

ARM Cortex M4 Crossbar Switch

Transferência Periféricos <=> Memória

PIO – Programmed I/O Entradas e saidas programadas

O acesso aos registradores de dados dos periféricos é realizado através de operações de E/S da CPU

DMA – Direct Memory Access Acesso direto à memória

No DMA, o periférico pode transferir dados diretamente para/da memória, sem interferência da CPU.

Arquitetura do barramento

DMA Streams

- O controlador de DMA possui 8 *streams* destinados a gerenciar as requisições de um ou mais periféricos.
- Cada streams possui até 8 canais, utilizados para requisição de transferência. Somente um canal pode ser atividado por vez. Um periférico pode utilizar somente uma stream.
- Cada *stream* tem sua prioridade, configurada por software (4 níveis). Caso duas *streams* tenham a mesma prioridade de software, a prioridade de hardware prevalece (*Stream* 0 tem prioridade sobre *Stream* 1 e assim sucessivamente)

Arquitetura do barramento

AHB Advanced Highperformance Bus

I-bus - Instruction bus

Barramento utilizado para a busca de instruções na memória Flash interna ou na SRAM

D-bus - Data bus

Conecta o barramento D (carga de literais e acesso a depuração) do Cortex M4 à Flash e SRAM

S-Bus – System bus

Barramento do sistema, utilizado para acesso a dados dos periféricos ou da SRAM

MS31420V1

STM32F4xx

Operação de DMA

- O DMA permite a transferência de dados entre módulos escravos conectados ao AHB
- DMA é executado sem intervenção da CPU Cortex. Durante a operação, a CPU pode executar outras tarefas e é interrompida somente quando o bloco de dados estiver disponível para processamento.
- Grandes quantidades de dados podem ser transferidos sem grande impacto ao desempenho do sistema. Esta solução é mais barata em termos de espaço em silício e energia, em comparação a soluções distribuídas onde cada periférico mantém seu armazenamento local.

Propriedades da transferência DMA

Uma transferência DMA é caracterizada pelas seguintes propriedades

- Canal / Fluxo DMA
- Prioridade de Fluxo
- Endereços de Origem e Destino
- Modo de Transferência
- Tamanho da Transferência
- Incremento de Endereçamento

- Largura de dados da Origem e Destino
- Tipo de Transferência
- Modo da FIFO
- Tamanho do Burst
- Modo de bufferização dupla
- Controle de Fluxo

DMA Streams

- O controlador de DMA possui 8 *streams* destinados a gerenciar as requisições de um ou mais periféricos.
- Cada streams possui até 8 canais, utilizados para requisição de transferência. Somente um canal pode ser atividado por vez. Um periférico pode utilizar somente uma stream.
- Cada *stream* tem sua prioridade, configurada por software (4 níveis). Caso duas *streams* tenham a mesma prioridade de software, a prioridade de hardware prevalece (*Stream* 0 tem prioridade sobre *Stream* 1 e assim sucessivamente)

Incremento do Endereço de Transferência

- Uma transferência DMA é definida pelos endereços de origem e destino. Ambos devem estar na faixa de memória dos barramentos AHB e APB e alinhados ao tamanho de transferência
- •É possível configurar o incremento automático do endereço de origem/destino após cada transferência

Modo de Transferência

- Periférico para memória
- Memória para periférico
- Memória para memória (DMA2)

Largura de dados

- Byte (8 bits)
- Half-word (16 bits)
- Word (32 bits)

Tipos de Transferência

- Circular : Manipula buffers circulares (DMA_SxNDTR é recarregado automaticamente)
- Normal : Uma vez que DMA_SxNDTR chegue a zero o stream é desabilitado.

Tamanho da Transferência

Definido através do registrador DMA_SxNDTR e atrelado a largura de dados do periférico

DMA FIFO

Cada *streams* possui uma FIFO de 4 *words* (4 * 32 bits) e limiar (*threshold*) configurável entre ½, ½, ¾ ou cheia (*full*).

Quando o modo DMA FIFO estiver desabilitado, a transferência direta é realizada.

Os DMA FIFO auxiliam em:

- Reduzir o acesso à SRAM, liberando mais tempo para outros mestres acessarem o barramento sem concorrência;
- Permitir transferências no modo burst, que otimizam a largura de banda do barramento;
- Permitem o empacotamento/desempacotemento de dados para adaptar a largura de dados entre origem e destino

FIFO

Transferência DMA no modo Burst

Configurações do modo Burst

MSIZE	FIFO level	MBURST = INCR4	MBURST = INCR8	MBURST = INCR16
Byte	1/4	1 burst of 4 bytes	forbidden	forbidden
	1/2	2 bursts of 4 bytes	1 burst of 8 bytes	
	3/4	3 bursts of 4 bytes	forbidden	
	Full	4 bursts of 4 bytes	2 bursts of 8 bytes	1 burst of 16 bytes
Half-word	1/4	forbidden	forbidden	forbidden
	1/2	1 burst of 4 half-words		
	3/4	forbidden		
	Full	2 bursts of 4 half-words	1 burst of 8 Half-word	
Word	1/4	forbidden	forbidden	
	1/2			
	3/4			
	Full	1 burst of 4 words		

Transferência DMA no modo Buffer-duplo

- Uma stream de buffer duplo possui dois ponteiros de memória.
- Quando habilitado, ao final da transferência o ponteiro de memória é trocado

Arbitramento do Acesso ao Barramento

Politica Round-Robin

Maquina Estados Transferencia Periferico->Memoria

Maquina Estados Transferencia Memoria → Periferico

Referências

RM0383 - Reference manual - STM32F411xC/E advanced ARM®-based 32-bit MCUs

AN4031 - Application note - Using the STM32F2, STM32F4 and STM32F7 Series DMA controller

