

Otimização Baseada em Custos

98H00-04 - Infraestrutura para Gestão de Dados

Prof. Msc. Eduardo Arruda eduardo.arruda@pucrs.br

Otimização baseada em custos

- Estimar e comparar os custos de executar uma consulta usando diferentes estratégias
 - Escolher a estratégia com o menor custo estimado
- Formas alternativas de avaliar uma dada consulta
 - Expressões equivalentes
 - Diferentes algoritmos para cada operação
- Diferença de custo pode ser enorme
 - Exemplo: realizar um r X s seguido de uma seleção r.A = s.B é muito mais lento do que fazer uma junção na mesma condição

Otimização baseada em custos

- Necessidade de estimar o custo das operações
 - Depende de informações estatísticas sobre as relações que o banco mantém
 - Ex. Núm. tuplas, núm. de valores distintos para atributos de junção
- Questões a considerar
 - Custo da função
 - Número de estratégias a ser considerado
- Componentes de custo
 - Acesso à disco
 - CPU
 - Comunicação em rede, etc.
- Nota: diferentes SGBDs podem focar em diferentes componentes de custo

Otimização usando custos estimados

- As funções de custo utilizadas na otimização de consultas são estimativas e não medidas exatas de custo
- Assim, a otimização pode selecionar uma estratégia de execução que não seja a melhor

Medidas de custo

- Relembre que
 - Tipicamente acessos a disco são o custo predominante e é relativamente fácil de estimar
 - O número de transferências de datablock do disco é usado como medida para o custo de avaliação
 - É assumido que todas as transferências de datablock têm o mesmo custo
 - Otimizadores reais distinguem as transferências e avaliam vários componentes
- Não são considerados aqui os custos de escrita no disco, pois, em tese, são iguais para todos os métodos, pois o resultado final é o mesmo

Estimativas sobre os dados

n_R	número de tuplas na tabela R
t _R	tamanho (em bytes) de uma tupla de R
t _R (a _i)	tamanho (em bytes) do atributo a _i de R
f _R	fator de bloco de R (quantas tuplas de R cabem em um datablock*) * datablock: unidade de R / W em disco (medida básica de avaliação) $f_R = \lfloor t_{bloco} / t_R \rfloor$
V _R (a _i)	número de valores distintos do atributo a _i de R
C _R (a _i)	cardinalidade (estimada) do atributo a_i de R (tuplas de R que satisfazem um predicado de igualdade sobre a_i) (estimando distribuição uniforme: $C_R(a_i) = n_R / V_R(a_i)$
GS _R (a _i)	grau de seletividade do do atributo a_i de R (estimando distribuição uniforme : $GS_R(a_i) = 1 / C_R(a_i) = V_R(a_i)/n_{R^*}$
b _R	número de datablocks necessários para manter tuplas de R $b_R = \lceil n_R / f_R \rceil$

Faixas de Valores

Estimativa	Atributo Chave	Atributo não chave	Atributo Booleano	Atributo "Data Aniversário"
$V_R(a_i)$	n _R	1 até n _R -1	2	366
$C_R(a_i) = n_R/V_R(a_i)$	1	1 até n _R	n _R /2	n _R /366
$GS_R(a_i) = V_R(a_i)/n_R$	1	<1	2/n _R	366/n _R =0,0027

Exemplo de Estimativas de Tabela

- Existem 10000 Contas correntes cadastradas na tabela Contas; cada tupla possui 200 bytes em média e 1 datablock lê/grava 4 kb (=4096 bytes); contas estão distribuídas em 50 agências.
- Estimativas:
- nContas = 10000 tuplas na relação contas
- tContas = 200 bytes (tamanho de tupla)
- fMContas = $\lfloor 4096 / 200 \rfloor$ = 20 tuplas/datablock
- bContas = $\lceil 10000 / 20 \rceil$ = 500 datablocks (necessários para manter as tuplas de contas)
- Vconta(agencia) = 50 (50 agências diferentes)
- Cr(agencia) = nContas /Vconta(agencia) = 10000/50 = 200
- GSr(agencia) = Vconta(agencia)/nContas = 50/10000 = 0,005

Estimativas sobre os índices B+Tree

f _i	fator de bloco do índice i (fan-out do índice), ou seja, quantos nodos de uma árvore-B cabem em um datablock
h _i	número de níveis (de datablocks) do índice para valores de um atributo a_i ("altura" do índice) $h_i = \lceil log_{fi} \lceil V_R (a_i) / N \rceil \rceil \text{ (para índices árvore-B)}$ (N é o número de valores que cabem em um nodo) $-h_i \text{ é a altura do índice (em datablocks), ou seja, quantos datablocks de índice árvore-B devem ser percorridos para se alcançar os datablocks de dados indexados}$
bf _i	número de datablocks de índice no nível mais baixo do índice (número datablocks "folha")

