Supplement to: Multiple imputation of missing covariates when using the Fine–Gray model

E. F. Bonneville¹, J. Beyersmann², R. H. Keogh³, J. W. Bartlett³, T. P. Morris⁴, N. Polverelli⁵, L. C. de Wreede^{1,6,*}, and H. Putter^{1,7,*}

```
<sup>1</sup>Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands <sup>2</sup>Institute of Statistics, Ulm University, Germany
```

⁶DKMS Clinical Trials Unit, Germany

⁷Mathematical Institute, Leiden University, the Netherlands

*Shared senior authorship

S1 Minimal code example

This is the minimal R code companion to section 3.4 of main manuscript. The parameters from the simulation study scenario with p=0.15, random censoring, and correctly specified Fine–Gray were used to generate the example dataset below.

```
# Load libraries
library(data.table)
library(survival)
library(kmi)
library(mice)
library(smcfcs)
# Minimal dataset
head(dat, n = 10)
   id
          time D
                    Х
                            Z
1
    1 0.491195 0
                    1 0.126
2
    2 0.028680 2 <NA> 1.266
3
    3 0.910797 0
                    0 - 1.571
    4 0.217566 2
                     1 - 0.500
    5 0.132420 2
5
                    0 0.781
6
    6 0.800913 2
                    0 - 0.434
7
    7 0.041653 2 <NA> -0.844
    8 0.036202 1 <NA>
                      1.564
    9 0.046798 0
                    0 -1.653
10 10 0.997413 0 <NA> -1.196
sapply(dat, class)
               time
                     "factor" "factor" "numeric"
"integer" "numeric"
nrow(dat)
```

[1] 2000

1. Add columns $\hat{H}_1(T)$ and $\hat{H}_2(T)$ to the original data, which are the marginal cause-specific cumulative hazards for each competing risk evaluated at an individual's event or censoring time (obtained

³Department of Medical Statistics, London School of Hygiene and Tropical Medicine, United Kingdom

⁴MRC Clinical Trials Unit at UCL, United Kingdom

⁵Unit of Bone Marrow Transplantation, Division of Hematology, Fondazione IRCCS Policlinico San Matteo di Pavia, Italy

using the Nelson-Aalen estimator).

```
# Add cause-specific event indicators + cumulative hazards
dat$D1 <- as.numeric(dat$D == 1)
dat$D2 <- as.numeric(dat$D == 2)
dat$H1 <- mice::nelsonaalen(data = dat, timevar = "time", statusvar = "D1")
dat$H2 <- mice::nelsonaalen(data = dat, timevar = "time", statusvar = "D2")</pre>
```

2. Multiply impute the potential censoring for those failing from cause 2 using $\{kmi\}$, yielding m censoring complete datasets (i.e. with "complete" V). Any completely observed covariates that are known to affect the probability of being censored should be included as predictors in the model for the censoring process. $\{kmi\}$ imputes based on stratified Kaplan–Meier when Z are categorical, and based on a Cox model when at least one of Z are continuous.

```
# Multiply impute the censoring times
cens_imps <- kmi(
  formula = Surv(time, D != 0) ~ 1, # Additional predictors added here
  data = dat,
  etype = D,
  failcode = 1, # Specify event of interest
  nimp = 5
)</pre>
```

3. In each censoring complete dataset, add an additional column $\hat{\Lambda}_1(V)$. This takes the value of the marginal cumulative subdistribution hazard for cause 1 at an individual's observed or imputed subdistribution time, obtained with the Nelson–Aalen estimator based on I(D=1) and imputed V.

```
# Preparation for covariate imputation:
list_to_impute <- lapply(cens_imps$imputed.data, function(imp_dat) {

# Adjust to new ordering from kmi (cause 2 individuals appended at bottom)
dat_to_impute <- cbind(cens_imps$original.data, imp_dat)

# Compute/add Lambda_1(V) in each imputed dataset
dat_to_impute$Lambda1 <- mice::nelsonaalen(
    data = dat_to_impute,
    timevar = "newtimes", # kmi naming for V
    statusvar = "D1" # I(D=1)
)
return(dat_to_impute)
})

# newevent is equal to I(D=1)
head(list_to_impute[[1]])</pre>
```

```
Z D1 D2
  id
         time D
                                          H1
                                                     H2 newtimes newevent
   1 0.491195 0
                   1 0.126 0 0 0.16736459 0.55436927 0.491195
                                                                       0
1
   3 0.910797 0
                   0 -1.571 0 0 0.25761243 0.83833716 0.910797
                                                                       0
   8 0.036202 1 <NA> 1.564 1
                               0 0.02028935 0.09603222 0.036202
                                                                       1
                   0 -1.653 0 0 0.02606228 0.10990397 0.046798
   9 0.046798 0
                                                                       0
10 10 0.997413 0 <NA> -1.196 0 0 0.27549886 0.87116320 0.997413
                                                                       0
12 12 0.056015 0 <NA> 0.058 0 0 0.02903112 0.12350351 0.056015
                                                                       0
     Lambda1
1 0.12385222
3 0.16659793
8 0.01932257
9 0.02452308
10 0.17340532
12 0.02715245
```

4. In each censoring complete dataset (each with different V and $\hat{\Lambda}_1(V)$, but same $\hat{H}_1(T)$ and $\hat{H}_2(T)$), create a single imputed dataset using the desired covariate imputation method(s).

```
# Prepare predictor matrices for MICE using the first censoring complete dataset
predmat_cs_approx <- predmat_fg_approx <- mice::make.predictorMatrix(list_to_impute[[1]])</pre>
predmat_cs_approx[] <- predmat_fg_approx[] <- 0</pre>
predmat_cs_approx["X", c("Z", "D1", "D2", "H1", "H2")] <- 1</pre>
predmat_fg_approx["X", c("Z", "D1", "Lambda1")] <- 1</pre>
predmat_fg_approx
         id time D X Z D1 D2 H1 H2 newtimes newevent Lambda1
id
              00000000
                                         0
                                                  0
                                                          0
              000000000
time
         0
                                         0
                                                  0
                                                          0
D
         0
              0 0 0 0 0
                          0
                             0
                                0
                                         0
                                                  0
                                                          0
         0
              0 0 0 1 1 0 0 0
                                         0
                                                  0
X
                                                          1
         0
             00000000
                                                          0
Z
                                         0
                                                  0
D1
         0
            00000000
                                         0
                                                          0
             00000000
D2
         0
                                                          0
Н1
         0
             00000000
                                         0
                                                  Λ
                                                          0
              000000000
H2
         0
                                         0
                                                  0
                                                          0
newtimes 0
              00000000
                                         0
                                                  0
                                                          0
              00000000
newevent 0
                                         0
                                                  0
                                                          0
Lambda1 0
              00000000
                                         0
                                                  0
                                                          0
# Prepare the methods:
# - Approx methods: model type for X | Z, outcome
methods_approx <- mice::make.method(list_to_impute[[1]])</pre>
# - SMC methods: proposal model for X | Z (need to use {smcfcs} naming)
methods_smcfcs <- mice::make.method(</pre>
 list_to_impute[[1]],
 defaultMethod = c("norm", "logreg", "mlogit", "podds")
)
methods_smcfcs
                                                  D1
                                                           D2
                                                                    H1
      id
             time
                                         11 11
      11 11
              11 11
                       "" "logreg"
                                                  11 11
                                                           11 11
                                                                    11 11
      H2 newtimes newevent Lambda1
# Impute X
# (parallelize this loop for speed improvements on larger data)
list_imps <- lapply(list_to_impute, function(imp_dat) {</pre>
 m <- 1
 iters <- 10
 imps cs approx <- mice(</pre>
   data = imp_dat,
   m = m,
   maxit = iters,
   method = methods_approx,
   predictorMatrix = predmat_cs_approx
 imps_fg_approx <- mice(</pre>
   data = imp_dat,
   m = m,
   maxit = iters,
   method = methods_approx,
   predictorMatrix = predmat_fg_approx
```

```
imps_cs_smc <- smcfcs(</pre>
    originaldata = imp_dat,
    smtype = "compet",
    smformula = list(
      "Surv(time, D == 1) ~ X + Z",
      "Surv(time, D == 2) \sim X + Z"
    ),
    method = methods_smcfcs,
    m = m,
    numit = iters
 )
  imps_fg_smc <- smcfcs(</pre>
    originaldata = imp_dat,
    smtype = "coxph",
    smformula = "Surv(newtimes, D1) ~ X + Z",
    method = methods_smcfcs,
    m = m,
    numit = iters
  # Bring all the imputed datasets together
  imps <- rbind.data.frame(</pre>
    cbind(method = "CCA", imp_dat),
    cbind(method = "cs_smc", imps_cs_smc$impDatasets[[1]]),
    cbind(method = "cs_approx", complete(imps_cs_approx, action = 1L)),
    cbind(method = "fg_smc", imps_fg_smc$impDatasets[[1]]),
    cbind(method = "fg_approx", complete(imps_cs_approx, action = 1L))
 )
 return(imps)
})
```

