Logic: Basis of all Mathematical/Automated reasoning.

Logic: Basis of all Mathematical/Automated reasoning. Theorem: A mathematical statement proved to be true.

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but

not yet proved or disproved.

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but

not yet proved or disproved.

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but

not yet proved or disproved.

Advantages of Proof of a theorem:

-Makes it possible to modify the result to fit new situations,

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but not yet proved or disproved.

- -Makes it possible to modify the result to fit new situations,
- -Development of new ideas,

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but not yet proved or disproved.

- -Makes it possible to modify the result to fit new situations,
- -Development of new ideas,
- -Correctness of computer algorithms

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but not yet proved or disproved.

- -Makes it possible to modify the result to fit new situations,
- -Development of new ideas,
- -Correctness of computer algorithms
- -Establishment of security of a system,

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but not yet proved or disproved.

- -Makes it possible to modify the result to fit new situations,
- -Development of new ideas,
- -Correctness of computer algorithms
- -Establishment of security of a system,
- -Create Artificial intelligence

Logic: Basis of all Mathematical/Automated reasoning.

Theorem: A mathematical statement proved to be true.

Conjecture: A mathematical statement assumed to be true but not yet proved or disproved.

- -Makes it possible to modify the result to fit new situations,
- -Development of new ideas,
- -Correctness of computer algorithms
- -Establishment of security of a system,
- -Create Artificial intelligence
- -Automated reasoning systems

Declarative sentence: A sentence that declares a fact. Proposition: Declarative sentence that is either True or False but not both.

Proposition: Declarative sentence that is either True or False

but not both.

Examples of a proposition:

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

India is a country.

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

India is a country.

Examples of NOT a Proposition:

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

India is a country.

Examples of NOT a Proposition:

Do we have a class tomorrow?

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

India is a country.

Examples of NOT a Proposition:

Do we have a class tomorrow?

$$x + 1 = 2$$
.

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

India is a country.

Examples of NOT a Proposition:

Do we have a class tomorrow?

x + 1 = 2.

Keep silence.

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

India is a country.

Examples of NOT a Proposition:

Do we have a class tomorrow?

x + 1 = 2.

Keep silence.

Notation: Use variables to denote propositions, x, y, a, p, q.

Proposition: Declarative sentence that is either True or False but not both.

Examples of a proposition:

1+2=5

India is a country.

Examples of NOT a Proposition:

Do we have a class tomorrow?

$$x + 1 = 2$$
.

Keep silence.

Notation: Use variables to denote propositions, x, y, a, p, q. Let p denote 1+2=5.

$$p: 1+2=5$$

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Let p: 1+2=4 be a proposition.

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Let p: 1+2=4 be a proposition. p is false.

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Let p: 1+2=4 be a proposition. p is false. Truth value of p is F.

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Let p: 1+2=4 be a proposition. p is false. Truth value of p is F.

Definition (Negation of a Proposition)

Let p denote a proposition. The negation of p, denoted by $\neg p$, read as "Not p",

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Let p: 1+2=4 be a proposition. p is false. Truth value of p is F.

Definition (Negation of a Proposition)

Let p denote a proposition. The negation of p, denoted by $\neg p$, read as "Not p", is

 $\neg p$: It is not the case that p

Truth value: Let *p* denote a proposition. If *p* is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Let p: 1+2=4 be a proposition. p is false. Truth value of p is F.

Definition (Negation of a Proposition)

Let p denote a proposition. The negation of p, denoted by $\neg p$, read as "Not p", is

 $\neg p$: It is not the case that p

Let p: 1+2=4 be a proposition.

Truth value: Let p denote a proposition. If p is true then Truth value of

p is true and denoted by T

If p is false then Truth value of

p is false and denoted by F

Let p: 1+2=4 be a proposition. p is false. Truth value of p is F.

<u>Definition</u> (Negation of a Proposition)

Let p denote a proposition. The negation of p, denoted by $\neg p$, read as "Not p", is

 $\neg p$: It is not the case that p

Let p: 1+2=4 be a proposition.

Let q be the proposition "India is a country".

 $\neg q$:

Let q be the proposition "India is a country". $\neg q$: India is not a country.

Let q be the proposition "India is a country".

 $\neg q$: India is not a country.

Truth table of ¬:

Let *p* be a proposition.

р	¬ p
Τ	F
F	Т

Let p: 1+2=4 and q: India is a country.

Let p: 1+2=4 and q: India is a country. p and q: 1+2=4 and India is a country.

