

Lecture 7: Single Image to 3D

Li Yi Apr 3, 2025

Recap

Input images

Find matched points across images

Structure from Motion (SFM)

dense reconstruction

Recap

NeRF

Recap

- Neural Radiance Field (NeRF)
 - Implicit Functions: an Illustration with 3D Surface Representation
 - Volume Rendering with Ray Marching
 - Learning NeRF
- NeRF Extensions
 - Handling dynamic scenes when acquiring calibrated views
 - One network trained per scene no generalization

NeRF: Parameterize Radiance Field Densely

3D Gaussian Splatting (3DGS)

Key Idea: Parameterize Radiance Field sparsely, only where density is nonzero

3D Gaussian Splatting (3DGS)

Key Idea: Parameterize Radiance Field sparsely, only where density is nonzero

Still Volume Rendering?

Computation Properties of Gaussians

Gaussians are closed under affine transforms, integration

$$\mathcal{G}_{\mathbf{V}}(\Phi^{-1}(\mathbf{u}) - \mathbf{p}) = \frac{1}{|\mathbf{M}^{-1}|} \mathcal{G}_{\mathbf{M}\mathbf{V}\mathbf{M}^T}(\mathbf{u} - \Phi(\mathbf{p}))$$

Integrate along axis:

$$\int_{\mathbb{R}} \mathcal{G}_{\mathbf{V}}^3(\mathbf{x} - \mathbf{p}) \, dx_2 = \mathcal{G}_{\hat{\mathbf{V}}}^2(\hat{\mathbf{x}} - \hat{\mathbf{p}})$$

$$\mathbf{V} = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \Leftrightarrow \begin{pmatrix} a & b \\ b & d \end{pmatrix} = \hat{\mathbf{V}}$$

Projected 3D Gaussian makes 2D Gaussian

Using Rasterization Instead of Volume Rendering

3DGS Framework

3D Gaussian Splatting

NeRF

Gaussian Splatting

Today's Focus

Single Image to 3D

Outline

- Task
- Synthesis-for-Learning Pipeline
- Single-image to Point Cloud
- Single-image to Mesh

Review: Multi-View Stereo

Image source: UW CSE455

Task

Can We Infer 3D from just a Single Image?

Many Cues that Allow 3D Estimation

contrast

color

texture

motion

symmetry

part

category-specific 3D

knowledge

Learning-based 3D Reconstruction

Outline

- Task
- Synthesis-for-Learning Pipeline
- Single-image to Point Cloud
- Single-image to Mesh

Where Are My Training Data?

- In general, training deep networks needs a lot of data with labels!
- In our case, we need many image-3D shape pairs...
- Before talking about learning algorithms, obtaining training data is already a challenge!

Source I: Real Data

- Many techniques
 - · Indoor: ToF or stereo sensors (Kinect, RealSense, ...)
 - · Outdoor: LiDAR

· The amount of real data is increasing quickly

Source II: Synthesis for Learning

Synthetic Images (2D form)

Source II: Synthesis for Learning

Source II: Synthesis for Learning

· For example, image — point cloud

Synthesis for Learning Beyond 3D Reconstruction

Large-Scale Synthetic 3D Dataset

- · For example,
 - ShapeNet: http://www.shapenet.org

Large-Scale Synthetic 3D Dataset

- · For example,
 - Objaverse-XL (10M CAD): https://objaverse.allenai.org/

A Very Coarse Literature Review

Literature: to Depth Map

· Fully-convolutional

Input image

(a) Normal map

(b) Depth map

Recall: Issue of L_p Depth Loss

Prediction

Groundtruth

- · Common strategy: Depth-Normal consistency
- · Review lecture 5
- · Limitation: partial 3D info from camera view

Literature: to Point Cloud

· From a single image to 3D point cloud generation.

Literature: to Mesh

· From a single image to mesh surface.

Literature: to Implicit Field Function

· From a single image to implicit field function.

Outline

- Task
- Synthesis-for-Learning Pipeline
- Single-image to Point Cloud
- Single-image to Mesh

Why Point Representation?

- · Previous depth map covers only visible area.
- · A flexible representation
 - A few thousands of points can model a great variety of shapes.

Point Cloud as a Set

3D mesh

$$\left\{ \begin{array}{c} (x_1,y_1,z_1) \\ (x_2,y_2,z_2) \\ \cdots \\ (x_n,y_n,z_n) \end{array} \right\}$$

Pipeline

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Real-world Results

Some results

Differentiable Loss for Point Clouds

Permutation Invariance

· Point cloud: N orderless points, each represented by a D dim vector

Permutation Invariance

· Point cloud: N orderless points, each represented by a D dim vector

Loss needs to be invariant to ordering of points!

Metric for Point Clouds

 \cdot L_2 loss does not work for point cloud.

· Need a metric to measure distance between two point sets

- · Two popular choices
 - Earth Mover's Distance
 - Chamfer Distance

Earth Mover's Distance

· Find a 1-1 correspondence between point sets

Earth Mover's Distance

· Find a 1-1 correspondence between point sets

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

where $\phi: S_1 \to S_2$ is a bijection

Earth Mover's Distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

where $\phi: S_1 \to S_2$ is a bijection

Question:

Viewing $d_{EMD}(S_1, S_2)$ as a function of point coordinates in S_1 , is this function **continuous**?

Lemma

• For a family of continuous functions $\{f_i(x)\}$, the pointwise minimum $f(x) = \min\{f_i(x)\}$ is continuous.

Continuity of $d_{EMD}(S_1, S_2)$

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$
 where $\phi: S_1 \to S_2$ is a bijection

- $\phi(x)$ defines a point-wise correspondence (n! possibilities, n= size of S_1).
- For a fixed ϕ , define $f_{\phi}(S_1) = \sum_{x \in S_1} \|x \phi(x)\|_2$, and $f_{\phi}(S_1)$

is obviously continuous

• $d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} f_{\phi}(S_1)$ is thus continuous!

