Washington Metropolitan Area Transit Authority Short Term Ridership Forecasting Model (Version 3.0) Prepared by Office of Long Range Planning, WMATA Cambridge Systematics, Inc. January 2009

Presentation Outline

- Background
- Model Updates
- Findings
- Model Application
- Uncertainty Analysis

Background Purpose

- Update and refine the 1998 ridership forecasting model
- Apply ridership forecasting model in multi-year budget and planning analysis
- Identify regional and system factors influencing ridership
 - Since June 2000, there have been changes that have impacted both ridership and revenue
 - system expansion
 - fare changes
 - socioeconomic development
 - gas prices

2

Background Update Process

- Perform a backcasting exercise to assess how well the existing model would have predicted ridership and revenue from 2002 to 2008
- Review previous model and assess the feasibility, utility, and advisability of adding or removing variables
- Assess the feasibility of adding more submarkets (e.g., weekday versus weekend)
- Estimate revised model(s)
- Add an uncertainty analysis component to the revised model(s)

Presentation Outline

- Background
- Model Updates
- Findings
- Model Application
- Uncertainty Analysis

4

Model Updates Peer Review

 TCRP Synthesis 66: 36 agencies surveyed, primarily use qualitative techniques relying on professional judgments

Forecasting Technique	Number of Agencies Responding	Agencies Responding (Percentage)
Professional Judgment	29	83
Rules of Thumb/Similar Routes	28	80
Service Elasticities	22	63
Four-Step Travel Demand Model	18	51
Econometric Model	7	20
Regression Analysis	7	20
Other	7	20

- Surveyed
 - Bay Area Rapid Transit
 - Chicago Transit Authority
 - Los Angeles County MTA
 - MTA New York City

Model Updates Variables Tested

- Several types of variables were considered as determinants of Metrorail and Metrobus
 - Demographic
 - Population and Employment
 - Tourism
 - Hotel Rooms Sold, Smithsonian Visitors
 - Service Related
 - Fare, Service Hours, Parking Supply
 - Special
 - Gas Price, Weather, Events
 - Seasonal and Month

Model Updates Model Estimation

- Four monthly time-series regression models were developed
 - Metrorail (Weekday)
 - Metrorail (Weekend)
 - Metrobus (Weekday)
 - Metrobus (Weekend)
- All models were developed by testing many of the variables in a variety of functional forms
- Advanced statistical evaluation criteria and tests were used
- The final specifications are simple linear regression models

Model Updates Metrorail (Weekday)

Metrorail Weekday Model

Variable	Coefficient	t Value	
Constant	-9.104	-3.32	
Natural Log of D.C. Employment	2.057	4.87	
Natural Log of Hotel Rooms Sold	0.159	8.56	
Natural Log of Gas Prices (lagged)	0.061	2.37	
Natural Log of Metrorail Fare (lagged)	-0.117	-1.27	
Severe Weather	-0.040	-3.37	
July	0.046	4.70	
June	0.048	5.23	
December	-0.046	-4.45	
Number of Observations	71	71	
RMSE	0.02	0.02	
Adjusted R-Square	0.92	0.925	

Model Updates Metrorail (Weekend)

Metrorail Weekend Model

Variable	Coefficient	t Value
Constant	-64.285	-12.95
Natural Log of D.C. Population	9.846	12.5
Natural Log of Hotel Rooms Sold	0.555	12.08
Weekend Snowstorm	-0.219	-4.36
July	0.106	4.77
October	0.059	2.57
January	-0.057	-2.42
April	0.112	4.91
June	0.075	3.27
Number of Observations	71	
RMSE	0.048	
Adjusted R-Square	0.918	

Model Updates Metrobus (Weekday)

Metrobus Weekday Model

Variable	Coefficient	t Value
Constant	0.262	0.13
Natural Log of D.C. Employment	0.893	2.99
September	0.036	3.03
October	0.036	3.1
December	-0.089	-7.65
January	-0.039	-3.38
February	-0.065	- 5.63
Number of Observations	45	
RMSE	0.022	
Adjusted R-Square	0.737	

