Misura indiretta della velocità della luce

C.d.L. in Fisica, a.a. 2023-2024 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi

19 ottobre 2023

1 Prova

Lorem ipsum $\vec{F} = \oint ma$.

$$\vec{F} = \oint ma$$
 (1.1)
$$\vec{F} = \oint ma$$
 (1.2)

Per quanto riguarda l'analisi del moto oscillatorio, prima di tutto è stata associata un'incertezza alle misure della posizione: per ogni posizione h_i una buona stima dell'incertezza è data dall'intervallo che essa percorrerebbe nel tempo che intercorre tra due misurazioni del photogate nel caso ideale di moto non smorzato, quindi $\Delta h_i = v_i \Delta t = \frac{v_i}{\nu}$ e $\sigma_{h_i} = \frac{1}{2} \Delta h_i = \frac{v_i}{2\nu}$; per compensare la sottostima dell'errore che si verifica per valori piccoli della velocità, ovvero agli estremi

1.1 ciao

ciao

del moto, abbiamo preso come incertezza uguale per tutti gli h_i la massima incertezza associabile con questo metodo, ovverosia quella corrispondente al valore massimo di velocità (non smorzata), quindi $v_m = \omega A$ con A ampiezza dell'oscillazione (già stimata nella sezione 4 sulle Misure) e $\omega = \frac{2\pi}{T}$ pulsazione del moto ottenibile dal periodo.

Abbiamo allora che $\sigma_h = \frac{\pi A}{\nu T}$, quindi che rimane soltanto da stimare il periodo d'oscillazione. Per fare ciò, abbiamo considerato il set di dati dei massimi d'oscillazioni, il set dei minimi e quello di massimi e minimi insieme; per i primi due sono stati calcolati i multipli del periodo (opportunamente divisi dal rispettivo numero di periodi intercorsi) associati a tutte le possibili combinazioni di coppie di massimi o minimi, per poi calcolare sia T_{max} che T_{min} come la media campionaria di questi periodi ottenuti, associando come incertezze $\sigma_{T_{max}}$ e $\sigma_{T_{min}}$ le corrispondenti deviazioni standard; per il set di dati contenente sia massimi che minimi, abbiamo ripetuto lo stesso procedimento calcolando però tutti i possibili mezzi periodi, ottenendo quindi $\tau = \frac{1}{2} T_{mm}$ e $\sigma_{\tau} = \frac{1}{2} \sigma_{T_{mm}}$. I valori così ottenuti sono:

Colonna 1	Colonna 2	Colonna 3
-11	-69.11503838	9.32
-10	-62.83185307	9.31
-10	-62.83185307	9.31
-11	-69.11503838	9.30
-15	-94.24777961	9.31
-15	-94.24777961	9.31
-17	-106.8141502	9.30
-16	-100.5309649	9.30
-18	-113.0973355	9.31
-18	-113.0973355	9.31
-18	-113.0973355	9.31
-18	-113.0973355	9.30
-18	-113.0973355	9.31
-18	-113.0973355	9.31
-18	-113.0973355	9.33
-18	-113.0973355	9.32
-18	-113.0973355	9.31
-18	-113.0973355	9.31
-18	-113.0973355	9.31
-18	-113.0973355	9.30
-18	-113.0973355	9.30
-13	-81.68140899	9.30
-17	-106.8141502	9.31
-18	-113.0973355	9.30
-18	-113.0973355	9.30
-18	-113.0973355	9.31
-18	-113.0973355	9.31
-18	-113.0973355	9.30
-18	-113.0973355	9.31
-18	-113.0973355	9.31