

```
In [1]: import pandas as pd
   import numpy as np
   from scipy.stats import norm
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Line Plot

```
In [2]: days = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
  temperature = [36.6,37,37.7,39,40.1,43,43.4,45,45.6,40.1,44,45,46.8,47,47.8]

temp_df = pd.DataFrame({'days':days,'temperature': temperature})
  sns.lineplot(x = 'days',y = 'temperature',data = temp_df)
  plt.show()
```



```
In [3]: tips_df = pd.read_csv('tips.csv')
tips_df.head()
```

```
total_bill
                               sex smoker day
                                                   time size
                        t ip
Out[3]:
          0
                16.99 1.01 Female
                                                  Dinner
                                                            2
                                         No
                                             Sun
          1
                10.34 1.66
                              Male
                                             Sun
                                                  Dinner
                                                            3
                                         No
          2
                21.01 3.50
                              Male
                                         No
                                             Sun
                                                  Dinner
                                                            3
          3
                23.68 3.31
                              Male
                                             Sun
                                                  Dinner
                                                            2
                                         No
          4
                24.59 3.61 Female
                                         No Sun Dinner
                                                            4
```

```
In [4]: sns.lineplot(x = 'total_bill',y = 'tip',data = tips_df)
plt.show()
```



```
In [5]: plt.figure(figsize = (15,9))
    sns.set(style = 'darkgrid')
    sns.lineplot(x = 'size',y = 'total_bill',data = tips_df,hue = 'sex',style =
    # plt.title()
    plt.title('Line Plot',fontsize = 25,color = 'black')
    plt.xlabel('Size',fontsize = 15)
    plt.ylabel('Total Bill',fontsize = 15)
    plt.legend(loc = 2)
    plt.show()
```



```
In [6]: plt.figure(figsize = (15,9))
    sns.set(style = 'darkgrid')
    sns.lineplot(x = 'size',y = 'total_bill',data = tips_df,hue = 'day',style =
    # plt.title()
    plt.title('Line Plot',fontsize = 25,color = 'black')
    plt.xlabel('Size',fontsize = 15)
    plt.ylabel('Total Bill',fontsize = 15)
    plt.legend(loc = 2)
    plt.show()
```



```
In [7]: plt.figure(facecolor = 'yellow')
    ax = plt.axes()
    ax.set_facecolor('black')
    # plt.figure(figsize = (15,9))
    sns.set(style = 'darkgrid')
    sns.lineplot(x = 'size',y = 'total_bill',data = tips_df,hue = 'day',style =
    # plt.title()
    plt.title('Line Plot',fontsize = 25,color = 'black')
    plt.xlabel('Size',fontsize = 15,color = 'red')
    plt.ylabel('Total Bill',fontsize = 15,color = 'red')
    plt.legend(loc = 2)
    plt.show()
```


Histogram & Distplot

```
In [8]: tips_df.head()
```

Out[8]:		total_bill	t ip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4

```
In [9]: sns.distplot(tips_df['size'])
plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code t o use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [10]: sns.distplot(tips_df['tip'])
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate
d function and will be removed in a future version. Please adapt your code t
o use either `displot` (a figure-level function with similar flexibility) or
`histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

In [11]: sns.distplot(tips_df['total_bill'],hist = False)
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

In [12]: sns.distplot(tips_df['total_bill'],kde = False)
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate
d function and will be removed in a future version. Please adapt your code t
o use either `displot` (a figure-level function with similar flexibility) or
`histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

In [13]: sns.distplot(tips_df['total_bill'],fit = norm,hist = False,color = 'red') #,/
plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code t o use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning)

In [14]: sns.distplot(tips_df['total_bill'],fit = norm,hist = True,color = 'red',axlak
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code t o use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [15]: sns.distplot(tips_df['total_bill'],vertical = True)
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code t o use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:1689: FutureWarning: The `vertical` parameter is deprecated and will be removed in a future version. Assign the data to the `y` variable instead.

