2024

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time **10 minutes**
- Working time 2 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided separately
- In Questions 11 to 14, show all relevant mathematical reasoning and/or calculations

Total Marks - 70

Section I - 10 marks (pages 3 to 6)

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Answer on the Multiple-Choice Answer sheet, provided on page 7.

Section II - 60 marks (pages 8 to 12)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section
- Use a separate answer booklet for each question from 11 to 14

STUDENT NESA NUMBER:	
----------------------	--

Please tick a box:

12MX1_71	Mr Param
12MX1_72	Mr Xu
12MX1_73	Mr McKenzie

	Section I		Secti	TOTAL	%		
	MCQ	Q11	Q12	Q13	Q14	TOTAL	70
Full Marks	10	15	16	15	14	70	100
Marks Awarded							

-BLANK PAGE-

Section I - 10 marks

Attempt Questions 1–10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. The parametric equations of a curve are given below.

$$x = 4\cos\theta$$

$$y = 4 \sin \theta$$

Where $0 \le \theta \le \pi$.

What is the Cartesian equation of the curve?

- **(A)** $y = 1 \frac{x^2}{16}$
- **(B)** $y = \sqrt{16 x^2}$
- (C) $y = \frac{x^2}{16} + 1$
- **(D)** $y^2 = x^2 16$
- **2.** Which of the following is equivalent to $2 \cos 5x \sin x$?
 - (A) $\cos 6x + \sin 4x$
 - **(B)** $\cos 6x \sin 4x$
 - (C) $\sin 6x + \sin 4x$
 - **(D)** $\sin 6x \sin 4x$
- 3. Maria starts at the origin and walks along all of the vector 2i + 3j, then walks along all of the vector 3i 2j and finally along all of the vector 4i 3j.

How far from the origin is she?

- (A) $\sqrt{77}$
- **(B)** $\sqrt{85}$
- (C) $2\sqrt{13} + \sqrt{5}$
- **(D)** $\sqrt{5} + \sqrt{7} + \sqrt{13}$

- **4.** If a and b are unit vectors and |a + b| = 1, then what is the value of |a b|?
 - (A) $\frac{1}{\sqrt{2}}$
 - **(B)** $\frac{1}{\sqrt{3}}$
 - (C) $\sqrt{2}$
 - **(D)** $\sqrt{3}$
- **5.** A function is defined as $f(x) = tan^{-1}(tan(x))$.

What is the value of $f\left(\frac{9\pi}{4}\right)$?

- (A) $\frac{\pi}{4}$
- **(B)** $\frac{5\pi}{4}$
- (C) $\frac{7\pi}{4}$
- **(D)** $\frac{9\pi}{4}$
- **6.** Which of the following slope fields represent the differential equation $\frac{dy}{dx} = x^2 y$?

(A)

(B)

(C)

(D)

7. In the graph below, y = P'(x) represents the first derivative of a polynomial P(x) of degree 4, where P(x) has a multiple root.

What can be said about the polynomial P(x)?

- (A) x = -1 is a root of multiplicity 3
- **(B)** x = 0 is a root of multiplicity 2
- (C) x = 2 is root of multiplicity 2
- **(D)** x = 2 is a root of multiplicity 3
- **8.** Sixteen people, consisting of eight doubles tennis partners, enter a local tennis competition.

Only four sets of partners are chosen to attend the celebration dinner. They are seated around a circular table.

In how many ways can the doubles partners be selected and seated around the circular table if the partners must sit together?

- **(A)** $\binom{8}{4} \times 3! \times (2!)^3$
- **(B)** $\binom{8}{4} \times 3! \times (2!)^4$
- (C) $\binom{16}{8} \times 3! \times (2!)^3$
- **(D)** $\binom{16}{8} \times 3! \times (2!)^4$

9. Consider two vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$ where $\underset{\sim}{a} \cdot \underset{\sim}{b} < 0$.

It is known
$$\left| proj_a b \right| = k$$

Which of the following gives the value for $|proj_a(a+b)|$?

- (A) $\left| a + b \right| k$
- **(B)** $\left| \underset{\sim}{a} + \underset{\sim}{b} \right| + k$
- (C) $\begin{vmatrix} a \\ \geq \end{vmatrix} k$
- **(D)** $\left| b \right| k$
- **10.** Which statement is always true for the function $f(x) = \sin^{-1}(x^2 + 2x + 1)$?
 - **(A)** f(x) has an inverse function in the domain [-2,0]
 - **(B)** f(x) has an inverse function in the domain [-1,0]
 - **(C)** f(x) has an inverse function in the domain [-1,1]
 - **(D)** f(x) has an inverse function in the domain [-2,2]

End of Section I

Epping Boys High School Trial HSC Examination 2024 Mathematics Extension 1

NESA Number	Teacher (circle one)					
	Mr Param	Mr Xu	Mr McKenzie			

Section I – Multiple Choice Answer Sheet

Allow about 15 minutes for this section

Select the alternative A	., B, C or D	that best answers the	question. Fill in the re	sponse oval comp	letely

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9				
		A 🔿	В	c O	D O				
If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.									
		A	В	c O	D 🔿				
7.C 1	. 1 11	1 . 1		1 .1	.1 . 1	. 1			

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

	A			B E				c O	D C
1.	A	0	В	0	C	\circ	D	\circ	
2.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
3.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
4.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
5.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
6.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
7.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
8.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
9.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	
10.	A	\bigcirc	В	\bigcirc	C	\bigcirc	D	\bigcirc	

Section II - 60 marks

Attempt Questions 11-14.

