Optimization Model for SCRUM-Based Software Development

AI Assistant

September 4, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	Decision Variables	6

1 Sets (Entities)

- Project = $\{p|p \text{ is a Project}\}$, described by: $id, name, \dots, priority$
- Team = $\{t | t \text{ is a Team}\}$, described by: $id, name, \dots, team_type$
- Worker = $\{w|w \text{ is a Worker}\}$, described by: $id, name, \ldots, availability$
- Feature = $\{f|f \text{ is a Feature}\}$, described by: $id, title, \ldots, estimated_effort$
- Skill = $\{s | s \text{ is a Skill}\}$, described by: $id, label, \ldots, category$
- Role = $\{r|r \text{ is a Role}\}$, described by: $id, role_name, \ldots, area_of_responsibility$
- ProductOwner = $\{po|po \text{ is a ProductOwner}\}$, described by: id, name, email, availability
- ScrumMaster = $\{sm|sm \text{ is a ScrumMaster}\}$, described by: id, name, email, experience
- ProductBacklog = $\{pb|pb \text{ is a ProductBacklog}\}$, described by: id, $created on, \ldots, status$
- Sprint = $\{sp|sp \text{ is a Sprint}\}$, described by: $id, sprint number, \ldots, achievement of goal$
- SprintBacklog = $\{sbl|sbl \text{ is a SprintBacklog}\}$, described by: $id, number_of_tasks, \dots, total_ef$
- UserStory = $\{us | us \text{ is a UserStory}\}$, described by: $id, title, \ldots, status$
- Task = $\{tsk|tsk \text{ is a Task}\}$, described by: $id, title, \dots, type$
- Blocker = $\{bl|bl \text{ is a Blocker}\}$, described by: $id, title, \ldots, resolved$ on
- Velocity = $\{vel | vel \text{ is a Velocity}\}$, described by: $id, number_of_sprints_used, \dots, trend$

2 Indices

- p, t, w, f, s, r, po, sm, pb, sp, sbl, us, tsk, bl, vel: Index over elements in their respective sets.
- i, j, k: General numerical indices.

3 Goals

• G0: maximize_team_skill_coverage - Maximize the cumulative skill level of the team for the project's required features.

Maximize
$$Z_0 = \sum_{w} \sum_{s} \text{skill_level}(w, s) \cdot x_w^{assign}$$

• G1: minimize_sprint_overcommitment - Minimize the difference between planned sprint effort and team capacity.

Minimize
$$Z_1 = |\sum_{us \in sp} \text{story_points}(us) - \text{velocity}(t, sp)|$$

• **G2:** maximize_velocity_consistency - Maximize the team's average velocity to ensure predictable planning.

Maximize
$$Z_2 = \frac{1}{|SP_t|} \sum_{sp \in SP_t} \text{story_points_completed}(sp)$$

• G3: minimize _blocker _resolution _time - Minimize the average time taken to resolve blockers.

Minimize
$$Z_3 = \frac{1}{|BL_{active}|} \sum_{bl} (resolved_on(bl) - detected_on(bl))$$

• **G4:** maximize_stakeholder_satisfaction - Maximize the positive feedback from sprint reviews.

Maximize
$$Z_4 = \text{sentiment_score}(\text{feedback_documentation}(sr))$$

• **G5**: minimize _context _switching - Minimize the number of different features a developer works on in a single sprint.

Minimize
$$Z_5 = \sum_{w} |\{f : x_{w,f}^{works} - on = 1\}|$$

• G6: maximize_feature_completion - Maximize the number of high-priority features completed per release.

Maximize
$$Z_6 = \sum_f \text{priority}(f) \cdot \delta(\text{status}(f), 'Done')$$

• G7: minimize _technical _debt _growth - Minimize the introduction of new tasks marked as 'debt' or 'refactoring'.

Minimize
$$Z_7 = \sum_{tsk} \delta(\text{type}(tsk), 'debt')$$

• **G8:** maximize team availability - Maximize the cumulative available working hours of the team for the sprint.

