, 31 (5), 307-320

id	Parent (X)	Child (Y)
1	5.0	3.5
2	3.9	5.0
3	5.5	4.6
4	3.4	2.6
5	3.6	5.6
6	5.9	5.5
7	2.6	3.5
8	5.7	3.4
9	4.4	2.8
10	4.1	3.9

Scatter Plot

Baseline Model

Credit: Colors selected by Rohan Lala

Regression Model

Credit: Colors selected by Nikhil Lala 12

Regression Model (with errors)

sse = $min(\Sigma e_i^2)$ = sum of squared errors

Baseline Model (with errors)

sst = sum of squared total errors

Regression vs. Baseline $R^2 = 1 - sse/sst$

PREDICTION AND INFERENCE

Prediction

- Is there a relationship between outcome and predictors?
 - Statistical test to see if at least one of the coefficients is non-zero
 - F = ((sst sse)/p) / (sse/(n-p-1))
 - Statistical significance indicates a relationship
- How strong is the relationship?
 - $R^2 = 1 sse/sst$
 - 0 < R^2 < 1
 - Heuristics: Weak: $R^2 < 0.1$, Moderate: 0.1<= $R^2 < 0.5$; Strong: $R^2 > = 0.5$
- How accurate are the predictions?
 - Various indices that incorporate residuals/errors
 - Residual error, Sum of squared errors (sse), Mean squared error (mse), Root mean squared error (rmse)
 - Cannot be used for comparisons across samples.

Inference

- Which predictors influence the outcome?
 - Statistical test to examine individual coefficients
 - $t = b_1/se(b_1)$; where b_1 is estimate of coefficient for first predictor
 - Statistical significance indicates an effect
- Interpretation of coefficients
 - A unit change in X_1 will result in a change of b_1 units in Y while holding all other predictor variables constant.
- Nature of the relationship (e.g., linear, quadratic, exponential)
 - Examine scatterplot between predictor and outcome; Statistical significance of non-linear term will reflect nature of relationship.
- Relative strength of variables
 - Standardized regression coefficients; Can only be used for predictors in the same model.
 - Standardized_b1 = b1*sd(X)/sd(Y)

Regression Types

- Regression generates an optimal linear combination of predictor variables to come up with best prediction of the outcome variable.
- In the slides that follow, we will examine each of the following using an example dataset
 - Simple regression: When there is one predictor
 - Multiple Regression: When there are multiple predictors
 - How to model categorical predictors
 - How to test variable interactions
 - Non-linear effects
 - Estimate out of sample error
- Multicollinearity (will be discussed in the module on feature selection)

REGRESSION MODELS

Using Wages Data

Wages Data

```
'data.frame': 1368 obs. of 6 variables:

$ earn : int 159142 192794 97422 160956 164178 30626 94208 101920 6426 85994 ...

$ height: num 73.9 66.2 63.8 63.2 63.1 ...

$ sex : Factor w/ 2 levels "female", "male": 2 1 1 1 1 1 1 2 2 2 ...

$ race : Factor w/ 4 levels "african-american",..: 4 4 4 2 4 4 4 3 4 ...

$ ed : int 16 16 16 16 17 15 12 17 15 12 ...

$ age : int 49 62 33 95 43 30 53 50 25 30 ...
```

Simulated dataset based on a real dataset in Data Analysis using Regression and Multilevel/Hierarchical Models by Andrew Gelman and Jennifer Hill

- Does age influence how much a person earns?
- Scatterplot is a handy way to visualize bivariate relationships

- Linear regression fits a straight line through the data so as to minimize sum of squared errors.
- Gray area indicates confidence bands as the line represents the sample regression function.

- **■** Estimate Regression equation
 - earn = 51806 + 286age
- Prediction
- Inference

- **■** Estimate Regression equation
- Prediction
 - Raw predictions for ten observations
- Inference

	earn <int></int>	prediction <dbl></dbl>
143	75146	64961.40
144	2010	64103.41
146	47758	61815.44
147	14690	73255.28
149	97418	62101.44
150	89422	61529.45
152	59222	68965.34
153	136514	65533.39
154	103778	65533.39
155	1990	67535.36
1-10 of 10 rows		

- **■** Estimate Regression equation
- Prediction
 - F = 5.568, p < 0.05
 - $-R^2 = 0.005731$
 - rmse (computed)=59212.82
- Inference

- **■** Estimate Regression equation
- Prediction
- Inference
 - Age: t = 2.36, p < 0.05
 - Age influences earn
 - The model predicts the earn for a 35 year old to be
 - **51805.6 + 286*35**
 - A person ten years older will make on average 10*286 = \$2860 more.

Model 2: Simple Regression earn = f(height)

Does height influence how much a person earns?

Model 2: Simple Regression earn = f(height)

- Estimate Regression equation
 - earn = -265589.6 +4966 height
- Prediction
 - F = 103.5, p < 0.05
 - $-R^2 = 0.0968$
 - rmse (computed) = 56435.93
 - Is height a better predictor than age?
- Inference

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -265589.6 32522.7 -8.166 9.88e-16 ***
height 4966.0 488.1 10.175 < 2e-16 ***

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 56490 on 966 degrees of freedom
Multiple R-squared: 0.0968, Adjusted R-squared: 0.09587
F-statistic: 103.5 on 1 and 966 DF, p-value: < 2.2e-16
```

Model 2: Simple Regression earn = f(height)

- Estimate Regression equation
- Prediction
- Inference
 - Height: t = 10.175, p < 0.05
 - Height influences earn
 - What is the impact of a 2 inch increase in height on earn?
 - How much will a six foot person earn (all else being equal)?

- Does a person's gender have an effect on their earning?
- Since gender is a categorical variable, a bar chart is a more meaningful than a scatterplot.
- Error bars represent the 95% confidence intervals

- gender is a categorical variable with two levels.
- This variable has a class factor. The factor is unordered, therefore the levels are listed in alphabetical order
- When faced with a predictor that is a factor with two levels, R will treat it as a dummy variable, coding the first level as 0 and the second one as 1.

```
> class(wages$gender)
[1] "factor"
> levels(wages$gender)
[1] "female" "male"
```

- **■** Estimate Regression equation
 - earn = 49367 +
 41536*gendermale
- Prediction
 - F = 124.6, p < 0.05
 - $-R^2 = 0.1143$
 - *rmse* (computed) = 55887.16
 - Is gender a better predictor than age/height?
- Inference

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)

(Intercept) 49367 2269 21.76 <2e-16 ***
gendermale 41536 3720 11.16 <2e-16 ***

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 55940 on 966 degrees of freedom
Multiple R-squared: 0.1143, Adjusted R-squared: 0.1134

F-statistic: 124.6 on 1 and 966 DF, p-value: < 2.2e-16
```

- Estimate Regression equation
- Prediction
- Inference
 - gender influences earn (p<0.05)
 - Predicted earn of a female = 49367 + 41536 * 0
 - Predicted earn of a male = 49367 + 41536 * 1
 - A male makes \$41536 more than a female.

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 49367 2269 21.76 <2e-16 ***
gendermale 41536 3720 11.16 <2e-16 ***

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 55940 on 966 degrees of freedom
Multiple R-squared: 0.1143, Adjusted R-squared: 0.1134
F-statistic: 124.6 on 1 and 966 DF, p-value: < 2.2e-16
```

Review density curves to see if you can find a reason for the discrepancy in earn?

Does a person's race have an effect on their earning?

Model 4: Simple Regression (categorical predictor) earn = f(race)

- Race is a factor with four levels.
- This variable has to be dummy coded.
- k levels implies k-1 dummy variables.
- By default, first level becomes the reference level and does not get a dummy variable.
- Remember, for an unordered factor, R will organize levels in alphabetical order.

```
> class(wages$race)
[1] "factor"
> levels(wages$race)
[1] "african-american" "asian" "hispanic" "white"
```

Model 4: Simple Regression (categorical predictor) earn = f(race)

- **■** Estimate Regression equation
 - earn = 56079 + 20040raceAsian6865raceHispanic + 10480raceWhite
- Prediction
 - F = 2.306, p > 0.05
 - Race does not influence earn.
- Inference

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              56079
                                8.922
                                       <2e-16 ***
raceasian
              20040
                        15694 1.277
                                      0.202
racehispanic
              -6865
                                      0.505
                        10288 -0.667
racewhite
              10480
                         6622 1.583
                                      0.114
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 59290 on 964 degrees of freedom
Multiple R-squared: 0.007126, Adjusted R-squared: 0.004037
F-statistic: 2.306 on 3 and 964 DF, p-value: 0.07522
```

Model 4: Simple Regression (categorical predictor) earn = f(race)

- **■** Estimate Regression equation
- Prediction
- Inference
 - Race does not influence earn.Why?
 - BUT, IF race influenced earn, who would you say earns more, those who are "white" or "asian" and what is the difference?

