《大学物理 AII》作业 No.8 量子力学基础

班级 ______ 学号 _____ 姓名 _____ 成绩 _____

 掌握物质波公式、理解实物粒子的波粒二象性特征。 理解概率波及波函数概念。
3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。
4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。
5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧道
效应。
一、选择题:
1、如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 [] (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同
2、静止质量不为零的微观粒子作 高速 运动,这时粒子物质波的波长λ与速度ν有如下关系:[]
(A) $\lambda \propto v$ (B) $\lambda \propto \frac{1}{v}$ (C) $\lambda \propto \sqrt{\frac{1}{v^2} - \frac{1}{c^2}}$ (D) $\lambda \propto \sqrt{c^2 - v^2}$
3 、若 α 粒子在磁感应强度大小为 B 的均匀磁场中沿半径为 R 的圆形轨道运动,则粒子的德布罗意波长是
[] (A) $\frac{h}{eRB}$ (B) $\frac{h}{2eRB}$ (C) $\frac{1}{2eRB}$ (D) $\frac{1}{eRBh}$
4、关于不确定性关系 有以下几种理解,正确的是 [] (A) 微观粒子的动量不可能确定; (B) 微观粒子的坐标不可能确定 (C) 微观粒子的动量和坐标不可能同时确定 (D) 不确定关系仅适用于电子和光子等微观粒子,不适用于其他宏观粒子
5、将波函数在空间各点的振幅同时变为原来的 D 倍,则粒子在空间的分布概率将[(A) 增大 D^2 倍 (B) 增大 $2D$ 倍 (C) 增大 $1/D$ 倍 (D) 不变
6、已知粒子在一维矩形无限深势阱中运动,其波函数为:
$\psi(x) = \frac{1}{\sqrt{a}}\cos\frac{3\pi x}{2a}$ $(-a \le x \le a)$, 那么粒子在 $\mathbf{x} = \frac{2}{3}\mathbf{a}$ 处出现的概率密度为

[] $(A)\frac{1}{2a}$ $(B)\frac{1}{a}$ $(C)\frac{1}{\sqrt{2a}}$ $(D)\frac{1}{\sqrt{a}}$						
7、	设粒子运动的波函数图线分别如图 (A) 、 (B) 、 (C) 、 (A) (D) 所示,那么其中确定粒子动量精确度最低的 波函数是哪个图? (B) (B)						
[$(C) \longrightarrow x$						
	(D) $\longrightarrow x$						
二、	填空题:						
1,	法国科学家德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量 E 和动量 P 的实物粒子也具波动性,这种波称为						
2、	玻恩提出一种对物质波物理意义的解释,他认为物质波是一种,物质波						
	的强度能够用来描述。						
3、	按照玻恩解释,波函数的强度 $ \psi^2 $,代表粒子。由于粒子在整个空						
	间必定出现,因此 $ \psi^2 $ 对整个空间的积分 $\int \psi^2 \mathrm{d}V = 1$,这称为波函数的						
	条件。此外波函数还应满足、和的标准条件,只有满足以上条件的波函数才是有物理意义的波函数。						
4、	一维无限深势阱中,粒子的能量是,粒子在势阱中不同位置出现的概率。(填相等或不相等)						
5、	低速运动的质子 P 和 α 粒子, 若它们的德布罗意波长相同, 则它们的动能之比 $E_{\rm p}$: E_{α} = 。						
6、	光子的波长 $\lambda = 4000\mathrm{A}$,如果确定此波长的精确度 $\Delta\lambda/\lambda = 10^{-6}$,试求此光子位						
	置的不确定量						
7、	微观粒子的下述性质可由哪个不确定关系式子给出? 1) 微观粒子永远不可能静止。 2) 原子光谱存在自然宽度 。						
	27 /37 7 7 5 F F F F F F F F F F F F F F F F						

8,	粒子在一维无限深方势阱中运动。图示为粒子处于某一能态上的	, , ,
	则粒子出现概率最大的位置为、、、、、	
9、	量子力学中的隧道效应是指	o
	这种效应是微观粒子的表现。	
10	. 在宽为 a 的一维无限深势阱中运动的粒子,它的一个定态波函	(a)
	数如图(a)所示,对应的总能量为 4eV, 若它处于另一个波函数	
	如图(b)的态上,它的总能量是eV; 粒子的	
	零点能是eV	(b)

三、计算题:

- 1、一个质子放在一维无限深势阱中,阱宽 $L = 10^{-14} \, \text{m}$,质子质量为1.67× $10^{-27} \, \text{kg}$ 。
 - (1) 质子的基态能量为多少?
 - (2) 由n=2跃迁到n=1态时,质子放出多大能量的光子?

- 2、若在一维无限深势阱中运动的粒子的量子数为 n, 试求:
 - (1) 距势阱的左壁 1/4 宽度内发现粒子的概率是多少?
 - (2) *n*=3 时何处发现粒子的概率最大?

3、	设一粒子沿 x	方向运动,	其波函数为 $\psi(x)$ =	<u>A</u>	0
	, ,	, . , , ,	· · · · · · · · · · · · · · · · · · ·	1+ix	

- (1) 将此波函数归一化;
- (2) 在何处找到粒子的概率最大?

四、简答题

1、实物粒子的德布罗意波与经典波函数的本质区别是什么?

2、不确定关系对宏观物体是否适用?为什么经典力学在考虑粒子运动规律时都不考虑其波动性?