More efficient Sorting Algorithms

Recursive Sorts

Recursive sorts Divide the data roughly in half and are called Again on the smaller data sets. This is called the Divide-and-Conquer paradigm. We will see 2 recursive sorts:

- Merge Sort
- QuickSort

Divide-and-Conquer

- Divide-and-conquer paradigm:
 - Divide: divide one large problem into 2 smaller problems of the same type.
 - Recur: solve the 2 subproblems.
 - Conquer: combine the 2 solutions into a solution to the larger problem.
- The base case for the recursion are subproblems of manageable size, usually 0 or 1.

Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm

Merge Sort

Merge-Sort

Merge-sort on an input sequence S with n elements consists of three steps:

- Divide: partition into 2 groups of about n/2 each
- lacktriangle Recur: recursively sort S_1 and S_2
- Conquer: merge S_1 and S_2 into a unique sorted sequence

Merging Two Sorted Sequences

- lacktriangle The conquer step merges the 2 sorted sequences A and B into one sorted sequence S
- How: Compare the lowest element of each of A and B and insert whichever is smaller.
- lacktrianglet Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

Merging Two Sorted Sequences

```
Algorithm merge(A, B)
   Input sorted sequences A and B
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while !A.isEmpty() \land !B.isEmpty()
       if isLessThan(A.first().element(), B.first().element())
          S.insertLast(A.remove(A.first()))
       else
                                              Not In-Place
          S.insertLast(B.remove(B.first()))
   while !A.isEmpty()
          S.insertLast(A.remove(A.first()))
   while !B.isEmpty()
          S.insertLast(B.remove(B.first()))
   return S
```

Merge-Sort

```
Algorithm mergeSort(S)

Input sequence S with n elements,

Output sequence S sorted

if S.size() > 1

(S_1, S_2) \leftarrow partition(S, n/2)

mergeSort(S_1)

mergeSort(S_2)

S \leftarrow merge(S_1, S_2)
```

Not In-Place

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the children are calls on subsequences
- the leaves are calls on sequences of size 0 or 1

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

◆Recursive call, base case

Merge

◆Recursive call, ..., base case, merge

Merge

*Recursive call, ..., merge, merge

Merge

98 23 45 14 6 67 33 42

Analysis of Merge-Sort

- \bullet The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- lacktriangle The overall amount or work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

Quick-Sort

Quick-Sort

- Quick-sort is a sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick an element x
 (called pivot) and partition S
 into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join L, E and G

Not In-Place

QuickSort(S)

 $i \leftarrow PIVOT$ $x \leftarrow S.elemAtRank(i)$ $(L,G) \leftarrow Partition(S,x)$ QuickSort(L) QuickSort(G)

In this example the PIVOT is chosen randomly, but we could decide always to choose the first element of the array, or the last.

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- ◆ Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- \bullet Thus, the partition step of quick-sort takes O(n) time

Not in-place

```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G of the
       elements of S less than, equal to,
       or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
    while !S.isEmpty()
       v \leftarrow S.remove(S.first())
        if y < x
           L.insertLast(y)
        else if y = x
           E.insertLast(v)
        else \{y > x\}
           G.insertLast(v)
    return L, E, G
```

Quick-Sort Tree An execution of quick-sort is depicted by a binary tree

- - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

◆ Join, join

In-Place Quick-Sort

In the partition step, we use replace operations to rearrange the elements of the input sequence such that

- \blacksquare the elements less than the pivot have rank less than h
- the elements equal to the pivot have rank between h and k
- ullet the elements greater than the pivot have rank greater than k
- ◆ The recursive calls consider
 - elements with rank less than h
 - \blacksquare elements with rank greater than k

In-Place Quick-Sort

Divide step: I scans the sequence from the left, and r from the right.

A swap is performed when I is at an element larger than the pivot and r is at one smaller than the pivot.

In Place Quick Sort (contd.)

A final swap with the pivot completes the divide step

In-Place Quick-Sort

```
Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the elements of rank between l and r
rearranged in increasing order

if l \ge r
return

i \leftarrow a random integer between l and r
x \leftarrow S.elemAtRank(i)
(h, k) \leftarrow inPlacePartition(x)
inPlaceQuickSort(S, l, h - 1)
inPlaceQuickSort(S, k + 1, r)
```

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- \bullet One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n - 1) + ... + 2 + 1$$

 \bullet Thus, the worst-case running time of quick-sort is $O(n^2)$

Expected Running Time

Consider a recursive call of quicksort on a sequence of size s

- Good call: the sizes of L and G are each less than 3s/4
- Bad call: one of L and G has size greater than 3s/4
- ◆ A call is good with probability ½ (for an element, the expected number of calls until a good call is 2)
- Hence, for a node of depth i, we expect that
 - i/2 ancestor nodes are associated with good calls
 - the expected size of the input sequence for the current call is at most $(3/4)^{i/2}n$

total expected time: $O(n \log n)$

Expected Running Time

- Thus, we have
 - For a node of depth $2\log_{4/3}n$, the expected size of the input sequence is one $((3/4)^{(2\log_{4/3}n)/2})$ n = 1)
 - The expected height of the quicksort tree is $O(\log n)$
- lacktriangle The overall amount or work done at the nodes of the same depth of the quick-sort tree is O(n)
- \bullet Thus, the expected running time of quick-sort is $O(n \log n)$

Algorithm	Time	Notes
selection-sort	$O(n^2)$ w.c. and av.	♦ in-place♦ slow (good for small inputs)
insertion-sort	$O(n^2)$ w.c. and av.	♦ in-place♦ slow (good for small inputs)
quick-sort	$O(n^2)$ w.c. $O(n \log n)$ average	in-place, randomizedfastest (good for large inputs)
heap-sort	<i>O</i> (<i>n</i> log <i>n</i>) w.c. and av.	in-placefast (good for large inputs)
merge-sort	<i>O</i> (<i>n</i> log <i>n</i>) w.c. and av.	sequential data accessfast (good for huge inputs)