5. Fit the Fine–Gray substantive model in each imputed dataset (using standard Cox software with I(D=1) and imputed V as outcome variables), and pool the estimates using Rubin's rules.

```
# Bind everything together
dat_imps <- rbindlist(list_imps, idcol = ".imp")
dat_imps</pre>
```

```
.imp
              method
                       id
                              time D
                                        X
                                              Z D1 D2
                                                              H1
                                        1 0.126 0 0 0.16736459 0.55436927
   1:
       1
                 CCA
                        1 0.491195 0
                 CCA
                        3 0.910797 0
                                        0 -1.571 0 0 0.25761243 0.83833716
   2:
         1
                        8 0.036202 1 <NA> 1.564 1 0 0.02028935 0.09603222
   3:
         1
                 CCA
                 CCA
                        9 0.046798 0
                                        0 -1.653 0 0 0.02606228 0.10990397
   4:
         1
   5:
                 CCA
                      10 0.997413 0 <NA> -1.196 0 0 0.27549886 0.87116320
49996:
         5 fg_approx 1992 0.319702 2
                                        0 -2.670 0 1 0.12370372 0.43826433
         5 fg_approx 1993 0.229071 2
                                        0 -0.243 0 1 0.09740419 0.35023923
49997:
49998:
         5 fg_approx 1994 1.836303 2
                                        1 -0.366 0 1 0.47538639 1.23075745
                                        0 0.283 0 1 0.21877205 0.71087168
49999:
         5 fg_approx 1997 0.702380 2
50000:
         5 fg_approx 1999 0.023554 2
                                        1 1.377 0 1 0.01356742 0.06584427
      newtimes newevent
                          Lambda1
                     0 0.12385222
   1: 0.491195
   2: 0.910797
                      0 0.16659793
   3: 0.036202
                     1 0.01932257
   4: 0.046798
                      0 0.02452308
   5: 0.997413
                      0 0.17340532
```

```
49996: 0.957205
                       0 0.17116627
49997: 0.453168
                       0 0.12098105
49998: 2.841599
                       0 0.25988878
49999: 1.170590
                       0 0.19454317
50000: 2.997529
                       0 0.26284736
# To use the usual workflow: subset one of the methods first
imps_fg_smc <- dat_imps[method == "fg_smc"]</pre>
# Fit model in each imputed dataset
mods_fg_smc <- lapply(</pre>
 X = split(x = imps_fg_smc, f = imps_fg_smc$.imp),
 FUN = function(imp_dat) coxph(Surv(newtimes, D1) ~ X + Z, data = imp_dat)
)
# Pool results
summary(pool(mods_fg_smc))
  term estimate std.error statistic
                                              df
                                                       p.value
   X1 0.7768682 0.21722362 3.576352
                                        9.883541 5.136286e-03
     Z 0.4920664 0.06519244 7.547906 105.385333 1.659276e-11
# Otherwise: use (nested) data.table workflow to pool for all methods simultaneously
dat_mods <- dat_imps[, .(</pre>
mod = list(coxph(Surv(newtimes, D1) ~ X + Z, data = .SD))
), by = c("method", ".imp")
dat_mods
       method .imp
                           mod
 1:
          CCA
                1 <coxph[22]>
 2:
       cs_smc
                 1 <coxph[21]>
 3: cs_approx
                 1 <coxph[21]>
 4:
       fg_smc
                 1 <coxph[21]>
                1 <coxph[21]>
 5: fg_approx
 6:
          CCA
                 2 <coxph[22]>
 7:
                 2 <coxph[21]>
       cs_smc
                 2 <coxph[21]>
 8: cs_approx
                 2 <coxph[21]>
9:
     fg\_smc
                 2 <coxph[21]>
10: fg_approx
11:
       CCA
                 3 <coxph[22]>
12:
       cs_smc
                 3 <coxph[21]>
13: cs_approx
                3 <coxph[21]>
                3 <coxph[21]>
14:
      fg\_smc
15: fg_approx
                 3 <coxph[21]>
16:
        CCA
                4 <coxph[22]>
17:
       cs_smc
                4 <coxph[21]>
18: cs_approx
                 4 <coxph[21]>
       fg_smc
                 4 <coxph[21]>
19:
20: fg_approx
                 4 <coxph[21]>
21:
                 5 <coxph[22]>
          CCA
22:
       cs_smc
                 5 <coxph[21]>
23: cs_approx
                 5 <coxph[21]>
                 5 <coxph[21]>
24:
      fg_smc
25: fg_approx
                 5 <coxph[21]>
       method .imp
                           mod
dat_mods[, summary(pool(as.list(mod))), by = "method"]
```

method term estimate std.error statistic df p.value

```
1: CCA X1 0.7781281 0.17916465 4.343089 152.067624 2.554742e-05
2: CCA Z 0.4003856 0.10186017 3.930737 145.744472 1.304356e-04
3: cs_smc X1 0.6980657 0.18538543 3.765483 14.973349 1.875994e-03
4: cs_smc Z 0.5079436 0.06538007 7.769090 93.531830 9.965454e-12
5: cs_approx X1 0.6092265 0.19461615 3.130400 12.205414 8.525728e-03
6: cs_approx Z 0.5225790 0.06779656 7.708046 58.618467 1.775328e-10
7: fg_smc X1 0.7768682 0.21722362 3.576352 9.883541 5.136286e-03
8: fg_smc Z 0.4920664 0.06519244 7.547906 105.385333 1.659276e-11
9: fg_approx X1 0.6092265 0.19461615 3.130400 12.205414 8.525728e-03
10: fg_approx Z 0.5225790 0.06779656 7.708046 58.618467 1.775328e-10
```

S2 Applied data example

S2.1 Data dictionary

 $\label{thm:composition} Table~1:~Data~dictionary.~CMV:~cytomegalovirus;~HLA:~human~leukocyte~antigen;~HCT-CI:~Hematopoietic~stem~cell~transplantation-comorbidity~index;~MF:~myelofibrosis.$

