

Análisis Matemático A (para Ingeniería y Ciencias Exactas y Naturales) Práctica 6

Silvina Del Duca Andrés Juárez Melisa Proyetti Martino Silvia Vietri

Índice general

6.	INT	EGRALES
	6.1.	Cálculo de Primitivas
	6.2.	Método de Sustitución
	6.3.	Método de Integración por Partes
	6.4.	Fracciones Simples
	6.5.	Función Área y Teorema Fundamental del Cálculo
	6.6.	Integral Definida y Regla de Barrow
	6.7.	Área entre Curvas
	6.8.	Ecuaciones Diferenciales
	6.9.	Ejercicios de Aplicación
	6.10.	Respuestas de la Práctica 6

Práctica 6

INTEGRALES

6.1. Cálculo de Primitivas

Ejercicio 6.1. Hallar la familia de primitivas:

a.
$$y = \int \frac{1}{\sqrt[3]{x}} dx$$

e.
$$y = \int \frac{x^5 - 3x^3 + 2x - 1}{x} dx$$

b.
$$y = \int \ln(5) x dx$$

f.
$$y = \int \frac{2-\sqrt{x}\sin(x)+3x}{\sqrt{x}} dx$$

c.
$$y = \int \left(\sin(x) + \frac{3}{x}\right) dx$$

g.
$$y = \int \frac{e^x \sqrt[3]{x} - 8\sqrt{x}}{\sqrt[3]{x}} dx$$

d.
$$y = \int (2\sqrt{x} - x) dx$$

Ejercicio 6.2. Encontrar una primitiva g de la función $f(x) = \sqrt{x} (2x - \sqrt[3]{x})$ que satisfaga $g(1) = \frac{124}{55}$.

6.2. Método de Sustitución

Ejercicio 6.3. Usando el método de sustitución, calcular las siguientes integrales:

a.
$$\int (3x-5)^8 dx$$

e.
$$\int \theta \cos(3\theta^2) d\theta$$

b.
$$\int (8t + 3t^2 - 4)^{11}(8 + 6t) dt$$

f.
$$y = \int 2^x dx$$

c.
$$\int 3x e^{x^2} dx$$

g.
$$\int \frac{2e^x - 10}{e^x - 5x} dx$$

d.
$$\int \frac{\ln(u)}{u} du$$

h.
$$\int \frac{\ln(\sqrt{t})}{t} dt$$

Ejercicio 6.4. Dada la función continua f, llamamos:

$$A = \int f(x) dx \quad \text{y} \quad B = \int f\left(\frac{1-t}{5}\right) dt$$

Elegir la única respuesta correcta.

a.
$$A = -5B$$

c.
$$-5A = B$$

b.
$$A = B$$

d.
$$5A = B$$

Ejercicio 6.5. Calcular:

a.
$$\int 7^{\cos(x)} \sqrt{2} \sin(x) dx$$

c.
$$\int \frac{(\ln(u^2))^5}{u} du$$

b.
$$\int \ln(\sin(\theta)) \cot(\theta) d\theta$$

d.
$$\int \frac{\cos(1+e^{-x})\sin(1+e^{-x})}{e^x} dx$$

6.3. Método de Integración por Partes

Ejercicio 6.6. Usando el método de integración por partes, calcular las siguientes integrales:

a.
$$\int x \cos(x) dx$$

d.
$$\int \sqrt{t} \ln(t) dt$$

b.
$$\int \theta^2 \sin(\theta) d\theta$$

c.
$$\int x^4 \ln(x) dx$$

e.
$$\int \sin^2(\theta) d\theta$$

Ejercicio 6.7. Evaluar las siguientes integrales, primero eligiendo una sustitución adecuada y luego utilizando integración por partes.

