上海交通大学试卷(物理144A卷)

(2013至2014学年第2学期试卷2014年6月23日)

班级号	学号		
课程名称	大学物理		
要的方程和解题的关	键步骤; (3) 不要将订书 ト)	另上关键式子,可参考给分 5钉拆掉; (4) 第四张为草	稿纸。
		和 m_2 的两滑块 A 和 B 通过数均为 μ ,系统在水平向不	
运动,如突然撤消拉	力,则刚撤消后瞬间,滑	块 A 加速度大小为	0
		m ₂	m_1 F
		体位于直立的轻弹簧正上7 力,物体能获得的最大动	
是	0		m
			M Tr
3、(本小题 3 分) 一月	贡点做匀速率圆周运动 ,	速率为 v, 周期为 T, 则石	EΔt=3T/4 时间内,该
质点位移的大小为	0		
4、(本小題 6 分)如图	所示,有一小球在某液体	中竖直下落,在 $t=0$ 时刻,	小球的速度为 $v_0 \overline{j}$
		中竖直下落,在 $t=0$ 时刻, 口速度为 $\bar{a}=-kv\bar{j}$, k 为一	300 (000 1800)
$(\vec{j}$ 为方向向下之单位		D速度为 $\vec{a} = -kv\vec{j}$, k 为一	300 (000 1800)
(j 为方向向下之单位 速率ν随时间变化关系	立矢量),它在液体中的加	D速度为 $\vec{a} = -kv\vec{j}$, k 为一;从 $t = 0$ 时刻开始,	300 (000 1800)
(j 为方向向下之单位 速率ν随时间变化关系	立矢量),它在液体中的加	D速度为 $\vec{a} = -kv\vec{j}$, k 为一;从 $t = 0$ 时刻开始,	300 (000 1800)
(j 为方向向下之单位 速率ν随时间变化关系	立矢量),它在液体中的加	D速度为 $\vec{a} = -kv\vec{j}$, k 为一;从 $t = 0$ 时刻开始,	300 (000 1800)

我承诺,我将严格遵守考试纪律。 承诺人:	题号		1	2	3	4	
	得分						
	批阅人(流水阅 卷教师签名处)						
5、(本小題 4 分)利用多普勒效应 当汽车向波源行驶时,与波源安装							
已知空气中的声速为 u ,则车速为		,					
6、(本小題 4 $分$)设有一水平的匀质圆盘,其质量为 M ,半径为 R ,可绕过圆心竖直轴转动。初始时圆盘静止,然后有一质量为 m 的人从静止开始相对圆盘以恒速率 u 沿圆盘边缘行走,							
则在地面参考系中圆盘角速度大小 处理)。	为				(人可看	f成 质点
7、(本小題 6 分) 粒子的静质量为 m_0 ,按照狭义相对论,当其动能等于其静能时,其质量							
为; 其动量为							
8、(本小题 3 分)有一特殊的轻弹 正值常量。现将弹簧水平放置于光 连且处于自然长度状态。今沿弹簧	滑的水平面上,一	带固定	,另一	一端与	质量为	m H	滑块相

v而压缩弹簧,则弹簧被压缩的最大长度为_____。

9、(本小题 3 分)有一弹簧振子的振动曲线如图所示,则该弹簧振子的周期为____。

10、(**本小题 3 分**)一列简谐横波沿 x 轴正方向传播,各质点的振幅为 2cm,某时刻相距 20m 的两质点的位移都为 1cm,但运动方向相反,则这列波可能的最长波长为_____。

11、(本小題 3 分) 一定量的单原子理想气体按 " pV^2 = 恒量"规律膨胀,则气体在此过程中一定_____(填: "吸收"或"放出") 热量。

12、(本小題 4 分) 1mol 理想气体经历如图所示的过程 ab,由初态 a 变到终态 b,已知 $p_a=10^5\mathrm{Pa}$, $V_a=1\mathrm{m}^3$, $p_b=5\times10^4\mathrm{Pa}$, $V_b=2\mathrm{m}^3$,则该理想气体在 ab 过程中经历的

最高温度为____。

13、(本小題 3 ϕ) 自由度为i 的一定量刚性分子理想气体,当其体积为V ,压强为p 时,其内能为____。

14、(本小题 6 分)某种理想气体,分子总数为 N ,单个分子的质量为 m	,气体分子速率
分布函数为 $f(v)$,则分子速率处于 $[v_1,v_2]$ 区间内的分子数为	,分子速
率处于 $[v_1,v_2]$ 区间内分子的平动动能总和为。	

15、(本小题 3 分) 如图所示,质量为m 半径为R 的均质细圆环,在与圆环平面平行的竖直面内,在重力作用下绕环上一点作小振幅无阻尼自由振动,则其振动周期

为 _____。

16、(本小題 3 分) 如图所示,长为 1 的轻质摆线连接质量为 m 的小球,开始时摆线偏离竖直方向的角度为 θ ,小球与处于光滑水平面上质量为 M 的滑块光滑接触(摆线未接触滑块),滑块右侧有一挡板。突然抽去挡板时,小球对滑块作用力的大小

11		
人	l	0

二、计算题(38分)

1、(本题 8 分) 自行车内胎可视作截面为圆形的环状气体容器,圆形截面的半径为 3cm,环的平均半径为 30cm。若车胎内的气体压强为 2.5atm,当时的气温为 $27^{\circ}C$ 。试估算内胎中充入气体的分子数($1atm=10^5$ Pa, 玻耳兹曼常数 10^{-23} J/K)

2、(本题 12 分)如图所示,一定量的刚性双原子理想气体,从初状态 $a(p_1,V_1)$ 开始,经等温过程达到状态 c,再经过等压过程达到状态 b,最后经过等体过程回到状态 a 而完成一个循

环。已知气体处于状态 b 时压强为 $\frac{p_1}{4}$,求:

- (1) ba 过程中系统吸收的热量, ac 过程中系统做的功;
- (2) cb 过程中系统放出的热量及内能的增量;
- (3) 该循环的效率。

3、(本题 6 分) 如图所示,一沿 x 方向传播的波,在固定端 A 点处反射。O 点处的质点由入射波引起的振动方程为 $y_o = A\cos(\omega t)$ 。已知入射波的波长为 λ , $OA = 1.5\lambda$ 。设振幅不衰减,以 O 点为坐标原点,x 轴向右为正,求:

- (1) 入射波波动式:
- (2) 反射波波动式;
- (3) 合成驻波波动式。

4、(本题 12 分)如图所示," Γ "形刚性支架固连在底面积足够大的木板上,木板放在水平桌面上,其与桌面间的摩擦因数为 μ ,木板与支架的总质量为M。长度为l质量为m的 匀质刚性细杆可以绕支架顶端轴O自由旋转。现将细杆拉到水平位置后由静止释放,在细杆下摆过程中假设木板不移动,当细杆摆至竖直位置时,与固连在木板上不计质量的小木块 A发生完全非弹性碰撞。求:

- (1) 细杆摆至竖直位置时角速度的大小:
- (2) 释放细杆瞬间地面受到的压力;
- (3) 碰撞后系统相对地面移动的最大距离。

