

Bioinformàtica per a la Recerca Biomèdica Ricardo Gonzalo Sanz

ricardo.gonzalo@vhir.org

03/12/2018

https://galaxyproject.github.io/training-material/topics/variant-analysis/

Variant Analysis

Exome sequencing means that all protein-coding genes in a genome are sequenced

Requirements

Before diving into this topic, we recommend you to have a look at:

- · Introduction to Galaxy Analyses
- · Sequence analysis
 - Quality Control: slides hands-on

Material						
Lesson	Slides	Hands-on	Input dataset	Workflows	Galaxy tour	Galaxy instances
Introduction to Variant analysis						
Calling variants in diploid systems		<u> </u>	අු			0 -
Calling variants in non-diploid systems prokaryote		<u> </u>	අු			
Exome sequencing data analysis		<u> </u>	අු	4	P	0 -
Mapping and molecular identification of phenotype-causing mutations		□ •	එ	4	P	0 -
Microbial Variant Calling prokaryote		<u> </u>	අු	4	y	0 -

Material						
Lesson	Slides	Hands-on	Input dataset	Workflows	Galaxy tour	Galaxy instances
Introduction to Variant analysis	•					
Calling variants in diploid systems		<u> </u>	4			0 -
Calling variants in non-diploid systems prokaryote		<u> </u>	එු			
Exome sequencing data analysis		<u> </u>	එු	4	P	0 -
Mapping and molecular identification of phenotype-causing mutations		<u> </u>	එු	4	7	0 -
Microbial Variant Calling prokaryote		<u> </u>	එු	4	P	0 -

Material

The data for the training:

The Ashkenazim Father-Mother-Son trio

- HG002 NA24385 huAA53E0 (son)
- HG003 NA24149 hu6E4515 (father)
- HG004 NA24143 hu8E87A9 (mother)

Restricting alignments to a small portion of chromosome 19 containing the POLRMT gene

Download data from:

- 1. Create a new history for this variant calling exercise
- 2. Import the files named GIAB-Ashkenazim-Trio.txt (tabular format) and GIAB-Ashkenazim-Trio-hg19 (BAM format) from Zenodo or a data library:
- 3. Specify the used genome for mapping:
 - 1. Click on the **pencil icon** for the BAM dataset to edit its attributes
 - 2. Select Human Feb 2009 on Database/Build
 - 3. Click the **Save** button

Download data from:

Name	Size	
dbSNP_138.hg19.vcf	2.1 MB	≛ Download
md5:1bb54779b6e564062398ca593738d8f2 🕡		
father.bam	31.8 MB	≛ Download
md5:32b6da238924e0e8c702092891d32ede 🕖		
GIAB-Ashkenazim-Trio-hg19.gz	52.4 kB	≛ Download
md5:e7e4d5774877fb325335c2d4b0a1c015 🚱		
GIAB-Ashkenazim-Trio.txt	231 Bytes	≛ Download
md5:384ecad45c4f603d1f40baec5f2a0b79 🕢		
mother.bam	33.5 MB	≛ Download
md5:2463b4df4634b99b5ba49bb055e0c446 🕖		
patient.bam	34.4 MB	≛ Download
md5:2a856f42d30fd90efab48f51ebe1293b 🕖		

Upload data to Galaxy

family1

family1

HG003 NA24149 father

HG002_NA24385_son

-9

HG003_NA24149_father

CEU

CEU

1

1

-9

HG004_NA24143_mother

Generating and post-processing FreeBayes calls

★ Hands-on: Generating FreeBayes calls

- 1. FreeBayes ≠ with the following parameters:
 - "Choose the source for the reference genome": locally cached
 - "BAM dataset": the uploaded GIAB-Ashkenazim-Trio-hg19 BAM dataset
 - "Using reference genome": Human (Homo sapiens): hg19
 - "Choose parameter selection level": 5. Full list of options
 - o "Algorithmic features": Set algorithmic features
 - "Calculate the marginal probability of genotypes and report as GQ in each sample field in the VCF output": Yes (This would help us evaluating the quality of genotype calls)

This will produce a dataset in VCF format containing 35 putative variants Before we can continue, we need to post-process this dataset by breaking compound variants into multiple independent variants.

