Relational Algebra

Outline

- ☐ Relational Algebra
- ☐ Tuple Relational Calculus
- ☐ Domain Relational Calculus

Relational Algebra

- ☐ Procedural language
- ☐ Six basic operators
 - select: ℧
 - project: ∏
 - union: \cup
 - set difference: –
 - Cartesian product: x
 - rename: ρ
- ☐ The operators take one or two relations as inputs and produce a new relation as a result.

Select Operation

- \square Notation: $\sigma_p(r)$
- \Box p is called the **selection predicate**
- ☐ Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where *p* is a formula in propositional calculus consisting of **terms** connected by : \land (and), \lor (or), \neg (not)

Each **term** is one of:

where *op* is one of: $=, \neq, >, \geq. <. \leq$

☐ Example of selection:

$$\sigma_{dept_name = "Physics"}$$
 "(instructor)

Project Operation

☐ Notation:

$$\prod_{A_1,A_2,\ldots,A_k}(r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- \Box The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- ☐ Duplicate rows removed from result, since relations are sets
- Example: To eliminate the *dept_name* attribute of *instructor*

 $\Pi_{ID, name, salary}$ (instructor)

Union Operation

- \square Notation: $r \cup s$
- ☐ Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- \square For $r \cup s$ to be valid.
 - 1. r, s must have the same arity (same number of attributes)
 - 2. The attribute domains must be **compatible** (example: 2^{nd} column of r deals with the same type of values as does the 2^{nd} column of s)
- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

$$\Pi_{course_id}(\sigma_{semester="Fall"}, \Lambda_{year=2009}(section)) \cup$$

$$\Pi_{course_id}(\sigma_{semester="Spring"\ \Lambda\ year=2010}(section))$$

Set Difference Operation

- \square Notation r-s
- ☐ Defined as:

$$r - s = \{t \mid t \in r \text{ and } t \notin s\}$$

- ☐ Set differences must be taken between **compatible** relations.
 - r and s must have the same arity
 - attribute domains of *r* and *s* must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$\Pi_{course_id}(\sigma_{semester="Fall"\ \Lambda\ year=2009}(section)) - \Pi_{course_id}(\sigma_{semester="Spring"\ \Lambda\ year=2010}(section))$$

Set-Intersection Operation

- \square Notation: $r \cap s$
- ☐ Defined as:
- ☐ Assume:
 - *r*, *s* have the *same arity*
 - attributes of r and s are compatible
- \square Note: $r \cap s = r (r s)$

Cartesian-Product Operation

- \square Notation $r \times s$
- ☐ Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \emptyset$).
- \square If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- ☐ Allows us to refer to a relation by more than one name.
- ☐ Example:

$$\rho_{x}(E)$$

returns the expression *E* under the name *X*

 \square If a relational-algebra expression E has arity n, then

$$\rho_{x(A_1,A_2,...,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A_1 , A_2 , ..., A_n .

Formal Definition

- ☐ A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- \square Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 - $E_1 \cup E_2$
 - $E_1 E_2$
 - $E_1 \times E_2$
 - $\sigma_p(E_1)$, P is a predicate on attributes in E_1
 - $\prod_{S}(E_{I})$, S is a list consisting of some of the attributes in E_{I}
 - $\rho_{x}(E_{1})$, x is the new name for the result of E_{1}

Tuple Relational Calculus

☐ A nonprocedural query language, where each query is of the form

$$\{t \mid P(t)\}\$$

- \square It is the set of all tuples t such that predicate P is true for t
- \Box t is a tuple variable, t [A] denotes the value of tuple t on attribute A
- \Box $t \in r$ denotes that tuple t is in relation r
- \Box P is a *formula* similar to that of the predicate calculus

Predicate Calculus Formula

- 1. Set of attributes and constants
- 2. Set of comparison operators: $(e.g., <, \le, =, \ne, >, \ge)$
- 3. Set of connectives: and (\land) , or (\lor) , not (\neg)
- 4. Implication (\Rightarrow) : $x \Rightarrow y$, if x if true, then y is true

$$x \Rightarrow y \equiv \neg x \vee y$$

- 5. Set of quantifiers:
 - ▶ $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple in t in relation r such that predicate Q(t) is true
 - ▶ $\forall t \in r (Q(t)) \equiv Q$ is true "for all" tuples t in relation r

Example Queries

$$\{t \mid t \in instructor \land t [salary] > 80000\}$$

- □Notice that a relation on schema (*ID*, *name*, *dept_name*, *salary*) is implicitly defined by the query
- As in the previous query, but output only the *ID* attribute value

$$\{t \mid \exists \ s \in \text{instructor} \ (t[ID] = s[ID] \land s[salary] > 80000)\}$$

■Notice that a relation on schema (*ID*) is implicitly defined by the query

Example Queries

☐ Find the names of all instructors whose department is in the Watson building

```
\{t \mid \exists s \in instructor (t [name] = s [name] \}
\land \exists u \in department (u [dept_name] = s[dept_name] 
\land u [building] = "Watson"))\}
```

■ Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \ \lor \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010 )\}
```

Example Queries

■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010 )\}
```

■ Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \neg \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010 )\}
```

Universal Quantification

- ☐ Find all students who have taken all courses offered in the Biology department
 - $\{t \mid \exists \ r \in student \ (t \ [ID] = r \ [ID]) \land$ $(\forall \ u \in course \ (u \ [dept_name] = "Biology" \Rightarrow$ $\exists \ s \in takes \ (t \ [ID] = s \ [ID] \land$ $s \ [course_id] = u \ [course_id]))\}$

Safety of Expressions

- ☐ It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{t \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- ☐ To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is *safe* if every component of t appears in one of the relations, tuples, or constants that appear in P
 - NOTE: this is more than just a syntax condition.
 - E.g. { $t \mid t[A] = 5 \lor \text{true}$ } is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

Safety of Expressions (Cont.)

- ☐ Consider again that query to find all students who have taken all courses offered in the Biology department
 - $\{t \mid \exists \ r \in student \ (t \ [ID] = r \ [ID]) \land$ $(\forall \ u \in course \ (u \ [dept_name] = "Biology" \Rightarrow$ $\exists \ s \in takes \ (t \ [ID] = s \ [ID] \land$ $s \ [course_id] = u \ [course_id]))\}$
- ☐ Without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.