Übung 6

Tobias Petsch

6.1

Wir betrachen die Vorbedingung und die Zuweisung x:=y-5 aus $y\geq 0$ wird mit der Zuweisung die neue Nachbedingung $P:y\geq 0 \wedge x:=y-5$ Nach der IF Regel erhalten wir 2 Faelle.

Fall 1:

$$y \ge 0 \land x := y - 5 \land x < 0$$

daraus folgt das $y \ge 0 \land y < 5$ und nach der Ausfuehrung x := y - 2 ist.

Wir sollen zeigen dass nach der Ausfuehrung $x + 2 \ge 0$ gilt.

Das ist gegeben da fuer y=0 nun x:=0-2=-2 ist und die Nachbedingung so trotzdem erfuellt ist.

Fall2:

$$y \ge 0 \land x := y - 5 \land \neg (x < 0)$$

$$y \ge 0 \land x := y - 5 \land (x \ge 0)$$

da $x \ge 0$ und x + 2 immernoch groesser 0 ist. Ist hier auch die Nachbedingung erfuellt und die partielle Korrektheit ist bewiesen.

6.2

Herleitung: Gegeben ist die Vorbedingung $x \cdot x = y + 1$. Der then-Zweig mit Bedingung $x \cdot x = y$ kann nicht eintreten, da dies im Widerspruch zur Vorbedingung steht. Es wird also stets der else-Zweig ausgeführt: $y := y \cdot y$, gefolgt von x := x - 1. Da $y = (x^2 - 1)^2$ und x um 1 reduziert wird, gilt nach Ausführung $x \le y$ und es existiert ein $q = x^2 - 1$ mit $q \cdot q = y$. Somit ist die Nachbedingung $x \le y \land \exists q. \ q \cdot q = y$ erfüllt.

6.3

Herleitung: Die Vorbedingung ist true, da keine Einschränkung vorliegt. Wir unterscheiden zwei Fälle:

- Falls a > b, wird c := a gesetzt. Dann gilt: c = a, also $c \ge a$ und $c \ge b$ (wegen a > b), sowie $c = a \lor c = b$.
- Falls $a \leq b$, wird c := b gesetzt. Dann gilt: c = b, also $c \geq a$ und $c \geq b$, sowie $c = a \lor c = b$ (falls a = b).

In beiden Fällen erfüllt c die Bedingung $c = \max(a, b)$ nach Definition. Da das Programm terminiert (keine Schleifen), ist auch totale Korrektheit gegeben.

6.4

Herleitung: Ziel ist es zu zeigen, dass nach Ausführung gilt: $\exists k.\ k \cdot m + r = n \land r < m$. Als Schleifeninvariante wählen wir $I \equiv \exists k.\ k \cdot m + r = n \land r \geq 0$. Zu Beginn ist r := n, also gilt $1 \cdot m + (n - m) = n$ mit k = 0. Die Invariante ist erfüllt.

In jedem Schleifendurchlauf wird r := r - m ausgeführt. Wenn vorher $k \cdot m + r = n$, dann gilt danach $(k+1) \cdot m + (r-m) = n$, also ist die Invariante erhalten. Die Schleife läuft, solange $m \le r$. Sobald sie endet, gilt r < m. Zusammen mit der Invariante folgt dann die Nachbedingung $\exists k.\ k \cdot m + r = n \land r < m$.

Da wir nur natürliche Zahlen subtrahieren und r bei n beginnt, wird die Schleife irgendwann abbrechen (terminiert). Damit ist die partielle Korrektheit gezeigt.

6.5

Herleitung: Gegeben ist die Vorbedingung $n = n_0$. Daraus folgt A, denn $n = 1 \cdot n_0 \Rightarrow \exists k. \ n = k \cdot n_0 \text{ und } n \leq 5 \cdot n_0$.

Wir zeigen die totale Korrektheit von

$$\{n = n_0\}$$
 while $B\{n := n + n_0\} \{n = 5 \cdot n_0\}$

mit Invariante A und Terminierungsmaß $t = 5 \cdot n_0 - n$.

- (I) Invariante A ist vor der Schleife erfüllt.
- (II) Erhaltung: Wenn $A \wedge B$ vor dem Schleifendurchlauf gilt, dann bleibt A nach $n := n + n_0$ erhalten, da n um n_0 erhöht wird, also $n = (k + 1) \cdot n_0$.
- (III) Terminierung: t ist in \mathbb{N}_0 und sinkt strikt bei jeder Iteration, da n wächst $(t'=t-n_0)$.
- (IV) Schleife terminiert, wenn B falsch, also $n \geq 5 \cdot n_0$. In Kombination mit A: $n \leq 5 \cdot n_0$ ergibt sich $n = 5 \cdot n_0$.

Damit ist totale Korrektheit gezeigt.