Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

HYMO: PROBLEM-ORIENTED COMPUTER LANGUAGE FOR HYDROLOGIC MODELING

Users Manual

ARS-S-9 May 1973

AGRICULTURAL RESEARCH SERVICE . U.S. DEPARTMENT OF AGRICULTURE

Agricultural Research Service

UNITED STATES DEPARTMENT OF AGRICULTURE

In Cooperation With

, Texas Agricultural Experiment Station Texas A&M University

CONTENTS

Pag	ge
Introduction	1
Operation of HYMO	1
Hydrologic procedures used in HYMO	
Hydograph computation	2
Flood routing	3
Rating curves	4
Sediment yields	
Rules for using HYMO	
General rules	4
Command rules	
Example HYMO program	
Literature cited	
Appendix — HYMO main program and subroutines	4
ILLUSTRATIONS	
1. Dimensionless unit hydrograph	2
2. Relationship between dimensionless shape parameter and	
recession constant/time to peak	3
3. Relationship between dimensionless shape parameter <i>n</i>	
and watershed parameter B	2
4. Brushy Creek watershed near Riesel, Tex	J
TABLE	
	_
Example input for HYMO commands	5

HYMO: PROBLEM-ORIENTED COMPUTER LANGUAGE FOR HYDROLOGIC MODELING

Users Manual

By Jimmy R. Williams¹ and Roy W. Hann, Jr.²

INTRODUCTION

HYMO (7)³ is a problem-oriented computer language for modeling surface runoff and sediment yield from watersheds. The language is called HYMO from the words "hydrologic model." HYMO was designed for planning flood prevention projects, forecasting floods, and research studies. It consists of a main program and 16 subroutines written in FORTRAN IV, but it can be used by hydrologists with little knowledge of computer programing. The language provides 17 commands for the hydrologist to use in any sequence for application to any watershed.

HYMO was designed to transform rainfall data into runoff hydrographs and to route these hydrographs through streams and valleys or reservoirs. It will also compute the amount of sediment produced by a storm at any point on a watershed. It will be useful to research hydrologists in studying the effects of watershed and storm characteristics on the flood hydrograph. HYMO is also a good research tool for testing

hydrologic procedures; for example, a new flood-routing method could be added to HYMO and tested easily, because the inflow hydrographs and the rating curves are available in a HYMO program.

HYMO is flexible. Present hydrologic procedures can be modified or deleted, and other hydrologic procedures can be added by hydrologists familiar with FORTRAN IV programing. Adding a new command simply requires the addition of a new subroutine.

HYMO is efficient, practical, and generally applicable. HYMO programs can be written and the results interpreted by hydrologists who have no conventional computer programing experience. The hydrologic procedures used in HYMO are practical — required inputs are easy to obtain for most watersheds.

HYMO was written for the IBM 360-65 computer, but it could be run on an IBM 1130 with little modification. The storage requirement is about 73 K.

OPERATION OF HYMO

HYMO consists of a main program and 16 subroutines. The HYMO card deck is set up in the following order:

- 1. Main program.
- 2. Subroutines.
- 3. A data card containing the number of commands in the command table.
- 4. A data card containing the ZALFA array.
- 5. Seventeen data cards containing the command table.
- 6. The users program deck consisting of program and data cards.

A printout of the main program, subroutines, ZALFA array, and command table is given in the appendix.

^{&#}x27;Hydraulic engineer, Callege Statian Area, Sauthern Regian, Agricultural Research Service, U. S. Department of Agriculture, Riesel, Tex.

²Head, Enviranmental Engineering Divisian, Civil Engineering, Texas A&M University, Callege Statian, Tex.

 $^{^3\}mbox{ltalicized}$ number in parentheses refer to items in ''Literature Cited'' preceding the appendix.

The main program reads the command table and then calls the HONDO subroutine (2) to read a program data card. Subroutine HONDO determines the command name and number by comparing columns 1 through 20 of the program data card with the command table. Then HONDO determines individual data items by comparing columns 21 through 80 of the pro-

gram data card with the ZALFA array. The data are placed in an array and returned to the main program. Based on the command number, the main program calls the proper subroutine to do the desired calculations. When the calculations are complete, control is returned to the main program, and HONDO is called again to read the next program card.

HYDROLOGIC PROCEDURES USED IN HYMO

The procedures used in HYMO were selected because of their accuracy, general applicability, practicality of inputs, and computational efficiency. For most watersheds the input is easy to obtain, and the procedures produce reasonably accurate results without excessive computer time.

Hydrograph Computation

When flood routing is performed, a watershed is divided into many small areas according to its hydraulic characteristics. The hydrographs from these areas must be estimated, since streamflow measurements are seldom available. A procedure for computing unit hydrographs was developed previously (4). A modification of this procedure is used in HYMO. Unit hydrographs are divided into three parts for computation (fig. 1). From the beginning of rise to the inflection point, t_0 , the hydrograph is computed by the two-parameter gamma distribution equation

$$q = q_p \left[t/t_p \right]^{(n-1)} e^{(1-n)(t/t_{p-1})}$$
(1)

Figure 1. Dimensionless unit hydrograph.

where q = flow rate in cubic feet per second at time t, qp = peak flow rate in cubic feet per second,

 t_p = time to peak in hours, and n = dimensionless parameter.

From t_0 to t_1 ($t_1 = t_0 + 2K$) the hydrograph is computed by the recession depletion equation

$$\frac{t_0 - t}{K}$$

$$q = q_0 e \tag{2}$$

where q_0 = flow rate at the inflection point, t_0 = time at the inflection point, and K = recession constant in hours.

From t_1 to ∞ the recession depletion equation becomes

$$\frac{t_1 - t}{K_1}$$

$$q = q_1 e$$
(3)

where q_1 = flow rate at t_1 , and K_1 = 3K = second recession constant.

The dimensionless shape parameter, n, is a function of K/t_p , as shown in figure 2. The peak flow rate is computed by the equation

$$q_p = \frac{BAQ}{t_p} \tag{4}$$

where B = a watershed parameter, a function of n as shown in figure 3,

A = watershed area in square miles,

and Q = volume of runoff in inches.

Therefore, the entire unit hydrograph can be computed if K and t_p are known. K and t_p can be determined by hydrograph analysis (4) for gaged watersheds. To compute K and t_p for ungaged watersheds, HYMO uses the equations

$$K = 27.0A0.231SLP-0.777(L/W)0.124$$
 (5)

and
$$tp = 4.63A^{0.422}SLP^{-0.46}(L/W)^{0.133}$$
 (6)

where SLP = difference in elevation in feet, divided by flood-plain distance in miles, between watershed outlet and most distant point on the watershed,

and L/W = watershed length-width ratio.

Storm hydrographs are computed by convolving unit hydrographs with incremental source runoff. To compute incremental source runoff, the mass rainfall curve is broken into equal time increments, and the Soil Conservation Service (SCS) rainfall-runoff relationship (3) is applied. The SCS rainfall-runoff relationship is expressed in a set of numbered curves. The SCS National Engineering Handbook (3) provides detailed instructions for selecting the proper curve number.

Hydrographs computed by this procedure compared closely with measured hydrographs from 34 watersheds located in Texas, Oklahoma, Arkansas, Louisiana, Mississippi, and Tennessee. The watershed areas ranged from 0.5 to 25 square miles.

Flood Routing

Streams and valleys

The variable storage coefficient (VSC) flood-routing method (5) was selected for HYMO.

Figure 2. Relationship between dimensionless shape parameter and recession constant/time to peak.

Figure 3. Relationship between dimensionless shape parameter n and watershed parameter B.

The VSC method has been revised (6) to account for the variation in water surface slope during a flood. The revised VSC method is about as accurate as the implicit method (1) and has the general applicability of simpler storage methods. Although an iterative solution is used, the VSC method requires little computer time and is free of convergence problems.

The VSC routing equations are

$$O_2 = C_2 \left[I_a + \left(\frac{1}{C_1} - 1 \right) O_{\underline{1}} \right]. \tag{7}$$

$$C_2 = \frac{2 \triangle t}{2T_2 + \triangle t}. \tag{8}$$

$$C_1 = \frac{2^{\triangle}t}{2T_1 + \triangle t} \,. \tag{9}$$

$$T_{1} = \left(\frac{L}{1800(V_{I_{1}} + V_{O_{1}})}\right)$$

$$\times \left(\frac{L \times SLP_{0}}{L \times SLP_{0} + D_{I_{1}} \cdot D_{O_{1}}}\right)^{\frac{1}{2}}$$
(10)

$$T_{2} = \left(\frac{L}{1800 (V_{I_{2}} + V_{O_{2}})}\right)$$

$$\times \left(\frac{L \times SLP_{0}}{L \times SLP_{0} + D_{I_{2}} \cdot D_{O_{2}}}\right)^{\frac{1}{2}}$$
(11)

In these equations subscripts 1 and 2 refer to the beginning and end of the time interval $\triangle t$; the units are cubic feet per second for flow, hours for time, feet per second for velocity, and feet for length and depth. The symbols are defined as follows:

I = inflow rate. O = outflow rate. $I_a = \frac{I_1 + I_2}{2} = \text{average inflow rate.}$ C = storage coefficient. T = travel time through the reach. L = reach length. V = velocity. $SLP_0 = \text{normal slope.}$ D = depth.

Since T_2 and C_2 are dependent upon O_2 , an iterative technique is required to solve the routing equations. In equation 7, I_a and O_1 are known, and C_1 can be computed from equation 9. This leaves only O_2 and C_2 as unknowns. O_1 can be used as a first approximation of O_2 . The normal depth and velocity for the approximate value of O_2 are entered into equation 11 for computing T_2 . Then equation 8 is used to compute C_2 . The second approximation of O_2 is then obtained from equation 7. This iterative process continues until the difference between successive O_2 values is acceptable. HYMO is set to accept differences of 0.1 percent or less. Usually about four iterations are required.

Reservoirs

HYMO uses the storage-indication method (3) to route floods through reservoirs. This method has been widely used and accepted because it is practical and accurate. The SCS National Engineering Handbook gives detailed instructions for using the method.

Rating Curves

Rating curves must be available at enough locations along a valley to adequately describe the hydraulics of the stream and valley. Most of these rating curves must be computed because there are never enough measured rating curves.

HYMO uses Manning's equation to compute the normal flow-rating curves that are used in the VSC flood-routing method. The normal flood-plain slope is determined for each valley section by plotting a profile of the flood plain. The normal channel slope is determined by plotting a profile of the flood plain with channel distances.

Sediment Yields

The universal soil loss equation (8) was modified to compute the sediment yield for individual storms on watersheds. The modified equation is

$$S = 95 (q_p \times Q)^{0.56} \times K \times C \times P \times LS,$$
 (12)

where S = sediment yield in tons,

 $|q_p|$ = peak flow rate in cubic feet per second,

Q = volume of runoff in acre-feet,= the soil-erodibility factor,

C = the cropping-management factor, P = the erosion control practice factor, LS = the slope length and gradient factor.

Detailed instructions for determining K, C, P, and LS are given by Wischmeier and Smith (8).

Since equation 12 was designed to compute sediment yield from watersheds, a delivery ratio is not needed. The delivery ratio is built into equation 12 by including the peak flow rate. Many of the watershed characteristics that influence the peak flow rate also affect the delivery ratio. Equation 12 has performed well under limited testing, but future refinements are expected.

RULES FOR USING HYMO

The reader should refer to the table, "Example Input for HYMO Commands," as he follows the narrative description of the rules. The example HYMO program that is presented near the end of the manual may also be helpful.

General Rules

HYMO commands are expressed in the first 20 columns of the data card, and columns 21

through 79 are used for numeric data and keywords. Column 80 is reserved for a page-change code (an asterisk in column 80 causes the card to be printed on a new page). Continuation cards are allowed when 59 characters are insufficient to express the data.

The data can be written in any format, but at least one blank space must be left between data items. A decimal is required for numbers containing fractions, but not for whole numbers. Keywords can be written with the data to describe individual data items. Comment cards may be used at any point in a HYMO program by punching an asterisk in column 1 and the comment in columns 2 through 79.

Example input for HYMO commands

	Example input for HYMO commands
Command	Required input
START	RAINFALL BEGINS AT 12.5 HRS PUNCH CÓDE=1
STORE HYD	ID=1 HYD NO=301 DT=.2 HR DA=1.5 SQ MI FLOW RATES= 0 10 50 100 500 1000 1800 2000 1900 1500 1200 1000 800 600 500 400 300 200 100 50 10 1
COMPUTE HYD	ID=2 HYD NO=302 DT=.5 HR DA=2.1 SQ MI CN=90 HT=100 FT L=3.3 MI MASS RAINFALL = 0 .31 .61 1.04 1.84 2.74 3.06 3.45 4.33 4.75
PRINT HYD	ID=2 CODE=1
PUNCH HYD	ID=2
PLOT HYD	ID I=3 ID II=4
ADD HYD	ID=4 HYD NO=101 ID I=5 ID II=6
STORE RATING CURVE	ID=2 VS NO=15 ELEV AREA FLOW 496.6 0 0 497 2 1 498 9 19 499 19 52 500 30 98
COMPUTE RATING CURVE	ID=1 VS NO=10 NO SEGS=3 MIN ELEV=482 FT MAX ELEV=492 FT CH SLP=.006 FP SLP=.0075 N=.05 DIST=175 FT N=.03 DIST=205 FT N=.05 DIST=450 FT DIST ELEV DIST ELEV DIST ELEV DIST ELEV DIST ELEV DIST ELEV 190 492.0 100 490.0 175 484.0 188 482.0 190 482.0 205 484.0 250 486.0 275 488.0 310 490.0 450 492.0
COMPUTE TRAVEL TIME	ID=3 REACH NO=8 NO VS=5 L=4500 FT SLP=.0075
ROUTE	ID=3 HYD NO=8 INFLOW ID=6 DT=.25 HR
ROUTE RESERVOIR	ID=5 HYD NO=501 INFLOW ID=1 OUTFLOW (CFS) STORAGE (AC FT) 0 0 22 533 200 555 1000 • 601 2000 648 3000 694
ERROR ANALYSIS	ID I=3 ID II=5
SEDIMENT YIELD	ID=5 SOIL=.34 CROP=.5 EP=.6 LS=.3
FINISH	

Six hydrographs can be stored in a HYMO program at a time. The hydrographs are identified by storage location numbers 1 through 6. Therefore, the same storage location number must be used for many hydrographs in a HYMO program. This is especially true when routing is done through large watersheds. However, no more than six hydrographs are ever needed at one time because HYMO programs begin at the head of a watershed and work downstream through one reach at a time. When a storage location number is used to store or compute another hydrograph, the first hydrograph is lost. The user should be sure that the hydrograph will not be referred to again before using the storage location number for another command.

To store, compute, or route a hydrograph, the user must specify the time increment. There are no rigid rules about selecting the time increment, but generally it should not be greater than one-fifth of the time to the peak of the hydrograph. This rule usually provides enough points to adequately define the hydrograph. All hydrographs are limited to 300 points.

For the commands "STORE HYD," "COM-PUTE HYD," "ADD HYD," "ROUTE," and "ROUTE RESERVOIR," the user must specify the number of the outflow hydrograph. The hydrograph identification numbers are used to designate specific routing reaches, incremental areas, reservoirs, and partial hydrographs. The partial hydrograph number is given to all hydrographs other than outflow hydrographs from reaches, incremental areas, or reservoirs. The identification numbers for each group are

Reaches						1-100
Partial hydrographs						101-300
Incremental areas .						
Reservoirs				_		501+

Command Rules

The first command for any watershed is START. The two data items associated with this command are the time rainfall begins on the watershed and a code for punching output data. If a storm is to be routed through a watershed only once, the punch code is deleted. However, if more than one routing is to be performed, set the punch code equal to a positive number, and the output data for the first routing will be

punched for use in the second routing. More than one routing is usually required.

Two commands, RECALL HYD and STORE TRAVEL TIME, were designed to be computer punched for second routings; consequently, these commands do not appear in the table.

The STORE HYD command is used to store the coordinates of a hydrograph in the computer. It can be used for storing measured hydrographs or hydrographs computed by methods other than the one used in HYMO. The input data required for STORE HYD are storage location number, hydrograph identification number, time increment, watershed area, and flow rates of the hydrograph at the specified time increment.

The COMPUTE HYD command is used to compute hydrographs from the incremental areas of the watershed. The first five items of data are storage location number, hydrograph identification number, time increment, watershed area, and SCS runoff curve number (3). Normally, data items 6 and 7 are watershed height and main stem length. The height and length are used to compute the recession constant K and the time to peak t_p . However, if Kand t_p are known or estimated by some other method, they can be entered directly into the program. This is accomplished by placing a minus sign before the values of K and t_p and entering them as data items 6 and 7, respectively. The remaining data items are values of the mass rainfall at the specified time increment.

Since most watersheds have a limited number of rain gages, the same mass rainfall data may be used to develop several hydrographs. Once the mass rainfall data have been entered in a COMPUTE HYD command, they can be repeated for any number of COMPUTE HYD commands without repunching the data. Instead, punch a negative number for the eighth data item of all COMPUTE HYD commands that use the same rain gage. When data from another rain gage are entered, the data from the first rain gage are lost and cannot be recalled by using the negative number code.

The RECALL HYD command is one of the two commands that are computer punched. When the punch code is a positive number, the output from STORE HYD and COMPUTE HYD are punched on cards with the RECALL HYD command. The RECALL HYD command stores

the computed and stored hydrographs on cards; it is therefore not necessary to recompute hydrographs for future routings. Instead, the previously computed hydrographs are read into the program, thus saving considerable computer time

Although the input data for the RECALL HYD command are never punched manually, a list of the data items may be helpful in checking computer-punched cards. The input data are storage location number, hydrograph identification number, time increment, drainage area, peak flow rate, runoff volume, number of hydrograph points, and flow rates of the hydrograph.

The PRINT HYD command is used to print coordinates of a hydrograph, volume of runoff, and peak flow rate. The required input data are the storage location number and a peak-volume code. The peak-volume code is deleted if a complete hydrograph printout is desired. If a printout of only the runoff volume and the peak flow rate is needed, the peak-volume code is set to a positive value.

The PUNCH HYD command is used to punch any hydrograph in a HYMO program in the proper form for the RECALL HYD command. PUNCH HYD has two purposes: (1) If the punch code is not used, PUNCH HYD can be used to punch one or more hydrographs for future use; and (2) if it is desirable to punch outflow hydrographs associated with ROUTE, ROUTE RESERVOIR, or ADD HYD, PUNCH HYD must be used because the punch code only provides for punching hydrographs associated with STORE HYD and COMPUTE HYD. The only datum required for PUNCH HYD is the storage location number of the hydrograph to be punched.

The PLOT HYD command is used to plot hydrographs in a HYMO program. It will plot one hydrograph on a set of axes, or if a comparison is desired, it will plot two hydrographs on the same set of axes. The required input data are the storage location numbers of the hydrographs to be plotted.

The ADD HYD command adds the coordinates of any two hydrographs. The hydrographs are added at a time increment equal to that of the hydrograph with the shorter time increment. The only data required are the storage location number and hydrograph identification number

of the added hydrograph and the storage location numbers of the two hydrographs to be added.

The STORE RATING CURVE command is used to store rating curves that have been measured or computed previously. STORE RATING CURVE will save considerable computer time if measured or computed rating curves are available. The input data are the storage location number, valley section number, and individual rating curve points described by elevation, end-area, and flow rate. The number of points used to describe a rating curve is limited to 20.

The COMPUTE RATING CURVE command is used to compute the stage-area-flow relationship for a valley section. The input data are storage location number, valley section number, number of segments in the valley section, minimum elevation, maximum elevation, channel and flood-plain slopes, Manning's n value and segment boundary point for each segment, and horizontal and vertical position of points describing the valley section.

The storage location numbers of the valley sections in a particular reach must begin with 1 and increase by one for each valley section in the reach. However, the numbers are assigned without regard to upstream or downstream order. The valley section identification number can be any number from 0.1 to 999.9. These rules concerning storage location and valley section identification numbers also apply to the STORE RATING CURVE command.

Normally, valley sections are divided into three segments (two flood-plain segments and a channel segment) for computing the rating curve. However, some valley sections may have more than one channel or may have an extreme variation in n values across the flood plain, thus requiring more than three segments. A maximum of six segments is permitted. Manning's n values for each segment are input with segment boundary point (distance from the beginning of the valley section to the end of the segment). Flood-plain n values are positive and channel n values are negative.

Twenty points are used to define a rating curve. The location of the points is determined by dividing the difference between the maximum and minimum elevations into 19 equal increments.

The COMPUTE TRAVEL TIME command is used to compute the normal flow travel time relationship used in ROUTE. The input data are storage location number, reach identification number, number of valley sections in the reach, reach length, and slope. The reach identification number can be any number from 0.1 to 999.9. The maximum number of valley sections per reach is six. The slope can be either the channel or flood-plain slope or a weighted average of the two. If flow is confined to the channel, the channel slope is of course applicable. If most of the flow is in the flood plain, usually the flood-plain slope is used. However, a weighted slope based on the relative rates of flow in the channel and the flood plain may be used.

The COMPUTE TRAVEL TIME command considers each rating curve in the reach in computing the travel time flow relationship. COMPUTE TRAVEL TIME automatically selects the flow rates that are used in computing individual travel times. The flow rates of the rating curve with the lowest maximum flow rate are chosen. If the flow rates of any other rating curve in the reach were chosen, the rating curve with the lowest maximum flow rate would have to be extrapolated. The travel time table is limited to 19 points because of the 20-point limit for rating curves.

The STORE TRAVEL TIME command is one of the two computer-punched commands. When the punch code is a positive number, the output from COMPUTE TRAVEL TIME is punched on cards with the STORE TRAVEL TIME command. Therefore, it is not necessary to recompute rating curves or travel time for future routings. Instead, STORE TRAVEL TIME reads the previously computed travel time flow relationship into the program, thus saving considerable computer time.

The input data for STORE TRAVEL TIME are not punched manually, but a list of data items may be helpful in checking computer-punched cards. The input data are storage location number, reach identification number,

reach length, slope, and individual points of the relationship defined by depth, flow, and travel time.

The ROUTE command is used to route floods through streams and valleys. The input data are storage location number and hydrograph identification number of the outflow hydrograph, storage location number of the inflow hydrograph, and time increment. The storage location number of the outflow hydrograph must be the same as the storage location number used in COMPUTE TRAVEL TIME for the reach. To prevent unnecessary program stoppage, ROUTE extrapolates the travel-time table when it is exceeded and writes the message, "TRAVEL TIME TABLE EXCEEDED."

The ROUTE RESERVOIR command is used to route floods through reservoirs. The input data are storage location number and hydrograph identification number of the outflow hydrograph, storage location number of the inflow hydrograph, and individual points of the reservoir's outflow-storage relationship. The outflow-storage relationship must be expressed in 20 points or less. If the outflow-storage relationship is exceeded, ROUTE RESERVOIR will extrapolate the relationship and write the message, "STORAGE-DISCHARGE TABLE EXCEEDED."

The ERROR ANALYSIS command is used to determine the error standard deviation and the percentage error in peak flow between any two hydrographs in a HYMO program. These functions make ERROR ANALYSIS useful in research. The input data are the storage location numbers of the two hydrographs to be analyzed.

The SEDIMENT YIELD command is used to compute the sediment yield at any point in a watershed. Input data required are storage location number of the hydrograph from the area, a soils factor, a crop factor, a slope length and gradient factor, and a conservation practice factor (8).

The FINISH command is used to end HYMO programs. There are no data associated with FINISH.

EXAMPLE HYMO PROGRAM

A short example problem is presented to demonstrate HYMO. Figure 4 is a map of the 6.84-square-mile Brushy Creek watershed near

Riesel, Tex. A flood will be routed through the watershed in its present condition, and the routed outflow hydrograph will be compared to

the hydrograph measured at gaging station G. Also the sediment yield will be predicted and compared with the measured sediment yield. Then the same flood will be routed through the watershed with two proposed reservoirs. To determine the effects of the reservoirs, the outflow hydrograph and sediment yield will be compared to the outflow hydrograph and sediment yield of the present-condition routing.

Comment cards and keywords are used liberally in the example problem to acquaint the user with HYMO. After becoming familiar with HYMO, the user may write fewer comments and keywords, but generally users find them both quite helpful in describing the problem. To save space in the example problem, few of the hydrographs are printed or plotted. Some users may choose to print and plot all hydrographs.

Figure 4. Brushy Creek watershed near Riesel, Tex.

EXAMPLE HYMO PROGRAM

THE FLOOD OF MARCH 29, 1965 WILL BE ROUTED THROUGH THE BRUSHY CREEK WATERSHED THE START COMMAND IS USED AT THE BEGINNING OF ALL HYMO PROGRAMS TO SET THE TIME RAINFALL BEGINS ON THE WATERSHED, AND TO INDICATE THE PUNCH CODE. THE PUNCH CODE IS USED TO PUNCH THE OUTPUT FOR USE IN FUTURE ROUTINGS. IF ONLY ONE ROUTING IS PLANNED, THE PUNCH CODE IS OELETED. CCMMENTS ARE WRITTEN AT ANY POINT IN A HYMO PROGRAM BY PUNCHING AN ASTERISK IN COLUMN 1 AND THE COMMENT IN COLUMNS 2 - 79. TO PRINT ON A NEW PAGE AN ASTERISK IS PUNCHED IN COLUMN 80. NEAR RIESEL, TEXAS.

8EGINNING AT THE TOP OF THE WATERSHED THE FIRST STEP IS TO OETERMINE THE HYDROGRAPH FROM AREA 301. IT IS NOT NECESSARY TO COMPUTE THE HYORGGRAPH, 8ECAUSE IT WAS MEASUREO PREVIOUSLY. THE STORE HYO CCMMANO IS USEO TO STORE THE MEASURED HYORGGRAPH IN THE PROGRAM. RAINFALL BEGINS AT 12.5 HRS PUNCH CODE=1

PRINT HYO

,_	
_	
301	١
•	۱
ш	
~	
ARFA	ľ
Σ	
c	١
~	
FROM	
٥	
APH	
~	•
ی	
0	١
HYDROGR	
0	ı
>	•
I	

	i	_	こ																									
	-	DET :	HRS	26,499	26-666	3,000	26.833	56.93	27.166	27,333	27.499	27 777	21.000	27.833	27,999	28.166	200100	666.02	58.499	28.666	28.833	28.999	29-166	20 333	20,000	664.67	29.666	20 02
	100		CF.S	33.	31.	200	67.		25.	23.	22.	200	•	• 0	17.	16.		• • • • • • • • • • • • • • • • • • • •	• • •	13.	12.	11.	10.	0		• 1	•6	a
	TIME	3 9 17	HRS	23.000	23,166	23.333	23 500	000.62	73.666	23.833	23.999	24.166	20, 22, 22, 22, 22, 22, 22, 22, 22, 22,	24.333	24.499	24.666	24 - 833	0000	64.43	72.166	25,333	25.499	25.666	25.833	25,000	666.03	70.166	26.333
100	FLOW) EV	2	140.	130.	120.		• • • • • • • • • • • • • • • • • • • •	• 011	110.	110.	110.	001		100.	•06	80.			• 60	•09	50•	47.	* 44	41-		. 00	35.
	TIME	HR	004.01	19.500	19.666	19,833	20.000	20 166	20.198	20,333	20.500	20.666	20.833		21.000	21.166	21,333	21,500	21 466	000 17	21.833	22.000	22.166	22,333	22,500	33 444	22.000	22.833
	FLOW	CFS	0 4 1 1	• 00 11	1000	860.	.069	540		*00+	* 00 *	370.	365.	780	.000	4 00 •	415.	395.	370.		900	300.	270.	235.	200°	175		1001
	TIME	HRS	16-000		101.01	16,333	16,500	16.667	16 933	000.01	1 1.000	17.167	17,333	17.500	000000	1 1.00 /	17,833	18,000	18.167	10 222	10.000	18.500	18.666	18,833	19,000	19,166	10.223	17.000
	FLOW	CFS	Ċ		• 0	•	0	0		• •	•07	•06	220.	1025.	000	1450.	1380.	2085.	2260.	2360	2110	.0117	1085	1890.	1760.	1560.	1350	.000
	TIME	HRS	12,500	12 447	100.21	12.833	13.000	13,167	13,333	12 500	00000	13.66/	13.833	14.000	17 172	1, 1010	14.333	14.500	14.667	14.833	15.000	15 147	10101	12,333	15.500	15.667	15,833	110

2360.0 CFS 4.933 INCHES

PEAK DISCHARGE RATE =

RUNOFF VOLUME =

```
## COMPUTE RATING CURVE IO=1 VS 8 3 SEGMENTS MIN ELEV = 511 FT CH SLOPE = .0033

## XELEV = 521 FT CH SLOPE = .0036

## NAULE 0157ANCE

FIRST SEG .03

FIRST SEG .03

FIRST SEG .03

## A23

## A24

## A23

## A24

## A25

## A25

## A26

## A26

## A27

## A27

## A28

#
```

SECTION FLOOR RA	0.0	37. 85. 153. 252.		3670. 4853. 6225. 7793.
VALLEY FLOW AREA SQ FT	0 6	23. 44. 70. 53.	291.9 291.9 373.9 505.3 665.6	69. 84. 01. 21.
G A L E L	13.8 14.1 14.5 14.9	15.9 15.6 16.0 16.8	517.51 517.59 518.35 518.73 518.73	19.4 19.8 20.2 20.6 21.0

		_		7																									
45	ELEV	511.3	510.4	512	515																								
506.9 FT SLOPE=.00245 05 DIST=2000	DIST	636	748	1050	2000	10N 7.0	3	RATE	CFS	0.0	3.2	11.0		40.5	63.3	92.1	27.9	171.2	29.2	57.5	70.7	806.5	204.4	1780.5	32.7	3458.4	4671.2	7184.3	14.
ELEV=576.9 FP SLOPE= N=.05 DIS	ELEV	510.6	510.8	511.7	514	SECTION	_	Œ															12	17	26	34	46	7.1	103
		009			1890	E VALLEY	FLOW	AREA	SQ FT	0.0	2.9	6.5	10.7	15.6	21.2	27.4	34.4	45.0	9.49	127.4	206.5	322.2	4664	739.0	1054.1	1428.1	074.	8	3670.1
SEGMENTS MIN CH SLOPE=.0018 =03 DIST=657	514.0	512.0	506.9	511.7	513.6	RATING CURVE	WATER	SURFACE	ELEV	506.90	507.33	507.75	508.18	508.60	509.03	509.46	509.88	510.31	10.74	11.16	11.59	512.02	12.44	512.87	13,29	513,72		÷	515.00
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100	550	647	800	1255	RAT		•		•	•	•	•	•	•	Δ,	u 1		41	LEN I	un I	v.	ın ı	LC I	S	2	2	50 1	v
VS 7 /=515 IST=63	515.0	513.6	506.9	_	513.1																								
ID=2 MAX EU N=.05	0	390	641	772	1 200																								
CURV																													
RATING																													
COMPUTE RATING CURVE																													

VALLEY SECTIONS FT SLOPE=.0029
2 V/ FT
REACH 2 LENGTH=3400
ID=2 REACH
TIME
APUTE TRAVEL TIME ID=2 REACH
PUTE

	TRAVEL TIME HRS O B317 O. 5966 O. 4981 O. 3889 O. 3889 O. 3878 O. 3598 O. 3598 O. 3598 O. 3526 O. 3359 O. 3359
TIME TABLE REACH 2.0	FLOW RATE CFS 2. 2. 16. 16. 18. 153. 252. 371. 810. 1064. 11431. 11431. 11431. 1267. 2672. 3670. 4853. 6613.
TRAVEL	HATER DEPTH 0.30 0.30 0.30 0.30 1.58 1.58 2.18 2.18 2.18 2.18 2.18 5.18 5.13 5.13 5.13 6.67 7.29

* THE ROUTE COMMAND IS USED TO ROUTE THE HYDROGRAPH FROM AREA 301 THROUGH REACH* * 2.

HYD NO=101 INFLOW HYD ID=1 TIME INTERVAL=.2 HR

10=2 10=2

* ROUTE PRINT HYD

	E C		4,	4	4	4.	, w	'n	(1)	2	2.	2.	5.	,	2,	-		-	-	1			
	TIME	HRS	28,500	28,700	28,900	29,100	29.300	29,500	29.700	29,900	30,100	30.300	30.500	30,700	30.900	31.100	31,300	31,500	31,700	31,900			
	FLOW	CFS	21.	20.	18.	17.	15.	14.	12.	11.	11.	10.	6	6	ď	7.	7.	•9	9	5°	5.	5.	
	TIME	HRS	24.500	24.700	24.900	25,100	25,300	25.500	25.700	25,900	26.100	26.300	26.500	26.700	26.900	27,100	27,300	27.500	27.700	27.900	28,100	28,300	
	FLOW	CFS	115.	112.	108.	102.	95°	85.	76.	68.	.09	54.	46°	45.	41.	38.	35.	33。	30.	28.	26.	23.	
JGRAPH 101	TIME	HRS	20,500	20,700	20.900	21.190	21,300	21 • 500	21,700	21,900	22.100	22,300	22.500	22,700	22.900	23,100	23,300	23,500	23.700	23.900	24.100	24.300	
PARTIAL HYDROGRAPH	FLOW	CFS	1031.	852。	.969	573.	*064	442.	422.	415.	406.	385.	358。	328.	293.	255.	220.	189.	163.	143.	128.	119.	CFS
	TIME	HRS	16.500	16.700	16.900	17,100	17,300	17.500	17,700	17.900	18, 100	18.300	18,500	18.700	18,900	19,100	19,300	19,500	19,700	19.900	20,100	20.300	4.940 INCHES = 2004.2 CFS
	FLOW	CFS	•0	•	•0	•	•0	2.	25.	163.	513.	864.	1251.	1674.	1937。	2004.	1957.	1890.	1765.	1589.	1398.	1214.	UNOFF VOLUME = FAK DISCHARGE RATE =
	T IME	HS	12.500	12.700	12.900	13.100	13.300	13,500	13,700	13.900	14.100	14.300	14.500	14.700	14.900	15,100	15,300	15.500	15,700	15.900	16.100	16.300	RUNOFF PEAK DIS

* TO OBTAIN THE OUTFLOW HYD FROM REACH 2 THE HYD FROM AREA 302 MUST 8E COMPUTED*

* AND ADDED TO THE ROUTED HYD 101.

* COMPUTE HYD

JTE HYD					11.	11.	10.			. 6	. &		.8	7.	7.	• • •	• • •		30.656 30.832 40.832 4. 35.999	. 4	· M	m.	د د	2.	2.	2.	32.166 2. 31.552 .	2 •	2 6	25,000 2. 37,099	• 7	5C - 777 L .	
	1=,837 SQ MI 0 0 .18 .46 .57 .65 4.78 4.92 5.06 5.31 5.32 5.34 5.43 5.38 75.87 5.88 5.88 6.16 6.17 6.18 6.18	AREA 302	FLOW	53.	.64	.94	43.	. 100	31.	. (f	32.	30.	29.	27.	26.	25.	24.	23.	21.	202	19.	19.	18.	17.	16.	16.	15.	• 4	* * * * * * * * * * * * * * * * * * * *	1.50	• n c	12.	
	DT1666667 HR DA LENGTH-1.33 MI INE MASS RAINFALL FKG IN INCREMENTS OF DT 3.15 3.5 4 4.49 4.72 16 5.11 5.2 5.3 5.31 16 5.85 5.86 5.86 5.86 16 6.13 6.15 6.15 6.16	HYDROGRAPH FROM																	•														0
		10=1			1	1	1	1			-	-	•		1	1																	

		FLOW	1.	1,	1.	1.	1.	1.	-;	1.	1.	•0	ċ	ċ	0.	•0	0°	ċ	0	ė	c.	ċ	0	°	ċ	0	ċ	0	ć	0°	င်			
		TIME	33,166	33,332	33.499	33,666	33.832	33.999	34.166	34,332	34.499	34.666	34.832	34,999	35,165	35,332	35.499	35.665	35.832	35.999	36.165	36,332	36.499	36.665	36.832	36.999	37.165	37,332	37,499	37.665	37.832		,	
		FLOW	17.	16.	15.	15.	14.	13.	13.	12.	12.	11.	10.	10.	•6	. 6	c	7.	•9	•9	'n	4.	. 4		n n	3.	2.	2.	2.	2.	2.	2.	1.	
*		TIME	27.999	28,166	28.333	28.499	28.666	28.833	28.999	29.166	29,333	29.499	29.666	29.832	56.65	30.166	30,332	30.499	30.666	30,832	30.999	31.166	31,332	31.499	31.666	31,832	31,999	32.166	32,332	32,499	32.666	32.832	35.999	
RE 1 AND 2	2 н	FLOW	95.	89.	83.	78.	73.	68•	.49	•09	56.	53.	50.	47.	45.	42.	*0*	38.	36.	34.	32.	30.	29.	28.	26.	25.	24.	23.	22.	21.	20•	19.	18.	
IDS OF HYDS TO BE ADDED ARE 1	JUTFLOW HYDROGRAPH REACH	TIME	22,833	23.000	23.166	23,333	23.500	23.666	23.833	23,999	24.166	24,333	24.499	24.666	24.833	54.999	25.166	25.333	25.499	25.666	25,833	25,999	26.166	26,333	26.499	26.666	26.833	56.999	27.166	27,333	27.499	27.666	27,833	
IDS OF HYDS	OUTFLOW HY	FLOW	618.	628.	630.	618.	593.	999	522•	479.	434.	390.	350.	314.	282.	259.	253.	249.	246.	243.	237.	229.	218.	205.	192.	177.	163.	151.	140.	129.	119.	110.	102.	
HYD NG=2		TIME	17,667	17.833	18.000	18,167	18,333	18.500	18.666	18,833	19.000	19,166	19,333	19.500	19.666	19,833	20.000	20.166	20,333	20.500	20.666	20,833	21.000	21.166	21,333	21,500	21.666	21,833	22.000	22.166	22,333	22.500	22.666	
10=3 10=3		FLOW	•	•0	•0	•0	1.	3.	11.	57.	206.	507.	884.	1260.	1662.	2095.	2398.	2541.	2561.	2504.	2421.	2281.	2099.	1900.	1700.	1510.	1331.	1164.	1012.	878.	769.	686.	634.	
ADD HYD PRINT HYD		TIME	12.500	12.667	12,833	13,000	13,167	13,333	13,500	13,667	13,833	14.000	14.167	14,333	14.500	14.667	14.833	15.000	15.167	15,333	15,500	15.667	15,833	16.000	16.167	16,333	16.500	16.667	16.833	17,000	17,167	17.333	17.500	

RUNOFF VCLUME = 4.674 INCHES PEAK DISCHARGE RATE = 2560.5 CFS

* THIS COMPLETES THE ROUTING THROUGH THE FIRST REACH. FOR THE REMAINDER OF THE * ROUTING, COMMENTS AND KEYWORDS WILL BE BRIEFER. * VALLEY SECTIONS 5 6 AND 7 ARE USED TO ROUTE THROUGH REACH 3. THE RATING CURVE * HAS BEEN COMPUTED FOR VS 7 AND IS STORED IN ID 2. ID NUMBERS 1 AND 3 MUST BE * USED FOR VS-5 AND VS-6.

SECTION 6.0	0	RATE	щ	•	•		16.8	2,	3	2°	122.0	05.	73.	18.		303.	826.	672.	809	249.	92.	076.	-65
VALL EY	2	AREA	a	0.0	1:1	4.3	8.3	13.0		4	33 • 3	0	50.	29.	4	0	30.	25.	254.	614.	0	435	897.
RATING CURVE	ΑT	SURFACE	ELE	02.	0	0	503.50	03.9	04.4	6.40	0	05.8	06.3	7.90	07.2	7.70	08.1	08.6	09.1	60.5	10.0	10.5	11.0

SLP=.00245
LENGTH=3330 FT
3 VS
REACH 3
10=1
TIME
TRAVEL
COMPUTE TRAVEL '

TRAVEL TIME TABLE

0	TRAVEL	TIME	HRS	0.8623	0.5484	0.4135	0.3434	0.2988	0.2674	0.2447	0.2527	0.2703	0.2906
REACH 3.0	FLOW	RATE	CFS	2.	10.	23.	41.	63.	•06	122.	160.	215.	287
	WATER	OEPTH	FEET	0.45	96.0	1.45	1.92	2.37	2.80	3,22	3.58	3.99	4.32

0.3160 0.3241 0.3265 0.3371 0.3349 0.3331 0.3205 592. 887. 1273. 1724. 2527. 403 4.32 4.69 5.10 5.57 6.03 6.45 7.40

0.3286 4956. I D=3 INFLOW 7.86 HYO NO=102

* IT MAY NOT 8E NECESSARY TO PRINT THE COORDINATES OF ALL HYDS. FOR THE * REMAINDER OF THE EXAMPLE, ONLY REACH OUTFLOW HYDS WILL BE PRINTED. TO PRINT * CNLY THE RUNOFF VOLUME AND PEAK RATE, A CODE IS USED WITH PRINT HYD. I = 0 I

C00E=1 I C=1

PRINT HYD

ROUTE

PARTIAL HYDROGRAPH 102

4.672 INCHES RUNOFF VOLUME = 4 PEAK DISCHARGE RATE =

* COMPUTE THE HYD FROM AREA 303.

OUTE HYO ID=2 HYD NO 303 OT=.1666667 HR DA=1.108 SQ MI CN=82 HT=80 FT L=1.7 MI CODE=-1 (SIGNAL TO USE SAME MASS RAINFALL AS USED IN PREVIOUS HYO)
SHAPE CONSTANT, N = 2.248
UNIT PEAK = 253.1CFS COMPUTE HYD

ID=2 CODE=1 PRINT HYD

HYDROGRAPH FROM AREA 303

673.5 CFS 4.131 INCHES RUNGFF VCLUME = 4 PEAK DISCHARGE RATE =

* TO D8TAIN THE DUTFLEW FROM REACH 3, AOO HYO FROM AREA 303 TO ROUTED HYO 102.*

10S ADOED ARE 1 AND 2

HY0 ND=3

AOE HYO PRINT HYO OUTFLOW HYOROGRAPH REACH

i	AC I	CFS	2.	2.	2.	1.	1.	-:	1.	l.	1:	1.	-1	1:	0	ċ	c	ů	0	0				0		5	0	0	0	·	•0	0	0.	ċ	0	0			
1	E .	HAS	35,832	35,999	36.165	36.332	36.499	36,665	36.832	36,999	37,165	37.332	37,499	37,665	37.832	37,999	38.165	38,332	38.499	38,665	38,832	38.999	39.165	39,332	39,499	39,665	39.832	39,999	40.165	40,332	40.498	40.665	40.832	40.998	41.165	41,332			
0	F.U.W.	CFS	24.	23.	22.	20.	19.	18.	17.	16.	16.	15.	14.	13.	13.	12.	11.	11.	10.	10.	.6	6	. 6	o	8 0	7.	• 9	• 9	5.	4.	4.	3.	2.	2.	2.	2.	2 •		
2 2 1	E T	HRS	59,999	30.166	30,332	30.499	30.666	30 • 832	30,999	31.166	31,332	31,499	31.666	31.832	31,999	32.166	32,332	32.499	32.666	32,832	32.999	33,166	33,332	33,499	33,666	33,832	33.999	34.166	34.332	34.499	34.666	34,832	34.999	35.165	35,332	35,499	35,665		
Š	NO.	CFS	112.	105.	100.	94.	•06	86.	82.	78.	74.	71.	67.	.49	62.	59.	57.	55.	53.	50.	48.	46.	* 44	42.	*0*	39°	37.	36.	34.	33.	32.	31.	30.	28.	27.	26.	25.		
1	E ::	HRS	24.166	24,333	24.499	24.666	24.833	24.999	25.166	25,333	25.499	25.666	25.833	25,999	26.166	26.333	26.499	26.666	26.833	26,999	27.166	27,333	27.499	27.666	27.833	27,999	28.166	28.333	28.499	28.666	28.833	28.999	29.166	29,333	29.499	29.666	29.832		
0	# C C C	CFS	918.	883.	839.	789.	736.	680.	626.	574.	526.	485.	464.	*655	438	429.	419.	406.	391.	374.	355	335.	315.	294.	273.	253.	235	217.	200°	186.	173.	161.	151.	142.	133.	126.	118.	S	2
1	I ME	HRS	18,333	18.500	18.666	18,833	19.000	19.166	19,333	19.500	19.666	19,833	20.000	20.166	20,333	20,500	20.666	20.833	21.000	21.166	21,333	21.500	21.666	21,833	22,000	22.166	22,333	22.500	22.666	22,833	23,000	23,166	23, 333	23.500	23.666	23,833	23.999	4.509 INCHES	t
ŭ	¥0.0	CFS	0	ċ	0	0	1:	3°	10.	48.	172.	398.	692.	1028.	1432.	1877.	2288	2615.	2848	2984.	3027。	2977.	2864.	2704.	2515.	2315	2119.	1927.	1738.	1553.	1380.	1226.	1104.	1028.	• 466	970.	947.	RUNDEF VOLUME = PEAK OISCHARGE RAT	こし コランゼニラウ
T 24	200	HKS	12.500	12.667	12.833	13.000	13.167	13,333	13,500	13.667	13.833	14.000	14.167	14,333	14.500	14.667	14.833	15.000	15.167	15,333	15.500	15.667	15.833	16.000	16.167	16.333	16.500	16.667	16.833	17.000	17.167	17,333	17.500	17.667	17.833	18.000	18.167	RUNGEF	LAN C.

ROUTE THROUGH REACH 4.

**
COMPUTE RATING CURVE ID=1 VS=4 3 SEG MIN ELEV 491.8

N=.05 DIST=1046 N=-.03 DIST=1068 N=.05 DIST=1082
DIST ELEV DIST ELEV DIST ELEV DIST ELEV OF ST ELEV DIST ELEV DIST

0				
SECTION 4. FLOW RATE CFS	0.0	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	552 553 813 195	00010
VALLEY FLOW AREA SQ FT	0146	15.	51.6 62.1 73.9 115.2 200.0	40978
F 1L W	91.8	4446	96 97 98 9	0,0000

```
COMPUTE RATING CURVE ID=2 VS=3 3 SEG MIN EVEL=486.2

MAX ELEV=499 CH SLP=.0C18 FP SLP=.0036

N=.05 D1ST=520 N=-.03 D1ST=547 N=.05 D1ST=1200

D1ST ELEV D1ST ELEV D1ST ELEV TO NST EST TO NST ELEV TO NST ENTRY TO NST ENTRY TO NST ENTRY TO NST ENTRY TO NST ELEV TO NST ENTRY TO NST ENTRY TO NST ELEV TO NST ENTRY TO NST ENTR
```

0.	TRAVEL	TIME	HPS	0.8777	0.6140	0.4719	0.3899	0.3386	0.3192	0.2683	0.2335	0.2076	0.2004	0.2022	0.2311	0.2513	0.2491	0.2532	0.2625	0.2570	0.2458	0.2302	2	
TIME TABLE	FLOW	RATE	CFS	2.	7.	15.	28.	45.	62.	104.	155.	223.	305.	403.	554.	814.	1196.	1598.	2078.	3122.	4498	6405	10=3 0T=	
TRAVEL	WATER	DEPTH	FEET	0.38	0.84	1.25	1.69	2.14	2.54	3,15	3.75	4.32	4.87	5.36	5.82	6.32	6.83	7.28	7.69	8.27	8.86	4.6	INFLOW	
																							HYD NO=103	C00E=1
																							10=1	10=1
																								0
					,																		ROUTE	PRINT HYD
	-	L TIME TABLE REACH 4.0 FLOW T	L TIME TAB REACH FLOW RATE	REACH 4.0 REACH 4.0 FLOW T RATE CFS	TIME TABLE REACH 4.0 FLOW T RATE CFS 0	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 7.	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 2. 0.38 2.	TRAVEL TIME TABLE REACH 4.0 WATER FLOW TR DEPTH RATE T FET CFS H 0.38 2.0 0.38 2.0 1.55 15.0	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 2.0 1.25 1.5 1.69 28.0 2.14 45.0	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 2.0 1.25 15.0 1.69 28.0 2.14 45.0 2.54 62.0	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.0 1.25 1.69 2.14 45. 2.14 45. 2.14 45. 2.14 45. 2.14 45.	TRAVEL TIME TABLE REACH 4.0 WATER FLOW TR DEPTH RATE T FEET CFS 0.0 0.38 2.0 0.08 2.0 0.08	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 2.0 1.25 1.5 1.69 2.8 2.14 45.0 2.14 45.0 2.14 45.0 2.14 45.0 2.14 45.0 2.14 45.0 2.14 45.0 2.15 104.0 3.75 155.0 4.32 223.0	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.00 1.25 1.25 1.69 2.14 4.50 2.14 4.50 4.31 3.15 1.55 4.32 2.23 4.87 3.05	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.0 0.38 2.1 1.25 1.25 1.69 2.14 45. 2.15 45. 2.14 45. 2.15 45. 45. 45. 45. 45. 45. 45.	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.0 1.25 1.25 1.55 1.69 2.80 2.14 4.50 2	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 7.0 1.25 15.0 1.69 28.0 2.14 65.0 2.14 62.0 3.15 104.0 3.75 155.0 4.87 305.0 5.86 54.03.0 5.86 55.00 6.32 814.0	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 2.10 1.25 1.69 2.14 4.5 2.14 4.6 3.15 4.6 3.11 4.6 4.6 4.6 4.6 4.6 4.6 4.6	ТВАУЕL ТІМЕ ТАВLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.038 2.14 2.54 2.14 4.55 2.14 4.55 2.14 4.55 4.37 3.15 1.55 4.37 5.36 6.32 4.37 5.36 6.32 814 6.32	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.0 1.69 28.0 1.69 28.0 2.14 45.0 2.14 45.0 2.14 45.0 3.15 115.0 3	HATER TABLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.0 0.84 1.25 1.25 1.69 2.14 4.50 2.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3	ТВАУЕL ТІМЕ ТАВLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.14 1.25 1.69 2.14 45. 2.15 3.15 4.31 2.17 8.86 4.98.	HRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FET CFS 0.38 2.0 0.08 2.0 0.08 2.	TRAVEL TIME TABLE REACH 4.0 WATER FLOW DEPTH RATE FEET CFS 0.38 7.0,84 7.1,25 1.25 1.25 1.25 1.25 1.25 1.25 1.69 2.34 4.32 2.34 4.32 2.34 4.32 2.34 4.32 2.34 4.32 3.15 1.96 7.69 1.96 7.69 1.06 7.69 1.06 7.69 1.196 7.69 1.196 7.69 8.27 3.12 8.86 4.498 9.47 9.49 1.196 7.69 1.106 7.69 1.106 7.69 1.106 7.69 1.107 1.106 1.

PARTIAL HYDROGRAPH 103

RUNDFF VOLUME = 4.508 INCHES PEAK DISCHARGE RATE = 2904.3 CFS

* COMPUTE THE HYD FROM AREA 304.

COMPUTE HYD

PRINT HYD ID=2 CODE=1

RUNDFF VCLUME = 4.111 INCHES PEAK DISCHARGE RATE = 504.5 CFS

HYDROGRAPH FROM AREA 304

* ADO THE HYO FROM AREA 304 TO THE PARTIAL HYD 103 TO OBTAIN THE OUTFLOW FROM * REACH 4.

HYO NU=4 ICS ACDED ARE 1 AND 2

I 0=3 I 0=3

AOC HYD PRINT HYO OUTFLOW HYOROGRAPH REACH

FLOW	CFS	2.	2.	2.	2.	2.	2.	1.	1.	1.	°c	ċ	ċ		•0	0	•	0	•	•0	•0	ပ	c	ċ	c	0.	ů	0	0.					
TIME	HPS	36.500	36.700	36.900	37.100	37.300	37.500	37.700	37.900	38.100	38.300	38.500	38.700	38.900	39.100	39,300	39.500	39.700	39,900	40.100	40.300	40.500	40.700	40.900	41.100	41.300	41.500	41.700	41.900					
FLOW	CFS	30.	29.	27.	26.	24.	23.	22.	20.	19.	17.	16.	14.	13.	12.	12.	11.	10.	10.	۰6	8 0	7.	• 9	• 9	5.	**	4.	4.	3.	3.	2.			
TIME	HRS	30.500	30.700	30.900	31.100	31,300	31.500	31.700	31.900	32.100	32.300	32.500	32.700	32.900	33.100	33,300	33.500	33.700	33.900	34.100	34.300	34.500	34.700	34.900	35.100	35.300	35.500	35.700	35.900	36.100	36.300			
FLOW	CFS	141.	132.	124.	117.	111.	105.	•66	94.	89.	85.	81.	77.	73.	70.	.99	63.	•09	57.	54.	51.	*65	47.	45.	43.	41.	39.	37.	35.	34.	32.			
TIME	HRS	24.500	24.700	24.900	25.100	25,300	25.500	25.700	25,900	26.100	26.300	26.500	26.700	26.900	27.100	27.300	27.500	27.700	27.900	28.100	28.300	28.500	28,700	28.900	29.100	29,300	29.500	29,700	29.900	30.100	30.300			
FLOW	CFS	1149.	1097.	1036.	968°	896	820.	746.	675.	626.	586.	555.	529.	506.	481.	454.	426.	397.	367.	338.	311.	288.	264.	242.	224.	208.	194.	181.	170.	160.	150.		CFS	
TIME	HRS	18.500	18.700	18,900	19.100	19.300	19,500	19,700	19,900	20.100	20.300	20.500	20.700	20.900	21.100	21.300	21.500	21.700	21.900	22,100	22.300	22.500	22.700	22.900	23,100	23.300	23,500	23.700	23.900	24.100	24.300		= 3351.1 CFS	
FLOW	CFS	0	٥.	°c	0	3°	10.	59.	215.	523.	873.	1277.	1788.	2291.	2727.	3072.	3290.	3351.	32 85.	3131.	2920.	2685.	2452。	2221.	1988.	1757.	1547.	1400.	1302.	1240.	1192.		PEAK DISCHARGE RATE	
TIME	HRS	12.500	12.700	12.900	13.100	13,300	13.500	13,700	13.900	14.100	14,300	14.500	14.700	14.900	15.100	15.300	15.500	15.700	15.900	16.100	16.300	16.500	16.700	16.900	17.100	17,300	17.500	17.700	17.900	18.100	18,300	L C	PEAK DIS	

	ELEV 490.6 485.9 481.8
	81.8 SLP=.0036 N=.05 DIST=558 ELEV DIST E1 490.8 550 489 482.1 400 481 490.1 550 482
	T=5 0 0
	6 01S 01S 255 400 556
	003 05 1
	8
	\$11 SL \$4 44 46
	URVE ID=1 VS 2 3 SEG MIN ELEV=481,8 N=.05 DIST=387 N=-,03 DIST=405 N=.05 DIST= DIST ELEV DIST ELEV DIST ELEV DIST 131 493.0 150 492.0 189 490.8 250 258 489.9 270 486.8 300 485.5 350 387 485.5 392 483.3 397 482.1 400 558 493.0 427 488.6 450 490.1 550
	EL. 8 8 5T=4 18 30 30 455
	MIN D01 D1 D1 S 8
	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	SEISLI
	3 CH 015 150 150 170 170
	387
	X 4 K S 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	EV DIS
	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
Ξ	MA) N=1 D1 131 131 131 131 131 131 131 131 131
₹ EA(JRVE
£	ರ
NO.	Z
TH.	R A
ROUTE THROUGH REACH 5.	COMPUTE RATING CURVE N 1 2 3 4 5 5
RDL	MPL
* *	33

SECTION 2.0 FLOW RATE CFS	04000	90 141 237 461 818	
VALLEY FLOW AREA SQ FT	0 - 2 - 1	27 36 69 44 29 18	411.3 508.1 611.1 720.9 842.5 013.0 210.7 430.9
RATING CURVE WATER SURFACE ELEV	81.8 82.8 82.8 83.8	0000000	000000000000000000000000000000000000000

```
COMPUTE RATING CURVE ID=3 VS=1 3 SEG MIN ELEV=474.1 MAX ELEV=488

CH SLP=.0018 FP SLP =.0028

N=-03 D1ST= 232

N=-03 D1ST= 232

N=-04 D1ST ELEV D1ST ELEV D1ST ELEV

L1 488.0 100 486.6 171 481.0 215 480.8

232 478.6 236 477.2 242 474.1 247 477.9

250 478.9 300 482.9 350 484.2 400 484.2

627 488.0 RATING CURVE VALLEY SECTION 1.0

WATER FLOW

SURFACE AREA RATE

ELEV

NATER FLOW

ATT.03 2.6.5

474.10 0.0

475.56 11.7

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.03 2.6.5

477.
```

	TRAVEL	TIME	1KS 0-7688	0.5416	0.3996	0.3173	0.2666	0.2309	0.2201	0.2103	0.2078	0.1948	0.1768	0.100	0.1476	0.1310	0.1319	0.136	0.1268	0.1204	r	7.	104		.875 CN=82	21 4.76 4.94 5.03	5.7 5.71 5.71 5.72 5.72	5.85 5.85 5.85 5.86			AREA 305	
TIME TABLE REACH 5.0	FLOW	RATE	CF3	. 6	26.	52.	•06	141.	237。	461.	818.	1317.	1958.	.0617	5/13.	• • • • • • • • • • • • • • • • • • • •	9000	0000	11047	14100	1	- IO - C-O			333 DA=1.875	~	~	~			HYDROGRAPH FROM	
TRAVEL	WATER	DEPTH	7 EE 1	0.96	1.57	2 19	2 • 82	3.45	4.28	5, 30	6.13	6.83	7.47		α• / I	7.01	9.70	10.10	11 33	11.80		-	PARTIAL HYDROGRAPH	S CFS	DT=.333333	.61 1.12 2	.43 5.44 5.5 5.	8 5.8 5.81			HYDRO	S CFS
																					VO 1-0% 0VH	CODE=1		4.436 INCHES = 3318.5	HYD NO=305	1.F=-1.5	007 5.31 5	. 18 5. 19 5	2.254 3CFS	CODE=1		3.837 INCHES = 936.7 CFS
																					10-1	10=1		= E RATE	10=2	RAINF	5.03	5.87	N = \ 334.	10=2		= E RATE
																					POUTE	PRINT HYD		RUNOFF VOLUME PEAK DISCHARGI	COMPUTE HYD				SHAPE CONSTANT, UNIT PEAK =	PRINT HYD		RUNOFF VCLUME PEAK DISCHARG

COMPUTE TRAVEL TIME ID=1 REACH 5 3 VS L=3310 SLP=,003

I OS A O O E C ARE I ANO * AOD THE HYO FROM AREA 305 TO THE PARTIAL HYO 104. HY0 NO=105 COOE=1 I 0=3 AOC HYO PRINT HYO

PARTIAL HYOROGRAPH

4244.3 CFS 4.259 INCHES RUNOFF VOLUME = 4 PEAK OISCHARGE RATE = * THE HYO FROM AREA 306 WAS MEASUREO, SO STORE HYO IS USEO TO STORE IT IN THE * PRCGRAM.

STORE

COMPUTE RATING CURVE 10=1 VS=21 3 SEG MIN ELEV=506.0 MAX ELEV=514 CH SLP= .006 FP SLP= .0075 N=.05 01ST= 300 N=.03 01ST= 310 N=.05 01ST= 570 O1ST ELEV 01ST ELEV 01ST ELEV 01ST ELEV 01ST ELEV 01ST ELEV 330 508.0 307 506.0 314.0 300 508.0 320 512.0 570 514.0 310.0 520 512.0 570 514.0 ROUTE THE HYO FROM AREA 306 THROUGH REACH 6. 2 2 1 1

RATING CURVE VALLEY SECTION 21.0 FLUM C RATE C PS 0.0 0.0 4.7 15.7 32.6 55.7 87.5 146.0 250.9 675.2 1018.0 1018.0 2102.0 2102.0 2102.0 2902.4 0.0 2.3 5.1 8.3 112.0 116.0 62.5 62.5 108.1 1168.8 1245.2 342.2 342.2 342.2 760.6 FLOW AREA SQ FT WATER SURFACE ELEV 508.53 508.95 509.37 509.79 510.21 506.00 506.42 506.84 507.26 507.68

10795.8 0.9619 8649.2 1340.3 940.3 511.89 512.31 512.73 513.16 513.58 511.05

```
COMPUTE RATING CURVE 10=2 VS=20 3 SEG WIN ELEV=482.0 MAX ELEV=492 CH SLP=.006 FP SLP=.0075 N=.05 DIST= 175 N=.03 OIST=205 N=.05 DIST=450 OIST ELEV OIST ELEV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RATING CURVE VALLEY SECTION 20.0

MATER
FLOW
SURFACE
AREA
RATE
ELLV
O.0
482.53
3.0
482.53
3.0
482.53
3.0
482.53
3.0
5.5
483.45
484.10
35.3
164.8
484.63
35.3
164.8
486.21
183.4
183.4
183.4
184.8
486.21
183.4
184.8
486.21
183.4
184.8
486.21
183.4
184.8
486.2
486.3
487.7
488.3
460.5
499.6
489.3
749.6
499.3
749.6
490.4
71210.4
71210.4
7469.6
7491.4
7
71210.4
7469.6
7491.6
7491.6
7491.7
7468.8
```

*

	TRAVEL	HRS	0.5893	0.4055	0.3346	0.2852	0.2525	0.2491	0.2478	0.2397	0.2277	0.2161	0.2045	0.1918	0.1791	0.1671	0.1542	0.1423	0.1318	0.1228	0,1157	.2
TIME TABLE REACH 6.0	FLOW	CFS	5.	16.	33.	56.	98.	146.	251.	421.	675.	1019.	1482.	2102.	2902	3908.	5214.	6796.	8649.	10796.	13261.	ID=1 DT=
TRAVEL	WATER	FEET	0.44	0.80	1.18	1.52	1.88	2.26	2.66	3.10	3.55	4.00	4.46	4.93	5.40	5.88	6.37	6.85	7.33	7.80	8.28	INFLOW
																						HYD NU=106 CODE=1
																						I D=2 I C=2
																						нур
																						ROUTE

PARTIAL HYDROGRAPH 106

RUNOFF VCLUME = 3.364 INCHES PEAK DISCHARGE RATE = 574.6 CFS

AND 105.
106
HYOS
PARTIAL
ADO
5,
REACH
FROM
НΥВ
TO OBTAIN THE OUTFLEW HYD FROM REACH 5, ADD PARTIAL HYDS 106 AND 10
出上
08TA1N
10

			H	J GH	43,700	43.900	44.100	44.300	44.500	44.700	44.900	45.100	45.300	45.500	45.700	45.900	001.04	46.500	46.700	46.900	47,190	47,300	47.500	47.730	47.900	48.100	48.299	48.499	48.699	770°07	660.00	667.64	664.67	40.800	50.099	50.299	50.499	50.699	50.899	51,099	
			30		16.	15.	15.	14.	13.	13.	12.	12.	11.	11.	0.5	• •	, 0	, ,	7.	7	7.	• 9	• 9	• 9	• 9	• 0	\$ 0	ہ ر	, ,	• <	• •	, ч	, ,		2°	: -	: -1	1.	1.	-1	1.
*	THE THE		TWE	HRS	35,900	36.100	36.300	36.500	36.700	36.900	37.100	37,300	37.500	37.700	97.900	20.1.95	38.500	38, 700	38,900	39.100	39.300	39.500	39.700	39.900	40.100	40.300	40.500	40.700	40.400	41.100	41.500	41 - 700	41.900	42,100	42,300	42.500	42.700	42.900	43.100	43.300	43.500
AND 105.	2 FOR COMPARISON IN 1 NECESSARY BECAUSE 1	H 5	FLOW	CFS	103.	98.	94.	89.	85.	81.	78.	75.	72.	.49	• 10		20.5	56.	54.	52.	*64	47.	45.	42.	40.	38°	, 10.	939		30.	24.	2 B.	26.	25.	24.	22.	21.	20.	19.	18.	17.
IAL HYDS 106 AND 105	3 AND USED S 1S	JUTFLOW HYOROGRAPH REACH	TIME	HRS	28.100	28.300	28.500	28.700	28.900	29.100	29.300	29.500	29. 700	30 100	30.300	30.500	30, 700	30.900	31.100	31,370	31.500	31.700	31.900	32.100	32.300	32.500	32,000	33 100	33,300	33.500	33,700	33,900	34.100	34.300	34.500	34.700	34.900	35.100	35,300	35.500	35.700
5, ADO PARTIAL	YO NO=5 IDS ADDED ARE 3 AND PH FROM REACH 5 WILL BE USED HYD COMMAND 1S USED. THIS IS FOR THE ADD HYD COMMAND.	OUTFLOW HYO	FLOW	CFS	.889	833.	788.	749.	714.	678.	641.	604.	J68.	556.	466	436.	407	379.	354.	331.	312.	294.	279.	265.	251.	231.	21.1	200.	190	181.	172.	164.	156.	148.	141.	135.	129.	123.	118.	112.	107.
OBTAIN THE OUTFLOW HYD FROM REACH 5,			TIME	HRS	20.300	20.500	20.700	20.900	21.100	21.300	21.500	21 900	22 100	22.300	22,500	22,700	22.900	23,100	23,300	23.500	23.700	23.900	24.100	24.300	24.500	24.100	25, 100	25.300	25,500	25.700	25.900	26.100	26.300	26,500	26.700	26.900	27,100	27,300	27.500	27.700	27.900
НЕ ООТЕССИ НУ	SINCE THE OUTFLOW HYDROGRAPH F SECOND ROUTING, THE PUNCH HYD PUNCH CODE DOES NOT PUNCH FOR NNCH HYD 1D=6 1011 HYD 1021		FLOW	CFS	0°	0	0	0.	ກໍເ	15.	106.	000	12.0	1855.	2403.	2983.	3537.	3968.	4260.	4367。	4337.	4181.	3950.	3684.	31.63	2880.	2611.	2353.	2137.	1978.	1869.	1783.	1707.	1628.	1541.	1446.	1347.	1244.	1141.	1044.	40A.
* TO 08TAIN T	* SINCE THE OUTFLOW HYDROGRAPH FROM * SINCE THE OUTFLOW HYDROGRAPH FROM * SECOND RUDTING, THE PUNCH HYD COMP PUNCH HYD ID=6 PRINT HYD ID=6		TIME	HRS	12,500	12,700	12,900	13,100	13.500	13.500	13,000	14.100	14.300	14.500	14.700	14.900	15.100	15.300	15.500	15.700	15.900	16.100	16.300	16.500	16.900	17,100	17,300	17.500	17.700	17.900	18.100	18.300	18.500	18.700	18.900	19.100	19.300	19.500	10.700	19.900	20.100

SEGIMENT YIELD COMMAND IS USED TO COMPUTE THE SEGIMENT YIELD PRODUCED BY * THE SEOIMENT YIEL * THE ROUTEO FLOOO.

SEGIMENT YIELD 10=6 SOIL=.34 CROP=.16 CP=.4 LS=.3
SEGIMENT YIELO = 4116.9 TONS
* THE MEASURED SEGIMENT YIELO FOR THIS FLOOD WAS 3916 TONS.
* THE ROUTEO OUTFLOW HYOROGRAPH CAN BE COMPAREO WITH THE MEASUREO HYOROGRAPH BY

* PLOTITING AND ERROR ANALYSIS

* STORE THE MEASURED HYORDGRAPH

STORE HYO

ERROR	
THE	(OM)
10E 0F	FLOW
AGNITU) 9=01
THE M	OUTEO
OMPUTE	NE) R
D T 0	FLOW 0
IS USE	10=2 (
COMMANO	MEASURED ID=2 (FLOW ONE) ROUTEO IO=6 (FLOW TWO)
* THE ERROR ANALYSIS COMMANO IS USED TO COMPUTE THE MAGNITUDE OF THE ERROR	
ERROR	* ERROR ANALYSIS
* THE	* ERROR

	ERROR	CFS	•0	φ.	01	• n	* n .	1.50	18.	0000	-195	• 1711-	345.	1047	.121	450.	.76	-160-	-187	-513.	-397.	-410.	-404-	-387.	-347.	-270.	-181.	-63.	-17.		-56-	-63-	- 87.	-112.	-113.	-114.	-119.	-94.	. 60-	.00.		1 1 • c c d		-61.	-14-	-14.	-71.	-78.	-62.	-38.	-23.	-36.	-38.	-21.	
	FLOW 2	CFS	•0	0	•0	• 0	m (15.	106.	3/8.	829.	1349.	1855.	2403.	2983.	3537.	3968.	4260.	4367.	4337。	4181.	3950.	3684.	3415.	3143.	2880.	2611.	2353.	2137.	1978.	1869.	1783.	1707.	1628.	1541.	1446.	1347.	1244.	1141.	1044.	459.	0000	4 00 00	.000	716	678	641	604	568.	532	497.	466.	436.	407.	
200	FLOW 1	CFS	٥.	•0	•0	•0	•0	•0	124.	292.	634.	1238.	2200.	3450.	3710.	3872.	4000	4100.	4180.	4024.	3784.	3540.	3280.	3028.	2796.	2610.	2430.	2290.	2120.	1960.	1840.	1720.	1620.	1516.	1428.	1332.	1228.	1150.	1072.	988.	928.	836.	*000	140.	0000	640.	272	526.	506.	4007	474.	430.	398.	386.	
MEASURED ID=2 IFLUM ONE!	TIME	HRS	12,500	12.700	12,900	13.100	13,300	13.500	13.700	13.900	14.100	14.300	14.500	14,700	14.900	15,100	15,300	15,500	15,700	15.900	16.100	16.300	16.500	16,700	16,900	17,100	17.300	17.500	17.700	17.900	18,100	18,300	18.500	18,700	18,900	19,100	19,300	19.500	19,700	19.900	20.100	20° 300	20.500	20.700	20.900	21.100	21.300	21 200	21.900	22 100	22.300	22.500	22,700	22.900	
ANALYSIS																																																							

ERROR STANOARD OEVIATION = 177,294
PEAK DISCHARGE ERROR = 3,99 PERCENT

0A= 1.734 SQ MI) PTS=105 FLOW RATE ROUTING, ALL CAROS FOR THE SECONO ROUTING WERE PUNCHEO 8Y THE COMPUTER. HOWEVER, ROUTE RESERVOIR COMMANDS MUST 8E MANUALLY PUNCHED AND PLACEO IN THE THE FIRST STEP IS TO STORE THE HYO FROM AREA 301° NOTICE THE ID NUMBER IS CHANGEO FROM I TO 5 SO THE RESERVOIR OUTFLOW CAN 8E STOREO IN IO 1 TO MAKE IT FROM AREAS 301 ANO 3D6. TO EVALUATE THE EFFECTS OF THESE RESERVOIRS ON THE FLOOD HYOROGRAPH THE FLOOD OF MARCH 29, 1965 IS ROUTEO THROUGH THE WATERSHED NEXT ASSUME FLOOD DETENTION RESERVOIRS ARE CONSTRUCTED TO CONTROL THE RUNDFF PROGRAM TO ROUTE THROUGH THE PROPOSED RESERVOIRS. ALSO SOME OF THE COMPUTER WITH THE RESERVOIRS INSTALLED. SINCE THE PUNCH CODE WAS USED FOR THE FIRST 20. 1350. 400. 370. 35. 13. 110. 2260. THIS COMPLETES THE ROUTING FOR THE WATERSHED IN ITS PRESENT CONDITION. CCMPATABLE WITH THE STORE TRAVEL TIME AND ROUTE COMMANDS FOR REACH 2. NO PTS=105 . 560. 70. 38. 23. 395. 175. 14. 460. 6 . 4 . 2085. 1760. 2 DO. 560. 415. 25. 15. 1380. 110. 6. 80. OT = 0.166667 HRS RO= 4.933 INCHES ô 1420. 1890. .069 400. 235. 110. 27. 16. 90. 44. 9 PUNCHED COMMENT CAROS ARE CHANGED OR DELETED. 100. 47. 29. 17. 10. 860. 270. 0 885. 380. 1025. 120. HY0 NO=3D1 220. 211D. 1000. 365. 300. 130 31. 100 50. 18. 2360.CFS ô 2360. 115D. 370. 330. 140. 110. 60. 90. 33. 3 8 5 8 PEAK = 1 D=5 RECALL HYO

	DATA EEF DUTFLOW 22 20 200 2000 30000 30000	DEFINE RESERY 0 W(CFS) STC 22 00 00 00	DWICFS) STORAGE AC FT) 0 CFS STORAGE AC FT) 22 533 00 648 00 648	K OUTFLOW STORAGE RELATIONSHIP GE(AC FT) 50 533 555 601 648	d I H S N I H I H I H I H I H I H I H I H I H I			
* PRINT HYD	10=1							
		LNO	OUTFLOW HYDROGRAPH	APH RESERVOIR	1 501			
TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME
HRS	c FS	HRS	CFS.	HRS	CFS	HRS	CFS	HRS
12.500	° 0	1 6.500	17.	22.500	20.	27.499	20.	32.499
12.661	• •	17 833		22.666	50°	21.666	20.	32.666
13,000	ċ	18,000		23-000	20.	066.7	20.	350.25
13,167	0	18,167	18.	23.166	20.	28.166	20.	33.16
13,333	0	18,333	18.	23, 333	20.	28.333	20.	33,332
13,500	•0	18.500	18.	23.500	20.	28.499	20.	33.49
13.667	0.	18.667	19.	23.666	20.	28.666	20.	33.666
13,833	0.	18.833	19.	23,833	20.	28,833	20.	33.832
14.000	l.	19.000	19.	24.000	20.	28.999	20.	33.99
14.167	l.	19.166	19.	24.166	20.	29.166	20.	34.166
14.333	2.	19,333	19.	24.333	20.	29.333	20.	34,332
14.500	3°	19.500	19.	54.499	20.	59.499	20.	34.499
14.667	5.	19.666	19.	24.666	20.	29.666	20°	34.666
14.833	.9	19,833	19.	24.833	20.	29.832	20.	34.832
15.000	7.	20.000	19.	54.999	20.	59.999	20.	34.999
15.167	6	20.166	19.	25.166	20.	30.166	20.	35.165
15.333	. 10	20.333	19.	25.333	20.	30.332	20.	35,33
15.500	11.	20.500	20.	25.499	20.	30.499	20.	35.499
15.667	12.	20.666	20.	25.666	20.	30.666	20.	35.665
15,833	13.	20.833	20°	25,833	20.	30.832	20.	35.832
16.000	14.	21.000	20.	55.999	20.	30.999	20.	35.999
16.167	14.	21.166	20.	26.166	20.	31.166	20.	36.165
16,333	15.	21,333	20.	26.333	20.	31,332	20.	36.33
16.500	15.	21.500	20.	56.499	20.	31.499	20.	36.499
16.667	16.	21.666	20.	26.666	20.	31.666	20.	36.665
16.833	16.	21.833	20.	26.833	20.	31,832	20.	36.83
17.000	16.	22.000	20.	26.999	20.	31,909	20.	36.999
17.167	17.	22.166	20.	27.166	20.	32.166	20.	37,165
17.333	17.	22,333	20.	27. 333	20.	22 223	00	27 22

	OMPUTED	
	BE C	
2 •	MUST	
REACH	SHIP	
THROUGH	RELAT ION	
50 1	MO7:	
NEXT ROUTE THE OUTFLOW HYD FROM RESERVOIR 501 THROUGH REACH 2.	* BEFORE ROUTING THE TRAVEL TIME - DEPTH - FLOW RELATIONSHIP MUST BE COMPUTED	
FROM	I WE -	
HYD	VEL T	
407:	TRA	
OUT	THE	
THE	ING	ACH.
DUTE	ROUT	* FOR THE REACH
T R	ORE	THE
NEX	BEF	FOR
#	#	*

—																						DT=0.200000HRS		
1≈ 3400° FT		TIME (HRS)	0.832	0.597	0.498	0.472	0.390	0.338	0.343	0.364	0.359	0.359	0.360	0.363	0.353	0.341	0.336	0.332	0.307	0.286	0.267	JW ID=1		
KEACH NO= 2.0 LENGTH=	T/FT	CFSI	2.	• 9	16.	38.	86.	153.	252.	371.	545.	810.	1064.	1431.	1980.	2672.	3670.	4853.	6225.	7793.	9613.	101 INFLOW		
ID=2 KEACH N	E = 0 •	DEPTH(FT) F	0.30	0.68	1.07	1.58	2.18	2.75	3,28	3.66	4.02	4.45	4.78	5.13	5.50	5.86	6.29	6.67	6.98	7.29	7.60	ID=2 HYD NU=101	ID=2 CODE=1	
* STORE TRAVEL TIME																							нур	
STORE	1																					ROUTE	PRINT	

PARTIAL HYDROGRAPH 101

RUNDFF VCLUME = 0.411 INCHES
PEAK DISCHARGE RATE = 20.0 CFS

10=1	2	205 = ON	DT= C	DI= 0.166667	HRY	- 0.837	7 S.O. M.I.
PEAK=	(= 572.CFS	CFS	RO= 4.1	RO= 4.124 INCHES	N	S=1	3 7
	0	0	0	0	1.	2.	.6
ω,	.9	89.	169.	254.	332.	411.	491.
54	.8	570.	572.	558.	532.	495.	451。
40	. 2	363.	326.	300	282.	264.	244.
22	3.	204.	193.	193.	211.	219.	219.
21	.2.	201.	188.	174.	160.	147.	135.
12	5.	115.	109.	117.	124.	127.	128.
12	.5.	120.	113.	106.	•60	92.	86.
æ	11.	75.	70.	65.	61.	57.	53.
4	.6	46.	43.	40.	37.	35.	33。
(r)	.5.	30.	29.	27.	26.	25.	24.
2	23.	22.	21.	20.	19.	19.	18.
7	7.	16.	16.	15.	14.	14.	13.
1	œ,	12.	12.	11.	11.	10.	10.
	•6	•6	9.	89	6 0	80	7.
	7.	•9	• 9	5.	5.	*	. 4
	3.	3°	3°	2.	2.	2.	2.
	2.	2.	2.	2.	1:	1.	1.
	<u>.</u>	1:	1.	1.	1.	1:	1.
	•0	°	0	0	0	0	0
	.0	0	0	0	0	ċ	0
	_	¢	<	•	•	((

HPS 31.499 31.666 31.866 32.166 32.166 32.469 32.499 33.466 33.499 33.499 33.499 34.332 34.332 34.332 34.332 34.332 34.332 34.332 34.332		0.000 0.000
31. 649 31. 666 31. 666 32. 166 32. 166 32. 666 33. 666 33. 666 33. 666 34. 166 34. 166 34. 666 34. 666 34. 666 36. 666 36. 666 37. 666 38. 666 38. 666 38. 666 39.		
31.666 31.1832 31.1832 32.332 32.332 32.666 33.332 33.332 33.666 33.332 34.666 34.666		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31.832 32.100 32.100 32.332 32.332 32.332 32.3466 33.166 33.166 33.666 33.666 33.666 34.332 34.332 34.666		
<i>.</i>		1 1 1 1 1 1 1 1 2 2 3 2 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
<i>.</i>		
<u> </u>		0110000110000110
<i>ന ന ന ന ന ന ന ന ന ന ന ന ന ന</i> ന		100000000000000000000000000000000000000
<i>.</i>		C Q Q B L L Q Q W W 4 4 7
<i>.</i>		°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
		0 2 1 1 0 0 0 0 0 4 4 7
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		3 F F O O O O O A A .
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
<u> </u>		, • • • • • • • • • • • • • • • • • • •
<u> </u>		\$ \$ W W 4 4 4
		
<u> </u>		
M M M M M M		v, 4, 4,
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		44
		* 4
		,
		\$
		3.
		m°
		m I
		3.
		3.
m		2.
m		2.
		2.
		2.
		2.
		2.
		2.
		1.
		1:
		1.
	4	l.
	4	1.
	18.	
299. 289. 28. 229. 224. 224. 239.	34.4 35.16.9 35.16.9 35.16.9 36.43.3 36.43.3 36.43.3 36.43.3 37.16.5 37.16.	

OUTFLOW HYDROGRAPH REACH 2

10 11=2

1=1 01

HYD NO= 2 CODE=0

10=3 10=3

ADD HYD PRINT HYD

ů	
REACH	
THROUGH	
ROUTE	
#	

STO																						ROUTE PR INT
RE																						
STORE TRAVEL TIME																						HY 0
TIME																						
10=1	SLOPE=0	OEPTH(FT)	0.45	0.96	1.45	1.92	2.37	2 . 80	3.22	3.58	3.99	4.32	4.69	5.10	5.57	6.03	6.45	6.91	7.40	7.86	8.31	10=1 10=1
REACH	02420																					HYD NO=102 COOE=1
VO= 3.	FT/FT	FLOW (CFS)	2.	2	23	41	63.	9	122	160	215	287	403	592	887	1273.	1724	2527	3561.	4956	6826.	=102
REACH NO= 3.0 LENGTH=									•					•								INFLOW
3330. FT		TIME (HRS)	0.862	0.548	0.414	0.343	0.299	0.267	0.245	0.253	0.270	0.291	0.316	0.324	0.327	0.321	0.337	0.335	0.333	0.329	0.304	10=3
-																						01=0.20000

PARTIAL HYOROGRAPH 102

RUNDFF VOLUME = 1.619 INCHES PEAK OISCHARGE RATE = 536.6 CFS

	SQ MI		528.	594.	354.	295.	191.	169.	125.	80.	53。	38.	29.	23.	18.	14.	11.	e0	7.	3.	2.	1.	0	0.	٥.	0.
	0A= 1.108 NO PTS=175	2.	433。	632.	379.	297.	206.	168.	132.	85.	56.	40.	31.	24.	19.	14.	11.	.6	7.	. 4	2.	l.	0	0	°	0
	S	1.	341.	.099	*40*	292.	223.	165.	140.	•06	•09	42.	32.	25.	19.	15.	12.	6	7.	. 4	2.	1.	1.	c	0	°
	DT= 0.166667 HRS RO= 4.131 INCHES	0	253.	674.	428.	281.	240.	160.	148.	97.	63.	43.	33.	26.	20.	16.	12.	9.	7.	5.	2.	1.	1.	0	0	0
	DT = RO = 4.		164.	671.	462.	287.	257.	155.	155.	103.	67.	.94	34.	26.	21.	16.	13.	10.	80	5.	2.	2.	1.	0	0	0
	HYO NO=303 = 674.CFS	0	84.	648.	504.	304.	273.	164.	162.	110.	71.	48.	35.	27.	21.	17.	13.	10.	8	•9	2.	2.	1.	0	0	0
OM AREA 303	ID=2 HY(PEAK = 674	0	33.	604.	550.	328.	285.	177.	166.	118.	75.	51.	37.	28.	22.	17.	13.	11.	80	•9	3°	2.	1.	0.	0	0
* CCMPUTE THE HYD FROM AREA 303.	RECALL HYD																									

* TO OBTAIN THE OUTFLCW FROM REACH 3, ADO HYD FROM AREA 303 TO ROUTEO HYO 102.* * AOO HYO 10=3 HYO NO= 3 ID I=1 ID II=2 PRINT HYD ID=3 CODE=0

	4	-	Ü		•
	=0N	SLOPE = 0.003000FT/FT	FLOW (CF		
	REACH	3000			
	R	=0.0	(FT)	38	,
. 4	1 0=1	LOPE	DEPTH(FT)	0.38	0
THROUGH REACH 4.	Ξ	S	۵		
8	발				
Æ	TIME				
HROU	TRAVEL				
=	RA				
TE					
* ROUTE	* STORE				
#	* 21				

STORE TRAVEL TIME 1D=1 REACH NO= 4.0 LENGTH= 3415. FT SLOPE=0.003000FT/FT 2 0.878 0.																							01=0.200000HRS	
1D=1 REACH NO= 4.0 LENGTI SLOPE=0.00300FT/FT 0.38			[ME(HRS)	0.878	0.614	0.472	0.390	0.339	0.319	0.268	0.233	0.208	0.200	0.202	0.231	0.251	0.249	0.253	0.262	0.257	0.246	0.230		
10=1 REACH SLOPE=0.003000 DEPTH(FT) 0.38 0.38 0.38 0.38 1.25 1.25 1.25 1.25 1.25 1.25 1.25 2.14 2.54 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15			CFS)	2.	7.	15.	28 •	45.	62.	104.	155.	223.	305.	403.	554.	814.	1196.	1598.	2078.	3122.	4498.	6405.		
	REACH NO=	=0.003000FT/	1(FT) FL(9.6	25	69	14	54	15	75	.32	87	.36	. 82	. 32	83	28	69	27	986	747		C00E=1
STORE TRAVEL			DEPTH	c								4	4	5		•	i ve	7	_	60	000	6	10=1	10=1
	STORE TRAVEL																						ROUTE	

PARTIAL HYDROGRAPH 103

RUNDFF VOLUME = 2.375 INCHES PEAK DISCHARGE RATE = 1159.1 CFS

* COMPUTE THE HYD FROM AREA 304. * RECALL HYD IO=2 HYO N

SO MI	153.	438°	201.	173.	16.	°64	35.	21.	14.	6	9	2.	l.	0	°	0	°
0.807 S=119	53.	482.	220.	192.	88.	51.	37.	23.	15.	10.	7.	2.	1.	0	0	0	•
HRS DA= S NO PTS	8	504.	248.	207.	.16	51.	39.	24.	16.	11.	7.	3°	1.	0	0	0	0
0.250000 H															0		
01 = 0 RO = 4.1	0	457.	299.	217.	122.	•09	43.	28.	18.	12.	8	4 .	2.		0	0	0
NO=304 .CFS		~~	, ~	1	-										c		
10=2 HYO PEAK= 504.		258.	385	211.	154.	77.	47.	33.	20°	13.	6	2 4	2 6	, ,	ć	0	0

TIME FLDW HRS CFS 12-500 00-	10=3 10=3	HYD NO= CDDE=0	4 ID I=1		7=11 01				
J. 0			OUTFLOW HYDROGRAPH REACH	GRAPH REACH	4				
ပ		TIME	FLOW	TIME	FLDW	TIME	FLOW	TIME	FLDW
		HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS
		19,300	588.	26.100	.96	32.900	32.	39.700	10.
		19.500	537.	26.300	95.	33.100	31.	39.900	6
		19.700	489.	26.500	89.	33.300	30.	40.100	6
13.100 0.		19.900	450.	26.700	86.	33.500	30.	40.300	80
		20.100	426.	26.900	83.	33,700	29.	40.500	7
		20.300	414.	27.100	80.	33.900	28.	40.700	•9
		20.500	407.	27.300	78.	34.100	28.	40.900	.9
13,900 179.		20,700	401.	27.500	75.	34.300	27.	41.100	5
		20.900	389.	27.700	73.	34.500	25.	41.300	5
		21.100	374.	27.900	70.	34.700	25.	41.500	5.
		21.300	355.	28.100	68.	34.900	24.	41.700	4.
		21.500	334.	28.300	.99	35.100	23.	41.900	4.
		21.700	313.	28.500	63.	35.300	23.	42.100	4.
		21.900	291.	28.700	62.	35.500	23.	42,300	4.
		22.100	270.	28.900	•09	35.700	23.	42.500	œ.
15.500 1630.		22,300	252.	29.100	58.	35.900	22.	42.700	3
		22.500	237.	29,300	57.	36.100	22.	42.900	6
15,900 1535.		22.700	223.	29.500	55.	36.330	21.	43.100	m
		22.900	211.	29,700	53.	36.500	21.	43.300	6
		23.100	198.	29.900	51.	36.700	21.	43.500	2.
		23.300	187.	39.100	50.	36.900	20.	43.700	2
		23.500	176.	30.300	48.	37.100	2n.	43.900	2
_		23.700	167.	30.500	47.	37.300	20.	44.100	2
		23.900	158.	30.700	.94	37.500	20°	44.300	2.
17,300 878.		24.100	150.	30.900	45.	37.730	20.	44.500	2
		24.300	143.	31.100	43.	37,900	19.	44.700	2
17.700 774.		24.500	136.	31.300	42.	38.100	18.	006.44	2
		24.700	129.	31.500	40.	38.300	17.	45.100	-
		24.900	123.	31,700	39.	38.500	16.	45,300	-
		25.100	117.	31.900	38.	38.730	15.	45.500	-
		25,300	112.	32,100	36.	38.900	14.	45,700	_
		25,500	108.	32.300	35.	39.100	13.		
18,900 680.		25.700	103.	32.500	34.	39.300	12.		
		25 000	000	22 700	3.3	000			

																							DT=0.230000HRS			
	F∃																								è	10 t
	3310. FT		TIME (HRS)	0.749	0.542	0.400	2.317	0.267	9.231	0.220	0.219	0.208	0.195	0.177	0.151	0.148	0.137	0.132	0.132	0.127	0.120	9.113	10=3			
	LENGTH=		WI L																				INFLOW		0000	PARITAL HYDRUGKAPH
	5.0 1	/FT	FLOW (CFS)	2 •	0	26.	52.	.06	141.	237.	461.	818.	1317.	1958.	2750.	3713.	4861.	5880.	. 7699	8589.	11067.	14199.	140			PAKIIA
	REACH NO= 5.0 LENGTH=	SLOPE=0.003000FT/FT	14																				HYD NU=104	C 0 D E = 1		
	œ	0.0=	1(FT)	0.35	6.96	. 57	2.19	2.82	45	4.28	5.30	6.13	6.83	7.47	8.09	8.71	9.31	9.78	10.18	10.77	1,33	11.89	I	U		
	10=1	SLOP	DEPTH(FT	0	ێ	1,	2	2	3	4	5	9	9	7.	80	æ	6	6	10	10	11	1,	I D= I	10=1		
	TIME																									
	STORE TRAVEL TIME																							HYD		
#	STORE																						ROUTE	PRINT		

RUNGFF VOLUME = 2.686 INCHES PEAK DISCHARGE RATE = 1610.2 CFS

RECALL HYD

N OS	9	2	~	167.	0	65.	41.	27.	18.	13.	80	9	1.	l.	o C	Ċ	
A= 1.875 PTS=117	157.	793.	425.	182.	111.	70.	43.	29.	20.	13.	σ	• 9	2.	1.	ငံ	ċ	
HRS DI	28.	880.	474.	197.	119.	75.	46.	30.	21.	14.	6	•9	3.	1.	0	0	0
0.333333 H 837 INCHES	2.	937.	517.	216.	128.	81.	*65	32.	22.	15.	10.	7.	. 4	1.	ċ	0	0
DT = (RO = 3.8	0	924.	550.	240.	136.	87.	52.	34.	23.	16.	11.	7.	5.	1.	0	0	0
D N0=305		821.	610.	278.	145.	93.	56.	36.	24.	17.	11.	°8	5.	1.	0	0	ô
ID=2 HY(PEAK= 93'FLOW RATES	0	614.	674.	324.	155.	98.	•09	38.	26.	17.	12.	80	5.	l.	0	0	0.0

	10 11=2
rD 104.	1=1 01
305 TO THE PARTIAL HYD 104.	HYD NO=105
	10=3 H
HYO FROM AREA	
* ADD THE	* AOD HYO PRINT HYO

PARTIAL HYOROGRAPH 105

RUNDFF VOLUME = 3.025 INCHES PEAK DISCHARGE RATE = 2542.0 CFS

RECALL HYD	THE HYD FR	OM AREA	306 1	S REC.	ALLED AN	ID USED AS	THE 1	NFLOW H	YD TO RE	HYD FROM AREA 306 IS RECALLED AND USED AS THE INFLOW HYD TO RESERVOIR 502
PEAK = 638.CFS RO= 3.369 INCHES NO PTS= 61 F 0. 0. 0. 0. 45. 280. 638. 570. 370. 258. 170. 97. 64. 61. 80. 70. 59. 54. 51. 50. 46. 44. 40. 38. 27. 25. 24. 23. 22. 20. 20. 10. 19. 18. 16. 13. 11. 10. 9. 8. 77. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	ECALL HYD		10=5	H	0 NO=30€	01= 0	250000	HRS	DA= C.	483 SQ MI
0. 0. 0. 0. 45. 280. 638. 570. 370. 258. 170. 97. 64. 61. 80. 70. 59. 54. 51. 50. 46. 44. 40. 38. 20. 27. 25. 24. 23. 22. 20. 20. 19. 18. 16. 16. 13. 11. 10. 9. 8. 7. 5. 5. 2. 1. 3. 2. 2. 1.			PEAK =	63	3.CFS	RO= 3.36	9 INCH	IES NO	PTS= 61	FLOW RATE
638. 570. 370. 258. 170. 97. 64. 61. 80. 70. 59. 54. 51. 50. 46. 44. 40. 38. 30. 27. 25. 24. 23. 22. 20. 20. 19. 18. 16. 16. 13. 11. 10. 9. 8. 7. 5. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1.				0	٥	0	0	45.	280.	560.
64. 61. 80. 70. 59. 54. 51. 50. 44. 40. 38. 30. 27. 25. 24. 23. 20. 20. 19. 18. 16. 16. 13. 11. 10. 9. 8. 7. 5. 5. 4. 4. 3. 13. 2. 2. 13. 2. 2. 14. 4. 3. 15. 2. 2. 16. 16. 17. 10. 9. 8. 18. 16. 19. 10. 9. 8. 19. 10. 9. 10. 19. 10. 9. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1			9	38.	570.	370.	258.	170.	97.	72.
51. 50. 46. 44. 40. 38. 30. 27. 25. 24. 23. 22. 20. 20. 19. 18. 16. 16. 13. 11. 10. 9. 8. 7. 5. 5. 4. 4. 3. 3. 2. 2. 1. ROUTE THE HYD FROM AREA 306 THROUGH RESERVOIR 502.				64.	61.	8D.	70.	59.	54.	52.
30. 27. 25. 24. 23. 22. 22. 20. 19. 18. 16. 16. 16. 16. 13. 11. 10. 9. 8. 7. 5. 5. 4. 4. 3. 3. 3. 3. 3. 3. 5. 5. 2. 1. 14. 3. 3. 5. 5. 5. 4. 4. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.				51.	50.	46.	44.	40*	38.	33.
20. 2C. 19. 18. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16				30.	27.	25.	24.	23.	22.	21.
13. 11. 10. 9. 8. 7. 5. 5. 4. 4. 3. 3. 5. 2. 2. 1. 10. 5.				20.	20.	19.	18.	16.	16.	15.
5. 5. 4. 4. 3. 3. 2. 2. 2. 1. ROUTE THE HYD FROM AREA 306 THROUGH RESERVOIR 502.				13.	11.	10.	6	80	7.	•9
3. 2. 2. 1. SOUTE THE HYD FROM AREA 306 THROUGH RESERVOIR 502.				5.	5	5.	4.	4.	3.	3.
ROUTE THE HYD FROM AREA 306 THROUGH RESERVOIR 502.				3.	2.	2.	2.	1.		
	ROUTE THE	HYD FRO	M AREA	306	THROUGH	RESERVOIR	502.			

 OUTFLOW HYDROGRAPH RESERVOIR 502

RUNDFF VOLUME = 0.369 INCHES PEAK DISCHARGE RATE = 3.4 CFS

																						DT=0.200000HRS		
	H= 4080, FT	TIME (HRS)	0.589	0.406	0.335	0.285	0.252	0.249	0.248	0.240	0.228	0.216	0.205	0.192	0.179	0.167	0.154	0.142	0.132	0.123	0.116	OW 10=1		ROGRAPH 106
	NO= 6.0 LENGTH=	CFS)	5.	16.	33.	56.	88•	146.	251.	421.	675.	1019.	1482.	2102.	2902	3908.	5214.	6796.	8649.	10796.	13261.	D=106 INFLOW	CODE = 1	PARTIAL HYDROGRAPH
	ID=2 REACH NO=	DEPTH(FT)	0.44	0.80	1.18	1.52	1,88	2.26	2.66	3.10	3,55	4.00	4.46	4.93	5.40	5.88	6.37	6.85	7.33	7.80	8.28		10=2 CODE=	
ět-	STORE TRAVEL TIME																					ROUTE	PRINT HYD	

RUNDFF VOLUME = 0.381 INCHES PEAK DISCHARGE RATE = 3.4 CFS

* TO OBTAIN THE OUTFLOW HYD FROM REACH 5, ADD PARTIAL HYDS 106 AND 105.

ID II=2

ID I=3

2

HYD NO= CODE=0

10=6 10=6

ADD HYD PRINT HYD

	3	CFS	5.	5.	5.	5.	4.	4.	4°	en en	3.			i m	'n	i cn	์เก	. m	์ เก	, cc			ก็เ	היא הי	9 (6		in	3°	3°	2.	2.	2.	2.	2.	2。	1.	0	•	1.	1.				
	TIME	HRS	45.300	45.500	45.700	45.900	46.100	46.300	46.500	46.700	46.900	47,100	47,300	47,500	47.700	47,900	48,100	48.299	48.499	48.699	48.899	660.64	66.00	607.07	669.64	668°64	50.099	50.299	50.499	50.699	. 50.899	5.1 . 0.99	51,299	51.499	51.699	51,899	55°ü39	52.299	52.499	52,699				
	FLOW	CFS	33.	33.	33.	32.	31.	31.	30.	29.	28.	26.	25.	24.	22.	21.	20.	20.	18.	17.	16.	12.	22.	14.	12.	12.	11.	10.	.6	°8	80	80	&	7.	7.	7.	7.	7 。	7.	• 9	•9	, 9	50.	
	TIME	HRS	37.100	37.300	37.500	37.700	37.900	38,100	38,300	38,500	38,700	38.900	39,100	39.300	39,500	39.700	39.900	40.100	40.300	40.500	40.700	40.900	41.100	41.300	41.500	41.700	41.900	42.100	42.300	42.500	42.700	45.900	43.100	43.300	43.500	43.700	43.900	44.100	44.300	44.500	44.700	44.900	45.100	
CH 5	FLOW	CFS	103.	100.	97.	94°	91.	88	85.	83。	81.	78.	76.	74.	72.	.69	67.	65.	63.	61.	609	58.	56.	54.	52.	51.	50.	46°	48.	47.	45.	44.	42.	41.	40.	39.	39°	38•	37.	36.	36.	35.	34.	
OUTFLOW HYDROGRAPH REACH	TIME	HRS	28.900	29.100	29.300	29.500	29.700	29,900	30.100	30.300	30.500	30.700	30.900	31.100	31,300	31.500	31,700	31.900	32,100	32,300	32,500	32,700	32,900	33,100	33,300	33,500	33,700	33.900	34.100	34.300	34.500	34.700	34.900	35.100	35,300	35.500	35.700	35.900	36.100	36.300	36.500	36.700	36.900	
OUTFLOW HY	FLOW	CFS	617.	597。	575。	551.	524.	496*	469*	442.	417.	394。	373。	354。	335.	318.	302.	287。	274.	261.	250°	240.	228	217.	207.	198.	190.	182.	175.	169.	162.	156.	150.	144.	139.	134。	130.	126.	121.	117.	113.	110.	106.	CFS
	TIME	HRS	20, 700	20.900	21.100	21,300	21.500	21.700	21.900	22.100	22,300	22.500	22.700	22.900	23.100	23.300	23.500	23.700	23,900	24,100	24,300	24.500	24,700	24.900	25.100	25,300	25.500	25.700	25,900	26.100	26.300	26.500	26.700	26.900	27.100	27.300	27.500	27.700	27.900	28.100	28.300	28.500	28.700	2.838 INCHES = 2544.1 CFS
	FLOW	CFS	0	°	°	•	-:	4.	30.	123.	354.	675.	1016.	1391.	1765.	2100.	2347.	2509.	2544.	2504.	2394.	2249.	2090	1952.	1828.	1714.	1599.	1487.	1394.	1329.	1291.	1257.	1222.	1178.	1125.	1061.	.066	914.	838.	767。	707.	666.	637.	RATE
	TIME	HRS	12.500	12,700	12.900	13.100	13.300	13.500	13,700	13,900	14.100	14.300	14.500	14.700	14.900	15,100	15,300	15,500	15.700	15.900	16.100	16,300	16.500	16.700	16.900	17,100	17.300	17.500	17.700	17.900	18.100	18.300	18.500	18.700	18.900	19.100	19,300	19.500	19.700	19,900	20.100	20.300	20.500	RUNOFF VOLUME = PEAK DISCHARGE

* THE SEDIMENT YIELD COMMAND IS USED TO COMPUTE THE SEDIMENT YIELD PRODUCED BY *

* THE ROUTED FLOOD.

* SEDIMENT YIELD

		14 SQ MI			106.		3684.			788.	532。	331.	223.	156.	112.	81.	61.	45.	31.	22.	15.	11.	7.	• 9	3.	1.	1.	0	0	ċ	0.0	
8	. S.	DA= 6.844	=		15.	2983.	3950。	2137.	1446.	833。	568。	354。	237.	164.	118.	85.	. 49	47.	33.	24.	16.	12.	7.	• 9	. 4	1.	1.	0°	0	0	0	
LS=.	ONDITION	RS	Ž		3°	2403.	4181.	2353。	1541.	889.	604.	379.	251.	172.	123.	.68	67.	.64	35。	25.	17.	12.	.6	• 9	4 .	1.	1.	0	ċ.	0	0	0.
CP=.4	PRESENT CONDITIONS.	0.200000 HRS	.196 INCHES		0.	1855.	4337.	2611.	1628.	959°	641.	407.	265.	181.	129.	. 46	.69	52.	36.	26.	18.	13.	.6	.9	5.	1.	1.	0	c	°	0	0
CROP=,16	ED WITH		RO= 4.1		0	1349.	4367.	2880.	1707.	1044.	678.	436.	279.	190.	135.	98.	72.	54.	38.	28.	19.	13.	10.	.9	5°	2。	1.	0	0	0.	0	0
L= . 34	TYD ROUTED	9	367.CFS		0	829.	4260.	3143.	1783.	1141.	714.	466.	294.	200	141.	103.	75.	56.	40.	29.	20.	14.	10.	7.	5.	2.	1.	1.	0	0	0	0
-	LC		PEAK= 436	RAI	0	378.	3968	3415.	1869.	1244.	749.	497.	312.	211.	148.	107.	78.	59.	42.	30.	21.	15.	11.	7.	5.	3°	1.	1.	0.	0	0	0
SEDIMENT YIELD	* RECALL THE REACH *	RECALL HYD																														

52

LITERATURE CITED

- Brakensiek, D. L., Heath, A. L., and Comer, G. H. 1966. Numerical techniques for small watershed flood routing. U.S. Dept. Agr., Agr. Res. Serv., ARS 41-113, 41 pp.
- (2) Hann, R. W., Jr., and Carpenter, S. B.
 - 1970. Estuarine systems projects problem-oriented language package. Texas A&M Univ., Environmental Engin. Div., Civil Engin. Dept., Tech. Rpt. 16, 53 pp.
- (3) United States Department of Agriculture.
 - 1969. Soil Conserv. Serv., Natl. Engin. Handb., Hydrol., Sect. 4: 10.1-17.48.
- (4) Williams, J. R.
 - 1968. Runoff hydrographs from small Texas blacklands watersheds. U.S. Dept. Agr., Agr. Res. Serv., ARS 41-143, 24 pp.

- (5) Williams, J. R.
 - 1969. Flood routing with variable travel time or variable storage coefficients. Amer. Soc. Agr. Engin. Trans. 12 (1): 100-103.
- 1971. Variable storage coefficient flood routing with variable slope. Pending publication. 10 pp. (Available from author.)
- (7) _____ and Hann, R. W., Jr.
- 1972. HYMO, a problem-oriented computer language for building hydrologic models. Water Resources Res. 8 (1): 79-86.
- (8) Wischmeier, W. H., and Smith, D. D.
- 1965. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. U.S. Dept. Agr., Agr. Handb. 282, 47 pp.

APPENDIX HYMO MAIN PROGRAM AND SUBROUTINES

	//\$0	PTIONS			
	C	, 110113	HYMO	Α	1
	Č			A	2
	Ċ	THIS	PROGRAM IS A PROBLEM ORIENTED COMPUTER LANGUAGE FOR	A	3
	С	DEVEL	OPING WATERSHED MODELS.	Α	4
	С			Α	5
	С			A	6
	С	DEFIN	NITION OF VARIABLES	Α	7
	С	ID =	STORAGE LOCATION NUMBER	Α	8
	С	NHD =	HYDROGRAPH IDENTIFICATION NUMBER	Α	9
	С	DT =	TIME INCREMENT IN HOURS	Α	10
	С	DA =	DRAINAGE AREA IN SQ MI	Α	11
	С	OCFS	= FLOW RATE ARRAY	Α	12
	С	OCFSF	= CUTOFF FLOW RATE IN CFS	Α	13
	С	IEND	= NUMBER OF POINTS IN A HYDROGRAPH	Α	14
	С	SCFS	= FLOW RATE ARRAY FOR TRAVEL TIME TABLE	Α	15
	С		ND AREA IN SQ FT	Α	16
	С		LOW RATE ARRAY FOR RATING CURVES	A	17
	С		= MASS RAINFALL ARRAY	A	18
1			ON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD	Α	19
			(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO	Α	20
		-	C, NCODE, DIST(6), SEGN(6), CTBLE (50,11), ITBLE(50,2), ZALFA(20), DT	Α	21
_			IME, PEAK (6), ROIN, ISG (6)	A	22
2	_	NC CDE		A	23
-	С		ZALFA ARRAY	A	24
3	_		(5,20) (ZALFA(I),I=1,15)	A	25
,	С		NUMBER OF COMMANDS	A	26
4	_		(5,21) NCOMM	A	27
5	С		COMMAND TABLE (5,22) ((CTBLE(I,J),J=1,11),(ITBTT(I,J),J=1,2),I=1,NCOMM)	A	28 29
6			(6,23) (ZALFA(I),I=1,15)	Ä	30
7			(6,24)	Ä	31
8			(6,25) ((CTBLE(I,J),J=1,11),(ITBLE(I,J),J=1,2),I=1,NCOMM)	Ā	32
U	С		CODES NPU = PUNCH, ICC = CONTINUATION CARD, NER = ERROR	Ā	33
9	·	NPU=0		A	34
10		ICC=0		Ā	35
11	1	NER=0		A	36
12	-		HONDO	A	37
13			IER) 2,2,19	Α	38
14	2	GO TO	(3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), NCODE	Α	39
15	3	TIME=	DATA(1)	Α	40
16		NPU=D	DATA(2)	Α	41
17		GO TO	0.1	Α	42
18	4	CALL	STHYD	Α	43
19		GO TO		Α	44
20	5	CALL	RECHD	Α	45
21		GO TO	0 1	Α	46
22	6	CALL	CMPHYD	A	47
23		GO TO		Α	48
24	7		PRTHYD	Α	49
25		GO TO		A	50
26	8		PUHYD	A	51
27	_	GO TO		A	52
28	9		HPLOT	A	53
29	1.0	GO TO		A	54
30	10		ADHYD	A	55
31	1.1	GO TO		A	56 57
32	11	CALL GO TO		A	58
3 3	12		CMPRC	A	59
34	17	CALL	Crit NO	~	77

```
60
35
            GO TO 1
                                                                                        Α
                                                                                        Α
                                                                                            61
            CALL STT
36
     13
                                                                                        Α
                                                                                            62
37
            GO TO 1
            CALL . CMPTT
                                                                                        Α
                                                                                            63
38
     14
                                                                                        Α
                                                                                            64
            GO TO 1
39
            CALL ROUTE
                                                                                        Α
                                                                                            65
40
     15
                                                                                        Δ
                                                                                            66
41
            GO TO 1
42
            CALL RESVO
                                                                                        Α
                                                                                            67
     16
            GO TO 1
                                                                                        Α
43
                                                                                            68
44
     17
            CALL ERROR
                                                                                        Α
                                                                                            69
            GO TO 1
                                                                                        Α
                                                                                            70
45
                                                                                        Α
                                                                                            71
46
     18
            CALL SEDT
47
            GO TO 1
                                                                                        Α
                                                                                            72
                                                                                        Α
                                                                                            73
48
     19
            STOP
                                                                                            74
                                                                                        Α
     C
     20
            FORMAT (15A1)
                                                                                        Α
                                                                                            75
49
                                                                                        Α
                                                                                            76
50
     21
            FORMAT
                    (I2)
51
     22
            FORMAT
                    (2A1,9A2,2I3)
                                                                                        Α
                                                                                            77
52
     23
            FORMAT
                    (1H1,9X,8HZALFA = ,15A1///)
                                                                                        Α
                                                                                            78
                                                                                            79
53
     24
            FORMAT
                    (16X,13HCOMMAND TABLE//)
                                                                                        Α
54
     25
            FORMAT (10X,2A1,9A2,2I3)
                                                                                        Α
                                                                                            80
55
                                                                                            81-
            END
                                                                                        Α
            SUBROUTINE HONDO
                                                                                        В
                                                                                             1
56
     С
            THIS SUBROUTINE READS IN A DATA CARD, SEARCHES AN ALPHAMERIC
                                                                                        В
                                                                                             2
     C
            CODE TABLE TO DETERMINE THE NCODE OF THE OPERATION AND
                                                                                        В
                                                                                             3
     C
            COLLECTS VARIABLES FROM THE FREEFLOATING DATA FIELD
                                                                                        В
                                                                                             4
57
            CUMMON CFS(300),OCFS(300,6),IEND(6),DATA(310),DA(6),DP(20),NPU,NHD
                                                                                         В
                                                                                             5
           1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                         В
                                                                                             6
           2MM,ICC,NCODE,DIST(6),SEGN(6),CTBLE(50,11),ITBLE(50,2),ZALFA(20),DT
                                                                                         R
                                                                                             7
           3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                         8
                                                                                             8
58
            DIMENSION CHAR(60), ALPHA(11)
                                                                                         В
                                                                                             9
            DIMENSION AUXA(10), AUXB(10)
59
                                                                                         В
                                                                                            10
            IF (ICC) 1,1,3
60
                                                                                         В
                                                                                            11
     C
            READ IN DATA CARD
                                                                                         B
                                                                                            12
     1
            READ (5,42) (ALPHA([),[=1,11),(CHAR([),[=1,60)
                                                                                         B
                                                                                            13
61
     C
            IF FIRST CHARACTER IS BLANK THE CARD IS A CONTINUATION OF
                                                                                         R
                                                                                            14
     C
            PREVIOUS CARD.
                                                                                            15
62
               (ALPHA(1)-ZALFA(11)) 2,9,2
                                                                                         В
                                                                                            16
                                                                                            17
63
     2
               (ICC) 3,3,40
     C
            ASTERISK IN COL. 80 MEANS SKIP TO NEW PAGE BEFORE PRINTING CARD
                                                                                            18
64
     3
            IF (CHAR(60)-ZALFA(11)) 4,5,4
                                                                                         В
                                                                                            19
65
     4
            WRITE (6,43)
                                                                                         В
                                                                                            20
     5
            WRITE (6,44) (ALPHA(I), I=1,11), (CHAR(I), I=1,60)
                                                                                         В
                                                                                            21
66
     C
            IF FIRST CHARACTER IS A * THE PREVIOUS CARD WAS A COMMENT CARD
                                                                                         В
                                                                                            22
                                                                                         В
67
            IF (ALPHA(1)-ZALFA(12)) 10,6,10
                                                                                            23
     C
            IF PUNCH CODE POSITIVE, COMMENT CARDS ARE PUNCHED.
                                                                                         В
                                                                                            24
68
                                                                                         В
                                                                                            25
     6
            IF (NPU) 8,8,7
69
            WRITE (7,45) (ALPHA(I), I=1,11), (CHAR(I), I=1,60)
                                                                                         В
     7
                                                                                            26
70
     8
            ICC=0
                                                                                         В
                                                                                            27
                                                                                         В
71
            GO TO 1
                                                                                            28
                                                                                            29
     9
72
            WRITE (6,44) (ALPHA(I), I=1,11), (CHAR(I), I=1,60)
                                                                                         В
73
                                                                                         В
                                                                                            30
            GO TO 24
     С
            SEARCH FIRST TWO ALPHAMERIC CHARACTERS TO SEE IF THEY ARE NUMBERS
                                                                                         В
                                                                                            31
74
      10
            ICC=1
                                                                                         В
                                                                                            32
75
            DO 12 I=1,10
                                                                                         В
                                                                                            33
76
               (AL PHA(1)-ZALFA(I)) 11,15,11
                                                                                         В
                                                                                            34
77
      11
               (ALPHA(2)-ZALFA(I)) 12,15,12
                                                                                         R
                                                                                            35
78
      12
            CONTINUE
                                                                                         В
                                                                                            36
            STATEMENT NUMBER 7 IS BRANCHED TO IF NUMBERS ARE PRESENT
      C
                                                                                            37
```

```
С
             IF NOT NUMBER SEARCH COMMAND TABLE FOR MATCH
                                                                                         В
                                                                                            38
      C
             CALL FIRST 10 VALUES FROM PERMANENT DATA STORAGE
                                                                                         В
                                                                                            39
 79
             DO 14 I=1.50
                                                                                         В
                                                                                            40
             DO 13 J=1,11
 80
                                                                                         В
                                                                                            41
 81
             IF (CTBLE(I,J)-ALPHA(J)) 14,13,14
                                                                                         В
                                                                                            42
      С
             SN 10=PART MATCH
                                                                                         В
                                                                                            43
 82
      13
             CONTINUE
                                                                                         В
                                                                                            44
             IF THIS LOOP IS COMPLETED WE HAVE COMPLETE MATCH- CALL NCODE
                                                                                         В
      С
                                                                                            45
      C
             AND MAX NUMBER AND EXIT LOOP
                                                                                         В
                                                                                            46
 83
             NCODE=ITBLE(I,1)
                                                                                         В
                                                                                            47
             MAXNO=ITBLE(I,2)
 84
                                                                                         В
                                                                                            48
 85
             GO TO 21
                                                                                         В
                                                                                            49
             CONTINUE
                                                                                         В
                                                                                            50
 86
      14
             IF MAJOR LOOPS FINISHED WITHOUT A MATCH WRITE ERROR MESSAGE
                                                                                         В
      C
                                                                                            51
             AND SET NER = 1
      С
                                                                                         В
                                                                                            52
 87
                                                                                         В
                                                                                            53
             NER=1
                                                                                         В
                                                                                            54
 88
             WRITE (6,46)
                                                                                         В
                                                                                            55
             RETURN
 89
      C
             CONVERT DIGIT INPUT CODE FROM ALPHAMERIC TO INTEGER FORM
                                                                                         В
                                                                                            56
             NCODE=GIT(ALPHA,1,2,1.)+0.5
 90
      15
                                                                                         В
                                                                                            57
      С
             FIND MAX NUMBER OF DATA ITEMS FOR THIS NCODE
                                                                                         B
                                                                                            58
 91
             DO 17 I=1,50
                                                                                         В
                                                                                            59
 92
             IF (ITBLE(I,1)-NCODE) 17,16,17
                                                                                         В
                                                                                            60
 93
      16
             MAXNO=ITBLE(I,2)
                                                                                         В
                                                                                            61
                                                                                         В
 94
             GO TO 21
                                                                                            62
 95
      17
             CONTINUE
                                                                                         В
                                                                                            63
             SEARCH DATA ROUTINE
                                                                                         В
      С
                                                                                            64
             SEE IF ANY DATA FOR THIS CARD
                                                                                         В
      С
                                                                                            65
 96
                                                                                         В
                                                                                            66
             DO 19 I=1,50
 97
             IF (ITBLE(I,1)-NCODE) 19,18,19
                                                                                         В
                                                                                            67
                                                                                         В
 98
      18
             MAXNO=ITBLE(I,2)
                                                                                            68
                                                                                         В
                                                                                            69
 99
             GO TO 20
100
      19
             CONTINUE
                                                                                         В
                                                                                            70
101
      20
             CONTINUE
                                                                                         В
                                                                                            71
102
      21
             IF (MAXNO) 23,22,23
                                                                                         В
                                                                                            72
103
      22
             RETURN
                                                                                         В
                                                                                            73
              ZERO ARRAYS AND COUNTERS
                                                                                         В
      С
                                                                                            74
                                                                                         В
                                                                                            75
104
      23
             DO 47 I=1,310
105
      47
             DATA (I)=0.
                                                                                         В
                                                                                            76
                                                                                         В
106
             NDATA=1
                                                                                            77
107
      24
             NCHAR=0
                                                                                         В
                                                                                            78
                                                                                         В
                                                                                            79
      25
             DO 26 I=1,10
108
109
             AUXA(I)=0.
                                                                                         В
                                                                                            80
                                                                                         В
110
      26
             AUXB(I)=0.
                                                                                            81
                                                                                         В
111
             I T 1=1
                                                                                            82
                                                                                         В
112
             IT2=1
                                                                                            83
                                                                                         В
113
             SIGN=1.
                                                                                            84
             LDGIT=0
                                                                                         В
                                                                                            85
114
                                                                                         В
                                                                                            86
115
             KDGIT=0
      С
             CARRY OUT DIGIT BY DIGIT SEARCH AND ACCUMULATION
                                                                                         В
                                                                                            87
116
      27
             NCHAR=NCHAR+1
                                                                                         В
                                                                                            88
             HAVE WE CONSIDERED ALL CHARACTERS - RETURN IF SO
                                                                                         В
                                                                                            89
      С
             IF (NCHAR-60) 28,32,1
                                                                                         В
                                                                                            90
117
118
                                                                                         В
                                                                                            91
      28
             DO 29 I=1.15
                                                                                         В
                                                                                            92
119
             IF (CHAR(NCHAR)-ZALFA(I)) 29,30,29
120
      29
             CONTINUE
                                                                                         В
                                                                                            93
121
             GO TO 32
                                                                                            94
      30
             GO TO (33,33,33,33,33,33,33,33,33,32,27,36,32,31,27), I
                                                                                         В
                                                                                            95
122
             SN 39 HANDLES SIGN CONTROL ON 1130 VERSION
                                                                                         В
                                                                                            96
      С
                                                                                         В
123
      31
                                                                                            97
             SIGN=-1.0
```

124		GO TO 27	B 98
	С	CHARACTER IS BLANK OR COMMA - DOES IT FOLLOW A DIGIT	B 99
125	32	GO TO (27,4B), IT1	B 100
	С	CHARACTER IS A DIGIT - HAS A DECIMAL BEEN ENCOUNTERED	B 101
126	33	GO TO (34,35), IT2	B 102
127	34	LDGIT=LDGIT+1	B 103 B 104
128 129		IT1=2 . AUXA(LDGIT)=CHAR(NCHAR)	B 104
130		GO TO 27	B 106
131	35	KDGIT=KDGIT+1	B 107
132		AUXB(K DGIT)=CHAR (NCHAR)	B 10B
133		GO TO 27	B 109
	С	CHARACTER IS A DECIMAL - DOES IT FOLLOW A DIGIT	B 110
134	36	GO TO (37,38), IT1	B 111
135	37	I T 1 = 2	B 112
136	2.0	LDGIT=1	B 113
137	38	172=2	B 114
13B	С	GO TO 27 ROUTINE TO CONVERT ALPHABETIC ARRAY TO FLOATING POINT NUMBER	B 115 B 116
139	48	DATA (NDATA)=GIT(AUXA,1,LDGIT,1.)+GIT(AUXB,1,10,0.)	B 117
140	717	DATA (NDATA)=DATA(NDATA)*SIGN	B 11B
1 10	С	IS ALL DATA FURNISHED YES-RETURN NO INCREASE N DATA KEEP ON	B 119
141		IF (NDATA-MAXNO) 41,39,39	B 120
142	39	1 C C = 0	B 121
143	40	RETURN	B 122
144	41	NDATA=NDATA+1	B 123
145		GO TO 25	B 124
	C	500047 4241 042 40441	B 125
146	42	FORMAT (2A1,9A2,6OA1)	B 126
147 14B	43 44	FORMAT (1H1) FORMAT (5X,2A1,9A2,60A1)	B 127 B 12B
149	45	FORMAT (2A1,9A2,60A1)	B 129
150	46	FORMAT (10X,20HCOMMAND NOT IN TABLE)	B 130
151		ENC	B 131-
152		FUNCTION GIT (TCARD, J, JLAST, SHIFT)	C 1
153		DIMENSION TCARD(10), A(10)	C 2
154		DATA A(1)/1H1/,A(2)/1H2/,A(3)/1H3/,A(4)/1H4/,A(5)/1H5/,A(6)/1H6/	C 3
155 156		DATA A(7)/1H7/,A(8)/1H8/,A(9)/1H9/,A(10)/1H0/ GIT=0.	C 4 C 5
157		TEN=10.	C 6
15B		SUM=0.	C 7
159		DO 3 JNOW=J,JLAST	Č B
160		TTEST=TCARD(JNOW)	C 9
	С	CHECK FOR LAST ENTRY	C 10
161		IF (TTEST.EQ.O.) GO TO 4	C 11
	С	FIND NUMBER AND COMPUTE VALUE	C 12
162		DO 2 NUMB=1,10	C 13
163		IF (TTEST-A(NUMB)) 2,1,2	C 14
164 165	1	ZTEST=NUMB IF (ZTEST.EQ.10.) ZTEST=0.	C 15
166		SUM=SUM*TEN+ZTEST	C 16 C 17
167		GO TO 3	C 18
16B	2	CONTINUE	C 19
169	3	CONTINUE	C 20
170	4	IF (SHIFT) 6,5,6	C 21
171	5	FI=JNOW-1	C 22
172		SUM=SUM*(0.1**FI)	C 23
173	6	GIT=SUM	C 24
174		RETURN	C 25

```
175
              END
                                                                                             С.
                                                                                                26-
176
              SUBROUTINE STHYD
                                                                                             D
                                                                                                  1
       C
              THIS SUBROUTINE STORES THE COORDINATES OF HYDROGRAPHS.
                                                                                             D
                                                                                                  2
177
              COMMON CFS(300),OCFS(300,6),IEND(6),DATA(310),DA(6),DP(20),NPU,NHD
                                                                                             D
                                                                                                  3
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                             D
                                                                                                  4
             2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                                  5
                                                                                             D
             3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                             D
                                                                                                  6
178
              ID=DATA(1)
                                                                                             D
                                                                                                  7
179
              NHD=DATA(2)
                                                                                             D
                                                                                                  8
180
              DT(ID)=DATA(3)
                                                                                             Đ
                                                                                                  9
181
              DA(ID) = DATA(4)
                                                                                             D
                                                                                                10
182
              J = 5
                                                                                             Đ
                                                                                                11
              REMAINING DATA ARE FLOW RATES
                                                                                             D
                                                                                                12
183
              OCFS(1, ID) = DATA(J)
                                                                                             D
                                                                                                13
184
              PEAK(ID)=1.
                                                                                             D
                                                                                                14
185
              RO=DATA(J)
                                                                                             D
                                                                                                15
              DO 4 I = 2,300
186
                                                                                             D
                                                                                                16
187
              J = J + 1
                                                                                             D
                                                                                                17
188
              OCFS(I, ID) = DATA(J)
                                                                                             D
                                                                                                18
189
              RO=RO+OCFS(I, ID)
                                                                                             D
                                                                                                19
       С
              IS FLOW RECEDING
                                                                                             D
                                                                                                20
190
              IF (OCFS(I,ID)-OCFS(I-1,ID)) 1,2,2
                                                                                             D
                                                                                                21
       C
              HAS FLOW RECEDED TO CUTOFF RATE
                                                                                             D
                                                                                                22
191
       1
              IF (OCFS(I, ID)) 5,5,4
                                                                                             D
                                                                                                23
       C
              DETERMINE PEAK FLOW
                                                                                             D
                                                                                                24
       2
192
              IF (OCFS(I, ID)-PEAK(ID)) 4,4,3
                                                                                             D
                                                                                                25
193
       3
              PEAK(ID)=OCFS(I,ID)
                                                                                             D
                                                                                                26
194
       4
              CONTINUE
                                                                                             D
                                                                                                27
195
       5
              IEND(ID)=I-1
                                                                                             D
                                                                                                28
196
              M = I END(ID)
                                                                                             D
                                                                                                29
197
              ROIN=(RO*DT(ID))/(DA(ID)*645.333)
                                                                                             D
                                                                                                30
       C
              PUNCH CODE
                                                                                             D
                                                                                                31
198
              IF (NPU) 7,7,6
                                                                                             D
                                                                                                32
199
       6
              WRITE (7,8) ID, NHD, DT(ID), DA(ID), PEAK(ID), ROIN, IEND(ID)
                                                                                             D
                                                                                                33
              WRITE (7,9) (OCFS(J,ID),J=1,M)
200
                                                                                             D
                                                                                                34
201
       7
              RETURN
                                                                                             D
                                                                                                35
       C
                                                                                                36
                                                                                             D
202
       8
             FORMAT(
                         "RECALL HYD", T21, "ID=", I1, T29, "HYD NO=", I3, T42, "DT=", F9.
                                                                                             D
                                                                                                37
             16, HRS*, T61, DA=*, F8.3, SQ MI*/T21, PEAK=*, F7.0, CFS*, T40, RO=*,
                                                                                             D
                                                                                                38
             2F6.3, INCHES , T59, NO PTS= , I3/T21, FLOW RATES )
                                                                                             D
                                                                                                39
203
       9
              FORMAT (T21.7F8.0)
                                                                                             D
                                                                                                40
204
              END
                                                                                             D
                                                                                                41-
205
              SUBROUTINE RECHD
                                                                                             Ε
                                                                                                 1
       C
              THIS SUBROUTINE RECALLS PREVIOUSLY COMPUTED AND PUNCHED
                                                                                             Ε
                                                                                                 2
       С
              HYDROGRAPHS
                                                                                             Ε
                                                                                                 3
              COMMON CFS (300), OCFS (300, 6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
206
                                                                                             Ε
                                                                                                 4
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                             E
                                                                                                 5
            2MM, ICC, NC ODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                             Ε
                                                                                                 6
             3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                             Ε
                                                                                                 7
207
              ID=DATA(1)
                                                                                            Ε
                                                                                                 8
208
             NHC=DATA(2)
                                                                                            Ε
                                                                                                 Q
209
             DT(ID) = DATA(3)
                                                                                            Ε
                                                                                                10
210
             DA(ID) = DATA(4)
                                                                                            Ε
                                                                                                11
211
             PEAK(ID)=DATA(5)
                                                                                            Ε
                                                                                                12
212
             ROIN=DATA(6)
                                                                                            Ε
                                                                                                13
213
              IEND(ID)=DATA(7)
                                                                                            Ε
                                                                                                14
214
             M=IEND(ID)
                                                                                            Ε
                                                                                                15
215
             J = 8
                                                                                            F
                                                                                                16
```

```
REMAINING DATA ARE FLOW RATES
                                                                                                 17
                                                                                              Ε
      C
216
             DO 1 I=1.M
                                                                                              Е
                                                                                                  18
             OCFS(I,ID) = DATA(J)
                                                                                              Е
                                                                                                  19
217
                                                                                              Ε
                                                                                                  20
218
       1
              J = J + 1
219
             RETURN
                                                                                              E
                                                                                                  21
220
             END
                                                                                              E
                                                                                                  22-
221
              SUBROUTINE CMPHYD
                                                                                              F
                                                                                              F
      C
             THIS PROGRAM DEVELOPS A UNIT HYDROGRAPH, CONVERTS MASS RAINFALL
                                                                                                   2
                                                                                              F
             TO POINT RUNDEF, AND COMPUTES STORM HYDROGRAPHS BY SUMMATION.
                                                                                                   3
      C
             COMMON CFS (300), OCFS (300, 6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                              F
                                                                                                   4
222
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                              F
                                                                                                   5
             2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                              F
                                                                                                   6
                                                                                              F
                                                                                                   7
             3(6), TIME, PEAK(6), ROIN, ISG(6)
              ID=DATA(1)
                                                                                              F
                                                                                                   8
223
                                                                                              F
             NHD=DATA(2)
                                                                                                   9
224
                                                                                              F
225
             DT(ID) = DATA(3)
                                                                                                  10
                                                                                              F
              DA(ID) = DATA(4)
226
                                                                                                  1.1
                                                                                              F
227
             CN=DATA(5)
                                                                                                  12
                                                                                              F
       C
             ARE K AND TP FURNISHED OR WILL THEY BE COMPUTED
                                                                                                  13
228
              IF (DATA(6)) 1,2,2
                                                                                              F
                                                                                                  14
                                                                                              F
229
       1
              XK = -DATA(6)
                                                                                                  15
                                                                                              F
230
              TP = -DATA(7)
                                                                                                  16
             GO TO 3
                                                                                              F
231
                                                                                                  17
                                                                                              F
232
             HT=DATA(6)
       2
                                                                                                  18
233
             XL = DATA(7)
                                                                                              F
                                                                                                  19
                                                                                              F
              SLOPE=HT/XL
234
                                                                                                  20
             XLDW=(XL**2.)/DA(ID)
235
                                                                                              F
                                                                                                  21
236
             XK=27.0*(DA(ID)**.231)*(SLOPE**(-.777))*(XLDW**.124)
                                                                                              F
                                                                                                  22
                                                                                              F
237
              TP=4.63*(DA(ID)**.422)*(SLOPE**(-.46))*(XLDW**.133)
                                                                                                  23
238
                                                                                              F
      3
             PEAK(ID)=1.
                                                                                                  24
239
             DO 4 I=1.300
                                                                                              F
                                                                                                  25
240
       4
             OCFS(I,ID)=0.
                                                                                              F
                                                                                                  26
                                                                                              F
      C
             COMPUTE N BY ITERATION.
                                                                                                  27
241
             XN = 5.0
                                                                                              F
                                                                                                  28
              XKTP=XK/TP
242
                                                                                              F
                                                                                                  29
243
             DO 6 I=1,50
                                                                                              F
                                                                                                  30
244
              TINF = 1 . + SQRT(1./(XN-1.))
                                                                                              F
                                                                                                  31
245
              XN1=.05/(XKTP*(ALOG(TINF/(TINF+.05))+.05))+1.
                                                                                              F
                                                                                                  32
246
              DIFF=ABS(XN1-XN)
                                                                                              F
                                                                                                  33
              IF (DIFF-.001) 7,7,5
247
                                                                                              F
                                                                                                  34
248
       5
              XN = XN1
                                                                                              F
                                                                                                  35
249
             CONTINUE
                                                                                              F
       6
                                                                                                  36
250
              WRITE (6,29)
                                                                                              F
                                                                                                  37
251
             GO TO 28
                                                                                              F
                                                                                                  38
       C
              DETERMINE C1.
                                                                                              F
                                                                                                  39
252
       7
              DELT=TINF/100.
                                                                                              F
                                                                                                  40
253
              TC 1=0.
                                                                                              F
                                                                                                  41
254
              XN1P = XN-1.
                                                                                              F
                                                                                                  42
255
              XN1M=1.-XN
                                                                                              F
                                                                                                  43
256
             008I=2,101
                                                                                              F
                                                                                                  44
257
              TC1=TC1+DELT
                                                                                              F
                                                                                                  45
258
             CFS(I) = (TC1 ** XN1P) *EXP(XN1M*(TC1-1.))
                                                                                              F
       8
                                                                                                  46
259
              SUM=CFS(101)/2.
                                                                                              F
                                                                                                  47
260
              DO 9 I=2,100
                                                                                              F
                                                                                                  48
              SUM=SUM+CFS(I)
261
                                                                                              F
                                                                                                  49
262
             C1=SUM*DELT
                                                                                              F
                                                                                                  50
263
             CFSII=CFS(101)
                                                                                              F
                                                                                                  51
264
              TTINF=TINF *TP
                                                                                              F
                                                                                                  52
265
              TREC1=TTINF+2.*XK
                                                                                              F
                                                                                                  53
```

```
266
              EEE=EXP((TTINF-TREC1)/XK)
                                                                                            F
                                                                                                54
267
              XK1=3. *XK
                                                                                            F
                                                                                                55
268
              B=645.333/(C1+CFSII*(XKTP*(1.-EEE)+EEE*(XK1/TP)))
                                                                                            F
                                                                                                56
              COMPUTE B, QP, AND CFSI.
                                                                                            F
                                                                                                57
269
              QP=(B*DA(ID))/TP
                                                                                            F
                                                                                                58
270
              CFSI=QP*CFS(101)
                                                                                            F
                                                                                                59
271
              CFSR1=CFSI *EEE
                                                                                            F
                                                                                                60
272
              WRITE (6,30) XN,QP
                                                                                             F
                                                                                                61
       C
              DETERMINE INCREMENTAL RUNOFF.
                                                                                             F
                                                                                                62
273
              R = 1000 \cdot / CN - 10 \cdot
                                                                                            F
                                                                                                63
274
              81=.2*R
                                                                                            F
                                                                                                64
275
              J = 8
                                                                                            F
                                                                                                65
              IF (DATA(J)) 13,10,10
                                                                                            F
276
                                                                                                66
              RAIN(1)=DATA(J)
277
       10
                                                                                            F
                                                                                                67
278
              DO 11 I=2,300
                                                                                            F
                                                                                                68
279
              J = J + 1
                                                                                            F
                                                                                                69
280
              RAIN(I)=DATA(J)
                                                                                            F
                                                                                                70
              IF (RAIN(I)-RAIN(I-1)) 12,11,11
                                                                                            F
281
                                                                                                71
                                                                                            F
282
       11
              CONTINUE
                                                                                                72
                                                                                            F
       12
              NUMB=I-1
283
                                                                                                73
                                                                                            F
284
       13
              DO 15 I=1, NUMB
                                                                                                74
                                                                                            F
285
              IF (RAIN(I)-B1) 33,33,14
                                                                                                75
286
      33
                                                                                            F
              DATA (I)=0.
                                                                                                76
287
              Q1=0.
                                                                                            F
                                                                                                77
288
              GO TO 15
                                                                                            F
                                                                                                78
289
       14
              Q2=((RAIN(I)-B1)**2.)/(RAIN(I)+.8*R)
                                                                                            F
                                                                                                79
290
              DATA ( I ) = Q2-Q1
                                                                                             F
                                                                                                80
291
              01=02
                                                                                             F
                                                                                                81
                                                                                                82
292
       15
              CONTINUE
                                                                                             F
              COMPUTE UNIT HYDROGRAPH.
      С
                                                                                            F
                                                                                                83
293
              T2=0.
                                                                                            F
                                                                                                84
294
              CFS(1)=0.
                                                                                             F
                                                                                                85
295
             DO 20 I=2,300
                                                                                             F
                                                                                                86
296
              T2=T2+DT(ID)
                                                                                             F
                                                                                                87
297
              IF (T2-TTINF) 16,16,17
                                                                                             F
                                                                                                88
298
              CFS(1)=QP*((T2/TP)**XN1P)*EXP(XN1M*(T2/TP-1.))
                                                                                             F
       16
                                                                                                89
299
              GO TO 20
                                                                                             F
                                                                                                90
                                                                                             F
300
       17
              IF (T2-TREC1) 18,18,19
                                                                                                91
301
       18
              CFS(I) = CFSI * EXP((TTINF-T2)/XK)
                                                                                             F
                                                                                                92
                                                                                             F
302
              GO TO 20
                                                                                                93
                                                                                            F
303
       19
              CFS(I)=CFSR1*EXP((TREC1-T2)/XK1)
                                                                                                94
                                                                                            F
304
              IF (CFS(I)-1.) 21,21,20
                                                                                                95
                                                                                            F
305
       20
              CONTINUE
                                                                                                96
                                                                                            F
306
              I = 300
                                                                                                97
                                                                                            F
307
       21
              ICND=I
                                                                                                98
              COMPUTE STORM HYDROGRAPH.
                                                                                            F
                                                                                                99
       С
                                                                                            F
308
                                                                                              100
              DO 24 J=2, NUMB
309
                                                                                             F
              N=J+ICND-2
                                                                                              101
310
              IF (N-300) 23,23,22
                                                                                              102
                                                                                            F 103
311
       22
              N = 300
                                                                                            F
312
       23
              KK=J
                                                                                              104
313
              I = 2
                                                                                              105
                                                                                            F
314
              DO 24 K=KK,N
                                                                                              106
              OCFS(K, ID) = OCFS(K, ID) + DATA(J) * CFS(I)
                                                                                            F
                                                                                              107
315
                                                                                            F
                                                                                              108
       24
              I = I + 1
316
              M=K-1
                                                                                            F
                                                                                               109
317
              RO=0.
                                                                                            F
                                                                                               110
318
319
                                                                                            F
                                                                                               111
              DO 26 I=2,M
       C
              COMPUTE RUNOFF VOLUME
                                                                                             F
                                                                                               112
320
              RO=RO+OCFS(I, ID)
                                                                                              113
```

```
F 114
      С
             DETERMINE PEAK
             IF (OCFS(I, ID)-PEAK(ID)) 26,26,25
                                                                                            F
                                                                                               115
321
                                                                                            F
      25
             PEAK(ID)=OCFS(I.ID)
                                                                                               116
322
             CONTINUE
                                                                                            F
                                                                                               117
323
      26
                                                                                            F
             I = M
                                                                                               118
324
325
             IEND(ID)=I
                                                                                            F
                                                                                               119
                                                                                            F
                                                                                               120
326
             M = I
                                                                                            F
327
             ROIN=(RO*DT(ID))/(DA(ID)*645.333)
                                                                                               121
                                                                                            F 122
             PUNCH CODE
                                                                                            F 123
328
             IF (NPU) 28,28,27
                                                                                            F 124
      27
             WRITE (7,31) ID, NHD, DT(ID), DA(ID), PEAK(ID), ROIN, IEND(ID)
329
                                                                                            F 125
330
             \forall R \text{ ITE } (7,32) (OCFS(I,ID),I=1,M)
                                                                                            F 126
      28
             RETURN
331
                                                                                            F 127
      С
      29
             FORMAT('N DID NOT CONVERGE AFTER 50 ITERATIONS.')
                                                                                            F 128
332
      30
             FORMAT(T10, 'SHAPE CONSTANT, N = ', F6.3/T10, 'UNIT PEAK = ', F10.1, 'C
                                                                                             F 129
333
            1FS!/}
334
      31
             FORMAT (
                         'RECALL HYD', T21, 'ID=', I1, T29, 'HYD NO=', I3, T42, 'DT=', F9.
                                                                                             F 130
            16, ' HRS', T61, 'DA=', F8.3,' SQ MI'/T21, 'PEAK=', F7.0, 'CFS', T40, 'RO=',
                                                                                             F 131
                                                                                             F 132
            2F6.3, INCHES', T59, 'NO PTS=', I3/T21, 'FLOW RATES')
335
      32
             FORMAT (T21.7F8.0)
                                                                                             F 133
336
             END
                                                                                             F 134-
337
             SUBROUTINE PRIHYD
                                                                                             G
                                                                                                  ١
      C
             THIS SUBROUTINE PRINTS THE COORDINATES OF A HYDROGRAPH.
                                                                                             G
                                                                                                  2
             COMMON CFS (300), OCFS (300,6), IEND(6), DATA (310), DA(6), DP(20), NPU, NHD
                                                                                                  3
338
                                                                                             G
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                             G
                                                                                                  4
            2MM, ICC, NC ODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                                  5
                                                                                             G
            3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                             G
                                                                                                  6
339
             ID=DATA(1)
                                                                                             G
                                                                                                  7
340
             NPK=DATA(2)
                                                                                                  R
                                                                                             G
      C
             DETERMINE TYPE OF HYDROGRAPH
                                                                                             G
                                                                                                  9
             IF (NHD-100) 6,6,2
341
                                                                                             G
                                                                                                10
342
      1
             WRITE (6,14) NHD
                                                                                             G
                                                                                                11
343
             GO TO 7
                                                                                             G
                                                                                                12
344
      2
             IF (NHD-300) 3,3,4
                                                                                             G
                                                                                                13
345
      3
             WRITE (6,15) NHD
                                                                                             G
                                                                                                14
346
             GO TO 7
                                                                                             G
                                                                                                15
347
      4
             IF (NHD-500) 1,1,5
                                                                                             G
                                                                                                16
348
      5
             WRITE (6,16) NHD
                                                                                             G
                                                                                                17
349
             GO TO 7
                                                                                             G
                                                                                                18
350
             WRITE (6,17) NHD
      6
                                                                                             G
                                                                                                19
      C
             POSITIVE NPK MEANS PRINT ONLY PEAK AND VOLUME
                                                                                             G
                                                                                                20
             IF (NPK) 8,8,11
                                                                                                21
351
       7
                                                                                             G
352
       8
             0 = L
                                                                                             G
                                                                                                22
353
             WRITE (6.18)
                                                                                             G
                                                                                                23
354
             M=IEND(ID)
                                                                                             G
                                                                                                24
355
             TIME1=TIME
                                                                                             G
                                                                                                25
      C
             BUILD TIME ARRAY IN DATA
                                                                                             G
                                                                                                26
356
             DO 9 I=1,M
                                                                                             G
                                                                                                27
357
             DATA (I)=TIME 1
                                                                                             G
                                                                                                28
358
       9
             TIME1=TIME1+DT(ID)
                                                                                             G
                                                                                                29
359
             M4 = M + 4
                                                                                             G
                                                                                                30
360
             M5 = M4/5
                                                                                             G
                                                                                                31
361
       10
             J = J + 1
                                                                                             G
                                                                                                32
362
             WRITE (6,19) (DATA(I), OCFS(I, ID), I=J, M, M5)
                                                                                             G
                                                                                                33
             IF (J-M5) 10,11,11
363
                                                                                             G
                                                                                                34
364
       11
             WRITE (6,20) ROIN, PEAK(ID)
                                                                                             G
                                                                                                35
365
             IF (NPU) 13,13,12
                                                                                             G
                                                                                                36
366
       12
             WRITE (7,21) ID, NPK
                                                                                             G
                                                                                                37
```

```
367
       13
             RETURN
                                                                                          G
                                                                                              38
                                                                                          G
                                                                                              39
368
       14
             FORMAT (1H0,46X,21HHYDRCGRAPH FROM AREA .13/)
                                                                                              40
                                                                                          G
369
      15
             FORMAT (1H0,41X,19HPARTIAL HYDROGRAPH,14/)
                                                                                          G
                                                                                              41
370
      16
             FORMAT (1HC,39X,29HOUTFLOW HYDROGRAPH RESERVOIR , I4/)
                                                                                          G
                                                                                              42
371
      17
             FORMAT (1H0,44X,25HOUTFLOW HYDROGRAPH REACH, 14/)
                                                                                          G
                                                                                              43
372
      18
             FORMAT (10X,114HTIME
                                           FLOW
                                                            TIME
                                                                       FLOW
                                                                                          G
                                                                                              44
            1TIME
                        FLOW
                                          TIME
                                                     FLOW
                                                                      TIME
                                                                                 FLOW/1
                                                                                          G
                                                                                              45
            21 X , 113 HHR S
                                 CFS
                                                  HRS
                                                             CFS
                                                                              HRS
                                                                                          G
                                                                                              46
                                           CFS
            3 CFS
                               HRS
                                                            HRS
                                                                       CFS)
                                                                                          G
                                                                                              47
373
             FORMAT (5(5X,F10.3,F10.0))
       19
                                                                                          G
                                                                                              48
             FORMAT (1HO,9X,16HRUNOFF VOLUME = F10.3,8H INCHES /10X,22HPEAK DIS
374
       20
                                                                                          G
                                                                                              49
            1CHARGE RATE = ,F10.1,4H CFS///)
                                                                                          G
                                                                                              50
375
                         "PRINT HYD", T21, "ID=", I1, T29, "CODE=", I1)
                                                                                              51
      21
             FORMAT (
                                                                                          G
             END
                                                                                          G
376
                                                                                              52-
377
             SUBROUTINE PUHYD
                                                                                          Н
                                                                                               1
      C
             THIS SUBROUTINE PUNCHES HYDROGRAPHS IN FORM TO BE USED BY
                                                                                          н
                                                                                               2
      С
             SUBROUTINE RECHD
                                                                                          Н
                                                                                               3
378
             COMMON CFS (300), OCFS (300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                          н
                                                                                               4
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                          Н
                                                                                               5
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                          Н
                                                                                               6
            3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                               7
                                                                                          Н
379
             ID=DATA(1)
                                                                                          Н
                                                                                               8
380
             M = IEND(ID)
                                                                                               9
                                                                                          н
381
             WRITE (7,1) ID, NHD, DT (ID), DA (ID), PEAK (ID), ROIN, IEND (ID)
                                                                                          н
                                                                                              10
382
             WRITE (7,2) (OCFS(I,ID),I=1,M)
                                                                                          Н
                                                                                              11
383
             RETURN
                                                                                          Н
                                                                                              12
      C
                                                                                          н
                                                                                              13
384
                         "RECALL HYD", T21, "ID=", I1, T29, "HYD NO=", I3, T42, "DT=", F9.
      1
             FORMAT (
                                                                                          Н
                                                                                              14
            16, HRS', T61, DA=', F8.3, SQ MI'/T21, PEAK=', F7.0, CFS', T40, RO=',
                                                                                          Н
                                                                                              15
            2F6.3, INCHES , T59, NO PTS= , 13/T21, FLOW RATES )
                                                                                          Н
                                                                                              16
             FORMAT (T21,7F8.0)
385
      2
                                                                                          Н
                                                                                              17
386
             END
                                                                                          н
                                                                                              18-
387
             SUBROUTINE HPLOT
                                                                                               1
      C
             THIS SUBROUTINE PLOTS EITHER 1 OR 2 HYDROGRAPHS ON A SET OF AXIS
                                                                                          I
                                                                                               2
             COMMON CFS (300), OCFS (300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                               3
388
                                                                                          I
            1, SCFS(20),C(20),A(20,6),Q(20,6),RAIN(200),DEEP(20,6),NER,MAXNO,NCO
                                                                                          I
                                                                                               4
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                               5
                                                                                          I
            3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                          Ţ
                                                                                               6
                                                                                               7
389
                                                                                          I
             ID1=DATA(1)
390
             ID2=DATA(2)
                                                                                          I
                                                                                               8
391
             DATA ZERO, PLUS, BLANK, DASH, DOT/ 01, 4+1, 1 1, 1-1, 1.1
                                                                                               9
392
             MR TO=1
                                                                                              10
393
             XMRTO=1.
                                                                                          T
                                                                                              11
394
             MAX=118
                                                                                              12
395
             .1 = 1
                                                                                              13
      C.
             ARE THERE 1 OR 2 HYDROGRAPHS
                                                                                              14
396
                                                                                          I
                                                                                              15
             IF (ID2) 1,1,2
      C
             DETERMINE HIGHEST PEAK IF 2 HYDROGRAPHS
                                                                                              16
397
      1
             QMAX=PEAK(ID1)
                                                                                              17
398
             GO TO 14
                                                                                              18
      2
             IF (PEAK(IC1)-PEAK(ID2)) 3.3.4
399
                                                                                              19
400
      3
             QMAX=PEAK(ID2)
                                                                                              20
                                                                                              21
401
             GO TO 5
402
      4
             QMAX=PEAK(ID1)
                                                                                              22
             IF 2 HYDROGRAPHS DETERMINE LARGEST DT AND INTERPOLATE OTHER
      C
                                                                                          I
                                                                                              23
             HYDROGRAPH IF NECESSARY
      C
                                                                                          I
                                                                                              24
403
       5
             IF (DT(ID1)-DT(ID2)) 6,13,7
                                                                                          T
                                                                                              25
```

```
26
              L = ID1
                                                                                                   I
404
       6
                                                                                                      27
405
              K = ID2
                                                                                                   I
                                                                                                   Ī
                                                                                                      28
406
              GO TO 8
              L = ID2'
                                                                                                   I
                                                                                                      29
407
       7
408
                                                                                                   I
                                                                                                      30
              K = ID1
409
       8
              M=IEND(L)
                                                                                                   I
                                                                                                      31
410
              TID=DT(K)
                                                                                                   ī
                                                                                                      32
                                                                                                   I
                                                                                                      33
411
              TIDH=0.
412
              DO 11 I=2, M
                                                                                                   I
                                                                                                      34
                                                                                                      35
                                                                                                   ī
              TICH=TIDH+CT(L)
413
              IF (TID-TIDH) 10,9,11
                                                                                                   Ī
                                                                                                      36
414
                                                                                                   ī
                                                                                                      37
415
       q
              J = J + 1
              CFS(J)=OCFS(I.L)
                                                                                                   I
                                                                                                      38
416
              TID=TID+DT(K)
                                                                                                   I
                                                                                                      39
417
418
                                                                                                   I
                                                                                                      40
              GO TO 11
419
       10
              J = J + 1
                                                                                                   I
                                                                                                      41
              CFS(J) = OCFS(I-1,L) + ((TID-TIDH+DT(L))/DT(L)) * (OCFS(I,L)-OCFS(I-1,L)
                                                                                                      42
420
             1)
                                                                                                   I
                                                                                                      43
421
              TIC=TID+DT(K)
                                                                                                   Ī
                                                                                                      44
422
       11
              CONTINUE
                                                                                                   I
                                                                                                      45
423
              IEND(L)=J
                                                                                                   I
                                                                                                      46
                                                                                                      47
424
              DT(L)=DT(K)
                                                                                                   I
425
              DO 12 I=2, J
                                                                                                   I
                                                                                                      48
426
       12
              UCFS(I,L)=CFS(I)
                                                                                                   I
                                                                                                      49
                                                                                                      50
427
       13
              IF (IEND(ID1)-IEND(ID2)) 14,14,15
                                                                                                   Ī
428
                                                                                                      51
       14
              M= IEND (ID1)
                                                                                                   I
429
              GO TO 16
                                                                                                       52
                                                                                                   ī
430
       15
              M=IEND(ID2)
                                                                                                   Ī
                                                                                                       53
431
       16
              IF (M-MAX) 17,17,18
                                                                                                   I
                                                                                                       54
       С
              DETERMINE TIME SCALE
                                                                                                   Ī
                                                                                                       55
432
       17
              MR TO=MAX/M
                                                                                                   Ī
                                                                                                       56
433
              XMRTO=MRTO
                                                                                                   Ī
                                                                                                       57
434
              GO TO 19
                                                                                                   Ī
                                                                                                       58
       18
                                                                                                       59
435
              M = MAX
                                                                                                   Ī
       19
              YSCL=QMAX/50.
                                                                                                   Ī
436
                                                                                                       60
       С
              PLOT HYDROGRAPHS
                                                                                                   I
                                                                                                       61
437
              DO 20 I=1, MAX
                                                                                                   I
                                                                                                       62
438
       20
              CFS(I)=DASH
                                                                                                   I
                                                                                                       63
              WRITE (6,41) QMAX, (CFS(I), I=1, MAX), DOT
439
                                                                                                   I
                                                                                                       64
440
              Q1=QMAX
                                                                                                   ĭ
                                                                                                       65
441
               J1 = 10
                                                                                                   Ť
                                                                                                       66
442
              DO 37 J=1,50
                                                                                                   I
                                                                                                       67
443
                  (J-J1) 23,21,23
               IF
                                                                                                   I
                                                                                                       68
444
       21
              DO 22 I=1, MAX
                                                                                                   I
                                                                                                       69
445
       22
              CFS(I)=DASH
                                                                                                   I
                                                                                                       70
446
               GO TO 25
                                                                                                   I
       23
              DO 24 I=1, MAX
447
                                                                                                   I
                                                                                                       72
              CFS(I)=BLANK
448
       24
                                                                                                   I
                                                                                                       73
449
       25
               Q2=Q1-YSCL
                                                                                                       74
                                                                                                   I
450
              K = 1
                                                                                                       75
                                                                                                   I
451
              DO 28 I=2,M
                                                                                                       76
                                                                                                   I
452
              K = K + MRTO
                                                                                                       77
                                                                                                   Ŧ
453
               IF (OCFS(I,ID1)-Q1) 26,27,28
                                                                                                   Ī
                                                                                                       78
454
       26
               IF (OCFS(I,ID1)-Q2) 28,28,27
                                                                                                       79
                                                                                                   Ī
455
       27
              CFS(K)=ZERO
                                                                                                   I
                                                                                                       80
456
       28
              CONTINUE
                                                                                                   I
                                                                                                       81
457
               WRITE (6,44) DOT, (CFS(I), I=1, MAX), DOT
                                                                                                   I
                                                                                                       82
458
               IF (ID2) 34,34,29
                                                                                                   I
                                                                                                       83
459
       29
               K = 1
                                                                                                   I
                                                                                                       84
460
               00 33 I=2.M
                                                                                                   I
                                                                                                       85
```

```
461
             K = K + MR TO
                                                                                               86
                                                                                            I
462
              IF (OCFS(I,ID2)-Q1) 30,31,32
                                                                                            Ι
                                                                                               87
                                                                                               88
463
       3.0
             IF
                (OCFS(I,ID2)-Q2) 32,32,31
                                                                                            I
464
       31
             CFS(K)=PLUS
                                                                                            I
                                                                                               89
465
             GO TO 33
                                                                                            I
                                                                                               90
       32
             CFS(K)=BLANK
466
                                                                                            I
                                                                                               91
467
       33
             CONTINUE
                                                                                            I
                                                                                               92
              WRITE (6,42) (CFS(I), I=1, MAX)
                                                                                               93
468
                                                                                            I
469
       34
              IF (J-J1) 36,35,36
                                                                                               94
                                                                                            I
             J1=J1+10
470
       35
                                                                                            I
                                                                                               95
471
             WR ITE (6,43) Q2
                                                                                            I
                                                                                               96
472
       36
             Q1=Q2
                                                                                            I
                                                                                               97
473
       37
             CONTINUE
                                                                                            I
                                                                                               98
474
             CFS(1)=TIME
                                                                                            I
                                                                                               99
475
             DTT=DT(ID1)*10./XMRTO
                                                                                            I
                                                                                              100
       C
             PUT TIME ARRAY IN CFS AND WRITE TIME SCALE
                                                                                            I
                                                                                              101
476
             DO 38 I=2,12
                                                                                            I
                                                                                              102
      38
             CFS(I)=CFS(I-1)+DTT
477
                                                                                            I
                                                                                              103
478
             WRITE (6,45) (CFS(I), I=1,12)
                                                                                            I
                                                                                              104
             WR ITE (6,46)
479
                                                                                            T
                                                                                              105
              IF (NPU) 40,40,39
480
                                                                                            I
                                                                                              106
481
       39
             WRITE (7,47) ID1, ID2
                                                                                            T
                                                                                              107
       40
             RETURN
482
                                                                                            I
                                                                                              108
       С
                                                                                            Ι
                                                                                              109
483
       41
             FORMAT(1X, F6.0, CFS. , 119A1)
                                                                                            I
                                                                                              110
484
       42
             FORMAT (1H+,11X,118A1)
                                                                                            I
                                                                                              111
485
       43
             FORMAT (1H+,F6.0)
                                                                                            I 112
             FORMAT (11X,120A1)
486
       44
                                                                                            I 113
487
       45
             FORMAT (6X,12F10.3)
                                                                                            I 114
             FORMAT(49X, TIME HOURS 1///)
488
       46
                                                                                            I
                                                                                              115
489
       47
             FORMAT(
                         "PLOT HYD", T21, "ID I=", I1, T29, "ID II=", I1)
                                                                                            I 116
490
             END
                                                                                            I 117-
491
              SUBROUTINE ADHYD
                                                                                                 1
       C
             THIS SUBROUTINE ADDS TWO HYDROGRAPHS.
                                                                                            J
                                                                                                 2
492
             COMMON CFS (300), OCFS (300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                                 3
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                            J
                                                                                                 5
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                            J
            3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                            J
                                                                                                 7
493
             ID=DATA(1)
                                                                                            J
494
             NHD=DATA(2)
                                                                                            J
                                                                                                 8
                                                                                                 9
495
             ID1=DATA(3)
                                                                                            J
                                                                                            J
                                                                                                10
496
              ID2=DATA(4)
497
             PEAK(ID)=1.
                                                                                            J
                                                                                                11
             MAKE TIME INCREMENTS EQUAL IF NOT EQUAL. USE SMALLER INCREMENT
                                                                                            J
                                                                                                12
498
              IF (DT(ID1)-DT(ID2)) 1,3,2
                                                                                            J
                                                                                                13
                                                                                            J
499
       1
             DT(ID)=DT(ID1)
                                                                                                14
                                                                                                15
500
             L=ID1
                                                                                            J
501
                                                                                            J
                                                                                                16
             K = ID2
                                                                                            J
             GO TO 6
                                                                                               17
502
              DT(ID)=DT(ID2)
                                                                                               18
503
                                                                                            J
       2
                                                                                            J
                                                                                               19
504
             L = ID2
505
             K=ID1
                                                                                            J
                                                                                                20
506
                                                                                            J
                                                                                                21
             GO TO 6
507
              DT(ID) = DT(ID1)
                                                                                            J
                                                                                                22
       3
508
              IF (IEND(ID1)-IEND(ID2)) 4,4,5
                                                                                            J
                                                                                               23
509
       4
              M3 = IEND(ID1)
                                                                                            J
                                                                                               24
                                                                                            J
                                                                                               25
510
              K1=ID2
511
              I END(ID) = I END(ID2)
                                                                                            J
                                                                                               26
512
             GO TO 18
                                                                                               27
```

```
28
                                                                                               J
             M3=IEND(ID2)
513
      5
                                                                                                   29
                                                                                               J
514
             K1=101
                                                                                               J
                                                                                                  30
             IEND(ID) = IEND(ID1)
515
                                                                                               J
                                                                                                   31
             GO TO 18
516
                                                                                               J
                                                                                                   32
             DETERMINE DURATIONS OF FLOW
      C
                                                                                               J
                                                                                                   33
             X I END1 = IEND(ID1) - 1
517
      6
                                                                                               J
                                                                                                   34
             XIFND2 = IEND(ID2) - 1
518
                                                                                               J
                                                                                                   35
519
             DUR1=XIEND1*DT(ID1)
                                                                                               J
                                                                                                   36
             DUR2=XIEND2*DT(ID2)
520
                                                                                               J
                                                                                                   37
521
             IF (DUR1-DUR2) 7,8,8
                                                                                               J
                                                                                                   38
522
      7
              IEND(ID)=DUR2/DT(ID)+1.
                                                                                               J
                                                                                                   39
523
             M3=DUR1/DT(ID)+1.
                                                                                                   40
                                                                                               J
524
             K1 = ID2
                                                                                                   41
                                                                                               J
             GO TO 9
525
                                                                                               J
                                                                                                   42
              IEND(ID) = DUR1/DT(ID)+1.
526
                                                                                                   43
                                                                                               J
             M3=DUR2/DT(ID)+1.
527
                                                                                               J
                                                                                                   44
             K1=101
528
                                                                                               J
                                                                                                   45
       a
              IF (IEND(ID)-300) 11.11.10
529
                                                                                               J
                                                                                                   46
              IEND(ID) = 300
      10
530
                                                                                               J
                                                                                                   47
      11
              M2 = IEND(K)
531
                                                                                               J
                                                                                                   48
              J = 1
532
                                                                                               J
                                                                                                   49
              INTERPOLATE ONE HYDROGRAPH IF NECESSARY
      C
                                                                                               J
                                                                                                   50
533
              TIDH=0.
                                                                                               J
                                                                                                   51
534
              (GI)TG=GIT
                                                                                               J
                                                                                                   52
              DO 15 I=2, M2
535
                                                                                               J
                                                                                                   53
536
              TIDH=TIDH+DT(K)
                                                                                               J
                                                                                                   54
              IF (TIDH-TID) 15,13,14
       12
537
                                                                                               J
                                                                                                   55
538
       13
              J = J + 1
                                                                                                   56
                                                                                                J
              DATA (J)=OCFS(I,K)
539
                                                                                                J
                                                                                                   57
              TID=TID+DT(ID)
540
                                                                                                   5.8
                                                                                                J
541
              IF (J-300) 15,16,16
                                                                                                   59
                                                                                                J
              J = J + 1
542
       14
              DATA (J)=OCFS(I-1,K)+((TID-TIDH+DT(K))/DT(K))*(OCFS(I,K)-OCFS(I-1,
                                                                                                .1
                                                                                                   60
543
                                                                                                J
                                                                                                   61
             1K))
                                                                                                J
                                                                                                   62
              TID=TID+DT(ID)
544
                                                                                                J
                                                                                                   63
              IF (J-300) 12,16,16
545
                                                                                                J
                                                                                                   64
546
              CONTINUE
       15
                                                                                                J
                                                                                                   65
547
              IEND(K)=J
       16
                                                                                                J
                                                                                                   66
548
              DO 17 I=2, J
                                                                                                J
                                                                                                   67
549
       17
              OCFS(I,K)=DATA(I)
                                                                                                J
                                                                                                   68
              M=IEND(ID)
550
       18
                                                                                                J
                                                                                                   69
              DA(ID) = DA(ID1) + DA(ID2)
551
                                                                                                   70
                                                                                                J
              RO =0 .
552
                                                                                                   71
                                                                                                J
              ADD HYDROGRAPHS
       C
                                                                                                   72
              DO 20 I=1, M3
                                                                                                J
553
                                                                                                   73
              OCFS(I,ID) = OCFS(I,ID1) + OCFS(I,ID2)
                                                                                                J
554
                                                                                                J
                                                                                                   74
              IF (OCFS(I, ID)-PEAK(ID)) 20,20,19
555
                                                                                                J
                                                                                                    75
              PEAK(ID)=OCFS(I,ID)
556
       19
                                                                                                J
                                                                                                   76
557
       20
              RO=RO+OCFS(I, ID)
                                                                                                J
                                                                                                   77
              IF (PEAK(IC)-PEAK(K1)) 21,22,22
558
                                                                                                   78
559
       21
              PEAK(ID)=PEAK(K1)
                                                                                                J
                                                                                                   79
              IF (M-M3) 25, 25, 23
560
       22
                                                                                                J
                                                                                                    80
561
       23
              M3 = M3 + 1
562
                                                                                                J
                                                                                                   81
              DO 24 I=M3,M
                                                                                                J
                                                                                                   82
563
              OCFS(I,ID) = OCFS(I,K1)
                                                                                                J
                                                                                                    83
564
       24
              RO = RO + OCFS(I, ID)
                                                                                                J
                                                                                                   84
              ROIN=(RO*DT(ID))/(DA(ID)*645.333)
565
       25
                                                                                                   85
                                                                                                J
566
              IF (NPU) 27,27,26
                                                                                                .1
                                                                                                    86
       26
              WRITE (7,28) ID, NHD, ID1, ID2
567
                                                                                                    87
568
       27
              RETURN
```

```
88
       28
569
             FORMAT (
                         *ADD HYD*, T21, *ID=*, I1, T29, * HYD NO=*, I3, T45, *ID I=*, [1,
                                                                                           J
                                                                                               89
            1T60, 'ID II=', I1)
                                                                                               90
                                                                                           J
570
             END
                                                                                           J
                                                                                               91-
             SUBROUTINE SRC
571
                                                                                           K
                                                                                                1
             THIS SUBROUTINE STORES AN ELEVATION - END AREA - FLOW TABLE.
      C
                                                                                           K
                                                                                                2
572
             COMMON CFS (300), OCFS (300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                                3
                                                                                           K
            1, SCFS(20),C(20),A(20,6),Q(20,6),RAIN(200),DEEP(20,6),NER,MAXNO,NCO
                                                                                           K
                                                                                                4
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                                5
                                                                                           Κ
            3(6), TIME, PEAK (6), ROIN, ISG(6)
                                                                                           K
                                                                                                6
573
             ID=DATA(1)
                                                                                           K
                                                                                                7
574
             VS=DATA(2)
                                                                                           K
                                                                                                8
      C
             VALLEY SECTION NUMBER
                                                                                           K
                                                                                                9
      C
             REMAINING DATA ARE ELEVATION, AREA, AND FLOW FOR EACH POINT OF
                                                                                           K
                                                                                               10
      C
             THE RATING CURVE
                                                                                           ĸ
                                                                                               11
575
             EMIN=DATA(3)
                                                                                           K
                                                                                               12
                                                                                           K
576
             J=3
                                                                                               13
                                                                                            K
577
             DO 1 I=1.20
                                                                                               14
                                                                                           K
578
             ELEV=DATA(J)
                                                                                               15
579
             DEEP(I, ID) = DATA(J) - EMIN
                                                                                            K
                                                                                               16
580
                                                                                           K
             A(I,ID) = DATA(J+1)
                                                                                               17
581
             Q(I,ID)=DATA(J+2)
                                                                                           K
                                                                                               18
582
             J=J+3
                                                                                           K
                                                                                               19
583
       1
             CONTINUE
                                                                                           K
                                                                                               20
584
             RETURN
                                                                                           K
                                                                                               21
585
             END
                                                                                           K
                                                                                               22-
586
             SUBROUTINE CMPRC
                                                                                                1
      C
             THIS SUBROUTINE COMPUTES THE DISCHARGE END-AREA ELEVATION
                                                                                           L
                                                                                                2
                                                                                                3
      С
             RELATIONSHIP FOR A VALLEY SECTION.
                                                                                           L
             COMMON CFS(300),OCFS(300,6),IEND(6),DATA(310),DA(6),DP(20),NPU,NHD
                                                                                                4
587
                                                                                           L
                                                                                                5
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                           L
            2MM, ICC, NC ODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                           L
                                                                                                6
                                                                                                7
                                                                                           L
            3(6), TIME, PEAK(6), ROIN, ISG(6)
             ID=DATA(1)
588
                                                                                            L
                                                                                                8
                                                                                           L
                                                                                                9
      C
             STORAGE LOCATION NUMBER. (1-6)
             VS=DATA(2)
                                                                                           L
                                                                                               10
589
             VALLEY SECTION IDENTIFICATION NUMBER.
                                                                                           L
      C
                                                                                               11
590
             NSEG=DATA(3)
                                                                                           L
                                                                                               12
      C
             NUMBER OF SEGMENTS IN THE VALLEY SECTION.
                                                                                           ι
                                                                                               13
591
             ELC=DATA(4)
                                                                                           L
                                                                                               14
592
             EMAX=DATA(5)
                                                                                           L
                                                                                               15
      С
             MAXIMUM ELEVATION FOR COMPUTATIONS.
                                                                                           ι
                                                                                               16
593
             SLOPE1=DATA(6)
                                                                                           L
                                                                                               17
      C
             CHANNEL SLCPE.
                                                                                           L
                                                                                               18
594
                                                                                           ι
                                                                                               19
             SLOPE2=DATA(7)
      С
                                                                                           L
                                                                                               20
             FLCOD PLAIN SLOPE.
595
             DIF=(EMAX-ELO)/19.
                                                                                           L
                                                                                               21
596
             C(1)=ELO
                                                                                           ι
                                                                                               22
                                                                                           L
597
             DO 1 I=2,20
                                                                                               23
598
             C(I)=C(I-1)+DIF
                                                                                           L
                                                                                               24
      1
             SET AREA AND DISCHARGE ARRAYS = 0.
                                                                                               25
                                                                                           L
599
             DO 2 I=1,20
                                                                                           L
                                                                                               26
                                                                                           L
                                                                                               27
600
             A(I,ID)=0.
                                                                                               28
601
       2
             Q(I, ID) = 0.
                                                                                           L
                                                                                           L
                                                                                               29
602
             J = 8
             WRITE (6,24) VS
                                                                                           L
                                                                                               30
603
             READ N VALUES AND SEGMENT BORDER POINTS.
                                                                                           L
                                                                                               31
       C
```

L

32

604

DO 3 I=1, NSEG

```
SEGN(I) = DATA(J)
                                                                                                 33
605
                                                                                              1
                                                                                              L
                                                                                                  34
606
             DIST(I) = DATA(J+1)
                                                                                              1
                                                                                                  35
607
       3
             J = J + 2
             REMAINING DATA ITEMS ARE DISTANCES AND ELEVATIONS.
       C
                                                                                              L
                                                                                                  36
608
             しょししし
                                                                                              L
                                                                                                  37
609
             DO 6 I=1.NSEG
                                                                                              L
                                                                                                  38
610
       4
              J = J + 2
                                                                                              L
                                                                                                  39
                                                                                              L
                                                                                                  40
611
              IF (DATA(J)-DIST(I)) 4,5,5
                                                                                              L
612
       5
              ISG(I)=J+1
                                                                                                  41
                                                                                              L
                                                                                                  42
613
       6
             CONTINUE
             COMPUTE DISCHARGES AND END AREAS FOR EACH SEGMENT.
                                                                                              L
                                                                                                  43
       C
                                                                                              L
                                                                                                  44
614
             DO 22 K=1.NSEG
                                                                                              Ĺ
                                                                                                  45
615
              J = JJJ
                                                                                              L
              JJJ1=JJJ+1
                                                                                                  46
616
              IF (SEGN(K)) 7,7,8
                                                                                              τ
                                                                                                  47
617
618
       7
              SLOPE=SLOPE1
                                                                                              Ĺ
                                                                                                  48
619
             SEGN(K) = -SEGN(K)
                                                                                              L
                                                                                                  49
                                                                                                  50
620
             GO TO 9
                                                                                              L
                                                                                                  51
       8
              SL CPE=SLOPE2
                                                                                              t
621
       9
              SLPN=1.486*SLOPE**.5
                                                                                              L
                                                                                                  52
622
                                                                                                  53
       С
             COMPUTE AREA AND DISCHARGE FOR SEGMENT.
                                                                                              L
623
             DO 21 I=2.20
                                                                                              ι
                                                                                                  54
                                                                                                  55
624
             AA=O.
                                                                                              L
                                                                                                  56
625
             P = 0.
                                                                                              L
              J = JJJ-1
                                                                                                  57
626
                                                                                              L
                                                                                                  58
             DEP2=0.
627
                                                                                              L
       10
              J = J + 2
                                                                                              L
                                                                                                  59
628
629
              IF (J-ISG(K)) 12,12,11
                                                                                                  60
                                                                                              ι
              IF (AA-.001) 21,21,20
630
       1.1
                                                                                              L
                                                                                                  61
631
       12
              IF (DATA(J)-C(I)) 13,10,10
                                                                                              L
                                                                                                  62
632
       13
             DEP1=C(I)-DATA(J)
                                                                                              L
                                                                                                  63
              IF (J-JJJ1) 16,16,14
633
                                                                                              L
                                                                                                  64
       14
634
              XL = DATA(J-1) - DATA(J-3)
                                                                                                  65
                                                                                              L
635
             DEP3=ABS(DATA(J-2)-CATA(J))
                                                                                                  66
                                                                                              L
636
              XL = XL * DEP1 / DEP3
                                                                                              L
                                                                                                  67
637
       15
              AA=AA+XL*(DEP1+DEP2)/2.
                                                                                              L
                                                                                                  68
              P=P+SQRT((DEP1-DEP2)**2+XL**2)
638
                                                                                              L
                                                                                                  69
639
       16
             DEP2=DEP1
                                                                                              Ł
                                                                                                  70
640
              J = J + 2
                                                                                              L
                                                                                                  71
641
              IF (J-ISG(K)) 17,17,20
                                                                                              L
                                                                                                  72
       17
642
              IF (DATA(J)-C(I)) 18,18,19
                                                                                              L
                                                                                                  73
643
       18
             DEP1=C(I)-DATA(J)
                                                                                              Ĺ
                                                                                                  74
644
              XL = DATA(J-1) - DATA(J-3)
                                                                                              L
                                                                                                  75
              GO TO 15
645
                                                                                              L
                                                                                                  76
       19
646
             DEP1=C.
                                                                                              L
                                                                                                  77
647
              XL = DATA(J-1) - DATA(J-3)
                                                                                                  78
                                                                                              L
648
              DEP3=ABS(DATA(J-2)-DATA(J))
                                                                                              L
                                                                                                  79
649
              XL=XL*DEP2/DEP3
                                                                                              L
                                                                                                  80
650
              AA=AA+XL*(DEP1+DEP2)/2.
                                                                                              L
                                                                                                  81
651
              P=P+SQRT((DEP1-DEP2)**2+XL**2)
                                                                                              L
                                                                                                  82
                                                                                                  83
652
              DEP2=0.
                                                                                              L
653
              GO TO 10
                                                                                                  84
                                                                                              L
654
       20
              R = AA/P
                                                                                                  85
                                                                                              L
655
              SGN=SEGN(K)-.0025*R
                                                                                                  86
                                                                                              L
       C
              ADD DISCHARGES AND AREAS FOR ALL SEGMENTS TO OBTAIN TOTALS FOR
                                                                                              1
                                                                                                  97
       C
              VALLEY SECTION.
                                                                                              L
                                                                                                  88
656
              Q(I,ID)=Q(I,ID)+AA*R**.66667*SLPN/SGN
                                                                                                  89
                                                                                              L
657
              A(I,ID)=A(I,ID)+AA
                                                                                              L
                                                                                                  90
658
       21
              CONTINUE
                                                                                                  91
                                                                                              L
```

659

JJJ=J-3

92

```
660
        22
              CONTINUE
                                                                                                93
                                                                                             L
 661
              DO 23 I=1,20
                                                                                                94
                                                                                             L
 662
              DEEP(I,ID)=C(I)-ELO
                                                                                             L
                                                                                                95
 663
              WRITE (6,25) C(I),A(I,ID),Q(I,ID)
                                                                                                96
                                                                                             L
 664
       23
              CONTINUE
                                                                                             L
                                                                                                97
 665
              RETURN
                                                                                                98
       C.
                                                                                                99
 666
       24
              FORMAT(1HO, T42, "RATING CURVE VALLEY SECTION", F5.1/T46, "WATER", T56,
                                                                                             L
                                                                                               100
             1'FLOW',T66,"FLOW"/T45,"SURFACE",T56,"AREA",T66,"RATE"/T46,"ELEV",T
                                                                                             L
                                                                                               101
             256, 'SQ FT', T66, 'CFS')
                                                                                             L
                                                                                               102
 667
       25
              FORMAT (40X,F10.2,2F10.1)
                                                                                             L
                                                                                               103
668
              END
                                                                                             L
                                                                                               104-
669
              SUBROUTINE STT
                                                                                             M
                                                                                                 1
       С
              THIS SUBROUTINE STORES A DEPTH - FLOW - TRAVEL TIME TABLE.
                                                                                                 2
 670
              COMMON CFS (300), OCFS (300,6), I END (6), DATA (310), DA(6), DP (20), NPU, NHD
                                                                                             M
                                                                                                 3
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                             М
                                                                                                 4
             2MM,ICC,NCODE,DIST(6),SEGN(6),CTBLE(50,11),ITBLE(50,2),ZALFA(20),DT
                                                                                             M
                                                                                                 5
             3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                             М
                                                                                                 6
671
              ID=DATA(1)
                                                                                             М
                                                                                                 7
672
              REACH=DATA(2)
                                                                                            М
                                                                                                 8
673
              XL=DATA(3)
                                                                                            М
                                                                                                 9
674
              SLOPE=DATA(4)
                                                                                            M
                                                                                                10
675
              DIST(ID)=SLOPE*XL
                                                                                            м
                                                                                                11
676
              J=5
                                                                                            М
                                                                                                12
677
              DO 1 I=1,19
                                                                                            м
                                                                                                13
678
              DP(I) = DATA(J)
                                                                                            M
                                                                                                14
679
              SCFS(I)=DATA(J+1)
                                                                                            М
                                                                                                15
680
              C(I)=DATA(J+2)
                                                                                            М
                                                                                                16
681
       1
              J = J + 3
                                                                                            M
                                                                                                17
682
              RETURN
                                                                                            М
                                                                                                18
683
              END
                                                                                            М
                                                                                                19-
684
              SUBROUTINE CMPTT
                                                                                            Ν
                                                                                                 1
       C
              THIS SUBROUTINE COMPUTES THE TRAVEL TIME AT GIVEN
                                                                                            Ν
                                                                                                 2
       C
              DISCHARGE RATES
                                                                                            Ν
                                                                                                 3
685
              COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                                 4
                                                                                            Ν
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                            Ν
                                                                                                 5
             2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                                 6
                                                                                            N
             3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                            N
                                                                                                 7
686
              ID=DATA(1)
                                                                                                 8
                                                                                            Ν
687
              REACH=DATA(2)
                                                                                            N
                                                                                                 9
             NOVS=DATA(3)
688
                                                                                            N
                                                                                                10
689
             XL=DATA(4)
                                                                                            Ν
                                                                                                11
690
              SLOPE=DATA(5)
                                                                                            N
                                                                                                12
691
              DIST(ID)=SLOPE*XL
                                                                                            Ν
                                                                                                13
692
              XLD36= XL/3600.
                                                                                            N
                                                                                                14
       C
              ZERO ARRAYS
                                                                                            N
                                                                                               15
693
             DO 1 J=1,20
                                                                                            N
                                                                                               16
694
             DATA (J)=0.
                                                                                               17
                                                                                            N
695
       1
             CFS(J)=0.
                                                                                            N
                                                                                               18
696
              ID1=1
                                                                                            N
                                                                                               19
       C
             FIND RATING CURVE WITH SMALLEST MAXIMUM FLOW RATE
                                                                                               20
                                                                                            N
697
             QMIN=Q(20, ID1)
       2
                                                                                            N
                                                                                               21
698
             MIN=ID1
                                                                                               22
                                                                                            N
699
             GO TO 4
                                                                                               23
                                                                                            N
700
       3
              ID1=ID1+1
                                                                                            N
                                                                                               24
701
                (QMIN-Q(20, ID1)) 4,4,2
                                                                                            N
                                                                                               25
702
       4
              IF (ID1-NOVS) 3,5,5
                                                                                               26
                                                                                            Ν
703
       5
              I = 1
                                                                                            Ν
                                                                                               27
```

```
SET SCES ARRAY EQUAL TO Q ARRAY OF LOWEST RATING CURVE
                                                                                             N
                                                                                                28
      C
704
             00 6 J=2,20
                                                                                             M
                                                                                                29
                                                                                             Ν
                                                                                                3.0
705
             SCFS(I) = Q(J,MIN)
                                                                                             N
                                                                                                31
706
      6
             I = I + 1
             COMPUT END AREA AND DEPTH
                                                                                             Ν
                                                                                                32
      C.
                                                                                             Ν
                                                                                                33
707
             DO 9 ID1=1.NOVS
708
             DO 9 J=1,19
                                                                                             Ν
                                                                                                34
                                                                                             N
                                                                                                35
709
             DO 7 I = 2,20
710
             IF (Q(I,ID1)-SCFS(J)) 7,17,8
                                                                                             Ν
                                                                                                36
                                                                                             N
                                                                                                37
       7
             CONTINUE
711
712
      17
             DATA (J) = A(I \cdot ID1) + DATA(J)
                                                                                             Ν
                                                                                                38
                                                                                             Ν
                                                                                                39
713
             CFS(J)=DEEP(I,ID1)+CFS(J)
714
             GO TO 9
                                                                                                40
715
             XY = (SCFS(J) - Q(I-1,ID1))/(Q(I,ID1) - Q(I-1,ID1))
                                                                                             Ν
                                                                                                41
      8
             DATA (J) = A(I-1, ID1) + XY * (A(I, ID1) - A(I-1, ID1)) + DATA(J)
                                                                                             N
                                                                                                42
716
                                                                                                43
717
             CFS(J) = DEEP(I-1,ID1) + XY*(DEEP(I,ID1) - DEEP(I-1,ID1)) + CFS(J)
718
      9
             CONTINUE
                                                                                             N
                                                                                                44
719
             XNCVS=NOVS
                                                                                             N
                                                                                                45
             WRITE (6,13) REACH
                                                                                             Ν
                                                                                                 46
720
      C
             COMPUTE TRAVEL TIME
                                                                                             Ν
                                                                                                47
721
             DO 10 I=1.19
                                                                                             Ν
                                                                                                48
722
             AVAREA=DATA(I)/XNOVS
                                                                                             М
                                                                                                 49
                                                                                                 50
723
                                                                                             N
             DP(I)=CFS(I)/XNOVS
724
             S = AVAREA * XLD36
                                                                                             N
                                                                                                 51
725
                                                                                                 52
             C(I)=S/SCFS(I)
                                                                                             N
             WRITE (6,14) DP(I), SCFS(I), C(I)
                                                                                                 53
726
                                                                                             N
                                                                                                 54
727
             CONTINUE
                                                                                             Ν
       10
             PUNCH CODE
                                                                                             N
                                                                                                 55
       C.
                                                                                                 56
728
             IF (NPU) 12,12,11
                                                                                             N
729
                                                                                                 57
             WRITE (7,15) ID, REACH, XL, SLOPE
                                                                                             N
       11
730
             WRITE (7,16) (DP(I),SCFS(I),C(I),I=1,19)
                                                                                             N
                                                                                                 58
       12
                                                                                                 59
731
             RETURN
                                                                                             Ν
      C
                                                                                             M
                                                                                                 60
      13
             FORMAT(1H0,T46, TRAVEL TIME TABLE TTA, REACH FF. 1//T46, WATER F, T
732
                                                                                             Ν
                                                                                                 61
            156, 'FLOW', T65, 'TRAVEL'/T46, 'DEPTH', T56, 'RATE', T66, 'TIME'/T46, 'FEET
                                                                                             Ν
                                                                                                 62
            2', T56, 'CFS', T66, 'HRS')
                                                                                             N
                                                                                                 63
             FORMAT (40X,F10.2,F10.0,F10.4)
733
       14
                                                                                             Ν
                                                                                                 64
             FORMAT( STORE TRAVEL TIME , T21, ID= , I1, T29, REACH NO=, F5.1, T44,
734
       15
                                                                                             Ν
                                                                                                 65
            1'LENGTH=',F9.0,' FT'/T21,'SLOPE=',F8.6,'FT/FT'
                                                                                       /T2
                                                                                             Ν
                                                                                                 66
            21, 'DEPTH(FT)', T35, 'FLOW(CFS)', T49, 'TIME(HRS)')
                                                                                                 67
                                                                                             N
735
             FORMAT (T21, F7.2, F15.0, F15.3)
                                                                                                 68
       16
                                                                                             Ν
736
             END
                                                                                             Ν
                                                                                                 69-
737
             SUBROUTINE ROUTE
                                                                                             0
                                                                                                  1
             THIS SUBROUTINE ROUTES A HYDROGRAPH THROUGH A REACH WITH THE
      C
                                                                                                  2
                                                                                             \cap
       C
             NEW VSC METHOD OF FLOOD ROUTING. THIS METHOD ACCOUNTS FOR THE
                                                                                             0
                                                                                                  3
       C
             VARIATION IN WATER SURFACE SLOPE.
                                                                                             0
                                                                                                  4
738
             COMMON CFS (300), OCFS (300,6), IEND(6), DATA (310), DA(6), DP(20), NPU, NHD
                                                                                                  5
                                                                                             0
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                             0
                                                                                                  6
            2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                             0
                                                                                                  7
             3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                             0
                                                                                                  8
739
             ID=DATA(1)
                                                                                             0
                                                                                                  9
740
             NHD=DATA(2)
                                                                                             0
                                                                                                 10
741
              IDH=DATA(3)
                                                                                             0
                                                                                                 1.1
742
             DT(ID) = DATA(4)
                                                                                             0
                                                                                                 12
743
             DA(ID) = DA(IDH)
                                                                                             0
                                                                                                 13
744
             M= [END(IDH)
                                                                                             0
                                                                                                 14
       C
              IF ID AND IDH ARE EQUAL, ADD 1 TO IDH
                                                                                             0
                                                                                                 15
745
             IF (ID-IDH) 3,1,3
                                                                                             0
                                                                                                 16
746
       1
              IDH=IDH+1
                                                                                             \cap
                                                                                                 17
```

```
747
                                                                                               0
              DO 2 I=1,M
                                                                                                   18
748
       2
              OCFS(I, IDH) = OCFS(I, IDH-1)
                                                                                               0
                                                                                                   19
                                                                                                   20
749
              DT(IDH)=DT(IDH-1)
                                                                                               O
750
              PEAK(IDH) = PEAK(IDH-1)
                                                                                               0
                                                                                                   21
751
       3
              NERRT=0
                                                                                               0
                                                                                                   22
752
              PEAK(ID)=1.
                                                                                               0
                                                                                                   23
753
              RO=0.
                                                                                               0
                                                                                                   24
754
              N = 19
                                                                                               0
                                                                                                   25
755
              OCFS(1, ID) = 0.
                                                                                               0
                                                                                                   26
756
                                                                                               0
                                                                                                   27
              S = 0
757
              T1=C(1)
                                                                                               0
                                                                                                   28
758
              J = 1
                                                                                               0
                                                                                                   29
759
              GUES=1.
                                                                                               0
                                                                                                   30
                                                                                               0
760
              CFS(1)=0.
                                                                                                   31
       C
              IF ROUTING INTERVAL IS NOT EQUAL TO TIME INCREMENT OF INFLOW
                                                                                               0
                                                                                                   32
                                                                                               0
       C
              HYDROGRAPH, INTERPOLATE
                                                                                                   33
761
              IF (DT(ID)-DT(IDH)) 8,15,4
                                                                                               0
                                                                                                   34
762
       4
              TID=DT(ID)
                                                                                               0
                                                                                                   35
                                                                                               0
763
              TIDH=0.
                                                                                                   36
764
              DO 7 I = 2, M
                                                                                               0
                                                                                                   37
                                                                                               0
              TIDH=TIDH+DT(IDH)
                                                                                                   38
765
                                                                                               0
766
              IF (TID-TIDH) 6,5,7
                                                                                                   39
                                                                                               0
                                                                                                   40
767
       5
              J = J + 1
                                                                                               0
                                                                                                   41
768
              CFS(J) = OCFS(I, IDH)
                                                                                               0
                                                                                                   42
769
              TIC=TID+OT(ID)
                                                                                                   43
770
                                                                                               0
              GO TO 7
771
              J = J + 1
                                                                                               0
                                                                                                   44
       6
                                                                                                   45
              CFS(J)=OCFS(I-1,IDH)+((TID-TIDH+DT(IDH))/DT(IDH))*(OCFS(I,IDH)-OCF
                                                                                               O
772
             1S(I-1, IDH))
                                                                                               0
                                                                                                   46
773
              TIC=TID+DT(ID)
                                                                                               0
                                                                                                   47
774
       7
              CONTINUE
                                                                                               0
                                                                                                   48
775
              GO TO 13
                                                                                               0
                                                                                                   49
776
                                                                                                   50
       8
              TIDH=0.
                                                                                               0
777
                                                                                               0
                                                                                                   51
              TID=DT(ID)
778
              DO 12 I=2,M
                                                                                               0
                                                                                                   52
779
              TIDH=TIDH+DT(IDH)
                                                                                               0
                                                                                                   53
780
              IF (TIDH-TID) 12,10,11
                                                                                               0
                                                                                                   54
781
       10
              J = J + 1
                                                                                               0
                                                                                                   55
782
              CFS(J) = OCFS(I, IDH)
                                                                                               0
                                                                                                   56
783
              TIC=TID+DT(ID)
                                                                                               0
                                                                                                   57
784
              IF (J-300) 12,13,13
                                                                                               0
                                                                                                   58
785
       11
              J = J + 1
                                                                                               0
                                                                                                   59
              CFS(J) = OCFS(I-1, IDH) + ((TID-TIDH+DT(IDH))/DT(IDH)) * (OCFS(I, IDH) - OCF)
                                                                                               0
                                                                                                   60
786
                                                                                               0
                                                                                                   61
             1S(I-1, IDH))
                                                                                               0
787
              TIC=TID+OT(ID)
                                                                                                   62
                                                                                               0
                                                                                                   63
              IF (J-300) 9,13,13
788
       12
                                                                                               0
                                                                                                   64
789
              CONTINUE
                                                                                               0
                                                                                                   65
790
       13
              IEND(IDH)=J
791
              DT(IDH)=DT(ID)
                                                                                               0
                                                                                                   66
                                                                                               n
                                                                                                   67
792
              M = J
793
              DO 14 I=2, M
                                                                                               0
                                                                                                   68
                                                                                               0
              OCFS(I, IDH)=CFS(I)
                                                                                                   69
794
       14
                                                                                               0
                                                                                                   70
              IF INFLOW IS ZERO, SO IS OUTFLOW
       C
795
       15
                                                                                               0
                                                                                                   71
              DO 16 L=2,M
                                                                                               0
                                                                                                   72
796
              IF (OCFS(L, IDH)) 16,16,49
797
       16
              OCFS(L,ID)=0.
                                                                                               0
                                                                                                   73
                                                                                               0
                                                                                                   74
       С.
              ROUTE
                                                                                                   75
798
       49
              DATA (L-1)=0.
                                                                                               0
799
              DO 42 I=L, 300
                                                                                               0
                                                                                                   76
                                                                                                   77
800
              IF (I-M) 18,18,17
                                                                                               0
```

