main

December 8, 2021

0.1 Import

```
[1]: import numpy as np
    from numpy import mean, std
    import scipy.optimize as optim
    import pandas as pd
    import math
    from sklearn.metrics import accuracy_score
    from tabulate import tabulate
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import KFold, cross_val_score
    import time
```

0.2 Data Preprocessing

```
[2]: # import data
data=pd.read_csv('../data/compas-scores-two-years.csv')
# filter groups other than African-American and Caucasian
data = data[(data['race']=='African-American') | (data['race']=='Caucasian')]
# data['race'].loc[data['race']=='African-American']= 1
# data['race'].loc[data['race']=='Caucasian']= 0
data = data.replace({'race': 'Caucasian'}, 1)
data = data.replace({'race': 'African-American'}, 0)
```

We first deleted some independent variables such as names, dates, and variables with lots of missing values or NA values.

```
→'vr_charge_degree','type_of_assessment','v_type_of_assessment'])
[4]: data.shape
[4]: (6150, 22)
[5]: # drop NA values
     data=data.dropna()
[6]: # create dummy variables for categorical variables
     data['sex'].loc[data['sex']=='Male']= 1
     data['sex'].loc[data['sex']=='Female']= 0
     data['age_cat'].loc[data['age_cat']=='25 - 45']= 'B'
     data['age_cat'].loc[data['age_cat']=='Greater than 45']= 'C'
     data['age_cat'].loc[data['age_cat']=='Less than 25']= 'A'
     data.loc[data['age_cat']=='A', 'age_cat1'] = 1
     data.loc[data['age_cat']!='A', 'age_cat1'] = 0
     data.loc[data['age_cat']=='B', 'age_cat2'] = 1
     data.loc[data['age_cat']!='B', 'age_cat2'] = 0
     data['c_charge_degree'].loc[data['c_charge_degree']=='M']= 1
     data['c charge degree'].loc[data['c charge degree']=='F']= 0
     data['v_score_text'].loc[data['v_score_text']=='High']= 'A'
     data['v score text'].loc[data['v score text']=='Low']= 'C'
     data['v_score_text'].loc[data['v_score_text'] == 'Medium'] = 'B'
     data.loc[data['v_score_text'] == 'A', 'v_score_text1'] = 1
     data.loc[data['v_score_text']!='A', 'v_score_text1'] = 0
     data.loc[data['v_score_text']=='B', 'v_score_text2'] = 1
     data.loc[data['v_score_text']!='B', 'v_score_text2'] = 0
     data['score_text'].loc[data['score_text']=='High']= 'A'
     data['score_text'].loc[data['score_text']=='Low']= 'B'
     data['score_text'].loc[data['score_text']=='Medium']= 'C'
     data.loc[data['score_text']=='A', 'score_text1'] = 1
     data.loc[data['score_text']!='A', 'score_text1'] = 0
     data.loc[data['score_text']=='B', 'score_text2'] = 1
     data.loc[data['score_text']!='B', 'score_text2'] = 0
    /anaconda3/lib/python3.7/site-packages/pandas/core/indexing.py:189:
    SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: http://pandas.pydata.org/pandas-
    docs/stable/indexing.html#indexing-view-versus-copy
      self. setitem with indexer(indexer, value)
```

```
[7]: # drop original categorical variables
data=data.drop(columns=['age_cat','v_score_text','score_text'])
```

```
[8]: # checking that there is no NaN values in the current dataset

new_table_content = [['predictor variable', '# of unique values', '# of NaN

→values']]

for item in data.columns:

new_table_content.append([item, len(data[item].unique()), sum(data[item].

→isna() == True)])
```

[9]: print(tabulate(new_table_content, headers='firstrow', tablefmt='fancy_grid',⊔

⇒showindex=range(1,26)))

	predictor variable	# of unique values	# of NaN values
1	sex	2	0
2	race	2	0
3	juv_fel_count	10	0
4	decile_score	10	0
5	juv_misd_count	10	0
6	juv_other_count	8	0
7	priors_count	37	0
8	days_b_screening_arrest	381	0
9	c_days_from_compas	342	0
10	c_charge_degree	2	0
11	is_recid	2	0
12	is_violent_recid	2	0
13	decile_score.1	10	0
14	v_decile_score	10	0
15	priors_count.1	37	0
16	start	221	0

	18	3 e [.]	vent								2		0	
	19	9 t	wo_yea	r_re	cid						2		0	
	20) a	ge_cat	1							2		0	
			_											
	23	1 a	ge_cat	2							2		0	
	22	2 v	_score	_text	t1						2		0	
	23	3 v	_score	_text	t2						2		0	
	24	4 s	core_t	ext1							2		0	
	0.1			+0							0		0	
	25	o S	core_t	ext2							2		0	
[10]:	da	ta.he	ead()											
F 3					_	_								
[10]:		sex	race	juv	_fe	l_cou		lecile_scor	Ū	ıv_m	isd_count	juv_other	_cour	
	1 2	1	0				0		3		0			0
		1	0				0		4		0			1
	6	1	1				0		6		0			0
	8 9	0	1 1				0		1 3		0			0
	9	1	1				0		3		0			0
		pric	rs_cou	ınt	day	s b s	creen	ing arrest	c d	lavs	_from_comp	as c_char	ge de	egree \
	1	1	_	0	J			-1.0		J	_	.0	0 -	0
	2			4				-1.0				.0		0
	6			14				-1.0				.0		0
	8			0				-1.0				.0		1
	9			1				428.0			308			0
				sta	rt	end	ovon	+ +110 1103	er rec	ri d	age_cat1	age ca+2	\	
	1	••		500	9	159		1	11_160	1	0.0	1.0	`	
	2	••			0	63		0		1	1.0	0.0		
	6	••			5	40		1		1	0.0	1.0		
	8	••			2	747		0		0	0.0	1.0		
	9				0	428		1		1	1.0	0.0		
	-											0.0		
		v_sc	core_te		v _	score		2 score_t		sc				
	1			0.0			0.		0.0		1.0			
	2			0.0			0.		0.0		1.0			
	6			0.0			0.	0	0.0		0.0			

17 end

```
8 0.0 0.0 0.0 1.0
9 0.0 1.0 0.0 1.0
```

[5 rows x 25 columns]

0.3 Data Split

Split the dataset into training, validation and testing set (0.6, 0.2, 0.2)

```
[13]: data_train.head()
```

```
[13]:
                       juv_fel_count decile_score two_year_recid
                 race
      246
              1
                     1
                                     0
                                                    1
      3883
              1
                     0
                                     0
                                                    1
                                                                     0
      6410
              1
                     0
                                     0
                                                    2
                                                                     0
      437
              1
                     1
                                     0
                                                   10
      3497
                     1
                                     0
                                                   10
              0
```

0.4 Learning Fair Representations

The following functions are helper functions for LFR

```
[14]: # distance - d(x_n, v_k, alpha)
# this function returns a distance matrix of a shape NxK

def distance(X, v, alpha):
    # X is the dataset
    # v is a list of vectors, where each vector v_k has a length of D
    # alpha is a list of weights, each alpha_i is the weight for some feature
    N = X.shape[0]
    D = X.shape[1]
    K = len(v)

# initialize the distance matrix
```

```
res = np.zeros((N, K))

# calculate distances
for n in range(N):
    for k in range(K):
        for d in range(D):
        res[n, k] += alpha[d]*(X.iloc[n][d] - v[k, d])**2

return res
```

```
[15]: \# M nk = P(Z=k/x_n), which is the probability that x_n maps to y_k
      # this function returns a M_nk matrix with shape NxK
      def M_nk(dist, k):
          # dist is the distance matrix
          # K is the number of v_k
          N = dist.shape[0]
          K = dist.shape[1]
          M_nk = np.zeros((N, K))
          \# initialize the M_nk matrix
          expo_res = np.zeros((N, K))
          \# calculate M_nk
          for n in range(N):
              deno = 0
              for k in range(K):
                  expo_res[n, k] = math.exp((-1)*dist[n, k])
                  deno += expo_res[n, k]
              for k in range(K):
                  M_nk[n, k] = expo_res[n, k] / deno
          return M_nk
```

```
def x_n_hat(X, M_nk, v):
                          # X is the dataset
                          \# M_nk is the M_nk matrix
                          \# v is a list of vectors, where each vector v k has a length of D
                          N = M_nk.shape[0]
                          D = X.shape[1]
                          K = M_nk.shape[1]
                          x_n_hat = np.zeros((N, D))
                          L x = 0
                          # calculate x n
                          for n in range(N):
                                     for d in range(D):
                                                for k in range(K):
                                                           x_n_{hat}[n, d] += M_nk[n, k]*v[k, d]
                                      \# calculate L_x
                                     L_x += (X.iloc[n][d] - x_n_hat[n, d])**2
                          return x_n_hat, L_x
[18]: # this function calculates the list of prediction for y_n and L_y
                def y_n_hat(M_nk, w, y):
                          \# M_nk is the M_nk matrix
                          # w is a list of weights of length K
                          # y is the corresponding list of labels for y_n
                          N = M_nk.shape[0]
                          K = M_nk.shape[1]
                          y_n_hat = np.zeros(N)
                          L_y = 0
                          # calculate prediction for y_n
                          for n in range(N):
                                     for k in range(K):
                                                y_n_{hat}[n] += M_nk[n, k]*w[k]
                                      # calculate L_y
                                     L_y += (-1)*y.iloc[n]*np.log(y_n_hat[n]) - (1 - y.iloc[n])*np.log(1 - y.iloc[n])*np.log(1 - (1 - y.iloc[n])*np.log(1 - y.
                  \rightarrowy_n_hat[n])
                          return y_n_hat, L_y
[19]: | # this functions returns the metric function we want to minimize
                def L(param, sen_df, nsen_df, sen_y, nonsen_y, K, A_z, A_x, A_y):
                          # param is the list of parameters
                          # sen df is the sensitive dataset
                          # nsen_df is the nonsensitive dataset
                          # sen_y is the list of labels for sensitive dataset
```

[17]: # this function returns the reconstruction of x n of a shape NxD and L x

```
# nonsen_y is the list of labels for nonsensitive dataset
   \# K, A_z, A x and A y are hyperparameters, the values are decided by the
\hookrightarrow users
   sen_N, sen_D = sen_df.shape
   nsen_N, nsen_D = nsen_df.shape
   # form parameters in correct forms
   alpha_sen = param[:sen_D]
   alpha_nsen = param[sen_D : 2 * sen_D]
   w = param[2 * sen_D : (2 * sen_D) + K]
   v = np.matrix(param[(2 * sen_D) + K:]).reshape((K, sen_D))
   # calculate the distance matrix
   dist_sen = distance(sen_df, v, alpha_sen)
   dist_nsen = distance(nsen_df, v, alpha_nsen)
   \# calculate the M_nk matrix
   M nk sen = M nk(dist sen, K)
   M_nk_nsen = M_nk(dist_nsen, K)
   # calculate the M k matrix
   M_k_sen = M_k(sen_df, M_nk_sen, K)
   M_k_nsen = M_k(nsen_df, M_nk_nsen, K)
   \# calculate L_z
   L_z = 0
   for k in range(K):
       L_z += abs(M_k_sen[k] - M_k_nsen[k])
   \# calculate x_n hat and L_x
   x_n_hat_sen, L_x_sen = x_n_hat(sen_df, M_nk_sen, v)
   x_n_hat_nsen, L_x_nsen = x_n_hat(nsen_df, M_nk_nsen, v)
   L_x = L_x_{sen} + L_x_{nsen}
   # calculate y_n_{\text{hat}} and L_y
   y_hat_sen, L_y_sen = y_n_hat(M_nk_sen, w, sen_y)
   y_hat_nsen, L_y_nsen = y_n_hat(M_nk_nsen, w, nonsen_y)
   L_y = L_y_{sen} + L_y_{nsen}
   # the function we want to minimize
   metric = A_z*L_z + A_x*L_x + A_y*L_y
   return metric
```

[20]: # this function defines the threshold for y_n_hat to be 0 or 1 def predic_threshold(preds):

```
for i in range(len(preds)):
    if preds[i] >= 0.5:
        preds[i] = 1
    else:
        preds[i] = 0
    return preds
```

```
[21]: # this function calculate y n hat by using the best parameters
      def cal pred(params, D, K, sen_dt, nsen_dt, sen_label, nsen_label):
          # form parameters in new forms
          best_alpha_sen = params[:D]
          best_alpha_nsen = params[D : 2 * D]
          best_w = params[2 * D : (2 * D) + K]
          best_v = np.matrix(params[(2 * D) + K:]).reshape((K, D))
          # calculate the distance matrix
          best dist sen = distance(sen dt, best v, best alpha sen)
          best_dist_nsen = distance(nsen_dt, best_v, best_alpha_nsen)
          # calculate the M nk matrix
          best_M_nk_sen = M_nk(best_dist_sen, K)
          best_M_nk_nsen = M_nk(best_dist_nsen, K)
          # calculate the y_n_hat matrix
          y_hat_sen, L_y_sen = y_n_hat(best_M_nk_sen, best_w, sen_label)
          y_hat_nsen, L_y_nsen = y_n_hat(best_M_nk_nsen, best_w, nsen_label)
          return y_hat_sen, y_hat_nsen
```

```
[22]: # this function calculates the total accuracy, seperate accuracy for
    # sensitive group and nonsensitive group and calibration
    def cal_calibr(y_pred_sen, y_pred_nsen, y_sen_label, y_nsen_label):
        converted_y_hat_sen = predic_threshold(y_pred_sen)
        converted_y_hat_nsen = predic_threshold(y_pred_nsen)

        y_pred_sen = pd.DataFrame(converted_y_hat_sen)
        y_pred_nsen = pd.DataFrame(converted_y_hat_nsen)

# calculate the accuracy
        acc_sen = accuracy_score(y_sen_label, y_pred_sen)
        acc_nsen = accuracy_score(y_nsen_label, y_pred_nsen)

all_labels = y_sen_label.append(y_nsen_label)
        all_preds = y_pred_sen.append(y_pred_nsen)
        total_accuracy = accuracy_score(all_preds, all_labels)

        print("The accuracy for the entire dataset is: ", total_accuracy)
```

```
print("The accuracy for African-American group is: ", acc_sen)
print("The accuracy for Caucasian group is: ", acc_nsen)
print("The calibration is: ", abs(acc_sen-acc_nsen))
```

```
[23]: # the main LFR function which returns the best parameters and the results for
      # training and validation accuracy
      def LFR(training_data, val_data, y_name, sen_variable_name, K, A_z, A_x, A_y):
          # divide the training set into sensitive & nonsensitive group
          sen_training = training_data[training_data[sen_variable_name]==0]
          nsen_training = training_data[training_data[sen_variable_name]==1]
          # divide the validation set into sensitive & nonsensitive group
          sen_val = val_data[val_data[sen_variable_name]==0]
          nsen_val = val_data[val_data[sen_variable_name] == 1]
          # remove sensitive variable in the sensitive training and validation group
          sen training=sen training.drop(columns=[sen variable name])
          sen_val=sen_val.drop(columns=[sen_variable_name])
          # remove sensitive variable in the nonsensitive training and validation_
       \hookrightarrow group
          nsen_training = nsen_training.drop(columns=[sen_variable_name])
          nsen_val = nsen_val.drop(columns=[sen_variable_name])
          # assign y labels for sensitive training group
          y_sen_training = sen_training[y_name]
          sen_training = sen_training.drop(columns=[y_name])
          # assign y labels for sensitive validation group
          y_sen_val = sen_val[y_name]
          sen_val = sen_val.drop(columns=[y_name])
          # assign y labels for nonsensitive training group
          y_nsen_training = nsen_training[y_name]
          nsen_training = nsen_training.drop(columns=[y_name])
          # assign y labels for nonsensitive validation group
          y_nsen_val = nsen_val[y_name]
          nsen_val = nsen_val.drop(columns=[y_name])
          # pick random values for parameters as an initial guess
          # note that since alpha and w are weights
          # they are between 0 and 1 and sum up to 1
          alpha_sen_1=np.random.random_sample((sen_training.shape[1],))
          alpha nsen 1=np.random.random sample((nsen training.shape[1],))
          alpha_sen=alpha_sen_1/sum(alpha_sen_1)
          alpha_nsen=alpha_nsen_1/sum(alpha_nsen_1)
```

```
w_1=np.random.random_sample((K,))
   w=w_1/sum(w_1)
   v=np.random.random((K, sen_training.shape[1]))
   # reform the parameters
   initial = []
   initial.extend(alpha_sen)
   initial.extend(alpha_nsen)
   initial.extend(w)
   for item in v:
       initial.extend(item)
   initial = np.array(initial)
   # the boundary of the parameters
   bound=[]
   \# as mentioned before, alpha and w are between 0 and 1 and sum up to 1
   for d in range(sen_training.shape[1]):
       bound.append((0, 1))
   for d in range(nsen_training.shape[1]):
       bound.append((0, 1))
   for k in range(K):
       bound.append((0, 1))
   # other parameters does not have constriants
   for k in range(K):
       for d in range(sen_training.shape[1]):
           bound.append((None, None))
   # minimize the metric by parameters alpha, w and v
   para, min_L, d = optim.fmin_l_bfgs_b(L, x0=initial, epsilon=1e-5,
                                         args=(sen_training, nsen_training, u
→y_sen_training,
                                               y_nsen_training, K, A_z, A_x, __
\rightarrow A_y),
                                         bounds = bound, approx_grad=True,
                                         maxfun=150000, maxiter=150000)
   # predict y_n_hat for the training set
   y_hat_sen_tr, y_hat_nsen_tr = cal_pred(para, sen_training.shape[1], K,__
→sen_training,
            nsen_training, y_sen_training, y_nsen_training)
   print("For the training set:")
```

