Estudio de reacciones químicas

INTRODUCCIÓN TEÓRICA Y OBJETIVOS

Repase los siguientes apuntes de clase (Tema 7):

- Concepto de reacción química. Reactivos y productos.
- Ecuación química.
- Ley de Conservación de la Masa.
- Coeficientes estequiométricos.
- Ajuste de ecuaciones químicas
- Reactive limitante
- Rendimiento de una reacción química
- Diferencia entre rendimiento y grado de conversión

ESTUDIO DE LA ESTEQUIOMETRÍA Y DE LA LEY DE CONSERVACIÓN DE LA MASA.

Cuando tiene lugar una reacción, se pueden producir cambios observables a simple vista, como el desprendimiento de un gas, la formación de un precipitado o un cambio de coloración.

En esta sesión, se pretende observar experimentalmente e interpretar los cambios producidos en una serie de reacciones químicas llevadas a cabo en el laboratorio. Además, se estudiará la estequiometria de una reacción para identificar cuál es el reactivo limitante y se comprobará si se cumple la Ley de Conservación de la Masa.

Reacciones que se van a estudiar:

- 1. Reacción entre el yoduro de potasio y el nitrato de plomo(II). (Reacción 1)
- 2. Reacción entre el carbonato de calcio y el cloruro de hidrógeno. (Reacción 2)

CUESTIONES PREVIAS A LA EXPERIMENTACIÓN

Cuestión 1.

Escriba las reacciones ajustadas, identificando los productos de la reacción, sabiendo que se trata de reacciones de doble desplazamiento

Reacción 1	
Reacción 2	

Cuestión 2.

Busque en la bibliografía los siguientes datos:

Propiedades de las sustancias				
	Estado físico en las condiciones del laboratorio (25ºC y 1 atm)	Color	Densidad	Solubilidad en agua (sí/no)
Yoduro de potasio				
Nitrato de plomo (II)				
loduro de plomo (II)				
Nitrato de potasio				
Carbonato de calcio				
Cloruro de hidrógeno				
Cloruro de calcio				
Ácido carbónico				

Cuestión 3. Una disolución 0,25 M contiene 0,25 moles de soluto por cada litro de disolución, independientemente del soluto del que se trate. Sabiendo esto complete la siguiente tabla:

		Soluto (fórmula)	Número de moles de soluto	Masa de soluto
Disolución de loduro de Potasio 0,25 M	1 litro			
	100 mL			
	6 mL			
	3 mL			
Disolución de nitrato	1 litro			
de plomo 0,25 M	100 mL			
	6 mL			
	3 mL			

Cuestión 4. Identifique (mediante una cruz en la columna correspondiente), quién es el reactivo limitante de la **reacción 1** al mezclar las siguientes cantidades de los dos reactivos y la cantidad máxima de loduro de plomo(II) que puede obtenerse:

Práctica de Laboratorio 3. Química General. Grado en Ingeniería Química Industrial. Ficha Previa

Cantidades		Lim	itante	Cantidad máxima que puede obtenerse de loduro de plomo(II)	
Reactivo 1: loduro de potasio	Reactivo 2: Nitrato de plomo (II)	loduro de potasio	Nitrato de Plomo(II)	Moles	gramos
2 moles	1 mol	0	0		
2 moles	2 moles	0	0		
6 mL de disolución 0,25 M	3 mL de disolución 0,25 M	0	0		
6 mL de disolución 0,25 M	6 mL de disolución 0,25 M	0	0		
3 mL de disolución 0,25 M	6 mL de disolución 0,25 M	0	0		
Cuestión 5. Busqu carbónico en una c ácido carbónico.	_	•		•	

Cuestión 6. Teniendo en cuenta la reacción de descomposición del ácido carbónico a la que se refiere el apartado anterior, escriba la reacción global entre el carbonato de

Cuestión 7. Si se parte de 1,00 g de carbonato de calcio que se pone en contacto con

b) número de moles de dióxido de carbono máximo que pueden formarse: _____ moles

calcio y el cloruro de hidrógeno. (Reacción 2 + Reacción de descomposición)

cloruro de hidrógeno en exceso, responda a las siguientes preguntas:

a) número de moles de carbonato de calcio iniciales: _____ moles

c) masa de dióxido de carbono máxima que puede formarse: _____ g.

Práctica de Laboratorio 3. Química General. Grado en Ingeniería Química Industrial. Ficha Previa

2024/25

Cuestión 8. PROBLEMA 6 de la hoja de problemas DEL TEMA 6:

Deseamos preparar 0,15 litros de disolución de sulfato de cobre 0,24M ¿Cuantos gramos necesitamos del reactivo sulfato de cobre pentahidratado cristalizado del 97% de pureza?