Recurrence

Dr. Son P. Nguyen

UEL VNU-HCMC

October 4, 2015

Example

- The Tower of Hanoi. How do you solve this using recursion?
- Equation gotten:

$$M(n) = 2M(n-1) + 1$$

- This is an example of a recurrence equation
- Solving the equation, we'll know how much time needed to finish the game.

Example

- The Tower of Hanoi. How do you solve this using recursion?
- Equation gotten:

$$M(n) = 2M(n-1) + 1$$

- This is an example of a recurrence equation
- Solving the equation, we'll know how much time needed to finish the game.
- The easiest way is to list the first few M(n) and make a guess about a general formula.
- Then try to prove the formula by *induction*

Example

- The Tower of Hanoi. How do you solve this using recursion?
- Equation gotten:

$$M(n) = 2M(n-1) + 1$$

- This is an example of a recurrence equation
- Solving the equation, we'll know how much time needed to finish the game.
- The easiest way is to list the first few M(n) and make a guess about a general formula.
- Then try to prove the formula by *induction*

Examples

Example 1

The empty set \emptyset is a set with no elements. How many subsets does it have? How many subsets does the one-element set $\{1\}$ have? How many subsets does the two-element set $\{1,2\}$ have? How many of these subsets contain 2? How many subsets does $\{1,2,3\}$ have? How many contain 3? Give a recurrence for the number S(n) of subsets of an n-element set, and prove that your recurrence is correct.

Example 2

When paying off a loan with initial amount A and monthly payment M at an interest rate of p percent, the total amount T(n) of the loan after n months is computed by adding p/12 percent to the amount due after n-1 months and then subtracting the monthly payment M. Convert this description into a recurrence for the amount owed after n months.

Examples

Example 1

The empty set \emptyset is a set with no elements. How many subsets does it have? How many subsets does the one-element set $\{1\}$ have? How many subsets does the two-element set $\{1,2\}$ have? How many of these subsets contain 2? How many subsets does $\{1,2,3\}$ have? How many contain 3? Give a recurrence for the number S(n) of subsets of an n-element set, and prove that your recurrence is correct.

Example 2

When paying off a loan with initial amount A and monthly payment M at an interest rate of p percent, the total amount T(n) of the loan after n months is computed by adding p/12 percent to the amount due after n-1 months and then subtracting the monthly payment M. Convert this description into a recurrence for the amount owed after n months.

Example (cont.)

Example 3

Given the recurrence

$$T(n) = rT(n-1) + a$$

where r and a are constants, find a recurrence that expresses T(n) in terms of T(n-2) instead of T(n-1). Now find a recurrence that expresses T(n) in terms of T(n-3) instead of T(n-2) or T(n-1). Now find a recurrence that expresses T(n) in terms of T(n-4) rather than T(n-1), T(n-2), or T(n-3). Based on your work so far, find a general formula for the solution to the recurrence

$$T(n) = rT(n-1) + a$$

with T(0) = b and where r and a are constants.

First theorem on recurrence

Theorem

If
$$T(n) = rT(n-1) + a$$
, $T(0) = b$, and $r \neq 1$, then

$$T(n) = r^n b + a \cdot \frac{1 - r^n}{1 - r}$$

for all nonnegative integers n

Second theorem on recurrence

A generalization of the first theorem when *a* is no longer a constant.

Theorem

For any positive constants b and r and any function g defined on the nonnegative integers, the solution to the first-order linear recurrence

$$T(n) = \begin{cases} rT(n-1) + g(n) & \text{if} \quad n > 0 \\ b & \text{if} \quad n = 0 \end{cases}$$

is

$$T(n) = r^n b + \sum_{i=1}^n r^{n-i} g(i)$$

Some remarks

- To bound T(n), it boils down to whether $r^n b$ dominates or $\sum_{i=1}^n r^{n-i} g(i)$ dominates
- The second sums in a few examples are easy enough for a kind-of geometric series analysis

Example

Solve the recurrence T(n) = 4T(n-1) + 2n, with T(0) = 6.

Some remarks

- To bound T(n), it boils down to whether $r^n b$ dominates or $\sum_{i=1}^n r^{n-i} g(i)$ dominates
- The second sums in a few examples are easy enough for a kind-of geometric series analysis

Example

Solve the recurrence T(n) = 4T(n-1) + 2n, with T(0) = 6.

