ODE Lesson 39: 3D Systems and Higher Dimensions

ODE 1 - Prof. Adi Ditkowski

1 3D Linear Systems

Consider the 3D linear system:

$$\dot{\mathbf{x}} = A\mathbf{x}$$
, where $A \in \mathbb{R}^{3\times3}$

Fundamental Principle: The behavior is completely determined by the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ of A.

- \bullet Real eigenvalues $\rightarrow exponential behavior Complex$ $pair <math display="inline">\rightarrow rotation in a plane$
- All three eigenvalues cannot be complex (odd dimension!)

2 Classification of 3D Equilibria

Classification 1 (3D Equilibrium Types).

Type	Eigenvalues	Stability	Behavior
Stable Node	λ_i j $\theta(allreal)$	Asymp. Stable	All trajectories converge
Unstable Node	$\lambda_i \not \in \theta(allreal)$	Unstable	All trajectories diverge
Saddle (1-2)	1 pos., 2 neg.	Unstable	1D unstable, 2D stable man-
			ifold
Saddle (2-1)	2 pos., 1 neg.	Unstable	2D unstable, 1D stable man-
			ifold
Spiral-Node (S)	1 real neg., 2 complex (Re<0)	Asymp. Stable	Spiral in plane, converge
			perpendicular
Spiral-Node (U)	1 real pos., 2 complex (Re>0)	Unstable	Spiral out plane, diverge
			perpendicular
Spiral-Saddle	1 real, 2 complex (mixed signs)	Unstable	Spiral in one direction, es-
			cape another
Center-Line	$1 \ real = 0, \ 2 \ pure \ imag.$	Marginally Stable	Circles in plane, line of
			equilibria

3 Invariant Manifolds

Definition 1 (Stable, Unstable, and Center Manifolds). For an equilibrium at the origin with eigenvalues $\{\lambda_i\}$: Dimensions :dim (E^s) + dim (E^u) + dim (E^c) = 3

Theorem 1 (Manifold Dynamics). • Trajectories in E^s approachoriginas $t \to \infty$

- Trajectories in E^u approachoriginas $t \to -\infty$
- Trajectories in E^cmaybeperiodicorstationary

4 Visualization Techniques

4.1 Projection Methods

Standard Projections:

- **xy-projection**: View from above (x, y, 0)
- xz-projection: View from side (x, 0, z)
- yz-projection: View from front (0, y, z)

Each projection shows 2D "shadow" of 3D dynamics

Example 1 (Projection Analysis). System with $\lambda_1 = -1$, λ_2 , $3 = -0.5 \pm 2i$:

- xy-projection: Spiral (from complex pair)
- xz-projection: Node-like (real eigenvalue dominates)
- yz-projection: Pure spiral (complex pair only)

4.2 Poincaré Sections

Definition 2 (Poincaré Section). A **Poincaré section** is a lower-dimensional slice through phase space. For a 3D system, choose a 2D surface Σ and record intersection points of trajectories with Σ .

Poincaré Map Reveals:

- Fixed point $\rightarrow PeriodicorbitClosedcurve \rightarrow Quasi periodic(torus)$
- Strange pattern $\rightarrow ChaosNopattern \rightarrow Transientbehavior$

5 Examples of 3D Systems

Example 2 (Complete 3D Analysis). Consider the matrix:

$$A = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Step 1: Eigenvalues are $\lambda_1 = -2$, $\lambda_2 = -1$, $\lambda_3 = 3$

Step 2: Classification: Saddle (2-1 type)

Step 3: Manifolds:

• $E^s = span\{e_1, e_2\}$ (xy-plane), $\dim(E^s) = 2E^u = span\{e_3\}$ (z-axis), $\dim(E^u) = 1$ Step 4: Behavior: Trajectories spiral toward xy-plane, then escape along z-axis

Example 3 (Spiral-Node System).

$$A = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -1 & 4 \\ 0 & -4 & -1 \end{pmatrix}$$

Eigenvalues: $\lambda_1 = -3$, $\lambda_{2,3} = -1 \pm 4i$

Classification: Stable spiral-node - Exponential decay along x-axis (rate = 3) - Spiral decay in yz-plane (rate = 1, frequency = 4)

6 Higher Dimensions (n ; 3)

Classification in n-Dimensions: For $\dot{\mathbf{x}} = A\mathbf{x}$ with $A \in \mathbb{R}^{n \times n}$:

- Count eigenvalues with $Re(\lambda) < 0$: $n_s(stable directions) Count eigenvalues with <math>Re(\lambda) > 0$ 0: $n_u(unstable directions)$
- Count eigenvalues with $Re(\lambda) = 0$: $n_c(centerdirections)Check : n_s + n_u + n_c = n_s$

Classification 2 (Stability in Higher Dimensions). $i \ 0 Unstable : Atleastone Re(\lambda_i) \ i \ 0$

- Asymptotically Stable: All $Re(\lambda_i)$
- Marginally Stable: All $Re(\lambda_i) \leq 0$, some = 0

Numerical Visualization Tools 7

Essential Plotting Techniques:

- 1. **3D Trajectory Plots**: Direct visualization in 3D
- 2. Multiple 2D Projections: Show different viewpoints
- 3. **Animation**: Time evolution along trajectories
- 4. **Isosurfaces**: Level sets of conserved quantities
- 5. Vector Field Slices: Direction fields on 2D slices

8 Special Phenomena in 3D

Definition 3 (Limit Cycle). A *limit cycle* is an isolated closed orbit. In 3D, nearby trajectories can spiral toward it (stable) or away (unstable).

Definition 4 (Torus Attractor). Quasi-periodic motion on a 2D torus surface in 3D phase space. Occurs with two incommensurate frequencies.

Definition 5 (Strange Attractor). A fractal set in phase space exhibiting sensitive dependence on initial conditions (chaos). Example: Lorenz attractor.

9 The Lorenz System (Preview)

Example 4 (Lorenz Equations).

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = rx - y - xz$$

$$\dot{z} = xy - bz$$

For $\sigma = 10$, b = 8/3, r = 28: Chaotic attractor! Equilibria:

- Origin: Always exists
- $C_{\pm} = (\pm \sqrt{b(r-1)}, \pm \sqrt{b(r-1)}, r-1)$ for r > 1

10 Exam Strategy for 3D Problems

Prof. Ditkowski's 3D Problem Approach:

- 1. State system dimension explicitly
- 2. Find ALL eigenvalues (check: product = det, sum = trace)
- 3. Classify equilibrium type precisely
- 4. State manifold dimensions: "2D stable, 1D unstable"
- 5. Describe behavior in words
- 6. Optional: Sketch ONE key projection
- 7. Never attempt full 3D drawing

Common 3D Errors:

- Forgetting complex eigenvalues come in pairs
- Wrong manifold dimension count
- Trying to visualize 4D+ systems
- Missing the third eigenvalue
- Not checking $\sum \lambda_i = \operatorname{tr}(A)$