Let p: 1+2=4 and q: India is a country.

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions

like p and q OR

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions

like p and q OR p or q.

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions like p and q OR p or q.

Definition (Conjunction)

Conjunction of p and q: $p \land q$: p and q

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions like p and q OR p or q.

Definition (Conjunction)

Conjunction of p and q: $p \land q$: p and q

"Today we are learning logic in IDM class"

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions like p and q OR p or q.

Definition (Conjunction)

Conjunction of p and q: $p \land q$: p and q

"Today we are learning logic in IDM class"

"Today we have an IDM class and we are learning logic."

p: Today we have IDM class. q: We are learning logic today.

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions like p and q OR p or q.

Definition (Conjunction)

Conjunction of p and q: $p \land q$: p and q

"Today we are learning logic in IDM class"

"Today we have an IDM class and we are learning logic."

p: Today we have IDM class. q: We are learning logic today. Truth table of \land

p	q	$p \wedge q$
Т	Т	Т

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions like p and q OR p or q.

Definition (Conjunction)

Conjunction of p and q: $p \land q$: p and q

"Today we are learning logic in IDM class"

"Today we have an IDM class and we are learning logic."

p: Today we have IDM class. q: We are learning logic today. Truth table of \land

T T T	p	q	$p \wedge q$
TFF	Т	Т	Т
	Т	F	F

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions like p and q OR p or q.

Definition (Conjunction)

Conjunction of p and q: $p \land q$: p and q

"Today we are learning logic in IDM class"

"Today we have an IDM class and we are learning logic."

p: Today we have IDM class. q: We are learning logic today.

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F

p and q: 1+2=4 and India is a country.

p or q: 1+2=4 or India is a country.

Let p and q be two propositions. We can get new propositions like p and q OR p or q.

Definition (Conjunction)

Conjunction of p and q: $p \land q$: p and q

"Today we are learning logic in IDM class"

"Today we have an IDM class and we are learning logic."

p: Today we have IDM class. q: We are learning logic today. Truth table of \land

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
	_	

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

p: "Students of first yr can register for football team of IIITV."

 \emph{q} : "Students of second yr can register for football team of IIITV."

"Students of first yr or second yr can register for football team of IIITV"

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

"Students of first yr or second yr can register for football team of IIITV."

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

p: "Students of first yr can register for football team of IIITV."

q : "Students of second yr can register for football team of IIITV."

"Students of first yr or second yr can register for football team of IIITV."

p	q	$p \lor q$
T	Т	T

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

"Students of first yr or second yr can register for football team of IIITV."

p	q	$p \lor q$
T	Т	Т
Т	F	Т

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

"Students of first yr or second yr can register for football team of IIITV"

p	q	$p \lor q$
Т	Т	Т
Т	F	T
F	Т	Т

Definition (Disjunction)

Disjunction of p and q: $p \lor q$: p or q

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

"Students of first yr or second yr can register for football team of IIITV."

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

The proposition that is true when exactly one of p and q is true and is false otherwise.

The proposition that is true when exactly one of p and q is true and is false otherwise.

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

The proposition that is true when exactly one of p and q is true and is false otherwise.

- p: "Students of first yr can register for football team of IIITV."
- q: "Students of second yr can register for football team of IIITV."
- $p \oplus q$: "Students of first yr or second yr but not both can register for football team of IIITV."

The proposition that is true when exactly one of p and q is true and is false otherwise.

- p: "Students of first yr can register for football team of IIITV."
- q: "Students of second yr can register for football team of IIITV."
- $p \oplus q$: "Students of first yr or second yr but not both can register for football team of IIITV."

The proposition that is true when exactly one of p and q is true and is false otherwise.

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

 $p \oplus q$: "Students of first yr or second yr but not both can register for football team of IIITV."

p	q	$p \oplus q$
Т	Т	F

The proposition that is true when exactly one of p and q is true and is false otherwise.

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

 $p \oplus q$: "Students of first yr or second yr but not both can register for football team of IIITV."

p	q	$p \oplus q$
Т	Τ	F
Т	F	Т

The proposition that is true when exactly one of p and q is true and is false otherwise.

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

 $p \oplus q$: "Students of first yr or second yr but not both can register for football team of IIITV."

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т

The proposition that is true when exactly one of p and q is true and is false otherwise.

p: "Students of first yr can register for football team of IIITV."

q: "Students of second yr can register for football team of IIITV."

