ECE 2300 Recitation Class 6

Renxiang Guan

Pre-class

• Quiz 4 this week!

- After Thursday lecture (June 29th, 8:00 pm 8:40 pm)
- Same format as last quiz. Online student need to turn on at least one camara. with no blurry background

 — If you want to take online quiz, notify us beforehand!

Midterm 2 next week!

- July 6th, Thursday 7:00 pm 8:40 pm
- Location is still under arrangement, will be announced soon check canvas!

Quiz 3 Recap:

Question 1

Two lossy dielectric media with permittivities and conductivities (ϵ_1, σ_1) and (ϵ_2, σ_2) are in contact. An electric field with a magnitude E_1 is incident from medium 1 upon the interface at an angle α_1 measured from the common normal, as shown in the figure.

- a) Find the magnitude and direction of \mathbf{E}_2 in medium 2.
- b) Find the surface charge density at the interface.
- c) Compare the results in parts (a) and (b) with the case in which both media are perfect dielectrics.

A)
$$E_{1t} = E_{2t}$$
 $\Rightarrow E_{1} \sin \alpha_{1} = E_{2} \sin \alpha_{2}$
 $J_{1n} = J_{2n}$ $\Rightarrow \sigma_{1} E_{1n} = \sigma_{2} E_{2n}$
 $\Rightarrow \sigma_{2} E_{2} \cos \alpha_{2} = \sigma_{1} E_{1} \cos \alpha_{1}$

$$\Rightarrow E_2 = E_1 \int sih^2 d_1 + \left(\frac{\sigma_1}{\sigma_2} \omega_3 \sigma_1\right)^2 \qquad D$$

$$tom d_2 = \frac{\sigma_2}{\sigma_1} \cdot tom d_1$$

$$\Rightarrow d_2 = tom^{-1} \left(\frac{\sigma_2}{\sigma_1} tom d_1\right) \qquad (2)$$

b)
$$D_{2n} - D_{1n} = P_{s} \implies \mathcal{E}_{r} E_{2n} - \mathcal{E}_{i} E_{in} = P_{s}$$

$$P_{s} = (\frac{\sigma_{i}}{\sigma_{z}} \mathcal{E}_{i} - \mathcal{E}_{r}) \cdot E_{in} = (\frac{\sigma_{i}}{\sigma_{z}} \mathcal{E}_{i} - \mathcal{E}_{r}) \cdot E_{i} \omega_{s} \partial_{i}$$

$$E_{i} \omega_{s} \partial_{i}$$

c) if perfect dielectric:
$$\nabla i = \nabla_2 = 0 \Rightarrow 0 \& 0 \Rightarrow P_3 = 0$$

Quiz 3 Recap:

A d-c voltage V_0 is applied across a cylindrical capacitor of length L. The radii of the inner and outer conductors are a and b, respectively. The space between the conductors is filled with two different lossy dielectrics having, respectively, permittivity ϵ_1 and conductivity σ_1 in the region a < r < c, and permittivity ϵ_2 and conductivity σ_2 in the region c < r < b. Determine

a) the current density in each region,

b) the surface charge densities on the inner and outer conductors and at the interface between

a)
$$V_0 \xrightarrow{R} I \xrightarrow{JS} J$$

$$dR = \frac{l}{TS}$$

$$l = dr \quad J = J \quad or \quad J^2$$

$$S = 2TL \cdot L$$

$$R = \int dR = \int \frac{dr}{2TL \cdot L \cdot \sigma}$$

For
$$a < r < c$$
: $R_i = \int_a^c dR = \frac{\ln(\sqrt{A})}{2\pi L L_i}$

For $c < r < b$: $R_i = \int_b^b dR = \frac{\ln(b/c)}{2\pi L L_i}$

$$I = \frac{V_0}{R_{SUM}} = \frac{V_0}{R_i + R_2}$$

$$= \frac{2\pi L_i L_i L_i}{L_i L_i L_i}$$

$$J = \frac{1}{\sqrt{S}} = \frac{1}{2\pi L_i}$$
 $L_i L_i L_i$
 L_i

Quiz 3 Recap:

Question 2

A d-c voltage V_0 is applied across a cylindrical capacitor of length L. The radii of the inner and outer conductors are a and b, respectively. The space between the conductors is filled with two different lossy dielectrics having, respectively, permittivity ϵ_1 and conductivity σ_1 in the region a < r < c, and permittivity ϵ_2 and conductivity σ_2 in the region c < r < b. Determine