Quality Control

Assembly

Mapping

Variant Calling

Genome editing

GATK Tools

Gemini Tools

RNA Analysis

bset VCF/BCF files
VCFfilter: filter VCF data in a

variety of attributes

FreeBayes bayesian genetic
variant detector

VCFdistance: Calculate distance to the nearest variant

Naive Variant Caller (NVC) tabulate variable sites from BAM datasets

snippy Snippy finds SNPs between a haploid reference genome and your NGS

Algorithmic features Set algorithmic features Sets --report-genotypes-likelihood-max, -B, --genotyping-max-banddepth, -W, -N, S, -j, -H, -D, -= options Report genotypes using the maximum-likelihood estimate provided from genotype likelihoods

Calculate the marginal probability of genotypes and report as GQ in each sample field in the VCF output

Yes No

(--genotype-qualities)

**Execute*

This will produce a dataset in **VCF** format containing **35 putative variants**.

#CHROM	POS	IC	REF	ALT
chr19	617614		G	Α
chr19	617804		G	Α
chr19	617959		Α	С
chr19	618159		Α	G
chr19	618428		Т	G
chr19	618851		TAGG	CAGA
chr19	618911		Т	G
chr19	619021		G	С
chr19	619139		G	Α
chr19	619408		Α	G
chr19	619574		Т	G
chr19	619772		G	С
chr19	619913		Т	С

Before we can continue, we need to post-process this dataset by **breaking compound** variants into multiple independent variants.

VcfAllelicPrimitives: Split alleleic primitives (gaps or misches) into multiple VCF lines

VcfAllelicPrimitives: Split alleleic primitives (gaps or mismatches) into multiple VCF lines (Galaxy Version 1.0.0_rc1+galaxy0)	sions	▼ Options			
Select VCF dataset 3: FreeBayes on data 2 (variants) Retain MNPs as separate events Yes Nouse-mnps option Tag records which are split apart of a complex allele with this flag.		•			
tag-parsed option Do not manipulate records in which either the ALT or REF is longer than (bp) 200 max-length option Maintain site and allele-level annotations when decomposing					
Yes No Note that in many cases, such as multisample VCFs, these won't be valid post-decomposition. For biallelic loci in sittley should be usable with caution. (keep-info)	on d	cfAllelicPrim ata 3 eeBayes on		(9) 6	P X
Yes No Similar caution should be used for this as forkeep-info. (keep-geno)	2: G	i <u>ants)</u> IAB-Ashkena Ig19.gz	azim-T	(2)	r ×
✓ Execute	1: GI	IAB-Ashkena xt	azim-T	(4)	×

VCFAllelicPrimitives generates a VCF files containing **37 records** (the input VCF only contained **35**). This is because a multiple nucleotide polymorphism (TAGG|CAGA) at position 618851 have been converted to two.

Before	After
chr19 618851 . TAGG CAGA 81.7546	chr19 618851 . T C 81.7546
	chr19 618854 . G A 81.7546

Annotating variants with SnpEff

At this point we are ready to begin annotating variants using **SnpEff**. SnpEff "...annotates and predicts the effects of variants on genes (such as amino acid changes)..." and so is critical for functional interpretation of variation data.

Annotating variants

- 1. **SnpEff** (Variant effect and annotation) \nearrow with:
 - "Sequence changes (SNPs, MNPs, InDels)": the VCF output of VcfAllelicPrimitives &
 - o "Genome source": Locally installed reference genome
 - ∘ "Genome": Homo sapiens: hg19

Nanopolish variants - Find
SNPs of basecalled merged
Nanopore reads and polishes
the consensus sequences

SnpEff available databases

SnpEff Variant effect and annotation

bcftoolsView Convert, filter, subset VCF/BCF files

SnpEff Variant effect and annotation (Galaxy Version 4.3r.1)	& Versions	▼ Options
Sequence changes (SNPs, MNPs, InDels)		
4: VcfAllelicPrimitives: on data 3		•
Input format		
VCF		•
Output format		
VCF (only if input is VCF)		•
Genome source		
Locally installed reference genome		•
Genome		
Homo sapiens : hg19		•
Regulation options		9 >

SnpEff will generate two outputs:

an annotated VCF file

• an HTML report

SnpEff: Variant analysis

Contents

Summary.
Variant rate by chromosome
Variants by type
Number of variants by impact
Number of variants by functional class.
Number of variants by effect
Quality histogram
InDel length histogram
Base variant table
Transition vs transversions (ts/tv)
Allele frequency
Allele Count
Codon change table

Amino acid change table

Chromosome variants plots

)|,A|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|14/20|c.3154-29C>T|||||
3|||||2249|,G|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|13/20|c.3067-112T>C|||
T|POLRMT|transcript|NM_005035.3|protein_coding|13/20|c.3066+12A>C|||||

