Homework 45

The due date for this homework is Tue 7 May 2013 12:00 AM EDT.

Question 1

$$\lim_{n \to +\infty} n \sin \frac{2}{n} =$$

- The limit does not exist.
- \circ $\frac{1}{2}$
- _ 1
- _ 2
- $_{\odot}$ $+\infty$
- 0

Question 2

$$\lim_{n\to +\infty} \bigl[1-\left(-1\right)^n\bigr] =$$

- ₀ 1
- The limit does not exist.
- $_{\odot}$ $+\infty$
- o (
- _ 2
- \bigcirc -1

Question 3

$$\lim_{n\to +\infty} \left(\frac{n-1}{n+2}\right)^{n+2} =$$

- e^{-3}
- 0
- e^{-1}
- e^2
- 0 6
- e^3

Question 4

$$\lim_{n\to\infty}\left(\frac{n-1}{n+1}\right)^{2n}=$$

- ₀ 1
- e^{-4}
- e^2
- o 0
- e^4
- e^{-2}

Question 5

$$\lim_{n\to +\infty} \left(\frac{1}{1+n}\right)^{1+n} =$$

- The limit does not exist.
- 0
- _ 1
- e^{-1}

- 0
- $_{\odot}$ $+\infty$

Question 6

Consider the sequence defined by $a_0=2$ and the recursion relation

$$a_{n+1}=rac{2}{2+a_n}$$
 . What is the limit $L=\lim_{n o\infty}a_n$?

- L=2
- $L = \sqrt{2} 1$
- $L = \sqrt{3} 1$
- $L = \frac{1}{2}$
- $L = \sqrt{3}$

Question 7

The Pell numbers are an infinite sequence of integers defined by $P_0=0$, $P_1=1$ and the recursion relation $P_{n+1}=2P_n+P_{n-1}$. What is the limit δ_S as $n\to +\infty$ of the ratios $\frac{P_n}{P_{n-1}}$ of subsequent Pell numbers?

Note: this limit is called the *silver ratio* by analogy with the golden ratio that appeared in the Fibonacci sequence.

- $\delta_S=1-\sqrt{2}$
- $_{\odot}$ $\delta_S=1$
- $\delta_S=1+\sqrt{2}$
- $\delta_S = rac{\sqrt{2}}{2}$

- $\delta_S = \sqrt{2}$ $\delta_S = \sqrt{2} 1$

Question 8

Consider the sequence defined by $a_0=0, a_1=1$ and the recursion relation $a_{n+1} = a_n - a_{n-1}$. What is the limit $L = \lim_{n o \infty} a_n$?

- L=0
- $L = +\infty$
- The limit does not exist.
- $_{\bigcirc}$ L=1
- $D = \frac{1 + \sqrt{5}}{2}$
- In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers