

FARRAGUT MUNICIPAL PLANNING COMMISSION AGENDA

November 19, 2020

7:00 p.m.

This meeting can be viewed live on the Farragut YouTube Channel, www.townoffarragut.org/livestream, Charter Channel 193, and TDS Channel 3." The meeting will be held virtually, authorized by Governor Lee's executive orders regarding the COVID19 pandemic.

Meeting comments may be emailed to <u>comments@townoffarragut.org</u> and must be received by 12:00 p.m. on November 19 to be included in the record of the meeting. Anyone that wishes to provide comments <u>must include their name and address</u>. For questions please e-mail Mark Shipley at <u>mshipley@townoffarragut.org</u> or Bart Hose at <u>bhose@townoffarragut.org</u>.

- 1. Approval of agenda
- 2. Approval of minutes October 15, 2020
- Discussion and public hearing on a re-subdivision plat involving nine lots in the Easton Park Subdivision located on the north side of Turkey Creek Road across from a portion of Anchor Park, Zoned R-3, 2.37 Acres (SITE, Incorporated, Applicant)
- Discussion and public hearing on a final plat for the Ivey Farms Subdivision, Unit 1, Phase 1, located on the north side of Union Road, Zoned R-1/OSR, 6.26 Acres, 26 Lots (SITE, Incorporated, Applicant)
- Discussion and public hearing on a site plan for a parking lot addition at the St. Elizabeth's Episcopal Church, 110 Sugarwood Drive, Zoned C-1, 4.54 Acres (Urban Engineering, Inc., Applicant)
- Discussion and public hearing on a site plan for the property located at 13036 and 13038 Kingston Pike, Zoned C-1, 2 Acres (GBS Engineering, Applicant)
- Discussion and public hearing on a concept plan for the Meadows on McFee, 933 and 1013 McFee Road, Zoned R-1/OSR, 32 Acres, 59 Lots (Homestead Land Holdings, LLC, Applicant)
- Discussion and public hearing on a request to amend Appendix A Zoning, Chapter 3., Specific District Regulations, Section XII., General Commercial District (C-1), B., 3., as it relates to the outdoor display and or storage of general farm implements and lawn care

equipment, riding lawn mowers, and related accessories (Farragut Lawn and Tractor, Applicant)

- Discussion on a rezoning of property situated around the eastern intersection of McFee Road and Boyd Station Road, Parcels 50, 50.01, 54.01, and 9.01, Tax Map 162, 12611 Boyd Station Road, from General Single-Family Residential (R-2) to Open Space Mixed Residential Overlay (R-1/OSMR), 131.25 Acres (OBO Homestead Land Holdings, Applicant)
- 10. Discussion and public hearing on a request to amend the future land use map in the Comprehensive Land Use Plan Update for a portion of Parcel 003.19, Tax Map 143 (a portion of the property referenced as 133 Concord Road) associated with the Farragut Town Center at Biddle Farms project from Medium Density Residential to Town Center (CHM, LLC, Applicant)
- 11. Discussion and public hearing on a request to amend the Farragut Zoning Map in association with the Farragut Town Center at Biddle Farms project, 11230 and 11240 Kingston Pike and 133 Concord Road, Parcels 3.02, 3.03, 3.10, and a portion of 3.19, Tax Map 143, from General Commercial (C-1) and General Single-Family Residential (R-2) to Planned Commercial Development (PCD), 43.63 Acres (CHM, LLC, Applicant)

12. Approval of utilities

13. Citizen Forum

Planning Commission Meeting Public Comment Protocol

The Planning Commission welcomes and invites Farragut residents to participate in public meetings.

At the end of each business meeting, there will be time reserved for public comment under the Citizen Forum agenda item. If you are interested in speaking, please fill out a blue comment card and turn it in to the Planning Director or other designated staff member. For virtual meetings, comments may be emailed to comments@townoffarragut.org and must be received by 12:00 p.m. on the date of the meeting to be included in the record of the meeting. Anyone that wishes to provide comments must include their name and address. This time is set aside specifically for comments on items that are not on the Planning Commission regular agenda for the meeting. Each speaker will be given five (5) minutes to speak on his/her topic.

During the regular agenda portion of the meeting there may be an allowance for public comment for each agenda item. The Chairman may recognize individuals for public comment based on the following guidelines.

 The Chairman shall maintain and control the meeting to provide a professional and objective environment;

- 2. Any Farragut resident, property owner, or business owner interested in speaking should fill out a blue comment card stating which agenda item they would like to comment on and turn in to the Planning Director or other designated staff member;
- Speakers shall come to the podium and identify themselves by name and street address;
- Public comment shall be limited to five (5) minutes per individual. Time for public comment may be amended at the discretion of the Chairman. Time is not transferable to other speakers;
- Speakers should strive to avoid redundancy; each speaker should have their own original viewpoint;
- 6. Comments shall address issues, not individuals or personalities;
- Comments may support or oppose issues or measures, but the motives of those with differing views shall not be questioned or attacked;
- 8. Personal attacks and malicious comments shall not be tolerated;
- 9. An applicant, and/or their representative(s), for an item on the regular agenda shall be afforded the time necessary to present their request and respond to questions. The five (5) minute limitation shall not apply. However, the Chairman may ask an applicant to stay on point in order to facilitate the efficiency of the meeting.

Each speaker will be asked if they can agree to abide by the Comment Protocol. If so, please be prepared to speak when your name is called.

MINUTES FARRAGUT MUNICIPAL PLANNING COMMISSION

October 15, 2020

MEMBERS PRESENT

MEMBERS ABSENT

Rita Holladay, Chairman
Ed St. Clair, Vice-Chairman
Ron Williams, Mayor
Louise Povlin
Scott Russ
Jon Greene
Betty Dick
Noah Myers
Michael Bellamy

Staff Representatives: Mark Shipley, Community Development Director

This meeting was conducted through a remote Webex session due to Governor Lee's orders and the Knox County Health Department's orders regarding the COVID-19 pandemic.

Chairman Holladay called the meeting to order at 7 p.m. and provided background on why the meeting was being conducted through Webex and where it may be viewed.

1. Approval of agenda

Staff recommended approval of the agenda as submitted.

A motion was made by Mayor Williams to approve the agenda as presented. Motion was seconded by Commissioner Povlin and motion passed 9-0 through a roll call vote.

2. Approval of minutes – September 17, 2020

Staff recommended approval of the minutes as submitted.

A motion was made by Mayor Williams to approve the minutes as submitted. Motion was seconded by Commissioner Myers and motion passed 9-0 through a roll call vote.

 Discussion and public hearing on a request for a comcast cable line installation along the south side of Parkside Drive west of JCPenney and terminating at 11416 Grigsby Chapel Road (Fulghum, MacIndoe and Associates, Applicant)

Staff reviewed this item and recommended approval subject to the following conditions:

 Please obtain a right of way permit from the Town and satisfy any field related requirements from the engineering staff;

FMPC Minutes October 15, 2020 Page 2

- Please restore any affected areas to their pre-construction condition and ensure that all affected areas are completely stabilized;
- 3) Please notify any affected property owners;
- 4) Please ensure that proper traffic control measures are in place; and
- Please provide an as-built of the fiber installation to the Town once the project is complete.

After an initial motion and second was made, commissioners discussed this item and Commissioner Myers asked if a letter of credit should be provided similar to what has been required for some other recent utility projects. Based on feedback from other commissioners, a motion was made by Commissioner St. Clair to follow staffs' recommendation with the exception of adding as a 6th condition "Providing a letter of credit to ensure any disturbed areas are corrected with the dollar amount to be determined by the Town Engineer." Motion was seconded by Mayor Williams and motion passed 9-0 through a roll call vote.

Discussion and public hearing on a re-subdivision plat for the property located at 204 Boring Lane, Parcel 074.00, Tax Map 142, Zoned R-1, 7.57 Acres (Benjamin Moorman, Applicant)

Staff reviewed this item and noted that the applicant has requested a variance from the Subdivision Regulations to not construct a pedestrian facility along the Boring Road frontage. Staff indicated that separate action would be needed on the variance. Staff recommended approval of the variance due to the minor nature of the subdivision and the amount of frontage along which the pedestrian facility would be required. Approval of the variance would also be consistent with similar minor re-subdivisions on non-local streets that have been approved by the Planning Commission. Staff indicated that they have verified that a plat note has been added to indicate that the pedestrian facility requirement will be re-visited by the Planning Commission if any additional re-division of the property is proposed.

Commissioners discussed the variance request and Commissioner Myers asked that the location of the property be clarified by including a reference to the tax map and parcel. Staff indicated that this would be updated in the minutes. A motion was made by Commissioner Povlin to approve the variance for the reasons noted by staff. Motion was seconded by Commissioner St. Clair and motion passed 9-0 through a roll call vote.

Staff then recommended approval of the plat subject to obtaining required signatures.

A motion was made by Commissioner Povlin to follow staffs' recommendation. Motion was seconded by Commissioner Myers and motion passed 9-0 through a roll call vote.

5. Discussion and public hearing on a rezoning of the property at 933 McFee Road from Agricultural (A) to Open Space Residential Overlay (R-1/OSR), 7 Acres (Rackley Engineering, Applicant)

Staff reviewed this item and recommended approval of Resolution PC-20-15 which recommends approval of Ordinance 20-22.

A motion was made by Commissioner Povlin to follow staffs' recommendation. Motion was seconded by Commissioner St. Clair and motion passed 9-0 through a roll call vote.

FMPC Minutes October 15, 2020 Page 3

6. Discussion and public hearing on an amendment to the <u>Farragut Municipal Code</u>, Appendix A., Zoning, Chapter 4., Section XXIX, - Grand Opening Special Events Permit, to provide for different sign related provisions (Town of Farragut, Applicant)
Staff reviewed this item and recommended approval of Resolution PC-20-16 which recommends approval of Ordinance 20-23.

Commissioners reviewed the item and Commissioner Bellamy asked that Section C., 8. be amended to change the phrase "good condition" to "same condition as issued." Staff and commissioners were in agreement with the proposed modification. A motion was made by Commissioner Povlin to approve Resolution PC-20-16 with the modification recommended by Commissioner Bellamy. Motion was seconded by Commissioner Myers and motion passed 9-0 through a roll call vote.

7. Discussion on a request to amend Appendix A – Zoning, Chapter 3., Specific District Regulations, Section XII., General Commercial District (C-1), B., 3., as it relates to the outdoor display and or storage of general farm implements and lawn care equipment, riding lawn mowers, and related accessories (Farragut Lawn and Tractor, Applicant) For discussion purposes only.

8. Approval of utilities

None

9. Citizen Forum

Staff read into the record citizen comments that were submitted for items that were not on the agenda.

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Bart Hose, Assistant Community Development Director

SUBJECT: Discussion and public hearing on a re-subdivision plat involving nine lots in the Easton

Park Subdivision located on the north side of Turkey Creek Road across from a portion of

Anchor Park, Zoned R-3, 2.37 Acres (SITE, Incorporated, Applicant)

INTRODUCTION AND BACKGROUND: This item involves the re-subdivision/re-platting of nine (9) lots in Unit 2 of the Easton Park Subdivision. The nine (9) existing lots are being combined to form five (5) lots. The number of lots is being reduced to allow the developer to construct the remaining homes in the subdivision without residential fire sprinkler systems. Under the Town's current fire code, a subdivision with more than 30 lots and only a single point of ingress/egress must utilize residential fire sprinklers.

RECOMMENDATION: Included in your packet is the applicant's revised plat. Staff will make a recommendation at the meeting based on whether and how the applicant has addressed all initial staff comments.

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Bart Hose, Assistant Community Development Director

SUBJECT: Discussion and public hearing on a final plat for the Ivey Farms Subdivision, Unit 1, Phase

1, located on the north side of Union Road, Zoned R-1/OSR, 6.26 Acres, 26 Lots (SITE,

Incorporated, Applicant)

INTRODUCTION AND BACKGROUND: This item involves the final plat for Unit 1, Phase I of the Ivey Farms Subdivision located off Union Road. The plat includes 26 building lots, Baltica Lane, a connection/extension to Pecos Road, and the entranceway section of Ivey Farms Road from Union Road to the traffic circle within the development and Baltica Lane.

DISCUSSION: The developers of this subdivision will be required to complete construction of the traffic circle and entrance along Union Road before any building permits are issued. In addition, the connection to Pecos Road will not be opened until one of the following two things takes place: 1. the number of building permits issued in Phase I reaches 75% of the total buildable lots in that phase; or 2. the final plat for Phase 3 of the Ivey Farms Subdivision is recorded.

RECOMMENDATION: Included in your packet is the applicant's revised plat. Staff will make a recommendation at the meeting based on whether and how the applicant has addressed all initial staff comments.

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Bart Hose, Assistant Community Development Director

SUBJECT: Discussion and public hearing on a site plan for a parking lot addition at the St. Elizabeth's

Episcopal Church, 110 Sugarwood Drive, Zoned C-1, 4.54 Acres (Urban Engineering, Inc.,

Applicant)

INTRODUCTION AND BACKGROUND: This request involves a site plan for a parking lot addition at the St. Elizabeth's Episcopal Church. The addition includes 24 new parking spaces located near the church's entrance off Sugarwood Drive. The property is physically constrained with most of the parking to the north toward Kingston Pike. This project is intended to provide for some additional parking that would be closer to the church entrance.

RECOMMENDATION: Included in your packet is the applicant's revised site plan. Staff will make a recommendation at the meeting based on whether and how the applicant has addressed all initial staff comments.

SITE DEVELOPMENT PLANS

U.F.I. PROJECT NO. 2005014

THE DIOCESE OF EAST TENNESSEE ST. ELIZABETH CHURCH

SITE ADDRESS: 110 SUGARWOOD DRIVE, KNOWVILLE, TENNESSEE 37934 CLT MAP 152, PARCEL 22.02

LOCATION MAP

OWNER / DEVELOPER: THE DIOCESE OF EAST TENNESSEE ST. ELIZABETH'S EPISCOPAL CHURCH 110 SUGARWOOD DRIVE

KNOXVILLE, TN 37934 (865) 671-2500

SITE ENGINEER: URBAN ENGINEERING, INC. CHRIS SHARP 11852 KINGSTON PIKE FARRAGUT, TENNESSEE 37934 (865) 966-1924

SPECIFICATIONS

EXCEPT WHERE DIRECTED OTHERWISE BY THE PLANS, WORKMANSHIP AND MATERIAL (BUT NOT MEASUREMENT AND PAYMENT) FOR THIS PROJECT SHALL BE IN ACCORDANCE WITH THE FOLLOWING SPECIFICATIONS AND STANDARDS

ELECTRICAL — AS DIRECTED BY LIGHTS

GAS — AS DIRECTED BY KUB
WATER — AS DIRECTED BY FIRST UTILITY DISTRICT

CABLE TV — AS DIRECTED BY CHARTER TELEPHONE — AS DIRECTED BY TOS

TOWN OF FARHAGUT - ALL APPLICABLE TOWN REGULATIONS AND ORDINANCES

SHEET INDEX

TITLE	SHEET
TITLE SHEET	C-0
SITE PLAN	G-1
GRADING PLAN	G-2
EROSION AND SEDIMENT CONTROL PLAN	C-3
PAVER DETAILS	C-4
SITE ELECTRICAL PLAN	ES100
SITE PHOTOMETRIC PLAN	ES101

SHEET C-0 - 1 OF 7

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 17 of 393 PageID #: 1426

SYM	CATALOG NUMBER		PERFORMANCE		MOUNTING	DESCRIPTION	
	COMPANY	MODEL NUMBER	WATIS	TEMP	DELIVERED LUMENS		
54	1/THORSE	POLICES AND THE PRESS WOLD STA 227 FE PIENO POLICES 25 SECTION	·	4604	(8)00	aspect.	ONE PLUM UNIQUED DAMA LIBERT BYTE A. CHITCHICHON FIAL DUROFF BALZIN PROTOCOLL MACHINERY SERVICE
×	irr-cone.	FICTING HIST LED PARKET. WHILE THE PERFORMANCE CONTRACT.	10	eque	1999	arrent	DNE POLICIONATO MEA USAT THE IN- THE DRIBUTURE, YEAR CONTRACT BRAINING STREET COST. AND NOTION COME OF
ρĖ	UTHERW)	PACIFIED SERVED SELECTION OF PACIFIC PROPERTY	OHA:	400XX	15000 d/a	SPECIE	WO WORLD WINDOWS THAT WAS WON THE MICH. SURGER BUILDING PROTOCKLE AND RESIDENCE
-871	; s/99000041	POLICE DESTRUCTION OF THE PARTY POLICE DESCRIPTION	(25)	10005	1099	OWNER	ONE POLE MOUNTED HER CIGHT TYPE I CHEMICHER FLE COMMY BUILDING PHOTOCEL AND NOTION SOURCE
20	TENNER.	DESCRIPTIONS FOR ANY WAY, MOVED TO ANY THE PERSON OF THE P	12	imus	2.097	ANOTORIOUS	PRECIDENTAL PROPERTY AND A STEEL AND A STEEL AND A SECOND AND A STEEL AND A SECOND ASSESSMENT ASSESSME

PARKET HAND, BY STATESTERS OF ACCUSED AND THE SECOND FOR PROMISE OF SECOND FOR DEEP ACCOUNTIES AND MAY ARE ASSOCIATED WITH IMPROVED ACCOUNTING OF ACCOUNTING ACCOUNTI

	LEGEND
2000	JESTON
-111-1-1	HOW MAY THAT WITH STORE SHOPE HAVE HOUSE WAS DO CHECK CARRIED CHECKER WHITE WITH THE RESIDENCE WASHINGTON.
	SZVEC KINC
	INSTRUCTION WIND
D-O	CAMP PEST-SPOIL BENTALL, METTE TO SEE LEAD FORTHER PERMICALLY

DESCRIPTION OF A STATE OF THE S

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Bart Hose, Assistant Community Development Director

SUBJECT: Discussion and public hearing on a site plan for the property located at 13036 and 13038

Kingston Pike, Zoned C-1, 2 Acres (GBS Engineering, Applicant)

INTRODUCTION AND BACKGROUND: This request involves a site plan for the development of two (2) buildings located at 13036 and 13038 Kingston Pike. The site includes two (2) existing lots with shared access, parking, and internal circulation. The development also includes thru access to the Cool Sports development located immediately to the south, and provisions for cross-lot connectivity to the east and west.

RECOMMENDATION: Included in your packet is the applicant's revised site plan. Staff will make a recommendation at the meeting based on whether and how the applicant has addressed all initial staff comments.

Site Development Plans

13036 & 13038 Kingston Pike

Owned by: 36-38 Development

12748 Kingston Pike Knoxville, Tennessee 37934 (865) 675-3823 Attn: Mr. Noah Myers Email: Noah@myers-bros.com

13036 & 13038 Kingston Pike, CLT Map 150, Parcel 085 & 08401 Farragut, Tennessee, 37934

		DRAWING INDEX	REVISIONS
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	C0.0	Cover Sheet	11/06/2020 😽
02	ALTA	ALTA Survey	07/21/2018
03	C1.0	ES & PC - Initial Phase	11/06/2020
04	C1.0 C1.1 C1.2 C1.4 C3.0 C3.0 C3.0 C5.0 C5.0 C5.0 C7.1	ES & PC - Final Phase	11/06/2020 ¥ 11/06/2020 ¥
05	CLZ	SWPPP	10/01/2020
06	C1.3	SWPPP	10/01/2020
07	C1.4	SWPPP	10/01/2020
08	C3.0	Overall Site Plan	11/06/2020 \\ 11/06/2020 \\ 11/06/2020 \\ 11/06/2020 \\ 11/06/2020 \\ 11/06/2020 \\ 11/06/2020 \\ 11/06/2020 \\
09	C3.1	Site Layout Plan	11/06/2020
10	C4.0	Site Grading Plan	11/06/2020 <u>Y</u>
11	C5.0	Site Paving Pian	11/06/2020
12	C6.0	Site Utility Plan	11/06/2020
13	C7.0	Site Landscaping Plan	
14	C7.1	Site Landscaping Plan	10/01/2020 11/06/2020
15	C8.0 C9.0	Detail Sheets	
16	C9.0	Detail Sheets	10/01/2020
		Exterior Elevations	10/01/2020
18		Exterior Elevations	10/01/2020

- 1. IF AN ANTENNA IS INSTALLED IT SHALL BE SCREENED PER
- HVAC SYSTEMS SHALL BE ROOF MOUNTED AND SCREENED PER TOWN OF FARRAGUT REQUIREMENTS.

Size of Building (Sq. Ft.)	5,900 SF
Number of stories	3
Construction Type	V-B
Gecupancy Type	В
Chie hour protocaed	NO
Sprinkled.	NO
Mox. Building Hoight	XX-X*

Size of Hailding (Sq. Ft.)	6,840.57
Number of stories	1
Construction Type	V-B
Occupancy Type	8
One hour protected	NO
Sprinkled	NO:
Max. Building Height	XX-X

SHEET 1 OF 18

1313 Kalmia Road Knoxville, TN 37909 Phn: 865.566.0185 Fax: 888.485,7005

REV.	DESCRIPTION		BY	DATE
REV	Revised per TOF Comm	enta	1349	13/06/2020
+			-	
Ġ	- 3			
	144		74	(4)
Ψ',	(35)		(% II	(+)
PRO	JECT NAME: 13036 & 13038 Kingston	Pike DRAWN B	Y: THE	SHEET NO:
	WING TITLE Cover Sheet ATION: 13036 & 13038 Kingston			
1300	Knexville, Tn 37934 CLT Map 151 Parcel Numbers 085 & 08401	FILENAM	E 2204	C0 0
		RS & 08401 JOH NUME	3ER 2204 - C0.0	_C0.0
Own	36-38 Development	ISSUE DAT	FE: 10/01/2020	

CITATIONS IN PARENTHESIS INDICATE SECTIONS OF THE CURRENT COP

SWPPP REQUIREMENTS (3.0)

1.1 HAS THE SAPPP TEMPLATE BEEN PREPARED BY AN INDIVIDUAL THAT HAS THE FOLLOWING

1. I HAS THIS SWAPP TRAFFLE BEEN PREMARED BY AN INDIVIDUAL THAT THAS THE FOLLOWING CERTIFICATIONS AS A THAT THAT THE PROPERTY OF THE PROPERTY OF THE OFFICE AND THAT A THAT THE PROPERTY OF THE OFFICE AND THAT THE OFFICE AND THE OFFICE AND THAT THE OFFICE AND THAT THE OFFICE AND THAT THE OFFICE AND THE OFFICE AND THAT THE OFFICE AND T

1.2 DOES THE EPSC PLANS INVOLVE STRUCTURAL DESIGN, HYDRAULIC, HYDROLOGIC OR ENGINEERING CALCULATIONS FOR EPSC STRUCTURAL MEASURES (SEDIMENT BASINS, ETC.) 7 (3.1.1)

NGINEERING CALCIA

1.3 OO THE PREVECT STORMANTER OUT ALLS DISCHARGE INTO THE FOLLOWINGT (6.41)

YES NO (CHECK ALL THAT WITH YES LOW)

1.3.1 MATERS WITH LAWARDASE FAR AUBIETERS (0.00) FOR SELTATION OR HABITAT
A. TRANSTON

1.3.2 THEN EXCEPT COME. WATERS

IF YES, HAVE THE EPSC PLANS BEEN PREPARED BY AN INDIVIDUAL WHO HAS COMPLETED TOECLEVEL

TYES | NO | WA BATAL AND

IF YES, HAS THE SWPPP TEMPLATE BEEN PREPARED BY AN INDIVIDUAL WHO HAS COMPLETED TOEC LEVEL III NO NA 15.4.130

NOTE: THE RECEIVAND WATER IS AN UNIVAMED TRISUTARY OF LITTLE TURKEY CREEK DRAINABLE BASIN, WHICH IS LITTLE AS IMPAIRED FOR SEDIMENTATION SILTATION.

2 SITE DESCRIPTION AS IT 2.1 PROJECT LIMITS TO REPER TO ES & PC PLANS, DRAWINGS CLD, CL1, AND CL2. (2.11 g)

2.2 PROJECT DESCRIPTION (3.5 1 a) 36-38 DEVELOPMENT, 13-36 & 13-358 KINGSTON FIKE KNGKVILLE, TN 87934

2.3 SITE MAPIE: SEE VICINITY MAP ON THIS DRAWING (3.51.g)

2.4 DESCRIPTION OF EXISTING TOPOGRAPHY IS \$1.49: THE EXISTING STE DRAINS SOUTH TOWARDS LITTLE TURKEY CREEK. SEE THE VICINITY MAP ON THIS

2.5 MAJON SOIL DISTURBING ACTIVITIES (2.5.1.b) (CHECK ALL THAT APPLY)

2.5.1 CLEARING AND GRUBBING

2.5.1 CUTTING AND FILLING

2.5.4 FINAL GROUNG AND FILLING

2.5.5 UTLITIES AND FILLING

OTHER (DESCRIBE): CONSTRUCTION OF RETAINING WALLS

ILO TOTAL PROJECT AREA (3 Lt c): APPROXIMATELY 2.002 ACRES

2.7 TOTAL AREA TO BE DISTURBED (3.5.1c). LTN AGRES
IF GREATER THAN SEATERS, HAS THE CONSTRUCTION PROJECT PHASING BEEN SPECIFIED IN SECTION.
SRELOW AND IN THE PLANS (3.5.11). □ □ ▼S. □ ™ №

NA.

2.8 NO MORE THAN 30 ACRES OF ACTIVE SOL DISTURBANCE IS ALLOWED AT ANY TIME DURING THE DOWNSTRUCTION OF THE PROJECT.

2.9 ARE THERE ANY SEASONALLIMITATIONS ON WORKY ☐ VSS ■ NO IF YES, PLEASE CESIONER AND LIST THE CORRESPONDING ES & PC DRAWNIS WHICH PROVIDES HYDROGRAPHIC WAS A PC DRAWNIS WHICH PROVIDES HYDROGRAPHIC.

1 to soil properties (3.0.1.6)(4.1.1) SOIL PROPERTIES FOR THE PRIMARY SOILS ARE LISTED IN THE TABLE BELOW.

SOIL	PROPERTIES	k	
PRIMARY SOIL NAME	HSG	% OF SITE	ERODIBILITY (N. WILLIE)
CORRYTON LORM	è	(64)	0.37
DORRYTON-UDORTHENTS-LIRBAN	8	89.3	0.37
HESKELL SILT LOAM	c	39.2	0.43
100	75	1927	- 1/
-21	¥	125	2.
		- 20	
		- 5	
		177	-

2.10 PROJECT RUNGEF COEFFICIENTS AND AREA PRECENTAGES (3.5.1.6)

AREA TYPE	(AC)	WATERSHED	COEFFICIENT
GRASS	2.002	102	67
(**)		525	2
46		(9)	
1.00		SAL	8
(44)		300	
WEIGHTED CURVE NUMBER OF C-FACTOR			79

AHEA (AC)	% CF WATERSHED	RUNOFF COEFFICIENT
	VARIES	90
2	VARIES	76
- 8	VARUES	74
7.	856	75
T	100	
	ġ.	- VARCES

1. ORDER OF CONSTRUCTION ACTIVITIES (2.5.1.6, 2.5.2.a)

PHASE	DESCRIPTION
INTIAL	CONSTRUCTION EXIT, BUT FENCE, CONSTRUCT REDIVENT BASING
PATTAL	DENOLITION OF EXISTING STRUCTURES, CLEAR AND GRUB SITE
(HTTEN	BEGIN ROUGH GRADING, INSTALL ALL UTLITIES, ESTABLISH BLDG PADS.
INTER	PLACE STONE FOR ASPHALT, PLACE CURES AND ASPHALT BINDER COURSE
FINAL	FINISH FINAL GRADING CONSTRUCT ALL BLOGS AND SIDEWALKS, FINISH ASPH PAVING
FINAL	SURFACE ROUGHING, YOF BOILING, SEEDING AND LAND SCAPING
2.	345

CONSTRUCTION SHALL BE EXCURNING AND STAGED TO WANGE THE EXPOSURE TWO OF COMPAGE OF DEALINED BOLD ARRIVE THE RESERVE TOTION, AND WANGE SET LOOM/ACTION IN OVOICE SHALL BE STARTED URITE THE CONTRACTIONS FALL FOR THE STAGNAD OF THEIR OPENSTRONE, WALLAND THE PARK FOR STAGNIC OF THE WORKER AND FERMINATED FERD RESIDERED. HALL SHALL MAN THE PARK FOR STAGNIC OF THE WORKER AND THE SHARP STAGNIC OF THE PROPERTY AND THE SHAPP SHAP

SPECIAL BIOLIFICINAL REQUIREMENTS (BEE SHEETS (10, C11, NACC 12)
RETALL STABLIZED CONSTRUCTION BATE
RETALL STABLIZED CONSTRUCTION BATE
RETALL STABLIZED CONSTRUCTION BATE
RETALL STABLIZED CONSTRUCTION BATE
RETALL STABLIZED CONSTRUCTION CONTINUES FOR SHEET FLOOR FROM THE STE
RETALL STABLIZED CONSTRUCTION CONTINUE FLANS, OR ANY OTHER BARTHMORE
COURSE SECRET A SOLICH HORN MAY SERVED SHEAT ON BATELLETS HEARTHMORE
COURSE SECRET A SOLICH HORN MAY SERVED SHOOT ON BATELLETS HEARTHMORE
RESIDENCE AND GROSS FORSOLISM AND RESIDENCE HOLD FOR FORSOLISM AND
RESIDENCE AND GROSS FORSOLISM SHOOT FORSOL

2.10 PERFORM FINAL GRADING AND INSTALL BASE STONE 3.11 COMPLETE FINAL PAVING AND SEALING OF CONCRETE

BLAMEST, JOD, ETC.)

3.14 PERMOYE TEMPORARY EROSION CONTROLE AND ACCUMULATED SEDIMENT FROM AREAS
THAT HAVE ESTABLISHED AT LEAST THE PERCENT LIGHTONN PERMANENT VESETATIVE COVER.
3.15 PESTABLIZE AREAS DISTURBED BY REMOVAL ACTIVITIES.

4. STREAM OUTFALL, WETLAND, TOWL AND ECOLOGY IMPORMATION

4.1 STREAM INFORMATION 4.1.1 VIS

CHAIRD CONSTRUCTION ACRONER OSON THE WELLEN AND SECRESS
THE CONSTRUCTION AS TREAMS WHICH THE PROJECT LIMITET
THE CONSTRUCTION OF THE RECENT WHICH THE PROJECT LIMITET
THE CONSTRUCTION OF THE RECENT WHICH EST THAN OR EQUAL TO 1.
THOW MALE DOWN GROWS TO OTHE PROJECT LIMITET SEEN CLASSIFED BY
TOCK AFFECTIONS (CHECK ALL THAT APPLY)
300(IN WITH INAVIALIZE PARAMETERS FOR STATION
300(IN WITH INAVIALIZE PARAMETERS FOR THAT ALL TRATION
BECOMING WITH INAVIALIZE PARAMETERS FOR THE PARAMETERS FOR

RECEIVING WATERS OF THE STATE (3.5.1 kg

	RECEIVING STR	EAM INFORMATION		
NATURAL RESOURCE LABEL	NAME OF RECEIVING NATURAL RESOURCE	MPARED FOR SETATION OR HABITAT ACTERATION (YEE OR NO)	EXCEPTIONAL GUALITY WATERS (YES OR NO)	
1	UNINAMED THE - LITTLE TURNEY OR	YES	но	
2	NOT USED	XX	78	
3	NOTURED	XX	**	
4	NOT USED	XX	XX.	

412 ARE THERE ANY WATER QUALITY RIPARIAN SUFFER ZONES REQUIRED FOR WATERS OF THE STATES (412, 542).

YES NOT NOT NOT THE THANESEES INCLUDED ON DRAWINGS; DRAWINGS CLEANOCL.1

YES, CHECK THE APPROPRIATE BOX BELOW FOR SIZE OF BUFFER
OF FEET FOR IMPARIED AND EXCEPTIONAL WATERS (AVERAGE WOTH PER SIDE WITH A WINNING TO FEET)

A 50 FOOT NATURAL WATER CUALITY PERPANAI BUFFER ZONE ADJACENT TO AND ON BOTH RIDER OF THE RECEINING DTATE STREAM WITH THIS DEBIGNATION BHALL BE! PRESERVED TO THE MAXIMAM DETAIN PRACTICAGE DURING CONSTRUCTION ACTIVITIES AT THE STREET THE 50 FOOT ORTHORNOUS PORT HE WOTH OF THE SUFFER CAMES! CHARLESCO ON A MATERIAL WORTH ASSIS AT A FORDERT, AS LOWAR AS THE WHINDAY WIDTH OF THE BUFFER ONE IS MORE THAN 30 FEET AT ANY MEASURED LOCATION. IF THE CONSTRUCTION SITE ENCOMPASSES BOTH SIDES OF A STREAM, BUFFER AVERAGING CAR BE APPLIED TO SOTH SIDES, BUT MUST BE APPLIED INDEPENDENTLY.

O 30/FEST FOR ALL OTHER STREAMS (AVERAGE WIGH PER SIDE WITH A MINNUM OF 15 FEET)

BIGG. BUT MUST BE APPLED PROPRINCENTLY.

1. ARE THIRD ANY WATER QUALITY REMAINS BUFFER ZUNES NOT REQUIRED FOR STATE WATERS DUE TO A TICE. AREA?

1. YES. 39 10

1. YES. 39 10

1. SECOND AND THE PROPRINCE STATE STATE STATE WATERS DUE TO MUST AND THE STATE WATERS DUE TO MUST AND THE STATE S BE CICCUMENTED WITHIN THE SWYPP. THE ENVIRONMENTAL AND ROADWAY ESS OF DIVISIONS SHALL REVIEW AND APPROVE THE SECSOON OF THE SWYPP REPORTED BY THE BANCE OF THE STITE PROCEEDS, UNLESS PREVIOUSLY EXEMINY THE WITES CO. FVINERE ISSUED, AMANUS REQUIREMENTS WILL PREVAIL IF IN COMPLICT WITH THESE BUFFER ZONE REQUIREMENTS.

42 RECEIVING WATERS OF THE UNITED STATES (WOTUS) (EPHEMERAL)

WILL CONSTRUCTION MADOR ETIOSION AND SECURENT CONTROLS IMPACT ANY WICTUS (EPI-EMERAL)? [] YES [] NO

RECEIVIN	G WATERS (EPHEMERAL) INF	DRMATION	
WOTUS LABIN.	LOCATED WITHIN PROJECT LIMITS (YES OR NO)	LOCATED WITHIN 15FT OF TH PROJECT LIMITS (YES OR NO)	
DHIAMED THE -LITTLE TURKEY OR	YES	NO NO	

42.1. ARE WATER QUALITY RIFARIAN BUFFER ZONES REQUIRED FOR WOTUS? (4.12)

IF YES, A 15 FOOT NATURAL WATER QUALITY RIPARIAN BUFFER ZONE ACUACIENT TO AND ON SOTH SIDES OF THE RECEIVING EPHEMBRAL STREAM ELECTRIFIED AS A WATURS REPRESENDED TO THE U.S. ARMY ONEND CE FROMERIES QUITACLE OR THE ENAFORMETIAL PROTECTION AGENCY SHALL SE PRESENCED TO THE MAXIMUM EXTENT WACTICABLE DIRENG COMMITMENT OF THE MITTER ATTHE SITE.

IF YES, THEY HAVE BEEN INCLUDED ON PLAN SHEETING.

#2.3 ARE THERE ANY WATER CLIALITY RIPARIAN BLETER ZONES NOT REQUIRED FOR WOTUS (SPHIMER AL) DUE TO A USACE PERMITT ☐ YES ■ NO

43 OUTFALL INFORMATION

AS A RECOUNT ASHED EQUIVAENT MANUFACTION CONTRACT INFORMATION.

13. INVESTIGATION OF THE PROPERTY OF THE PROPERTY AS A THE PROPERTY OF A PROPERTY AS A THE PROPERTY OF A PROPERTY AS A WHITE PROPERTY OF A PROPERTY AS A WHITE PROPERTY OF A PROPERTY AS A PROPERTY OF A PROPERTY AS A PROPERTY OF A PROPERTY AS A

OF TEN ACRES OR MORE FOR AN OUTFALLISH THAT DOES NOT DISCHARGE TO A STATE OF ENGLISH OF ENGLISHING THAT OF THE ACRES OF ENGLISHING THAT OF ENGLISHING CONTROL MASS THAT PROVIDED STREAMED FOR ACCURATED MASS THAT PROVIDED STREAMED FOR ACCULATED VALUE OF RUNGEF FROM A WARMAN AVEAUGA-HOUR STORM EVENT, SHALL BE PROVIDED UNTIL FINAL STABLISATION OF THE STEEL (5.3.3.3).

OR
OF THE ACRES OF MORE FOR AN OUTFALL(S) THAT DESCRIPTION STATES THROWN
HITTH MONANCING PROMISE FOR AN OUTFALL(S) THAT DESCRIPTION STATES A STATE STREAM
HITTH MONANCING PROMISE FOR A STATES AND A STATES AND A STATES
HITTH MONANCING PROMISE FOR A STATES AND A STATE

A A WATER AND INFORMATION

NO INCOMMENTAL WAS THE PROBLEM AND SEGMENT CONTROLS MIPACT ANY WETLANDS?

YET IN THE STRUCTURE POOR WEAGURES AVEILED HOLLDED IN THE TOTAL PROJECT MIPACTS AND BY THE WATER QUALITY PERMYS

	WETLAND INFORMATION	
VALITANIO LABRE	TEMPORARY IMPACTS (AC)	PERMANENT IMPACTS (AC)
N/A	N/A	1WA

1. IS THIS PROJECT LOCATED IN THE HIGH WATERSHED THAT MAINTAINS AN EIRA APPROVED THAT MAINTAINS AN EIRA APPROVED THAT MAINTAINS AN EIRA APPROVED THAT A TRANSITION OF THE APPROVED THAT A TRANSITION OF THE APPROVED THAT A WASTELDAD AS IN THAT EIRA THE PRODECT HAVE A TRIEST CHICANANCE TO A 305(6) LISTED STREAM FOR STATION OF HARITA ALTERATION OF THE CONFILL TATION LETTER BEEN SUBMITTED RECEIVED THE APPROVED THAT A TRANSITION OF THE CONFILL TATION LETTER BEEN SUBMITTED RECEIVED THE APPROVED THE APPROVED THE CONFILL TATION LETTER BEEN SUBMITTED RECEIVED THE APPROVED THE APPROVED THE APPROVED THE APPROVED THE APPROVED THE APPROVED THE CONFILL TATION LETTER BEEN SUBMITTED RECEIVED THE APPROVED THE APPRO

VICINITY MAP

SEE COVER SHEET FOR LEGEND.

1313 Kalmia Road Knoxville, TN 37909 Phn: 865,566,0185 Fax: 888.485,7005

REV DESCRIPTION BY DATE 13036 & 13038 Kingston Pike PROJECT NAME DRAWING TITLE: LOCATION: SWPPP CHECKED BY MAR 13036 & 11038 Kingston Pike FILENAME 2204 Knoxville, To 37934 CLT Map 151 Parcel Numbers 085 & 0840 JOB NUMBER 2204-CL0 SHEET 5 OF 18 Owner. ISSUE DATE: 10/01/2020 36-38 Development

5. EROSION PREVENTION AND SEDIMENT CONTROL (EPSC) MEASURES (3.5.3)

- 9.1 EPSO MEASURES MUST BE DESIGNED, INSTALLED AND MAINTAINED TO CONTROL STORMMATER VOLUME AND VELOCITY WITHIN THE SITE TO MINIMIZE EROSION (4.1.1)
- 63 HAVE THE CONTROL MEASURED BEEN DESKINED ACCORDING TO THE SIZE AND DUDING OF THE DIGITURSED AREA O.S.3.337 YES □ NO
- 5.4 THE CONTROL MEASURES HAVE AT A MINIMUM, BEEN DESIGNED FOR THE SYEAR, 24-HOUR STORM EVENT (3.5.1.3, 5.4.1 a)
- 5.5 ARE THE LIMITS, OF DISTLIRBANCE CLEARLY MARKED ON THE EPSC PLANS (3.5.1.)(7)
- 5.6 AREAS TO BE UNDISTURBED SHALL HE CLEARLY MARKED IN THE FIELD BEFORE CONSTRUCTION ACTUTIOS SESSIO.
- \$7 MAYE PHASED EPSC PLANS BIESN PREPARED FOR THE PROJECT (J.S. 27)

 YES IND (IF YES, CHECK CHE BIE, OW)

 PROJECT DISTURBED AREA RE LESS THAN 5 ACRES (MINIMUM OF TWO PHASES OF EPSC TLANG).
- PROJECT DISTURBED AREA IS GREATER THAN 5 ACRES IMMINUM OF THREE PHASES OF ERSC PLANS)
- 5.6 STEEP SLOPES ARE DEFINED AS A NATURAL OF CREATED SLOPE OF 35% GRADE OR GREATER.
- 5.9 TEMPOPARY EPSC MEASURES MAY BE REMOVED AT THE BEGINNING OF THE WORKDAY, BUT MUST BE RERISTALLED AT THE END OF THE WORKDAY OR REFORE A PREOPITATION EVENT.
- 5.11 THE CONTRACTOR SHALL ESTABLISH AND MAINTAIN A PROACTIVE METHOD TO PREVENT THE OPPORTER MORATION OR DEPOSITOR OF SERVINED OF THE PROCINCT LIMITS (E.S. R.O.W., BASEDMETH, OF THE MORAT LIMITS (E.S. R.O.W., BASEDMETH, B DUIDANCE FROM TOEC LOCAL FINISCHMENTAL FIELD OFFICE (EFO)
- \$.13 DISCHURGES FROM DEWATERING ACTIVITIES ARE PROHISITED UNLESS MANAGED BY APPROPRIATE CONTROLS THAT PROVIDE THE LEVEL OF TREATMENT OF TRATCOS NECESSARY TO COMPLY WITH PERMIT REQUIREMENTS (4.14)
- 5.14 SETTLING BASINS AND SEDMENT TRAPS SHALL BE PROPERLY DESIGNED PER THE SIZE OF THE DRAHAME AREAS ON YOUARE OF WATER TO BE TREATED TREATED WATER MANT BE DISCHARGED THROUGH A PIEC ON WELL-OPELITATED OR UNIFOCHANIEL, SO THAT THE DISCHARGE DOES NOT CAUSE EROSION OR SEDMENT TRANSPORT.
- 5.18 DISCHARGES FROM SEDIMENT BASING AND MIPOUNDMENTS SHALL UTLIZE DUTLET STRUCTURES THAT DIKLY WITHDRAW WATER FROM SEAR THE SURFACE OF THE SABIN OF INFOLINGMENT. TREATTIO WATER MIST BE GLOCHARGED THROUGH A PIPE ON BELLY ACCEPTATED AMOUNT MIST CHANNEL, BO THAT THE DISCHARGE DOES NOT CAUDE SPOSION OR SEDIMENT TRANSPORT. (A LT).
- \$10 WATER DISCHARGED FROM DEWATERING ACTIVITIES SHALL NOT CAUSE AN OBJECTIONABLE COLOR CONTINAST WITHIN THE RECEIVING NATURAL RESOLUTES WATER MUST BE HELD WITHIN SETTLING PASING LIGHT IN SAT LEAST AS CLEAR AS THE REJICETIVE WATERS.
- \$17 STABLIZATION PRACTICES PRE-CONSTRUCTION VEGETATIVE COVER WILL NOT BE DESTROYED, REMOVED OR DISTURBED MORE THAN 14 DAYS PROPT TO GRADING OF EARTH MOVING UNLESS: THE AREA WILL BE GEEDED ANGIOR MULCHED, OR OTHER TEMPORARY COVER IS INSTALLED: 19.3.1.10.
- \$18 STARLIZATION MEASURES WILL BE INITIATED AS SIDCHAS POBIBLE WARRI CONSTRUCTION ACTIVITIES HAVE TRANSPORMED OR PERMANENT, VICARED TRANSPAY OR REINAMENT STARLIZATION WILL BE COMPLETE WITHIN 16 AND STREET ACTIVITY HAS TRANSPARED OR PERMANENT OR PERMANENT VICARED BY THAT AREA PERMANENT STARLIZATION WILL REPLACE TEMPORARY MEASURES AS SOON AS PRACTICALE (18.13).
- 119 SOR JANUARY TO SPALL BE PREVENDED PRIOR TO THE APPLICATION OF ESTIMATES TO AN PORTFOLO THE BUTE EDGE SOLD HE MAN 2000 ON THE REFERENCE HE PROPRIES FOR REQUIR COACUM AND WARREST AND SAMPLES SHOULD BE REPRESENTANTE OF THE APPLICATION OF PETRICARY HAVE A PRIVATE OF ANY THE PROPRISON OF ENGINEERING THE WALL BE APPLICE COARD. THE PROUD DIE COLLECTED AND ANALYZED IN ACCORDANCE WITH THE OT EXTENDED VIOLE TO THE PRODUCTION OF ANY 2001 OF THE PROPRISON OF THE THE OTHER PROPRIES OF THE PROPRISON OF THE PROPRISON OF THE PROPRISON OF THE THE OTHER PROPRISON OF THE THE PROPRISON OF THE PROPRISON OF THE THE PROPRISON OF THE PROPR
- 5.21 STEEP SLOPES IPALL BE TEMPORABILY STABLIZED NO LATER THAN TIDAYS AFTER CONSTRUCTION ACTIVITY ON THE SLOPE HAS TEMPORARLY OR PERMANENTLY CEASED. (J. 3.3.2)

- 6.1 INSPECTION PRACTICES (3.5.6)
 - 6 * 1. EPSC INDPECTORS RESPONDIBLE FOR THE INDPECTION IMPLEMENTATION.
 MAINTENANCE ANOUGH REPAIR OF EPSC MEASURES SHALL MEET ONE OF THE
 FOLLOWING RECURREMENTS.
 - 6.1.1.1 SUCCESSFULLY COMPLETED THE TODO "LEVEL" FUNDAMENTALS OF EROSION RESISTENCEMENT CONTROL." COURSE AND ANY RESERTED CATION COURSES AN REQUIRE TO THE COURSE AND REMOTE THE CATION COURSES AN REQUIRE PROPERSIONAL ENCANGED TO LANCISCAPE ARCHITECT.

 - ADDITION

 6.1.1. BA QUEENLY CERTIFIED PROFESSIONAL IN EROIGION AND SEDMENT CONTROL

 (CPESS)

 6.1.1. SUCCESSIFULLY COMPLETED TOCC "LEVEL I" DESIGN PRISCIPLES FOR EROSIGN
 PREMINITION AND SEDMENT CONTROL FOR CONSTRUCT ON STITES" COURSE AND
 ANY RECORDSTRUCTION CONTROL FOR REQUIRED.
- A1 2. EPIS CONTROLS SHALL BE INSPECTED TO VEHFY MEASURES HAVE SEEN ASTALLED AND MAINTAINED IN ACCORDANCE WITH IT TANDAMD OWNAMING, SPECIFICATIONS, AND GOOD EMIGRAETHER AFFORCES INFO CHECKING AND ID COCCUMENTED OF THE TODS SPECIFICATION OF THE PLOTS SPECIFICATION REPORT FOR THE TODS SPECIFICATION SPECIFICATION
- 5 1 3 DUTFALL POINTS SHALL BE INSPECTED TO ASCERTAIN WHETHER EPSC MEASURES ARE EFFECTIVE IN PREVENTING EROSION AND CONTROLLING SEDIMENT, INCLUDING SIGNAFICANT IMPACTS TO SERVICION OF STATE WATERS, WOTUS (SHAMERAL, WELLANDE, STHER NATURAL SEDILINCES AND AD JACKETY PROPERTY OWNERS, WERE DISCHARGE LOCATIONS AND MICHOSERIE, MEARINY DOWN GRADIENT LOCATIONS SHALL BE INSPECTED. LOCATIONS WHERE VEHICLES SINTER AN THE SITE SHALL BE INSPECTED FOR EVIDENCE OF OIT-SITE ROADWAY SEDIMENT TRACKING.

- #.14. INSPECTIONS WILL SE CONDUCTED AT LEAST TWICE EVERY CALENDAR WEEK AND AT LEAST 72. HOURS APART. (3.8.82-z) A CALENDAR WEEK IS DEFINED AS SURDAY THROUGH SATURDAY.
 - 61.5. THE FREQUENCY OF EPISC INSPECTIONS MAY BE REDUCED TO ONCE A MONTH WHERE SITES OF PORTIONS OF SITES ARE BEEN TEMPORARILY STABILIZED UPTIL. CONSTRUCTION ACTIVITIES RESUME WITH WRITTEN NOTE CATION TO THE IDEG LOCAL ENVIRONMENTAL FELL OFFICE SETO, WRITTEN MODIFICATION MUST INCLUDE THE INTENT TO CHANGE THE GUERCY AND JUST PLOYING IS 8.2.29
 - 618. ALL DISTUTIBED AREAS OF THE SITE THAT HAVE NOT BEEN PRIVALLY STABLEDED, AREAS LIBED POR MATERIAL STORAGE THAT ARE EXPOSED TO PRECIPITATION, STRUCTURAL CONTROL MEASURES, AND LOCATIONS MARRY WHICLES ENTER OR EXIT THE SITE, AND EACH OUTFRIL WILL BE INSPECTED (12-12-12).
 - 6.1.7. THE INSPECTOR WILL OVERSEE THE REQUIREMENTS OF OTHER CONSTRUCTION RELATED WATER QUALITY PERMITS 8.5. TIES ARAP, USAGE SECTION 404, AND VAS SCHOOM SEPRIMIES FOR CONSTRUCTION ACTIVITIES ARCUMO WATERS OF THE STATE (10 "RESPECTOR").
 - 6.1.6. THE SWIPP WILL BE REVISED AS NECESSARY BASED ON THE REBILITS OF THE INSPECTION STINSON(6) WILL BE RESIDED WITHIN TOAYS OF THE INSPECTION REVISION(9) WILL BE IMPLEMENTED WITHIN 12 CAYS OF THE INSPECTION (3.58.2.8 AND 3.58.2.9).

 - 6.1.10 TRAINED CERTIFIED INSPECTORS SHALL COMPLETE INSPECTION TO THE BEST OF THEM ABILITY, FALSE YIND ABSPECTICAL RECORDS OR OTHER COCUMENTATION OF FAILURE TO COMPLETE INSPECTION DOUBLINTATIONS SHALL RESULT IN A VOLATION OF THIS! PERMIT AND MY OTHER APPLICABLE ACTS OR RULES (3.6.8.2.16)

6.2 MAINTENANCE PRACTICES (3.5.5.1 AND 3.5.7)

- (3.5.3.1.1)
- 622. MAINTENANCE AND REPAIR ACTIVITIES ARE THE RESPONSIBILITY OF THE CONTRACTOR.
- 9.2. INTHE CONCLUSION OF THE REPLICATIONS, SPECIFICATION FOR THE TOTAL SPACE, SPECIFICATION FOR THE TOTAL SPACE AND ADMINISTRATION OF THE SPECIFICATION FOR THE TOTAL SPACE AND ADMINISTRATION FOR THE TOTAL SPACE AND ADMINISTRATION FOR THE TOTAL SPACE AND ADMINISTRATION FOR ADM
- 624 EDIMENT SHALL SE REMOVED PROM SEDIMENT CONTROL STRUCTURES (SEDIMENT TRAPS, SLT FENCE, SEDMENT BASINS, OTHER CONTROLS, ETC.) VAIEN THE DEBIGN CAPACITY HAS BEEN REDUCED BY RETY PERCENT (80%), (5.53.1.4)
- 62.5. DURING SED MENT REMOVAL THE CONTRACTOR SHALL TAXE STEPS TO ENGURE THAT STRUCTURAL COMPONENTS OF EPIC MEASURES ARE NOT DAMAGED, AND THUS MADE INEPPRICTIVE IF DAMAGE DOES DOCUR. THE CONTRACTOR SHALL REPAIR THE EPISC MEASURES AT THE CONTRACTOR'S DWN EXPENSE.
- 62.6. CHECK DAMS WILL BE INSPECTED FOR STABILITY, SEDMENT WILL BE REMOVED WHEN DEPTH REACHES ONE HALF (§ THE NEIGHT OF THE DAM.
- 62.7. GEDMENT REMOVED FROM SEDMENT CONTROL ETHICTURES SHALL BE IN ACED AND THEATED IN A MANAMER BOT THAT THE SEDMENT IS CONTAINED WITHIN THE PROJECT. LIMITE, DEED NOT MIGHATE WITO FEATURES REMOVED FROM, AND DOES NOT MIGHATE ONTO ADJACIENT PROPERTIES AND/OR INTO WATER OF THE STATEFUS.
- 9.2.6. LITTER, CONSTRUCTION DEBRIS, AND CONSTRUCTION CHEMICALS EXPOSED TO TO RITHWATER WILL SE PICKED UP AND REMOVED PROM STORMWATER EXPOSURE FROM TO AND THE STORM EXPOSED FOR SEPECIAL CARRESION FOR SITE OF WAYNE, OR OTHERWISE PREMIEDED PROMISED CHEMICA PICLUTANT SOURCE FOR STORMWATER PURCHANGE AFTER USE, WINTERAL SIGHT OF PRODUCT CONTROL WILL BE REMOVED.

- 7. BITT ARRESPONDED (A. 1.2)

 STATE ARRESPONDED (A. 1.2)

 STATE ARRESPONDED (A. 1.3)

 A EXCEPTION OF ARRESPONDED (A. 1.3)

 A CONTROL OF ARRESPONDED (A. 1.3)

 A CONTROL OF PROFESSIONAL STATE ARRESPONDED

- 6.1 STORMWATER MANAGEMENT WILL BE HANDLED BY TEMPORARY CONTROLS OUTLINED IN THE SWOPP AND NAY PERMANENT CONTROLS NEEDED TO MEET FESMANENT STORMWATER MANAGEMENT MEDIG IN THE PORT CONSTITUCTION FERRICD, PERMANENT CONTROLS WELLIE DEFICTED ON THE PLANS AND NOTED AS PERMANENT.
- 8.2 DESCRIBE ANY SPECIFIC POST-CONSTRUCTION MEASURE THAT WILL CONTROL VELOCITY POLLUTANTS, AMEXICA EROSION (2.6.4) DETENTION PONDS AND REPRAY APRONS
- - CONSTRUCTION MATERIALS. THE FOLLOWING MATERIALS OR SUBSTANCES ARE EXPECTED TO BE PRESENT ON THE SITE DURING THE CONSTRUCTION PERIOD. (CHECK ALL THAT APPLY).
 - LUMBER, GUARDRAIL, TRAFFIC CONTROL DEVICES, CONCRETE WASHOUT
- PIPE CULVERTS (E. CONCRETE, CORRUGATED METAL, HOPE, ETC.)
 MINERAL AGGREGATES, ASPEALT
- MINERAL ACCREGATES ABPLIALT EARTH LIQUID TRAFFIC STRENG MATERIALS, PAINT ROCK CURING COMPOUND

- EXPLOSIVES OTHER

- 8.8 WASTE MATERIALE ELSEN
 AND THE MATERIALE CANTH TO MAKE A STANLE CONDITION THE COMPRISED FOR THE
 CONDITION OF THE PROJECT WILL BE CORPORED OF BY THE CONTRACTOR IN
 ACCOMMENCE WITH FERRELA, DAS STATE REGLEATION, BRIEFAT TO VARIET OF THE
 CONTRACTOR AND THE PROJECT OF THE PROJECT OF THE PROJECT OF THE
 ALL RECESSARY PERMITS INCLIDED, BUT NOT LIMITED TO, PROSE, ACQUATO RESOLUCED
 ALTERNATION FERRENTS, CORPOR OF SENSIFERS SECURIOR OF REPRINT, ACID AS SETTING AND
 ACTION OF THE PROST OF THE PROJECT OF SECURIOR OF REPRINT AND THE SECURIOR OF THE
 ACTION OF THE PROST OF THE PERMITS TO DISPOSE OF WASTE MATERIALS
- REPRESENTATIVE WILL BE RESPONDIBLE FOR SEEING THAT THESE PRACTICES ARE FOLLOWED. THE CONTRACTOR WILL DISTAIN ALL NECESSARY PERMITS TO DISPOSE OF HAZARDOUS
- 66 CARETARY WASTE (3.5.16)
 PORTABLE SHATRAY PACULITIES WILL IS PROVIDED ON ALL CONSTRUCTION SITES. SANTARY WASTE WILL BE CLIFETED FROM THE SHATRAY STATE OF A TRIBLY MANABLE YET A LIBBORD WASTE WILL BE CLIFETED FROM THE SHATRAY WASTE.

 CONTRACTOR WALL OBTAIN ALL HICCESSARY PRIMITE TO DISPOSE OF SANTARY WASTE.

8.7 OTHER MATERIALS THE FOLLOWING MATERIALS OR SUBSTANCES ARE EXPECTED TO BE PRESENT ON THE STE DURING THE CONDITIUDITION PERIOD (CHECK ALL THAT APPLY).

PERTURPER AND UNC PESTICIDES ANOIGN HERBICIDES DIESEL AND GASCLINE MACHINERY LUBRICANTS (OLL AND GREASE)

THESE MATERIALS WILL BE HANDLED AS NOTED IN THIS SWPPP.

W. NON STORMWATER DISCHARGES (3.5.8)

- 91 THE FOLLOWING NON-STORMWATER CISCHARGES ARE ANTICIPATED DURING THE CONSTRUCTION OF THIS PROJECT (CHECK ALL THAT APPLY)
- DEWATERING OF WORK AREAS OF COLLECTED STORMMATER AND GROUND WATER.
- WATERS USED TO WASH VEHICELS (OF DUST AND SOX), WHERE DETERMENTS ARE NOT USED AND DETERMINE AND OF PILITHING IS PROVIDED REPORT THE WATER LEAVES THE SITE.
- WATERS USED TO CONTROL DUST (\$5.5.1/1)
- POTABLE WATER SQURGES, INCLUDING WATERLINE FLISHING FROM WHICH CILCRINE HAS BEEN REMOVED TO THE MAXIMUM EXTENT PRACTICABLE.
- LINCONTAMBIATED GROUNDWATER OR SPRING WATER.
- FOUNDATION OR FOOTING DRAINS WHERE FLOWS ARE NOT CONTAMINATED WITH POLLUTANTS.
- 92 ALL ALLOWING NON-STOKKNINTER DISCHARGES WILL BE DIRECTED TO STABLE DISCHARGE STRUCTURES PRIOR TO LEAVING THE SITE FILTERING OR CHEMICAL TREATMENT MAY BE RECESSED YPOPROT DO DECARGE ALLOWING. TREATMENTS MUST BE APPLIED PER THE TORE BROSIDE AND SERMENT CONTROL HANDROOK.
- 63 THE DESIGN OF ALL IMPACTED EPSO MEASURES RECEIVING FLOW FROM ALLOWAL NOW-ETGRAWATER DISCHARGES MAINT DE DESKINGO TO HANDLE THE VOLUME OF NOW-ETGRAWATER COMPONENT.
- 94 WARH DOWN OR WARTE DISCHARGE OF CONCRETE TRUCKS WILL NOT BE PERMITTED ON SITE MALESS PROPER SETTLEMENT AREAS HAVE BEEN PROVIDED IN ACCORDANCE WITH BOTH STATE AND FEDERS, REQULATIONS.
- 9.5 ARE MY DISCHARGES ASSOCIATED WITH INDUSTRIAL (HOX-CONSTRUCTION STORMWATER) ACTIVITY EXPECTED (3.9 LUF)
 - YES | NO III
- IF YES, SPECIFY THE LOCATION OF THE ACTIVITY AND ITS PERMIT NUMBER:

10. EPILL PREVENTION, MANAGEMENT AND NOTIFICATION (1.5.5.c. 5.1)

- - 18.1.1 CONTRACTORS BLUK FUEL AND PETROLEJA PRODUCTS STORED ON SITE IN ABOVE GROWND STORAGE TANKS WITH AGGREGATED STORAGE CAPACITY IN EXCESS OF 1,220 CALLONS SHALL HAVE SECONDARY COOKTANDENT.
 - 10.1.2. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PREPARING A SPILL PREVENTION CONTROL AND COUNTERMEASURE (SPICE) PLAN AS REQUIRED BY LAW.

TO J MATERIAL MANAGEMENT

CALLY HEEDED PRODUCTS WILL BE STORED ON BITE BY THE DOWNSHITTON, EXCEPT FOR BULK MATERIALS, THE CONTRIVEND WILL STORE ALL MATERIALS INCREDICTORS AND IN MATERIALS. THE CONTRIVEND WILL STORE ALL MATERIALS INCREDICTORS AND IN MATERIALS. AND IN CONTRIVEND WILL STORE ALL STORES AND INCREDICTORS AND

THESE, HASHIDOUS MATERIALS.

PRODUCTION WILL BE KETT IN DISSIPAL, CONTAINERS SHE CONTAINERS IS NOT RECEIVABLE OF ORIGINAL LOBELS AND MITTERS AFEETY DAY A HIGHTS WILL BE RETAINED IN A BATHER HAD DEAL MITTERS AND THE CONTROL OF SHEAR SHE CONTROL OF SHEAR SHEAR SHE CONTROL OF SHEAR SHEAR SHE CONTROL OF SHEAR SHEAR

VILLI PRODUCT SPECIFIC PRACTICES

- (0.1) PETROLEUM PRODUCTS ALL ON-STE VEHICLES WILL BE MONTONED FOR LEAKS AND RECEIVE RESULTAR PREVENTIVE MANTEMANCE TO REDUCE THE CHANCE OF LEAKAGE. PETROLEUM PRODUCTS WILL BE STOPED IN TIGHTLY SEALED CONTAINERS, WHICH ARE CLEARLY LABILED.
- 1032 FERTILIZERS FERTILIZERS WILL BE APPLIED ONLY IN THE ANOUNTS SPECIFIED BY THE SON, ANALYSIS: ONCE APPLIED, FERTILIZERS WILL BE WORKED INTO THE SOO, TO LIMIT THE EXPOSURE TO STORMWATER, FIRSTILIZERS WILL BE STORED IN AN EXCLOSED WISH DISTRICT. DOVING THE CONTENTS OF PARTIALLY USED PERTILIZER BAGS WILL BE TRANSFERRED TO SEALABLE CONTAINERS TO AVOID SPILLS:
- 103.3. MINTE ALL CONTAINERS WILL BE TIGHTLY SEALED AND STORED WHEN NOT REQUIRED FOR USE. THE EXCESS WILL BE DISPOSED OF PIRETHE MANUFACTURER'S INSTRUCTIONS AND APPLICABLE STATE AND LOCAL RESULPTIONS.
- 10.3.4. CONCRETE TRUCKE CONTRACTORS WILL PROVICE DESIGNATED TRUST WASHOUT AREAS ON THE SITE. THESE AREAS MUTE BE SELF CONTAINED AND NOT CONNECTED TO ANY STORMWATER OUTLET OF THE SITE. UPON COMPLETION OF CONSTRUCTION WASHOUT AREAS WILL BE PROPERLY STRAILZED.