Maximize
$$Z_8 = \sum_{w \in t} \text{availability}(w)$$

• **G9:** minimize_planning_duration - Minimize the time spent in sprint planning meetings.

Minimize
$$Z_9 = \text{duration(spp)}$$

4 Conditions

• C0: mandatory_scrum_master - The team must have exactly one Scrum Master assigned.

$$\sum_{sm} x_{sm,t}^{assigned} = 1 \quad \forall t \in \text{Team}$$

• C1: mandatory_product_owner - The project must have exactly one Product Owner assigned.

$$\sum_{po} x_{po,p}^{assigned} = 1 \quad \forall p \in \text{Project}$$

• C2: team_capacity_not_exceeded - The total story points in the sprint backlog must not exceed the team's velocity.

$$\sum_{us \in sbl} story_points(us) \le velocity(t) \quad \forall sbl, t$$

• C3: feature requires skills - A feature can only be assigned to a sprint if the team's skill level meets the feature's requirements.

$$\sum_{w \in t} \text{skill_level}(w, s) \geq \text{required_skill}(f, s) \quad \forall f, s \text{ if } x_{f, sp}^{selected} = 1$$

• C4: worker_availability_limit - No single worker can be assigned more than 40 hours of work in a sprint.

assigned hours
$$(w) \le 40 \quad \forall w \in \text{Worker}, \forall sp \in \text{Sprint}$$

• C5: unique_worker_assignment - A worker can only be assigned to one primary team.

$$\sum_{t} x_{w,t}^{assigned} = 1 \quad \forall w \in \text{Worker}$$

• C6: sprint_goal_must_be_defined - Every sprint must have exactly one defined sprint goal.

$$\sum_{sq} x_{sg,sp}^{defined} = 1 \quad \forall sp \in Sprint$$

• C7: user_story_requires_acceptance_criteria - No user story can be added to a sprint without defined acceptance criteria.

$$x_{us,sbl}^{added} \leq \delta(\text{acceptance_criteria}(us) \neq \emptyset) \quad \forall us \in \text{UserStory}$$

• C8: blocker_severity_high_priority - Blockers with 'critical' severity must be resolved before any new feature development.

$$\sum_{tsk}^{new_feature} x_{tsk}^{started} = 0 \quad \text{if } \exists bl \in \text{Blocker} | \text{severity}(bl) = \text{critical} \land \text{status}(bl) \neq \text{resolved}$$

• C9: budget_not_exceeded - The total cost of the project (based on worker time) must not exceed the project budget.

$$\sum_{w} \sum_{sp} \text{cost}(w) \cdot \text{assigned_hours}(w, sp) \le \text{budget}(p)$$

• C10: task_must_have_owner - Every task in the sprint backlog must be assigned to a worker.

$$\sum_{w} x_{tsk,w}^{assigned} = 1 \quad \forall tsk \in \mathbf{SprintBacklog}$$

5 Decision Variables

- DV0: $x_{w,t}^{assign} \in \{0,1\}$ Binary assignment of worker w to team t.
- DV1: $x_{f,sp}^{select} \in \{0,1\}$ Binary selection of feature f for sprint sp.
- **DV3:** $a_w \in [0, 40]$ Continuous variable for worker w's available hours in a sprint.
- DV4: $p_{us} \in \mathbb{Z}^+, p_{us} \in [1, 20]$ Integer variable for the story points of user story us.
- **DV5:** $d_{sp} \in \mathbb{Z}^+, d_{sp} \in [1, 4]$ Integer variable for the duration of sprint sp in weeks.
- DV6: $n_t \in \mathbb{Z}^+, n_t \in [3, 9]$ Integer variable for the size of team t.
- DV7: $prio_f \in \{1, 2, 3\}$ Integer priority level for feature f.
- DV8: $l_{w,s} \in \{1,2,3,4,5\}$ Integer proficiency level of worker w in skill s.
- DV9: $c_t^{blocker} \in [0.0, 1.0]$ Continuous variable for team t's capacity dedicated to resolving blockers.