On a problem from the Kourovka Notebook*

Xiaoyu Chen

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University,

Nanjing 210023, P. R. China

E-mail: jelly@njnu.edu.cn

Abstract

In this manuscript, a solution to Problem 18.91(b) in the Kourovka Notebook is given by proving the following theorem. Let P be a Sylow p-subgroup of a group G with $|P| = p^n$. Suppose that there is an integer k such that 1 < k < n and every subgroup of P of order p^k is S-propermutable in G, and also, in the case that p = 2, k = 1 and P is non-abelian, every cyclic subgroup of P of order 4 is S-propermutable in G. Then G is p-nilpotent.

Recall that a subgroup H of a group G is said to be propermutable (resp. S-propermutable) [2] in G, if there is a subgroup B of G such that $G = N_G(H)B$ and H permutes with every subgroup (resp. Sylow subgroup) of B. The aim of this manuscript is to give a solution to the following problem proposed by A. N. Skiba in the Kourovka Notebook.

Problem 1. (see Problem 18.91(b) in [1].) Let P be a non-abelian Sylow 2-subgroup of a group G with $|P| = 2^n$. Suppose that there is an integer k such that 1 < k < n and every subgroup of P of order 2^k is propermutable in G, and also, in the case of k = 1, every cyclic subgroup of P of order 4 is propermutable in G. Is it true that then G is 2-nilpotent?

A subgroup H of a group G is said to satisfy Π -property [3] in G if for every chief factor L/K of G, $|G/K|: N_{G/K}(HK/K\cap L/K)|$ is a $\pi(HK/K\cap L/K)$ -number. Now we can establish the relationship between S-propermutable subgroups and subgroups which satisfy Π -property.

Keywords: Finite group, Propermutable subgroups, S-propermutable subgroups, p-nilpotence. Mathematics Subject Classification (2010): 20D10, 20D20.

^{*}The author is supported by an NNSF of China (grant No. 11371335), the Start-up Scientific Research Foundation of Nanjing Normal University (grant No. 2015101XGQ0105) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Lemma 2. If a p-subgroup H is S-propermutable in a group G, then H satisfies Π -property in G.

Proof. In view of [2, Lemma 2.3(1)] and [3, Proposition 2.1(1)], we only need to prove that $|G:N_G(H\cap N)|$ is a *p*-number for any minimal normal subgroup N of G by induction. If N is abelian, then $|G:N_G(H\cap N)|$ is a *p*-number by [2, Lemma 2.3(4)]. We may, therefore, assume that N is non-abelian.

Now we shall prove that $H \cap N = 1$. As H is S-propermutable in G, G has a subgroup B such that $G = N_G(H)B$ and H permutes with every Sylow subgroup of B. Clearly, $H^G \leq HB$. If $H^G \cap N = 1$, then $H \cap N = 1$. Hence we may assume that $N \leq H^G \leq HB$. Then for any Sylow q-subgroup N_q of N with $q \neq p$, B has a Sylow q-subgroup B_q such that $N_q = (B_q)^h \cap N$ for some $h \in H$. It follows that $H(B_q)^h \cap N = (H \cap N)((B_q)^h \cap N) = (H \cap N)N_q$, and so $H \cap N$ permutes with N_q . Since $N \neq (H \cap N)N_q$, N has a proper normal subgroup L such that either $H \cap N \leq L$ or $N_q \leq L$. Then evidently, we have that $H \cap N \leq L$. Note that for any Sylow q-subgroup L_q of L, $H \cap N$ permutes with L_q . Repeating this argument, we can obtain that $H \cap N = 1$. The lemma is thus proved.

We arrive at the following main result.

Theorem 3. Let P be a Sylow p-subgroup of a group G with $|P| = p^n$. Suppose that there is an integer k such that 1 < k < n and every subgroup of P of order p^k is S-propermutable in G, and also, in the case that p = 2, k = 1 and P is non-abelian, every cyclic subgroup of P of order A is B-propermutable in B. Then B is B-nilpotent.

Proof. In fact, by Lemma 2, this theorem follows directly from the results by using the concept of Π -property, for example, the Main Theorem in [4].

Clearly, propermutable subgroups are S-propermutable in G, and thus Problem 1 has a positive answer due to Theorem 3.

References

- [1] V. D. Mazurov and E. I. Khukhro, Unsolved Problems in Group Theory, the Kourovka Notebook, No. 18, (2014).
- [2] X. Yi and A. N. Skiba, On S-propermutable subgroups of finite groups, Bull. Malays. Math. Sci. Soc., (2015) 38:605–616.

- [3] B. Li, On Π-property and Π-normality of subgroups of finite groups, J. Algebra, (2011) 334:321-337.
- [4] N. Su, Y. Li and Y. Wang, A criterion of p-hypercyclically embedded subgroups of finite groups, J. Algebra, (2014) 400:82-93.
- [5] X. Yi and A. N. Skiba, Some new characterizations of $PST\mbox{-}\mathrm{groups},$ J. Algebra, (2014) 399:39-54.