Quiz Submissions - Midterm Exam	X
Kian Zahrai (username: KZAHR091)	
Attempt 1	
Written: Jun 21, 2022 4:00 PM - Jun 21, 2022 5:30 PM Submission View	
Released: Jun 24, 2020 11:28 AM	
Multiple Choice Questions	
Question 1	1 / 1 point
Which of the following state transitions is <u>not</u> possible in the lifetime of a process?	
Waiting → Running	
New → Ready	
Running → Terminated	
Running → Waiting	
Question 2	1 / 1 point
The transition Running → Ready happens when:	
The process is in the busy-waiting state	
The process is completed	
An interruption has been caused by an event independent of the process	
The process is waiting for an I/O event to happen	

Question 3 1 / 1 point

Question 6	0 / 1 point
What is the motivation for threads, which does not apply to processes?	

vvnat is the motivation for threads, which does not apply to processes?
Many threads can execute in parallel on multiple CPUs
One thread handles user interaction while the other thread does the background work
All of the above
Low overhead in switching between the threads
Question 7 1 / 1 point
Response time refers to the amount of time
needed to execute a particular process
it takes from when a request was submitted until the first action is produced
that CPU utilization is minimized
a process has been waiting in the ready queue

Question 8 1 / 1 point

An I/O-bound process _____.

6/22/22, 3:55 PM	: Quiz Submissions - Midterm Exam - CSI3131[Z] Operating Systems [LEC] 20225 - Université d'Ottawa U	Iniversity of Ottawa
infreque work	ently requests I/O operations and spends more of its time performing co	mputational
frequent work	tly requests I/O operations and spends less of its time performing comp	utational
infreque work	ently requests I/O operations and spends less of its time performing com	putational
frequent work	tly requests I/O operations and spends most of its time performing com	outational
Question 9		1 / 1 point
Throughput i	is	
the num	nber of processes that complete their execution per time unit	
the num	nber of processes that are pushed into the ready queue per time unit	
the num	nber of processes that transit from ready state to running state	
the num	nber of I/O-bound processes that utilize the CPU per time unit	
Question 10		1 / 1 point
Which of the	e following statement defines Preemptive Shortest Job First (SJF)?	

If a new process arrives with higher priority than the current executing process and a smaller CPU burst length, preempt the current executing process	
If a new process arrives with CPU burst length less than the CPU burst length of the current executing process, preempt the current executing process	
If a new process arrives with higher priority than the current executing process, preempt the current executing process	
If a new process arrives with CPU burst length less than the remaining time of the current executing process, preempt the current executing process	nt
Question 11 0 / 1 p	oint
In Round-Robin scheduling, the quantum length	
Must be equal or larger than the typical CPU burst length	
Must be shorter than the typical CPU burst length	
Must be at least half of the typical burst length	
None of the above	
Question 12 1 / 1 p	oint
Which of the following statements about multilevel queue scheduling is <u>not true</u> ?	
Interactive processes have higher priority than system processes	
System processes have higher priority than interactive processes	
Batch processes have lower priority than system processes	
Interactive processes have higher priority than batch processes	

: Quiz Submissions - Midterm Exam - CSI3131[Z] Operating Systems [LEC] 20225 - Université d'Ottawa | University of Ottawa

6/22/22, 3:55 PM

Question 13 1 / 1 point
Which of the following parameters are <u>not</u> used to define a multilevel feedback queue scheduler?
Scheduling algorithms for each queue
Number of queues
None of the above
Method used to determine when to upgrade or demote a process
Question 14 1 / 1 point
Question 14 In a CPU scheduling algorithm, three queues are used (Q2, Q1, and Q0). Q0 has the highest priority whereas Q2 has the lowest priority. If the scheduling algorithm is multi-level feedback queue, which of the following statements is correct?
In a CPU scheduling algorithm, three queues are used (Q2, Q1, and Q0). Q0 has the highest priority whereas Q2 has the lowest priority. If the scheduling algorithm is multi-level feedback
In a CPU scheduling algorithm, three queues are used (Q2, Q1, and Q0). Q0 has the highest priority whereas Q2 has the lowest priority. If the scheduling algorithm is multi-level feedback queue, which of the following statements is correct?
In a CPU scheduling algorithm, three queues are used (Q2, Q1, and Q0). Q0 has the highest priority whereas Q2 has the lowest priority. If the scheduling algorithm is multi-level feedback queue, which of the following statements is correct? If Q2 is empty, the processes from Q1 are selected.

