LÓGICA – Grado en Ingeniería Informática, Grado en Matemáticas e Informática, Doble grado en Ingeniería Informática y ADE

4 de julio de 2017

examen final, convocatoria extraordinaria

Bloque de Lógica Proposicional

Ejercicio 1.1. Decir si las siguientes afirmaciones son verdaderas (V) o falsas (F). Es necesario justificar brevemente las respuestas. (X puntos)

- a) Una fórmula bien formada A se dice que es válida si existe al menos un modelo de dicha fórmula A.
 - o FALSA
 - Una fórmula es válida (o tautología) sii no existe una interpretación i tal que i(A) = F. Es decir, si todas las interpretaciones de la fórmula son modelos.
- b) Si B no es deducible de A1, A2, ..., An, entonces podemos afirmar que A1 \wedge A2 \wedge ... \wedge An \wedge \neg B es satisfacible.
 - o VERDADERA
 - Si B no es deducible de A1, A2, ..., An, entonces B tampoco es consecuencia lógica de A1, A2, ..., An. En este caso, existiría al menos una interpretación que hace verdad a A1 ∧ A2 ∧ ... ∧ An y falso a B. Esa interpretación sería un modelo de A1 ∧ A2 ∧ ... ∧ An ∧ ¬B y por tanto esta fórmula es satisfacible.
- c) Un argumento con premisas $\{A1, A2, ..., An\}$ y conclusión B es correcto sii existe alguna interpretación que satisface al menos un Ai (1 = < i = < n) y también satisface B.
 - o FALSA
 - Un argumento con premisas {A1,..., An} y conclusión B es correcto si todas las interpretaciones que satisfacen {A1,..., An} también satisfacen B.
- d) Las fórmulas $A1 \equiv (p \land \neg q) \lor (q \land \neg p) \lor A2 \equiv (p \rightarrow \neg q) \land (q \rightarrow \neg p)$ son equivalentes.
 - o FALSA
 - Dos fórmulas A y B son (lógicamente) equivalentes ($A \Leftrightarrow B, A \equiv B$) sii para toda interpretación i se cumple que i(A) = i(B)
 - Como se puede observar en la tabla de verdad, las interpretaciones de A1 y A2 no son iguales en todos los casos, por tanto las fórmulas dadas no son equivalentes.

р	q	¬р	¬ q	p ^ ¬ q	q ^ ¬ p	A1	$p \rightarrow \neg q$	q → ¬ p	A2
V	V	F	F	F	F	F	F	F	F
V	F	F	V	٧	F	V	V	V	V
F	٧	V	F	F	V	V	V	V	V
F	F	V	V	F	F	F	V	V	V

(X puntos)

a) el siguiente enunciado:

Podremos ir a la fiesta sólo si tenemos un vestido de gala y no tenemos que trabajar.

- o Podremos ir a la fiesta: p
- o Tenemos vestido de gala: q
- o Tenemos que trabajar: r

$$p \rightarrow (q \land \neg r)$$

b) la siguiente argumentación:

Ana solamente tiene una opción: o busca trabajo en Madrid o se va al extranjero. Si ve las noticias, no busca trabajo en Madrid. Por tanto, si Ana se va al extranjero es porque o no ve las noticias o está enamorada.

- (buscaTrabajo ∧ ¬ extranjero) ∨ (¬ buscaTrabajo ∧ extranjero)
- o veNoticias → ¬ buscaTrabajo
- o extranjero → ¬ veNoticias v enamorada

Ejercicio 2. Demostrar con medios semánticos, justificando adecuadamente los pasos dados y el resultado obtenido, lo siguiente:

a) Que SÍ se verifica la relación de consecuencia lógica en el siguiente razonamiento: (X puntos)

$$\{p \lor (r \rightarrow \neg q), (s \land t) \leftrightarrow \neg q\} \models \neg s \lor \neg t \rightarrow p \lor \neg r$$

b) Que deja de haber relación de **consecuencia lógica** si se quita cualquiera de las premisas (demostrarlo quitando la primera premisa y volver a demostrarlo quitando la segunda).

