Galois 理论及其应用

Instructor: 刘博文

Qiuzhen College, Tsinghua University $2023~{\rm Spring}$

目录

第一章	域扩张回顾	2
1.1	代数扩张	2
1.2	分裂域与代数闭包	3
1.3	正规扩张与可分扩张	4
第二章	Galois 理论	10
2.1	Galois 扩张	
2.2	Galois 对应	12
2.3	一些 Galois 扩张的例子	14
2.4	Galois 理论的应用	
2.5	多项式 Galois 群的计算	21
第三章	无穷 Galois 理论	27
3.1	大分 Galois 理论 Krull 拓扑	27
3.2	无穷 Galois 理论	28
第四章	Galois 上同调与 Kummer 理论	30
4.1	范与迹	30
4.2	Galois 上同调	32
4.3	Kummer 理论	37
附录 A	拓扑	40
A.1	拓扑群回顾	40
附录 B	代数	42
B.1	逆极限与射有限群	42

第一章 域扩张回顾

1.1 代数扩张

定义 1.1.1. F 是一个域, 定义域的**特征** (characteristic)为使得 $n \cdot 1 = 0$ 的最小的非负整数 n, 其中 1 是域中的乘法单位, 通常记作 char F.

注记. char F 要么为零, 要么为素数 p.

例子. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ 的特征为零, 有限域 \mathbb{F}_p 的特征为 p, 其中 p 是素数.

定义 1.1.2. 若域 E, F 之间有包含关系 $F \subseteq E$, 则称 $E \not = F$ 的一个域扩张 (field extension), 记扩张的次数为 $[E:F]=\dim_F E$.

定义 1.1.3. 一个域扩张被称为有限的, 如果其扩张次数有限, 否则被称为无限的.

注记. 显然, 线性代数的知识告诉我们, 如果 $f \in E \subseteq K$, 则 [K:F] = [K:E][E:F]

定义 1.1.4. E/F 是域扩张, $S \subseteq K$ 是一个子集, 则记 F[S] 是 E 中包含 F,S 的最小的子环; F(S) 是 E 中包含 F,S 最小的子域. 特别地, 如果 $S = \{u\}$, 称 F(u) 叫做域 F 的一个**单扩张** (simple extension).

定义 1.1.5. $u \in E$ 称为在 F 上代数 (algebraic), 如果存在非零多项式 $p(x) \in F[x]$, 使得 p(u) = 0, 否则则称 u 在 F 上超越 (transcendental).

定义 1.1.6. 域扩张 E/F 称为代数扩张 (algebraic extension), 如果 E 中任何一个元素都在 F 上代数.

注记. 我们还可以如下刻画 u 是否在 F 上代数: 考虑赋值映射 $\theta_u: F[x] \to F[u]$, 则 u 在 F 上代数当且仅当 $\ker \theta_u \neq 0$; u 在 F 上超越当且仅当 $\ker \theta_u = 0$, 即 θ_u 是一个同构.

命题 1.1.7. 下面列出一些有关的基本事实:

- (1) 如果 u 在 F 上代数,则 F[u] = F(u),并且 $[F(u):F] = \deg p(x)$
- (2) 如果 u,v 都在 F 上代数,则 $u \pm v, uv, u/v(v \neq 0)$ 都在 F 上代数,这也就是说 E 中所有在 F 上代数的元素组成了 E 的一个子域,
- (3) K/E 是代数扩张, E/F 是代数扩张, 则 K/F 也是代数扩张.
- (4) E/F, E'/F 都是代数扩张, 则两者复合 EE'/F 也是代数扩张.

引理 1.1.8. F(u)/F 是单扩张, u 在 F 上代数, 记其极小多项式为 p_u , 如果 E/F 是域扩张, $v \in E$ 使得 $p_u(v) = 0$, 则存在 F 嵌入 $\tau : F(u) \hookrightarrow E$ 使得 $\tau(u) = v, \tau|_F = \mathrm{id}$

证明:注意到 $F(u) \cong F[x]/(p_u)$,考虑如下交换图即可:

1.2 分裂域与代数闭包

定义 1.2.1. 给定域扩张 E/F, 多项式 $p(x) \in F[x]$ 在 E 中分裂 (split), 如果 p(x) 在 E 中可以 写成:

$$p(x) = c \prod_{i=1}^{n} (x - u_i)$$

其中 $u_i \in E$. E 被称作是 p(x) 的**分裂域** (splitting field), 如果 E 是包含 F 使得 p(x) 分裂的最小的域.

定理 1.2.2. 多项式 $p(x) \in F[x]$ 的分裂域 E 存在, 并在在同构意义下唯一. 并且 $[E:F] \le n!$, 其中 $n = \deg p(x)$.

证明: 我们通过对 p(x) 次数的归纳来证明存在唯一性.

1. 存在性: 当 n = 1 时 E = F. 下面考虑 n > 1: 假设 p(x) 在 F 上不分裂, 取其一个不分裂 的不可约因子, 记做 q(x), 则 F' = F[x]/(q(x)) 是包含 F 的一个域, 且 $[F' : F] \le n$, 令 u 是 x 在 F' 中的像, 则 u 是 p(x) 在 F' 的一个根, 则 p(x) 在 F'[x] 中可以写成:

$$p(x) = (x - u)p_1(x), \quad \deg p_1(x) = n - 1$$

因此利用归纳假设, 存在 $p_1(x)$ 在 F' 上的唯一的分裂域 E, 并且 $[E:F'] \leq (n-1)!$, 根据分裂域的定义自然有 E 也是 p(x) 在 F 上的分裂域, 并且 $[E:F] = [E:F'][F':F] \leq (n-1)! \cdot n = n!$.

2. 唯一性: 如果 E' 是 p(x) 在 F 上的另一个分裂域, 根据引理1.1.8, 存在嵌入 $F' \hookrightarrow E'$, 那 么 E' 也应是 $p_1(x)$ 在 F' 上的分裂域, 因此 $E' \cong E$.

定义 1.2.3. 域 F 被称为代数闭域 (algebraic closed field), 如果不存在真的代数扩张.

定义 1.2.4. 域扩张 E/F 中 E 被称为 F 的**代数闭包** (algebraic closure), 如果 E/F 是代数扩张, E 是代数闭域.

命题 1.2.5 (E. Artin). 任何域 F 都存在一个代数闭域 E 作为其扩张.

证明: 我们首先构造一个 F 的一个域扩张 E_1 使得任意次数大于等于 1 的 $f \in F[x]$ 在 E_1 中都有根: 考虑集合 $\mathfrak{X} = \{x_f \mid f \in F[x], \deg(f) \geq 1\}$, 以及以集合 \mathfrak{X} 为未定元的多项式环 $F[\mathfrak{X}]$. 令 $I = (f(x_f))$, 我们断言 $I \neq F[\mathfrak{X}]$ 的一个真理想. 假设 $I = F[\mathfrak{X}]$, 则有

$$\sum_{i=1}^{n} g_i f_i(x_{f_i}) = 1$$

由于只有有限多个 f_i , 那么根据分裂域存在性的证明过程不难构造 F 的一个域扩张 F' 使得每一个 f_i 在 F' 中都有根 u_i . 考虑 $F[\mathfrak{X}] \to F'$, 定义为 $x_{f_i} \mapsto u_i$, 其余的 x_f 被映成零, 则考虑上述等式在这个映射下的结果, 我们有 0=1, 矛盾. 因此 I 是真理想, 我们取 \mathfrak{m} 是包含 I 的一个极大理想, 令 $E_1=F[\mathfrak{X}]/\mathfrak{m}$, 则

$$F \hookrightarrow F[\mathfrak{X}] \to F[\mathfrak{X}]/\mathfrak{m} = E_1$$

我们用 \bar{x}_f 记 x_f 在 E_1 中的像, 可以发现其为 f(x) 的一个根. 不断进行如上操作则有

$$F = E_0 \subseteq E_1 \subseteq E_2 \subseteq \dots$$

令 $E = \bigcup_{i=0}^{\infty} E_i$, 我们证明 E 是代数闭的. 任取多项式 $f \in E[x]$, 那么其系数总会落在某一个 E_n 中,则它在 E_{n+1} 中有根,即在 E_{n+1} 中有分解

$$f = (x - u_1)f_1$$

其中 $f_1 \in E_{n+1}[x]$, 继续对 f_1 使用如上操作即可.

命题 1.2.6. F 是域, E 是代数闭域, 并且有嵌入 $\tau: F \hookrightarrow E$. 如果 K/F 是代数扩张, 则 τ 可以延拓成 $\tau': K \to E$. 特别地, 如果 K 是代数闭域, 那么 $\tau': K \to E$ 是同构.

证明: 任取 $u \in K$, u 在 F 上的极小多项式记做 p_u , 由于 E 是代数闭域, 那么 $\tau(p_u)$ 在 E 中存在根 v, 那么根据引理1.1.8可知 σ 可以延拓到 $F(u) \to E$. 用 M 记所有的 (K', τ') , 其中 K' 是 K 的包含 F 的子域, τ' 是 τ 的延拓. 并且定义偏序关系 $(K'_1, \tau'_1) \leq (K'_2, \tau'_2)$ 为 $K'_1 \subseteq K'_2$ 并且 $\tau'_2|_{K'_1} = \tau'_1$. 我们已经知道 M 非空,从而根据祖恩引理存在极大元 K',并且再次利用引理1.1.8可知 K' 就是 K.

定理 1.2.7. 域 F 的代数闭包 \overline{F} 存在且唯一 (在同构意义下).

证明: 存在性: 根据命题1.2.5, 存在代数闭域 E 使得其是 F 的扩张, 定义

$$\bar{F} := \{ u \in E \mid u \in F \mid L$$
代数 \}

那么有 \bar{F} 是 F 的代数扩张. 并且 \bar{F} 是代数闭域, 因为任取 $f(x) = a_n x^n + \cdots + a_0 \in \bar{F}[x]$, 根据韦达定理可知其根在 $F(a_0, \ldots, a_n)$ 上面代数, 从而在 F 上代数, 进而属于 \bar{F} .

注记 (Artin-Schreier). 如果 $[\bar{F}:F]<\infty$, 并且大于 1, 则 $[\bar{F}:F]=2$, 且 -1 不是 F 中的平方根, $\bar{F}=F(\sqrt{-1})$.

1.3 正规扩张与可分扩张

1.3.1 正规扩张

定义 1.3.1. 域扩张 E/F 被称为**正规扩张** (normal extension), 如果任取不可约多项式 $p(x) \in F[x]$, 如果其在 K 中有一个根, 则其全部的根都在 K 中.

定理 1.3.2. 下列叙述等价:

- (1) E/F 是正规扩张.
- (2) 任何 F-嵌入 $\tau: E \to \overline{F}$ 满足 $\tau(E) \subseteq E$
- (3) $\operatorname{Hom}_F(E, \bar{F}) = \operatorname{Hom}_F(E, E)$

如果 E/F 是有限扩张,则上述三条还与下面等价:

(4) E 是某个多项式 $p(x) \in F[x]$ 的分裂域.

证明: 显然 (3) 和 (2) 等价, 下面我们只证明 (1) 和 (2) 的等价性:

- (1) \Longrightarrow (2): 假设 E/F 是正规扩张, 任取 $u \in E$, 考虑 u 在 F 上的极小多项式 p_u , 那么 p_u 的所有根都落在 E 中. 对于任意的 F-嵌入 $\tau: E \to \bar{F}$, $\tau(u)$ 一定是 p_u 的一个根, 因为 $p_u(\tau(u)) = \tau(p_u(u)) = 0$, 因此 $\tau(u) \in E$, 即 $\tau(E) \subseteq E$.
- (2) \Longrightarrow (1): 任取 $u \in E$, 考虑其在 F 上的极小多项式 p_u , 任取其另一个根 $v \in \bar{F}$, 则存在态射 $F(u) \to \bar{F}$, $u \mapsto v$, 因此根据引理1.1.8可以延拓成 $\tau : K \to \bar{F}$, 因此 $\tau(u) = v \in E$, 即 $F \subseteq E$ 是正规扩张.

现在假设扩张次数有限, 我们来证明(4)与上述命题的等价性:

- (1) \Longrightarrow (4): 假设 E/F 是正规扩张,任取 $u_1 \in E \setminus F$,记其极小多项式为 p_{u_1} ,并且 $[E:F(u_1)] < [E:F]$,再取 $u_2 \in E \setminus F(u_1)$,由于扩张次数不断在减小,因此有限次重复后一定有 $E = F(u_1, \ldots, u_n)$,令 $P = \prod_{i=1}^n p_{u_i}$,则 $K \neq P$ 的分裂域.
- $(4) \Longrightarrow (2)$: 如果 $E \not\in p(x)$ 的分裂域, 其所有的根为 $\{u_1, \ldots, u_n\}$, 则 $E = F(u_1, \ldots, u_n)$, 考虑 F-嵌入 $\tau : F(u_1, \ldots, u_n) \to \bar{F}$, 由于 $\tau(u_i)$ 仍然是 p 的根, 因此 $\tau(u_i) \in E$, 即 $\tau(E) \subseteq E$.

推论 1.3.3. 对于 $F \subseteq E \subseteq K$, 有:

- (1) 如果 K/F 是正规扩张, 那么 K/E 也是正规扩张 (但是 E/F 不一定正规).
- (2) 如果 E/F, E'/F 都是正规扩张, 那么 EE'/F 也是正规扩张.

证明: (1) 任取 $u \in K$, 考虑其在 F, E 上的极小多项式, 分别为 p_u , p'_u , 则 $p'_u \mid p_u$. 由于 K/F 是正规扩张, 因此 p_u 的所有根都在 K 中, 因此 p'_u 的所有根也在 K 中, 即 K/E 也是正规扩张.

(2) 给定嵌入 $\tau: EE' \to \overline{F}$, 由于 E/F, E'/F 都是正规扩张, 因此 $\tau(E) \subseteq E, \tau(E') \subseteq E'$, 因此 $\tau(EE') \subseteq EE'$, 即 EE'/F 是正规扩张.

注记. 如果 K/E 是正规扩张, E/F 是正规扩张, 则 K/F 不一定是正规扩张, 考虑下面的例子:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$$

由于二次扩张都是正规扩张,从而 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ 以及 $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$ 都是正规扩张,但是 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$ 不是正规扩张:考虑 \mathbb{Q} 上的不可约多项式 $x^4 - 2$,其中一个根 $\sqrt[4]{2}$ 在 $\mathbb{Q}(\sqrt[4]{2})$ 中,但 存在一个根 $i\sqrt[4]{2}$ 不在其中.

1.3.2 可分扩张

定义 1.3.4. 给定域 $F, p(x) \in F[x]$ 被称为可分多项式 (seperable polynomial), 如果其在 \bar{F} 中不存在重根.

定义 1.3.5. 给定域扩张 E/F, $u \in E$ 被称为 F 上的**可分元** (seperable element), 如果其在 F 上的极小多项式是可分多项式.

定义 1.3.6. 域扩张 E/F 被称为**可分扩张** (seperable extension), 如果 E 中所有元素都在 F 上可分.

引理 1.3.7. 给定域 $F, p(x) \in F[x], p(x)$ 在 \bar{F} 中有重根当且仅当 $(p, p') \neq 1$. 特别地, 如果 p 是不可约多项式, 则这个条件等价于 p' = 0.

证明: 在 \bar{F} 中将 p(x) 写做 $p(x) = c \prod_{i=1}^{n} (x - u_i)$, 则

$$p'(x) = c \sum_{i=1}^{n} (x - u_1) \dots (x - u_{i-1})(x - u_{i+1}) \dots (x - u_n)$$

如果 p 有重根, 不妨假设 $u_1 = u_2$, 则 $p'(u_1) = 0$, 即 $(x - u_1) \mid (p, p')$; 另一方面, 如果 $u_i \neq u_j$ 对任意 $i \neq j$ 成立, 则 $p'(u_i) \neq 0$ 对任意 $1 \leq i \leq n$ 成立, 从而 (p, p') = 1.

特别地, 如果 p 是不可约的, 从而 (p,p') = 1 或 (p,p') = p. 从而 p 有重根当且仅当 (p,p') = p, 但是 $\deg p' \le n - 1$, 从而有 p' = 0.

推论 1.3.8. 如果 char F = 0, 则任何不可约多项式都是可分的.

证明: 当 char F = 0 时, 任何非常数的多项式都有非零导数.

练习. 域 F 被称为完美域 (perfect field), 如果任何不可约多项式都是可分的. 证明如下结论:

- 1. 域 F 是完美域当且仅的 $F^p = F$, 其中 $p = \operatorname{char} F > 0$.
- 2. 任何有限域都是完美域.

注记. 当 char F = p 时, 并非所有不可约多项式都是可分的: 令 $F = \mathbb{F}_p(t)$, 取 $p(x) = x^p - t \in F[x]$, 则 p(x) 是不可约多项式, 但不是可分的, 因为

$$(p, p') = (x^p - t, px^p) = (x^p - t, 0) = 0 \neq 1$$

这里面关键的原因在于特征不为零时,一个高次多项式的形式导数可能会为零.