warnings.warn(msg, FutureWarning)


```
In [16]: # plt.figure(facecolor = 'red')
    # ax = plt.axes()
    # ax.set_facecolor('black')
    plt.figure(figsize = (15,9))
    sns.distplot(tips_df['total_bill'],color = 'red',axlabel = 'Total Bill') #,ru
    plt.title('Bill Graph')
    plt.legend('Total Bill')
    plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code t o use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
In [17]: plt.figure(facecolor = 'red')
   ax = plt.axes()
   ax.set_facecolor('black')
```

```
# plt.figure(figsize = (15,9))
sns.distplot(tips_df['total_bill'],color = 'white',axlabel = 'Total Bill') #
plt.title('Bill Graph')
plt.legend('Total Bill')
plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
In [18]:
         tips_df.total_bill.sort_values()
                  3.07
          67
Out[18]:
         92
                  5.75
          111
                  7.25
          172
                  7.25
          149
                  7.51
          182
                 45.35
          156
                 48.17
          59
                 48.27
          212
                 48.33
          170
                 50.81
         Name: total_bill, Length: 244, dtype: float64
In [19]: # bins = [1,5,10,15,20,25,30,35,40,45,50,55]
```

```
In [19]: # bins = [1,5,10,15,20,25,30,35,40,45,50,55]
# plt.figure(figsize = (15,9))
sns.distplot(tips_df['total_bill'],color = 'white',axlabel = 'Total Bill',his
plt.title('Bill Graph')
# plt.xticks(bins)
plt.legend('Total Bill')
plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate
d function and will be removed in a future version. Please adapt your code t
o use either `displot` (a figure-level function with similar flexibility) or
`histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)


```
In [20]: plt.figure(facecolor = 'pink')
    ax = plt.axes()
    ax.set_facecolor('black')
    sns.distplot(tips_df['total_bill'],color = 'white',axlabel = 'Total Bill',his
    plt.title('Bill Graph')
    # plt.xticks(bins)
    plt.legend('Total Bill')
    plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
# plt.xticks(bins)
plt.legend('Total Bill')
plt.grid(color = 'pink',linestyle = '--',linewidth = 1)
plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code t o use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2103: FutureWarning: The `axis` variable is no longer used and will be removed. Instead, assign variables directly to `x` or `y`.

Bar Plot

```
In [22]: tips_df.head()
```

Out[22]: total_bill t ip sex smoker day time size 0 16.99 1.01 Female Dinner 2 Sun No 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male Sun Dinner No 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4

```
In [23]: sns.barplot(x = tips_df.day,y = tips_df.total_bill)
   plt.show()
```


In [24]: sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df)
 plt.show()


```
In [25]: order = ['Sun','Thur','Fri','Sat']
hue_order = ['Male','Female']

sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,order = ord
plt.show()
```



```
In [26]: # Mean
sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,estimator
plt.show()
```


In [27]: # Max
sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,estimator
plt.show()


```
In [28]: # STD
sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,estimator = plt.show()
```


In [29]: # Sum
sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,estimator
plt.show()

In [30]: # Min
sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,estimator
plt.show()


```
\# sns.barplot(x = tips_df.day, y = tips_df.total_bill, estimator = np.mean)
In [31]:
          # plt.show()
         # sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,ci = 10,n_l
In [32]:
          # plt.show()
          # sns.barplot(y = 'day',x = 'total_bill',hue = 'sex',data = tips_df)
In [33]:
          # sns.barplot(x = 'total_bill',y = 'size',hue = 'sex',data = tips_df,orient =
In [34]:
          # sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,palette =
In [35]:
          # sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,saturation
In [36]:
         # sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,capsize =
In [37]:
         # sns.barplot(x = 'day',y = 'total_bill',hue = 'sex',data = tips_df,dodge = Fal
In [38]:
          kwargs = {'alpha': 0.7,'linestyle':':','linewidth':3,'edgecolor':'black'}
In [391:
          sns.barplot(x = 'day',y = 'total_bill',data = tips_df,**kwargs) # ,hue = 'sex
          plt.show()
```


In [40]: sns.barplot(x = 'day',y = 'total_bill',data = tips_df,alpha = .05,linestyle = plt.show()

Barplot Of Tips DataFrame


```
In [44]: titanic_df = pd.read_csv('titanic.csv')
titanic_df.head()
```

