

THE UNIVERSITY OF ILLINOIS

LIBRARY 512,23 C916 v.1

MATHEMATICS

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the **Latest Date** stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

BINOMIAL FACTORISATIONS.

GIVING

EXTENSIVE CONGRUENCE-TABLES AND FACTORISATION-TABLES.

BY

LT.-COL. ALLAN J. C. CUNNINGHAM, R.E., FELLOW OF KING'S COLLEGE, LONDON.

VOL. I.

LONDON:

FRANCIS HODGSON, 89 FARRINGDON STREET, E.C. 4.

——
1923.

BINOMENT EVERIORIST PARTICIPATION

111111111

Barba Linger Committee and Bara

11/

: KIRTTOS

THE THINKS OF THEFT STORES COLOR

,0061

512.23 C916 V.1

PREFACE.

The present Work in seven volumes is the outcome of the author's labours of the past thirty years.

The Tables were computed with the aid of a Staff of Assistants whose names will be found in Arts. 18b, 27c of the present volume, and again in the later volumes.

Most of the Tables have been printed off for years; but the Work has been greatly delayed by the War and by its aftermath.

The author's acknowledgments are due to Mr. H. J. Woodall, A.R.C.Sc., for help in reading the Proof Sheets of the Introduction, and for numerous suggestions.

Digitized by the Internet Archive in 2021 with funding from University of Illinois Urbana-Champaign

CONTENTS.

		-			9	
					Articles.	Page.
GENERAL IN	NTRODUCTION		•••	•••	1	i
Снар. І.	Linear and Quad	ratic Forms			2-16	ii
II.	Congruence-Tabl	es			17-24	xvii
III.	Factorisation of	Binomials		***	25-29a	XXV
IV.	Chains				30-36c	xxxii
V.	Aurifeuillians				37-47	xxxix
VI.	Dimorphs, &c.				48-63b	lviii
VII.	Product-Forms				64-69	lxxiii
VIII.	Squares	***			70-75b	lxxix
IX.	Diophantine Pro	cess			76-87	lxxxii
INDEX TO I	NTRODUCTION				•••	xciv
ADDENDA .						xevi
Additional	CORRIGENDA					xevi

TABLES.

					Pages.
Congruence-Tables			•••	•••	1-95, and 219
FACTORISATION-TABLES	•••	***			97-236, 265-278
LISTS OF PRIMES					237-264, 277, 281-288
ERRATA IN WORKS CONS	SULTEI			•••	279
CORRIGENDA IN PRESEN	T Woi	RK			280

CONTENTS OF CONGRUENCE-TABLES.

CONGRUENCE-TABLES.

$egin{aligned} & Congruence \ ^*\phi \ (y^n\mp 1)\equiv 0. \end{aligned}$	Modulus $p \text{ or } p^{\kappa}.$	Pages.
$y^2 + 1$	p ≯ 10⁴	1-4
,,	$p \geqslant 10^4$	4
"	$p > 10^4 - 52181$	5-21
y^2 , y^4 , $y^8 + 1$	$p^{\kappa} > 10^4 - 10^5$	22
$y^4 + 1$	$p \gg 10^4$	23-26
22	$p^{\kappa} \gg 10^4$	26
,,	$p > 10^5 - 32441$	27-33
$y^8 + 1$	$p \gg 10^4$	34-37
,,	$p^{\kappa} \geqslant 10^4$	37
**	$p > 10^4 - 32321$	38-44
$\phi (y^3 \mp 1)$	$p > 10^4$	45-52
11	$p^{\kappa} \geqslant 10^4$	52
$\phi (y^3-1)$	$p > 10^4 - 52069$	53-69
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$p^{\kappa} > 10^4 – 10^5$	70
$\phi (y^6, y^{12} + 1)$	",	70
$\phi (y^6 + 1)$	$p > 10^4$	71-74
11	$p^{\kappa} \geqslant 10^4$	74
,,	$p > 10^4 - 32797$	75-81
$\phi (y^{12} + 1)$	$p > 10^4$	82-85
2.2	$p^{\kappa} \geqslant 10^4$	85
**	$p > 10^4 - 33289$	86–92
$y^6, y^{32} + 1$	$p \geqslant 10^3$	93
$y^{64} + 1$,,	94
$\phi (y^{24} + 1)$,,	94
$\phi (y^{48}, y^{96} + 1)$	***	95
y^{16} , y^{32} , $y^{64} + 1$	$p > 10^3 - 10^4$	219
$\phi(y^{24}, y^{48}, y^{96} + 1)$	$p > 10^3 - 10^4$	219

^{*} ϕ means M.A.P.F. of, [see Art. 1].

CONTENTS OF FACTORISATION-TABLES.

FACTORISATION-TABLES, &c.

						Pages.
Explanation of Tables	•••		***	• • •		97
High Duan Chain						98
High Bin-Aurifn. Chains						11
High Irreducible Duans	• • •		•••	• • •	• • •	99
High Associate Duans	• • •	• • •		***	• • •	100-102 103
High Bin-Aurifeuillians Dimorph Bin-Aurifeuillia	ne	• • •	• • •		• • •	
Dimorph Bin-Aurifn. Pro		• • •		•••		104, 105
Compound Bin-Aurifeuilli			•••	•••		105
Successive Pellians			•••		***	106
High Pellians			•••			106-109
Pellian Bin-Aurifn. Chain						109
Bin-Aurifn. Chains						110
High Pellian Chains						111, 112
Simple Quartans						113-115, 119
Simple Half-Quartans						116-119
Quartans						120-122, 125, 220
Half-Quartans						123-125
High Irreducible Quartan	ıs					126
						127
Special Quartans					• • •	128
Quartan Nexuses	•••	• • •	• • •		• • •	129
$(\Sigma \xi^4)^2 = (\Sigma x'^2)^2 = 2\Sigma x^4 =$						129
Associate Quartans						130, 133
Quartan Characteristics,	ac.		• • •		• • •	131-133
Simple Quartan Chains	•••		• • •	• • •	• • • •	134
Quartan Chains and Serie		oriog	• • •		• • •	135, 136 137
2-ic Partitions of L, M of Trinomial 4-tans Factoris				• • • •		138
High Quartans			•••			139
Simple 8-vans			• • •	• • •		140 141
Simple Half-8-vans Irreducible 8-vans	• • •	• • •	***		• • • •	142, 143
0 1 3 .	• • •	***		• • •		143
	• • •	•••	• • •	•••		
Semi-quartic Partitions	• • •	• • •		• • •		144, 145
Bin-Aurifn, Tree	dra	• • •	•••	• • •	• • • •	146
Bin-Aurifn, Factorisants	, α.ε.	• • •		•••	• • •	147, 148
			• • •		• • •	149
High Trin-Aurifn. Chains				•••	• • •	11
High Cubans High Irreducible Cubans		• • •	• • •	• • •	• • •	150 151
High Trin-Aurifeuillians			•••	•••	• • •	150, 151 152
Pellian Trin-Aurifn. Chai						153
Dimorph Trin-Aurifn. Pr						154
Compound Trin-Aurifeuil						,,
FFD 1 1 C FFD						155
Trin-Aurifn. Factorisants				•••		155, 156
Simple Sextans				•••		157-163
Sextans				• • • •		164–170, 220
High Irreducible 6-tans		•••		•••		170
High Aurifn. Sextans	,	,,,				,,

CONTENTS OF FACTORISATION-TABLES.

					Pages.
High Sextans					171
Trinomial Dimorph 6-tans					,,
Simple Bin-Aurifn. 6-tans					172, 173
Bin-Aurifn. 6-tans					174-179
Simple Sext-Aurifn. 6-tans			• • •		179, 180
Sext-Aurifn. 6-tans					181–184, 194
Trin-Aurifn. 6-tans				***	185–189, 194
Dimorph 6-tans				***	190-194
Bin-Aurifn. 6-tan Chains		• • •	• • •	• • •	195
Sext-Aurifn. Chains	• • •	***	***	***	196
Trin-Aurifn. 6-tan Chains	01	•••	***	• • •	197
Bin-Aurifn, and Dimorph 6-tan			***	• • •	198-201
Sexto-Trin-Aurifn. Chains Trinomial Power-form 6-tans	* * *	* * *	***	***	201–204 205
Sextan Characteristics, &c.		***	* * *	***	206-209
Simple Sextan Chains	***	***	***	• • •	210
Sextan Chains and Series	***		***	•••	211-214
	***	***	* * *		
Simple Duodecimans		***			215, 216
24-, 32-, 48-, 64-, and 96-mans	• • •	***	* * *		218
$y^{16}, y^{32}, y^{64} + 1 \equiv 0 \pmod{p} > 10^{3}$	")	***	***		219
$\phi(y^{24}, y^{18}, y^{96} + 1) \equiv 0 \pmod{p} >$		* * *	* * *	***	000
4-tans and 6-tans		***	***	• • •	220
Dimorph and Trimorph Cubics					221, 222
Dimorph Trinomial Quartics					223-225
Algebraic 2-tic, 3-bic, and 4-tic		rphs			226
Algebraic Factorisation of 4-tics	3				227
		• • •			228
$x^3 - y^3 = z^2 \dots \dots \dots$					229
Quartic Squares, Binomial					230, 231, 236
Trinomial	• • •		***	• • •	232, 233
Cubic Squares					235
Primes, Index of Tables	• • •			• • •	237
Duan primes, Elements	• • •				238-244
Cuban primes, ,, Quartan primes, ,,	* * *		• • •		245–252, 259, 260 253–255
Quartan primes, ,, Sextan primes, ,,		• • •	***	* * *	256, 257
8-van, 12-man, 16-man, and pri	meg	•••			258
Prime Aurifn. Factors of 6-tans	IIICS	•••			261-264
Product Cubics					265
Quarto-Cubans					266
Dun Ouking					267
4-factor Bin-Aurifeuillians				***	268-271
Comment to Dandanda				***	273
Dilines and Comes of A toma					273, 274
Product Sextans					275
Dimorph 6-tan Products					,,
Dimorph Niv ± Nvi, Nviii = Nxii,	&c.				276
Number of primes of various for					277
T 111 Ti (' ' / / / / 11			***		278
Errata in Euler's and Reuschle'	s Tab				279
Corrigenda in this volume			***		280
High 4-tan primes					281
High prime Factors in 4-tans					282-285
High prime Factors in 4-tans High 6-tan primes					285
High prime Aurifn. Factors of N	V _{vi}				286
					287, 288

BINOMIAL FACTORISATIONS.

General Introduction. This Work,—which is in several volumes—is a study of the arithmetical properties, especially of the factorisation, of certain Binomial and Trinomial forms.

The following general notation and nomenclature are used:-

Binomial n-ic; \mathbf{N}_n , or \mathbf{N}_n , means $(x^n \sim y^n)$, or $(x^n + y^n)$ (1a). A.P.F. means Algebraic Prime Factor.

M.A.P.F. means Max. A.P.F.

Binomial n-an;
$$N_n$$
, or $N'_n = M.A.P.F.$ of $(x^n \sim y^n)$, or $(x^n + y^n)$ (1b)

Extensive Tables are given of the Congruence N_n and $N_n \equiv 0$ \pmod{p} and p^{κ} and of the factorisation of N_n and N_n (at end of this Introductory Text).

Abstract of Contents of Volumes. This Work is projected in about 7 volumes, dealing with following subjects:

Vol. i; n-ans of degrees n = 2, 4, 8, 16; 3, 6, 12, 24; and 4-tic Forms.

- n = 5, 10, 15, 30.ii;
- ,, iii; n = 7, 14, 21; 9, 18.
- n = 11, 27; 13, 26.
- iv; Supplement to Vol. i) contain the completion of many ,, vi; Vol. ii of the Congruence-Tables to
- ,, vii: Vols. iii and v modulus $p \geqslant 100,000$.
- 1b. Other general Notation. All symbols denote integers, (unless otherwise stated).
 - i, I mean any integers; ϵ , e, E mean even numbers; ω , Ω mean odd numbers.

p means an odd prime; p_1, p_2, p_3, \dots mean different odd primes.

 F_n means an odd factor of N_n .

 $\tau(n)$ means Totient of n;

I

$$\tau(p) = (p-1), \ \tau(p^{\kappa}) = p^{\kappa-1}.(p-1); \ \tau(2) = 1, \ \tau(2^{\kappa}) = 2^{\kappa-1};$$

 $[\]tau\left(p_1p_2p_3\ldots\right)=\tau\left(p_1\right).\tau\left(p_2\right).\tau\left(p_3\right).\ldots,\ \tau\left(2\Pi p\right)=\tau\left(\Pi p\right)\ \ldots\ldots\ (2).$

^{*} The Tables-(which are very extensive)-of all these Volumes are already in type, and printed off. b

VOL. I.

[The author is indebted to Mr. H. J. Woodall, A.R.C.Sc., for help in reading the proof sheets.]

Chap. I. Linear and 2-ic Forms.

2. Introduction. This volume deals* with the arithmetical properties,—especially those connected with factorisation,—of Binomials and Trinomials of degrees n=2, 4, 8; 3, 6, 12; and with allied problems.

(1) High Quartan Factorisations and Primes, Vol. 36, 1907, pp. 145-174.

(2) Diophantine Factorisation of Quartans, Vol. 38, 1909, pp. 81–104.

(3) ,, ,, Vol. 38, 1909, pp. 145–175.

(1) High Sextan Factorisations and Primes,

Vol. 39, 1910, pp. 38-63.

(2) ,, ,, Vol. 39, 1910, pp. 97–128.

(3) ,, ,, Vol. 40, 1911, pp. 1–36.

These last six Papers will be referred to (for shortness) as:

High 4-tans, Nos. (1), (2), (3). High Sextans, Nos. (1), (2), (3).

^{*} The matter in the Text of this Volume is to a great extent contained in the author's published Papers following :—

On Aurifeuillians in Proc. Lond. Math. Socy., Vol. 29, 1898, pp. 381-438.

High Primes (4w+1) and (6w+1) and Factorisations in Quarterly Journal of Pure and Applied Mathes., Vol. 35, 1904, pp. 10-21.

^{3°.} Six Papers in Messenger of Mathcs.:

2a. Nomenclature and Notation of n-ans. The n-ans dealt with herein are symbolized and named* as follows:—

Duans Quartans Octavans &c.
$$N_{ii} = x^2 + y^2$$
, $N_{iv} = x^4 + y^4$, $N_{viii} = x^8 + y^8$, &c. (3a).

As N_{ii} , N_{iv} , N_{viii} , &c., are all even when xy is odd, their Halves are then dealt with under the names

 $Half-Duan = \frac{1}{2}N_{ii}$, $Half-Quartan = \frac{1}{2}N_{iv}$, $Half-Octavan = \frac{1}{2}N_{viii}$, &c.

Also,— Cuban Sextan Duodeciman &c.
$$N_{iii} = \frac{x^3 \not \sim y^3}{x \not \sim y}, \quad N_{vi} = \frac{x^6 + y^6}{x^2 + y^2}, \quad N_{xii} = \frac{x^{12} + y^{12}}{x^4 + y^4}, \quad &c. \dots (3b).$$

The two kinds of Cubans are thus distinguished (when necessary)

$$N_{iii} = \frac{x^3 \sim y^3}{x \sim y}, \quad N'_{iii} = \frac{x^3 + y^3}{x + y} \dots$$
 (3c).

As $N_{\text{iii}} = 3I$ when $x \sim y = 3i$, and $N_{\text{iii}} = 3I$ when x + y = 3i, their third parts are then dealt with under the names

- **2b.** Simple Forms. The above n-ans (N_n) are termed Simple n-ans when x or y = 1.
- **2c.** Omission of subscript n. The subscripts (n) will be omitted—for shortness' sake—when the context sufficiently shows the degree (n) of the n-an (N_n) dealt with.
- 3. Working Condition. In order to avoid unnecessary factors in N_n it is usual to assume that x, y are prime to one another: otherwise, if x, y have a common factor μ , then N_n will be divisible by the factor $\mu^{\tau(n)}$ when $n = \omega$, and by $\mu^{2\tau(n)}$ when $n = \epsilon$.

Similarly, in 2-ic forms such as $F = (t^2 \approx Du^2)$ it is usual to assume that t, u are prime to one another: otherwise, if t, u have a common factor μ , then F will be divisible by the factor μ^2 .

^{*} This nomenclature and symbolism are readily extended to other degrees $(n=5,\,7,\,9,\,\&c.)$, and will be adopted in succeeding volumes.

4. Linear Form of N_n and F_n . The linear forms of N_n itself, and of the divisors (F_n) of N_n , are as shown in following scheme

	C	ondi	tion		Linea	r Form			Condition		Linear	Form
n	N_n	x	y	N"	of N _n	of \mathbb{F}_n	n	N_n	as to x, y	N"	of N _n	of \mathbf{F}_n
	$\frac{1}{2}N_{ii}$ N_{iv} $\frac{1}{2}N_{iv}$ N_{viii} $\frac{1}{2}N_{viii}$		ω ε, ω ω ε, ω	6 6 6 6 6 6	000 7 1	$8\varpi + 1$ $16\varpi + 1$	6	N_{iii} $\frac{1}{3}N_{iii}$	x + y = 3i None	2 2 2	6w + 1 6w + 1 6w + 1 6w + 1 12w + 1 24w + 1	$6\varpi + 1$ $12\varpi + 1$

Note that 2 and 3 are exceptional divisors in following cases only:—

- 3 (but not 9) is a divisor of N_{iii} when x-y=3i, and of N_{iii} when x+y=3i..... (4b).
- **5.** 2-ic Forms. The 2-ic forms, or partitions $(t^2 Du^2)$, in which n-ans (N_n) , and the divisors (F_n) of n-ans, are expressible are of two kinds, Pure and Impure.

Pure 2-ic forms have D, a mere number.

Impure 2-ic forms have $D = \delta .xy$, where δ is a mere number.

The two numbers t, u are styled the "2-ic parts" of the form, and the form itself is styled shortly the (t, u) form.

The forms dealt with in this Volume have the following determinants (D).

Pure forms, $D = -1, \pm 2, \pm 3, \pm 6$. Impure forms, $D = \delta .xy$, with $\delta = -1, \pm 2, \pm 3, \pm 6$.

6. Pure 2-ic Forms. The pure 2-ic forms of n-ans (N_n) , and of the divisors (F_n) of n-ans, occurring in this Volume are stated below along with the abbreviated symbolism for each.

The above 2-ic forms are reckoned different forms only when they are of different determinant (D). Thus the (e, f) and (f', e') forms, as also the (A, B) and (L, M) forms, being of same determinants (D = +2, -3 respectively) are not reckoned different forms, but merely different expressions of the same form, being in fact algebraically inter-convertible by the formula:—

$$e' = e \mp 2f, \quad f' = e \mp f; \quad e = 2f' \mp e', \quad f = f' \mp e' \dots (5).$$

$$L = 2A, \quad M = \frac{2}{3}B, \quad [\text{when } B = 3\beta]$$

$$A = \frac{1}{2}L, \quad B = \frac{3}{2}M, \quad [\text{when } L \text{ and } M = \epsilon]$$

$$L = A \approx 3B, \quad M = \frac{1}{3}(A \pm B), \quad [\text{when } A \pm B = 3\beta]$$

$$A = \frac{1}{4}(L \pm 9M), \quad B = \frac{1}{4}(L \approx 3M), \quad [\text{when } L \text{ and } M = \omega]$$

$$\dots (6b).$$

The "2-ic parts" (t, u) of these forms should—by the "working condition" (Art. 3)—be prime to one another; except that in the form (L, M) the parts L, M are both even when $B = 3\beta$; but, in this case $\frac{1}{2}L$, $\frac{1}{2}M$ will be prime to one another.

But even different forms of three different determinants D_1 , D_2 , D_3 which are connected by the relation

$$\lambda^2$$
. $D_1D_2 = \mu^2$. D_3 , [λ , μ any + integers],

are so related that any two of the three forms will algebraically determine the third form. Such sets of three forms are termed 2-ic Triads. The Triads occurring among the forms with the 7 determinants above named are

$$(D_1, D_2, D_3) = (\overline{1}, 2, \overline{2}), (\overline{1}, 3, \overline{3}), (\overline{1}, 6, \overline{6}), (2, \overline{3}, \overline{6}), (\overline{2}, 3, \overline{6}), (2, 3, 6), (\overline{2}, \overline{3}, 6)$$
 (7).

6a. Odd and even 2-ic parts (t, u). The character—(as to odd or even)—of the "2-ic parts" t, u in the 2-ic forms (t, u) of n-ans (N_n) and of the factors of N_n is shown in the scheme below: it depends chiefly on the linear form of $N_n = 4i \pm 1$, or $= 2\Omega$; except in the case of (L, M), wherein it depends on the form of $B = \text{or } \neq 3\beta$.

ĺ	N_n	a	b	c d	e f	e' f'	ΑВ	A'	B'	GН	G' H'	N_{iii}	LM
۱	4i + 1 $4i - 1$	ω, ε	ε, ω	ω, ε	ω, ε	ω, ω	ω, ε	ω, ε	ε, ω	ω, ε	ω, ε	$B \neq 3\beta$ $B = 3\beta$	ω, ω
	2Ω												

- **6b.** Indefiniteness of a, b. In consequence of the symmetry of the form (a, b), the 2-ic parts a, b are algebraically indistinguishable: the usual convention is to take a as the odd part (when one of a, b is even).
- **6c.** Signs of the 2-ic parts (t, u). The 2-ic parts t, u of the form (t, u), being therein determined only from their squares, are so far of indeterminate sign (\pm) . The usual convention is to fix the (\pm) sign by the following Rule:—

All even "parts" are taken +.
All odd "parts" are taken + when of form (4i+1).

,, ,, ,, ,, — when of form (4i-1).

7. Indefinite 2-ic forms (t^2-Du^2) . A number (N) expressible in a 2-ic form (t^2-Du^2) , whose determinant D is + (but $\neq \delta^2$),—[e.g., D = 2, 3, 6, &c.]—is expressible in an infinite number of ways in that form, say

$$N = t_1^2 - Du_1^2 = t_2^2 - Du_2^2 = t_3^2 - Du_3^2 = \&c.$$
 (8),

but these are all (algebraically) derivable from one another by conformal *multiplication or conformal *division by some power of the unit-form $(\tau^2 - Dv^2)^k = +1$, so that these are not considered different forms.

7a. Base form. The form $(t_1^2 - Du_1^2)$ of the above series in which t_1 , u_1 are minima is unique for that number N, and is styled the Base-form of that series: in all applications of the form $(t^2 - Du^2)$ it is desirable to use the Base-form.

The necessary and sufficient condition that $(t^2 - Du^2)$ should be a Base-form is

$$t > \frac{\tau + 1}{v}.u$$
, where $\tau^2 - D.v^2 = +1$, $[\tau, v \ minima]......(9)$.

If $N = t_{r-1}^2 - D \cdot u_{r-1}^2 = t_r^2 - D \cdot u^2$ be successive forms of the above series, whereof t_r , u_r are given, the form (t_r, u_r) may be

^{*} Conformal multiplication or division is multiplication or division with preservation of 2-ic form. For a full statement of the formulæ required, see the Author's paper on Connexion of Quadratic Forms in Proc. Lond. Math. Socy., Vol. 28, 1897.

reduced to the lower form (t_{r-1}, u_{r-1}) by the formulæ

$$t_{r-1} = \tau_1 t_r \sim D. v_1 u_r, \quad u_{r-1} = v_1 t_r \sim \tau_1 u_r \dots (9a),$$

which will give $t_{r-1} < t_r$ and $u_{r-1} < u_r$,—[if (t_r, u_r) be not itself the Base-form].

Successive application of these Reduction-formulæ will lead eventually to the Base-form (t_1, u_1) .

7b. Unit-form. The "unit-forms" (τ_1, v_1) required in this Volume are given below, together with the value of the ratio $(\tau_1+1) \div v_1$ required in the Base-form Test (9) above.

8. 2-ic forms of primes (p). Odd primes (p), and prime powers (p^{κ}) , and also their doubles $(2p \text{ and } 2p^{\kappa})$ are expressible in only one way in any one "definite" 2-ic form $(t^2 + Du^2)$, and also in only one way in the Base-form of any one "indefinite" 2-ic form $(t^2 - Du^2)$. In this sense each of the 2-ic expressions of p, p^{κ} , and $2p^{\kappa}$ in any 2-ic form $(t^2 \pm Du^2)$ is unique. [The "2-ic parts" t, u herein used should be mutually prime.]

The converse of the above is true only for those 2-ic forms whose determinant $(\pm D)$ is *Idoneal*: all the determinants here used, viz. $D = \overline{1}, \mp 2, \mp 3, \mp 6$ are of that kind, so that—

8a. 2-ic forms of composites (N). A number (N) which is the product of r odd primes (p) or prime-powers (p^{κ}) , each of which is expressible in the same 2-ic form $(t^2 \pm Du^2)$, is expressible in 2^{r-1} different ways in that same 2-ic form $(t^2 \pm Du^2)$ with t, u mutually prime. [In the case of an "indefinite" form $(t^2 - Du^2)$ there will be 2^{r-1} different infinite series of that form, each having its own unique Base-form.]

- 9. 2-ic forms of odd divisors (F_n) of n-ans (N_n) . All odd divisors (F_n) of n-ans (N_n) —with n = 2, 4, 8, &c.; 3, 6, 12, &c.—are expressible arithmetically,—but not usually algebraically—in the same pure 2-ic forms as the algebraic pure 2-ic forms of the n-ans (N_n) of which they are factors; (but not also in the impure 2-ic forms thereof).
 - 10. Duans and Half-Duans, Equivalence, $(N_{ii} = \frac{1}{2}N'_{ii})$.

$$N_{ii} = x^2 + y^2 = \Omega$$
, a *Duan*, $[x, y \text{ are, one } \omega, \text{ one } \epsilon].....$ (11a); $\frac{1}{2}N'_{ii} = \frac{1}{2}(x'^2 + y'^2) = \Omega$, a *Half-Duan*, $[x', y' \text{ both } \omega].....$ (11b).

Duans and Half-Duans are algebraically interconvertible $(N_{ij} = \frac{1}{2}N'_{ij})$ by the formulæ

$$x' = x + y, \ y' = x \pm y; \ x = \frac{1}{2}(x' \pm y'), \ y = \frac{1}{2}(y' + x') \dots (12).$$

10a. Duans and Half-Duans, 2-ic Forms. Every Duan (N_{ii}) , and every Half-Duan $(\frac{1}{2}N'_{ii})$, are algebraically expressible in the three 2-ic forms, one pure and two impure, viz.

$$\begin{split} \mathbf{N}_{\mathrm{ii}} &= \mathbf{a}^2 + \mathbf{b}^2 &= x^2 + y^2, & \mathbf{D} = -1 \quad \quad (13a) \, ; \\ &= \gamma^2 + 2xy \cdot \delta^2 &= (x \sim y)^2 + 2xy \cdot 1^2, & \mathbf{D} = -2xy \quad ... \quad (13b) \, ; \\ &= \eta^2 - 2xy \cdot \phi^2 &= (x + y)^2 - 2xy \cdot 1^2, & \mathbf{D} = +2xy \quad ... \quad (13c) \cdot \mathbf{1}_2^2 \mathbf{N}_{\mathrm{ii}}' &= \mathbf{a'}^2 + \mathbf{b'}^2 &= \left\{ \frac{1}{2} \left(x' \sim y' \right) \right\}^2 + \left\{ \frac{1}{2} \left(x' + y' \right) \right\}^2, \, \mathbf{D} = -1 \quad \quad (13a') \, ; \\ &= 2\delta'^2 + x'y' \cdot \gamma'^2 = 2 \left\{ \frac{1}{2} \left(x' \sim y' \right) \right\}^2 + x'y' \cdot 1^2, & \mathbf{D} = -2x'y' \dots (13b') \, ; \\ &= 2\phi'^2 - x'y' \cdot \eta'^2 = 2 \left\{ \frac{1}{2} \left(x' + y' \right) \right\}^2 - x'y' \cdot 1^2, & \mathbf{D} = +2x'y' \dots (13c') \cdot \mathbf{A}_2'' \right\} \end{split}$$

Here the pure 2-ic forms of N_{ii} , $\frac{1}{2}N'_{ii}$ are the same, (i.e. of same determinant D=-1); whereas the impure forms, though similar, are different 2-ic forms, (having different determinants D).

As N_{ii} , $\frac{1}{2}N'_{ii}$ are algebraically interconvertible, it follows that each of them can be algebraically expressed in one way in the above five 2-ic forms. Hence

- Every composite (N) of form $N = a^2 + b^2$ has one unique set of the above five forms for every distinct form (a, b) of N (14b).
- 11. Quartans and Half-Quartans, 2-ic Forms. Every Quartan (N_{iv}) and every Half-Quartan ($\frac{1}{2}N'_{iv}$) is algebraically expressible in three pure 2-ic forms, which are obtainable from the 2-ic forms of Duans and Half-Duans—(of which in fact they are merely special forms)—by writing x^2 , y^2 for x, y in the 2-ic

forms of the latter two: the *impure* 2-ic forms of the latter hereby become *pure* forms.

$$\begin{aligned} \mathbf{N}_{\text{iv}} &= x^4 + y^4 &= \Omega, \text{ a } \textit{Quartan}, \text{ } [x, \, y, \text{ one is } \omega, \text{ one is } \epsilon] \dots \text{ } (15) \text{ } ; \\ &= \mathbf{a}^2 + \mathbf{b}^2 &= (x^2)^2 + (y^2)^2 & \dots \text{ } (15a) \text{ } ; \\ &= \mathbf{c}^2 + 2\mathbf{d}^2 &= (x^2 \sim y^2)^2 + 2\left(xy\right)^2 & \dots \text{ } (15b) \text{ } ; \\ &= \mathbf{e}^2 - 2\mathbf{f}^2 &= (x^2 + y^2)^2 - 2\left(xy\right)^2 & \dots \text{ } (15c) \text{ } ; \\ &= 2\mathbf{f'}^2 - \mathbf{e'}^2 &= 2\left(x^2 \mp xy + y^2\right)^2 - \left(x^2 \mp 2xy + y^2\right)^2 & \dots \text{ } (15d). \end{aligned}$$

$$\frac{1}{2}\mathbf{N'_{\text{iv}}} = \frac{1}{2}\left(x^4 + y'^4\right) = \Omega, \text{ a } \textit{Half-Quartan}, \text{ } [x', y' \text{ both } odd] & \dots \text{ } (15'); \\ &= x'^2 + \mathbf{b'}^2 &= \left\{\frac{1}{2}\left(x'^2 \sim y'^2\right)\right\}^2 + \left\{\frac{1}{2}\left(x'^2 + y'^2\right)\right\}^2 & \dots \text{ } (15a'); \\ &= \mathbf{e'}^2 + 2\mathbf{d'}^2 &= \left(x'y'\right)^2 + 2\left\{\frac{1}{2}\left(x'^2 \sim y'^2\right)\right\}^2 & \dots \text{ } (15b'); \\ &= \mathbf{e'}^2 - 2\mathbf{f'}^2 &= \left(x'^2 \mp x'y' + y'^2\right)^2 - 2\left\{\frac{1}{2}\left(x'^2 \mp 2x'y' + y'^2\right)\right\}^2 & \dots \text{ } (15c'); \\ &= 2\mathbf{f''}^2 - \mathbf{e''}^2 &= 2\left\{\frac{1}{2}\left(x'^2 + y'^2\right)\right\}^2 - \left(x'y'\right)^2 & \dots \text{ } (15d'). \end{aligned}$$

$$\mathbf{Note } \mathbf{that}$$

$$\mathbf{c} + \mathbf{e} = 2\mathbf{a} \text{ or } 2\mathbf{b}, \quad \mathbf{d} = \mathbf{f} = \frac{1}{2}\left(\mathbf{f'} - \mathbf{e'}\right), \quad \mathbf{e} = \frac{1}{2}\left(\mathbf{e'} + \mathbf{f'}\right) & \dots \text{ } (16a); \\ \mathbf{d'} = \mathbf{a'} \text{ or } \mathbf{b'}, \quad \mathbf{f''} = \mathbf{b'} \text{ or } \mathbf{a'}, \quad \mathbf{c'} = \mathbf{e''} = \mathbf{e'} \sim 2\mathbf{f'}, \quad \mathbf{f''} = \mathbf{e'} - \mathbf{f'} \text{ } (16b). \end{aligned}$$

11a. Semi-quartic Partitions. Certain numbers (N) of form $8n\pm 1 = e^2 - 2f^2$ may be expressed in several of the semi-quartic partitions.

$$\label{eq:N} {\rm N} \, = \, t_1^4 - 2 u_1^2 \, = \, t_2^2 - 2 u_2^4 \, = \, 2 u_3^4 - t_3^2 \, = \, 2 u_4^2 - t_4^4.$$

These are closely connected with and may be derived from the above forms of Quartans. Thus

$$t_1^4 - 2u_1^2 = 2u_4^2 - t_4^4$$
 gives $\frac{1}{2}(t_1^4 + t_4^4) = u_1^2 + u_4^2$

which can be identified with Result (15a') above. Similarly $t_2^2-2u_2^4=2u_3^4-t_3^2$ can be identified with the same. Tables of these partitions for all numbers N < 100 are given on pages* 144, 145. Some composite numbers can be expressed in all four of the forms: but no prime has yet been found so expressible.

12. Octavans and Half-Octavans,

$$N_{viii} = x^8 + y^8 = \Omega$$
, an *Octavan*, $[x, y \text{ one is } \omega, \text{ one is } \epsilon].....$ (17a); $\frac{1}{2}N'_{viii} = \frac{1}{2}(x'^8 + y'^8) = \Omega$, a *Half-Octavan*, $[x', y' \text{ both } odd]$... (17b).

These being special powers of N_{iv} and $\frac{1}{2}N'_{iv}$, their 2-ic forms may be derived from those of N_{iv} and $\frac{1}{2}N'_{iv}$ by writing x^2 , y^2 for x, y in the 2-ic forms of the latter two.

The 2-ic forms of N_{xvi} , $\frac{1}{2}N'_{xvi}$, &c., may be derived in the same way from those of N_{viii} , $\frac{1}{2}N'_{viii}$, &c.

^{*} For some Errata in these Tables, see page 280.

13. Cuban and Trito-Cuban Identities (N_{iii} , $\frac{1}{3}N_{iii}$). The Cuban (N_{iii}) and Trito-Cuban (N_{iii}) have each of them three equivalent cuban forms, and carry with them equivalent trinomial 2-ic forms:—

$$\begin{aligned} \mathbf{N}_{\text{iii}} &= \mathbf{N}_{\text{iii}}'' = \mathbf{N}_{\text{iii}}''; & \text{and} & \frac{1}{3}\mathbf{N}_{\text{iii}} = \frac{1}{3}\mathbf{N}_{\text{iii}}'' = \frac{1}{3}\mathbf{N}_{\text{iii}}'' & \dots & (18), \\ \text{where} & \mathbf{N}_{\text{iii}} &= \frac{x^3 + y^3}{x - y}, & \mathbf{N}_{\text{iii}}' &= \frac{z^3 + x^3}{z + x}, & \mathbf{N}_{\text{iii}}'' &= \frac{z^3 + y^3}{z + y} & \dots & (19a), \\ &= x^2 + xy + y^2, &= z^2 - zx + x^2, &= z^2 - zy + y^2 & \dots & (19b), \\ &= [x, y], &= [z, x], &= [z, y], & for shortness, \\ \text{wherein} & z = x + y, & [\text{one of } x, y, z \text{ is } \epsilon; \text{ two are } \omega] & \dots & \dots & (20a). \end{aligned}$$

$$\frac{1}{3}\mathbf{N}_{iii} = \frac{1}{3} \frac{x'^3 - y'^3}{x' - y'}, \quad \frac{1}{3}\mathbf{N}_{iii}' = \frac{1}{3} \frac{z'^3 + x'^3}{z' + x'}, \quad \frac{1}{3}\mathbf{N}_{iii}'' = \frac{1}{3} \frac{z'^3 + y'^3}{z' + y'}. \dots (19a'),$$

$$= \frac{1}{3} (x'^2 + x'y' + y'^2), \quad = \frac{1}{3} (z'^2 - z'x' + x'^2), \quad = \frac{1}{3} (z'^2 - z'y' + y'^2) \quad (19b'),$$

$$= \frac{1}{3} [x', y'], \quad = \frac{1}{3} [z', x'], \quad = \frac{1}{3} [z', y'], \text{ for shortness,}$$

$$= x'^2 - 3x'\zeta' + 3\zeta'^2, \quad = z'^2 - 3z'\eta' + 3\eta'^2, \quad = z'^2 - 3z'\xi' + 3\xi'^2$$

$$= y'^2 + 3y'\zeta' + 3\zeta'^2, \quad = x'^2 - 3x'\eta' + 3\eta'^2, \quad = y'^2 - 3y'\xi' + 3\xi'^2,$$

$$= \{x', \zeta'\} = \{y', \zeta'\}, \quad = \{z', \eta'\} = \{x', \eta'\}, \quad = \{z', \xi'\} = \{y', \xi'\},$$
for shortness,

wherein $x' - y' = 3\zeta', \quad z' + x' = 3\eta', \quad z' + y' = 3\xi'$ $z' = x' + y' = \xi' + \eta', \quad \eta' = \xi' + \zeta'$ (20a'),

and one of x', y', z' is ϵ , and two are ω ; one of ξ' , η' , ζ' is ϵ , and two are ω .

13a. Equivalent Cubans and Trito-Cubans. The above 3 equivalent Cubans and their associate 3 equivalent Trito-Cubans are actually all equal to one another, thus

$$N_{iii} = N_{iii}^{"} = N_{iii}^{"} = \frac{1}{3}N_{iii}^{"} = \frac{1}{3}N_{iii}^{"} = \frac{1}{3}N_{iii}^{"}, \quad \text{[Cuban forms]},$$
and
$$[x, y] = [z, x] = [z, y] = \frac{1}{3}[x', y'] = \frac{1}{3}[z', x'] = \frac{1}{3}[z', y']$$

$$= \{x', \zeta'\} = \{y', \zeta'\} = \{z', \eta'\} = \{x', \eta'\} = \{z', \xi'\} = \{y', \xi'\}$$
[Trinomial 2-ic forms] (21);

and are algebraically interconvertible by the formulæ:—

1°.
$$x' = x + 2y$$
, $y' = x - y$; $x = \frac{1}{3}(x' + 2y')$, $y = \frac{1}{3}(x' - y')$; $[x > y, x' > y']$... (22a); 2°. $x' = 2x + y$, $y' = y - x$; $x = \frac{1}{3}(x' + y')$, $y = \frac{1}{3}(x' + 2y')$; $[y > x, x' > y']$... (22b);

along with the formulæ of Art. 13 connecting z, z' with x, y, x', y' and ξ', η', ζ' with x', y', z'.

[This property of Cubans is analogous to that of equivalent Duans and Half-Duans (Art. 10). It is peculiar to Duans and Cubans; no other n-ans (with n > 3) possess such a property.]

13c. Cubans and Trito-Cubans, 2-ic Forms. Each of the three equivalent Cubans (N, N', N'') and also each of their equivalent Trito-Cubans $(\frac{1}{3}\mathbf{N}_{iii}, \frac{1}{3}\mathbf{N}'_{iii}, \frac{1}{3}\mathbf{N}'_{iii})$ is expressible in the self-same pure 2-ic form $(\mathbf{A}^2+3\mathbf{B}^2)$,—[the same A, and same B in each]—by the formulæ

$$N_{iii} = N'_{iii} = N'_{iii} = A^{2} + 3B^{2} \dots (23).$$

$$A = \frac{1}{2}x + y = z - \frac{1}{2}x = \frac{1}{2}(z + y)$$

$$B = \frac{1}{2}x = \frac{1}{2}x = \frac{1}{2}(z - y)$$

$$A = x + \frac{1}{2}y = \frac{1}{2}(z + x) = z - \frac{1}{2}y$$

$$B = \frac{1}{2}y = \frac{1}{2}(z - x) = \frac{1}{2}y$$

$$A = \frac{1}{2}(x - y) = x - \frac{1}{2}z = \frac{1}{2}z - y$$

$$A = \frac{1}{2}(x + y) = x - \frac{1}{2}z = \frac{1}{2}z - y$$

$$B = \frac{1}{2}(x + y) = \frac{1}{2}z = \frac{1}{2}z$$

$$z = \epsilon, z \& y = \omega, x > y \dots (23c).$$

In the case of the Trito-Cubans $(\frac{1}{3}\mathbf{N}_{iii} = \frac{1}{3}\mathbf{N}'_{iii} = \frac{1}{3}\mathbf{N}''_{iii})$, the A, B can be most neatly expressed in a single formula for all three forms with different cases according as x', y', z' is the even element of the Trito-Cuban:—

$$A = \frac{1}{2}x'$$
, $B = \frac{1}{2}\xi'$, when x' and ξ' are ϵ (23a'),

$$A = \frac{1}{2}y'$$
, $B = \frac{1}{2}\eta'$, when y' and η' are ϵ (23b'),

$$A = \frac{1}{2}z'$$
, $B = \frac{1}{2}\xi'$, when z' and ξ' are ϵ (23c').

13d. Equivalent 2-ic, Cuban, and Trito-Cuban forms. By Art. 13c it is seen that—

and that for any particular values of A, B the whole of these forms are *unique*. Hence:—

Every prime (p) of form $p = 6\varpi + 1$, and every power (p^{κ}) thereof, has one unique set of the above forms, (6 cuban and 12 trinomial 2-ic).

Every composite (N) of form $N = A^2 + 3B^2$ has one unique set of the above forms for each distinct form (A, B) of N (24b).

13e. Impure 2-ic forms of Cubans and Trito-Cubans.

The three equivalent Cubans $N_{iii} = N'_{iii} = N'_{iii}$ are each algebraically expressible in one way in one of the impure 2-ic forms $(t^2 \pm 3vw.u^2)$, and also in one way in one of the impure 2-ic forms $(T^2 \mp vw.U^2)$, where v, w are the cuban elements: thus

$$\begin{aligned} \mathbf{N}_{\text{iii}} &= (x-y)^2 + 3xy \cdot 1^2, \quad \mathbf{N}_{\text{iii}}' = (z+x)^2 + 3zx \cdot 1^2, \quad \mathbf{N}_{\text{iii}}'' = (z+y)^2 - 3zy \cdot 1^2, \\ &= (x+y)^2 - xy \cdot 1^2. \qquad = (z-x)^2 + zx \cdot 1^2. \qquad = (z-y)^2 + zy \cdot 1^2 \\ &\qquad \qquad \dots \dots \quad (25a, \ b). \end{aligned}$$

And the three equivalent Trito-Cubans $\frac{1}{3}\mathbf{N}_{iii} = \frac{1}{3}\mathbf{N}'_{iii} = \frac{1}{3}\mathbf{N}'_{iii}$ are each algebraically expressible in one way in one of the impure 2-ic forms $(3t'^2 \pm v'w' \cdot u'^2)$, and also in one of the impure 2-ic forms $\frac{1}{3}(T'^2 \mp v'w' \cdot U'^2)$, where v', w' are the cuban elements: thus

$$\frac{1}{3}\mathbf{N}_{\text{iii}} = 3{\zeta'}^2 + x'y' \cdot 1^2, \quad \frac{1}{3}\mathbf{N}'_{\text{iii}} = 3{\eta'}^2 - z'x' \cdot 1^2, \quad \frac{1}{3}\mathbf{N}''_{\text{iii}} = 3{\xi'}^2 - z'y' \cdot 1^2
= \frac{1}{3}(z'^2 - x'y' \cdot 1^2) \qquad = \frac{1}{3}(y'^2 + z'x' \cdot 1^2), \qquad = \frac{1}{3}(x'^2 + z'y' \cdot 1^2).
\dots (25c, d).$$

Here these six impure 2-ic forms are all different 2-ic forms, in that they are of different determinants

$$(D = -3xy, +3zx, +3zy; +xy, -zx, -zy).$$

Contrast this property with that of the pure 2-ic form (A^2+3B^2) which belongs to all the six cuban forms, (see Art. 13c).

14. Sextans, (N_{vi}) . Every Sextan (N_{vi}) is algebraically expressible in seven 2-ic forms, viz. in 3 pure forms and 4 impure forms. The three pure forms may be obtained from the 2-ic forms of Cubans (N'_{iii}) —(of which in fact the Sextan is only a special form)—by writing x^2 , y^2 for x', y' in the 2-ic forms of the Cuban: hereby the impure forms of the latter become pure forms.

$$N_{vi} = \frac{x^6 + y^6}{x^2 + y^2} = x^4 - x^2 y^2 + y^4 = \Omega, \text{ a Sextan } \dots (27),$$

$$= a^2 + b^2 = (x^2 \sim y^2)^2 + (xy)^2 - \dots (27a),$$

$$= A'^2 - 3B'^2 = (x^2 + y^2)^2 - 3(xy)^2 - \dots (27b),$$

$$= A^2 + 3B^2, \text{ by one of the following formula} \qquad (27c),$$

$$= \frac{1}{2}x^2 c_1 y^2 - B = \frac{1}{2}x^2 - \frac{1}{2}x^2 -$$

$$\begin{array}{lll} {\rm A} = \frac{1}{2} x^2 \sim y^2, & {\rm B} = \frac{1}{2} x^2 \; ; & x^2 = 2 \, {\rm B}, & y^2 = {\rm B} \mp {\rm A} \; ; & [x = \epsilon, \; y = \omega] \\ {\rm A} = x^2 \sim \frac{1}{2} y^2, & {\rm B} = \frac{1}{2} y^2 \; ; & x^2 = {\rm B} \pm {\rm A}, \; y^2 = 2 \, {\rm B} \; ; & [x = \omega, \; y = \epsilon] \\ {\rm A} = \frac{1}{2} \left(x^2 + y^2 \right), \; {\rm B} = \frac{1}{2} \left(x^2 \sim y^2 \right); & x^2 = {\rm A} \pm {\rm B}, \; y^2 = {\rm A} \mp {\rm B} \; ; & [x \; {\rm and} \; y = \omega] \\ & (27 \, {\rm c}'', \; {\rm c}'''). & \end{array}$$

$$\begin{split} \mathbf{\hat{N}_{vi}} &= \gamma^2 + 2xy\delta^2 &= (x^2 - xy + y^2)^2 + 2xy \ (x \sim y)^2 \quad \dots \quad (27d). \\ &= \eta^2 - 2xy\phi^2 &= (x^2 + xy + y^2)^2 - 2xy \ (x + y)^2 \quad \dots \quad (27e). \\ \mathbf{N_{vi}} &= \mathbf{G}^2 - 6xy \cdot \mathbf{H}^2 &= (x^2 + 3xy + y^2)^2 - 6xy \cdot (x + y)^2 \quad \dots \quad (27f), \\ &= \mathbf{G'}^2 + 6xy \cdot \mathbf{H'}^2 &= (x^2 - 3xy + y^2)^2 + 6xy \cdot (x \sim y)^2 \cdot \dots \quad (27g). \end{split}$$

Note that-

$$A \pm B = a \text{ or b, if } x = \epsilon; \quad B \mp A = a \text{ or b, if } y = \epsilon \dots (28a),$$

 $a \text{ or b} = 2B, \quad A' = 2A, \text{ if } x & y = \omega \dots (28b),$
 $b \text{ or a} = B', \quad 2A' = G + G', \quad G - G' = 6b \text{ or } 6a = 6B' \dots (28c),$
 $H^2 + H'^2 = 2A', \quad H^2 - H'^2 = 4a \text{ or } 4b = 4B', \dots (28d).$

- Every composite Sextan (N_{vi}) , which is the product of r different prime factors, is arithmetically expressible in 2^{r-1} different ways in each of the pure 2-ic forms (a, b), (A', B'), (A, B) including the single algebraic expression in each of those forms, as above
- 14a. Expression of given numbers (N) as Sextans. Here N must be of form $N=12\varpi+1$, and of all the above 2-ic forms. If N be given in any one of the 2-ic forms, then the Sextan elements are readily found.
- 1°. Given $N = a^2 + b^2$: then B' = b = xy, and $(x^2 + y^2)^2 = N + 3(xy)^2$, whereby $x^2 + y^2$ and xy are known.
- 2°. Given $N = A'^2 3B'^2$: then b = B' = xy, and $(x^2 \sim y^2)^2 = N (xy)^2$, whereby $x^2 \sim y^2$ and xy are known.
 - 3°. Given $N = A^2 + 3B^2$: then x^2 or $y^2 = 2B$, or $(A \pm B)$.
- **4°.** Given N = $G^2 6xyH^2$, [Here G & xyH^2 are given, not H]. It may be shown that $(x^2 + xy + y^2)^2 = G^2 4xyH^2$, so that $(x^2 + xy + y^2)$ and $(x^2 + 3xy + y^2)$ are now known.
- 5°. Given $N = G'^2 + 6x'y'H'^2$, [Here G' and $x'y'H'^2$ are given, not H']. It may be shown that $(x'^2 x'y' + y'^2)^2 = G'^2 + 4x'y'H'^2$, so that $(x'^2 x'y' + y'^2)$ and $(x'^2 + 3x'y' + y'^2)$ are now known.

15. Duodecimans, (N_{xii}) . Every Duodeciman (N_{xii}) is algebraically expressible in one way in seven pure 2-ic forms of determinants D=-1, +2, -2, +3, -3, +6, -6; five of these forms are obtainable from the 2-ic forms of Sextans (N_{vi}) —(of which in fact 12-mans are merely special forms)—by writing x^2 , y^2 in place of x, y in the 2-ic forms of N_{vi} ; hereby the two impure 2-ic forms of N_{vi} become pure forms.

15a. Expression of given numbers (N) as Duodecimans. Here N must be of form $(24\varpi+1)$ and of all the above 2-ic forms. If N be given in any one of the above 2-ic forms, its 12-man elements (x, y) can be found in the same way as for Sextans (Art. 14a).

16. 2-ic forms of large factors (Q) of N_n . When a composite n-an (N_n) is a product of a single large factor (Q) by one, or more, small prime factors, $(q_1, q_2, \&c.)$, or powers thereof, then all these factors are capable of the same pure 2-ic forms as their product (N_n) itself (but see Art. 9). The 2-ic forms of N_n are given by the formulæ preceding (Arts. 10-15): the similar 2-ic forms of the small factors (q) can generally be found by trial, or taken from *Tables. The similar 2-ic forms of the large factor (Q) can then be found by the process of †conformal division, which is a direct and simple process.

Two Cases arise, one for 2-ic forms of -D, one for 2-ic forms of +D.

The detail given below is for a single small factor (q), so that $N_n = qQ$.

$$\begin{array}{c|c} Case \ 1^{\circ}. & Case \ 2^{\circ}. \\ N_n = T^2 + DU^2 \\ q = t^2 + Du^2 \\ \end{array} \}, \ (given). & q = t^2 - DU^2 \\ Q = X^2 + DY^2, \ (sought). & Q = X^2 - DY^2, \ (sought). \\ Then \ X = (tT \mp DuU) \div q \\ Y = (uT \pm tU) \div q \\ \end{array} \} \ \dots \ (31a) & X = (tT \mp DuU) \div q \\ Y = (uT \mp tU) \div q \\ \end{array} \} \ \dots \ (31b)$$
 [same signs in X, Y].

Here one, and only one, of the (\pm) signs in the brackets will give the required *integer* values of the sought X, Y.

If there be several small prime factors $q_1, q_2, \&c...q_r$ in N_n , so that $N_n = (q_1q_2...q_r) Q$, the same process may be used, but should be applied to only one factor $(q_1, q_2, \&c.)$ at a time, (in order to ensure success in the divisions). Thus, if

and so on, thus cancelling one factor at a time out of N_n . Proceeding in this way, integer values of (X_1, Y_1) , (X_2, Y_2) , &c., will be obtained at each step, (which would be otherwise uncertain).

^{*} The Tables of Quadratic Partitions, London, 1904, by the present author give all the 2-ic partitions likely to be wanted for this purpose.

[†] i.e. division with preservation of 2-ic form, see the present author's Paper on Connexion of Quadratic Forms in Proc. Lond. Math. Soc., Vol. 28, 1897, pages 295-301 (Arts. 15-23).

In Case 2° the forms (X^2-DY^2) resulting directly from the conformal are generally not *Base-forms*; so may require reduction to Base-form by multiplication by the "unit-form" $(\tau^2-Dv^2=+1)$, see Art. 7a, b.

As to the advisability of casting out only one factor (q) at a time in the above process, note that the product q_1q_2 has always two forms of every kind $(t^2 \pm Du^2)$. If both these forms be tried, integral values of X, Y will certainly result from one, (and only one) of them: but it is more trouble to effect the double trial that may be required (if the first trial fails) with the product forms of q_1q_2 than it is to do the work twice by casting out each prime separately.

Ex. Given
$$N_{xii} = \frac{15^{12} + 8^{12}}{15^4 + 8^4} = 241.98433601 = qQ.$$

Find the 2-ic partitions of the large factor Q which are similar to those of $N_{\rm xii}.\,$

The scheme below shows the values of (T, U) and (t, u) in the numerator and denominator of the fraction $(N_{xii} \div q)$ forming the first step of the work, and the result-form $(X^2 \pm DY^2)$ for each of the 2-ic forms worked out.

-D	$\frac{\mathrm{T}^2 + \mathrm{D}\mathrm{U}^2}{t^2 + \mathrm{D}u^2} = \mathrm{X}^2 + \mathrm{D}\mathrm{Y}^2$	+ D	$\frac{\mathrm{T}^2 - \mathrm{D}\mathrm{U}^2}{t^2 - \mathrm{D}u^2}$	$= X^2 - DY^2$
ī	$\frac{46529^2 + 14400^2}{15^2 + 4^2} = 3135^2 + 124^2$			
2	$\frac{40321^2 + 2.19320^2}{13^2 + 2.6^2} = 1213^2 + 2.2046^2$	2		$= 8901^2 - 2.5890^{2*}$ $= 3143^2 - 2.132^2$
3	$\frac{48577^2 + 3.2048^2}{7^2 + 3.8^2} = 1207^2 + 3.1672^2$	3	$\frac{54721^2 - 3.14400^2}{17^2 - 3.4^2} =$	$= 2.3011^{2} - 2879^{2}$ $= 4577^{2} - 3.1924^{2*}$ $= 3382^{2} - 3.729^{2}$
<u></u>	$\frac{11521^2 + 6.19320^2}{5^2 + 6.6^2} = 3125^2 + 6.114^2$	6	$\frac{97921^2 - 6.34680^2}{25^2 - 6.8^2}$	$= 17065^2 - 6.6848^{2*}$ $= 3149^2 - 6.110^2$
			-	$= 3.2929^2 - 2.2819^2$

Thus nine 2-ic forms of this large number (Q) have been quite easily worked out by help of its multiple $N_{\rm xii}$. To have done this otherwise by any direct process would have been exceedingly laborious.

^{*} These 3 forms are not Base-forms: their Base-forms follow just below them.

CHAP. II. Congruence-Tables.

This Chapter deals with the formation and use of Congruence-Tables.

17. Simple Congruences. Let y_n , y'_n ,—or more simply y, y',—be any solutions (< p or p^*) of the Simple Congruences—

$$y_n$$
 of $\phi(y^n-1)\equiv 0$, y_n' of $\phi(y^n+1)\equiv 0\pmod p$ or p^k) ... (33), where ϕ means "M.A.P.F. of "—(see Introduction, Art. 1).

[The symbol y or y' is generally used; the symbol y_n or y'_n —with the subscript n in Roman figures, (as y_{ii} , y_{iii} , &c.),—is used only when required to clearly specify the Index (n)].

Each such Congruence has the following *number* of independent (*i.e.* incongruous) solutions, all < the modulus (p or p^{κ}), viz.

Number of each of y, y' is $\tau(n)$, when $n = \omega$; and of y is $2\tau(n)$, when $n = \epsilon$. (33a),

and has as "general solutions"

$$Y = \lambda p \text{ or } \lambda p^{\kappa} + y, \quad Y' = \lambda p \text{ or } \lambda p^{\kappa} + y' \text{ (for every } y, y') \dots \text{ (33b)}.$$

The solutions (y, y') < p or p^* will be styled *Least Solutions*. For purposes of record in Tables it evidently suffices to record these Least Solutions.

In this Volume, and in its continuation in Vol. IV, are given the complete sets of $\tau(n)$, $2\tau(n)$ solutions (y, y') for the following Indexes n up to the high limits of p, p^{κ} shown below.

as more fully detailed in the "Tables of Contents" of Vols. I, IV.

[It will be seen—in the "Table of Contents" of Vol. I—that the solutions y'_{iii} of $(y^3+1)/(y+1) \equiv 0 \pmod{p}$ are actually given only up to the limit of $p \gg 10,000$: beyond that limit they have been *omitted* to save space in printing; they can be obtained $at \ sight$ from the printed y_{iii} , since

 $y'_{iji} = y_{iij} + 1 \ always...$ (33c).]

- 18. Construction of Simple Congruence-Tables. This consists of two very distinct Steps:—
 - Step I. Finding one root (y_1) of the Congruence.
 - Step II. Finding the rest of the roots $y_2, y_3, \dots y_r$ from y_1 .
- 18a. List of Congruence-Tables. These Tables occupy pages 1 to 97 of this Volume, and pages 1 to 160 of Vol. IV. For complete Lists of these Tables see the Tables of Contents at the beginning of each Volume.
- 18b. Computers (of Congruence-Tables). These were initiated by (the late) Mr. Chas. E. Bickmore: the computing was done in part by the author, but for the most part by *Assistants named below under his direct superintendence; they were checked throughout by one Assistant.
- 19. Step I. Finding one root (y_1) of the Congruence. Several Methods may be used according to the data available. These are:—

METHOD i. From known factorisations of n-ans (N_n, N'_n) .

- ,, ii. From known 2-ie, 4-tic, &c., partitions $(t^2 \mp nu^2, \&c.)$.
- ,, iii. By extracting a (modular) square root.
- ,, iv. From roots of lower orders $(\alpha, \beta, &c., factors of n)$.
- ,, v. From primitive and other roots (g, &c.).

[Note that p^{κ} may be substituted for p throughout Arts. 19 to 19-v.]

19a. Lemma. Reduction of fractions. As the value of y—as computed from the data—appears often in form of a fraction, (say $N \div D$), it is convenient to show here how to reduce this to an integer.

Given $y \equiv \mathbb{N} \div \mathbb{D} \pmod{p}$, then $y = (mp + \mathbb{N}) \div \mathbb{D} = \text{an integer} \dots (34)$,

by adding such a multiple (mp) of p as shall give (mp+N) exactly divisible by p.

[Here N, D stand for "numerator" and "denominator" of the fraction.]

^{*} The Misses A. Cole, E. Cooper, B. E. Haselden, and B. B. Haselden; checking by Miss C. M. Woodward,

19—i. METHOD i. From known factorisations of *n*-ans $(\mathbf{N}_n, \mathbf{N}'_n)$.

Given
$$N_n$$
 or $N'_n = M.A.P.F.$ of $(x^n \mp y^n) = p_1 p_2 \dots p_r$.

Hence arise at once two solutions (y_n) , viz.

 $y_n = \text{integer value of } y \div x, \text{ or of } x \div y \pmod{\text{each prime } p_r} \dots (35)$

of each of the Congruences

$$\phi(y^n \mp 1) = 0 \pmod{\text{each prime } p_r}$$
.

The simplest case is when x = 1; as then y_n is given (as an integer) at sight requiring no reduction.

19—ii. Method ii. From known 2-ic, 4-tic, &c., partitions $(t^2 \mp nu^2)$, &c., of p.

For
$$y_{ii}$$
. $p = a^2 + b^2$ gives $y_{ii} \equiv \pm a/b$, or $\pm b/a \pmod{p}$ (36).

For
$$y_{iv}$$
. $p = a^2 + b^2 = c^2 + 2d^2 = e^2 - 2f^2 = 2f'^2 - e'^2$.

Find y_{ii} as before, and write $y_{ii}\pm 1 = \lambda$.

Then
$$y_{iv} \equiv \text{any of } \pm \frac{\mathrm{d}}{\mathrm{c}} \lambda, \pm \frac{\mathrm{c}}{2\mathrm{d}} \lambda, \pm \frac{\mathrm{f}}{\mathrm{e}} \lambda, \pm \frac{\mathrm{e}}{2\mathrm{f}} \lambda, \pm \frac{\mathrm{f}'}{\mathrm{e}'} \lambda, \pm \frac{\mathrm{e}'}{2\mathrm{f}'} \lambda,$$

$$\pm \left(\frac{\mathrm{d}}{\mathrm{c}} \pm \frac{\mathrm{f}}{\mathrm{e}}\right), \ \pm \frac{1}{2} \left(\frac{\mathrm{c}}{\mathrm{d}} \pm \frac{\mathrm{e}}{\mathrm{f}}\right), \ \pm \left(\frac{\mathrm{d}}{\mathrm{c}} \pm \frac{\mathrm{f}'}{\mathrm{e}'}\right), \ \pm \frac{1}{2} \left(\frac{\mathrm{c}}{\mathrm{d}} \pm \frac{\mathrm{e}'}{\mathrm{f}'}\right) \pmod{p}$$
.......(37).

For y_{iii} , y'_{iii} . $p = A^2 + 3B^2$ gives

[The + pair are each y_{iii} ; the - pair are each y'_{iii} .]

For y_{viii} . One 8-tic partition or congruence along with one 2-tic or 4-tic partition or congruence.

Or—
$$(\alpha X^4)^2 + (\beta Y^4)^2 = p, \text{ or } \equiv 0 \pmod{p}$$
 with
$$\alpha t^4 \pm \beta u^4 = p, \text{ or } \equiv 0 \pmod{p}$$
 (39b).

Either pair of above data give
$$y_{\text{viii}} \equiv \pm \frac{Xu}{Yt}$$
, or $\pm \frac{Yt}{Xu} \pmod{p}$ (39).

[This Method is not of much use for finding y_{viii} , as the data required (39a, b) are difficult to form, and no Tables thereof exist.]

19—iii. Method iii. By extracting a (modular) square root, [n even].

Given
$$y_{(\frac{1}{2}n)}$$
; then $y_{(n)} \equiv \pm \sqrt{y_{(\frac{1}{2}n)}} \pmod{p}$.

Hence
$$y_n = \pm \text{rational value of } \sqrt{mp + y_{(\frac{1}{2}n)}}$$
 (40).

Here such a multiple (mp) of p is to be added to $y_{(4^n)}$ as will make $(mp + y_{(4^n)})$ a perfect square.

Hereby the roots y_{iv} , y_{viii} , y_{xvi} , &c.; y_{vi} , y_{xii} , y_{xxiv} , &c., may often be found from the known values of y_{ii} , y_{iv} , y_{viii} , &c.; y_{iii} , y_{vi} , y_{xii} , &c.

19—iv. Method iv. By multiplication of roots $y_{(a)}$, $y_{(\beta)}$, [n composite].

Given the roots $y_{(\alpha)}$, $y_{(\beta)}$ of the congruences

$$\phi(y^a \mp 1) \equiv 0, \quad \phi(y^\beta \mp 1) \equiv 0 \pmod{p},$$

with $n = \alpha \beta$ [α prime to β], or n = L.C.M. of α , β .

Thus—(in the present volume)—

$$y_{\text{vi}} \equiv \pm y_{\text{ii}} y_{\text{iii}}, \text{ or } \pm y_{\text{ii}} y_{\text{iii}}' \pmod{p}.$$
 (41a).

$$y_{\text{xxiv}} \equiv \pm y_{\text{viii}} y_{\text{iii}}$$
, or $\pm y_{\text{viii}} y_{\text{iii}}'$, or $\pm y_{\text{viii}} y_{\text{vi}}$, or $\pm y_{\text{viii}} y_{\text{xii}}$ (mod p) (41c).

[This Method is of great use in finding $y_{(n)}$ from its known components $y_{(\alpha)}, y_{(\beta)}$.]

19—v. METHOD v. From primitive roots (g), &c.

Let g be a primitive root of $p = \lambda \cdot n + 1$.

To find a root $y_{(n)}$ of $\phi(y^n \mp 1) \equiv 0 \pmod{p}$,

take $y, y' = \text{Least Residues of } g^{\lambda}, g^{\frac{1}{2}\lambda} \pmod{p}.$

Hereby
$$y^n \equiv +1$$
 and ${y'}^n \equiv -1 \pmod{p}$, as required ... (42).

Instead of a primitive root (g), any Base Y whose Haupt-exponent $\xi = \lambda n$ may be used: this gives, as before,

$$y = \text{Least Residue of Y}^{\lambda} \text{ or Y}^{\frac{1}{2}\lambda} \pmod{p}$$
 (42a).

[The use of such a Base (Y) involves much less numerical computation (for finding y) than the use of a primitive root.]

20. Step II. Computing the set of $\tau(n)$ or $2\tau(n)$ roots (y) from one known root (y_1) .

Let y_1 be the known root, and y_{ρ} any sought root (< p or p^{κ}).

Then $y_{\rho} = \text{Least Residue of } y_1^{\rho} \pmod{p \text{ or } p^{\kappa}},$

[where ρ is prime to n] (43),

and the whole set of $\tau(n)$ or $2\tau(n)$ incongruous roots is found by assigning to ρ each of $\tau(n)-1$ or $2\tau(n)-1$ values all prime to n.

- **21.** Properties of roots (y). There are certain important properties of the sums and products of the Least Roots (y, y') of same order, which are useful, some for shortening the work of finding complete sets of roots, and some as Tests of the roots.
- **21a.** Sums of roots. Let the roots (y, y') be arranged in order of magnitude, and re-numbered

$$y_1, y_2, y_3, \ldots y_r; y'_1, y'_2, y'_3, \ldots y'_r.$$

(1). When $n = \omega$, $r = \tau(n)$.

$$y_1 + y_r' = y_2 + y_{r-1}' = \dots = y_{r-1} + y_2' = y_r + y_1' = p \dots$$
 (44).

$$\Sigma(y) \equiv -1, \ \Sigma(y') \equiv +1 \pmod{p}, \text{ if } n \text{ is prime } \dots (44a);$$

$$\Sigma(y) \equiv \Sigma(y') \equiv 0 \pmod{p}$$
 if $n = \alpha^{\kappa}$, $[\alpha \text{ prime}] \dots (44b)$;

$$\Sigma(y) \equiv +1$$
, $\Sigma(y') \equiv -1 \pmod{p}$, if $n = \alpha\beta$, $[\alpha, \beta \text{ primes}]$ (44c).

If
$$Y = \Sigma(y), [y < \frac{1}{2}p], Y' = \Sigma(y'), [y' < \frac{1}{2}p],$$

then $Y-Y'\equiv -1 \pmod{p}$, if n is prime (45a);

$$Y - Y' \equiv -1 \pmod{p}$$
, if n is prime (45a);
 $Y - Y' \equiv 0 \pmod{p}$, if $n = \alpha^{\kappa} [\alpha \text{ prime}]$ (45b);

$$Y - Y' \equiv +1 \pmod{p}$$
, if $n = \alpha\beta$ [α , β primes]... (45c).

(2). When $n = \epsilon$, $r = 2\tau(n)$.

$$y_1 + y_r = y_2 + y_{r-1} = \dots = y_{\frac{1}{2}r-1} + y_{\frac{1}{2}r+1} = p \quad \dots$$
 (46).

[All the above Results hold for p^{κ} as well as for p.]

Properties (44), (46) are useful for reducing by one-half the labour of computing complete sets of roots: for when one-half of the full number (r) of roots has been computed, the rest can be obtained by simple subtraction from p.

Properties (44a, b, c), (45a, b, c), are useful as *Tests* of the correctness of the set of roots.

21b. Products of roots. Let ρ , σ be two numbers $(\rho \neq \sigma)$ prime to n.

Then y_{ρ} , y_{σ} ; y'_{ρ} , y'_{σ} , are the Least Residues of y_1^{ρ} , y_1^{σ} ; $y_1'^{\rho}$, $y_1'^{\sigma}$ (mod p).

Now take ρ , σ such that $\rho + \sigma = n$ or kn, $[k = \omega]$.

Then
$$y_{\rho} y_{\sigma} \equiv +1, \ y'_{\rho} y'_{\sigma} \equiv +1 \pmod{p}, \ \text{if } n = \omega$$
 (47a); $y_{\rho} y_{\sigma} \equiv -1 \pmod{p}, \ \text{if } n = \epsilon$ (47b).

These properties are useful as Tests of the correctness of a set of roots; [they apply to p^{κ} as well as to p].

21c. Table of roots (y_{ρ}) . The Table below shows the indices (ρ) of the roots $y_{\rho} \equiv y^{\rho} \pmod{p}$ by which the complete sets of roots in this Volume may be computed by formula (43). Only one-half the full number—as shown by the bar (|) are really required. See the Note at foot of Art. 21a.

n	y	Roots.	Index (ρ) of $y_{\rho} \equiv y^{\rho} \pmod{p}$ or p^{κ}).	Tests by (47a, b).
2	$y_{ m ii}$	2	1 3;	$y_1^2 \equiv -1$, &c.
4	yiv	4	1,315,7;	$y_1 y_3 \equiv -1, \&c.$
8	$y_{ m viii}$	8	1, 3, 5, 7 9, 11, 13, 15;	$y_1 y_7 \equiv -1, \&c.$
16	y_{xvi}	16	1, 3, 5, 7, 9, 11, 13, 15 17, &c., 31;	$y_1 y_{15} \equiv -1, \&c.$
2 ^κ	$y_{(n)}$	n		$y_1 y_{n-1} \equiv -1, \&c.$
			$(n-1) \mid (n+1), \&c., (2n-1);$	
- 3	$y_{\rm iii}$	2	I 2;	$y_1 y_2 \equiv +1, \&c.$
3	y'_{iii}	2	1 5;	$y_1'y_5' \equiv +1, \&c.$
6	y_{vi}	4	1,517,11;	$y_1 y_5 \equiv -1, \&c.$
12	y_{xii}	8	1, 5, 7, 11 13, 17, 19, 23;	$y_1y_{11}\equiv -1, \&c.$
24	y_{xxiv}	16	1, 5, 7, 11, 13, 17, 19, 23 25, &c.,;	
3.2^{κ}	$y_{(n)}$	$\frac{2}{3}n$		$y_1 y_{n-1} \equiv -1, \&c.$
			$(n-1) (n+1), &c., (2n-1);$	

22. General Congruences. Let (X, Y), (X', Y') be a pair of associate roots (of the general form of Congruence

$$\phi(X^n-Y^n)\equiv 0$$
, or $\phi(X'^n+Y'^n)\equiv 0\pmod p$ or p^k) (48),

and let y, y' be roots (< p, p') of the Simple Congruence

$$\phi(y^n-1) \equiv 0, \ \phi(y'^n+1) \equiv 0 \ (\text{mod } p \text{ or } p^k);$$

then the roots Y, Y' associate with a given X or X' may be found at once from the roots y, y'—(supposed known)—from the simple relation

Y or Y' = Least Residue of Xy, X'y' (mod p or p^{κ}) (48a), and the *number* of such incongruous roots (Y or Y') associate with the same X or X' is evidently

number = $\tau(n)$ if $n = \omega$; or = $\tau(2n) = 2\tau(n)$ if $n = \epsilon$... (48b), and the general form of such roots is

$$Y = mp \text{ or } mp^{\kappa} + Xy, \quad Y' = mp \text{ or } mp^{\kappa} + X'y' \dots (48c).$$

When one root Y or Y' has been found as above, the rest of the complete set of incongruous roots ()—for that same value of X, X' kept constant throughout—may also be found—if desired—by the same Rules as used in Art. 20 for finding the complete set of <math>y, y'.

[It would be obviously impracticable to form Tables of the complete sets of roots of such Congruences, as each value of X, X' would require Tables of same size as when X=1.]

[Some Congruence Tables of the general type

$$x_1^n + x_2^n \equiv 0 \pmod{p \gg 1,000}$$

will be found on pages 140-160 of Vol. IV. Explanation will be given in that Volume.]

23. Restricted General Congruence. Using a restricted form of General Congruence

$$\phi(x^n - y^n) \equiv 0, \quad \phi(x^n + y'^n) \equiv 0 \pmod{p \text{ or } p^k} \dots (49),$$

wherein y, y' are restricted to being roots of the Simple Congruences,

$$\phi(y^n-1) \equiv 0, \quad \phi(y'^n+1) \equiv 0 \pmod{p \text{ or } p^{\kappa}} \dots (49a).$$

then the whole set of roots x, x' associate with y, y' in (49) may be taken at sight from the Tables of the Simple Congruences (49a). For it is easily seen that—

When
$$n = \omega$$

$$\begin{cases}
\text{If } (y_{\rho}, y_{\sigma}), \ (y'_{\rho}, y'_{\sigma}) \text{ be any two roots of the above } Simple \ Congruences (49a), \text{ then} \\
\phi(y_{\rho}^{n} - y_{\sigma}^{n}) \equiv 0, \quad \phi(y_{\rho}^{m} - y_{\sigma}^{m}) \equiv 0 \pmod{p \text{ or } p^{\kappa}} \dots (50a); \\
\phi(y_{\rho}^{n} + y_{\sigma}^{m}) \equiv 0, \quad \phi(y_{\rho}^{m} + y_{\sigma}^{n}) \equiv 0 \pmod{p \text{ or } p^{\kappa}} \dots (50b).
\end{cases}$$
[Here $y_{\rho}, y_{\sigma} \text{ may } \equiv 1; \quad y'_{\rho}, y'_{\sigma} \text{ may } = p-1.$]

The following Table shows the roots x, x' associated with y, y' in the restricted General Congruences (50a, b, c) occurring in this Volume.

n	Roots $y_{(n)}$, $y'_{(n)}$.	Associate roots $x_{(n)}, x'_{(n)}$.
2	Any y_{ii}	1, (p-1)
4	Any y_{iv}	1, Any y_{ii} , $(p-1)$
8	Any $y_{ m viii}$	1, Any y_{ii} , y_{iv} , $(p-1)$
16	Any y_{xvi}	1, Any y_{ii} , y_{iv} , y_{viii} , $(p-1)$
2^{κ}	Any $y_{(n)}$	1, Any y_{ii} , y_{iv} , y_{viii} , &c.,, $y_{(\frac{1}{2}n)}$, $(p-1)$
3	Any $y_{ m iii}$	1, Any $y_{ m iii}$
	Any $y_{ m iii}^{\prime}$	Any y'_{iii} , $(p-1)$
3	Any $y'_{ m iii}$	Any y_{iii} , $(p-1)$
6	Any $y_{ m vi}$	1, Any y_{iii} , y'_{iii} , $(p-1)$
12	Any $y_{ m xii}$	1, Any $y_{\text{iii}}, y'_{\text{iii}}, y_{\text{vi}}, (p-1)$
24	Any $y_{\mathrm{x}_{\lambda}\mathrm{i}\mathrm{v}}$	1, Any y_{iii} , y'_{iii} , y_{vi} , y_{xii} , $(p-1)$
3.2 ^k	Any $y_{(n)}$	1, Any y_{iii} , y'_{iii} , y_{vi} , y_{xii} , &c.,, $y_{(\frac{1}{2}n)}$, $(p-1)$

24. Use of Congruence-Tables. The chief (practical) use of Congruence-Tables is for giving divisors (p, p^{κ}) of large n-ans (N_n, N'_n) . It is in fact obvious that

p or p^{κ} is a divisor of N_n or N'_n if N_n or $N'_n \equiv 0 \pmod{p}$ or p^{κ})...(51); this latter result being shown by the roots $y_{(n)}, y'_{(n)}$ in the Tables.

[The great extent of the Congruence-Tables in the several volumes of this Work (up to p and $p^{\kappa} \geqslant 100,000$ for all values of $n \geqslant 15$, and up to 10,000 for many values of $n \geqslant 50$) enables the factorisation of n-ans $(\mathbf{N}_n, \mathbf{N}_n')$ of those degrees to be carried to very high limits.

The roots (y, y') in these Tables are arranged in order of magnitude: this enables the search for values of y, y' giving rise to N_n or N' divisible by each prime (p) to be rapidly made.]

CHAP. III. Factorisation of Binomials.

25. By Factor-Tables. A certain amount of factorisation may be effected by use of the large *Factor-Tables—(which give the least prime-factor (p) of all numbers not divisible by 2, 3, 5)—up to the limit 10017000. But, in the case of n-ans (N_n, N'_n) this use is very limited—except for the cases of n = 2, 3—as will be seen in the scheme below, which gives the upper limit of the root y_n in the Simple n-ans of this Volume possible with these Tables—(in the line marked F).

The limit of the larger root (x_n) in the Non-Simple n-ans $\phi(x^n \mp y^n)$ is about the same, or a little lower.

Ĩ						N_{iii} , $\frac{1}{3}N_{iii}$		
ı	(F). y ≯	3163, 4474	56, 66	7 , 8	2 , 2	3164, 5481	56 7	2
	(C). $y \gg $	105, 141425	177, 211	13 , 14	2 , 3	105, 173205	177 13	2

25a. By Congruence-Tables. By the use of the Simple Congruence-Tables in this Volume and in Vol. IV, (described in Chap. II) the factorisation of Simple n-ans $\phi(y^n \mp 1)$ can always be carried up to the high limits of the root y shown in the line marked C in the scheme above.

But factorisation of these n-ans can also be carried to very much higher limits whenever factors p or $p^{\kappa} <$ the limit $(p \text{ and } p^{\kappa} > 10^5)$ of the Congruence-Tables exist. [This has been very largely done in the Factorisation-Tables in this Volume.]

Factorisation of the Restricted Non-Simple n-ans $\phi(x^n \mp y^n)$, wherein the root y is one of those occurring in the Simple Congruence Tables, can also be effected up to about the same limits of $x_{(n)}$ as those of $y_{(n)}$ in the Simple n-ans $\phi(y^n \mp 1)$ by the method described in Art. 23.

^{*} Factor-Table for the first ten millions, by D. N. Lehmer, Washington 1909.

- **25b.** General n-ans. For want of suitable Congruence-Tables the factorisation of General n-ans ϕ ($X^n = Y^n$) cannot in general be effected with certainty beyond the limits of the large Factor-Tables.
- 25c. Factorisation-Tables, General Symbolism. Before referring to the Factorisation-Tables in this Volume the reader should refer to the "Explanation" (page 97) of the symbolism and notation used throughout.
- 26. Duan and Cuban Factorisations. The author has had extensive Factorisation-Tables* prepared of the Simple Duans $N_{ii} = (y^2 + 1)$ and Simple Cubans N_{iii} and $N'_{iii} = (y^3 \mp 1) \div (y \mp 1)$ continuous up to the high limit of $y \gg 15000$. These are so extensive that they are not produced here.

26a. Extensive List of Primes.

A complete List of the roots (y) of all the *primes* (p) found in those Tables of the forms named below is given on pages 237-252, up to the limit $y \ge 15000$. The *number* of primes of each form within that limit of y is subjoined.

$$p = \begin{bmatrix} N_{ii} & , & \frac{1}{2}N_{ii} & , & \frac{1}{10}N_{ii} & , & \frac{1}{13}N_{ii} & , & \frac{1}{17}N_{ii} \\ Number & 1199 & , & 1288 & , & 794 & , & 763 & , & 251 & , & 7185 \end{bmatrix}$$

$$p = \begin{bmatrix} N_{iii} & , & \frac{1}{3}N_{iii} & , & \frac{1}{7}N_{iii} & , & \frac{1}{13}N_{iii} & , & \frac{1}{19}N_{iii} & , & \frac{1}{21}N_{iii} \\ Number & 1998 & , & 1511 & , & 770 & , & 399 & , & 269 & , & 413 \end{bmatrix}$$

A few selected types of High Duan and Cuban Factorisation only (as stated in Art. 26a, b) are given, which are of some interest in themselves, and also show the power of the auxiliary Tables.

26b. High Duan Factorisations.

page 99; High Irreducible Duans.

$$N_{ii} = (x^{\alpha})^2 + (y^{\beta})^2 > 9.10^8$$
; [x and y > 11].

pages 100-102; High Associate Duans.

$$N_1 = Y_1^2 + 1$$
, $N = Y^4 + 4$, $N_2 = Y_2^2 + 1$.

 $Y_1 = y^2 - y + 1$; $y = \eta$ on p. 100, $= 2^{\alpha} \cdot \eta^{\beta}$ on pp. 101, 102; $Y_2 = y^2 + y + 1$. Note that $N_1, N, N_2 = YY', Y'Y'', Y''Y'$; and $N_1NN_2 = (YY'Y'')^2$.

^{*} As yet in MS.

26c. High Cuban Factorisations.

Page 150, (top); High Numbers, $N = Y^3 + 1 > 10^{19}$.

Page 150, (foot); High Irreducible Cubans, $N_1, N_2 > 9.10^6$.

 $N_1 = (x^3 - y^3) \div (x - y), \quad N_2 = (x^3 + y^3) \div (x + y); \quad x = \xi^{\alpha}, \quad y = \eta^{\beta}; \quad [\xi, \eta \gg 11].$

Page 151; High Irreducible (Simple) Cubans, $N_1, N_2 > 9.10^6$.

 $\mathbf{N}_1 = (y^3 - 1) \div (y - 1), \quad \mathbf{N}_2 = (y^3 + 1) \div (y + 1) \; ; \quad y = \xi^\alpha \cdot \eta^\beta, \quad [\xi, \, \eta \, \nearrow \, 11].$

26d. Pellian Factorisations. The successive solutions (y_r, x_r) of the Pellian Equation

 $y_r^2 - D.x_r^2 = -1$

lead to interesting High Factorisable Duans. For the above gives

 $N_{ii} = y_r^2 + 1 = D.x_{\tilde{x}}^2$

The interesting point about these is that the large factor of the Duan N_{ii} is a perfect square (x_r^2) , an unusual feature.

Examples: pages 106-109.

27. Factorisations of n-ans, $(n \le 4)$. Extensive Tables of these important Factorisations will be found on the pages shown in the scheme below: the factorisations have been carried to the high limits of x, y shown.

Γ	S	imple n	ı-ans.		Non	-siı	npl	e <i>n-</i> ans.	
n	$N_{n-\beta} y$ -limit		Pages	N_n	$\begin{array}{c c} \text{Limits} \\ x, y \end{array}$			Pages	
4	$y^4 + 1$	1000	113–115, 119	$x^4 + y^4$	63	21	56	120–122, 125,	220
,,	$\frac{1}{2}(y^4+1)$	1001	116–119	$\frac{1}{2}(x^4+y^4)$	61	,	53	123–125,	220
,,				$x^4 + y^4$	$2^{10}, 3^4,$		11 ²	126	
8	0	200	140	$x^8 + y^8$	25	,	32	142	
,,	$\frac{1}{2}(y^8+1)$	199	141	$\frac{1}{2}\left(x^{8}+y^{8}\right)$	25	,	19	143	
16	$y^{16} + 1$	32	143	$x^{16} + y^{16}$	ΙI	,	4	143	
6	$\frac{y^6+1}{y^2+1}$	1001	157–163	$\frac{x^6 + y^6}{x^2 + y^2}$	57	,	60	164–170,	220
				,,	102	,	112	170	
				,,	39	,	211	171	
12	$\frac{y^{12}+1}{y^4+1}$	200	215, 216	$\frac{x^{12} + y^{12}}{x^4 + y^4}$	19	,	20	217	
24	$\frac{y^{24}+1}{y^8+1}$	33	217						

- 27a. Tables of Primes (from above). Complete Tables are given on the pages named in the scheme below of the primes of the forms stated found in preparing the above Factorisation-Tables. The primes are of three kinds:—
 - 1°. General n-an primes $\phi(x^n + y^n)$. Including all up to 10°.
 - 2°. High Simple n-an Primes $\phi(y^n+1)$. Including all from 10^8 to 10^{10} .
 - 3°. High prime factors in Simple n-ans. From 10^8 to 10^{10} .

	7	ı-ans.		High Simple n-ans.			
$p = { m Pages}$ Number Limits of p	253, 255 25 240	54, 255 256, 172 36	257 255, 50 3	281 255, s	$(y^{6} + 1)$, $(y^{6} + 1)$ $(y^{2} + 1)$ $(y^{$		
	High Pi	rime Factor	rs in Simpl	le <i>n</i> -ans.			
p =	Aurif. Fac. in N _{vi} ,		In $\frac{1}{2}(y^4+1)$,	$ \ln \frac{y^6 + 1}{y^2 + 1} $			
Pages	286	282, 283	284, 285	287, 288			
	69 174						
Limits of p	108 to 1010	108 to 1010	108 to 1010	108 to 1010			

27b. Authorities for High Primes. The names—so far as known to the present author—of the original authorities for the High Primes tabulated in this Volume are indicated in the Tables by the capital initials placed on extreme left, or extreme right, of the numbers according to the following scheme.

В;	Bernoulli, Jean.	J;	Jenkins, M.
В;	Bickmore, Chas. E.	Ll;	Lelasseur.
Bd;	Biddle, D., Dr.	Lo;	Looff, Dr.
Cl;	Cullen, J., S.J.	Lu;	Lucas, Ed.
D;	Desmarest, E.	Pp;	Pépin, Th., Père.
Ε;	Euler, Leon.	\mathbb{R} ;	Reuschle, C. G., Dr.

The present author's name is not indicated in these Tables: but, it should be clear from Chap. II that, all primes $> 10^{10}$ occurring in Simple n-ans, i.e. in $\phi(y^n \mp 1)$, are shown by the new Congruence Tables now published: most of the other High Primes are also either due to him, or are now confirmed by him.

27c. Computers (of Factorisations). These were done in part by the author himself; but for the most by the Assistants named below, under his direct superintendence, usually in original by one, and checked by another.

Duans and Cubans: Misses B. E. Haselden and B. B. Haselden.

Simple n-ans: Misses A. Cole, E. Cooper, A. L. Woodward, and Mr. R. F. Woodward.

Non-simple n-ans: Misses E. Cooper and A. L. Woodward.

[The Simple 4-tans and 6-tans were worked (as far as y = 100) by the late Chas. E. Bickmore and the Author jointly.]

28. Trinomial Quartans and Half-Quartans. These require separate development. In both cases x', y' will be written instead of x, y in the usual Quartan and Half-Quartan forms $(N_{iv} \text{ and } \frac{1}{2}N'_{iv})$.

Quartans. Write

$$x' = \frac{1}{2}(x-y), \ y' = \frac{1}{2}(x+y); \ x = y' + x', \ y = y' - x' \dots$$
 (51),

where x, y are both odd; x', y' are one odd, one even,

giving
$$N_{iv} = x'^4 + y'^4 = \frac{1}{8}(x^4 + 6x^2y^2 + y^4)$$
 (52)

$$= \left\{ \left(\frac{x-y}{2} \right)^2 \right\}^2 + \left\{ \left(\frac{x+y}{2} \right)^2 \right\}^2 \dots (52a)$$

$$= (xy)^{2} + 2\left(\frac{x^{2} - y^{2}}{4}\right)^{2} \dots (52b).$$

Half-Quartans. Write

$$x' = x - y$$
, $y' = x + y$; $x = \frac{1}{2}(y' + x')$, $y = \frac{1}{2}(y' - x')$... (51')

where x', y' are both odd; x, y are one odd, one even,

giving
$$\frac{1}{2}N_{iv} = \frac{1}{2}(x'^4 + y'^4) = x^4 + 6x^2y^2 + y^4 \dots (52')$$

$$= (x^2 + y^2)^2 + (2xy)^2 \quad \dots (52a')$$

$$= (x^2 - y^2)^2 + 2(2xy)^2 \dots (52b').$$

The above give the trinomial forms of Quartans and Half-Quartans, and the (a, b), (c, d) 2-ic partitions of the same.

28a. Simple Power-Forms of above.

Taking
$$x' = y^n - 1$$
, $y' = y^n + 1$, gives $y' - x' = 2$, in above (53),

1°.
$$y = \omega$$
 gives $H_n = \frac{1}{16} N_{iv} = \frac{1}{16} (x'^4 + y'^4) = \frac{1}{8} (y^{4n} + 6y^{2n} + 1) \dots$ (53a),

2°.
$$y = \epsilon$$
 gives $H_n = \frac{1}{2}N_{iv} = \frac{1}{2}(x^{i4} + y^{i4}) = (y^{4n} + 6y^{2n} + 1)$ (53b).

Ex. See page 133. The Table (at foot) gives the factorisation of H_n for y = 6, 10, 12, when n = 1, 2, 3.

Note that
$$y = 6$$
 gives $H_n = 6^{4n} + 6^{2n+1} + 1$ (54a).

Again, taking $x' = 2^{\frac{1}{2}n} - 1$, $y' = 2^{\frac{1}{2}n} + 1$, giving $x = 2^{\frac{1}{2}n}$, $\frac{1}{2}(y' - x') = 1$ in above, gives $H_n = \frac{1}{2}(x'^4 + y'^4) = 2^{2n} + 6 \cdot 2^n + 1 \cdot \dots (54b)$. Here H_n are real Half-Quartans when $n = \epsilon$,

 H_n may be styled *Quasi Half-Quartans* when $n = \omega$, as they have the same linear and 2-ic forms as when $n = \epsilon$.

When $n = \omega$,

$$\mathbf{H}_{n} = (2^{n} - 1)^{2} + (2^{\frac{1}{2}(n+3)})^{2} = (2^{n} + 1)^{2} + 2(2^{\frac{1}{2}(n+1)})^{2} = (2^{n} + 3)^{2} - 2 \cdot 2^{2} \dots (54c).$$
When $n = \epsilon$,

$$\mathbf{H}_n = (2^n + 1)^2 + (2^{\frac{1}{2}n+1})^2 = (2^n - 1)^2 + 2(2^{\frac{1}{2}n+1})^2 = (2^n + 3)^2 - 2 \cdot 2^2 \dots (54d).$$

Ex. (Page 130.) The top Table gives the factorisation of H_n up to n=17. The Table at foot gives all the prime divisors (p) of H_n up to p=1,361, with the exponents (n) possible to each divisor (p). The middle Tables are auxiliary Tables for finding the exponents (n) for each p.

- **29.** Trinomial Sextans. Writing x', y' instead of x, y in the usual Sextan formula, and using one, or other, of the substitutions (1°, 2°)—
- 1°. $x' = \frac{1}{2}(x \sim y)$, $y' = \frac{1}{2}(x + y)$, giving x = y' + x', y = y' x'... (55a), where x, y are both odd, and x'. y' are one odd, one even.
- 2°. $x' = x \sim y$, y' = x + y, giving $x = \frac{1}{2}(y' + x')$, $y = \frac{1}{2}(y' x')$... (55b), where x', y' are both odd; and x, y are one odd, one even.

Then $H = \mu$. $N_{vi} = \mu (x'^6 + y'^6) \div (x'^2 + y'^2) = \mu_* (x^4 + 14x^2y^2 + y^4)$... (56), where $\mu = 1$ when x', y' are both odd; $\mu = \frac{1}{16}$ when x, y are both odd (56'),

and H has the three 2-ic forms

$$= \mu \left\{ 7x^2 + y^2 \right\}^2 - 3 \left(4x^2 \right)^2 \right\} \dots (57d).$$

29a. Trinomial Sextan Power-Forms. In the above write

$$x' = \lambda (y^n - 1), \quad y' = \lambda (y^n + 1), \quad \text{giving} \quad x = \frac{1}{2}(x' + y') = \lambda y^n, \quad \frac{1}{2}(y' - x') = \lambda \dots$$
 (58).

Then
$$H_n = \mu . N_{vi} = \mu (x'^6 + y'^6) \div (x'^2 + y'^2) = \mu (y^{4n} + 14y^{2n} + 1) \dots$$
 (59), where $\lambda = 1, \mu = 1$, when $y = \epsilon$; $\lambda = \frac{1}{2}, \mu = \frac{1}{16}$, when $y = \omega \dots$ (59a), with the three 2-ic forms

$$\mathbf{H}_{n} = \mu \left\{ (y^{2n} - 1)^{2} + (4y^{n})^{2} \right\} = \mu \left\{ (y^{2n} + 1)^{2} + 3(2y^{n})^{2} \right\} = \mu (y^{2n} + 7)^{2} - 3.4^{2}$$
.......(60)

Ex. (Page 205.) The upper Table gives the factorisation of H_n when y=2, 3, 5, 6, 7, 10, 14 for various values of n. The lower Table gives the divisors (p) of H_n for y=2, 3 up to p=601, and the exponents (n) possible to each divisor (p).

Note that, when y = 14,

$$H_n = 14^{4n} + 14^{2n+1} + 1$$
 (61)

CHAP. IV. Chains.

30. Chains. A series of similarly formed composite numbers (N), viz.

$$N_1 = L_1 M_1, \quad N_2 = L_2 M_2, \quad ..., \quad N_r = L_r M_r \quad$$
 (62)

is said to be a Chain when

$$M_{r-1} = L_r$$
, $M_r = L_{r+1}$, ..., for all values of r (63),

and N_r , N_{r+1} , &c., are said to be Links in the Chain; and L_r , M_r are termed Link-Factors.

The necessary and sufficient conditions for a Chain of n-ans (N_r) are—

 x_r/y_r and x_{r+1}/y_{r+1} should be a pair of associate roots of the Congruence $\phi(x^n \mp y^n) \equiv 0 \pmod{M_r = L_{r+1}}$ at each step (64).

30a. In the case of Simple *n*-ans N_n —[wherein x = 1]—which depend on Simple Congruences, the property $y_{\rho}y_{\sigma} = \pm 1$ of Art. 21b, show that the roots y_r , y_{r+1} of successive Links N_r , N_{r+1} , or N'_r , N'_{r+1} , may be selected by the relation

$$y_r y_{r+1} \equiv +1 \pmod{M_r = L_{r+1}}, \text{ for } N_r, N_{r+1}, [n = \omega] \dots (64a),$$

$$y'_r y'_{r+1} \equiv +1 \pmod{M'_r} = L'_{r+1}, \text{ for } N'_r, N'_{r+1}, [n=\omega] \dots (64b],$$

$$y_r y_{r+1} \equiv -1 \pmod{M_r = L_{r+1}}, \text{ for } N_r, N_{r+1}, [n = \epsilon] \dots (64c);$$

The *n*-ans considered in this Volume afford many examples, as will appear later.

31. Properties of Chains. The most salient properties are

$$(N_2N_4N_6...N_{2r}) \div (N_1N_3N_5...N_{2r-1}) = M_{2r} \div L_1....$$
 (65b).

$$N_1 N_2 N_3 ... N_r = L_1 (L_2 L_3 ... L_r)^2 M_r = L_1 (M_1 M_2 ... M_{r-1})^2 M_r ...$$
 (65c),

32. Simple Chains. Some of the most interesting Chains are those in which

$$x_r$$
, or y_r , or $x_r - y_r = x_0$, or y_0 , or $x_0 - y_0$, a constant (66).

These may be styled x-Chains, y-Chains, (x-y)-Chains respectively.

In the case of Simple *n*-ans, wherein $x_0 = 1$, the formulæ (64a, b) give

$$M_{r-1} = y_{r-1}y_r - 1 = L_r, M_r = y_r y_{r+1} - 1 = L_{r+1}, [n = \omega] \dots (67a),$$

$$\mathbf{M}_{r-1} = y'_{r-1}y'_r - 1 = \mathbf{L}_r, \quad \mathbf{M}_r = y_r y_{r+1} - 1 = \mathbf{L}_{r+1}, \quad [n = \omega] \dots (67b),$$

$$M_{r-1} = y_{r-1}y_r + 1 = L_r$$
, $M_r = y_r y_{r+1} + 1 = L_{r+1}$, $[n = \epsilon]$... (67c).

33a. Duan and Cuban Chains. Associate Duan and Cuban Chains may be formed as follows:—

Simple Duan Chains.

$$N_r = Y_r^2 + 1 = Y_r'^2 + 1 = L_r \cdot M_r \cdot \dots (68).$$

$$y_{r+1} = y_r + 1$$
, $y'_{r+1} = y'_r + 1$; $y'_r - y_r = 1$, $y_{r+1} = y'_r \dots$ (68a).

$$Y_r = y_r^2 + y_r + 1 = y_r'^2 - y_r' + 1 = Y_r' - \dots$$
 (68b).

Hence
$$N_r = Y_r^2 + 1 = (y_r^2 + y_r + 1)^2 + 1 = (y_r^2 + 1)(y_r^2 + 2y_r + 2) = L_r \cdot M_r$$
 (68c),

whence
$$M_r = (y_r + 1)^2 + 1 = y_{r+1}^2 + 1 = L_{r+1}$$
 (68d);

showing that N₁, N₂, N₃, &c., is a Chain-Series.

33b. Simple Cuban Chains.

$$N_r = (Y_r^3 - 1) \div (Y_r - 1) = Y_r' \cdot Y_r'' \dots (69).$$

$$y'_r - 1 = y = y''_r + 1;$$
 $y_{r+1} = y_r + 1,$ $y'_{r+1} = y'_r + 1 \dots$ (69a).

$$\mathbf{Y}_r = y_r^2$$
; $\mathbf{Y}_r' = y_r^2 + y_r + 1 = y_r'^2 - y_r' + 1$; $\mathbf{Y}_r'' = y_r^2 - y_r + 1 = y_r'^2 + y_r' + 1$ (69b).

Here

$$N_r = \frac{y_r^3 - 1}{y_r - 1} \cdot \frac{y_r^3 + 1}{y_r + 1} = Y_r', Y_r''$$
 (69c).

Here

$$\mathbf{Y}_{r}^{\prime\prime} = y_{r}^{\prime 2} + y_{r}^{\prime} + 1 = y_{r+1}^{2} + y_{r} + 1 = \mathbf{Y}_{r+1}^{\prime}$$
 (69d),

showing that N₁, N₂, N₃, &c., is a Chain-Series.

33c. Ex. Examples of the above chains are given in the Tables.

Duan Chain at top of page 98; 13 Links, (N.).

Cuban Chain at top of page 149; 18 Links, (N.).

These Chains start of course from $y_1 = 1$. A few examples only are given in high numbers (N_r of 19 figures) to illustrate the power of the Congruence-Tables used in the factorisations,

f

34a. Simple Quartan Chains.

$$N_r = 1^4 + y_r^4 = L_r M_r...$$
 (70)

$$y_{r+1} = y_0^2 \cdot y_r - y_{r-1}, \quad \mathbf{L}_0 = 1, \quad \mathbf{M}_0 = 1 + y_0^4 = \mathbf{L}_1$$

 $\mathbf{M}_{r-1} = 1 + y_{r-1}y_r = \mathbf{L}_r, \quad \mathbf{M}_r = 1 + y_r y_{r+1} = \mathbf{L}_{r+1}$... (70a).

Examples. The upper Table on page 134 shows the elements r, x, y and the larger Chain-Factor (M_r) of the successive Links $(N_0, N_1, N_2, \&c.)$ of the Chains given by taking $y_0 = 2, 3, 4, ..., 10$ factorised up to very high numbers.

34b. Simple Sextan Chains.

$$N_r = 1^4 - 1^2$$
, $y_r^2 + y_r^4 = L_r M_r$ (71).

$$y_{r+1} = y_0^2, y_r - y_{r-1}, \quad \mathbf{L}_0 = 1, \quad \mathbf{M}_0 = 1 + y_0^4 = \mathbf{L}_1$$

 $\mathbf{M}_{r-1} = 1 + y_{r-1}y_r = \mathbf{L}_r, \quad \mathbf{M}_r = 1 + y_r y_{r+1} = \mathbf{L}_{r+1}$... (71a).

Examples. The Table on page 210 shows the elements r, x, y and the larger Chain-Factor (M_r) of the successive Links $(N_0, N_1, N_2, \&c.)$ of the Chains given by taking $y_0 = 2, 3, 4, ..., 11$ factorised up to very high numbers.

[Observe the formal identity of the 4-tan and 6-tan formulæ (Art. 34a, b).]

35. Pellian Chains. The successive solutions (τ'_r, ν'_r) , (τ_r, ν_r) of the Associated Pellian Equations

$$\tau'^2 - D \cdot v'^2 = -1, \quad \tau^2 - D \cdot v^2 = +1, \quad \text{with} \quad D = \alpha^2 + \beta^2 \dots$$
 (72),

give rise to Duan Chains $N_r = v_r^2 + v_1^{\prime 2}$ for every value of D when τ' , v' exist.

Here (τ_1', v_1') , (τ_1, v_1) may be represented by

$$\tau_{1}' = \frac{1}{2} (y^{\frac{1}{2}} - y^{-\frac{1}{2}}), \quad v_{1}' = \frac{1}{2\sqrt{D}} (y^{\frac{1}{2}} + y^{-\frac{1}{2}}); \quad \tau_{1} = \frac{1}{2} (y + y^{-1}), \quad v_{1} = \frac{1}{2\sqrt{D}} (y - y^{-1}); \quad \dots \dots (73),$$

for these satisfy the two Pellian Equations, and lead to all the well known mutual relations: they lead to

$$\tau_{2}^{\prime} = \frac{1}{2} \left(y^{\frac{3}{2}} - y^{-\frac{3}{2}} \right), \ v_{2}^{\prime} = \frac{1}{2 \sqrt{D}} \left(y^{\frac{3}{2}} + y^{-\frac{3}{2}} \right); \ \tau_{2} = \frac{1}{2} \left(y^{2} + y^{-2} \right), \ v_{2} = \frac{1}{2 \sqrt{D}} \left(y^{2} - y^{-2} \right)$$

and similarly for the r-th elements.

$$\tau'_{r} = \frac{1}{2} \left(y^{r - \frac{1}{2}} - y^{-r + \frac{1}{2}} \right), \quad \nu'_{r} = \frac{1}{2\sqrt{D}} \left(y^{-\frac{1}{2}} + y^{-r + \frac{1}{2}} \right) \\
\tau_{r} = \frac{1}{2} \left(y^{r} + y^{-r} \right), \qquad \nu_{r} = \frac{1}{2\sqrt{D}} \left(y^{r} - y^{-r} \right) \qquad (73b).$$

Hence
$$\begin{aligned} v_r^2 + {v_r'}^2 &= \left(y^{2r} + y^{-2r} + y + y^{-1}\right) \div 4\,\mathrm{D}, \\ \mathrm{and} & v_r' \cdot v_{r+1}' &= \left(y^{r-\frac{1}{2}} + y^{-r+\frac{1}{2}}\right) \left(y^{r+\frac{1}{2}} + y^{-r-\frac{1}{2}}\right) \div 4\,\mathrm{D} \\ &= \left(y^{2r} + y^{-2r} + y + y^{-1}\right) \div 4\,\mathrm{D}; \end{aligned}$$
 whence
$$\mathrm{N}_r = v_r^2 + v_1'^2 = v_r' \cdot v_{r+1}' \qquad \qquad (74a).$$
 Similarly
$$\mathrm{N}_{r+1} = v_{r+1}^2 + v_1'^2 = v_{r+1}' \cdot v_{r+2}' \qquad \qquad (74b).$$

Hence the series N₁, N₂, N₃ ... N_r is a Duan Chain.

The following Table gives several successive values of v', v given by D = 2, 5, 10, 13, 17 to serve as numerical examples of these Chains.

D	r =	=	1	2	3	4	5	6	7	8	9
2	v'. =	= ;	I	5	29	169	985	5741	33461	195025	1136689
	υ, =	=	2	I 2	70	408	2378	13860	80782	470832	&c.
5	υ' ₁ =	=	I	17	305	5473	98209	1762289	31622993		
Ĭ	υ, =	=	4	72	1292	23184	416020	7465176	&c.		100
10	v'' =	=	I	37	1405	53353	2026009				
	υ, =	=	6	228	8658	328776	&c.				
13	υ' _r =	=	5	6485	8417525	&c.					
20	v, =	= I	180	233640	&c.	&c.					
	v'r =	=	I	65	4289	283009					
17	υ _r =		8	528	34840	2298912					

35a. High Pellian Chains. The production of Chains from Pellian Equations leading to very high completely factorisable numbers has been developed in great detail in the author's Memoir quoted* below. One of the most interesting cases only is here given.

Take the series of Pellians

$$Y_r^2 - D_r. X_r^2 = -1, \quad \text{with} \quad D_{r+1} = X_r\,;$$
 and take
$$N_r = Y_r^2 + 1 = D_r. X_r^2 = X_{r-1}. X_r^2.$$

Hereby $N_{r+1} = X_r X_{r+1}^2$, $N_{r+2} = X_{r+1} X_{r+2}^2$,

Hence N_r , N_{r+1} , N_{r+2} , ... form a modified Chain; (successive Links N_r , N_{r+1} , containing the common factor X_r).

^{*} High Pellian Factorisations, published in Messenger of Mathes., Vol. 35, 1906.

Example. The Pellian series $\eta_r^2 - D\eta_r^2 = -1$, with $D = \eta_r^2 + 1$, has $\xi_r = 1$, and gives $\eta_2 = 4\eta_1^3 + 3$, $\xi_2 = 4\eta_1^2 + 1$.

Now take

 $D_r = y_r^2 + 1$, $D_{r+1} = (2y_r)^2 + 1 = X_r$, $y_{r+1} = 2y_r$, and $Y_r = 4y_r^3 + 3y_r$. The new series of $N_r = Y_r^2 + 1$ is a modified Chain of above kind.

Ex. The Tables on pages 111, 112 give the elements (r, η, α, D_r) of numerous Chains of this sort, wherein $y_r = 2^r \cdot \eta^{\alpha}$, $\eta = 3, 5, 7, 11$, completely factorisable up to very high limits.

36. Circular Chains. If a Chain of r Links $(N_1 \dots N_r)$, viz. $N_1 = L_1 M_1$, $N_2 = L_2 M_2$, $N_3 = L_3 M_3$, ..., $N_r = L_r M_r$... (75), be such that

 $M_1 = L_2$, $M_2 = L_3$, ..., $M_{r-1} = L_r$, and finally $M_r = L_1$... (75a), it is evident that the Chain—if continued—repeats itself in periods of r Links, and is such that, if the r Links be placed at equal distances $2\pi R \div r$ round a circle of radius R, the Chain will be seen to be endless—(since $M_r = L_1$), and the Links might be re-numbered, any chosen Link being marked N_1 .

The salient property of such a Chain is

$$N_1 N_2 N_3 ... N_r = (L_1 L_2 L_3 ... L_r)^2 = (M_1 M_2 M_3 ... M_r)^2 ... (75b),$$

and it is evident that there must be at least 3 Links in such a Chain; (for a Chain of only 2 Links involves $N_1 = N_2$).

36a. Circular Chains of 2-ic Forms. Circular Chains in which all the Links (N_r) are of same binomial 2-ic form

$$N_r = T_r^2 \mp D.U_r^2 = L_r.M_r$$

are easily formed.

Take r different numbers $M_1, M_2, ... M_r$ of that 2-ic form, say $M_r = t_r^2 \mp Du_r^2$, and write $M_1 = L_2, M_2 = L_3, ... M_{r-1} = L_r$, and finally $M_r = L_1$, and form the products $N_1 = L_1 M_1$, $N_2 = L_2 M_2$, &c. Hereby all these products N_ρ are expressible in that same form in two different ways, say

$$N_{\rho} = T_{\rho}^{2} \mp D.U_{\rho}^{2} = T_{\rho}^{2} \mp D.U_{\rho}^{2} = N_{\rho}^{2}.....$$
 (76)

and it is evident—from the mode of formation—that the two sets of numbers

$$(N_1, N_2, ..., N_r), (N'_1, N'_2, ..., N'_r)$$

form two equal and similar Circular Chains of the 2-ic forms chosen, and the continued product of the r Links of each Chain

= the same square above stated.

Hence it is seen that Circular Chains of 2-ic Forms are always Dimorph.

36b. Circular Duan Chains, $(N_{\rho} = x_{\rho}^2 + y_{\rho}^2)$. These are easily formed by the above process.

Ex. The smallest of such Chains (with all Link-factors > 1) is given by $N_1=5.13,\ N_2=13.17,\ N_3=17.5$; and the Twin Chains are

$$N_1 = 1^2 + 8^2$$
, $N_2 = 5^2 + 14^2$, $N_3 = 7^2 + 6^2$;
 $N_1^4 = 7^2 + 4^2$, $N_2^4 = 11^2 + 10^2$, $N_3^4 = 9^2 + 2^2$.

36c. Circular Cuban Chains. These are most easily formed by taking the Link-factors (M_{ρ}) of form $M_{\rho} = A_{\rho}^2 + 3B_{\rho}^2 = L_{\rho+1}$, (all different), viz.

$$\begin{aligned} \mathbf{M}_1 &= \mathbf{A}_1^2 + 3\mathbf{B}_1^2 = \mathbf{L}_2, &\quad \mathbf{M}_2 &= \mathbf{A}_2^2 + 3\mathbf{B}_2^2 = \mathbf{L}_3, &\quad & & \\ \mathbf{M}_r &= \mathbf{A}_r^2 + 3\mathbf{B}_r^2 = \mathbf{L}_1. &\quad & \end{aligned}$$

Then, by conformal multiplication, every $N_{\rho} = L_{\rho} M_{\rho}$ can be formed in two ways in the 2-ic form

$$N_{\rho} = \mathbf{A}_{\rho}^2 + 3\mathbf{B}_{\rho}^2 = \mathbf{A}_{\rho}^{\prime 2} + 3B_{\rho}^{\prime 2} = N_{\rho}^{\prime};$$

and, each of these 2-ic forms can now be transformed into its equivalent Cuban form

$$N_{\rho} = (x_{\rho}^3 - y_{\rho}^3) \div (x_{\rho} - y_{\rho}), (x_{\rho}^{\prime 3} - y_{\rho}^{\prime 3}) \div (x_{\rho}^{\prime} - y_{\rho}^{\prime}) = N_{\rho}^{\prime},$$

by the formulæ of Art. 13c.

and, finally,

Ex. The smallest Circular Cuban Chain — (with all Link-factors $L_\rho,\, N_\rho>1)$ — is given by $N_1=7.13,\,\,N_2=13.19,\,\,N_3=19.7,$ and the Twin Chains are

$$\begin{split} N_1 &= 8^2 + 3.3^3, & N_2 &= 2^2 + 3.9^2, & N_3 &= 11^2 + 3.2^2\,; \\ N_1^{`} &= 4^2 + 3.5^2, & N_2^{`} &= 10^2 + 3.7^2, & N_3^{`} &= 5^2 + 3.6^3\,; \\ \end{split}$$
 whence
$$N_1 &= \frac{6^3 - 5^3}{6 - 5}\,, & N_2 &= \frac{11^3 - 7^3}{11 - 7}\,, & N_3 &= \frac{9^3 - 4^3}{9 - 4}\,; \\ N_1^{`} &= \frac{9^3 - 1}{9 - 1}\,, & N_2^{`} &= \frac{14^3 - 3^3}{14 - 3}\,, & N_3^{`} &= \frac{11^3 - 1^3}{11 - 1}\,. \end{split}$$

36d. Circular Duo-Cuban Chains. These have every Link N_{ρ} at once both Duan and Cuban. These are formed by taking every Link-factor $M_{\rho} = L_{\rho+1}$ of both forms $(t_{\rho}^2 + u_{\rho}^2)$, $(A_{\rho}^2 + 3B_{\rho}^2)$, and proceeding as above.

Ex. The smallest Circular Duo-Cuban Chain—(with all Link-factors $L_\rho,\,M_\rho>1)$ —is given by

$$N_1 = 13.37 = N_1', N_2 = 37.61 = N_2', N_3 = 61.13 = N_3'.$$

36e. Circular Quartan Chains. No general Rule has been found except in the case of the smallest, i.e. the Three-Link Chain (r=3). In this case

Take
$$\mathbf{A} = A^2 \sim 3B^2$$
, $\mathbf{B} = 2AB$; [A, B one odd, one even]... (77). Take $N_1 = x^4 + y_1^4$, $N_2 = x^4 + y_2^4$, $N_3 = x^4 + y_3^4$, [same x throughout]... (77a),

where $x = A^2 + 3B^2$, $y_1 = \mathbf{A} + \mathbf{B}$, $y_2 = \mathbf{A} \sim \mathbf{B}$, $y_3 = 2\mathbf{A}\mathbf{B}$... (77b). Then N_1 , N_2 , N_3 will be *found to be a Circular Quartan Chain, with

$$\begin{split} N_1 &= L_2 L_3, \ N_2 = L_3 L_1, \ N_3 = L_1 L_2; \ N_1 N_2 N_3 = (L_1 L_2 L_3)^2 \quad \text{(77c),} \\ \text{where} \qquad \qquad L_1 &= y_2^2 + y_3^2, \quad L_2 = y_3^2 + y_1^2, \quad L_3 = y_1^2 + y_2^2 \quad \dots \dots \quad \text{(77d).} \end{split}$$

Ex. The Table on page 129 gives the data (A, B), and the elements (x, y_1, y_2, y_3) of a number of these Three-Link Chains, and also the resulting Link-factors (L₁, L₂, L₃). This Chain is here styled a *Nexus*.

^{*} See the Author's Memoir on Quartans, &c., in Messenger, Vol. 38, 1908, Arts. 33-33b.

Chap. V. Aurifeuillians.

37. Aurifeuillians, Ant-Aurifeuillians.* Every n-an (N_n, N'_n) , whose degree n = 4i + 1, 2, 3, can be expressed algebraically in one or other of the impure 2-ic forms $(P^2 \mp nxy \cdot K^2)$, the connecting sign (\mp) depending on the linear form of n = 4i + 1, 2, 3.

Under the condition—styled Aurifeuillian condition—

$$nxy = \square = (n\xi\eta)^2, \quad [\xi \text{ prime to } \eta] \dots (78),$$

the above impure 2-ic form becomes either a difference of squares or a sum of squares, as below—

$$\begin{vmatrix} \mathbf{N} \\ \mathbf{N}_{n} = \phi \left(x^{n} - y^{n} \right) \\ \mathbf{N}'_{n} = \phi \left(x^{n} + y^{n} \right) \\ = \mathbf{P}^{2} - \mathbf{Q}^{2}, \text{ if } n = 4i + 1 \\ = \mathbf{P}^{2} + \mathbf{Q}^{2}, \text{ if } n = 4i + 3 \dots (79a), \\ \mathbf{N}_{n} = \phi \left(x^{n} + y^{n} \right) \\ = \mathbf{P}^{2} - \mathbf{Q}^{2}, \text{ if } n = 4i + 2 \\ = \mathbf{P}^{2} + \mathbf{Q}^{2}, \text{ if } n = 4i + 1 \dots (79b), \\ \mathbf{N}_{n} = \phi \left(x^{n} + y^{n} \right) \\ = \mathbf{P}^{2} - \mathbf{Q}^{2}, \text{ if } n = 4i + 2 \\ = \mathbf{P}^{2} + \mathbf{Q}^{2}, \text{ if } n = 4i + 2 \dots (79c).$$

The functions N_n , N'_n thus obtained are styled † Aurifeuillians of order n when of form (P^2-Q^2) , or † Ant-Aurifeuillians of order n when of form $(P'^2+Q'^2)$. The 2-ic parts (P,Q), (P',Q') bear the following relation—

If
$$P = f_1(x, y)$$
 and $Q = f_2(x, y)$,
then $P' = f_1(x, -y)$ and $Q' = f_2(x, -y)$ (80).

The algebraic formulæ for (P, Q), (P', Q') are quite simple

^{*} Much of this Chapter is contained in the Author's Papers—

On Aurifeuillians;

^{2°.} High Quartans, Nos. (2), (3); High Sextans, Nos. (2), (3); the full Titles, &c., of which are given in the footnote to Art. 2.

[†] So named by the present Author after the late M. Aurifeuille of Toulouse, who was the first to employ them in the factorisation of large numbers; see the Memoir Sur la Série recurrente de Fermat, by Ed. Lucas, Rome, 1879.

when n is *small*, (as required in this volume), but become complicated when n is not quite small.

Results (79a-c) involve that—

No Aurifeuillians or Ant-Aurifeuillians exist of order n = 4i... (79d).

37a. Anrifeuillians. These functions, being a difference of squares, are algebraically resolvable into two co-factors, say L, M, so that—

$$N_n \text{ or } N'_n = P^2 - Q^2 = L.M, \text{ where } L = P - Q, M = P + Q...$$
 (81).

This property is of great use in factorisation of large *n*-ans: many examples are given in the Tables of this Work.

The co-factors L, M are styled Aurifeuillian Factors: they have the following properties—

L, M are algebraically expressible in the same pure 2-ic forms as the original N_n , N_n' , of which they are co-factors (82b).

If
$$M = f(\xi, \eta)$$
, then $L = f(\xi, -\eta)$ (82c).

Result (82b) shows that

[In arithmetical work the twin factors L, M are separated by a colon (:), which may be looked on as a special sign of multiplication; see the "Explanation" of Tables on page 97, para. 6.]

Functions N_n , N'_n of degree n are susceptible of being Auri-feuillians or Ant-Aurifeuillians of one or more orders determined by the form of n, as shown below. [Here a, β , γ , ..., are different odd primes.]

$$n = \begin{bmatrix} \alpha, & \alpha^2, & \alpha^{\kappa} \\ \alpha, & \alpha \end{bmatrix} \xrightarrow{\alpha\beta} \begin{bmatrix} \alpha^2\beta \\ \alpha, & \beta, & \alpha \end{bmatrix} \xrightarrow{\alpha\beta\gamma} \begin{bmatrix} \alpha\beta\gamma \\ \alpha, & \beta, & \alpha\beta \end{bmatrix} \xrightarrow{\alpha} \begin{bmatrix} \alpha, & \beta, & \gamma, & \beta\gamma, & \gamma\alpha, & \alpha\beta, & \alpha\beta\gamma \end{bmatrix}$$

$$n = \begin{bmatrix} 2 & 2\alpha & 2\alpha^2 & 2\alpha^3 & 2\alpha\beta \text{ and } 2\alpha^2\beta \end{bmatrix}$$

Orders $\begin{vmatrix} 2 & 2 & 2\alpha \end{vmatrix}$ 2, $2\alpha \begin{vmatrix} 2 & 2\alpha \end{vmatrix}$ 2, $2\alpha \begin{vmatrix} 2 & 2\alpha \end{vmatrix}$ 2, $2\alpha \begin{vmatrix} 2 & 2\alpha \end{vmatrix}$ but the Aurifeuillian condition (78) shows that

No one n-an $(N_n \text{ or } N'_n)$ —(i.e. with definite x, y),—can be explicitly an Aurifeuillian or Ant-Aurifeuillian of more than one order (\cdot) (82e).

37b. Quotient Aurifeuillians. Let \mathbf{N} , \mathbf{N}_1 , \mathbf{N}_2 be Aurifeuillians of same order (n), and

Let
$$\mathbf{N} = N_1 N_2$$
; here $\mathbf{N} = \mathbf{L} \cdot \mathbf{M}$, $N_1 = L_1 \cdot M_1$, $N_2 = L_2 \cdot M_2$.
Then $N_2 = \frac{\mathbf{N}}{N_1} = \frac{\mathbf{L} \cdot \mathbf{M}}{L_1 \cdot M_1} = L_2 \cdot M_2$.
Here $L_2 = \frac{\mathbf{L}}{L_1}$ or $\frac{\mathbf{L}}{M_1}$; $M_2 = \frac{\mathbf{M}}{M_1}$ or $\frac{\mathbf{M}}{L_1}$ (83).

[Note that here \mathbf{L} contains the *whole* of L_1 or M_1 , and \mathbf{M} contains the *whole* of M_1 or L_1 . When either L_1 or M_1 contains a *small* divisor (q), this property renders it easy to discover—(by trial division by q)—which of \mathbf{L} or \mathbf{M} contains the whole factors L_1 or M_1 .]

The property (83) is very useful in factorisation of large Aurifeuillians \mathbf{N}_n , when containing an Aurifeuillian (N_1) of same order.

38. Aurifeuillians in this Volume.

The Aurifeuillians dealt with in this volume are of three orders, n = 2, 3, 6, as indicated in their special names:—

Bin-Aurifns., n=2; Trin-Aurifns., n=3; Sext-Aurifns., n=6, arising from n-ans (N_{ii}, N_{vi}) of degrees n=2, 3, 6.

39. Bin-Aurifeuillians. These arise from n-ans (N_n) of degrees 2, 2a, $2a^2$, &c.—[a odd]—under the Aurifeuillian condition

$$2xy = \Box = (2\xi\eta)^2$$
, giving $x = \xi^2$, $y = 2\eta^2$, [ξ prime to η] ... (84).

39a. Bin-Aurifeuillian Duans. The Duan (N_{ii}), under the condition (83), becomes

$$\begin{aligned} \mathbf{N}_{\text{ii}} &= x^2 + y^2 = (x \sim y)^2 + (2\xi\eta)^2 = \xi^4 + 4\eta^4, \ [2 \text{ forms of (a, b)}] \dots (84a) \\ &= (x + y)^2 - (2\xi\eta)^2 = \mathbf{P}^2 - \mathbf{Q}^2 = \mathbf{L} \cdot \mathbf{M} \dots (84b). \end{aligned}$$

$$P = x + y, \quad Q = 2\xi\eta; \quad L = P - Q, \quad M = P + Q.....$$
 (84c).

$$L = \xi^2 - 2\xi\eta + 2\eta^2 = (\xi - \eta)^2 + \eta^2; \quad M = \xi^2 + 2\xi\eta + 2\eta^2 = (\xi + \eta)^2 + \eta^2 \dots (84d).$$

Note that the three 2-ic parts of L, M, viz. $(\xi - \eta)$, η , $(\xi + \eta)$, are in arithmetical progression.

40. Trin-Aurijeuillians. These arise from n-ans (N'_n) of degrees 3, 3a, 3a², &c.—[a odd]—under the Aurifeuillian condition

 $3xy = \Box = (3\xi\eta)^2$, giving $x = \xi^2$, $y = 3\eta^2$, [ξ prime to η] ... (85). and also out of other special forms of Cubans and Sextans.

40a. Trin-Aurifeuillian Cubans. The Cuban (Nin), under the condition (84), becomes

$$\begin{aligned} \mathbf{N}_{\text{iii}}^{\circ} &= (x^{3} + y^{3}) \div (x + y) = x^{2} - xy + y^{2} = \xi^{4} - 3\xi^{2}\eta^{2} + 9\eta^{4} \dots (85a) \\ &= \mathbf{A}^{2} + 3\mathbf{B}^{2}, \text{ [as in Art. 13c], and } = (x \sim y)^{2} + 3\left(\xi\eta\right)^{2}, \\ &= (2 \text{ forms of (A, B)]} \dots (85b) \\ &= (x + y)^{2} - (3\xi\eta)^{2} = \mathbf{P}^{2} - \mathbf{Q}^{2} = \mathbf{L} \cdot \mathbf{M} \dots (85c). \end{aligned}$$

$$\begin{aligned} \mathbf{P} &= x + y, \quad \mathbf{Q} = 3\xi\eta; \quad \mathbf{L} = \mathbf{P} - \mathbf{Q}, \quad \mathbf{M} = \mathbf{P} + \mathbf{Q} \dots (85d). \end{aligned}$$

$$\mathbf{L} &= \xi^{2} - 3\xi\eta + 3\eta^{2}, \quad \mathbf{M} = \xi^{2} + 3\xi\eta + 3\eta^{2} \dots (85c) \\ &= (\xi^{2} \sim \frac{3}{2}\eta)^{2} + 3\left(\frac{1}{2}\eta\right)^{2} \\ &= \left(\frac{1}{2}\xi\right)^{2} + 3\left(\frac{1}{2}\xi \sim \eta\right)^{2} \end{aligned}$$

$$\begin{aligned} \mathbf{M} &= \xi^{2} + 3\xi\eta + 3\eta^{2} \dots (85c) \\ &= (\xi + \frac{3}{2}\eta)^{2} + 3\left(\frac{1}{2}\eta\right)^{2}, \quad [\eta = \epsilon] \dots (85f') \\ &= \left(\frac{1}{2}\xi\right)^{2} + 3\left(\frac{1}{2}\xi + \eta\right)^{2}, \quad [\xi = \epsilon] \dots (85f') \\ &= \left(\frac{\xi + 3\eta}{2}\right)^{2} + 3\left(\frac{\xi + \eta}{2}\right)^{2}, \quad [\xi \eta = \omega] \dots (85f'). \end{aligned}$$

40b. Latent Trin-Aurifeuillian Cubans. Although a given Cuban $(N_{iii} \text{ or } N_{iii})$ may not explicitly satisfy the Aurifeuillian condition, it may do so in one of its equivalent* forms $(N_{iii} = N_{iii}' = N_{iii}')$ of Art. 13).

$$N_{iii} = \frac{x^3 + y^3}{x - y}, \ N'_{iii} = \frac{z^3 + x^3}{z + x}, \ N''_{iii} = \frac{z^3 + y^3}{z + y}, [where \ z = x + y] \dots (86).$$

Here it is seen that either of the relations

 $3zx = \Box = (3\zeta\xi)^2$, or $3zy = \Box = (3\zeta\eta)^2$, [ζ prime to ξ , or to η] ... (86a) suffice to make the Cuban expressible in Trin-Aurifeuillian form.

39 and **40.** Examples (of Bin- and Trin-Aurifeuillians). A few examples only of each of these in very high numbers,—(N of 20 figures)—to show the power of the Congruence Tables (Chap. II) employed in their factorisation—

High Bin-Aurifus., page 103, (top Table); High Trin-Aurifus., page 152.

41. Common Aurifeuillian Factors, (F = L or M). A number F may be a common Aurifeuillian Factor (L or M) of several Aurifeuillians, as detailed below, (Art. 41a-c).

^{*} This property is peculiar to Cubans.

41a. Common Bin-Aurifeuillian Factors. By equating the 2-ic parts (a, b) of a number $F = a^2 + b^2$ to the 2-ic parts of the Aurifeuillian Factors (L, M) of a Bin-Aurifeuillian, $N_r = x_r^4 + 4y_r^4$, it will be found that F is a common Aurifeuillian Factor (L or M) of the four different Bin-Aurifeuillians $N_1 = L_1 M_1$, $N_2 = L_2 M_2$, $N_3 = L_3 M_3$, $N_4 = L_4 M_4$ shown in scheme below

and the four Bin-Aurifeuillians are connected by the following relations

$$N_1 + N_4 = N_2 + N_3 = 6F^2$$
, $N_2 - N_4 = N_1 - N_3 = 8abF$... (87a).

41b. Common Trin-Aurifeuillian Factors. By equating the 2-ic parts (A, B) of a number $F = A^2 + 3B^2$ to the 2-ic parts of the Aurifeuillian Factors of a Trin-Aurifeuillian, $\mathbf{N}_r = x_r^4 - 3x_r^2y_r^2 + 9y_r^4$, it will be found that F is a common Aurifeuillian Factor (L or M) of six Trin-Aurifeuillians $\mathbf{N}_1 = \mathbf{L}_1 \mathbf{M}_1$, $\mathbf{N}_2 = \mathbf{L}_2 \mathbf{M}_2$, ... $\mathbf{N}_6 = \mathbf{L}_6 \mathbf{M}_6$ shown in scheme below

and the six Trin-Aurifeuillians are connected by the following relations

$$N_2 + N_4 = N_1 + N_5 = N_3 + N_6 = 14F^2$$

 $N_1 - N_4 = N_2 - N_5 = \frac{1}{3}(N_3 - N_6) = 24ABF$ (88a).

- **41c.** Aurifeuillian Trees. Every Aurifeuillian $N_r = L_r$, M_r gives rise to several new Aurifeuillians $N_{r+1} = L_{r+1}$, M_{r+1} , $N'_{r+1} = L'_{r+1}$, M'_{r+1} , &c., in each of which the L_{r+1} , L'_{r+1} , &c. = M_r . Similarly each of the N_{r+1} gives rise to a like number of N_{r+2} , in each of which the $L_{r+2} = M_{r+1}$; and so on in succession. The ensemble of these may be styled an Aurifeuillian Tree, and the several N_r are the Branches of order r.
- **41d.** Bin-Aurifeuillian Tree. Here each N_r yields two N_{r+1} , (Art. 41a).

The Table on p. 146 shows the elements (ξ_r, η_r) of the Branches (N_r) of four successive steps (r=2, 3, 4, 5) of the Tree arising from the smallest Bin-Aurifeuillian $N_1 = 1^4 + 4.1^4 = 5$.

41e. Trin-Aurifeuillian Tree. Here each N_r yields six N_{r+1} , (Art. 41b).

The top Table of p. 155 shows the elements (ξ_r, η_r) of the Branches (N_r) of two successive steps (r = 2, 3) of the Tree arising from the smallest Trin-Aurifeuillian $N_1 = 1^4 - 3.1^2 + 9.1^4 = 7$.

[Here $A_1 = 2$, $B_1 = 1$, whereby one of the N_2 has $\xi_2 = 1$, $\eta_2 = 1$, giving $N_2 = 7$, so that only five *new* Branches arise at the first step.]

- **42.** Aurifeuillian Sextans. Sextans (N_{vi}) admit of Aurifeuillians of each of the three orders n = 2, 3, 6, [Art. 42a-e].
- **42a.** Bin-Aurifeuillian Sextans. The Sextan (N_{vi}) , under the Bin-Aurifeuillian condition $[2xy = \Box = (2\xi\eta)^2]$, becomes

$$N_{\text{vi}} = (x^{6} + y^{6}) \div (x^{2} + y^{2}) = x^{4} - x^{2}y^{2} + y^{4} = \xi^{8} - 4\xi^{4}\eta^{4} + 16\eta^{8} \qquad (89)$$

$$= (x^{2} \sim y^{2})^{2} + (xy)^{2} = (x^{2} - xy + y^{2})^{2} + \left[2\xi\eta(x \sim y)\right]^{2}, \qquad [2 \text{ forms of (a, b)}] \qquad (89a)$$

$$= (x^{2} + y^{2})^{2} - 3(xy)^{2} = (x^{2} + 3xy + y^{2})^{2} - 3\left[2\xi\eta(x + y)\right]^{2}, \qquad [2 \text{ forms of (A', B')}] \qquad (89b)$$

$$= A^{2} + 3B^{2}, \text{ (as in Art. 14)} = (x^{2} - 3xy + y^{2})^{2} + 3\left[2\xi\eta(x \sim y)\right]^{2}, \qquad [2 \text{ forms of (A, B)}] \qquad (89c)$$

$$= P^{2} - Q^{2} = L. M \qquad (89d).$$

$$P = x^2 + xy + y^2$$
, $Q = 2\xi\eta (x+y)$; $L = P - Q$, $M = P + Q$ (89e).

$$L = (\xi^2 \sim \xi \eta)^2 + (\xi \eta \sim 2\eta^2)^2, \quad M = (\xi^2 + \xi \eta)^2 + (\xi \eta + 2\eta^2)^2 \dots (89f).$$

This is a case of a Quotient-Aurifeuillian (Art. 37b); the numerator and denominator of N_{vi} being, each of them, Bin-Aurifeuillians; algebraic division gives above results.

42b. Latent Trin-Aurifeuillian Sextans. The Sextan (N_{vi}) does not explicitly satisfy the Trin-Aurifeuillian condition: but, being a special form of Cuban, it may be written in the three equivalent Cuban forms (of Art. 13) $N_{vi} = N'_{vi} = N'_{vi}$, where

$$\mathbf{N_{vi}} = \frac{(y^2 - x^2)^3 - (x^2)^3}{(y^2 - x^2) - x^2}, \ \ \mathbf{N_{vi}'} = \frac{(y^2 - x^2)^3 + (y^2)^3}{(y^2 - x^2) + y^2}, \ \ \mathbf{N_{vi}''} = \frac{(x^2)^3 + (y^2)^3}{x^2 + y^2}, \ [y > x] \ ;$$

and
$$N'_{vi}$$
 becomes $=\frac{(y^2)^3 + (3z^2)^3}{y^2 + 3z^2}$, by taking $y^2 - x^2 = 3z^2$(90).

Here N'_{vi} satisfies the Trin-Aurifeuillian *explicitly*, and (by Art. 13)

$$N'_{vi} = y^4 - 3y^2z^2 + 9z^4$$

= $A^2 + 3B^2$. (as in Art. 14), and = $(y^2 \sim 3z^2)^2 + 3(yz)^2$,
[2 forms of (A, B)] ... (90b)

$$= (y^2 + 3z^2)^2 - (3yz)^2 = P^2 - Q^2 = L.M.$$
 (90c),

$$P = y^2 + 3z^2$$
, $Q = 3yz$; $L = P - Q$, $M = P + Q$(90d).

$$L = y^{2} - 3yz + 3z^{2}, (90e)
= (y \sim \frac{3}{2}z)^{2} + 3(\frac{1}{2}z)^{2}, (z = \epsilon) . (90f)
= (\frac{1}{2}y)^{2} + 3(\frac{1}{2}y \sim z)^{2}, (2z)^{2} + 3(\frac{1}{2}y + z)^{2}, (2z)^{2} + 3(\frac{1}{2}y + z)^{2}, (y = \epsilon) . (90f)
= (\frac{y \sim 3z}{2})^{2} + 3(\frac{y \sim z}{2})^{2}, (y = \epsilon) . (90h).$$

42c. Sext-Aurifeuillians. These arise from n and of degrees n = 6, 6a, $6a^2$, &c.,—[a odd and prime to 3]—under the condition—

$$6xy = \Box = (6\xi\eta)^2$$
, $\{\xi \text{ prime to } \eta\}$(91).

This may be satisfied in two ways, giving rise to two species of Sext-Aurifeuillians.

1°.
$$x = \xi^2$$
, $y = 6\eta^2$; 2°. $x = 3\xi^2$, $y = 2\eta^2$ (91a).

42d. Sext-Aurifeuillian Sextans. The Sextan (N_{vi}) under each of the conditions (91a) becomes—

Both Species.
$$N_{vi} = x^4 - x^2y^2 + y^4 = P^2 - Q^2 = L.M.$$
 (91b)
= $(x^2 \sim y^2)^2 + (xy)^2 = P'^2 + Q'^2$, [2 forms of a, b] (91c).

$$P = x^2 + 3xy + y^2$$
, $Q = 6\xi\eta (x + y)$; $L = P - Q$, $M = P + Q$... (91d).

$$P' = x^2 - 3xy + y^2, \quad Q' = 6\xi\eta (x \sim y)$$
(91e).

In species 1°.

$$L = (\xi^2 - 3\xi\eta)^2 + (3\xi\eta \sim 6\eta^2)^2, \quad M = (\xi^2 + 3\xi\eta)^2 + (3\xi\eta + 6\eta^2)^2 \dots (91f)$$

In species 2°.

$$L = (3\xi^2 \sim 3\xi\dot{\eta})^2 + (3\xi\eta \sim 2\eta^2)^2, \ M = (3\xi^2 + 3\xi\eta)^2 + (3\xi\eta + 2\eta^2)^2... \ (91g).$$

42e. Ex. Extensive Factorisation-Tables of each of the three kinds—Bin-, Trin-, and Sext-Aurifeuillian Sextans—are given, as in Abstract below, ending with very high numbers.

Pages.	Aurifn.	x ,	y	ξ,	x	η,	y	n≯
172, 173	Bin-	$\xi^2 = 1,$	$2\eta^2$	1,	I	1 to 128,	2 to 32768	1018
173	Bin-	$\xi^2=1,$	$2\eta^2$	Ι,	I	160 & 201,	≯80802	10^{20}
174 to 179	Bin-	ξ^2 ,	$2\eta^2$	3 to 53,	9 to 2809	1 to 37,	2 to 2738	1014
185 to 189	Trin-	$y^2 - x^2$	$=3z^{2}$		1 to 2054		2 to 2084	1014
194	Trin-	$y^2 - x^2$	$=3z^{z}$	I	979 to 2701	_	2029 to 2774	1014
179, 180	Sext-, 1°	$\xi^2 = 1$,	$6\eta^2$	Ι,	I	I to 75 ,	6 to 33750	1018
180	Sext-, 1°	$\xi^2 = 1$,	$6\eta^2$	ı,	I	80 & 101,	≯61206	10^{20}
181, 182	Sext-, 1°	ξ^2 ,	$6\eta^2$	5 to 53,	25 to 2809	1 to 21,	6 to 2646	1014
183, 184	Sext-, 2°	$3\xi^2$,	$2\eta^2$	1 to 31,	1 to 2883	1 to 29,	2 to 1682	1014
194	Sext-, 2°	$3\xi^2$,	$2\eta^2$	1 to 11,	3 to 363	29 to 32,	1682 to 2048	1014

- 43. Aurifeuillian Chains. Duans, Cubans, and Sextans yield interesting cases of Aurifeuillian Chains of orders 2, 3, and 6.
- 44. Aurifeuillian Duan and Cuban Chains. Duans (Nii) and Cubans (Nii) give rise to 3 cases of Bin-Aurifeuillian and 3 cases of Trin-Aurifeuillian Chains respectively of strikingly similar formation, as shown in the Abstract below:—

The first two Cases will be now taken up together; Case 3° later, (Art. 44d).

44a. CASE 1°.

Bin-Aurifn, Duans.

$$\begin{aligned} \xi_r &= \xi \; (const.), \; \; \eta_{r+1} = \eta_r + \xi \\ \mathcal{L}_{r+1} &= \xi^2 - 2\xi \eta_{r+1} + 2\eta_{r+1}^2 \\ &= \xi^2 - 2\xi \; (\eta_r + \xi) + 2 \; (\eta_r + \xi)^2 \end{aligned}$$

$$= \xi^2 + 2\xi \eta_r + 2\eta_r^2 = M_r$$

Hence N₁, N₂, N₃, ... are in chain.

44b. CASE 2°.

Bin-Aurifn. Duans.

$$\begin{aligned} \xi_{r+1} &= \xi_r + 2\eta, \ \eta_r = \eta \ (const.) \\ \mathcal{L}_{r+1} &= \xi_{r+1}^2 - 2\xi_{r+1}, \eta + 2\eta^2 \\ &= (\xi_r + 2\eta)^2 - 2 \ (\xi_r + 2\eta) \ \eta + 2\eta^2 \end{aligned}$$

$$= \xi_r^2 + 2\xi_r \eta + 2\eta^2 = \mathbf{M}_r$$

Hence N₁, N₂, N₃, ... are in chain.

Trin-Aurifn. Cubans.

$$\xi_r = \xi (const.), \ \eta_{r+1} = \eta_r + \xi$$
 (93).

$$L_{r+1} = \xi^2 - 3\xi \eta_{r+1} + 3\eta_{r+1}^2 \dots (93a)$$

= $\xi^2 - 3\xi (\eta_r + \xi) + 3(\eta_r + \xi)^2$

$$= \xi^2 + 3\xi \eta_r + 3\eta_r^2 = M_r \dots (93c).$$

Hence N₁, N₂, N₃, ... are in chain.

Trin-Aurifn. Cubans.

$$\xi_{r+1} = \xi_r + 3\eta, \ \eta_r = \eta \ (const.) + (94).$$

$$L_{r+1} = \xi_{r+1}^2 - 3\xi_{r+1} \cdot \eta + 3\eta^2 \dots (94a)$$

$$= (\xi_r + 3\eta)^2 - 3(\xi_r + 3\eta)\eta + 3\eta^2 \dots (94b)$$

$$= \xi_r^2 + 3\xi_r \eta + 3\eta^2 = \mathbf{M}_r \dots (94c).$$

Hence N₁, N₂, N₃, ... are in chain.

44c. Ex. It would be impracticable to give complete Tables of the above on account of the enermous extent to which they would run; a few examples of Case 2° of each kind only are given to illustrate the power of the Congruence-Tables (Chap. II) used in their factorisation.

Bin-Aurifn. Duans.

Case 2°. Page 98, $[\eta_r = 1]$.

$$N_r = y_r^4 + 4.1^4 = L_r \cdot M_r, [y_r = \xi_r].$$

$$y_{r+1} = y_r + 2 \; ;$$

$$y_1 = 49995 \text{ (mid-Table)}$$

 $y_1 = 49994 \text{ (at foot)}$

$$y_1 = 49994 \text{ (at foot)}$$

$$\mathbf{L}_r = (y_r - 1)^2 + 1^2$$
, $\mathbf{M}_r = (y_r + 1)^2 + 1^2$. $\mathbf{L}_r = y_r^2 + 3y_r + 3$; $\mathbf{M}_r = y_r^2 + 3y_r + 3$

Trin-Aurifn. Cubans.

Case 2°. Page 149, $[\eta_r = 1]$.

$$\mathbf{N}_r = \frac{\mathbf{Y}_r^3 + \mathbf{S}^3 \cdot \mathbf{1}}{\mathbf{Y}_r + \mathbf{3}} = \mathbf{L}_r \cdot \mathbf{M}_r, \\ [\mathbf{Y}_r = y_r^2, \ y_r = \xi_r].$$

$$y_{r+1} = y_r + 3 ;$$

$$y_1 = 49994 \text{ (mid-Table)}$$

 $y_1 = 49995 \text{ (at foot)}$.

$$y_1 = 49995 \text{ (at foot)}$$

$$L_r = y_r^2 + 3y_r + 3; \quad M_r = y_r^2 + 3y_r + 3$$
$$= y_r''^2 + y_r'' + 1; \quad = y_r'^2 + y_r' + 1.$$

44d. Case 3°. Pellian Aurifeuillian Chains. The successive solutions (τ'_r, v'_r) , (τ_r, v_r) of the Pellian Equations ${\tau'_r}^2 - \mathrm{D} {v'_r}^2 = \mp z'_0$, and $\tau_r^2 - Dv_r^2 = \mp z_0$ give rise to interesting Bin-Aurifeuillian Duan Chains and Trin-Aurifeuillian Cuban Chains when D=2, 3 respectively. The cases when $z'_{0}=-1$, or -2, and $z_0 = +1$ will be considered first.

44e. Pellian Bin-Aurifeuillian Duan Chain. Let (τ_{ρ}, v_{ρ}) , (τ_{ρ}, v_{ρ}) be successive solutions of the two Pellian equations

$$\tau_{\rho}^{\prime 2} - 2v_{\rho}^{\prime 2} = -1, \quad \tau_{\rho}^{2} - 2v_{\rho}^{2} = +1 \qquad (96).$$
Then, if $N_{\rho}' = \tau_{\rho}^{\prime 1} + 4v_{\rho}^{\prime 1} = L_{\rho}' \cdot M_{\rho}'$ and $N_{\rho} = \tau_{\rho}^{4} + 4v_{\rho}^{4} = L_{\rho} \cdot M_{\rho} \dots (96a).$
Then
$$L_{\rho}' = \tau_{\rho}^{\prime 2} - 2\tau_{\rho}'v_{\rho}' + v_{\rho}^{\prime 2} = \tau_{2\rho-1} - v_{2\rho-1} = v_{2\rho-1}' \dots (96b),$$

$$M_{\rho}' = \tau_{\rho}^{\prime 2} + 2\tau_{\rho}'v_{\rho}' + v_{\rho}^{\prime 2} = \tau_{2\rho-1} + v_{2\rho-1} = v_{2\rho}' \dots (96c),$$

$$L_{\rho} = \tau_{\rho}^{2} - 2\tau_{\rho}v_{\rho} + v_{\rho}^{2} = \tau_{2\rho} - v_{2\rho} = v_{2\rho}' \dots (96d),$$

$$M_{\rho} = \tau_{\rho}^{2} + 2\tau_{\rho}v_{\rho} + v_{\rho}^{2} = \tau_{2\rho} + v_{2\rho} = v_{2\rho+1}' \dots (96c),$$
Hence
$$N_{\rho}' = v_{2\rho-1}' \cdot v_{2\rho}', \qquad N_{\rho} = v_{2\rho}' \cdot v_{2\rho+1}' \quad (96f).$$

$$N_{\rho+1}' = v_{2\rho+1}' \cdot v_{2\rho+2}', \qquad N_{\rho+1} = v_{2\rho+2}' \cdot v_{2\rho+3}' \quad (96f).$$

Hence N'₁, N₁, N'₂, N₃, N₃, N₃, ..., &c., are a Series in chain.

The links (N', N) being taken from either Series alternately.

- **44f.** Ex. (Page 109, mid-Table.) The two series (N, N') are here ranged together into one series, the (x, y) here denoting (τ', v') and (τ, v) alternately; the two Pellian equations (96) being combined into one as $\tau_r^2 2v_r^2 = (-1)^r$, the odd values of r giving $(\tau'_{\rho}, v'_{\rho})$, and the even values giving (τ_{ρ}, v_{ρ}) . The M-factor of N' and N is alone recorded: (the $L_{r+1} = M_r$ being omitted to save space).
- **44g.** Examples of other such Chains, [z>1]. (Page 110.) The Table shows four such Chains arising from the successive solutions (x, y) of the two Pellian equations

$$\tau_r^2 - 2v_r^2 = (-1)^r.7, \quad \tau_r^2 - 2v_r^2 = (-1)^r.17.$$

Each Pellian has two series of solutions (τ_r, ν_r) , each of which gives rise to a Bin-Aurifeuillian Chain,

$$N_r = x_r^4 + 4y_r^4 = L_r M_r$$
.