10.4 (PILL MANAGEMENT

ADDITION TO THE PREMIOUS HOUSEKEEPING AND MANAGEMENT PRACTICES. THE FOLLOWING PACTICES WILL BE FOLLOWED FOR SPILL PREVENTION AND GLEANUP IT NECESSARY.

- 10.4.1. FOR ALL HAZARDOUS MATERIALS STORED ON SITE. THE MANUFACTURE'S RECOMMENCED METHODS FOR SPILL CLEANS WHILE BE CLEARLY PROTED: SITE RESSOURCE, WILL SE MADE ANARE OF THE PROCEDURES AND THE LOCATIONS OF THE INFORMATION AND CLEANUF SITES.
- 18.4.2. APPROPRIATE CLEANUP MATERIALS AND SOUPMENT WILL BE MAINTAINED BY THE CONTRACTOR IN THE MATERIALS STOTAGE AREA ON DITE AND LINDER COVER. AS APPROPRIATE EQUIPMENT AND MATERIALS BY ROLLOGE TELES SOUTH AS ECONIO, OUTST PANS MORS RADGE COVER DOGGLES, WITTY LITTLE AND MATERIAL THAT PLASTICE AND METAL TRACH CONTRIBUES REPORTICULATE OF CLEANUP PURPOSED.
- 10.4.3. ALL SPILLS VALUE CLEANED IMMEDIATELY AFTER DISCOVERY AND THE MATERIALS CIGNOSSIS OF PROPIENCY. THE SPILL AREA WILL BE KEPT WELL VENTILATED AND PERSON WILL WEAR APPRIORIATE PROTECTIVE CLOTHING TO PREVENT MARRY FROM CONTACT A HAZARDOVIE SUBSTRACE.

36 - 38 Development

1313 Kalmia Road Knoxville, TN 37909 Phn: 865,566,0185 Fax: 888.485,7005

DESCRIPTION BY DATE PROJECT NAME 13036 & 13038 Kingston Pike DRAWING TITLE: LOCATION: SWPPP CHECKED BY: MAB 13036 & 13038 Kingston Pike FILENAME: 2204 Knoxville, Tn 37934 CLT Map 151 Parcel Numbers 085 & 08401 JOB NUMBER 2204-CL0

ISSUE DATE: 10/01/2020

SHEET 6 OF 18 OWNER

- 10.4.3. If IPPLIS REPRESENT AN MAINTENT THREAT OF ESCAPING THE SITS AND ENTERING RECEIVING WATERS PERSONNEL WILL RESPOND BIMECIATELY TO CONTAIN THE RELEASE AND NOTIFY THE SUPERINTENENT AFTER THE SITUATION HAS SEEN STRAELED.
- 16.4.6. If AH OR, SHEEN IS OBSERVED ON SUBFACE WATER, E.G. BETTUND PONDS, DETENTION FOR ISSUED AND THE MINEST TAKEN IMMEDIATELY TO DEMOVE THE MATERIAL CUMPANT THE SHEET. THE GOVERNOR WALL USE A PROPRIET MATERIAL TO CONTRAIN AND ABBORING THE SHELL THE SOURCE OF THE CIL. SHEET WALL ALSO SE CONTRIBE AND REMOVED OR REPRINCED AND REMOVED OR PREMIED AND INCIDENT SHEET WALL ALSO SEED AND CONTRIBE AND A SENDING OF THE CIL. SHEET WALL ALSO SEED AND THE MATERIAL SHEET AND THE SHEE
- 10.47. F. A JPILL OCCURS, THE CONTRACTOR'S SITE SUPERINTENDENT SHALL BE RESPONSIBLE FOR COMPLETING THE SHALL REPORTING FORM AND FOR REPORTING THE SHALL TO THE PRIMARY PERMITTEE. ALL SHALLS MALE REPORTING TO THE APPROPRIATE CREAKEY, AND MEMORISE SHALL BE TAKEN MANEGATELY TO PREVENT THE POLLUTION OF WAITING OF THE STATEJULE, INCLIDENT GROUNDWINGST ENDIGO SPECIAL OCCURRENCE.
- 164 IL APPROPRATE CLEANLY MATERIALS AND EQUIPMENT BINLL BE MANTANED BY THE CONTRACTION IN THE MATERIALS STORAGE AREA ON SITE AND UNDER COURSE SYLL RESPONSE COURSEST SHALL BE REPORTED AND MAINTAINED BY THE CONTRACTOR NECESSARY TO REPLACE ANY MATERIALS USED IN SPLIL RESPONSE ACTIVITIES.

18-5 SPILL NOTIFICATION (5-1)

WHERE A RELEASE CONTAINING A HAZARDOUS SUBSTANCE IN AN AMOUNT EQUAL TO, OR MORE THAN A REPORTABLE QUANTITY BETABLISHED UNDER EITHER 40 CFR 117 OR 40 CFR 122 GOODING DURING A 24 HOUR PERIOD.

- 105.1 THE PRIMARY PERMITTEE WILL NOTIFY THE LOCAL TOPO ENVIRONMENTAL FIELD OFFICE AND ANY DIFFER APPLICABLE SEGULATORY AGENCIES WITHIN 34 HOURS OF THE EPILL.
- 16.5.7. NACOTION TO JAN FOLLOW UP NOTHICK TO BE REQUIRED IN FEDERAL LAW, A WRITTEN DESCRIPTION OF THE RELEASE, DATE OF RELEASE, AND CREATESTANCE OF THE RELEASE TO SHAPE AND ADDRESS OF THE RELEASE OF
- (0.1.1 THE SWIPP MUST BE MODIFIED WITHIN 14 DAYS OF YNOWAEDOE OF THE RELEASE PROVIDING A DESCRIPTION OF THE RELEASE CREDINGTANCES LEADING TO THE RELEASE AND THE DAYE OF RELEASE THE SWIPP MULE REPOYEDED AND MODIFIED AS RECESSARY TO IDENTIFY MEASURES TO PREVENT THE REDCOURRENCE OF SUCH RELEASES AND TO RESPONG TO.

11. RECORD-KEEPING

THE PERMITTEE WILL MAINTAIN AT THE BITE THE FOLLOWING RECORDS OF CONSTRUCTION ACTIVITIES (3.5.3.1.m)(4.15.y62.1):

- 11.1.1. THE DATES WHEN MAJOR GRADING ACTIVITIES OCCUR.
- 11.1.2, THE DATES WHEN CONSTRUCTION ACTIVITIES TEMPORAPILY OR PERMANENTLY CHASE ON A PORTION OF THE SITE.
- 11.1.1. THE DATES WHEN STABLIZATION MEASURES ARE INMATED.
- 11 1.4. RECORDS OF EPSC INSPECTION REPORTS AND CORRECTIVE MEASURES.
- THE RECORDS OF SITE ASSESSMENTS
- 11.1.6. COPY OF SITE SPSC INSPECTOR'S CERTIFICATION AND/OR LICENSING.
- 11.1.7. COPY OF REQUIRED SOIL ANALYSIS.
- 11.1.E. A COPY OF ANY REGULATORY CORRESPONDENCE REGARDING THE EFFECTIVENESS OF THE SWEEP OR EPIC CONTROLS.

112 RAINFALL MONITORING PLAN (15.110).

1) 2.1. EQUIPMENT.
AT A MANAMAM, THE CONTRACTOR WILL HISTALL A FENCE POST, TYPE RAIN GAUGE TO MESSAGE RAINEFALL. THE STANDARD FENGE POST RAIN GAUGE WILL HE A FAMILY MESSAGE CONTRACT AND A REPORT OF THE PARTY AND A REPORT OF THE MAY BE USED FOR A REPORT OF THE MAY BE USED FOR A REPORT OF THE MAY BE USED FOR A

11.22. LOCATION.
THE RAN GAUGE WILL BE LOCATED AT OR ALONG THE PROJECT SITE, AS CEPINED IN THE RAY OF THE INFOES PERMIT, IN AN OPEN AREA SUCH THAT THE MEADUREMENT WIND THE IMPLIENCED BY OUTSIDE PACTORS () E. OVERHANGS, OUTSIR, TREES, STC.).

11.2. METHODS

ANNALL MONITORING WILL BE INTINIED PRICE TO CLEARING, GRUBBING, EXCHAPACIA CONTINIED OF FILLING, DICIPIT AS DUCH MARMA, CLEARING MONITORING CONTINIED OF FILLING, DICIPIT AS DUCH MARMA, CLEARING MALL SE CHECKED FOR DEPENTIONAL SOCIALISES FOR TURBEN AND METHORS OF THE CHECKED THE SECOND OF THE CHECKED ON THE SAME DAY IF FOUND TO BE NON-OPERATIONAL, OR MISSING.

- 11.24 REPHANCANCE VALUE RESEARCH DETAILS RECORDS OF PARPHALLY AND SUFFED. FORTH DETAILS READ ALL STREET COURSES OF THE PROJECT OF THE AMERICAN COURSE. DETAILS RECORD OF THE PROJECT OF THE AMERICAN COURSE. THE AMERICAN COURSE RECORD OF THE COURSE RESEARCH OF THE PROJECT OF THE DETAIL RECORD OF THE RECORD OF THE RECORD OF THE PROJECT O
- 11.25 DETAILED RECORDS WILL BE RECORDED OF RAINFALL EVENTS INCLUDING DATES AMOUNTS OF RAINFALL, AND THE APPROXIMATE DURATION (OR THE STAITTINS AND ENGINE TIMES. THE RAINFALL BECORDS STAID BY AN EXAMPLE BECORD SHEET AND SHALL BE MAINFAILED IN THE "DOCUMENTATION AND PERMITS" INFO
- 11.2.6. IF THE PAINFALLEVEN IS STILL IN PROGRESS AT THE DAILY RECORDING TIME, THE CALLOW MILL BE COMPILED AND THE RECORD VIELL INDICATE THAT THE STORM EVEN WAS STILL IN PROCREES.

11.5. REEPING PLANS CURRENT (3.4)

- 11.3.1. THE EPISC PLAN IS TO SERVE AS AN INTIAL GLICE FOR SITE PERSONNEL AS THE THE PRIOR PURPOSE SERVICES OF THE MEDIT OF A PRIOR THE PRIOR OF THE PR THE GENERAL OBJECTIVES OF CONTROLLING FOLLUTANTO, INSTORMATER DISCHARGES ASSOCIATED WITH THE CONSTRUCTION ACTIVITY.
- 11.1.2. THE STARES CENTED WITHIN THE EPIC PLANS MAY NOT CONCIDE WITH THE ACTUAL STARES OF CONTINUED TO STARES OF PLANS STARES OF CONTINUED TO STARES OF THE CONTINUE STARES OF THE CONTINUE STARES OF THE CONTINUE STARES OF THE MANYTAMED STORES OF THAT I YALL DESCRIPTION OF THE STARES OF THE CONTINUED STARES OF THAT I YALL DESCRIPTION OF THE STARES OF THE CONTINUED THAT I YALL DESCRIPTION OF THE STARES OF THE CONTINUED OF THE CONTINUED THAT I WELL THE CONTINUED THE STARES OF THE CONTINUED THE STARES OF THE CONTINUED THE MOSCOT.

- 113.2.1. WHENEVER THERE IS A CHANGE IN THE SCOTE OF THE PROJECT THAT WOULD BE EXPECTED TO HAVE A SIGNIFICANT EFFECT ON THE ENGINERAL OF FOLLOWING THE THE WATERS OF THE STATE AND WHICH HAS NOT OTHERWISE DEEN ADDITIONED IN THE SUPPP.
- 11.3.1.2. WHENEXE INSPECTIONS OF INVESTIGATIONS BY GITE OPERATORS, LOCAL GYATE. OF FEDERAL OFFICIALS INJURIES TO ANALYSIS OF THE OPERATORS AND A ELIMANTIAL OR SIGNIFICANTLY MINISTERS CALLITATES FOR CONSTRUCTION ACTIVITY SOURCES, CRIS CITHERMASE NOT ACHELING THE GENERAL OR ACTIVES DISCHARGES, ASSOCIATED WITH CONSTRUCTION ACTIVITY, WHERE OBJECTIVES DISEASED ASSOCIATED WHITCOME DETERMINE THAT THE SAMPH IS COOK, BYTHE OR FEDERAL OFFICIALS DETERMINE THAT THE SAMPH IS INEFFECTIVE IN BLUMBATING OR SIGNIFICANTLY MINIMETING POLLUTANT SOURCELS, OUTH OF ANY CORRESPONDENCE TO THAT EFFECT MUST BE RETAINED IN THE SWIPP.
- 11.3.3.3. WHEN ANY NEW OPERATOR ANDICH BUG-OPERATOR IS ASSISTED OR RELIEVED OF THEIR RESPONSIBILITY TO MIN, EMBNT A PORTION OF THE SWEPP.
- 113.3.5. WHEN THERE IS A CHANGE IN CHEMICAL TREATMENT METHODS RICLIONIO, USE OF DEFERRINT TREATMENT CHEMICALS, OFFERENT DOSAGE OR APPLICATION RATES OF A OFFERENT AREA OF APPLICATION NOT SECURED ON THE EFFC
- 11.3.3.4. ALL SWIPP REVISION(S) SHALL BE RECORDED WITHIN 7 DAYS BY THE EPSC
- 113.17 WHEN A THOLES DEVELORED FOR THE RECEIVING WATERS FOR A POLLUTANT OF CONCERN (BUTATOM AND/OR HABITAT A LITERATION), CONSTRUCTION SHALL NOTIFY THE PERMITS SECTION FOR PROPER COORDINATION.

- 11.4.1. A COPY OF THIS SWEPP (NICLUDING A COPY OF THE "DOCUMENTATION AND PERMITS ENDER) SHOULD SE KEPT AT THE CONSTRUCTION BITE ON OTHER LOCATION ACCESSIBLE TO TODG AND THE FLESHOFFROM THE DATE CONSTRUCTION COMMENCES TO THE DATE OF FINAL STABLIZATION, (62)
- 11.4.2 PRIOR TO THE NETWATION OF LAND DISTURBING ACTIVITIES AND UNTIL THE SITE HAS MET THE PHAL STABLEARDIN DISTIFIED THE PRIMARY PERMITTER OF THEIR REPRESENTATIVE WILL POST A SOUTCE MEAN THE MAIN INTRAMICS OF THE CONSTRUCTION SITE WITH THE FOLLOWING METOR MATION (3.2.2) (4.1.1).
 - 11 A.Z.1, A COPY OF THE NOTICE OF COVERAGE (NOC) WITH THE NPDES PERMIT NUMBER. FOR THE PROJECT:
 - 11.4.2.2. THE INDIVIDUAL NAME COMPANY NAME, E-MAIL ADDRESS (IF APPLICABLE) AND TELEPHONE NAMEER OF THE LOCAL PROJECT SITE DANKER AND OPERATOR CONTROL.
 - 11.4.1.1. A BRIEF DESCRIPTION OF THE PROJECT, AND
- 11.4.3 ALL INFORMATION DESCRIBED IN SECTION 13.4.2 MUST BE MAINTAINED IN LEGIBLE CONDITION IF POSTING THIS DIFFORMATION NEW A MAIN ENTRANCE IS INFESSELE DUE TO BAFETY CONCERNE. THE NOTICE SHALL BE POSTED IN A LOCAL BUILDING. THE NOTICE MAIST BE PRACED IN A PUBLICLY ACCESSE BLE COCATION WHERE CONSTRUCTION IS ACTIVILLY UNDERWAY AND MOVED AS NECESSARY.

11.5 NOTICE OF TERMINATION (ILD.)

- 11.5.1 WHICH ALL STORMWATER DECIMINES FROM CONSTRUCTION ACTIVITIES THAT ARE AUTHORIZED BY THE PERMIT ARE ELIMINATED BY FINA. STABILIZATION, THE PERMIT PERMIT PERMIT WILL SUBJECT NOTICE OF TERMANYON (NOT) THAT IS SIGHED IN ACCORDANCE WITH THE PERMIT TO THE TIDES LOCAL ENVIRONMENTAL FIELD OFFICE (SEG).
- 11.52.1 ALL EARTH-CHISTURBING ACTIMITIES ON THE GITE ARE COMPLETED AND ALL DISTURBED SOULS AT THE EXCITION OF THE CONSTRUCTION BITE WHERE THE OPERATOR HAD CONTROL HAVE BEEN FINALLY STABILIZED.
- 11.5.2.2 ALL CONSTRUCTION MATERIALS, WASTE AND WASTE HANDLING DEVICES, AND ALL BOURMENT AND VEHICLES THAT WERE USED DURING CONSTRUCTION HAVE BEEN HEMOVED AND PROPERLY DISPOSED.
- 11.52.4 ALL POTENTIAL POLLUTANTS AND POLLUTANT GENERATING ACTIVITIES ASSOCIATED WITH CONSTRUCTION HAVE BEEN REMOVED.
- 11.5.2.E. THE PERMITTEE HAS IDENTIFIED WHO IS RESPONDIBLE FOR OWNOWN MAINTENANCE. OF ANY STORMWATER CONTROLS LEFT ON THE SITE FOR LOBGATERM USE FOLLOWING TERMINATION OF PERMIT COVERAGE.
- TI.3.2.). MLISTORMATER DISCHARGES ASSOCIATED WITH CONSTRUCTION ACTIVITIES FROM THE DOINTHES SITE THAT AHE AUTHORISED BY A MODEL SCHEMAL PERMIT MAYS OTHER WISE SITE DELIMINATED FROM THE PORTION OF THE CONSTRUCTION SITE WAS

11.6 RETENTION OF RECORDS IN 2)

THE PRIMARY PERMITTEE VALL RETAIN CORIES OF THE SWIPPP, ALL REPORTS REQUIRED BY THE PRIMARY, AND RECORDS OF ALL DATA USED TO COMPLETE THE MOTIES OF ATTEM FOR THE PROJECT FOR A PERSON OF AT LEAST THRREETLY FARMS FROM THE DATE THE NOT WAS PLED.

12. SITE MORPHMARY CERTIFICATION (T.7.6)

AUTHORIZED PERSONNEL SIGNATURE (\$ 3.1) NOAH MYERS PHINTED NAME

15 SECONDARY PERMITTEE (OPERATOR) CERTIFICATION (7.7.6)

ICERTIFY UNDER PENALTY OF LAW THAT I HAVE REVUINED THIS DOCUMENT, ANY ATTACHMENTS, AND THE SWHEP REPRENCED REQUE SASED OF MY REQUERY OF THE CONSTRUCTION SITE OWNER/DEVELOPER IDENTIFIED ADMINISTRATION AND THE REPRESENDED FRONT THE RESPONDING THE THE RESPONDING THE THE RESPONDING THE RESPONDI

PRINTED NAME	
THE STATE OF THE S	

14. ENVIRONMENTAL PERSITS ID D

LIST ALL ENVIRONMENTAL PERMITS AND EXPIRATION DATES FOR PROJECT

	ENVIRON	MENTAL PERMITS	
PERMIT	YES OR NO	PERMIT OR TRACKING NO.	EXPIRATION DATE
TOEC ARAP	NO	*:	160
CORPS OF ENDINEERS (COE)	NO	#	. P. 1
TVA 1864	Delete	ž	- 8
TOEC CGP	YES	PENDING	
OTHER	NO	- 5:	100

15. OUTFALL TABLE (3.5.1.d. 5.4.1.g)

EPSC STAGE	OUTFALL LABEL	SUB OUT-FALL	SLOPE WITHIN ROW (%)	STAGE I DRAMAGEAREA (AC)	STAGE 2 CRAMAGE AREA (AC)	STAGE A DRAINAGE AREA (AC)	REDMENT BASIN OR EQUIVALENT MEASURE(S) (YES, NO, OR NA)	RECEIVING RESOURCE OR OTHER	communits.
123	DISCHARGE #1		9	0.51	0.51	0.51	YES	UNHAMED THIS	
123	DISCHARGE 10		- 4	938	0.38	9.38	YES	UNIAMED TRIB	

SEE COVER SHEET FOR LEGEND.

36-38 Development

1313 Kalmia Road Knoxville, TN 37909 Phn: 865,566,0185 Fax: 888.485,7005

	CLI	Map 151 Parcel Numbers 085 & 08401	TOD AT DIMEN 1204 CLO		-(``I ∆	
C)C)	LI HOAT.	Knowille, Tn 37934	CHECKED BY: MAB FILE NAME: 2204		01 4	
	WING TITLE:	SWPPP 13036 & 13038 Kineston Pike				
ROJECT NAME: 13036 & 13038 Kingston Pike		DRAWN BY: THE		SHEET NO:		
97				34	Y	
		-	0	- 34	K	
4			- 3			
+			- 3			
V.		DESCRIPTION		BY	DATE	

SHEET 7 OF 18 Owner.

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 29 of 393 PageID #: 1438

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 33 of 393 PageID #: 1442

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 35 of 393 PageID #: 1444

PERSPECTIVE VIEW

PERSPECTIVE VIEW

WEST ELEVATION SCALE 1/8"=1'-0"

SOUTH ELEVATION SCALE 1/8"=1'-0"

EAST ELEVATION SCALE 1/8"=1'-0"

NORTH ELEVATION SCALE 1/8"=1'-0"

SPEC BUILDING EXTERIOR ELEVATIONS 13036 KINGSTON PIKE

SHEET 17 OF 18

PERSPECTIVE VIEW

PERSPECTIVE VIEW

WEST ELEVATION SCALE 1/8"=1'-0"

SOUTH ELEVATION SCALE 1/8"=1'-0"

EAST ELEVATION SCALE 1/8"=1'-0"

NORTH ELEVATION SCALE 1/8"=1'-0"

SPEC BUILDING EXTERIOR ELEVATIONS

SHEET 18 OF 18

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Bart Hose, Assistant Community Development Director

SUBJECT: Discussion and public hearing on a concept plan for the Meadows on McFee, 933 and 1013

McFee Road, Zoned R-1/OSR, 32 Acres, 59 Lots (Homestead Land Holdings, LLC,

Applicant)

INTRODUCTION AND BACKGROUND: This request involves a concept plan for the proposed Meadows on McFee Subdivision. The property in question includes the former Gibson Farm property and a portion of the Velma Seal property. The Gibson Farm portion of the property was rezoned by the Board of Mayor and Aldermen last month. The Board is considering the same R-1/OSR zoning for the Seal property area this month.

DISCUSSION: The proposed subdivision includes 59 building lots, a main loop street configuration with two (2) access points along McFee Road, and open-space areas. The proposed internal street/transportation system also includes both street and walking trail connections to the properties located to the north and south of the project.

RECOMMENDATION: Included in your packet is the applicant's revised concept plan. Staff will make a recommendation at the meeting based on whether and how the applicant has addressed all initial staff comments. Any approval will need to be made subject to the final rezoning of the Seal property noted above.

CONCEPT PLAN

THE MEADOWS ON MCFEE

FARRAGUT, TN

CONCEPTION. NOT FOR CONSTRUCTION

1013 MCFEE RD & 933 MCFEE RD, FARRAGUT,TN 37934 CLT MAP 162 PARCELS 019 & 014.04 32 ACRES

OCTOBER 19, 2020 REVISED: NOVEMBER 9, 2020

TABLE OF CONTENTS

TITLE PAGE
CP-01 EXISTING SITE PEATURE
CP-02 CONCEPT LAYOUT
CP-04 FOAD PLAN AND PROPE
CP-05 ROAD PLAN AND PEOPE
CP-05 ROAD PLAN AND PEOPE

DEVELOPER:
HOMESTEAD LAND HOLDINGS, LLC
BOB MOHNEY
122 PERIMETER PARK DR
KNOXVILLE, TN 37922
865-392-5630
bmohney@saddlebrookproperties.com

UTILITIES: FUD WATER FUD SEWER KUB GAS LCUB ELECRIC TDS COMMUNICATIONS

MINEY FOR Y

ENGINEERING BY:

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 41 of 393 PageID #: 1450

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 43 of 393 PageID #: 1452

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 44 of 393 PageID #: 1453

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 45 of 393 PageID #: 1454

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 46 of 393 PageID #: 1455

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 47 of 393 PageID #: 1456

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Mark Shipley, Community Development Director

SUBJECT: Discussion and public hearing on a request to amend Appendix A - Zoning, Chapter 3.,

Specific District Regulations, Section XII., General Commercial District (C-1), B., 3., as it relates to the outdoor display and or storage of general farm implements and lawn care equipment, riding lawn mowers, and related accessories (Farragut Lawn and Tractor,

Applicant)

INTRODUCTION AND BACKGROUND: This item was discussed last month and is related to provisions in the Farragut Zoning Ordinance that address outdoor display and storage of general farm implements and lawn care equipment, riding lawn mowers, and related accessories. Staff reviewed the current provisions which were specifically created for this type of use. Essentially, the current provisions limit display to a permanent covered porch that extends from the front of the building toward Kingston Pike.

DISCUSSION: As staff noted in the review of this item, the issue has been that the property owner has not been adhering to the current provisions and has recently been cited to municipal court and found liable for violating these provisions. Consequently, the property owner petitioned for the existing language to be re-visited. After reviewing this with the Commission in October, staff was asked to meet with the property owner on site and look at where equipment could be displayed beyond the limits of the current provisions so that the setbacks could be established in the text amendment.

On November 5, staff visited Farragut Lawn and Tractor. After discussing different options, staff is proposing in Ordinance 20-25 that the outdoor storage and/or display of implements and/or equipment shall be situated so that such storage or display is at least 20 feet from the front property line. It will be the responsibility of the property owner to coordinate with Town staff on identifying and marking the 20-foot setback line for clarity and compliance purposes.

The rationale for the 20-foot setback is that this is the same minimum setback for parking lots. So, equipment being stored or displayed would be in the same general location in relation to the abutting street as cars parked in a parking lot. This setback line will have to be identified and marked in consultation with the Town staff so that compliance with the amended provisions can be easily assessed.

As discussed in October, no equipment shall be permitted at any time on sidewalks or accessways and all signage shall comply with the Farragut Sign Ordinance.

RECOMMENDATION: Included in your packet is Resolution PC-20-17 which recommends approval of Ordinance 20-25.

RESOLUTION PC-20-17

FARRAGUT MUNICIPAL PLANNING COMMISSION

A RESOLUTION TO AMEND THE TEXT OF THE FARRAGUT ZONING ORDINANCE, ORDINANCE 86-16, AS AMENDED, PURSUANT TO AUTHORITY GRANTED BY SECTION 13-4-201, TENNESSEE CODE ANNOTATED, BY AMENDING THE FARRAGUT MUNICIPAL CODE, APPENDIX A., ZONING, CHAPTER 3., SPECIFIC DISTRICT REGULATIONS, SECTION XII., GENERAL COMMERCIAL DISTRICT (C-1), B., 3., AS IT RELATES TO THE OUTDOOR DISPLAY AND OR STORAGE OF GENERAL FARM IMPLEMENTS AND LAWN CARE EQUIPMENT, RIDING LAWN MOWERS, AND RELATED ACCESSORIES

WHEREAS, the <u>Tennessee Code Annotated</u>, Section 13-4-201et seq, provides that the Municipal Planning Commission shall make and adopt a general plan for the physical development of the municipality; and

WHEREAS, the Farragut Municipal Planning Commission has adopted various elements of a zoning plan as an element of the general plan for physical development; and

WHEREAS, a public hearing was held on this request on November 19, 2020;

NOW, THEREFORE, BE IT RESOLVED that the Farragut Municipal Planning Commission hereby recommends approval to the Farragut Board of Mayor and Aldermen of an ordinance, amending Ordinance 86-16, of the Farragut Zoning Ordinance, by adding Ordinance 20-25.

ADOPTED this 19th day of November 2020.

Rita Holladay, Chairman	
G	
Scott Russ, Secretary	

ORDINANCE:	20-25
PREPARED BY:	Shipley
REQUESTED BY:	Farragut Lawn and Tractor
1ST READING:	
2ND READING:	
PUBLISHED IN:	-
DATE:	

AN ORDINANCE TO AMEND THE TEXT OF THE FARRAGUT ZONING ORDINANCE, ORDINANCE 86-16, AS AMENDED, PURSUANT TO AUTHORITY GRANTED BY SECTION 13-4-201, TENNESSEE CODE ANNOTATED, BY AMENDING THE <u>FARRAGUT MUNICIPAL CODE</u>, APPENDIX A., ZONING, CHAPTER 3., SECTION XII. B., 3., RETAIL OUTLETS FOR THE SALE OF GENERAL FARM IMPLEMENTS AND LAWN CARE EQUIPMENT SUCH AS TRACTORS (LESS THAN 10,000 POUNDS), RIDING LAWN MOWERS, AND RELATED ACCESSORIES

WHEREAS, the Board of Mayor and Aldermen of the Town of Farragut, Tennessee, wishes to amend Chapter 3., Section XII. B., 3., Retail outlets for the sale of general farm implements and lawn care equipment such as tractors (less than 10,000 pounds), riding lawn mowers, and related accessories, of the Farragut Zoning Ordinance, Ordinance 86-16,

NOW, THEREFORE, BE IT ORDAINED by the Board of Mayor and Aldermen of the Town of Farragut, Tennessee, that the Farragut Zoning Ordinance is hereby amended by replacing it in its entirety as follows:

SECTION 1.

Section XII. B., 3., Retail outlets for the sale of general farm implements and lawn care equipment such as tractors (less than 10,000 pounds), riding lawn mowers, and related accessories.

- Retail outlets for the sale of general farm implements and lawn care equipment such as tractors (less than 10,000 pounds), riding lawn mowers, and related accessories.
 - a. The outdoor display and/or storage of such implements and equipment shall be permitted provided the following development criteria are met:
 - (1) The outdoor storage and/or display of the implements and/or equipment shall be situated so that it is at least 20 feet from the front property line. It is the responsibility of the property owner to coordinate with Town staff on identifying and marking the 20-foot setback line for clarity and compliance purposes;
 - (2) The equipment and/or implements to be stored and/or displayed outdoors must be removed from the crate or cartons and displayed and/or stored in such a way as to allow for viewing and inspection, but so as not to prevent passage on sidewalks, walkways, or other vehicle ways;
 - (3) Such businesses necessarily involve the use of outdoor areas on the premises for the unloading, uncrating, positioning and repositioning of items that are often

- larger and more cumbersome than most retailers handle. The temporary use of outdoor areas of the premises for such purposes during hours of operation shall not be a violation of this ordinance; and
- (4) Such businesses necessarily utilize packaging that is to be destroyed or reused. Such packaging materials shall be stored in areas on the premises to which access shall be restricted by means of a physical barrier such as an opaque fence or similar to a dumpster enclosure and shall comply with Chapter 4, Section I.B. of this ordinance.

SECTION 2.

This ordinance shall take effect from and after its final passage and publication, the public relfare requiring it.
ton Williams, Mayor
Illison Myers, Town Recorder
Certified to the Farragut Board of Mayor and Aldermen this day of, 2020, with approval recommended.
cita Holladay, Chairman
cott Russ, Secretary

FARRAGUT MUNICIPAL PLANNING COMMISSION

Sec. XII. - General commercial district (C-1).

- A. General description. This district provides space for commercial uses which provide services primarily to community residents of the Town of Farragut. The intent is to permit lands adjacent to major arterial highways as designated by the Farragut Major Road Plan to be used for the provision of general commercial and business services to the community. These commercial uses are intended to be designed to minimize disruption of traffic flows and negative impacts on adjacent residential uses.
- B. Permitted principal and accessory uses and structures (Non-Mixed Use Town Center as identified in the Comprehensive Land Use Plan). Unless provided for elsewhere in this section, property and structures located in the General Commercial District (C-1) shall be used only for the following purposes:
 - Generally recognized retail sales. This excludes flea markets and the sale of automobiles and the sale and/or rental of boats, trucks, trailers, construction equipment, mobile homes, and other similar uses as determined by the Board of Zoning Appeals.

The outdoor sale and/or storage of merchandise and/or any other materials shall be permitted provided the following development criteria are met:

- Such merchandise and/or materials are displayed or stored in a permanent area designed for such use;
- Such merchandise and/or materials are not displayed or stored on any sidewalks, walkways, parking spaces, or other vehicle ways;
- c. Required yard setbacks for buildings are met for the storage/display area;
- Access to the display/storage area shall be restricted by means of a physical barrier such as a fence, a berm, landscaping, or other similar means; and
- e. The total area reserved for outdoor display/storage shall not exceed 2,000 square feet if the net indoor retail floor area is greater than 25,000 square feet, and it shall not exceed 1,000 square feet if the net indoor retail floor area is less than 25,000 square feet.
- 2. The retail sale of alcoholic beverages, as provided for in the Farragut Municipal Code.
- Retail outlets for the sale of general farm implements and lawn care equipment such as tractors (less than 10,000 pounds), riding lawn mowers, and related accessories.
 - a. The outdoor display and/or storage of such implements and equipments-shall be permitted provided the following development criteria are met:
 - (1) The outdoor storage and/or display of the implements and/or equipment shall be situated so that it is at least 20 feet from the front property line. It is the responsibility of the property owner to coordinate with Town staff on identifying and marking the 20-foot setback line for clarity and compliance purposes. It behind a straight line running from side lot line to side lot line that coincides with the rear wall of the principal building located on the property;
 - (2) The equipment and/or implements to be stored and/or displayed outdoors must be removed from the crate or cartons and displayed and/or stored in such a way as to allow for viewing and inspection, but so as not to prevent passage on sidewalks, walkways, or other vehicle ways;
 - (3) Such businesses necessarily involve the use of outdoor areas on the premises for the unloading, uncrating, positioning and repositioning of items that are often larger and more cumbersome than most retailers handle. The temporary use of outdoor areas of the premises for such purposes during hours of operation shall not be a violation of this ordinance; and

- (4) Such businesses necessarily utilize packaging that is to be destroyed or reused. Such packaging materials shall be stored in areas on the premises to which access shall be restricted by means of a physical barrier such as an opaque fence or similar to a dumpster enclosure and shall comply with Chapter 4, Section I.B. of this ordinance.
- b. The outdoor display of merchandise, except as provided for above, is permitted provided such merchandise is displayed in a permanent, covered porch. Such covered porch shall be attached to the principal building and shall meet all setback requirements of the principal building.
- Financial and real estate services.
- 5. Professional, personal, and business services.
- Restaurants, tea rooms, cafes, coffee houses, or other similar establishments serving food or beverage that is primarily consumed within the principal building or in designated outdoor seating areas associated with the principal building.

Coffee houses with drive-through service lanes that serve as the principal means for service. The principal location for consumption is offsite.

- Automotive services, provided such services are for automobiles and light trucks only. Such services may include fuel sales and repairs. Facilities designed to accommodate the refueling and/or servicing of trucks with more than three axles or more than ten wheels are prohibited.
- 8. Retail rental and leasing of automobiles provided the following development criteria are met:
 - a. Such business is located in a freestanding building; and
 - b. If the premises are fenced, such fencing shall be decorative, shall not exceed three feet in height, and shall be of such design so as not to prevent the ability to see through the fence.
- 9. Public, governmental, and general offices.
- Medical, dental, and veterinary facilities.
- Medical spas.
- Commercial kennels, provided the following development criteria are met:
 - Any outdoor structures (e.g., fences) associated with the kennel shall not be visible from public streets;
 - Boarding of animals shall be confined to the interior of a structure designated for this purpose;
 - c. Outdoor fences are permitted solely to provide an area for exercise and waste elimination and shall be used only with on-site supervision. Outdoor fences shall adhere to the following specifications:
 - Opaque with no openings as viewed from the outside of the fence and a minimum of six feet in height;
 - Properly maintained and constructed of durable, low maintenance materials that are earth tone, black, or white in color and contain no signage. No chain link fencing shall be permitted;
 - Set back at least 50 feet from an adjacent property that is not zoned residential or agriculture. Such measurement shall be a straight line distance from the nearest portion of the fence to the nearest portion of the property that is not zoned residential or agriculture;
 - Set back at least 250 feet from an adjacent property that is zoned residential or agriculture. Such measurement shall be a straight line distance from the nearest

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Bart Hose, Assistant Community Development Director

SUBJECT: Discussion on a rezoning of property situated around the eastern intersection of McFee

Road and Boyd Station Road, Parcels 50, 50.01, 54.01, and 9.01, Tax Map 162, 12611 Boyd Station Road, from General Single-Family Residential (R-2) to Open Space Mixed Residential Overlay (R-1/OSMR), 131.25 Acres (OBO Homestead Land Holdings,

Applicant)

INTRODUCTION AND BACKGROUND: This rezoning request involves four separate tracts totaling 131.25 acres. The property stretches from McFee Road to Virtue Road and includes approximately 3000 linear feet of frontage along Boyd Station Road. The property also has access to McFee Road located at the southernmost traffic circle and via a small strip of land south of the circle, and to Virtue Road via the easternmost lot in question and a narrow strip of land (see Exhibit 1).

DISCUSSION: The property in question is currently agricultural and open in nature. It is primarily open fields, fence rows, and includes a small cluster of agricultural buildings. The easternmost lot is a narrow, tree covered vacant/open-space area, that is impacted by a transmission line easement and has limited frontage on Virtue Rd. The property also appears to contain several potential sinkhole areas that could impact development.

Existing land use in the area immediately around the property is largely low density residential in nature with a mix of open areas, larger residential lots and tracts, and a few public/semi-public uses. The existing Pryse Farm development is an exception to this pattern and is located immediately to the northwest of the subject property. This development can be characterized as a lower density attached single-family residential development (roughly 2.17 units per acre). The surrounding area is also experiencing development pressure and two single-family subdivisions are either under development or under review within the Town. This includes the Brass Lantern development and the Meadows on McFee development. Additional development also continues to occur south of the Town in the Choto area of Knox County (see Exhibit 2).

As noted above, the property has considerable frontage along Boyd Station Road and additional usable access to McFee Road. Access to Virtue Road is limited and likely only suitable for a pedestrian/bicycle trail connection point. McFee Road is classified as a Minor Arterial on the Town's Major Road Plan. Boyd Station Road is classified as a Major Collector and does not currently meet the Town's minimum improvement standards for a roadway of this classification. As such, it would need to be improved to the adopted complete streets cross-section in conjunction with any significant development of the property. Adequate utility services would also need to be provided to support any proposed development and existing utility mains are present in the surrounding area.

The property in question is currently zoned General Single-Family Residential (R-2) and the applicant is requesting Open Space Mixed Residential Overlay (R-1/OSMR). The Town's Future Land Use Map

identifies the area for Open Space Cluster Residential type development. The proposed zoning (R-1/OSMR) would be consistent with this land use designation. The mixed residential aspect of the requested zoning would also be consistent with the Pryse Farm development which is similarly zoned and may allow the owner/developer more flexibility in dealing with potential sinkholes and other design considerations. The mixed residential designation is, however, somewhat less consistent with the existing large lot single-family development that adjoins the property in several locations, and a recent rezoning application for OSMR on the west side of McFee Road was not approved. Given the size of the property in question, careful design could create separation and buffers between these existing homesites and any new mixed residential development (see Exhibits 3 & 4).

Finally, it should be noted that the property in question is currently divided into four lots/tracts. Two of these lots do not meet the 5-acre minimum area threshold for OSMR zoning and will need to be combined with the other tracts. This includes a smaller lot that adjoins the traffic circle on McFee Road and the narrow tract at the eastern end of the property that adjoins Virtue Road. These lots also provide important transportation access points for the future development of the general area. Any rezoning action should be made contingent upon these lots being formally combined with the larger tracts.

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Mark Shipley, Community Development Director

SUBJECT: Discussion and public hearing on a request to amend the future land use map in the

Comprehensive Land Use Plan Update for a portion of Parcel 003.19, Tax Map 143 (a portion of the property referenced as 133 Concord Road) associated with the Farragut Town Center at Biddle Farms project from Medium Density Residential to Town Center

(CHM, LLC, Applicant)

INTRODUCTION AND BACKGROUND: This agenda item involves a project, the Town Center at Biddle Farms, that has been discussed at a number of Planning Commission and Staff/Developer meetings since March 2020. As conditionally approved through a master concept plan in July, the project would include a Town Center commercial area on the north portion of the property and transition to a multifamily residential development on the southern portion of the property with a large lawn gathering space between the two and a linear park area with a greenway loop on the eastern portion of the development along the floodplain. Collectively, this will be a Planned Commercial Development that will also involve a requested amendment to the Zoning Map.

DISCUSSION: In terms of the future land use map, most of the development proposed for the Town Center at Biddle Farms is shown in an area that is designated as Mixed-Use Town Center. A small area in the southeast portion of the development where some improvements associated with the project are planned is shown as Medium Density Residential. For consistency purposes, the applicant is requesting the area shown as Medium Density Residential be amended to Mixed Use Town Center.

One clarification to note regarding the lines shown on the future land use map is that, unlike a line on a zoning map which typically follows property lines or can be dimensioned and tied to a specific location, the lines on the future land use map are only intended to generally define areas for purposes of demonstrating a certain development vision. Thus, the lines on the future land use map may appear irregular and do not necessarily follow property lines.

In the case of the area envisioned as the Mixed Use Town Center on the future land use, the Board of Mayor and Aldermen has adopted by ordinance both the map and text portion of this particular land use designation because of its importance in encouraging the realization of Strategy 1 in the Comprehensive Land Use Plan Update which is to "Bring About a Downtown."

RECOMMENDATION: Included in your packet is Resolution PC-20-18 which recommends approval of the requested amendment to the future land use map through Ordinance 20-26. In relation to the Eight Key Strategies identified in the Comprehensive Land Use Plan Update, changing the future land use as provided for in Resolution PC-20-18 would help facilitate a project that would address the following:

 Bringing About a Downtown (the project would create a main street with many components consistent with a downtown);

- Repairing Aging Shopping Centers (the project would result in the removal of the old Kroger building and the creation of a new development with a town center street grid with building placement and streetscaping that encourage pedestrian activity, a large central gathering space for community events, a linear park, and improvements to outdated infrastructure);
- Encouraging Greater Housing Choice (the project would provide for housing in a density, form, and location that would help support the downtown and create a more dynamic and active town center area);
- 4. Increasing Connectivity (the project includes numerous connections, both vehicular and pedestrian, that tie the project together internally and externally);
- Enhancing our Identity (the project would create a unique type of development that would focus on activated spaces and pedestrian engagement along with provisions for public gatherings and community events); and
- Planning for the Remaining Vacant Parcels (the project not only repairs an existing aging shopping
 center and infrastructure but it also addresses abutting areas and incorporates them into the project
 to help sustain the project and create an area that will be identified as downtown Farragut).

For these reasons, staff recommends approval of Resolution PC-20-18.

RESOLUTION PC-20-18

FARRAGUT MUNICIPAL PLANNING COMMISSION

A RESOLUTION TO APPROVE AMENDMENTS TO THE FUTURE LAND USE MAP OF THE COMPREHENSIVE LAND USE PLAN UPDATE DECEMBER 2012 FOR A PORTION OF PARCEL 003.19, TAX MAP 143 (A PORTION OF THE PROPERTY REFERENCED AS 133 CONCORD ROAD) ASSOCIATED WITH THE FARRAGUT TOWN CENTER AT BIDDLE FARMS PROJECT FROM MEDIUM DENSITY RESIDENTIAL TO MIXED USE TOWN CENTER

WHEREAS, the <u>Tennessee Code Annotated</u>, Section 13-4-201et seq, provides that the Municipal Planning Commission shall make and adopt a general plan for the physical development of the municipality; and

WHEREAS, the Farragut Municipal Planning Commission has adopted the Comprehensive Land Use Plan Update on December 12, 2012; and

WHEREAS, the Farragut Municipal Planning Commission may periodically amend various aspects of the Comprehensive Land Use Plan Update;

NOW, THEREFORE, BE IT RESOLVED that the Farragut Municipal Planning Commission hereby recommends, through Resolution PC-20-18, approval of Ordinance 20-26 to amend the Future Land Use Map of the Comprehensive Land Use Plan.

ADOPTED this 19th day of November 2020.

Rita Holladay, Chairman		
Scott Russ, Secretary		

ORDINANCE:	20-26
PREPARED BY:	Shipley
REQUESTED BY:	CHM, LLC
CERTIFIED BY FMPC:	November 19, 2020
PUBLIC HEARING:	
PUBLISHED IN:	=======================================
DATE:	
1ST READING:	
2ND READING:	-
PUBLISHED IN:	
DATE:	

AN ORDINANCE TO AMEND THE FUTURE LAND USE MAP OF THE COMPREHENSIVE LAND USE PLAN UPDATE FOR A PORTION OF PARCEL 003.19, TAX MAP 143 (A PORTION OF THE PROPERTY REFERENCED AS 133 CONCORD ROAD)

WHEREAS, the Board of Mayor and Aldermen of the Town of Farragut, Tennessee, through the Farragut Municipal Planning Commission, created and adopted the Farragut Comprehensive Land Use Plan Update and Future Land Use Map; and,

WHEREAS, the <u>Tennessee Code Annotated</u>, Section 13-4-201 et seq, provides that the Municipal Planning Commission shall make and adopt a general plan for the physical development of the municipality; and

WHEREAS, the Farragut Municipal Planning Commission adopted the Farragut Comprehensive Land Use Plan Update and Future Land Use Map by Resolution PC-12-18 on December 20, 2012; and

WHEREAS, the <u>Tennessee Code Annotated</u>, Section 13-4-202 et seq, provides that the Municipal Planning Commission and the chief legislative body may adopt parts of the Comprehensive Land Use Plan Update that correspond generally with one (1) or more of the functional subdivisions of the subject matter of the plan; and

WHEREAS, the Board of Mayor and Alderman of the Town of Farragut has adopted the Mixed-Use Town Center portion of the Future Land Use Map of the Farragut Comprehensive Land Use Plan Update; and

WHEREAS, the Board of Mayor and Alderman of the Town of Farragut may periodically amend the map of the Mixed-Use Town Center Land Use of the Farragut Comprehensive Land Use Plan Update;

NOW, THEREFORE, BE IT ORDAINED by the Board of Mayor and Aldermen of the Town of Farragut that the Future Land Use Map in the Comprehensive Land Use Plan Update is amended as follows:

SECTION 1.

Changing the property referenced as a portion of Parcel 003.19, Tax Map 143 (a portion of the property referenced as 133 Concord Road) from what is currently shown as Medium Density Residential on the Future Land Use Map to Mixed Use Town Center (see Exhibit A).

SECTION 2.

This ordinance shall take effect from and after its final public welfare requiring it.	passage and public	ation, the
Ron Williams, Mayor		
Allison Myers, Town Recorder		
Certified to the Farragut Board of Mayor and Aldermen this _ with approval recommended.	day of	, 2020,
Rita Holladay, Chairman		
Scott Russ, Secretary		

FARRAGUT MUNICIPAL PLANNING COMMISSION

Exhibit A Ordinance 20-126

Future Land Use Map Amendment A portion of Parcel 3.19 Tax Map 143 A Portion of the Property 133 Concord Road

> From Medium Density Residential

Mixed Use Town Center

Legend Subject Area Floodway 100 year Flood Zone 500 year Flood Zone Streets Parcels Commercial Open Space Parks and Rec Very Low Density Residential (2-4 DUs / Acre) Low Density Residential (3-6 DUs / Acre) Med Density Residential (6-8 DUs / Acre) Mixed Use Town Center (8-15 DUs /

REPORT TO THE FARRAGUT MUNICIPAL PLANNING COMMISSION

PREPARED BY: Mark Shipley, Community Development Director

SUBJECT: Discussion and public hearing on a request to amend the Farragut Zoning Map in

association with the Farragut Town Center at Biddle Farms project, 11230 and 11240 Kingston Pike and 133 Concord Road, Parcels 3.02, 3.03, 3.10, and a portion of 3.19, Tax Map 143, from General Commercial (C-1) and General Single-Family Residential (R-2) to

Planned Commercial Development (PCD), 43.63 Acres (CHM, LLC, Applicant)

INTRODUCTION AND BACKGROUND: Related to the previous agenda item, the applicant pursuing the Town Center at Biddle Farms project is requesting a zoning map amendment that would establish the Planned Commercial Development District (PCD) as the zoning district for their planned mixed-use project. Having more than one zoning district can create confusion in terms of what regulations apply and, since this is a planned commercial/residential project, the PCD is the logical choice.

As shown as part of Ordinance 20-27, a small portion of the project is currently zoned PCD. However, most of the project is zoned General Commercial (C-1) with the southeast end of the project, which does not include any proposed buildings, zoned General Single-Family Residential (R-2).

DISCUSSION: After a lengthy discussion at the staff/developer meeting on August 4, the general consensus that emerged was that the Town Center at Biddle Farms project, with its unique characteristics and surrounding plan of development, would be a good candidate for a Planned Commercial Development, especially given that a concept plan has already been presented and conditionally approved. The idea of using the PCD for this project was presented to the Planning Commission at their meeting on August 20 and was favorably received.

Since that time, the applicant has been working on putting together the information required for a rezoning request for the PCD District. Based on the information submitted, the applicant will be requesting some text amendments that will be considered at the December meeting. The project components that would involve requested text amendments were discussed in general terms with the Planning Commission at their July 16 meeting. The text amendment application was not submitted at that time because the applicant was still working through the details of their project to determine what, if any, amendments may need to be requested.

For purposes of this agenda item, staff would note that a rezoning to PCD would permit the applicant to develop under the existing language. The applicant understands that if future text amendments are not approved the project will need to be amended to comply with the established provisions.

RECOMMENDATION: Since the master concept plan that was submitted with this rezoning and that was conditionally approved by the Planning Commission in July will require text amendments, staff recommends that any approval of the rezoning will be conditioned upon the understanding that when the more detailed site and landscape plans are submitted, such plans shall be in compliance with all applicable regulations in place at that time.

Included in the packet is the applicant's revised rezoning package. This includes the Traffic Impact Study and a third-party review of the study. Staff will review the information provided and update the Commission at the meeting.

As noted in the previous item, in relation to the Eight Key Strategies identified in the Comprehensive Land Use Plan Update, changing the zoning map as provided for in Resolution PC-20-19 would help facilitate a project that would address the following:

- 1. Bringing About a Downtown (the project would create a main street with many components consistent with a downtown);
- Repairing Aging Shopping Centers (the project would result in the removal of the old Kroger building and the creation of a new development with a town center street grid with building placement and streetscaping that encourage pedestrian activity, a large central gathering space for community events, a linear park, and improvements to outdated infrastructure);
- Encouraging Greater Housing Choice (the project would provide for housing in a density, form, and location that would help support the downtown and create a more dynamic and active town center area);
- Increasing Connectivity (the project includes numerous connections, both vehicular and pedestrian, that tie the project together internally and externally);
- Enhancing our Identity (the project would create a unique type of development that would focus
 on activated spaces and pedestrian engagement along with provisions for public gatherings and
 community events); and
- Planning for the Remaining Vacant Parcels (the project not only repairs an existing aging shopping
 center and infrastructure but it also addresses abutting areas and incorporates them into the project
 to help sustain the project and create an area that will be identified as downtown Farragut).

Resolution PC-20-19 recommends approval of Ordinance 20-27 which would rezone all of the property to be included in the Town Center at Biddle Farms mixed use project as PCD.

RESOLUTION PC-20-19

FARRAGUT MUNICIPAL PLANNING COMMISSION

A RESOLUTION TO APPROVE AN AMENDMENT TO THE FARRAGUT ZONING MAP, ORDINANCE 86-16, TO RECOMMEND THE APPROVAL OF THE REZONING OF THE PROPERTY AT 11230 AND 11240 KINGSTON PIKE AND 133 CONCORD ROAD, PARCELS 3.02, 3.03, 3.10, AND A PORTION OF 3.19, TAX MAP 143, FROM GENERAL COMMERCIAL (C-1) AND GENERAL SINGLE-FAMILY RESIDENTIAL (R-2) TO PLANNED COMMERCIAL DEVELOPMENT (PCD)

WHEREAS, the <u>Tennessee Code Annotated</u>, Section 13-4-201et seq, provides that the Municipal Planning Commission shall make and adopt a general plan for the physical development of the municipality; and

WHEREAS, the Farragut Municipal Planning Commission has adopted various elements of a zoning plan as an element of the general plan for physical development; and

WHEREAS, a public hearing was held on this request on November 19, 2020;

NOW, THEREFORE, BE IT RESOLVED that the Farragut Municipal Planning Commission hereby recommends approval of Ordinance 20-27 to the Farragut Board of Mayor and Aldermen, an ordinance amending the Farragut Zoning Ordinance and Map, Ordinance 86-16, by rezoning the above noted property.

ADOPTED this 19th day of November 2020.

Rita Holladay, Chairman

Scott Russ, Secretary

ORDINANCE: PREPARED BY: REQUESTED BY: CERTIFIED BY FMPC: PUBLIC HEARING: PUBLISHED IN: DATE: 1ST READING: 2ND READING: PUBLISHED IN: DATE:	20-27 Shipley CHM, LLC November 19, 2020
AN ORDINANCE AMEN FARRAGUT, TENNESSE SECTION 13-4-201, <u>TENN</u> BE IT ORDAINED	NDING THE ZONING ORDINANCE OF THE TOWN OF EE, ORDINANCE 86-16, AS AMENDED, PURSUANT TO EESSEE CODE ANNOTATED. by the Board of Mayor and Aldermen of the Town of Farragut, Zoning Ordinance, Ordinance 86-16, as amended, is hereby amended
SECTION 1.	
rezoning 11230 and 11240 K portion of 3.19, Tax Map	Gordinance, Ordinance 86-16, as amended, is hereby amended by Kingston Pike and 133 Concord Road, Parcels 3.02, 3.03, 3.10, and a 143, from General Commercial (C-1) and General Single-Family Commercial Development (PCD) (See Exhibit A).
SECTION 2.	
This ordinance shall twelfare requiring it.	take effect from and after its final passage and publication, the public
Ron Williams, Mayor	
Allison Myers, Town Record	ler

Certified to the Farragut Board of Mayor and Aldewith approval recommended by the Farragut Munic	 , 2020 (FMPC).
Rita Holladay, Chairman	
Scott Russ, Secretary	

Exhibit A Ordinance 20-27

Rezone Parcel 3.02, 3.03, 3.10, and a portion of 3.19 Tax Map 143 11230 and 11240 Kingston Pike and 133 Concord Road

From C-1 (General Commercial) and R-2 (General Single-Family Residential

PCD (Planned Commercial Development)

Legend Subject Property Floodway 100 year Flood Zone 500 year Flood Zone Streets Parcels OS-P, Open Space/Park R-2, General Single-Family Residential R-4, Attached Single-Family Residential R-5, Two-Family Residential O-1, Office Town Center District C-1, General Commercial PCD, Planned Commercial Development

November 2, 2020

Mr. Darryl W. Smith, P.E. Town Engineer Town of Farragut 11408 Municipal Center Drive Farragut, Tennessee 37934

RE: Traffic Impact Study Report Review Farragut Town Center at Biddle Farms

Farragut, TN

Dear Mr. Smith

Cannon & Cannon, Inc. (CCI) appreciates the opportunity to review the traffic impact study report for the proposed Farragut Town Center at Biddle Farms development prepared by CDM Smith. It is our understanding that the proposed development will consist of a grocery store, retail shops, and multi-family residential units. We further understand that the development will be located east of the existing Kroger development. Access to Kingston Pike and Campbell Station Road will be provided via Brooklawn Street, and the development will also have access to Concord Road. The development is expected to produce between 6,000 and 7,000 new daily trips.

We have reviewed the report for this traffic impact study, and it is our opinion that the overall report content conclusions, and recommendations were developed using sound engineering methods and assumptions. The utilization of 2016 counts due to current traffic conditions with Covid was appropriate. The annual growth rates of 2.5% for 2020 existing traffic and 3.5% for 2025 background traffic are reasonable as is the factoring of the count at Brooklawn and the driveway accesses by 10%. CDM Smith acknowledged the traffic issues at the intersections of Kingston Pike with Campbell Station Road and Kingston Pike with Concord Road, and they provided potential mitigation measures for these issues.

Regarding traffic generated by the proposed development, we have no issues with the methods utilized and the assumptions made for the trip generation estimates. We further agree that it was appropriate to provide separate trip distributions for the residential and commercial components. Based on the capacity analysis comparisons of background traffic without the development and projected traffic with the development, we agree that the two critical intersections (Kingston at Campbell Station and Kingston at Concord) may experience unstable conditions without mitigation, but that these conditions will not significantly worsen due to traffic generated by the proposed development.

Sincerely,

Brian J. Haas, P.E., PTOE

Bring Man

Project Manager

FARRAGUT TOWN CENTER AT BIDDLE FARMS

Town of Farragut

TRAFFIC IMPACT STUDY

October 2020

Prepared by

CDM SMITH
Alexander Place
1100 Marion Street, Suite 300
Knoxville, Tennessee 37921

Project No. 245285

TABLE OF CONTENTS

INTRODUCTION	
Project DescriptionSite Location	
LOCAL AND REGIONAL ACCESS	4
Local Access	4 4
EXISTING TRAFFIC CONDITIONS	5
Existing Traffic Control and Speed Existing Traffic Volumes Existing Capacity and Level of Service	
BACKGROUND TRAFFIC CONDITIONS	13
Background Traffic VolumesBackground Capacity and Level of Service	
PROJECT IMPACTS	18
Trip Generation Trip Distribution and Assignment Project Traffic Volumes Total Projected Traffic Volumes Projected Capacity and Level of Service	20 20 36
RECOMMENDATIONS	44
CONCLUSION	45
ADDENDIY	//0

i

LIST OF FIGURES

Figure 1: Site Plan	
Figure 2: Vicinity Map	3
Figure 3A,B: 2020 Existing Traffic	6,7
Figure 4A,B: 2020 Existing Levels of Service	11,12
Figure 5: 2025 Background Traffic	14
Figure 6A: 2025 Background Levels of Service	16
Figure 6B: 2020 Background Levels of Service w Mitigation	17
Figure 7A,B: Residential Distribution & Assignment	21,22
Figure 8A,B: Commercial Retail Primary Distribution & Assignment	23,24
Figure 9A,B: Commercial Retail AM Pass-By Distribution & Assignment	26,27
Figure 10A,B: Commercial Retail PM Pass-By Distribution & Assignment	28,29
Figure 11A,B: PrimaryTrips	30,31
Figure 12A,B: Pass-byTrips	32,33
Figure 13A,B: Total Development Trips	34,35
Figure 14A,B: 2025 Projected Traffic	37,38
Figure 15A,B: 2025 Projected Levels of Service	41,42
Figure 16: 2025 Projected Levels of Service with Mitigation	43
LIST OF TABLES	
Table 1: Signalized LOS Description	9
Table 2: Unsignalized LOS Description	9
Table 3: 2020 Existing Capacity and Level of Service	8
Table 4: 2025 Background Capacity and Level of Service	15
Table 5: Trip Generation	19
Table 6: Trip Generation Comparison with Current Zoning	20
Table 7: 2025 Projected Capacity and Level of Service	39
Table 8: Summary of Capacity and Level of Service	40

INTRODUCTION

CDM Smith is pleased to submit this report to address any traffic impact and access for the development of the Biddle Farms Property, a mixed-use retail commercial and residential development. This traffic study required the collection of traffic data, generation of anticipated traffic volumes for the proposed site and development of projected traffic volumes for normal growth and from the potential site. Analyses of the resulting traffic projections were conducted to determine the capacity and levels of service for the site access to Kingston Pike, Campbell Station Road South, and Concord Road. This study will evaluate the development's impact and determine if any mitigation measures are necessary to minimize the traffic impact including improved roadway geometrics and traffic control devices.

Project Description

The proposed development of the Biddle Farms is a mixed retail commercial and residential development on a total of approximately 29.3 acres with current zoning of C-1 and PCD, which could permit development of 295,000 square-feet of retail commercial. This study will address the site with a proposed PCD zoning and the development of a 20,442-square foot grocery with 42,000 square feet of retail shops and approximately 290 multi-family residential units. The retail commercial development will be of a town center concept which includes shops adjacent to local street facilities with on-street parking. Figure 1 shows the proposed site plan. The proposed access is to Brooklawn Street serving the Farragut Town Center with intersections to Kingston Pike (US 11/70) and South Campbell Station Road. The site would utilize an existing access to Concord Road to the east.

Site Location

The proposed development is to be located in the Town of Farragut at the old Kroger site with access opposite Lendon Welch Way at Kingston Pike. The site is bound by Kingston Pike to the north, Brooklawn Street to the west and Concord Road to the east. The site is southeast of the Kingston Pike and Campbell Station Road intersection. Figure 2 illustrates the site location relative to local and regional access.

LOCAL AND REGIONAL ACCESS

Local Access

The proposed local access is to Brooklawn Street with intersections to Kingston Pike (US 11/70) and South Campbell Station Road. Brooklawn Street is a 2-lane section with a posted speed limit of 25mph connecting Kingston Pike and South Campbell Station Road, Kingston Pike (US 11/70) is a 5-lane east and west arterial through Farragut with the posted speed for 45 mph extending to Lenoir City to the west and Knoxville central business district (CBD) to the east. Kingston Pike has an average daily traffic (ADT) of 22,260 to the west of the site and 34,790 to the east.

Campbell Station Road South is a 5-lane arterial extending north and south of the site between Concord Road (SR 332) to the south and Hardin Valley Road to the north. Campbell Station Road has an interchange with Interstate 40/75 to the north of the site. The posted speed limit of Campbell Station Road is 45 mph and has an average daily traffic volume of 26,890 north of Kingston Pike and 11,350 south of Kingston Pike, adjacent to the site.

The existing access to Concord Road will also be utilized by the proposed development. Concord Road is a 2-lane roadway extending south from Kingston Pike to Northshore Drive. Its posted speed is 30 mph and has an approximate ADT of 10,750 adjacent to the site.

Regional Access

Regional access to this site is also from Kingston Pike accessing east and west of the site with available access south of the site. Northshore Drive is a 2-lane regional minor arterial extending east and west of the site between Papermill Road to the east and Loudon County to the west. Northshore Drive serves much residential development with some neighborhood centers to the west. To the east, Northshore Drive serves again much residential development but with more available commercial development as it extends into City of Knoxville limits.

Interstate 40/75 access is provided from Campbell Station Road to the north, Watt Road to the west, and Lovell Road (SR 131) east of site. Interstate 40 is an east and west six-lane facility running through Knoxville to the east and Nashville to the west. Interstate 75 extends north to Lexington, Kentucky, and to the west, I-75 turns south to Chattanooga, Tennessee. The Interstate 40/75 facility has a 2019 ADT of 125,370 east of Campbell Station Road and north of the site.

