Kvantumalgoritmusok bioinformatikai alkalmazása Protein folding & Molecular docking

Nemkin Viktória

Témavezető: dr. Friedl Katalin

Számítástudományi és Információelméleti Tanszék

Miért foglalkozzunk bioinformatikával?

- Területek: egészségügy, gyógyszergyártás, környezetvédelem, agráripar.
 - ► Küzdelem betegségek, globális felmelegedés, éhínség ellen.
- Sok problémára nincs hatékony, egzakt algoritmus.
- Kvantuminformatika: új számítási modell = kvantum Turing-gép.

Gyógyszergyártás = A rossz lyukak betömése.

(a) Protein folding (Hemoglobin)

(b) Molecular docking

Protein folding

- Proteinek = Emberi szervezet építőkövei.
- Feladataik: jelzés (inzulin), szállítás (hemoglobin), metabolizmus (enzimek), stb.
- Felépítésük: 20 lehetséges aminosavból, hosszú lánc (elsődleges struktúra).

Met Asp Arg Val Gly Ile Lys Val Asp N-terminus Phe Ala Leu Gln Ser Leu Lys Leu

Proteinek 4 szintű szerkezete

Proteinek 4 szintű szerkezete

Dill-féle HP modell

- Egyszerűsített modell, gyakorlatban jól használható.
- Aminosavak csoportosítása:
 - ▶ H = Hidrofób = Apoláris = Nem szereti a vizet.
 - ▶ P = Poláris = Hidrofil = Szereti a vizet.
 - Sejtben víz veszi körül → kívül P, belül H.
- Térbeli elhelyezkedés:
 - 2D vagy 3D rács pontjaiba.
 - Beágyazás jósága = egymás melletti H-H párok darabszáma.
- Feladat: maximalizálás → bizonyítottan NP-nehéz (Hamilton-kör).

HP lánc beágyazása rácsba

В

(a) Beágyazás 2D rácsba

(b) Beágyazás 3D rácsba

H feketével, P fehérrel jelölve

Molecular docking

- Emberi test működése = kémiai reakciók \rightarrow enzimek katalizátorok.
- ullet Betegség = rossz kémiai reakciók o gyógyszer = enzim lyuk (kötési hely) betömése.

Molecular docking

- Keressük a lyukba passzoló kulcsot.
- Mindkét 3D felület modellezése gráffal:
 - ► Csúcsok = Atomok
 - ► Élek = Kötések
 - Élsúlyok = Távolságok
- Feldat:
 - ► Részgráfizomorfia → csúcsok megfeleltetése.
 - ► NP-nehéz.
 - Minimalizálandó: megfeleltetett élek súlyeltérésének szórása.

Kvantumos gyógyszergyártás

- Gyógyszergyártási feladat = Betegség o Enzim o Lyuk o Protein struktúra adatbázis o Passzoló protein
- Kell: minimum / maximum keresése rendezetlen adatbázisban.
- Kvantumosan $O(\sqrt{N})$ -ben!

Maximumkeresés kvantumosan (Dill folding)

- Input: $w \in \{H, P\}^*$, |w| = n.
- Kódolás: beágyazás $\rightarrow c \cdot n$ db qubit.
 - ▶ Pl. Kezdőpont = Origó, Lépés = 4 irány = 2 qubit.
 - Probléma: önmagát metsző beágyazásnak is van kódja.
- Feltétel = Orákulum (1.): Kódolás → Helyes-e?
- Adatbázis = Kvantumregiszterben az összes beágyazás szuperpozíciója.
 - Grover: ebben talál a feltételt kielégítő elemet.
- Maximalizálás = Orákulum (2.): Kódolás → Aktuálisnál jobb-e?
 - Grover: talál egy jobbat, többször futtatva maximumig jut, összesen $O(\sqrt{N})$ -ben.

QuSZIT

https://cs.bme.hu/quantum/