Characteristic	N = 3,982
Patient age (years)	58 (52, 64)
Patient/donor CMV match	,
Patient negative/Donor negative	1,142 (30%)
Other	2,715 (70%)
(Missing)	125
Donor type	
HLA identical sibling	1,183 (30%)
Other	$2,795\ (70\%)$
(Missing)	$\stackrel{\cdot}{4}$
Hemoglobin (g/dL)	9.10 (8.10, 10.40)
(Missing)	1,873
HCT-CI risk category	
Low risk (0)	1,674 (54%)
Intermediate risk $(1-2)$	743 (24%)
High risk (≥ 3)	674 (22%)
(Missing)	891
Interval diagnosis-transplantation (years)	3 (1, 9)
Karnosfky performance score	(
≥ 90	2,475 (66%)
80	986 (26%)
≤ 70	267(7.2%)
(Missing)	254
Patient sex	
Female	1,484 (37%)
Male	2,498 (63%)
Peripheral blood (PB) blasts (%)	$1.0\ (0.0,\ 3.0)$
(Missing)	2,323
Conditioning	
Standard	1,373 (35%)
Reduced	2,553~(65%)
(Missing)	56
Ruxolitinib given	
No	1,832~(66%)
Yes	931 (34%)
(Missing)	1,219
Disease subclassification	
Primary MF	2,912 (73%)
Secondary MF	1,070~(27%)
Night sweats	
No	1,256 (70%)
Yes	529 (30%)
(Missing)	$2{,}197$
T-cell depletion (in- or ev-vivo)	
No	1,012~(26%)
Yes	2,905 (74%)
(Missing)	65
Cytogenetics	
Normal	1,318 (59%)
Abnormal	910 (41%)
(Missing)	1,754

White blood cell count (WBC, $x10^9/L$)	7(4, 14)
(Missing)	1,884
>10% Weight loss prior to transplantation	
No	1,329 (73%)
Yes	492 (27%)
(Missing)	2,161
Year of transplantation	2,015.0 (2,012.0, 2,018.0)

¹ Median (IQR); n (%)

S2.2 Non-parametric cumulative incidence curves

Figure 1: Stacked non-parametric cumulative incidence curves for competing relapse and non-relapse mortality, in dataset of 3982 primary and secondary myelofibrosis patients.

S2.3 Pooled regression coefficients

Table 2: Pooled log hazard ratios [log HR, 95% confidence interval] for Fine–Gray model for relapse, cause-specific Cox model relapse, and cause-specific Cox model for non-relapse mortality (NRM).

Term + method	Relapse subdist. log HR	Relapse cause-spec. log HR	NRM cause-spec. log HR
Conditioning: 1	reduced		
CCA	0.02 [-0.33, 0.36]	0.01 [-0.33, 0.35]	0 [-0.29, 0.28]
CS-SMC	0.13 [-0.02, 0.28]	0.1 [-0.05, 0.25]	-0.05 [-0.18, 0.07]
CS-Approx	0.13 [-0.02, 0.28]	0.1 [-0.05, 0.25]	-0.05 [-0.18, 0.07]
FG-SMC	0.13 [-0.02, 0.28]	0.1 [-0.05, 0.25]	-0.06 [-0.18, 0.07]

 $(continued\ ...)$

Table 2: (continued)

		,	
Term + method	Relapse subdist. log HR	Relapse cause-spec. log HR	NRM cause-spec. log HR
FG-Approx	0.13 [-0.03, 0.28]	0.1 [-0.06, 0.25]	-0.05 [-0.18, 0.07]
CMV match: o	ther		
CCA	0.04 [-0.31, 0.4]	0.05 [-0.3, 0.41]	0.09 [-0.19, 0.37]
CS-SMC	-0.1 [-0.26, 0.05]	-0.05 [-0.2, 0.11]	0.22[0.08, 0.36]
CS-Approx	-0.1 [-0.26, 0.05]	-0.05 [-0.2, 0.11]	0.22 [0.08, 0.36]
FG-SMC	-0.1 [-0.26, 0.05]	-0.04 [-0.2, 0.11]	0.22 [0.08, 0.36]
FG-Approx	-0.11 [-0.26, 0.05]	-0.05 [-0.2, 0.11]	0.22 [0.08, 0.35]
Cytogenetics: a		ι , ,	ι , ,
CCA	0.36 [0.04, 0.68]	0.37 [0.05, 0.68]	-0.08 [-0.35, 0.19]
CS-SMC	0.35 [0.15, 0.54]	0.35 [0.16, 0.54]	-0.07 [-0.23, 0.1]
CS-Approx	0.36 [0.17, 0.55]	0.35 [0.16, 0.54]	-0.08 [-0.25, 0.08]
FG-SMC	0.36 [0.17, 0.55]	0.36 [0.17, 0.54]	-0.06 [-0.21, 0.08]
FG-Approx	0.34 [0.17, 0.52]	0.34 [0.17, 0.51]	-0.07 [-0.22, 0.08]
Donor relation:		0.01 [0.11, 0.01]	0.07 [0.22, 0.00]
CCA	0.12 [-0.28, 0.52]	0.2 [-0.2, 0.6]	0.53 [0.19, 0.99]
CS-SMC		-0.19 [-0.34, -0.03]	0.53 [0.18, 0.88]
	-0.26 [-0.41, -0.1] -0.25 [-0.41, -0.1]		0.35 [0.21, 0.5]
$ ext{CS-Approx} \\ ext{FG-SMC} $	-0.25 [-0.41, -0.1] -0.26 [-0.41, -0.1]	-0.18 [-0.34, -0.02] -0.19 [-0.34, -0.03]	0.36 [0.21, 0.5] 0.35 [0.2, 0.49]
FG-Approx	-0.26 [-0.41, -0.1]	-0.19 [-0.34, -0.03]	0.35 [0.2, 0.49]
Hemoglobin (pe			
CCA	-0.38 [-0.85, 0.09]	-0.39 [-0.85, 0.08]	-0.12 [-0.49, 0.25]
CS-SMC	-0.24 [-0.51, 0.03]	-0.3 [-0.58, -0.03]	-0.19 [-0.42, 0.04]
CS-Approx	-0.25 [-0.53, 0.02]	-0.32 [-0.59, -0.06]	-0.19 [-0.41, 0.02]
FG-SMC	-0.25 [-0.51, 0.02]	-0.29 [-0.56, -0.02]	-0.08 [-0.28, 0.11]
FG-Approx	-0.23 [-0.5, 0.04]	-0.27 [-0.54, 0]	-0.09 [-0.29, 0.11]
HCT-CI $(1-2)$			
CCA	-0.15 [-0.53, 0.22]	-0.04 [-0.42, 0.33]	0.38 [0.08, 0.69]
CS-SMC	-0.22 [-0.42, -0.01]	-0.17 [-0.37, 0.03]	0.15 [-0.02, 0.31]
CS-Approx	-0.19 [-0.38, 0.01]	-0.14 [-0.34, 0.06]	0.15 [-0.01, 0.31]
FG-SMC	-0.22 [-0.42, -0.01]	-0.18 [-0.38, 0.02]	0.12 [-0.04, 0.28]
FG-Approx	-0.19 [-0.38, 0.01]	-0.15 [-0.35, 0.04]	0.11 [-0.05, 0.27]
HCT-CI (≥ 3)			
CCA	-0.27 [-0.7, 0.16]	-0.19 [-0.62, 0.23]	0.4 [0.07, 0.73]
CS-SMC	-0.07 [-0.28, 0.14]	-0.01 [-0.21, 0.2]	0.27 [0.1, 0.44]
CS-Approx	-0.08 [-0.28, 0.13]	-0.02 [-0.22, 0.18]	0.26 [0.1, 0.43]
FG-SMC	-0.06 [-0.27, 0.14]	-0.02 [-0.22, 0.19]	$0.21 \ [0.05, \ 0.37]$
FG-Approx	-0.08 [-0.28, 0.11]	-0.04 [-0.23, 0.16]	$0.21 \ [0.05, \ 0.38]$
Interval diagno	sis to alloHCT (decades	s)	
CCA	0.01 [-0.24, 0.26]	0 [-0.25, 0.26]	-0.03 [-0.25, 0.19]
CS-SMC	-0.02 [-0.14, 0.09]	-0.02 [-0.14, 0.1]	0.05 [-0.05, 0.15]
CS-Approx	-0.03 [-0.14, 0.09]	-0.02 [-0.14, 0.1]	$0.05 \left[-0.05, 0.15 \right]$
FG-SMC	-0.02 [-0.14, 0.09]	-0.02 [-0.13, 0.1]	0.05 [-0.05, 0.15]
FG-Approx	-0.02 [-0.14, 0.09]	-0.02 [-0.14, 0.1]	0.05 [-0.05, 0.15]
Karnofsky (80)			
CCA	-0.09 [-0.48, 0.31]	-0.08 [-0.48, 0.31]	0.04 [-0.27, 0.34]
CS-SMC	0.07 [-0.1, 0.24]	0.12 [-0.05, 0.28]	0.17 [0.03, 0.31]
CS-Approx	0.06 [-0.1, 0.23]	0.1 [-0.06, 0.27]	0.15 [0.01, 0.29]
FG-SMC	0.07 [-0.09, 0.24]	0.12 [-0.05, 0.29]	0.17 [0.03, 0.31]
FG-Approx	0.07 [-0.1, 0.24]	0.12 [-0.06, 0.29]	0.17 [0.03, 0.31]
Karnofsky (≤ 70		٢ / -ا	. , - 1
CCA	0.63 [0.15, 1.11]	0.79 [0.3, 1.28]	0.33 [-0.13, 0.79]
CS-SMC	0.44 [0.19, 0.69]	0.79 [0.3, 1.28]	0.31 [0.08, 0.53]
CS-Approx	0.42 [0.17, 0.67]	0.51 [0.26, 0.76]	0.26 [0.04, 0.49]
FG-SMC	0.44 [0.19, 0.7]	0.55 [0.29, 0.81]	0.32 [0.09, 0.54]
FG-Approx	0.43 [0.17, 0.68]	0.53 [0.28, 0.78]	0.32 [0.03, 0.54]
= =	sification: secondary M	• • •	0.01 [0.00, 0.00]
Disease subclas	sincation: secondary M	F	

