Owning the Agent: Hospital Influence on Physician Behaviors

Haizhen Lin & Ian McCarthy & Michael Richards

September 6, 2019

Background

Physician with decision-making authority for treatment

- Information asymmetry
- Regulatory restrictions

Differential financial incentives between physician and hospital

- More procedures = more revenue, but location of procedure may matter to hospital
- Hospital wants less cost with fixed payment, but physician dictates resource use
- Hospital as residual claimant on billable physician services

Differential financial incentives between physician and hospital

- More procedures = more revenue, but location of procedure may matter to hospital
- Hospital wants less cost with fixed payment, but physician dictates resource use
- Hospital as residual claimant on billable physician services
- \longrightarrow Incentives for hospitals to influence physicians

Differential financial incentives between physician and hospital

- More procedures = more revenue, but location of procedure may matter to hospital
- Hospital wants less cost with fixed payment, but physician dictates resource use
- Hospital as residual claimant on billable physician services
- \longrightarrow Incentives for hospitals to influence physicians

Most direct way (arguably) is to purchase physician practice

Changing Physician Relationships

Richards et al., Medical Care, 2016

Changing Physician Relationships

Baker, Bundorf, and Kessler, Health Affairs, 2014

In context

- Physician agency (Clemens & Gottlieb 2014, AER; Afendulis & Kessler 2007, AER; Gruber & Owings 1996, RAND; Iizuka 2012, AER)
- Supply-side variation (Finkelstein et al. 2016, QJE; Molitor 2018, AEJ: Policy)
- Vertical integration (Cuellar & Gertler 2006, JHE; Ciliberto & Dranove 2006, JHE; Baker et al. 2016, JHE; Koch et al. 2017, JHE)

Outline

- 1. Conceptual Framework
- 2. Initial Results
- 3. Event Study
- 4. Instrumental Variables
- 5. Other Outcomes

Conceptual Framework

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u}\left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i}\right) + \theta_{\pi} \pi\left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i}\right).$$

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u} \left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i} \right) + \theta_{\pi} \pi \left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i} \right).$$

With assumptions on linearity and separability in patient preferences:

$$y_{ijk} = \boxed{\alpha_i + x_i \beta} + \boxed{\Gamma_{jk}} + \epsilon_{ijk}$$

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u} \left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i} \right) + \theta_{\pi} \pi \left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i} \right).$$

With assumptions on linearity and separability in patient preferences:

Patient Preferences

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u} \left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i} \right) + \theta_{\pi} \pi \left(y; \Gamma_{k}, \Gamma_{j}, \kappa_{i} \right).$$

With assumptions on linearity and separability in patient preferences:

5

Suggests two-step estimation strategy:

Suggests two-step estimation strategy:

1. Estimate $y_{ijk} = \alpha_i + x_i\beta + \Gamma_{jk} + \epsilon_{ijk}$ at patient level (separately by year). This isolates variation in care to physicians and hospitals (not patients).

Suggests two-step estimation strategy:

- 1. Estimate $y_{ijk} = \alpha_i + x_i\beta + \Gamma_{jk} + \epsilon_{ijk}$ at patient level (separately by year). This isolates variation in care to physicians and hospitals (not patients).
- 2. Estimate $\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt}$ with physician-hospital panel. This further isolates variation to physician-hospital interaction.

- Draws from "match values" in labor literature (Abowd et al., 2002; Card et al., 2013, QJE)
- Exploits variation across inpatient stays and splits the separation of match value into two steps
- Identifies effects on match value from within-physician variation across hospitals (e.g., patient movers in Finkelstein et al., 2016, QJE)

Traditional "match value" approach:

$$y_{ijk} = \alpha_i + x_i \beta + \boxed{\Gamma_j} + \boxed{\Gamma_k} + \boxed{\Gamma_{jk}} + \epsilon_{ijk}$$

Traditional "match value" approach:

6

Traditional "match value" approach:

Traditional "match value" approach:

6

Our approach:

$$y_{ijk} = \alpha_i + x_i \beta + \underbrace{\Gamma_{jk}^t}_{\Gamma_j} + \epsilon_{ijk}$$

$$\Gamma_j + \Gamma_k + \underbrace{z_{jkt} \delta}$$

Our approach:

6

Our approach:

Physician effect

6

Our approach:

Our approach:

Intuition

- Hospital influence on physicians is an interaction effect
- Potential influence should be net of patient preference
- Why not estimate in single step?
 - Treatment assignment should be at physician/hospital level
 - Weights by number of patients
 - Computationally infeasible with same specification

Data

Data Sources

- CMS: 100% inpatient and institutional outpatient Medicare claims data (2008-2015)
- SK&A: Hospital ownership of physician practices and practice characteristics
- AHA, HCRIS, POS: Hospital characteristics
- Annual IPPS Impact Files: Hospital cost-to-charge ratios (CCR)
- ACS: County-level demographics, education, income, and employment

 Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data
- Drop lowest/highest 1% of charges and patients < 65 years old

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data
- Drop lowest/highest 1% of charges and patients < 65 years old
- → 518,398 unique observations at the physician/hospital/year
- → 7.5mm inpatient stays (47% of total) and 24mm outpatient procedures

Preliminary Evidence

Total Spending by Integration Status

Estimate and plot residual from:

$$y_{jkt} = \beta x_{jt} + \delta z_{kt} + \lambda_k + \lambda_j + \lambda_t + \varepsilon_{jkt}$$

Total Spending by Integration Status

Estimation of Match Values

Specification

Two-step estimation strategy:

- 1. Estimate $y_{ijk} = \alpha_i + x_i\beta + \Gamma_{jk} + \epsilon_{ijk}$ at patient level (separately by year)
- 2. Estimate $\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt}$ with physician-hospital panel

Specification

$$y_{ijk} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

Outcomes

$$\mathbf{y_{ijk}} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- Total inpatient and outpatient Medicare payments
- Total inpatient and outpatient hospital costs (from cost-to-charge ratios)
- Total number of procedures

$$y_{ijk} = \frac{\alpha_i}{\epsilon} + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- Quartiles of total prior Medicare payments and procedures
- Covers call payments/procedures (not just elective)
- ullet Beneficiary-specific ranking of health care utilization up to time t

$$y_{ijk} = \alpha_i + \frac{\mathbf{x_i}}{\beta} + \Gamma_{jk} + \epsilon_{ijk},$$

- Age, gender, race
- Indicators for ICD9 diagnosis code groups (18 diagnosis groups per variable plus missing group)

Summary of Match Values

1. Calculate Cost Differential

Apply minimum cost physician-hospital combination to all of physician j's patients:

$$\begin{split} \Delta_k y_{ij} &= \hat{y}_{ijk} - \hat{y}_{ij\underline{\mathbf{k}}} \\ &= \hat{\alpha}_i + x_i \hat{\beta} + \hat{\Gamma}_{jk} - \hat{\alpha}_i - x_i \hat{\beta} - \min\left\{\Gamma_{j1}, ..., \Gamma_{jK}\right\} \\ &= \hat{\Gamma}_{jk} - \min\left\{\Gamma_{j1}, ..., \Gamma_{jK}\right\}. \end{split}$$

Summary of Match Values

2. Summarize

- Total cost differential for each physician
- Limit to pairs with 5 or more procedures
- Limit to physicians with 2 or more hospitals in a year
- Present interquartile range and mean

Within-physician Variation in Payments

Within-physician Variation in Payments

Estimation of Hospital Influence

Specification

Two-step estimation strategy:

- 1. Estimate $y_{ijk} = \alpha_i + x_i\beta + \Gamma_{jk} + \epsilon_{ijk}$ at patient level (separately by year)
- 2. Estimate $\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt}$ with physician-hospital panel

Specification

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

Main Outcomes

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Total Payments	6,367.7	7,301.9	7,644.3	8,021.9	8,234.8	7,238.4
	(5,454.5)	(6,385.4)	(6,562.7)	(6,658.9)	(6,822.7)	(6,219.2)