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              56079
                                8.922
                                        <2e-16 ***
raceasian
              20040
                        15694 1.277
                                       0.202
racehispanic
              -6865
                                       0.505
                         10288 -0.667
racewhite
              10480
                         6622 1.583
                                        0.114
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 59290 on 964 degrees of freedom
Multiple R-squared: 0.007126, Adjusted R-squared: 0.004037
F-statistic: 2.306 on 3 and 964 DF, p-value: 0.07522
```

Model 5: Multiple Regression earn = f(height, gender)

- A multiple regression will consider the effects of multiple predictors on the outcome
- Do height and gender influence how much a person earns?

Model 5: Multiple Regression earn = f(height, gender)

- **■** Estimate Regression equation
 - earn = -101841.9 + 2343 height+ 28961.2 genderMale
- Prediction
 - F = 69.15, p < 0.05
 - $-R^2 = 0.1254$
 - *rmse* (computed) = 55536.7
 - Do height and gender jointly predict earn better than either one alone?
- Inference

Model 5: Multiple Regression earn = f(height, gender)

- **■** Estimate Regression equation
- Prediction
- Inference
 - Both height (p<0.05) and gender (p<0.05) influence earn
 - A 4 inch difference in height will correspond to a 4*2343 increase in earn, while holding gender constant
 - Of the two, gender is a stronger predictor of earn

```
Standardized Coefficients::
(Intercept) height gendermale
0.0000000 0.1467905 0.2357114
```

Model 6: Multiple Regression earn = f(height, gender, race, ed, age)

- A multiple regression will consider the effects of multiple predictors on the outcome
- Generally speaking, more predictors are likely to
 - Reduce specification bias and presenting a complete picture
 - improve predictions
 - lead to overfitting
 - reduce interpretability

Model 6: Multiple Regression earn = f(height, gender, race, ed, age)

- Estimate Regression equation
- Prediction
 - F = 47.44, p < 0.05
 - $-R^2 = 0.257$
 - rmse (computed) = 51185.93
- Inference
 - Based on the model, how much will a 22 year old, 64 inch tall, White Female with 16 yrs of ed earn?
 - Which is the strongest predictor of earn?

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       42188.0 -4.855 1.41e-06 ***
(Intercept)
           -204809.1
height
             1777.8 632.9 2.809 0.00507 **
gendermale
           30313.4 4790.2 6.328 3.80e-10 ***
raceasian
            17176.3
                      13660.9 1.257 0.20894
racehispanic -4240.7
                      8962.7 -0.473 0.63621
racewhite
            5900.6 5760.6 1.024 0.30595
             8173.6 674.7 12.114 < 2e-16 ***
               562.6 107.2 5.248 1.90e-07 ***
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 51400 on 960 degrees of freedom
Multiple R-squared: 0.257, Adjusted R-squared: 0.2516
F-statistic: 47.44 on 7 and 960 DF, p-value: < 2.2e-16
```

Model 7: Multiple Regression (with interaction) earn = f(age, gender, age*gender)

- Previously, we examined effects of predictors acting independently
- Often, variables may interact such that a particular combination of predictors may maximize the outcome.
- Or one variable may be said to modify the relationship of another with the outcome.
- In the scatterplot here, we can see that gender has modified the regression of age on earn.

Model 7: Multiple Regression (with interaction) earn = f(age, gender, age*gender)

■ Estimate Regression equation

earn = 40329.8 + 195.3 age +21569.8 gendermale +461.4age*gendermale

Prediction

- F = 46.89, p < 0.05
- $-R^2 = 0.1273$
- rmse (computed) = 55473.6
- Inference

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         7057.3 5.715 1.47e-08 ***
             40329.8
                195.3 144.5 1.351
age
                                         0.1769
gendermale 21569.8 11186.7 1.928
                                         0.0541 .
age:gendermale
                461.4
                          234.8 1.965
                                         0.0497 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 55590 on 964 degrees of freedom
Multiple R-squared: 0.1273, Adjusted R-squared: 0.1246
F-statistic: 46.89 on 3 and 964 DF, p-value: < 2.2e-16
```

Model 7: Multiple Regression (with interaction) earn = f(age, gender, age*gender)

- Estimate Regression equation
- Prediction
- Inference
 - Age and gender interact (p<0.05)
 - Statisticians recommend not interpreting the main effects (i..e, effects of age or gender) if the interaction is significant
 - Age is positively related to earn BUT only for males

