MAT139- Álgebra Linear para Computação Lista de Exercícios 7 - 20/10/2011

Prof. Claudio Gorodski

- 1. Se A é uma matriz n por n, qual é a relação entre $\det A$ e:
 - $a. \det(2A);$
 - $b. \det(-A);$
 - $c. \det(A^2).$
- 2. Calcular o determinante de:
 - a. a matriz de posto um $A=\left(\begin{array}{c} 1\\4\\2 \end{array} \right) \left(\begin{array}{ccc} 2&-1&2 \end{array} \right);$
 - b. a matriz triangular superior $U = \begin{pmatrix} 4 & 4 & 8 & 8 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 2 \end{pmatrix}$;
 - c. a matriz triangular inferior U^t ;
 - d. a matriz inversa U^{-1} ;
 - e. a matriz $M = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 1 & 2 & 2 \\ 4 & 4 & 8 & 8 \end{pmatrix}$.
- 3. Se Q é uma matriz ortogonal, qual é o valor de det Q?
- 4. Mostre que $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b).$
- 5. Decida a veracidade das seguintes afirmações:
 - $a.\ {\rm O}$ determinante de uma matriz é o produto de seus pivôs.
 - b. Se A é invertível e B é singular, então A+B é invertível.
 - c. Se A é invertível e B é singular, então AB é singular.
 - d. Se a soma dos elementos de cada linha de A é zero, então det A=0.
 - e. Uma matriz cujos coeficientes são todos 0 ou 1 tem determinante 0, 1 ou -1.
 - $f. \det(A+B) = \det A + \det B.$

- 6. Mostre que se $A = -A^t$ e A tem ordem ímpar, então det A = 0.
- 7. Calcular o determinante por eliminação de Gauss:

$$A = \begin{pmatrix} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{pmatrix}.$$

8. Calcular o determinante usando a fórmula da soma alternada:

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

9. Seja A_n a matriz n por n com 1 nas três diagonais principais e 0 nas outras posições:

$$A_1 = (1), \quad A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \dots$$

Seja $D_n = \det A_n$.

- a. Use a expansão de Laplace ao longo da primeira linha de A_n para mostrar que $D_n=D_{n-1}-D_{n-2}$ para $n\geq 3.$
- b. Calcular D_1 , D_2 , D_3 , D_4 , D_5 , D_6 , D_7 , D_8 e D_{1000} .
- 10. Explique por que a matriz 5 por 5 tem determinante zero:

$$A = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}.$$

- 11. Use a fórmula dos cofatores para verificar que A^{-1} é triangular superior se A for triangular superior e invertível.
- 12. Calcular o volume do paralelepípedo em \mathbb{R}^3 que tem quatro de seus vértices em:

$$a. (0,0,0), (1,1,0), (1,0,1), (0,1,1);$$

$$b. (0,1,0), (1,2,0), (1,1,1), (0,2,1).$$

13. Resolver pela regra de Cramer:

a.
$$3x_1 + 2x_2 = 7$$
, $4x_1 + 3x_2 = 11$.

b.
$$ax + by = 1$$
, $cx + dy = 0$.