(continued ...)

Table 2: (continued)

CCA			,	
CS-SMC	Term + method	Relapse subdist. log HR	Relapse cause-spec. log HR	NRM cause-spec. log HR
CS-Approx	CCA	-0.05 [-0.45, 0.35]	-0.02 [-0.42, 0.38]	0.07 [-0.27, 0.41]
FG-SMC 0 0.18, 0.18 0 0.18, 0.18 0 0.18, 0.18 0.01 0.16, 0.15 Night sweats: yes CCA	CS-SMC	0.01 [-0.17, 0.19]	0.01 [-0.17, 0.19]	0 [-0.16, 0.15]
FG-Approx 0 -0.18, 0.18 0 -0.18, 0.18 -0.01 -0.16, 0.15 Night sweats: yes		0 [-0.18, 0.18]	0 [-0.18, 0.19]	0 [-0.16, 0.15]
Night sweats: yes CCA				
ČCA -0.33 [-0.7, 0.04] -0.4 [-0.77, -0.02] -0.02 [-0.32, 0.27] CS-SMC -0.18 [-0.41, 0.05] -0.2 [-0.44, 0.03] -0.02 [-0.23, 0.17] CS-Approx -0.17 [-0.4, 0.07] -0.18 [-0.41, 0.05] 0.01 [-0.19, 0.19] FG-SMC -0.17 [-0.4, 0.07] -0.18 [-0.42, 0.05] 0.01 [-0.16, 0.19] Patient age (decades) CCA 0.1 [-0.09, 0.28] 0.13 [-0.06, 0.32] 0.13 [-0.02, 0.28] CS-SMC -0.03 [-0.12, 0.05] 0.01 [-0.08, 0.09] 0.21 [0.14, 0.29] CS-Approx -0.03 [-0.12, 0.05] 0.01 [-0.08, 0.09] 0.21 [0.14, 0.29] FG-MC -0.04 [-0.12, 0.05] 0.01 [-0.08, 0.09] 0.22 [0.15, 0.3] FG-SMC -0.04 [-0.24, 0.05] 0.01 [-0.08, 0.09] 0.22 [0.15, 0.3] FG-Approx -0.03 [-0.12, 0.05] 0.01 [-0.08, 0.09] 0.22 [0.15, 0.3] Patient sex: male CCA 0.24 [-0.56, 0.09] -0.18 [-0.51, 0.15] 0.39 [0.11, 0.68] CS-SMC -0.1 [-0.24, 0.05] -0.06 [-0.21, 0.09] 0.18 [0.05, 0.31] FG-SMC -0.1 [-0.24,	FG-Approx	0 [-0.18, 0.18]	0 [-0.18, 0.18]	-0.01 [-0.16, 0.15]
CS-SMC	Night sweats: y	ves		
CS-Approx	CCA	-0.33 [-0.7, 0.04]	-0.4 [-0.77, -0.02]	-0.02 [-0.32, 0.27]
FG-SMC				
FG-Approx				
Patient age (decades) CCA				
CCA	FG-Approx	-0.16 [-0.4, 0.07]	-0.18 [-0.42, 0.05]	0 [-0.17, 0.18]
CS-SMC	Patient age (de	ecades)		
CS-Approx			0.13 [-0.06, 0.32]	0.13 [-0.02, 0.28]
FG-SMC	CS-SMC	-0.03 [-0.12, 0.05]	0.01 [-0.08, 0.09]	0.21 [0.14, 0.29]
PG-Approx -0.03 [-0.12, 0.05] 0.01 [-0.08, 0.09] 0.22 [0.15, 0.3] Patient sex: male CCA	CS-Approx		0.01 [-0.08, 0.09]	0.21 [0.14, 0.29]
Patient sex: male		. , ,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FG-Approx	-0.03 [-0.12, 0.05]	0.01 [-0.08, 0.09]	0.22 [0.15, 0.3]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Patient sex: ma	ale		
CS-Approx	CCA	-0.24 [-0.56, 0.09]	-0.18 [-0.51, 0.15]	0.39 [0.11, 0.68]
FG-SMC	CS-SMC	-0.1 [-0.24, 0.05]	-0.06 [-0.21, 0.09]	$0.18 \ [0.05, \ 0.31]$
FG-Approx -0.1 [-0.24, 0.05] -0.06 [-0.21, 0.08] 0.18 [0.05, 0.31] PB Blasts (per 5%) CCA 0.16 [-0.04, 0.36] 0.17 [-0.02, 0.37] 0 [-0.18, 0.18] CS-SMC 0.18 [0.05, 0.31] 0.18 [0.05, 0.31] 0.01 [-0.12, 0.13] GS-Approx 0.19 [0.07, 0.31] 0.19 [0.07, 0.32] 0.01 [-0.12, 0.13] FG-SMC 0.17 [0.04, 0.3] 0.17 [0.05, 0.3] -0.01 [-0.12, 0.13] FG-Approx 0.18 [0.05, 0.32] 0.18 [0.05, 0.31] -0.02 [-0.12, 0.13] FG-Approx 0.18 [0.05, 0.32] 0.18 [0.05, 0.31] -0.01 [-0.12, 0.13] FG-Approx 0.18 [0.05, 0.32] 0.18 [0.05, 0.31] -0.01 [-0.12, 0.13] FG-Approx 0.18 [0.05, 0.32] 0.18 [0.05, 0.31] -0.02 [-0.12, 0.09] Ruxolitinib given: yes CCA 0.08 [-0.26, 0.43] 0.08 [-0.26, 0.43] -0.05 [-0.21, 0.09] Ruxolitinib given: yes CCA 0.02 [-0.21, 0.17] -0.03 [-0.22, 0.16] -0.05 [-0.21, 0.02] CS-MC 0.02 [-0.21, 0.17] -0.01 [-0.2, 0.18] -0.05 [-0.21, 0.11] FG-Approx 0.3 [0.13, 0.48]<	CS-Approx	-0.1 [-0.24, 0.05]	-0.06 [-0.21, 0.09]	0.18 [0.05, 0.31]
PB Blasts (per 5%) CCA	FG-SMC	-0.09 [-0.24, 0.05]	-0.06 [-0.2, 0.09]	$0.18 \ [0.05, \ 0.31]$
$ \begin{array}{c} {\rm CCA} & 0.16 \ [-0.04, 0.36] \\ {\rm CS-SMC} & 0.18 \ [0.05, 0.31] \\ {\rm CS-Approx} & 0.19 \ [0.07, 0.31] \\ {\rm FG-SMC} & 0.17 \ [0.04, 0.3] \\ {\rm O.17} \ [0.05, 0.33] \\ {\rm O.17} \ [0.05, 0.3] \\ {\rm O.18} \ [0.05, 0.32] \\ {\rm O.18} \ [0.05, 0.31] \\ {\rm O.18} \ [0.05, 0.31] \\ {\rm O.02} \ [-0.12, 0.19] \\ {\rm FG-Approx} & 0.18 \ [0.05, 0.32] \\ {\rm O.08} \ [-0.26, 0.43] \\ {\rm CS-SMC} & -0.02 \ [-0.2, 0.17] \\ {\rm CS-Approx} & 0.01 \ [-0.19, 0.2] \\ {\rm COA} \ [-0.03 \ [-0.22, 0.16] \\ {\rm COA} \ [-0.04 \ [-0.19, 0.11] \\ {\rm FG-Approx} & 0 \ [-0.19, 0.18] \\ {\rm CS-Approx} & 0 \ [-0.19, 0.18] \\ {\rm CS-SMC} \ [-0.02 \ [-0.21, 0.17] \\ {\rm CS-Approx} \ [-0.03 \ [-0.25, 0.58] \\ {\rm CS-SMC} \ [-0.03 \ [-0.25, 0.58] \\ {\rm CS-SMC} \ [-0.3 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.3 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.3 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-SMC} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-SMC} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-S$	FG-Approx	-0.1 [-0.24, 0.05]	-0.06 [-0.21, 0.08]	$0.18 \ [0.05, \ 0.31]$
$ \begin{array}{c} {\rm CCA} & 0.16 \ [-0.04, 0.36] \\ {\rm CS-SMC} & 0.18 \ [0.05, 0.31] \\ {\rm CS-Approx} & 0.19 \ [0.07, 0.31] \\ {\rm FG-SMC} & 0.17 \ [0.04, 0.3] \\ {\rm O.17} \ [0.05, 0.33] \\ {\rm O.17} \ [0.05, 0.3] \\ {\rm O.18} \ [0.05, 0.32] \\ {\rm O.18} \ [0.05, 0.31] \\ {\rm O.18} \ [0.05, 0.31] \\ {\rm O.02} \ [-0.12, 0.19] \\ {\rm FG-Approx} & 0.18 \ [0.05, 0.32] \\ {\rm O.08} \ [-0.26, 0.43] \\ {\rm CS-SMC} & -0.02 \ [-0.2, 0.17] \\ {\rm CS-Approx} & 0.01 \ [-0.19, 0.2] \\ {\rm COA} \ [-0.03 \ [-0.22, 0.16] \\ {\rm COA} \ [-0.04 \ [-0.19, 0.11] \\ {\rm FG-Approx} & 0 \ [-0.19, 0.18] \\ {\rm CS-Approx} & 0 \ [-0.19, 0.18] \\ {\rm CS-SMC} \ [-0.02 \ [-0.21, 0.17] \\ {\rm CS-Approx} \ [-0.03 \ [-0.25, 0.58] \\ {\rm CS-SMC} \ [-0.03 \ [-0.25, 0.58] \\ {\rm CS-SMC} \ [-0.3 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.3 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.3 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-SMC} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-Approx} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-SMC} \ [-0.31 \ [-0.34, 0.48] \\ {\rm CS-S$	PB Blasts (per	5%)		
$ \begin{array}{c} \text{CS-SMC} & 0.18 \ [0.05, 0.31] \\ \text{CS-Approx} & 0.19 \ [0.07, 0.31] \\ \text{CS-Approx} & 0.19 \ [0.07, 0.31] \\ \text{CS-MC} & 0.17 \ [0.04, 0.3] \\ \text{FG-SMC} & 0.17 \ [0.04, 0.3] \\ \text{FG-Approx} & 0.18 \ [0.05, 0.32] \\ \text{O.18} \ [0.05, 0.31] \\ \text{O.08} \ [-0.5, 0.31] \\ \text{O.02} \ [-0.12, 0.09] \\ \textbf{Ruxolitinib given: yes} \\ \text{CCA} & 0.08 \ [-0.26, 0.43] \\ \text{CS-SMC} & -0.02 \ [-0.2, 0.17] \\ \text{CS-Approx} & 0.01 \ [-0.19, 0.2] \\ \text{CS-MDC} & -0.02 \ [-0.2, 0.17] \\ \text{CS-Approx} & 0.01 \ [-0.19, 0.2] \\ \text{FG-MDC} & -0.02 \ [-0.21, 0.17] \\ \text{FG-Approx} & 0 \ [-0.19, 0.18] \\ \text{FG-MDC} & -0.02 \ [-0.21, 0.17] \\ \text{FG-Approx} & 0 \ [-0.19, 0.18] \\ \text{COA} & 0.2 \ [-0.21, 0.17] \\ \text{FG-Approx} & 0 \ [-0.19, 0.18] \\ \text{CS-SMC} & -0.02 \ [-0.21, 0.17] \\ \text{FG-Approx} & 0 \ [-0.19, 0.18] \\ \text{CS-SMC} & 0.3 \ [0.13, 0.48] \\ \text{CS-SMC} & 0.3 \ [0.13, 0.48] \\ \text{CS-Approx} & 0.3 \ [0.13, 0.48] \\ \text{CS-Approx} & 0.3 \ [0.13, 0.48] \\ \text{CS-Approx} & 0.31 \ [0.13, 0.48] \\ \text{CS-SMC} & 0.17 \ [0.02, 0.33] \\ \text{CS-SMC} & 0.17 \ [0.02, 0.33] \\ \text{CS-SMC} & 0.17 \ [0.02, 0.33] \\ \text{CS-SMC} & 0.17 \ [0.09, 0.26] \\ \text{CS-Approx} & 0.17 \ [0.01, 0.25] \\ \text{CS-SMC} & 0.18 \ [0.09, 0.26] \\ \text{COA} & 0.17 \ [0.09, 0.26] \\ \text{CS-Approx} & 0.17 \ [0.01, 0.25] \\ \text{CS-Approx} & 0.24 \ [0.0.47] \\ \text{CS-Approx} & 0.24 \ [0.048] \\ \text{COA} & 0.06 \ [0.01, 0.47] \\ \text{CS-Approx} & 0.24 \ [0.048] \\ CO$			0.17 [-0.02, 0.37]	0 [-0.18, 0.18]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CS-SMC			
FG-Approx 0.18 [0.05, 0.32] 0.18 [0.05, 0.31] -0.02 [-0.12, 0.09] Ruxolitinib given: yes CCA 0.08 [-0.26, 0.43] 0.08 [-0.26, 0.43] -0.05 [-0.33, 0.23] CS-SMC -0.02 [-0.2, 0.17] -0.03 [-0.22, 0.16] -0.06 [-0.21, 0.1] GS-Approx 0.01 [-0.19, 0.12] -0.01 [-0.2, 0.18] -0.05 [-0.21, 0.11] FG-SMC -0.02 [-0.21, 0.17] -0.03 [-0.22, 0.16] -0.04 [-0.19, 0.11] FG-Approx 0 [-0.19, 0.18] -0.01 [-0.2, 0.17] -0.04 [-0.19, 0.11] T-cell depletion: yes CCA 0.2 [-0.21, 0.62] 0.16 [-0.25, 0.58] -0.23 [-0.54, 0.08] CS-SMC 0.3 [0.13, 0.48] 0.26 [0.09, 0.44] -0.18 [-0.32, -0.04] CS-Approx 0.3 [0.13, 0.48] 0.26 [0.09, 0.44] -0.18 [-0.32, -0.04] WBC count (log) 0.26 [0.09, 0.44] -0.18 [-0.32, -0.04] WBC count (log) 0.26 [0.09, 0.44] -0.18 [-0.32, -0.04] WBC count (log) 0.26 [0.09, 0.44] -0.18 [-0.32, -0.04] CS-SMC 0.17 [0.09, 0.26] 0.18 [0.09, 0.26] 0 [-0.10, 0.05] CS-SMC<	CS-Approx	0.19 [0.07, 0.31]	0.19 [0.07, 0.32]	0.01 [-0.12, 0.13]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FG-SMC	0.17 [0.04, 0.3]	0.17 [0.05, 0.3]	-0.01 [-0.12, 0.1]
