

Switching, Delays and Performance

Andy Carpenter (Andy.Carpenter@manchester.ac.uk)

Elements these slides come from Kurose and Ross, authors of "Computer Networking: A Top-down Approach", and are copyright Kurose and Ross

Switching in the Network Core

- Mesh of interconnected routers
- How is data transferred?
- Either:
 - circuit switching:
 - fixed path (channel)
 - dedicated resources
 - packet-switching, data sent:
 - in discrete "chunks"
 - when resource available

Switching in the Network Core

- Mesh of interconnected routers
- How is data transferred?
- Either:
 - circuit switching:
 - fixed path (channel)
 - dedicated resources
 - packet-switching, data sent:
 - in discrete "chunks"
 - when resource available

Traditional Circuit Switching

 End-to-end resources reserved for duration of transfer

- Resources are dedicated:
 - no sharing
 - all link bandwidth
 - all switch capacity
- Acts as a circuit; e.g.
 - continuous piece of copper wire
- Get guaranteed performance
- Setup required to configure and establish
 Sensible approach?

Networking Circuit Switching

- Network resources shared:
 - divided into pieces
 - normally of a fixed size
- Piece reserved for (allocated to) end-to-end transfers
- Resource piece is idle if not used by owning transfer
- For a link, share bandwidth using:
 - frequency division multiplexing (FDM)
 - time division multiplexing (TDM)

K&R 1.3.1, P&D: 1.1.2

Packet Switching

- Each end-to-end data stream divided into packets
- Packets share network resources, use as needed
 - each packet uses full link bandwidth

 Packets are transmitted using store-and-forward Split application data into packets and multiplex (interleave) within network 51 COMP28411: Computer ntroduction

Statistical Multiplexing

- Packets can arrive faster than can send out (buffer)
- Overload normally transitory, will later clear buffer
- If buffer becomes full, drop (lose) packets
- Aim for low probability of packet dropping

Packet versus Circuit Switching

- Circuit-switching: 1M/100K = 10 users
- Packet switching: 35 users
 - need statistics theory (why statistical multiplexing)
 - probability > 10 users active at same time < .0004
- Packet switching allows more users to use network!

Packet Delays

 d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Packet Delays

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)
- \bullet $d_{trans} = L/R$

Depends on size

d_{trans} and d_{prop}

 d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed in medium (~2×10⁸ m/sec)

$$d_{\text{prop}} = d/s$$

Introduction

Depends on distance

Delays: Transmission vs.

K&R 1.4.1

- Cars "propagate" at 100 km/hr
- Booth takes 12 sec to service car (transmission time)
- Q: How long for convoy to get to 2nd booth?
- "push" all cars through booth = 12*10 = 120 sec
- For last car to propagate from 1st to 2nd both:
 - -100 km/(100 km/hr) = 1 hr
- A: 120 sec + 1hr = 62 minutes

Delays: End-to-End Delay

- Delay between parts of application comes from:
 - individual node delays
 - processing delays in applications
 - waiting for access to shared medium
- Also use round-trip-time (RTT)
 - time source to destination and back
- If no queuing delays, dominant delay predictable
 - sending 1 byte on any link: propagation delay
 - sending 25Mb on 10Mbps link: transfer rate

Throughput in Computer Networks

- Rate at which data is transferred, GUI may report
- Measuring useful (application data) throughput
- For large transfers, determined by three parameters:
 - remote computer (link), network and local link

Units (Background)

Link rates in bits per second (bps), with multipliers:

Kilo	K	10 ³	210
Mega	M	10 ⁶	2 ²⁰
Giga	G	10 ⁹	230
Tera	Т	1012	240

Times often small quantities, with multipliers:

milli	m	10-3	
micro	μ	10 ⁻⁶	
nano	n	10-9	1Kbps ≡ 1ms per bit
pico	р	10-12	1Mbps ≡ 1µ per bit

Summary

- Aim is cost effective connectivity for set of computers
- Result is a packet switched network
- Use shared links and statistical multiplexing
- Communication services seen as process-to-process
- Delays and throughput define network performance

Real aim?

Course Structure

- Lectures: 3 per fortnight
 - Mondays week A (3pm)
 - Tuesdays (3pm)
- Laboratories: 1 per fortnight, needs preparation
 - week Bs; see myManchester timetable
 - Quiz, experiments in networking
 - provide support to meet deadlines
- Workshops: 1 per fortnight, no preparation
 - Mondays (1.00pm) or Tuesdays (3.00pm) week B
 - Quiz, new material, examinable

Laboratory: Overview

- Learn how to configure and use real networks
- Have complete control over network that configure
- But, cannot let you loose on the Internet!
 - physical private unconnected networks needs
 - 3+ machines per student
 - use virtual network of virtual machines:

whole virtual network runs on your lab machine

no link to the outside world

Laboratory: Core Tool (VNUML)

- Use virtual operating system to emulate machines
- Several virtual machines, so needs to be light weight
 - not VMware, Virtual Box, etc.
- Virtual Networking User Mode Linux (VNUML)
 - each VM runs as a user process
 - each VM has to boot: quite slow
 - you get a partially disabled console
 - username root, password xxxx
 - entirely command line driven
 - installed on School's Linux machines
 - not easy to install elsewhere

Based on User Mode Linux (UML)

Laboratory: Deliverables

- Deadline 9am Friday after your laboratory session
 - No extensions
- Unlike programming laboratories:
 - there is no program to submit and demo
- Instead:
 - configuration files, commands used
 - output from commands, your analysis
- We supply a Quiz, you:
 - fill in the results as you go along
 - submit when you complete the exercise

Reading

- J. Kurose & K. Ross, Computer Networking: A Top-Down Approach, 6th Ed, Pearson, ISBN: 0-273-76896-4
- L. Peterson & B. S. Davie, Computer Networks, 5th Ed, Morgan Kaufmann, ISBN:0123850592.
- There are many good books on networking, if you do not like our selection then pick your own.