EXISTING TRAFFIC CONDITIONS

Existing Traffic Control

The proposed site accesses from Brooklawn Street to Kingston Pike and South Campbell Station Road are signalized. Signals are accessible to and from the site at Kingston Pike at Lendon Welch Way. Kingston Pike intersections with Campbell Station Road to the west and Concord Road to the east of the site are signalized. The South Campbell Station Road intersection with Concord Road is signalized. Brooklawn Street is a local street with a roundabout provided to serve the development and as a possible deterrent of cut-through traffic.

Existing Traffic Volumes

Current traffic counts were not conducted due to the COVID-19 pandemic which affects the 2020 traffic conditions. Traffic patterns have been affected due to many individuals working from home and schools not fully opened. Therefore, turning movement counts for the signalized intersections were provided by the Town of Farragut from a study performed in April 2016. The peak hours determined for Kingston Pike and Campbell Station Road were between 7:30-8:30AM and 5:00-6:00PM. The intersection of Kingston Pike and Campbell Station Road is the critical intersection in the vicinity of the site. With the peak hours of the development typically between 7:00-9:00AM and 4:00-6:00PM, the peak hour found using the Kingston Pike and Campbell Station Road turning movement count was appropriate for this study. The 2016 turning movements were factored up by 10-percent, reflecting a 2.5-percent annual growth rate from 2016 to 2020. This rate of growth was determined from the historical ADT traffic data available from the Tennessee Department of Transportation (TDOT). The TDOT data for count stations nearby the site show annual growth rates (between 2016 and 2018) ranging from 1.73-percent along South Campbell Station Road, 3.1-percent along Concord Road and -6.73-percent along Kingston Pike east of Concord Road. The count stations show traffic volumes trending up from 2012 and dipping in 2018 with another increase in 2019. The 2.5-percent annual growth rate provides a realistic, yet conservative, estimate for 2020 traffic volumes.

Current traffic was collected for the driveway accesses along Brooklawn Street. These turning movements were also factored 10-percent for an effect of the possible COVID-19 traffic conditions. Traffic along Brooklawn Street may not have been as affected by the pandemic conditions due to the nature of the traffic being more grocery and other essential supplies. This adjustment is to account for the possible reduction in 2020 traffic conditions related to COVID-19.

Figures 3 and 3B illustrate the AM and PM peak-hour turning movements for 2020.

Existing Capacity and Level of Service

In order to evaluate the current operations of the traffic control devices, capacity and level of service were calculated using the 2000 Highway Capacity Manual, Special Report 209 published by the Transportation Research Board (TRB). Signalized and unsignalized intersections are evaluated based on estimated intersection delays, which are related to level of service (LOS).

Level of service and capacity are measurements of an intersection's ability to accommodate traffic volumes. Levels of service for intersections range from A to F. LOS A is the best, and LOS F is failing. For signalized intersections, LOS A has an average estimated delay of less than 10 seconds per vehicle, and LOS F has an estimated delay of greater than 80 seconds. LOS C and D are typical design values. Within urban areas, LOS D (delay between 35 and 55 seconds) is considered acceptable by the Institute of Transportation Engineers (ITE) for signalized intersections.

Unsignalized intersection levels of service have lower thresholds of delays. LOS F exceeds estimated delays of 50 seconds per vehicle. For urban arterials, minor approaches may frequently experience levels of service E. Full level of service descriptions for unsignalized and signalized intersections are presented in Tables 1 and 2, respectively.

Table 1 LEVEL-OF-SERVICE (LOS) DESCRIPTION FOR SIGNALIZED INTERSECTIONS

LOS	Average Control Delay per Vehicle (seconds) Description		
Α	≤ 10.0	Very low delay with extremely favorable progression. Most vehicles don't stop.	
В	> 10.0 and ≤ 20.0	Generally good progression. Increase number of stops from that described for LOS "A" resulting in higher delays	
С	> 20.0 and ≤ 35.0	Fair progression with increased delay. Number of stopping vehicles become significant; however, many still pass through the intersection without stopping. Stable flow.	
D	> 35.0 and ≤ 55.0	The influence of congestion becomes more noticeable. Longer delays resulting from unfavorable progression, longer cycles, or high V/C ratios. Approaching unstable flow.	
E	> 55.0 and ≤ 80.0	Limit of acceptable delay. Long delays associated with poor progression, long cycles, or high V/C ratios.	
F	> 80.0	Unacceptable operation resulting from oversaturation (flow rates exceed capacity). Poor progression, long cycles, and high V/C ratios.	

SOURCE: Highway Capacity Manual, TRB Special Report 209

Table 2
SERVICE (LOS) DESCRIPTION
FOR TWO-WAY STOP INTERSECTIONS

Level of Service	Average Control Delay per Vehicle (seconds)
Α	≤ 10.0
В	> 10.0 and ≤ 15.0
C	> 15.0 and ≤ 25.0
D	> 25.0 and ≤ 35.0
E	> 35.0 and ≤ 50.0
F	> 50.0

SOURCE: Highway Capacity Manual, TRB Special Report 209

A second measure of performance that is particularly valuable under signalized operation is the volume-to-capacity ratio (V/C). This reflects the portion of capacity that is being utilized. As the V/C exceeds 0.90, the movement or intersection is less able to absorb additional traffic demand, so that relatively small increases in traffic volume can lead to significant increases in delay and possible failing conditions.

Analyses were conducted using the **Synchro** Software, developed by Trafficware. **Table 3** presents the signalized analyses of the study intersections. Intersection lane group levels of service are illustrated in **Figures 4A and 4B**.

TABLE 3 2020 EXISTING CAPACITY AND LEVEL OF SERVICE

	TRAFFIC	PEAK	w Optin	nized Signal Tim	ing
INTERSECTION	CONTROL	PERIOD	V/C	DELAY	LOS
Kingston Pike (US 11/70)	SIGNAL	AM	0.98	37.7	D
& Campbell Station Road	SIGNAL	PM	1.08	65.5	E
Kingston Pike (US 11/70)	SIGNAL	AM	0.68	9.7	А
& Brooklawn Street	SIGNAL	PM	0.65	27.4	C
Kingston Pike (US 11/70)	SIGNAL	AM	0.84	18.0	В
& Lendon Welch Way	SIGNAL	PM	0.62	15.0	В
Kingston Pike (US 11/70)	SIGNAL	AM	0.91	40.3	D
& Concord Road (SR 332)	SIGNAL	PM	0.87	39.2	D
Campbell Station Road So.	SIGNAL	AM	0.28	2.7	А
& Brooklawn Street	SIGNAL	PM	0.47	21.3	С
Campbell Station Road So.	SIGNAL	AM	0.62	16.2	В
& Concord Road (SR 332)	SIGNAL	PM	0.54	17.0	В
Concord Road (SR 332)	SIGNAL	AM	0.33	3.3	Α
& Site Access	SIGNAL	PM	0.38	12.6	В
Brooklawn Street	STOP	AM	0.087/0.02	10.2/9.4	B/A
& Petco/Old Kroger Access	EB/WB	PM	0.426/0.168	16.5/12.1	C/B
Brooklawn Street	B	AM	0.10	3.4	Α
& Kroger Roundabout	Roundabout	PM	0.16	4.0	Α
Brooklawn Street	STOP	AM	0.04	8.7	А
& Pinnacle Access	EB	PM	0.11	10.1	В

Note: Average vehicle delay estimated in seconds.

Current conditions at all study intersections are LOS E or better. Intersections are operating with a minimum LOS C except for the Kingston Pike intersections with Campbell Station Road and Concord Road. The PM peak hour for the intersection of Kingston Pike at Campbell Station Road is a LOS E and operates over capacity with a V/C ratio of 1.08, thereby an operation that is unstable and experiencing saturated traffic flows resulting in significant congestion with adverse traffic queues. The Kingston Pike intersection with Concord Road is a LOS D during the peak hours with a capacity ratio exceeding 0.90 indicating traffic conditions becoming unstable.

BACKGROUND TRAFFIC CONDITIONS

Background traffic is traffic that can be anticipated regardless of the proposed development. Traffic within the study area should continue to grow due to other development. This background traffic is projected for the purpose of establishing a baseline for the evaluation of the subject site impacts.

Background Traffic Volumes

Historical traffic data is reviewed to determine traffic growth trends in the study area. Using the TDOT count stations in the vicinity of the site, annual growth rates over the past 5 and 10 years was determined. These stations and respective annual growth rates include the following:

Concord Road (Sta 455) 4.9% (5-year history)
Concord Road (Sta 139) 2.6% (5-year history)
Campbell Station Road (Sta 294) 2.7% (5-year history)
Campbell Station Road (Sta 454) 4.5% (10-year history)
Kingston Pike (Sta 363) 2.0% (10-year history)
Kingston Pike (Sta 138) 4.4% (5-year history)

This evaluation determined an annual growth rates ranged between a negligible rate and 5.0-percent. For the purpose of this study, background traffic volumes were, therefore, developed assuming an annual compounded growth rate of 3.5-percent. Background traffic is projected for the year 2025 thereby reflecting an 18.8-percent growth (compounded 3.5-percent for 5 years) applied to the through traffic volumes on Kingston Pike, Campbell Station Road, and Concord Road. Build-out of the site is assumed in the next five years. Actual build-out, however, will largely depend on the housing and retail markets.

Figure 5 illustrates the grown turning movements reflecting the 2025 background traffic growth.

Background Capacity and Level of Service

Analyses were performed for the 2025 background conditions. The results of these analyses are presented in **Table 4**. The levels of service for Year 2025 are maintained from existing conditions.

The Kingston Pike intersections with Campbell Station Road and Concord Road will deteriorate to unacceptable levels of service with a PM peak hour LOS F and capacity ratio of 1.36 for Campbell Station Road and a LOS E and capacity ratio of 1.06 for Concord Road during the AM peak hour. Concord Road PM peak hour will also experience a capacity ratio exceeding 0.90 also indicating unstable traffic condition.

TABLE 4 2025 BACKGROUND CAPACITY AND LEVEL OF SERVICE

	TRAFFIC	PEAK -	w Optimized Signal Timing			
INTERSECTION	CONTROL	PERIOD	V/C	DELAY	LOS	
Kingston Pike (US 11/70)	CICNIAL	AM	0.98	47.6	D	
& Campbell Station Road	SIGNAL	PM	1.36	102.4	F	
w NB, SB, and EB Double		AM	0.86	32.2	C	
Left-turn Lanes Mitigation		PM	1.08	51.2	D	
Kingston Pike (US 11/70)	SIGNAL	AM	0.70	8.4	А	
& Brooklawn Street	SIGNAL	PM	0.76	15.8	В	
Kingston Pike (US 11/70)	SIGNAL	AM	0.80	21.5	С	
& Lendon Welch Way	SIGNAL	PM	0.71	6.7	Α	
Kingston Pike (US 11/70)	SIGNAL	AM	1.06	67.8	E	
& Concord Road (SR 332)	SIGNAL	PM	0.91	39.8	D	
w NB Double Right-Turn		AM	0.92	45.8	D	
Lanes Mitigation		PM	0.93	44.3	D	
Campbell Station Road So.	SICNIAL	AM	0.31	3.0	А	
& Brooklawn Street	SIGNAL	PM	0.47	14.2	В	
Campbell Station Road So.	SIGNAL	AM	0.80	22.0	С	
& Concord Road (SR 332)	SIGNAL	PM	0.63	17.7	В	
Concord Road (SR 332)	SIGNAL	AM	0.40	2.7	Α	
& Site Access	SIGNAL	PM	0.42	10.4	В	
Brooklawn Street	STOP	AM	0.087/0.02	10.2/9.4	B/A	
& Petco/Old Kroger Access	EBWB	PM	0.426/0.168	16.5/12.1	C/B	
Brooklawn Street	Doumdobout	AM	0.06	3.2	А	
& Kroger Roundabout	Roundabout	PM	0.15	4.0	Α	
Brooklawn Street	STOP	AM	0.04	8.7	А	
& Pinnacle Access	EB	PM	0.11	10.1	В	

Note: Average vehicle delay estimated in seconds.

With background left-turn volumes exceeding 300vph for the northbound, southbound, and eastbound approaches of the Kingston Pike and Campbell Station Road intersection, double left-turn lanes are needed for the intersection capacity and the reduction in the delay. Double left-turn movements for the Kingston Pike and Campbell Station Road intersection would be very difficult with the current development of the intersection corners. The provision of these double left-turn lanes would require several design exceptions if they were to be considered by the Town of Farragut, minimizing any right-of-way required.

For the Kingston Pike intersection with Concord Road, the LOS E and capacity can be mitigated with northbound double right-turn lanes. Figures 6A and 6B illustrate the background intersection lane group levels of service without and with mitigation, respectively.

PROJECT IMPACTS

Project conditions are developed by generating traffic based on the proposed land use, distributing the trips to the transportation network, and conducting analyses for capacity and level of service.

Trip Generation

Project traffic was determined using the publication, Trip Generation, 10th Edition. This reference is published by the Institute of Transportation Engineers (ITE) and represents national data collected for many different land uses including industrial, residential and commercial uses. Trip Generation is an essential tool in calculating the traffic, which may be generated by a proposed development. The study generated traffic for the approximate 29.3 acres of mixed commercial-residential development with a 20,442 square-foot Aldi's grocery with 42,000 of retail shops and approximately 290 multi-family units. The grocery land use utilized the ITE land use code (LUC 850) and the retail shops used the LUC for shopping center (LUC 820). The trip generation for the residential land use, however, utilized local trip generation rates adopted by the Knoxville-Knox County Metropolitan Planning Commission in July of 2000 for multi-family residential developments. Local trip rates were studied in accordance with the publication, Trip Generation, 6th Edition.

Some trip generation studies have included surveys addressing pass-by traffic. This is traffic already on the adjacent street that is attracted to the proposed development. Studies conducted for pass-by traffic have suggested that a percentage of the traffic generated by commercial retail, such as the land use at hand, may originate from the existing traffic flow; therefore, the project does not necessarily introduce all new traffic to the transportation system.

Pass-by traffic percentages differ relative to specific land uses and their densities. Some studies have shown varied results; however, the ITE publications, Transportation and Land Development by Virgil G. Stover and Frank J. Koepke, and Trip Generation have combined these studies to suggest uniform rates for given land uses. These rates range from 14-percent for hardware stores to 60-percent for neighborhood shopping centers, gross leasable area less than 100,000 square feet. Service stations and fast-food restaurants also exhibit high pass-by rates of 58-percent and 45-percent, respectively.

With the above in mind, a 20-percent pass-by and 5-percent internal trips were assumed for the proposed development. From the trip generation calculations, the proposed site may generate approximately 8,480 daily weekday trips. After the consideration of pass-by traffic and internal trips, approximately 6,730 new daily trips (Primary) may be generated for a typical weekday. Table 5 presents the trip generation of this proposed site.

TABLE 5 TRIP GENERATION

Land Use	Land-Use Code	Units	Daily Trips	AM Peak-Hour Trips		PM Peak-Hour Trips	
				Enter	Exit	Enter	Exit
Knox Co Multi-Family(1)	220Knox	290 units	2,485	31	111	112	92
Internal Ti	rips Reduction	10%	249	3	11	11	9
Residential	Primary Trips		2,237	28	100	101	83
Shopping Center(2)	820	42,000 sqft.	3,333	107	66	137	149
Supermarket ⁽²⁾	850	20,442 sqft.	2,662	47	31	121	117
Shopping Center I	Jses Sub-Total	62,442 sqft.	5,995	154	97	258	266
	Pass-By Trips	20%	1,199	31	19	52	53
Interna	I/Shared Trips	5%	300	8	5	13	13
Commercial Retail	Primary Trips		4,496	116	73	194	200
Total (Generated Trips		8,480	185	208	370	358
Total	Primary Trips		6,733	143	173	294	282

References: (1) Knoxville-Knox Co. Planning trip generation rates adopted July of 2000

(2) Institute of Transportation Engineers-Trip Generation, 10th Edition

The trip generation was also conducted for the current zoning and the possible development of 295,000 square feet of retail commercial. This trip generation used a shopping center land use (LUC 820). The trip generation of the currently proposed development and the possible development with the current zoning is compared in Table 6. The comparison of the trip generation found the proposed site would produce fewer trips than the possible development with the current zoning. With the same pass-by rate of 20-percent applied to the current zoning trip generation, the primary daily trips generated were 10,037 and the PM peak hour trips were 968. This results in up to 3,300 fewer daily trips and 390 fewer PM peak hour trips with the proposed mixed commercial and residential development. An additional approximate 75 trips might be generated during the AM peak hour with the mixed-use commercial and residential site as compared to the current zoning.

Farragut, Tennessee

TABLE 6 TRIP GENERATION COMPARISON WITH CURRENT ZONING

Land Use	Land-Use Code	Units	Daily Trips	AM Peak-Hour Trips		PM Peak-Hour Trips	
				Enter	Exit	Enter	Exit
CURRENT ZONING							
Shopping Center(1)	820	295,000 sqft.	12,546	186	114	581	629
	Pass-By Trips	20%	2,509	37	23	116	126
Commer	cial Retail Primary Trips		10,037	149	91	465	503
			33430	3 (5%	23/		
PROPOSED DEVELO Mixed Multi-Family & Commercial	OPMENT Total Generated Trips Pass-By Trips		8,480 1,199	185 31	208 19	370 52	358 53
PROPOSED DEVELO	DPMENT Total Generated Trips		8,480	185	208	11-11-11	200
PROPOSED DEVELO Mixed Multi-Family & Commercial	DPMENT Total Generated Trips Pass-By Trips Internal/Shared Trips		8,480 1,199 548	185 31 11	208 19 16	52 24	53 23

References: (1) Institute of Transportation Engineers-Trip Generation, 10th Edition

Trip Distribution and Assignment

The proposed Biddle Farms should have both a localized and some regional area of influence. The retail commercial development should have a more neighborhood area of influence, a radius of approximately five miles; whereas, the residential could have some regional influence as it should exhibit commuter traffic patterns. The commercial trip distribution and assignment considered the current distribution of the current Kroger center and traffic entering and exiting Brooklawn Street. The residential distribution assumed a similar pattern exhibited by morning peak hour commuter traffic. The primary distribution, therefore assumes the following:

	<u>Commercial</u>	Residential
Kingston Pike (US 11/70) West	15%	15%
Kingston Pike (US 11/70) East	30%	40%
So. Campbell Station Road/Concord Road (SR 332) South	30%	20%
No. Campbell Station Road North	20%	25%
Concord Road (SR 332) within the Site Vicinity	5%	

Figures 7A and 7B illustrate the primary trip assignment for the primary residential trips, and Figures 8A and 8B illustrate the primary trip assignment for the commercial development.

The pass-by trips for the retail commercial uses were assumed 60-percent from Kingston Pike and 20-percent from either Campbell Station Road and Concord Road. Figures 9A and 9B illustrate the pass-by assignments for the AM peak hour, and Figures 10A and 10B illustrate the PM peak hour assignment.

Project Traffic Volumes

By multiplying the trips generated by the trip assignments, the primary and pass-by trips were developed for the study intersections; Figures 11A and 11B illustrate the resulting peak hour primary trips, and Figures 12A and 12B illustrated the Pass-by trips associated with the proposed site. The total site trips (Primary+Pass-by) are illustrated in Figures 13A and 13B.

The impact of the site related traffic to the critical intersection of Kingston Pike and Campbell Station Road is limited and not considered significant as it's not more than 3.5-percent. The site trips did not account for more than 8.8-percent for than any of the study intersections with the greater impact of site trips determined for the site access to and from Concord Road.

Total Projected Traffic Volumes

Background and site traffic volumes were added together to develop post-development traffic volumes for the year 2025. **Figures 14A and 14B** illustrate the 2025 traffic projections, which were analyzed to assess any mitigation measures identified including traffic control devices and roadway and intersection geometry.

Projected Capacity and Level of Service

Analysis of the 2025 projected traffic was conducted. **Table 7** presents the capacity and levels of service for the study intersections. A summary of the capacity and LOS analyses is presented in **Table 8**. **Figures 15A and 15B** illustrate the lane group levels of service for the study intersections. **Figure 16** illustrates the lane group levels of service with mitigation.

From the analyses conducted, changes in capacity ratios and delays are minimal for the study intersections, and levels of service did not change significantly from the background traffic conditions. Analyses determined that the proposed site development did not result in any significant changes from the analyses conducted for the background traffic conditions which found that the Kingston Pike intersections with Campbell Station Road and Concord Road may experience a LOS F during the PM peak hour and an E during the AM peak hour, respectively; the site impact increase the average intersection delay less than 6 seconds for either intersection and the increase in the V/C ratio not more than 4-percent.

With double left-turn lanes provided for the northbound, southbound, and eastbound approaches of the Kingston Pike and Campbell Station Road intersection, the LOS and intersection capacity may be mitigated to the existing 2020 traffic conditions. For the intersection of Kingston Pike and Concord Road, an added northbound right-turn lane, providing for double right-turn movement would return the intersection to its current 2020 LOS and capacity. The site impact on these intersections are not significant and the need for this mitigation is due to background traffic conditions. The provision of the double left-turn lanes for the intersection of Kingston Pike and Campbell Station Road would be very challenging with design exceptions as previously stated in the background section of this report. The site has a minimal impact on the intersection.

Table 7 2025 PROJECTED CAPACITY AND LEVEL OF SERVICE

	TRAFFIC	PEAK -	w Optir	nized Signal Timi	ng
INTERSECTION	CONTROL	PERIOD	V/C	DELAY	LOS
Kingston Pike (US 11/70)	SIGNAL	AM	1.01	52.6	D
& Campbell Station Road	SIGNAL	PM	1.40	101.1	F
w NB, SB, and EB Double		AM	0.86	32.2	С
Left-turn Lanes Mitigation		PM	1.08	51.2	D
Kingston Pike (US 11/70)	SIGNAL	AM	0.80	12.0	В
& Brooklawn Street	SIGNAL	PM	0.80	20.0	В
Kingston Pike (US 11/70)	SIGNAL	AM	0.82	22.7	С
& Lendon Welch Way	SIGNAL	PM	0.74	8,4	Α
Kingston Pike (US 11/70)	SIGNAL	AM	1.08	73.5	E
& Concord Road (SR 332)	SIGNAL	PM	0.93	44.7	D
w NB Double Right-Turn		AM	0.92	45.8	D
Lanes Mitigation		PM	0.93	44.6	D
Campbell Station Road So.	SIGNAL	AM	0.32	5.0	Α
& Brooklawn Street	SIGNAL	PM	0.51	16.0	В
Campbell Station Road So.	SIGNAL	AM	0.80	22.9	С
& Concord Road (SR 332)	SIGNAL	PM	0.66	18.3	В
Concord Road (SR 332)	SIGNAL	AM	0.41	4.8	Α
& Site Access	SIGNAL	PM	0.45	8.0	Α
Brooklawn Street	STOP	AM	0.116/0.092	12.1/10.5	B/B
& Petco/Old Kroger Access	EB/WB	PM	0.704/0.502	38.5/19.6	E/C
Brooklawn Street	STOP	AM	0.04	9.1	Α
Proposed Grocery/Apartment Acces	WB	PM	0.04	9.5	Α
Brooklawn Street	Roundabout	AM	0.10	3.4	А
& Kroger Roundabout	Roundabout	PM	0.22	4.6	Α
Brooklawn Street	STOP	AM	0.04/0.07	8.9/11.4	A/B
& Pinnacle Access	EBWB	PM	0.12/0.11	10.8/17.1	B/C

Note: Average vehicle delay estimated in seconds.

TABLE 8 CAPACITY AND LEVEL OF SERVICE SUMMARY

	TOAFFILE	74.70	2020 E	2020 EXISTING TRAFFIC	C	2025 BA	2025 BACKGOUND TRAFFIC	FFIC	2025 PR	2025 PROJECTED TRAFFIC	C
INTERSECTION	CONTROL	PERIOD	w Optin V/C	w Optimized Signal Timing DELAY	ng LOS	w Optin V/C	w Optimized Signal Timing DELAY	ing LOS	w Optin V/C	w Optimized Signal Timing DELAY	SOT 6
Kingston Pike (US 11/70) & Campbell Station Road w NB, SB, and EB Double Left-turn Lanes Mitigation	SIGNAL	AM PM AM	1.08	37.7 65.5	E D	0.98 1.36 0.85 7.07	47.6 102.4 29.7 46.4	O + O O	1.01 1.40 0.86 7.08	52.6 101.1 32.2 51.2	0 + 0 0
Kingston Pike (US 11/70) & Brooklawn Street	SIGNAL	AM PM	0.68	9.7 27.4	∢0	0.70	8.4 15.8	4 8	0.80	12.0	60 60
Kingston Pike (US 11/70) & Lendon Welch Way	SIGNAL	AM PM	0.84	18.0	88	0.80	21.5	υ¥	0.82	22.7 8.4	OA
Kingston Pike (US 11/70) & Concord Road (SR 332) w NB Double Right-Tum Lanes Mitigation	SIGNAL	AM AM PW	0.91	39.2	ΩΩ	1.06 0.92 0.92	67.8 39.8 43.8 42.1	3 O O	1.08 0.93 0.92 0.93	73.5 44.7 44.3	ш Ф Ф Ф
Campbell Station Road So. & Brooklawn Street	SIGNAL	AM PM	0.28	2.7	∢ ∪	0.31	3.0	< 00	0.32	5.0 16.0	¥ 8
Campbell Station Road So. & Concord Road (SR 332)	SIGNAL	AM	0.62	16.2 17.0	88	0.80	22.0	υm	0.80	22.9	υш
Concord Road (SR 332) & Site Access	SIGNAL	P AM	0.33	3.3	4 8	0.40	2.7 10.4	< m	0.41	4.8 8.0	44
Brooklawn Street & Petco/Old Kroger Access	STOP	AM PM	0.087/0.02	10.2/9.4	B/A C/B	0.087/0.02 0.426/0.168	10.2/9.4	B/A C/B	0.116/0.092	12.1/10.5 38.5/19.6	B/B E/C
Brooklawn Street Proposed Grocery/Apartment Acces	STOP	AM PM	x .t	96 /8	X 9	88 74	* a		0.04	9.1	44
Brooklawn Street & Kroger Roundabout	Roundabout	AM PM	0.10 0.16	3.4	44	0.06	3.2	ৰ ৰ	0.10	3.4	44
Brooklawn Street & Pinnacle Access	STOP EB/WB	AM PM	0.04	10.1	ВА	0.04	8.7 10.1	В	0.04/0.07	8.9/11.4	A/B B/C

FARRAGUT TOWN CENTER AT BIDDLE FARMS

RECOMMENDATIONS

The analyses conducted and the review of the traffic volumes identified the following recommendations:

 Minimize landscaping, using low growing vegetation, and signing at the planned site accesses.

Intersection design should conform to the recommended standards and practices of the American Association of State Highway and Transportation Officials, the Institute of Transportation Engineers, Tennessee Department of Transportation (TDOT), and the Town of Farragut.

CONCLUSION

The study of the Biddle Farms, a proposed mixed commercial and residential development evaluated the projected traffic conditions. Background traffic was determined using a 3.5-percent annual compounded growth rate until the horizon year 2025. Traffic associated with the proposed project was then generated and distributed to the proposed site accesses. The proposed site may generate approximately 8,480 daily weekday trips. After the consideration of pass-by traffic and internal trips, approximately 6,730 new daily trips (Primary) may be generated for a typical weekday. Using the identified turning movements for the projected traffic conditions, unsignalized and signalized capacity and level of service analyses were conducted using the 2000 Highway Capacity Manual.

Current conditions for study intersections are LOS E or better. Intersections are operating with a minimum LOS C except for the Kingston Pike intersections with Campbell Station Road and Concord Road. The PM peak hour for the intersection of Kingston Pike at Campbell Station Road is a LOS E and operates over capacity with a V/C ratio of 1.08, thereby an operation that is unstable and experiencing saturated traffic flows resulting in significant congestion with adverse traffic queues. The Kingston Pike intersection with Concord Road is a LOS D during the peak hours with a capacity ratio exceeding 0.90 indicating traffic conditions becoming unstable.

From the analyses conducted, changes in intersection capacity and delays are minimal for the study intersections, and levels of service did not change significantly from the background traffic conditions. Analyses determined that the proposed site development did not result in any significant changes from the analyses conducted for the background traffic conditions which found that the Kingston Pike intersections with Campbell Station Road and Concord Road may experience a LOS F during the PM peak hour and an E during the AM peak hour, respectively; the site impact increase the average intersection delay less than 6 seconds for either intersection and the increase in the V/C ratio not more than 4-percent. The poor levels of service for the Kingston Pike intersections with Campbell Station Road and Concord Road would occur regardless of the proposed development.

The proposed site does not have a significant impact on the adjacent road network as traffic projections and intersection analyses found little impact resulting from the proposed development. This impact is minimized with the proposed signalized accesses available to the site thereby affectively distributing the trips generated by the mixed-use development. The proposed development is a lower trip generator than the zoned property which could possibly develop an

approximate 295,000 square feet of retail uses. The comparison of the trip generation found the proposed site reduces the trip generation potential as compared to the possible development with the current zoning. With the same pass-by rate of 20-percent applied to the trip generation of a 295,000 square foot center, the daily trips generated may be 3,300 fewer daily trips and 390 fewer PM peak hour trips with the proposed mixed commercial and residential development. An additional approximate 75 trips might be generated during the AM peak hour with the mixed-use commercial and residential site but is not significant as it is managed with numerous accesses to the adjacent street network.

The proposed site access for the site was found to operate at acceptable levels of service; however, the adjacent Kingston Pike intersections with Campbell Station Road and Concord Road may experience lower and unacceptable levels of service as the background traffic will have a significant impact on the intersections' capacities. Background left-turn volumes exceed 300vph for the northbound, southbound, and eastbound approaches of the Kingston Pike and Campbell Station Road intersection thereby requiring double left-turn lanes. Double left-turn lanes for the Kingston Pike and Campbell Station Road intersection would be very difficult with the current development of the intersection corners. The provision of these double left-turn lanes would require several design exceptions if they were to be considered by the Town of Farragut, minimizing any right-of-way required.

Mitigation of background traffic impacts for the of Kingston Pike intersection with Concord Road is an additional northbound right-turn lane. The mitigation of both Kingston Pike intersections with Campbell Station Road and Concord Road would return level of service and capacity back to that currently experienced for the 2020 traffic conditions. The development of the Biddle Farms property did not determine any required mitigation as its impacts were not significant and acceptable levels of service provided for the accesses to the site.

APPENDIX

2016 Traffic Trip Generation Synchro Reports Traffic Count Data

1535

21-Oct-20			TF	RIP GEN	IERATIO	N				
21-061-20						AVERAGE				
LAND USE	L.U.C	SIZE	DAILY TRAFFIC	ENTER	AM PEAK EXIT	TOTAL	ENTER	PM PEAK EXIT	TOTAL	
APARTMENT	220	290	2,123	31	103	133	102	60	162	
KNOX CO MULTI-FAMILY	225	290	2,619	35	124	160	115	94	209	
0 SHOPPING CENTER	0 820	0 42,000	0 1,586	0 24	0 15	0 39	0 77	0 83	0 160	
SUPERMARKET	850	20,442	2,183	47	31	78	96	93	189	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	ő	0	0	ő	0	0	
SHOPPING CENTER	820	62,442	2,357	36	22	59	114	124	238	
0 SHOPPING CENTER	0 820	0 295,000	0 11,136	0 172	0 105	0 277	0 539	0 584	0 1,124	
0	0	293,000	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
.diri		10	22.003	345	401	746	1,044	1.038	2.082	
			22,000	540		EGRESSIO		1,000	2,002	
			DAILY	_	AM PEAK	EGIKEOSIU	IN .	PM PEAK		
LAND USE	L.U.C	SIZE	TRAFFIC	ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL	
APARTMENT	220	290	2,152	30	101	131	96	56	152	
KNOX CO MULTI-FAMILY	225	290	2,485	31	111	143	112	92	204	
0 SHOPPING CENTER	0 820	0 42,000	0 3,333	0 107	0 66	0 173	0 137	0 149	0 286	
SUPERMARKET	850	20,442	2,662	N/A	N/A	N/A	121	117	238	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
SHOPPING CENTER	820	62,442	4,365	113	70	183	184	199	383	
0	0	0	0	0	0	0	0	0	0	
SHOPPING CENTER 0	820 0	295,000	12,546 0	186 0	114	299 0	581 0	629 0	1,210 0	
0.	0	0	0	0	0	0	0	O	0	
0	0	0	0	0	0	0	0	0	0	
0.0	U	Ü	9		75.	27	1 5	3		
		},	27,542	468	461	929	1,232	1,242	2,474	
		- 6	DAILY	_	SATURDAY PEAK		DAILY		SUNDAY	
LAND USE	L.U.C	SIZE	TRAFFIC	ENTER	EXIT	TOTAL	TRAFFIC	ENTER	EXIT	TOTAL
APARTMENT	220	290	3,541	N/A	N/A	280	2,596	N/A	N/A	284
KNOX CO MULTI-FAMILY	225	290	1,853	74	77	151	170	77	71	148
0	0	42.000	0 5 205	0	0	0	0	0	0	0 117
SHOPPING CENTER SUPERMARKET	820 850	42,000 20,442	5,205 3,631	162 108	150 104	312 211	886 3,403	57 N/A	60 N/A	387
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0 SHOPPING CENTER	820	0 62,442	6,656	222	205	0 427	1,318	85	89	174
0	0	0	0	0	0	0	0	0	0	0
SHOPPING CENTER	820	295,000	17,430	757	698	1,455	6,225	403	420	823
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	O	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
			38,315	1,322	1,233	2,836	14,597	623	639	1,934
1										

	•	-	1	•	1	1	1	-	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	207	1081	135	768	190	292	503	389	307	
v/c Ratio	0.63	0.96	0.48	0.65	0.47	0.88	0.83	0.91	0.83	
Control Delay	26.1	38.1	29.9	28.4	45.8	65.6	23.3	71.0	48.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.1	38.1	29.9	28.4	45.8	65.6	23.3	71.0	48.0	
Queue Length 50th (ft)	84	360	61	197	60	182	58	128	141	
Queue Length 95th (ft)	m112	#497	108	263	#105	#326	#116	#220	#237	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	331	1124	295	1180	400	343	620	427	430	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.63	0.96	0.46	0.65	0.47	0.85	0.81	0.91	0.71	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	-	*	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	†		44	↑	7	44	7	
Traffic Volume (vph)	197	968	59	127	512	210	186	286	493	354	105	175
Future Volume (vph)	197	968	59	127	512	210	186	286	493	354	105	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	1.00	0.97	1.00	
Frt	1.00	0.99		1.00	0.96		1.00	1.00	0.85	1.00	0.91	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3513		1687	3325		3433	1900	1599	3502	1705	
Flt Permitted	0.36	1.00		0.18	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	685	3513		327	3325		3433	1900	1599	3502	1705	
Peak-hour factor, PHF	0.95	0.95	0.95	0.94	0.94	0.94	0.98	0.98	0.98	0.91	0.91	0.91
Adj. Flow (vph)	207	1019	62	135	545	223	190	292	503	389	115	192
RTOR Reduction (vph)	0	4	0	0	44	0	0	0	126	0	63	0
Lane Group Flow (vph)	207	1077	0	135	724	0	190	292	377	389	244	0
Heavy Vehicles (%)	0%	2%	0%	7%	5%	1%	2%	0%	1%	0%	1%	1%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6					8			
Actuated Green, G (s)	31.8	31.8		34.1	34.1		11.7	17.5	29.9	12.3	18.1	
Effective Green, g (s)	31.8	31.8		34.1	34.1		11.7	17.5	29.9	12.3	18.1	
Actuated g/C Ratio	0.32	0.32		0.34	0.34		0.12	0.18	0.30	0.12	0.18	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	330	1117		280	1133		401	332	478	430	308	
v/s Ratio Prot	0.06	c0.31		0.06	c0.22		0.06	c0.15	0.10	c0.11	0.14	-
v/s Ratio Perm	0.14			0.10					0.14			
v/c Ratio	0.63	0.96		0.48	0.64		0.47	0.88	0.79	0.90	0.79	
Uniform Delay, d1	31.0	33.5		25.3	27.8		41.3	40.2	32.1	43.3	39.2	
Progression Factor	0.57	0.60		1.00	1.00		0.97	0.97	0.89	1.00	1.00	
Incremental Delay, d2	2.8	16.3		1.3	2.8		0.9	21.6	8.1	22.0	13.0	
Delay (s)	20.6	36.4		26.6	30.5		40.9	60.4	36.8	65.3	52.2	
Level of Service	С	D		С	C		D	E	D	E	D	
Approach Delay (s)		33.9			29.9			44.6			59.5	
Approach LOS		С			C			D			E	
Intersection Summary												- 3
HCM 2000 Control Delay			40.3	H	ICM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.91		تبيد							
Actuated Cycle Length (s)			100.0		um of lost				26.0			
Intersection Capacity Utiliza	ition		85.5%	10	OU Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

١	-	•	•	•	•	•	† -	1	Ţ	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
457	1300	150	40	559	187	271	423	326	283	442
0.86	0.88	0.20	0.24	0.80	0.30	0.68	0.66	0.88	0.42	0.59
48.9	37.0	2.7	21.9	34.7	7.6	25.2	35.8	50.6	37.3	10.1
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48.9	37.0	2.7	21.9	34.7	7.6	25.2	35.8	50.6	37.3	10.1
247	427	0	17	197	46	138	134	154	84	59
#470	#585	27	38	#265	69	242	184	#206	104	78
	673			937			607		627	
300		350	160		350	150		300		325
533	1475	735	169	701	620	406	640	371	679	752
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0.86	0.88	0.20	0.24	0.80	0.30	0.67	0.66	0.88	0.42	0.59
	457 0.86 48.9 0.0 48.9 247 #470 300 533 0	457 1300 0.86 0.88 48.9 37.0 0.0 0.0 48.9 37.0 247 427 #470 #585 673 300 533 1475 0 0 0 0 0 0	457 1300 150 0.86 0.88 0.20 48.9 37.0 2.7 0.0 0.0 0.0 48.9 37.0 2.7 247 427 0 #470 #585 27 673 300 350 533 1475 735 0 0 0 0 0 0 0 0 0	457 1300 150 40 0.86 0.88 0.20 0.24 48.9 37.0 2.7 21.9 0.0 0.0 0.0 0.0 48.9 37.0 2.7 21.9 247 427 0 17 #470 #585 27 38 673 300 350 160 533 1475 735 169 0 0 0 0 0 0 0 0 0	457 1300 150 40 559 0.86 0.88 0.20 0.24 0.80 48.9 37.0 2.7 21.9 34.7 0.0 0.0 0.0 0.0 0.0 48.9 37.0 2.7 21.9 34.7 247 427 0 17 197 #470 #585 27 38 #265 673 937 300 350 160 533 1475 735 169 701 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	457 1300 150 40 559 187 0.86 0.88 0.20 0.24 0.80 0.30 48.9 37.0 2.7 21.9 34.7 7.6 0.0 0.0 0.0 0.0 0.0 0.0 48.9 37.0 2.7 21.9 34.7 7.6 247 427 0 17 197 46 #470 #585 27 38 #265 69 673 937 300 350 160 350 533 1475 735 169 701 620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	457 1300 150 40 559 187 271 0.86 0.88 0.20 0.24 0.80 0.30 0.68 48.9 37.0 2.7 21.9 34.7 7.6 25.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.9 37.0 2.7 21.9 34.7 7.6 25.2 247 427 0 17 197 46 138 #470 #585 27 38 #265 69 242 673 937 300 350 160 350 150 533 1475 735 169 701 620 406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	457 1300 150 40 559 187 271 423 0.86 0.88 0.20 0.24 0.80 0.30 0.68 0.66 48.9 37.0 2.7 21.9 34.7 7.6 25.2 35.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.9 37.0 2.7 21.9 34.7 7.6 25.2 35.8 247 427 0 17 197 46 138 134 #470 #585 27 38 #265 69 242 184 673 937 607 300 350 160 350 150 533 1475 735 169 701 620 406 640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	457 1300 150 40 559 187 271 423 326 0.86 0.88 0.20 0.24 0.80 0.30 0.68 0.66 0.88 48.9 37.0 2.7 21.9 34.7 7.6 25.2 35.8 50.6 0.0 <	457 1300 150 40 559 187 271 423 326 283 0.86 0.88 0.20 0.24 0.80 0.30 0.68 0.66 0.88 0.42 48.9 37.0 2.7 21.9 34.7 7.6 25.2 35.8 50.6 37.3 0.0

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

3: S Campbell Station Rd/N Campbell Station Rd & Kingston Pike

	٨	-	*	1	-	•	1	1	1	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	7	7	ተተ	7	7	作		7	个个	74
Traffic Volume (vph)	420	1196	138	37	520	174	252	365	29	251	218	340
Future Volume (vph)	420	1196	138	37	520	174	252	365	29	251	218	340
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1736	3574	1524	1805	3505	1599	1719	3527		1752	3406	1553
Flt Permitted	0.44	1.00	1.00	0.28	1.00	1.00	0.58	1.00		0.33	1.00	1.00
Satd. Flow (perm)	801	3574	1524	528	3505	1599	1046	3527		605	3406	1553
Peak-hour factor, PHF	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.93	0.77	0.77	0.77
Adj. Flow (vph)	457	1300	150	40	559	187	271	392	31	326	283	442
RTOR Reduction (vph)	0	0	92	0	0	74	0	6	0	0	0	100
Lane Group Flow (vph)	457	1300	58	40	559	113	271	417	0	326	283	342
Heavy Vehicles (%)	4%	1%	6%	0%	3%	1%	5%	1%	4%	3%	6%	4%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	II Serran	1	6	7	3	8		7	4	5
Permitted Phases	2		2	6		6	8	1991		4		4
Actuated Green, G (s)	38.7	38.7	38.7	17.4	17.4	31.7	30.4	18.0		34.2	19.9	44.2
Effective Green, g (s)	38.7	38.7	38.7	17.4	17.4	31.7	30.4	18.0		34.2	19.9	44.2
Actuated g/C Ratio	0.39	0.39	0.39	0.17	0.17	0.32	0.30	0.18		0.34	0.20	0.44
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3,0
Lane Grp Cap (vph)	537	1383	589	130	609	506	401	634		370	677	686
v/s Ratio Prot	0.21	c0.36		0.01	c0.16	0.03	0.08	0.12		c0.13	0.08	0.12
v/s Ratio Perm	0.12	7///25/51	0.04	0.04	3,500,000	0.04	0.12	020107		c0.17	11000000	0.10
v/c Ratio	0.85	0.94	0.10	0.31	0.92	0.22	0.68	0.66		0.88	0.42	0.50
Uniform Delay, d1	27.9	29.5	19.5	35.4	40.6	25.1	28.8	38.1		27.3	35.0	20.0
Progression Factor	1.00	1.00	1.00	0.57	0.66	1.20	0.68	0.81		1.00	1.00	1.00
Incremental Delay, d2	12.3	13.6	0.3	1.3	20.7	0.2	4.4	5.2		20.9	1.9	0.6
Delay (s)	40.2	43.1	19.9	21.3	47.4	30.2	23.9	36.0		48.3	36.9	20.5
Level of Service	D	D	В	С	D	С	С	D		D	D	С
Approach Delay (s)		40.6			42.0			31.3			33.5	
Approach LOS		D			D			C			С	
Intersection Summary												
HCM 2000 Control Delay			37.7	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.98									
Actuated Cycle Length (s)			100.0			st time (s)			26.0			
Intersection Capacity Utiliza	ation		84.2%	10	U Level	of Service	Э		E			
Analysis Period (min)			15									
c Critical Lane Group												

	>	×	1	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	154	441	46	655
v/c Ratio	0.62	0.18	0.07	0.25
Control Delay	45.1	4.6	0.8	0.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	45.1	4.6	0.8	0.9
Queue Length 50th (ft)	79	- 5	1	8
Queue Length 95th (ft)	99	122	2	8
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	605	2510	698	2572
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.25	0.18	0.07	0.25
Intersection Summary				

	>	-	×	4	4	X	
Movement	EBL	EBR	SET	SER	NWL	NWT	
Lane Configurations	W		46		ሻ	44	
Traffic Volume (vph)	75	33	281	89	41	583	
Future Volume (vph)	75	33	281	89	41	583	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	M-45-40	6.5	5.5.6.511	6.5	6.5	
Lane Util. Factor	1.00		0.95		1.00	0.95	
Frt	0.96		0.96		1.00	1.00	
Fit Protected	0.97		1.00		0.95	1.00	
Satd. Flow (prot)	1761		3364		1805	3471	
Flt Permitted	0.97		1.00		0.50	1.00	
Satd. Flow (perm)	1761		3364		943	3471	
Peak-hour factor, PHF	0.70	0.70	0.84	0.84	0.89	0.89	
Adj. Flow (vph)	107	47	335	106	46	655	
RTOR Reduction (vph)	21	0	17	0	- 0	0	
Lane Group Flow (vph)	133	0	424	0	46	655	
Heavy Vehicles (%)	0%	0%	2%	8%	0%	4%	_
Turn Type	Prot		NA		Perm	NA	
Protected Phases	4		6			2	
Permitted Phases					2		
Actuated Green, G (s)	12.9		74.1		74.1	74.1	
Effective Green, g (s)	12.9		74.1		74.1	74.1	
Actuated g/C Ratio	0.13		0.74		0.74	0.74	
Clearance Time (s)	6.5		6.5		6.5	6.5	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	227		2492		698	2572	
v/s Ratio Prot	c0.08		0.13			c0_19	
v/s Ratio Perm					0.05		
v/c Ratio	0.59		0.17		0.07	0.25	
Uniform Delay, d1	41.0		3.8		3.5	4.1	
Progression Factor	1.00		1.23		0.14	0.14	
Incremental Delay, d2	3.8		0.1		0.2	0.2	
Delay (s)	44.9		4.8		0.7	0.8	
Level of Service	D		A		A	A	
Approach Delay (s)	44.9		4.8			0.8	
Approach LOS	D		A			A	
Intersection Summary			_		-		
HCM 2000 Control Delay			7.4	Н	CM 2000	Level of Servi	
HCM 2000 Volume to Capa	acity ratio		0.30		2000	2313, 31 331 11	
Actuated Cycle Length (s)	ony rout		100.0	S	um of lost	t time (s)	
Intersection Capacity Utiliza	ation		37.2%			of Service	
Analysis Period (min)	and/i		15	10	O LOVOI (OI OGIVIOS	
			110				
c Critical Lane Group							

	٨	-	*	4	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	16	345	695	122	48	10
v/c Ratio	0.03	0.15	0.33	0.08	0.11	0.03
Control Delay	1.8	2.0	1.0	0.1	31.0	15.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	1.8	2.0	1.0	0.1	31.0	15.9
Queue Length 50th (ft)	1	11	5	0	24	0
Queue Length 95th (ft)	3	13	9	0	49	11
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	510	2230	2117	1512	424	387
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.15	0.33	0.08	0.11	0.03
Intersection Summary						

	•	-	-	4	\	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	44	^	7	ሻ	7	
Traffic Volume (vph)	13	283	639	112	39	8	
Future Volume (vph)	13	283	639	112	39	8	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3406	3505	1615	1805	1615	
Flt Permitted	0.32	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	606	3406	3505	1615	1805	1615	
Peak-hour factor, PHF	0.82	0.82	0.92	0.92	0.81	0.81	
Adj. Flow (vph)	16	345	695	122	48	10	
RTOR Reduction (vph)	0	0	0	24	0	8	
Lane Group Flow (vph)	16	345	695	98	48	2	
Heavy Vehicles (%)	0%	6%	3%	0%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	Miscolary-	
Permitted Phases	6			2	100	8	
Actuated Green, G (s)	65.5	65.5	56.5	80.0	23.5	23.5	
Effective Green, g (s)	65.5	65.5	56.5	80.0	23.5	23.5	
Actuated g/C Ratio	0.66	0.66	0.56	0.80	0.24	0.24	
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	426	2230	1980	1292	424	379	
v/s Ratio Prot	0.00	c0.10	c0.20	0.02	c0.03	ــــــــــــــــــــــــــــــــــــــ	
v/s Ratio Perm	0.02		COLLEG	0.04	40.55	0.00	
v/c Ratio	0.04	0.15	0.35	0.08	0.11	0.01	
Uniform Delay, d1	6.6	6.6	11.8	2.1	30.1	29.3	
Progression Factor	0.29	0.28	0.06	0.01	1.00	1.00	
Incremental Delay, d2	0.0	0.1	0.4	0.1	0.5	0.0	
Delay (s)	1.9	2.0	1.2	0.1	30.6	29.3	
Level of Service	A	A	A	Α	C	C	
Approach Delay (s)		2.0	1.0		30.4		
Approach LOS		Α	Α		С		
Intersection Summary							
HCM 2000 Control Delay			2.7	H	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capac	city ratio		0.28				
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)	
Intersection Capacity Utiliza	tion		31.0%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	•	_	•	4	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	26	397	760	969	229	43
v/c Ratio	0.10	0.25	0.55	0.63	0.15	0.06
Control Delay	14.1	15.6	26.8	2.2	17.4	5.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.1	15.6	26.8	2.2	17.4	5.4
Queue Length 50th (ft)	13	108	178	0	44	0
Queue Length 95th (ft)	16	120	285	27	68	20
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	258	1570	1376	1547	1523	726
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.25	0.55	0.63	0.15	0.06
Intersection Summary						

	•	-	•	*	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	ተተ	^	7	ሻሻ	7	
Traffic Volume (vph)	20	310	730	930	211	40	
Future Volume (vph)	20	310	730	930	211	40	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1671	3610	3539	1599	3502	1615	
Flt Permitted	0.26	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	453	3610	3539	1599	3502	1615	
Peak-hour factor, PHF	0.78	0.78	0.96	0.96	0.92	0.92	
Adj. Flow (vph)	26	397	760	969	229	43	
RTOR Reduction (vph)	0	0	0	189	0	24	
Lane Group Flow (vph)	26	397	760	780	229	19	
Heavy Vehicles (%)	8%	0%	2%	1%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8		
Permitted Phases	6			2		8	
Actuated Green, G (s)	43.5	43.5	35.0	78.5	43.5	43.5	
Effective Green, g (s)	43.5	43.5	35.0	78.5	43.5	43.5	
Actuated g/C Ratio	0.44	0.44	0.35	0.78	0.44	0.44	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	221	1570	1238	1359	1523	702	
v/s Ratio Prot	0.00	c0.11	0.21	c0.25	0.07		
v/s Ratio Perm	0.05	- 5002-30110	2011-2011	0.24	No to the	0.01	
v/c Ratio	0.12	0.25	0.61	0.57	0.15	0.03	
Uniform Delay, d1	24.5	17.9	26.9	4.2	17.1	16.1	
Progression Factor	0.75	0.84	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.2	0.4	2.3	1.8	0.2	0.1	
Delay (s)	18.5	15.5	29.2	6.0	17.3	16.2	
Level of Service	В	В	С	Α	В	В	
Approach Delay (s)		15.7	16.2		17.1		
Approach LOS		В	В		В		
Intersection Summary							
HCM 2000 Control Delay			16.2	H	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capa	acity ratio		0.62				
Actuated Cycle Length (s)			100.0		um of lost		
Intersection Capacity Utiliza	ation		72.2%	IC	U Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	•	4	1	1	1	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	2	28	13	21	44	1052	11	310	2
v/c Ratio	0.02	0.22	0.13	0.17	0.04	0.33	0.02	0.18	0.00
Control Delay	43.0	20.3	46.4	20.8	1.4	1.6	1.0	1.0	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.0	20.3	46.4	20.8	1.4	1.6	1.0	1.0	0.0
Queue Length 50th (ft)	1	0	8	0	3	49	0	14	0
Queue Length 95th (ft)	4	5	19	13	8	75	m1	m26	m0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	427	385	360	379	982	3205	460	1700	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.07	0.04	0.06	0.04	0.33	0.02	0.18	0.00
Intersection Summary									

m Volume for 95th percentile queue is metered by upstream signal.

	۶	4	•	1	•	•	•	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	75	作品		7	↑	74
Traffic Volume (vph)	0	1	13	6	2	13	42	952	58	10	273	2
Future Volume (vph)	0	1	13	6	2	13	42	952	58	10	273	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected		1.00	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1900	1615		1830	1615	1805	3546		1805	1881	1615
Flt Permitted		1.00	1.00		0.84	1.00	0.57	1.00		0.27	1.00	1.00
Satd. Flow (perm)		1900	1615		1601	1615	1086	3546		509	1881	1615
Peak-hour factor, PHF	0.46	0.46	0.46	0.63	0.63	0.63	0.96	0.96	0.96	0.88	0.88	0.88
Adj. Flow (vph)	0	2	28	10	3	21	44	992	60	11	310	2
RTOR Reduction (vph)	0	0	27	0	0	20	0	2	0	0	0	0
Lane Group Flow (vph)	0	2	1	0	13	1	44	1050	0	11	310	2
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	0%
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4	11 = 11	W. 500000	8!	.00.2594.000	OF SEVERA	2		MC 252411421	6	4!
Permitted Phases	4		4	8	046	8	2			6		6
Actuated Green, G (s)		4.2	4.2		4.2	4.2	86.8	86.8		86.8	86.8	91.0
Effective Green, g (s)		4.2	4.2		4.2	4.2	86.8	86.8		86.8	86.8	91.0
Actuated g/C Ratio		0.04	0.04		0.04	0.04	0.87	0.87		0.87	0.87	0.91
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		79	67		67	67	942	3077		441	1632	1615
v/s Ratio Prot		0.00			عثاره			c0.30		77.1	0.16	0.00
v/s Ratio Perm		12.000	0.00		c0.01	0.00	0.04	(2000)		0.02	197815	0.00
v/c Ratio		0.03	0.02		0.19	0.01	0.05	0.34		0.02	0.19	0.00
Uniform Delay, d1		45.9	45.9		46.3	45.9	0.9	1.2		0.9	1.0	0.4
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		0.67	0.66	1.00
Incremental Delay, d2		0.1	0.1		1.4	0.1	0.1	0.3		0.1	0.2	0.0
Delay (s)		46.1	46.0		47.7	46.0	1.0	1.5		0.7	0.9	0.4
Level of Service		D	D		D	D	A	A		A	A	A
Approach Delay (s)		46.0			46.6			1.5			0.9	أنحد
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			3.3	H	CM 2000	Level of	Service		A			
HCM 2000 Volume to Capacity is	atio		0.33									
Actuated Cycle Length (s)			100.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilization			47.8%			of Service			A			
Analysis Period (min)			15									
! Phase conflict between lane of	roups.											

c Critical Lane Group

	٠	-	6	←	†	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	
Lane Group Flow (vph)	306	1312	16	1039	154	281	
v/c Ratio	0.82	0.64	0.07	0.77	0.33	0.80	
Control Delay	43.0	4.0	5.4	17.6	32.6	48.0	
Queue Delay	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	43.0	4.1	5.4	17.6	32.6	48.0	
Queue Length 50th (ft)	90	15	1	178	79	145	
Queue Length 95th (ft)	#229	24	m2	264	84	#210	
Internal Link Dist (ft)		449		746	93	431	
Turn Bay Length (ft)	150		125				
Base Capacity (vph)	409	2062	215	1345	467	353	
Starvation Cap Reductn	0	143	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.75	0.68	0.07	0.77	0.33	0.80	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	•	*	4	4	†	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	†			4			4	
Traffic Volume (vph)	285	1216	4	14	707	208	0	85	6	111	9	105
Future Volume (vph)	285	1216	4	14	707	208	0	85	6	111	9	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	0.97			0.99			0.94	
Fit Protected	0.95	1.00		0.95	1.00			1.00			0.98	
Satd. Flow (prot)	1687	3573		1805	3360			1883			1697	
Flt Permitted	0.12	1.00		0.17	1.00			1.00			0.75	
Satd. Flow (perm)	206	3573		320	3360			1883			1302	
Peak-hour factor, PHF	0.93	0.93	0.93	0.88	0.88	0.88	0.59	0.59	0.59	0.80	0.80	0.80
Adj. Flow (vph)	306	1308	4	16	803	236	0	144	10	139	11	131
RTOR Reduction (vph)	0	0	0	0	26	0	0	2	0	0	32	0
Lane Group Flow (vph)	306	1312	0	16	1013	0	0	152	0	0	249	0
Heavy Vehicles (%)	7%	1%	0%	0%	4%	3%	0%	0%	0%	1%	0%	4%
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	62.3	53.8		41.3	39.3			24.7			24.7	
Effective Green, g (s)	62.3	53.8		41.3	39.3			24.7			24.7	
Actuated g/C Ratio	0.62	0.54		0.41	0.39			0.25			0.25	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	372	1922		161	1320			465			321	
v/s Ratio Prot	c0.14	0.37		0.00	0.30			0.08				
v/s Ratio Perm	c0.38			0.04							c0.19	
v/c Ratio	0.82	0.68		0.10	0.77			0.33			0.78	
Uniform Delay, d1	23.3	16.9		17.7	26.4			30.8			35.1	
Progression Factor	1.43	0.18		0.51	0.52			1.00			1.00	
Incremental Delay, d2	10.9	1.5		0.2	3.7			1.9			11.2	
Delay (s)	44.2	4.6		9.2	17.4			32.7			46.3	
Level of Service	D	Α		Α	В			C			D	
Approach Delay (s)		12.1			17.3			32.7			46.3	
Approach LOS		В			В			C			D	
Intersection Summary						5						
HCM 2000 Control Delay			18.0	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.84									
Actuated Cycle Length (s)			100.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		77.9%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	-	*	1	+	1	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	NBR
Lane Group Flow (vph)	1479	27	111	753	30	30	160
v/c Ratio	0.66	0.02	0.46	0.28	0.24	0.24	0.38
Control Delay	8.4	0.0	11.5	2.4	47.8	47.8	2.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.4	0.0	11.5	2.4	47.8	47.8	2.8
Queue Length 50th (ft)	231	0	16	39	18	18	0
Queue Length 95th (ft)	530	m0	m20	63	48	48	1
Internal Link Dist (ft)	937			449		417	
Turn Bay Length (ft)		100	125		200		200
Base Capacity (vph)	2254	1151	241	2675	308	308	419
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.66	0.02	0.46	0.28	0.10	0.10	0.38
Intersection Summary		-					

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	•	•	*	•	4	†	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	个个	7	ሻ	↑ ↑		*	ર્લ	7		4	
Traffic Volume (vph)	0	1361	25	103	697	4	53	0	142	0	0	0
Future Volume (vph)	0	1361	25	103	697	4	53	0	142	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5			
Lane Util. Factor		0.95	1.00	1.00	0.95		0.95	0.95	1.00			
Frt		1.00	0.85	1.00	1.00		1.00	1.00	0.85			
Fit Protected		1.00	1.00	0.95	1.00		0.95	0.95	1.00			
Satd. Flow (prot)		3539	1615	1805	3498		1715	1715	1599			
Flt Permitted		1.00	1.00	0.11	1.00		0.95	0.95	1.00			
Satd. Flow (perm)		3539	1615	214	3498		1715	1715	1599			
Peak-hour factor, PHF	0.92	0.92	0.92	0.93	0.93	0.93	0.89	0.89	0.89	0.25	0.25	0.25
Adj. Flow (vph)	0	1479	27	111	749	4	60	0	160	0	0	0
RTOR Reduction (vph)	0	0	10	0	0	0	0	0	142	0	0	0
Lane Group Flow (vph)	0	1479	17	111	753	0	30	30	18	0	0	0
Heavy Vehicles (%)	0%	2%	0%	0%	3%	25%	0%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov			
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6					8			
Actuated Green, G (s)		59.8	62.8	71.3	71.3		6.2	6.2	11.2			
Effective Green, g (s)		59.8	62.8	71.3	71.3		6.2	6.2	11.2			
Actuated g/C Ratio		0.60	0.63	0.71	0.71		0.06	0.06	0.11			
Clearance Time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5			
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)		2116	1014	232	2494		106	106	179			
v/s Ratio Prot		c0.42	c0.00	c0.02	0.22		c0.02	0.02	0.01			
v/s Ratio Perm			0.01	0.32					0.01			
v/c Ratio		0.70	0.02	0.48	0.30		0.28	0.28	0.10			
Uniform Delay, d1		13.9	7.0	20.8	5.2		44.8	44.8	39.9			
Progression Factor		0.56	1.00	0.50	0.42		1.00	1.00	1.00			
Incremental Delay, d2		0.9	0.0	0.9	0.2		1.5	1.5	0.2			
Delay (s)		8.6	7.0	11.4	2.4		46.2	46.2	40.1			
Level of Service		Α	Α	В	Α		D	D	D			
Approach Delay (s)		8.6			3.6			41.8			0.0	
Approach LOS		Α			Α			D			Α	
Intersection Summary												
HCM 2000 Control Delay			9.7	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.68									
Actuated Cycle Length (s)			100.0		um of lost				32.5			
Intersection Capacity Utilization	on		63.7%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	3.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/W		۲	*	1	
Traffic Vol, veh/h	0	32	56	77	58	3
Future Vol, veh/h	0	32	56	77	58	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		1100	12777774	1100	None
Storage Length	0	140110	75	110110		110110
Veh in Median Storage				0	0	100
Grade, %	0			0	0	180
Peak Hour Factor	92	92	92	and the same of th	92	92
CALCULATE TO SECURE AND A SECUR	200			92		
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	35	61	84	63	3
Major/Minor	Minor2		Major1	N	Aajor2	
Conflicting Flow All	271	65	66	0	>€0	0
Stage 1	65					
Stage 2	206		-		٠	120
Critical Hdwy	6.42	6.22	4.12		2	31
Critical Hdwy Stg 1	5.42	V.L.L.	7.12	2 €:	-	
Critical Hdwy Stg 2	5.42			11.0		-
Follow-up Hdwy		3.318	2.218			
	718	999	1536			(*)
Pot Cap-1 Maneuver			107270.00100			
Stage 1	958	-	- 19			9)
Stage 2	829	11.00		1.5		- 3
Platoon blocked, %	(Market Seri	2000		375	*	i#.c
Mov Cap-1 Maneuver	689	999	1536	æ	*	9
Mov Cap-2 Maneuver	689	-		52	2	:28
Stage 1	920	- 2			_ =	-
Stage 2	829		- 15		- (-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		3.1	_	0	
HCM LOS	A	-	0.1		U	
FIGWI LOG	A					
		18.75	a //www			
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1536		111-111	- 3	3
HCM Lane V/C Ratio		0.04	1.00	0.035	95	- 20
HCM Control Delay (s)		7.4	-	8.7		- 3
HCM Lane LOS		Α		Α	141	-27
HCM 95th %tile Q(veh)	0.1	128	0.1	- 4	2