$\begin{array}{c} {\rm CCA} & 0.08 \ [-0.26, 0.43] & 0.08 \ [-0.26, 0.43] & -0.05 \ [-0.33, 0.23] \\ {\rm CS-SMC} & -0.02 \ [-0.2, 0.17] & -0.03 \ [-0.22, 0.16] & -0.06 \ [-0.21, 0.1] \\ {\rm CS-Approx} & 0.01 \ [-0.19, 0.2] & -0.01 \ [-0.2, 0.18] & -0.05 \ [-0.21, 0.11] \\ {\rm FG-SMC} & -0.02 \ [-0.21, 0.17] & -0.03 \ [-0.22, 0.16] & -0.04 \ [-0.19, 0.11] \\ {\rm FG-Approx} & 0 \ [-0.19, 0.18] & -0.01 \ [-0.2, 0.17] & -0.04 \ [-0.19, 0.11] \\ {\rm T-cell \ depletion: \ yes} \\ {\rm CCA} & 0.2 \ [-0.21, 0.62] & 0.16 \ [-0.25, 0.58] & -0.23 \ [-0.54, 0.08] \\ {\rm CS-SMC} & 0.3 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm CS-Approx} & 0.3 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm FG-SMC} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm FG-Approx} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm WBC \ count \ (log)} \\ {\rm CCA} & 0.17 \ [0.02, 0.33] & 0.17 \ [0.01, 0.33] & 0.02 \ [-0.12, 0.15] \\ {\rm CS-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.27] & 0 \ [-0.07, 0.07] \\ {\rm CS-Approx} & 0.17 \ [0.08, 0.26] & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.26] & -0.01 \ [-0.07, 0.05] \\ {\rm FG-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.26] & -0.01 \ [-0.07, 0.05] \\ {\rm FG-Approx} & 0.17 \ [0.1, 0.25] & 0.18 \ [0.1, 0.26] & -0.01 \ [-0.08, 0.05] \\ \\ {\rm Weight \ loss: \ yes} \\ {\rm CCA} & 0 \ [-0.37, 0.38] & 0.05 \ [-0.33, 0.43] & 0.17 \ [-0.13, 0.48] \\ {\rm CS-SMC} & 0.23 \ [-0.03, 0.49] & 0.27 \ [0.01, 0.53] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.24 \ [0.01, 0.48] & 0.06 \ [-0.14, 0.26] \\ \\ {\rm Year \ of \ allo HCT \ (decades)} \\ {\rm CCA} & -0.36 \ [-0.99, 0.26] & -0.41 \ [-1.04, 0.23] & -0.15 \ [-0.67, 0.37] \\ {\rm CS-SMC} & -0.08 \ [-0.34, 0.18] & -0.11 \ [-0.37, 0.15] & -0.24 \ [-0.46, -0.02] \\ \end{array}$	FG-Approx	0.18 [0.05, 0.32]	0.18 [0.05, 0.31]	-0.02 [-0.12, 0.09]
$\begin{array}{c} {\rm CCA} & 0.08 \ [-0.26, 0.43] & 0.08 \ [-0.26, 0.43] & -0.05 \ [-0.33, 0.23] \\ {\rm CS-SMC} & -0.02 \ [-0.2, 0.17] & -0.03 \ [-0.22, 0.16] & -0.06 \ [-0.21, 0.1] \\ {\rm CS-Approx} & 0.01 \ [-0.19, 0.2] & -0.01 \ [-0.2, 0.18] & -0.05 \ [-0.21, 0.11] \\ {\rm FG-SMC} & -0.02 \ [-0.21, 0.17] & -0.03 \ [-0.22, 0.16] & -0.04 \ [-0.19, 0.11] \\ {\rm FG-Approx} & 0 \ [-0.19, 0.18] & -0.01 \ [-0.2, 0.17] & -0.04 \ [-0.19, 0.11] \\ {\rm T-cell \ depletion: \ yes} \\ {\rm CCA} & 0.2 \ [-0.21, 0.62] & 0.16 \ [-0.25, 0.58] & -0.23 \ [-0.54, 0.08] \\ {\rm CS-SMC} & 0.3 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm CS-Approx} & 0.3 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm FG-SMC} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm FG-Approx} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm WBC \ count \ (log)} \\ {\rm CCA} & 0.17 \ [0.02, 0.33] & 0.17 \ [0.01, 0.33] & 0.02 \ [-0.12, 0.15] \\ {\rm CS-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.27] & 0 \ [-0.07, 0.07] \\ {\rm CS-Approx} & 0.17 \ [0.08, 0.26] & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.26] & -0.01 \ [-0.07, 0.05] \\ {\rm FG-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.26] & -0.01 \ [-0.07, 0.05] \\ {\rm FG-Approx} & 0.17 \ [0.1, 0.25] & 0.18 \ [0.1, 0.26] & -0.01 \ [-0.08, 0.05] \\ \\ {\rm Weight \ loss: \ yes} \\ {\rm CCA} & 0 \ [-0.37, 0.38] & 0.05 \ [-0.33, 0.43] & 0.17 \ [-0.13, 0.48] \\ {\rm CS-SMC} & 0.23 \ [-0.03, 0.49] & 0.27 \ [0.01, 0.53] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.24 \ [0.01, 0.48] & 0.06 \ [-0.14, 0.26] \\ \\ {\rm Year \ of \ allo HCT \ (decades)} \\ {\rm CCA} & -0.36 \ [-0.99, 0.26] & -0.41 \ [-1.04, 0.23] & -0.15 \ [-0.67, 0.37] \\ {\rm CS-SMC} & -0.08 \ [-0.34, 0.18] & -0.11 \ [-0.37, 0.15] & -0.24 \ [-0.46, -0.02] \\ \end{array}$	Ruxolitinib give	en: yes		
$ \begin{array}{c} \text{CS-SMC} & -0.02 \left[-0.2, 0.17 \right] & -0.03 \left[-0.22, 0.16 \right] & -0.06 \left[-0.21, 0.1 \right] \\ \text{CS-Approx} & 0.01 \left[-0.19, 0.2 \right] & -0.01 \left[-0.2, 0.18 \right] & -0.05 \left[-0.21, 0.11 \right] \\ \text{FG-SMC} & -0.02 \left[-0.21, 0.17 \right] & -0.03 \left[-0.22, 0.16 \right] & -0.04 \left[-0.19, 0.11 \right] \\ \text{FG-Approx} & 0 \left[-0.19, 0.18 \right] & -0.01 \left[-0.2, 0.17 \right] & -0.04 \left[-0.19, 0.11 \right] \\ \text{FG-Approx} & 0 \left[-0.19, 0.18 \right] & -0.01 \left[-0.2, 0.17 \right] & -0.04 \left[-0.19, 0.11 \right] \\ \text{T-cell depletion: yes} & & & & & & & & & & & & & & & & & & &$	_		0.08 [-0.26, 0.43]	-0.05 [-0.33, 0.23]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CS-SMC	-0.02 [-0.2, 0.17]	-0.03 [-0.22, 0.16]	
