SIMULARE JUDEŢEANĂ

EVALUAREANA ȚIONALĂ PENTRU ABSOLVENȚII CLASEI aVIII-a

Anul şcolar 2022-2023

Probă scrisă Matematică

BAREM DE EVALUARE ȘI NOTARE

Varianta 1

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I ŞI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTULI	(30depuncte)
1. b)	5p
2. a)	5p
3. c)	5p
4. d)	5p
5. b)	5p
6. a)	5p

SUBIECTULal II-lea (30 depuncte) 1. a) 5p 2. a) 5p 3. **5p** c) 4. d) **5**p 5. a) 5p **6.** c) 5p

SUBIECTUL al III-lea (30 de puncte) 1. a) Dacă m și v reprezintă vârsta actuală a lui Matei, respectiv a lui Vlad, atunci avem relațiile m+v = 21, m=21-v, 2(m-3) = v-31p 1p 2(21-v-3) = v-3, obținem v = 13, adică Vlad are 13 ani și nu 8 ani. **b)** Matei are 21-13 = 8 ani 1p Peste *x* ani: $8+x = \frac{2}{3}(13 + x)$ 1p 1p x = 2 ani $\mathbf{a})E(x) = 4x^2 + 4x + 1 - x^2 + 2x - 1 + x^2 - 4 - 3x^2 + 14$ 2. 1p 1p $E(x) = x^2 + 6x + 10$

	1) 2.6 .0.4 (.2)2.4	1
	b) $x^2+6x+9+1=(x+3)^2+1$	1p
	$(x+3)^2 \ge 0$, oricare ar fi $x \in \mathbb{R}$	1p
	$(x+3)^2 + 1 > 0$, oricare ar fi $x \in \mathbb{R}$	1p
3.	a) $a = -\frac{\sqrt{3}}{3} \cdot \sqrt{3} - (-2)$	1p 1p
	<i>a</i> =1	
	b) $b = \left(\frac{\sqrt{6}}{3} + \frac{2\sqrt{6}}{3}\right) \cdot \sqrt{6} - \left(\frac{\sqrt{3}}{3} + \frac{2}{\sqrt{2}}\right) \cdot \sqrt{3}$	1p
	b=3	1p
	x = 2 și 2 este număr natural	1p
4.	a)Deoarece \triangle APM este dreptunghic AM=4 cm și \triangleleft A = 60°, rezultă AP=2 cm și CP=6	1p
	cm	1p
	Din $AM \parallel CD$ rezultă Δ MPA $\sim \Delta$ DPC de unde rezultă CD=12 cm	1
	b)Deoarece CM înălțime în triunghi echilateral, rezultă CM= $4\sqrt{3}$ cm	1p
	AMCD trapez dreptunghic și Aria AMCD= $\frac{(CD+AM)\cdot CM}{2} = \frac{(4+12)\cdot 4\sqrt{3}}{2} = 32\sqrt{3}cm^2$	1p
	Aria $\triangle ABC = 16\sqrt{3}cm^2$, de unde rezultă Aria AMCD=2 · Aria $\triangle ABC$	1p
5.		1p
	a) $A_{ABCD} = \frac{(AB + CD) \cdot AD}{2} = \frac{(12 + 6) \cdot 6\sqrt{2}}{2}$	1p
	$A_{ABCD} = 18 \cdot 3\sqrt{2} = 54\sqrt{2} \text{ cm}^2$	-F
	1.12.02	1p
	b) Cum $AB \parallel CD \Rightarrow \frac{DO}{RO} = \frac{CD}{AB} = \frac{1}{2}$, iar $\frac{DF}{AF} = \frac{2\sqrt{2}}{4\sqrt{2}} = \frac{1}{2} \Rightarrow \frac{DO}{RO} = \frac{DF}{AF}$, aşadar $FO \parallel AB \parallel CD$	-
	Cum $FO \parallel AB \Rightarrow FO \perp AD$, aşadar $\angle OFC = 90^{\circ} - \angle CFD$ şi $\angle OFB = 90^{\circ} - \angle AFB$	1p
		1p
	$\frac{DF}{AF} = \frac{DC}{AB} \text{si} \not \sim FDC = \not \sim FAB \Rightarrow \Delta FDC \sim \Delta FAB \Rightarrow \not \sim DFC \equiv \not \sim AFB \Rightarrow \not \sim OFC \equiv \not \sim OFB,$	TP
	=> FO este bisectoare a unghiului CFB	
6.	a) Deoarece ABCD pătrat obținem $AC = 12\sqrt{2}$ cm, iar $AO = 6\sqrt{2}$ cm.	1p
	Aplicăm teorema lui Pitagora în triunghiul dreptunghic VOA și obținem $VO = 6$ cm.	1p
	b) Deoarece triunghiul VAC isoscel, iar O este mijlocul segmentului AC rezultă <i>VO</i> \perp	
	AC.	
	Din $AC \perp BD$, iar $BD, VO \subset (VBD)$, obținem că $AC \perp (VBD)$.	1n
	Cum $VB \subset (VBD)$, rezultă $AC \perp VB$.	1p
	Deoarece MN linie mijlocie în ΔBAC , rezultă că $MN \parallel AC$, deci $MN \perp VB$.	
	Notăm cu $\{F\} = MN \cap BD$ și deoarece MN linie mijlocie în ΔBAC rezultă F mijlocul	
	lui OB.	1p
	Deoarece $\frac{BE}{BO} = \frac{\sqrt{6}}{6}$, $\frac{BF}{BV} = \frac{\sqrt{6}}{6}$ și $\angle FBE \equiv \angle VBO$, rezultă $\triangle FBE \sim \triangle VBO$, deci $\angle FEB = AVBO$	1p
	90°.	_
	Obținem că $FE \perp VB$; cum $MN \perp VB$, iar MN , $FE \subset (MEN)$, rezultă $VB \perp (MEN)$.	