Intersection												
Int Delay, s/veh	3.5											
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	7		٦	ĵ»			4			4	
Traffic Vol, veh/h	10		35	10	35	31	56	3	2	7	2	6
Future Vol., veh/h	10	61	35	10	35	31	56	3	2	7	2	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized			None	1 8		None			None			None
Storage Length	100	-	1,=1	100	- 37	(7)		77.		-		-
Veh in Median Storage	.# -	0	15	4	0	150		0	150		0	
Grade, %	-	0			0	(40)		0	:#:		0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2		2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	66	38	11	38	34	61	3	2	8	2	7
Major/Minor	Major1			Major2			Vinor1			Minor2		
Conflicting Flow All	72	0	0	104	0	0	189	201	85	187	203	55
Stage 1	-			104			107	107	-	77	77	-
Stage 2	2		AV SE	-		120	82	94	12	110	126	
Critical Hdwy	4.12		12	4.12		20	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12			7.12			6.12	5.52	0.22	6.12	5.52	0,22
Critical Hdwy Stg 2							6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218		(Qu)	2.218		120	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1528		102	1488	-		771	695	974	774	693	1012
Stage 1	1020		18	1400	2		898	807	314	932	831	1012
Stage 2			بري	15			926	817		895	792	
Platoon blocked, %			1.2		-	-	020	911	9	550	102	8
Mov Cap-1 Maneuver	1528		790	1488	-		756	685	974	761	683	1012
Mov Cap-2 Maneuver	1320		221	1400	-		756	685	314	10110201	683	1012
Stage 1	- 16		720	- 3	- 0	= = 1	892	801	- 4	FEG.C	825	2
Stage 2				(2)	14		911	811	-	883	786	-
Glugo Z			2172				311	.511		000		
Approach	SE			NW			NE			SW		
HCM Control Delay, s	0.7			1			10.2			9.4		
HCM LOS	0.7						B			Α.4		
TOW LOO							D			- 0		
Minor Lane/Major Mvm	t .	NELn1	NWL	NWT	NWR	SEL	SET	SEDI	SWLn1			
Capacity (veh/h)		758	1488	1444.1	INVIK	1528	JET	GERG	831			
					100		- 02					
HCM Control Polovice			0.007	2.	(F.)	0.007	*		0.02			
HCM Control Delay (s)		10.2	7.4		9	7.4			9.4			
HCM Lane LOS		В	A	747		A	34		A			
HCM 95th %tile Q(veh))	0.3	0	- 6	-	0	- 3	-	0.1			

Intersection							
Intersection Delay, s/veh	3.1						
Intersection LOS	A						
Approach		EB		NB		SB	
Entry Lanes		1		1		1	
Conflicting Circle Lanes		1		1		1	
Adj Approach Flow, veh/h		12		83		82	
Demand Flow Rate, veh/h		12		85		83	
Vehicles Circulating, veh/h		61		3		4	
Vehicles Exiting, veh/h		26		70		84	
Ped Vol Crossing Leg, #/h		0		0		0	
Ped Cap Adj		1.000		1.000		1,000	
Approach Delay, s/veh		2.8		3.2		3.1	
Approach LOS		Α		Α		A	
Lane	Left		Left		Left		
Designated Moves	LR		LT		TR		
Assumed Moves	LR		LT		TR		
RT Channelized							
Lane Util	1.000		1.000		1.000		
Follow-Up Headway, s	2,609		2.609		2.609		
Critical Headway, s	4.976		4.976		4.976		
Entry Flow, veh/h	12		85		83		
Cap Entry Lane, veh/h	1297		1376		1374		
Entry HV Adj Factor	1.000		0.981		0.986		
Flow Entry, veh/h	12		83		82		
Cap Entry, veh/h	1297		1350		1354		
V/C Ratio	0.009		0.062		0.060		
Control Delay, s/veh	2.8		3.2		3.1		
LOS	A		A		Α		
LOU					17.17		

	•	-	•	•	4	•	~	-	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	49	1015	414	1393	129	78	293	178	216	
v/c Ratio	0.26	0.78	0.90	0.71	0.54	0.50	0.57	0.36	0.82	
Control Delay	17.6	41.2	55.0	23.6	64.6	64.8	19.7	52.4	68.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.6	41.2	55.0	23.6	64.6	64.8	19.7	52.4	68.3	
Queue Length 50th (ft)	15	403	257	449	52	61	81	68	142	
Queue Length 95th (ft)	31	#495	#431	540	86	110	138	76	150	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	186	1296	490	1971	253	270	538	489	288	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.78	0.84	0.71	0.51	0.29	0.54	0.36	0.75	
Intersection Summany								_		

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	١	-	•	1	←	•	1	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		ħ	†		14	†	7	77	7	
Traffic Volume (vph)	46	903	41	389	1218	91	119	72	270	116	68	72
Future Volume (vph)	46	903	41	389	1218	91	119	72	270	116	68	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	1.00	0.97	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3498		1770	3502		3335	1827	1538	3502	1745	
Flt Permitted	0.15	1.00		0.10	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	283	3498		180	3502		3335	1827	1538	3502	1745	
Peak-hour factor, PHF	0.93	0.93	0.93	0.94	0.94	0.94	0.92	0.92	0.92	0.65	0.65	0.65
Adj. Flow (vph)	49	971	44	414	1296	97	129	78	293	178	105	111
RTOR Reduction (vph)	0	3	0	0	4	0	0	0	62	0	31	0
Lane Group Flow (vph)	49	1012	0	414	1389	0	129	78	231	178	185	0
Heavy Vehicles (%)	0%	2%	14%	2%	2%	2%	5%	4%	5%	0%	1%	0%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6					8			
Actuated Green, G (s)	49.4	44.9		78.6	67.6		10.3	9.4	36.6	17.5	16.6	
Effective Green, g (s)	49.4	44.9		78.6	67.6		10.3	9.4	36.6	17.5	16.6	
Actuated g/C Ratio	0.40	0.36		0.63	0.54		0.08	0.08	0.29	0.14	0.13	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	166	1256		459	1893		274	137	450	490	231	
v/s Ratio Prot	0.01	0.29		c0.20	0.40		c0.04	0.04	0.11	0.05	c0.11	
v/s Ratio Perm	0.11			c0.37				22.00	0.04			
v/c Ratio	0.30	0.81		0.90	0.73		0.47	0.57	0.51	0.36	0.80	
Uniform Delay, d1	24.0	36.1		35.3	21.8		54.7	55.8	36.8	48.7	52.6	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.0	5.6		20.6	2.6		1.3	5.3	1.0	0.5	17.4	
Delay (s)	25.0	41.7		56.0	24.4		56.0	61.2	37.8	49.2	70.0	
Level of Service	С	D		E	C		Ε	Е	D	D	Ε	
Approach Delay (s)		41.0			31.6			46.1			60.6	
Approach LOS		D			C			D			E	
Intersection Summary												
HCM 2000 Control Delay			39.2	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.87									
Actuated Cycle Length (s)			125.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utiliza	tion		81.2%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	٨	-	`	6	←	*	•	†	1	1	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	410	835	343	79	1127	409	315	433	353	588	590	
v/c Ratio	1.08	0.53	0.38	0.30	1.09	0.47	0.94	0.75	0.97	1.01	0.87	
Control Delay	106.5	27.1	3.6	20.6	97.9	14.7	71.2	57.3	73.8	92.5	44.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	106.5	27.1	3.6	20.6	97.9	14.7	71.2	57.3	73.8	92.5	44.4	
Queue Length 50th (ft)	~321	261	0	31	~540	132	201	172	222	~257	382	
Queue Length 95th (ft)	#526	325	55	57	#676	218	#383	232	#401	#382	#602	
Internal Link Dist (ft)		673			937			607		627		
Turn Bay Length (ft)	300		350	160		350	150		300		325	
Base Capacity (vph)	378	1582	897	261	1033	863	335	578	364	580	679	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.08	0.53	0.38	0.30	1.09	0.47	0.94	0.75	0.97	1.01	0.87	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

3: S Campbell Station Rd/N Campbell Station Rd & Kingston Pike

	٠	-	•	1	•	*	1	1	1		1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	ተተ	7	7	个子		7	个个	7*
Traffic Volume (vph)	377	768	316	73	1037	376	290	340	58	325	541	543
Future Volume (vph)	377	768	316	73	1037	376	290	340	58	325	541	543
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	3462		1770	3539	1583
Flt Permitted	0.09	1.00	1.00	0.34	1.00	1.00	0.20	1.00		0.29	1.00	1.00
Satd. Flow (perm)	173	3539	1583	629	3539	1583	363	3462		539	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	410	835	343	79	1127	409	315	370	63	353	588	590
RTOR Reduction (vph)	0	0	193	0	0	79	0	11	0	0	0	57
Lane Group Flow (vph)	410	835	150	79	1127	330	315	422	0	353	588	533
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	W 82322	1	6	7	3	8		7	4	5
Permitted Phases	2		2	6		6	8			4		4
Actuated Green, G (s)	65.5	54.6	54.6	40.9	36.5	56.0	40.0	20.5		40.0	20.5	43.0
Effective Green, g (s)	65.5	54.6	54.6	40.9	36.5	56.0	40.0	20.5		40.0	20.5	43.0
Actuated g/C Ratio	0.52	0.44	0.44	0.33	0.29	0.45	0.32	0.16		0.32	0.16	0.34
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	378	1545	691	245	1033	791	335	567		364	580	626
v/s Ratio Prot	c0.20	0.24		0.01	0.32	0.06	0.15	0.12		c0.15	0.17	c0.15
v/s Ratio Perm	c0.37	Autre I	0.09	0.09		0.14	0.15			0.16		0.18
v/c Ratio	1.08	0.54	0.22	0.32	1.09	0.42	0.94	0.74		0.97	1.01	0.85
Uniform Delay, d1	39.8	26.0	21.9	29.6	44.2	23.4	36.3	49.8		37.4	52.2	38.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	70.9	1.4	0.7	0.8	56.2	0.4	33.9	8.6		38.7	40.9	10.8
Delay (s)	110.7	27.3	22.6	30.4	100.4	23.8	70.2	58.4		76.1	93.1	48.8
Level of Service	F	С	C	C	F	С	E	E		E	F	D
Approach Delay (s)		47.8		150	77.6		185	63.3			72.1	100
Approach LOS		D			E			E			Ε	
Intersection Summary												
HCM 2000 Control Delay			65.5	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.08									
Actuated Cycle Length (s)			125.0			st time (s)			26.0			
Intersection Capacity Utiliz	ation		102.2%	IC	U Level	of Service	е		G			
Analysis Period (min)			15									
P. E. L. Dames and Control of the Co												

c Critical Lane Group

	>	×	4	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	262	1048	49	587
v/c Ratio	0.77	0.42	0.15	0.24
Control Delay	57.5	8.5	6.7	6.2
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	57.5	8.5	6.7	6.2
Queue Length 50th (ft)	181	156	10	63
Queue Length 95th (ft)	222	220	21	78
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	589	2496	327	2474
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.44	0.42	0.15	0.24
Intersection Summary				

	>	_	×	4	•	X	
Movement	EBL	EBR	SET	SER	NWL	NWT	
Lane Configurations	N/W		1		7	^	
Traffic Volume (vph)	150	62	777	103	46	546	
Future Volume (vph)	150	62	777	103	46	546	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	MAGE 80	6.5	55,951	6.5	6.5	
Lane Util. Factor	1.00		0.95		1.00	0.95	
Frt	0.96		0.98		1.00	1.00	
Fit Protected	0.97		1.00		0.95	1.00	
Satd. Flow (prot)	1752		3530		1805	3505	
Flt Permitted	0.97		1.00		0.24	1.00	
Satd. Flow (perm)	1752		3530		463	3505	
Peak-hour factor, PHF	0.81	0.81	0.84	0.84	0.93	0.93	
Adj. Flow (vph)	185	77	925	123	49	587	
RTOR Reduction (vph)	15	0	6	0	0	0	
Lane Group Flow (vph)	247	0	1042	0	49	587	
Heavy Vehicles (%)	0%	2%	0%	4%	0%	3%	
		2.70	NA	4 /0		NA NA	
Turn Type Protected Phases	Prot 4		NA 6		Perm	2	
Self-control of the self-c	4		0		2	2	
Permitted Phases	00.0		017		2	04.7	
Actuated Green, G (s)	22.3		84.7		84.7	84.7	
Effective Green, g (s)	22.3		84.7		84.7	84.7	
Actuated g/C Ratio	0.19		0.71		0.71	0.71	
Clearance Time (s)	6.5		6.5		6.5	6.5	
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Lane Grp Cap (vph)	325		2491		326	2473	
v/s Ratio Prot	c0.14		c0.30			0.17	
v/s Ratio Perm			2572		0.11	8 80	
v/c Ratio	0.76		0.42		0.15	0.24	
Uniform Delay, d1	46.3		7.4		5.8	6.2	
Progression Factor	1.00		1.00		0.74	0.86	
Incremental Delay, d2	9.7		0.5		0.9	0.2	
Delay (s)	56.0		7.9		5.3	5.6	
Level of Service	E		Α		Α	Α	
Approach Delay (s)	56.0		7.9			5.6	
Approach LOS	Е		Α			Α	
Intersection Summary							
HCM 2000 Control Delay			13.6	H	CM 2000	Level of Service	е
HCM 2000 Volume to Capacit	ty ratio		0.49				Ť
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)	
Intersection Capacity Utilization	on		57.3%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	٠	-	*	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	62	928	578	127	259	71
v/c Ratio	0.15	0.48	0.36	0.09	0.40	0.11
Control Delay	18.6	26.6	13.8	0.1	30.7	6.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.6	26.6	13.8	0.1	30.7	6.2
Queue Length 50th (ft)	30	306	60	0	148	0
Queue Length 95th (ft)	58	357	77	1	190	23
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	458	1950	1608	1428	654	630
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.14	0.48	0.36	0.09	0.40	0.11
Intersection Summary						

	٨	-	•	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	ተተ	^	7	ሻ	7	
Traffic Volume (vph)	53	789	532	117	205	56	
Future Volume (vph)	53	789	532	117	205	56	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3574	3574	1615	1805	1615	
Flt Permitted	0.33	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	634	3574	3574	1615	1805	1615	
Peak-hour factor, PHF	0.85	0.85	0.92	0.92	0.79	0.79	
Adj. Flow (vph)	62	928	578	127	259	71	
RTOR Reduction (vph)	0	0	0	25	0	45	
Lane Group Flow (vph)	62	928	578	102	259	26	
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	of the devictions	
Permitted Phases	6			2		8	
Actuated Green, G (s)	65.5	65.5	52.7	96.2	43.5	43.5	
Effective Green, g (s)	65.5	65.5	52.7	96.2	43.5	43.5	
Actuated g/C Ratio	0.55	0.55	0.44	0.80	0.36	0.36	
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	407	1950	1569	1294	654	585	
v/s Ratio Prot	0.01	c0.26	0.16	0.03	c0.14		
v/s Ratio Perm	0.07		(478/53)	0.03	59900	0.02	
v/c Ratio	0.15	0.48	0.37	0.08	0.40	0.04	
Uniform Delay, d1	13.7	16.7	22.5	2.5	28.5	24.8	
Progression Factor	1.38	1.53	0.58	0.01	1.00	1.00	
Incremental Delay, d2	0.2	0.8	0.6	0.1	1.8	0.1	
Delay (s)	19.0	26.3	13.7	0.1	30.3	24.9	
Level of Service	В	С	В	Α	С	С	
Approach Delay (s)		25.8	11.3		29.1		
Approach LOS		С	В		С		
Intersection Summary							
HCM 2000 Control Delay			21.3	Н	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capaci	ty ratio		0.47				
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)	
Intersection Capacity Utilizati	on		44.4%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	•	_	•	•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	63	1024	684	410	569	36
v/c Ratio	0.15	0.53	0.44	0.30	0.47	0.06
Control Delay	7.7	8.6	25.3	0.8	32.3	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.7	8.6	25.3	0.8	32.3	8.6
Queue Length 50th (ft)	11	126	199	0	176	0
Queue Length 95th (ft)	24	168	254	15	229	23
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	426	1950	1569	1381	1199	565
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.53	0.44	0.30	0.47	0.06
Intersection Summary						

	•	-	•	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	个个	^	7	ሻሻ	7	
Traffic Volume (vph)	58	942	622	373	535	34	
Future Volume (vph)	58	942	622	373	535	34	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3574	3574	1553	3467	1568	
Flt Permitted	0.32	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	607	3574	3574	1553	3467	1568	
Peak-hour factor, PHF	0.92	0.92	0.91	0.91	0.94	0.94	
Adj. Flow (vph)	63	1024	684	410	569	36	
RTOR Reduction (vph)	0	0	0	93	0	24	
Lane Group Flow (vph)	63	1024	684	317	569	12	
Heavy Vehicles (%)	0%	1%	1%	4%	1%	3%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	10/25/10/2	
Permitted Phases	6			2	100	8	
Actuated Green, G (s)	65.5	65.5	51.4	92.9	41.5	41.5	
Effective Green, g (s)	65.5	65.5	51.4	92.9	41.5	41.5	
Actuated g/C Ratio	0.55	0.55	0.43	0.77	0.35	0.35	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	407	1950	1530	1286	1199	542	
v/s Ratio Prot	0.01	c0.29	0.19	0.09	c0.16	ور الناور	
v/s Ratio Perm	0.07	30,120	9, 19,	0.12	40,10	0.01	
v/c Ratio	0.15	0.53	0.45	0.25	0.47	0.02	
Uniform Delay, d1	19.3	17.3	24.3	3.8	30.7	25.9	
Progression Factor	0.49	0.44	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.2	0.9	0.9	0.5	1.3	0.1	
Delay (s)	9.5	8.5	25.2	4.2	32.1	26.0	
Level of Service	A	A	C	A	C	C	
Approach Delay (s)		8.5	17.3		31.7		
Approach LOS		Α	В		C		
Intersection Summary							
HCM 2000 Control Delay			17.0	Н	CM 2000	Level of Servi	е
HCM 2000 Volume to Capaci	ty ratio		0.54		جريد		
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)	
Intersection Capacity Utilization	on		52.5%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	-	4	1	-1	1	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	2	40	107	97	19	467	12	525	3
v/c Ratio	0.01	0.18	0.63	0.35	0.03	0.17	0.02	0.35	0.00
Control Delay	43.0	14.8	65.9	12.3	3.2	3.0	3.2	4.3	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0
Total Delay	43.0	14.8	65.9	12.3	3.2	3.0	3.2	4.8	0.0
Queue Length 50th (ft)	1	0	80	0	2	32	1	88	0
Queue Length 95th (ft)	7	21	116	34	9	59	7	164	0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	440	440	362	478	680	2791	741	1515	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	572	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.09	0.30	0.20	0.03	0.17	0.02	0.56	0.00
Intersection Summary									

	٠	4	•	1	4	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	7	1		7	1	74
Traffic Volume (vph)	1	1	29	74	10	77	17	385	35	11	483	3
Future Volume (vph)	1	1	29	74	10	77	17	385	35	11	483	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
FIt Protected		0.98	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1854	1615		1820	1599	1805	3461		1805	1881	1615
Flt Permitted		0.91	1.00		0.75	1.00	0.44	1.00		0.48	1.00	1.00
Satd. Flow (perm)		1734	1615		1426	1599	845	3461		919	1881	1615
Peak-hour factor, PHF	0.73	0.73	0.73	0.79	0.79	0.79	0.90	0.90	0.90	0.92	0.92	0.92
Adj. Flow (vph)	1	1	40	94	13	97	19	428	39	12	525	3
RTOR Reduction (vph)	0	0	35	0	0	85	0	3	0	0	0	0
Lane Group Flow (vph)	0	2	5	0	107	12	19	464	0	12	525	3
Heavy Vehicles (%)	0%	0%	0%	0%	0%	1%	0%	3%	3%	0%	1%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases	30.344.774	4			8!	20.000000000000000000000000000000000000	S. See Millery	2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		14.3	14.3		14.3	14.3	96.7	96.7		96.7	96.7	111.0
Effective Green, g (s)		14.3	14.3		14.3	14.3	96.7	96.7		96.7	96.7	111.0
Actuated g/C Ratio		0.12	0.12		0.12	0.12	0.81	0.81		0.81	0.81	0.92
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		206	192		169	190	680	2788		740	1515	1615
v/s Ratio Prot							فنض	0.13			c0.28	0.00
v/s Ratio Perm		0.00	0.00		c0.08	0.01	0.02			0.01	70.000	0.00
v/c Ratio		0.01	0.02		0.63	0.06	0.03	0.17		0.02	0.35	0.00
Uniform Delay, d1		46.6	46.7		50.4	46.9	2.3	2.6		2.3	3.1	0.3
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.0	0.1		7.5	0.1	0.1	0.1		0.0	0.6	0.0
Delay (s)		46.6	46.7		57.9	47.0	2.4	2.7		2.3	3.8	0.3
Level of Service		D	D		E	D	Α	Α		Α	Α	Α
Approach Delay (s)		46.7			52.7			2.7			3.7	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			12.6	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.38	تتجيير								
Actuated Cycle Length (s)			120.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilizatio	n		45.5%			of Service			A			
Analysis Period (min)			15									
! Phase conflict between land	e groups.											

c Critical Lane Group

	١	-	1	+	1	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	39	1140	34	1592	53	130
v/c Ratio	0.24	0.47	0.10	0.66	0.22	0.43
Control Delay	11.0	10.2	9.1	13.9	28.5	24.0
Queue Delay	0.0	0.7	0.0	0.3	0.0	0.0
Total Delay	11.0	10.9	9.1	14.2	28.5	24.0
Queue Length 50th (ft)	10	224	9	397	18	33
Queue Length 95th (ft)	23	273	21	478	46	37
Internal Link Dist (ft)		449		746	93	431
Turn Bay Length (ft)	150		125			
Base Capacity (vph)	160	2419	355	2395	243	299
Starvation Cap Reductn	0	836	0	276	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.24	0.72	0.10	0.75	0.22	0.43
Intersection Summary						

۶	-	•	1	◀	•	•	†	1	1	ļ	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
7	1		7	†			4			4	
36	1048	12	32	1465	31	18	2	21	17	6	53
36	1048	12	32	1465	31	18	2	21	17	6	53
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
6.5	6.5		6.5	6.5			6.5			6.5	
	0.95		1.00	0.95						1.00	
1.00			1.00	1.00						0.91	
1570			1805	and the second second second						The state of the s	
0.08	1.00		0.24	1.00						0.91	
139	3532		449	3520			1446			1502	
0.93	0.93	0.90	0.94	0.94	0.94	0.78	0.78	0.78	0.58	0.58	0.58
39	1127	13	34	1559	33	23	3	27	29	10	91
0	1	0	0	1	0	0	23	0	0	69	0
39	1139	0	34	1591	0	0	30	0	0	61	0
15%	2%	6%	0%	2%	14%	0%	0%	0%	12%	0%	3%
pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
5	2		1	6			8			4	
2			6			8			4		
80.3	80.3		79.7	79.7			18.5			18.5	
80.3	80.3		79.7	79.7			18.5			18.5	
0.66	0.66		0.66	0.66			0.15			0.15	
6.5	6.5		6.5	6.5			6.5			6.5	
3.0	3.0		3.0	3.0			3.0			3.0	
131	2343		326	2318			221			229	
0.01	c0.32		0.00	c0.45							
0.19			0.07				0.02			c0.04	
0.30	0.49		0.10	0.69			0.14			0.26	
13.3	10.1		9.2	12.9			44.3			45.2	
1.00	1.00		1.00	1.00			1.00			1.00	
1.3	0.7		0.1	1.7			1.3			0.6	
14.6	10.8		9.3	14.5			45.6			45.9	
В	В		Α	В			D			D	
	11.0			14.4			45.6			45.9	
	В			В			D			D	
		15.0	Н	CM 2000	Level of	Service		В			
city ratio		0.62						اثبيت			
		121.0	S	um of lost	time (s)			19.5			
tion		57.2%	10	U Level o	of Service			В			
		15									
	EBL 36 36 1900 6.5 1.00 1.00 0.95 1570 0.08 139 0.93 39 0 39 15% pm+pt 5 2 80.3 80.3 0.66 6.5 3.0 131 0.01 0.19 0.30 13.3 1.00 1.3 14.6	EBL EBT 36 1048 36 1048 36 1048 1900 1900 6.5 6.5 1.00 0.95 1.00 1.00 0.95 1.00 1570 3532 0.08 1.00 139 3532 0.93 0.93 39 1127 0 1 39 1139 15% 2% pm+pt NA 5 2 2 80.3 80.3 80.3 80.3 80.3 80.3 80.3 80.3 0.66 0.66 6.5 6.5 3.0 3.0 131 2343 0.01 c0.32 0.19 0.30 0.49 13.3 10.1 1.00 1.00 1.3 0.7 14.6 10.8 B B City ratio	EBL EBT EBR 36 1048 12 36 1048 12 1900 1900 1900 6.5 6.5 1.00 0.95 1.00 1.00 0.95 1.00 1570 3532 0.08 1.00 139 3532 0.93 0.93 0.90 39 1127 13 0 1 0 39 1139 0 15% 2% 6% pm+pt NA 5 2 2 80.3 80.3 80.3 80.3 80.3 80.3 80.3 80.3 0.66 0.66 6.5 6.5 3.0 3.0 131 2343 0.01 c0.32 0.19 0.30 0.49 13.3 10.1 1.00 1.00 1.3 0.7 14.6 10.8 B B 11.0 B 15.0 city ratio 0.62 121.0 tion 57.2%	BL EBT EBR WBL 36 1048 12 32 36 1048 12 32 1900 1900 1900 1900 6.5 6.5 6.5 1.00 0.95 1.00 1.00 1.00 0.95 1570 3532 1805 0.08 1.00 0.24 139 3532 449 0.93 0.93 0.90 0.94 39 1127 13 34 0 1 0 0 39 1139 0 34 15% 2% 6% 0% pm+pt NA pm+pt 5 2 1 2 6 80.3 80.3 79.7 80.3 80.3 79.7 80.3 80.3 79.7 80.66 0.66 0.66 6.5 6.5 6.5 3.0 3.0 3.0 3.0 131 2343 326 0.01 c0.32 0.00 0.19 0.07 0.30 0.49 0.10 13.3 10.1 9.2 1.00 1.00 1.00 1.3 0.7 0.1 14.6 10.8 9.3 B B A 11.0 B 15.0 H city ratio 0.62 121.0 S tion 57.2% 10	BBL BBT BBR WBL WBT 36 1048 12 32 1465 36 1048 12 32 1465 36 1048 12 32 1465 36 1048 12 32 1465 1900 1900 1900 1900 1900 6.5 6.5 6.5 6.5 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 1570 3532 1805 3520 0.08 1.00 0.24 1.00 139 3532 449 3520 0.93 0.93 0.90 0.94 0.94 39 1127 13 34 1559 0	## Company Color Col	BBL BBT BBR WBL WBT WBR NBL 1	BBL BBT BBR WBL WBT WBR NBL NBT	BBL BBT BBR WBL WBT WBR NBL NBT NBR	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL SBT

	٨	_	•	1	+	4	1	-	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	3	992	67	199	1442	112	113	215	16	
v/c Ratio	0.02	0.50	0.06	0.56	0.61	0.61	0.62	0.45	0.17	
Control Delay	13.3	21.5	0.1	28.3	17.4	69.1	69.5	6.2	47.8	
Queue Delay	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	
Total Delay	13.3	21.5	0.1	28.3	19.7	69.1	69.5	6.2	47.8	
Queue Length 50th (ft)	1	243	0	51	291	96	97	0	8	
Queue Length 95th (ft)	6	428	0	124	660	137	138	26	24	
Internal Link Dist (ft)		937			449		417		100	
Turn Bay Length (ft)	125		100	125		200		200		
Base Capacity (vph)	154	1985	1046	389	2367	310	310	488	189	
Starvation Cap Reductn	0	0	0	0	752	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.50	0.06	0.51	0.89	0.36	0.36	0.44	0.08	
Intersection Summary			FIR							

	۶	-	•	1	-	*	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	†		7	ર્લ	7		4	
Traffic Volume (vph)	3	913	62	187	1353	3	180	0	172	4	3	4
Future Volume (vph)	3	913	62	187	1353	3	180	0	172	4	3	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		0.95	0.95	1.00		1.00	
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85		0.95	
Fit Protected	0.95	1.00	1.00	0.95	1.00		0.95	0.95	1.00		0.98	
Satd. Flow (prot)	1805	3539	1615	1787	3573		1715	1715	1615		1771	
Flt Permitted	0.09	1.00	1.00	0.20	1.00		0.95	0.95	1.00		0.98	
Satd. Flow (perm)	164	3539	1615	377	3573		1715	1715	1615		1771	
Peak-hour factor, PHF	0.92	0.92	0.92	0.94	0.94	0.94	0.80	0.80	0.80	0.69	0.69	0.69
Adj. Flow (vph)	3	992	67	199	1439	3	225	0	215	6	4	6
RTOR Reduction (vph)	0	0	33	0	0	0	0	0	169	0	6	0
Lane Group Flow (vph)	3	992	34	199	1442	0	112	113	46	0	10	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA	pm+ov	Split	NA	
Protected Phases	5	2	3	1	6	_	8	8	1	4	4	
Permitted Phases	2		2	6	-		100	3.77(8			
Actuated Green, G (s)	63.4	62.5	66.5	83.1	75.7		13.9	13.9	28.0		3.0	
Effective Green, g (s)	63.4	62.5	66.5	83.1	75.7		13.9	13.9	28.0		3.0	
Actuated g/C Ratio	0.49	0.48	0.51	0.64	0.58		0.11	0.11	0.22		0.02	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	
Lane Grp Cap (vph)	91	1701	826	393	2080		183	183	347		40	_
v/s Ratio Prot	0.00	0.28	c0.00	c0.05	c0.40		0.07	c0.07	0.01		c0.01	
v/s Ratio Perm	0.02	10000	0.02	0.27	30901000		1,51,52	-	0.01		(3545.0)	
v/c Ratio	0.03	0.58	0.04	0.51	0.69		0.61	0.62	0.13		0.25	
Uniform Delay, d1	38.6	24.4	15.8	28.0	19.0		55.5	55.5	41.2		62.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00	
Incremental Delay, d2	0.1	1.5	0.0	1.0	1.9		5.9	6.1	0.2		3.3	
Delay (s)	38.7	25.8	15.9	29.1	20.9		61.4	61.6	41.4		65.7	
Level of Service	D	C	В	C	C		E	E	D		E	
Approach Delay (s)		25.2			21.9			51.7			65.7	
Approach LOS		С			С			D			Е	
Intersection Summary												
HCM 2000 Control Delay			27.4	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capa	acity ratio		0.65		الترالا			-	-	C.		
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			32.5			
Intersection Capacity Utiliz	ation		69.1%		U Level				C			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection						
Int Delay, s/veh	3.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	NA.		۲	*	1	
Traffic Vol, veh/h	4	78	87	112	193	9
Future Vol., veh/h	4	78	87	112	193	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSON NAMED IN COLUMN TRANSPORT OF THE PERSON NAMED IN COLUMN TWO PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO PERSON NAMED IN COLUMN TRANSPORT NAMED IN C		None		None
Storage Length	0	III.	75			-
Veh in Median Storage			1	0	0	150
Grade, %	0			0	0	(#1
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	4	85	95	122	210	10
WWITEFIOW	-4.	03	33	122	210	10
Major/Minor	Minor2		Major1	1	Major2	
Conflicting Flow All	527	215	220	0	> €	0
Stage 1	215					-
Stage 2	312	-	740	-	٠	120
Critical Hdwy	6.42	6.22	4.12	- 5		- 21
Critical Hdwy Stg 1	5.42	-	-	c=:		
Critical Hdwy Stg 2	5.42		- 2			-
Follow-up Hdwy	3.518	3.318	2.218	· ·		(*)
Pot Cap-1 Maneuver	512	825	1349			
Stage 1	821	020	1040	-		•
7	742		0.00	755		
Stage 2	142	100		-	- 2	-
Platoon blocked, %	/476	005	10.10	3.5	*	:#S
Mov Cap-1 Maneuver	476	825	1349		*	-
Mov Cap-2 Maneuver	476	-		S2:	2	:28
Stage 1	764		720	- 4		
Stage 2	742	-	- 19		Ę.	*
Approach	EB		NB		SB	
HCM Control Delay, s	10.1		3.4		0	
HCM LOS	В		0.4		U	
I IOW LOO	J		_			
					_	
Minor Lane/Major Mvn	nt .	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1349		797		3)
HCM Lane V/C Ratio		0.07		0.112	:=	
HCM Control Delay (s)		7.9	-	10.1		- 30
HCM Lane LOS	A-	Α	140	В		
HCM 95th %tile Q(veh)	0.2	100	0.4	- 4	2
	J.	10.00		VAC.5.		

Intersection												
Int Delay, s/veh	7.6											
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	B		3	P			4			4	
Traffic Vol, veh/h	24	122	69	18	90	20	175	10	26	44	20	31
Future Vol, veh/h	24	122	69	18	90	20	175	10	26	44	20	31
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized		- 3	None	- 3		None	1 3		TITLE STATE OF THE			None
Storage Length	100	-	(A)=1	100	- 20	.50		77.	-	-		
Veh in Median Storage			18	Щ	0	188		0	100		0	
Grade, %	-				0			0	:#:	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	133	75	20	98	22	190	11	28	48	22	34
Major/Minor I	Major1	, ,	10	Major2			Vinor1			Minor2		
Conflicting Flow All	120	0	0	208	0	0	400	383	171	391	409	109
Stage 1				G			223	223		149	149	
Stage 2	2		12	4		720	177	160	121	242	260	
Critical Hdwy	4.12	7.	1/4	4.12		12	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-						6.12	5.52		6.12	5.52	-
Critical Hdwy Stg 2			L.				6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218		(4)	2.218		-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1468	- 34	18	1363	2		560	550	873	568	532	945
Stage 1	-	14	16	(3)	-	•	780	719	-	854	774	-
Stage 2							825	766		762	693	
Platoon blocked, %			7,00		-	-						
Mov Cap-1 Maneuver	1468		161	1363		-	510	532	873	528	514	945
Mov Cap-2 Maneuver	177	-	2,21	2	28	:#3	510	532	70.0	1	514	-
Stage 1	- 15	1 10	- 72		_ ^		766	706		839	762	- 1
Stage 2	÷	÷		12	14	·	762	755	-	713	681	
Approach	SE			NW			NE			SW		
HCM Control Delay, s	0.8			1.1			16.5			12.1		
HCM LOS	100			5,60			C			В		
					44					Ī		
Minor Lane/Major Mvm	t /	NELn1	NWL	NWT	NWR	SEL	SET	SER	SWLn1			
Capacity (veh/h)		539	1363			1468		L	1000			
HCM Lane V/C Ratio		0.426	0.014			0.018			0.168			
HCM Control Delay (s)		16.5	7.7			7.5			12.1			
HCM Lane LOS		C	A	7.0		A	-		В			
HCM 95th %tile Q(veh)		2.1	0			0.1			0.6			
TIOM GOLL JULIO GLACIT		4-1	Q.			0.1	100		0.0			

Intersection				
Intersection Delay, s/veh	3.8			
Intersection LOS	Α			
Approach	EB	NB	SB	
Entry Lanes	1	1	11	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	89	128	208	
Demand Flow Rate, veh/h	91	130	212	
Vehicles Circulating, veh/h	163	33	23	
Vehicles Exiting, veh/h	72	221	140	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1,000	
Approach Delay, s/veh	3.8	3.5	4.0	
Approach LOS	A	A	A	
Lane	Left	Left	Left	
Designated Moves	LR	LŤ	TR	
Assumed Moves	LR	LT	TR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Follow-Up Headway, s	2,609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	
Entry Flow, veh/h	91	130	212	
Cap Entry Lane, veh/h	1169	1334	1348	
Entry HV Adj Factor	0.978	0.984	0.980	
Flow Entry, veh/h	89	128	208	
Cap Entry, veh/h	1143	1313	1321	
V/C Ratio	0.078	0.097	0.157	
Control Delay, s/veh	3.8	3.5	4.0	
LOS	A	A	A	

	•	-	6	•	4	1	-	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	214	1327	163	889	240	311	636	385	304	
v/c Ratio	0.60	1.05	0.44	0.58	0.79	1.08	1.06	1.02	0.91	
Control Delay	15.7	60.7	26.2	27.9	77.3	126.5	80.8	111.0	75.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.7	60.7	26.2	27.9	77.3	126.5	80.8	111.0	75.3	
Queue Length 50th (ft)	31	~651	75	283	109	~306	~409	~184	218	
Queue Length 95th (ft)	m57	#795	147	364	#189	#498	#686	#289	#379	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	396	1264	371	1542	304	288	598	376	353	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	1.05	0.44	0.58	0.79	1.08	1.06	1.02	0.86	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٨	-	•	1	4	•	4	†	1	1	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1		ሻ	†		ሻሻ	↑	7	77	P)	
Traffic Volume (vph)	197	1150	71	150	608	210	221	286	585	354	105	175
Future Volume (vph)	197	1150	71	150	608	210	221	286	585	354	105	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	1.00	0.97	1.00	
Frt	1.00	0.99		1.00	0.96		1.00	1.00	0.85	1.00	0.91	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3512		1687	3338		3433	1900	1599	3502	1705	
Flt Permitted	0.28	1.00		0.07	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	527	3512		129	3338		3433	1900	1599	3502	1705	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	214	1250	77	163	661	228	240	311	636	385	114	190
RTOR Reduction (vph)	0	3	0	0	25	0	0	0	53	0	45	0
Lane Group Flow (vph)	214	1324	0	163	864	0	240	311	583	385	259	0
Heavy Vehicles (%)	0%	2%	0%	7%	5%	1%	2%	0%	1%	0%	1%	1%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6				7.43	8			
Actuated Green, G (s)	61.1	48.5	_	80.5	61.4		12.0	20.5	46.0	14.5	23.0	
Effective Green, g (s)	61.1	48.5		80.5	61.4		12.0	20.5	46.0	14.5	23.0	
Actuated g/C Ratio	0.45	0.36		0.60	0.45		0.09	0.15	0.34	0.11	0.17	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	357	1261		371	1518		305	288	544	376	290	
v/s Ratio Prot	0.06	c0.38		0.08	0.26		0.07	c0.16	c0.20	c0.11	0.15	
v/s Ratio Perm	0.21	7/7/25/5/		0.18	1712-517		1,000	15,000,000	0.16	EAST-HILL	1.50mar	
v/c Ratio	0.60	1.05		0.44	0.57		0.79	1.08	1.07	1.02	0.89	
Uniform Delay, d1	23.2	43.2		27.9	27.1		60.2	57.2	44.5	60.2	54.8	
Progression Factor	0.70	0.55		1.00	1.00		0.99	0.99	0.96	1,00	1.00	
Incremental Delay, d2	1.9	35.8		0.8	1.6		11.9	74.3	57.8	52.7	27.4	
Delay (s)	18.1	59.5		28.7	28.6		71.3	130.7	100.5	112.9	82.2	
Level of Service	В	Е		С	С		Е	F	F	F	F	
Approach Delay (s)		53.7			28.6			102.5			99.3	
Approach LOS		D			С			F			F	
Intersection Summary												
HCM 2000 Control Delay			67.8	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.06						H-14			
Actuated Cycle Length (s)			135.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utiliz	ation		96.6%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	٨	-	`	1	•	*	•	†	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	542	1543	177	48	672	224	325	509	324	282	439
v/c Ratio	0.98	0.87	0.21	0.42	0.85	0.31	0.86	0.99	1.01	0.57	0.54
Control Delay	71.9	37.8	4.0	53.8	49.1	5.2	36.0	64.2	93.1	58.7	19.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	71.9	37.8	4.0	53.8	49.1	5.2	36.0	64.2	93.1	58.7	19.4
Queue Length 50th (ft)	424	640	5	19	251	2	54	238	~241	123	184
Queue Length 95th (ft)	#668	755	45	46	#342	0	#293	#357	#442	172	286
Internal Link Dist (ft)		673			937			607		627	
Turn Bay Length (ft)	300		350	160		350	150		300		325
Base Capacity (vph)	551	1765	837	114	792	727	384	513	320	498	814
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.98	0.87	0.21	0.42	0.85	0.31	0.85	0.99	1.01	0.57	0.54

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

3: S Campbell Station Rd/N Campbell Station Rd & Kingston Pike

	٠	-	•	1	-	*	1	1	-	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	ተተ	7	1	1		7	个个	74
Traffic Volume (vph)	499	1420	163	44	618	206	299	434	34	298	259	404
Future Volume (vph)	499	1420	163	44	618	206	299	434	34	298	259	404
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1736	3574	1524	1805	3505	1599	1719	3528		1752	3406	1553
Flt Permitted	0.15	1.00	1.00	0.15	1.00	1.00	0.47	1.00		0.20	1.00	1.00
Satd. Flow (perm)	272	3574	1524	283	3505	1599	856	3528		373	3406	1553
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	542	1543	177	48	672	224	325	472	37	324	282	439
RTOR Reduction (vph)	0	0	86	0	0	50	0	4	0	0	0	76
Lane Group Flow (vph)	542	1543	91	48	672	174	325	505	0	324	282	363
Heavy Vehicles (%)	4%	1%	6%	0%	3%	1%	5%	1%	4%	3%	6%	4%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	, 0,,,,	1	6	7	3	8		7	4	5
Permitted Phases	2	-	2	6		6	8			4	SM.	4
Actuated Green, G (s)	65.4	65.4	65.4	30.5	30.5	51.0	39.7	19.5		40.3	19.8	58.3
Effective Green, g (s)	65.4	65.4	65.4	30.5	30.5	51.0	39.7	19.5		40.3	19.8	58.3
Actuated g/C Ratio	0.48	0.48	0.48	0.23	0.23	0.38	0.29	0.14		0.30	0.15	0.43
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3,0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	549	1731	738	104	791	681	380	509		320	499	745
v/s Ratio Prot	c0.28	0.43	730	0.01	c0.19	0.04	0.13	0.14		c0.15	0.08	0.14
v/s Ratio Perm	c0.20	0.45	0.06	0.09	CO. 13	0.07	0.13	0.14		c0.15	0.00	0.09
v/c Ratio	0.99	0.89	0.12	0.46	0.85	0.07	0.12	0.99		1.01	0.57	0.49
Uniform Delay, d1	38.9	31.6	19.1	51.9	50.1	28.9	41.9	57.7		42.0	53.6	27.6
Progression Factor	1.00	1.00	1.00	0.83	0.76	0.26	0.37	0.42		1.00	1.00	1.00
Incremental Delay, d2	34.8	7.4	0.3	3.1	10.7	0.20	16.6	37.4		53.5	4.6	0.5
AND ADDRESS OF THE PARTY OF THE	73.7	39.0	19.4	46.1	48.8	7.6	32.0	61.8		95.5	58.2	28.1
Delay (s) Level of Service	73.7 E	39.0 D	19.4 B	40.1 D	40.0 D	7.0 A	52.0 C	61.6 E		95.5 F	50.2 E	20.1 C
Approach Delay (s)		45.8	D.	U	38.9	А		50.2		F	57.1	·
Approach LOS		45.0 D			D.9			D			5/.1	
Intersection Summary												
HCM 2000 Control Delay			47.6	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.98									
Actuated Cycle Length (s)			135.0	S	um of los	st time (s)			26.0			
Intersection Capacity Utiliz	ation		96.0%		I have been been been been been been been be	of Service	9		F			
Analysis Period (min)			15									
c Critical Lane Group												

	>	×	*	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	118	459	45	752
v/c Ratio	0.63	0.17	0.06	0.27
Control Delay	64.6	1.3	0.4	0.6
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	64.6	1.3	0.4	0.6
Queue Length 50th (ft)	87	15	0	3
Queue Length 95th (ft)	147	24	1	4
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	500	2734	746	2795
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.24	0.17	0.06	0.27
Intersection Summary				

	>	74	×	4	1	X
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	W	10000000	44		*	^
Traffic Volume (vph)	75	33	333	89	41	692
Future Volume (vph)	75	33	333	89	41	692
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	WEST TO	6.5	15.00	6.5	6.5
Lane Util. Factor	1.00		0.95		1.00	0.95
Frt	0.96		0.97		1.00	1.00
Fit Protected	0.97		1.00		0.95	1.00
Satd. Flow (prot)	1761		3385		1805	3471
Fit Permitted	0.97		1.00		0.49	1.00
Satd. Flow (perm)	1761		3385		927	3471
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	82	36	362	97	45	752
RTOR Reduction (vph)	14	0	9	0	0	0
Lane Group Flow (vph)	104	0	450	0	45	752
Heavy Vehicles (%)	0%	0%	2%	8%	0%	4%
		U 70	NA	070	Perm	NA
Turn Type Protected Phases	Prot 4		NA 6	_	rem	2
Permitted Phases	4		0		2	Z
The state of the s	12.2		100.7			100 7
Actuated Green, G (s)	13.3		108.7		108.7	108.7
Effective Green, g (s)	13.3		108.7		108.7	108.7
Actuated g/C Ratio	0.10		0.81		0.81	0.81
Clearance Time (s)	6.5		6.5		6.5	6.5
Vehicle Extension (s)	3.0		3,0		3.0	3.0
Lane Grp Cap (vph)	173		2725		746	2794
v/s Ratio Prot	c0.06		0.13		12102	c0.22
v/s Ratio Perm	2 22		10 195		0.05	8 20
v/c Ratio	0.60		0.17		0.06	0.27
Uniform Delay, d1	58.3		3.0		2.7	3.3
Progression Factor	1.00		0.41		0.07	0.10
Incremental Delay, d2	5.5		0.1		0.1	0.2
Delay (s)	63.8		1.3		0.3	0.6
Level of Service	E		Α		Α	Α
Approach Delay (s)	63.8		1.3			0.6
Approach LOS	E		Α			A
Intersection Summary						
HCM 2000 Control Delay			6.2	H	CM 2000	Level of Serv
HCM 2000 Volume to Capac	city ratio		0.30			
Actuated Cycle Length (s)			135.0	Si	um of lost	t time (s)
Intersection Capacity Utilizat	tion		38.6%			of Service
Analysis Period (min)			15			
c Critical Lane Group						

	١	-	*	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	14	365	825	122	42	9
v/c Ratio	0.03	0.15	0.34	0.08	0.12	0.03
Control Delay	2.4	2.3	1.0	0.1	45.8	22.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	2.4	2.3	1.0	0.1	45.8	22.1
Queue Length 50th (ft)	- 1	15	4	0	31	0
Queue Length 95th (ft)	3	20	13	m0	65	16
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	492	2459	2400	1539	354	324
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.15	0.34	0.08	0.12	0.03
Intersection Summary			-			

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	-	4	-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
ane Configurations	ሻ	个个	^	7	T	7		
raffic Volume (vph)	13	336	759	112	39	8		
uture Volume (vph)	13	336	759	112	39	8		
feal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
otal Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
ane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
rt	1.00	1.00	1.00	0.85	1.00	0.85		
It Protected	0.95	1.00	1.00	1.00	0.95	1.00		
atd. Flow (prot)	1805	3406	3505	1615	1805	1615		
It Permitted	0.29	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	547	3406	3505	1615	1805	1615		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
dj. Flow (vph)	14	365	825	122	42	9		
RTOR Reduction (vph)	0	0	023	18	0	7		
ane Group Flow (vph)	14	365	825	104	42	2		
Heavy Vehicles (%)	0%	6%	3%	0%	0%	0%		
urn Type		NA	NA	pm+ov	Prot	Perm		
Protected Phases	pm+pt 1	6	2	8	8	Felli		
Permitted Phases	6	U		2	0	8		
Actuated Green, G (s)	97.5	97.5	88.5	115.0	26.5	26.5		
	97.5	97.5	88.5	115.0	26.5	26.5		
Effective Green, g (s) Actuated g/C Ratio	0.72	0.72	0.66	0.85	0.20	0.20		
	6.5	6.5	6.5	4.5	4.5	4.5		
Clearance Time (s)		1-935						
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
ane Grp Cap (vph)	418	2459	2297	1375	354	317		
//s Ratio Prot	0.00	c0.11	c0.24	0.01	c0.02	0.00		
/s Ratio Perm	0.02	0.45	0.00	0.05	0.40	0.00		
//c Ratio	0.03	0.15	0.36	0.08	0.12	0.01		
Jniform Delay, d1	6.1	5.8	10.5	1.6	44.6	43.6		
Progression Factor	0.42	0.37	0.08	0.00	1.00	1.00		
ncremental Delay, d2	0.0	0.1	0.3	0.1	0.7	0.0		
Delay (s)	2.6	2.3	1.1	0.1	45.3	43.7		
evel of Service	Α	Α	Α	Α	D	D		
Approach Delay (s)		2.3	1.0		45.0			
pproach LOS		Α	Α		D			
tersection Summary						100		
CM 2000 Control Delay			3.0	Н	CM 2000	Level of Service	е	Α
ICM 2000 Volume to Capa	acity ratio		0.31					
ctuated Cycle Length (s)			135.0		um of lost			17.5
ntersection Capacity Utiliz	ation		34.3%	10	U Level	of Service		Α
Analysis Period (min)			15					
Critical Lane Group								

	•	_	•	4	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	26	400	942	1200	273	51
v/c Ratio	0.16	0.26	0.72	0.78	0.16	0.06
Control Delay	15.9	13.2	41.3	5.1	19.7	4.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	15.9	13.2	41.3	5.1	19.7	4.9
Queue Length 50th (ft)	8	64	392	47	67	0
Queue Length 95th (ft)	20	85	476	91	94	23
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	158	1510	1308	1534	1699	809
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.26	0.72	0.78	0.16	0.06
Intersection Summary						

	٠	-	•	•	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	个个	*	7	ሻሻ	7	
Traffic Volume (vph)	24	368	867	1104	251	47	
Future Volume (vph)	24	368	867	1104	251	47	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1671	3610	3539	1599	3502	1615	
Flt Permitted	0.15	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	268	3610	3539	1599	3502	1615	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	26	400	942	1200	273	51	
RTOR Reduction (vph)	0	0	0	126	0	26	
Lane Group Flow (vph)	26	400	942	1074	273	25	
Heavy Vehicles (%)	8%	0%	2%	1%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8		
Permitted Phases	6			2		8	
Actuated Green, G (s)	56.5	56.5	47.3	112.8	65.5	65.5	
Effective Green, g (s)	56.5	56.5	47.3	112.8	65.5	65.5	
Actuated g/C Ratio	0.42	0.42	0.35	0.84	0.49	0.49	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	140	1510	1239	1413	1699	783	
v/s Ratio Prot	0.00	c0.11	0.27	c0.37	0.08		
v/s Ratio Perm	0.07	- www.sinti	10419-015	0.30	W.A.L.	0.02	
v/c Ratio	0.19	0.26	0.76	0.76	0.16	0.03	
Uniform Delay, d1	43.2	25.7	38.8	5.0	19.4	18.2	
Progression Factor	0.50	0.50	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.6	0.4	4.4	3.9	0.2	0.1	
Delay (s)	22.2	13.1	43.3	8.9	19.6	18.2	
Level of Service	С	В	D	Α	В	В	
Approach Delay (s)		13.7	24.0		19.4		
Approach LOS		В	С		В		
Intersection Summary							
HCM 2000 Control Delay			22.0	H	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capa	acity ratio		0.80				
Actuated Cycle Length (s)			135.0	Si	um of lost	t time (s)	
Intersection Capacity Utiliza	ation		82.9%	IC	U Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	•	4	4	1	1	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	1	14	9	14	46	1291	11	352	2
v/c Ratio	0.01	0.16	0.12	0.16	0.05	0.39	0.03	0.20	0.00
Control Delay	61.0	30.2	64.4	30.2	1.0	1.4	1.4	1.1	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	61.0	30.2	64.4	30.2	1.0	1.4	1.4	1.1	0.0
Queue Length 50th (ft)	- 1	0	8	0	3	67	1	26	0
Queue Length 95th (ft)	7	23	27	23	8	93	m2	m44	m0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	288	257	250	257	971	3301	367	1748	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	3	0	1	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.05	0.04	0.06	0.05	0.39	0.03	0.20	0.00
Intersection Summary									

m Volume for 95th percentile queue is metered by upstream signal.

	۶	4	•	1	←	•	•	1	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4	7	M	47		7	†	74
Traffic Volume (vph)	0	1	13	6	2	13	42	1130	58	10	324	2
Future Volume (vph)	0	1	13	6	2	13	42	1130	58	10	324	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected		1.00	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1900	1615		1829	1615	1805	3550		1805	1881	1615
Flt Permitted		1.00	1.00		0.87	1.00	0.55	1.00		0.21	1.00	1.00
Satd. Flow (perm)		1900	1615		1648	1615	1045	3550		395	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1	14	7	2	14	46	1228	63	11	352	2
RTOR Reduction (vph)	0	0	14	0	0	14	0	1	0	0	0	0
Lane Group Flow (vph)	0	1	0	0	9	0	46	1290	0	11	352	2
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	0%
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4			8!			2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		4.1	4.1		4.1	4.1	121.9	121.9		121.9	121.9	126.0
Effective Green, g (s)		4.1	4.1		4.1	4.1	121.9	121.9		121.9	121.9	126.0
Actuated g/C Ratio		0.03	0.03		0.03	0.03	0.90	0.90		0.90	0.90	0.93
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		57	49		50	49	943	3205		356	1698	1615
v/s Ratio Prot		0.00						c0.36			0.19	0.00
v/s Ratio Perm			0.00		c0.01	0.00	0.04			0.03	100000000	0.00
v/c Ratio		0.02	0.01		0.18	0.01	0.05	0.40		0.03	0.21	0.00
Uniform Delay, d1		63.5	63.5		63.8	63.5	0.7	1.0		0.7	0.8	0.3
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		1.27	1.11	1.00
Incremental Delay, d2		0.1	0.1		1.7	0.1	0.1	0.4		0.1	0.2	0.0
Delay (s)		63.6	63.5		65.5	63.5	0.8	1.4		0.9	1.1	0.3
Level of Service		Е	E		Е	E	Α	Α		Α	Α	Α
Approach Delay (s)		63.6			64.3			1.4			1.1	
Approach LOS		E			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			2.7	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.40									
Actuated Cycle Length (s)			135.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilization			52.7%	IC	U Level	of Service			A			
Analysis Period (min)			15									
! Phase conflict between lane	groups.											

c Critical Lane Group

	١	-	1	+	1	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	310	1574	15	1139	99	245
v/c Ratio	0.82	0.69	0.09	0.73	0.22	0.71
Control Delay	51.8	7.0	9.9	22.5	42.2	54.3
Queue Delay	0.0	0.3	0.0	0.0	0.0	0.0
Total Delay	51.8	7.3	9.9	22.5	42.2	54.3
Queue Length 50th (ft)	166	47	3	281	69	176
Queue Length 95th (ft)	257	296	m6	322	121	277
Internal Link Dist (ft)		449		746	93	431
Turn Bay Length (ft)	150		125			
Base Capacity (vph)	440	2279	159	1568	441	344
Starvation Cap Reductn	0	200	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.70	0.76	0.09	0.73	0.22	0.71
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	•	•	4	4	4	1	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	1			4			4	
Traffic Volume (vph)	285	1444	4	14	840	208	0	85	6	111	9	105
Future Volume (vph)	285	1444	4	14	840	208	0	85	6	111	9	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	0.97			0.99			0.94	
Fit Protected	0.95	1.00		0.95	1.00			1.00			0.98	
Satd. Flow (prot)	1687	3573		1805	3374			1882			1698	
Flt Permitted	0.12	1.00		0.11	1.00			1.00			0.79	
Satd. Flow (perm)	209	3573		215	3374			1882			1380	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	310	1570	4	15	913	226	0	92	7	121	10	114
RTOR Reduction (vph)	0	0	0	0	15	0	0	2	0	0	23	0
Lane Group Flow (vph)	310	1574	0	15	1124	0	0	97	0	0	222	0
Heavy Vehicles (%)	7%	1%	0%	0%	4%	3%	0%	0%	0%	1%	0%	4%
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	90.5	82.2		64.0	62.2			31.5			31.5	
Effective Green, g (s)	90.5	82.2		64.0	62.2			31.5			31.5	
Actuated g/C Ratio	0.67	0.61		0.47	0.46			0.23			0.23	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	378	2175		123	1554			439			322	
v/s Ratio Prot	c0.13	0.44		0.00	0.33			0.05				
v/s Ratio Perm	c0.42			0.06							c0.16	
v/c Ratio	0.82	0.72		0.12	0.72			0.22			0.69	
Uniform Delay, d1	30.4	18.5		20.2	29.4			41.8			47.3	
Progression Factor	1.56	0.34		0.82	0.67			1.00			1.00	
Incremental Delay, d2	10.2	1.6		0.3	2.3			1.2			6.0	
Delay (s)	57.7	7.8		16.8	22.0			43.0			53.3	
Level of Service	E	Α		В	C			D			D	
Approach Delay (s)		16.0			22.0			43.0			53.3	
Approach LOS		В			C			D			D	
Intersection Summary												
HCM 2000 Control Delay			21.5	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capa	acity ratio		0.80									
Actuated Cycle Length (s)			135.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		81.6%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	-	*	1	+	1	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	NBR
Lane Group Flow (vph)	1757	27	112	904	29	29	154
v/c Ratio	0.68	0.02	0.60	0.31	0.30	0.30	0.49
Control Delay	4.3	0.0	26.1	1.5	67.8	67.8	8.1
Queue Delay	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Total Delay	4.3	0.0	26.1	1.6	67.8	67.8	8.1
Queue Length 50th (ft)	151	0	26	44	26	26	0
Queue Length 95th (ft)	m206	m0	m61	47	61	61	33
Internal Link Dist (ft)	937			449		417	
Turn Bay Length (ft)		100	125		200		200
Base Capacity (vph)	2595	1259	188	2884	235	235	317
Starvation Cap Reductn	0	0	0	681	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.68	0.02	0.60	0.41	0.12	0.12	0.49
Intersection Summary	_						

m Volume for 95th percentile queue is metered by upstream signal.

