

LUANA ALMEIDA Ph.D.

No capítulo de hoje...

No capítulo de hoje...

CazéTV

Cazé está planejando as lives dos jogos que ele vai cobrir na CazéTV no mês que vem. Como todo empresário, ele quer maximizar a sua monetização, e precisa decidir quantas horas ele deve transmitir de conteúdo do Vasco, Flamengo, e Palmeiras. Cada hora de transmissão do Vasco gera um lucro de R\$4, do Flamengo R\$3, e do Palmeiras R\$6. Durante a transmissão, Cazé precisa arcar com as horas de trabalho dos seus comentaristas e da sua equipe. Ele tem R\$3000 disponíveis, e gasta R\$300 por hora de transmissão do Vasco, R\$100 por hora de transmissão de Flamengo, e R\$300 por hora de transmissão do Palmeiras. Além do custo com as horas de trabalho, ele também precisa arcar com os lanches dos convidados. Ele limitou um total de R\$400 para lanches. Sabe-se que a taxa de consumo da equipe do Vasco e do Flamengo é de R\$20 por hora, e do Palmeiras é de R\$30 por hora. Determine quantas horas Cazé deve transmitir de cada time para maximizar o seu lucro.

- Modelo Aumentado
- Adicionar variáveis de folga

$$Max Z = 4x_1 + 3x_2 + 6x_3$$

$$300x_1 + 100x_2 + 300x_3 \le 3000$$

$$20x_1 + 20x_2 + 30x_3 \le 400$$

$$x_1, x_2, x_3 \ge 0$$

$$Maximizar Z - 4x_1 - 3x_2 - 6x_3 = 0$$

$$300x_1 + 100x_2 + 300x_3 + x_4 = 3000$$

$$20x_1 + 20x_2 + 30x_3 + x_5 = 400$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

- Construir a tabela inicial

	Z	x1	x2	х3	х4	x5	RHS
Z	1	-4	-3	-6	0	0	0
X4	0	300	100	300	1	0	3000
X5	0	20	20	30	0	1	400

- Cálcular o Ratio

	Z	x1	x2	х3	х4	х5	RHS	RATIO
Z	1	-4	-3	-6	0	0	0	
X4	0	300	100	300	1	0	3000	10
X5	0	20	20	30	0	1	400	13,33

L2' = L2*(1/300)

L3'= L3 - (30*L2')

L1' = L1 + (6*L2')

	Z	x1	x2	х3	x4	х5	RHS	RATIO
Z	1	2	-1	0	1/75	0	60	,
Х3	0	1	1/3	1	1/300	0	10	10/(1/3) = 30
X5	0	-10	10	0	-1/10	1	100	100/10 =10

$$L1' = L1 + L3'$$

	Z	x1	x2	х3	х4	x5	RHS	RATIO
Z	1	1	0	0	1/300	1/10	70	
X3	0	4/3	0	1	1/150	-1/30	20/3	
X2	0	-1	1	0	-1/100	1/10	10	

	Z	x1	x2	х3	х4	х5	RHS	RATIO
Z	1	1	0	0	1/300	1/10	70	
Х3	0	4/3	0	1	1/150	-1/30	20/3	SOLUÇÃO ÓTIMA: $Z^* = 70$
X2	0	-1	1	0	-1/100	1/10	10	$x_1^* = 0$
								$x_2^* = 10$
								$x_3^* = 20/3$

No capítulo de hoje...

No capítulo de hoje...

Capivara na pista

A equipe de analistas da receita federal lotada no aeroporto de Guarulhos quer maximizar a probabilidade de encontrar produtos indevidos em malas pequenas e malas grandes. As malas podem ser inspecionadas em um aparelho de raio-x ou por um cão farejador ou por um analista. O aparelho de raio-x leva 2 minutos para inspecionar tanto as malas pequenas quanto as grandes. No entanto, o operador da máquina de raio-x consegue dedicar atenção total à inspeção por somente 300 minutos. Os cães farejadores são capazes de farejar por no máximo 200 minutos. Para cada inspeção, eles precisam de 3 minutos para as malas grandes e 1 minuto pequenas. As malas grandes também podem ser inspecionadas manualmente por um auditor, que consegue fiscalizar no máximo 60 malas por dia. Sabe-se que as chances de se encontrar produtos indevidos nas malas grandes é duas vezes maior que nas pequenas. Determine a quantidade de malas grandes e pequenas a serem inspecionadas por dia.

