### Introduction

Beside the fact that the Jeenode (see <a href="http://jeelabs.org">http://jeelabs.org</a>), Moteino (see <a href="https://lowpowerlab.com">https://lowpowerlab.com</a>), and Anarduino miniWireless69 (see <a href="http://www.anarduino.com/miniwireless/">http://www.anarduino.com/miniwireless/</a>) are offering great solutions to develop wireless applications using the RFM69(CHW) transceivers, a dedicated RFM69 appliance board is interesting to have:

- For a flexible approach when using a generic development platform (see RFM69(H)W board)
- While building a powerful Etherenet-RFM69 gateway using the Arduino ATMEGA2560 platform (see RFM69(H)W shield).

Jeenode is using RFM12B and the compatible RFM69CW transceiver version while Anarduino MiniWireless, Moteino are using RFM69W and RFM69HW transceivers for FSK modulation.

However, while developing a wireless gateway is would be interesting to transmit OOK datagrams with the same transceiver.

Receiving OOK datagrams with the RFM69(H)W is another story (see <a href="http://members.home.nl/hilcoklaassen/">http://members.home.nl/hilcoklaassen/</a>). For the time being I see no interest nor utility to combine FSK and OOK receiver functions on the same transceiver.

This document describes the RFM69(H)W <u>board</u> and RFM69(H)W <u>shield</u> for ATMEGA2560. It also shows how to modify the of Moteino and miniWireless69 hardware for OOK transmission..

### **OOK** hardware configuration

### **RFM69 variants**

Two variants of RFM69 are considered; RFM69W and RFM69HW. To simplify the configuration other versions such as the RFM69CW (hardware compatible with RFM12B) and RFM69HCW (hardware compatible with RFM22) are not scoped, we consider only the RFM69(H)W transceivers which are only available on Moteino / MoteinoMEGA and Anarduino miniWireless69.

1. RFM69W, a new full function transceiver (not compatible with the RFM12B and RFM22)



Figure 1: RFM69W Details

2. RFM69HW, a the high power version of the RFM69W



Figure 2: RFM69HW Details

File name: RFM69W Board and Shield v0.0.docx

Version: 0.0

### RFM69(H)W OOK hardware configuration.

Moteino and Anarduino are using a limited subset of the RFM69 pins for FSK modulation.

| RMF69<br>Pin | RFM69<br>Function | Motineo<br>Pin | Moteino Mega<br>Pin | miniWireless69<br>Pin | Function |
|--------------|-------------------|----------------|---------------------|-----------------------|----------|
| 1            | Reset             | N.A.           | N.A.                |                       |          |
| 2            | DIO0              | D2             | D2                  |                       | INT0     |
| 3            | DIO1              | N.A.           | N.A.                |                       |          |
| 4            | DIO2              | N.A.           | N.A.                |                       |          |
| 5            | DIO3              | N.A.           | N.A.                |                       |          |
| 6            | DIO4              | N.A.           | N.A.                |                       |          |
| 7            | DIO5              | N.A.           | N.A.                |                       |          |
| 8            | VDD               | 3v3            | 3v3                 | 3v3                   | 3v3      |
| 9            | GND               | GND            | GND                 | GND                   | GND      |
| 10           | ANT               | ANT            | ANT                 | ANT                   | ANT      |
| 11           | GND               | N.A.           | N.A.                | GND                   | GND.     |
| 12           | SCK               | D13            | D7                  | D13                   | SCK      |
| 13           | MISO              | D12            | D6                  | D12                   | MISO     |
| 14           | MOSI              | D11            | D5                  | D11                   | MOSI     |
| 15           | NSS               | D10            | D4                  | D10                   | SS       |
| 16           | N.C.              | N.A.           | N.A.                | N.A.                  |          |

Table 1: RFM69(H)W pin mapping with different development platforms

For OOK, data exchanges (receive / transmit) occur via the Pin 4 - DIO2 of the RFM module, a small modification of the above modules allows to program the RFM69(H)W for OOK mode.

Here is the proposed connection to the existing development platforms.

| RMF69<br>Pin | RFM69<br>Function | Motineo<br>Pin | Moteino Mega<br>Pin | miniWireless69<br>Pin | Function |
|--------------|-------------------|----------------|---------------------|-----------------------|----------|
| 4            | DIO2              | D3             | D11                 | D3                    | INT1     |

Table 2: RFM69(H)W OOK pin mapping with development platforms

### Notes.

Pin 3 or INT1 is chosen for possible future extension to OOK datagram detection

A software configuration is necessary to activate the OOK mode, this configuration is described in another document (see RFM69W OOK Library vx.y.pdf).

### RFM69(H)W and OOK

This modification of the Moteino and miniWireless69 hardware allows activating the OOK functions.