因此, 对于可分多项式的研究, 只有在 char $F \neq 0$ 时才有趣, 因此在本节剩下的部分中, 都假设 char F = p.

定义 1.3.9. 取 $p(x) \in F[x]$ 是一个不可约的不可分多项式,那么 p'(x) = 0,因此存在 $p_1(x)$,使得 $p(x) = p_1(x^p)$,下面考虑 $p_1(x)$ 是否不可分,如果仍不可分,可以继续做下去,直到 $p = p_e(x^{p^e})$,其中 $p_e(x)$ 是可分多项式,记 $n_s := \deg p_e$,则 $n = n_s \cdot p^e$,其中 n_s 称为 p(x) 的可分次数 (seperable degree), p^e 称作 p(x) 的不可分次数 (inseperable degree).

引理 1.3.10. 对于域扩张 E/F, $u \in E$ 是 F 上的可分元当且仅当 $F(u) = F(u^p)$

 $^{^{1}}$ 因为 u 在 F_{1} 上的极小多项式一定整除其在 F 上的极小多项式.

另一方面,如果 u 的极小多项式 p(x) 不是可分的,因此可以写成 $p(x) = p_1(x^p)$,其中 $\deg p_1 < \deg p$.而由于 $p_1(x)$ 是 u^p 的极小多项式,那么:

$$\deg p_1 = [F(u^p) : F] = [F(u) : F] = \deg p$$

相矛盾, 因此 u 是可分元.

引理 1.3.11. 对于域扩张 E/F, 假设 $[E:F] = d < \infty$, 下面叙述等价:

- (1) E/F 是可分扩张.
- (2) $E = FE^p$
- (3) 存在 E/F 的一组基 $\{e_1, ..., e_d\}$, 使得 $\{e_1^p, ..., e_d^p\}$ 也是一组基.

证明: $(1) \implies (2)$: 任取 $u \in E$, 那么 $F(u) = F(u^p) \subseteq FE^p$, 因此 $E \subseteq EK^p$, 另一方面包含关系是显然的.

- (2) ⇒ (3): 假设 $E = Fe_1 \oplus \cdots \oplus Fe_n$, 那么任取 $u \in E$, 将其写做 $u = \sum_{i=1}^n f_i e_i$, 则 $u^p = \sum_{i=1}^n f_i^p e_i^p$, 从而 $E^p = F^p e_1^p + \cdots F^p e_d^p$, 进而 $E = Fe_1^p + \cdots Fe_d^p$. 由于 [E:F] = d, 从而 $\{e_1^p, \ldots, e_d^p\}$ 也是一组基. (3) ⇒ (2) 是显然的.
- (2) ⇒ (1): 假设 $u \in E$ 是不可分的, p(x) 是其极小多项式, 则 $p(x) = p_1(x^p) = \sum_{k=0}^n a_k x^{pk}$. 由于 p(u) = 0,从而 $\{1, u^p, \dots, u^{np}\}$ 是线性相关的,并且根据极小多项式的性质可知 $\{1, u, \dots, u^{np-1}\}$ 是线性无关的. 从 (2) ⇒ (3) 的证明可以看出 $\{1, u^p, \dots, u^{p(np-1)}\}$ 是线性无关的,但是 $n \leq 2n 1 \leq pn 1$,即:

$$\{1, u^p, \dots, u^{np}\} \subseteq \{1, u^p, \dots, u^{p(np-1)}\}$$

相矛!

命题 1.3.12. 单扩张 F(u)/F 是可分扩张当且仅当 u 是 F 上的可分元.

证明: 如果 F(u)/F 是可分扩张, 显然有 u 是 F 上的可分元. 另一方面, 假设 $p(x) = a_n x^n + \cdots + a_1 x + a_0 \in F[x]$ 是 u 的极小多项式, 则 $\{1, u, \dots, u^{n-1}\}$ 是 F(u) 在 F 上的一组基, 我们只需要证明 $\{1, u^p, \dots, u^{p(n-1)}\}$ 也是一组基, 则根据引理1.3.11可知 F(u)/F 是可分扩张.

假设 $\{1, u^p, \dots, u^{p(n-1)}\}$ 不是一组基,即存在 $\sum_k b_k u^{pk} = 0$,考虑多项式 $p'(x) = \sum_k b_k x^k$,则 $\deg p' \leq n - 1, p'(u^p) = 0$. 那么 $[F(u^p): F] \leq n - 1$,但是由于 u 是可分元,从而根据引理1.3.10有 $F(u) = F(u^p)$,即 $[F(u^p): F] = [F(u), F] = n$,相矛盾!

推论 1.3.13. 域扩张 $F \subseteq E \subseteq K$, 则 K/F 是可分扩张当且仅当 K/E,E/F 都是可分扩张.

证明: 假设 K/F 是可分扩张, 那么任取 $u \in K$, 其在 E 上的不可约多项式可以整除其在 F 上的不可约多项式, 即 K/E 是可分扩张; E/F 是可分的更是显然, 因为任取 $u \in E$ 考虑其在 F 上的不可约多项式和将其看成是 K 中的元素考虑其在 F 上的不可约多项式是一样的.

另一方面,任取 $u \in K$,其在 E 上的极小多项式记做 $p_u(x) = a_n x^n + \dots + a_0$. 考虑 $F \subseteq F(a_0, \dots, a_n) \subseteq E \subseteq E(u) \subseteq K$,由于 E/F 是可分的,从而 $F(a_0, \dots, a_n)/F$ 是可分的。而 u 在 $F(a_0, \dots, a_n)$ 上的极小多项式也是 p_u ,即是一个可分多项式,从而根据命题1.3.12有 $F(u, a_0, \dots, a_n)/F$ 是可分的. 特别地,u 在 F 上是可分的.

推论 1.3.14. E/F, E'/F 都是可分扩张,则 EE'/F 也是可分扩张.

证明: 假设 $u \in E, u' \in E$ 以及它们的极小多项式分别为 $p_u, p_{u'}$. 由于 u 是可分的, 从而根据命题1.3.12可知 F(u)/F 是可分的. 由于 u' 在 F(u) 上的极小多项式整除 $p_{u'}$, 从而也是可分的, 即 F(u, u')/F(u) 是可分的, 进而有 F(u, u')/F 是可分的.

1.3.3 纯不可分扩张

在本节中, F 总是指特征为 p 的域.

定义 1.3.15. $u \in \overline{F}$ 被称为在 F 上纯不可分 (pure inseperable), 如果 $u^{p^m} \in F$, 对某个正整数 m 成立.

定义 1.3.16. 代数扩张 E/F 被称为**纯不可分扩张** (pure inseperable extension), 如果 E 中的每个元素在 F 上都是纯不可分的.

命题 1.3.17. 对于纯不可分扩张.

- (1) 如果 E/F 是有限纯不可分扩张, 则 [E:F] 是 p 的幂次.
- (2) 如果 K/E, E/F 都是纯不可分扩张, 则 K/F 也是纯不可分扩张.
- (3) 如果 E/F, E'/F 都是纯不可分扩张, 则 EE'/F 也是纯不可分扩张.

证明: (1). 由于 E/F 是纯不可分扩张, 从而 $u \in E$ 满足某个多项式 $x^{p^m} - c \in F[x]$, 从而其极小多项式整除 $x^{p^m} - c$, 进而极小多项式的次数也是 p 幂次. 对于 E 的任何包含 F 的子域 K, $u \in E$ 在 K 上的极小多项式一定整除其在 F 上的极小多项式, 从而次数也是 p 的幂次, 从而

$$[E:F] = [F(u_1, \dots, u_n): F(u_1, \dots, u_{n-1})] \dots [F(u_1):F]$$

是 p 的幂次.

- (2). 任取 $u \in K$, 由于 K/E 是纯不可分的, 因此存在正整数 m_1 使得 $u^{p^{m_1}} \in E$, 再利用 E/F 是纯不可分的, 可以找到正整数 m_2 使得 $(u^{p^{m_1}})^{p^{m_2}} \in F$, 从而 K/F 是纯不可分的.
- (3). 任取 $u \in E, v \in E'$, 存在正整数 m_1, m_2 使得 $u^{p^{m_1}}, v^{p^{m_2}} \in F$, 则 $(uv)^{p^{m_1+m_2}}, (u+v)^{p^{m_1+m_2}} \in F$, 从而 EE'/F 也是纯不可分的.

引理 1.3.18. E/F 是域扩张, E 中所有在 F 上可分的元素组成的集合为 E_s , 那么 E_s 是 E 的子域, 并且 E/E_s 是纯不可分扩张.

证明:根据推论1.3.14, E_s 是 E 的子域. 取 $u \in E \setminus E_s$, 考虑 u 在 F 上的极小多项式 p(x), 其不是可分多项式,并且存在可分多项式 p_e 使得 $p = p_e(x^{p^e})$. 由于 p_e 是 u^{p^e} 的极小多项式,则 $u^{p^e} \in E_s$, 即 E/E_s 是纯不可分扩张.

定义 1.3.19. 对于域扩张 E/F 来说, 其可分次数 (seperable degree)定义为 $[E:F]_s := [E_s:F]$, 其不可分次数 (inseperable degree)定义为 $[E:F]_i := [E:E_s]$.

命题 1.3.20. E/F 是有限扩张, 那么:

$$|\operatorname{Hom}_{F}(E, \bar{F})| = [E : F]_{s} \leq [E : F]$$

特别地, 等号取得当且仅当 E/F 是可分扩张.

证明: 首先我们证明有如下——对应:

$$\operatorname{Hom}_F(E,\bar{F}) = \operatorname{Hom}_F(E_s,\bar{F})$$

通过 $\tau \mapsto \tau|_{K_s}$ 给出. 对应是满射可根据命题1.2.6; 为了证明对应是单射, 即证明 τ 被 $\tau|_{E_s}$ 所决定: 任取 $u \in E$, 则存在正整数 m 使得 $u^{p^m} \in E_s$, 则 $\tau(u^{p^m}) = \tau(u)^{p^m} = v \in \bar{F}$, 因此 $\tau(u)$ 满足方程 $x^{p^m} - v = (x - v')^{p^m} = 0$, 可知 $\tau(u)$ 被唯一确定.

下面我们只需要对 E/F 是可分扩张证明 $|\operatorname{Hom}_F(K,\bar{F})| = [K:F]$ 即可. 这实际上约化到对单扩张证明, 对一般情况进行归纳即可: 注意到 $\tau:F(u)\to \bar{F}$ 完全由 $\tau(u)$ 所决定, 但由于 τ 是 F-嵌入, $\tau(u)$ 应该与 u 共轭, 因此嵌入的个数只有 u 的极小多项式不同根的个数个, 再由于 u 是可分元, 因此嵌入的个数等于 u 极小多项式的次数, 即:

$$|\operatorname{Hom}_F(F(u), \bar{F})| = [F(u) : F]$$

第二章 Galois 理论

2.1 Galois 扩张

在开始之前, 我们固定一些符号: E/F 是域扩张, E 上的 F-自同构群定义为

$$\operatorname{Aut}_F(E) = \{ \tau : E \xrightarrow{\cong} E \mid \tau|_F = \operatorname{id} \}$$

对于 $H < \operatorname{Aut}_F(E)$, 记 $E^H = \{u \in E \mid \tau(u) = u, \forall \tau \in H\}$. 对于域扩张 $F \subseteq E \subseteq K$, 有子群的包含关系: $\operatorname{Aut}_E(K) < \operatorname{Aut}_F(K)$.

引理 2.1.1. 如果 E/F 是代数扩张, 则 $\operatorname{Aut}_F(E) = \operatorname{Hom}_F(E, E)$.

证明: 给定任意 F-自同态 $\tau: K \to K$,首先其一定是单射,因为域的理想都是平凡的,那么我们只需要证明 τ 是满射即可. 任取 $u \in K$,考虑其在 F 上的最小多项式 $p \in F[x]$,如果 $\{u_1, \ldots, u_n\}$ 是 p 在 \bar{F} 里面的不同的根,我们假设 $\{u_1, \ldots, u_r\}$ 在 K 中,显然 $u \in \{u_1, \ldots, u_r\}$. 由于 τ 固定 F,那么 $\tau(u_i)$ 也会是 p 的根,从而有 $\tau: \{u_1, \ldots, u_r\} \to \{u_1, \ldots, u_r\}$. 在这个有限集合上的单射一定是满射,从而存在 u_i 使得 $\tau(u_i) = u$

定义 2.1.2. 代数扩张 E/F 被称为 Galois 扩张 (Galois extension), 如果其是正规扩张, 且是可分扩张.

注记. 根据正规性可知 $\operatorname{Hom}_F(E,\bar{F})=\operatorname{Hom}_F(E,E)=\operatorname{Aut}_F(E)$. 在 Galois 扩张时 $\operatorname{Aut}_F(E)$ 通常也被记作 $\operatorname{Gal}(E/F)$,并且

$$|\operatorname{Gal}(K/F)| = |\operatorname{Hom}_F(K,K)| \stackrel{(1)}{=} |\operatorname{Hom}_F(K,\bar{F})| \stackrel{(2)}{=} [K:F]$$

其中(1)成立是根据定理1.3.2,(2)成立是根据命题1.3.20.

命题 2.1.3. 对于域扩张 $F \subseteq E \subseteq K$, 如果 K/F 是 Galois 扩张, 则 K/E 也是.

证明: 根据推论1.3.3以及推论1.3.13即可.

注记. 注意, 对于域扩张 $F \subseteq E \subseteq K$, 如果 K/F 是 Galois 扩张, E/F 不一定是 Galois 扩张, 在下一节 Galois 对应中我们将看到 E/F 是 Galois 扩张当且仅当 $\mathrm{Gal}(K/E)$ 是 $\mathrm{Gal}(K/F)$ 的正规子群.

定义 2.1.4. E/F 是可分扩张, 则在 \bar{F} 中包含 K 的最小的 Galois 扩张被称为 E/F 的 Galois **闭包** (Galois closure).

注记. 对于一个任意的代数扩张 E/F,我们都可以在 \bar{F} 中寻找 E/F 的正规闭包: 将 E 写成 F(S),其中 $S = \{s_i\} \subseteq E$ 都是代数元. 对于每一个 s_i ,用 p_i 去记其在 F 上的极小多项式,那么 将这些 p_i 在 \bar{F} 中的所有根都添加到 F 中,得到的域记做 N,不难发现 N 就是 K/F 的正规闭包. 特别地,如果 E/F 是可分扩张,我们可以选取 s_i 都是可分元,从而此时的 N/F 也是可分扩张,从而是 E/F 的 Galois 闭包. 更特别地,我们可以发现,如果 E/F 是有限可分扩张,那么其 Galois 闭包也是 F 的有限扩张.

引理 2.1.5. E/F 是有限 Galois 扩张, 则 $E^{Gal(E/F)} = F$.

证明: 首先显然 $F \subseteq E^{\operatorname{Gal}(E/F)}$; 另一方面,任取 $u \in E^{\operatorname{Gal}(E/F)}$,考虑 u 在 F 上的极小多项式 p(x),任取 p(x) 的一个根 v,定义嵌入 $F(u) \hookrightarrow \bar{F}$ 为 $u \mapsto v$,根据命题1.2.6可以将其延拓成 $\tau : E \to \bar{F}$,而根据 E 是正规扩张,可知 $\tau(E) = E$,即 $\tau \in \operatorname{Gal}(E/F)$.由于 $u \in E^{\operatorname{Gal}(E/F)}$,因此 $v = \tau(u) = u$,即 p(x) = x - u,即 $u \in F$.

引理 2.1.6. K 是域, $H = \{\tau_1, ..., \tau_n\}$ 是 Aut(K) 的有限子集 $(\pi$ 必要是子群). 如果存在 $c_i \in K$ 使得

$$c_1\tau_1(x) + \dots + c_n\tau_n(x) = 0$$

对任意的 $x \in K$ 成立, 那么 $c_i = 0, i = 1, \ldots, n$.

证明: 假设存在这样的 c_i , 我们不妨假设

$$c_1 \tau_1(x) + \dots + c_r \tau_r(x) = 0$$
 (2.1.1)

对任意的 $x \in K$ 成立, 并且 $c_i \neq 0, 1 \leq i \leq r$, 其中 r 是满足这样条件最小的数. 用 $ax, a \in K^{\times}$ 替代 x 则有

$$c_1 \tau_1(a) \tau_1(x) + \dots + c_r \tau_r(a) \tau_r(x) = 0$$
 (2.1.2)

(2.1.2) 减 (2.1.1) 乘 $\tau_r(a)$ 则有

$$c_1[\tau_1(a) - \tau_r(a)]\tau_1(x) + \dots + c_{r-1}[\tau_{r-1}(a) - \tau_r(a)]\tau_{r-1}(x) = 0$$

根据我们对 r 的假设则有 $\tau_i(a) = \tau_r(a)$ 对任意的 $1 \le i \le r-1$ 以及 $a \in K^{\times}$ 成立, 从而有 $\tau_1 = \tau_r, r \ge 2$, 相矛盾.