In the IFR algorithm, we found out that there are lots of distance calculations. In order to make IFR more efficient, we implemented it in a way that it calculates all the distances just once. This reduces a lot of calculations.

During the process of training, we found out that this algorithm is very inefficient. It took more than two hours to train on the entire training set and we still can't get the results. Our laptops crashed several times. We've tried the free GPU of Google Colab, but it still did not work. The GPU setting automatically switched back to CPU setting while we were training our model. Due to the limit of our devices, we decide to make the training set 20 rows and 3 columns to show that the implemented IFR model does work.

Note that we set K=10 since the number of samples are 20 we almost value the L_x , L_y and L_z almost equally, but we do want accurate labels more

```
[46]: # call LFR function to train the model
     start = time.time()
     para_test = LFR(data_train, data_val, 'two_year_recid', 'race', 10, 0.3, 0.3, 0.
      →4)
     end = time.time()
     print( f"Total training time: {end-start}")
     /anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:16: RuntimeWarning:
     invalid value encountered in log
       app.launch_new_instance()
     For the training set:
     The accuracy for the entire dataset is: 0.85
     The accuracy for African-American group is: 0.833333333333333333
     The accuracy for Caucasian group is: 0.875
     The calibration is: 0.0416666666666663
     For the validation set:
     For the validation set:
     The accuracy for the entire dataset is: 0.6179205409974641
     The accuracy for African-American group is: 0.6167832167832168
```

```
The accuracy for Caucasian group is: 0.6196581196581197
The calibration is: 0.002874902874902885
Total training time: 29.193768978118896
```

```
[47]: # Testing result
      sen_test = data_test[data_test['race']==0]
      nsen_test = data_test[data_test['race']==1]
      sen_test=sen_test.drop(columns=['race'])
      nsen_test = nsen_test.drop(columns=['race'])
      y_sen_test = sen_test['two_year_recid']
      sen_test = sen_test.drop(columns=['two_year_recid'])
      y_nsen_test = nsen_test['two_year_recid']
      nsen_test = nsen_test.drop(columns=['two_year_recid'])
      start = time.time()
      y_hat_sen_test, y_hat_nsen_test = cal_pred(para_test, sen_test.shape[1], 10,__
      ⇒sen_test,
                   nsen_test, y_sen_test, y_nsen_test)
      end = time.time()
      print( f"Testing time: {end-start}")
      cal_calibr(y_hat_sen_test, y_hat_nsen_test, y_sen_test, y_nsen_test)
```

```
Testing time: 4.0875022411346436

The accuracy for the entire dataset is: 0.6635672020287405

The accuracy for African-American group is: 0.6494413407821229

The accuracy for Caucasian group is: 0.6852248394004282

The calibration is: 0.03578349861830532
```

As we can see from the result, the IFR algorithm is quite powerful since it achieves a test result of around 0.6 with using only 20 rows and 3 columns of the training data.

```
[]:
```

0.5 Handling Conditional Probability

0.6 1.Local massaging

```
[26]: x = data.drop(['two_year_recid'],1)
x = pd.get_dummies(x)
y = data['two_year_recid']
```

Firstly, Learn a ranker: Logistic regression and compute posterior probability

```
[28]: model = LogisticRegression()
  model.fit(x_train, y_train)
  #Calculate Posterior probability and then rank
  predicted_prob = model.predict_proba(x)
  #Selecting right Col for class_1: crisis
  pred_crisis = predicted_prob[:,1]
  #Updating features in X
  x['pred_crisis'] = pred_crisis
  x['two_year_recid'] = y
```

```
[30]: #race: Caucasian = 0; African-American = 1
x_c = x[x['race'] == 0]
x_a = x[x['race'] == 1]
```

```
[31]: #Algo 4: subroutine DELTA(race)

G_c = x_c.shape[0]

G_a = x_a.shape[0]

print(G_c, G_a)
```

```
[32]: #To those Caucasian whose class is 1 (predicted_crisis > 0.5)
    p_c_c = x_c[x_c['pred_crisis']>0.5].shape[0]/G_c
    #To those African-American whose class is 1 (predicted_crisis > 0.5)
    p_c_a = x_a[x_a['pred_crisis'] > 0.5].shape[0]/G_a
    p_star_c = (p_c_c+p_c_a)/2

#To calculate DELTA(Caucasian)
    delta_c = G_c*abs(p_c_c - p_star_c)
    #To calculate DELTA(African-American)
    delta_a = G_a*abs(p_c_a - p_star_c)
    print(delta_c, delta_a)
```

