Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-школа прикла	адной математики	и информатики	
Кафедра вычислительных технологи	ий и моделирования	я в геофизике и	биоматематике

Выпускная квалификационная работа бакалавра

Блочные методы типа бисопряжённых градиентов

Автор:

Студент 101а группы Козлов Николай Андреевич

Научный руководитель:

н.с.,к.ф.-м.н. Желтков Дмитрий Александрович

Аннотация

Блочный BiCGStab и его друзья Kозлов Hиколай Aндреевич

Краткое описание задачи и основных результатов, мотивирующее прочитать весь текст.

Abstract

Block BiCGStab and his friends

Содержание

1	Вве	едение	4			
2	Обз	Обзор существующих решений				
	2.1	Метод сопряженных градиентов	5			
	2.2	Метод бисопряженных градиентов	5			
	2.3	Метод стабилизированных бисопряженных градиентов	5			
	2.4	Метод блочных сопряженных градиентов	5			
	2.5	Метод блочных бисопряженных градиентов	5			
	2.6	Метод блочных стабилизированных бисопряженных градиентов	5			
		2.6.1 Матричнозначные полиномы	5			
		2.6.2 Алгоритм	5			
3	Исс	Исследование и построение решения задачи				
	3.1	Реортогонализация для поддержания биортогональных соотношений	6			
	3.2	Ортогонализация векторов направлений и проверочных невязок	6			
	3.3	Выбор правых частей	6			
	3.4	Проблемы	6			
4	Чис	сленные эксперименты	7			
5	Зак	ключение	8			

1 Введение

В ряде приложений возникают большие линейные системы с многими правыми частями. такую задачу можно записать в блочном виде:

$$AX = B$$
,

где A - $N \times N$ невырожденная разреженная матрица системы; B - $N \times s$ невырожденная матрица, столбцы - правые части; X - $N \times s$ матрица, столбцы - решения для соответствующих правых частей. Также еще предполагаем, что $s \ll N$. Такие задачи можно решать прямыми методами, однако они не подходят для больших задач из-за кубической асимптотики. Так что естественным является использование блочных крыловских методов.

В преимущества блочных крыловских методов входят: высокая производительность на вычислительных системах за счет блочных операций, Более быстрая сходимость, по сравнению с неблочными методами [DIANNE O'LEARY]; в задачах со структурированными системами (например МКЭ) БКМ не разрушают структуру, в отличие от прямых методов. Чрезвычайно большие системы, которые не помещаются целиком в оперативную память можно решать с помощью блочных крыловских методов.

<Рассказ про блочные крыловские методы.>

Для наших целей мы хотим построить крыловские методы, отвечающие следующим требованиям: методы должны находить решения систем общего вида, то есть, которые не обязательно являются эрмитовыми; методы не должны требовать сохранения всего крыловского пространства, то есть должны давать короткие итерационные соотношения; методы должны поддерживать оптимальный размер блока.

2 Обзор существующих решений

Здесь надо рассмотреть все существующие решения поставленной задачи, но не просто пересказать, в чем там дело, а оценить степень их соответствия тем ограничениям, которые были сформулированы в постановке задачи.

2.1 Метод сопряженных градиентов

[YOUSEF SAAD ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS SECOND EDITION]

2.2 Метод бисопряженных градиентов

[YOUSEF SAAD ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS SECOND EDITION]

2.3 Метод стабилизированных бисопряженных градиентов

[VAN DER VORST BI-CGSTAB: A FAST AND SMOOTHLY CONVEGRING VARIANT OF BI-CG FOR THE SOLUTION OF NONSYMMETRIC LINEAR SYSTEMS]

2.4 Метод блочных сопряженных градиентов

[DIANNE P. O'LEARY THE BLOCK CONJUGATE GRADIENT ALGORYTHM AND RELATED METHODS]

2.5 Метод блочных бисопряженных градиентов

[DIANNE P. O'LEARY THE BLOCK CONJUGATE GRADIENT ALGORYTHM AND RELATED METHODS]

2.6 Метод блочных стабилизированных бисопряженных градиентов

[GUENNOUNI A BLOCK VERSION OF BCGSTAB FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES]

2.6.1 Матричнозначные полиномы

Проблемы со сходимостью метода из [GUENNOUNI], демонстрация в 4 главе, решение проблемы в 3 главе.

2.6.2 Алгоритм

3 Исследование и построение решения задачи

3.1 Реортогонализация для поддержания биортогональных соотношений α,β,ω

3.2 Ортогонализация векторов направлений и проверочных невязок

$$P_k = Q_P R_P$$

 \tilde{R}_0

3.3 Выбор правых частей

график с сингулярными числами rrqr

3.4 Проблемы

Нескалярная омега возможные брейкдауны [GUENNOUNI] Все равно мало правых частей

4 Численные эксперименты

4 правые части, мы схоидмся, они нет, считаем в одинарной точности 15 правых частей, уменьшения числа итераций, считаем в двойной точности более 30 правых частей, демонстрация отсутствия взрыва невязки

5 Заключение

Результаты

Нерешенные проблемы редукции блока

Список литературы

- [1] Mott-Smith, H. The theory of collectors in gaseous discharges / H. Mott-Smith, I. Langmuir // Phys. Rev. 1926. Vol. 28.
- [2] *Морз*, *P.* Бесстолкновительный РІС-метод / Р. Морз // Вычислительные методы в физике плазмы / Еd. by Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1974.
- [3] $\mathit{Kucen\"ee}$, A. A. Численное моделирование захвата ионов бесстолкновительной плазмы электрическим полем поглощающей сферы / A. A. Кисел\"eв, Долгоносов M. C., Красовский B. $\Pi.$ // Девятая ежегодная конференция «Физика плазмы в Солнечной системе». 2014.