Financial Ratio Quantile Strategies

May 7, 2019

1 Understand Your Data

Read all documentation webpages for Zacks Fundamentals B. The strategy coding for this assignment will be reasonably easy. The data assembly, deliberately, is the difficult part.

2 Define the Universe

Choose at least 200 tickers¹ of US equities such that, over the entire period² Jan 2011 through Jan 2018, they satisfy the following:

- end-of-day adjusted closing prices are available
- debt/market_cap ratio is greater³ than 0.1 somewhere in the period (preferably more than fleetingly)
- not in the automotive, financial or insurance sector⁴
- has available the ratios specified below, no more than one year old as judged by filing dates

¹You can find the full list of available tickers online

²We will not concern ourselves with *selection bias* in this exercise.

³This is about 1000-2000 companies, including ARE, ORCL, TISI and WRLD.

 $^{^4\}mathrm{See}$ the Quandl ZFB fields <code>ZACKS_SECTOR_CODE</code>, <code>ZACKS_X_IND_CODE</code>, and the <code>classification</code> list

3 Select Financial Ratios

For this assignment, we will work with the following ratios:

- debt to market cap⁵. You may assume a debt field is zero if it was reported as NaN.
- price to book⁶
- price to earnings⁷

Note that these data items are reported (at best) quarterly. As the equity price changes day-to-day, each ratio changes accordingly.

4 Beta Neutral

Now we will apply beta neutrality to reduce sensitivity of our portfolio returns to overall market performance. For each position in a security S, as of a given simulation date d, perform an ordinary least squares linear regression of its daily returns on adjusted close⁸ prices over the previous calendar month⁹ to those of the SPY ETF.

$$r_S \sim \alpha_0^S + \alpha_1^S r_{\rm SPY}$$

To achieve beta neutrality, we simply assume that, in addition to x of this security, your portfolio takes on a position of $-x_1^S x$ in the SPY ETF.

5 Analysis

Study performance of weekly or monthly quantile trading strategies using each of these single ratios as well as your choice of least one nontrivial combination of them¹⁰.

⁵ ZFB/NET_CURR_DEBT + ZFB/TOT_LTERM_DEBT and NBR_SHARES_OUT in Quandl

⁶ based on ZFB/BOOK_VAL_PER_SHARE in Quandl

 $^{^7}$ based on $\,$ ZFB/DILUTED_NET_EPS in Quandl, or regular earnings per share if never diluted

⁸You can use the Quandl EOD database to obtain this data

⁹For example, for March 4 our regression uses trading days from Feb 4 to March 3. For August 12, it uses July 12 to August 11

¹⁰That is to say, at least 4 types of scores.

You may assume zero trading costs, that trading fractional shares and arbitrary positions sizes are possible, that all securities are easy to borrow, and that the portfolio capital is equal to the gross notional. Choose either a constant funding rate, or rolling 3-month LIBOR.

Analyze performance of a top-and-bottom decile trading strategy. Now rank based on *changes* in your ratios rather than the ratios themselves. Play with the effects of sizing positions by rank.