Implémentation du Calcul des Constructions Inductive/Presburger

Pierre-Yves Strub

FORMES, INRIA - Tsinghua Universisity - Beijing

Le Calcul des Constructions Inductives/Presburger CoqMT: une implémentation de CIC/\mathbb{N}

Certification d'une procédure de décision (avec A. Mahboubi) Une formalisation en Coq + Ssreflect Génération de certificats

CIC/N

Calcul des Constructions $^{\mathrm{Inductive}}/_{\mathrm{Presburger}}$:

- un Calcul des Constructions Inductives
- une procédure de décision pour l'arithmétique linéaire dans la conversion

Avantages:

- Plus d'automatisation
 - ▶ Preuves plus courtes...
 - ...mais pas forcément plus rapide à vérifier
- Programmer plus facilement avec les types dépendants

CIC/N

Modification de la règle de conversion:

Une conversion entre 2 termes *arithmétiques* fera appel à une procédure de décision

► E.g., list $(x + (f y)) \equiv list ((f (y + 0)) + x)$

Car
$$z = z' \Rightarrow x + z = z' + x$$

(avec $z \rightarrow (f y), z' \rightarrow (f (y + 0)))$

CoqMT:

- Une modification du noyau de Coq permettant l'introduction dynamiquement de procédures de décision dans la conversion.
- On décrit ici
 - ► Comment charger de telles boites noires
 - ▶ Comment le noyau les utilise

Roadmap de l'ajout d'une théorie

Pour une intégration effective d'une procédure de décision:

- 1. Chargement, au sein du noyau, d'une boite noire:
 - Description de la théorie
 - Code effectif de l'algorithme de décision
- Etablissement de liens entre les définitions Coq et la boite noire (e.g. mapping des symboles au premier ordre sur Coq)

Chargement d'une boite noire (1/2)

- ► Théorie $\mathfrak{T} = (\Sigma, \mathcal{A}, \textbf{solve}) \rightarrow \text{boîte noire déclarant auprès du noyau}$
 - 1. une sorte de travail (e.g. nat) \rightarrow termes monosortés
 - 2. des symboles Σ (constructeurs ou définis) (e.g. $0_{[C,0]}$, $+_{[D,2]}$)
 - 3. une axiomatique \mathcal{A} (e.g. $\forall xy, x + S(y) = S(x + y), \cdots$)
 - Soit via une AST interne
 - ► Soit via un langage pour la logique de premier ordre
 - 4. une fonction de décision solve (fonction O'Caml)
- ► Un contrat → solve sait décider la validité de clauses de Horn pour T.

Chargement d'une boite noire (2/2)

- Possibilité d'insérer plusieurs théories
 - Doivent travailler sur des sortes disjointes
 - Ne peuvent pas partager de variables
- Théories = code O'Caml
 - \Rightarrow peuvent être insérer dynamiquement via le système de chargement de code de Coq (Declare ML Module)

Lier une théorie (1/3)

- ▶ Une boite noire est *inerte* par défaut
 - ▶ Elle ne sait pas comment interagir avec les termes Coq
- Il faut
 - Lier les symboles au premier ordre sur des définitions Coq
 - Prouver que le mapping défini vérifie bien l'axiomatisation
- Plusieurs liaisons possible sur une théorie

Lier une théorie (2/3)

Pour Presburger, on peut e.g.

- ▶ Lier les symboles $\mathbf{0}$ et \mathbf{S} sur les constructeurs $\overline{0}$ et \overline{S} de $\overline{\mathrm{nat}}$.
- ► Lier le symbole + sur la définition **Coq** standard Peano.plus de l'addition.

