# Chapter 1 Overview of Database



KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN



#### Content

Introduction The evolution of database systems Characteristics of the database approach Database users Architecture of a DBMS Properties of DBMS Data models Database languages





Marketing, production, banking, education, entertainment, medical, ...

complex, richness

How can computers understand the real world domain to digitize & support automation?



## How?







Analyze & design





Application

Processes, business rules, interface

DOMAIN



### Examples of information

- Banking and finance
  - Customer information, accounts, loans, banking transactions
    - Customer information: name, address, email, identity number, ...
  - Information of sales and purchases
- ? Education
  - Student information, course registrations and grades
- ? Airline
  - Reservations and information of flights and ticket prices
- Human resources
  - Information about employees, salaries, payroll taxes



#### What is data?

- Facts that can be recorded and have meaning
- Pieces of data are individual pieces of information
- Data is a collection of facts, such as numbers, words, measurements, observations or even just descriptions of things represented in a form suitable for processing by computer

#### **Example**

- "Nguyễn Văn A" is a student's name
- ? "11.12.008" is a student name
- 19-02-2015" is a Tet day of 2015



## Database (DB)

- A collection of related data
- Contains information relevant to a business

## Example:

- Sale, purchase
- Payable and receivable accounts
- ? Employees
- Printing of employee's weekly paychecks



## Database (DB)

- Pefinition:
  - A logically coherent collection of data with some inherent meaning
    - Random assortment of data cannot correctly be a database
- Is designed, built, and populated with data for a specific purpose, for intended group of users or applications
- Example:
  - A list of students 

    data structure of group of students
  - List of classes \( \simega\) data structure of classes
- Data is stored using a structure □ structured database
- Other types of database: unstructured databases, document databases, graph database



## Example 1 – Course Management

| MÔNHỌC | TênMH             | Мамн     | SốTC | Khoa |
|--------|-------------------|----------|------|------|
|        | Khoa học máy tính | CS1310   | 4    | CNTT |
|        | Cấu trúc dữ liệu  | CS3320   | 4    | CNTT |
|        | Toán rời rạc      | MATH2410 | 3    | TOÁN |
|        | Cơ sở dữ liệu     | CS3380   | 3    | CNTT |

| SINHVIĒN | Tên   | MSSV | Lớp | Khoa |
|----------|-------|------|-----|------|
|          | Trang | 17   | 1   | CNTT |
|          | Ngọc  | 8    | 2   | CNTT |

| HỌCPHẨN | MãHP | Ма́МН    | HọcKỳ | Năm  | GiáoViên |
|---------|------|----------|-------|------|----------|
|         | 85   | MATH2410 | 1     | 2008 | Anh      |
|         | 92   | CS1310   | 1     | 2007 | Tiên     |
|         | 112  | MATH2410 | 2     | 2008 | Anh      |
|         | 119  | CS1310   | 2     | 2007 | Tiên     |

| KÊTQUÁ | MSSV | MãHP | Điểm |
|--------|------|------|------|
|        | 17   | 112  | 10   |
|        | 17   | 119  | 7    |
|        | 8    | 85   | 6    |
|        | 8    | 92   | 9    |

| ĐIỀUKIỆN | MãMH   | MãMH_Trước |
|----------|--------|------------|
|          | CS3380 | CS3320     |
|          | CS3380 | MATH2410   |
|          | CS3320 | CS1310     |



# Example 2 — PROJECT MANAGEMENT

| EMPLOYEE | LName  | MName | FName | SSN       | BirthDate  | SuperSSN  | DNo |
|----------|--------|-------|-------|-----------|------------|-----------|-----|
|          | Tran   | Hong  | Quang | 987987987 | 03/09/1969 | 987654321 | 4   |
|          | Nguyen | Thanh | Tung  | 333445555 | 12/08/1955 | 888665555 | 5   |
|          | Nguyen | Manh  | Hung  | 666884444 | 09/15/1962 | 333445555 | 5   |
|          | Tran   | Thanh | Tam   | 453453453 | 07/31/1972 | 333445555 | 5   |

| PROJECT | PName       | PNumber | PLocation | DNum |
|---------|-------------|---------|-----------|------|
|         | San pham X  | 1       | VUNG TAU  | 5    |
|         | San pham Y  | 2       | NHA TRANG | 5    |
|         | San pham Z  | 3       | TP HCM    | 5    |
|         | Tin hoc hoa | 10      | HA NOI    | 4    |

| WORKS_ON | SSN       | PNo | Hours |
|----------|-----------|-----|-------|
|          | 123456789 | 1   | 32.5  |
|          | 123456789 | 2   | 7.5   |
|          | 666884444 | 3   | 40.0  |
|          | 453453453 | 1   | 20.0  |



