《SE-111 电路与模拟电子技术》 期 末 考 试 试 卷(A)

(考试形式: 闭卷 考试时间:2小时)

《中山大学授予学士学位工作细则》第六条

考试作弊不授予学士学位

方向:		姓名:	学号:
注意:	答案一定要写在答卷中,	写在本试题卷中不给分。	本试卷要和答卷一起交回。

1.(10 pt) For the circuit of Figure 1, compute voltage V₁, V₂, and current I

Figure 1 Figure 2 2.(15 pt) Use the superposition theorem to find I in the circuit shown in Figure 2.

3.(15pt) Find the Thevenin equivalent of the network in Figure 3 viewed from points a. b.

- 4.(10pt) Compute i in Figure 4.($arctg0.1 = 5.7^{\circ}$, $arctg0.067 = 3.8^{\circ}$)
- 5. (10pt) Assume diode's V_{on}=0.6(V), sketch the output waveform in Figure 5.

 2Ω

Figure 5

- 6. (15pt) For the C-E amplifier in Figure 6,
 - 1) Determine the Quiescent Operation Point;

2) Draw the Small-Signal equivalent circuit, Determine the voltage gain and input resistance, output resistance.

Figure 6

7. (15pt) Determine the output voltage v_0 for the circuit of Figure 7

Figure 7

8. (10pt)Design a circuit to $A_f = \frac{v_o}{v_i} = 0.9$ (Require the input resistance of every signal $R_i \ge 20 \text{k}\Omega$)