44h. Pellian Trin-Aurifeuillian Cuban Chain. Let (τ'_r, v'_r) , (τ_r, v_r) be successive solutions of the two Pellian equations

$$\tau_r'^2 - 3{v_r'}^2 = -2, \quad \tau_r^2 + 3{v_r}^2 = +1 \quad$$
Then, if
$$\mathbf{N}_r' = {\tau_r'}^4 - 3{\tau_r'}^2 {v_r'}^2 + 9{v_r'}^4 = \mathbf{L}_r' \mathbf{M}_r'$$

$$\mathbf{N}_r = {\tau_r}^4 + 3{\tau_r}^2 {v_r}^2 + 9{v_r}^4 = \mathbf{L}_r \mathbf{M}_r'$$

$$\mathbf{N}_r = {\tau_r}^4 + 3{\tau_r}^2 {v_r}^2 + 9{v_r}^4 = \mathbf{L}_r \mathbf{M}_r'$$
(97a).

Then

Ι

$$\mathbf{L}_{r}' = \tau_{r}'^{2} + 3v_{r}'^{2} - 3\tau_{r}'v_{r}' = 2\tau_{2r-1} - 3v_{2r-1} = \tau_{2r-2}; \quad \mathbf{L}_{r+1}' = \tau_{2r} \dots (97b).$$

$$\mathbf{L}_r = \tau_r^2 + 3v_r^2 - 3\tau_r v_r = \frac{1}{2} (2\tau_{2r} - 3v_{2r}) = \frac{1}{2} \tau_{2r-1}, \quad \mathbf{L}_{r+1} = \frac{1}{2} \tau_{2r+1} \dots (97d).$$

$$\mathbf{M}_r = \tau_r^2 + 3\nu_r^2 + 3\tau_r \nu_r = \frac{1}{2} (2\tau_{2r} + 3\nu_{2r}) = \frac{1}{2} \tau_{2r+1} = \mathbf{L}_r \dots (97e).$$

Hence
$$N'_r = \tau_{2r-2}, \tau_{2r}, \quad N'_{r+1} = \tau_{2r}, \tau_{2r+2}, \quad \&c.$$

 $N_r = \frac{1}{4}\tau_{2r-1}, \tau_{2r+1}, \quad N_{r+1} = \frac{1}{4}\tau_{2r+1}, \tau_{2r+3}, \quad \&c.$ (97f).

Hence each of the series N_1' , N_2' , N_3' , &c., N_1 , N_2 , N_3 , &c., is a *Chain-series:* and the Aurifeuillian factors (L_r', M_r') , (L_r, M_r) are the members τ_{2r} , τ_{2r+1} in the solutions of $\tau^2 - 3v_r^2 = +1$ of even order, or of odd order for the series N_r' , N_r respectively.

 $\it Ex.$ (Page 153, top-Table.) This Table shows 8 terms of each of the above Chain-Series.

44i. Examples of other such Chains, [z>1]. (Page 153, at foot.) The Table shows four such Chains arising from the successive solutions of the two Pellian equations

$$\tau_r^2 - 3v_r^2 = -11, \quad \tau_r^2 - 3v_r^2 = +13.$$

Each Pellian has two series of solutions (τ_r, u_r) , each of which gives rise to a Trin-Aurifeuillian Chain

$$N_r = \tau_r^4 - 3\tau_r^2 v_r^2 + 9v_r^4.$$

45. Aurifeuillian Sextan Chains. Sextan Chains may be formed in each order (n) of Aurifeuillians of which a Sextan is capable (n = 2, 3, 6), the elements $(\xi, \eta, \&c.)$ being taken from the associated Pellian equation in each order

$$\tau^2 - Dv^2 = (-1)^r \cdot z$$
, [D = $n = 2, 3, 6$] (98).

45a. Pellian Bin-Aurifeuillian Sextan Chain. The Bin-Aurifeuillian Sextan, (Art. 42a)

$$\mathbf{N}_{\text{vi}} = (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = \mathbf{P}_r^2 - \mathbf{Q}_r^2 = \mathbf{L}_r \cdot \mathbf{M}_r \quad$$
 (99),

where $x_r = \xi_r^2, \quad y_r = 2\eta_r^2$ (99a),

and gives *Chain-Series*, so that $M_r = L_{r+1}$, when ξ_r , η_r are taken from the Pellian equation,

$$\xi_r^2 - 2\eta_r^2 = (-1)^r \cdot \zeta, \quad [\zeta = 8i \pm 1 = const.] \dots (99b),$$

h

and $\xi_{r+1} = \xi_r + 2\eta_r, \quad \eta_{r+1} = \xi_r + \eta_r \dots (99c).$

When $\zeta = 1$, the Chain is unique; when $\zeta > 1$, it gives two Associate Chains.

45b. Ex. (T., page 195.) The Table gives the elements $(\pm \xi_r, \eta_r)$ only of r successive Links (N_r, N_{r+1}, &c.) of numerous Chains, *i.e.* for many values of ζ —

The factorisation of L_r , $M_r \gg 9.10^6$ will be found in the Tables, pages 172–179, [Argt. x_r , y_r].

Full detail of the first Example only is given below:

$$r=1$$
 2 3 4 5 6
 $\xi_r, \eta_r=1, 1$ 3, 2 7, 5 17, 12 41, 29 99, 70
 $x_r, y_r=1, 2$ 9, 8 49, 50 289, 288 1681, 1682 9801, 9800
 $L_r=1;$ 13; 421; 14281; 485113; 13.37.34261; $M_r=13;$ 421; 14281; 485113; 13.37.34261; 73.7668757;

45c. Pellian Trin-Aurifeuillian Sextan Chain. The Trin-Aurifeuillian Sextan (Art. 42b)

$$N_{vi} = (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = P_r^2 - Q_r^2 = L_r \cdot M_r \cdot \dots (100),$$
$$y_r^2 - 3z_r^2 = x^2 \cdot \dots (100a)$$

gives a Chain-Series, with $M_r = L_{r+1}$,

wherein

when
$$x_r = +12i + 1$$
, or $-(12i - 1) = const.$ (100b)

and
$$y_{r+1} = 2y_r \pm 3z_r$$
, $z_{r+1} = y_r \pm 2z_r$ (100c),

and
$$M_{r-1} = L_r = \frac{1}{2}\tau_{2r-1}, \quad M_r = L_{r+1} = \frac{1}{2}\tau_{2r+1}$$
 (100d).

When $x_r = 1$, the Chain is unique; when $x_r > 1$, it gives two Associate Chains.

45d. Ex. (T., page 197.) The Table gives the elements (x, y_r, z_r) only of r successive Links (N₁', N₂', N₃', &c.) of numerous Chains, *i.e.* for many values of x—

$$x = 1;$$
 -11; 13, -23; 37 to -143; 157 to 251; (Links) $r = 7$ 6 5 4 3

The factorisation of the factors L_r , $M_r \gg 9.10^6$ will be found in the Tables, pages 172–179. Fuller detail of the first Example only (x = 1) will be found on page 153 (mid-Table).

45e. Pellian Sext-Aurifeuillian Chains. The Sextan (N_{vi}) has two species (Art. 42c) of Sext-Aurifeuillians

$$N_{vi} = (x^6 + y^6) \div (x^2 + y^2) = P_r^2 - Q_r^2 = L_r \cdot M_r \cdot \dots$$
 (101),

These give Chain-Series, so that $M_r = L_{r+1}$, when ξ_r , η_r are taken alternately from the two Associate Pellian Equations, thus

Species 1°. Species 2°.

$$\xi_{2\rho}^2 - 6\eta_{2\rho}^2 = 3\xi_{2\rho\,\pm\,1}^2 - 2\eta_{2\rho\,\pm\,1}^2 = \zeta = const. = 6i + 1 \text{ or } -(6i-1)... \text{ (101b)}.$$

The ξ_r , η_r of either species determine the successive ξ_r , η_r of the *other* species by the relations

$$r = 2\rho = \epsilon \text{ (Species 2°)}.$$
 $r = 2\rho \pm 1 = \omega \text{ (Species 1°)}.$
$$\xi_{2\rho} = 3\xi_{2\rho-1} + 2\eta_{2\rho-1}, \qquad \qquad \xi_{2\rho+1} = \xi_{2\rho} + 2\eta_{2\rho} \\ \eta_{2\rho} = \xi_{2\rho-1} + \eta_{2\rho-1}, \qquad \qquad \eta_{2\rho+1} = \xi_{2\rho} + 3\eta_{2\rho} \end{cases} \dots \dots (101c).$$

45f. Ex. (T., page 196.) The Table gives the elements $(\pm \xi_r, \eta_r)$ only of r successive Links (N₁, N₂, N₃, &c.) of numerous Chains, *i.e.* for many values of ζ —

$$\zeta = 1 \text{ to } -53; 67, -71; 73 \text{ to } -101; 115 \text{ to } -215;$$
(Links) $r = 6$ 5 4 3

The factorisation of the factors L_r , $M_r \gg 9.10^6$ will be found in the Tables, pages 172–179. Fuller details of the first Example only are given below.

$$egin{array}{llll} r & = & 1 & 2 & 3 & 4 & 5 \\ {
m Species} & 2^{\circ} & 1^{\circ} & 2^{\circ} & 1^{\circ} & 2^{\circ} \\ {\mbox{\boldmath ξ}_{r}, \mbox{\boldmath η}_{r}} & = & {
m I, I} & {
m 5, 2} & {
m 9, II} & {
m 49, 20} & {
m 89, 90} \\ x_{r}, y_{r} & = & {
m 3, 2} & {
m 25, 24} & {
m 243, 242} & {
m 240I, 2400} & {
m 23763, 23762} \\ {
m L}_{r} & = & {
m I;} & {
m 6I;} & {
m 13.457;} & {
m 37.15733;} & {
m 13.4387837;} \\ {
m M}_{r} & = & {
m 6I;} & {
m 13.457;} & {
m 37.15733;} & {
m 13.4387837;} & {
m 73.76568797?} \\ \end{array}$$

45g. Sexto-Trin-Aurifeuillian Sextan Chains. Sextan Chains may also be composed by combining the two Aurifeuillian Series of orders n=3 and 6, taking the Links from each Series alternately.

In what follows Trin-Aurifeuillians and Sext-Aurifeuillians are denoted by the letters T, S respectively. Four cases arise, two due to the two kinds of solution (see below) of the Pellian equation $y^2-3z^2=x^2$ which determine T (Art. 42b), and two to the two species of S (Art. 42c).

Examples. (Pages 201–204.) The Tables give such of the elements—to Argument $\rho=1,\,3,\,5,\,$ &c.—

$$t, u, x, y \text{ for T (Art. 42b)}; \xi, \eta, x, y \text{ for S (Art. 42c)};$$

as are necessary for determining the Links (N1, N2, N3, &c.) of the Chains.

In all four Tables, $\rho = \omega$, $r = \rho + 1.*$ Here follows an Abstract of the formulæ of the four Cases. The factorisations of the L, M (when $r \ge 9.10^6$) will be found on pages 185–189 and 194 for T, and on pages 179–184 and 194 for S.

Elements $ \begin{array}{c} \Gamma_{\rho} \left\{ \begin{array}{c} x_{\rho} \\ y_{\rho} \\ z_{\rho} \\ T_{\rho} \end{array} \right. \\ S_{r} \left\{ \begin{array}{c} x_{r} \\ y_{r} \\ S_{r} \end{array} \right. \end{array} $	$\frac{1}{2} (t_{\rho}^{2} - 3u_{\rho}^{2})$ $\frac{1}{2} (t_{\rho}^{2} + 3u_{\rho}^{2})$ $t_{\rho} u_{\rho}$ $L_{\rho} M_{\rho}$ $\xi_{r}^{2} = \xi^{2}$ $6\eta_{r}^{2}$ $L_{r} M_{r}$ $t_{\rho} = \xi_{r} (const.)$ $u_{\rho+2} = u_{\rho} + 2t$ $u_{\rho} = (\eta_{r} + \eta_{r-2})$	$t_{\rho+2} = t_{\rho} + 6u$ $t_{\rho} = \frac{1}{2} \left(\xi_{r-2} + \xi_r \right)$	Elements $\mathbf{T}_r \begin{cases} x_r \\ y_r \\ y_r \\ z_r \\ \mathbf{T}_r \end{cases}$ $\mathbf{S}_{\rho} \begin{cases} x_{\rho} \\ y_{\rho} \\ \mathbf{S}_{\rho} \end{cases}$	$\frac{1}{2}(t_r^2 - 3u_r^2)$ $\frac{1}{2}(t_r^2 + 3u_r^2)$ $t_r u_r$ $L_r \cdot M_r$ $3\xi_r^2 = 3\xi^2$ $2\eta_\rho^2$ $L_\rho \cdot M_\rho$ $u_r = \xi_\rho \text{ (const.)}$ $\eta_{\rho+2} = \eta_\rho + 3\xi$ $t_r = \eta_\rho + \eta_{\rho+2}$	$\begin{array}{c} \xi, \ \eta, \ u, \ y \\ (t_r^2 - 3u_r^2) \\ (t_r^2 + 3u_r^2) \\ 2t_r u_r \dagger \\ L_r. \ M_r \\ 3\xi_\rho^2 \\ 2\eta_\rho^2 = 2\eta^2 \\ L_\rho. \ M_\rho \\ t_r = \eta_\rho \ (\text{const.}) \\ u_{r+2} = u_r + 2t \\ u_r = \frac{1}{2} \left(\xi_\rho + \xi_{\rho+2} \right) \end{array}$
Chain -	{	$\xi_r = \frac{1}{2} (t_{\rho} + t_{\rho+2})$ $d M_r = L_{\rho+2}$ 2, S_{r+2} , &c.	Chain -	$\eta_{\rho} = \frac{1}{4} (t_r + t_{r-2})$ $t_{r+2} = t_r + 6u$ $M_{\rho} = L_r \text{an}$ $S_{\rho}, T_r, S_{\rho},$	$\begin{cases} \xi_{\rho} = \frac{1}{2} (u_r + u_{r-2}) \\ \xi_{\rho+2} = \xi_{\rho} + 2\eta \end{cases}$ $d M_r = L_{\rho+2}$ $2, T_{r+2}, &c.$

^{*} Erratum on p. 203, l. 7, and on p. 204, l. 7; for $\rho + 1 = 2$, read $\rho + 1 = \epsilon$.

[†] Erratum on p. 204, l. 6; for $z_r = t_r u_r$, read $z_r = 2t_r u_r$.

45h. Detailed Examples. The full detail of the first set of Examples of each Case I-IV (of which the data only are given in the Tables, pages 201-204) is given in the four Tables following, clearly showing the resulting Chains.

Case I, page 201. Chain T_{ρ} , S_{r} , $T_{\rho+2}$, S_{r+2} , &c.

$T_{ ho}$	ρ t, u x, y L M	1 5, 3 1, 26 181; 2521;	3 5, 7 61, 86 13.157; 20101;	5, 17 421, 446 106861; 13.25717;	7 5, 27 1081, 1106 601.1381; 13.132757;	9 5, 37 2041, 2066 3224401; 5517661;	11 5, 47 3301, 3326 13.683317; 13572781?
S_r	$\left egin{array}{c} r \\ \xi, \eta \\ x, y \\ \mathrm{L} \\ \mathrm{M} \end{array} \right $	2 5, 1 25, 6 181; 13.157;	4 5, 6 25, 216 20101; 106861;	6 5, 11 25, 726 13.25717; 601.1381;	8 5, 16 25, 1536 13.132757; 3224401;	10 5, 21 25, 2646 5517661; 13.683317;	12 5, 26 25, 4056 13572781? 181.110161;

Case II, page 202. Chain T_{ρ} , S_r , $T_{\rho+2}$, S_{r+2} , &c.

3930709;

$T_{ ho}$	ρ t, u x, y L M	1 2, 1 1, 7 13; 181;	3 4, 1 13, 19 97; 1009;		7 16, 1 253, 259 45289; 13.7309;	9 22, I 481, 487 178693; 307261;	11 28, 1 781, 787 13.38197; 760993;	13 34, 1 1153, 1159 13.86209; 1593589;
S_r	r ξ, η x, y L M	2 1, 1 1, 6 13; 97;	4 7, 1 49, 6 1009; 13.433;	6 13, 1 169, 6 17989; 45289;		10 25, 1 625, 6 307261; 13.38197;	12 31, 1 961, 6 760993; 13.86209;	14 37, 1 1369, 6 1593589; 73.109.277;
$T_{ ho}$	ρ t, u x, y L M	ρ 15 t, u 40, I x, y 1597, 1603 L 73.109.277;		17 46, 1 2113, 211 3930709; 5100397;	6, I 52, I 3, 2119 2701, 2707 0709; 2137.3049;			
S_r	$\begin{bmatrix} r \\ \xi, \eta \\ x, y \\ L \end{bmatrix}$	16 43, 1 1849, 6		18 49, 1 2401, 6 5100397	20 55, 1 3025,	6		

2137.3049; 10205341?

Case III, page 203. Chain S_{ρ} , T_r , $S_{\rho+2}$, T_{r+2} , &c.

	ρ	1	3	5	7	9	11	13
1	ξ, η	1, 1	1, 4	1, 7	1, 10	1, 13	1, 16	1, 19
S_{ρ}	x, y	3, 2	3, 32	3, 98	3, 200	3, 338	3, 512	3, 722
	L	Col; I	3.37;	13.13.37;	29629;	90697;	13.73.229	; 445141;
	M	61;	2161;	14737;	13.4153;	37.389;	316201;	13.46957;
	r	2	4	6	8	10	12	14
	t, u		II, I	17, 1			35, I	41, 1
\mathbf{T}_r	$\begin{vmatrix} x, y \end{vmatrix}$	1	59, 62	143, 146	263, 266	419, 422		
1	L		2161;	14737;		37.3889		13.46957;
							_	
	M	13.37; 13	.13.3/,	29629;	90697;	13.73.229); 445141;	457.1789;
	ρ	15	17	1	9	21	23	25
	ρ ξ, η	15 1, 22	17 1, 25			21 1, 31		
$S_{ ho}$			1, 25	ı,	28		23 1, 34 3, 2312	25 1, 37 3, 2738
$S_{ ho}$	ξ, η	1, 22		i, o 3, 1	28 568	I, 3I 3, 19 2 2	1,34	1, 37
$S_{ ho}$	$\begin{cases} \xi, \eta \\ x, y \end{cases}$	1, 22 3, 968	I, 25 3, I25	i, o 3, 1	28 568 9909; 33	1, 31 3, 19 22 353341;	1, 34 3, 2312	1, 37 3, 2738
$S_{ ho}$	ξ, η x, y L	1, 22 3, 968 457 · 1789;	1, 2 5 3, 12 5 138580	1, 0 3, 1 9; 13.16 33; 2736	28 568 9909; 33	1, 31 3, 19 22 353341;	I, 34 3, 2312 193.25357;	1, 37 3, 2738 1321.5233;
$S_{ ho}$	ξ, η x, y L M	1, 22 3, 968 457·1789; 13.82609;	1, 25 3, 125 138580 73.2413	1, 1, 10 3, 1 19; 13.16 33; 2736	28 568 9999; 33 673; 97	1, 31 3, 1922 353341; 7.41953;	1, 34 3, 2312 193.25357; 349.16729;	1, 37 3, 2738 1321.5233; 13.625369;
	$\begin{bmatrix} \xi, \eta \\ x, y \\ L \\ M \end{bmatrix}$	1, 22 3, 968 457·1789; 13.82609;	1, 25 3, 125 138580 73.2413 18 53, 1	1, 0 3, 1 99; 13.16 33; 2736	28 568 9909; 33 673; 97	1, 31 3, 1922 353341; 7.41953; 22 65, 1	1, 34 3, 2312 193.25357; 349.16729; 24 71, 1	1, 37 3, 2738 1321.5233; 13.625369; 26 77, 1
$S_{ ho}$	$\begin{bmatrix} \xi, \eta \\ x, y \\ L \\ M \end{bmatrix}$ $\begin{bmatrix} r \\ t, u \\ x, y \end{bmatrix}$	1, 22 3, 968 457.1789; 13.82609; 16 47, 1 1103, 1106	1, 25 3, 125 138580 73.2413 18 53, 1	1, 10 3, 1 19; 13.16 33; 2736 2 59 406 1739	28 568 (19909; 33 673; 97	1, 31 3, 1922 353341; 7.41953; 22 65, 1 11, 2114	1, 34 3, 2312 193.25357; 349.16729; 24 71, 1 2519, 2522	1, 37 3, 2738 1321.5233; 13.625369; 26 77, 1 2963, 2966
	$\begin{bmatrix} \xi, \eta \\ x, y \\ L \\ M \end{bmatrix}$	1, 22 3, 968 457.1789; 13.82609; 16 47, 1 1103, 1106 13.82609;	1, 25 3, 125 138580 73.2413 18 53, 1	1, 0 3, 1 19; 13.16 333; 2736 2 59 406 1739 33; 2736	28 568 (9909; 33 673; 97 0 0 0, 1 1742 21 6673; 97	1, 31 3, 1922 353341; 7.41953; 22 65, 1 11, 2114 7.41953;	1, 34 3, 2312 193.25357; 349.16729; 24 71, 1	1, 37 3, 2738 1321.5233; 13.625369; 26 77, 1

Case IV, page 204. Chain S_{ρ} , T_r , $S_{\rho+2}$, T_{r+2} , &c.

_								
	ρ	1	3	5	7	9	11	13
	ξ, η	I, I	3, I	5, I	7, I	9, 1	I I, I	13, 1
S_{ρ}	x, y	3, 2	27, 2	75, 2	147, 2	243, 2	363, 2	507, 2
	L	1;	373;	3769;	13.1249;	13.3637;	61.1801;	61.3613;
	M	61;	13.109;	8389;	28753;	37.1993;	13.12157;	409.733;
	r	2	4	6	8	10	12	14
	t, u	I, 2	I, 4	1,6	1,8	1, 10	1, 12	1, 14
\mathbf{T}_r	x, y	11, 13	47, 49	107, 109	191, 193	299, 301	431, 433	587, 589
	L		3.109;	8389;				409.733;
	M				; 13.3637;		61.3613;	
	ρ	15		17	19	21	23	25
	ξ, η	15, 1		17, I	r9, 1	2I, I	23, 1	25, I
S_{ρ}	x, y	675, 2	: 8	367, 2	1083, 2	1323, 2	1587, 2	1875, 2
Ė	L	13.37.8	29; 37.	18061;	709.1489;		13.177601;	97.33457;
	M	520609	; 13.1	93.337;	13.100237;		1237.2221;	
	r	16		18	20	22	24	26
	t, u	1,16		1, 18	I, 20	I, 22	I, 24	1, 26
\mathbf{T}_r	x, y	767, 76	9 97	1,973	1199, 1201	1451, 1453	1727, 1729	2027, 2029
	L	520609	; 13.1	93.337;	13.100237;	37.61.853;	1237.2221;	3808429;
	M	37.1806	1; 709	1489;	229.6949;	13.177601;	97 · 33457;	4441477;
	ρ	27		29	31			
	ξ, η	27, I	2	9, I	31, 1			
S_{ρ}	x, y	2187, 2	25	23, 2	2883, 2	1		
	L	4441477	; 594	1321;	157.49633;			
	M	5150713	; 13.10	9.4813;	8865601;			
	r	28		30	32			
	t, u	1,28	I	, 30	1, 32			
\mathbf{T}_r	x, y	2351, 23	53 269	9, 2701	3071, 3073			
	L	5150713		09.4813;				
	M	5941321	; 157.	49633;	13.337.2293	;;		

46. Bin-Trin-Aurifeuillian Sextan. It will now be shown that certain Sextans (N_{vi}) are expressible at once as Bin-Aurifeuillians (B), Trin-Aurifeuillians (T), and Trin-Aut-Aurifeuillians (T').

By combining the conditions (84), (88a),

the Sextan (N_{vi}) will be found to be expressible at once in the four forms

$$\frac{x^{6} + y^{6}}{x^{2} + y^{2}} = \frac{(\xi^{3})^{4} + 4(\eta^{3})^{4}}{\xi^{4} + 4\eta^{4}} = \frac{(y^{2})^{8} + (3z^{2})^{8}}{y^{2} + 3z^{2}} = \frac{(x^{2})^{3} - (3z^{2})^{5}}{x^{2} - 3z^{2}} \dots (102a),$$
i.e. $N_{vi} = B = T = T'.$

The above conditions are included in the single condition

$$4\eta^4 - \xi^4 = 3z^2 \dots (102b).$$

If ξ_1 , η_1 , z_1 be one known solution of this last equation, a second solution (ξ_2, η_2, z_2) is given * by

$$\xi_2 = \xi_1 \left(27 z_1^4 \sim 4 \xi_1^8\right), \quad \eta_2 = \eta_1 \left(27 z_1^4 \sim 64 \eta_1^4\right), \quad z_2 = z_1 \left\{324 z_1^8 \sim 3 \left(4 \eta_1^4 + \xi^4\right)^4\right\} \\ \dots \dots (1020)$$

Similarly from (ξ_2, η_2, ζ_2) a third solution may be derived; and so on *ad inf.*, but the numbers ξ , η , ζ rise too rapidly to be of practical use.

46a. Ex. $\xi_1 = 1$, $\eta_1 = 1$, $z_1 = 1$ is an obvious solution. This leads to $\xi_2 = 23$, $\eta_2 = 37$, $z_2 = 1551$; $x_2 = 529$, $y_2 = 2738$.

$$N_2 = \frac{529^6 + 2738^6}{529^2 + 2738^2} = \frac{23^{12} + 2^6 \cdot 37^{12}}{23^4 + 2^2 \cdot 37^4} = \frac{2738^6 + 3^3 \cdot 1551^6}{2738^2 + 3 \cdot 1551^2} = \frac{529^6 \sim 3^3 \cdot 1551^6}{529^2 \sim 3 \cdot 1551^2};$$

and the forms B, τ lead to the complete factorisation—

$$N = 13.61.4621:457.32353 = 61.32353:13.457.4621;$$

Another form of second solution† has been derived from the joint solution of

$$2\eta^2 - \xi^2 = \zeta'^2$$
, $2\eta^2 + \xi^2 = \zeta''^2$, $z = \zeta'$, ζ'' ;

but it is too long to quote here. It leads to the second solution in high numbers—

$$\xi_2 = 52487$$
, $\eta_2 = 40573$, $z_2 = 139.323.23183$.

^{*} See Desboves's Mémoire sur la résolution en nombres entiers de l'équation $aX^m + bY^m = cZ^n$, Art. 16, Result (67); pub. in Nouv. Ann. de Mathém., 2^e Sér., t. xviii, 1879.

[†] See Ed. Lucas's Recherches sur l'Analyse Indéterminée, &c., Moulin, 1873, § iv, p. 37.

47. Four-factor Bin-Aurifeuillians, (N).

Take

$$N = x^4 + 4y^4 = X^4 - {x'}^4 = PQRS \dots (103),$$

To construct this form N, take

$$x = 2\eta^4 - \xi^4$$
, $y = 2\xi\eta^3$, $X = 2\eta^4 + \xi^4$, $x' = 2\xi^3\eta$(103a).
 $r = X + 4\xi^2\eta^2$, $s = x' + 2y$

It will be found that this gives N of required form, and that

$$P = X - x'$$
, $Q = X + x'$, $R = r - s$, $S = r + s$ (103b).

As x, x' are evidently interchangeable in the above formulæ, this solution provides also the set of conjugate numbers

where
$$N' = x'^4 + 4y'^4 = X^4 - x^4 = P'Q'R'S', \quad s' = x + 2y \\ P' = X - x, \quad Q' = X + x, \quad R' = r - s', \quad S' = r + s' \\ \dots \dots (103c).$$

Ex. The Tables on pages 270, 271 give numerous Examples of the numbers N, wherein $\xi = 1$ throughout, completely factorised up to very high numbers.

47a. Special factorisable Quartans. Changing y into Y and x' into y in the above formula, they evidently provide for the construction of the following factorisable Quartans along with their Factors (L, M).

$$N = x^4 + y^4 = X^4 - 4Y^4 = LM$$
(103d).

Ex. The Table on page 128 gives numerous Examples of these numbers, along with their factorisation. The formulæ have been slightly modified, as shown at head of Table; the formulæ of the right-hand Table can be used with ξ , η both odd, as in Examples below—

CHAP. VI. Dimorphs, &c., Polymorphs.

48. Dimorphs, &c. A number N which is expressed in two different ways—i.e. for different values of x, y—in the same (algebraic) form, as

$$N = f(x_1, y_1) = f(x_2, y_2)$$
 (104)

is said to be *Dimorph* (in that form). If expressed in three or more different ways in the same form, it is said to be *Trimorph*, &c., or *Polymorph*.

[But note that Automorphs of the 2-ic form (t^2-Du^2) ,—(see Art. 7),—and also mere variant (algebraically interconvertible) forms such as Duans and Half-Duans (Art. 10) and the triple variants of Cubans and Trito-Cubans (Art. 13) are not considered different ways of expression in those forms.]

- 48a. Dimorph Forms, Table of. A Table of 2-ic, 3-ic, 4-tan, 4-tic, and 6-tan (algebraic) Dimorph Forms is given on p. 226, with conditions and references to the articles in the Text, and to the Tables of Examples.
- 49. Polymorph Duans and Cubans. These are the only kinds of n-ans in which Polymorphs are known to exist. Being of the 2-ic forms

$$N_{ii} = a^2 + b^2$$
, N_{iii} and $N'_{iii} = A^2 + 3B^2$ (105),

they are expressible in 2^{r-1} different ways (Art. 8a) in those forms when—(and only when)—they are product of r different odd primes, or prime-powers, and by quite simple Rules.

49a. Polymorph Duans. If
$$N_{ii} = (x_1^2 + y_1^2)(x_2^2 + y_2^2)$$
, then $N_{ii} = (x_1 x_2 \sim y_1 y_2)^2 + (x_1 y_2 + x_2 y_1)^2 = (x_1 x_2 + y_1 y_2)^2 + (x_1 y_2 \sim x_2 y_1)^2 = X_1^2 + Y_1^2 \dots = X_2^2 + Y_2^2$, [a Dimorph] (106).

By similar conformal multiplication by a third factor $(x_3^2 + y_3^2)$, each of the above expressions yields two new ones, thus giving a *Tetramorph*, and so on,

Ex. The smallest Dimorph-Duan is

$$N_{ii} = 65 = 5.13 = (1^2 + 2^2)(3^2 + 2^2) = 1^2 + 8^2 = 7^2 + 4^2$$

and the smallest Tetramorph is

$$\begin{split} N_{ii} &= 1105 = 5.13.17 = (1^2 + 2^2)(3^2 + 2^2)(1^2 + 4^2) \\ &= 9^2 + 32^2 = 23^2 + 24^2 = 31^2 + 12^2 = 33^2 + 4^2. \end{split}$$

49b. Polymorph Cubans. The simplest mode of forming Polymorph Cubans is by aid of their 2-ic form (A^2+3B^2) . Thus, taking

 $N_{iii} = P_1.P_2 = (A_1^2 + 3B_1^2)(A_2^2 + 3B_2^2), \ [P_1, P_2 \ mutually \ prime] \dots \ \ (107).$ Then

$$\begin{split} \mathbf{N}_{iii} &= \left(\mathbf{A}_1 \mathbf{A}_2 \!\sim\! 3 \mathbf{B}_1 \mathbf{B}_2\right)^2 + 3 \left(\mathbf{A}_1 \mathbf{B}_2 + \mathbf{A}_2 \mathbf{B}_1\right)^2 \\ &= \left(\mathbf{A}_1 \mathbf{A}_2 + 3 \mathbf{B}_1 \mathbf{B}_2\right)^2 + 3 \left(\mathbf{A}_1 \mathbf{B}_2 \!\sim\! \mathbf{A}_2 \mathbf{B}_1\right)^2 \\ &= \left(\mathbf{A}_1^2 + 3 \mathbf{B}_2^2\right) \quad \text{[a Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[a Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[a Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]} \\ &= \left(\mathbf{A}_2^2 + 3 \mathbf{B}_2^2\right) \quad \text{[b Dimorph 2-ic form]}$$

Each of these latter 2-ic forms may now be converted into its (triple) Cuban Form by the formulæ of Art. 13. Hereby $N_{\rm iii}$ is expressed as a Dimorph Cuban.

By conformal multiplication by a third factor $P_3 = A_3^2 + 3B_3^2$, (prime to both P_1 , P_2), each of the above 2-ic forms $(\mathbf{A}_1, \mathbf{B}_1)$, $(\mathbf{A}_2, \mathbf{B}_2)$ yields two new 2-ic forms, giving a new N_{iii}

$$N_{iii} = \mathbf{A}_{1}^{\prime 2} + 3\mathbf{B}_{1}^{\prime 2} = \mathbf{A}_{2}^{\prime 2} + 3\mathbf{B}_{2}^{\prime 2} = \mathbf{A}_{3}^{\prime 2} + 3\mathbf{B}_{3}^{\prime 2} = A_{4}^{\prime 2} + 3\mathbf{B}_{4}^{\prime 2}$$
[a Tetramorph 2-ic form] ... (107b],

and each of these last 2-ic forms may be converted into the (triple) Cuban form by the formulæ of Art. 13. Hereby a Tetramorph Cuban N_{iii} is obtained.

49c. Ex. The smallest Dimorph-Cuban is

$$N_{\rm ifi} = 91 = 7.13 = (2^2 + 3.1^2)(1^2 + 3.2^2) = 4^2 + 3.5^2 = 8^2 + 3.3^2,$$

giving

$$N_{HI} = \left(\frac{9^3 - 1^3}{9 - 1} = \frac{10^3 + 1^3}{10 + 1} = \frac{10^3 + 9^3}{10 + 9}\right) = \left(\frac{6^3 - 5^3}{6 - 5} = \frac{11^3 + 5^3}{11 + 5} = \frac{11^3 + 6^3}{11 + 6}\right).$$

The triple Cuban forms of this Dimorph are here shown.

And the smallest Tetramorph-Cuban is

$$\begin{split} \mathbf{N_{iii}} &= 1729 = 7.13.19 = 1^2 + 3.24^2 = 31^2 + 3.16^2 = 23^2 + 3.20^2 = 41^2 + 3.4^2 \\ &= \frac{25^3 - 23^3}{25 - 23} = \frac{32^3 - 15^3}{32 - 15} = \frac{40^3 - 3^3}{40 - 3} = \frac{37^3 - 8^3}{37 - 8}. \end{split}$$

Here only one of the triple Cuban forms of this Tetramorph is shown.

50. Dimorph Cubics. An interesting Problem is to form the Dimorph Cubics

$$N = x^3 + y^3 = x'^3 + y'^3$$
 (108).

Write

$$x + y = \lambda$$
, $x' + y' = \lambda'$,

and
$$x = \frac{1}{2}(\lambda + 2l), \quad y = \frac{1}{2}(\lambda - 2l), \quad x' = \frac{1}{2}(\lambda' + 2l'), \quad y' = \frac{1}{2}(\lambda' - 2l').$$

These lead to
$$\lambda l^2 - \lambda' l'^2 = \frac{1}{12} ({\lambda'}^3 - \lambda^3)$$
...... (108a).

If now numerical values be assigned to λ , λ' , this last becomes a 2-ic Diophantine equation with l, l' as unknowns. If any solution (l, l') can be found for this, then—by conformal multiplication by the "unit form" $\tau^2 - \lambda \lambda' \cdot v^2 = +1$ —an infinite number of solutions (l_1, l_1') , (l_2, l_2') , &c., arise, and hence an infinite series of x, y, x', y'. The Dimorphs N all have the L.C.M. of $\lambda \lambda'$ as a factor.

Ex. (Page 221.) Take
$$\lambda = 1$$
, $\lambda' = 7$; this gives $(2l)^2 - 7 \cdot (2l')^2 = +114$.

The least solution is $11^2-7.1^2=114$, whence $2l_1=11$, $2l_1'=1$. By help of the "unit-form" $8^2-7.3^2=+1$, the series of solutions on page 221 is found, and from them the x, y, x', y'.

50a. Problem. Given a solution (x, y, x', y') of $N = x^3 + y^3 = x'^3 + y'^3$, to find a new Dimorph $\mathbf{N} = X^3 + Y^3 = X'^3 + Y'^3$ such that (109)

$$X = m + x$$
, $Y = m + y$, $X' = mx'$, $Y' = m + y'$... (109a).

The notation at head of page 222 leads to

$$m(x + y) + x^2 + y^2 = m(x' + y') + x'^2 + y'^2$$

From this may be deduced

$$m + \frac{1}{3} \left(\lambda + \lambda' \right) = \frac{2}{3} Z \div \lambda' = \frac{2}{3} Z' \div \lambda = \frac{2}{3} N \div \lambda \lambda' \dots (109b).$$

The Table on page 222 contains numerous examples. The original N in each line may be found as above from the assumed λ , λ' in the middle column.

50b. Trimorph Cubics. The Table at foot of page 221 gives a number of Examples of the Trimorph

$$N = x^3 + y^3 = {x'}^3 + {y'}^3 = {x''}^3 + {y''}^3 = K.M$$
 (110),

formed by a process similar to that of last Article.

51. Factorisation of 2-ic Dimorphs. A number (N) given in two different ways (Art. 7) in the same 2-ic form—[i.e. with same determinant (±D)]—may be readily factorised, as follows. Let

$$N = T_1^2 \mp DU_1^2 = T_2^2 \mp DU_2^2, [T_2 > T_1]$$
 (111).

This leads to

$$\mathbf{N} = \left\{ (\mathbf{T}_1 \mathbf{U}_2)^2 - (\mathbf{T}_2 \mathbf{U}_1)^2 \right\} \div (\mathbf{U}_2^2 - \mathbf{U}_1^2)$$

= $(\mathbf{T}_1 \mathbf{U}_2 - \mathbf{T}_2 \mathbf{U}_1) (\mathbf{T}_1 \mathbf{U}_2 + \mathbf{T}_2 \mathbf{U}_1) \div (\mathbf{U}_2 - \mathbf{U}_1) (\mathbf{U}_2 + \mathbf{U}_1) \quad \dots \quad (111a),$

whereby,—after cancelling out all the factors of the denominator,—N is (usually) resolved into two co-factors.

51a. 2-ic forms of above factors. When the two co-factors of N are both expressible in the same 2-ic form as N itself, their forms may be found as follows:—Let

$$\begin{split} \mathbf{N} &= \mathbf{T}_{1}^{2} \mp \mathbf{D} \mathbf{U}_{1}^{2} = \mathbf{T}_{2}^{2} \mp \mathbf{D} \mathbf{U}_{2}^{2} = \mathbf{L}.\,\mathbf{M},\ \ [\mathbf{T}_{2} > \mathbf{T}_{1}], \\ \mathbf{L} &= t_{1}^{2} \mp \mathbf{D} u_{1}^{2}, \quad \mathbf{M} = t_{2}^{2} \mp \mathbf{D} u_{2}^{2}. \end{split}$$

where

Then, it will be found that-

$$\frac{t_1}{u_1} = \frac{\mathbf{T}_2 + \mathbf{T}_1}{\mathbf{U}_2 - \mathbf{U}_1} = \frac{\mathbf{U}_2 + \mathbf{U}_1}{\mathbf{T}_2 - \mathbf{T}_1} \cdot \mathbf{D}, \quad \frac{t_2}{u_2} = \frac{\mathbf{T}_2 + \mathbf{T}_1}{\mathbf{U}_2 + \mathbf{U}_1} = \frac{\mathbf{U}_2 - \mathbf{U}_1}{\mathbf{T}_2 - \mathbf{T}_1} \cdot \mathbf{D} \dots (111b).$$

These formulæ give apparently only the ratios of the required 2-ic parts (t_1, u_1) , (t_2, u_2) : but, on reducing the fractions to their lowest terms, the numerators give t_1 and t_2 , and the denominators give u_1 and u_2 .

[The uncertainty as to the (\pm) signs of the given T_1 , U_1 , T_2 , U_2 —(see Art. 6c)—causes some uncertainty in applying these formulæ; the results obtained (111b) should be verified by forming the product LM = N. These formulæ are more easily computed than the preceding one (111a), which requires forming the *products* T_1U_2 , T_2U_1 .]

52. Dimorph Quartans. One of the most interesting cases of dimorphism is that of a Dimorph Quartan or Half-Quartan.

$$N_{iv} = x^4 + y^4 = x'^4 + y'^4$$
 (112)

Euler has treated of the mode of constructing these numbers in three *Memoirs (1772-1780), and in the 2nd Memoir

^{*} Euler's Comment. Arithm., Petropol., 1849; t. i, pp. 473-476; t. ii, pp. 281-293 and 450-456.

gives * explicit general formulæ for the sums $(x\pm x')$, $(y\pm y')$ from which those of x, y, x', y' can be at once written down. Mr. Desboves has also treated † this question independently (1880), and has given formulæ for x, y, x', y' identical with Euler's. These are—(in changed notation)—

$$x = \lambda \cdot \left\{ (t^2 + u^2)(2t^5 - t^4u + 2t^3u^2 + 18t^2u^3 - u^5) + 8tu^2(2t^4 + u^4) \right\} \dots (112a),$$

$$y = \lambda \cdot \left\{ (t^2 + u^2)(t^5 - 18t^3u^2 + 2t^2u^3 + tu^4 + 2u^5) + 8t^2u(t^4 + 2u^4) \right\} \dots (112b),$$

$$x' = \lambda \cdot \left\{ (t^2 + u^2)(2t^5 + t^4u + 2t^3u^2 - 18t^2u^3 + u^5) + 8tu^2(2t^4 + u^4) \right\} \dots (112c),$$

$$y' = \lambda \cdot \left\{ (t^2 + u^2)(-t^5 + 18t^3u^2 + 2t^2u^3 - tu^4 + 2u^5) + 8t^2u(t^4 + 2u^4) \right\} \dots (112d),$$
where
$$t, u \text{ are any two (mutually prime) integers}$$
and
$$\lambda = 1, \text{ if } tu = \epsilon; \quad \lambda = \frac{1}{64}, \text{ if } tu = \omega \dots (112e).$$

Note that—If $x = \phi(t, u)$, then

$$y = \phi(u, -t), \quad x' = \phi(t, -u), \quad y' = \phi(u, t) \dots (112f).$$

These formulæ are of the 7th degree, so that x, y, x', y' rise in magnitude rapidly with t, u: they always yield one of x, y and one of x', y' even, so that N is always odd.

Euler's first \ddagger Memoir gives a different general method of constructing these numbers: the formulæ are of the 17th degree \S in the parameter (Euler's b) involved; so it has not been thought worth while to detail them here; they lead to odd values of x, y, x', y', and therefore to Half-Quartans, (since N is even).

^{*} $Op.\ cit.$, t. ii, pp. 288, 289. Euler's p, q, r, s are the present x, x', y, y'; his f, g are the present t, u.

[†] Desboves's Sur la résolution en nombres entiers ou complexes de l'équation $U^n \pm V^n = S^n + W^n$, (Assoen. Franc. pour l'Avancemt. des Sciences, 1880). His U, V, S, W are the present x, y, x', y'; his x, y are the present t, u; but his formula for W requires correction (as above). His first Example contains a misprint (4176 should be 1176).

[‡] Op. cit., t. i, pp. 473-476.

[§] This does not necessarily involve very high numbers in the result; as the x, y, x', y' given by the formulæ sometimes contain a high common factor which may be cancelled out. E.g. Euler's 2nd Example, pp. 475, 476 is incorrectly worked (the last on p. 475—and along with it all that follows—is incorrect): the corrected values (given in t. ii, p. 456) are \Rightarrow 12231; the original incorrect figures are reprinted in M. Desboves's Memoir (above quoted) with a new misprint.

52a. Dimorph Quartans, Arithmetical Factorisation. From the symmetry of the quartan expressions in x, y, and in x', y', the method of Art. 51 may be applied in two ways, so that

$$N = \frac{(xy')^4 - (yx')^4}{(y'^4 - y^4) = (x^4 - x'^4)} = \frac{(xx')^4 - (yy')^4}{(x'^4 - y^4) = (x^4 - y'^4)} = L.M ... (113).$$

These apparently break up into three factors each, for

$$N = \frac{(xy' - yx')(xy' + yx')(x^2{y'}^2 + y^2{x'}^2)}{(y' - y)(y' + y)(y'^2 + y^2)} = \frac{(xx' - yy')(xx' + yy')(x^2{x'}^2 + y^2{y'}^2)}{(x' - y)(x' + y)(x'^2 + y^2)} \dots (113a),$$

where the denominators may be changed respectively to

$$(x-x')(x+x')(x^2+x'^2)$$
, or $(x-y')(x+y')(x^2+y'^2)$ (113b).

But two sets of L, M may be readily formed from the Dimorph (a, b), (a' b') 2-ic partitions of N. Thus if

$$L = \alpha_1^2 + \beta_1^2$$
, $M = \alpha_2^2 + \beta_2^2$; $L' = {\alpha_1'}^2 + {\beta_1'}^2$, $M' = {\alpha_2'}^2 + {\beta_2'}^2$... (113c).

Then, by the formulæ of Art. 51a, the ratios of the several α , β are given by

$$\frac{\alpha_1}{\beta_1} = \frac{{x'}^2 + x^2}{y^2 - y'^2} = \frac{y^2 + {y'}^2}{{x'}^2 - x^2}, \qquad \frac{\alpha_2}{\beta_2} = \frac{{x'}^2 + x^2}{y^2 + {y'}^2} = \frac{y^2 - {y'}^2}{{x'}^2 - x^2} \dots (113d),$$

$$\frac{\alpha_1'}{\beta_1'} = \frac{{x'}^2 + y^2}{x^2 - {y'}^2} = \frac{x^2 + {y'}^2}{{x'}^2 - y^2}, \qquad \frac{\alpha_2'}{\beta_2'} = \frac{{x'}^2 + y^2}{x^2 + {y'}^2} = \frac{x^2 - {y'}^2}{{x'}^2 - y^2} \dots (113e),$$

and the actual values of the several a, β are formed by reducing the above fractions to their lowest terms.

As N is hereby resolved into two co-factors L, M in two different ways, it is evident that these L, M may be usually further resolved (into two co-factors each).

52b. Odd Dimorph Quartans, Algebraic Factorisation. In the case of odd Dimorph Quartans $(xy = \epsilon, x'y' = \epsilon, N_{iv} = \omega)$, where x, y, x', y' are given by (112a-d), the late Mr. C. E. Bickmore discovered* the algebraic resolution of each of L, M into two co-factors, and therefore of N into four co-factors, say—

$$L = L'L'', M = M'M''; N_{iv} = L.M = (L'L'')(M'M'')... (114),$$

^{*} This was communicated to the writer in 1898.

and has presented them in their (a, b), (c, d) partitions as follows—

$$\begin{split} \mathbf{L}' &= \lambda' \cdot \left(t^4 + u^4 \right)^4 \dots \\ \mathbf{L}'' &= \lambda'' \cdot \left\{ \left(t^4 + 14 t^2 u^2 + u^4 \right)^2 + 4^2 \left(t^4 - u^4 \right)^2 \right\} \dots \\ &= \lambda'' \cdot \left\{ \left(3 t^4 + 10 t^2 u^2 + 3 u^4 \right)^2 + 2 \left(2 t^4 - 4 t^2 u^2 + 2 u^4 \right)^2 \right\} \dots \\ \mathbf{M}' &= \mu' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + \left(4 t u \right)^2 \left(t^2 + u^2 \right)^2 \right\} \dots \\ &= \mu' \cdot \left\{ \left(t^4 - 2 t^2 u^2 + u^4 \right)^2 + 2 \left(8 t^2 u^2 \right)^2 \right\} \dots \\ \mathbf{M}'' &= \mu'' \cdot \left\{ \left(t^4 - 2 t^2 u^2 + u^4 \right)^2 + \left(8 t u \right)^2 \left(t^2 + u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 2 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 + 14 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 2 t^2 u u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 - u^2 \right)^2 \right\} \dots \\ &= \mu'' \cdot \left\{ \left(t^4 - 10 t^2 u^2 + u^4 \right)^2 + 2 \left(4 t u \right)^2 \left(t^2 u \right)^2 \right\} \dots$$

[t, u are two (mutually prime) integers]

where
$$\lambda' = \lambda'' = \mu' = \mu'' = 1$$
, when $tu = \epsilon$ $\lambda' = \frac{1}{2}$, $\lambda'' = \frac{1}{256} = \mu''$, $\mu' = \frac{1}{128}$, when $tu = \omega$... (114e).

The following remarkable relation holds between the Residues of L'', M', M'' modulo L'

$$L'' \equiv M' \equiv M'' \equiv 132 (tu)^4 \pmod{L'}, \text{ when } tu = \epsilon \pmod{114f},$$

 $L''/\lambda'' \equiv M'/\mu' \equiv M''/\mu'' \equiv 132 (tu)^4 \pmod{L'/\lambda'}, \text{ when } tu = \omega \pmod{114g}.$

52c. Odd Dimorph Quartans, Complex Factors. The late Mr. Bickmore discovered also the complex 4-tic factors* of the above four algebraic factors L', L'', M', M''; viz.

If ρ be an imaginary root of $\rho^4+1=0$, and $N\phi\left(\rho\right)$ denote the "Norm of $\phi\left(\rho\right)$,"

where $\phi(\rho)$ denotes a 4-tic complex number; then

$$L' = N(t + u\rho), \qquad L'' = N\{t^2 - u^2\} + 2(t^2 + u^2)\rho + 4(t^2 + u^2)\rho^2\} \quad ... \quad (115a),$$

$$M' = N\{(t^2 - u^2) + 2tu(\rho + \rho^2)\}, \quad M'' = N\{(t + u)^2 + (t^2 - u^2)\rho + (t - u)^2\rho^2\} \quad ... \quad (115b).$$

52d. Properties of the small algebraic factor (L'). The small algebraic factor (L') of the odd Dimorph Quartan N_{iv} of Art. 52b being itself a Quartan or Half-Quartan [L' = $t^4 + u^4$, or = $\lambda (t^4 + u^4)$], it follows that every Quartan and Half-Quartan (L') will generate a large odd Dimorph Quartan, whereof it is the least algebraic factor.

Hence also every Dimorph Quartan, say

$$L_1 = t_1^4 + u_1^4 = t_2^4 + u_2^4 = L_2$$

^{*} See note on page lxiii.

will generate two new Dimorph Quartans, say

$$N_1 = x_1^4 + y_1^4 = x_1^{\prime 4} + y_1^{\prime 4}, \quad N_2 = x_2^4 + y_2^4 = x_2^{\prime 4} + y_2^{\prime 4} \dots$$
 (115),

whose least algebraic factors are the equal Quartans $L_1 = L_2$.

52e. Dimorph Quartans, Examples. The Table on p. 127 gives the details* of 16 Examples of these Dimorphs.

Ex. 1 to 13 are examples of formulæ (112a-f) of odd Dimorphs up to 24 figures with the four algebraic factors L', L'', M', M'' completely factorised.

Ex. 14, 15 are Euler's own examples of his first Method.

Ex. 16 is Euler's own example of his third Method (too large to completely factorise).

53. Allied Quartic Dimorphs. The values of x, y, x', y' which yield Dimorph Quartans (Art. 52) give rise obviously to two solutions of the following \dagger Quartic Dimorphs.

1°.
$$x^4 - {x'}^4 = {y'}^4 - {y}^4$$
; 2°. $x^4 - {y'}^4 = {x'}^4 - {y}^4$ (116).

Also, writing

$$1^{\circ}. \quad x=\xi+\xi', \ \, x'=\xi-\xi', \ \, y'=\eta'+\eta, \ \, y=\eta'-\eta \; ;$$

$$2^{\circ}$$
. $x = \xi + \eta'$, $y' = \xi - \eta'$, $x' = \xi' + \eta$, $y = \xi' - \eta$,

the same values of x, y, x', y' yield two solutions of the Dimorphs

1°.
$$\xi \xi' (\xi^2 + {\xi'}^2) = \eta \eta' (\eta^2 + {\eta'}^2);$$
 2°. $\xi \eta' (\xi^2 + {\eta'}^2) = \xi' \eta ({\xi'}^2 + \eta^2) \dots$ (116a).

54. Dimorph Sextans.

By subjecting the Sextan (N_{vi}) to the Pythagorean condition $x^2 = y^2 + z^2$, [x and y odd; z even].....(117),

the Sextan becomes Dimorph as below, and its factorisation is obvious. Its duplicate 2-ic forms (a, b), (A, B), (A', B') are also shown.

^{*} This work has been verified by Miss B. E. Haselden.

[†] This solution is given by Euler in connexion with that of the Dimorph Quartan; op. cit., t. ii, pp. 282, 287-293.

and the two co-factors (L, M) are the twin Cubans (N'_{iii}, N_{iii}) given below along with their three 2-ic partitions.

$$L = N'_{iii}
= (y^3 + z^3) \div (y + z)
= y^2 - yz + z^2
= x^2 - yz
= \left(\frac{x + y - z}{2}\right)^2 + \left(\frac{x - y + z}{2}\right)^2
= (y - \frac{1}{2}z)^2 + 3\left(\frac{1}{2}z\right)^2
= \left(\frac{3x - y - z}{2}\right)^2 - 3\left(\frac{y + z - x}{2}\right)^2$$

$$M = N_{iii}
= (y^3 \sim z^3) \div (y \sim z) \dots (118a)
= x^2 + yz + z^2 \dots (118b)
= \left(\frac{x + y + z}{2}\right)^2 + \left(\frac{y + z - x}{2}\right)^2 \dots (118c)
= (y + \frac{1}{2}z)^2 + 3\left(\frac{1}{2}z\right)^2 \dots (118d)
= \left(\frac{3x - (y \sim z)}{2}\right)^2 - 3\left(\frac{x - (y \sim z)}{2}\right)^2 \dots \dots (118e).$$

Note that $N_{vi} = \frac{1}{2}(x^4 + y^4 + z^4) = (xy)^2 + (xz)^2 - (yz)^2 \dots (118f).$

- **54a.** Factorisation of Dimorph Sextans. The Table on pages 190–194 gives the elements (x, y, z) of the Pythagorean $x^2 = y^2 + z^2$, and the complete factorisation of the twin factors (L, M) of all the Dimorph Sextans (N_{vi}) thence arising up to the limit x = 2441; and thence up to x = 2917 gives only those cases in which L and M $\Rightarrow *9.10^6$.
- **54b.** Allied with the Dimorph Sextan (N_{vi}) is the group of four equalities

$$\begin{split} & (\xi^4 + \eta^4 + \zeta^4)^2 = ({x'}^2 + {y'}^2 + {z'}^2) = 2 \, ({x'}^4 + {y'}^4 + {z'}^4) = 2 \, (\xi^8 + \eta^8 + \zeta^8) \quad (119). \\ \text{Here} \quad & N_{\text{vi}} = (\zeta^6 + \xi^6) \div (\zeta^2 + \xi^2) = (\zeta^6 + \eta^6) \div (\zeta^2 + \eta^2) = \frac{1}{2} \, (\xi^4 + \eta^4 + \zeta^4) \quad (119a). \end{split}$$

The Table at foot of page 129 gives numerous solutions $(\xi, \eta, \zeta, x', y', z')$ of (119) with Rules for their formation.

55. Dimorph Sextans in Chains. Dimorph Sextans do not appear to form Chains among each other, nor yet in combination with either Trin-Aurifeuillian Sextans or Sext-Aurifeuillians. But Dimorph Sextans do form Chains in combination with Bin-Aurifeuillian Sextans, alternate Links being taken from each form: these forms will be denoted by B, D.

^{*} Being the limit of the large Factor-Tables existing up to the time of publication of Lehmer's large Tables.

56. Simple Bin-Aurifeuillian (B) cum Dimorph (D) Sextan Chain.

$$\begin{split} \mathbf{B} &= (y_r^6 + 1^6) \div (y_r^{'2} + 1^2) = \mathbf{L}_r^\prime.\,\mathbf{M}_r^\prime, \, \text{where} \,\, y_r^\prime = 2\eta_r^2 = 2r^2, \, [\eta_r = r] \, \dots \, (120a), \\ \mathbf{D} &= (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = \mathbf{L}_r.\,\mathbf{M}_r, \end{split}$$

where
$$x = (r+1)^2 + r^2$$
, $y = 2r+1$, $z = x-1$... (120b).

For the formulæ for L'_r , M'_r see Art. 42a, and for those for L_r , M_r see Art. 54. These give $M'_r = L_r$, $M_r = L'_{r+1}$, showing the Chain.

56a. Ex. (Page 198.) The Table gives only the elements (r, x, y) required for forming the co-factors L'_r , M'_r , L_r , M_r of B and D. The Table below gives fuller detail for a few values of r. The actual values of L'_r , M'_r are taken from the Table on pages 172, 173; those of L_r , M_r are taken from the Table on pages 190–194.

Γ	r =	1	2	3	4	5	
1	$y_r' = 2r^2$	2	8	18	32	50	
ı	(L'_r, M'_r)	1:13;	37:109;	229:457;	13.61:1321	; 13.157:3061;	
T	$\int x_r, y_r, z_r$	5, 3, 4	13, 5, 12	25, 7, 24	41, 9, 40	61, 11, 60	
	(L_r, M_r)	13:37;	109:229;	457:13.61;	1321:13.15	7; 3061:13.357;	
Γ	r =		35		36	37	
١,	$y_r' = 2r^2$		2450	:	2592	2738	
	L_r', M_r		18637: 13.37.128		1:6907753;	7296697: 77 020 69;	
ŀ	$\int x_r, y_r, z_r$	252	1,71,2520	2665,	73, 2664	2813, 75, 2812	
	L_r, M_r	13	37.12841: 65343		3:7296697;	7702069: 13.241. 2 593;	• • •

This Table stops at r=37, giving x=2813, being the limit for which complete factorisation of the L_r , M_r of D is available from the Table of D on pages 190–194.

The elements (r, x, y) connecting the B, D are, however, shown on page 198 without a break up to r = 128, x = 33025. It is clear that the L_r , M_r of D up to this high limit may be taken from the Table of B on pages 172, 173 (from the connexion $M'_r = L_r$, $M_r = L'_{r+1}$).

56b. General Bin-Aurifeuillian (B) cum Dimorph (D) Sextan Chain.

Here

B =
$$(x_{\rho}^6 + y_{\rho}^6) \div (x_{\rho}^2 + y_{\rho}^2) = L_{\rho} \cdot M_{\rho}; \quad x_{\rho} = \xi_{\rho}^2, \quad y_{\rho} = 2\eta_{\rho}^2; \quad \rho = \omega \dots$$
 (121a),
D = $(x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = L_r \cdot M_r; \quad x_r^2 = y_r^2 + z_r^2, \quad r = \rho + 1 = \epsilon \dots$ (121b).

Here two classes arise

CLASS 2°. In B;
$$y_{\rho} = 2\eta_{\rho}^2 = 2\eta^2 \ (const.)$$
, $\xi_{\rho+2} = \xi_{\rho} + 2\eta = \omega$ (121e).
In D; $u_r = u = \eta \ (const.)$; $t_{r+2} = t_r + 2u$;

 t_r , u_r are one odd, one even.

$$x_r = t_r^2 + u_r^2 = \omega, \ y_r = t_r^2 - u_r^2 = \omega, \ z_r = 2t_r u_r \dots (121 \mathrm{f}).$$

Hereby in both classes a Chain is established given by

$$M_{\rho}' = L_r$$
, $M_r = L_{\rho+2}'$.

56c. Ex. The Tables on pages 199, 200 give the elements $(\rho, \xi_{\rho}, t_r, x_r)$ of a number of these Chains, (Class 1° on page 199, Class 2° on page 200), from which the co-factors L'_{ρ} , M'_{ρ} of B and L_r , M_r of D may be computed, with the help of the other elements $(\eta_{\rho}, x_{\rho}, y_{\rho}, u_r, y_r, z_r)$, as above, from the formulæ of Arts. 42a, 54.

The factorisation of L_{ρ} , M_{ρ} may be taken from the Table on pages 174–179, and that of L_{r} , M_{r} from the Table on pages 190-194. The Chain-elements on pages 199, 200 are given up to the limits for which those factorisations are available.

Detail Ex. Fuller details of the first few Links of the first Chain of each Class 1° , 2° are given in the short Tables below, sufficient to show the Chain-property.

	ρ	1	3	5	7	9 .	
199.	$\{\xi_{\rho}, \eta_{\rho}\}$	3, 1	3, 4	3, 7	3, 10	3, 13	
Page	$\mathbb{B}\{x_{\rho}, y_{\rho}\}$	9, 2	9, 32	9, 98	9, 200	9, 338	
	(L'_{ρ}, M')	37:13.13;	409:2377;	6073:15061;	13.37.61: 54421;	73.1237: 97.1489;	
lo:	$\int t_r, u_r$	5, 3	11,3	17, 3	23, 3	29, 3	
CLASS	$D\{x_r, y_r, z_r\}$	17, 8, 15	65, 56, 33	149, 140, 51	269, 260, 69	425, 416, 87	
CL	$\lfloor \mathbf{L}_r, \mathbf{M}_r \rfloor$	13.13:409;	2377:6073;		54421: 73.1237;	97.1489: 157.1381;	

200.		ρ	1	3	5	7	9	
		$\{\xi_{\rho}, \eta_{\rho}\}$	1, 1	3, 1	5, 1	7, I	9.1	
Page	B∢	x_{ρ}, y_{ρ}	I, 2	9, 2	25, 2	49, 2	81, 2	
1		(L'_{ρ}, M'_{ρ})	1:13;	37:13.13;	409:13.73;	1789:3217;	5233:8221;	
0,2		$\int t_r, u_r$	2, I	4, I	6, і	8, I	10, I	
CLASS	D	x_r, y_r, z_r	5, 3, 4	17, 15, 8	37, 35, 12	65, 63, 16	101, 99, 20	
CL		(L_r, M_r)	13.37;	13.13:409;	13.73:1789;	3217:5233;	8221:13.937;	

57. Dimorph Sums of 4th Powers. $\Sigma(x^4) = \Sigma(x'^4)$.

Tables of Dimorph Sums of several (3, 4, ... 7) fourth powers, with Rules for their formation, are given on pages 273 (at foot) and 274.

58. Dimorph Trinomial Quartic Forms. A List of such algebraic forms is given on page 226. Numerical Tables of three Forms, with Rules for their formation, and copious numerical Examples, are given on pages 223 to 225, as below. Complete factorisation is given in each case.

P. 223.

P. 224.

N =
$$x^4 - kx^2y^2 + y^4 = {x'}^4 - k{x'}^2{y'}^2 + {y'}^4$$
; $[k = a^2 + b^2, x = x']$ (122).
Least solutions for every $k = a^2 + b^2 \neq \Box$, and $\Rightarrow 101$; $[a \text{ prime to b}]$.

N = $ax^4 - x^2y^2 + ay^4 = ax'^4 - x'^2y'^2 + ay'^4$; $[a = a^2 + \beta^2, x = a\xi = x']$ (123). Least solutions for every $a = a^2 + \beta^2 \neq \Box$, and $\Rightarrow 101$; $[a \text{ prime to } \beta]$. P. 225.

$$\begin{split} \mathbf{N} &= \mathbf{X}^4 + \mathbf{K} \mathbf{X}^2 \mathbf{Y}^2 + \mathbf{Y}^4 = \mathbf{X'}^4 + \mathbf{X'}^2 \mathbf{Y'}^2 + \mathbf{Y'}^4; \ [(\mathbf{K} + 2)(2\mathbf{K} - 12) = \alpha^2 + \beta^2] \\ \mathbf{N} &= \frac{1}{16} (ax^4 - kx^2y^2 + ax^4) = \frac{1}{16} (ax'^4 - kx'^2y'^2 + ay'^4); \\ \mathbf{K} + 2 &= a, \ (2\mathbf{K} - 12) = k, \ ak = \alpha^2 + \beta^2, \ [a \ \text{prime to} \ k, \ \alpha \ \text{prime to} \ \beta]. \\ \text{Several solutions for} \ a \geqslant 26, \ k \geqslant 36, \ \mathbf{K} \geqslant 24. \end{split}$$

The three above Dimorphs are all symmetric functions in x, y. The only solutions obtained are those in which x = x'. It will be seen that solutions with -k are easier than those with +K.

- **59.** Dimorph Sums and Diffces. A Table of Dimorph Sums and Differences of two n-ans, viz. of N_{iv} and N_{vi} , of N_{viii} and N_{xii} , &c., with Rules for their formation, is given on page 276.
- **60.** Dimorph Bin-Aurifeuillians. These may be found as follows

As x', y' are supposed mutually prime, this involves

$$x' = \tau^2, \quad y' = v^2, \quad y = \tau v,$$
(1955)

whence

$$\tau^4 - 2v^4 = x^2$$
 (125a).

If τ_1 , v_1 , x_1 be one known solution of this last equation, a second solution (τ_2, v_2, x_2) is given by

$$au_2 = au_1^4 + 2v_1^4, \ v_1 = 2 au_1v_1x_1, \ ext{where} \ x_1 = \sqrt{ au_1^4 - 2v_1^4} = t_1... \ (125 ext{b}).$$

A third solution may be derived in the same way from the second, and so on ad inf., but the numbers rise too rapidly to be of practical use.

80a. Ex. A few solutions are shown in the Table below.

Nos. 1, 5, 7 are basic solutions (i.e. not derivable from a lower solution).

Nos. 2, 3, 4 are derived in succession from No. 1, and No. 6 is derived from No. 5.

No.	$ au_1$, v_1 , t_1	$ au_2$, $ au_2$, t_2	$x = t_2, y = au v$	x' , y'
1 2 3 4 5 6 *7	., ., ., . 1, 1, 1 3, 2, 7 113, 84, 7967 ., ., . 1, 13, 239	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	239, 13	1, 1 9, 4 12769, 7056 x', y' 1, 169 x', y' x', y'

The dimorphism aids greatly in factorisation; for N = L.M = L'.M' = N' algebraically; and the factors common to L, M and L', M' can be found by the process of G.C.M. Thus

$$\begin{split} \mathbf{N}_2 &= 5.37.41; \ \mathbf{N}_3 = 5.277.389.733.1553.59513; \ \mathbf{N}_5 = 5.37.41.277.1553; \\ \mathbf{N}_7 \ \mathrm{has} \ \ x = t_2 = 2750257, \ \ y = 2048075, \ \ x' = 1803649, \ \ y' = 2325625, \end{split}$$

giving $N_7 = 389.733.59513.78767173.9547977$?

[Character of the two large factors not known.]

^{*} Solution No. 7 is given in Lebesgue's Paper, Résolutions des Equations Biquadratiques, pub. in Journal des Mathém. Pures et Appliquées, t. 18, p. 83.

61. Trin-Aurifn. Dimorphs.

Let
$$N = x^4 - 3x^2y^2 + 9y^4 = x'^4 - 3x'^2y'^2 + 9y'^4 = N'$$
 (126).

Expressing N, N' in two different ways in the form (A²+3B²),

$$\mathbf{N} = (x^2 - 3y^2)^2 + 3(xy)^2 = (x'^2 - \frac{3}{2}y'^2)^2 + 3(\frac{1}{2}y'^2)^2 = \mathbf{N}', \ [y' = \epsilon].$$

Hereby
$$(x + \frac{1}{2}y)^2 - 13(\frac{1}{2}y)^2 = x'^2$$
, $[x, x' \text{ both } \omega \text{ and } \neq 3\omega; y, y' \text{ both } \epsilon]$ (126b).

The general solution of this Diophantine is

$$x + \frac{1}{2}y = m^2 + 13n^2$$
, $\frac{1}{2}y = 2mn$, $x' = m^2 - 13n^2$,
 $[m, n \text{ are one } = \omega, \text{ one } = \epsilon] \dots$ (126c).

Also
$$xy = \frac{3}{2}y'^2$$
 involves $x = \xi^2$, $y = 6\eta^2$, $y' = 2\xi\eta$, $[\xi = \omega]$;

and y = 4mn involves one of $m, n = 3\mu^2$, one $= 2\nu^2$.

Hereby
$$y = 4mn = 6\eta^2 = 24\mu^2\nu^2$$
, $x = 9\mu^2 + 52\nu^2 - 12\mu^2\nu^2 = \xi^2$... (126d).

One solution is given by $\mu = 1$, $\nu = 1$; giving

$$x = 49$$
, $y = 24$, $x' = 43$, $y' = 28$.

$$N_1 = L_1 M_1 = 601.7657$$
; $N' = 589.7813$; $N = 13.19.31.601$.

But, it does not seem easy to satisfy both (126d) in a general manner.

62. Dimorph Aurifeuillian Factor (L, M).

When a pair of successive Links (N_r, N_{r+1}) of any Aurifeuillian Chain are expressed in the form

$$N_r = L_r M_r = P_r^2 - Q_r^2$$
, $N_{r+1} = L_{r+1} M_{r+1} = P_{r+1}^2 - Q_{r+1}^2$

whereby $M_r = P_r + Q_r$, and $L_{r+1} = P_{r+1} - Q_{r+1}$,

and
$$M_r = L_{r+1}$$
, [by the Chain-property (63)].

Also, if $M_r = f(\xi_r, \eta_r)$, then $L_{r+1} = f(\xi_{r+1} - \eta_{r+1})$, [by (82c)].

Hereby $M_r = L_{r+1}$ is seen to be *Dimorph* (for all values of r) (127).

[This is a property of all Aurifeuillian Chains.]

62a. Indeterminate 4-tic Equations. The Dimorph Aurifeuillian Factors which arise from Sextans,—being expressions, each of 4th degree in the auxiliaries (ξ, η) —, the equation (127) is evidently an indeterminate equation of 4th degree in ξ_r , η_r , ξ_{r+1} , η_{r+1} with known solution (ξ, η) .

[The Tables of Aurifeuillian Chains arising from Sextans furnish numerous Examples.]

63. Dimorph Products. $\Pi(N) = \Pi(N')$.

By this term is meant a number (N) expressible in two different ways as a product of r numbers $(N_1, N_2, ...)$ all of same functional form in their elements (x_r, y_r) , so that

$$\mathbf{N} = \Pi (N_r) = N_1 N_2 N_3 \dots N_r = N_1' N_2' N_3' \dots N_r' = \Pi (N_r) \dots (128),$$
 where
$$N_r = \phi (x_r, y_r), \quad N_r' = \phi (x_r', y_r').$$

63a. Dimorph Bin-Aurifeuillian and Trin-Aurifeuillian Products.

A number of Examples of these are given on the following pages:

Bin-Aurifns., pp. 104, 105; Trin-Aurifns., p. 154;

along with the Rules for their formation.

They are presented in the following form

$$\frac{N_1 N_3 N_5 \dots N_{2r+1}}{N_0 N_2 N_4 \dots N_{2r}} = \frac{N_a}{N_\beta} \dots (129),$$

where, in the numbers $N_0 \dots N_{2r+1}$ one of the x_r, y_r is constant throughout, and the whole set of the other element $(y_r \text{ or } x_r)$ are derived in succession from the starting y_0 or x_0 ; whilst the N_α , N_β have special elements.

63b. Dimorph Quartan and Sextan Products. $\Pi(N_r) = \Pi(N'_r)$. A number of Examples of each of these kinds is given, viz.

Quartans and Half-Quartans at foot of page 272; Sextans at foot of page 275.

These suffice to prove the existence of these Dimorphs: but no Rule has been found for their formation.

CHAP. VII. Product-Forms.

64. Product-Forms. [$\mathbf{N} = \Pi(N_r)$].

wherein **N** and $N_1, N_2, ... N_r$ are all functions of same form in their (x, y) elements,

and let
$$\mathbf{N} = N_1. N_2. N_3... N_r = \Pi(N_r)$$
 (130a).

Then **N** is said to be a *Product-Form*.

65. Product-Duans and -Cubans. The salient property of these is common to all pure 2-ic forms $(T^2 \mp DU^2)$, viz.

Every Dimorph, and every Polymorph, of (T² = DU²) is also a *Product-*Form of same type(131).

This is evident from the mode of formation, as is explained with examples in Art. 49a, b in case of Duans and Cubans.

This property is peculiar to 2-ic forms.

65a. Product-Cubics.
$$\mathbf{N} = \mathbf{N}_1 \cdot \mathbf{N}_2 \cdot \mathbf{N}_3 \dots = \Pi(\mathbf{N}_r)$$
.

Let
$$\mathbf{N} = X^3 + Y^3$$
; $N_1 = x_1^3 + y_1^3$, ..., $N_r = x_r^3 + y_r^3$ (132).

The Tables on p. 265 give a number of Examples with 2 or 3 factors (N_1, N_2, N_3) and one with 4 factors, with formulæ for their formation.

The elements (x_1, y_1) of N_1 are taken at random: but those of the successive factors are N_2 , N_3 , N_4 are taken such that—

$$x_2 - y_2 = x_3 - y_3 = x_4 - y_4 = 1.$$

It will be seen that the factors N₂, N₃, N₄ increase rapidly in magnitude.

66. Product-Quartans, Half-Quartans, and Sextans.

A few Examples of each of these will be found in the Tables as follows:—

For N_{iv} and ½N_{iv}, at top of p. 272; For N_{vi}, at top of p. 275; sufficient to show the existence of such Product-Forms; but no general Rules have been found for their formation.

67. Product Bin-Aurifeuillians, ($\mathbf{N} = N_1 N_2$).

Let
$$\mathbf{N} = x^4 + 4y^4 = L.M$$
, $N_1 = x_1^4 + 4y_1^4$, $N_2 = x_2^4 + 4y_2^4$.

To construct the product-form $\mathbf{N} = N_1 N_2$.

Assume
$$L = N_1, M = N_2 \dots (133).$$

Here $L = (x-y)^2 + y^2$, $M = (x+y)^2 + y^2$, (algebraically *unique*); whilst N. N. each have two (algebraic) (a. b) forms viz

whilst
$$N_1$$
, N_2 each have two (algebraic) (a, b) forms, viz.

$$N_1 = (x_1^2)^2 + (2y_1^2)^2 = (x_1^2 - 2y_1^2)^2 + (2x_1y_1)^2 = N'.$$

$$N_2 = (x_2^2)^2 + (2y_2^2)^2 = (x_2^2 - 2y_2^2)^2 + (2x_2y_2)^2 = N_2'.$$

Hence four systems of equations arise

I.
$$L = N_1$$
, $M = N_2$; III. $L = N_1$, $M = N_2'$
II. $L = N_1'$, $M = N_2$; IV. $L = N_1'$, $M = N_2'$ (133a).

The 2-ic parts (a, b) of L, M are now to be equated to the 2-ic parts of N_1 , N'_1 , N'_2 , N'_2 respectively.

As the a, b are interchangeable, and may be either + or -, numerous Cases arise, (16 in each System): so it must suffice to consider *three* Cases of System I.

I. Here

$$(x-y)^2 + y^2 = (x_1^2)^2 + (2y_1^2)^2, \quad (x+y)^2 + y^2 = (x_2^2)^2 + (2y_2^2)^2...$$
 (134).

The general solutions of the three Cases (i, ii, iii) are given below in terms of two arbitrary integers m, n (one odd, one even).

 $[x, y, x_1, x_2 \text{ all } odd, y_1 \text{ or } y_2 \text{ even}].$

67a. Ex. The Table below gives a number of fully factorised Examples of each Case with low values of m, n.

Case.	m, n	x_1	y_1	x_2 ,	y_2	x,	y	N_1	N_2
i		15, 35,	4 6 6 12	17, 37, 13, 25,	4 6 6 12	257, 1297, 97, 337,	32 72 72 288	5:29; 137:13.29; 877:17.101; 37:157; 13.13:5.101; 221:1061;	13:53; 5.37:457; 997:5.13.29; 5.17:397; 313:17.89; 461:1621;
ii	1, 4 3, 2 3, 4	15, 5, 1	8 12 24	15, 5, 7,	17 13 25	313, 1201,	225 25 49	113:593; 193:433;	29:89; 293:13.101; 233:17.29; 13.73:17.97; 5.181:13.257;
iii	1, 2 1, 4 3, 2 3, 4 5, 2	17, 13, 1 25, 2	8 12 24	17, 13, 25,	15 5 7	161,	289 169 625	577:13.229;	17:97; 229:1249; 89:349; 373:29:37; 5.101:17:173;

68. Product-Bin-Aurifeuillians,
$$(N = N_1 N_2 N_3)$$
.

Step I. Construct the product-form $*N_{12} = N_1 \cdot N_2$ by the formulæ of Cases i, ii, iii of Art. 67, writing x_{12} , y_{12} for the x, y of each of those formulæ.

Next, multiply together the $(x \sim y)$, (x+y) of each of those Cases, giving

i.
$$x_{12}^2 - y_{12}^2 = (x_1 x_2)^2$$
; ii. $x_{12}^2 - y_{12}^2 = (2y_1 y_2)^2$; iii. $y_{12}^2 - x_{12}^2 = (2y_1 y_2)^2$ (136).

Step II. To adapt the above to forming the product $N_{123}={}^*N_{12}.N_3,$

^{*} The subscripts 12, 123 are not to be read arithmetically; they are symbolic, the subscript 12 indicates that $N_{12}=N_1.N_2$, and $x_{12},\,y_{12}$ are the elements of N_{12} ; the subscript 123 indicates $N_{123}=N_{12}.N_3$, and $x_{123},\,y_{123}$ are its elements.

In i; take $x_3 = x_{12}$, $y_3 = x_1 x_2$, giving $x_3^2 = y_{12}^2 + y_3^2$... (136a).

In ii; take $x_3 = x_{12}$, $y_3 = 2y_1y_2$, giving $x_3^2 = y_{12}^2 + y_3^2$... (136b).

In iii; take $x_3 = x_{12}$, $y_3 = 2y_1y_2$, giving $x_3^2 = y_{12}^2 + y_3^2$... (136c).

Next, with N_{12} formed as by i, ii, iii, proceed to form $*N_{123} = N_{12} \cdot N_3$. This may be done by each of Cases ii, iii by writing x_{123} , y_{123} for the x, y, and x_{12} , y_{12} , x_3 , y_3 for the x_1 , y_1 , x_2 , y_2 respectively in the formulæ of those Cases, giving finally

ii. $x_{123} = y_3^2 + y_{12}^2$, $y_{123} = y_3^2 - y_{12}^2$, provided $x_3^2 = y_3^2 - y_{12}^2$. This condition is satisfied by Result (136c) above, (Case iii).

iii. $x_{123} = y_3^2 - y_{12}^2$, $y_{123} = y_3^2 + y_{12}^2$, provided $x_3^2 = y_3^2 + y_{12}^2$. This condition is satisfied by both Results (136a, b) above, (Cases i, ii).

Hereby it is seen that-

When N_{12} is formed by Case i, then $N_{123}=N_{12},N_3$ may be formed by Case iii.

When N_{12} is formed by Case ii or iii, then $N_{123} = N_{12}$. N_3 may be formed by Case iii or ii respectively.

68a. Continued Product-Bin-Aurifns., $(N_{123...r} = N_1N_2N_3...N_r)$. The process of the last Article can be continued indefinitely. For—

- (1) Starting to form N_{12} by Case i, the process can be continued under Case iii.
- (2) Starting to form N_{12} by Case ii or iii, the process can be continued under Case iii or ii respectively.
- (3) The next step falls under Case ii or iii respectively; and may be continued indefinitely, using Cases ii, iii alternately.

Ex. The Table below gives three Examples up to the 4th order (N_{1234}) completely factorised: the first starting with Case i, the second with Case ii, the third with Case iii. The final N_{1234} has 8 algebraic factors, viz. the L, M of the four components N_1 , N_2 , N_3 , N_4 .

Case.	x_1, y_1	x_2, y_2	x_{12}, y_{12}	x_3 , y_3	x_{123}, y_{123}	x_4 , y_4	x_{1234} , y_{1234}
i						161 , 240 63841 : 218401 ;	141121, 25921
ii	3, 4	3, 5 29:89;	41, 9	41 , 40 1601 : 8161 ;	1519, 1681	1519 , 720 1156801 : 5531521 ;	3544164, 2307361
iii	5 , 3 13:73;	5, 4 17:97;	7, 25	7 , 24 5.173:29.53;	1201, 49	1201 , 1200 337·4273:7204801;	1437599, 144 2401

^{*} See foot-note on previous page.

69. Product-Trin-Aurifeuillians, ($\mathbf{N} = N_1 \cdot N_2$).

Let
$$\mathbf{N} = x^4 - 3x^2y^2 + 9y^4 = \text{L.M}$$

 $\mathbf{N}_1 = x_1^4 - 3x_1^2y_1^2 + 9y_1^4, \quad \mathbf{N}_2 = x_2^4 - 3x_2^2y_2^2 + 9y_2^4$ (137).

To construct the product-form $N = N_1 N_2$, assume

$$L = N_1, M = N_2 \dots (138).$$

Express L, M, N₁, N₂ in the form (A^2+3B^2) .

Here L, M each have three (A, B), according as $x = \epsilon$, $y = \epsilon$, $xy = \omega$.

And N_1 , N_2 each have four (A, B) forms, one general, and three depending on whether their $x = \epsilon$, $y = \epsilon$, $xy = \omega$.

To solve
$$L = N_1$$
, $M = N_2$, —

Any pair of the 2-ic parts (A) of L, N_1 may be equated, and any pair of the 2-ic parts (A) of M, N_2 may be equated: the corresponding 2-ic parts (B) of L, N_1 must then be equal, and those of M, N_2 must be equal. And each of the A and B numbers may be taken either + or -.

A great number of separate Cases thus arise: it must suffice here to consider only four of these.

Case i. y, y_1 , y_2 all even.

$$L = (x - \frac{3}{2}y)^2 + 3(\frac{1}{2}y)^2 = (x_1^2 - \frac{3}{2}y_1^2)^2 + 3(\frac{3}{2}y_1^2)^2 = N_1 \dots (139a).$$

$$\mathbf{M} = (x + \frac{3}{2}y)^2 + 3(\frac{1}{2}y)^2 = (x_2^2 + \frac{3}{2}y_2^2)^2 + 3(\frac{3}{2}y_2^2)^2 = \mathbf{N}_2 \dots (139b).$$

Case ii. y, x_1 , x_2 all even.

$$L = (x - \frac{3}{2}y)^2 + 3(\frac{1}{2}y)^2 = (\frac{1}{2}x_1^2 - 3y_1^2)^2 + 3(\frac{1}{2}x_1^2)^2 = N_1 \quad (139c).$$

$$\mathbf{M} = (x + \frac{3}{2}y)^2 + 3(\frac{1}{2}y)^2 = (\frac{1}{2}x_2^2 - 3y_2^2)^2 + 3(\frac{1}{2}x_2^2)^2 = \mathbf{N}_2 \quad \dots \quad (139d).$$

Case iii. y_1 even, the rest odd.

$$\mathbf{L} = \left\{ \frac{1}{2} (x - 3y) \right\}^2 + 3 \left\{ \frac{1}{2} (x - y) \right\}^2 = (x_1^2 - \frac{3}{2} y_1^2)^2 + 3 \left(\frac{3}{2} y_1^2 \right)^2 = \mathbf{N}_1 \dots (139e).$$

$$\mathbf{M} = \left\{ \frac{1}{2} (x + 3y) \right\}^2 + 3 \left\{ \frac{1}{2} (x + y) \right\}^2 = \left\{ \frac{1}{2} (x_2^2 + 3y_2^2) \right\}^2 + 3 \left\{ \frac{1}{2} (x_2^2 - 3y_2^2) \right\}^2 = \mathbf{N}_2$$

$$\dots \dots \dots (139f).$$

CASE iv. x_1 even, the rest odd.

$$\mathbf{L} = \left\{ \frac{1}{2} (x - 3y) \right\}^2 + 3 \left\{ \frac{1}{2} (x - y) \right\}^2 = \left(\frac{1}{2} x_1^2 - 3y_1^2 \right)^2 + 3 \left(\frac{1}{2} x_1^2 \right)^2 = \mathbf{N}_1 \dots (139g).$$

$$\mathbf{M} = \left\{ \frac{1}{2} (x + 3y) \right\}^2 + 3 \left\{ \frac{1}{2} (x + y) \right\}^2 = \left\{ \frac{1}{2} (x_2^2 + 3y_2^2) \right\}^2 + 3 \left\{ \frac{1}{2} (x_2^2 - 3y_2^2) \right\}^2 = \mathbf{N}_2$$
...... (139h).

The equations $L=N_1$, $M=N_2$ may now be solved by equating the *like* 2-ic parts in each (A to A, B to B). This involves in each Case one Diophantine condition of form $\gamma^2=a^2+\beta^2$, the general solution of which is expressible in two arbitraries m, n, (one odd, one even).

Case i.
$$x - \frac{3}{2}y = x_1^2 - \frac{3}{2}y_1^2$$
, $x + \frac{3}{2}y = x_2^2 - \frac{3}{2}y_2^2$, $y = 3y_1^2 = 3y_2^2$, giving $x = \frac{1}{3}(2x_1^2 + x_2^2)$, provided $3y = x_2^2 - x_1^2 = (3y_1)^2 = (3y_2)^2$... (140a). Hence $x_2 = m^2 + n^2$, $x_1 = m^2 \sim n^2$, $y_1 = y_2 = \frac{2}{3}mn$, $[mn = 3i]$. $x = m^4 - \frac{2}{3}m^2n^2 + n^4 = x_1^2 + 3y_1^2$, $y = \frac{4}{3}m^2n^2$.

Case iii.
$$-(x-3y)=2x_1^2-3y_1^2, \quad x+3y=x_2^2+3y_2^2, \quad x-y=3y_1^2, \\ -(x+y)=x_2^2-3y_2^2,$$

giving
$$x=y_1^2+2y_2^2$$
, $y=x_1^2=x_2^2$, provided $y_2^2-y_1^2=x_1^2=x_2^2$... (140c). Hence $y_2=m^2+n^2$, $y_1=2mn$, $x_1=x_2=m^2\sim n^2$, $[mn=3i]$.
$$x=m^4+10m^2n^2+n^4=y_2^2+2y_1^2$$
, $y=(m^2\sim n^2)^2$.

Case iv.
$$x - 3y = x_1^2 - 6y_1^2$$
, $x + 3y = x_2^2 + 3y_2^2$, $x - y = x_1^2$, $x + y = x_2^2 - 3y_2^2$, giving $x = \frac{1}{3}(2x_1^2 + x_2^2)$, $y = 3y_1^2 = 3y_2^2$, provided $x_2^2 - x_1^2 = (3y_1)^2 = 3y_2^2$. (140d). Hence $x_2 = m^2 + n^2$, $x_1 = 2mn$, $y_1 = y_2 = \frac{1}{3}(m^2 \sim n^2)$, $[m^2 \sim n^2 = 3i]$.
$$x = \frac{1}{3}(m^4 + 10m^2n^2 + n^4) = x_1^2 + 3y_1^2$$
, $y = \frac{1}{3}(m^2 \sim n^2)^2$.

Ex. The Table at foot of page 154 gives three Examples of each Case (in slightly different notation): two in quite low numbers, and one in very high numbers. [The term Compound Trin-Aurifeuillians has been used at head of this Table.]

Chap. VIII. Perfect Squares.

- 70. Perfect Squares. The question of Perfect Square Forms is one of considerable interest. A Table of Impossible Squares, and a Table of Possible Squares of degrees 2, 3, and 4, are given on page 228, together with Rules for forming them. Squares of degree >4* are unknown.
- 71. Square 2-ic Forms. In Binary 2-ic Forms there is a complete reciprocity, thus:

1°. If
$$Z = x^2 \mp Dy^2$$
, then $Z^2 = X^2 \mp DY^2$, always, where $X = x^2 \pm Dy^2$, $Y = 2xy$ (141).

2°. If $X^2 \mp DY^2 = Z^2$, then $Z = x^2 \mp Dy^2$, always,

where
$$x = \sqrt{\frac{1}{2}(Z + X)}, y = \sqrt{\frac{1}{2D}(Z - X)}$$
.....(141a).

[Use upper sign throughout, or lower sign throughout, in the above.]

All Duans (N_{ii}), and Cubans (N_{iii} and N'_{iii}) obey the above Rules, both being pure 2-ic forms, viz.

$$N_{ii}=x^2+y^2, \ (D=-1);$$
 $N_{iii}=(x^3\mp y^3)\div (x\mp y)=A^2+3B^2, \ (D=-3);$

so that-

The formulæ, and properties, of square Cubans are most conveniently treated of by means of their equivalent 2-ic form

$$(N_{iii}, N'_{iii} = A^2 + 3B^2).$$

71a. Ex. The smallest Square-Duans and Cubans are

$$\begin{split} N_{ii} &= 5 = 1^2 + 2^2, & N_{ii}^2 &= 5^2 = 3^2 + 4^2\,; \\ N_{iii} &= 7 = 2^2 + 3.1^2, & N_{iii}^2 &= 7^2 = 1^2 + 3.4^2 = \frac{5^3 - 3^3}{5 - 3} = \frac{8^3 + 3^3}{8 + 3} = \frac{8^3 + 5^3}{8 + 5}\,; \end{split}$$

^{*} Square Quintans exist,—(but these are of degree 4). These will be treated of in Vol. II.

and the smallest Square Duo-Cuban is $N_{ii}^2 = 13^2 = N_{iii}^2$;

$$N_{ii} = 13 = 2^2 + 3^2, \qquad N_{ii}^2 = 13^2 = 5^2 + 12^2;$$

$$N_{iii} = 13 = 1^2 + 3 \cdot 2^2, \ N_{iii}^2 = 13^9 = 11^2 + 3 \cdot 4^2 = \frac{8^3 - 7^3}{8 - 7} = \frac{15^3 + 7^3}{15 + 7} = \frac{15^3 + 8^3}{15 + 8}.$$

For a Table of Square Duans $x^2 = y^2 + z^2$, see pages 190–194; this is complete to x = 2441.

For a Table of Square Cuban elements $y^2 = x^2 + 3z^2$ see pages 185–189 and 194; this is complete to y = 1591.

72. Square Cubic Forms. Numerical Tables of the two forms below, with some Rules for forming them, are given on the pages named.

Page 229.

 $x^3-y^3=z^2, \quad z=\lambda z_1z_3; \quad \lambda=1 \text{ or } 3, \quad x-y=z_1^2 \text{ or } 3z_1^2\dots$ (142). Numerous examples are given with $z=\omega$ and $z=\epsilon$.

Pages 234, 235.
$$x^3 \mp Cy^3 = \pm z^2$$
.

Solutions are given for both $\pm\,C$, up to C=100. In many cases several solutions.

73. Square Quartic Forms. Two classes of these forms, viz.

I.
$$x^4 \pm Ky^4 = \pm z^2$$
, II. $x^4 + Kx^2y^2 + y^4 = z^2$ (143)

have been much studied by *Euler*, *Ed. Lucas*, *Lebesgue*, and later by many writers (too numerous to mention) in *L'Intermédiaire des Mathématiciens*, and *Sphinx-Œdipe*.

As to Form I; successive solutions may be formed ad inf. when one solution (x_r, y_r, z_r) is known by the succession-formulæ—

If
$$x_r^4 + Ky_r^4 = \pm z_r^2$$
, $[K = \pm k]$,

then
$$x_{r+1}^4 + K y_{r+1}^4 = + z_{r+1}^2$$
 (144),

where
$$x_{r+1} = x_r^4 \sim Ky_r^4$$
, $y_{r+1} = 2x_r y_r z_r$, $z_{r+1} = z_{r+1}^4 + Kx_r^4 y_r^4 \dots$ (144a).

There is here a striking similarity to the succession-formulæ of the 2-ic form $x_r^2 + ky_r^2 = \pm z_r^2$. The successive solutions usually rise rapidly in magnitude.

73a. Ex. Numerical Tables of the above Forms are given on the pages quoted below.

Binomial Forms, (pages 230, 231, 236).

Pages 230, 236.
$$x^4 + ky^4 = +z^2$$
, and $x^4 - ky^4 = \pm z^2$.

Least solutions (x, y, z) are given for many values of k, and in some cases several solutions, up to k = 100.

Page 231.
$$x^4 + Ky^4 = \pm z^2, \quad [K = \pm 2^m].$$

- I. $K = +2^m$ requires $m = 4\mu + 3$, $K = -2^m$ requires $m = 4\mu + 1$. Several solutions are given; i. with K = +8; ii. with K = -2 and $\pm z^2$; and iii. with K = -2 and $-z^2$.
- II. $K = \pm k^2$. Least solutions are given in the Tables at foot of the page for various k.

[The results on page 231 depend on Lucas's "Recherches," there quoted.]

Trinomial Forms, (pages 232, 233).

Least solutions are given for many values of k, up to $k \geqslant 200$; and in some cases several solutions, as below. See Euler's "Comment. Arithm.," t. ii, p. 496.

Page 232.
$$x^4 - kx^2y^2 + y^4 = z^2$$
. Page 233. $x^4 + kx^2y^2 + y^4 = z^2$ (145).

Of each Form three algebraic solutions are also given as below:

i.
$$k = \kappa^2$$
, $x = 1$, $y = \kappa$, $z = \pm 1$.
ii. $k = \kappa^2 - 2$, $x = y$, $z = \pm \kappa x^2$.
iii. $k = \lambda y^2 - 2C$, $\lambda = (C^2 - 1) \div x^2$,
iii. $k = \lambda y^2 + 2C$, $\lambda = (C^2 - 1) \div x^2$,
 $z = \pm (x^2 - Cy^2)$.

Page 233.

i.
$$k = \kappa^2 - 2$$
, $x = y$, $z = \pm \kappa x^2$.
ii. $x = 1$, $k = K - y^2$, $z^2 = 1 + Ky^2$.
iii. $k = \lambda y^2 + 2C$, $\lambda = (C^2 - 1) \div x^2$, $z = \pm (x^2 + Cy^2)$.

75. Chain-Factor Squares. If N₁, N₂, N₃, ... be a Chain-Series, and $N_r = L_r . M_r$, then as already noticed (Art. 31)

$$M_r$$
. $L_{r+1} = \square$ for all values of r .

All the Aurifeuillian Sextan Chains give interesting Examples of this, as every Aurifeuillian Factor thereof is a 4-tic formation in ξ , η .

- Circular Chain Squares. Every Circular Chain (Art. 36-36d) gives — by the continued product of its Links — a perfect square. For examples of the squares produced by a Quartan-Nexus, see the Table at top of p. 129.
- 76. Square Quartan Products. The Table at top of page 273 gives a number of Examples of such Products

$$\Pi\left(N_{iv}\right), \quad \text{or} \quad \Pi\left(\tfrac{1}{2}N_{iv}\right) \, = \, \square \, .$$

but no general Rule is known for their formation.

Chap. IX. Diophantine Process.

76. In this Chapter a Diophantine* process of factorisation of quartic functions (N) will be developed.

76a. In all the 4-tic functions (N),—whether Quartans, Sextans, Bin-Aurifeuillians, or Trin-Aurifeuillians—treated of in this volume one or more algebraic 2-ic partitions ($t^2 \pm Du^2$) are known. A method of great generality will now be developed whereby these functions (N) may be presented in the form of a difference of squares (P^2-Q^2)—wherein factorisation is obvious—or else in one or more arithmetical 2-ic partitions ($t^2 \pm Du^2$) isomorph with, but different from the known algebraic partition, thereby securing the means of factorisation by the process described in Art. 51, 51a.

The general procedure is treated of in Art. 76a-81b. Its application to each of the above functions follows in Art. 82-86b.

The 4-tic functions indicated are all of type

$$N = x^4 + \beta x^2 y^2 + \gamma y^4 \dots (146),$$

which, by taking $\beta = 2C + \mu R$, $\gamma = C^2 + \mu S$,

may be presented in the form

$$N = (x^2 + Cy^2)^2 + \mu y^2 (Rx^2 + Sy^2) \dots (146a),$$

which can be reduced to the pure 2-ic form

$$N = (x^2 + Cy^2)^2 + \mu (yz)^2 \qquad (146b),$$

provided only that values of x, y can be found to satisfy the Diophantine equation

 $Rx^2 + Sy^2 = z^2$(146c).

^{*} Much of this Chapter is contained in the Author's Papers— High Quartans, Nos. (2), (3); High Sextans, Nos. (2), (3); the full Titles, &c., of which are given in the foot-note to Art. 2, Chap. I.

By taking $\mu = -1, +1, +D, -D,$

N is presented in one of the forms required.

$$N = P^2 - Q^2$$
, $= a^2 + b^2$, $= t^2 + Du^2$, $= t^2 - Du^2$ (146d).

Each kind of *n*-an has its own kind of above 2-ic forms, as shown below:—

$$N = Quartan$$
 Sextan. Bin-Aurifn. Trin-Aurifn. $\mu = -1, +1, +2, -2;$ $-1, +1, +3, -3;$ $-1, +1;$ $-1, +3$ (146e).

76b. Associate 2-ic forms. Every n-an,—(prime or composite),—has one such set, viz. the algebraic set of 2-ic forms: every composite n-an has one more set, an arithmetical set of such forms, for every way in which it can be shown as a product of two factors $N = L \cdot M$, [with L and M > 1, and $L \neq M$].

The complete set of such 2-ic forms arising from any one resolution N = LM are styled Associate 2-ic Forms.

77. Factorisants, Characteristics. The four Diophantine Equations, — [obtained by taking $\mu=-1, +1, +D, -D$ in (146b),]—which lead to factorisable forms of N, and give also the means of their factorisation, will be styled Factorisants, and the quantity C which characterises each will be styled their Characteristic. The four Diophantines defined by $\mu=-1, +1, +D, -D$ will be described as of Class i, ii, iii, iv, and the Characteristics (C) involved in them will be symbolized by C', C'', C''', C^{iv} . Similarly the auxiliary z will be symbolized by z', z'', z'', z^{iv} .

77a. 2-ic Parts. When a solution (x, y, z) of any of the factorisants (i, ii, iii, iv) has been obtained, the 2-ic "parts" (P, Q), (a, b), (t, u), (t', u') of the arithmetic partition required for factorisation (see Art. 76a) are given by

iv.
$$t' = x^2 + C^{iv}y^2$$
, $u' = yz^{iv}$ (147d).

77b. Primary and Secondary Characteristics, &c. The Characteristics and Factorisants arising from the algebraic set of 2-ic forms are styled Primary: those arising from any one arithmetical set of the 2-ic forms (Art. 76b) are styled Secondary.

77c. Associate Characteristics and Factorisants. The set of Characteristics and Factorisants obtained from a set of Associate 2-ic Forms (Art. 76b) are styled Associate Characteristics and Factorisants. By Art. 78 it is seen that,—owing to the double (\pm) sign of P_0 , a_0 , or b_0 , t_0 , t_0' —the number of such Associates is

2 in each of Classes i, iii, iv; 4 in Class ii.

Further, if the Base n an be symmetric in x, y, those numbers will be doubled by interchange of x, y in the formulæ for C. Thus the $Total\ number$ of such Associates is

20 for Quartans and Sextans; 10 for Bin- and Trin-Aurifns.

78. Suitable Characteristics (C). To use this Diophantine process successfully it is necessary that the Factorisants should be solvable. A method will now be developed of determining Characteristics (C) which shall yield solvable Factorisants. These will be styled Suitable Characteristics. It will be shown that every n-an (N) of 4th degree of type (146) will yield several Suitable Characteristics (C) for each independent group of 2-ic partitions (P, Q), (a, b), (t, u), (t', u') in which it can be expressed. The n-an (N_0) used for this purpose will be styled the Base n-an, and will be denoted by N_0 ; and all the quantities connected with it, viz. x, y, z; P, Q, a, b, t, u, t', u' (except C) will take the subscript $_0$.

be any one set of the 2-ic forms of which it is capable.

Then, by

All the Factorisants arising from these Characteristics (C) will be certainly solvable, because one solution (x_0, y_0) is known.

78a. Connected Characteristics and Factorisants. The members of any one set of such Associate Characteristics and Factorisants are not always independent, but are connected by certain relations, thus

Two Characteristics C_1 , C_2 of different Classes (Art. 77), and their dependent Factorisants,

$$R_1 x^2 + S_1 y^2 = z_1^2$$
, $R_2 x^2 + S_2 y^2 = z_2^2$ (150),

will be said to be Equivalent, or Reciprocal, when they lead to the same value of N, viz.

Equivalent, with same x, y; Reciprocal, with interchanged x, y.

The necessary and sufficient conditions are-

Equivalent, (same
$$x, y$$
); $R_1: R_2 = S_1: S_2 = z_1^2: z_2^2 \dots$ (150a).

Reciprocal, (interchanged
$$x, y$$
); $R_1: S_1 = S_2: R_1 = z_1^2: z_2^2$... (150b).

Each of these relations will be found to lead to a *single* relation between C_1 , C_2 , as will appear hereafter.

78b. Ineffective Factorisants. Certain values of C (e.g. C = 0, ± 1) lead to Factorisants which simply reproduce the known algebraic 2-ic forms of the Base n-an, instead of yielding new arithmetical forms: thus these are ineffective (for factorisation purposes).

79. Use of Factorisants.

The Characteristics (C) of any one Associate set (Art. 77c) lead usually to different Factorisants,—(i.e. with the exception of the few equivalent and reciprocal cases of Art. 78c)—and each of these Factorisants has usually an infinite series of solutions (x, y, z)—and each such solution gives the elements (x, y) of a new factorisable n-an (N), together with the data (P, Q), (a, b), (t, u), (t', u') for its factorisation into two factors N = L.M.

80. General Solutions. The four Factorisants may (to some extent) be treated of together under the single type

$$Rx^2 + Sy^2 = z^2$$
, [R prime to S]...... (151).

Two simple Cases arise, viz. when 1°. $R = \rho^2$, or 2°. $S = \sigma^2$. In these Cases the factor ρ or σ may be absorbed into the symbol x or y respectively, giving the two simple general forms—

1°.
$$x^2 + Sy^2 = z^2$$
; 2°. $Rx^2 + y^2 = z^2$ (151a).

These admit of general solution in two ways each, in terms of two arbitrary—(but mutually prime)—integers (t, u), as follows

$$\begin{cases} 1^{\circ} \text{ a. } & x = t^2 - Su^2, & y = 2tu, & z = t^2 + Su^2 \dots (151\text{b}). \\ 1^{\circ} \text{ b. } & x = \frac{1}{2}(t^2 - Su^2), & y = tu, & z = \frac{1}{2}(t^2 + Su^2) \dots (151\text{c}). \\ 2^{\circ} \text{ a. } & x = 2tu, & y = t^2 - Ru^2, & z = t^2 + Ru^2 \dots (151\text{d}). \\ 2^{\circ} \text{ b. } & x = tu, & y = \frac{1}{2}(t^2 - Ru^2), & z = \frac{1}{2}(t^2 + Ru^2) \dots (151\text{e}). \end{cases}$$

81. Serial Solutions. When any one solution (x_0, y_0, z_0) of a Factorisant is known, then writing the Factorisant in the three forms

1°.
$$z^2 - Sy^2 = Rx^2$$
 | 2°. $z^2 - Rx^2 = Sy^2$ | 3°. $Rx^2 + Sy^2 = z^2$ | 8 being +, & $\neq \square$ | R being +, & $\neq \square$ | RS being -, & $\neq -\square$ | (152),

two infinite series of solutions (x_r, y_r, z_r) may usually be obtained for the simple Cases of

1°. $[x = x_0 \text{ (const.)}; 2^\circ$. $y = y_0 \text{ (const.)}; 3^\circ$. $z = z_0 \text{ (const.)}... (152a)$ respectively, when the conditions stated (as to R, S) are satisfied: but these conditions can only be satisfied in two of the three Cases (1°, 2°, 3°) at once. This is to be done by aid of the solution of the associated Unit-form—(here supposed known)—

$$1^{\circ}. \quad \tau^2 - Sv^2 = +1 \; ; \quad 2^{\circ}. \quad \tau^2 - Rv^2 = +1 \; ; \quad 3^{\circ}. \quad \tau^2 + RSv^2 = +1 \ldots \; (152 \mathrm{b}).$$

The first application of—(i.e. multiplication by)—the Unitform usually gives two distinct new solutions (x_1, y_1, z_1) in each possible Case of 1°, 2°, 3°—viz.

wherein the same signs are to be used in z_1 , y_1 of Case 1° , and in z_1 , x_1 of Case 2° , and opposite eigns in x_1 , y_1 of Case 3° .

From the new solutions (x_1, y_1, z_1) just obtained an infinite series of solutions (x_r, y_r, z_r) may now be derived by *successive steps* by the "succession-formula"—

or, by the following, (which give either series of x_r , y_r , z_r separately)—

Thus there are usually two infinite series of solutions—arising from the double (\pm) sign in the formulæ for (x_1, y_1, z_1) in each of the possible Cases of 1° , 2° , 3° . But, it occasionally happens that the two Series *coincide* into one Series.

Solutions, formed as above—(i.e. with x, y, or z constant throughout)—will be termed Serial Solutions, and the solution (x_0, y_0, z_0) from which they originate will be styled the Basesolution. These Series are interesting in that they are frequently Chains, (as on pages 135, 136, 138, 211, 212, 214).

81a. Simple Serial Solutions. This Series, obtained as above, with the condition

1°.
$$x_r = x_0 = 1$$
; or, 2°. $y_r = y_0 = 1$ (153), giving Simple Quartans $N_r = (1 + y_r^4)$ or $(x_r^4 + 1)$ are among the most interesting: these will be styled Simple Serial Solutions.

81b. Unit-forms. The unit-forms (152b), required to aid in the serial solutions of the factorisants, always admit of solution; but, in some cases, the solution is known algebraically; much work may often be saved by observing this.

Form 1° of
$$\tau^2 - Sv^2 = +1$$
; [S is supposed +] ... (154).
Class i. Here $S = C'^2 - 1$; then $\tau = C'$, $v = 1$, $[C' > 1]$.
Class ii. Here $S = 1 - C''^2$; $[C'' < 1$ is fractional].

In this latter case the factorisant, divided by C''^2 , becomes $(z/C'')^2 - (1/C''^2 - 1)y^2 = -2x^2/C''^2$(154a),

whilst the unit-form becomes

with solution

$$\tau^2 - (1/C''^2 - 1) v^2 = +1$$
 (154b),
 $\tau = 1/C'', \quad v = 1.$

82. Special Applications. The preceding Articles 76a-81b give the general development of the Diophantine process to quartic functions of the general type. Its special applications to the 4-tic functions of this Volume will now be shown, as follows—

Quartans, Art. 83. Sextans, Art. 84.

Trinomial Forms; of 4-tans and 6-tans, Art. 85.

Bin-Aurifns., Art. 86a. Trin-Aurifns., Art. 86b.

A pretty full account will be given of its application to the first Case, of Quartans; a much shorter account will be given of the other Cases.

83. Quartans. The Quartan $N_{iv} = x^4 + y^4$ (155) has the four Associate 2-ic Forms (Art. 76a), defined by $\mu = -1, +1, +2, -2$ in the general formula (76a), here said to be of Classes i, ii, iii, iv, with Characteristics C', C'', C''', Civ, as follows-

i.
$$\mathbf{N} = (x^2 + C'y^2)^2 - y^2 \cdot \left\{ 2C'x^2 + (C'^2 - 1) y^2 \right\}$$
 $= \mathbf{P}^2 - \mathbf{Q}^2, \quad [\mu = -1] \dots (155a),$
if $2C'x^2 + (C'^2 - 1) y^2 = z'^2 \dots (155b).$
ii. $\mathbf{N} = (x^2 + C''y^2)^2 + y^2 \cdot \left\{ -2C''x^2 - (C''^2 - 1) y^2 \right\}$
 $= a^2 + b^2, \quad [\mu = +1] \dots (155c),$
if $-2C''x^2 - (C''^2 - 1) y^2 = z''^2 \dots (155d).$
iii. $\mathbf{N} = (x^2 + C'''y^2)^2 + 2y^2 \cdot \left\{ -C'''x^2 - \frac{1}{2}(C'''^2 - 1) y^2 \right\}$
 $= c^2 + 2d^2, \quad [\mu = +2] \dots (155e),$
if $-C'''x^2 - \frac{1}{2}(C'''^2 - 1) y^2 = z'''^2 \dots (155f).$
iv. $\mathbf{N} = (x^2 + C^{iv}y^2)^2 - 2y^2 \cdot \left\{ C^{iv}x^2 + \frac{1}{2}(C^{iv^2} - 1) y^2 \right\}$
 $= e^2 - 2f^2, \quad [\mu = -2] \dots (155g),$
if $C^{iv}x^2 + \frac{1}{2}(C^{iv^2} - 1) y^2 = z^{iv^2} \dots (155h).$

The four indeterminate 2-ics in x, y, z are the set of Associate Factorisants of Classes i, ii, iii, iv.

When a solution (x, y, z) of any Factorisant has been obtained, the "2-ic parts" (P, Q), (a, b), (c, d), (e, f) of the arithmetic partitions required for factorisation of N are given by

and the algebraic partitions are

if

$$P = \frac{1}{2}(N+1), \quad Q = \frac{1}{2}(N-1),$$

(a, b), (c, d), (e, f) are as given in Art. 11 (157)

Equivalence and Reciprocity. Denoting any two of the four Associate Characteristics (C', C'', C''', C^{iv}) by C_1, C_2 , and comparing the above four Factorisants with the general form $Rx^2 + Sy^2 = z^2$ (Art. 80), and substituting in the general conditions of Equivalence and Reciprocity, (Art. 78a), these conditions will be found to reduce to

$$\begin{split} &Equivalence, \left(\ C_1 - \frac{1}{C_1} \right) = \ C_2 - \frac{1}{C_2}, \ \ \text{whence} \ \ C_1 \ C_2 = -1 \dots \ (158\text{a}). \\ &Reciprocity, \ \ \left(\ C_1 - \frac{1}{C_1} \right) \left(\ C_2 - \frac{1}{C_2} \right) = 4, \ \ \text{whence} \\ &\frac{C_2 + 1}{C_2 - 1} = \ C_1 \ \ \text{or} \ \ -\frac{1}{C_1}, \ \ \ \frac{C_1 + 1}{C_1 - 1} = \ C_2 \ \ \text{or} \ \ -\frac{1}{C_2} \ \dots \ \ (158\text{b}). \end{split}$$

83b. Suitable Characteristics. To obtain suitable Characteristics leading to solvable Factorisants (Art. 78), take as Base-Quartan

$$N_0 = x_0^4 + y_0^4 = h^4 + k^4$$
, so that $x_0 = h$ or k , $y_0 = k$ or h ... (159).

Now, see the Table on p. 131-

The upper Table shows that there are always 6 Characteristics ineffective (for factorisation purposes); for, in the Factorisants

$$C'' = 0$$
 gives $y^2 = z^2$; $C''' = -1$, and $C^{**} = +1$, both give $x^2 = z^2$... (159a),

thus merely reproducing the original Base-Quartan.

The second Table shows

In lines 1 and 2; 2 cases of C'', C''' reciprocal. In lines 3 and 4; 2 cases of C'', C^{iv} reciprocal. In line 5, [when h = 1]; 1 case of C', C'' equivalent.

Thus, of the 20 primary Characteristics (Art. 77c) of every Base-Quartan, 6 are always ineffective (for factorising purposes); and there are always 2 reciprocal pairs, and [when h=1] one equivalent pair.

The large Table at foot of page 131 shows in full detail the elements (x_0, y_0, z_0) and the Characteristics (C) of the 20 Factorisants of the Simple Base-Quartan $N_0 = 1^4 + k^4$, with the data $x_0, y_0, P_0, Q_0, a_0, b_0, c_0, d_0, e_0, f_0$. [The letters E, I, R in the right column of this and later Tables mean Equivalent, Ineffective, Reciprocal respectively.]

On page 132; the upper Table shows the arithmetical values of the data and results of the Table at foot of page 131 applied to the two prime Base-Quartans $N_0 = 1^4 + 2^4 = 17$, $N_0 = 3^4 + 2^4 = 97$.

The Table at foot of page 132 shows the Factorisants of Classes i, ii for the Base-Quartan $N_0 = 1^4 + 2^4 = 17$ derived from the Characteristics (C) in the upper Table, omitting Nos. 1, 2, 7 of Class ii (Nos. 1 and 7 being ineffective and No. 2 being reciprocal to No. 1 of Class i). Those of Classes iii, iv are omitted as 4 are ineffective and 4 are reciprocal to Class ii.

On page 133; the upper Table shows two sets of Results z_0 and C for the composite Base-Quartan $N_0 = 5^4 + 6^4 = 1913 = 17.113$: the primary set arising from the algebraic 2-ic forms, the secondary set from the arithmetical set of 2-ic forms due to the factors 17.113; (Art. 77b).

The Tables on pages 134 (at foot), 135, 136 (at top) give worked Examples.

That on page 134 (at foot) starts from $N_0 = 1^4 + 1^4 = 2$.

Those on pages 135, 136 (at top) give the Results obtained from $N_0 = 1^4 + 2^4 = 17$ with *each* of the Factorisants of Table at foot of page 132.

83c. Co-factors (L, M), 2-ic Partitions. It is sometimes possible to exhibit algebraic formulæ for the 2-ic Partitions of the Co-factors (L, M) of the Quartan Series,

$$L = \alpha^2 + \beta^2 = \gamma^2 + 2\delta^2 = \epsilon^2 - 2\phi^2.$$

A number of Examples are given on pages 136, 137 for the Co-factors L, M of the Quartan Series of page 135 obtained from the Base $N_0=17$. The numerical values of (α, β) , (γ, δ) , (ϵ, ϕ) are given on page 136; the algebraic formulæ on page 137. The Examples given are those marked i-2, i-3, ii-3, ii-4, ii-5 on each of the pages 135, 136, 137. [But this subject is too wide to proceed further.]

84. Sextans. The Sextan

$$N_{i} = x^4 - x^2y^2 + y^4 \dots$$
 (160)

has the four Associate 2-ic forms i, ii, iii, iv, [Art. 76a, b].

The conditions of equivalence and reciprocity (Art. 78a) will be found to reduce to

Equivalence,
$$C_2 = -\frac{C_1 + 2}{2C_1 + 1}$$
..... (161a),

$$Reciprocity, ~~ C_2 = -\frac{C_1 + 2}{C_1 - 1} ~~ {\rm or} ~~ -\frac{C_1}{C_1 + 1} \eqno(161b),$$

where C_1 , C_2 mean any pair of C', C'', C''', C^{iv} , and C_1 , C_2 are here *interchangeable*. Hence, to any given Characteristic (C_1) there correspond in general one equivalent and two reciprocal to it.

To find suitable Characteristics (C) and Factorisants, take as Base-Sextan (Art. 78)

$$N_0 = x_0^4 - x_0^2 y_0^2 + y_0^4 = h^4 - h^2 k^2 + k^4$$
; so that $x_0 = h$ or k , $y_0 = k$ or h .

Now, see the Tables on page 206.

The upper Table shows that there are 6 ineffective Characteristics; for in the Factorisants

$$C'' = -1$$
 gives $x^2 = z^2$, $C''' = -\frac{1}{2}$ gives $(\frac{1}{2}y^2)^2 = z^2$... (162); $C^1 = +1$ gives $x^2 = z^2$

thus merely reproducing the original Base-Sextan.

The second Table shows

In lines 1 and 2; 2 cases of C", C" reciprocal.

In lines 3 and 4; 2 cases of C", Civ reciprocal.

In lines 5 and 6; 2 cases of C', C''' reciprocal.

Thus, of the 20 primary Characteristics (Art. 77c) of every Base-Sextan, 6 are always ineffective (for factorising), and there are always 2 reciprocal pairs, and also (when h=1) 2 equivalent pairs.

The large Table on page 207 shows in full detail the elements (x_0, y_0, z_0) and the Characteristics (C) of the 20 Factorisants of the Simple Base-Sextan $N_0 = 1^4 - 1^2$. $k^2 + k^4$, with the data $x_0, y_0, P_0, Q_0, a_0, b_0, A_0, B_0, A'_0, B'_0$. The last 4 lines at foot of page show the same details for an extra set of Class iv, when the 2-ic form $(A_0^2 - 3B_0^2)$ used is not a Base-form (Art. 7a).

[The letters E, I, R in the right column indicate Equivalent, Ineffective, Reciprocal respectively,]

The Table on page 208 shows the arithmetical values of the data and results of the Table of page 207 applied to the two prime Base-Sextans $N_0=1^4-1^2$. $2^2+2^4=13$ and $N_0=3^4-3^2$. $2^2+2^4=61$.

The Table on page 209 gives two sets of data and results (similar to those on page 208) for the composite Base-Sextan

$$N_0 = 1^4 - 1^2 \cdot 6^2 + 6^4 = 1261 = 13.97$$
;

viz. the *primary* set arising from the *algebraic* 2-ic forms, and the *secondary* set from the *arithmetical* set of 2-ic forms due to the factors 13.97, (Art. 77b): (omitting however the "extra set" at foot of pages 207, 208).

The Table at foot of page 206 shows the Factorisants arising from a selected few of the Characteristics (C) of Classes i, ii, iv for the Base-Sextan $N_0=13$, and of Class i for the Bases $N_0=61,\,73,\,193,\,481,\,13.97,\,13.157$.

[The column of "Ref. No." indicates the formulæ used from page 207: the column of "Serial" shows the sort of "Serial solutions" obtainable from each Factorisant (Art. 81).]

The Tables on pages 210–212 give worked Examples arising from the Factorisants in the Table at foot of page 206 for the Base-Sextans $N_0=13$ and 61. The marks i—2, i—3, i—4; ii—2, ii—3, ii—5, ii—8; iv—4, iv—8 give the References connecting the two Tables.

The Table on page 213 gives the arithmetical values of the 2-ic parts (a, b), (A, B), (A', B') of the Co-factors (L, M) obtained in the Table on page 212.

85. Trinomial forms of 4-tans and 6-tans. The Diophantine process can be conveniently applied to the Trinomial forms of both Quartans (Art. 28) and Sextans (Art. 29), viz.

Quartans,
$$N_{iv} = x^4 + 6x^2y^2 + y^4$$
 (163a).
Sextans, $N_{vi} = x^4 + 14x^2y^2 + y^4$ (163b).

The Tables on pages 138, 214 show the details of the application to both. The formula for the Factorisant of Class i, with Characteristic (C'), is placed at head of the page. The upper Table shows the Factorisants obtained from a number of small Base-Quartans and -Sextans. The lower Tables give a number of worked Examples from those Factorisants.

The 2-ic partitions (a, b), (A, B), (A', B') of a number of the L, M of the Sextans on pages 210, 211 are given on p. 213.

[Note that Factorisants exist in all the four Classes i, ii, iii, iv as previously obtained (Art. 83, 84), with the properties of Equivalence, Reciprocity, and Ineffective cases similar to those previously obtained; but it is thought not worth while to develop this further here.]

86. Aurifeuillians, Diophantine process. All Aurifeuillians (N) possess one algebraic resolution (Art. 37a) into the twin Aurifeuillian Factors N = L.M. The Diophantine process yields generally a (different) arithmetical resolution, say N = L'.M'. This serves to provide very large Aurifeuillians (of 4th degree in x, y) with factorisation into 4 factors.

These are treated of as follows

Bin-Aurifeuillians, Art. 86a. Trin-Aurifeuillians, Art. 86b.

86a. Bin-Aurifeuillians

$$N = x^4 + 4y^4$$
 (164).

This has only two Associate 2-ic forms, (Art. 76a) and two Classes (i, ii).

$$\begin{split} N &= P^2 - Q^2, \text{ with } \mu = -1 \text{ ; } N = a^2 + b^2, \text{ with } \mu = +1 \dots \text{ (164a),} \\ \text{where i.} \quad &\pm P = \frac{1}{2} \, (N+1), \ \pm Q = \frac{1}{2} \, (N-1), \ \dots \text{ with } C', \ C' \dots \dots \text{ (164b),} \end{split}$$

ii.
$$\pm a \text{ or } \pm b = x^2$$
, $\pm b \text{ or } \pm a = 2y^2$, ... with C'' , $C \sim \dots$ (164c).

As N is not symmetric in x, y the factorisants differ according as the Characteristic (C) is attached to x or to y: hence each Class has two Characteristics, say C', C of Class i, and C'', C of Class ii.

The conditions of equivalence and reciprocity (Art. 78a) reduce to

Thus the characteristics exist in equivalent pairs (C', C''), (C', C''), and reciprocity exists only when the roots of (165b) are real.

The Table at top of p. 147 shows the two Characteristics (C', C'), and the Factorisants arising from them for the Base Bin-Aurifeuillians $N_0 = 5, 65, 5.13, 5.17$, and also the kind of *Serial solution* (x, y, or z, Art. 81) obtainable from each.

The Table at foot of p. 147 shows the x-Chains obtained from Ex. I-2, $(N_0 = 65)$, and I-3, $(N_0 = 65)$, of the Table at top of page.

The Table on page 148 shows the two y-Chains obtained from Ex. II—2, $(N_0 = 5)$ of the Table at top of page 147.

The numbers factorised $N_r = L_r$, $M_r = L'_r$, M'_r run very large (up to 28 figures). The factor M'_r alone is shown; here of course $L'_r = M'_{r-1}$.

86b. Trin-Aurifeuillians.

$$N = x^4 - 3x^2y^2 + 9y^4 \qquad (166).$$

This has only two Associate 2-ic forms, (Art. 76a), and two Classes (i, iii).

As N is not symmetric in x, y the factorisants differ according as the Characteristic (C) is attached to x or to y: hence each Class has two Characteristics, say C', C' of Class i, and C''', C''' of Class ii.

The conditions of Equivalence and Reciprocity are too complicated to be readily satisfied.

The Table at foot of page 155 shows the two Characteristics (C', C') of Class i, and the Factorisants arising from them for the Base Trin-Aurifeuillians $N_0 = 7, 13, 133, 7.19$, and also the kind of *Serial Solutions* (x, y, or z, Art. 81) obtainable from each.

The Tables on page 156 show worked examples of various sorts from the factorisants on page 155.

Ex. I—2 has general (non-serial) solutions from C'=-5, $N_0=7$, $x_0=1$.

Ex. I-5 shows the two x-Series from C' = -7/2, $N_0 = 7.19$.

Ex. II—2 shows the two y-Chains from C'=-7, $N_0=7$, $y_0=1$.

87. Limitations of Diophantine process. It should be clear from the developments in this Chapter that this process is of no help in the factorisation of given numbers. It only provides numbers which are certainly resolvable into two Co-factors, along with the data for such resolution.

INDEX.

[The figures refer to the numbered Articles in the Introduction.]

A	1 —
Ant-Aurifeuillian, 37.	_
Antimorph, 6.	
A.P.F.	
Aurifeuillians, 37-47a.	_
Aurifeuillian	Co-
— Chains, 43-45h.	Cor
- Condition, 37.	Cor
— Cubans, 40–40b.	Cor
— Duans, 39a.	
— Factors, 37a-41.	Cor
— — Common, 41–41b.	-
— Sextans, 42–45c.	
Automorph, 6.	
В	- 1
Base-Form, 7a.	
Base n-an, 78.	
Bin-Aurifeuillians, 38, 39.	
Bin-Aurifeuillian	_
— Duans, 39a.	Cul
- Factors, Common, 41a.	Cul
- Four-factor, 47.	
- Sextans, 42a.	Dod
Bin-Trin-Aurifeuillians, 46.	Det
Binomial n-an, 1	Dir
Binomial <i>n</i> -ic, 1.	Dir
Branches, 41c.	
C C	
	(
Chains, 30–36e. — Aurifn., 43–45h.	
— — Cuban, 44–44c.	
— — Duan, 44-44c. — — Pellian, 44d-45f.	
Bin 440-451.	
- Bin, 44c-g. - Trin, 44h, i.	
- Aurifn. 6-tan, 45c-46a.	
— Circular, 36-36e.	
— Simple, 32–34b.	_ :
— — Cuban, 33b.	[
— — Duan, 33a.	
— — Quartan, 34a.	Dio
— — Sextan, 34b.	
Characteristics, 77.	
- Associate, 77c.	i
— Bin-Aurifn., 86a.	
— Connected, 78a.	(
- Equivalent, 78a, 83b, 84	- 5
Equivalent, 78a, 83b, 84.Ineffective, 78b.	- 1
- Primary, 77b.	Dua
— Quartan, 83–83c.	Duc
quantum, oo ooo	200

Reciprocal, 78a, 83b, 84. Secondary, 77b. Sextan, 84. Suitable, 78, 83b, 84. Trin-Aurifn., 86b. factors, (L, M), 37a, 83c. mposites, 2-ic forms, 8. mputers, 18b, 27b, 27c. nformal Multn., 7. Division, 7. ngruences, 17-24. First Root, 19-19v. General, 22. - Restricted, 23. Set of Roots, 20. Simple, 17-21c. Tables, 21c. - Construction, 18-20. Use of, 24, bans, 2a, 13-13c, &c. bics, 2a, &c. terminants, 5, 6. morphs, 48-63c. morph Aurifn. Factors, 62. Bin-Aurifns., 60. Cubans, 49b. Cubics, 50. Duans, 49a. Products, 63-63b. 2-ies, Factorn., 51, 51a. Quartans, 52-52c. - Factorn., 52a. Quartics, 53, 57, 58. Sextans, 54, 54a. — in Chains, 56-56c. $\Sigma(x^4), 57.$ Trin-Aurifn., 61. Trinoml. 4-tans, 58. ophant. Process, 76, 87. Applications, 82-86b. Aurifns., 86-86b. Bin-Aurifns., 86a. Limitations, 87. Quartans 83-83c. Sextans, 84, 85. Trin-Aurifns, 86b. ans, 2a, 10, &c. Duo-decimans, 2a, 15, 15a.

Equivalent — Characteristics, 78a, 83, 84. — Cubans, 19–18c. — Duans, 10, 10a. — Fractorisants, 78a, 83, 84. Errata, p. xcvi. F Factorisants, 77. — [see Characteristics, 77, 86b.] — Genl. Solution, 80. — Serial Solution, 81. — of Trinoml. 4-tans, 88. — 6-tans, 88. Factorisation, 25–29a. — Cubans, 26, 26b. — Duans, 26, 26b. — Tellian, 26d. — Polymorph, 4-8-50b. Polymorph Cubans, 49b. — Duans, 49a. Power-forms, 4-tans, 28a. — 6-tans, 29a. Primes, Lists of, 26e, 27a, b. — 2-ic forms, 8. Product-Forms 64–69. — Bin-Aurifns, 67–68a. — Cubans, 65. — Cubans, 65. — Cubics, 65a. — Duans, 66. — Sextans, 66. — Trin-Aurifns, 69. Q Quartans, 66. — Sextans, 66. — Trin-Aurifns, 69. — Quartans, 66. — Trin-Aurifns, 9, 76a. — Algebe, 5, 76a. — Arthmer, 9, 76a. — Arthmer, 9, 76a. — Different, 6. — Dimorph, 49–40b. — Impure, 5, 6. — Indefinite, 7. — of Large Factors, 16. — Pactorisants, 25a, 44–45h. — Factorisans, 26d. Polymorph, 49a. Power-forms, 4-tans, 28a. — 6-tans, 29a. Primes, Lists of, 26e, 27a, b. — 2-ic forms, 8. Product-Forms, 64–69. — Bin-Aurifns, 67–68a. — Cubans, 65. — Cubans, 65. — Cubics, 65a. — Duans, 65. — Cubics, 65a. — Duans, 66. — Sextans, 66. — Trin-Aurifns, 69. Q Quartaic Forms, 5.9. — Algebe, 5, 76a. — Arthmer, 9, 76a. — Dimorph, 49-40b. — Duans, 49a. Power-forms, 4-tans, 28a. — 6-tans, 29a. Primes, Lists of, 26e, 27a, b. — 2-ic forms, 8. Product-Forms, 64–69. — Duans, 65. — Cubics, 65a. — Duans, 66. — Sextans, 66. — Trin-Aurifns, 69. — - Algebe, 5, 76a. — - Algebe, 5, 76a. — - Factorisns, 26a. — - Factorisns, 26a. — Different, 6. — Dimorph, 49-40b. — - Dimorph, 49-40b. — - Dimorph, 49-40b. — - Dimorph, 49-40b. — Duans, 66. — Duans, 65. — Cubics, 65a. — Duans, 66. — Duans, 66. — Primes, 27. — of n-ans, 10, 15. — of Large Fods. — Different, 6		
Equivalent — Characteristics, 78a, 83, 84. — Cubans, 13-13c. — Duans, 10, 10a. — Factorisants, 78a, 83, 84. Errata, p. xevi. Factorisants, 77. — [see Characteristics, 77, S6b] — Genl. Solution, 80. — Serial Solution, 81. — of Trinoml. 4-tans, 88. — 6-tans, 25-9a. — Cubans, 26, 26b. — Genl. n-ans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Simple n-ans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Symbolism, 25c. — Trinoml. 4-tan, 28, 28a. — 6-tan, 29, 29a. Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I doneals, 8. I I Idoneals, 8. I I Indeterminate 4-tic Eqns., 62a. Inneffectives, 78b, 83b, 84. I I I MA.P.F., 1. n-ans, 1. Nexus, 36c. n-ics, 1. Nomenelature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half. —, 12. P Factorisans,, 26d. Polymorph, 48-50b. Polymorph, 48-60. Cubans, 65. — Quartans, 66. — Trin-Aurifns., 69. Quadratic Forms, 5-9. — Algebc., 5, 76a. — Pure, 5, 6. — Unique, 8. — Pattorisa, 22a. — Pimes, Lists of, 26e. Oubans, 65. — Quartans, 66. — Unipure, 5, 6. — Dimorph, 49-49b. — Trinodh, 24b. — Indefinite, 7. — of n-ans, 2joh. Poliferent, 6. — Un	E I	Pellian Chains, 35, 35a, 44-45h.
- Characteristics, 78a, 83, 84 Cubans, 13-13c Duans, 10, 10a Factorisants, 78a, 83, 84. Errata, p. xevi. Fractorisants, 77 [see Characteristics, 77, 86b] - Genl. Solution, 80 Serial Solution, 81 of Trinoml. 4-tans, 88 G-6-tans, 28 Geanl. Solution, 25-29a Cubans, 26, 26b Genl. n-ans, 25b, 27 Pellian, 26d Quartan, 27 Sextan, 27 Simple n-ans, 25a, 27 Tables, 27 Tables, 27 Tables, 27 Tables, 27 Martin and the state of the state o		
- Cubans, 13-13c Duans, 10, 10a Factorisants, 78a, 83, 84. Erata, p. xevi. F Factorisants, 77 [see Characteristics, 77, -86b] - Genl. Solution, 80 Serial Solution, 81 of Trinoml. 4-tans, 88 of -6-tans, 28-29a Cubans, 26, 26b Genl. n-ans, 25b, 27 Pellian, 26d Quartan, 27 Sextan, 27 Tables, 27 Tables, 27 Tables, 27 Tables, 27 Symbolism, 25c Trinoml, 4-tan, 28, 28a of-tan, 29, 29a. H H4lf-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ie forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Infelectives, 78b, 83b, 84. Latent Trin-Aurifn, 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half, 12. O Cetavans, 2a, 12. Half, 12. Polymorph Cubans, 49a Duans, 49a Catans, 28a otans, 28a potantins, 27a. Primes, Lists of, 26e, 27a,b 2-ic forms, 8. Product Forms, 64-69 Bin-Aurifns., 56 Cubias, 65a Cubans, 65 Quartans, 66 Trin-Aurifns., 69. Quadratic Forms, 5-9 Algebc., 5, 76a Triads, 6 - Dimorph, 49-49b Impure, 5, 6 Indefinite, 7 of n-ans, 10, 16 Of Large Factors, 16 Pure, 5, 6 Triads, 6 - Unique, 8 Parts, 6a Signs of, 6c. Quartans, 11 Half., 11 Chains, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Dimorph, 54-55 Unique, 8 Parts, 6a Pure, 5, 6 Triads, 6 - Pure, 5, 6 Triads, 6 - Dimorph, 54-55 Dimorph, 54-55 Linear Forms, 4 Factorisants, 78a, 83a, b, 84		
— Duans, 10, 10a. — Factorisants, 78a, 83, 84. Errata, p. xevi. Factorisants, 77. — [see Characteristics, 77, 86b] — Genl. Solution, 80. — Serial Solution, 81. — of Trinoml. 4-tans, 88. — 6-tans, 88. — 6-tans, 88. Factorisation, 25-29a. — Cubans, 26, 26b. — Genl. n-ans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Tables, 27. — Dimorph, 49-49b. — Impure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Tindefinite, 7. — of Large Factors, 16. — Tindefinite, 7. — of Large Factors, 16. — Tindefinite, 7. — of Large Factors, 16. — Trinde, 9. — Tindefinite, 7. —		
— Factorisants, 78a, 83, 84. Errata, p. xevi. Factorisants, 77. — [see Characteristics, 77, 86b] — Genl. Solution, 80. — Serial Solution, 81. — of Trinoml. 4-tans, 88. — a-6-tans, 88. Factorisation, 25-29a. — Cubans, 26, 26c. — Duans, 26, 26c. — Duans, 26, 26c. — Duans, 26, 26c. — Duans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Simple n-ans, 25a, 27. — Tables, 27. — Tables, 27. — Tables, 27. — Tandles, 21. — Octavan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn, 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Non-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. — O Octavans, 2a, 12. Half. — , 12. P wer-forms, 4-tans, 28a. — , 6-tans, 29a. Primes, Lists of, 26e, 27a,b. — , 2-ic forms, 8. Product-Forms 64-69. — Bin-Aurifns,, 67-68a. — Cubans, 65. — Cubans, 65. — Quartans, 66. — Sextans, 66. — Trin-Aurifns., 69. Quadratic Forms, 5-9. — — , Algebc., 5, 76a. — — Algebc., 5, 76a. — Different, 6. — Dimorph, 49-49b. — — Impure, 5, 6. — Indefinite, 7. — of n-ans, 10, 15. — Parts, 6a. — Unique, 8. — Parts, 6a. — Unique, 8. — Parts, 6a. — Par		
Fractorisants, 77. — [see Characteristics, 77, -86b] — Genl. Solution, 81. — Of Trimoml. 4-tans, 88. — — G-tans, 26, 26e. — Cubans, 26, 26e. — Cubans, 26, 26e. — Cubans, 26, 26e. — Genl. n-ans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Simple n-ans, 25b, 27. — Tables, 27. — Tables, 27. — Tables, 27. — Tables, 27. — G-tan, 29, 29a. H Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I doneals, 8. Impure 2-ic forms, 5. 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn, 40b, 42b. Linear Forms, 4. Links, 30. M.A.P.F., 1. n-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. — O Octavans, 2a, 12. Half-—, 12. P-(characteristics, 77, -86b] Primes, Lists of, 26e, 27a,b. —, 2-ic forms, 8. Product-Forms 64-69. — Bin-Aurifns., 67-68a. — Cubans, 65. — Cubics, 65a. — Cubans, 65. — Quartans, 66. — Sextans, 66. — Sextans, 66. — Sextans, 66. — Sextans, 66. — Inh-Aurifns, 69. Quadratic Forms, 5-9. — -, Algebc., 5, 76a. — -, Arithme., 9, 76a. — Different, 6. — Dimorph, 49-49b. — Impure, 5, 6. — Indefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Unique, 8. — Parts, 6a. — Unique, 9. — -, Algebc., 5, 76a. — -, Arithme., 9, 76a. — Different, 6. — Dimorph, 49-49b. — Impure, 5, 6. — Unique, 8. — Parts, 6a. — Unique, 9. — -, Algebc., 5, 76a. — -, Arithme., 9, 76a. — Different, 6. — Dimorph, 94-49b. — Impure, 5, 6. — Indefinite, 7. — of Large Factors, 16. — Pure, 5, 6. — Unique, 8. — Parts, 6a. — Unique, 9. — -, Algebc., 5, 76a. — -, Arithme., 9, 76a. — -, Impure, 5, 6. — Indefinite, 7. — of Large Factors, 16. — Dimorph, 94-49b. — Impure, 5, 6. — Unique, 8. — Parts, 6a. — Unique, 9. — -, Algebc., 5, 76a. — -, Arithme., 9, 76a. — -, Elandinite, 7. — of Large Factors, 16. — Dimorph, 94-49b. — Impure, 5, 6. — Unique, 8. — Parts, 6a. — Unique, 8. — Parts, 6a. — Unique, 9. — Linear Forms, 4. — Primes, 24, 26a. — Unique, 9. — Linear Forms, 4. — Primes, 24, 26a. — Unique, 9. — Linear F		
Factorisants, 77. — [see Characteristics, 77, -86b] — Genl. Solution, 80. — Serial Solution, 81. — of Trinoml. 4-tans, 88. — G-tans, 88. Factorisation, 25-29a. — Cubans, 26, 26c. — Duans, 26, 26c. — Duans, 26, 26c. — Duans, 26, 26c. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Simple n-ans, 25a, 27. — Tables, 27. — Symbolism, 25c. — Trinoml. 4-tan, 28, 28a. — G-tan, 29, 29a. — Genl. n-ans, 25a, 27. — Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn, 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. n-ans, 1. Nexus, 36c. — Octavans, 2a, 12. Half. — , 12. O Octavans, 2a, 12. Half. — , 12. Primes, Lists of, 26e, 27a,b. — , 2-ie forms, 8 Product-Forms 64-69. — Bin-Aurifns., 66. — Cubans, 65. — Cubans, 66. — Sextans, 66. — Trin-Aurifns., 69. Quadratic Forms, 5-9. — , Algebe., 5, 76a. — Dimorph, 49-49b. — Impure, 5, 6. — Dimorph, 49-49b. — Impure, 5, 6. — Trinade, 6. — Dimorph, 49-49b. — Impure, 5, 6. — Trinds, 66. — Dimorph, 49-49b. — Impure, 5, 6. — Trinds, 69. Quadratic Forms, 5-9. — , Algebe., 5, 76a. — Dimorph, 49-49b. — Impure, 5, 6. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Impure, 5, 6. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Impure, 5, 6. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Impure, 5, 6. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Dimorph, 49-49b. — Parts, 66. — Dimorph, 49-49b. — Pa		
Factorisants, 77. — [see Characteristics, 77., -86b] — Genl. Solution, 80. — Serial Solution, 81. — of Trinoml. 4-tans, 88. — of-tans, 88. Factorisation, 25-29a. — Cubans, 26, 26c. — Duans, 26, 26b. — Genl. n-ans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Tables, 28. — Tables, 28. — Tables, 27. — Tables, 28.	F	
- Genl. Solution, 80 Serial Solution, 81 of Trinoml. 4-tans, 88 6-tans, 88. Factorisation, 25-29a Cubans, 26, 26c Duans, 26, 26c Duans, 26, 26c Pellian, 26d Quartan, 27 Sextan, 27 Simple n-ans, 25a, 27 Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a 6-tan, 29, 29a. H Half-Duan, 2a, 10 Quartan, 2a, 11. Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Ineque 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half, 12. P - Bin-Aurifns,, 65 Cubics, 65a Duans, 65 Quartans, 66 Trin-Aurifns., 69. Quadratic Forms, 5-9, Arithmc., 9, 76a, Impure, 5, 6 Dimorph, 49-49b Impure, 5, 6 Indefinite, 7 of n-ans, 10, 15 of Large Factors, 16 Pure, 5, 6 Unique, 8 Parts, 6a Signs of, 6c. Quartans, 21 Half., 11 Chains, Simple, 34a Cubans, 65 Quadratic Forms, 5-9, Arithmc., 9, 76a, Impure, 5, 6 Linefinite, 7 of n-ans, 10, 15 of Large Factors, 16 Pure, 5, 6 Unique, 8 Parts, 6a Factoriss, 56a Linefinite, 7 Oineans, 10, 15 of Large Factors, 16 Pure, 5, 6 Trinads, 6 Linefinite, 7 of n-ans, 10, 15 of Large Factors, 16 Pure, 5, 6 Linefinite, 7 Simple n-ans, 20, 24 Signs of, 6c Linefinite, 7 Linefinite, 7 Factoriss, 56a Linefinite, 7 Factoriss, 76a, 8a Signs of, 6c Li	Factorisants, 77.	
- Serial Solution, 81 of Trinoml. 4-tans, 88 G-tans, 88. Factorisation, 25-29a Cubans, 26, 26b Genl. n-ans, 25b, 27 Pellian, 26d Quartan, 27 Sextan, 27 Simple n-ans, 25a, 27 Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a G-tan, 29, 29a. Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Linear Forms, 5, 6 Guartans, 11 Half-, 11 Chains, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Diophante. Applic., 83-83c Factorisn., 25a-27 Linear Forms, 4 Primes, 27a Linear Forms, 4 Primes, 27a Linear Forms, 5, 6 Unique, 8 Parts, 6a Vindental Forms, 69. Quadratic Forms, 5-9 Algebe., 5, 76a Jintelmet, 9, 76a Jintelmet, 6 Dimorph, 49-49b Impure, 5, 6 Unique, 8 Parts, 6a Pure, 5, 6 Unique, 8 Parts, 6a Dimorph, 49-49b Impure, 5, 6 Unique, 8 Parts, 6a Dimorph, 54-55 Dimorph, 54-60 Primes, 29 Valueties, 78b, 83b, 84 Partorisans, 78a, 83a, b, 84 Partorisans, 78a, 83a, b, 84 Pactorisants, 78a, 83a, b, 84 Factorisants, 78a	— [see Characteristics, 77, 86b]	Product-Forms 64–69.
- of Trinoml, 4-tans, 88 0 - 6-tans, 88. Factorisation, 25-29a Cubans, 26, 26c Duans, 26, 26c Duans, 26, 26c Pellian, 26d Quartan, 27 Sextan, 27 Sextan, 27 Simple n-ans, 25a, 27 Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a 6-tan, 29, 29a. H Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. n-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half, 12. P - Cubics, 65a Duans, 65 Quartans, 66 Sextans, 66 Trin-Aurifns., 69. Quadratic Forms, 5-9, Algebc., 5, 76a, Arithmc., 9, 76a	— Genl. Solution, 80.	— Bin-Aurifns., 67-68a.
6-tans, 88. Factorisation, 25-29a Cubans, 26, 26c Duans, 26, 26b Genl. n-ans, 25b, 27 Pellian, 26d Quartan, 27 Sextan, 27 Simple n-ans, 25a, 27 Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a 6-tan, 29, 29a. H Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a		
Factorisation, 25-29a. — Cubans, 26, 26c. — Duans, 26, 26b. — Genl. n-ans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Simple n-ans, 25a, 27. — Tables, 27. — Tables, 27. — Symbolism, 25c. — Trinoml. 4-tan, 28, 28a. — 6-tan, 29, 29a. H Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. n-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half.—, 12. P — Quartans, 66. — Sextans, 66. — Trin-Aurifns., 69. Quadratic Forms, 5-9. —, Algebe., 5, 76a. —, Arithme., 9, 76a. —, Arithme., 9, 76a. —, Arithme., 9, 76a. —, Different, 6. — Dimorph, 49-49b. ——inpure, 5, 6. ——Indefinite, 7. ——of Large Factors, 16. ——Pure, 5, 6. ——Triads, 6 —— Unique, 8. ——Parts, 6a. —— Different, 6. ——Dimorph, 49-49b. ——inpure, 5, 6. ——Indefinite, 7. ——of Large Factors, 16. ——Pure, 5, 6. ——Unique, 8. ——Parts, 6a. ——indefinite, 7. ——of Large Factors, 16. ——Pure, 5, 6. ——Impure, 5, 6. ——Impure, 5, 6. ——Dimorph, 49-49b. ——unique, 8. ——Parts, 6a. ——yarithme., 9, 76a. ——inpure, 5, 6. ——Impure, 5, 6. ——Indefinite, 7. ——of Large Factors, 16. ——Pure, 5, 6. ——Unique, 8. ——Parts, 6a. ——partime., 9, 76a. ——indefinite, 7. ——of Large Factors, 16. ——Pure, 5, 6. ——Impure, 5, 6. ——Unique, 8. ——Parts, 6a. ——Parts, 6a. ——Pure, 5, 6. ——Impure, 5, 6. ——I		
- Cubans, 26, 26c Duans, 26, 26b Genl. n-ans, 25b, 27 Genlan, 26d Quartan, 27 Sextan, 27 Simple n-ans, 25a, 27 Tables, 27 Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a Getan, 29, 29a. H Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifin., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Na-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P - Sextans, 66 Trin-Aurifins., 69. Q Quadratic Forms, 5-9—, Algebc., 5, 76a—, Arithme., 9, 76a—, Different, 6— Dimorph, 49-49b—— Dimorph, 49-49b—— Impure, 5, 6—— Impure, 5, 6—— Triads, 6 -—— Unique, 8—— Parts, 6a—— Signs of, 6c. Quartans, 11—— Chains, Simple, 34a—— Signs of, 6c—— Unique, 8—— Parts, 6a—— Signs of, 6c—— Unique, 8—— Pure, 5, 6—— Unique, 8—— Pure, 5, 6—— Unique, 8—— Pure, 5, 6—— Unique, 8—— Signs of, 6c—— Unique, 8—— Signs of, 6c—— Unique, 8—— Signs of, 6c—— Pure, 5, 6—— Unique, 8—— Signs of, 6c—— Pure, 5, 6—— Unique, 8—— Signs of, 6c—— Viriade, 6 -—— Unique, 8—— Signs of, 6c—— Viriade, 6 -—— Unique, 8—— Signs of, 6c—— Pure, 5, 6—— Imbure, 5, 6—— Imbure, 5, 6—— Impure, 5, 6—— I		
- Duans, 26, 26b Genl. n-ans, 25b, 27 Pellian, 26d Quartan, 27 Sextan, 27 Tables, 27 Tables, 27 Tymbolism, 25c Trinoml. 4-tan, 28, 28a Getan, 29, 29a. Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Trin-Aurifns., 69. Q Quadratic Forms, 5-9 —, Algebe., 5, 76a —, Arithme., 9, 76a —, Arithme., 9, 76a —, Arithme., 9, 76a —, Dimorph, 49-49b — Impure, 5, 6 — Impure, 5, 6 — Triads, 6 - — Unique, 8 Parts, 6a — Pure, 5, 6 — Triads, 6 - — Unique, 8 Parts, 6a — Signs of, 6c. Quartans, 11 Chains, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Diophante. Applic., 83-83c Factorisin., 25a-27 Linear Forms, 4 Primes, 27a Quadc. Forms, 11 Trinoml., 28, 28a. Quartics, Dimorph, 53, 58 Square, 73, 73a. Quotient-Aurifns., 39b. R Recipl. Charactes., 78a, 83a, b, 84 Factorisants, 78a, 83a, b, 84.		
— Genl. n-ans, 25b, 27. — Pellian, 26d. — Quartan, 27. — Sextan, 27. — Simple n-ans, 25a, 27. — Tables, 27. — Symbolism, 25c. — Trinoml. 4-tan, 28, 28a. — 6-tan, 29, 29a. H Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half- —, 12. P Quadratic Forms, 5-9. — —, Algebc., 5, 76a. — —, Indefinite, 7. — of n-ans, 10, 15. — of Large Factors, 16. — Pure, 5, 6. — — Unique, 8. — Parts, 6a. — — Viique, 9. — Parts, 6a. — Viique, 10. — Viique, 10. — Viique, 10. — Viique,		
— Pellian, 26d. — Quartan, 27. — Sextan, 27. — Simple n-ans, 25a, 27. — Tables, 27. — Tables, 27. — Tinoml. 4-tan, 28, 28a. — G-tan, 29, 29a. H Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. n-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half-—, 12. P Quadratic Forms, 5-9. ——, Arithme., 9, 76a. ———, Pimorph, 49-49b. ————————————————————————————————————		— Trin-Aurifns., 69.
Quartan, 27. — Sextan, 27. — Simple n-ans, 25a, 27. — Tables, 27. — Symbolism, 25c. — Trinoml. 4-tan, 28, 28a. — 6-tan, 29, 29a. H HHalf-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. IIdoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. I Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Quadratic Forms, 5-9. —, Algebc., 5, 76a. —, Dimorph, 49-49b. —, Impure, 5, 6.		Q
- Quartan, 27 Simple n-ans, 25a, 27 Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a Getavan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Athorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Linear Forms, 4. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. - Algebc., 5, 76a Arithmc., 9, 76a Dimorph, 49-49b Impure, 5, 6 Indefinite, 7 of Large Factors, 16 Pure, 5, 6 Triads, 6 - Unique, 8 Parts, 6a Vinique, 8 Parts, 6a Pure, 5, 6 Triads, 6 - Unique, 8 Parts, 6a Pure, 5, 6 Triads, 6 - Unique, 8 Parts, 6a Parts, 6a Pure, 5, 6 Triads, 6 - Unique, 8 Parts, 6a Parts, 6a Pure, 5, 6 Indefinite, 7 of Large Factors, 16 Pure, 5, 6 Impure, 5, 6 Indefinite, 7 of l-arge Factors, 16 Pure, 5, 6 Unique, 8 Parts, 6a Vinique, 8 Parts, 6a Pire, 5, 6 Unique, 8 Parts, 6a Virgin, 10 Pure, 5, 6 Unique, 8 Parts, 6a Pire, 5, 6 Unique, 8 Parts, 6a Virgin, 10 Virgin, 10 Pure, 5, 6 Unique, 8 Parts, 6a Virgin, 10 Virgin, 10 Virgin, 10 Virgin, 10 Pure, 5, 6 Unique, 8 Parts, 6a Virgin, 10 Virgin, 10.		
- Sextan, 277 Simple n-ans, 25a, 27 Tables, 27 Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a 6-tan, 29, 29a. H Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P - Arithmc., 9, 76a Different, 6 Dimorph, 49-49b Impure, 5, 6 Indefinite, 7 of n-ans, 10, 15 of Large Factors, 16 Pure, 5, 6 Unique, 8 Parts, 6a Unique, 8 Parts, 6a Unique, 8 Parts, 6a Unique, 8 Half-, 11 Chains, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Diophante. Applic., 83-83c Factorisn., 25a-27 Linear Forms, 4 Primes, 27a Quadc. Forms, 11 Trinoml., 28, 28a Quartics, Dimorph, 53, 58 Square, 73, 73a. Quotient-Aurifns., 37b. Recipl. Charactes., 78a, 83a, b, 84 Factorisants, 78a, 8		
- Tables, 27 Symbolism, 25c Trinoml. 4-tan, 28, 28a G-tan, 29, 29a. H Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Different, 6 Dimorph, 49-49b Indefinite, 7 of n-ans, 10, 15 of Large Factors, 16 Unique, 8 Pure, 5, 6 Unique, 8 Parts, 6a Unique, 9 Parts, 6a Uniqu		— —, Arithme., 9, 76a.
- ————————————————————————————————————		
- Trinoml. 4-tan, 28, 28a 6-tan, 29, 29a. H Half-Duan, 2a, 10 Quartan, 2a, 11 Octavan, 2a, 12. High Primes, 24, 26a Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. I Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. n-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half- —, 12. P - Indefinite, 7 — on n-ans, 10, 15 — Pure, 5, 6 — Triads, 6 - — Unique, 8 Parts, 6a — Signs of, 6c. Quartans, 11 Chains, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Diophante. Applic., 83-83c Factorisn., 25a-27 Linear Forms, 4 Primes, 27a Quade. Forms, 11 Trinoml., 28, 28a. Quartics, Dimorph, 53, 58 Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84 Factorisants, 78a, 83a, b, 84 Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23 n-ans, 23, 24. Roots of Congruences, 17 , First, 19-i to v — Indefinite, 7 — of Large Factors, 16 — Pure, 5, 6 — Triads, 6 - — Unique, 8 Parts, 6a Unique, 8 Parts, 6a Lohins, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Diophante. Applic., 83-83c Factorisn., 25a-27 Linear Forms, 4 Primes, 27a Quade. Forms, 11 Trinoml., 28, 28a. Quartics, Dimorph, 53, 58 Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84 Factorisants, 75a, 83a, b, 84 Factorisants, 75a, 83a, b, 84 Factorisants, 75a, 81a, 16 — Pinting, 75 — of Large Factors, 16 — Trinds, 6 - — Unique, 8 Parts, 6a — Signs of, 6c. Quartans, 11 Half-, 11 Chains, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Diophante. Applic., 83-83c Factorisants, 75a, 83a, b, 84 Factorisants, 75a, 83a, b, 84 Factorisants, 75a, 85		— — Dimorph, 49-49b.
——————————————————————————————————————		— — Impure, 5, 6.
H Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Cotavans, 2a, 12. Half-—, 12. P — of n-ans, 1, 0, 15. — Pure, 5, 6. — Unique, 8. — Parts, 6a. — - Signs of, 6c. Quartans, 11. — Chains, Simple, 34a. — Congruences, 17–21c. — Dimorph, 54–55. — Diophante. Applic., 83–83c. — Factorisn., 25a–27. — Linear Forms, 4. — Primes, 27a. — Quadc. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. — , First, 19-i to v. — Jeast, 17.		— — Indefinite, 7.
Half-Duan, 2a, 10. — Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Cotavans, 2a, 12. Half-—, 12. Puring, 5, 6. — Unique, 8. — Parts, 6a. — Signs of, 6c. Quartans, 11. — Chains, Simple, 34a. — Congruences, 17–21c. — Dimorph, 54–55. — Diophante, Applic., 83–83c. — Factorisn., 25a–27. — Linear Forms, 4. — Primes, 27a. — Quade. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		— of n -ans, 10, 15.
— Quartan, 2a, 11. — Octavan, 2a, 12. High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Triads, 6 — Unique, 8. — Parts, 6a. — Signs of, 6c. Quartans, 11. — Chains, Simple, 34a. — Congruences, 17-21c. — Dimorph, 54-55. — Diophante, Applic., 83-83c. — Factorisn., 25a-27. — Linear Forms, 4. — Primes, 27a. — Quade. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. Recipl. Charactes., 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. — First, 19-i to v. — Last, 17.		
Octavan, 2a, 12. High Primes, 24, 26a. Authorities, 27b. Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half, 12. P Unique, 8. Parts, 6a. Signs of, 6c. Quartans, 11. Chains, Simple, 34a. Congruences, 17-21c. Dimorph, 54-55. Diophante. Applic., 83-83c. Factorisn., 25a-27. Linear Forms, 4. Primes, 27a. Quade. Forms, 11. Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. n-ans, 23, 24. Roots of Congruences, 17. , First, 19-i to v. Least, 17.		
High Primes, 24, 26a. — Authorities, 27b. — Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half-—, 12. Parts, 6a. — Signs of, 6c. Quartans, 11. — Half-, 11. — Chains, Simple, 34a. — Congruences, 17-21c. — Dimorph, 54-55. — Diophante. Applic., 83-83c. — Factorisn., 25a-27. — Linear Forms, 4. — Primes, 27a. — Quadc. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Authorities, 27b Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Linear Forms, 4. Linek-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. O Octavans, 2a, 12. Half-—, 12. P Signs of, 6c. Quartans, 11 Half-, 11 Chains, Simple, 34a Congruences, 17-21c Dimorph, 54-55 Diophante. Applic., 83-83c Factorisn., 25a-27 Linear Forms, 4 Primes, 27a Linear Forms, 11 Trinoml., 28, 28a. Quartics, Dimorph, 53, 58 Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23 n-ans, 23, 24. Roots of Congruences, 17, First, 19-i to v Least, 17.		
— Tables, 27a. I Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Quartans, 11. — Half-, 11. — Chains, Simple, 34a. — Congruences, 17-21c. — Dimorph, 54-55. — Diophante, Applic., 83-83c. — Factorisn., 25a-27. — Linear Forms, 4. — Primes, 27a. — Quadc. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		and the second s
I — Half-, 11. — Chains, Simple, 34a. — Congruences, 17–21c. — Dimorph, 54–55. — Diophante. Applic., 83–83c. — Factorisn., 25a–27. — Linear Forms, 4. — Primes, 27a. — Quadc. Forms, 11. — Chains, 30. — Trinoml., 28, 28a. — Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. n-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. — O Octavans, 2a, 12. — O Octavans, 2a, 12. — P — P — P — P — P — P — P — P — P —		
Idoneals, 8. Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P - Chains, Simple, 34a. — Congruences, 17–21c. — Dimorph, 54–55. — Diophante. Applic., 83–83c. — Factorism., 25a–27. — Linear Forms, 4. — Primes, 27a. — Quadc. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Impure 2-ic forms, 5, 6. Indeterminate 4-tic Eqns., 62a. Congruences, 17-21c. Dimorph, 54-55. Diophante. Applic., 83-83c. Factorisn., 25a-27. Linear Forms, 4. Linear Forms, 4. Links, 30. Link-Factors, 30. M		
Indeterminate 4-tic Eqns., 62a. Ineffectives, 78b, 83b, 84. Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Dimorph, 54-55. — Diophante. Applic., 83-83c. — Factorisn., 25a-27. — Linear Forms, 4. — Primes, 27a. — Quade. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. Recipl. Charactes., 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Ineffectives, 78b, 83b, 84. L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Diophante. Applic., 83–83c. — Factorisn., 25a–27. — Linear Forms, 4. — Primes, 27a. — Quade. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
L Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P — Factorisn., 25a–27. — Linear Forms, 4. — Primes, 27a. — Quadc. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Latent Trin-Aurifn., 40b, 42b. Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half, 12. P - Linear Forms, 4 Primes, 27a. - Quadc. Forms, 11 Trinoml., 28, 28a. Quartics, Dimorph, 53, 58 Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23 n-ans, 23, 24. Roots of Congruences, 17 , First, 19-i to v Least, 17.	-	
Linear Forms, 4. Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Primes, 27a. — Quadc. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Links, 30. Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P M M.A.P.F., 1. — Quadc. Forms, 11. — Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Link-Factors, 30. M M.A.P.F., 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Trinoml., 28, 28a. Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
M M.A.P.F., 1. N-ans, 1. Nexus, 36c. n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Quartics, Dimorph, 53, 58. — Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
M.A.P.F., 1. n-ans, 1. Nexus, 36c. n-ics, 1. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Square, 73, 73a. Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
N n-ans, 1. Nexus, 36c. n-ics, 1. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Quotient-Aurifns., 37b. R Recipl. Charactes., 78a, 83a, b, 84. — Factorisants, 78a, 83a, b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		— Square, 73, 73a.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		D
n-ics, 1. Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P = Ractorisants, 78a, 83a,b, 84. Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. — n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Nomenclature, 1, 2a. Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Reduction of Fractions, Modr., 19a. Restricted Genl. Congruences, 23. —— n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Notation, 1, 1b, 2a. Octavans, 2a, 12. Half-—, 12. P Restricted Genl. Congruences, 23. ——n-ans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.		
Octavans, 2a, 12. Half-—, 12. P Octavans, 23, 24. Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.	B B	
Octavans, 2a, 12. Half-—, 12. P Roots of Congruences, 17. —, First, 19-i to v. —, Least, 17.	0	
Half- —, 12. —, First, 19-i to v. —, Least, 17.	Octavans, 2a, 12.	
P —, Least, 17.		
	Partitions, in 2-ic Forms.	