a.
$$\int x^3 e^{-x^2} dx$$

d.
$$\int \cos(\sqrt{\theta}) d\theta$$

b.
$$\int \sin(\ln(u)) du$$

e.
$$\int t \ln(1+t) dt$$

c.
$$\int x \sqrt{1-x} dx$$

f.
$$\int u^3 \sin(u^2) du$$

Ejercicio 6.8. Calcular:

a.
$$\int \arctan(x) dx$$

f.
$$\int \sqrt{y} \ln(y^2) dy$$

b.
$$\int arcos(x) dx$$

g.
$$\int \frac{x}{\sqrt[3]{5x+2}} dx$$

c.
$$\int arcsen(x) dx$$

h.
$$\int \frac{\ln(u^2)}{u} du$$

d.
$$\int t^3 e^t dt$$

i.
$$\int \frac{\cot(x)}{\ln(\sin(x))} dx$$

e.
$$\int x^3 \ln^2(x) dx$$

j.
$$\int \frac{4-\tan^3(t-2)}{\cos^2(t-2)} dt$$

6.4. Fracciones Simples

Ejercicio 6.9. Hallar las primitivas de las siguientes funciones racionales:

a.
$$f(y) = \frac{5y-3}{y^2-2y-3}$$

e.
$$f(t) = \frac{t^2+1}{(t-1)(t-2)(t-3)}$$

b.
$$f(x) = \frac{x^2 + 4x + 1}{(x-1)(x+1)(x+3)}$$

f.
$$f(x) = \frac{x+4}{x^3+3x^2-10x}$$

c.
$$f(s) = \frac{6s+7}{s^2+4s+4}$$

g.
$$f(u) = \frac{u-1}{(u+1)^3}$$

d.
$$f(x) = \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3}$$

h.
$$f(x) = \frac{x^3}{x^2 - 2x + 1}$$

Ejercicio 6.10. Resolver:

a.
$$\int \frac{e^t}{e^{2t}+3e^t+2}dt$$

c.
$$\int \frac{e^{-y}}{(e^{-y}+1)(e^{-y}-2)^2} dy$$

b.
$$\int \frac{2\cos(x)}{\sin^2(x)-1} dx$$

d.
$$\int \frac{\cos(\theta)}{\sin^2(\theta) + \sin(\theta) - 6} d\theta$$

Ejercicio 6.11. En las integrales siguientes, hacer una sustitución para expresar el integrando como una función racional y luego resolverlas.

a.
$$\int \frac{\sqrt{x+1}}{x} dx$$

b.
$$\int \frac{dx}{2\sqrt{x+3}+x}$$

c.
$$\int \frac{dx}{x^2 + x\sqrt{x}}$$

d.
$$\int \frac{1}{\sqrt{x} - \sqrt[3]{x}} dx$$
 (Sugerencia: sustituir por $u = \sqrt[6]{x}$)

6.5. Función Área y Teorema Fundamental del Cálculo

Ejercicio 6.12. Dadas las siguientes funciones:

a.
$$f(x) = 5$$

b.
$$f(x) = 2x + 1$$

c.
$$f(x) = -x + 3 \text{ para } x \in [0, 3]$$

- a) Para cada una de ellas calcular A(x) (el área bajo la curva entre 0 y x), teniendo en cuenta la figura geométrica que queda determinada
- b) Verificar que A'(x) es igual a f(x) en cada caso.

Ejercicio 6.13. Calcular la derivada de las siguientes funciones:

a.
$$F(x) = \int_0^x e^{-t+4} dt$$

d.
$$F(u) = \int_{2}^{5u} \sqrt{2 + x^2} dx$$

b.
$$G(t) = \int_2^t (u^3 + 4) du$$

e.
$$R(x) = \int_{x^2}^{\pi} \cos(2t + \pi) dt$$

c.
$$H(x) = \int_{1}^{x} \frac{t+1}{2+e^{t}} dt$$

f.
$$S(t) = \int_{3t^2+1}^{2t} \frac{z^2+z}{z^4+1} dz$$

Ejercicio 6.14. Calcular, si existen, los máximos y mínimos de las siguientes funciones, sin resolver la integral.

a.
$$F(x) = \int_0^x (t - t^2) dt$$

b.
$$G(s) = \int_0^{s^2} e^{-t} dt$$

Integral Definida y Regla de Barrow 6.6.

