Implementation of Deep Galerkin Method (DGM) for 1D Heat Equation

Shadab Anwar, Shaikh

PhD Candidate University of North Carolina at Charlotte

Bi-Weekly Research Meeting, December 2021

Table of Contents

- Analytical Solution to 1D Heat Equation
- Implemented of DGM Algorithm
- Results from the last meeting
- Experiments and Results
- Results using DeepXDE

1D Heat Equation

$$\frac{\partial u(t,x)}{\partial t} = \alpha \frac{\partial^2 u(t,x)}{\partial x^2}$$

where $(t,x) \in [0,T] \times [0,L]$

$$u(0,x) = \sin(\frac{\pi x}{L}),$$

$$u(t,0) = u(t,L) = 0$$

where,
$$\alpha = \frac{K}{\rho C_p}$$

Analytical Solution

$$u(x,t) = \sin(\frac{\pi x}{L}) e^{-0.001785t}$$

which was obtained by taking

$$\rho=8.92~{\rm gram/cm^3}, C_p=0.092~{\rm cal/g^\circ C}, K=0.95~{\rm cal/cm^\circ C}$$
 where $(t,x)\in[0,5~{\rm sec}]\times[0,80~{\rm cm}]$

DGM Algorithm

- Generate random points (t_n,x_n) , (t_i,x_i) , (t_0,x_0) and (t_L,x_L) from $[0,T]\times[0,L]$, $[0,0]\times[0,L]$, $[0,T]\times[0,0]$ and $[0,T]\times[L,L]$ respectively.
- Calculate the squared error $G(\theta_n,s_n)$ at the randomly sampled points $s_n=\{(t_n,x_n),(t_i,x_i),(t_0,x_0),(t_L,x_L)\}$ where,

$$G(\theta_n, s_n) = \left(\frac{\partial f(t_n, x_n; \theta_n)}{\partial t} - \alpha \frac{\partial^2 f(t_n, x_n; \theta_n)}{\partial x^2}\right)^2 +$$

$$(f(t_0, x_0; \theta_n) - u(t_0, x_0))^2 + (f(t_L, x_L; \theta_n) - u(t_L, x_L))^2 + (f(t_i, x_i; \theta_n) - u(t_i, x_i))^2 +$$

ullet Take a descent step at random point s_n

$$\theta_{n+1} = \theta_n - \alpha_n \nabla_\theta \ G(\theta_n, s_n)$$

• Repeat until convergence criteria is satisfied.

Results from last meeting

Figure: 1

Neural Network Parameters

- Number of trainable parameters: 921
- Batch Size: 500
- Learning Rate: 0.0001 (Adam Optimizer)
- Total Epochs: 10000
- Shape of Neural Network : [2,20,20,20,1]
- Activation: tanh
- Training time: 4 6 hrs (approx.)

Experiment 01 (Finding the good sampling strategy)

Important

I apologize for the typos in plots. It should be "Galerkin" instead of "Galerkian" and legends should be flipped.

Selecting random points from

(a) Normal Distribution

Corresponding losses

(a) Normal Distribution

(b) Uniform Distribution

Figure: 3

Experiment 02 (Finding the activation)

ReLU

(a) Solution

Figure: 4

• Leaky ReLU

(a) Solution

Figure: 5

• tanh (Extended Domain, Increased epochs)

(a) Solution

Figure: 6

Experiment 03 (Finding the good architecture)

(a) S:(2,20,20,1), P:501

(b) S:(2,20,50,20,1), P:2151

Figure: 7

Best Results

- Number of trainable parameters: 921
- Batch Size: 500
- Learning Rate: 0.0001 (Adam Optimizer)
- Total Epochs: 20000
- Shape of Neural Network : [2,20,20,20,1]

(a) Solution (b) Losses

Figure: 8

But not good in generalization, and slow in training

Results using DeepXDE

- Activation: tanh
- Learning Rate : 0.001 (Adam Optimizer)
- Total Epochs: 20000
- Shape of Neural Network : [2,20,20,20,1]

Sirignano, Justin and Spiliopoulos, Konstantinos

DGM: A deep learning algorithm for solving partial differential equations

Journal of computational physics, 375, 1339–1364, 2018.

Al-Aradi, Ali and Correia, Adolfo and Naiff, Danilo and Jardim, Gabriel and Saporito, Yuri

Solving nonlinear and high-dimensional partial differential equations via deep learning

preprint arXiv:1811.08782, 2018.

https://github.com/alialaradi/Deep Galerkin Method

.

https://github.com/pooyasf/DGM

.