	٨	-	•	1	4	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	♠ ♠		15	ર્લ	7		4	
Traffic Volume (vph)	0	1616	25	103	828	4	53	0	142	0	0	0
Future Volume (vph)	0	1616	25	103	828	4	53	0	142	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5			
Lane Util. Factor		0.95	1.00	1.00	0.95		0.95	0.95	1.00			
Frt		1.00	0.85	1.00	1.00		1.00	1.00	0.85			
Flt Protected		1.00	1.00	0.95	1.00		0.95	0.95	1.00			
Satd. Flow (prot)		3539	1615	1805	3499		1715	1715	1599			
Flt Permitted		1.00	1.00	0.09	1.00		0.95	0.95	1.00			
Satd. Flow (perm)		3539	1615	164	3499		1715	1715	1599			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1757	27	112	900	4	58	0	154	0	0	0
RTOR Reduction (vph)	0	0	7	0	0	0	0	0	141	0	0	0
Lane Group Flow (vph)	0	1757	20	112	904	0	29	29	13	0	0	0
Heavy Vehicles (%)	0%	2%	0%	0%	3%	25%	0%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov			
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6					8			
Actuated Green, G (s)		95.1	97.8	106.1	106.1		6.7	6.7	11.2			
Effective Green, g (s)		95.1	97.8	106.1	106.1		6.7	6.7	11.2			
Actuated g/C Ratio		0.70	0.72	0.79	0.79		0.05	0.05	0.08			
Clearance Time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5			
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)		2493	1169	183	2749		85	85	132			
v/s Ratio Prot		c0.50	c0.00	c0.02	0.26		c0.02	0.02	0.00			
v/s Ratio Perm			0.01	0.46					0.00			
v/c Ratio		0.70	0.02	0.61	0.33		0.34	0.34	0.10			
Uniform Delay, d1		11.7	5.2	27.7	4.2		62.0	62.0	57.2			
Progression Factor		0.32	1.00	0.90	0.32		1.00	1.00	1.00			
Incremental Delay, d2		0.7	0.0	4.0	0.2		2.4	2.4	0.3			
Delay (s)		4.5	5.2	29.0	1.5		64.4	64.4	57.5			
Level of Service		Α	Α	C	Α		Ε	Е	E			
Approach Delay (s)		4.5			4.6			59.4			0.0	
Approach LOS		Α			Α			E			Α	
Intersection Summary												
HCM 2000 Control Delay			8.4	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.70		عربك							
Actuated Cycle Length (s)			135.0		um of lost				32.5			
Intersection Capacity Utilization	on		70.8%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	1	•	1	1	-	1	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	214	1327	163	889	240	311	636	385	304	
v/c Ratio	0.68	0.93	0.84	0.68	0.59	0.93	0.81	0.90	0.85	
Control Delay	25.9	30.1	61.5	32.5	56.4	80.8	27.9	77.3	59.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.9	30.1	61.5	32.5	56.4	80.8	27.9	77.3	59.0	
Queue Length 50th (ft)	53	371	78	287	93	240	151	154	182	
Queue Length 95th (ft)	m101	#650	#203	366	#160	#411	206	#244	#286	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	338	1425	194	1312	406	340	789	426	411	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.63	0.93	0.84	0.68	0.59	0.91	0.81	0.90	0.74	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	*	•	4	Ť	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1		, T	†		77	↑	77	77	P)	
Traffic Volume (vph)	197	1150	71	150	608	210	221	286	585	354	105	175
Future Volume (vph)	197	1150	71	150	608	210	221	286	585	354	105	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	0.88	0.97	1.00	
Frt	1.00	0.99		1.00	0.96		1.00	1.00	0.85	1.00	0.91	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3512		1687	3338		3433	1900	2814	3502	1705	
Flt Permitted	0.18	1.00		0.09	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	335	3512		154	3338		3433	1900	2814	3502	1705	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	214	1250	77	163	661	228	240	311	636	385	114	190
RTOR Reduction (vph)	0	4	0	0	28	0	0	0	68	0	52	0
Lane Group Flow (vph)	214	1323	0	163	861	0	240	311	568	385	252	0
Heavy Vehicles (%)	0%	2%	0%	7%	5%	1%	2%	0%	1%	0%	1%	1%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6					8			
Actuated Green, G (s)	60.6	48.6		55.8	46.2		14.2	21.2	30.8	14.6	21.6	
Effective Green, g (s)	60.6	48.6		55.8	46.2		14.2	21.2	30.8	14.6	21.6	
Actuated g/C Ratio	0.51	0.41		0.46	0.39		0.12	0.18	0.26	0.12	0.18	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	316	1422		194	1285		406	335	722	426	306	
v/s Ratio Prot	c0.07	c0.38		0.07	0.26		0.07	c0.16	0.06	c0.11	0.15	
v/s Ratio Perm	0.27	2000		0.32	A.O. Maria		1000000		0.14	Selection	The Date New	
v/c Ratio	0.68	0.93		0.84	0.67		0.59	0.93	0.79	0.90	0.82	
Uniform Delay, d1	19.7	34.1		27.7	30.6		50.1	48.7	41.5	52.0	47.4	
Progression Factor	1.19	0.59		1.00	1.00		0.98	0.98	0.95	1.00	1.00	
Incremental Delay, d2	4.0	9.3		26.5	2.8		2.2	29.6	5.3	22.1	16.3	
Delay (s)	27.5	29.2		54.2	33.4		51.3	77.2	44.7	74.1	63.7	
Level of Service	С	С		D	С		D	Е	D	Е	Е	
Approach Delay (s)		29.0			36.6			54.6			69.5	
Approach LOS		С			D			D			Ε	
Intersection Summary												
HCM 2000 Control Delay			43.8	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.92				التاتية					
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utiliz	ation		89.2%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	-	•	1	•	*	4	† -	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	542	1543	177	48	672	224	325	509	324	282	439
v/c Ratio	0.68	0.84	0.20	0.37	0.50	0.25	0.56	0.88	0.78	0.51	0.66
Control Delay	22.2	30.9	2.9	39.2	24.9	2.9	15.8	37.8	46.9	49.6	24.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.2	30.9	2.9	39.2	24.9	2.9	15.8	37.8	46.9	49.6	24.9
Queue Length 50th (ft)	126	541	0	18	128	0	22	166	99	106	187
Queue Length 95th (ft)	165	651	36	37	160	0	49	#282	#148	152	283
Internal Link Dist (ft)		673			937			607		627	
Turn Bay Length (ft)	300		350	160		350	150		300		325
Base Capacity (vph)	914	1837	869	130	1340	881	579	578	416	553	728
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.59	0.84	0.20	0.37	0.50	0.25	0.56	0.88	0.78	0.51	0.60

Intersection Summary
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

3: S Campbell Station Rd/N Campbell Station Rd & Kingston Pike

	٠	-	•	1	*	•	1	1	1	. /	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	^	7	Ť	ተተ	7	ሻሻ	个子		77	^	74
Traffic Volume (vph)	499	1420	163	44	618	206	299	434	34	298	259	404
Future Volume (vph)	499	1420	163	44	618	206	299	434	34	298	259	404
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3367	3574	1524	1805	3505	1599	3335	3528		3400	3406	1553
Flt Permitted	0.23	1.00	1.00	0.10	1.00	1.00	0.50	1.00		0.21	1.00	1.00
Satd. Flow (perm)	803	3574	1524	182	3505	1599	1768	3528		734	3406	1553
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	542	1543	177	48	672	224	325	472	37	324	282	439
RTOR Reduction (vph)	0	0	88	0	0	48	0	5	0	0	0	103
Lane Group Flow (vph)	542	1543	89	48	672	176	325	504	0	324	282	336
Heavy Vehicles (%)	4%	1%	6%	0%	3%	1%	5%	1%	4%	3%	6%	4%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	2100/	pm+pt	NA	pm+ov
Protected Phases	5	2	1 01111	1	6	7	3	8		7	4	5
Permitted Phases	2	1.4	2	6		6	8	196		4	- CI	4
Actuated Green, G (s)	60.4	60.4	60.4	45.9	45.9	56.4	30.0	19.5		30.0	19.5	37.6
Effective Green, g (s)	60.4	60.4	60.4	45.9	45.9	56.4	30.0	19.5		30.0	19.5	37.6
Actuated g/C Ratio	0.50	0.50	0.50	0.38	0.38	0.47	0.25	0.16		0.25	0.16	0.31
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3,0		3.0	3.0	3.0
Lane Grp Cap (vph)	790	1798	767	118	1340	838	579	573		416	553	570
v/s Ratio Prot	0.10	c0.43	101	0.01	c0.19	0.02	0.05	c0.14		c0.07	0.08	0.09
v/s Ratio Perm	0.10	60.43	0.06	0.01	CO. 19	0.02	0.03	60.14		0.13	0.00	0.03
The state of the s		0.00		0.14	0.50		7.344.5.3454.6	0.00			0.54	
v/c Ratio	0.69	0.86	0.12		0.50	0.21	0.56	0.88		0.78	0.51	0.59
Uniform Delay, d1	19.9	26.1	15.7	41.6	28.3	18.7	37.4	0.40		37.9	45.9	34.7
Progression Factor	1.00	1.00	1.00	0.82	0.80	0.22	0.36			1.00	1.00	1.00
Incremental Delay, d2	2.5	5.6	0.3	2.2	1.3	0.1	1.2	17.0		8.9	3.3	1.6
Delay (s)	22.4	31.6	16.0	36.3	24.1	4.3	14.8	36.6		46.9	49.2	36.3
Level of Service	С	C	В	D	C	Α	В	D		D	D	D
Approach Delay (s) Approach LOS		28.2 C			20.0 B			28.1 C			43.0 D	
Intersection Summary			-									
HCM 2000 Control Delay			29.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.85									
Actuated Cycle Length (s)	Long Island		120.0	S	um of los	st time (s)			26.0			
Intersection Capacity Utiliz	ation		86.2%			of Service	3		E			
Analysis Period (min)	- ASKA		15	15	2 2010	21 231110			-			
c Critical Lane Group												1

11	>	×	4	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	118	459	45	752
v/c Ratio	0.60	0.17	0.06	0.27
Control Delay	55.6	1.6	0.5	0.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	55.6	1.6	0.5	0.9
Queue Length 50th (ft)	75	19	0	3
Queue Length 95th (ft)	132	25	1	4
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	518	2681	731	2739
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.23	0.17	0.06	0.27
Intersection Summary	_			

	>	_	×	4	1	X
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	W	Allowed Park	44		*	^
Traffic Volume (vph)	75	33	333	89	41	692
Future Volume (vph)	75	33	333	89	41	692
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	HEET TO	6.5	1269/	6.5	6.5
Lane Util. Factor	1.00		0.95		1.00	0.95
Frt	0.96		0.97		1.00	1.00
Fit Protected	0.97		1.00		0.95	1.00
Satd. Flow (prot)	1761		3385		1805	3471
Flt Permitted	0.97		1.00		0.49	1.00
Satd. Flow (perm)	1761		3385		927	3471
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	82	36	362	97	45	752
RTOR Reduction (vph)	16	0	11	0	0	0
Lane Group Flow (vph)	102	0	448	0	45	752
Heavy Vehicles (%)	0%	0%	2%	8%	0%	4%
		070		0.70		
Turn Type Protected Phases	Prot 4		NA 6		Perm	NA 2
THE CONTRACT OF STREET	4		0			2
Permitted Phases	40.0		04.7		2	04.7
Actuated Green, G (s)	12.3		94.7		94.7	94.7
Effective Green, g (s)	12.3		94.7		94.7	94.7
Actuated g/C Ratio	0.10		0.79		0.79	0.79
Clearance Time (s)	6.5		6.5		6.5	6.5
Vehicle Extension (s)	3.0		3.0		3,0	3.0
Lane Grp Cap (vph)	180		2671		731	2739
v/s Ratio Prot	c0.06		0.13			c0.22
v/s Ratio Perm					0.05	
v/c Ratio	0.57		0.17		0.06	0.27
Uniform Delay, d1	51.3		3.1		2.8	3.4
Progression Factor	1.00		0.49		0.11	0.19
Incremental Delay, d2	4.0		0.1		0.2	0.2
Delay (s)	55.3		1.6		0.5	0.9
Level of Service	E		Α		Α	Α
Approach Delay (s)	55.3		1.6			0.9
Approach LOS	E		Α			Α
Intersection Summary						
HCM 2000 Control Delay			5.8	H	CM 2000	Level of Serv
HCM 2000 Volume to Capac	city ratio		0.31		الاتات	
Actuated Cycle Length (s)			120.0	Si	um of lost	t time (s)
Intersection Capacity Utilizat	tion		38.6%			of Service
Analysis Period (min)			15			
c Critical Lane Group						

	١	→	*	*	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	14	365	825	122	42	9
v/c Ratio	0.03	0.15	0.36	0.08	0.11	0.03
Control Delay	4.9	4.5	1.3	0.1	40.0	20.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	4.9	4.5	1.3	0.1	40.0	20.4
Queue Length 50th (ft)	1	16	4	0	27	0
Queue Length 95th (ft)	7.	42	12	m0	59	14
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	477	2398	2321	1530	368	336
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.15	0.36	0.08	0.11	0.03
Intersection Summary	12				2	

m Volume for 95th percentile queue is metered by upstream signal.

	•	-	-	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	ተተ	^	7	7	7	
Traffic Volume (vph)	13	336	759	112	39	8	
Future Volume (vph)	13	336	759	112	39	8	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3406	3505	1615	1805	1615	
Flt Permitted	0.28	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	536	3406	3505	1615	1805	1615	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	14	365	825	122	42	9	
RTOR Reduction (vph)	0	0	0	20	0	7	
Lane Group Flow (vph)	14	365	825	102	42	2	
Heavy Vehicles (%)	0%	6%	3%	0%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	101247414-4	
Permitted Phases	6		-	2		8	
Actuated Green, G (s)	84.5	84.5	75.6	100.1	24.5	24.5	
Effective Green, g (s)	84.5	84.5	75.6	100.1	24.5	24.5	
Actuated g/C Ratio	0.70	0.70	0.63	0.83	0.20	0.20	
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	402	2398	2208	1347	368	329	
v/s Ratio Prot	0.00	c0.11	c0.24	0.02	c0.02		
v/s Ratio Perm	0.02	999 (14)	33121	0.05	40.01	0.00	
v/c Ratio	0.03	0.15	0.37	0.08	0.11	0.01	
Uniform Delay, d1	6.1	5.9	10.7	1.8	38.9	38.0	
Progression Factor	0.90	0.75	0.10	0.00	1.00	1.00	
Incremental Delay, d2	0.0	0.1	0.3	0.1	0.6	0.0	
Delay (s)	5.6	4.5	1.4	0.1	39.5	38.1	
Level of Service	A	A	A	A	D	D	
Approach Delay (s)		4.6	1.3		39.3		
Approach LOS		Α	A		D		
Intersection Summary							
HCM 2000 Control Delay			3.6	Н	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capaci	ty ratio		0.31	· ·			
Actuated Cycle Length (s)			120.0	S	um of lost	t time (s)	
Intersection Capacity Utilization	on		34.3%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	٠	—	-	•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	26	400	942	1200	273	51
v/c Ratio	0.16	0.26	0.73	0.79	0.17	0.06
Control Delay	13.3	11.4	37.9	5.4	18.6	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	13.3	11.4	37.9	5.4	18.6	5.0
Queue Length 50th (ft)	5	44	349	45	60	0
Queue Length 95th (ft)	15	63	432	94	87	22
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	167	1519	1294	1528	1648	787
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.26	0.73	0.79	0.17	0.06
Intersection Summary						

	٠	-	•	*	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	ተተ	^	7	ሻሻ	7	
Traffic Volume (vph)	24	368	867	1104	251	47	
Future Volume (vph)	24	368	867	1104	251	47	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1671	3610	3539	1599	3502	1615	
Flt Permitted	0.15	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	272	3610	3539	1599	3502	1615	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	26	400	942	1200	273	51	
RTOR Reduction (vph)	0	0	0	145	0	27	
Lane Group Flow (vph)	26	400	942	1055	273	24	
Heavy Vehicles (%)	8%	0%	2%	1%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	10.000000	
Permitted Phases	6			2	1000	8	
Actuated Green, G (s)	50.5	50.5	41.3	97.8	56.5	56.5	
Effective Green, g (s)	50.5	50.5	41.3	97.8	56.5	56.5	
Actuated g/C Ratio	0.42	0.42	0.34	0.81	0.47	0.47	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	145	1519	1218	1389	1648	760	
v/s Ratio Prot	0.00	c0.11	0.27	c0.36	0.08		
v/s Ratio Perm	0.07	- Section	0.70.70	0.30	(446.5)	0.01	
v/c Ratio	0.18	0.26	0.77	0.76	0.17	0.03	
Uniform Delay, d1	37.8	22.6	35.2	5.4	18.2	17.1	
Progression Factor	0.47	0.48	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.6	0.4	4.8	3.9	0.2	0.1	
Delay (s)	18.3	11.3	40.0	9.3	18.4	17.1	
Level of Service	В	В	D	Α	В	В	
Approach Delay (s)		11.7	22.8		18.2		
Approach LOS		В	С		В		
Intersection Summary							
HCM 2000 Control Delay			20.7	H	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capa	city ratio		0.80				
Actuated Cycle Length (s)			120.0	Si	ım of lost	t time (s)	
Intersection Capacity Utiliza	ation		82.9%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	•	4	1	1	1	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	1	14	9	14	46	1291	11	352	2
v/c Ratio	0.01	0.14	0.11	0.14	0.05	0.39	0.03	0.20	0.00
Control Delay	53.0	27.3	56.4	27.3	1.1	1.5	0.2	0.2	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	53.0	27.3	56.4	27.3	1.1	1.5	0.2	0.2	0.0
Queue Length 50th (ft)	1	0	7	0	3	66	0	2	0
Queue Length 95th (ft)	7	22	24	22	8	93	m0	m2	m0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	324	287	281	287	962	3272	362	1732	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.05	0.03	0.05	0.05	0.39	0.03	0.20	0.00
Intersection Summary									

m Volume for 95th percentile queue is metered by upstream signal.

	٨	4	•	1	4	•	4	1	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		ર્લ	7	M	46		7	1	7
Traffic Volume (vph)	0	1	13	6	2	13	42	1130	58	10	324	2
Future Volume (vph)	0	1	13	6	2	13	42	1130	58	10	324	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected		1.00	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1900	1615		1829	1615	1805	3550		1805	1881	1615
Flt Permitted		1.00	1.00		0.87	1.00	0.55	1.00		0.21	1.00	1.00
Satd. Flow (perm)		1900	1615		1648	1615	1045	3550		394	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1	14	7	2	14	46	1228	63	11	352	2
RTOR Reduction (vph)	0	0	14	0	0	14	0	1	0	0	0	0
Lane Group Flow (vph)	0	1	0	0	9	0	46	1290	0	11	352	2
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	0%
Turn Type		NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4			8!			2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		4.1	4.1		4.1	4.1	106.9	106.9		106.9	106.9	111.0
Effective Green, g (s)		4.1	4.1		4.1	4.1	106.9	106.9		106.9	106.9	111.0
Actuated g/C Ratio		0.03	0.03		0.03	0.03	0.89	0.89		0.89	0.89	0.92
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		64	55		56	55	930	3162		350	1675	1615
v/s Ratio Prot		0.00						c0.36			0.19	0.00
v/s Ratio Perm			0.00		c0.01	0.00	0.04			0.03		0.00
v/c Ratio		0.02	0.01		0.16	0.01	0.05	0.41		0.03	0.21	0.00
Uniform Delay, d1		56.0	56.0		56.3	56.0	0.7	1.1		0.7	0.9	0.3
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		0.08	0.09	1.00
Incremental Delay, d2		0.1	0.1		1.3	0.1	0.1	0.4		0.1	0.2	0.0
Delay (s)		56.1	56.0		57.6	56.0	0.8	1.5		0.2	0.2	0.3
Level of Service		Е	E		Ε	E	Α	Α		Α	Α	Α
Approach Delay (s)		56.1			56.7			1.5			0.2	
Approach LOS		Е			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			2.4	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.40									
Actuated Cycle Length (s)			120.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilization	on		52.7%	IC	U Level	of Service	•		Α			
Analysis Period (min)			15									
! Phase conflict between lar	ne groups.											

c Critical Lane Group

	•	-	6	•	†	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	310	1574	15	1139	99	245
v/c Ratio	0.82	0.69	0.09	0.73	0.24	0.74
Control Delay	46.1	6.2	9.9	21.9	39.1	52.1
Queue Delay	0.0	0.3	0.0	0.0	0.0	0.0
Total Delay	46.1	6.5	9.9	21.9	39.1	52.1
Queue Length 50th (ft)	127	60	3	241	62	154
Queue Length 95th (ft)	216	106	m5	327	111	#271
Internal Link Dist (ft)		449		746	93	431
Turn Bay Length (ft)	150		125			
Base Capacity (vph)	429	2266	164	1555	417	331
Starvation Cap Reductn	0	181	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.72	0.75	0.09	0.73	0.24	0.74

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	•	4	4	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	1			4			4	
Traffic Volume (vph)	285	1444	4	14	840	208	0	85	6	111	9	105
Future Volume (vph)	285	1444	4	14	840	208	0	85	6	111	9	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	0.97			0.99			0.94	
Fit Protected	0.95	1.00		0.95	1.00			1.00			0.98	
Satd. Flow (prot)	1687	3573		1805	3374			1882			1698	
Flt Permitted	0.12	1.00		0.11	1.00			1.00			0.79	
Satd. Flow (perm)	207	3573		212	3374			1882			1380	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	310	1570	4	15	913	226	0	92	7	121	10	114
RTOR Reduction (vph)	0	0	0	0	17	0	0	2	0	0	26	0
Lane Group Flow (vph)	310	1574	0	15	1122	0	0	97	0	0	219	0
Heavy Vehicles (%)	7%	1%	0%	0%	4%	3%	0%	0%	0%	1%	0%	4%
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	80.5	72.2		56.5	54.7			26.5			26.5	
Effective Green, g (s)	80.5	72.2		56.5	54.7			26.5			26.5	
Actuated g/C Ratio	0.67	0.60		0.47	0.46			0.22			0.22	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	376	2149		123	1537			415			304	
v/s Ratio Prot	c0.13	0.44		0.00	0.33			0.05				
v/s Ratio Perm	c0.42			0.06							c0.16	
v/c Ratio	0.82	0.73		0.12	0.73			0.23			0.72	
Uniform Delay, d1	27.3	17.0		18.2	26.6			38.4			43.3	
Progression Factor	1.48	0.32		0.93	0.72			1.00			1.00	
Incremental Delay, d2	10.2	1.6		0.3	2.4			1.3			7.9	
Delay (s)	50.6	7.1		17.3	21.6			39.7			51.2	
Level of Service	D	Α		В	C			D			D	
Approach Delay (s)		14.2			21.6			39.7			51.2	
Approach LOS		В			C			D			D	
Intersection Summary												
HCM 2000 Control Delay			20.2	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capa	acity ratio		0.82									
Actuated Cycle Length (s)			120.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		81.6%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	-	•	1	+	1	+	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	NBR
Lane Group Flow (vph)	1757	27	112	904	29	29	154
v/c Ratio	0.71	0.02	0.62	0.32	0.27	0.27	0.44
Control Delay	7.3	0.0	25.6	1.5	59.1	59.1	5.4
Queue Delay	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Total Delay	7.3	0.0	25.6	1.6	59.1	59.1	5.4
Queue Length 50th (ft)	178	0	22	40	23	23	0
Queue Length 95th (ft)	286	m0	m56	47	55	55	17
Internal Link Dist (ft)	937			449		417	
Turn Bay Length (ft)		100	125		200		200
Base Capacity (vph)	2484	1222	180	2814	264	264	350
Starvation Cap Reductn	0	0	0	489	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.02	0.62	0.39	0.11	0.11	0.44
Intersection Summary							

m Volume for 95th percentile queue is metered by upstream signal.

	۶	_	•	•	4	4	4	†	-	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	†		*	ર્લ	7		4	
Traffic Volume (vph)	0	1616	25	103	828	4	53	0	142	0	0	0
Future Volume (vph)	0	1616	25	103	828	4	53	0	142	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5			
Lane Util. Factor		0.95	1.00	1.00	0.95		0.95	0.95	1.00			
Frt		1.00	0.85	1.00	1.00		1.00	1.00	0.85			
Fit Protected		1.00	1.00	0.95	1.00		0.95	0.95	1.00			
Satd. Flow (prot)		3539	1615	1805	3499		1715	1715	1599			
Flt Permitted		1.00	1.00	0.08	1.00		0.95	0.95	1.00			
Satd. Flow (perm)		3539	1615	150	3499		1715	1715	1599			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1757	27	112	900	4	58	0	154	0	0	0
RTOR Reduction (vph)	0	0	8	0	.0	0	0	0	140	0	0	0
Lane Group Flow (vph)	0	1757	19	112	904	0	29	29	14	0	0	0
Heavy Vehicles (%)	0%	2%	0%	0%	3%	25%	0%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov			
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6					8			
Actuated Green, G (s)		80.3	83.0	91.3	91.3		6.5	6.5	11.0			
Effective Green, g (s)		80.3	83.0	91.3	91.3		6.5	6.5	11.0			
Actuated g/C Ratio		0.67	0.69	0.76	0.76		0.05	0.05	0.09			
Clearance Time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5			
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)		2368	1117	176	2662		92	92	146			
v/s Ratio Prot		c0.50	c0.00	c0.02	0.26		c0.02	0.02	0.00			
v/s Ratio Perm			0.01	0.46					0.01			
v/c Ratio		0.74	0.02	0.64	0.34		0.32	0.32	0.10			
Uniform Delay, d1		13.0	5.8	30.7	4.6		54.6	54.6	49.9			
Progression Factor		0.49	1.00	0.68	0.29		1.00	1.00	1.00			
Incremental Delay, d2		1.1	0.0	4.9	0.2		2.0	2.0	0.3			
Delay (s)		7.6	5.8	25.9	1.6		56.6	56.6	50.2			
Level of Service		A	Α	С	Α		Ε	E	D			
Approach Delay (s)		7.6			4.3			52.0			0.0	
Approach LOS		Α			Α			D			Α	
Intersection Summary												
HCM 2000 Control Delay			9.6	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacit	y ratio		0.74									
Actuated Cycle Length (s)			120.0	Si	um of lost	time (s)			32.5			
Intersection Capacity Utilization	in		70.8%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	6	•	1	1	-	-	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	50	1218	502	1671	153	78	348	126	152	
v/c Ratio	0.37	0.96	0.97	0.79	0.64	0.51	0.61	0.31	0.70	
Control Delay	21.2	36.0	69.7	24.3	69.3	64.8	21.8	57.0	60.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.2	36.0	69.7	24.3	69.3	64.8	21.8	57.0	60.2	
Queue Length 50th (ft)	10	352	369	574	64	55	70	51	97	
Queue Length 95th (ft)	m25	#675	#598	684	#137	95	122	87	167	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	135	1266	519	2112	239	259	569	401	277	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	1	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	0.96	0.97	0.79	0.64	0.30	0.61	0.31	0.55	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	*	1	•	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	†		12	†	7	44	B	
Traffic Volume (vph)	46	1073	48	462	1446	91	141	72	320	116	68	72
Future Volume (vph)	46	1073	48	462	1446	91	141	72	320	116	68	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	1.00	0.97	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3499		1770	3508		3335	1827	1538	3502	1745	
Flt Permitted	0.10	1.00		0.08	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	183	3499		143	3508		3335	1827	1538	3502	1745	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	50	1166	52	502	1572	99	153	78	348	126	74	78
RTOR Reduction (vph)	0	3	0	0	3	0	0	0	56	0	30	0
Lane Group Flow (vph)	50	1215	0	502	1668	0	153	78	292	126	122	0
Heavy Vehicles (%)	0%	2%	14%	2%	2%	2%	5%	4%	5%	0%	1%	0%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6				1990	8			
Actuated Green, G (s)	49.5	45.6		86.0	75.6		10.6	9.6	43.5	14.9	13.9	
Effective Green, g (s)	49.5	45.6		86.0	75.6		10.6	9.6	43.5	14.9	13.9	
Actuated g/C Ratio	0.38	0.35		0.66	0.58		0.08	0.07	0.33	0.11	0.11	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	118	1227		518	2040		271	134	514	401	186	_
v/s Ratio Prot	0.01	0.35		c0.25	0.48		c0.05	0.04	0.15	c0.04	c0.07	
v/s Ratio Perm	0.15	0.00		c0.39	0.10		00,00	0.01	0.04	00.01	00.01	
v/c Ratio	0.42	0.99		0.97	0.82		0.56	0.58	0.57	0.31	0.65	
Uniform Delay, d1	26.8	42.0		40.2	21.7		57.5	58.3	35.5	52.9	55.7	
Progression Factor	0.91	0.45		1.00	1.00		0.96	0.95	0.91	1.00	1.00	
Incremental Delay, d2	2.1	21.6		31.3	3.8		2.7	6.2	1.4	0.5	8.0	
Delay (s)	26.4	40.5		71.6	25.5		57.9	61.5	33.8	53.3	63.7	
Level of Service	C	D		E	C		E	E	C	D	E	
Approach Delay (s)		39.9			36.1			43.9			59.0	
Approach LOS		D			D			D			E	
Intersection Summary												
HCM 2000 Control Delay			39.8	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.91				التاتا					
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utiliz	ation		90.5%	IC	U Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	`	1	-		•	†	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	487	991	408	93	1339	486	375	514	418	699	701
v/c Ratio	1.29	0.60	0.43	0.39	1.13	0.64	1.40	0.88	1.56	1.19	0.99
Control Delay	183.1	27.7	3.3	22.7	95.2	12.8	224.1	38.2	305.7	149.8	62.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	183.1	27.7	3.3	22.7	95.2	12.8	224.1	38.2	305.7	149.8	62.4
Queue Length 50th (ft)	~474	319	.0	37	~681	86	~354	195	~497	~374	499
Queue Length 95th (ft)	#693	389	56	m41	#814	336	#547	#302	#703	#500	#772
Internal Link Dist (ft)		673			937			607		627	
Turn Bay Length (ft)	300		350	160		350	150		300	17.07	325
Base Capacity (vph)	377	1646	954	241	1184	764	268	583	268	585	710
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.29	0.60	0.43	0.39	1.13	0.64	1.40	0.88	1.56	1.19	0.99

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

3: S Campbell Station Rd/N Campbell Station Rd & Kingston Pike

	١	-	•	1	4	•	1	1	1	,	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	ተተ	7	7	1		7	个个	7"
Traffic Volume (vph)	448	912	375	86	1232	447	345	404	69	385	643	645
Future Volume (vph)	448	912	375	86	1232	447	345	404	69	385	643	645
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	3462		1770	3539	1583
Fit Permitted	0.11	1.00	1.00	0.29	1.00	1.00	0.67	1.00		0.67	1.00	1.00
Satd. Flow (perm)	201	3539	1583	539	3539	1583	1242	3462		1242	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	487	991	408	93	1339	486	375	439	75	418	699	701
RTOR Reduction (vph)	0	0	218	0	0	46	0	11	0	0	0	90
Lane Group Flow (vph)	487	991	190	93	1339	440	375	503	0	418	699	611
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	.,,	1	6	7	3	8		7	4	5
Permitted Phases	2		2	6		6	8			4		4
Actuated Green, G (s)	60.5	60.5	60.5	43.5	43.5	59.0	21.5	21.5		21.5	21.5	45.0
Effective Green, g (s)	60.5	60.5	60.5	43.5	43.5	59.0	21.5	21.5		21.5	21.5	45.0
Actuated g/C Ratio	0.47	0.47	0.47	0.33	0.33	0.45	0.17	0.17		0.17	0.17	0.35
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	377	1646	736	241	1184	718	268	572		268	585	627
v/s Ratio Prot	c0.23	0.28		0.02	c0.38	0.07	c0.17	0.15		c0.19	0.20	0.18
v/s Ratio Perm	c0.37		0.12	0.11		0.20	0.06			c0.07		0.21
v/c Ratio	1.29	0.60	0.26	0.39	1.13	0.61	1.40	0.88		1.56	1.19	0.97
Uniform Delay, d1	40.6	25.8	21.1	34.8	43.2	26.9	53.7	53.0		53.0	54.2	41.9
Progression Factor	1.00	1.00	1.00	0.53	0.64	0.82	0.42	0.39		1.00	1.00	1.00
Incremental Delay, d2	149.8	1.6	0.8	0.7	67.1	1.1	200.2	17.0		269.4	103.7	29.3
Delay (s)	190.4	27.4	22.0	19.1	94.9	23.1	222.6	37.5		322.3	157.9	71.2
Level of Service	F	C	C	В	F	C	F	D		F	F	E
Approach Delay (s)		68.3			73.1			115.6			162.3	
Approach LOS		Е			E			F			F	
Intersection Summary												- 3
HCM 2000 Control Delay			102.4	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.36									
Actuated Cycle Length (s)	وينين		130.0	S	um of los	st time (s)			26.0			
Intersection Capacity Utiliz	ation		117.4%	IC	CU Level	of Service	9		Н			
Analysis Period (min)			15									

c Critical Lane Group

	>	×	4	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	230	1114	50	704
v/c Ratio	0.76	0.43	0.16	0.27
Control Delay	63.7	4.5	7.8	6.9
Queue Delay	0.0	0.1	0.0	0.0
Total Delay	63.7	4.6	7.8	6.9
Queue Length 50th (ft)	175	58	11	86
Queue Length 95th (ft)	249	m82	24	104
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	544	2607	319	2575
Starvation Cap Reductn	0	534	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.42	0.54	0.16	0.27
Intersection Summary	5			

m Volume for 95th percentile queue is metered by upstream signal.

	3	_	×	4	1	X		
Movement	EBL	EBR	SET	SER	NWL	NWT		
Lane Configurations	M		1		7	^		
Traffic Volume (vph)	150	62	922	103	46	648		
Future Volume (vph)	150	62	922	103	46	648		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	Phage and	6.5	3.50.00	6.5	6.5		
Lane Util. Factor	1.00		0.95		1.00	0.95		
Frt	0.96		0.98		1.00	1.00		
Flt Protected	0.97		1.00		0.95	1.00		
Satd. Flow (prot)	1753		3541		1805	3505		
Fit Permitted	0.97		1.00		0.23	1.00		
Satd. Flow (perm)	1753		3541		434	3505		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	163	67	1002	112	50	704		
RTOR Reduction (vph)	13	0	4	0	0	0		
Lane Group Flow (vph)	217	0	1110	0	50	704		
Heavy Vehicles (%)	0%	2%	0%	4%	0%	3%		
Turn Type	Prot		NA		Perm	NA		
Protected Phases	4		6		27 1448/1250	2		
Permitted Phases					2			
Actuated Green, G (s)	21.5		95.5	1	95.5	95.5		
Effective Green, g (s)	21.5		95.5		95.5	95.5		
Actuated g/C Ratio	0.17		0.73		0.73	0.73		
Clearance Time (s)	6.5		6.5		6.5	6.5		
Vehicle Extension (s)	3.0		3,0		3.0	3.0		
Lane Grp Cap (vph)	289		2601		318	2574		
v/s Ratio Prot	c0.12		c0.31			0.20		
v/s Ratio Perm	-0.4120720-0				0.12			
v/c Ratio	0.75		0.43	-	0.16	0.27		
Uniform Delay, d1	51.7		6.7		5.2	5.7		
Progression Factor	1.00		0.59		1.00	1.05		
Incremental Delay, d2	10.2		0.2		1.0	0.3		
Delay (s)	61.9		4.2		6.2	6.3		
Level of Service	E		Α		Α	Α		
Approach Delay (s)	61.9		4.2			6.3		
Approach LOS	Е		Α			Α		
Intersection Summary								
HCM 2000 Control Delay			11.3	H	CM 2000	Level of Servi	е	В
HCM 2000 Volume to Capa	acity ratio		0.49					
Actuated Cycle Length (s)			130.0		um of lost			13.0
Intersection Capacity Utiliza	ation		61.2%	IC	U Level	of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

	٠	-	-	*	-	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	58	1018	687	127	223	61
v/c Ratio	0.14	0.48	0.38	0.09	0.39	0.11
Control Delay	10.3	10.8	13.5	0.1	36.8	8.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10.3	10.8	13.5	0.1	36.8	8.0
Queue Length 50th (ft)	14	140	81	0	146	0
Queue Length 95th (ft)	29	167	101	0	220	33
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	450	2130	1820	1444	576	557
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.48	0.38	0.09	0.39	0.11
Intersection Summary			FILE			

	•	-	•	4	-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ን	44	^	7	ሻ	7		
Traffic Volume (vph)	53	937	632	117	205	56		
Future Volume (vph)	53	937	632	117	205	56		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	3574	3574	1615	1805	1615		
Flt Permitted	0.30	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	572	3574	3574	1615	1805	1615		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	58	1018	687	127	223	61		
RTOR Reduction (vph)	0	0	0	23	0	42		
Lane Group Flow (vph)	58	1018	687	104	223	19		
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%		
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm		
Protected Phases	1	6	2	8	8	anzamite.		
Permitted Phases	6		-	2		8		
Actuated Green, G (s)	77.5	77.5	64.9	106.4	41.5	41.5		
ffective Green, g (s)	77.5	77.5	64.9	106.4	41.5	41.5		
Actuated g/C Ratio	0.60	0.60	0.50	0.82	0.32	0.32		
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	398	2130	1784	1321	576	515		
v/s Ratio Prot	0.01	c0.28	0.19	0.03	c0.12			
//s Ratio Perm	0.08	WW. CAS	and the second	0.04		0.01		
v/c Ratio	0.15	0.48	0.39	0.08	0.39	0.04		
Uniform Delay, d1	12.1	14.8	20.2	2.3	34.4	30.5		
Progression Factor	0.87	0.68	0.64	0.02	1.00	1.00		
ncremental Delay, d2	0.2	0.7	0.6	0.1	2.0	0.1		
Delay (s)	10.6	10.7	13.4	0.2	36.3	30.6		
Level of Service	В	В	В	Α	D	С		
Approach Delay (s)		10.7	11.4		35.1			
Approach LOS		В	В		D			
ntersection Summary								
HCM 2000 Control Delay			14.2	H	CM 2000	Level of Servi	ce	В
HCM 2000 Volume to Cap	acity ratio		0.47					72.
Actuated Cycle Length (s)			130.0		um of lost			17.5
Intersection Capacity Utiliz	ation		47.2%	10	U Level	of Service		Α
Analysis Period (min)			15					
Critical Lane Group								

	•	_	*	•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	75	1215	802	482	690	45
v/c Ratio	0.21	0.61	0.48	0.34	0.58	0.08
Control Delay	6.3	7.5	25.3	0.8	37.5	8.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.3	7.5	25.3	0.8	37.5	8.5
Queue Length 50th (ft)	14	125	247	0	245	0
Queue Length 95th (ft)	22	147	306	14	308	27
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	360	1993	1685	1418	1186	566
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.61	0.48	0.34	0.58	0.08
Intersection Summary						

	٠	-	•	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	44	^	7	44	7	
Traffic Volume (vph)	69	1118	738	443	635	41	
Future Volume (vph)	69	1118	738	443	635	41	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3574	3574	1553	3467	1568	
Flt Permitted	0.27	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	514	3574	3574	1553	3467	1568	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	75	1215	802	482	690	45	
RTOR Reduction (vph)	0	0	0	95	0	30	
Lane Group Flow (vph)	75	1215	802	387	690	15	
Heavy Vehicles (%)	0%	1%	1%	4%	1%	3%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	1 91111	
Permitted Phases	6			2		8	
Actuated Green, G (s)	72.5	72.5	60.0	104.5	44.5	44.5	
Effective Green, g (s)	72.5	72.5	60.0	104.5	44.5	44.5	
Actuated g/C Ratio	0.56	0.56	0.46	0.80	0.34	0.34	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	346	1993	1649	1326	1186	536	
v/s Ratio Prot	0.01	c0.34	0.22	0.10	c0.20	536	
v/s Ratio Perm	0.11	60.34	0.22	0.15	60.20	0.01	
v/c Ratio	0.11	0.61	0.49	0.19	0.58	0.03	
Uniform Delay, d1	22.8	19.3	24.3	3.3	35.1	28.4	
Progression Factor	0.32	0.32	1.00	1.00	1.00	1.00	
	0.32	1.3	1.00	0.6	2.1	0.1	
Incremental Delay, d2	7.7		25.3	3.8	37.2		
Delay (s)		7.4	The state of the s		- Annual Control	28.5	
Level of Service	Α	7.4	C	A	36.7	С	
Approach Delay (s)			17.3				
Approach LOS		Α	В		D		
Intersection Summary							
HCM 2000 Control Delay			17.7	Н	CM 2000	Level of Servi	C
HCM 2000 Volume to Capa	city ratio		0.63				
Actuated Cycle Length (s)			130.0		um of los		
Intersection Capacity Utiliza	tion		59.9%	10	CU Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	•	*	1	1	1	1	1	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	2	32	91	84	18	535	12	624	3	
v/c Ratio	0.01	0.16	0.61	0.35	0.03	0.19	0.02	0.40	0.00	
Control Delay	49.0	17.7	72.4	14.2	2.8	2.7	1.5	2.2	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	
otal Delay	49.0	17.7	72.4	14.2	2.8	2.7	1.5	2.6	0.0	
Queue Length 50th (ft)	2	0	75	0	2	36	- 1	43	0	
Queue Length 95th (ft)	10	31	128	48	8	64	m1	m60	m0	
iternal Link Dist (ft)	382		246			410		568		
urn Bay Length (ft)		125		100	100		100		200	
ase Capacity (vph)	379	379	312	416	625	2867	711	1554	1615	
Starvation Cap Reductn	0	0	0	0	0	0	0	452	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	0	
leduced v/c Ratio	0.01	0.08	0.29	0.20	0.03	0.19	0.02	0.57	0.00	

m Volume for 95th percentile queue is metered by upstream signal.

	٨	4	•	1	*	•	4	1	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	7	1		7	1	74
Traffic Volume (vph)	1	1	29	74	10	77	17	457	35	11	574	3
Future Volume (vph)	1	1	29	74	10	77	17	457	35	11	574	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected		0.98	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1854	1615		1820	1599	1805	3468		1805	1881	1615
Flt Permitted		0.91	1.00		0.75	1.00	0.40	1.00		0.45	1.00	1.00
Satd. Flow (perm)		1731	1615		1426	1599	757	3468		861	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	1	32	80	11	84	18	497	38	12	624	3
RTOR Reduction (vph)	0	0	29	0	0	75	0	3	0	0	0	0
Lane Group Flow (vph)	0	2	3	0	91	9	18	532	0	12	624	3
Heavy Vehicles (%)	0%	0%	0%	0%	0%	1%	0%	3%	3%	0%	1%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4	10 200.0000		8!			2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		13.5	13.5		13.5	13.5	107.5	107.5		107.5	107.5	121.0
Effective Green, g (s)		13.5	13.5		13.5	13.5	107.5	107.5		107.5	107.5	121.0
Actuated g/C Ratio		0.10	0.10		0.10	0.10	0.83	0.83		0.83	0.83	0.93
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		179	167		148	166	625	2867		711	1555	1615
v/s Ratio Prot								0.15			c0.33	0.00
v/s Ratio Perm		0.00	0.00		c0.06	0.01	0.02			0.01	V-411-0-401	0.00
v/c Ratio		0.01	0.02		0.61	0.05	0.03	0.19		0.02	0.40	0.00
Uniform Delay, d1		52.3	52.3		55.8	52.5	2.0	2.3		2.0	2.9	0.3
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		0.51	0.55	1.00
Incremental Delay, d2		0.0	0.0		7.4	0.1	0.1	0.1		0.0	0.3	0.0
Delay (s)		52.3	52.4		63.1	52.6	2.1	2.4		1.0	1.9	0.3
Level of Service		D	D		Е	D	Α	Α		Α	Α	Α
Approach Delay (s)		52.4			58.1			2.4			1.9	
Approach LOS		D			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			10.4	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.42									
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilizati	ion		50.3%	IC	U Level	of Service	•		A			
Analysis Period (min)			15									
! Phase conflict between la	ne groups.											

c Critical Lane Group

	٠	-	1	+	†	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	39	1366	35	1925	45	83
v/c Ratio	0.31	0.55	0.13	0.81	0.19	0.31
Control Delay	27.7	2.2	3.6	5.7	31.0	22.4
Queue Delay	0.0	0.0	0.0	0.5	0.0	0.0
Total Delay	27.7	2.2	3.6	6.2	31.0	22.5
Queue Length 50th (ft)	2	31	4	131	16	19
Queue Length 95th (ft)	m27	45	m6	144	54	69
Internal Link Dist (ft)		449		746	93	431
Turn Bay Length (ft)	150		125			
Base Capacity (vph)	130	2499	278	2390	236	266
Starvation Cap Reductn	0	0	0	35	0	0
Spillback Cap Reductn	0	0	0	147	0	2
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.55	0.13	0.86	0.19	0.31
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	-	4	4	1	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1		7	†			4			4	
Traffic Volume (vph)	36	1245	12	32	1740	31	18	2	21	17	6	53
Future Volume (vph)	36	1245	12	32	1740	31	18	2	21	17	6	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	1.00			0.93			0.91	
Fit Protected	0.95	1.00		0.95	1.00			0.98			0.99	
Satd. Flow (prot)	1570	3533		1805	3523			1730			1626	
Flt Permitted	0.05	1.00		0.18	1.00			0.86			0.93	
Satd. Flow (perm)	78	3533		337	3523			1525			1524	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	39	1353	13	35	1891	34	20	2	23	18	7	58
RTOR Reduction (vph)	0	- 1	0	0	- 1	0	0	20	0	0	50	0
Lane Group Flow (vph)	39	1365	0	35	1924	0	0	25	0	0	33	0
Heavy Vehicles (%)	15%	2%	6%	0%	2%	14%	0%	0%	0%	12%	0%	3%
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	89.3	89.3		86.9	86.9			18.5			18.5	
Effective Green, g (s)	89.3	89.3		86.9	86.9			18.5			18.5	
Actuated g/C Ratio	0.69	0.69		0.67	0.67			0.14			0.14	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	112	2426		255	2354			217			216	
v/s Ratio Prot	0.01	c0.39		0.00	c0.55							
v/s Ratio Perm	0.22			0.09				0.02			c0.02	
v/c Ratio	0.35	0.56		0.14	0.82			0.12			0.15	
Uniform Delay, d1	20.8	10.4		11.5	15.7			48.6			48.9	
Progression Factor	3.02	0.15		0.32	0.23			1.00			1.00	
Incremental Delay, d2	1.6	0.8		0.2	2.3			1.1			0.3	
Delay (s)	64.4	2.3		3.9	5.9			49.7			49.2	
Level of Service	E	Α		Α	Α			D			D	
Approach Delay (s)		4.1			5.8			49.7			49.2	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			6.7	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.71				بظنات					
Actuated Cycle Length (s)			130.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		64.8%	10	CU Level	of Service			C			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	1	•	4	1	-	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	3	1178	67	203	1750	98	98	187	11	
v/c Ratio	0.02	0.58	0.07	0.69	0.72	0.59	0.59	0.42	0.12	
Control Delay	3.3	8.1	0.1	23.4	9.7	69.5	69.5	6.4	49.3	
Queue Delay	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	
Total Delay	3.3	8.1	0.1	23.4	10.0	69.5	69.5	6.4	49.3	
Queue Length 50th (ft)	0	76	0	33	75	84	84	0	6	
Queue Length 95th (ft)	m1	m239	m1	m90	#938	143	143	42	26	
Internal Link Dist (ft)		937			449		417		100	
Turn Bay Length (ft)	125		100	125		200		200		
Base Capacity (vph)	130	2016	1030	296	2415	244	244	445	255	
Starvation Cap Reductn	0	0	0	0	178	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.58	0.07	0.69	0.78	0.40	0.40	0.42	0.04	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	4-	*	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	个个	7	ሻ	†		*	ર્લ	7		4	
Traffic Volume (vph)	3	1084	62	187	1607	3	180	0	172	4	3	4
Future Volume (vph)	3	1084	62	187	1607	3	180	0	172	4	3	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		0.95	0.95	1.00		1.00	
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85		0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	0.95	1.00		0.98	
Satd. Flow (prot)	1805	3539	1615	1787	3573		1715	1715	1615		1774	
Flt Permitted	0.06	1.00	1.00	0.14	1.00		0.95	0.95	1.00		0.98	
Satd. Flow (perm)	119	3539	1615	269	3573		1715	1715	1615		1774	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	1178	67	203	1747	3	196	0	187	4	3	4
RTOR Reduction (vph)	0	0	32	0	0	0	0	0	148	0	4	0
Lane Group Flow (vph)	3	1178	35	203	1750	0	98	98	39	0	7	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov	Split	NA	
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6					8			
Actuated Green, G (s)	64.6	63.7	67.3	84.9	77.5		12.7	12.7	27.4		2.8	
Effective Green, g (s)	64.6	63.7	67.3	84.9	77.5		12.7	12.7	27.4		2.8	
Actuated g/C Ratio	0.50	0.49	0.52	0.65	0.60		0.10	0.10	0.21		0.02	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	
Lane Grp Cap (vph)	70	1734	836	347	2130		167	167	340		38	
v/s Ratio Prot	0.00	0.33	c0.00	c0.07	c0.49		c0.06	0.06	0.01		c0.00	
v/s Ratio Perm	0.02		0.02	0.32					0.01			
v/c Ratio	0.04	0.68	0.04	0.59	0.82		0.59	0.59	0.12		0.19	
Uniform Delay, d1	50.2	25.3	15.5	33.0	20.8		56.1	56.1	41.5		62.5	
Progression Factor	0.25	0.36	1.00	0.53	0.43		1.00	1.00	1.00		1.00	
Incremental Delay, d2	0.1	1.0	0.0	1.5	2.3		5.2	5.2	0.2		2.4	
Delay (s)	12.4	10.2	15.5	19.1	11.1		61.3	61.3	41.7		64.9	
Level of Service	В	В	В	В	В		Ε	Е	D		Е	
Approach Delay (s)		10.4			12.0			51.7			64.9	
Approach LOS		В			В			D			Е	
Intersection Summary												
HCM 2000 Control Delay			15.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.76						اثبيت			
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			32.5			
Intersection Capacity Utiliza	tion		76.1%	10	U Level	of Service			D			
Analysis Period (min)			15									

	•	-	1	•	1	1	-	1	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	50	1218	502	1671	153	78	348	126	152	
v/c Ratio	0.37	1.00	0.96	0.81	0.62	0.50	0.36	0.31	0.69	
Control Delay	22.7	44.5	66.4	25.3	65.5	62.1	13.2	54.3	56.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.7	44.5	66.4	25.3	65.5	62.1	13.2	54.3	56.4	
Queue Length 50th (ft)	12	343	~377	574	61	53	35	48	91	
Queue Length 95th (ft)	m23	#655	#595	689	#130	93	48	84	159	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	135	1220	524	2067	247	270	969	412	288	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	1.00	0.96	0.81	0.62	0.29	0.36	0.31	0.53	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	•	4	*	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Y	1		ሻ	†		77	↑	77	77	B	
Traffic Volume (vph)	46	1073	48	462	1446	91	141	72	320	116	68	72
Future Volume (vph)	46	1073	48	462	1446	91	141	72	320	116	68	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	0.88	0.97	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	0.92	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3499		1770	3508		3335	1827	2707	3502	1745	
Flt Permitted	0.09	1.00		0.08	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	180	3499		153	3508		3335	1827	2707	3502	1745	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	50	1166	52	502	1572	99	153	78	348	126	74	78
RTOR Reduction (vph)	0	3	0	0	3	0	0	0	58	0	32	0
Lane Group Flow (vph)	50	1215	0	502	1668	0	153	78	290	126	120	0
Heavy Vehicles (%)	0%	2%	14%	2%	2%	2%	5%	4%	5%	0%	1%	0%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6					8			
Actuated Green, G (s)	46.1	42.2		81.4	71.0		10.6	9.4	42.1	14.7	13.5	
Effective Green, g (s)	46.1	42.2		81.4	71.0		10.6	9.4	42.1	14.7	13.5	
Actuated g/C Ratio	0.37	0.34		0.65	0.57		0.08	0.08	0.34	0.12	0.11	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	117	1181		522	1992		282	137	911	411	188	
v/s Ratio Prot	0.01	c0.35		c0.25	0.48		c0.05	0.04	0.08	c0.04	c0.07	
v/s Ratio Perm	0.14			0.37					0.02			
v/c Ratio	0.43	1.03		0.96	0.84		0.54	0.57	0.32	0.31	0.64	
Uniform Delay, d1	26.9	41.4		38.2	22.2		54.9	55.8	30.8	50.5	53.4	
Progression Factor	1.04	0.48		1.00	1.00		0.96	0.95	0.86	1.00	1.00	
Incremental Delay, d2	2.1	31.8		29.7	4.4		2.1	5.3	0.2	0.4	6.9	
Delay (s)	30.1	51.6		67.9	26.6		54.7	58.5	26.8	50.9	60.3	
Level of Service	C	D		E	C		D	E	C	D	Е	
Approach Delay (s)		50.8			36.2			38.4			56.1	
Approach LOS		D			D			D			E	
Intersection Summary												
HCM 2000 Control Delay			42.1	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.91						اليبيت			
Actuated Cycle Length (s)			125.0		um of lost				26.0			
Intersection Capacity Utiliza	ation		90.5%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	`	1	•	*	•	†	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	487	991	408	93	1339	486	375	514	418	699	701
v/c Ratio	0.78	0.59	0.43	0.35	1.00	0.59	1.07	0.85	0.85	1.01	0.98
Control Delay	38.8	25.6	4.0	17.4	44.6	7.5	90.7	32.7	68.4	86.2	60.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.8	25.6	4.0	17.4	44.6	7.5	90.7	32.7	68.4	86.2	60.0
Queue Length 50th (ft)	143	299	11	30	499	38	~127	181	160	~303	472
Queue Length 95th (ft)	205	367	66	m24	#711	185	#209	#279	#240	#435	#744
Internal Link Dist (ft)		673			937			607		627	
Turn Bay Length (ft)	300		350	160		350	150		300	1463	325
Base Capacity (vph)	624	1684	954	268	1344	823	349	606	489	693	713
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.59	0.43	0.35	1.00	0.59	1.07	0.85	0.85	1.01	0.98

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

3: S Campbell Station Rd/N Campbell Station Rd & Kingston Pike

	٠	-	•	1	-	•	1	1	1		1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	个个	7	ሻ	个个	7	77	个分		44	个个	74
Traffic Volume (vph)	448	912	375	86	1232	447	345	404	69	385	643	645
Future Volume (vph)	448	912	375	86	1232	447	345	404	69	385	643	645
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	3539	1583	1770	3539	1583	3433	3462		3433	3539	1583
Flt Permitted	0.10	1.00	1,00	0.29	1.00	1.00	0.31	1.00		0.46	1.00	1.00
Satd. Flow (perm)	353	3539	1583	539	3539	1583	1112	3462		1671	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	487	991	408	93	1339	486	375	439	75	418	699	701
RTOR Reduction (vph)	0	0	201	0	0	76	0	11	0	0	0	94
Lane Group Flow (vph)	487	991	207	93	1339	410	375	503	0	418	699	607
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	W 2007	1	6	7	3	8		7	4	5
Permitted Phases	2		2	6		6	8			4		4
Actuated Green, G (s)	59.5	59.5	59.5	47.5	47.5	59.0	21.5	21.5		24.5	24.5	43.0
Effective Green, g (s)	59.5	59.5	59.5	47.5	47.5	59.0	21.5	21.5		24.5	24.5	43.0
Actuated g/C Ratio	0.48	0.48	0.48	0.38	0.38	0.47	0.17	0.17		0.20	0.20	0.34
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	623	1684	753	268	1344	747	349	595		489	693	626
v/s Ratio Prot	0.12	0.28		0.02	c0.38	0.05	0.07	c0.15		0.08	c0.20	c0.14
v/s Ratio Perm	0.26		0.13	0.11		0.21	0.11			0.09		0.24
v/c Ratio	0.78	0.59	0.28	0.35	1.00	0.55	1.07	0.85		0.85	1.01	0.97
Uniform Delay, d1	33.2	23.8	19.7	29.0	38.7	23.5	50.3	50.1		47.8	50.2	40.3
Progression Factor	1.00	1.00	1.00	0.48	0.60	0.55	0.37	0.37		1.00	1.00	1.00
Incremental Delay, d2	6.3	1.5	0.9	0.6	20.0	0.6	68.7	13.5		13.6	36.3	28.0
Delay (s)	39.6	25.4	20.7	14.5	43.3	13.5	87.1	32.1		61.4	86.6	68.3
Level of Service	D	C	C	В	D	В	F	C		E	F	E
Approach Delay (s)		28.0			34.3			55.3			73.8	
Approach LOS		С			C			E			Ε	
Intersection Summary												
HCM 2000 Control Delay			46.4	H	CM 2000	Level of	Service		D	1		
HCM 2000 Volume to Capa	acity ratio		1.07									
Actuated Cycle Length (s)	التنات		125.0	S	um of los	st time (s)			26.0			
Intersection Capacity Utiliz	ation		100.1%	10	CU Level	of Service	е		G			
Analysis Period (min)			15									
A PARENTI AND PROPERTY												

c Critical Lane Group

	>	×	4	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	230	1114	50	704
v/c Ratio	0.76	0.43	0.16	0.28
Control Delay	61.2	3.8	7.6	6.5
Queue Delay	0.0	0.1	0.0	0.0
Total Delay	61.2	3.9	7.6	6.5
Queue Length 50th (ft)	167	66	10	79
Queue Length 95th (ft)	240	m98	22	97
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	524	2591	316	2560
Starvation Cap Reductn	0	382	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.44	0.50	0.16	0.28
Intersection Summary				

m Volume for 95th percentile queue is metered by upstream signal.

	>	\neg	×	4	1	X		
Movement	EBL	EBR	SET	SER	NWL	NWT		
Lane Configurations	W	100000000000000000000000000000000000000	47		7	^		
Traffic Volume (vph)	150	62	922	103	46	648		
Future Volume (vph)	150	62	922	103	46	648		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	11.555	6.5	1080/	6.5	6.5		
Lane Util. Factor	1.00		0.95		1.00	0.95		
Frt	0.96		0.98		1.00	1.00		
Fit Protected	0.97		1.00		0.95	1.00		
Satd. Flow (prot)	1753		3541		1805	3505		
Flt Permitted	0.97		1.00		0.23	1.00		
Satd. Flow (perm)	1753		3541		434	3505		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	163	67	1002	112	50	704		
RTOR Reduction (vph)	14	0	5	0	0	0		
Lane Group Flow (vph)	216	0	1109	0	50	704		
Heavy Vehicles (%)	0%	2%	0%	4%	0%	3%		
		270		470				
Turn Type Protected Phases	Prot 4		NA 6		Perm	NA 2		
AND THE RESIDENCE OF THE PARTY	4		0		2	2		
Permitted Phases	20.7		04.2			04.2		
Actuated Green, G (s)	20.7		91.3	1	91.3	91.3		
Effective Green, g (s)	20.7		91.3		91.3	91.3		
Actuated g/C Ratio	0.17		0.73		0.73	0.73		
Clearance Time (s)	6.5		6.5		6.5	6.5		
Vehicle Extension (s)	3.0	_	3,0		3.0	3.0		
Lane Grp Cap (vph)	290		2586		316	2560		
v/s Ratio Prot	c0.12		c0.31			0.20		
v/s Ratio Perm			100154		0.12	8 16		
v/c Ratio	0.74		0.43		0.16	0.28		
Uniform Delay, d1	49.6		6.6		5.1	5.7		
Progression Factor	1.00		0.49		0.97	1.00		
Incremental Delay, d2	9.9		0.3		1.0	0.3		
Delay (s)	59.5		3.6		6.0	6.0		
Level of Service	E		Α		Α	Α		
Approach Delay (s)	59.5		3.6			6.0		
Approach LOS	Е		Α			Α		
Intersection Summary								
HCM 2000 Control Delay			10.6	H	CM 2000	Level of Servic	е В	
HCM 2000 Volume to Capa	city ratio		0.49					
Actuated Cycle Length (s)			125.0		um of lost		13.0	
Intersection Capacity Utiliza	tion		61.2%	IC	U Level o	of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

	٠	-	*	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	58	1018	687	127	223	61
v/c Ratio	0.14	0.48	0.38	0.09	0.39	0.11
Control Delay	9.4	10.7	12.6	0.1	35.9	7.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.4	10.7	12.6	0.1	35.9	7.9
Queue Length 50th (ft)	13	130	74	0	141	0
Queue Length 95th (ft)	27	155	93	1	215	32
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	453	2130	1809	1438	570	552
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.48	0.38	0.09	0.39	0.11
Intersection Summary			FH			

	•	-	•	4	\	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ን	ተተ	^	7	ሻ	7		
Traffic Volume (vph)	53	937	632	117	205	56		
Future Volume (vph)	53	937	632	117	205	56		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	3574	3574	1615	1805	1615		
Flt Permitted	0.30	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	570	3574	3574	1615	1805	1615		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	58	1018	687	127	223	61		
RTOR Reduction (vph)	0	0	0	24	0	42		
Lane Group Flow (vph)	58	1018	687	103	223	19		
Heavy Vehicles (%)	0%	1%	1%	0%	0%	.0%		
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm		
Protected Phases	1	6	2	8	8			
Permitted Phases	6			2		8		
Actuated Green, G (s)	74.5	74.5	62.0	101.5	39.5	39.5		
Effective Green, g (s)	74.5	74.5	62.0	101.5	39.5	39.5		
Actuated g/C Ratio	0.60	0.60	0.50	0.81	0.32	0.32		
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	399	2130	1772	1311	570	510		
v/s Ratio Prot	0.01	c0.28	0.19	0.02	c0.12			
v/s Ratio Perm	0.08			0.04		0.01		
v/c Ratio	0.15	0.48	0.39	0.08	0.39	0.04		
Uniform Delay, d1	11.6	14.3	19.7	2.4	33.4	29.6		
Progression Factor	0.81	0.69	0.61	0.02	1.00	1.00		
Incremental Delay, d2	0.2	0.7	0.6	0.1	2.0	0.1		
Delay (s)	9.6	10.6	12.6	0.1	35.4	29.7		
Level of Service	Α	В	В	Α	D	C		
Approach Delay (s)		10.5	10.7		34.2			
Approach LOS		В	В		С			
ntersection Summary								
HCM 2000 Control Delay			13.7	H	CM 2000	Level of Servi	ce	В
HCM 2000 Volume to Cap	acity ratio		0.47		الالتالية			
Actuated Cycle Length (s)			125.0		um of lost			17.5
Intersection Capacity Utiliz	ation		47.2%	10	CU Level	of Service		Α
Analysis Period (min)			15					
c Critical Lane Group								

	•	-	*	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	75	1215	802	482	690	45
v/c Ratio	0.21	0.62	0.49	0.34	0.57	0.08
Control Delay	6.9	7.7	25.6	0.8	35.5	8.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.9	7.7	25.6	0.8	35.5	8.1
Queue Length 50th (ft)	13	130	243	0	232	0
Queue Length 95th (ft)	22	159	304	14	294	27
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	355	1958	1638	1412	1206	575
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.62	0.49	0.34	0.57	0.08
Intersection Summary						

	•	-	•	•	\	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ን	44	^	7	44	7		
Traffic Volume (vph)	69	1118	738	443	635	41		
Future Volume (vph)	69	1118	738	443	635	41		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5		
Lane Util, Factor	1.00	0.95	0.95	1.00	0.97	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	3574	3574	1553	3467	1568		
FIt Permitted	0.27	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	507	3574	3574	1553	3467	1568		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	75	1215	802	482	690	45		
RTOR Reduction (vph)	0	0	0	98	0	29		
Lane Group Flow (vph)	75	1215	802	384	690	16		
Heavy Vehicles (%)	0%	1%	1%	4%	1%	3%		
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm		
Protected Phases	1	6	2	8	8	1.0111		
Permitted Phases	6		•	2		8		
Actuated Green, G (s)	68.5	68.5	56.0	99.5	43.5	43.5		
Effective Green, g (s)	68.5	68.5	56.0	99.5	43.5	43.5		
Actuated g/C Ratio	0.55	0.55	0.45	0.80	0.35	0.35		
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	340	1958	1601	1316	1206	545		
v/s Ratio Prot	0.01	c0.34	0.22	0.10	c0.20	545		
v/s Ratio Perm	0.11	00.0	U.EL	0.15	COLEG	0.01		
v/c Ratio	0.22	0.62	0.50	0.29	0.57	0.03		
Uniform Delay, d1	22.8	19.3	24.6	3.4	33.2	26.8		
Progression Factor	0.35	0.32	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.3	1.4	1.1	0.6	2.0	0.1		
Delay (s)	8.4	7.6	25.7	3.9	35.1	26.9		
Level of Service	Α.4	A	C	A	D D	C		
Approach Delay (s)		7.6	17.5		34.6			
Approach LOS		Α	В		С			
Intersection Summary								
HCM 2000 Control Delay			17.5	Н	CM 2000	Level of Servic	е В	
HCM 2000 Volume to Capa	city ratio		0.64		جريد	فالنويية		
Actuated Cycle Length (s)			125.0	S	um of lost	time (s)	19.5	
Intersection Capacity Utiliza	ation		59.9%			of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

	-	•	•	4	1	1	1	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	2	32	91	84	18	535	12	624	3
v/c Ratio	0.01	0.16	0.61	0.34	0.03	0.19	0.02	0.40	0.00
Control Delay	47.0	17.1	69.3	13.9	2.8	2.7	1.5	2.5	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0
Total Delay	47.0	17.1	69.3	13.9	2.8	2.7	1.5	2.9	0.0
Queue Length 50th (ft)	1	0	71	0	2	36	1	44	0
Queue Length 95th (ft)	9	30	124	47	8	64	m1	m63	m0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	380	380	313	417	621	2852	707	1546	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	444	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.08	0.29	0.20	0.03	0.19	0.02	0.57	0.00
Intersection Summary									

m Volume for 95th percentile queue is metered by upstream signal.

