第3章 整数线性规划

3.3 分枝定界法补充: 舍入法

分枝定界法的基本思想

- 将状态空间 U 一分为二。——分枝
 - 状态空间可以取 IP 的可行域,或者比其更大。
- 进入一个状态空间 U'。若判定在 U' 内不可能找到比当前已知解更好的解,则摒弃该搜索空间。——剪枝
- 若在状态空间 U' 内能够找到更好的解,则用新的解代替当前的已知解。——定界
- 若在状态空间 U' 内已经找到了最好的解,则结束对 U' 的 搜索。
- 否则对状态空间 U'继续分枝。

整数规划的情形

●考虑整数规划问题 IP_0 ,其松弛记为 LP_0 :

min
$$c^{T}x$$
 min s.t. $Ax = b$ s.t. $x \ge 0$, 整数,

min
$$c^{T}x$$

s.t. $Ax = b$
 $x \ge 0$

- ●求 LP_0 的最优解,记为 x^0 。若 x^0 为整数解,则已经求到了 IP_0 的最优解。
- ●否则设 x_i^0 不为整数。向 IP_0 中分别加入两个约束 $x_i \leq \lfloor x_i^0 \rfloor$ 和 $x_i \geq \lfloor x_i^0 \rfloor$,得到两个整数规划问题 IP_1 和 IP_2 :

min
$$c^{T}x$$

s.t. $Ax = b$
 $x_{i} \leq \lfloor x_{i}^{0} \rfloor$
 $x \geq 0$,整数

min
$$c^{T}x$$

s.t. $Ax = b$
 $x_{i} \ge \lceil x_{i}^{0} \rceil$
 $x \ge 0$,整数

整数规划的情形

- ●显然,若 IP_0 有最优解,则其最优解必定或者在 IP_1 上取得,或者在 IP_2 上取得。
- ●解 LP_1 ,若其最优解不是整数解,则对 IP_1 继续进行分枝……;解 LP_2 ,若其最优解不是整数解,则对 IP_2 继续进行分枝……。
- ●在这个过程中,若对某个 LP_k ,其最优解 x^k 为整数解,且解值比当前已知的 IP_0 的整数解 x^* 的解值还要好,则将 x^k 作为 IP_0 的当前已知最好解。
- ●若 LP_k 的最优解不是整数解,且其解值 c^Tx^k 比当前已知的 IP_0 的最好的整数解的解值 c^Tx^* 还要差(即, $c^Tx^k \ge c^Tx^*$),则放弃对 LP_k 的搜索。

整数规划的情形

●重复上述过程,当整个状态空间(或者由于求到了整数解,或者由于剪枝)都搜索完毕后,当前已知 IP_0 最好的解 x^* 就是 IP_0 的最优解。

搜索树

例子

min
$$-(x_1 + x_2)$$

s.t. $-4x_1 + 2x_2 \le -1$
 $4x_1 + 2x_2 \le 11$
 $x_2 \ge \frac{1}{2}$
 $x_1, x_2 \ge 0$,整数

- ●解 LP_0 ,最优解为 $x^0 = \begin{pmatrix} \frac{3}{2} & \frac{5}{2} \end{pmatrix}^1$,最优解值 $z^0 = c^T x^0 = -4$ 。
- 在 x_1^0 上进行分枝,得到两个约束: $x_1 \le 1$ 和 $x_1 \ge 2$ 。

解整数规划:

第1次分枝

min
$$-(x_1 + x_2)$$
 min $-(x_1 + x_2)$ s.t. $-4x_1 + 2x_2 \le -1$ s.t. $-4x_1 + 2x_2 \le -1$ $4x_1 + 2x_2 \le 11$ $x_2 \ge \frac{1}{2}$ $x_1 \le 1$ $x_2 \ge 0$,整数 $x_1, x_2 \ge 0$,整数 $x_1, x_2 \ge 0$,整数

- ●解 LP_2 ,最优解为 $x^2 = \begin{pmatrix} 2 & \frac{3}{2} \end{pmatrix}^1$,最优解值 $z^2 = c^T x^2 = -\frac{7}{2}$ 。
- ●在 x_2^2 上进行分枝,得到两个约束: $x_2 \le 1$ 和 $x_2 \ge 2$ 。