Out[44]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	d€
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	١
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	١

```
In [45]: sns.scatterplot(x = 'age',y = 'fare',data = titanic_df,hue = 'sex')
plt.show()
```



```
In [46]: plt.figure(figsize = (15,9))
sns.scatterplot(x = 'age',y = 'fare',data = titanic_df,hue = 'sex',style = 'v
plt.show()
```



```
In [47]: # plt.figure(figsize = (15,9))
# sns.scatterplot(x = 'who', y = 'fare', data = titanic_df, hue = 'alive', style =
# plt.show()
```



```
In [49]: # plt.figure(facecolor = 'pink')
```

```
# ax = plt.axes()
# ax.set_facecolor('white')
#
# sns.scatterplot(x = 'age', y = 'fare', data = titanic_df, hue = 'sex')
# plt.grid(color = 'black', linestyle = '--', linewidth = 1)
# plt.show()
```

Heatmap

3

0

1

```
In [50]: arr_2d = np.linspace(1,5,12).reshape(4,3)
          arr_2d
                             , 1.36363636, 1.72727273],
          array([[1.
Out[50]:
                 [2.09090909, 2.45454545, 2.81818182],
                 [3.18181818, 3.54545455, 3.90909091],
                 [4.27272727, 4.63636364, 5.
          sns.heatmap(arr_2d)
In [51]:
          plt.show()
                                                     - 5.0
          0
                                                     - 4.5
                                                     - 4.0
                                                     - 3.5
                                                     - 3.0
          2
                                                     - 2.5
                                                     - 2.0
```

```
In [52]: globalwarming_df = pd.read_csv('Who_is_responsible_for_global_warming.csv')
    globalwarming_df.head()
```

1.5

- 1.0

Out[52]:		Country Name	Country Code	Indicator Name	Indicator	Code	2	000	2001	2002	2	2003
	0	United States	110.7	CO2 emissions (metric tons per capita)	EN.AT M.CO	2E.PC	20.178	751 19.6	36505	19.613404	1 19.5	64105
	1	United Kingdom	(200	emissions (metric tons per capita)	EN.AT M.CO	2E.PC	9.199	549 9.2	33175	8.904123	9.0	53278
	2	India	a IND	emissions (metric tons per capita)	EN.AT M.CO	2E.PC	0.979	870 0.9	71698	0.96738	0.9	92392
	3	China	a CHN	CO2 emissions (metric tons per capita)	EN.AT M.CO	2E.PC	2.696	862 2.7	42121	3.007083	3 3.5	24074
	4	Russiar Federatior		CO2 emissions (metric tons per capita)	EN.AT M.CO	2E.PC	10.627	121 10.6	69603	10.71590 ²	11.0	90647
In [53]:			ming_df = ming_df.h	globalwa nead()	arming_df	.drop	(colum	ns =['C	Countr	y Code',	'Indi	cator
Out[53]:		Country Name	2000	2001	2002	2	2003	2004		2005	2006	2
		Unit ed States	20.178751	19.636505	19.613404	19.564	4105 1	9.658371	19.59	1885 19.0	94067	19.217
	ı	Unit ed Kingdo m	9.199549	9.233175	8.904123	9.053	3278	8.989140	8.98	2939 8.8	98710	8.617
		India	0.979870	0.971698	0.967381	0.992	2392	1.025028	1.06	8563 1.1	21982	1.193
		China	2.696862	2.742121	3.007083	3.524	1074	4.037991	4.52	3178 4.9	80314	5.334
	Fe	Russian deration	10.627121	10.669603	10.715901	11.090	0647 1	1.120627	11.25	3529 11.6	69122	11.672
In [54]:	sn		ap(global	e = (15,9) warming_c								


```
In [55]: # plt.figure(figsize = (15,9))
# sns.heatmap(globalwarming_df,vmin = 0,vmax = 21,cmap = 'coolwarm')
# plt.show()
```

In [56]: plt.figure(figsize = (15,9))
 sns.heatmap(globalwarming_df,vmin = 0,vmax = 21,cmap = 'coolwarm',annot = Truplt.show()