S
Semi-quartan Forms, 11a.
Serial Solutions, 81-81b.
Sextans, 2a, 14, 14a, &c.
— Bin-Aurifn., 42a.
— Chains, Simple, 34b.
- Congruences, 17-21c.
Dimorph, 54-55.
— Diophante. Applicn., 84–85.
- Factorisn., 25a-27.
- Linear Forms, 4.
Primes, 27a.
- Quadratic Forms, 14, 14a.
- Trin-Aurifns., 42b.
— Trinomial, 29, 29a.
Sext-Aurifns, 42c-e.
Signs of 2-ic parts, 6c.
Simple Forms, 2b.
Solvable Factorisants, 78, 83b, 84.
— Indeterme. 4-tic Eqns., 62a.
Squares, 70-76.
- Chain Factor, 75.
- Circular Chain, 75.
— Cubans, 71, 71a.
— Cubics, 72.
— Duans, 71, 71a.
— Duo-Cubans, 71, 71a.
— Impossible, 70.
*

— 2-ic Forms, 71.
— Quarties, 73, 74.
— Trinoml. —, 74.
— Quartan Products, 76.
Suitable Characteristics, 78,83b,84.
Τ.
Tetramorphs, 48–49c.
- Cubans, 49b.
— Duans, 49a.
Trees, Aurifn., 41c.
- Bin-Aurifn., 41d.
— Trin-Aurifn., 41e.
Triad. Quadre., 6.
Trimorph Cubics, 50b.
Trin-Aurifn., 40-40b.
- Cubans, 40a,b.
- Factors, Common, 41a.
- Sextans, 42b.
Trinomial 4-tans, 28, 28a.
- 6-tans, 29, 29a.
Trito-Cubans, 13-13c.
U, V, W.
Unique 2-ic forms, 8.
Unit-forms, 7b, 81b.

Variants, Cuban 8, 48. Working Condition, 3.

- Possible, 70.

Page.

ADDENDA.

128 Left Table $Add \begin{bmatrix} \xi, & \eta \\ 1, & 16 \end{bmatrix} \begin{bmatrix} x & , & y \\ 32767, & 4096 \end{bmatrix} \begin{bmatrix} L & M \\ 107, & 3806849 \\ 107, & 3806849 \\ 100000 \end{bmatrix}$ 143 At side of Table II For < 32350 Read < 100000

ADDITIONAL CORRIGENDA.

Page.	Line.	Col.	For.	Read.
xlii	2	-	(84)	(85)
17	21	y, y	18679, 21030	18179, 22430
131	Last of Table II	C'	$\frac{1}{2}k^2$	$\frac{1}{2}k$
167	$x = 39, \ y = 52$	N	13.13.13.193	Cancel the line
172	$\eta = 37$	L	7296769;	7296697;
203	7		$\rho + 1 = 2$	$\rho + 1 = \epsilon$
204	6		$t_r u_r$	$2t_ru_r$
204	7		$\rho + 1 = 2$	$\rho + 1 = \epsilon$
210	3		$M_0 = 13$	Cancel
210	13	r = 4	1, 1697245	1, 1650245
219	p = 1601	$y^{32} + 1$	674	677
219	p = 4673	$y^{32} + 1$	2204	*48
226	Head	_	(x', y')	f(x', y')
231	3		z_r^4	z_r^2
231	23		+ c ^c	$+a^2$

p	y	y	p	y	y	p	y	y	p	y	y
5 13 17 29 37	2, 5, 4, 12, 6,	3 8 13 17 31	449	67, 109,	382 348 413	1 009 1 013 1 021 1 033 1 049	45, 374, 355,	968 647 678	1 609 1 613 1 621 1 637 1 657	127, 166, 316,	1086 1486 1455 1321 874
41 53 61 73 89	9, 23, 11, 27, 34,	3 ² 3 ⁰ 5 ⁰ 4 ⁶ 55	557 569	235, 52, 118, 86,	286 489 439 483	1 061 1 069 1 093	103,	958 820 563 756		220, 92, 414, 390,	1449 1601 1283 1319 1248
97 101 109 113 137	22, 10, 33, 15,	75 91 76 98 100	593 601 613 617	77, 125, 35,	516 476 578 423	1 117 1 129 1 153 1 181 1 193	140, 243,	903 961 1013 938	1 733 1 741 1 753 1 777 1 789	410, 59, 713, 775,	1323 1682 1040 1002 1065
149 157 173 181 193	28, 80,	105 129 93 162 112	661 673 677	149, 106, 58, 26,	504 555 615 651	1 201 1 213 1 217 1 229 1 237	495, 78,	718 1139 632	1 801 1 861 1 873 1 877 1 889	824, 61, 737, 137,	977 1800 1136 1740 1558
197 229 233 241 257	107, 89, 64,	183 122 144 177 241	733 757 761	353, 87, 39,	380 670	1 249 1 277 1 289 1 297 1 301	113, 479, 36,	1164 810 1261	1 901 1 913 1 933 1 949 1 973	712, 598, 589,	1683 1201 1335 1360 1714
269 277 281 293 313	60, 53, 138,		797 809 821	215, 318,	582 491 526	1 321 1 361 1 373 1 381 1 409	614, 668, 366,	747 705 1015	1 993 1 997 2 017 2 029 2 053	412, 229, 992,	1159 1585 1788 1037 1809
317 337 349 353 373	114, 148, 136, 42, 104,	189 213 311	857 877 881	207, 151, 387,	650 726 494	1 429 1 433 1 453 1 481 1 489	542, 497, 465,	956 1016	$ \begin{array}{r} 2081 \\ 2089 \\ 2113 \end{array} $	102, 789, 65,	1905 1979 1300 2048 1757
389 397 401 409 421	63, 20,	334 381 266	941 953	97, 442, 252,	844511725	1 493 1 549 1 553 1 597 1 601	88, 339, 610,	1461 1214 987	2 141	419, 232,	1841 1722 1921 2014 1130

p	y	y	p	y	y	p	y	y	p	y	y
2 221 2 237 2 269 2 273 2 281	1021, 982, 290,	1431 1216 1287 1983 1571	$2833 \\ 2837$	1357, 416, 896,	1476 2421 1961	3 517 3 529 3 533 3 541 3 557	808, 548, 852,	2721 2985 2689	$\begin{array}{c} 4\ 177 \\ 4\ 201 \\ 4\ 217 \\ 4\ 229 \\ 4\ 241 \end{array}$	1154,	2306 2147
2 293 2 297 2 309 2 333 2 341	365, 688, 108,	1693 1932 1621 2225 2188	2909 2917 2953	878, 54, 1226,	2031 2863 1727	3 581 3 593 3 613 3 617 3 637	1153, 85, 1234,	3528 2383		721, 1200, 528,	3692 3540 3073 3761 2325
2 357 2 377 2 381 2 389 2 393	1134, 69, 285,	1243 2312 2104	2 969 3 001 3 037 3 041 3 049	1353, 281, 774,	1648 2756 2267	3 673 3 677 3 697 3 701 3 709	1309, 1131, 1279,	2368 2566 2422	4 337 4 349 4 357 4 373 4 397	608, 66, 1904,	3451 3741 4291 2469 3892
$\begin{bmatrix} 2 & 417 \\ 2 & 437 \\ 2 & 441 \\ 2 & 473 \\ 2 & 477 \end{bmatrix}$	398, 672, 567,	2039 1769 1906	3 061 3 089 3 109 3 121 3 137	393, 727, 79, 56,	2696 2382 3042 3081	3 733 3 761 3 769 3 793 3 797	604, 1445, 803,	3157 2324 2990	4 409 4 421 4 441 4 457 4 481	952, 2146, 1880,	4077 3469 2295 2577 4205
2 521 2 549 2 557 2 593 2 609	357, 611, 918, 389,	2192 1946 1675	3 169 3 181 3 209 3 217 3 221	282, 484, 1436,	2899 2725 1781	3 821 3 833 3 853 3 877 3 881	361, 1305, 502,	347 ² 2548 3375	4 493 4 513 4 517 4 549 4 561	95, 1474, 1260,	2280 4418 3043 3289 2356
$\begin{bmatrix} 2 617 \\ 2 621 \\ 2 633 \\ 2 657 \\ 2 677 \end{bmatrix}$	472, 1224, 163, 550,	2149 1409 2494 2127	3 229 3 253 3 257 3 301 3 313	1598, 291, 1212, 407,	1655 2966 2089	3 889 3 917 3 929 3 989 4 001	835, 226, 481, 899,	3082 3703 3508 3102	4 597 4 621 4 637 4 649 4 657	152, 2044, 1846, 1912,	2468 4469 2593 2803 2745
2 689 2 693 2 713 2 729 2 741	859, 887, 1102, 656,	1834 1826 1627	3 329 3 361 3 373 3 389 3 413	900, 1105,	2461 2268 2045	4 013 4 021 4 049 4 057 4 073	723, 884, 1857,	3298 3165 2200	4673 4721 4729 4733 4789	1697, 1365, 897,	2680 3024 3364 3836 3308
2 749 2 753 2 777 2 789 2 797	794, 190, 167,	1959 2587 2622	3 433 3 449 3 457 3 461 3 469	1122, 708, 1453,	2327 2749 2008	4 093 4 129 4 133 4 153 4 157	895, 733, 1643,	3 ² 34 34 ⁰⁰ 2510	4 793 4 801 4 813 4 817 4 861	1403, 1868, 1291,	3398 2945

p	y	y	p	y	y	p	y	y	p	y	y
4 877 4 889 4 909 4 933 4 937	730, 1613, 1194,	4159 3296 3739	5 581 5 641 5 653 5 657 5 669	1429, 310, 1670,	4212 5343 3987	6 329 6 337	1963, 2219, 178,	4354 4110 6159	6 997	1796, 1198, 2480,	5201 5803
4 957 4 969 4 973 4 993 5 009	359, 1076, 223, 158,	4598 3893 4750 4835	5 689 5 693 5 701 5 717 5 737	2124, 1193, 385, 2416,	3565 4500 5316 3301	6 361 6 373 6 389 6 397	1751, 1879, 2092, 1302,	4610 4494 4297 5095	7 069 7 109 7 121 7 129	188, 304, 778,	6881 6805 6343 6862
5 021 5 077 5 081 5 101 5 113	1363, 858, 2412, 101,	3658 4219 2669 5000	5 741 5 749 5 801 5 813 5 821	2378, 806, 1145, 796,	3363 4943 4656 5017	6 449 6 469	1854, 2977, 1808, 729,	4595 3492 4665 5752	7 193	967, 1999, 3572, 2502,	6226 5214 3657
5 153 5 189 5 197 5 209 5 233	227, 2446, 1969, 2098,	4926 2743 3228 3111	5 849 5 857 5 861 5 869 5 881	2839, 1310, 754, 1042,	3010 4547 5107	6 529 6 553 6 569 6 577	2311, 3186, 3038, 1624,	4218 3367 3531 4953	7 297 7 309 7 321 7 333 7 349	3553, 2717, 121, 2909,	3744 4592 7200 4424 5288
5 237 5 261 5 273 5 281 5 297	369, 827, 944, 1673,	4868 4434 4329 3608		543, 2403, 1317, 1801,	5354 3550 4664 4228		2828, 752, 658,	3809 5901 6003 4236	7 369 7 393 7 417 7 433 7 457	607, 2361, 2737, 983,	6762 5032 4680 6450 6182
5 309 5 333 5 381 5 393 5 413	1804, 2630, 1739, 665,	35°5 27°3 3642	6 053 6 073 6 089 6 101	2832, 2524, 455, 247,	3221 3549 5634 5854	6 701 6 709 6 733 6 737 6 761	1721, 2150, 2217, 2393,	4980 4559 4516 4344	7 477 7 481 7 489 7 517 7 529	1652, 1408, 1591, 3409,	5825 6073 5898 4108 5084
5 417 5 437 5 441 5 449 5 477	368, 630, 2452, 635,	5049 4807 2989 4814	6 121	2583, 865, 2447, 2007,	3538 5268 3726 4190	6 781 6 793 6 829 6 833 6 841	995 709 1596	5786 , 6084 , 5233 , 5526	7 537 7 541 7 549 7 561 7 578	1049, 2867, 2931, 2923,	, 6488 , 4674 , 4618 , 4638 , 3830
5 501 5 521 5 557 5 569 5 573	765,	4386 4756 3079 4596	6 221 6 229 6 257 6 269	1121, 1451, 1584,	, 5100 , 4778 , 4673	6 857 6 869 6 917 6 949 6 961	1348 998 263	, 5509 , 5871 , 6654 , 6017	7 577 7 589 7 621 7 649		, 6037 , 4319 , 5583 , 5286

p	y	y	p	y	y	p	y	y	p	y	y
7 717 7 741	3383,	4298 4764 4542	8 389 8 429	330, 3449, 2190,	8047 4940 6239	9 133 9 137 9 157 9 161 9 173	1286, 2203, 3125,	7851 6954 6036	9 817 9 829 9 833 9 857 9 901	1304, 534,	8525 9299 9635
	3378, 2214, 2564,	4411 5579 5 ² 53		1203, 2606, 1595,	7310 5915 6942		346, 3300, 1829,	8863 5921	9 973		9800 7406
7 841 7 853 7 873 7 877 7 901	1759, 3590, 320,	6094 4283 7557	8 581 8 597 8 609 8 629 8 641	2318, 1830, 4123,	6279 6779 4506	9 293 9 337	586,				
7 933 7 937 7 949 7 993 8 009	1962, 679, 2110,	5975 7270 5883	8 669 8 677 8 681 8 689 8 693	3963, 3911, 4061,	4714 4770 4628	9 377 9 397 9 413	2848, 1852,	6529 7545 4755		y	y
8 017 8 053 8 069 8 081 8 089	370, 2732, 3940,	7683 5337 4141	8 713 8 737 8 741 8 753 8 761	4264, 3320, 2569,	4473 5421 6184	9 437 9 461	830, 1510, 1172,	8607 7951	$egin{array}{c} 5^2 \\ 5^3 \\ 13^2 \\ 17^2 \\ 5^4 \\ \end{array}$	7, 57, 70, 38, 182,	18 68 99 251 443
8 101 8 117 8 161	1733,	8011 6384 7959	8 837 8 849 8 861	94, 2994, 1791,	8743 5855 7070		404, 3237,	7556 9197 6376	$ \begin{array}{c} 29^{2} \\ 37^{2} \\ 41^{2} \\ 13^{3} \\ 53^{2} \end{array} $	378, 239,	800 1252 1303 1958 2309
8 221 8 233 8 237 8 269 8 273	856, 287, 643,	7377 7950 7626	8 929 8 933 8 941 8 969 9 001	762, 3080, 510,	8171 5861 8459	9 649 9 661 9 677 9 689 9 697	139, 1338, 2212,	7477	$ \begin{array}{c} 5^{5} \\ 61^{2} \\ 17^{3} \\ 73^{2} \\ 89^{2} \end{array} $	1985,	3039 2928 4553
8 293 8 297 8 317 8 329 8 353	2097, 1371, 1443,	6200 6946 6886	9 013 9 029 9 041 9 049 9 109	4467, 2284, 1362,	4562 6757 7687	9 733 9 749 9 769	2709, 356, 4774,	7024 9393 4995	972	4052,	5357

p	y	y	p	y	y	p	y	y
10 009 10 037 10 061 10 069 10 093	33°3, 3271, 46°2, 463°, 2388,	6766		3410, ² 573, ² 657, ⁵ 037, ² 060,	7427 8280 8204 5852 8849	11 681 11 689	4556, 4654,	
10 133 10 141 10 169 10 177 10 181	1758, 1313, 2339, 3286, 1500,		10 949 10 957 10 973	1998, 3873, 3542, 5039, 2123,	7415 5934		5322, 4546, 5608, 3014, 4071,	7243 6193 8799
10 193 10 253 10 273 10 289 10 301	1236, 591,	5464 9017 9682 5453 9281	11 069 11 093	3355, 4819, 1508, 4475, 4008,	9585 6638	11 833 11 897 11 909 11 933 11 941	2739, 2947, 4051, 3792, 5530,	8950 7858 8141
10 313 10 321 10 333 10 337 10 357	3151,	8632 7170 7275 7590 5840	11 173 11 177	1559, 4°45, 3456, 1182, 3938,	7717 9995	11 969 11 981 12 037	2103, 3129, 1209, 3417, 347,	8840 10772 8620
10 369 10 429 10 433 10 453 10 457	4192, 323, 2972,	6091 6237 10110 7481 8490	$11\ 261$	2231,	9030 7230	$12\ 049 \\ 12\ 073 \\ 12\ 097 \\ 12\ 101 \\ 12\ 109$	2181, 1873,	9892 10224 11991
$10\ 477$ $10\ 501$ $10\ 513$ $10\ 529$ $10\ 589$	1284, 145, 1369,		11 329 11 353 11 369	238, 4150, 3070,	11091 7203 8299	$12\ 113$ $12\ 149$ $12\ 157$ $12\ 161$ $12\ 197$	5191, 706, 4993;	6958 11451 7168
10 597 10 601 10 613 10 657 10 709	5 ² 5, 5 ² 55, 2499,	9793 10076 5358 8158 7486	11 489 11 497 11 549	625, 1594, 3454,	10864 9903 8095	$\begin{array}{c} 12\ 241 \\ 12\ 253 \\ 12\ 269 \\ 12\ 277 \\ 12\ 281 \end{array}$	2282, 1896, 4277,	8000
10 729 10 733 10 753 10 781 10 789	518, 4489, 2370,	6264 8411	11617 11621	5688, 5541, 3275,	5929 6080 8358	$\begin{array}{c} 12\ 289 \\ 12\ 301 \\ 12\ 329 \\ 12\ 373 \\ 12\ 377 \end{array}$	248, 4162, 3243	9130

p	y	y	p	y	y	p	y	y
12 401 12 409 12 413 12 421 12 433	1897, 4686,	7727 11190	13 037 13 049 13 093 13 109 13 121	1914, 976, 5098, 4455, 6354,	7995 8654	13 829 13 841 13 873 13 877 13 901	2263, 2954, 6644,	13405 11578 10919 7233 10154
12 437 12 457 12 473 12 497 12 517	3965,	6743 11307 8532	13 177 13 217 13 229 13 241 13 249	2160, 6557, 3339,	11057 6672 9902	13 913 13 921 13 933 13 997 14 009		8218
12 541 12 553 12 569 12 577 12 589	4147, 5050,	7519	13 309	1878, 258, 1189,	11431 13055 12148	14 029 14 033 14 057 14 081 14 149	1446, 926,	12937 12587 13131 7890 7554
12 601 12 613 12 637 12 641 12 653	5554,	11005	13 421	6579, 4785, 4341,	6838 8636 9100	14 153 14 173 14 177 14 197 14 221	3574, 2386,	9524 12235 10603 11811 12599
$12 689 \\ 12 697 \\ 12 713 \\ 12 721 \\ 12 757$	1720, 4881, 5730,	10345 10977 7832 6991 10470	13 537	5949, 626, 1517,	7528 12887 12020	14 249 14 281 14 293 14 321 14 341	169, 5751,	12019 14112 8542 12711 7807
12 781 12 809 12 821 12 829 12 841	2016, 6181,	10805	13 577 13 597 13 613 13 633 13 649	2169, 165, 2069,	11428 13448 11564	14 369 14 389 14 401 14 437 14 449	5333,	2
12 853 12 889 12 893 12 917 12 941	4416, 3735, 3778,	8473 9158	13 669 13 681 13 693 13 697 13 709	5927, 3656, 6788, 6309, 5603,	10025 6905 7388	14 461 14 489 14 533 14 537 14 549	434, 4501, 4053,	13691 14055 10032 10484 10480
12 953 12 973 13 001 13 009 13 033	5157, 2907, 2817,	10094	13 721 13 729 13 757 13 781 13 789		13467 11339 7392	14 557 14 561 14 593 14 621 14 629	734, 4663, 171,	10809 13827 9930 14450 13052

p	y	y	p^{-}	y	y	p	y	y
	4346, 3634, 383,	10307 11023 14286	15 373 15 377 15 401 15 413 15 461	124, 3105, 6696,	15253		6147, 4856, 7177,	14153 10070 11373 9072 11857
14 717 14 737 14 741 14 753 14 797	619, 1462, 4083,	14118 13279 10670	15 473 15 493 15 497 15 541 15 569	7348, 5624,	8627 8145 9873 15027 7924	16 333 16 349	7847, 3972,	9482 13171 8486 12377 10812
14 813 14 821 14 869 14 897 14 929	2670, 3116, 6525,	12151 11753 8372	15 581 15 601 15 629 15 641 15 649	4152, 7752, 3879,	9773 11449 7877 11762 13116	16381 16417 16421	181, 3846, 3629,	11733 16200 12571 12792 9372
	4932, 3181, 5097,	10037 11832	15 661 15 733 15 737 15 749 15 761	1079, 1650, 3648,	13030 14654 14087 12101 15364	16 477 16 481 16 493	4191, 2699, 2187,	15546 12286 13782 14306 14056
15 061 15 073 15 077 15 101 15 121	5336, 4009, 1943,	13158		4178, 6520, 7526,	9289 8291	16 553 16 561 16 573 16 633 16 649	3477; 7411, 8084,	, 13084 , 9162
15 137 15 149 15 161 15 173 15 193	3466, 4482, 5348,	11683 10679 9825	15 881 15 889 15 901 15 913 15 937	735, 3155, 2846,	15154 12746 13067	16 657 16 661 16 673 16 693 16 729	7000, 1954, 5349,	12525 9661 14719 11344 11289
15 217 15 233 15 241 15 269 15 277	7394; 3683; 7026;	, 7839 , 11558 , 8243	15 973 16 001 16 033 16 057 16 061	645, 6449, 3461,	15356 9584 12596	16 741 16 829 16 889 16 901 16 921	2575, 7937, 130,	, 16771
15 313 15 329 15 349	3 175 5671 3768	, 15138 , 9658 , 11581		6222	14420 9875 9264	16 937 16 981 16 993 17 021 17 029	3788 5821 7725	, 13193 , 11172 , 9296

<i>p</i>	y	y	p	y	y	<i>p</i>	y	<i>y</i>
17 033			17 881					
17 041			17 909			18 521		
$17\ 053$ $17\ 077$			17921 17929			18 541 18 553		16319
17 093	1821,		17957	134,	17823	18 593		11475
17 117			17 977			18 617		13552
17 137	7318,	9819	17 981	3623,		18 637		14871
17 189	3041,	14148	17 989	8718,	9271	18 661	3224,	15437
17 209						18 701		16425
17 257	1026,		18 041		-	18 713		11115
17 293 17 317			18 049			18 749		18316
17 317						18 757 18 773		9455
17 333						18 793		15234
$17\ 341$	4135,	13206	18097			18 797		13607
17 377						18 869	5647,	13222
17 389.				2229,	15904	18 913		11044
17 393			18 149			18 917		17082
$\begin{vmatrix} 17 & 401 \\ 17 & 417 \end{vmatrix}$						18 973 19 001		18665 9749
17 449			1	,	12407	19 009	, ,	11546
17 477						19 013		18818
17 489.	5892, 1	11597	18 233	427,	17806	19 037	5467,	13570
17 497						19 069	7600,	11469
17 509					- 1	19 073		13889
17 569						19 081		16284
17 573			18 289 18 301		9965	19 121 19 141		12232
17 597						19 157		14638
17 609	1513, 1	16096	$18\ 329$		16569	19 181		15889
17 657	5345,	12312	18341	6502,	11839	$19\ 213$	7379,	11834
17 669						19 237		17044
$17\ 681$ $17\ 713$	3810, 1 4160, 1			7002,	17065	19 249 19 273		13831
17 729	7538, 1			5773,	12640	19 289		17839
17 737			18 433					, ,,
			18 457		12821	19 309	4702,	14607
17 761,	298,	17463	18 461	870,	17591	19 333	9106,	10227
17 789 17 837	5350,	12439	18 481	8077,	10404	19 373	8098,	
11 007	001,	17150	18 493	7909,	10524	19 381	574,	18807

p	y	y	p	y	y	p	y	y
19 417 19 421 19 429 19 433 19 441	1956, 5523, 4684,	17465 13906	20 113 20 117 20 129 20 149 20 161	2992, 9633, 8835,	18496 17125 10496 11314 13291	20981 21001	2015, 6106, 7282,	10987 18914 14875 13719 20808
19 457 19 469 19 477 19 489 19 501	312, 7994, 1484,	11302 19157 11483 18005 11851	$20\ 177 \\ 20\ 201 \\ 20\ 233$	9347, 201, 766,	19467	$21\ 061$ $21\ 089$	3486, 2618, 8271,	13943 17575 18471 12830 11918
19 541 19 553 19 577 19 597 19 609	6280, 3662, 4821,	16472 13273 15915 14776 13026	20 269 20 297 20 333	9841, 1085, 1575,	14717 10428 19212 18758 13711	$\begin{array}{c} 21\ 157 \\ 21\ 169 \\ 21\ 193 \end{array}$	2477, 1752, 10028,	16669 18680 19417 11165 16684
19 661 19 681 19 697 19 709 19 717	4358, 7980, 4093,	11717 15616	20357 20369	6229, 3568, 2728,		21 317	934, 5034, 146,	11488 20343 16279 21171 17102
19 753 19 777 19 793 19 801 19 813	8125, 4334, 199,		20 477	6629, 2186, 453,	18323	21 377 21 397 21 401 21 433 21 481	9526, 8731, 732,	13452 11871 12670 20701 11274
19 841 19 853 19 861 19 889 19 913	3869, 3593, 4688,	15454 15984 16268 15201 10607	20593 20641 20681	1728, 7053, 2675,		$21\ 529$	328, 7437, 3500,	18033 21189 14084 18029 18297
19 937 19 949 19 961 19 973 19 993	1215, 8412, 6763,	11549	20 717 20 749 20 753 20 773 20 789	2453, 4576, 1162,	15206 18296 16177 19611 18300	$\begin{array}{c} 21\ 577 \\ 21\ 589 \\ 21\ 601 \end{array}$	749, 1119,	15213 20828 20470 20707 10880
19 997 20 021 20 029 20 089 20 101	3823, 9444, 3263,	16198 10585 16826	20 809 20 849 20 857 20 873 20 897	7290, 1883, 3425,	13559 18974 17448	21 617 21 649 21 661 21 673 21 701	10660, 8164, 8109,	19 70 0 10989 13497 13564 15864

p	y	y	p	y	y	p	y	y
21 713 21 737 21 757 21 773 21 817	9556, 1043, 4461,	20525 12181 20714 17312 19341	22573 22613	6312, 6932, 6183,	16261 15681	23 333 23 357 23 369 23 417 23 473	8935, 5°47, 1°613,	14434 14422 18322 12804 20558
21 821 21 841 21 881 21 893 21 929	209, 2408, 9798,	17896 21632 19473 12095 13187	22 697 $22 709$ $22 717$	4582, 9702, 5595,	13007	23 497 23 509 23 537 23 549 23 557	7068, 3980, 7922,	18924 16441 19557 15627 18889
21 937 21 961 21 977 21 997 22 013	5643, 8565, 7176,	13269 16318 13412 14821 16897	22 769 22 777 22 817	5238, 4739, 5742,	18038 17075	23 561 23 581 23 593 23 609 23 629	4400, 768,	20323 19181 22825 23055 12740
22 037 22 073 22 093 22 109 22 129	8501, 3006,	15117 13572 19087 16128 11812	$\begin{array}{c} 22877 \\ 22901 \\ 22921 \end{array}$	9673, 2275, 7256,	13204 20626	23 633 23 669 23 677 23 689 23 741	7775, 6814, 11135,	18502 15894 16863 12554 18962
22 133 22 153 22 157 22 189 22 193	2650, 759, 6407,	17933 19503 21398 15782 13046	22 973 22 993 23 017	10839, 1398, 11100,	21595		9075, 5183, 8600,	18778 14686 18590 15189 17252
22 229 22 273 22 277 22 349 22 369	8867, 5°35, 5722,	12483 13406 17242 16627 19757	$23\ 041$ $23\ 053$ $23\ 057$	8930, 9096, 10078,	13957 12979	23 813 23 833 23 857 23 869 23 873	7056, 5717, 11616,	17652 16777 18140 12253 21430
22 381 22 397 22 409 22 433 22 441	4810, 5922, 6821,	17460 17587 16487 15612 21271	$23\ 173$ $23\ 189$	8407, 5062, 7121,	14766 18127	23929	1763, 10320, 3719,	22800 22146 13597 20210 17611
22 453 22 469 22 481 22 501 22 541	6508, 2131, 150,	21164 15961 20350 22351 18681	23 269 23 293	2866, 7367, 7328,	20403 15926 15969	23 977 23 981 23 993 24 001 24 029	219, 9641,	22106 23762 14352 21157 12092

p	y	y	p	y	y	p	y	y
24 049 24 061 24 077 24 097 24 109	4036, 11413, 3351,	20025 12664 20746	24 953 24 977 24 989 25 013 25 033	1680, 9964, 7124,	23297 15025	25 717 25 733 25 741 25 793 25 801	7091, 10865,	19144
24 113 24 121 24 133 24 137 24 169	5144, 1530, 7128,	18977 22603 17009	25 037 25 057 25 073 25 097 25 117	11490, 8660, 10695, 11556, 11631,	16397 14378 13541	25889	7971, 8216, 7605,	18643 17878 17657 18284 18582
24 181 24 197 24 229 24 281 24 317	7°43, 4578, 4543.	17154 19651 19738	25 121 25 153 25 169 25 189 25 229	2209, 2204, 3348,	19231 22944 22965 21841 17762	25 997	4425, 10566, 9128,	24994 21544 15415 16869 22848
24 329 24 337 24 373 24 413 24 421	156, 3003, 11014,	24181 21370 13399	25 237 25 253 25 261 25 301 25 309	10389, 3086, 503,	14864 22175	26 021 26 029 26 041 26 053 26 113	7912, 9928, 11048,	23435 18117 16113 15005 17579
24 469 24 473 24 481 24 509 24 517	5957, 4431, 1107,	18516 20050 23402	25 321 25 349 25 357 25 373 25 409	8331, 7194, 9247,	17018 18163 16126	26 141 26 153 26 161 26 177 26 189	3551, 1626,	15347 23596 22610 24551 24697
24 533 24 593 24 677 24 697 24 709	5615, 801, 6491,	18978 23876 18206	25 453 25 457 25 469 25 537 25 541	8709, 1606,	13464 16760	26 237 26 249 26 261	10378, 8527, 11697,	25847 15859 17722 14564 22560
24 733 24 749 24 781 24 793 24 809	7409, 352, 2053,	17340 24429 22740	25 561 25 577 25 589 25 601 25 609	557°, 3°77, 16°,	20007 22512 25441	26317	12749, 513, 1308,	25062 13560 25804 25013 19677
$\begin{bmatrix} 24 & 821 \\ 24 & 841 \\ 24 & 877 \\ 24 & 889 \\ 24 & 917 \end{bmatrix}$	11128, 5020, 7143,	13713 19857 17746	25 621 25 633 25 657 25 673 25 693	358, 2365, 8830,	23534 25275 23292 16843	$26\ 417$ $26\ 437$	10684, 2328, 5010,	16941 15733 24109 21439 21381

					2:	47		
<i>p</i>	y	<i>y</i>	p	<i>y</i>	<i>y</i>	p	<i>y</i>	<i>y</i>
26 497 26 501 26 513 26 557 26 561	8955, 1	7546 3803 4081	27337 27361 27397	6501, 2982, 6548,			9551, 4235,	16039 24894 18726 24054 26009
26 573 26 597 26 633 26 641 26 669	5121, 2 9967, 1 8260, 1	1476 6666 8381	27 449 27 457 27 481	11494, 6599,	20858 22318	28 349 28 393 28 409	10917, 3708, 2197, 533,	
26 681 26 693 26 701 26 713 26 717	10631, 1 4314, 2 11144, 1	6062 2387 5569	27581 27617	5483, 9284,	24052	28 477 28 493 28 513	5363,	23757 23114 21597 15105 15633
26 729 26 737 26 777 26 801 26 813	5999, 2 590, 2 3881, 2	0738 6187 2920	27 697	4243, 7521,	15073 26857 23454 20180 21678	28 541 28 549 28 573	13097, 5391, 11477,	23158
26 821 26 833 26 849 26 861 26 881		6873 5772 6977	27 749 27 773 27 793	4401, 527, 4376,	24862 23348 27246 23417 24854	28 649 28 657 28 661	10535, 10946, 2883,	
26 893 26 921 26 953 26 981 26 993	5417, 2 6180, 2	1504 0773 5906	27 893 27 901 27 917	13863, 3213, 5886,	21219 14030 24688 22031 19776	28 729 28 753 28 789	14175, 12494, 6723,	
27 017 27 061 27 073 27 077 27 109	11226, 1 7303, 1 11941, 1	5835 9770 5136	27 961 27 997 28 001	11844, 13324, 8575,		28 817 28 837	12618, 537, 170,	22928 16199 28300 28731 19216
27 197 27 241 27 253 27 277 27 281	6769, 2 6591, 2 7931, 1	0472 0662 9346	28 081 28 097 28 109	3679, 5572, 8065,	24402 22525 20044	28 933 28 949	916, 12431, 13024,	

p	<i>y y</i>	p	y	y	p	y	y
29 017 29 021 29 033 29 077 29 101	3828, 25189 5292, 23729 14326, 14707 2978, 26099 5313, 23788	29 989 30 013 30 029	11819, 245, 9026,	18170 29768 21003	30 773 30 781 30 809 30 817 30 829	11053, 12517, 10568, 11104, 13365,	18264 20241 19713
29 129 29 137 29 153 29 173 29 201	9251, 19878 1207, 27930 3871, 25282 10009, 19164 3287, 25914	30 109 30 113 30 133	388, 2626, 5514,	29721 27487 24619	30 841 30 853 30 869 30 881 30 893	1511, 14872, 1941,	22364 29342 15997 28940 23268
29 209 29 221 29 269 29 297 29 333	5276, 23933 9215, 20006 9576, 19693 13755, 15542 3864, 25469	30 169 30 181 30 197	3517, 4745, 14398,	26652 25436 15799	30 937 30 941 30 949 30 977 31 013	5826, 12026,	30801
29 389 29 401 29 429 29 437 29 453	9208, 20181 8611, 20790 6405, 23024 10501, 18936 6152, 23301	30 269 30 293 30 313 30 341	4095, 2492, 8988,	26174 27801 21325	31 033 31 069 31 081 31 121 31 153	1506, 4812, 10057,	27523 29563 26269 21064 23009
29 473 29 501 29 537 29 569 29 573	3386, 26087 8374, 21127 5956, 23581 6099, 23470 8538, 21035	30 449 30 469 30 493	2130, 940, 10828,	28319 29529 19665	31 177 31 181 31 189 31 193 31 237	1628, 5051, 2296,	24796 29553 26138 28897 18132
29 581 29 629 29 633 29 641 29 669	13347, 16294	30517 30529 30553	6054, 4326, 7226,	24463 26203 23327	31 249 31 253 31 277 31 321 31 333	13474, 9232, 9301,	21019 17779 22045 22020 15755
29 717 29 741 29 753 29 761 29 789	9168, 20585 9713, 20048 11646, 18143	30 593 30 637 30 649 30 661	9684, 7197, 5081,	19418 20953 23452 25580	31 337 31 357 31 393 31 397 31 469	4768, 3902, 7215,	24749 26589 27491 24182 30118
29 833 29 837 29 873 29 881 29 917	13138, 16699 14068, 15805 11655, 18226	30 689 30 697 30 713	3858, 13281, 12072,	26831 17416 18641	31 477 31 481 31 489 31 513 31 517	2023, 12068, 12555,	18067 29458 19421 18958 28710

p	y	y	p	y	y	p	y	y
31 541 31 573 31 601 31 649 31 657	13838, 1257, 14830,	17735 3°344 16819	32 413 32 429 32 441 32 497 32 533	8435, 1631, 1662,	23994 30810 30835	33 301 33 317 33 329 33 349 33 353	15107,	26282 17774
31 721 31 729 31 741 31 769 31 793	11114, 12065, -7583,	19676 24186	32 537 32 561 32 569 32 573 32 609	744, 15018, 2938,	31817 17551 29635	33 377 33 409 33 413 33 457 33 461	14982, 5678, 13769, 16524, 13860,	27731 19644 16933
31 817 31 849 31 873 31 957 31 973	3281, 1041, 3122,	28568 30832 28835	32 621 32 633 32 653 32 693 32 713	1886, 4607, 8590,	3°747 28°046 241°03	33 469 33 493 33 521 33 529 33 533	9497,	
31 981 32 009 32 029 32 057 32 069	10754, 9115, 8059,	21255 22914 23998	32 717 32 749 32 789 32 797 32 801	15645, 6087, 5436,	17104 26702 27361	33 569 33 577 33 581 33 589 33 601	13164,	29821 23494
32 077 32 089 32 117 32 141 32 173	9893, 2158, 3232,	22196 29959 28909	32 833 32 869 32 909 32 917 32 933	5220, 11278, 12466,	27649 21631 20451	33 613 33 617 33 629 33 637 33 641	10019, 14754,	18875 27878
32 189 32 213 32 233 32 237 32 257	5610, 3354, 11526,	26603 28879 20711	32 941 32 957 32 969 32 993 33 013	2367, 11125, 13844,	30590 21844 19149	33 713 33 721 33 749 33 757 33 769	5338,	
32 261 32 297 32 309 32 321 32 341	10104,	21963 31919	33 053		26481 28291 18755	33 797 33 809	8845, 8792,	23426 29521 24964 25037 33673
32 353 32 369 32 377 32 381 32 401	15171, 13178, 10982, 9333, 180,	19191 21395 23048	33 149	13296, 1649,	19853 31512 26985	33 889 33 893 33 937 33 941 33 961	15773,	23801 26375

p	y y	p	y	y	p	y	y
33 997 34 033	3269, 3076	4 34 949	10365,	24584	35 837 35 869	15537,	29144
$\begin{vmatrix} 34 & 057 \\ 34 & 061 \\ 34 & 129 \end{vmatrix}$	941, 3311 261, 3380 12350, 2177	0 34 981	12193,		35 897 35 933 35 969	15597,	27567 20336 33099
34 141 34 157 34 213		8 35 081 5 35 089	4004, 6136,	24567 31077 28953		14628, 10617,	24746 21365 25396
$\begin{vmatrix} 34 & 217 \\ 34 & 253 \\ 34 & 261 \end{vmatrix}$	5741, 2852	7 35 129 • 35 141	2137, 14677,	20464	36 037 36 0 6 1	17265,	243522597418796
34 273 34 297 34 301 34 313	6524, 2777 9668, 2463	3 35 153 3 35 201	15653,	19500	36 073 36 097 36 109 36 137	5902, 11973,	3473° 30195 24136 33311
34 337 34 361 34 369 34 381 34 421	4064, 3027 16326, 1803 14305, 2006 2522, 3189	3 35 257 5 35 281 4 35 317 9 35 353	14502, 13758, 9946, 11847,	20755 21523 25371 23506	36 161 36 209 36 217 36 229	4105, 16521, 16947, 8801,	32056 19688 19270 27428
34 429 34 457 34 469 34 501 34 513	8440, 2598 587, 3383 9454, 250 16457, 1802	35 393 35 401 5 35 437 4 35 449	5083 4647 14670	, 30310 , 30754 , 20767	36 241 36 269 36 277 36 293 36 313 36 341	13935, 11507, 4857, 3700,	23038 22334 24770 31436 32613 35555
34 537 34 549 34 589 34 613 34 649	3763, 307 13446, 2116 11442, 231 11399, 232	35 509 3 35 523 47 35 535 4 35 535	7426 6912 3 17163 7 1738	, 28083 , 28609 , 18370		10667, 16588, 12832, 11046,	, 25686 , 19785 , 23557 , 25387 , 20012
34 673 34 693 34 723 34 729 34 757	B 12886, 2176 B 11368, 233 8135, 2656 8187, 265	35 573 25 35 593 36 35 595 42 35 613	3 5179 3 10342 7 15024 422	, 3°394 , 25251 , 2°573 , 35195	36 469 36 473 36 493 36 497	9224 6150 11667 9172	, 27245 , 30323 , 24826 , 27325 , 31198
34 781 34 841 34 849 34 877 34 897	8591, 261 17084, 177 13648, 212 7 11369, 235	35 729 57 35 753 51 35 795 58 35 803	3824 7 11617 4252	, 31929 , 24180 , 31549	36 541 36 629 36 637 36 653 36 677	1731 6362 428 4025	, 34810 , 30267 , 36209 , 32628 , 28804

p	y	y	p	y	y	p	y	y
36 697 36 709 36 713	11860, 17411, 11912,	24837 19298 24801	37 409 37 441 37 489	4385, 14768, 4491,	33°24 22673 32998	38 321 38 329 38 333	5386, 1491,	3 ² 935 36838 3 ² 388
36 721 36 749 36 761	271, 2340,	36450	37 493 37 501	10328, 9267,	27165 28234	38 377 38 393 38 449		3°757 27962
36 781 36 793 36 809 36 821	3146, 18190,	33647 18619	37 529 37 537 37 549 37 561	13437, 11707,	24100 25842	38 453 38 461 38 501 38 557	3264, 6282, 14404,	
36 833 36 857 36 877 36 901 36 913	16698, 9756, 15523,	20159 27121 21378	37 573 37 589 37 633 37 649 37 657	13613, 15905, 5657,	23976 21728 31992	38 561 38 569 38 593 38 609 38 629	15039,	27638 31819
36 929 36 973 36 997 37 013 37 021	1814, 3779, 8110,	35159 33218 28903	37 693 37 717 37 781 37 813 37 853	8360, 10141, 275,	29357 27640 37538	38 653 38 669 38 677 38 693 38 713	9490,	
37 049 37 057 37 061 37 097 37 117	1552, 9558, 2940,	355°5 275°3 34157	37 861 37 889 37 897 37 957 37 993	1135, 2894, 11180,	36754 35003 26777	38 729 38 737 38 749 38 821 38 833	3619, 17323,	29722 35130
37 181 37 189 37 201 37 217 37 253	4502, 9609, 10362,	32687 27592 26855	37 997 38 053 38 069 38 113 38 149	8815, 617, 7289,	29238 37452 30824	38 861 38 873 38 917 38 921 38 933		24271 33115 38642
37 273 37 277 37 309 37 313 37 321	3982,	29767 33327 32673	$\frac{38177}{38189}$	7080, 2658, 9440,	31097 35531 28757	38 953 38 977 38 993 39 041 39 089		26735 30151 29679
37 337 37 357 37 361 37 369 37 397	12828, 15348, 14113,	24529 22013 23256	38 237 38 261 38 273 38 281 38 317	6114, 1190, 11975,	32147 37083 26306	39 097 39 113 39 133 39 157 39 161	2185, 1009,	28394 35273 36948 38148 29858

p	y	у	p	y	y	p	y	y
39 181 39 209 39 217 39 229	13733, 15544,	25476 23673	40 129 40 153 40 169	2791, 15465,	37362 24704	41 081 41 113 41 117	16278, 4875,	36242
39 229 39 233 39 241	18843,	20390		14201, 1169,	25988 39024	41 141 41 149 41 161	19704, 1745, 19842,	39404
39 293 39 301 39 313 39 317	2484, 627,	37498 36817 38686 24928	40237	3941, 10311,	36296 29930	41 177 41 189 41 201 41 213	14271, 13634, 1035, 20505,	² 7555 40166
39 341 39 373 39 397 39 409	9488, 3834,	27243 29909 35575	40 289 40 357 40 361	9468, 9697, 4238,	30821 30660 36123	41 221 41 233 41 257 41 269	11882, 11716, 15903, 6327,	29517
39 461 39 509 39 521 39 541 39 569		31839 35161 25188	40 433 40 493 40 529	19854, 7205, 17630,	20579 33288 22899	41 281 41 333 41 341 41 357 41 381	16165, 3384,	37957 33896
39 581 39 709 39 733 39 749	6041, 9272, 8629, 5561,	33540 30437 31104 34188	40 597 40 609 40 637 40 693	8685, 18679, 5846,	31912 21930 34791	41 389 41 413 41 453 41 513		33536 29073 40435
39 761 39 769 39 821 39 829	9691, 6748, 16976, 19110,	33021 22845		6283, 3430,	34414 37279 38771	41 521 41 549 41 593 41 597	8512, 16938, 1924, 11950,	24611 39669
39 841 39 857 39 869	7057, 17425, 1706,	32784 22432 38163	40 829 40 841 40 849	16372, 14090, 15662,	24457 26751 25187	41 609 41 617 41 621	14553, 204, 15973,	27056 41413 25648
39 877 39 901 39 929 39 937 39 953	4118, 14772, 1019,	35783	40 949	5865, 19318, 12950, 19478, 14541,	21579 27983 21471	41 641 41 669 41 681 41 729 41 737	8369, 736, 8128, 16430, 7570,	40933 33553 25299
39 989 40 009 40 013 40 037 40 093	13403, 12532, 19606,	26606 27481 20431	41 017	13421, 15277, 12767,	25740 28290	41 801	7°39, 9257,	32544 38790

p	y y	p	y	y	p	y	y
41 849 41 893 41 897 41 941 41 953		42 649 7 42 677 9 42 689	9405, 9019, 462,	33244	43 573 43 577 43 597 43 609 43 613		23498 28279
41 957 41 969 41 981 42 013 42 017	17574, 2438 18602, 2336 15979, 2600 15065, 2694 12679, 2933	3 42 701 7 42 709 2 42 737 8 42 773	9357, 6872, 6660,	27912 33352 35865 36113	43 633 43 649 43 661 43 669 43 717	7799, 9273, 11233, 19076,	35834 34376 32428
42 061 42 073 42 089 42 101 42 157	6976, 3508 11792, 3028 15809, 2628 846, 4125 20110, 2204	5 42 797 1 42 821 0 42 829 5 42 841	13504, 6916, 1908, 7350,	29293 35905	43 721 43 753 43 777 43 781	12898, 8432, 20924,	30823 35321 22853 39382
42 169 42 181 42 193 42 197 42 209	3497, 3867 2919, 3926 15603, 2659 14997, 2720 3588, 3862	2 42 929 • 42 937 • 42 953	14212, 8646, 3690,	42047 28717 34291 39263 25420	43 853 43 889	13253, 5576, 5275,	41898 30548 38277 38614 26175
42 221 42 257 42 281 42 293 42 337	9062, 3315 20575, 2168 13200, 2908 4515, 3777 6740, 3559	2 43 013 1 43 037 8 43 049	9156, 11457, 6720,	233°5 33 ⁸ 57 315 ⁸ ° 36329 36499	43 961 43 969 43 973	3002, 16049, 9114,	25764 40959 27920 34859 26981
42 349 42 373 42 397 42 409 42 433	11775, 3057 9677, 3269 9834, 3256 4951, 3745 14731, 2770	6 43 133 3 43 177 8 43 189	1211, 15641, 15035,	41922 27536 28154	44 017 44 021 44 029 44 041 44 053	18303, 12172, 18201,	38623 25718 31857 25840 35548
42 437 42 457 42 461 42 473 42 509	206, 4223 1457, 4100 8451, 3401 4173, 3830 5806, 3670	43 26143 31343 321	16725, 18533, 15638,	26536 24780	44 089 44 101 44 129 44 189 44 201	210, 18870, 3422,	30082 43891 25259 40767 25366
42 533 42 557 42 569 42 577 42 589	3506, 3902 15494, 2706 16529, 2604 16488, 2608 19291, 2329	3 43 457 • 43 481 9 43 517	15299, 13262, 14604,	28158 30219 28913	$\begin{array}{c} 44\ 221 \\ 44\ 249 \\ 44\ 257 \\ 44\ 269 \\ 44\ 273 \end{array}$	10429, 12917, 20448,	40220 33820 31340 23821 36319

44 281	p	y	y	p	y	y	p	y	y
44 387 1698, 42659 45 289 8056, 37233 46 093 7217, 38876 44 381 16584, 27797 45 293 673, 44620 46 133 18956, 27177 44 417 16002, 28415 45 329 14947, 30370 46 141 6745, 39396 44 449 18896, 25553 45 337 21557, 23780 46 181 10164, 36017 44 4497 4870, 39627 45 361 20646, 24715 46 229 23007, 23222 44 533 4273, 40260 45 389 11735, 33654 46 261 7746, 38515 44 537 11187, 33302 45 433 17064, 28369 46 301 19252, 27049 44 617 10436, 34181 45 481 16772, 28709 46 339 14775, 31534 44 617 10436, 34181 45 481 16772, 28709 46 349 2601, 43736 44 633 9656, 34977 45 533 2774, 42759 46 349 22601, 4373 44 647 10436, 34181 45 841 16772, 28709 46 349 22601, 4373 44 634 19476, 25165 45 541 1889, 44673 46 449 22832, 2369 44	44 281				5334,	39899	46 061		
44 381 16584, 27797 45 293 673, 44620 46 133 18956, 27177 6745, 39396 44 417 16002, 28415 45 329 14279, 31050 46 153 8234, 37919 44 449 4870, 39627 45 361 21557, 23780 46 181 10164, 36017 3215734, 28719 45 361 20646, 24715 46 229 23007, 23222 3007, 23222 3077, 23222 3067, 34254 46 273 110164, 36017 35218 44 501 12076, 32425 45 381 11735, 33654 46 273 11019, 35218 44 531 11735, 33554 46 273 22896, 23377 12541, 32836 46 201 11019, 35218 1183, 3353 44 549 11735, 33654 46 273 22896, 23377 145 381 17064, 28369 46 301 19252, 27049 44 531 19476, 25165 45 481 16772, 28709 46 337 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 2601, 43736 274, 42759 46 481 13349, 33032 2774, 42759 4					10183,	35098	46 073	11297,	34776
44 389 7821, 36568 45 317 14947, 30370 46 141 6745, 39396 44 417 16002, 28415 45 329 14279, 31050 46 153 8234, 37919 44 449 18896, 25553 45 337 21557, 23780 46 181 10164, 36017 44 497 4870, 39627 45 361 20646, 24715 46 229 23007, 23222 44 531 12076, 32425 45 377 12541, 32836 46 261 7746, 38515 44 537 11187, 33350 45 413 6035, 39378 46 301 19252, 27049 44 537 11436, 34181 45 481 16772, 28709 46 337 12952, 27049 44 617 10436, 34181 45 481 16772, 28709 46 337 129252, 27049 44 621 4441, 40180 45 497 13726, 3171 46 349 1438, 381 44 631 19476, 25165 45 531 7668, 37773 46 481 13349, 33032 44 701 299, 44402 45 553 46 477 228, 4477 1268, 3777 44 729 14619, 30110 45 569 3634, 41915 46 489 12635, 33854 44 771 493									
44 417 16002, 28415 45 329 14279, 31050 46 153 8234, 37919 44 449 18896, 25553 45 337 21557, 23780 46 181 10164, 36017 44 453 15734, 28719 45 341 20185, 25156 46 229 23007, 23222 44 497 4870, 39627 45 361 20646, 24715 46 237 11019, 35218 44 531 12076, 32425 45 377 12541, 32836 46 261 7746, 38515 44 533 4273, 40260 45 389 11735, 33654 46 261 7746, 38515 44 537 11187, 33350 45 413 6035, 39378 46 301 19252, 27049 44 617 10436, 34181 45 481 16772, 28709 46 337 2601, 43736 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 701 299, 44402 45 557 1961, 25596 46 477 3247, 39236 44 773 20613, 24160 45 641 19328, 26313 46 589 12635, 33854 44 777 14006, 30771 45 673 144 789 2413, 42376 45 677 44 809 9712, 35097 45 737 46 899 16400, 28509 45 817 8903, 36914 46 689 19293, 37388 45 013 3613, 41400 45 881 7990, 37063 45 881 7990, 37063 45 881 7990, 37063 45 881 7990, 37063 45 881 7990, 37063 45 881 7990, 37063 45 881 7990, 37063 45 881 7990, 37063 45 881 7990, 37063 45 883 45 081 13088, 31972 45 869 45 077 17668, 27409 45 889 17849, 25392 46 889 12426, 3446, 349 15616, 2749, 45 137 18208, 26499 45 893 13228, 26313 3613, 41400 45 881 7990, 37063 45 881 7990,									
44 449 18896, 25553 45 337 21557, 23780 46 181 10164, 36017 44 453 15734, 28719 45 341 20185, 25156 46 229 23007, 23222 44 497 4870, 39627 45 361 20646, 24715 46 237 11019, 35218 44 531 4273, 40260 45 389 11735, 33654 46 273 22896, 23377 44 537 11187, 33350 45 413 6035, 39378 46 301 19252, 27049 44 549 10947, 33602 45 483 16772, 28709 46 301 14775, 31534 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 701 299, 44402 45 557 45 557 46 467 364 477 7247, 3923 44 771 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 771 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 771 4938, 39803 45 589 1245, 44344 46 549 2598, 43951	44 389	7821,	30508	45 317	14947,	30370	40 141	0745,	39396
44 453 15734, 28719 45 341 20185, 25156 46 229 23007, 23222 44 497 4870, 39627 45 361 20646, 24715 46 237 11019, 35218 44 531 12076, 32425 45 377 12541, 32836 46 261 7746, 38515 44 533 4273, 40260 45 389 11735, 33654 46 273 22896, 23377 44 549 10947, 33602 45 433 17064, 28369 46 301 19252, 27049 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 761 15265, 29392 45 553 2774, 42759 46 381 13349, 33032 44 729 14619, 30110 45 569 3654, 41915 46 477 7247, 3923 44 771 1406, 30711 45 673 1245, 44344 46 549 2598, 43951 44 777 1406, 30711 45 673 1849, 33824 46 601 18269, 28332 44 789 912, 35097 45 737 478, 45219 46 649 683, 45960 44 997 <th>44 417</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>8234,</th> <th>37919</th>	44 417							8234,	37919
44 497 4870, 39627 45 361 20646, 24715 46 237 11019, 35218 44 501 12076, 32425 45 377 12541, 32836 46 261 7746, 38515 44 533 4273, 40260 45 389 11735, 33654 46 273 22896, 23377 44 549 10947, 33602 45 433 17064, 28369 46 301 19252, 27049 44 617 10436, 34181 45 481 16772, 28709 46 337 2601, 43736 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 641 19476, 25165 45 541 880, 44673 46 457 22832, 23609 44 701 299, 44402 45 557 19961, 25596 46 477 7247, 3923 44 729 14619, 30110 45 569 1245, 44344 46 549 2598, 43951 44 771 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 781 4938, 39803 45 671 13389, 31346 6831 17705, 28928 44 789 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
44 501 12076, 32425 45 377 12541, 32836 46 261 7746, 38515 44 533 4273, 40260 45 389 11735, 33654 46 273 22896, 23377 44 549 10947, 33602 45 433 17064, 28369 46 301 19252, 27049 44 621 4441, 40180 45 481 16772, 28709 46 337 2601, 43736 44 631 19476, 25165 45 541 768, 37773 46 441 22832, 23609 44 701 299, 44402 45 557 19961, 25596 46 477 7247, 3923 44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 771 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 773 20613, 24160 45 671 11849, 33824 46 601 18269, 2833 44 789 2413, 42376 45 677 6711, 38966 46 681 17705, 28928 44 797 8429, 36368 45 677 6712, 39025 46 681 19293, 3738 44 931 1938, 33955 45 757 6825, 38932 46 757 19293, 3738 44 997 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
44 533									
44 537 11187, 33350 45 413 6035, 39378 46 301 19252, 27049 44 549 10947, 33602 45 433 17064, 28369 46 309 14775, 31534 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 657 15265, 29392 45 553 880, 44673 46 457 22832, 23609 44 701 299, 44402 45 557 19961, 25596 46 477 7247, 39230 44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 771 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 773 20613, 24160 45 641 3637, 41976 46 573 12674, 33896 44 787 8429, 36368 45 677 478, 45219 46 649 633, 45960 44 809 9712, 35097 45 737 478, 45219 46 649 683, 45960 44 953 15055, 29898 45 817 8903, 36914 46 769 9293, 37388 45 901	44 501	12070,	32425	45 377	12541,	32836	46 261	7740,	38515
44 549 10947, 33602 45 433 17064, 28369 46 309 14775, 31534 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 657 15265, 29392 45 553 2774, 42759 46 481 22832, 23609 44 729 14619, 30110 45 569 880, 44673 46 489 12283, 23609 44 741 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 773 20613, 24160 45 673 11849, 33824 46 601 12674, 33896 44 789 2413, 42376 45 673 11849, 33824 46 601 17705, 28928 44 809 9712, 35097 45 673 11849, 33824 46 681 9293, 3738 44 907 8429, 36368 45 697 478, 45219 46 649 683, 45966 44 997 8429, 36368 45 697 478, 45219 46 649 683, 45966 44 991 16400, 28509 45 817 8903, 36914 46 769 9293, 37388 45 913					11735,	33654	46 273	22896,	23377
44 617 10436, 34181 45 481 16772, 28709 46 337 2601, 43736 44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 657 15265, 29392 45 553 880, 44673 46 457 22832, 23609 44 701 299, 44402 45 557 19961, 25596 46 477 7247, 39230 44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 731 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 773 20613, 24160 45 641 19328, 26313 46 589 6304, 40285 44 787 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 797 8429, 36368 45 677 6711, 38966 46 681 9293, 37388 44 893 10938, 33955 45 877 478, 45219 46 649 683, 45966 44 907 6400, 28509 45 881 20449, 25392 46 881 12544, 3423 45 953	_				6035,	39378	46 301		
44 621 4441, 40180 45 497 13726, 31771 46 349 4838, 41511 44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 44 657 15265, 29392 45 553 880, 44673 46 457 22832, 23609 44 701 299, 44402 45 557 19961, 25596 46 477 7247, 39230 44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 771 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 773 26613, 24160 45 641 3637, 41976 46 573 12674, 33896 44 787 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 797 8429, 36368 45 677 6711, 38966 46 631 17705, 28928 44 809 16400, 28509 45 817 8903, 36914 46 649 683, 45966 44 953 3613, 41400 45 841 20449, 25392 46 881 12544, 3423 45 953 45 77 45 893 7312, 38581 46 891 128246, 3446 45 121									
44 633 9656, 34977 45 533 2774, 42759 46 381 13349, 33032 22832, 23609 22832, 2473, 3923 46 489 12635, 33854 46 489 12635, 33854 46 549 46 549 46 549 46 549 46 549 46 573 46 601 46 633 17705, 28928 47 8, 45219									
44 641 19476, 25165 45 541 7768, 37773 46 441 22832, 23669 44 657 15265, 29392 45 553 880, 44673 46 457 7247, 39230 44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 741 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 773 20613, 24160 45 641 19328, 26313 46 589 46 601 44 789 2413, 42376 45 673 11849, 33824 46 601 46 633 44 797 44 809 45 877 6712, 39025 46 681 9293, 37388 44 909 44 909 45 877 6825, 38932 46 757 9606, 37163 44 953 15055, 29898 45 881 627, 45156 46 881 12544, 34273 44 953 15055, 29898 45 883 677, 45156 46 881 12544, 34273 45 061 13089, 31972 45 889 245 889 26243, 39610 46 881 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 181 </th <th>44 621</th> <th>4441,</th> <th>40180</th> <th>45 497</th> <th>13726,</th> <th>31771</th> <th>46 349</th> <th>4838,</th> <th>41511</th>	44 621	4441,	40180	45 497	13726,	31771	46 349	4838,	41511
44 657 15265, 29392 45 553 880, 44673 46 457 5284, 41173 44 701 299, 44402 45 557 19961, 25596 46 477 7247, 39230 44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 741 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 753 7380, 37373 45 613 3637, 41976 46 573 12674, 33896 44 777 14006, 30771 45 673 11849, 33824 46 601 46 633 17705, 28928 44 789 2413, 42376 45 677 6711, 38966 46 649 683, 45966 44 809 1938, 33955 45 757 6825, 38932 46 649 9293, 37388 44 909 16400, 28509 45 817 8903, 36914 46 649 9293, 37388 45 913 15055, 29898 45 833 677, 45156 46 817 12544, 34273 45 101 4678, 40443 45 949 18161, 27788 46 801 19851, 2705 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705	44 633	9656,	34977	45 533	2774,	42759	46 381	13349,	33032
44 701 299, 44402 45 557 19961, 25596 46 477 7247, 39230 44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 741 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 753 7380, 37373 45 613 3637, 41976 46 573 12674, 33896 44 777 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 789 2413, 42376 45 677 6711, 38966 46 633 17705, 28928 44 809 9712, 35097 45 757 6825, 38932 46 681 9293, 37388 44 909 16400, 28509 45 817 8903, 36914 46 769 9606, 37163 44 917 5938, 38979 45 821 9207, 36614 46 817 12544, 34273 44 953 15055, 29898 45 833 677, 45156 46 829 1682, 4574 45 061 13089, 31972 45 869 45 893 7312, 38581 46 901 19851, 2705 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705	44 641				7768,	37773	46 441	22832,	23609
44 729 14619, 30110 45 569 3654, 41915 46 489 12635, 33854 44 741 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 753 7380, 37373 45 613 3637, 41976 46 573 12674, 33896 44 777 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 789 2413, 42376 45 677 6711, 38966 46 633 17705, 28928 44 809 9712, 35097 45 737 6712, 39025 46 681 9293, 37388 44 909 16400, 28509 45 817 8903, 36914 46 769 9606, 37163 44 917 5938, 38979 45 821 9207, 36614 46 817 12544, 34273 44 953 15055, 29898 45 833 677, 45156 46 829 1682, 4574 45 053 7990, 37063 45 883 677, 45156 46 861 13458, 3340 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 181									
44 741 4938, 39803 45 589 1245, 44344 46 549 2598, 43951 44 753 7380, 37373 45 613 3637, 41976 46 573 12674, 33896 44 773 20613, 24160 45 641 19328, 26313 46 589 6304, 40286 44 787 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 797 8429, 36368 45 697 478, 45219 46 649 683, 45966 44 809 9712, 35097 45 737 6712, 39025 46 681 9293, 37388 44 909 16400, 28509 45 817 8903, 36914 46 769 9606, 37163 44 917 5938, 38979 45 821 9207, 36614 46 817 12544, 34273 44 953 15055, 29898 45 833 677, 45156 46 829 1082, 4574 45 053 3613, 41400 45 841 20449, 25392 46 861 13458, 3340 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 181									
44 753 7380, 37373 45 613 3637, 41976 46 573 12674, 33899 44 773 20613, 24160 45 641 19328, 26313 46 589 6304, 40285 44 777 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 789 2413, 42376 45 677 6711, 38966 46 633 17705, 28928 44 809 9712, 35097 45 737 45 737 46 681 9293, 37388 44 909 16400, 28509 45 817 8903, 36914 46 757 15076, 31681 44 953 15055, 29898 45 841 20449, 25392 46 81 12544, 34273 45 061 3389, 31972 45 869 6243, 39610 46 861 13458, 33493 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 729	14619,	30110	45 569	3654,	41915	46 489	12635,	33854
44 753 7380, 37373 45 613 3637, 41976 46 573 12674, 33896 44 773 20613, 24160 45 641 19328, 26313 46 589 6304, 40285 44 777 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 789 2413, 42376 45 677 6711, 38966 46 633 17705, 28928 44 809 9712, 35097 45 737 45 737 46 681 9293, 37388 44 909 16400, 28509 45 817 8903, 36914 46 769 9606, 37163 44 953 15055, 29898 45 841 20449, 25392 46 81 12544, 34273 45 061 3089, 31972 45 869 6243, 39610 46 861 13458, 3349 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 181 4678, 40443 45 989 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 741	4938,	39803	45 589	1245,	44344	46 549	2598,	43951
44 777 14006, 30771 45 673 11849, 33824 46 601 18269, 28332 44 789 2413, 42376 45 677 6711, 38966 46 633 17705, 28928 44 797 8429, 36368 45 697 478, 45219 46 649 683, 45966 44 893 10938, 33955 45 757 6825, 38932 46 757 15076, 31681 44 917 5938, 38979 45 821 9207, 36614 46 817 12544, 34273 44 953 15055, 29898 45 841 20449, 25392 46 853 15779, 31072 45 053 7990, 37063 45 883 677, 45156 46 861 13458, 33493 45 077 17668, 27409 45 893 7312, 38581 46 801 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 161 2423, 42738 45 989 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 753	7380,	37373	45 613	3637,	41976	46 573	12674,	33899
44 789 2413, 42376 45 677 6711, 38966 46 633 17705, 28928 44 797 8429, 36368 45 697 478, 45219 46 649 683, 45966 44 809 9712, 35997 45 737 6712, 39025 46 681 9293, 37388 44 909 16400, 28599 45 817 8903, 36914 46 769 9606, 37163 44 917 5938, 38979 45 821 9207, 36614 46 817 12544, 34273 44 953 15055, 29898 45 841 20449, 25392 46 853 15779, 31074 45 053 7990, 37063 45 883 677, 45156 46 861 13458, 33493 45 061 13089, 31972 45 869 6243, 39610 46 881 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881									
44 797 8429, 36368 45 697 478, 45219 46 649 683, 45966 44 893 10938, 33955 45 757 6825, 38932 46 757 15076, 31681 44 917 5938, 38979 45 821 9297, 36614 46 817 12544, 34273 44 953 15055, 29898 45 841 20449, 25392 46 853 15779, 31074 45 053 7990, 37063 45 853 6243, 39610 46 861 13458, 3349 45 061 13089, 31972 45 869 621, 36248 46 889 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 161 2423, 42738 45 989 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881					11849,	33824	46 601	18269,	28332
44 809 9712, 35097 45 737 6712, 39025 46 681 9293, 37388 44 893 10938, 33955 45 757 6825, 38932 46 757 15076, 31681 44 909 16400, 28509 45 817 8903, 36914 46 769 9606, 37163 44 953 15055, 29898 45 833 677, 45156 46 829 1082, 45743 45 013 3613, 41400 45 841 20449, 25392 46 853 15779, 31074 45 053 7990, 37063 45 869 6243, 39610 46 861 13458, 33403 45 077 17668, 27409 45 893 7312, 38581 46 889 12426, 3446 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 161 2423, 42738 45 989 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 789	2413,	42376	45 677	6711,	38966	46 633	17705	, 28928
44 809 9712, 35097 45 737 6712, 39025 46 681 9293, 37388 44 893 10938, 33955 45 757 6825, 38932 46 757 15076, 31681 44 909 16400, 28509 45 817 8903, 36914 46 769 9606, 37163 44 953 15055, 29898 45 833 677, 45156 46 829 1082, 45743 45 013 3613, 41400 45 841 20449, 25392 46 853 15779, 31074 45 053 7990, 37063 45 869 6243, 39610 46 861 13458, 33403 45 077 17668, 27409 45 893 7312, 38581 46 889 12426, 3446 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 161 2423, 42738 45 989 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 797	8429,	, 36368	45 697	478,	45219	46 649	683.	, 45966
44 909 16400, 28509 45 817 8903, 36914 46 769 9606, 37163 44 917 5938, 38979 45 821 9207, 36614 46 817 12544, 34273 44 953 15055, 29898 45 833 677, 45156 46 829 1082, 45743 45 013 3613, 41400 45 841 20449, 25392 46 853 15779, 31074 45 053 45 869 45 869 6243, 39610 46 861 13458, 33403 45 077 17668, 27409 45 893 7312, 38581 46 889 12426, 34463 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 27050 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 36770 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 809				6712,	39025	46 681	9293	37388
44 917 5938, 38979 45 821 9207, 36614 46 817 12544, 34273 44 953 15055, 29898 45 833 677, 45156 46 829 1082, 4574 45 013 3613, 41400 45 841 20449, 25392 46 853 15779, 31074 45 053 45 863 45 869 46 861 13458, 33403 45 071 17668, 27409 45 893 7312, 38581 46 889 12426, 3446 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 27050 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 36770 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 893				6825,	38932	46757	15076	
44 953 15055, 29898 45 833 677, 45156 46 829 1082, 4574 45 013 3613, 41400 45 841 20449, 25392 46 853 15779, 31074 45 053 45 861 45 869 6243, 39610 46 861 13458, 3340 45 077 17668, 27409 45 893 7312, 38581 46 889 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881					8903,	36914	46 769	9606	
45 013 3613, 41400 45 841 20449, 25392 46 853 15779, 31074 45 053 7990, 37063 45 853 6243, 39610 46 861 13458, 3340 45 061 13089, 31972 45 869 9621, 36248 46 877 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 3677 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 917	5938	, 38979	45 821	9207,	36614	46817	12544	34273
45 013 3613, 41400 45 841 20449, 25392 46 853 15779, 31074 45 053 7990, 37063 45 853 6243, 39610 46 861 13458, 3340 45 061 13089, 31972 45 869 9621, 36248 46 877 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 3677 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	44 953	15055	, 29898	45 833	677,	45156	46 829	1082	45747
45 053 7990, 37063 45 853 6243, 39610 46 861 13458, 3340 45 061 13089, 31972 45 869 9621, 36248 46 877 12142, 3473 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 3677 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881		3613	, 41400	45 841	20449	25392	46.853	15779	
45 061 13089, 31972 45 869 9621, 36248 46 877 12142, 3473 45 077 17668, 27409 45 893 7312, 38581 46 889 12426, 3446 45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 2705 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 4047 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 3677 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881		7990	, 37063	45 853	6243	39610	46 861	13458	, 33403
45 121 4678, 40443 45 949 18161, 27788 46 901 19851, 27050 45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 40470 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881		13089	, 31972	45869	9621	, 36248	46 877	12142	
45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 40478 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 36778 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	45 077	17668	, 27409	45 893	7312	, 38581	46 889	12426	, 34463
45 137 18208, 26929 45 953 17844, 28109 46 933 6463, 40478 45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 36778 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881	45 121	4678	, 40443	45 949	18161	, 27788	46 901	19851	, 27050
45 161 2423, 42738 45 989 21249, 24740 46 957 10187, 36779 45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881					17844	, 28109	46 933	6463	, 40470
45 181 4382, 40799 46 021 12258, 33763 46 993 18181, 2881			, 42738	45 989	21249	, 24740	46 957	10187	, 36770
		4382	, 40799	46 021	12258	, 33763	46 993	18181	
45 197 15637, 29560 46 049 13526, 32523 46 997 19129, 2786	45 197	7 15637	, 29560	46 049	13526	, 32523	46 997	19129	, 27868

p	y	y	p	y	y	p	y	y
47 017 47 041 47 057 47 093 47 129	15941, 11417, 23655,	31100 35640 23438	47 809 47 837 47 857 47 869 47 881	18000, 7272, 22024,	29837 40585 25845	48 677 48 733 48 757 48 761 48 781		46216 42203 30808
47 137 47 149 47 161 47 189 47 221	9366, 13515, 23189, 14135,	37771 33634 23972 33°54		7227, 12278, 6109, 12049,	40690 35655 41860 35928	48 809 48 817 48 821 48 857 48 869	16105, 20851, 7985, 12159,	32704 27966 40836
47 237 47 269 47 293 47 297 47 309	5543,	41726 44264 25011	48 017 48 029 48 049 48 073 48 109	4518, 15651,	43511 32398 28663	48 889 48 953 48 973 48 989 49 009	23778, 16434,	41719 25195
47 317 47 353 47 381 47 389 47 417	10402, 4187, 12349,	43194 35040	48 193	21141, 18693,	37822 27052 29504	49 033 49 037 49 057 49 069 49 081	11736, 17529, 22030, 7525, 14605,	31508 27027 41544
47 441 47 497 47 501 47 513 47 521	14733, 8342, 1271,	32764 39159	48 281 48 313 48 337 48 341 48 353	15350, 17679, 3148,	32963 30658 45193	49 109 49 117 49 121 49 157 49 169	12477, 13008, 2527, 11290, 17395,	36109 46594 37867
47 533 47 569 47 581 47 609 47 629	20165, 7739,	42099 27416 39870	48 409 48 413	16063, 492,	32346 47921 39675	49 177 49 193 49 201 49 253 49 261	11448, 6386, 20408, 11636, 11620,	42807 28793 37617
47 653 47 657 47 681 47 701 47 713	17284, 11067, 15207, 10068, 17521,	36590 32474 37633	48 481		37683	49 277 49 297 49 333 49 369 49 393	6678, 7875, 21111, 17689, 23672,	28222 31680
47 717 47 737 47 741 47 777 47 797	309, 11201,	47432 36576	48593 48649	10875, 13316, 10460, 21320, 13616,	35 ² 77 38189 27341	49 417 49 429 49 433	8152, 10286, 5414, 4430, 16060,	39131 44015 45003

p	y y	p	y	y	p	y	y
49 481 49 529 49 537 49 549 49 597	14252, 352 6013, 435 13356, 361 14319, 352 1426, 481	6 50 497 50 513 6 50 549	23877, 1812, 24811,	48701	51 413 51 421 51 437 51 449 51 461	28113, 24353, 11061,	23308 27084
49 613 49 633 49 669 49 681 49 697		39 50 74] 50 753 31 50 773	2937, 1593, 15139,	35634	51 473 51 481 51 517 51 521 51 577	20857, 9802, 321,	41342 30624 41715 51200 26400
49 741 49 757 49 789 49 801 49 853	18231, 315 11689, 380 3406, 463 24651, 251 6131, 437	58 50 823 50 833 50 849	3614 3 13441 9 23178	35408 47207 37392 27671 49413	51 593 51 613 51 637	19319, 508, 14129,	46921 32274 51105 37508 47348
49 877 49 921 49 937 49 957 49 993	17926, 319 7320, 426 1802, 481	95 50 893 17 50 903 55 50 929	3 20421 9 19899 9 19279	31010	51 721 51 749 51 769	22699, 13531, 1944,	35746 29022 38218 49825 31773
50 021 50 033 50 053 50 069 50 077	24143, 258 13916, 361 12110, 379	50 989 37 50 999 59 51 00	9 10441 3 23818 1 15996	, 27175	51 817 51 829 51 853 51 869 51 893	6415,	26163 45414 37462 29125 26516
50 093 50 101 50 129 50 153 50 177	18687, 314 17534, 325 1206, 489	14 51 13 95 51 13	3 7140 7 14839 7 5659	, 43993 , 36298 , 45498	51 913 51 929 51 941 51 949 51 978	7778 1780 10124	, 30699 , 44151 , 50161 , 41825 , 50135
50 221 50 261 50 273 50 321 50 329	24073, 261 14465, 358 19660, 306	88 51 19 08 51 21 61 51 22	7 9288 7 7389 9 4583	, 41909 , 43828 , 46646	51 977 52 009 52 021 52 057 52 069	20758 14615 15451	34338 , 31251 , 37406 , 36606 , 34250
50 333 50 341 50 377 50 417 50 443	1 24212, 261 7 19824, 305 7 11148, 392	29 51 32 53 51 34 69 51 34	9 8977 1 19514 9 8747	, 31827 , 42602	52 081 52 121 52 153 52 177 5 52 181	23928 8006 10500	, 47836 , 28193 , 44147 , 41677 , 44002

Least Roots (y) of $y^2 + 1 \equiv 0 \pmod{p^{\kappa}}$.

1	y	y	p	y	y	p	y	y
10 11 13	09 5744, 13 1710, 37 6613,	9686 6137 11059 12156 20457	337 349 353 373	62969, 31152, 39922, 37107, 6072,	82417 81879	pou 41	10133, 9466, 11389,	
1 2 18 18 18 18 18 18 18 18 18 18 18 18 18	93 5099,	16688 29303	snInpou 401 409	4005, 32491, 4030, 43211,	147316 125118 156771 124070 165003	□ 13 po 17		28322 56028
首 25 24 25	29 16610, 33 26884, 41 15006, 57 2072, 69 13637,	35831 27405 43075 63977	433 449 457	55603, 51119, 21131,	131886 150482 187718 157153	pou 5	1068, 32318,	14557 45 ⁸ 07
25 28 29	77 31361,	45368 74518 59341						

Least Roots (y) of $y^4 + 1 \equiv 0 \pmod{p^{\kappa}}$.

	p	y	y	y	y		p	y	y	y	y
ns =	137 193	3141, 3851.	5850,	6423, 12919, 31223, 46355, 49879,	15628	nod	$\frac{281}{313}$	1907,	23974, 48197.	53649, 54987, 49772, 42859, 59978,	77°54 88141

Least Roots (y) of $y^s + 1 \equiv 0 \pmod{p^{\kappa}}$.

p	y	y	y	y	y	y	y	y
9 241 H 257	436, 7104, 779,	3455, 2831, 11765, 5172, 15541,	20650, 16446,	17343, 23989, 28912,	19906, 34092, 37137,	² 5473, 37431, 49603,	34418, 46316, 60877,	36813 50977 65270

p	y	y	y	y	p	y	y	y	y
17	. 2,	8,	9,	15		79,	486,		1018
41 73	3, 10,	14,	27, 51,	38 63		31, 75,	437,	1030,	1098
89	12,	37,	52,	77	1 193	362,	524,	669,	831
97	33,	47,	50,	64	1 201	7,	343,		1194
113	18,	44,	69,	95		239,	387,	830,	
137	10,	41,	96,	127	1 249	338,	388,		
193 233	9,	43,	150,	184		402,	497,	792, 1081,	
$\begin{array}{c} 233 \\ 241 \end{array}$	8,	97, 30,	136,	233		6, 235,	371,		1086
			·						
$257 \\ 281$	4, 60,	64, 89,	193,	253 221		114,	585,	770,	1247
313	5,	125,	192, 188,	308		72, 342,	507,	026	1091
337	85,	111,	226,	252	1 481	511,	655,	826.	970
353	70,	116,	237,	283	1 489	15,		1092,	
401	45,	98,	303,	356		483,	672,		1070
409	31,	66,	343,	378		310,	408.	1193,	1201
433	79,	148,	285,	354		355,	630,	979,	1254
449	92,	122,	327,	357		104,	239,	1418,	1553
457	170,	207,	250,	287		292,	401,	1296,	1405
521	43,	206,	315,	478	1 721	232,	408,	1313,	1489
569	76,	277,	292,	493	1 753	190,	489,	1264,	1563
577	152,	186,	391,	425	1777	108,		1596,	
593	59,	201,	392,	534	1 801	464,		1277,	
601	59,	163,	438,	542	1 873	219,		1548,	
617	139,	182,	435,		1 889	85,		1689,	
641		318,	323,		1 913	305,	922,	991,	1608
673		326,	347,	609	1 993	546,		1033,	
761 769		135,	626,		$\begin{array}{c} 2\ 017 \\ 2\ 081 \end{array}$	438, 868,		, 1469, , 1134,	
1	1	173,	596,	729		i			
809 857		239,	570,	765	2 089	84,	572	1517	
881	,	351, 219,	506, 662,	704	$\begin{array}{c c} 2 & 113 \\ 2 & 129 \end{array}$	663, 380,	846	, 1278; , 1283;	1740
929		258,	671,	911		265,	620	, 1203	1872
937		67,	870,	923	0 7 20	246,	1059	, 1094	
953		336,	617,	797				, 1703	
977		439,	538,	750	$\frac{2}{2}\frac{101}{273}$		743	, 1530	, 1808
1 009		247,	762,	817	2 281	686,	1074	, 1207	, 1595
1 033	231,	398,	635,	802	2 297	890,	973	, 1324	, 1407
1 049	223,	461,	588,	826	2377	580,		, 1668	
1	31	7,	500,		1	3.53,	1-9	,	, ,,,,

p	y	y	y	y	p	y	y	y	y
2 393 2 417 2 441 2 473 2 521	345, 285, 574,	1205, 1122, 978,	1212, 1319, 1495,	2072 2156 1899	3 673 3 697 3 761 3 769 3 793	529, 490, 409,	1159,	3082, 2602, 3041,	3168 3271 3360
2 593 2 609 2 617 2 633 2 657	99,	1059, 608, 1077,	1550, 2009, 1556,	2338 2518 1748	3 833 3 881 3 889 3 929 4 001	977, 427, 1643,	807, 1581, 592, 1937, 1086,	2300, 3297, 1992,	2904 3462 2286
2 689 2 713 2 729 2 753 2 777	66,	1040, 951, 1338,	1673, 1778, 1415,	2653 2663 2467	4073	514,	747, 1149, 1743,	2924,	374 ² 3559 335 ²
2 801 2 833 2 857 2 897 2 953	450, 933, 311,	851, 1278, 1133, 680, 939,	1555, 1724, 2217,	2383 1924 2586	4201 4217 4241	590, 473,	1566, 1649, 1551, 1856, 1157,	2552, 2666, 2385,	4094 3627 3768
2 969 3 001 3 041 3 049 3 089	711, 185, 137,	1097, 1338, 263, 1046, 826,	1663, 2778, 2003,	2290 2856 2912	4 297 4 337 4 409	1008, 777,	1161, 808,	2562, 3176, 3601,	3289 3560 3716
3 121 3 137 3 169 3 209 3 217	1099, 133, 22,	668, : 1196, : 1239, : 1021, :	1941, 1930, 2188,	2038 3036 3187	4 481 4 513 4 561	995, 260,	711, 1279, 2135, 606, 2124,	3202, 2378, 3955,	3486 4253 4418
3 257 3 313 3 329 3 361 3 433	753, 450, 40, 30, 1338,	112,	2378, 2 2580, 3 3249, 3	2863 3289 3331	4673	358, 1771, 58,	867, 1475, 1890, 1223,	3198, 2831, 3506,	4315 2950 4671
3 449 3 457 3 529 3 593 3 617	1521, 1312, 799,	953, 4 1716, 1 1396, 2 1439, 4	1741, 1 2133, 2 2154, 2	1936 2217 2794	4 889 4 937	1431, 95,	1141,	3676, 3273, 3274,	3846 3458 4842

p	y	y	y	y	p	y	y	y	y
4 993 5 009 5 081 5 113 5 153	1018, 1284, 45,	2288, 2402, 909,	2721, 2679, 4204,	3991 3797 5068	6 529 6 553 6 569 6 577 6 673	645, 736, 731,	2707, 2672, 2508, 3284, 2929,	3881, 4061, 3293,	5908 5833 5846
5 209 5 233 5 273 5 281 5 297	696, 1539, 940,	1812, 2532, 1118,	3442, 3421, 2741, 4163, 3900,	4537 3734 4341	6 761 6 793	875, 1784, 78,	2750, 1332, 2452, 958, 910,	54°5, 43°9, 5835,	5862 4977 6715
5 393 5 417 5 441 5 449 5 521	979, 896, 78,	2667, 1172, 489.	4485, 2750, 4269, 4960, 3272,	4438 4545 5371	6 857 6 961 6 977	596, 528, 2169,	3°95, 1139, 646, 239°, 3477,	5718, 6315, 4587,	6261 6433 4808
5 569 5 641 5 657 5 689 5 737	583, 617, 1340,	1761, 816, 1660,	2983, 3880, 4841, 4029, 3021,	5058 5040 4349	7 121 7 129 7 177	225, 86, 976,	3098, 2975, 1575, 1581, 3092,	4146, 5554, 5596,	6896 7043 6201
5 801 5 849 5 857 5 881 5 897	2014, 102, 779,	2576, 1091, 2597,	3196, 3273, 4766, 3284, 5103,	3835 5755 5102	7 321 7 369 7 393	11, 1171, 499,	3269, 1331, 3373, 2652, 2198,	5990, 3996, 4741,	7310 6198 6894
5 953 6 073 6 089 6 113 6 121	716, 1798, 33,	2570, 2164, 741,	4434, 35°3, 39°25, 537°2, 4°34,	5357 4291 6080	7 433 7 457 7 481 7 489 7 529	297, 348, 773,	2291, 1632, 3719, 1647, 1315,	5825, 3762, 5842,	7160 7133 6716
6 217 6 257 6 329 6 337 6 353	925, 475, 338,	1062, 2918, 3131,	4568, 5195, 3411, 3206, 3345,	5332 5854 5999	7 649	715, 1271, 1138,	3677, 3109, 2474, 3354, 803,	4452, 5103, 4295,	6846 6306 6511
6 361 6 449 6 473 6 481 6 521	2207, 91, 27,	3112, 2703, 240,	3279, 3337, 3770, 6241, 5161,	4242 6382 6454	7 753 7 793 7 817	1531, 1815, 955,	1925, 3560, 2778, 1899, 2725,	4193, 5015, 5918,	6222 5978 6862

p	y	y	y	<i>y</i>	p	y	y	. <i>y</i>	y
7 873 7 937 7 993 8 009 8 017	3323, 1654, 2017,	2574, 3449, 3001, 2172, 1256,	4488, 4992, 5837,	4614 6339 5992	9 433 9 473 9 497	2117, 3423, 872,	4136, 4086, 4677, 2799, 4745,	5347, 4796, 6698,	7316 6050 8625
8 081 8 089 8 161 8 209 8 233	1455, 664, 1030,	2675, 3647, 3552, 2383, 2752,	4442, 4609, 5826,	6634 7497 7179	9 649 9 689 9 697	1386, 3007, 1792,	44°5, 3641, 483°, 2592, 3997,	6008, 4859, 7105,	8263 6682 7905
8 273 8 297 8 329 8 353 8 369	3658, 2825, 190,	2498, 3899, 3594, 1187, 2943,	4398, 4735, 7166,	4639 5504 8163	$\begin{vmatrix} 9.817 \\ 9.833 \end{vmatrix}$	1165, 475, 1573,	4140, 1837, 2008, 4211, 4945,	7980, 7825, 5646,	8652 9358 8284
8 377 8 513 8 521 8 537 8 609	156, 774, 3°53,	3553, 382, 2433, 3445, 3528,	8131, 6088, 5092,	8357 7747 5484	p^{κ}	y	y	. <i>y</i>	y
8 641 8 681 8 689 8 713 8 737	2072, 2201, 1345,	2264, 4219, 2720, 1477, 3876,	4462, 5969, 7236,	6609 6488 7368	$\begin{array}{c} 41^2 \\ 17^3 \end{array}$	399, 1032,	134, 834, 1022, 1482, 1145,	3891, 3847,	905 4514 4297
8 753 8 761 8 849 8 929 8 969	1900, 1559, 2953,	4285, 4339, 4223, 3444, 3536,	4422, 4626, 5485,	6861 7290 5976		2 569,	3234,	6175,	6840
9 001 9 041 9 049 9 137 9 161	3066, 413, 531,	2614, 4031, 1468, 2409, 4084,	5010, 7581, 6728,	5975 8636 8606					
9 209 9 241 9 257 9 281 9 337	629, 1579, 2883, 1674,	33 ⁸ 2, 444 ² , 3 ² 43, 2 ⁸ 22, 33 ⁸ 7,	5827, 4799, 6014, 6459,	8580 7662 6374 7607					

P	y	y	y	y	p	y	y	y	y
10 009 10 169 10 177 10 193 10 273	792, 3532, 777, 2213, 1866,	3627, 4120, 1205, 2934, 3595,	6382, 6049, 8972, 7259, 6678,	6637 9400	11 777 11 801 11 833 11 897 11 953	4201, 2867, 1933, 2399, 3174,	4976, 5174, 5136, 3°35, 5148,	6801, 6627, 6697, 8862, 6805,	7576 8934 9900 9498 8779
10 289 10 313 10 321 10 337 10 369	578, 41, 234, 2526, 2982,	3400, 3270, 4543, 2795, 3126,		9711 10272 10087 7811 7387	11 969 12 041 12 049 12 073 12 097	4049, 411, 3596, 3324, 5564,	5850, 1875, 4768, 5844, 5855,	6119, 10166, 7281, 6229, 6242,	8453
10 433 10 457 10 513 10 529 10 601	176, 499, 178, 37, 2357,	4683, 1425, 4784, 1992, 2892,	9032, 5729,	10335	12 113 12 161 12 241 12 281 12 289	635, 2457, 1615, 1443, 4043,	3281, 2648, 3858, 3566, 5146,	9513, 8383,	9704 9704 10626 10838 8246
10 657 10 729 10 753 10 889 10 937	1185, 1488, 67, 3832, 2241,	1331, 4319, 321, 4413, 4285,	9326, 6410, 10432, 6476, 6652,	9241 10686 7057	12 329 12 377 12 401 12 409 12 433	1480, 202, 1773, 773, 2317,	3721,	11703, 8680, 10290,	10628
10 993 11 057 11 113 11 161 11 177	395, 2971, 359, 1288, 4336,	3117, 5348, 4860, 2227, 5091,	5709,	8086 10754 9873	12 457 12 473 12 497 12 553 12 569	575, 2583, 1846, 1999, 999,	3098, 5785, 3852, 4873, 4781,	6688, 8645, 7680,	11882 9890 10651 10554 11570
11 257 11 273 11 321 11 329 11 353	1545, 3161, 2817, 185, 925,	2827, 3659, 4272, 1286, 1436,	8430, 7614, 7049, 10043, 9917,	8112 8504 11144	$12 577 \\ 12 601 \\ 12 641 \\ 12 689 \\ 12 697$	2530, 2737, 1130, 5129, 316,	6030, 3034, 2696, 5893, 2451,	9567, 9945,	7560
11 369 11 393 11 489 11 497 11 593	868, 4292, 25, 1018, 2339,	4414, 537°, 4136, 1615, 3296,	6023, 7353,	7101	12 713 12 721 12 809 12 841 12 889	662, 2521, 5129,		7288,	12059 10288
11 617 11 633 11 657 11 681 11 689	77, 1796, 1782, 4383, 1201,	347°, 4398, 1969, 5562, 2112,	7235, 9688, 6119,	9837 9875 7298	12 953 13 001 13 009 13 033 13 049	1321, 2645, 452,	3314, 4852, 3192, 6430, 5897,	8149, 9817, 6603,	12269 11680 10364 12581 12186

p	y	y	y	y	P	<i>"</i> /	y	y	y
13 121 13 177 13 217 13 241 13 249	2874, 500, 652, 4527, 111,	2978, 5899, 5569,	10199, 7318, 7672,	12677 12565 8714	14 593 14 633 14 657 14 713 14 737	2916, 459, 5330, 3230, 1487,	3368, 6918, 7323, 5662, 6759,	7334, 9051,	11677 14174 9327 11483 13250
13 297 13 313 13 337 13 417 13 441	322, 1455, 4188, 217, 617,	2519,	10778, 10687, 8506, 7976,	12975 11858 9149 13200	14 753 14 897 14 929 14 969 15 017	3409, 3727, 4602, 3847, 4810,	6868, 6771, 5836, 7288, 6191,	7885, 8126, 9093, 7681,	11344 11170 10327 11122 10207
13 457 13 513 13 537 13 553 13 577	3198, 2063, 1922, 1758, 2041,	5828, 5810, 5219, 3554, 6712,	7703, 8318, 9999,	11450 11615 11795	15 073 15 121 15 137 15 161 15 193	361, 96, 3728, 2566, 3269,	7403,		15025
13 633 13 649 13 681 13 697 13 721	3916, 2888, 881, 342, 75,	4202, 4797, 5901, 6448, 3476,	8852, 7780,	10761 12800 13355	15 217 15 233 15 241 15 289 15 313	1627, 3437, 3465, 2673, 4668,	4534, 4878, 3266,	11373, 10699, 10363, 12023, 10002,	11796 11776 12616
13 729 13 841 13 873 13 913 13 921	5056, 770, 1347, 3443, 1898,	6688, 1456, 2513, 4243,	7041, 12385, 11360,	8673 13071 12526 10470	15 329 15 361 15 377 15 401	1159, 1319, 4541, 5171, 3877,	43°9, 5865,	11877, 11052, 9512, 8113, 9726,	14042 10836
14 009 14 033 14 057 14 081 14 153	227, 4148, 692, 5314, 3289,	5917, 5830, 5758,	13577, 8116, 8227, 8323, 10306,	9885 13365 8767	15 569 15 601 15 641	360, 2086, 107, 3183, 1159,	4814, 7436,	10030, 10755, 8165, 9533, 9384,	13483 15494 12458
14 177 14 249 14 281 14 321 14 369	881, 4099, 13, 2203, 1760,	7088, 2197, 4778,	12777, 7161, 12084, 9543, 9397,	10150 14268 12118	15 761 15 809 15 817	182, 3916, 2139, 5209, 5697,	5687, 2742, 7409,	14440, 10074, 13067, 8408, 8098,	11845 13670 10608
14 401 14 449 14 489 14 537 14 561	588, 522, 4161, 6666, 3278,	692, 5251, 6985,	12956, 13757, 9238, 7552, 11074,	13927 10328 7871	15 913 15 937 16 001	375°, 3°74, 2658, 4873, 3°61,	3546, 4347, 6889,	8436, 12367, 11590, 9112, 12267,	12839 13279 11128

p	y	y	y	y	p	y	y	y	y
16 057 16 073 16 097 16 193 16 217	848, 1175, 196, 3860, 390,	2558, 1 3860, 1	13515, 12237, 11591,	14898 15901 12333	17 681 17 713 17 729 17 737 17 761	1538, 4823, 1739, 2757, 4794,	5149, 6851, 3963,	10312, 12564, 10878, 13774, 10029,	12890 15990 14980
16 249 16 273 16 361 16 369 16 417	4°54, 975, 2275, 3154, 3256,	6717, 4427, 1	14387, 9644, 11942,	15298 14086 13215	17 881 17 921 17 929 17 977 18 041	978, 481, 1429, 183, 5667,	4769, 6336, 1670,	14718, 13152, 11593, 16307, 11744,	17440 16500 17794
16 433 16 481 16 529 16 553 16 561	7409, 3851, 2450, 329, 1657,	7293, 5786, 1	0819, 9236, 10767,	12630 14079 16224	18 049 18 089 18 097 18 121 18 169	6623, 274, 1023, 4213, 1783,	3631, 1256, 8882,	11236, 14458, 16841, 9239, 12595,	17815 17074 13908
16 633 16 649 16 657 16 673 16 729	1293, 1589, 4312, 3938, 2372,	6800, 5806, 1	9849, 10851, 8599,	15060 12345 12735	18 217 18 233 18 257 18 289 18 313	221, 3788, 1699, 1424, 4638,	5261, 6297, 5741,	9397, 12972, 11960, 12548, 13026,	14445 16558 16865
16 889 16 921 16 937 16 993 17 033	1473, 5541, 1153, 2167, 2294,	6860, 1 5301, 1	9369, 10077, 11692,	11380 15784 14826	18 329 18 353 18 401 18 433 18 457	274, 99, 4205, 158, 2550,	2410, 5575, 350,	12643, 15943, 12826, 18083, 12254,	18254 14196 18275
17 041 17 137 17 209 17 257 17 321	3215, 662, 4131, 1190, 922,	5255, 1 6557, 1 4307, 1	1882, 10652, 12950,	16475 13078 16067	18 481 18 521 18 553 18 593 18 617	102, 6666, 935, 1079, 1819,	7599, 7699, 1413,	10690, 10922, 10854, 17180, 16437,	11855 17618 17514
17 377 17 393 17 401 17 417 17 449	2130, 2453, 5225, 2306, 6103,	6664, 1 5068, 1	9480, 10737, 12349,	14940 12176 15111	18 713 18 793 18 913 19 001 19 009	2169, 5129, 289, 5805, 3465,	6108, 4581, 7967,	12622, 12685, 14332, 11034, 11954,	13664 18624 13196
17 489 17 497 17 569 17 609 17 657	1924, 2979, 147, 5172, 559,	7565, 3466, 6840,	9932, 14103, 10769,	14518 17422 12437	19 073 19 081 19 121 19 249 19 273	72, 7317, 83, 3419, 4171,	8264, 1843, 6604,	10861, 10817, 17278, 12645, 12804,	11764 19038 15830

p	y	y	y	y	p	y	y	y	y
19 289 19 417 19 433 19 441 19 457	1346, 62, 4698, 1411, 3051,	5324, 7276, 3913,	15778, 14093, 12157, 15528, 14859,	19355 14735 18030	20 857 20 873 20 897	3651, 3616, 720, 6994, 4904,	9546, 2986, 9588,	12466, 11311, 17887, 11309, 12248,	17241 20153 13903
19 489 19 553 19 577 19 609 19 681	6782, 7826, 5926, 3805, 5693,	8962, 9696, 7622,	11325, 10591, 9881, 11987, 12034,	11727 13651 15804	$21\ 017$ $21\ 089$	6059, 222, 1062, 4102, 901,	473, 9519, 4735,	13651, 20528, 11498, 16354, 12471,	20779 19955 16987
19 697 19 753 19 777 19 793 19 801	3901, 3148, 2768, 1925, 8006,	9180, 3551, 9696,		16605 17009 17868	21 193 21 313 21 377	1094, 6002,	7342, 7766, 10235,	10644, 13851, 13547, 11142, 15633,	20099 15311 13340
19 841 19 889 19 913 19 937 19 961	1360, 1203, 7221, 6391, 410,	8812, 7749, 7646,	14020, 11077, 12164, 12291, 15628,	18686 12692 13546	21 481	1276, 5582, 3069, 3724, 1950,	7862, 9628, 8955,	12413, 13619, 11893, 12574, 13594,	15899 18452 17805
19 993 20 089 20 113 20 129 20 161	3928, 8955, 136, 175, 4806,	9330, 1331, 5061,	14216, 10759, 18782, 15068, 13663,	11134 19977 19954		2956, 4984, 5173, 2411, 4972,	5890, 5562, 3897,	13190, 15711, 16055, 17752, 15505,	16617 16444 19238
20 177 20 201 20 233 20 249 20 297	5089, 921, 5959, 1212, 7846,	3312, 8064, 7301,	16889,	19280 14274 19037		520,	8653, 10433, 6034,	11327, 13084, 11384, 15807, 16091,	21217 21037 16169
20 353 20 369 20 393 20 441 20 521	3280,	9135, 9946, 7088,	15371, 11234, 10447, 13353, 18531,	17089 16811 17237	$ \begin{array}{r} 21 \ 937 \\ 21 \ 961 \\ 21 \ 977 \end{array} $	273, 1922, 6377, 1918, 6358,	9713, 8668, 10851,	18234, 12224, 13293, 11126, 14654,	20015 15584 20059
20 593 20 641 20 681 20 753 20 809	3864, 8153, 7689,	6672, 9180, 8529,	13705, 13969, 11501, 12224, 19150,	16777 12528 13064	22 153 22 193 22 273	6726, 3303, 1254,	9265, 7868, 4991,	12060, 12888, 14325, 17282, 12158,	15427 18890 21019

p	y	y	y	y	p	y	y	у	y
22 409 22 433 22 441 22 481 22 697	2330, 838, 5595, 394, 3637,	4417, 6622, 7817,	16725, 18016, 15819, 14664, 17561,	21595 16846 22087	$24\ 049$ $24\ 097$ $24\ 113$	4260, 4875, 907, 783, 4285,	6418, 3135, 7083,	18936, 17631, 20962, 17030, 19567,	19174 23190 23330
22 721 22 769 22 777 22 817 22 921		4964, 10887, 10314,	15557, 17805, 11890, 12503, 16211,	22003 19189 12873	$24\ 169 \\ 24\ 281 \\ 24\ 329$	1034, 1615, 1580, 6469, 7706,	10790, 9236, 8052,	15570, 13379, 15045, 16277, 14714,	22554 22701 17860
22 937 22 961 22 993 23 017 23 041	343°, 2759,	6085, 5742, 10869,	12538, 16876, 17251, 12148, 18054,	19531 20234 13803	$24\ 481$ $24\ 593$ $24\ 697$	1856, 11489, 5805, 260, 3325,	11760, 9350, 8264,	18869, 12721, 15243, 16433, 16643,	12992 18788 24437
23 057 23 081 23 201 23 209 23 297	389, 3999, 5380, 645, 175,	8115, 5783, 6333,		19082 17821 22564	24841 24889 24953	10125,	2654, 10334, 11418,	18831, 22187, 14555, 13535, 13694,	22604 19877 14828
23 321 23 369 23 417 23 473 23 497	412, 6073, 3812, 634, 3641,	9697, 7820, 6257,	13672, 15597, 17216,	17296 19605 22839	25 033 25 057 25 073 25 097 25 121	5329, 1863,	5854, 8250, 11919,	13570, 19203, 16823, 13178, 16803,	19728 23210 21469
23 537 23 561 23 593 23 609 23 633	1830, 6431,	11729, 8071, 10148,	15522,	21731 17162 20559	25 169 25 321 25 409	47, 2271, 3563, 809, 6335,	3347, 6197, 2387,	21942, 21822, 19124, 23022, 13490,	22898 21758 24600
23 689 23 753 23 761 23 801 23 833	6606, 8678,	9302, 8896, 10290,	12181, 14451, 14865, 13511, 20712,	17147 15083 15222	$\begin{array}{c} 25\ 561 \\ 25\ 577 \\ 25\ 601 \end{array}$	8515, 5833,	11319, 8792, 11644,	22705, 14242, 16785, 13957, 14208,	14665 17062 19768
23 857 23 873 23 929 23 977 23 993	4030, 1672, 596, 4238, 868,	2413, 8873, 7089,		22201 23333 19739		5068, 557, 293, 791, 1545,	8798, 5783, 2413,	20034, 16859, 19890, 23380, 15514,	25100 25380 25002

p	21	21	21	21	n	21	21	21	21
-P	y	<i>y</i>	<i>y</i>	<i>y</i>	<i>p</i>	y	<i>y</i>	<i>y</i>	<i>y</i>
25 841			15151,			6290,		20554,	
$\begin{vmatrix} 25 & 849 \\ 25 & 873 \end{vmatrix}$					27 329 27 337	5410, 1195,		21060, 22350,	
25889	4209,	10641,	15248,	21680	$27\ 361$	1796,		20277,	
25 913	2967,	10070,	15843,	22946	27 409	11140,	12275,	15134,	16269
25 969			16155,		27 449		10622,		
$\begin{vmatrix} 26 & 017 \\ 26 & 041 \end{vmatrix}$	5775,		14993, 16866,		27 457 27 481		13562, 11714,		
26 113	619,		18393,			2413,		20912,	
26 153	5653,	7888,	18265,	20500	27 617	4401,	13341,	14276,	23216
26 161	945,		19074,			1416,		20188,	0.
$\begin{vmatrix} 26 & 177 \\ 26 & 209 \end{vmatrix}$	824,		21380, 16143,				11059,		
26 249	4977,	5754,	20495,	21272	27 737	783,		23309,	
26 297	3744,		21865,			2730,		23283,	
26 321			13493,			915,		21457,	
$\begin{vmatrix} 26 & 393 \\ 26 & 417 \end{vmatrix}$	11383,		14248, 20720,			1403, 4678,		21750,	
26 449			20606,			593,		22680,	
$26\ 489$	8020,	12323,	14166,	18469	28 001	5539,		20772,	
26 497			14183,				12155,		
$\begin{vmatrix} 26 & 513 \\ 26 & 561 \end{vmatrix}$			18940, 17173,				10252, 6378,		
26633	2300,		19720,			4296,		19700,	
26 641	7868,		14360,		28 289	8528,	8973,	19316.	19761
26 681	1592,		20899,			3496,		19094,	
$ \begin{array}{c c} 26713 \\ 26729 \end{array} $	8204,	13223,	13490, 14249,	18509	28 393		13226, 11686,		
26729 26737	5862,	6983,	19754,	20875	28 433		2134,		
26 777	1491,	3951,	22826,	25286			13978,		
26 801	1537,	11526,	15275,	25264	28 537	5906,	11524,	17013,	22631
$\begin{vmatrix} 26 & 833 \\ 26 & 849 \end{vmatrix}$			15092, 18988,				11775, 12854,		
26 881			17576,				12520,		
26 921			14923,				10434,		
26 953			17272,		28 753	1783,		21980,	
$\begin{vmatrix} 26 & 993 \\ 27 & 017 \end{vmatrix}$			14530, 15210,		28 793 28 817		10428, 7201,		
27017 27073			21108,				9691,		
27 241			14758,				12370,		

p	y	y	y	y	p	y	y	y	y
29 009	8761,	9056,	19953,	20248	30 817	14236,	14666,	16151,	16581
29 017					30 841		7324,		
29 033		13014,	16019,	17671	30 881		10643,		
29 129	00,00				30 937		11451,		
29 137	2768,	9779,	19358,	26369	30 977		13854,		-
29 153					31 033		11846,		
29 201		10979,					12807,		
29 209 29 297	0 //				31 121		12632,		
29 401	7794,	11360,			31 153		15224, 11251,		
		_							
29 473 29 537		8043, 14653,				2334,	14659,	28665,	31010
29 569		12828,					11220,		
29 633		12995,				1696,	14061,	17276.	20641
29 641		12234,				660,		30299,	
29 753	1578,	7146,	22607.	28175	31 481	9360,	15199,	16282,	22121
29 761		12634,					7726,		
29 833	5780,	14261,	15572,	24053	31 513	9035,	12375,	19138,	22478
29 873		10910,					8374,		
29 881	6267,	12721,	17160,	23614	31 649	983,	12299,	19350,	30666
29 921	6220,		21267,				13797,		
30 089		14004,					14635,		
30 097		9185,					10361,		
30 113 30 137	240, 4004,	2133, 9717,					7398, 11873,		
				- 1					
30 161		13804,					14638,		
$30\ 169 \ 30\ 241$	6874,	13867,	22353,		31 849	2575,	13223,	28630,	
30 313	2633,	0040.	21264,	2768c			12579,	10430.	27477
30 449	3428,		24329,		32 057	6809,	7853,	24204,	25248
30 497	792,	3042.	27455,	29705	32 089	4547,		26782,	
30 529		15207,	15322,	26016	32 233		11482,		
30 553	4117,	9180,	21373,	26436	32 257	9519,	9773,	22484,	22738
30 577	510,	7974,	22603, ;	30067	32 297	11474,			
30 593	269,	7961,	22632,	30324	$32\ 321$	1677,	4587,	27734,	30644
30 649		12247,			32 353	218,		25081,	
30 689		10333, 2				6134,		23910,	
30 697		14630, 1				13295,			
30 713 30 809	13503,	14325, 1 5694, 2	10388, 1	26504	32 441	4830, 571,		26974, : 22953, ;	
30 000	4215,	5094, 2	3115, 2	394	OL PTI	5/1,	9400, .	2953,	310/0

p	y	y	y	y	y	y	y	y
17 97 113 193 241	3, 8, 35, 3, 44,	5, 12, 40, 27, 76,	6, 18, 42, 50, 111,	7, 27, 48, 64, 115,	10, 70, 65, 129, 126,	11, 79, 71, 143, 130,	12, 85, 73, 166,	14 89 78 190
257 337 353 401 433	2, 30, 36, 30, 151,	8, 40, 49, 133, 168,	32, 59, 60, 147, 183,	128, 146, 100, 199,	129, 191, 253, 202, 238,	225, 278, 293, 254, 250,	249, 297, 304, 268, 265,	255 307 317 371 282
449 577 593 641 673	35, 27, 82, 16, 8,	77, 65, 94, 40, 84,	100, 71, 122, 100, 161,	220, 171, 209, 250, 209,	229, 406, 384, 391, 464,	349, 506, 471, 541, 512,	372, 512, 499, 601, 589,	414 550 511 625 665
769 881 929 977 1 009	27, 68, 40, 52, 62,	57, 85, 46, 80,	136, 114, 101, 357, 183,	311, 298, 209, 403, 204,	458, 583, 720, 574, 805,	633, 767, 828, 620, 826,	897,	742 813 889 925 947
1 153 1 201 1 217 1 249 1 297	67, 104, 287, 98, 157,	156, 292, 322, 124, 190,	170, 358, 441, 554, 355,	413, 473, 480, 599, 464,	74°, 728, 737, 65°, 833,	776, 695,	909,	930
1 361 1 409 1 489 1 553 1 601	63, 100, 143, 99, 257,	108, 112, 189, 251, 380,	377, 155, 583, 326, 674,	574, 390, 656, 605, 791,	833,	1254, 906, 1227,	1253, 1297, 1300, 1302, 1221,	1309 1346 1454
1 697 1 777 1 873 1 889 2 017	36, 189, 151, 458, 108,	33°, 446, 377, 478, 528,	369, 761, 645, 739, 691,	928,	912, 1093, 961,	1016, 1228, 1150,	1367, 1331, 1496, 1411, 1489,	1588 1722 1431
2 081 2 113 2 129 2 161 2 273	155, 348, 105, 227, 598,	725, 407, 551, 238, 672,	588, 410,	738, 954,	1099, 1391, 1207,	1490, 1541, 1751,	1356, 1706, 1578, 1923, 1601,	1765 2024 1934

p	y	y	y	y	у	y	y	y
2 417 2 593 2 609 2 657 2 689	67, 25, 460, 169, 250,	974, 67, 572, 283, 441,	387,	726, 1081, 977,	1867, 1528, 1680,	2206, 1866, 1697,	1443, 2526, 2037, 2374, 2248,	2568 2149 2488
2 753 2 801 2 833 2 897 3 041	342, 24, 423, 286, 221,	598, 181, 509, 381, 344,	619, 539, 861,	817, 1088, 1247,	1984, 1745, 1650,	2182, 2294, 2036,	2155, 2620, 2324, 2516, 2697,	2777 2410 2611
3 089 3 121 3 137 3 169 3 217	627, 113, 107, 206, 279,	436, 282, 416,	580, 645, 1123,	995, 1524, 1455,	2126, 1613, 1714,	2541, 2492, 2046,	2380, 2685, 2855, 2753, 2889,	3008 3030 2963
3 313 3 329 3 361 3 457 3 617	506, 630, 57, 39, 26,	536, 687, 338, 44, 469,	885, 550,	1432, 1651, 1241,	1897, 1710, 2216,	2481, 2476, 2907,	2777, 2642, 3023, 3413, 3148,	2699 3304 3418
3 697 3 761 3 793 3 889 4 001	693, 141, 123,	1080,	643, 1101, 269, 1396,	1076, 1667, 567, 1925,	2621, 2094, 3226, 1964,	3°54, 266°, 35°24, 2493,	3563, 2681, 3599, 2814, 2588,	3674 3068 3652 3766
4 049 4 129 4 177 4 241 4 273	230, 236, 783,	377, 750, 1061,	600, 763, 1392,	1163, 2000, 1415,	2966, 2177, 2826,	3529, 3414, 2849,	3005, 3752, 3427, 3180, 3135,	3899 3941 3458
$\begin{vmatrix} 4 & 289 \\ 4 & 337 \\ 4 & 481 \\ 4 & 513 \\ 4 & 561 \end{vmatrix}$	1432, 74, 300,	1481, 545, 346,	1945, 1934, 1279,	1989, 1981, 1422,	2348, 2500, 3091,	2392, 2547, 3234,	3°79, 2856, 3936, 4167, 334°,	2905 4407 4213
4 657 4 673 4 721 4 801 4 817	958, 1282,	1088, 1702, 1292,	1645, 1779, 1729,	1961, 2244, 2102,	2712, 2477, 2699,	3028, 2942, 3072,	4361, 3585, 3019, 3509, 4180,	4561 3763 3519

p	y	y	y	y	y	y	y	y
4 993 5 009 5 153 5 233 5 281	463, 119, 77,	128,	893, 1248, 1262,	2445, 1862, 1767,	2564, 3291, 3466,	4116, 3905, 3971,	4521, 5025, 4441,	4546 5034 5156
5 297 5 393 5 441 5 521 5 569	968, 1518,	609, 1476, 1260, 1778, 1960,	1926, 2209, 1860,	2649, 2673, 2004,	2744, 2768, 3517,	3467, 3232, 3661,	3917, 4181, 3743,	5379 4473 4003
5 857 5 953 6 113 6 257 6 337	216, 888, 627,	1271, 689, 1178, 1695, 1713,	733, 1261, 1926,	1137, 2196, 2632,	4816, 3917, 3625,	5220, 4852, 4331,	5264, 4935, 4562,	5737 5225 5630
$\begin{bmatrix} 6 & 353 \\ 6 & 449 \\ 6 & 481 \\ 6 & 529 \\ 6 & 577 \end{bmatrix}$	2026, 79, 153,	1017,	2225, 738, 2219,	2886, 2133, 2844,	3563, 4348, 3685,	4224, 5743, 4310,	4239, 5998,	4423 6402 6376
6 673 6 689 6 737 6 833 6 961	474, 1480, 330,	1496,	2272, 2022, 831,	3278, 2581, 2253,	3411, 4156, 4580,	44 ¹ 7, 47 ¹ 5, 6002,	5834, 5241, 6481,	6215 5257 6503
6 977 7 057 7 121 7 297 7 393	273, 15, 1240,	2363, 517, 1899, 1668, 2660,	1086, 2572, 1833,	1761, 3375, 3572,	5296, 3746, 3725,	5971, 4549, 5464,	6540, 5222, 5629,	6784 7106 6057
7 457 7 489 7 537 7 649 7 681	1068, 971, 937, 695,	1962, 1683, 940,	2931, 2127, 1287, 2250,	3455, 3409, 3103, 3063,	4002, 4080, 4434, 4586,	4526, 5362, 6250, 5399,	5495, 5806, 6597,	6389 6518 6600 6954
7 793 7 841 7 873 7 937 8 017	131, 654, 2595,	3578, 2276, 1426, 2781, 2134,	3609, 2415, 1706, 3603,	3789, 3711, 1890,	4004, 4130, 5983, 4164,	4184, 5426, 6167, 4334,	4215, 5565, 6447, 5156,	5292 7710 7219 5342

p	y	y	y	y	y	y	y	y
8 081 8 161 8 209 8 273	314, 1201,	1860, 2529,	2729, 2617,	3690, 2958,	4471, 5251,	6104, 5432, 5592,	6301, 5680,	7847 7008
8 353 8 369	388, 253,	1141,	1181,	1457,	6896,	5531, 7172, 7251,	7212,	7965
8 513 8 609 8 641 8 689	579, 987,	663, 1600,	2379, 1821,	2584, 3451,	6025, 5190,	6602, 6230, 6820,	7946, 7041,	8030 7654
8 737 8 753	1599, 573,	2915, 1533,	3191, 4155,	3276, 4288,	5461, 4465,	5879, 5546, 4598,	5822, 7220,	7138 8180
8 849 8 929 9 041	494, 375,	3355, 1543,	3875, 1778,	4103, 2395,	4826, 6646,	6618, 5°54, 7263,	5574, 7498,	8435 8666
9 137 9 281 9 377 9 473	2448, 3844,	3192, 4216,	4027, 4608,	4250, 4624,	5031, 4753,	7587, 5254, 4769, 7567,	6089, 5161,	6833 5533
9 521 9 601 9 649	408,	2812, 922,	3197, 1260,	4019, 1951,	5502, 7650,	6324, 8341, 6187,	6709, 8679,	9113 9414
9 697 9 857	291,	2094,	2166,	2672,	7025,	7531, 7101,	7603,	9406

p^{κ}	y	y	y	y	y	y	y	y
$ \begin{array}{ c c } 17^{2} \\ 17^{3} \\ 97^{2} \end{array} $	40, 158, 279,	65, 653, 978,	802,	827,	4086,	214, 4111, 7981,	4260,	4755

p	y	y	y	y	y	y	y	y
10 177 10 193 10 273 10 289 10 321	495, 620, 252, 83, 1519,	1750, 3604, 1916, 117, 2575,	2111, 3995, 2326, 3471, 3932,	3968, 4726, 5110, 4397, 4532,	6209, 5467, 5163, 5892, 5789,	8066, 6198, 7947, 6818, 6389,	6589,	9682 9573 10021 10206 8802
10 337 10 369 10 433 10 513 10 529	103,	1178, 2532, 1970, 1921, 967,	1428, 3485, 2431, 4991, 2831,	4993, 3709, 2738, 5207, 4192,	5344, 6660, 7695, 5306, 6337,	8909, 6884, 8002, 5522, 7698,	9159, 7837, 8463, 8592, 9562,	9852 8577 10330 8811 9986
10 657 10 753 10 993 11 057 11 329	217, 1289,	1887, 3422, 1015, 1308, 4071,	3455, 3461, 2229, 3897, 5396,	5219, 4679, 5177, 5061, 5421,	5438, 6074, 5816, 5996, 5908,	7202, 7292, 8764, 7160, 5933,	9749,	8782 9097 10776 9768 10021
11 393 11 489 11 617 11 633 11 681	5, 715,	1955, 125, 970, 4109, 2899,	5397, 2298, 3030, 4442, 3367,	5612, 3125, 4988, 5333, 4458,	5781, 8364, 6629, 6300, 7223,		9438, 11364, 10647, 7524, 8782,	
11 777 11 953 11 969 12 049 12 097	0 17	2497, 2284, 3254, 3623, 2502,	3410, 3720, 3853, 3802, 2519,	4578, 5898, 5190, 5809, 4707,	7199, 6055, 6779, 6240, 7390,	8367, 8233, 8116, 8247, 9578,	9669, 8715, 8426,	
12 113 12 161 12 241 12 289 12 401	2338, 1204, 2914, 722, 61,	2627, 2010, 4196, 1305, 1394,	3449, 3105, 4974, 4134, 3456,	5269, 4038, 5566, 5736, 3763,	6844, 8123, 6675, 6553, 8638,	7267, 8155,	9486, 10151, 8045, 10984, 11007,	9327 11567
12 433 12 497 12 577 12 641 12 689	698, 1650, 2423, 386, 1330,	976, 3368, 2842, 1831, 3974,	1414, 5173, 3784, 4094, 4112,	6074, 6178, 5191, 6255, 5112,	6359, 6319, 7386, 6386, 7577,	8793,	9129, 9735, 10810,	10847
12 721 13 009 13 121 13 217 13 249	476, 3406, 3503, 5504, 735,	1538, 3572, 3815, 6073, 2091,	2913, 5940, 4846, 6416, 6094,	5186, 6367, 6023, 6557, 6381,	7535, 6642, 7098, 6660, 6868,	7069, 8275, 6801,	2.01/	9603 9618 7713

p	y	y	y	y	y	y	y	y
13 297 13 313 13 441 13 457 13 537	2004, 3024, 1497, 154, 4779,	3814, 5275, 2481, 4107, 6089,	4784, 6476, 3780, 4407, 6385,	6265, 6630, 6474, 5417, 6447,	7032, 6683, 6967, 8040, 7090,	8513, 6837, 9661, 9050, 7152,	8038, 10960,	13303
13 553 13 633 13 649 13 681 13 697	3521, 2856, 2719, 4680, 2580,	3803, 3872, 2795, 4851, 5184,	4045, 5036, 4297, 5099, 5752,	4215, 5975, 5401, 5259, 6015,	9338, 7658, 8248, 8422, 7682,	9508, 8597, 9352, 8582, 7945,	9761, 10854, 8830,	
13 729 13 841 13 873 13 921 14 033	1561, 355, 1098, 1509,	1759, 587, 1453, 2425, 1908,	2888, 347°, 279°, 3644, 5533,	5928, 4763, 5405, 5201, 6929,	9078, 8468,	10841, 10371, 11083, 10277,	11970, 13254, 12420,	12168 13486 12775 12412
14 081 14 177 14 321 14 369 14 401	1412, 953, 813, 127, 243,	1805, 1562, 914, 718, 358,	2609, 3150, 3523, 792, 1126,	5559,	8522, 10635, 8602, 7985,	11472, 11027, 10798, 13577, 13275,	12276, 12615, 13407, 13651,	12669 13224 13508 14242
14 449 14 561 14 593 14 657 14 737	54, 461,	1968, 1071, 3059, 4376, 1573,	2775, 1537, 3721, 4793, 4132,	3650, 6961, 6756, 5246, 6530,	7600, 7837, 9411,	11674, 13024, 10872, 9864, 10605,	13490, 11534, 10281,	14381 14539 14196
14 753 14 897 14 929 15 073 15 121	3656, 4475, 19,	3926, 4038, 5212, 2380, 1899,	4716, 4843, 5279, 4127, 4233,	6653, 53°3, 6859, 6859, 6187,	9594, 8070, 8214,	10037, 10054, 9650, 10946, 10888,	10859, 9717, 12693,	11241 10454 15054
15 137 15 217 15 233 15 313 15 329	62, 3334, 1497,	1498, 5144, 3742, 1654, 4383,	2314, 5645, 4602, 3120, 5998,		8564, 10013, 10045,	12823, 9572, 10631, 12193, 9331,	10073, 11491, 13659,	15155 11899 13816
15 361 15 377 15 473 15 569 15 601	257, 2105, 2198,	3261, 359, 2451, 4759, 1435,	3666, 1114, 5467, 5748, 1462,	6814, 7742,	13762, 8659, 7827,	11695, 14263, 10006, 9821, 14139,	15018, 13022, 10810,	15120 13368 13371

p	y	y	y	y	y	y	y	y
15 649		2486,	4035,	6140,			13163,	
15 761 15 809	2050, 2406,	4790, 4592,	545 ¹ , 4899,	7300,	8509,	10910,	10971,	13403
15 889 15 937	287 I, 4302,	3052, 6491,	4920, 6693,	6492, 7887,	9397, 8050,	10969, 9244,	12837, 9446,	13018
16 001	83,	4249,	4434,	5532,			11752,	
$\begin{vmatrix} 16 & 033 \\ 16 & 097 \end{vmatrix}$	2007,	2788, 2744,	4512, 5749,	6819, 6623,	9214,	11521,	13245, 13353,	14026
16 193	463,	5326,	5950,	6750,	9443,	10243,	10867,	15730
16 273	2827,	3983,	5822,				12290,	
16 369 16 417	172, 1586,	2311, 4971,	4689, 7339,	7899,			14058, 11446,	
16 433	836,	1317,	1741,	3549,	12884,	14692,	15116,	15597
$16481 \\ 16529$	1846, 3875,	3098,	5092, 4215,	5635,	10846,	11389,	13383, 12584,	14635
16 561	4014,	3945, 4245,	4215,				12316,	
16 657	2174,	3603,	3762,				13054,	
16 673	310,	1990,	3651,				14683, 15211,	
16 993 17 041	1726, 637,	1782, 3035,	4183, 6795,				14006,	
17 137	668,	2745,	3346,				14392,	
17 377 17 393	1661, 2614,	5805, 4305,	6978, 5875,	7774,	9603,	10399,	11572, 13088,	15716
17 489	1026,	2233,	5108,		11487,	12381,	15256,	16463
17 569	459,	2803,	7885,	7954,			14766,	
17 681 17 713	4155,	5297,	6055,	7549,	10132,	11626,	12384,	13526
17 729	4167, 514,	544°, 6657,	6307, 7396,				12273,	
17 761	2195,	3047,	7776,	8318,	9443,	9985,	14714,	15566
17 921 18 049	814,	2728,	3935,				15193,	
18 049	106, 2844,	218, 4205,	1873, 5371,				17831, 13892,	
18 257	2541,	6151,	7545,	8507,	9750,	10712,	12106,	15716
18 289 18 353	1814, 887,	43 ⁸ 7, 395 ² ,	7733, 5835,	775°, 8722,	9631,	10556,	13902, 14401,	17466
18 401	3163,	3508,	5567,		11939,	12834,	14893,	15238
18 433 18 481	651,	6342,	6654,	7740,	10693,	11779,	12091,	17782
18 481	1839, 819,	2768, 4481,	4874, 8560,	5121, 8763,			15713, 14112,	
18 913	17,	1382,	2225,				17531,	

p	y	y	y	y	y	y y	y
19 009 19 073	1189, 7036,	3696, 7048,	5068, 7515,	8379,	10694,	13941, 15313 11558, 12025	, 12037
19 121 19 249 19 441	1813, 1522, 187,	2489, 3310, 7027,	3744, 6488, 7077,	7624,	11625,	15377, 16632 12761, 15939 12364, 12414	, 17727
19 457 19 489 19 553	4019, 1105, 3187,	4059, 2187, 5039,	4788, 2744, 7912,	9155, 8166,	10334,	14669, 15398 16745, 17302 11641, 14514	, 18384 , 16366
19 681 19 697	1849, 2527,	2978, 4268,	8345, 55°3,	9327,	10370,	11336, 16703 14194, 15429	, 17170
19 777 19 793 19 841 19 889	5456, 3714, 1549, 1111,	7204, 4177, 3494, 2550,	7420, 4767, 8915, 3970,	7477, 9841, 4744,	12316, 10000, 15145,	12357, 12573 15026, 15616 10926, 16347 15919, 17339	, 16079 , 18292 , 18778
19 937 20 113 20 129	875, 1251,	6139, 1678, 2494,	7096, 1929, 6388,	6965, 9324,	13148,	12841, 13798 18184, 18435 13741, 17635	, 19238 , 18878
$\begin{bmatrix} 20\ 161 \\ 20\ 177 \\ 20\ 353 \end{bmatrix}$	824, 265, 5068,	4361, 3274, 5774,	8474, 4816, 7279,	6431, 9297,	13746,	11687, 15800 15361, 16903 13074, 14579	, 19912), 15285
20 369 20 593 20 641 20 753 20 849	568, 6014, 1009, 2125, 37°5,	5415, 6345, 2373, 6514, 4046,	9461, 7273, 3082, 6756, 5995,	8684, 4668, 9157,	11909, 15973, 11596,	10908, 14954 13320, 14248 17559, 18268 13997, 14239 14854, 16803	3, 14579 3, 19632 3, 18628
20 897 20 929 21 089 21 121 21 169	984, 4565, 2244, 681, 3255,	2813, 8803, 3516, 1072, 3681,	9747,	10285, 10084, 5694,	10644, 11005, 15427,	13914, 18084 11182, 12126 12050, 17573 19012, 20049 13736, 17488	, 16364 , 18845), 20440
21 313 21 377 21 521 21 569 21 601	,	2450, 5601, 3509, 3432, 3320,	5809, 6879, 8540, 6010, 5895,	9273, 8621, 7533,	12104, 12900, 14036,	15504, 18863 14498, 15776 12981, 18012 15559, 18137 15706, 18281	5, 16652 2, 18203 7, 20708
21 617 21 649 21 713 21 841 21 937	127,	1910, 3884, 1115, 4428, 5433,	8197, 9693, 5471, 7009, 5495,	10552, 7361, 8130,	11097, 14352, 13711,	13420, 19707 11956, 17765 16242, 20598 14832, 17413 16442, 16502	5, 18352 3, 21586 3, 20307

m	01 01	01	21	21	21	01	01
<i>p</i>	y y	<i>y</i>	<i>y</i>	<i>y</i>	<i>y</i>	<i>y</i>	<i>y</i>
22 129		5938,				17655,	
22 193	0 / 101 /					17815,	
$\begin{vmatrix} 22 & 273 \\ 22 & 369 \end{vmatrix}$	3598, 5580,	8530,				16693,	
22 433	796, 1165, 1653, 5632,	4493,				21204, 16801,	
	55, 5-5-1						
$\begin{vmatrix} 22 & 481 \\ 22 & 721 \end{vmatrix}$	983, 4040,					18441, 18562,	
22 769	2432, 4159, 3818, 7502,	8744	10174,	1254/,	14070,	15267,	18051
22 817	181, 2679,	4160,	10280,	12537,	18657.	20138,	22636
22 961	1404, 1848,	5810,	6090,	16871,	17151,	21113,	21557
22 993	3495, 4599,	8638,	11494,	11499,	14355,	18394,	19498
23 041	3010, 8183,	9547,	11179,	11862,	13494,	14858,	20031
23 057	504, 5810,		11457,	11600,	16285,	17247,	22553
$\begin{vmatrix} 23 & 201 \\ 23 & 297 \end{vmatrix}$	5375, 5715, 3660, 5633,	9054,	11580,	11021,	14147,	17486,	17826
						17664,	
23 473	3787, 6712,	6795,	11002,	12471,	16678,	16761,	19686
23 537 23 633	389, 2168, 3843, 7575,	5222,	9439,	14098,	18315,	21369, 16058,	23148
23 761	3843, 7575, 7301, 10883,						
23 857		10247,					
23 873	149, 1442,	5912,	10398,	13475,	17961.	22431,	23724
24 001	2596, 3808,	5501,	9284,	14717,	18500,	20193,	21405
24 049	5750, 9696,	9884,	11715,	12334,	14165,	14353,	18299
24 097	309, 712,		8901,	15196,	19262,	23385,	23788
24 113		10970,					
24 337	1808, 2571,	9996,	11684,	12653,	14341,	21766,	22529
24 481	4747, 4778,		8040,	16441,	19096,	19703,	19734
$\begin{vmatrix} 24 & 593 \\ 24 & 977 \end{vmatrix}$	3645, 5148, 2521, 4360,	5299,	9245,	15348,	19294,	19445,	20948
25 057	2521, 4360, 73, 1373,	539,	11805	14107,	10430,	20617, 23684,	24084
25 073							
25 121	9967, 10572, 928, 4379,	6057	11742,	13331,	13303,	20742,	24103
25 153	707, 2277,					22876,	
25 169	2930, 9200,					15969,	
25 409	1486, 3882,					21527,	
25 457	1447, 2225,	5489,	7803,	17654,	19968,	23232,	24010
25 537	4765, 6608,	8510,	10944,	14593,	17027,	18929,	20772
25 601	213, 3125,	8479,	12020,	13581,	17122,	22476,	25388
25 633 25 793	5834, 8124,	11863,	12299,	13334,	13770,	17509,	19799
20 195	4246, 5496,	5777,	11081,	14112,	20010,	20297,	21547

p	y	y	y	y	y	y	y	y
$25841 \\ 25873$	1038, 3677,	3475, 4677,	10431,				22366, 21196,	
25 889 25 969	2346,	3809, 1191,		10605,	15284, 23545,	19099, 24437,	22080, 24778,	² 3543 ² 4966
$\begin{vmatrix} 26\ 017 \\ 26\ 113 \end{vmatrix}$	37 ⁶ 7,	4180, 5428,	4213, 7205,	8645,	17468,	18908,	21837, 20685,	24203
26 161 26 177	1729, 4918,	5003,	6169,	12683,	13494,	20008,	18005, 21174,	21259
26 209 26 321	29, 1552,	1820, 3299,	4596,	10380,	15941,	21725,	24389, 23022,	24769
26 417 26 449 26 497 26 513	4278, 3566, 6024, 603,	4742, 5674, 7394, 5584,	5935, 12064,	12585, 12583,	13864, 13914,	20514, 14433,	21675, 20775, 19103, 20929,	22883 20473
26 561 26 641 26 737	4483, 1435,	5990, 2145,	11991, 5204,	12781, 13107,	13780,	14570, 21437,	20571, 24496, 19008,	22078 25206
26 831 26 833 26 849	4313, 1300, 6707, 7707,	2041, 7968,	6712, 10734,	11975,	14826, 14383,	20089, 16099,	19008, 24760, 18865, 17468,	25501 20126
26 881 26 993 27 073 27 281 27 329	898, 3325, 674, 2443, 3155,	3533, 3730, 5064, 7267, 7501,	5044, 6708, 10899,	5220, 13467, 13526,	21773, 13606, 13755,	21949, 20365, 16382,	23348, 23263, 22009, 20014, 19828,	23668 26399 24838
27 361 27 409 27 457 27 617 27 697	4429, 4127, 2293, 3535, 1805,	7567, 7093, 2700, 9164, 2271,	10238, 9401,	11818, 11115, 9944,	15591, 16342, 17673,	17522, 17219, 18216,	19794, 20316, 24757, 18453, 25426,	23282 25164 24082
27 793 27 809 27 953 28 001 28 081	226, 2875, 5523, 4224, 2147,	7247,	11230, 8022,	13880, 13963, 13795,	13929, 13990, 14206,	16579, 19931, 15507,	22259, 19296, 20706, 15901, 23621,	24934 22430 23777
28 097 28 289 28 433 28 513 28 657	67, 3089, 558, 2800,	5871, 5623, 3414, 9221, 2044,	6628, 9949,	12397, 12951, 12378,	15892, 15482, 16135,	22356, 21805, 18564,	22226, 22666, 25019, 19292, 26613,	25200 27875 25713

p	y	y	y	y	y	y	y	y
28 753	502,	3723,	3834,	7102.	21561.	24919,	25030.	28251
28 817	4292,	5754				19504,		
28 961	3330,	9014,				19403,		
29 009	8366,					18654,		
29 137	1793,	6727,	8013,			21124,		
29 153	2322,	3225,	6491,			22662,		
29 201	2039,					18215,		
29 297	885,		12895,	14377,	14920,	16402,	22010,	28412
29 473	4058,	5193,	5970,	11883,	17590,	23503,	24280,	25415
29 537	122,	11379,	11793,	14091,	15446,	17744,	18158,	29415
29 569	6859,	7094,	10092,	11550,	18019,	19477,	22475,	22710
29 633	2084,	2982,				20759,		
29 761	885,	4924,				20715,		
29 873	1448,	2922,	4529,	5137,	24736,	25344,	26951,	28425
29 921	4458,	8007,	11363,	14925,	14996,	18558,	21914,	25463
30 097	2345,					25673,		
30 113		3490,				20934,		
30 161	4711,	5357,				20053,		
30 241	3497,	5968,				20588,		
30 449	3974,	6566,	8760,			21689,		
	6437,	0500,	0,000,					
30 497	2959,	3741,	4663,			25834,		
30 529	310,	2216,				25225,		
30 577	6253,	9022,	9665,	14670,	15907,	20912,	21555,	24324
30 593	6000,	7429,		10327,	20266,	20737,	23164,	24593
30 689	320,	2973,	7000,	7852,	22837,	23689,	27716,	30369
30 817	2882,	10725,	13512,	13682,	17135,	17305,	20092,	27935
30 881	1263,	7164,	8874,	11884,	18997,	22007,	23717,	29618
30 977	4526,	5756,				22151,		
31 121	2272,	6342,		14565,	16556,	24431,	24779,	28849
31 153	2623,	5594,	9246,	11850,	19303,	21907,	25559,	28530
31 249						20048,		
31 393	0-007	0010,	11201,	122/9,	18970,	20040,	24439,	27390
31 489	17					19563,		
31 601						19070,		
31 649	1092,					19882,		
1	373-9	8105,				23316,		
31 729	2868,					19036,		
31 793	1587,		15164,	15278,	16515,	16629,	20995,	30206
31 873	441,	4122,	11853,	12859,	19014,	20020,	27751,	31432
32 257	4627,	4643,	9560,	13608,	18649,	. 22697,	27614,	27630
32 321	1415,	5916,	12948,	13522,	18799,	19373,	26405,	30906

y	y	p	y'	y'	y	y	p	y'	y'
2,	4	7	3,	5	171,	267	439	172,	268
3,	9	13	4,	10	133,	323	457	134,	324
7,	ΙI	19	8,	Ι2	21,	441	463	22,	442
5,	25	31	6,	26	232,	254	487	233,	255
10,	26	37	11,	27	139,	359	499	140,	360
6,	36	43	7,	37	60,	462	523	61,	463
13,	47	61	14,	48	129,	411	541	130,	412
29,	37	67	30,	38	40,	506	547	41,	507
8, 23,	6 ₄	73 79	9,	65 56	109,	461 363	571 577	110, 214,	462 364
			24,	-	213,				
35,	61	97	36,	62	24,	576	601	25,	577
46,	56	103	47,	57	210,	396	607	211,	397
45,	63	$\frac{109}{127}$	46, 20,	64 108	65, 252,	547 366	613 619	66,	548 367
42,	96	139	43,	97	43,	587	631	² 53,	588
				- 1					
32, 12,	118	151	33,	119		465	643	178,	466 365
58,	144	157 163	13, 59,	145	296, 255,	364 417	661 673	297, 256,	418
48,	132	181	49,	133	253,	437	691	254,	438
84,	108	193	85,	109	227,	481	709	228,	482
92,	106	199	93,	107	281,	445	727	282,	446
14,	196	211	15,	197	307,	425	733	308,	426
39,	183	223	40,	184	320,	418	739	321,	419
94,	134	229	95,	135	72,	678	751	73,	679
15,	225	241	16,	226	27,	729	757	28,	730
28,	242	271	29,	243	360,	408	769	361,	409
116,	160	277	117,	161	379,	407	787	380,	
44,	238	283	45,	239	130,	680	811	131,	681
17,	289	307	18,	290		648	823	175,	649
98,	214	313	99,	215	125,	703	829	126,	704
31,	299	331	32,	300	220,	632	853	221,	633
128,	208	337	129,	209	260,	598	859	261,	599
122,	226	349	123,	227	282,	594	877	283,	595
83, 88,	283 284	367 373	84,	284 285	337,	545	883	338, 385,	546
			89,		384,	522			523
51,	327	379	52,	328	52,	866	919	53,	867
34,	362	397	35,	363		614	937	323,	615
53,	355	$409 \\ 421$	54,	356 401		824 877	967 991	143,	825 878
198,	234	433	199,	235		692	997	305,	693
,	-34	100	1 77)	-33	3-4,	092		3-3,	93

y y	p	y'	y'	y	y	p	y'	y'
368, 652 195, 837 140, 898	1 009 1 021 1 033 1 039 1 051	375, 369, 196, 141, 181,	635 653 838 899 871	250, 184, 264,	1358 1436 1362	1 597 1 609 1 621 1 627 1 657	251, 185, 265,	1375 1359 1437 1363 1587
86, 982 257, 829 151, 941	1 063 1 069 1 087 1 093 1 117	344, 87, 258, 152, 121,	720 983 830 942 997	248, 433, 397,	1420 1259 1301	1 663 1 669 1 693 1 699 1 723	249, 434, 398,	1345 1421 1260 1302 1682
387, 741 502, 650 420, 750	1 123 1 129 1 153 1 171 1 201	34, 388, 503, 421, 571,	742 651 751 631	371, 182, 508,	1375 1570 1250	1 741 1 747 1 753 1 759 1 777	372, 183, 509,	1385 1376 1571 1251 1148
126, 1104 300, 936 93, 1155	1237	301,	996 1105 937 1156 775	152, 73, 672,	1636 1727 1158	1 783 1 789 1 801 1 831 1 861	153, 74, 673,	1590 1637 1728 1159 1407
365, 931 95, 1207 297, 1023	1 291 1 297 1 303 1 321 1 327		945 932 1208 1024 980	114, 488, 591,	1758 1390 1341	1 867 1 873 1 879 1 933 1 951	115, 489, 592,	1033 1759 1391 1342 1875
	1399 1423 1429		765	312, 808, 205,	1680 1190 1805	1 987 1 993 1 999 2 011 2 017	313, 809, 206,	1340 1681 1191 1806 1723
693, 759 339, 1119 251, 1219 38, 1444 483, 1005	1459 1471 1483	252, 39,	760 1120 1220 1445 1006	197, 449, 826,	1855 1633 1262	2 029 2 053 2 083 2 089 2 113	198, 450, 827,	1054 1856 1634 1263 1675
646, 884 681, 861 275, 1273 535, 1031 639, 939	1543 1549 1567	276, 536,	885 862 1274 1032 940	201, 349, 593,	1935 1793 1567	2 131 2 137 2 143 2 161 2 179	202, 350, 594,	1663 1936 1794 1568 2056

y	y	p	y'	y'	y	y	p	y'	y'
543, 295, 708,	1677 1943 1542	2 203 2 221 2 239 2 251 2 269	544, 296, 709,	1918 1678 1944 1543 2187	350, 698,	1836 2506 2188		351, 699,	
804, 989, 882,	1482 1303 1428	2 281 2 287 2 293 2 311 2 341	805, 990,	1618 1483 1304 1429 1235	54, 934, 239,	2916 2066 2779	2 953 2 971 3 001 3 019 3 037	55, 935, 240,	2153 2917 2067 2780 2292
464, 721, 1103,	1906 1655 1279	2 347 2 371 2 377 2 383 2 389	465, 722, 1104,	1907 1656 1280	561, 973,	2499 2093 2532	3 049 3 061 3 067 3 079 3 109	562, 974, 547,	2517 2500 2094 2533 2024
216, 1015, 1226,	2250 1457 1276		217, 1016, 1227,	2251 1458	97, 440, 1315,	2626 3071 2740 1871	3 163 3 169 3 181 3 187	537, 98, 441, 1316,	2000 2627 3072 2741 1872
50, 835, 1137,	2500 1721 1455		51, 836, 1138, 1065,	1456 1553	914, 1439, 852, 842,	2314 1813 2406 2428	$3259 \\ 3271$	915, 1440, 853, 843,	2407 2429
9°3, 544, 1°33, 636,	1755 2126 1643 2046	2 647 2 659 2 671 2 677 2 683	904, 545, 1034, 637,	1756 2127 1644 2047	1123, 1527, 1463,	3249 2189 1791 1867	3 307 3 313 3 319 3 331	58, 1124, 1528, 1464,	3250 2190 1792 1868
1327, 1211, 1265,	1379 1501 1453	2 713	1328, 1212, 1266,	1380	654, 555, 268,	2468 2718 2835 3164	3 361 3 378 3 391 3 438	893, 655, 556, 269,	1919 2469 2719 2836 3165
328, 91,	2438 2699 1696	2 749 2 767 2 791 2 797 2 803	329, 92,		367. 1683. 156.	3095 1785 3342	3 457 3 468 3 469 3 499 3 511	368 1684 157	, 2735 , 3096 , 1786 , 3343 , 2755

y	y	p	y'	y'	y	y	p	y'	y'
			1						
258,	3258	$\frac{3517}{3529}$	259,	3 ² 59 3081			$\frac{4}{4} \frac{153}{159}$	171, 1605,	3983
59,	3481	3 541		3482			$\frac{1}{4}$ 177		
1162,	2384	3547	1163,	2385	1124,	3076	4201	1125,	3077
1435,	2123	3 559	1436,	2124	112,	4106	4219	113,	4107
		3571		3468			4231		3611
1038,	2544	3 583					4 243		3945
		3 607 3 613	1400, 1676,		1610	2662	4 261	1648, 1611,	2662
335.	3295	$\frac{3}{3}631$	336.	3296	1410.	2886	4 297	1411,	2887
1			1						·
		$\frac{3}{3} \frac{637}{643}$		2942 3221		3699	$\frac{4}{4}\frac{327}{339}$		3700 4102
			1152,		1318,			1319,	
474,	3216	3 691		3217			4 363		3951
519,	3177	3 697		3178			4423	67,	4357
		3 709		3211	901,	3539	4 441	902,	3540
1188,	2538	3 727	1189,	2539	115,	4331	4447	116,	4332
		3 733		2785		3977			3978
	3044	3 739		3045 3306	791,	3715 3698	4 507		3716 3699
1008,	2724	3 793 9 009	1069, 1185,	2725	1056,			1057,	
			1893,		1744,	4317			4318
			1140,		1112,			1113,	
		3 877				4280			4281
1890,	1998	3 889	1891,	1999	377,	4219	4 597	378,	4220
		3 907				4423			4424
1169,	2749	3 919	1170,	2750	1763,			1764,	
617,	3313	3 931	618,	3314	1360,	3278	4 639	1361,	3279
			1136,			3864			3865
		3 967			967,	3689	4 657		3690
822,	3180	4 003	823, 1813,	3181	2092,	4005	4 003	2093,	257 I 4006
1820,			1821,	2207	2036,			2037,	
	3253			3254	1525,	3233	4759	1526,	
			1409,		1745,	- 1	- 1		
902,	3190	4 093	903,		1679,				
2017,	2081	4099	2018,	2082	2340,	2460	4801	2341,	2461
1055,	3055	4 111	1056,	3056	1888,				
1979,	2149	4 129	1980,	2150	69,	4761	4 831	70,	4762

y	y	p	y'	y'	y	y	p	y'	y'
2416, 573, 2131,	2486 4335 2801	4 903 4 909 4 933	2417, 574,	2487 4336 2802	2242, 2458, 2013, 2044, 853,	3122 3609 3596	$5581 \\ 5623$	2459, 2014, 2045,	3123 3610
186, 1136, 2342,	4782 3850 2650	4969 4987 4993	2283, 187, 1137, 2343, 2338,	47 ⁸ 3 3851 2651	1464, 1110, 2419,	4194 4572 3269	5 683	1465, 1111, 2420,	4573
953, 1912, 1629,	4069 3146 3447	5 023 5 059 5 077		4070 3147 3448	330,	5542 5418 2927	5 743 5 749 5 779	201, 331,	5543 5419 2928
71, 1682, 124,	5042	5 113 5 119 5 16 7	72, 1683,	5043	1350, 1854,	4476 3984 5273	5 827 5 839 5 851	2149, 1351, 1855, 578, 1265,	4477 3985 5274
1192, 451, 331,	4775 4901	5 209 5 227 5 233		4017 4776 4902	276, 428, 869,	5091 5604 5494 5083 5929	5 881 5 923 5 953	277, 429, 870,	5092 5605 5495 5084 5930
479, 1042, 1224,	4867 4364	5 347 5 407 5 413	1283, 480, 1043, 1225, 128,	4868 4365	1715,	5401 4230	6 Q43 6 067 6 073	1716,	5402 4231
2271, 2588, 1474,	3165 2854 3974	5 437 5 443 5 449	1534, 2272, 2589, 1475, 2703,	3166 2855 3975	949, 207,	5346 4968 5183 5943 6084	6 121 6 133 6 151	950, 208,	5347 4969 5184 5944 6085
340, 876, 1827,	3729	$5521 \\ 5527$	341, 877, 1828,	4574 5181 4651 3730 4852	136, 2459,	6074 3757 5298	$6211 \\ 6217 \\ 6229$	137, 2460, 931,	6075 375 ⁸ 5299

