

## Esquema de calificación

**Noviembre 2018** 

Química

**Nivel medio** 

Prueba 2



Este esquema de calificaciones es propiedad del Bachillerato Internacional y **no** debe ser reproducido ni distribuido a ninguna otra persona sin la autorización del centro global del IB en Cardiff.

| P  | Pregunta |    | Respuestas                                                                                                                                                                                                                                                                                                         | Notas/comentarios                                                                          | Total |
|----|----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|
| 1. | а        | i  | $n_{\text{CuSO}_4}$ «= 0,0800 dm³ × 0,200 mol dm⁻³» = 0,0160 mol<br><b>Y</b> $n_{\text{Fe}}$ «= $\frac{3,26 \text{ g}}{55,85 \text{ g mol}^{-1}}$ » = 0,0584 mol <b>√</b> $\text{CuSO}_4 \text{ es el reactivo limitante } \checkmark$                                                                             | <b>No</b> adjudique el P2 si no muestra el cálculo molar.                                  | 2     |
| 1. | a        | ii | ALTERNATIVA 1:<br>«0,0160 mol × 63,55 g mol <sup>-1</sup> =» 1,02 g ✓<br>« $\frac{0,872 \text{ g}}{1,02 \text{ g}}$ × 100 =» 85,5 «%» ✓<br>ALTERNATIVA 2:<br>« $\frac{0,872 \text{ g}}{63,55 \text{ g mol}^{-1}}$ = » 0,0137 «mol» ✓<br>«( $\frac{0,0137 \text{ mol}}{0,0160 \text{ g mol}}$ ) × 100 =» 85,6 «%» ✓ | Acepte respuestas dentro del rango 85–86 %. Adjudique [2] por la respuesta final correcta. | 2     |

| 1. | b | i | ALTERNATIVA 1:                                                                                                                                                    | Adjudique <b>[2]</b> por la respuesta final correcta. |   |  |
|----|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---|--|
|    |   |   | $q = \text{«}80.0 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 7.5 \text{ K} = \text{»} 2.5 \times 10^3 \text{ «J»/}2.5 \text{ «kJ» } \checkmark$ | conceta.                                              |   |  |
|    |   |   | wpor mol de CuSO <sub>4</sub> = $\frac{-2.5 \text{ kJ}}{0.0160 \text{ mol}} = -1.6 \times 10^2 \text{ kJ}$ »                                                      |                                                       |   |  |
|    |   |   | «para la reacción» ∆ <i>H</i> = −1,6 × 10² «kJ» <b>√</b>                                                                                                          |                                                       |   |  |
|    |   |   | ALTERNATIVA 2:                                                                                                                                                    |                                                       | 2 |  |
|    |   |   | $q = \text{«}80.0 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 7.5 \text{ K} = \text{»} 2.5 \times 10^3 \text{ «J»/}2.5 \text{ «kJ» } \checkmark$ |                                                       |   |  |
|    |   |   |                                                                                                                                                                   |                                                       |   |  |
|    |   |   | «por mol de CuSO <sub>4</sub> = $\frac{-2.5 \text{ kJ}}{0.0137 \text{ mol}} = -1.8 \times 10^2 \text{ kJ}$ »                                                      |                                                       |   |  |
|    |   |   | «para la reacción» ∆ <i>H</i> = −1,8 × 10² «kJ» <b>√</b>                                                                                                          |                                                       |   |  |

(continúa...)