Example

Solve the recurrence T(n) = 3T(n-1) + n, with T(0) = 10.

Some remarks

- To bound T(n), it boils down to whether $r^n b$ dominates or $\sum_{i=1}^n r^{n-i} g(i)$ dominates
- The second sums in a few examples are easy enough for a kind-of geometric series analysis

Example

Solve the recurrence T(n) = 4T(n-1) + 2n, with T(0) = 6.

Example

Solve the recurrence T(n) = 3T(n-1) + n, with T(0) = 10.

Exercises

Do exercises 7,9,11 p. 197

Asymptotic notations

Let f(n) be the running time of an algorithm where n is the input size. We always have the need to bound f(n).

Example

Say $f(n) = 7n^{3/5} + x^{1/5} \ln^3 n$. We can "bound" f by a simpler function $g(n) = n^{3/5}$

Standard form

A function g(n) is said to be in *standard form* if it is the product of terms of the following types:

- ① Constants such as $\sqrt{2\pi}$, 6, e^{-2} .
- 2 Constant powers of *n* such as *n*, \sqrt{n} , $n^{5/2}$, n^{-3} .
- 3 Constant powers of $\ln n$ such as $\ln n$, $\sqrt{\ln n}$, $\frac{1}{\ln n}$.
- ① Exponentials such as 2^n , e^n , $2^{n/2}$.
- \circ n^{cn} for constant c, such as n^n .

Asymptotic notations

Let f(n) be the running time of an algorithm where n is the input size. We always have the need to bound f(n).

Example

Say $f(n) = 7n^{3/5} + x^{1/5} \ln^3 n$. We can "bound" f by a simpler function $g(n) = n^{3/5}$

Standard form

A function g(n) is said to be in *standard form* if it is the product of terms of the following types:

- Constants such as $\sqrt{2\pi}$, 6, e^{-2} .
- 2 Constant powers of *n* such as *n*, \sqrt{n} , $n^{5/2}$, n^{-3} .
- **3** Constant powers of $\ln n$ such as $\ln n$, $\sqrt{\ln n}$, $\frac{1}{\ln n}$.
- **1** Exponentials such as 2^n , e^n , $2^{n/2}$.

Example of standard form

Stirling's formula

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

• In our applications we imagine f(n) as a complicated function and g(n) in standard form.

Definition

We write $f(n) \sim g(n)$ and say f(n) is asymptotic to g(n) when

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$$

Example of standard form

Stirling's formula

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

• In our applications we imagine f(n) as a complicated function and g(n) in standard form.

Definition

We write $f(n) \sim g(n)$ and say f(n) is asymptotic to g(n) when

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$$

Big O

We write f(n) = O(g(n)) and say f(n) is big oh of g(n) when there is a positive constant C such that for all sufficiently large n

$$f(n) \leq Cg(n)$$

i.e. the graph of g will eventually climb above the graph of f

Big Omega

We write $f(n) = \Omega(g(n))$ and say f(n) is omega of g(n) when there is a positive constant ϵ such that for all sufficiently large n,

$$f(n) \ge \epsilon g(n)$$

Big O

We write f(n) = O(g(n)) and say f(n) is big oh of g(n) when there is a positive constant C such that for all sufficiently large n

$$f(n) \leq Cg(n)$$

i.e. the graph of g will eventually climb above the graph of f

Big Omega

We write $f(n) = \Omega(g(n))$ and say f(n) is omega of g(n) when there is a positive constant ϵ such that for all sufficiently large n,

$$f(n) \geq \epsilon g(n)$$

Big Theta

We write $f(n) = \Theta(g(n))$ and say f(n) is *theta* of g(n) when there exist positive constants C, ϵ so that for n sufficiently large

$$\epsilon g(n) \le f(n) \le Cg(n)$$

or equivalently, f = O(g) and g = O(f).

Polylog

A function f(n) is said to be *polylog* if $f(n) = \Theta(\ln(cn))$ for some positive constant c.

