Example 3 Given i.i.d $\{\alpha_i : i \in 1, 2, ..., N\}$, we use

$$\bar{\alpha}_N = \frac{1}{N} \sum_{i=1}^N \alpha_i$$

as its estimator of the mean $\mathbb{E}[\alpha_1]$ and use

$$\beta_N = \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \bar{\alpha}_N)^2$$

as the estimator of $Var(\alpha_1)$. Suppose $\alpha_1 \in L^4$, then

- Prove β_N is biased.
- (optional) Prove that β_N is consistent in L^2 .
- Can you propose an unbiased estimator?

So BN is biased

(##) From (i), we have
$$E[BN] - Var(d_1) = -\frac{1}{N} Vard,$$
, $\overline{F}[BN] = \frac{N}{N} Vard,$

Let $BN = N - 1 BN$, so $\overline{E}[BN] - Vard,$
 $= \frac{N}{N - 1} \overline{F}[BN] - Vard,$
 $= Vard, - Vard,$
 $= 0$

So BN is an unbiased estimator.

Example 4 • Use β_{100} of Example 3 to estimate $MSE(\hat{\pi}_N)$ by repeating π_N of Example 1. One must write both pseudocode and python code.

• Repeat above estimation of $MSE(\hat{\pi}_N)$ for $N=2^i: i=5,...10$ and plot log-log chart.

Ix4. Zstimate MSE (Tw)
1: produce MSEpi(n,N)
2: pi- list =[]
3: Sun_pi_List < 0
4: Pi-bar < 0
S: for i=1,2,,n do:
p = mcpi(N)
7: pi-list append (p)
8: Sum-pi_list < sum-pi_list + p.
9: pi-bar < sum_pi-list/n
(o: M ← 0
11: for i=1,2,, N do:
$12: \qquad M \in M + (p_i - list Li] - p_i - box)^2$
13: Defurn M.

$$h(x) = 100 \cdot I_{(0,1/100]}(x) + 1 \cdot I_{(1/100,1)}(x).$$

Back to our Example 1, we write

$$\alpha = \mathbb{E}[X] = \mathbb{E}[h(Y)],$$

where X = h(Y) and $Y \sim U(0,1)$. In other words, although X-sampling is not directly available in python, one can use U(0,1) random generator (see numpy.random.uniform) to produce Y_i , then compute $h(Y_i)$ for the sample X_i .

Algorithm 1 Integral by MC - Example 11: procedure MCINTEGRAL(N) $\triangleright N$ is total number of samples2: $s \leftarrow 0$ $\triangleright s$ is the sum of samples3: for i = 1...N do $\triangleright s$ is the sum of samples4: generate two numbers Y from U(0,1) $\triangleright use numpy.random.uniform$ 5: $s \leftarrow s + h(Y)$ $\triangleright return \frac{s}{N}$

Example 2 • Implement Algo 1 for estimator $\hat{\alpha}_N$;

• Estimate $MSE(\hat{\alpha}_N)$ for $N=2^5\ldots,2^{10}$ and plot log-log chart.

<u>Zx2</u> .
Zmplement Algo 1
1: produce MCINTEGRAL (N)
2: S to
3: for i=1,2,, N do:
4: generate number Y from U(0,1)
5: if Y <= 0.01;
b: S = S + 100
7: else:
8: S = S+1
9: return S