Ejercicio 6.15. Sabiendo que f y g son funciones integrables, que $\int_0^2 f(x)dx = 3$ y que $\int_0^2 g(x)dx = 2$, calcular:

a.
$$-4 \int_0^2 f(x) dx + 5 \int_0^2 g(x) dx$$

b.
$$\int_0^1 f(x) dx + \int_2^0 \frac{1}{6} g(x) dx + \int_1^2 f(x) dx$$

c.
$$\int_{1/2}^{0} f(x) dx - 3 \int_{2}^{0} g(x) dx + \int_{2}^{1/2} f(x) dx$$

Ejercicio 6.16. Calcular las siguientes integrales, usando la Regla de Barrow y las propiedades de linealidad de la integral.

a.
$$\int_0^4 2(t-3) dt$$

c.
$$\int_{\frac{\pi}{2}}^{3\pi} (\cos(\theta) - 2\sin(\theta)) d\theta$$

b.
$$\int_{-1}^{1} (x^5 - 3x) dx$$

d.
$$\int_0^{81} \left(\sqrt[4]{x} - \frac{1}{5} \sqrt{x} \right) dx$$

Ejercicio 6.17. Calcular las siguientes integrales definidas usando el método de integración que considere conveniente.

a.
$$\int_0^1 \frac{dx}{e^x + 1}$$

e.
$$\int_0^{\frac{\pi}{2}} e^x \sin(x) dx$$

b.
$$\int_4^9 \frac{e^{\sqrt{x}+1}}{\sqrt{x}} dx$$

f.
$$\int_1^e \ln(x) dx$$

c.
$$\int_0^1 x e^{2x} dx$$

g.
$$\int_{-\frac{3}{3}\pi}^{\frac{\pi}{2}} \sqrt{(3+\sin(t))^5} \cos(t) dt$$

d.
$$\int_{1/e}^{0} \frac{x \ln(1-x^2)}{(1-x^2)} dx$$

h.
$$\int_{2}^{\sqrt{7}} x \sqrt{x^2 - 3} \, dx$$

Área entre Curvas 6.7.

Ejercicio 6.18. Graficar las regiones determinadas en cada ítem y calcular su área.

a.
$$A = \{ 0 \le y \le x^2; x \le 2 \}$$

b.
$$B = \{ x^2 \le y \le x \}$$

c.
$$C = \{ y \ge x^2 - 4x + 3; y \le 0 \}$$

d.
$$D = \{ y \ge x^2; y \ge 1/x; x \ge 0; y \le 4 \}$$

e.
$$E = \{ y \le x^2; y \ge 1/x; 0 \le x \le 2 \}$$

f.
$$F=\{\ y\geq \sqrt{x};\ y\leq -\frac{1}{2}x+4;\ x\geq 0\}$$
 j. J es la región que encierran las gráficas de $f(x)=\sqrt[3]{x},\ g(x)=x^2$

g. G es la región que encierran las gráficas de
$$f(x) = x^2 - x - 2$$
, $g(x) = x + 1$

h. H es la región que encierran las curvas
$$y=\cos(2x),\ y=0$$
 con $0\leq x\leq \pi/2$

i.
$$I = \{ 0 \le y \le ln(x); 1 \le x \le e^2 \}$$

j. J es la región que encierran las gráficas de
$$f(x) = \sqrt[3]{x}$$
, $g(x) = x^2$

- k. K es la región que encierran las curvas $y^2 = x$, x = 4
- m. M (opcional) es la región que encierran h(x) = (e+1)(-x+2), $f(x) = e^x + 1$, y = 0
- l. $L = \{ y \ge x^2 x 2; y \ge 0; x \ge 0; y \le x + 1 \}$

Ejercicio 6.19. Dada la curva $f(x) = ax - x^2$, hallar el valor de $a \in \mathbb{R}^+$ tal que el área encerrada entre la curva y el eje de abscisas sea 36. Representar la curva y el área.

Ejercicio 6.20. Hallar el valor de $k \in \mathbb{R}^+$ para que el área de la región limitada por los gráficos de $f(x) = kx^3$, y = 8 y el eje de ordenadas valga 12.

Ejercicio 6.21. (Opcional) Calcular el área de la región limitada por la curva $y^2 = 4x$ y las rectas y = 3 y x = 0.

- a. Tomando x como variable de integración
- b. Tomando y como variable de integración.