FG-Approx 0 [-0.19, 0.18] -0.01 [-0.2, 0.17] -0.04 [-0.19, 0.11] T-cell depletion: yes CCA 0.2 [-0.21, 0.62] 0.16 [-0.25, 0.58] -0.23 [-0.54, 0.08] CS-SMC 0.3 [0.13, 0.48] 0.26 [0.09, 0.44] -0.18 [-0.32, -0.04] CS-Approx 0.3 [0.12, 0.48] 0.26 [0.09, 0.44] -0.18 [-0.33, -0.05] FG-SMC 0.31 [0.13, 0.48] 0.26 [0.09, 0.44] -0.18 [-0.31, -0.04] FG-Approx 0.31 [0.13, 0.48] 0.26 [0.09, 0.44] -0.18 [-0.31, -0.04] FG-Approx 0.31 [0.13, 0.48] 0.26 [0.09, 0.44] -0.18 [-0.32, -0.04] WBC count (log) CCA 0.17 [0.02, 0.33] 0.17 [0.01, 0.33] 0.02 [-0.12, 0.15] CS-SMC 0.17 [0.09, 0.26] 0.18 [0.09, 0.27] 0 [-0.07, 0.07] CS-Approx 0.17 [0.08, 0.26] 0.17 [0.09, 0.26] 0 [-0.08, 0.07] FG-SMC 0.17 [0.09, 0.26] 0.18 [0.09, 0.26] -0.01 [-0.07, 0.05] FG-Approx 0.17 [0.1, 0.25] 0.18 [0.1, 0.26] -0.01 [-0.08, 0.05] Weight loss: yes CCA 0 [-0.37, 0.38] 0.05 [-0.33, 0.43] 0.17 [-0.13, 0.48] CS-SMC 0.23 [-0.03, 0.49] 0.27 [0.01, 0.53] 0.16 [-0.05, 0.36] CS-Approx 0.24 [0, 0.47] 0.28 [0.04, 0.51] 0.16 [-0.05, 0.36] FG-SMC 0.23 [-0.01, 0.47] 0.28 [0.04, 0.51] 0.16 [-0.05, 0.36] FG-SMC 0.23 [-0.01, 0.47] 0.24 [0.01, 0.48] 0.06 [-0.12, 0.24] FG-Approx 0.24 [0, 0.48] 0.26 [0.02, 0.49] 0.06 [-0.14, 0.26] Vear of alloHCT (decades) CCA -0.36 [-0.99, 0.26] -0.41 [-1.04, 0.23] -0.15 [-0.67, 0.37] CS-SMC -0.08 [-0.34, 0.18] -0.11 [-0.37, 0.15] -0.24 [-0.46, -0.02]	CS-Approx	0.01 [-0.19, 0.2]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FG-SMC	-0.02 [-0.21, 0.17]	-0.03 [-0.22, 0.16]	-0.04 [-0.19, 0.11]
$\begin{array}{c} {\rm CCA} & 0.2 \ [-0.21, 0.62] & 0.16 \ [-0.25, 0.58] & -0.23 \ [-0.54, 0.08] \\ {\rm CS-SMC} & 0.3 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm CS-Approx} & 0.3 \ [0.12, 0.48] & 0.26 \ [0.08, 0.43] & -0.19 \ [-0.33, -0.05] \\ {\rm FG-SMC} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.31, -0.04] \\ {\rm FG-Approx} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm FG-Approx} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm WBC \ count} \ (log) \\ {\rm CCA} & 0.17 \ [0.02, 0.33] & 0.17 \ [0.01, 0.33] & 0.02 \ [-0.12, 0.15] \\ {\rm CS-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.27] & 0 \ [-0.07, 0.07] \\ {\rm CS-Approx} & 0.17 \ [0.08, 0.26] & 0.17 \ [0.09, 0.26] & 0 \ [-0.08, 0.07] \\ {\rm FG-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.26] & -0.01 \ [-0.07, 0.05] \\ {\rm FG-Approx} & 0.17 \ [0.1, 0.25] & 0.18 \ [0.1, 0.26] & -0.01 \ [-0.08, 0.05] \\ \hline \textbf{Weight loss: yes} \\ {\rm CCA} & 0 \ [-0.37, 0.38] & 0.05 \ [-0.33, 0.43] & 0.17 \ [-0.13, 0.48] \\ {\rm CS-SMC} & 0.23 \ [-0.03, 0.49] & 0.27 \ [0.01, 0.53] & 0.16 \ [-0.05, 0.36] \\ {\rm CS-Approx} & 0.24 \ [0, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-Approx} & 0.24 \ [0, 0.48] & 0.26 \ [0.02, 0.49] & 0.06 \ [-0.14, 0.26] \\ \hline \textbf{Year of alloHCT} \ (decades) \\ {\rm CCA} & -0.36 \ [-0.99, 0.26] & -0.41 \ [-1.04, 0.23] & -0.15 \ [-0.67, 0.37] \\ {\rm CS-SMC} & -0.08 \ [-0.34, 0.18] & -0.11 \ [-0.37, 0.15] & -0.24 \ [-0.46, -0.02] \\ \hline \end{tabular}$	FG-Approx	0 [-0.19, 0.18]	-0.01 [-0.2, 0.17]	-0.04 [-0.19, 0.11]
$\begin{array}{c} {\rm CCA} & 0.2 \ [-0.21, 0.62] & 0.16 \ [-0.25, 0.58] & -0.23 \ [-0.54, 0.08] \\ {\rm CS-SMC} & 0.3 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm CS-Approx} & 0.3 \ [0.12, 0.48] & 0.26 \ [0.08, 0.43] & -0.19 \ [-0.33, -0.05] \\ {\rm FG-SMC} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.31, -0.04] \\ {\rm FG-Approx} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm FG-Approx} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ {\rm WBC \ count} \ (log) \\ {\rm CCA} & 0.17 \ [0.02, 0.33] & 0.17 \ [0.01, 0.33] & 0.02 \ [-0.12, 0.15] \\ {\rm CS-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.27] & 0 \ [-0.07, 0.07] \\ {\rm CS-Approx} & 0.17 \ [0.08, 0.26] & 0.17 \ [0.09, 0.26] & 0 \ [-0.08, 0.07] \\ {\rm FG-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.26] & -0.01 \ [-0.07, 0.05] \\ {\rm FG-Approx} & 0.17 \ [0.1, 0.25] & 0.18 \ [0.1, 0.26] & -0.01 \ [-0.08, 0.05] \\ \hline \textbf{Weight loss: yes} \\ {\rm CCA} & 0 \ [-0.37, 0.38] & 0.05 \ [-0.33, 0.43] & 0.17 \ [-0.13, 0.48] \\ {\rm CS-SMC} & 0.23 \ [-0.03, 0.49] & 0.27 \ [0.01, 0.53] & 0.16 \ [-0.05, 0.36] \\ {\rm CS-Approx} & 0.24 \ [0, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ {\rm FG-Approx} & 0.24 \ [0, 0.48] & 0.26 \ [0.02, 0.49] & 0.06 \ [-0.14, 0.26] \\ \hline \textbf{Year of alloHCT} \ (decades) \\ {\rm CCA} & -0.36 \ [-0.99, 0.26] & -0.41 \ [-1.04, 0.23] & -0.15 \ [-0.67, 0.37] \\ {\rm CS-SMC} & -0.08 \ [-0.34, 0.18] & -0.11 \ [-0.37, 0.15] & -0.24 \ [-0.46, -0.02] \\ \hline \end{tabular}$	T-cell depletion	n: ves		