·y	y	p	<i>y'</i>	y'	y	y	p	y'	y'
	4250 3968			4251 3969		6453 6584			6454 6585
2977,	3323	6 301	2978,	3324	1381,	5609	991	1382,	
	4824			4825	2908,	4088	5 997	2909,	
	5785			5786		6503			6504
	4502 5597			45°3 5598		67367	7 039 7 057	303,	6737 6912
623,	5749	6 373	624,	5750	2040,	50287	069	2041,	5029
	3372			3373	1249,	5879 7 4278 7	7129	1250,	5880
	3316					51387			
1084,	5342	6427	1085,	5343	1838,	5368 7	207	1839,	5369
212,	6238	6 451	213,	6239	2602,	46107	213	2603,	4611
80.	4992 6400	6 469 6 481		4993 6401	1830	4493 7 5406 7	219	1831.	4494 5407
	6037			6038		38167			
2332,	4214	6 547	2333,	4215	3535,	37617	297	3536,	3762
	4608				3416,	3892 7	309	3417,	3893
	3591 6		2980, 354,	3592 6224		70127			
	5088		1519,			7202 7			
569,	60496	619	570,	6050	2559,	48097	369	2560,	4810
	5266 (5312 (1371,		1717,	5675 7 7016 7	393	1718, 395,	5676
1393,	5279	673	1394,	5313 5280	2312,	51047	417	2313,	5105
	5736			5737		72307			- 1
2918,	37726	691	2919,	3773	3468,	4008 7	477	3469,	4009
1480,	5222 (5469 (5 703	1481,	5223	606	5021 7 6900 7	489	607	5022
619,	6113	733		6114	1962,	55747			
2155,	4607	3 763	2156,	4608	528,	70207	549	529,	7021
2926,	3854	6781	2927,	3855	1298,	6262 7	561	1299,	6263
2685	5624 6 4137 6	793 8823	2686	5625	2057,	5515 7 5137 7	573 591	2058,	5516
734,	6094	829	735,	6095	2094,	5508 7	603	2095,	5509
2808,	4032	841	2809,	4033	3124,	44967	621	3125,	4497
1466,	5404	871	1467,	5405	2975,	46637	639	2976,	4664
1856	50506	5 883 5 907	220,	6664	2070,	55987	669	2071, 68r	5599
1942,	5006	949	1943,	5007	2274,	6996 7 5412 7	687	2275,	5413
			, 10,	′ ′	/ - ()	31		, ,	٠, ا

y	y	p	y'	y'	y	y	p	y'	y'
3439, 917, 2452,	4277 6805 5288	7 717 7 723	344°, 918, 2453,	4278 6806 5289	1035, 1776, 4187, 2024, 2976,	6684 4279 6496	8 461 8 467 8 521	1777, 4188, 2025,	6685 4280 6497
233, 1465, 1394,	7555 6401 6478	7 789 7 867 7 873	234, 1466, 1395,	7556 6402 6479	2552, 2823, 424, 1205, 1545,	5739 8156 7393	8 563 8 581 8 599	2824, 425, 1206,	574° 8157 7394
2005, 321, 1623,	5927 7629 6339	7 933 7 951 7 963	2006, 322, 1624,	5928 7630 6340	3306, 3572, 794, 1378, 1903,	5068 7852 7298	8 641 8 647 8 677	3573, 795, 1379,	5069 ² 7853 7299
2642, 3497, 2765,	5374 4555 5293	8017 8053 8059	90, 2643, 3498, 2766, 1414,	5375 4556 5294	2537,	6175 6437 5072	8 713 8 719 8 731	2538, 2282, 3659,	6176 6438 5073
2903, 3092, 1096,	5 ² 57 5 ⁰ 74 7 ⁰ 82	$8161 \\ 8167$	3093, 1097,	5258 5075	1267, 988,	7511 7814 6384	8 779 8 803 8 821	1268, 989, 2437,	7512 7815 6385
415, 2612, 240,	7805 5620 8022	8 221 8 233 8 263	2613,	7806 5621 8023	4227, 249, 3847,	4659 8643 5075	8 887 8 893 8 923	4228, 250, 3848,	4660 8644 5076
2050, 1266, 1286,	6242 7044 7030	8 311 8 317	569, 2051, 1267, 1287, 1053,	6243 7045 7031	3798, 1094,	8629 5202 7912	8 971 9 001 9 007	342, 3799, 1095,	8630 5203 7913
813, 691, 1961,	7563 7697 6457	8 377 8 389 8 419	1737, 814, 692, 1962, 2148,	7564 7698 6458	845, 1081,	8203 7985 5702	9 049 9 067 9 091	846, 1082, 3389,	8204 7986 5703

y'

 p^{κ}

72

73

 19^{2}

 31^{2}

 37^{2}

 43^{2}

 13^{3}

 61^{2}

 67^{2}

 73^{2}

 79^{2}

 19^{8}

 97^{2}

74

y

30

146 13^{2}

324

292

521

699, 3789 2198, 3130

1714, 4526

2819, 4039

4620, 4788

y'

19,

23,

19,

69,

440,

582,

424, 1426

1037, 1161

1048, 1354

1661, 2061

700, 3790

2199, 3131

1715, 4527

2820, 4040

4621, 4789

y'

31

147

325

293

522

788

y

y'

956, 8862

				2914,	
				1992,	
1924,	7796	9	721	1925,	7797
1550,	8182	9	733	1551,	8183
				2769,	
				262,	
				4308,	
3031,	6755	9	787	3032,	6756
602,	9208	9	811	603,	9209
					ı

1653, 8007 9 661 1654, 8008

The roots (y) are placed to left of the Argument (p) throughout this Table.

y	y	p	y	y	p	y	y	p
1044, 3731, 4705, 4959, 3947,	6307 5363 5133	10 009 10 039 10 069 10 093 10 099	4198, 2879, 1099,	6662 7987 9791	10 837 10 861 10 867 10 891 10 903	2158, 1900,	9023 9518 9788	11 593 11 617 11 677 11 689 11 701
4281, 2185, 4593, 4773, 563,	7955 5565 5403	10 111 10 141 10 159 10 177 10 243	4358,	6542 7811 6628	10 909 10 939 10 957 10 987 10 993	3378, 3157, 3962,	8352 8585 7816	11 719 11 731 11 743 11 779 11 821
2019,	8253 10201 8236	10 267 10 273 10 303 10 321 10 333	1738, 4377,	6752 9332 6705	11 047 11 059 11 071 11 083 11 113	2617, 679, 3225,	9215 11159 8637	11 827 11 833 11 839 11 863 11 887
3806, 833, 444, 2414, 270,	9535 9954 8014	10 357 10 369 10 399 10 429 10 453	105, 4438, 3813,	6710 7347	11 119 11 131 11 149 11 161 11 173	3191, 3113, 765,	8749 8839 11193	11 923 11 941 11 953 11 959 11 971
1329, 716, 4730, 3538, 5080,	9760 5770 6974	10 459 10 477 10 501 10 513 10 531	5566, 1076,	5672 10174 6935	11 197 11 239 11 251 11 257 11 287	1293, 3163, 685,	10743 8879 11363	$12\ 007$ $12\ 037$ $12\ 043$ $12\ 049$ $12\ 073$
1185, 4807, 4286, 1893, 984,	5789 6340 8745	10 567 10 597 10 627 10 639 10 651	1120, 487, 1227,	10190	11 299 11 311 11 317 11 329 11 353	3432, 5588, 5695,	8676 6568 6467	12 097 12 109 12 157 12 163 12 211
3983, 806, 3653, 4500, 1255,	9856 7033 6210	10 657 10 663 10 687 10 711 10 723	2417, 2931, 3401,	9019 8511 8065	11 383 11 437 11 443 11 467 11 491	482, 399, 6048,	11770 11877 6240	12 241 12 253 12 277 12 289 12 301
1742, 5150, 3873, 3471, 3367,	5602 6897	10 729 10 753 10 771 10 789 10 831	467, 5517, 3979,	11035 6009 7571	11 497 11 503 11 527 11 551 11 587	1496, 5769, 4228,	10876 6609 8162	12 343 12 373 12 379 12 391 12 409

13 The roots (y) are placed to left of the Argument (p) throughout this Table.

y	y	p	y	y	p	y	y	p
2512,	12321 9938 11970	$12\ 451$	1894, 303, 5866,	11252 12855 7304	13 099 13 147 13 159 13 171 13 177	2968, 2134, 541,	10952 11798 13421	13 903 13 921 13 933 13 963 13 999
3394, 6110, 2383, 6217, 5157,	6406 10157 6329	12547	5724, 3208, 199,	7494 10040 13067	13 183 13 219 13 249 13 267 13 291	5207, 1013, 2775,	8821 13057 11307	$14\ 029$ $14\ 071$ $14\ 083$
5337,	10885 7251 11753 7137	12 589 12 601 12 613	5103, 3142, 3911, 1402,	8205 10184 9427 11978	13 327 13 339 13 381	1652, 3513, 5123, 4845,	12496 10659 9073 9375	14 221
3774, 6073, 1299, 5354, 4930,	6563 11397 7348	12 637 12 697 12 703	1975, 2508, 645,	11435 10908 12795 11146	13 399 13 411 13 417 13 441 13 477	119, 1840, 4630, 6360,	14161 12452 9692	14281
3°33, 3223,	9729 9557	12 739 12 757 12 763 12 781 12 799	419, 4758, 2741,	13117 8808 10849	13 513 13 537 13 567 13 591 13 597	432, 317, 3315,	13956 14083 11091	14 347 14 389 14 401 14 407 14 419
	7088 6780	12829 12841	3042, 202, 1925,	10590 13466 11755	13 627 13 633 13 669 1 3 681 13 687	4484, 1934, 6501,	9952 12514 7959	14 449
2938, 5520, 5717, 5886, 3841,	7398 7249 7086	12 907 12 919 12 967 12 973 12 979	3148, 2150, 6709,	10562 11572 7019	13 693 13 711 13 723 13 729 13 759	6691, 3835, 6221,	7841 10715 8335	14 503 14 533 14 551 14 557 14 563
4011, 2222, 1347,	8997 10810 11715	13 009 13 033 13 063	117, 2234, 6834,	13689 11596 7038	13 807 13 831	7154, 3693, 3298,	7474 10959 11384	14 593 14 629 14 653 14 683 14 713

The roots (y) are placed to left of the Argument (p) throughout this Table.

_								
y	y	p	y	y	p	y	y	p
4341, 5029, 6688,	9737 8090	14 731 14 737 14 767 14 779 14 797	6825, 5060, 4551,	8667 10450 10989	15 451 15 493 15 511 15 541 15 559	796, 5145, 1549,	15470 11127 14783	
7134, 2834, 2867,	7692 12016 12001	14 821 14 827 14 851 14 869 14 887	3358, 3187, 4345,	12242 12419 11273	15 583 15 601 15 607 15 619 15 643	338, 3393, 2756,	16030 12987 13654	16 363 16 369 16 381 16 411 16 417
4202, 763, 2656,	, 10726 , 14183 , 12326	14947 14983	6823, 6555, 2960,	8837 9111 12718	15 661 15 667 15 679	166 7, 5900, 5463,	14785 10576 11055	16 453
1183 6913 3691	, 13877 , 8159 , 11399	15 073	5013, 4528, 2973,	10725 11258 12843	15 739 15 787	7351, 7558, 4010,	9221 9044 12622	16 567 16 573 16 603 16 633 16 651
962 4590 5214	, 14224 , 10602 , 9984	15 139 15 187 15 193 15 199 15 217	7337, 333, 2083,	8539 15555 13817	15 877 15 889 15 901	5153, 4376, 976,	11539 12322 15752	16 657 16 693 16 699 16 729 16 741
5127 3029 810	, 10131 , 12241 , 14466	$\begin{array}{c} 15\ 241 \\ 15\ 259 \\ 15\ 271 \\ 15\ 289 \\ \end{array}$	7420, 7801, 1034,	8498 8135 14938	15 919 15 937	5700, 1884, 6422,	11058 14946 10420	16 747 16 759 16 831 16 843 16 879
539 337°	, 8493 , 14779 , 11960	15 307 15 313 15 319 15 331 15 349	4688, 3555, 1951,	11368 12507 14117	16 033 16 057 16 063 16 069 16 087	4347, 2799, 1846,	12573 14127 15116	16 903 16 921 16 927 16 963 16 981
2507 2964 3236	, 12865 , 12426 , 12190	15 361 15 373 15 391 15 427 15 439	4003, 5209, 5917,	12137 10973 10271	16 183 16 189	912, 6641, 5519,	16080	16 987 16 993 17 011 17 029 17 041

The roots (y) are placed to left of the Argument (p) throughout this Table.

						1		
y	y	p	y	y	p	y	y	p
345, 1161, 6797,	16707 15915 10309	17 047 17 053 17 077 17 107 17 137	45°5, 1883, 529°,	13285 15943 12548	17 761 17 791 17 827 17 839 17 851	1734, 4292, 3651,	16722 14188 14841	18 451 18 457 18 481 18 493 18 517
1821, 4387, 2167,	15369 12815 15041	17 167 17 191 17 203 17 209 17 239	5579, 5048, 613,	12301 12862 17309	17 863 17 881 17 911 17 923 17 929	² 733, 7689, 6030,	15807 10863 12552	18 523 18 541 18 553 18 583 18 637
131, 5722,	17161 11576 10898	17 257 17 293 17 299 17 317 17 341	2737, 4817, 6289,	15233 13159 11699	17 959 17 971 17 977 17 989 18 013	3906, 896, 4083,	14772 17794 14673	18 661 18 679 18 691 18 757 18 787
1257, 3172, 3642,	16119 14210 13746	17 359 17 377 17 383 17 389 17 401	3260, 2796, 5987,	14788 15264 12109	18 043 18 049 18 061 18 097 18 121	2565, 6258, 2035,	16293 12654 16883	18 793 18 859 18 913 18 919 18 973
2984, 6122, 803,	14446 11320 16645	17 419 17 431 17 443 17 449 17 467	3529, 6574, 6623,	14603 11594 11557	18 127 18 133 18 169 18 181 18 199	1625, 2995, 2853,	17383 16055 16215	18 979 19 009 19 051 19 069 19 081
4719, 4127, 477,	12777 13381 17061	17 491 17 497 17 509 17 539 17 551	8397,	9819 16050 14465	18 211 18 217 18 223 18 229 18 253	9138, 138, 7415,	10002 19044 11791	19 087 19 141 19 183 19 207 19 213
5191, 6786, 3350,	12389 10812 14272	17 569 17 581 17 599 17 623 17 659	1290, 5376, 2992,	17010 12930 15320	18 289 18 301 18 307 18 313 18 367	9365, 909, 6857,	9865 18327 12391	19 219 19 231 19 237 19 249 19 267
4634, 6367, 2200,	13072 11345 15536	17 683 17 707 17 713 17 737 17 749	2647, 1565, 3784,	15749 16861 14648	18 379 18 397 18 427 18 433 18 439	8922, 4798, 7557,	10386 14534 11823	19 309 19 333

y	y	p	y	y	p	y	y	p
9039, 1607, 241,	10383 17821 19199	19 417 19 423 19 429 19 441	5472, 375, 7760,	14640 19767 12388	20 107 20 113 20 143 20 149	1287, 7174, 8328,	19695 13826 12684	20 959 20 983 21 001 21 013
8828, 3620, 4477,	10642 15856 15005	19 447 19 471 19 477 19 483 19 489	9963, 3475, 5471,	10209 16757 14797	20 161 20 173 20 233 20 269 20 287	1851, 3375, 3680,	19179 17685 17386	21 019 21 031 21 061 21 067 21 121
3827, 4124, 7219,	15679 15406 12323	19 501 19 507 19 531 19 543 19 597	2356, 998, 3883,	17984 19348 16469	20 323 20 341 20 347 20 353 20 359	3420, 4337, 10458,	17736 16825 10710	21 139 21 157 21 163 21 169 21 187
9731, 874, 6356, 4982,	9871 18734 13324 14704	19 603 19 609 19 681 19 687 19 699	2376, 5676, 8791, 3985,	18012 14730 11639 16457	20 389 20 407 20 431 20 443 20 479	2144, 8073, 9501, 8319,	19048 13137 11745 12957	21 193 21 211 21 247 21 277 21 283
6448, 5755, 7875, 5630,	13268 13997 11883 14146	19 717 19 753 19 759 19 777 19 801	6463, 516, 1627, 9839,	14045 20004 18905 10711	20 509 20 521 20 533 20 551	5495, 10586, 4480, 2124,	15817 10732 16898 19266	$ \begin{array}{c} 21 \ 21313 \\ 21 \ 319 \\ 21 \ 379 \\ 21 \ 391 \\ 21 \ 397 \\ \end{array} $
7510, 8962, 7724, 6291,	12302 10856 12118 13569	19 813 19 819 19 843 19 861	143, 6818, 4093, 9021,	20449 13780 16517 11619	20 563 20 593 20 599 20 611 20 641	6087, 43 ² 5, 8700, ² 543,	15345 17155 12786 18949	$\begin{array}{c} 21\ 433 \\ 21\ 481 \\ 21\ 487 \\ 21\ 493 \end{array}$
1626, 244, 6345,	, 18264 , 19682 , 13617	19 867 19 891 19 927 19 963 19 993	3176, 3871, 10041,	17542 16859 10701	20 707 20 719 20 731 20 743 20 749	2190, 9549; 3972;	, 19326 , 11973 , 17556	521 499 $521 517$ $521 523$ $521 529$ $521 559$
9471 141 6723 510	, 10539 , 19881 , 13305 , 19536	20 011 20 023 20 029 20 047 20 071	1419, 1232, 2047, 7010	, 19353 , 19576 , 18809 , 13876	20 773 5 20 809 20 857 5 20 887 5 20 899	6894 6631 4185 2310	, 14682 , 14957 , 17415 , 19302	21 577 7 21 589 5 21 601 2 21 613 9 21 649
8165	, 11923	20 071 20 089 20 101	6015	, 14913	20 929 3 20 929 5 20 947	6280	, 15380	21 643 21 661 3 21 673

The roots (y) are placed to left of the Argument (p) throughout this Table.

y y	p	y	y	p	y	y	p
7456, 14270 6777, 14961 8041, 13709 147, 21609 4435, 17351	21 739 21 751 21 757	7069, 10094, 9283,	15473 12454 13283	22 531 22 543 22 549 22 567 22 573	265, 3320, 5452,	23231 20188 18086	23 473 23 497 23 509 23 539 23 557
4978, 16820 2440, 19376 8529, 13311 7609, 14249 10163, 11707	21 817 21 841 21 859	542, 150, 9037,	22096 22500 13631	22 621 22 639 22 651 22 669 22 699	4685, 6836, 6764,	18895 16756 16834	23 563 23 581 23 593 23 599 23 623
8723, 13213 9367, 12575 7962, 13998 8058, 13932 10391, 11605	21 943 21 961 21 991	10350, 1740, 1235,	12390 21036 21547	22 717 22 741 22 777 22 783 22 807	8927, 4483, 5478,	14743 19193 18210	23 629 23 671 23 677 23 689 23 719
2573, 19429 4629, 17397 1319, 20719 1564, 20486 8644, 13418	22 027 22 039 22 051	8452, 6466, 1446,	14468 16496 21546	22 861 22 921 22 963 22 993 23 011	8775, 6008, 8580,	14985 17758 15192	23 743 23 761 23 767 23 773 23 827
6861, 15231 7858, 14252 8770, 13352 2502, 19626 8604, 13542	$\begin{array}{c} 22\ 111 \\ 22\ 123 \\ 22\ 129 \end{array}$	401, 4081,	22627 18959 19952	23 017 23 029 23 041 23 053 23 059	10979, 9020, 3289,	12877 14848 20597	23 833 23 857 23 869 23 887 23 893
10588, 11564 3519, 18639 2852, 19318 10965, 11223 9638, 12634	22 159 22 171 22 189	3880, 7531, 697,	19250 15611 22469	23 071 23 131 23 143 23 167 23 173	3495, 1756, 2489,	20415 22160 21439	23 899 23 911 23 917 23 929 23 971
10797, 11481 5671, 16619 831, 21471 8977, 13391 10235, 12145	22 291 22 303 22 369	2254, 549,	17301 20954 22677	23 197 23 203 23 209 23 227 23 251	6596, 11240, 5262,	17404 12766 18756	23 977 24 001 24 007 24 019 24 043
2026, 20414 259, 22187 4542, 17910 10518, 11964 1132, 21368	22 447 22 453 22 483	9457, 10559,	13288 13853 12811	$23\ 311$	6586, 11150, 6398,	17474 12940 17698	24 049 24 061 24 091 24 097 24 103

The roots (y) are placed to left of the Argument (p) throughout this Table.

y	y	p	y	y	p	y	y	p
9816, 12 6333, 14 10042, 12 9854, 12 6985, 14	7787 4090 4296	$24\ 121 \ 24\ 133 \ 24\ 151$	9201, 3083, 8979,	15855 22003 16131	25 033 25 057 25 087 25 111 25 117	45 ² 7, 5 ² 58, 28 ² 7,	21321 20608 23045	25 819 25 849 25 867 25 873 25 903
155, 2, 6527, 1; 5122, 1; 11578, 1 11828, 1	7695 9106 2668	$24\ 229$ $24\ 247$	2248, 11820, 2780,	22904 13350 22402	25 147 25 153 25 171 25 183 25 189	7855, 6557, 9758,	18083 19393 16210	25 933 25 939 25 951 25 969 25 981
7897, 19 9608, 11 8948, 1 5562, 1 8924, 1	477° 5442 8858 5514	24 379 24 3 9 1 24 421 24 439	8117, 5686, 8560, 7147,	17119 19556 16700 18155	25 219 25 237 25 243 25 261 25 303	1555, 2182, 739, 12522,	24461 23846 25301 13530	25 999 26 017 26 029 26 041 26 053
6299, 1 8218, 1 5385, 1 4826, 1	8181 6280 9131 9720	24 499 24 517 24 547	1302, 8952, 9006, 730,	24018 16386 16350 24680	25 309 25 321 25 339 25 357 25 411	3018, 11434, 7439, 11809,	23088 14678 18679 14351	26 083 26 107 26 113 26 119 26 161
271, 2 1513, 2 2680, 2 3067, 2 10183, 1	3117 2010 1629	24691 24697	8535, 1204, 6851, 9349,	16911 24248 18619 16187	25 423 25 447 25 453 25 471 25 537	2028, 280, 6989, 10770,	24180 25946 19261 15492	26 203 26 209 26 227 26 251 26 263
	9541 7935 2473 8921	24 763 24 781 24 793 24 799	4752, 12721, 11961, 4977,	20826 12881 13647 20643	25 561 25 579 25 603 25 609 25 621	9710, 11190, 1995, 162,	16606 15156 24375 26244	26 293 26 317 26 347 26 371 26 407
8521, I 10814, I	8703 1717 6355 4074	$24 847 \\ 24 859 \\ 24 877 \\ 24 889$	11115, 12064, 7665, 9977,	14523 13592 18027 15739	25 633 25 639 25 657 25 693 25 717	10037, 1445, 2295, 9620,	16399 25003 24183 16876	26 431 26 437 26 449 26 479 26 497
7699, I I 233, 2 I 2404, I	7219 23709 12562	24 907 24 919 24 943 24 967 24 979	1850, 10860, 12279,	23896 14898 13491	25741 25747 25747 25771 25801	9464 588 5842	, 17092 , 26052 , 20804	5 26 539 2 26 557 2 26 641 4 26 647 3 26 683

The roots (y) are placed to left of the Argument (p) throughout this Table.

y	y	p	y	y	p	y	y	p
12901, 11928, 5100,	13811 14802 21636	26 701 26 713 26 731 26 737 26 821	2746, 2738, 5723,	24884 24934 21967	27 583 27 631 27 673 27 691 27 697	1988, 13215, 12370,	26458 15261 16142	28 429 28 447 28 477 28 513 28 537
1613, 1563, 2844, 751,	25225 25299 24036 26141	26 833 26 839 26 863 26 881 26 893	9446, 1606, 2454, 11630,	18292 26144 25308 16162	27 733 27 739 27 751 27 763 27 793	7185, 8252, 6744, 6052,	21387 20326 21846 22544	28 549 28 573 28 579 28 591 28 597
1990, 13183, 9582, 9646,	24962 13775 17448 17396	27 031 27 043	5360, 11653, 9429, 2848,	22456 16169 18417 25034	27 847 27 883	5244, 9296, 6263, 12077,	23376 19330 22393 16585	28 603 28 621 28 627 28 657 28 663
8967, 12212, 10123, 5974,	18099 14860 16967 21128	27 073 27 091 27 103	1261, 5646, 11418, 10143,	26657 22296 16542 17823	27 967	10875, 11099, 2727, 6924,	17811 17611 25995 21804	28 711 28 723 28 729
3311, 2220, 6344,	23621 23899 25020 20908	27 127 27 211 27 241 27 253	167, 12216,	17716 25676 27889 15852	28 027 28 051 28 057 28 069	12978, 5175, 7517, 10746,	15780 23595 21271 18060	28 771 28 789 28 807
8755, 9617, 6711, 4276,	18515 17659 20571 23060	27 277 27 283 27 337	13659, 443, 5435, 13094,	14427 27655 22675 15028	28 099 28 111 28 123	5683, 7567,	20156 18725 23183 21311	28 837 28 843 28 867 28 879
10889, 9187, 10930, 3894,	18209 16478 23532	27 367 27 397 27 409 27 427	3355, 6886, 11197,	23143 24863 21392 17099	28 201 28 219 28 279 28 297	8782, 4849, 1328, 1964,	20138 24077 27604 27052	28 921 28 927 28 933 29 017
4981, 4262, 13220,	23868 22499 23224 14308 26780	27 481 27 487 27 529	2711, 168,	20100 25675	$28 351 \\ 28 387 \\ 28 393$	7377, 9635, 11135,	21681 19441	29 059 29 077 29 101

The roots (y) are placed to left of the Argument (p) throughout this Table.

y	y	p	y	y	p	y	y	p
2748,	26418	29 137 29 167	7325,	22771	30 091 30 097	5946,	24882	$30817 \\ 30829$
11997,	17181	29 173 29 179	9978,	20130	30 103 30 109	7214,	23638	30 841 30 853
		29 191 29 209			30 133 30 139			30 859 30 871
1648,	27572	$29\ 221$ $29\ 251$	3469,	26599	30 169 30 181	11001,	19929	30 931 30 937
11222,	18046	29 269 29 287	8080,	22106	30 187 30 211	7165,	23783	30 949 3 1 033
		29 311 29 347			30 223 30 241			31 039 31 051
11662,	17720	29 383 29 389	8361,	21891	30 253 30 259	11170,	19892	31 063 31 069
11208,	18192	29 401 29 437	2006,	28264	30 271 30 307	2137,	28943	31 081 31 123
3427	, 26015	29 437 29 443 29 473	4373,	25939	30 307 30 313 30 319	9052,	22094	$31\ 123$ $31\ 147$ $31\ 153$
7194,	22332	29 527 29 569	3853,	26513	30 367 30 391	10327,	20831	31 159 31 177
1983,	27597	29 581	4583,	25819	30 403	9715,	21467	31 183
1046	, 28552	29587 29599 29611	12222,	18246	30 427 30 469 30 493	12150,	19068	31 189 31 219 31 231
8724	, 20904	29 629	3263,	27253	30 517	9340,	21896	31 237
3517	, 26153	29641 29671	7838,	22714	30 529 30 553	13259,	18007	31 249 31 267
8188	, 21572	29 683 29 761	2365,	28211	30 559 30 577	771,	30555	$31\ 321$ $31\ 327$
7795	, 22037	29803 29833	7615,		30 631 30 637	10608,	20748	31 333 31 357
13036	, 16826	$\begin{array}{c} 29851 \\ 29863 \end{array}$	14750,	15898	30 643 30 649	986,	30406	31 387 31 393
13154	, 16726 , 25886	529881 529917	8916, 10557,	21744	30 661 30 697	11905,	, 19571	31 477 31 489
7773	, 22185	$ \begin{array}{c} 29 \ 947 \\ 29 \ 959 \end{array} $	5226,	25500	30 703 30 727	4460,	27070	31 513 31 531
793 6859	, 29189	$\begin{vmatrix} 29 & 983 \\ 29 & 989 \end{vmatrix}$	15146, 4285,	1561c 26477	30 757 30 763	4531,	, 27011	31543 31567
		30 013	7320,	23460	30 781	9131	, 22441	31 573

The roots (y) are placed to left of the Argument (p) throughout this Table.

y y	p	y	y	p	y	y	p
6419, 25207 12534, 19122 14973, 16689 15932, 15754 1167, 30531	31 657 31 663 31 687	2343, 15620, 8797,	30153 16882 23735	32 491 32 497 32 503 32 533 32 563	1197, 316, 9498,	32151 33074 23904	33 343 33 349 33 391 33 403 33 409
1876, 29846 1083, 30645 4823, 26917 11175, 20595 1114, 30734	31 729 31 741 31 771	10922, 1741, 15909,	21664 30869 16737	32 569 32 587 32 611 32 647 32 653	659, 5497, 13707,	32797 27971 19779	33 427 33 457 33 469 33 487 33 493
5146, 26726 2012, 29878 14131, 17825 7872, 24090 12636, 19344	31 891 31 957 31 963	13858, 1781, 4354,	18854 30937 28394	32 707 32 713 32 719 32 749 32 779	9380, 15914, 2949,	24166 17662 30639	33 529 33 547 33 577 33 589 33 601
473, 31555 12659, 19399 15305, 16771 7008, 25074 4033, 28055	$32\ 059$ $32\ 077$ $32\ 083$	5022, 5812, 6821,	27780 27020 26017	32 797 32 803 32 8 3 3 32 839 32 869	13967, 8017, 11287,	19651 25619 22391	33 613 33 619 33 637 33 679 33 703
14414, 17704 6366, 25776 3627, 28545 3707, 28483 8449, 23753	$egin{array}{c} 32\ 143 \\ 32\ 173 \\ 32\ 191 \\ \end{array}$	15680, 3937, 7432,	17230 28979 25508	32 887 32 911 32 917 32 941 32 971	1503, 16232, 2388,	32235 17518 31368	33 721 33 739 33 751 33 757 33 769
6032, 26200 10534, 21716 4582, 27672 10001, 22297 7830, 24492	$32251 \ 32257 \ 32299$	15584, 16012, 9246,	17428 17024 23802	32 983 33 013 33 037 33 049 33 073	4627, 3139, 13943,	29201 30731 19945	33 811 33 829 33 871 33 889 33 931
14544, 17796 4714, 27638 7544, 24812 15299, 17073 6256, 26126	$egin{array}{c} 32 \ 353 \ 32 \ 359 \ 32 \ 371 \end{array}$	5555, 16193, 9941,	27595 16987 23257	33 091 33 151 33 181 33 199 33 211	844, 7903, 12989,	33116 26063 21007	33 937 33 961 33 967 33 997 34 033
8262, 24138 3948, 28462 10187, 22258 5757, 26700 8786, 23692	$32\ 413$ $32\ 443$ $32\ 467$	15280, 9762, 3228,	17966 23526 30072	33 223 33 247 33 289 33 301 33 331	15509, 1028, 5414,	18547 33094 28714	34 039 34 057 34 123 34 129 34 141

The roots (y) are placed to left of the Argument (p) throughout this Table.

y y	p	y	y	p	y	y	p
7444, 26702 11867, 22291 666, 33504 5456, 28726 10112, 24100	34 159 34 171 34 183	5544, 10603, 15647,	29508 24455 19435	35 023 35 053 35 059 35 083 35 089	189, 6452, 14456,	35721 29470 21520	35 899 35 911 35 923 35 977 35 983
11573, 22657 4059, 30201 16570, 17696 12875, 21397 12366, 21930	$34 261 \\ 34 267 \\ 34 273$	5775, 10484, 8545,	² 9373 ² 4736 ² 6681	35 107 35 149 35 221 35 227 35 251	2795, 2757, 7574,	33217 33279 28486	36 007 36 013 36 037 36 061 36 067
7103, 27199 5832, 28494 8507, 25843 7422, 26946 7714, 26666	34327 34351 34369	3103, 15036, 325,	32177 20274 34991	35 257 35 281 35 311 35 317 35 323	1186, 15840, 13619,	34910 20268 22531	36 073 36 097 36 109 36 151 36 187
13734, 20694 3809, 30661 12044, 22438 9392, 25108 13903, 20609	$34\ 471$ $34\ 483$ $34\ 501$	10317, 9300, 10644,	25083 26106 24774	35 353 35 401 35 407 35 419 35 437	16513, 3442, 8282,	19715 32798 27994	36 217 36 229 36 241 36 277 36 307
7725, 26793 10612, 23924 3712, 30830 1792, 32756 3958, 30632	34 537 34 543 34 549	17142, 2548, 7835,	18318 32942 27673	35 449 35 461 35 491 35 509 35 521	2008, 3352,	32820 34334 33020	36319 36343 36373
14067, 20535 492, 34158 13740, 20946 3231, 31461 1304, 33424	$34\ 651$ $34\ 687$ $34\ 693$	188, 10189, 7930,	35344 25379 27662	35 527 35 533 35 569 35 593 35 617	2693, 15416, 9075,	33763 21052 27417	36 451 36 457 36 469 36 493 36 523
14775, 19971 10993, 23765 10601, 24205 4947, 29871 15506, 19336	34 759 34 807 34 819	13788, 7864, 13315,	21888 27866 22481	35 671 35 677 35 731 35 797 35 803	1253, 4945, 11188,	35287 31613 25382	36 529 36 541 36 559 36 571 36 583
14576, 20272 13598, 21298 2753, 32185 9674, 25288 8698, 26282	34 897 34 939 34 963	6411, 15160, 3424,	29427 20690 32438	35 809 35 839 35 851 35 863 35 869	14588, 15751, 7376,	22048 20891 29314	36 607 36 637 36 643 36 691 36 697

The roots (y) are placed to left of the Argument (p) throughout this Table.

y = y	P	y	y	p	y	y	p
5271, 3143 5815, 3090 8885, 2785 1829, 3495 17644, 1914	5 36 721 3 36 739 1 36 781	5090, 3868, 12119,	32410 33638 25417	37 489 37 501 37 507 37 537 37 549	57°4, 168°8,	33639 32624 21562	38 317 38 329 38 371
8978, 2781 2582, 3426 17851, 1901 3738, 3313 10278, 2662	4 36 847 9 36 871 8 36 877 2 36 901	11993, 5540, 9825, 1079,	32032 27753	37 561 37 567 37 573 37 579 37 591	6624, 7607,	35560 31836 30949	38 431 38 449 38 461 38 557 38 569
16910, 2000 14591, 2232 13652, 2327 13600, 2334 2007, 3496	7 36 919 8 36 931 2 36 943 5 36 973	11263, 6309, 4991, 3051,	26393 31353 32701 34647	37 657 37 663 37 693 37 699	13452, 19054, 7662, 5843,	25158 19574 30990 32827	38 629 38 653 38 671
13825, 2315 14937, 2205 14105, 2289 8781, 2823 11606, 2543	9 36 997 7 37 003 9 37 021 2 37 039	18193, 8082, 16487, 194,	29700 21325 37636	37 747 37 783 37 813 37 831	4122, 4095, 18826,	35795 34590 34641 19922	38 707 38 713 38 737 38 749
192, 3686 7315, 2977 4145, 3297 3934, 3318 17240, 1991	37 087 37 117 8 37 123 8 37 159	14741, 6967, 11090, 5854,	23137 30929 26860 32102	37 879 37 897 37 951 37 957	13216, 1538, 9754, 7624,	25574 37264 29066 31208	38 803 38 821 38 833
7257, 2991 1578, 3561 14639, 2256 13496, 2374 13166, 2410	37 189 37 201 6 37 243 6 37 273	10095, 8989, 17569, 2249,	27891 29003 20441 35797	37 993 38 011 38 047	5365, 3259, 1489, 4461,	33485 35657 37433 34491	38 851 38 917 38 923 38 953
10707, 2660 16664, 2065 2846, 3449 15581, 2177 10266, 2709	6 37 321 2 37 339 5 37 357 6 37 363	10287, 15348, 8413, 3988,	27795 22764 29705 34160	38 083 38 113 38 119 38 149	18680, 15047, 16704,	36967 20296 23971 22338	38 971 38 977 39 019 39 043
2178, 3519 886, 3653 16392, 2104 843, 3660 3678, 3380	$ \begin{array}{c} 637423 \\ 837441 \\ 37447 \end{array} $	15675, 15256, 17035,	22521 22982	38 197 38 239 38 281	7126, 7364,	31970 31738 30117	39 103 39 133

The roots (y) are placed to left of the Argument (p) throughout this Table.

y y	p	y	y	p	y	y	p
13567, 25589 11087, 28075 12410, 26770 10015, 29183 907, 38309	39 163 39 181 39 199	16488,	31334 23604 20410	40 087 40 093 40 099	15496, 2810, 19501,	25406 38116 21431	40 897 40 903 40 927 40 933 40 939
6625, 32603 11453, 27787 12925, 26375 7195, 32117 5669, 33673	39 241 39 301 39 313	19799, 3476, 12870,	20329 36676 27306	40 123 40 129 40 153 40 177 40 189	11432, 8694, 7042,	29578 32322 33980	40 993 41 011 41 017 41 023 41 047
17300, 22066 9112, 30260 18298, 21098 13202, 26206 5662, 33776	39 373 39 397 39 409	2786, 5719, 5438,	37444 34517 34912	40 213 40 231 40 237 40 351 40 357	17069, 12831, 5521,	24043 28299 35621	41 077 41 113 41 131 41 143 41 149
13325, 26125 3123, 36375 16598, 22912 12259, 27281 19347, 20259	39 499 39 511 39 541	4829, 16395, 6508,	35593 24033 33950	40 387 40 423 40 429 40 459 40 471	18203, 16813, 10254,	22975 24389 30966	41 161 41 179 41 203 41 221 41 227
13971, 25647 13753, 25877 14115, 25551 9833, 29845 2448, 37254	39 631 39 667 39 679 39 703	7797, 17648, 1920, 17667,	32709 22870 38610	40 483 40 507 40 519 40 531 40 543	5182, 4408, 885,	36074 36854 40383	41 233 41 257 41 263 41 269 41 281
3292, 36416 10258, 29468 1901, 37831 18395, 21373 13834, 25964	39 727 39 733 39 769	15894, 13603, 18255,	24702 27005 2237 I	40 591 40 597 40 609 40 627 40 639	14845, 1270, 203,	, 26495 , 40118 , 41209	41 299 41 341 41 389 41 413 41 443
10306, 29522 5513, 34327 18940, 20906 2549, 37327 13584, 26298	39 841 39 847 39 877 39 883	17164, 6297, 2731, 19375,	23534 34461 38039 21425	40 693 40 699 40 759 40 771 40 801	17967 12182 4739 19187	, 23511 , 29308 , 36781 , 22351	41 467 41 479 8 41 491 41 521 41 539
17945, 21955 4517, 35419 9862, 30116 7006, 33002 8363, 31675	$\begin{vmatrix} 39 & 937 \\ 39 & 979 \\ 40 & 009 \end{vmatrix}$	7191	, 33627 , 28401 , 25235	40 813 40 819 40 849 40 867 40 879	14654 9166 1743	, 26956 , 32450 , 39897	3 41 593 5 41 611 6 41 617 7 41 641 2 41 647

The roots (y) are placed to left of the Argument (p) throughout this Table.

		-			-			
y	y	p	y	y	p	y	y	p
20391, 8455, 3376,	21327 33281 38384	41 659 41 719 41 737 41 761	7111, 10532, 15892,	35351 31954 26606	42 457 42 463 42 487 42 499	19021, 9287, 14177,	24377 34123 29263	43 321 43 399 43 411 43 441
12698, 12257, 12130, 13313,	29152 29605 29756 28579	41 863 41 887 41 893	6790, 3953, 206, 14147,	38635 42436 28501	42 577 42 589 42 643 42 649	18622, 6920, 7958, 2371,	24950 36658 35632 41225	43 543 43 573 43 579 43 591 43 597
1599, 12922, 14230, 1546,	40341 29024 27722 40412	41 911 41 941 41 947 41 953 41 959	10078, 9512, 8054, 10456,	32618 33190 34654 32270	42 667 42 697 42 703 42 709 42 727	1992, 12854, 13765, 14168,	41634 30778 29885 29500	43 609 43 627 43 633 43 651 43 669
15662, 8582, 2892, 1247,	26350 33436 39150 40813	41 983 42 013 42 019 42 043 42 061	19281, 14716, 15360, 358,	23505 28076 27468 42482	42 793 42 829 42 841	5260, 11845, 5204, 7067,	38456 31907 38554 36709	43 711 43 717 43 753 43 759 43 777
12090, 15297, 16191, 8207,	30048 26859 25977 33973	$42\ 157$	7575, 21176, 9835, 11569,	35283 21724 33101 31373	42859 42901 42937	3666, 18356, 21296, 209,	40122 25444 22570 43681	
2763, 5593, 6779,	39429 36629 35503 36715	42 193 42 223 42 283 42 307	4874,	38092 42430 22971 31162	42 967 42 979 43 003 43 051	19510, 4598, 1309, 2726,	24440 39364 42659 41260	43 951 43 963 43 969 43 987
17506, 4865, 18343, 13450,	24830 37483 24029 28928	42 337 42 349 42 373	6126,	36966 33558 27382 28102	43 093 43 117 43 159 43 177	10234, 5321, 7628,	33794 38719 36424 38170	$44\ 029$ $44\ 041$ $44\ 053$ $44\ 059$
5928, 15572,	36468 26830 34992 31511	42 397 42 403 42 409 42 433	21420, 4014, 4153, 12670,	21780 39192 39083	43 201 43 207 43 237 43 261	18433, 6827, 17319, 16867,	25655 37273 26799 27263	44 089 44 101 44 119

The roots (y) are placed to left of the Argument (p) throughout this Table.

		,							
ĺ	y	y	p	y	y	p	y	y	p
			$44\ 203$ $44\ 221$			$45\ 181$ $45\ 247$			$\frac{46\ 147}{46\ 153}$
ĺ	17854,	26402	$44\ 257$ $44\ 263$	16071,	29187	$45\ 259$ $45\ 289$	18956,	27214	46 171 46 183
ı			44 269	14425,	30881	45 307	8607,		46 219
			44281 44293	12429, 19599,		45319 45337	11505, 7252,	34731 39008	$\frac{46}{46} \frac{237}{261}$
ı	4953,	39417	44371 44383	13248,	32094	45343 45361	17325,	28947	46273 46279
ı			44 389	5721,	39681	45 403	7874,	38434	46 309
ı			44449 44491	7161, 19361,	38265 26071	$45\ 427$ $45\ 433$			$46\ 327$ $46\ 351$
ı	19959,		44497 44533			45 439 $45 481$			46381 46399
ı	17713,	26849	44 563	564,	44958	45 523	13772,	32638	46 411
	11682, 11663,	32904 32953	44587 44617		37621	45 553	15410,	31036	46 441 46 447
ı	0	28918 40399	$44\ 623$ $44\ 641$	15267,	30321 34583	45589 45613	17046,		$46\ 471$ $46\ 477$
	16812,			8520,	37110	45 631	20807,	25681	46 489
ı	15938,	28762	44 683 $44 701$	4171,	41501	45 667 45 673	8052,	38496	46 507 46 549
١			44 773 44 797	5318,	40378	45 691 $45 697$	16459,	30113	46567 46573
١	_		44 809						46 591 46 633
ı	970,	43880	44 839 44 851	9078,	36684	45 757 45 763	1919,	44719	46 639
I	12294,	32598	44 887 44 893	7601,	38221	$\begin{array}{c} 45\ 817 \\ 45\ 823 \end{array}$	11475,	35205	
ı			44 917 44 953	20677,		45 841 45 853		_	$46 687 \\ 46 723$
ı	14731,	30227	44 959 44 971	16423,	29519	45 943 45 949	21319,	25427	$\frac{46}{46} \frac{747}{771}$
	13041,	31941	44 983	17982,	27996	45979	22745,	24061	46807
			45 007 45 0 1 3	16786, 15740,			10470,		46 819 46 831
		41566	45 061	1833,	44217	46 051 46 093	2496,	44364	$\frac{46861}{46867}$
	10933,	34193	$45\ 127$ $45\ 139$	7465,	38633	46 099 46 141	10405,	36527	46 933 46 957
1	2/12,	42420	49 109	2071,	44009	10 141	5/45,	41211	10 001

The roots (y) are placed to left of the Argument (p) throughout this Table.

y y	p	y	y	p	y	y	p
13223, 33769 16560, 30456 3150, 43890 13028, 34030 5614, 41504	47 017 47 041 47 059	10475, 11063, 13875,	37381 36805 34005	47 809 47 857 47 869 47 881 47 911	4401, 1012,	45137 44397 47804	48 781 48 787 48 799 48 817 48 823
17703, 29433 22319, 24823 4850, 42298 16741, 30419 783, 46437	47 143 47 149 47 161	789, 9479, 14813, 22881,	47157 38497 33235 25191	47 917 47 947 47 977 48 049 48 073	12837, 14430, 12528, 6083,	36021 34440 36354	48 847 48 859 48 871 48 883 48 889
376, 46874 22597, 24671 14264, 33022 21856, 25436 9578, 37738	47 269 47 287 47 293 47 317	18962, 10907, 6518, 21976,	29128 37201 41602 26180	48 079 48 091 48 109 48 121 48 157	585, 3723, 7176, 20564,	48387 45267 41826 28444	48 907 48 973 48 991 49 003 49 009
7446, 39906 7097, 40291 3777, 43629 3504, 43914 18667, 28763	47 389 47 407 47 419 47 431	16135, 13882, 18688,	32051 34310 29558	48 163 48 187 48 193 48 247 48 259	24235, 16282, 9860, 2829,	24821 32786 39220 46287	49 033 49 057 49 069 49 081 49 117
16839, 30651 10916, 36580 21789, 25731 23654, 23872 14916, 32616	47 497 47 521 47 527 47 533	12412, 5652, 14221, 47°3,	35900 42684 34175	48 271 48 313 48 337 48 397 48 409	11421, 14791, 10570, 9303,	37749 343 ⁸ 5 38630 39903	49 123 49 171 49 177 49 201 49 207
11746, 35816 3300, 44268 1214, 46366 14301, 33297 9945, 37677	47 569 47 581 47 599 47 623	5451, 16989, 2169, 7717,	43°29 31497 46353 4°823	48 463 48 481 48 487 48 523 48 541	5784, 5388, 15590, 20281,	43494 43908 33742 29057	49 261 49 279 49 297 49 333 49 339
23625, 24003 4727, 42925 12772, 34886 4648, 43052 13306, 34406	47 653 47 659 47 701 47 713	11761, 11810, 13630, 55 ⁶ 7,	36827 36808 35018 43093	48 571 48 589 48 619 48 649 48 661	10067, 2341, 23927, 19606,	39301 47051 25483 29810	49 363 49 369 49 393 49 411 49 417
4831, 42905 218, 47524 20445, 27333 21853, 25937 5500, 42296	47 743 47 779 47 791	16491, 14561, 10503,	32187 34171 38247	48 673 48 679 48 733 48 751 48 757	17193, 16688, 21802,	32265 32788 27728	49 429 49 459 49 477 49 531 49 537

The roots (y) are placed to left of the Argument (p) throughout this Table.

y y	p	y	y	p	y	y	p
7133, 42415 18055, 31541 17390, 32212 10427, 39199 19072, 30560	49 597 49 603 49 627	23732, 11238, 123663,	26650 39222 26833	50 377 50 383 50 461 50 497 50 503	17366, 25134, 599,	33916 26172 5°743	51 241 51 283 51 307 51 343 51 349
2530, 47108 16286, 33376 23771, 25897 7568, 42112 11971, 37739	49 663 49 669 49 681	6881, 4879, 21351,	43657 45671 29229	50 527 50 539 50 551 50 581 50 587	20971, 9735, 21053,	30449 41691 30385	51 361 51 421 51 427 51 439 51 481
12379, 37361 24002, 25744 22475, 27307 14110, 35678 17261, 32539	49 747 49 783 49 789	980, 6487, 8012,	49618 44159 42658	50 593 50 599 50 647 50 671 50 683	23880, 10423, 6475,	27630 41093 45101	51 487 51 511 51 517 51 577 51 607
5200, 44606 22953, 26877 8533, 41309 3717, 46173 21826, 28092	49 831 49 843 49 891	17340, 2352, 11532,	33426 48420 39288	50 707 50 767 50 773 50 821 50 833	6276, 21496, 3499,	45354 30140 48173	51 613 51 631 51 637 51 673 51 679
12578, 37348 18775, 31163 13412, 36544 14646, 35346 2334, 47664	3 49 939 4 49 957 5 49 993	17027, 3545, 14929,	33829 47347 35993	50 839 50 857 50 893 50 923 50 929	9683, 25138, 21683,	42037 26630 30103	51 691 51 721 51 769 51 787 51 817
2520, 47502 23301, 26745 7423, 42629 4948, 45128 2750, 47350	50 047 50 053 50 077	4510, 597, 7046,	46478 50403 43984	50 971 50 989 51 001 51 031 51 043	19547, 17085, 23632,	32305 34773 28238	51 829 51 853 51 859 51 871 51 907
16123, 33999 4910, 45220 19808, 30411 4853, 4537 3178, 4708	50 131 2 50 221 3 50 227	16022, 7836, 5092,	35086 43296 46058	51 061 51 109 51 133 51 151 51 157	12246, 24444, 9337;	39702 27528 42653	51 913 51 949 51 973 51 991 52 009
13287, 36990 388, 4992 22302, 28020 18270, 32070 23885, 2647	50 311 6 50 329 50 341	8223 9511 15513	, 42969 , 41687 , 35703	$ \begin{array}{c} 51\ 169\\ 51\ 193\\ 51\ 199\\ 51\ 217\\ 51\ 229 \end{array} $	5488 1045 19941	, 46538 , 51009 , 32119	52 021 52 027 52 051 52 057 52 069

$70 \ \ \text{least roots} \ (y) \ \text{of} \ \frac{y^{8}-1}{y-1} \equiv 0, \frac{y^{6}+1}{y^{2}+1} \equiv 0, \frac{y^{12}+1}{y^{4}+1} \equiv 0 \ (\text{mod} \ p^{\kappa}).$

Least Roots (y) of $(y^3-1) \div (y-1) \equiv 0 \pmod{p^{\kappa}}$.

The roots (y) are placed to left of the Argument (p^{κ}) in this Table.

y = y	p	<i>y</i>	y	p	y	y	p
3445, 7163 499, 11381 4972, 11156 6158, 13162 7733, 15067 6895, 17753 710, 25858 313, 32447 17454, 19794 13439, 26161 16894, 27626 24569, 25159 14103, 38337 16854, 41226 15475, 57965 5656, 71072 5421, 74667 35015, 59233 15864, 82104	109 127 139 151 157 163 *J 181 = 193 199 211 223 229 241 271 277 283 307	23798, 48284, 29076, 44848, 43257, 27427, 9353, 64854, 89829, 22560, 84411, 64798, 78152, 67005,	88676 89770 73516 105612 94280 100383 130181 157927 112386 97659 170160 124437 149570 159016 181995	337 349 367 373 °d 379 = 397 409 421 433 439 457 463 487	14271, 34707, 7627,	23503 36381 44799 20933	$e^{d} = \text{pom}$ $d = \text{pom}$

Least Roots (y) of $(y^6+1) \div (y^2+1) \equiv 0 \pmod{p^k}$.

p	y	y	y	y		p	y	y	y	y
" 181 snppou 229	892, 1241, 10085, 3117,	3202, 11910, 4699, 15184, 13493, 26450,	12739, 28062, 22065, 38948,	23757 31520 27164 49324	modulus	313^{2}	3,	21651, 7201,		84168 48388

Least Roots (y) of $(y^{12}+1) \div (y^4+1) \equiv 0 \pmod{p^{\kappa}}$.

	p	y	y	y	y	y	y	y	<i>y</i>
r	193 241 00 313	3728,	10365,	11930,	15938,	42143,	22009, 46151, 52541,	47716,	54353

p	y	y	y	y	p	y	y	y	y
13 37 61 73	2, 8, 21, 3,	24,	7, 23, 32, 49,	70	1 093 1 117 1 129 1 153	241, 11, 298, 53,		914, 663, 1066,	831 1100
97 109 157 181	6, 8, 22, 7,	16, 41, 50, 26,	81, 68, 107, 155,	101	1 201 1 213 1 237 1 249	3°7, 47, 175, 34,	356, 542, 516, 551,	671, 721,	894 1166 1062 1215
193 229 241	49, 18,	63, 89, 60,	130, 140,	144 211 237	1 297 1 321 1 381	170, 32, 116,	206, 289, 250,	1091, 1032, 1131,	1127 1289 1265
277 313 337 349	35, 29, 72, 24,	95, 54, 117, 160,	182, 259, 220, 189,	284 265	1 429 1 453 1 489 1 549	128, 60, 22, 496,	557,	1286,	1393
373 397 409 421 433	69, 157, 49, 159, 64,	173, 177, 192, 188,	200, 220, 217, 233, 318,	240 360 262	$\begin{array}{c} 1\ 597 \\ 1\ 609 \\ 1\ 621 \\ 1\ 657 \\ 1\ 669 \end{array}$	285, 421, 89, 129, 297,	665, 255, 745,	1366,	1188 1532 1528
457 541 577 601 613	18, 216, 57, 5, 142,	127, 268, 81, 120,	33°, 273, 496, 481, 436,	439 325 520 596	1 693 1 741 1 753 1 777 1 789	704, 112, 44, 425, 146,	796, 171, 757,	897, 1570, 996, 1200,	989 1629 1709 1352
661 673 709 733 757	246, 16, 91, 113, 78,	309, 42, 187, 240, 165,	352, 631, 522, 493,	415 657 618 620	1 801 1 861 1 873 1 933 1 993	258, 160, 267, 277, 41,	719, 221, 470, 321,	1082, 1640, 1403, 1612,	1543 1701 1606 1656
769 829 853 877 937	19, 77, 98, 240, 333,	81, 323, 235, 391, 408,	592, 688, 506, 618, 486, 529,	750	2 017 2 029 2 053 2 089	765, 359, 849, 54,	994, 633, 960, 735,	1023, 1396, 1093, 1354, 1066,	1252 1670 1204 2035
997 1 009 1 021 1 033 1 069	91, 160, 171,	252, 309, 203, 369, 283,		849 850	2 137 2 161 2 221 2 269 2 281	178,	878, 1107, 1109,	1797, 1283, 1114, 1160,	1430 1904 2091

p	y	y	y	y	p	y	y	y	y
2 293 2 341 2 377 2 389 2 437	666,	819, 1060, 752,	1806, 1522, 1317, 1637, 2149,	1675 2303 1922	3 673	913, 888, 297,	1697, 1791, 834,	2060, 1940, 1882, 2863, 1962,	2724 2785 3400
2 473 2 521 2 557 2 593 2 617	26, 604, 295,	97, 1215, 1213,	1769, 2424, 1342, 1380, 1469,	2495 1953 2298	3 769 3 793 3 853	402, 386, 442,	1847, 1189, 863,	2462, 1922, 2604, 2990, 3360,	3367 3407 3411
2 677 2 689 2 713 2 749 2 797	148, 191, 671,	1290, 696, 1311,	1438,	2541 2522 2078		47, 252, 1485,	77°, 1948, 1549,	2480, 3251, 2109, 2544, 3370,	3974 3805 2608
2 833 2 857 2 917 2 953 3 001	226, 1193, 404,	670, 1247, 1323,	1974, 2187, 1670, 1630, 1634,	2631 1724 2549	4261	1346, 141, 611,	1803, 1013, 1332,	2702, 2374, 3188, 2929, 2469,	2831 4060 3650
3 037 3 049 3 061 3 109 3 121	50, 164,	367, 551, 891,	2510, 2218,	2941 3011 2945	4357 4441	86, 584, 609,	152, 1711, 704,	2333, 4205, 2730, 3809, 3016,	4271 3857 3904
3 169 3 181 3 217 3 229 3 253	21, 197, 817,	303, 1584, 1573,	2878, 1633, 1656,	3160 3020 2412		287, 42, 75,	1842, 110, 1987,	2383, 2755, 4511, 2670, 3217,	4310 4579 4582
3 301 3 313 3 361 3 373 3 433	133, 421, 848,	274 479, 1420,	3039, 2882, 1953,	3180 2940 2525	4 789 4 801 4 813 4 861 4 909	539, 723, 1715,	864, 1145, 2208,	2589, 3937, 3668, 2653, 2970,	4262 4090 3146
3 457 3 469 3 517 3 529 3 541	384, 695,	1354, 980, 1503,	2115, 2537, 2026,	3118 3133 2834	4 933 4 957 4 969 4 993 5 077	1333, 1376, 554,	1692, 2452, 712,	3919, 3265, 2517, 4281, 2712,	3624 3593 4439

p	y	y	y	y	p	y	y	y	y
5 101 5 113 5 197 5 209 5 233	611, 513, 496,	218, 2477, 2482, 2594, 2576,	2636, 2715, 2615,	4502 4684 4713	6577 6637 6661	1073, 1180,	2697, 1648, 1729,	4185, 3880, 4989, 4932, 4857,	55°4 5457 559°
5 281 5 413 5 437 5 449 5 521	35, 799, 603,	2455, 464, 1429, 1238, 1378,	4949, 4008, 4211,	5378 4638 4846	6 781 6 793	1008, 2321, 75,	1209, 3316, 634,	4182, 5524, 3465, 6159, 3705,	5725 4460 6718
5 557 5 569 5 581 5 641 5 653	609, 627, 267,	1649, 1582, 810, 1162, 2373,	3987, 4771, 4479,	4960 4954 5374	6 949 6 961 6 997	2813, 383, 2195,	3204, 727, 3006,	5163, 3745, 6234, 3991, 5123,	4136 6578 4802
5 689 5 701 5 737 5 749 5 821	370, 1225, 1526,	755, 2351, 2332,	4946, 3386, 3417,	5331 4512 4223	7 069 7 129 7 177 7 213 7 237	1313, 96, 825,	1580, 1869, 2824,	5087, 5549, 5308, 4389, 4876,	5816 7081 6388
5 857 5 869 5 881 5 953 6 037	288, 1666, 1107,	754, 2764, 1296,	5115, 3117, 4657,	5581 4215 4846	7 297 7 309 7 321 7 333 7 369	1158, 663, 672,	1559, 784, 2237,	5271, 5750, 6537, 5096, 5823,	6151 6658 6661
6 073 6 121 6 133 6 217 6 229	810, 72, 1202,	937, 2643,	3393, 5196, 3574,	5311 6061 5015	7 393 7 417 7 477 7 489 7 537	1243, 1754, 761,	3437; 3406; 2352;	4834, 3980, 4071, 5137, 5951,	6174 5723 6728
6 277 6 301 6 337 6 361 6 378	864, 2982, 1723,	1320, 3160, 2887,	4981, 3177, 3474,	5437 3355 4638	7 549 7 561 7 573 7 621 7 669	1355, 1353, 2406,	1568, 2390, 3177,	4595; 5993; 5183; 4444; 4998;	6206 6220 5215
6 397 6 421 6 469 6 481 6 529	354 1601,	, 1179, , 1891, , 720,	5242, 4578, 5761,	6067 4868 6472	7 681 7 717 7 741 7 753 7 789	205, 2227, 1071,	2748 2315 1484	5374; , 4969; , 5426; , 6269; , 4026	7512 5514 6682

74 Least roots (y) of $(y^6+1) \div (y^2+1) \equiv 0 \pmod{p}$ and p^{κ}).

p	y	y	y	y	p	y	y	y	y
7 873 7 933 7 993 8 017 8 053	318, 2832, 2407,	3268, 3051, 3797,	4665,	7615 5161 5610	9 349 9 397	73, 1399,	2352, 3714, 3251,	4899, 6985, 5635, 6146, 6642,	8285 9276 7998
8 089 8 101 8 161 8 209 8 221	2905, 984, 1696,	2995, 1186, 3635,	5106, 6975, 4574,	5196 7177 6513	9 433 9 601 9 613 9 649 9 661	153, 1475, 624,	251, 4712, 1469,	5097, 9350, 4901, 8180, 7564,	9448 8138 9025
8 233 8 269 8 293 8 317 8 329	1723, 2167, 98,	2366, 2698, 1273,	5595,	6546 6126 8219	9 721 9 733 9 769	432, 2997, 356,	4838, 4027, 4418,	6644, 4883, 5706, 5351, 6527,	9289 6736 9413
8 353 8 377 8 389 8 461 8 521	226, 783, 847,	556, 4157, 939,	4232, 7522,	8151 7606 7614	9 829	2321, 10, 1359,	3625, 990, 3902,	5790, 6204, 8911, 6047, 5233,	7508 9891 8590
8 581 8 629 8 641 8 677 8 689	941, 3262, 1533,	3182, 3796, 3181,	4392, 5447, 4845, 5496, 5127,	7688 5379 7144	p ^κ	y	y	y	y
8 713 8 737 8 761 8 821 8 893	1107, 3261, 170,	3157, 3729, 467,	6621, 5580, 5032, 8354, 7352,	7630 5500 8651	37^{2}	19, 356, 418, 936, 368,	473, 657, 1618,	,	2785
8 929 8 941 9 001 9 013 9 049	465, 396, 1448,	2615, 841, 3106,	6625, 6326, 8160, 5907, 6020,	8476 8605 7565		382,	3670,	5739,	9027
9 109 9 133 9 157 9 181 9 241	280, 2855, 2754,	4012, 4099, 3057,	4923, 5121, 5058, 6124, 7902,	8853 6302 6427					

p	y	y	y	y	p	y	y	y	y
10 009 10 069 10 093 10 141 10 177	1470, 536, 3003, 315, 1321,	4773, 49°3, 47°2, 998, 46°7,	5236, 5166, 5391, 9143, 5570,	9533 7090 9826	11 701 11 821 11 833 11 941 11 953	3787, 973, 96, 2568, 1502,	4233, 3098, 2835, 2962, 3605,	8998, 8979,	10848
10 273 10 321 10 333 10 357 10 369	1561, 2528, 3513, 918, 916,	2152, 4642, 3762, 3599, 3362,	8121, 5679, 6571, 6758, 7007,	6820 9439	12 037 12 049 12 073 12 097 12 109	602, 365, 940, 5057, 3286,	4019, 3004, 3121, 5167, 4750,	9045,	0.0
10 429 10 453 10 477 10 501 10 513	2879, 531, 3939, 3742, 1982,	3358, 2441, 4527, 5026, 2127,	7071, 8012, 5950, 5475, 8386,	9922 6538 6759	12 157 12 241 12 253 12 277 12 289	5191, 2446, 564, 20, 79,	5897, 3338, 2846, 4297, 1400,	9407,	9795 11689 12257
10 597 10 657 10 729 10 753 10 789		3°77, 2378, 4465, 3889, 4257,	6264, 6864,	10536 10234 10153	12 301 12 373 12 409 12 421 12 433	1249, 1312, 1506, 479, 1022,	4555, 3403, 752,		11061 10903 11942
10 837 10 861 10 909 10 957 10 993	137,	3841, 2496, 1330, 3679, 4121,	6996, 8365, 9579,	7251 10700 10179 10820	12 457 12 517 12 541 12 553 12 577	907, 3740, 1141, 86, 5113,	4807, 4642,	7650, 7875, 11288, 8320,	11550 8777
11 113 11 149 11 161 11 173 11 197	1586, 3128, 917, 251,	5052, 4687, 3128, 3205, 5139,	00,	9527 8021 10244 10922	12 589 12 601 12 613 12 637 12 697	782, 810, 74, 1289, 392,	5232, 5616, 1534, 5794,	7357; 6985,	11807 11791 12539
11 257 11 317 11 329 11 353 11 437	3254, 706, 2290, 3471,	3795, 4312, 2528, 3732, 4962,	7462, 7005, 8801, 7621,	8003 10611 9039 7882	12 721 12 757 12 781 12 829 12 841	1289, 2074, 637, 1573, 2450,	4441, 4361, 4053, 4608, 5823,	8280, 8396, 8728, 8221	, 11432 , 10683 , 12144 , 11256
11 497 11 593 11 617 11 677 11 689	403, 4413, 1082, 1445,	1996,	9500, 6205, 7011, 9681	, 11092 , 7186 , 10535 , 10232	12 853 12 889 5 12 973 2 13 009 13 033	384, 1723, 2439, 3017,	5 ² 55 2693	, 7598 , 10196 , 10255 , 7175	, 12469 , 11166 , 10534 , 9992 , 11065

p	y	y	y	y	p	y	y	y	y
13 093 13 177 13 249 13 297 13 309	1364, 1480, 3073, 1542, 954,	4001, 4234,	11334, 9248,	11697 10176 11755	14 737 14 797 14 821 14 869 14 929	4945, 5008, 4168, 419, 1807,		9517,	9789 10653 14450
13 381 13 417 13 441 13 477 13 513	2829, 2778, 4217, 714, 2603,	5482, 3801, 4883, 6663, 3229,	9616, 8558, 6814,	10639 9224 12763	15 013 15 061 15 073 15 121 15 193	3192, 3336, 4137, 557, 319,	6373, 3842, 5600, 5348, 6001,	9473, 9773,	11821 11725 10936 14564 14874
13 537 13 597 13 633 13 669 13 681	616, 4409, 2479, 309, 4259,	901, 6578, 4548, 5618, 5766,	9085, 8051,	9188 11154 13360	15 217 15 241 15 277 15 289 15 313	4356, 5100, 2943, 2134, 914,	6458, 3561, 7100,	10232, 8783, 11716, 8189, 14224,	10141 12334 13155
13 693 13 729 13 789 13 873 13 921	2041, 446, 561, 2421, 5334,	708,	13021, 10225,	13283 13228 11452	15 349 15 361 15 373 15 493 15 541	3253, 1500, 6219, 741, 6963,	7021, 2468, 6343, 6607, 7477,	12893, 9030,	9154 14752
13 933 14 029 14 149 14 173 14 197	43°5, 4299, 210, 5154, 139,	5023, 5391, 6805, 7081, 2247,	7092,	9730 13939 9019	15 601 15 649 15 661 15 733 15 817	726, 101, 3807, 5265, 1269,		9389,	
14 221 14 281 14 293 14 341 14 389	4001, 5830, 3522, 2556, 4009,		8282, 9273, 10363,	8451 10771 11785	15 877 15 889 15 901 15 913 15 937	3596, 6420, 4752, 6379, 4528,	3722, 7155, 7907, 6688, 6536,	9225,	9469 11149 9534 11409
14 401 14 437 14 449 14 461 14 533	5043, 3604, 128, 2264, 3815,	5500, 1919, 1	8937, 12530, 11427,	10833 14321 12197	15 973 16 033 16 057 16 069 16 141	1982, 1806, 4998, 1366, 1038,	7598,	9147, 11390, 8459, 13681, 8226,	14227 11059 14703
14 557 14 593 14 629 14 653 14 713	258, 3156, 2899, 4743, 2308,	4006, 1 6774, 4476, 1 5564, 3691, 1	7819, 10153, 9089,	11437 11730 9910	16 333	2667, 2829, 1564, 3251, 180,	4348, 7918, 5235,	12553, 11901, 8355, 11098, 11913,	13420 14709 13082

p	y	y	y	y	p	y	y	y	y
16 381 16 417 16 453 16 477 16 561	8036, 713, 800, 886, 6310,	4559, 1707,	11858, 14746, 11400,	15704 15653 15591		1805, 613, 1979, 4589, 4149,	4446, 8597, 7686,	11197, 13603, 9464, 10411, 13059,	17436 16082 13508
16 573 16 633 16 657 16 693 16 729	2810, 877, 208, 3254, 4942,	7207, 3924, 8090,	9426, 12733, 8603,	15756 16449 13439	18 133 18 169 18 181 18 217 18 229	1352, 2294, 2641, 1444, 1136,	2780, 3862, 7254,	14552, 15389, 14319, 10963, 10318,	15875 15540 16773
16 741 16 921 16 981 16 993 17 029	3983, 2403, 5350, 4236, 3315,	5584, 7843, 6936,	11337, 9138, 10057,	14518 11631 12757	18 253 18 289 18 301 18 313 18 397	2625, 57, 788, 1583, 2880,	2246, 7548, 5148,	13615, 16043, 10753, 13165, 9882,	18232 17513 16730
17 041 17 053 17 077 17 137 17 209	1343, 1286, 5980, 3423, 1337,	1578, 7559,	15475, 9518, 13242,	15767 11097 13714	18 433 18 457 18 481 18 493 18 517	375°, 3872,	9071, 4205, 5330,	13084, 9386, 14276, 13163, 12460,	14707 14609 13299
17 257 17 293 17 317 17 341 17 377	7402, 4006, 4784, 954, 3319,	5996, 5455, 3181,	11862, 14160,	13287 12533 16387	18 541 18 553 18 637 18 661 18 757	884, 618, 1316, 6152, 3637,	2852, 2450, 9285,	12899, 15701, 16187, 9376, 13084,	17935 17321 12509
17 389 17 401 17 449 17 497 17 509	5871, 5534, 3203, 1558, 220,	7078, 7240, 5020,	10323, 10209, 12477,	11867 14246 15939	18 793 18 913 18 973 19 009 19 069	2619, 8325, 367,	5250, 8633, 7096,	16692, 13663, 10340, 11913, 10122,	16294 10648 18642
17 569 17 581 17 713 17 737 17 749	1058, 2674, 5785, 2028, 1143,	5582, 7768, 6096,	11999, 9945, 11641,	14907 11928 15709	19 081 19 141 19 213 19 237 19 249	5018,	7883, 5279, 7211,	9931, 11258, 13934, 12026, 13175,	15154 17113 14219
17 761 17 881 17 929 17 977 17 989	7102, 2594, 2078, 6427, 2970,	6197, 3943, 8892,	11684, 13986, 9085,	15287 15851 11550	19 273 19 309 19 333 19 381 19 417	2511, 1992, 3052,	7213, 7114, 3626,	10349, 12096, 12219, 15755, 10955,	16798 17341 16329

p	y	y	y	y	p	y	y	y	y
19 429 19 441 19 477 19 489 19 501	1931, 3421, 3452, 562, 5598,	8081, 1	1360, 14935, 17443,	16020 16025 18927	21 121 21 157 21 169 21 193 21 277	8186,	10140, 9938, 10330,	14900, 11017, 11231, 10863, 16502,	12617 12983 20358
19 597 19 609 19 681 19 717 19 753	7318, 4921, 7042, 2820, 2278,		11504, 11400, 15431,	14688 12639 16897	21 313 21 397 21 433 21 481 21 493	2444, 1815, 1648, 1820, 8143,	10056, 2380, 9454,	18723, 11341, 19053, 12027, 11603,	19582 19785 19661
19 777 19 801 19 813 19 861 19 993	451, 807, 1703, 1745, 6811,	9668, 1	18795, 10145, 14523,	18994 18110 18116	21 529 21 577 21 589	8259, 2234, 6703, 5408, 4417,	5734, 7452, 6527,	12930, 15795, 14125, 15062, 16290,	19295 14874 16181
20 029 20 089 20 101 20 113 20 149	82, 4381, 7245, 121, 1388,	9526, 1 7644, 1 7910, 1 1496, 1 7447, 1	12445, 12191, 18617,	15708 12856 19992	$21\ 649$ $21\ 661$	3119, 306, 1667, 1748,	10683, 6497, 9857,	13852, 10966, 15164, 11816, 19692;	21343 19994 19925
20 161 20 173 20 233 20 269 20 341	3364, 926, 8140, 4781, 1608,	3506, 1 7603, 1 8906, 1 5647, 1 5022, 1	12570, 11327, 14622,	19247 12093 15488		607, 8192, 2793, 2640, 3162,	8401, 5875, 3003,	19948, 13440, 16062, 18958, 17983,	13649 19144 19321
20 353 20 389 20 509 20 521 20 533	1428, 754, 397, 8017, 5445,	8908, 1 1974, 1 2583, 1 8470, 1 5796, 1	18415, 17926, 12051,	19635 20112 12504	$22\ 189$		10720, 9651, 8788,	11397, 11409, 12502, 13401, 14761,	21037 15152 19808
20 593 20 641 20 749 20 773 20 809	12, 4037, 3021, 7811, 4451,	1716, 1 9551, 1 5474, 1 8973, 1 9944, 1	15275, 1800,	16604 17728 12962	$\begin{array}{c} 22\ 381 \\ 22\ 441 \\ 22\ 453 \end{array}$	5212, 8275, 7156, 4306, 10058,	9185, 8326, 5595,	14545, 13196, 14115, 16858, 12293,	14106 15285 18147
20 857 20 929 21 001 21 013 21 061	2161, 2334, 2138, 5187, 4363,		6580, 1581, 15621,	18595 18863 15826	22573	2726, 7621, 7787, 3146, 6360,	8640, 8651, 6622,	13359, 13933, 13970, 16047, 11955,	14952 14834 19523

p	y	y	y	y	p	y	y	y	y
22 741	1497,		13915,			2.7	0 - 1 -	13584,	0001
22 777	586,		17452,			578,		19073,	
22 861	4132,		16172,			4288,		19893,	
22 921	1628,		14037,			238,		21608,	
22 993	478,		21117,		24 421	8152,	8373,	16048,	10209
23 017	4353,	6747,	16270,	18664	$24 \ 469$	1390,	1954,	22515,	23079
23 029	3623,		17410,			2529,		17521,	
$23\ 041$	1398,		15509,					12845,	
23 053			12877,			2115,		16091,	
23 173	2841,	11248,	11925,	20332	24 709	433,	11470,	13239,	24276
23 197	4344,	11465,	11732,	18853	24733	2299,	9564,	15169,	22434
23 209	5386,		16086,			5683,		18746,	
23 269	1158,		21561,			651,		22089,	
23 293	416,		15510,			2973,		16686,	
23 473	162,	2753,	20720,	23311	24877	8000,	11857,	13020,	16877
23 497	5426,	9999,	13498,	18071	24 889	3911,	11054,	13835,	20978
23 509			12663,		25 033	6690,		16191,	
23 557	782,		19671,		25 057	600,		16997,	
23 581	4206,		14975,		25 117	2965,		16451,	
23 593	10423,	11191,	12402,	13170	25 15 3	10691,		12900,	
23 629	5084,	5805.	17824,	18545	25 189	7979,	11327.	13862,	17210
23 677			13031,			4186,		16477,	
23 689			14199,			3760,		18415,	
23 761			13747,					19477,	
23 773			14630,			6347,		15495,	
23 833	931,	7087.	15846,	22002	25 357	2029,	0223.	16134,	22228
23 857					25 453			16438,	
23 869					$25\ 537$	344,		24275,	- •
23 893		2847,	21046,	22139	25 561	8083,		16112,	
23 917	3154,	7166,	16751,	20763	25 609			14821,	
23 929	213,	2022	10007	22716	25 621	10404.	12581.	13040,	15127
23 977	37	3052	20025	21806	$25\ 633$	7586,		17689,	
24 001	6914,		14243,			776,		22516,	
24 049			18602,					19848,	
24 061	-347		17752,			673,		22660,	
24 097					1				_
24 1097	0	8757	17465,	20010	25741 25801			20112, 15098,	
24 109	, ,				25849			18365,	
24 133	00,0,	8461	15672	17202	25849 25873	894,		18551,	
24 169		4430	10720	21757	25 933	4909,		20085,	
1 100	2412,	4439	19/30,	21/5/	1-000	4909,	5040,	20005,	21024

p	y	y	y	y	p	y	y	y	y
25 969 25 981 26 017 26 029 26 041	4918, 10582, 6757,	7297, 10497, 12266, 11360, 6770,	15484, 13751, 14669,	21063 15435 19272	27 793 27 817 27 901	3897, 9873, 10731,	13554, 8273, 11346, 13944, 12565,	19520, 16471, 13957,	23896 17944 17170
26 053 26 113 26 161 26 209 26 293	2009, 1227, 284,	2324, 646,	19588,	24104 24934 25925	$28\ 069$ $28\ 081$	6409, 3528, 6724,	7883, 10546, 12133, 10403, 9015,	17511, 15936, 17678,	21648 24541 21357
26 317 26 437 26 449 26 497 26 557	2566, 7124,	4172,	18873, 14859,	24593 23883 19373	$28\ 309$ $28\ 393$		9868,		25536 28380 25574
26 641 26 701 26 713 26 737 26 821	6459, 622, 7772,	10163, 10773, 10522, 12966, 7613,	15928, 16191, 13771,	20242 26091 18965	28 549 28 573	1709, 4484,	9875, 12044,	21624, 18674,	26828 24065 28006
26 833 26 881 26 893 26 953 27 061	12212, 12622, 7632,	8992, 12888, 12786, 13141, 12142,	13993, 14107, 13812,	14669 14271 19321	$28 669 \\ 28 729$	7254, 9183, 5118,	13534, 10457, 11442, 9436, 14303,	18200, 17227, 19293,	21403 19486 23611
27 073 27 109 27 241 27 253 27 277	629, 3083, 7202,	13077, 3060, 9852, 13460, 13411,	24049, 17389, 13793,	26480 24158 20051	28813	9970, 10759, 9897, 7675,	12096, 12169, 10434, 11541, 11051,	16693, 16644, 18403, 17368,	18819 18054 18940 21234
27 337 27 361 27 397 27 409 27 457	3048, 4661, 788, 3667,	3453, 7643,	23884, 19718, 20061, 15390,	24289 22700 26609 23742	29 017 29 077 29 101	1262, 2789, 2991, 2078,	2178, 6617,	26755, 22400, 23108, 25866,	27671 26228 26086 27023
27 481 27 529 27 541 27 673 27 697	7704, 3169,	11350, 11193, 9431,	16348, 18242,	25300 19837 24504	29 209	11138, 615, 4320,	10249, 12795, 8600, 13896, 12011,	16414, 20621, 15373,	18071 28606 24949

p	y	y	y	y	p	y	y	y	y
29 401 29 437 29 473 29 569 29 581	5 ² 75, 5830,	12045,	15776, 20257, 17524,	24162 23643 18144	31 081 31 153	245, 306, 400,	4567, 8450, 6781,	29448, 26514, 22703, 24396, 17151,	30836 30847 30777
29 629 29 641 29 761 29 833 29 881	4258, 8652, 11176,	9943, 12036, 11396, 14097, 9541,	18365, 15736,	25383 21109 18657	31 249 31 321 31 333	6131,	14888, 11777, 9495,	17103, 16361, 19544, 21838, 26486,	25118 28845 25073
29 917 29 989 30 013 30 097 30 109	6254, 9686, 1454,	11460, 11916, 9931, 3788, 12597,	18073, 20082, 26309,	² 3735 ² 0327 ² 8643	31 477 31 489 31 513	5294, 928, 7197,	8116, 12996, 11761,	17426, 23361, 18493, 19752, 18103,	26183 30561 24316
30 133 30 169 30 181 30 241 30 253	12197, 10996,	7017, 14455, 14440, 11622, 4726,	15714, 15741,	17972 19185 26429	31 729 31 741 31 849	9444, 8242,	11171, 11434, 7601,	19241, 20558, 20307, 24248, 28510,	22285 23499 27529
30 313 30 469 30 493 30 517 30 529	1867, 6634,	11437, 2807, 13031, 14760, 8461,	27662, 17462,	28602 23859 20814	31981 32029 32077	3281, 34°5, 2175,	14621, 12520, 7551,	16322, 17360, 19509, 24526, 20247,	28700 28624 29902
30 553 30 577 30 637 30 649 30 661	3898, 401, 5189,	7874, 11586, 10085, 12386, 14762,	18991, 20552, 18263,	26679 30236 25460	32 233 32 257 32 341	8758, 4824,	10996, 10206, 14890,	24960, 21237, 22051, 17451, 16389,	24591 23499 27517
30 697 30 757 30 781 30 817 30 829	5695, 1920, 3734,	14318, 13842, 10597, 7370, 8872,	16915, 20184, 23447,	25062 28861 27083	32 401 32 413 32 497	3106, 2784, 3912,	3286, 3225, 5574,	21997, 29115, 29188, 26923, 22335,	29295 29629 28585
30 841 30 853 30 937 30 949 31 033	9245, 5976, 4274,	5014, 10756, 10566, 14649, 10156,	20097, 20371, 16300,	21608 24961 26675	$32 653 \\ 32 713 \\ 32 749$	11317, 11803, 410,	15924, 12777, 16055,	18942, 16729, 19936, 16694, 26061,	21336 20910 32339

p	\overline{y}	y	\overline{y}	y	\overline{y}	\overline{y}	y	y
73	7	17,	21,	30,	43,	52,	56,	66
	7,						88,	- 1
97 193	4,	9,	24, 16,	43,	54, 138,	73,	181,	93 186
241	7,	12,		55,	121,	177, 128,		
313	2,	32,	113,		168,		209, 182,	239
919	43,	131,	136,	145,	100,	177,	102,	270
337	54,	96,	156,	165,	172,	181,	241,	283
409	7,	38,	117,	183,	226,	292,	371,	402
433	8,	54,	133,	140,	293,	300,	379,	425
457	70,	III,	139,	217,	240,	318,	346,	387
577	9,	64,	195,	216,	361,	382,	513,	568
601	132,	214,	273,	295,	306,	328,	387,	469
673	4,	168,	232,	322,	351,	441,	505,	669
769	9,	164,	171,	211,	558,	598,	605,	760
937	23,	90,	163,	177,	760,	774,	847,	914
1 009	169,	203,	361,	450,	559,	648,	806,	840
1 033	135,	176,	407,	500,	533,	626,	857,	
1 129	206,	231,	391,	422,	707,	738,	898,	923
1 153	324,	393,	399,	516,	637,	754,	760,	
1 201	90,	253,	387,	394,	807,	814,	048.	IIII
1 249	137,	209,	251,	547,	702,	998.	1040,	1112
1 297	61,							
		277,	398, 406,	404,	893,	099,	1020,	1230
1 321 1 489	17,	218,		544,	777,	915,	1103,	1304
	67,	185,	200,		1159,	1209,	1304,	1422
1 609	182,	255,	448,	610,		1101,	1354,	1427
1 657	160,	399,	652,	756,	901,		1258,	- 1
1 753	84,	290,	405,	480,	1273,	1348,	1463,	1669
1 777	121,	302,	406,	514,	1263,	1371,	1475,	1656
1 801	117,	347,	431,	846,	955,	1370,	1454,	1684
1 873	85,	410,	617,	836,	1037,	1256,	1463,	1788
1 993	463,	500,	570,	947,	1046,	1423,	1493,	1530
2 017	122,	248,	300,	316,	1701,	1717.	1760,	1805
2 089	358,	447,	531,		1159,			
2 113	181,	537,		1016.	1097,	1200.	1576.	1032
2 137	105,	160,	346,	075	1162,	1701.	1077	2032
2 161	157,	178,	234,	602.	1469,	1927.	1983.	2004
2 281	390,	696,	817,	099,	1382,	1404,	1505,	1891
2 377	134,	172,	408,	843,	1534,	1909,	2205,	2243
2 473	444,	498,	997,	1018,	1455,	1470,	1975,	2029
2 521	297,	908,	919,	1078,	1443,	1002,	1013,	2224
2 593	143,	272,	768,	969,	1624,	1825,	2321,	2450
1								

p	y	y	y	y	y	y	y	y
2 617			755,	1121,	1496,	1862,	1961,	2104
2 689			521,	713,	1976,	2168,	2529,	2557
2 713		591,	608,	1065,	1648,	2105,	2122,	2182
2 833			1262,	1402,	1431,	1571,	1852,	2540
2 857	"				1785,			
2 953		916,	1138,	1372,	1581,	1815,	2037,	2077
3 001		853,	1276,	1437,	1564,	1725,	2148,	2614
3 049		292,	449,	1495,	1554,	2600,	2757,	2894
3 121			1143,	1428,	1693,	1978,	2665,	2909
3 169	0.				2169,			
3 217		762,	1032,	1085,	2132,	2185,	2455,	2765
3 313		719,	1089,	1539,	1774,	2224,	2594,	3097
3 361			814,	926,	2435,	2547,	3233,	3263
3,433		543,	1334,	1552,	1881,	2099,	2890,	2953
3 457	357,	395,	1164,	1346,	2111,	2293,	3062,	3100
3 529		775,	1358,	1567,	1962,	2171,	2754,	3274
3 673		821,	1794,	1831,	1842,	1879,	2852,	3005
3 697	973,	1243,	1502,	1839,	1858,	2195,	2454,	2724
3 769	917,	1326,	1418,	1623,	2146,	2351,	2443,	2852
3 793	306,	533,	610,	827,	2966,	3183,	3260,	3487
3 889	560,	1152,	1455,	1882,	2007,	2434,	2737,	3329
4057	1013,	1307,	1622,	1760,	2297,	2435,	2750,	3044
4 129	704,	1657,	1682,	1695,	2434,	2447,	2472,	3425
4 153	1068,	1172,	1396,	1995,	2158,	2757,	2981,	3085
4177	154,	631,	1549,	1980,	2197,	2628,	3546,	4023
4 201	835,	1454,	1561,	1717,	2484,	2640,	2747,	3366
4273	258,	899,	1944,	2004,	2269,	2329,	3374,	4015
4297	19,	1027,	1205,	1357,	2940,	3092,	3270,	4278
4 441	560,	1154,	1594,	1751,	2690,	2847,	3287,	3881
4 513	211,	385,	471,	1993,	2520,	4042,	4128, .	4302
4561	1306,	1596,	1739,	1912,	2649,	2822,	2965,	3255
4657	129,	173,	361,	996,	3661,	4296,	4484,	4528
4 729	79,	137,	932,	2155,	2574,	3797,	4592,	4650
4 801	309,	1437,	1880,	1891,	2910,	2921,	3364,	4492
4 969	132,	293,	2069, 2	2221,	2748,	2900, 4	4676, 4	4837
4 993	485,	803,	1735, 2	2049,	2944,	3258, 4	1190, 4	4508
5 113	1021,	1873,	1918, :	1930,	3183,	3195, 3	3240, 4	4092
5 209	322,	1320,	1614, 1	1828, ;	3381, 3	3595, 3	3889, 2	4887
5 233	124,	211,	820, 2	2023,	3210, 4	1413, 5	5022, 5	5109
5281	97,	490,	1215, 1	1430,	3851, 4	1066,	1791,	5184
1								1

p	y	y	y	y	y	y	y	y
5 449	543,	621,	1518,	2007,	3442,	3931,	4828,	4906
5 521	510,	1613,	1841,	2759,	2762,	3680,	3908,	5011
5 569							4416,	
5 641	526,	1401,	1984,	2287,	3354	3657,	4240,	5115
5 689	70,	766,	894,	1270,	4419,	4795,	4923,	5619
5 737	35,						5377,	
5 857	74,	176,	2137,	2629,	3228,	3720,	5681,	5783
5 881							4067,	
5 953							4398,	
6 073		1031,	1747,	3000,	3073,	4326,	5042,	5643
6 121	758,	806,	1074,	1329,	4792,	5047,	5315,	5363
6 217	190,	1125,	1407,	3056,	3161,	4810,	5092,	6027
6 337	333,	1903,	2241,	2873,	3464,	4096,	4434,	6004
6 361	1149,	1305,	1456,	1823,	4538,	4905,	5056,	5212
6 481	3,	243,	2160,	2187,	4294,	4321,	6238,	6478
6 529	72,	2267,	2779,	3167.	3362.	3750.	4262,	6457
6 553	511,	2161,	2257,	2902,	3651,	4296.	4392,	6042
6 577	1540.	1503.	1700.	227 I.	1306.	1877.	4984,	5037
6 673	683,	850.	2820.	2804	2770	2852	5823,	5000
6 793	943,						4892,	
6 841	,							
	149,	1050,	1091,	2090,	4151,	5750,	5785,	66.56
6 961	355,	1001,	3170,	3255,	3700,	3783,	5960,	0000
7 057							6397,	
7 129	429,	479,	505,	1146,	5983,	6564,	6650,	6700
7 177							6118,	
7 297	736,	2533,	2548,	2682,	4615,	4749,	4764,	6561
7 321							6018,	
7 369	1423,	1588,	2408,	2594,	4775,	4961,	5781,	5946
7 393	306,	604,	805,	2048,	5345,	6588,	6789,	7087
7 417	1131,	2658,	3329,	3397,	4020,	4088,	4759,	6286
7 489							5558,	
7 537							6172,	
7 561							6343,	
7 681	144,	1357,	2507,	3249,	4432,	5174,	6324,	7537
7 753	375,	1716,	3247,	3818,	3935,	4506,	6037,	7378
7 873	233,	642,	1932,	2009,	5864,	5941,	7231,	7640
7 993	230,	2273,	2771,	3927,	4066,	5222,	5720,	7763
8 017	570,	686,	783,	1083,	6934,	7234,	7331,	7447
8 089	518,	1309,	2764,	3924,	4165,	5325,	6780,	7571
8 161	496,	1596,	2260,	4048,	4113,	5901,	6565,	7665
1		,		, ,	, 3,	,	0 0,	. 4

p	y	y	y	y	y	y	y	y
8 209 8 233	815,	1637, 1091,	2165,	3567,	4666,	6068,	7142,	7418
8 329 8 353 8 377	1372,	1272, 2559, 1476,	4073,	4090,	4263,	4280,	5794,	6981
8 521 8 641 8 689	968, 236,	746, 1296, 405,	2887, 2484,	3651, 2606,	4990, 6083,	5754, 6205,	7345, 8284,	7673 8453
8 713 8 737 8 761	865,	1886, 1346, 1436,	3515,	4005,	4732,	5222,	7391,	7872
8 929 9 001 9 049	48, 29,	186, 131,	2905, 2130,	3630, 2483,	5299, 6518,	6024, 6871,	8743, 8870,	8881 8972
9 241 9 337	1908,	2215, 2534, 1763,	3366,	4296,	4945,	5875,	6707,	7333
9 433 9 601 9 649	1540,	1003, 1895, 3083,	1905,	2500,	7101,	7696,	7706,	8061
9 697 9 721	624, 917,	1168, 2417,	1868, 3634,	4460, 4807,	5 ² 37, 4914,	7829, 6087,	8 ₅ 29,	9073 8804
9 769 9 817		1279, 2908,						

p^{κ}	y	y	y	y	y	y	y	y
73^{2} 97^{2}	786,	1417,	1818,	2430,	2899,	3511,	3912,	4543
	412,	2809,	2822,	4031,	5378,	6587,	6600,	8997

p	y	y	y	y	y	y	y	y
10 009	3107,	3186,	3196,	3899,	6110,	6813,	6823,	6902
10 177	1460,	2665,	4193,	4970,	5207,	5984,	7512,	8717
10 273	871,	IIII,	2737,	4706,	5567,	7536,	9162,	9402
10 321	2523,	2569,	2803,	3255,	7066,	7518,	7752,	7798
10 369	1339,	1572,	4465,	4554,	5815,	5904,		9030
10 513	138,	838,	1016,	4646,	5867,	9497,		10375
10 657	11,	1196,	4482,	4844,		6175,		10646
10 729	2669,	2834,	3741,	4322,		6988,	7895,	8060
10 753	954,	1021,	2491,	2812,	7941,	8262,	, , ,	9799
10 993	831,	2286,	5265,	5333,	5660,	5728,	8707,	10162
11 113	2249,	2611,	4103,	4462,	6651,	7010,		8864
11 161	257,	304,	1592,	1970,	9191,	9569,	10857,	
11 257	544,	1622,	2089,	4449,	6808,	9168,		10713
11 329	415,	600,	3191,	4477,	6852,	8138,	10729,	10914
11 353	3 89,	536,	788,	2224,	9129,	10565,	10817,	10964
11 497	2023,	3638,	4484,	5502,	5995,	7013,	7859,	9474
11 593	941,	1628,	3967,	4237,	7356,	7626,	9965,	10652
11 617	1995,	2172,	2249,	5465,	6152,	9368,	9445,	9622
11 689	2545,	3473,	3746,	5585,	6104,	7943,	8216,	9144
11 833	1376,	3760,	3930,	5863,	5970,	7903,	8073,	10457
11 953	1295,	1899,	3249,	4469,	7484,		10054,	
$ 12\ 049 $	801,	3189,	5264,	5569,	6480,		8860,	
12073	145,	2347,	3179,	3497,	8576,	8894,		
12 097	474,	1812,	4721,	5381,	6716,		10285,	
$12\ 241$	472,	1143,	3553,	4830,	7411,	8688,	11098,	11769
12 289	117,	997,	3046,	5029,	7260,		11292,	
12 409	189,	1328,	2101,		10101,	10308,	11081,	12220
12 433	939,	1589,	3906,	5704,	6729,		10844,	
12 457	1429,	1669,	5396,	5971,	6486,	7061,	10788,	
12 553	1045,	2830,	3828,	4829,	7724,	8725,	9723,	11508
12 577	704,	4884,	5163,	5843,	6734,	7414,		
12 601	345,	806,	2228,		10209,			
12 697	647,	3098,	4180,	4496,	8201,		9599,	
12 721	1011,	1391,	4975,	5637,	7084,		11330,	
12 841	1481,	1999,	5289,	6231,	6610,		10842,	
12 889	2290,	3863,	5225,	6028,	6861,	7664,	9026,	
13 009	2256,	3604,	5448,	6249,	6760,	7561,		
13 033	803,	1255,	3292,	3311,	9722,		11778,	
13 177	890,	2088,	6322,	6355,	6822,	6855,	11089,	12287
$13\ 249$	1524,	1635,	3371,	6355,	6894,	9878,	11614,	11725

p	y	<i>y</i>	<i>y</i>	y	<i>y</i>	<i>y</i>	<i>y</i>	<i>y</i>
13 297	1252,	1574,	4535,	6243,	7054,		11723,	
13 417	939,	5644,	5861,	6380,	7037,			12478
13 441	2027,	4648,	5265,	5665,	7776,		8793,	11414
13 513	482,	2383,	4446,	5328,	8185,		11130,	13031
13 537	1014,	4980,	6233,	6635,	6902,	7304,	8557,	12523
13 633	1068,	1146,	2770,	5270,			12487,	
13 681	362,	519,	3585,	4195,			13162,	
13 729	1401,	3420,	3621,				10309,	
13 873	932,	1581,	4927,	6274,	7599,	8946,	12292,	12941
13 921	2843,	3365,	4593,	4741,	9180,		10556,	
14 281	1547,	1560,	4385,	6582,	7699,	9896,	12721,	12734
14 401	229,	817,	1322,			13079,	13584,	14172
14 449	1360,	1882,	4737,	5429,	9020,		12567,	
14 593	5287,	5704,	5938,	5973,	8620,		8889,	
14 713	2752,	4400,	4651,	5982,			10313,	
14 737	261,	548,	1748,	6211,	8526,	12989,	14189,	14476
14929	361,	4549,	5475,	5778,	9151,	9454,	10380,	14568
15 073	1230,	1818,	6164,	6525,	8548,	8909,	13255,	13843
15 121	706,	4466,	4562,	7012,	8109,		10655,	
15 193	2705,	3106,	5506,	5974,	9219,	9687,	12087,	12488
15 217	66,	3910,	4137,	5764,	9453,	11080,	11307,	15151
15 241	1023,	3182,	4488,	7181,			12059,	
15 289	1385,	2140,	4651,	4813,	10476,	10638,	13149,	13904
15 313	33,	464,	4635,	5775,	9538,	10678,	14849,	15280
15 361	1240,	3069,	3481,	4800,	10561,	11880,	12292,	14121
15 601	323,	483,	590,	7113,	8488,	15011,	15118,	15278
15 649	1251,	6805,	7516,	7685,	7964,	8133,	8844,	14398
15 817	1285,	1514,	6124,	6723,	9094,	9693,	14303,	14532
15 889	2731,	3165,	5271,	6481,	9408,	10618,	12724,	13158
15 913	684,	4230,	5278,	7561,	8352,	10635,	11683,	15229
15 937	1021,	1358,	2989,		12258,	12948,	14579,	14916
16 033	3219,	3404,	6465,	6985,	9048,	9568,	12629,	12814
16 057	744,	4247,	5864,	6712,			11810,	
16 249	2989,	3028,	3373,	7043,			13221,	
16 273	4291,	4762,	5266,	6648,			11511,	
16 369	2067,	5195,	5221,	6747,	9622,	11148,	11174,	14302
16 417	2183,	3136,	5439,	6731,	9686,	10978,	13281,	14234
16 561	3514,	3840,	5171,				12721,	
16 633	2917,	3273,	4171,				13360,	
16 657	2582,	3224,	4032,	8313,	8344,	12625,	13433,	14075

17 377 1053, 1352, 2969, 3482, 13895, 14408, 16025, 16324 17 401 5312, 5425, 5857, 6319, 11082, 11544, 11976, 12089 17 449 2460, 3643, 4852, 5029, 12420, 12597, 13806, 14989 17 497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 569 2595, 4746, 4893, 6061, 11508, 12676, 12823, 14974 17 713 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 17 737 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178,<	p	y	y	y	y	y	y	y	y
16 993 3192, 5116, 7283, 8493, 8500, 9710, 11877, 13801 17 041 201, 2713, 3014, 6372, 10669, 14027, 14328, 16840 17 137 3942, 5985, 6647, 7940, 9197, 10490, 11152, 13195 17 209 942, 3197, 5615, 7328, 9881, 11594, 14012, 16267 17 377 1053, 1352, 2969, 3482, 13895, 14408, 16025, 16324 17 401 5312, 5425, 5857, 6319, 11082, 11544, 11976, 12089 17 449 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 569 2595, 4746, 4893, 6661, 11508, 12676, 12823, 14974 17 713 1478, 2069, 3080, 631, 11412, 14633, 15644, 16235 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 1688 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 1308 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7059, 7939, 10110, 10999, 13673, 16923 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>10259,</th><th>12124,</th><th>15713</th></t<>							10259,	12124,	15713
17 041 201, 2713, 3014, 6372, 10669, 14027, 14328, 16840 17 137 3942, 5985, 6647, 7940, 9197, 10490, 11152, 13195 17 209 942, 3197, 5615, 7328, 9881, 11594, 14012, 16267 17 257 1053, 1352, 2969, 3482, 13895, 14408, 16025, 16324 17 401 5312, 5425, 5857, 6319, 11082, 11544, 11976, 12089 17 449 2460, 3643, 4852, 5029, 12420, 12597, 13806, 14989 17 497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 569 2595, 4746, 4893, 6061, 11508, 12676, 12823, 14974 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 19 609 1266, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 481 343, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 249 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 249 1949, 2220, 2665, 9269, 9980, 16584, 17029, 18050 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 441 5663, 8476, 9554, 9567, 9865, 9887, 10965, 1378 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 1378 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419	16 921	1804,	3236,	7565,	8144,	8777,			
17 137 3942, 5985, 6647, 7940, 9197, 10490, 11152, 13195 17 209 942, 3197, 5615, 7328, 9881, 11594, 14012, 16267 17 257 3003, 6735, 7310, 7925, 9332, 9947, 10522, 14254 17 377 1053, 1352, 2969, 3482, 13895, 14408, 16025, 16324 17 401 5312, 5425, 5857, 6319, 11082, 11544, 11976, 12089 17 449 2460, 3643, 4852, 5029, 12420, 12597, 13806, 14989 17 497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 497 4577, 5355, 6708, 6301, 11412, 14633, 15644, 16235 17 737 61 4849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 909 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1994, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9569, 9865, 9887, 10965, 13778 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419		3192,	5116,		8493,	8500,	9710,	11877,	13801
17 209				3014,					
17 257 3003, 6735, 7310, 7925, 9332, 9947, 10522, 14254 17 377 1053, 1352, 2969, 3482, 13895, 14408, 16025, 16324 17 449 2460, 3643, 4852, 5029, 12420, 12597, 13806, 14989 17 4497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 569 2595, 4746, 4893, 6061, 11508, 12676, 12823, 14974 17 713 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 1308 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 7 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 1821 2217, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 481 3847, 5658, 5760, 6843, 11638, 12721, 122823, 14634 18 533 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 913	17 137	3942,	5985,		• > • /			_	
17 377 1053, 1352, 2969, 3482, 13895, 14408, 16025, 16324 17 401 5312, 5425, 5857, 6319, 11082, 11544, 11976, 12089 17 449 2460, 3643, 4852, 5029, 12420, 12597, 13806, 14989 17 497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 569 2595, 4746, 4893, 6061, 11508, 12676, 12823, 14974 17 713 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 17 737 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 781 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 049 1221, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 21 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 481 367, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866									
17 401 5312, 5425, 5857, 6319, 11082, 11544, 11976, 12089 17 449 2460, 3643, 4852, 5029, 12420, 12597, 13806, 14989 17 497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 569 2595, 4746, 4893, 6061, 11508, 12676, 12823, 14974 17 713 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 17 737 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11667, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 447 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419					7925,				
17 449 2460, 3643, 4852, 5029, 12420, 12597, 13806, 14989 17 497 4577, 5355, 6708, 7810, 9687, 10789, 12142, 12920 17 569 2595, 4746, 4893, 6061, 11508, 12676, 12823, 14974 17 713 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 17 737 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 <t< th=""><th></th><th></th><th></th><th>2969,</th><th></th><th></th><th></th><th></th><th></th></t<>				2969,					
17 497				5857,					
17 569 2595, 4746, 4893, 6061, 11508, 12676, 12823, 14974 17 713 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 17 737 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 483 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 532 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 <td< th=""><th>17 449</th><th></th><th>3643,</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	17 449		3643,						
17 713 1478, 2069, 3080, 6301, 11412, 14633, 15644, 16235 17 737 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 483 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 533 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 <td< th=""><th></th><th>4577,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		4577,							
17 737 654, 2103, 4041, 8004, 9733, 13696, 15634, 17083 17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 1869 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
17 761 849, 4348, 6883, 8619, 9142, 10878, 13413, 16912 17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 1308 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>11412,</th><th>14633,</th><th>15644,</th><th>16235</th></td<>						11412,	14633,	15644,	16235
17 881 993, 2170, 2557, 3535, 14346, 15324, 15711, 16888 17 929 4841, 6322, 6752, 7751, 10178, 11177, 11607, 13088 17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419		654,			8004,	9733,	13696,	15634,	17083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 761	849,	4348,	6883,	8619,	9142,	10878,	13413,	16912
17 977 638, 821, 7636, 8671, 9306, 10341, 17156, 17339 18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15732, 15992 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, <th>17 881</th> <th></th> <th>2170,</th> <th></th> <th>3535,</th> <th>14346,</th> <th>15324,</th> <th>15711,</th> <th>16888</th>	17 881		2170,		3535,	14346,	15324,	15711,	16888
18 049 1126, 4376, 7050, 7939, 10110, 10999, 13673, 16923 18 097 7424, 7915, 8680, 8938, 9159, 9417, 10182, 10673 18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 441 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419 </th <th>17 929</th> <th>4841,</th> <th>6322,</th> <th>6752,</th> <th>7751,</th> <th>10178,</th> <th>11177,</th> <th>11607,</th> <th>13088</th>	17 929	4841,	6322,	6752,	7751,	10178,	11177,	11607,	13088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 977	638,	821,	7636,	8671,	9306,	10341,	17156,	17339
18 121 2211, 2483, 6696, 7028, 11093, 11425, 15638, 15910 18 169 2177, 2437, 3397, 4220, 13949, 14772, 15732, 15992 18 217 38, 2176, 2397, 8782, 9435, 15820, 16041, 18179 18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419	18 049	1126,	4376,	7050,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 097	7424,	7915,	8680,	8938,	9159,	9417,	10182,	10673
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2211,		6696,					
18 289 541, 1965, 2271, 8012, 10277, 16018, 16324, 17748 18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 441 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419				3397,					
18 313 280, 1559, 3728, 4358, 13955, 14585, 16754, 18033 18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892,				2397,					
18 433 2426, 2776, 8016, 8174, 10259, 10417, 15657, 16007 18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 441 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419		541,			8012,	10277,	16018,	16324,	17748
18 457 1774, 4429, 5430, 7980, 10477, 13027, 14028, 16683 18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 441 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419	18 313	280,	1559,	3728,	4358,	13955,	14585,	16754,	18033
18 481 3847, 5658, 5760, 6843, 11638, 12721, 12823, 14634 18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 441 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419		2426,	2776,	8016,					
18 553 2687, 5012, 8414, 9204, 9349, 10139, 13541, 15866 18 793 1532, 2418, 2711, 7640, 11153, 16082, 16375, 17261 18 913 371, 4210, 6797, 7086, 11827, 12116, 14703, 18542 19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419	18457								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
18 913									
19 009 1948, 3961, 7426, 9003, 10006, 11583, 15048, 17061 19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419	18 793	1532,	2418,	2711,	7640,	11153,	16082,	16375,	17261
19 081 2403, 4679, 4914, 6138, 12943, 14167, 14402, 16678 19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419				6797,	7086,	11827,	12116,	14703,	18542
19 249 1199, 2220, 2665, 9269, 9980, 16584, 17029, 18050 19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419		1948,		7426,					
19 273 628, 5841, 6721, 8381, 10892, 12552, 13432, 18645 19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419			4679,		-				
19 417 385, 4186, 4248, 5709, 13708, 15169, 15231, 19032 19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419				2665,		9980,	16584,	17029,	18050
19 441 5663, 8476, 9554, 9576, 9865, 9887, 10965, 13778 19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419	19 273	628,	5841,	6721,	8381,	10892,	12552,	13432,	18645
19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419					5709,	13708,	15169,	15231,	19032
19 489 196, 1471, 8253, 8360, 11129, 11236, 18018, 19293 19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419	1		8476,		9576,	9865,	9887,	10965,	13778
19 609 2190, 4155, 5432, 7960, 11649, 14177, 15454, 17419 19 681 91, 2958, 7738, 8651, 11030, 11943, 16723, 19590				8253,	8360,	11129,	11236,	18018,	19293
19 681 91, 2958, 7738, 8651, 11030, 11943, 16723, 19590					7960,	11649,	14177,	15454,	17419
	19 681	91,	2958,	7738,	8651,	11030,	11943,	16723,	19590

19 753 805, 3239, 6387, 8375, 11378, 13366, 16514, 19 777 19 801 436, 1134, 2332, 2417, 17360, 17445, 18643, 19 801 19 980 821, 4971, 5716, 8827, 10974, 14085, 14830, 19 993 20 089 1962, 2570, 6385, 8797, 11292, 13704, 17519, 10 10 10 10 10 10 10 10 10 10 10 10 10	, 19341 , 18980 , 19070 , 18127 , 20102 , 20103 , 19928 , 14738
19 801 821, 4971, 5716, 8827, 10974, 14085, 14830, 19 993 923, 2974, 3005, 8751, 11242, 16988, 17019, 20 089 1962, 2570, 6385, 8797, 11292, 13704, 17519, 20 113 11, 147, 2326, 3657, 16456, 17787, 19966, 20 161 58, 1738, 4748, 4760, 15401, 15413, 18423, 20 233 305, 5108, 7759, 9166, 11067, 12474, 15125, 20 353 5615, 9254, 9756, 10116, 10237, 10597, 11099,	, 18980 , 19070 , 18127 , 20102 , 20103 , 19928
20 089 1962, 2570, 6385, 8797, 11292, 13704, 17519, 20 113 11, 147, 2326, 3657, 16456, 17787, 19966, 20 161 58, 1738, 4748, 4760, 15401, 15413, 18423, 20 233 305, 5108, 7759, 9166, 11067, 12474, 15125, 20 353 5615, 9254, 9756, 10116, 10237, 10597, 11099,	, 18127 , 20102 , 20103 , 19928 , 14738
20 161 58, 1738, 4748, 4760, 15401, 15413, 18423, 20 233 305, 5108, 7759, 9166, 11067, 12474, 15125, 20 353 5615, 9254, 9756, 10116, 10237, 10597, 11099,	, 20103 , 19928 , 14738
20 353 5615, 9254, 9756, 10116, 10237, 10597, 11099,	14738
[20 321] 790, 2780, 7559, 9013, 11508, 12902, 177418	19731
20 593 284, 574, 3408, 3480, 17113, 17185, 20019,	20309
20 641 1044, 1641, 5505, 5628, 15013, 15136, 19000, 20 809 2986, 4441, 4606, 6265, 14544, 16203, 16368,	17823
20 857 1333, 2283, 2347, 7199, 13658, 18510, 18574, 20 929 980, 6298, 7374, 7496, 13433, 13555, 14631,	19524
21 001 3226, 3448, 8387, 8860, 12141, 12614, 17553, 21 121 594, 3757, 4658, 8056, 13065, 16463, 17364,	17775
21 169 180, 1421, 2175, 8350, 12819, 18994, 19748, 21 193 2191, 5151, 5793, 6887, 14306, 15400, 16042,	20989
21 313 5532, 5544, 8003, 9779, 11534, 13310, 15769	15781
21 481 1273, 2494, 3088, 6589, 14892, 18393, 18987,	20208
21 577 2005, 6382, 8645, 9976, 11601, 12932, 15195,	19572
21 649 624, 1700, 1787, 5597, 16052, 19862, 19949,	21025
21 673 183, 5211, 6351, 10183, 11490, 15322, 16462, 21 817 3919, 5121, 5901, 6514, 15303, 15916, 16696,	17898
21 841 1327, 4345, 6590, 9217, 12624, 15251, 17496, 21 937 5738, 5805, 6419, 7660, 14277, 15518, 16132,	16199
21 961 139, 158, 6219, 8807, 13154, 15742, 21803, 22 129 2224, 2765, 5582, 9836, 12293, 16547, 19364,	19905
22 153 281, 4336, 7007, 8552, 13601, 15146, 17817, 22 273 1431, 6422, 6933, 8187, 14086, 15340, 15851,	21872
22 369 3881, 4015, 6196, 11165, 11204, 16173, 18354, 22 441 2765, 3076, 3546, 8360, 14081, 18895, 19365,	18488
22 777 2222, 3803, 5810, 7084, 15693, 16967, 18974, 22 921 5881, 6366, 9437, 9845, 13076, 13484, 16555,	20555
22 993 2459, 8201, 8509, 11268, 11725, 14484, 14792, 23 017 981, 2059, 10089, 10195, 12822, 12928, 20958,	20534

p	y	y	y	y	y	y	y	<i>y</i>
23 041 23 209 23 473 23 497 23 593	5254, 1047, 3661, 1488, 2600,	6744, 7380, 4295, 4911, 8557,	7692, 8400, 5129,	8337, 8816, 9506,	14872, 14657, 13991,	13444, 15517, 15073, 18368, 14988,	15829, 19178, 18586,	22162 19812 22009
23 689 23 761 23 833 23 857 23 929	3149, 4123, 1891, 4597, 154,	4395, 4555, 1975, 5335, 442,	4630, 7350, 3584, 9365, 1570,	7515, 6705, 10949,	16246, 17128, 12908,	19059, 16411, 20249, 14492, 22359,	19206, 21858, 18522,	19638 21942 19260
23 977 24 001 24 049 24 097 24 121	4258, 652, 4029, 3484, 780,	1951,	4413, 10447,	6211, 10774, 11936,	17790, 13275, 12161,	13385, 19588, 13602, 15071, 19056,	22050, 15649, 19706,	23349 20020 20613
24 169 24 337 24 481 24 697 24 793	4171, 33°5, 3266, 6566, 52,	4533, 45°3, 3375, 7116, 3377,	6148, 6318, 8494, 7376, 7584,	9617, 9867,	12209, 14864, 14830,	18021, 18019, 15987, 17321, 17209,	19834, 21106, 17581,	21032 21215 18131
$\begin{bmatrix} 24841 \\ 24889 \\ 25033 \\ 25057 \\ 25153 \end{bmatrix}$	909,	6859, 3462, 5338, 4042, 2628,		10600, 11391, 9896,	14289, 13642, 15161,	15745, 16415, 18908, 20637, 20109,	21427, 19695, 21015,	24623 22262 24148
25 321 25 537 25 561 25 609 25 633	2708, 1196, 3404, 564, 133,	5283, 2669, 6007, 4471, 3652,		5501, 10838, 10837,	20036, 14723, 14772,	16475, 21735, 16903, 19570, 20432,	22868, 19554, 21138,	24341 22157 25045
25 657 25 801 25 849 25 873 25 969	1929, 2306, 3422, 5833, 1154,	2486, 8894, 6067, 7097, 8660,		12593, 11265, 8790,	13208, 14584, 17083,	21720, 15362, 19738, 18741, 16526,	16907, 19782, 18776,	23495 22427 20040
26 017 26 041 26 113 26 161 26 209	2883, 6965, 1023, 1344, 1963,	4260, 7201, 1642, 8431, 2804,	8983, 8540, 10297,	9665, 9853, 11242,	16376, 16260, 14919,	17876, 17058, 17573, 15864, 23246,	18840, 24471, 17730,	19076 25090 24817

p	y	y	y	y	y	y	y	y
26 449	3445,	5904,		11747,				
$26\ 497$	4907,	6631,		11941,				
26 641	1282,	1517,		12843,				
26 713	705,			12785,				
26 737	384,	4234,		10096,				
26 833	3905,			12783,				
26 881	5060,	6673,	6699,	12516,	14365,	20182,	20208,	21821
26 953	139,	3476,	6205,				23477,	
27 073	2898,	5054,	6992,				22019,	
27 241	6444,	6595,	8163,	10599,	16642,	19078,	20646,	20797
27 337	1004,	1552,	2199,				25785,	
27 361	1310,	4407,	6203,				22954,	
27 409	1305,	6847,		10970,				
27 457	6080,	6652,	7195,				20805,	
27 481	1684,	5271,	7983,	10496,	16985,	19498,	22210,	25797
27 529	3805,	3838,		10422,				
27 673	2788,	4204,		11763,				
27 697	5336,	6400,	12140,	12199,	15498,	15557,	21297,	22361
27 793	5909,	10294,	10419,	13024,	14769,	17374,	17499,	21884
27 817	1047,	7114,	9490,	10893,	16924,	18327,	20703,	26770
27 961	4312,	4905,	8138,	13419,	14542,	19823,	23056,	23649
$28\ 057$	5803,	6121,		12894,				
$28\ 081$	82,	4407,	7213,	10616,	17465,	20868,	23674,	27999
$28\ 201$				13803,				
$28\ 297$	2480,	9961,	11683,	13457,	14840,	16614,	18336,	25817
28 393	1580,	7314,	7853,	9903,	18490,	20540,	21079,	26813
28 513	5028,		10692,	11767,				
$28\ 537$	3986,	8269,	8744,				20268,	
28 657	6962,	7089,	8714,	12948,				
28 729	941,	2015,	5999,	8419,	20310,	22730,	26714,	27788
28753	1662,	5362,	7145,				23391	
28921	778,	1550,	7818,	8141,	20780,	21103,	27371,	28143
29 017	1710,	7532,	10402,	11962,				
29 137	3722,	4423,	5356,				24714,	
29 209	3562,	3951,	9750,	11725,	17484,	19459,	25258,	25647
29 401	1491,	5403,		12851,	16550,	20165,	23998,	27910
29 473	96,	307,	853,	7947,	21526,	28620,	29166,	29377
29 569	361,			14334,				
29 641	3737,			13670,				
29 761	2044,	2785,	6654,	10590,	19171,	23107,	26976,	27717

p	y	y	y	y	y	y	y	y
29 833 29 881 30 097 30 169 30 241	6737, 706, 648, 1065, 7094,	7270, 1566, 7582, 4649, 9502,	5561, 8078, 8385,	11155, 13330, 14932,	18726, 16767, 15237,	24320, 22019, 21784,	22563, 28315, 22515, 25520, 20739,	29175 29449 29104
30 313 30 529 30 553 30 577 30 649	2198, 7286, 525, 475, 1956,		8795, 9195, 13647,	13308, 9705, 14157,	17221, 20848, 16420,	21734, 21358, 16930,	25482, 22493, 25475, 23078, 21208,	23243 30028 30102
30 697 30 817 30 841 30 937 31 033	3764, 1035, 4185, 1468, 2205,	2101,	12565, 11509, 3341,	13201, 11710, 13340,	17616, 19131, 17597,	18252, 19332, 27596,	26709, 28716, 21746, 29048, 24179,	29782 26656 29469
31 081 31 153 31 177 31 249 31 321	995, 266, 20, 296,		14406, 10912, 2288,	15490, 11231, 3073,	15663, 19946, 28176,	16747, 20265, 28961,	29615, 19090, 28265, 30510, 30193,	30887 31157 30953
31 393 31 489 31 513 31 657 31 729	7833, 114, 1201, 3204, 742,	7840, 7137,	9764, 13576, 10593,	11325, 15341, 11985,	20164, 16172, 19672,	21725, 17937, 21064,	22900, 23649, 24376, 24132, 28777,	31375 30312 28453
31 849 31 873 32 089 32 233 32 257	2442, 5643, 232, 589, 4594,	8218, 5075, 2189,	9731, 12310, 7218,	12974, 15232, 9293,	18899, 16857, 22940,	22142, 19779, 25015,	24428, 23655, 27014, 30044, 25087,	26230 31857 31644
32 353 32 377 32 401 32 497 32 569	6700, 2993, 317, 2574, 1410,	5110,	10302, 7742, 13560,	11326, 12572, 16198,	21051, 19829, 16299,	22075, 24659, 18937,	249 27 , 25906, 27291, 20881, 30929,	29384 32084 29923
32 713 32 833 33 049 33 073 33 289	5449, 5691, 1810, 5496,	8227, 9513,	10476, 13809, 11905,	13881, 14276, 16025,	18952, 18773, 17048,	22357; 19240; 21168;	24893, 24606, 23536, 23772, 30838,	27142 31239 27577

For solutions of $(y^{12}+1) \div (y^4+1) \equiv 0 \pmod{p^{\kappa} > 10^4}$, see page 70.

Least Roots (y) of $y^{16} + 1 \equiv 0 \pmod{p}$.

Least Roots (y) of $y^{32} + 1 \equiv 0 \pmod{p}$.

	8 2 4 5 0 0 6
20	185 242 347 439 544 637 726 759
y	77, 179, 240, 346, 427, 427, 552, 631, 559, 625,
y	69, 170, 227, 343, 404, 450, 616, 555, 701,
y	67, 169, 223, 294, 350, 411, 577, 524, 660,
y	63, 151, 197, 286, 347, 400, 481, 519, 656,
'n	55, 126, 189, 252, 322, 368, 400, 400, 632,
y	52, 124, 137, 247, 321, 362, 383, 434, 410, 541,
y	51, 121, 136, 228, 228, 314, 359, 402, 402, 481,
y	46, 72, 121, 137, 221, 263, 282, 271, 377, 448,
y	45, 69, 120, 106, 128, 258, 239, 388,
y	42, 67, 68, 101, 127, 209, 241, 183, 304, 297,
'n	34, 42, 60, 67, 102, 177, 156, 300, 273,
'n	30, 44, 663, 663, 663, 663,
y	28, 30, 10, 1127, 118, 1. 1182, 2
'n	20, 14, 17, 7, 22, 35, 10, 114, 1144,
y	19, 8, 15, 6, 10, 10, 107, 43, 170,
d	97 193 2557 353 353 449 641 673 769 929

y	94	123	215	266	320	324
ĥ	89, 104,	117,	209,	261, 316,	308,	3 0
y	88,			258,	200,	60
'n	87, 106,		188, 261,	232, 345,		63
y	76,		182, 267,	375,	H O	
y			155,	155,		ı, ∞
'n	71,	81,	131,	146,		200
y	68,	73,	108,	141,		
'n		70,		123,	80,	
'n	39, 154,	67,	84, 365,	97,	77,	113,
'n	35, 158,			83,	50,	
Я	33,			78, 499,	32,	_
y	29, 164,	35,	58, 391,	67, 510,		
'n	20,	23,	52, 97,		8,	
y	13, 180,	22,	, 37,	37,	5, 636, 6	25,
'n	11,	11,	24, 425,	20,	$\begin{cases} 2, & 5, \\ 639, 636, \end{cases}$	12,
p	193	257	449	277	641	}69 <i>4</i>

94 Least roots (y) of $y^{64} + 1 \equiv 0$, and $\frac{y^{24} + 1}{y^{8} + 1} \equiv 0 \pmod{p}$.

Least Roots (y) of $y^{64} + 1 \equiv 0 \pmod{p}$.

Least Roots (y) of $(y^{24}+1) \div (y^8+1) \equiv 0 \pmod{p}.$

2	59	153	181
	198	488	588
	124	310	383
	133	331	386
			4 25 6 6
2	I I	4, 145, 7, 496, 5, 306, 6, 335,	1, 15 8, 61 4, 34 5, 42
y	57,	13	14
	200,	50	62
	118,	30	34
	139,	33	42
y	52,	124,	135,
	205,	517,	634,
	116,	290,	320,
	141,	351,	449,
п	50,	122,	125,
	207,	519,	644,
	114,	287,	319,
	143,	354,	450,
y	49,	116,	96,
	208,	525,	673,
	113,	268,	313,
	144,	373,	456,
y	42,	105,	93,
	215,	536,	676,
	104,	248,	310,
	153,	393,	459,
у	36,	84,	89,
	21,	557,	680,
	00,	244,	299,
	57,	397,	470,
y	31,	67,	82,
	226, 2	574,	687,
	99, 1	243,	285,
	158, 1	398,	484,
y	228, 98, 159,	62, 579, 232, 409,	60, 709, 283, 486,
y	26,	61,	49,
	231,	580,	720,
	89,	221,	273,
	168,	420,	496,
Я	25, 232, 84, 173,	583, 210, 431,	38, 731, 257, 512,
'n	21,	42,	18,
	236,	599,	751,
	79,	199,	216,
	178,	442,	553,
y	18,	31,	17,
	239,	610,	752,
	72,	177,	215,
	185,	464,	554,
'n	13,	29,	8,
	244,	612,	761,
	62,	168,	204,
	195,	473,	565,
y	9, 248, 61, 196,	21, 620, 155, 486,	5, 200, 569,
d	257	341	692

22	'n		y	y	'n	б	y	y	y	'n	y	'n	y	y
-	2			32,	44,	48,	49,	53,	65,	66,	72,	86,	94,	95
28,	36,			48,	59,	62,	131,	134,	145,	147,	157,	165,	172,	189
	3			65,	88,	89,	152,	153,	176,	178,	203,	219,	222,	230
105, 1	3		138, 1	140,	153,		174,	184,	197,	199,	204,	232,	272,	299
	10		91,	138,	165,	172,	261,	268,	295,	342,	356,	360,	388,	412
19,	5	62,	72,	121,			334,	385,	456,	505,	515,	558,	569,	574
	3		6,	128,		336,	337,	510,	545,	557,	641,	644,	652,	671
186, 2,	4		250,	256,	277,		455,	492,	513,	519,	526,	583,	649,	266

Least Roots (y) of $(y^{48}+1) \div (y^{16}+1) \equiv 0 \mod p).$

Least Roots (y) of $(y^{96} + 1) \div (y^{32} + 1) \equiv 0 \pmod{p}$.

y	260 200 200 200 200 300 300 300 300 300 30
y	40, 57, 98, 264, 313, 307, 376, 393,
y	39, 58, 93, 100, 262, 315, 375, 407,
y	38, 59, 92, 101, 212, 365, 340, 429,
'n	37, 60, 86, 107, 204, 373, 411, 432, 432,
ĥ	29, 683, 83, 110, 196, 381, 425, 452, 452,
y	() + 1 1 1 2 2 () + 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
y	23, 744, 65, 128, 138, 439, 445, 527,
y	21, 76, 56, 137, 105, 472, 472, 456, 546,
h	17, 80, 54, 139, 99, 478, 214, 459, 155, 614,
y	15, 17, 21, 23, 26, 82, 76, 74, 7 10, 32, 54, 56, 65, 77, 161, 139, 137, 128, 115, 128, 115, 128, 128, 138, 15, 201, 214, 217, 228, 23, 472, 459, 456, 445, 43, 155, 223, 242, 364, 626, 614, 546, 527, 46
y	833 162 162 162 163 163 163 163 163 163 163 163 163 163
'n	13, 84, 168, 168, 518, 518, 542, 542, 540,
y	10, 87, 18, 175, 50, 527, 77, 77, 100, 669,
ĥ	7, 90, 187, 187, 531, 531, 614, 48, 721,
y	5, 7, 10, 22, 90, 87, 26, 18, 111, 46, 50, 51, 527, 56, 51, 527, 57, 57, 59, 77, 516, 614, 596, 16, 48, 100, 153, 721, 669,
d	97 { 193 { 577 { 673 { 769 {

y	47 146 91	154 423 286 291	178 591 369 400
y	45,	139,	172,
	148,	438,	597,
	90,	281,	339,
	103,	296,	430,
y	44, 149, 82, 111,	126, 451, 249, 328,	, 160, 160, 160, 1338, 338, 431, 4
y	41,	125,	149,
	152,	452,	620,
	80,	244,	322,
	113,	333,	447,
y	40,	119,	108,
	53,	458,	661,
	79,	241,	294,
	14,	336,	475,
'n	38,	115,	102,
	155,	462,	667,
	78,	234,	282,
	115,	343,	487,
y	37	1111, 1112,	98,
	156	466, 465,	671,
	77	220, 221,	270,
	116	357, 356,	499,
y	34,	111,	77,
	159,	466,	692,
	73,	220,	255,
	120,	357,	514,
y.	30,	87,	76,
	163,	490,	593,
	70,	208,	248,
	123,	369,	521,
'n	26,	86,	75,
	167,	491,	694,
	66,	206,	235,
	127,	371,	534,
y	22,	60,	41,
	171,	517,	728,
	61,	201,	228,
	132,	376,	541,
'n	19,	47,	36,
	174,	530,	733,
	58,	199,	225,
	135,	378,	544,
y	17, 176, 57, 136,	41, 536, 197, 380,	
y	178, 178, 53,	29, 548, 180, 397,	30, 739, 199, 570,
'n	10,	26,	10,
	183,	551,	759,
	52,	170,	193,
	141,	407,	576,
ĥ	188,	563,	765,
	188,	160,	192,
	51,	417,	577,
p	193	577	169

FACTORISATION TABLES

OF

$$N=(x^2+y^2), \ (x^4+y^4), \ (x^8+y^8) \ ; \quad \frac{x^3\mp y^3}{x\mp y}, \ \frac{x^6+y^6}{x^2+y^2}, \ \frac{x^{12}+y^{12}}{x^4+y^4}; \ \&c.$$

Explanation.

1. All factors shown are primes, or powers of primes [except when followed by a query (?)], and are usually printed in old-face type (e.g. 983).

[The powers of the small prime factors > 11 are entered thus:—

- 4, 8, 16, 32, &c.; 9, 27, 81, 243, 729; 25, 125, 625; 49, 343, 2401; 121, 1331.The data (x, y, &c.) of numbers (N) to be factorised are usually printed in modern type (e.g., 983).
- 2. A query (?), on right, shows that the large factor (> 9.10^6) is of unknown composition.
- 3. A semicolon (;), on right, shows complete factorisation (into prime factors).
- 4. A full point (.), on right, shows that there are other (undetermined) factors.
 - 5. A semicolon (;), in middle, separates algebraic factors.
- 6. A colon (:), in middle, separates the two Aurifeuillian or Diophantine co-factors (L, M).
- 7. The signs \dagger , \ddagger , \S , \P —(when not referring to foot-notes)—show that the search for factors has been pushed to following limits (or a little further):—

- 8. When the last factor shown is followed by a query (?), the squares of the other factors shown have been tried as divisors.
- 9. In incomplete factorisations, when the last factor is not shown (see 4 above), the squares of the known factors have not been tried (except when possible from the above Congruence-Tables, pages 4, 22, 26, 37; 52, 70, 74, 85).
- 10. The column headed "Fig." shows the number of figures in the large number (N) to be factorised.
- 11. The initials, on right, indicate (according to a scheme in the Introduction) the names of original workers in the factorisations and in detection of High Primes (> 9.106).
- All High Primes not specially marked (and also many of those marked) with initials are due to the Author; also all High Primes ≯10⁹ are due to, or have been verified by, the Author.
- 12. Great use has been made of certain Binary, Ternary, &c., Canons (prepared by the author and Mr. H. J. Woodall jointly) giving the Residues of 2^x up to x = 100, 3^x and 5^x up to x = 16, 10^x up to x = 12, for all prime and powers of prime moduli $\geq 10,000$.
- 13. The phrase "High Numbers" means Numbers (N) > 9.10^6 , or Numbers whose algebraic factors (if any) are > 9.10^6 .

High Duan Chain,
$$N = Y^2 + 1 = Y'^2 + 1 = L.M > 6.10^{18}$$
.
$$Y = y^2 + y + 1 = y'^2 - y' + 1 = Y'; \quad y' - y = 1.$$

y	Y	$L = y^2 + 1$	$M = y'^2 + 1$	y'	Fig.
49 993 4 5 6 7 8 9 50 000 1 2 3 4 5	2 499 350 043 2 499 450 031 2 499 550 021 2 499 650 013 2 499 750 007 2 499 850 003 2 499 950 001 2 500 050 001 2 500 350 007 2 500 350 013 2 500 450 021 2 500 550 031	2.25.13.17.37.6113; 853.1069.2741; 2.1249750013; 797.3136261; 2.5.249970001; 5.109.953.4813; 2.17509.71389; 2500000001; 2.17.5197.14149; 5.53.9434717; 2.5.13.19233077; 7561.330697; 2.101.12378713;	853.1069.2741; 2.1249750013; 797.3136261; 2.5.249970001; 5.109.953.4813; 2.17509.71389; 2500000001; 2.17.5197.14149; 5.53.9434717; 2.5.13.19233077; 7561.330697; 2.101.12378713; 13.233.825553;	49 994 5 6 6 7 8 9 50 000 1 2 3 4 5 6	19 19 19 19 19 19 19 19 19 19 19

High Bin-Aurifeuillian Chain,
$$N=(y^4+4)=L.M$$
; $[y=\omega].$
$$L=\left\{(y-1)^2+1\right\}; \quad M=\left\{(y+1)^2+1\right\}.$$

y	L	M	Fig.
7 9 50 001 3	853.1069.2741; 797.3136261; 5.109.953.4813; 2500000001; 5.53.9434717; 7561.330697;	797.3136261; 5.109.953.4813; 2500000001; 5.53.9434717; 7561.330697; 13.233.825553;	19 19 19 19 19 19

$$\begin{split} & \textit{High Bin-Aurifeuillian Chain, } \tfrac{1}{4}\mathbb{N} = 4\,(\tfrac{1}{2}y)^4 + 1 = \tfrac{1}{2}\mathbb{L}\,.\tfrac{1}{2}\mathbb{M}\,; \quad [y = \epsilon]. \\ & \mathbb{L} = \left\{(y-1)^2 + 1\right\}; \quad \mathbb{M} = \left\{(y+1)^2 + 1\right\}. \end{split}$$

y	$\frac{1}{2}$ L	$\frac{1}{2}M$	Fig.
2	25.13.17.37.6113; 1249750013; 5.249970001; 17509.71389; 17.5197.14149; 5.13.19233077;	1249750013; 5.249970001; 17509.71389; 17.5197.14149; 5.13.19233077; 101.12378713;	19 19 19 19 19

High Irreducible Duans, $N=(x^{\alpha})^2+(y^{\beta})^2>9.10^6$; $[x,y\geqslant 11]$. [Bin-Aurifeuillians, Quartans, and Octavans excluded.]