224.91274179983176 151.21359909527848

```
[33]: delta_c = 206
delta_a = 139
#We want to relabel 206 Caucasian by lables from - to +
#We want to relabel 139 African-American by labels from + to -
```

```
[34]: x_a_1 = x_a[x_a['two_year_recid'] == 1]
x_a_sorted = x_a_1.sort_values(by = 'pred_crisis', ascending = False)
x_a_sorted = x_a_sorted[x_a_sorted['pred_crisis']>0.5]
```

```
#We want to relabel the last 163 African-American by labels from + to -
x_a_sorted[-139:]['two_year_recid'] = [0]*139
x_c_1 = x_c[x_c['two_year_recid'] == 0]
x_c_sorted = x_c_1.sort_values(by = 'pred_crisis', ascending = False)
x_c_sorted = x_c_sorted[x_c_sorted['pred_crisis']<0.5]
x_c_sorted[:206]['two_year_recid'] = [1]*206</pre>
```

/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:6:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

Remove the CWD from sys.path while we load stuff.

```
[35]: # Updating on original X:
    cond_1 = (x['two_year_recid']==0) & (x['pred_crisis']<0.5) & (x['race'] == 0)
    cond_2 = (x['two_year_recid']==1) & (x['pred_crisis']>0.5) & (x['race'] == 1)
    x[cond_1] = x_c_sorted
    x[cond_2] = x_a_sorted
    new_x = x.drop(['two_year_recid', 'pred_crisis'], 1)
    new_y = x['two_year_recid']
```

[36]: #Inputing modified data into Logistic Regression Model

```
[37]: x_train, x_test, y_train, y_test = train_test_split(new_x, new_y, test_size = 1/

→7)
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size = 1/

→1/6)
```

```
[38]: model_new = LogisticRegression()
start = time.time()
model_new.fit(x_train, y_train)
#10-cross-fold-validation
cv = KFold(n_splits=10, random_state=1, shuffle=True)
scores = cross_val_score(model_new, new_x, new_y, scoring='accuracy', cv=cv,
→n_jobs=-1)
```

```
end = time.time()
print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))
print( f"Testing time: {end-start}")
new_data=pd.concat([new_x,new_y],axis=1)
new_sen=new_data[new_data['race']==0]
new_nsen=new_data[new_data['race']==1]
new sen y=new sen['two year recid']
new_sen_x=new_sen.drop(columns=['two_year_recid'])
new nsen y=new nsen['two year recid']
new_nsen_x=new_nsen.drop(columns=['two_year_recid'])
score sen=cross val score(model new, new sen x, new sen y, scoring='accuracy', |
\rightarrowcv=cv, n_jobs=-1)
score nsen=cross_val_score(model_new, new_nsen_x, new_nsen_y,_
⇔scoring='accuracy', cv=cv, n_jobs=-1)
calib_1=abs(mean(score_sen)-mean(score_nsen))
print('Calibration: ', calib_1)
```

Accuracy: 0.973 (0.006)

Testing time: 0.7535979747772217 Calibration: 0.009318281071454937

0.7 2. Local preferential Sampling

From local massaging, we know that delta_c = 206, delta_a = 139 We want to at first delete $0.5206\ Caucasian$ - and duplicate $0.5246\ Caucasian$ +

Also, a we want to delete 0.5139 African-American + and duplicate 0.5163 African-American -

```
[39]: x_a_sorted_pos = x_a_sorted
#crisis = 1; no crisis = 0
x_a_0 = x_a[x_a['two_year_recid'] == 0]
x_a_sorted = x_a_0.sort_values(by = 'pred_crisis', ascending = False)
x_a_sorted_neg = x_a_sorted[x_a_sorted['pred_crisis']<0.5]</pre>
```

```
[40]: #we want to delete 70 African-American + and duplicate 82 African-American -
    x_a_sorted = x_a_1.sort_values(by = 'pred_crisis', ascending = False)
    x_a_sorted_pos = x_a_sorted[x_a_sorted['pred_crisis']>0.5]

x_a_sorted_pos_new = x_a_sorted_pos[:-70]
    frame_a = [x_a_sorted_pos_new, x_a_sorted_neg[:70]]
    new_df_a = pd.concat(frame_a)
    new_df_a.tail(100)
```

6256	1	1	0	9	0	0
5090	1	1	0	2	0	0
532	1	1	0	1	0	0
6024	1	1	0	3	0	0
3873	1	1	0	2	0	0
2109	1	1	0	9	0	0
4536	1	1	0	7	0	0
2163	1	1	0	5	0	0
6084	1	1	0	4	0	1
6960	1	1	0	5	0	0
4571	1	1	0	3	0	0
			0	10		
3663	1	1			0	0
5157	0	1	0	7	0	0
6971	1	1	0	1	0	0
2994	1	1	0	8	0	0
6115	1	1	0	9	1	0
4719	1	1	0	8	0	0
3876	1	1	0	9	0	0
2002	1	1	0	1	0	0
315	1	1	0	1	0	0
6402	1	1	0	2	0	0
1780	0	1	0	1	0	0
3946	1	1	0	8	0	0
486	0	1	0	9	0	1
5866	1	1	0	4	1	1
1602	0	1	0	7	0	0
5626	1	1	0	5	0	1
5241	1	1	0	7	0	0
620	 O	 1		 10		0
620	0	1	0	10	0	0
2973	0 0	1 1	0 0	1	0	0
	0	1	0			
2973	0 0	1 1	0 0	1	0	0
2973 35 6239	0 0 1 1	1 1 1	0 0 0 0	1 8 10	0 0 0	0 2 0
2973 35 6239 4922	0 0 1 1	1 1 1 1	0 0 0 0	1 8 10 8	0 0 0 0	0 2 0 0
2973 35 6239 4922 672	0 0 1 1 1 0	1 1 1 1 1	0 0 0 0 0	1 8 10 8 3	0 0 0 0	0 2 0 0
2973 35 6239 4922 672 1968	0 0 1 1 1 0	1 1 1 1 1 1	0 0 0 0 0 0	1 8 10 8 3 1	0 0 0 0 0	0 2 0 0 0
2973 35 6239 4922 672	0 0 1 1 1 0	1 1 1 1 1	0 0 0 0 0	1 8 10 8 3	0 0 0 0	0 2 0 0
2973 35 6239 4922 672 1968	0 0 1 1 1 0	1 1 1 1 1 1	0 0 0 0 0 0	1 8 10 8 3 1	0 0 0 0 0	0 2 0 0 0
2973 35 6239 4922 672 1968 3925 317	0 0 1 1 1 0 1 1	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	1 8 10 8 3 1 1 2	0 0 0 0 0 0	0 2 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618	0 0 1 1 1 0 1 1 0 0	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	1 8 10 8 3 1 1 2 6	0 0 0 0 0 0 0	0 2 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363	0 0 1 1 1 0 1 1 0 0	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	1 8 10 8 3 1 1 2 6 2	0 0 0 0 0 0 0	0 2 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363 2096	0 0 1 1 1 0 1 1 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	1 8 10 8 3 1 1 2 6 2 8	0 0 0 0 0 0 0 0	0 2 0 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363	0 0 1 1 1 0 1 1 0 0	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	1 8 10 8 3 1 1 2 6 2	0 0 0 0 0 0 0	0 2 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363 2096 2629	0 0 1 1 1 0 1 1 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	1 8 10 8 3 1 1 2 6 2 8 6	0 0 0 0 0 0 0 0	0 2 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363 2096 2629 3016	0 0 1 1 1 0 1 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 8 10 8 3 1 1 2 6 2 8 6 1		0 2 0 0 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363 2096 2629 3016 28	0 0 1 1 1 0 1 1 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 8 10 8 3 1 1 2 6 2 8 6 1 3		0 2 0 0 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363 2096 2629 3016 28 6910	0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 8 10 8 3 1 1 2 6 2 8 6 1 3 6		0 2 0 0 0 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363 2096 2629 3016 28	0 0 1 1 1 0 1 1 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 8 10 8 3 1 1 2 6 2 8 6 1 3		0 2 0 0 0 0 0 0 0 0
2973 35 6239 4922 672 1968 3925 317 3618 1363 2096 2629 3016 28 6910	0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 8 10 8 3 1 1 2 6 2 8 6 1 3 6		0 2 0 0 0 0 0 0 0 0 0

