Fourier Analysis, Stein and Shakarchi Chapter 8 Dirichlet's Theorem

2018.05.05

Abstract

During the course Analysis II in NTU 2018 Spring, this solution file is latexed by the teaching assistant Yung-Hsiang Huang¹ with the discussions or help from the following contributors:

Exercise 3-5 He-qing Huang; Exercise 7- Mighty Yeh; Exercise 10-???; Exercise 11-???; Exercise 12-???; Exercise 14-???; Exercise 15-???; Exercise 16-???; Problem 1-???; Problem 2-???; Problem 3-???; Problem 4-???;

1 Exercises

1. Prove that there are infinitely many primes by observing that there were only finitely many p_1, \dots, p_N , then

$$\prod_{i=1}^{N} \frac{1}{1 - 1/p_i} \ge \sum_{n=1}^{\infty} \frac{1}{n}$$

Proof. This is a simple consequence of Theorem 1.6.

2. In the text we showed that there are infinitely many primes of the form 4k+3 by a modification of Euclid's original argument. One can easily adapt this technique to prove the similar result for primes of the form 3k+2, and for those of the form 6k+5.

 $^{^{1}}$ E-mail: d04221001@ntu.edu.tw

- 3. Using the same map as Problem 1 of Chapter 7 one can prove that if m and n are relatively prime, then $\mathbb{Z}^*(m) \times \mathbb{Z}^*(n)$ is isomorphic to $\mathbb{Z}^*(mn)$. For surjectivity (say, given $(a,b) \in \mathbb{Z}^*(m) \times \mathbb{Z}^*(n)$), one has to verify $k = bmx + any \in \mathbb{Z}^*(mn)$ where mx + ny = 1 (comes from Corollary 1.3). This can be verified as follows: suppose not, say there is a prime p|k and p|m, then p|a since $p \not| ny$ and hence contradicts to the fact $a \in \mathbb{Z}^*(m)$.
- 4. Let $\varphi(n)$ denote the number of positive integers $\leq n$ that are relatively prime to n. Use the order of groups in the previous exercise, one knows that if n and m are relatively prime, then

$$\varphi(mn) = \varphi(n)\varphi(m).$$

Moreover, one can give a formula for Euler phi-function as follows:

- (a) Calculate $\varphi(p)$ when p is a prime by counting the number of elements in $\mathbb{Z}^*(p)$.
- (b) Give a formula for $\varphi(p^k)$ when p is a prime and $k \ge 1$ by counting the number of elements in $\mathbb{Z}^*(p^k)$.
- (c) Show that

$$\varphi(n) = n \prod_{i} \left(1 - \frac{1}{p_i} \right)$$

where p_i are the primes that divide n.

Proof. (a) $\varphi(p) = p - 1$ if p is a prime.

- (b) Claim: $\varphi(p^k) = p^k p^{k-1}$ for $k \ge 1$. This can be proved as follows: if p|s, then $s \notin \mathbb{Z}^*(p^k)$. On the other hand, if $p \not | s$, since p is a prime, $s \in \mathbb{Z}^*(p^k)$. So $\varphi(p^k) = p^k p^{k-1}$, the order of $\mathbb{Z}(p^k)$ minus the number of multiples of p that less than p^k .
- (c) By the multiplicative property of φ and (b), $\varphi(n) = \varphi(p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})\cdots\varphi(p_k^{a_k}) = p_1^{a_1}(1-\frac{1}{p_1})\cdots p_k^{a_k}(1-\frac{1}{p_k}) = n\prod_{i=1}^k \left(1-\frac{1}{p_i}\right).$
- 5. If n is a positive integer, show that

$$n = \sum_{d|n} \varphi(d),$$

where φ is the Euler phi-function.

[Hint: There are precisely $\varphi(n/d)$ integers $1 \le m \le n$ with $\gcd(m,n) = d$.]

Proof. Note that

$$\left\{\frac{i}{n} : 1 \le i \le n\right\} = \bigcup_{d|n} \left\{\frac{j}{d} : 1 \le j \le d, \gcd(d, j) = 1\right\} =: \bigcup_{d|n} A_d$$

and $\{A_d\}_{d|n}$ are pairwisely disjoint. So one completes the proof by computing the cardinality of sets in both sides.

