

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра прикладной математики (ПМ)

ОТЧЁТ ПО УЧЕБНОЙ ПРАКТИКЕ

Ознакомительная практика

приказ Университета о направлении на практику от «09» февраля 2023 г. № 663-С

Отчет представлен к рассмотрению:

Студент группы ИМБО-01-22

«<u>//</u>» июня 2023

(поднись и расшифровка подписи)

Отчет утвержден. Допущен к защите:

Руководитель практики от кафедры

«О2» июня 2023

Паговский Б.А. (подпись и расшифровка подписи)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра прикладной математики (ПМ)

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ НА УЧЕБНУЮ ПРАКТИКУ Ознакомительная практика

Студенту 1 курса учебной группы ИМБО-01-22 Киму Кириллу Сергеевичу

Место и время практики: РТУ МИРЭА кафедра ПМ, с 09 февраля 2023 г. по 31 мая 2023 г.

Должность на практике: студент

1. СОДЕРЖАНИЕ ПРАКТИКИ:

- 1.1. Изучить: изучить материал в соответствии с выданной темой
- 1.2. Практически выполнить: Дан треугольник с вершинами А, В, С. Найти его площадь, уравнения прямых проходящий через середину отрезка ВС и делящую треугольник на две равные по площади части. Уравнение параболы, делящей треугольник на две части с отношением площадей 1 : 2. Найти количество решений при а = 1. При каких F решение существует. Построить график зависимости F(a). Построить трёхмерный график зависимости F от координат точки C, т.е. $F(x_c, y_c)$ при a = 3.
- 1.3. Ознакомиться: со специализированным открытым программным обеспечением
- 2. ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ: нет
- 3. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ: в соответствии с методическими указаниями по учебной практике по направлению 01.03.04 «Прикладная математика»

Руководитель практики от кафедры «09» февраля 2023 г.

Задание получил «09» февраля 2023 г. <u>(Лаговский Б.А.)</u>

(Ким К.С.)

СОГЛАСОВАНО:

Заведующий кафедрой:

«09» февраля 2023 г.

Ким К.С.

Ким К.С.

«09» февраля 2023 г.

(Дзержинский Р.И.)

проведенные инструктажи:		
Охрана труда:	$\bigcap A$	«09» февраля 2023 г
Инструктирующий		Дзержинский Р.И.
Инструктируемый	(Ku 10)	зав. каф. ПМ Ким К.С.
	Подпись	- KMW K.C.
Townser 5		
Техника безопасности:		«09» февраля 2023 г
Инструктирующий		Дзержинский Р.И.
Инструктируемый	Побпись	зав. каф. ПМ
	Hodnuco	. Ким К.С.
Пожарная безопасность:	\bigwedge \bigwedge \longrightarrow	
		«09» февраля 2023 г.
Инструктирующий		Дзержинский Р.И.
Ихуотрума	Подпись	зав. каф. ПМ
Инструктируемый	(Kir. i.D)	Kum K C

Подпись

Подпись

С правилами внутреннего распорядка ознакомлен:

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

РАБОЧИЙ ГРАФИК ПРОВЕДЕНИЯ ОЗНАКОМИТЕЛЬНОЙ ПРАКТИКИ

студента Кима К.С. 1 курса группы ИМБО-01-22 очной формы обучения, обучающегося по направлению подготовки 01.03.04 Прикладная математика

Неделя	Сроки выполнения	Этап	Отметка о выполнении
1	09.02.2023	Вводная лекция о порядке организации и прохождения производственной практики, инструктаж по технике безопасности, получение задания на практику	Boenonseereo
5	09.03.2023	Разработка подхода к решению поставленных задач, выбор программного обеспечения	Provio meeres 08.03.23
5	10.03.2023	Разработка подхода к решению первого задания, выбор метода нахождения площади	n
8	29.03.2023	Решение первого задания, нахождение точек, нахождение площади по формуле Герона	Prenontelies 29.03,232
8	30.03.2023	Разработка подхода к решению второго задания, выбор метода нахождения уравнение прямой	Baenanierio 30,03,232
11	19.04.2023	Решение второго задания, нахождение точек, нахождение площади по формуле Герона	Prenosuero 19.04.25
11	20.04.2023	Разработка алгоритма решения по третьей, четвёртому заданию	Brenostiereo 20.04.232
15	17.05.2023	Решение третьего и четвертого задания, нахождение уравнение параболы, количество решений, построение трёхмерного графика	Boeno 84el 200 14.05.232
15	18.05.2023	Представление руководителю результатов проделанной работы	
16	31.05.2023	Оформление материалов отчета	Brenosneeno 31.08.21

