TRABAJO PRÁCTICO Nº 1

0.1- Defina Hardware, Software, sistemas de numeración, bit y byte

Hardware: Son los componentes físicos de la computadora que utiliza la computadora y el usuario utiliza para enviar/transmitir información. (ej: teclado, impresora, mouse).

Software: Es lo intangible de la computadora, los programas, algoritmos, el sistema operativo que se utiliza para poder entender las señales o información que el usuario ingresa (drivers).

Bit: Un bit es la unidad mínima de información utilizada en la informática. Solo tiene 2 valores posibles: 1 o 0.

Byte: Un byte es una unidad de información conformada por un grupo de 8 bits. Es decir, que cuando tenemos 8 bits, tenemos un byte, cuando tenemos 16 bits tenemos 2 bytes y así sucesivamente.

Sistemas de numeración: Son la forma de representar números con una cantidad de símbolos determinados por su base (binario, octal, decimal). Tienen dos clasificaciones, posicionales y no-posicionales

0.2- Dé la clasificación del software y los Tipos de lenguajes que existen

Software de programación:

Son aquellos Software que son creados para generar mas software a través de código y programacion cruda (Vscode, Intelij Idea, java, python, c, c++, react, etc)

Software de Aplicación:

Hace referencia a todos los programas ya creados para ser usados por el usuario de una manera más sencilla y ordenada para transmitir y administrar información (office, drive, etc)

Software de Sistema: Relaciona y vincula al usuario o programador de los procesos o tareas e información del sistema informático, sin darle detalles o información sobre los procesos internos como: teclados, memoria, discos, dispositivos de comunicaciones. El Software de sistema se enfoca en darle interfaces de alto nivel al usuario o programador (Sistema Operativo, Controladores de dispositivo, Firmware, Bios, Líneas de comandos)

 \equiv

Tipos de lenguajes:

De Alto nivel:

Son lenguajes diseñados para estar más cerca del lenguaje humano o facilitar el entendimiento para el humano cuando se quiere transmitir información a una computadora a través del hardware.

De Bajo Nivel:

Son los lenguajes diseñados para el entendimiento de la computadora o sistema operativo con el que el humano trabaja. Un ejemplo de lenguaje de bajo nivel es el Binario que se basa en ceros y unos.

Y también es posible encontrar lenguajes que tengan parte de los dos:

Es decir que tengan características de alto nivel (entendimiento humano) y de bajo nivel(entendimiento del SO) a la vez. Pueden ser entendidos tanto por los programadores como por las máquinas. Se aplican para escribir instrucciones precisas para la computadora o lenguajes como c++

por ejemplo:

(no sabríamos encontrar un ejemplo concreto, pensábamos en bios o drivers.)

PARTE A: SISTEMAS DE NUMERACIÓN

EJERCICIO 1:

Convertir a decimal los siguientes números.

a)
$$1101010011_2 = 851$$
 b) $1BF_{16} = 447$ c) $111101(2) = 61$

d)
$$232_8 = 154$$
 e) $575_8 = 381$ f) $2CD(16) = 717$

Resolución del punto a)

Siempre que se quiera convertir de cualquier sistema de numeración a decimal el método más apropiado es el del polinomio de numeración.

$$N = a_n b^n + a_{n-1} b^{n-1} + \dots + a_i b^i + \dots + a_0 b^0 + a_{-1} b^{-1} + \dots + a_{-p} b^{-p}$$

Se representa el nº a convertir mediante el polinomio y se lo opera en decimal obteniendo el resultado en decimal.

 \equiv

$$1101010011_2 = 1x2^9 + 1x2^8 + 0x2^7 + 1x2^6 + 0x2^5 + 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 101010011_{2=} 512 + 256 + 64 + 16 + 2 + 1 = 851_{10}$$

EJERCICIO 2:

Convertir a octal los siguientes números.

Integrantes: Tomas Mastropietro Lautaro Castillo, Cristian Krahulik, Alex Filchel, Gianfranco Guzman

a)
$$1382_{10} = 2546$$

b)
$$7523_{10} = 16543$$
 c) $11101001(2) = 351$

c)
$$11101001(2) = 351$$

d)
$$1011011(2) = 133$$

e)
$$45BA_{16} = 42672$$

e)
$$45BA_{16} = 42672$$
 f) $DCBA_{16} = 156272$

EJERCICIO 3:

Convertir a hexadecimal los siguientes números.

a)
$$1001101_2 = 4D$$

b)
$$674_8 = 1BC$$

b)
$$674_8 = 1BC$$
 c) $5272_8 = ABA$

d)
$$8324_{10} = 2084$$
 e) $4545_{10} = 11C1$ f) $8963_{10} = 2303$

e)
$$4545_{10} = 11C1$$

f)
$$8963_{10} = 2303$$

EJERCICIO 4:

Convertir a binario los siguientes números.

