Shur's Lemma: Let (π_1, V_1) and (π_2, V_2) be two irreducible repris of G. Let $T: V_1 \rightarrow V_2$ be an interrtaining specator. (1) If (π_1,V_1) and (π_2,V_2) are not isomorphic, then T=0. (2) If $(\pi_1, V_1) = (\pi_2, V_2)$, then we can find $\lambda \in \mathbb{C}$ such that $T = \lambda \cdot Id_{V}$ Proof: (1): Suppose that $0 \neq T$: $V_1 \rightarrow V_2$ is an intertuining operator. Then KerT is a subrepu of VI. V_1 is irreducible => $\ker(T) = [0]$ or $\ker(T) = V_1$. $T \neq 0 \Rightarrow \ker(T) = \{0\} \Rightarrow T \text{ is injective.}$ On the other hand, Im (T) is a subrepu of 1/2. V, irreducible => Im (T) = [D] or Im (T) = 1/2 $T \neq 0 \Rightarrow Im(T) = V_2 \Rightarrow T$ is surjective. This means: Tis a bijective intentiming operator and hence Vi is isomorphic to V2, a controdiction. (2) Suppose that T: V, -> V, Let λ be an eigenvalue for T.

Set $V_{\lambda} = \{ v \in V : Tv = \lambda v \} \neq \{ o \} \text{ and } T_{\lambda} = T - \lambda I d_{V}.$ T is an intertwining operator => The is an intertwing operator. We know: V1 is irreducible => ker(Tx)=[0] or ker[Tx]=1, We can show: Ker(Tx)= Vx ≠ [o] => $\ker(T\lambda) = V_{\lambda} = V_{1}$ This concludes: Tv = λv . for any $v \in V_1$ In the following, we assume (TI, VI) and (TI, Vz) are irreducible repris of G and G| is the order of G. Corollary: Let $h: V_1 \rightarrow V_2$ be a linear map. Set: $h_0 = \frac{1}{|\alpha|} \frac{1}{9 \in G} \pi_1(9^{-1}) \cdot h \cdot \pi_1(9)$ Then: (1) If (Ti,Vi) and (Ti, Vi) are not isomorphic, then $h_0 = 0$. then (2) If $(\pi_1, V_1) = (\pi_2, V_2)$, $\lambda = \frac{\operatorname{tr}(h)}{n}$ with $h_o = \lambda \cdot Id\gamma_1$ $N = dim_{\mathbb{C}} V_{1}$

Proof: Observation: ho is an intertuining operator.

(1) If
$$(\pi, V_1) \neq (\pi_2, V_2)$$
, ho = 0 by Schur's Lemma.

(2) If $(\pi, V_1) = (\pi_2, V_2)$, ho = $\lambda \cdot \text{Id}_{V_1}$ by Schur's Lemma.

(If we have a matrix $A = \begin{pmatrix} \lambda & \ddots & \lambda \\ & \ddots & \lambda \end{pmatrix}$, then $\lambda = \frac{\text{tr}(A)}{n}$)

 $\forall r(h_0) = \text{tr}\left(\frac{1}{161} \sum_{g \in G} \pi_1(g^4) \cdot h \cdot \pi_1(g)\right)$
 $= \frac{1}{161} \sum_{g \in G} \text{tr}(\pi_1(g^4) \cdot h \cdot \pi_1(g))$
 $= \frac{1}{161} \sum_{g \in G} \text{tr}(h) = \text{tr}(h)$
 $\Rightarrow h_0 = \lambda \text{Id}_V \text{ with } \begin{cases} \lambda = \frac{\text{tr}(h)}{n} \\ n = \text{dim}_{\mathcal{C}}V \end{cases}$

Next, we fix a basis $\begin{cases} v_1, \dots v_n \end{cases}$ for V_1

a basis $\begin{cases} v_1, \dots v_n \end{cases}$ for V_2 .

Then for $g \in G$, $\pi_1(g) = \begin{pmatrix} M_1 \end{pmatrix} \begin{pmatrix} g \end{pmatrix}_{|S_1|} \leq n$
 $\pi_2(g) = \begin{pmatrix} N_{R_1}(g) \end{pmatrix}_{|S_1|} \leq n$

Notice:
$$\chi_{1}(g) = M_{11}(g) + M_{12}(g) + M_{11}(g)$$
 $\chi_{2}(g) = N_{11}(g) + M_{21}(g) - M_{11}(g)$

Remark: $Mij_{1}(g)$ is called the matrix coefficient of a representation.

Set $h = (\chi_{1}) = \chi_{1} = \chi_{1} = \chi_{2} = \chi_{1} = \chi_{2} = \chi_{1} = \chi_{2} = \chi_{2}$

$$\Rightarrow \forall k_j = \frac{1}{n} \sum_{1 \leq \ell, \ell \leq n} \delta_{\ell, \ell} \chi_{\ell, \ell} \cdot \delta_{k_j}.$$

that is:

$$\sum_{1 \leq \ell, i \leq n} \left(\frac{1}{|G|} \sum_{g \in G} N_{k\ell} (g^{-1}) M_{ij} (g) \right)$$

$$= \sum_{1 \leq \ell, i \leq N} \left(\frac{S \ell i \delta k_j}{N} \right) \chi_{\ell i}.$$

By equating Xer,

$$\Rightarrow \frac{1}{|G|} \sum_{g \in G} N_{ke}(g^{\dagger}) M_{ij}(g) = \frac{\delta e_i \delta k_j}{n}$$

Corollary: Assure the notations above

(2) If
$$V_1 = V_2$$
 and $T_1 = T_2$, then
$$\frac{1}{|C|} \sum_{g \in G} N_{kl}(g^{\dagger}) M_{ij}(g) = \frac{\delta_{li} \delta_{kj}}{N}$$

Let ϕ , ψ be two complex-valued functions on G, that is: $\phi: G \to C$, $\psi: G \to C$.