[0]c.2887-7C>G[[[[]],C[downstream gene variant[MODIFIER[HCN2[HCN2[transcript]NM 001194.3[protein coding]]c.*329

>C[||||2754|,C|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|12/20|c.2886+45A>G|
c.2840A>G|p.Glu947Gly|2896/3800|2840/3693|947/1230||,C|downstream_gene_variant|MODIFIER|HCN2|HCN2|transcript
>A|p.Ala933Ala|2855/3800|2799/3693|933/1230||,T|downstream_gene_variant|MODIFIER|HCN2|HCN2|transcript|NM_00
27A>C||||3042|,C|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|11/20|c.2764-121T_
variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|11/20|c.2764-120|
.*3740T>C||||3055|,C|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|11/20|c.2764-120|
c.*3754A>C||||3069|,C|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|11/20|c.2763+66G>T||||
||3140|,A|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|11/20|c.2763+66G>T||||
||3156|,C|intron_variant|MODIFIER|POLRMT|POLRMT|transcript|NM_005035.3|protein_coding|11/20|c.2763+50T>G|||||
n_coding|11/21|c.2747A>C|||||,G|structural_interaction_variant|HIGH|POLRMT|Interaction|4BOC:A_827-A_916:N
70/3800|2714/3693|905/1230||,C|downstream_gene_variant|MODIFIER|HCN2|HCN2|transcript|NM_001194.3|protein_coding
3800|2699/3693|900/1230||,C|downstream_gene_variant|MODIFIER|HCN2|HCN2|transcript|NM_001194.3|protein_coding
39A>G|p.Glu890Gly|2725/3800|2669/3693|890/1230||,C|downstream_gene_variant|MODIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|HCN2|transcript|NM_0DIFIER|HCN2|HCN2|HCN2|transcript|NM_0DIFIER|HCN

Summary

Genome	hg19
Date	2018-12-02 20:43
SnpEff version	SnpEff 4.3r (build 2017-09-06 16:41), by Pablo Cingolani
Command line arguments	<pre>SnpEff -i vcf -o vcf -stats /data/dnb02/galaxy_db/files/007/922/datase hg19 /data/dnb02/galaxy_db/files/007/922/dataset_7922719.dat</pre>
Warnings	0
Errors	0
Number of lines (input file)	37

Number variants by type

Туре	Total
SNP	35
MNP	0
INS	0
DEL	2
MIXED	0
INV	0
DUP	0
BND	0
INTERVAL	0
Total	37

Number of effects by impact

Type (alphabetical order)	Count	Percent
HIGH	11	12.791%
LOW	9	10.465%
MODERATE	8	9.302%
MODIFIER	58	67.442%

Manipulating variation data with GEMINI

Now that we have an annotated VCF file it is time to peek inside our variation data. Aaron Quinlan, creator of GEMINI, calls it Detective work.

What is GEMINI?

Software package for exploring genetic variation

 Integrates annotations from many different sources (ClinVar, dbSNP, ENCODE, UCSC, 1000 Genomes, ESP, KEGG, etc.)

What can you do with Gemini?

- Load a VCF into an "easy to use" database
- Query (fetch data) from database based on annotations or subject genotypes
- Analyze simple genetic models
- More advanced pathway, protein-protein interaction analyses

github.com/arg5x/gemini

PLoS Comput Biol. 2013;9(7):e1003153. doi: 10.1371/journal.pcbi.1003153. Epub 2013 Jul 18.

GEMINI: integrative exploration of genetic variation and genome annotations.

Paila U1, Chapman BA, Kirchner R, Quinlan AR.

Loading data into GEMINI

The first step is to convert a VCF file we would like to analyze into a GEMINI database. For this we will use **GEMINI Load** tool. GEMINI takes as input a VCF file and a PED file describing the relationship between samples. In our case the PED file looks like this (second imported file):

#family_id	sample_id	paternal_id	maternal_id	sex	phenotype	ethnicity
family1	HG004_NA24143_mother	-9	-9	2	1	CEU
family1	HG003_NA24149_father	-9	-9	1	1	CEU
family1	HG002_NA24385_son	HG003_NA24149_father	HG004_NA24143_mother	1	2	CEU

1. **GEMINI load** & with:

- "VCF file to be loaded in the GEMINI database": the VCF output of SnpEff №
- o "Sample information file in PED+ format": the uploaded GIAB-Ashkenazim-Trio.txt tabular
- o "Choose a gemini annotation database": the most recent available release

This will create an SQLite database in your history.