	٠	4	•	1	←	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4	7	7	1		7	↑	74
Traffic Volume (vph)	- 1	1	29	74	10	77	17	457	35	11	574	3
Future Volume (vph)	1	1	29	74	10	77	17	457	35	11	574	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Fit Protected		0.98	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1854	1615		1820	1599	1805	3468		1805	1881	1615
Flt Permitted		0.91	1.00		0.75	1.00	0.40	1.00		0.45	1.00	1.00
Satd. Flow (perm)		1729	1615		1426	1599	756	3468		861	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	1	32	80	11	84	18	497	38	12	624	3
RTOR Reduction (vph)	0	0	29	0	0	75	0	3	0	0	0	0
Lane Group Flow (vph)	0	2	3	0	91	9	18	532	0	12	624	3
Heavy Vehicles (%)	0%	0%	0%	0%	0%	1%	0%	3%	3%	0%	1%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4			8!			2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		13.2	13.2		13.2	13.2	102.8	102.8		102.8	102.8	116.0
Effective Green, g (s)		13.2	13.2		13.2	13.2	102.8	102.8		102.8	102.8	116.0
Actuated g/C Ratio		0.11	0.11		0.11	0.11	0.82	0.82		0.82	0.82	0.93
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		182	170		150	168	621	2852		708	1546	1615
v/s Ratio Prot								0.15			c0.33	0.00
v/s Ratio Perm		0.00	0.00		c0.06	0.01	0.02			0.01		0.00
v/c Ratio		0.01	0.02		0.61	0.05	0.03	0.19		0.02	0.40	0.00
Uniform Delay, d1		50.1	50.1		53.4	50.3	2.0	2.3		2.0	3.0	0.3
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		0.52	0.63	1.00
Incremental Delay, d2		0.0	0.0		6.8	0.1	0.1	0.1		0.0	0.3	0.0
Delay (s)		50.1	50.1		60.2	50.4	2.1	2.5		1.1	2.2	0.3
Level of Service		D	D		Е	D	Α	Α		Α	Α	Α
Approach Delay (s)		50.1			55.5			2.5			2.2	
Approach LOS		D			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			10.1	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.43									
Actuated Cycle Length (s)			125.0		um of lost				9.0			
Intersection Capacity Utilization	n		50.3%	IO	U Level	of Service			A			
Analysis Period (min)			15									
! Phase conflict between lan	e groups.											

c Critical Lane Group

	٠	_	1	+	1	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	39	1366	35	1925	45	83
v/c Ratio	0.32	0.56	0.13	0.81	0.19	0.30
Control Delay	23.8	2.4	3.5	5.9	29.6	21.6
Queue Delay	0.0	0.0	0.0	0.7	0.0	0.0
Total Delay	23.8	2.4	3.5	6.6	29.6	21.6
Queue Length 50th (ft)	2	31	4	126	16	18
Queue Length 95th (ft)	m25	44	m6	139	52	66
Internal Link Dist (ft)		449		746	93	431
Turn Bay Length (ft)	150		125			
Base Capacity (vph)	123	2457	275	2364	241	275
Starvation Cap Reductn	0	80	0	58	0	0
Spillback Cap Reductn	0	0	0	169	1	2
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.57	0.13	0.88	0.19	0.30
Intersection Summary					3	

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	4	4	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1		7	†			4			4	
Traffic Volume (vph)	36	1245	12	32	1740	31	18	2	21	17	6	53
Future Volume (vph)	36	1245	12	32	1740	31	18	2	21	17	6	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	1.00			0.93			0.91	
Fit Protected	0.95	1.00		0.95	1.00			0.98			0.99	
Satd. Flow (prot)	1570	3533		1805	3523			1730			1626	
Flt Permitted	0.05	1.00		0.17	1.00			0.85			0.93	
Satd. Flow (perm)	83	3533		332	3523			1496			1525	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	39	1353	13	35	1891	34	20	2	23	18	7	58
RTOR Reduction (vph)	0	- 1	0	0	1	0	0	20	0	0	49	0
Lane Group Flow (vph)	39	1365	0	35	1924	0	0	25	0	0	34	0
Heavy Vehicles (%)	15%	2%	6%	0%	2%	14%	0%	0%	0%	12%	0%	3%
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	84.3	84.3		82.6	82.6			18.5			18.5	
Effective Green, g (s)	84.3	84.3		82.6	82.6			18.5			18.5	
Actuated g/C Ratio	0.67	0.67		0.66	0.66			0.15			0.15	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	108	2382		251	2327			221			225	
v/s Ratio Prot	0.01	c0.39		0.00	c0.55							
v/s Ratio Perm	0.23			0.09				0.02			c0.02	
v/c Ratio	0.36	0.57		0.14	0.83			0.11			0.15	
Uniform Delay, d1	20.8	10.8		12.0	15.9			46.2			46.4	
Progression Factor	2.53	0.16		0.32	0.23			1.00			1.00	
Incremental Delay, d2	1.8	0.9		0.2	2.4			1.1			0.3	
Delay (s)	54.3	2.6		4.0	6.1			47.2			46.7	
Level of Service	D	Α		Α	Α			D			D	
Approach Delay (s)		4.0			6.0			47.2			46.7	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			6.7	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.72				بظنات					
Actuated Cycle Length (s)			125.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		64.8%	10	U Level	of Service			C			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	`	6	←	4	1	-	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	3	1178	67	203	1750	98	98	187	11	
v/c Ratio	0.02	0.57	0.06	0.70	0.71	0.58	0.58	0.42	0.12	
Control Delay	3.7	7.9	0.1	23.3	10.8	66.4	66.4	6.7	47.3	
Queue Delay	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
Total Delay	3.7	7.9	0.1	23.3	11.0	66.4	66.4	6.7	47.3	
Queue Length 50th (ft)	0	77	0	30	92	81	81	0	6	
Queue Length 95th (ft)	m1	271	m1	m#92	#935	137	137	41	25	
Internal Link Dist (ft)		937			449		417		100	
Turn Bay Length (ft)	125		100	125		200		200		
Base Capacity (vph)	137	2066	1055	292	2452	253	253	440	265	
Starvation Cap Reductn	0	0	0	0	167	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.57	0.06	0.70	0.77	0.39	0.39	0.42	0.04	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	_	•	1	-	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	†		7	ર્લ	7		4	
Traffic Volume (vph)	3	1084	62	187	1607	3	180	0	172	4	3	4
Future Volume (vph)	3	1084	62	187	1607	3	180	0	172	4	3	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		0.95	0.95	1.00		1.00	
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85		0.95	
Fit Protected	0.95	1.00	1.00	0.95	1.00		0.95	0.95	1.00		0.98	
Satd. Flow (prot)	1805	3539	1615	1787	3573		1715	1715	1615		1774	
Flt Permitted	0.07	1.00	1.00	0.14	1.00		0.95	0.95	1.00		0.98	
Satd. Flow (perm)	124	3539	1615	272	3573		1715	1715	1615		1774	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	1178	67	203	1747	3	196	0	187	4	3	4
RTOR Reduction (vph)	0	0	32	0	0	0	0	0	148	0	4	0
Lane Group Flow (vph)	3	1178	35	203	1750	0	98	98	39	0	7	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov	Split	NA	
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6				-	8			
Actuated Green, G (s)	62.2	61.3	64.9	81.5	74.1		12.4	12.4	26.1		1.5	
Effective Green, g (s)	62.2	61.3	64.9	81.5	74.1		12.4	12.4	26.1		1.5	
Actuated g/C Ratio	0.50	0.49	0.52	0.65	0.59		0.10	0.10	0.21		0.01	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	
Lane Grp Cap (vph)	73	1735	838	343	2118		170	170	337		21	
v/s Ratio Prot	0.00	0.33	c0.00	c0.06	c0.49		c0.06	0.06	0.01		c0.00	
v/s Ratio Perm	0.02		0.02	0.32				5-00-501	0.01			
v/c Ratio	0.04	0.68	0.04	0.59	0.83		0.58	0.58	0.12		0.34	
Uniform Delay, d1	48.4	24.3	14.8	31.8	20.3		53.8	53.8	40.1		61.3	
Progression Factor	0.31	0.38	1.00	0.55	0.55		1.00	1.00	1.00		1.00	
Incremental Delay, d2	0.2	1.6	0.0	1.6	2.3		4.7	4.7	0.2		9.2	
Delay (s)	15.2	10.8	14.8	19.1	13.4		58.5	58.5	40.2		70.5	
Level of Service	В	В	В	В	В		Е	Е	D		Ε	
Approach Delay (s)		11.0			14.0			49.6			70.5	
Approach LOS		В			В			D			E	
Intersection Summary												
HCM 2000 Control Delay			17.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.77									
Actuated Cycle Length (s)			125.0		um of lost				32.5			
Intersection Capacity Utiliza	ation		76.1%	10	CU Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	6	←	4	1	-	1	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	214	1368	176	926	240	311	662	385	304	
v/c Ratio	0.61	1.08	0.46	0.59	0.81	1.07	1.09	1.06	0.91	
Control Delay	19.7	69.7	29.3	28.5	82.9	125.0	87.9	123.4	78.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.7	69.7	29.3	28.5	82.9	125.0	87.9	123.4	78.1	
Queue Length 50th (ft)	35	~716	91	307	114	~313	~461	~198	229	
Queue Length 95th (ft)	m56	#857	167	395	#200	#507	#859	#304	#390	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	395	1271	381	1574	296	291	610	362	352	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	1.08	0.46	0.59	0.81	1.07	1.09	1.06	0.86	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	1	-	•	1	4-4	4	4	1	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1		7	↑ ĵ→		77	1	7	77	P	-
Traffic Volume (vph)	197	1188	71	162	642	210	221	286	609	354	105	175
Future Volume (vph)	197	1188	71	162	642	210	221	286	609	354	105	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	1.00	0.97	1.00	
Frt	1.00	0.99		1.00	0.96		1.00	1.00	0.85	1.00	0.91	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3513		1687	3342		3433	1900	1599	3502	1705	
Fit Permitted	0.27	1.00		0.07	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	508	3513		125	3342		3433	1900	1599	3502	1705	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	214	1291	77	176	698	228	240	311	662	385	114	190
RTOR Reduction (vph)	0	3	0	0	21	0	0	0	51	0	43	0
Lane Group Flow (vph)	214	1365	0	176	905	0	240	311	611	385	261	0
Heavy Vehicles (%)	0%	2%	0%	7%	5%	1%	2%	0%	1%	0%	1%	1%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6					8			
Actuated Green, G (s)	63.4	50.5		84.5	65.1		12.1	21.5	49.0	14.5	23.9	
Effective Green, g (s)	63.4	50.5		84.5	65.1		12.1	21.5	49.0	14.5	23.9	
Actuated g/C Ratio	0.45	0.36		0.60	0.46		0.09	0.15	0.35	0.10	0.17	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	349	1267		382	1554		296	291	559	362	291	
v/s Ratio Prot	0.06	c0.39		0.09	0.27		0.07	0.16	c0.21	c0.11	0.15	
v/s Ratio Perm	0.22	166.2546.		0.19	NAC-11			200.000	0.17	SALSSTAN	TO SECURE	
v/c Ratio	0.61	1.08	-	0.46	0.58		0.81	1.07	1.09	1.06	0.90	
Uniform Delay, d1	24.0	44.8		30.8	27.5		62.8	59.2	45.5	62.8	56.8	
Progression Factor	0.95	0.55		1.00	1.00		1.00	0.99	0.93	1.00	1.00	
Incremental Delay, d2	2.1	44.6		0.9	1.6		14.5	70.5	64.9	65.1	27.7	
Delay (s)	24.9	69.1		31.7	29.1		77.5	129.1	107.2	127.9	84.5	
Level of Service	С	Е		С	С		Ε	F	F	F	F	
Approach Delay (s)		63.1			29.5			106.9			108.8	
Approach LOS		E			С			F			F	
Intersection Summary												3
HCM 2000 Control Delay			73.5	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.08					-				
Actuated Cycle Length (s)	-		140.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utiliz	ation		99.2%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	٨	-	•	1	←	*	•	†	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	542	1565	178	48	689	257	336	520	352	286	439
v/c Ratio	1.00	0.92	0.22	0.39	0.90	0.35	0.84	1.00	1.02	0.53	0.53
Control Delay	77.0	44.2	5.3	59.7	62.4	7.5	34.2	66.9	93.7	58.5	19.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	77.0	44.2	5.3	59.7	62.4	7.5	34.2	66.9	93.7	58.5	19.8
Queue Length 50th (ft)	~450	707	11	22	262	0	47	253	~289	128	192
Queue Length 95th (ft)	#696	#877	54	57	#423	3	#290	#370	#492	177	296
Internal Link Dist (ft)		673			937			607		627	
Turn Bay Length (ft)	300		350	160		350	150		300		325
Base Capacity (vph)	544	1707	809	122	763	735	409	520	346	537	821
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.00	0.92	0.22	0.39	0.90	0,35	0.82	1.00	1.02	0.53	0.53

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	-	•	1	←	*	1	1	1	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	个个	7	ሻ	**	7	7	1		ሻ	^	7"
Traffic Volume (vph)	499	1440	164	44	634	236	309	444	34	324	263	404
Future Volume (vph)	499	1440	164	44	634	236	309	444	34	324	263	404
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1736	3574	1524	1805	3505	1599	1719	3529		1752	3406	1553
Flt Permitted	0.15	1.00	1,00	0.15	1.00	1.00	0.50	1.00		0.18	1.00	1.00
Satd. Flow (perm)	280	3574	1524	291	3505	1599	908	3529		334	3406	1553
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	542	1565	178	48	689	257	336	483	37	352	286	439
RTOR Reduction (vph)	0	0	82	0	0	48	0	4	0	0	0	72
Lane Group Flow (vph)	542	1565	96	48	689	209	336	516	0	352	286	367
Heavy Vehicles (%)	4%	1%	6%	0%	3%	1%	5%	1%	4%	3%	6%	4%
Turn Type	pm+pt	NA.	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2		1	6	7	3	8		7	4	5
Permitted Phases	2		2	6		6	8			4		4
Actuated Green, G (s)	65.6	65.6	65.6	30.5	30.5	54.0	42.4	20.5		45.6	22.1	61.6
Effective Green, g (s)	65.6	65.6	65.6	30.5	30.5	54.0	42.4	20.5		45.6	22.1	61.6
Actuated g/C Ratio	0.47	0.47	0.47	0.22	0.22	0.39	0.30	0.15		0.33	0.16	0.44
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	542	1674	714	110	763	690	401	516		346	537	755
v/s Ratio Prot	0.28	c0.44		0.01	c0.20	0.05	0.13	0.15		c0.17	0.08	0.14
v/s Ratio Perm	c0.19		0.06	0.08		0.08	0.12			c0.16		0.10
v/c Ratio	1.00	0.93	0.13	0.44	0.90	0.30	0.84	1.00		1.02	0.53	0.49
Uniform Delay, d1	41.0	35.2	21.1	56.9	53.3	29.9	42.6	59.7		41.6	54.2	27.9
Progression Factor	1.00	1.00	1.00	0.93	0.87	0.34	0.41	0.43		1.00	1.00	1.00
Incremental Delay, d2	38.7	11.2	0.4	2.7	15.6	0.2	13.9	39.0		52,9	3.8	0.5
Delay (s)	79.7	46.4	21.5	55.7	62.1	10.5	31.2	64.7		94.5	58.0	28,4
Level of Service	E	D	С	E	E	В	C	Е		F	Ε	C
Approach Delay (s)		52.3			48.5			51.5			57.9	
Approach LOS		D			D			D			Ε	
Intersection Summary												
HCM 2000 Control Delay			52.6	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.01		ارالا		وتتتا					
Actuated Cycle Length (s)			140.0			t time (s)			26.0			
Intersection Capacity Utiliza	ation		98.1%	10	U Level	of Service	9		F			
Analysis Period (min)			15									

	>	×	1	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	118	465	45	774
v/c Ratio	0.64	0.17	0.06	0.28
Control Delay	67.3	1.4	0.5	0.7
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	67.3	1.4	0.5	0.7
Queue Length 50th (ft)	91	18	- 1	5
Queue Length 95th (ft)	153	26	1	5
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	495	2753	746	2812
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.24	0.17	0.06	0.28
Intersection Summary			EII5	

	>	_	×	4	1	X
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	W	- Contract of the	† \$		*	^
Traffic Volume (vph)	75	33	339	89	41	712
Future Volume (vph)	75	33	339	89	41	712
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	11000	6.5		6.5	6.5
Lane Util. Factor	1.00		0.95		1.00	0.95
Frt	0.96		0.97		1.00	1.00
Fit Protected	0.97		1.00		0.95	1.00
Satd. Flow (prot)	1761		3387		1805	3471
Fit Permitted	0.97		1.00		0.48	1.00
Satd. Flow (perm)	1761		3387		921	3471
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	82	36	368	97	45	774
RTOR Reduction (vph)	14	0	9	0	45	0
Lane Group Flow (vph)	104	0	456	0	45	774
Heavy Vehicles (%)	0%	0%	2%	8%	0%	4%
Turn Type	Prot		NA		Perm	NA
Protected Phases	4		6			2
Permitted Phases					2	
Actuated Green, G (s)	13.6		113.4		113.4	113.4
Effective Green, g (s)	13.6		113.4		113.4	113.4
Actuated g/C Ratio	0.10		0.81		0.81	0.81
Clearance Time (s)	6.5		6.5		6.5	6.5
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Lane Grp Cap (vph)	171		2743		746	2811
v/s Ratio Prot	c0.06		0.13			c0.22
v/s Ratio Perm					0.05	
v/c Ratio	0.61		0.17		0.06	0.28
Uniform Delay, d1	60.6		2.9		2.7	3.3
Progression Factor	1.00		0.46		0.10	0.13
Incremental Delay, d2	5.9		0.1		0.1	0.2
Delay (s)	66.6		1.5		0.4	0.6
Level of Service	Е		Α		Α	A
Approach Delay (s)	66.6		1.5			0.6
Approach LOS	E		Α			Α
Intersection Summary						
HCM 2000 Control Delay			6.5	H	CM 2000	Level of Servi
HCM 2000 Volume to Capac	city ratio		0.31			
Actuated Cycle Length (s)			140.0	Si	um of lost	t time (s)
Intersection Capacity Utilizal	tion		38.8%			of Service
Analysis Period (min)	ment)		15			
c Critical Lane Group						

	٨	-	*	4	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	23	363	820	159	74	34
v/c Ratio	0.05	0.15	0.36	0.11	0.19	0.09
Control Delay	2.7	2.9	1.6	0.1	46.2	14.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	2.7	2.9	1.6	0.1	46.2	14.0
Queue Length 50th (ft)	2	15	7	0	55	0
Queue Length 95th (ft)	5	22	13	m0	102	30
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	482	2396	2273	1507	393	378
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.15	0.36	0.11	0.19	0.09
Intersection Summary				=		

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	*	•	-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	ተተ	^	7	7	7		
Traffic Volume (vph)	21	334	754	146	68	31		
Future Volume (vph)	21	334	754	146	68	31		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	3406	3505	1615	1805	1615		
FIt Permitted	0.28	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	539	3406	3505	1615	1805	1615		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	23	363	820	159	74	34		
RTOR Reduction (vph)	0	0	0_0	24	0	27		
Lane Group Flow (vph)	23	363	820	135	74	7		
Heavy Vehicles (%)	0%	6%	3%	0%	0%	0%		
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm		
Protected Phases	1	6	2	8	8	10072102		
Permitted Phases	6		-	2		8		
Actuated Green, G (s)	98.5	98.5	88.2	118.7	30.5	30.5		
Effective Green, g (s)	98.5	98.5	88.2	118.7	30.5	30.5		
Actuated g/C Ratio	0.70	0.70	0.63	0.85	0.22	0.22		
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	413	2396	2208	1369	393	351		
v/s Ratio Prot	0.00	c0.11	c0.23	0.02	c0.04	331		
v/s Ratio Perm	0.04	995111	00.20	0.02	00.04	0.00		
v/c Ratio	0.04	0.15	0.37	0.10	0.19	0.02		
Uniform Delay, d1	7.2	6.9	12.5	1.8	44.7	43.0		
Progression Factor	0.39	0.39	0.11	0.00	1.00	1.00		
Incremental Delay, d2	0.33	0.33	0.11	0.00	1.1	0.1		
Delay (s)	2.8	2.8	1.7	0.1	45.7	43.1		
Level of Service	Α.	2.0 A	A	A	43.7 D	D		
Approach Delay (s)	- 17	2.8	1.5	Α:	44.9			
Approach LOS		A	A		D			
ntersection Summary								
ICM 2000 Control Delay			5.0	Н	CM 2000	Level of Servic	9	Α
HCM 2000 Volume to Capa	city ratio		0.32					
Actuated Cycle Length (s)			140.0	S	um of lost	time (s)		17.5
Intersection Capacity Utiliza	ation		34.2%			of Service		Α
Analysis Period (min)			15					
c Critical Lane Group								

	•	-	*	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	26	430	977	1210	288	51
v/c Ratio	0.16	0.28	0.74	0.79	0.17	0.06
Control Delay	15.9	13.1	43.1	5.4	20.8	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	15.9	13.1	43.1	5.4	20.8	5.0
Queue Length 50th (ft)	7	91	426	53	74	0
Queue Length 95th (ft)	19	117	514	121	103	23
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	160	1534	1322	1533	1688	805
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.28	0.74	0.79	0.17	0.06
Intersection Summary						

	٠	-	•	•	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	ተተ	^	7	ሻሻ	7	
Traffic Volume (vph)	24	396	899	1113	265	47	
Future Volume (vph)	24	396	899	1113	265	47	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1671	3610	3539	1599	3502	1615	
Flt Permitted	0.14	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	244	3610	3539	1599	3502	1615	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	26	430	977	1210	288	51	
RTOR Reduction (vph)	0	0	0	126	0	26	
Lane Group Flow (vph)	26	430	977	1084	288	25	
Heavy Vehicles (%)	8%	0%	2%	1%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	1000110	
Permitted Phases	6		-	2		8	
Actuated Green, G (s)	59.5	59.5	49.7	117.2	67.5	67.5	
Effective Green, g (s)	59.5	59.5	49.7	117.2	67.5	67.5	
Actuated g/C Ratio	0.42	0.42	0.36	0.84	0.48	0.48	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	137	1534	1256	1412	1688	778	
v/s Ratio Prot	0.00	c0.12	0.28	c0.37	0.08	- //-	
v/s Ratio Perm	0.08	00.12	0.20	0.31	0.00	0.02	
v/c Ratio	0.19	0.28	0.78	0.77	0.17	0.03	
Uniform Delay, d1	45.6	26.3	40.2	5.2	20.5	19.1	
Progression Factor	0.49	0.48	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.7	0.5	4.8	4.1	0.2	0.1	
Delay (s)	22.9	13.0	45.0	9.3	20.7	19.1	
Level of Service	C	В	D	Α.	C	В	
Approach Delay (s)		13.6	25.2	Α:	20.4		
Approach LOS		В	C		С		
Intersection Summary							
HCM 2000 Control Delay			22.9	H	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capaci	ity ratio		0.80			أألتهب	
Actuated Cycle Length (s)			140.0	St	um of lost	t time (s)	
Intersection Capacity Utilizati	on		83.9%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	-	•	4	-1	1	Ţ	1	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	30	34	9	14	66	1286	11	350	16	
v/c Ratio	0.37	0.27	0.10	0.13	0.07	0.40	0.03	0.21	0.01	
Control Delay	74.9	23.9	63.4	28.0	1.5	2.0	2.0	1.7	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	75.0	23.9	63.4	28.0	1.5	2.0	2.0	1.7	0.0	
Queue Length 50th (ft)	27	0	8	0	6	81	- 1	37	0	
lueue Length 95th (ft)	61	36	27	23	14	125	m2	m56	m0	
ternal Link Dist (ft)	382		246			410		568		
urn Bay Length (ft)		125		100	100		100		200	
ase Capacity (vph)	241	310	255	294	939	3186	350	1687	1615	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
pillback Cap Reductn	9	0	0	- 11	0	24	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	0	
educed v/c Ratio	0.13	0.11	0.04	0.05	0.07	0.41	0.03	0.21	0.01	
tersection Summary										

m Volume for 95th percentile queue is metered by upstream signal.

	٠	4	•	1	4	•	4	Ť	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4	7	7	43		7	1	74
Traffic Volume (vph)	27	1	31	6	2	13	61	1125	58	10	322	15
Future Volume (vph)	27	1	31	6	2	13	61	1125	58	10	322	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected		0.95	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1812	1615		1829	1615	1805	3550		1805	1881	1615
Flt Permitted		0.73	1.00		0.77	1.00	0.55	1.00		0.21	1.00	1.00
Satd. Flow (perm)		1381	1615		1460	1615	1047	3550		392	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	29	1	34	7	2	14	66	1223	63	11	350	16
RTOR Reduction (vph)	0	0	32	0	0	13	0	- 1	0	0	0	0
Lane Group Flow (vph)	0	30	2	0	9	1	66	1285	0	11	350	16
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4			8!			2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		7.2	7.2		7.2	7.2	123.8	123.8		123.8	123.8	131.0
Effective Green, g (s)		7.2	7.2		7.2	7.2	123.8	123.8		123.8	123.8	131.0
Actuated g/C Ratio		0.05	0.05		0.05	0.05	0.88	0.88		0.88	0.88	0.94
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		71	83		75	83	925	3139		346	1663	1615
v/s Ratio Prot								c0.36			0.19	0.00
v/s Ratio Perm		c0.02	0.00		0.01	0.00	0.06			0.03		0.01
v/c Ratio		0.42	0.02		0.12	0.01	0.07	0.41		0.03	0.21	0.01
Uniform Delay, d1		64.4	63.1		63.4	63.0	1.0	1.5		1.0	1.2	0.3
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		1.32	1.14	1.00
Incremental Delay, d2		4.0	0.1		0.7	0.0	0.1	0.4		0.1	0.2	0.0
Delay (s)		68.4	63.2		64.1	63.1	1.1	1.9		1.4	1.5	0.3
Level of Service		Е	E		Ε	Е	Α	Α		Α	Α	Α
Approach Delay (s)		65.6			63.5			1.8			1.5	
Approach LOS		Е			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			4.8	H	CM 2000	Level of	Service		A			
HCM 2000 Volume to Capacit	ty ratio		0.41					•				
Actuated Cycle Length (s)			140.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilization	on		56.6%	IO	U Level	of Service			В			
Analysis Period (min)			15									
! Phase conflict between lar	ne groups											

c Critical Lane Group

	ၨ	-	6	-	†	1	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	
			1000000	1146	131	245	
Lane Group Flow (vph)	310	1620	46				
v/c Ratio	0.82	0.76	0.31	0.74	0.30	0.76	
Control Delay	56.4	7.0	14.1	23.9	42.5	59.3	
Queue Delay	0.0	0.4	0.0	0.0	0.0	0.0	
Total Delay	56.4	7.5	14.1	23.9	42.5	59.3	
Queue Length 50th (ft)	178	195	10	286	91	186	
Queue Length 95th (ft)	260	93	m16	351	152	#311	
Internal Link Dist (ft)		449		746	93	431	
Turn Bay Length (ft)	150		125				
Base Capacity (vph)	447	2137	148	1552	434	324	
Starvation Cap Reductn	0	163	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.69	0.82	0.31	0.74	0.30	0.76	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	•	4	4	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1		7	†			4			4	
Traffic Volume (vph)	285	1458	32	42	846	208	9	85	27	111	9	105
Future Volume (vph)	285	1458	32	42	846	208	9	85	27	111	9	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	0.97			0.97			0.94	
Fit Protected	0.95	1.00		0.95	1.00			1.00			0.98	
Satd. Flow (prot)	1687	3563		1805	3375			1836			1698	
Flt Permitted	0.11	1.00		0.09	1.00			0.97			0.73	
Satd. Flow (perm)	200	3563		171	3375			1784			1267	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	310	1585	35	46	920	226	10	92	29	121	10	114
RTOR Reduction (vph)	0	- 1	0	0	14	0	0	8	0	0	22	0
Lane Group Flow (vph)	310	1619	0	46	1132	0	0	123	0	0	223	0
Heavy Vehicles (%)	7%	1%	0%	0%	4%	3%	0%	0%	0%	1%	0%	4%
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	93.5	82.6		68.3	63.9			33.5			33.5	
Effective Green, g (s)	93.5	82.6		68.3	63.9			33.5			33.5	
Actuated g/C Ratio	0.67	0.59		0.49	0.46			0.24			0.24	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	378	2102		134	1540			426			303	
v/s Ratio Prot	c0.13	c0.45		0.01	0.34							
v/s Ratio Perm	c0.41			0.16				0.07			c0.18	
v/c Ratio	0.82	0.77		0.34	0.73			0.29			0.74	
Uniform Delay, d1	32.6	21.6		21.8	31.1			43.5			49.2	
Progression Factor	1.69	0.24		0.77	0.67			1.00			1.00	
Incremental Delay, d2	9.5	1.9		1.2	2.4			1.7			9.0	
Delay (s)	64.6	7.2		18.0	23.3			45.2			58.1	
Level of Service	Е	Α		В	C			D			E	
Approach Delay (s)		16.4			23.1			45.2			58.1	
Approach LOS		В			C			D			Е	
Intersection Summary												
HCM 2000 Control Delay			22.7	Н	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capa	acity ratio		0.82									
Actuated Cycle Length (s)			140.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		81.8%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	-	•	1	+	4	1	-	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	1773	27	126	907	101	1	183	3	
v/c Ratio	0.73	0.02	0.80	0.34	0.43	0.01	0.51	0.04	
Control Delay	5.4	0.0	48.9	2.0	67.9	59.0	10.3	57.7	
Queue Delay	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	5.4	0.0	48.9	2.1	67.9	59.0	10.3	57.7	
Queue Length 50th (ft)	148	0	59	46	46	1	0	2	
Queue Length 95th (ft)	m196	m0	m#115	60	76	7	52	13	
Internal Link Dist (ft)	937			449		417		100	
Turn Bay Length (ft)		100	125	7,000	200		200		
Base Capacity (vph)	2421	1203	158	2693	462	251	360	236	
Starvation Cap Reductn	0	0	0	604	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.73	0.02	0.80	0.43	0.22	0.00	0.51	0.01	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	٨	-	•	•	-	*	4	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	†		ሻሻ	↑	7		4	
Traffic Volume (vph)	0	1631	25	116	831	4	93	1	168	1	1	- 1
Future Volume (vph)	0	1631	25	116	831	4	93	1	168	1	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Lane Util. Factor		0.95	1.00	1.00	0.95		0.97	1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00		1.00	1.00	0.85		0.95	
Flt Protected		1.00	1.00	0.95	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (prot)		3539	1615	1805	3499		3502	1900	1599		1785	
Flt Permitted		1.00	1.00	0.06	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (perm)		3539	1615	119	3499		3502	1900	1599		1785	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1773	27	126	903	4	101	1	183	1	1	1
RTOR Reduction (vph)	0	0	9	0	0	0	0	0	164	0	- 4	0
Lane Group Flow (vph)	0	1773	18	126	907	0	101	1	19	0	2	0
Heavy Vehicles (%)	0%	2%	0%	0%	3%	25%	0%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov	Split	NA	
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6					8			
Actuated Green, G (s)		88.0	91.3	100.0	100.0		9.4	9.4	14.9		1.3	
Effective Green, g (s)		88.0	91.3	100.0	100.0		9.4	9.4	14.9		1.3	
Actuated g/C Ratio		0.63	0.65	0.71	0.71		0.07	0.07	0.11		0.01	
Clearance Time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Vehicle Extension (s)		3.0	3,0	3.0	3.0		3.0	3.0	3.0		3.0	
Lane Grp Cap (vph)		2224	1053	151	2499		235	127	170		16	
v/s Ratio Prot		0.50	c0.00	c0.03	0.26		c0.03	0.00	0.00		c0.00	
v/s Ratio Perm			0.01	c0.56					0.01			
v/c Ratio		0.80	0.02	0.83	0.36		0.43	0.01	0.11		0.13	
Uniform Delay, d1		19.4	8.6	43.7	7.7		62.7	60.9	56.6		68.8	
Progression Factor		0.26	1.00	0.73	0.29		1.00	1.00	1.00		1.00	
Incremental Delay, d2		1.1	0.0	22.3	0.3		1.3	0.0	0.3		3.5	
Delay (s)		6.1	8.6	54.3	2.5		64.0	61.0	56.9		72.3	
Level of Service		A	Α	D	Α		Е	E	Е		Е	
Approach Delay (s)		6.2			8.8			59.4			72.3	
Approach LOS		Α			Α			E			E	
Intersection Summary											-	
HCM 2000 Control Delay			12.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.80									
Actuated Cycle Length (s)			140.0		um of lost				32.5			
Intersection Capacity Utilizati	ion		75.9%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	1	•	1	1	-	1	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	214	1368	176	926	240	311	662	385	304	
v/c Ratio	0.67	0.94	0.87	0.69	0.58	0.91	0.85	0.91	0.86	
Control Delay	24.8	27.3	69.8	34.9	59.1	79.9	33.5	83.3	64.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	24.8	27.3	69.8	34.9	59.1	79.9	33.5	83.3	64.2	
Queue Length 50th (ft)	38	454	98	323	102	254	117	168	203	
Queue Length 95th (ft)	m81	#716	#239	423	#168	#421	#182	#262	#310	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	372	1455	204	1346	413	343	783	421	406	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.58	0.94	0.86	0.69	0.58	0.91	0.85	0.91	0.75	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	٨	-	•	1	4	•	•	1	-	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	1		7	†		ሻሻ	↑	77	77	7	
Traffic Volume (vph)	197	1188	71	162	642	210	221	286	609	354	105	175
Future Volume (vph)	197	1188	71	162	642	210	221	286	609	354	105	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	0.88	0.97	1.00	
Frt	1.00	0.99		1.00	0.96		1.00	1.00	0.85	1.00	0.91	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3513		1687	3342		3433	1900	2814	3502	1705	
Flt Permitted	0.17	1.00		0.08	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	315	3513		138	3342		3433	1900	2814	3502	1705	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	214	1291	77	176	698	228	240	311	662	385	114	190
RTOR Reduction (vph)	0	4	0	0	23	0	0	0	275	0	48	0
Lane Group Flow (vph)	214	1364	0	176	903	0	240	311	387	385	256	0
Heavy Vehicles (%)	0%	2%	0%	7%	5%	1%	2%	0%	1%	0%	1%	1%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	Prot	Prot	NA	
Protected Phases	5	2		1	6		3	8	8	7	4	
Permitted Phases	2			6	-			7.42				
Actuated Green, G (s)	67.2	53.7		62.8	51.5		15.7	23.3	23.3	15.7	23.3	
Effective Green, g (s)	67.2	53.7		62.8	51.5		15.7	23.3	23.3	15.7	23.3	
Actuated g/C Ratio	0.52	0.41		0.48	0.40		0.12	0.18	0.18	0.12	0.18	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	317	1451		201	1323		414	340	504	422	305	
v/s Ratio Prot	0.07	c0.39		c0.08	0.27		0.07	c0.16	0.14	c0.11	0.15	
v/s Ratio Perm	0.28	7/7/25/7/		0.35	NACES II		1/4/02/20	22.02.02.	ST-010 (V)	ETC.	1/201/21	
v/c Ratio	0.68	0.94		0.88	0.68		0.58	0.91	0.77	0.91	0.84	
Uniform Delay, d1	20.9	36.6		34.6	32.5		54.0	52.4	50.8	56.5	51.5	
Progression Factor	1.16	0.48		1.00	1.00		0.96	0.95	0.90	1.00	1.00	
Incremental Delay, d2	3.5	9.1		31.8	2.9		1.8	26.8	6.5	23.7	17.8	
Delay (s)	27.9	26.5		66.5	35.4		53.9	76.7	52.3	80.2	69.4	
Level of Service	С	С		E	D		D	Е	D	F	Е	
Approach Delay (s)		26.6			40.3			58.9			75.4	
Approach LOS		С			D			E			Ε	
Intersection Summary												
HCM 2000 Control Delay			45.8	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.92				وتنيه					
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utiliz	ation		90.9%	IC	U Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

	١	-	•	1	•	*	4	†	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	542	1565	178	48	689	257	336	520	352	286	439
v/c Ratio	0.69	0.85	0.20	0.36	0.50	0.29	0.57	0.88	0.81	0.49	0.66
Control Delay	23.9	33.6	3.0	46.1	31.4	5.2	11.9	39.3	50.4	51.7	27.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.9	33.6	3.0	46.1	31.4	5.2	11.9	39.3	50.4	51.7	27.5
Queue Length 50th (ft)	137	605	0	22	170	0	22	228	117	115	214
Queue Length 95th (ft)	177	717	38	49	219	0	31	#308	#169	162	308
Internal Link Dist (ft)		673			937			607		627	
Turn Bay Length (ft)	300		350	160		350	150		300		325
Base Capacity (vph)	911	1839	870	133	1369	897	593	589	437	589	731
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.59	0.85	0.20	0.36	0.50	0.29	0.57	0.88	0.81	0.49	0.60

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	-	•	1	*	•	1	1	1		1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	44	7	ሻ	ተተ	7	77	43		44	个个	74
Traffic Volume (vph)	499	1440	164	44	634	236	309	444	34	324	263	404
Future Volume (vph)	499	1440	164	44	634	236	309	444	34	324	263	404
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3367	3574	1524	1805	3505	1599	3335	3529		3400	3406	1553
Flt Permitted	0.22	1.00	1.00	0.09	1.00	1.00	0.51	1.00		0.18	1.00	1.00
Satd. Flow (perm)	786	3574	1524	164	3505	1599	1798	3529		636	3406	1553
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	542	1565	178	48	689	257	336	483	37	352	286	439
RTOR Reduction (vph)	0	0	88	0	0	43	0	4	0	0	0	94
Lane Group Flow (vph)	542	1565	90	48	689	214	336	516	0	352	286	345
Heavy Vehicles (%)	4%	1%	6%	0%	3%	1%	5%	1%	4%	3%	6%	4%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	, 9,,,,,	1	6	7	3	8		7	4	5
Permitted Phases	2	-	2	6		6	8	3.550		4	-	4
Actuated Green, G (s)	65.6	65.6	65.6	50.8	50.8	63.2	33.1	21.6		34.9	22.5	41.7
Effective Green, g (s)	65.6	65.6	65.6	50.8	50.8	63.2	33.1	21.6		34.9	22.5	41.7
Actuated g/C Ratio	0.50	0.50	0.50	0.39	0.39	0.49	0.25	0.17		0.27	0.17	0.32
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	777	1803	769	119	1369	857	593	586		434	589	575
v/s Ratio Prot	0.10	c0.44	,00	0.01	c0.20	0.02	0.05	c0.15		c0.08	0.08	0.09
v/s Ratio Perm	0.25	00.11	0.06	0.14	CO.EO	0.11	0.09	00.10		0.14	0.00	0.13
v/c Ratio	0.70	0.87	0.12	0.40	0.50	0.25	0.57	0.88		0.81	0.49	0.60
Uniform Delay, d1	21.5	28.4	17.0	46.6	30.0	19.5	40.2	52.9		39.7	48.5	37.1
Progression Factor	1.00	1.00	1.00	0.92	0.97	0.38	0.23	0.40		1.00	1.00	1.00
Incremental Delay, d2	2.7	6.0	0.3	2.1	1.3	0.1	1.2	16.8		11.0	2.8	1.8
Delay (s)	24.3	34.3	17.3	45.3	30.4	7.5	10.4	38.0		50.7	51.4	38.9
Level of Service	C C	C	В	43.3 D	C	A	В	D		D	D	D
Approach Delay (s)		30.6	D	D/	25.2	- 75	:0	27.2		U	46.1	U
Approach LOS		C			C			C			D	
Intersection Summary												
HCM 2000 Control Delay			32.2	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capa	acity ratio		0.86									
Actuated Cycle Length (s)			130.0	S	um of los	st time (s)			26.0			
Intersection Capacity Utiliz	ation		88.2%			of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

-	>	×	4	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	118	465	45	774
v/c Ratio	0.62	0.17	0.06	0.28
Control Delay	61.5	1.5	0.4	0.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	61.5	1.5	0.4	0.5
Queue Length 50th (ft)	83	21	1	5
Queue Length 95th (ft)	142	23	1	5
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	506	2722	738	2778
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.23	0.17	0.06	0.28
	0	0	0	0

	>	~	×	4	1	X		
Movement	EBL	EBR	SET	SER	NWL	NWT		
Lane Configurations	NA.		4%		ሻ	^		
Traffic Volume (vph)	75	33	339	89	41	712		
Future Volume (vph)	75	33	339	89	41	712		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	1	6.5		6.5	6.5		
Lane Util. Factor	1.00		0.95		1.00	0.95		
Frt	0.96		0.97		1.00	1.00		
Fit Protected	0.97		1.00		0.95	1.00		
Satd. Flow (prot)	1761		3387		1805	3471		
Flt Permitted	0.97		1.00		0.48	1.00		
Satd. Flow (perm)	1761		3387		921	3471		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	82	36	368	97	45	774		
RTOR Reduction (vph)	15	0	10	0	0	0		
Lane Group Flow (vph)	103	0	455	0	45	774		
Heavy Vehicles (%)	0%	0%	2%	8%	0%	4%		
Turn Type	Prot		NA	100	Perm	NA		
Protected Phases	4		6		0.50100	2		
Permitted Phases			100		2			
Actuated Green, G (s)	12.9		104.1		104.1	104.1		
Effective Green, g (s)	12.9		104.1		104.1	104.1		
Actuated g/C Ratio	0.10		0.80		0.80	0.80		
Clearance Time (s)	6.5		6.5		6.5	6.5		
Vehicle Extension (s)	3.0		3.0		3.0	3.0		
Lane Grp Cap (vph)	174		2712		737	2779		_
v/s Ratio Prot	c0.06	-	0.13		101	c0.22		
v/s Ratio Perm	00.00		0.10		0.05	JULE		
v/c Ratio	0.59		0.17		0.06	0.28		
Uniform Delay, d1	56.0		3.0		2.7	3.3		
Progression Factor	1.00		0.48		0.07	0.07		
Incremental Delay, d2	5.3		0.1		0.2	0.2		
Delay (s)	61.3		1.5		0.3	0.5		
Level of Service	E		A		A	A		
Approach Delay (s)	61.3		1.5			0.5		
Approach LOS	E		A			A		
Intersection Summary								
HCM 2000 Control Delay			5.9	H	CM 2000	Level of Servi	ce	
HCM 2000 Volume to Capa	city ratio		0.31					
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)		
Intersection Capacity Utiliza	tion		38.8%			of Service		
Analysis Period (min)			15					
c Critical Lane Group								

	٨	-	*	4	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	23	363	820	159	74	34
v/c Ratio	0.05	0.15	0.37	0.11	0.19	0.09
Control Delay	3.2	3.1	1.7	0.1	42.9	13.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3.2	3.1	1.7	0.1	42.9	13.2
Queue Length 50th (ft)	2	19	6	0	51	0
Queue Length 95th (ft)	6	26	12	m0	95	29
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	473	2371	2232	1498	395	380
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.15	0.37	0.11	0.19	0.09
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	•	-	*	•	-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	ተተ	^	7	ሻ	7		
Traffic Volume (vph)	21	334	754	146	68	31		
Future Volume (vph)	21	334	754	146	68	31		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	3406	3505	1615	1805	1615		
FIt Permitted	0.28	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	533	3406	3505	1615	1805	1615		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	23	363	820	159	74	34		
RTOR Reduction (vph)	0	0	0_0	26	0	27		
Lane Group Flow (vph)	23	363	820	133	74	7		
Heavy Vehicles (%)	0%	6%	3%	0%	0%	0%		
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm		
Protected Phases	1	6	2	8	8	10224104		
Permitted Phases	6		*	2		8		
Actuated Green, G (s)	90.5	90.5	80.2	108.7	28.5	28.5		
Effective Green, g (s)	90.5	90.5	80.2	108.7	28.5	28.5		
Actuated g/C Ratio	0.70	0.70	0.62	0.84	0.22	0.22		
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	408	2371	2162	1350	395	354		
v/s Ratio Prot	0.00	c0.11	c0.23	0.02	c0.04	334		
v/s Ratio Perm	0.04	99-11	00.20	0.02	00,04	0.00		
v/c Ratio	0.04	0.15	0.38	0.10	0.19	0.02		
Uniform Delay, d1	7.1	6.7	12.5	1.9	41.3	39.8		
Progression Factor	0.48	0.44	0.12	0.00	1.00	1.00		
Incremental Delay, d2	0.40	0.1	0.12	0.00	1.00	0.1		
Delay (s)	3.5	3.1	1.8	0.1	42.4	39.9		
Level of Service	J.5	Α	Α.	A	42.4 D	D		
Approach Delay (s)	, AL	3.1	1.5	A	41.6			
Approach LOS		A	A		D			
ntersection Summary								
ICM 2000 Control Delay			4.9	Н	CM 2000	Level of Service	е	Α
HCM 2000 Volume to Capa	acity ratio		0.33		أنزالا			
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)		17.5
Intersection Capacity Utiliz	ation		34.2%			of Service		Α
Analysis Period (min)			15					
Critical Lane Group								

	٠	-	•	•	\	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Group Flow (vph)	26	430	977	1210	288	51	
v/c Ratio	0.16	0.28	0.74	0.79	0.17	0.06	
Control Delay	13.9	11.0	40.7	5.6	20.0	5.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.9	11.0	40.7	5.6	20.0	5.1	
Queue Length 50th (ft)	7	57	396	51	70	0	
Queue Length 95th (ft)	16	75	484	124	98	23	
Internal Link Dist (ft)		2181	561		478		
Turn Bay Length (ft)	160			225	300	250	
Base Capacity (vph)	165	1541	1314	1529	1656	790	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.28	0.74	0.79	0.17	0.06	
Intersection Summary							

	٠	-	•	•	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	个个	^	7	1,2	7	
Traffic Volume (vph)	24	396	899	1113	265	47	
Future Volume (vph)	24	396	899	1113	265	47	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1671	3610	3539	1599	3502	1615	
Flt Permitted	0.14	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	247	3610	3539	1599	3502	1615	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	26	430	977	1210	288	51	
RTOR Reduction (vph)	0	0	0	137	0	27	
Lane Group Flow (vph)	26	430	977	1073	288	24	
Heavy Vehicles (%)	8%	0%	2%	1%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8		
Permitted Phases	6			2		8	
Actuated Green, G (s)	55.5	55.5	45.7	107.2	61.5	61.5	
Effective Green, g (s)	55.5	55.5	45.7	107.2	61.5	61.5	
Actuated g/C Ratio	0.43	0.43	0.35	0.82	0.47	0.47	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	141	1541	1244	1398	1656	764	
v/s Ratio Prot	0.00	c0.12	0.28	c0.36	0.08		
v/s Ratio Perm	0.07			0.31		0.01	
v/c Ratio	0.18	0.28	0.79	0.77	0.17	0.03	
Uniform Delay, d1	41.9	24.2	37.8	5.4	19.7	18.3	
Progression Factor	0.46	0.43	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.6	0.4	5.0	4.1	0.2	0.1	
Delay (s)	19.7	10.9	42.8	9.5	19.9	18.4	
Level of Service	В	В	D	Α	В	В	
Approach Delay (s)		11.4	24.4		19.7		
Approach LOS		В	С		В		
Intersection Summary							
HCM 2000 Control Delay			21.9	H	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capa	city ratio		0.80				
Actuated Cycle Length (s)			130.0		um of lost		
Intersection Capacity Utiliza	tion		83.9%	IC	U Level o	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	•	4	1	1	-	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	30	34	9	14	66	1286	11	350	16
v/c Ratio	0.35	0.26	0.10	0.12	0.07	0.41	0.03	0.21	0.01
Control Delay	68.6	22.2	58.4	26.2	1.5	2.1	1.5	1.5	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.6	22.2	58.4	26.2	1.5	2.1	1.5	1.5	0.0
Queue Length 50th (ft)	25	0	7	0	5	80	1	32	0
Queue Length 95th (ft)	57	34	26	22	14	123	m1	m46	m0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	260	331	274	315	932	3163	348	1675	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.10	0.03	0.04	0.07	0.41	0.03	0.21	0.01
Intersection Summary				-					

m Volume for 95th percentile queue is metered by upstream signal.

	١	4	•	1	4	•	4	1	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4	7	7	44		7	1	74
Traffic Volume (vph)	27	1	31	6	2	13	61	1125	58	10	322	15
Future Volume (vph)	27	1	31	6	2	13	61	1125	58	10	322	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected		0.95	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1812	1615		1829	1615	1805	3550		1805	1881	1615
Fit Permitted		0.73	1.00		0.77	1.00	0.55	1.00		0.21	1.00	1.00
Satd. Flow (perm)		1381	1615		1457	1615	1047	3550		391	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	29	1	34	7	2	14	66	1223	63	11	350	16
RTOR Reduction (vph)	0	0	32	0	0	13	0	- 1	0	0	0	0
Lane Group Flow (vph)	0	30	2	0	9	1	66	1285	0	11	350	16
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	1%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4			8!			2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		7.0	7.0		7.0	7.0	114.0	114.0		114.0	114.0	121.0
Effective Green, g (s)		7.0	7.0		7.0	7.0	114.0	114.0		114.0	114.0	121.0
Actuated g/C Ratio		0.05	0.05		0.05	0.05	0.88	0.88		0.88	0.88	0.93
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		74	86		78	86	918	3113		342	1649	1615
v/s Ratio Prot								c0.36		_	0.19	0.00
v/s Ratio Perm		c0.02	0.00		0.01	0.00	0.06			0.03	1107.0100	0.01
v/c Ratio		0.41	0.02		0.12	0.01	0.07	0.41		0.03	0.21	0.01
Uniform Delay, d1		59.5	58.3		58.6	58.2	1.1	1.5		1.0	1.2	0.3
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		0.93	0.94	1.00
Incremental Delay, d2		3.6	0.1		0.7	0.0	0.2	0.4		0.1	0.2	0.0
Delay (s)		63.1	58.4		59.2	58.3	1.2	1.9		1.0	1.3	0.3
Level of Service		Е	Е		Е	E	Α	Α		Α	Α	Α
Approach Delay (s)		60.6			58.6			1.9			1.3	
Approach LOS		Е			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			4.6	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.41									
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilizati	ion		56.6%	IO	U Level	of Service)		В			
Analysis Period (min)			15									
! Phase conflict between la	ne groups											

	٠	-	6	←	†	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	
Lane Group Flow (vph)	310	1620	46	1146	131	245	
v/c Ratio	0.83	0.78	0.32	0.77	0.30	0.73	
Control Delay	54.7	7.2	16.8	27.5	39.3	53.3	
Queue Delay	0.0	0.5	0.0	0.0	0.0	0.0	
Total Delay	54.7	7.7	16.8	27.5	39.3	53.3	
Queue Length 50th (ft)	152	221	9	266	83	167	
Queue Length 95th (ft)	m260	81	m20	393	143	#283	
Internal Link Dist (ft)		449		746	93	431	
Turn Bay Length (ft)	150		125				
Base Capacity (vph)	428	2082	146	1497	439	335	
Starvation Cap Reductn	0	146	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.84	0.32	0.77	0.30	0.73	

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	•	•	4	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		1	†			4			4	
Traffic Volume (vph)	285	1458	32	42	846	208	9	85	27	111	9	105
Future Volume (vph)	285	1458	32	42	846	208	9	85	27	111	9	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	0.97			0.97			0.94	
Fit Protected	0.95	1.00		0.95	1.00			1.00			0.98	
Satd. Flow (prot)	1687	3563		1805	3375			1836			1698	
Flt Permitted	0.10	1.00		0.08	1.00			0.97			0.74	
Satd. Flow (perm)	186	3563		160	3375			1784			1286	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	310	1585	35	46	920	226	10	92	29	121	10	114
RTOR Reduction (vph)	0	- 1	0	0	16	0	0	8	0	0	24	0
Lane Group Flow (vph)	310	1619	0	46	1130	0	0	123	0	0	221	0
Heavy Vehicles (%)	7%	1%	0%	0%	4%	3%	0%	0%	0%	1%	0%	4%
Turn Type	pm+pt	- NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8	7-23-3		4		
Actuated Green, G (s)	85.5	74.6		61.5	57.1			31.5			31.5	
Effective Green, g (s)	85.5	74.6		61.5	57.1			31.5			31.5	
Actuated g/C Ratio	0.66	0.57		0.47	0.44			0.24			0.24	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	375	2044		131	1482			432			311	
v/s Ratio Prot	c0.14	c0.45		0.01	0.33							
v/s Ratio Perm	c0.40	Aleks San		0.15	34-63-2			0.07			c0.17	
v/c Ratio	0,83	0.79		0.35	0.76			0.29			0.71	
Uniform Delay, d1	32.2	21.6		21.6	30.7			40.1			45.1	
Progression Factor	1.57	0.24		0.97	0.78			1.00			1.00	
Incremental Delay, d2	9.6	2.2		1.2	2.9			1.7			7.2	
Delay (s)	60.3	7.4		22.1	27.0			41.7			52.3	
Level of Service	Е	Α		С	C			D			D	
Approach Delay (s)		15.9			26.8			41.7			52.3	
Approach LOS		В			C			D			D	
Intersection Summary												
HCM 2000 Control Delay			23.1	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capa	acity ratio		0.82									
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			19.5			
Intersection Capacity Utiliza	ation		81.8%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	-	•	1	-	4	1	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	1773	27	126	907	101	1	183	3	
v/c Ratio	0.76	0.02	0.84	0.34	0.41	0.01	0.49	0.04	
Control Delay	9.8	0.0	52.2	2.4	62.5	55.0	9.4	53.3	
Queue Delay	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	9.8	0.0	52.2	2.5	62.5	55.0	9.4	53.3	
Queue Length 50th (ft)	187	0	49	47	42	- 1	0	2	
Queue Length 95th (ft)	#898	m0	m#114	63	71	7	48	12	
Internal Link Dist (ft)	937			449		417		100	
Turn Bay Length (ft)		100	125		200		200		
Base Capacity (vph)	2344	1178	150	2640	498	270	370	254	
Starvation Cap Reductn	0	0	0	552	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.76	0.02	0.84	0.43	0.20	0.00	0.49	0.01	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

,	۶	-	•	•	←	1	1	†	1	1	\	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	7	ሻ	†		1,2	↑	7		4	
Traffic Volume (vph)	0	1631	25	116	831	4	93	1	168	1	1	- 1
Future Volume (vph)	0	1631	25	116	831	4	93	1	168	1	1	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Lane Util. Factor		0.95	1.00	1.00	0.95		0.97	1.00	1.00		1.00	
Frt		1.00	0.85	1.00	1.00		1.00	1.00	0.85		0.95	
Fit Protected		1.00	1.00	0.95	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (prot)		3539	1615	1805	3499		3502	1900	1599		1785	
Flt Permitted		1.00	1.00	0.06	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (perm)		3539	1615	105	3499		3502	1900	1599		1785	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1773	27	126	903	4	101	1	183	1	1	1
RTOR Reduction (vph)	0	0		0	0	0	0	0	162	0	- 1	0
Lane Group Flow (vph)	Ō	1773	17	126	907	Ô	101	1	21	0	2	0
Heavy Vehicles (%)	0%	2%	0%	0%	3%	25%	0%	0%	1%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Love	Split	NA	pm+ov	Split	NA	.0.70
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2	-	2	6	Ų.		U	9	8	- 1		
Actuated Green, G (s)		78.3	81.6	90.3	90.3		9.1	9.1	14.6		1.3	_
Effective Green, g (s)		78.3	81.6	90.3	90.3		9.1	9.1	14.6		1.3	
Actuated g/C Ratio		0.60	0.63	0.69	0.69		0.07	0.07	0.11		0.01	
Clearance Time (s)		6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	
				144								
Lane Grp Cap (vph)		2131	1013		2430		245	133	179		17	
v/s Ratio Prot		0.50	c0.00	c0.04	0.26		c0.03	0.00	0.00		c0.00	
v/s Ratio Perm		0.00	0.01	c0.57	0.07		0.44	0.04	0.01		0.40	_
v/c Ratio		0.83	0.02	0.88	0.37		0.41	0.01	0.11		0.12	
Uniform Delay, d1		20.6	9.1	43.5	8.2		57.9	56.2	51.9		63.8	
Progression Factor		0.45	1.00	0.58	0.33		1.00	1.00	1.00		1.00	
Incremental Delay, d2		2.1	0.0	29.0	0.3		1.1	0.0	0.3		3.1	
Delay (s)		11.3	9.1	54.4	3.0		59.0	56.3	52.2		66.9	
Level of Service		В	A	D	A		E	E	D		E	
Approach Delay (s)		11.3			9.2			54.6			66.9	
Approach LOS		В			Α			D			Ε	
Intersection Summary												
HCM 2000 Control Delay			14.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.83									
Actuated Cycle Length (s)			130.0		um of lost				32.5			
Intersection Capacity Utilizati	on		75.9%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection												
Int Delay, s/veh	3.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Y	1		7	P	
Traffic Vol, veh/h	0	0	32	30	0	10	56	112	6	3	80	3
Future Vol., veh/h	0	0	32	30	0	10	56	112	6	3	80	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None		27/17/20	None			None	- 3		None
Storage Length			A.T.)*		75	,-	-	70		-
Veh in Median Storage		0			0	100		0	150		0	
Grade, %	-	0		-	0	:=	-	0	;#:		0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	35	33	0	- 11	61	122	7	3	87	3
		120	1,500			- 111					1.5/6	
Major/Minor	Minor2			Minor1			Majort			Major2		
Conflicting Flow All	348	346	89	360	344	126	90	0	0	129	0	0
Stage 1	95	95	00	248	248	120				120		, i
Stage 2	253	251		112	96	140			-			
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12		30	4.12	2	12
Critical Hdwy Stg 1	6.12	5.52	VILL	6.12	5.52	VILL	1.12			1114		
Critical Hdwy Stg 2	6.12	5.52	7 (5	6.12	5.52				-			7
Follow-up Hdwy			3.318	3.518	4.018	3.318	2.218			2.218		-
Pot Cap-1 Maneuver	607	577	969	596	579	924	1505		-	MARKS LIVER		-
Stage 1	912	816	505	756	701	JEH	1303	-	-	1401		-
Stage 2	751	699	100	893	815	أعم	أبري		أرا	7	ı î	
Platoon blocked, %	(0)	033		000	013	3		- 50		3/	- 2	- 2
Mov Cap-1 Maneuver	580	552	969	556	554	924	1505			1457		-
Mov Cap-2 Maneuver	580	552	303	556	554	324	1000	- 1		1401	2	
Stage 1	875	814	123	725	672	1 2		-	120	-		-
Stage 2	712	670	-	859	813		19					
Glage Z	(12	070	.5	009	013				. To			أدر
Approach	EB			WB			NB			SB		
HCM Control Delay, s	8.9			11.3			2.4			0.3		
HCM LOS	Α			В			4.4			0.0		
TIOM LOO	^		4									
Minor Lane/Major Mvm	nt .	NBL	NBT	NRP	EBLn1\	VBI n1	SBL	SBT	SBR			
Capacity (veh/h)		1505	1101	1,510	969	617	1457	-	0411			
HCM Lane V/C Ratio		0.04			0.036		0.002					
HCM Control Delay (s)		7.5			8.9	11.3	7.5					
					_	-		-				
HCM Lane LOS		A		72	A	В	A 0					
HCM 95th %tile Q(veh	1	0.1	- 0		0.1	0.2	U	- 3	~			

Intersection	(27) 11											
Int Delay, s/veh	4.1											
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	7		ħ	Þ			4			4	
Traffic Vol, veh/h	40	75	35	10	77	66	56	3	2	29	2	30
Future Vol., veh/h	40	75	35	10	77	66	56	3	2	29	2	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized		-	None	3	-	None	3		None			None
Storage Length	100	-	1,=1	100	- 37	17.		77.				
Veh in Median Storage		0	18	Щ	0	186		0	100		0	7
Grade, %	_	0		-	0	:=:		0	:#:	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	43	82	38	11	84	72	61	3	2	32	2	33
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	156	0	0	120	0	0	347	365	101	332	348	120
Stage 1	100		-	120			187	187	101	142	142	120
Stage 2	9		12			120	160	178		190	206	
Critical Hdwy	4.12	7.		4.12		141	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-			7.12		-	6.12	5.52	0.22	6.12	5.52	0,22
Critical Hdwy Stg 2				N IN			6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218		(*	2.218		42	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1424		103	1468	-	Ţ,	607	563	954	621	576	931
Stage 1	1424	1 2		1400		•	815	745	334	861	779	331
Stage 2		أدر	أري	15			842	752		812	731	
Platoon blocked, %	- 2		7.00		-		012	102	- 12	012	101	8
Mov Cap-1 Maneuver	1424		14	1468			568	542	954	599	555	931
Mov Cap-2 Maneuver	1424		221	1400	- 7	**	568	542	334	1720117	555	331
Stage 1	- 16	- 0	720	- 3	- 0		791	723	W	1266	774	_ B
Stage 2	-			12	12	÷.	804	747		782	709	
Glugo Z			2172			5F.	504	670		, 02	1.00	- 3
Approach	SE			NW			NE			SW		
HCM Control Delay, s	2			0.5			12.1			10.5		
HCM LOS				0.5			B			10.5 B		
TIONI LOG							D			В		
Minor Lane/Major Mvm	(NELn1	NWL	NWT	NWR	SEL	SET	ern	SWLn1			
	IL.				INVVIX		JEI	OER				
Capacity (veh/h)		574	1468		130	1424	122		724			
HCM Control Polovice		0.116		£*.	97.	0.031			0.092			
HCM Control Delay (s)		12.1	7.5			7.6			10.5			
HCM Lane LOS		В	A	740	141	A			В			
HCM 95th %tile Q(veh))	0.4	0	-		0.1	- 6	-	0.3			

Intersection						
Intersection Delay, s/veh	3.4					
Intersection LOS	Α					
Approach	EB		NB		SB	
Entry Lanes	1		1		4	
Conflicting Circle Lanes	1		1		1	
Adj Approach Flow, veh/h	12		132		109	
Demand Flow Rate, veh/h	12		135		111	
Vehicles Circulating, veh/h	89		3		4	
Vehicles Exiting, veh/h	26		98		134	
Ped Vol Crossing Leg, #/h	0		0		0	
Ped Cap Adj	1.000		1.000		1,000	
Approach Delay, s/veh	2.9		3.4		3.3	
Approach LOS	A		Α		A	
Lane	Left	Left		Left		
Designated Moves	LR	LT		TR		
Assumed Moves	LR	LT		TR		
RT Channelized						
Lane Util	1.000	1.000		1.000		
Follow-Up Headway, s	2,609	2.609		2.609		
Critical Headway, s	4.976	4.976		4.976		
Entry Flow, veh/h	12	135		111		
Cap Entry Lane, veh/h	1260	1376		1374		
Entry HV Adj Factor	1.000	0.981		0.984		
Flow Entry, veh/h	12	132		109		
Cap Entry, veh/h	1260	1349		1353		
V/C Ratio	0.010	0.098		0.081		
Control Delay, s/veh	2.9	3.4		3.3		
LOS	A	A		A		
		0				

Intersection						
Int Delay, s/veh	1.4					
57777 C.		(A)PSPS	Non	Karses	001	ODT
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		74	↑		ሻ	^
Traffic Vol, veh/h	0	32	121	0	11	101
Future Vol, veh/h	0	32	121	0	11	101
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	9	None		None
Storage Length	-	0	5.5		50	
Veh in Median Storage,			0			0
Grade, %	0	79V4.V	0	10000	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	35	132	0	12	110
Major/Minor M	inor1		Major1	- 1	Major2	_
Conflicting Flow All		132	0		132	0
and the second s	-			:-		
Stage 1	•		14	-		*
Stage 2	2	2.00	12	-	10192	**
Critical Hdwy	- 18	6.22	- 1	-	4.12	
Critical Hdwy Stg 1	-		-	25	97.	**
Critical Hdwy Stg 2				33	•	199
Follow-up Hdwy	4.00	3.318	(*		2.218	*
Pot Cap-1 Maneuver	0	917	1 22	0	1453	
Stage 1	0	-	- 1-	0		•)
Stage 2	0	1.4		0		- 5
Platoon blocked, %			100			- 35
Mov Cap-1 Maneuver	+	917		-	1453	*
Mov Cap-2 Maneuver	E.	14	2.2	- 2	2	:23
Stage 1	- 12	1. 9	- 172		_ ^	- 2
Stage 2	÷	- 4		(2)	(4)	
Annenah	WID		MO		OD	
Approach	WB	_	NB		SB	
HCM Control Delay, s	9.1		0		0.7	
HCM LOS	Α					
Minor Lane/Major Mvmt		NRTV	VBLn1	SBL	SBT	
Capacity (veh/h)		and in		1453	-	
HCM Lane V/C Ratio			0.038			
HCM Control Delay (s)			9.1	7.5	Ş=.	
HCM Lane LOS		-				
		-	0.1	A	***	
HCM 95th %tile Q(veh)		- 4	0.1	0	~	

	•	-	1	•	1	1	-	1	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	50	1290	502	1746	153	78	376	126	152	
v/c Ratio	0.36	1.01	0.98	0.83	0.64	0.51	0.67	0.31	0.70	
Control Delay	18.5	44.1	73.6	26.8	71.5	67.8	27.6	57.0	60.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	18.5	44.1	73.6	26.8	71.5	67.8	27.6	57.0	60.2	
Queue Length 50th (ft)	7	~453	~399	638	64	64	142	51	97	
Queue Length 95th (ft)	m17	#720	#619	759	#136	114	220	87	167	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	138	1281	512	2096	239	259	563	401	277	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.36	1.01	0.98	0.83	0.64	0.30	0.67	0.31	0.55	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	←	•	•	Ť	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		ሻ	†		1,1	†	7	44	P	
Traffic Volume (vph)	46	1139	48	462	1515	91	141	72	346	116	68	72
Future Volume (vph)	46	1139	48	462	1515	91	141	72	346	116	68	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	1.00	0.97	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	0.92	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3501		1770	3509		3335	1827	1538	3502	1745	
Flt Permitted	0.09	1.00		0.08	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	165	3501		141	3509		3335	1827	1538	3502	1745	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	50	1238	52	502	1647	99	153	78	376	126	74	78
RTOR Reduction (vph)	0	3	0	0	3	0	0	0	56	0	30	0
Lane Group Flow (vph)	50	1287	0	502	1743	0	153	78	320	126	122	0
Heavy Vehicles (%)	0%	2%	14%	2%	2%	2%	5%	4%	5%	0%	1%	0%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6				0.770	8	- A		
Actuated Green, G (s)	50.7	46.2		86.0	75.0		10.6	9.6	42.9	14.9	13.9	
Effective Green, g (s)	50.7	46.2		86.0	75.0		10.6	9.6	42.9	14.9	13.9	
Actuated g/C Ratio	0.39	0.36		0.66	0.58		0.08	0.07	0.33	0.11	0.11	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	121	1244		510	2024		271	134	507	401	186	
v/s Ratio Prot	0.01	0.37		c0.25	0.50		c0.05	0.04	0.16	c0.04	c0.07	-
v/s Ratio Perm	0.15	0.01		c0.40	0.00		00,00	0.01	0.05	00.01	00.01	
v/c Ratio	0.41	1.03		0.98	0.86		0.56	0.58	0.63	0.31	0.65	
Uniform Delay, d1	27.1	41.9		40.9	23.1		57.5	58.3	36.8	52.9	55.7	
Progression Factor	0.82	0.44		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.8	32.2		35.5	5.1		2.7	6.3	2.6	0.5	8.0	
Delay (s)	24.0	50.8		76.5	28.2		60.2	64.6	39.4	53.3	63.7	
Level of Service	C	D		E	C		E	E	D	D	E	
Approach Delay (s)		49.8			39.0			47.9			59.0	
Approach LOS		D			D			D			E	
Intersection Summary												
HCM 2000 Control Delay			44.7	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.93									
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			26.0			
Intersection Capacity Utiliza	ation		92.4%		U Level				F			
Analysis Period (min)			15						- 10			
c Critical Lane Group												

	•		`	6	4-		4	Ť	-	1	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	487	1034	413	93	1376	542	384	523	472	715	701	
v/c Ratio	1.39	0.68	0.45	0.37	1.19	0.66	1.45	1.04	1.29	1.03	0.96	
Control Delay	224.3	33.1	3.8	26.5	120.9	13.7	246.2	76.4	192.6	92.9	54.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	224.3	33.1	3.8	26.5	120.9	13.7	246.2	76.4	192.6	92.9	54.6	
Queue Length 50th (ft)	~498	365	0	44	~731	101	~446	~247	~506	~338	485	
Queue Length 95th (ft)	#717	444	60	m38	#860	450	#622	#344	#720	#464	#754	
Internal Link Dist (ft)		673			937			607		627		
Turn Bay Length (ft)	300		350	160		350	150		300		325	
Base Capacity (vph)	350	1510	912	250	1156	821	265	502	365	694	732	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0.	0	0	
Reduced v/c Ratio	1.39	0.68	0.45	0.37	1.19	0.66	1.45	1.04	1.29	1.03	0.96	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	•	1	+	•	1	†	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	ሻ	**	7	19	个孙		7	个个	7"
Traffic Volume (vph)	448	951	380	86	1266	499	353	412	69	434	658	645
Future Volume (vph)	448	951	380	86	1266	499	353	412	69	434	658	645
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	3463		1770	3539	1583
Flt Permitted	0.12	1.00	1.00	0.28	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Satd. Flow (perm)	219	3539	1583	516	3539	1583	1863	3463		1863	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	487	1034	413	93	1376	542	384	448	75	472	715	701
RTOR Reduction (vph)	0	0	237	0	0	43	0	10	0	0	0	88
Lane Group Flow (vph)	487	1034	176	93	1376	499	384	513	0	472	715	613
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	.W 6000	1	6	7	3	8		7	4	5
Permitted Phases	2		2	6		6	8			4		4
Actuated Green, G (s)	55.5	55.5	55.5	42.5	42.5	64.0	18.5	18.5		25.5	25.5	47.0
Effective Green, g (s)	55.5	55.5	55.5	42.5	42.5	64.0	18.5	18.5		25.5	25.5	47.0
Actuated g/C Ratio	0.43	0.43	0.43	0.33	0.33	0.49	0.14	0.14		0.20	0.20	0.36
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	350	1510	675	250	1156	779	265	492		365	694	651
v/s Ratio Prot	c0.23	0.29		0.02	c0.39	0.11	0.16	0.15		0.21	0.20	0.16
v/s Ratio Perm	c0.36		0.11	0.10		0.21	c0.05			c0.05		0.23
v/c Ratio	1.39	0.68	0.26	0.37	1.19	0.64	1.45	1.04		1.29	1.03	0.94
Uniform Delay, d1	40.0	30.2	24.0	35.9	43.8	24.5	56.2	55.8		51.4	52.2	40.2
Progression Factor	1.00	1.00	1.00	0.63	0.69	1.04	0.44	0.42		1.00	1.00	1.00
Incremental Delay, d2	192.8	2.5	0.9	0.6	91.5	1.2	221.5	51.3		150.9	42.1	21.9
Delay (s)	232.8	32.7	25.0	23.1	121.7	26.5	246.4	74.7		202.3	94.4	62.1
Level of Service	F	C	C	C	F	C	F	E		F	F	E
Approach Delay (s)		81.4	340	LAC.	91.5			147.4			109.4	1.00
Approach LOS		F			F			F			F	
Intersection Summary												3
HCM 2000 Control Delay			101.1	H	ICM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.40									
Actuated Cycle Length (s)			130.0			st time (s)			26.0			
Intersection Capacity Utiliz	ation		119.2%	10	CU Level	of Service	Э		Н			
Analysis Period (min)			15									

	>	×	4	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	230	1137	50	723
v/c Ratio	0.76	0.44	0.16	0.28
Control Delay	63.8	4.1	7.0	6.3
Queue Delay	0.0	0.1	0.0	0.0
Total Delay	63.8	4.2	7.0	6.3
Queue Length 50th (ft)	175	53	11	87
Queue Length 95th (ft)	249	m105	34	167
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	530	2608	310	2576
Starvation Cap Reductn	0	460	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.43	0.53	0.16	0.28
Intersection Summary	45			

m Volume for 95th percentile queue is metered by upstream signal.

	>	_	×	4	1	X
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	M		44		7	^
Traffic Volume (vph)	150	62	943	103	46	665
Future Volume (vph)	150	62	943	103	46	665
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	TOWN TO	6.5	84,9271	6.5	6.5
Lane Util. Factor	1.00		0.95		1.00	0.95
Frt	0.96		0.99		1.00	1.00
Flt Protected	0.97		1.00		0.95	1.00
Satd. Flow (prot)	1753		3543		1805	3505
Flt Permitted	0.97		1.00		0.22	1.00
Satd. Flow (perm)	1753		3543		422	3505
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	163	67	1025	112	50	723
RTOR Reduction (vph)	13	0	4	0	0	0
Lane Group Flow (vph)	217	0	1133	0	50	723
Heavy Vehicles (%)	0%	2%	0%	4%	0%	3%
Turn Type	Prot	270	NA	-T (0)	Perm	NA
Protected Phases	4		6		i omi	2
Permitted Phases	4		· ·		2	2
Actuated Green, G (s)	21.4		95.6		95.6	95.6
Effective Green, g (s)	21.4		95.6		95.6	95.6
Actuated g/C Ratio	0.16		0.74		0.74	0.74
Clearance Time (s)	6.5		6.5	- 1	6.5	6.5
Vehicle Extension (s)	3.0		3.0		3.0	3.0
	288		2605			2577
Lane Grp Cap (vph) v/s Ratio Prot					310	0.21
SECTION SECTION AND ADDRESS OF THE PROPERTY OF	c0.12		c0.32		0.40	0.21
v/s Ratio Perm	0.75		0.40		0.12	0.00
v/c Ratio	0.75		0.43		0.16	0.28
Uniform Delay, d1	51.8		6.7		5.2	5.7
Progression Factor	1.00		0.52		0.88	0.95
Incremental Delay, d2	10.6		0.3		1.0	0.3
Delay (s)	62.3		3.8		5.6	5.7
Level of Service	E		A		Α	Α
Approach Delay (s)	62.3		3.8			5.7
Approach LOS	E		Α			Α
Intersection Summary						
HCM 2000 Control Delay			10.8	H	CM 2000	Level of Servi
HCM 2000 Volume to Capa	acity ratio		0.49			
Actuated Cycle Length (s)			130.0		um of lost	
Intersection Capacity Utiliza	ation		61.2%	IC	U Level o	of Service
Analysis Period (min)			15			
c Critical Lane Group						

	٨	_	*	4	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	86	1012	683	185	292	84
v/c Ratio	0.23	0.52	0,44	0.13	0.44	0.13
Control Delay	12.5	13.7	15.9	0.2	33.9	6.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.5	13.7	15.9	0.2	33.9	6.0
Queue Length 50th (ft)	21	144	79	0	185	0
Queue Length 95th (ft)	41	178	97	0	269	35
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175		N-SV-SV-SV-SV-SV-SV-SV-SV-SV-SV-SV-SV-SV-	125		200
Base Capacity (vph)	393	1965	1556	1401	659	643
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.52	0.44	0.13	0.44	0.13
Intersection Summary						

	•	-	•	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	个个	^	7	ሻ	7	
Traffic Volume (vph)	79	931	628	170	269	77	
Future Volume (vph)	79	931	628	170	269	77	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3574	3574	1615	1805	1615	
Fit Permitted	0.28	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	529	3574	3574	1615	1805	1615	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	86	1012	683	185	292	84	
RTOR Reduction (vph)	0	0	0	37	0	53	
Lane Group Flow (vph)	86	1012	683	148	292	31	
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	Mistant	
Permitted Phases	6			2	100	8	
Actuated Green, G (s)	71.5	71.5	56.6	104.1	47.5	47.5	
Effective Green, g (s)	71.5	71.5	56.6	104.1	47.5	47.5	
Actuated g/C Ratio	0.55	0.55	0.44	0.80	0.37	0.37	
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	373	1965	1556	1293	659	590	
v/s Ratio Prot	0.01	c0.28	0.19	0.04	c0.16		
v/s Ratio Perm	0.11	33.15.5	9,19	0.05	40.10	0.02	
v/c Ratio	0.23	0.52	0.44	0.11	0.44	0.05	
Uniform Delay, d1	15.3	18.4	25.6	2.8	31.2	26.7	
Progression Factor	0.80	0.69	0.58	0.00	1.00	1.00	
Incremental Delay, d2	0.3	0.9	0.8	0.2	2.2	0.2	
Delay (s)	12.5	13.6	15.7	0.2	33.4	26.9	
Level of Service	В	В	В	A	C	C	
Approach Delay (s)		13.5	12.4		31.9		
Approach LOS		В	В		C		
Intersection Summary					-		
HCM 2000 Control Delay			16.0	Н	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capaci	tv ratio		0.51				
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)	
Intersection Capacity Utilization	on		51.2%			of Service	
Analysis Period (min)			15	18			
c Critical Lane Group							

	٠	—	*	•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	75	1278	866	503	710	45
v/c Ratio	0.22	0.63	0.51	0.35	0.61	0.08
Control Delay	7.4	8.1	25.3	0.8	38.9	8.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.4	8.1	25.3	8.0	38.9	8.7
Queue Length 50th (ft)	13	148	269	0	257	0
Queue Length 95th (ft)	27	211	331	14	323	28
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	340	2020	1712	1420	1160	554
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.63	0.51	0.35	0.61	0.08
Intersection Summary						

	٠	-	•	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	个个	**	7	ሻሻ	7	
Traffic Volume (vph)	69	1176	797	463	653	41	
Future Volume (vph)	69	1176	797	463	653	41	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00	
Frt	1.00	1.00	1.00	0.85	1.00	0.85	
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3574	3574	1553	3467	1568	
Flt Permitted	0.25	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	466	3574	3574	1553	3467	1568	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	75	1278	866	503	710	45	
RTOR Reduction (vph)	0	0	0	99	0	30	
Lane Group Flow (vph)	75	1278	866	404	710	15	
Heavy Vehicles (%)	0%	1%	1%	4%	1%	3%	
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm	
Protected Phases	1	6	2	8	8	Michael	
Permitted Phases	6	1.50		2		8	
Actuated Green, G (s)	73.5	73.5	61.0	104.5	43.5	43.5	
Effective Green, g (s)	73.5	73.5	61.0	104.5	43.5	43.5	
Actuated g/C Ratio	0.57	0.57	0.47	0.80	0.33	0.33	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	325	2020	1677	1326	1160	524	
v/s Ratio Prot	0.01	c0.36	0.24	0.10	c0.20	سينتنب	
v/s Ratio Perm	0.12	0.0000000000000000000000000000000000000	(545.4)	0.16	1000000	0.01	
v/c Ratio	0.23	0.63	0.52	0.30	0.61	0.03	
Uniform Delay, d1	23.6	19.1	24.2	3.3	36.2	29.1	
Progression Factor	0.39	0.35	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.3	1.4	1.1	0.6	2.4	0.1	
Delay (s)	9.5	8.0	25.3	3.9	38.6	29.2	
Level of Service	A	A	C	A	D	C	
Approach Delay (s)		8.1	17.4		38.0		
Approach LOS		Α	В		D		
Intersection Summary							
HCM 2000 Control Delay			18.3	Н	CM 2000	Level of Servi	ce
HCM 2000 Volume to Capa	city ratio		0.66				
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)	
Intersection Capacity Utiliza	ation		62.0%			of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	-	•	•	4	1	1	1	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	36	68	91	84	55	529	12	617	42
v/c Ratio	0.20	0.24	0.47	0.28	0.10	0.20	0.02	0.43	0.03
Control Delay	27.8	9.5	34.5	9.3	3.9	3.2	3.5	5.1	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.8	9.5	34.5	9.3	3.9	3.2	3.5	5.1	0.0
Queue Length 50th (ft)	13	0	35	0	5	27	1	80	0
Queue Length 95th (ft)	37	30	75	33	18	53	6	168	0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	417	578	454	583	575	2676	667	1450	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.12	0.20	0.14	0.10	0.20	0.02	0.43	0.03
Intersection Summary									

	•	4	•	1	←	•	4	†	1	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	19	作		7	^	74
Traffic Volume (vph)	32	4	63	74	10	77	51	452	35	11	568	39
Future Volume (vph)	32	1	63	74	10	77	51	452	35	11	568	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	10000	4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
Fit Protected		0.95	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1812	1615		1820	1599	1805	3467		1805	1881	1615
Flt Permitted		0.67	1.00		0.73	1.00	0.39	1.00		0.46	1.00	1.00
Satd. Flow (perm)		1266	1615		1379	1599	746	3467		866	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	1	68	80	11	84	55	491	38	12	617	42
RTOR Reduction (vph)	0	0	60	0	0	74	0	5	0	0	0	0
Lane Group Flow (vph)	0	36	8	0	91	10	55	524	0	12	617	42
Heavy Vehicles (%)	0%	0%	0%	0%	0%	1%	0%	3%	3%	0%	1%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases	,,,,,,,	4	7 9		8!	0.51111		2			6	4!
Permitted Phases	4		4	8	0.546	8	2			6		6
Actuated Green, G (s)		8.4	8.4		8.4	8.4	51.7	51.7		51.7	51.7	60.1
Effective Green, g (s)		8.4	8.4		8.4	8.4	51.7	51.7		51.7	51.7	60.1
Actuated g/C Ratio		0.12	0.12		0.12	0.12	0.75	0.75		0.75	0.75	0.87
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		153	196		167	194	558	2593		647	1407	1615
v/s Ratio Prot							عثنت	0.15			c0.33	0.00
v/s Ratio Perm		0.03	0.01		c0.07	0.01	0.07	40.00		0.01	0.500.00	0.02
v/c Ratio		0.24	0.04		0.54	0.05	0.10	0.20		0.02	0.44	0.03
Uniform Delay, d1		27.4	26.8		28.6	26.8	2.4	2.6		2.2	3.3	0.6
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.8	0.1		3.6	0.1	0.4	0.2		0.1	1.0	0.0
Delay (s)		28.2	26.9		32.2	26.9	2.7	2.8		2.3	4.3	0.6
Level of Service		С	С		С	С	Α	Α		Α	Α	A
Approach Delay (s)		27.4			29.7			2.8			4.0	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.0	H	CM 2000	Level of	Service		A			
HCM 2000 Volume to Capa	city ratio		0.45					•				
Actuated Cycle Length (s)			69.1	Si	um of lost	t time (s)			9.0			
Intersection Capacity Utiliza	ition		56.6%			of Service			В			
Analysis Period (min)			15									
! Phase conflict between I	ane groups.											

	٠	-	1	+	†	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	39	1432	91	1944	130	83
v/c Ratio	0.32	0.63	0.36	0.82	0.50	0.30
Control Delay	20.3	3.5	4.8	6.4	39.4	22.2
Queue Delay	0.0	0.3	0.0	1.1	0.1	0.0
Total Delay	20.3	3.8	4.8	7.5	39.4	22.2
Queue Length 50th (ft)	3	37	9	130	63	18
Queue Length 95th (ft)	m18	42	m12	144	132	69
Internal Link Dist (ft)		449		746	93	431
Turn Bay Length (ft)	150		125			
Base Capacity (vph)	129	2285	264	2376	259	273
Starvation Cap Reductn	0	294	0	39	0	0
Spillback Cap Reductn	0	0	0	211	2	3
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.72	0.34	0.90	0.51	0.31
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	•	1	4-1	4	4	•	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		Ť	†			4			4	
Traffic Volume (vph)	36	1261	56	84	1757	31	46	2	72	17	6	53
Future Volume (vph)	36	1261	56	84	1757	31	46	2	72	17	6	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	0.99		1.00	1.00			0.92			0.91	
Fit Protected	0.95	1.00		0.95	1.00			0.98			0.99	
Satd. Flow (prot)	1570	3511		1805	3523			1713			1626	
Fit Permitted	0.05	1.00		0.13	1.00			0.84			0.91	
Satd. Flow (perm)	79	3511		242	3523			1467			1499	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	39	1371	61	91	1910	34	50	2	78	18	7	58
RTOR Reduction (vph)	0	3	0	0	1	0	0	41	0	0	49	0
Lane Group Flow (vph)	39	1429	0	91	1943	0	0	89	0	0	34	0
Heavy Vehicles (%)	15%	2%	6%	0%	2%	14%	0%	0%	0%	12%	0%	3%
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	87.9	83.2		94.3	86.4			19.4			19.4	
Effective Green, g (s)	87.9	83.2		94.3	86.4			19.4			19.4	
Actuated g/C Ratio	0.68	0.64		0.73	0.66			0.15			0.15	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	107	2247		270	2341			218			223	
v/s Ratio Prot	0.01	0.41		c0.02	c0.55						والتناب	
v/s Ratio Perm	0.23			0.22				c0.06			0.02	
v/c Ratio	0.36	0.64		0.34	0.83			0.41			0.15	
Uniform Delay, d1	41.1	14.2		20.5	16.3			50.1			48.1	
Progression Factor	0.85	0.18		0.27	0.26			1.00			1.00	
Incremental Delay, d2	1.7	1.1		0.5	2.4			5.6			0.3	
Delay (s)	36.6	3.7		6.0	6.6			55.7			48.4	
Level of Service	D	Α		Α	Α			E			D	
Approach Delay (s)		4.6			6.6			55.7			48.4	
Approach LOS		Α			Α			Е			D	
Intersection Summary												
HCM 2000 Control Delay			8.4	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.74		عبرك							
Actuated Cycle Length (s)			130.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		82.0%	10	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	`	6	←	4	1	-	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	3	1212	129	241	1761	279	:1	218	11	
v/c Ratio	0.02	0.67	0.14	0.89	0.79	0.66	0.00	0.43	0.12	
Control Delay	4.0	10.2	0.7	46.9	13.3	62.4	48.0	5.6	49.3	
Queue Delay	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	
Total Delay	4.0	10.2	0.7	46.9	14.0	62.4	48.0	5.6	49.3	
Queue Length 50th (ft)	0	75	0	82	97	117	1	0	6	
Queue Length 95th (ft)	m1	m253	m10	m#212	#1002	160	7	41	26	
Internal Link Dist (ft)		937			449		417		100	
Turn Bay Length (ft)	125		100	125		200		200		
Base Capacity (vph)	143	1796	950	272	2242	504	273	509	255	
Starvation Cap Reductn	0	0	0	0	179	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.67	0.14	0.89	0.85	0.55	0.00	0.43	0.04	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	-	•	1	←	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	1	†		ሻሻ	†	7		4	
Traffic Volume (vph)	3	1115	119	222	1617	3	257	1	201	4	3	4
Future Volume (vph)	3	1115	119	222	1617	3	257	1	201	4	3	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		0.97	1.00	1.00		1.00	
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85		0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (prot)	1805	3539	1615	1787	3573		3502	1900	1615		1774	
Flt Permitted	0.07	1.00	1,00	0.11	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (perm)	134	3539	1615	205	3573		3502	1900	1615		1774	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	1212	129	241	1758	3	279	1	218	4	3	4
RTOR Reduction (vph)	0	0	67	0	0	0	0	0	164	0	4	0
Lane Group Flow (vph)	3	1212	62	241	1761	0	279	1	54	0	7	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov	Split	NA	
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6					8			
Actuated Green, G (s)	58.0	56.9	62.4	80.1	72.5		15.6	15.6	32.3		2.8	
Effective Green, g (s)	58.0	56.9	62.4	80.1	72.5		15.6	15.6	32.3		2.8	
Actuated g/C Ratio	0.45	0.44	0.48	0.62	0.56		0.12	0.12	0.25		0.02	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	
Lane Grp Cap (vph)	73	1548	775	329	1992		420	228	401		38	
v/s Ratio Prot	0.00	0.34	c0.00	c0.09	c0.49		c0.08	0.00	0.02		c0.00	
v/s Ratio Perm	0.02		0.03	0.36					0.02			
v/c Ratio	0.04	0.78	0.08	0.73	0.88		0.66	0.00	0.14		0.19	
Uniform Delay, d1	60.1	31.3	18.3	38.6	25.1		54.7	50.4	38.0		62.5	
Progression Factor	0.28	0.35	0.41	0.60	0.50		1.00	1.00	1.00		1.00	
Incremental Delay, d2	0.1	1.8	0.0	4.9	3.7		3.9	0.0	0.2		2.4	
Delay (s)	16.7	12.9	7.4	27.9	16.2		58.6	50.4	38.1		64.9	
Level of Service	В	В	Α	C	В		Ε	D	D		Ε	
Approach Delay (s)		12.4			17.6			49.6			64.9	
Approach LOS		В			В			D			Е	
Intersection Summary												
HCM 2000 Control Delay			20.0	H	CM 2000	Level of	Service		C			
HCM 2000 Volume to Capa	city ratio		0.80									
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			32.5			
Intersection Capacity Utiliza	tion		79.2%	10	U Level o	of Service			D			
Analysis Period (min)			15									

	•	-	1	•	4	1	-	1	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	50	1290	502	1746	153	78	376	126	152	
v/c Ratio	0.36	1.01	0.98	0.83	0.64	0.51	0.40	0.31	0.70	
Control Delay	17.6	45.6	73.6	26.8	71.5	67.8	17.3	57.0	60.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.6	45.6	73.6	26.8	71.5	67.8	17.3	57.0	60.2	
Queue Length 50th (ft)	7	~456	~399	638	64	64	70	51	97	
Queue Length 95th (ft)	m18	#720	#619	759	#136	114	103	87	167	
Internal Link Dist (ft)		746		717		568			373	
Turn Bay Length (ft)	150		150		180		300	180		
Base Capacity (vph)	138	1281	512	2096	239	259	949	401	277	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.36	1.01	0.98	0.83	0.64	0.30	0.40	0.31	0.55	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	←	•	1	Ť	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		Ĭ	†		14	†	77	ሻሻ	B	
Traffic Volume (vph)	46	1139	48	462	1515	91	141	72	346	116	68	72
Future Volume (vph)	46	1139	48	462	1515	91	141	72	346	116	68	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	1.00	0.88	0.97	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	3501		1770	3509		3335	1827	2707	3502	1745	
Flt Permitted	0.09	1.00		0.08	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	165	3501		141	3509		3335	1827	2707	3502	1745	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	50	1238	52	502	1647	99	153	78	376	126	74	78
RTOR Reduction (vph)	0	3	0	0	3	0	0	0	56	0	30	0
Lane Group Flow (vph)	50	1287	0	502	1743	0	153	78	320	126	122	0
Heavy Vehicles (%)	0%	2%	14%	2%	2%	2%	5%	4%	5%	0%	1%	0%
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2			6					8			
Actuated Green, G (s)	50.7	46.2		86.0	75.0		10.6	9.6	42.9	14.9	13.9	
Effective Green, g (s)	50.7	46.2		86.0	75.0		10.6	9.6	42.9	14.9	13.9	
Actuated g/C Ratio	0.39	0.36		0.66	0.58		0.08	0.07	0.33	0.11	0.11	
Clearance Time (s)	6.5	6.5		6.5	6.5		6.5	6.5	6.5	6.5	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	121	1244		510	2024		271	134	893	401	186	
v/s Ratio Prot	0.01	0.37		c0.25	0.50		c0.05	0.04	0.09	c0.04	c0.07	
v/s Ratio Perm	0.15			c0.40					0.03			
v/c Ratio	0.41	1.03		0.98	0.86		0.56	0.58	0.36	0.31	0.65	
Uniform Delay, d1	27.1	41.9		40.9	23.1		57.5	58.3	33.1	52.9	55.7	
Progression Factor	0.76	0.48		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.8	32.2		35.5	5.1		2.7	6.3	0.2	0.5	8.0	
Delay (s)	22.5	52.4		76.5	28.2		60.2	64.6	33.3	53.3	63.7	
Level of Service	C	D		Ε	C		Ε	Е	C	D	Ε	
Approach Delay (s)		51.3			39.0			44.1			59.0	
Approach LOS		D			D			D			E	
Intersection Summary												- 3
HCM 2000 Control Delay			44.6	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.93									
Actuated Cycle Length (s)			130.0		um of lost				26.0			
Intersection Capacity Utiliza	ation		92.4%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	٨		`	6	4-	•	4	Ť	-	I	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	487	1034	413	93	1376	542	384	523	472	715	701
v/c Ratio	0.81	0.60	0.43	0.35	0.98	0.63	1.15	0.94	0.93	1.03	1.00
Control Delay	43.4	25.8	4.4	16.4	39.1	8.3	119.3	50.6	79.1	92.9	66.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.4	25.8	4.4	16.4	39.1	8.3	119.3	50.6	79.1	92.9	66.9
Queue Length 50th (ft)	154	323	18	35	544	79	~196	242	193	~338	~509
Queue Length 95th (ft)	#222	392	77	m21	#744	267	#236	#320	#298	#464	#781
Internal Link Dist (ft)		673			937			607		627	
Turn Bay Length (ft)	300		350	160		350	150		300	74633	325
Base Capacity (vph)	600	1728	963	267	1401	860	335	555	509	694	699
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.81	0.60	0.43	0.35	0.98	0.63	1.15	0.94	0.93	1.03	1.00

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	١	-	•	1	•	•	1	1	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	个个	7	ሻ	十 个	7	77	†		77	ተተ	74
Traffic Volume (vph)	448	951	380	86	1266	499	353	412	69	434	658	645
Future Volume (vph)	448	951	380	86	1266	499	353	412	69	434	658	645
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95		0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	3539	1583	1770	3539	1583	3433	3463		3433	3539	1583
Flt Permitted	0.09	1.00	1.00	0.28	1.00	1.00	0.33	1.00		0.46	1.00	1.00
Satd. Flow (perm)	321	3539	1583	516	3539	1583	1205	3463		1656	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	487	1034	413	93	1376	542	384	448	75	472	715	701
RTOR Reduction (vph)	0	0	190	0	0	69	0	10	0	0	0	91
Lane Group Flow (vph)	487	1034	223	93	1376	473	384	513	0	472	715	610
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	5	2	W 8000	1	6	7	3	8		7	4	5
Permitted Phases	2		2	6		6	8			4		4
Actuated Green, G (s)	63.5	63.5	63.5	51.5	51.5	65.0	20.5	20.5		25.5	25.5	44.0
Effective Green, g (s)	63.5	63.5	63.5	51.5	51.5	65.0	20.5	20.5		25.5	25.5	44.0
Actuated g/C Ratio	0.49	0.49	0.49	0.40	0.40	0.50	0.16	0.16		0.20	0.20	0.34
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	599	1728	773	267	1401	791	335	546		509	694	614
v/s Ratio Prot	0.12	0.29		0.02	c0.39	0.06	0.07	c0.15		0.10	c0.20	c0.14
v/s Ratio Perm	0.28		0.14	0.12		0.24	0.11			0.09		0.24
v/c Ratio	0.81	0.60	0.29	0.35	0.98	0.60	1.15	0.94		0.93	1.03	0.99
Uniform Delay, d1	36.4	24.0	19.8	28.9	38.8	23.2	53.4	54.1		50.3	52.2	42.8
Progression Factor	1.00	1.00	1.00	0.46	0.58	0.60	0.43	0.43		1.00	1.00	1.00
Incremental Delay, d2	8.3	1.5	0.9	0.5	15.4	0.8	94.3	25.6		23.1	42.1	34.4
Delay (s)	44.7	25.6	20.7	13.8	37.9	14.7	117.1	48.9		73.3	94.4	77.2
Level of Service	D	C	C	В	D	В	F	D		E	F	E
Approach Delay (s)	(114)	29.4			30.6			77.8			82.8	113
Approach LOS		C			C			Ε			F	
Intersection Summary												
HCM 2000 Control Delay			51.2	H	ICM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		1.08									
Actuated Cycle Length (s)	النبيرين		130.0	S	um of los	st time (s)			26.0			
Intersection Capacity Utiliz	ation		101.3%	IC	CU Level	of Service	е		G			
Analysis Period (min)			15									

	>	×	*	×
Lane Group	EBL	SET	NWL	NWT
Lane Group Flow (vph)	230	1137	50	723
v/c Ratio	0.76	0.44	0.16	0.28
Control Delay	63.8	4.0	10.3	9.7
Queue Delay	0.0	0.1	0.0	0.0
Total Delay	63.8	4.1	10.3	9.7
Queue Length 50th (ft)	175	71	11	87
Queue Length 95th (ft)	249	m101	72	354
Internal Link Dist (ft)	392	607		1164
Turn Bay Length (ft)			70	
Base Capacity (vph)	530	2608	310	2576
Starvation Cap Reductn	0	427	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.43	0.52	0.16	0.28
Intersection Summary				

m Volume for 95th percentile queue is metered by upstream signal.

	>	\neg	×	4	1	X		
Movement	EBL	EBR	SET	SER	NWL	NWT		
Lane Configurations	W		44		7	^		
Traffic Volume (vph)	150	62	943	103	46	665		
Future Volume (vph)	150	62	943	103	46	665		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	MAGE TO	6.5	5 = 8:31/	6.5	6.5		
Lane Util, Factor	1.00		0.95		1.00	0.95		
Frt	0.96		0.99		1.00	1.00		
FIt Protected	0.97		1.00		0.95	1.00		
Satd. Flow (prot)	1753		3543		1805	3505		
FIt Permitted	0.97		1.00		0.22	1.00		
Satd. Flow (perm)	1753		3543		422	3505		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	163	67	1025	112	50	723		
RTOR Reduction (vph)	13	0	4	0	0	0		
Lane Group Flow (vph)	217	0	1133	0	50	723		
Heavy Vehicles (%)	0%	2%	0%	4%	0%	3%		
		270		470				
Turn Type	Prot		NA	_	Perm	NA		
Protected Phases	4		6			2		
Permitted Phases	04.4		05.0		2	05.0		
Actuated Green, G (s)	21.4		95.6		95.6	95.6		
Effective Green, g (s)	21.4		95.6		95.6	95.6		
Actuated g/C Ratio	0.16		0.74		0.74	0.74		
Clearance Time (s)	6.5		6.5		6.5	6.5		
Vehicle Extension (s)	3.0		3.0		3.0	3.0		
ane Grp Cap (vph)	288		2605		310	2577		
//s Ratio Prot	c0.12		c0.32			0.21		
v/s Ratio Perm	nin and to				0.12			
v/c Ratio	0.75		0.43		0.16	0.28		
Jniform Delay, d1	51.8		6.7		5.2	5.7		
Progression Factor	1.00		0.51		1.35	1.50		
ncremental Delay, d2	10.6		0.3		1.0	0.3		
Delay (s)	62.3		3.8		8.0	8.8		
Level of Service	E		Α		Α	Α		
Approach Delay (s)	62.3		3.8			8.8		
Approach LOS	E		Α			Α		
Intersection Summary								
HCM 2000 Control Delay			11.9	H	CM 2000	Level of Service	э В	
HCM 2000 Volume to Capa	city ratio		0.49					
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)	13.0	
Intersection Capacity Utiliza	ation		61.2%			of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

	٨	-	*	4	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	86	1012	683	185	292	84
v/c Ratio	0.23	0.52	0.44	0.13	0.44	0.13
Control Delay	11.0	12.4	15.9	0.2	33.9	6.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11.0	12.4	15.9	0.2	33.9	6.0
Queue Length 50th (ft)	20	133	79	0	185	0
Queue Length 95th (ft)	38	165	97	0	269	35
Internal Link Dist (ft)		1164	2181		270	
Turn Bay Length (ft)	175			125		200
Base Capacity (vph)	393	1965	1556	1401	659	643
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.52	0.44	0.13	0.44	0.13
Intersection Summary						

	٠	-	-	4	-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	个个	^	7	7	7		
Traffic Volume (vph)	79	931	628	170	269	77		
Future Volume (vph)	79	931	628	170	269	77		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
FIt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	3574	3574	1615	1805	1615		
Flt Permitted	0.28	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	529	3574	3574	1615	1805	1615		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	86	1012	683	185	292	84		
RTOR Reduction (vph)	0	0	0	37	0	53		
Lane Group Flow (vph)	86	1012	683	148	292	31		
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%		
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm		
Protected Phases	1	6	2	8	8	Novaled		
Permitted Phases	6		200	2		8		
Actuated Green, G (s)	71.5	71.5	56.6	104.1	47.5	47.5		
Effective Green, g (s)	71.5	71.5	56.6	104.1	47.5	47.5		
Actuated g/C Ratio	0.55	0.55	0.44	0.80	0.37	0.37		
Clearance Time (s)	6.5	6.5	6.5	4.5	4.5	4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	373	1965	1556	1293	659	590		
v/s Ratio Prot	0.01	c0.28	0.19	0.04	c0.16	330		
v/s Ratio Perm	0.11	00.20	0.13	0.05	00.10	0.02		
v/c Ratio	0.23	0.52	0.44	0.03	0.44	0.05		
Uniform Delay, d1	15.3	18.4	25.6	2.8	31.2	26.7		
Progression Factor	0.69	0.62	0.58	0.00	1.00	1.00		
Incremental Delay, d2	0.03	0.02	0.38	0.00	2.2	0.2		
Delay (s)	10.9	12.3	15.7	0.2	33.4	26.9		
Level of Service	10.9 B	12.3 B	13.7 B	Α.2	33.4 C	20.9 C		
Approach Delay (s)	Б	12.2	12.4	A	31.9	U		
Approach LOS		B	B		C			
Intersection Summary								
HCM 2000 Control Delay			15.4	Н	CM 2000	Level of Service	e	В
HCM 2000 Volume to Capa	city ratio		0.51		اززر	تندرين		
Actuated Cycle Length (s)	-		130.0	S	um of lost	t time (s)		17.5
Intersection Capacity Utiliza	ation		51.2%			of Service		Α
Analysis Period (min)			15					
c Critical Lane Group								

	٨	-	-	4	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Group Flow (vph)	75	1278	866	503	710	45
v/c Ratio	0.22	0.63	0.51	0.35	0.61	0.08
Control Delay	7.9	8.4	25.3	0.8	38.9	8.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.9	8.4	25.3	0.8	38.9	8.7
Queue Length 50th (ft)	14	162	269	0	257	0
Queue Length 95th (ft)	27	212	331	14	323	28
Internal Link Dist (ft)		2181	561		478	
Turn Bay Length (ft)	160			225	300	250
Base Capacity (vph)	340	2020	1712	1420	1160	554
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.63	0.51	0.35	0.61	0.08
Intersection Summary						

	٠	-	-	•	\	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	ተተ	^	7	ሻሻ	7		
Traffic Volume (vph)	69	1176	797	463	653	41		
Future Volume (vph)	69	1176	797	463	653	41		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.97	1.00		
Frt	1.00	1.00	1.00	0.85	1.00	0.85		
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1805	3574	3574	1553	3467	1568		
Flt Permitted	0.25	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)	466	3574	3574	1553	3467	1568		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	75	1278	866	503	710	45		
RTOR Reduction (vph)	0	0	0	99	0	30		
Lane Group Flow (vph)	75	1278	866	404	710	15		
Heavy Vehicles (%)	0%	1%	1%	4%	1%	3%		
Turn Type	pm+pt	NA	NA	pm+ov	Prot	Perm		
Protected Phases	1	6	2	8	8	002402		
Permitted Phases	6	100		2		8		
Actuated Green, G (s)	73.5	73.5	61.0	104.5	43.5	43.5		
Effective Green, g (s)	73.5	73.5	61.0	104.5	43.5	43.5		
Actuated g/C Ratio	0.57	0.57	0.47	0.80	0.33	0.33		
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5	6.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	325	2020	1677	1326	1160	524		
v/s Ratio Prot	0.01	c0.36	0.24	0.10	c0.20			
v/s Ratio Perm	0.12	77,75	25/15/3	0.16		0.01		
v/c Ratio	0.23	0.63	0.52	0.30	0.61	0.03		
Uniform Delay, d1	23.6	19.1	24.2	3.3	36.2	29.1		
Progression Factor	0.42	0.36	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.3	1.4	1.1	0.6	2.4	0.1		
Delay (s)	10.3	8.3	25.3	3.9	38.6	29.2		
Level of Service	В	A	C	A	D	C		
Approach Delay (s)		8.4	17.4		38.0			
Approach LOS		A	В		D			
Intersection Summary								
HCM 2000 Control Delay			18.4	Н	CM 2000	Level of Service	е	В
HCM 2000 Volume to Capa	city ratio		0.66					
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)		19.5
Intersection Capacity Utiliza	ation		62.0%			of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

	-	•	•	4	1	1	1	1	1
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	36	68	91	84	55	529	12	617	42
v/c Ratio	0.20	0.24	0.47	0.28	0.10	0.20	0.02	0.43	0.03
Control Delay	27.8	9.5	34.5	9.3	3.9	3.2	3.5	5.1	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.8	9.5	34.5	9.3	3.9	3.2	3.5	5.1	0.0
Queue Length 50th (ft)	13	0	35	0	5	27	- 1	80	0
Queue Length 95th (ft)	37	30	75	33	18	53	6	168	0
Internal Link Dist (ft)	382		246			410		568	
Turn Bay Length (ft)		125		100	100		100		200
Base Capacity (vph)	417	578	454	583	575	2676	667	1450	1615
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.12	0.20	0.14	0.10	0.20	0.02	0.43	0.03
Intersection Summary									

	٠	4	•	1	-	•	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	1	*		7	†	74
Traffic Volume (vph)	32	1	63	74	10	77	51	452	35	11	568	39
Future Volume (vph)	32	1	63	74	10	77	51	452	35	11	568	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	0.99		1.00	1.00	0.85
FIt Protected		0.95	1.00		0.96	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1812	1615		1820	1599	1805	3467		1805	1881	1615
Fit Permitted		0.67	1.00		0.73	1.00	0.39	1.00		0.46	1.00	1.00
Satd. Flow (perm)		1266	1615		1379	1599	746	3467		866	1881	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	1	68	80	11	84	55	491	38	12	617	42
RTOR Reduction (vph)	0	0	60	0	0	74	0	5	0	0	0	0
Lane Group Flow (vph)	0	36	8	0	91	10	55	524	0	12	617	42
Heavy Vehicles (%)	0%	0%	0%	0%	0%	1%	0%	3%	3%	0%	1%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	custom
Protected Phases		4	16 3-33 6011		8!			2			6	4!
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		8.4	8.4		8.4	8.4	51.7	51.7		51.7	51.7	60.1
Effective Green, g (s)		8.4	8.4		8.4	8.4	51.7	51.7		51.7	51.7	60.1
Actuated g/C Ratio		0.12	0.12		0.12	0.12	0.75	0.75		0.75	0.75	0.87
Clearance Time (s)		4.5	4.5		4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		153	196		167	194	558	2593		647	1407	1615
v/s Ratio Prot								0.15			c0.33	0.00
v/s Ratio Perm		0.03	0.01		c0.07	0.01	0.07			0.01		0.02
v/c Ratio		0.24	0.04		0.54	0.05	0.10	0.20		0.02	0.44	0.03
Uniform Delay, d1		27.4	26.8		28.6	26.8	2.4	2.6		2.2	3.3	0.6
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.8	0.1		3.6	0.1	0.4	0.2		0.1	1.0	0.0
Delay (s)		28.2	26.9		32.2	26.9	2.7	2.8		2.3	4.3	0.6
Level of Service		С	С		C	C	Α	Α		Α	Α	Α
Approach Delay (s)		27.4			29.7			2.8			4.0	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.0	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	city ratio		0.45									
Actuated Cycle Length (s)			69.1	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilizat	tion		56.6%	IC	U Level	of Service			В			
Analysis Period (min)			15									
! Phase conflict between la	ane groups.											

c Critical Lane Group

	٠	-	1	+	1	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	39	1432	91	1944	130	83
v/c Ratio	0.32	0.63	0.36	0.82	0.50	0.30
Control Delay	19.7	3.2	4.8	6.4	39.4	22.2
Queue Delay	0.0	0.2	0.0	1.1	0.1	0.0
Total Delay	19.7	3.5	4.8	7.5	39.4	22.2
Queue Length 50th (ft)	- 1	37	9	130	63	18
Queue Length 95th (ft)	m18	44	m12	144	132	69
Internal Link Dist (ft)		449		746	93	431
Turn Bay Length (ft)	150		125			
Base Capacity (vph)	129	2285	264	2376	259	273
Starvation Cap Reductn	0	242	0	39	0	0
Spillback Cap Reductn	0	0	0	210	2	3
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.70	0.34	0.90	0.51	0.31
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	٠	-	•	1	4	•	4	Ť	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		ħ	†			4			4	
Traffic Volume (vph)	36	1261	56	84	1757	31	46	2	72	17	6	53
Future Volume (vph)	36	1261	56	84	1757	31	46	2	72	17	6	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	0.99		1.00	1.00			0.92			0.91	
Fit Protected	0.95	1.00		0.95	1.00			0.98			0.99	
Satd. Flow (prot)	1570	3511		1805	3523			1713			1626	
Flt Permitted	0.05	1.00		0.13	1.00			0.84			0.91	
Satd. Flow (perm)	79	3511		242	3523			1467			1499	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	39	1371	61	91	1910	34	50	2	78	18	7	58
RTOR Reduction (vph)	0	3	0	0	1	0	0	41	0	0	49	0
Lane Group Flow (vph)	39	1429	0	91	1943	0	0	89	0	0	34	0
Heavy Vehicles (%)	15%	2%	6%	0%	2%	14%	0%	0%	0%	12%	0%	3%
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	87.9	83.2		94.3	86.4			19.4			19.4	
Effective Green, g (s)	87.9	83.2		94.3	86.4			19.4			19.4	
Actuated g/C Ratio	0.68	0.64		0.73	0.66			0.15			0.15	
Clearance Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	107	2247		270	2341			218			223	
v/s Ratio Prot	0.01	0.41		c0.02	c0.55						والتناب	
v/s Ratio Perm	0.23			0.22				c0.06			0.02	
v/c Ratio	0.36	0.64		0.34	0.83			0.41			0.15	
Uniform Delay, d1	41.1	14.2		20.5	16.3			50.1			48.1	
Progression Factor	0.81	0.16		0.27	0.26			1.00			1.00	
Incremental Delay, d2	1.7	1.1		0.5	2.4			5.6			0.3	
Delay (s)	35.1	3.4		6.0	6.6			55.7			48.4	
Level of Service	D	Α		Α	Α			E			D	
Approach Delay (s)		4.3			6.6			55.7			48.4	
Approach LOS		Α			Α			Е			D	
Intersection Summary												
HCM 2000 Control Delay			8.3	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	acity ratio		0.74		الاراك							
Actuated Cycle Length (s)			130.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		82.0%	10	OU Level of	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	`	6	←	4	†	-	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	3	1212	129	241	1761	279	:1	218	11	
v/c Ratio	0.02	0.67	0.14	0.89	0.79	0.66	0.00	0.43	0.12	
Control Delay	4.7	12.7	0.6	46.3	12.4	62.4	48.0	5.6	49.3	
Queue Delay	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	
Total Delay	4.7	12.7	0.6	46.3	13.0	62.4	48.0	5.6	49.3	
Queue Length 50th (ft)	0	107	0	87	81	117	1	0	6	
Queue Length 95th (ft)	m1	m407	m8	m#212	#1002	160	7	41	26	
Internal Link Dist (ft)		937			449		417		100	
Turn Bay Length (ft)	125		100	125		200		200		
Base Capacity (vph)	143	1796	950	272	2242	504	273	509	255	
Starvation Cap Reductn	0	0	0	0	179	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.67	0.14	0.89	0.85	0.55	0.00	0.43	0.04	

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	-	•	1	←	*	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	1	†		ሻሻ	†	7		4	
Traffic Volume (vph)	3	1115	119	222	1617	3	257	1	201	4	3	4
Future Volume (vph)	3	1115	119	222	1617	3	257	1	201	4	3	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95		0.97	1.00	1.00		1.00	
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85		0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (prot)	1805	3539	1615	1787	3573		3502	1900	1615		1774	
Flt Permitted	0.07	1.00	1.00	0.11	1.00		0.95	1.00	1.00		0.98	
Satd. Flow (perm)	134	3539	1615	205	3573		3502	1900	1615		1774	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	1212	129	241	1758	3	279	1	218	4	3	4
RTOR Reduction (vph)	0	0	67	0	0	0	0	0	164	0	4	0
Lane Group Flow (vph)	3	1212	62	241	1761	0	279	1	54	0	7	0
Heavy Vehicles (%)	0%	2%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	custom	pm+pt	NA		Split	NA	pm+ov	Split	NA	
Protected Phases	5	2	3	1	6		8	8	1	4	4	
Permitted Phases	2		2	6					8			
Actuated Green, G (s)	58.0	56.9	62.4	80.1	72.5		15.6	15.6	32.3		2.8	
Effective Green, g (s)	58.0	56.9	62.4	80.1	72.5		15.6	15.6	32.3		2.8	
Actuated g/C Ratio	0.45	0.44	0.48	0.62	0.56		0.12	0.12	0.25		0.02	
Clearance Time (s)	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5		6.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0		3.0	
Lane Grp Cap (vph)	73	1548	775	329	1992		420	228	401		38	
v/s Ratio Prot	0.00	0.34	c0.00	c0.09	c0.49		c0.08	0.00	0.02		c0.00	
v/s Ratio Perm	0.02		0.03	0.36					0.02			
v/c Ratio	0.04	0.78	0.08	0.73	0.88		0.66	0.00	0.14		0.19	
Uniform Delay, d1	60.1	31.3	18.3	38.6	25.1		54.7	50.4	38.0		62.5	
Progression Factor	0.32	0.43	0.25	0.58	0.44		1.00	1.00	1.00		1.00	
Incremental Delay, d2	0.2	2.8	0.0	4.9	3.7		3.9	0.0	0.2		2.4	
Delay (s)	19.7	16.3	4.7	27.2	14.9		58.6	50.4	38.1		64.9	
Level of Service	В	В	Α	C	В		Ε	D	D		Ε	
Approach Delay (s)		15.2			16.4			49.6			64.9	
Approach LOS		В			В			D			Е	
Intersection Summary												
HCM 2000 Control Delay			20.4	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.80									
Actuated Cycle Length (s)			130.0		um of lost				32.5			
Intersection Capacity Utiliza	tion		79.2%	10	U Level o	of Service			D			
Analysis Period (min)			15									

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Y	1		7	P	
Traffic Vol, veh/h	4	0	78	25	0	8	87	171	20	10	254	9
Future Vol., veh/h	4	0	78	25	0	8	87	171	20	10	254	9
Conflicting Peds, #/hr	0	0	0	0	-0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None			None			(4)4)	- 3	-	None
Storage Length		-	N.			17	75	7.7	-	70		-
Veh in Median Storage	e,# -	0		119	0	100		0	150		0	
Grade, %	-	0		-	0	:=:		0	:#1	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	.0	85	27	0	9	95	186	22	- 11	276	10
Major/Minor	Minor2			Minor1		- 1	Major1			Major2		
Conflicting Flow All	695	701	281	733	695	197	286	0	0	208	0	0
Stage 1	303	303	201	387	387	197	200	U	U	200	U	U
Stage 2	392	398	/4	346	308	150						
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12		500	4.12		
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	0.22	7.14			7.12		
Critical Hdwy Stg 2	6.12	5.52	1.115	6.12	5.52							
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218			2.218	-	-
Pot Cap-1 Maneuver	357	363	758	336	366	844	1276			1363	- 2	-
Stage 1	706	664	700	637	610	044	1270	-	-	1000	2	4
Stage 2	633	603		670	660				أرا			
Platoon blocked, %	550	500	100	310	000	- 50	- 22	-	-	2/		-
Mov Cap-1 Maneuver	331	334	758	280	336	844	1276			1363		
Mov Cap-2 Maneuver	331	334	7.50	280	336	044	1210	-	-	1000	2	
Stage 1	654	659	- W	590	565	[L 20	- 10		100	121	~	-
Stage 2	580	558		590	655	-		-	-	9,		-
Otago Z	300	550	1.7	330	000	57.5	3				× 1	أند
Approach	EB			WB			NB			SB		
	10.8			17.1			2.5			0.3		
HCM Control Delay, s HCM LOS	10.6 B			C			2.0			0.0		
HOW LOG	۵											
Minor Lane/Major Mvn	nt .	NBL	NBT	NRP	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1276	1101	HOIL	713	334	1363	UDI	ODIT			
HCM Lane V/C Ratio		0.074	-	V.	0.125				-			
HCM Control Delay (s)		0.074			10.8	17.1	7.7					
HCM Lane LOS		A			В	C	A		*			
HCM 95th %tile Q(veh	Ŷ.	0.2	100	- 10	0.4	0.4	0	- 4	-			
HOW BOTH WITH CHANGE	1	0.2	- 1		0.4	0.4	U	- 3	~			

Intersection	40.7												
Int Delay, s/veh	13.7												
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	ሻ	7		Y	1			4			4		
Traffic Vol, veh/h	72	166	69	18	127	79	175	10	26	105	20	100	
Future Vol, veh/h	72	166	69	18	127	79	175	10	26	105	20	100	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		-	None	(8)		None			None	3		None	
Storage Length	100		(17)	100	-	17.		77.				=	
Veh in Median Storage	,# -	0	18	Щ	0	100		0	186		0		
Grade, %	-	0		-	0	:=:		0		-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	78	180	75	20	138	86	190	- 11	28	114	22	109	
Major/Minor I	Major1			Major2			Minor1			Minor2			
Conflicting Flow All	224	0	0	255	0	0	661	638	218	614	632	181	
Stage 1	-			e e			374	374		221	221		
Stage 2	2	-	100	*		120	287	264	121	393	411	8	
Critical Hdwy	4.12	74	-	4.12	- 6	2	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-		1.0	253			6.12	5.52		6.12	5.52	-	
Critical Hdwy Stg 2	-		- 6				6.12	5.52		6.12	5.52	-	
Follow-up Hdwy	2.218		(*	2.218		(*)	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1345		28	1310	-		376	394	822	404	398	862	
Stage 1	2	14	U.S.	3			647	618	3	781	720	- 4	
Stage 2						-	720	690		632	595	-	
Platoon blocked, %			7.E.		-	- 170							
Mov Cap-1 Maneuver	1345	*	(€)	1310		- 20	297	366	822	360	369	862	
Mov Cap-2 Maneuver	Ŀ	-	·	2	2	:20	297	366	- 30	360	369	2	
Stage 1	2	1.10	10		_ ~	-	609	582	- 4	736	709	2	
Stage 2	Ž.	-	3.7		1	F.	601	680	3	564	560	- 3	
Approach	SE			NW			NE			SW			
HCM Control Delay, s	1.8			0.6			38.5			19.6			
HCM LOS							Е			С			
					14								
Minor Lane/Major Mvm	t i	NELn1	NWL	NWT	NWR	SEL	SET	SER	SWLn1				
Capacity (veh/h)	4,11	326	1310			1345	, T,	- 4	487				
HCM Lane V/C Ratio		0.704	0.015	25	:5	0.058	*		0.502				
HCM Control Delay (s)		38.5	7.8			7.8			19.6				
HCM Lane LOS		Е	Α	74	(18)	Α	, =		C				
HCM 95th %tile Q(veh)		5	0		- 2	0.2	100	1 2	2.8				

Intersection				
Intersection Delay, s/veh	4.3			
Intersection LOS	A			
Approach	EB	NB	SB	
Entry Lanes	14	1	M	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	89	201	285	
Demand Flow Rate, veh/h	91	205	291	
Vehicles Circulating, veh/h	242	33	23	
Vehicles Exiting, veh/h	72	300	215	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1,000	
Approach Delay, s/veh	4.2	4.0	4.6	
Approach LOS	Α	Α	A	
Lane	Left	Left	Left	
Designated Moves	LR	LT	TR	
Assumed Moves	LR	LT	TR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Follow-Up Headway, s	2,609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	
Entry Flow, veh/h	91	205	291	
Cap Entry Lane, veh/h	1078	1334	1348	
Entry HV Adj Factor	0.978	0.983	0.980	
Flow Entry, veh/h	89	201	285	
Cap Entry, veh/h	1054	1311	1321	
V/C Ratio	0.084	0.154	0.216	
Control Delay, s/veh	4.2	4.0	4.6	
LOS	A	A	Α	
95th %tile Queue, veh	0	4	1	

Intersection						
Int Delay, s/veh	1					
172 F C 1 -						
	WBL	WBR	SEL	SET	NWT	NWR
Lane Configurations		74	"	*	1	
Traffic Vol, veh/h	0	29	34	262	194	0
Future Vol, veh/h	0	29	34	262	194	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized		The state of		None		None
Storage Length		0	50		77	150
Veh in Median Storage, a	# 0		36	0	0	150
Grade, %	0			0	0	9 4 5
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	32	37	285	211	0
			-	-80	N-M-	17.
er i ien.	1 - 0		N			
	inor2		Major1		Vlajor2	
Conflicting Flow All		211	211	0	*	0
Stage 1			-	-		•
Stage 2	27	Air	74		-	120
Critical Hdwy	The state of	6.22	4.12	-	- 8	
Critical Hdwy Stg 1	E	-	: 	27.5		
Critical Hdwy Stg 2			- 4			*
Follow-up Hdwy	÷	3.318	2.218			; * €:
Pot Cap-1 Maneuver	0	829	1360		-	0
Stage 1	0	54	- 14		-	0
Stage 2	0	Π,				0
Platoon blocked, %					-	
Mov Cap-1 Maneuver	J.	829	1360			*
Mov Cap-2 Maneuver	L	_	2	2	2	:40
Stage 1	2	1 0	72			30
Stage 2	÷			12	14	-
Oldgo Z	7.		1173		, .	#5.
Approach	WB	H	SE		NW	
HCM Control Delay, s	9.5		0.9		0	
HCM LOS	Α					
Nices Constituted to the State of State		I A II A CZO	AUDI 4	OF	OFT	
Minor Lane/Major Mvmt			VBLn1	SEL	SET	
Capacity (veh/h)						
HCM Lane V/C Ratio		-	0.038		- 12	
HCM Control Delay (s)		*	9.5	7.7		
HCM Lane LOS		- 4	Α	Α		
HCM 95th %tile Q(veh)		-	0.1	0.1	37	

Day: Tuesday Date: 10/06/2020

				lawn St					Brook	lawn St		- Cars,			/Old K		ccess D	wy	P	etco Dw	y/Old Kro Westb		cess D	wy	
Start Time	Left	Thru		Utum	Peds	App. Total	Left	Thru		Utum	Peds	App. Total	Left	Thru	Rgt	Utum	Paris	App. Total	Left	Thru I			Peris	App. Total	Int. Total
7:00 AM	0	4	1395	0	0	5	0	1	1	0	0	2	3	0	0	Ö	0	3	- 5	0	0	0	D	D.	10
7:15 AM	2	6	n	0	0	- 8	ñ	6	7	0	. 0	13	8	2	1	0	0	11	0	0	ō	0	o.	0	32
7:30 AM	1	8	- 5	0	0	11	ñ	7	- 6	0	0	13	8	n	0	ő	0	8	1	1	- 1	0	n	3	35
7.45 AM	3	7	g	n	ñ	19	2		10	n	Ď.	23	9	2	- 4	ő	Ö	12	- 4	2		n	0		32 35 58
Total	6	- 22	15	0	0	43	5	22	24	0	- 0	51	28	4	- 2	0	0	34	- 2	3	- 2	0	0	7	135
8:00 AM	- 1	9	11	0	0	21	2	16	11	1	0	30	11	Ö	0	0		11	1	0	1	0	n	2	64
8.15 AM	4	11	7	0	0	22	2	21	7	0	ō	30	17	- 1	1	0	0	19	- 1	Ö	- 5	0	0	4	75
8:30 AM	1	5	1	0	0	7	0	10	4	0	0	14	14	0	- 4	0	0	18	3	0	.0	0	0	3	42
8:45 AM		5	1	0	0	7	Ö	9	- 6	0	0	15	18	1	0	0	1	19	0	1	- 1	0	0	2	43
Total	7	30	20	0	0	57	- 4	56	28	- 1	0	89	60	- 2	- 5	0	- 1	67	- 5		- 5	0	0	11	224
""BREAK""		1.7457					12						er seers			177		200							
3:00 PM	5	6	5	0	0	16	1 1	16	21	0	D	38	32	1	2	0	0	35	5	9	7	0	0	13	102
3.15 PM	5	27	9	0	O	41	- 6	20	8	0	0	34	42	3	6	. 0	0	51	2	5	2	0	0	9	135
3:30 PM	5	21	8	0	0	34	13	38	14	0	0	65	37	5	6	0	0	48	21	2	10	0	b	33	180
3:45 PM	4	13	0	0	0	17	2	30	18	0	0	50	44	0	5	0	0	49	16	9	13	0	0	38	154
Total	19	67	22	0	0	108	22	104	61	0	0	187	155	9	19	.0	0	183	44	17	32	0	0	93	571
4:00 PM	2	21	1	0	0	24	- 1	23	23	0	0	47	36	- 1	7	O	0	44	- 1	2	3	0	D	6	121
4:15 PM	7	17	0	0	0	24	1	20	9	0	0	30	30	1.	7	0	0	38	(1)	2	- 1	0	0	4.	96
4:30 PM	4	19	0	0	0	23	3	17	13	0	0	33	29	1	3	0	0	33	3	3	1	0	0	7	96
4:45 PM	6	13	0	0	2	19	3	28	19	0	0	50	38	- 1	5	. 0	0	44	- 5	- 1	- 1	0	- 1	7	120
Total	19	70	- 1	0	2	90	- 8	88	64	0	0	160	133	- 4	22	- 0	0	159	10	8	- 6	0	- 3.	. 24	433
5:00 PM	5	16	2	0	0	23	2	18	20	0	0	40	31	1	10	0	0	42	1	4	3	0	0	8	113
5:15 PM	8	8	0	B	0	16	0	12	16	0	0	28	30	3	1	0	0	34	5	2	0	0	0	7	85
5:30 PM	3	18	0	0	0	21	3	32	10	0	0	45	34	- 1	8	0	0	43	- 5	4	- 1	0	0	10	119
5;45 PM	0	12	2	0	0	14	0	31	20	1	0	52	29	5	6	0	0	40	2	2		0	0	5	111
Total	16	54	4	0	0	74	5	93	66	1	0	165	124	10	25	0	0	159	13	12	5	0	0	30	428
Grand Total	67	243	62	0	2	372	44	363	243	2	0	652	500	29	73	0	1	602	74	41	50	0		165	1791
Approh %	18.0	65.3	16.7	0.0	0.5		6.7	55.7	37.3	0.3	0.0		83.1	4.8	12.1	0.0	0,2		44.8	24.8	30.3	0,0	0.6		
Total %	3.7	13.6	3.5	0.0	0.1	20.8	2.5	20.3	13.6	0.1	0.0	36.4	27.9	1.6	4.1	0.0	0.1	33.6	4.1	2.3	2.8	0.0	0.1	9.2	
Cars, PU, Vans	67	243	61	.0		371	44	355	241	2		642	496	29	7.3	0		598	74	41	50	0		165	1776
% Cars, PU, Vans	100.0	100.0	98,4	0.0		99,7	100.0	97,8	99.2	100.0		98.5	99.2	100.0	100,0	0,0		99,3	100.0	100,0	100.0	0.0		100.0	99.2
Heavy Trucks	0	0	- 1	0		- 1	0	8	2	0		10	- 4	0	0	0		4	D	0	.0	0		0	15
Milleavy Trucks	0.0	0.0	1.6	0.0		0.3	0.0	2.2	0.8	0.0		1.5	8.0	0.0	0.0	0.0		0.7	0.0	0.0	0.0	0.0		0.0	0.8

Project ID: 20-190014-002 Location: Brooklawn St & Petco Dwy/Old Kroger Access Dwy City: Knoxville

PM

PEAK HOURS

Brooklawn St Brooklawn St Petco Dwy/Clid Kroger Access Dwy Petco Dwy/Clid Kroger Access Dwy Westbound

Start Time Left Thru Rgt Utum App. Tissa Int. Total Reak Hour Receive Entire En Start Time Peak Hour for Entire Intersection Begins at 07:45 AM 58 64 75 42 239 10 11 7 9 11 17 000 12 11 19 23 30 30 14 97 100 200 000 5220 010 8:00 AM 8:15 AM 9 0 21 22 16 21 55 56.7 8:30 AM Total Volume 60 100 % App. Total PHF 46.4 40.6 0.0 100 85.0 10.0 0.0 0.0 100 33.0 0.797 Cars, PU, Vans & Cars, PU, Vans Heavy Trucks 37 28 32 50 237 68 100.0 99.2 100.0 100.0 100.0 98.2 99.0 98.0 100.0 98.3 0.0 0.0 0.0 1.8 2.0 0.0 0.0 0.0 0,0 %Henry Trucks 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.7 0.0 0.0 0.0 8.0

			oldawn					oklawn uthbou			Petco	Dwy/Ok	Kroge		s Dwy	Petco		d Kroge estbour		s Dwy	
Start Time	Left	Thei	Rat	Uturn I	App. fotal	Left	Thru	Rgt	Uturn	App. Your	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Utum	App. Yotal	Int. Total
Peak Hour Analy					e entre																
Peak Hour for En	ure inte	rsection	Begins	at 03.10	2 H-1M																
3:15 PM	5	27	9	0	41	6	20	8	0	34	42	3	6	0	51	2	5	2	0	9	135
3:30 PM	5	21	8	0	34	13	20 38	8 14	0	34 65	37	5	-6	0	48	21	2	10	0	33	180
3:45 PM	4	13	0	0	17	2	30	18 23	D	50	44	0	5	0	49	16	9	13	0	38	154
4:00 PM	2	21	1	0	24	1	23	23	.0	47	36	1	7	0	44	_ 1	2	3	0	- 6	121
Total Volume	16	82	18	0	116	22	111	63	0	196	159	9	24	. 0	192	40	18	28	0	86	590
% App. Total	13.8	70.7	15.5	0.0	100	11.2	56.6	32.1	0.0	100	82.8	4.7	12.5	0.0	100	46.5	20.9	32.6	0.0	100	
PHF					0.707					0.754	-			-	0,941	-				0.566	0.819
Cars, PU, Vans	16	82	17	0	115	22	106	63	0	191	159	9	24	Q	192	40	18	28	Q	86	584
% Cars, PU, Vans	100.0	100.0	94.4	0.0	99.1	100.0	95.5	100.0	0.0	97.4	100.0	100.0	100 0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	99.0
Heavy Trucks	0	0		0	- 3	0	- 5	0	= 0	5	0	0	0	0	0	.0	0	0	0	. 0	6
Nieleavy Trucks	0.0	0.0	5,6	0.0	0.9	0.0	4.5	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0

Day: Tuesday Date: 10/06/2020

										Groups	Printed	- Cars,													
				dawn St abound					South	lawn St bound	ži –		Kro	ger Mas	East	e Round		713	Kn	oger Mai	ketplace Westb	ound		15	
Start Time	Left	Thru	Rgt	Utum	Peds	App. Total	Left	Thru	Rgt	Utum	Peds	Pop. Total	i.eft	Thru	Rgt	Utum	Peds	Арр. Толи	Left	Thru	Rgt	Utum	Peds	App Total	Int. Total
7:00 AM	- 1	- 5	. 0	0	0	- 6	0	- 1	0	0	0	1	0	. 0	- 1	.0	.0	- 1	0	0	.0	0	- 0	D	- 3
7:15 AM	2	8	0	0	0	10	0	2	5	0	0	7	0	0	O	0	0	0	Q	0	0	0	0	0	30
7:30 AM	1	11	0	0	0	12	0	4	- 3	0	0	7.	0	0	0	0	0	0	0	0	0	0	0	0	15
7:45 AM	- 1	19	Đ	0	0	20	0	7	4	0	0	11	. 0	0	- 1	0	0	1	0	0	0	0	. 0	0	3
Total	5	43	- 0	0	- 0	48	0.	14	12	0	- 0	28	.0	0	2	0	0	2	- 0	0	- 0	.0	- 0	- 0	- 7
8:00 AM	0	21	0	0	0	21	0	15	2	0	0	17	0	0	4	0	0	4	0	0	0	0	0	0	4 2 1
8.15 AM	1	19	0	0	0	20	0	16	7	0	0	23	3	0	D	0	O	3	0	0	0	0	0	0	- 4
8:30 AM	2	7	. 0	0	0	9	0	12	5	0	0	17	0	0	2	0	0	2	D	0	0	0	0	D	2
8;45 AM	0	7	. 0	0	0	7.	0	3	.5	0	0	В	0	0	1	0	0.	10	10	0	.0	0	O		
"BREAK"	3	54	0	0	0	57	0	46	19	0	0	65	3	0	7	0	0	10	0	0	0	0	0	0	13
3:00 PM	6	14	0	0	0	20	0	16	a	0	0	24	40	Ö	12	0	O	16	ā	0	0	Ö	0	0	6
3.15 PM	8	34	Ö	0	0	42	Ö	20	7	0	. 0	27	5	0	12	0	0	17	. 0	0	0	0	o		6
3:30 PM	2	27	0		0	29	0	53	12	1	0	68	9	Ö	14	ō	0	23	0	0		0	D		11
3:45 PM	- 4	10	. 0		0	14	0	42	10	0	0	52	5	0	15	0	0	20	0	0	0	0	0	0	В
Total	20	85	Ö	0	0	105	0	131	37	- 1	0	169	- 23	0	53		0	76	0	0	0	0	0	- 0	35
4:00 PM	5	17	0	0	0	22	0	19	11	0	0	30	23 7	. 0	6	Ü	0	13	0	0	0	0	D	. 0	35 6
4:15 PM	4	16	0	0	0	20	0	20	9	0	0	29	7	0	10	0	0	17	0	0	0	0	0	0	e
4:30 PM	6	16		0	0	22	0	15	8	0	0	23	7	0	12		0	19	0	0	0	0	0	0	16
4:45 PM	3	14	- 0	0	4	17	0	24	13	0	0	37	4	0	18		2	22	0	0	0	0	0	0	7
Total	18	63	0	0	- 1	.81	.0	78	41	0	0	119	25	. 0	46	0	2	7.1	. 0	0	.0	0	0	0	27
5:00 PM	6	14	0	- 3	0	21	0	21	9	0	0	30	9	0	14	0	0	23	0	0	0	0	0	0	7
5:15 PM	3	14	0	0	0	17	0	10	8	0	0	18	3	0	11	.0	0	14	0	0	.0	0	0	D	4
5:30 PM	5	11	0	. 0	0	16	0	30	12	1	0	43	10	- ő	18	0	0	28	D	0	0	0	0	0	В
5:45 PM	2	8	0	1	0	11	0	32	8	0	0	40	5	0	18	0	0	23	0	0	0	0	0	0	7
Total	16	47	Ô	2	0	65	Ü	93	37	-1	D	131	27	0	61	0	0	88	D	ū	0	0	Ü	D	28
Grand Total	62	292	0	2		356	0	362	146	2	0	510	78	0	169	0	2	247	ŋ	0	0	0	0	0	111
Approh %	17.4	82,0	0.0		0.3		0.0	71.0	28.6	0.4	0.0		31.6	0.0	68.4		0.8		0.0	0,0	0.0	0,0			
Total %	5.6	26.2	0.0		0.1	32.0	0.0	32.5	13.1	0.2	0.0	45.8	7.0	0.0	15.2		0.2	22.2	0.0	0.0	0.0	0.0	0.0		
Cars. PU, Vans	62	291	0			355	0	355	144	2		501	78	0	169			247	0	0	0	0		0	110
56 Cars, PU, Vans	100.0	99.7	0.0	100:0		99,7	6.0	98.1	98.6	100.0		98.2	100.0	0.0	100.0	0,0		100.0	0.0	0.0	0.0	0.0		0.0	99
Heavy Trucks	0	- 1	0	0		- 1	0	7	2	0		9	0	0	0	. 0		0	0	0	0	0		0	- 1
Nicheavy Trucks	0.0	0.3	0.0	0.0		0.3	0.0	1.9	1.4	0.0		1.8	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.

Project ID:	20-190014-003
Location:	Brooklawn St & Kroger Marketplace Roundabout D
-	Washington (E.)

PEAK HOURS

Day: Tuesday

City:	Knoxv	lle							CA										10/06/20	120	
			oklawn thbour	nd				okławn			Kroger I		stbound	1	1	(roger f		lace Rou		It Dwy	
Start Time		Thru	Rgt	Utum	App. Total	Left	Thru	Rgt	Uturn	App Très	Left	Thru	Rgt	Uturn	App. Tuttal	Left	Thru	Rgt	Uturn J	Spp. Tribal	Int. Total
Peak Hour Analy			M to 09	00 AM	~~~										-					-	
Peak Hour for En	tire inte	rsection	Begins	at 07:4	5 AM																
7:45 AM		19	0	0	20	0	2	4	0	11	0	0	61	0	- 41	0	0	0	O	01	33
8:00 AM	0	21	0	0	21	0	15	2	0	17	0	0	4	0	4	. 0	0	0	0	0	42
6:15 AM	1	19	0	0	20	0	16 12	7	O	23	3	3	0 2	0	3	0	0	0	0	0	46
8:30 AM	- 2	7	0	0	9	0	12	5	0	17	- 0	0	2	0	2	0	0	0	0	0	32 42 46 28
Total Volume	4	66	.0	0	70	0	50	. 18	.0	68	3	0	. 7	0	. 10	- 0	0	0	D	0	148
% App. Total	5.7	94.3	0.0	0.0	100	0.0	73.5	26.5	0.0	100	30.0	0.0	70.0	0.0	100	0.0	0.0	0.0	0.0	D	
PHF					0.833					0.739			_		0.625						0.804
Cars, PU, Vans	4	66	0	0	. 70	0	50	17	Ü	67	3	3	- 7	-0	10	- 0	0	0	0	0	147
% Cars. PU. Vans	100.0	100.0	0.0	0.0	100.0	0.0	100.0	94.4	0.0	98.5	100.0	0.0	100:0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	99.3
Heavy Trucks	0	0	0	0	0	0	0	- 1	0	1	0	0	0	0	0	0	0	0.	0	0	1
WHenry Trucks	0,0	0.0	0.0	0.0	0.0	0.0	0.0	5.6	0.0	1,5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7
PM																					
r.m			oklawn					oklawn			Kroger I				ut Dwy	Croger F		lace Rou		at Dwy	
			thbour					ithbour					stbound					stbound		_	
Start Time		Thru			App: fotal	Left	Thru	Rat							PROTESTANTA IN	Left 1	Toru	Rgt	Litum	ep. Your	Int. Total
Peak Hour Analy Peak Hour for En				:00 PM					Citari	App. Total	Left	Thru	Rgt	Oun	App. Total	2.2.11		- regi			
		300000	Begins	at 03:1	5 PM				Citari	App. Total	Left	Thru	- Rgt	Our	App. Total						
3:15 PM	8	34	Begins: Q	at 03:1 0	421	0	20	7	0	27	5	Ď,	12	0	17]	0	Ö	0	0	10	86
3:15 PM 3:30 PM	2	34	0	0	42 29	0	53	7 12	0	27	5 9	0	12 14	0	17 23	0	Ö	0	0.0	0	86 118
	2	34	0	0	42 29 14	0	53 42	7 12 10	0 1 0	27	5	D D	12 14 15	0 0 0	17 23 20	0	Ö	0	0	0	86 118 86
3,30 PM	2	34 27 10 17	0	0	42 29 14 22	0 0	53	7 12	0		5 9	0	12	0	17 23	0		0 0	0 0 0	0	118 86 65
3:30 PM 3:45 PM	2	34	0	0	42 29 14	0	53 42	7 12 10	0 1 0	27	5 9 5	D D	12 14 15	0 0 0	17 23 20	0	Ö	0 0 0	0	0	86 118 86 65
3:30 PM 3:45 PM 4:00 PM	2 4 5	34 27 10 17	0 0	0 0	42 29 14 22	0 0 0	53 42 19	7 12 10	0 1 0	27 66 52 30	5 9 5 7	0	12 14 15 6	0000	17 23 20 13	0 0 0	0 0	0 0	0 0	0	118 86 65
3:30 PM 3:45 PM 4:00 PM Total Volume	2 4 5	34 27 10 17 88	0 0 0	0 0 0	42 29 14 22 107	0 0	53 42 19	7 12 10 11	0 1 0 0	27 66 52 30	5 9 5 7 26	D D D	12 14 15 6	00000	17 23 20 13	0 0 0	0 0	0 0 0	0 0	0	118 86 65 355
3:30 PM 3:45 PM 4:00 PM Total Volume % App. Total	2 4 5 19 17.8	34 27 10 17 88 82.2	0 0 0 0 0	0 0 0 0 0	42 29 14 22 107 100 0.637	0 0 0 0 0 0 0 0	53 42 19 134 76.6	7 12 10 11 40 22.9	0 1 0 0 1 0.6	27 66 52 30 175 100 0.663	5 9 5 7 26 35.6	0 0 0 0 0	12 14 15 6 47 64.4	0 0 0 0 0 0 0 0 0	17 23 20 13 73 100 0.793	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0 0	0 0	118 86 65 355 0.752 349
3:30 PM 3:45 PM 4:00 PM Total Volume % App. Total PMF	2 4 5 19 17.8	34 27 10 17 88 82.2	0 0 0	0 0 0 0 0	42 29 14 22 107 100 0.637	0 0 0 0	53 42 19 134 76.6	7 12 10 11 40 22.9	0 1 0 0 1 0.6	27 66 52 30 175 100 0,663	5 9 5 7 26 35.6	0 0 0 0 0	12 14 15 6 47 64.4	0 0 0 0 0 0	17 23 20 13 73 100 0.793	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0	118 86 65 355 0.752 349 98.3
3,30 PM 3,45 PM 4:00 PM Total Volume % App. Total PHF Cars, PU, Vans	2 4 5 19 17.8	34 27 10 17 88 82.2	0 0 0 0 0	0 0 0 0 0	42 29 14 22 107 100 0.637	0 0 0 0 0 0 0 0	53 42 19 134 76.6	7 12 10 11 40 22.9	0 1 0 0 1 0.6	27 66 52 30 175 100 0.663	5 9 5 7 26 35.6	0 0 0 0 0	12 14 15 6 47 64.4	0 0 0 0 0 0 0 0 0	17 23 20 13 73 100 0.793	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0 0	0 0	118 86 65 355 0.752 349

Day: Tuesday Date: 10/06/2020

			Nort	klawn St hbound					South	lawn St bound					East	bound					West	bound	Pinnack		
itart Time	Left	Thru	Rgt	Utum	Peds	App. Total	Left	Thru	Rgt	Utum	Peds	App. Total	Left	Thru	Rigit	Utum	Peds	Арр. Толк	Left	Thru	Rgt	Utum	Peds	App. Total	Int. Tot
7:00 AM	2	6	- (0	0	8	0	- 1	-1	0	0	2	0	0	- 2	.0	. 0	2	0	0	.0	0	- 0	0	
7:15 AM	4	10		0 0	0	14	0	2	0	0	0	2	0	0	3	0	0	3	.0	0	- 0	0	0	0	- 8
7:30 AM	2	12		0	0	14	0	4	0	0	0	- 4	0	0	4	0	0	4	.0	0	0	0	0	0	
7.45 AM	11	20		0 0	0	31	0	8	- 0	0	0		. 0	0	- 3	0	0	3	0	0	0		. 0	0	
Total	19	48	(0	67	0.	15	- 1	0	- 0	15		0	12	0	- 0	- 12	0	0	0	0	0	- 0	
8:00 AM	17	23			0	40	0	17	2	0	0	19	0	0	10	0	0	10	0	0	0		0	O	
8.15 AM	11	18			0	29	0	15	0	0	2	15		0	13	0	0	5	0	0	.0	0	0	0	
8:30 AM	12	9			0	21	0	13	- 3	0	0	14	0	0	8	0	0	8	D	0	0	0	0	0	
8:45 AM	12	7	- (0	19	0.	4	- 1	0	0	5	0	0	11	0	0.	11	0	0	. 0	0	0	D	
*BREAK***	52	57		0 0	0	109	0.	49	4	0	2	53	0	0	37	0	0	37	0	0	0	0	0	0	
3:00 PM	18	20		0	0	38	0	26	3	0	0	29	1 0	Ö	21	0	0	21	2	0		Ö	0	2	1
3:15 PM	23	41	-	0	0	64	. 0	29	2	0	0	3.1	- 1	0	20	.0	0	21	D	0	10	0	0	D	
3:30 PM	20	28	-	0 0	0	46	0	61	2	0	- 0	63	3	0	14	0	0	17	0	0	.0	0	D	0	1
3:45 PM	18	15	(0	0	33	0	59	- 1	0	0	60		0	16	0	0	16	0	0	0	0	0	0	
Total	79	102		0	0	181	0	175	8	0	0	183	4	0	71	0	0	75	2	0	.0	0	0	2	
4:00 PM	25	19	(0 0	0	44	0	24	2	0	0	25	2	0	13	0	0	15	0	0	0	0	D	D	
4:15 PM	18	18	(0	0	36	0	26	3	0	0	29	2	0	21	0	0	23	0	0	0	0	0	D	l
4:30 PM	24	18		0	0	42	1	25	3	0	0	29	4	0	25	0	0	29	0	1		0	0	1	1
4:45 PM	24	16		0 0	0	40	0	37	5	0	2	42		0	22	0	0	24	D	- 0	Ó	0	0	0	
Total	91	71	- (0 0	0	162	1	112	13	0	2	128	-10	0	81	- 0	0	91	0	1	- 0	0	0	1	
5:00 PM	17	19	- (0 0	0	36	0	33	2	0	0	35	- 1	0	26	0	2	27	0	0	0	0	0	0	1
5:15 PM	23	17		0	0	40	0	21	1	0	0	22	- 4	0	23	0	0	24	Ð	0	.0	0	0	Đ	l
5:30 PM	19	15		0 0	0	34	Ü	46	- 3	0	0	47	0	0	19	.0	0	19	D	0	- 0	0	0	D	
5:45 PM	21	1.1		0 0	0	32	0	52	0	0	0	52	0	0	26	0	0	26	0	0	0	0	0	0	1
Total	80	62	(0	0	142	0	152	4	0	0	156	2	0	94	.0	2	96	0	Û	.0	0	0	D	
Grand Total	321	340			0	661		503	30	0	4	534		0	295	0	2	311	2	1	. 0		O	3	1
Approh %	48.6	51.4	0.0		0.0		0.2	94.2	5.6	0.0	0.7		5.1	0.0	94.9	0.0	0.6		66,7	33.3	0.0	0,0	0.0		l
Total %	21.3	22.5	0.0		0.0	43.B	0.1	33.3	2.0	0.0	0.3	35.4		0.0	19.5	0.0	0.1	20.6	0.1	0.1	0.0	0.0	0.0	0.2	
ars, PU, Vans	318	339	- (657	4	496	30	0		527	16	0	293	0		309	1	1	. 0			- 2	- 34
6 Cars, PU, Vans	99,1	99.7	0.0			99,4	100.0	98.6	100.0	0.0		98.7	100.0	0.0	99.3	0,0		99.4	50.0	100,0	0.0			66.7	- 5
Heavy Trucks	3	1				4	0	7	.0	0		7	0	Q	2	0		2	1	0	0			1	
Nicheavy Trucks	0.9	0.3	0.0	0.0		0.6	0.0	1.4	0.0	0.0		1.3	0.0	0.0	0.7	0.0		0.6	50.0	0.0	0.0	0.0		33.3	

a a column and	2011000141004	
Location:	Brooklawn St & Kroger Truck Ent Southern Dwy/Pi	DEAK HOUDE
City:	Knoxville	PEAK HOURS

PM

		No	oklawn rthbou	nd			Sol	okławn uthbou	nd		35500	Ea	stboun	d			W	estbour		VINCOLT I	
Start Time	Lett	Thru	Rgt	Utum	App. Total	Left	Thru	Rgt	Utum	App. Tribit	Left	Thru	Rgt	Uturn	App. Trini	Left	Thru	Rgt	Utum ,	Spr. Tribi	Int. Total
7:45 AM 8:00 AM 8:15 AM 8:30 AM	11 17 11 12	20 23 18 9	o 0 0 0	at 07:4: 0 0 0 0	31 40 29 21	0 0	8 17 15 13	0 2 0 1	0 0	8 19 15	0 0 0	D D	3 10 8 8	0 0	3 10 8 8	0 0	0 0	0	0 0 0	0	4 6 5
Total Volume % App. Total	51 42.1	70 57.9	0.0	0.0	121	0.0	53 94.6	3 5,4	0.0	56 100	0.0	0.0	100.0	0.0	29 100	0.0	0.0	0.0	0.0	0	20
PHF					0.756					0.737					0.725					=1	0.74
Cars, PU, Vans	51 100:0	70 100.0	0.0	0.0	121	0.0	100.0	100.0	0.0	100.0	0.0	0.0	100.0	0.0	29 100.0	0.0	0.0	0.0	0.0	0.0	100.0
Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.

7,700																					
			oldawn rthbou					oklawn uthbour			Truck		ithem E istbour		nacle A	r Truck	Ent Sou	uthern C estbour		nacle A	
Start Time	Left	Thru	Rat	Uturn I	App fotal	Left	Thru	Rat	Uturn I	App. Yetur	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Litum	App. Yotal	Int. Total
Peak Hour Analys	sis from	03:00 F	M to 06	:00 PM																	
Peak Hour for En	tire Inte	rsection	Begins	at 03:00	PM																
3:00 PM I	18	20	0	0	38 [0	26	3	0	29	0	3	21	Ò	21	2	ō	0	0	2	90
3:15 PM	23	41	0	0	38 64	0	26 29	2	0	29 31	1	3	21	0	21	0	0	0	0	0	116
3;30 PM	20	26	0	0	46	0	61	2	0	63	3	0	14	. 0	17	0	0	0	0	0	126
3:45 PM	18	15	0	0	33	0	59	1	.0	60	0	9	16	0	16	0	0	0	0	0	109
Total Volume	79	102	0	0	181	- 0	175	8	- 0	183	- 4	- 5	71	0	75	2	0	Ģ.	0	2	441
% App. Total	43.6	56.4	0.0	0.0	100	0.0	95,6	4.4	0.0	100	5.3	0.0	94.7	0.0	100	100.0	0.0	0.0	0.0	100	
PHF			77.0		0.707					0.726					0.893					0.250	0.875
Cars, PU, Varis	78	101	0	0	179	0	168	8	0	176	4	D	71	0	75		0	0	0	- 1	431
% Cars, PU. Varis	98.7	99.0	0.0	0.0	98.9	0.0	96.0	100.0	0.0	96.2	100.0	0.0	100.0	0.0	100.0	50.0	0.0	0.0	0.0	50.0	97,7
Heavy Trucks	3:	1	.0	0	2	0	. 7	0	0	7	0	0	- 0	0	0		0	- 0	- 0		10
Nelewy Trucks	1.3	1.0	0.0	0,0	1.1	0.0	4.0	0.0	0,0	3.8	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	50,0	2.3

November 2, 2020

Mr. Darryl W. Smith, P.E. Town Engineer Town of Farragut 11408 Municipal Center Drive Farragut, Tennessee 37934

RE: Traffic Impact Study Report Review Farragut Town Center at Biddle Farms

Farragut, TN

Dear Mr. Smith

Cannon & Cannon, Inc. (CCI) appreciates the opportunity to review the traffic impact study report for the proposed Farragut Town Center at Biddle Farms development prepared by CDM Smith. It is our understanding that the proposed development will consist of a grocery store, retail shops, and multi-family residential units. We further understand that the development will be located east of the existing Kroger development. Access to Kingston Pike and Campbell Station Road will be provided via Brooklawn Street, and the development will also have access to Concord Road. The development is expected to produce between 6,000 and 7,000 new daily trips.

We have reviewed the report for this traffic impact study, and it is our opinion that the overall report content, conclusions, and recommendations were developed using sound engineering methods and assumptions. The utilization of 2016 counts due to current traffic conditions with Covid was appropriate The annual growth rates of 2.5% for 2020 existing traffic and 3.5% for 2025 background traffic are reasonable as is the factoring of the count at Brooklawn and the driveway accesses by 10%. CDM Smith acknowledged the traffic issues at the intersections of Kingston Pike with Campbell Station Road and Kingston Pike with Concord Road, and they provided potential mitigation measures for these issues.

Regarding traffic generated by the proposed development, we have no issues with the methods utilized and the assumptions made for the trip generation estimates. We further agree that it was appropriate to provide separate trip distributions for the residential and commercial components. Based on the capacity analysis comparisons of background traffic without the development and projected traffic with the development, we agree that the two critical intersections (Kingston at Campbell Station and Kingston at Concord) may experience unstable conditions without mitigation, but that these conditions will not significantly worsen due to traffic generated by the proposed development.

Sincerely,

Brian J. Haas, P.E., PTOE Project Manager

Bring Man

PCD Rezoning and Land Use Map Amendment Package
November 2020

FARRAGUT TOWN CENTER a Biddle Farms

Table of Contents

- 1) PCD Objectives
- 2) Rezoning Exhibit
- 3) Survey Exhibits
- 4) Conceptual Site Plan (Approved by the Town of Farragut on 07-16-2020)
- Conceptual Grading Plan
- 6) Conceptual Utility Plan
- 7) Conceptual Landscape Plans
- 8) Conceptual Tree Preservation & Env. Sensitive Area Maps
- 9) Site Lighting Elements and Preliminary Photometric plan
- 10) Public Gathering, Hardscape, and Paving Elements
- 11) Architectural Design Statement
- 12) Architectural Design Elements
- 13) Architectural Elevations and Multi-Family Unit Footprints
- 14) Conceptual Iconic Element at Entrance
- 15) Conceptual Signage Vision and Location Plan
- 16) Common Space and Pedestrian Access Exhibit
- 17) Town Right of Way Dedication Exhibit & Cross Sections
- 18) Hydrology Study Summary and Recommendations
- 19) Traffic Study Summary and Recommendations
- 20) Construction Schedule and Phasing Exhibits

The materials presented in this package outline the conceptual design intent for the project as of November 2020, and will be further developed in the design phase of the project.

PCD PLANNING OBJECTIVES

Introduction:

The concept site plan is the product of the merger of:

- The Town of Farragut's desire and vision to create a "downtown" for the community in which a village scale could be complimented with a mixed-use blend of commercial, office, residential, and public place components; with
- Private development goals of advancing high quality and distinctive retail/commercial and multifamily residential for the community of Farragut.

into a single master planned development on the site known as Biddle Farms.

The existing site is occupied by a tired retail strip, a collection of independent out parcels, an extensive flood plain, storm water retention for the Kroger retail development west of the site, and a natural all-season creek that flows north to south through the long axis of the site.

This fusion of public and private objectives is guided by a vision document and design guidelines created by the Town of Farragut. Those guidelines seek a development pattern that promotes a pedestrian friendly setting where outdoor browsing and dining, special events, and street activities can animate the

Site Evaluation:

The site possesses challenges and opportunities. Key elements of which are, the flood plain and the creek, that both govern net site usability. Out parcels separately owned must be honored within the overall property boundary and access for their continued use protected.

The existing retail complex is seen as outdated and is not considered worthy of protection.

Much of the site was built in compliance with FEMA regulations and marginally meet the federal guidelines that standard imposes. Farragut imposes a greater standard which negatively affects all the existing structures and infrastructure.

As part of a master planning effort, the hydrology of the area must be evaluated and the storm water management governing retention, storage, outflow, and water quality must be applied to moderate flooding that occasions the site and improve impacts on neighboring sites downstream from the subject parcel.

The development vision, while it considers the entirety of the Biddle Farm, will focus on a select portion of the site assigned to the development vision. This section will largely overlay the existing impervious surfaces

development in a 24/7 setting, and where residents within the Town Center can enjoy the "downtown" as an added quality of life amenity.

By contrast to the pedestrian experience, parking lots are directed to be largely shielded from public view along the internal street. Street parking by exception using angled or parallel spaces along internal and some external streets are intended to serve as both calm traffic and convenient access to commercial venues.

The primary frontage on Kingston Pike seeks a "main street" intersection aligned with the existing signal in serving the high school to the north. Brooklawn Street shall define the westerly border, Concord Road the easterly border, and Campbell Station Road the southern border.

Within limits of environmental restrictions all four street shall seek interconnectivity through the site so to allow both vehicular and pedestrian movement to access the "town center" from any direction and discharge accordingly.

A limited number of older structures that were part of the Biddle farm may be viewed as of historic value and were to be considered in the planning.

of the prior retail occupancies and extend southerly along Brooklawn Street. Much of the remaining lands will be held in reserve for "open space" and storm water detention. This open space could prove of value as a public place suitable for informal events, open air activities, and leisure enjoyment.

The creek with its wooded shoulders, offers an ideal opportunity to have a lineal park reaching through the site offering pedestrian, bicycle, and accessible movement as a natural outdoor promenade for area residents to enjoy.

An existing retention pond in service to Kroger should be consolidated into a master storm water management system allowing for a more compact allocation of lands to complete the Town Center composition.

A roundabout on Brooklawn Street offers some traffic calming along that "cut through" drive. The integration of residential occupancy in any mixed-use setting should seek roads with moderated speeds and traffic lanes that encourage more cautious movement.

Page 1 of 2

FARRAGUT TOWN CENTER a) Biddle Farms

A Special Observation:

Within the time of the master planning and staff coordination of the proposed development the impact of the Corona Virus emerged and forever has changed much of the lifestyle and value system all seek to enjoy. The impact of this crisis may stay with all of us for a long time, impacting the ideals of group gatherings, and social activities for the foreseeable future. Planning has and will continue to seek an optimistic view that a measure of the "old normal" will return, where sidewalk dining, and events of community interest (art festivals, car shows, community concerts, etc.) will again be allowed and invited. The plan however also seeks to consider the necessary dependency upon retail and service access without leaving the car. This standard has now become a public health consideration. Measures to address this "new normal" should also consider the best way to protect the pedestrian experience while not imposing hardships on either consumers or the service/store entities that cater to their needs.

The Design Response:

Through the design process virtual images were generated to offer texture to the two-dimensional planning proposals as they unfolded. These images sought to offer assurances on scale, pedestrian comfort, landscape applications that deviate from rigid interpretation of the design guidelines, parking, signage, and exterior character and finish. Great care was taken in seeking proportions sufficient for comfort but not too expansive they "institutionalize" the streetscape or setting.

The integration of residential occupancies into a unified campus offers challenges and benefits. While retail is an amenity when convenient enough to walk to it, it can be an intrusive neighbor when noise, trash and service demands are considered.

Vertical mixed use was thus strongly resisted in favor of a horizontal plan where commercial users, and their vehicles would not overlap the private and more sanctified accommodations of the residents who would choose to line in the Town Center. Pedestrian connectivity is promoted with a "village square" that both commercial and residential share. Pedestrian promenades down "main street" and around the square connect access from all four street edges and insure by treatment the internal street system appears like a pedestrian area you can drive through rather than a vehicular area you can walk by.

Objectionable views of service areas are managed to a minimum. Residential buildings facing the public streets of the development shield exposure to the parking fields of the residents and offer residents a secure parking domain free of non-residential demand.

Brooklawn Street is changed from a three-way street with suicide center lane, to a two-lane street with diagonal parking. This softens the street face for residences, calms through traffic, an offers more landscaping opportunity than with just a planted parkway between sidewalk and curb.

The commercial portions of the complex seek a one- and two-story statured heights allowing for store ceilings as high as 18 to 20 feet within. False second floor facades animate the street elevations and offer both material and height variations that create an appearance of independent structures attached instead of the more typical retail ribbon facade in most shopping districts.

The residential structures seeking compact adjacency to the commercial are proposed at four stories with 9 and 10' ceiling heights. While taller their vertical proportions will not oversize that of the neighboring commercial structures. Dwellings will address the street with private porch like entries and with raised stoops and porches reflective of traditional designs.

The overall appearance borrows from traditional proportions and materials while seeking a current appeal reflecting the taste and expectations of a New Town Center.

Summary:

The plan, the street images, the narrative are offerings that are intended to show objective. More work is needed to carry the vision instruments to fulfillment. Engineering, environmental, and regulatory standards will guild the next evolution of the Town Center. Some flexibility toward full compliance with all regulatory and constructability standards will be necessary. This plan intends to subscribe the goals it portrays even if changes are essentially demanded.

A community vision paints a picture that does not consider economic reason. A private development requires economic balance between vision and performance. Much of the images shown are untested in the market. The development team recognizes the risk associated with unproven solutions and accepts this risk depending upon the collaborative understanding from the Town of Farragut in the efforts that have preceded this submittal. Staff and applicant agree with balance both missions can be fulfilled.

It is the hope of the development team this submittal would be found sound and representative of both the community vision and the development opportunity, each of which need to succeed before future physical implementation can begin.

Page 2 of 2

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 330 of 393 PageID #: 1739

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 337 of 393 PageID #: 1746

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 339 of 393 PageID #: 1748

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 340 of 393 PageID #: 1749

Site Lighting Elements

The overall objective of the site lighting for the proposed project is to develop a safe, warm, and inviting center where hours of use and operation extend past normal daylight hours. The site is divided into the areas of in response to the different site lighting needs that can be found throughout the site.

All lighting for the proposed project will meet the Town's outdoor lighting requirements and the lighting requirements specific to the Mixed-Use Town Center land use.

- Main parking fields will include 28' tall, tapered metal poles with rectangular, flat lens, LED fixtures
 with either one, two, or three heads per pole. Higher poles in the parking fields allow the use of
 fewer strategically placed poles to avoid conflicts with landscaping and parking while providing more
 uniform light levels.
- Streets adjacent to parking or proposed buildings may utilize the same fixture and pole type as the
 main parking fields, but the pole height will be reduced to 18' to 20' in these areas to reduce the
 visual impact on adjoining streets.
- Public street and common space area lighting will be provided utilizing decorative pole types and
 fixtures as shown on the site images previously provided for the project. Fixture types will be LED,
 and poles will be in the 16' to 18' range in height.
- Pedestrian area lighting will be provided with a mixture of building wall mounted and decorative pole
 mounted lights. A diverse group of fixtures will be utilized for pedestrian area lighting to add energy
 and character to the center. Fixtures will be LED and mounted between 10' and 16' range in height.
- Service Areas not illuminated by poles will be illuminated by wall mounted rectangular fixtures similar in appearance to the lights in the main parking fields. Fixtures will be LED and mounted at approximately 16' in height.

Public Gathering Spaces, Hardscape, and Paving Elements

One of the most important objectives of the proposed Town Center design is to incorporate vibrant and inviting public gathering spaces that seamlessly connect the retail and multi-family portions of the project and provide the citizens of the Town of Farragut with gathering space for public events that take advantage of the available amenities that the project offers. The seamless connection is achieved through the following elements:

- The removal of walking barriers by treating the streets without vertical curbs such that the entirety
 of the expanse is near level and fluid when entirely assigned to pedestrian access.
- The treatment of the driving surfaces in the village center with pavers to promote the impression
 of a walking surface you could drive on rather than a driving surface you could walk on.
- Pressing landscape to the edges to frame the village square instead of populating this public place bringing sidewalks closer to the building faces to isolate a central area within that pedestrian boundary that could be outdoor "flex space".

Additionally, hardscape design is a natural extension of the storefront and provides connectivity between different buildings, parking areas and pedestrian paths. Diverse scoring patterns, colored concrete, and stamping enrich the sidewalk and enhance the sense of place. Combined with landscape areas, tree wells, benches, planters, pedestrian level lighting and other site amenities, a well-designed hardscape encourages a more relaxed and friendly Town Center experience.

FARRAGUT TOWN CENTER a Biddle Farms

Architectural Design Statement

The overall objective of the Development Team has been to create an inviting mixed use community that blends commercial and residential occupancies into a walkable environment that emulates the key principles of Traditional Neighborhood Planning and Design while honoring the image and identity of the Town of Farragut as advanced in their development guidelines.

To affect this outcome the land planning effort and architectural imaging sought to promote the following key distinctions that comprise Traditional Neighborhood Design while offering an expression of style and finish consistent with the qualities that hallmark Farragut.:

- Create a Town Center that offers a site arrangement that capitalizes on the natural assets within the site, the access arrangements currently serving the site, and the existing commercial and historic occupancies of the site to be preserved.
- Seek an expanded focus on pedestrian friendly design and pedestrian interconnectivity with all
 buildings within the town center, both residential and commercial, able to move seamlessly on a
 network of walkways, trails and promenades interfacing with priority over the vehicular demands
 generated by the service activities and public events that will coexist within the development.
- Place buildings to the street to create intimate relationships with the public way between indoor and outdoor environments.
- To the extent possible, shield from the public way from large or expansive parking areas such that
 the street experience features finished and landscaped fades that create a pedestrian environment
 with priority over the vehicular environment.
- Fashion a street scape that invites leisure activities such as outdoor display, dining, and occasional
 event venues that celebrate community through heathy interaction by both business and residential
 constituents.
- Express the structures with a modeling of massing, material and detail that avoids long straight walls
 and unarticulated facades while concurrently promoting expanded "eyes on the street" (windows
 viewing the public way) to enhance a sense of interest, personal scale and a measure of perceived
 public safety.
- Use rich materials consistent with quality expressions of architecture, and workmanship associated with durable performance.
- Landscape with a view to maturity with trees and shrubbery that improve the overall quality of appearance and outdoor comfort over time.
- Visually manage service areas and infrastructure to minimize negative impact on neighboring uses

- Screen rooftop mounted equipment utilizing building elements to shield from public view.
- Develop well-engineered responses to storm water management, flood plain capacities, and environmental features worthy of protection and enrichment.
- Create a "living place" that attracts residents and merchants seeking a synergistic environment that
 offers 24/7 occupancy.
- Promote opportunities through design and site arrangement for managed and spontaneous public events through the creation of a "serse of space" within the town center, along its public river walk, and at outdoor open space suitable for unstructured park-like relaxation.

It is the hope both the plan and the character studies advanced provide both inspiration and responsive direction to the future of the Town of Farragut.

Architectural Elements

Central to the creation of a walkable mixed-use setting are features of *scale*, *safety*, *convenience*, *and character*. Each of these important standards has been used to advance concepts to the stage they are offered today.

The traditional site design standards guiding the current town center plan offer direction, but the market itself also offers important criteria that will activate their acceptance and maintain their continuing value for a project well-conceived and executed.

Consumer preference is undergoing major changes. The changes are found in everything from housing, work, school entertainment and shopping are hard to ignore. The Virus along with a preexisting trend toward internet dependency on everything we do has impacted what the future resident, business tenant, and surrounding community will expect from such an undertaking.

Please then explore briefly the key elements identified and how they have been incorporated into the planning for this important development:

Scale:

Farragut is a TOWN, and proud of its status as such. It is not an urban settlement. Within "towns" you would expect to find everything proportioned closer to the scale of an individual than that of a larger population. To that end every element of the plan must consider how to moderate the overall size of the concept such that in all areas offer a physical relationship that is comfortable and selectively even intimate. Affording the individual both personal space as well as promoting congregate place are the blended objectives.

This is best accomplished by integrating detail and rhythms that promote the experience of living, working, or shopping even when portions of the overall complex are nearly devoid of others, so as not to feel "overwhelming". Concurrently the scale should allow community gatherings of fellowship to feel secure and personal. The tools in this arsenal reside in the character of the street scape, and the cadence of features that link all parts together.

- · The frequency of spacing trees along the public promenades.
- . The comforting width of walkways that invite shared use.
- The heights of streetlights adorned with season banners the add day and night value to the street scape.
- The stature of doorways, windows, and cancpies offering incremental shade and relief along the main street,
- · The invitation to enjoy either the inside or outside parts of a vender's offering.

- The use of appropriately scaled signs directed at the individual rather than the highway.
- The richness of materials employed that show detail and craftsmanship.
- · The feature accents of street furniture,
- · plus others....

...all combine to establish scale that when occupied offers a warm and comforting reaction and promotes a continuing invitation to explore the range of venues and passages offered for inspection.

Page 1 of 3

Safety:

Scale is a natural companion to "perceived" safety. When coupled with the planning principles of *Crime Prevention Through Environmental* Design (CPTED) the physical place that is created advances the perception of safety to a functional level of improved safety.

- The use of "Eyes on the street" is a phrase often used to promote the frequency of windows facing
 public and private areas as a form of courteous intimidation to those who would do harm.
- The avoidance of easily accessed blind or obscure service areas that can harbor mischief.
- The use of lighting the softly distributes light instead of introducing glaring light the obscures areas
 around it.
- · The management of shrubs and landscape kept low and arranged to avoid creating hiding areas.
- · The organization of the plan in ways that make wayfinding intuitive.
- The structuring of street crossing that declare with feature pavement "the pedestrian has priority".
 ...all contribute to the sense of place that feels and functions with personal safety as a priority

Convenience:

Convenience is not measured in distance; it is measured in time! The human reaction to the question of "How far is it from here?" is to respond with a time reference such as, "About 20 minutes away". Time can be an obstacle unless the experience of time is filled with interest along the way.

The integration of mixed use in a 24/7 setting makes daily activities feel convenient. Even if just walking the dog, the setting allows the effort to engage with views and points of interest that make the activity fulfilling the time index feels less of a compromise.

Convenience can also be a competitor to the mission of a well-ordered environment. Today everything from class work and vocation, to shopping and worship can be done with a click of a button from a comfortable chair at home. This tendency to hibernate is contrary to building community. When the experience of place can activate "mobility" over "time efficiency" and the activities of our daily routine are enriched because they can occur both time efficiently and within a pleasing setting, then the best form of convenience has resulted. When personal mobility becomes an alternate to driving or Ubering, society becomes healthier and more engaged with the place they live, work, and shop and the people they share that place with.

Character:

When considering what makes one place more inviting and interesting than another, the distinction derived from its appearance can often be the measure of difference. More than just the look of structures, it is the full assemblage of all parts of the created environment that create the signature of something special.

Measured uniformness has value in building a cohesive feel to a settlement of many parts and functions.

- · The treatment of the walking surfaces,
- The range and appeal of exterior materials,
- The selection of landscape species and their orderly application and maintenance,
- The timeless execution of facades and focal points,
- The invitation of patina as an expression of maturity;

...can all be unifying parts of what individually might be seen as an assortment of separate functions and features.

A theme need not be expressed in a style, **but rather in an experience** that serves the overall objective. The Town Center thus must offer a holistic experience unified with elements of sight, sound, textures and potentially even fragrances, while still allowing variety of expression within that range of consistent quality, that combined keep all the parts feeling as members of a unified family of thought.

Page 2 of 3

FARRAGUT TOWN CENTER a) Biddle Farms

The Application:

The mixed-use nature of the Town Center is evidenced by the fusion of residential and business uses into one cohesive composition. In true town fashion these are not competitive but complementary interests. Both rely on each other to optimize the experience that can only be fashioned with the merger of these important parts.

Scale: The public face of each sector shares a common pattern of materials and forms. Both have been enveloped with brick, siding, and window/door treatments of preferred quality as a testament to durable and traditional flavors.

The exterior faces have been fashioned with varying applications of these materials so to generate a measure of variety without appearing as random or disconnected parts.

The scale of the mains street seeks a human scale with statured two-story or appearance thereof facades offering both vertical and horizontal modeling, while avoiding the conventional lineal alignment often found in commercial centers.

The scale of the residential structures, while higher by floor count, is rusticated with bolder forms at the lower levels, slowly stepping back to lighter forms as the building elevation rises to the roof level. The scale is also moderated by the horizontal animation of the plans and the treatment of exterior materials on the façade to emulate attached narrower independent facades, avoiding one monolithic building statement.

Safety: The arrangement of all structures is such that none have a "backside". All buildings are surrounded by publicly exposed facades (with exception of one small and secured service lane between gracery and other retail elements). Each façade is companioned by a pedestrian network that abuts parking and invites ready access to front and rear approaches, and selectively to area gardens between structures that connect all sides with walkable interconnectivity.

In the commercial sector, along the main street, parking is brought to the curb for quick access, while in most areas the bulk of the parking field is fragmented into smaller separate zones and held away from the "public street" frontage

The intimate context of the main streets and the public square offer clear oversight from stores fronts and residential windows. The larger parking fields offer shielded box lighting to insure nighttime legibility for patrons after dark.

In the residential sector, the buildings compose a collar around an internal parking domain set aside exclusively for residents, awarding them a safe relationship between vehicle and dwelling door. Concurrently the outward face of this collar orients to the public thoroughfares with a public entry duplicating invitation for guest. Here again windows, doors, and walkways surround buildings and advance "eyes of the street" as a prevention to unwanted activity.

Resident parking is lighted similar to the commercial parking fields, while street lighting along the public road perimeter mirrors the scale and treatment of the main streets in the commercial zones.

Convenience: Both the commercial and residential areas merge around the town square, the central hub of all development interaction. From this hub, ready access to home, shopping, park areas, and external routing are easily and quickly affected.

Within the residential sector, residential amenities are centrally located within reach if not line of site from dwellings that surround this lifestyle feature.

The convenience internally is matched by the convenience directed to adjacent features equally important to the Town Center, such as shopping across Brooklawn Blvd, education across Kingston Pike, town government offices to the west, and professional services along the frontages of the external public roads. For many within, an unusually large number of daily destinations are within a few minute walk or bike ride.

Character: Today's market seeks expressions that offer reflections of the past, housed in settings appropriate to current lifestyle and technologies. Achieving both a classical sense of form with traditional materials and applications, while expressing the "NOW" demands of our current wants requires a balance of elements that offer both collective distinction and harmonious interplay.

The combination of all the elements that speak to our physical senses; sight, smell, touch, sound, and even taste, are the palate that has guided the design representations. More will come into focus as the design is refined through the continuing advancement of this proposal and through the life of its successful operations.

This proposal seeks to establish a feel and identity that would hallmark Farragut as a representation of its selfimage and a center piece of its community's leisure lifestyle.

Summary:

It is unlikely the lessons learned from the Corona virus will ever go away. Magnified home deliveries, quick pick up and Uber/Lift accommodations, de-congested public places, touch free appointments, work at home preference are all here for the long term. Accommodation for this new paradigm must also be considered as many seek the efficiencies in time they afford.

The proposal has evolved since the design process began, in recognition of this changing condition and the permanence it has already vested in the lives of all residents. Continuing lessons remain ahead and the need for flexibility should never be forgotten. **Static pictures are not as vital as moving pictures.** The presentation offers a point of beginning but not the final outcome. That will continuously model as we move together in the future.

Page 3 of 3

BUILDING TYPE A - GROUND LEVEL PLAN

FARRAGUT TOWN CENTER
@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32759

TEL 407-629-0505

FAX 407-628-1057

AA2600216

BUILDING TYPE A - 2ND LEVEL PLAN

FARRAGUT TOWN CENTER @ BIDDLE FARMS

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32759

TEL 407-629-0595

FAX 407-628-1057

AA2600210

BUILDING TYPE A - 3RD LEVEL PLAN

FARRAGUT TOWN CENTER
@ BIDDLE FARMS

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-629-0595

FAX 407-628-1057

AA2600210

BUILDING TYPE A - 4TH LEVEL PLAN

FARRAGUT TOWN CENTER @ BIDDLE FARMS

© 2011 FUGLEBERS KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-629-0595

FAX 407-628-1057

AA2800210

BUILDING TYPE B - GROUND LEVEL PLAN

FARRAGUT TOWN CENTER @ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-029-0595

FAX 407-628-1057

AA2000210

BUILDING TYPE B - 2ND LEVEL PLAN

FARRAGUT TOWN CENTER

@ BIDDLE FARMS

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32755

TEL: 407-629-0595

FAX 407-628-1057

AA2000210

BUILDING TYPE B - 3RD LEVEL PLAN

FARRAGUT TOWN CENTER

@ BIDDLE FARMS

2565 TEMPLETRAIL

WINTER PARK, FLORIDA 32755

TEL 407-629-0595

FAX 407-628-1057

AA2600210

2555 TEMPLETRAIL

BUILDING TYPE B - 4TH LEVEL PLAN

@ BIDDLE FARMS

FAX 407-628-1057

AA2000210

WWW.FUGLEBERGKOCH.COM

WINTER PARK, FLORIDA 32759

TEL: 407-629-0595

BUILDING TYPE C - GROUND LEVEL PLAN

FARRAGUT TOWN CENTER @ BIDDLE FARMS

© 2011 FUGLEBERS KOCH 25.55 TEMPLETE

2555 TEMPLETRAIL WINTER PARK, FLORIDA 32759

TEL: 407-629-0595

FAX 407-028-1057

AA2000210

BLDG. TYPE C - 2ND LEVEL PLAN

FARRAGUT TOWN CENTER @ BIDDLE FARMS

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL: 407-629-0595

FAX 407-626-1057

AA2600210

BUILDING TYPE C - 3RD LEVEL PLAN

FARRAGUT TOWN CENTER

@ BIDDLE FARMS

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-029-0595

FAX 407-626-1057

AA2800210

BUILDING TYPE C - 4TH LEVEL PLAN

FARRAGUT TOWN CENTER @ BIDDLE FARMS

© 2011 FUGLEBERS KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32759

TEL 407-629-0595

FAX 407-628-1057

AA2800210

FUGLEBERG KOCH

2555 TEMPLETRAIL

© 2011 FUGLEBERG KOCH

UNIT S2 - 1BR. UNIT PLAN

TEL. 407-629-0585

@ BIDDLE FARMS

FAX 407-628-105? AA2800210

WWW.FUGLEBERGKOCH.COM

WINTER PARK, FLORIDA 32759

UNIT 1A - 1BR UNIT PLAN

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32788

TEL 407-629-0595

FAX 407-628-1057

AA2800210

UNIT 1B - 1BR. UNIT PLAN

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL: 407-629-0595

FAX 407-626-1057

AA2000210

© 2011 FUGLEBERG KOCH

1 BR WITH SOLARIUM UNIT 1Bs

@ BIDDLE FARMS

AA2800210

WWW.FUGLEBERGKOCH.COM

FAX 407-628-1057

UNIT 2A - 2BR UNIT PLAN

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-629-0595

FAX 407-628-1057

AA2800210

2555 TEMPLETRAIL

© 2011 FUGLEBERG KOCH

UNIT 2B - 2BR UNIT PLAN

TEL 407-629-0595

@ BIDDLE FARMS

NOMEOT 5461 DATE 10/15/20 FAR

FAX 407-028-1057

AA2000210

WWW.FUGLEBERGKOCH.COM

WINTER PARK, FLORIDA 32755

2BR WITH SOLARIUM UNIT 2Bs

FARRAGUT TOWN CENTER

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-029-0595

FAX 407-626-1057

AA2800210

UNIT 2C - 2BR UNIT PLAN

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 25.55 TEMPLETRAIL

WINTER PARK, FLORIDA 32759

TEL 407-629-0595

FAX 407-628-1057

AA2600210

UNIT 3B - 3BR UNIT PLAN

FARRAGUT TOWN CENTER @ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL: 407-629-0595

FAX 407-626-1057

AA2000210

UNIT 3C - 3BR UNIT PLAN

FARRAGUT TOWN CENTER
@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-629-0595

FAX 407-028-1057

AA2600210

MAINTENANCE BUILDING FLOOR PLAN

FARRAGUT TOWN CENTE

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

LETRAIL WINTER PARK, FLORIDA 32789

TEL 407-629-0595

FAX 407-628-105?

AA2800210

POOL AND FITNESS PAVILION FLOOR PLAN

FARRAGUT TOWN CENTER

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32759

TEL 407-629-0595

FAX 407-028-1057

AA2000210

CLUBHOUSE FLOOR PLAN

FARRAGUT TOWN CENTER

@ BIDDLE FARMS

© 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-629-0595

FAX 407-028-1057

AA2000210

BUILDING TYPE A - FRONT ELEVATION

BUILDING HEIGHT 49'- 1"

BUILDING TYPE A - SIDE ELEVATION

BUILDING HEIGHT 49'- 1"

ALL ELEVATIONS TO CONTAIN A MINIMUM OF 75% FACE BRICK PER JURISDICTIONAL REQUIREMENTS

D 2011 FUGLEBERG KOCH

BUILDING TYPE A - ELEVATIONS

@ BIDDLE FARMS

March 1999 - March 1999

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32789

TEL 407-029-0595

FAX. 407-028-1057

AA2000210

FARRAGUT TOWN CENTER

BUILDING TYPE A - REAR ELEVATION BUILDING HEIGHT 49' - 1"

ALL ELEVATIONS TO CONTAIN A MINIMUM OF 75% FACE BRICK PER JURISDICTIONAL REQUIREMENTS

BUILDING TYPE A - ELEVATIONS

FARRAGUT TOWN CENTER @ BIDDLE FARMS

@ 2011 FUGLEBERG KOCH

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32788

TEL: 407-029-0595

FAX: 407-628-1057

AA2600210

ALL ELEVATIONS TO CONTAIN A MINIMUM OF 75% FACE BRICK PER JURISDICTIONAL REQUIREMENTS

CLUBHOUSE & ENTRY MONUMENT ELEVATIONS

@ BIDDLE FARMS

FARRAGUT TOWN CENTER

WWW.FUGLEBERGKOCH.COM

D 2011 FUGLEBERG KOCH 2555 TEMPLETRAIL

TEL 407-029-0595

FAX 407-028-1057

AA2000210

1555 TEMPLETRAIL

@ 2011 FUGLEBERG KOCH

ARCHITECTURAL COLOR SCHEME

@ BIDDLE FARMS

WINTER PARK FLORIDA 32769

TEL: 407 629 0595

FAX 407 628 1057

AA2800010 WWW.FUGLEBERSKOCH.COM

SW7541 GRECIAN IVORY TRIM 1

TURKISH COFFEE BODY 2

SW7019 GAUNTLET GRAY TRIM 2 & RAILING

ENDICOTT FACE BRICK LIGHT SANDSTONE VELOUR TEXTURE

ALL ELEVATIONS TO CONTAIN A MINIMUM OF 75% FACE BRICK PER JURISDICTIONAL REQUIREMENTS

ARCHITECTURAL COLOR SCHEME

FARRAGUT TOWN CENTER @ BIDDLE FARMS

@ 2011 FUGLESERG KOCH

2555 TEMPLETRAIL

WINTER PARK FLORIDA 32788

TEL: 407 629 1595

FAX 407 628-105?

AA2800210

BUILDING HEIGHT 49'-1"

FARRAGUT TOWN CENTER @ BIDDLE FARMS

AA2800210

FUGLEBERG KOCH

© 2011 FUGLEBERG KOCH

BUILDING HEIGHT 49'-1"

FARRAGUT TOWN CENTER

@ BIDDLE FARMS

2555 TEMPLETRAIL WINT

WINTER PARK, FLORIDA 32789 TEL 407-029-0500

FAX 407-028-1057

AA2800210

FUGLEBERG KOCH

© 2011 FUGLEBERG KOCH

BUILDING HEIGHT 49'-1"

....

FARRAGUT TOWN CENTER
@ BIDDLE FARMS

2555 TEMPLETRAIL

WINTER PARK, FLORIDA 32788

TEL 407-629-0595

FAX 407-028-1057

AA2800210 WWW.FUGLEBERGKOCH.COM

FARRAGUT TOWN CENTER a Biddle Farms

Conceptual Iconic Element at Main Street Entrance

Main Street Entry Iconic Element - The tower elements will straddle the sidewalk into the development as a pedestrian gateway and flank the drive lane as vehicle gateway. The flanking walls are intended as both a grade wall as well as project identification. The towers borrow from historic gateway formations and employs brick as the primary structure face. The vertical tiers contain a mid-level with a back lit panel that could be used for "feature events" as if an illuminated street poster. The top circle could contain the development logo.

FARRAGUT TOWN CENTER a Biddle Farms

Conceptual Signage Vision

The overall objective of the proposed Town Center's conceptual signage vision is provide a consistent, effective, and unified approach to assist the citizens of the Town of Farragut convenient identification of the tenants of the project, and allows the tenants ample opportunities to promote their brands and assist in navigation to their store locations.

All Signage shall meet the Farragut Municipal Code signage requirements.

Several types of signage proposed for the project include:

- Multi-Tenant Monument Signage The priority of this signage is frontage identification for the users
 that would otherwise be lined up in a lineal row all facing the street in the manner of the prior retail
 development. In the aggregate the proposition does not increase the global allocation of signage
 found in more conventional solutions. Rather it repositions it to add orientation, invitation, and retail
 activity to the Main Street, which is the focus of the "town center" concept.
- Ground Monument Gateway Signage The ground monument signage similarly replaces a host of
 individual signs had the site been platted to allow for each building and tenant to have their own
 "fee simple" parcel. Their positioning along the secondary roads is in return replacing signage for
 many internal users organized in another development pattern than a town center model.
- Primary Building Signage This signage is proposed to present a consistent approach regarding signage size and presentation while allowing retailers the opportunity to present their brand with little or no compromise. Both wall signage and under canopy blade signage are proposed.
- Wayfinding & Accent Signage This signage, often cast at corners or suspended from cross arms of light standards that support multiple suspended signage shingles in a series with arrows pointing in the direction of each institution are

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 385 of 393 PageID #: 1794

Case 3:23-cv-00402-TRM-JEM Document 6-32 Filed 11/11/23 Page 387 of 393 PageID #: 1796

Hydraulic & Hydrology Study Summary and Recommendations

Hydraulic and hydrology models were requested and received from FEMA for both Turkey Creek and North Fork Turkey Creek. The results of both models match the effective results as shown in the Flood Insurance Study (FIS) number 47093CV001B. Both models were updated with new ground data as gathered by our project surveyor. The Base Flood Elevation (BFE) results for both Turkey Creek and North Turkey Creek models were verified to become the Existing Conditions Model (ECM).

From this point, the ECM was used to create the Proposed Conditions Model (PCM). The PCM included the conceptual layout for the development called "Farragut Town Center at Biddle Farms" provided by SITE Inc.

Based upon the results of the hydrology study, not only can the proposed development be constructed, but along with the new bridge over Turkey Creek and other measures undertaken will also help alleviate some of the existing conditions.

Traffic Impact Study Summary and Recommendations

The study of the Biddle Farms, a proposed mixed commercial and residential development evaluated the projected traffic conditions. Background traffic was determined using a 3.5-percent annual compounded growth rate until the horizon year 2025. Traffic associated with the proposed project was then generated and distributed to the proposed site accesses. The proposed site may generate approximately 8,480 daily weekday trips. After the consideration of pass-by traffic and internal trips, approximately 6,730 new daily trips (Primary) may be generated for a typical weekday. Using the identified turning movements for the projected traffic conditions, unsignalized and signalized capacity and level of service analyses were conducted using the 2000 Highway Capacity Manual.

Current conditions for study intersections are LOS E or better. Intersections are operating with a minimum LOS C except for the Kingston Pike intersections with Campbell Station Road and Concord Road. The PM peak hour for the intersection of Kingston Pike at Campbell Station Road is a LOS E and operates over capacity with a V/C ratio of 1.08, thereby an operation that is unstable and experiencing saturated traffic flows resulting in significant congestion with adverse traffic queues. The Kingston Pike intersection with Concord Road is a LOS D during the peak hours with a capacity ratio exceeding 0.90 indicating traffic conditions becoming unstable.

From the analyses conducted, changes in intersection capacity and delays are minimal for the study intersections, and levels of service did not change significantly from the background traffic conditions. Analyses determined that the proposed site development did not result in any significant changes from the analyses conducted for the background traffic conditions which found that the Kingston Pike intersections with Campbell Station Road and Concord Road may experience a LOS F during the PM peak hour and an E during the AM peak hour, respectively; the site impact increase the average intersection delay less than 6 seconds for either intersection and the increase in the V/C ratio not more than 4-percent. The poor levels of service for the

Kingston Pike intersections with Campbell Station Road and Concord Road would occur regardless of the proposed development.

The proposed site does not have a significant impact on the adjacent road network as traffic projections and intersection analyses found little impact resulting from the proposed development. This impact is minimized with the proposed signalized accesses available to the site thereby affectively distributing the trips generated by the mixed-use development. The proposed development is a lower trip generator than the zoned property which could possibly develop an approximate 295,000 square feet of retail uses. The comparison of the trip generation found the proposed site reduces the trip generation potential as compared to the possible development with the current zoning. With the same pass-by rate of 20-percent applied to the trip generation of a 295,000 square foot center, the daily trips generated may be 3,300 fewer daily trips and 390 fewer PM peak hour trips with the proposed mixed commercial and residential development. An additional approximate 75 trips might be generated during the AM peak hour with the

mixed-use commercial and residential site but is not significant as it is managed with numerous accesses to the adjacent street network.

RECOMMENDATIONS

The analyses conducted and the review of the traffic volumes identified the following recommendations:

Minimize landscaping, using low growing vegetation, and signing at the planned site accesses.

Intersection design should conform to the recommended standards and practices of the American Association of State Highway and Transportation Officials, the Institute of Transportation Engineers, Tennessee Department of Transportation (TDOT), and the Town of Farragut. The proposed site access for the site was found to operate at acceptable levels of service; however, the adjacent Kingston Pike intersections with Campbell Station Road and Concord Road may experience lower and unacceptable levels of service as the background traffic will have a significant impact on the intersections' capacities. Background left-turn volumes exceed 300vph for the northbound, southbound, and eastbound approaches of the Kingston Pike and Campbell Station Road intersection thereby requiring double left-turn lanes. Double left-turn lanes for the Kingston Pike and Campbell Station Road intersection would be very difficult with the current development of the intersection corners. The provision of these double left-turn lanes would require several design exceptions if they were to be considered by the Town of Farragut, minimizing any right-of-way required.

Mitigation of background traffic impacts for the of Kingston Pike intersection with Concord Road is an additional northbound right-turn lane. The mitigation of both Kingston Pike intersections with Campbell Station Road and Concord Road would return level of service and capacity back to that currently experienced for the 2020 traffic conditions. The development of the Biddle Farms property did not determine any required mitigation as its impacts were not significant and acceptable levels of service provided for the accesses to the site.