- a) the current density in each region,
- b) the surface charge densities on the inner and outer conductors and at the interface between the two dielectrics.

b)
$$| s_{\alpha} = | s_{1} E_{1} |_{r=\alpha} = \frac{s_{1} r_{2} V_{0}}{a [r_{1} l_{m}(\frac{h}{h}) + r_{2} l_{m}(\frac{h}{h})]}$$

$$| s_{b} = - s_{2} E_{2} |_{r=b} = -\frac{s_{2} r_{1} V_{0}}{b [r_{1} l_{m}(\frac{h}{h}) + r_{2} l_{m}(\frac{h}{h})]}$$

$$| s_{c} = - (s_{1} E_{1} - s_{2} E_{2}) |_{r=c} = \frac{(s_{2} r_{1} - s_{1} r_{2}) V_{2}}{c [r_{1} l_{m}(\frac{h}{h}) + r_{2} l_{m}(\frac{h}{h})]}$$

6.1 Fundamental Postulates

$$\nabla \cdot \beta = 0$$

integral form:

$$\oint_S B \cdot dS = 0$$

Right hand rule.

$$\mu_0$$
: permeability of free spane.
 $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

$$\nabla \cdot E = \frac{\rho}{\Sigma_0}$$

Null-identity: div. of a curl is zero

$$\nabla \cdot (\nabla x B) = 0$$

$$\psi \qquad \Rightarrow \quad \nabla \cdot J = \frac{\nabla \cdot (\nabla x B)}{\mu_0} = 0$$

* consistant with: $\nabla \cdot J = \frac{\partial f}{\partial t} = 0$ for steady current.

6.2 Ampere's Circuit Law

$$\nabla \times \mathcal{B} = \mu_0 \mathcal{J}$$

carrent density.

$$\int_{S} (\nabla \times \mathcal{B}) dS = \mu_0 \int_{S} \mathcal{J} \cdot dS$$

C: contour bounds the surface

CB. dl = Mo.I

I: total current flows through surface.

Ampere's Law: the circulation of magnetic flux density in free space around carry closed path is equal to use times the total current flowing through the surface bounded by the path.

6.3 Vector Magnetic Potential

$$\beta = \nabla \times A$$

A: vector magnetic potential

Magnetic flux:
$$\Phi = \int_{S} B \cdot ds = \int_{C} A \cdot dl$$

stoke's Law.

trying to do laplacian transformation.

$$\mu \omega J = \nabla (\nabla \cdot A) - \nabla^2 A$$

$$\nabla \cdot A \text{ made zero}$$

To find solution:

$$A = \frac{\mu_0}{4\pi} \int_{V'} \frac{J}{R} dV'$$

For a thin wire with cross-sec. area S. $dV = S \cdot dl'$

if current flow goes fully along wire:

plug in:

$$A = \frac{\mu I}{4\pi c} \int_{C} \frac{dI}{R}$$

6.3 Vector Magnetic Potential

Based on form & property of diff.

$$B = \frac{\mu l}{4\pi} \int_{C} \frac{dl' \times ar}{R^2}$$

Biot-savart Law.

Also written as:

$$dB = \oint_{C} dB$$

$$dB = \frac{\mu_{0}1}{4\pi} \left(\frac{dl' \times a_{R}}{R^{2}} \right)$$

$$= \frac{\mu_{0}1}{4\pi} \left(\frac{dl' \times R}{R^{3}} \right)$$

Biot-Savert Law is more compleceted to apply than Ampere's circuital Law.

Ampère's circuited Low connect be used to determine B from I in a circuit, if a closed puth cannot be found.

Ex.1 Vector magnetic potential

dl'= 02. dz'

A direct current I flows in a straight wire of length 2L. Find the magnetic flux density \boldsymbol{B} at a point located at a distance r from the wire in the bisecting plane:

- ι) \bullet by determining the vector magnetic potential \boldsymbol{A} first,
- 2) by applying Biot-Savart law.