引理 2.1.7 (阿廷引理). K 是域, $H = \{\tau_1, \ldots, \tau_n\}$, $\tau_1 = \mathrm{id}$ 是 $\mathrm{Aut}(K)$ 的有限子群, 记 $E = K^H$, 则 K/E 是 Galois 扩张, 并且扩张次数 [K:E] = |H|.

证明: 我们首先证明 K/E 是 Galois 扩张: 任取 $u \in K$, 记 u 在 E 上的极小多项式为 p, 令 O 是 u 在 H 作用下的轨道, 考虑:

$$q(x) = \prod_{\alpha \in \mathcal{O}} (x - \alpha)$$

则任取 $\tau \in H$ 有 $\tau(q(x)) = q(x)$, 即 $q(x) \in E[x]$. 并且由于 H 是一个子群, 其中含有单位元, 从 而 $u \in \mathcal{O}$, 即 q(u) = 0, 因此 $p(x) \mid q(x)$, 但是 q 没有重根, 并且所有的根都在 K 中, 因此 K/E 是 Galois 扩张.

现在来证明 $[K:E] \leq |H|$: 只需要证明任取 $u_1, \ldots, u_{n+1} \in K$, 它们是 E-线性相关即可: 考虑矩阵 $(\tau_i(u_j)) \in M_{n \times (n+1)}(K)$, 则其 n+1 列 K-线性相关,即存在 $c_1, \ldots, c_{n+1} \in K$,且不全为零使得:

$$c_{1}\begin{pmatrix} \tau_{1}(u_{1}) \\ \tau_{2}(u_{1}) \\ \vdots \\ \tau_{n}(u_{1}) \end{pmatrix} + c_{2}\begin{pmatrix} \tau_{1}(u_{2}) \\ \tau_{2}(u_{2}) \\ \vdots \\ \tau_{n}(u_{2}) \end{pmatrix} + \dots + c_{n+1}\begin{pmatrix} \tau_{1}(u_{n+1}) \\ \tau_{2}(u_{n+1}) \\ \vdots \\ \tau_{n}(u_{n+1}) \end{pmatrix} = 0$$
 (2.1.3)

不妨假设 $c_1, \ldots, c_r \neq 0$, $c_{r+1} = \cdots = c_{n+1} = 0$, 且这样的 r 是最小的. 那么 $r \geq 2$, 并且不妨假设 $c_1 = 1$, 考虑第一行:

$$u_1 + c_2 u_2 + \dots + c_r u_r = 0 (2.1.4)$$

我们断言 $c_2, \ldots, c_n \in E$, 不然如果存在 $2 \le i \le r$, 使得对任意的 $1 \le j \le n$ 有 $\tau_j(c_i) \ne c_i$, 用 τ_j 作用 (2.1.4) 可得

$$\tau_j(u_1) + \tau_j(c_2)\tau_j(u_2) + \dots + \tau_j(c_r)\tau_j(u_r) = 0$$
 (2.1.5)

用 (2.1.5) 分别与 (2.1.3) 的每一行相减, 可以得到一个新的更小的 r', 这与 r 的选取相矛盾.

最后来证明 $[K:E] \ge |H|$: 假设 [K:E] = r < n, 令 $\{x_1, \ldots, x_r\}$ 是 K 在 E 上的一组基,那么任取 $y \in K$,将其写成

$$y = c_1 x_1 + \dots + c_r x_r$$

考虑 $r \times n$ 矩阵 $(\tau_i(x_i))$, 其秩一定 $\leq r < n$, 因此存在非平凡的 ξ_i 满足

$$\begin{cases} \xi_1 \tau_1(x_1) + \ldots + \xi_n \tau_n(x_1) = 0 \\ \vdots \\ \xi_1 \tau_1(x_r) + \ldots + \xi_n \tau_n(x_r) = 0 \end{cases}$$

将上面第 i 个方程乘以 c_i , 由于 $E = K^H$, 因此 $\tau_j(c_i) = c_i$, 从而

$$\begin{cases} \xi_1 \tau_1(c_1 x_1) + \dots + \xi_n \tau_n(c_1 x_1) = 0 \\ \vdots \\ \xi_1 \tau_1(c_r x_r) + \dots + \xi_n \tau_n(c_r x_r) = 0 \end{cases}$$

因此 $\xi_1\tau_1(y) + \cdots + \xi_n\tau_n(y) = 0$ 对任意的 $y \in K$ 成立, 根据引理2.1.6可知 $\xi_i = 0$, 相矛盾!

2.2 Galois 对应

定理 2.2.1. K/F 是有限 Galois 扩张, 则存在如下的一一对应:

$$\{\operatorname{Gal}(K/F)$$
的子群 $\} \stackrel{1-1}{\Longleftrightarrow} \{K/F$ 的中间域 $\}$

对应法则为 $H \mapsto K^H$ 与 $E \mapsto \operatorname{Gal}(K/E); E/F$ 是 Galois 扩张当且仅当 $\operatorname{Gal}(K/E)$ 是 $\operatorname{Gal}(K/F)$ 的正规子群, 并且:

$$Gal(E/F) \cong Gal(K/F)/Gal(K/E)$$

证明:根据引理2.1.5有

$$E \to \operatorname{Gal}(K/E) \to K^{\operatorname{Gal}(K/E)} = E$$

现在只需要证明下面的对应成立:

$$H \to K^H \to \operatorname{Gal}(K/K^H) = H$$

一方面 $H \subseteq \operatorname{Gal}(K/K^H)$ 是显然的, 而根据引理2.1.7:

$$|\operatorname{Gal}(K/K^H)| \le |H|$$

即两者相同.

由于根据推论1.3.14, E/F 已经是可分扩张, 从而 E/F 是 Galois 扩张当且仅当 E/F 是正规扩张, 即 $\tau(E)=E$. 任取 $\tau\in \mathrm{Gal}(K/F)$, 可以直接验证:

$$\operatorname{Gal}(K/\tau(E)) = \tau^{-1} \operatorname{Gal}(K/E)\tau$$

因此 E/F 是 Galois 扩张当且仅当 $\tau(E)=E$ 当且仅当 $\mathrm{Gal}(K/E)$ 是正规子群.

推论 2.2.2. E/F 是有限可分扩张,则 E/F 中只存在有限多个中间域.

证明: 考虑其 Galois 闭包 K/F, 由注记2.1可知其 Galois 闭包 K/F 也是有限扩张, 从而根据 Galois 对应 K/F 中只有有限多个中间域, 从而 E/F 中只有有限多个中间域.

推论 2.2.3 (本原元定理). 如果 E/F 是有限可分扩张, 则 $E = F(u), u \in E$.

证明: 当 F 是有限域, 则不妨假设 $F = \mathbb{F}_p$, $E = \mathbb{F}_q$, $q = p^m$, 根据有限域的结果可知 $\mathbb{F}_q^{\times} = \langle \xi \rangle$, 因此 $\mathbb{F}_q = \mathbb{F}_p(\xi)$.

当 F 是无限域,不妨假设 $E = F(u_1, u_2)$,一般情况归纳即可:任取 $r \in F$,考虑 $F \subseteq F(u_1 + ru_2) \subseteq E$,由于其中只有有限多个中间域,并且 F 是无限域,因此存在不同的 $r_1, r_2 \in F$ 使得:

$$F(u_1 + r_1 u_2) = F(u_1 + r_2 u_2)$$

考虑 $u = u_1 + r_1 u_2$,我们断言 $F(u) = F(u_1, u_2)$: 显然 $F(u) \subseteq F(u_1, u_2)$;另一方面,由于 $u = u_1 + r_1 u_2 = u_1 + r_2 u_2$,并且 $r_1 \neq r_2$,从而 $(r_1 - r_2) u_2 \in F(u)$,即 $u_2 \in F(u)$,从而 $u_1 \in F(u)$,即 $F(u) = F(u_1, u_2)$.

命题 2.2.4. 如果 E/F, K/F 都是有限 Galois 扩张, 则 EK/F 也是 Galois 扩张, 并且

$$\varphi: \operatorname{Gal}(EK/K) \to \operatorname{Gal}(E/E \cap K)$$

$$\tau \mapsto \tau|_{E}$$

是同构.

(1)

(2) $\psi: \operatorname{Gal}(EK/F) \to \operatorname{Gal}(E/F) \times \operatorname{Gal}(K/F)$ $\tau \mapsto (\tau|_E, \tau|_K)$

是单射. 如果 $E \cap K = F$, 那么上述映射还是满射, 从而使同构.

证明: 根据推论1.3.3可知 EK/F 是正规扩张. 根据推论1.3.14可知 EK/F 是可分扩张, 从而 EK/F 是 Galois 扩张, 并且由于 E/F, K/F 都是有限的, 从而 EK/F 也是有限 Galois 扩张, 因此 EK/E 也是有限 Galois 扩张.

- (1). 任取 $\tau \in \operatorname{Gal}(EK/K)$, 考虑 $\tau|_E : E \to EK \hookrightarrow \bar{F}$, 由于 E/F 是正规的, 从而根据定理1.3.2有 $\tau(E) \subseteq E$, 即 $\tau|_E \in \operatorname{Gal}(E/E \cap K)$. 如果 $\tau|_E = \operatorname{id}_E$, 那么由于 $\tau|_F = \operatorname{id}_F$ 有 $\tau = \operatorname{id}_{EK}$, 即 φ 是单射. 另一方面, $\operatorname{im} \varphi$ 是 $\operatorname{Gal}(E/E \cap K)$ 的子群, 并且 $E^{\operatorname{im} \varphi} = (EK)^{\operatorname{Gal}(EK/K)} \cap E = K \cap E$, 从而 $\operatorname{im} \varphi = \operatorname{Gal}(E/E \cap K)$.
- (2). ψ 是单射与 φ 是单射的证明同理. 如果 $E \cap K = F$, 那么任取 $(\sigma_1, \sigma_2) \in \operatorname{Gal}(E/F) \times \operatorname{Gal}(K/F)$, 根据 (1) 有 σ_1, σ_2 可以被延拓成 $\sigma_1' \in \operatorname{Gal}(EK/K)$ 和 $\sigma_2' \in \operatorname{Gal}(EK/E)$. 令 $\tau = \sigma_2' \circ \sigma_1' \in \operatorname{Gal}(EK/F)$, 那么 $\tau|_K = \sigma_2' \circ \sigma_1'|_K = \sigma_2'|_K = \sigma_2$, 同理有 $\tau|_E = \sigma_1$, 从而是满射.

定义 2.2.5. 一个 Galois 扩张被称为阿贝尔扩张 (abelian extension), 如果其 Galois 群是阿贝尔群.

定义 2.2.6. 一个 Galois 扩张被称为循环扩张 (cyclic extension), 如果其 Galois 群是循环群.

推论 2.2.7. 阿贝尔扩张的复合也是阿贝尔扩张,循环扩张的复合也是循环扩张.

证明:注意到阿贝尔群(循环群)的子群还是阿贝尔群(循环群).

2.3 一些 Galois 扩张的例子

2.3.1 有限域上的 Galois 扩张

定理 2.3.1. $q = p^m, m > 0$, 则 $\mathbb{F}_{q^d}/\mathbb{F}_q$ 是 Galois 扩张, 并且 $Gal(\mathbb{F}_{q^d}/\mathbb{F}_q) = \mathbb{Z}/d\mathbb{Z}$, 由 Frobenius 同构 $\sigma: x \mapsto x^q$ 生成.

2.3.2 分圆扩张

定义 2.3.2. ξ_n 被称为 n 次本原单位根 (n-th primitive root of unity), 如果 $\xi_n^n = 1$ 且 $\xi_n^k \neq 1, \forall k < n$

注记. 对于 n 次本原单位根, 我们有如下两条注记:

- 1. n 次单位根的全体可以表示为 $\{\xi_n^k \mid 0 \le k \le n-1\}$
- 2. ξ_n^k 也是 n 次本原单位根当且仅当 (n,k)=1

定义 2.3.3. *n* 次分圆多项式 (*n*-th cyclotomic polynomial)被定义为:

$$Φn(x) = \prod_{\xi \not = n \text{ 次本原单位根}} (x - \xi)$$

注记. 不难发现 $\Phi_n(x) \in \mathbb{Q}[x]$,因为任取 $\tau \in \operatorname{Gal}(\mathbb{Q}(\xi_n)/\mathbb{Q})$,其一定将本原单位根映成本原单位根,即 $\tau(\Phi(x)) = \Phi(x)$. 并且由于 $\Phi_n(x)$ 在 $\mathbb{Q}[x]$ 中整除 $x^n - 1$,从而根据高斯引理有 $\Phi_n(x) \in \mathbb{Z}[x]$

引理 2.3.4 (Gauss). 令 R 是一个唯一分解整环, $h \in R[x]$ 是一个首一多项式. 如果存在分解 h = fg, 其中 $f, g \in Q[x]$, Q 是 R 的分式域, 那么 $f, g \in R[x]$.

引理 2.3.5. 如果记 P(x) 是 ξ_n 在 \mathbb{Q} 上的极小多项式, p 是任意素数, 且 $p \nmid n$, 如果 u 是 P(x) 的一个根, 则 u^p 也是 P(x) 的一个根.

证明:根据高斯引理,将 x^n-1 做如下拆分:

$$x^n - 1 = P(x)Q(x)$$

其中 $P(x), Q(x) \in \mathbb{Z}[x]$. 假设 u^p 不是 P(x) 的根, 则 u^p 是 Q(x) 的根, 即 u 是 $Q(u^p)$ 的根, 即 在 $\mathbb{Z}[x]$ 中 $P(x) \mid Q(x^p)$. 我们考虑模 p 以后的结果, 即在 $\mathbb{F}_p[x]$ 中 $\bar{P}(x) \mid \overline{Q(x^p)} = \bar{Q}(x)^p$, 即 如果 $\alpha \in \bar{\mathbb{F}}_p$ 是 $\bar{P}(x)$ 的根, 则 α 也是 $\bar{Q}(x)$ 的根, 因此 α 是 $\overline{x^n-1} \in \mathbb{F}_p[x]$ 的重根, 但是由于 $p \nmid n$, 这是不可能的.

定理 2.3.6. n 次分圆多项式是 n 次本原单位根在 $\mathbb O$ 的极小多项式

证明: 用 P(x) 记 n 次本元单位根的极小多项式, 其一定整除 n 次分元多项式 $\Phi_n(x)$, 因此只需要证明每个 n 次本原单位根 ξ_n^k 都是 P(x) 的根即可. 对 k 做如下分解:

$$k = \prod_{i} p_i^{r_i}$$

根据引理2.3.5, $\xi_n^{p_i}$ 都是 P(x) 的根, 再次利用引理2.3.5可知 $\xi_n^{p_i^{r_i}}$ 都是 P(x) 的根, 多次利用引理2.3.5则可知 ξ_n^k 是 P(x) 的根.

定理 2.3.7. $\mathbb{Q}(\xi_n)/\mathbb{Q}$ 是 Galois 扩张, 并且 $Gal(\mathbb{Q}(\xi_n)/\mathbb{Q}) = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

证明: 首先 $|\operatorname{Gal}(\mathbb{Q}(\xi_n)/\mathbb{Q})| = \operatorname{deg} \Phi_n(x) = \phi(n)$, 并且对于任意满足 (n,k) = 1 的 k, 我们定义 $\tau_k : \xi_n \mapsto \xi_n^k$, 这给出了同构 $(\mathbb{Z}/n\mathbb{Z})^{\times} \xrightarrow{\cong} \operatorname{Gal}(\mathbb{Q}(\xi_n)/\mathbb{Q})$

注记. 下面列出一些有关 $(\mathbb{Z}/n\mathbb{Z})^{\times}$ 结构的结果:

命题 2.3.8. 如果 $n = p_1^{k_1} \dots p_r^{k_r}$, 则我们有:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{k_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_r^{k_r}\mathbb{Z})^{\times}$$

命题 2.3.9. 当 $p \ge 3$ 时, 我们有:

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^{k-1}\mathbb{Z}$$

是循环群.

命题 2.3.10. 当 $p = 2, k \ge 4$ 时, 我们有:

$$(\mathbb{Z}/2^k\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{k-2}\mathbb{Z}$$

不是循环群.

2.4 Galois 理论的应用

2.4.1 尺规作图问题

对于一个没有刻度的直尺和圆规, 我们只可以通过以下的方式得到新的点:

- 1. 两条直线的交点.
- 2. 一条直线与一个圆的交点.
- 3. 两个圆的交点.

定义 2.4.1. $(a,b) \in \mathbb{R}^2$ 被称为**可构造的** (constructable), 如果我们可以从 (0,0),(1,0) 以及尺规作图得到 (a,b).