Big Theta

We write $f(n) = \Theta(g(n))$ and say f(n) is theta of g(n) when there exist positive constants C, ϵ so that for n sufficiently large

$$\epsilon g(n) \le f(n) \le Cg(n)$$

or equivalently, f = O(g) and g = O(f).

Polylog

A function f(n) is said to be *polylog* if $f(n) = \Theta(\ln(cn))$ for some positive constant c.

$\mathsf{Theorem}$

Let
$$f(n) = f_1(n) + f_2(n)$$
. Suppose $f_1(n) = O(g(n))$ and $f_2(n) = O(g(n))$. Then $f(n) = O(g(n))$.

Little oh one

When f(n)=o(1), it means that $f(n)\to 0$ as $n\to \infty$. Of particular use is the factor 1+o(1). This is a term that approaches one. (Warning: The o(1) term may be negative here. If h(n)=1+o(1), then with arbitrarily small positive ϵ , we must have $1-\epsilon \le h(n) \le 1+\epsilon$ for n sufficiently large.) Thus

$$f(n) = g(n)(1 + o(1))$$
 if and only if $f(n) \sim g(n)$

$\mathsf{Theorem}$

Let
$$f(n) = f_1(n) + f_2(n)$$
. Suppose $f_1(n) = O(g(n))$ and $f_2(n) = O(g(n))$. Then $f(n) = O(g(n))$.

Little oh one

When f(n)=o(1), it means that $f(n)\to 0$ as $n\to \infty$. Of particular use is the factor 1+o(1). This is a term that approaches one. (Warning: The o(1) term may be negative here. If h(n)=1+o(1), then with arbitrarily small positive ϵ , we must have $1-\epsilon \le h(n) \le 1+\epsilon$ for n sufficiently large.) Thus

$$f(n) = g(n)(1 + o(1))$$
 if and only if $f(n) \sim g(n)$

There is a natural *ordering* of the basic types of functions:

- constants,
- \bigcirc constant positive powers of $\ln n$,
- \odot constant positive powers of n,
- exponentials c^n , c > 1,
- $oldsymbol{0}$ n^{cn} for constant positive c, such as n^n .

Each type below grows slower than the following ones.

Growth rates

Example

Let T(n) be the number of questions in a binary search on the range of numbers between 1 and n. Assuming that n is a power of 2, give a recurrence for T(n).

$$T(n) = \begin{cases} T(n/2) + 1 & \text{if} \quad n \ge 2\\ 1 & \text{if} \quad n = 1 \end{cases}$$

Here, we would like to analyze a popular method for analyzing running time of an algorithm, namely the divide and conquer method.

Growth rates

Example

Let T(n) be the number of questions in a binary search on the range of numbers between 1 and n. Assuming that n is a power of 2, give a recurrence for T(n).

$$T(n) = \begin{cases} T(n/2) + 1 & \text{if} \quad n \ge 2\\ 1 & \text{if} \quad n = 1 \end{cases}$$

Here, we would like to analyze a popular method for analyzing running time of an algorithm, namely the divide and conquer method.

Growth rates (cont.)

Let's analyze Merge Sort

MergeSort (A, low, high)

```
// This algorithm sorts the portion of list A from
// location low to location high.
if (low == high)
    return
else
    mid = [(low + high)/2]
    MergeSort(A,low,mid)
    MergeSort(A,mid+1,high)
    Merge the sorted lists from the previous two steps return
```

$$T(n) = \begin{cases} 2T(n/2) + n & \text{if} \quad n \ge 2\\ 1 & \text{if} \quad n = 1 \end{cases}$$

Growth rates (cont.)

Let's analyze Merge Sort

MergeSort (A, low, high)

```
// This algorithm sorts the portion of list A from
// location low to location high.
if (low == high)
    return
else
    mid = [(low + high)/2]
    MergeSort(A,low,mid)
    MergeSort(A,mid+1,high)
    Merge the sorted lists from the previous two steps
    return
```

$$T(n) = \begin{cases} 2T(n/2) + n & \text{if} \quad n \ge 2\\ 1 & \text{if} \quad n = 1 \end{cases}$$

We need to determine four things

- the number of subproblems
- the size of each subproblem
- the amount of work done per subproblem
- the total work done at that level