## (Pregunta 1b continuación)

| Р  | Pregunta |     | Respuestas                                                                                                     | Notas/comentarios                                                                                         | Total |
|----|----------|-----|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------|
| 1. | b        | ii  | la densidad de la solución es 1,00 g cm <sup>-3</sup>                                                          | El punto de la "reacción completa" solo<br>se puede adjudicar si usó 0,0160 mol en<br>el apartado (b)(i). |       |
|    |          |     | capacidad calorífica específica «de la solución» es 4,18 J g <sup>-1</sup> K <sup>-1</sup> /la del agua «pura» | No acepte "pérdida de calor".                                                                             |       |
|    |          |     | o                                                                                                              |                                                                                                           | 1     |
|    |          |     | reacción completa                                                                                              |                                                                                                           |       |
|    |          |     | О                                                                                                              |                                                                                                           |       |
|    |          |     | hierro/CuSO₄ no reacciona con otras sustancias ✓                                                               |                                                                                                           |       |
| 1. | b        | iii | ALTERNATIVA 1:<br>«0,2 °C × $\frac{100}{7,5$ °C =» 3 %/0,03 ✓<br>«0,03 × 160 kJ» = «±»5 «kJ» ✓                 | Acepte valores dentro del rango 4,1–5,5 «kJ». Adjudique [2] por la respuesta final correcta.              |       |
|    |          |     | ALTERNATIVA 2:<br>«0,2 °C × $\frac{100}{7,5$ °C =» 3 %/0,03 ✓<br>«0,03 × 180 kJ» = «±»5 «kJ» ✓                 |                                                                                                           | 2     |

| F  | regur | nta | Respuestas                                                                                                                               | Notas/comentarios                                                                   | Total |
|----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|
| 1. | C     | i   | Tiempo  concentración inicial es cero Y la concentración aumenta con el tiempo ✓ gradiente decreciente a medida que la reacción avanza ✓ |                                                                                     | 2     |
| 1. | С     | ii  | «dibujar una» tangente a la curva en el tiempo = 0 ✓ «velocidad es igual a» gradiente/pendiente «de la tangente» ✓                       | Acepte un diagrama adecuado.                                                        | 2     |
| 1. | С     | iii | el trozo tiene menor área superficial ✓  menor frecuencia de las colisiones  O  menores colisiones por segundo/unidad de tiempo ✓        | Acepte "probabilidad" en lugar de "frecuencia".  No acepte solo "menos colisiones". | 2     |

| Р  | regun | ıta | Respuestas                                                                                                                                                                                                                                                                                      | Notas/comentarios                                                                                                                      | Total |
|----|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2. | а     |     | CH₃CH(OH)CH₃ ✓                                                                                                                                                                                                                                                                                  | Acepte la fórmula estructural completa o condensada.                                                                                   | 1     |
| 2. | b     |     | « $\frac{1,00 \text{ g}}{(12,01\times3+1,01\times8+16,00) \text{ g mol}^{-1}}$ =» 0,0166 «mol CH <sub>3</sub> CH(OH)CH <sub>3</sub> » ✓ «0,0166 mol × 6,02 × 10 <sup>23</sup> moléculas mol <sup>-1</sup> × 8 átomos molécula <sup>-1</sup> = » 8,01 × 10 <sup>22</sup> «átomos de hidrógeno» ✓ | Acepte respuestas dentro del rango 7,99 × 10 <sup>22</sup> a 8,19 × 10 <sup>22</sup> .  Adjudique [2] por la respuesta final correcta. | 2     |
| 2. | С     |     | secundario <b>Y</b> OH/hidroxilo está unido a un átomo de carbono unido a un hidrógeno  O secundario <b>Y</b> OH/hidroxilo está unido a un átomo de carbono unido a dos C/«grupos» R/alquilo/CH₃ ✓                                                                                              | Acepte "secundario <b>Y</b> OH está unido al segundo carbono de la cadena".                                                            | 1     |
| 2. | d     | i   | «potasio/sodio» manganato(VII)/permanganato/KMnO₄/NaMnO₄/MnO₄-  O  dicromato(VI) «de potasio/sodio»/K₂Cr₂O <sub>7</sub> /Na₂Cr₂O <sub>7</sub> /Cr₂O <sub>7</sub> ²- ✓                                                                                                                           |                                                                                                                                        | 1     |
| 2. | d     | ii  | -2 ✓                                                                                                                                                                                                                                                                                            |                                                                                                                                        | 1     |
| 2. | d     | iii | propanona/2-propanona/CH₃COCH₃ <b>√</b>                                                                                                                                                                                                                                                         |                                                                                                                                        | 1     |