3148	1	1	0	2	0	
5956	1	1	0	2	0	
7173	1	1	0	3	0	
959	1	1	0	1	0	
3707	0	1	0	3	0	
6021	1	1	0	2	0	
4177	1	1	0	6	0	
2062	1	1	0	3	0	
6814	1	1	0	6	0	
5565	1	1	0	1	0	
4952	1	1	0	1	0	
1614	1	1	0	8	0	
	prior	s_count	days_b_screening	g_arrest	c_days_from_compas	\
1062	-	1	v – –	-1.0	1.0	
223		4		0.0	0.0	
6256		3		-39.0	39.0	
5090		8		-1.0	1.0	
532		1		-7.0	7.0	
6024		0		-1.0	1.0	
3873		1		-81.0	81.0	
2109		9		-1.0	1.0	
4536		3		-1.0	1.0	
2163		5		-1.0	1.0	
6084		4		-1.0	1.0	
6960		4		-1.0	1.0	
4571		0		500.0	1.0	
3663		3		0.0	1.0	
5157		0		-2.0	2.0	
6971		4		-1.0	2.0	
2994		9		0.0	0.0	
6115		4		-1.0	1.0	
4719		0		-1.0	2.0	
3876		0		-1.0	1.0	
2002		1		-1.0	1.0	
315		0		-1.0	1.0	
6402		0		-1.0	1.0	
1780		0		-1.0	1.0	
3946		8		-259.0	259.0	
486		6		0.0	1.0	
5866		3		0.0	1.0	
1602		5		-1.0	1.0	
5626		5		-22.0	22.0	
5241		18		248.0	24.0	
•••				•••	•••	
620		3		-1.0	1.0	
0072		4		2.0	2.0	

-3.0

3.0

35	6		81.	0	3	82.0	
6239	1		-1.	0		61.0	
4922	4		-8.	0		8.0	
672	2		26.	0	4	00.0	
1968	2		-11.	0		11.0	
3925	0		0.	0		0.0	
317	0		-3.	0		3.0	
3618	0		-1.	0		1.0	
1363	0		-2.	0		3.0	
2096	0		-1.	0		1.0	
2629	0		-3.	0		3.0	
3016	0		-1.	0		1.0	
28	3		53.	0		95.0	
6910	5		84.	0		1.0	
4827	2		-3.	0		3.0	
3595	2		-50.	0		50.0	
3148	3		-1.	0		1.0	
5956	2		-12.	0		12.0	
7173	7		35.	0		62.0	
959	2		-64.	0		64.0	
3707	4		-11.	0	11.0		
6021	6		-26.	0	27.0		
4177	1		-1.	0		1.0	
2062	0		0.	0		1.0	
6814	7		-1.	0		1.0	
5565	2		-44.	0	45.0		
4952	5		-1.	0	1.0		
1614	9		112.	0	2	97.0	
	c_charge_degree	•••	end	event	_	-	/
1062	0	•••	528				
223				1	0.0	0.0	
	0		516	1	0.0	1.0	
6256	1		516 547	1 1	0.0	1.0 1.0	
6256 5090	1 1		516 547 512	1 1 1	0.0 0.0 0.0	1.0 1.0 0.0	
6256 5090 532	1 1 0	***	516 547 512 565	1 1 1 1	0.0 0.0 0.0	1.0 1.0 0.0 1.0	
6256 5090 532 6024	1 1 0 0	•••	516 547 512 565 211	1 1 1 1 0	0.0 0.0 0.0 0.0	1.0 1.0 0.0 1.0	
6256 5090 532 6024 3873	1 1 0 0	 	516 547 512 565 211 208	1 1 1 0 0	0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 1.0 1.0	
6256 5090 532 6024 3873 2109	1 1 0 0 1	 	516 547 512 565 211 208 277	1 1 1 1 0 0	0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 1.0 1.0	
6256 5090 532 6024 3873 2109 4536	1 1 0 0 1 0		516 547 512 565 211 208 277 320	1 1 1 1 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 1.0 1.0 0.0	
6256 5090 532 6024 3873 2109 4536 2163	1 1 0 0 1 0 0		516 547 512 565 211 208 277 320 589	1 1 1 1 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 1.0	1.0 1.0 0.0 1.0 1.0 0.0 0.0	
6256 5090 532 6024 3873 2109 4536 2163 6084	1 1 0 0 1 0 0 0		516 547 512 565 211 208 277 320 589 537	1 1 1 1 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 1.0	1.0 1.0 0.0 1.0 1.0 0.0 0.0	
6256 5090 532 6024 3873 2109 4536 2163 6084 6960	1 1 0 0 1 0 0 0 0 0		516 547 512 565 211 208 277 320 589 537 269	1 1 1 1 0 0 0 0 0 1 1 1	0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0	1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0	
6256 5090 532 6024 3873 2109 4536 2163 6084 6960 4571	1 1 0 0 1 1 0 0 0 0 0		516 547 512 565 211 208 277 320 589 537 269 500	1 1 1 1 0 0 0 0 0 1 1 1 0	0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0	1.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0	
6256 5090 532 6024 3873 2109 4536 2163 6084 6960 4571 3663	1 1 0 0 1 0 0 0 0 0 0		516 547 512 565 211 208 277 320 589 537 269 500 223	1 1 1 1 0 0 0 0 0 1 1 1 0	0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0	1.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0	
6256 5090 532 6024 3873 2109 4536 2163 6084 6960 4571 3663 5157	1 1 0 0 0 1 0 0 0 0 0 0 0		516 547 512 565 211 208 277 320 589 537 269 500 223 241	1 1 1 1 0 0 0 0 0 1 1 1 0 0	0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0	1.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0	
6256 5090 532 6024 3873 2109 4536 2163 6084 6960 4571 3663	1 1 0 0 1 0 0 0 0 0 0		516 547 512 565 211 208 277 320 589 537 269 500 223	1 1 1 1 0 0 0 0 0 1 1 1 0	0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0	1.0 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0	