Ejercicio 6.22. Indicar cuál es la opción correcta y justificar:

El área encerrada entre las curvas $y=e^x,\,y=e^{-x},\,x=1$ y x=-1 se calcula como:

a.
$$\int_{-1}^{1} (e^x - e^{-x}) dx$$

c.
$$\int_{-1}^{0} (e - e^{-x}) dx + \int_{0}^{1} (e - e^{x}) dx$$

b.
$$\int_{-1}^{0} e^{-x} dx + \int_{0}^{1} e^{x} dx$$

d.
$$\int_{-1}^{0} (e^{-x} - e^{x}) dx + \int_{0}^{1} (e^{x} - e^{-x}) dx$$

6.8. Ecuaciones Diferenciales

Ejercicio 6.23. Hallar la función y=f(x) que satisfaga f(x).x=-f'(x), sabiendo que f(1)=1.

Ejercicio 6.24. La tasa a la cual decrece un elemento radiactivo en cualquier momento t, es proporcional a la cantidad presente de ese elemento. Si N es la cantidad de sustancia radiactiva en el tiempo t, entonces la tasa de decrecimiento está dada por $\frac{dN}{dt} = -kN$, donde k es la constante de decrecimiento. Si la cantidad inicial de sustancia es N_0 :

- a. Expresar la cantidad de sustancia radiactiva en función del tiempo t.
- b. Calcular el tiempo de vida media de la sustancia (el tiempo que transcurre hasta que queda la mitad de la cantidad inicial de sustancia).

Ejercicio 6.25. Encontrar la función y = f(x) que satisface $\frac{1}{x} + x^2y' = 0$, sabiendo que y(1) = 3.

Ejercicio 6.26. Hallar la familia de funciones C(t) que verifica $C'(t) = C(t) e^{-2t+1}$.

Ejercicio 6.27. (Opcional) El economista Pareto estableció una ley empírica para la distribución de ingresos, llamando N al número de personas que perciben x o más unidades monetarias. Si $\frac{dN}{dx} = -Ax^{-B}$, donde A y B son constantes, indicar el rango de personas que perciben ingresos entre dos valores dados c y d, siendo c < d.

Ejercicio 6.28. (Opcional) Las tasa de crecimiento de ciertas bacterias, dependiendo del tiempo. es directamente proporcional a la cantidad de bacterias en cada instante. Se pide:

- a) Plantear la ecuación diferencial que representa la tasa de crecimiento.
- b) Resolver la ecuación diferencial teniendo en cuenta que la población inicial es de 100000 unidades, y a los 60 minutos hay 200000 unidades.
 - c) Indicar en qué momento habrá 400000 unidades.

6.9. Ejercicios de Aplicación

Ejercicio 6.29. (opcional) Se sabe que la velocidad de un cuerpo lanzado verticalmente hacia arriba en tiro vertical, se expresa con la función $v(t) = v_0 - gt$, donde v_0 es la velocidad inicial, g es la aceleración de la gravedad (tomada aproximadamente como $10 \frac{m}{seg^2}$, se desprecia fuerza de rozamiento) y t es el tiempo transcurrido, en segundos, desde el lanzamiento. Si se lanza un objeto con una velocidad inicial de $10 \frac{m}{seg}$, ¿a qué altura se encontrará el objeto t segundos después de ser lanzado? ¿Cuál será la altura al cabo de 2 segundos?

Nota: recordar que la función velocidad surge de derivar la función posición.

Ejercicio 6.30. Se pide:

- a. Calcular $\int_1^5 g(t) dt$ si se sabe que $\int_1^5 (2g(t) + 4t 1) dt = 4$.
- b. Calcular $\int \frac{\cos(x)}{\sin^2(x)-4} dx$.

Ejercicio 6.31. (Optativo) Se pide:

- a. Demostrar que $\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1}(x) \sin(x) + \frac{n-1}{n} \int \cos^{n-2}(x) \, dx$.
- b. Utilizar el inciso anterior para evaluar $\int \cos^2(x) dx$.
- c. Usar los incisos anteriores para evaluar $\int \cos^4(x) dx$.