Exemplo de Estimativas de Índice

Estimativas

- fíndice = 3 nodos cabem em um datablock
- híndice = logfi VR (ai) / N = log3 17 / 2 = 2 datablocks devem ser percorridos até chegar nos datablocks de dados
- bfíndice = 2 datablocks no nível folha (6 nodos folha / 3)

Processamento de Seleções (σ)

- Alternativas e suas estimativas de custo
 - A1: pesquisa linear (força bruta)
 - A2: pesquisa binária
 - A3: índice primário para atributo chave
 - A4: índice clustering para atributo não-chave
 - A5: índice secundário para atributo chave
 - A6: índice secundário para atributo não-chave
 - A7: desigualdade (>, >=, <, <= com índice primário
 - A8: desigualdade com índice secundário
 - A9: seleção conjuntiva com índices individuais
 - A10: seleção conjuntiva com índice composto
 - A11: seleção conjuntiva com intersecção de índices
 - A12: seleção disjuntiva

Pesquisa linear (A1)

- Varre todo o arquivo para buscar os dados desejados
 - acessa todos os datablocks do arquivo
- Em alguns casos, é a única alternativa possível
- Custo para uma tabela R
 - custo = b_R
 - b_R = número de datablocks necessários para manter tuplas de R
 - Se a seleção for em um atributo chave, supomos que a metade dos datablocks é varrida antes de o registro ser encontrado
 - Custo = $b_R / 2$

Pesquisa binária (A2)

- Aplicado sobre uma tabela R quando
 - dados estão ordenados pelo atributo de seleção ai
 - há uma condição de igualdade sobre a_i
- Custo
 - custo para acessar o datablock da 1ª tupla: \[log_2 b_R \]
 - custo para acessar os datablocks das demais tuplas: $\lceil (C_R(a_i) / f_R) \rceil 1$
 - custo = $\lceil \log_2 b_R \rceil + \lceil (C_R(a_i) / f_R) \rceil 1$
 - se a_i é chave: custo = $\lceil \log_2 b_R \rceil$

Pesquisa binária (A2) - Exemplo

- $f_{conta} = 20$ (20 tuplas de conta cabem em um datablock)
- V_{conta}(nome_agencia) = 50 (50 agências diferentes)
- n_{conta}=10 000 (a relação conta possui 10.000 tuplas)
- Seja $\sigma_{\text{nome agencia="PUCRS"}}$ (conta)
 - b_{conta}=500 datablocks necessários para manter a relação (10.000/20)
 - Se usar varredura linear: 500 acessos
 - Suponha que conta esteja ordenado por nome_agencia
 - Como V(nome_agencia, conta) = 50
 - 10.000/50 = 200 tuplas da relação pertencem à agência PUC
 - Estas tuplas caberiam em 200/20 = 10 datablocks
 - Busca binária para o primeiro registro: $log_2 500 = 9$ acessos
 - Custo total da busca binária: $\lceil \log_2 500 \rceil + \lceil (10.000/50) / 20) \rceil 1 = 9+10-1=18$

Seleções utilizando índices

- Atributo a_i com índice primário ou *clustered* ou INTERNO
 - leitura do índice corresponde à leitura na ordem física do arquivo
 - arquivo fisicamente ordenado por valores de ai
 - se a_i é chave (A3)
 - custo = h_i
 - se a_i é não-chave (A4)
 - custo = $h_i + \lceil (C_R(a_i) / f_R) \rceil 1$

Pesquisa índice *clustered* (A4) - Exemplo

- f_{conta} = 20 (20 tuplas de conta cabem em um datablock)
- V_{conta}(nome_agencia) = 50 (50 agências diferentes)
- n_{conta} = 10 000 (a relação conta possui 10.000 tuplas)
- Seja $\sigma_{\text{nome agencia}="PUCRS"}$ (conta)
 - b_{conta} = 500 datablocks necessários para manter a relação (10.000/20)
 - Se usar varredura linear: 500 acessos
 - Suponha que conta esteja ordenado por nome_agencia
 - Como V(nome agencia, conta) = 50
 - 10.000/50 = 200 tuplas da relação pertencem à agência PUCRS
 - Estas tuplas caberiam em 200/20 = 10 datablocks
 - Custo de pesquisar pelo índice clustering = custo = $h_i + \lceil (C_R(a_i) / f_R) \rceil$
 - Índice com 50 entradas caberia em 1 nível (datablock)
 - Custo = $1 + \lceil (10.000/50) / 20 \rceil = 1 + 10 = 11$