Nota: no pueden utilizarse ni las tablas de verdad, ni la deducción natural, ni el método de resolución.

P1 es la primera premisa P2 es la segunda premisa C es la conclusión

(a)

Buscamos una interpretación i que sea un contraejemplo, y vamos a ver que dicha i no existe. Para ello, empezamos con las condiciones derivadas de C porque son las más restrictivas (las que "cortan" más caminos).

- (1) $i(C) = f \operatorname{si} y \operatorname{solo} \operatorname{si} i(\neg \operatorname{s} \vee \neg \operatorname{t}) = \operatorname{v} (*) \operatorname{y} \operatorname{también}$, a la vez , $i(p) = f \operatorname{e} i(r) = \operatorname{v} (**)$
- (2) Si i(p)=f, entonces, para que P1 sea verdadero, la implicación tiene que ser verdadera, y esto pasa si y sólo si i(r)=f o bien i(q)=f. i(r)=f no puede ser porque se contradice con (**); por lo tanto, tiene que darse i(q)=f.
- (3) P2, junto con i(q)=f, nos dice que $i(s \land t) = v$. Esto se da si i(s)=t y también i(t)=v.
- (4) Pero esto último contradice (*) ya que, para que (*) se dé, tiene que ser que $i(\neg s)=v$ (es decir, i(s)=f) o bien $i(\neg t)=v$ (es decir, i(t)=f). Observar que cada una de estas opciones es contradictoria con lo deducido en el paso (3) termina la demostración.

(b) (quitando la primera premisa)

Quitando la primera premisa obtenemos el razonamiento

$$\{ (s \land t) \Leftrightarrow \neg q \} \models \neg s \lor \neg t \Rightarrow p \lor \neg r$$

que no es correcto:

- (1) Las condiciones impuestas por C son las mismas de antes
- (2) P2 dice que o bien i(s)=v, i(t)=v e i(q)=f se dan a la vez, o bien se da i(q)=v y al menos una entre i(s)=f e i(t)=f
- (3) Coger i tal que i(s)=f, i(t)=f es compatible con las condiciones del paso (1) y también con las del paso (2) (segunda opción).
- (4) Por tanto, la interpretación i tal que i(p)=f, i(q)=v (por haber elegido la segunda opción en el paso (2)), i(r)=v, i(s)=f e i(t)=f es un contraejemplo que demuestra que el razonamiento NO es correcto.

(b)(quitando la segunda premisa)

El razonamiento que queda es

$$\{ p \lor (r \Rightarrow \neg q) \} \models \neg s \lor \neg t \Rightarrow p \lor \neg r$$

- (1) Siguen las condiciones dictadas por C
- (2) Al tener la condición i(p)=f, la primera parte de P1 es falsa; por tanto, deberá ser verdadera la segunda, es decir, i(r)=f o bien i(q)=f; el primero de los dos no es compatible con las condiciones del punto (1), pero el segundo sí porque C no contiene q
- (3) Por tanto no hay contradicción y la interpretación i tal que i(p)=f, i(q)=f, i(r)=v, i(s)=f e i(t)=v es una de las interpretaciones que demuestran que el razonamiento NO es correcto.

Ejercicio 3. Demostrar con el cálculo de deducción natural y justificando cada paso:

 $\vdash (p \land q) \leftrightarrow \neg (p \rightarrow \neg q)$ (X puntos) Supuesto 1. $p \wedge q$ TI 1 con $A \equiv \neg \neg A$ $\neg\neg(p \land q)$ 2. $\neg(\neg p \lor \neg q)$ TI con De Morgan 2 3. $\neg (p \rightarrow \neg q)$ 4. TI 3 con $A \rightarrow B \equiv \neg A \lor B$ $(p \land q) \rightarrow \neg (p \rightarrow \neg q)$ 5. *Int* → 1-4 $\neg(p \rightarrow \neg q)$ 6. Supuesto

Ejercicio 4. (X puntos)

a) Obtener la forma clausular del siguiente conjunto de fórmulas:

$$\{p \land q \rightarrow r, s \lor q \rightarrow p, \neg(\neg q \land \neg s), p \rightarrow \neg r, p \rightarrow q\}$$

b) Demostrar mediante resolución que el conjunto de cláusulas obtenido es insatisfacible.

