TABLA COMPARATIVA DE COMPLEJIDAD

Estado inicial:1_2384765 EASY Estado objetivo:_12345678

Ultimo estado:_12345678

Tiempo de ejecución (milisegundos):13564.0

Numero de estados visitados:29584

Numero de estados sacados de la pila:18738 Numero de estados restantes por analizar:10846 Tipo de busqueda utilizado:Busqueda por anchura

Estado inicial:1_2384765 Estado objetivo:_12345678 Ultimo estado:_12345678

Tiempo de ejecución (milisegundos):1301254.0

Numero de estados visitados:342429

Numero de estados sacados de la estructura:264832

Numero de estados restantes por analizar:77597

Tipo de busqueda utilizado:Busqueda por profundidad

Algoritmo	Tiempo	N.Nodos extraidos para analisis	N.Nodos Visitados
Por anchura	13564	18738	29584
Por profundidad	1301254	264832	342429
Diferencia(Anchura-Profundidad)	-1287690	-246094	-312845

eficiente en los 3 aspectos

eficiente en los 3 aspectos. Esto es por que la solucion se encontraba en un nivel más bajo

TABLA COMPARATIVA DE COMPLEJIDAD

Estado objetivo:_12345678 Ultimo estado:_12345678

Tiempo de ejecución (milisegundos):187179.0

Numero de estados visitados:114453

Numero de estados sacados de la estructura:80147 Numero de estados restantes por analizar:34306 Tipo de busqueda utilizado:Busqueda por anchura

Algoritmo	Tiempo	N.Nodos extraidos para analisis	N.Nodos Visitados
Por anchura	187179	80147	114453
Por profundidad	1750763	332108	361720
Diferencia(Anchura-Profundidad)	-1563584	-251961	-247267

Se observa que la prueba ha dado los mismos resultados que la anterior al aumentar la dificultad.

HARD

Estado inicial:1432_5786 Estado objetivo:_12345678 Ultimo estado: 12345678

Tiempo de ejecución (milisegundos):1750763.0

Numero de estados visitados:361720

Numero de estados sacados de la estructura:332108

Numero de estados restantes por analizar:29612

Tipo de busqueda utilizado:Busqueda por profundidad

Conclusion: La busqueda por anchura aparenta ser el mas optimo para el caso del 8 PUZZLE ya que este abarca todo el ancho de los nodos en vez de tomar un solo camino y explorarlo al maximo como en el caso de la busqueda por profundidad.

Criterio	Primero	Costo	Primero en	Profundidad	Profundidad	Bidireccional
	en anchura	uniforme	profundidad	limitada	iterativa	(si aplicable)
¿Completa? Tiempo Espacio ¿Optimal?	Si^a $O(b^{d+1})$ $O(b^{d+1})$ Si^c	$Si^{a,b}$ $O(b^{\lceil C^a/a ceil})$ $O(b^{\lceil C^a/a ceil})$ Si	No O(b''') O(bm) No	No $O(b^{\ell})$ $O(b\ell)$ No	Si^a $O(b^d)$ $O(bd)$ Si^c	$egin{array}{c} \mathbf{S}\mathbf{f}^{a,d} & O(b^{d/2}) & O(b^{d/2}) & S\mathbf{f}^{c,d} & & \end{array}$

Figura 3.17 Evaluación de estrategias de búsqueda. b es el factor de ramificación; d es la profundidad de la solución más superficial; m es la máxima profundidad del árbol de búsqueda; ℓ es el límite de profundidad. Los superíndice significan lo siguiente: a completa si b es finita; b completa si los costos son $\geq \epsilon$ para ϵ positivo; c optimal si los costos son iguales; d si en ambas direcciones se utiliza la búsqueda primero en anchura.

Igualmente pueden intervenir factores como: La optimización y la capacidad del equipo (CPU y RAM)