Hung-yi Lee Generative Adversaria

Generator: a neural network

Gan discriminator predict

假设数据集内部元素呈现线性分布,于是可以遍历的方式拿到所有可能的数据集,这些数据及在discriminator中分数最高的即为预测值,这些数据集中,属于training的应该让dircriminator给出高分,不属于training的dircriminator应该给出低分,借此完成discirminator的独立training

Gan Feature Extraction

infoGan

InfoGan

假设我们打算生成像MNIST那样的手写数字图像,每个手写数字可以分解成多个维度特征:代表的数字、倾斜度、粗细度等等,在标准GAN的框架下,我们无法在上述维度上具体指定Generator生成什么样的手写数字。

为了解决这一问题,文章对GAN的目标函数进行了一些小小的改进,成功让网络学习到了可解释的特征表示(即论文题目中的interpretable representation)。

infoGan理解

VAE-GAN

- Minimize reconstruction error
- Minimize reconstruction error
 - Discriminate real, generated and reconstructed images

- > z close to normal
- > Cheat discriminator

VAE Discriminator provides the reconstruction loss

GAN

Algorithm

- Initialize En, De, Dis
- In each iteration:
 - Sample M images x^1, x^2, \dots, x^M from database
 - Generate M codes $\tilde{z}^1, \tilde{z}^2, \cdots, \tilde{z}^M$ from encoder $\tilde{z}^i = En(x^i)$
 - Generate M images $\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^M$ from decoder $\tilde{x}^i = De(\tilde{z}^i)$
 - Sample M codes z^1, z^2, \dots, z^M from prior P(z)
 - Generate M images $\hat{x}^1, \hat{x}^2, \cdots, \hat{x}^M$ from decoder $\hat{x}^i = De(z^i)$
 - Update En to decrease $\|\tilde{x}^i x^i\|$, decrease $KL(P(\tilde{z}^i|x^i)||P(z))$
 - Update De to decrease $\|\tilde{x}^i x^i\|$, increase $Dis(\tilde{x}^i)$ and $Dis(\hat{x}^i)$
 - Update Dis to increase $Dis(x^i)$, decrease $Dis(\tilde{x}^i)$ and $Dis(\hat{x}^i)$

Another kind of

discriminator:

- Initialize encoder En, decoder De, discriminator Dis
- In each iteration:
 - Sample M images x^1, x^2, \dots, x^M from database
 - Generate M codes $\tilde{z}^1, \tilde{z}^2, \cdots, \tilde{z}^M$ from encoder

•
$$\tilde{z}^i = En(x^i)$$

- Sample M codes z^1, z^2, \dots, z^M from prior P(z)
- Generate M codes $\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^M$ from decoder

•
$$\tilde{x}^i = De(z^i)$$

- Update Dis to increase $Dis(x^i, \tilde{z}^i)$, decrease $Dis(\tilde{x}^i, z^i)$
- Update En and De to decrease $Dis(x^i, \tilde{z}^i)$, increase $Dis(\tilde{x}^i, z^i)$

Optimal encoder and decoder:

$$En(x') = z'$$

$$En(x') = z'$$
 $De(z') = x'$ For all x'

$$De(z'') = x'' \implies En(x'') = z''$$
 For all z''

让encoder与decode越相似越好

Bigan得到的auto encoder与一半的auto-encoder特性不一样

Triple Gan

Domain-adversarial training

This is a big network, but different parts have different goals.