Multiplicación en cadena de matrices, parte 1

Multiplicación en cadena de matrices

Entrada: Dado un conjunto de matrices $A_1, A_2, ..., A_N$ las cuales son compatibles para realizar el producto (el número de columnas de A_i es igual al número de filas de A_{i+1} para i=1:N-1), la entrada será el arreglo de enteros positivos no nulos $P = \{p_0, p_1, p_N\}$, tal que la matriz A_i tiene una dimensión $p_{i-1} \times p_i$

Dicho producto no es conmutativo, es decir, no se puede cambiar el orden de los elementos, lo único que se puede hacer es escoger donde situar los paréntesis.

Salida: La 'parentización' del producto en cadena $A_1*A_2*...*A_N$ que minimiza la cantidad total de operaciones (multiplicaciones escalares)

Multiplicación en cadena de matrices

Ejemplo 1: Si A es 10x100, B es 100x5, C es 5 x50

Alternativa 1: ((A*B)*C) = (4x1x4) + (4x4x1) = 32 productos

Alternativa 2: $(A^*(B^*C)) = (1x4x1) + (4x1x1) = 8$ productos

Ejemplo 2: Si A es 10x100, B es 100x5, C es 5 x50

Alternativa 1: ((A*B)*C) = (10x100x5) + (10x5x50) = 7.500

Alternativa 2: $(A^*(B^*C)) = (100x5x50) + (10x100x50) = 75.000$

En general, con n matrices, cuántas alternativas diferentes de 'parentización' existen? (N-1)!

Para comenzar a vislumbrar una solución por programación dinámica pensemos: ¿cómo definimos que elementos constituyen un subproblema?

La última multiplicación se llevaría a cabo sobre dos subproductos: $(A_1, A_2, ..., A_k)$ y $(A_{k+1}, A_{k+2}, ..., A_N)$ con k = N-1 posibles particiones

Si repetimos el proceso, digamos en el subproducto izquierdo, la multiplicación se llevaría a cabo sobre dos subproductos: $(A_1, A_2, ..., A_{k'})$ y $(A_{k'+1}, A_{k'+2}, ..., A_k)$ con k' = k-1 posibles particiones

Siendo así, podemos decir de manera general que en algún momento tenemos que resolver el subproducto de los elementos *i* a *j* con *i* ≤ *j*

Notación: sea $M_{i,j}$ con $1 \le i \le j \le N$ la cantidad óptima de operaciones (multiplicaciones) para los matrices i a j

Si i=j, el problema es trivial pues no se necesitan multiplicaciones para calcular ese subproducto, es decir $M_{i,i} = 0$ para $1 \le i \le N$

Considerando esta notación, y sabiendo que calcular el subproducto $(A_i, A_{i+1}, ..., A_k)$ * $(A_{k+1}, A_{k+2}, ..., A_j)$ implica $p_{i-1} * p_k * p_j$ operaciones, podemos definir la siguiente relación de recurrencia:

$$M[i,j] = \begin{cases} 0 & si \ i = j \\ MIN_{i \le k < j} (M[i,k] + M[k+1,j] + p_{i-1}p_k p_j) \ si \ i \ne j \end{cases}$$

En otras palabras, dados los elementos *i* a *j*, se evalúan las *j-i* posibilidades y se escoge la mejor alternativa.

```
for i = 1 to N:
M_{i,i} = \emptyset
for matrices = 2 to N:
for i = 1 to N-matrices+1:
j = i+matrices-1
menor = INF
for k = i to j-1:
menor = min(menor, M_{i,k} + M_{k+1,j} + p_{i-1}*p_k*p_j)
M_{i,j} = menor
print(M_{1,N})
```


¿Cuál es la complejidad de este algoritmo? $O(N^3)$