Loading data into GEMINI

The first step is to convert a VCF file we would like to analyze into a GEMINI database. For this we will use **GEMINI Load** tool. GEMINI takes as input a VCF file and a PED file describing the relationship between samples. In our case the PED file looks like this (second imported file):

Loading data into GEMINI

The first step is to convert a VCF file we would like to analyze into a GEMINI database. For this we will use **GEMINI Load** tool. GEMINI takes as input a VCF file and a PED file describing the relationship between samples. In our case the PED file looks like this (second imported file):

Loading data into GEMINI

The first step is to convert a VCF file we would like to analyze into a GEMINI database. For this we will use GEMINI Load tool. GEMINI takes as input a VCF file and a PED file describing the relationship between samples. In our case the PED file looks like this (second imported file): 7: GEMINI load on dat a 1 and data 5 GEMINI load Loading a VCF file into GEMINI (Galaxy Version 0.18.1.0) 6: SnpEff on data 4 - s VCF file to be loaded in the GEMINI database tats 5: SnpEff on data 4 5: SnpEff on data 4 Only build 37 (aka hg19) of the human genome is supported. The annotations to be used with the input vcf 4: VcfAllelicPrimitives: snpEff annotated VCF file on data 3 (-t) 3: FreeBayes on data 2 💿 🧳 🗶 Sample information file in PED+ format (variants) 1: GIAB-Ashkenazim-Trio.txt 2: GIAB-Ashkenazim-T (-p) rio-hg19.gz Choose a gemini annotation database 1: GIAB-Ashkenazim-T GEMINI annotations (2018-07-08) rio.txt

- 2. Run **GEMINI db_info** see the content of the database:
 - "GEMINI database": the output of GEMINI load №

This produces a list of all database tables and their columns. The latest version of the GEMINI database schema can be found here.

The variants table

Core VCF fields

column_name	type	notes
chrom	STRING	The chromosome on which the variant resides (from VCF CHROM field).
start	INTEGER	The 0-based start position. (from VCF POS field, but converted to 0-based coordinates)
end	INTEGER	The 1-based end position. (from VCF POS field, yet inferred based on the size of the variant)
vcf_id	STRING	The VCF ID field.

- 2. Run **GEMINI db_info** for to see the content of the database:
 - "GEMINI database": the output of GEMINI load &

This produces a list of all database tables and their columns. The latest version of the GEMINI database schema can be found here.

Th	e variants t	able			
Core VCF fields column_name type notes		notes			
chro	m	STRING	The chror	mosome on which the variant resides (from VCF CHROM field).	
enc	Variant and	l PopGe	n info		
	type	5	STRING	The type of variant.	
vcf				Any of: [snp, indel]	
	sub_type 🚶		STRING	The variant sub-type.	
				If type is snp: [ts, (transition), tv (transversion)]	
				If type is indel: [ins, (insertion), del (deletion)]	
	call_rate	F	FLOAT	The fraction of samples with a valid genotype	
	num hom rof		NTEGED	The total number of of homozygotes for the reference (not) allele	

https://gemini.readthedocs.io/en/latest/content/database_schema.html

- 2. Run **GEMINI db_info** so to see the content of the database:
 - "GEMINI database": the output of GEMINI load №

This produces a list of all database tables and their columns. The latest version of the GEMINI database schema can be found here.

The variants table

Core VCF fields

column_name	type	notes		
chrom	STRING	The chromosome on which the variant resides (from VCF CHROM field).		

enc Variant and PopGen info

vcf type Genotype information	enotype inf	formation
-------------------------------	-------------	-----------

sub type	gts	BLOB	A compressed binary vector of sample genotypes (e.g., "A/A", "A G", "G/G")
oub_type	B		- Extracted from the VCF GT genotype tag.
	gt_types	BLOB	A compressed binary vector of numeric genotype "types" (e.g., 0, 1, 2)
call_rate			- Inferred from the VCF GT genotype tag.
num hom	gt_phases	BLOB	A compressed binary vector of sample genotype phases (e.g., False, True, False)

- Extracted from the VCF GT genotype tag's allele delimiter

https://gemini.readthedocs.io/en/latest/content/database_schema.html

e.g., A G means a phased genotype. Value is TRUE.

- 2. Run **GEMINI db_info** see the content of the database:
 - "GEMINI database": the output of GEMINI load №

This produces a list of all database tables and their columns. The latest version of the GEMINI database schema can be found here.

The variants table

vcf

column_name	type	notes
chrom	STRING	The chromosome on which the variant resides (from VCF CHROM field).

enc Variant and PopGen info

f	type	Geno	type information
			Population information
	sub type	gts	- opaiation mioritation

		in_dbsnp	BOOL	Is this variant found in dbSNP?
	gt type			0 : Absence of the variant in dbsnp
	3-17			1 : Presence of the variant in dbsnp
call_rate				

gt_pha rs_ids rs_ids STRING A comma-separated list of rs ids for variants present in dbSNP in_hm2 BOOL Whether the variant was part of HapMap2.

https://gemini.ireandtbiedocs.io/en/latesolopntent/vhattaleathe variantmastpalt of HapMap3.

in can POOL Presence/absence of the varient in the ECD present dat

GEMINI db info List the gemini database tables and columns

What it does

	* 1 1 1 1 1 1 1	1	2	3	4
	GEMINI db info Li	table_name	column_name	type	
	gemini database t columns	variants	chrom	text	
		variants	start	integer	
		variants	end	integer	
		variants	vcf_id 🖟	text	
	GEMINI db_inf	variants	variant_id	integer	
	GEMINI databa	variants	anno_id	integer	
gemini databa columns GEMINI db GEMINI da □ ② Only files wi	D 20 D	variants	ref	text	
	Only files with v	variants	alt	text	
		variants	qual	float	
	✓ Execute	variants	filter	text	
	What it does	variants	type	text	
		variants	sub_type	text	
		variants	gts	blob	
		variants	gt_types	blob	
		variants	gt_phases	blob	
		variants	gt_depths	blob	
		variants	gt_ref_depths	blob	

Querying the GEMINI database

The GEMINI database can be queried using the versatile SQL language (more on SQL here) In Galaxy this is done using the **GEMINI query** tool. Within this tool SQL commands are typed directly into the **The query to be issued to the database** text box. Let's begin getting information from some of the tables we discovered using the **GEMINI db_info** tool above.

https://gemini.readthedocs.io/en/latest/content/querying.html

The examples below are taken from "Introduction to GEMINI" tutorial. For extensive documentation see "Querying the GEMINI database".

- Hands-on: Selecting "novel" variants that are not annotated in dbSNP database
 - 1. **GEMINI query** & with:
 - "GEMINI database": the output of GEMINI load №
 - "The query to be issued to the database": SELECT count(*) FROM variants WHERE in_dbsnp == 0
 As we can see in the output dataset, there are 21 variants that are not annotated in dbSNP.

Gemini Tools

<u>GEMINI query</u> Querying the GEMINI database

GEMINI query Querying the GEMINI database (Galaxy Version 0.18.1.0)	▼ Options
GEMINI database	
7: GEMINI load on data 1 and data 5	•
Only files with version 0.18.1 are accepted.	
The query to be issued to the database	
SELECT count(*) FROM variants WHERE in_dbsnp == 0	
	G
(-q)	
Restrictions to apply to genotype values	

GEMINI query Querying the GEMINI database (Galaxy Version 0.18.1.0)	▼ Options
GEMINI database	
7: GEMINI load on data 1 and data 5	•
Only files with version 0.18.1 are accepted.	
The query to be issued to the database	
SELECT count(*) FROM variants WHERE in_dbsnp == 0	
	G
(-q)	
Restrictions to apply to genotype values	

Find variants within the POLRMT gene

- 1. **GEMINI query** \mathcal{F} with:
 - "GEMINI database": the output of GEMINI load №
 - "The query to be issued to the database": SELECT rs_ids, aaf_esp_ea, impact, clinvar_disease_name, clinvar_sig FROM variants WHERE filter is NULL and gene = 'POLRMT'

Since the variants table has a large number of columns, in the query above we had to select only the most interesting columns. The output shows the variants found within the *POLRMT* gene.

1	2	3	4	5
rs41551212	0.169651162791	synonymous_variant	None	None
rs144281668	0.000116306117702	synonymous_variant	None	None
None	-1	intron_variant	None	None
rs11672829	-1	intron_variant	None	None
None	-1	intron_variant	None	None
rs117015462	-1	intron_variant	None	None
rs11668261	-1	intron_wariant	None	None
None	-1	intron_variant	None	None
rs14155	0.490811816702	synonymous_variant	None	None
rs11669180	0.0469876715515	intron_variant	None	None
rs10853989	-1	intron_variant	None	None
rs10853990	0.48696461825	intron_variant	None	None
rs11669381	0.485071145323	splice_region_variant	None	None
rs2074548	0.175463288764	intron_variant	None	None
None	-1	missense_variant	None	None
None	-1	synonymous_variant	None	None
None	-1	intron_variant	None	None
None	-1	intron_variant	None	None
None	-1	intron_variant	None	None