Lecture 9 - Continuous random variables I

Motivation

- We often deal with variables which take uncountably many values
 - Value of voltage in an electric network
 - Waiting time for the arrival of a bus
 - Lifespan of a hard drive
 - Height of a randomly selected person
- Probabilities of taking any particular value by such a variable are zero.
- How can we handle a probability distribution of such variables?

Continuous random variable

• A random variable $X:\Omega \to \mathbb{R}$ is called continuous, if there exists a function $f:\mathbb{R} \to \mathbb{R}_+$, such that for any $A\subseteq \mathbb{R}$ it holds:

$$P(X \in A) = \int_A f(x) dx$$

- ullet Function f is called probability density function of a random variable X.
- The probability density function has the following properties:
 - $\circ \int_{-\infty}^{\infty} f(x)dx = 1$
 - $\circ f(x) \geq 0$ for all x
 - It doesn't need to be smaller or equal to 1 everywhere, it can actually exceed 1 (or even go to infinity)

Uniform distribution

• A continuous random variable X has uniform distribution on interval [a,b] (denoted $X \sim \mathrm{Unif}[a,b]$) if:

$$f(x) = \left\{egin{array}{ll} rac{1}{b-a} & x \in [a,b] \ 0 & x
ot\in [a,b] \end{array}
ight\}$$

• For $a \le c \le d \le b$:

$$P(c \leq X \leq d) = \int_{c}^{d} rac{1}{b-a} dx = rac{d-c}{b-a}$$

Exponential distribution

• A continuous random variable X has exponential distribution with parameter $\lambda>0$ (denoted $X\sim \operatorname{Exp}(\lambda)$) if:

$$f(x) = \left\{egin{array}{ll} \lambda e^{-\lambda x} & x \geq 0 \ 0 & x < 0 \end{array}
ight\}$$

- It is a continuous version of a geometric distribution.
- $\int \lambda e^{-\lambda x} dx = -e^{-\lambda x}$
- Exponential distribution exhibits the memorylessness property.

Cumulative distribution function

ullet A cumulative distribution function if a random variable X is defined as:

$$F(x) = P(X \le x)$$

For a continuous random variable:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

• It is true that F'(x) = f(x)

Distribution of a function of continuous random variable

- ullet X continuous random variable with density $f_X(x)$ taking values in [a,b]
- Y=g(X) function of the random variable, taking values in [c,d] where g:[a,b] o [c,d] is differentiable and invertible
- Then the density $f_Y(y)$ of $\ Y$ can be calculated:

$$f_Y(y) = f_X(h(y))|h'(y)|$$

- ullet For $y\in [c,d]$ and where $h=g^{-1}$ is the inverse function of g.
- ullet Example, let $X \sim \mathrm{Unif}[0,1]$, calculate the density f_Y of $Y = X^2$
 - $\circ \ f_X(x) = 1 ext{ for } 0 \leq x \leq 1$
 - $\circ \ \ g(x)=x^2$, so $h(y)=\sqrt{y}$.
 - $\circ \ \ h'(y) = rac{1}{2\sqrt{y}}$
 - \circ Therefore $f_Y(y) = 1 \cdot rac{1}{2\sqrt{y}}$ for $0 \leq y \leq 1$
 - \circ Explanation: Lets say that we want to calculate the probability that X is between 0 and 0.1. It is equal to $1\cdot (0.1-0)=0.1$, but when X is in that range Y must be in the range 0 to 0.01. Since Y is just a function of X, the event that X is between 0 and 0.1 and the event that Y is between 0 and 0.01 must have the same probability. Therefore Y is distributed according to some function that gives probability $\sqrt{b}-\sqrt{a}$ to an event that Y is between Y0 and Y1 are the integral of that function from Y2 to Y3 to Y4.

Drawing numbers from a distribution

- How to draw a number from a discrete distribution P_X only having a generator of random real numbers in the range [0,1] (uniform)?
- Theorem: let $U \sim \mathrm{Unif}[0,1]$. Then a variable

$$X = F^{-1}(U)$$

• has a distribution for which the cumulative distribution function has the form $F_X=F.$ Where F is a function of X with a value set (0,1).

Expected value

For a discrete random variable X:

$$EX = \sum_x x P(X = x)$$

For a continuous random variable X:

$$EX = \int_{-\infty}^{\infty} x f(x) dx$$

- Remark: it suffices to integrate only over the set for which f(x)>0.
- · Properties of an expected value
 - \circ If a < X < b then a < EX < b
 - \circ If Y=g(X) then:

$$EY = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

The expected value is a linear operation:

$$\circ E(aX+B)=aEX+b$$

$$\circ \ E(X_1+\ldots+X_n)=EX_1+\ldots+EX_n$$

Variance

$$D^2(X)=E((X-EX)^2)=\int_{-\infty}^{\infty}(x-EX)^2f(x)dx$$

It also holds that:

$$D^{2}(X) = E(X^{2}) - (EX)^{2}$$

 $D^{2}(aX + b) = a^{2}D^{2}(X)$

Normal distribution

• A random variable $X \in \mathbb{R}$ has normal (Gaussian) distribution, if:

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$.
- We denote: $X \sim N(\mu, \sigma^2)$.
- It is a very popular distribution in nature as is it models random phenomena that are result of averaging many independent factors.
- It is normalized since:

$$\int_{-\infty}^{\infty}e^{-x^2}dx=\sqrt{\pi}$$

- If $X \sim N(\mu, \sigma^2)$ then $EX = \mu$ and $D^2(X) = \sigma^2$
- If $X \sim N(\mu, \sigma^2)$ then Y = aX + b has distribution $N(\mu a + b, \sigma^2 a^2)$
- Therefore a linear function of a variable with normal distribution has normal distribution.
- Let $X \sim N(0,1).$ The function:

$$\phi(x)=P(X\leq x)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-rac{t^2}{2}}dt$$

- is called the standard normal c.d.f.
- $\phi(x)$ does not have an analytical form (cannot be expressed with the usual functions and operations on numbers), so we can only compute it using numerical methods.
- $\phi(-x) = 1 \phi(x)$
- If $X \sim N(\mu, \sigma^2)$ then $P(a \leq X \leq b) = \phi(rac{b-\mu}{\sigma}) \phi(rac{a-\mu}{\sigma})$