Model Updates Metrobus (Weekend)

Metrobus Weekend Model

Variable	Coefficient	t Value
Constant	-4.846	-1.39
Natural Log of Smithsonian Visitation	0.068	4.97
Natural Log of Metrobus Fare (lagged)	-0.241	-2.41
Natural Log of D.C. Population	2.572	2.9
Presidential Inauguration	-0.152	-5.34
July	0.031	1.66
August	0.042	2.48
September	0.088	5.45
October	0.068	4.86
May	0.042	2.66
June	0.050	3.23
Number of Observations	45	
RMSE	0.026	
Adjusted R-Square	0.854	

Presentation Outline

- Background
- Model Updates
- Findings
- Model Application
- Uncertainty Analysis

16

Findings Model Validity and Fit

- Model fit as measured by R-squared indicate:
 - Metrorail models have a high degree of fit
 - Metrobus models have an adequate degree of fit
- Mean absolute percentage error (MAPE) of the models (comparison of observed and model-predicted ridership for the model estimation periods) are in the same range as the previous modeling effort
 - Metrorail: 1.91% (previous model 1.46%)
 - Metrobus: 1.49% (previous model 1.95%)
- As noted in the previous model documentation, these ranges appear to be similar to other models, but not within the more-desirable 1.00%.

Findings

Key Factors Impacting Ridership

- <u>Employment and population</u> are the determinants of transit ridership
 - Employment drives weekday ridership
 - Population drives weekend ridership
- Tourism strongly influences ridership
 - Hotel Rooms Sold is a new variable influencing Metrorail ridership
 - Smithsonian Visitation remains a good indicator
- Other variables
 - Service Variables Fare, Parking Supply
 - Special Variables Gas Price, Weather, Events
 - Seasonal and Month

18

Findings Impacts of Previous Fare Changes

- Difficult to isolate the effects of fare changes from other independent variables in the models because:
 - High level of correlation between fares and other variables
 - Very few fare changes in the estimation period
- Model specifications that include fare variables indicate a reasonable range of fare elasticities (percent change in ridership due to a one percent change in fare)
 - Metrorail fare elasticity: -0.12 to -0.18
 - Metrobus fare elasticity: -0.2 to -0.26
- Recent similar modeling efforts in similar cities have had rail fare elasticities in the -0.10 to -0.20 range and bus fare elasticities in the -0.20 to -0.43 range

Findings Impacts of Gasoline Price Changes

- Gas price changes had a small effect on WMATA ridership during the model estimation period
- Weekday model specifications that include gas prices indicate a reasonable range of gas price elasticities (percent change in ridership due to a one percent change in gas price)
 - Metrorail weekday gas price elasticity: +0.04 to +0.07
 - Metrobus weekday gas price elasticity: +0.05 to +0.07
- Weekend ridership did not appear to be related to gas prices
- Recent similar modeling efforts in similar cities have had gas price elasticities in the +0.05 to +0.15 range

20

Presentation Outline

- Background
- Updates for this version
- Findings
- Model Application
- Uncertainty Analysis

Uncertainty Analysis

- Selected Oracle's Crystal Ball Excel add-on
- Provides a way to test the reliability of model predictions and explore alternative scenarios
- Avoids single point estimates of future values of input variables; permits specification and selection of distributions for each input variable
- Useful for looking at range of possible forecasts where more than one input variable is involved
- Provides the probability of each outcome and the relative contribution of each input to that outcome

26

Uncertainty Analysis Crystal Ball Application Create Report Preferences Reports | Options | Select a report. | Decision | Variables | | Full | Index | Custom | | DK | Cancel | Help |

Contact Info

- Wendy Jia, Project Manager
 wjia@wmata.com
 Washington Metropolitan Area Transit Authority
- Jay Evans, Kevin Tierney and Pramoda Gode <u>jevans@camsys.com</u> <u>ktierney@camsys.com</u> <u>pgode@camsys.com</u> Cambridge Systematics, Inc