Polygon Clipping

Polygon: Area primitive

Simple Polygon:

Planar set of ordered points

No line crossings

No holes

Simple Polygon

Line Crossing

Hole

Polygon Clipping

Polygon : Area primitive

Convex Polygon

Non-Convex Polygon

Polygon Clipping

- Window must be convex
- Polygon to be clipped can be convex or non-convex

Polygon Clipping

- Window must be convex
- Polygon to be clipped can be convex or non-convex

Polygon Clipping

Polygon Clipping

Sutherland-Hodgman

Approach

- Polygon to be clipped is given as $v_1, v_2, ..., v_n$
- Polygon edge is a pair $[v_i, v_{i+1}]$
- Process all polygon edges in succession against a window edge

```
polygon (v_1, v_2, ..., v_n) \rightarrow \text{polygon } (w_1, w_2, ..., w_m)
```

Repeat on resulting polygon with next window edge

Polygon Clipping

Sutherland-Hodgman

Approach

Four Cases

- $\mathbf{s} = v_i$ is the polygon edge starting vertex
- $p = v_{i+1}$ is the polygon edge ending vertex
- *i* is a polygon-edge/window-edge intersection point
- w_i is the next polygon vertex to be output

Polygon Clipping

Sutherland-Hodgman

Approach

Case 1: Polygon edge is entirely inside the window edge

- **p** is next vertex of resulting polygon
- $p \rightarrow w_i$ and $j+1 \rightarrow j$

Polygon Clipping

Sutherland-Hodgman

Approach

Case 2: Polygon edge crosses window edge going out

- Intersection point *i* is next vertex of resulting polygon
- $i \rightarrow w_j$ and $j+1 \rightarrow j$

Polygon Clipping

Sutherland-Hodgman

Approach

Case 3: Polygon edge is entirely outside the window edge

Polygon Clipping

Sutherland-Hodgman

Approach

Case 4: Polygon edge crosses window edge going in

- Intersection point *i* and *p* are next two vertices of resulting polygon
- $i \rightarrow w_j$ and $p \rightarrow w_{j+1}$ and $j+2 \rightarrow j$

Polygon Clipping

Sutherland-Hodgman

Polygon Clipping

Sutherland-Hodgman

Polygon Clipping

Sutherland-Hodgman

Polygon Clipping

Sutherland-Hodgman

Polygon Clipping

Sutherland-Hodgman

Polygon Clipping

Sutherland-Hodgman

Polygon Filling

Consider first triangle

Polygon Filling

Consider first triangle

Color all pixels inside triangle Inside (containment) test

Polygon Filling

Triangle

Use horizontal spans.
Process horizontal spans in scan-line order.
For the next spans use edge slopes

Polygon Filling

Polygon

How do we decide what parts of the span should be filled?

Polygon Filling

Polygon

How do we decide what parts of the span should be filled?

Parity check
if odd fill
if even don't fill

Polygon Filling

Polygon

What happens here?

Polygon Filling

Polygon

What happens here?