Seleções utilizando índices secundários

- Atributo a_i com índice secundário ou non-clustered ou EXTERNO
 - arquivo não está fisicamente ordenado por valores de ai
 - se a_i é chave ou é único (A5)
 - custo = $h_i + 1$
 - se a_i é não-chave (A6)
 - supor que o datablock folha do índice aponta para uma lista de apontadores para as tuplas desejadas
 - Estimar que esta lista cabe em um datablock
 - custo = $h_i + 1 + C_R(a_i)$ (pode ser menor se distribuição não for homogênea e for possível de alguma forma ordenar os ponteiros por datablock)

Pesquisa índice secundário (A6) - Exemplo

- f_{conta} = 20 (20 tuplas de conta cabem em um datablock)
- V_{conta}(nome_agencia) = 50 (50 agências diferentes)
- n_{conta} = 10.000 (a relação conta possui 10.000 tuplas)
- Seja $\sigma_{\text{nome agencia}}$ ="PUC"(conta)
 - b_{conta} = 500 datablocks necessários para manter a relação (10.000/20)
 - Se usar varredura linear: 500 acessos
 - Suponha que conta NÃO esteja ordenado por nome_agencia, mas que existe um índice secundário por este campo
 - Como V(nome_agencia, conta) = 50
 - 10.000/50=200 tuplas da relação pertencem à agência PUC
 - Estas tuplas podem estar em qualquer datablock
 - Custo da busca pelo índice secundário: h_i + 1 + C_R(a_i)
 - Índice com 50 entradas caberia em 1 nível (datablock)
 - $C_R(a_i) = 10.000/50 = 200$
 - Custo = 1 + 1 + 200 = 202 acessos a datablocks

Exercício 1

- Relação = Pac (codp, nome, idade, cidade, doença)
- Estimativas: $n_{Pac} = 1000$ tuplas; $t_{Pac} = 100$ bytes; $V_{Pac}(codp) = 1000$; $V_{Pac}(doença) = 80$; $V_{Pac}(idade) = 50$; um índice primário B+Tree para codp (I1) com $H_i = 5$; fI1 = 10; um índice secundário B+Tree para doença (I2) com $H_i = 3$; fI2 = 5; um índice secundário B+Tree para Idade (I3) com $H_i = 1$; fI3 = 10; datablock = 2 kb
- Supondo as seguinte expressões algébricas:
 - 1. $\sigma_{\text{doença} = 'c\hat{a}ncer'}$ (Pac)
 - 2. $\sigma_{\text{codP}=52}(Pac)$
- Quais os custos para processar 1, usando busca linear e indexada?
- Quais os custos para processar 2, usando busca linear, pesquisa binária e indexada?

Intervalos abertos

- Recuperando registros com condições de intervalo aberto: $\sigma_{A\leq V}(r)$ ou $\sigma_{A\geq V}(r)$
- Busca linear ou binária: idem p/ valor exato
- Algoritmo A7 (índice primário):
 - O arquivo está ordenado pelo atributo A
 - Para $\sigma_{A \ge V}(r)$: usa-se índice para encontrar a primeira tupla que satisfaz a condição e depois percorre-se o arquivo sequencialmente até o fim
 - Para $\sigma_{A \le V}(r)$: apenas percorre-se o arquivo até encontrar o primeiro valor que não satisfaz a condição. NÃO se usa índice

Intervalos abertos

- Algoritmo A8 (índice secundário):
 - Para $\sigma_{A \ge V}(r)$: Usa-se índice para encontrar a primeira entrada >= v do índice e percorre-se o índice sequencialmente a partir daí, para encontrar os ponteiros para os registros que contém os dados
 - Custo = $h_i + bf_i/2 + b_R/2$
 - Para $\sigma_{A \leq V}(r)$: apenas percorre-se os nós-folhas do índice, encontrando os ponteiros para os registros, até a primeira entrada > v
 - Em ambos os casos, a recuperação dos registros apontados exige uma leitura de datablock para cada registro.
 - Busca linear poderá ser mais barata, se há muitos registros a serem recuperados (utiliza-se GS_R(a_i))
 - Custo = $bf_i/2 + b_R/2$