$\begin{array}{c} \text{CS-SMC} & 0.3 \ [0.13, 0.48] \\ \text{CS-Approx} & 0.3 \ [0.12, 0.48] \\ \text{CS-Approx} & 0.3 \ [0.12, 0.48] \\ \text{FG-SMC} & 0.31 \ [0.13, 0.48] \\ \text{FG-Approx} & 0.31 \ [0.13, 0.48] \\ \text{FG-Approx} & 0.31 \ [0.13, 0.48] \\ \text{FG-Approx} & 0.31 \ [0.13, 0.48] \\ \text{O.26} \ [0.09, 0.44] \\ \text{O.18} \ [-0.31, -0.04] \\ \text{FG-Approx} & 0.31 \ [0.13, 0.48] \\ \text{O.26} \ [0.09, 0.44] \\ \text{O.18} \ [-0.32, -0.04] \\ \\ \textbf{WBC count (log)} \\ \text{CCA} & 0.17 \ [0.02, 0.33] \\ \text{CS-SMC} & 0.17 \ [0.09, 0.26] \\ \text{CS-SMC} & 0.17 \ [0.09, 0.26] \\ \text{CS-Approx} & 0.17 \ [0.09, 0.26] \\ \text{FG-SMC} & 0.17 \ [0.09, 0.26] \\ \text{FG-SMC} & 0.17 \ [0.09, 0.26] \\ \text{FG-Approx} & 0.17 \ [0.09, 0.26] \\ \text{O.18} \ [0.09, 0.26] \\ \text{O.18} \ [0.09, 0.26] \\ \text{O.26} \ [-0.01 \ [-0.07, 0.05] \\ \text{FG-Approx} & 0.17 \ [0.1, 0.25] \\ \text{O.18} \ [0.1, 0.26] \\ \text{O.21} \ [-0.01 \ [-0.08, 0.05] \\ \\ \textbf{Weight loss: yes} \\ \text{CCA} & 0 \ [-0.37, 0.38] \\ \text{CS-SMC} & 0.23 \ [-0.03, 0.49] \\ \text{CS-SMC} & 0.23 \ [-0.01, 0.47] \\ \text{FG-SMC} & 0.23 \ [-0.01, 0.47] \\ \text{FG-SMC} & 0.23 \ [-0.01, 0.47] \\ \text{FG-SMC} & 0.23 \ [-0.01, 0.47] \\ \text{FG-Approx} & 0.24 \ [0, 0.48] \\ \text{O.26} \ [-0.02, 0.49] \\ \text{O.26} \ [-0.14, 0.26] \\ \\ \textbf{Year of alloHCT (decades)} \\ \text{CCA} & -0.36 \ [-0.99, 0.26] \\ \text{COA} & -0.08 \ [-0.34, 0.18] \\ \text{O.011} \ [-0.37, 0.15] \\ \text{O.011} \ [-0.37, 0.15] \\ \text{O.024} \ [-0.46, -0.02] \\ \end{array}$	-	•	0.16 [-0.25, 0.58]	-0.23 [-0.54, 0.08]
$\begin{array}{c} \text{CS-Approx} & 0.3 \ [0.12, 0.48] & 0.26 \ [0.08, 0.43] & -0.19 \ [-0.33, -0.05] \\ \text{FG-SMC} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.31, -0.04] \\ \text{FG-Approx} & 0.31 \ [0.13, 0.48] & 0.26 \ [0.09, 0.44] & -0.18 \ [-0.32, -0.04] \\ \hline \textbf{WBC count (log)} \\ \text{CCA} & 0.17 \ [0.02, 0.33] & 0.17 \ [0.01, 0.33] & 0.02 \ [-0.12, 0.15] \\ \text{CS-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.27] & 0 \ [-0.07, 0.07] \\ \text{CS-Approx} & 0.17 \ [0.08, 0.26] & 0.17 \ [0.09, 0.26] & 0 \ [-0.08, 0.07] \\ \text{FG-SMC} & 0.17 \ [0.09, 0.26] & 0.18 \ [0.09, 0.26] & -0.01 \ [-0.07, 0.05] \\ \text{FG-Approx} & 0.17 \ [0.1, 0.25] & 0.18 \ [0.1, 0.26] & -0.01 \ [-0.08, 0.05] \\ \hline \textbf{Weight loss: yes} \\ \text{CCA} & 0 \ [-0.37, 0.38] & 0.05 \ [-0.33, 0.43] & 0.17 \ [-0.13, 0.48] \\ \text{CS-SMC} & 0.23 \ [-0.03, 0.49] & 0.27 \ [0.01, 0.53] & 0.16 \ [-0.05, 0.36] \\ \text{CS-Approx} & 0.24 \ [0, 0.47] & 0.28 \ [0.04, 0.51] & 0.16 \ [-0.05, 0.36] \\ \text{FG-SMC} & 0.23 \ [-0.01, 0.47] & 0.24 \ [0.01, 0.48] & 0.06 \ [-0.12, 0.24] \\ \text{FG-Approx} & 0.24 \ [0, 0.48] & 0.26 \ [0.02, 0.49] & 0.06 \ [-0.14, 0.26] \\ \hline \textbf{Year of alloHCT (decades)} \\ \text{CCA} & -0.36 \ [-0.99, 0.26] & -0.41 \ [-1.04, 0.23] & -0.15 \ [-0.67, 0.37] \\ \text{CS-SMC} & -0.08 \ [-0.34, 0.18] & -0.11 \ [-0.37, 0.15] & -0.24 \ [-0.46, -0.02] \\ \hline \end{tabular}$	CS-SMC			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. , ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FG-SMC			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FG-Approx	0.31 [0.13, 0.48]	0.26 [0.09, 0.44]	-0.18 [-0.32, -0.04]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WBC count (lo	og)	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.17 [0.01, 0.33]	0.02 [-0.12, 0.15]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , .		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Weight loss: ve	es.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.05 [-0.33, 0.43]	0.17 [-0.13, 0.48]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
FG-Approx 0.24 [0, 0.48] 0.26 [0.02, 0.49] 0.06 [-0.14, 0.26] Year of alloHCT (decades) CCA -0.36 [-0.99, 0.26] -0.41 [-1.04, 0.23] -0.15 [-0.67, 0.37] CS-SMC -0.08 [-0.34, 0.18] -0.11 [-0.37, 0.15] -0.24 [-0.46, -0.02]				
CCA -0.36 [-0.99, 0.26] -0.41 [-1.04, 0.23] -0.15 [-0.67, 0.37] CS-SMC -0.08 [-0.34, 0.18] -0.11 [-0.37, 0.15] -0.24 [-0.46, -0.02]	= =	• • •	r , , -1	[, , -]
CS-SMC $-0.08 [-0.34, 0.18]$ $-0.11 [-0.37, 0.15]$ $-0.24 [-0.46, -0.02]$,	-0.41 [-1.04_0.23]	-0.15 [-0.67 0.37]
		5.55 [5.52, 5.20]	5.22 [5.51, 5.25]	(continued

(continued ...)

Table 2: (continued)

Term + method	Relapse subdist. log HR	Relapse cause-spec. log HR	NRM cause-spec. log HR
CS-Approx	-0.09 [-0.35, 0.17]	-0.12 [-0.38, 0.14]	-0.24 [-0.46, -0.02]
FG-SMC	-0.08 [-0.34, 0.17]	-0.12 [-0.37, 0.14]	-0.24 [-0.46, -0.03]
FG-Approx	-0.08 [-0.34, 0.17]	-0.11 [-0.37, 0.14]	-0.24 [-0.46, -0.03]