Main Outcomes

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Total Payments	6,367.7	7,301.9	7,644.3	8,021.9	8,234.8	7,238.4
	(5,454.5)	(6,385.4)	(6,562.7)	(6,658.9)	(6,822.7)	(6,219.2)
Total Costs	8,384.5	10,168.8	10,600.5	11,029.3	11,466.5	9,851.9
	(6,822.1)	(8,165.1)	(8,410.1)	(8,754.5)	(8,935.2)	(7,994.5)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.129	0.205	0.232	0.254	0.327	0.196
	(0.336)	(0.404)	(0.422)	(0.435)	(0.469)	(0.397)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.129	0.205	0.232	0.254	0.327	0.196
	(0.336)	(0.404)	(0.422)	(0.435)	(0.469)	(0.397)
Physician FTE	24.26	28.53	30.99	31.65	32.80	28.33
	(99.19)	(109.6)	(120.1)	(119.7)	(118.9)	(110.6)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.129	0.205	0.232	0.254	0.327	0.196
	(0.336)	(0.404)	(0.422)	(0.435)	(0.469)	(0.397)
Physician FTE	24.26	28.53	30.99	31.65	32.80	28.33
	(99.19)	(109.6)	(120.1)	(119.7)	(118.9)	(110.6)
Resident FTE	25.70	28.38	29.11	30.57	30.75	27.99
	(108.1)	(120.3)	(121.4)	(125.6)	(127.3)	(117.5)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.129	0.205	0.232	0.254	0.327	0.196
	(0.336)	(0.404)	(0.422)	(0.435)	(0.469)	(0.397)
Physician FTE	24.26	28.53	30.99	31.65	32.80	28.33
	(99.19)	(109.6)	(120.1)	(119.7)	(118.9)	(110.6)
Resident FTE	25.70	28.38	29.11	30.57	30.75	27.99
	(108.1)	(120.3)	(121.4)	(125.6)	(127.3)	(117.5)
Nurse FTE	341.1	365.0	367.5	383.9	400.1	363.9
	(447.3)	(487.4)	(493.9)	(519.5)	(550.2)	(487.1)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.129	0.205	0.232	0.254	0.327	0.196
	(0.336)	(0.404)	(0.422)	(0.435)	(0.469)	(0.397)
Physician FTE	24.26	28.53	30.99	31.65	32.80	28.33
	(99.19)	(109.6)	(120.1)	(119.7)	(118.9)	(110.6)
Resident FTE	25.70	28.38	29.11	30.57	30.75	27.99
	(108.1)	(120.3)	(121.4)	(125.6)	(127.3)	(117.5)
Nurse FTE	341.1	365.0	367.5	383.9	400.1	363.9
	(447.3)	(487.4)	(493.9)	(519.5)	(550.2)	(487.1)
Other FTE	751.2	761.5	758.2	774.4	801.1	761.0
	(978.4)	(1031.7)	(1073.9)	(1100.8)	(1155.5)	(1036.9)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.129	0.205	0.232	0.254	0.327	0.196
	(0.336)	(0.404)	(0.422)	(0.435)	(0.469)	(0.397)
Physician FTE	24.26	28.53	30.99	31.65	32.80	28.33
	(99.19)	(109.6)	(120.1)	(119.7)	(118.9)	(110.6)
Resident FTE	25.70	28.38	29.11	30.57	30.75	27.99
	(108.1)	(120.3)	(121.4)	(125.6)	(127.3)	(117.5)
Nurse FTE	341.1	365.0	367.5	383.9	400.1	363.9
	(447.3)	(487.4)	(493.9)	(519.5)	(550.2)	(487.1)
Other FTE	751.2	761.5	758.2	774.4	801.1	761.0
	(978.4)	(1031.7)	(1073.9)	(1100.8)	(1155.5)	(1036.9)
Beds (100s)	1.979	1.963	1.950	1.977	1.995	1.971
	(2.160)	(2.141)	(2.135)	(2.177)	(2.231)	(2.153)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size	13.81	17.39	17.40	17.96	18.65	16.21
	(32.27)	(30.83)	(29.42)	(28.68)	(28.43)	(30.24)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size	13.81	17.39	17.40	17.96	18.65	16.21
	(32.27)	(30.83)	(29.42)	(28.68)	(28.43)	(30.24)
Experience	22.55	23.00	23.93	23.65	24.76	23.16
	(6.498)	(6.704)	(6.953)	(6.901)	(6.999)	(6.748)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size	13.81	17.39	17.40	17.96	18.65	16.21
	(32.27)	(30.83)	(29.42)	(28.68)	(28.43)	(30.24)
Experience	22.55	23.00	23.93	23.65	24.76	23.16
	(6.498)	(6.704)	(6.953)	(6.901)	(6.999)	(6.748)
% Multi-Specialty	0.249	0.248	0.266	0.284	0.344	0.264
% Surgery Center	0.452	0.500	0.506	0.507	0.452	0.479

Outcome Estimate St. Error

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	75.121**	(30.902)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	75.121**	(30.902)
Total Hospital Costs	132.466***	(42.026)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Total Medicare Payments	75.121**	(30.902)
Total Hospital Costs	132.466***	(42.026)
Total Procedures	0.015***	(0.004)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Threats to Identification and Interpretation

Estimator is effectively a two-way fixed effects DD with time varying treatment

Threats to Identification and Interpretation

Estimator is effectively a two-way fixed effects DD with time varying treatment

Potential Problems

- 1. Vertical integration due to time-varying unobservables & outcomes (standard DD concern)
- 2. Weighted average of all 2×2 DD estimates, with some potentially negative weights

Event Study: Total Medicare Payments

Event Study: Total Hospital (IP & OP) Costs

Takeaways

- Increase in payments and costs
- Evidence consistent with common trends assumption for total payments and costs
- Concerns about limited pre-period data

Integration could be driven by:

- Unobserved, time-varying practice characteristics
- Existing costs and treatment patterns

1. Set of possible physician-hospital pairs

Form set of all hospitals where physician operates from 2008-2015

2. Estimate probability of integration

$$\Pr(I_{jk} = 1) = \frac{\exp(\lambda z_{jk})}{1 + \exp(\lambda z_{jk})}$$

- Hospital and practice characteristics
- Average differential distance (relative to nearest hospital in patient choice set)
- Differential distance interacted with hospital and practice characteristics