$x^{2\alpha} + y^{2\beta}$	N	$x^{2\alpha} + y^{2\beta}$	N	$x^{2\alpha} + y^{2\beta}$	N
$\begin{array}{c} 3^2 + 2^{24} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^{10} + \\ 3^{14} + \\ 3^2 + 2^{26} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^6 + \\ 5^6 + \\ 11^6 + \\ 3^{10} + \\ 3^{14} + \\ 3^2 + 2^{28} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^6 + \\ 5^6 + \\ 7^6 + \\ 11^6 + \\ 3^{10} + \\ 3^2 + 2^{30} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^{10} + \\ 3^2 + 2^{30} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^{14} + \\ \end{array}$	25.29.73.317; 13.41.31477; 5.3355453; 16777337; 5.3367253; 5.73.59069; 13.5162221; 1129.59441; 67108913; 5.13421797; 67109593; 109.615821; 109.615821; 109.615821; 109.615821; 13.5530141; 5.5689.9437; 37.1815349; 13.5530141; 5.5689.9437; 37.89.81517; 5.13.4129777; 5.433.123989; 2081.129001; 5.281.191141; 101.2675317; 5.53698901; 29.37025581; 5849.183577; 5.214748389; ‡	$\begin{array}{c} 3^2 + 2^{32} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^6 + \\ 5^6 + \\ 7^6 + \\ 3^{10} + \\ 3^{14} + \\ 3^2 + 2^{34} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^6 + \\ 5^6 + \\ 7^6 + \\ 3^{14} + \\ 3^2 + 2^{36} \\ 5^2 + \\ 7^2 + \\ 11^2 + \\ 3^{10} + \\ 3^{14} + \\ 3^2 + 10^8 \\ 3^6 + \\ 3^{10} + \\ 3^{10} + \\ 3^{10} + \\ 3^{10} + \\ 3^{10} + \\ 3^{12} + \\ 11^2 + \\ \end{array}$	5.9629.89209; 733.5859437; 5. 13. 25. 41.5573.18797; 5.137.6270197; 5.3221.266689; 5. 37.313.1483453; 113.152034241? 457.37592969? 457.37592969? 457.37592969? 5.193.557.127849; 13.829.1594129; 2857.6014929; 5.193.557.127849; 13.809.6534133; 5. 29. 5.29.5737.82609; 5. 149.671141; 29.73.47237; 100059049; 433.241993; 1000000049; W 13.1049.7333;	$\begin{array}{c} 2^2 + 5^{10} \\ 2^4 + \\ 2^6 + \\ 2^6 + \\ 2^8 + \\ 2^{12} + \\ 2^{16} + \\ 2^{16} + \\ 2^{18} + \\ 2^{22} + \\ 2^{24} + \\ 2^{24} + \\ 2^{26} + \\ 2^{32} + \\ 2^{34} + \\ 3^2 + 5^{10} \\ 3^8 + \\ 3^{12} + \\ 3^{16} + \\ 7^2 + \\ 11^4 + \\ 5^2 + 3^{16} \\ 7^2 + \\ 11^2 +$	976569; 976569; 797.12253; 1181.8269; 89.197.557; 13.13.57809; 1669.5861; 373.26357; 241.41609; 3301.4229; 13.2041757; 641.119929; 53.5249077; 37.2237.52009; 709.24244901; 2.29.137.1229; 2.37.131969; 2.13.149.2521; 2.41.119173; 2.13.396041; 2.277.26261; 2.41.644053; 2.53.181.509; 2.877.5569; 2.109.44797; 2.4890133; 2.1481.14533; 2.5153421; 2.21523421; 2.21523421; 2.21531173; 2.101.269.4493;

High Associate Duans, N_1 , N, $N_2 > 9\frac{1}{2} \cdot 10^{13}$.

$$\begin{split} \mathbf{N}_1 &= \mathbf{Y}_1^2 + 1 = \mathbf{Y}'.\mathbf{X}\,; \quad \mathbf{N} &= y^4 + 4 = \mathbf{Y}'.\mathbf{Y}''; \quad \mathbf{N}_2 = \mathbf{Y}_2^2 + 1 = \mathbf{X}.\mathbf{Y}'', \\ \mathbf{Y}_1 &= (y^2 - y + 1)\,; \qquad y = \eta' > 3 \cdot 10^3\,; \qquad \mathbf{Y}_2 &= (y^2 + y + 1)\,. \end{split}$$

η,	$Y' = (y-1)^2 + 1$	$Y=y^2+1$	$Y'' = (y+1)^2 + 1$	Fig.
80 60 6	13.1213.2729; 125.17.182297;	2.21523361; B 2.5; 73; 530713;	5.8611969;	16
3 1	5.149.293.15973;	2.41; 42521701; B	18013.193577;	2 2
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17.574081; 244109377;	2.13;41.9101; 2.313;390001;	97.100741; 461.529657;	17
. 2°	137.257.4333753;	2.2593.29423041; DeB	113.457.2954797;	23.53
65	2.1277.23669; 2.521.2088953;	37; 241.6781; 1297; 1678321;	2.5.89.67957; 2.25.157.277309;	16
75	241.1171957;	2.25;5.281.4021;	5.29.1948337;	17
104	2.389.128509;	17.5882353;	2.5001001; 2.13.1597.240841;	17 21
100	2.41.109.111881629? ‡	73.137; 99990001; Lf,R 101; 29.281.121499449; Lf,R	2.2357.212134493;	25
108	2.13.53.557.809.3313.4861;	353.449.641.1409.69857;	. 2	က္မ
114	2593.82657; 2.214970113;	2.17.6304673; 17.97;260753;	5.181.236893; 2.5.41.1048837;	17 18

High Associate Duans, N_1 , N, $N_2 > 89.10^{12}$.

$$\begin{split} \mathbf{N}_1 &= \mathbf{Y}_1^2 + \mathbf{1} = \mathbf{Y}' \,.\, \mathbf{Y} \,; & \mathbf{N} &= y^4 + \mathbf{4} = \mathbf{Y}' \,.\, \mathbf{Y}'' \,; & \mathbf{N}_2 &= \mathbf{Y}_2^2 + \mathbf{1} = \mathbf{Y} \,.\, \mathbf{Y}'' \,; \\ \mathbf{Y}_1 &= (y^2 - y + 1) > 9 \,.\, \mathbf{10}^6 \,; & y &= \eta^\beta \,.\, 2^\alpha > 3 \,.\, \mathbf{10}^3 \,; & \mathbf{Y}_2 &= (y^2 + y + 1) > 9 \,.\, \mathbf{10}^6 . \end{split}$$

$\eta^{\beta} 2^{\alpha}$	$Y' = (y-1)^2 + 1$	$Y = (y^2 + 1)$	$Y'' = (y+1)^2 + 1$	Fig.
$\begin{bmatrix} 3 & .2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{13} \\ 2^{14} \end{bmatrix}$	2.4715521;	5.1887437;	2.5.13.17.4273;	14
	2.25.757.997;	13.2903749;	2.18880513;	16
	2.5.17.888061;	5.30198989;	2.181.417181;	17
	2.13.13.29.61613;	1093.552589;	2.5.3037.19889;	18
	2.17.71053553;	5.483183821;	2.5.241601741;	19
$\begin{array}{c} 3^2.2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \end{array}$	2.25.13.32653;	4513:5.941;	2.10621441;	15
	2.1453.29221;	41.137.15121;	2.5.809.10501;	16
	2.173.981797;	17.29.37:125.149;	2.5.61.653.853;	18
	2.5.13.1601.6529;	281.1009.4793;	2.53.12821021;	19
$ \begin{array}{r} 3^3 \cdot 2^7 \\ 2^8 \\ 2^9 \\ 2^{10} \end{array} $	2.17.109.3221;	1069.11173;	2.25.239017;	15
	2.13.313.5869;	5.269.35521;	2.5.37.53.2437;	16
	2.5.19107533;	577; 349:13.73;	2.17.5621489;	17
	2.5.76435661;	5.6389.23929;	2.29.401.32869;	18
$ \begin{array}{c} 3^4 \cdot 2^6 \\ 2^7 \\ 2^8 \\ 2^9 \end{array} $	2.5.113.23773;	1409.19073;	2.13442113;	15
	2.5.1093.9833;	25.409:10513;	2.13.4135237;	17
	2.214970113;	17.97.260753;	2.5.41.1048837;	18
	2.37.23241133;	5.8237:41761;	2.5.162000973;	19
$ \begin{array}{r} 3^5, 2^4 \\ 2^5 \\ 2^6 \\ 2^7 \end{array} $	2.5.1510877;	5.3023309;	2.17.444833;	15
	2.1277.23669;	37;241.6781;	2.5.89.67957;	16
	2.17.7112753;	5.53.193.4729;	2.5.13.1860737;	17
	2.5.7457.12973;	13.1873.39733;	2.29.16681397;	18
$ \begin{array}{r} 3^6 \cdot 2^3 \\ 2^4 \\ 2^5 \\ 2^6 \end{array} $	2.41.414641;	25.229:13.457;	2.5.3402389;	16
	2.5.13602557;	1777.76561;	2.1889.36017;	17
	2.5.13.137.30553;	29.797:5.17.277;	2.613.443917;	18
	2.521.2088953;	1297;1678321;	2.25.43537513;	19
37.2	2.5.13.17.17.509;	19131877;	2.9570313;	15
2 ²	2.5.149.51349;	5.15305501;	2.38272501;	16
2 ³	2.37.4136149;	61.5018197;	2.5.17.1800853;	17
2 ⁴	2.13.29.1623833;	5.24488813;	2.25.1373.17837;	19
$ \begin{array}{c} 3^8.2 \\ 2^2 \\ 3^9.2 \end{array} $	2.53.313.5189;	13.997:5.2657;	2.5.113.257.593;	17
	2.25.2713.5077;	17.40514561;	2.344400013;	18
	2.29.26717297;	397.3903481;	2.5.154976069;	19
$\begin{bmatrix} 5.2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{13} \end{bmatrix}$	2.97.293.641;	26214401;	2.17.29.26597;	15
	2.13.13.310169;	104857601;	2.41.1279001;	17
	2.829.252949;	13.32263877;	2.17.17.53.13693;	18
	2.19081.43961;	29.389.148721;	2.838901761:	19
$\begin{bmatrix} 5^2 \cdot 2^7 \\ 2^8 \\ 2^9 \\ 2^{10} \\ 2^{11} \end{bmatrix}$	2.661.7741;	3121:17.193;	2.5723201;	15
	2.20473601;	40960001;	2.13.409.3853;	16
	2.61.1342741;	12641:13.997;	2.29.41.68909;	17
	2.3109.105389;	655360001;	2.327705601;	18
	2.13.100820677;	17.41.73:51521;	2.137.509.18797;	19

High Associate Duans, N_1 , N, $N_2 > 89.10^{12}$.

$$\begin{split} \mathbf{N}_1 &= \mathbf{Y}_1^2 + \mathbf{1} = \mathbf{Y}' \cdot \mathbf{Y} \,; & \mathbf{N} &= y^4 + 4 = \mathbf{Y}' \cdot \mathbf{Y}'' \,; & \mathbf{N}_2 &= \mathbf{Y}_2^2 + \mathbf{1} = \mathbf{Y} \cdot \mathbf{Y}'' \,; \\ \mathbf{Y}_1 &= (y^2 - y + 1) > 9 \cdot 10^6 \,; & y &= \eta^\beta \cdot 2^\alpha > 3 \cdot 10^3 \,; & \mathbf{Y}_2 &= (y^2 + y + 1) > 9 \cdot 10^6 . \end{split}$$

$\eta^{\beta} 2^{\alpha}$	$Y' = (y-1)^2 + 1$	$Y = y^2 + 1$	$Y'' = (y+1)^2 + 1$	Fig.
$5^3 \cdot 2^5$ 2^6 2^7 2^8	2.13.17.97.373;	109.229.641;	2.181.44221;	15
	2.31992001;	401; 13.12277;	2.32008001;	16
	2.41.3121561;	256000001;	2.17.7530353;	17
	2.29.29.37.16453;	157.6522293;	2.13.73.709.761;	19
$5^4.2^3$ 2^4 2^5 2^6	2.12495001;	13.13.29:5101;	2.37.337973;	15
	2.389.128509;	17.5882353;	2.50010001;	17
	2.13.41.457.821;	19801:20201;	2.569.351529;	18
	2.269.349.8521;	1889.847009;	2.4657.171793;	19
$\begin{array}{c} 5^5.2 \\ 2^2 \\ 2^3 \\ 2^4 \end{array}$	2.19525001;	3529.11069;	2.73.267637;	16
	2.17.4594853;	37.4222973;	2.13.1117.5381;	17
	2.61.5122541;	241.2593361;	2.41.7622561;	18
	2.17509.71389;	2500000001;	2.17.5197.14149;	19
$5^6.2$	2.3533.138197;	17.17.29.109.1069;	2.41.229.52009;	18
7.29 2^{10} 2^{11} 2^{12}	2.5.13.17.37.157;	29.233.1901;	2.6426113;	15
	2.5.877.5857;	25.13.13.12161;	2.25697281;	16
	2.17.73.82793;	113.1818769;	2.5.20554957;	17
	2.389.1056589;	5.164416717;	2.5.13.1301.4861;	18
$7^{2} \cdot 2^{6}$ 2^{7} 2^{8} 2^{9} 2^{10}	2.353.13921;	9834497;	2.5.881.1117;	14
	2.13.1512517;	61.101;5.1277;	2.5.821.4793;	16
	2.25.1153.2729;	3361.46817;	2.29.313.8669;	17
	2.5.62935757;	5.4973:17.1489;	2.314728961;	18
	2.13.41.577.4093;	2777.906601;	2.5.251773133;	19
$7^3 \cdot 2^4$ 2^5 2^6	2.5.17.177101;	5.6023629;	2.53.284237;	15
	2.421.143053;	109.113.9781;	2.5.13.73.12697;	17
	2.17.14171953;	5.157;13.47221;	2.5.48193421;	18
$7^4.2$ 2^2 2^3	2.11524801;	5.941:13.13.29;	2.5.2306881;	15
	2.5.41.224921;	401.230017;	2.101.157.2909;	16
	2.25.1109.6653;	19013:5.3881;	2.13.37.53.7237;	18
$\begin{array}{c} 11.2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \end{array}$	2.17.932593;	25.1268777;	2.5.3173069;	16
	2.5.13.241.4049;	29.4375093;	2.63450113;	17
	2.5.37.577.2377;	5.1621.62617;	2.17.14928113;	18
	2.1014976513;	101.20099437;	2.125.1933.4201;	19
$\begin{array}{c} 11^2.2^5 \\ 2^6 \\ 27 \\ 2^8 \end{array}$	2.257.29153;	5.757:17.233;	2.5.137.10949;	15
	2.25.13.92237;	59969537;	2.4721.6353;	16
	2.5.23984717;	15313:5.13.241;	2.41.2925721;	17
	2.37.53.244633;	10433.91969;	2.5.61.113.13921;	18
$11^{3}.2^{2}$ 2^{3} 2^{4} 2^{5}	2.5.53.193.277;	29.977413;	2.13.17.64153;	15
	2.5.11335861;	5.97; 157.1489;	2.109.137.3797;	17
	2.4013.56501;	453519617;	2.5.17.1093.2441;	18
	2.1013.895357;	5.362815693;	2.25.13.37.241.313;	19
114.2	2.13.137.240701;	113.257:25.1181;	2.5.41.2091449;	18

High Bin-Aurifeuillians, $N = X^4 + 4Y^4 = L$, $M > 10^{15}$; $[X = x^a, Y = 2^\beta]$. $L = (x^a \sim 2^\beta)^2 + 2^{2\beta}$, $M = (x^a + 2^\beta)^2 + 2^{2\beta}$.

		+
M	134627953?‡ 13.29.193.1873; 13.1142181; 5.2686493? 17.7905769; 25.13.17.17.5717; 5.31:343237; 17.97.325673; 17.97.325673; 537690737?‡ 2309.234293;	457.701.1741,
L	58 + 254 13.173.59497; 512 + 4349.28597; 514 + 17.113.69809; 14 + 125.1072301; 34 + 258 89.6031153; 38 + 53.0124077; 312 + 5.107197381? 314 + 5.106844453? 54 + 41.53.61.4049; 55 + 53.714487901;	29.17820053; 457.701.174 5. 5.13.29.241.1181: 537231481?
Z	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	74 +
M	37.337.2693; 41.820201; 5.6755869; 5.41.166949; 17.1976201; 29.373.3121; 34554057; 3905057; 5.53.126961; 134266889?‡ 5.53.126961;	25.13.17.24373; 101.1342093; 124200672.9°‡
L	84 + 230 5 · 17 · 233 · 1693; 88 + 5 · 13 · 515089; 816 + 5 · 447 · 6073; 55 + 73 · 459089; 58 + 3355025; 51 + 3254057; 51 + 5 · 113 · 4813; 74 + 13 · 73 · 73 · 73 · 73 · 73 · 73 · 73 ·	157.617.1381; 5.197.134921;
Z	23.2 + + 25.0 23.2 + + 25.0 24.1 + + + 25.0 25.1 + + + 25.0 25.1 + + + 25.0 25.1 + + 25.0 25.1 + 25.0	32 62 4 54 + +

x = t, $y = \tau v$, $\xi = \tau^2$, $\eta = v^2$. Dimorph Bin-Aurifeuillians, $N = x^4 + 4y^4 = \xi^4 + 4\eta^4 = L.M.$ $= 9\pi m t, \quad t_0 = (\tau_0^4 - 2v_0^4)^{\frac{1}{2}}; \quad t = (\tau^4 - 2v^4)^{\frac{1}{2}}.$

M	5.277.389.733; 41.1553; 7 389.733.78767173?
L	37; 1553.59513; 5.37.277; 59513.95457977? 389
u	4 7056 169 12325625 5
w	$9, 12769, 1, \frac{1}{\tau^2}, 1803649, 9$
'n	6 9492 13 77 2048075
x	7, 7967, 239, t, t,
7	7 7967 239 t
2	2, 84, 13, 6214,
٢	3, 113, 1, 57123,6 1343, 1
To vo to	1, 1, 1 3, 2, 7 1, 13, 239

Dimorph Bin-Aurifeuillian Products.

$$({\rm N}_1{\rm N}_3{\rm N}_5\dots{\rm N}_{2r+1})\cdot{\rm N}_{\beta}=({\rm N}_0{\rm N}_2{\rm N}_4\dots{\rm N}_{2r})\cdot{\rm N}_{\alpha}\,;\quad {\rm N}_r=x^4+4y^4={\rm L}_r\cdot{\rm M}_r.$$

i.
$$N_{\nu} = (x_{\nu}) = x_{\nu}^{+} + 4 \cdot 2^{+}$$
; $N_{\alpha} = \{a\} = a^{+} + 4 \cdot 1^{+}$; $N_{\beta} = \{\beta\} = \beta^{+} + 4 \cdot 1^{+}$.

$$x_{0} = 4r^{2} + 4r + 3, \quad x_{1} = x_{0} + 4, \quad x_{2} = x_{1} + 4, \quad \dots, \quad x_{r+1} = x_{r} + 4; \quad a = 2r + 3, \quad b = 2r + 1.$$

$$(x_{1})(x_{3})(x_{3}) \dots (x_{2^{r+1}}) \cdot \{\beta\} = (x_{0})(x_{2})(x_{1}) \dots (x_{2^{r+1}}) \cdot \{a\} \cdot x_{1} = x_{1} + 4, \quad x_{2} = x_{2} + 4, \quad x_{2} = x$$

Dimorph Bin-Aurifeuillian Products (continued).

$$\begin{split} &(\mathbf{N}_{1}\mathbf{N}_{3}\mathbf{N}_{5}\dots\mathbf{N}_{2r+1}) \cdot \mathbf{N}_{\boldsymbol{\beta}} = (\mathbf{N}_{0}\mathbf{N}_{2}\mathbf{N}_{4}\dots\mathbf{N}_{2r}) \cdot \mathbf{N}_{\boldsymbol{\alpha}} \; ; \quad \mathbf{N}_{r} = x_{r}^{4} + y_{r}^{4} = \mathbf{L}_{r} \cdot \mathbf{M}_{r}. \\ &\mathbf{N}_{\boldsymbol{\rho}} = [y_{\boldsymbol{\rho}}] = \mathbf{1}^{4} + 4y_{\boldsymbol{\rho}}^{4} \; ; \quad |\boldsymbol{\rho}| = \tau_{\boldsymbol{\rho}}^{4} + 4v_{\boldsymbol{\rho}}^{4} \; ; \quad \tau_{\boldsymbol{\rho}}^{2} - 2v_{\boldsymbol{\rho}}^{2} = +1. \\ &y_{1} = \tau_{\boldsymbol{\rho}-1}^{2}, \quad y_{2} = y_{1} + 1, \quad y_{3} = y_{2} + 1, \quad \dots, \quad y_{r} = \tau_{\boldsymbol{\rho}}^{2} - 1. \\ &[y_{2}] [y_{4}] [y_{6}] \dots [y_{r}] \cdot |\boldsymbol{\rho} - 1| = [y_{1}] [y_{3}] [y_{5}] \dots [y_{r-1}] \cdot |\boldsymbol{\rho}|. \\ &\boldsymbol{\rho} = 1 \qquad \boldsymbol{\rho} = 2 \qquad \boldsymbol{\rho} = 3 \\ &[\underline{2}] [\underline{4}] [\underline{6}] [\underline{8}] = [\underline{1}] \; ; \quad \underline{[10]} [\underline{12}] [\underline{14}] \dots [\underline{288}] = [\underline{2}] \; ; \quad \underline{[290]} [\underline{292}] \dots [\underline{9800}] = [\underline{3}] \\ [\underline{1}] [\underline{3}] [\underline{5}] [\underline{7}] \; \vdots \quad \underline{[10]} [\underline{12}] \dots [\underline{288}] \cdot \underline{[290]} \dots \underbrace{[r_{\boldsymbol{\rho}-1}^{2} + 1]} [r_{\boldsymbol{\rho}-1}^{2} + 3] \dots [r_{\boldsymbol{\rho}}^{2} - 1]} = [\boldsymbol{\rho}] \\ &[\underline{1}] [\underline{3}] [\underline{5}] [\underline{7}] \cdot \underline{[290]} [\underline{11}] \dots [\underline{287}] \cdot \underline{[289]} \dots \underbrace{[r_{\boldsymbol{\rho}-1}^{2} + 1]} [r_{\boldsymbol{\rho}-1}^{2} + 2] \dots [r_{\boldsymbol{\rho}-2}^{2} - 2]} = [\boldsymbol{\rho}] \end{split}$$

$$\begin{split} \text{iv.} \qquad & \mathbf{N}_{\rho} = [y_{\rho}] = \mathbf{1}^4 + 4y^4 \,; \quad |\rho| = \tau_{\rho}^{\prime 4} + 4v_{\rho}^{\prime 4} \,; \quad \tau_{\rho}^{\prime 2} - 2v_{\rho}^{\prime 2} = -1. \\ & y_0 = \tau_{\rho-1}^{\prime 2}, \quad y_1 = y_0 + 1, \quad y_2 = y_1 + 1, \quad \dots, \quad y_r = \tau_{\rho}^{\prime 2}. \\ & [y_2] [y_4] [y_6] \dots [y_r] . |\rho - 1| = [y_1] [y_3] [y_5] \dots [y_{r-1}] . |\rho|. \\ & \rho = 2 \\ & \frac{[3] [5] [7] \dots [49]}{[2] [4] [6] \dots [48]} = \frac{|2|}{[1]} \,; \quad \underbrace{\begin{bmatrix} [51] [53] [55] \dots [1681]}_{[50] [52] [54] \dots [1680]} = \frac{|3|}{[2]}. \\ & \frac{[3] [5] [7] \dots [49]}{[2] [4] [6] \dots [48]} . \underbrace{\begin{bmatrix} [51] [53] \dots [1681]}_{[7\rho-1} + 2] [\tau_{\rho-1}^{\prime 2} + 4] \dots [\tau_{\rho}^{\prime 2}]}_{[7\rho-1} + 1] [\tau_{\rho-1}^{\prime 2} + 3] \dots [\tau_{\rho}^{\prime 2} - 1]} = \frac{|\rho|}{[1]}. \end{split}$$

Compound Bin-Aurifeuillians, $\mathbf{N}_r = \mathbf{X}_r^4 + 4\mathbf{Y}_r^4$

$$N_r = x_r^4 + 4y_r^4 = L_r . M_r;$$
 $N_1 = N_1;$ $N_r = N_1 . N_2 . N_3 ... N_r.$

r	1	2 3		4	Fig. in N4.
L, M,	3, 2 5: 29; 3, 2	13:53;	17, 15 229: 1429; 161, 289	161, 240 63841 : 218401; 141121, 25921	21
L,, M,	3, 4 17:5:13; 3, 4		41, 40 1601:8161; 1519, 1681	1519, 720 1156801:5531521; 3344161, 2307361	27
	13: 73;	17:97;	5.173:29.53;	1201, 1200 337.4273:7204801; 1437599, 1442401	26

Successive Pellians, $N_r = y_r^2 + 1 = D.x_r^2$. [y_r in first line, x_r (factorised) in second line.]

D	r y_r and x_r .	D	$r y_r$ and x_r .	D	$r y_r$ and x_r .
4.	$1\begin{cases} 1\\ 1; \end{cases}$ $2\begin{cases} 7\\ 5; \end{cases}$ $8\begin{cases} 41\\ 29; \end{cases}$ $4\begin{cases} 239\\ 13.13; \end{cases}$ $5\begin{cases} (1393)\\ 5; 197; \end{cases}$	5	$1 \begin{cases} 2 \\ 1; \end{cases}$ $2 \begin{cases} 38 \\ 17; \end{cases}$ $3 \begin{cases} 682 \\ 5.61; \end{cases}$ $4 \begin{cases} 12238 \\ 13.421; \end{cases}$ $5 \begin{cases} 219602 \\ 17; 53.109; \end{cases}$ $6 \begin{cases} 3940598 \\ 89.19801; \end{cases}$	26	1 {5
	6 (8119 (5741; 7 (47821 (33461; 8 (275807 (5; 29; 5.269;			29	$ \begin{array}{c} 1 & \begin{array}{c} 70 \\ 13; \\ 2 & \begin{array}{c} 1372210 \\ 13; 17.1153; \end{array} \end{array} $
9 { 10 { 10 { 12 { 13 { 14 { 16 { 17 { 18 { 19 { 19 { 19 { 19 { 10 { 10 { 10 { 10 { 10 { 10 { 10 { 10	9 {1607521 137.8297; 10 {9869319 37.179057; 11 {54608393 5; 13.13; 45697; 12 {318281039 229.982789; 13 {1855077841 29; 1549.29201;	10	$ \begin{array}{c} 1 \left\{ \begin{array}{c} 3 \\ 1 \end{array} \right.; \\ 2 \left\{ \begin{array}{c} 117 \\ 37 \end{array} \right.; \\ 44449 \end{array} $	37	$ \begin{array}{c} 1 \begin{array}{l} \{6\\ 1 \end{array}; \\ 2 \begin{array}{l} \{882\\ 5 \cdot 29 \end{array}; \\ 3 \begin{array}{l} \{128766\\ 21169 \end{array}; \\ 4 \begin{array}{l} \{18798954\\ 13 \cdot 237733 \end{array}; \\ 5 \begin{array}{l} \{2744518518\\ 5 \cdot 29 \end{array}; 17 \cdot 183041 \end{array}; \end{array} $
	$\begin{array}{c} 4 \\ \{10812186007 \\ 5; 197; 53.146449; \\ 5 \\ \{68018038201 \\ 44560482149? \ddagger \\ 6 \\ \{367296043199 \\ 61.1301.3272609; \\ 7 \\ \{2140758220993 \\ 5; 5741; 52734529; \\ 8 \\ \{12477258282759 \\ 29; 13.13; 1800193921? \ddagger \\ 9 \\ \{72722761475561 \\ 593.86716286317? \ddagger \\ 100 \\ \{423859315570607 \\ \end{array}$	13	1 (18 5;	41	$1 \begin{cases} 32 \\ 5; \end{cases}$ $2 \begin{cases} 131168 \\ 5.17.241; \end{cases}$ $3 \begin{cases} 537526432 \\ 25.3357901; \end{cases}$
		17	$ \begin{array}{c} 1 \begin{pmatrix} 4 \\ 1 \end{pmatrix}; \\ 2 \begin{pmatrix} 268 \\ 5 \cdot 13 \end{pmatrix}; \\ 3 \begin{pmatrix} 17684 \\ -68 \end{pmatrix} \end{array} $	53	$ \begin{array}{c} 1 \left\{ \begin{array}{c} 182 \\ 25 \end{array} \right. \\ 2 \left\{ \begin{array}{c} 24114818 \\ 25 \end{array} \right. \\ 1 \left(\begin{array}{c} 99 \end{array} \right. \\ \end{array} $
	20 (5;33461;389.4605197; 23 (88922003724759193 25.29.269;197.6481.238321;		4 (1166876 283009;	58	1 (13; 2 (3881493 13;5.7841;

High Pellians, $(N) > 10^8$.

 $N = (y^2 + 1) = D.x^2; [x \text{ factorised}].$

y	D	x	y	D	x
11 782	701	5.89;	5 534 843	857	5.40529;
14 942	5.193	13.37;	8 118 568		25.11093;
18 018	1093	5.109;	8 890 182		25.34061;
20 457	2.13.29	5.149;	14 752 278		13.47741;
21 490	1229	613;	15 489 282		5.17.6329;
23 156	233	37·41;	18 245 310	709	13.52709;
25 382	1373	5·137;	21 019 276	1097	13.48817;
28 488	5.13.17	857;	24 314 110	461	17.29.2297;
29 718	61	5·761;	24 715 982	797	5.13.13469;
29 851	2.661	821;	27 628 256	1217	791969;
30 235	2.397	29.37;	33 995 032		5.17.11353;
38 899	2.709	1033;	41 009 716		17.97117;
42 801	2.13.53	1153;	54 610 269		17.41.53.53;
45 368	29.37	5.277;	70 600 734		2027117;
69 051	2.269	13.229;	71 011 068		25.182969;
71 264	353	3793;	87 050 499	2.509	433.6301;
71 847	2.5.61	2909;	99 484 332	1489	5.233.2213;
84 906	997	2689;	126 862 368	313	5.17.29.2909;
104 092	5.277	2797;	128 377 240	521	733.7673;
113 582	149	5.1861;	153 352 043	2.733	5.801037;
114 669	2.17.37	53.61;	189 471 332	449	5.1788341;
174 293	2.277	5.1481;	218 623 878	5.137	13.29.22157;
217 318	1301	25.241;	348 345 108	5.173	233.50833;
241 326	877	29.281;	393 166 618	1013	5.29.85193;
328 173	2.5.97	41.257;	395 727 950	509	41.427813;
348 711	2.569	10337;	419 288 307	2.461	25.552341;
352 618	317	5.17.233;	731 069 390	941	17.37.37889;
409 557	2.149	25.13.73;	854 992 268	1193	5.1097.4513;
600 632	593	5.4933;	1 111 225 770	181	13.17.97.3853;
683 982	17.29	5.61.101;	2 291 286 382	653	5.13.1379461;
964 140	13.37	43961;	2 746 864 744	953	449.198173;
1 063 532	281	5.12689;	2 894 863 832	569	5.17.1427753;
1 262 101	2.541	17.37.61;	2 959 961 778	5·233	53.797.2053;
1 343 018	773	5.9661;	4 115 086 707	2·293	5.61.349.1597;
1 369 326	757	157.317;	5 767 329 724	1433	701.217337;
1 764 132	193	5.109.233;	6 547 100 182	1493	25.61.111109;
2 086 882	17.61	5.13.997;	7 376 748 868	977	5.13.3630817;
3 375 918	1429	5.53.337;	8 920 484 118	277	5.157.682777;
3 434 907	2.13.41	5.53.397;	20 478 302 982	397	5.17.37.173.1889;
4 832 118	157	5.13.17.349;	106 316 171 432	881	25.173.389.2129;
			930 015 700 509	2.701	113.181.1214393;

High Pellians, $N = Y^2 + 1 = D.X^2 > 15.10^{25}$; $Y = (4y^3 + 3y)$.

y	$Y = 4y^3 + 3y$	$\mathrm{D}=y^2\!+\!1$	$X = (2y)^2 + 1$	Fig.
8 9 25 000 1	62 477 502 774 883 62 485 001 274 962 62 492 500 374 993 62 500 000 075 000 62 507 500 375 007 62 515 001 275 038	2.5.181.345221; 5.8237.15173; 2.61.5122541; 241.2593361; 2.41.7622561; 5.125020001;	853.1069.2741; 797.3136261; 5.109.953.4183; 2500000001; 5.53.9434717; 7561.330697;	28 28 28 28 28 28 28

High Pellians, $N = (Y^2 + 1) = D \cdot X^2$; $Y = (4y^6 + 3y^2)$; $[y = \eta^r, \eta > 12]$. $D = (y^4 + 1), \quad X = (4y^4 + 1) = L \cdot M$; $L = \frac{1}{2} \{(2y - 1)^2 + 1\}, \quad M = \frac{1}{2} \{(2y + 1)^2 + 1\}.$

High Pellians, $N = Y^2 + 1 = D \cdot X^2$. $Y = (4y^3 + 3y)$.

y	$4y^3 + 3y$	$D = y^2 + 1$	$X = (2y)^2 + 1$	Fig.
3 3 3 3 3 3 3	$\begin{array}{c} 4.3^3 + 3.3 \\ 4.3^9 + 3.3^3 \\ 4.3^{15} + 3.3^5 \\ 4.3^{21} + 3.3^7 \\ 4.3^{27} + 3.3^9 \end{array}$	2.5; 2.5; 73; 2.5; 5.1181; 2.5; 29.16493; 2.5; 73; 530713;	37; 2917; 13.18169; 19131877; 397.3903481;	5 10 16 22 27
5 5 ³ 5 ⁵ 5 ⁷	$4.5^{3} + 3.5$ $4.5^{9} + 3.5^{3}$ $4.5^{5} + 3.5^{5}$ $4.5^{21} + 3.5^{7}$	2.13; 2.13;601; 2.13;41.9161; 2.13;234750601; B	101; 62501; 3529.11069; 89.641.427949;	6 14 23 30
6 6 ³ 6 ⁵	$4.6^{3} + 3.6$ $4.6^{9} + 3.6^{3}$ $4.6^{15} + 3.6^{5}$	37; 37;13:97; 37;241.6781;	5.29; 125.1493; 5.53.193.4729;	6 16 25
7 73 75	$4.7^{3} + 3.7$ $4.7^{9} + 3.7^{3}$ $4.7^{15} + 3.7^{5}$	2.25; 2.25;13.181; 2.25;5.281.4021;	197 ; 470597 ;	7 17 27

Pellian Bin-Aurifeuillian Chain (Nr).

$$N_r = x_r^4 + 4y_r^4 = L_r \cdot M_r; \quad x_r^2 - 2y_r^2 = (-1)^r; \quad L_{r+1} = M_r = y_{2r+1}.$$

r	===	0	1	2	3	4		5	6	7
x, y	=	1,0	1, 1	3, 2	7, 5	17,	12	41, 29	99, 70	239, 169
M	=	Ι;	5;	29;	13.13	; 5.19	7;	5741;	33461;	5.29;5.269;
r	=	8		9		10			11	12
x, y		577, 40	8 :	1393, 985		3363, 23	78	8119	, 5741	19601, 13860
M	=	137.829	7; 3	7.179057	; 5.1	3.13;45	;697;	229.9	82789;	29; 1549.29201;
										16
x, y	=	4732	1, 3346	61 1	14243,	80782	278	5807, 195	6025	665857, 470832
M	=	5.197;5	3.146	449; 44	1560482	2149?‡	61.1	301.327	2609; 5.	5741;52734529;
r	=		17				18			19
x, y	=	1607	521, 1	.136689		388089	9, 27	44210	936	9319, 6625109
M	=	29.13.1	3;180	0193921	? ‡	593.867	16286	317?‡	5.3346	51; 389.4605197;

High Pellian Bin-Aurifeuillian Chain.

$$\mathbf{N}_r = \mathbf{Y}_r^2 + \mathbf{1} = \mathbf{D}_r, \mathbf{X}_r^2; \quad \mathbf{D}_r = 2^{2r} + \mathbf{1} = \mathbf{X}_{r+1}, \ \ \mathbf{D}_{r+1} = 2^{2r+2} + \mathbf{1} = \mathbf{X}_r.$$

Factors of D_r , X_r all known (by Lucas's Tables) except for $X_{33}=D_{34}$, $X_{37}=D_{38}$, $X_{39}=D_{40}$.

Bin-Aurifeuillian Chains.

$$\mathbf{N}_r = x_r^4 + 4y_r^4 = \mathbf{L}_r, \mathbf{M}_r \; ; \quad x_r^2 - 2y_r^2 = (-1)^r, \mathbf{z}_0 \ [\mathbf{z}_0 \ \text{const.}].$$

$$x_{r-1} + 2y_{r-1} = x_r = x_{r+1} - 2y_{r+1}, \quad x_{r-1} + y_{r-1} = y_r = x_{r+1} - y_{r+1}$$

L''+1.		
[]		
y. + y. + 1		
M. =		
Mr-1,		
$L_{r} = y_{r-1} + y_{r} =$		
$= y_{r-1}$		
Ì		

6	6149, 4348	.17.20057.	2209, 1562	13.219881;	73 63860
σ.	2547, 1801		915, 647	• ^	
7	1055, 746	61.62297;	379, 268	5.16829;	14 14 1604.
9	437, 309	651997;	157, 111	14437;	16820.
ŭ		5.13.1721;	65, 46	2477;	14427
4	75, 53	17.1129;	27, 19	25.17;	2477 :
ಣ	31, 22	37.89;	11,8	73;	25.17:
73	13,9	5.113;	5,3	13;	73
0 1	3,1 5,4	97;	1, 2	5;	13:
0	3,1	17;			
r	x, y	M	x, y	Д ;	M

σ	4517, 3194 5.1373.1741;	1253, 886 5.13.14149; 73.97.757;
7	1871, 1323 13.233.677; 5.1373.1741;	519, 367 157793; 5.13.14149;
9	775, 548 37.37.257; 13.233.677;	215, 152 27073; 157793;
ಸಂ	321, 227 5.12073; 37.37.257;	89, 63 5.929; 27073;
4	133, 94 10357; 5.12073;	37, 26 797; 5.929;
က	55, 39 1777; 10357;	15, 11 137; 797;
62	23, 16 5.61; 1777;	7, 4 25; 137;
1	9,7 53; 5.61;	1, 3 13; 25;
0	5, 2 13; 53;	• • •
1.	x, y L M	x, y L

 $\begin{aligned} & \textit{High Pellian Chains}, \ \ N_r = Y_r^2 + 1 = D_r. X_r^2 > 10^{20}. \\ Y_r = (4y_r^3 + 3y_r), \ D_r = y_r^2 + 1, \ D_{r+1} = (2y_r)^2 + 1 = X_r; \quad y_{r+1} = 2y_r, \ y_r = 2^r. \eta^a; \\ [\eta = 3, \, 5, \, 7, \, 11]. \end{aligned}$

r, η^a	$D_r = y_r^2 + 1$	Fig.	r, η^{α}	$D_r = y_r^2 + 1$	Fig.
9, 3 ¹ 10	61.38677; 5.1887437;	21 23	5, 3 ⁶	29.797:5.17.277; 1297;1678321;	28 30
$\begin{array}{c} 11 \\ 12 \end{array}$	13.2903749; 5.30198989;	24 26	7	293.317:5.18749,	32
13	1093.552589;	28	0, 37	2.5; 29.16493;	$\frac{22}{24}$
14 15	5.483183821; 73.4969.26641;	30 32	2	19131877; 5.15305501;	25
16	5.29.173.1540949;	33	3	61.5018197; 5.24488813;	27 29
17 18	13.97.122616037;	35 37	0, 38	2.21523361; B	25
19 20	37.37.1933.934861; 5.389.	39	1	13.997:5.2657;	26
8, 32	5308417;	22	2 3	17.40514561; 5.10433:52813;	28 30
9	4513:5.941;	24	$9, 5^{1}$	2141.3061;	22
10 11	41.137.15121;	25 27	10	26214401;	24
12 13	281.1009.4793;	29	11 12	104857601; 13.32263877;	26 28
14	5.14669:13.5701;	33	13 14	29.389.148721;	29
15 16	5.89.661:17.17393;	35	15	1481.4531321; 3229.8313269;	33
17	1178113:5.337.701;	38	16 17	2129.	35 37
18 6, 3 ³	r an t an r na t	21	18 19	13.41.53.653.93133;	38
7	5.29; 20593; 1069.11173;	23	$\begin{bmatrix} 15 \\ 6, 5^2 \end{bmatrix}$	89.2161.35730169;	40
8 9	5.269.35521; 577;349:13.73;	25 27	7	769.3329;	21 23
10 11	5.6389.23929;	28 30	8 9	40960001; B 12641:13.997;	25 26
12	109.229.122497; 5.461;5306113;	32	10	655360001;	28
$5, 3^4$	2521:5.13.41;	22	11 12	17.41.73:51521;	30 32
6	1409.19073;	24 26	13 14	204161:205441;	34 35
8 9	17.97.260753;	28 29	15	13.17.3701:820481;	37
10	5.8237:41761;	31	4, 53	41.97561;	22
11 12	165313:5.13.13.197; 17.2801.2311681;	33	5 6	109.229.641;	23 25
13	662401:5.37.3593;	37	7	256000001;	27
3, 35	73.51769;	21 23	8 9	157.6522293; 1601;61.41941;	29 31
5	5.3023309; 37;241.6781;	25	10 11		32
6 7	5.53.193.4729; 13.1873.39733;	27 29	12	29.701.3223769; 37.173;13.13.242329;	36
2, 36	8503057;	22	13 14	89.521.3181.7109;	38
3	25.229:13.457;	24	15	25601; 349.1009.1861;	41
4	1777.76561;	26	16	1597.	43

 $\begin{aligned} & \textit{High Pellian Chains}, \ \ N_r = Y_r^2 + 1 = D_r, X_r^2 > 10^{20}, \\ Y_r = (4y_r^3 + 3y_r), \ \ D_r = y_r^2 + 1, \ \ D_{r+1} = (2y_r)^2 + 1 = X_r \ ; \quad y_{r+1} = 2y_r, \ \ y_r = 2^r, \eta^\alpha \ ; \\ [\eta = 3, \, 5, \, 7, \, 11]. \end{aligned}$

r, η^{α}	$D_r = y_r^2 + 1$	Fig.	r,	ηα	$D_r = y_r^2 + 1$	Fig.
2, 5 ⁴ 3 4 5 6 7 8 9 10	97.64433; 13.13.29:5101; 17.5882353; 19801:20201; 1889:847009; 79601:37.41.53; 17. \$ 319201:13.24677;	22 24 26 28 29 31 33 35 37	10, 11 12 0, 1 2 3 4 5	73 74	25.269. 5.13.193; 1741.90373; 2.17.169553; 5.941:13.13.29; 401.230017; 19013; 5.3881; 17.5393:16097; 76441; 25.3089;	35 37 39 22 24 26 27 29 31
11 12 13 14 15 16 17	1278401:757.1693; 17.17.113.337.641.929; 661.7741:5123201; 20473601:13.409.3853; 17.977. § 61.1342741:29.41.68909;	38 40 42 44 46 47 49	6 7 8 9 8, 9	11¹	70441, 23, 3009, 593, 39818929; 5.37.1657:13.137.173; 17.	33 35 36 38 22 24 26
0, 5 ⁵ 1 2 3 4 5 8, 7 ¹	2.13; 41.9161; 3529.11069; 37.4222973; 241.2593361; 2500000001; 101; 3541:27961; 5.642253;	23 24 26 28 30 32 21	5 6 7 8	11^2	5.1621.62617; 101.20099437; 41.113.809; 5.757:17.233; 59909537; 15313:5.13.241; 10433.91969;	28 30 21 23 25 27 29
9 10 11 12 5, 7 ² 6 7 8	29.233.1901; 25.13.13.12161; 113.1818769; 5.164416717; 17.89:125.13; 9834497; 61.101:5.1277; 3361.46817;	23 25 27 28 21 23 24 26	9 10 11 12 13 14 15 16		229.269:5.17.733; 5.73.677:181.1373; 401.881.695297; 25.17.17.137:13.29.2633; 41.97. 3962113:5.61.13009;	30 32 34 36 38 39 41 43
9 10 11 12 13 14 15	5.4973:17.1489; 2777.906601; 5.13.29.53:100801; 41.73.337.39937; 97.4129:5.17.4733; 761.5441.155657; 181.8861:25.113.569;	28 30 32 34 35 37 39	2 3 4 5	11 ³	17.932593:5.3173069; 5.617.2297; 29.977413; 5.97; 157.1489; 453519617; 5.362815693; 2.17.6304673;	45 22 24 26 28 29 27
16 17 3, 7 ³ 4 5 6 7 8	89. 5.13.17.37.157:6426113; 197; 37.1033; 5.6023629; 109.113.9781; 5.157; 13.47221; 5.617.2499269; 3137; 9831361;	41 43 22 24 26 28 30 31 33	1 2 3 4 5 6 7 8		25.113.257.1151; 5.41.569:337.349; 17. § 5.13.7193:29.16189; 577.5953.255617; 1872113:5.457.821; 17.241.3457.991873; 257.29153:5.137.10949;	29 30 32 34 36 38 39 41 43

Simple Quartans, $N = (y^4 + 1^4)$; [y even]. [All factors < 100,000 cast out.]

y	N	y	N	y	N
2	17;	102	5857.18481;	202	17.41.193.12377;
4	257;	104	17.1657.4153;	204	1731891457;
6	1297;	106	126247697;	206	17.521.203321;
8	17; 241;	108	1777.76561;	208	41.113.404009;
10	73.137;	110	17.17.506609;	210	1944810001;
12	89.233;	112	3361.46817;	212	17.118821361;
14	41.937;	114	1361.124097;	214	33601.62417;
16	65537;	116	353.512929;	216	1297; 1678321;
18	113.929;	118	193877777;	218	3253.69809;
20	160001;	120	41.5057561;	220	2342560001;
22	73.3209;	122	449.493393;	222	21001.115657;
24	331777;	124	73.3238649;	224	2777.906601;
26	17.26881;	126	41.89.69073;	226	337.7741121;
28	614657;	128	17; 15790321; L	228	2702336257;
30	241.3361;	130	97.2944433;	230	17.89.1849577;
32	17; 61681;	132	303595777;	232	41.1721.41057;
34	1336337;	134	17.17.1115633;	234	10321.290497;
36	17.98801;	136	73.233.20113;	236	17.193.945457;
38	41.50857;	138	17.21333761;	238	3208542737;
40	769.3329;	140	384160001;	240	17.6481.30113;
42	17.183041;	142	406586897;	242	3429742097;
44	41.113.809;	144	17.97.260753;	244	97.113.323377;
46	4477457;	146	7433.61129;	246	17.2153.100057;
48	5308417;	148	433.1108049;	248	3782742017;
50	97.64433;	150	41.193.63977;	250	457.8547593;
52	89.82153;	152	577.925121;	252	337.11966641;
54	8503057;	154	562448657;	254	4162314257;
56	9834497;	156	73.953.8513;	256	641.6700417;
58	2393.4729;	158	18433.33809;	258	97.929.49169;
60	17.281.2713;	160	655360001;	260	41.4513.24697;
62 64 66 68 70 72 74 76 78 80	761.19417; 257; 97.673; 17.409.2729; 41.521497; 17.353.4001; 1409.19073; 29986577; 17.569.3449; 5449.6793; 40960001; B	162 164 166 168 170 172 174 176 178	17.40514561; 723394817; 89.8531833; 17.73.641897; 457.1827593; 17.51483121; 916636177; 10433.91969; 17.41.137.10513; 1049760001;	262 264 266 268 270 272 274 276 278 280	40177.117281; 17.137.2085673; 5006411537; 61961.83257; 17.73.113.37897; 5473632257; 17.18089.18329; 5802782977; 5972816657; 17.361562353;
82	45212177;	182	113.617.15737;	282	73.86631049;
84	2089.23833;	184	193.5939009;	284	41.137.1158161;
86	7129.7673;	186	577.2074321;	286	2753.2430289;
88	59969537;	188	313.857.4657;	288	6879707137;
90	65610001; B	190	89.1753.8353;	290	41.8377.20593;
92	449.159553;	192	281.1009.4793;	292	569.1697.7529;
94	17.4592641;	194	1416468497;	294	3793.1969729;
96	41.137.15121;	196	17.5393.16097;	296	7676563457;
98	401.230017;	198	1536953617;	298	17.463891201;
100	17.5882353;	200	1889.847009;	300	8017.1010353;

Simple Quartans, $N = (y^4 + 1^4)$; [y even]. [All factors < 100,000 cast out.]

_		22.1 10	actors < 100,000 cast out.	,	
<i>y</i>	N	<i>y</i>	N	y	N
302 304 306 308 310 312 314 316 318 320 322 324	73.113947529; 17.89.5644889; 67777.129361; 17.313.1691257; 1601.5768401; 9475854337; 17.41.73.191057; 12697.785321; 313.641.50969; 13297.808481; 97.113607841;	402 404 406 408 410 412 414 416 418 420 422 424	1289.20260553; 53401.498857; 17.1598288641; 89.113.1601.1721; 17.19961.83273; 2321.1235497; 17.73.24132457; 46817.652081; 4457.6981593; 337.94106561; 41.788278297;	502 504 506 508 510 512 514 516 518 520 522 524	17.281.13294121; 41.857.1865681; 17.55337.70793; 257.8609.30577; 17; 241; 433.38737; 4073.17137129; 17.97.257.169889; 21737.3363673; 89.14449.57737; 1193.1801.35089;
326 328 330 332 334 336 338 340	673.16782449; 233.50897897; 17.714666481; 953.13374089; 17.97.1249.6337; 17.41.1433.13697;	426 428 430 432 434 436 438 440	73.6833.67273; 14009.2486153; 17.113.18468497; 97.313.601.2017; 17.409.5390617;	526 528 530 532 534 536 538 540	6961.11165137; 41.34297.56113; 97.82579841; 593.137123009; 17.41.193.613577; 137.977.625913;
344 346 348 350 352 354 356 358 360	89.157341673; 36017.397921; 17.7481.115321; 18433.814097; 433.36268129; 401.40054897; 4673.3515689; 15497.1083833;	444 446 448 450 452 454 456 458 460	17.17.134472673; 401.98672257; 41.73.337.39937; 17.257.2833.3313; 97.137.241.13033; 41.233.4447169; 2953.14641849; 2161.20361377; 73.613350137;	544 546 548 550 552 554 556 558 560	2969.29497513; 17.89.1993.29473; 2017.44711201; 17.5461442801;
362 364 366 368 370 372 374 376 378	89.206063593; 137.281.486833; 17.41.27475081; 17.1175716081; 409.49916473;	462 464 466 468 470 472 474 476 478 480	17.241.12321041;	562 564 566 568 570 572 574 576 578	73.1366540169; 521.194213177; 17.193.809.39769; 2089.51244313; 73.2473.601313; 17.2801.2311681; 257.10289.42209; 17.2377.2800489;
382 384 386 388 390 392 394 396 398 400	35801.607337; 35521.624977; 1249.18145313; 16217.1426553; 593.39818929; 22481.1071937; 41.599786777; 1033.24290249;	482 484 486 488 490 492 494 496 498 500	17.3227992561; 1097.50855561; 241.3761.63601;	582 584 586 588 590 592 594 596 598 600	

Simple Quartans, $N = (y^4 + 1^4)$; [y even]. [All factors < 100,000 cast out.]

y	N	y	N	y	N
602 604 606 608 610 612 614 616 618 620	233.563676649; 17.7828865521; 73.4561.405049; 2617.52216841; 17.8144612353; 41.3421541657; 17.8360352001; 41.3557705897; 17.8691962353;	702 704 706 708 710 712 714 716 718 720	401.881.695297; 17. 73.3441994489; 17.17.97.9167489; 17.6073.2545657; 433.613775969; 73.20873.176369;	802 804 806 808 810 812 814 816 818	1033.400495049; 54601.7652857; 41.449.22925033; 17.4409.5686649; 137.3173244601; 17.313.82509577; 5657.78374441; 17.
622 624 626 628 630 632 634 636 638 640	193.281.2759929; 761.201796057; 1609.97905289; 97.1644737441; 113.23473.60913; 353.463504289; 17.9746165761;	722 724 726 728 730 732 734 736 738 740	17.113.141456017; 41.89.75297473; 97.137.20905193; 3769.74524553; 75161.3861817; 6569.44669593; 17.73.241632361;	822 824 826 828 830 832 834 836 838 840	353.1293339569; 17.26177.1035953; 97.1049.1481.3089; 1217.389961553; 137.3497620921; 41.41.287803777; 521.937534777; 89.22433.247001; 97.5132694433;
642 644 646 648 650 652 654 656 658 660	41.4143394217; 17.137.73853993; 97.6961.257921; 17. 40841.4370761; 593.13217.23057; 17.48017.224113; 45361.4132577; 89.113.601.31393;	742 744 746 748 750 752 754 756 758 760	457.670464121; 17. 17.977.19050289; 41.73.409.261241; 281.1150215097; 17.617.31142473;	842 844 846 848 850 852 854 856 858 860	17. 569.2129.422857; 17.16057.1894393; 17.42409.730889; 73.7286326409; 17.41.1201.647401; 113.4840780177;
662 664 666 668 670 672 674 676 678	881.12721.17137; 457.8161.52121; 2657.74046641; 3121.63798737; 41.4914907561; 17.1553.7724257; 12377.16673401; 3617.57734881; 17. 2897.73805233;	762 764 766 768 770 772 774 776 778 780	1009.334140193; 89.601.6369553; 22769.15120673; 13841.25397761; 17.8521.2477561; 41.41.353.449.1361; 17.21817.998009;	862 864 866 868 870 872 874 876 878	20353.27126929; 41.77137.176201; 73.7704575369; 2081.11369.23993; 937.611416873; 9497.60880681; 17. 89.6677102713;
682 684 686 688 690 692 694 696 698 700	17. 12953.16898729; 2281.97089257; 17.17.775275233; 1129.14057.14449; 41.5657883817; 113.5233.396833; 41.89.65798849;	782 784 786 788 790 792 794 796 798 800	- /	882 884 886 888 890 892 894 896 898 900	73.8908046729;

Continued on left of page 119.

Simple Half-Quartans, $\frac{1}{2}N = \frac{1}{2}(y^4 + 1^4)$; $[y \ odd]$. [All factors $< 100,000 \ cast \ out.]$

y	$\frac{1}{2}$ N	y	12N	y	$\frac{1}{2}$ N
1 3 5 7 9 11 13 15 17	1; 41; 313; 1201; 17.193; 7321; 14281; 17.1489; 41761; 17.3833;	101 103 105 107 109 111 113 115 117	89.584609; 56275441; 60775313; 4201.15601; 41.1721441; 17.337.13249; 81523681; 87450313; 17.5511433; 100266961;	201 203 205 207 209 211 213 215 217 219	593.1376257; 849090841; 883050313; 457.2008793; 73.13068697; 241.4112281; 17.60539593; 89.12004217; 13417.82633; 17.41.881.1873;
21 23 25 27 29 31 33 35 37	97241; 139921; 17.11489; 41;6481; 353641; 409.1129; 97.6113; 750313; 89.10529; 1156721;	121 123 125 127 129 131 133 135 137	17.6304673; 1153.99257; 313.390001; 17.137.55849; 138461441; 113.1303097; 3169.49369; 761.218233; 41.1409.3049; 617.302513;	221 223 225 227 229 231 233 235 237 239	233.281.18217; 17.1049.69337; 7121.179953; 97.977.14009; 17.73.1108001; 1033.1378217; 137.241.44633; 1321.1154353; 353.4468777; 809.1217.1657;
41 43 45 47 49 51 53 55 57 59	137.10313; 17.193.521; 401.5113; 97.25153; 17.169553; 73.46337; 17.232073; 41.111593; 5278001; 17.593.601;	141 143 145 147 149 151 153 155 157	89.2220529; 4561.45841; 17.13001489; 97.137.17569; 7001.35201; 17.15290753; 273990641; 17.17.998617; 113.2688377; 2521.126761;	241 243 245 247 249 251 253 255 257 259	73.97.238201; 41.42521761; B 233.7731761; 17.1009.108497; 41.241.194521; 1984563001; 17.257.468889; 89.23754217; 17.128307953; 2249930281;
61 63 65 67 69 71 73 75 77	6922921; 73.107897; 8925313; 937.10753; 113.100297; 12705841; B 14199121; B 1153.13721; 17.89.11617; 41.433.1097;		17.41.97.4969; 601.587281; 370600313; 41.9485321; 407865361; 427518041; 769.582409; 20129.23297; 881.557041; 17.17.1776169;	261 263 265 267 269 271 273 275 277 279	257.257.35129; 17.3041.46273; 2137.1153849; 2541060761; 30593.85577; 241.2609.4289; 41.3089.21929; 2859570313; 569.5173409; 89.34040569;
81 83 85 87 89 91 93 95 97 99	21523361; B 17.73.19121; 41.337.1889; 17.1684993; 281.111641; 5297.6473; 17.2200153; 73.113.4937; 233.189977; 2617.18353;	181 183 185 187 189 191 193 195 197	1777.301993; 17977.31193; 17.3041.11329; 6521.93761; 17.37529113; 41.16230041; 257.2699393; 17.42526489; 73.10316017; 784119601;	281 283 285 287 289 291 293 295 297 299	17.183377633; 353.9085337; 433.2441.3121; 17.457.436649; 18913.184417; 17.210907993; 25673.143537; 113.33510401; 17.7457.30689; 23633.169097;

Simple Half-Quartans, $\frac{1}{2}N = \frac{1}{2}(y^4 + 1^4)$; [y odd]. [All factors < 100,000 cast out.]

y	$\frac{1}{2}N$	y	$\frac{1}{2}$ N	y	$\frac{1}{2}$ N
301 303 305 307 309 311 313 315 317	41.100104161; 401.10509841; 1913.2261801; 33937.130873; 4558310681; 2897.1614593; 4798962481; 17.137.521.4057; 5049019561; 89.58175849;	401 403 405 407 409 411 413 415 417 419	137.1697.55609; 41.334629161; 3769.3712249; 12041.1184881; 41.9049.39209; 17.889334833;	501 503 505 507 509 511 513 515 517	17.73.313.81097; 137.1433.168281; 6353.5282777; 1481.23019641; 59929.586897; 17.41.52048313;
321 323 325 327 329 331 333 335 337 339	17.113.257.10753; 641.8490281; 17.41.1873.4273; 449.12732529; 16553.353897; 17.41.8610913;	421 423 425 427 429 431 433 435 437	97.137.1181969; 17.17.353.156913; 577.28271569; 17.3889.251417; 193.87748937; 17.89.11616697; 97.617.299137; 41.1129.393929; 977.19007873;	521 523 525 527 529 531 533 535 537 539	73.113.4466009; 17.2234386489; 33529.1150249; 17.3697.623009; 9137.4350553; 73.552784657; 17.97.24840737;
341 343 345 347 349 351 353 355 357 359	97.281.248033; 1201; 73.193.409; 2417.2930689; 673.10771417; 17.436337753; 857.8855593; 7763701441; 17.41.73.97.1609; 113.449.160073; 17.1113.43961;	441 443 445 447 449 451 453 455 457 459	62897.300673; 81649.235849; 55889.357169; 17.34057.35729; 17.89.14414377; 14633.1516657;	541 543 545 547 549 551 553 555 557 559	449.95392169; 28649.1539737; 41.113.9661777; 97.468260633; 17.2750563073; 67369.704177; 25657.1875793; 17.17657.162649;
361 363 365 367 369 371 373 375 377	75073.563377; 8681534681; 17.522026489; 39089.232049; 233.39785017; 1321.7170721; 54217.178513; 73.135447881; 193.52333297; 2657.3882713;	461 463 465 467 469 471 473 475 477	17.1049.1266337; 41.2273.250841; 17.1398906233; 353.68530937; 281.4241.21001; 409.6329.9833;	561 563 565 567 569 571 573 575 577	17.233.337.37633; 17.3082976033; 41.89.449.32441; 12457.4387609; 41.1351728281;
381 383 385 387 389 391 393 395 397 399	34897.301913; 17.41.113.136601; 641.17137793; 73.1217.126241; 17.23057.29209; 577.20253553; 17.89.7883177; 193.5737.10993; 1489.8341369; 17.17.17.2579377;	481 483 485 487 489 491 493 495 497 499	17921.1493441; 1553.17522137; 17.1627376489; 41.73.1753.5449; 17.1709413193; 569.51909329; 17.41.43068329; 89.1289.265921; 401.7393.10457;	581 583 585 587 589 591 593 595 597 599	433.131579017; 113.5641.90617; 1361.43026433; 17.44953.77681; 137.337.1303409; 8969.6801049; 17.27961.130073; 17.3736099273; 4153.15499417;

Simple Half-Quartans, $\frac{1}{2}N = \frac{1}{2}(y^4 + 1^4)$; [y odd]. [All factors < 100,000 cast out.]

y	$\frac{1}{2}$ N	y	$\frac{1}{2}$ N	y	$\frac{1}{2}$ N
601 603 605 607 609 611 613 615 617	41.1591050761; 17.3888573673; 113.673.904369; 89.1097.713737; 97.3697.199457; 953.5657.13441; 26113.2811097;	701 703 705 707 709 711 713 715 717 719	17.7265701489; 257.457.1063649; 2377.53152753; 41.233.3001.4457; 241.7561.71713; 91457.1444873;	801 803 805 807 809 811 813 815 817 819	17. 7673.27093617; 17.3833.3254441; 97.113.769.25409; 73.89.33621673; 193.1142991841; 41.1009.5384969;
621 623 625 627 629 631 633 635 637 639	17.313.13974721; 2593.29423041; D,B 17.457.9946609; 41.97.2137.9209; 17.313.14896841; 3217.24953633; 73.89.1033.12113; 17.4842602393;	721 723 725 727 729 731 733 735 737 739	17.8036635513; 521.268083401; 17.193; 97.577.769; 241.6577.90073; 17.17.499445449; 41.3559061593; 673.219192097; 17.7417.1182689;	821 823 825 827 829 831 833 835 837 839	41.97.761.75793; 17.73.186643993; 34033.6872137; 17.1193.11756681; 17.113.233.257.2113; 62137.3949313; 93553.2648257;
641 643 645 647 649 651 653 655 657 659	81569.1034849; 569.6553.23209; 73.1200229417; 281.319585921; 41.2689.824609; 17.1481.3655369; 41.2299999841;	741 743 745 747 749 751 753 755 757 759	41.6113.601457; 97.2273.691121; 113.4057.339601; 89.3329.531121; 313.508142377; 241.3257.204793; 4049.40124537; 17.17.401.1416809; 337.492387713;	841 843 845 847 849 851 853 855 857 859	17.26209.561377; 41.41.401.381761; 409.635151689; 2801.93621401; 89.809.3676441;
661 663 665 667 669 671 673 675 677	17.5897.952129; 2113.45721937; 17.4049.952129; 73.1355659057; 857.1193.97961; 17.929.6417937; 59417.1726313; 89.137.8512841; 73.4969.292993;	761 763 765 767 769 771 773 775 777	17.193.577.89513; 41.809.5162777; 17.257.39606769; 58313.3029857; 17.113.7489.12409; 257.701849009; 4129.4337.10177; 5881.31308961;	861 863 865 867 869 871 873 875 877	569.1249.386641; 137.13049.155137; 17. 4657.60665273; 17. 34457.8351513; 2689.108003089; 17.41.6737.62417; 7057.41912953;
681 683 685 687 689 691 693 695 697	17.137.50088697; 2593.45509137;	781 783 785 787 789 791 793 795 797	73.137.193.96377; 281.24113.27737; 337.563402449; 409.433.1083073; 89.32713.66553; 17.25793.446401; 41.73.66062657; 17.953.12452641; 617.3593.91921;	881 883 885 887 889 891 893 895 897 899	641.504988801;

Continued on right of page 119.

[All factors < 100,000 cast out.]

Continued from page 115. $N = (y^4 + 1^4)$; $[y = \epsilon]$.

И	$= (y^4 + 1^4); [y = \epsilon].$
y	N
902 904 906 908 910 912 914	89.59209.125617; 3257.205048201; 97.6946100401; 5393.126041329; 17.6833.5903441;
916 918 920	17.41.3793.266297; 137.5183822921; 17.97.233.1864553;
922 924 926 928	113.193.1913.17321;
930 932 934 936 938	281.4993.537769; 241.313.10088489;
940 942 944 946 948 950 952 954	41.5281.3605881; 89.769.11505017; 17.233.313.640529; 41. 113.35809.199601; 17.1321.36269593;
956 958 960 962	193.241.17957969; 6793.123993929; 17.1993.25068521;
964 966 968 970 972 974 976 978	257.641.5242241; 577.5953.255617; 41.1481.14579681; 241.3703804177; 193.58913.79153; 7177.126431801; 17.1217.2473.17881;
982 984 986 988 990 992 994 996 998	T

Continued from page 118. $\frac{1}{2}N = \frac{1}{2}(y^4 + 1^4)$; $[y = \omega]$

$\frac{1}{2}N =$	$\frac{1}{2}(y^4+1^4)$; $[y=\omega]$.
y	$\frac{1}{2}$ N
901	21121.15601081;
903	17.281.69593033;
905	41.41.2777.71840:
907	41.41.2777.71849; 24097.14042233;
909	17.5113.3927361;
911	929.1249.296801;
913	
915	27809.12602857;
917	. , , , , , , , , , , , , , , , , , , ,
919	
921	20201.17808841;
923	97.937.3992689:
925	97.937.3992689; 5153.6257.11353;
927	17.73.89.89.37561;
929	41.57697.157433;
931	
933	17.2857.7800769;
935	3313.6217.18553;
937	17.97.233726369;
939	73.2953.1803209;
941	
943	17.353.65886001;
945	433.26161.35201;
947	929.2081.208009;
949	137.2960153873;
951	937.2729.159937;
953	3449.119577209;
955	7817.53203889;
957	41.
959	73.641.9037817;
961	17.
963	
965	0
967	17.89.288959497;
969	137.3217692553;
971	17.73.4817.74353; 113.2297.1726561;
973	113.2297.1726561;
975	10273.27766481;
977	17.17.3881.406169
979	1609.5417.52697;
981	41.
983	31649.14751089;
985	593.793707041;
987	41.56921.203321;
989	353.1355128457;
991	89.1913.2832433;
993	33961.14314841;
995	17.4481.6433369;
999	TT2 F01 6=2 T0=60
999	113.521.673.12569
1001	17.17.

Quartans, $N = (x^4 + y^4) > 9.10^6$; [x and y > 1, y even].

x, y	N	x, y	N	x, y	N
3, 2	97;	51, 4	601.11257;	17, 10	41.2281;
5	641;	53, 4	17.41.11321;	19	140321;
7	2417;	5, 6	17.113;	21	204481;
9	6577;	7	3697;	23	289841;
11	14657;	11	15937;	27	73.7417;
13	17.41.41;	13	73.409;	29	17.42193;
15	89.569;	17	89.953;	31	17.89.617;
17	83537;	19	131617;	33	673.1777;
19	130337:	23	41.6857;	37	17.137.809;
21	17.17.673;	25	391921;	39	17.97.1409;
23	279857;	29	17.41681;	41	1193.2377;
25	113.3457;	31	17.54401;	43	3428801;
27	531457;	35	1501921;	47	281.17401;
29	73.9689;	37	17.110321;	49	401.14401;
31	97.9521;	41	433.6529;	51	6775201;
33	17.69761;	43	41.83417;	53, 10	7900481;
35	17.41.2153;	47	4880977;	5, 12	41.521;
37	1874177;	49	761.7577;	7	17.1361;
39	233.9929;	53, 6	7891777;	11	17.2081;
41	2825777;	3, 8	4177;	13	49297;
43 45 47 49 51 53, 2 3, 4 5 7	457.7481; 4100641; 17.41.7001; 5764817; 6765217; 73.108089; 337; 881; 2657; 17.401;	5 7 9 11 13 15 17 19 21 23	4721; 73.89; 10657; 41.457; 17.17.113; 54721; 41.2137; 134417; 17.11681; 283937;	17 19 23 25 29 31 35 37 41 43	137.761; 151057; 17.17681; 411361; 728017; 944257; 1521361; 41.113.409; 17.167441; 3439537;
11	14897;	25	394721;	47	73.67129;
13	28817;	27	97;5521;	49	5785537;
15	17.41.73;	29	89.7993;	53, 12	7911217;
17	83777;	31	113.8209;	3, 14	137.281;
19	17.7681;	33	17.70001;	5	39041;
21	193.1009;	35	17.88513;	9	41.1097;
23	280097;	37	1878257;	11	17.3121;
25	17.22993;	39	569.4073;	13	66977;
27	137.3881;	41	401.7057;	15	89041;
29	41.17257;	43	73.46889;	17	121937;
31	577.1601;	45	4104721;	19	168737;
33	73.16249;	47	17.287281;	23	17.97.193;
35	97.15473;	49	5768897;	25	409.1049;
37	1874417;	51	6769297;	27	17.33521;
39	449.5153;	53, 8	7894577;	29	745697;
41	89.113.281;	3, 10	17.593;	31	961937;
43	17.201121;	7	12401;	33	1224337;
45	4100881;	9	16561;	37	1912577;
47	4879937;	11	41.601;	39	2351857;
49, 4	17.339121;	13, 10	38561;	41, 14	17.168481;

Quartans, $N = (x^4 + y^4) \gg 9.10^6$; [x and y > 1, y even].

	x, y	N	x, y	N	x, y	N
	43, 14 45 47 51 53, 14 3, 16 5 7 9	3457217; 17.243473; 4918097; 113.60209; 7928897; 65617; 66161; 41.1657; 17.4241; 80177;	9, 20 11 13 17 19 21 23 27 29 31	166561; 17.10273; 193.977; 243521; 41.73.97; 113.3137; 17.25873; 17.89.457; 867281; 769.1409;	25, 24 29 31 35 37 41 43 47 49 53, 24	137.5273; 17.61121; 17.41.1801; 281.6521; 17.17.17.449; 3157537; 3750577; 5211457; 41.241.617; 8222257;
	13 15 17 19 21 23 25 27 29 31	73.1289; 17.6833; 149057; 17.41.281; 260017; 137.2521; 17.26833; 596977; 137.5641; 89.11113;	33 37 39 41 43 47 49 51 53,20 3,22	1345921; 2034161; 2473441; 17.175633; 3578801; 5039681; 953.6217; 6925201; 8050481; 89.2633;	3, 26 5 7 9 11 15 17 19 21 23	457057; 41.11161; 459377; 463537; 471617; 97.5233; 89.6073; 587297; 17.38321; 736817;
	33 35 37 39 41 43 45 47 49 51	1049.1193; 433.3617; 1249.1553; 2378977; 233.12409; 17.97.2113; 1009.4129; 1153.4289; 17.193.1777; 113.60449;	5 7 9 13 15 17 19 21 23 25	193.1217; 17.13921; 281.857; 89.2953; 284881; 317777; 193.1889; 41.10457; 17.30241; 41.15241;	25 27 29 31 33 35 37 41 43 45	847601; 988417; 449.2593; 601.2297; 17.241.401; 17.115153; 41.56857; 73.193.233; 1481.2617; 41.89.1249;
	17 19 23 25	17.468001; 105601; 107377; 119617; 41.3257; 233.809; 17.13841; 384817; 17.29153; 812257;	27 29 31 35 37 39 41 43 45 47	17.73.617; 941537; 233.4969; 569.3049; 233.9049; 769.3313; 17.180001; 3653057; 17.254993; 97.52721;	47 49 51 53, 26 3, 28 5 9 11 13 15	17.313921; 433.14369; 7222177; 1009.8273; 17.36161; 17.17.2129; 621227; 113.5569; 643217; 577.1153;
l	37 41 43 47 49 53, 18	73.73.193; 41.39161; 1129.1753; 2930737; 17.17.89.137; 41.121577; 17.449.769; 17.137.3433; 160081; 17.41.233;	49 51 53, 22 5, 24 7 11 13 17 19 23, 24	113.53089; 6999457; 577.14081; 17.19553; 334177; 346417; 360337; 73.5689; 462097; 193.3169;	17 19 23 25 27 29 31 33 37 39, 28	241.2897; 744977; 41.21817; 761.1321; 1146097; 17.77761; 17.90481; 1800577; 17.281.521; 17.41.4201;

Quartans, $N = (x^4 + y^4) \gg 9.10^6$; [x and y > 1, y even].

x, y	N	x, y	N	x, y	N
41, 28	73.47129;	11, 34	1350977;	35, 38	1697.2113;
43	41.98377;	13	1364897;	37	3959297;
45	4715281;	15	449.3089;	39	4398577;
47	433.12689;	19	1466657;	41	4910897;
51	97.76081;	21	41.37337;	43	17.569.569;
53, 28	8505137;	23	577.2801;	45	6185761;
7, 30	812401;	25	41.73.577;	47	6964817;
11	824641;	27	113.16529;	49	17.409.1129;
13	838561;	29	2043617;	51, 38	137.64601;
17	893521;	31	241.9377;	3, 40	17.41.3673;
19	17.55313;	33	2522257;	7	617.4153;
23	1089841;	35	2836961;	9	2566561;
29	977.1553;	37	89.36073;	11	137.18793;
31	41.42281;	39	3649777;	13	409.6329;
37	2684161;	41	4162097;	17	193.13697;
41	3635761;	43	4755137;	19	2690321;
43	17.248753;	45	5436961;	21	2754481;
47	89.63929;	47	113.55009;	23	2839841;
49	17.41.9433;	49,34	7101137;	27	41.75401;
53, 30	17.511793;	5,36	73.23017;	29	17.192193;
3, 32 5 7 9 11 13 15 17 19 21	41.25577; 1049201; 1050977; 1055137; 97.97.113; 17.63361; 241.4561; 857.1321; 117.8897; 17.73121;	7 11 13 17 19 23 25 29 31 35	1682017; 73.23209; 17.89.1129; 1763137; 1809937; 1959457; 2070241; 41.58217; 137.19001; 17.187073;	31 33 37 39 41 43 47 49,40 5,42	17.204913; 89.42089; 17.97.2689; 17.286673; 5385761; 5978801; 7439681; 8324801; 3112321; 457.6841;
23 25 27 29 31 33 35 37 39 41	1328417; 193.7457; 41.89.433; 673.2609; 1972097; 17.131441; 17.149953; 2922737; 3362017; 3874337;	37 41 43 47 49, 36 3, 38 5 7 9	3553777; 4505377; 97.52561; 17.241.1601; 353.21089; 2085217; 433.4817; 97.21521; 17.41.3001; 89.23593;	13 17 19 23 25 29 31 37 41 43	17.184721; 3195217; 3242017; 3391537; 73.47977; 3818977; 4035217; 577.8641; 89.66713; 2393.2729;
43	4467377;	13	521.4057;	47, 42	17.470081;
45	73.70537;	15	17.73.1721;	3, 44	17.97.2273;
47	17.17.73.281;	17	2168657;	5	17.220513;
49	97.70241;	21	2279617;	7	449.8353;
51	7813777;	23	113.20929;	9	41.91577;
53, 32	8939057;	25	17.145633;	13	617.6121;
3, 34	1336417;	27	2616577;	15	113.33617;
5	1336961;	29	433.6449;	17	433.8849;
7	1338737;	31	137.21961;	19	73.53129;
9, 34	1342897;	33,38	73.44809;	21, 44	3942577;

Continued on left of page 125.

Half-Quartans, $\frac{1}{2}N = \frac{1}{2}(x^4 + y^4) > 9.10^6$; [x and y > 1, xy odd].

x, y	$\frac{1}{2}$ N	x, y	$\frac{1}{2}$ N	x, y	$\frac{1}{2}$ N
5, 3 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65, 3 7, 5 9 11 13 17 19 21 23 27 29 31 33 37 41 43 47 49 51 55 55 55 56 61 65, 3 7 49 40 40 40 40 40 40 40 40 40 40	353; 17.73; 17.433; 14321; 41801; 113.577; 17.8233; 195353; 353681; 461801; 750353; 937121; 17.17.4889; 73.23417; 2439881; 2882441; 89.97.457; 953.4801; 113.53617; 17.407233; 257.34729; 17.49; 14593; 42073; 233.281; 97553; 17.73.113; 17.15649; 41.89.97; 462073; 233.281; 97553; 17.73.113; 17.15649; 41.89.97; 462073; 233.281; 97553; 17.73.113; 17.97.857; 1709713; 2440153; 1009.2857; 1601.2113; 41.96233; 17.310489; 6058993; 17.407249; 257.30649; 4481; 8521; 113.137; 26513; 42961; 66361; 141121; 41.4793	27, 7 29 31 33 37 39 41 43 45 47 51 55 57 59 61 65, 7 13 17 19 23 25 29 31 35 55 57 41 43 47 47 47 49 49 49 49 49 49 49 49 49 49 49 49 49	266921; 17.20873; 17.113.241; 594161; 17.97.569; 17.68113; 1414081; 1710601; 1321.1553; 2441041; 3383801; 409.9649; 809.5657; 41.128761; 97.62473; 41.281.601; 17.73.7193; 10601; 17.1033; 73.617; 89.769; 89.1609; 198593; 241.1481; 465041; 17.97.457; 940361; 1416161; 977.1753; 17.137.1049; 113.25537; 3948521; 17.41.6569; 233.2607; 2153.3217; 89.28593; 21601; 32633; 49081; 72481; 104561; 73.2017; 97.2089; 137.1993; 17.17.1249; 17.41.673; 757633; 17.73.761; 17.68473; 14.20201; 89.19289; 2057633; 2447161;	49, 11 51 53 53 57 59 61 63 63 65, 11 15, 13 17 19 21 223 225 27 29 31 33 35 35 37 41 43 45 47 49 51 53 55 57 59 61 63, 13 17, 15 19 23 29 31 37 41 43 47 49 53 55 57 59 61 63, 13 17, 15 19 23 29 31 37 41 43 47 49 53 55 57 59 61 63, 13 17, 15 19 23 29 31 37 41 43 47 49 53 55 57 59 61 63, 13 17, 15 19 23 29 31 37 41 43 47 49 53 59 61, 15 19, 17 21 23 25 27 29 31 33, 17	41.70481; 41.89.929; 3952561; 1321.4001; 577.10513; 6930241; 17.463753; 17.97.5417; 17.17.137; 56041; 17.4673; 111521; 41.3761; 17.12329; 280001; 97.3793; 476041; 281.2161; 764593; 951361; 97.14713; 17.41.2473; 761.2713; 2454121; 17.170393; 457.7433; 17.44.2473; 761.2713; 2454121; 17.170393; 457.7433; 17.44.8713; 257.26993; 281.28081; 67073; 90473; 165233; 378953; 487073; 41.23473; 601.2393; 17.145909; 2907713; 233.17041; 6083993; 60948233; 106921; 97.1433; 97.1873; 237073; 307481; 233.1697; 41.11281; 41.113.137;

Half-Quartans, $\frac{1}{2}N = \frac{1}{2}(x^4 + y^4) > 9.10^6$; [x and y > 1, xy odd].

Continued on right of page 125.

Continued from page 122.

 $N = (x^4 + y^4) > 9.10^6$; [x and y > 1, $y = \epsilon$].

Ì	N		$y > 1, y = \epsilon_{j}$
x, y $23, 44$ 25 27 29 31 35 37 39 41 43 45 47 49 21 25 27 29 31 35 37 39 41 43 $45, 46$ $5, 48$ 7 9 11	N 137.29401; 401.10321; 4279537; 17.137.1913; 17.97.2833; 1129.4649; 17.336751; 409.16073; 7166897; 1289.6089; 8627777; 4477537; 4477537; 4478081; 17.263521; 1153.3889; 17.89.2969; 4506017; 41.110441; 4560977; 4607777; 4671937; 1753.2777; 17.294641; 41.126457; 1433.3769; 5663377; 233.25657; 113.56209; 6790897; 17.353.1217; 353.22369; 17.504593;	x, y 11, 50 13 17 19 21 23 27 29 31 38 37 39, 50 3, 52 5 7 9 11 15 17 19 21 23 25 27 29 31 33 35, 52 7 11 13 17 19 21 23 25 5, 54	N 73.85817; 6278561; 6333521; 17.89.4217; 6444481; 89.73369; 41.193.857; 929.7489; 593.12097; 7435921; 8124161; 433.19777; 1481.4937; 2273.3217; 929.7873; 17.73.5897; 7326257; 17.433073; 17.17.453073; 17.97.4513; 7506097; 7591457; 17.453073; 17.453073; 17.453073; 17.453073; 17.453073; 17.453073; 17.501041; 8531617; 8633377; 17.41.12601;
7	17.312401; 17.521.601; 1249.4273; 5391937; 449.12113; 17.328721; 41.97.1433; 6015697; 73.85369; 113.60257; 2609.2753; 17.478481; 2473.3529; 41.152441; 6252401;	23 25, 54	8633377;

Continued from page 124. $\frac{1}{2}N = \frac{1}{2}(x^4 + y^4) > 9.10^6$; [x and y > 1, xy = \omega].

x, y	12N
59, 37 61 63, 37 41, 39 43 47 49 53 55 59	6995761; 17.401.1153; 337.26153; 17.151153; 2866121; 41.87721; 1777.2273; 5101961; 73.233.337; 7215401;
61, 39 43, 41 45 47 49 51 53 55 57	17.475273; 3122281; 73.47441; 73.89.593; 4295281; 4795481; 113.47417; 5988193; 6690881; 7471561;
61, 41 45, 43 47 49 51 53 55 57 59 61, 43	
47, 45 49 53 59 61, 45 49, 47 51 53 55 57	1889.2377; 4932713; 41.257.569; 113.71761; 73.122921; 17.337.929; 5822441; 17.375593; 113.62081; 1009.7649;
59, 47 51, 49 53 55 57 59, 49 53, 51 55, 51 55, 53	577.11833; 17.193.2273; 8160401; 857.10433; 257.28513; 409.19457;

High Irreducible Quartans, $N = (x^4 + y^4) > 9.10^6$. [Octavans excluded.]

 $x = \xi^r$, $y = \eta^r$; $[x, y \gg 11]$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

‡‡ No divisors < 12,000.

Dimorph Quartans, $N = (x^4 + y^4) = (x'^4 + y'^4) = (L_1, L_2) \cdot (M_1, M_2)$.

M_2	6481; 390001; 346501; 73.193.409; 5576881; 241; 5521; 97.673; 51361; 380881; 1678321; 73.4057;	5082931681?† 7.193.577.71993; *
M_1	2129; 73-2281; 89-937; 353-4177; 113; 3217; 51137; 73-601; 214481; 1049-1433; 326561;	508
L_2	8929; 428801; 521.2441; 6026609; 137.73721; 569; 2867; 73.1049; 41.9689; 629081; 401.4457; 97.30113;	***************************************
L_1	17; 97; 257; 337; 641; 41; 313; 353; 17.73; 17.73; 17.73; 17.193;	17;
y,	1176 40540 35710 419762 480032 158 3351 17332 29812 89345 287394 161405 884947	514 10381 2061283
x'	653, 2513, 52881, 81659, 108201, 59, 2338, 529, 23109, 15322, 20109, 15322, 30773, 125516,	359, 10203, 1584749,
y	76 11888 31494 31238 345588 34558 3494 6673 32187 59678 67429 174484	542 12231 555617
x	1203, 40465, 53935, 419909, 444311, 134, 1623, 17236, 6484, 84545, 287178, 7805, 875539,	103, 2903, 2219449,
n t		5 = 3 5 = 2
Ex.	110000000000000000000000000000000000000	14 15 16

* The composition of these large numbers is not known.

	4), $y = 2\xi^{3}\eta$.	ξ^4), $Y = 2\xi\eta^3$.
$N = (x^4 + y^4) = (X^4 - 4Y^4) = L.M.$	$x = (2\eta^4 - \xi^4),$	$X = (2\eta^4 + \xi^4),$
) = N	$y=\xi\eta^3$.	$Y=\xi^3\eta.$
	$x = (\frac{1}{2}\eta^4 - \xi^4),$	$X = (\frac{1}{2}\eta^4 + \xi^4),$

M	1601; 295937; 7096897; 97.137.5209; 17.73.521; 873.6897.24 444449; 2111969; 73.257.1049; 17.89.3929;
L	577; 17.1353; 17.37353; 65028097? 65028097? 6503; 6610; 673; 101,8849; 17.89,313; 101,889; 5894401;
'n	4 8 112 16 108 216 432 500 1000 1500
х,	31, 511, 8191, 449, 449, 8111, 593, 113, 1967,
ξ, η	11111000000000 CC
M	89; 16673; 421273; 4198529; 113.599; 113.593; 89.51977; 521.1009; 1067009; 2745529; 17.73.7369; 6744473;
T	73; 17.977; 353.1193; 1289.3257; 2089; 17.17.15361 17.16217; 113.593; 117.16217; 113.593; 117.16217; 113.593; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217; 117.16217;
	8 64 216 512 24 24 192 192 192 40 320 080 2560 2560 2560
y	22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x, y	7, 127, 2048, 5 2048, 5 73, 1967, 15 617, 497, 497, 23, 10 23, 10 23, 3 23, 3 24, 3

Quartan Nexuses (N1, N2, N3) and Square 4-tan Products.

$$\begin{split} \mathbf{A} &= \mathrm{A}^2 - 3\mathrm{B}^2, \ \ \mathbf{B} = 2\mathrm{AB} \ ; \quad x = \mathrm{A}^2 + 3\mathrm{B}^2 \ ; \quad y_1 = \mathbf{A} + \mathbf{B}, \ \ y_2 = \mathbf{A} \sim \mathbf{B}, \ \ y_3 = 2\,\mathbf{B}. \\ \mathrm{N}_1 &= x^4 + y_1^4 = \mathrm{L}_2\mathrm{L}_3 \ ; \quad \mathrm{N}_2 = x^4 + y_2^4 = \mathrm{L}_3\mathrm{L}_1 \ ; \quad \mathrm{N}_3 = x^4 + y_3^4 = \mathrm{L}_1\mathrm{L}_2 \ ; \\ \mathrm{N}_1\mathrm{N}_2\mathrm{N}_3 &= (\mathrm{L}_1\mathrm{L}_2\mathrm{L}_3)^2. \end{split}$$

А, В	x;	y_1 ,	y_2 , y_3	L_1	L_2	L_3
2, 1	7;	5,	3, 8	73;	89;	2.17;
1, 2	13;	15,	7, 8	113;	17.17;	2.137;
4, 1	19;	21,	5, 16	281;	17.41;	2.233;
1, 4	49;	55,	39, 16	1777;	17.193;	2.2273;
2, 3	31;	35,	11, 24	17.41;	1801;	2.673;
4, 3	43;	35,	13, 48	2473;	3529;	2.17.41;
1, 6	109;	119,	95, 24	9601;	14737;	2.11593;
5, 6	133;	143,	23, 120	14929;	34849;	2.17.617;
5, 2	37;	33,	7, 40	17.97;	2689;	2.569;
2, 5	79;	91,	51, 40	4201;	41.241;	2.5441;
5, 4	73;	63,	17, 80	6689;	10369;	2.2129;
4, 5	91;	99,	19, 80	6761;	17.953;	2.5081;
2, 7	151;	171,	115, 56	16361;	32377;	2.17.1249;
7, 2	61;	65,	9, 56	3217;	17.433;	2.2153;
4, 7	163;	187,	75, 112	18169;	47513;	2.20297;
7, 4	97;	57,	55, 112	15569;	17.929;	2.3137;
7, 6	157;	143,	25, 168	17.1697;	48673;	2.41.257;
8, 3	91;	85,		9337;	41.401;	2.3673;
8, 1	67;	77,	45, 32	3049;	17.409;	2.41.97;
1, 8	193;	207,	175, 32	31649;	73.601;	2.17.2161;
8, 5	139;	91,	69, 160	97.313;	17.1993;	2.6521;
5, 8	217;	247,	87, 160	41.809;	257.337;	2.17.2017;
8, 7	211;	195,		17.3001;	193.457;	2.19433;
7, 8	241;	255,	31, 224	51137;	115201;	2.32993;
			2597, 208		1753.4513;	2.7306217;
1,30	2701;	2759,	2639, 120	17.410513;	7626481;	2.41.177761;

Solutions of $(\xi^4 + \eta^4 + \zeta^4)^2 = ({x'}^2 + {y'}^2 + {z'}^2)^2 = 2 ({x'}^4 + {y'}^4 + {z'}^4) = 2 (\xi^8 + \eta^8 + \zeta^8) .$ $\xi^2 + \eta^2 = \zeta^2 \; ; \quad x' = \xi^2 - \xi \eta - \eta^2, \quad y' = 2\xi \eta, \quad z' = \xi^2 + \xi \eta - \eta^2.$

ξ	=	3,	5,	8,	7,	20,	12,	9,	28,	11,	16,	33,	48
										60,			55
ζ	=	5,	13,	17,	25,	29,	37,	41,	53,	61,	65,	5.65,	73
x'		5,	59,	41,	359,	379,	661,	1159,	19,	2819,	2705,	199,	1919
y'	=	24,	120,	240,	336,	840,	840,	720,	2520,	1320,	2016,	3696,	5280
z'	=	19,	179,	281,	695,	461,	1501,	1819,	2501,	4139,	4721,	3895,	3361

Associate Quartans, (H_n) .

$H_n = \frac{1}{2} (x'^4 + y'^4) =$	$2^{2n} + 6 \cdot 2^n + 1$;	$[x'=2^{\frac{1}{2}n}-1,$	$y' = 2^{\frac{1}{2}n} + 1].$
-------------------------------------	------------------------------	---------------------------	-------------------------------

n	1	3	5	7	9	11
H	17;	113;	1217;	17.1009;	17.15601;	4206593;
n	2	4	6	8	10	12
x', y'	1,3	3, 5	7, 9	15, 17	31, 33	63, 65
H	41;	353;	4481;	67073;	1054721;	16801793;
n H	193.	13 347969	; 1	15 7.63172849	; 17.97	17 .10418833;
n x', y' H		14 7, 129 ·33529	; 59	16 255, 257 93 · 7243441		18 11, 513

For other Table of H_n, see foot of page 133.

Criteria of
$$n = \omega$$
 or ϵ in $H_n \equiv 2^{2n} + 6 \cdot 2^n + 1 \equiv 0 \pmod{p}$, $p = a^2 + b^2 = c^2 + 2d^2 = 8\varpi + 1$, $[2^{\frac{\delta}{n}} \equiv +1 \pmod{p}]$

$$p = a^{2} + b^{2} = c^{2} + 2d^{2} = 8w + 1. \quad [2^{5} \equiv +1 \pmod{p}.]$$

$$(2/p)_{4} \quad \overline{1}, \quad \overline{1}, \quad +1, \quad +1 \quad (2/p)_{8} \quad \overline{1}, \quad \overline{1}, \quad +1, \quad +1$$

Factors (p) of
$$H_n = 2^{2n} + 6 \cdot 2^n + 1$$
. [Complete to $p \geqslant 1,400$.] $n = m\xi + n_0$, $n' = m'\xi + n'_0$; $n + n' = \xi$; $2^{\xi} \equiv +1 \pmod{p}$.

p	17	41	97	113	137	193	313	353	401	109	449	521	569	577	593
n_0	I	2	17	3	24	13	46	4	67	70	103	24	108	63	16
n_0'	7	18	31	25	44	83	110	. 84	133	134	121	236	5 176	_ 81	132
p	761	769	809	857	929	977	1009	1129	1153	120	01 19	217	1297	1361,	&c.
n_0	54	41	134	60	181	155	7	122	84	8	86	5	35	49	
n_0'	326	393	270	368	213	333	497	442	204	2	14	147	613	631	
		4					721.			6353	3			8009	
n_0	n_0'	6,	554			57.	238		5.3	2. 30	27		1.1.	3990	

Base-Quartan $N_0 = x_0^4 + y_0^4 = h^4 + k^4$.

Ineffective Characteristics $[C = 0, \pm 1]$.

ii	a_0, c_0, e_0	x_0, y_0	C'' - 0	a_0, c_0, e_0	x_0, y_0	C $C'' = 0$
iii. iv.	$ \begin{array}{c} a_0 - h \\ c_0 = h^2 - k^2 \\ e_0 = h^2 + k^2 \end{array} $	h, k h, k	$C''' = -1$ $C^{iv} = +1$	$\begin{array}{ll} \mathbf{a_0} = & k^2 \\ \mathbf{c_0} = & k^2 - h^2 \\ \mathbf{e_0} = -h^2 - k^2 \end{array}$	$k, h \\ k, h \\ k, h$	$C''' = 0$ $C''' = -1$ $C^{iv} = +1$

Equivalent and Reciprocal Characteristics (C_1, C_2) .

$(E), \ Equivalent, \ C_1C_2 = -1 \ ; \ \ (R), \ Reciprocal, \ (C_1-1/C_1)(C_2-1/C_2) = 4.$

a_0	x_0, y_0	C''	c_0, e_0, P_0	x_0, y_0	C', C''', Civ	R or E
$-h^2 - h^2 - h^2$	k, h h, k		$ \begin{vmatrix} c_0 = h^2 - k^2 \\ e_0 = -h^2 - k^2 \\ e_0 = -k^2 - h^2 \end{vmatrix} $	k, h h, k k, h	$\begin{array}{ll} C^{\prime\prime\prime} &=& (k^2 \! - \! 2 h^2)/k^2 \\ C^{\prime\prime\prime} &=& (h^2 \! - \! 2 k^2)/h^2 \\ C^{\rm tv} &=& -(2 h^2 \! + \! k^2)/k^2 \\ C^{\rm iv} &=& -(h^2 \! + \! 2 k^2)/h^2 \\ C^{\prime} &=& \frac{1}{2} h^2 \end{array}$	R of C'' R of C''

Characteristics (C) of Simple Quartans, $N_4 = (1 + k^4)$.

i.	1 2 3 4	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} z_0 & & C' \\ \frac{1}{2}k^3 & & \frac{1}{2}k^2 \\ \frac{1}{2}k^3 & & -(\frac{1}{2}k^4-2)/k^2 \\ \frac{1}{2}k^4 & & \frac{1}{2}k^4-k^2+1) \\ \frac{1}{2}k^4 & & -(\frac{1}{2}k^4+k^2+1) \end{array}$	E, I, R C_2''
ii.	1 2 3 4 5 6 7 8	x_0, y_0 1, k 1, k $k, 1$ $k, 1$ 1, k 1, k $k, 1$ $k, 1$ 1, k 1, k $k, 1$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I \\ E ext{ of } C_1' \\ R ext{ of } C_1''' \\ R ext{ of } C_2^{ ext{iv}} \\ R ext{ of } C_4^{ ext{iv}} \\ R ext{ of } C_4^{ ext{iv}} \\ I \\ *$
iii.	1 2 3 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} { m c}_0 & , & { m d}_0 \ k^2-1 & , & k \ -k^2+1 & , & \ell \ k^2-1 & , & k \ -k^2+1 & , & k \end{array}$	$z_0^{\prime\prime\prime}, \qquad C^{\prime\prime\prime} \ 1 \ , \qquad (k^2-2)/k^2 \ 1 \ , \qquad -1 \ k \ , \qquad -1 \ k \ , \qquad (-2k^2+1)$	$R ext{ of } C_3^{\prime\prime}$ I I $R ext{ of } C_5^{\prime\prime}$
iv.	1 2 3 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} \mathbf{e}_0 & , & \mathbf{f}_0 \\ k^2+1 & , & k \\ -\left(k^2+1\right) & , & k \\ k^2+1 & , & k \\ -\left(k^2+1\right) & , & k \end{array}$	$egin{array}{cccc} z_0^{ { m iv}}, & C^{{ m iv}} \\ 1 \; , & +1 \\ 1 \; , & -(k^2+2)/k^2 \\ k \; , & +1 \\ k \; , & -(2k^2+1) \end{array}$	$egin{array}{c} I \ R ext{ of } C_4^{\prime\prime} \ I \ R ext{ of } C_6^{\prime\prime} \end{array}$

 $N_0 = 1^4 + 2^4 = 17$.

4

Ref.

No.

1

2

4

2

ii.

2, 1

[Primary Sets.]

 $N_0 = 3^4 + 2^4 = 97$.

4 4/3, -13/9

$C_3^{\prime\prime\prime}$ $C_4^{ m iv}$ 3/4 04 1, 2 3, 2 4, 9 1/2,9/2, -5/4 $\overline{4}$, $C_4^{\mathrm{i} v}$ $\overline{4}$, 3, 2 6 1, 2 1 1/2, -5/49 9/2, -13/44, I 2, 3 9, I 7 2, 1 1 0 4 0 4/3, 8 2, 1 $\overline{4}$, 1 -8 2, 3 $\overline{9}$, 4 4/3, -8/9C'''RC'''' $x_0, y_0 | c_0, d_0$ z_0 , x_0, y_0 c_0, d_0 z_0 , R

-5

	x_0, y	y_0	e ₀ ,	\mathbf{f}_0	z ₀ ,	C^{iv}	R	x_0	y_0	e ₀ ,	\mathbf{f}_0	z_0 ,	C^{iv}	R
111.3	2.	1	3.	2	2 .	- I	I	2.	3	5,	6	2 .	-7/2 1/9 -1	$C_3^{\prime\prime}$ $C_5^{\prime\prime}$ I
1	1,	2	3,	2	Ι,	I/2	C_3	3,	$2 \mid$	5,	6	3,	— I	I

1	1, 2	5, 2	I, I	I	3, 2	13, 6	3,	I	I
2	1, 2	$\overline{5}$, 2	I, -3/2	$C_4^{\prime\prime}$	3, 2	$\overline{13}$, 6	3,	— I I/2	$C_4^{\prime\prime}$
14.3	2, 1	5, 2	2 , I	I	2, 3	13, 6	2,	I	I
4	2, 1	$\overline{5}$, 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_6^{\prime\prime}$	2, 3	$\overline{13}$, 6	2,	-17/9	$C_6^{\prime\prime}$

Factorisants from $N_0 = 17$.

Ref.	x_0, y_0	P_0 ,	Q_0	z'_0 ,	C'	Factorisant.	Serial.
i. 2 4	1, 2 1, 2 2, 1 2, 1	9,	8	4, 4, 8, 8,	$-\frac{2}{5/2}$ $-\frac{5}{13}$	$ \begin{aligned} &(2x)^2 + 3y^2 &= z^2 \\ &- 5x^2 + 21\left(\frac{1}{2}y\right)^2 &= z^2 \\ &10x^2 + 6\left(2y\right)^2 &= z^2 \\ &- 26x^2 + 42\left(2y\right)^2 &= z^2 \end{aligned} $	$\begin{bmatrix} x, x; & z, z \\ x, x; & y, y \end{bmatrix}$
3 4 ii. 5 6 8	$egin{array}{c} x_0, y_0 \\ 2, 1 \\ 2, 1 \\ 1, 2 \\ 1, 2 \\ 2, 1 \\ \end{array}$	1,	4 4 1 1	4, 4, I/2, I/2,	-5	Factorisant. $6x^2 - 2(2y)^2 = z^2$ $10x^2 - 6(2y)^2 = z^2$ $-\frac{3}{2}x^2 + 7(\frac{1}{4}y)^2 = z^2$ $\frac{5}{2}x^2 - (\frac{3}{4}y)^2 = z^2$ $(4x)^2 - 7(3y)^2 = z^2$	Serial. y, z y, y; z, z x, x; z, z y, y; z, z z

 $N_0 = 1921 = 17.113.$

	0	
Primary.		Secondary

	ef.	x_0	y_0	P_0 ,	Q_0	z'_0 ,	C'	R	P_0 ,	Q_0	$z_{0}^{\prime},$	₹ C'	R
-1	1	5,	6	961,		160,	26		65,	48	8,	10/9	
	2	5,		961,		_ ′	-493/18		$\frac{65}{65}$.	48	8,	-5/2	
i.	3	6,		961,		192,	37		65,	48	48/5,	29/25	
	4	6,	5	961,	960		-997/25		$\overline{65}$,	48		-101/25	
				-	1.	$z_0^{\prime\prime}$,		D		7	"	CU.	D
		x_0 ,	y_0	a ₀ ,	\mathbf{b}_0	z_0 ,	$C^{\prime\prime}$	R	a_0 ,	b_0	z'',	C''	R
	1	5,		25,	36	6,	О	I	39,	20	10/3,	7/18	C_3^{iv}
	2	5,		$\overline{25}$,	36	6,	-25/18	-111	39,	20	10/3,	- 16/9	$C_3^{\prime\prime\prime}$
	3	6,		25,	36	36/5,	-11/25	$C_1^{\prime\prime\prime}$	39,	20	4 ,	3/25	all air
ii.	4	6,	5	25,	36	36/5,	-61/25	C_2^{iv}	39,	20	4 ,	-3	$C_1^{\prime\prime\prime}C_2^{\mathrm{iv}}$
	5	5,	6	36,	25	25/6,	11/36	$C_4^{\prime\prime\prime}$	20,	39	13/3,	-5/36	
	6	5,	6	36,	25	25/6,	-61/36	$C_4^{ m iv}$	$\overline{20}$,	39	13/3,	-5/4	
	7	6,	5	36,	25	5,	O	I	20,	39	39/5,	-16/25	
	8	6,	5	36,	25	5 1	-72/25		20,	39	39/5,	-56/25	
		x_0	24.	c0,	d_o	z_0''' ,	C'''	R	$ c_0,$	d_0	$z_0^{\prime\prime\prime}$,	C'''	R
	4			-									$C_4^{\prime\prime}C_2^{\mathrm{i}\mathbf{v}}$
	1 2	5, 5,		$\frac{11}{11}$,	30 30	5,	-7/18	$C_3^{\prime\prime}$ I	$\frac{43}{43}$,	6	Ι,	1/2	C4 C2
iii.	2	6,	- 1	11,	30	5 , 6 ,	- I	I	43,	6	I ,	-17/9	$C_2^{\prime\prime}$
	4	6,		$\frac{11}{11}$,	30	6,	-47/25	$C_5^{\prime\prime}$	$\frac{43}{43}$,	6	6/5,	$\frac{7}{25}$	C2
				,	.,,		4//25	0,5	10,		0/3,	79125	
		x_0 ,	y_0	e ₀ ,	f_0	$z_0^{\mathrm{i}\mathrm{v}},$	C^{iv}	R	e_0 ,	f_0	z_0^{iv} ,	$C^{\mathrm{i}\mathrm{v}}$	R
	1	5,	6	61,	30	5 ,	+ 1	I	47,	12	2 ,	11/18	
	2	5,	6	61,	30	5,	-43/18	$C_4^{\prime\prime}$	$\overline{47}$,	12	2 ,	-2	$C_4^{\prime\prime}C_1^{\prime\prime\prime}$
iv.	3	6,	5	61,	30	6,	+ 1	$I_{}$	47,	12	12/5,	11/25	$C_1^{\mathrm{i}\mathrm{v}}$
	4	6,	5	$\overline{61}$,	30	6,	-97/25	$C_6^{\prime\prime}$	$\overline{47}$,	12	12/5,	-83/25	

Associate Quartans, (H_n).

$$H_n = \frac{1}{2}(x'^4 + y'^4) = y^{4n} + 6y^{2n} + 1; \quad [x' = y^n - 1, y' = y^n + 1].$$

		y = 6		y = 10			y = 12
n	x', y'	Н	x', y'	Н	x',	y'	Н
1 2 3	5, 7 35, 37 215, 217	1687393;					21601; 41.10490393?†

For Table of H_n with y = 2, see page 130.

Simple Quartan Chains, $N_r = (1^4 + y_r^4) = L_r \cdot M_r$.

$$y_{-1} = 0$$
, $y_{r+1} = y_0^2 \cdot y_r - y_{r-1}$;

$$L_0 = 1$$
; $M_0 = 1^4 + y_0^4$; $M_{r-1} = 1 + y_{r-1}y_r = L_r$; $M_r = 1 + y_r y_{r+1} = L_{r+1}$.

r	0	1 2	3	4	5
x, y			1, 112	1, 418	
M	17; 24	3361	; 46817;	652081;	313.29017
2.	6		7		8
x, y	1, 5822		1, 21728		1, 81090
M	17.89.8360	9;	7753.227257	,	113.569.381673
3.	0	1	2	3	4
x, y	1, 3	1, 27	1, 240	1, 2133	1, 18957
M	2.41;	6481;	17.30113;	2.17.337.352	9; 193.16548577
x, y	1, 4	1, 64	1, 1020	1, 16256	
M	257;	97.673;	449.36929;		§
x, y	1, 5	1, 125	1, 3120	1, 77875	
M	2.313;	390001;	17.113.12648	1;	
x, y		1, 216	1, 7770		
M	1297;	1678321;	5521.393361	,	
x, y	1, 7	1, 343	1, 16800		
M	2.1201;	73.193.409;	281.49195721	[; 	
x, y	1, 8	1, 512	1, 32760		
M	17.241;	433.38737;	•	§	
x, y	1, 9	,	1, 59040		
M	2.17.193;	97.577.769;		‡	
x, y	1, 10	1, 1000	1, 99990		
M	73.137;	99990001;		‡	

Simple Quartan Double Chain, $N_r = (1^4 + y_r^4) = L_r . M_r$.

$$\begin{split} \mathbf{N}_0 &= \mathbf{1}^4 + \mathbf{1}^4 = 2 \; ; \quad C' = -5/2 \; ; \quad z^2 - \tfrac{2\,1}{4} y^2 = -\tfrac{5}{2}.1^2 \; ; \quad (\tfrac{5}{2})^2 - \tfrac{2\,1}{4}.1^2 = +1. \\ y_{-1} &= 0, \quad y_{r+1} = 5y_r - y_{r-1}, \quad z_{r+1} = 5z_r - z_{r-1} \; ; \end{split}$$

$$\mathbf{L}_r = 2, \ \ \mathbf{M}_{r-1} = \overline{1} + y_{r-1} y_r = \mathbf{L}_r, \ \ \mathbf{M}_r = \overline{1} + y_r y_{r+1} = \mathbf{L}_{r+1}.$$

_	r	0	1	2	3	4	5	6	7
Ch.1	$\mathbf{M}^{x,y}$	1,1 1;	1,2 17;	1,9 2.193;	1,43 17.521;	1,206 203321;	1,987 2.41.56921;	1,4729 89.1203929;	1,22658 ‡
Ch. 2	x, y M	1,1	1,3 41;	1,14 937;	1,67 2.10753;	1,321 17.113.257	1,1538 ; 641.17681; 2	1,7369 2.17.7652273;	1,35307

Quartan Chains and Series.

```
i.—(2). C' = -\frac{5}{2}; z^2 - \frac{21}{4}y^2 = -5x^2; (5/2)^2 - \frac{21}{4} \cdot 1^2 = +1; x = x_0 = 1;
x-Chain 2° | x-Chain 1°
         1, 2
   x, y
                1.9
                         1,43
                                   1,206
                                               1,987
                                                              1,4729
                                                                             1,22658
          8
                         197
                                                              21671
                                                                             103832
                41
                                    944
                                               4523
    L
         Ι;
                                  17.521;
                                                           2.41.56921;
                                                                         89.1203929;
               17;
                        2.193;
                                              203321;
         17;
              2.193;
                      17.521; 203321; 2.41.56921; 89.1203929;
         1, 1
                                                                             1,7369
                1,3
                        1,14
                                  1,67
                                               1,321
                                                             1,1538
   x, y
    2z
                13
                         64
                                               1471
                                                              7048
                                                                              33769
          1
                                  307
    L
         Ι;
                2;
                        41;
                                             2.10753;
                                                          17.113.257;
                                                                        641.17681;
                                  937;
                                2.10753; 17.113.257; 641.17681; 2.17.7652273;
         2;
                41;
                        937;
       i.—(3). C' = 5; z^2 - 24y^2 = 10x^2; 5^2 - 24 \cdot 1^2 = +1; x = x_0 = 2;
x-Chain 1°
                                  2,1277
         2,1
              2,13
                       2,129
                                                x, y
                                                    2,3 2,31
                                                                    2,307
                                                                               2,3039
                                             x-Chain
                        632
         8
               64
                                   6256
                                                      16
                                                           152
                                                                    1504
                                                                               14888
    z
                                                 2
    L
                                                 L
         Ι;
               17;
                                257.641;
                                                      Ι;
                                                           97;
                                                                    9521;
                                                                             17.54881;
                      41.41;
                                                 M
         17; 41.41; 257.641; 41.393721
                                                     97; 9521; 17.544881; 91422241;
                C' = 5: z^2 - 10x^2 = 24y^2 +; 19^2 - 10.6^2 = +1; y = y_0 = 1;
      i.-(3).
y-Series 1°
                                             Series 2°
                 86, 1
                               3266, 1
                                                x, y
                                                     10, 1
                                                                382, 1
                                                                              14506, 1
                  272
                               10328
                                                      32
                                                                 1208
                                                                               45872
     z
                                                 2
                                                 \mathbf{L}
    L
                           17.41.15289;
                                                              17.8513;
                                                                            210378169;
                 7129;
                                                      73;
                                                 M
                             10677089
                                                      137;
                                                               147137;
         17;
                 7673;
                                                                            210469913;
   i.—(4). C' = -13; z^2 - 168y^2 = -26x^2; 13^2 - 168.1^2 = +1; x = x_0 = 2;
| x-Chain 1° |
                                             x-Chain 2^{\circ}
                                  2,14149
                                                               2, 129
         2,1
               2,21
                         2,545
                                                      2, 5
                                                                             2,3349
   x, y
          8
               272
                         7064
                                   183392
                                                      64
                                                                1672
                                                 z
                                  7711201;
    L
                                                 L
                17;
                        17.673;
                                                      Ι;
                                                                641;
                                                                           41.41.257;
                                                     641; 41.41.257; 4561.63841;
         17; 17.673; 7711201;
      ii.—(3).
                 C'' = -3; z^2 - 6x^2 = -8y^2; 5^2 - 6 \cdot 2^2 = +1; y = y_0 = 1;
                                             1762, 1
                                                          17442, 1
   x, y
                 18, 1
                             178, 1
y-Series.
                  44
                              436
                                             4316
                                                           42724
    z
   α, β
         1,0
                                            719,720
                 7,8
                             73, 72
   α, β
         1,4
                23, 20
                            217, 220
                                           2159, 2156
    L
         Ι;
                            10513;
                                           1035361;
                113;
    M
         17;
                 929;
                          17.41.137;
                                          73.127529;
               C'' = -5; z^2 - 10x^2 = -24y^2; 19^2 - 10.6^2 = +1; y = y_0 = 1;
    ii.—(4).
                                                           14, 1
               62, 1
                          2354, 1
                                      89390, 1
                                                                     530, 1
                                                                               20126, 1
                                                 S
                                       282676
                                                            44
         4
               196
                           7444
                                                     4
                                                                     1676
                                                                                 63644
                                                    1,0
              19, 20
                         745, 744
                                                           5, 4
                                                                    167, 168
   \alpha, \beta \mid 1, 0
                        3719, 3724
              101,96
                                                    1, 4
                                                          19, 24
                                                                    841,836
         1, 4
    L
         Ι;
               761;
                         1108561;
                                                     1;
                                                           41;
                                                                    56113;
                                                    17;
         17;
              19417; 17.1629361;
                                                           937;
                                                                  41.34297;
```

15373, 3844

5, 2 13, 4 197, 50

3133, 784

€, φ

5, 2 61, 16 965, 242

2ic Partitions of Co-factors (L, M) of Quartans (N) in Series.

Twin Chains i.—(2).

$$\begin{split} &\alpha_r'+\beta_r'=\alpha_{r+1}'\text{ or }\beta_{r+1}'\text{ (alternately)}\;;\quad \beta_{r+1}'''-\alpha_{r+1}'''=\alpha_r'''\text{ or }\beta_r'''\text{ (alternately)}.\\ &(L_r'\text{ even}),\quad \alpha_r'=\alpha_{r}''',\quad \beta_r'=\alpha_{r+1}'';\quad (L_r'\text{ even}),\quad \alpha_r'''=\alpha_{r-1}',\quad \beta_r'''=\alpha_r'.\\ &\beta_r'=\beta_r'''\text{ or }\beta_{r+1}'''\text{ (if even)}.\\ &\alpha_{r+1}'\text{ or }\beta_{r+1}'=(-2C')\left(\alpha_r'\text{ or }\beta_r'\right)-(\alpha_{r-1}'\text{ or }\beta_{r-1}').\\ &\gamma'-\delta'=+1=\delta'''-\gamma'''.\\ &\epsilon'\sim 3\phi'=+1=\epsilon'''\sim 3\phi'''. \end{split}$$

Twin Chains i.—(3).

$$\begin{split} & \alpha_{r+1}' = 2\beta_r' + \alpha_r' = \alpha_r''', \quad \alpha_{r+1}''' = 2\beta_r''' + \alpha_r''', \\ & \alpha_{r+1}' = 2C'\alpha_r' - \alpha_{r-1}' = \alpha_r''', \quad \beta_{r+1}' = 2C'\beta_r' - \beta_{r-1}' = \beta_{r+1}''', \\ & \gamma' \sim \delta'' = +1 = \gamma''' \sim \delta''', \\ & \epsilon' - 2\phi' = +1 = \epsilon''' - 2\phi''', \end{split}$$

Single Series ii.-(3).

$$\begin{split} &\alpha' \sim \beta' = +1, \quad \alpha'' \sim \beta'' = +3, \\ &\beta' = 2\delta'; \quad \beta'' = 2\delta'', \\ &\phi' = \gamma' - \alpha' = \epsilon' - \gamma'; \quad \phi'' = \gamma'' - \alpha'' = \epsilon'' - \gamma'', \\ &\phi' = \ \Box \text{ or } 2, \ \Box, \quad \phi'' = 2 \ \Box \text{ or } \ \Box \text{ (alternately)}, \\ &\alpha'' = 3\alpha' \mp 2, \quad \gamma'' = 3\gamma', \quad \epsilon'' = 3\epsilon' \pm 2, \\ &2\phi'_{r+1} = \delta'_{r+1} - \delta'_r, \quad 2\phi''_{r+1} = \delta''_{r+1} - \delta''_r, \\ &\alpha' = 2\delta' \mp 1, \quad \alpha'' = 2\delta'' + 3, \end{split}$$

Twin Series ii.—(4).

$$\begin{split} &\alpha'\sim\beta'=+1=\alpha'''\sim\beta''';\quad\alpha''\sim\beta''=+5=\alpha^{\mathrm{i}\mathrm{v}}\sim\beta^{\mathrm{i}\mathrm{v}},\\ &\beta'=2\phi',\quad\beta''=2\phi'',\quad\beta'''=2\phi''',\quad\beta^{\mathrm{i}\mathrm{v}}=2\phi^{\mathrm{i}\mathrm{v}},\\ &\delta'=\frac{1}{2}\left(\gamma'-\alpha'\right)=\frac{1}{3}\left(\epsilon'-\alpha'\right)=\frac{1}{2}\left(\gamma'''+\alpha'''\right)=\frac{1}{3}\left(\epsilon'''+\alpha'''\right)=\delta'''.\\ &\delta''=\frac{1}{2}\left(\gamma''-\alpha''\right)=\frac{1}{3}\left(\epsilon'''-\alpha''\right)=\frac{1}{2}\left(\gamma^{\mathrm{i}\mathrm{v}}+\alpha^{\mathrm{i}\mathrm{v}}\right)=\frac{1}{3}\left(\epsilon^{\mathrm{i}\mathrm{v}}+\alpha^{\mathrm{i}\mathrm{v}}\right)=\delta^{\mathrm{i}\mathrm{v}}.\\ &\epsilon'=\gamma'+\delta',\quad\epsilon''=\gamma'''+\delta'',\quad\epsilon'''=\gamma'''+\delta''',\quad\epsilon^{\mathrm{i}\mathrm{v}}=\gamma^{\mathrm{i}\mathrm{v}}+\delta^{\mathrm{i}\mathrm{v}}. \end{split}$$

Twin Series ii.—(5).

$$\begin{aligned} &(\alpha',\beta',\gamma',\delta',\epsilon',\phi') = (\alpha''',\beta''',\gamma''',\delta''',\epsilon''',\phi'''), \text{ respectively.} \\ &\gamma' = \gamma''' = 1, \quad \gamma'' = \gamma^{\text{i}v} = 3. \\ &\epsilon' = 4\phi' + 1 = \epsilon''', \quad \epsilon'' = 4\phi'' - 3, \quad \epsilon^{\text{i}v} = 4\phi^{\text{i}v} - 3. \\ &\phi' = \phi'''' = \square \text{ or } 2.\square, \quad \phi'' \text{ and } \phi^{\text{i}v} = 2\square \text{ or } \square. \\ &\delta'_{r+1} = 16\delta'_r - \delta'_{r-1} = \delta'''_{r+1}, \quad \delta''_{r+1} = 16\delta_r - \delta_{r-1}, \quad \delta^{\text{i}v}_{r+1} = 16\delta^{\text{i}v}_r - \delta^{\text{i}v}_{r-1}, \\ &\delta'_r = 2\alpha'_r, \quad \delta''_r = 2\alpha''_r, \quad \delta'''_r = 2\alpha'''_r, \quad \delta^{\text{i}v}_r = 2\alpha^{\text{i}v}_r, \quad \text{if } r \text{ is } odd. \\ &\delta'_r = 2\beta'_r, \quad \delta''_r = 2\beta''_r, \quad \delta''_{r'} = 2\beta''_{r'}, \quad \delta^{\text{i}v}_r = 2\beta^{\text{i}v}_r, \quad \text{if } r \text{ is } even. \\ &\phi'_{r-1} = 4\epsilon'_r - \phi'_{r-1}, \quad \phi''_{r+1} = 4\epsilon''_r - \phi''_{r-1}, \quad \phi^{\text{i}v}_{r+1} = 4\epsilon^{\text{i}v}_r - \phi^{\text{i}v}_{r-1}. \end{aligned}$$

Factorisants of Class i. of Trinomial Quartans, $N = (x^4 + 6x^2y^2 + y^4)$. $x' = \frac{1}{2}(y-x), \quad y' = \frac{1}{2}(y+x), \quad N = 8(x'^4 + y'^4) = 8l.m, \quad [xy = \omega, \ x'y' = \epsilon].$ $x' = (y-x), \quad y' = (y+x), \quad N = \frac{1}{2}(x'^4 + y'^4) = L.M, \quad [xy = \epsilon, \ x'y' = \omega].$ Factorisants, $(2C' - 6)x^2 + (C'^2 - 1)y^2 = z^2$.

		2. 000		, (0,00	. (0 2) 9	
Ex.	N_{θ}	x_0, y_0	P ₀ ,	Q_0	C',	z_0	Factorisant.	Serial.
1 2 3 4 5	8.17 4.34 2.68 41 41	3, 1 1, 3 1, 3 1, 2 2, 1	25/2, 19, -35, 21,	17/2 15 33 20 20	7/2, 2, -4, 5, 17,	9/2 5 11 10 20	$-14x^{2} + 15y^{2} = z^{2}$ $(2x)^{2} + 6(2y)^{2} = z^{2}$ $7(2x)^{2} + 2(12y)^{2} = z^{2}$	$\begin{bmatrix} x \\ x \\ x, x; y, y \end{bmatrix}$
	353	1, 4 5, 2		28	II, 5,	14	$(4x)^{2} + 30(2y)^{2} = z^{2}$ $(2x)^{2} + 6(2y)^{2} = z^{2}$	$x \\ x, x$

Ex. 2. C' = 2; $z^2 - 3y^2 = -2$. $2^2 - 3 \cdot 1^2 = +1$. $x = x_0 = 1$. 1, 3, 5 1, 153, 265 1, 571, 989 1, 11, 19 1, 41, 71 x, y, z $l^{',y'}$ 76, 77 5, 6 1, 20, 21 285, 286 Ι; 17; 21841; 113; 3137; 21841; 608401; 272 17; 113;

Ex. 3. C' = -4; $z^2 - 15y^2 = -14$. $4^2 - 15 \cdot 1^2 = +1$. $x = x_0 = 1$.

Ex. 4. C' = 5; $(\frac{1}{2}z)^2 - 6y^2 = 1$. $5^2-6.2^2=+1.$ $x = x_0 = 1.$ 1, 2, 10 1, 3 $\begin{bmatrix} x, y, z \\ x', y' \end{bmatrix}$ 1, 20, 98 1, 198, 970 1, 1960, 9602 19, 21 197, 199 1959, 1961 1; 17.233; 41; 388081; M 388081: 38027921? + 41; 17.233;

Ex. 5. C' = 17; $(\frac{1}{4}z)^2 - 7(\frac{1}{2}x)^2 = 2.3^2$. $8^2 - 7.3^2 = +1$. $y = y_0 = 1$.

734, 1, 3884 733, 735 14, 1, 76 226, 1, 1196 3602, 1, 19060 x, y, zx', y'2, 1, 20 46, 1, 244 , y'1,3 45, 47 13, 15 225, 227 3601.3603 Ĺ 1889; 534889; 12955361?† Ι; 137; 41.1217; M 41; 17.137.233 17.17; 52289; 12993481?+

Ex. 6. C' = 11; $(\frac{1}{4}z)^2 - 30(\frac{1}{2}y)^2 = 1$. $10^2 - 11 \cdot 3^2 = +1$. $x = x_0 = 1$.

Ex. 7. C' = 5; $(\frac{1}{2}z)^2 - 6y^2 = 25$. $5^2 - 6 \cdot 2^2 = +1$. $x = x_0 = 5.$ $\begin{array}{c|cccc} x, y, z & 5, 2, 14 \\ x', y' & 3, 7 \end{array}$ 5, 24, 118 5, 238, 1166 5, 4, 22 5, 42, 206 5, 416, 2038 19, 29 233, 243 1, 9 411, 421 37, 47 Ĺ 17; 73; 5737; 17; 193; 17497; M 73; 560753; 5737; 193; 17497; 577.2969;

Examples from above Factorisants [Nos. 2 to

High Simple Quartans, $N = (1^4 + y^4)$, [y > 1,000].

y	N	?/	N
1 020 1 538 1 551 1 560 1 762 2 000 2 121 2 133 2 354 2 413 2 518 3 120 3 266 4 729 5 578 5 822 7 369 7 453 7 770	17.113.257:041.17681; 2.4217.4289.159977; 652081:313.29017; 1035361:73.127529; 233. § 2.70001.144553441; 17.30113:2-17.337.3529; 1108561:17.1620361; 2.23873.25793.27529; 461801:17.193.2617; 390001:17.113.126481; 17.41.15289:10677089; 2.41.56921:89.1203929; 4681801:17.353.34457; 313.29017:83609; 641.17681:2.17.7652273; 2.6857.15889.14160017;	10 001 14 506 16 256 16 800 18 957 21 728 22 658 22 946 32 760 35 307 59 040 77 875 81 090 92 564 99 990 99 999 100 001	2.17.337.3529: 193.16548577; 17.89.83609: 7753.227257; 89.1203929: 41.673.10729.25913.36137; 433.38737: 2.17.7652273:

High Quartans $N = (2^4 + y^4), [y > 53].$

y	N	y y	N
307 493 545	41.41:257.641; 9521:17.544881; 137.353:193.6329; 17.673:7711201; 313.577:41.109537;	3 039 3 349	257.641: 41.393721; 17.544881: 91422241; 41.41.257: 4561.63841; 7711201:

Simple Octavans, $N = (y^s + 1)$; [y even]. [All factors < 100,000 cast out.]

	[All factors		1	
<i>y</i>	N		<i>y</i>	N
2 4 6 8 10 12 14 16 18 20	257; 65537; 17.98801; 257; 97.673; 17.5882353; 17.97.260753; 17.5393.16097; 641.6700417; 97.113607841; 17.1505882353;		102 104 106 108 110 112 114 116 118 120	1201. 18049. 17.1361.2017.396622273; 17.1409.4673.221201713; 17.881.
22 24 26 28 30 32 34 36 38 40	17. 17.2801.2311681; 3617.57734881; 17. 337.401.4855073; 257; 4278255361; 47441.37642417; 353.1697.4709377; 17.17.113.337.641.929;	La	122 124 126 128 130 132 134 136 138 140	17.593.29537.164819521; 17.97.1249.98629.274993; 17.241. 257; 5153.54410972897; La 17.241. 3697. 769. 8273.
42 44 46 48 50 52 54 56 58 60	113. 17.241.3457.991873; 17.929.1269398609; 17.113. 193. 977. 17.14593.291444977; 17. 17. 17.		142 144 146 148 150 152 154 156 158 160	17. 17.337. 17.97.113. 17. 13457. 17.1153. 17.17.17.
62 64 66 68 70 72 74 76 78 80	17.1009.15217.836497;	La	162 164 166 168 170 172 174 176 178	17. 193. 433. 1153. 16369. 17.97. 113.
82 84 86 88 90 92 94 96 98 100	17.593. 673. 17. 17. 17. 593. 17.74209.5718266129; 1249. 353.449.641.1409.69857;	Lo	182 184 186 188 190 192 194 196 198 200	17.97. 17.113. 97.113. 17.193.1297. 17. 17.3793.

FACTORISATION TABLES.

Simple Half-Octavans, $\frac{1}{2}N = \frac{1}{2}(y^{e} + 1)$; [y odd]. [All factors < 100,000 east out.]

1 1; 3 17.193; 5 17.11489; 17 17.169553; 9 21523361; 11 17.6304673; 13 407865361; 11 17.3121.	
15 7121.179953; 115 241.97. 17 18913.184417; 117 10289.95569.17855281; 19 15073.563377; 119 5153. 21 62897.300673; 121 51329. 25 2593.29423041; D, B 125 17.11489; 27 17.193.97.577.769; 127 14369.21713.108455953; 29 17.26209.561377; 129 17.193.257. 33 17. 181 17.17.7841. 38 17. 187 37 17. 187 187 41 17. 141 17.3793. 43 143 17.193.1489. 45 17. 145 47 147 147 49 353. 149 23873. 51 151 33.1873.74561.2234849	
333	9; 1; ;

Irreducible Octavans, $N = (x^2 + y^3)$.

[All factors < 1,000 cast out.]

x,	y	N	x, y	N
3, 5, 7,	2 2 2	17.401; 17.22993; 17.339121;	13, 12 17, 12 19, 12	17.73277201? † 977.7580081; 17.1024326161? †
9, 11, 13,	2 2 2	449.95873; 17.241.52321;	3, 14 5, 14 9, 14	113.13063537? †
15, 17, 19,	2 2 2	113.61732369? † 241.1601.44017;	11, 14 13, 14 15, 14	17.134795281? † 17.97.2449169;
3, 5, 7,	4 4 4	17.4241; 17.26833; 17.193.1777;	17, 14 19, 14 3, 16	1153.7330049;
9, 11, 13,	4 4 4	3041.14177; 17.17.97.7649; 7057.115601;	5, 16 5, 16 7, 16 9, 16	17.97.2604593; 17.113.2236001; 17.252984241?
15, 17, 19,	4 4	-	11, 16 13, 16 15, 16	17.241.1100641;
5, 7, 11,	6 6	2070241; 353.21089; 97.2227201;	17, 16 19, 16 5, 18	1009.11170193? † 241.88292657? † 17.648255953? †
13, 17, 19,	6 6	17.449.107089; 337.20704561? † 17.999131921? †	7, 18 11, 18 13, 18	17.433.1497857; 17.660842321? †
3, 5, 7,	8 8 8	17.113.8737; 17.1009873; 17.1326001;	17, 18 19, 18 3, 20	1361.20575697? + 433.59122417? +
9, 11, 13,	8 8 8	577.103681; 17.13596241;	7, 20 9, 20 11, 20	17.113.929.14369; 433.59617457?
15, 17, 19,	8 8	337· 2 753·7537; 113.150445489? †	13, 20 17, 20 19, 20	17.1553866513? +
3, 1 7, 1 9, 1	10	100006561; D 353.299617; 17.1249.6737;	3, 32 5, 32 7, 32	17.97.2604593; 17.113.2236001; 17.252984241? +
11, 1 13, 1 17, 1	10 10	113.2781937; 17.6257.8609;	11, 32 31, 16	17.241.1100641; 334721:17.97.1553;
19, 1 5, 1	10 12	17.3361.298993;	25, 2 25, 4 25, 6	97.1573071713?
7, 1		113.5702129;	25, 8 25, 16	4801.32677121;

13" Continued on top of page 143,

All factors < 10,000 cast out.] 16-mans, $N = (x^{16} + y^{16})$.

x, y

3, 2 5, 2 7, 2 11, 2

3, 4

rreducible Octavans (continued), $N = (x^s + y^s)$.

	x, y	N	x, y	N
[All factors < 1,000 cast out.]	13, 3 17, 3 19, 3 7, 5 9, 5 11, 5 13, 5 19, 5 9, 7 11, 7 15, 7 17, 7 19, 7	2. 2.17.499516753?† 2.97.31729; 2.17.1277569; 2.1009.106417; 2.17.24003569?† 2.769.593.7649; 2.17.499528049?† 2.17.17.84449; 2.337.326593; 2.17.97.249089; 2.17.75548689?‡ 2. 2.17.113.593.7457;	19, 9 13, 11 15, 11 17, 11 19, 11 15, 13 17, 13 19, 13 17, 15 19, 15 19, 17 23, 19 25, 3 25, 7 25, 9	2. 2.2161.3939521; 2.17.401.75553; 2.17.81683809?† 2.1217.2954033; 2.17.977.517729; 2.4513.374321; 2. 2.113.433.181889; 2.97.49168289?† 2.193.50638481?†
y	N =	$(y^{16} + 1^{16}); [y = \epsilon]$	$y \mid \frac{1}{2}$	$N = \frac{1}{2}(y^{16} + 1^{16}); [y =$

In		11, 9 2.17.97.78049;	25	6, 11 2.17.337.13335857;
Simple Sexto-Decimans, N = $(y^{15} + 1^{16})$. [All factors < 32,350 cast out.]	4 6 8 10 12 14 16 18 20 22 24 26 28	$N = (y^{16} + 1^{16}); [y = \epsilon]$ $\begin{array}{l} 65537; \\ 641.6700417; \\ 353.1697.4709377; \\ 65537; 193.22253377; Ll \\ 353.449.641.1409.69857; \\ 193. \\ 274177.67280421310721; L \\ 97. \\ 449. \\ 193. \\ 97. \\ \end{array}$	y 1 3 5 7 9 11 13 15 17 19 21 23 25 27	$\frac{1}{2}N = \frac{1}{2}(y^{16} + 1^{16}); [y = \omega]$ 1; 21523361; 2593.29423041; 353.47072139617? 2657. 257. 97. 1217.2689.31873.6857635489? 193.641. 21523361;
Sim	30 32	97·257· 65537;	29 31	1889.

x, y

7, 5 11, 5

11, 7

 $\frac{1}{2}N = \frac{1}{2}(x^{16} + y^{16}); [xy = \omega]$

5, 3 | 97.786757409? 7, 3 | 97.171303987713? 11, 3

 $N = (x^{16} + y^{16}); [xy = \epsilon]$

3041.14177; 97.1573071713? 97.449.8513.89633;

5, 4 | 4801.32677121; 7, 4 11, 4 | 1249.36789218701793?

Semi-Quartic Partitions of primes $p \geqslant 1,000$.

 $p=(t_1^4-2u_1^2),\ (t_2^2-2u_2^4),\ (2u_3^4-t_3^4),\ (2u_4^2-t_4^4);\ [p=8\varpi\mp 1={\rm e}^2-2{\rm f}^2].$ Blanks show that t^4 and $u^4>100^4$; dashes show partitions impossible.

p = 8w + 1						$p = 8 \varpi - 1$										
p	t_1, u_1	t_2	u_2	u_3 ,	t_3	u_4 ,	t_4	p	t_1 ,	u_1	t_2 ,	u_2	u_3 ,	t_3	и4,	t_4
1 17 41 73 89	,_ ,_ 	7,		1, -, 3, -,	I I I —	I, 3, -,	I —	7 23 31 47 71	, , , 		3, 5,		2, 2, 2, 4,	5 3 1	2, 18, 4, 8, 6,	3
97 113 137 193 233	5, 16 -, - 5, 14	25, 13, 15, 4435,	2		7 5 —	7, -,	I —	79 103 127 151 167			9, 115, 17,	9	14,	2 77	442, 8, 86, 58,	II
241 257 281 313 337		17,	2	—, —, , —,	- 67 -	11, 13, -, 13,	3 	191 199 223 239 263	11, -, 7, 13, -,	85 33 119	19, 15, 71,		6, 4, 12,	49 17 203	36, 10,	I
353 401 409 433 449	7, 3 ² -,,, -	21, 55, 31,		9, -, 5, -,	113 29 —	59, , 23, 15,	9 5 1	271 311 359 367 383	19, —, —,	²⁵⁵	39, 19, 23,	5 1 3	8, 6,	89 47	14,	3
457 521 569 577 593		93, 1109, 33, 25,	28	5,	27 65	—, ·		431 439 463 479 487		9 31	4 ^I , 2 ^I , 25, 5 ^{II} ,	I 3	4, 4, 4,	9 7 5	16, 38,	
601 617 641 673 761	7, 30 5, 2 -, -	9051,		, , , , ,	317		3	503 599 607 631 647	, , , ,	3	43,		4,	3	18,	I
769 809 857 881 929		29, 37,	2 4	, 5,	21	595, , , 1,		719 727 743 751 823	7, —, —,	29 — —	27,	I		43 361	20, 26, 256,	5
937 953					237			839 863 887 911 919	, , ,	83	29,		6,	41	22,	3
								967 977 983 991	—, —, 27,	515			8,	85	22, 23,	3

Semi-Quartic Partitions of Composites N ≥ 1,000.

$$\mathbf{N} = (t_1^4 - u_1^2), \ (t_2^2 - 2u_2^4), \ (2u_3^4 - t_3^2), \ (2u_4^2 - t_4^4); \ \ [\mathbf{N} = 8n \mp 1 = \mathbf{e}^2 - 2\mathbf{f}^2].$$

Blanks show that t^4 and $u^4 > 100^4$; dashes show partitions impossible.

	N=8n+1							N = 8n - 1							
N	t_1 ,	u_1	t_2 ,	u_2	u_3 ,	t_3	u_4, t_4	N	t_1, u_1	t_2 ,	u_2	u_3 ,	t_3	u_4 ,	t_4
49 161 217 289 329	3,	4 56	9, 27, 19,	4	3,	31	5, I 9, I -, -	119 287 343 391 511	5, 13 -, - -, - 9, 55	11, 17,	I	10, 4, 4, 4,	141 15 13 11	10, 12, 22, 14, 16,	5 I
497 529 553 697 713	5, 11, 5, 15,		23, 1273, 205, 27, 35,	30 12 2	,	_	17, 3 205, 17 —,— —,—	527 623 679 791 799	5, 7 5, I —, —	23, 25, 29,	3		87 139		45
721 839 889 961			95, 59,	8	5, 21, 5, 5,	23 623 19 17	19, I 27, 5 -, - 4I, 7	943 959	7, 27	31,	I			28,	5

Algebraic Semi-Quartic Partitions.

$$\begin{aligned} \mathbf{N}_{\mathrm{iv}} &= (x^4 + y^4) = 2 \left(x^2 \pm xy + y^4 \right)^2 - (x \pm y)^4. \\ \frac{1}{2} \mathbf{N}_{\mathrm{iv}} &= \frac{1}{2} \left(x^4 + y^4 \right) = t^4 - 2 \left\{ \frac{1}{2} \left(x \pm y \right)^2 \right\}^2, \text{ if } x^2 \pm xy + y^2 = t^2, [xy = \omega]. \\ \mathbf{N}_{\mathrm{viii}} &= (x^8 + y^8) = (x^4 + y^4)^2 - 2 \left(xy \right)^4. \end{aligned}$$

$$\frac{1}{2}N_{\text{viii}} = \frac{1}{2}(x^8 + y^8) = 2\left\{\frac{1}{2}(x^4 + y^4)\right\}^2 - (xy)^4.$$

$$\mathbf{N} = t^4 \sim 2u^4 = t^4 \sim 2 (u^2)^2 = (t^2)^2 \sim 2u^4.$$

$$N = 2 (u^2 \approx t^2)^2 - t^4 = (2u^2 \approx t^2)^2 - 2u^4.$$

$$N = t^4 - 2u_1^2 = 2u_4^2 - t^4$$
, if $t^4 = u_1^2 + u_2^2$.

$$N_{iv} = (x^4 + y^4) = 2u^4 - (x \pm y)^4$$
, if $x^2 \pm xy + y^2 = u^2$.

Semi-Quartic Modular Forms.

$$N = 40n + 1 = t_2^2 - 2u_2^4$$
 requires $u_2 = 10v$ and $t_2^2 \equiv N$, $(\text{mod } 2.10^4)$. $N = 40n - 1 = 2u_3^4 - t_3^2$ requires $u_3 = 10v$ and $t_3^2 \equiv -N$, $(\text{mod } 2.10^4)$.

Impossible Semi-Quartic Forms.

$$\begin{split} \mathbf{N} &= \mathbf{16}n + 9 \neq 2u_4^2 - t_4^4; & \mathbf{N} &= \mathbf{16}n + 7 \neq t_1^4 - 2u_1^2; \\ \mathbf{N} &= \mathbf{a}^2 + (4\omega)^2 \neq t_1^4 - 2u_1^2; & \mathbf{N} &= \mathbf{c}^2 + 2\left(2\omega\right)^2 \neq 2u_3^4 - t_3^2. \\ \mathbf{N} &= t^2 - 2u_2^4 \neq 2u_3^4 - t^2, & \text{[or } t_2 \neq t_3\text{]}. \end{split}$$

Bin-Aurifeuillian Tree, [Base $N_1 = 5$].

 $\xi_{r+1} = (\xi_r + 2\eta_r) = \xi_{r+1}^{\prime\prime}, \ \eta_{r+1}^\prime = (\xi_r + \eta_r), \ \eta_{r+1}^{\prime\prime} = \eta^r \ ; \ \ [\xi_1 = 1, \ \eta_1 = 1, \ L_1 = 1, \ M_1 = 5].$ $\mathbf{N}_r = (\xi_r^4 + 4\eta_r^4) = \mathbf{L}_r, \mathbf{M}_r \; ; \quad \mathbf{N}_{r+1}' = \mathbf{L}_{r+1}', \mathbf{M}_{r+1}', \quad \mathbf{N}_{r+1}'' = \mathbf{L}_{r+1}', \mathbf{M}_{r+1}',$

: 5
+ nr.
22
1/4
+
3
$=(\xi,+$
, T
Ľ,
$_{1}=L_{r+}^{\prime \prime }$
part .
L_{r+1}'
H
II.
M, =
1 3
4.4
H
ne
sal
р
with
Δ.
, 'X
Z
0.0
4
ves 1
Siv
نُ
2
ch
Ea
_

		7,2	11, 2 5.17: 173;	15,13 15,2 173: 173:
		7 29: 5	11,9 5.17: 13.37;	,9 29,20 37: 13.37:
3,2	5: 29;		17, 12 13.13: 5.197;	41,12 29 5.197: $ 13$. $ = L_6'$.
		7,5 29: 13.13;		$\begin{array}{c c} 22 & 41, 29 \\ 9: & 5 \cdot 197 \\ & & L'_6 \end{array}$
		29	17,5 13.13: 509;	$ \begin{vmatrix} 27, 5 & 27, \\ 509: 509 \\ + \eta_5^2 + \eta_5^2 \end{vmatrix} $
		7;	13,4 97: 5.61;	21,17 21,4 5.61:5.61: $1\eta_5^2$ = $\{(\xi_5^2)$
		5,4	13,9 97: 5.113;	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3,1	5: 17;	1 37;	7,6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		5,1	7,1 37:	9,1 9,8
ξ2, η2	L_2 , M_2	ξ3, η3 L3, M3	ξ ₄ , η ₄ L ₄ M ₄	ξ_5 , η_5 L_5 M_5

Characteristics (C', C) and Factorisants of Bin-Aurifeuillians; $[N = x^4 + 4y^4]$.

I.
$$C' = (\pm P_0 - x_0^2) \div y_0^2$$
; Factorist: $2C'x^2 + ({C'}^2 - 4)y^2 = z^2$.

II.
$$C' = (\pm P_0 - 2y_0^2) \div x_0^2$$
; Factorist: $4C'y^2 + (C'^2 - 1)x^2 = z^2$.

Ex.	N_0	x_0 ,	y_0	P_0	, Q ₀	C ,	z_0	Factorisant.	Serial.
1	$h^4 + 4k^4$	h,	k	$h^2 + 2k^2$	2 , $2hk$	2 ,	2k	Ineffective	-
2	5	1,	1	-3	, 2	-4,	2	$-2(2x)^2 + 3(2y)^2 = z^2$	x; z, z
I.3	65	1,	2	33	, 32	8,	16	$(4x)^2 + 15(2y)^2 = z^2$	x
4	5.13	1,	2	-9	, 4	-5/2,	2	$-5x^2 + (\frac{3}{2}y)^2 = z^2$	z, z
5	5.17	3,	1	-11	, 6	-20,		$-10(2x)^2 + 11(6y)^2 = z^2$	x, x; z, z
1	$h^4 + 4k^4$	h,	k	$h^2 + 2k^2$	2, 2hk	Ι,	2h	Ineffective	
2	5	1,	1	-3	, 2	-5,	2	$-5(2y)^2 + 6(2x)^2 = z^2$	y, y; z, z
II. 3	65	1,	2	33	, 32	25 ,			
4	5.13	1,	2	-9	, 4	-17,	4	$-17(2y)^2 + 2(12x)^2 = z^2$	y, y; z, z
5	5.17	3,	1	-11	, 6	- 13/9,	2	$-13\left(\frac{2}{3}y\right)^2 + 22\left(\frac{2}{3}x\right)^2 = z^2$	y, y; z, z

Chain-Examples from above Factorisants.

$$\mathbf{N}_r = (x_r^4 + 4y_r^4) = \mathbf{L}_r \cdot \mathbf{M}_r \text{ (Aurifn.)} = \mathbf{L}_r' \cdot \mathbf{M}_r' \text{ (Dioph.)}.$$

$$L = l.\lambda, M = m.\mu; L' = l.\mu, M' = \lambda.m; L'_r = M'_{r-1}, M'_r = L'_{r+1}.$$

 M'_r alone printed thus: $M'_r = \lambda_r ... m_r$, [the λ_r m_r out of L_r , M_r separated by the (\wedge)].