Bloque de Lógica de Primer Orden

Ejercicio 1. Formalizar en un lenguaje de la Lógica de Primer Orden, especificando dicho lenguaje en cada caso, lo siguiente: (X puntos)

a) Nunca pertenecería a un club que admitiera como socio a alquien como yo (Groucho Marx)

```
C(x): x es un club, A(x,y): x admite a y como socio, P(x,y): x pertenece a y, m: Groucho Marx
```

$$\neg \exists x (C(x) \land A(x,m) \land P(m,x)) \text{ (o bien } \forall x (C(x) \land A(x,m) \rightarrow \neg P(m,x)))$$

b) Todos los políticos incumplen alguna promesa y hay políticos que incumplen todas las promesas. Pero si un político es votado entonces cumplirá alguna promesa. Por tanto, o hay políticos que no han sido votados o los que cumplen promesas no son políticos.

```
P(x): x es político, C(x,y): x cumple la promesa y, V(x): x es votado \forall x (P(x) \rightarrow \exists y \neg C(x,y)) \land \exists x (P(x) \land \forall y \neg C(x,y))
```

$$\exists x (P(x) \land \neg V(x)) \lor \forall x \forall y (C(x,y) \rightarrow \neg P(x))$$

Ejercicio 2. Definir un contramodelo para demostrar que la siguiente relación de consecuencia lógica NO se verifica: (X puntos)

$$\left\{ \begin{array}{l} \forall x \ (Q(x) \rightarrow R(x)), \ \forall x \ (P(x) \rightarrow R(x)), \ P(a), \ Q(b) \, \right\} \ \vDash \ \exists x \ (P(x) \land Q(x)) \\ \\ \underbrace{ \begin{array}{l} \forall x \ (Q(x) \rightarrow R(x)), \ \forall x \ (P(x) \rightarrow R(x)), \ P(a), \ Q(b) \, \right\}}_{A_1} \ \ \underbrace{ \begin{array}{l} \exists x \ (P(x) \land Q(x)) \\ \hline A_2 \end{array}}_{A_3} \ \ \underbrace{ \begin{array}{l} Q(b) \, \\ \hline A_4 \end{array}}_{A_4} \ \ \underbrace{ \begin{array}{l} \exists x \ (P(x) \land Q(x)) \\ \hline B \end{array}}_{B}$$

Buscamos una interpretación i tal que

 $\forall x (Q(x) \rightarrow R(x))$

$$\forall x (P(x) \rightarrow R(x))$$
 son V $y \exists x (P(x) \land Q(x))$ es $P(a)$ $Q(b)$

Tomamos como dominio $D = \{a,b\}$

$$- i(A_3) = V \longrightarrow i(P(a)) = V$$

$$- i(A_4) = V \longrightarrow i(Q(b)) = V$$

-
$$i(A_2) \equiv i(\forall x (P(x) \rightarrow R(x))) \equiv V$$

$$x = a$$
 $i(P(a) \rightarrow R(a)) = V$ $i(P(a)) = V$ $i(R(a)) = V$

Y TAMBIÉN

$$x = b$$
 $i(P(b) \rightarrow R(b)) = V$ \longrightarrow $i(P(b)) = F$ $ó$ $i(R(b)) = V$ (1)