Руководитель практики от кафедры

clark

_/Лаговский Б.А, д.т.н., доцент/

Обучающийся

_/Ким К.С./

Согласовано:

Заведующий кафедрой

/Дзержинский Р.И. к.т.н., доцент/

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	7
2 РЕАЛИЗАЦИЯ	8
2.1 Метод решения	8
2.2 Алгоритм решения	
2.3 Решение	10
3 ВЫВОДЫ	17
4 ИНФОРМАЦИОННЫЙ ИСТОЧНИК	

1 ПОСТАНОВКА ЗАДАЧИ

Дан треугольник АВС с вершинами А, В, С:

- 1) Найти его площадь.
- 2) Найти уравнение прямой y = k * x + b (т.е. значения параметров k и b), проходящей через середину отрезка BC и делящую треугольник на две равные по площади части.
- 3) Найти уравнение параболы $y = a * x^2 + F$ (т.е. значения параметров а и F), делящей треугольник на две части с отношением площадей 1:2. Найти количество решений при a = 1. При каких F решение существует? Построить график зависимости F(a), т.е. значения F при заданных а (учитывая при этом количество решений).
- 4) Построить трёхмерный график зависимости F от координат точки C, т.е. $F(x_c, y_c)$ при a=3.

Персональный вариант: 1) A = (0, 2), B = (6, 4), C = (8, 0).

2 РЕАЛИЗАЦИЯ

2.1 Метод решения

Для решения данных 1-3 задач была использована программа Mathcad 15. Решение 4 задачи представлено на языке Python 3.10, с использованием среды разработки Jupyter Notebook. Используются такие дополнительные библиотеки как:

- numpy предоставляет реализации вычислительных алгоритмов (в виде функций и операторов), оптимизированные для работы с многомерными массивами.
 - matplotlib библиотека для визуализации данных.
- mpl_toolkits.mplot3d библиотека, для возможности построения 3D-построения графиков.

2.2 Алгоритм решения

Задание 1:

В данном задаче ищем стороны треугольника по формуле нахождения расстояния между двумя данными точками. $AB = \sqrt{(b_1-a_1)^2-(b_2-a_2)^2}$. Чтобы найти S использовал формулу Герона. Найдем р – полупериметр. А потом найдем S – площадь треугольника.

Задание 2:

В этом задании требуется найти уравнение прямой $y = k \cdot x + b$. Так как прямая проходит через середину стороны ВС. Назовем точку М. Ищем координаты точки М. Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка. Составим систему уравнений для нахождения k и b.

Задание 3:

В данной задаче требуется найти площади, чтобы найти уравнение параболы $y = a * x^2 + F$, делящей треугольник на две части с отношением площадей 1:2. При a=1, первый интеграл от: (y1(x)-y3(x)). Пределы интегрирования — от первой точки пересечения y1(x) и y3(x), до точки

пересечения у3(x) и у(x). Точку пересечения находим с помощью гоот — ищет корень уравнения численными методами, передав в аргументы: (у3(p) — p^2 — F, p). p — приближенное значение точки пересечения. Второй интеграл от: (у1(x) — x^2 — F). Пределы интегрирования — от первой точки пересечения у1(x) и у3(x), до точки пересечения у1(x) и у(x). Точку пересечения находим с помощью гоот, передав в аргументы: (у1(p) — p^2 — F, p). При нахождении а и F, сделал все аналогично через интегралы.

Задание 4:

В этом задании, чтобы построится трехмерный график зависимости F от координат точки C, т.е. $F(x_c, y_c)$ при a=3, сделал с помощью функции plot_surface из mpl_toolkits.mplot3d.