	United States	20	20	20		20										
	United Kingdom	9.2	9.2	8.9	9.1	9	9	8.9	8.6	8.4	7.6	7.9	7.1	7.4	7.1	6.5
	India	0.98	0.97	0.97	0.99		1.1	1.1	1.2	1.3	1.4	1.4	1.5	1.6	1.6	1.7
	China	2.7	2.7		3.5			5	5.3	5.7	6	6.6	7.2	7.4	7.6	7.5
Rus	ssian Federation	11	11	11	11	11	11	12	12	12	11	12	12	13	12	12
	Australia	17														15
ame	France	5.9	6.2	6.1	6.1	6.1	6.1	5.9	5.8	5.7	5.4	5.4	5.1	5.1	5.1	
Country Name	Germany	10	10	10	10	9.9	9.7	9.9	9.5	9.5	8.8	9.3	9.1	9.2	9.4	8.9
Cour	Canada	17									16	16	16	15	15	15
	Brazil	1.9	1.9	1.8	1.8	1.8	1.9	1.8	1.9		1.9	2.1	2.2	2.3	2.5	2.6
	Argentina	3.8		3.3	3.5											
	Pakistan	0.77	0.76	0.79	0.8	0.87	0.89	0.93	0.99	0.97	0.95	0.95	0.93	0.92	0.9	0.9
	Nepal	0.13	0.14	0.11	0.11	0.11	0.12	0.099	0.1	0.13	0.16	0.19	0.2	0.21	0.24	0.28
	Bangladesh	0.21	0.24	0.25	0.26	0.27	0.28	0.3	0.3	0.33	0.36	0.39	0.41	0.43	0.44	0.46
	Japan	9.6	9.5	9.6	9.7	9.9	9.7	9.6	9.8	9.4	8.6	9.1	9.3	9.6	9.8	9.5
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

```
In [88]: # annot_arr = np.array([['a00','a01','a02'],['a10','a11','a12'],['a20','a21','annot_arr
```

```
In [87]: # sns.heatmap(arr_2d,annot = annot_arr,fmt = 's')
# plt.show()
```

```
# plt.figure(figsize = (15,9))
In [86]:
            # annot_kws = {'fontsize': 10,'fontstyle': 'italic','color': 'black','alpha':
            # sns.heatmap(globalwarming_df,vmin = 0,vmax = 21,cmap = 'coolwarm',annot = Tr
            # plt.show()
In [60]:
            plt.figure(figsize = (15,9))
            sns.heatmap(globalwarming_df,vmin = 0,vmax = 21,cmap = 'coolwarm',annot = Tru
            plt.show()
                 United States
                                                                                                               20.0
                                                     9
                                                                                    7.1
                                                                                         7.4
                                                                                              7.1
                                                                                                   6.5
                United Kingdom
                           9.2
                                9.2
                                     8.9
                                           9.1
                                                9
                                                          8.9
                                                               8.6
                                                                    8.4
                                                                         7.6
                                                                               7.9
                      India
                                                                                                              - 17.5
                     China
                                                          5
                                                               5.3
                                                                    5.7
                                                                          6
                                                                               6.6
                                                                                    7.2
                                                                                         7.4
                                                                                              7.6
                                                                                                   7.5
                                                                                                               - 15.0
             Russian Federation
                                                11
                                                     11
                                                          12
                                                               12
                                                                                              12
                                                                                                   12
                           11
                                11
                                      11
                                           11
                                                                    12
                                                                          11
                                                                               12
                                                                                    12
                                                                                         13
                    Australia
                                                                                                   15
                                                                                                              - 12.5
                                                          5.9
                           5.9
                                                     6.1
                                                                                    5.1
                                                                                         5.1
                                                                                              5.1
                     France
                                6.2
                                     6.1
                                          6.1
                                                6.1
                                                               5.8
                                                                    5.7
                                                                         5.4
                                                                               5.4
            Country Name
                                                                                                   8.9
                   Germany
                           10
                                 10
                                      10
                                           10
                                                9.9
                                                     9.7
                                                          9.9
                                                               9.5
                                                                    9.5
                                                                         8.8
                                                                               9.3
                                                                                    9.1
                                                                                         9.2
                                                                                              9.4
                                                                                                              - 10.0
                    Canada
                                                                          16
                                                                               16
                                                                                    16
                                                                                         15
                                                                                              15
                                                                                                   15
                     Brazil
                                                                                                              - 7.5
                   Argentina
                    Pakistan
                                                                                                               - 5.0
                                                         0.099
                                0.14
                                                                                              0.24
                     Nepal
                                                                                                               - 2.5
                  Bangladesh
                                                                                                   0.46
                     Japan
                                9.5
                                           9.7
                                                     9.7
                                                          9.6
                                                                    9.4
                                                                         8.6
                                                                               9.1
                                                                                    9.3
                                                                                         9.6
                                                                                              9.8
                                                                                                   9.5
                                2001
                                     2002
                                          2003
                                               2004
                                                    2005
                                                         2006
                                                               2007
                                                                    2008
                                                                         2009
                                                                                   2011
                                                                                        2012
                                                                                              2013
                           2000
                                                                              2010
                                                                                                   2014
            # plt.figure(figsize = (15,9))
In [61]:
            # sns.heatmap(globalwarming_df,cbar = False,xticklabels = False,yticklabels =
            # plt.show()
            # plt.figure(figsize=(14,14))
In [62]:
            #
              cbar_kws = {"orientation":"horizontal",
                               "shrink":1,
            #
            #
                               'extend':'min',
            #
                               'extendfrac':0.1,
            #
                               "ticks":np.arange(0,22),
            #
                               "drawedges":True,
            #
            # sns.heatmap(globalwarming_df, cbar_kws=cbar_kws)
            # plt.show()
In [63]: | # plt.figure(figsize=(16,9))
            # ax = sns.heatmap(globalwarming_df,)
            # ax.set(title="Heatmap",
            #
                      xlabel="Years",
                      ylabel="Country Name",)
            # sns.set(font_scale=2) # set fontsize 2
```

```
globalwarming_df.corr()
In [64]:
                   2000
                                    2002
                                             2003
                                                      2004
                                                              2005
                                                                       2006
                                                                                2007
                                                                                         2008
                           2001
Out[64]:
          2000 1.000000 0.999632 0.999155 0.998911 0.998314 0.997008
                                                                    0.994087 0.992283
                                                                                     0.987767
          2001
               0.999632 1.000000 0.999229 0.999026
                                                  0.998095 0.996628
                                                                    0.993860
                                                                             0.991532 0.987057
          2002 0.999155 0.999229 1.000000 0.998907
                                                  0.998399
                                                           0.997391
                                                                    0.995643 0.994017 0.990034
                                 0.998907 1.000000
               0.998911
                        0.999026
                                                  0.999568
                                                           0.998887
                                                                    0.996614
                                                                             0.995277
                                                                                     0.991681
          2004
               0.998314
                        0.998095
                                 0.998399 0.999568
                                                 1.000000
                                                           0.999701
                                                                    0.998105 0.997144
                                                                                     0.993891
          2005
               0.997008 0.996628
                                 0.997391
                                          0.998887
                                                  0.999701
                                                           1.000000
                                                                    0.998942
                                                                             0.998420
                                                                                     0.995803
          2006
               0.994087
                        0.993860
                                 0.995643  0.996614  0.998105  0.998942
                                                                   1.000000 0.999570
                                                                                     0.998415
          2007
               0.992283 0.991532 0.994017 0.995277
                                                  0.997144 0.998420
                                                                    0.999570
                                                                            1.000000
                                                                                     0.999088
          2008
               0.987767
                        0.987057
                                 0.990034
                                         0.991681
                                                  0.993891
                                                           0.995803
                                                                    0.998415
                                                                             0.999088
                                                                                     1.000000
          2009
               0.998145
          2010 0.979172 0.978562 0.982944 0.984466 0.987668 0.990498
                                                                    0.994985
                                                                            0.996367
                                                                                     0.998539
          2011
               0.967887
                        0.967206
                                 0.972479 0.975128 0.979061
                                                           0.982646
                                                                    0.988553
                                                                             0.990928
                                                                                     0.994593
                        0.961625  0.967161  0.969919  0.974094  0.977758
                                                                    0.984892 0.986978
          2012 0.961582
                                                                                     0.991128
          2013 0.962466 0.962827 0.967573 0.971053 0.975276
                                                           0.978611
                                                                    0.984857
                                                                            0.986819
                                                                                     0.989983
          2014 0.962331 0.961622 0.965665 0.970508 0.975061 0.978521
                                                                    0.983371
                                                                            0.986199
                                                                                     0.988927
          # plt.figure(figsize=(16,9))
In [65]:
          # ax = sns.heatmap(globalwarming_df.corr(),annot = True,linewidths = 2)
          # ax.tick_params(size = 5,color = 'white',labelsize = 5,labelcolor = 'white')
          # plt.title('Heatmap of Who is Responsible for Global Warming',fontsize = 20)
          # plt.show()
          plt.figure(figsize=(16,9))
In [66]:
          sns.heatmap(globalwarming_df.corr(), annot = True)
          plt.show()
```



```
In [67]: breast_cancer = pd.read_csv('breast_cancer.csv')
    breast_cancer.drop('Unnamed: 32',axis = 1,inplace = True)
```

```
In [68]: breast_cancer.corr()
```

