

Alice Zheng, Dato September 15, 2015

# My machine learning trajectory



Applied machine learning (Data science)



**Build ML tools** 



# Why machine learning?





# Machine learning pipeline



## The ML Jargon Challenge



## Typical machine learning paper



... semi-supervised model for with large-scale learning from sparse data ... sub-modular optimization for distributed computation... evaluated on real and synthetic datasets... performance exceeds start-of-the-art methods





### What it looks like to ML researchers





### What it looks like to normal people





### What it's like in practice

Brittle



Hard to tune



Doesn't scale



Doesn't solve my problem on my data



### Achieve Machine Learning Zen





### Why is evaluation important?

- So you know when you've succeeded
- So you know how much you've succeeded
- So you can decide when to stop
- So you can decide when to update the model



### Basic questions for evaluation

- When to evaluate?
- What metric to use?
- On what data?



### When to evaluate





### **Evaluation Metrics**



# Types of evaluation metric

- Training metric
- Validation metric
- Tracking metric
- Business metric





### Example: recommender system

- Given data on which users liked which items, recommend other items to users
- Training metric
  - How well is it predicting the preference score?
  - Residual mean squared error: (actual predicted)<sup>2</sup>
- Validation metric
  - Does it rank known preferences correctly?
  - Ranking loss



### Example: recommender system

- Tracking metric
  - Does it rank items correctly, especially for top items?
  - Normalized Discounted Cumulative Gain (NDCG)
- Business metric
  - Does it increase the amount of time the user spends on the site/service?



# Dealing with metrics

Many possible metrics at different stages

Defining the right metric is an art

- What's useful? What's feasible?

- Aligning the metrics will make everyone happier
  - Not always possible: cannot directly train model to optimize for user engagement

"Do the best you can!"





## Model Selection and Tuning



# Model Selection and Tuning





### Key questions for model selection

- What's validation?
- What's a hyperparameter and how do you tune it?



### Model validation

- Measure generalization error
  - How well the model works on new data
  - "New" data = data not used during training
- Train on one dataset, validate on another
- Where to find "new" data for validation?
  - Clever re-use of old data



### Methods for simulating new data

Hold-out validation

K-fold cross validation



Bootstrap resampling





# Hyperparameter tuning vs. model training





### Hyperparameters != model parameters



# Why is hyperparameter tuning hard?

- Involves model training as a sub-process
  - Can't optimize directly
- Methods:
  - Grid search
  - Random search
  - Smart search
    - Gaussian processes/Bayesian optimization
    - Random forests
    - Derivative-free optimization
    - Genetic algorithms



### Online Evaluations



# ML in production - 101





# ML in production - 101





### Why evaluate models online?

- Track real performance of model over time
- Decide which model to use when



### Choosing between ML models



Strategy 1: A/B testing—select the best model and use it all the time

### Choosing between ML models

A statistician walks into a casino...



Pay-off \$1:\$1000

Play this 5% of the time



Pay-off \$1:\$200

Play this 85% of the time



### Choosing between ML models

#### A statistician walks into an ML production environment



Pay-off \$1:\$1000

Use this 5% of the time (Exploration)



Pay-off \$1:\$200

Use this 85% of the time (Exploitation)



Pay-off \$1:\$500

Use this 10% of the time (Exploration)



## MAB vs. A/B testing

#### Why MAB?

- Continuous optimization, "set and forget"
- Maximize overall reward

#### Why A/B test?

- Simple to understand
- Single winner
- Tricky to do right



### That's not all, folks!

#### Read the details

- Blog posts: <a href="http://blog.dato.com/topic/machine-learning-primer">http://blog.dato.com/topic/machine-learning-primer</a>
- Report: <a href="http://oreil.ly/1L7dS4a">http://oreil.ly/1L7dS4a</a>

Dato is hiring! jobs@dato.com