2.3 Решение

Рисунок 1 – Решение первого задания

Рисунок 2 – Решение второго задания

Прямая AB
$$a2 = b = 2$$
, $k = (b2 - a2) / (b1 - a1) = (4 - 2) / (6 - 0) = 1/3$

$$y1(x):=\frac{1}{3}x+2$$

$$b = 16$$
, $k = (b2 - c2) / (b1 - c1) = (4 - 0) / (6 - 8) = -2$

$$y2(x) := -2x + 16$$

Прямая АС

$$a\dot{2} = b = 2$$
, $k = (a2 - c2) / (a1 - c1) = (2 - 0) / (0 - 8) = -1/4$

$$y3(x) := \frac{-1}{4}x + 2$$

Прямая AM b = 2, k = 0

$$y4(x) := 0 \cdot x + 2$$

Рисунок 3 – Продолжение решения второго задания

+

$$S=14$$
 $S_1:=0$ $S_2:=0$ Given $S_1+S_2=S$ $S_2:=2.S_1$ $S_2:=2.S_1$ $S_3:=5$ $S_4:=5$ $S_5:=5$ S_5

Рисунок 4 — Решение третьего задания

$$Y(F) := \int_{root(y3(p)-p^2-F,p)}^{root(y3(p)-p^2-F,p)} y1(x) - y3(x) \, dx + \int_{root(y3(p)-p^2-F,p)}^{root(y1(p)-y3(p),p)} y1(x) - x^2 - F \, dx$$
Приближенное значение $f1 := -13.819$

Уравнение $Given \ Y(f1) = \frac{14}{3}$
Найденный коэффициент $Find(f1) = -13.819$

Приближенное значение $f2 := -29.75$ Нашёл $F := 2$ решения, при $a := 1$

Уравнение $Given \ Y(f2) = \frac{14\cdot 2}{3}$
Найденный коэффициент $Find(f2) = -29.75$
 $Y_{10}^{11}(F,a) := \int_{root(y3(p)-a\cdot p^2-F,p)}^{root(y3(p)-a\cdot p^2-F,p)} y1(x) - y3(x) \, dx + \int_{root(y3(p)-a\cdot p^2-F,p)}^{root(y3(p)-a\cdot p^2-F,p)} y1(x) - a\cdot x^2 - F \, dx$

Приближенное значение $f3 := -1$ $a11 := 1$

Уравнение $Given \ Y1(f3,a11) = \frac{14}{3}$

Найденный коэффициент $Find(f3,a11) = \left(\frac{-3.181}{0.337}\right)$

Рисунок 5 – Продолжение решения третьего задания

Код программы на языке программирования Python 3 представлен листингами 1-5.

Листинг 1 – Код программы, решающий задачу 4

```
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits import mplot3d

def F(x, y):
    return 3 * x ** 2 + (y - 3) ** 2

xc = np.linspace(0, 8, 100)
```

```
yc = np.linspace(0, 4, 100)

X, Y = np.meshgrid(xc, yc)
Z = F(X, Y)

fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')

surf = ax.plot_surface(X, Y, Z, cmap='viridis', alpha=0.8)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('F')
plt.title('Зависимость F от координат точки C')
plt.show()
```

График, построенный программой, представлен на рисунке 6.

Зависимость F от координат точки С

Рисунок 6 – Трехмерный график зависимость F от координат точки C

Рисунок 7 – Полный скриншот программы

3 ВЫВОДЫ

В рамках данной работы были исследованы треугольник и парабола. В задании 1 были найдены стороны треугольника и площадь треугольника. Площадь треугольника равен 14. В задании 2 была найдена уравнение прямой $y = 0 \cdot x + 2$. В задании 3 было найти уравнение параболы, делящей треугольник на две части с отношением площадей 1 : 2. В задании 4 была построена трехмерная графика зависимости F от координат точки C.

4 ИНФОРМАЦИОННЫЙ ИСТОЧНИК

1. Бергер Е.Г. Нормоконтроль документации [Электронный ресурс]: метод. рекомендации / Е.Г. Бергер, А. С. Зуев. — М.: РТУ МИРЭА, 2020. — Электрон. опт. диск (ISO)