6115		1	E70	1	1 0	0.0
6115		1	578	1	1.0	0.0
4719		0	296	0	0.0	1.0
3876		0	578	1	1.0	0.0
2002		0	615	1	0.0	1.0
315		1	570	1	0.0	1.0
6402		1	558	1	0.0	0.0
1780		Λ	582	1	0.0	0.0
3946		0	640	1	0.0	
						1.0
486		0	654	1	1.0	0.0
5866		1	548	1	1.0	0.0
1602		1	613	1	0.0	0.0
5626		0	632	1	1.0	0.0
5241		0	248	0	0.0	0.0
	•••	•••		•••	•••	
620		0	38	0	1.0	0.0
2973		0	57	0	0.0	1.0
35		1	81	0	0.0	1.0
		1			0.0	
6239			12	0		1.0
4922		1	1048	1	0.0	0.0
672		0	26	0	0.0	0.0
1968		0	36	0	0.0	0.0
3925		1	21	0	0.0	0.0
317		0	57	0	0.0	1.0
3618		0	88	0	0.0	1.0
1363		1	47	0	0.0	1.0
2096		0	110	0	1.0	0.0
2629		^	58	0	0.0	1.0
3016		1	30	0	0.0	0.0
28		0	53	0	0.0	1.0
6910		0	84	0	0.0	1.0
4827		1	44	0	0.0	1.0
3595		0	71	0	0.0	1.0
3148		0	52	0	0.0	0.0
5956		1	34	0	0.0	1.0
7173		0	35	0	0.0	0.0
959		0	84	0	0.0	1.0
3707		Λ	52	0	0.0	0.0
6021		Λ	53	0	0.0	0.0
4177		0	82	0	1.0	0.0
2062		0	53	0	0.0	1.0
6814		1	111	0	0.0	1.0
5565		1	56	0	0.0	0.0
4952		1	56	0	0.0	0.0
1614		1	112	0	0.0	1.0
	v_score_text1	v score text	2 score_tex	kt1	score text2	pred_crisis
1062	0.0	0.0	-	0.0	1.0	0.920598
1002	0.0	0.			1.0	0.020000

223	0.0	0.0	0.0	1.0	0.919782
6256	0.0	1.0	1.0	0.0	0.918197
5090	0.0	0.0	0.0	1.0	0.918109
532	0.0	0.0	0.0	1.0	0.917972
6024	0.0	0.0	0.0	1.0	0.917605
3873	0.0	0.0	0.0	1.0	0.915765
2109	0.0	0.0	1.0	0.0	0.913530
4536	0.0	1.0	0.0	0.0	0.913264
2163	0.0	0.0	0.0	0.0	0.912949
6084	0.0	0.0	0.0	1.0	0.912108
6960	0.0	0.0	0.0	0.0	0.910975
4571	0.0	0.0	0.0	1.0	0.910532
3663	0.0	1.0	1.0	0.0	0.908983
5157	0.0	1.0	0.0	0.0	0.907969
6971	0.0	0.0	0.0	1.0	0.907498
2994	0.0	0.0	1.0	0.0	0.906288
6115	1.0	0.0	1.0	0.0	0.905994
4719	0.0	1.0	1.0	0.0	0.904888
3876	0.0	1.0	1.0	0.0	0.904350
2002	0.0	0.0	0.0	1.0	0.902964
315	0.0	0.0	0.0	1.0	0.899240
6402	0.0	0.0	0.0	1.0	0.898493
1780	0.0	0.0	0.0	1.0	0.896330
3946	0.0	0.0	1.0	0.0	0.893870
486	0.0	0.0	1.0	0.0	0.890469
5866	0.0	1.0	0.0	1.0	0.888078
1602	0.0	0.0	0.0	0.0	0.885948
5626	0.0	1.0	0.0	0.0	0.885549
5241	0.0	0.0	0.0	0.0	0.884333
•••	•••		•••	•••	
620	1.0	0.0	1.0	0.0	0.101269
2973	0.0	0.0	0.0	1.0	0.099335
35	1.0	0.0	1.0	0.0	0.096513
6239	1.0	0.0	1.0	0.0	0.094312
4922	0.0	0.0	1.0	0.0	0.094140
672	0.0	0.0	0.0	1.0	0.092624
1968	0.0	0.0	0.0	1.0	0.091656
3925	0.0	0.0	0.0	1.0	0.090194
317	0.0	0.0	0.0	1.0	0.090134
3618	0.0	0.0	0.0	0.0	0.087042
1363	0.0	0.0	0.0	1.0	0.085262
2096	0.0	1.0	1.0	0.0	0.083311
2629	0.0	1.0	0.0	0.0	0.083153
3016	0.0	0.0	0.0	1.0	0.082801
28	0.0	0.0	0.0	1.0	0.082319
6910	0.0	0.0	0.0	0.0	0.082072
4827	0.0	0.0	0.0	1.0	0.079779

3595	0.0	1.0	1.0	0.0	0.079578
3148	0.0	0.0	0.0	1.0	0.076142
5956	0.0	0.0	0.0	1.0	0.075215
7173	0.0	0.0	0.0	1.0	0.074493
959	0.0	0.0	0.0	1.0	0.074110
3707	0.0	0.0	0.0	1.0	0.072919
6021	0.0	0.0	0.0	1.0	0.072833
4177	0.0	1.0	0.0	0.0	0.071065
2062	0.0	0.0	0.0	1.0	0.070910
6814	0.0	1.0	0.0	0.0	0.068795
5565	0.0	0.0	0.0	1.0	0.068220
4952	0.0	0.0	0.0	1.0	0.067319
1614	0.0	1.0	1.0	0.0	0.065628

	two_year_recid
1062	1
223	1
6256	1
5090	1
532	1
6024	1
3873	1
2109	1
4536	1
2163	1
6084	1
6960	1
4571	1
3663	1
5157	1
6971	1
2994	1
6115	1
4719	1
3876	1
2002	1
315	1
6402	1
1780	1
3946	1
486	1
5866	1
1602	1
5626	1
5241	1
620	0

```
6239
                          0
      4922
                          0
      672
                          0
      1968
                          0
      3925
                          0
      317
                          0
      3618
                          0
      1363
                          0
      2096
                          0
      2629
                          0
      3016
                          0
      28
                          0
      6910
                          0
      4827
                          0
      3595
                          0
      3148
                          0
      5956
                          0
      7173
                          0
      959
                          0
      3707
                          0
      6021
                          0
      4177
                          0
      2062
                          0
      6814
                          0
      5565
                          0
      4952
                          0
      1614
      [100 rows x 26 columns]
[41]: x_{copy} = x
      cond_a = (x['two\_year\_recid'] == 1) & (x['pred\_crisis'] > 0.5) & (x['race'] == 1)
      x_copy[cond_a] = new_df_a
[42]: #We want to delete 103 Caucasian - and duplicate 103 Caucasian +
      x_c_sorted_neg = x_c_sorted
      x_c_1 = x_c[x_c['two_year_recid'] == 1]
      x_c_sorted_1 = x_c_1.sort_values(by = 'pred_crisis', ascending = False)
      x_c_sorted_pos = x_c_sorted_1[x_c_sorted_1['pred_crisis']>0.5]
      x_c_sorted_pos.head(124)
```

[42]:

sex race juv_fel_count decile_score juv_misd_count juv_other_count \

3394	1	0	0	7	4	4
3141	0	0	0	10	3	2
1549	1	0	0	9	1	3
2073	1	0	0	6	2	1
						3
4522	1	0	0	9	0	
1456	1	0	0	9	5	0
4434	1	0	0	8	1	1
5467	0	0	0	6	0	3
3752	0	0	0	10	2	0
5798	1	0	0	8	2	3
7150	1	0	0	5	0	1
			0		2	
1759	1	0		8		1
1102	0	0	0	5	0	0
1122	1	0	0	6	0	0
5618	1	0	0	5	0	3
2221	0	0	0	8	0	3
3106	1	0	0	9	13	1
32	1	0	0	8	0	0
2573	0	0	0	9	0	0
6465	1	0	0	9	1	1
1773	1	0	0	1	0	1
2416	1	0	0	7	1	2
3601	1	0	0	5	0	0
3869	1	0	0	8	0	0
2183	1	0	0	8	0	0
2621	1	0	0	5	0	0
7080	1	0	1	5	0	1
	•••		•••	•••	•••	•••
2857	1	0	0	5	1	2
3520	0	0	0	9	0	0
1316	1	0	0	7	0	0
61	1	0	1	10	1	2
4924	1	0	0	8	0	0
		Ŭ	ŭ	· ·	· ·	· ·
2593	1	0	0	8	0	0
5287	1	0	0	8	0	0
84	1	0	1	10	6	1
613	1	0	0	5	0	0
4603	1	0	0	10	1	0
3562	1	0	0	9	0	0
278	1	0	0	10	1	1
5223						
	1	0	0	6	0	0
4309	0	0	0	2	0	0
653	1	0	0	7	0	0
952	1	0	0	6	0	0
7103	1	0	2	9	3	0
628	1	0	0	9	1	1
7172	1	0	0	9	0	0
1112	1	J	U	9	U	O