- 6. Write down the characters of the groups $\mathbb{Z}^*(3), \mathbb{Z}^*(4), \mathbb{Z}^*(5), \mathbb{Z}^*(6),$ and $\mathbb{Z}^*(8)$.
 - (a) Which ones are real, or complex?
 - (b) Which ones are even ,or odd? (A character is even if $\chi(-1) = 1$, and odd otherwise).

Proof. Since $\mathbb{Z}^*(3)$, $\mathbb{Z}^*(4)$, and $\mathbb{Z}^*(6)$ are all $\cong \mathbb{Z}(2) = \{0,1\}$, their characters contain the trivial one and the one $\chi(0) = 1$, $\chi(1) = -1$ only, both are real and even.

For $\mathbb{Z}^*(5) \cong \mathbb{Z}(4) = \{0, 1, 2, 3\}$. The characters are $\chi_j(k) = e^{2\pi i \frac{j}{4}k}(j, k = 0, 1, 2, 3)$. So χ_0, χ_2 are real. χ_1, χ_3 are complex. Only χ_0 is even.

For $\mathbb{Z}^*(8) \cong \mathbb{Z}(2) \times \mathbb{Z}(2) = \{(0,0),(1,0),(0,1),(1,1)\}$. Because of (1,0)+(1,0)=(0,0), $\chi((1,0))=\pm 1$ for each character χ . Same for (0,1) and (1,1). So every character is real. Note that A+B=C for $\{A,B,C\}=\{(1,0),(0,1),(1,1)\}$, so -1 appears twice or never appears in the values that each character takes at $\{A,B,C\}$. Hence the even character are the trivial one and the one $\chi((1,1))=\chi((0,0))=1$ and $\chi((1,0))=\chi((0,1))=-1$

7. Recall that for |z| < 1,

$$\log_1\left(\frac{1}{1-z}\right) = \sum_{k \ge 1} \frac{z^k}{k}.$$

We have seen that

$$e^{\log_1\left(\frac{1}{1-z}\right)} = \frac{1}{1-z}.$$

- (a) Show that if w = 1/(1-z), then |z| < 1 if and only if Re(w) > 1/2.
- (b) Show that if Re(w) > 1/2 and $w = \rho e^{i\varphi}$ with $\rho > 0, |\varphi| < \pi$, then

$$\log_1 w = \log \rho + i\varphi$$
.

[Hint: If $e^{\zeta} = w$, then the real part of ζ is uniquely determined and its imaginary part is determined modulo 2π .]

Remark 1. (a) is the Möbius transformation.

Proof. (a) can be proved by brutal computations and Arithmetic-Geometric Means inequality.

(b) As hint, $e^{\log \rho + i\varphi} = \rho e^{i\varphi} = w = \frac{1}{1-z}$ for some |z| < 1 from (a). Then

$$e^{\log \rho + i\varphi} = \frac{1}{1-z} = e^{\log_1(\frac{1}{1-z})} = e^{\log_1 w}.$$

- 8. Let ζ denote the zeta function defined for s > 1.
 - (a) Compare $\zeta(s)$ with $\int_1^\infty x^{-s} dx$ to show that

$$\zeta(s) = \frac{1}{s-1} + O(1) \text{ as } s \to 1^+.$$

(b) Prove as a consequence that

$$\sum_{p} \frac{1}{p^{s}} = \log\left(\frac{1}{s-1}\right) + O(1) \text{ as } s \to 1^{+}.$$

Proof. (a) Use mean-value theorem, one has

$$|\zeta(s) - \int_1^\infty \frac{1}{x^s}| = \Big| \sum_{n=1}^\infty \frac{1}{n^s} - \int_n^{n+1} \frac{1}{x^s} \, dx \Big| = \sum_{n=1}^\infty \int_n^{n+1} \frac{1}{n^s} - \frac{1}{x^s} \, dx \le \sum_{n=1}^\infty \frac{s}{n^{s+1}}.$$