 $p \oplus q$: "Students of first yr or second yr but not both can register for football team of IIITV."

Truth table of \oplus

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	T	Т
F	F	F

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass.

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will pass.

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass.

 $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will pass.

 $p \Rightarrow q$: can be read as p implies q or

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass.

 $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass.

 $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

pass.

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass." Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass.

 $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

Let *p* and *q* be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass.

 $p \Rightarrow q$: If a student gets atleast 40/100 marks then he/she will pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p: Today is a Friday; q: Friday is a raining day.

Let p and q be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets at least 40/100 marks then he/she will

pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p : Today is a Friday; q : Friday is a raining day.

2 than y dividas

Let p and q be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets at least 40/100 marks then he/she will

pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p : Today is a Friday; q : Friday is a raining day.

2 than y dividas

Let p and q be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets at least 40/100 marks then he/she will

pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p : Today is a Friday; q : Friday is a raining day.

2 than y dividas

Let p and q be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets at least 40/100 marks then he/she will

pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p : Today is a Friday; q : Friday is a raining day.

2 than y dividas

Let p and q be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets at least 40/100 marks then he/she will

pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p : Today is a Friday; q : Friday is a raining day.

2 than y dividas

Let p and q be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets at least 40/100 marks then he/she will

pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p : Today is a Friday; q : Friday is a raining day.

2 than y dividas

Let p and q be two propositions.

Definition (Conditional Statement)

Conditional Statement of p and q: $p \Rightarrow q$: If p then q

p: Student gets atleast 40/100 marks. q: Student will pass. $p \Rightarrow q$: If a student gets at least 40/100 marks then he/she will

pass.

 $p \Rightarrow q$: can be read as p implies q or q follows from p or a sufficient condition for q is p.

"If you get atleast 40/100 marks then you will pass."

Equivalent to say to above proposition: "To pass, atleast 40/100 marks are required."

"If today is a Friday then it is a raining day."

p : Today is a Friday; q : Friday is a raining day.

2 than y dividas

1) Let x = 0. If 2+2=4 then assign the value of x + 1 to x. If 2+2=4 then x := x + 1.

- 1) Let x = 0.
- If 2+2=4 then assign the value of x+1 to x
- If 2+2=4 then x := x + 1.

What is the value *x* after above statement?

1) Let x = 0.

If 2+2=4 then assign the value of x+1 to x

If 2+2=4 then x := x + 1.

What is the value *x* after above statement?

Ans: 1

- 1) Let x = 0.
- If 2+2=4 then assign the value of x+1 to x
- If 2+2=4 then x := x + 1.
- What is the value *x* after above statement?
- Ans: 1
- 2) Let x = 0.
- If 2+2=5 then x := x + 1.

- 1) Let x = 0.
- If 2+2=4 then assign the value of x+1 to x
- If 2+2=4 then x := x + 1.
- What is the value *x* after above statement?
- Ans: 1
- 2) Let x = 0.
- If 2+2=5 then x := x + 1.
- What is the value *x* after above statement?

- 1) Let x = 0.
- If 2+2=4 then assign the value of x+1 to x
- If 2+2=4 then x := x + 1.
- What is the value *x* after above statement?
- Ans: 1
- 2) Let x = 0.
- If 2+2=5 then x := x + 1.
- What is the value *x* after above statement? ans.: 0.

Converse of $p \Rightarrow q$ is defined is $q \Rightarrow p$. Contrapositive of $p \Rightarrow q$ is defined as $\neg q \Rightarrow \neg p$. Converse of $p\Rightarrow q$ is defined is $q\Rightarrow p$. Contrapositive of $p\Rightarrow q$ is defined as $\neg q\Rightarrow \neg p$. Inverse of $p\Rightarrow q$ is defined as $\neg p\Rightarrow \neg q$. Converse of $p\Rightarrow q$ is defined is $q\Rightarrow p$. Contrapositive of $p\Rightarrow q$ is defined as $\neg q\Rightarrow \neg p$. Inverse of $p\Rightarrow q$ is defined as $\neg p\Rightarrow \neg q$. "If it is raining then home team wins." Converse of $p\Rightarrow q$ is defined is $q\Rightarrow p$. Contrapositive of $p\Rightarrow q$ is defined as $\neg q\Rightarrow \neg p$. Inverse of $p\Rightarrow q$ is defined as $\neg p\Rightarrow \neg q$. "If it is raining then home team wins." Find Converse, Inverse, Contrapositive of above statement. Converse of $p\Rightarrow q$ is defined is $q\Rightarrow p$. Contrapositive of $p\Rightarrow q$ is defined as $\neg q\Rightarrow \neg p$. Inverse of $p\Rightarrow q$ is defined as $\neg p\Rightarrow \neg q$. "If it is raining then home team wins." Find Converse, Inverse, Contrapositive of above statement. Converse-

Contrapositive of $p \Rightarrow q$ is defined as $\neg q \Rightarrow \neg p$.