	id	radius_mean	t ext ure_mean	perimet er_mean	area_mean	smo
id	1.000000	0.074626	0.099770	0.073159	0.096893	
radius_mean	0.074626	1.000000	0.323782	0.997855	0.987357	
t ext ure_mean	0.099770	0.323782	1.000000	0.329533	0.321086	
perimet er_mean	0.073159	0.997855	0.329533	1.000000	0.986507	
area_mean	0.096893	0.987357	0.321086	0.986507	1.000000	
smoothness_mean	-0.012968	0.170581	-0.023389	0.207278	0.177028	
compactness_mean	0.000096	0.506124	0.236702	0.556936	0.498502	
concavit y_mean	0.050080	0.676764	0.302418	0.716136	0.685983	
concave points_mean	0.044158	0.822529	0.293464	0.850977	0.823269	
symmetry_mean	-0.022114	0.147741	0.071401	0.183027	0.151293	
fractal_dimension_mean	-0.052511	-0.311631	-0.076437	-0.261477	-0.283110	
radius_se	0.143048	0.679090	0.275869	0.691765	0.732562	
t ext ure_se	-0.007526	-0.097317	0.386358	-0.086761	-0.066280	
perimet er_se	0.137331	0.674172	0.281673	0.693135	0.726628	
area_se	0.177742	0.735864	0.259845	0.744983	0.800086	
smoothness_se	0.096781	-0.222600	0.006614	-0.202694	-0.166777	
compactness_se	0.033961	0.206000	0.191975	0.250744	0.212583	
concavit y_se	0.055239	0.194204	0.143293	0.228082	0.207660	
concave points_se	0.078768	0.376169	0.163851	0.407217	0.372320	
symmetry_se	-0.017306	-0.104321	0.009127	-0.081629	-0.072497	
fractal_dimension_se	0.025725	-0.042641	0.054458	-0.005523	-0.019887	
radius_worst	0.082405	0.969539	0.352573	0.969476	0.962746	
t ext ure_worst	0.064720	0.297008	0.912045	0.303038	0.287489	
perimet er_worst	0.079986	0.965137	0.358040	0.970387	0.959120	
area_worst	0.107187	0.941082	0.343546	0.941550	0.959213	
smoothness_worst	0.010338	0.119616	0.077503	0.150549	0.123523	
compactness_worst	-0.002968	0.413463	0.277830	0.455774	0.390410	
concavity_worst	0.023203	0.526911	0.301025	0.563879	0.512606	
concave points_worst	0.035174	0.744214	0.295316	0.771241	0.722017	
symmetry_worst	-0.044224	0.163953	0.105008	0.189115	0.143570	
fractal_dimension_worst	-0.029866	0.007066	0.119205	0.051019	0.003738	