- (b) is a consequence of (a) and the fact $\log \zeta(s) = \sum_{p} \frac{1}{p^s} + O(1)$ proved in Proposition 1.11. \square
- 9. Let χ_0 denote the trivial Dirichlet character mod q, and p_1, \dots, p_k the distinct prime divisors of q. Recall that $L(s, \chi_0) = (1 p_1^{-s}) \cdots (1 p_k^{-s}) \zeta(s)$, and show as a consequence

$$L(s,\chi_0) = \frac{\varphi(q)}{q} \frac{1}{s-1} + O(1) \text{ as } s \to 1^+$$

Proof. Note that, by Exercise 8 and mean-value theorem to $f(s) = \prod_{j=1}^{k} (1 - p_j^{-s})$,

$$L(s,\chi_0) = \prod_{j=1}^k (1 - p_j^{-s})\zeta(s) = \left[\prod_{j=1}^k (1 - p_j^{-s}) - \prod_{j=1}^k (1 - p_j)\right]\zeta(s) + \frac{\varphi(q)}{q}\zeta(s)$$
$$= O(s-1)\left(\frac{1}{s-1} + O(1)\right) + \frac{\varphi(q)}{q}\frac{1}{s-1} + O(1).$$

10. Show that if l is relatively prime to q, then

$$\sum_{p=1}^{\infty} \frac{1}{p^s} = \frac{1}{\varphi(q)} \log \left(\frac{1}{s-1} \right) + O(1) \text{ as } s \to 1^+.$$

This is a quantitative version of Dirichlet's Theorem.

Proof.

11. Use the characters for $\mathbb{Z}^*(3), \mathbb{Z}^*(4), \mathbb{Z}^*(5)$, and $\mathbb{Z}^*(6)$ to verify directly that $L(1,\chi) \neq 0$ for all non-trivial Dirichlet characters modulo q when q = 3, 4, 5, and 6.

[Hint: Consider in each case the appropriate alternating series.]

Proof. \Box

12. Suppose χ is real and non-trivial; assuming the theorem that $L(1,\chi) \neq 0$, show directly that $L(1,\chi) > 0$.

[Hint: Use the product formula for $L(s,\chi)$.]

Proof.

13. Let $\{a_n\}_{n=-\infty}^{\infty}$ be a sequence of complex numbers such that $a_n = a_m$ if $n = m \mod q$. Show that the series

$$\sum_{n=1}^{\infty} \frac{a_n}{n}$$

converges if and only if $\sum_{n=1}^{q} a_n = 0$.

[Hint: Summation by parts.]

Proof. Let $A_j = \sum_{k=1}^j a_k$ with convention that $A_0 = 0$. Recall that

$$\sum_{n=1}^{N} \frac{a_n}{n} = \sum_{n=1}^{N} A_n \frac{1}{n(n+1)} + \frac{A_N}{N+1}$$

The periodicity implies that ([x] is the floor function of x.)

$$A_N = A_q \left[\frac{N}{q}\right] + O(1).$$

So the second term is always bounded. Moreover, the first term converges if and only if $A_q = 0$.

14. The series

$$F(\theta) = \sum_{|n| \neq 0} \frac{e^{in\theta}}{n}$$
, for $|\theta| < \pi$,

converges for every θ and is the Fourier series of the function defined on $[-\pi,\pi]$ by F(0)=0 and

$$F(\theta) = \begin{cases} i(-\pi - \theta) & \text{if } -\pi \le \theta < 0 \\ i(\pi - \theta) & \text{if } 0 < \theta \le \pi, \end{cases}$$

and extended by periodicity (period 2π) to all of \mathbb{R} (see Exercise 8 in Chapter 2).

Show also that if $\theta \neq 0 \mod 2\pi$, then the series

$$E(\theta) = \sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}$$

converges, and that

$$E(\theta) = \frac{1}{2} \log \left(\frac{1}{2 - 2\cos \theta} \right) + \frac{i}{2} F(\theta)$$

Proof.

15. To sum the series $\sum_{n=1}^{\infty} a_n/n$ with $a_n = a_m$ if $n = m \mod q$ and $\sum_{n=1}^{q} a_n = 0$, proceed as follows. (a) Define

$$A(m) = \sum_{n=1}^{q} a_n \zeta^{-mn} \text{ where } \zeta = e^{2\pi i/q}$$

Note that A(q) = 0. With the notation of the previous exercise, prove that

$$\sum_{n=1}^{\infty} \frac{a_n}{n} = \frac{1}{q} \sum_{m=1}^{q-1} A(m)E(2\pi m/q).$$

[Hint: Use Fourier inversion on $\mathbb{Z}(q)$.]