Allow about 1 hour 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Use a SEPARATE writing booklet.

a. A student representative committee of 7 people is to be chosen from a group of 10 men and 11 women.

Find the probability that the committee is made of 3 men and 4 women.

b. The polynomial $P(x) = x^3 - qx^2 + 32$ has real roots α , α and β

Find the value of q.

- **c.** Express $3 \sin \theta + 4 \cos \theta$ in the form $R\cos (\theta \alpha)$, where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, correct to one decimal place.
- **d.** Solve $\frac{x^2 6}{x} \le 1$.
- e. Find $\int \frac{3}{1+4x^2} dx$
- **f.** Let f(x) be a function where f(2) = -11 and f'(2) = 8.

Find the equation of the tangent to the graph of $y = f^{-1}(x)$ at the point where x = -11.

End of Question 11

Question 12 (16 marks)

Use a SEPARATE writing booklet.

- a. Use mathematical induction to prove that $2^3+4^3+6^3+\cdots+(2n)^3=2n^2(n+1)^2$ for all integers $n\geq 1$.
- **b.** Evaluate $\int_3^{18} \frac{x}{\sqrt{x-2}} dx$ using the substitution $u = \sqrt{x-2}$.
- **c.** (i) Sketch the graph of $f(x) = 2\cos^{-1}(x-1)$
 - (ii) Hence, explain why $\int_0^2 [2\cos^{-1}(x-1)-\pi] dx = 0$
- **d.** Let $S = 1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta$
 - (i) Prove that $S \times \sin \frac{\theta}{2} = \sin \frac{7\theta}{2}$
 - (ii) Hence, show that if $\theta = \frac{2\pi}{7}$, then $1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta = 0$
 - (iii) Hence, or otherwise, show that $cos \frac{2\pi}{7}$ is a solution to the equation: $8x^3 + 4x^2 4x 1 = 0.$

End of Question 12

Question 13 (15 marks)

Use a SEPARATE writing booklet.

a. The wind chill index, W, measures the apparent temperature by taking into account the speed of the wind, v km/h in a location.

A meteorologist suggests that the wind chill index in the region where his laboratory is located is given by the equation $W = 19.5 - 7.4v^{0.17}$.

- (i) Find $\frac{dW}{dv}$
- (ii) Find the rate of change of *W*, given that the wind speed is 10 km/h and is increasing at a rate of 5 km/h per hour. Give your answer correct to two decimal places.
- **b.** The region between the curve $y = \frac{3}{\sqrt{2x-1}}$ and the *y*-axis between y = 1 and y = 3 is shaded in the diagram.

Calculate the exact volume generated when the shaded region is rotated about the *y*-axis.

c. The points A, B and C have position vectors a, b and c, respectively. Point D lies on the line going through AB, and has position vector d.

 λ and μ are non-zero numbers such that $\lambda a + \mu b - c = 0$ and $\lambda + \mu = 1$.

- **(i)** Show that the points *A*, *B* and *C* are collinear.
- (ii) It is known that $\left|\frac{a}{a}\right| = 2$, the angle between $\frac{a}{a}$ and $\frac{b}{a}$ is acute and, the area of triangle OAB is $\frac{a}{b}$ units². Show that $\left(\frac{a}{a} \cdot \frac{b}{a}\right)^2 = 4\left(\left|\frac{b}{a}\right|^2 k^2\right)$

2

(iii) Given that k = 6, $\begin{vmatrix} b \\ c \end{vmatrix} = 10$ and $\angle AOD = 90^{\circ}$, find $\frac{d}{c}$ in terms of $\frac{a}{c}$ and $\frac{b}{c}$

End of Question 13

Question 14 (14 marks)

Use a SEPARATE writing booklet.

a. Given that
$$\frac{dy}{dx} = \frac{y+2}{x-1}$$
 and $y(3) = 6$, find the value of $y(-1)$

The population of foxes is released into the wild to control the population of rabbits. The b. 3 population of foxes is modelled by:

$$f(t) = \frac{3000}{50 + 24\sin t + 7\cos t}$$

Where t is time in months. After how many months is the population of foxes at a maximum? Leave your answer to 2 decimal places.

c. A scene in an action movie involves an archer shooting an arrow with initial velocity *V* m/s at an angle of projection α to the horizontal from a platform h metres above the ground.

The target travels on a straight rail with constant velocity *V* m/s, starting from ground level, with incline angle equal to the angle of projection of the arrow. The target and arrow are projected simultaneously and meet at time *T* seconds.

The position vector of the arrow,
$$A$$
, t seconds after it is projected is given by:
$$r_A = \begin{pmatrix} vtcos\alpha \\ -\frac{gt^2}{2} + Vtsin\alpha + h \end{pmatrix} \text{(Do NOT prove this.)}$$

(i) Show that the arrow will hit the target at
$$T = \sqrt{\frac{2h}{g}}$$
 seconds.

Question 14c continues on the next page

The film director believes the best visual effect will occur if the impact occurs when the arrow is at maximum height.

- (ii) Show that, if the impact occurs at the maximum height of the arrow's trajectory, that the length of the rail on which the target travels does not need to exceed a length of $\frac{V^2}{g}$ and $\frac{V}{g}$ metres.
- (iii) Show that, for the impact to occur at the maximum height of the trajectory, the height of the platform needs to be exactly half the maximum height of the arrow.
- (iv) Hence, or otherwise, show that if the platform cannot be raised above 10 metres in height, then the initial velocity of the arrow must exceed $14ms^{-1}$ for the impact to occur at the maximum height of the trajectory.

End of Exam