## Example 2 – Project management

| NHANVIEN | HONV   | TENLOT | TENNV | MANV      | NGSINH     | MA_NQL    | PHG |
|----------|--------|--------|-------|-----------|------------|-----------|-----|
|          | Tran   | Hong   | Quang | 987987987 | 03/09/1969 | 987654321 | 4   |
|          | Nguyen | Thanh  | Tung  | 333445555 | 12/08/1955 | 888665555 | 5   |
|          | Nguyen | Manh   | Hung  | 666884444 | 09/15/1962 | 333445555 | 5   |
|          | Tran   | Thanh  | Tam   | 453453453 | 07/31/1972 | 333445555 | 5   |

| DEAN | TENDA       | MADA | DDIEM_DA  | PHONG |
|------|-------------|------|-----------|-------|
|      | San pham X  | 1    | VUNG TAU  | 5     |
|      | San pham Y  | 2    | NHA TRANG | 5     |
|      | San pham Z  | 3    | TP HCM    | 5     |
|      | Tin hoc hoa | 10   | HA NOI    | 4     |

| PHANCONG | MA_NVIEN  | SODA | THOIGIAN |
|----------|-----------|------|----------|
|          | 123456789 | 1    | 32.5     |
|          | 123456789 | 2    | 7.5      |
|          | 666884444 | 3    | 40.0     |
|          | 453453453 | 1    | 20.0     |



- Database Management System (DBMS)
  - A collection of programs that enables users to create and maintain a database = software
  - A general-purpose software system that facilitates
    - Definition specifying the data types, structures, and constraints for the data
    - Construction storing the data itself on some storage medium
    - Manipulation querying the database to retrieve data, updating the database to reflect changes, generating reports from the data
    - Sharing allowing multiple users/programs to access the database concurrently



Database Management System (DBMS)

Set of programs that enable users to create, operate, and maintain databases





## Example

- Company database project management
  - Definition
    - Specify the structure of records, including data elements, data types
  - Construction
    - Store data to represent an employee, project, department... as a record
  - Manipulation
    - Querying: "Select the employees whose department is 5"
    - Updating: "Move the employee Nguyen Thanh Tung to department 1"



#### Quiz #1

What are the purpose of DB?

- DBMS is?
  - A. A data set with the same structure
  - B. Discrete data
  - C. Tools supporting data or application programming
  - A set of programs to help create, operate, and maintain databases



#### Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages



#### **Evolution**

## File



An application program has its own data



## **Evolution - Example**

Program

Data file





#### **Evolution**

- Limitations
  - Data redundancy
    - Wasted storage space
    - Opportunities of the inconsistency
  - Data sharing is limited
  - Difficult recovery
  - Low security
- But, still be used in some applications
  - Small size
    - Storing and accessing data only, not including other processing operations
  - Pee costs less
    - Operation or maintenance



#### **Evolution**

## Database





#### Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
  - Self-describing
  - Insulation between programs and data
  - Data abstraction
  - Views of data
  - Sharing of data
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages



## Self-Describing

- The DB system contains not only the DB itself, but also a complete *definition/description* of the DB structure
- The *definitions* are stored in *catalog* called "metadata"
  - Contains information such as the structure of data, type and storage format of data items, and constraints on the data
- Many applications can access to the DB
  - Refer to *catalog*, knowing the structure of files in specific DB (type and format of data)



## Self-Describing

An example of a database catalog/metadata

#### **RELATION**

| Relation_name   | No_of_columns |
|-----------------|---------------|
| <b>EMPLOYEE</b> | 7             |
| PROJECT         | 4             |
| WORKS_ON        | 3             |

#### **COLUMN**

| Column_name | Data_type     | Belongs_to_relation |
|-------------|---------------|---------------------|
| LName       | Character(10) | EMPLOYEE            |
| FName       | Character(10) | EMPLOYEE            |
|             |               |                     |