(b) If $\{a_m\}$ is odd, $(a_{-m}=-a_m)$ for $m\in\mathbb{Z}$, observe that $a_0=a_q=0$ and show that

$$A(m) = \sum_{1 \le n < q/2} a_n (\zeta^{-mn} - \zeta^{mn}).$$

(c) Still assuming that $\{a_m\}$ is odd, show that

$$\sum_{n=1}^{\infty} \frac{a_n}{n} = \frac{1}{2q} \sum_{m=1}^{q-1} A(m) F(2\pi m/q).$$

[Hint: Define $\tilde{A}(m) = \sum_{n=1}^{q} a_n \zeta^{mn}$ and apply the Fourier inversion formula.]

Proof. \Box

16. Use the previous exercises to show that

$$\frac{\pi}{3\sqrt{3}} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{5} + \frac{1}{7} - \frac{1}{8} + \cdots,$$

which is $L(1,\chi)$ for the non-trivial (odd) Dirichlet character modulo 3.

Proof.

2 Problems

1. Here are other series that can be summed by the methods in (a) For the non-trivial Dirichlet character modulo 6, $L(1,\chi)$ equals

$$\frac{\pi}{2\sqrt{3}} = 1 - \frac{1}{5} + \frac{1}{7} - \frac{1}{11} + \frac{1}{13} + \cdots,$$

(b) If χ is the odd Dirichlet character modulo 8, then $L(1,\chi)$ equals

$$\frac{\pi}{2\sqrt{2}} = 1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} \cdots,$$

(c) For an odd Dirichlet character modulo 7, $L(1,\chi)$ equals

$$\frac{\pi}{\sqrt{7}} = 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \frac{1}{6} \cdots,$$

(d) For an even Dirichlet character modulo 8, $L(1,\chi)$ equals

$$\frac{\log(1+\sqrt{2})}{\sqrt{2}} = 1 - \frac{1}{3} - \frac{1}{5} + \frac{1}{7} + \frac{1}{9} - \frac{1}{11} \cdots,$$

(e) For an even Dirichlet character modulo 5, $L(1,\chi)$ equals

$$\frac{2}{\sqrt{5}}\log\left(\frac{1+\sqrt{5}}{2}\right) = 1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{6} - \frac{1}{7} - \frac{1}{8} + \frac{1}{9} + \frac{1}{11} \cdots,$$

Proof.

2. Let d(k) denote the number of positive divisors of k. (a) Show that if $k = p_1^{a_1} \cdots p_n^{a_n}$ is the prime factorization of k, then

$$d(k) = (a_1 + 1) \cdots (a_n + 1).$$

Although Theorem 3.12 shows that on "average" d(k) is of the order of $\log k$, prove that the following on the basis of (a):

- (b) d(k) = 2 for infinitely many k.
- (c) For any positive integer N, there is a constant c > 0 so that $d(k) \ge c(\log k)^N$ for infinitely many k. [Hint: Let $p_1, \dots p_N$ be N distinct primes, and consider k of the form $(p_1p_2 \dots p_N)^m$ for $m = 1, 2, \dots$.]

Proof. (a)(b) are easy. (c)
$$\Box$$

3. Show that if p is relatively prime to q, then

$$\prod_{\chi} \left(1 - \frac{\chi(p)}{p^s} \right) = \left(\frac{1}{1 - p^{fs}} \right)^g,$$

where $g = \varphi(q)/f$, and f is the order of p in $\mathbb{Z}^*(q)$ (that is, the smallest n for which $p^n \equiv 1 \mod q$). Here the product is taken over all Dirichlet characters modulo q.

Proof.

4. Prove as a consequence of the previous problem that

$$\prod_{\chi} L(s,\chi) = \sum_{n \ge 1} \frac{a_n}{n^s},$$

where $a_n \ge 0$, and the product is over all Dirichlet characters modulo q.

Proof.