We can define the scalar product:

$$(\phi|\psi) = \frac{1}{|G|} \frac{\sum_{g \in G} \phi(g) \overline{\psi(g)}}{\frac{1}{|G|}}$$

(2)
$$(\phi) \lambda_1 + \lambda_2 + \lambda_3 + \lambda_3 = \overline{\lambda_1}(\phi) + \overline{\lambda_2}(\phi) + \overline{\lambda_2}(\phi$$

(
$$\phi$$
) (ϕ) ϕ) ϕ for any ϕ (ϕ) ϕ) ϕ or ϕ and ϕ if ϕ ϕ ϕ 0.

Proposition: (1) Let X be the character of on irreduible repn, then (x|x) = 1(2) Let χ_1, χ_2 be the characters of two non iso morphic repus (TT, V1) and (TT2, V2) Hen $(\chi_1 | \chi_L) = 0$. We fix a basis [v,...vn] for V1 [v'_, ... v'm] for V2. $\pi(9) = (Mi)(9)) \leq j \leq n$ Then TT2(9) = (Nxe (9)) |= k,l = m 11) Take $\chi = \chi_1$, the character of (π_i, V_i) . $(\chi_1|\chi_1) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \chi_1(g)$ = $\frac{1}{191} \sum_{g \in G} \chi_1(g) \chi_1(g^{-1})$ $=\frac{1}{|G|}\sum_{g\in G} \left(M_{II}(g^{+})+\cdots M_{nn}(g^{+})\right) \left(M_{II}(g)+\cdots M_{ml}(g)\right)$ $= \overline{\sum_{1 \leq i,j \leq n}} \frac{1}{|G|} \overline{g \in G} M \tilde{u} (g^{+}) M \tilde{j} (g)$

$$= \sum_{1 \leq i,j \leq n} \frac{1}{n} \int_{i} \int_{j} \int_{i} \int_{i} = 1.$$

$$(2) (\chi_{1}|\chi_{1}) = \frac{1}{|\zeta_{1}|} \int_{g \in G} \chi_{1}(g) \chi_{2}(g^{-1})$$

$$= \sum_{1 \leq i \leq n} \frac{1}{|\zeta_{1}|} \int_{g \in G} N_{\ell\ell}(g^{-1}) M_{i} i(g) = 0.$$

$$|\zeta_{1}| \leq m$$

Let (π, V) be a repr of G. Then $(\pi, V) = (\pi, V_1) \oplus \cdots (\pi_k, V_k)$ with V_i irreducible. Furthermove, we can rearrage V_i such that $(\pi, V) = m_1 (\pi_1, V_1) \oplus m_2(\pi_2, V_2) \oplus \cdots m_r(\pi_r, V_r)$ such that distinct V_i , V_j are non-isomorphic

Furthermore, if we allow $m_i = 0$, $(\pi, V) = \bigoplus_{W \text{ irred}} m_{\rho} (\rho, W)$

Here the direct own is over all irreducible repress

We use the notation Irr(G) for all (non-isomorphic) repres of G.

Definition: mp is called the index of (P,W) in (TT,V). We use the notation $\langle \Pi, \rho \rangle := M_{\rho}$. Theorem: Let (T_i, V) be a reprint G with character ϕ Let (P, W) be an irreducible reprin of G with character X Then $\langle \pi, \rho \rangle = \langle \phi | \chi \rangle$ Proof: Suppose that $(\pi, V) = \bigoplus m_p(p, W)$ Then $\phi = \sum_{W \in Irr(G)} m_{\rho} \cdot \chi_{W}$ $\langle \phi | \chi \rangle = \sum_{W \in Irr(G)} m_{\rho} \langle \chi_{W} | \chi \rangle = m_{\rho}.$ П. Corollary: Two repns with the same character are isomorphic. Proof: $(\pi_i, V_i) = \bigoplus_{W \in I_{rr}(C)} m_W (p, W) \longrightarrow \phi_i$ $(\pi_2, V_2) = \bigoplus_{W \in Irr(a)} N_W(\rho, W) \longrightarrow \phi_2$ $\phi_1 = \phi_2 \Rightarrow M_W = N_W \text{ for all } W \in Irr(G).$

Theorem: Let & be the character for a regn (TT, V) 11, (\$1\$) is always an integer. (2) $(\phi|\phi)=1$ if and only if (π,V) is invaducible. Proof: (1) $(\pi, V) = \bigoplus_{W \in Irr(G)} m_W(\rho, W)$ $(\phi | \phi) = \left(\sum_{w} m_{w} \chi_{w} \middle| \sum_{w'} m_{w'} \chi_{w'} \right)$ $= \sum_{w \in \mathcal{L}_{S}} m_{w} m_{w'} \left(\chi_{w} \mid \chi_{w'} \right)$ $W, \widetilde{W'} \in Irr(a)$ WEIrr(G) (2) (=) $(\phi | \phi) = 1$ =) only 1 $M_W = 1$ and others = 0. \Rightarrow $(\pi, V) = (\rho, W)$ for some $W \in Irr(G)$

((=) If (π, V) is irreducible, then $(\phi|\phi) = 1$.

口口