Hadoop 2.x Single Node Setup

Note:

1. Make sure you have copied the bundle as c:\hadoop-soft

LAB 1: Install VirtualBox Software and Import the VM

- To install VirtualBox it is necessary to enable virtualisation in your computer (Verify and Enable it)
- Double click "VirtualBox-6.xxx.exe" from c:\hadoop-soft\VM folder and follow the On Screen instructions
- Once the installation is complete then start the VirtualBox Manager. See the following Screen

It starts VIrtualBox Manager as below

Click on File>Import Appliance and navigate to 'hadoop-soft/VM' folder and select the '.ova' file and click on Next button

In the Next Screen Change the name of the Linux VM to "HadoopVM" and then click on

Import

Once it is imported your screen should look like the following:

Start the Virtual machine by clicking the start button. After the VM Starts, it looks like the following screen.

\$ifconfig

```
[training@master ~1$
[training@master ~1$ ifconfig
         Link encap:Ethernet HWaddr 08:00:27:4A:77:41
          inet addr:192.168.56.101 Bcast:192.168.56.255 Mask:255.255.255.0
          inet6 addr: fe80::a00:27ff:fe4a:7741/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:14 errors:0 dropped:0 overruns:0 frame:0
         TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:3268 (3.1 KiB) TX bytes:1272 (1.2 KiB)
         Link encap:Local Loopback
lo
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
```

LAB2: Connect the VM using Putty and WInSCP

1. Putty Connection:

Double click on putty.exe. Putty opens and the following screen appears:

Provide the IP address and SSH port and press "Open"

2. WinSCP Connection: (Install WInSCP, if required and then do the following)

Double Click on WinSCP and it opens as follows:

Provide IP Address, username and password and click on save. Save the configuration as JBossEAp64.

1. Use **winscp** from host machine to copy training bundle to Linux VM e.g.

(Note: Skip to "Install Java" Step if you have already transferred the training bundle to your linux VM.)

User Name: training
Password: training

Now your softwares are available in Linux OS path

'/home/training/lab'

LAB3: Install Java

- 1. Open a terminal on Linux OS or Use Putty Terminal
- **2.** Now downloaded jdk is available in \$HOME/lab/install in your guest OS. Use the **Linux terminal** to execute the following commands. Please edit the Java installer file name if required in the following commands.
- \$ sudo mkdir /usr/java
- \$ sudo tar zxvf /home/training/lab/install/jdk-7u55-linux-x64.tar.gz -C /usr/java/

3. set JAVA_HOME and PATH as given below

\$ sudo vi /etc/profile.d/javaenv.sh

Make the following entry and save the file

JAVA_HOME=/usr/java/latest

PATH=\$JAVA_HOME/bin:\$PATH

export JAVA_HOME PATH

4. Execute the following command to load javaenv.sh file

\$source /etc/profile.d/javaenv.sh

2. Generate password less SSH certificate and copy it to "~/.ssh/authorized_keys"

Depending on your version of SSH you might also have to do the following changes:

```
$ chmod 0640 ~/.ssh/id_rsa.pub
$ chmod 0640 ~/.ssh/authorized_keys
```

LAB4: Install hadoop as follows:

1. **hadoop-2.7.5.tar.gz** is available in Linux VM's /home/training/lab/install folder. execute the following commands from Linux terminal.

\$sudo mkdir /u01

\$sudo chown training:training /u01

```
$\tar zxvf /\home/training/lab/install/\hadoop-2.7.5.\tar.gz -C /u01/$\lfloop \lfloop \lfloop
```

2. Modify the \$HOME/.bashrc file of training to include the following lines

User specific aliases and functions

```
export JAVA_LIBRARY_PATH=/u01/hadoop/lib/native

export HADOOP_PREFIX=/u01/hadoop

export PATH=$PATH:$HADOOP_PREFIX/bin:$HADOOP_PREFIX/sbin

export HADOOP_MAPRED_HOME=$HADOOP_PREFIX

export HADOOP_COMMON_HOME=$HADOOP_PREFIX

export HADOOP_HDFS_HOME=$HADOOP_PREFIX

export YARN HOME=$HADOOP_PREFIX
```

3. Update JAVA_HOME in \$HADOOP_PREFIX/etc/hadoop/hadoop-env.sh file

```
export JAVA_HOME=/usr/java/latest
```

4. Create Hadoop data directories

```
$ mkdir -p /u01/hadoop-work/data
$ mkdir -p /u01/hadoop-work/name
$ mkdir -p /u01/hadoop-work/tmp
```

5. Configure \$HADOOP_ PREFIX/etc/hadoop/core-site.xml as follows:

```
<configuration>
configuration>
configuration>
```

```
<value>hdfs://localhost:9000</value>
   cproperty>
  <name>hadoop.tmp.dir</name>
   <value>/u01/hadoop-work/tmp</value>
   </configuration>
6. Configure $HADOOP_PREFIX/etc/hadoop/hdfs-site.xml as follows:
   <configuration>
   cproperty>
         <name>dfs.replication</name>
         <value>1</value>
   cproperty>
        <name>dfs.name.dir</name>
        <value>file:///u01/hadoop-work/name</value>
   cproperty>
        <name>dfs.data.dir</name>
         <value> file:///u01/hadoop-work/data</value>
   </configuration>
7. Create and update $HADOOP_INSTALL/etc/hadoop/mapred-site.xml as follows:
  $ mv mapred-site.xml.template mapred-site.xml
  $ vi mapred-site.xml
  <configuration>
  cproperty>
  <name>mapreduce.framework.name</name>
```

<value>yarn</value>

```
</configuration>
8. Configure $HADOOP_PREFIX/etc/hadoop/yarn-site.xml as follows:
  <configuration>
        cproperty>
              <name>yarn.resourcemanager.hostname</name>
              <value>localhost</value>
         cproperty>
         <name>yarn.nodemanager.aux-services</name>
         <value>mapreduce_shuffle</value>
        cproperty>
         <name>
        yarn.nodemanager.aux-services.mapreduce.shuffle.class
        </name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </configuration>
9. Format Namenode:
  $ hdfs namenode –format
10. Start Hadoop Services
```

\$start-dfs.sh

\$start-yarn.sh

11. Verify the running Daemons

\$jps

You should get the following if hadoop system starts successfully [pids would be different]:

1898 ResourceManager

2248 Jps

1397 NameNode

1517 DataNode

1995 NodeManager

1759 SecondaryNameNode

12. Run hadoop pi estimation sample program to test the setup:

\$hadoop jar \$HADOOP_PREFIX/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar pi 2 5

Note: in some SSH versions do the following

chmod 700 \$HOME/.ssh

chmod 640 \$HOME/.ssh/authorized_keys

Note: SSH Permissions

drwx 2 training training 4096 Jan 5 09:10 .ssh		(700)
-rw-r 1 training training 412 Jan 5 09:10 authorized_keys		(640)
-rw 1 training training 1675 Jan 5 09:09 id_rsa		(600)
-rw-r 1 training training 412 Jan 5 09:09 id_rsa.pub	(640)	
-rw-rr 1 training training 1184 Jan 5 09:43 known_hosts		(644)