注记 (标准构造). 利用尺规, 我们有下面两种基本的做法:

- 1. 给定线段 AB, 作出以 AB 为直径的圆.
- 2. 给定直线 l 以及直线外一点 p, 可以作出过 p 与 l 垂直或平行的直线.

推论 2.4.2. (a,b) 可构造当且仅当 (a,0),(b,0) 可构造.

定义 2.4.3. $c \in \mathbb{R}$ 称为可构造的 (constructable), 如果 (c,0) 可构造. 我们用 \mathfrak{C} 记 \mathbb{R} 中所有可构造的点.

命题 2.4.4. 对于 €, 我们有如下结果:

- (1) € 是 ℝ 包含 ℚ 的子域.
- (2) 如果 $c \in \mathfrak{C}, c > 0$, 则 $\sqrt{c} \in \mathfrak{C}$

证明: (1). 由于任何特征零的域都包含 $\mathbb Q$ 作为子域, 所以只需要证明 $\mathfrak C$ 是一个域即可. 如果 $c \in \mathfrak C$, 那么以 (0,0) 为圆心 c 为半径画圆, 则有 $-c \in \mathfrak C$. 如果 $ab \in \mathfrak C$, 我们可以通过以下方式得到 a^{-1} .

(2). 如果 $c \in \mathfrak{C}$, 那么可以用如下的方式构造 \sqrt{c} .

定义 2.4.5. $K \subseteq \mathbb{R}$ 是子域, K 中的平面 (plane of K)定义为 $K \times K \subseteq \mathbb{R} \times \mathbb{R}$; K 中的直线 (line of K)定义为连接 K 平面中两点的直线; K 中的圆 (circle of K)定义为圆心在 K 平面中, 半径在 K 中的圆.

引理 2.4.6. 我们有如下结果:

- (1) 两条 K 中直线的交点要么是空集,要么是 K 中的点.
- (2) 一条 K 中的直线与一个 K 中的圆的交点要么是空集, 要么是 $K(\sqrt{u}), u \in K$ 中的点.
- (3) 两个 K 中的圆的交点要么是空集, 要么是 $K(\sqrt{u}), u \in K$ 中的点.

证明: 只需要注意到 K 中的直线由下面方程定义:

$$ax + by + c = 0$$
, $a, b, c \in K$

K 中的圆由下面方程定义:

$$x^{2} + y^{2} + ax + by + c = 0$$
, $a, b, c \in K$

定理 2.4.7. $c \in \mathfrak{C}$ 当且仅当存在下面的域扩张链:

$$\mathbb{Q} = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n$$

- (1) $c \in K_n$.
- (2) $[K_n:K_{n-1}]=2$, 即 $K_{i+1}=K_i(\sqrt{u_i})$, 其中 $u_i>0\in K_i$. 特别地, 如果 c 可构造, 则 c 在 \mathbb{Q} 上代数, 并且 $[\mathbb{Q}(c):\mathbb{Q}]$ 是 2 的幂次.

证明: 假设 $c \in \mathbb{C}$, 即 (c,0) 在 \mathbb{R}^2 上可构造, 即 (c,0) 可以通过有限步画圆或化直线的操作得到. 在每一步中, 新的点由两条线的交点, 线与圆的交点以及圆与圆的交点得到, 从而根据引理2.4.6有期待的域扩张链.

另一方面, 如果我们假设这样域扩张链存在, 那么 c 在 K_{n-1} 上的极小多项式为 $x^2 + ax + b \in K_{n-1}[x]$, 那么 (c,0) 可以通过圆 $(x+\frac{a}{2})^2 + y^2 = \frac{a^2}{4} - b$ 与 x 轴的交点的到. 根据命题2.4.4, 如果 u,v 可构造, 那么 $u \pm v,uv$ 都可构造. 由于 a,b 是 1 和 $\sqrt{u_{n-2}}$ 在 K_{n-2} 上线性组合得到的, 而 K_{n-2} 可由在 K_{n-3} 上构造 $\sqrt{u_{n-3}}$ 的到. 因此问题归结于在 K_{n-2} 上构造 $\sqrt{u_{n-2}}$. 由于 $(\sqrt{u_{n-2}},0)$ 是 $x^2 + y^2 = u_{n-2}$ 与 x 轴的交点, 即经过有限步操作后 c 可构造.

特别地, 如果 c 可构造, 那么 $\mathbb{Q} \subseteq \mathbb{Q}(c) \subseteq K_n$, 从而 $[K_n : \mathbb{Q}(c)][\mathbb{Q}(c) : \mathbb{Q}] = 2^n$, 从而 $[\mathbb{Q}(c) : \mathbb{Q}]$ 也是 2 的幂次.

一、化圆为方

构造一个正方形, 使得其面积为给定的圆的面积: 这等价于 $\sqrt{\pi}$ 是否可构造? 显然是不可以的, 因为 π 在 $\mathbb Q$ 上超越.

二、倍立方体

构造一个立方体,使得其体积为给定立方体的二倍,这等价于 $\sqrt[3]{2}$ 是否可构造?也是不可以的,因为 $[\mathbb{Q}\sqrt[3]{2}:\mathbb{Q}]=3$,不是 2^n .

三、三等分角

给定角 θ , 三等分角即等价于构造 $\cos \theta/3$, 我们有如下的三角公式:

$$\cos\theta = 4\cos^3\theta/3 - 3\cos\theta/3$$

即等价于构造 $4x^3 - 3x - a = 0$ 的根, 我们给出下面的一些例子, 来说明这并非总是可以构造的:

例子. 如果 $a = \cos \frac{\pi}{3} = \frac{1}{2}$, 则此时是不可构造的, 因为等价于构造 $8x^3 - 6x - 1 = 0$ 这个不可约 多项式的根, 这是三次扩张.

例子. 如果 $a = \cos \frac{\pi}{4}$, 此时是可以构造的, 此时下述多项式:

$$4x^3 - 6x - \frac{\sqrt{2}}{2} \in \mathbb{Q}(\sqrt{2})[x]$$

是可约的, $-\frac{\sqrt{2}}{2}$ 是其一个根, 因此实际上此时是二次扩张.

四、尺规作正 n 边形状问题

这等价于构造 $\theta_n = 2\pi/n$, 我们有下述引理:

引理 2.4.8. 尺规可作正 n 边形等价于 $[\mathbb{Q}(\xi_n):\mathbb{Q}]=2^n$.

$$[\mathbb{Q}(\xi_n):\mathbb{Q}(\theta_n)] \le 2$$

即可.

定理 2.4.9. 尺规可作正 n 边形等价于 n 有如下分解:

$$n = 2^k p_1 \dots p_k$$

其中 p_k 是费马素数.

证明:由于 $[\mathbb{Q}(\xi_n):\mathbb{Q}] = \phi(n)$, 令 $n = 2^k p_1^{r_1} \dots p_s^{r_s}$,则

$$\phi(n) = 2^{k-1}(p_1 - 1)p^{r_1 - 1} \dots (p_s - 1)p^{r_s - 1}$$

若为 2 的幂次, 应该有 $r_i \le 1$, p_i 形如 $2^m + 1$, 但是形如 $2^m + 1$ 的素数一定是 $2^{2^n} + 1$ 的形式, 即为费马素数.

注记. 有关费马素数, 是形如 $2^{2^n}+1$ 的素数, 实际上, 现在对费马素数的所知仍然很少, 已知的五个费马素数为 n=0,1,2,3,4 的情况, 对于 n>4 的情况, 所能验证的都不是素数, 但是否仅仅只有这五个费马素数, 还是一个猜想.

2.4.2 根式可解问题

在本节中, 所有的域的特征都是 0.

定义 2.4.10. 有限扩张 E/F 被称为根式扩张 (radical extension), 如果存在 $u_1, \ldots, u_n \in E, m_1, \ldots, m_n \in \mathbb{N}$, 使得:

- 1. $K = F(u_1, \ldots, u_n)$
- 2. $u_1^{m_1} \in F$, 并且对 $2 \le i \le n$ 有 $u_i^{m_i} \in F(u_1, \dots, u_{i-1})$.

即:

$$F \subseteq F(u_1) \subseteq \cdots \subseteq F(u_1, \ldots, u_n)$$

其中每一步被称为单根式扩张 (simple radical extension).

注记. 根式扩张不一定是 Galois 扩张, 例如 $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$.

命题 2.4.11. 有关根式扩张的一些结果:

(1) 如果 $F \subseteq E \subseteq K$, 其中 K/F 是根式扩张, 则 K/E 也是根式扩张, 但 E/F 不一定是根式扩张. 1

¹这条性质与正规扩张类似.

- (2) 如果 K/E, E/F 都是根式扩张, 则 K/F 也是根式扩张.
- (3) 如果 E/F, E'/F 都是根式扩张, 则 EE'/F 也是根式扩张.
- (4) 如果 E/F 是根式扩张,则其 Galois 闭包 K/F 也是根式扩张.

证明: (1). 如果 K/F 是根式扩张, 那么有 $K = F(u_1, ..., u_n)$, 其中 $u_1, ..., u_n$ 满足定义里的要求, 那么自然有 $K = E(u_1, ..., u_n)$, 即 K/E 也是根式扩张.

- (2). 如果 $E = F(u_1, \ldots, u_n), K = E(u_{n+1}, \ldots, u_m),$ 那么 $K = F(u_1, \ldots, u_m),$ 即 K/F 是根式扩张.
- (3). 假设 $E = F(u_1, \ldots, u_n)$, 那么 $EE' = E'(u_1, \ldots, u_n)$, 并且 $u_i^{m_i} \in F(u_1, \ldots, u_{i-1}) \subseteq E'(u_1, \ldots, u_{i-1})$, 从而 EE'/E' 是根式扩张, 从而根据 (2) 可知 EE'/F 也是根式扩张.
- (4). 假设 $E = F(u_1, ..., u_n)$, 其中 $u_i^{m_i} \in F(u_1, ..., u_{i-1})$, P_i 是 u_i 在 F 上的极小多项式, 那么 Galois 闭包 K 由所有 P_i 的根生成. 令 $G = \operatorname{Gal}(K/F)$, 任取 $\tau \in G$, 那么 $\tau(E) = F(\tau(u_1), ..., \tau(u_n))$ 在 F 上也是根式扩张,因为 $\tau(u_i)^{m_i} = \tau(u_i^{m_i}) \in \tau(F(u_1, ..., u_{i-1})) = F(\tau(u_1), ..., \tau(u_{i-1}))$. 从而根据 (3) 有 $K = \prod_{\tau} \tau(E)$ 是根式扩张.

定义 2.4.12. 群 G 被称为可解群 (solvable group), 如果 G 存在一个子群链 $G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\}$, 满足:

- 1. $G_{i+1} \triangleleft G_i$.
- 2. G_i/G_{i+1} 是阿贝尔群.

命题 2.4.13. 有关可解群的一些事实.

- 1. 如果 G 是可解群, H < G, 则 H 也是可解群.
- 2. 如果 G 是可解群, $H \triangleleft G$, 那么 G/H 也是可解群.
- 3. 如果 $H \triangleleft G$, 且 H, G/H 都是可解群, 则 G 也是可解群.
- 4. 如果 G 是可解群,则 G 有个极大正规子群,其指数为素数 p.

命题 2.4.14. E/F 是有限 Galois 根式扩张, 则 Gal(E/F) 是可解群.

证明: 假设 $E = F(u_1, \ldots, u_n)$, 其中 $u_i^{m_i} \in F(u_1, \ldots, u_{i-1})$, 我们对 n 做归纳法. 当 n = 1 时, $E = F(u_1)$, 并且 $u_1^{m_1} \in F$, 注意到 $E \subseteq F(u_1, \xi_{m_1})$, 从而根据命题2.4.13的 (1) 可知只需要证明 $\operatorname{Gal}(F(u_1, \xi_{m_1})/F)$ 是可解群即可. 考虑下图

由于 $F(\xi_{m_1})$ 是 m_1 次本元多项式的分裂域, 从而 $F(\xi_{m_1})/F$ 是 Galois 扩张. 根据 Galois 对应, $Gal(F(u_1,\xi_{m_1})/F(\xi_{m_1}))$ 是 $Gal(F(u_1,\xi_{m_1})/F)$ 的正规子群, 并且

$$Gal(F(\xi_{m_1})/F) \cong Gal(F(u_1, \xi_{m_1})/F)/Gal(F(u_1, \xi_{m_1})/F(\xi_{m_1}))$$

那么根命题2.4.13的 (3), 我们只需要证明 $Gal(F(\xi_{m_1})/F)$ 和 $Gal(F(u_1,\xi_{m_1})/F(\xi_{m_1}))$ 是可解群即可. 考虑如下图

我们有嵌入 $Gal(F(\xi_{m_1})/F) \hookrightarrow Gal(\mathbb{Q}(\xi_{m_1})/\mathbb{Q}) \cong (\mathbb{Z}/m_1\mathbb{Z})^{\times}$,从而 $Gal(F(\xi_{m_1})/F)$ 是阿贝尔群,从而是可解群。另一方面,任取 $\tau \in Gal(F(u_1,\xi_{m_1})/F(\xi_{m_1}))$, τ 完全由其在 u_1 上的值决定,由于 $x^{m_1} - u_1^{m_1}$ 的所有根是 $u_1\xi_{m_1}^k$,其中 $0 \le k \le m_1 - 1$,因此 $\tau(u_1) = u_1\xi_{m_1}^k$,并且由于 $\tau(\xi_{m_1}) = \xi_{m_1}$,从而可知 $Gal(F(u_1,\xi_{m_1})/F(\xi_{m_1}))$ 是一个阿贝尔群,从而是个可解群,至此我们解决了 n = 1 的情况。对于一般情况,我们考虑下图

首先我们有 $Gal(F(u_1, \xi_{m_1})/F)$ 是可解群, 并且根据归纳假设 $Gal(E(\xi_{m_1})/F(u_1, \xi_{m_1}))$ 是可解群, 根据命题2.4.13的 (3) 有 $Gal(E(\xi_{m_1})/F)$ 是可解群, 再根据命题2.4.13的 (1) 有 Gal(E/F) 是可解群.

定义 2.4.15. $f(x) \in F[x]$ 被称为根式可解 (solvable by radical), 如果其分裂域包含在 F 的某个根式扩张中.

引理 2.4.16. E/F 是 Galois 扩张, [E:F] = p 是素数, 假设 F 包含 p 次单位根 ξ_p , 则 E/F 是单根式扩张.

证明: 由于 $Gal(E/F) = \langle \tau \rangle$ 是一个 p 阶循环群, 构造 $u \in E$ 如下:

$$u = \sum_{i=0}^{p-1} \xi_p^i \tau^i(v), \quad v \in K$$

直接计算可得 u 满足 $\tau(u)=\xi_p^{-1}u, \tau(u^p)=u^p,$ 即 E=F(u), 是单根式扩张.

注记. 将 E 视作 F 上的 p 维线性空间, $\tau: E \to E$ 是线性变换, 满足 $\tau^p = 1$, 因此其特征值为 $\{1, \xi_p, \dots, \xi_p^{p-1}\}$, 构造的 u 则是 ξ_p^{-1} 对应的特征向量.

定理 2.4.17. K/F 是有限 Galois 扩张, 并且 Gal(K/F) 是可解群, 那么 K 包含在 F 的某个根式扩张中.

证明: 我们对 [K:F] = n 进行归纳. 假设 n = 2, 由于任何二次方程 $x^2 + ax + b = 0$ 有求根公式, 从而 E/F 本身就是根式扩张. 假设命题对 $[K:F] \le n - 1, n \ge 2$ 时成立, 考虑如下图

由于 Gal(K/F) 是可解群, 根据命题2.4.13的 (4) 可知其存在一个指数是素数 p 的正规子群, 我们将 p 次本元单位根 ξ_p 添加到 E 中, 那么由于 $F \subseteq K$, 则 $[K(\xi_p):E] \leq [F(\xi_p):F]$, 因此 $[K(\xi_p):K] \leq n$. 我们分以下两种情况考虑:

- 1. 如果 $[K(\xi_p):F(\xi_p)] < n$, 那么根据归纳假设 $K(\xi_p)$ 包含在某个 F 的根式扩张 L 中,进 而 L/F 是根式扩张,并且包含 K.
- 2. 如果 $[K(\xi_p):K(\xi_p)] = n$. 我们令 $E = K(\xi_p)^H$, 其中 $H \neq \operatorname{Gal}(K/F)$ 指数为 p 的正规子 群. 考虑下图

由于 H 是正规子群, 从而 $E/F(\xi_p)$ 是次数为 p 的 Galois 扩张, 那么根据引理2.4.16可知其为单根式扩张, 再根据归纳假设有 $K(\xi_p)/E$ 包含在某个根式扩张 L/E 中, 因此 $L/F(\xi_p)$ 也是根式扩张.

定理 2.4.18. $f(x) \in F[x]$ 根式可解当且仅当其对应的 Galois 群 G_f 是一个可解群.

