

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

강동규

DeepSync, South Korea

Deep Synd

Solution of data scarcity - GPT

Fig1

Solution of data scarcity - GPT

Fig2

Problem of GPT

Problem of GPT

Fig4

Unidirectional context learning!

Fig5

Fig6

- Bidirectional context learning
- → Learning both left and right context
- → Learning more general feature

Fig7

Implementation – Positional Embedding

Token	Word embedding token				
Segment	Separate sentence				
Position	Word positional embedding				
CLS token	Using on classification task				
SEP token	Separate sentence				

Implementation – MLM

The man went to the store and buy a snack

The man went to the [MASK] and buy a snack

Masked Language Model(MLM)

Objective Predict the original vocab id of masked word

Effect Allow model to pretrain deep feature

Fig5

Implementation – MLM (Detail)

Original	The man went to the store and buy a snack					
Select 15% words randomly in original words						
80% Mask	The man went to the [MASK] and buy a snack					
10% Random	The man went to the cat and buy a snack					
10% Equal	The man went to the store and buy a snack					

Why? → Using only [MASK] creates a mismatch between pre-training and fine-tuning

Implementation – MLM (Detail)

Implementation – NSP

Sentence A The man went to the store						
Sentence B	He bought a gallon of milk					
Label	IsNext					
5:5						
Sentence A	The man went to the store					
Sentence B	Dogs are so cute					
Label	NotNext					

Implementation – NSP

Result – GLUE

GLUE – General Language Understanding Evaluation

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Conclusion

1. BERT can learn deep feature by using bidirectional architecture

2. BERT can be fine-tuned and achieved SOTA on various NLP tasks

Reference

Fig1, Fig3 - https://paperswithcode.com/method/gpt

Fig2 - https://blogs.nvidia.co.kr2023/04/04/what-are-foundation-models/

Fig4, Fig6, Fig7 - https://arxiv.org/pdf/1810.04805.pdf

Fig5 - https://www.researchgate.net/figure/The-Transformer-based-BERT-base-architecture-with-twelve-

encoder-blocks fig2 349546860

Fig8 - https://wikidocs.net/115055

GLUE explanation - https://mccormickml.com/2019/11/05/GLUE/

Thank you for your time