Universität Potsdam Institut für Physik und Astronomie Abgabe am 28. Januar bis 10 Uhr

WS2020/21: Übung 10 Vorlesung: Feldmeier Übung: Albrecht/Schwarz¹

Übungsaufgaben zur Elektrodynamik²

20 Punkte

Poynting-Vektor an Leiteroberfläche <u>1.</u>

5 Punkte

In einem langen, zylindrischen Leiter mit Leitfähigkeit σ und Radius a fließe ein gleichförmiger axialer Strom mit der Stromdichte \vec{j} .

Berechnen Sie den Poynting-Vektor $\vec{S} = (1/\mu_0) \vec{E} \times \vec{B}$ an der Leiteroberfläche.

Eichfreiheit <u>2.</u>

5 Punkte

Welche Gleichung gilt für das skalare Eichfeld Λ , wenn die Maxwellgleichungen für die Potentiale Φ und \vec{A} die Form von Wellengleichungen haben? (Stichwort aus der Vorlesung: die runde Klammer muss verschwinden).

3. Maxwellgleichungen in Coulomb-Eichung

5 Punkte

Wir haben in der Vorlesung die Maxwellgleichungen in Lorenzeichung (s.o.) hergeleitet. Wie lauten sie in Coulomb-Eichung $\nabla \cdot \vec{A} = 0$?

<u>4.</u> Maxwell'scher Verschiebungsstrom

5 Punkte

Ein Wechselstrom $I = I_0 \cos(\omega t)$ fließt durch einen langen geraden Draht und kehrt durch ein koaxiales Rohr mit Radius R zurück. Das elektrische Feld zur Zeit t im Abstand s vom Draht ist $\vec{E}(s,t) = \frac{\mu_0 I_0 \omega}{2\pi} \sin(\omega t) \ln\left(\frac{R}{s}\right) \hat{z}$.

- a) Bestimmen Sie die Verschiebungsstromdichte $\vec{j}_D = \epsilon_0 \frac{\partial E}{\partial t}$.
- b) Berechnen Sie den Verschiebungsstrom im Rohr $I_D=\int_A \mathrm{d}\vec{a}\cdot\vec{j}_D$ c) Vergleichen Sie Strom I und Verschiebungsstrom I_D , indem Sie das Verhältnis $\frac{I_D}{I}$ diskutieren. Wie groß müsste die Frequenz ω bei einem Rohrradius von 2mm sein, damit I_D 1% des Stroms I beträgt?

¹Fred.Albrecht@uni-potsdam.de, udo.schwarz@uni-potsdam.de

²Aufgaben: https://udohschwarz.github.io/Lehre/lehrangebot/2020WSEDynamik/2020WSEDynamik.html, Punkteliste: http://theosolid.physik.uni-potsdam.de/tpphp/index.php?tpii/ws2021