#### **Isolation**

- The structure of data is stored in *catalog* separately from the access programs
  - Program-Data independence



- A little change in the structure happens
  - Application programs are rarely revised



#### Data abstraction

The DB system provides a *conceptual* representation of the data to hide certain details of how the data are stored and maintained

## Example

- Data model is a type of data abstraction
  - Objects
  - Properties
  - Relationships
- These logical concepts are easier for user to understand than computer storage concepts



#### Views of data

- A DB has many users
  - Each user may require a different *perspective or view* of the database
- A view may be
  - A subset of the database
  - Aggregate data that are derived from the database





## Sharing of data

#### A multiuser DBMS

- Allows multiple users to access the DB at the same time
- Data for many applications are integrated and maintained in a single DB
- Using concurrency control mechanisms to access the data reasonably
  - Avoid data contention (tranh chấp)
  - Ensure the data will always be valid when they are accessed



#### Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users: Actors on the scene
  - Database administrator (DBA)
  - Database designer
  - End user
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages



#### Database administrator

- Many people use the same resources
  - Need a chief administrator to oversee and manage
- Responsibility
  - Administering the DB
  - Authorizing access to the DB
  - Coordinating and monitoring the use of DB
  - Acquiring software and hardware resources as needed



## Database designer

- Responsibility
  - Identifying the data to be stored in the DB
  - Choosing appropriate structures to represent and store the DB
  - Communicating with all DB users to understand their requirements, to come up with a design that meet the requirements
- Can be
  - Staff of the DBA
  - Other staffs taking responsibilities after the DB designed is completed



- People whose jobs require to access to the DB
  - Querying, updating, generating reports
- Categories
  - Casual end user
  - Naïve or parametric end user
  - Sophisticated end user



- People whose jobs require to access to the DB
  - Querying, updating, generating reports
- Categories
  - ? Casual end user
    - Occasionally access the DB
    - Need different information each time
    - Use sophisticated DB query language to specify requests
    - Middle or high level manager
  - Naïve or parametric end user
  - Sophisticated end user



- People whose jobs require to access to the DB
  - Querying, updating, generating reports
- Categories
  - Casual end user
  - Naïve or parametric end user
    - Constantly query and update the DB
    - Use standard types of queries and updates that have been programmed and tested
    - Employee
  - Sophisticated end user



- People whose jobs require to access to the DB
  - Querying, updating, generating reports
- Categories
  - Casual end user
  - Naïve or parametric end user
  - Sophisticated end user
    - Be familiar with the facilities of the DBMS
    - Implement the applications to meet the complex requirements
    - Engineers, scientists, business analysts



#### Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages



#### Architecture

### Three-schema architecture:





### Architecture

# Data independence

- Logic data independence
  - The capacity to change the conceptual schema without change to external schemas or application programs
  - Example
    - Adding/removing a record type or data item (expand/reduce DB)
    - Changing constrains
- Physical data independence
  - The capacity to change the internal schema without change to the conceptual schema
  - Example
    - Physical files had to be reorganized to improve the performance of retrieval or update



### Architecture





### Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages



# Properties of DBMS

| Controlling redundancy                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| By placing all the data together, we do not have to search multiple files to collect this data                                          |
| Data sharing                                                                                                                            |
| In multiple user environment, concurrency data access is allowed                                                                        |
| Restricting unauthorized access                                                                                                         |
| Users or user groups are given account numbers protected by<br>passwords to gain access to the DB                                       |
| Providing multiple user interfaces                                                                                                      |
| Provide query languages for casual users, programming language interfaces for programmers, forms and command codes for parametric users |



# Properties of DBMS

- Enforcing integrity constraints
  - Integrity constraints
    - Rules/conditions are derived from the meaning/semantics of the data or the miniworld it represents
  - Some constraints
    - Can be specified to the DBMS and automatically enforced
    - May have to be checked by update programs
- Providing backup and recovery
  - Provide facilities for recovering from hardware and software failures
  - Make sure the DB is restored to the state it was before



# Properties of DBMS

# Others

- Potential for enforcing standards
  - Permit DBA to define and enforce standards among database users in a large organization
- Flexibility
  - It may be necessary to change the structure of a DB as requirements change without affecting the stored data and the existing application programs
- Reduced application development time
- Availability of up-to-date information
  - As soon as one user's update is applied to the DB, all other users can immediately see this update



### Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages



### Data models





### Data models

# Definition

- A collection of concepts that can be used to describe the structure of a DB
  - Data types, relationships, and constraints
- Including a set of basic operations for specifying retrievals and updates on the DB

# Categories

- High level or conceptual data models
- Representational or implementation data models
- level or physical data models



### Data models

- High level data model
  - Provide concepts that are close to the way users perceive data
  - Eg: entity relationship model, object-oriented model...
- Implementation data model
  - Provide concepts that may be understood by end users, but that are not too far from the way data is organized within the computer
  - Eg: relational model, network and hierarchical models...
- Low level data model
  - Provide concepts the describe the details of how data is stored in the computer



# Example of data model

- Entity Relationship Diagram
  - ? Concepts

Entity type





- Network data model
  - ? Concepts

Record type

Relationship 1:N



# Database schema - Example of ER Model





### Database schema

# Definition

- Pescription of the structure and constraints on the database about a particular domain (banking, education, marketing, etc.)
- ? Example:

| SINH VIÊN | NH VIĒN TĒNSV |             | LớP   | NGÀNH  |
|-----------|---------------|-------------|-------|--------|
|           |               |             |       |        |
| MÔN HỌC   | TĒNMH         | <u>MÄMH</u> | KHOA  | TİNCHİ |
|           |               |             |       |        |
| ĐIỀU KIỆN | MÄMH TRƯỚC    | <u>MÄMH</u> |       |        |
|           |               |             | •     |        |
| HỌC PHẨN  | <u>MÄHP</u>   | GIÁOVIÊN    | HÓCKĄ | NĀM    |
|           |               |             |       |        |
| KQ_Học    | <u>MÄSV</u>   | <u>MÄHP</u> | ÐiÊM  |        |



### Database schema - Example of Object-Oriented Model





# Database schema - Example of relational model





# Database schema - Example of network data model



# Database schema - Example of hierarchical data model





### Database instance or status

# Definition

? The data stored in database at a particular moment of time is called instance of database.

|  | MÔNHỌC | TênMH             | мамн     | SốTC | Khoa |
|--|--------|-------------------|----------|------|------|
|  |        | Khoa học máy tính | CS1310   | 4    | CNTT |
|  |        | Cấu trúc dữ liệu  | CS3320   | 4    | CNTT |
|  |        | Toán rời rạc      | MATH2410 | 3    | TOÁN |
|  |        | Cơ sở dữ liệu     | CS3380   | 3    | CNTT |

| HỌCPHẨN | MãHP | MãMH     | HọcKỳ | Năm  | GiáoViên |
|---------|------|----------|-------|------|----------|
|         | 85   | MATH2410 | 1     | 2008 | Anh      |
|         | 92   | CS1310   | 1     | 2007 | Tiên     |
|         | 112  | MATH2410 | 2     | 2008 | Anh      |
|         | 119  | CS1310   | 2     | 2007 | Tiên     |

| SINHVIÊN | Tên   | MSSV | Lớp | Khoa |
|----------|-------|------|-----|------|
|          | Trang | 17   | 1   | CNTT |
|          | Ngọc  | 8    | 2   | CNTT |

| KÊTQUÁ | MSSV | MãHP | Điểm |
|--------|------|------|------|
|        | 17   | 112  | 10   |
|        | 17   | 119  | 7    |
|        | 8    | 85   | 6    |
|        | 8    | 92   | 9    |

| ĐIỀUKIỆN | MãMH   | MãMH_Trước |
|----------|--------|------------|
|          | CS3380 | CS3320     |
|          | CS3380 | MATH2410   |
|          | CS3320 | CS1310     |



### Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages



# Database language

- DDL Data Definition Language
  - Identify descriptions of the schema constructs
  - Store the schema description in the DBMS catalog
- SDL Storage Definition Language
  - Specify the internal schema and the mappings between two schemas
- VDL View Definition Language
  - Specify user views and their mapping to the conceptual schema



# Database language

- DML Data Manipulation Language
  - Provide a set of operations including retrieval, insertion, deletion and modification of the data
  - Two types
    - High level (nonprocedural)
      - Entered interactively from a display monitor/terminal, or
      - Embedded in a general-purpose programming language
    - Low level (procedural)
      - Must be embedded in a general-purpose programming language



### Discussion

When will we use or not use the DB approach?



