2-6 Basis and Rank

2.6.1 Generating Set and Basis

Generating Set (생성집합)

Vector space $V=(\mathbb{V},+,\cdot)$ 과 벡터 집합 $\mathcal{A}=\{x_1,\cdots,x_k\}\subseteq\mathcal{V}$

만약 $\mathcal V$ 에 속하는 모든 벡터 $v\in\mathcal V$ x_1,\cdots,x_k 의 선형결합으로 표현할 수 있을때, 벡터 집합 $\mathcal A$ 를 V의 생성집합(Generating Set)이라고 합니다.

벡터 집합 \mathcal{A} 에 속하는 벡터들의 모든 선형 결합의 집합을 \mathcal{A} 의 span 이라고 합니다.

• span한다. → 표현할 수 있다 → 덧셈과 스칼라배

basis (기저)

 $V=(\mathcal{V},+,\cdot)$ 과 $\mathcal{A}\subset\mathcal{V}$ 인 벡터 공간

만약 $\tilde{\mathcal{A}}\subseteq\mathcal{A}\subseteq\mathcal{V}$ 이면서, V를 span하는 가장 작은 집합 $\tilde{\mathcal{A}}$ 가 존재하지 않는다면 V의 생성집합 \mathcal{A} 는 minimal이라고 부릅니다.

V의 선형 독립인 모든 생성 집합은 minimal이며, 이를 V의 basis (기저) 라고 부릅니다.

Let $V=(\mathcal{V},+,\cdot)$ be a vector space and $\mathcal{B}\subseteq\mathcal{V},\mathcal{B}\neq\emptyset$. Then, the following statements are equivalent:

- B is a basis of V.
- B is a minimal generating set.
- B is a maximal linearly independent set of vectors in V, i.e., adding any
 other vector to this set will make it linearly dependent.
- Every vector x ∈ V is a linear combination of vectors from B, and every linear combination is unique, i.e., with

$$\boldsymbol{x} = \sum_{i=1}^{k} \lambda_i \boldsymbol{b}_i = \sum_{i=1}^{k} \psi_i \boldsymbol{b}_i$$
 (2.77)

and $\lambda_i, \psi_i \in \mathbb{R}$, $b_i \in \mathcal{B}$ it follows that $\lambda_i = \psi_i, i = 1, ..., k$.

- $\mathcal{B} \vdash V$ 의 basis
- \mathcal{B} \vdash minimal generating set
- *B*는 V에 속한 선형 독립 벡터들의 maximal 집합

- ㅇ 즉, 다른 벡터가 들어와 불필요한 중복이 생기게되면 선형 종속이 됩니다.
- (2.77)은 V는 임의의 벡터 v는 \mathcal{B} 의 일차결합(선형결합)으로 표현할 수 있습니다.

예시

Example 2.16

In R³, the canonical/standard basis is

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}. \tag{2.78}$$

Different bases in R³ are

$$\mathcal{B}_{1} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \mathcal{B}_{2} = \left\{ \begin{bmatrix} 0.5\\0.8\\0.4 \end{bmatrix}, \begin{bmatrix} 1.8\\0.3\\0.3 \end{bmatrix}, \begin{bmatrix} -2.2\\-1.3\\3.5 \end{bmatrix} \right\}. (2.79)$$

• The set

$$\mathcal{A} = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-4 \end{bmatrix} \right\}$$
 (2.80)

is linearly independent, but not a generating set (and no basis) of \mathbb{R}^4 : For instance, the vector $[1,0,0,0]^\top$ cannot be obtained by a linear combination of elements in \mathcal{A} .

• cononical / standard basis → 표준 기저

집합 \mathcal{A} 에 있는 열 벡터들은 선형 독립이지만, \mathbb{R}^4 를 생성하지는 못합니다. 예를 들어, 벡터 $[1,0,0,0]^T$ 은 \mathcal{A} 의 요소들의 선형 결합으로 표현되지 않습니다.

Remark

모든 vector space V에는 basis \mathcal{B} 이 있습니다.

앞서 본 예시처럼 하나의 벡터 공간에는 기저가 여러 가지 일 수 있고, 꼭 하나로 정해지는 것은 아닙니다.

하지만 어떤 기저를 선택하든 항상 그 안에 들어있는 벡터의 개수는 모두 동일합니다.

해당 책에서는 유한 차원(finite-dimensional) vector space 만 다룹니다. 이 경우 V의 차원(Dimension)은 V basis vector의 수가 되며, $\dim(V)$ 라고 씁니다.

만약 U 가 V의 subspace $(U \subseteq V)$ 라면, $\dim(U) \leq \dim(V)$ 이며,

U=V 일때, $\dim(U)=\dim(V)$ 입니다.

 $\dim(V) =$ basis vector of V (선형 독립한 최소 벡터 수, 기저 벡터 개수)

벡터 공간의 차원은 벡터 하나가 몇 개의 원소를 가지는지와는 관련이 없습니다. 즉, 벡터 하나가 2차원이어도 그 벡터 공간이 1차원일 수 있습니다.

$$V=\mathrm{span}egin{bmatrix}0\1\end{bmatrix}$$

- 이 벡터는 요소가 2개인 벡터 $\rightarrow \mathbb{R}^2$ 안에 있는 벡터입니다.
- 하지만 이 벡터 하나로 생성되는 공간(span)은 직선(1차원)입니다.

$$\lambda \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 와 같은 벡터만 포함되기 때문입니다.

다시말해, 벡터는 2차원 좌표계 안에 있지만 그 자체로 만드는 공간(span)은 단 하나의 방향(1차원, 직선)입니다.