| P  | regur | nta | Respuestas                                                                                                                                                                                             | Notas/comentarios                                                    | Total |
|----|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------|
| 3. | а     | i   | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>2</sup> 3d <sup>10</sup> 4p <sup>5</sup> O  [Ar] 4s <sup>2</sup> 3d <sup>10</sup> 4p <sup>5</sup> $\checkmark$ | Acepte 3d antes que 4s.                                              | 1     |
| 3. | а     | ii  | Energía (4b) (4s)                                                                                                                                                                                      | Acepte flechas con doble punta.                                      | 1     |
| 3. | b     |     | $\begin{bmatrix} \vdots \vdots$                                                 | Acepte puntos, cruces o líneas para representar pares de electrones. | 1     |

| Р  | regun | nta | Respuestas                                                                                                                                        | Notas/comentarios                                                                                    | Total |
|----|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|
| 3. | C     |     | Geometría: pirámide trigonal/triangular ✓  Razón: tres enlaces Y un par solitario O cuatro dominios electrónicos ✓  ángulo O-Br-O: 107° ✓         | Acepte "centros de carga" por "dominios electrónicos".  Acepte respuestas dentro del rango 104–109°. | 3     |
| 3. | d     | i   | $BrO_3^-(aq) + 6e^- + 6H^+(aq) \rightarrow Br^-(aq) + 3H_2O(l)$<br>reactivos y productos correctos $\checkmark$<br>ecuación ajustada $\checkmark$ | Acepte flechas reversibles.                                                                          | 2     |
| 3. | d     | ii  | $BrO_3^-(aq) + 6Fe^{2+}(aq) + 6H^+(aq) \rightarrow Br^-(aq) + 3H_2O(l) + 6Fe^{3+}(aq)$                                                            |                                                                                                      | 1     |

| Pregunta |   | nta | Respuestas                                                                                                                                                                                                                 | Notas/comentarios                                              | Total |
|----------|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------|
| 4.       | а |     | aumento de carga nuclear/ número de protones/Z <sub>eff</sub> «causando una mayor atracción por los electrones externos» ✓ igual número de capas/niveles externos de energía/apantallamiento ✓                             | Acepte "número atómico" en lugar de "número de protones".      | 2     |
| 4.       | b | i   | isoelectrónico/igual configuración electrónica /«ambos» tienen 2,8 ✓ más protones en el Na <sup>+</sup> ✓                                                                                                                  |                                                                | 2     |
| 4.       | b | ii  | Uno cualequiera de: quebradizo ✓ elevado punto de fusión/cristalino/solido "a temperatura ambiente" ✓ baja volatilidad ✓ conduce la electricidad cuando está fundido ✓ no conduce la electricidad a temperatura ambiente ✓ | No acepte soluble en agua. Ignore cualquier propiedad química. | 1     |

| Р  | Pregunta |  | Respuestas                                                                                                                                                                                                                                                                                                                       | Notas/comentarios                                                                             | Total |
|----|----------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------|
| 5. | а        |  | «todas las especies» están en la misma fase ✓                                                                                                                                                                                                                                                                                    | Acepte "todas las especies están en el mismo estado".  Acepte "todas las especies son gases". | 1     |
| 5. | b        |  | cociente de reacción/ $Q = \frac{[SO_3]^2}{[SO_2]^2[O_2]} / \frac{0,500^2}{0,200^2 \times 0,300} / 20,8$ $\checkmark$ cociente de reacción/ $Q/20,8$ /respuesta $< K_c/280$ $O$ la mezcla necesita más producto para que la cantidad sea igual a $K_c$ $\checkmark$ la reacción procede hacia la derecha /productos $\checkmark$ | <b>No</b> adjudique P3 sin razonamiento válido.                                               | 3     |