31 rows × 31 columns

```
In [89]: # plt.figure(figsize = (30,30))
# sns.heatmap(breast_cancer.corr(),annot = True,linewidths = 2)
# plt.show()
```

Pairplot

```
In [77]: # sns.pairplot(breast_cancer)
# plt.show()

In [80]: # sns.pairplot(breast_cancer.corr())
# plt.show()

In [82]: breast_cancer.describe()
```

Out[82]:

	id	radius_mean	t ext ure_mean	perimet er_mean	area_mean	smoothness_me
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.0000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.0963
sto	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.0140
mir	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.0526
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.0863
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.0958
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.1053
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.1634

8 rows × 31 columns

```
In [83]: featureMeans = list(breast_cancer.columns[1:11])
In [84]: correlationData = breast_cancer[featureMeans].corr()
    sns.pairplot(breast_cancer[featureMeans].corr(),diag_kind = 'kde',size = 2)
    plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn\axisgrid.py:2076: UserWarning: The `size` parameter has been re
named to `height`; please update your code.
 warnings.warn(msg, UserWarning)

In [92]: plt.figure(figsize = (10,10))
 sns.heatmap(breast_cancer[featureMeans].corr(),annot = True,square = True,cmaplt.show()

CampusX

```
In [2]: import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

In [3]: plt.style.use('fivethirtyeight')