I.—2.
$$C' = -4$$
; $(\frac{1}{2}z)^2 - 3y^2 = -2.1^2$; $2^2 - 3.1^2 = +1$; $x = x_0 = 1$.

	r	0	1	2	3	4	5
				, ,		1, 153, 530	
	M'	1.,5;	13.,5;	17.,53;	193.,5.13;	241., 25.29	9; 37.73., 17.53;
in.	r		6		7.		8
Jhain.		1, 213			1, 7953, 275		1, 29681, 102818
)- <i>x</i>	M'	3361.	5.2017;		37633.,5.13.	193;	46817., 140453;
	2.		9		10		11
	x, y, z		10771, 38		1, 413403, 14		1542841, 5344558
	M'	13.61.	661.,25.	29.241;	652081.,5.3	91249; 7300	0801; 17.37.53.73;

I.—3.
$$C'=8$$
; $(\frac{1}{4}z)^2-15(\frac{1}{2}y)^2=1^2$; $4^2-15.1^2=+1$; $x=x_0=1$.

	r	0	1	2	3	4
	x, y, z	1, 2, 16	1, 16, 124	1, 126, 976	1, 992, 7684	
Chain	M'	5.,13;	37.,109;	17.17.,5.173;	2273., 17.401;	29.617., 13.4129;
-C	r		5		6	
z	x, y, z		38, 476284		4, 3749776	
	M'	140869.	,5.84521;	1109057.	,3327169;	

Chain-Examples from Factorisants of Bin-Aurifeuillians continued).

]	II.—2.	C' =	-5 ; $(\frac{1}{2}z)^2$	$-6x^2 = -5.1^2;$	$5^2 - 6 \cdot 2^2 = +1$	$y = y_0 = 1.$
	r	0	1	2	3	4
i.			1, 7, 34	1, 69, 338	1, 683, 3346	
ain	M'	1.,5;	37.,13;	125., 13.29;	61.61., 17.73;	12281.,5.7369;
y-Chain	r		5		6	
20	y, x, z	1,669	27, 327874	1,66250	9, 3245618	
	\mathbf{M}'	364717	. 61.1993;	5.233.1033	.,41.173.509;	
	r	0	1	2	3	4
2.	y, x, z	1, 1, 2	1, 3, 14	1, 29, 142	1, 287, 1406	1, 2841, 13818
vin	\mathbf{M}'	Ι;	5.,17;	157.,53;	521.,5.313;	113.137.,13.397;
y-Chain	r		5		6	
y-	y, x, z	1, 2	8123, 13774	1, 278	389, 1363822	
	\mathbf{M}'	5.17.60	01.,13.1178	89; 29.5231	3.,505693;	

End of Duan, Quartan, Octavan, &c., Factorisation Tables.

High Cuban Chains, $N = (Y^3 - 1) \div (Y - 1) = Y' \cdot Y'' > 6 \cdot 10^{18}$. $Y = y^2$; y' - 1 = y = y'' + 1; $Y' = y^2 + y + 1 = y'^2 - y' + 1$; $Y'' = y'^2 - y' + 1 = y''^2 + y'' + 1$.

y	Y'	Υ''	y'
3 4 5 6 7 8	7.223.16000993; 211.11844787; 3.433.883.2179; 13.192265387; 367.6810763; 3.7.19.73.85819; 31.37.139.15679; 49.51017347; 3.833316667;	211.11844787; 3.433.883.2179; 13.192265387; 367.6810763; 3.7.19.73.85819; 31.37.139.15679; 49.51017347; 3.833316667; 19.2269.57991;	49 992 3 4 5 6 7 8 9 50 000
50 000 1 2 3 4 5 6 7 8	3.43.1291.15013; 7.357192859; 181.337.40993; 3.7.691.172321; 61.4153.9871; 13.192365389;	13.13.103.143629; 3.43.1291.15013; 7.357192859; 181.337.40993; 3.7.691.172321; 61.4153.9871; 13.192365389; 3.31.1723.15607; 2500950091;	1 2 3 4 5 6 7 8 9

High Trin-Aurifeuillian Chains, $N = (Y^3 + 3^3) \div (Y + 3) = L \cdot M > 6 \cdot 10^{18}$. $Y = y^2$; y'' + 1 = y = y' - 1; $[y \neq 3\eta]$. $L = {y''}^2 - y'' + 1$, $M = {y'}^2 + y' + 1$.

y	L	M
7 50 000	211.11844787; 367.6810763; 49.51017347; 13.13.103.143629; 181.337.40993;	367.6810763; 49.51017347; 13.13.103.143629; 181.337.40993; 13.192365389;
6 9 50 002 5	7.223.16000993; 13.192265387; 31.37.139.15679; 19.2269.57991; 7.357192859; 61.4153.9871;	13.192265387; 31.37.139.15679; 19.2269.57991; 7.357192859; 61.4153.9871; 2500950091;

 $\begin{array}{l} High\,Trin\text{-}Aurifeuillian\,Chain,\,\, \frac{1}{9}N=\frac{1}{9}\left(Y^3+3^3\right)\div (Y+3)=\frac{1}{3}L\,.\,\frac{1}{3}M>6.10^{17}.\\ Y=3\eta^2\,;\,\,\,y^{\prime\prime}+1=y=y^{\prime}-1\,\,;\,\,\, [y=3\eta]\,.\quad L=y^{\prime\prime^2}-y^{\prime\prime}+1,\,\,M=y^{\prime^2}+y^{\prime}+1. \end{array}$

y	13L	$\frac{1}{3}M$				
50 001 4	433.883.2179; 7.19.73.85819; 833316667; 43.1291.15013; 7.691.172321;	7.19.73.85819; 833316667; 43.1291.15013; 7.691.172321; 31.1723.15607;				

High Numbers,
$$\mathbf{N} = (Y^3 + 1) > 10^{19}$$
.

$$Y = 2^{2r} + 1$$
; $N = N_i \cdot N_{iii}$; $N_i = (Y + 1) = 2(2^{r-1} + 1)$.

$$N_{iii} = \frac{X^3+1}{Y+1} = \frac{(Y-1)^3-1}{(Y-1)-1} = \frac{2^{6r}-1}{2^{2r}-1} = \ X_1, X_2 \, ; \quad X_1 = \frac{2^{3r}-1}{2^r-1}, \quad X_2 = \frac{2^{3r}+1}{2^r+1} \, .$$

r	11,	13,	15,	17,	19,	21,	23,	25,	27,	29,	31,	33,	35,	37,	39,	41,	43,	45,	47,	49	
N_i											?			?	?		?		?	?	
X_1											?	?		?		?		?	?	?	
X_2										?	?			?	?	?	?		?	?	
Fig.	20,	24,	28,	31,	34,	38,	42,	46,	49,	53,	56,	60,	64,	67,	71,	75,	78,	82,	85,	89	
22	10	11	16	10	90	00	94	96	00	20	20	24	26	90	10	10	11	16	10	50.	70
N;	12,	14,	10,	10,	20,	22,	24,	20,	20,	ου,	52,	04,	эu,	эо,	40,	42,	44,	40,	40,	50;	10
																	٤.				
X_1																					
X_2											?		?		?		?		?		
Fig.	22,	26,	29,	33,	37,	40,	44,	47,	51,	55,	58,	62,	66,	69,	73,	76,	80,	84,	87,	91,	127

All factors of N_i , X_1 , X_2 known from Lucas's Tables, except where queried thus (?).

High Irreducible Cubans,
$$N_1$$
, $N_2 > 9.10^6$.

$$\begin{split} \mathbf{N}_1 &= (x^3 - y^3) \div (x - y), \quad \mathbf{N}_2 = (x^3 + y^3) \div (x + y) \; ; \quad x = \xi^\alpha, \; y = \eta^\beta \; ; \quad [\xi, \eta \geqslant 11]. \\ & \qquad [6\text{-}tans, 9\text{-}ans, 12\text{-}mans, \&c., excluded.}] \end{split}$$

x, y	N ₁	N_2	x, y	N_1	N_2
2 ¹² , 3 3 ⁵ 2 ¹³ , 3 3 ² 3 ³ 3 ⁴ 3 ⁵ 2 ¹⁴ , 3 3 ⁵ 2 ¹² , 7 2 ¹³ , 7 5 ⁵ , 2 2 ² 2 ³ 2 ⁴ 2 ⁶ 2 ⁷ 2 ⁸ 2 ¹	13.1291501; 13.1371661; 43.1561243; 31.2167183; 547.123091; 7.601.16111; 69158569; 37.7256341; 877.306589; 349.780733; 3.19.31.9511; 1051.63907; 3.13.43.5827; 19.514639; 3.151.21613; 9815881; 79.126199; 3.241.14083; 10631161; 3.199.19477; 3.6786643;	3907:7.613; 7.373:6067; 7.367.26113; 163.411259; 7.9555487; 19.67.52201; 65177257; 13.1231:31.541; 15259:7.13.193; 13171:7.19.151; 67.457.547; 3.13.1719271; 343.37.769; 3.3251047; 7.571.2437; 3.7.127.3643; 3.7.455701; 7.13.103099; 3.43.70009; 7.103.11689; 13.19.127.241;	5^{5} 2^{12} , 11	16797721; 3919.10039; 3.13.769.2239; 49.1373761; 3.22716163; 127.577.991; 3.13.151.17401; 2311.116191; 79.349.9811; 19.17336899; 7.157.15307; 3.7.3199957; 103.94903; 97.9817; 3.3266707; 673.148633; 13.7713133; 13.7883773; 7.4597.310771;	3.7.61.103.127; 3.7.654421; 19.757.4663; 3.43.313.1657; 7.13.726379; 3.19.1094377; 7.37.197971; 7.38336223; 7.38057583; 3.1069.70783; 3.31.179917; 67018873; 9756259; 7.1391083; 2791.3469; 661.14401; 3.13.433.577; 13.748567; 31.313.10303; 9127:49.223; 19.397:7.43.43; 13.43.17888551;

High Irreducible Cubans, N₁, N₂ > 9.10⁶. N₁ = $(y^3 - 1) \div (y - 1)$, N₂ = $(y^3 + 1) \div (y + 1)$; $y = \xi^{\alpha} \cdot \eta^{\beta}$; $[\xi, \eta \ngeq 11]$.

-				
	N	3.7684801; 3.643.585727; 3.73.601.2803; 30112657; 3.13.949.3361; 37.64636549; 3.19.225289; 3.19.225289; 3.19.225289; 3.1388461; 3.13.5269399; 3.13.5269399;	3.73.163.24019; 3.9446551; 3.15166107; 3.241.20731; 13.61.61.37501; 3.37.210961; 19.1669147; 3.19.139.484411; 3.11.23.7677; 5281.96097; 3.37.18288271;	7.13.13.44917; 13.397.92671;
	N ₁	23064007; 38806473; 36806473; 3-103-52027; 3-20483523; 39344257; 3-797210707; 13-988357; 4153-151501; 3361-61153; 3-193-1419883;	857464807; 7.139.29137; 49.211.43867; 14996257; 3.7.86386717; 7.409.83791; 7.241.577.3943; 126888961; 3.7.24168253; 7.19.19.803359;	31.613.2797; 7.68331253;
	y	29 29 45 47 45 47 45 47 47 47 47 47 47 47 47 47 47 47 47 47	22 . 111 . 22 . 113 . 24 . 113 . 25 . 113 . 25 . 113 . 25 . 113 . 25 . 113 . 25 . 113 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 11 . 25 . 25	36 .10 37 .10
ce., excluded.	Z	13.3004327; 3.325510417; 3.7.67.111043; 3.8331667; 7.833316667; 49.32649; 3.19.937.7489; 3.19.179593; 7.1129.43189; 3.5067.9001;	3.7,124,001, 3.7,67.367,317,29; 104847361; 3.3691.236737; 7.13.18436051; 7.13.18436051; 3. 19.73.35323; 240051001; 61.192811; 1176455701;	7.13.890011; 7.3433:24571;
Lo-tans, 4-ans, 12-mans, &c., excluded.	N		31.2/1.3121; 3061.5352541; 3.13.43.6523; 7.127.823.3583; 419450801; 3.55254187; 3.55254187; 3.31.201.111577; 3.31.526957; 3.31.6151.10009; 3.37.97.1093; 3.3283.679039;	$3^{2} \cdot 10^{3} 81009001;$ $3^{5} \cdot 10^{2} 13 \cdot 73 \cdot 622249;$
	'n	18 18 18 18 18 18 18 18 18 18 18 18 18 1	211. 55 213. 55 213. 55 213. 57 77. 1103 77. 1103 77. 1103	$\frac{3^2}{3^5} \cdot 10^3$
	N_2	631.30313; 19.43.210739; 49.79.400321; 31.277.71.19.67; 7.97.450799; 27.5493.657; 19.199; 7.571; 37.93; 35317; 739.736363; 739.736363; 7103.16561; 1867,5771;	7.13x23355; 7.967;7057; 4.73.6053; 17.19885313; 13.229;3169; 7.13.307.27361; 49.31.24847; 2689,126337; 12097;7.1783; 603955201; 7.6967:49537;	13.613.1129; 7.4243:157.193;
	Z,	19136251; 7.1609.15289; 67.23130169; 76536253; 306127513; 7.31.1266049; 15120433; 13.2221.42409; 7.79.984121; 7.79.984121; 7.79.984121; 97.123169; 107505793;	241.1483.2707; 13.109.33721; 7.463.6521; 49.31.73.15511; 373.25309; 9733.78341; 19.1987099; 919.367703; 61.39606037;	10^{3} $7.757.1699;$ 10^{4} $13.4969.13933;$
	y .	64 94 94 94 94 94 94 94 94 94 94 94 94 94	80 80 80 80 80 80 80 80 80 80 80 80 80 80 80	3 .10 ³

High Trin-Aurifeuillians,

$$N = (X^3 + Y^3) \div (X + Y) = L.M; [X = x^2, Y = 3y^2].$$

$$L = (X + Y - 3xy), M = (X + Y + 3xy); M = (X + Y).N.$$

High Trin-Aurifeuillians, $x = 2^a$, $y = 3^\beta$; $N > 4.10^{21}$,

x, y	X + Y	X + Y	L	M	Fig.
$\begin{array}{c} 2^{12}, \ 1 \\ 2^{12}, \ 3^2 \\ 2^{13}, \ 1 \\ 2^{13}, \ 3 \\ 2^{13}, \ 3^2 \\ 2^{14}, \ 1 \\ 2^{14}, \ 3 \\ 2^{14}, \ 3^2 \end{array}$	$2^{24} + 3^5$ $2^{26} + 3$ $2^{26} + 3^5$ $2^{26} + 3^5$ $2^{28} + 3$ $2^{28} + 3^3$	1549.10831; 151.111109; 7.9586981; 5437.12343; 13.1093.4723; 268435459?‡ 8779.30577; 7.38347957;	157.106783; 7.79.30139; 193.347587; 13.5156551; 19.229.15373; 7.38340901; 7.38326861; 37.103.70321;	343.31.1579; 16876051; 13.103.181.277; 7.127.75571; 7.2011.4783; 19.67.210907; 61.4402999; 268878067?‡	22 22 24 24 24 26 26 26 26

High Trin-Aurifeuillians, x = 1, $y = 2^{\alpha} \cdot 3^{\beta}$, &c.; $\mathbf{N} > 7 \cdot 10^{21}$.

y	X + Y	X + Y	L	M	Fig.
211 212 213 214 3 . 210 3 . 211 3 . 212 32 . 28 32 . 29 32 . 210 33 . 27 33 . 28 33 . 29 34 . 25 34 . 25 34 . 26 35 . 24 35 . 25 36 . 22 36 . 24 37 . 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.313.5743; 61.825109; 13.1567.9883; 7.37.139.22369; 28311553; 113246209?‡ 769; 7.103:19.43; 19.838171; 63700993; 49; 5200081; 13; 211.13063; 7.37.631.877; 573308929?‡ 20155393; 433; 397: 7.67; 31.229.45427; 11337409; 7.6478519; 13.19.19.38653; 7.37.98491; 102036673?‡ 2503.163063; 57395629;	43.292483; 859.58579; 7.19.547.2767; 805257217?‡ 7.4043191; 13.79.110251; 37.12241837; 7.13.283.2473; 31.61.134731; 19.1885339; 7993.17929; 7.673.121687; 7.2878231; 37.2178541; 79.4081711; 11331577; 1543.29383; 7.4507.5749; 25500421; 3.43.182503; 7.19.3068509; 7.13.630577;	13.968389; 7.7191991; 31.307.21157; 157.619.8287; 28320769; 7.367.44089; 937.483481; 7.151.15073; 1723.36979; 37.6887341; 49.43.17011; 143347969? 13.733.60169; 13.1551013; 19.4244059; 7.13.3544147; 7.13.3544147; 7.13.31.4021; 37.11225981; 781421857? 2137.11941; 7.709.20563; 31.13167151; 57408751;	22 24 25 27 23 25 26 22 24 26 23 25 27 22 24 26 23 25 27 22 24 26 23 25 25 26 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27

Pellian Trin-Aurifeuillian Chains, (Nr, Nr).

$$\tau_r^{'2} - 3v_r^{'2} = \overline{2}; \quad \tau_r^2 - 3v_r^2 = +1.$$

i. $N'_r = (\tau$	$v_r^{'6} + 3^3 \cdot v_r^{'6}$	$\div ({\tau'_r}^2 + 3\imath$	$(\mathbf{p}_r'^2) = \mathbf{L}_r'.\mathbf{M}$	r' ; $M'_{r-1} = L$	$_{r}^{\prime}= au_{2r+2}$;	$\mathbf{M}_r' = \mathbf{L}_{r+1}' = \tau_{2r}.$
r = 1	2	3	4	5	6	7
$\tau',v'=1,1$	5, 3		71,41	265, 153		
$L'_r = i;$	7;	97;	7.193;	31.607;	7.37441;	97.37633;
$M'_r = 7;$	97;	7.193;	31.607;	7.37441;	97 · 37633;	49 • 337 • 3079;
ii. $N_r = (\tau$	$\frac{6}{r} + 3^3 \cdot v_r^6$:	$-\left(\tau_r^2+3v_r^2\right)$	$= L_r . M_r;$	$\mathbf{M}_{r-1} = \mathbf{L}_r =$	$\frac{1}{2}\tau_{2r-1}$; M _r	$= \mathbf{L}_{r+1} = \frac{1}{2} \tau_{2r+1}.$
r = 0	1 2	3	4	5	6	7
τ , $\nu = 1, 0$	2, 1 7,	26, 15	97, 56	362, 209	1351, 780	5042, 2911
$L_r = r;$	1; 13	; 181;	2521;	13.37.73;	489061;	6811741;
$M_r = 1;$	13; 181	; 2521;	13.37.73	; [489061;	6811741;	13.181;61.661;
Ex. i.	$L'_{r} = 4$	8 13775, 795 9 · 337 · 307 08158977	3; 9;	Ex. ii. ntinue	$v = 0$ $v = 0$ $U_r = 0$	817, 10864 81; 61.661;

Pellian Trin-Aurifeuillian Chains.

$$\begin{split} \mathbf{N}_r &= (\tau_r^6 + 3^3, v_r^6) \div (\tau_r^2 + 3v_r^2) = \mathbf{L}_r, \mathbf{M}_r \,; \quad \tau_r^2 - 3v_r^2 = z = -11 \text{ or } +13. \\ \mathbf{L}_r &= (\tau_r^2 - 3\tau_r v_r + 3v_r^2), \quad \mathbf{M}_r = (\tau_r^2 + 3\tau_r v_r + 3v_r^2) \,; \quad \mathbf{M}_r = \mathbf{L}_{r+1}. \end{split}$$

		r	=	1	2	3	4	5	6	7
z = -11.	Chain 1.	Ĺ	=	1, 2 7; 19;	8, 5 19; 7·37;	31, 18 7·37; 3607;	116, 67 3607; 7.7177;	433, 250 7.7177; 43.16273;	1616, 933 43.16273; 7.19.127.577;	6031, 3482 7.19.127.577;
	Chain 2.	τ, υ L M	=		4, 3 7; 79;	17, 10 79; 7.157;	64, 37 7.157; 15307;	239, 138 15307; 49.19.229;	892, 515 49.19.229; 2969479;	3329, 1922 2969479;
+13.	Chain 1.	Ĺ	=		31;	40, 23 7.61; 19.313;	149, 86 19.31 3 ; 7.11833;	556, 321 7.11833; 1153687;	2075, 1198 1153687; 7.2295541;	7744, 4471 7.2295541;
1 22	Chain 2.	-	=		5, 2 7; 67;	16, 9 67; 49.19;	59, 34 49.19; 12967;	220, 127 12967; 7.25801;	821, 474 7.25801; 2515531;	3064, 1769 2515531;

Dimorph Trin-Aurifeuillian Products, $\Pi(N') = \Pi(N'')$.

$$\mathbf{N}_1 \mathbf{N}_3 \mathbf{N}_5 \dots \mathbf{N}_{2r+1}, \mathbf{N}_{\beta} = \mathbf{N}_0 \mathbf{N}_2 \mathbf{N}_4 \dots \mathbf{N}_{2r}, \mathbf{N}_{\alpha} \, ; \quad \, \mathbf{N}_r = \frac{x_r^6 + 3^3 y_r^6}{x_r^2 + 3 y_r^2} = \mathbf{L}_r \cdot \mathbf{M}_r.$$

$$\mathrm{i.~N}_r = [y_r] = \frac{2^6 + 3^3 y_r^6}{2^2 + 3 y_r^2} = \mathrm{L}_r, \mathrm{M}_r \, ; \ \, \mathrm{N}_\alpha = |\, \rho \,| = \frac{\tau_\rho^6 + 3^3 v_\rho^6}{\tau_\rho^2 + 3 v_\rho^2} ; \ \, \tau_\rho^2 - 3 v_\rho^2 = +1 \, ; \ \, \mathrm{N}_\beta = |\, \rho - 1\,|.$$

$$y_0 = 1, y_1 = y_0 + 2, y_2 = y_1 + 2, ..., y_{r+1} = y_r + 2; y_{2r+1} = \tau_\rho v_\rho - 1; M_r = L_{r+1}.$$

$$\frac{[3]\,[7]\,[11]\dots[\tau_{\rho-1},\upsilon_{\rho-1}-1]}{[1]\,[5]\,\,[9]\,\,\dots[\tau_{\rho-1},\upsilon_{\rho-1}-3]} \cdot \frac{[\tau_{\rho-1},\upsilon_{\rho-1}+3]\dots[\tau_{\rho},\upsilon_{\rho}-1]}{[\tau_{\rho-1},\upsilon_{\rho-1}+1]\dots[\tau_{\rho},\upsilon_{\rho}-3]} = \frac{\left|\rho\right|}{\left|1\right|}.$$

$$\text{ii. } \mathbf{N}_r = (x_r) = \frac{x_r^6 + 3^3, 2^6}{x_\rho^2 + 3, 2^2} = \mathbf{L}_r, \\ \mathbf{M}_r \, ; \ \mathbf{N}_\alpha = |\rho| = \frac{\tau_\rho^{'6} + 3^3 v_\rho^{'6}}{\tau_\rho^{'2} + 3 v_\rho^{'2}} \, ; \ \tau_\rho^{'2} - 3 v_\rho^{'2} = \overline{2} \, ; \ \\ \mathbf{N}_\beta = |\rho - 1|.$$

$$x_1 = 5, \ x_2 = x_1 + 6, \ x_3 = x_2 + 6, \ \dots, \ x_{r+1} = x_r + 6; \ x_{2r} = \tau_{\rho}^{\prime 2} - 2; \ M_r = L_{r+1}.$$

$$\rho = 2, \ x_{2r} = 5^2 - 2$$
 $\rho = 3, \ x_{2r} = 19^2 - 2$ $\rho = 4, \ x_{2r} = 71^2 - 2$ $\alpha = 71^2 - 2$

$$\frac{(11)\left(23\right)\left(35\right)\ldots\left(\tau_{\rho-1}^{2}-2\right)}{(5)\left(17\right)\left(29\right)\ldots\left(\tau_{\rho-1}^{2}-8\right)}\cdot\frac{\left(\tau_{\rho-1}^{2}+10\right)\left(\tau_{\rho-1}^{2}+22\right)\ldots\left(\tau_{\rho}^{2}-2\right)}{\left(\tau_{\rho-1}^{2}+4\right)\left(\tau_{\rho-1}^{2}+16\right)\ldots\left(\tau_{\rho}^{2}-8\right)}=\frac{\left|\;\rho\;\right|}{\left|\;1\right|}\cdot$$

Compound Trin-Aurifeuillians, $\mathbf{N} = (X^3 + Y^3) \div (X + Y)$; $[X = \mathbb{E}^2, Y = 3H^2]$. $N_r = (x_r^3 + y_r^3) \div (x_r + y_r) = L_r \cdot M_r, \quad [x_r = \xi_r^2, \ y_r = 3\eta_r^2]; \quad \mathbf{N} = N_1 N_2 = (L_1 M_1) (L_2 M_2).$ $L_r = \xi_r^2 - 3\xi_r \eta_r + 3\eta_r^2$, $M_r = \xi_r^2 + 3\xi_r \eta_r + 3\eta_r^2$.

	m, n	ξ1,	η_1	L_1	M_1	ξ_2 ,	η_2	L_2	M_2	Ħ	Н	Fig.
i.		7,	8	73: 73.127		13, 25, 2917,	8	7.31: 819774	13.109;	73, 241, 8501123	, 192	10
ii	. 1, 2 1, 4 1, 40	8,	15	379 3 79 923	79; 7.157; 17: 7.9067;	8, 80,	17	523: 43·97·	13.103;	43 219 7676803	, 144	10
iii		7,	24	19.67 799837	. 49.13; : 2281; : :	7, 1085,	25 1093	1399:	727; 31.79; 57: 1.30697;	1229497	, 49	14
iv	1, 2 1, 4 1, 44	4, 8, 88,	1 5 645	7.13.7	: 31; : 7·37; 79·151; 31·7879;	1937,	645	409.30	43; 619; 061; 7.90187;	19 139 1255819 1	,	26

Trin-Aurifeuillian Tree, [Base $N_1 = 7$].

$$\begin{split} \mathbf{N}_r &= (\xi_r^4 - 3\xi_r^2 \eta_r^2 + 9\eta_r^4) = \mathbf{L}_r. \mathbf{M}_r\,; \quad \mathbf{N}_r \text{ gives five } \mathbf{N}_{r+1} = \mathbf{L}_{r+1}. \mathbf{M}_{r+1}, \text{ [same L in each]}. \\ &\quad \text{Each of five } \mathbf{L}_{r+1} = \mathbf{M}_r = (\xi_r^2 + 3\xi_r \eta_r + 3\eta_r^2) = (\mathbf{A}_r^2 + 3\mathbf{B}_r^2). \end{split}$$

$$[\xi_1 = 1, \ \eta_1 = 1, \ L_1 = 1, \ M_1 = 7.]$$

Formulæ 1 to 7 give the five values of ξ_{r+1} , η_{r+1} ; [two of Nos. 4 to 7 giving — values fail].

		1	2	3	4	5	6	7
	ξ_{r+1}	3B + A	2A	A+3B	3B – A	2A	A-3B	3B-A
	η_{r+1}	2B	A + B	A + B	2B	A - B	A-B	B-A
2	ξ_2, η_2	5, 2	4, 3	5, 3	1, 2	4, 1		
7	L_2 , M_2	7:67;	7:79;	7:97;	7:19;	7:31;		
	ξ_3 , η_3	11, 2	16, 9	11, 9	•	16, 7	5, 7	•
	L_3 , M_3	67:199;	67:49.19;	67:661;	•	67:739;	67:277;	
	ξ_3 , η_3	17, 10	4,7	17,7	13, 10	• .		13, 3
	L_3 , M_3	79:7.157;	79:13.19;	79:13.61;	79:859;		•	79:313;
က	ξ_3 , η_3	19,8	14, 11	19, 11	5, 8	14, 3		
7	L_3 , M_3	97:1009;	97:1021;	97:7.193;	97:337;	97:349;	•	
	ξ_3 , η_3	7, 2	8, 5	7, 5		8, 3	1, 3	
	L_3 , M_3	19:103;	19:7.37;	19:229;	•	19:163;	19:37;	
	ξ_3 , η_3	11, 6	4, 5	11, 5	7, 6			7, 1
	L_3 , M_3	31:7.61;	31:151;	31:19.19;	31.283;			31:73;

Characteristics (C', C') and Factorisants of Trin-Aurifeuillians; $[\mathbf{N}=x^4-3x^2y^2+9y^4].$

I.
$$C' = (\pm P_0 - x_0^2) \div y_0^2$$
; Factorist: $(2C' + 3)x^2 + ({C'}^2 - 9)y^2 = z^2$.

II.
$$C' = (\pm P_0 - 3y_0^2) \div x_0^2$$
; Factorist: $(6C' + 3)y^2 + (C'^2 - 1)x^2 = z^2$.

Ex.	N_0	x_0, y_0	P_0 , Q_0	C , z_0	Factorisant.	Serial.
1	N_0	h, k	$h^2 + 3k^2$, $3hk$	3 , 3h	Ineffective.	
2	7	1, 1	-4 , 3	-5, 3	$-7x^2 + (4y)^2 = z^2$	z, z
I.3	13	2, 1	-7 , 6	-11, 6	$-19x^2 + 7(4y)^2 = z^2$	x, x; z, z
4	133	1, 2	67 , 66	33/2, 33	$(6x)^2 + 13(9y)^2 = z^2$	x, x;
5	7.19	1, 2	-13 , 6	-7/2, 3	$-(2x)^2 + 13(\frac{1}{2}y)^2 = z^2$	x, x; z, z
1	N_0	h , k	$h^2 + 3k^2$, $3hk$	ı , 3k	Ineffective.	
2	7	1, 1	-4 , 3	-7 , 3	$-39y^2 + 3(4x)^2 = z^2$	y, y; z, z
II. 3	13	2,1	-7 , 6	-5/2, 3	$-3(2y)^2 + 21(\frac{1}{2}x)^2 = z^2$	y, y; z, z
4	133	1, 2	67 , 66	55 , 66	$37 (3y)^2 + 21 (12x)^2 = z^2$	y, y; x, x
5	7.19	1,2	-13 , 6	-25, 6	$-3(7y)^2 + 39(4x)^2 = z^2$	y, y; z, z

Examples from above Factorisants (page 155).

$$N_r = (x_r^4 - 3x_r^2 y_r^2 + 9y_r^4) = L_r \cdot M_r \text{ (Aurifn.)} = L_r' \cdot M_r' \text{ (Dioph.)}.$$

$$L = l\lambda$$
, $M = m\mu$; $L' = l.\mu$, $M' = \lambda.m$;

 \mathbf{L}_r' , \mathbf{M}_r' printed thus: $\mathbf{L}_r' = l_{r+\lambda}\mu_r$, $\mathbf{M}_r' = \lambda_{r+\lambda}m_r$, [the factors out of \mathbf{L}_r , \mathbf{M}_r separated by the (,)].

I.—2. C' = -5; $z^2 + 7x^2 = 4y^2$; x = tu, $y = \frac{1}{8}(t^2 + 7u^2)$, $z = \frac{1}{2}(t^2 - 7u^2)$.

t, u	1, 1	101, 1	1, 101	1, 343
x, y, z	1, 1, 3	101, 1276, 5097	101, 8926, 35703	343, 102943, 411771
L'	· ′	601.,2707;	31.571.,7.643;	51343.,13.15877;
NI'	7;	13.577., 1951;	13.13.79.,43.1249;	619.997.,154543;

I.—5. C' = -7/2; $z^2 - 13(\frac{1}{2}y)^2 = -4.1^2$; $649^2 - 13.180^2 = +1$; $x = x_0 = 1$.

1.	7*	0	1	[S]	0	1	2
Series	x, y, z L' M'	1, 2, 3 7; 19;	1, 2378, 4287 859.,11173; 19.1039.,49.31;	Series ?	1, 2, 3 7; 19;	1, 218, 393 1021., 79; 139., 49.37;	1, 282962, 510117 102241., 7.189877; 2349367., 127.1423;

II.—2. C' = -7; $(4x)^2 - 3(\frac{1}{3}z)^2 = 13.1^2$; $7^2 - 3.4^2 = +1$; $y = y_0 = 1$.

	r	0	1	2	3	4				
	y, x, z	1, 1, 3	1, 10, 69	1, 139, 963	1, 1936, 13423	1, 26965, 186819				
1;	\mathbf{L}'	} I;	I.,7;	73.,19;	7.37.,1039;	14449.,3613;				
	M'	1.,7;	73.,19;	7.37.,1039;	14449., 3613;	67.751.,7.28753;				
y-Chain	r		5							
es	y, x, z	1, 375574, 2602053								
	L'	67.75	1.,7.2875	3;						
	M'	1627.1	723.,7008	31;						
	n	0	1	9	9	Α				

hain 2.	y, x, z L' M'	1, 1, 3	1, 4, 27 1; 7.,31;	1, 55, 381 7·,31; 409·,103;	1,766,5307 409.,103; 1429.,5719;	1,10669,73917 1429.,5719; 79633.,43.463;
y-Ch	r		5			

| y, x, z | 1,148600,1029531 | L' | 79633.43.463; | M' | 7.7.5659.1109167;

Simple Sextans, $N = (y^6 + 1^6) \div (y^2 + 1^2)$. $\lceil \mathbf{A} \text{ll divisors} < 100,000 \text{ cast out.} \rceil$

		1	uivisors < 100,000 cas		
y	N	y	N	<i>y</i>	N
1 2 3 4 5 6 7 8 9	1:13; 73; 241;	51 52 53 54 55 56 57 58 59 60	7308913; 1153.6841; 2089:13.313; 9147601; B 9831361; 577.18289; 13.870241; 13.931837;	101 102 103 104 105 106 107 108 109 110	37.97.31357; 116975041; 121539601; 13.9710497; 157.834829;
11 12 13 14 15 16 17 18 19 20	13.1117; 20593; 28393; 37.1033; 13.3877; 97.673; 83233; 229:457; 13.13.769; 13.12277;	61 62 63 64 65 66 67 68 69 70	13842121; B 14772493; B 13.193.6277; 433.38737; 17846401; B 37.512713;	111 112 113 114 115 116 117 118 119 120	13.11676517; 1741.90373; 97.733.2293; 168883021; 13.433.31069; 1381.131101; 109.337.5101; 193863853; 13.37.416881; 601.345001;
21 22 23 24 25 26 27 28 29 30	61.3181; 157.1489; 37.7549; 349:13.73; 390001; 181:2521; 530713; 13.47221; 37.61.313; 809101;	71 72 73 74 75 76 77 78 79 80	13.1954357; 13.337:6133; 3037.9349; 2377.12613; 4657.6793; 13.73.35149; 829.42397; 757.48889; 3169.12289; 13.13.242329;	121 122 123 124 125 126 127 128 129 130	10657.20113; 73.3034501; 13.17605501; 13.18185077; 37.6597973; 252031501; 457.569209; 14449:13.1429; 1657.167113; 193.1479757;
31 32 33 34 35 36 37 38 39 40	922561; 13;61:1321; 13.91141; 1069.1249; 277.5413; 1678321; 13.144061; 2083693; 2311921; 61.41941;	81 82 83 84 85 86 87 88 89	97.577.769; 37.61.20029; 47451433; 13.3829237; 13.4014877; 4357.12553; 1153.49681; 37.1620589; 13.13.229.1621; 61.1075441;	131 132 133 134 135 136 137 138 139 140	294482761; 13.23352181; 3313.94441; 37.8713513; 157.2115493; 13.4129.6373; 13.2473.10957; 3709.97777; 14197.26293; 37.229.45337;
41 42 43 44 45 46 47 48 49 50	13.109.1993; 673.4621; 3416953; 1753.2137; 13.37.8521; 13.344257; 1213.4021; 5306113; 73.193.409; 13.157:3061;	91 92 93 94 95 96 97 98 99 100	97.709.997; 71630833; 13.61.94321; 78066061; 277.294013; 7177:11833; 2521:13.37.73; 8317:13.853; 96049801; 99990001; Lo,R	141 142 143 144 145 146 147 148 149 150	13.4201.7237; 613.663241; 61.73.93901; 193.2227777; 13.34002277; 1789.253960; 4729.98737; 2689.178417; 13.73.519349; 13.13.109.27481;

Simple Sextans, $N = (y^6 + 1^6) \div (y^2 + 1^2)$. [All divisors < 100,000 cast out.]

	All divisors < 100,000 cast out.								
y	N	y	N	y	N				
151	61.8522341;	201	13.125553877;	251	37.9601.11173;				
152	4357.122509;	202	13.128071201;	252	997.997.4057;				
153	9601.57073;	203	1021.1117.1489;	253	13.315160621;				
154	13.61.709237;	204	61.28390981;	254	13.320173057;				
155	181.3188821;	205	7717.228853;	255	1621.2608381;				
156	37.16005853;	206	13.1297.106801;	256	193.22253377; La				
157	397.1530349;	207	157.181.64609;	257	4362404353;				
158	13.47936641;	208	37.3037.16657;	258	13.13.1801.14557;				
159	421.1518061;	209	1907986081;	259	109.313.131893;				
160	349.1009.1861;	210	13.97.109.14149;	260	4569692401;				
161	10861.61861;	211	229.8655349;	261	4640402521;				
162	23473:13.37.61;	212	61.33113413;	262	13.421.860941;				
163	13.54298861;	213	23929.86017;	263	4784281393;				
164	3109.232669;	214	13.37.4036141;	264	157.30939253;				
165	757.979093;	215	13.61.2694457;	265	61.337.239893;				
166	759305581;	216	73.541:55117;	266	13.385103137;				
167	13.59828341;	217	409.5421337;	267	13.37.1873.5641;				
168	796565953;	218	5101.442753;	268	73.541.130621;				
169	815702161;	219	13.176939197;	269	5236041961;				
170	73.1297.8821:	220	337.397.17509;	270	5314337101;				
171	13.37.1021.1741;	221	1861.1281781;	271	13.8353.49669;				
172	875183473;	222	73.33272101;	272	5473558273;				
173	373.2401381;	223	13.61.3118441;	273	37.61.541.4549;				
174	181.5064121;	224	2517580801;	274	3313.1701277;				
175	13.1237.58321;	225	2562840001;	275	13.97.4535341;				
176	13.73806277;	226	109.2857.8377;	276	61.95126341;				
177	37.109.397.613;	227	13.204245101;	277	1933.3045661;				
178	97.2269.4561;	228	13.207868021;	278	5972739373;				
179	157.6538813;	229	2750006041;	279	13.466087957;				
180	13.4933.16369;	230	37.75631273;	280	13.9133.51769;				
181	241.4453321;	231	2847342961;	281	3001.2077561;				
182	277.3960889;	232	13.6037.36913;	282	37.170918569;				
183	1121479633;	233	421.7000573;	283	1069.6000157;				
184	13.88168837;	234	24049.124669;	284	13.61.313.26209;				
185	1171316401;	235	853.3575317;	285	97.1597.42589;				
186	6073.197077;	236	13.37.6449041;	286	109.61380769;				
187	709.1724677;	237	241.13090873;	287	4597.1475869;				
188	13.13.97.181.421;	238	24373.131641;	288	13.5869:37.2437;				
189	13.349.281233;	239	3262751521;	289	73.1321.72337;				
190	1303173901;	240	13.397.733.877;	290	3301.2142601;				
191 192 193 194 195 196 197 198 199 200	13.3217.36013; 1536914413; 37.42383773;	241 242 243 244 245 246 247 248 249 250	13.1093.237409; 193.277:64153; 73; 47763361; 3544475761; 13.37.241.31081; 661.5540281; 229.16253437; 3457.1094209; 13.13.22745929; 1381.2828521;	291 292 293 294 295 296 297 298 299 300	7170787081; 13.157.3561913; 13.566920381; 74929:99709; 73.2593.40009; 7676475841; 13.97.1669.3697; 1129.6984997; 7992449401; 8099910001;				

Simple Sextans, $N = (y^6 + 1^6) \div (y^2 + 1^2)$. [All divisors < 100,000 cast out.]

y	И	y	N	y	N
301 302 303 304 305 306 307 308 309 310	13.241.2619997; 8318078413; 3181.2649733; 37.373.618841; 13.665658277; 13.21649.31153; 97.1201.76249; 8999083633; 661.1009.13669; 13.37.19199821;	351 352 353 354 355 356 357 358 359 360	3469.4375429; 661.23225533; 13.1194406021; 6421.2445721; 181.87746821; 37.37.1201.9769; 13.13.961133137; 13.1263529441; 2029.8186389; 409.41066089;	401 402 403 404 405 406 407 408 409 410	13.30637.64921; 3769.6929077; 11497.2294209; 97.2953.93001; 13.2069541277; 61.8221.54181; 937.29573209; 13.337.6387301; 13.32749.66373;
311 312 313 314 315 316 317 318 319 320	9354855121; 277.34208509; 9597826993; 13.747774817; 10141.970861; 73.136590697; 2221.4546573; 13.229.433.7933; 13.13.37.109.15193;	361 362 363 364 365 366 367 368 369 370	4297.3952393; 13.37.73:489061; 157.111815653; 12049.1473049; 13.1380313537; 313.3049.19009; 73.73.109.31573; 181.229.433.1033; 13.5701.252877;	411 412 413 414 415 416 417 418 419 420	2797.10201693; 13.73.30955129; 37.661.1212793; 23293.1285717; 13.13.13.13895449; 14869.2072869; 3733.8335597;
321 322 323 324 325 326 327 328 329 330	1933·5492677; 1093·9835561; 13·193·829·5233; 37·349·541·1597; 61·185155441; 13·879515701;	371 372 373 374 375 376 377 378 379 380	13.1457300557; 97.277.712717; 349.55463437; 13.1521173077; 6709.3010957; 37.551775529; 13.7669.206953; 27697.752833;	421 422 423 424 425 426 427 428 429 430	37.157.1609.3361; 13.241.10122481; 13.2462723701; 1777.18359713; 13.13.196708177; 109.307854997; 37.923995273;
331 332 333 334 335 336 337 338 339 340	13.923346397; 13.934555381; 937.13123009; 61.204010321; 109.115544389; 13.157.181.34501; 61.193.1095541; 105769:123397;	381 382 383 384 385 386 387 388 389 390	5857.3597673; 97.97.2263117; 13.6961.237781; 37.3517:13.12853; 7789.2820709; 3793.5852797; 61.367714813; 13.181.9631681; 73.3433.91369;	431 432 433 434 435 436 437 438 439 440	13.2654381797; 9721.3582793; 24709.1422637; 13.73.193.195493; 13.37.613.122557; 457.81271753; 13.229.12590113;
341 342 343 344 345 346 347 348 349 350	37.73.5005981; 313.43707541; 13.25537.42181; 13.61.17864857; 37.391843429; 13.3253.350809;	391 392 393 394 395 396 397 398 399 400	143053:13.12697; 37.644711869; 97.248433613; 61.109.3661249; 13.9001.210157; 13.20509.93169; 61.411338833; 37.684994573;	441 442 443 444 445 446 447 448 449 450	13.109.27425833; 74941.523261; 13729.2882029; 13.61.50796841; 13.157.193.103177

Simple Sextans, N = $(y^6 + 1^6) \div (x^2 + 1^2)$. [All divisors < 100,000 cast out.]

		[an divisors < 100,000 east ode.]				
y	N	y	N	y	N	
451	19777.2091913;	501	13.97.49961341;	551	1249.3061.24109;	
452	37.1128105949;	502		552	13.38449.185749;	
453	13.3239271421;	503	_	553	13.109.65997769;	
454	337.126064093;	504	37.109.15998977;	554	397 · 4993 · 47521;	
455	(00-(505	13.5002884277;	555	0	
456	61.708806101;	506 507	829.79076209;	556	8377.11407993;	
458	13.3355207381;	507	72 01000 450T	558	13.337.1453.15121;	
459	37.409.2907601; 61.277.2626873;	509	73.912284521;	559		
460	3457.12951793;	510	13.61.349.242533; 37.1828425673;	560	73.1347186937;	
		1	37.1020425073,			
461	13.3474227917;	511		561	13.13789.552553;	
462	13.73.48006457;	512	246241:279073;	562	19489.5118637;	
463	W. 7.2 O. C. 7.7.	513	13.5197.1025113;	563	37.2715379189;	
464 465	5413.8563117;	514	13.73.73550329;	564 565	12253.8257957;	
466	8941.5229061;	515 516	102 1225 206047	566	13.37321.210037;	
467	13.1129.3212953; 37.61.2389.8821;	517	193.1237.296941; 61.181.1669.3877;	567	13.97.81385921; 28573.3617221;	
468	37.01.2309.0021,	518	13.5538269281;	568	205/3.301/221,	
469	97.498789913;	519	277.261931693;	569	37.181.15651913;	
470	13.1873.2004049;	520	61.577.2077333;	570		
					-33343377	
471	613.80282557;	521	157.469299013;	571	212 212000721	
473	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	522 523	13.709.8055469;	572 573	313.342009721;	
474	37.37.36562777; 13.3883006177;	524		574	373.289006981;	
475	13.457.8568661;	525		575	13.397.21033541; 66361.1647241;	
476	229.224176669;	526	13.13.37.12242017;	576	97.1134793633;	
477	109.474946957;	527	13.5933316901;	577	1777.62375569;	
478	241.9421.22993;	528	61.1274102293;	578	13.24229:37.61.157;	
479	13.97.3361.12421;	529	937.83575993;	579	13.42061.205537;	
480		530	193.408831757;	580	421.268799581;	
481	601.2617.34033;	531	13.10453.585049;	581	61.73.25588837;	
482	7,34033	532	37.2164927069;	582	7333,00377	
483	13.4186424941;	533	1) 1-1	583	13.	
484		534		584	37.457.1549.4441;	
485		535	13.73.86327149;	585	61837.1893973;	
486	241.877:263953;	536	181.10069.45289;	586	109.22777.47497;	
487	13.73.2293.25849;	537	109.7537.101221;	587	13.13.73.9623689;	
488	13.13.335575897;	538	349.240050257;	588	97.1232356369;	
489	37.1545367933;	539	13.4801.1352317;	589	61.277.7122793;	
490	9241.6238261;	540	13.6540789877;	590	42961.2820541;	
491	97.599173273;	541	37.2315185813;	591	13.9384374437;	
492	13.4507287541;	542	241.1213.295201;	592	13.757.12480913;	
493	157.733.513313;	543	0 (593	60	
494		544	13.54877.122761;	594	56809.2191429;	
495	37.10729.151237;	545	2-6	595	70 70 607 70.000	
496	13.577.1549.5209;	546	373.238265017;	596	13.13.601.1242289;	
497	433.140908081;	547 548	37.229.10566001;	597 598	313.405837121;	
499	2833.21710461; 93337.664273;	549	13.433.16020997;	599	97.229.5757001;	
	13.4807673077;	550	181.505557721;	600	13.25057:37.10753;	
300	.3.400/0/30//,	300	1011303337721,	300	-3-23037-37-10733,	

Simple Sextans, $N = (y^6 + 1^6) \div (y^2 + 1^2)$ [All divisors < 100,000 cast out.]

y	N	y	N	y	N
601 602 603 604 605 606 607	409.318987289; 337.12037.32377; 5449.24263377; 13.937.2557.4273; 13.32917.313081; 37.157.601.38629; 21817.6222409;	651 652 653 654 655 656 657	24793.7244257; 13.37.375702673; 73.421.5952577; 313.588057577; 13.19249.740053; 13.13.13.673.126013;	701 702 703 704 705 706 707	61.11437.350089; 13.1693.2473.4513; 229.1078748269; 73.11317.300721;
608 609 610	73.1871932921; 13.421.4513.5569;	658 659 660	37.577.8780617; 73.2599272937;	708 709 710	13.13729.1407829; 13.193.100712509;
611 612 613 614 615 616 617 618	4261.5113.6397; 13.109.5521.18049; 37.29221.132313; 13537.10636513; 13.397.28080553; 13.709.853.18553;	661 662 663 664 665 666 667 668 669	13. 109.1761994177; 97.241.1129.7321; 1033.188178937; 13.1609.9349453; 2341.84041641; 60637.3264109; 76261.2610973; 13.229.67285993;	711 712 713 714 715 716 717 718 719	
620 621 622 623 624 625 626	733.201586597; 37.6673.602341; 13.26713.431017; 9649.15712849; 13.409.2677.10789;	670 671 672 673 674 675 676	13.2857.5425561; 1213.2749.60793; 7333.27809581; 97.25717.82237; 13.37.349.1229329;	720 721 722 723 724 725 726	6481.41465521; 13.601.1237.27961; 13.109.349:549481; 193.4813.294157; 13.37021:37.15601;
627 628 629 630	5581.27692173; 193.805898161; 27109.5774149; 13.	677 678 679 680	373.563176981; 13.157.103532053; 757.280790413; 37.313.18462421;	727 728 729 730	73.241.2281.6961; 13.10909.2002453;
631 632 633 634 635 636	13.61.673.297049; 73.2029.1083949; 577.6793.41221; 13.	681 682 683 684 685 686	73.1429.2061733; 13. 13.421.39760921; 97.2269810633;	731 732 733 734 735 736	13. 13.157.2089.68449; 277.1059328573;
637 638 639 640	37.397.877.12781;	687 688 689 690	13. 769.291357697; 37.673.9050221;	737 738 739 740	79777.3698209;
641 642 643 644 645	61.193.14429521; 13.37.355383913; 13.	691 692 693 694 695	3541.65510521;	741 742 743 744 745	
646 647 648 649	13.30553:443917;	696 697 698 699	13.2713.6653389;	746 747 748 749	337.919019293; 13. 13.37.1429.455437;
650			13.61.1009.300073;	750	

Simple Sextans, $N = (y^6 + 1^6) \div (y^2 + 1^2)$. [All divisors < 100,000 cast out.]

y	N	y	N	y	N
751 752 753 754 755 756 757 758 759 760	433.734634097; 13.829.2389.12421; 61.5270469493; 37.73.5869.20389; 109.613.853.5701; 13.13.1932856969; 541.1753.346261; 4129.80375089; 13.97.264568741;	801 802 803 804 805 806 807 808 809 810	433.955452061; 51817.8023969; 13.109.294885673; 37.73.156248161; 157.19801.136429; 13. 541.791764741; 5581.6121.12601;	851 852 853 854 855 856 857 858 859 860	13. 13.73.1093.508009; 13. 97.5560975249; 349.38917.39901; 37.2833.5194261; 13.
761 762 763 764 765 766 767 768 769 770	13.61.7489.56473; 54133.6228121; 37.157.58343977; 61.5585253061; 13.13.2017.1004737; 13.37.409.1777609; 97.4021.901273;	811 812 813 814 815 816 817 818 819 820	13.6229.5368609; 13.82657.406573; 61.541.13303621; 373.1182826237; 13.3229.10613929; 1021.438517393; 2341.192191221;	861 862 863 864 865 866 867 868 869 870	3853.143960581; 109.6301:13.13.4801; 13.37.1163908321; 277.541.3753133; 97.409.14242321; 13. 1789.320233009;
771 772 773 774 775 776 777 778 779 780	109.1093.2965993; 61.47521.122533; 13.80317.341953; 13. 34513.10452577; 229.25657.61717; 13.57781.487741; 73.5044594417;	821 822 823 824 825 826 827 828 829 830	13.193.181080349; 37.61.7873.25693; 23857.19323793; 13.61.7213.80989; 13.13.2754437029; 73.229.27980989; 37. 5557.84991813;	871 872 873 874 875 876 877 878 879 880	13.73.612054637; 37.
781 782 783 784 785 786 787 788 789 790	241.8389.185917; 7321.51605161; 37. 13.1069.27464293; 13.457.64571173; 769.18301.27397; 5689.68119489;	831 832 833 834 835 836 837 838 839 840	109.1129.3875101; 61.7893135253; 13.3697.10066321; 157.193.757.21193; 37. 13.	881 882 883 884 885 886 887 888 889 890	18541.32936341; 313.1959874177; 13.61.16477.47161; 349.1773652357; 3673.169289641; 97.6439242193;
791 792 793 794 795 796 797 798 799 800	13. 277.1693.856081; 13.5437.5766121;	841 842 843 844 845 846 847 848 849 850	9001.55576681; 13.37.1049940313; 2281.222455881; 1201.424505401; 733.698838577; 13.8461.4679161; 3373.153308581; 1009.2053.250813; 769.1021.664849;	891 892 893 894 895 896 897 898 899 900	13. 37.37.457.709.1453; 1693.382395061; 181.229.15688837;

Simple Sextans, $N = (y^6 + 1^6) \div (y^2 + 1^2)$. [All divisors < 100,000 cast out.]

	All divisors <	100,000	o case cree, j
<i>y</i>	N	<i>y</i>	N
901 902 903 904 905 906	13537.48682873; 37.193.92697193; 13.66841.765181; 13.241.213163477;	951 952 953 954 955 956	13.397.853.185797; 73. 37.97.13309.17341; 13.61.3889.269713;
907 908 909 910	829.997.815197; 661.12457.82189; 13.	950 957 958 959 960	13. 34429.24362557; 13.241.2053.132049;
911 912 913 914	37. 13.181.1657.177433; 109.3637.1752721;	961 962 963 964	13.97.157.4362073;
915 916 917 918	13.193.10369.27061; 13.37.11161.131713; 10357.68570329;	965 966 967 968	1549.559831549; 6529.133370989; 895357:13.241.313;
919 920 921	373.1789.1068913; 157.456300709 3 ;	969 970 971	13. 37.661.36197893; 397.2239164253;
922 923 924 925	757.3301.289189;	972 973 974 975	13.73.109.733.118 2 1; 55933.16156597;
926 927 928	13.13.73.59341273; 277.20173.131581; 31489.23552257;	976 977 978 979	37.97.252828109;
929 930 931 932	13. 13.433.132892369; 181.23833.174157; 457.1650999529;	979 980 981 982	54469.16864789; 3517.262259653; 13.433.164529709; 13.
933 934 935 936 937	457.1050999529; 37. 13.13.229.19663681; 40357.18937693; 61.61.206273401; 6133.125685421;	983 984 985 986 987	8161.148 77921; 37. 13.97.749535361;
938 939 940	13.39877.1493293; 37.337.7369.8461; 109.12073.593293;	988 989 990	109.1693.5184433; 13.9901.7463077;
941 942 943 944	8629.90865189; 13. 13. 61.1609.8090989;	991 992 993 994	37· 157.6168031669; 313.36901.84181; 13.2017.37230241;
945 946 947 948	36433.21889297; 73.373.29412529; 13.61.1014206161; 37.	995 996 997 998	13.13.74377.77977; 1753.561377497; 61. 73.10141.1340041;
949	40213.20254777;	999 1000 1001	13.6553.11691709; 9999999000001; Lo 421.2113.1128637;
		1001	421.2113.112003/,

Sextans, $N = (x^6 + y^6) \div (x^2 + y^2) > 9.10^6$; [x and y > 1, y even].

x, y	N	x, y	N	x, y	N
3, 2 5 7 9 11 13 15 17 19 21	1:61; 541; 2221; 37:13.13; 14173; 27901; 49741; 13.6337; 61.2113; 37.5209;	51, 4 53, 4 5, 6 7 11 13 17 19 23 25	457.14713; 7845793; 1021; 1933; 37.313; 23773; 74413; 118621; 13.20161; 181:13.157;	17, 10 19 21 23 27 29 31 33 37 39	64621; 13.8017; 13.13.13.73; 313.757; 61.7681; 37.109.157; 13.83617; 97.18013; 2171341;
23 25 27 29 31 33 35 37 39 41	277741; 409:13.73; 373:13.109; 349.2017; 919693; 1181581; 13.115057; 1868701; 2307373; 2819053;	29 31 35 37 41 43 47 49 53, 6 3, 8	13.52177; 890221; 1457821; 1826173; 373.7417; 3353533; 37.129769; 1009:13.433; 13.599281; 13:277;	41 43 47 49 51 53, 10 5, 12 7 11 13	769.3469; 37.73.1201; 13.359137; 229.24169; 193.33757; 7619581; 17761; 13.1237; 13.1381; 109.229;
43 45 47 49 51 53, 2 3, 4 5 7	13.397.661; 421.0721; 4870861; 1789:3217; 13.229.2269; 13.37.16381; 193; 13.37; 1873; 5521;	5 7 9 11 13 15 17 19 21 23	3121; 3361; 13:421; 10993; 21841; 61.661; 13.13.409; 157.709; 170353; 13.19237;	17 19 23 25 29 31 35 37 41 43	37.1693; 13.7621; 224401; 97.3313; 606913; 805873; 313.4297; 13.73.1789; 13.200341; 61.52021;
11 13 15 17 19 21 23 25 27	13.997; 26113; 13.3637; 79153; 37.3373; 13.14437; 61.61.73; 380881; 433.1201; 694081;	25 27 29 31 33 35 37 39 41 43	229:1549; 181:37.73; 13.50581; 97.8929; 1120321; 13.109717; 1790641; 2220193; 2722273; 13.254197;	47 49 53 55, 12 3, 14 5 9 11 13 15	4582321; 5439793; 61.109.1129; 8735761; 109.337; 34141; 29101; 13.37.61; 97.349; 13.3457;
31 33 35 37 39 41 43 45 47 49, 4	13.69877; 97.12049; 1481281; 13.142501; 709.3229; 13.215317; 157.21589; 613.6637; 13.372661; 337.16993;	45 47 49 51 53, 8 3, 10 7 9 11 13, 10	109.36469; 37.128173; 13.97:61.73; 6602833; 7714801; 9181; 13.577; 8461; 12541; 21661;	17 19 23 25 27 29 31 33 37 39, 14	65293; 13.7537; 229.937; 306541; 426973; 73.73.109; 73.10597; 13.77761; 13.126481; 757.2713;

Sextans, $N = (x^6 + y^6) \div (x^2 + y^2) \gg 9.10^6$; [x and y > 1, y even].

x, y	N	x, y	N	x, y	N
41, 14 43 45 47 51 53 55, 14 3, 16 5	13.194977; 3094813; 13.287857; 337.13309; 6293821; 7378333; 277.31033; 63313; 13.4597; 13.4261;	53, 18 55, 18 3, 20 7 9 11 13 17 19	13.181.3517;	19 23 25 29 31 35 37 41	181.1453; 13.19141; 254161; 306913; 61:13.457; 554641; 701761; 13.86677; 1417393; 2189281;
9 11 13 15 17 19 21 23 25 27	51361; 49201; 50833; 157.373; 37.2029; 13.73.109; 13.11317; 209953; 73.4057; 410353;	23 27 29 31 33 37 39 41 43 47	13.97.181; 13.30757; 13.97.421; 61.73.157; 397.2293; 1486561; 277.6733; 181.12781; 2839201; 4156081;	43 47 49 53 55, 24 3, 26 5 7 9	13.337.613; 97.40609; 373:12637; 13.508021; 7740001; 61.7393; 73.6037; 426253; 337.1213; 457.853;
29 31 33 35 37 39 41 43 45	557521; 13.61.937; 13.74821; 37.97.349; 61.26053; 37.53773; 2460961; 193.15601; 13.280597; 13.336901;	49 51 53, 20 3, 22 5 7 9 13 15	13.37.10321; 13.109.4153; 13.37.14401; 229981; 13.17137; 73.2917; 37.5449; 157.1153; 13.13537; 73.2437;	15 17 19 21 23 25 27 29 31 33	355501; 345133; 343261; 353341; 37.37.277; 425101; 495613; 595741; 37.19753; 73.12421;
49 51 53 55, 16 5, 18 7 11 13 17	1993.2617; 1741.3541; 397.18229; 8441761; 97501; 37.2473; 97.829; 78781; 13.7297; 73.1621;	19 21 23 25 27 29 31 35 37 39	189853; 13.16561; 258061; 37.8713; 181.2281; 181.2953; 13.53281; 61.97.193; 13.111217; 1811533;	35 37 41 43 45 47 49 51 53 55	1129501; 1405693; 433.4957; 37.70969; 3188701; 409.9397; 4598701; 37.147673; 6448573; 7562701;
43 47	13.16417; 109:2689; 13.41521; 717133; 13.109.853; 1535581; 37.64489; 13.224977; 397.10753; 13.61:6421;	41 43 45 47 49 51 53, 22 5, 24 7 11, 24	13.172801; 2758141; 3354781; 13.311137; 37.130729; 577.9949; 6765181; 318001; 37.8269; 276721;	57, 26 3, 28 5 9 11 13 15 17 19 23, 28	8816653; 607681; 373·1597; 13.42901; 73.7321; 157·3253; 37·73.181; 13.36277; 61.7573; 479761;

Sextans, $N = (x^6 + y^6) \div (x^2 + y^2) \gg 9.10^6$; [x and y > 1, y even]

x, y	N	x, y	N	x, y	N
25, 28 27 29 31 33 37 89 41 43 45	13.13.3049; 13.193.229; 397.1669; 784753; 946801; 97.14593; 37.61.769; 2122513; 13.13.15289; 3127681;	45, 32 47 49 51 53 55 57, 32 3, 34 5	3075601; 3666241; 457:13.733; 13.396181; 13.466357; 13.337.1621; 8277601; 13.102001; 37.35353; 1282093;	55, 36 3, 38 5 7 9 11 13 15 17 21	6909841; 229.9049; 61.33601; 13.155137; 277.7129; 13.373.397; 421.4441; 13.139297; 613.2857; 1642813;
47 51 53 55 57, 28 7, 30 11 13 17	457.8233; 13.109.3769; 13.313.1549; 7393681; 349.24709; 768301; 13.55057; 37.18553; 73.8677; 37.16633;	9 11 13 15 19 21 23 25 27 29	13.96097; 433.2797; 37.73.433; 1126861; 193.5437; 181.5641; 13.109.709; 1004461; 157.6529; 13.73.1129;	23 25 27 29 31 33 35 37 39	37.109.397; 1213.1297; 1563901; 37.42649; 1620973; 13.130657; 1816861; 13.73.2089; 2202253; 13.73.2617;
23 29 31 37 41 43 47 49 53, 30 3, 32	613741; 181.4201; 13.109.613; 13.111697; 13.61.2677; 2564701; 13.284737; 1069.4129; 6172381; 13.37:2161;	31 33 35 37 39 41 43 45 47	1148941; 1263373; 13.109297; 157.10369; 1891501; 2218861; 13.61.3301; 3096061; 313.11701; 13.332737;	43 45 47 49 51 53 55, 38 3, 40 7	1249.2269; 13.37.6781; 769.4909; 4382893; 37.157.877; 229.25849; 277.24793; 2545681; 13.109.1753; 769.3169;
5 7 9 11 13 15 17 19 21 23	1023601; 277.3613; 409:2377; 313.3001; 61.14821; 868801; 836161; 757.1069; 791473; 13.73.829;	53 55 57, 34 5, 36 7 11 13 17 19 23	5979613; 13.109.4933; 181.44953; 13.126757; 13.13.61.157; 1537441; 1489153; 1388593; 13.103237; 37.34429;	11 13 17 19 21 23 27 29 31 33	13.13.73.193; 37.62653; 853.2557; 13.162517; 1153.1777; 1993441; 1925041; 1921681; 313.6217; 13.229.673;
25 27 29 31 33 35 37 39 41 43, 32	13.13:4729; 97:13.661; 13.68821; 988033; 37.30253; 73.17737; 337.4513; 1804513; 37.58189; 181.14221;	25 29 31 35 37 41 43 47 49 53, 36	1009.1249; 37.35053; 13.181.577; 73.21817; 61.29173; 409.5689; 2702113; 13.284341; 4332721; 5929633;	37 39 41 43 47 49 51 53 57, 40 5, 42	13.172597; 97.25153; 13.157.1321; 3020401; 61.73.877; 4483201; 97.53233; 457.13033; 7917601; 13.236017;

Sextans, $N = (x^6 + y^6) \div (x^2 + y^2) > 9.10^6$; [x and y > 1, y even].

x, y	N	x, y	N	x, y	И
11, 42 13 17 19 23 25 29 31 37 41	2912893; 409.6949; 1609.1669; 13.200401; 1321.1861; 2399821; 769.3037; 13.180001; 2570941; 37.80329;	27, 46 29 31 33 35 37 39 41 43 45	13.266641; 13.13.20149; 349.9649; 109.30817; 37.91513; 3454813; 37.96553; 109.34369; 3983773; 733.5857;	43, 50 47 49 51 53 57, 50 3, 52 5 7	13.388177; 61.91921; 421:14281; 13.500977; 13.547537; 1993.4357; 7287361; 193.37537; 73.98377; 37.313.613;
43	3268861;	47	2053.2281;	11	6999073;
47	13.13.24229;	49	13.397057;	15	6753841;
53	73.82837;	51	13.61.7237;	17	61.108421;
55, 42	709.9769;	53	13.61.8101;	19	733.8821;
3, 44	13.286981;	55	13.157.3541;	21	97.65089;
5	61.60661;	57, 46	97.241.349;	23	6161041;
7	3655633;	5, 48	13.403957;	25	37.162493;
9	13.13.61.349;	7	397.13093;	27	5871841;
13	37.93229;	11	13.61.6361;	29	5744833;
15	1297.2593;	13	4947601;	31	5636593;
17	13.251701;	17	4726081;	33	241.23041;
19	37.85933;	19	181.25453;	35	5499841;
21	3088801;	23	37.118093;	37	337.16273;
23	13.229.1009;	25	1993.2137;	39	13.13.13.13.193;
25	97.109.277;	29	61.66853;	41	97.57649;
27	97.29569;	31	13.37.8353;	43	5730721;
29	13.13.16729;	35	3986641;	45	157.37813;
31	673.4177;	37	13.309877;	47	6218161;
35	13.221317;	41	13.433.757;	49	37.177949;
37	2971873;	43	37.157.769;	51	7043713;
39 41 43 45 47 49 51 53 57, 44 3, 46		47 49 53 55, 48 3, 50 7 9 11 13 17	13.13.30169; 241.22993; 6726961; 937.7993; 37.165673; 13.97:4801; 577.10333; 61.96001; 13.431617;	53 55, 52 5, 54 7 11 13 17 19 23 25	7606561; 61.135781; 2389.3529; 8362573; 8164861; 829.9697; 13.373.1597; 7580701; 7240333; 13.37:61.241;
5	4425181;	19	5477821;	29	6757981;
7	4376173;	21	109.49009;	31	157.42193;
9	73.59977;	23	5207341;	35	13.494737;
11	4236061;	27	349:13.1093	37	6385213;
13	4148413;	29	4854781;	41	61.105361;
15	37.97.1129;	31	4771021;	43	13.502321;
17	3949453;	33	181.26041;	47	6941293;
19	1609.2389;	37	4701661;	49	277:37.709;
21	3738781;	39	4760941;	53	13.37.17053;
25, 46	13.272737;	41,50	73.241.277;	55, 54	73.120997;

Continued on top of page 170.

Sextans, $N = (x^6 + y^6) \div (x^2 + y^2) \gg 9.10^6$; [x and y > 1, xy odd].

x, y	N	x, y	N	x, y	N
5, 3 7 11 13 17 19 23 25 29 31	13.37; 13.157; 13633; 37.733; 81001; 13.9781; 275161; 385081; 699793; 13.70381;	39, 7 41 43 45 47 51 53, 7 11, 9 13	2241313; 61.45013; 193.17257; 937.4273; 4773841; 13.73.6997; 13.13.109.421; 13.877; 21433; 61.1093;	29, 13 31 33 35 37 41 43 45 47 49	61.9733; 789673; 1030441; 1322161; 349.4789; 2570233; 3134881; 1669.2269; 193.23497; 5387593;
35 37 41 43 47 49 53, 3 7, 5 9	61.24421; 1861921; 2810713; 3402241; 13.373837; 97.59209; 1801; 13.397; 12241;	19. 23 25 29 31 35 37 41 43 47	107641; 243553; 346561; 757.853; 13.65557; 37.38053; 13.109.1249; 13.157.1321; 97.33769; 13.97.3733;	51 53 55, 13 17, 15 19 23 29 31 37 41	661.9613; 73.101977; 8667961; 13.13.409; 99721; 211441; 277.2053; 709.1069; 193.8377; 229.10909;
13 17 19 21 23 27 29 31 33 37	109.229; 13.61.97; 121921; 184081; 13.61.337; 513841; 13.52837; 900121; 37.31333; 1840561;	49 53 55, 9 13, 11 15 17. 19 21 23 25	5576881; 181.42373; 61.193.757; 61.373; 109.349; 13.4861; 101281; 109.1429; 37.6229; 13.25357;	43 47 49 53, 15 19, 17 21 23 25 27 29	13.349.673; 4433281; 37.142573; 13.13.61.709; 97.1129; 13.37.313; 210481; 37.7933; 109.3709; 547753;
39 41 43 47 49 51 53, 5 9, 7 11	2276041; 37·75 ² 53; 13.313.829; 73.157.421; 13.438877; 181.37021; 7820881; 4993; 11113; 37.613;	27 29 31 35 37 39 41 43 45 47	13.35221; 620161; 37.97.229; 13.13.8089; 421.4093; 2144041; 2637001; 13.37.6673; 73.53017; 61.75853;	31 33 35 37 39 41 43 45 47	13.56101; 337.2833; 661.1861; 13.120157; 937.2089; 13.277.673; 73.109.373; 3598921; 13.277.1201; 37.139309;
15 17 19 23 25 27 29 31 33 37,7	97.433; 71761; 37.3109; 13.19717; 13.61.457; 13.38317; 13.51421; 87.8833; 113.4961; 1809481;	49 51 53, 11 15, 13 17 19 21 23 25 27, 13	5488921; 13.37.13441; 13.581941; 41161; 63241; 97.1009; 148513; 219001; 313561; 436801;	53 55, 17 21, 19 23 25 27 29 31 33 35, 19	37.193573; 8359921; 165601; 13.13.1297; 13.22717; 13.30661; 13.41077; 706921; 37.61.409; 1188721;

Sextans, $N = (x^6 + y^6) \div (x^2 + y^2) \geqslant 9.10^6$; [x and y > 1, xy odd].

x, y	N	x, y	N	x, y	N
37, 19	1510273;	31, 27	37.20389;	57, 35	13.229.2713;
39	193.9817;	35	1139041;	39, 37	1201.1753;
41	37.63493;	37	13.13.8329;	41	2398633;
43	109.26437;	41	13.163981;	43	13.212437;
45	3499921;	43	37.61.1153;	45	61.52501;
47	661.6373;	47	3800761;	47	3729721;
49	13.181.2137;	49	4545913;	49	757.5749;
51	13.458197;	53	97.65713;	51	13.241.1621;
53	13.157.3433;	55, 27	7476841;	53	13.455317;
55, 19	13.73.8629;	31, 29	13.63277;	55	6883561;
23, 21	13.18541;	33	13.75181;	57, 37	181.44101;
25	309481;		1177681;	41, 39	2582401;
29	13.97.421;		157.9109;	43	2919913;
31	694201;		73.23857;	47	3833233;
37	229.6397;		577.3673;	49	673.6577;
41	829.2749;		2571073;	53	37.160309;
43	13.373.577;		13.238837;	55, 39	97.70753;
47	61.67213;		13.37.7753;	43, 41	13.241261;
53	6846193;		4452841;	45	97.36313;
55, 21	13.241.2557;		1213.4357;	47	1741.2293;
25, 23	339841;	53	241.25873;	49	4554481;
27	425641;	55	7313881;	51	13.229.1753;
29	337.1609;	57, 29	13.656221;	53	13.461101;
31	13.193.277;	33, 31	1062913;	55	37.186253;
33	13.68437;	35	13.95917;	57, 41	7920193;
35	157.7213;	37	109.13597;	45, 43	3775201;
37	1429801;	39	1775281;	47	13.37.8761;
39	1788673;	41	61.34981;	49	61.77773;
41	73.97.313;	43	13.197341;	51	853.6301;
43	457.5953;	45	61.50461;	53	6115441;
45	13.254557;	47	37.99469;	55	1321.5281;
47	13.433.709;	49	13.336997;	57, 43	13.612877;
49	4774513;	51	5189161;	47, 45	37.181.673;
51	157.36109;	53	73.83761;	49	13.241.1597;
58	6684361;	55	13.13.42409;	53, 45	13.313.1549;
55, 23	181.43261;	57, 31	8357233;	49, 47	13.109.3769;
27, 25	466441;	35, 33	1352521;	51	5899273;
29	572281;	37	1569241;	53	241.27241;
31	193.3697;	41	2181073;	55	13.565237;
33	13.68917;	43	97.26713;	57, 47	8258641;
37 39 41 43 47 49 51 53 57, 25 29, 27	13.61.1777; 1753441; 13.166597; 2653801; 1453.2677; 4654801; 5530201; 97.67273; 37.73.3301; 37.37.457;	47 49 53, 33 37, 35 39 41 43 47 51 53, 35	73.181.277; 13.13.25657; 13.433.1069; 13.73.1789; 61.31981; 13.73.2389; 2654401; 13.109.2593; 337.15073; 37.160813;	51, 49 53 55 57, 49 53, 51 55, 51 55, 53	1657.3793; 61.277.400; 7652401; 13.37.17713; 7349473; 8047801; 8543881;

8

Sextans, $N = (x^6 + y^6) \div (x^2 + y^2) \geqslant 9.10^6$; [x and y > 1, y even]. (Continued from page 167.)

x, y	N	x, y	N	x, y	N
23 25	8832721; 61.97.1429; 8265121; 1213.6661; 877.9013; 13.595717; 37.205549; 13.570421;	47 51 53, 56	13.37.15361; 73.102121; 97.78193; 13.598981; 73.115657;	35, 58 37 39 41 43 45 47, 58	37.61.3853; 373.23017; 37.230089; 8487373; 733.11617; 73.117877; 8765101;

These Tables, pages 164-170, show all Sextans $\geqslant 9.106$ (with x and y > 1).

High Irreducible Sextans.

$$\mathbf{N} = (x^6 + y^6) = N_{ii} \cdot N_{vi}; \quad N_{ii} = (x^2 + y^2); \quad N_{vi} = (x^6 + y^6) \div (x^2 + y^2) > 9.10^6.$$
 [9-ans, 12-mans, and Aurifeuillians excluded.]

x, y	$x^2 + y^2$	$N_{ m vi}$	Fig.	x, y	$x^2 + y^2$	N_{vi}	Fig.
$\begin{bmatrix} 2^{8}, & 3 & 5 \\ 2^{6}, & 5 & 5 \\ 2^{7}, & 5 & 6 \\ 2^{8}, & 5 & 5 \\ 10^{2}, & 3 & 5 \end{bmatrix}$	5.13109; 13.317; 61.269; 53.1237; 10009; 13.773;	73.229321; 2833.1515841; 157.106213; 9349.28660; 13.37.8925841; 2281.43801; 5881.16921; 13.7600357;	11 15 11 13 15 13 13 13	$\begin{bmatrix} 2^7, & 7 \\ 2^8, & 7 \\ 2^6, & 11 \\ 2^7, & 11 \\ 2^8, & 11 \\ 11^2, & 3 \\ 11^2, & 5 \end{bmatrix}$	16433; 5.13.1009; 4217; 5.3301; 65657; 2.25.293;	13.229.5569; 267635041?‡ 7753.553561; 13.1253557; 97.2747089; 13.329773237?‡ 337.635689; 13.1453.11329; 157.1360789;	11 13 15 11 13 15 13 13 13

$$\begin{split} \mbox{High Aurifeuillian Sextans.} \quad \mathbf{N} &= N_{ii} \, . \, L \, . \, M \, \, ; \quad N_{ii} \, , \, L \, , \, M \, > \, 9 \, . \, 10^6 . \\ \mathbf{N} &= \left(x^6 + y^6 \right) = N_{ii} \, . \, N_{vi} \, ; \quad N_{ii} = \left(x^2 + y^2 \right) \, ; \quad N_{vi} = \left(x^6 + y^6 \right) \div \left(x^2 + y^2 \right) = \, L \, . \, M \, ; \\ xy &= 2 \xi^2 \eta^2 \, \, \text{or} \, \, 6 \xi^2 \eta^2 . \end{split}$$

	x, y	$x^2 + y^2$	L	M	Fig.	
۱	$2^{15}, 3^2 \\ 5^2 \\ 7^2$	7577: 17.521; 5.13.113: 9137; 5.1381: 9721; 32009: 5.6709; 31513: 13.2621;	13.4925653; 13.1033.4621; 37.61.26641; 56410033; 1048864081?‡ 3373.306133; 181.5616253; 985105969?‡	37.1900861; 37.73.97.277; 74896609; 13.73.241.349; 13.84554581; 1116536689?‡ 13.87242917; 13.900259909?‡	24 24 24 24 28 28 28 28	Bin-Aurifn.
	2 ¹³ , 3 2 ¹⁵ , 3	13.5162221;	1741.36781; 1009.1039513;	7069.9949; 13.73.97.11941;	24 28	Sext- Aurn.

 $\begin{array}{ll} \textit{High Numbers,} & \textbf{N} = (X^6 + Y^6) \, ; \, \, [X = 3^m, \, Y = 2^n \, ; \, m, \, n \, \textit{odd}] \, , \\ \textbf{N} = N_{ii}, N_{vi} \, ; & N_{ii} = (X^2 + Y^2) \, ; & N_{vi} = (X^6 + Y^6) \div (X^2 + Y^2) = L \, , M \, , \\ [6XY = \square \, ; & N_{vi} \, \text{is a Sext-Aurifeuillian.}] \end{array}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m, n	N_{ii}	L	M	Fig.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1, 1 3 5 7 9 11 3, 1 3, 5 7 9 11 5, 1 3 5 7 9 11 7, 1 3 5 7 9 11 9, 1	13; 73; 1033; 13.13.97; 262153; 181.23173; 733; 13;61; 1753; 109.157; 73;13.277; 4195033; 59053; 59113; 13;4621; 241.313; 321193; 13.97.3373; 13.97.3793; 73.05521; 4783993; 13;369181; 5045113; 37.242629;	1; 13; 13.37; 11257; 13.73.229; 3818953; 373; 181; 97; 13.397; 149113; 13.243517; 13.3637; 157.241; 24001; 37.229; 73.577; 241.7417; 4441477; 13.317257; 13.37.7393; 61;43261; 13.97.1117; 459961; † 829.444817; †	61; 277; 2161; 23833; 316201; 13.37.61.157; 13.109; 37.73; 13.661; 49801; 37.12421; 5556121; 37.1993; 13.73.97; 61; 2341; 13.25309; 13.13.13.613; 9705193?† 5150713; 577.9613; 6431857; 8639041; 73.210961; 13.3412957; 13.473.150697;	Fig. 3 6 10 13 17 20 9 10 13 17 20 15 15 15 17 20 21 21 21 21 21 21 21 25 25 25

Trinomial Dimorph Sextans.

$$\begin{split} \mathbf{N_{vi}} &= t^8 + 14\,t^4u^4 + u^8 = \mathbf{N}\,(y) = \mathbf{N}\,(z) = \mathbf{L}.\,\tilde{\mathbf{M}}\,; \quad \mathbf{N}\,(y) \text{ means } (x^6 + y^6) \div (x^2 + y^2). \\ &\quad x = t^2 + u^2, \quad y = t^2 \sim u^2, \quad z = 2tu\,; \quad \mathbf{L} = x^2 - yz, \quad \mathbf{M} = x^2 + yz. \\ &\quad Ex. \quad \mathbf{N}_1 = (7^{8n} + 2.7^{4n+1} + 1), \quad \mathbf{N}_2 = (7^{8n} + 14^{4n+1} + 2^{8n}), \quad \mathbf{N}_3 = 14^{8n} + 14^{4n+1} + 1. \end{split}$$

N	t, 11	x ,	y ,	z	L	М	Fig.
N ₁ N ₂ N ₂	1, 49 1, 343 2, 7 2, 49 2, 343	2402, 117650, 53, 2405,	2400, 117648, 45, 2397,	98 686 28 196 1379	4.829.1669; 4.277.12419509?† 1549;	4.13.61; 4.13.37.3121; 4.3480557257?† 13.313; 73.85669; 13.733.1469581; 44269; 241.457.13537;	7 14 21 7 14 21 10 19

Simple Bin-Aurifeuillian Sextans.

$$\begin{split} \mathbf{N} &= (\mathbf{1}^6 + y^6) \div (\mathbf{1}^2 + y^2) = \text{L.M} \; ; \quad [y = 2\eta^2]. \\ \mathbf{P} &= (\mathbf{1} + y + y^2), \quad \mathbf{Q} = 2\eta \; (\mathbf{1} + y) \; ; \qquad \mathbf{L} = (\mathbf{P} - \mathbf{Q}), \quad \mathbf{M} = (\mathbf{P} + \mathbf{Q}). \end{split}$$

[All divisors < 32,900 cast out.]

M	13.423457; 13.37.12841; 6907753; 7702669; 61.229.613; 73.130057; 1117.10369; 73.14613; 109.128413; 73.14613; 109.128413; 73.14613; 109.128413; 73.14613; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.167749; 13.1677419; 46052377; 6061.8629; 13.1609.3793; 13.1609.3793; 13.1609.3793; 13.1609.3793; 13.1609.3793; 13.1609.3793; 13.1609.3793; 13.161.2829;
Ţ	73.97.733; 313.1837; 6534361; 7296769; 73.241.2593; 9987121; B 11030641; 43.28069; 13.10.27753; 13.10.27753; 13.10.12849; 19107757; 19107757; 19107757; 19107757; 13.28069; 19107757; 13.224273; 13.224273; 13.224273; 13.224273; 13.224273; 13.33.8899; 13.33.8899; 13.33.8899; 13.33.8899; 13.33.88257; 13.13.33.33.499; 13.13.33.33.499; 13.13.33.33.499; 13.13.33.33.499; 13.13.33.33.499;
y	2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
μ	88888884444444444444444444444444444444
M	13; 199; 3201; 3201; 13.853; 13.853; 13.1429; 13.1429; 13.1429; 13.1429; 13.1429; 13.1429; 13.1429; 13.1429; 13.1429; 13.1437; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12697; 13.12693; 13.12693; 13.12693; 13.12693; 13.12693; 13.12693; 13.12693; 13.12693; 13.12693; 13.12693; 13.13.13.13.13.13.13.13.13.13.13.13.13.1
T	1; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
y	22 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
h	1 2 2 2 4 2 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7

Simple Bin-Aurifeuillian Sextans,

$$\begin{split} {\rm N} &= (1^6 + y^6) \div (1^2 + y^2) = {\rm L.\,M}\;; \quad [y = 2\eta^2]. \\ {\rm P} &= (1 + y + y^2), \quad {\rm Q} &= 2\eta\,(1 + y)\;; \qquad {\rm L} &= ({\rm P-Q}), \quad {\rm M} &= ({\rm P+Q}). \end{split}$$

[All divisors < 32,900 cast out.]

M	13.337.92221; 349.829.1453; 437238709; 937.485161; 472464721; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.21089; 13.11.2109; 13.11.2109; 13.11.2109; 13.11.2109; 13.11.2109; 13.11.2109; 13.11.2109; 13.11.211; 13.11.21; 13.11.2
ı	396019801; 412140601; 37.73.181.877; 13.397.86389; 73.613.10357; 73.97.109.673; 13.97.209.673; 13.157.207.11833; 13.157.21833; 13.157.21833; 13.157.21833; 241.441.11941; 241.441.11941; 13.257.21601; 24097.33841; 8017.95917; 13.2557.21601; 13.2557.21601; 13.2557.21601; 13.2557.21601; 13.2557.21601; 13.2557.21601; 13.2557.21601; 13.2557.21601; 13.2557.21601; 13.421.155377; 13.676989; 13.67689; 1
, a	20 0000 20 4002 20 808 21 218 22 1 632 22 6 808 22 4 72 22 898 22 898 22 898 22 898 22 898 22 6 912 22 6 912 22 882 22 882 22 882 22 882 22 882 22 882 22 882 22 882 23 882 24 642 25 882 26 912 27 842 28 882 28 88
lı	100 100 100 100 100 100 100 100 100 100
M	433.188953; 86592617; 97.541.1753; 61.1597081; 97.397.2677; 13.337.226609; 13.337.226009; 13.9352177; 128261401; 813.432001; 8677.16417; 61.2458537; 103.373.2137; 11077.14929; 11077.14929; 11077.14929; 11077.14929; 11077.14929; 11077.14929; 1
L	79410277; 6361.1349; 13.2161.3181; 13.7709617; 100602657; 1024449; 193.613141; 124886101; 37.457.7789; 13.1067649; 146174029; 146174029; 13.1067649; 13.2369997; 13.2369999; 13.2369999; 13.23699997; 13.23699999; 13.23699997; 13.23699997; 13.23699997; 13.23699997; 13.23699999; 13.2369999; 13.23699999; 13.23699999; 13.23699999; 13.23699999; 13.23699999; 13.23699999; 13.23699999; 13.23699999; 13.23699999; 13.23699999; 13.236999999; 13.23699999; 13.2369999; 13.2369999; 13.2369999; 13.2369999; 13.2369999; 13.236999; 13.236999; 13.236999; 13.2369999; 13.236999; 13.236999; 13.236999; 13.2369; 13.23699; 13.23699; 13.23699; 13.23699; 13.
ĥ	8 978 9 248 9 248 9 248 10 082 10 085 10 058 11 250 11 250
μ	0.0001777777777777777777777777777777777

Bin-Aurifeuillian Sextans.

$$\begin{split} \mathbf{N} &= (x^6 + y^6) \div (x^2 + y^2) = \mathbf{L} \cdot \mathbf{M} \; ; \quad [x = \xi^2 > 1, \; y = 2\eta^2 \; ; \; \; \mathbf{L}, \, \mathbf{M} < 9.10^6]. \\ \mathbf{P} &= (x^2 + xy + y^2), \; \; \mathbf{Q} = 2\xi \eta \; (x + y) \; ; \quad \mathbf{L} = (\mathbf{P} - \mathbf{Q}), \; \; \mathbf{M} = (\mathbf{P} + \mathbf{Q}). \end{split}$$

ξ,η	x, y	L	M	ξ,η	x, y	L M
3, 1	9, 2		13.13;	51, 2	2601, 8	73.85669:7318309;
5 7	25		13.73;	53, 2	2809, 8	7315813:1453.5857;
9	49 81		3217; 8221;	5, 3	25, 18 49	109: 2689 ; 13.61: 6421 ;
111	121		73.241;	11	121	13.613:26317;
13	169	37.661		13	169	17341:193.241;
15	225		:13.61.73;	17	289	13.4441:37.3253;
17	289		93997;	19	361	93937:13.13873;
19 21	361 441		241.601;	23 25	529 625	13.16477:365173;
23	529	13.13597		29	841	305749:37.13477; 573277:13.13.13.397
25	625	13.27733		31	961	433.1753:673.1669;
27	729		13.44029;	35	1225	1261969:13.37.3709;
29	841		13.97.601;	37	1369	13.122401:61.97.373;
31	961		13.75781;	41	1681	1069.2281:37.61.4129;
33 35	1089 1225		37.34057;	43 47	1849 2209	13.228517:3934093;
37	1369		: 193.8233 ; : 157.12601 ;	49	2401	541·7933:73·75997; 13·37·10597:6519529;
39	1521		2435281;	53, 3	2809, 18	109.64609:2029.4357;
41	1681		3.13.97.181;	3, 4	9, 32	409:2377;
43	1849	61.61.877:		5	25	13.13:4729;
45 .	2025		97.193.229;	7	49	457:13.733;
47 49	2209 2401	13.359713:		9 11	81 121	13.157:18313;
51	2601	13.425701:		13	169	6073:61.541;
53, 1	2809, 2		13.61.10333;	15	225	37.757:89689;
3, 2	9,8		421;	17	289	181.277:13.97.109;
5	25		1549;	19	361	13.6397:97.2089;
7	49		61.73;	21	441	157.829:13.37.601;
9	81 121	13.313:		23 25	529 625	194569:401017;
13	169		37·577; 39181;	27	729	280249:13.37.1129; 13.30109:337.2137;
15	225		13.5113;	29	841	73.7297:61.15373;
17	289		13.8161;	31	961	13.54541:541.2221;
19	361		13.12409;	33	1089	925849:13.313.373;
21 23	441		235789;	35 37	1225 1369	13.91453:37.51157;
$\frac{25}{25}$	529 625		13.25657; c 277.1657;	39	1509	1504297:2333689; 37.50773:181.15733;
27	729	397.1153:		41	1681	829.2797:3442441;
29	841		37.21961;	43	1849	109.25981:13.433.733;
31	961	61.13297:	37.157.181;	45	2025	13.263533:4906969;
33	1089		109.12289;	47	2209	61.193.349:13.277.1609
35 37	1225 1369	13.102913:		49 51, 4	2401 2601, 32	37.229.577:6796393;
39	1521	13.13.9949:	1249.2053;	3, 5	9, 50	577.1009:13.609517;
41	1681		13.239713;	7	49	421;14281;
43	1849	37.73.1153:		9	81	1321:37.673;
45	2025	37.101377:	13.61.5653;	11	121	13.337:97.433;
47	2209		5314213;	13	169	61.181:157.433;
49, 2	2401, 8	5311909:	13.481249;	17, 5	289, 50	42841:37.4273;

		~	3.5					~	7.5
ξ,η	x, y	L	M	ξ,	η	x,	y	L	M
19, 5	361, 50	73.997	:228961;	51,	7	2601,	98	13.13.109.	277:8956789;
21	441		:61.5281;	3,	8		128	61.181	:13.1861;
23 27	529 729		:13.33997;	5		25			:37.877;
29	841		:780721; :61.16561;	7 9		49 81			:62400:
31	961		13.97.1021;	11		121			:63409 ; :13.6949 ;
33	1089		:1618741;	13		169			:37.3469;
37	1369	13.313.349	:2470141;	15		225			:73.2473;
39	1521		:3004681;	17		289			:193.1297;
41	1681	2202001	:13.278617;	19		361		44257	:341569;
43	1849		1:4330321;	21		441			:13.13.2713;
47 49	2209 2401	13.61.4957		23		529			:109.5557;
51.5	2601, 50		: 13.545257; :: 13.634597;	$\frac{25}{27}$		$625 \\ 729$:788209;
5, 6	25, 72		13.1034597,	29		841			:13.77797; :13.98533;
7	49		3:21277;	31		961			:1603057;
11	121		:54013;	33		1089			:37.53629;
13	169		:37.37.61;	35		1225			:2431489;
17 19	289 361):13.73.193;	37 39		$1369 \\ 1521$:13.97.2341;
			3:13.37.541;						:313.11353;
23	529		:241.2029;	41		1681		13.37.3889	
25 29	625 841		9:13.49993; 7:61.17881;	43 45		1849 2025			:5032033;
31	961		1:13.106321;	47		2209			:349.16981; :13.73.7309;
35	1225		3:2138749;	49,	8	2401,	128		:8071249;
37	1369	1338100):2617717;	5,	9		162		:13.3673;
41	1681		3:229.16657;	7		49			: 181.349;
43	1849 2209		13.181.1933;	11		121 169			:109.1069;
49, 6	2401, 72		:61.157.661; 1:7 3 96981;	13 17		289			:61.2617; :97.3037;
1 '	1 '								
3, 7	9, 98 25		3:15061;	19 23		361 529			: 13.157.193;
9	81		3:61.349; 9:13.37.97;	25		625		13.12613	:677857;
11	121		7:69829;	29		841			:1393333;
13	169	,	3:277.373;	31		961		478813:1	3.13.37.277;
15	225		37.4057;	35		1225			:13.199933;
17 19	289 361	13.37.61	1:213553;	37 41		1369 1681		, 50,	:3141829;
23	529		3:297397; 3:181.3001;	43		1849		13.37.4549	:1213.3697;
25	625		3:714529;	47		2209			;:37.196477;
27	729		1:13.71161;	49,	9	2401.	162		:181.46633;
29	841):1180537;		10		200	13.37.61	
31	961		9:1486909;	7		49		17341	:13.37.181;
33	1089		:13.142.357;	9		81			:113341;
37	1369		3:2777833;	11		121 169			:13.11497;
39 41	1521 1681		3:193.17389; 9:4021249;	13 17		$\frac{169}{289}$: 198301 ; : 13.26737 ;
43	1849		3:313.15277;	19		361			:455701;
45	2025		1:1993.2833;	21		441			:591901;
47,7	2209, 98		1:13.509521;	23,	10	529	, 200		:13.58537;
				1					

ξ, η	x, y	L M	ξ, η	x , y	L M
27, 10 29	729, 200 841	193.1117:1218901;	15, 13 17	225, 338 289	37.577:61.7549;
31	961	13.23977:1519261;	19	361	18313:572581;
33	1089	349.1249:1875541;	21	441	21277:711889;
37	1369	61.9721:13.176497; 241.4261:13.73.3529;	23	529	37.877:883117; 54421:397.2749;
39	1521	397.3313:1801. 222 1;	25	625	37.2437:1342069;
41	1681	13.127657:433.10957;	27	729	143053:157.10453;
43	1849	2066461:13.430057;	29	841	157.1381:313.6373; 315589:97.24841;
47	2209	3097021:7625941;	31	961	
49, 10	2401, 200	181.20641:13.679537;	33	1089	443881:601.4813;
3, 11 5	9, 242	44257:13.5953;	35	1225	606589:37.37.2521;
	25	35869:37.2557;	37	1369	808993:1489.2749;
7 9	49	37.757:13.9049;	41	1681	1129.1201:1753.3229;
	81	20773:13.11437;	43	1849	61.28081:853.7741;
13	169	10477:37.6637;	45	2025	2134609:7664029;
15	225		47, 13	2209, 338	2628133:8853001;
17 19	289 361	13.1033:410617;	3, 14	9, 392	73.1693:13.37.397;
21	441	13.1861:73.7237;	5 9	25 81	37.2857:13.109.157; 73.997:3111 <u>7</u> 3;
23	529	13.5869:856549;	11	121	13.4441:97.3853;
25	625	73.1693:1077289;	13	169	
27	729	61.3109:1343197;	15	225	44269:109.4153;
29	841		17	289	33349:13.42433;
31	961	278413:13.127717; 394201:2035093;	19	361	26317:157.4297; 37.673:826093;
35	1225	109.6661:13.277.829; 952669:13.229.1201;	23	529	13.3673:1093.1129;
37	1369		25	625	13.5953:241.6229;
39	1521	349.3517:1201.3541;	27	729	123397:13.61.2293;
41	1681	13.119737:37.135829;	29	841	189421:13.168601;
43	1849	13.149749:61.96769;	31	961	277.1009:13.181.1117;
47, 11	2209, 242	2938489:157.51001;	33	1089	398029:3134917;
5, 12	25, 288	13.4093:181.709;	37	1369	13.56929:4388869;
7	49	42841:97.1609;	39	1521	541.1801:5152333;
11	121	37.661:13.18493;	41	1681	313.4021:13.462937;
13	169	73.241:277.1093;	43	1849	1599109:757.9241;
17	289	14281:485113;	45, 14	2025, 392	2002669:8093509;
19	361	61.349:613177;	7, 15	49, 450	13.9397:157.2113;
23	529	64153:13.74317;	11	121	
25	625	105769:13.92413;	13	169	13.6397:37.12433;
29	841		17	289	65701:548521;
31	961	13.18973:37.157.313; 13.73.373:37.59797;	19	361	39181:13.181.337; 61.541:13.73.1009;
35	1225	61.10909:32 0 7289;	23	529	37.1213:13.107377;
37	1369	879961:13.157.1873;	29	841	13.12697:37.65173;
41	1681	13.111949:337.15817;	31	961	246241:2870701;
43	1849	37.49429:421.14821;	37	1369	
47, 12 3, 13	2209, 288	2782201:13.647341;	41	1681	13.51817:4711801; 1163581:13.492757;
5	9, 338	73.1237:97.1489;	43, 15	1849, 450	1487641:13.570697;
	25	76129:170509;	3, 16	9, 512	157.1381:13.24373;
7 9	49	6277 3 :203641;	5	25	61.3109:193.1873;
	81	181.277:73.3373;	7	49	13.12613:73.5689;
11, 13	121, 338	97.397:301057;	9,16	81, 512	139393:13.36997;

_					
ξ,η	x, y	L M	ξ, η	x, y	L M
11, 16 13, 15 17 19 21 23 25 27	121, 512 169 225 289 361 441 529 625 729 841	13.37.241:561553; 93937:660529; 74209:13.60133; 13.61.73:397.2341; 193.241:13.85237; 97.433:73.18121; 13.37.97:1579009; 181.349:1882369; 37.2557:2239057; 97.1489:13.37.5521;	43, 18 3, 19 5 7 9 11 13 15 17 21	1849, 648 9, 722 25 49 81 121 169 225 289 441	241.4861:997.8929; 444529:97.6301; 398029:13.52453; 13.73.373:764149; 13.23977:37.23269; 270913:975661; 231709:1112017; 194569:1274149; 160357:13.37.3049; 13.8161:733.2677;
31 33 35 37 39 41 43, 16 3, 17 5	961 1089 1225 1369 1521 1681 1849, 512 9, 578 25 49	216481:3138913; 13.24229:13.73.1453; 444529:13.333493; 13.46933:5064337; 817153:5891521; 109.9829:13.97.5413; 13.73.1453:7876369; 277.1009:399241; 13.18973:451669; 193.1117:13.39541;	23 25 27 29 31 33 35 37 39 41, 19	529 625 729 841 961 1089 1225 1369 1521 1681, 722	89689:181.12577; 37.37.61:13.203293; 13.6949:3067789; 113341:3558193; 97.1609:13.61.5197; 13.109.157:421.11317; 13.24373:37.148537; 443917:61.103669; 37.16453:7257013; 181.4513:61.109.1249;
9 11 13 15 19 21 23 25 27	81 121 169 225 361 441 529 625 729 841	13.14293:577.1021; 97.1621:61.11149; 157.829:790501; 105229:313.2953; 13.5113:1279657; 55897:13.13.8941; 54013:37.73.661; 63409:13.241.673; 13.37.181:2486713; 181.709:61.47977;	3, 20 7 9 11 13 17 19 21 23 27	9,800 49 81 121 169 289 361 441 529 729	73.7537:109.6829; 443881:13.70717; 394201:13.61.1297; 346201:1156681; 299881:1307641; 13.16477:877.1933; 13.13597:1941481; 241.601:13.171517; 37.3253:61.42061; 277.373:13.37.73.97;
31 33 35 37 39 41 43, 17 5, 18 7	961 1089 1225 1369 1521 1681 1849, 578 25, 648 49 121	13.37.397:3435169; 279073:13.373.829; 13.30553:4688329; 73.7537:5448853; 373.1993:1237.5101; 109.9013:73.99733; 1273333:13.37.17401; 315589:13.13.3301; 278413:629701; 13.16033:709.1153;	29 31 33 37 39 41, 20 5, 21 11 13 17	841 961 1089 1369 1521 1681, 800 25, 882 121 169 289	109.1069:3923641; 13.11437:37.122053; 203641:13.399277; 399241:6819481; 549481:7791001; 741721:8879401; 13.46933:991069; 349.1249:13.37.2833; 381697:1529389; 280249:1952437;
13 17 19 23 25 29 31 35 37 41, 18	169 289 361 529 625 841 961 1225 1369 1681, 648	175621:373.2521; 37.3169:73.17317; 93997:61.24169; 157.433:13.155161; 69829:13.37.4909; 13.9049:3226669; 170509:13.289369; 37.61.157:829.6121; 13.109.349:97.60493; 897349:13.597889;	19 23 25 29 31 37, 21 3, 22 5 7 9, 22	361 529 625 841 961 1369, 882 9, 968 25 49 81, 968	234733:2218561; 13.12409:37.73.1069; 13.97.109:3302149; 37.3469:13.229.1453; 13.11497:4948633; 193.1873:13.73.7753; 181.4513:673.1597; 373.1993:13.90793; 13.51817:61.21313; 606589:13.110569;

ξ,η	x, y	L M	ξ, η	x , y	L M
13, 22 15 17 19 21 23 25 27 29 31	169, 968 225 289 361 441 529 625 729 841 961	478813:1779541; 418069;241.8269; 13.27697:2240533; 305749:13.337.577; 13.109.181:2860309; 213973:37.73.1201; 13.13873:61.193.313; 37.4273:13.157.2053; 37.4057:97.157.313; 61.2617:13.193.2161;	27, 25 29 31 33, 25 3, 26 5 7 9 11 15	729, 1250 841 961 1089, 1250 9, 1352 25 49 81 121 225	13.25657:5676841; 13.37.601:103.32917; 13.37.541:109.65269; 193.1297:997.7993; 1627837:349.5881; 37.109.373:2220349; 109.12721:37.193.337; 1273333:2614621; 1163581:2848693; 952669:1597.2137;
35 37 39, 22 3, 23 5 7 9 11 13	1225 1369 1521, 968 9, 1058 25 49 81 121 169 225	73.3373:13.538513; 157.2113;73.181.601; 451669:109.109.757; 13.13.37.157:1276213; 897349:37.37717; 817153:13.37.3181; 13.56929:1683169; 61.10909:13.142969; 61.9721:2060473; 13.40213:2293309;	17 19 21 23 25 27 29 31 33, 26 5, 27	289 361 441 529 625 729 841 961 1089, 1352 25, 1458	709.1201:349.10753; 433.1741:4138741; 660661:2017.2269; 573277:421.12049; 61.8089:73.229.337; 423229:6266677; 365173:6979261; 61.5281:7779253; 297397:37.234457; 1762429:13.37.73.73;
17 19 21 25 27 29 31 33 35 37, 23	289 361 441 625 729 841 961 1089 1225 1369, 1058	109.4177;13.197077; 13.30109;37.77617; 61.5449;3228457; 235789;97.42337; 97.2089;1381.3361; 13.73.193;1453.3613; 73.2473;1033.5749; 198301;13.193.2677; 13.18493;373.20353; 311173;13.659437;	7 11 13 17 19 23 25 29 31, 27 3, 28	49 121 169 289 361 529 625 841 961,1458 9,1568	37.44053:97.28549; 13.73.1453:3254749; 313.4021:337.10513; 241.4261:4234393; 916129:37.125641; 13.54541:5644741; 13.47353:2113.2953; 277.1657:13.589189; 401017:13.241.2713; 13.169837:109.25117;
5, 24 7 11 13 17 19 23 25 29 31	25, 1152 49 121 169 289 361 529 625 841 961	73.14713;61.97.277; 109.9013;13.137653; 808993;13.73.2269; 109.6661:97.24481; 13.43669;97.30097; 13.37957;3253153; 13.27733;61.66757; 305329;37.123517; 228961;13.444421; 213553;157.41413;	5 9 11 13 15 17 19 23 25 27	25 81 121 169 225 289 361 529 625 729	2052409:1657.1777; 13.135469:3422289; 13.13.9601:3703417; 1487641:4016713; 1129.1201:13.193.1741; 349.3517:13.366397; 1102537:13.397.1009; 867001:13.37.13033; 433.1753:73.94513; 660073:37.241.853;
35, 24 3, 25 7 9 11 13 17 19 21 23, 25	1225, 1152 9, 1250 49 81 121 169 289 361 441 529, 1250	37.6637:13.633253; 13.106537:1762681; 241.4861:2080801; 109.9829:61.37201; 541.1801:13.13.37.397; 879961:2724061; 61.73.1573315421; 601.1021:3674521; 73.7297:13.314137; 397.1153:13.61.5737;	29, 28 3, 29 5 7 9 11 13 15 17 19, 29	841, 1568 9, 1682 25 49 81 121 169 225 289 361, 1682	13.44029:8396809; 73.181.193:13.241429; 37.64237:3366829; 13.37.4597:109.33181; 2051641:13.299401; 13.337.433:4197601; 37.109.433:4537597; 1599109:13.378253; 13.111949:757.7057; 397.3313:13.447541;

Bin-Aurifeuillian Sextans.

ξ, η	x, y	L	M	ξ, η	x, y	L M	
21, 29 23 25 27, 29 7, 30 11 13 17 19 23, 30 3, 31 5 7	441, 1682 529 625 729, 1682 49, 1800 121 169 289 361 529, 1800 9, 1922 25 49 81	1179553:6 13.80713:6 925849:9 61.13297:7 2554021:1 1093.2017:10 2036941:5 61.28081:13 13.119737:8 337.3733:6 13.257869:3 3139189:1 2935249:7	351181; 948217; 7.78517; 3.114553; 3.315937; 9.157.277; 108581; .37.12421; 77.7393; 1.126001; 7.110017; 3.334333;	\$\begin{array}{c} \text{\$\xi\$, \$\eta\$} \tag{13, 32} \\ 15 \\ 17 \\ 19 \\ 21, 32 \\ 5, 33 \\ 7 \\ 13 \\ 17 \\ 19, 33 \\ 3, 34 \\ 5, 7 \\ 9 \end{array}\$	$\begin{array}{c} x \;\;,\;\; y \\ 169, 2048 \\ 225 \\ 289 \\ 361 \\ 441, 2048 \\ 25, 2178 \\ 49 \\ 169 \\ 289 \\ 361, 2178 \\ 9, 2312 \\ 25 \\ 49 \\ 81 \end{array}$	L M 73.37321:2293.2797; 2523649:37.186157; 37.109.577:13.570181; 2134609:13.109.5641 13.149749:37.233437; 13.97.3229:181.30529; 3823933:13.61.7417 97.32233;421.16993; 13.206821:613.13417; 13.13.14653:73.97.1249 61.80209:13.449209; 13.354553:997.6217; 541.8017:1297.5077; 1777.2293:37.73.2593	;
11 13 15 17 19 21 23, 31 3, 32 5 7 9 11, 32	121 169 225 289 361 441 529, 1922 9, 2048 25 49 81 121, 2048	37.49429:7 13.127657:10 61.24517:1 337.11329:1 3582769:1 13.258277:6	732809; .109.4357; .1.313.349; 207621; 9.229.313; 3.652753; 777.2593; 3.377653; 01.8713; 201.4657;	11 13 15, 84 3, 35 9 11 13, 35 5, 36 7, 36 3, 37 5, 37	121 169 225, 2312 9, 2450 81 121 169, 2450 25, 2592 49, 2592 9, 2738 25, 2738	3819853:13.573817; 3571429:7957837; 13.256033:1021.8329; 5508241:6541021; 241.19141:13.373.1609; 37.117133:1669.4969; 181.22441:73.120937; 757.7717:7726009; 5516809:13.433.1453 337.20509:13.625477; 61.107269:8588029;	

The Tables above, pages 174-179, show all Bin-Aurifeuillian Sextans with $\alpha>1$ and L, M $<9.10^{\circ}.$

$$\begin{split} &Simple \;\; Sext-Aurifeuillian \;\; Sextans, \;\; S', \;\; [Species \; i]. \\ &S' = (1^6 + y^6) \div (1^2 + y^2) = \; L.\,M \;; \quad [y = 6\eta^2]. \\ &P = (1^2 + 3y + y^2), \quad Q = 6\eta \, (1+y) \;; \qquad L = (P-Q), \quad M = (P+Q). \\ &[\;\; \Lambda ll \;\; factors < 32,900 \;\; cast \;\; out.] \end{split}$$

η	y	L	M	η	y	L	M
9	24 54 96 150 216 294 384 486	13; 349; 2089; 7177; 13.13.109; 73.541; 74929; 37.3517; 241.877; 13.25057;	97; 13.73; 13.313; 11833; 27481; 55117; 99709; 13.12853; 263953; 37.10753;		864 1 014 1 176 1 350 1 536 1 734 1 944 2 166	13.37021; 109.6301; 193.4933; 13.37.2677; 1704961; 73.97.313; 2834989; 13.274993; 4451017; 61.89821;	37.15601; 13.13.4801; 397.2797; 1485373; 13.277.541; 13.193189; 3188929; 73.67741; 6055321;

Simple Sext-Aurifeuillian Sextans, S', [Species i].

y	Г	M	h	'n	H	M
2 646		13.409.1381;	51	15 606	37.6454549;	13,19105369;
2 904	97.83077;	2713,3253;	52	16 224		268329049;
174	_	37.284377;	55	10 854	13.109.190717;	193.373.4021;
456	13.	61.204133;	54	17 496	73.1453.2833;	13.13.1045157;
750	~	13.61.18457;	55	18 150	323487121;	13.601.42937;
056		1,7096197;	96	18 816	347775793;	109.397.8329;
374		157.126457;	22	19 494	13.28723633;	73.5297833;
4 704		13.1764013;	58	20 184	13009.30781;	241.1719829;
5 046		13.37.157.349;	59		3217.133321;	443681653;
5 400		673.44797;	09	21 600	458848441;	13.37.986281;
5 766		61.562897;	61		97.5055109;	506688937;
6 144		38947009;	62	23 064	13.13.3097261;	433.1248493;
6 534		44006689;	63	23 814	13.37.1160449;	157.3669937;
6 936		13.3811081;	64	24 576	37.16070701;	13.47191621;
7 350		55588261;	65	25 350	11677.54193;	7681.84961;
2776	_	97.181.3541;	99	26 136	13.51755281;	37.3373.5557;
8 214		157.441517;	29	26 934	714693289;	13.73.769.1009;
8 664	1~	13.5928193;	89	27 744		13.1741.34513;
91126	. 1 ~	85446973;	69	28 566	Ι,	109.7595677;
0096		181.522061;	70			876796621;
10 086		13.61.131449;	71		73.433.28537;	229.4051513;
10584		13.8824633;	7.5	31 104	954114769;	980989489;
11 094		10957.11497;	73	31 974	661.1525609;	13.79725973;
11 616		769.179497;	74		3313.321469;	1069.1023577;
12 150		150939721;	75	33 750	13.313.276229;	73.97.163021;
12696		613.268729;				
13 254		13.37.193.1933;	80	38 400	16729.87049;	13.9337.12301;
13 824		37.5273677;				
4 406		211811713;	100	000 09		9157.397093;
5 000		1069.214729;	101	61 206	13.37.7711573;	3853.981949;

Sext-Aurifeuillian Sextans, S', [Species i].

ξ,η	x , y	L M	ξ,η	x, y	L M
5, 1	25, 6	181:13.157;	7, 4	49, 96	37.37:13.3853;
7	49	1009:13.433;	11	121	13.109:193.601;
11	121	37.229:25237;	13	169	3769:169129;
13	169	17989:45289;	17	289	13.1453:333049;
17	289	13.4513:157.757;	19	361	13.37.73:451897;
19 23	361	13.7309:178693;	23	529	229.421:13.60493;
25 25	529 625	73.2953:37.9817;	25 29	625 841	73.2017:241.4201;
29	841	307261:13.38197;	31	961	13.23581:661.2437;
31	961	575077:37.23509; 760993:13.86209;	35	1225	423097:1995913;
35	1225	97.13033:13.181.757;	37	1369	753001:13.228637; 13.75133:3578569;
37	1369	1593589:73.109.277;	41	1681	181.8677:13.457.853;
41	1681	2441053:73.44809;	43	1849	13.97.1549:1201.4969;
43	1849	13.228733:3930709;	47, 4	2209, 96	2925049:673.12073;
47	2209	13.37.8929:5544109;	7, 5	49, 150	13.397:88741;
49	2401	5100397:2137.3049;	11	121	2161:157.1153;
53, 1	2809, 6	13.541993:8836249;	13	169	37.73:97.2593;
5, 2	25, 24	61:13.457;	17	289	13.937:459961;
7	49	373:12637;	19	361	24001:13.13.37.97;
11	121	4789:13.3313;	23	529	71881:1008901;
13	169	11197:71413;	29	841	241.1021:1970401;
17 19	289	61.673:37.4561;	31	961	13.26557:73.33037;
23	361 529	69109:244669;	37 41	1369 1681	826621:433.9697;
$\frac{25}{25}$	625	165877:13.36241; 13.13.1429:630901;	43, 5	1849, 150	109.12409:37.158293;
29	841	13.157.229:1069429;	5, 6	25, 216	20101:106861;
31	961	421.1489:13.104593;	7	49	14029:13.11353;
35	1225	109.9769:769.2749;	11	121	13.13.37:273157;
37	1369	1354813:13.193.1033;	13	169	4549: 364909;
41	1681	13.241.673:3786229;	17	289	8389:13.48193;
43	1849	2586037:541.8353;	19	361	13.1249:805573;
47	2209	13.290761:6298717;	23	529	13.37.109:1286149;
49, 2	2401, 24	73.61813:13.109.5197;	25	625	85381:1599181;
5, 3	25, 54	13.37:61.241;	29	841	37.5281:13.181.1021;
7	49	277:37.709;	31 35	961 1225	337.829:397.7321;
11 13	121 169	13.193:71809;	35 37	1369	13.13.3109:97.42853;
17	289	6673:37.3001; 28297:238213;	41	1681	13.53593:229.21481; 601.1933:13.520129;
19	361	49789: 109. 3061;	43, 6	1849, 216	61.24049:13.373.1621;
23	529	73.1741:13.61.769;	5, 7	25, 294	73.577:229.769;
25	625	13.14557:313.2557;	11	121	16069:13.73.421;
29	841	13.29173:1313629;	13	169	11257:37.61.229;
31	961	13.97.409:577.2857;	17	289	13.661:229.3673;
35	1225	73.12277:157.15973;	19	361	37.337:13.81373;
37	1369	13.73.1213:709.4297;	23	529	157.241:13.125221;
41	1681	193.9433:13.37.9109;	25	625	63361:1993261;
43	1849	2248333:109.47653;	29	841	13.61.193:2917909;
47	2209	3325957:13.13.42337;	31 37	961 1369	223549:3491569;
49, 3	. ,	3991369:13.640153; 2521:37.853;	41,7		583753:13.44 2 489; 13.13.5881:37.109.1933;
5, 4	25, 96	2521.3/.053;	11, /	1001, 234	13.13.5001.37.109.1933,

Sext-Aurifeuillian Sextans, S', [Species i].

ξ, η	x, y	L M	ξ, η	x, y	L M
5, 8 7 11 13 17 19 23 25 29 31	25, 384 49 121 169 289 361 529 625 841 961	78721:13.21157; 61.997:13.27061; 34849;97.5857; 25633:715777; 14737:13.85621; 13.1093:277.4957; 28753:37.73.757; 13.3637:2468881; 118369:1069.3301; 109.1621:13.37.8689;	17, 12 19 23 25 29 31, 12 5, 13 7 11	289, 864 361 529 625 841 961, 864 25, 1014 49 121 289	157.1069:13.37.6217; 73.1873:13.13.20641; 90697:1549.3037; 13.61.97:709.7669; 73609:193.37273; 13.6733:61.134989; 97.7213:37.40813; 73.8209:37.47569; 337.1297:2384749; 263077:3718633;
35 37 41, 8 5, 9 7 11 13 17 19	1225 1369 1681, 384 25, 486 49 121 169 289 361 529	13.27397:73.193.409; 61.73.109:6712033; 845809:61.157.937; 135301:411241; 13.8293;512269; 66697:13.60601; 51349:970969; 29629:13.111733; 23833:1761877; 13.2053:2547949;	19 23 25 29, 13 5, 14 11 13 17 19 23	361 529 625 841, 1014 25, 1176 121 169 289 361 529	37.61.97:457.9397; 149113:5685397; 124021:6516121; 97789:2473.3433; 97.9973:13.152017; 37.16921:3022933; 97.5557:193.18013; 13.30313:97.109.433; 13.61.421:109.48073; 235069:6823189;
25 29 31 35 37, 9 7, 10 11 13 17	625 841 961 1225 1369, 486 49, 600 121 169 289 361	37.1033:3037921; 91573:13.193.1693; 138577:1549.3217; 13.37.601:73.92557; 400069:13.600973; 178021:723181; 73.1597:13.37.2221; 92941:157.8233; 56941:457.4093; 109.409:2235661;	25, 14 7, 15 11 13 17 19 23, 15 5, 16 7	$\begin{array}{c} 625,1176\\ 49,1350\\ 121\\ 169\\ 289\\ 361\\ 529,1350\\ 25,1536\\ 49\\ 121\\ \end{array}$	196501:13.596977; 61.97.193:1657.1753; 870901:13.291037; 613.1237:4312741; 828901:13.449557; 489061:421.15061; 355261:13.181.3457; 13.132757:3224401; 1522369;3652609; 13.90901:4681297;
28 29 31, 10 5, 11 7 13 17 19 23 25	529 841 961, 600 25, 726 49 169 289 361 529 625	13.2617:1381.2281; 37.1993:13.13.30109; 61.1801:13.37.12301; 13.25717:601.1381; 278149:994249; 155809:73.23173; 101209:2378869; 80557:1237.2269; 13.4153:37.181.577; 49801:13.577.601;	13 17 19, 16 5, 17 7 11 13, 17 5, 18 7	169 289 361, 1536 25, 1734 49 121 169, 1734 25, 1944 49 121	61.17029:877.6037; 37.21517:181.37309; 577.1201:7613233; 2240341:97.41593; 313.6361:13.421.829; 13.157.769:5732149; 97.14341:241.26713; 13.220177:37.109.1237; 13.61.3229:37.150649; 1321.1549:97.229.313;
29 31, 11 5, 12 7 11 13, 12	841 961, 726 25, 864 49 121 169, 864	109.613:13.466561; 13.73.97:37.189061; 13.157.241:1131961; 13.31981:1336057; 294649:1854889; 246217:2179993;	13, 18 5, 19 7 11, 19 7, 20 5, 21	169, 1944 25, 2166 49 121, 2166 49, 2400 25, 2646	37.49369:409.18973; 37.97453:181.33721; 37.87697:13.521533; 13.201889:8360353; 13.541.577:1093.7477; 5517661:13.683317;

^{**} This Table, pages 181, 182, contains all Sext-Aurifeuillian Sextans of Species i $(x = \xi^2, y = 6\eta^2)$, with x > 1 giving L, M $\gg 9.106$.

Sext-Aurifeuillian Sextans, S", [Species ii].

 $S'' = (x^6 + y^6) \div (x^2 + y^2) = L.M; \quad x = 3\xi^2 \ y = 2\eta^2.$ $P = (x^2 + 3xy + y^2), \quad Q = 6\xi\eta \ (x + y); \quad L = (P - Q), \quad M = (P + Q); \quad [L \text{ and } M \gg 9.10^6].$

ξ,η	x , y	L M	ξ, η	x, y	L M
1, 1	3, 2	1:61;	11, 5	363, 50	13.37.109:325009;
3	27	373:13.109;	13	507	118369:73.7573;
5	$\begin{array}{c} 75 \\ 147 \end{array}$	3769:8389;	17 19	867 1083	61.6829:13.103993;
9	243	13.1249:28753; 13.3637:37.1993;	21	1323	13.53233:1983649; 457.2377:2816269;
11	363	61.1801:13.12157;	23	1587	13.125353:229.16981;
13	507	61.3613:409.733;	27	2187	1201.2749:6925489;
15	675	13.37.829:520609;	29, 5	2523, 50	37.73.1669:13.691153;
17	867	37.18061:13.193.337;	1, 7	3, 98	13.13.37:14737;
19	1083	709.1489:13.100237;	3	27	2521:13.2617;
21 23	1323 1587	229.6949:37.61.853;	5	75	13.73:73609;
25	1875	13.177601:1237.2221;	9 11	243 363	11197:268993;
27	2187	97.33457:3808429;	13	507	13.37.73:193.2389; 85381:746041;
29	2523	4441477:5150713; 5941321:13.109.4813;	15	675	109.1621:13.88513;
31, 1	2883, 2	157.49633:8865601;	17	867	97.3373:181.9421;
1, 2	3, 8	13:277;	19	1083	558457:97.25189;
3	27	181:37.73;	23	1587	13.13.8089:4622461;
5	75	13.193:37.337;	25	1875	2004829:13.61.7753;
7 9	$\frac{147}{243}$	13.937:37.1033;	27, 7	2187, 98	13.218797:8026741;
11	363	157.241:13.73.97;	1, 8	$\begin{array}{c} 3,128 \\ 27 \end{array}$	11257:23833;
13	507	91573:189517; 188941:313.1117;	5	75	13.397:49801; 2089:99529;
15	675	348949:594829;	7	147	13.157:186841;
17	867	13.45697:951061;	9	243	37.229:13.25309;
19	1083	37.61.421:13.193.577;	11	363	28297:13.42061;
21	1323	181.7993:13.162889;	13	507	71881:864361;
23	1587	2116501:337.8893;	15	675	13.61.193:1309369;
$\frac{25}{27}$	1875 = 2187	2995789:13.317353;	17 19	867 1083	13.37.601:1912921;
29, 2	2523, 8	13.317257:577.9613; 5545357:7306933;	$\frac{19}{21}$	1323	500713:13.13.16033; 812137:3737353;
1, 4	3, 32	13.37:2161;	23	1587	73.17137:13.13.13.2293;
3	27	97:13.661;	25	1875	37.49957:661.10069;
5	75	, 1009:13.2053;	27, 8	2187, 128	61.43261:8639401;
7	147	6673:109.613;	1, 10	3, 200	29629:13.4153;
9	243	24001:61.2341;	3	27	16069:97789;
11 13	363 507	63361:13.13.1609;	7 9	147 243	13.313:337.877;
15	675	138577:109.4357;	11	363	13.433:109.4441;
17	867	13.20533:673.1153;	13	507	17989:409.1861; 49789:1021.1129;
19	1083	433.1777:733.2437;	17	867	223549:13.184633;
21	1323	13.91957:1117.2293;	19	1083	400069:13.229.1117;
23	1587	13.37.3697:61.58453;	21	1323	37.17977:13.346393;
25	1875	2552449:13.73.5101;	23, 10	1587, 200	193.5413:277.21577;
27 29, 4	2187	13.37.7393:6431857;	1, 11	$\frac{3,242}{27}$	109.409:13.61.97;
1, 5	$\begin{vmatrix} 2523, 32 \\ 3, 50 \end{vmatrix}$	4830481:13.241.2677;	5	75	25633:132157;
3, 3	27	37.37:4549; 349:13.1093;	7	147	14029:13.13.1321;
7	147	4789:13.6733;	9	243	13.457:37.15733;
9,5	243, 50	13.1453:177109;	13, 11	507, 242	61.673:73.18169;
1	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1	1

Sext-Aurifeuillian Sextans, S", [Species ii].

				, , ,	-
ξ, η	x, y	L M	ξ, η	x , y	L M
15, 11 17 19 21 23 25, 11 1, 13 3 5	675, 242 867 1083 1323 1587 1875, 242 3, 338 27 75 147	229.421:1912069; 37.5281:13.206461; 13.27397:3679261; 13.61.757:1693.2917; 952873:6505717; 13.181.613:37.227797; 90697:37.3889; 56941:421.541; 34849:356989; 20101:241.2281;	5, 19 7 9 11 13 15 17, 19 1, 20 3 7	75, 722 147 243 363 507 675 867, 722 3, 800 27 147	235069:13.87973; 157.1069:1554757; 73.1597:2096761; 78721:13.37.5821; 55117:997:3709; 13.3853:4827829; 71413:1669.3733; 13.42373:613.1213; 193.2113:13.229.337; 37.61.97:73.24793;
9 11 15 17 19 21 23, 13 1, 14 3 5	243 363 675 867 1083 1323 1587, 338 3, 392 27 75	11833;733.1129; 12637;1215553; 69109;109.22381; 73.2017;3342901; 337.829;4491217; 61.73.109;397.14929; 37.21313;7695481; 124021;61.3121; 80557;13.22441; 51349;443629;	9 11 13 17 19, 20 1, 22 3 5 7 9	243 363 507 867 1083, 800 3, 968 27 75 147 243	155809:2408689; 13.8293:421.7549; 74929:37.112237; 71809:73.94153; 157.757:829.10501; 457.1789:13.82609; 13.47857:37.38113; 13.36513:397.4657; 355261:193.12517; 263077:3140413;
9 11 13 15 17 19 23, 14 1, 16 3 5	243 363 507 675 867 1083 1587, 392 3, 512 27 75	13.13.109:978541; 61.241:13.108457; 25237:1988653; 13.4513:37.74257; 73.1741:13.286369; 241.1021:13.381097; 13.55009:1609.5197; 13.73.229:316201; 149113:37.12421; 101209:13.51133;	13 15 17, 22 1, 23 3 5 7 9 11	507 675 867, 968 3, 1058 27 75 147 243 363 507	135301:37.140473; 99709:13.73.6961; 88741:109.76369; 433.2269:13.98101; 756601:1654981; 13.61.733:193.11113; 13.109.313:97.28573; 13.61.421:3565537; 246217:60373; 178021:109.53149;
7 9 11 13 15 17 19 21, 16 1, 17 3	147 243 363 507 675 867 1083 1323, 512 3, 578 27	66697:13.61.1201; 73.577:13.13.13.613; 27481:1875481; 37.709:181.14197; 45289:3463849; 13.7309:4596073; 13.14557:37.397.409; 13.26557;349.22189; 13.13.1657:398557; 196501:13.43597;	15, 23 1, 25 3 7 9 11 13, 25 1, 26 3 5	675, 1058 3, 1250 27 147 243 363 507, 1250 3, 1352 27 75	37.3517:1304749; 1385809:73.24133; 13.83833:37.73.829; 668509:13.37.7489; 517249:13.181.1933; 13.30313:349.16381; 294649:7146949; 1628701:2051461; 61.21193:2583517; 1024669:3250789;
5 7 9 11 13 15 19 21, 17 1, 19 3, 19	75 147 243 363 507 675 1083 1329, 578 3, 722 27, 722	73.1873:13.37.1669; 92941:37.30493; 61.997:1568173; 73.541:13.165469; 37.853:2908981; 13.3313:73.53113; 165877:6603913; 13.23581:1321.6397; 445141:13.46957; 13.61.409:73.73.157;	7 9 11, 26 1, 28 3 5 9 11, 28 1, 29 3, 29	147 243 363, 1352 3, 1568 27 75 248 363, 1568 3, 1682 27, 1682	808837:1429.2857; 37.109.157:5111941; 489061:6374941; 13.169909:2736673; 61.29221:601.5641; 13.110533:37.113437; 922513:13.277.1777; 729457:2029.3877; 13.61.3217:3137461; 2073997:3858193;

Continued centre of page 194.

 $\begin{array}{ll} Trin-Aurife willian \;\; Sextans \;\; ({\rm T}). \\ {\rm T} = (x^6+y^6) \div (x^2+y^2) = (y^6+3^3.z^6) \div (y^2+3z^2) = {\rm L.M} \; ; \quad [{\rm L,M} \gg 9.10^6]. \\ y^2-x^2=3z^2 \; ; \qquad {\rm L} = (y^2-3yz+3z^2), \quad {\rm M} = (y^2+3yz+3z^2). \end{array}$

0	$=5z^{2}; \qquad L=(y^{2}-5yz)$, , , , , , , , , , , , , , , , , , , ,	$(y^2 + 5yz + 5z^2)$.
$y \neq x, z$	L M	y, x , z	L M
7 1 4	121181	2, 1, 1	1:13;
7, 1, 4	13:181; 61:373;	14, 13, 3 14, 11, 5	97:349;
19, 13, 8	97:1009;	26, 23, 7	61:13.37;
31, 23, 12	277:13.193;	26, 1, 15	181:2521;
37, 13, 20	349:4789;	38, 37, 5	13.73:2089;
43, 11, 24	13.37:6673;	38, 11, 21	373:13.397;
49, 47, 8	13.109:3769;	62, 59, 11	2161:13.13.37;
61, 37, 28 67, 61, 16	13.73:11197;	62, 13, 35 74, 73, 7	1009:14029;
73, 23, 40	13.157:37.229; 37.37:13.1453;	74, 47, 33	13.313:7177;
79, 71, 20	37.73:13.937;	86, 83, 13	4549:11257;
91, 59, 40	2161:24001;	86, 61, 35	13.157:20101;
91, 37, 48	2089:28297;	98, 71, 39	37.73:25633;
97, 1, 56	2521:13.37.73;	98, 23, 55	13.193:34849;
103, 97, 20	13.433:17989;	122, 121, 9	11833:13.13.109;
$\begin{bmatrix} 109, 107, & 12 \\ 127, & 73, & 60 \end{bmatrix}$	8389:13.1249;	122, 47, 65 134, 109, 45	3769:51349;
133, 83, 60	13.313:49789;	134, 109, 45	13.457:73.577; 4789:66697;
133, 109, 44	13.457:61.673;	146, 143, 17	14737:29629;
139, 11, 80	13.397:71881;	146, 97, 63	13.433:61.997;
151, 143, 28	37.337:157.241;	158, 131, 51	13.661:56941;
157, 59, 84	13.13.37:85381;	158, 11, 91	6673:92941;
163, 131, 56	13.661:63361;	182, 179, 19	23833:109.409;
169, 73, 88 181, 157, 52	7177;229.421;	182, 61, 99 182, 181, 11	37.229:73.1597;
181, 157, 52 193, 191, 16	12637:69109; 28753:13.3637;	182, 107, 85	27481:73.541; 8389:101209;
199, 193, 28	25237:13.4513;	194, 169, 55	61.241:78721;
211, 83, 112	11257:13.61.193;	194, 167, 57	13.1093:80557;
217, 167, 80	13.1093:118369;	206, 157, 77	12637:13.8293;
217, 121, 104	11833:73.2017;	206, 37, 117	11197:155809;
223, 169, 84	61.241:73.1741;	218, 143, 95	37.337:73.1873;
229, 13, 132 241, 143, 112	14029:37.5281;	218, 71, 119 254, 253, 13	13.937:157.1069;
247, 239, 36	14737:109.1621; 37.1033:91573;	254, 255, 13	55117:74929; 13.1249:37.61.97;
247, 47, 140	16069:223549;	266, 263, 23	13.4153:90697;
259, 227, 72	13.2053:138577;	266, 47, 143	17989:246217;
259, 253, 32	45289:13.7309;	266, 241, 65	37.853:135301;
271, 121, 140	13.13.109:241.1021;	266, 23, 153	13.1453:263077;
277, 61, 156	20101:337.829;	278, 251, 69 278, 229, 91	13.2617:149113;
283, 229, 96 301, 299, 20	37.709:13.14557; 37.1993:61.1801;	278, 229, 91 302, 227, 115	37.709:178021; 13.2053:235069;
301, 277, 68	13.3313:165877;	302, 59, 171	24001:13.61.421;
307, 179, 144	23833:13.37.601;	314, 311, 25	13.61.97:124021;
313, 71, 176	25633:13.27397;	314, 193, 143	25237:294649;
331, 181, 160	27481:13.26557;	326, 299, 75	49801:196501;
337, 241, 136	37.853:13.23581;	326, 37, 187	1 28297:13.30313;
343, 143, 180	29629:400069;	338, 337, 15	99709:37.3517;
349, 251, 140	13.2617:97.3373;	338, 191, 161 362, 313, 105	28753:355261;
361, 23, 208 367, 359, 44	34849:61.73.109; 13.73.97:188941;	362, 313, 103	13.3853:278149; 13.37.73:489061;
331, 330, 11		D. 1, 200	-3,31,13,40,001,

y, x , z	L M	y, x , z	L M
373, 349, 76	71413:13.13.1429;	386, 239, 175	37.1033:13.109.313;
379, 347, 88	109.613:13.20533;	386, 143, 207	157.241:517249;
397, 181, 204	1001 000	398, 277, 165	13.3313:337.1297;
403, 109, 224 403, 397, 40	73.577:583753;	398, 109, 221 422, 419, 29	61.673:37.15373; 37.3889:13.73.229;
409, 313, 152		422, 253, 195	45289:97.5557;
421, 179, 220	109.409:13.61.757;	434, 407, 87	97789:13.61.409;
427, 299, 176	3 , 3 ,	434, 73, 247	49789:577.1201;
427, 373, 120 433, 431, 24		434, 433, 17 434, 191, 225	13.12853:241.877; 13.3637:37.109.157;
1 1	3, 3,		
439, 47, 252 457, 407, 120	51349:13.55009; 13.6733:61.6829;	446, 421, 85 446, 83, 253	106861:13.25717; 13.37.109:729457;
463, 263, 220		458, 409, 119	88741:13.31981;
469, 131, 260	56941:37.21313;	458, 383, 145	73609:13.36313;
469, 253, 228 481, 383, 168	55117:13.53593;	482, 479, 31	61.3121:13.13.1657;
481, 97, 272	73609:558457; 61.997:845809;	482, 193, 255 494, 347, 203	13.4513:37.21517;
487, 481, 44	178693:307261;	494, 131, 275	63361:61.14401;
499, 13, 288	66697:61.97.157;	494, 467, 93	132157:193.2113;
511, 503, 52	189517:348949;	494, 373, 187	71809:37.16921;
511, 457, 132	37.3001:13.97.409;	518, 443, 155	99529:13.61.733;
523, 491, 104 541, 517, 92	61.2341:469153;	518, 11, 299 518, 349, 221	71881:1001173;
547, 253, 280	37.4561:13.157.229; 74929:13.13.5881;	518, 157, 285	71413:613.1237; 69109:13.73453;
553, 311, 264	13.61.97:952873;	542, 541, 19	263953:13.25057;
553, 169, 304	78721:37.29389;	542, 299, 261	37.1993:922513;
559, 167, 308 559, 409, 220	80557:37.30097; 88741:826621;	554, 529, 95 554, 407, 217	229.769:13.157.241; 13.6733:808837;
571, 443, 208	99529:812137;	566, 517, 133	13.11353:73.8209;
577, 481, 184	193.601:753001;	566, 59, 325	85381:109.10909;
589, 587, 28	409.733:13.37.829;	602, 359, 279	13.73.97:409.2689;
589, 11, 340	92941:13.99577;	602, 239, 319	91573:13.241.397;
601, 263, 312 607, 407, 260	90697:1215769; 97789:193.5413;	602, 481, 209 602, 73, 345	193.601:870901; 229.421:13.61.1693;
613, 563, 140	177109:13.53233;	614, 611, 35	316201:445141;
619, 107, 352	101209:13.97.1117;	614, 253, 323	13.7309:733.1753;
631, 337, 308 637, 421, 276	99709:13.97369;	626, 599, 105 626, 457, 247	421.541:13.47857;
637, 613, 100	106861:601.1933;	662, 661, 21	37.3001:61.17029; 37.10753:13.37021;
643, 157, 360	13.8293:181.8269;	662, 299, 341	61.1801:1129.1297;
661, 61, 380	73.1597:13.124897;	674, 649, 105	13.21157:97.7213;
673, 577, 200	169129:13.75133;	674, 167, 377	118369:109.15073;
679, 671, 60 679, 673, 52	313.1117:13.45697; 37.9817:575077;	686, 683, 37 686, 397, 323	398557:13.42373;
691, 659, 120	13.13.1609:433.1777;	698, 671, 111	157.757:13.111409; 13.22441:756601;
703, 311, 364	124021:1659373;	698, 169, 391	73.1741:109.16189;
703, 649, 156 709, 467, 308	238213:73.12277;	722, 647, 185	13.13.1321:1024669;
721, 143, 408	132157:13.181.613; 73.1873:769.2473;	722, 601, 231 734, 491, 315	157.1153:13.90901; 61.2341:13.37.3181;
721, 337, 368	37.3517:13.132469;	734, 227, 403	138577:1913389;
1	0. 33 . 0 3		3-377-7-33-97

y x z L M y x z L M 727, 241, 396 135301:13.143281; 746, 577, 273 169129:97.143 169129:97.143 169129:97.143 1746, 121, 425 73.2017:13.37. 739, 611, 240 186841:73.17137; 758, 611, 259 186841:136477	4261; 3;
733, 517, 300 13.11353:61.24049; 746, 121, 425 73.2017:13.37.	4261; 3;
	3;
700	
33.77 3.37	
, , , , , , , , , , , , , , , , , , , ,	
793, 743, 160 325009:457.2377; 806, 277, 437 165877:97.234	9/,
793, 71,456 157.1069:2337481; 818, 769,161 13.27061:61.97.	193;
811, 757, 168 109.3061:13.73.1213; 818, 143, 465 109.1621:37.664	57;
817, 719, 224 268993:13.13.8089; 842, 839, 41 13.46957:457.17	89;
817, 433, 400 13.12853:97.21937; 842, 481, 399 178693:219444	I;
823, 529, 364 229.769:61.32353; 854, 827, 123 37.12421:13.838	33;
829, 229, 460 178021:13.189697; 854, 229, 475 13.14557:262314	Ι;
853, 829, 116 13.36241:109.9769; 854, 733, 253 273157:13.157	.769;
859, 709, 280 97.2593:13.61.2137; 854, 13, 493 37.5281:97.280	
871, 863, 68 594829:37.61.421; 866, 503, 407 189517:13.157.	1129;
871, 479, 420 61.3121:157.15193; 866, 359, 455 188941:229.11	
877, 299, 476 196501:541.4993; 878, 803, 205 356989:13.110	533;
883, 851, 136 109.4357:13.91957; 878, 709, 299 97.2593:37.493	69;
889, 647, 352 13.13.1321:157.13381; 914, 767, 287 337.877:73.256	09;
889, 793, 232 333049:181.8677; 914, 47, 527 223549:13.239	509;
907, 107, 520 37.61.97:3048769; 926, 923, 43 613.1213:433.22	69;
919, 433, 468 241.877:37.61.1237; 926, 397, 483 73.2953:13.223	009;
931, 803, 272 13.25309:37.49957; 938, 911, 129 13.43597:61.211	93;
931, 419, 480 13.73.229:2898601; 938, 649, 391 238213:13.187	
937, 599, 416 421.541:2566513; 938, 937, 25 13.13.4801:193.4	933;
949, 227, 532 235069:313.10429; 938, 431, 481 61.3613:709.41	29;
949, 733, 348 273157:37.60937; 962, 887, 215 443629:168460	
961, 97, 552 246217:13.37.7129; 962, 121, 551 241.1021:342643	
967, 767, 340 337.877:2268229; 962, 913, 175 512269:152236	
973, 971, 36 13.193.337:709.1489; 962, 719, 369 268993:239886	
973, 949, 124 630901:1354813; 974, 613, 437 244669:13.61.	
991, 23, 572 263077:3664189; 974, 349, 525 13.13.1429:73.45	
997, 947, 180 73.7573:13.125353; 998, 877, 275 13.73.421:1321.1	
1009, 913, 248 451897:13.97.1549; 998, 851, 301 13.28201:1069.2	
1021, 923, 252 193.2389:2004829; 1022, 659, 451 13.13.1609:30374	
1027, 541, 504 263953:733.4597; 1022, 347, 555 13.20533:97.157	.241;
1027, 1021, 64 37.23509:97.13033; 1022, 853, 325 364909:235780	
1033, 649, 464 13.21157:3150913; 1022, 61, 589 337.829:13.299	
1039, 313, 572 278149:1213.3169; 1046, 803, 387 13.25309:275782	
1051, 997, 192 13.61.769:193.9433; 1046, 179, 595 13.37.601:229.17	
1057, 479, 544 13.13.1657:37.73.1381; 1082, 793, 425 333049:769.40	
1057, 193, 600 294649:13.315373; 1082, 241, 609 13.23581:997.42	
1063, 671, 476 13.22441:109.30529; 1094, 1093, 27 397.2797:13.37	
1069, 853, 372 364909:13.61.3469; 1094, 587, 533 409.733:61.73	
1087, 1079, 76 951061:181.7993; 1106, 1103, 47 13.82609:138580	
1093, 851, 396 13.28201:73.40597; 1106, 481, 575 307261:541.76	21;

y , x , z	L M	y , x , z	L M
1099, 1067, 152	673.1153:13.37.3697;	1106, 1081, 135	601.1381:13.132757;
1099, 949, 320	459961:1381.1861;	1106, 743, 473	325009:13.266449;
1117, 59, 644	13.61.421:4649941;	1118, 1091, 141	73.73.157:61.29221;
1123, 611, 544	316201:313.12721;	1118, 757, 475	109.3061:3519949;
1129, 407, 608	13.61.409:4442929;	1118, 1069, 189	723181:313.6361;
1141, 803, 468	356989;37.157.613;	1118, 251, 629	97.3373:61.73.1021;
1141, 541, 580	13.25057:97.44293;	1142, 1067, 235	13.51133:2274949;
1147, 1019, 304	13.42061:61.43261;	1142, 181, 651	13.26557:37.193.673;
1147, 421, 616	13.25717:4573633;	1154, 1033, 297	97.5857:13.201889;
1153, 769, 496	13.27061:433.8737;	1154, 71, 665	13.27397:757.6553;
1159, 191, 660	355261:13.380377;	1178, 671, 559	313.1117:4300633;
1159, 1153, 68	13.86209:1593589;	1178, 503, 615	348949:13.361213;
1171, 877, 448	13.73.421:3547177;	1178, 1031, 329	241.2281:13.109.2029;
1183, 983, 380	109.4441:97.32797;	1178, 1009, 351	37.61.229:2997721;
1183, 1129, 204	313.2557;2248333;	1202, 1199, 49	13.98101:1628701;
1201, 1199, 40	13.100237:229.6949;	1202, 673, 575	37.9817:13.346933;
1213, 37, 700	13.30313:5488669;	1214, 1187, 147	13.229.337:2073997;
1231, 1081, 340	13.13.37.97:3117781;	1214, 373, 667	13.29173;73.157.457;
1237, 1213, 140	1069429:13.241.673;	1226, 983, 423	109.4441:13.276589;
1249, 1151, 280	746041:13.218797;	1226, 143, 703	400069:5571337;
1261, 683, 612	398557:5028949;	1238, 1163, 245	13.37.1669:109.24061;
1261, 661, 620	37.10753:1669.3049;	1238, 949, 459	459961:61.229.277;
1267, 467, 680	193.2113:13.13.61.541;	1262, 1261, 29	1485373:1704961;
1267, 781, 576	411241:13.229.1609;	1262, 587, 645	13.37.829:5282689;
1273, 409, 696	13.31981:5731801;	1274, 1249, 145	1131961:2240341;
1273, 1177, 280	13.60493:2925049;	1274, 407, 697	61.6829:97.59221;
1279, 887, 532	443629:13.397.877;	1274, 913, 513	451897:4373269;
1291, 277, 728	337.1297:37.97.1693;	1274, 313, 713	423097:37.181.877;
1297, 239, 736	13.109.313:6171073;	1286, 1237, 203	994249:13.61.3229;
1303, 1009, 476	37.61.229:13.77.3361;	1286, 923, 517	193.2389:37.120277;
1321, 1079, 440	37.15733:829.4909; 13.193.577;2116501; 445141:5915773; 13.48193:3985669; 61.19717:2552449; 37.12421:5344249; 13.36313:61.107137; 489061:6811741; 241.2281:1777.2713; 13.104593:2586037;	1322, 1201, 319	13.60601:601.5521;
1327, 1319, 84		1322, 1079, 441	37.15733:4080133;
1333, 611, 684		1346, 1177, 377	715777:661.5689;
1333, 1117, 420		1346, 23, 777	61.73.109:13.433.1201;
1339, 1307, 168		1358, 851, 611	109.4357:5453341;
1339, 827, 608		1358, 491, 731	469153:13.494257;
1351, 383, 748		1358, 829, 621	13.36241:5531041;
1351, 1, 780		1358, 517, 725	13.157.229:6374689;
1369, 1031, 520		1382, 1019, 539	13.42061:5016181;
1381, 1357, 148		1382, 299, 779	500713:37.313.601;
1387, 1259, 336	864361:13.281581;	1406, 1403, 53	73.24133:13.169999; 13.38197:193.32077; 13.48193:313.15289; 13.13.3109:61.277.433; 37.38113:2762953; 13.97.409:7109449; 13.87973:1213.2833; 13.13.37.97:5373793; 13.277.541:73.97.313; 520609:61.108529;
1387, 661, 704	13.37021:457.13873;	1406, 781, 675	
1393, 143, 800	517249:7203649;	1406, 1117, 493	
1393, 529, 744	13.157.241:73.01921;	1406, 181, 805	
1399, 913, 612	512269:13.73.5953;	1418, 1391, 159	
1417, 1033, 560	97.5857:5329249;	1418, 457, 775	
1417, 1321, 296	241.2401:61.57853;	1442, 1367, 265	
1423, 1223, 420	409.1861:13.334393;	1442, 1081, 551	
1429, 253, 812	97.5557:13.577009;	1442, 1441, 31	
1447, 1441, 76	13.181.757:2441053;	1442, 767, 705	

	,	` '	
y , x , z	L M	y , x , z	. L M
1453, 1451, 44	37.61.853:13.177601;	1454, 1429, 155	37.40813:13.220177;
1459, 109, 840	37.15373:13.609397;	1454, 947, 637	73.7573:181.33757;
1471, 1417, 228	1313629: 3325957;	1466, 1417, 217	1336057:37.87697;
1477, 1427, 220	13.10393:1201.2749;	1466, 383, 817	558457:13.73.8161;
1477, 1261, 444	805573:109.157.277;	1478, 1331, 371	13.61.1201:4242421;
1483, 683, 760	13.42373:409.17881;	1478, 109, 851	583753:13.13.48109;
1489, 911, 680	13.43597:97.68473;	1502, 1381, 341	13.37.2221:337.12289;
1501, 1403, 308	13.88513:3924517;	1502, 179, 861	13.61.757:8359633;
1501, 443, 828	13.61.733:8038237;	1514, 1511, 55	2051461:13.61.3217;
1519, 793, 748	37.15601:7394509;	1514, 673, 783	575077:13.73.8101;
1519, 1369, 380	1008901:13.344017;	1526, 1499, 165	1654981:13.243517;
1531, 517, 832	73.8209:37.337.661;	1526, 997, 667	13.61.769:37.181537;
1543, 191, 884	37.109.157:8817253;	1526, 1357, 403	970969:229.20353;
1549, 373, 868	37.16921:13.668713;	1526, 1283, 477	733.1129:13.399613;
1561, 839, 760	13.46957:7728601;	1538, 863, 735	594829:13.567493;
1561, 1177, 592	715777:13.337.1429;	1538, 671, 799	13.45697:193.41281;
1567, 599, 836	13.47857:37.229249.;	1574, 949, 725	630901:7477801;
1579, 1067, 672	13.51133:7031257;	1574, 613, 837	421.1489:13.37.17737;
1591, 1583, 92	13.162889:2995789;	1586, 1223, 583	409.1861:97.193.337;
1591, 1297, 532	*229.3673:13.455353;	1586, 1439, 385	37.30493:4791901;
1603, 1571, 184	733 • 2437 : 13 • 37 • 7393 ;	1586, 1297, 527	229.3673:337.17377;
1603, 1597, 80 1621, 1283, 572	73.109.277:13.228733;	1622, 1261, 589	805573:229.28549;
1621, 1283, 572	733.1129:6390829;	1634, 1391, 495 1634, 1633, 33	978541:5831521;
1651, 1523, 368	577.2857:3991369;	1634, 1635, 35	13.193189:2834989;
1669, 1069, 740	1309369:4954777;	1646, 1621, 165	37.18061:8834989;
1687, 1487, 460	723181:13.625657; 1021.1129:13.73.6121;	1658, 1609, 231	13.152017:37.97453; 37.47569:13.541.577;
1687, 1201, 684	13.60601:7711261;	1658, 1151, 689	746041:157.48409;
1693, 1669, 164	769.2749:13.290761;	1706, 1177, 713	13.60493:73.110749;
1729, 1727, 48	1237.2221:97.33457;	1718, 1549, 429	157.8233:181.31573;
1729, 1633, 328	661.2437:61.82189;	1742, 1739, 59	2736673:3353341;
1741, 1163, 748	13.37.1669:8616397;	1754, 1727, 177	37.73.829:13.315529;
1747, 1453, 560	13.81373:37.187237;	1754, 1129, 775	313.2557:13.688957;
1753, 1703, 240	1983649:37.73.1669;	1766, 1259, 715	864361:1549.5449;
1777, 1679, 336	181.9421:13.37.10993;	1778, 1703, 295	397.4657:4995889;
1783, 1391, 644	978541:7868053;	1778, 1489, 561	13.85621:37.191833;
1789, 1573, 492	1286149:6567277;	1814, 1667, 413	1554757:13.465373;
1843, 1357, 720	970969:13.673.1021;	1814, 1453, 627	13.81373:109.72313;
1849, 1607, 528	73.18169:13.241.2293;	1838, 1837, 35	3188929:13.274993;
1861, 1837, 172	13.193.1033:73.61813;	1862, 1619, 531	13.13.13.613:349.20857;
1873, 1489, 656	13.85621:8485201;	1862, 1859, 61	3137461:3818953;
1879, 1871, 100	337.8893:13.317257;	1874, 1847, 183	2583517:13.37.9649;
1891, 1859, 200	1117.2293:4830481;	1898, 1823, 305	193.11113:5618149;
1897, 1559, 624	1215553:2557.3253;	1898, 1777, 385	1854889:109.57241;
1897, 1801, 344 1939, 1811, 400	1995913:13.73.6229;	1922, 1753, 455 1922, 1559, 649	73.22173:61.113749;
1939, 1811, 400	1912921:13.505117;	1934, 1787, 427	1215553:13.541.1237;
1957, 1741, 516	73.44809:13.37.8929;	1982, 1739, 549	73.24793:13.520369;
1963, 1909, 264	1599181:13.97.6073;	1982, 1733, 545	1568173:13.97.6421;
2011, 1861, 440	157.15973:397.14149; 1970401:13.313.1789;	0041 0040 0=	3995029:4451017;
1 -011, 1001, 110	19/0401.13.313.1709,	1 2002, 2000, 01	3373029.4431017,

Continued at foot of page 194.