| F  | Pregunta | Respuestas                                                                                                                                                                                                                                                                                                                                                                         | Notas/comentarios                                                                                                                                                                                                                             | Total |
|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6. | a        | Ácido butanoico: $CH_3CH_2CH_2COOH(aq) + H_2O(l) \rightleftharpoons CH_3CH_2CH_2COO^-(aq) + H_3O^+(aq) \checkmark$ Etilamina: $CH_3CH_2NH_2(aq) + H_2O(l) \rightleftharpoons CH_3CH_2NH_3^+(aq) + OH^-(aq) \checkmark$                                                                                                                                                             |                                                                                                                                                                                                                                               | 2     |
| 6. | b        | Dos cualesquiera de: el ácido butanoico forma más/más fuertes enlaces de hidrógeno ✓ el ácido butanoico forma fuerzas de London/de dispersión más fuertes ✓ el ácido butanoico forma fuerzas/interacciones dipolo-dipolo más fuertes ✓                                                                                                                                             | Acepte "el ácido butanoico forma dímeros".  Acepte "el ácido butanoico tiene mayor M <sub>r</sub> /cadena hidrocarbonada/número de electrones" para P2.  Acepte "el ácido butanoico tiene mayores dipolos «pernamentes/es más polar» para P3. | 2     |
| 6. | С        | CH <sub>3</sub> CH <sub>2</sub> NH <sub>3</sub> <sup>+</sup> CH <sub>3</sub> CH <sub>2</sub> COO <sup>-</sup> O  CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COO <sup>-</sup> CH <sub>3</sub> CH <sub>2</sub> NH <sub>3</sub> <sup>+</sup> O  CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COO <sup>-</sup> H <sub>3</sub> N <sup>+</sup> CH <sub>2</sub> CH <sub>3</sub> ✓ | No son necesarias las cargas para lograr el punto.                                                                                                                                                                                            | 1     |

| Р  | Pregunta |  | Respuestas                                                                                          | Notas/comentarios       | Total |
|----|----------|--|-----------------------------------------------------------------------------------------------------|-------------------------|-------|
| 7. | а        |  | adición «electrofílica» /A <sub>E</sub>                                                             | Acepte "hidrogenación". |       |
|    |          |  | 0                                                                                                   |                         | 1     |
|    |          |  | reducción <b>√</b>                                                                                  |                         |       |
| 7. | b        |  | «(-286 kJ) + (-1411 kJ) =» -1697 «kJ» <b>√</b>                                                      |                         | 1     |
| 7. | С        |  | «–1697 kJ + 1561 kJ =» –136 «kJ»                                                                    |                         |       |
|    |          |  | 0                                                                                                   |                         | 1     |
|    |          |  | $\bullet$ |                         |       |

| ı  | Pregunta | Respuestas                                                                                                     | Notas/comentarios | Total |
|----|----------|----------------------------------------------------------------------------------------------------------------|-------------------|-------|
| 7. | d        | Preciso:                                                                                                       |                   |       |
|    |          | en el ciclo no se realizaron aproximaciones.                                                                   |                   |       |
|    |          | o                                                                                                              |                   |       |
|    |          | los valores son específicos para los compuestos                                                                |                   |       |
|    |          | 0                                                                                                              |                   |       |
|    |          | la ley de Hess es un enunciado de la conservación de la energía                                                |                   |       |
|    |          | 0                                                                                                              |                   |       |
|    |          | el método está basado en una ley                                                                               |                   |       |
|    |          | 0                                                                                                              |                   |       |
|    |          | los datos en la tabla tienen incertidumbres pequeñas ✓                                                         |                   |       |
|    |          | Aproximado:                                                                                                    |                   |       |
|    |          | los valores se determinaron experimentalmente/tienen incertidumbre                                             |                   | 2     |
|    |          | 0                                                                                                              |                   |       |
|    |          | cada valor se ha determinado con solo tres/cuatro cifras significativas                                        |                   |       |
|    |          | 0                                                                                                              |                   |       |
|    |          | diferentes fuentes dan valores «levemente» diferentes para la entalpía de combustión                           |                   |       |
|    |          | 0                                                                                                              |                   |       |
|    |          | la ley es válida hasta que se pruebe lo contrario                                                              |                   |       |
|    |          | 0                                                                                                              |                   |       |
|    |          | la ley de conservación de la energía es ahora conservación de la masa-energía                                  |                   |       |
|    |          | 0                                                                                                              |                   |       |
|    |          | pequeñas diferencias entre dos cantidades relativamente grandes «generan una incertidumbres porcentual alta» ✓ |                   |       |