In [4]: tips_df = pd.read_csv('tips.csv')
tips_df.head()
```

Out[4]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4

Scatter Plot

```
In [101... sns.regplot(x = 'total_bill',y = 'tip',data = tips_df)
   plt.show()
```


In [103... sns.scatterplot(x = 'total_bill',y = 'tip',hue = 'smoker',data = tips_df)
plt.show()


```
In [107... sns.scatterplot(x = 'total_bill',y = 'tip',hue = 'smoker',style = 'sex',data
plt.show()
```


In [109... sns.scatterplot(x = 'total_bill',y = 'tip',hue = 'smoker',style = 'sex',size
 plt.show()

Strip & Swarm Plot

```
In [110... sns.catplot(x = 'day',y = 'tip',kind = 'strip',data = tips_df)
    plt.show()
```


In [115... sns.catplot(x = 'day',y = 'tip',kind = 'strip',jitter = 2,data = tips_df)
 plt.show()

In [116... sns.catplot(x = 'day',y = 'tip',kind = 'strip',jitter = 0,data = tips_df)
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn\categorical.py:1296: UserWarning: 8.1% of the points cannot be
placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)

In [118... sns.catplot(x = 'day',y = 'tip',kind = 'swarm',hue = 'sex',data = tips_df)
plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn\categorical.py:1296: UserWarning: 8.1% of the points cannot be
placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)

In [119... # $sns.swarmplot(x = 'day', y = 'tip', data = tips_df)$ # plt.show()

Box Plot

```
In [5]: sns.boxplot(tips_df['tip'])
  plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn_decorators.py:36: FutureWarning: Pass the following variable a
s a keyword arg: x. From version 0.12, the only valid positional argument wi
ll be `data`, and passing other arguments without an explicit keyword will r
esult in an error or misinterpretation.
 warnings.warn(


```
In [6]: sns.boxplot(tips_df['total_bill'])
  plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.


```
In [7]: sns.catplot(x = 'day',y = 'total_bill',kind = 'box',data = tips_df)
    plt.show()
```


In [8]: sns.catplot(x = 'day',y = 'total_bill',hue = 'sex',kind = 'box',data = tips_c
plt.show()

Violin Plot

```
In [9]: sns.violinplot(tips_df['total_bill'])
   plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn_decorators.py:36: FutureWarning: Pass the following variable a
s a keyword arg: x. From version 0.12, the only valid positional argument wi
ll be `data`, and passing other arguments without an explicit keyword will r
esult in an error or misinterpretation.
 warnings.warn(

In [10]: sns.catplot(x = 'day',y = 'total_bill',kind = 'violin',data = tips_df)
plt.show()


```
In [12]: sns.catplot(x = 'day',y = 'total_bill',kind = 'violin',hue = 'sex',split = Tu
plt.show()
```


Bar & Count Plot

```
In [15]: sns.catplot(x = 'smoker',y = 'total_bill',kind = 'bar',data = tips_df)
   plt.show()
```



```
In [16]: sns.catplot(x = 'smoker',y = 'total_bill',hue = 'sex',kind = 'bar',data = tip
plt.show()
```


In [17]: sns.catplot(x = 'smoker',y = 'total_bill',hue = 'sex',estimator = np.median,l
 plt.show()

In [18]: sns.catplot(x = 'smoker',y = 'total_bill',hue = 'sex',estimator = np.var,king
plt.show()

In [19]: sns.catplot(x = 'smoker',y = 'total_bill',hue = 'sex',estimator = np.std,king
plt.show()


```
In [22]: sns.catplot(x = 'sex', kind = 'count', data = tips_df)
plt.show()
```


In [23]: sns.catplot(x = 'sex',hue = 'smoker',kind = 'count',data = tips_df)
plt.show()

Heatmap

```
In [33]: plt.style.use('fivethirtyeight')
In [34]: flights_df = pd.read_csv('flights.csv')
  flights_df.head()
```

```
month passengers
Out[34]:
              year
           0 1949
                                   112
                    January
                                   118
           1 1949
                   February
           2 1949
                     March
                                   132
           3 1949
                                   129
                       April
           4 1949
                       May
                                   121
```

```
In [35]: x = flights_df.pivot_table(index = 'year', columns = 'month', values = 'passeng
In [36]: # plt.figure(figsize = (10,10))
    sns.heatmap(x)
    plt.show()
```



```
In [37]: sns.heatmap(x,cbar = False)
plt.show()
```