6813	1	0	0	6		
2069	1	0	0	6	0	
3853	1	0	0	2	0	
4649	1	0	0	5	0	
1688	1	0	0	8	1	
4951	1	0	0	8	0	
3338	1	0	0	9		
3807	1	0	0	1		
1805	1	0	0	8		
1374	1	0	0	7		
6317	1	0	0	10		
0017	_	U	V	10	2	
	nrior	s_count	dava h asroonin	m orroat	a dawa from compag	\
F746	prior	s_count 8	days_b_screening	_	<pre>c_days_from_compas</pre>	\
5746				30.0		
117		28		-1.0	1.0	
46		13		-1.0	1.0	
3394		9		-1.0	1.0	
3141		10		0.0	0.0	
1549		14		0.0	1.0	
2073		13		0.0	0.0	
4522		18		-1.0	1.0	
1456		12		0.0	0.0	
4434		8		-1.0	1.0	
5467		18		-85.0	84.0	
3752		22		-1.0	1.0	
5798		11		-57.0	57.0	
7150		11		-1.0	1.0	
1759		7		0.0	0.0	
1102		3		-1.0	1.0	
1122		9		-1.0	1.0	
5618		4		-1.0	1.0	
2221		9		-1.0	1.0	
3106		21		0.0	0.0	
32		4		-1.0	1.0	
2573		5		-1.0	1.0	
6465		8		0.0	0.0	
1773		3		-1.0	1.0	
2416		5		-1.0	1.0	
3601		3		-1.0	1.0	
3869		4		-1.0	1.0	
2183		14		-1.0	1.0	
		0			0.0	
2621				0.0		
7080		1		3.0	22.0	
		•••				
2857		1		0.0	1.0	
3520		1		-1.0	1.0	
1316		0		-1.0	1.0	

61	15		-1	.0		1.0	
4924	0		-1	.0		1.0	
2593	14		-1	.0		1.0	
5287	15		-1	.0		1.0	
84	14		-1	.0		1.0	
613	4		-1	.0		1.0	
4603	6		-1	.0		1.0	
3562	28		-55	.0		53.0	
278	3		-1	.0		1.0	
5223	14		0	.0		0.0	
4309	2		-1	.0		1.0	
653	13		-1	.0		1.0	
952	2		-1	.0		1.0	
7103	16		28	.0		88.0	
628	4		-1	.0		1.0	
7172	4		-1		1	178.0	
6813	3		-1			1.0	
2069	1		-1			1.0	
3853	0		-1			1.0	
4649	10		-20			20.0	
1688	4		-27			27.0	
4951	6		-1			1.0	
3338	2		-16			16.0	
3807	0		-3	.0		4.0	
1805	9		-1	.0		1.0	
1805 1374	9 0		-1 0	.0		1.0 1.0	
1805	9		-1 0	.0		1.0	
1805 1374	9 0 13		-1 0 0	.0	ama cat1	1.0 1.0 0.0	\
1805 1374 6317	9 0 13 c_charge_degree		-1 0 0 end	.0 .0 .0	age_cat1	1.0 1.0 0.0 age_cat2	\
1805 1374 6317 5746	9 0 13 c_charge_degree 0	 	-1 0 0 end 2	.0 .0 .0 event	1.0	1.0 1.0 0.0 age_cat2 0.0	\
1805 1374 6317 5746 117	9 0 13 c_charge_degree 0 0	 	-1 0 0 end 2 83	.0 .0 .0 event 1	1.0	1.0 1.0 0.0 age_cat2 0.0 1.0	\
1805 1374 6317 5746 117 46	9 0 13 c_charge_degree 0 0		-1 0 0 end 2 83 9	.0 .0 .0 event 1 1	1.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0	\
1805 1374 6317 5746 117 46 3394	9 0 13 c_charge_degree 0 0 0		-1 0 0 end 2 83 9 59	.0 .0 .0 event 1 1 1	1.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141	9 0 13 c_charge_degree 0 0 0		-1 0 0 end 2 83 9 59 2	.0 .0 .0 event 1 1 1 1	1.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549	9 0 13 c_charge_degree 0 0 0		-1 0 0 end 2 83 9 59 2	.0 .0 .0 event 1 1 1 1	1.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073	9 0 13 c_charge_degree 0 0 0 0		-1 0 0 end 2 83 9 59 2 9	.0 .0 .0 event 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522	9 0 13 c_charge_degree 0 0 0 0		-1 0 0 end 2 83 9 59 2 9	.0 .0 .0 event 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456	9 0 13 c_charge_degree 0 0 0 0 0	 	-1 0 0 end 2 83 9 59 2 9 22 11	.0 .0 .0 event 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456 4434	9 0 13 c_charge_degree 0 0 0 0 0 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7	.0 .0 .0 event 1 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 0.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456	9 0 13 c_charge_degree 0 0 0 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7 10 56	.0 .0 .0 event 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 1.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456 4434 5467	9 0 13 c_charge_degree 0 0 0 0 0 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7	.0 .0 .0 event 1 1 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 0.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456 4434 5467 3752	9 0 13 c_charge_degree 0 0 0 0 0 0 0 0 1 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7 10 56 21	.0 .0 .0 event 1 1 1 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 0.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456 4434 5467 3752 5798	9 0 13 c_charge_degree 0 0 0 0 0 0 0 0 1 1 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7 10 56 21 52	.0 .0 .0 event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 0.0 1.0	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456 4434 5467 3752 5798 7150	9 0 13 c_charge_degree 0 0 0 0 0 0 0 0 1 0 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7 10 56 21 52 21	.0 .0 .0 event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0	
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456 4434 5467 3752 5798 7150 1759	9 0 13 c_charge_degree 0 0 0 0 0 0 0 0 1 0 0 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7 10 56 21 52 21 5	.0 .0 .0 event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1	\
1805 1374 6317 5746 117 46 3394 3141 1549 2073 4522 1456 4434 5467 3752 5798 7150 1759 1102	9 0 13 c_charge_degree 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-1 0 0 end 2 83 9 59 2 9 22 11 7 10 56 21 52 21 5	.0 .0 .0 event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 1.0 0.0 age_cat2 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	

2221		1	32	1	0.0	1.0	
3106		0	254	1	0.0	1.0	
32		Λ	6	1	0.0	1.0	
2573		0	8	1	0.0	1.0	
6465		0	3	1	1.0	0.0	
1773		0	8	1	0.0	1.0	
2416		0	16	1	0.0	1.0	
3601		0	17	1	0.0	1.0	
3869		0	2	1	0.0	1.0	
2183		0	22	1	0.0	1.0	
2621		Λ	21	1	0.0	1.0	
7080		Λ	3	1	1.0	0.0	
		·				0.0	
	•••					0 0	
2857		1	59	1	1.0	0.0	
3520		0	15	1	1.0	0.0	
1316		0	28	1	0.0	1.0	
61		0	44	1	0.0	1.0	
4924		0	5	1	1.0	0.0	
2593		0	40	1	0.0	0.0	
5287		0	41	1	0.0	0.0	
84		0	100	1	0.0	1.0	
613		Λ	63	1	0.0	1.0	
4603					0.0		
		0	18	1		1.0	
3562		1	5	1	0.0	1.0	
278		1	4	1	1.0	0.0	
5223		0	32	1	0.0	1.0	
4309		0	7	1	0.0	1.0	
653		0	32	1	0.0	1.0	
952		0	13	1	1.0	0.0	
7103		1	28	1	0.0	1.0	
628		0	42	1	1.0	0.0	
7172		1	14	1	0.0	0.0	
6813		1	8	1	0.0	1.0	
2069		0	6	1	1.0	0.0	
3853		0	5	1	0.0	1.0	
4649		0	47	1	0.0	1.0	
1688		0	43	1	1.0	0.0	
4951		0	40	1	0.0	1.0	
3338		0	15	1	1.0	0.0	
3807		0	39	1	0.0	1.0	
1805		0	21	1	0.0	1.0	
1374		0	5	1	1.0	0.0	
6317		0	72	1	0.0	1.0	
0011		•	12	_	0.0	1.0	
	W GCC70 +0++1	v acoro +o-+0	gcore +		gcoro ++0	prod origi-	`
E740		v_score_text2			score_text2	_	\
5746	0.0	1.0		1.0	0.0	0.999919	
117	0.0	1.0		1.0	0.0	0.999903	

46	0.0	0.0	1.0	0.0	0.999866
3394	0.0	0.0	0.0	0.0	0.999835
3141	1.0	0.0	1.0	0.0	0.999809
1549	1.0	0.0	1.0	0.0	0.999797
2073	0.0	0.0	0.0	0.0	0.999769
4522	1.0	0.0	1.0	0.0	0.999764
1456	1.0	0.0	1.0	0.0	0.999758
4434	0.0	0.0	1.0	0.0	0.999756
5467	0.0	0.0	0.0	0.0	0.999742
3752	0.0	0.0	1.0	0.0	0.999740
5798	0.0	1.0	1.0	0.0	0.999728
7150	0.0	0.0	0.0	0.0	0.999727
1759	0.0	1.0	1.0	0.0	0.999726
1102	0.0	0.0	0.0	0.0	0.999720
1122	0.0	0.0	0.0	0.0	0.999712
5618	0.0	1.0	0.0	0.0	0.999712
2221	0.0	1.0	1.0	0.0	0.999698
3106	1.0	0.0	1.0	0.0	0.999697
32	0.0	0.0	1.0	0.0	0.999687
2573	0.0	0.0	1.0	0.0	0.999684
6465	0.0	1.0	1.0	0.0	0.999684
1773	0.0	0.0	0.0	1.0	0.999683
2416	0.0	1.0	0.0	0.0	0.999674
3601	0.0	0.0	0.0	0.0	0.999674
3869	0.0	0.0	1.0	0.0	0.999673
2183	0.0	0.0	1.0	0.0	0.999668
2621	0.0	0.0	0.0	0.0	0.999667
7080	1.0	0.0	0.0	0.0	0.999667
		•••	•••	•••	
2857	1.0	0.0	0.0	0.0	0.999554
3520	0.0	1.0	1.0	0.0	0.999552
1316	0.0	0.0	0.0	0.0	0.999551
61	1.0	0.0	1.0	0.0	0.999550
4924	0.0	1.0	1.0	0.0	0.999549
2593	0.0	0.0	1.0	0.0	0.999549
5287	0.0	0.0	1.0	0.0	0.999548
84	1.0	0.0	1.0	0.0	0.999548
613	0.0	0.0	0.0	0.0	0.999548
4603	1.0	0.0	1.0	0.0	0.999548
3562	1.0	0.0	1.0	0.0	0.999546
278	0.0	1.0	1.0	0.0	0.999546
5223	0.0	0.0	0.0	0.0	0.999545
4309	0.0	0.0	0.0	1.0	
					0.999544
653	0.0	0.0	0.0	0.0	0.999542
952	0.0	1.0	0.0	0.0	0.999541
7103	0.0	1.0	1.0	0.0	0.999540
628	0.0	1.0	1.0	0.0	0.999538

7172	0.0	0.0	1.0	0.0	0.999537
6813	0.0	1.0	0.0	0.0	0.999537
2069	0.0	1.0	0.0	0.0	0.999534
3853	0.0	0.0	0.0	1.0	0.999534
4649	0.0	0.0	0.0	0.0	0.999532
1688	0.0	1.0	1.0	0.0	0.999531
4951	0.0	0.0	1.0	0.0	0.999529
3338	0.0	1.0	1.0	0.0	0.999528
3807	0.0	0.0	0.0	1.0	0.999527
1805	0.0	1.0	1.0	0.0	0.999527
1374	0.0	1.0	0.0	0.0	0.999525
6317	1.0	0.0	1.0	0.0	0.999524

```
1316
                      1
61
                      1
4924
                      1
2593
                      1
5287
                      1
84
                      1
613
                      1
4603
                      1
3562
                      1
278
                      1
5223
                      1
4309
                      1
653
                      1
952
                      1
7103
                      1
628
                      1
7172
                      1
6813
2069
                      1
3853
                      1
4649
                      1
1688
                      1
4951
                      1
3338
                      1
3807
                      1
1805
                      1
1374
                      1
6317
                      1
```

[124 rows x 26 columns]

```
[43]: x_c_sorted_neg_new = x_c_sorted_neg[-103:]
x_c_sorted_pos_new = x_c_sorted_pos[:103]
x_c_sorted_neg_new = x_c_sorted_neg.iloc[:-103,]
frame_2 = [x_c_sorted_neg_new, x_c_sorted_pos_new]
new_df_c = pd.concat(frame_2)
cond_c = (x['two_year_recid']==0) & (x['pred_crisis']<0.5) & (x['race'] == 0)
x_copy[cond_c] = new_df_c</pre>
```

With modified dataset, we then run a logistic Regression

```
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size = 

→1/6)
```

```
[45]: start = time.time()
      model_new.fit(x_train, y_train)
      \#10-cross-fold-validation
      cv = KFold(n_splits=10, random_state=1, shuffle=True)
      end = time.time()
      scores = cross_val_score(model_new, new_x, new_y, scoring='accuracy', cv=cv,_
       \rightarrown_jobs=-1)
      print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))
      print( f"Testing time: {end-start}")
      new data=pd.concat([new x,new y],axis=1)
      new_sen=new_data[new_data['race']==0]
      new nsen=new data[new data['race']==1]
      new_sen_y=new_sen['two_year_recid']
      new_sen_x=new_sen.drop(columns=['two_year_recid'])
      new_nsen_y=new_nsen['two_year_recid']
      new_nsen_x=new_nsen.drop(columns=['two_year_recid'])
      score_sen=cross_val_score(model_new, new_sen_x, new_sen_y, scoring='accuracy',_
       \rightarrowcv=cv, n_jobs=-1)
      score_nsen=cross_val_score(model_new, new_nsen_x, new_nsen_y,_
       ⇒scoring='accuracy', cv=cv, n_jobs=-1)
      calib_2=abs(mean(score_sen)-mean(score_nsen))
      print('Calibration: ', calib_2)
```

Accuracy: 0.972 (0.007)

Testing time: 0.060811758041381836 Calibration: 0.010388366835863305

[]:

0.8 Conclusion

As we can see, LM and LPS are very efficient and have a relatively higher accuracy. For LFR, it is very slow and returns relatively bad results if we want to reduce the training time by just training it on a small training set.