Question 15 1 / 1 point

In multi-processor scheduling, processor affinity can be guaranteed by _____

have processes run on the physical CPU with lowest throughput	
keep processes running on the same physical CPU	
have processes run on the physical CPU with highest throughput	
keep processes alternating on the multiple physical CPUs	
Question 16 In priority scheduling,	1 point
All of the above	
The processes at the same priority level can be handled via Round Robin scheduling	
support for real time processing is allowed	
The processes at the same priority level can be handled via First-Come-First Serve scheduling	
Question 17 1/	1 point
In scheduling, the term "aging" involves	
processes being stuck in ready queues so long that they die	
processes that are ready to run but stuck waiting indefinitely for the CPU	
higher priority processes preventing low-priority processes from ever getting the CP	U
gradually increasing the priority of a process so that a process will eventually execute	е
Question 18 1/	1 point
In CPU scheduling, the term waiting time denotes the amount of time	

: Quiz Submissions - Midterm Exam - CSI3131[Z] Operating Systems [LEC] 20225 - Université d'Ottawa | University of Ottawa

6/22/22, 3:55 PM

a process has been waiting in the wait state	
it takes from when a request was submitted until the first response is produced	
a process has been waiting in the ready queue	
from job submission to its completion	
Question 19	1 / 1 point
In RR scheduling, the time quantum should not be the context-switch time.	
the same size as	
irrelevant to	
small with respect to	
large with respect to	
Question 20	1 / 1 point
Context switching between processes is carried out by the	
interrupt handler	
short term scheduler	
dispatcher	
thread manager	
Problem Solving Questions	

: Quiz Submissions - Midterm Exam - CSI3131[Z] Operating Systems [LEC] 20225 - Université d'Ottawa | University of Ottawa

6/22/22, 3:55 PM

Consider the following set of processes, with the length of the CPU burst given in milliseconds. In the last column, 0 denotes the highest priority whereas 2 denotes the lowest priority level.

Process	Arrival Time (ms)	Burst Time (ms)	Priority
P1	0	10	2
P2	3	3	1
P3	4	2	0
P4	5	3	0
P5	6	5	1

Draw three Gantt charts that illustrate the execution of these processes using FCFS, <u>preemptive</u> Shortest Job First (SJF), and priority scheduling with round robin (quantum = 2) scheduling algorithms.

The preemptive SJF does not use the priority to make its decision.

****To avoid confusion here: If a process of highest priority is currently scheduled, and another process of the highest priority class arrives, newly arriving process MUST WAIT UNTIL THE END OF THE QUANTUM OF THE ACTIVE PROCESS. If a process of a lower priority class is currently scheduled, and a process of higher priority class has arrived, the newly arriving process CAN PREEMPT THE ACTIVE PROCESS WITHOUT WAITING UNTIL THE END OF THE QUANTUM.****

Question 21 2 / 2 points

In the FCFS algorithm, find the time when each process ends.

<u>15</u> P3

1. 1

<u>1</u>8 P4

2. 2

__<u>23</u>__ P5

3. 3

<u>13</u> P2

4. 4

__10 P1

5. 5

6.

- . 7
- . 8
- . 9
- . 10
- . 11
- . 12
- . 13
- . 14
- . 15
- **16**. ¹⁶
- **17**. ¹⁷
- **18**. ¹⁸
- **19**. ¹⁹
- . 20
- . 21
- . 22
- . 23

Question 22 2 / 2 points

In the Preemptive SJF algorithm, find the time when each process ends.

- __<u>16</u>__ P5
- _6__P2
- __<u>23</u>__ P1
- __<u>11</u>__ P4
- <u>8</u> P3

- **1**. 1
- **2**. 2
- **3**. 3
- **4**. ⁴
- **5**. 5
- **6**. 6
- **7**. 7
- **8**. 8
- **9**. 9
- **10**. 10
- **11**. 11
- **12**. 12
- **13**. 13
- **14**. ¹⁴
- **15**. 15
- **16**. 16
- **17**. ₁₇

- **18**. ¹⁸
- **19**. 19
- **20**. 20
- **21**. 21
- **22**. 22
- **23**. 23

Question 23 2 / 2 points

In the RR algorithm with priority, find the time when each process ends.

- <u>9</u> P4
- __<u>16</u>__ P5
- __<u>23</u>__ P1
- _<u>6</u>__P3
- __<u>11</u>__ P2

- **1**. 1
- **2**. 2
- **3**. 3
- 4.
- **5**. 5
- **6**. 6
- **7**. ⁷
- **8**. 8
- **9**. 9
- **10**. 10

- . 11
- . 12
- . 13
- . 14
- . 15
- . 16
- . 17
- . 18
- . 19
- . 20
- . 21
- . 22
- . 23

Question 24 2 / 2 points

What is the turnaround time of P4 for each of the scheduling algorithms:

__4_ Priority with RR

. 1

6 Preemptive SJF

. 2

<u>13</u> FCFS

. 3

4.

- **5**. 5
- **6**. 6
- **7**. ⁷
- **8**. 8
- **9**. 9
- **10**. 10
- **11**. 11
- **12**. 12
- **13**. 13
- **14**. 14
- **15**. 15

Question 25 2 / 2 points

What is the waiting time of P2 for each of the scheduling algorithms:

* Note that the choices start at 1 = 0ms wait

6 Priority with RR

1. 0

8 FCFS

2. 1

1 Preemptive SJF

- 3. 2
- 4.

- 5. 4
- 6.
- **7**. 6
- 8. 7
- **9**. 8
- 10. None of the above

Attempt Score:28 / 30 - A+

Overall Grade (highest attempt):28 / 30 - A+

Done