Exemplo meramente ilustrativo

- Modelo Aumentado
- Adicionar variáveis de folga

$$Max Z = x_1 + 2x_2$$

$$2x_1 + 2x_2 \le 300$$

$$x_1 + 3x_2 \le 200$$

$$x_2 \le 60$$

$$x_1, x_2 \ge 0$$

Maximizar
$$Z - x_1 - 2x_2 = 0$$

$$2x_1 + 2x_2 + x_3 = 300$$

$$x_1 + 3x_2 + x_4 = 200$$

$$x_2 + x_5 = 60$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

- Construir a tabela inicial

	Z	x1	x2	х3	x4	x 5	RHS
Z	1	-1	-2	0	0	0	0
Х3	0	2	2	1	0	0	300
X4	0	1	3	0	1	0	200
X5	0	0	1	0	0	1	60

- Cálcular o Ratio

		Z	x1	x2	х3	x4	x 5	RHS	RATIO
	Z	1	-1	-2	0	0	0	0	
	Х3	0	2	2	1	0	0	300	300/2
	X4	0	1	3	0	1	0	200	200/3
1	X5	0	0	1	0	0	1	60	60/1

L4' = L4
L1' = L1+ (2*L4')
L2'=L2-(2*L4')
L3'=L3-(3*L4')

	Z	x1	x2	х3	х4	х5	RHS	RATIO
Z	1	-1	0	0	0	2	120	
Х3	0	2	0	1	0	-2	180	
X4	0	1	0	0	1	-3	20	
X2	0	0	1	0	0	1	60	

- Cálcular o Ratio

	Z	x1	x2	х3	x4	x 5	RHS	RATIO
Z	1	-1	0	0	0	2	120	
Х3	0	2	0	1	0	-2	180	180/2
X4	0	1	0	0	1	-3	20	20/1
X2	0	0	1	0	0	1	60	-

	Z	x1	x2	х3	x4	х5	RHS	RATIO
Z	1	0	0	0	1	-1	140	
Х3	0	0	0	1	-2	4	140	
X1	0	1	0	0	1	-3	20	
X2	0	0	1	0	0	1	60	

- Cálcular o Ratio

,							Z		
		Z	x1	x2	х3	x4	х5	RHS	RATIO
	Z	1	0	0	0	1	-1	140	
	Х3	0	0	0	1	-2	4	140	140/4
	X1	0	1	0	0	1	-3	20	-
	X2	0	0	1	0	0	1	60	60/1

	Z	x1	x2	х3	x4	x5	RHS	RATIO
Z	1	0	0	1/4	1/2	0	175	
X5	0	0	0	1/4	-1/2	1	35	
X1	0	1	0	3/4	-1/2	0	125	
X2	0	0	1	-1/4	1/2	0	25	

SOLUÇÃO ÓTIMA:
$$Z^* = 175$$
 $x_4^* = 0$ $x_1^* = 125$ $x_5^* = 35$ $x_2^* = 25$ $x_3^* = 0$

	Z	x1	x2	х3	x4	x5	RHS	RATIO
Z	1	0	0	1/4	1/2	0	175	
X5	0	0	0	1/4	-1/2	1	35	
X1	0	1	0	3/4	-1/2	0	125	
X2	0	0	1	-1/4	1/2	0	25	

Referências

DIALLO, C. Lecture notes – Operations Research 1: Linear Models. Dalhousie University, 2021

EISELT, H. A.; SANDBLOOM, C.-L. **Operations Research: A Model-Based Approach**. 2. ed. New York: Springer, 2012 HILLIER, F. S.; LIEBERMAN, G. J. **Introduction to Operations Research**. 10. ed. New York: McGraw-Hill Education, 2015.

SIMON, A. Casimiro fala em recorde mundial após live bater 5,2 milhões de usuários. 2022. **UOL**. Disponível em: https://www.uol.com.br/esporte/colunas/allan-simon/2022/12/05/casimiro-bate-mais-um-recorde-mundial-de-audiencia-no-youtube-com-a-copa.htm. Acesso em: 20 de Setembro de 2024.

DISCOVERY BRASIL. Policial questiona passageiro com dinheiro escondido. 2022. Disponível em:

https://www.youtube.com/watch?app=desktop&v=Lwrhw7-FIR8&ab_channel=DiscoveryBrasil. Acesso em: 20 de Setembro de 2024.