6.10. Respuestas de la Práctica 6

Ejercicio 1.

a.
$$y = \frac{3}{2}x^{\frac{2}{3}} + C$$

b. $y = \frac{\ln(5)}{2}x^2 + C$
c. $y = -\cos(x) + 3\ln|x| + C$
d. $y = \frac{4}{3}x^{\frac{3}{2}} - \frac{x^2}{2} + C$
e. $y = \frac{1}{5}x^5 - x^3 + 2x - \ln|x| + C$
f. $y = 4\sqrt{x} + \cos(x) + 2x^{3/2} + C$
g. $y = e^x - \frac{48}{7}x^{7/6} + C$

e.
$$y = \frac{1}{5}x^3 - x^3 + 2x - \ln|x| + C$$

f $y = 4\sqrt{x} + \cos(x) + 2x^{3/2} + C$

g.
$$y = e^x - \frac{48}{7}x^{7/6} + C$$

Ejercicio 2. $g(x) = \frac{4}{5}x^{5/2} - \frac{6}{11}x^{11/6} + 2$

Ejercicio 3. a.
$$\int (3x-5)^8 dx = \frac{(3x-5)^9}{27} + C$$

Ejercicio 3. a.
$$\int (3x-5)^8 dx = \frac{(3x-5)^9}{27} + C$$

b. $\int (8t+3t^2-4)^{11} (8t+6t) dt = \frac{1}{12} (8t+3t^2-4)^{12} + C$

c.
$$\int 3xe^{x^2}dx = \frac{3}{2}e^{x^2} + C$$

d.
$$\int \frac{ln(u)}{u} du = \frac{1}{2} ln^2(u) + C$$

d.
$$\int \frac{\ln(u)}{u} du = \frac{1}{2} \ln^2(u) + C$$

e. $\int \theta \cos(3\theta^2) d\theta = \frac{1}{6} \sin(3\theta^2) + C$
f. $\int 2^x dx = \frac{1}{\ln(2)} 2^x + C$

f.
$$\int 2^x dx = \frac{1}{\ln(2)} 2^x + C$$

g.
$$\int \frac{2e^x - 10}{e^x - 5x} dx = 2ln|e^x - 5x| + C$$

h.
$$\int \frac{\ln(\sqrt{t})}{t} dt = \ln^2(\sqrt{t}) + C$$

Ejercicio 4. c.

Ejercicio 5. a.
$$\int 7^{\cos(x)} \sqrt{2} \sin(x) dx = -\frac{\sqrt{2}}{\ln(7)} 7^{\cos(x)} + C$$

b.
$$\int ln(sin(\theta)) \frac{cos(\theta)}{sin(\theta)} d\theta = \frac{1}{2} ln^2(sin(\theta)) + C$$

c.
$$\int \frac{(\ln(u^2))^5}{u} du = \frac{1}{12} \ln^6(u^2) + C$$

c.
$$\int \frac{\left(\ln(u^2)\right)^5}{u} du = \frac{1}{12} \ln^6(u^2) + C$$

d.
$$\int \frac{\cos(1+e^{-x})\sin(1+e^{-x})}{e^x} dx = -\frac{1}{2} \sin^2(1+e^{-x}) + C$$

Ejercicio 6. a. Rta: $x \sin(x) + \cos(x) + C$

b. Rta:
$$-\theta^2 cos(\theta) + 2\theta sin(\theta) + 2cos(\theta) + C$$

c. Rta:
$$\frac{x^5}{5} \left(ln(x) - \frac{1}{5} \right) + C$$

d. Rta:
$$\frac{2}{3}t^{3/2} \left[ln(t) - \frac{2}{3} \right] + C$$

e.
$$y = \frac{1}{2} (-\sin(\theta)\cos(\theta) + \theta) + C$$

Ejercicio 7. a. Sustitución: $u = -x^2$. Integral: $-\frac{1}{2}e^{-x^2}(x^2+1) + C$

b. Sustitución:
$$z = ln(u)$$
. Integral: $\frac{1}{2}u\left[sin(ln(u)) - cos(ln(u))\right] + C$

c. Sustitución:
$$u = 1 - x$$
. Integral: $-\frac{2}{3}(1-x)^{3/2} + \frac{2}{5}(1-x)^{5/2} + C$

d. Sustitución:
$$u = \sqrt{\theta}$$
. Integral: $2\sqrt{\theta}sin(\sqrt{\theta}) + 2cos(\sqrt{\theta}) + C$

e. Sustitución:
$$u=1+t$$
. Integral: $\frac{1}{2}(t^2-1)\ln(1+t)+\frac{3}{4}+\frac{1}{2}t-\frac{1}{4}t^2+C$ f. Sustitución: $z=u^2$. Integral: $-\frac{1}{2}u^2\cos(u^2)+\frac{1}{2}\sin(u^2)+C$

f. Sustitución:
$$z = u^2$$
. Integral: $-\frac{1}{2}u^2cos(u^2) + \frac{1}{2}sin(u^2) + C$

