

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο" (Ακαδημαϊκό Έτος 2022-23)

2^η ΣΕΙΡΑ ΑΝΑΛΥΤΙΚΩΝ ΑΣΚΗΣΕΩΝ (Course Assignment #2)

Άσκηση 2.1 (Διαφορική κινηματική ανάλυση – Υπολογισμός Ιακωβιανής μήτρας – Ιδιόμορφες διατάξεις)

Έστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας (q_1, q_2, q_3) της οποίας η κινηματική δομή περιγράφεται μέσω των ακόλουθων μητρώων μετασχηματισμού συντεταγμένων:

$$A_{\mathbf{i}}^{0}(q_{\mathbf{i}}) = \begin{bmatrix} 1 & 0 & 0 & l_{\mathbf{i}} \\ 0 & c_{\mathbf{i}} & -s_{\mathbf{i}} & l_{\mathbf{0}} \\ 0 & s_{\mathbf{i}} & c_{\mathbf{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{\mathbf{i}}^{1}(q_{2}) = \begin{bmatrix} c_{2} & -s_{2} & 0 & -l_{2}s_{2} \\ s_{2} & c_{2} & 0 & l_{2}c_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \kappa\alpha\mathbf{i} \quad A_{\mathbf{i}}^{2}(q_{3}) = \begin{bmatrix} c_{3} & -s_{3} & 0 & -l_{3}s_{3} \\ s_{3} & c_{3} & 0 & l_{3}c_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(\acute{o}\pi\omega\mathbf{i} c_{\mathbf{i}} = \cos(q_{\mathbf{i}}), s_{\mathbf{i}} = \sin(q_{\mathbf{i}}), s$$

- α) Να προσδιοριστεί (με εφαρμογή της γεωμετρικής μεθόδου) η *Ιακωβιανή μήτρα* $J(q_1,q_2,q_3)$ του διαφορικού κινηματικού μοντέλου του ρομποτικού αυτού μηγανισμού.
- β) Να εξετασθεί πότε ο μηχανισμός εμφανίζει *ιδιόμορφες διατάζεις* ως προς τη γραμμική ταχύτητα (v_E) του τελικού στοιχείου δράσης. Να δοθεί γεωμετρική ερμηνεία των ανωτέρω ιδιόμορφων διατάξεων του μηχανισμού.

Άσκηση 2.2 (Μήτρα D-H – Υπολογισμός Ιακωβιανής μήτρας – Ιδιόμορφες διατάξεις)

Έστω ρομποτική κινηματική αλυσίδα 4 βαθμών ελευθερίας (q_1 , q_2 , q_3 , q_4) της οποίας η κινηματική δομή περιγράφεται από τον ακόλουθο πίνακα παραμέτρων D-H (όπου l_1 , l_2 : σταθερά μήκη συνδέσμων):

i	$d_{ m i}$	$ heta_{ m i}$	$a_{\rm i}$	$lpha_{ m i}$
1	q_1	0	0	0
2	l_1	q_2	0	$\pi/2$
3	0	q_3	0	$-\pi/2$
4	l_2	q_4	0	0

- α) Να προσδιοριστεί η $\textbf{\textit{Iακωβιανή}}$ μήτρα $\textbf{\textit{J}}(q_1,q_2,q_3,q_4)$ του δ ιαφορικού κινηματικού μοντέλου του ρομποτικού βραχίονα.
- β) Να εξετασθεί πότε ο μηχανισμός εμφανίζει *ιδιόμορφες διατάξει*ς ως προς τη *γωνιακή ταχύτητα* (ω) του τελικού στοιχείου δράσης, και να δοθεί *γεωμετρική ερμηνεία* των διατάξεων αυτών.

Άσκηση 2.3 (Ρομποτικό δυναμικό μοντέλο)

Έστω ρομποτικός βραχίονας δύο βαθμών ελευθερίας (1P-1R), που εικονίζεται στο ακόλουθο Σχήμα 1, με $l_0,...,l_3$ σταθερά μήκη συνδέσμων και (q_1, q_2) γενικευμένες μεταβλητές μετατοπίσεως $(q_1$ γραμμική μετατόπιση και q_2 γωνιακή μετατόπιση στη στροφική άρθρωση). Υποθέτουμε την ύπαρξη σημειακής μάζας m στο ρομποτικό εργαλείο E (όπως εικονίζεται στο Σχήμα 1) ενώ θεωρούμε τους ρομποτικούς συνδέσμους κατά τα λοιπά αβαρείς. Υποθέτουμε επίσης ότι ασκείται στο τελικό εργαλείο δράσης σταθερή εξωτερική δύναμη $\underline{F}_E = [f_x, f_y]^T$, καθώς και ότι η διεύθυνση επίδρασης της βαρύτητας \underline{g} είναι αυτή που σημειώνεται στο σχήμα.

Να γραφούν οι δυναμικές εξισώσεις κίνησης του ρομποτικού μηχανισμού, χρησιμοποιώντας μεθοδολογία Lagrange.

Σχήμα 1: Ρομποτικό σύστημα με 2 β.ε. (κινούμενου ρομποτικού βραχίονα)