Figure 3: OOK hardware modification on development platforms (RFM69(H)W)

### RFM69 Board

The easiest way to interface Arduino or other development platform with the RFM69(H)W module is to develop an RFM69 board.

This board is inspired by:

- http://jeelabs.net/projects/hardware/wiki/RFM12B\_Board
- https://bitknitting.wordpress.com/2014/02/22/making-an-rfm69-breakout-board/

The board may be used with or without 3v3 LDO supply, the one with LDO is more appropriate for the RFM69HW model which is consuming up to 130 mA in transmission mode, because such amount of power may not be supplied by the processor platform LDO.

File name: RFM69W Board and Shield v0.0.docx

Version: 0.0

### **Schematics**



Figure 4: RFM69(H)W board with 3v3 LDO supply



Figure 5: Simplified RFM69(H)W board without 3v3 LDO supply

### **Hardware**

### Parts

- J3,J4 = optional 8 positions male 2mm pitch socket header (for RFM69 module)
- J2,J5 = optional 8 positions female 2mm pitch socket header (for RFM69 board)
- J1 = 9 positions female 0,1 inch pitch socket header
- R1,R2,R3,R4 = 4,7 K $\Omega$  1/8 W carbon resistors
- R5,R6,R7,R8 =  $10 \text{ K K}\Omega 1/8 \text{ W carbon resistors}$
- C1,C2 = 0,1μF ceramic capacitor (N.A. without LDO)
- $C3 = 10\mu F$  electrolytic or tantalum capacitor (35V) (N.A. without LDO)
- U1 = MCP1702-33 5V to 3V3 LDO (N.A. without LDO)
- U2 = RFM69W or RFM69HW transceiver module of appropriated frequency

### Notes:

Do not connect / use 5V and 3v3 at the same time (i.e. chose one or the other depending of the usage of the LDO) Usage of 2mm socket headers allows interchanging RFM69 modules of various power and frequency

### **Prototype**

For those happy with a quick solution, here is the prototype version



Figure 6: Top view RFM69(H)W board with and without 3v3 LDO supply

File name: RFM69W Board and Shield v0.0.docx

Version: 0.0



Figure 7: Circuit and cabling views of the RFM69(H)W board

### **Production version**

For those who are ready to produce a more professional version.

### Layout



Figure 8: Physical views of the RFM69(H)W board

### **Printed Circuit**



Тор

File name: RFM69W Board and Shield v0.0.docx

Version: 0.0



Usage Example

### **Arduino Uno**



Figure 11: Arduino Uno with RFM69W Board

### **ATMEGA 2560**



Figure 12: Arduino ATMEGA2560 with RFM69HW Board

Note: For Atmegaé560 pins are for: MISO(0), MOSI (51), SCK(52), SS (53) INTO (2), INT1 (3)

Version: 0.0

### RFM69(H)W ATMEGA 2560 Shield

As described above, the use of this shield is to create a powerful Ethernet-Wireless gateway. The RFM69(H)W shield is designed to fit on the ATMEGA2560 together with the Ethernet shield.

### Ethernet-RFM69 gateway - Logical design



Figure 13: ATMEGA2560+EthernetShield+ RFM69(H)W shield

| RMF69 Shield<br>Pin | Function   | ATMEGA 2560<br>Pin |
|---------------------|------------|--------------------|
| J1-1                | +5V        | +5V                |
| J1-2                | N.U.       |                    |
| J1-3                | N.U.       |                    |
| J1-4                | N.U.       |                    |
|                     |            |                    |
| J2-1                | MISO       | 50                 |
| J2-2                | MOSI       | 51                 |
| J2-3                | SCK        | 52                 |
| J2-4                | SS         | 53                 |
| J2-5                | GND        | GND                |
| J2-6                | GND        |                    |
|                     |            |                    |
| J3-1                | DATA (OOK) | 3 (IRQ1)           |
| J3-2                | IRQ        | 2 (IRQ0)           |
| J3-3                | N.U.       |                    |
| I3-4                | N.U.       |                    |

Table 3: RFM Shield to ATMEGA 2560 connections

### RFMB69(H)W Shield Prototype

For those happy with a quick solution, here is the prototype version of the RFM69(H)W Shield is the following.



File name: RFM69W Board and Shield v0.0.docx

Version: 0.0



Figure 14: RFM69(H)W shield prototype

### **Production version**

For those who are ready to produce a more professional version.

### Layout



### **Printed Circuit**

Figure 15: Physical views of the RFM69(H)W shield



Figure 16: RFM69(H)W shield PCB Layout

File name: RFM69W Board and Shield v0.0.docx

Version: 0.0



Figure 17: double sided PCB masks

### Ethrernet-RFM69(H)W gateway example

Version: 0.0



- 00000 -

File name: RFM69W Board and Shield v0.0.docx Version: 0.0 Saved Date: 18/06/2015