Ejercicio 8. a. Integral: $xarctan(x) - \frac{1}{2}ln(1+x^2) + C$ Sugerencia: pensar como multiplicación $\arctan(x)$. 1

b. Integral:
$$xarcos(x) - \sqrt{1 - x^2} + C$$

c. Integral:
$$xarcsen(x) + \sqrt{1-x^2} + C$$

d. Integral:
$$e^t (t^3 - 3t^2 + 6t - 6) + C$$

e. Integral:
$$\frac{1}{4}x^4 \left[ln^2(x) - \frac{1}{2}ln(x) + \frac{1}{8} \right] + C$$

f. Integral:
$$\frac{2}{3}y^{3/2} \left[ln(y^2) - \frac{4}{3} \right] + C$$

g. Integral:
$$\frac{3}{10} \left[x(5x+2)^{2/3} - \frac{3}{25}(5x+2)^{5/3} \right] + C$$

h. Integral:
$$\frac{1}{2}[ln(u^2)]^2 + C$$

i. Integral:
$$ln(sin(x)) + C$$

j. Integral:
$$4tan(t-2) - \frac{1}{4}tan^4(t-2) + C$$

Ejercicio 9. a. Rta: 2ln|y+1| + 3ln|y-3| + C

b. Rta:
$$\frac{3}{4}ln|x-1| + \frac{1}{2}ln|x+1| - \frac{1}{4}ln|x+3| + C$$

c. Rta: $6ln|s+2| + \frac{5}{s+2} + C$

c. Rta:
$$6ln|s+2| + \frac{5}{s+2} + C$$

d. Rta:
$$x^2 + 2ln|y + 1| + 3ln|y - 3| + C$$

e. Rta:
$$ln|t-1| - 5ln|t-2| + 5ln|t-3| + C$$

E. Rta:
$$-\frac{2}{5}ln|x| + \frac{3}{7}ln|x-2| - \frac{1}{35}ln|x+5| + C$$

g. Rta:
$$\frac{-1}{u+1} + \frac{1}{(u+1)^2} + C$$

f. Rta:
$$-\frac{2}{5}ln|x| + \frac{3}{7}ln|x - 2| - \frac{1}{35}ln|x + 5| + C$$

g. Rta: $\frac{-1}{u+1} + \frac{1}{(u+1)^2} + C$
h. Rta: $\frac{1}{2}x^2 + 2x + 3ln|x - 1| - \frac{1}{x-1} + C$

Ejercicio 10. a. Rta: $-ln(e^t + 2) + ln(e^t + 1) + C$

b. Rta:
$$-ln(sin(x) + 1) + ln|sin(x) - 1| + C$$

c. Rta:
$$-\frac{1}{9}ln(e^{-y}+1) + \frac{1}{9}ln|e^{-y}-2| + \frac{1}{3(e^{-y}-2)} + C$$

d. Rta:
$$\frac{1}{5}ln|sin(\theta) - 2| - \frac{1}{5}ln(sin(\theta) + 3) + C$$

Ejercicio 11. a. Sustitución $z = \sqrt{x+1}$ Integral: $2\sqrt{x+1} - \ln(\sqrt{x+1} + 1) + \ln(\sqrt{x+1} + 1)$ $ln|\sqrt{x+1}-1|+C$

b. Sustitución
$$z = \sqrt{x+3}$$
 Integral: $\frac{1}{2}ln|\sqrt{x+3}-1|+\frac{3}{2}ln(\sqrt{x+3}+3)+C$ c. Sustitución $z = \sqrt{x}$ Integral: $2ln(1+\frac{1}{\sqrt{x}})-\frac{2}{\sqrt{x}}+C$

c. Sustitución
$$z = \sqrt{x}$$
 Integral: $2ln(1 + \frac{1}{\sqrt{x}}) - \frac{2}{\sqrt{x}} + C$

d. Sustitución
$$z=x^{1/6}$$
 Integral: $2\sqrt{x}+3x^{1/3}+6x^{1/6}+6ln|x^{1/6}-1|+C$