find B from
$$\nabla x A$$

$$R = \sqrt{2^{1} + r^{1}} \longrightarrow \text{equation of } A$$

$$A = 0 = \sqrt{4\pi} \int_{-L}^{L} \frac{dz'}{\sqrt{z'' + r^{2}}}$$

$$= 0 = \sqrt{4\pi} \left[\ln(z' + \sqrt{z'' + r^{2}}) \right]_{-L}^{L}$$

$$= 0 = \sqrt{4\pi} \left[\ln(z' + \sqrt{z'' + r^{2}}) \right]_{-L}^{L}$$

$$= 0 = \sqrt{4\pi} \left[\ln(z' + \sqrt{z'' + r^{2}}) \right]_{-L}^{L}$$

A first,

Therefore:
$$B = \nabla \times A$$

$$= \nabla \times (A_{\overline{1}} \cdot A_{\overline{2}})$$

$$= \alpha r \frac{1}{r} \frac{\partial A_{\overline{2}}}{\partial p} - \alpha_{\overline{1}} \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial p} - \alpha_{\overline{1}} \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial p} - \alpha_{\overline{1}} \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial p} - \alpha_{\overline{1}} \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial p} - \alpha_{\overline{1}} \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial p} - \alpha_{\overline{1}} \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial p} - \alpha_{\overline{1}} \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial r} \left[\frac{\partial A_{\overline{2}}}{\partial r} \right] \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial r} \left[\frac{\partial A_{\overline{2}}}{\partial r} \right] \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial r} \left[\frac{\partial A_{\overline{2}}}{\partial r} \right] \frac{\partial A_{\overline{2}}}{\partial r}$$

$$= \frac{\partial A_{\overline{2}}}{\partial r} \left[\frac{\partial A_{\overline{2}}}{\partial r} \right] \frac{\partial A_{\overline{2}}}{\partial r}$$

Ex.1 Vector magnetic potential

A direct current I flows in a straight wire of length 2L. Find the magnetic flux density \boldsymbol{B} at a point located at a distance r from the wire in the bisecting plane:

- \bullet by determining the vector magnetic potential \boldsymbol{A} first,
- by applying Biot-Savart law.

$$R = \alpha r \Gamma - \alpha z t'$$

$$dl \times R = \alpha z dz' \times (\alpha r \Gamma - \alpha z z')$$

$$= \alpha \phi \Gamma dz'$$

$$B = \int db = \alpha \phi \frac{l \omega^2}{4 \pi} \int_{-L}^{L} \frac{\Gamma dz'}{(z'^2 + \Gamma^2)^{3/4}}$$

$$= \alpha \phi \frac{l \omega^2}{2 \pi \Gamma \Gamma \Gamma \Gamma L^2 \alpha^2}$$

Ex.2 Vector magnetic potential

Find the magnetic flux density at a point on the axis of a circular loop of radius b that carries a direct current I

$$dl = \alpha \phi b d \phi'$$

$$R = \alpha_2 z - \alpha r b$$

$$R = (z^2 + b^2)^{1/2}$$

$$dl' \times R = \alpha \phi b d \phi' \times (\alpha_2 z - \alpha_r b)$$

$$= \alpha r b z d \phi + \alpha_2 b^2 d \phi'$$

$$R = \frac{\mu_0 z}{4\pi} \int_{z}^{2\pi} \alpha_2 \frac{b^2 d \phi}{(z^2 + b^2)^{3/2}} = \alpha_2 \frac{\mu_0 z b^2}{2(z^2 + b^2)^{3/2}}$$

6.4 Scalar Magnetic Potential

we will have:

B can be expressed as the gradient

$$B = -107 \text{ Vm}$$

Scalar magnetic potential

Between two points: Pi & Pr: Not exist.

if there were magnetic charges of volume

density em. we would find Vm:

For a magnetic bor: +qm, -qm. seperated by d.

$$V_{m} = \frac{m \cdot a_{R}}{4 \pi R}$$

6.4 Scalar Magnetic Potential

Analogous to electric potential

$$\mathbf{E} = -\nabla V$$

$$V_2 - V_1 = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\ell \qquad (V).$$

$$V = \frac{1}{4\pi\epsilon_0} \int_{V'} \frac{\rho}{R} \, dv'$$

$$V_{m2}-V$$

$$V_{m2} - V_{m1} = -\int_{P_1}^{P_2} \frac{1}{\mu_0} \, \mathbf{B} \cdot d\ell.$$

 $\mathbf{B} = -\mu_0 \nabla V_m,$

 B/μ_0

$$V = \frac{1}{4\pi\epsilon_0} \int_{V'} \frac{\rho}{R} dv' \qquad (V).$$

$$V_m = \frac{1}{4\pi} \int_{V'} \frac{\rho_m}{R} dv' \qquad (A).$$
No we in V

more similar to displanent vector.

If there were magnetic charges

Thank You

Credit to Deng Naihao for this slides & information