Differentiable?

$$d_{EMD}(S_1,S_2) = \min_{\phi:S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$
 where $\phi:S_1 \to S_2$ is a bijection

- From the example, we see that $d_{EMD}(S_1, S_2)$ can be constructed in a piece-wise manner
- Inside each piece, it is $f_{\phi_i}(S_1)$ by some ϕ_i , which is obviously differentiable (as $\phi_i(x)$ is a constant)
- $d_{EMD}(S_1, S_2)$ is differentiable except for zero-measure set!

Implementation

- · Many algorithmic study on fast EMD computation (a specific bipartite matching problem)
- · There exists parallelizable implementation of EMD on CUDA
- · A fast implementation (approximated EMD): https://github.com/Colin97/MSN-Point-Cloud-Completion

Chamfer Distance

· Nearest neighbor correspondence for each point

Chamfer Distance

· Nearest neighbor correspondence for each point

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Chamfer Distance

· Nearest neighbor correspondence for each point

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

How Distance Metric Affect Learning?

· A fundamental issue: inherent ambiguity in 2D-3D dimension lifting.

How Distance Metric Affect Learning?

· A fundamental issue: inherent ambiguity in 2D-3D dimension lifting.

· By loss minimization, the network tends to predict a "mean shape" that averages out uncertainty

Distance Metrics Affect Mean Shapes

· The mean shape carries characteristics of the distance metric.

Network Choice: Certain Tricks

Network Design: Respect Natural Statistics of Geometry

· Many local structures are common

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Network Design: Respect Natural Statistics of Geometry

- · Many local structures are common
- · Also some intricate structures

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Two-Branch Architecture

Two-Branch Architecture

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Two-Branch Architecture

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Which Color Corresponds to the Upconv Branch? FC Branch?

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Design of Upconvolution Branch

Set union by array concatenation

Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Design of Upconvolution Branch

Learns a Surface Parameterization

Smooth parameterization from 2D to 3D

[image credit: Keenan Crane]

Learns a Surface Parameterization

Smooth parameterization from 2D to 3D Consistent across objects

[image credit: Keenan Crane]

Outline

- Task
- Synthesis-for-Learning Pipeline
- Single-image to Point Cloud
- Single-image to Mesh

Mesh Representation

- · Previous point representation predicts only geometry without point connectivity.
- · Mesh elements include mesh connectivity and mesh geometry G = (V, E).

Mesh

Topology Ambiguity

· Can we regress the vertices and edges from neural network?

- Estimate vertices as a set of points.

- Estimate edges?

Designing Loss for Edge Prediction is Hard

• **Key observation**: given vertices, there are many possible ways to connect them and represent the same underlying surface:

lmage → Intermediate Repr. → Mesh

- · One option is to first build a high-resolution intermediate representation, and then convert the point cloud to mesh
- · Intermediate representations:
 - Voxel
 - Implicit surface
 - Point cloud

lmage → Intermediate Repr. → Mesh

- · One option is to first build a high-resolution intermediate representation, and then convert the point cloud to mesh
- · Intermediate representations:
 - Voxel
 - Implicit surface
 - Point cloud

Defer to a later lecture!

Editing-based Mesh Modeling

· Can we model mesh without predicting edges?

Mesh Editing-based Methods

Editing-based Mesh Modeling

· Key idea: starting from an established mesh and modify it to become the target shape

Editing-based Mesh Modeling

· Key idea: starting from an established mesh and modify it to become the target shape

For example, deformation-based modeling:

Some Example Losses for Mesh Editing

- · Vertices distance.
 - Vertices point set distance.
- · Uniform vertices distribution.
 - Edge length regularizer.
- · Mesh surface smoothness.
- · Normal Loss.

Loss I: Set Distance between Vertices

- · Vertices are a set of points
- · Recall the metrics for point clouds

Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2 \quad d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in s_1} \|x - y\|_2^2$$

Chamfer distance

Loss II: Uniform Vertices Distribution

- · Penalizes the flying vertices and overlong edges to guarantee the high quality of recovered 3D geometry
- · Encourage equal edge length between vertices

$$L_{\text{unif}} = \sum_{p} \sum_{k \in N(p)} ||p - k||_{2}^{2}$$

Loss II: Uniform Vertices Distribution

$$L_{\mathsf{unif}} = \sum_{p} \sum_{k \in N(p)} ||p - k||_2^2$$

Effect of minimizing l when fixing topology and setting boundary points to the new positions

Loss III: Mesh Smoothness

 \cdot L_{smooth} encourages that intersection angles of faces are close to 180 degrees.

$$L_{smooth} = \sum_{i} (\cos \theta_i + 1)^2$$

Loss IV: Normal Loss

- · **Key assumption**: vertices within a local neighborhood lie on the same tangent plane.
- · Regularize edge to be perpendicular to the underlying groundtruth vertex normal

Loss IV: Normal Loss

- · But how to find the vertices normal?
- One approach: use the nearest ground truth point normal as current vertex normal.

Loss IV: Normal Loss

- · But how to find the vertices normal?
- · One approach: use the nearest ground truth point normal as current vertex normal.
- · Penalize the edge direction to perpendicular to vertex normal.

Summary

- Synthesis-for-learning pipeline leverages easy-to-obtain synthetic data for challenging 3D visual understanding tasks
- Single image to 3D point cloud is possible with properly defined set metric (EMD and CD)
- Natural ambiguity in single image to 3D
- Single image to mesh can be achieved through template deformation
- Mesh reconstruction requires more regularizations

Next Time

Surface Reconstruction