Lier une théorie (3/3)

Le système demandera alors de vérifier, dans **Coq**, que:

- ▶ $\overline{\mathrm{nat}}$ est de type Type, et que les symboles liés repectent l'arité des symboles de \mathfrak{T} (e.g. $\overline{0}:\overline{\mathrm{nat}},\overline{\mathrm{S}}:\overline{\mathrm{nat}}\to\overline{\mathrm{nat}}$).
- que les symboles Coq liés à des symboles constructeurs sont injectifs (ici, que \overline{S} est injectif).
- ▶ que les symboles liés à des symboles constructeurs ne sont pas confondus (ici, que $\overline{0}$ et $(\overline{S} t)$ ne sont pas égaux pour tout t).
- ▶ que les axiomes de $\mathfrak T$ sont bien respectés par les symboles liés. E.g., de $\forall x\,y, x+S(y)=S(x+y)$, il sera demandé

forall (x y : nat),
$$x \overline{+} (\overline{S} y) = \overline{S}(x \overline{+} y)$$

Le noyau (1/2)

Initialement, le noyau décide de la conversion de 2 termes en

- Normalisant faiblement de tête
- ▶ Puis, en comparant les symboles de tête
 - Égaux, test de conversion sous les sous-termes appariés
 - Sinon, échec de la conversion

En cas d'échecs, le noyau vérifie maintenant

- qu'un des deux termes n'a pas un symbole lié en tête
 - ▶ Si oui, utilisation de la procédure de décision
 - ▶ Sinon, échec de la conversion

Le noyau (2/2)

E.g.,
$$\overline{\text{list}} (x + (f y)) \equiv \overline{\text{list}} ((f (y + \overline{0})) + x)$$
?

L'ancienne conversion échoue sur

$$x + (f y) \equiv (f (y + \overline{0})) + x$$

- Le nouveau noyau reconnait deux termes à chapeau algébrique
 - ▶ Il collecte les *aliens* (f y) et (f (y $\pm \overline{0}$))
 - ► Ces aliens étant convertibles, il décide de les abstraire par une même variable $\Rightarrow x + z = z + x$.
 - ► Il envoie le but x + z = z + x à la boite noire (qui répond posivitivement)
 - Les deux termes sont décrétés convertibles

Ce qui est fait

- Code de chargement et de liaison de théories
- Modification de la fonction de conversion
- Boite noire (simplexe) pour l'arithmétique linéaire
 - Liaison par défaut sur les entiers standards de Coq

Dépot GIT: http://git.strub.nu/git/coqmt/

Ce qu'il reste à faire

- Meilleure communication entre Coq et les boites noires
 - Ne plus communiquer via des AST
 - ▶ Des liaisons non 1-à-1 (e.g. entiers binaires, multiplication par une constante...)
- Extraction des équations: quasiment fini
 - Le noyau essaie d'être incrémental le plus possible, mais...
 - ...ne donne pas cette possibilité aux boites noires
- Algorithmes de décision incrémentaux et à la Shostak (+ API entre boites noires et le noyau)
 - Ex. (Shankar 2006):
 - simplex général incrémental
 - toutes les informations connues sur les égalités entre termes sont communiquées via une substitution

Ce qu'il reste à faire

- Conversion sous les match
 - Un algorithme t.q. (Shankar 2006) calcule partiellement et au maximum les termes (e.g. extrait le n max. t.q. t = Sⁿ u) ⇒ réduction de match t with ...
- ► Gérer plus efficacement les *aliens*
 - ► Actuellement, comparaison 2 à 2
 - Utilisation de contre-modèles comme les solveurs SMT
- ▶ Prospectif: transformer l'algorithme top-down actuel en un algorithme de décision général où la $\beta\iota\zeta\delta$ est une théorie comme une autre. (Nelson/Oppen, Shostak)

Le Calcul des Constructions Inductives/Presburger

CoqMT: une implémentation de CIC/N

Certification d'une procédure de décision (avec A. Mahboubi)

Une formalisation en Coq + Ssreflect Génération de certificats

Deux approches pour la certification

- ▶ Procédure de décision certifiée (e.g. obtenue par extraction)
 - On vérifie a priori toutes les exécutions
- Procédure de décision générant un certificat
 - On vérifie a posteriori après chaque exécution