In [40]: sns.heatmap(x,linewidths = 0.5,annot = True,fmt = 'd')
plt.show()


```
In [44]: sns.heatmap(x,linewidths = 0.5,annot = True,fmt = 'd',cmap = 'summer')
plt.show()
```


Clustermap

```
In [45]: sns.clustermap(x)
   plt.show()
```


In [48]: sns.clustermap(x,z_score = 0,annot = True,metric = 'correlation')
plt.show()

In [49]: sns.clustermap(x,z_score = 0,annot = True,row_cluster = False,metric = 'corre
plt.show()

In [50]: sns.clustermap(x,z_score = 0,annot = True,col_cluster = False,metric = 'corre
plt.show()

Joint Plot

```
In [51]: sns.jointplot(x = 'total_bill',y = 'tip',data = tips_df)
  plt.show()
```


In [52]: sns.jointplot(x = 'total_bill',y = 'tip',kind = 'hex',data = tips_df)
 plt.show()


```
In [57]: sns.jointplot(x = 'total_bill',y = 'tip',kind = 'kde',data = tips_df)
   plt.show()
```


In [59]: sns.jointplot(x = 'total_bill',y = 'tip',kind = 'reg',data = tips_df)
 plt.show()

In [60]: sns.jointplot(x = 'total_bill',y = 'tip',kind = 'resid',data = tips_df)
plt.show()

Pair Plot

```
In [63]: plt.style.use('fivethirtyeight')
```

```
In [64]: iris_df = pd.read_csv('iris.csv')
    iris_df.head()
```

Out[64]:		sepal_length	sepal_width	pet al_lengt h	pet al_widt h	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

```
In [65]: sns.pairplot(iris_df)
  plt.show()
```


In [66]: sns.pairplot(iris_df,hue = 'species')
plt.show()

Dist Plot

```
In [68]:
           plt.style.use('fivethirtyeight')
           titanic_df = pd.read_csv('titanic.csv')
In [69]:
           titanic_df.head()
                                                               embarked
                                                                                        adult_male
              survived pclass
                                          sibsp
                                                 parch
                                                          fare
                                                                          class
                                                                                   who
Out[69]:
                                sex
                                     age
           0
                    0
                                     22.0
                                                        7.2500
                                                                          Third
                               male
                                                                       S
                                                                                   man
                                                                                              True
           1
                    1
                              female
                                     38.0
                                                       71.2833
                                                                       С
                                                                           First
                                                                                woman
                                                                                             False
           2
                    1
                              female
                                     26.0
                                              0
                                                        7.9250
                                                                          Third
                                                                                             False
                                                                       S
                                                                                woman
           3
                                     35.0
                                                       53.1000
                                                                                             False
                              female
                                                                           First
                                                                                woman
           4
                    0
                           3
                               male 35.0
                                              0
                                                        8.0500
                                                                       S
                                                                          Third
                                                                                   man
                                                                                              \mathsf{True}
           titanic_df['age'].fillna(titanic_df['age'].mean(),inplace = True)
In [70]:
           sns.distplot(titanic_df['age'])
In [76]:
           plt.show()
```


In [74]: sns.distplot(titanic_df['age'],kde = False)
plt.show()

In [75]: sns.distplot(titanic_df['age'],bins = 10,kde = False)
 plt.show()

In [81]: sns.distplot(titanic_df['age'], hist = False)
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate
d function and will be removed in a future version. Please adapt your code t
o use either `displot` (a figure-level function with similar flexibility) or
`kdeplot` (an axes-level function for kernel density plots).
 warnings.warn(msg, FutureWarning)


```
In [83]: sns.distplot(titanic_df['age'],hist = False,kde = False,rug = True)
plt.show()
```

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2103: FutureWarning: The `axis` variable is no longer used and will be removed. Instead, assign variables directly to `x` or `y`.

In [85]: sns.distplot(titanic_df[titanic_df['survived']==1]['age'])
 sns.distplot(titanic_df[titanic_df['survived']==0]['age'])
 plt.show()

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\prasad jadhav\AppData\Local\Programs\Python\Python310\lib\site-pack ages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecate d function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Thank You

CONNECT WITH ME:

