## Fuzzy vs. Probability

Fuzzy: When we say about certainty of thing

**Example:** A patient come to the doctor and he has to diagnose so that medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is suffering from flue. So, the disease will be cured with certainty of 60% and uncertainty of 40%. Here, instead of flue, other diseases with some other certainties may be.

**Probability**: When we say about the chance of an event to occur.

**Example:** India will win this T20 World Cup with a chance 60% means that out of 100 matches, India won 60 matches.

# Prediction vs. Forecasting

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting

**Prediction:** When you start guessing about the things.

Forecasting: When you take the information from the past job and apply it to new job.

#### The main differences

Prediction is based on the best guess from experiences.

Forecasting is based on data you have actually recorded and packed from previous job.

# Fuzzy membership functions

• A fuzzy set is completely characterized by its membership function (sometimes abbreviated as MF and denoted as μ). So, it would be important to learn how a membership function can be expressed (mathematically or otherwise)

**Note:** A membership function can be on-

- a) a discrete universe of discourse and
- b) a continuous universe of discourse



# Fuzzy membership functions

So membership function on a discrete universe of course is trivial. However a membership function on a continuous universe of discourse needs a special attention.



# Fuzzy MFs: Formulation & Parameterization

In the following, we try to parameterize the different MFs on a continuous universe of discourse.

**Triangular MFs:** A triangular MF is specified by three parameter {a, b, c} and can be formulated as follows-

triangle 
$$(x; a, b, c) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x - a}{b - a} & \text{if } a \le x \le b \\ \frac{c - x}{c - b} & \text{if } b \le x \le c \end{cases}$$

## Fuzzy MFs: Trapezoidal

A Trapezoidal MF is specified by four parameters {a, b, c, d} and can be defined as follows:



# Fuzzy MFs: Gaussian

A Gaussian MF is specified by two parameters  $\{c, \sigma\}$  and can be defined as below:



## Fuzzy MFs: Generalized Bell

It is also called Cauchy MFs. A Generalized bell MF is specified by three parameters {a, b, c} and is defined as follows-



# Example: Generalized Bell MF

Example: 
$$\mu(x) = \frac{1}{1+|x|^2}$$
;  
 $a = b = 1 \text{ and } c = 0$ ;



# Fuzzy MFs: Sigmoidal MFs

Parameters  $\{a, c\}$ ; where c = crossover point and a = slope at c



# Fuzzy MFs: Example

Example: Consider the following grading system for a course

Excellent = Marks  $\geq 90$ 

Very Good =  $75 \le Marks \le 90$ 

Good =  $60 \le Marks \le 70$ 

Average =  $50 \le Marks \le 60$ 

Poor =  $35 \le Marks \le 50$ 

Bad = Marks  $\leq 35$ 

# **Grading System**

A Fuzzy implementation look like the following



You can decide a standard fuzzy MF for each fuzzy grade

### Generation of MFs

Given a membership function of a fuzzy set representing a linguistic hedge, we can derive many more MFs representing several other linguistic hedges using the concept of **Concentration** and **Dilation**.

- 1. Concentration:  $A^K = [\mu_A(x)]^K$ ; K > 1
- **2. Dilation:**  $A^{K} = [\mu_{A}(x)]^{K}$ ; K < 1

Example: Age = { Young, Middle-aged, old}

Thus, corresponding to Young, we have: Not Young, Very Young, Not Very Young and so on.

Similarly, with old, we can have: Not Old, Very Old, Very very Old etc.

Thus,  $\mu_{Extremely\ old}(\mathbf{x}) = (((\mu_{old}(\mathbf{x}))^2)^2)^2$ 

Or,  $\mu_{more\ or\ less\ old}(x) = (\mu_{old}(x))^{0.5}$ 

# Linguistic variables & values

$$\mu_{young}(x) = \text{bell(x,20,2,0)} = \frac{1}{1 + (\frac{x}{20})^4}$$

$$\mu_{old}(x) = \text{bell(x,30,3,100)} = \frac{1}{1 + (\frac{x - 100}{30})^6}$$

 $\mu_{middle-aged}(x) = bell(x,30,60,50)$ 

Not young=
$$\overline{\mu_{young}(x)} = 1 - \mu_{young}(x)$$



Young but not too young = 
$$\mu_{young}(x) \cap \overline{\mu_{young}(x)}$$

# **Fuzzy Operations**

### Basic Fuzzy set operation: Union

**Union** (A U B):  $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$ 

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and

B= 
$$\{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$$

$$C = A \cup B = \{(x_1, 0.5), (x_2, 0.3), (x_3, 0.5)\}$$



### Basic Fuzzy set operation: Intersection

**Intersection** (A  $\cap$  B):  $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ 

A= {
$$(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)$$
} and  
B= { $(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)$ };  
C=A \cap B = { $(x_1, 0.2), (x_2, 0.1), (x_3, 0.4)$ }



### Basic Fuzzy set operation: Complement

**Complement** (A<sup>C</sup>):  $\mu_A^C(x) = 1 - \mu_A(x)$ 

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$
 and

$$C = A^{C} = \{(x_1, 0.5), (x_2, 0.9), (x_3, 0.6)\}$$



### Basic Fuzzy set operation: Product

Algebric product or Vector product (A · B)

$$\mu_{A \cdot B}(x) = \mu_A(x) \cdot \mu_A(x)$$

Scalar product  $(\alpha \times A)$ 

$$\mu_{\alpha A}(x) = \alpha \times \mu_A(x)$$

### Basic Fuzzy set operation: Sum & Difference

#### Sum (A + B):

$$\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

Difference (A-B =  $A \cap B^C$ ):

$$\mu_{A-B}(x) = \mu_{A\cap B}^{C}(x)$$

#### Disjunctive sum:

$$A \bigoplus B = (AC \cap B) \cup (A \cap BC)$$

#### **Bounded sum:**

$$|A(x) \oplus B(x)| = \mu_{|A(x) \oplus B(x)|} = \min\{1, \mu_{A}(x) + \mu_{B}(x)\}\$$

#### **Bounded Difference:**

$$|A(x) \Theta B(x)| = \mu_{|A(x) \Theta B(x)|} = \max\{0, \mu_{A}(x) + \mu_{B}(x) - 1\}$$

# Basic Fuzzy set operation: Equality & Power

Equality (A = B):

$$\mu_{A}(x) = \mu_{B}(x)$$

#### Power of a Fuzzy set Aa

$$\mu_A{}^{\alpha}(x) = (\mu_A(x))^{\alpha}$$

- ✓ If  $\alpha$  < 1, then it is called dilation.
- ✓ If  $\alpha > 1$ , then it is called concentration.

# Basic Fuzzy set operation: Cartesian product

#### Cartesian product (A × B):

$$\mu_{A \times B} = \min(\mu_A(x), \mu_B(x))$$

$$A(x) = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5), (x_4, 0.6)\}$$
  

$$B(y) = \{(y_1, 0.8), (y_2, 0.6), (y_3, 0.3)\}$$

$$A \times B = \min(\mu_A(x), \mu_B(y)) = \begin{cases} x_1 & y_2 & y_3 \\ x_2 & 0.2 & 0.2 & 0.2 \\ 0.3 & 0.3 & 0.3 \\ x_3 & 0.5 & 0.5 & 0.3 \\ 0.6 & 0.6 & 0.3 \end{cases}$$