Inverse of $p \Rightarrow q$ is defined as $\neg p \Rightarrow \neg q$.

"If it is raining then home team wins."

Find Converse, Inverse, Contrapositive of above statement.

Converse-If home team wins then it is raining.

Contrapositive-

Contrapositive of $p \Rightarrow q$ is defined as $\neg q \Rightarrow \neg p$.

Inverse of $p \Rightarrow q$ is defined as $\neg p \Rightarrow \neg q$.

"If it is raining then home team wins."

Find Converse, Inverse, Contrapositive of above statement.

Converse-If home team wins then it is raining.

Contrapositive-If home team does not win then it is not raining.

Inverse-

Contrapositive of $p \Rightarrow q$ is defined as $\neg q \Rightarrow \neg p$.

Inverse of $p \Rightarrow q$ is defined as $\neg p \Rightarrow \neg q$.

"If it is raining then home team wins."

Find Converse, Inverse, Contrapositive of above statement.

Converse-If home team wins then it is raining.

Contrapositive-If home team does not win then it is not raining.

Inverse-If it is not raining then home team does not win.

Contrapositive of $p \Rightarrow q$ is defined as $\neg q \Rightarrow \neg p$.

Inverse of $p \Rightarrow q$ is defined as $\neg p \Rightarrow \neg q$.

"If it is raining then home team wins."

Find Converse, Inverse, Contrapositive of above statement.

Converse-If home team wins then it is raining.

Contrapositive-If home team does not win then it is not raining.

Inverse-If it is not raining then home team does not win.

Two propositions are said to be equivalent if they have same truth table.

Contrapositive of $p \Rightarrow q$ is defined as $\neg q \Rightarrow \neg p$.

Inverse of $p \Rightarrow q$ is defined as $\neg p \Rightarrow \neg q$.

"If it is raining then home team wins."

Find Converse, Inverse, Contrapositive of above statement.

Converse-If home team wins then it is raining.

Contrapositive-If home team does not win then it is not raining.

Inverse-If it is not raining then home team does not win.

Two propositions are said to be equivalent if they have same truth table.

Check: $p \Rightarrow q$ and $\neg q \Rightarrow \neg p$ are equivalent.

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

p	q	$p \Leftrightarrow q$
Т	Т	Т

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

p	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

p	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
	,	

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

p	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

Truth table of $p \Leftrightarrow q$:

p	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
П	F	Т

Let *p*: You get marks for attendance.

q: You attend all classes.

 $p \Leftrightarrow q$:

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

Truth table of $p \Leftrightarrow q$:

p	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Let *p*: You get marks for attendance.

q: You attend all classes.

 $p \Leftrightarrow q$: You get marks for attendance if and only if you attend all classes.

Definition

The biconditional statement of p and q is the proposition $p \Leftrightarrow q$: p if and only if q.

Truth table of $p \Leftrightarrow q$:

p	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F

Let *p*: You get marks for attendance.

q: You attend all classes.

 $p \Leftrightarrow q$: You get marks for attendance if and only if you attend all classes.

What is 2+3*4/2-1*0?

What is 2+3*4/2-1*0?
Multiplication and Division are done before Addition and Subtraction.

What is 2+3*4/2-1*0?

$$p \Rightarrow \neg q \land p =$$

What is 2+3*4/2-1*0?

$$p \Rightarrow \neg q \land p = [p \Rightarrow \{(\neg q) \land p\}]$$

What is 2+3*4/2-1*0?

$$p \Rightarrow \neg q \land p = [p \Rightarrow \{(\neg q) \land p\}]$$

Operator	Precedence
7	1
Λ	2
V	3
\Rightarrow	4
\Leftrightarrow	5

What is 2+3*4/2-1*0?

$$p \Rightarrow \neg q \land p = [p \Rightarrow \{(\neg q) \land p\}]$$

Operator	Precedence
7	1
Λ	2
V	3
\Rightarrow	4
\Leftrightarrow	5