-
$$i(A_1) \equiv i(\forall x (Q(x) \rightarrow R(x))) \equiv V$$

$$x = a$$
 $i(Q(a) \rightarrow R(a)) = V$ se cumple pues $i(R(a)) = V$

Y TAMBIÉN

$$x = b$$
 $i(Q(b) \rightarrow R(b)) = V$ $i(Q(b)) = V$ $i(R(b)) = V$

por tanto, al ser i(R(b))=V, también se cumple (1), y A₂ es V

-
$$i(B) \equiv i(\exists x (P(x) \land Q(x))) = F$$

$$x = a$$
 $i(P(a) \land Q(a)) = F$ $i(P(a)) = V$ $i(Q(a)) = F$

Y TAMBIÉN

$$x = b$$
 $i(P(b) \land Q(b)) = F$
 $i(Q(b)) = V$

$$i(P(b)) = F$$

Hemos encontrado un contramodelo: que además es el único contramodelo

$$P_D = \{a\} \quad Q_D = \{b\} \quad R_D = \{a,b\}$$

Por supuesto que hay otras formas de hacer este análisis. Si empezamos por hacer falsa la conclusión B:

2ª solución:

-
$$i(A_3) = V$$
 \longrightarrow $i(P(a)) = V$
- $i(A_4) = V$ \longrightarrow $i(Q(b)) = V$

$$\begin{aligned} & \cdot & i(B) \ \equiv i(\exists x \ (P(x) \land Q(x))) = F \\ & x = a \quad i(P(a) \land Q(a)) = F \\ & como \quad i(P(a)) = F \end{aligned} \qquad \begin{matrix} i(Q(a)) = F \\ como \quad i(P(a)) = V \end{matrix} \qquad \begin{matrix} i(Q(a)) = F \\ \vdots \\ i(Q(a)) = F \end{matrix}$$

$$v = b \quad i(P(b) \land Q(b)) = F \qquad i(P(b)) = F \quad \acute{o} \quad i(Q(b)) = F \\ como \quad i(Q(b)) = V \end{matrix} \qquad \begin{matrix} i(P(b)) = F \\ \vdots \\ i(P(b)) = F \end{matrix}$$

$$\begin{aligned} & - & i(A_1) \equiv i(\forall x \ (Q(x) \to R(x))) = V \\ & x = a \qquad i(Q(a) \to R(a)) = V \qquad \text{se cumple pues } i(Q(a)) = F \\ & y \quad x = b \qquad i(Q(b) \to R(b)) = V \qquad i(Q(b)) = F \ \acute{o} \ i(R(b)) = V \\ & como \ i(Q(b))) = V \end{aligned}$$

$$\begin{aligned} & \cdot & \mathrm{i}(A_2) = \mathrm{i}(\forall x \ (P(x) \to R(x))) = V \\ & x = a \qquad \mathrm{i}(P(a) \to R(a)) = V \qquad \mathrm{i}(P(a)) = F \ \acute{\mathrm{o}} \ \mathrm{i}(R(a)) = V \\ & \mathrm{como} \ \mathrm{i}(P(a))) = V \end{aligned}$$

Se obtiene el **mismo resultado** que en la 1ª solución.

Ejercicio 3. Demostrar mediante deducción natural, justificando cada paso:

T [
$$\forall x \forall y (P(y) \rightarrow Q(y,x))$$
, ¬ $\exists y (R(a,y) \land Q(b,y))$, $\exists z R(a,z)$] ⊢ ¬ $P(b)$