证明: 如果 f(x) 根式可解,因此分裂域 E 包含在 F 的某个根式扩张 K 中,并且不妨假设 K/F 是 Galois 的,因为根据命题2.4.11的(4)根式扩张的 Galois 闭包依然是根式扩张. 根据命题2.4.14有 $\operatorname{Gal}(K/F)$ 是可解群,则 $G_f = \operatorname{Gal}(E/F) \to \operatorname{Gal}(K/F)$,也是一个可解群. 另一方面,根据定理2.4.17即可.

2.5 多项式 Galois 群的计算

在本节中 F 是特征为零的域.

2.5.1 低次数多项式的 Galois 群的计算

多项式的判别式

对于判断一个多项式是否不可约, 我们通常有如下的办法:

- 1. (高斯引理) $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$ 是本原多项式, 则 f(x) 在 \mathbb{Z} 上不可约当 且仅当其在 \mathbb{Q} 上不可约.
- 2. (艾森斯坦判别法) $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$, 如果存在素数 p 使得 $p \nmid a_n, p \mid a_{n-1}, \dots, a_0$, 且 $p^2 \nmid a_0$, 则 f(x) 在 \mathbb{Q} 上不可约.
- 3. 假设 $r \in \mathbb{Q}$ 是 $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$ 的根, 记 r = c/d, (c, d) = 1, 则 $c \mid a_0, d \mid a_n$. 特别地, 如果 $a_n = 1$, 则 $r \in \mathbb{Z}$, 是 a_0 的因子.
- 4. 如果 $f \in \mathbb{Z}[x]$ 在模 p 后不可约, 则 f 本身不可约.

引理 2.5.1. $\deg f(x) = n, f(x) \in \mathbb{Q}[x]$, 是不可约多项式, 则 $G_f \cong H < S_n$, 是一个可递子群, 并且 n 整除 $|G_f|$.

证明: 令 u_1, \ldots, u_n 是 f(x) 全部的根, 任取 $\sigma_f \in G_f$, 其完全被 $\sigma(u_i)$ 所决定, 因此 $G_f \hookrightarrow S_n$, 并且是可递的, 因为可以定义:

$$\sigma': u_i \to u_i$$

将其延拓成 G_f 中的元素. 注意到 $\mathbb{Q} \subseteq \mathbb{Q}(u_1) \subseteq K$, 由于 $[\mathbb{Q}(u_1):\mathbb{Q}]$ 的扩张次数是 n, 因此 n 整 除 $|G_f|$.

定义 2.5.2. 考虑 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in F[x]$, 其所有的根为 $\alpha_i, 1 \leq i \leq n$, 定义:

$$\Delta(f) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)$$
$$D(f) = \Delta(f)^2$$

其中 D(f) 被称为多项式 f 的判别式 (discriminant).

例子. 如果 $f = x^2 + bx + c$, 则 $D(f) = b^2 - 4c$.

例子. 如果 $f = x^3 + px + q$, 则 $D(f) = -4p^3 - 27q^2$.

例子. 如果 $f = x^4 + ax^2 + bx + c$, 则 $D(f) = 144ab^2c - 128a^2c^2 - 4a^3b^2 + 16a^4c - 27b^2 + 256c^3$.

引理 2.5.3. 若 f 是 n 次不可约多项式, 则 $G_f \subseteq A_n$ 当且仅当 $\Delta(f) \in F$.

证明: 任取 $\sigma \in G_f \subseteq S_n$, 有

$$\sigma\Delta(f) = (-1)^{\operatorname{sign}(\sigma)}\Delta(f)$$

因此 $\sigma\Delta(f) = \Delta(f)$ 当且仅当 $\sigma \in A_n$.

低次数多项式的 Galois 群

定理 2.5.4. 如果 $f(x) \in \mathbb{Q}[x]$ 是二次不可约多项式, 则 $G_f \cong \mathbb{Z}/2\mathbb{Z}$.

定理 2.5.5. 如果 $f(x) \in \mathbb{Q}[x]$ 是三次不可约多项式,则 $G_f \cong A_3$ 或 S_3 ,且 $G_f = A_3$ 当且仅当 $\Delta(f) \in \mathbb{Q}$.

例子. 考虑 $x^3-3x+1\in\mathbb{Q}[x]$, 利用第三种方法可以容易判断其不可约, 并且 D(f)=81, 因此 $G_f=A_3$

例子. 考虑 $x^3+3x+1\in\mathbb{Q}[x]$, 利用第三种方法可以容易判断其不可约, 并且 D(f)=-135, 因此 $G_f=S_3$

对于四次不可约多项式 $f(x) \in \mathbb{Q}[x]$ 的情形, 略微有一些复杂, 我们首先将 S_4 的所有子群列举如下:

命题 2.5.6. S_4 的所有子群分类如下:

1. 平凡子群 $\{id\}, S_n$.

- 2. {id, (12)(34)}, 不是可递子群.
- 3. $C_4 = \langle (1234) \rangle$, 是可递子群.
- $4. V_4 = \{id, (12)(34), (13)(24), (14)(23)\},$ 是可递子群,并且还是正规子群.
- 5. $\langle (12), (34) \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, 不是可递子群.
- 6. 二面体群, $D_4 = \{(1234), (13)\}$, 是可递子群, 并且是 S_4 的 Sylow-2 子群.
- 7. $A_3, S_3 \hookrightarrow S_4$, 不是可递子群.
- 8. A₄, 是可递子群.

注记. 因此所有可能作为 Galois 群出现的只有:

$$C_4, V_4, D_4, A_4, S_4$$

引理 2.5.7. 假设 x_1, x_2, x_3, x_4 是 f 的根, 令

$$\begin{cases} \alpha = x_1 x_2 + x_3 x_4 \\ \beta = x_1 x_3 + x_2 x_4 \\ \gamma = x_1 x_4 + x_2 x_3 \end{cases}$$

那么有

$$\mathbb{Q}(x_1,x_2,x_3,x_4)$$
 $\begin{vmatrix} \operatorname{Gal}_f \cap V_4 \\ \mathbb{Q}(lpha,eta,\gamma) \end{vmatrix}$
 $\begin{vmatrix} \operatorname{Gal}_f / \operatorname{Gal}_f \cap V_4 \\ \mathbb{Q} \end{vmatrix}$

证明: 注意到 S_4 可以作用在 $\{\alpha, \beta, \gamma\}$ 上,并且 $\operatorname{Stab}(\alpha) \cap \operatorname{Stab}(\beta) \cap \operatorname{Stab}(\gamma) = V_4$,从而 $\operatorname{Gal}(\mathbb{Q}(x_1, \ldots, x_4)/\mathbb{Q}(\alpha, \beta, \gamma)) = \operatorname{Gal}_f \cap V_4$.

考虑多项式 $g(x)=(x-\alpha)(x-\beta)(x-\gamma)$, 称作 f 的三**次预解** (cubic resolvent), 由于 S_4 作用在 $\{\alpha,\beta,\gamma\}$ 上, 那么任取 $\tau\in S_4$, 有 $\tau(g)=g$, 即 $g(x)\in\mathbb{Q}[x]$. 那么任取 $\tau\in G_f$, $\tau(g)=g$, 即 $g\in\mathbb{Q}[x]$, 其分裂域是 $\mathbb{Q}(\alpha,\beta,\gamma)$. 从而 $\mathbb{Q}(\alpha,\beta,\gamma)/Q$ 是 Galois 扩张, 并且根据 Galois 对应可知 $\mathbb{Q}(\alpha,\beta,\gamma)$ 知 $\mathbb{Q}(\alpha,\beta,\gamma)$ 如 $\mathbb{Q}(\alpha,\beta,\gamma)$ 》 $\mathbb{Q}(\alpha,\beta,\gamma)$ 如 $\mathbb{Q}(\alpha,\beta,\gamma)$ 如 $\mathbb{Q}(\alpha,\beta,\gamma)$ 》 $\mathbb{Q}(\alpha,\beta,\gamma)$ 如 $\mathbb{Q}(\alpha,\beta,\gamma)$ 》 $\mathbb{Q}(\alpha,\beta,\gamma)$ 》 $\mathbb{Q}(\alpha,\beta,\gamma)$ 如 $\mathbb{Q}(\alpha,\beta,\gamma)$ 》 $\mathbb{Q}(\alpha,\beta,\gamma)$ 如 $\mathbb{Q}(\alpha,\beta,\gamma)$ 》 $\mathbb{Q}(\alpha$

引理 2.5.8. f, g 有着相同的判别式, 并且如果 $f = x^4 + bx^3 + cx^2 + dx + e$, 则 $g = x^3 - cx^2 + (bd - 4e)x - b^2e + 4ce - d^2$. 特别地, 如果 $f = x^4 + dx + e$, 则 $g = x^3 - 4ex - d^2$.

定理 2.5.9. 令 $M = \mathbb{Q}(\alpha, \beta, \gamma) = G_q$, $E = \mathbb{Q}(x_1, x_2, x_3, x_4)$, 以及 $[M : \mathbb{Q}] = m$, 则

- $(1) m = 1 \ \forall G_f = V_4.$
- (2) m = 2 时 $G_f = C_4$ 或 D_4 . 并且 $Gal_f = D_4$ 当且仅当 f 在 M 上不可约.
- $(3) m = 3 \ \text{ff} \ G_f = A_4.$
- (4) m=6 时 $G_f=S_4$.

证明: (1). 如果 m=1, 那么 Gal_g 是平凡群, 从而 $\mathrm{Gal}_f \cap V_4 = V_4$, 即 $\mathrm{Gal}_f \subseteq V_4$. 但是 V_4 没有可递的真子群, 从而 $\mathrm{Gal}_f \cong V_4$.

(2). 如果 m = 2, 即 $|Gal_f / Gal_f \cap V_4| = 2$, 我们分如下的情况讨论:

- (a) 如果 $|\operatorname{Gal}_f \cap V_4| = 1$, 那么 $|\operatorname{Gal}_f| = 2$, 但是 S_4 没有这样的可递子群.
- (b) 如果 $|Gal_f \cap V_4| = 2$, 那么 $|Gal_f| = 4$, 这种情况时 $Gal_f = C_4$.
- (c) 如果 $|\operatorname{Gal}_f \cap V_4| = 4$, 那么 $|\operatorname{Gal}_f| = 8$, 这种情况时 $\operatorname{Gal}_f = D_4$.
- (d) 注意到 $Gal_f = D_4$ 当且仅当 $|Gal_f \cap V_4| = 4$, 这也等价于说 [E:M] = 4. 如果 f 在 M 上不可约, 那么 $[E:M] \geq 4$, 但是 [E:M] 本身就 ≤ 4 , 从而 [E:M] = 4. 当 f 在 M 上可约, 那么对于 f 的根 x, 如果 x 的极小多项式是一次的, 那么此时 [E:M] = 1; 如果 x 的极小多项式是二次的, 那么 f 在 M(x) 中有两个根, 不妨是 x_1, x_2 . 利用

$$\begin{cases} \frac{\beta}{x_1} = x_3 + \frac{x_2}{x_1} x_4 \\ \frac{\gamma}{x_1} = \frac{x_2}{x_1} x_3 + x_4 \end{cases}$$

可知 x_3, x_4 也在 M(x) 中, 从而 [E:M]=2. 因此 $\mathrm{Gal}_f=D_4$ 当且仅的 f 在 M 上不可约.

- (3). 如果 m = 3, 那么 $|\operatorname{Gal}_f / \operatorname{Gal}_f \cap V_4| = 3$, 即 3 整除 $|\operatorname{Gal}_f|$. 那么 Gal_f 只能是 A_4 或者 S_4 . 然而 $|S_4/V_4| = 6$, 从而 Gal_f 只能是 A_4 .
 - (4). 如果 m=6, 那么 $|\operatorname{Gal}_f/\operatorname{Gal}_f\cap V_4|=6$, 从而 Gal_f 只能是 S_4 .

例子. $f(x) = x^4 + 4x^2 + 2 \in \mathbb{Q}[x]$, 此时三次预解 $g(x) = x^3 - 4x^2 - 8x + 32 = (x - 4)(x^2 - 8)$, 因此 $M = \mathbb{Q}(\sqrt{2})$, 即 m = 2, 并且 f(x) 在 M 上可以分解成:

$$f(x) = (x^2 + 2 - \sqrt{2})(x^2 + 2 + \sqrt{2})$$

因此 $G_f \cong C_4$

例子. $f(x)=x^4-4x^2+2\in\mathbb{Q}[x]$, 此时三次预解 $g(x)=x^3-8x-4$, 是不可约多项式,根据三次不可约多项式的理论,计算其判别式 D(g)=1616, 因此 $\sqrt{1616}\not\in\mathbb{Q}$, 即此时 $[M:\mathbb{Q}]=6$, 因此 $G_f\cong S_4$.

2.5.2 Galois 群为 S_n 的多项式

引理 2.5.10. 令 $f \in \mathbb{Z}[x]$ 是首一多项式,对于任何给定的素数 p,用 $\bar{f} \in \mathbb{F}_p[x]$ 记 f 模 p 之后的结果,并且假设 \bar{f} 可分,则 $G_{\bar{f}} < G_f$.

引理 2.5.11. $G < S_n$ 是 S_n 可递子群, 假设 G 包含一个 2 轮换 σ 和 n-1 轮换 τ , 那么 $G = S_n$.

证明: 不妨取 $\tau = (23...n)$, 因为任何 n-1 轮换都可以生成它. 并且因为 G 是可递的, 我们可以取 $\sigma = (1a)$, 因为任取 $\sigma' \in S_n$, 我们有:

$$\sigma'(ij)\sigma'^{-1} = (\sigma'(i)\sigma'(j))$$

因此只需根据可递性取 σ' 满足 $\sigma'(i) = 1$, 即可. 用 τ^k 作用在 (1a) 上, 即

$$\tau^k(1a)\tau^{-k} = (1\tau^k(a))$$

可以得到 $(12), (13), \ldots, (1n)$, 即 $G = S_n$.

下面回顾一些有关有限域上的多项式的 Galois 群的结果, 我们知道有限域上的 Galois 扩张的 Galois 群都是循环群, 因此任取 $\bar{f} \in \mathbb{F}_p[x]$ 是一个 d 次不可约多项式, 那么 $G_{\bar{f}} \cong \mathbb{Z}/d\mathbb{Z} < S_d$, 生成元为 Frobenius 同构 $x \mapsto x^p \in G_{\bar{f}}$, 这对应了一个 d 轮换.

更一般的,如果 $\bar{f} = \bar{f}_1 \dots \bar{f}_r \in \mathbb{F}_p[x]$, $G_{\bar{f}}$ 是 S_d 的一个循环子群,其中 $d = d_1 + \dots + d_r$, $\deg \bar{f}_i = d_i, i = 1, \dots, r$,其生成元形如:

$$(d_1$$
轮换 $)(d_2$ 轮换 $)...(d_r$ 轮换 $)$

特别地, 如果 $\bar{f} = \bar{f}_1 \bar{f}_2$, 其中 $d_1 = d - 2$, $d_2 = 2$, 则 $G_{\bar{f}}$ 包含一个 (d - 2) 轮换, 一个 2 轮换.

定理 2.5.12. 对于 $n \ge 1$, 存在一个 \mathbb{Q} 上的 n 次不可约多项式, 使得其 Galois 群为 S_n .

证明:不妨假设 n > 4, 因为对于低次数的情况在上一节已经完全研究清楚.

第一步: 首先构造 n 次多项式 $f_1 \in \mathbb{Z}[x]$, 使得 $f_1 \pmod{2}$ 可以在 $\mathbb{F}_2[x]$ 中分解成 xh_1 , 并且在 $h_1 \in \mathbb{F}_2[x]$ 是不可约的. (这样的 f_1 也是存在的, 因为在 $\mathbb{F}_p[x]$ 中, 任意次数的不可约多项式总是存在的, 因此 h_1 存在, 再将 xh_1 进行提升即可.)

第二步: 再构造 n 次首一多项式 $f_2 \in \mathbb{Z}[x]$, 使得 $f_2 \pmod{3} \in \mathbb{F}_3[x]$ 可以分解为 $h_1'h_2'$, 满足 $\deg h_1' = n - 2$, $\deg h_2' = 2$, 其中 h_2' 是不可约多项式, 而对于 h_1' 来说, 如果 n 是奇数, 则 h_1' 是不可约多项式, 如果 n 是偶数, 则 $h_1' = xh_1''$,其中 h_1'' 是 n-3 次不可约多项式. 并且还要要求 \bar{f}_2 是可分的.

注记. 为什么要如此构造呢? $G_{\bar{t}_2}$ 中的元素形如:

$$\begin{cases} (n-2轮换)(2轮换), & n=2k\\ (n-3轮换)(2轮换), & n=2k+1 \end{cases}$$

不妨记作 $\sigma_1\sigma_2$, 则 n=2k 时, $(\sigma_1\sigma_2)^{n-2}=\sigma_2^{n-2}=\sigma_2$, 同样, n=2k+1 时, $(\sigma_1\sigma_2)^{n-3}=\sigma_2^{n-3}=\sigma_2$, 即使得 $G_{\bar{f}_2}$ 中包含一个 2 轮换.

第三步: 构造不可约多项式 $f \in \mathbb{Z}[x]$ 使得: $f \equiv f_1 \pmod{2}$, $f \equiv f_2 \pmod{3}$. 我们选次数不超过 n-1 的多项式 f_3 , 使得:

$$f = 3f_1 - 2f_2 + 6f_3$$

并且 f 对于素数 5 来说是一个艾森斯坦多项式. 这样的 f_3 是可以找到的: 假设 $3f_1 - 2f_2 = x^n + f_4$, 其中 $f_4 = a_{n-1}x^{n-1} + \cdots + a_0$, 由于 $6 \equiv 1 \pmod{5}$, 那么总可以找到 b_i 使得 $5 \mid a_i + 6b_i$, 如果 $25 \mid a_0 + 6b_0$, 那么用 $b_0 + 5$ 替换 b_0 则有 $25 \nmid a_0 + 6b_0 + 30$.

因此根据引理2.5.10有 $\operatorname{Gal}_{\bar{f}_1}$ 和 $\operatorname{Gal}_{\bar{f}_2}$ 都是 Gal_f 的子群, 从而 Gal_f 含有 2 轮换和 n-1 轮换, 从而根据引理2.5.11可知 $G_f\cong S_n$.

例子. 对于 n=4, 首先在 $\mathbb{F}_2[x]$ 选取 3 次不可约多项式 x^3+x+1 , 令 $f_1=x(x^3+x+1)$ 即可; 在 $\mathbb{F}_3[x]$ 中, 选取 2 次不可约多项式 x^2+x+2 , 那么令 $f_2=x(x-1)(x^2+x+2)$ 即可, 计算:

$$3f_1 - 2f_2 = x^4 + x^2 + 7x$$

不妨取 $f_3 = -x^2 - 2x + 5$, 那么:

$$3f_1 - 2f_2 + 6f_3 = x^4 - 5x^2 - 5x + 30$$

就是我们寻找的 4 次不可约多项式, 其 Galois 群为 S_4 .

如果 n 是一个素数, 则 Galois 群为 S_n 的不可约多项式的存在性的证明则更容易一些:

引理 2.5.13. p 是素数, $G < S_p$, 并且 G 包含一个 2 轮换和 p 轮换, 则 $G = S_p$.

定理 2.5.14. p 是素数, f 是 $\mathbb Q$ 上的不可约 p 次多项式, 恰有两个虚根. 则 $G_f \cong S_p$.

证明: 首先复共扼 $c: a+bi\mapsto a-bi$ 属于 G_f , 对应于一个 2 轮换; 并且柯西定理保证, 对于一个 有限群, 素数 p 整除群的阶数, 则其中包含一个 p 阶的元素, 这对应于 S_p 中的一个 p 轮换. \qed

第三章 无穷 Galois 理论

3.1 Krull 拓扑

在本节中, K/F 是 Galois 扩张, 并且我们假定读者对拓扑群以及逆极限有一些基础, 见附录A.1以及B.1.

定义 3.1.1. Gal(K/F) 上的 **Krull 拓扑** (Krull topology)如下定义: $1 \in Gal(K/F)$ 的开邻域基 N 定义为:

$$\{Gal(K/E): E/F$$
是有限 Galois 扩张 $\}$

由这个开邻域基诱导的拓扑称为 Gal(K/F) 上的 Krull 拓扑.

注记. 我们要验证上述给出的 \mathbb{N} 真的是 $\mathbb{1}$ 的一个开邻域基: 首先 $\mathbb{1}$ 在其中式显然的,并且任取 E/F, E'/F 是有限 Galois 扩张,那么根据命题2.2.4可知 EE'/F 也是有限 Galois 扩张,并且 $\operatorname{Gal}(K/EE') = \operatorname{Gal}(K/E) \cap \operatorname{Gal}(K/E')$,从而 \mathbb{N} 中两个开邻域的交还是一个开邻域,即构成了一个开邻域基.

引理 3.1.2. 任取 $F \subseteq E \subseteq K$, E/F 是有限 Galois 扩张, 则

$$\varphi: \operatorname{Gal}(K/F) \to \operatorname{Gal}(E/F)$$

$$\sigma \mapsto \sigma|_E$$

是一个连续的满射.

证明:满射是显然的,因为任何 F 自同构 $\sigma: E \to E$ 可以延拓到 $\sigma': K \to K$.

由于 Gal(E/F) 是有限群, 其上带有离散拓扑, 因此只需要证明 $\ker \varphi$ 是开集即可. $\tau \in \ker \varphi$ 当且仅当 $\tau|_E = \mathrm{id}$,这也当且仅当 $\tau \in Gal(K/E)$. 根据 Krull 拓扑的定义, 其本身就是开集. □ 注记. 实际上, Krull 拓扑可以视作使得上述类型的映射连续的最粗糙的拓扑.

定理 3.1.3. 有如下作为拓扑群的同构

$$\tau: \operatorname{Gal}(K/F) \xrightarrow{\cong} \varprojlim \operatorname{Gal}(E/F) \hookrightarrow \prod_{F \subseteq E \subseteq K \atop E/F \not = \mathbb{R} \atop \text{Galois } f \not = \mathbb{R}} \operatorname{Gal}(E/F)$$

证明: 先证明作为群是同构的: 首先任取 $\sigma \in \operatorname{Gal}(K/F), \tau(\sigma) = (\sigma|_E) \in \varprojlim \operatorname{Gal}(E/F),$ 这是因为如果 $E \subseteq E'$, 那么 $(\sigma|_E)|_{E'} = \sigma|_{E'}$; 反之, 任取 $(\sigma_E) \in \varprojlim \operatorname{Gal}(E/F),$ 构造 $\sigma \in \operatorname{Gal}(K/F)$ 使

得 $\sigma|_E = \sigma_E$ 如下: 任取 $x \in K$, 选择足够大的 E, 使得 E/F 是有限 Galois 扩张, 并且 $x \in E$, 定义为:

$$\sigma(x) := \sigma_E(x)$$

这是良定义的, 因为任取包含 x 的 F 另一个有限 Galois 扩张 E', 可以考虑 EE'/F 这个 Galois 扩张, 并且:

$$\sigma_E(x) = \sigma_{EE'}(x) = \sigma_{E'}(x)$$

下面证明拓扑上是同胚的: 首先 τ 是连续的, 因为 $\operatorname{Gal}(K/F) \to \varprojlim \operatorname{Gal}(E/F) \to \operatorname{Gal}(E/F)$ 是连续的. 下面只需要证明任取 $\operatorname{Gal}(K/F)$ 的开邻域 $U - \operatorname{Gal}(K/E')$, 验证 $\tau(U)$ 是开集即可:

$$\tau(\operatorname{Gal}(K/E')) = (\prod_{E \subseteq E'} \{1\} \times \prod_{E \not\subseteq E'} \operatorname{Gal}(E/F)) \cap \varprojlim \operatorname{Gal}(E/F)$$

推论 3.1.4. Gal(E/F) 带有 Krull 拓扑是一个射有限群.

注记. 令 $\mathcal{N}' = \{ \operatorname{Gal}(K/E) : E/F$ 是有限扩张 $\}$,如果我们定义 \mathcal{N}' 作为 1 的开邻域基,则其中 "看似包含了更多的开集",但实际上是相同的拓扑: 考虑 E 的 Galois 闭包 E',则我们有包含 关系 $\operatorname{Gal}(K/E') < \operatorname{Gal}(K/E)$. 然而在拓扑群中,如果 H' < H,且 H' 是开集,则 H 也是开子 集(利用陪集分解),因此 $\operatorname{Gal}(K/E')$ 是开集可以推出 $\operatorname{Gal}(K/E)$ 是开集。因此 \mathcal{N} 与 \mathcal{N}' 生成的拓扑是一致的.

推论 3.1.5. 如果 K/F 是有限 Galois 扩张,则 Gal(K/F) 上的 Krull 拓扑就是离散拓扑.

推论 3.1.6. 任取 $F \subset E \subset K$, 则 Gal(K/E) 是闭集.

证明: 实际上 E 可以写成 F 上所有满足 $F \subset L \subset E$ 的有限扩张 L 的复合, 因此:

$$\operatorname{Gal}(K/E) - \bigcap \operatorname{Gal}(K/L)$$

由于 $\mathrm{Gal}(K/L)$ 是开集,那么根据引理 $\mathrm{A.1.5}$ 也是闭集,因此 $\mathrm{Gal}(K/E)$ 作为任意闭子集的交也是闭的.

3.2 无穷 Galois 理论

下面来介绍无穷 Galois 理论的主要内容:

命题 3.2.1. K/F 是 Galois 扩张, 则

- 1. $K^{\operatorname{Gal}(K/F)} = F$
- 2. $\diamondsuit H < \operatorname{Gal}(K/F), \ M \ \operatorname{Gal}(K/K^H) = \overline{H}$

证明: (1). 任取 $x \in K$, 考虑其包含在 F 的某个有限 Galois 扩张 E 中, 如果 $x \in K^{\operatorname{Gal}(K/F)}$, 则 $x \in E^{\operatorname{Gal}(E/F)} = F$

(2). 根据推论3.1.6, $\operatorname{Gal}(K/K^H)$ 是闭集, 因此 $\bar{H} \subseteq \operatorname{Gal}(K/K^H)$; 另一方面, 任取 $\sigma \notin \bar{H}$, 证明 $\sigma \notin \operatorname{Gal}(K/K^H)$, 由于 $\sigma \notin \bar{H}$, 则存在 $\operatorname{Gal}(K/E)$, 其中 E/F 是有限 Galois 扩张, 使得 $\sigma \operatorname{Gal}(K/E) \cap H = \emptyset$, 考虑下面的短正合列:

$$1 \to \operatorname{Gal}(K/E) \to \operatorname{Gal}(K/F) \stackrel{\varphi}{\to} \operatorname{Gal}(E/F) \to 1$$

上述条件等价于 $\varphi(\sigma) \notin \varphi(H)$, 根据有限 Galois 对应:

$$\varphi(H) = \operatorname{Gal}(E/E^{\varphi(H)})$$

即存在 $x \in E^{\varphi(H)} = K^H$, 使得 $\varphi(\sigma)$ 移动 x, 因此 $\sigma \notin \operatorname{Gal}(K/K^H)$

定理 3.2.2. K/F 是 Galois 扩张,则存在如下的一一对应:

$$\{\operatorname{Gal}(K/F)$$
的闭子群 $\} \stackrel{1-1}{\Longleftrightarrow} \{F \subseteq E \subseteq K\}$

并且:

- 1. H 是开子群当且仅当 K^H 在 F 上次数有限;
- 2. H 是正规子群当且仅当 K^H/F 是 Galois 扩张, 并且 $Gal(K^H/F) \cong G/H$

证明: ——对应是命题3.2.1的直接结果, 需要证明的只有 (1), 其余的都与有限 Galois 对应相同: 根据拓扑群的结果, 由于 Gal(K/F) 是紧群, 因此 H 是开子群当且仅当 H 是有限指数的闭子群, 并且由于 H 的指数等于 $[K^H:F]$, 因此 H 是开子群当且仅当 K^H/F 是有限扩张;

例子. 固定 p, 对任意 n, 用 ξ_{p^n} 记 p^n 次本原单位根,则令 $K = \bigcup_n \mathbb{Q}(\xi_{p^n})$,则

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \varprojlim_{n} (\mathbb{Z}/p^{n}\mathbb{Z})^{\times} = \mathbb{Z}_{p}^{\times}$$

例子. $\mathbb{F}_{p^n}/\mathbb{F}_p$ 是有限 Galois 扩张, 并且 $\bigcup_{n>1} \mathbb{F}_{p^n} = \bar{\mathbb{F}}_p$, 则

$$\operatorname{Gal}(\mathbb{F}_p/\mathbb{F}_p) \cong \varprojlim_n (\mathbb{Z}/n\mathbb{Z}) = \hat{\mathbb{Z}}$$

第四章 Galois 上同调与 Kummer 理论

4.1 范与迹

定义 4.1.1. E/F 是有限扩张, 对于 $\alpha \in E$, 其**范数** (norm)定义为 F-线性映射 $m_{\alpha}(x) = \alpha x$ 的行列式, 即

$$N_{E/F}(\alpha) = \det(m_{\alpha})$$

其迹 (trace)定义为

$$\operatorname{Tr}_{E/F}(\alpha) = \operatorname{trace}(m_{\alpha})$$

注记. 根据线性代数的知识, 我们有

- 1. $N_{E/F}$ 是可乘的.
- 2. 如果 $a \in F$, 则 $N_{E/F}(a\alpha) = a^{[E:F]} N_{E/F}(\alpha)$.
- 2. $Tr_{E/F}$ 是可加的.
- 4. 如果 $a \in F$, 则 $\mathrm{Tr}_{E/F}(a\alpha) = a \, \mathrm{Tr}_{E/F}(\alpha)$.
- 5. 如果 $\alpha \in F$, 则

$$N_{E/F}(\alpha) = \alpha^{[E:F]}$$

$$Tr_{E/F}(\alpha) = [E:F]\alpha$$

引理 4.1.2. 如果 $F \subseteq E \subseteq K, \alpha \in E, M$

$$\begin{aligned} \mathbf{N}_{K/F}(\alpha) &= \mathbf{N}_{E/F}(\alpha)^{[K:E]} \\ \mathbf{Tr}_{K/F}(\alpha) &= [K:E] \, \mathbf{Tr}_{E/F}(\alpha) \end{aligned}$$

证明: 假设 $\{x_1, \ldots, x_n\}$ 是 E/F 的一组基, $\{y_1, \ldots, y_n\}$ 是 K/E 的一组基, 那么根据线性代数的结果 $\{x_iy_i\}$ 是 K/F 的一组基. 如果 $A \in M_{n \times n}(F)$ 是 m_{α} 在 E/F 上对应的矩阵, 即

$$\alpha \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

那么则有

$$\alpha \begin{pmatrix} x_1y_1 \\ x_2y_1 \\ \vdots \\ x_ny_1 \\ x_1y_2 \\ \vdots \\ x_ny_2 \\ \vdots \\ x_ny_m \end{pmatrix} = \begin{pmatrix} A \\ A \\ & \ddots \\ & & A \end{pmatrix} \begin{pmatrix} x_1y_1 \\ x_2y_1 \\ \vdots \\ x_ny_1 \\ x_1y_2 \\ \vdots \\ x_ny_2 \\ \vdots \\ x_ny_m \end{pmatrix}$$

从而有 $\mathcal{N}_{K/F}(\alpha) = \det(A)^m = N_{E/F}(\alpha)^{[K:E]}$ 以及 $\mathrm{Tr}_{K/F}(\alpha) = m\,\mathrm{Tr}_{E/F}(\alpha) = [K:E]\,\mathrm{Tr}_{E/F}(\alpha).$

注记. 实际上, 上述引理是如下传递性的特殊情况.

$$\begin{aligned} \mathbf{N}_{K/F} &= \mathbf{N}_{K/E} \circ \mathbf{N}_{E/F} \\ \mathbf{Tr}_{K/F} &= \mathbf{Tr}_{K/E} \circ \mathbf{Tr}_{E/F} \end{aligned}$$

引理 4.1.3. 如果 $E = F(\alpha)$, α 在 F 上的极小多项式为 $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, 则

$$N_{E/F}(\alpha) = (-1)^n a_0$$

$$Tr_{E/F}(\alpha) = -a_{n-1}$$

证明: 选取基 $\{1,\alpha,\ldots,\alpha^{n-1}\}$ 即可.

命题 4.1.4. 如果 E/F 是有限扩张, 任取 $\alpha \in K$, 则

$$N_{E/F}(\alpha) = \prod_{\sigma \in \operatorname{Hom}_F(E,\bar{F})} \sigma(\alpha)^{[E:F]_i}$$

$$\operatorname{Tr}_{E/F}(\alpha) = [E:F]_i \sum_{\sigma \in \operatorname{Hom}_F(E,\bar{F})} \sigma(\alpha)$$

其中 $[K:F]_i$ 为扩张的纯不可分次数 1 .

证明: 下面只对范数证明, 迹的证明是类似的: 任取 $\alpha \in E$, 考虑域扩张 $F \subseteq F(\alpha) \subseteq E$, 根据引 理4.1.2有:

$$N_{E/F}(\alpha) = N_{F(\alpha)/F}(\alpha)^{[E:F(\alpha)]}$$

而考虑满射:

$$\operatorname{Hom}_F(E,\bar{F}) \twoheadrightarrow \operatorname{Hom}_F(F(\alpha),\bar{F})$$

其每个纤维都包含 $[E:F(\alpha)]$ 个元素: 这是因为 $\operatorname{Hom}_F(E,\bar{F})=\operatorname{Hom}_F(E_s,\bar{F})$ 中恰有 $[E:F]_s$ 个元素, $\operatorname{Hom}_F(F(\alpha),\bar{F})=\operatorname{Hom}_F(F(\alpha)_s,\bar{F})$ 中恰有 $[F(\alpha):F]_s$ 个元素. 因此:

$$(\prod_{\sigma \in \operatorname{Hom}_F(K,\bar{F})} \sigma(\alpha))^{[K:F]_i} = \prod_{\operatorname{Hom}_F(F(\alpha),\bar{F})} \sigma(\alpha)^{[K:F(\alpha)]_s[K:F]_i}$$

¹见定义1.3.19.