Ejercicio 12. a. Área: A(x) = 5x

b. Área:
$$A(x) = x^2 + x$$

c. Área:
$$A(x) = -\frac{1}{2}x^2 + 3x$$

Ejercicio 13. a. $F'(x) = e^{-x+4}$

b.
$$G'(t) = t^3 + 4$$

c.
$$H'(x) = \frac{x+1}{2+e^x}$$

d.
$$F'(u) = 5\sqrt{2 + 25u^2}$$

e.
$$R'(x) = -2.x.\cos(2x^2 + \pi)$$

e.
$$R'(x) = -2x \cdot \cos(2x^2 + \pi)$$

f. $S'(t) = 2\frac{4t^2 + 2t}{16t^4 + 1} - 6t\frac{(3t^2 + 1)^2 + (3t^2 + 1)}{(3t^2 + 1)^4 + 1}$

Ejercicio 14. a. En x = 0 hay un mínimo relativo. En x = 1 hay un máximo relativo.

b. En s = 0 hay un mínimo relativo.

Ejercicio 15. a. -2

c. 3

Ejercicio 16. a. -8

c.
$$-3$$

Ejercicio 17. a. Usar sustitución $u = e^x + 1$ Rta: $ln\left(\frac{2e}{e+1}\right)$

- b. Usar sustitución $u = \sqrt{x}$ Rta: $2(e^3 e^2 + 1)$
- c. Usar partes, resultado $\frac{1}{4}(e^2+1)$
- d. Usar sustitución $u = \ln(1-x^2)$ Rta: $\frac{1}{4} \left[\ln(e^2-1) 2 \right]^2$
- e. Es una integral cíclica. Resultado: $\frac{1}{2} \left(e^{\frac{\pi}{2}} + 1 \right)$
- f. Usar partes, resultado 1
- g. Por sustitución: z = 3 + sin(t) Resultado: 0
- h. Por sustitución: $z = x^2 3$ Resultado: 7/3

Ejercicio 18. a. Rta: 8/3

- b. Rta: 1/6
- c. Rta: 4/3
- d. Rta: AT = A1 + A2 = (3 + ln(1/4)) + 5/3 = 14/3 + ln(1/4)
- e. Rta: 7/3 ln(2)
- f. Rta: 20/3
- g. Rta: 32/3
- h. Rta: 1
- i. Rta: $e^2 + 1$
- j. Rta: 5/12
- k. Rta: 32/3
- l. Rta: AT = A1 + A2 = 4 + 5/3 = 17/3
- m. Rta: $\frac{1}{2}(e+3)$

Ejercicio 19.
$$a=6$$

Ejercicio 20. k=1

Ejercicio 21. Área =
$$\frac{9}{4}$$

Ejercicio 22. d

Ejercicio 23.
$$y = e^{\frac{1}{2} - \frac{x^2}{2}}$$

Ejercicio 24. a. Rta: $N = N_0 e^{-kt}$

b. Rta:
$$t_0 = -\frac{1}{k}ln(1/2)$$

Ejercicio 25. $y = \frac{1}{2x^2} + \frac{5}{2}$

Ejercicio 26.
$$C = ke^{-\frac{1}{2}e^{-2x+1}} k\epsilon R$$

Ejercicio 27. El rango es
$$\left[-\frac{A}{-B+1}c^{-B+1}; -\frac{A}{-B+1}d^{-b+1} \right]$$

Ejercicio 28. a) $\frac{dP}{dt} = kP$ donde t
 es el tiempo transcurrido en minutos y P la población en cada momento

- b) $P = 100000e^{t\ln(2)/60}$
- c) t = 120 en minutos

Ejercicio 29. Función posición $s(t) = 10t - 5t^2$

Altura a los dos segundos: s(2) = 20 - 20 = 0

Ejercicio 30. a.
$$-20$$

b. Rta:
$$-\frac{1}{4}ln(sin(x) + 2) + \frac{1}{4}ln(2 - sin(x)) + c$$