Ultra-fast Longitudinal Feedbacks for the European XFEL

H. Schlarb, S. Pfeiffer, Ch. Schmidt, on behalf of the DESY LbSyn and LLRF Team

Outline:

- Introduction
- Longitudinal diagnostics
- Feedbacks

Longitudinal jitter sources – Generic FEL Layout –

Long/transverse beam quality & arrival time

- conventional: for low peak currents ~ 10-50A

Sources are:

noto-cathode laser pulse shape	t/λ
Phase of RF gun (non-relativistic electrons)	t
First accelerator cavities (non-relativistic electrons) Seed and Pump-probe laser	t/λ t
Charge fluctuation though collective effects	λ/(t)

t: arrival time λ : longitudinal change distribution

Longitudinal jitter sources – Generic FEL Layout –

Long/transverse beam quality & arrival time

- conventional: for high peak currents ~ 500 - 20000 A

Sources are:

t:

Photo-cathode laser pulse shape	t/λ
Phase of RF gun (non-relativistic electrons)	t
First accelerator cavities (non-relativistic electrons)	t/λ
Seed and Pump-probe laser	t
Accelerator prior to bunch compressor	t/λ
Charge fluctuation though collective effects	λ/(t)

arrival time λ : longitudinal change distribution

If
$$\mathsf{E}_0 << \mathsf{E}_1$$
 and $\mathsf{E}_0 '<< \mathsf{E}_1 '$
$$\frac{\delta C}{C_1} = -(C_1-1)\left[\left(3\tan(\phi_1) + \frac{1}{\tan(\phi_1)}\right)(\delta\phi_1 - \omega_{RF}\delta t_{ini}) + 4\frac{\delta V_1}{V_1}\right]$$
 Tolerance \times Compression Phase & arrival Amplitude

Example: C=100, dI/I<10% $\Rightarrow \phi \approx 0.014^{\circ}$ and dV/V $\approx 2.5e-4$

If
$$\mathsf{E}_0 << \mathsf{E}_1$$
 and $\mathsf{E}_0' << \mathsf{E}_1'$
$$\frac{\delta C}{C_1} = -(C_1-1)\left[\left(3\tan(\phi_1) + \frac{1}{\tan(\phi_1)}\right)(\delta\phi_1 - \omega_{RF}\delta t_{ini}) + 4\frac{\delta V_1}{V_1}\right]$$
 Tolerance \times Compression Phase & arrival Amplitude

Example: C=100, dI/I<10% \Rightarrow $\phi \approx 0.014^{\circ}$ and dV/V \approx 2.5e-4

$$\Sigma_{t,f}^2 = \left(\frac{R_{56}}{c_0}\right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C-1}{C}\right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C}\right)^2 \cdot \Sigma_{t,i}^2$$
Amplitude
Phase
Arrival

If
$$\mathsf{E}_0 << \mathsf{E}_1$$
 and $\mathsf{E}_0' << \mathsf{E}_1'$
$$\frac{\delta C}{C_1} = -(C_1 - 1) \left[\left(3 \tan(\phi_1) + \frac{1}{\tan(\phi_1)} \right) (\delta \phi_1 - \omega_{RF} \delta t_{ini}) + 4 \frac{\delta V_1}{V_1} \right]$$
 Tolerance \propto Compression Phase & arrival Amplitude

Example: C=100, dI/I<10% \Rightarrow $\phi \approx 0.014^{\circ}$ and dV/V \approx 2.5e-4

$$\Sigma_{t,f}^2 = \left(\frac{R_{56}}{c_0}\right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C-1}{C}\right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C}\right)^2 \cdot \Sigma_{t,i}^2$$
Amplitude
Phase
Arrival

Example:10fs, C>>1, R_{56} ~0.10m $\Rightarrow \phi \approx 0.005^{\circ}$ L-band and dV/V \approx 3e-5

> Impacts the peak current / longitudinal beam profile

If
$$\mathsf{E}_0 << \mathsf{E}_1$$
 and $\mathsf{E}_0' << \mathsf{E}_1'$
$$\frac{\delta C}{C_1} = -(C_1-1)\left[\left(3\tan(\phi_1) + \frac{1}{\tan(\phi_1)}\right)(\delta\phi_1 - \omega_{RF}\delta t_{ini}) + 4\frac{\delta V_1}{V_1}\right]$$
 Tolerance \times Compression Phase & arrival Amplitude

Example: C=100, dI/I<10% $\Rightarrow \phi \approx 0.014^{\circ}$ and dV/V $\approx 2.5e-4$

> Arrival time jitter:

$$\Sigma_{t,f}^2 = \left(\frac{R_{56}}{c_0}\right)^2 \cdot \frac{\sigma_{V_1}^2}{V_1^2} + \left(\frac{C-1}{C}\right)^2 \cdot \frac{\sigma_{\phi_1}^2}{\omega_{rf}^2} + \left(\frac{1}{C}\right)^2 \cdot \Sigma_{t,i}^2$$
Amplitude
Phase
Arrival

Example:10fs, C>>1, R_{56} ~0.10m $\Rightarrow \phi \approx 0.005^{\circ}$ L-band and dV/V $\approx 3e-5$

- > Mitigation: through multi-staged compression, but this adds cost
- Coupling: between (Δt_f, C, E) as function of (V, φ, Δt_{ini})
- Significant complexity added: Harmonic cavity / Laser pulse shaping

Longitudinal Diagnostics

Arrival timing & Compression

Synchronization – Pulsed optical, arrival monitor

Uses optical reference laser pulses (single shot)

Used at FLASH/FERMI/PSI

Key exp.: two BAMs 60m distance

Standard diag. at FLASH reduced dependency on beam orbit reduced dependency on bunch charge sensitivity in terms of

% modulation per fs timing change

Synchronization – Pulsed optical, arrival monitor

- > Present system: <10fs resolution @ 250 pC
- > New System: goal <10fs @ 20pC charge
- → Increase bandwidth of monitor to ~ 40 GHz
 - + bandwidth increase of front-end (MZI/cables/RF)

Improve readout of electronics (MTCA.4 based)

Time [ns]

General purpose FMC carrier

DAMC-FMC25

ADC 250MSPS incl. PD/clock circ.

DFMC-BAM

0.3 Oscilloscope 0.3 O.25 Oscilloscope 0.15 Osci

Time [ns]

Frequency [GHz]

Paper on this conference: THPPC140

H. Schlarb, DESY, ICALEPCS 2013, San Francisco, California, Oct. 11.

Bunch compression monitor (BCM)

Based on **coherent emission** of Far-IR radiation

Coh. spectral intensity Form-factor
$$\frac{dU_{\rm coh}}{d\lambda} \approx \frac{dU_1}{d\lambda} N^2 |F_l(\lambda)|^2 \qquad F_l(\lambda) = \int_{-\infty}^{\infty} \rho_l(z) \, {\rm e}^{-2\pi i \, z/\lambda} \, dz$$

- Radiation process: CSR/CER/CDR/CTR/CGR
- **Detectors**: Pyro / 0.1-1THz Photo-detectors
- **Single detector** arrangement provides estimate on σ_{τ}
- Typically **cross-calibration** with deflecting cav. required!
- **Problem:** pulse shape variation not detected!

LiTaO3 (2mm x 2mm x 27 um)

Feedbacks

Linear Accelerators at DESY in Hamburg

European XFEL – currently under construction

FLASH – in operation (test bench for XFEL)

Blue box: arrival time and compression feedback
350 m

Poster on Global FB:

Bunch Arrival Time and Bunch Compression Feedback

Possibilities of beam-based feedback (not complete)

1) Set-Point Adaptation

3) RF field and beam error combination

2) Extended Controller

- 1) Good if latency of beam-based signals is larger than the latency for RF field signals [M...Modulation,
- BBF...maps beam errors to RF-field errors]
- 2) Good if the dynamic behavior for the beam-based signals and RF field signals differs
- 3) Good if the latency of signals are equal

Bunch Arrival Time and Bunch Compression Feedback

Possibilities of beam-based feedback (not complete)

3) RF field and beam error combination

2) Extended Controller

Final implementation at FLASH (simplified)

Large bunch spacing at FLASH (~ us) allow for intra-bunch feedbacks

Fast beam based feedbacks & optical lock of TiSa Laser

- Demonstration of synchronization for FEL users experiment
- > Beam based feedback using Bunch Arrival Monitor & optical lock of TiSa laser
- > FEL pulse arrival measured with laser based THz streaking (A. Cavalieri)

WP13: 2013-2016

FB simulation using measure data Typical Arrival Time Measurement

FB simulation using measure data

Typical Arrival Time Measurement

250

Time in µs

-100 L

300 3, San Francisco, California, Oct. 11. 2013

Time in us

Fast beam based feedbacks - next step -

4 feedback loops to stabilize arrival times, compression, shape & energy

4 feedback loops to stabilize arrival times, compression, shape & energy

Thanks for attention

Bunch compression monitor CRISP4

>Coherent radiation: bunch compression monitoring (BCM) and long. FB!

Present state:

- Integrated THz signal ($>\lambda_0$) used to stabilize ACC1 phase
- Development of single shot spectrometer (ABCM)
- Reveals importance of spectral information for FEL operation

Next steps:

- Investigation of online, suited for macro-pulse operation using CSR
- Compact THz spectrometer (next generation)
- Electronics allowing for readout + processing
 - > 1 MHz for long. feedback systems

Main issue: robustness, stability and maintainability ⇒ Prototype at FLASH

Work accomplished 2011-2013

Work accomplished 2011-2013: XFEL LLRF System

Stability requirements < 0.01% & 0.01deg

H. Schla

1st to 2nd generation MTCA.4 modules

- Core modules:
 - Down converter 1.3GHz → IF=54Mhz
 - SIS8300 10ch, 16bit, 125 MSPS
 - Controller V5 based
 - Vector modulator, 2 channel
- > Digitizer ⇒ SIS8300L
 - Resource limitation & communication limitation
 - → XC6VLX130T-2FFG1156C
 - → 6.6 Gbps transfer rate to controller

First test of DWC8VM1 at REGAE@3.0GHz:

- REGAE (Relativistic Electron Gun for Atomic Exploration):
 - Electron source for time resolved diffraction experiments

Poster: M. Hoffmann

Delay Budget (new System):

Vector Mod. Output => 360 ns

Diagnostics developments – time domain –

Diagnostics developments – time domain –

- >Time domain longitudinal bunch profiling:
- Electro-optical technique (birefringence crystal)
- Time domain approach with stretched laser pulse + cross-correlation in BBO for encoding (EOTD)
- Bench marked with transverse deflecting structure
- ⇒ Good agreement with expectation
- ⇒ Resolution 55fs rms (65 μm GaP crystal)
- >Collaboration: Abertey & Dundee Uni., Daresbury Lab., FELIX / FOM and DESY (See talk WEBAU04)

>Next development steps:

- Robust source: mode-locked Yb-fiber laser ∆t_{FWHM}<100fs (30fs has been achieved)
- Suitable for operation in acc. tunnel
- Packaging of laser: IRUVX-FP7 proposal
- in collaboration with BESSY (T. Quast)
- Fast line camera readout (1030nm, >1MHz)

Technique: EO spectral or spatial

Diagnostics developments – time domain –

- >Time domain longitudinal bunch profiling:
- Electro-optical technique (birefringence crystal)
- Time domain approach with stretched laser pulse + cross-correlation in BBO for encoding (EOTD)
- Bench marked with transverse deflecting structure
- ⇒ Good agreement with expectation
- ⇒ Resolution 55fs rms (65 μm GaP crystal)
- >Collaboration: Abertey & Dundee Uni., Daresbury Lab., FELIX / FOM and DESY (See talk WEBAU04)

>Next development steps:

- Robust source: mode-locked Yb-fiber laser ∆t_{FWHM}<100fs (30fs has been achieved)
- Suitable for operation in acc. tunnel
- Packaging of laser: IRUVX-FP7 proposal
- in collaboration with BESSY (T. Quast)
- Fast line camera readout (1030nm, >1MHz)

Courtesy: A. Winter, DESY Ö. Ilday, Bilkent Uni. Ankara DIPAC07:WEPB03

#ELMHOLTZ
| GEMEINSCHAFT

Technique: EO spectral or spatial

XFEL Longitudinal FBs – Overview -

- Photo cathode laser:
 - Synchronization
 - Pulse shape
 - Charge feedback
- RF gun phase
- L0 / L1 / L2
- L3 (last RF stations)
- L3 (all RF stations)

compression / arrival / (shape)

energy feedback

distributed energy gain scheduling feedback