Seleções complexas

- Conjunções: $\sigma_{c1 \land c2 \land ... cn}(r)$
 - A9 (cada seleção possui um índice individual):
 - Escolhe-se o ci (com um dos algoritmos de A1 a A7) que resulta no menor custo para σ_{ci} (r)
 - Para cada tupla recuperada, testa-se cada uma das outras condições em memória, antes de adicionar a tupla ao resultado final
 - Custo é o mesmo do índice secundário (A6)
 - A10 (existem índices compostos):
 - Usa-se o índice composto disponível
 - Custo é o mesmo do índice secundário (A6)
 - A11 (interseção de identificadores *buckets*):
 - Exige índices com ponteiros para registros
 - Usa-se o índice correspondente de cada condição e, a partir da interseção dos mesmos, busca-se no disco. Aplica-se teste em memória para condições que não possuem índices apropriados.
 - Custo = $bf_1 + bf_2 + C_R(a_{1,2})$
 - Pode ser melhor fazer pesquisa linear

Seleções Complexas

- Disjunções: $\sigma_{c1 \vee c2 \vee \ldots cn}$ (r)
 - A12 (se ambas as operações possuírem índices nos campos envolvidos na operação, pode-se dividir em duas consultas e depois combinar o resultado)
 - Custo = $h_i + 1 + C_R(a_i) + h_i + 1 + C_R(a_i) + custo de combinar (devem ser eliminadas as duplicatas)$
 - Pode ser melhor a pesquisa linear

Classificação

- Para obter a relação classificada diretamente do disco, teríamos que ter um índice para o atributo e usar
 o índice para ler a relação de forma ordenada (percorrendo as folhas, se for o caso)
 - Isso pode levar a uma leitura de um *datablock* para cada tupla → Muito caro!
- Se a relação resultante cabe na memória \rightarrow usar técnicas de ordenação (quicksort, p.ex.) depois de recuperar pelos métodos normais
- Se a relação resultante não cabe na memória, a técnica SORT-MERGE EXTERNO é uma boa opção
 - Essa técnica consiste em recuperar partes da relação, ordenar, gravar de novo, fazer "merge" das partes, e assim sucessivamente até obter a relação toda ordenada

Sort merge externo

- Executa em 2 etapas
 - Etapa 1 Sort
 - ordena partições da relação em memória
 - tamanho da partição depende da disponibilidade de buffers em memória (n_{buf} = número de buffers disponíveis)
 - gera um resultset temporário ordenado para cada partição
 - Etapa 2 Merge de "n" iterações
 - ordena um conjunto de *resultsets* temporários a cada iteração
 - gera um novo temporário resultante da ordenação
 - ordenação termina quando existir somente um temporário que contém a relação inteira ordenada

Sort merge externo - Exemplo

Sort merge externo - Exemplo

S ordenada

Sort merge externo

- Custo = 2 * b_s * log n_{buf} (b_s / n_{buf})
 Fortemente dependente do número de buffers disponível para a ordenação
 - Mesmo com n_{buf} pequeno, o custo ainda é linear $O(b_s*log(b_s))$

Junção

- Diversos algoritmos diferentes para implementar junções:
 - Nested loops join por linha
 - Nested loops join por bloco
 - Nested loops join com índice
 - Sort merge join
 - Hash join
- A escolha, como sempre, é baseada na estimativa do custo

Nested loops join por bloco

- Para computar a junção teta: R ⋈_(C) S
- Vamos chamar R de relação externa e S de relação interna da junção
- Cada bloco da relação externa será emparelhado com cada bloco da relação interna:

```
for each block B_R of R do begin
for each block B_S of S do begin
for each tuple t_R in B_R do begin
for each tuple t_S in B_S do begin
Verifique se (t_R, t_S) satisfazem a condição
Se satisfazem, adicione t_R \cdot t_S ao resultado
```

Nested loops join por bloco

- No pior dos casos, teremos os seguintes custos:
 - acessar cada bloco de R:

$$custo = b_R$$

para cada bloco de R, acessar cada bloco de S e comparar as tuplas:

custo =
$$b_R * b_S$$

- Custo de leitura = b_R + b_R * b_S
- Com isso, é melhor que a tabela externa seja a menor

Nested loops join com índice

- Se tivermos um índice para a relação interna:
 - Para cada tupla t_R da relação externa R, usa-se o índice para encontrar tuplas de S que satisfazem a condição da junção com a tupla t_R
- Pior caso
 - o buffer possui espaço para apenas um bloco de R e, para cada tupla de R, realiza-se uma procura no índice de S
- Custo da junção: b_R + n_R * c
 - onde c é o custo para percorrer o índice e recuperar todas as tuplas de S que casam com uma tupla de R
 - c pode ser estimado como sendo o custo de uma seleção única em S usando a condição da junção
- Também nesse caso, deve-se usar a relação com menos tuplas para ser a relação externa, caso ambas as relações possuam índices

