Abu Taher Mahim Sarkar, ID:20-42042-1, SL-09

Serial Numberos	1	2	3	4	5	6	7	8:	9	10
observation.	5	8	7	10	7	6	9	11	4	2
Sensal Numberos	11	12	13	14	15	16	17	18	19	20
Observation	7	7	12	9	11	3	7	8	5	6
Semial Numberos	21	22	23	24	25					
Observation	7.	6	9	11	4					

Pandon Numbers 5 11 17 23
Signals 7 7 7 9
Received

Here, the population size, N = 25sample = 4.
Sampling interval, $K = \frac{25}{4} = 6.25 \times 6$

Now, 1 to 6; any random number 155.

Entimate of mean = $\frac{25}{4} = 6.25$ Entimate of lolad number, $x = N^{\frac{1}{2}} = (25)^{\frac{1}{2}} \cdot 6.25 = 154.25$ Hence $5^{2} = \frac{1}{N-1} \left[\sum x^{2} - \left(\sum x \right)^{2} \right]$ $= \frac{1}{4-1} \times \left[\frac{2}{5} + \frac{2^{2} + 9^{2} + 7^{2} + 7^{2} + 9^{2}}{N} \right]$ = 1Vortione of sample mean, $\sqrt{7}$ $= \frac{N-n}{Nn} \times 5^{2}$ $= \frac{25-4}{25\times4} \times (1)^{2} = 0.21$

Here, standard error of estimate

of mean = $\sqrt{\sqrt{x}}$ = $\sqrt{0.21}$ = 0.458.

The estimate of standard error of population total is, $\sqrt{(x)} = N^2 \sqrt{(x)} = (25)^2 \times 0.21$ = 131.25 $x = \sqrt{\sqrt{(x)}} = \sqrt{131.25} = 11.46$ [Anal.]

(b) popul Proportion, $\rho = \frac{13}{4} = 0.75$ [Anal.]

Am-no=>9.5

Serial Numbers	1	2	3	4	5	6	7	8	9	10
Observation	4	3	0	2	6	7	4	3	2	0
Serial	11	12	25	14	15	16	17	18	19	20
Observation	1	0	3	0	6	8	0	1	14	3
Sorial Numboros	2.1	22	23	24	25	26	27	28	29	30
Observation	2	6	3	7	5	8	0	2	3	5

Uning by simple random sampling method

Random Number	11	16	19	:12	19
Observation	_ 1	8	2	0	4

$$5^{2} = \frac{1}{n-1} \times \left[\frac{1}{2} \times 2 - \left(\frac{1}{2} \times 2 \right)^{2} \right]$$

$$= \frac{1}{5-1} \left[\left(1^{2} + 8^{2} + 2^{2} + 0^{2} + 4^{2} \right) - \left(1 + 8 + 2 + 0 + 4 \right)^{2} \right]$$

$$= 10$$

variance of sample mas,

$$V(\bar{n}) = \frac{N-n}{100} \times 5^{2}$$

$$= \frac{30-5}{30\times5} \times (10)^{2}$$

= 16.67 1.67.

Here, standard error of estimate of mean = $\sqrt{V(\bar{n})} = \sqrt{1.67}$

- 1.292

The estimate of standard eproon of population total is.

$$V(\hat{x}) = N^2 \cdot V(\bar{x}) = (30)^2 \times 1.67$$

$$= 1503$$

$$= \sqrt{V(\hat{x})} = \sqrt{1503} = 38.77$$

$$= \sqrt{Anol}$$

Am-no=> 9.6

Herce, proportion, p=0.45.
Morgin of error, d=0.1

Size,
$$n = \frac{7^2 \cdot 4(n)}{d^2}$$

 $= \frac{(1.96)^2 \times 0.45 \times 0.55}{(0.1)^2}$

95:08 × 95 [Arrel

Ano-no =7 10019.7

Serial	±	2	3	14	5	6	F	8
Obnervation	10	7	6	9	11	4	2	7
Serial	9	10	11	12	13	14	15	16
Observation	7	9	11	45	8	7	ot	7
Serial Number	<u>1</u> 7	18	19	20	25	22	23	
Observation	6	9	11	4	2	7	7	

Henry, N=23 and n=4.

Using by simple random sampling

· Pandon days	11	16	9	12
Observation	-11	7	7	45"

$$5^{2} = \frac{1}{n-1} \times \left[\sum_{n=1}^{\infty} \frac{(\sum_{n})^{2}}{n} \right]$$

$$= \frac{1}{4-1} \times \left[(11^{2} + 7^{2} + 7^{2} + 45^{2}) - \frac{(11+7+7+45^{4})^{2}}{4} \right]$$

= 339.67

Standard promon of potimote of mean = $\sqrt{V(\bar{n})} = \sqrt{70.15}$ = 8.376. [And].

9 31 11 Person 10

Herre, proportion, p = 0.3

Morgin of eppor = 0.05

$$S_{17e}^{0}, n = \frac{Z^{2}pq}{d^{2}}$$

$$= \frac{(1.96)^{2} \times 0.3 \times 0.7}{(0.05)^{2}}$$

= 322.694 = 323

IAm