由于 $[K:F(\alpha)]=[K:F(\alpha)]_i[K:F(\alpha)]_s$, 因此只需要证明:

$$N_{F(\alpha)/F}(\alpha) = \prod_{\text{Hom}_F(F(\alpha),\bar{F})} \sigma(\alpha)^{[F(\alpha):F]_i}$$

即单扩张的情形, 而根据引理4.1.3直接可以得到想要的结果.

推论 4.1.5. E/F 是有限扩张,则 E/F 可分当且仅当 $\mathrm{Tr}_{E/F}$ 是满射,这也当且仅当 $\mathrm{Tr}_{E/F}$ 是非零映射.

证明:根据线性代数的知识, $\operatorname{Tr}_{E/F}$ 非零当且仅当其为满射是显然的. 如果 E/F 不可分, 假设 $\operatorname{char} F = p$, 则根据命题4.1.4可知 $\operatorname{Tr}_{E/F}(\alpha)$ 中含有 $[K:F]_i$ 作为因子, 然而其为 p 的幂次, 因此 $\operatorname{Tr}_{E/F}(\alpha)$ 恒为零映射. 另一方面, 如果 E/F 是可分的, 需要证明 $\operatorname{Tr}_{E/F}$ 不是零映射, 这只需要寻找 α 使得:

$$\sum_{\sigma \in \operatorname{Hom}_F(E,\bar{F})} \sigma(\alpha) \neq 0$$

命题 4.1.6. E/F 是有限域上的有限扩张,则 $N_{E/F}$, $Tr_{E/F}$ 都是满射.

证明: 不妨记 $E = \mathbb{F}_{q^d}$, $F = \mathbb{F}_q$. 根据推论4.1.5可知 $\mathrm{Tr}_{E/F}$ 是满射, 因为有限域上的扩张都是可分的. 另一方面, 注意到 $\mathrm{N}_{E/F}$ 是可乘的, 并且 E^{\times} 是循环群, 因此我们只需要考虑 $\mathrm{N}_{E/F}$ 在 x 上的取值即可:

$$N_{E/F}(x) = \prod_{\sigma \in Gal(E/F)} \sigma(x) = x \cdot x^q \cdot \dots \cdot x^{q^{d-1}} = x^{\frac{q^d - 1}{q - 1}} := a \in \mathbb{F}_q^{\times}$$

并且 a 的阶为 q-1, 而注意到 \mathbb{F}_q^{\times} 是一个 q-1 阶循环群, 因此 a 是其一个生成元, 因此 $\mathbf{N}_{K/F}$ 也是满射.

注记. 希尔伯特 90 问题断言: 如果 $\operatorname{Gal}(E/F) = \langle \sigma \rangle$ 是一个循环群, $\alpha \in E$ 满足其范数为 1, 则 $\alpha = \frac{\sigma(\beta)}{\beta}$, 对于某个 $\beta \in E^{\times}$ 成立. 对于有限域来说, 这个命题的答案可以显式的构造出来: 不妨沿用命题4.1.6中的记号, 如果 $\alpha = x^k$ 满足范数为 1, 则由于可乘性:

$$N_{E/F}(\alpha) = N_{E/F}(x)^k = a^k = 1$$

因此 $q-1 \mid k$, 不妨记作 k = (q-1)r, 则

$$\alpha = x^{(q-1)r} = \frac{x^{qr}}{x^r} = \frac{\sigma(x^r)}{x^r}$$

4.2 Galois 上同调

定义 4.2.1. G 是一个有限群,一个 G 模 (module)是指一个阿贝尔群 A 以及一个 G 作用 $\mu:G\times A\to A$ 满足:

- $1. \ 1 \cdot a = a$
- 2. $gg' \cdot a = g \cdot (g' \cdot a)$

3. $g \cdot (a + a') = g \cdot a + g \cdot a'$

并且 G 模之间的**态射** (morphism)为是满足 $f(ga) = gf(a), g \in G, a \in A$ 的群同态.

注记. 模论中的结果告诉我们阿贝尔群可以与 \mathbb{Z} 模等同起来,则上述定义的 G 模可以与 $\mathbb{Z}[G]$ 模等同起来,其中 $\mathbb{Z}[G]=\{\sum_{g\in G}a_gg\mid a_g\in\mathbb{Z}\}$ 是 G 的群代数。

注记. 在上述定义中我们为了叙述方便假设 G 是乘法群, A 是加法群, 这并不关键, 之后可能会根据情况需要而调整, 请读者留心.

例子. E/F 是有限 Galois 扩张, 令 $G = \operatorname{Gal}(E/F)$, 则 $G \curvearrowright (E,+), G \curvearrowright (E^{\times},\times)$ 都是 G 模.

定义 4.2.2. 给定有限群 G 和群 A, 定义

$$C^{n}(G, A) = \begin{cases} A & n = 0\\ \{f : G^{n} \to A\} & n \ge 1 \end{cases}$$

并且定义 $d^n: C^n(G,A) \to C^{n+1}(G,A)$ 如下:

$$\begin{cases} d^{0}a(g) = ga - a \\ d^{n}f(g_{1}, \dots, g_{n+1}) = g_{1}f(g_{2}, \dots, g_{n+1}) + \sum_{i=1}^{n} (-1)^{i}f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{n+1}) + (-1)^{n+1}f(g_{1}, \dots, g_{n}) \end{cases}$$

可以验证, (C, d) 构成了一个链复形, 定义上**群的上同调** (group cohomology)²为:

$$H^n(G, A) = \frac{\ker d^n}{\operatorname{im} d^{n-1}}$$

例子. 当 n=0 时, $H^0(G,A)=\ker d^0$. 若 $a\in\ker d^0$, 当且仅当对任意的 $g\in G$, 有 ga-a=0, 当且仅当 $a\in A^G$, 即:

$$H^0(G, A) = A^G$$

这实际上与一般的导出函子是一致的,零阶导出函子就是其自身.

例子. 当 n=1 时:

$$d^{1}f(g_{1}, g_{2}) = g_{1}f(g_{2}) - f(g_{1}g_{2}) + f(g_{2})$$

因此:

$$\ker d^1 = \{ f : G \to A \mid f(g_1g_2) = f(g_1) + g_1f(g_2) \}$$

满足上述条件的函数也被称为**交错同态** $(crossed\ homomorphism)$. 特别地, 当 A 是一个平凡 G 模时, 一个交错同态就是群同态. 而

$$\operatorname{im} d^0 = \{ f : G \to A \mid$$
 存在 $a \in A$ 使得 $f(g) = ga - a \}$

注记. 如果 $f:G\to A$ 是一个交错同态, 则有下面的观察:

(1)

$$f(1) = f(1) + 1 \cdot f(1) = 2f(1) \implies f(1) = 0$$

即 f 将 G 中的单位元映成 A 中的单位元.

 $^{^2}$ 在同调代数中, 函子 $A \to A^G = \{a \in A \mid ga = a\}$ 是左正合函子, 则 $H^n(G,A)$ 被定义为这个函子的右导出函子.

$$f(g^2) = f(g) + g \cdot f(g) = (1+g) \cdot f(g)$$

归纳地可以得到:

$$f(g^n) = (1 + g + \dots + g^{n-1})f(g)$$

假设 G 是一个 n 阶循环群, 生成元为 g, 则

$$0 = f(1) = f(g^n) = (1 + g + \dots + g^{n-1})f(g)$$

反之, 如果 $x \in A$ 满足 $(1+g+\cdots+g^{n-1})x=0$, 则 f(g):=x 定义了交错同态 $f:G\to A$.

定理 4.2.3 (Hilbert 90). E/F 是有限 Galois 扩张, 则

$$H^1(\operatorname{Gal}(E/F), E^{\times}) = 0$$

$$H^1(\operatorname{Gal}(E/F), E^+) = 0$$

前者称为乘法版本,后者称为加法版本.

证明: 我们先来证明乘法版本: 令 $f:G\to E^{\times}$ 是交错同态, 那么任取 $\tau\in G, f(\tau)\neq 0$, 根据引理2.1.6可知 $\sum_{\tau\in G}f(\tau)\tau$ 是非零的, 即存在 $a\in E^{\times}$ 使得

$$\beta = \sum_{\tau \in G} f(\tau)\tau(a) \neq 0$$

因此

$$\sigma(\beta) = \sum_{\tau \in G} \sigma f(\tau)(\sigma \tau)(\gamma)$$
$$= \sum_{\tau \in G} f^{-1}(\sigma) f(\sigma \tau)(\sigma \tau)(\gamma)$$
$$= f^{-1}(\sigma)\beta$$

即 $f(\sigma)=\beta/\sigma(\beta)$. 令 $x=\beta^{=1}$, 则 $f(\sigma)=\sigma(x)/x$, 即任何交错同态都落在 $\operatorname{im} \operatorname{d}^0$ 中,即上同调群平凡.

现在来证明加法版本: 令 $f:G\to E$ 是交错同态, 不妨假设 $f\not\equiv 0$, 那么任取 $\tau\in G, f(\tau)$ 不全为零, 同样根据引理2.1.6有 $a\in E$ 使得

$$\beta = \sum_{\tau \in G} f(\tau)\tau(a) \neq 0$$

另外, 我们取 $b \in E^{\times}$ 满足 $\mathrm{Tr}_{E/F}(b) \neq 0$, 并且根据推论4.1.5, 这样的 b 是存在的. 令 $\mu = \sum_{\tau \in G} f(\tau)\tau$, 如果 $\mu(a+b) = 0$, 那么 $\mu(b) = -\mu(a) \neq 0$; 如果 $\mathrm{Tr}_{E/F}(a+b) = 0$, 那么 $\mathrm{Tr}_{E/F}(a) \neq 0$; 如果 $\mu(a+b) \neq 0$ 并且 $\mathrm{Tr}_{E/F}(a+b) \neq 0$, 那么我们用 $\mu(a+b)$ 代替 β . 如上分

析说明我们总可以找到 $a \in E^{\times}, \mu(a) \neq 0$ 并且 $\mathrm{Tr}_{E/F}(a) \neq 0$, 令 $\beta = \mu(a)$, 那么

$$\begin{split} \sigma(\beta) &= \sum_{\tau \in G} \sigma(f(\tau)\tau(a)) \\ &= \sum_{\tau \in G} \sigma(f(\tau))\sigma\tau(a) \\ &= \sum_{\tau \in G} (f(\sigma\tau) - f(\sigma))\sigma\tau(a) \\ &= \beta - f(\sigma) \sum_{\tau \in G} \sigma\tau(a) \\ &= \beta - f(\sigma) \operatorname{Tr}_{E/F}(a) \end{split}$$

则
$$f(\sigma) = \operatorname{Tr}_{E/F}(a)^{-1}(\beta - \sigma(\beta))$$
, 取 $x = \frac{-\beta}{\operatorname{Tr}_{E/F}(a)}$, 则有 $f(\sigma) = \sigma(x) - x$.

定理 4.2.4 (Hilbert 90). E/F 是有限 Galois 扩张, 并且 $G = Gal(E/F) = \langle \sigma \rangle$ 是 n 阶循环群, 则

- $(1) 如果 \alpha \in E^{\times} 满足范数为 1, 则 \alpha = \frac{\sigma(\beta)}{\beta}, \beta \in E^{\times}.$
- (2) 如果 $\alpha \in E$ 满足迹为 0, 则 $\alpha = \sigma(\beta) \beta, \beta \in E$.

证明: 由于 (1) 和 (2) 的证明几乎完全一致, 在这里我们给出 (2) 的证明: 如果 $\alpha \in E$ 满足迹为 零, 则

$$0 = \operatorname{Tr}_{K/F}(\alpha) = \sum_{\tau \in G} \tau \alpha = \sum_{i=0}^{n-1} \sigma^{i} \alpha$$

考虑 $f: G \to K$, 定义为 $\sigma^i \mapsto (1 + \sigma + \dots + \sigma^{i-1})x$, 可以直接验证³其为一个是一个交错同态. 根据定理4.2.3可知存在 $\beta \in E$ 使得 $f(\sigma^k) = \sigma^k(\beta) - \beta$ 对任意的 $0 \le k \le n-1$ 成立. 特别地, $\alpha = f(\sigma) = \sigma(\beta) - \beta$.

推论 4.2.5. 令 $a, b \in \mathbb{Q}$, 满足 $a^2 + b^2 = 1$, 则存在 $c, d \in \mathbb{Z}$ 使得

$$a = \frac{c^2 - d^2}{c^2 - d^2}, \quad b = \frac{-2cd}{c^2 + d^2}$$

证明:考虑 $\mathbb{Q}(i)/\mathbb{Q}$, 取 $a+bi \in \mathbb{Q}(i)$ 满足范数为 1, 则存在 c+di 使得:

$$a + bi = \frac{c - di}{c + di}$$

实部虚部对应即可.

4.2.1 高阶上同调

定义 4.2.6. H < G 是子群, $A \in H$ 模, 则定义诱导模 (induced module)如下:

$$\operatorname{Ind}_H^G A = \operatorname{Hom}_{\mathbb{Z}[H]}(\mathbb{Z}[G], A)$$

定理 4.2.7 (Shapiro).

$$H^n(G,\operatorname{Ind}_H^GA)\cong H^n(H,A)$$

 $^{^3}$ 这里用到了 α 的迹为零这个条件.

定理 4.2.8 (正规基定理). K/F 是有限 Galois 扩张,则存在 K/F 的一族正规基,即存在 $\alpha \in K^{\times}$,使得 $\{\sigma\alpha \mid \alpha \in G\}$ 构成了 K/F 的一族基.

推论 4.2.9. 作为 G 模, 有同构:

$$(K,+) \cong \operatorname{Ind}_{\{1\}}^G F$$

定理 4.2.10. K/F 是有限 Galois 扩张, 则 $H^n(Gal(K/F), K^+) = 0, n \ge 1$.

证明:

$$H^n(Gal(K/F), K^+) = H^n(\{1\}, F) = 0$$

注记. 一般来说, $H^2(\operatorname{Gal}(K/F), K^{\times}) \neq 0$. 有如下结果: $H^2(\operatorname{Gal}(F^{sep}/F), F^{sep})$ 可以建立起与 F 上的中心单代数的等价类的——对应.

4.2.2 连续上同调

在本节中, G是一个射有限群.

定义 4.2.11. A 被称为离散 G 模 (discrete G-module), 如果满足下列等价条件中的某一条:

- 1. $A = \bigcup A^U$, 其中 U 跑遍 G 的所有开的正规子群.
- 2. $G \times A \to A$ 是连续的 (A 上赋予离散拓扑).

例子. K/F 是 Galois 扩张, $Gal(K/F) \curvearrowright K$ 是离散模. 这是因为任取 $a \in K$, 存在 E/F 是有限 Galois 扩张, 使得 $a \in E$, 并且 Gal(K/E) 是固定 a 的 Gal(K/F) 的开集.

引理 4.2.12. A 是一个离散 G 模, 则

$$C^n_{cont}(G,A) = \{ f : G^n \to A \mid f \not \in \mathfrak{F} \} = \varinjlim_{U \neq G} C^n_{cont}(G/U,A)$$

证明:

定义 4.2.13. 将定义4.2.2中的 $C^n(G,A)$ 换成 $C^n_{cont}(G,A)$, 则可以定义**连续上同调** (continous cohomology) $H^n_{cont}(G,A)$.

命题 4.2.14. A 是离散 G 模, 则

$$H_{cont}^{n}(G, A) = \varinjlim_{U \neq G} H^{n}(G/U, A^{U})$$

定理 4.2.15. K/F 是 Galois 扩张, 则

$$H^1(\operatorname{Gal}(K/F), K^{\times}) = 0$$

$$H^n(\operatorname{Gal}(K/F), K^+) = 0, \quad n \ge 1$$

4.3 Kummer 理论

在本节中 4 , 域 F 总是满足如下两条假设:

- (1) 包含 n 次本原单位根, 从而包含所有的 n 次单位根, 我们用 μ_n 记全体 n 次单位根组成的 群.
- (2) $x^n 1$ 在 F 中有 n 个不同的根.

引理 4.3.1. 令 $a \in F^{\times}$, m 是 a 在 $F^{\times}/(F^{\times})^n$ 中的阶数, 那么 $x^n - a$ 的每个不可约因子都是 $x^m - b, b \in F$ 的形式.