```
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                40329.8
                                      5.715 1.47e-08 ***
                  195.3
age
                                      1.351
                                              0.1769
gendermale
                21569.8
                            11186.7
                                      1.928
                                              0.0541 .
age:gendermale
                  461.4
                                      1.965
                                              0.0497 *
```


earn = $f(age, age^2)$

- What is the functional form of the relationship of age on earn?
 - Linear?
 - Quadratic
 - Cubic?
 - Exponential?
- A scatterplot may offer a hint, however it is best to consult theory or domain knowledge first.
- Model is linear regression since the parameters for the non-linear predictors (e.g., age^2) are linear.

earn = $f(age, age^2)$

earn = $f(age, age^2)$

■ Estimate Regression equation

- earn = 64814 + 139869 age -405551 age^2

Prediction

- F = 27.5, p < 0.05
- $-R^2 = 0.05391$
- rmse (computed) = 57760.27
- Is a nonlinear model better than a linear model?

Inference

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64814 1859 34.858 < 2e-16 ***

poly(age, 2)1 139869 57850 2.418 0.0158 *

poly(age, 2)2 -405551 57850 -7.010 4.46e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 57850 on 965 degrees of freedom

Multiple R-squared: 0.05391, Adjusted R-squared: 0.05195

F-statistic: 27.5 on 2 and 965 DF, p-value: 2.436e-12
```

earn = $f(age, age^2)$

- **■** Estimate Regression equation
- Prediction
- Inference
 - The coefficient of Age^2 is significant (p<0.05)
 - Therefore age has a quadratic relationship with earn
 - In your opinion, does this model better represent reality?

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 64814 1859 34.858 < 2e-16 ***

poly(age, 2)1 139869 57850 2.418 0.0158 *

poly(age, 2)2 -405551 57850 -7.010 4.46e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 57850 on 965 degrees of freedom

Multiple R-squared: 0.05391, Adjusted R-squared: 0.05195

F-statistic: 27.5 on 2 and 965 DF, p-value: 2.436e-12
```

- So far, we have examined prediction performance of the models on the same data used to build them
- Model performance is generally,
 - better on the sample used to train the model
 - but worse on data not used to train the model
- This problem is exacerbated as the model becomes more complex by say adding more variables, or introducing nonlinear terms.

- Since, getting new data is often too costly, difficulty or not possible, one solution is to split the sample into two parts: train and test
- Estimate the model on train set and evaluate using the test set.
- Performance of model on test set can be used as an indication of out-of-sample performance.

- **■** Estimate Regression equation
- Prediction
- Inference

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                    42188.0 -4.855 1.41e-06 ***
(Intercept)
           -204809.1
height
          1777.8 632.9 2.809 0.00507 **
gendermale
           30313.4 4790.2 6.328 3.80e-10 ***
raceasian 17176.3 13660.9 1.257 0.20894
racehispanic -4240.7 8962.7 -0.473 0.63621
racewhite 5900.6
                       5760.6 1.024 0.30595
ed
           8173.6 674.7 12.114 < 2e-16 ***
                        107.2 5.248 1.90e-07 ***
age
              562.6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 51400 on 960 degrees of freedom
Multiple R-squared: 0.257, Adjusted R-squared: 0.2516
F-statistic: 47.44 on 7 and 960 DF, p-value: < 2.2e-16
```

- **■** Estimate Regression equation
- Prediction
 - Train sample

$$\mathbf{F} = 47.44, p < 0.05$$

- $\mathbb{R}^2 = 0.257$
- rmse (computed) = 51185.93
- Test sample
 - $R^2 = 0.232$
 - rmse (computed) = 60810.34
- Inference

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      42188.0 -4.855 1.41e-06 ***
           -204809.1
height
           1777.8 632.9 2.809 0.00507 **
gendermale 30313.4 4790.2 6.328 3.80e-10 ***
raceasian
          17176.3
                      13660.9 1.257 0.20894
racehispanic -4240.7 8962.7 -0.473 0.63621
racewhite 5900.6
                       5760.6 1.024 0.30595
             8173.6 674.7 12.114 < 2e-16 ***
ed
              562.6 107.2 5.248 1.90e-07 ***
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 51400 on 960 degrees of freedom
Multiple R-squared: 0.257, Adjusted R-squared: 0.2516
F-statistic: 47.44 on 7 and 960 DF, p-value: < 2.2e-16
```

But wait: Regression Assumptions

- Regression makes a number of assumptions.
- Generally speaking, regression is robust against small violations of assumptions.
- It is best to check for these assumptions before conducting analysis.
- A discussion of ways to remedy violations of assumptions is beyond the scope of this course.

- Linear in parameters
- Mean of residuals is zero
- Homoscedasticity
- No autocorrelation
- IVs and residuals are not correlated
- n > number of parameters
- Variance of IVs > 0
- No perfect multicollinearity
- No specification bias
- Errors are normally distributed

How to test using R

Conclusion

- In this module, we reviewed
 - what regression is
 - mechanics of estimation
 - use of regression for prediction and inference
 - estimation of various regression models
 - regression assumptions