Stat 601 (2018 Fall) Final Project Guidelines

About the data

- > The data set is for **normal hematopoiesis**
 - Novershtern N, Subramanian A, Lawton LN, Mak RH et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011 Jan 21;144(2):296-309. PMID: 21241896
- > The data has been formatted to fit the need of the class.
 - The data has 8968 genes (rows) and 185 cells and progenitors (columns)
- The main response variables are not defined. We shall treat columns as samples in this final project. This project defines the following two response variables.
 - Using all genes in Figure 5, regress one gene on the rest of 36 genes. Report your best model, i.e., which one is the response variable.
 - Find PCA1 of all genes in Figure 5, treat PCA1 as a response variable.
- Those 8968 genes are approximately evenly partitioned into 15 subsets. When PCA1 is used as a response variable, all genes in Figure 5 should be removed from your data set.

About the models

- Linear regression models
 - Try whatever models and methods you learned from Stat 601 to the data fitting. The final reported models shouldn't be more than three models for each response variable.
 - Carefully state your variable selection procedures and rules.
- GMC variable selections
 - Consider the model

```
Y=g(x1,x2,...,xp)+e
```

With $g(x_1,x_2,...,x_p) = poly(b 1x 1+...+b px p, k)$ for k=2:5

Maximize var(g(x))/(var(g(x))+var(e))-lambda1 | corr(g(x),e)|-lambda2(Lasso)

For each response variable. Please note that making g(x) values large will give a large negative e value. As a result, |corr(g(x),e)| will be close to 1, while the first term is close to $\frac{1}{2}$. Consider lambda1 to be in $\frac{1}{2}$, and lambda2>0.01.

- Using provided R code to maximize
 GMC(Y|g(X))-lambda (lasso) with lambda>0.01
- From the linear regression models, using the idea taught in class, you covert the response variables into dichotomized observations, i.e., 0 and 1, then fit three logistic regression models and compare your fitted parameter values with the fitted parameter values in your linear regression models.

❖ About the project report

- The report must be a typed report. Submit an electronic copy to both TA Yuqing Xu and Professor Zhengjun Zhang on Dec. 19, 2018 (Wednesday) 07:05 PM.
- The total length of the report should be within 15 pages, and the fonts should be no smaller than 11 points.

- ➤ The total length of main text body should be within the first 5 pages. Figures and tables can be placed on pages 6-15.
- You don't have to describe the biological issues related to the data.
- What are needed in the report:
 - Main findings: one paragraph or more
 - Sections of your analyses of the data sets, details are needed.
 - Limitations and remedies of analysis.
 - Future work

About grading

Overall presentation will be graded up to 15 points.

Each data set will be analyzed by two different teams. For each data set, the best performance team gets 5 points, and the other team's score will be proportion to 5 points. The proportion will be subjected to how the results are reported.

Set	Rows	Set	Rows	Set	Rows
а	1 - 597	f	2991 - 3588	m	5980 - 6577
b	598 - 1196	g	3589 - 4186	n	6578 - 7175
С	1197 - 1794	h	4187 - 4784	0	7176 - 7773
d	1795 - 2392	i	4785 - 5381	р	7774 - 8371
е	2393 - 2990	k	5382 - 5979	S	8372 - 8969