a)
$$1578_{10} = 11000101010$$

b)
$$359_{10} = 10110011$$

b)
$$359_{10} = 101100111$$
 c) $544_8 = 1000100000$

d)
$$637_8 = 10011111101$$
 e) $DAB_{16} = 110110101011$ f) $EC_{16} = 11101100$

f)
$$EC_{16} = 11101100$$

Cuando quiero convertir un nº de cualquier otra base a decimal el método más conveniente es el de las divisiones sucesivas para la parte entera y multiplicaciones sucesivas para la parte fraccionaria porque todas las operaciones se hacen en decimal.

$$11/2=5 R=1$$

$$5/2=2 R=1$$

$$2/2 = 1$$

El nº se forma a partir del último cociente y todos los restos hacia arriba: 11100111₂ Para la parte fraccionaria se hace lo siguiente:

0.75x2=1.5(se saca la parte entera y se vuelve a multiplicar por dos hasta que la parte fraccionaria tome el valor cero)

$$0,5x2=1,0$$

la parte fraccionaria es 11

la conversión completa es: 11100111,11₂

EJERCICIO 5:

Convertir a base dos el número 78548 en base diez, y volverlo a base diez. ¿Qué conclusiones resultan?

≣

Integrantes: Tomas Mastropietro Lautaro Castillo, Cristian Krahulik, Alex Filchel, Gianfranco Guzman

78548 = 10011001011010100

$$10011001011010100 = (1 \times 2^2) + (1 \times 2^4) + (1 \times 2^6) + (1 \times 2^7) + (1 \times 2^9) + (1 \times 2^12) + (1 \times 2^13) + (1 \times 2^16)$$

conclusion: Es mucho mas sencillo pasar de decimal a binario, cuando pasas de binario a decimal podes perfectamente omitir los valores 0 ya que al fin y al cabo el resultado seguira siendo 0 asi q es completamente irrelevante ese valor y terminariamos llegando al mismo resultado:

EJERCICIO 6:

¿Cuál es el mayor número decimal que puede ser representado por 3 y 6 dígitos hexadecimales?

El mayor numero decimal q puede ser representado en hexadecimal con 3 y 6 digitos: Sabiendo que F = 15 y este es el máximo valor de hexadecimal podemos hacer:

$$FFF = F .16^2 + F.16^1 + F.16^0 = 4095$$

$$FFFFFF = F.16^5 + F.16^4 + F.16^3 + F.16^2 + F.16^1 + F.16^0 = 16777215$$

PARTE B: Códigos

EJERCICIO 1:

Realizar la tabla de un código Jhonson de 6 bits. Indique qué características presenta este código.

0 =	0	0	0	0	0	0
1 =	0	0	0	0	0	1
2 =	0	0	0	0	1	1
3 =	0	0	0	1	1	1
4 =	0	0	1	1	1	1
5 =	0	1	1	1	1	1
6 =	1	1	1	1	1	1
7 =	1	1	1	1	1	0

8 =	1	1	1	1	0	0
9 =	1	1	1	0	0	0
10 =	1	1	0	0	0	0
11 =	1	0	0	0	0	0

EJERCICIO 2:

BCD $2421 = 2^1, 2^2, 2^1, 2^0$

4 ES EL MAXIMO NUMERO Q ADMITE.

SE SUMA EL 2421 en los numeros q se pueda, osea : ej $7 = 2+4+\underline{2}+1$ los numeros q se evitan quedan en 0.

BCD exceso 3 es igual q el binario comun y corriente pero le sumas 3 a cada digito. Prioridad de derecha a izquierda hasta el 4 y dps del 4 de izquierda a derecha

Decimal	BCD 2421	BCD EXC3	BCD 3421
 7	1101	1010	1100
23	0010 0011	0101 0110	0010 0011
67	1100 1101	1001 1010	1011 1100
81	1110 0001	1011 0011	1101 0001
95	1111 0101	1100 1000	1110 1010
104	0001 0000 0100	0100 0011 0111	0001 0000 0100
237	0010 0011 1101	0101 0110 1010	0010 0011 1100
982	1111 1110 0010	1100 1011 0101	1110 1101 0010
	RCD 542	1	

	BCD 5421
7	1010
23	0010 0011
67	1001 1010
81	1011 0001
95	1100 1000
104	0001 0000 0100
237	0010 0011 1010
982	1100 1011 0010

EJERCICIO 3:

Indicar las distintas combinaciones binarias asignadas a cada uno de los siguientes números, caracteres ó símbolos especiales, en el código ASCII de 7 bits.

0: alt + 48

% : alt + 37

, : alt + 44

 \equiv

Integrantes: Tomas Mastropietro Lautaro Castillo, Cristian Krahulik, Alex Filchel, Gianfranco Guzman

- G: 51
-):73
- 3:51
- + : 43
- &: 38
- . : 46
- T: 84
- ¿: No se puede representar en 7 bits
- ': No se puede representar en 7 bits