Exemplo

- Considere:
 - tabela Cliente: 10.000 tuplas, b_{Cliente} = 400,
 - tabela Aplicação: 5.000 tuplas , $b_{Aplicação} = 100$
- Vamos computar Cliente (C) Aplicação, com Aplicação sendo a relação externa
- Considere que Cliente possui um índice primário de B+Tree com 10 entradas por nó, no atributo que faz a junção: cod_cliente
- Com 10.000 tuplas, a altura da árvore será 4 e portanto o nro de acessos será 5 para cada entrada
- Custo do *nested loops join* por bloco:
 - 100 + 100 * 400 = 40.100 acessos a disco
- Custo do *nested loops join* com índice:
 - 100 + 5000 * 5 = 25.100 acessos a disco

Sort merge join

- Se ambas as relações (R e S) estão ordenadas
 - custo = $b_R + b_S$
- Se uma delas (R) não está ordenada
 - custo = 2 * b_R (log n_{buf} (b_R / n_{buf}) + 1) + b_R + b_S
- Se ambas as relações não estão ordenadas
 - custo = 2 * b_R (log n_{buf} (b_R / n_{buf}) + 1) + 2 * b_S (log n_{buf} (b_S / n_{buf}) + 1) + b_R + b_S
- Pouco eficiente a não ser que o resultado deva ser ordenado pela chave de join

Hash Join

- Melhor caso: hash da tabela R cabe todo em memória
- Fase de Particionamento
 - Lê toda tabela R (b_R)
- Fase de Junção
 - Lê toda tabela S
- Custo Total
 - custo = $b_R + b_S$

Hash Join

- Caso normal: executa o hash somente da chave da tabela R tabela com a foreign key normalmente cabe todo em memória)
- Fase de Particionamento
 - Lê toda tabela R (b_R)
- Fase de Junção
 - Lê toda tabela S (b_s) e para cada registro que atende o join lê o registro de R
- Custo Total
 - custo = $b_R + (b_S + n_{Resultado} * b_R)$
 - n_{Resultado} depende do número de linhas que o join retorna, normalmente o número de linhas da tabela que é filho (R)
 - Quanto maior for a tabela filho, menos eficiente o hash join

Execução encadeada de operações

- A execução de uma consulta é um encadeamento da execução das partes da árvore de expressão algébrica
- Para avaliar completamente uma árvore de expressão, há duas alternativas:
 - MATERIALIZAÇÃO: gera resultados para cada operação, cujas entradas são relações pré-existentes ou já computadas, e materializa (armazena em disco) esse resultado. Repete esse processo até atingir o resultado final.
 - PIPELINING: executa todas as operações (em cada tupla, quando possível) do começo ao fim, mantendo no *buffer* os resultados intermediários.
 - Resultado de uma operação é passado para a operação seguinte, sem armazenamento de resultados intermediários.

Materialização X Pipeline

- Materialização
 - cada operação da álgebra é materializada em uma relação temporária (se necessário) e utilizada como entrada para a próxima operação
 - situação padrão no processamento de consultas
- Pipeline
 - uma sequência de operações algébricas é executada em um único passo
 - cada tupla gerada por uma operação é passada para a operação seguinte
 - cada tupla passa por um canal (pipe) de operações
 - somente o resultado ao final do pipeline é materializado (se necessário)

Materialização X Pipeline

Materialização

Definição de Pipelines

Pipeline de Operações

- + : evita a materialização de todos os resultados intermediários no processamento de uma consulta
- : resultado não é passado de forma completa para uma próxima operação dentro do pipeline
 - algoritmos de processamento das operações algébricas deve ser modificados para invocar outras operações para cada tupla gerada
 - algoritmos "dinâmicos"
 - algumas alternativas não podem ser estimadas
 - exemplos: sort merge join; operações de conjunto
 - exigem um resultado completo e ordenado para processar

Uso mais comum de pipelines

- Em uma sequência de operações que
 - inicia em um nodo folha ou uma operação binária
 - termina ou no resultado da consulta ou em uma operação binária ob_x, sem incluir ob_x

Uso mais comum de pipelines

- Em uma sequência composta apenas por operações π e operações produtórias, a partir de um nodo folha ou uma operação binária ob_x, incluindo ob_x
 - considera que o tamanho dos resultados intermediários das operações π é muito grande para ser materializado
 - mesmo assim, avaliar se
 o custo das operações
 produtórias não aumenta
 com o pipeline...

Dúvidas?

