Subject Code: CTMTAIDS SI P1

Date: 05/12/2024

NATIONAL FORENSIC SCIENCES UNIVERSITY

Semester End Examination (December – 2024) M. Tech Artificial Intelligence & Data Science Semester - I

	Subject Name: Mathematical and Computational Foundation for Artificial Intelligence. Time:2:30 PM - 05:30 PM Total Marks		
	Instr	 Write down each question on a separate page. Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
			Marks
Q.1		Attempt any three.	
	(a)	Solve the following system of linear equations using the LU method: 3x - 2y + z = 4 x + y + 2z = 6 5x - y + 3z = 8	08
	(b)	Define Vector space and its properties.	08
	(c)	Let $A = \begin{bmatrix} 1 & 2 & -3 \\ -3 & -4 & 13 \\ 2 & 1 & -5 \end{bmatrix}$. Perform LU decomposition on the matrix	08
	(d)	Define Linear Independence and explain it with example.	08
Q.2		Attempt any three.	
	(a)	Define Orthogonal Matrices and key properties. Give one example.	08
	(b)	Explain the steps of the Gram-Schmidt Process.	08
	(c)	Solve the following system of linear equations using Gaussian Elimination	08
		-2x + 4y - z = -3	
		5x - 3y + 2z = -2	
		3x + 2y - 4z = 7	
	(d)	Explain Single Value Decomposition and its applications.	08
Q.3		Attempt any three.	
	(a)	Explain the basic concept of simple linear regression. How do you estimate the coefficients of the regression line?	08
	(b)	What is Principal Component Analysis (PCA)? Explain the steps involved in PCA for dimensionality reduction	08
	(c)	Explain logistic regression with an example.	08
	(d)	Write any two methods of Parameter Estimations in Linear Regression.	08

-			
	(a)	Explain how a Support Vector Machine (SVM) identifies the optimal hyperplane for linearly separable data. Why is maximizing the margin important?	0
	(b)	Explain any 3 common Kernel Functions in linear regression.	0
	(c)	Calculate the singular value decomposition of	v
		$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	0'
Q.5		Attempt any two.	
	(a)	Discuss covariance and correlation. Why is correlation preferred for measuring linear relationships?	0
	(b)	Explain the importance of the expected value and variance of a random variable. Derive the formula for the variance of a random variable	07
	(c)	Explain the normal distribution and describe the significance of its parameters. Why is it called the "bell curve"?	07

Attempt any two.

0.4

--- End of Paper---