Status of disappearing track search with E_{τ}^{miss}

Viktor Kutzner¹, Sam Bein¹, Alex Tews¹, Isabell Melzer-Pellmann², Akshansh Singh², Seh Wook Lee³, Sang-il Pak³, Sezen Sekmen³,

¹Hamburg, ²DESY, ³Kyungpook

August 16, 2019

Updates with disappearing tracks with E_T^{miss}

- Concept refresh
 - ► →selection, search regions, and targeted signal models
- general updates
 - update to track tags with loosened BDTs
 - revisiting fake background closure
 - extend prompt background method to include pions
 - ▶ non-pion contamination in $m_{\tau\tau}$
- some changes to the analysis approach seem warranted, so we've made a couple of modifications
 - dropping veto on muons (event-level veto, not object-level)
 - splitting 1-track bins according to high-low track mass observable
- Signal models and simulation
 - ightharpoonup some interesting features seen in the MC

Previous updates given in inclusive SUSY meeting link 1 link 2

Key analysis features

- Select quality tracks with missing outer hits (DT)
- Catagorize tracks into short (pixel hits only) and long (pixel and strips hits)
- Select events with one or more DT's with various topologies
- Bin search in jet multiplicity to maintain sensitivity to a range of models

Split signal bins into high and low de/dx categories

Signal regions

Signal regions									
S.R. number	E_T^{miss}	n _{jets}	n _{b-tags}	n_{short}	$n_{\rm long}$				
1 a,b	250-400	1	any	0	1				
2 a,b				1	0				
3 a,b		2-5	0	0	1				
4 a,b				1	0				
5 a,b			≥1	0	1				
6 a,b				1	0				
7 a,b		≥6	0	0	1				
8 a,b				1	0				
9 a,b			≥1	0	1\				
10 a,b				1	0				

21 a,b		1		0	1
22 a,b	>700		any	1	0
23 a,b		2-5	0	0	1
24 a,b				1	0
25 a,b			≥1	0	1
26 a,b				1	0
27 a,b		≥6	0	0	1
28 a,b				1	0
29 a,b			≥1	0	1
30 a,b				1	0
31	200-400	≥1	any	$n_{\rm short} + n_{ m long} > 1$	
32	>400				

Updated tag

- Before: fully informed BDT (with dxy)
- Now: "uninformed" BDT without dxy
- Now: BDT > $60 * d_{xy} + 0.05$ (long tracks);
- analogous cut function for short tracks
- similar signal efficiency as with informed BDT

plot of uninformed BDT vs dxy (old BDT>x) plot of uninformed BDT vs dxy (new cut function)

Non-prompt closure

Use fake rate transfer factor

$$\mathcal{F} = \frac{P(n_{DT}^{SL} = 1|\vec{x})}{P(n_{DT}^{CR} = 1|\vec{x})}$$
$$\vec{x} = H_T, n_{pvtx}$$

data/MC comparison in CR closure plot vs NJets or MHT

- SL (signal-like): BDT > $60 * d_{xy} + 0.05$
- ullet CR (fake control): BDT $< 60*d_{xy} + 0.05$

figure of 2-d map

Incorporation of de/dx

- use pixel-only and strips-only "harmonic2" average (Ih)
- compute mass using relation from arXiv:1101.1645

$$I_h = K \frac{m^2}{p^2} + C$$

$$K = 2.579 \pm 0.001 \text{ MeV } cm^{-1} c^2$$

and $C = 2.557 \pm 0.001 \text{ MeV } cm^{-1}$

 calibration study of pixel de/dx P. Asmuss master thesis link

Pursuing two approaches

- bin inclusively in jets and b-tagged jets, apply analysis MHT thresholds, fit mass distribution with a function
- construct high/low mass template from "prompt-like" and "fake-like" control regions, use to split signal regions

Status of signal

- We requested several samples in the spring (examples in next couple of slides)
- Samples were not produced for various reasons
- One factor is that FastSim now produces AOD's that contain the de/dx collections (now added)
- We would like to re-start these campaigns as soon as possible

plots of fastsim de/dx

Model T1btbLL (requested)

Model T1tbtb (requested)

Conclusions and outlook

- Background methods show improvement in 2016 and 2017 MC
- Dropping muon veto should help pick up sensitivity to some long-lived scenarios
- Indications that mass(de/dx) is invariant w.r.t. event topology, differs between fake and prompt tracks
- Still need to study masks for 2017 and 2018 data
- Still need to re-do data-validation studies with the new tag

Backup

Prompt background: κ

black: tag/probe in data; violet: tag/probe in MC; blue: MC truth (W+Jets); green: MC truth ($t\bar{t}$ +jets);

smearing functions (global)

Masks

An eta/phi mask seems appropriate - veto tracks that fall within white area below, defined by bins with a normalized occupancy $> 0.5*10^{-4}$

mask histograms are made available in Mattermost in rootfiles

Masks 2016B

Explore run-dependent masks, defined by bins with a normalized occupancy $> 0.5*10^{-4}$

mask histograms are made available in Mattermost in rootfiles

Masks 2016D

Explore run-dependent masks, defined by bins with a normalized occupancy $> 0.5*10^{-4}$

mask histograms are made available in Mattermost in rootfiles

Masks 2016G

Explore run-dependent masks, defined by bins with a normalized occupancy $> 0.5 * 10^{-4}$

Model T1btbLL (requested)

Electron background closure

"n-1" post-baseline plots using W+jets and $t\bar{t}$ -jets

Muon background closure

"n-1" post-baseline plots using W+jets and $t\bar{t}$ -jets

Prompt background: smearing dependence of κ

- Derive κ factors smearing quality probes
- Derive κ factors not smearing quality probes
- Make prediction with each version
- Impact is not large since only the tails of the invariant mass are changed

responses (pixel+strips) - barrel

Prompt background: PU dependence of κ

- merge all p_T bins within a category of η , short/long, and electron/muon
- compute κ in data and MC in three bins of n(vtx)
- scale ratio to the first bin value, modulo a presentation factor: 10ⁿ
- no dominant trend for data or MC

Systematics

- uncertainty in background predictions:
 - non-closure uncertainty
 - control region statistics (very small)
 - any additional systematic based on control region validation
- signal systematics:
 - standard systematics
 - ⋆ JEC, JER
 - ★ Pile-up
 - b-tagging and lepton scale factors
 - ★ ISR systematic
 - ★ FastSim MET correction
 - ★ MC stats
 - disappearing electron scale factors