第2次分枝

$$\min \quad -(x_1 + x_2)$$
 $\min \quad -(x_1 + x_2)$ $\min \quad -(x_1 + x_2)$ $s.t. \quad -4x_1 + 2x_2 \le -1$ $4x_1 + 2x_2 \le 11$ $4x_1 + 2x_2 \le 11$ $x_2 \ge 2$ $x_1 \ge 2$, IP_4 $x_1 \ge 2$ 。 $x_1, x_2 \ge 0$,整数 $x_1, x_2 \ge 0$,整数

- ●解 LP_3 ,最优解为 $x^3 = \begin{pmatrix} 2.25 & 1 \end{pmatrix}^T$,解值 $z^2 = c^T x^3 = -3.25$ 。
- ●在 x_1^3 上进行分枝,得到两个约束: $x_1 \le 2$ 和 $x_1 \ge 3$ 。

第3次分枝

$$\min \quad -(x_1 + x_2)$$
 $\min \quad -(x_1 + x_2)$ $\sin \quad -(x_1 + x_2)$ $\mathrm{s.t.}$ $-4x_1 + 2x_2 \le -1$ $4x_1 + 2x_2 \le 11$ $\frac{1}{2} \le x_2 \le 1$ $\frac{1}{2} \le x_2 \le 1$ $x_1 = 2$, $\mathbf{IP_6}$ $x_1, x_2 \ge 0$,整数 $x_1, x_2 \ge 0$,整数

- ●解 LP_5 ,最优解为 $x^5 = \begin{pmatrix} 2 & 1 \end{pmatrix}^T$,最优解值 $z^5 = c^T x^3 = -3$, 将其保存为当前已知 IP_0 的最好的解 $x^* = \begin{pmatrix} 2 & 1 \end{pmatrix}^T$, $z^* = -3$ 。
- ●解 LP6, 无解 (到达叶节点)。

求得最优解

●解 LP4, 无解(到达叶节点)。

- ●解 LP_1 ,最优解 $x^1 = \begin{pmatrix} 1 & \frac{3}{2} \end{pmatrix}^1$,解值 $z^1 = c^T x^1 = -\frac{5}{2} \ge z^*$,剪 枝。
- ●状态空间搜索完毕,求得最优解 $x^* = \begin{pmatrix} 2 & 1 \end{pmatrix}^T$,解值 $z^* = -3$ 。

搜索树

搜索过程

搜索过程

分枝定界法解整数规划

- 1 活点集合 $A \leftarrow \{IP_0\}$,上界 $U \leftarrow +\infty$,当前最好的整数解 x^* ← NIL。
- 2 while $A \neq \emptyset$ do
- 3 从A中取出一个问题 IP_k ,并将 IP_k 从A 中删除。
- 4 解 LP_k 。
- 5 if 无解 then 转 2 else 记最优解为 x_k^* ,值为 z_k^* 。
- 6 if $z_k^* < U$ then
- 7 if x_k * 是整数解 then $x^* \leftarrow x_k^*$, $U \leftarrow z_k^*$ else 选择 x_k^* 的一个非整数分量,生成 IP_k 的两个后代问题,加入A。
- 8 endif
- 9 endwhile

分枝定界法解整数规划

10 if $x^* = NIL$ then 输出" IP_0 无解" else 输出解 x^* 。

11 return

线性规划舍入法

- 解整数规划的一个方法,是将其放松为线性规划,解线性规划得到分数最优解,再将分数最优解舍入为原整数规划的近似解。
- 没有通用的舍入方法。必须针对具体的问题,设计不同的 舍入方法。

顶点覆盖问题

舍入方法

● 设x 是顶点覆盖 LP 的最优解。构造整数解 \bar{x} 如下:

$$\overline{x}_{v} = \begin{cases} 1, & x_{v} \ge \frac{1}{2} \\ 0, & \text{o.w.} \end{cases}$$

● 分析: [▽]是一个顶点覆盖。

证明:任取一条边 e = (u, v)。因为 x 是一个可行解,因此有

 $x_u + x_v \ge 1$ 。这表明 x_u 和 x_v 中必至少有一个 $\ge 1/2$ 。即 , \overline{x}_u 和

 \bar{x}_{ν} 中至少有一个为 1。因此 , \bar{x} 是一个顶点覆盖。

 $\bullet \bar{x}$ 的解值 $SOL(\bar{x})$ 不超过最优解值 OPT 的 2 倍。

证明:
$$SOL(\bar{x}) = \sum_{v \in V} \bar{x}_v \le \sum_{v \in V} 2x_v \le 2OPT$$

例子

- **OPT** $_f = 3/2$
- \bullet OPT = 2
- **SOL** = 3
- SOL ≤2OPT

