UNIVERSITY OF CALIFORNIA, SAN DIEGO

Electrical & Computer Engineering Department ECE 250 - Winter Quarter 2019

Random Processes

Problem Set #7 Due Sunday, March 8, 2020 at 2pm Submit solutions to Problems 5, 7 only

1. Symmetric random walk. Let X_n be a random walk defined by

$$X_0 = 0,$$

$$X_n = \sum_{i=1}^n Z_i,$$

where $Z_1, Z_2, ...$ are i.i.d. with $P\{Z_1 = -1\} = P\{Z_1 = 1\} = \frac{1}{2}$.

- (a) Find $P\{X_{10} = 10\}.$
- (b) Approximate $P\{-10 \le X_{100} \le 10\}$ using the central limit theorem.
- (c) Find $P\{X_n = k\}$.
- 2. Absolute-value random walk. Consider the symmetric random walk X_n in the previous problem. Define the absolute value random process $Y_n = |X_n|$.
 - (a) Find $P{Y_n = k}$.
 - (b) Find $P\{\max_{1 \le i < 20} Y_i = 10 \mid Y_{20} = 0\}.$
- 3. Discrete-time Wiener process. Let Z_n , $n \ge 0$, be a discrete time white Gaussian noise process, i.e., Z_1, Z_2, \ldots are i.i.d N(0,1). Define the process X_n , $n \ge 1$, such that $X_0 = 0$, and $X_n = X_{n-1} + Z_n$, for $n \ge 1$.
 - (a) Is X_n an independent increment process? Justify your answer.
 - (b) Is X_n a Gaussian process? Justify your answer.
 - (c) Find the mean and autocorrelation functions of X_n .
 - (d) Specify the first-order pdf of X_n .
 - (e) Specify the joint pdf of X_3, X_5 , and X_8 .
 - (f) Find $E(X_{20}|X_1, X_2, \dots, X_{10})$.
 - (g) Given $X_1 = 4$, $X_2 = 2$, and $0 \le X_3 \le 4$, find the minimum MSE estimate of X_4 .
- 4. Wiener process. Recall the following definition of the (standard) Wiener process:
 - W(0) = 0,
 - $\{W(t)\}\$ is independent increment with $W(t) W(s) \sim N(0, t s)$ for all t > s,

• $P\{\omega : W(\omega, t) \text{ is continuous in } t\} = 1.$

Let $W_1(t)$ and $W_2(t)$ be independent Wiener processes.

(a) Find the mean and the variance of

$$X(t) = \frac{1}{\sqrt{2}} (W_1(t) + W_2(t)).$$

Is $\{X(t)\}\$ a Wiener process? Justify your answer.

(b) Find the mean and the variance of

$$Y(t) = \frac{1}{\sqrt{2}} (W_1(t) - W_2(t)).$$

Is $\{Y(t)\}$ a Wiener process? Justify your answer.

- (c) Find E[X(t)Y(s)].
- 5. Autoregressive process. Let $X_0 = 0$ and $X_n = \frac{1}{2}X_{n-1} + Z_n$ for $n \ge 1$, where Z_1, Z_2, \ldots are i.i.d. $\sim N(0,1)$. Find the mean and autocorrelation function of X_n .
- 6. Moving average process. Let Z_0, Z_1, Z_2, \ldots be i.i.d. $\sim \mathcal{N}(0,1)$. Let $X_n = \frac{1}{2}Z_{n-1} + Z_n$ for $n \geq 1$.
 - (a) Find the mean and autocorrelation function of X_n .
 - (b) Find $E(X_3|X_1, X_2)$.
 - (c) Find $\mathsf{E}(X_3|X_2)$.
 - (d) Is $\{X_n\}$ Markov? Justify your answer.
 - (e) Is $\{X_n\}$ independent increment? Justify your answer.
- 7. QAM random process. Consider the random process

$$X(t) = Z_1 \cos \omega t + Z_2 \sin \omega t$$
, $-\infty < t < \infty$,

where Z_1 and Z_2 are i.i.d. discrete random variables such that $p_{Z_i}(+1) = p_{Z_i}(-1) = \frac{1}{2}$.

- (a) Is X(t) wide-sense stationary? Justify your answer.
- (b) Is X(t) strict-sense stationary? Justify your answer.
- 8. Convergence of random processes. Let $\{N(t)\}_{t=0}^{\infty}$ be a Poisson process with rate λ . Recall that the process is independent increment and N(t) N(s), $0 \le s < t$, has the pmf

$$p_{N(t)-N(s)}(n) = \frac{e^{-\lambda(t-s)}(\lambda(t-s))^n}{n!}, \quad n = 0, 1, \dots$$

Define

$$M(t) = \frac{N(t)}{t}, \quad t > 0.$$

- (a) Find the mean and autocorrelation function of $\{M(t)\}_{t>0}$.
- (b) Does $\{M(t)\}_{t>0}$ converge in mean square as $t\to\infty$, that is,

$$\lim_{t\to\infty}\mathsf{E}\big[(M(t)-M)^2\big]=0$$

for some random variable (or constant) M? If so, what is the limit?

Now consider

$$L(t) = \frac{1}{t} \int_0^t \frac{N(s)}{s} ds, \quad t > 0.$$

(c) Does $\{L(t)\}_{t>0}$ converge in mean square as $t\to\infty$? If so, what is the limit?