2. Estimate probability of integration

$$\hat{\Pr}\left(I_{jk}=1\right) = \frac{\exp\left(\hat{\lambda}z_{jk}\right)}{1 + \exp\left(\hat{\lambda}z_{jk}\right)}$$

Intuition: Physicians less likely to seek/allow acquisition if patients live further away

2. Estimate probability of integration

$$\hat{\Pr}\left(I_{jk}=1\right) = \frac{\exp\left(\hat{\lambda}z_{jk}\right)}{1 + \exp\left(\hat{\lambda}z_{jk}\right)}$$

Intuition: Physicians less likely to seek/allow acquisition if patients live further away

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \underbrace{I_{jkt}}_{\hat{I}_{jkt}} \delta_1 + \tilde{z}_{jkt} \delta_2 + \eta_{jkt},$$
$$\hat{I}_{jkt} = \hat{\Pr}(I_{jkt} = 1)$$

|--|

 $^{^{\}star}$ p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	870.4**	(340.41)

 $^{^{\}star}$ p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments Total Hospital Costs	870.4** 2,546***	(340.41) (454.70)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Total Medicare Payments	870.4**	(340.41)
Total Hospital Costs	2,546***	(454.70)
Total Procedures	0.271***	(0.042)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Heterogeneities in Effects

Unconditional Quantile Results: Payments

Unconditional Quantile Results: Hospital Costs

Unconditional Quantile Results: Procedures

Treatment Intensity vs Reallocation

Want to isolate treatment intensity effect

- 1. Focus on patients with no change in physician/hospital pairs over time
- 2. Examine outcomes within an inpatient stay

Outcome Estimate St. Error

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	63.291**	(30.853)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Total Medicare Payments Total Hospital Costs	63.291** 124.830***	(30.853) (42.073)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Total Medicare Payments	63.291**	(30.853)
Total Hospital Costs	124.830***	(42.073)
Total Procedures	0.014**	(0.004)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Effects on Components of Inpatient Stay

Outcome	Estimate	St. Error
Charges for:		
Total Inpatient	165.441***	(50.165)
Medical Supplies	40.413	(30.299)
Operating Room	-1.780	(22.996)
Anesthesia	6.504	(4.970)
Labs	14.006	(8.782)
Radiology	-2.366	(5.971)
MRI	-0.073	(1.386)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Effects on Components of Inpatient Stay

Outcome	Estimate	St. Error
Counts of:		
ICU Days	0.022*	(0.013)
Procedures	0.030***	(0.009)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Allocation of Procedures and

Patients

Other Effects

Other ways integration posited to affect physician behavior:

- More procedures overall (not per patient)
- Reallocating procedures from other hospitals
- Reallocating procedures across inpatient and outpatient settings
- Changing patient profile

Outcome	Estimate	St. Error
---------	----------	-----------

 $^{^{\}star}$ p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Physician's inpatient share	0.083***	(0.003)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Physician's inpatient share	0.083***	(0.003)
Physician's outpatient share	0.063***	(0.003)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Physician's inpatient share	0.083***	(0.003)
Physician's outpatient share	0.063***	(0.003)
Total patients	7.304***	(0.500)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Physician's inpatient share Physician's outpatient share Total patients Inpatient procedures	0.083*** 0.063*** 7.304*** 1.124***	(0.003) (0.003) (0.500) (0.161)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Physician's inpatient share	0.083***	(0.003)
Physician's outpatient share Total patients	0.063*** 7.304***	(0.003) (0.500)
Inpatient procedures Outpatient procedures	1.124*** 10.375***	(0.161) (1.001)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Estimate	St. Error
0.083***	(0.003)
0.063***	(0.003)
7.304***	(0.500)
1.124***	(0.161)
10.375***	(1.001)
0.013	(0.058)
	0.083*** 0.063*** 7.304*** 1.124*** 10.375***

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Outcome	Estimate	St. Error
Physician's inpatient share	0.083***	(0.003)
Physician's outpatient share	0.063***	(0.003)
Total patients	7.304***	(0.500)
Inpatient procedures	1.124***	(0.161)
Outpatient procedures	10.375***	(1.001)
Patient Claims	0.013	(0.058)
Patient Payments	-156.713	(136.992)

^{*} p-value $<\!0.1,$ ** p-value $<\!0.05,$ *** p-value $<\!0.01$

Summary of Results

Overall Results

- Increase in Medicare payments (\$75-\$200) and hospital costs (\$130-\$350)
- Extrapolates to between \$52mm and \$140mm in additional Medicare payments per year
- 4-10% of within-physician variation explained by vertical integration

Summary of Results

Sensitivity

- Event study consistent with common pre-trends but limited pre-period data
- IV results suggest conservative estimates
- No improvement in quality (mortality)
- As falsification test, no effects on payments or DRG weights per inpatient stay

Thank You