^{*} The values of y are continuous to $y=\omega=1591$, and $y=\epsilon=1586$. Afterwards only those values of y are included which give L and M $\gg 9.10^\circ$.

Dimorph Sextans (D).

D = $(x^6 + y^6) \div (x^2 + y^2) = (x^6 + z^6) \div (x^2 + z^2) = \text{L.M}; \text{[L, M} > 9.10^6].$ $x^2 = y^2 + z^2; \text{L} = x^2 - yz, \text{M} = x^2 + yz.$

x,	y , 2	2	L	M	x,	y ,	z	L	M
5,		4	13:		317,			13.5953:	73.1693;
13,		$\lfloor 2 \rfloor$	109:	229;		323,		93997:	37.3169;
17,	,	8	13.13:	409;		253,			97.1621;
25,		24		13.61;		175,			13.12613;
29,	,	20		13.97;		299,		157.433:	
37,	,	12	13.73:			225,			13.14293;
41,		10		13.157;	365,			123397:	
53,		28		13.313;		357,		13.8161:	
61,		60		13.337;		275,			13.16033;
65,		16	3217:			135,		37.2557:	
65, 73,	,	56	2377:			345, 189,			194569;
85,		18 34		13.613;	/	325,			:193.1117;
85,		36	6133:	13.769;		399,		37.37.61:	
89,		30				391,			13.13597;
97,		72		61.181; 73.193;		29,		13.12697:	13.16477;
101,		20		13.937;		87,			157.1381;
109.		30		17341;		297,		13.6949:	
113,	15, 11		13.853:			145,			13.18973;
125,		14	10477:			203,		13.9049:	
137,		38		37 · 757;		437,		13.12409:	
	143, 2	24		37.661;		351,		277 · 373:	
145,	17, 14	14	13.1429:		457,	425,	168	13.97.109	
149,				13.37.61;	461,	261,	380		13.23977;
157,	85, 13	32	13.1033:		481,	319,	360	109.1069:	
	119, 12		14281:	42841;		31,		216481:	246241;
173,	165, 8		37.577:	97 · 397;		483,		213973:1	3.109.181;
181,			13.37.61	:97.373;		93,			:277.1009;
185,	,		13.1861:			475,		13.13873:	
	153, 10			181.277;		155,			315589;
	95, 16			13.4093;		217,			13.73.373;
197,	195,	28		44269;		377,		37.3469:	
	187, 8			13.4441;		459,			13.27697;
	133, 13			62773;		279,		13.11437:	
	171, 14		37.673:		,	435,		37.4057:	
	21, 25 221, 6	60		193.277; 65701;		525, 341,			61.5449;
	105, 20		37.877:			33,		270072	349.1249; 13.24229;
	209, 19			13.6397;		513,			13.24229;
	255,		13.61.73			165,			7:398029;
265.	247,	96	193.241:			403,		61.2617:	
	23, 20		64153:	13.5869;		493,			:109.4177;
	69, 20		54421:	73.1237;	569.	231,	520		443881;
	115, 2		13.3673:			575,			13.27733;
	231, 10			3.37.241;		465,			13.40213;
289,	161, 2	40	37.1213:		601	551,	240		13.37957;
293,	285,	68	13.5113:			35,		1 / -	:13.30553;
	207, 25		13.37.97			105,		13.24373:	
	273, 13		55897:	157.829;		527,			13.43669;
313,	25, 33	12	37.2437:	105769;	629	429,	460	198301:	61.9721;
1		1			ı				

Dimorph Sextans (D).

x, y , z	L M	x ,	y ,	z	L M
629, 621, 100	13.25657:397.1153;	949,	301,	900	629701:241.4861;
641, 609, 200	13.37.601:73.7297;	953,	615,	728	61.7549:1129.1201;
653, 315, 572	73.3373:606589;	965,	387,	884	577.1021:1273333;
661, 589, 300	13.37.541:601.1021;	965,	957,	124	37.21961:13.80761;
673, 385, 552	13.18493:61.10909;	977,	945,	248	337.2137:13.91453;
677, 675, 52	423229:61.8089;	985,	473,	864	561553:13.73.1453;
685, 667, 156	365173:573277;	985,	697,	696	485113:13.111949;
685, 37, 684 689, 111, 680	443917:13.109.349;	997,	925,	372 840	13.49993:1338109;
689, 561, 400	399241:73.7537;	1013,	5 5 9,		548521:1487641;
	193.1297:61.73.157;	· ·			13.241.313:61.17569;
697, 455, 528	37.6637:109.6661;	1021,		660	73.7237:13.119737;
697, 185, 672	193.1873:13.46933;		1023,	64	13.75781:73.15289;
701, 651, 260	61.5281:660661;	1025,		496	109.5557:61.24517;
709, 259, 660	157.2113:13.51817;	1033,			13.13.13.397:1261969;
725, 627, 364 725, 333, 644	297397:433.1741;	1037,	315, 645,		764149:109.12721;
733, 725, 108	311173:13.56929;	1037, 1049,	999,		13.42433:1599109;
745, 407, 624	277.1657:13.47353; 301057:808993;	1061,			780721:13.313.349; 591901:13.127657;
745, 713, 216	401017:13.54541;	1069,			572581:61.28081;
757, 595, 468	97.3037:709.1201;	1073,			714529:1093.1453;
761, 39, 760 769, 481, 600	549481:37.16453;		495, 1085,		61.11149:13.13.9601;
773, 195, 748	277.1093:879961;	1095,			37.157.181:13.102913;
785, 783, 56	451669:373.1993; 13.44029:660073;	1105,			660529:37.109.433;
785, 273, 736	73.5689:817153;		1073,		613177:37.49429; 61.15373:1504297;
793, 775, 168	37.13477:433.1753;	1105,			677857:1764193;
793, 665, 432	341569:916129;	1105,		1104	1169137:1272913;
797, 555, 572	61.5209:952669;	1109,		1100	673.1597:13.106537;
809, 759, 280	13.33997:867001;	1117,	235,	1092	991069:37.109.373;
821, 429, 700	97.3853:541.1801;	1129,	329,	1080	13.70717:37.44053;
829, 629, 540	13.26737:241.4261;	1145,	903,	704	675313:13.149749;
841, 41,840	13.73.709:741721;		423,		37.23269:13.135469;
845, 123, 836	97.6301:181.4513;		1025		788209:13.37.3889;
845, 837, 116	616933:61.13297;		1155		37.34057:1417189;
853, 205, 828	13.13.3301:897349;		765		157.4297:2002669;
857, 825, 232 865, 703, 504	13.37.1129:925849;		1147 517		673.1669:13.122401;
865, 287, 816	13.157.193:1102537;		1131	•	709.1153:13.337.433;
877, 805, 348	13.39541:109.9013;		611		61.16561:1779301;
881, 369, 800	13.36997:109.9829;		989		13.58537:2066461;
901, 899, 60	13.97.601:865741;	1193.	855	, 832	711889:2134609;
901, 451, 780	37.12433:1163581;	1201		, 1200	829.1669:13.37.3121;
905, 663, 616	410617:349.3517;			, 476	13.71161:73.27109;
905, 777, 464	13.13.2713:1179553;			, 1196	1276213:1627837;
925, 43, 924	13.62761:895357;	1213	, 245	, 1188	13.90793:1762429;
925, 533, 756	7 1 00 0 0 1			, 992	
929, 129, 920	, , , , , , , , , , , , , , , , , , , ,		$\frac{1221}{1075}$		
937, 215, 912	13.52453:73.14713;			, 612	1 2 31 1317
941, 741, 580	133.			, 1160	
949, 851, 420	181.3001:337.3733;	1241	, 1209	, 280	541.2221:37.50773;

Dimorph Sextans (D).

x ,	y ,	z	L	M	x, y,	z	L	M
1249,	799,	960	13.181.337	:37.109.577;	1565, 1173,	1036	1093.1129:	13.61.4621;
	539,			1093.2017;	1585, 1007,			13.288061;
1261,	1189,	420	61.17881:		1585, 1457,			3421393;
	1035,			13.184993;	1597, 715,			3571429;
	637,		373.2521:3		1601, 1599,			37.72733;
	893,			13.13.14653;	1609, 1591,			13.228517;
	1161,		13.77797:2		1613, 1275,			1117.3457;
	1295,			13.136573;	1621, 1421,	780		181.20641;
1301,	735,	1300	1626301:0		1625, 57, 1625, 1113,			73.37441;
			313.2953:9		, ,			1021.3877;
	255,		37.37717:2		1637, 285,			3139189;
	1271,		13.97.1021:		1649, 1551,		13.142357:	
	987,		883117:2		1649, 399,			13.258277;
	357,			3.37.4597;	1657, 935,		13.37.3049:	
	1247, 833,			13.97.1933;	1669, 1219, 1681, 1519,			277.15073;
	561,		397.2341:1	13.195997;	1685, 627,		13.13.37.27	
	1081,		13.74317:2		1685, 1677,		13.142969:	37.73.1153;
	1365,		577.2917:9		1693, 1045,			13.327553;
	931,			109.26209;	1697, 1665,		2333689:	13.263533;
1385,	663,	1216	1112017:7	73.37321;	1709, 741,		1779541:	181.22441;
	1353,		13.313.373:	829.2797;	1717, 1325,		241.6229:	61.109.661;
	53,		1069.1777:1	109.18793;	1717, 1645,			13.289033;
	1333,		13.106321:7		1721, 1479,		13.127717:	
	159,			13.169837;	1733, 1155,		13.13.8941:	
1417,	1175,	1200	1077289:2			1740		3.193.1249;
1417,	265, 371,		61.97.277:3		1745, 177, 1745, 1617,			13.257869;
	1305,		13.37.3181:		1753, 1017,			13.315829;
	1443,		157.12601:2		1765, 1763,	84	13.37.73.73	.3502709; 1:61.61.877;
1445,	477,	1364	13.110569:2	2738653;	1765, 413,	1716	37.193.337:	3823933;
	1435,		13.37.3709:		1769, 1431,		157.10453:	
	1127,		397.2749:6		1769, 969,			13.351037;
	583,		13.37.2833:		1777, 1265,			4736449;
,	1419,			129.2389;	1781, 531,			1777.2293;
	1269,		1218901:3		1781, 1581,			241.18541;
1481, 1489,			13.85237:1		1789, 1739, 1801, 649,			13.61.4957;
	1395,			3.13.17581;	1825, 767,		13.73.2269:	2017.2281;
1513,			13.169693:3	0 0 10	1825, 1537,			13.13.28657;
1513,	1225,	888	13.92413:3	376969;	1853, 885,	1628		13.374953;
1517,				3.256033;	1853, 1845,		13.239713:	37.101377;
	165,			3.181.193;	1861, 61,		3349861:	13.73.3769;
	1363,			3.73.3433;	1865, 183,		13.241429:	
1525,			2088973:2		1865, 1833,			61.193.349;
1537,			13.137653:2		1873, 305,			13.97.3229;
	1505,		37.51157:1		1877, 1485,		13.61.2293:	
1549, 1553,			73.17317:1	3.271897;	1885, 1643, 1885, 1003,			61.83137;
1565.				13.109.193;	1885, 427,		1952437: 97.28549;	
1000,	1920,	000	1343197.13.	13.109.193,	1000, 121,	1000	97.20549.	541.001/,

FACTORISATION TABLES.

Dimorph Sextans (D).

	DC.	т	7.5				_	3.5
x, y ,	Z	L	M	x,	<i>y</i> ,	<i>z</i>	L	M
1885, 1813,	516	2617717:313	. 14341 :	2225.	1647,	1496	2486713:13	.13.73.601;
1889, 1311,	1360	37.73.661:13.			2193,		13.433.733:	
1901, 549,	1820	2614621:241			1995,		13.277.829:	
1913, 1785,	688	2431489:13.13		2245,		2244	13.13.28933	
1921, 671,	1800	13.13.37.397:18	1.27061;	2245,	2173,	564	229.16657:1	
1921, 1121,	1560	1941481:313	17377;	2249,	201,	2240	1777.2593:	
1933, 1595,		313.6373:277	. 19777;		1449,		61.42061:	997 · 7573;
1937, 1935,		3581689:3922	2249;		335,		13.334333:	757 - 7717;
1937, 1425,		1882369:673		,	1105,			229.31741;
1945, 1927,		13.61.4129:541			469,		13.315937:	
1945, 793,		97.24481:519			2145,		313.11353:	
1949, 1749,		13.176497:109			1769,		13.37.5521:	
1961, 1911,		3004681:97.4			1947,			1297.5821;
1961, 1239,		733.2677:13.4			603,		13.299401:	
1973, 915, 1985, 1887,		2293309:13.24			1235,		2871829:	
1985, 1887, 1985, 63,		2777833:13.13.			1575, 2303,		13.203293:	
1993, 1705.		1597.2389:13.3			737,		3703417:	13.425701;
1997, 315,		3366829:13.3		2309	2109,	940	13.73.3529:	, 00
2005, 1037,		2240533:5790			2279,			3.13.38569;
2005, 1357,		13.155161:61.0			871,		337.10513:	
2017, 1855,		13.199933:229			1365,		2860309:	
2029, 2021,		13.288697:4480			1891,			3.13.47869;
2041, 1159,	1680	2218561:73.8		2353,	2255,	672		157.44917;
2041, 2009,		3442441:37.2	0.0,		2065,		3207289:	
2045, 693,	1924	2848693:5519		2357,	1005,	2132	1597.2137:	37.208057;
2045, 1653,	1204	13.168601:229.		2377,	1495,	1848	37.73.1069:	8412889;
2053, 1475,		13.241.673:337	. 18757;		69,		13.423457:	
2069, 819,		2724661:37.7			1139,			13.623017;
2081, 1281,		13.171517:6431			345,		13.377653:	
2089, 1961,		13.97.2341:5779			1827,		61.47977:	
2105, 1767,		97.24841:109.			2397,			73.85669;
2105, 1593,		2239057:13.6			483,			157.44089;
2113, 65,		4327489:1009			2013, 2385,		3134917:	
2117, 2115, 2117, 195,		97.193. 22 9:13.3			2183,		13.229.1201	.37.73.193;
2125, 2107,		3934093:13.37			1273,			. 61
2125, 1403,		181.12577:13.22			2365,		13.181.1933	
2129, 1071.		13.197077:6503	281:		759,			3.2 2 9.2 5 93;
2137, 455,		109.33181:5516	809;		2337,			3.181.3361;
2141, 2091,		13.278617:5545			1407,		3228457:1	3.37.18553;
2153, 585,		3423289:5847			897,			501.13537;
2161, 1711,	1320	37.65173:13.6			2135,		37.37.2521:	577.15217;
21.65, 2067,		193.17389:6018			2499,		6005101:	13.661.757;
2165, 1197,		13.337.577:157.			2301,		1801.2221:8	8509981 ;
2173, 715,		3254749:6189			2491,	300		109.64609;
2173, 1525,		13.37.4909:7082		2521,		2520	13.37.12841	
2197, 2035,		3141829:6511			213,		13.449209:	
2213, 2205,		13.61.5653:5311			1173,		349.10753:	
2221, 1829,	1200	13.181.1117:115	3.6277;	2555,	355,	2508	181.30529:1	3.277.2029;

^{*} The values of x are continuous to x = 2441. Afterwards only those values of x are included which give L and M \Rightarrow 9.106.

x , y , z	L	M	x,	y ,	z	L	M
2545, 497, 2496 2549, 2451, 700 2561, 639, 2480 2581, 2419, 900 2581, 781, 2460 2605, 2597, 204 2617, 2585, 408 2665, 73, 2664 2669, 219, 2660	313.15277:1 61.73.1117: 1213.3697:1 109.157.277 13.481249:7 13.277.1609 6907753:7	3.61.10357; 37.97.2269; 3.679897; :13.660217; 315813; :7903369; 296697;	2689, 2705, 2713, 2729, 2813, 2813,	511, 2703, 2695, 2679, 75, 2805,	2640 104 312 520 2812 212	997.6217: 13.61.7417 7035913: 6519529: 6054361:3 7702069:13 7318309:13 13.61.1033	:8579761; 997.7621; 157.52237; 7.337.709; .241.2593; .13.50341;

13 This Table, pages 190-194, contains all Dimorph Sextans (D) with L, M ≯ 9.106. Sext-Aurifeuillian Sextans (S), Species ii. (Continued from page 184.)

ξ,η	x, y	L	М	ξ, η	x, y	L M
5, 29 7 9 11, 29 1, 31 3 5 7 9, 31 1, 32	147 243 363, 1682	1364773:1 409.2689:13 61.14401:3 3353341:0 2762953:1 2274949:1 73.25609:1 13.37.3181:	313.27817; 97.41953; 13.379849; 193.31033; 13.558241; 11213.7237;	3, 32 5, 32 1, 34 3 5, 34 1, 35 3, 35 1, 37	75 147, 2048 3, 2312 27 ·75, 2312 3, 2450 27, 2450	13.243517:5556121; 109.24061:13.515293; 1069.2029:109.181.409; 193.25357:349.16729; 13.315529:6964813; 1213.2833:109.181.421; 5509429:13.503053; 13.37.9649:61.127249; 1321.5233:13.625369;

This Table, pages 183, 184, and on this page, shows all Sext-Aurifeuillians (8") with $x = 3\xi^2$, $y = 2\eta^2$, giving L, M $\gg 9.106$.

Trin-Aurifeuillian Sextans (T). (Continued from page 189)

	J		(1). (Continued from page 189.)					
y, x , z	L	M	y	, x ,	z	L	M	
2029, 2027, 52 2053, 2003, 260 2077, 1979, 364 2119, 2113, 92 2143, 2089, 276 2191, 2183, 108 2191, 2041, 460 2203, 2171, 216 2221, 2197, 188 2251, 2123, 432 2257, 2161, 376 2353, 2351, 56 2377, 2327, 280 2413, 2389, 196 2503, 2497, 100 2527, 2519, 116 2527, 2473, 300 2539, 2507, 232 2701, 2699, 60 2707, 2701, 104	2816269: 97.25189 3930709: 709.4297: 13.317353: 73.33037: 61.584529: 13.13.1603: 13.228637: 5150713: 229.16981: 541.8353: 5544109: 577.9613: 13.37.9109: 13.73.5101: 13.100.481:	8458861; 37.97.1789; 37.97.1753; 18.8544169; 337.23929; 15.941321; 17.882009; 13.61.9277; 13.541993; 13.561961; 8930029;	2078 2114 2114 2126 2138 2186 2246 2258 2282 2294 2306 2522 2534 2534 2546 2666	3, 2041, 3, 2029, 4, 2111, 4, 1993, 5, 2099, 8, 1969, 6, 2039, 6, 2039, 6, 2243, 8, 2231, 2, 2261, 2, 2519, 2, 2521, 4, 2507, 4, 2507, 6, 2663, 6, 2773, 6, 2663, 6, 2773,	259 65 407 195 481 455 67 201 335 39 195 273 41 213 205 287 73	3224401:55 1657.1753:13 97.41953:19 2384749:13 601.5641:58 2179993:81 193.12517:67 13.37.61.157 3858193:13 3250789:13 73.67741:61 97.41593:15 3652609:74 349.16729:13 6055321:66 13.379849:81 37.109.1237: 13.421.829:3	.471841; 3-25357; -580549; -7661; -50261; 3-12457; -55509429; -181-2797; -337-1789; -89821; -42793; -29837; -11-5233; -6489; -2137-3793; -7-241117; -7-7397;	

LF This Table, pages 185-189 and on this page, contains all Trin-Aurifeuillian Sextans (T) with L, M \Rightarrow 9.106.

Elements (ξ, η, ζ) of Bin-Aurifeuillian Chains [B]. $B_r = (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = L_r \cdot M_r; \quad x_r = \xi_r^2, \quad y_r = 2\eta_r^2; \quad M_r = L_{r+1}.$ $\xi_r^2 - 2\eta_r^2 = (\bar{1})^r \cdot \zeta, \quad [\zeta \text{ const.}]; \quad \xi_{r+1} = \xi_r + 2\eta_r, \quad \eta_{r+1} = \xi_r + \eta_r.$ For $L_r, M_r \ (\gg 9.10^6)$, see pp. 172–179.

r =	I	2	3	4	5	r =	I	2	3	r =	I	2	3
ζ	ξ, η	ξ , η	ξ,η	ξ,η	ξ , η	ζ	ξ,η	ξ , η	ξ , η	ζ	ξ , η	ξ , η	ξ,η
1 7 17 23 31 41 47 49	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3, 2 3, 1 5, 3 5, 2 7, 4 5, 1 11, 7 7, 3 9, 5 7, 2 13, 8 7, 1 17,11 9, 4	7, 5 5, 4 11, 8 9, 7 15,11 7, 6 25,18 13,10 19,14 19,1, 9 29,21 9, 8 39,28 17,13	17,12 13, 9 27,19 23,16 37,26 19,13 61,43 33,23 47,33 29,20 71,50 25,17 95,67 43,30	41,29 31,22 65,46 55,39 89,63 45,32 79,56	161 167 191 193 199 217 217 223	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17, 8 19,10 13, 1 35,23 17, 7 23,13 15, 4 29,18 19, 9 21,11 15, 2 37,24 17, 6 27,16 15, 1	33,25 39,29 15,14 81,58 31,24 49,36 23,19 65,47 37,28 43,32 19,17 85,61 29,23 59,43 17,16	329 337 343 353 359 367 383 391	$ \begin{array}{c} (\overline{3},13\\ 3,13\\ 3,13\\ \overline{1},13\\ \overline{13},16\\ \overline{13},16\\ \overline{15},17\\ \overline{17},18\\ \overline{17},18\\ \overline{17},18\\ \overline{15},14\\ \overline{15},14\\ \overline{15},14\\ \overline{15},14\\ \overline{11},16\\ \end{array} $	23,10 29,16 25,12 27,14 19, 3 45,29 19, 2 49,32 19, 1 51,35 23, 9 33,19 25,11 31,17 21, 5	43,33 61,45 49,37 55,41 25,22 23,21 21,20 41,32 71,52 47,36 65,48 31,26
71		11, 6 11, 5						41,27 19, 8				43,27 $27,13$	97,70 53,40
73	$(\frac{1}{5}, \frac{6}{7})$	13, 7 9, 2 19,12	27,20 13,11	67,47 35,24		233	$(\frac{3}{7},12)$	25,14 17, 5 31,19 21,10	53,39 27,22 69,50	401	$\begin{array}{c} 1,14 \\ 7,15 \\ 7,15 \\ 7,15 \end{array}$	29,15	59,44 39,31
79 89	$(\frac{7}{3}, \frac{8}{7})$	23,15 11, 4 17,10 13, 6	53,38 19,15 37,27	49,34		241 257	$\begin{array}{cccc} & 1,11 \\ & 9,13 \\ & 9,13 \\ & 9,13 \end{array}$	23,12 17, 4 35,22 19, 7	47,35 25,21 79,57	409	(13,17) $(9,16)$ $(9,16)$	47,30 23, 7 41,25 21, 2	37,30
97	$(\frac{1}{5}, \frac{7}{8})$	15, 8 11, 3 21,13	31,23 $17,14$ $47,34$	77,54		263 271	$(5,12)$ $(\overline{11},14)$ $(\underline{11},14)$	29,17 17, 3 39,25	63,46 23,20 89,64	433	$(\frac{17}{19}, 19)$ $(\frac{19}{19}, 20)$ (19, 20)	55,36 21, 1 59,39	23,22
113 119	$(\frac{7}{9}, \frac{9}{10})$	11, 2 25,16 11, 1 29,19	57,41 $13,12$ $67,48$			281 287	$(\frac{13}{15}, 16)$ $(\frac{15}{15}, 16)$ $(\frac{15}{15}, 16)$	17, 2 43,28 17, 1 47,31	99,71 19,18	449	$(\frac{1}{11}, 15)$ $(\frac{1}{11}, 17)$ $(\frac{11}{11}, 17)$	29,14 31,16 23, 6 45,28	63,47 35,29
119 127	(3, 8) (1, 8)	13, 5 19,11 15, 7 17, 9	41,30 29,22 35,26			287 289	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23,11 25,13 19, 6 33,20	51,38 31,25 73,53	463 479	$(\frac{7}{13}, 18)$ $(\frac{13}{13}, 18)$	25, 9 39,23 23, 5 49,31	85,62 33,28
137 151	$\begin{array}{c} 15, 9 \\ 57,10 \\ 7,10 \end{array}$	13, 4 23,14 13, 3 27,17	51,37 19,16 61,44			311 313	$\begin{array}{c} (\underline{9},14) \\ (5,13) \\ (5,13) \end{array}$	19, 5 37,23 21, 8 31,18	83,60 37,29 67,49	487 497	$(\frac{5}{15}, 16)$ $(\frac{15}{15}, 19)$	27,11 37,21 23, 4 53,34	79,58 31,27
101	9,11	13, 2 31,20	71,51		6	329	(11,15)			497	9,17	25, 8 43,26	95,69
	ntinua or $\zeta =$		ξ, 1		99,70	2	39,169		,408		,485	8119,	

Elements (ξ, η, ζ) of Sext-Aurifeuillian Chains.

$$N = (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = L_r \cdot M_r; M_r = L_{r+1}.$$

$$r = \omega;$$
 $x_r = 3\xi_r^2, \quad y_r = 2\eta_r^2;$ $3\xi_r^2 - 2\eta_r^2 = r = \epsilon;$ $x_r = \xi_r^2, \quad y_r = 6\eta_r^2;$ $\xi_r^2 - 6\eta_r^2 = \zeta$ (const.).

Each ζ (> 1) gives two Chains.

For L_r, M_r ($>9.10^6$), see pp. 179–184 and 194 [Argt. ξ , η].

 $r = \omega, \ \xi_{r+1} = 3\xi_r + 2\eta_r, \ \eta_{r+1} = \xi_r + \eta_r \, ; \quad r = \epsilon, \ \xi_{r+1} = \xi_r + 2\eta_r, \ \eta_{r+1} = \xi_r + 3\eta_r.$

r =	1	3	5	2	4	6		r =	I	3	2
ζ	ξ, η	ξ , η	ξ , η	ξ, η	$\xi \cdot , \eta$	ξ,	η	ζ	ξ,η	ξ , η	ξ,η
1	1, 1	9,11	89,109	5, 2	49, 20	485,	100	115	7, 4	19, 22	13, 3
					· ·			110	$(\frac{7}{2}, \frac{4}{2})$		29,11
5	$\begin{cases} \bar{1}, 2 \\ 1, 2 \end{cases}$	3, 4 13,16	31, 38 129,158	1, 1 7, 3	17, 7 71, 29	169, 703,	69 287	115	(9, 8)	13, 14 77, 94	11, 1 43,17
19	$\overline{3}$, 2	7, 8	67, 82	5, 1	37, 15	365,	149	125	1, 8	27, 34	13, 7
	$(\frac{3}{3}, \frac{2}{5})$	23,28	227,278	13, 5 1, 2	125, 51 29, 12	1237,		120	$\frac{1}{7}$, 8	37, 46 27, 32	19, 9 17, 5
23	$\{3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	5, 7 35,43	53, 65 347,425	1, 2 19, 8	191, 78	289, 1891,		139	7, 2	43, 52	25, 9
25	$(\overline{3}, 1)$	11,13	107,131	7, 2	59, 24	583,	238	145	$\overline{0}$, 7	17, 19	13, 2
	$(\frac{3}{1}, \frac{1}{4})$	19,23 11,14	187,229 111,136	11, 4 5, 3	103, 42 61, 25	1019,			$(\frac{9}{7}, \frac{7}{1})$	73, 89 31, 37	41,16 19, 6
29	1, 4	21,26	209,256	11, 5	115, 47	1139,		145	7, 1	39, 47	23, 8
43	$(\overline{5}, 4)$	9,10	85,104	7, 1	47, 19	463,		149	9,14	11, 16	1, 5
	$(\frac{5}{1}, \frac{4}{5})$	41,50 15,19	405,496 151,185	23, 9 7, 4	223, 91 83, 34	2207, 823,			$(\frac{9,14}{11,10})$	101,124 15, 16	13, 1
47	1, 5	25,31	249,305	13, 6	137, 56	1357,	554	163	11,10	95,116	53,21
53	5, 8 5, 8	7,10 $57,70$	75, 92 565,692	1, 3 31,13	41, 17 311,127	309, 3077,1		167	5,11 $5,11$	19, 25 69, 85	7, 6 37,16
67	$(\frac{5}{5}, 2)$	17,20	165,202	11, 3	91, 37	5011,1	1201	170	$\frac{3}{3},10$	25, 32	11, 7
07	5, 2	33,40	325,398	19, 7	179, 73			173	3,10	55, 68	29,13
71		13,17 43,53	133,163 427,523	5, 4 23,10	73, 30 235, 96			191	7,13 $7,13$	17, 23 87,107	5, 6 47,20
73	$(\overline{5}, 1)$	21,25	121,020	13, 4	113, 46			193	$\overline{9}$, 5	25, 29	17, 4
	$(\frac{5}{1}, \frac{1}{7})$	29,35 23,29			157, 64 127, 52				$9, 5$ $\bar{1},10$	65, 79 35, 44	37,14 17, 9
95		33,41			191, 74			197	1,10	45, 56	23,11
95	(7,11)	9,13		1, 4	53, 22			211	$\overline{9}$, 4	29, 34	19, 5
	(7,11)	79,97 15,17		43,18	431,176 79, 32				$\frac{9}{11.17}$	61, 74 13, 19	35,13 1, 6
97	$\frac{7}{5}$	55,67		31,12	299,122			215	11,17	123,151	67,28
101		17,22		7, 5	95, 39			215	$\bar{3},11$	29, 37 59, 73	13, 8
	(3, 8	47,58		25,11	257,105			(3,11	59, 73	51,14

Elements (x, y, z) of Trin-Aurifeuillian Chains.

$$N_r = (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = L_r$$
, M_r ; $M_r = L_{r+1}$; $y_r^2 - 3z_r^2 = x_r^2 = constant$.

$$y_{r+1} = 2y_r \pm 3z_r; \quad z_{r+1} = y_r \pm 2z_r.$$

For values of L_r , M_r ($>9.10^6$), see pp. 185-189 and 194.

r =	I	2	3	4	5	6	7
x	y, z	y, z	y , z	y , z	y ,	z y ,	z y , z
1	2, 1	7, 4	26, 15	97, 56	362, 2	09 1351,	780 5042,2911
11	$\frac{13}{10}$, 4				933,11		
13	$\overline{13}$, 4 14, 3	14, 5 37,20 1			589, 3 862,10		269
1 }	14, 3 26, 7	19, 8		29,132	854, 4	.93	
23	$\frac{26}{26}$, 7				698,21 346, 7		
r =	I	2	3	4	r =	ī	2 3
x	y, z	y , z	y , z	y , z	x	y, z y	, z y , z
37	$(\frac{38}{38}, 5$	91, 48	326,187	1213, 700			8,285 1891,1088
47	(38, 5)	61, 28 122, 65	206,117 439,252	763, 440 1634, 948	á		3, 77 643, 360 9,308 2042,1175
47	49, 8	74, 33	247,140	914, 527		$\overline{194},57 21$	7, 80 674, 377
59	$\frac{62,11}{62,11}$	157, 84 91, 40	566,325 302,171	2107,1216 1117, 644			3,304 2018,1161 3, 84 698, 391
61	67,16	182, 99	661,380	2462,142			1,220 1502, 861
71	67,16	86, 35 218,119	277,156 793,456	1022, 589 2954,1708	śl.		7,144 1046, 595 7,204 1406, 805
11	(79,20)	98, 39	313,176	1154, 668	2 181		1,160 1142, 651
73	$(\frac{74}{74}, 7)$	169, 88 127, 60	602,345 434,247	2239,1299 1609, 928			4,225 1543, 884 8,161 11 5 9, 660
83	86,13	211,112	758,435	2821,1628			2,255 1729, 992
077	(86,13)	133, 60 266,143	446,253 961,552	1651, 955 3578,206			4,143 1057, 600 4,403 2677,1540
97	$(\overline{103},20)$	146, 63	481,272	1778,102	5[227]	$(\overline{259},72\ 30)$	2,115 949, 532
107	$\frac{109,12}{109,12}$	254,133 182, 85	907,520 619,352	3374,194° 2294,132°			9,460 3038,1749 3, 96 854, 475
109	133,44	398,221	1459,840	5438,313	9 200	247,36 60	2,319 2161,1240
	$1\overline{33},44$ $122,9$	134, 45 271,140	403,224 962,551	1478, 85 3577,206	4		6,17 5 1297, 736 7,396 2642,1519
121	$(\overline{1}\overline{2}\overline{2}, 9)$	217,104	746,425	2767,159	6 241	$(\overline{266},65\ 33)$	7,136 1082, 609
131	$\frac{158,51}{158,51}$	469,260 163, 56	1718,989 494,275	6403,369 1813,104			3,416 2774,1595 9,140 1118, 629
143	146,17	343,180	1226,703	4561,263	2	(=70,00 01	-,-10 1110, 0110
		241,112 386,207	818,465 1393,800				
143	$\{\frac{151,20}{151,28}\}$		721,408				

Elements $(r, \eta; x, y, z)$ of Simple Bin-Aurifeuillian (B) cum Dimorph (D) Chains.

$$\begin{split} \mathbf{B}_r &= (\mathbf{1}^6 + y_r'^6) \div (\mathbf{1}^2 + y_r'^2) = \mathbf{L}_r' \cdot \mathbf{M}_r'; & \eta_r = r, \quad y_r' = 2\eta_r^2 = 2r^2. \\ \mathbf{D}_r &= (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = (x_r^6 + z_r^6) \div (x_r^2 + z_r^2) = \mathbf{L}_r \cdot \mathbf{M}_r. \\ & x = (r+1)^2 + r^2, \quad y = 2r+1, \quad z = x-1. \end{split}$$

 $M'_r = L_r$, $M_r = L'_{r+1}$. [For L'_r , M'_r , see pp. 172-179, Argt. η . For L_r , $M_r \geqslant 9.10^6$, see pp. 190-194, Argt. x.]

r,	x ,	y	η,	x ,	<i>y</i>	· ,	x ,	y	r,	x ,	y
1,	5,	3	34,		69	67,	9 113,		100,		
2,	13,	5	35,		71	68,	9 385,		101,		
3,	25,	7	36,		73	69,	9 661,	139	102,	21 013,	
4,	41,	9	37,		75	70,	9 941,	141	103,	21 425,	
5,		11	38,		77	71,	10 225,	143	104,		
6,	85,	13		3 121,	79	72,	10 513,	145	105,	/	
7,	113,	15	40,	3 281,	81	73,	10 805,	147	106,	,	
8,	145,	17	41,	3 445,	83	74,	11 101,	149	107,	23 113,	
9.	181,	19	42,	3 613,	85	75,	11 401,	151	108,		
10,	221,	21 23	43,	3 785,	87	76,	11 705,	153	109,	23 981,	219
11,	265,		44,	3 961,	89 91	77,	12 013,	155	110,	24 421,	221
12,	313,	25 27	45,	4 141, 4 325,	93	78, 79,	12 325,	157 159	111, 112,	24 865, 25 313,	
13,	365,	29	46,	4 513,	95	80.	12 641, 12 961,	161	112,		
14, 15,	421, 481,	31	47,	4 705,	97	81,	13 285,	163	114,	26 221,	
16,	545.	33	49,	4 901,	99	82,	13 613,		115,	26 681,	
17,	613.	35	50,	5 101,	101	83,	13 945,		116,	27 145,	
18,	685,	37	51,	5 305,	103	84.	14 281.	169	117,	27 613,	
19,	761,	39	52,		105	85,	14 621,	171	118,		
20,	841,	41	53,		107	86,	14 965.	173	119,		
21,	925,	43		5 941.	109	87,	15 313,	175	120,	29 041,	
22,		45	55,	6 161,	111	88,	15 665,	177	121,	29 525,	
23,		47	56,	6 385,	113	89.	16 021,	179	122,	30 013,	
24,	1 201,	49	57,	6 613,	115	90,	16 381,	181	123,	30 505,	
25,	1 301,	51	58,	6 845,	117	91,	16 745,	183	124,	31 001,	
26,	1 405,	53	59,	7 081,	119	92,	17 113,	185	125,	31 501,	251
27,	1 513,	55	60,	7 321,	121	93,	17 485,	187	126,		253
28,	1 625,	57	61,	7 565,	123	94,	17 861,	189		32 513,	255
29,		59	62,	7 813,	125	95,	18 241,	191	128,	33 025,	257
30,	,	61	63,	8 065,	127	96,	18 625,	193	160	51 521,	321
31,	1 985,	63	64,	8 321,	129	97,	19 013,	195		<i>'</i>	
32,	-	65		8 581,	131	98,	19 405,	197		80 401,	
33,	2 245,	67	66,	8 845,	133	99,	19 801,	199	201,	81 205,	403

Elements (ξ, η, x) of Bin-Aurifeuillian (B) cum Dimorph (D) Chains, Class i.

$$\begin{split} \mathbf{B}_{\rho} &= (x_{\rho}^6 + y_{\rho}^6) \div (x_{\rho}^2 + y_{\rho}^2) = \mathbf{L}_{\rho} \cdot \mathbf{M}_{\rho} \,; & \mathbf{D}_r &= (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = \mathbf{L}_r \cdot \mathbf{M}_r \,; \\ \rho &= \omega, \ \xi_{\rho} = \xi \,(\text{const.}), \ \eta_{\rho+2} = \eta_{\rho} + \xi \,; & r = \rho + 1 = \epsilon, \ u_r = u \,(\text{const.}), \ t_{r+2} = t_r + 2u \,; \\ x_{\rho} &= \xi^2 \,(\text{const.}), \ y_{\rho} = 2\eta_{\rho}^2. & x_r = \frac{1}{2} \left(t_r^2 + u^2\right). \end{split}$$

 $\xi = u, \ \ \mathbf{M}_{\rho} = \mathbf{L}_{r}, \ \ \mathbf{M}_{r} = \mathbf{L}_{\rho+2} \, ; \quad \text{[For $\mathbf{L}_{\rho}, \mathbf{M}_{\rho}, \mathbf{L}_{r}, \mathbf{M}_{r} \, (\geqslant 9.10^{6})$, see pp. 174-179, 190-194]}.$

ρ,ξ, η	t, x	ρ, ξ, η	t, x	ρ, ξ, η	t , x	ρ, ξ, η	t, x
1, 3, 1	5, 17	3, 5, 8	21, 233	3, 7, 13	33, 569	1, 11, 4	19, 241
3 4	11, 65	5 13	31, 493	5, 7, 20	47, 1129	3 15	41, 901
5 7	17, 149	7 18	41, 853	7 27	61, 1885	5, 11, 26	63, 2045
7 10	23, 269	9 23	51, 1313		75, 2837		
9 13	29, 425	11 28	61, 1873			1, 11, 5	21, 281
11 16	35, 617	13, 5, 33	71, 2533	I, 9, 1	11, 101	3 16	43, 985
13 19	41, 845	13, 9, 55		3 10	29, 461	5, 11, 27	65, 2173
15 22	47, 1109	1,5, 4	13, 97	5 19	47, 1145	1, 11, 6	23, 325
J	53, 1409	3 9	23, 277	7, 9, 28	65, 2153		
, , , ,	59, 1745	5 14	33, 557	0 0	13, 125		45, 1073
19 28 21 31	65, 2117	7 19	43, 937		31, 521	5, 11, 28	67, 2305
	71, 2525	9 24	53, 1417	00		1, 11, 7	25, 373
		11 29	63, 1997	5 20	49, 1241	3 18	47, 1165
25, 3, 37	77, 2969	13, 5, 34	73, 2677	7, 9, 29	67, 2285	5, 11, 29	69, 2441
1,3, 2	7, 29		· ·	1, 9, 4	17, 185		
3 5	13, 89	1,7, 1	9, 65	3 13	35, 653	1, 11, 8	27, 425
5 8	19, 185	3 8	23, 289	5 22	53, 1445	3 19	49, 1261
7 11	25, 317	5 15	37, 709	7, 9, 31	71, 2561	5, 11, 30	71, 2581
9 14	31, 485	7 22	51, 1325	11111		1, 11, 9	29, 481
11 17	37, 689	9 29	65, 2137	1, 9, 5	19, 221	3 20	51, 1361
13 20	43, 929	11, 7, 36	79, 3145	3 14	37, 725	5, 11, 31	73, 2725
15 23	49, 1205	1,7, 2	11, 85	5 23	55, 1553	r, 11, 10	31, 541
17 26	55, 1517	3 9	25, 337	7, 9, 32	73, 2705		53, 1465
19 29	61, 1865	5 16	39, 785	1, 9, 7	23, 305	$\begin{bmatrix} 3 & 21 \\ 5, 11, 32 \end{bmatrix}$	75, 2873
21 32	67, 2249	7 23	53, 1429	3 16	41, 881	i	
23, 3, 35	73, 2669	9, 7, 30	67, 2269	5 25	59, 1781	1,13 1	15, 197
1	· ·			7, 9,34	77, 3005	3 14	41, 925
1, 5, 1	7, 37	1,7,3	13, 109			5, 13, 27	67, 2329
3 6	17, 157	3 10	27, 389	1, 9, 8	25, 353	1, 13, 2	17, 229
5 11	27, 377	5 17	41, 865	3 17	43, 965	3 15	43, 1009
7 16	37, 697	7 24	55, 1537	5 26	61, 1901	5, 13, 28	69, 2465
9 21	47, 1117	9, 7, 31	69, 2405	7, 9, 35	79, 3161		
11 26	57, 1637	T 7 4	15, 137	1,11, 1	13, 145	1, 13, 3	19, 265
13 31	67, 2257	1,7,4	29, 445	2 12	35, 673	3 16	45, 1097
15, 5, 36	77, 2977	3 11		5 23	57, 1685	5, 13, 29	71, 2605
1, 5, 2	9, 53	5 18 7 25	43, 949	7, 11, 34	79, 3181	1, 13, 4	21, 305
3 7	19, 193		57, 1649	1,,	, , , , ,	3 17	47, 1189
5 12	29, 433	9, 7, 32	71, 2545	1, 11, 2	15, 173	5, 13, 30	73, 2749
7 17	39, 773	1,7, 5	17, 169	3 13	37, 745	1,13, 5	23, 349
9 22	49, 1213	3 12	31, 505	5 24	59, 1801		49, 1285
11 27	59, 1753	~ 1Q	45, 1037	7, 11, 35	81, 3341	3 18 5, 13, 31	75, 2897
13 32	69, 2393	7 26	59, 1765				
15, 5, 37	79, 3133	9, 7, 33	73, 2689	1, 11, 3	17, 205		25, 397
	,			3 14	39, 821	3 19	51, 1385
1,5, 3	11, 73	1,7,6	19, 205	5, 11, 25	61, 1921	5, 13, 32	77, 3049

Elements (ξ, η, x) of Bin-Aurifeuillian (B) cum Dimorph (D) Chains, Class ii.

$$\begin{array}{c|c} \mathbf{B}_{\rho} = (x_{\rho}^{6} + y_{\rho}^{6}) \div (x_{\rho}^{2} + y_{\rho}^{2}) = \mathbf{L}_{\rho}.\,\mathbf{M}_{\rho}\,;\\ \rho = \omega, \;\; \eta_{\rho} = \eta \;(\mathrm{const.}), \;\; \xi_{\rho+2} = \xi_{\rho} + 2\eta\,;\\ x_{\rho} = \xi_{\rho}, \quad y_{\rho} = 2\eta^{2} \;(\mathrm{const.}). \end{array} \qquad \begin{array}{c|c} \mathbf{D}_{r} = (x_{r}^{6} + y_{r}^{6}) \div (x_{r}^{2} + y_{r}^{2}) = \mathbf{L}_{r}.\,\mathbf{M}_{r}\,;\\ r = \rho + 1 = \epsilon, \;\; u_{r} = u \;(\mathrm{const.}), \;\; t_{r+2} = t_{r} + 2u\,;\\ x_{r} = (t_{r}^{2} + u^{2}). \end{array}$$

 $\eta = u$, $M_{\rho} = L_r$, $M_r = L_{\rho+2}$; [For L_{ρ} , M_{ρ} , L_r , M_r ($\triangleright 9.10^6$), see pp. 174–179, 190–194].

ρ, ξ, η	t, x	ρ, ξ, η	t, x	ρ, ξ, η	t, x	ρ, ξ, η	t, x
F 7 5 7 7	',	F , 5 , 1	,	F 7 5 7 7	, ,	F7 5 7 1	, ,
ı, 1,1	2, 5	5, 11, 2	13, 173	13, 51, 4	55, 3041	1, 5,6	11, 157
3, 3	4, 17	7, 15	17, 293			3, 17	23, 565
5, 5	6, 37	9, 19	21, 445	1, 5, 4	9, 97	5, 29	35, 1261
J	8, 65	11, 23	25, 629	3, 13	17, 305	7, 41, 6	47, 2245
111	10, 101	13, 27	29, 845	5, 21	25, 641		
9, 9	12, 145	15, 31	33, 1093	7, 29	33, 1105	1, 7,6	13, 205
13, 13	14, 197	17, 35	37, 1373	9, 37	41, 1697	3, 19	25, 661
15, 15	16, 257	19, 39	41, 1685	11, 45, 4	49, 2417	5, 31	37, 1405
17, 17	18, 325	21,43	45, 2029	- 74	: 11 1077	7, 43, 6	49, 2437
19, 19	20, 401	23, 47	49, 2405	1, 7, 4	11, 137	1, 11, 6	17, 325
21, 21	22, 485	25, 51, 2	53, 2813	3, 15	19, 377	3, 23	29, 877
23, 23	24, 577			5, 23	27, 745	5, 35	41, 1717
25, 25	26, 677	I, 1,3	4, 25	7, 31	35, 1241	7, 47, 6	53, 2845
27, 27	28, 785	3, 7	10, 109	9, 39	43, 1865		
29, 29	30, 901	5, 13	16, 265	11, 47, 4	51, 2617	1, 1,7	8, 113
31, 31	32, 1025	7, 19	22, 493	1, 1,5	6, 61	3, 15	22, 533
33, 33	34, 1157	9, 25	28, 793	3, 11	16, 281	5, 29	36, 1345
35, 35	36, 1297	11,31	34, 1165	5, 21	26, 701	7, 43, 7	50, 2549
37, 37	38, 1445	13, 37	40, 1609	7, 31	36, 1321	- 9.77	10 140
39, 39	40, 1601	15, 43	46, 2125	9, 41	46, 2141	1, 3, 7	10, 149
41, 41	42, 1765	17, 49, 3	52, 2713	11, 51, 5	56, 3161	3, 17	24, 625 38, 1493
43, 43	44, 1937	1, 5,3	8, 73			5, 31	52, 2753
45, 45	46, 2117	3, 11	14, 205	1, 3, 5	8, 89	7, 45, 7	04, 4100
47, 47	48, 2305	5, 17	20, 409	3, 13	18, 349	1, 5,7	12, 193
49, 49	50, 2501	7, 23	26, 685	5, 23	28, 809	3, 19	26, 725
51,51	52, 2705	9, 29	32, 1033	7, 33	38, 1469	5, 33	40, 1649
53, 53, 1	54, 2917	11, 35	38, 1453	9, 43, 5	48, 2329	7, 47, 7	54, 2965
		13, 41	44, 1945	- 7 -	12, 169		
I, 1, 2		15, 47	50, 2509	1, 7,5		1, 9,7	16, 305
3, 5	7, 53	17, 53, 3	56, 3145	3, 17	22, 509	3, 23	30, 949
5, 9	11, 125 15, 229		5 41	5, 27	32, 1049 42, 1789	5, 37	44,1985
7, 13	15, 229 19, 365	1, 1, 4	5, 41 13, 185	7, 37	52, 2729	7, 51, 7	58, 3413
9, 17	23, 533	3, 9	13, 185 21, 457	9, 47, 5	04, 4149	- 11 7	10 272
11, 21	25, 555	5, 17	29, 857	1, 9,5	14, 221	1, 11, 7	18, 373
13, 25 15, 29	31, 965	7, 25	37, 1385	3, 19	24, 601	3, 25	32, 1073 46, 2165
15, 29	35, 1229	9, 33	45, 2041	5, 29	34, 1181	5, 39, 7	10, 2100
19, 37	39, 1525	11,41	53, 2825	7, 39	44, 1961	1, 13, 7	20, 449
21, 41	43, 1853			9, 49, 5	54, 2941	3, 27	34, 1205
23, 45	47, 2213	1, 3,4	7, 65			5, 41, 7	48, 2353
25, 49	51, 2605	3, 11	15, 241	1, 1,6	7, 85		
25, 43 27, 53, 2	55, 3029	5, 19	23, 545	3, 13	19, 397	1, 1,8	9, 145
		7, 27	31, 977	5, 25	31, 997	3, 17	25, 689
1, 3, 2	5, 29	9, 35	39,1537	7, 37	43, 1885	5, 33	41, 1745
3, 7, 2	9, 85	11, 43, 4	47, 2225	9, 49, 6	55, 3061	7, 49, 8	57, 3313
1					001		

Continued at top of page 201.

Elements (ξ, η, x) of Bin-Aurifeuillian (B) cum Dimorph (D), Chains, Class ii. (Continued from page 200.)

$\rho, \xi, \eta \mid t, x$	ρ, ξ, η	t, x	ρ, ξ,η	t, x	ρ, ξ,η	t, x
I, 3, 8 11, 185 3, 19 27, 793 5, 35, 8 43, 1913 I, 5, 8 13, 233 3, 21 29, 905 5, 37, 8 45, 2089 I, 7, 8 15, 289 3, 23 31, 1025 5, 39, 8 47, 2273	3, 25 5, 41, 8 4, 11, 8 1, 11, 8 3, 27 5, 43, 8 5 1, 13, 8 2, 29 3	17, 353 33, 1153 49, 2465 19, 425 35, 1289 51, 2665 21, 505 37, 1433 53, 2873	3, 31 5, 47, 8 1, 1, 9 3, 19 5, 37, 9 1, 5, 9 3, 23	23, 593 39, 1585 55, 3089 10, 181 28, 865 46, 2197 14, 277 32, 1105 50, 2581	3, 25 5, 43, 9 1, 11, 9 3, 29 5, 47, 9 1, 13, 9 3, 31 5, 49, 9 1, 17, 9	20, 481 38, 1525 56, 3217 22, 565 40, 1681

$$\begin{split} &Elements \ of \ Sexto-Trin-Aurifn. \ 6-tan \ Chains \ (\mathbf{S}, \, \mathbf{T}) \ [Species \ \mathbf{i}, \ Class \ 1^\circ]. \\ &\mathbf{T}_{\rho} = (x_{\rho}^6 + y_{\rho}^6) \div (x_{\rho}^2 + y_{\rho}^2) = \mathbf{L}_{\rho}.\mathbf{M}_{\rho} \ ; \qquad t_{\rho} = t \ (\mathrm{const.}), \quad u_{\rho+2} = u_{\rho} + 2t \ ; \\ &y_{\rho} = \frac{1}{2} \left(t_{\rho}^2 + 3u_{\rho}^2 \right), \quad x_{\rho} = \frac{1}{2} \left(t_{\rho}^2 - 3u_{\rho}^2 \right), \quad z_{\rho} = t_{\rho}u_{\rho} \ ; \qquad y_{\rho}^2 - 3z_{\rho}^2 = x_{\rho}^2. \\ &\mathbf{S}_r = \left(x_r^6 + y_r^6 \right) \div (x_r^2 + y_r^2) = \mathbf{L}_r.\mathbf{M}_r \ ; \qquad x_r = \xi_r^2 = \xi^2 \ (\mathrm{const.}), \quad y_r = 6\eta_r^2. \\ &\rho = \omega, \quad r = \rho + 1 = \epsilon \ ; \qquad t = \xi \ (\mathrm{const.}), \quad u_{\rho} = \eta_r + \eta_{r-2}, \quad \eta_r = \frac{1}{4} \left(u_{\rho} + u_{\rho+2} \right). \\ &\mathbf{M}_{\rho} = \mathbf{L}_r, \quad \mathbf{M}_r = \mathbf{L}_{\rho+2} \ ; \quad \begin{cases} \text{For } \mathbf{L}_{\rho}, \mathbf{M}_{\rho} \geqslant 9.10^6, \text{ see pp. } 185-189, 194, \text{Argt. } y \ ; \\ \text{For } \mathbf{L}_r, \mathbf{M}_r \geqslant 9.10^6, \text{ see pp. } 179-182, \text{Argt. } \xi, \eta. \end{cases} \end{split}$$

ρ , u , y	ξ, η	ρ , u , y	ξ, η	ρ , u , y	ξ, η	ρ , u , y	ξ, η
3, 7, 86 5, 17, 446 7, 27, 1106	6 11 16	1, $\overline{3}$, 38 3, 11, 206 5, 25, 962 7, 39, 2306	9	3, 17, 494 5, 39, 2342	$14 \\ 11, 25$	1, 7, 158	13, 2 13, 15 13, 3 13, 16
9, 37, 2066 8 1, $\overline{1}$, 14 8 3, 9, 134	5, 2 7	5, 21, 1110	7, 3 10 17 7, 24	1, $\overline{3}$, 74 3, 19, 602 5, 41, 2582 1, $\overline{1}$, 62	15 11, 26	ı, 5 , 122	13, 4 13, 17
	17 5, 22	1, 1, 26 3, 15, 362 5, 29, 1286	7, 4 11 18	3, 21, 722 5, 43, 2834 1, 1, 62	16 11, 27 11, 6	3, 23, 878 1, $\overline{1}$, 86 3, 25, 1022	13, 18 13, 6 13, 19
1, 1, 14 8 3, 11, 194 5, 21, 674 7, 31, 1454 9, 41, 2534 8	8 13 18	1, 3, 38 3, 17, 458 5, 31, 1466	7, 25 7, 5 12 7, 19		11, 7 11, 18	1, 1, 86 3, 27, 1178 1, 3, 98 3, 29, 1346	13, 20 13, 8
1, 3, 26 3, 13, 266 5, 23, 806	5, 4 9 14	1, 5, 62 3, 19, 566 5, 33, 1658 1, $\overline{9}$, 182	7, 6 13 7, 20 11, 1	3, 27, 1154 1, 7, 134	11, 19 11, 9	1, 5, 122 3, 31, 1526 1, 7, 158 3, 33, 1718	13, 9 13, 22 13, 10
1, $\overline{5}$, 62 3, 9, 146 5, 23, 818	8 15	3, 15, 398	11, 23 11, 2 13	3, 31, 1502 1, $\overline{11}$, 266	11, 21 13, 1	1, 9, 206 3, 35, 1922 1, 11, 266	13, 11 13, 24 13, 12
7, 37, 2078	7, 22	5, 37, 2114	11, 24	3, 15, 422	13, 14	3, 37, 2138	13, 25

Elements of Sexto-Trin-Aurifeuillian Sextan Chains (S and T) [Species i, Class 2°].

$$\begin{split} \mathbf{T}_{\rho} &= (x_{\rho}^6 + y_{\rho}^6) \div (x_{\rho}^2 + y_{\rho}^2) = \mathbf{L}_{\rho}.\,\mathbf{M}_{\rho}\,; \qquad t_{\rho+2} = t_{\rho} + 6u, \quad u_{\rho} = u \,(\text{const.})\,; \\ y_{\rho} &= (t_{\rho}^2 + 3u_{\rho}^2), \quad x_{\rho} = (t_{\rho}^2 - 3u_{\rho}^2), \quad z_{\rho} = 2t_{\rho}u_{\rho}\,; \qquad y_{\rho}^2 - 3z_{\rho}^2 = x_{\rho}^2. \\ \mathbf{S}_r &= (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = \mathbf{L}_r.\,\mathbf{M}_r\,; \qquad x_r = \xi_r^2, \quad y_r = 6\eta_r^2, \quad \eta_r = \eta \,(\text{const.}). \\ \rho &= \omega, \quad r = \rho + 1 = \epsilon\,; \qquad u = \eta \,(\text{const.}), \quad t_{\rho} = \frac{1}{2} \,(\xi_{r-2} + \xi_r), \quad \xi_r = \frac{1}{2} \,(t_{\rho} + t_{\rho+2}). \end{split}$$

 $M_{\rho} = L_r, \quad M_r = L_{\rho+2};$

For L_{ρ} , $M_{\rho} \gg 9.10^{6}$, see pp. 185–189, 194, Argt. y; For L_{r} , $M_{r} \gg 9.10^{6}$, see pp. 179–182, Argt. ξ , η .

ρ , t , y	$\left \xi, \eta \right \rho, t, y$	ξ, η ρ,	$t, y \mid \xi, \eta$	ρ , t , y	ξ, η
1, \(\bar{2}\), \(\bar{2}\), \(\frac{7}{3}\), \(4\), \(19\) 5, 10, 103 7, 16, 259 9, 22, 487 11, 28, 787 13, 34, 1159 15, 40, 1603 17, 46, 2119 19, 52, 2707 1, 2, 7 3, 8, 67 5, 14, 199 7, 20, 403 9, 26, 679 13, 38, 1447 15, 44, 1939 17, 50, 2503 1, \(\bar{5}\), 37 3, 7, 61 5, 19, 373 7, 31, 973 9, 43, 1861 1, \(\bar{1}\), 13	1, 1 3, 11, 18 7 5, 23, 54 13 7, 35, 123 19 9, 47, 222 25 11, 1, 1 37 3, 13, 18 43 7, 37, 138 49 9, 49, 241 55, 1	3 17, 2 7, 5 1 1 29 1, 1 1 53, 2 1 3, 2 3 3 7, 2 5, 3 3 55, 2 1 1 1 1 23 5, 4 3 3 5 5, 4 3 3 5 5, 4 3 3 5 5, 4 3 3 5 5, 4 3 3 5 5, 4 3 3 5 5, 4 3 3 5 5, 5 4 3 3 5 5, 5 4 3 5 5, 5 5,	2, 2731 61, 3 2, 31 11, 3 0, 427 29 8, 1471 47, 3 4, 43 13, 3 2, 511 31 0, 1627 49, 3 8, 91 17, 3 6, 703 35 4, 1963 53, 3 7, 271 1, 5 6, 381 31 6, 2131 61, 5 2, 559 37 2, 2779 67, 5 7, 751 41, 5 6, 751 41, 5 6, 751 41, 5 2, 79 13, 5 8, 859 43, 5 2, 79 17, 5	$\begin{array}{c} \text{I,} \ \ 4, \ \ 91 \\ 3, \ 34, \ 1231 \\ \text{I,} \ \ 8, \ 139 \\ 3, \ 38, \ 1519 \\ \text{I,} \ \ 14, \ \ 271 \\ 3, \ 44, \ 2011 \\ \text{I,} \ \ \overline{20}, \ \ 547 \\ 3, \ 22, \ \ 631 \\ \text{I,} \ \ \overline{16}, \ \ 403 \\ 3, \ 26, \ \ 823 \\ \text{I,} \ \ \overline{10}, \ \ 247 \\ 3, \ 32, \ 1171 \\ \text{I,} \ \ 8, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	19, 5 49, 5 23, 5 53, 5 29, 5

Elements of Sexto-Trin-Aurifeuillian Sextan Chains (8 and T) [Species ii, Class 1°].

$$\begin{split} S_{\rho} &= (x_{\rho}^6 + y_{\rho}^6) \div (x_{\rho}^2 + y_{\rho}^2) = L_{\rho}, M_{\rho}; \\ x_{\rho} &= 3\xi_{\rho}^2 \ [\xi_{\rho} = \xi \ (\text{const.})], \ y_{\rho} = 2\eta_{\rho}^2, \ \eta_{\rho+2} = \eta_{\rho} + 3\xi. \end{split}$$

$$\begin{split} \mathbf{T}_r &= (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) = \mathbf{L}_r, \mathbf{M}_r \; ; \qquad t_{r+2} = t_r + 6 u, \quad u_r = u \; \text{(const.)} \; ; \\ y_r &= \frac{1}{2} \; (t_r^2 + 3 u_r^2), \quad x_r = \frac{1}{2} \; (t_r^2 - 3 u_r^2), \quad z_r = t_r u_r, \quad y_r^2 - 3 z_r^2 = x_r^2. \end{split}$$

$$\rho = \omega, \quad r = \rho + 1 = 2 \; ; \qquad u = \xi \; (\text{const.}), \quad t_r = (\eta_\rho + \eta_{\rho+2}), \quad \eta_\rho = \frac{1}{4} \; (t_r + t_{r-2}).$$

$$M_{\rho} = L_r, \quad M_r = L_{\rho+2};$$

For L_{ρ} , $M_{\rho} > 9.10^{6}$, see pp. 183, 184, 194, Argt. ξ , η ; For L_{r} , $M_{r} > 9.10^{6}$, see pp. 185-189, 194, Argt. y.

Elements of Sexto-Trin-Aurifeuillian Sextan Chains (S and T) [Species ii, Class 2°].

$$S_{\rho} = (x_{\rho}^{6} + y_{\rho}^{6}) \div (x_{\rho}^{2} + y_{\rho}^{2}) = L_{\rho} \cdot M_{\rho}; \qquad x_{\rho} = 3\xi_{\rho}^{2}, \quad y_{\rho} = 2\eta_{\rho}^{2}, \quad \eta_{\rho} = \eta \text{ (const.)}.$$

$$T_{r} = (x_{r}^{6} + y_{\rho}^{6}) \div (x_{r}^{2} + y_{r}^{2}) = L_{r} \cdot M_{r};$$

$$\mathbf{1}_r = (\alpha_r + y_r) \div (\alpha_r + y_r) - \mathbf{1}_r \cdot \mathbf{1}_r,$$

$$\xi_{\rho+2} = \xi'_{\rho} + 2\eta, \quad t_r = t \text{ (const.)}, \quad u_{r+2} = u_r + 2t;$$

$$y_r = (t_r^2 + 3u_r^2), \quad x_r = (t_r - 3u_r^2), \quad z_r = t_r u_r, \quad y_r^2 - 3z_r^2 = x_r^2.$$

$$\rho = \omega, \quad r = \rho + 1 = 2, \quad t = \eta \text{ (const.)}, \quad u_r = \frac{1}{2} \left(\xi_\rho + \xi_{\rho+2} \right), \quad \xi_\rho = \frac{1}{2} \left(u_r + u_{r-2} \right).$$

$$M_{\rho} = L_r, \quad M_r = L_{\rho+2};$$

For L_{ρ} , $M_{\rho} \gg 9.10^{6}$, see pp. 183, 184, 194, Argt. ξ , η ;

For L_r , $M_r > 9.10^6$, see pp. 185-189, 194, Argt. y.

ρ, ξ,η	u, y	ρ, ξ,η	u, y	ρ, ξ, η	u, y	ρ, ξ,η	u, y
I, 1, 1 3, 3 5, 5 7, 7 9, 9 II, 11 I3, 13 I5, 15 I7, 17 I9, 19 21, 21 23, 23 25, 25 27, 27 29, 29 31, 31 33, 33, 1 I, 1, 2 3, 5 5, 9 7, 13 9, 17 II, 21 I3, 25	2, 13 4, 49 6, 109 8, 193 10, 301 12, 433 14, 589 16, 769 18, 973 20, 1201 22, 1453 24, 1729 26, 2029 28, 2353 30, 2701 32, 3073 34, 3469 3, 31 7, 151 11, 367 15, 679 19, 1087 23, 1591 27, 2191	ρ, ξ, η 5, 11, 2 7, 15 9, 19 11, 23 13, 27, 2 1, 1, 4 3, 9 5, 17 7, 25 9, 33, 4 1, 3, 4 3, 11 5, 19 7, 27, 4 1, 5, 4 3, 13 5, 21 7, 29, 4 1, 7, 4 3, 15 5, 23 7, 31, 4 1, 1, 5 3, 11 5, 21, 5	13, 511 17, 871 21, 1327 25, 1879 29, 2527 5, 91 13, 523 21, 1339 29, 2539 37, 4123 7, 163 15, 691 23, 1603 31, 2899 9, 259 17, 883 25, 1891 33, 3283 11, 379 19, 1099 27, 2203 35, 3691 6, 133 16, 793 26, 2053	P, \(\xi\), \(\pi\) 1, \(\frac{3}{3}\), \(\frac{5}{3}\), \(\frac{13}{3}\), \(1	8, 217 18, 997 28, 2377 12, 457 32, 3097 14, 613 24, 1753 34, 3493 8, 241 22, 1501 10, 349 24, 1777 12, 481 26, 2077 16, 817 30, 2749 18, 1021 32, 3121 20, 1249 34, 3517 9, 307		11, 427 27, 2251 13, 571 29, 2587 15, 739 31, 2947 17, 931 33, 3331 19, 1147 35, 3739 21, 1387 37, 4171 23, 1651 39, 4627 11, 463 31, 2983 13, 607 33, 3867 12, 553 34, 3589 14, 709

Trinomial Power-form Sextans (H_n).

$$\begin{split} \mathbf{H}_{n} &= \mu \left(1^{4} + 14y^{2n} + y^{4n} \right) = \mu \left(x'^{6} + y'^{6} \right) \div \left(x'^{2} + y'^{2} \right). \\ & x' = \lambda \left(y^{n} - 1 \right), \quad y' = \lambda \left(y'^{n} + 1 \right); \end{split}$$

 $\lambda = 1$, $\mu = 1$, when $y = \epsilon$; $\lambda = \frac{1}{2}$, $\mu = \frac{1}{16}$, when $y = \omega$.

y; n	x', y'	H_n	y;	n	x' , y'	\mathbf{H}_n
1 2 3 2; 4 5	3, 5 7, 9 15, 17 31, 33	13.13.409; 1062913;	3;	1 2 3 4 5	4, 5 13, 14 40, 41	13; 13.37; 97.349; 13.157.1321; 13.13.109.11533;
6 7 8	127, 129	3217.5233; 268664833?† 13.61.73.74209;	5;	1 2 3		61; 109.229; 15272461?†
6; ¹ / ₂		1801; 13.73.1789; 337.6461233;	7;	1 2 3		193; 457:13.61; 865183393;
10; $\frac{1}{2}$		13.877; 13.937.8221;	14;	$\frac{1}{2}$	13, 15 195, 197	41161; 33549:44269;

See also page 171, at foot.

Factors (p) of
$$H_n$$
 in above for $y = 2, 3$.

$$\begin{split} n &= m\xi + n_0, \quad n' = m'\xi + n_0'\,; \qquad n + n' = \tfrac{1}{2}\xi \text{ (if } \xi = \epsilon), = \xi \text{ (if } \xi = \omega). \\ &[y^\xi \equiv +1 \pmod{p}]. \end{split}$$

or (p = 13)	37	61	73	97	181	193	277	313	349	373	409	421
$ \begin{array}{ccc} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	2 16	22	8 I	9	36 54	28	30	2 9 4 9	78 96	54 132	4 98	76 134
∞ ($p = 13$	37	97	109	157	&c.	241	277	349	601			
$\ \begin{cases} n_0 = 1 \\ n'_0 = 2 \end{cases}$	2 7	3 2 I	5	4 35		38	33 36	3 84	32 33			

Base-Sextan,
$$N_0 = (x_0^4 - x_0^2 y_0^2 + y_0^4) = (h^4 - h^2 k^2 + k^4).$$

Ineffective Characteristics $[C = -1, -\frac{1}{2}, +1].$

	x_0 ,	y_0	a ₀ , A ₀ , A' ₀	C	x_0 ,	y_0	$\mathbf{a}_0, \ \mathbf{A}_0, \ \mathbf{A}_0'$	C
ii	h,	k	$\mathbf{a}_0 = h^2 - k^2$	$C^{\prime\prime} = -1$	k,	h	$a_0 = k^2 - h^2$	$C^{\prime\prime} = -1$
iii	h,	$k = \epsilon$	$A_0 = h^2 - \frac{1}{2}k^2$	$C^{\prime\prime\prime\prime} = -1/2$	k,	$h = \epsilon$	$A_0 = k^2 - \frac{1}{2}h^2$	$C^{\prime\prime\prime\prime} = -1/2$
iv	h,	k	$A_0' = h^2 + k^2$	$C^{\mathrm{iv}} = +1$	k,	h	$A_0' = k^2 + \frac{1}{2}h^2$	$C^{iv} = +1$

Equivalent and Reciprocal Characteristics (E, R).

	x_0 ,	y_0	Data	C ,	C
ii	h ,	k	$\mathbf{a}_0 = k^2 - h^2$	$C'' = (k^2 - 2h^2)/k^2$,	$C'' = (h^2 - \frac{3}{2}k^2)/h^2 $
iii	$k = \epsilon$,	h	$A_0 = h^2 - \frac{1}{2}k^2$		$C''' = (k^2 - 2h^2)/k^2$
iii	$k = \epsilon$,	h	$A_0 = \frac{1}{2}k^2 - h^2$	$C''' = -(h^2 + \frac{1}{2}k^2)/h^2,$	$C''' = -(2h^2 + k^2)/k^2) R$
iv	h ,	k	$A_0' = -(h^2 + k^2)$	$C^{\text{iv}} = -(2h^2 + k^2)/k^2$	$C^{\text{iv}} = -(h^2 + \frac{1}{2}k^2)/h^2$
				$C' = \frac{1}{2} (k^2 - 1) ,$	$C' = -(k^2 + 3)/2k^2$
iii	h=1,	$k = \omega$	$A_0 = -\frac{1}{2} (1 + k^2)$	$C''' = -(k^2 + 3)/2k^2 ,$	$C^{\prime\prime\prime\prime} = \frac{1}{2} \left(k^2 - 1 \right)$

Sextan Factorisants.

N_0	Ref. No.	x_0, y_0	P_0 , Q_0	z_0 , C'	Factorisant.	Serial.
13	1 i 3 4	1, 2 2, 1 2, 1	$\begin{bmatrix} 7 & 6 \\ 7 & 6 \\ \hline 7 & 6 \end{bmatrix}$	3, 3/2 6, 3 6, -11	$(2x)^{2} + 5\left(\frac{1}{2}y\right)^{2} = z^{2}$ $7x^{2} + 2(2y)^{2} = z^{2}$ $-21x^{2} + 30(2y)^{2} = z^{2}$	
61	i 1 3	3, 2 2, 3	31, 30 31, 30	15, 11/2 10, 3	$3 (2x)^{2} + 13 (3y)^{2} = z^{2}$ $7x^{2} + 2 (2y)^{2} = z^{2}$	
73 193 193 481 481 13.97 13.157	i 1 i 1 i 3 i 1 i 3 i 1 i 3 i 1 i 1	1, 3 3, 4 4, 3 5, 3 4, 5 1, 6 7, 3	37, 36 97, 96 97, 96 241, 240 241, 240 55, 42 85, 72		$19x^2 + 5(4y)^2 = z^2$	$egin{array}{c} x,x;y,y\ x,x;y,y\ x,x;x,x;y,y\ x,x;$
13	2 ii ³ 5 8	$\begin{bmatrix} x_0, y \\ 1, 2 \\ 2, 1 \\ 1, 2 \\ 2, 1 \end{bmatrix}$	$\begin{bmatrix} a_0 \ , \ b_0 \\ \hline 3 \ , \ 2 \\ \hline 3 \ , \ 2 \\ 2 \ , \ 3 \\ \hline 2 \ , \ 3 \\ \end{bmatrix}$	$ \begin{vmatrix} z_0 & C'' \\ 1 & 1/2 \\ 2 & -7 \\ 3/2 & 1/4 \\ 3 & -6 \end{vmatrix} $	$-2x^{2} + 3\left(\frac{1}{2}y\right)^{2} = z^{2}$ $13x^{2} - 3\left(4y\right)^{2} = z^{2}$ $-\frac{3}{2}x^{2} + 15\left(\frac{1}{4}y\right)^{2} = z^{2}$ $11x^{2} - 35y^{2} = z^{2}$	$\begin{array}{cccc} y,y; & z \\ x; & z \end{array}$
13	iv 4 8	$\begin{bmatrix} x_0, \ y_0 \\ 2, \ 1 \\ 2, \ 1 \end{bmatrix}$	$A'_0, B'_0 \ \overline{5}, 2 \ \overline{4}, 1$		$-\frac{17}{3}x^2 + \frac{5}{3}(4y)^2 = z^2$ $-5x^2 + 21y^2 = z^2$	

Primary Characteristics (C) of Simple Sextans (N_0) .

$$N_0 = (x_0^4 - x_0^2 y_0^2 + y_0^4) = (1 - k^2 + k^4).$$

Re	f							
N		x_0 ,	y_0	P_0 ,	Q_0	z_0	, <i>C'</i>	E, R
	1	1,	k	$\frac{1}{2}(k^4-k^2)+1$,	au (/		$\frac{1}{2}(k^2-1)$	$C_2^{\prime\prime\prime}$
i	2	1,	k	$-\left[\frac{1}{2}(k^4-k^2)+1\right],$			$, -\left[\frac{1}{2}(k^4-k^2)+2\right]/k^2$	
	3	k,	1	$\frac{1}{2}(k^4-k^2)+1$,			$, \frac{1}{2}(k^4 - 3k^2 + 1)$	
	4	k,	1	$-\left[\frac{1}{2}\left(k^4-k^2\right)+1\right],$	$\frac{1}{2}(k^4-k^2)$	$\frac{1}{2}(k^4-k^2)$	$, -\left[\frac{1}{2}\left(k^4+k^2\right)+1\right]$	
		x_0 ,	y_0	a ₀	, b ₀	z_0	, C''	
	1	1,	k	$1-k^2$	k	1	, —1	I
	2	1,	k	k^2-1	k	1	$(k^2-2)/k^2$	$C_3^{\prime\prime\prime}$
	3	k,	1	$1-k^2$,	k	k	$1-2k^2$	
ii	4	k,	1	k^2-1 ,	k	k	, —1	I
**	5	1,	k	k ,	$1 \sim k^2$	$(1\sim k^2)/k$	$(k-1)/k^2$	
	6	1,	k	-k	$1 \sim k^2$	$(1\sim k^2)/k$	$-(k+1)/k^2$	
	7	k,	1	k	$k^2 \sim 1$	$(k^2 \sim 1)/k$	$k-k^2$	
	8	k,	1	-k	$k^2 \sim 1$	$(k^2 \sim 1)/k$	$, \qquad -(k+k^2)$	
		x_0	y_0	A_0 ,	B_{0}	z_0	, C'''	
iii	1	1, 7	$c = \epsilon$	$1 - \frac{1}{2}k^2$	$\frac{1}{2}k^{2}$	$\frac{1}{2}k$	-1 /2	I
ų	2	1, 7	$c = \epsilon$	$\frac{1}{2}k^2-1$,	$\frac{1}{2}k^{2}$	$\frac{1}{2}k$	$(\frac{1}{2}k^2-2)/k^2$	
[]	3	k =	ϵ , 1	$1 - \frac{1}{2}k^2$,	$\frac{1}{2}k^{2}$	$\frac{1}{2}k^{2}$	$1-\frac{3}{2}k^2$	$C_2^{\prime\prime}$
75	4	k =	ϵ , 1	$\frac{1}{2}k^2-1$,	$\frac{1}{2}k^{2}$	$\frac{1}{2}k^{2}$	$-(1+\frac{1}{2}k^2)$	$C_2^{\mathrm{i}\mathrm{v}}$
iii	1	1, k	$=\omega$	$\frac{1}{2}(1+k^2)$,	$\frac{1}{2}(1 \sim k^2)$	$\frac{1}{2}(1\sim k^2)/k$	$\frac{1}{2}(k^2-1)/k^2$	
3	2	1, k	$=\omega$	$-\frac{1}{2}(1+k^2)$,	$\frac{1}{2}\left(1\sim k^2 ight)$	$\frac{1}{2} (1 \sim k^2)/k$	$-\frac{1}{2}(k^2+3)/k^2$	$C_{1}^{'}$
	3	k =	ω , 1	$\frac{1}{2}(k^2+1)$,	$\frac{1}{2} (k^2 \sim 1)$	$\frac{1}{2}(k^2 \sim 1)/k$	$\frac{1}{2}(1-k^2)$	
, K	4	k =	ω , 1	$-\frac{1}{2}(k^2+1)$,	$\frac{1}{2} \left(k^2 \sim 1\right)$	$\frac{1}{2} (k^2 \sim 1)/k$	$-\frac{1}{2}(1+3k^2)$	
		x_0	y_0	A_0' ,	B_0'	z_0	, $C^{\mathrm{i}\mathrm{v}}$	
iv	1	1,	k	$1 + k^2$,	k	1	, 1	I
	2	1,	k	$-(1+k^2)$	k	_	$-(k^2+2)/k^2$	$C_4^{\prime\prime\prime}$
	3	k,	1	$k^2 + 1$,	k	k	, 1	I
	4	k,	1	$-(k^2+1)$,	k	k	$-(2k^2+1)/k^2$	
iv	5	1,	k	$(2-3k+2k^2)$	$(1-2k+k^2)$	$(1-2k+k^2)/k$	$, \qquad (1 - 3k + 2k^2)/k^2$	
2	6	1,	k	$-(2-3k+2k^2)$,			$-(3-3k+2k^2)/k^2$	
Extra	7	k,	1				$(2-3k+k^2)$	
E	8	k,	1	$-(2-3k+2k^2)$	$(1-2k+k^2)$	$(1-2k+k^2)$	$-(2-3k+3k^2)$	

Characteristics (C) of Sextan Primes (N_0) .

 $N = 13 = 1^4 - 1^2 \cdot 2^2 + 2^4$.

$$N_0 = 61 = 3^4 - 3^2 \cdot 2^2 + 2^4$$
.

Ref.	x_0, y_0	P_0, Q_0	z_0 , C'	E , R , R	$oxed{egin{array}{c c} x_0,y_0 & \mathrm{P}_0,\mathrm{Q}_0 & z_0 \ \end{array}} oxed{egin{array}{c c} z_0 \ \end{array}} oxed{C'}$	E , R , R
i 2 3 4	1, 2 1, 2 2, 1 2, 1	7, 6 7, 6 7, 6 7, 6	3, 3/2 $3, -2$ $6, 3$ $6, -11$	0 , 0 , -2 -3/4 3/4 ,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 10/9 - 3/4
1 2 3 4	$\begin{vmatrix} x_0, y_0 \\ 1, 2 \\ 1, 2 \\ 2, 1 \\ 2, 1 \end{vmatrix}$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	1 , I/2 2 , -7 2 , -1		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5 6 7 8	1, 2 1, 2 2, 1 2, 1	$\overline{2}$, 3 2, 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3/2, -3, o, o, -2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 -10
1 iii 2 3 4	1, 2 1, 2 2, 1	A_0, B_0 $\bar{1}, 2$ $1, 2$ $\bar{1}, 2$ $1, 2$	$\begin{bmatrix} z_0 , C''' \\ 1 , -1/2 \\ 1 , 0 \\ 2 , -5 \\ 2 , -3 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccc} -1, & 1 \\ & -4/3 \\ -7/2, & -1/4 \\ & -11/2 \end{array} $
1 2 3 iv	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	A'_{0}, B'_{0} $5, 2$ $\overline{5}, 2$ $5, 2$ $\overline{5}, 2$	z_0 , C^{iv} 1, 1 1, -3/2 2, 1 2, -9	-1, $-1/2$, $1/4$, -3 , -1 , $-1/2$,	$3, 2 \overline{13}, 6 3, -11/2$	-1,-1/2, -11/9
5 6 7 8	1, 2 1, 2 2, 1 2, 1	$\frac{1}{4}$, 1	1/2, 3/4 $1/2, -5/4$ $1, 0$ $1, -8$	-II, I/2, -5 -2, -2, 0	3, 2 8, 1 1/2, -1/4 3, 2 8, 1 1/2, -17/4 2, 3 8, 1 1/3, 4/9 2, 3 8, 1 1/3, -4/3	-7/2, I/3 -4

The cases C''=-1, C'''=-1/2, $C^{iv}=+1$ are ineffective. The cases C'=-2, $C''\equiv -2$, C'''=0, $C^{iv}=0$ give Trin-Aurifeuillians. Characteristics (C) of Composite Sextans (N_0) .

$$N_0 = 1261 = 13.97 = 1^4 - 1^2.6^2 + 6^4$$
.

 $N_0 = 1261$ (Primary). $N_0 = 13.97$ (Secondary).

_			2.0 - 7	201 (1	J	, ·			0	1) 10:02		J / C
R		x_0, y_0	P_0 , Q_0	z_0 ,	C'	E,	R	, <i>I</i>	P_0, Q_0	z_0 ,	C'	R
i	1 2	1, 6 1, 6	$631,630$ $\overline{631},630$	105,	35/2 - 158/9				$\frac{55,42}{55,42}$	7 , 7 , -	3/2 - 14/9	7
1	3	6, 1	$\frac{631,630}{631,630}$	630,					$55, 42$ $\overline{55}, 42$	42,	19	7/6
		0, 1	031,030	030,	-007				00, 12	42 ,	<u> </u>	
		x_0, y_0	a_0 , b_0	z_0 ,	$C^{\prime\prime}$				a_0, b_0	z_0 ,	C "	
	1	1, 6	35, 6	Ι,	17/18			,	19,30	5,	1/2	-5
	2	1, 6	$\overline{35}$, 6	Ι,	— I	Ι,	- I/2				- 5/9	
	3	6, 1	35, 6	6,	— I	Ι,	-1/2	, 1	19,30	~	- 17	5/6
ii	4	6, 1	$\overline{35}$, 6	6,	- 71				19,30	30,	- 55	
	5	1, 6	6, 35	35/6,	5/36				30, 19		29/36	
	6	1, 6	$\overline{6}$, 35	35/6,					$\overline{30}$, 19	19/6, -		
	7	6, 1	6, 35	35 ,	_				$\frac{30,19}{50,10}$	19,		
	8	6, 1	6 , 35	35 ,	-42				$[\bar{3}\bar{0}, 19]$	19,	- 66	
		x_0, y_0	A_0 , B_0	z_0 ,	C'''				A_0, B_0	z_0 ,	C'''	
	1	1, 6	17, 18	3,	4/9				31, 10	5/3,	5/6	-17
iii	2	1, 6	$\bar{1}\bar{7}$, 18	3 ,	- I/2		— I, I		$\overline{31}, 10$	5/3, -	-8/9	
	3	6, 1	17, 18	18,	- 19		- 19/18		31, 10		-5	1/2
	4	6, 1	17, 18	18,	-53		17/18	,	$\overline{31}, 10$	10,	-67	
		x_0, y_0	A'_0 , B'_0	z_0 ,	$C^{\mathrm{i}\mathrm{v}}$				A'_0, B'_0	z_0 ,	C^{iv}	
	1	1, 6	37, 6	Ι,	I	— 1,	- I/2	, I	43, 14	7/3,	7/6	19
iv	2	1, 6	$\overline{37}$, 6	Ι,-	- 19/18		-19		$\overline{43}$, 14	7/3, -	- 11/9	
	3	6, 1	$\frac{37}{5}$, 6	,	I	— I ,	- I/2	, I	$\frac{43}{14}$		7	3/2
	4	6, 1	$\bar{3}\bar{7}$, 6	6,	-73				$\overline{43}$, 14	14,	- 79	

Simple Sextan Chains, $N_r = (1^4 - y_r^2 + y_r^4) = L_r \cdot M_r$.

 $y_{-1} = 0$, $y_1 = 1$, $y_{r+1} = y_0^2 \cdot y_r - y_{r-1}$; $C' = \frac{1}{2} (y_0^2 - 1)$.

 $\mathbf{L}_0 = 1, \quad \mathbf{M}_0 = 13; \qquad \mathbf{M}_{r-1} = 1 + y_{r-1}y_r = \mathbf{L}_r, \quad \mathbf{M}_r = 1 + y_ry_{r+1} = \mathbf{L}_{r+1}.$

6
1, 754 73.20389;
4 1,11715 281.204601;
1, 199804
1, 1697245
3
1, 256830 13.157;
1, 773472
1, 1999368
1, 4606560
1, 9701010

Sextan Chains and Series.

```
i.—(3). C'=3; z^2-2(2y)^2=7x^2=7.2^2; 3^2-2.2^2=+1; x=x_0=2.
x-Chn. 2 \mid x-Chn. 1
   x, y | 2, 1
                  2,9
                             2,53
                                         2,309
                                                      2, 1801
    L
         Ι;
                   13;
                                        16381;
                                                      556513;
                            13.37;
                            16381;
                                                    18905101;
    M
         13;
                 13.37;
                                        556513;
         2, 3
                 2, 19
    x, y
                            2, 111
                                         2.647
                                                         2.3771
                  61;
     L
          Ι;
                            2113;
                                        71821;
                                                       97.25153;
     M
         61;
                 2113;
                           71821;
                                                      13.73.87337;
                                       97.25153;
   i.—(3). C' = 3; z^2 - 7x^2 = 8y^2 = 3.1^2; 8^2 - 7.3^2 = +1; y = y_0 = 1.
y-Series
    x, y, z
            2, 1, 6
                      34, 1, 90
                                   542, 1, 1434
                                                    8638, 1, 22854
      Ĺ
              Ι;
                        1069;
                                    241.1213;
                                                    13.409.14029;
                        1249;
                                     295201;
                                                    13.73.78649;
             13;
   i. -(4). C' = -11; z^2 - 30(2y)^2 = -21x^2 = -21.2^2; 11^2 - 30.2^2 = +1; x = x_0 = 2.
x-Chn. 1
                                                                           2, 2393, 26214
    x, y, z
            2, 1, 6
                    2, 17, 186
                                 2, 373, 4086
                                                   2, 5, 54
                                                            2, 109, 1194
                                               x-Chn.
      Ľ
              Ι;
                        13;
                                    6337;
                                                      Ι;
                                                             541;
97.2689;
                                                                              97.2689;
      M
                                                                           13.9670849? †
             13;
                       6337;
                                 13.234961
                                                     541;
   ii. (2). C'' = 1/2; z^2 - 3(\frac{1}{2}y)^2 = -2x^2 = -2.1^2; 2^2 - 3.1^2 = +1; x = x_0 = 1.
            1, 2, 1
                     1, 6, 5
                              1, 22, 19
                                           1, 82, 71
                                                         1, 306, 265
                                                                           1, 1142, 989
    x, y, z
             3, 2
                              483, 22
                     35, 6
                                           6723,82
                                                         93635, 306
                                                                          1304163, 1142
     a, b
x-Series
     a, b
             3, 2
                     19, 30
                              243, 418
                                          3363, 5822
                                                        46819, 81090
                                                                         652083, 1129438
             1,0
                                                                             571, 330
     α, β
                      3, 2
                                11,6
                                            41, 24
                                                           153, 88
                               33, 20
     α', β'
L
             3, 2
                      9,4
                                                          459, 266
                                                                             1713, 988
                                            123, 70
              Ι;
                                            37.61;
                                                           31153;
                      13;
                                157;
                                                                            13.33457;
      M
              13;
                                1489;
                                            20029;
                                                          13.21649;
                      97;
                                                                              3910513;
   ii.—(3). C'' = -7; z^2 - 13x^2 = -3(4y)^2 = -48.1^2; 649^2 - 13.180^2 = +1;
                                        y = y_0 = 1.
            \frac{2,1,2}{3,2}
                       938, 1, 3382
                                                       1658, 1, 5978
    x, y, z
     a, b
                                                      2748963, 1658
                       879843, 938
                                                  CV
y-Series 1
                                                  4-Series
     a, b
             3, 2
                       879837, 3382
                                                      2748957, 5978
```

1,720

3,3818

13.39877;

14577133;

α, β

α', β' L

1,0

3, 2

Ι;

13;

1,720

3, 1222

13.39877;

1493293;

Sextan Chains and Series (continued).

	x-Series	x, y, z a, b a, b a, β a', β' L M	1, 2, 3 2, 3 2, 3 0, 1 2, 3 1; 13;	1, 14, 27 14, 195 50, 189 1, 6 3, 32 37; 1033;	1, 110, 213 110, 12099 3026, 11715 6, 49 32, 243 2437; 13, 4621;	1, 866, 1677 866, 749955 187490, 726141 49, 384 243, 1922 277.541; 3753 ¹ 33;	1, 6818, 13203 6818, 46485123 11621282, 45009027 384, 3025 1922, 15123 13.715237; 193.1204141;
--	----------	---	--	--	--	--	--

ii.—(8).
$$C'' = -6$$
; $z^2 - 11x^2 = -35y^2 = -35.1^2$; $10^2 - 11.3^2 = +1$; $y = y_0 = 1$.

-Series 1	a, b a, b	$\frac{2}{2}$, 3 $\frac{1}{2}$, 0 $\frac{1}{3}$, 2 $\frac{1}{3}$;	29,1,96 840, 29 96, 835 13, 12 31, 36 313; 37.61;	578, 1, 1917 334083, 578 1917, 334078 249, 250 667, 672 13.61.157; 37.24229;	y-Series 2	120, 11 36, 115 3, 2 21, 26	47523, 218 723, 47518 51, 50 473, 468 5101;	4349, 1, 14424 18913800, 4349 14424, 18913795 1007, 1008 9389, 9384 97.20929; 13.13554829;
	M	13;	37.61;	37.24229;		1117;	442753;	13.13554829;

iv.—(4).
$$C^{iv} = -9$$
; $z^2 - \frac{5}{3}(4y)^2 = -\frac{17}{3}x^2 = -\frac{17}{3} \cdot 2^2$; $31^2 - \frac{80}{3} \cdot 6^2 = +1$; $x = x_0 = 2$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2, 19, 98 365, 38 3245, 1862 19, 10 95, 48 61; 2113;
--	--

iv.—(8).
$$C^{\text{iv}} = -8$$
; $z^2 - 21y^2 = -5x^2 = -5.2^2$; $55^2 - 21.12^2 = +1$; $x = x_0 = 2$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2, 43, 197 1853, 86 4163, 2154 33, 11 94, 35 661; 13.397;
--	---

F
•
-
_
4
of
0
S
32
-
0
. ~
-
~
.0
4
5.
Ç.
3
~
Ω.
7
ಲ
-
CV
04
- 1
S
~
~
25
a
4
6.5
3
0)
20
S

-	Т	1, 12, 07, 672, 4601, 12,0497, 97,5060.
-(1)	a, b A. B	1; 13; 97; 673; 4621; 13.2437; 37.5869; 1, 0 3, 2 9, 4 23, 12 61, 30 159, 80 417, 208 1, 0 1, 2 7, 4 25, 4 17, 38 127, 72 249, 72
	A', B'	2, 1, 4, 1 10, 1 26, 1 68, 1 178, 1 466, 1
	L a, b	1; 13; 13.37; 16381; 556513; 18905101; 1,0 3,2 15,16 91,90 527,528 3075,3074
3	A, B A', B'	1, 15, 15.37, 16581; 169615; 16961617, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18
i.—(3)	L	□ 1. 61. 0119. 71001. 07.05159.
	a, b A, B	1, 0 5, 6 33, 32 189, 190 1105, 1104 1, 0 7, 2 41, 12 239, 70 1393, 408
	A', B'	8 2, 1 8, 1 46, 1 268, 1 1562, 1
	a, b	1; 1069; 241.1213; 13.409.14029; 1,0 13,30 222,493 7872,3553
. (3)	A, B A', B'	1, 0 31, 6 511, 102 8161, 1632 2, 1 37, 10 571, 106 9025, 1512
i.—(3)	M	13; 1249; 295201; 13.73.78649;
5	a, b A, B A', B'	3, 2 15, 32 224, 495 7874, 3555 1, 2 7, 20 103, 308 1633, 4898 4, 1 41, 12 623, 176 9232, 1879
_	L	
i.—(4)	a, b A, B	1; 13; 6337; 13.234961; S 1; 541; 97.2689; 1; 0; <
. —	A', B'	2, I 4, I 97, 32 2140, 713 2, I 28, 9 625, 208
i.—(4) i.—(7)	L a, b	1; 13; 157; 87.61; 81153; 13.33457; 1,0 3,2 11,6 41,24 153,88 571,330
(2)	A, B A', B'	1, 0 1, 2 7, 6 23, 24 89, 88 329, 330 2, 1 4, 1 13, 2 55, 16 185, 32 692, 121
ii.	M	13; 97; 1489; 20029; 13.21649;
	a, b A, B A', B'	3, 2 9, 4 33, 20 123, 70 459, 266 1, 2 7, 4 17, 20 73, 70 263, 266 4, 1 10, 1 41, 8 221, 98 557, 98
_	L	
ii.—(5)	a, b A, B	1; 37; 2437; 277.541; 13.715237; M 13; 1033; 13.4621; 3753133; 0,1 1,6 6,49 49,384 384,3025 1,0 5,2 43,14 335,112 2641,880 A, B 1,2 29,8 211,72 1679,558
::i	A', B'	2,1 7,2 55,14 433,112 3409,880 A', B' 4,1 35,8 275,72 2165,558
(8)	ries 1	1; 313; 13.61.157; M 13; 37.61; 37.24229; b 1, 0 13, 12 249, 250 a, b 3, 2 31, 36 667, 672
:::	y-Series	$B \mid 1, 0 = 11, 8 = 349, 30 A, B \mid 1, 2 = 47, 4 = 901, 168$
ii.—(8) ii.—(8)	2 S 2	
ii.—(A Co	
-	\$ A'	B' 2, 1 76, 15 1519, 304 A', B' 122, 11 710, 143

Factorisants of Class i of Trinomial Sextans.

$$N = x^4 + 14x^2y^2 + y^4;$$
 $(2C'-14)x^2 + ({C'}^2-1)y^2 = z^2.$

Ex.	N_0	x_0, y_0	P_0 , Q_0	C', z_0	Factorisant.	Serial.
1	16.13	1, 3	28, 24	3,8	$-8x^2 + 8y^2 = z^2$	x
2	16.13	3, 1	28, 24	19, 24	$6(2x)^2 + 10(6y)^2 = z^2$	x, x; y
3	16.13	1, 3	$\overline{17}$, 9	$\frac{1}{2}$, 3	$-2(3x)^2 + 3y^2 = z^2$	x
4	16.13	3, 1	17, 9	8,9	$2x^2 + 7(3y)^2 = z^2$	x, x; y
5	16.61	1, 5	$\overline{124}$, 120	5, 24	$-24x^2 + 24y^2 = z^2$	x
6	73	1, 2	37, 36	9,18	$(2x)^2 + 5(4y)^2 = z^2$	x
7	481	1, 4	241,240	15, 60	$(4x)^2 + 14(4y)^2 = z^2$	x
8	13.37	1, 4	25, 12	3/2, 3	$-11x^2 + 5(\frac{1}{2}y)^2 = z^2$	x ; y, y
9	13.37	4, 1	25, 12	9, 12	$(2x)^2 + 5(4y)^2 = z^2$	x, x

Chain Examples from above Factorisants.

Ex. 1.
$$C' = 3$$
; Ex. 5. $C' = -5$;
$$y^2 - 2(\frac{1}{4}z)^2 = x^2 = +1.$$

$$y^2 - 6(\frac{1}{12}z)^2 = x^2 = +1.$$

x, y, z	1,3,8	1, 17, 48	1,99,280	1,577,1632	x, y, z	1,5,24	1, 49, 240	1,485,2376
x', y'	1, 2	8, 9	49,50	288, 289	x', y'	2, 3	24, 25	242, 243
$\frac{1}{4}L$	Ι;	13;	421;	14281;	1 <u>4</u> L	Ι;	61;	13.457;
$\frac{1}{4}M$	13;	421;	14281;	14281; 485113;	$\frac{1}{4}M$	61;	13.457;	37.15733;

Ex. 3.
$$C' = -2$$
; $(\frac{1}{3}z)^2 - 3(\frac{1}{3}y)^2 = -2x^2 = -2$.

x, y, z x', y'	1, 3, 3	1, 9, 15	1, 33, 57	1, 123, 213	1, 459, 795	1, 1713, 2967
	1, 2	4, 5	16, 17	61, 62	229, 230	856, 857
$\frac{l}{m}$	1;	13;	37;	2029 ;	7057;	13.30241;
	13;	37;	2029;	7057 ;	13.30241;	61.22441;

Ex. 6.
$$C' = 9$$
; Ex. 7. $C' = 15$;
$$(\frac{1}{2}z)^2 - 5(2y)^2 = x^2 = +1.$$

$$(\frac{1}{4}z)^2 - 14y^2 = x^2 = +1.$$

x, y, z x', y'	1, 2, 18 1, 3	1, 36, 322 35, 37	1,646,5778 645,647	$\begin{bmatrix} x, y, z \\ x', y' \end{bmatrix}$	1, 4, 60 3, 5	1, 120, 1796 119, 121	1,3596,53820 3595,3597
L	1;	73;	13.1789;		1;	13.37;	431521;
M	73;	13.1789;	7488433;		13.37;	431521;	387504961?+

Ex. 9.
$$C' = 9$$
; $(\frac{1}{2}z)^2 - 5(2y)^2 = x^2 = +16$.

$ \begin{array}{c c} $	4, 1, 12 3, 5 13; 37;	4, 21, 188 17, 25 37; 7933;	4, 377, 3372 373, 381 7933; 97.26293;	in	4, 3, 28 1, 7 13; 181;	4, 55, 492 51, 59 181; 13.4177;	4, 987, 8828 983, 991 13.4177; 17480773?†
---	--------------------------------	--------------------------------------	--	----	---------------------------------	--	--

Simple Duodecimans, $N = (y^{12} + 1^{12}) \div (y^4 + 1^4)$. [All divisors $\leqslant 100,000$ cast out.]

y	N	y	N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	N 1; 241; 6481; 97.673; 390001; 1678321; 73.193.409; 433.38737; 97.577.769; 99990001; Lo, R 10657.20113; B 193.2227777; B 815702161; 1475750641; 2562840001; 193.22253377; La	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	N 56737.806668273; 73.24793.29537569; 97.337.433.5108113; 193. 73. 20161.33409.190129; 80449.2087802049; 1297. 577.487824887233; La,Ll 73.15217.324115321;
17 18 19 20 21 22 23 24 25 26 27 28	73.1321.72337; 4297.3952393; 31177.821113; 73.518118697; 937.83575993; 97.1134793633; 7321.51605161;	67 68 69 70 71 72 73 74 75 76 77	1489. 457.5689.221733937; 87553.7375572577; 6529. 97. 5857.
29 30 31 32 33 34 35 36 37 38 39 40	9001.55576681; 73. 241; 4562284561; La 15313.91844017; 5737.392517673; 5953.473896897; 409.18217.583537;	79 80 81 82 83 84 85 86 87 88 89 90	4729.88681.3677889; 73.60937.377151601; 28081. 1753. 1873. 97. 73.937.1201.52400401;
41 42 43 44 45 46 47 48 49 50	-7-7-3-337-13-71	91 92 93 94 95 96 97 98 99 100	5281. 3361.

Simple Duodecimans (continued).

<i>y</i>	N	y	N
101 102 103 104 105 106 107 108 109 110	97.23529.3329497177; 73. 2137. 97.	151 152 153 154 155 156 157 158 159 160	97. 73. 4177.23929.3165022057? 3049. 337. 2161. 21961. 1657.2137.2689.45106801;
111 112 113 114 115 116 117 118 119 120	457· 241. 31489. 73. 409.1801.12289.3879121;	161 162 163 164 165 166 167 168 169 170	73.937. 769. 337. 73. 313.673. 1009.
121 122 123 124 125 126 127 128 129 130	97.241.1777.1106131489; 2017. 5233.49201.217094497; 73. 241; 3361.88959882481; Ll 73.4657. 42457.44809.42877777;	171 172 173 174 175 176 177 178 179 180	769. 337.2377.89017.10702257; 4657. 73.1033.5857.2084504977? 193.313.937.35521.479137; 21161.
131 132 133 134 135 136 137 138 139 140	313,9001. 601.2689.4969.11477761; 433.25633.8821161889? 2377. 1033. 313. 1249.4729. 193.10513.66529.974401; 73.457.7057.21961.26953; 97.433.	181 182 183 184 185 186 187 188 189 190	193.337.2113.45433.184489; 313.1609. 409.21673. 97.1489. 193.8929. 1609. 73.12409. 97.6217.96697.29124817;
141 142 143 144 145 146 147 148 149 150	2593. 7681.40609.592734049; 313.7537.12073.6860977; 20113.	191 192 193 194 195 196 197 198 199 200	74209. 577. 19489. 73.97.

Duodecimans, $N = (x^{12} + y^{12}) \div (x^4 + y^4)$; [x and y > 1].

x, y_{\parallel} N	x, y N	x, y N
3, 2 5521; 5 380881; 7 337.16993; 9 42942001; 11 97.601.3673; 13 73.11168137? † 15, 2 241.10631041? † 3, 4 51361; 5 73.4057; 7 1993.2617;	11, 8 1129.151609; 241.9843601? † 17, 8 73.91101817? † 3, 10 73.1358857; 97.97.8689; 97.1060777; 11 167948881? ‡ 19, 10 457.5449.6337; 73.5117977; 7313.1233097;	13, 18
9		9

Simple 24-mans, N = $(1^{24} + y^{24}) \div (1^8 + y^8)$. [All divisors < 100,000 cast out.]

y , N	y_{\perp} N
1 i; 2 97.673; 3 97.577.769; 4 193.22253377; L 6 5953.473896897; 7 577.487824887233; Ll 9 10 * 11 97.241.1777.1106131489; 12 7681. 13 1009. 14 19489. 15 3169.	21 673.193.433. 22 241.

^{*} No factor < 120,000.

 $N = (y^{32} + 1), (y^{64} + 1), (y^{18} + 1) \div (y^{16} + 1), (y^{96} + 1) \div (y^{32} + 1).$

y	$N = y^{32} + 1$	$N = y^{64} + 1$
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2; 641.6700417; E 2. 27417.67280421310721; L 2.641. \$ 2.753. 2. (2 ³² +1); &c. 2. 19841. 2.193.257. 769. 2.193.	2; 27417.67280421310721; L 2.769. 2.(2 ⁶⁴ + 1); 769. 2.257. 2. 2.257. 2. 2.769. 2.769. 2.769. 2.769.
y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	$N = (y^{48} + 1) \div (y^{16} + 1)$ 1; 193.22253377; 193.8641. 97. 193.22253377; 97. 577. 7489. 97. 97. 97. 97. 97. 97.	$N = (y^{96} + 1) \div (y^{32} + 1)$ 1; 7297. 769. 193. 2113. 3457. 193.769. 2689. 1153.2689.4993. 577.

[¶] No more divisors < 100,000.

One Root (y) of $y^{\epsilon} + 1 \equiv 0$ and $(y^{3\epsilon} + 1) \div (y^{\epsilon} + 1) \equiv 0 \pmod{p}$ and p^{κ}); $[\epsilon = 8, 16, 32, 64]$.

Supplement to Tables, pages 93-96.

13 Roots marked * are Least Roots.

$y^{16} + 1$	0 =	$y^{32}+1\equiv 0$	y ⁶⁴ +:0	$\frac{y^{24}+1}{y^8+1}$	0 😑	$\frac{y^{48}+1}{y^{16}+1}\equiv 0$	$\frac{y^{96} + 1}{y^{32} + 1} \equiv 0$
p , y	p , y	p, y	p, y	p, y	p, y	p, y	p, y
1153, 512			1153, 343	* 13	5281, * 72	*	1153, * 12
*	6.1	1217, 307		*	0,4	1249, 76	* 1
*				431	5559, * 50	2017, 180	2089, * II
1409, * 10	5953, 231 6113 140	9113 242	3329, 1795		5953 * 6	2593 TITS	
*	6337. * 68	2689, 717		777	*		4993, * 12
1889, * 31	6529, 530	*		* III	*	\vdash	•
7.	<i>c</i> 0	3137, 300		276	6529, 3225		(mark)
	6977, 2201		7297, 3585	128	6577, 240		
_		-	-	288	6673, 1431		6529, 517
9503 * 73	7393, 2093	4289, 1076	7,937, 1306	9503, 1098	0901, 2268	4515, 1778	
*	7489, 1728	4673, 2204		9011	7297. * 81	4993, 144	7873, 3566
2689, * 21	7649, 3685	4801, 985		298	7393, 1590	hemi	8641, 475
2753, * 36	7681, 2132			IOI2		5569, 1273	9601, 906
15		5441, 1638		* 15	H :	5857, 1879	
_	7873, 516	5569, 241		066	A.	5953, 1726	
3169, 233	7937, 3884	5953, 2840 6337, 3780		33 7 33 7 33 7 33 7 33 7 3	8017 2226	6599 400	
-	8353, 1516	6529, 267		630	6 6	*	
3457, 588	8513, * 46	6977, 3055		869	8209, 1069	7393, 1447	
П	—	7297, * 27		1132	Ξ.	7489, * 12	
_	8641, * 40			* 71		7873, 1461	
-		S		1152	8689, 2184	8161, 2520	
4289, 254	9929, 308	7937 810		4973 601 8	8999 506	8641 * 6	
	9377. * 62	8513, 2187		408		. 08	
U	9473, 1089			1724	9649, 655	4	
	9601, 578	9281, 2958		6I *	9697, 2148		
4993, 170				*		9697, 3825	
5981 2210	9857, 660	9601, 1134		4993, 764 5933 678	972 * 52		
3	91,455/	0001, 4344					

Additional Quartans and Sextans, [N > 9.10°, but \Rightarrow 10°].

Supplement to Tables, pages 125, 170; [ν and $\mu > 1$].

+ y²)	x, y N	55, 3 9123481; 56, 7 13.37-97-193; 57, 23 13.61-11497; 59, 29 13.73-10429; 59, 31.73-132817; 59, 38 157-6589; 59, 38 157-6589; 59, 39 9136201; 59, 41 9091561; 59, 42 9168961; 59, 42 9168961; 59, 42 9168961; 59, 42 9168961; 59, 45 9168961; 59, 45 9168961; 59, 47 9307513; 59, 47 9307513; 57, 55 13.7-25893;
22	2	
Sextans, $N = (x^6 + y^6) \div (x^2 + y^2)$	z	3, 56 421.23293; 11, 56 9587041; 11, 56 13.728437; 13, 56 397.23509; 14, 56 61.241.613; 55, 56 433.21937; 23, 58 13.755137; 24, 58 13.725737; 49, 58 13.725737; 51, 58 13.72737; 51, 58 13.72737; 51, 58 13.72737; 51, 58 13.72737; 49, 58 13.72737; 49, 60 07213; 41, 60 0731.861; 41, 60 0731.861; 43, 60 1731.83389; 41, 60 109.90709;
718, D	x, y	8, 70, 9, 111, 11, 12, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
Sexta	Z	55, 2 9138541; 55, 6 13.13.73.731; 55, 8 13.689317; 57, 14 9957613; 57, 20 109.86389; 57, 22 13.709057; 59, 80, 937.10453; 59, 80, 937.10453; 59, 80, 937.10453; 59, 80, 937.10453; 59, 80, 937.10453; 59, 80, 937.10453; 59, 40, 17.00597; 59, 40, 13.705841; 59, 40, 13.705841; 59, 40, 13.705841; 59, 40, 13.705841; 59, 40, 13.705841; 59, 40, 13.705841; 59, 40, 13.705841; 59, 40, 13.705877; 59, 48, 9405553; 59, 50, 193.50077; 57, 52, 113.29017;
	x, y	55, 55, 55, 55, 55, 55, 55, 55, 55, 55,
	Z	89.101377; 17.533853; 2278953; 2278953; 41.228953; 41.228153; 9682393; 17.449.1217; 17.449.1217; 17.3128257; 27.3128257; 27.3128257; 27.3128257; 27.3128257; 27.3128257; 27.3128257;
₩.	x, y	65 65 65 65 65 65 65 65 65 65 65 65 65 6
Quartans, $N = (x^4 + y^4)$	y N	44 1033.9209; 50 9075761; 50 17.233.2441; 52 673.3649; 54 73.281.449; 54 4745677.7881; 56 1217.8081; 56 11.97.2473; 56 73.113.1193; 56 97.01681; 56 99.24169; 56 9918017; 56 1913.5209;
uari	x	112, 0 20, 0 31, 0 11, 0
n _Q	Z	17.137.3929; 1801.5081; 1697.5393; 17.538513; 89.103049; 9216161; 9255601; 23.40697; 17.353.1601; 97.100673; 91.233417; 41.233417; 41.233417; 41.233417; 41.233417;
	, 3	2 4 9 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	8,	1. දින දින වන

Dimorph Binomial Cubics.

$$\begin{split} \mathbf{N} \; &=\; x^3 + y^3 \; = \; x'^3 + {y'}^3 \; = \; \lambda \lambda' \, . \, \mathbf{LM} \, . \\ & \qquad \qquad \lambda l^2 - \lambda' {l'}^2 \; = \; \frac{1}{12} \left({\lambda'}^3 - \lambda^3 \right) \, ; \\ & \qquad \qquad x \; = \; \frac{1}{2} \left(\lambda + 2 l \right) , \quad y \; = \; \frac{1}{2} \left(\lambda - 2 l \right) \, ; \qquad x' \; = \; \frac{1}{2} \left(\lambda' + l' \right) , \quad y' \; = \; \frac{1}{2} \left(\lambda' - l' \right) \, ; \\ & \qquad \qquad \lambda \; = \; x + y , \quad \lambda' \; = \; x' + y' \, . \end{split}$$

Ex.—
$$\lambda = 1$$
, $\lambda' = 7$; $(2l)^2 - 7(2l')^2 = 114$.

2l , $2l'$	x, y ;	x' , y'	λλ' L : M
11, 1 67, 25 1061, 401 16909, 6391 269483, 101855 31, 109, 41 27, 109, 41 27, 10439 27, 10439 27, 106369		$50931, \overline{50924}$ $24, \overline{17}$ $331, \overline{324}$ $5223, \overline{5216}$	7; 1:13; 7; 13:37; 7; 103:1171; 7; 49.67:731.43; 7; 26161:297421; 7; 19:67; 7; 151:2131; 7; 4813:16981; 7; 7.5479:7.77323;

Trimorph Binomial Cubics.

$$\begin{split} \mathbf{N} &= x^3 + y^3 = {x'}^3 + {y'}^3 = {x'}^{\prime 3} + {y'}^{\prime 3} = \mathbf{K}.\mathbf{M}. \\ \lambda &= x + y, \quad \lambda' = x' + y', \quad \lambda'' = x'' + y'' \,; \\ \mathbf{K} &= \mathbf{L}.\mathbf{C}.\mathbf{M}. \text{ of } \lambda, \lambda', \lambda''. \end{split}$$

x, y	; x' , y' ;	$x^{\prime\prime}, y^{\prime\prime}$	К ;	M
12, 10 34, 33 27, 24 76, 72 89, 86 53, 29 96, 90 67, 51 58, 22 213, 210 134, 116	$\begin{array}{c} 16, \ \overline{9}; \\ 19, \overline{10}; \\ 40, 12; \\ 41, \ \overline{2}; \\ 50, \ 8, \\ \overline{12}; \\ 54, \overline{30}; \\ 57, \ \overline{9}; \\ 69, \underline{42}; \end{array}$	$\begin{array}{c} 8, \ 6 \\ 15, \ \overline{2} \\ 18, \ 3 \\ 33, \ 31 \\ 40, \ 17 \\ 44, \ 34 \\ 53, \ 19 \\ 54, \ 22 \\ 54, \ 30 \\ 61, \ \overline{56} \\ 102, \ \overline{60} \end{array}$	64.13; 3.13.19; 8.3.7.13; 8.9.7; 16.7.19; 16.9.7; 9.13.37;	13; 37; 3.31; 79; 3.31; 3.103; 79; 3.61; 3.61; 3.31; 3.13.43;
$358, \ \overline{354}$		114, 34	16.4.37;	367;

$$\begin{split} Elements \ of \ Dimorph, \ \ \mathbf{N} &= x^3 + y^3 = x^{l^3} + y^{l^3}, \\ x + y &= \lambda, \quad x' + y' = \lambda' \ ; \qquad x^3 + y^3 = \lambda . \ Z, \quad x'^3 + y'^3 = \lambda' . \ Z', \\ \left(\frac{1}{2}\lambda - x\right) &= l, \quad \left(\frac{1}{2}\lambda' - x'\right) = l' \ ; \quad \text{then} \quad \lambda . \ l^2 - \lambda' . \ l'^2 &= \frac{1}{12} \left(\lambda^3 - \lambda'^3\right), \\ \mathbf{X} &= m + x, \quad \mathbf{Y} &= m + y \ ; \quad \mathbf{X}' &= m + x', \quad \mathbf{Y}' &= m + y', \\ m &= \frac{1}{3} \left(2Z/\lambda' - \lambda - \lambda'\right) &= \frac{1}{3} \left(2Z'/\lambda - \lambda - \lambda'\right) \quad \text{gives} \quad \mathbf{N} &= \mathbf{X}^3 + \mathbf{Y}^3 = \mathbf{X}'^3 + \mathbf{Y}'^3. \end{split}$$

-					()							
	x ,	y ;	x', y'	λ,	λ';	2l,	2l';	m	Х,	Y ;	Χ',	Y'
	6, 6,	$\frac{5}{4}$; $\frac{3}{3}$;	4, 3 5, 3 5, 4	I, 2, 3,	7; 8; 9;	11,	Ι;	6 3 2/3	12, 9, 20,	$\frac{1}{\frac{1}{7}};$	10, 8, 17,	9 6 14
	12, 12,	$\overline{10}$;	$ \begin{array}{ccc} 9, & \overline{1} \\ 10, & \overline{1} \end{array} $	2, 3,	8; 9;			27 62/3	39, 98,	17; 35;	36, 92,	26 59
l	9, 9,	$\frac{\overline{8}}{6}$;	6, 1 8, 1	I, 3,	7; 9;	17,	5;	18 26/3	27, 53,	10; 8;	24, 50,	19 29
	20, 20,	$\overline{17}$; $\overline{14}$;	14, 7 17, 7	3, 6,	2I; 24;			74/3 43/3	134, 103,	23; 1;	116, 94,	95 64
	34, 34, 34,	$\frac{\overline{3}\overline{3}}{\overline{6}}$; 9;	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1, 18, 43,	7; 24; 49;	67,	25;	318 121/3 -18	352, 223, 16,	$285; \\ 7\frac{3}{9};$	334, 220, 15,	$ \begin{array}{r} 309 \\ 94 \\ \hline{2} \end{array} $
	55, 55, 55,	$\frac{54}{24}$; 17;	$24, \overline{17}$ $54, \overline{17}$ $54, 24$	I, 3I, 72,	7; 37; 78;	109,	41;	846 66 -89/3	901, 121, 76,	$792;$ $\frac{42}{38};$	870, 120, 73,	$ \begin{array}{r} 829 \\ \hline 49 \\ \hline 17 \end{array} $
	16, 16,	$\overline{15}$; 2;	$9, \ \overline{2}$ 15, 9	18,	7; 24;	31,	11;	66 -23/3	82, 25,	$\frac{51}{17}$;	75, 22,	$\begin{array}{c} 64 \\ 4 \end{array}$
	25, 25,	$\overline{2}\overline{2}$; $\overline{4}$;	17, 4 22, 17	3,	21; 39;			134/3 -22/3	209, 53,	$\frac{68}{34}$;	185, 44,	146 29
	19, 19, 19,	$ \overline{18}; $ $ \overline{10}; $ $ \overline{3}; $	10, 3 18, 3 18, 10	1, 9, 16,	13; 21; 28;	37,	7;	48 32/3 -9/2	67, 89, 29,	$30;$ $\frac{2}{15};$	58, 86, 27,	51 41 11
	67, 67,	$\frac{58}{51}$;	$51, \ \overline{30} \\ 58, \ \overline{30}$	9, 16,	21; 28;			1088/3 471/2	1289, 605,	914; 369;	1241, 587,	998 411
	89, 89,	$\frac{\overline{86}}{\overline{41}}$;	$\frac{41}{86}$, $\frac{2}{2}$	3, 48,	39; 84;			1136/3 367/6	1403, 901,	878; 121;	1259, 883,	1130 355
١	29, 29,	$\frac{\overline{27}}{\overline{11}}$;	15, 11 27, 15	2, 18,	26; 42;			5 I I/3	40, 44,		33, 41,	31 23
l	41, 41, 41,	$\frac{\overline{40}}{\overline{17}};$ $\frac{\overline{2}}{\overline{2}};$	17, 2 40, 2 40, 17	1, 24, 39,	19; 42; 57;	81,	15;	166 61/3 -34/3	69, 184, 89,	$\frac{42}{40}$;	61, 181, 86,	56 67 17
	54, 54, 54,	$\frac{\overline{53}}{\overline{19}};$ $\frac{\overline{19}}{\overline{12}};$	19, 12 53, 12 53, 19	1, 35, 42,	31; 65; 72;	107,	7;	174 54/5 - 11/3	228, 324, 151,	$\begin{array}{c} 1\underline{21} \ ; \\ \overline{41} \ ; \\ \overline{47} \ ; \end{array}$	193, 319, 148,	186 114 46
	71, 71, 71,	$ \frac{70}{23}; $ $ \frac{14}{14}; $	23, 14 70, 14 70, 23	1, 48, 57,	37; 84; 93;	141,	9;	256 79/6 - 16/3	327, 505, 197,	$ \begin{array}{r} 186 ; \\ \hline 59 ; \\ \hline 58 ; \end{array} $	279, 499, 194,	270 163 53
ı	115, 115, 115,	$ \begin{array}{c} \overline{114}; \\ \overline{34}; \\ \overline{3}; \end{array} $	34, 3 114, 3 114, 34	1, 81, 112,	37; 117; 148;	229,	31;	696 344/9 -51/2	811, 1379, 179,		730, 1370, 177,	699 371 17

Dimorph Trinomial Quartic Forms, N = f(x, y) = f(x', y').

$$f(x, y) = (x^4 - kx^2y^2 + y^4), [k = a^2 + b^2].$$

$$x = x'$$
; $y^2 + {y'}^2 = kx^2 = k{x'}^2$; $\tau^2 - kv^2 = -1$; t , u arbitrary.

$$y = (\tau t^2 \pm 2kvtu + k\tau u^2), \quad x = (vt^2 \pm 2\tau tu + kvu^2) = x', \quad y' = t^2 - ku^2.$$

$$N = f(x, y) = f(x', y') = L.M;$$
 $L = (x^2 - yy'), M = (x^2 + yy').$

Special Solutions (below), $y' = t^2 - ku^2 = \tau^2 - kv^2 = -1$.

i.
$$y = t = \tau$$
, $x = u = v = x'$, $y' = -1$; [if $u^2 > t$].

ii.
$$y = (t^3 + 3ktu^2)$$
, $x = (ku^3 + 3t^2u) = x'$, $y' = -1$; [if $u^2 < t$].

iii.
$$y = (4\kappa^3 + 3\kappa), \quad x = (4\kappa^2 + 1) = x', \quad y' = -1;$$
 [if $k = \kappa^2 + 1, \quad t = \kappa, \forall u = 1$].

Least solutions (y, x = x', y' = -1), for N positive, for every $k = a^2 + b^2 \gg 101$ and $\neq \Box$.

k	y ,	x	L : M
1	$y' \neq -1$	x = x'	(N is a Dimorph Sextan)
			(see pp. 190–194)
2	† 7,	5	2.9:32;
5	38,	17	251:3.109;
5	682,	305	3.30781:83.1129;
10			4.313:2.743;
10			2.23.47.911:4.494617;
13	,		7:43;
17		65	3.1319:4493;
26	515,		2.29.167:3.19.47;
29	70,	13	9.11:239;
34	. ,		no solution with $x = x'$
37	882,	145	20143:19.1153;
. 41	131168,		
50	1393,	197	8.3.1559:2.20101;
53		25	443:3.269;
58	99,		2.5.7:4.67;
61	29718,		
65	2072,	257	63977:81.29.29;
73	1068,	125	14557:16693;
74	318157,		
82	2943,		2.51341:8.41.331;
85		41	1303:29.71;
89	500,		2309:3.1103;
97		569	49.43.151:5.19.3467;
101	4030,	401	9.17419:164831;

 $\dagger k = 2$ has a more general solution;

$$\begin{split} \mathbf{N} &= (x^2 \sim y^2)^2 = ({x'}^2 \sim {y'}^2)^2 = (4a_1a_2b_1b_2)^2 \;; \\ x &= (a_1a_2 + b_1b_2), \quad y = (a_1a_2 - b_1b_2), \quad x' = (a_1b_2 + b_1a_2), \quad y' = (a_1b_2 - b_1a_2). \end{split}$$

Dimorph Trinomial Quartic Forms, N = f(x, y) = f(x', y').

$$\begin{split} f\left(x,\,y\right) &= (ax^4\!-\!x^2y^2\!+\!ay^4)\,;\quad [a=\alpha^2\!+\!\beta^2].\\ x &= a\xi = x'\,;\qquad y^2\!+\!y'^2 = a\xi^2\,;\qquad \tau^2\!-\!av^2 = -1\,;\qquad t,\,u \text{ arbitrary}. \end{split}$$

$$y = (\tau t^2 \pm 2avtu + a\tau u^2), \quad x = a(vt^2 \pm 2\tau tu + avu^2) = x', \quad y' = t^2 - au^2.$$

$$N = f(x, y) = f(x', y') = aL.M;$$
 $L = x^2 - yy', M = x^2 + yy'.$

Special Cases (below). $y' = t^2 - au^2 = \tau^2 - av^2 = -1$; [For every $a = a^2 + \beta^2 \gg 101$ and $\neq \Box$].

Initial Solution. $y = t = \tau$, x = au = av = x', y' = -1; $[y, \xi]$ as in Pellian Equation]. y, ξ are successive solutions of the Pellian Equation.

а	y ,	x	L : M
1	$y' \neq -1$	x = x'	(N is a Dimorph Sextan)
2		10	(see pp. 190–194)
4	7, 41,	10 58	3.31:107;
		338	3323:3.5.227;
		1970	5.151.151:3.31.1231; 3.1293169:173.22441;
5	2,		23:27;
	38,	85	7187:27.269;
		1525	81.28703:67.34721;
10	3,	10	97:103;
	117,	: 370	43.3181:181.757;
13	18,	65	7.601:4243;
17	4,	17	3.5.19:293;
	2 6 8,	1105	3.149.2731:271.4409;
26	5,	26	11.61:3.227;
	515,	2626	11.31.73.277:3.433.5309;
29	70,	377	3.13.3643:53.2683;
34	٠,		no solution with $x = x'$
37	6,	37	29.47:125.11;
		5365	17.113.14983:11.19.137723;
41	32,		49.857:9.4673;
50	7,		9.277:23.109;
	1393,	9850	0.0
53		1325	1755443:3.585269;
58	99,	754	43.13219:5.113723;
61 65	29718,		1017:2 17 92:
73	1068	6 5 9125	4217:3.17.83;
74		370	3.2401.19:136943;
82	9,		5.17.79:6733;
85		3485	11.13.13.47.139:263.46181;
89		4717	19.1171031:3.263.28201;
97		55193	19:11/1031.3.203.20201,
101		101	3.43.79:10211;
	-,		3 13 17

Dimorph Trinomial Quartic Forms,
$$N = F(X, Y) = F(X', Y')$$
.
$$F(X, Y) = (X^4 + KX^2Y^2 + Y^4); \quad [(K+2)(2K-12) = (\alpha^2 + \beta^2)].$$

$$X = \frac{1}{2}(y-x), \quad Y = \frac{1}{2}(y+x), \quad X' = \frac{1}{2}(y'-x'), \quad Y' = \frac{1}{2}(y'+x').$$

$$F(X, Y) = \frac{1}{16} \cdot f(x, y) = \frac{1}{16} (ax^4 - kx^2y^2 + ay^4); \quad [a = (K+2), k = (2K-12)].$$

$$F(X, Y) = F(X', Y') \quad \text{gives} \quad f(x, y) = f(x', y'); \quad [ak = (\alpha^2 + \beta^2)].$$

$$x = x'; \quad y^2 + y'^2 = \frac{1}{a} \cdot kx^2; \quad \text{solvable when} \quad \tau^2 - ak \cdot v^2 = -1.$$

$$N = \frac{1}{16}aL.M; \qquad L = (x^2 - yy'), \quad M = (x^2 + yy').$$

Special Solutions (below). y'=1; $y^2-\frac{1}{a}.kx^2=-1$.

 α , L, M reduced to odd numbers by the factors κ , λ , μ ; $[\kappa \lambda \mu = \frac{1}{16}]$.

К	a, k	x , y	X, Y;	.X' , Y'	κα; λL : μΜ
6	, -, -		X , Y ;	X', Y'	(N is a Dimorph Quartan) (see p. 127)
7	9, 2	3, 1 15, 7	1, 2; 4, 11;	1, 2	Identity
		87, 41	23, 64;		9; 109:29; 9; 941:5.761;
		507, 239 2955, 1393		253, 254 1477, 1478	9; 5.61.421:29.1109; 9; 1091329:4366709;
8	10, 4	5, 3	1, 4;	2, 3	5; 11:7;
			34, 151; 1291, 5734;		5; 8527:7.11.223; 5; 24673091?†:7.1762681;
11	13, 10		4, 61;		13; 521:2141;
14	1, 1	x, y	X , Y ;	X', Y'	(N is a Dimorph Sextan) (see pp. 190–194)
	17,18	. , .	. , . ;	* _ 9 == , *	No solution with $x = x'$
16	18, 20	3, 3	0, 3; 3, 114;	0, 5 3	Identity. 9; 27.113:9.691;
	0. 04	4215, 4443	14,4329;	2107, 2108	9; 3.2960297:3.193.7673;
	25, 34 26, 36		. , . ;	. , .	No solution with $x = x'$ No solution with $y' = -1$

Dimorph Forms, N = f(x, y) = f(x', y').

```
x^4 \mp 6x^3y + 18x^2y^2 \mp 18x^3y^3 + 9y^4; L, M of Trin-Aurifn. Sextan Chain; see Table, page 197.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              L, M of Bin-Aurifn. Sextan Chain; see Table, page 195.
                                                                                                                                                                                                                                                                                                                    q = (1 - \frac{1}{4}k^2) in above.
                                                                                                                                                                x' = t_1 t_2 + q u_1 u_2, \quad y' = t_1 u_2 + u_1 t_2.
                                                                                                                                                                                                                   x' = t_1 t_2 + q u_1 u_2, \quad y' = t_1 u_2 - u_1 t_2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  [(2a \mp 2b + c)(12a - 2k) = a^2 + b^2; \quad x \pm y = x' \pm y'].
                                                                                                               x' = a_1 a_2 + b_1 b_2, \quad y' = a_1 b_2 \sim b_1 a_2.
                                                                  x' = a_1b_2 + b_1a_2, \quad y' = a_1b_2 - b_1a_2.
                                                                                                                                                                                                                                                          q = 3 in above.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              [(K+2)(2K-12) = \alpha^2 + \beta^2; x = x']; see Table, page 225.
Conditions and References.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [ak = \alpha^2 + \beta^2, x = x']; see Table, page 225.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             [a = \alpha^2 + \beta^2, x = x']; see Table, page 224.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                [k = a^2 + b^2, x = x']; see Table, page 223.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Dimorph Sextan: see Table, pages 190-194.
                                                                                                                                                                                                                                                             f(x, y) = A^2 + 3B^2 = A'^2 + 3B'^2 = f(x', y');
                                                                                                                                                                                                                                                                                                                    f(x, y) = \xi^2 + q\eta^2; \qquad \xi = x + \frac{1}{2}ky, \quad \eta = y;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Dimorph Quartan; see Table, page 127.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Dimorph Sextan; see Table, page 171.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (x^4 - 3x^2y^2 + 9y^4); Dimorph Trin-Aurifeuillian.
                                                                                                                                                                                                                   x = t_1t_2 - qu_1u_2, \quad y = t_1u_2 + u_1t_2;
                                                               y = \alpha_1 \alpha_2 \sim b_1 b_2;
                                                                                                                                                                   x = t_1 t_2 - q u_1 u_2, \quad y = t_1 u_2 - u_1 t_2;
   Elements (x, y, x', y'),
                                                                                                                  x = a_1 a_2 \sim b_1 b_2, \quad y = a_1 b_2 + b_1 a_2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (a^2x^4 \mp 2abx^2y^2 + b^2y^4); N = (ax^2 \mp by^2)^2.
                                                                                                                                                                                                                                                                                                                                                                          see Tables, pages 221, 222.
                                                                                                                                                                                                                                                                                                                                                                                                                       see Table, page 127.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           see Table, page 103.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (x^4 \mp 2x^3y + 2x^2y^2 \mp 4xy^3 + 4y^4);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (ax^4 + bx^3y + cx^2y^2 + bxy^3 + ay^4);
                                                                  = a_1 a_2 + b_1 b_2,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              X^4 + KX^2Y^2 + Y^4;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (ax^4 - kx^2y^2 + ay^4);
                                                                                                                                                                                                                                                                                                                       (x^2 \mp kxy + y^2);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (x^4 + 14x^2y^2 + y^4);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (ax^4 - x^2y^2 + ay^4);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (x^4 - kx^2y^2 + y^4);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (x^4 + 6x^2y^2 + y^4);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (x^4 - x^2y^2 + y^4);
                                                                                                                                                                                                                                                                   x^2 \mp xy + y^2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (x^4 \pm 4y^4);
                                                                                                                                                                (x^2 - qy^2);
      f(x, y);
                                                                                                                                                                                                                                                                                                                                                                       (x^3 \mp y^3);
                                                                                                                                                                                                                                                                                                                                                                                                                       (x^4 \pm y^4);
                                                                                                                  (x^2 + y^2);
                                                                  (x^2-y^2);
```

```
Factorisation of Quartic Forms.
x^4 - y^4 = (x^2 - y^2)(x^2 + y^2) = (x - y)(x^3 + x^2y + xy^2 + y^3)
                                    = (x + y)(x^3 - x^2y + xy^2 - y^3).
x^4 \sim 4y^4 = (x^2 \sim 2y^2)(x^2 + 2y^2).
a^2x^4 \sim b^2y^4 = (ax^2 \sim by^2)(ax^2 + by^2).
x^4 + 4y^4 = (x^2 - 2xy + 2y^2)(x^2 + 2xy + y^2).
x^4 + x^2y^2 + y^4 = (x^2 - xy + y^2)(x^2 + xy + y^2).
x^4 + 2x^2y^2 + y^4 = (x^2 + y^2)^2.
x^4 - 2x^2y^2 + y^4 = (x^2 - y^2)^2 = (x - y)(x^3 + x^2y - xy^2 - y^3)
                                    = (x + y)(x^3 - x^2y - xy^2 + y^3).
x^{4} - (k^{2} - 2)x^{2}y^{2} + y^{4} = (x^{2} - kxy + y^{2})(x^{2} + kxy + y^{2}).
x^4 \pm 4x^2y^2 + 4y^4 = (x^2 \pm 2y^2)^2.
x^4 - 8x^2y^2 + 4y^4 = (x^2 - 2xy - 2y^2)(x^2 + 2xy - 2y^2).
x^4 \pm 6x^2y^2 + 9y^4 = (x^2 \pm 3y^2)^2.
x^4 - 3x^2y^2 + 9y^4 = (x^2 - 3xy + 3y^2)(x^2 + 3xy + 3y^2).
x^4 - (k^2 \mp 2k) x^2 y^2 + k^2 y^4 = (x^2 - kxy \pm ky^2) (x^2 + kxy \pm ky^2).
acx^4 + (a^2 + c^2)x^2y^2 + acy^4 = (ax^2 + cy^2)(cx^2 + ay^2).
a^{2}x^{4} - (b^{2} - 2a^{2})x^{2}y^{2} + a^{2}y^{4} = (ax^{2} - bxy + ay^{2})(ax^{2} + bxy + ay^{2}).
a^2x^4 \mp 2abx^2y^2 + b^2y^4 = (ax^2 \mp by^2)^2.
a^2x^4 - (b^2 - 2ac)x^2y^2 + c^2y^4 = (ax^2 - bxy + cy^2)(ax^2 + bxy + cy^2).
aa'x^4 + (ac' + bb' + ca')x^2y^2 + cc'y^4 = (ax^2 - bxy + cy^2)(a'x^2 + b'xy + c'y^2)
                                                                [where a:b:c=a':b':c'].
x^4 \pm x^3 y \pm x y^3 + y^4 = (x \pm y)(x^3 \pm y^3) = (x \pm y)^2(x^2 \mp x y + y^2).
x^4 \pm x^3 y \mp x y^3 - y^4 = (x \pm y) (x^3 \mp y^3) = (x^2 - y^2) (x^2 \pm x y + y^2).
a^{2}x^{4} + a(b+b')(x^{3}y + xy^{3}) + a^{2}y^{4} = (ax^{2} + bxy + ay^{2})(ax^{2} + b'xy + ay^{2});
                                                                                     [2a^2 + bb' = 0].
aa'x^4 + (ab' + a'b)x^3y + (ab + a'b')xy^3 + aa'y^4
                         = (ax^2 + bxy + a'y^2)(a'x^2 + b'xy + ay^2); \quad [a^2 + a'^2 + bb' = 0].
x^{4} \pm 2x^{3}y + 2x^{2}y^{2} \pm 2xy^{2} + y^{4} = (x \pm y)(x^{3} \pm x^{2}y + xy^{2} \pm y^{3}) = (x \pm y)^{2}(x^{2} + y^{2}).
x^4 \pm 2x^3y + 3x^2y^2 \pm 2xy^3 + y^4 = (x^2 \pm xy + y^2)^2.
x^4 \pm 4x^3y + 6x^2y^2 \pm 4xy^3 + y^4 = (x \pm y)^4 = (x^2 \pm 2xy + y^2)^2
                                      = (x \pm y) (x^3 \pm 3x^2y + 3xy^2 \pm y^3).
2x^4 \pm 6x^3y + 9x^2y^2 \pm 6xy^3 + 2y^4 = (2x^2 \pm 2xy + y^2)(x^2 \pm 2xy + 2y^2).
3x^4 \pm 12x^3y + 19x^2y^2 \pm 12xy^3 + 3y^4 = (3x^2 \pm 3xy + y^2)(x^2 \pm 3xy + 3y^2)
ax^4 \pm (a^2 + a)x^3y + (2a^2 + 1)x^2y^2 \pm (a^2 + a)xy^3 + ay^4
                                                             = (ax^2 \pm axy + y^2)(x^2 \pm axy + ay^2).
2x^4 \pm 2x^3y + x^2y^2 \mp 2xy^3 + 2y^4 = (2x^2 \mp 2xy + y^2)(x^2 \pm 2xy + 2y^2).
3x^4 \pm 6x^3y + x^2y^2 \mp 6xy^3 + 3y^4 = (3x^2 \mp 3xy + y^2)(x^2 \pm 3xy + 3y^2).
ax^{4} \pm (a^{2} - a)x^{3}y + x^{2}y^{2} \mp (a^{2} - a)xy^{3} + ay^{4} = (ax^{2} \mp axy + y^{2})(x^{2} \pm axy + ay^{2}).
a^{2}x^{4} + a(b + b')x^{3}y + (2a^{2} + bb')x^{2}y^{2} + a(b + b')xy^{3} + a^{2}y^{4}
                                                       = (ax^2 + bxy + ay^2)(ax^2 + b'xy + ay^2).
aa'x^4 + b(a + a')x^3y + (a^2 + b^2 + a'^2)x^2y^2 + b(a + a')xy^3 + aa'y^4
                                                       = (ax^2 + bxy + a'y^2)(a'x^2 + bxy + ay^2).
aa'x^4 + b(a + a')x^3y + (ac' + b^2 + a'c)x^2y^2 + b(c + c')xy^3 + cc'y^4
```

 $= (ax^2 + bxy + cy^2)(a'x^2 + bxy + c'y^2).$

```
Impossible Square Forms, F(x,y) \neq z^2; [xy > 1, x \neq y].
```

 $(x^4 + y^4)$, $2(x^4 + y^4)$; $(x^4 + y^4)$, [For m, see p. 231].

Possible Square Forms, $F(x, y) = z^2$.

```
(x^2-y^2);
                           x = (t^2 + u^2), y \text{ or } z = (t^2 \sim u^2), z \text{ or } y = 2tu.
(x^2 + y^2);
                           x = (t^2 \sim u^2), \quad y = 2tu, \quad z = (t^2 + u^2).
(x^2 - qy^2);
                           x = (t^2 + qu^2), \quad y = 2tu, \quad z = (t^2 \sim qu^2).
(x^2 + qy^2);
                           x = (t^2 \sim qu^2), \quad y = 2tu, \quad z = (t^2 + qu^2).
                          here F(x, y) = (A^2 + 3B^2), q = 3 in above.
(x^2 \mp xy + y^2);
(x^2 \mp kxy + y^2);
                          here F(x, y) = (x \mp \frac{1}{2}ky)^2 + qy^2, q = (1 - \frac{1}{4}k^2) in above.
(x^2 \mp bxy + cy^2);
                          here F(x, y) = (x \mp \frac{1}{2}by)^2 + qy^2, q = (c - \frac{1}{4}b^2) in above.
(x^3 \mp y^3);
                          see p. 229.
(x^3 \pm Cy^3);
                          see p. 234.
\pm (x^4 \cong \mathbf{K} y^4);
                          K = \pm k, see p. 230; K = \pm 2^m and \pm k^2, see p. 231.
(x^4 \mp 2x^2y^2 + y^4):
                          z = (x^2 + y^2).
(1^4 - k^2 y^2 + y^4);
                          y = k, z = k^2.
[x^4 + (k^2 - 2)x^2y^2 + y^4];
                                                 x = y, z = ky^2.
(x^4 \mp kx^2y^2 + y^4);
                                                 see pp. 232, 233.
(x^4 \mp 2x^3y + 3x^2y^2 \mp 2xy^3 + y^4);
                                                 z = (x^2 \mp xy + y^2).
(x^4 \mp 4x^3y + 6x^2y^2 \mp 4xy^3 + y^4):
                                               z = (x \rightleftharpoons y)^2
(x^4 \mp 4x^3y + 8x^2y^2 + \mp 8xy^3 + 4y^4);
                                               z = (x^2 \mp 2xy + 2y^2).
(x^4 \mp 6x^3y + 15x^2y^2 \mp 18xy^3 + 9y^4);
                                               z = (x^2 \mp 3xy + 3y^2).
x^4 \mp 2kx^3y + (k^2 + 2k)x^2y^2 \mp 2k^2xy^3 + k^2y^4; z = (x^2 \mp kxy + ky^2).
(4x^4 \mp 4x^3y + 9x^2y^2 \mp 4xy^3 + 4y^4):
                                                            z = (2x^2 \mp xy + 2y^2).
(9x^4 \mp 6x^3y + 19x^2y^2 \mp 6xy^3 + 9y^4);
                                                            z = (3x^2 \mp xy + 3y^2),
\{k^2x^4 \mp 2kx^3y + (2k^2 + 1)x^2y^2 \mp 2kxy^3 + k^2y^4\}; z = (kx^2 \mp xy + ky^2).
```

^{*} See L'Interméd. d. Math., t. xv, 1908, pp. 30, 52, 159, 160, 282; t. xvi, 1909, p. 154.

Solutions of $x^3 \sim y^3 = z^2 = (\lambda z_1 z_3)^2$.

 $x \sim y = \lambda z_1^2, \quad (x^3 \sim y^3) \div (x \sim y) = \lambda z_3^2 \; ; \qquad [y = \epsilon \text{ and may be \pm}].$ $\lambda = 1 \text{ or } 3;$

 $z_3^2 = \alpha^2 + 3\beta^2$ [see Table on pp. 185–189 and 194]; $z_3 \Rightarrow 2,900$. $x \sim y = \alpha + 3\beta = z_1^2.$ $x = \alpha \neq \beta, \quad y = 2\beta;$ $\lambda = 1$;

 $x = 3\beta \rightleftharpoons \alpha, \quad y = 2\alpha;$ $\lambda = 3$;

 $x \sim y = 3 \left(\beta \neq \alpha\right) = 3z_1^2.$

	_	
λ=3; 2= ε	x , y z_1 ; z_3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
; % = %	21; 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ν = 3	x, y	1, 74 47, 74 47, 74 193, 118 483, 242 243, 242 66, 673 1201, 122 1969, 1706 1727, 1874 193, 3482
% ∷ €	21; 23	2; 14 2; 194 22; 434 26; 446 46; 1646 46; 2702 46; 2702 46; 2786
$\lambda = 1$;	x , y	10, 6 114, 110 506, 170 522, 34 946, 270 1786, 330 1562, 1558 2546, 430
3	21; 23	1; 13 13; 61 13; 97 13; 277 13; 374 11; 375 37, 949 13; 1009 47; 1417 47; 2089 13; 2089 13; 2089 13; 2089 13; 2089 13; 2089 13; 2089 13; 2089
$\lambda = 1$;	x, y	7, 8 65, 56 57, 112 105, 104 217, 312 111, 280 273, 152 305, 1064 665, 496 1617, 576 455, 1826 455, 1826 1455, 1456

I. Square Quartic Forms, $x^4 + K \cdot y^4 = \pm z^2$; $[K = \pm 2^m]$. $x^4 + 2^m \cdot y^4 = z^2$ requires $m = 4\mu + 3$; $x^4 - 2^m \cdot y^4 = \pm z^2$ requires $m = 4\mu + 1$.

i. Solutions* of
$$x_r^4 + 8y_r^4 = z_r^4$$
.

$$\begin{split} x_{r+1} &= x_r^4 - 8y_r^4, \quad y_{r+1} = 2x_r y_r z_r, \quad z_{r+1} = z_r^4 + 32x_r^4 y_r^4. \\ (x,\ y,\ z) &= \ (\text{I},\ \text{I},\ 3), \ \ (7,\ 6,\ \text{II}3), \ \ (7967,\ 9492,\ 262621633), \ \ \text{(\&c.)}. \end{split}$$

iii. Solutions* of
$$x_{r+1}^4 - 2y_{r+1}^4 = -z_{r+1}^2$$
 from $x_r^4 - 2y_r^4 = -z_r^2$.