Nous nous intéressons ici à la certification de l'algorithme du simplexe

Le simplexe (1/2)

Problème d'optimisation d'une fonction linéaire sous des contraintes linéaires de satisfiabilité

- ▶ Peut servir de base à l'élaboration d'une boite noire intégrable à notre nouvelle version de Coq.
- Nous avons étudié
 - La version certifiée
 - La version avec génération de certificat

Le simplexe (2/2)

Le Calcul des Constructions Inductives/Presburger

CogMT: une implémentation de CIC/N

Certification d'une procédure de décision (avec A. Mahboubi) Une formalisation en Coq + Ssreflect

Génération de certificats

Une formalisation en Coq + Ssreflect (1/2)

- Ce que nous utilisations:
 - Ssreflect (équipe Mathematical Components)
 - Bibliothèque pour l'algébre linéaire (Sidi Ould Biha, équipe M.C.)

- Ce que nous avons formalisé:
 - Anneaux et corps ordonnés
 - Un peu de convexité (sur les polytopes)
 - Correction des pas de l'algorithme d'optimisation
 - Correction des conditions d'arrêt

Une formalisation en Coq + Ssreflect (2/2)

- Ce que nous n'avons pas formalisé:
 - 1. Dualité
 - 2. Théorie générale de la convexité (Krein-Milman, ...)
 - 3. Terminaison (Bland's rule, ...)
 - 4. Initialisation (méthode des 2 phases, ...)
- Les points (3) et (4) sont nécessaires pour l'obtention d'un algorithme certifié.

Le Calcul des Constructions Inductives/Presburger

CogMT: une implémentation de CIC/N

Certification d'une procédure de décision (avec A. Mahboubi)

Une formalisation en Coq + Ssreflect

Génération de certificats

Notre approche

Adapté l'approche des solvers SMT pour la décision de l'arithmétique linéaire, dans le cas où l'on optimise la fonction constante.

"A fast Linear-Arithmetic Solver for DPLL(T)"

B. Dutertre-L. de Moura (CAV'06)

Roadmap

- ▶ Effectuer les calculs en dehors du système de preuves
- Fournir un témoin ou certificat
- Vérifier ce certificat dans le système de preuves

Comment ça marche?

- S'il existe une solution
 - On calcule cette solution en dehors de Coq
 - Coq vérifie que cette solution vérifie les contraintes initiales
 - Cette vérification est donc faite par du calcul certifié
- S'il n'existe pas de solution
 - On calcule, en dehors de Coq, une combinaison linéaire inconsistante de l'ensemble initial de contraintes
 - Coq vérifie l'inconsistence
 - Cette vérification est simple et utilise seulement quelques lemmes d'arithmétiques

Un exemple

Du système:

$$\begin{cases} x + y & \geq 0 & (e_1) \\ x & \leq -1 & (e_2) \\ y & \leq -1 & (e_3) \end{cases}$$

on obtient:

(e₁)
$$0 \le x + y \le -2 = (-1) + (-1)$$
 (e₂) + (e₃)

ce qui est absurde:

$$0 \leq -2$$

Le certificat (cas insatisfiable)

Le certificat (pour le cas insatisfiable) est de la forme:

- Une liste de coefficients (combinaison linéaire)
- ▶ Un énoncé absurde de la forme $a \le b \land b < a$

Pour vérifier ce certificat, nous avons besoin de:

- Calcul: l'énoncé absurde n'utilise que des termes clos
- Vérifier une combinaison linéaire d'inéquations
- Utiliser la transitivité de l'ordre

Nombre linéaire de pas de déduction + Calcul au sein de Coq

Ce qui est fait

- ▶ Un algorithme du simplexe en O'Caml
 - Non totalement optimisé ?
 - Calcul en arithmétique exacte (rationnelle et entière)
 - Utilisation des coupures de Gomory (arithmétique entière)
 - Gestion des inégalités larges et strictes
 - Sait générer soit le témoin, soit le certificat de non-satisfiabilité
 - Intégration au sein de micromega