801	17	OCFS(I,IDH)=OCFS(I-1,IDH)*.9	0 78
802	18	AVIN=(OCFS(I, IDH)+OCFS(I-1, IDH))/2.	0 79
803		SIA=S+AVIN	0 80
804		J=1	0 81
	С	DETERMINE CEPTH AND TRAVEL TIME OF INFLOW	0 82
805	1.0	IF (OCFS(1,1DH)-SCFS(1)) 19,23,20	0 83
806	19	UI2=(OCFS(I,IDH)/SCFS(1))*DP(1)	0 84 0 85
807 808		TI2=C(1) GO TO 25	0 86
809	20	DO 21 J=2, N	0 87
810	20	IF (OCFS(I,IDH)-SCFS(J)) 24,23,21	0 88
811	21	CONTINUE	0 89
812		IF (NERRT) 22,22,36	0 90
813	22	WRITE (6,46)	0 91
814		NERRT=1	0 92
815		GO TO 36	0 93
816	23	DI 2=DP (J)	0 94
817		TI2=C(J)	0 95 0 96
818 819	24	GO TO 25 RATIO=(OCFS(I,IDH)-SCFS(J-1))/(SCFS(J)-SCFS(J-1))	0 96 0 97
820	24	DI2=DP(J-1)+RATIO*(DP(J)-DP(J-1))	0 98
821		TI 2=C(J-1) +RATIO*(C(J)-C(J-1))	0 99
822	25	DO 35 IT=1,10	0 100
823		J=1	0 101
	С	DETERMINE DEPTH AND TRAVEL TIME OF OUTFLOW	0 102
824		IF (GUES-SCFS(1)) 26,29,27	0 103
825	26	DO2=(GUES/SCFS(1))*DP(1)	0 104
826		T02=C(1)	0 105
827	2.7	GO TO 31	0 106
828 829	27	DO 28 J=2,N IF (GUES-SCFS(J)) 30,29,28	0 107 0 108
830	28	CONTINUE	0 109
831	20	J=N	0 110
832	29	DO2=DP(J)	0 111
833		TO 2=C(J)	0 112
834		GO TO 31	0 113
835	30	RATIO=(GUES-SCFS(J-1))/(SCFS(J)-SCFS(J-1))	0 114
836		DO2=DP(J-1)+RATIO*(DP(J)-DP(J-1))	0 115
837		TO 2=C(J-1) +RATIO*(C(J)-C(J-1))	0 116
020	C 31	FIND WATER SURFACE SLOPE	0 117 0 118
838 839	31	DDD=DIST(IC)/(DIST(ID)+CI2-DO2) IF (DDD01) 32,32,33	0 119
840	32	GUES=OCFS(I-1,IDH)	0 120
841		GO TO 35	0 121
842	33	T2=.5*(TI2+T02)	0 122
843		T2=T2*SQRT(DDD)	0 123
844		T = T1+T2	0 124
	С	COMPUTE ROUTING COEFFICIENT	0 125
845		COEF=(2.*DT(ID))/(T+DT(ID))	0 126
846		O2=COEF*SIA	0 127
847 848		TRY1=GUES RATIO=O2/(GUES+b1E-20)	0 128 0 129
849		DIFF=ABS(1RATIO)	0 130
0.,	С	TEST FOR CONVERGENCE	0 131
850		IF (DIFF001) 37,37,34	0 132
851	34	GUES=02	0 133
852	35	CONTINUE	0 134
853		OCFS(I,ID) = DATA(I-I) * SIA	0 135
854		DATA (I) = DATA(I-1)	0 136
855		WRITE (6,47) I,OCFS(I,ID)	0 137

```
856
             GO TO 38
                                                                                            0 138
857
       36
             OCFS(I, ID) = DATA(I-1) *SIA
                                                                                            0 139
858
             DATA (I) = DATA(I-1)
                                                                                            0 140
859
             GO TO 38
                                                                                            0 141
             OCFS(I, ID) = 02
860
       37
                                                                                            0 142
861
             DATA (I)=COEF
                                                                                            0 143
       С
             COMPUTE NEW STORAGE
                                                                                            0 144
       38
862
             S = SIA - OCFS(I, ID)
                                                                                            0 145
863
             T1=T2
                                                                                            0 146
864
             RO = RO + OCFS(I, ID)
                                                                                            0 147
             IF (OCFS(I,ID)-OCFS(I-1,ID)) 39,40,40
865
                                                                                            0 148
866
       39
             IF (OCFS(I, ID)-1.) 43,43,42
                                                                                            0 149
       40
             IF (OCFS(I,ID)-PEAK(ID)) 42,42,41
                                                                                            0 150
867
868
       41
             PEAK(ID)=OCFS(I,ID)
                                                                                            0 151
869
       42
             CONTINUE
                                                                                            0 152
870
             I = 300
                                                                                            0 153
871
       43
             IEND(ID)=I
                                                                                            0 154
872
             ROIN=(RO*DT(ID))/(DA(ID)*645.333)
                                                                                            0 155
      С
             PUNCH CODE
                                                                                            0 156
873
             IF (NPU) 45,45,44
                                                                                            0 157
             WRITE (7,48) ID, NHD, IDH, DT (ID)
874
       44
                                                                                            0
                                                                                              158
       45
875
             RETURN
                                                                                            0
                                                                                              159
      C
                                                                                            0
                                                                                              160
876
             FORMAT(1HO, 'TRAVEL TIME TABLE EXCEEDED')
       46
                                                                                            0
                                                                                              161
877
       47
             FORMAT(T10, *PROBLEM FAILED TO CONVERGE AFTER10 ITERATIONS. CONVERG
                                                                                            0
                                                                                              162
            1ENCE WAS FORCED. 1/T20, OUTFLOW NUMBER = 1, I4, RATE = 1, F10.2)
                                                                                              163
                                                                                            0
878
       48
             FORMAT(
                         'ROUTE', T21, 'ID=', I1, T29, 'HYD NO=', I3, T45, 'INFLOW ID=', I
                                                                                            0
                                                                                              164
            11, T65, 'DT = ', F8.6, 'HRS')
                                                                                            0
                                                                                              165
879
             FND
                                                                                            0
                                                                                              166-
                                                                                            ρ
             SUBROUTINE RESVO
880
                                                                                                 1
      С
             THIS SUBROUTINE ROUTES A HYDROGRAPH THROUGH A RESERVOIR WITH THE
                                                                                            P
                                                                                                 2
      C
             STORAGE-INDICATION METHOD.
                                                                                            Ρ
                                                                                                 3
                                                                                            Ρ
                                                                                                 4
881
             COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                            Ρ
                                                                                                 5
            1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                            Ρ
            2MM,ICC,NCODE,DIST(6),SEGN(6),CTBLE(50,11),ITBLE(50,2),ZALFA(20),DT
                                                                                                 6
                                                                                            Ρ
                                                                                                 7
            3(6), TIME, PEAK (6), ROIN, ISG (6)
                                                                                            Ρ
                                                                                                 8
882
             ID=DATA(1)
883
             NHD=DATA(2)
                                                                                            Ρ
                                                                                                 9
884
             IDH=DATA(3)
                                                                                            Ρ
                                                                                               10
885
                                                                                            Ρ
                                                                                               11
             NERES=0
886
             DT (ID) = DT (IDH)
                                                                                            Ρ
                                                                                               12
887
             RO=0
                                                                                            Ρ
                                                                                               13
                                                                                            Ρ
888
             DA(ID)=DA(IDH)
                                                                                               14
889
             PEAK(ID)=1.
                                                                                            Р
                                                                                               15
                                                                                            Ρ
890
             J = 1
                                                                                               16
891
             I = 4
                                                                                            P
                                                                                               17
                                                                                            Ρ
             REMAINING DATA ARE FLOW AND STORAGE VALUES
                                                                                               18
      C
                                                                                            Ρ
892
                                                                                               19
             SCFS(J)=DATA(I)
                                                                                            Ρ
893
             STERE1=DATA(I+1)*12.1
                                                                                               20
                                                                                            Ρ
                                                                                               21
894
             STORE=STORE1
      С
             COMPUTE STORAGE COEFFICIENT ARRAY C
                                                                                            ρ
                                                                                               22
                                                                                            Ρ
895
             C(J)=(SCFS(J)/2.)+(STORE/DT(ID))
                                                                                               23
       1
896
             I = I + 2
                                                                                            Ρ
                                                                                               24
                                                                                            Ρ
                                                                                               25
897
             J = J + 1
                                                                                            ρ
898
             IF (J-20) 2,2,3
                                                                                               26
                                                                                            Ρ
899
             SCFS(J)=DATA(I)
                                                                                               27
       2
                                                                                            ρ
900
             STORE=DATA(I+1)*12.1
                                                                                               28
                                                                                            Ρ
                                                                                               29
             IF (SCFS(J)-.001) 3,3,1
901
                                                                                            Ρ
                                                                                               30
902
       3
             N = J - 1
```

```
D
                                                                                                 31
             OCFS(1, ID) = 0.
903
                                                                                             P
                                                                                                 32
             S=STORE1/DT(ID)
904
                                                                                             p
                                                                                                 33
      C.
             ROUTE
                                                                                             p
                                                                                                 24
             00 15 I=2,150
905
                                                                                             D
                                                                                                 35
              IF (I-IEND(IDH)) 5,5,4
906
                                                                                              p
                                                                                                 36
             OCFS(I, IDH) = 0.0
907
                                                                                              Р
                                                                                                 37
              AVIN=(OCFS(I, IDH) +OCFS(I-1, IDH))/2.
       5
908
                                                                                              p
                                                                                                 38
              SIA=S+AVIN
909
                                                                                              p
                                                                                                 30
              DETERMINE PROPER C
       C
                                                                                              P
                                                                                                 40
910
              DO 6 J=1,N
                                                                                              p
                                                                                                 41
              IF (SIA-C(J)) 10,9,6
911
                                                                                              D
                                                                                                 42
              CONTINUE
912
       6
                                                                                              p
                                                                                                 43
              IF (NERES) 7,7,8
913
                                                                                              p
                                                                                                 44
914
       7
              WRITE (6,19)
                                                                                              n
                                                                                                 45
              NERES=1
915
                                                                                              D
                                                                                                 46
              RESC=SCFS(N)/C(N)
       8
916
                                                                                              D
                                                                                                 47
       C
              COMPUT OUTFLOW
                                                                                              D
                                                                                                 48
              OCFS(I, ID) = RESC * SIA
917
                                                                                              D
                                                                                                 49
918
              GO TO 11
                                                                                              P
                                                                                                 50
              OCFS(I, ID) = SCFS(J)
919
       9
                                                                                              p
                                                                                                  51
              GO TO 11
920
              OCFS(I, ID) = SCFS(J-1)+((SIA-C(J-1))/(C(J)-C(J-1)))*(SCFS(J)-SCFS(J-
                                                                                              p
                                                                                                  52
921
       10
                                                                                              Þ
                                                                                                  53
                                                                                              P
                                                                                                  54
       C
              DETERMINE NEW STORAGE
                                                                                              P
                                                                                                  55
              S=SIA-OCFS(I, ID)
922
       11
                                                                                              P
                                                                                                  56
923
              RO=RO+OCFS(I,ID)
                                                                                              P
                                                                                                  57
              IF (OCFS(I,ID)-OCFS(I-1,ID)) 12,13,13
924
                                                                                              D
                                                                                                  58
              IF (OCFS(I,ID)-1.) 16,16,15
925
       12
                                                                                              P
                                                                                                  59
              IF (OCFS(I, ID)-PEAK(ID)) 15,15,14
926
       13
                                                                                              P
                                                                                                  60
              PEAK(ID)=OCFS(I,ID)
927
       14
                                                                                              P
                                                                                                  61
928
       15
              CONTINUE
                                                                                              P
                                                                                                  62
              I = 150
929
                                                                                              P
                                                                                                  63
              IEND(ID)=I
930
       16
                                                                                              Р
                                                                                                  64
              ROIN=RO*DT(ID)/(DA(ID)*645.333)
931
                                                                                              P
                                                                                                  65
       С
              PUNCH CODE
                                                                                              p
                                                                                                  66
              IF (NPU) 18,18,17
932
                                                                                              p
                                                                                                  67
              WRITE (7,20) ID, NHD, IDH
933
       17
                                                                                              P
                                                                                                  68
              II = 2 * N + 3
934
                                                                                              P
                                                                                                  69
              WRITE (7,21) (DATA(I), I=5, II)
935
                                                                                              p
                                                                                                  70
936
       18
              RETURN
                                                                                               p
                                                                                                  71
       C
                                                                                               P
                                                                                                  72
              FORMAT (1HO, 33HSTORAGE-DISCHARGE TABLE EXCEEDED.)
       19
937
                                                                                               P
                          'ROUTE RESERVOIR', T21, 'ID=', I1, T29, 'HYD NO=', I3, T42, 'INF
                                                                                                  73
938
       20
              FORMAT (
                                                          /T21, OUTFLOW(CFS) , T37, STOR
                                                                                               P
                                                                                                  74
              1LOW ID= 1, I1
                                                                                               P
                                                                                                  75
             2AGE(AC FT) 1)
                                                                                               P
                                                                                                  75
939
       21
              FORMAT (T21,F10.1,F13.1)
                                                                                               P
                                                                                                  76-
 940
               END
                                                                                               Ω
                                                                                                   1
               SUBROUTINE ERROR
 941
               THIS SUBROUTINE DETERMINES THE ERROR STANDARD DEVIATION AND THE
                                                                                               ۵
                                                                                                    2
        C
                                                                                               ٥
                                                                                                    3
               PEAK FLOW ERROR FOR 2 HYDROGRAPHS
        C
               COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                               0
 942
              1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NFR, MAXNO, NCO
                                                                                               0
              24M, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50, 11), ITBLE(50, 2), ZALFA(20), DT
                                                                                               0
                                                                                                    6
                                                                                               0
                                                                                                    7
              3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                               Q
                                                                                                    8
 943
               ID1=DATA(1)
                                                                                               0
                                                                                                    9
 944
               ID2=DATA(2)
                                                                                               Q
                                                                                                  10
 945
               SSE=0.
                                                                                               0
                                                                                                  11
               WRITE (6,15)
 946
                                                                                               Q
                                                                                                  12
```

947

J = 1

```
C
              IF TIME INCREMENTS NOT EQUAL, INTERPOLATE
                                                                                              0
                                                                                                 13
948
              IF (DT(ID1)-DT(ID2)) 1.8.2
                                                                                              Q
                                                                                                 14
949
       1
              L=ID1
                                                                                                 15
                                                                                              ۵
950
              K = 1D2
                                                                                              Q
                                                                                                 16
951
              GO TO 3
                                                                                              ۵
                                                                                                 17
952
       2
              L = ID2
                                                                                              Q
                                                                                                 18
953
              K = ID1
                                                                                              ۵
                                                                                                 19
954
              M=IEND(L)
                                                                                              Q
                                                                                                 20
955
              TID=DT(K)
                                                                                              Q
                                                                                                 21
956
              TIDH=0.
                                                                                              0
                                                                                                 22
957
              DO 6 I=2,M
                                                                                              Q
                                                                                                 23
958
              TICH=TIDH+DT(L)
                                                                                              Q
                                                                                                 24
959
              IF (TID-TIDH) 5,4,6
                                                                                              Q
                                                                                                 25
960
                                                                                              Q
              J = J + 1
                                                                                                 26
961
              CFS(J) = OCFS(I,LL
                                                                                              0
                                                                                                 27
962
              TID=TID+DT(K)
                                                                                              Q
                                                                                                 28
963
              GO TO 6
                                                                                              Q
                                                                                                 29
964
       5
              J = J + 1
                                                                                                 30
                                                                                              Q
965
             CFS(J) = OCFS(I-1,L) + ((TID-TIDH+DT(L))/CT(L)) + (OCFS(I,L)-OCFS(I-1,L)
                                                                                              Q
                                                                                                 31
                                                                                              Q
             1)
                                                                                                 32
966
              TIC=TID+DT(K)
                                                                                              Q
                                                                                                 33
             CONTINUE
967
                                                                                              Q
                                                                                                 34
       6
968
              IEND(L)=J
                                                                                              Q
                                                                                                 35
969
             DT(L)=DT(K)
                                                                                              Q
                                                                                                 36
970
              DO 7 I=2,J
                                                                                              Q
                                                                                                 37
                                                                                              Q
971
       7
             OCFS(I,L)=CFS(I)
                                                                                                 38
                                                                                              Q
972
       8
              IF (IEND(ID1)-IEND(ID2)) 9,9,10
                                                                                                 39
973
              M = IEND (ID1)
                                                                                              Q
                                                                                                 40
                                                                                              Q
                                                                                                 41
974
              GO TO 11
975
       10
              M=IEND(ID2)
                                                                                              Q
                                                                                                 42
                                                                                              Q
976
       11
              T2=TIME
                                                                                                 43
       C
              DETERMINE ERROR
                                                                                              Q
                                                                                                 44
977
              DO 12 I=1, M
                                                                                              Q
                                                                                                 45
                                                                                              Q
978
              ERR=OCFS(I,ID1)-OCFS(I,ID2)
                                                                                                 46
                                                                                              Q
979
              WRITE (6,16) T2,OCFS(I,ID1),OCFS(I,ID2),ERR
                                                                                                 47
                                                                                              Q
980
              T2=T2+DT(ID1)
                                                                                                 48
                                                                                              Q
                                                                                                 49
              SUM OF SQUARES OF ERROR
                                                                                              Q
981
       12
              SSE=SSE+ERR*ERR
                                                                                                 50
                                                                                              Q
982
              XM = M
                                                                                                 51
                                                                                              Q
       C
             ERROR VARIANCE
                                                                                                 52
                                                                                              Q
983
              EVAR=SSE/XM
                                                                                                 53
                                                                                              Q
                                                                                                 54
       C
             ERROR STANDARD DEVIATION
                                                                                              Q
                                                                                                 55
984
              ESDEV=SQRT (EVAR)
                                                                                              Q
                                                                                                 56
985
              WRITE (6,17) ESDEV
                                                                                              Q
              PERCENT ERROR FOR PEAK FLOWS
                                                                                                 57
       C
986
              ERPK = ABS (PEAK (ID1) - PEAK (ID2))
                                                                                              Q
                                                                                                 58
987
              PCTER=(ERPK/PEAK(ID1))*100.
                                                                                              Q
                                                                                                 59
988
              WRITE (6,18) PCTER
                                                                                              Q
                                                                                                 60
                                                                                              ۵
       C
              PUNCH CODE
                                                                                                 61
989
              IF (NPU) 14,14,13
                                                                                              0
                                                                                                 62
                                                                                              ۵
990
       13
              WRITE (7,19) ID1, ID2
                                                                                                 63
991
       14
              RETURN
                                                                                              Q
                                                                                                 64
                                                                                              0
                                                                                                 65
       C
992
       15
              FORMAT(1HO, T33, 'TIME', T55, 'FLOW 1', T76, 'FLOW 2', T95, 'ERROR'/T34,
                                                                                              Q
                                                                                                 66
             1'HRS', T57, 'CFS', T78, 'CFS', T97, 'CFS')
                                                                                              Q
                                                                                                 67
                                                                                              Q
993
             FORMAT (20X, F20, 3, 3F20, 0)
                                                                                                 68
       16
994
              FORMAT(1HO, T10, 'ERROR STANDARD DEVIATION = ',F10.3)
                                                                                             Q
                                                                                                 69
       17
              FURMAT(T10, 'PEAK DISCHARGE ERROR = ',F7.2, ' PERCENT'///)
                                                                                              Q
                                                                                                 70
995
       18
996
       19
              FORMAT (
                          'ERROR ANALYSIS', T21, 'ID I=', I1, T29, 'ID II=', I1)
                                                                                              Q
                                                                                                 71
                                                                                             0
997
              END
                                                                                                 72-
```

```
R
                                                                                                1
              SUBROUTINE SEDT
998
              THIS SUBROUTINE COMPUTES THE SEDIMENT YIELD FOR A FLOOD
                                                                                           R
                                                                                                2
       C
              COMMON CFS(300), OCFS(300,6), IEND(6), DATA(310), DA(6), DP(20), NPU, NHD
                                                                                                3
999
             1, SCFS(20), C(20), A(20,6), Q(20,6), RAIN(200), DEEP(20,6), NER, MAXNO, NCO
                                                                                           R
                                                                                                4
             2MM, ICC, NCODE, DIST(6), SEGN(6), CTBLE(50,11), ITBLE(50,2), ZALFA(20), DT
                                                                                           R
                                                                                                5
                                                                                           R
                                                                                                6
             3(6), TIME, PEAK(6), ROIN, ISG(6)
                                                                                           R
                                                                                                7
1000
              ID=DATA(1)
                                                                                           R
                                                                                                8
              SOIL=DATA(2)
1001
                                                                                           R
                                                                                                9
1002
              CROP=DATA(3)
                                                                                           R
                                                                                               10
              CP=DATA(4)
1003
                                                                                           R
                                                                                               11
              SL=DATA(5)
1004
                                                                                           R
                                                                                               12
              COMPUTE SEDIMENT YIELD
       C
                                                                                           R
                                                                                               13
              X=ROIN*DA(ID) *53.333*PEAK(ID)
1005
                                                                                           R
                                                                                               14
              SED=95.*X**.56*SOIL*CROP*CP*SL
1006
                                                                                           R
                                                                                               15
              WRITE (6,3) SED
1007
                                                                                           R
                                                                                               16
              PUNCH CODE
       C
                                                                                           R
                                                                                               17
1008
              IF (NPU) 2,2,1
                                                                                            R
                                                                                               18
              WRITE (7,4) ID, SOIL, CROP, CP, SL
1009
       1
                                                                                            R
                                                                                               19
       2
              R E TURN
1010
                                                                                               20
                                                                                            R
       C.
                                                                                               21
              FORMAT (10X, 'SEDIMENT YIELD = ', F10.1, ' TONS')
                                                                                            R
1011
        3
                                                                                            R
                                                                                               22
                         'SEDIMENT YIELD', T21, 'ID=', I1, T29, 'SOIL=', F5.3, T42, 'CROP
              FORMAT(
1012
                                                                                            R
                                                                                               23
             1=',F5.3,T57,'CP=',F5.3,T70,'LS=',F5.3)
                                                                                            R
                                                                                               24-
              END
1013
```

//\$DATA

ZALFA = 1234567890 *.,-

COMMAND TABLE

START	1	2
STORE HYD	23	10
RECALL HYD	33	10
COMPUTE HYD	43	10
PRINT HYD	5	2
PUNCH HYD	6	1
PLOT HYD	7	2
ADD HYD	8	4
STORE RATING CURVE	91	00
COMPUTE RATING CURVE	103	10
STORE TRAVEL TIME	111	00
COMPUTE TRAVEL TIME	12	5
ROUTE	13	4
ROUTE RESERVOIR	141	00
ERROR ANALYSIS	15	2
SEDIMENT YIELD	16	5
FINISH	17	0