Example

Use a recursion tree to find a big Θ bound for the solution to the recurrence

$$T(n) = \begin{cases} 3T(n/3) + n & \text{if } n \ge 3\\ 1 & \text{if } n < 3 \end{cases}$$

assuming n is a power of 3

Example

Use a recursion tree to solve the recurrence

$$T(n) = \begin{cases} 4T(n/2) + n & \text{if} \quad n \ge 2\\ 1 & \text{if} \quad n = 1 \end{cases}$$

Assume that n is a power of 2. Convert your solution to a big Θ statement about the behavior of the solution

Example

Use a recursion tree to find a big Θ bound for the solution to the recurrence

$$T(n) = \begin{cases} 3T(n/3) + n & \text{if } n \ge 3\\ 1 & \text{if } n < 3 \end{cases}$$

assuming n is a power of 3

Example

Use a recursion tree to solve the recurrence

$$T(n) = \begin{cases} 4T(n/2) + n & \text{if} \quad n \ge 2\\ 1 & \text{if} \quad n = 1 \end{cases}$$

Assume that n is a power of 2. Convert your solution to a big Θ statement about the behavior of the solution

Lemma

Suppose that we have a recurrence of the form

$$aT\left(\frac{n}{2}\right)+n$$

where a is a positive integer and T(1) is nonnegative. Then we have the following big Θ bounds on the solution:

- 2 If a = 2, then $T(n) = \Theta(n \log n)$.

Exercises

Do 1,4,8,9 on p. 212

The master theorem

Theorem

(Master Theorem) Let a and b be positive real numbers, with $a \ge 1$ and b > 1. Let T(n) be defined for integers n that are powers of b by

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{if} \quad n \ge 2\\ d & \text{if} \quad n = 1 \end{cases}$$

Then we have the following:

• If $f(n) = \Theta(n^c)$ where $\log_b a < c$ then

$$T(n) = \Theta(n^c) = \Theta(f(n))$$

② If $f(n) = \Theta(n^c)$ where $\log_b a = c$ then

$$T(n) = \Theta(n^c \log n) = \Theta(f(n) \log n)$$

3. If $f(n) = \Theta(n^c)$ where $\log_b a > c$ then

$$T(n) = \Theta(n^{\log_b a})$$

Example

What can we say about the big Θ behavior of the solution to

$$T(n) = \begin{cases} 2T(n/3) + 4n^{3/2} & \text{if} \quad n \ge 2\\ d & \text{if} \quad n = 1 \end{cases}$$

where n can be any nonnegative power of 3 ?

3. If $f(n) = \Theta(n^c)$ where $\log_b a > c$ then

$$T(n) = \Theta(n^{\log_b a})$$

Example

What can we say about the big Θ behavior of the solution to

$$T(n) = \begin{cases} 2T(n/3) + 4n^{3/2} & \text{if} \quad n \ge 2\\ d & \text{if} \quad n = 1 \end{cases}$$

where n can be any nonnegative power of 3?

Example

If $f(n) = n\sqrt{n+1}$, what can we say about the big Θ behavior of solutions to

$$S(n) = \begin{cases} 2S(n/3) + f(n) & \text{if} \quad n \ge 2\\ d & \text{if} \quad n = 1 \end{cases}$$

where n can be any nonnegative power of 3?

Example

What does the master theorem tell us about the solutions to the recurrence

$$S(n) = \begin{cases} 3S(n/2) + n\sqrt{n+1} & \text{if } n \ge 2\\ 1 & \text{if } n = 1 \end{cases}$$

Dr. Son P. Nguyen

Recurrence

Example

If $f(n) = n\sqrt{n+1}$, what can we say about the big Θ behavior of solutions to

$$S(n) = \begin{cases} 2S(n/3) + f(n) & \text{if} \quad n \ge 2\\ d & \text{if} \quad n = 1 \end{cases}$$

where n can be any nonnegative power of 3?

Example

What does the master theorem tell us about the solutions to the recurrence

$$S(n) = \begin{cases} 3S(n/2) + n\sqrt{n+1} & \text{if} \quad n \ge 2\\ 1 & \text{if} \quad n = 1 \end{cases}$$

Dr. Son P. Nguyen

Recurrence

Exercises

Do problem 1,2,4 on page 222