证明: 即证明, 如果 α 是 $P(x) = x^n - a$ 在 \bar{F} 中的根, 则其极小多项式为 $x^m - b, b \in F$ 的形式: 首先, 由于 $a^m \in (F^\times)^n$, 因此存在 $b \in F^\times$, 使得 $a^m = b^n$, 而 $\alpha^n = a$, 因此 $\alpha^{nm} = b^n$, 因此 $(\alpha^m/b)^n = 1 \implies \alpha^m/b \in \mu_n$, 因此 $\alpha^m \in F^\times$, 因此 α 的极小多项式 $Q(x) \mid x^m - b$, 下面只需要证明 $\deg Q(x) = m$ 即可:

由于 $P(x) = \prod_{i=0}^{n-1} (x - \alpha \xi_n^i)$, 因此 $Q(x) = \prod_{i \in S} (x - \alpha \xi_n^i)$, $|S| = \deg Q(x)$. 将 Q(x) 展开,考虑其常数项则有 $\alpha^{\deg q(x)} \xi_n^i \in F \implies \alpha^{\deg q(x)} \in F$, 不妨用 d 记 $\deg Q(x)$, 因此:

$$a^d = (\alpha^n)^d = (\alpha^d)^n \in (F^\times)^n$$

因此 $m \mid d$, 因此 m = d

命题 4.3.2. $E = F(\alpha)$, 其中 $\alpha^n = a \in F^{\times}$, 则 E/F 是一个次数为 m 的循环 Galois 扩张, 其中 m 是 a 在 $F^{\times}/(F^{\times})^n$ 中的阶数.

证明: 首先引理4.3.1可知 E/F 的扩张次数就是 m. 由于 x^n-a 的所有根是 $\{\alpha \xi_n^i \mid 0 \le i \le n-1\}$ 是不同的, 进而 α 的极小多项式也没有重根, 从而 α 是 F 上的可分元, 根据命题1.3.12可知 E/F 是可分扩张; 并且由于 E 是 x^n-a 的分裂域, 从而根据定理1.3.2可知 E 是正规扩张, 从而 E/F 是 Galois 扩张. 最后我们来证明其为循环扩张: 考虑映射

$$\varphi : \operatorname{Gal}(E/F) \to \mu_n$$

$$\sigma \mapsto \frac{\sigma(\alpha)}{\alpha}$$

这定义了一个群同态, 因为:

$$\varphi(\sigma\tau) = \frac{\sigma\tau(\alpha)}{\alpha} = \frac{\sigma\varphi(\tau)}{\alpha} = \varphi(\tau)\frac{\sigma(\alpha)}{\alpha} = \varphi(\sigma)\varphi(\tau)$$

并且这是个嵌入,因为如果 $\varphi(\sigma) = 1$,即 $\sigma(\alpha) = \alpha$,这意味着 σ 固定 E,从而根据定理2.2.1可知 $\sigma = \mathrm{id}$. 因此 $\mathrm{Gal}(E/F)$ 嵌入到循环群 μ_n 中,也是一个循环群.

Kummer 理论, 实际上给出了上述命题的逆命题.

定理 4.3.3. E/F 是有限 Galois 扩张, 其 Galois 群为 n 阶循环群 $\langle \sigma \rangle$, 则 $E = F(\alpha), \alpha^n \in F^{\times}$.

⁴对于一般的域也有 Kummer 理论, 但为了方便起见, 我们在这种域上考虑.

证明: 取 ξ_n 是一个 n 次本原单位根, 则

$$N_{K/F}(\xi_n) = \xi_n^{[K:F]} = 1$$

因此根据定理4.2.4, 即希尔伯特 90 可知存在 $\alpha \in E^{\times}$, 使得 $\xi_n = \frac{\alpha(\sigma)}{\alpha}$, 因此:

$$\sigma(\alpha^n) = \xi_n^n \alpha^n = \alpha^n$$

因此 $\alpha^n \in F^{\times}$. 下面说明 $E = F(\alpha)$, 我们断言 $Gal(E/F(\alpha)) = \{id\}$: 如果存在 $\tau = \sigma^i \in Gal(E/F(\alpha))$, 则 $\tau(\alpha) = \sigma^i(\alpha) = \xi_n^i \alpha$, 那么 $\xi_n^i = 1$, 而 ξ_n 是本原单位根, 因此 i = n, 因此 $\tau = id$.

推论 4.3.4. 我们有如下的一一对应:

证明: 命题4.3.2给出了对应 \Leftarrow , 定理 4.3.3 说明这个方向的对应是满射. 假设 $F(\alpha) = F(\beta)$ 是 F 的 $\mathbb{Z}/n\mathbb{Z}$ 扩张, 其中 $\alpha^n = a \in F^\times$, $\beta^n = b \in F^\times$, 根据命题4.3.2的证明过程, 我们可以定义映射

$$\varphi_{\alpha}(\sigma) = \frac{\sigma(\alpha)}{\alpha}$$

$$\varphi_{\beta}(\sigma) = \frac{\sigma(\beta)}{\beta}$$

并且由于 $\operatorname{im} \varphi_{\alpha} = \operatorname{im} \varphi_{\beta} = \mu_{n}$ 可知 $\frac{\sigma(\alpha)}{\alpha}$, $\frac{\sigma(\beta)}{\beta}$ 都是 n 次本元单位根, 因此存在整数 k 满足 (k,n)=1 使得

$$\frac{\sigma(\alpha)}{\alpha} = (\frac{\sigma(\beta)}{\beta})^k$$

即 $\sigma(\alpha\beta^{-k}) = \alpha\beta^{-k}$, 这意味着 $\alpha\beta^{-k} \in F^{\times}$, 并且注意到 $ab^{-k} = (ab^{-k})^n \in (F^{\times})^n$, 从而在 $F^{\times}/(F^{\times})^n$ 中 $a = b^k$, 并且由于 (k, n) = 1 可知 a, b 的阶数相同.

定义 4.3.5. 扩张 E/F 被称为 **Kummer 扩张** (Kummer extension), 如果其为一个阿贝尔扩张, 并且其 Galois 群 Gal(E/F) 的指数⁶整除 n.

定理 4.3.6. E/F 是 Kummer 扩张, 当且仅当 $E = F(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_r}), a_i \in F^{\times}$.

证明: 一方面, $F(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_r})$ 是 $F(\sqrt[n]{a_i})$ 的复合, 因此:

$$\operatorname{Gal}(K/F) \hookrightarrow \prod_{i} \operatorname{Gal}(F(\sqrt[n]{a_i})/F)$$

是一个指数整除 n 的阿贝尔群. 另一方面, 考虑阿贝尔群的分解:

$$Gal(E/F) \cong C_1 \times \cdots \times C_r$$

其中 C_r 是阶数乘除 n 的循环群, 令 $H_i = \prod_{j \neq i} H_j \times \{1\}$, 令 $K_j = K^{H_j}$, 那么 $Gal(K_j/F) \cong C_i$, 因此 $K_j = F(\sqrt[n]{a_i})$, 下面只需要说明 $K = K_1 \dots K_r$ 即可, 下面以一个引理的形式证明, 因为这对一般情况来说也是正确的.

⁶exponent, 指群中所有元素阶的最小公倍数.

引理 4.3.7. K/F 是有限 Galois 扩张, 其 Galois 群为 $G=G_1\times\cdots\times G_r$, 则 $K=K_1\ldots K_r$, 其中 $K_j=K^{H_j},H_j=\prod_{i\neq j}G_i\times\{1\}$

证明:根据归纳法,只需要证明 r=2 的情况即可:如果 $K_1/F,K_2/F$ 都是 Galois 扩张,则 $[K_1K_2:K_2]=[K_1:K_1\cap K_2]$,而这里 $K_1\cap K_2=F$,因此 $[K_1K_2:F]=[K_1:F][K_2:F]=|H_1||H_2|=|G|$,因此 $K=F_1F_2$.

附录 A 拓扑

A.1 拓扑群回顾

定义 A.1.1. 其上带有拓扑的一个群 G 被称为**拓扑群** (topological group), 如果乘法运算 $G \times G \to G$ 和取逆运算 $G \to G$ 是连续函数.

例子. $(\mathbb{R}, +)$ 构成了一个拓扑群.

例子. 有限群上赋予离散拓扑, 构成了一个拓扑群.

命题 A.1.2. 左乘运算 $L_a: G \to G, L_a(g) = ag$ 定义了 $G \to G$ 的一个同胚.

证明: 考虑:

$$G \hookrightarrow G \times G \longrightarrow G$$

$$g \mapsto (a,g) \mapsto ag$$

可知 L_a 作为连续函数的复合也是连续的. 同理, $L_{a^{-1}}$ 也是连续的, 并且 $L_a, L_{a^{=1}}$ 彼此互逆. 因此 L_a 是 $G \to G$ 的一个同胚.

注记. 因此拓扑群有一种非常好的"齐性": 其任意一处的局部的性质, 都可以通过在单位元 1 处的性质反应.

推论 A.1.3. 如果 N 是 $1 \in G$ 的一个邻域, 则 aN 是 $a \in G$ 的一个邻域.

引理 A.1.4. G 是拓扑群, H < G 是其子群, 则

- (1) H 上带有子空间拓扑,构成了一个拓扑群.
- (2) H 的闭包 \overline{H} 也是 G 的子群, 并且如果 $H \triangleleft G$, 则 $\overline{H} \triangleleft G$
- (3) G 是 Hausdorff 的当且仅当 {1} 是闭集.

证明: (1). 显然.

- (2). 首先验证乘法: 任取 $h_1, h_2 \in \bar{H}$, 取 U 使得 $h = h_1 h_2 \in U$, 根据乘法连续的定义, 存在 $h_1 \in V_1, h_2 \in V_2$ 满足 $V_1 V_2 \subseteq U$, 而 $V_1 \cap H \neq \varnothing$, $V_2 \cap H \neq \varnothing$, 因此 $V_1 V_2 \cap H \neq \varnothing$, 即 $h_1 h_2 \in \bar{H}$; 取逆运算同理验证. 并且注意到 \bar{H} 是包含 H 的最小闭集, 而 $g\bar{H}g^{-1}$ 也是包含 H 的闭集, 因此 $\bar{H} \subseteq g\bar{H}g^{-1}$, 进而有两者相同.
- (3). Hausdorff 空间的所有单点集都是闭的, 因此一方面是显然的. 另一方面, 任取 $g \neq h \in G$, 则 $\{g^{-1}h\}$ 是闭集, 取开集 $1 \in U \subseteq G \setminus \{g^{-1}h\}$, 并且考虑连续映射

$$G \times G \to G$$

 $(g,h) \mapsto gh^{-1}$

则存在 1 的邻域 V,W,使得 $VW^{-1}\subseteq U$,因此 $g^{-1}h\notin VW^{-1}$,因此 $gV\cap hW=\varnothing$,即 G 是 Hausdorff 的.

引理 A.1.5. G 是拓扑群, H < G 是其子群, 则

- (1) 如果 H 是开集, 则 H 是闭集.
- (2) 如果 H 是指数有限的闭集,则 H 是开集.
- (3) 如果 G 是紧群,则闭 + 指数有限等价于开.

证明: (1). 用 S 记 G/H 代表元组成的集合,则

$$G = \coprod_{\sigma \in S} \sigma H$$

因此如果 H 是开集, 则 σH 也是开集, 则

$$G\backslash H=\coprod_{\stackrel{\sigma\neq 1}{\sigma\in S}}\sigma H$$

是开集, 因此 H 是闭集.

- (2). 由于 H 指数有限, 因此 S 是有限集, 有限个闭集的并仍然是闭集, 因此根据 (1) 的论断可知 H 是开集.
- (3). 由于 G 是紧群, 则 $G = \coprod_{\sigma \in S} \sigma H$ 这个开覆盖一定存在一个有限子覆盖,但是对于不同的 σ , σH 之间没有交集,因此 S 是有限集,即紧群的开子群的指数一定有限.

附录 B 代数

B.1 逆极限与射有限群

定义 B.1.1. $\{G_i\}_{i\in I}$ 是一族群, I 是一个正向集¹, 以及任取 $i,j\in I,i\leq j$, 存在群同态 $P_{ij}:G_j\to G_i$, 满足 $P_{ij}\circ P_{jk}=P_{ik}$, 逆极限 (inverse limit)定义如下:

$$\varprojlim_{i \in I} G_i = \{(g_i)_{i \in I} \in \prod_{i \in I} G_i \mid P_{ij}(g_j) = g_i, \forall i \le j\}$$

例子. 令 $I = \mathbb{N}$, 以及 $G_i = \mathbb{Z}/p^i\mathbb{Z}$, P_{ij} 是自然的商映射, 则

$$\lim_{i \in I} G_i \mathbb{Z}/p^i \mathbb{Z} = \{(x_i)_{i \in I} \mid x_i \equiv x_{i-1} \pmod{p^{i-1}}\}$$

即如果 $x_i = a_0 + a_1 p + \dots + a_{i-2} p^{i-2} + a_{i-1} p^{i-1}$,则 $x_{i-1} = a_0 + a_1 x + \dots + a_{i-2} p^{i-2}$,因此这个逆极限也通常写成如下的形式:

$$\lim_{i \in I} \mathbb{Z}/p^i \mathbb{Z} \cong \{ \sum_{i \ge 0} a_i p^i, \quad 0 \le a_i \le p - 1 \}$$

称作 p-adic 数, 通常也记作 \mathbb{Z}_p

定义 B.1.2. 一族带有离散拓扑的有限群的逆极限被称为射有限群 (profinite group)

引理 B.1.3. 射有限群是紧的, Hausdorff, 以及完全不连通的2.

证明: (1). 根据 Tychonoff 定理, 我们只需要证明 $\varprojlim G_i$ 在 $\prod_{i \in I}$ 中是闭集即可, 任取 $\{g_i\}_{i \in I}$ 矣 $\varprojlim G_i$, 存在 $i \leq j$, 使得 $P_{ij}(g_j) \neq g_i$, 选择开邻域:

$$U = \prod_{k \neq i, j} G_k \times \{g_i\} \times \{g_j\} \subseteq \prod_{i \in I} G_i$$

因此 $U \cap \underline{\lim} G_i = \emptyset$, 因此 $\prod_{i \in I} G_i \setminus \underline{\lim} G_i$ 是开集.

(2). 只需要证明单点集 $\{(e_i)_{i\in I}\}$ 是闭集, 考虑如下开子群邻域:

$$U_i = \prod_{i \neq i} G_i \times \{e_i\} \subseteq \prod_i G_i$$

 $^{^1}$ 即 I 是一个偏序集, 并且任取 $i,j \in I$, 存在 $k \in I$ 使得 $i,j \le k$

 $^{^2}$ 空间 X 是完全不连通的,如果任取 $x \in X$,其连通分支就是单点 x,即所有包含 x 的既开又闭的集合的交就是单点 x.

对于拓扑群来说,每个开子群也是闭的. 考虑

$$\bigcap_{i \in I} U_i = \{(e_i)_{i \in I}\}$$

因此 $\{e_i\}_{i\in I}$ 是闭集.

(3). 由于拓扑群每点的性质都相同, 因此不妨选取 $x = \{(e_i)_{i \in I}\}$, 考虑 (2) 中的开邻域 U_i 即可.

索引

K 中的圆, circle of K, 16K 中的平面, plane of K, 16K 中的直线, line of K, 16n 次分圆多项式, n-th cyclotomicpolynomial, 14n 次本元单位根, n-th primitive root ofunity, 14	可分次数, seperable degree, 6, 8 可构造的, constructable, 16 可解群, solvable group, 19 域扩张, field extension, 2 完美域, perfect field, 6 射有限群, profinite group, 42 循环扩张, cyclic extension, 14
Galois 扩张, Galois extension, 10	态射, morphism, 33
Galois 闭包, Galois closure, 10	拓扑群, topological group, 40
Krull 拓扑, Krull topology, 27 Kummer 扩张, Kummer extension, 38	根式可解, solvable by radical, 20 根式扩张, radical extension, 18 模, module, 32 正规扩张, 4
三次预解, cubic resolvent, 23	ILMI JK, 4
不可分次数, inseperable degree, 6, 8 交错同态, crossed homomorphism, 33 代数, algebraic, 2 代数扩张, algebraic extension, 2 代数闭包, algebraic closure, 3 代数闭域, algebraic closed field, 3	特征, characteristic, 2 离散 <i>G</i> 模, discrete <i>G</i> -module, 36 纯不可分, pure inseperable, 8 纯不可分扩张, pure inseperable extension, 8 群的上同调, group cohomology, 33
分裂, split, 3 分裂域, splitting field, 3 判别式, discriminant, 22 单扩张, simple extension, 2 单根式扩张, simple radical extension, 18 可分元, seperable element, 6 可分多项式, seperable polynomial, 5 可分扩张, seperable extension, 6	范数, norm, 30 诱导模, induced module, 35 超越, transcendental, 2 连续上同调, continous cohomology, 36 迹, trace, 30 逆极限, inverse limit, 42 阿贝尔扩张, abelian extension, 14