Remark

subspace $U=\mathrm{span}[x_1,\cdots,x_m]\subseteq\mathbb{R}^n$ 의 basis는 다음 3단계를 통해 찾을 수 있습니다.

- 1. spanning vectors를 행렬 A의 열로 둡니다.
- 2. A의 row-echelon form을 결정합니다.
- 3. pivot 열과 연관된 spanning vectors가 U의 basis 입니다.

Example 2.17 (Determining a Basis)

For a vector subspace $U \subseteq \mathbb{R}^5$, spanned by the vectors

$$m{x}_1 = egin{bmatrix} 1 \\ 2 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \quad m{x}_2 = egin{bmatrix} 2 \\ -1 \\ 1 \\ 2 \\ -2 \end{bmatrix}, \quad m{x}_3 = egin{bmatrix} 3 \\ -4 \\ 3 \\ 5 \\ -3 \end{bmatrix}, \quad m{x}_4 = egin{bmatrix} -1 \\ 8 \\ -5 \\ -6 \\ 1 \end{bmatrix} \in \mathbb{R}^5, \quad (2.81)$$

we are interested in finding out which vectors x_1, \ldots, x_4 are a basis for U. For this, we need to check whether x_1, \ldots, x_4 are linearly independent. Therefore, we need to solve

$$\sum_{i=1}^{4} \lambda_i \boldsymbol{x}_i = \boldsymbol{0}, \qquad (2.82)$$

which leads to a homogeneous system of equations with matrix

$$[\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3, \boldsymbol{x}_4] = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & -1 & -4 & 8 \\ -1 & 1 & 3 & -5 \\ -1 & 2 & 5 & -6 \\ -1 & -2 & -3 & 1 \end{bmatrix} .$$
 (2.83)

With the basic transformation rules for systems of linear equations, we obtain the row-echelon form

$$\begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & -1 & -4 & 8 \\ -1 & 1 & 3 & -5 \\ -1 & 2 & 5 & -6 \\ -1 & -2 & -3 & 1 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Rank

행렬 $A\in\mathbb{R}^{m imes n}$ 에서 **선형 독립인 열의 개수는 선형 독립인 행의 개수와 같으며**, 이를 A의 rank 라 하며 $\mathrm{rk}(A)$ 로 표기합니다.

행렬의 Rank는 중요한 속성들을 가지고 있습니다.

• $\operatorname{rk}(A) = \operatorname{rk}(A^{\top})$, (column rank는 row rank와 같습니다)

https://www.youtube.com/watch?v=xv2OAxtDvuc

• (m imes n) 행렬 $A \in \mathbb{R}^{m imes n}$ 의 열은 $\dim(U) = \mathrm{rk}(A)$ 인 subspace $U \subseteq \mathbb{R}^m$ 을 span합니다.

이러한 subspace를 image 또는 range라 부릅니다.

U의 basis는 A에 대해 가우스 소거법을 통해 찾을 수 있으며, pivot column과 동일합니다.

• (m imes n) 행렬 $A\in\mathbb{R}^{m imes n}$ 의 행은 $\dim(W)=\mathrm{rk}(A)$ 인 subspace $W\subseteq\mathbb{R}^n$ 을 span합니다.

W의 basis 또한 위 속성과 동일합니다.

- 모든 (n imes n) 행렬 $A \in \mathbb{R}^{n imes n}$ 에 대해 $\mathrm{rk}(A) = n$ 일때만 A는 regular(invertible) 입니다.
 - \circ 정방행렬 A, regular(invertible) \to 역행렬 A^{-1} 존재
- 모든 $(m \times n)$ 행렬 $A \in \mathbb{R}^{m \times n}$ 이고 $all\ b \in \mathbb{R}^m$ 일 때, $\operatorname{rk}(A) = \operatorname{rk}(A|b)$ 이라면 선형연립방정식 Ax = b의 해를 구할 수 있습니다.
- $A\in\mathbb{R}^{m imes n}$ 에 대해, Ax=b에 대한 subspace의 해(solution)의 차원은 $n-\mathrm{rk}(A)$ 입니다.

해당 subspace를 kernel 또는 null space라고 부릅니다.

• 행렬 $A \in \mathbb{R}^{m \times n}$ 의 rank 가 같은 차원의 행렬 중에서 가질 수 있는 가장 큰 rank와 같을 때, 이 행렬을 full-rank 라고 부릅니다.

2-6 Basis and Rank 5

full rank matrix의 rank는 행의 개수와 열의 개수 중 더 작은 값, $\operatorname{rk}(A) = \min(m,n)$

만약 full rank가 아니라면 rank deficient 라고 합니다.

예시

Example 2.18 (Rank)

$$\bullet \ \boldsymbol{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

A has two linearly independent rows/columns so that $rk(\mathbf{A}) = 2$.

$$\bullet \ \mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

We use Gaussian elimination to determine the rank:

$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}. \tag{2.84}$$

Here, we see that the number of linearly independent rows and columns is 2, such that rk(A) = 2.

출처

- Mathmatics for Machine Learning (https://github.com/mml-book/mml-book.github.io)
- https://junstar92.github.io/mml-study-note/2022/07/04/ch2-6.html
- https://blog.naver.com/walk_along/222161236624
- https://www.youtube.com/watch?
 y=HMST0Yc7EXE&list=PL iJu012NOxdZDxoGsYidMf2 bERIQaP0&index=11
- https://www.youtube.com/watch?v=xv2OAxtDvuc