Math AA HL at KCA - Chapter 12 Notes

 $\operatorname{Tim\ Bao\ } 2023\text{--}2025$

February 26, 2024

Contents

1	Arrangements using Permuatations	3
2	The Binomial Coefficient	3
3	Permutation of Groups	3
4	Combinations with Repetition	3

1 Arrangements using Permuatations

The number of arrangements of n elements is

n!

The number of ways to arrange a **multiset** (a collection that, unlike sets, allows for repeated instances) of N elements is given by

$$\frac{N!}{n_1 n_2 n_3 \dots n_k}$$

where

• n_i is the number of instances of each distinct element

2 The Binomial Coefficient

The following finds the number of ways to choose r groups from n entries when the order does not matter

$${}^{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

3 Permutation of Groups

The following finds the number of ways to choose r unique groups from n entries when the order does matter

$$^{n}P_{r} = ^{n}C_{r} \times r! = \frac{n!}{(n-r)!}$$

4 Combinations with Repetition

Suppose a sequence of n balls are to be colored from m different colors, then the total number of possible arrangements with repetitions permitted is

$$m^n$$

Example: the number of binary number combinations using m digits is 2^m