1. $\forall x \forall y (P(y) \rightarrow Q(y,x))$ premisa
2. ¬ $\exists y (R(a,y) \land Q(b,y))$ premisa
3. $\exists z R(a,z)$ premisa
4. $R(a,c^*)$ elim. \exists , \exists { z/c^* }
5. $\forall y \neg (R(a,y) \land Q(b,y))$ T.I. 2 con ¬ $\exists x A(x) \equiv \forall x \neg A(x)$
6. ¬ ($R(a,c^*) \land Q(b,c^*)$) elim \forall , 5 { y/c^* }
7. Q(b,c^*) supuesto
8. $R(a,c^*) \land Q(b,c^*)$ int \land (4,7)
9. ($R(a,c^*) \land Q(b,c^*)$) \land ¬ ($R(a,c^*) \land Q(b,c^*)$) int \land (8,6)

```
10. Q(b, c^*) \rightarrow (R(a, c^*) \land Q(b, c^*)) \land \neg (R(a, c^*) \land Q(b, c^*)) int \rightarrow (7, 10)
11. \neg Q(b, c^*) int \neg (10)
12. \forall y (P(y) \rightarrow Q(y, c^*)) elim \forall, 1 {x/ c*}
13. P(b) \rightarrow Q(b, c^*) elim \forall, 12 {y/ b}
14. \neg P(b) MT (13, 11)
```

Ejercicio 4. Sea {A₁, A₂, A₃, A₄} el conjunto de fórmulas siguiente:

```
A<sub>1</sub>: \exists x A(x)

A<sub>2</sub>: \forall x \forall y (C(x) \rightarrow D(x,y) \land A(x))

A<sub>3</sub>: \exists x \forall y (C(x) \land D(x,y))

A<sub>4</sub>: \neg \exists x \exists y (D(x,y) \land \neg B(y))
```

Obtener la forma clausular de dicho conjunto de fórmulas.

```
A_1: \exists x A(x)
            A(a)
                                                                        Eliminación \exists \{x/a\}
A_2: \forall x \forall y (C(x) \rightarrow D(x,y) \land A(x))
                                                                                        FNC: (A \rightarrow A) \leftrightarrow (\neg A \lor A)
             \forall x \forall y (\neg C(x) \lor (D(x,y) \land A(x)))
                                                                                                  A \lor (A \land C) \Leftrightarrow (A \lor A) \land (A \lor C)
              \forall x \forall y ((\neg C(x) \lor D(x,y)) \land (\neg C(x) \lor A(x)))
A_3: \exists x \forall y (C(x) \land D(x,y))
                                                                               Eliminación \exists \{x/b\}
             \forall y (C(b) \land D(b,y))
A_4: \neg \exists x \exists y (D(x,y) \land \neg B(y))
                                                                               Prenex: (\neg \exists xA) \Leftrightarrow (\forall x \neg A)
              \forall x \neg \exists y (D(x,y) \land \neg B(y))
                                                                                FNC: \neg (A \land A) \Leftrightarrow \neg A \lor \neg A
              \forall x \forall y \neg (D(x,y) \land \neg B(y))
              \forall x \forall y (\neg D(x,y) \lor \neg \neg B(y))
              \forall x \forall y (\neg D(x,y) \lor B(y))
Forma Clausular:
\{\{A(a)\}, \{\neg C(x) \lor D(x,y)\}, \{\neg C(x) \lor A(x)\}, \{C(b)\}, \{D(b,y)\}, \{\neg D(x,y) \lor B(y)\}\}
```

Ejercicio 5. Demostrar mediante resolución con umg la insatisfacibilidad del siguiente conjunto de cláusulas:

```
C1: ¬ P(x)

C2: ¬ Q(y,x)

C3: P(y) ∨ R(y)

C4: Q(f(z), z) ∨ ¬ S(f(z))

C5: P(x) ∨ ¬ R(g(x)) ∨ S(x)

C6: P(y) ∨ ¬ Q(y, g(y)) ∨ S(y)
```

Renombrado de variables:

```
C1: ¬P(x1)

C2: ¬Q(y2,x2)

C3: P(y3) ∨ R(y3)

C4: Q(f(z4), z4) ∨ ¬S(f(z4))

C5: P(x5) ∨ ¬R(g(x5)) ∨ S(x5)

C6: P(y6) ∨ ¬Q(y6, g(y6)) ∨ S(y6)
```

Resolución: