MEASURE THEORETIC PROBABILITY III HW 1

TOMMENIX YU
ID: 12370130
STAT 38300
DUE THU MAR 30TH, 2023, 11PM

Discussed with classmates.

Exercise 1.

Proof.

(⇐:)

Let $A \in \mathcal{G}$, $B \in \mathcal{H}$, $K \in \mathcal{I}$. Then we have, on the one hand

$$\begin{split} P(A \cap B \cap K) &= \int_{B \cap K} \mathbb{1}_A d\mathbb{P} = \int_{B \cap K} \mathbb{E}[\mathbb{1}_A | \mathcal{H} \wedge \mathcal{I}] d\mathbb{P} \overset{condition}{=} \int_{B \cap K} \mathbb{E}[\mathbb{1}_A | \mathcal{I}] d\mathbb{P} \\ &= \int_K \mathbb{1}_B \mathbb{E}[\mathbb{1}_A | \mathcal{I}] d\mathbb{P} = \int_K \mathbb{E}\big[\mathbb{1}_B \mathbb{E}[\mathbb{1}_A | \mathcal{I}] \Big| \mathcal{I}\big] d\mathbb{P} \\ &= \int_K \mathbb{E}[\mathbb{1}_B | \mathcal{I}] \mathbb{E}[\mathbb{1}_A | \mathcal{I}] d\mathbb{P} \end{split}$$

where the last step is since $\mathbb{E}[\mathbb{1}_B | \mathcal{I}]$ is \mathcal{I} measurable, and taking out what is known.

But on the other hand

$$P(A \cap B \cap K) = \int_{K} \mathbb{1}_{A \cap B} d\mathbb{P} = \int_{K} \mathbb{E}[\mathbb{1}_{A \cap B} | \mathcal{I}] d\mathbb{P}$$

and this means that not only is $\mathbb{E}[\mathbb{1}_{A \cap B} | \mathcal{I}] \mathcal{I}$ measurable by definition, it also satisfies that for any $K \in \mathcal{I}$ we have

$$\int_K \mathbb{E}[\mathbb{1}_{A\cap B}|\mathcal{I}]d\mathbb{P} = \int_K \mathbb{E}[\mathbb{1}_B|\mathcal{I}]\mathbb{E}[\mathbb{1}_A|\mathcal{I}]d\mathbb{P}$$

thus $\mathbb{P}(A|\mathcal{I})\mathbb{P}(B|\mathcal{I})$ is a version of $\mathbb{P}(A \cap B|\mathcal{I})$.

(⇒:)

Using again that $A \in \mathcal{G}$, $B \in \mathcal{H}$, $K \in \mathcal{I}$, we know $\mathbb{P}(A|\mathcal{I})$ is \mathcal{I} measurable so it is $\mathcal{I} \vee \mathcal{H}$ measurable, so we only need to show for $B \cap K$ the conditional expectation property holds since our choice of sets are arbitrary.

But notice that the above argument really forms a loop of equalities, so we just write it in the order we want and use the condition to get:

$$\begin{split} \int_{B\cap K} \mathbb{E}[\mathbb{1}_A|\mathcal{I}]d\mathbb{P} &= \int_K \mathbb{1}_B \mathbb{E}[\mathbb{1}_A|\mathcal{I}]d\mathbb{P} = \int_K \mathbb{E}\big[\mathbb{1}_B \mathbb{E}[\mathbb{1}_A|\mathcal{I}] \Big| \mathcal{I}\big]d\mathbb{P} = \int_K \mathbb{E}[\mathbb{1}_B|\mathcal{I}]\mathbb{E}[\mathbb{1}_A|\mathcal{I}]d\mathbb{P} \\ &= \int_K \mathbb{E}[\mathbb{1}_{A\cap B}|\mathcal{I}]d\mathbb{P} = \int_K \mathbb{1}_{A\cap B}d\mathbb{P} = P(A\cap B\cap K) = \int_{B\cap K} \mathbb{1}_Ad\mathbb{P} \\ &= \int_{B\cap K} \mathbb{E}[\mathbb{1}_A|\mathcal{H}\vee\mathcal{I}]d\mathbb{P} \end{split}$$

and we are done since $B \cap K$ is in $\mathcal{I} \cap \mathcal{H}$, which is a π system, and hence it works for $\sigma(\mathcal{I} \cap \mathcal{H}) = \mathcal{I} \vee \mathcal{H}$

Exercise 2. 10.1.

Proof.

M_n is a Martingale:

- $M_n \le 1$ so $\mathbb{E}[M_n] < \infty$.
- We write out explicitly the σ -algebra that lies under the process. It is

$$\Omega = \{0,1\}^{\infty} \subset l^{\infty}$$

where 0 stands for white ball picked and 1 stood for black ball picked.

As an example, we define

$$[b_1, \dots, b_n]_n$$
: $\{(b_1, \dots, b_n, a_{n+1}, a_{n+2}, \dots) | a_i \in \{0, 1\}, \forall i \ge n+2 \}$

where the index means how many values are fixed. Thus, using this notation we can write out

$$\mathcal{F}_1 = \sigma([1]_1, [0]_1) = {\Omega, \emptyset, [1]_1, [0]_1}$$

and similarly

$$\mathcal{F}_2 = \sigma([1,1]_2, [0,1]_2, [1,0]_2, [0,0]_2)$$

and etc. And we check that M_n is \mathcal{F}_n measurable for all point $\omega \in [a_1, \dots, a_n]_n$ we know $X(\omega)$ is a constant thus $X^{-1}(B) \in \mathcal{F}_n$ for all $B \in \mathcal{B}(\mathbb{R})$.

• We check that $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$. But we've just check that X_n is \mathcal{F}_n measurable, so we only need to get that for any $A \in \mathcal{F}_n$ the integral is the same. But note that \mathcal{F}_n is a finite sigma algebra, and we've explicitly constructed the generating elements of the σ -algebra, so we only check that the integral equality on $S := [a_1, \dots, a_n]_n$ holds. We have

$$\int_{S} X_{n} d\mathbb{P} = \frac{B_{n} + 1}{n + 2}$$

which is how many 1s (black balls picked) inside plus the original black ball. On the other hand we have

$$\int_{S} \mathbb{E}[X_{n+1}|\mathcal{F}_n] d\mathbb{P} = \int_{S} X_{n+1} d\mathbb{P} = \frac{B_n + 1}{n+2} \frac{B_n + 2}{n+3} + \frac{n - B_n + 1}{n+2} \frac{B_n + 1}{n+3} = \frac{B_n + 1}{n+2}$$

so they agree on all $[a_1, \ldots, a_n]_n$, which generates the whole \mathcal{F}_n , so we are done.

Distribution of B_n :

We use induction to do this. When n = 1 we have $\mathbb{P}(B_1 = 0) = \mathbb{P}(B_1 = 1) = \frac{1}{2}$.

If this holds for all m = n - 1, then for B_n we have

$$\mathbb{P}(B_n = k) = \mathbb{P}(B_{n-1} = k - 1)\frac{k - 1}{n + 1} + \mathbb{P}(B_{n-1} = k)\frac{n - k + 1}{n + 1} = \frac{1}{n + 1}$$

and induction follows.

Distribution of θ :

It's the uniform distribution from [0, 1] since $\mathbb{P}([a, b]) = \mathbb{P}(B_n \in [a', b'])$ where a', b' is the closest points that makes $\frac{a'}{n+2} \le a \le b \le \frac{b'}{n+2}$. and thus

$$\mathbb{P}([a,b]) = (b'-a')\frac{1}{n+2} \to b-a$$

so it's uniform distribution.

N_n^{θ} is a Martingale:

- By binomial theorem it is bounded by 1 so $\mathbb{E}[N_n^{\varepsilon}] \le 1 < \infty$.
- They are also measurable with respect to $(\Omega, \mathcal{F} := \{\mathcal{F}_n\})$ since they are measurable maps of B_n , who are measurable.
- We check that they satisfy the condition. Again, we only need to check for $S := [a_1, \dots, a_n]_n$, and we for convience assume $B_n = k$

$$\begin{split} &\int_{S} \mathbb{E}\left[N_{n+1}^{\theta}|\mathcal{F}_{n}\right] d\mathbb{P} = \int_{S} N_{n+1}^{\theta} d\mathbb{P} \\ &= \mathbb{P}\left(a_{n+1} = 1\right) \cdot \frac{(n+2)!}{(k+1)!(n-k)!} \theta^{k+1} (1-\theta)^{n-k} + \mathbb{P}\left(a_{n+1} = 0\right) \cdot \frac{(n+2)!}{(k)!(n-k+1)!} \theta^{k} (1-\theta)^{n-k+1} \\ &= \frac{k+1}{n+2} \cdot \frac{(n+2)!}{(k+1)!(n-k)!} \theta^{k+1} (1-\theta)^{n-k} + \frac{n-k+1}{n+2} \cdot \frac{(n+2)!}{(k)!(n-k+1)!} \theta^{k} (1-\theta)^{n-k+1} \\ &= \left[\frac{(n+1)!}{k!(n-k)!} \theta^{k} (1-\theta)^{n-k}\right] \cdot (\theta + (1-\theta)) = \frac{(n+1)!}{k!(n-k)!} \theta^{k} (1-\theta)^{n-k} = \int_{S} N_{n}^{\theta} d\mathbb{P} \\ &\text{and so we are done.} \end{split}$$

Exercise 3. *Ex* 10.2.

Proof.

We want to show that $\log Z_n - n\alpha$ is a supermartingale. But since by definition $X_n := \sum \varepsilon_n$ is a submartingale $(p \ge 1/2)$, then so is $Z_n = (C \cdot X)_n$. In particular Z_n is integrable and measurable with respect to the filtration \mathcal{F}_n . So since $n\alpha$ is constant (thus measurable) under \mathcal{F}_n the only thing we need to show is the inequality in the definition.

Now we have

$$\mathbb{E}\left[\log(Z_{n+1}) - (n+1)\alpha|\mathcal{F}_n\right] - \mathbb{E}\left[\log(Z_n) - n\alpha\Big|\mathcal{F}_n\right]$$

$$= \mathbb{E}\left[\log(Z_{n+1}) - \log(Z_n)\Big|\mathcal{F}_n\right] - \alpha = \mathbb{E}\left[\log\left(1 + \frac{C_{n+1}\varepsilon_{n+1}}{Z_n}\right)\Big|\mathcal{F}_n\right] - \alpha$$

So we define $f_n = \frac{C_{n+1}}{Z_n}$ and compute the conditional expectation to get

$$\mathbb{E}\left[\log\left(1 + \frac{C_{n+1}\varepsilon_{n+1}}{Z_n}\right) \middle| \mathcal{F}_n\right] - \alpha = p\log(1 + f_n) - q\log(1 - f_n) - \alpha$$

where by taking derivative over f_n we get that the maximal of the above expression occurs at $f_n = p - q$ and the exact value is

$$p \log(1 + f_n) - q \log(1 - f_n) \le (p + q) \log 2 + p \log p + q \log q = \alpha$$

and we are done.

Notably using supermartingale property we get

$$\mathbb{E}[Z_N/Z_0] \le \sum_{i=1}^{N} \alpha = N\alpha$$

And of course the best strategy is $C_{n+1} = (p-q)Z_n$.

Exercise 4. 10.3

Proof.

Being a stopping time means $\{T = n\} \in \mathcal{F}_n$ (or \leq but that's equivalent).

So

$${S \land T = n} = ({S \ge n} \cap {T = n}) \cup ({S = n} \cap {T \ge n}) \in \mathcal{F}_{n-1}$$

note that either one of the above union sets is \emptyset or they are the same, but that does not affect the fact that they are unions and intersections of sets in \mathcal{F}_n , since $\{S \ge n\} = \{S \le n-1\}^c \in \mathcal{F}_{n-1} \subset \mathcal{F}_n$.

Similarly we have

$${S \vee T = n} = ({S \le n} \cap {T = n}) \cup ({S = n} \cap {T \le n}) \in \mathcal{F}_n.$$

And

$${S+T=n} = \bigcup_{i=0}^{n} ({S=i} \cap {T=n-i}) \in \mathcal{F}_n.$$

So they are all stopping times.

Exercise 5. 10.4

Proof.

We define

$$\mathbb{1}_{S}(n,\omega) := \mathbb{1}_{S,n} = \mathbb{1}_{\{S \ge n\}} = \begin{cases} 1 & n \le S(\omega) \\ 0 & \text{elsewhere} \end{cases}$$

where we know $\mathbb{1}_{S,n}$ is previsible because $\{S \ge n\} = \{S \le n-1\}^c \in \mathcal{F}_n$.

then we notice that

$$\mathbb{1}_{(S,T]}(n,\omega) = \mathbb{1}_{T}(n,\omega) - \mathbb{1}_{S}(n,\omega)$$

but since both terms on the right is previsible, so is their difference.

Now for the next part we have

$$\mathbb{E}[X_{T \wedge n} - \mathbb{E}[X_0] - X_{S \wedge n} + \mathbb{E}[X_0]] = (\mathbb{1}_{(S,T]}(n,\omega) \bullet [X - \mathbb{E}[X_0]])_n$$

because we can just separate cases $(T \le n \text{ or } S > n \text{ or in between})$ and see that these coincides for each case:

- $T \le n$: Both sides just use T and S;
- S > n: Both sides are 0;
- $S \le n < T$: T on both sides is changed into n, where the right hand side truncation happens by the truncation of •.

Thus, $X - \mathbb{E}[X_0]$ is a supermartingale since X is. Thus

$$\mathbb{E}[X_{T \wedge n} - X_{S \wedge n}] = (\mathbb{1}_{(S,T]}(n,\omega) \bullet (X - \mathbb{E}[X_0]))_n \le \mathbb{E}[X_0] - \mathbb{E}[X_0] = 0.$$

Exercise 6. 10.5

Proof.

Note that

$$\mathbb{P}(T > kN) = \mathbb{P}(T > kN; T > (k-1)N)$$

because under the condition $T \le (k-1)N$ it's impossible that the first happen. Then we use induction.

For k = 1,

$$\mathbb{P}(T > kN) < 1 - \varepsilon$$

by taking n = 0 in the given form.

Now assume that $k \le m$ holds, for k = m + 1, we have

$$\begin{split} \mathbb{P}(T>(m+1)N) &= \mathbb{P}(T>(m+1)N; T>mN) \\ &= \int_{\{T>mN\}} \mathbb{1}_{\{T>(m+1)N\}} d\mathbb{P} = \int_{\{T>mN\}} \mathbb{E}\left[\mathbb{1}_{\{T>(m+1)N\}} \middle| \mathcal{F}_{mN}\right] d\mathbb{P} \\ &= \mathbb{E}\left[\mathbb{1}_{\{T>(m+1)N\}} \middle| \mathcal{F}_{mN}\right] \int_{\{T>mN\}} 1 d\mathbb{P} \\ &= \mathbb{P}(T>mN+N|\mathcal{F}_{mN}) \cdot \mathbb{P}(T>mN) \\ &\leq (1-\varepsilon)(1-\varepsilon)^m = (1-\varepsilon)^{m+1} \end{split}$$

and thus by induction we are done.

Exercise 7. 10.6

Proof.

Martingale theory makes it intuitive because what we're finding is that a consecutive of 11 letters come in the form "ABRACADABRA", for which we note that the last 4 is the first 4 letters of the same word, and the last 1 letter is another starter of the word. Thus it's expectation should be

$$\mathbb{E}[T] = 26^{11} + 26^4 + 26.$$

In other words, one people gain 26^{11} dollars, then another people coming and seeing "ABRA" will win 26^4 , then the last people win 26 dollars. And left side is because after all wins and losses essentially there's 1 dollar bet at each $t \le T$.

To prove this, we first try to fit into a model for which we can use theorem 10.10c.

Here, the index j indicates that we're only focusing on the person that comes at j.

Let

$$\varepsilon_n^j:\Omega\to\{f_j(A),\ldots,f_j(Z)\}$$

be iid random variables with uniform probability where $f_j: \{A, ..., Z\} \to \mathbb{R}$ is a map that both makes the sums a Martingale, and makes the question easy. We will specify that later. Moreover, let $\varepsilon_n^j \in \mathcal{F}_n$ then if we define

$$Y_n^j := \sum_{i=1}^n \varepsilon_i^j$$

then Y_n^j is a Martingale if our choice of f_j Guarantees that.

We now specify T. Just by what it is we define Here the not j-indexed terms are not yet defined, but roughly they are just sums of the indexed ones. This serves as a intuition here.

$$T = \inf \left\{ n > 10 \middle| \left[f^{-1}(\varepsilon_{n-10}), f^{-1}(\varepsilon_{n-9}), \dots, f^{-1}(\varepsilon_n) \right] = \left[ABRACADABRA \right] \right\}$$

where we note that even though f is in general not invertible, but for the exact spelling of ABRACADABRA we really can do it because only that changes the game. After we define f below we'll see why.

Let's fix one person and see the total state into the system for the person that came at time j person at time n. Then we have

$$C_n^j = \begin{cases} 0 & n < j \\ 1 & n = j \\ 26^{n-j+1} & \text{Preceding letters are exactly the first n-j of ABRACADABRA} \\ 0 & \text{else} \end{cases}$$

and with this definition we can already define just any martingale X and apply. But this will lead in a disaster of computation, which we do not like: So we try to find a martingale that makes our stake exactly T, the stopping time.

Thus, we define the Y_n^j to be the total gain/loss the *j*-th person get from this game. Thus, we have

$$Y_{n}^{j} = \begin{cases} 0 & n < j \\ 26^{n-j+1} - 1 & j \le n \le n+10 \text{ and } [\varepsilon_{n-j}^{j}, \varepsilon_{n-j+1}^{j}, \dots, \varepsilon_{n}^{j}] = [ABRAC \dots] \text{ first j+1 term} \\ -1 & \text{else} \end{cases}$$

and we can specify the probability in the middle case as ε_n are uniform:

$$\varepsilon_n^j = Y_n^j - Y_{n-1}^j = \begin{cases} 26^{n-j+1} - 26^{n-j} & \mathbb{P} = 1/26 \\ -26^{n-j} & \mathbb{P} = 25/26 \end{cases}$$

and we show that Y_n^j is a Martingale. Since we have ε_n^j is \mathcal{F}_n measurable, the first 2 conditions of Martingale is trivial (since expectation is 0). Now for the third case, since \mathcal{F}_n is made up of minimal elements of the first n outcome:

• if $Y_{n-1}^j = 26^{n-j-1} - 1$, call the corresponding set **B**, then

$$\int_{B} Y_{n}^{j} d\mathbb{P} = \frac{1}{26} \left(26^{n-j} - 1 + 26^{n-j+1} - 26^{n-j} \right) + \frac{25}{26} (26^{n-j} - 1 - 26^{n-j})$$
$$= 26^{n-j} - 1 = Y_{n-1}^{j}$$

• and if $Y_{n-1}^{j} = -1$, call the corresponding set A, then

$$\int_{A} Y_n^j d\mathbb{P} = -1 = Y_{n-1}^j$$

• and for 0 of if it just so happens that n = j + 1 then

$$\int_{n=i+1} Y_n^j d\mathbb{P} = \frac{25}{26}(-1) + \frac{1}{26} \cdot 26 = 0 = Y_{n-1}^j$$

• If n + 1 < j then obviously both sides are 0.

Thus we conclude for all sets in \mathcal{F}_n we have the equality, so

$$\mathbb{E}[Y_n^j|\mathcal{F}_n] = Y_{n-1}^j$$

and hence Y_n^j is a Martingale.

And finally we can define X_n , we define it as the total gain/loss of all people in the game:

$$X_n = \sum_{i=1}^T Y_n^j$$

and we know it's a Martingale because all the summands are.

So now can check the criterion of theorem 10.10c:

• $\mathbb{E}[T] < \infty$: For $N \ge 11$ we know that the probability

$$\mathbb{P}(T \le n + N | \mathcal{F}_n) \le \mathbb{P}(f^{-1}(\varepsilon_{n+1}) = A; f^{-1}(\varepsilon_{n+2}) = B; \dots; f^{-1}(\varepsilon_{n+1}) = A) = c > 0$$

because everything's discrete and we can at least compute the probability c.

Thus by last problem we know $\mathbb{E}[T] < \infty$.

•
$$|X_n - X_{n-1}| = \left| \sum_{i=1}^{11} 26^i \right| \le K_1.$$

• $T_n \le 1 = K_2.$

•
$$T_n \le 1 = K_2$$

and thus theorem 10.10c tells us that

$$\mathbb{E}[(T \bullet X)_T] = \mathbb{E}[T \bullet X] = \mathbb{E}[X_T] - \mathbb{E}[X_0].$$

Now the idea is that the total money bet on the game and total money won is equal. For explanations, the "real money" bet on the game is T since only 1 dollar is put into the game at each time, and the total money won is $26^{11} + 26^4 + 26$ by above discussion.

Now we make this computation rigorous and compute: We know $\mathbb{E}[X_0] = 0$ and since

- $Y_n^n = 26 1$ $Y_n^{n-3} = 26^4 1$ $Y_n^{n-10} = 26^{11} 1$ for rest j, we have $Y_n^j = -1$

we have

$$\mathbb{E}[X_T] = 26^{11} + 26^4 + 26 + \mathbb{E}[T] \cdot (-1)$$

since the first are the total gains, and the last term comes from the fact that each Y_n^j comes with a minus 1, at all time, and we only add T of them. Thus we get the result

$$\mathbb{E}[T] = 26^{11} + 26^4 + 26.$$