Chapter 3 Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — (#)

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111
 - **–6**: 1111 1111 ... 1111 1010
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — (#)

Overflow Detection

- For two's complement arithmetic
 - OVF = C(n+1) xor C(n)
 - OVF is the exclusive or of the Carry into the MSB and the Carry out of the MSB

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — (#)

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 - Still require multiple steps

Chapter 3 — Arithmetic for Computers — (#)

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34×10^{56} normalized
 - +0.002 × 10⁻⁴ not normalized +987.02 × 10⁹
- In binary
- $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Chapter 3 — Arithmetic for Computers — (#)

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

Show binary numbers in scientific notation.

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

 $X = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit $(0 \Rightarrow pon-negative, 1 \Rightarrow negative)$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- (Significand) is Fraction with the "1." restored Exponent: excess representation: (actual exponent) + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Chapter 3 — Arithmetic for Computers — (#)

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 – 127 = –126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm (1.0 \times 2^{-126}) \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110_
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction 111 → significand ≈ 2.0
 - $0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Chapter 3 — Arithmetic for Computers — (#)

16× (0)

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Chapter 3 — Arithmetic for Computers — (#)

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^{1} \times 1.1_{2} \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent z −1 + Bias
 - Single: -1 + 127 = 126 = 01111110₂
 - Double: -1 + 1023 = 1022 = 011111111110₂
- Single: 10111111101000...00
- Double: 1011111111101000...00

Chapter 3 — Arithmetic for Computers — (#)

Floating-Point Example

- What number is represented by the singleprecision float
 - 11000000101000...00
 - S=1
 - Fraction = $01000...00_2$
 - Fxponent = 10000001₂ = 129-
- $x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 127)}$ $= (-1) \times 1.25 \times 2^{2}$ = -5.0

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^{2}

Chapter 3 — Arithmetic for Computers — (#)

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - \blacksquare 1.000₂ × 2⁻¹ + -0.111₂ × 2⁻¹ = 0.001₂ × 2⁻¹
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - \bullet 1.000₂ × 2⁻⁴ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

Chapter 3 — Arithmetic for Computers — (#)

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., 1dc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.de.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bite.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — (#)

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., –5 / 4
 - 11111011₂ >> 2 = 11111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Chapter 3 — Arithmetic for Computers — (#)

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" 🕾
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Chapter 3 — Arithmetic for Computers — (#)

16