武汉大学计算机学院2018-2019学年第一学期

《离散数学》期末考试(A)卷

学号:	姓名:	成绩:
		· · · · · · · · · · · · · · · · · · ·

注意: 所有答案写在答题纸上并注明题号, 计算题要有计算过程。

- 一. 求下列公式的主析取范式和主合取范式: (12分) $(P \rightarrow Q \land R) \land (\neg P \rightarrow (\neg Q \land \neg R))$
- 二. 写出证明序列,证明下列结论的有效性: (7+7=14分)
 - (1) 前提: $A \wedge B \rightarrow C$, $\neg C \vee D$, $\neg D$: 结论: $\neg A \vee \neg B$
 - (2) 前提: $\forall x (P(x) \to Q(x)), \exists x (R(x) \land \neg Q(x));$ 结论: $\neg \forall x (R(x) \to P(x))$
- 三. 设A, B, C为集合, 且|A| = 3, $|\rho(A \cup B)| = 128$, $|\rho(B \cup C)| = 64$, $|\rho(A \cap B)| = 2$, $|\rho(B \cap C)| = 4$, 求|C B|. (10分)
- 四. 对下述函数f, g及集合A, B, 分别计算 $f \circ g$, $f \circ g(A)$ 和 $f \circ g(B)$, 并说明 $f \circ g$ 是否为单射或满射: (7+7=14分)
 - (1) $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 x^2$, $g : \mathbb{N} \to \mathbb{R}$, $g(x) = \sqrt{x}$, $A = \{2, 4, 6, 8, 10\}$, $B = \{0, 1\}$.
 - (2) $f: \mathbb{Z} \to \mathbb{R}$, $f(x) = e^x$, $g: \mathbb{Z} \to \mathbb{Z}$, $g(x) = x^2$, $A = \mathbb{N}$, $B = \{2k | k \in \mathbb{N}\}$.
- 五. 设 $\pi = \{A_1, A_2, ..., A_n\}$ 是集合A的一个划分, $R \subseteq A \times A$, $R = \{\langle a, b \rangle | a, b \in A_i, i = 1, 2, ..., n\}$. 证明:R是等价关系. (12分)
- 六. 设 $\langle A, R \rangle$ 和 $\langle B, S \rangle$ 为偏序集, $C = A \times B$, $T \subseteq C \times C$, $\forall \langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle \in C \times C$, $\langle a_1, b_1 \rangle T \langle a_2, b_2 \rangle$,iff, $a_1Ra_2 \wedge b_1Sb_2$.

证明: $T 为 A \times B$ 上的偏序关系。(12分)

- 七. 设简单无向连通图 $G = \langle V, E \rangle, |V| = n$. 已知有k个3度结点,其他结点的度数均小于3,则G中至少有多少条边? 至多有多少条边? 并证明结论。(12分)
- 八. 证明: 一棵无向树的每个结点的度数均为奇数,当且仅当,在树上任删一条边会产生2个结点数均为奇数的子树。(14分)