CH-231-A Algorithms and Data Structures ADS

Lecture 10

Dr. Kinga Lipskoch

Spring 2024

Master Method (1)

The master method applies to recurrences of the form T(n) = aT(n/b) + f(n) where $a \ge 1, b > 1$, and f is asymptotically positive.

It distinguishes 3 common cases by comparing f(n) with n^{log_ba}

Master Method (2)

Recurrence: T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$ -f(n) is polynomially smaller than $n^{\log_b a}$ -, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ -f(n) is polynomially larger than $n^{\log_b a}$ and $af(n/b) \le cf(n) -$ regularity condition – for some constant c < 1, then $T(n) = \Theta(f(n))$.

Master Method Not Always Applicable

- ► There is a gap between cases 1 and 2 when f(n) is smaller than $n^{log_b a}$ but not polynomially smaller
- There is a gap between cases 2 and 3 when f(n) is larger than $n^{log_b a}$ but not polynomially larger
- ▶ If the regularity condition in case 3 fails to hold or you are in one of the gaps then you cannot use the master method to solve the recurrence

Idea of the Master Theorem (1)

$$T(n) = aT(n/b) + f(n)$$

Recursion tree:

 $f(n) - f(n) - f(n)$
 $f(n/b) f(n/b) - f(n/b) - f(n/b) - f(n/b)$
 $f(n/b^2) f(n/b^2) - f(n/b^2) - f(n/b^2) - f(n/b^2)$

leaves = a^h

= $a^{\log_b n}$
= $a^{\log_b n}$
= $n^{\log_b a} T(1)$

Idea of the Master Theorem (2)

|ロ▶ ∢倒▶ ∢差▶ ∢差▶ | 差 | 釣魚@

Idea of the Master Theorem (3)

Idea of the Master Theorem (4)

ADS Spring 2024 8 / 16

Example (1)

$$T(n)=4T(n/2)+n$$

 $a=4,b=2$
 $n^{log_ba}=n^2$
 $f(n)=n$
Case 1: $f(n)=O(n^{2-\epsilon})$ for $\epsilon=1$
Thus, $T(n)=\Theta(n^2)$.

9/16

Example (2)

$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2$
 $n^{log_b a} = n^2$
 $f(n) = n^2$
Case 2: $f(n) = \Theta(n^2)$,
Thus, $T(n) = \Theta(n^2 \lg n)$.

Example (3)

 $T(n) = 4T(n/2) + n^3$

$$a=4,b=2$$

$$n^{log_ba}=n^2$$

$$f(n)=n^3$$
 Case 3: $f(n)=\Omega(n^{2+\epsilon})$ for $\epsilon=1$ and $4(n/2)^3\leq cn^3$ for $c=1/2$ (regularity condition) Thus, $T(n)=\Theta(n^3)$.

Example (4)

$$T(n) = 4T(n/2) + n^2/\lg n$$

$$a = 4, b = 2$$

$$n^{\log_b a} = n^2$$

$$f(n) = n^2/\lg n$$

Master method does not apply

(for every constant 6 > 0, we have

(for every constant $\epsilon>0$, we have $n^\epsilon=\omega(\lg n))$

Recall: Divide & Conquer

Design paradigm:

- 1. Divide the problem (instance) into subproblems.
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

Recall: Merge Sort

- 1. Divide: Trivial
- 2. Conquer: Recursively sort 2 subarrays
- 3. Combine: Linear-time merge

◆□ > ◆□ > ◆豊 > ◆豊 > ・豊 のQで

Master Method on Merge Sort

$$n^{log_b a} = n$$
 $f(n) = n$

Case 2:
 $f(n) = \Theta(n)$,
Thus, $T(n) = \Theta(n | g n)$.

T(n) = 2T(n/2) + n

a = 2, b = 2

Power of a Number

- Problem:
 - ▶ Input: numbers $a \in \mathbb{R}$ and $n \in \mathbb{N}$.
 - ▶ Output: aⁿ
- ► Naive algorithm:
 - $ightharpoonup T(n) = \Theta(n)$
- ▶ Divide & Conquer:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

- Recurrence:
 - $T(n) = T(n/2) + \Theta(1)$
- Solution:
 - $ightharpoonup a=1, b=2, n^{log_ba}=1, f(n)=\Theta(1)\Longrightarrow \mathsf{Case}\ 2$
 - ▶ Thus, $T(n) = \Theta(\lg n)$