In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

In [2]:

```
# Importing the dataset
dataset = pd.read_csv('C:/Users/Jayen/Desktop/study material/2nd year-3sem/machine
learning/programs/Hierarchical-Clustering/Hierarchical_Clustering/Mall_Customers.csv')
dataset=pd.DataFrame(dataset)
dataset.head()
```

Out[2]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

In [3]:

```
dataset.describe()
```

Out[3]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

In [4]:

```
sns.distplot(dataset['Annual Income (k$)'])

C:\Users\Jayen\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py:6462: UserWarning: The
'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
   warnings.warn("The 'normed' kwarg is deprecated, and has been "
```

Out[4]:

```
<matplotlib.axes._subplots.AxesSubplot at 0x235bccba470>
```

```
0.016 -
0.014 -
0.012 -
```


In [5]:

sns.distplot(dataset['Spending Score (1-100)'])

C:\Users\Jayen\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The
'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "

Out[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x235bd0cf6d8>

In [6]:

sns.distplot(dataset['Age'])

C:\Users\Jayen\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The
'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x235be12c5f8>

In [7]:

sns.countplot(x='Genre',data=dataset)

Out[7]:

In [9]:

```
cor=dataset.corr()
sns.heatmap(cor,xticklabels=cor.columns.values,yticklabels=cor.columns.values,annot=True)
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x235be250cf8>

In [34]:

```
X = dataset.iloc[:,4].values.reshape(-1,1)
y = dataset.iloc[:,3].values.reshape(-1,1)
```

In [35]:

```
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0)
```

In [36]:

```
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)

C:\Users\Jayen\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarning:
Data with input dtype int64 was converted to float64 by StandardScaler.
```

```
warnings.warn(msg, DataConversionWarning)
C:\Users\Jayen\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarning:
Data with input dtype int64 was converted to float64 by StandardScaler.
    warnings.warn(msg, DataConversionWarning)
C:\Users\Jayen\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarning:
Data with input dtype int64 was converted to float64 by StandardScaler.
    warnings.warn(msg, DataConversionWarning)
C:\Users\Jayen\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarning:
Data with input dtype int64 was converted to float64 by StandardScaler.
    warnings.warn(msg, DataConversionWarning)
C:\Users\Jayen\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarning:
Data with input dtype int64 was converted to float64 by StandardScaler.
    warnings.warn(msg, DataConversionWarning)
```

In [37]:

```
# Using the dendrogram to find the optimal number of clusters
import scipy.cluster.hierarchy as sch
dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()
```


In [32]:

```
# Fitting Hierarchical Clustering to the dataset
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters =2, affinity = 'euclidean', linkage = 'ward')
y_hc = hc.fit_predict(X)
```

In [33]:

```
plt.scatter(X[y_hc == 0, 0], X[y_hc == 0,1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.stitle('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```