 $\begin{array}{lll} \text{Take} & \mathbf{A} = x_r^2 + 2y_r^2, & \mathbf{B} = x_r y_r + z_r\,;\\ \text{then} & z_{r+1} = (\mathbf{A}^2 x_r^2 + 2\mathbf{B}^2 y_r^2)^2 - 2\left(\mathbf{A}^2 y_r^2 - \mathbf{B}^2 x_r^2\right)^2\,;\\ \text{and} & x_{r+1} = \mathbf{A}^2 x_r^2 - 2\mathbf{B}^2 y_r^2, & y_{r+1} = \mathbf{A}^2 y_r^2 + \mathbf{B}^2 x_r^2. \end{array}$

 $\begin{array}{l} (x,\,y,\,z)=({\scriptstyle 1},\,{\scriptstyle 1},\,{\scriptstyle 1}),\,\,({\scriptstyle 1},\,{\scriptstyle 1}3,\,239),\,\,({\scriptstyle 1}343,\,{\scriptstyle 1}525,\,2750257),\\ (9788425919,\,42422452969,\,z),\\ (5705771236058721,\,7658246457672229,\,z),\,\,(\&c.). \end{array}$

II.
$$x^4 + K \cdot y^4 = \pm z^2$$
; [K = $\pm k^2$; $c^2 = a^2 + b^2$ gives Base-solutions].

i. Solutions* of
$$x_r^4 + k^2 y_r^4 = z_r^2$$
; [a or $b = \square$ gives Base-solutions].
 $\mathbf{a} = \mathbf{a}^2$ gives $\mathbf{a}^4 + \mathbf{b}^2 \cdot \mathbf{1}^4 = \mathbf{c}^2$; $\mathbf{b} = \mathbf{\beta}^2$ gives $\mathbf{\beta}^4 + \mathbf{a}^2 \cdot \mathbf{1}^4 = \mathbf{c}^2$.
 $x_{r+1} = x_r^4 - k^2 y_r^4$, $y_{r+1} = 2x_r y_r z_r$, $z_{r+1} = z_r^4 + 4k^2 x_r^4 y_r^4$.

 $\begin{array}{l} \text{ii. } \textit{Solutions*} \textit{ of } x_r^4 - k^2 y_r^4 = \pm z_r^2 \,; \quad [\mathbf{a}, \, \mathbf{b}, \, \mathbf{or} \, \mathbf{c} = \square \, \text{ gives Base-solutions].} \\ \mathbf{a} = \mathbf{a}^2 \, \text{ gives } \mathbf{a}^4 - \mathbf{c}^2 . \, \mathbf{1}^4 = - \mathbf{b}^2 \,; \quad \mathbf{b} = \beta^2 \, \text{ gives } \beta^4 - \mathbf{c}^2 . \, \mathbf{1}^4 = - \mathbf{a}^2 \,; \\ \mathbf{c} = \gamma^2 \, \text{ gives } \gamma^4 - \mathbf{a}^2 . \, \mathbf{1}^4 = + \mathbf{b}^2 , \quad \text{and} \quad \gamma^4 - \mathbf{b}^2 . \, \mathbf{1}^4 = + \mathbf{c}^2 . \\ x_{r+1} = x_r^4 + k^2 y_r^4 , \quad y_{r+1} = 2 x_r y_r z_r , \quad z_{r+1} = z_r^4 - 4 k^2 x_r^4 y_r^4 . \end{array}$

[When two of a, b, c contain square factors, k may be reduced in II. i and II. ii.]

$x^4 + k^2 y^4 = z^2$	$x^4 - k^2 y^4 = \pm z^2$										
\mathbf{c} , \mathbf{a} , \mathbf{b} $\left k \right x_0, y_0, z_0$ $\left x_1 \right , y_1$, z_1	$k \mid x_0, y_0, z_0, \pm \mid x_1, y_1, z_1$										
*5, 3, 4 3 2, 1, 5 7, 20, 1201 25, 7, 24	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										

^{*†‡} See Ed. Lucas's Recherches sur plusieurs ouvrages de Léonard de Pise, Rome, 4877, Chaps, ii, iii.

Quartic Squares, $\dot{x}^4 - kx^2y^2 + y^4 = z^2$.

- i. $k = k^2$; x = 1, y = k, z = 1.
- ii. x = 1; $k = y^2 K$, where $z^2 Ky^2 = 1$.
- iii. $k = \lambda y^2 2C$, where $\lambda = (C^2 1) \div x^2$, $z = x^2 \sim Cy^2$; [x, y arbitrary].

Blanks in x,y,z columns mean that x,y,z are possible; see Euler's Comment. Arithm., t. ii, p. 496, &c.

		_	_					_		_		_						_		_	_	-	
23	1 00016	27				28201	2		1126	129	3039	3639		I	4801	131521	1159	152767	28		19359		
y	13								35	91	56	115			70						145		
8	1,	29,	55,	33	H,	II,	1,2		Ι,	I,	Η,	တ်		<u>=</u>	Ι,	56,	ຼິດ	တ်	33,		4,		
K	169	- -		180	182	186	188	189	190	191			193	196			197			198	200		
20	10159	20		213	\vdash	1-1	/11/	7.	10	3	298951	745	3	1	-	I	66	97	307	26	22391	∞	2263
2	05	33		63	69	52	50	12	77	35	44	57	45	600	12	12	14	14	92	689	52	35	26
<i>x</i> ,	4,1	îĤ					ζ, Ι.																
24	104	107	109	113	116	118	121	123		126	131	132	134	136	142	144	146	148	149	151	156	166	167
23	33	31	199	37769	20	II C	350	10487	51		2705	811	871	I	89	89		\sim	138769	I	17067		2041
'n	1 00	-∞	15	209	000	χ ς	35	104	10		72	55	48	6	28	12		20	408	IO	287		55
8,	I,	, , I,	Ι,	15,	3	Ι,	4 4	33	Ι,		1-	6,	Š	I,	3,	Ι,		Ι,	23,	Ι,	တ်		4,
k	47			1	51	67	20	72	74	26	77	28	79.	81	98	83	90	92	96	100	101	102	103
23	$x^2 = (x^2 - \eta^2)$	3	191		П			П		64511		I	9	I	127		I	3	9		347		
-	3	2	15	3	40	40	S 4	95	4	255	30	9	21	9	12	9	39	10	155	15	21	55	20
2	- 11								-	- ~	-	-		-	•	-		0	-	•		-	
x, y	8 8	H,	4	I,	ري ا	H (17 I	24	-	00	part .	H	4	I	Ι	1	4	6	24	2	0,0	xo`	3

Quartic Squares, $x^4 + kx^2y^2 + y^4 = z^2$; up to $k \geqslant 200$.

- i. $k = \kappa^2 2$; x = y, $z = \kappa x^2$. ii. x = 1; $k = K y^2$, where $z^2 Ky^2 = +1$.
- iii. $k = \lambda y^2 + 2C$, where $\lambda = (C^2 1) \div x^2$, $z = x^2 + Cy^2$; [x, y arbitrary].

-										
	k	x , y	z	k	x, y	z	k	x, y	z	
ı	2	x, y	$x^2 + y^2$	78	1, 3	28		13, 70	11831	
П	7	x = y	$3x^2$		10, 21	1909	141	7, 60	6151	
ı	8	Ι, 2	7	79	x = y	$9x^2$	142	x = y	12222	&c.
ı	12	3, 2	23		I, 4	39	143	i, 3	37	
ı	13	3, 4	$47 \ 4x^2$	00	I, 5 I, 8	51		1, 7	97	494,
ı	14	x = y		83		97		4, 5	241	Ď.
ı	16 17	I, 2	9	84 86	5, 12	569		4, 55	4009	ii,
ı	23	x = y	$\frac{23}{5x^2}$	87	1, 2 3, 8	. 19 233	151	17, 209	60937	, t.
ı	20	x-y I, 3	17	89	I, 4	433 41	152	I, 7 I, 2	25	ım.
1		I, 4	25			191	101	3, 20	841	ritl
ı	24	3, 2	31		4, 5 7, 48	3919	153	3,		A
ł	26	I, 2	11	90	6, 35	2339	155	104, 95	123809	nt.
1	27	3, 4	65	92	2, 7	143	156	2, 9	239	me
1	31	1, 3	19	94	2, 3	59	4 80	3, 4	8 151	no.
1	33	8, 21	1063	95	7, 15	1049	159	3, 5	191	SC
1	34 36	x = y	$6x^{2}$ 161	96	3, 4	119 194161	160 161	2, 5	129	ler
1	38	I, I2 I, 2		98	$\begin{array}{c} 25,408 \\ x = y \end{array}$	194101	162	4, 7	359	Bu
1	41	3, 4	79	99	312, 215	676081	166	5, 6	77 389	ee
1	42	1, 6	53	100	4, 15	641	167	x = y	$13x^{2}$	** 80
1	44	I, 4	31	104	1, 6	71	168	2, 9	247	ble
1		2, 3	41		I, 20	449		6, 55	5239	1881
1		2, 5	7 I		2, 7	151	169	11, 56	8601	pe
1		11, 70	7079	106	I, 2	21	171			are
ı		13, 198	42761	107	5, 28	1641	172 173	10, 21	2791	55
ı	47	x = y	$48991 \\ 7x^2$	107 112	4, 5 1, 6	209 73	174	I, 4	55	. 3
ı	48	x-y	55	118	3, 10	341	177	I, I2	215	t a
١	49	9, 56	4721	119	x = y	$11x^2$	178	I, 2	27	tha
1	52	I, 2	15	122	I, 4	47		5, 36	2729	HH.
1		I, 4	33		1, 10	149	183	Ι, Ι2	217	me
1		2, 21	535		2, 3	67	184	I, 6	89	ns
1	55	1, 15	251	1.07	14, 55	9029	187	I, 4	57	un n
1	56 57	2, 5	79	127	8, 21	35	188 189	1, 8	127 428801	col
1	60	12, 55 273, 10	5831 77471	1 2 8	I, 2	1945	191	432, 65	203	Blanks in x, y, z columns mean that x. y, z are possible; see Euler's Comment. Arithm., t.
1	61	5, 4	159	120	1, 10	151	194	$x = y^3$	$14x^2$	3, 3
1	62	$x = y^{T}$	$8x^2$		2, 55	3271		1, 5	74	x u
1	63	3, 4	97		3, 4	137		I, 6	91	(S 1
1	64	2, 3	49	131	I, 12	199	196		129	anl
		2, 15	329	132	3, 10	359		3, 4	169	B
1	66	7, 12	689	120	7, 12	977	197	7, 20	2001	Ŋ
	67	1, 3	26 817	133 134	4, 7	327	197	3, 8	343 85	7
	68	4, 2I I, 2	17	135	I, 4	49	190	2, 3 13, 204	55897	
	71		49	137	28, 377	188327	199	7, 15	1499	
1	73	3, 8	215	140	2, 5	121	200	,, -3	100	
1	77	1, 8	95		8, 15	1439				
				1				1		

$$x^3 \Rightarrow Cy^3 = z^2$$
, [up to $C = 100$].

Algebraic Solutions.—

$$\begin{array}{c|c} C = \zeta^2 - \xi^3 \, ; & C = \xi^3 - \zeta^2 \, ; \\ \xi^3 + C \, . \, 1^3 = \zeta^2 . & \xi^3 - C \, . \, 1^3 = \zeta^2 . \end{array} \quad \left| \begin{array}{c} C = \xi^5 + \zeta^2 \, ; \\ \xi^3 - C \, . \, 1^3 = -\zeta^2 . \end{array} \right|$$

 $x^3 = Cy^3 = z^2$ with $C = k^3$ gives $(k^2x)^3 + C(ky)^3 = (Cz)^2$.

2 6 2 8	$x^3 - Cy^3 = z^2$	$x^3 - Cy^3$	2 ~ 2 2	2 7 2 9	$x^3 - Cy^3$
$x^3 + Cy^3 = z^2$	$x^3 - Cy^3 = z^2$	$=-z^{2}$	$x^3 + Cy^3 = z^2$	$x^3 - Cy^3 = z^2$	$=-z^{2}$
$C \mid x, y, z$	$C \mid x, y, z$	$C \mid x, y, z \mid$	$C \mid x, y, z$	$C \mid x, y, z$	$C \mid x, y, z$
1 I, 2, 3 2 I7, 4, 7 I	1 8, 7, 13 2 3, 1, 5	1 7, 8, 13	23 24 I, I, 5	19 24, 5, 107 20 6, 1, 14	24 23, 8, 11 25 15, 6, 45
3 I, I, 2	7, 3, 17	15, 12, 9	24 I, I, 5 25 I, 3, 26 26	21 22	26 1, 1, 5
1, 2, 5 10, 2, 32 4 33, 12, 207	16, 5, 61	14, 10, 16	27 9, 6, 81	23 3, 1, 2	27
5 6, 2, 16	22, 6, 100 4 2, 1, 2	23, 16, 11 2, 3, 10	28 2 , 1 , 6 29 , 5 , 16 7	24 22, 3, 100 25 5, 1, 10	28 3, 1, 1
6, 5, 29	5, 1, 11	15, 10, 25	29 1, 3, 28 9, 2, 31	26 9, 2, 23 3, I, I	30 3, 1, 2
6 1, 2, 7 9, 6, 45	24, 15, 18 6, 3, 9	5 I, I, 2 6 8, 6, 28	30 19, 5, 103 31	17, 4. 57 23, 7, 57	32 ·8, 6, 80 33 ·2, I, 5
7 2, 2, 8 15, 7, 76	14, 2, 52	7 5, 3, 8 8 7, 4, 13	32 33, 6, 207 33	27 28 4, 1, 6	34 15, 6, 63 35
8 1, 1, 3	6 4, 2, 4 7 2, I, I	9 2, 1, 1 2, 2, 8	34 35 I, I, 6		36 3, 1, 3 37 1, 1, 6
9 3, 1, 6 6, 10, 96	8 10, 3, 28 9 6, 2, 12	10 1, 1, 3	16, 3, 71 36 4, 1, 10	30 31 33, 6, 171	1, 5, 68 16, 5, 23
10 I, 2, 9 9, 4, 37	7, 3, 10 30, 14, 48	4, 2, 4 11 2, 3, 17	37 3, 1, 42 37 3, 1, 8	32 33 31, 3, 170	38 39
11 4, 3, 19	33, 8, 177 10 11, 5, 9	6, 3, 9	26, 5, 149 41, 4, 267	34 25, 6, 91 35 11, 1, 36	40 41
34, 3, 199 12 13, 1, 47	16, 6, 44 11 3, 1, 4	12 2, 1, 2	38 11, 1, 37	36 9, 2, 21 21, 5, 69	42 3, 1, 4
13 I, 6, 53 22, 6, 116	9, 4, 5 14, 5, 37	13 14, 6, 8	40 14, 5, 88 41 2, 1, 7	37 10, 3, 1	7, 2, I 44 2, I, 6
14 I, 6, 55 9, 2, 29	15, 1, 58 12 10, 3, 26	15 16 15, 6, 9	42 9, 6, 99	39 4, I, 5 IO, I, 3I	7, 2, 3 8, 3, 26
15 I, I, 4 9, 6, 63	13 9, 2, 25 17, 1, 70	17 I, I, 4 2, I, 3	9, 4, 59 44 5, 1, 13	40 14, 1, 52	
16 17, 2, 71 17 2, 1, 5	14 15 4, 1, 7	18 5, 3, 19 9, 5, 39	45 9, 2, 33 46 4, 6, 100	42 43	15, 6, 81
4, I, 9 8, I, 23	16 28, 6, 136 17 19, 3, 80	19 2, 6, 64 8, 3, 1	47 2, 7, 127 17, 4, 89	44 5, I, 9 45 21, I, 96	48 8, 3, 28 49 7, 2, 7
18 7, 1, 19 31, 5, 179	18, 7, I 26, 10, 24	20 19, 7, 1	48 I, I, 7	34, 6, 172 46 9, 2, 19	50 1, 1, 7
19 5, 1, 12	33, 12, 81	21 22	50 51	47 6, 1, 13	5, 3, 35 51 2, 3, 37 52 3, 1, 5
20 17, 8, 121 21 20 21	57, 4,429	23	52 17, 2, 73	12, I, 4I 48 4, I, 4	53 7, 2, 9
$\begin{vmatrix} 21 \\ 22 \end{vmatrix}$ 3, 1, 7	7, I, 18 17, 2 , 69	, , -, T	53 24, 5, 143 54 3, 1, 9	49 21, 5, 56 22, 6, 8	54 15, 4, 9

 $x^3 = Cy^3 = z^2$, [up to C = 100].

$\begin{vmatrix} x^3 + Cy^3 = z^2 & x^3 - Cy^3 = z^2 & x^3 - Cy^3 \\ & = -z^2 & = -z^2 \end{vmatrix}$	$x^3 - Cy^3 = z^2$ $x^3 - Cy^3 = z^2$ $x^3 - Cy^3 = -z^2$
$\begin{bmatrix} C & x \ , \ y, & z \end{bmatrix} \begin{bmatrix} C \middle[x \ , y, & z \end{bmatrix} \begin{bmatrix} C \middle[x \ , y, & z \end{bmatrix}$	$egin{bmatrix} C & x, y, & z & C & x, y, & z & C & x, y, & z \end{bmatrix}$
55 9, 1, 28 49 25, 6, 71 55 19, 5, 4 24, 7, 71 20, 6, 64 24, 7, 71 20, 6, 64 24, 7, 71 20, 6, 64 27, 71 20, 6, 64 27, 11 20, 6, 64 27, 11 20, 6, 64 27, 11 20, 6, 64 27, 11 20, 6, 64 27, 11 20, 6, 64 27, 11 20, 6, 64 27, 11 23, 6, 19 21, 17 23, 6, 19 21, 17 60 11, 3, 3, 62 34 7, 1, 17 60 11, 3, 3, 62 37, 2, 11 23, 6, 19 19, 2, 17 60 11, 3, 3, 62 37, 2, 11 39, 2, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 60 11, 3, 3, 17 61 62 63, 15, 3	80

 $N = x^4 + Ky^4 = \pm z^2$; $[K = \pm k]$.

Addition to Table on page 230.

	$x^4 + i$	$ky^4 = z^2$	x^4	$-ky^4 = \pm z^2$
	k	x, y, z	k	x, y, z, \pm
Algebraic	$ \begin{array}{c} \zeta^{2} - 1 \\ \zeta^{2} - \xi^{4} \end{array} $ $ \eta^{4} \mp 2 \\ \eta^{4} - 2\xi^{2} \\ \eta^{4} + 2\xi^{2} \\ 2\xi^{2} + 1 \\ 4\xi^{2} + 4 $	$ \begin{vmatrix} 1, 1, & \zeta \\ \xi, 1, & \zeta \end{vmatrix} $ $ \begin{vmatrix} 1, \eta, & \eta^4 \mp 1 \\ \xi, & \eta, & \eta^4 - \xi^2 \\ \xi, & \eta, & \xi^2 + \eta^4 \\ \xi, & 1, & \xi^2 + 1 \\ \xi, & 1, & \xi^2 + 2 \end{vmatrix} $	$ \begin{array}{c} \zeta^{2} + 1 \\ \xi^{4} - \zeta^{2} \\ \xi^{4} + \zeta^{2} \end{array} $ $ 2\xi^{2} - \eta^{4} $ $ 2\xi^{2} - 1 $ $ 4\xi^{2} - 4 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Numerical	14 20 31 46 46 47 48 49 63 63 63 68 73 79 83 84 89 89 94	11, 4, 135 2, 1, 6 5, 3, 56 25, 6, 671 45, 8, 2071 17, 5, 336 2, 1, 8 4, 3, 65 3, 1, 12 19, 3, 368 4, 1, 18 2, 3, 77 1, 3, 80 1, 3, 82 2, 1, 10 2, 3, 85 34, 7, 1245 9, 4, 175 7, 1, 50	32 47 52 56 60 72 80 82 82 85 90 96 97	2, 1, 2, + 7, 3, 32, + 18, 5, 301, + 2, 1, 4, - 8, 3, 17, + 2, 1, 6, - 13, 3, 155, + 4, 1, 14, + 3, 1, 3, + 2, 1, 8, - 13, 4, 87, + 71, 10, 4959, + 3, 1, 2, - 3, 1, 3, - 5, 1, 23, + 3, 1, 4, - 19, 5, 264, +

End of Tables of Dimorph and Square Forms.

Duan and Half-Duan Primes. All primes $p = (4\varpi + 1)$ are $=(x^2+y^2)=\frac{1}{2}(x'^2+y'^2).$

Cuban and Trito-Cuban Primes.—All primes $p = (6\varpi + 1)$ are $= (A^2 + 3B^2)$. $p = A^2 + 3B^2 = \frac{x^3 - y^3}{x - y} = \frac{x'^3 + y'^3}{x' + y'} = \frac{1}{3} \frac{\xi^3 - \eta^3}{\xi - \eta} = \frac{1}{3} \frac{\xi'^3 + \eta'^3}{\xi' + \eta'}.$

$$p = A^2 + 3B^2 = \frac{x^3 - y^3}{x - y} = \frac{x'^3 + y'^3}{x' + y'} = \frac{1}{3} \frac{\xi^3 - \eta^3}{\xi - \eta} = \frac{1}{3} \frac{\xi'^3 + \eta'^3}{\xi' + \eta'}$$

The Tables following (pp. 238-252) give the value of y yielding primes (p)of forms named below arising from all Simple Duans and Simple Cubans up to y > 15,000; and also the formulæ for the "2ic parts" (a, b), (A, B) of their 2^{ic} partitions, as shown on the scheme below. The remaining pages (253-258) show Quartan, Sextan, Octavan, and Duodeciman Primes, together with the elements (x, y) which lead to them according to the scheme at foot of this page.

Source.	p	a or b,	b or a	Limits of y , p	Primes.	Pages.
Simple Duans	$\begin{array}{c} (1+y^2) \\ \frac{1}{2}(1+y^2) \\ \frac{1}{5}(1+y^2) \\ \frac{1}{10}(1+y^2) \\ \frac{1}{13}(1+y^2) \\ \frac{1}{17}(1+y^2) \end{array}$	$\begin{array}{c} 1 & , \\ \frac{1}{2}(y-1) & , \\ \frac{1}{5}(2y\mp1) , \\ \frac{1}{10}(3y\mp1) , \\ \frac{1}{13}(3y\mp2) , \\ \frac{1}{17}(4y\mp1) , \end{array}$	$\frac{1}{10}(y\pm 3)$ $\frac{1}{13}(2y\pm 3)$	$\begin{array}{c} 225.10^{6} \\ 1125.10^{5} \\ 0 \\ 225.10^{5} \\ 173.10^{5} \\ 132.10^{5} \end{array}$	1199 1288 744 763 251 185	238, 239 240, 241 242 243, 244 244 244

Source.	p	Α,	В		y,	p	Primes.	Pages.
	***************************************	$\left(\frac{1}{2}y+1\right),$ $\frac{1}{2}(y-1),$	-	$y = \epsilon$ $y = \omega$		225.106	1992	245-247
sus		$(\frac{1}{2}y)$, $(\frac{1}{2}(y+1))$,				75.106	1061	248, 249
Simple Cubans	$\frac{1}{7} \frac{y^3 - 1}{y - 1}$	2 (0),			000	32.10^{6}	770	250, 251
imple	$\frac{1}{13} \frac{y^3 - 1}{y - 1}$	in form (A	$(y^3 - 1) - A^2 + 3B^2$ as	above.	15,000	173.105	399	251
	$\frac{1}{19} \frac{y^3 - 1}{y - 1}$	$\frac{1}{13}$, $\frac{1}{19}$, $\frac{1}{2}$	the fraction of the fraction o	formal		117.105	269	252
	$\left(\frac{1}{21}, \frac{y^3 - 1}{y - 1}\right)$	division.	[500 101	~J •		107.105	393	252

Prime.	Form of p .	Limit of p .	x, y	Primes.	Pages.
Quartans	$x^4 + y^4$	≯ 107	ω, ε	240	253, 255
Half-Quartans	$\frac{1}{2}(x^4+y^4)$	≯107	ω, ω	172	254
High Quartans	$x^4 + y^4$	$> 10^7 \text{ to } 32.10^8$	ω, ∈	21, [x=1]	255
High 1-Quartans	$\frac{1}{2}(x^4+y^4)$	$> 10^7 \text{ to } 25.10^8$	ω, ω	18, [x=1]	255
Sextans	$(x^6 + y^6) \div (x^2 + y^2)$	> 107	ω, y	360	256, 257
High Simple do.	do.	$> 10^7 \text{ to } 32.10^8$	1, y	30	257
Octavans	$x^8 + y^8$	≯4.10 ¹²	ω, ε	4	258
Half-Octavans	$\frac{1}{2}(x^8+y^8)$	≯189.10	ω, ω	5	258
Duodecimans	$(x^{12} + y^{12}) \div (x^4 + y^4)$	≯ 1010		20	258

Elements (y) of Simple Duan Primes $p = (y^2 + 1)$.

		_			_	_				,	-	_	_	, -			_	_	_	_	_		
										-				١.		١.		L			011		~ ~ ~
2	326																734						
4	340		906	1	410	1	940	2	464	2	986	3	644	4	174	4	736	5	360	5	960	6	604
6	350		910	1	416	1	964	2	470	3	016	3	650	4	176	4	754	5	370	5	964	6	614
	384																780						
	386																784						
16	396		936	1	434	1	974	2	534	3	054	3	686	4	206	4	786	5	420	5	990	6	704
20	400		946	1	440	1	980	2	536	3	074	3	716	4	226	4	794	5	424	5	996	6	710
	406																796						
	420																834						
36	430		966	1	494	2	026	2	576	3	110	3	746	4	266	4	850	5	466	6	016	6	734
140	100		000	4	MOA	0	004	2	FO.4	0	104	0	T = 4		004	1	050	~	417.4	0	000	0	T 0 4
	436																876						
54	440	1	004	1	524	2	050	2	600	3	136	3	756	4	300	4	886	5	476	6	046	6	776
56	444	1	010	1	546	2	054	2	604	3	140	3	764	4	310	4	894	5	486	6	060	6	780
	464																						
	466																						
	470																						
90	474	1	066	1	566	2	080	2	664	3	184	3	790	4	364	4	936	5	510	6	126	6	806
	490																						
	496																						
116	536	1	094	1	580	2	094	2	684	3	214	3	806	4	374	4	956	5	550	6	140	6	850
100	~	4	000	4	×00	0	000	0	E00	0	220	0	000		004	4	000	~	×00	0	1 -0	0	0 = 1
	544																						
124	556	1	106	1	614	2	106	2	706	3	240	3	850	4	404	5	004	5	564	6	164	6 8	866
126	570	1	124	1	616	2	116	2	730	3	246	3	870	4	410	5	014	5	566	6	166	6	874
	576																						
	584																						
146	594	1	146	1	654	2	136	2	754	3	274	3	894	4	456	5	044	5	586	6	216	6 9	926
	634																						
	636																						
	644																						
170	646	1	176	1	676	2	224	2	776	3	306	3	946	4	504	5	080	5	664	6	240	6 9	970
150	0 = 1	4	101	-	004	^	000	0	= 00	0	01.4	0	000	,	~ 1 0	_	000	۰,	E00	0	~~ .	0 /	200
	654																						
180	674	1	210	1	686	2	266	2	794	3	326	3	984	4	524	5	120	5	710	6	266	6 9	984
184	680	1	244	1	700	2	286	2	804	3	334	3	994	4	530	5	126	5	724	6	306	6 9	990
	686																						
	690																						
	696																						
224	700	1	290	1	766	2	314	2	850	3	360	4	034	4	566	5	180	5	760	6	360	7 (016
	704																						
	714																						
240	716	1	314	1	790	2	330	2	884	3	436	4	070	4	604	5	204	C	814	5	420	7 (166
050	740	1	910	1	704	0	220	0	000	0	110	4	000	4	coc	1	200	K	004	e	101	7 -	100
	740												-										
	750																						
260	760	1	324	1	824	2	360	2	900	3	480	4	114	4	616	5	246	5	834	6	480	7:	130
	764																						
	780																						
	784																						
284	816	1	366	1	876	2	420	2	934	3	520	4	140	4	700	5	294	5	874	6	540	7:	190
	826																						
	860																						
314	864	1	394	1	910	2	456	2	964	3	536	4	156	4	726	5	340	5	930	6	576	7 9	244
	1 1			į																			

Elements (y) of Simple Duan Primes $p = (y^2 + 1)$.

```
7\ 260\ 8\ 014\ 8\ 784\ 9\ 460\ 10\ 126\ 10\ 790\ 11\ 456\ 12\ 154\ 12\ 816\ 13\ 550\ 14\ 226
7\ 286 \ 8\ 030 \ 8\ 786 \ 9\ 474\ 10\ 130\ 10\ 796\ 11\ 480\ 12\ 184\ 12\ 820\ 13\ 576\ 14\ 264
7 304 8 034 8 790 9 476 10 150 10 804 11 514 12 194 12 844 13 620 14 270
7 316 8 064 8 816 9 486 10 160 10 814 11 520 12 214 12 854 13 650 14 290
7\ 326|8\ 080|8\ 846|\ 9\ 494|10\ 166|10\ 836|11\ 560|12\ 224|12\ 874|13\ 656|14\ 294
7 364 8 100 8 854 9 520 10 216 10 840 11 566 12 234 12 876 13 660 14 330
7\ 384 \ 8\ 114 \ 8\ 876 \ 9\ 530 \ 10\ 240 \ 10\ 844 \ 11\ 586 \ 12\ 256 \ 12\ 880 \ 13\ 666 \ 14\ 356
7 404 8 116 8 880 9 546 10 246 10 846 11 596 12 276 12 896 13 674 14 374
7\ 410\ 8\ 174\ 8\ 894\ 9\ 554\ 10\ 256\ 10\ 854\ 11\ 600\ 12\ 294\ 12\ 910\ 13\ 680\ 14\ 380
7 414 8 176 8 940 9 564 10 270 10 866 11 610 12 300 12 920 13 686 14 406
7 420 8 180 8 964 9 596 10 276 10 890 11 626 12 314 12 926 13 724 14 410
7 434 8 184 8 974
                   9 600 10 284 10 894 11 650 12 334 12 964 13 754 14 414
7\ 456 8\ 194 8\ 976 9\ 630 10\ 294 10\ 896 11\ 674 12\ 336 12\ 970 13\ 756 14\ 426
7 460 8 196 8 996 9 650 10 324 10 914 11 680 12 344 12 986 13 786 14 466
7 466 8 206 9 000 | 9 666 10 326 10 936 11 720 12 354 13 056 13 806 14 476
|7\ 474|8\ 210|9\ 010|\ 9\ 670|10\ 350|10\ 960|11\ 750|12\ 356|13\ 064|13\ 820|14\ 484
7 490 8 226 9 016
                    9 696 10 360 10 966 11 766 12 360 13 066 13 830 14 486
7 504 8 230 9 020
                    9 714 10 376 10 970 11 790 12 386 13 076 13 846 14 494
7 516 8 254 9 024
                    9 724 10 384 10 984 11 800 12 390 13 090 13 854 14 496
7 520 8 270 9 046 9 744 10 414 11 010 11 804 12 396 13 100 13 870 14 504
7 524 8 290 9 054 9 760 10 416 11 024 11 810 12 404 13 106 13 880 14 506
7 536 8 296 9 120 9 770 10 424 11 026 11 814 12 416 13 110 13 886 14 544
7\ 550\ 8\ 304\ 9\ 124\ 9\ 786\ 10\ 426\ 11\ 034\ 11\ 816\ 12\ 434\ 13\ 130\ 13\ 900\ 14\ 550
7 596 8 324 9 126 9 804 10 430 11 056 11 830 12 450 13 136 13 924 14 560
7 604 8 350 9 154 9 806 10 490 11 074 11 866 12 454 13 180 13 940 14 566
7 624 8 376 9 164 | 9 826 10 504 11 076 11 886 12 460 13 224 13 964 14 576
7\ 656 8\ 386 9\ 180 \ 9\ 844\ 10\ 506\ 11\ 096\ 11\ 894\ 12\ 484\ 13\ 246\ 13\ 984\ 14\ 580
7 674 8 420 9 204 | 9 860 10 516 11 116 11 910 12 486 13 254 13 994 14 606
7 716 8 424 9 214 9 874 10 520 11 130 11 924 12 490 13 266 14 000 14 634
7 720 8 434 9 240 9 876 10 530 11 154 11 934 12 506 13 274 14 010 14 636
7 734 8 454 9 246 9 880 10 550 11 170 11 946 12 546 13 284 14 016 14 660
7\ 744\ 8\ 500\ 9\ 260\ 9\ 894\ 10\ 556\ 11\ 200\ 11\ 970\ 12\ 564\ 13\ 286\ 14\ 020\ 14\ 674
7.754 \, | 8.540 \, | 9.266 \, | 9.896 \, | 10.560 \, | 11.204 \, | 11.980 \, | 12.570 \, | 13.310 \, | 14.026 \, | 14.694
7 770 8 550 9 270 9 900 10 580 11 236 11 990 12 590 13 336 14 034 14 714
7 774 8 554 9 276 9 904 10 594 11 244 11 996 12 614 13 344 14 036 14 716
7 780 8 576 9 280 9 956 10 614 11 246 12 000 12 620 13 350 14 040 14 746
7 796 8 584 9 294
                    9 970 10 634 11 256 12 014 12 624 13 360 14 086 14 774
7 804 8 610 9 310 9 980 10 640 11 270 12 016 12 630 13 376 14 104 14 790
7\ 806\ 8\ 626\ 9\ 314\ 9\ 986\ 10\ 654\ 11\ 286\ 12\ 024\ 12\ 634\ 13\ 390\ 14\ 120\ 14\ 814
7\ 810\ 8\ 634\ 9\ 324\ 9\ 990\ 10\ 666\ 11\ 320\ 12\ 036\ 12\ 636\ 13\ 394\ 14\ 144\ 14\ 824
7820865693361000610674113301206012684134201415614826
7 836 8 670 9 340 10 014 10 690 11 336 12 064 12 694 13 430 14 166 14 850
7 854 8 680 9 356 10 016 10 700 11 346 12 084 12 710 13 436 14 180 14 886
7\ 856\ 8\ 684\ 9\ 374\ 10\ 024\ 10\ 726\ 11\ 350\ 12\ 090\ 12\ 724\ 13\ 466\ 14\ 186\ 14\ 914
7\ 864\ 8\ 694\ 9\ 386\ 10\ 050\ 10\ 734\ 11\ 364\ 12\ 094\ 12\ 730\ 13\ 490\ 14\ 190\ 14\ 926
7\ 906\ 8\ 706\ 9\ 406\ 10\ 056\ 10\ 744\ 11\ 374\ 12\ 096\ 12\ 744\ 13\ 506\ 14\ 194\ 14\ 936
7\ 910\ 8\ 720 | 9\ 424 | 10\ 074 | 10\ 764 | 11\ 400 | 12\ 120 | 12\ 756 | 13\ 516 | 14\ 196 | 14\ 940
7 944 8 750 9 426 10 084 10 770 11 404 12 126 12 764 13 520 14 200 14 950
7 946 8 760 9 434 10 086 10 780 11 416 12 140 12 766 13 534 14 210 14 996
7 956 8 774 9 436 10 116 10 784 11 436 12 144 12 776 13 546 14 220
```

This Table gives the Elements (y) of all the Simple Duan Primes $p = (y^2 + 1) \Rightarrow 225.10^6$.

Elements (y) of Simple Half-Duan Primes $p = \frac{1}{2}N = \frac{1}{2}(y^2 + 1)$.

_		-					_	_	_	-		-		-		_						_		-	-
١.	015			4	4 17 4	4	200	0	0.71	0	755	0	040	0	010	4	045		050	~	F00	0	100	0	744
	315																345								
	321																349								
	325		779	1	181	1	689	2	285	2	771	3	291	3	835	4	351	5	009	5	591	6	215	6	775
9	329		781	1	185	1	691	2	289	2	785	3	295	3	849	4	359	5	015	5	599	6	221	6	785
11	335																361								
	345																371								
	349																375								
	371																435								
29	375		821	1	241	1	741	2	349	2	819	3	365	3	885	4	439	5	055	5	669	6	301	6	811
35	379		841	1	251	1	749	2	351	2	821	3	391	3	901	4	445	5	061	5	675	6	315	6	829
38	391																459								
45	399		861	1	265	1	771	2	379	2	841	3	399	3	919	4	465	5	071	5	685	6	329	6	841
49	405		869	1	281	1	805	2	381	2	845	3	419	3	935	4	479	5	085	5	695	6	331	6	845
51	1409																485								
	415																495								
	425																511								
	435																531								
69	9 441																561								
71	1445		921	1	345	1	869	2	481	2	905	3	485	3	995	4	585	5	139	5	761	6	369	6	939
79	1449		925	1	349	1	875	2	505	2	925	3	491	4	011	4	589	5	159	5	765	6	385	6	941
88	451		929	1	359	1	899	2	519	2	935	3	495	4	021	4	609	5	165	5	769	6	399	6	951
98	459		935	1	361	1	901	2	525	2	949	3	499	4	029	4	615	5	185	5	771	6	419	6	969
101	461		949	1	389	1	915	2	539	2	951	3	501	4	031	4	635	5	219	5	775	6	425	6	971
	471																639								
	519																651								
	521																661								
	1 529																669								
148	535		981	1	421	2	021	2	565	3	031	3	569	4	075	4	689	5	269	5	851	6	475	7	031
159	545		985	1	439	2	035	2	581	3	035	3	571	4	079	4	691	5	271	5	859	6	485	7	045
168	559		989	1	459	2	051	2	585	3	045	3	575	4	085	4	709	5	279	5	879	6	499	7	049
												ł													
169	569		991	1	465	2	055	2	589	3	049	3	585	4	089	4	719	5	281	5	911	6	509	7	055
171	571	1	001	1	469	2	065	2	591	3	059	3	605	4	099	4	721	5	289	5	925	6	511	7	069
178	575	1	011	1	489	2	079	2	599	3	071	3	621	4	119	4	759	5	301	5	931	6	545	7	071
	579																								
	5 581																								
	595																								
	1609																								
	631																								
209	639	1	055	1	521	2	151	2	645	3	131	3	701	4	199	4	811	5	399	6	029	6	589	7	101
219	641	1	069	1	531	2	159	2	659	3	145	3	705	4	201	4	825	5	405	6	051	6	605	7	105
	1 649																								
23:	1 661	1	091	1	541	2	165	2	671	3	171	3	711	4	221	4	865	5	425	6	081	6	619	7	115
24	669	1	095	1	545	2	171	2	681	3	191	3	715	4	225	4	871	5	431	6	085	6	621	7	131
	1 685																								
	1 689																								
	695																								
	699																								
	711																								
299	715	1	155	1	629	2	261	2	729	3	235	3	785	4	301	4	949	5	525	6	169	6	705	7	189
	739																								
				-	,,,,	-		-	, , ,	1		1	,	-		1		1		-	100		, 00	1	

Elements (y) of Simple Half-Duan Primes $p = \frac{1}{2}N = \frac{1}{2}(y^2 + 1)$.

```
7\ 201\ 7\ 825\ 8\ 605\ 9\ 259\ 9\ 851\ 10\ 541\ 11\ 189\ 11\ 859\ 12\ 479\ 13\ 139\ 13\ 841\ 14\ 419
7\ 211 | 7\ 829 | 8\ 639\ 9\ 265 | \ 9\ 855\ 10\ 545\ 11\ 191 | 11\ 865\ 12\ 489\ 13\ 155\ 13\ 855\ 14\ 455
7\ 235\ 7\ 845\ 8\ 645\ 9\ 285\ \ 9\ 861\ 10\ 549\ 11\ 229\ 11\ 889\ 12\ 509\ 13\ 181\ 13\ 861\ 14\ 469
7\ 239 \ 7\ 855 \ 8\ 661 \ 9\ 309 \ \ 9\ 865 \ 10\ 565 \ 11\ 239 \ 11\ 911 \ 12\ 519 \ 13\ 195 \ 13\ 865 \ 14\ 489
7\ 241\ 7\ 859\ 8\ 665\ 9\ 315\ \ 9\ 869\ 10\ 579\ 11\ 245\ 11\ 925\ 12\ 539\ 13\ 199\ 13\ 875\ 14\ 491
7\ 245\ 7\ 861\ 8\ 675\ 9\ 319\ 9\ 889\ 10\ 581\ 11\ 261\ 11\ 935\ 12\ 551\ 13\ 201\ 13\ 895\ 14\ 511
7 261 7 975 8 719 9 331 9 891 10 589 11 265 11 949 12 565 13 225 13 899 14 519
7\ 265 | 7\ 981 | 8\ 721 | 9\ 359 | \ 9\ 905 | 10\ 591\ 11\ 281 | 11\ 951\ 12\ 575 | 13\ 235 | 13\ 911 | 14\ 551
7\ 269|7\ 991|8\ 729|9\ 361|\ 9\ 925|10\ 599|11\ 295|11\ 959|12\ 581|13\ 245|13\ 921|14\ 569
7 279 7 999 8 735 9 369 9 951 10 601 11 299 11 969 12 585 13 249 13 925 14 571
7 281 8 001 8 745 9 375 9 981 10 609 11 329 11 995 12 595 13 251 13 959 14 579
7\ 299\ 8\ 005\ 8\ 749\ 9\ 385\ 10\ 001\ 10\ 611\ 11\ 345\ 12\ 005\ 12\ 645\ 13\ 261\ 13\ 971\ 14\ 585
7 315 8 009 8 755 9 389 10 011 10 635 11 355 12 011 12 649 13 301 13 975 14 611
7 335 8 019 8 761 9 395 10 029 10 659 11 359 12 039 12 655 13 325 13 979 14 631
7 339 8 031 8 769 9 399 10 049 10 661 11 379 12 055 12 691 13 335 13 999 14 645
7 341 8 061 8 771 9 401 10 055 10 705 11 421 12 071 12 705 13 339 14 005 14 661
7\ 385\ 8\ 069\ 8\ 779\ 9\ 419\ 10\ 065\ 10\ 711\ 11\ 441\ 12\ 075\ 12\ 715\ 13\ 345\ 14\ 051\ 14\ 671
7 395 8 075 8 781 9 425 10 069 10 719 11 455 12 099 12 731 13 355 14 059 14 679
7 401 8 085 8 825 9 445 10 071 10 721 11 481 12 109 12 755 13 361 14 065 14 681
7 429 8 089 8 831 9 475 10 081 10 739 11 495 12 119 12 765 13 371 14 079 14 689
7 439 8 111 8 841 9 481 10 089 10 741 11 509 12 129 12 769 13 445 14 085 14 725
7\ 449 | 8\ 115 | 8\ 869 | 9\ 509 | 10\ 099 | 10\ 749 | 11\ 519 | 12\ 131 | 12\ 775 | 13\ 449 | 14\ 101 | 14\ 729
7\ 451 \ 8\ 129 \ 8\ 875 \ 9\ 519\ 10\ 125\ 10\ 775\ 11\ 551\ 12\ 135\ 12\ 779\ 13\ 455\ 14\ 105\ 14\ 745
7\ 475\ 8\ 131\ 8\ 909\ 9\ 535\ 10\ 139\ 10\ 779\ 11\ 569\ 12\ 155\ 12\ 781\ 13\ 469\ 14\ 109\ 14\ 779
7\ 485\ 8\ 175\ 8\ 919\ 9\ 539\ 10\ 149\ 10\ 845\ 11\ 585\ 12\ 161\ 12\ 785\ 13\ 471\ 14\ 115\ 14\ 809
7\ 489\ 8\ 189\ 8\ 925\ 9\ 545\ 10\ 151\ 10\ 851\ 11\ 589\ 12\ 165\ 12\ 789\ 13\ 479\ 14\ 125\ 14\ 835
7 495 8 231 8 941 9 561 10 205 10 855 11 599 12 169 12 809 13 491 14 145 14 855
7 511 8 235 8 961 9 571 10 209 10 871 11 611 12 171 12 815 13 495 14 159 14 869
7\ 515 | 8\ 259 | 8\ 969 | 9\ 579 | 10\ 219 | 10\ 881 | 11\ 621 | 12\ 191 | 12\ 825 | 13\ 565 | 14\ 161 | 14\ 881
7\ 541 \ 8\ 261 \ 8\ 995 \ 9\ 619 \ 10\ 231 \ 10\ 891 \ 11\ 629 \ 12\ 239 \ 12\ 851 \ 13\ 569 \ 14\ 171 \ 14\ 885
7 551 8 269 9 009 9 629 10 235 10 905 11 645 12 245 12 855 13 581 14 179 14 891
7 559 8 279 9 021 9 631 10 245 10 911 11 651 12 265 12 861 13 595 14 205 14 899
7\ 589 8\ 305 9\ 041 9\ 655 10\ 251 10\ 929 11\ 659 12\ 281 12\ 869 13\ 599 14\ 209 14\ 909
7 601 8 321 9 049 9 665 10 261 10 949 11 685 12 285 12 881 13 609 14 235 14 911
7 611 8 329 9 051 9 671 10 271 10 965 11 711 12 299 12 885 13 635 14 245 14 925
7 631 8 361 9 085 9 675 10 285 11 009 11 719 12 301 12 925 13 641 14 249 14 961
7\ 651 8\ 365 9\ 101 9\ 681\ 10\ 319\ 11\ 011\ 11\ 725\ 12\ 305\ 12\ 949\ 13\ 649\ 14\ 255\ 14\ 965
7 659 8 381 9 109 9 689 10 321 11 021 11 729 12 325 12 961 13 661 14 261 14 975
7 661 8 395 9 119 9 699 10 351 11 025 11 755 12 335 12 985 13 665 14 265
7 681 8 399 9 135 9 701 10 355 11 039 11 761 12 361 12 989 13 731 14 275
7 689 8 409 9 151 9 709 10 361 11 049 11 765 12 365 12 991 13 735 14 289
7 695 8 415 9 155 9 715 10 371 11 065 11 769 12 369 12 999 13 739 14 291
  741 8 431 9 165 9 721 10 415 11 101 11 771 12 385 13 041 13 741 14 329
7 749 8 439 9 169 9 751 10 419 11 109 11 779 12 409 13 045 13 765 14 349
7 751 8 491 9 179 9 765 10 445 11 121 11 781 12 419 13 071 13 779 14 351
7 759 8 511 9 185 9 789 10 461 11 141 11 795 12 421 13 081 13 789 14 365
7 771 8 515 9 191 9 791 10 469 11 145 11 821 12 435 13 085 13 799 14 375
7\ 785 \ 8\ 545 \ 9\ 195 \ 9\ 795 \ 10\ 475\ 11\ 155\ 11\ 829\ 12\ 441\ 13\ 095\ 13\ 805\ 14\ 381
7 791 8 561 9 241 9 815 10 489 11 169 11 831 12 469 13 101 13 835 14 405
7\ 809 | 8\ 579 | 9\ 255 | 9\ 821 | 10\ 529 | 11\ 171 | 11\ 841 | 12\ 471 | 13\ 119 | 13\ 839 | 14\ 411
```

Elements (y) of Primes $p = \frac{1}{5}N = \frac{1}{5}(y^2 + 1)$.

```
622 1 498 2 338 3 252 4 262 5 398 6 342 7 352 8 452
                                                                                                                                                                                                                                                                                                                                                                              9 572 10 592 11 628 12 642 13 898
                                           628 1 502 2 352 3 272 4 292 5 422 6 372 7 358 8 472
                                                                                                                                                                                                                                                                                                                                                                              9 598 10 598 11 638 12 662 13 938
                    8
                                         638 1 512 2 392 3 278 4 312 5 428 6 408 7 362 8 492
                                                                                                                                                                                                                                                                                                                                                                              9 648 10 608 11 642 12 688 13 942
               12
                                         652 1 522 2 398 3 288 4 328 5 438 6 412 7 372 8 498
                                                                                                                                                                                                                                                                                                                                                                              9 662 10 622 11 648 12 692 13 952
                                           662 1 528 2 402 3 338 4 352 5 458 6 448 7 398 8 502
                                                                                                                                                                                                                                                                                                                                                                              9 672 10 688 11 672 12 728 13 988
             28
                                           692 1 538 2 438 3 342 4 388 5 472 6 452 7 422 8 508
                                                                                                                                                                                                                                                                                                                                                                              9 692 10 702 11 678 12 762 13 998
             42
                                           698 1 572 2 442 3 358 4 398 5 488 6 458 7 448 8 522
                                                                                                                                                                                                                                                                                                                                                                              9 738 10 708 11 688 12 798 14 002
             48
                                           702 | 1 588 | 2 472 | 3 402 | 4 408 | 5 492 | 6 462 | 7 458 | 8 528 |
                                                                                                                                                                                                                                                                                                                                                                              9 748 10 712 11 702 12 872 14 052
                                           728 1 592 2 498 3 428 4 448 5 508 6 472 7 462 8 592
                                                                                                                                                                                                                                                                                                                                                                              9 752 10 722 11 712 12 912 14 088
                                           738 1 638 2 508 3 442 4 452 5 528 6 478 7 478 8 602
                                                                                                                                                                                                                                                                                                                                                                              9 778 10 728 11 738 12 928 14 092
             62
            78
                                         758 1 642 2 542 3 448 4 462 5 558 6 562 7 592 8 608
                                                                                                                                                                                                                                                                                                                                                                              9 792 10 738 11 742 12 942 14 108
                                         792 | 1\; 688 | 2\; 562 | 3\; 452 | 4\; 488 | 5\; 578 | 6\; 572 | 7\; 642 | 8\; 678 | \; 9\; 812 | 10\; 752 | 11\; 752\; 12\; 972 | 14\; 122\; 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120
             88
                                         828 | 1692 | 2578 | 3512 | 4498 | 5602 | 6578 | 7672 | 8698 | 9838 | 10762 | 11778 | 12998 | 14138 | 1388 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389 | 1389
            92
                                         838|1\ 712|2\ 602|3\ 522|4\ 522|5\ 612|6\ 608|7\ 698|8\ 748|\ 9\ 852|10\ 788|11\ 788|13\ 042|14\ 142
                                         842|1\ 742|2\ 628|3\ 578|4\ 548|5\ 622|6\ 628|7\ 712|8\ 758|\ 9\ 858|10\ 802\ 11\ 808|13\ 048|14\ 192
                                         848|1\ 748|2\ 642|3\ 592|4\ 612|5\ 628|6\ 642|7\ 728|8\ 772|\ 9\ 938|10\ 822\ 11\ 888\ 13\ 058|14\ 228
                                         862 | 1762 | 2672 | 3598 | 4748 | 5642 | 6662 | 7828 | 8778 | 9942 | 10838 | 11958 | 13072 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 | 14238 |
                                         872|1\ 778|2\ 678|3\ 602|4\ 762|5\ 652|6\ 688|7\ 848|8\ 788|\ 9\ 948|10\ 848\ 11\ 962|13\ 098|14\ 248
      178
                                         898 | 1\ 792 | 2\ 698 | 3\ 612 | 4\ 822 | 5\ 658\ 6\ 722 | 7\ 852 | 8\ 798 | 9\ 978 | 10\ 852\ 11\ 988\ 13\ 108 | 14\ 258
                                         908 | 1 822 | 2 702 | 3 628 | 4 842 | 5 698 | 6 738 | 7 862 | 8 808 | 9 998 | 10 878 | 12 012 | 13 142 | 14 272
     202
                                         912 | 1\ 842 | 2\ 708 | 3\ 638 | 4\ 848 | 5\ 758 | 6\ 758 | 7\ 872 | 8\ 838\ 10\ 008\ 10\ 942\ 12\ 038\ 13\ 172\ 14\ 322
     222
                                        942 \, | 1 \, 848 \, | 2 \, 742 \, | 3 \, 672 \, | 4 \, 852 \, | 5 \, 762 \, | 6 \, 772 \, | 7 \, 898 \, | 8 \, 852 \, | \, 10 \, 048 \, | \, 10 \, 972 \, | \, 12 \, 042 \, | \, 13 \, 198 \, | \, 14 \, 328 \, | \, 10 \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \, | \, 10 \,
                                        962 1 858 2 752 3 678 4 862 5 828 6 792 7 902 8 872 10 052 10 988 12 048 13 202 14 342
     238
     248
                                        972 \, | \, 1\,\, 862 \, | \, 2\,\, 762 \, | \, 3\,\, 688 \, | \, 4\,\, 898 \, | \, 5\,\, 838 \, | \, 6\,\, 808 \, | \, 7\,\, 928 \, | \, 8\,\, 892 \, | \, 10\,\, 098 \, | \, 10\,\, 998 \, | \, 12\,\, 058 \, | \, 13\,\, 208 \, | \, 14\,\, 388 \, | \, 10\,\, 10\,\, | \, 10\,\, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 10\,\, | \, 1
                                        978 \, | \, 1\, 872 \, | \, 2\, 788 \, | \, 3\, 712 \, | \, 4\, 912 \, | \, 5\, 862 \, | \, 6\, 822 \, | \, 7\, 942 \, | \, 8\, 908 \, | \, 10\, 142 \, | \, 11\, 062 \, | \, 12\, 088 \, | \, 13\, 238 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | \, 14\, 392 \, | 
                                        262
     272 \stackrel{1}{1} 008 \stackrel{1}{1} 898 \stackrel{1}{2} 808 \stackrel{1}{3} 738 \stackrel{1}{4} 962 \stackrel{1}{5} 948 \stackrel{1}{6} 848 \stackrel{1}{7} 972 \stackrel{1}{8} 958 \stackrel{1}{10} 172 \stackrel{1}{11} 078 \stackrel{1}{12} 112 \stackrel{1}{13} 272 \stackrel{1}{14} 428
     292 \stackrel{1}{1}\ 062 \stackrel{1}{1}\ 948 \stackrel{1}{2}\ 812 \stackrel{1}{3}\ 742 \stackrel{1}{4}\ 972 \stackrel{1}{5}\ 952 \stackrel{1}{6}\ 892 \stackrel{1}{7}\ 978 \stackrel{1}{8}\ 992 \stackrel{1}{10}\ 178 \stackrel{1}{11}\ 092 \stackrel{1}{12}\ 122 \stackrel{1}{13}\ 288 \stackrel{1}{14}\ 442
     298 | 1\ 072 | 1\ 952 | 2\ 822 | 3\ 798 | 4\ 978 | 5\ 958 | 6\ 922 | 8\ 012 | 9\ 008 | 10\ 188 | 11\ 108 | 12\ 152 | 13\ 292 | 14\ 462
     308|1\ 078|1\ 978|2\ 858|3\ 802|4\ 988|5\ 978|6\ 928|8\ 022|9\ 012|10\ 202|11\ 178|12\ 158|13\ 378|14\ 478
     312 | 1\ 088 | 1\ 988 | 2\ 862 | 3\ 878\ 4\ 992\ 6\ 002\ 6\ 952 | 8\ 058\ 9\ 028\ 10\ 208\ 11\ 192\ 12\ 178\ 13\ 422\ 14\ 538
     328 | 1\ 108 | 2\ 012 | 2\ 872 | 3\ 888 | 5\ 008 | 6\ 008\ 6\ 978 | 8\ 092 | 9\ 042\ 10\ 212\ 11\ 212\ 12\ 188\ 13\ 438 | 14\ 652
     35211112202228983912504860386988813890581022211222122081348814678
     358|1\ 138|2\ 028|2\ 908|3\ 922|5\ 072|6\ 052|7\ 022|8\ 148|9\ 122|10\ 228|11\ 228|12\ 252|13\ 508|14\ 738|
     362 \stackrel{1}{1} 192 \stackrel{1}{2} 052 \stackrel{1}{2} 922 \stackrel{1}{3} 942 \stackrel{5}{5} 102 \stackrel{1}{6} 098 \stackrel{7}{7} 048 \stackrel{8}{8} 162 \stackrel{9}{9} 178 \stackrel{1}{10} 248 \stackrel{1}{11} 238 \stackrel{1}{12} 288 \stackrel{1}{13} 522 \stackrel{1}{14} 742
    3881208205829423958512261127062817891881030211252122981354214762
    402\,1\,238\,2\,122\,2\,948\,3\,962\,5\,142\,6\,122\,7\,092\,8\,188\,9\,198\,10\,338\,11\,262\,12\,322\,13\,608\,14\,842
    422 | 1\ 272 | 2\ 128 | 2\ 952 | 3\ 992 | 5\ 148 | 6\ 142 | 7\ 112 | 8\ 212 | 9\ 202 | 10\ 352 | 11\ 308 | 12\ 328 | 13\ 612 | 13\ 848 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 |
  428 \ 1 \ 278 \ 2 \ 142 \ 3 \ 012 \ 4 \ 028 \ 5 \ 162 \ 6 \ 162 \ 7 \ 152 \ 8 \ 228 \ 9 \ 242 \ 10 \ 372 \ | 11 \ 362 \ | 12 \ 348 \ | 13 \ 692 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ | 14 \ 852 \ 
  458 \, 1 \, 298 \, 2 \, 148 \, 3 \, 048 \, 4 \, 062 \, 5 \, 178 \, 6 \, 188 \, 7 \, 162 \, 8 \, 242 \, 9 \, 258 \, 10 \, 398 \, 11 \, 378 \, 12 \, 362 \, 13 \, 702 \, 14 \, 858 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100 \, 100
    4621\ 3122\ 1983\ 0524\ 0925\ 1886\ 1987\ 1888\ 2629\ 338\ 10\ 438\ 11\ 388\ 12\ 392\ 13\ 708\ 14\ 912
(478|1\ 342|2\ 208|3\ 072|4\ 102|5\ 222|6\ 212|7\ 192|8\ 278|9\ 348\ 10\ 458\ 11\ 392\ 12\ 398|13\ 712|14\ 948|
  492|1\ 372|2\ 242|3\ 092|4\ 122\ 5\ 252|6\ 238\ 7\ 228|8\ 322|9\ 412\ 10\ 472\ 11\ 508\ 12\ 452|13\ 728|14\ 988
  508 \begin{vmatrix} 1 & 378 \end{vmatrix} 2 & 252 \begin{vmatrix} 3 & 108 \end{vmatrix} 4 & 148 \begin{vmatrix} 5 & 278 \end{vmatrix} 6 & 242 \begin{vmatrix} 7 & 242 \end{vmatrix} 8 & 348 \begin{vmatrix} 9 & 428 \end{vmatrix} 10 & 478 \begin{vmatrix} 11 & 528 \end{vmatrix} 12 & 522 \begin{vmatrix} 13 & 738 \end{vmatrix}
[522]1\ 402]2\ 258]3\ 142]4\ 172[5\ 328]6\ 262\ 7\ 278]8\ 362]9\ 438\ 10\ 488]11\ 542]12\ 548\ 13\ 748
 558 \begin{vmatrix} 1 & 442 \end{vmatrix} 2 & 262 \begin{vmatrix} 3 & 172 \end{vmatrix} 4 & 202 \begin{vmatrix} 5 & 352 \end{vmatrix} 6 & 292 \begin{vmatrix} 7 & 292 \end{vmatrix} 8 & 378 \begin{vmatrix} 9 & 458 \end{vmatrix} 10 & 492 \end{vmatrix} 11 & 548 \end{vmatrix} 12 & 552 \end{vmatrix} 13 & 802 \end{vmatrix}
 572 | 1\ 452 | 2\ 272 | 3\ 198 | 4\ 208 | 5\ 372 | 6\ 298 | 7\ 302 | 8\ 392 | 9\ 512 | 10\ 552 | 11\ 592 | 12\ 572 | 13\ 812
 588 \, 1 \, \, 472 \, | 2 \, \, 278 \, | 3 \, \, 208 \, | 4 \, \, 248 \, | 5 \, \, 378 \, | 6 \, \, 322 \, | 7 \, \, 308 \, | 8 \, \, 438 \, | 9 \, \, 542 \, | \, 10 \, \, 562 \, | \, 11 \, \, 602 \, | \, 12 \, \, 608 \, | \, 13 \, \, 828 \, | \, 1 \, \, 472 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, 10 \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, | \, 10 \, \, |
 [602]1\ 488]2\ 298]3\ 212]4\ 258]5\ 388]6\ 338]7\ 322]8\ 448]9\ 548]10\ 572]11\ 622]12\ 612]13\ 888
```

Elements (y) of Primes $p = \frac{1}{10}N = \frac{1}{10}(y^2 + 1)$.

```
573 \begin{vmatrix} 1 & 367 \end{vmatrix} 2 & 317 \begin{vmatrix} 3 & 273 \end{vmatrix} 4 & 183 \begin{vmatrix} 5 & 173 \end{vmatrix} 6 & 113 \begin{vmatrix} 7 & 237 \end{vmatrix} 8 & 233 \begin{vmatrix} 9 & 327 \end{vmatrix} 10 & 453 \begin{vmatrix} 11 & 527 \end{vmatrix} 12 & 727 \begin{vmatrix} 13 & 727 \end{vmatrix} 13 & 727 \end{vmatrix}
                                            587 \ 1\ 377 \ 2\ 323 \ 3\ 317 \ 4\ 213\ 5\ 177\ 6\ 177\ 7\ 277\ 8\ 287 \ 9\ 373 \ 10\ 463 \ 11\ 537 \ 12\ 733 \ 13\ 753
                                            23
                                            627 | 1\ 397 | 2\ 373 | 3\ 377 | 4\ 227 | 5\ 197 | 6\ 203 | 7\ 313 | 8\ 327 | 9\ 423 | 10\ 513 | 11\ 613 | 12\ 827 | 13\ 777
                                            637 | 1\ 413 | 2\ 377 | 3\ 433 | 4\ 247 | 5\ 263\ 6\ 213 | 7\ 317 | 8\ 333 | 9\ 427 | 10\ 523 | 11\ 623 | 12\ 847 | 13\ 823 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 | 10\ 623 
                                            653 1 417 2 467 3 467 4 253 5 267 6 253 7 333 8 337
                                                                                                                                                                                                                                                                                                                                                                                                                             9 447 10 537 11 633 12 853 13 833
                                            673 | 1\ 423 | 2\ 483 | 3\ 473 | 4\ 287 | 5\ 287 | 6\ 267 | 7\ 347 | 8\ 353 | 9\ 453 | 10\ 563 | 11\ 663 | 12\ 903 | 13\ 873 | 873 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973 | 973
                                            677 | 1\ 447 | 2\ 523 | 3\ 483 | 4\ 303 | 5\ 303 | 6\ 317 | 7\ 373 | 8\ 383 | 9\ 483 | 10\ 567 | 11\ 673 | 12\ 913 | 13\ 877
                                            683 | 1\ 473 | 2\ 603 | 3\ 487 | 4\ 313 | 5\ 327\ 6\ 347\ 7\ 387\ 8\ 413 | \ 9\ 487 | 10\ 583 | 11\ 677 | 12\ 963 | 13\ 887 | 10\ 583 | 10\ 583 | 10\ 587 | 10\ 583 | 10\ 587 | 10\ 583 | 10\ 587 | 10\ 587 | 10\ 583 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 | 10\ 587 
           67
                                            753 1 497 2 613 3 503 4 317 5 367 6 367 7 403 8 433
                                                                                                                                                                                                                                                                                                                                                                                                                             9 513 10 627 11 703 12 973 13 913
         77
                                          763|1\ 527|2\ 617|3\ 513|4\ 377|5\ 397|6\ 377|7\ 417|8\ 447|\ 9\ 523|10\ 647|11\ 713|12\ 977|13\ 917|13
         87
                                          773 | 1\ 533 | 2\ 623 | 3\ 533 | 4\ 383 | 5\ 423\ 6\ 423 | 7\ 423 | 8\ 463 | 9\ 583 | 10\ 653 | 11\ 763 | 12\ 983 | 13\ 923 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 | 10\ 653 
       97
                                          777 1 563 2 637 3 537 4 413 5 437 6 433 7 513 8 577
                                                                                                                                                                                                                                                                                                                                                                                                                               9 597 10 673 11 813 12 987 13 963
                                         \begin{array}{c} 797 \\ 1 \\ 573 \\ 2 \\ 663 \\ 3 \\ 563 \\ 4 \\ 417 \\ 5 \\ 447 \\ 6 \\ 487 \\ 7 \\ 547 \\ 8 \\ 647 \\ 7 \\ 563 \\ 8 \\ 613 \\ 9 \\ 647 \\ 10 \\ 737 \\ 11 \\ 837 \\ 12 \\ 997 \\ 14 \\ 003 \\ 817 \\ 1 \\ 587 \\ 12 \\ 647 \\ 7 \\ 563 \\ 8 \\ 613 \\ 9 \\ 647 \\ 10 \\ 737 \\ 11 \\ 837 \\ 13 \\ 017 \\ 14 \\ 023 \\ 023 \\ 023 \\ 033 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 034 \\ 03
   103
 127
                                          823 | 1 647 | 2 687 | 3 587 | 4 447 | 5 537 6 483 7 573 8 633 | 9 653 | 10 753 | 11 897 | 13 023 | 14 037
 137
                                          833 1 663 2 713 3 597 4 453 5 547 6 503 7 577 8 677
                                                                                                                                                                                                                                                                                                                                                                                                                             4 683 10 763 11 923 13 027 14 047
                                          847 \ | \ 1\ 667 \ | \ 2\ 723 \ | \ 3\ 603 \ | \ 4\ 463 \ | \ 5\ 553 \ | \ 6\ 517 \ | \ 7\ 627 \ | \ 8\ 703 \ | \ 9\ 687 \ | \ 10\ 767 \ | \ 11\ 933 \ | \ 13\ 037 \ | \ 14\ 073
 147
 153
                                          867 | 1 677 | 2 763 | 3 633 | 4 497 | 5 577 | 6 527 | 7 647 | 8 713 | 9 717 | 10 783 | 11 977 | 13 053 | 14 083
 163
                                          873|1\ 703|2\ 773|3\ 647|4\ 523|5\ 587\ 6\ 533|7\ 667|8\ 723|\ 9\ 747|10\ 787|11\ 983|13\ 063|14\ 133
 167
                                          877 | 1 717 | 2 823 | 3 653 | 4 563 | 5 613 6 563 | 7 677 | 8 727 | 9 753 | 10 813 | 11 987 | 13 087 | 14 167
 197
                                          883 1 753 2 833 3 663 4 587 5 617 6 567 7 713 8 737
                                                                                                                                                                                                                                                                                                                                                                                                                           9 763 10 827 11 997 13 127 14 197
                                         223
 227
 247
                                          923 1 803 2 853 3 767 4 627 5 653 6 637 7 737 8 817 9 837 10 903 12 123 13 197 14 297
263
                                         927 1 817 2 873 3 773 4 703 5 677 6 647 7 747 8 877 9 883 10 937 12 153 13 223 14 317
267
                                          933 | 1827 | 2887 | 3797 | 4717 | 5683 6673 | 7763 | 8883 | 9917 | 10953 | 12177 | 13233 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 14323 | 1
277
                                          937 1 837 2 897 3 803 4 723 5 687 6 683 7 783 8 937
                                                                                                                                                                                                                                                                                                                                                                                                                           9 923 10 963 12 183 13 237 14 337
                                         947|1\ 847|2\ 913|3\ 813|4\ 777|5\ 697|6\ 697|7\ 803|8\ 953|\ 9\ 933|11\ 013|12\ 217|13\ 283|14\ 377|13
 287
                                         953 1 887 2 927 3 833 4 803 5 703 6 717 7 817 8 967 9 973 11 027 12 223 13 297 14 397
297
                                          963 | 1 923 | 2 963 | 3 837 | 4 813 | 5 713 | 6 727 | 7 823 | 9 003 | 9 977 | 11 033 | 12 247 | 13 303 | 14 413
                                    997 | 1 927 | 2 983 | 3 847 | 4 823 | 5 737 | 6 737 | 7 837 | 9 013 | 9 997 | 11 073 | 12 263 | 13 327 | 14 447
323 \ 1047 \ 1933 \ 3017 \ 3867 \ 4833 \ 5753 \ 6747 \ 7903 \ 9037 \ 10003 \ 11083 \ 12317 \ 13337 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \ 14467 \
347|1\ 053|1\ 947|3\ 023|3\ 877|4\ 837|5\ 763|6\ 823|7\ 913|9\ 063|10\ 053|11\ 103|12\ 347|13\ 353|14\ 527|13|14
363 | 1\ 003 | 1\ 973 | 3\ 027 | 3\ 883 | 4\ 863 | 5\ 787 | 6\ 853 | 7\ 917 | 9\ 073 | 10\ 073 | 11\ 117 | 12\ 403 | 13\ 367 | 14\ 533 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073 | 10\ 073
367|1\ 073|1\ 987|3\ 053|3\ 887|4\ 877|5\ 823|6\ 873|7\ 923|9\ 077|10\ 087|11\ 163\ 12\ 447|13\ 377|14\ 563|
383 \, | 1 \, 117 \, | 2 \, 067 \, | 3 \, 087 \, | 3 \, 917 \, | 4 \, 897 \, | 5 \, 863 \, | 6 \, 903 \, | 7 \, 947 \, | 9 \, 087 \, | 10 \, 113 \, | 11 \, 223 \, | 12 \, 497 \, | 13 \, 427 \, | 14 \, 577 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, 113 \, | 10 \, | 10 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 100 \, | 
|397|1\ 137|2\ 073|3\ 103|3\ 937|4\ 903|5\ 887|6\ 927|7\ 953|9\ 097|10\ 123|11\ 277|12\ 503|13\ 433|14\ 583|14\ 583|14
 417|1\ 147|2\ 083|3\ 117|3\ 967|4\ 923|5\ 917|6\ 933|7\ 967|9\ 103|10\ 173|11\ 283|12\ 513|13\ 453|14\ 603|14
 433|1\ 167|2\ 117|3\ 127|3\ 997|4\ 973|5\ 953|6\ 967|8\ 053|9\ 127|10\ 217|11\ 313|12\ 547|13\ 503|14\ 623|14
 453|1\ 173|2\ 133|3\ 133|4\ 003|5\ 003|5\ 973|7\ 003|8\ 067|9\ 137|10\ 253|11\ 317|12\ 573|13\ 523|14\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|11\ 653|1
503 | 1187 | 2167 | 3147 | 4013 | 5067 | 5988 | 7027 | 8083 | 9163 | 10297 | 11333 | 12597 | 13527 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 | 14697 |
 513|1\ 197|2\ 173|3\ 153|4\ 023|5\ 078|5\ 987|7\ 097|8\ 087|9\ 177|10\ 313|11\ 347|12\ 647|13\ 533|14\ 703|14
5171213222731634133507760237133812391871033311363126531361714723
527 | 1 \ 233 | 2 \ 237 | 3 \ 187 | 4 \ 153 | 5 \ 103 | 6 \ 047 | 7 \ 137 | 8 \ 153 | 9 \ 213 | 10 \ 337 | 11 \ 387 | 12 \ 669 | 13 \ 623 | 14 \ 727 | 10 \ 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 
533 \boxed{1\ 247} \boxed{2\ 247} \boxed{3\ 233} \boxed{4\ 163} \boxed{5\ 123} \boxed{6\ 083} \boxed{7\ 163} \boxed{8\ 177} \boxed{9\ 223} \boxed{10\ 377} \boxed{11\ 397} \boxed{12\ 673} \boxed{13\ 627} \boxed{14\ 753}
537 | 1 \ 273 | 2 \ 273 | 3 \ 247 | 4 \ 167 | 5 \ 133 | 6 \ 097 | 7 \ 183 | 8 \ 217 | 9 \ 253 | 10 \ 433 | 11 \ 453 | 12 \ 713 | 13 \ 683 | 14 \ 767 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 10 \ 768 | 1
```

Elements (y) of Primes $p = \frac{1}{10}N = \frac{1}{10}(y^2 + 1)$. (Continued from page 243.)

14 783 14 797 14 847 14 883 14 953 14 967 14 987 14 787 14 813 14 853 14 927 14 963 14 977

Elements (y) of Primes $p = \frac{1}{13}N = \frac{1}{13}(y^2 + 1)$.

```
694 1 516 2 764 3 856 5 416 6 820 8 390 9 914 11 136 12 446 13 840
 34 720 1 604 2 790 3 866 5 650 6 934 8 484 9 940 11 146 12 524 13 866
 44 736 1 630 2 800 3 934 5 686 6 960 8 546 9 950 11 214 12 654 13 954
 60 814 1 646 2 816 3 960 5 764 6 986 8 624 9 976 11 354 12 680 13 996
 86 | 840 | 1 734 | 2 904 | 3 996 | 5 884 | 7 090 | 8 650 | 10 044 | 11 370 | 12 696 | 14 100
96 866 1 750 3 930 4 090 5 894 7 236 8 744 10 096 11 474 12 706 14 204
    876 | 1 776 | 3 050 | 4 100 | 5 910 | 7 376 | 8 884 | 10 106 | 11 484 | 12 810 | 14 230
190 954 1 890 3 154 4 116 6 024 7 444 8 900 10 184 11 500 12 836 14 240
226 980 1 916 3 164 4 204 6 040 7 454 8 926 10 226 11 656 12 930 14 360
304 1 006 1 994 3 180 4 230 6 066 7 574 8 936 10 236 11 770 12 940 14 474
320 1 074 2 046 3 190 4 490 6 144 7 584 9 004 10 330 11 864 13 034 14 490
330 1 100 2 114 3 206 4 646 6 170 7 730 9 066 10 444 11 874 13 044 14 516
346 1\ 110 2\ 254 3\ 216 4\ 766 6\ 326 7\ 766 9\ 144 10\ 590 11\ 890 13\ 304\ 14\ 594
356 1 204 2 270 3 440 4 776 6 414 7 834 9 186 10 600 11 916 13 346 14 620
424 | 1 240 | 2 400 | 3 544 | 4 854 | 6 466 | 7 860 | 9 300 | 10 616 | 12 046 | 13 424 | 14 656
434 1 256 2 504 3 570 4 880 6 570 7 886 9 420 10 694 12 124 13 476 14 724
486 1 266 2 530 3 580 4 896 6 586 7 896 9 430 10 730 12 254 13 606 14 734
554 | 1 334 | 2 556 | 3 596 | 5 114 | 6 596 | 7 964 | 9 586 | 10 954 | 12 264 | 13 694 | 14 906
564 1 386 2 644 3 606 5 166 6 664 7 974 9 680 10 964 12 306 13 710 14 984
590 | 1 396 | 2 660 | 3 674 | 5 234 | 6 700 | 8 286 | 9 784 | 11 006 | 12 410 | 13 720 | 14 994
671 1 490 2 686 3 814 5 400 6 794 8 354 9 820 11 110 12 420 13 814
```

Elements (y) of Primes $p = \frac{1}{17}N = \frac{1}{17}(y^2 + 1)$.

```
574 1 466 2 520 3 880 5 674 7 306 8 564 9 720 11 394 13 264 14 480
                    676 1 704 2 546 3 906 5 716 7 374 8 606 9 796 11 420 13 290 14 514
    30
                  744 | 1 730 | 2 580 | 3 914 | 5 750 | 7 416 | 8 674 | 10 000 | 11 700 | 13 596 | 14 616
106
                786 | 1 764 | 2 690 | 4 016 | 5 844 | 7 646 | 8 700 | 10 034 | 11 896 | 13 604 | 14 624
 140 \mid 846 \mid 1806 \mid 2724 \mid 4186 \mid 5980 \mid 7654 \mid 8776 \mid 10060 \mid 11930 \mid 13630 \mid 14650 
                854 1 840 2 784 4 390 6 056 7 790 8 810 10 204 12 210 13 706 14 684
                    880 | 1 866 | 2 860 | 4 450 | 6 116 | 7 824 | 8 836 | 10 306 | 12 236 | 13 766 | 14 820
234
276 | 990 | 1 900 | 2 886 | 4 526 | 6 124 | 7 884 | 8 904 | 10 374 | 12 270 | 13 774 | 14 930
310 1 024 1 934 2 996 4 696 6 260 7 926 9 074 10 476 12 346 13 936 14 964
344 | 1 050 | 1 976 | 3 064 | 4 934 | 6 626 | 7 960 | 9 116 | 10 604 | 12 380 | 14 004
370 | 1 160 | 2 180 | 3 124 | 4 960 | 6 634 | 8 266 | 9 184 | 10 680 | 12 406 | 14 046
 404 | 1 220 | 2 240 | 3 226 | 4 994 | 6 694 | 8 326 | 9 320 | 10 910 | 12 440 | 14 114
 446 | 1 296 | 2 316 | 3 396 | 5 206 | 6 770 | 8 334 | 9 346 | 10 986 | 12 474 | 14 216
 480 | 1 330 | 2 376 | 3 464 | 5 274 | 6 906 | 8 436 | 9 354 | 11 156 | 12 890 | 14 250
506 | 1 356 | 2 444 | 3 566 | 5 300 | 7 144 | 8 470 | 9 414 | 11 326 | 13 196 | 14 284
 514 | 1 364 | 2 486 | 3 676 | 5 640 | 7 280 | 8 530 | 9 694 | 11 386 | 13 230 | 14 310
```

Elements (y) of Simple Cuban Primes $p = N = (y^3 - 1) \div (y - 1)$.

```
773 1 067 1 365 1 665 2 033 2 373 2 673 3 024 3 407 3 720 4 068
  1 168 453
  2 173 455
               782 1 070 1 373 1 676 2 043 2 385 2 682 3 027 3 417 3 732 4 074
  3 176 456
               785 1 074 1 380 1 685 2 049 2 387 2 684 3 030 3 419 3 737 4 082
  5 188 476
               792 | 1 077 | 1 386 | 1 692 | 2 054 | 2 390 | 2 688 | 3 039 | 3 423 | 3 741 | 4 089
  6 189 489
               798 | 1 091 | 1 392 | 1 695 | 2 058 | 2 397 | 2 696 | 3 041 | 3 437 | 3 744 | 4 103
               801 1 092 1 401 1 700 2 064 2 402 2 703 3 048 3 438 3 746 4 107
  8 192 495
               812 1097 1415 1701 2073 2409 2708 3050 3443 3762 4110
 12 194 500
 14 203 512
               818 1 098 1 421 1 707 2 075 2 411 2 714 3 053 3 444 3 771 4 119
 15 206 518
               819 1 107 1 422 1 709 2 079 2 429 2 721 3 069 3 449 3 785 4 136
 17 209 525
               825 1 116 1 427 1 716 2 085 2 430 2 723 3 093 3 458 3 794 4 140
 20 215 530
               827 | 1 118 | 1 434 | 1 718 | 2 091 | 2 435 | 2 729 | 3 099 | 3 459 | 3 801 | 4 142
 21 218 531
               836 1 125 1 440 1 746 2 105 2 442 2 730 3 101 3 464 3 828 4 151
 24 231 533
               839 1 130 1 442 1 748 2 112 2 450 2 735 3 107 3 470 3 834 4 157
 27 236 537
               846 | 1 133 | 1 443 | 1 757 | 2 117 | 2 451 | 2 736 | 3 114 | 3 473 | 3 836 | 4 158
 33 245 540
               855 \ 1 \ 142 \ 1 \ 448 \ 1 \ 767 \ 2 \ 129 \ 2 \ 456 \ 2 \ 742 \ 3 \ 128 \ 3 \ 479 \ 3 \ 839 \ 4 \ 175
 38 246 551
               857 | 1 146 | 1 449 | 1 770 | 2 136 | 2 463 | 2 771 | 3 135 | 3 482 | 3 842 | 4 178
 41 266 554
               860 | 148 | 1454 | 1788 | 2138 | 2465 | 2787 | 3137 | 3485 | 3843 | 4184
 50 272 560
               864 | 1 149 | 1 473 | 1 800 | 2 142 | 2 471 | 2 789 | 3 143 | 3 491 | 3 846 | 4 193
 54 278 566
               875 1 163 1 475 1 806 2 145 2 478 2 793 3 144 3 492 3 855 4 196
 57 279 567
               878 1 181 1 484 1 809 2 157 2 483 2 814 3 153 3 501 3 872 4 199
               890 | 182 | 1487 | 1811 | 2159 | 2484 | 2828 | 3170 | 3510 | 3879 | 4203
 59 287 572
 62 288 579
               894 1 191 1 494 1 814 2 162 2 493 2 840 3 174 3 515 3 881 4 217
               897 | 1 193 | 1 505 | 1 818 | 2 163 | 2 495 | 2 841 | 3 195 | 3 534 | 3 884 | 4 224
 66 290 582
 69 293 584
               899 1 196 1 515 1 826 2 168 2 498 2 849 3 197 3 540 3 885 4 235
 71 309 603
               911 1\ 200 1\ 520 1\ 832 2\ 171 2\ 511 2\ 862 3\ 200\ 3\ 542\ 3\ 888\ 4\ 236
 75 314 605
               915 1 202 1 526 1 841 2 183 2 513 2 864 3 204 3 543 3 891 4 238
 77 329 609
               918\ 1\ 209\ 1\ 529\ 1\ 847\ 2\ 201\ 2\ 523\ 2\ 868\ 3\ 212\ 3\ 549\ 3\ 899\ 4\ 245
 78 332 612
               920 1 217 1 536 1 848 2 204 2 535 2 870 3 213 3 554 3 905 4 257
 80 336 621
               927 | 1 221 | 1 539 | 1 853 | 2 205 | 2 540 | 2 871 | 3 221 | 3 557 | 3 914 | 4 259
 89 342 624
               950 1 230 1 547 1 863 2 238 2 541 2 873 3 234 3 561 3 918 4 268
 90 344 626
               959 1 254 1 548 1 886 2 241 2 555 2 883 3 242 3 563 3 920 4 275
 99:348 635
               960 1 256 1 559 1 895 2 247 2 556 2 885 3 251 3 573 3 927 4 284
101 351 642
               969 1 260 1 560 1 902 2 255 2 558 2 891 3 254 3 576 3 939 4 287
105 357 644
               974 1 263 1 562 1 923 2 259 2 561 2 894 3 255 3 587 3 954 4 290
110 369 668
               981 1 272 1 566 1 931 2 262 2 562 2 898 3 270 3 594 3 965 4 304
111 378 671
               987 | 1 274 | 1 568 | 1 932 | 2 264 | 2 568 | 2 906 | 3 281 | 3 603 | 3 975 | 4 308
117 581 677
               990|1 275|1 581|1 952|2 273|2 574|2 922|3 288|3 606|3 986|4 311
119 383 686
               992 | 1 281 | 1 583 | 1 956 | 2 276 | 2 589 | 2 925 | 3 296 | 3 608 | 3 989 | 4 313
               993 | 1 295 | 1 590 | 1 970 | 2 280 | 2 597 | 2 936 | 3 297 | 3 611 | 3 995 | 4 326
131 | 392 | 696 |
138 395 701 1 001 1 308 1 592 1 973 2 301 2 604 2 943 3 302 3 626 3 996 4 340
141 398 720 1 002 1 314 1 596 1 974 2 303 2 607 2 948 3 314 3 629 3 998 4 350
143 402 726 1 007 1 317 1 611 1 977 2 309 2 618 2 955 3 330 3 638 4 002 4 352
147 404 728 1 011 1 323 1 616 1 982 2 313 2 625 2 957 3 338 3 639 4 017 4 359
150|405|735|1 016|1 331|1 620|1 986|2 318|2 628|2 966|3 339|3 645|4 025|4 361
153\ 414\ 743\ 1\ 020\ 1\ 340\ 1\ 632\ 1\ 994\ 2\ 324\ 2\ 639\ 2\ 969\ 3\ 345\ 3\ 654\ 4\ 028\ 4\ 367
155|416|747|1 022|1 343|1 644|2 000|2 339|2 646|2 982|3 380|3 671|4 031|4 374
161 426 755 1 029 1 349 1 646 2 010 2 345 2 649 2 996 3 381 3 687 4 047 4 380
162 434 761 1 041 1 352 1 650 2 015 2 360 2 651 2 997 3 395 3 692 4 056 4 385
164\ 435\ 762\ 1\ 058\ 1\ 359\ 1\ 658\ 2\ 016\ 2\ 364\ 2\ 658\ 3\ 011\ 3\ 398\ 3\ 711\ 4\ 061\ 4\ 389
167\ 447\ 768\ 1\ 065\ 1\ 364\ 1\ 659\ 2\ 022\ 2\ 372\ 2\ 663\ 3\ 020\ 3\ 405\ 3\ 713\ 4\ 067\ 4\ 394
```

Elements (y) of Simple Cuban Primes $p = N = (y^3 - 1) \div (y - 1)$.

```
4\ 395|4\ 772|5\ 165|5\ 570|5\ 993|6\ 378|6\ 761|7\ 164|7\ 619|8\ 036|8\ 400|8\ 762|9\ 156|9\ 596
4\ 404|4\ 781|5\ 178|5\ 571|6\ 005|6\ 389|6\ 767|7\ 181|7\ 652|8\ 042|8\ 408|8\ 774|9\ 159\ 9\ 600
4\ 406\ 4\ 791\ 5\ 181\ 5\ 594\ 6\ 006\ 6\ 396\ 6\ 774\ 7\ 182\ 7\ 661\ 8\ 049\ 8\ 435\ 8\ 777\ 9\ 164\ 9\ 605
4\ 409 4\ 796 5\ 199 5\ 601\ 6\ 014 6\ 408 6\ 788 7\ 190\ 7\ 670 8\ 051 8\ 463 8\ 802 9\ 171 9\ 611
4\ 418 | 4\ 802 | 5\ 208 | 5\ 603\ 6\ 018 | 6\ 417 | 6\ 791 | 7\ 196 | 7\ 677 | 8\ 057 | 8\ 469 | 8\ 807 | 9\ 176 | 9\ 612
4\ 424\ 4\ 803\ 5\ 211\ 5\ 610\ 6\ 023\ 6\ 420\ 6\ 798\ 7\ 199\ 7\ 694\ 8\ 060\ 8\ 475\ 8\ 813\ 9\ 177\ 9\ 626
4\ 430\ 4\ 808\ 5\ 220\ 5\ 621\ 6\ 033\ 6\ 426\ 6\ 807\ 7\ 203\ 7\ 700\ 8\ 064\ 8\ 478\ 8\ 825\ 9\ 180\ 9\ 645
\begin{smallmatrix}4&431|4&812\\5&223\\5&640&6&047\\6&440&6&812\\7&223\\7&707\\8&072\\8&480\\8&835\\9&191\\9&653\\\end{smallmatrix}
4\ 443|4\ 821|5\ 234|5\ 642\ 6\ 051|6\ 441|6\ 816|7\ 229|7\ 728|8\ 078|8\ 496|8\ 883|9\ 198|9\ 654
4\ 446 | 4\ 844 | 5\ 241 | 5\ 643\ 6\ 063 | 6\ 446 | 6\ 833 | 7\ 238 | 7\ 736 | 8\ 079 | 8\ 501 | 8\ 886 | 9\ 204 | 9\ 656
4\ 448|4\ 847|5\ 246|5\ 649\ 6\ 065|6\ 447|6\ 837|7\ 253|7\ 745|8\ 084|8\ 510|8\ 900|9\ 218|9\ 660
4\ 467|4\ 863|5\ 249|5\ 663\ 6\ 077|6\ 450|6\ 842|7\ 271|7\ 748|8\ 088|8\ 517|8\ 910|9\ 231|9\ 672
4\ 473\ 4\ 877\ 5\ 250\ 5\ 670\ 6\ 090\ 6\ 455\ 6\ 875\ 7\ 274\ 7\ 752\ 8\ 093\ 8\ 522\ 8\ 925\ 9\ 240\ 9\ 680
4\ 506\ |\ 4\ 880\ |\ 5\ 253\ |\ 5\ 691\ 6\ 095\ |\ 6\ 459\ |\ 6\ 882\ |\ 7\ 286\ |\ 7\ 754\ |\ 8\ 106\ |\ 8\ 525\ |\ 8\ 928\ |\ 9\ 248\ |\ 9\ 684
4\ 511 \ | 4\ 886 \ | 5\ 256 \ | 5\ 694 \ 6\ 096 \ | 6\ 462 \ | 6\ 884 \ | 7\ 295 \ | 7\ 761 \ | 8\ 114 \ 8\ 540 \ 8\ 930 \ | 9\ 255 \ | 9\ 686
4\ 515 | 4\ 889 | 5\ 265 | 5\ 696\ 6\ 102 | 6\ 482 | 6\ 888 | 7\ 301 | 7\ 769 | 8\ 118 | 8\ 541 | 8\ 942 | 9\ 261 | 9\ 689
4\ 530\ 4\ 896\ 5\ 267\ 5\ 715\ 6\ 107\ 6\ 489\ 6\ 905\ 7\ 311\ 7\ 785\ 8\ 130\ 8\ 543\ 8\ 945\ 9\ 288\ 9\ 695
4\ 535\ 4\ 898\ 5\ 276\ 5\ 718\ 6\ 111\ 6\ 495\ 6\ 909\ 7\ 314\ 7\ 787\ 8\ 132\ 8\ 552\ 8\ 946\ 9\ 306\ 9\ 702
4\ 536 \ | 4\ 905 \ | 5\ 283 \ | 5\ 727 \ | 6\ 114 \ | 6\ 497 \ | 6\ 914 \ | 7\ 334 \ | 7\ 791 \ | 8\ 142 \ | 8\ 559 \ | 8\ 954 \ | 9\ 308 \ | 9\ 705
4\ 539\ 4\ 914\ 5\ 285\ 5\ 738\ 6\ 117\ 6\ 510\ 6\ 915\ 7\ 343\ 7\ 812\ 8\ 148\ 8\ 562\ 8\ 963\ 9\ 309\ 9\ 719
4\ 5504\ 9405\ 2925\ 7486\ 1286\ 5376\ 9177\ 3447\ 8458\ 1538\ 5648\ 9729\ 3189\ 722
4\ 556\ 4\ 941\ 5\ 304\ 5\ 753\ 6\ 137\ 6\ 539\ 6\ 921\ 7\ 355\ 7\ 847\ 8\ 168\ 8\ 568\ 8\ 981\ 9\ 320\ 9\ 728
4\ 557\ 4\ 952\ 5\ 334\ 5\ 754\ 6\ 156\ 6\ 551\ 6\ 944\ 7\ 356\ 7\ 850\ 8\ 174\ 8\ 601\ 8\ 988\ 9\ 323\ 9\ 743
4\ 560|4\ 964|5\ 340\ 5\ 759|6\ 170|6\ 552|6\ 954|7\ 358|7\ 857|8\ 195|8\ 603\ 8\ 991|9\ 344|9\ 747|8
4\ 574\ 4\ 973\ 5\ 351\ 5\ 766\ 6\ 173\ 6\ 567\ 6\ 956\ 7\ 365\ 7\ 859\ 8\ 198\ 8\ 624\ 8\ 996\ 9\ 351\ 9\ 749
4 581 4 976 5 355 5 774 6 177 6 569 6 963 7 388 7 860 8 202 8 625 9 000 9 357 9 750
4 584 4 980 5 358 5 778 6 200 6 573 6 968 7 392 7 869 8 210 8 627 9 002 9 360 9 756
4\ 604\ 4\ 983\ 5\ 367\ 5\ 780\ 6\ 207\ 6\ 576\ 6\ 986\ 7\ 397\ 7\ 871\ 8\ 217\ 8\ 645\ 9\ 003\ 9\ 362\ 9\ 768
4\ 619\ 5\ 003\ 5\ 382\ 5\ 792\ 6\ 216\ 6\ 579\ 6\ 987\ 7\ 425\ 7\ 883\ 8\ 226\ 8\ 646\ 9\ 008\ 9\ 366\ 9\ 780
4\ 625\ 5\ 010\ 5\ 390\ 5\ 804\ 6\ 219\ 6\ 590\ 6\ 993\ 7\ 427\ 7\ 889\ 8\ 231\ 8\ 651\ 9\ 030\ 9\ 399\ 9\ 789
4\ 626\ 5\ 012\ 5\ 400\ 5\ 816\ 6\ 222\ 6\ 593\ 7\ 013\ 7\ 430\ 7\ 890\ 8\ 237\ 8\ 658\ 9\ 033\ 9\ 401\ 9\ 800
4\ 632\ 5\ 018\ 5\ 405\ 5\ 817\ 6\ 231\ 6\ 599\ 7\ 014\ 7\ 448\ 7\ 895\ 8\ 247\ 8\ 664\ 9\ 035\ 9\ 404\ 9\ 803
4\ 6405\ 0255\ 4095\ 8346\ 2376\ 6027\ 0267\ 4607\ 9018\ 2598\ 6699\ 0429\ 4439\ 828
4\ 653\ |\ 5\ 039\ |\ 5\ 432\ |\ 5\ 838\ |\ 6\ 251\ |\ 6\ 614\ |\ 7\ 034\ |\ 7\ 467\ |\ 7\ 908\ |\ 8\ 267\ |\ 8\ 673\ 9\ 050\ |\ 9\ 462\ 9\ 842
4\ 658\ 5\ 043\ 5\ 447\ 5\ 852\ 6\ 272\ 6\ 627\ 7\ 047\ 7\ 479\ 7\ 922\ 8\ 268\ 8\ 681\ 9\ 059\ 9\ 465\ 9\ 845
4\ 661\ 5\ 055\ 5\ 453\ 5\ 865\ 6\ 285\ 6\ 632\ 7\ 059\ 7\ 482\ 7\ 925\ 8\ 279\ 8\ 688\ 9\ 063\ 9\ 495\ 9\ 848
4\ 682\ 5\ 064\ 5\ 459\ 5\ 867\ 6\ 303\ 6\ 636\ 7\ 080\ 7\ 502\ 7\ 929\ 8\ 288\ 8\ 702\ 9\ 068\ 9\ 504\ 9\ 861
4\ 695\ 5\ 082\ 5\ 484\ 5\ 871\ 6\ 305\ 6\ 644\ 7\ 083\ 7\ 503\ 7\ 932\ 8\ 300\ 8\ 715\ 9\ 071\ 9\ 516\ 9\ 864
4\ 698|5\ 085|5\ 487\ 5\ 876|6\ 306\ 6\ 653|7\ 091|7\ 505|7\ 938|8\ 315|8\ 718|9\ 072|9\ 521|9\ 866
4 707 5 087 5 501 5 894 6 324 6 669 7 106 7 509 7 950 8 321 8 720 9 086 9 533 9 875
4\ 712|5\ 094|5\ 514\ 5\ 906|6\ 326|6\ 681|7\ 110|7\ 514|7\ 967|8\ 322|8\ 727|9\ 099|9\ 540|9\ 882|
4\ 721|5\ 097|5\ 516\ 5\ 907|6\ 341|6\ 692|7\ 112|7\ 524|7\ 971|8\ 324|8\ 730|9\ 105|9\ 555|9\ 885|8
 4\ 724\ 5\ 115\ 5\ 522\ 5\ 913\ 6\ 348\ 6\ 702\ 7\ 115\ 7\ 526\ 7\ 973\ 8\ 366\ 8\ 741\ 9\ 107\ 9\ 560\ 9\ 897
4\ 731\ 5\ 117\ 5\ 526\ 5\ 936\ 6\ 350\ 6\ 719\ 7\ 118\ 7\ 539\ 7\ 976\ 8\ 373\ 8\ 744\ 9\ 113\ 9\ 561\ 9\ 899
4\ 733\ 5\ 130\ 5\ 529\ 5\ 942\ 6\ 354\ 6\ 720\ 7\ 122\ 7\ 545\ 7\ 983\ 8\ 379\ 8\ 748\ 9\ 114\ 9\ 570\ 9\ 908
4\ 745|5\ 136|5\ 538|5\ 951|6\ 363|6\ 725|7\ 143|7\ 547|7\ 986|8\ 384|8\ 753|9\ 117|9\ 575|9\ 912
4\ 749\ 5\ 139\ 5\ 549\ 5\ 969\ 6\ 368\ 6\ 734\ 7\ 152\ 7\ 572\ 8\ 000\ 8\ 385\ 8\ 756\ 9\ 126\ 9\ 576\ 9\ 918
4\ 751\ 5\ 159\ 5\ 552\ 5\ 979\ 6\ 371\ 6\ 740\ 7\ 157\ 7\ 580\ 8\ 016\ 8\ 387\ 8\ 757\ 9\ 134\ 9\ 579\ 9\ 924
 4\ 770\ 5\ 162\ 5\ 561\ 5\ 984\ 6\ 377\ 6\ 749\ 7\ 160\ 7\ 605\ 8\ 027\ 8\ 393\ 8\ 760\ 9\ 143\ 9\ 581\ 9\ 947
```

Elements (y) of Simple Cuban Primes $p = N = (y^3 - 1) \div (y - 1)$.

```
9\ 950|10\ 319|10\ 755|11\ 114|11\ 549|11\ 921|12\ 423|12\ 909|13\ 359|13\ 886|14\ 217|14\ 666
  9\ 957\ |\ 10\ 323\ |\ 10\ 766\ |\ 11\ 121\ |\ 11\ 555\ |\ 11\ 922\ |\ 12\ 435\ |\ 12\ 915\ |\ 13\ 371\ |\ 13\ 902\ |\ 14\ 222\ |\ 14\ 684
  9\,960|10\,332\,10\,769\,11\,129|11\,562\,11\,927\,12\,438\,12\,920\,13\,377\,13\,905\,14\,246\,14\,696
  9\,962\,10\,358\,10\,781\,11\,138\,11\,565\,11\,933\,12\,449\,12\,948\,13\,392\,13\,908\,14\,253\,14\,703
  9 966 10 368 10 788 11 166 11 567 11 934 12 459 12 956 13 398 13 910 14 267 14 705
  9 971 10 388 10 790 11 171 11 574 11 948 12 461 12 972 13 410 13 914 14 273 14 724
  9 975 10 398 10 794 11 172 11 577 11 954 12 468 12 974 13 415 13 916 14 279 14 726
  9\ 989\ | 10\ 401\ | 10\ 800\ | 11\ 178\ | 11\ 600\ | 11\ 975\ | 12\ 478\ | 12\ 986\ | 13\ 431\ | 13\ 923\ | 14\ 286\ | 14\ 727
  9 996 10 415 10 808 11 187 11 609 11 985 12 486 12 995 13 434 13 928 14 288 14 733
  9\,999|10\,428|10\,815|11\,199|11\,613|11\,987|12\,488|13\,005|13\,454|13\,931|14\,297|14\,735
10\ 008 | 10\ 431 | 10\ 821 | 11\ 207 | 11\ 621 | 12\ 006 | 12\ 501 | 13\ 020 | 13\ 460 | 13\ 937 | 14\ 304 | 14\ 762
10\ 011|10\ 436|10\ 823|11\ 213|11\ 627|12\ 017|12\ 512|13\ 032|13\ 461|13\ 947|14\ 306|14\ 766
10\ 029 | 10\ 437 | 10\ 827 | 11\ 214 | 11\ 640 | 12\ 018 | 12\ 524 | 13\ 044 | 13\ 469 | 13\ 949 | 14\ 307 | 14\ 768
10\ 034 | 10\ 443 | 10\ 835 | 11\ 219 | 11\ 642 | 12\ 026 | 12\ 530 | 13\ 046 | 13\ 473 | 13\ 970 | 14\ 313 | 14\ 799
10\ 059 | 10\ 445 | 10\ 848 | 11\ 220 | 11\ 649 | 12\ 029 | 12\ 542 | 13\ 070 | 13\ 476 | 13\ 979 | 14\ 328 | 14\ 804
10\ 064\ 10\ 466\ 10\ 850\ 11\ 234\ 11\ 655\ 12\ 066\ 12\ 545\ 13\ 077\ 13\ 487\ 13\ 992\ 14\ 330\ 14\ 817
10\ 086\ | 10\ 473\ | 10\ 869\ | 11\ 243\ | 11\ 667\ | 12\ 075\ | 12\ 557\ | 13\ 086\ | 13\ 499\ | 13\ 994\ | 14\ 339\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ | 14\ 820\ 
10\ 092 | 10\ 479 | 10\ 874 | 11\ 256 | 11\ 676 | 12\ 083 | 12\ 582 | 13\ 089 | 13\ 502 | 14\ 001 | 14\ 346 | 14\ 822
10\ 107 | 10\ 482 | 10\ 881 | 11\ 264 | 11\ 684 | 12\ 087 | 12\ 594 | 13\ 091 | 13\ 517 | 14\ 013 | 14\ 364 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 834 | 14\ 
10 109|10 491|10 893|11 276|11 691|12 104|12 599|13 095|13 527|14 019|14 369|14 840
10 116 10 493 10 895 11 282 11 693 12 111 12 615 13 097 13 545 14 021 14 376 14 852
10\ 121|10\ 496|10\ 911|11\ 303|11\ 700|12\ 113|12\ 617|13\ 109|13\ 548|14\ 027|14\ 379|14\ 853
10\ 122|10\ 508|10\ 914|11\ 304|11\ 705|12\ 123|12\ 638|13\ 112|13\ 553|14\ 028|14\ 385|14\ 861
10\ 125 | 10\ 517 | 10\ 920 | 11\ 324 | 11\ 714 | 12\ 131 | 12\ 641 | 13\ 142 | 13\ 565 | 14\ 031 | 14\ 393 | 14\ 867
10\ 128\ 10\ 538\ 10\ 934\ 11\ 325\ 11\ 717\ 12\ 134\ 12\ 647\ 13\ 158\ 13\ 574\ 14\ 034\ 14\ 397\ 14\ 880
10\ 151\ 10\ 542\ 10\ 935\ 11\ 336\ 11\ 724\ 12\ 143\ 12\ 657\ 13\ 163\ 13\ 593\ 14\ 042\ 14\ 412\ 14\ 882
10\ 158 | 10\ 547 | 10\ 944 | 11\ 343 | 11\ 738 | 12\ 159 | 12\ 666 | 13\ 167 | 13\ 595 | 14\ 055 | 14\ 421 | 14\ 889
10\ 160\ 10\ 550\ 10\ 947\ 11\ 361\ 11\ 756\ 12\ 165\ 12\ 683\ 13\ 173\ 13\ 613\ 14\ 066\ 14\ 435\ 14\ 892
10\ 199\ 10\ 554\ 10\ 953\ 11\ 367\ 11\ 760\ 12\ 173\ 12\ 696\ 13\ 203\ 13\ 632\ 14\ 078\ 14\ 460\ 14\ 895
10 202 10 583 10 961 11 375 11 763 12 176 12 705 13 209 13 635 14 084 14 474 14 904
10\ 205 | 10\ 589 | 10\ 967 | 11\ 403 | 11\ 766 | 12\ 185 | 12\ 711 | 13\ 214 | 13\ 655 | 14\ 087 | 14\ 495 | 14\ 910
10\ 206|10\ 605|10\ 976|11\ 409|11\ 777|12\ 201|12\ 720|13\ 229|13\ 683|14\ 091|14\ 505|14\ 918
10\ 212\ 10\ 620\ 10\ 982\ 11\ 415\ 11\ 780\ 12\ 204\ 12\ 726\ 13\ 238\ 13\ 686\ 14\ 096\ 14\ 507\ 14\ 934
10\ 223 | 10\ 622 | 10\ 983 | 11\ 424 | 11\ 784 | 12\ 206 | 12\ 731 | 13\ 245 | 13\ 704 | 14\ 112 | 14\ 510 | 14\ 939
10\ 226|10\ 631|10\ 991|11\ 429|11\ 789|12\ 227|12\ 740|13\ 257|13\ 713|14\ 118|14\ 516|14\ 943|14
10\ 239|10\ 640|10\ 995|11\ 438|11\ 796|12\ 230|12\ 747|13\ 266|13\ 728|14\ 129|14\ 519|14\ 951
10\ 242\ 10\ 646\ 10\ 997\ 11\ 441\ 11\ 802\ 12\ 237\ 12\ 752\ 13\ 275\ 13\ 730\ 14\ 132\ 14\ 549\ 14\ 952
10\ 244\ 10\ 652\ 10\ 998\ 11\ 450\ 11\ 814\ 12\ 251\ 12\ 753\ 13\ 286\ 13\ 739\ 14\ 133\ 14\ 558\ 14\ 976
10\ 251|10\ 671|11\ 009|11\ 457|11\ 819|12\ 264|12\ 771|13\ 296|13\ 754|14\ 136|14\ 574|14\ 987|11
10\ 263 \ 10\ 680 \ 11\ 016 \ 11\ 465 \ 11\ 838 \ 12\ 269 \ 12\ 780 \ 13\ 298 \ 13\ 784 \ 14\ 145 \ 14\ 586 \ 14\ 990
 10\ 265 | 10\ 692 | 11\ 019 | 11\ 466 | 11\ 843 | 12\ 276 | 12\ 785 | 13\ 299 | 13\ 793 | 14\ 148 | 14\ 594 | 14\ 993
 10 289|10 697|11 024|11 499|11 864|12 311|12 824|13 314|13 814|14 169|14 600
 10|298|10|706|11|028|11|511|11|868|12|339|12|825|13|317|13|818|14|175|14|601
 10 302 10 716 11 039 11 520 11 870 12 344 12 848 13 319 13 821 14 178 14 607
 10\ 304\ | 10\ 718\ | 11\ 060\ | 11\ 522\ | 11\ 879\ | 12\ 360\ | 12\ 852\ | 13\ 322\ | 13\ 842\ | 14\ 187\ | 14\ 616
 10\,307\, | 10\,730\, | 11\,075\, | 11\,523\, | 11\,880\, | 12\,375\, | 12\,878\, | 13\,329\, | 13\,844\, | 14\,189\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,631\, | 14\,6
 10 311 10 737 11 094 11 541 11 892 12 381 12 887 13 331 13 845 14 190 14 642
 10 314 10 748 11 102 11 543 11 900 12 393 12 888 13 338 13 856 14 208 14 649
 10 316 10 752 11 112 11 546 11 910 12 402 12 897 13 356 13 866 14 213 14 652
```

This Table gives the Elements (y) of all Simple Cuban Primes $p = \frac{y^3 - 1}{y - 1} \geqslant 225.106$.

Elements (y) of Simple Trito-Cuban Primes, $p = \frac{1}{3}N = \frac{1}{3}(y^3-1) \div (y-1)$.

```
922 | 1 522 | 2 176 | 2 821 | 3 592 | 4 243 | 4 843 | 5 668 | 6 397 | 7 264
  1 409
  4 421
          925 1 534 2 191 2 833 3 613 4 249 4 870 5 680 6 445 7 267
          943 | 1 540 | 2 194 | 2 866 | 3 619 | 4 255 | 4 924 | 5 689 | 6 481 | 7 294
  7 427
          946 1 561 2 197 2 884 3 664 4 261 4 942 5 701 6 502 7 327
 10442
          964 | 1 573 | 2 203 | 2 890 | 3 667 | 4 264 | 4 957 | 5 746 | 6 511 | 7 330
 13 460
 19 469
          994 | 1 585 | 2 227 | 2 905 | 3 676 | 4 291 | 4 999 | 5 767 | 6 520 | 7 339
 28 472 1 000 1 594 2 233 2 920 3 685 4 294 5 017 5 773 6 541 7 342
 31 475 1 006 1 609 2 236 2 929 3 703 4 297 5 020 5 797 6 544 7 357
 34 493 1 021 1 624 2 260 2 932 3 706 4 333 5 026 5 803 6 565 7 378
 40 496 1 027 1 630 2 275 2 953 3 709 4 348 5 038 5 818 6 583 7 390
 43 511 1 039 1 639 2 290 2 962 3 718 4 357 5 113 5 830 6 592 7 405
 52|514|1 051|1 651|2 296|2 974|3 724|4 360|5 134|5 836|6 622|7 411
 70|517|1 057|1 657|2 353|2 983|3 748|4 369|5 143|5 839|6 643|7 435
 73 526 1 060 1 666 2 359 3 022 3 778 4 375 5 167 5 845 6 655 7 441
76 538 1 063 1 669 2 380 3 034 3 802 4 417 5 173 5 851 6 664 7 477
82|553|1 072|1 672|2 422|3 073|3 808|4 432|5 197|5 860|6 667|7 483
 85 556 1 078 1 678 2 437 3 079 3 814 4 441 5 215 5 902 6 679 7 498
91|559|1 093|1 690|2 446|3 088|3 823|4 471|5 218|5 923|6 697|7 519
97 574 1 105 1 708 2 455 3 106 3 832 4 474 5 230 5 932 6 700 7 525
103|580|1 126|1 711|2 464|3 121|3 862|4 486|5 272|5 941|6 727|7 540
112 586 1 144 1 720 2 470 3 151 3 886 4 492 5 278 5 956 6 739 7 546
115 589 1 165 1 723 2 476 3 160 3 904 4 504 5 284 5 962 6 748 7 552
124 616 1 174 1 729 2 491 3 169 3 907 4 513 5 302 5 971 6 811 7 570
127 622 1 195 1 750 2 497 3 202 3 913 4 516 5 305 5 995 6 826 7 579
136 628 1 198 1 753 2 509 3 205 3 928 4 522 5 311 5 998 6 865 7 591
145 637 1 216 1 762 2 527 3 211 3 967 4 537 5 323 6 016 6 898 7 594
148 649 1 252 1 795 2 533 3 226 3 976 4 543 5 341 6 046 6 901 7 603
157 658 1 258 1 804 2 539 3 232 3 991 4 549 5 344 6 082 6 910 7 612
166 661 1 288 1 825 2 560 3 235 4 009 4 570 5 347 6 103 6 931 7 633
175 673 1 312 1 828 2 569 3 247 4 018 4 597 5 356 6 109 6 937 7 642
187 682 1 324 1 837 2 581 3 277 4 021 4 600 5 362 6 118 6 979 7 663
190 700 1 330 1 861 2 584 3 283 4 042 4 606 5 377 6 121 6 991 7 684
199|712|1 333|1 879|2 605|3 286|4 045|4 612|5 383|6 124|6 994|7 720
202 715 1 336 1 882 2 611 3 310 4 051 4 633 5 416 6 130 7 024 7 735
223 727 1 345 1 909 2 623 3 328 4 060 4 639 5 425 6 154 7 048 7 747
241 736 1 351 1 939 2 632 3 346 4 075 4 642 5 446 6 160 7 063 7 750
244 754 1 354 1 960 2 644 3 382 4 087 4 654 5 458 6 166 7 066 7 756
259 775 1 363 1 963 2 665 3 391 4 105 4 690 5 470 6 187 7 084 7 768
265 778 1 372 1 993 2 677 3 400 4 108 4 711 5 491 6 214 7 087 7 798
271 799 1 396 1 996 2 695 3 457 4 126 4 726 5 509 6 244 7 090 7 810
274 832 1 405 2 029 2 698 3 472 4 129 4 747 5 524 6 247 7 099 7 813
280 838 1 414 2 056 2 710 3 478 4 138 4 756 5 530 6 259 7 105 7 825
286 850 1 438 2 065 2 716 3 496 4 144 4 759 5 533 6 310 7 108 7 834
316|859|1\ 441|2\ 068|2\ 719|3\ 514|4\ 147|4\ 765|5\ 545|6\ 328|7\ 138|7\ 840
325 868 1 447 2 080 2 761 3 520 4 180 4 777 5 551 6 331 7 171 7 843
358 883 1 456 2 086 2 773 3 547 4 186 4 789 5 557 6 352 7 201 7 846
370 889 1 483 2 107 2 794 3 550 4 192 4 801 5 563 6 355 7 210 7 885
376 895 1 492 2 110 2 803 3 556 4 201 4 816 5 572 6 361 7 216 7 888
385 910 1 510 2 140 2 806 3 577 4 213 4 828 5 587 6 364 7 222 7 906
388 916 1 519 2 170 2 812 3 589 4 240 4 840 5 641 6 382 7 243 7 924
```

Elements (y) of Simple Trito-Cuban Primes (continued).

```
7 927 8 632 9 289 10 093 11 047 11 740 12 568 13 348 14 035 14 824
7 936 8 650 9 292 10 099 11 056 11 758 12 571 13 363 14 041 14 833
7 951 8 653 9 295 10 102 11 074 11 812 12 577 13 375 14 047 14 857
7\ 957 8\ 659 \ 9\ 322 \ 10\ 129 \ 11\ 095 \ 11\ 815 \ 12\ 586 \ 13\ 378 \ 14\ 050 \ 14\ 866
7 960 8 662 9 331 10 165 11 128 11 842 12 601 13 390 14 059 14 899
7 966 8 683 9 358 10 198 11 140 11 851 12 607 13 396 14 089 14 908
7 993 8 686
             9 379 10 216 11 152 11 854 12 610 13 408 14 092 14 917
8 008 8 701
             9 388 10 219 11 158 11 893 12 628 13 411 14 098 14 923
8 053 8 704
             9 400 10 225 11 182 11 899 12 631 13 426 14 113 14 932
8 062 8 707
             9 406 10 276 11 191 11 941 12 649 13 468 14 125 14 962
8 071 8 734
             9 430 10 282 11 203 11 983 12 685 13 522 14 155 14 965
8\ 074 \ | \ 8\ 737 \ | \ 9\ 436 \ | \ 10\ 321 \ | \ 11\ 212 \ | \ 12\ 010 \ | \ 12\ 706 \ | \ 13\ 534 \ | \ 14\ 176 \ |
8\ 083 \ 8\ 746 \ 9\ 439 \ 10\ 330 \ 11\ 224 \ 12\ 025 \ 12\ 727 \ 13\ 543 \ 14\ 182
8 107 8 764 9 442 10 345 11 245 12 040 12 733 13 585 14 209
8 119 8 776 9 451 10 354 11 266 12 043 12 739 13 597 14 227
8 137 8 788 9 472 10 360 11 269 12 052 12 748 13 606 14 236
8 140 8 800 | 9 490 | 10 363 | 11 284 | 12 055 | 12 781 | 13 609 | 14 248
8 146 8 812 | 9 520 | 10 375 | 11 296 | 12 061 | 12 787 | 13 636 | 14 278
8 155 8 833 9 547 10 384 11 299 12 082 12 829 13 639 14 281
8 161 8 854
             9 574 10 393 11 308 12 085 12 838 13 648 14 344
8 170 8 872
             9 598 10 471 11 317 12 103 12 844 13 651 14 365
8\ 179 \ | 8\ 893 \ | \ 9\ 607 \ | \ 10\ 492 \ | \ 11\ 338 \ | \ 12\ 136 \ | \ 12\ 871 \ | \ 13\ 669 \ | \ 14\ 383
8 191 8 896
             9 619 10 501 11 374 12 169 12 880 13 678 14 386
8 197 8 911
             9 670 10 510 11 383 12 181 12 895 13 681 14 395
8 230 8 923
             9 673 10 549 11 389 12 187 12 913 13 684 14 416
8 242 8 926
             9 736 10 573 11 395 12 193 12 955 13 693 14 437
             9 745 10 633 11 416 12 202 12 967 13 699 14 449
8 260 8 935
8 263 8 965
             9 763 10 654 11 458 12 232 12 991 13 702 14 461
8 266 8 974
             9 775 10 675 11 467 12 235 13 000 13 714 14 479
8 275 9 010 | 9 793 10 678 11 476 12 244 13 012 13 726 14 503
8 293 9 016 9 808 10 681 11 497 12 256 13 021 13 747 14 539
8 317 9 022 | 9 814 10 717 11 500 12 265 13 051 13 756 14 554
8 326 9 028 | 9 817 10 738 11 518 12 277 13 054 13 762 14 566
8 356 9 049 | 9 820 10 744 11 536 12 316 13 063 13 768 14 572
8 380|9 085| 9 859|10 750|11 548|12 355|13 069|13 777|14 581
8 392 9 094
             9 877 10 774 11 551 12 367 13 084 13 795 14 587
8 398 9 115 | 9 880 10 792 11 593 12 382 13 093 13 819 14 593
8 410 9 145 | 9 892 10 804 11 602 12 400 13 123 13 840 14 617
8 422 9 154
             9 913 10 807 11 611 12 403 13 153 13 846 14 623
8 473 9 157
             9 940 10 870 11 614 12 409 13 177 13 879 14 629
8 491 9 199
             9 943 10 900 11 623 12 439 13 186 13 891 14 659
8 494 9 205
             9 946 10 909 11 626 12 445 13 195 13 909 14 665
             9 973 10 918 11 641 12 466 13 210 13 912 14 692
8 527 9 211
             9 985 10 927 11 656 12 481 13 222 13 930 14 701
8 548 9 217
8\ 554 | 9\ 229 | 10\ 027 | 10\ 969 | 11\ 674 | 12\ 484 | 13\ 249 | 13\ 963 | 14\ 722
8\ 566|9\ 247|10\ 036|10\ 972|11\ 704|12\ 493|13\ 258|13\ 999|14\ 734
8 569 9 253 10 048 10 984 11 710 12 517 13 279 14 005 14 740
8 590 9 268 10 057 11 026 11 719 12 523 13 291 14 008 14 782
8 611 9 271 10 066 11 032 11 728 12 526 13 300 14 020 14 806
8 620 9 280 10 072 11 038 11 737 12 538 13 312 14 026 14 815
```

Elements (y) of Primes $p = \frac{1}{7}N = \frac{1}{7}(y^3 - 1) \div (y - 1)$.

```
585 1 311 2 048 3 026 4 062 5 063 6 029 6 941 7 940 8 969 10 194 11 232
    2
         597 1 313 2 067 3 035 4 064 5 070 6 036 6 953 7 947
                                                                                              8 976 10 203 11 244
         599 1 320 2 069 3 054 4 071 5 135 6 038 6 960 7 982
                                                                                             9 048 10 236 11 246
         611 1 325 2 090 3 075 4 076 5 142 6 066 6 962 8 033
                                                                                             9 053 10 257 11 253
  11
  23
         641 1 332 2 111 3 096 4 118 5 147 6 071 6 981 8 040 9 062 10 334 11 265
         660 | 1 334 | 2 130 | 3 126 | 4 125 | 5 154 | 6 092 | 6 983 | 8 061 |
                                                                                              9 081 10 341 11 279
         662 1 346 2 132 3 131 4 139 5 189 6 120 6 995 8 075
                                                                                              9 104 10 371 11 286
  39
  44
         669 1 376 2 160 3 140 4 155 5 219 6 141 7 053 8 087
                                                                                              9 123 10 376 11 321
  51
         683 1 388 2 165 3 159 4 160 5 231 6 150 7 065 8 138
                                                                                              9 125 10 392 11 328
         690 1 397 2 214 3 173 4 181 5 238 6 162 7 095 8 145
                                                                                             9 209 10 397 11 330
         702 1 404 2 244 3 182 4 209 5 240 6 164 7 109 8 229 9 228 10 425 11 372
  60
         723 | 1 409 | 2 256 | 3 273 | 4 223 | 5 303 | 6 176 | 7 128 | 8 283 | 9 249 | 10 434 | 11 400
         725 1 418 2 277 3 287 4 239 5 315 6 183 7 158 8 285 9 284 10 446 11 414
         732 1 437 2 286 3 299 4 274 5 336 6 206 7 200 8 304 9 293 10 469 11 442
         746 1 458 2 300 3 308 4 316 5 343 6 218 7 226 8 327
                                                                                             9 314 10 488 11 463
         758 1 460 2 391 3 327 4 370 5 345 6 227 7 242 8 334 9 333 10 502 11 498
         788 | 1 467 | 2 396 | 3 329 | 4 386 | 5 364 | 6 234 | 7 247 | 8 339 | 9 354 | 10 523 | 11 519
114
123
         795 1 479 2 403 3 348 4 398 5 366 6 246 7 254 8 369 9 368 10 544 11 538
156
         807 | 1 481 | 2 433 | 3 369 | 4 412 | 5 373 | 6 248 | 7 268 | 8 376 | 9 384 | 10 551 | 11 580
         816 1 502 2 445 3 371 4 421 5 387 6 255 7 275 8 402 9 396 10 574 11 622
179
         830 | 1 509 | 2 475 | 3 413 | 4 454 | 5 436 | 6 311 | 7 305 | 8 411 | 9 440 | 10 595 | 11 652
         849 | 1 514 | 2 501 | 3 434 | 4 463 | 5 462 | 6 332 | 7 338 | 8 418 | 9 452 | 10 616 | 11 678
186
200
         872 1 523 2 550 3 453 4 482 5 499 6 365 7 424 8 430 9 489 10 677 11 694
         879 1 535 2 571 3 483 4 512 5 511 6 381 7 443 8 432 9 510 10 679 11 706
207
212
         891 | 1 577 | 2 580 | 3 516 | 4 545 | 5 525 | 6 407 | 7 464 | 8 439 | 9 515 | 10 691 | 11 720
219
         905 1 593 2 585 3 530 4 554 5 532 6 416 7 485 8 444
                                                                                             9 531 10 698 11 727
228
         921 1 605 2 592 3 537 4 580 5 637 6 423 7 487 8 451
                                                                                             9 566 10 733 11 736
233
         933 1 619 2 594 3 567 4 601 5 660 6 458 7 520 8 486 9 594 10 763 11 757
240
         956 1 649 2 606 3 593 4 617 5 693 6 465 7 578 8 514
                                                                                             9 599 10 791 11 771
         963 1 656 2 657 3 614 4 638 5 735 6 507 7 590 8 558 9 650 10 796 11 799
249
261
         968 1 661 2 678 3 635 4 671 5 744 6 519 7 599 8 577
                                                                                              9 657 10 805 11 811
         977 1 703 2 706 3 677 4 694 5 765 6 521 7 641 8 579 9 669 10 817 11 832
303 1 019 1 724 2 732 3 684 4 743 5 772 6 549 7 646 8 586
                                                                                             9 699 10 826 11 853
317 1 061 1 731 2 760 3 686 4 755 5 777 6 554 7 655 8 591
                                                                                              9 713 10 866 11 862
333 1 080 1 754 2 769 3 719 4 764 5 786 6 570 7 676 8 598
                                                                                              9 755 10 880 11 916
338 1 115 1 766 2 783 3 749 4 769 5 793 6 582 7 688 8 619
                                                                                              9 774 10 901 11 946
345 | 1 \ 122 | 1 \ 775 | 2 \ 790 | 3 \ 770 | 4 \ 778 | 5 \ 805 | 6 \ 591 | 7 \ 695 | 8 \ 670 | 9 \ 795 | 10 \ 931 | 11 \ 951 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10 \ 931 | 10
375 1 131 1 787 2 802 3 810 4 790 5 828 6 617 7 704 8 682
                                                                                              9 809 10 943 11 967
389 | 1 \ 143 | 1 \ 796 | 2 \ 816 | 3 \ 824 | 4 \ 811 | 5 \ 868 | 6 \ 647 | 7 \ 709 | 8 \ 696 | 9 \ 881 | 10 \ 985 | 11 \ 972
401 | 1 164 | 1 808 | 2 825 | 3 861 | 4 827 | 5 870 | 6 654 | 7 716 | 8 712 | 9 888 | 11 013 | 11 979
443 1 178 1 815 2 858 3 866 4 860 5 891 6 666 7 739 8 717 9 893 11 048 12 009
452 | 1 187 | 1 817 | 2 865 | 3 875 | 4 862 | 5 912 | 6 687 | 7 767 | 8 733 | 9 900 | 11 076 | 12 056
473 | 1 215 | 1 857 | 2 900 | 3 882 | 4 883 | 5 919 | 6 708 | 7 779 | 8 738 | 9 923 | 11 078 | 12 098
480 | 1 229 | 1 866 | 2 942 | 3 945 | 4 916 | 5 945 | 6 722 | 7 793 | 8 754 | 10 028 | 11 097 | 12 105
492 | 1 236 | 1 887 | 2 951 | 3 957 | 4 925 | 5 966 | 6 759 | 7 823 | 8 759 | 10 061 | 11 106 | 12 140
515 1 241 1 908 2 963 3 971 4 944 5 975 6 773 7 851 8 780 10 103 11 132 12 149
534|1\ 248|1\ 922|2\ 991|3\ 980|4\ 946|5\ 982|6\ 806|7\ 863|8\ 787|10\ 133|11\ 148|12\ 161
548 | 1\ 269 | 1\ 955 | 3\ 005 | 4\ 029 | 4\ 958 | 6\ 003 | 6\ 848 | 7\ 865 | 8\ 852 | 10\ 145 | 11\ 204 | 12\ 168
564 | 1\ 271 | 1\ 997 | 3\ 014 | 4\ 041 | 5\ 009 | 6\ 017 | 6\ 864 | 7\ 886 | 8\ 913 | 10\ 152 | 11\ 211 | 12\ 191
|578|1\ 278|2\ 004|3\ 021|4\ 050|5\ 030|6\ 024|6\ 869|7\ 914|8\ 955|10\ 166|11\ 225|12\ 240|
```

Elements (y) of Primes $p = \frac{1}{7}N = \frac{1}{7}(y^3 - 1) \div (y - 1)$.

```
\begin{array}{c} 12\ 254\ 12\ 485\ 12\ 744\ 13\ 017\ 13\ 206\ 13\ 500\ 13\ 778\ 13\ 941\ 14\ 291\ 14\ 555\ 14\ 814\ 12\ 282\ 12\ 497\ 12\ 833\ 13\ 031\ 13\ 274\ 13\ 512\ 13\ 785\ 13\ 974\ 14\ 298\ 14\ 597\ 14\ 835\ 12\ 296\ 12\ 504\ 12\ 882\ 13\ 038\ 13\ 281\ 13\ 533\ 13\ 794\ 14\ 018\ 14\ 310\ 14\ 627\ 14\ 856\ 12\ 394\ 12\ 539\ 12\ 891\ 13\ 073\ 13\ 290\ 13\ 547\ 13\ 806\ 14\ 058\ 14\ 319\ 14\ 655\ 14\ 856\ 12\ 336\ 12\ 555\ 12\ 903\ 13\ 085\ 13\ 337\ 13\ 556\ 13\ 808\ 14\ 072\ 14\ 408\ 14\ 676\ 14\ 912\ 12\ 371\ 12\ 602\ 12\ 924\ 13\ 092\ 13\ 344\ 13\ 610\ 13\ 829\ 14\ 156\ 14\ 415\ 14\ 697\ 14\ 919\ 12\ 387\ 12\ 630\ 12\ 933\ 13\ 115\ 13\ 353\ 13\ 661\ 13\ 850\ 14\ 184\ 14\ 418\ 14\ 711\ 14\ 928\ 12\ 408\ 12\ 644\ 12\ 959\ 13\ 134\ 13\ 400\ 13\ 682\ 13\ 883\ 14\ 193\ 14\ 492\ 14\ 744\ 14\ 942\ 12\ 422\ 12\ 681\ 12\ 975\ 13\ 157\ 13\ 430\ 13\ 694\ 13\ 892\ 14\ 207\ 14\ 499\ 14\ 786\ 14\ 949\ 12\ 443\ 12\ 702\ 12\ 980\ 13\ 176\ 13\ 449\ 13\ 703\ 13\ 904\ 14\ 247\ 14\ 529\ 14\ 795\ 14\ 984\ 12\ 462\ 12\ 714\ 13\ 010\ 13\ 190\ 13\ 472\ 13\ 743\ 13\ 920\ 14\ 256\ 14\ 541\ 14\ 807 \end{array}
```

Elements (y) of Primes $p = \frac{1}{13}N = \frac{1}{13}(y^3 - 1) \div (y - 1)$.

```
705 | 1 608 | 2 954 | 4 488 | 5 697 | 7 049 | 8 349 | 9 785 | 11 157 | 12 398 | 13 776
             731 1 634 3 045 4 494 5 703 7 055 8 394 9 870 11 235 12 411 13 802
     9
             770 1 706 3 090 4 553 5 762 7 068 8 420 9 915 11 261 12 470 13 887
   29
             776 \, | 1 \, 725 \, | 3 \, 129 \, | 4 \, 676 \, | 5 \, 820 \, | 7 \, 127 \, | 8 \, 433 \, | \, 9 \, 980 \, | \, 11 \, 280 \, | \, 12 \, 554 \, | \, 13 \, 958 \, | \, 14 \, | \, 12 \, | \, 12 \, | \, 13 \, | \, 13 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \, | \, 14 \,
             783 | 1 784 | 3 149 | 4 689 | 5 846 | 7 146 | 8 505 | 10 071 | 11 319 | 12 587 | 14 108
             789 \, | 1 \, 790 \, | 3 \, 162 \, | 4 \, 728 \, | 5 \, 885 \, | 7 \, 224 \, | 8 \, 531 \, | \, 10 \, 097 \, | \, 11 \, 339 \, | \, 12 \, 626 \, | \, 14 \, 225
             815 | 1\ 862 | 3\ 227 | 4\ 787 | 5\ 918 | 7\ 302 | 8\ 583 | 10\ 130 | 11\ 378 | 12\ 743 | 14\ 231
 113
 120
             848 | 1 875 | 3 240 | 4 800 | 5 963 | 7 328 | 8 589 | 10 136 | 11 423 | 12 801 | 14 244
             854 | 1 914 | 3 272 | 4 884 | 6 035 | 7 374 | 8 609 | 10 188 | 11 436 | 12 827 | 14 283
 126
 152
             887 | 1 940 | 3 324 | 4 917 | 6 054 | 7 406 | 8 615 | 10 247 | 11 462 | 12 860 | 14 309
185
             906 | 1 959 | 3 363 | 4 949 | 6 249 | 7 419 | 8 687 | 10 338 | 11 501 | 12 873 | 14 381
           932 2 037 3 396 4 956 6 308 7 491 8 693 10 344 11 534 12 879 14 426
204
224
            945 2 115 3 428 4 962 6 321 7 679 8 771 10 403 11 612 12 944 14 517
          965 2 141 3 480 5 001 6 392 7 712 8 849 10 416 11 618 12 951 14 537
237
243 978 2 187 3 500 5 034 6 405 7 731 8 856 10 487 11 670 12 977 14 582
276 1 004 2 213 3 506 5 040 6 425 7 757 8 882 10 526 11 690 13 055 14 589
302 1 043 2 252 3 552 5 073 6 431 7 764 8 966 10 611 11 709 13 074 14 615
308 1 088 2 369 3 584 5 144 6 438 7 770 8 973 10 617 11 735 13 133 14 621
321 1 095 2 408 3 597 5 229 6 483 7 803 9 012 10 643 11 742 13 146 14 628
341 1 127 2 421 3 786 5 235 6 516 7 829 9 135 10 650 11 781 13 172 14 693
386 1 140 2 427 3 851 5 300 6 548 7 881 9 161 10 676 11 859 13 191 14 706
399 1 212 2 525 3 870 5 333 6 587 7 946 9 168 10 695 11 865 13 217 14 738
419 1 238 2 577 3 981 5 339 6 594 7 952 9 194 10 734 11 885 13 263 14 771
432 1 277 2 603 4 007 5 372 6 620 8 030 9 233 10 760 11 982 13 289 14 829
477 | 1 316 | 2 687 | 4 046 | 5 417 | 6 665 | 8 037 | 9 252 | 10 877 | 12 008 | 13 334 | 14 972
503 1 335 2 700 4 098 5 489 6 672 8 043 9 311 10 890 12 054 13 347
510 1 361 2 759 4 208 5 528 6 678 8 102 9 330 10 923 12 060 13 464
516 | 1\ 368 | 2\ 772 | 4\ 215 | 5\ 547 | 6\ 776 | 8\ 141 | 9\ 369 | 10\ 988 | 12\ 080 | 13\ 523
542|1\ 407|2\ 778|4\ 254|5\ 573|6\ 789|8\ 154|9\ 428|11\ 033|12\ 138|13\ 529
549 1 433 2 798 4 299 5 580 6 795 8 225 9 434 11 040 12 158 13 536
588 1 452 2 817 4 319 5 606 6 860 8 232 9 506 11 066 12 197 13 562
|633|1\ 478|2\ 856|4\ 338|5\ 645|6\ 867|8\ 316|9\ 623|11\ 079|12\ 249|13\ 607|
659 1 595 2 889 4 397 5 684 6 893 8 336 9 642 11 105 12 320 13 685
666 | 1 602 | 2 934 | 4 403 | 5 690 | 7 029 | 8 342 | 9 714 | 11 144 | 12 333 | 13 692
```

These Tables give the Elements (y) of all Primes $p = \frac{1}{\mu} (y^3 - 1) \div (y - 1)$, $[\mu = 7, 13]$, up to $y \gg 15,000$,

```
Elements (y) of Primes p = \frac{1}{19} N = \frac{1}{19} (y^3 - 1) \div (y - 1).
```

```
524 1 835 2 705 4 058 4 856 5 958 7 307 8 139 9 416 10 632 11 882 13 140 14 432
      539 1 869 2 747 4 115 4 913 6 011 7 379 8 177 9 435 10 647 11 886 13 193 14 447
 11
      558 | 1 911 | 2 766 | 4 149 | 4 970 | 6 053 | 7 440 | 8 196 | 9 450 | 10 685 | 12 057 | 13 212 | 14 546
 26
      600 1 949 2 861 4 229 4 989 6 144 7 493 8 405
                                                      9 530 10 704 12 129 13 292 14 622
 45
                                                      9 602 10 818 12 167 13 349 14 675
      752 1 968 2 990 4 248 5 061 6 182 7 535 8 424
 83
      771 2 021 2 994 4 301 5 141 6 186 7 554 8 447
                                                      9 621 10 841 12 209 13 364 14 694
125
                                                      9 663 10 913 12 228 13 368 14 808
140
      843 2 078 3 066 4 305 5 270 6 224 7 626 8 504
182
      881 2 120 3 108 4 343 5 369 6 410 7 664 8 618
                                                      9 716 10 970 12 570 13 520 14 846
197
      885 2 192 3 237 4 415 5 426 6 524 7 721 8 652
                                                      9 777 11 145 12 585 13 691 14 922
201
      923 2 211 3 275 4 434 5 445 6 543 7 740 8 846 9 887 11 217 12 722 13 706
216
      980 2 253 3 408 4 472 5 460 6 642 7 763 8 865 9 891 11 297 12 794 13 725
239
     999 2 420 3 450 4 529 5 498 6 695 7 782 8 975 10 043 11 312 12 836 13 748
258 1 071 2 439 3 465 4 571 5 559 6 699 7 839 8 994 10 062 11 331 12 851 13 767
311 1 113 2 477 3 503 4 586 5 631 6 809 7 896 9 089 10 115 11 373 12 908 13 782
330 1 170 2 481 3 507 4 628 5 654 6 866 7 934 9 203 10 191 11 411 12 965 13 881
353 1 223 2 519 3 564 4 662 5 726 6 942 7 953 9 222 10 233 11 502 12 984 13 896
444 | 1 337 | 2 553 | 3 659 | 4 700 | 5 783 7 098 | 8 006 | 9 264 | 10 248 | 11 597 | 13 007 | 14 052
467 | 1 356 2 576 3 750 4 704 5 787 7 208 8 025 9 302 10 290 11 654 13 026 14 276
482 | 1 470 2 610 3 921 4 742 5 825 7 227 8 048 9 374 | 10 457 11 711 | 13 079 | 14 295
486|1\ 664\ 2\ 633|3\ 963|4\ 833|5\ 939|7\ 269|8\ 105|9\ 393|10\ 613\ 11\ 730|13\ 083|14\ 318
```

Elements (y) of Primes $p = \frac{1}{21}N = \frac{1}{21}(y^3 - 1) \div (y - 1)$.

```
550 1 306 2 368 3 397 4 300 5 455 6 598 7 954 9 076 10 231 11 470 12 595 14 002
       4
   16
                    604 \begin{vmatrix} 1 & 411 \end{vmatrix} 2\ 377 \begin{vmatrix} 3 & 406 \end{vmatrix} 4\ 309 \begin{vmatrix} 5 & 485 \end{vmatrix} 6\ 640 \begin{vmatrix} 7 & 963 \end{vmatrix} 9\ 130 \begin{vmatrix} 10 & 264 \end{vmatrix} 11\ 491 \begin{vmatrix} 12 & 679 \end{vmatrix} 14\ 053
   25
                    613 1 423 2 398 3 418 4 363 5 548 6 799 7 984 9 151 10 285 11 512 12 688 14 065
                    46
                    697|1\ 507|2\ 545|3\ 511|4\ 456|5\ 623|6\ 883|8\ 122|\ 9\ 172|10\ 315|11\ 575|12\ 784|14\ 158|
                    709 | 1 528 | 2 587 | 3 523 | 4 498 | 5 644 | 6 934 | 8 131 | 9 214 | 10 336 | 11 587 | 12 793 | 14 305
   58
   88
                    730 1 558 2 620 3 544 4 519 5 674 7 009 8 185 9 235 10 411 11 608 12 835 14 317
109
                    739 | 1\ 579 | 2\ 641 | 3\ 574 | 4\ 603 | 5\ 728 | 7\ 051 | 8\ 194 | \ 9\ 256 | 10\ 432 | 11\ 713 | 12\ 898 | 14\ 422
130
                     751|1\ 612|2\ 755|3\ 616|4\ 708|5\ 737|7\ 156|8\ 269|\ 9\ 361|10\ 453|11\ 764|12\ 910|14\ 494
                     760 1 642 2 767 3 628 4 720 5 875 7 207 8 320 9 370 10 558 11 797 12 919 14 515
142
151
                    793 1 705 2 797 3 637 4 792 5 896 7 240 8 332
                                                                                                                                                                                          9 391 10 579 11 932 12 961 14 548
184
                     844 1 747 2 818 3 670 4 834 5 938 7 312 8 341
                                                                                                                                                                                         9 433 10 621 11 953 12 982 14 557
193
                    865 | 1\ 768 | 2\ 839 | 3\ 679 | 4\ 876 | 5\ 968 | 7\ 375 | 8\ 353 | 9\ 517 | 10\ 714 | 12\ 007 | 13\ 129 | 14\ 578
205
                   886 | 1780 | 2881 | 3700 | 4888 | 6001 | 7408 | 8416 | 9559 | 10735 | 12037 | 13171 | 14590
247
                    907 1 801 2 893 3 733 4 939 6 010 7 438 8 467
                                                                                                                                                                                           9 580 10 789 12 049 13 192 14 674
268 \quad 970 \quad 1852 \quad | 2923 \quad | 3796 \quad | 4993 \quad | 6031 \quad | 7450 \quad | 8509 \quad | 9613 \quad | 10831 \quad | 12058 \quad | 13318 \quad | 14683 \quad | 
298 1 012 1 864 2 935 3 817 5 002 6 043 7 480 8 551
                                                                                                                                                                                           9 643 10 840 12 070 13 435 14 695
310 1 045 1 915 2 965 3 859 5 035 6 085 7 492 8 572
                                                                                                                                                                                           9 676 10 882 12 079 13 486 14 746
319 1 054 1 948 2 998 3 910 5 044 6 136 7 501 8 584 9 706 10 924 12 154 13 498 14 851
331 1 066 1 957 3 040 3 943 5 056 6 169 7 513 8 626 9 718 10 987 12 217 13 519 14 935
340 1 117 1 969 3 049 3 952 5 098 6 190 7 522 8 677 9 748 11 071 12 226 13 570 14 968
382|1\ 138|2\ 032|3\ 061|3\ 964|5\ 107|6\ 199|7\ 534|8\ 689|\ 9\ 907|11\ 113|12\ 238|13\ 675|14\ 977
394 | 1 150 | 2 041 | 3 112 | 4 099 | 5 119 | 6 211 | 7 585 | 8 710 | 9 958 | 11 125 | 12 289 | 13 717 | 14 989
 403 | 171 | 2 062 | 3 217 | 4 132 | 5 149 | 6 304 | 7 618 | 8 731 | 9 970 | 11 155 | 12 352 | 13 759 |
 415 | 1 180 | 2 074 | 3 238 | 4 141 | 5 161 | 6 325 | 7 681 | 8 761 | 9 991 | 11 230 | 12 364 | 13 771
 \frac{424}{1201} \frac{1}{2} \frac{104}{3} \frac{2}{2} \frac{5}{2} \frac{4}{162} \frac{5}{2} \frac{2}{4} \frac{5}{6} \frac{3}{6} \frac{6}{7} \frac{7}{7} \frac{2}{3} \frac{8}{7} \frac{7}{7} \frac{10}{3} \frac{033}{11} \frac{11}{2} \frac{260}{12} \frac{12}{3} \frac{27}{3} \frac{13}{13} \frac{8}{5} \frac{5}{12} \frac{12}{3} \frac{1
 478 1 222 2 221 3 334 4 204 5 380 6 493 7 774 8 803 10 105 11 344 12 478 13 948
 \frac{4871\ 285\ 2\ 2513\ 3434\ 23715\ 39216\ 51447\ 807\ 8\ 857\ 10\ 14711\ 356\ 12\ 511\ 13\ 969}{541\ 1\ 297\ 2\ 263\ 3\ 385\ 4\ 288\ 5\ 413\ 6\ 589\ 7\ 942\ 8\ 929\ 10\ 180\ 11\ 377\ 12\ 520\ 13\ 990}
```

Quartan Primes, $p = x^4 + y^4$ [x odd, y even].

	Quar	tan Prime	s, p =	$x^4 + y^4$ [3	v odd, į	evenj.	
p	x, y	p	x, y	p	x, y	p	x, y
17 97 257 337 641 881 1 297 2 417 2 657 3 697	1, 2 3, 2 1, 4 3, 4 5, 2 5, 4 1, 6 7, 2 7, 4 7, 6	280 097 283 937 284 881 289 841 317 777 331 777 334 177 360 337 384 817	23, 4 23, 8 15, 22 23, 10 17, 22 1, 24 7, 24 11, 24 13, 24 23, 18	1 338 737 1 342 897 1 345 921 1 350 977 1 364 897 1 466 657 1 501 921 1 521 361 1 682 017 1 763 137	7, 34 9, 34 33, 20 11, 34 13, 34 19, 34 35, 6 35, 12 7, 36 17, 36	3 649 777 3 653 057 3 750 577 3 818 977 3 874 337 3 942 577 3 959 297 4 035 217 4 100 641 4 100 881	39, 34 43, 22 43, 24 29, 42 41, 32 21, 44 37, 38 31, 42 45, 2 45, 4
4 177 4 721 6 577 10 657 12 401 14 657 14 897 15 937 16 561 28 817	3, 8 5, 8 9, 2 9, 8 7, 10 11, 2 11, 4 11, 6 9, 10 13, 4	391 921 394 721 411 361 457 957 459 377 462 997 463 537 471 617 531 457 587 297	25, 6 25, 8 25, 12 3, 26 7, 26 19, 24 9, 26 11, 26 27, 2 19, 26	1 800 577 1 809 937 1 874 177 1 874 417 1 878 257 1 912 577 1 959 457 1 972 097 2 034 161 2 043 617	33, 28 19, 36 37, 2 37, 4 37, 8 37, 14 23, 36 31, 32 37, 20 29, 34	4 104 721 4 162 097 4 279 537 4 398 577 4 467 377 4 477 457 4 477 537 4 478 081 4 505 377 4 506 017	45, 8 41, 34 27, 44 39, 38 43, 32 1, 46 3, 46 5, 46 41, 36 13, 46
38 561 39 041 49 297 54 721 65 537 65 617 66 161 66 977 80 177 83 537	13, 10 5, 14 13, 12 15, 8 1, 16 3, 16 5, 16 13, 14 11, 16 17, 2	596 977 614 657 621 217 643 217 728 017 736 817 744 977 745 697 812 257 812 401	27, 16 1, 28 9, 28 13, 28 29, 12 23, 26 19, 28 29, 14 29, 18 7, 30	2 070 241 2 085 217 2 168 657 2 279 617 2 351 857 2 378 977 2 473 441 2 522 257 2 566 561 2 616 577	25, 36 3, 38 17, 38 21, 38 39, 14 39, 16 39, 20 33, 34 9, 40 27, 38	4 560 977 4 607 777 4 671 937 4 715 281 4 755 137 4 879 937 4 880 977 4 910 897 4 918 097 5 039 681	17, 46 19, 46 21, 46 45, 28 43, 34 47, 4 47, 6 41, 38 47, 14 47, 20
83 777 89 041 105 601 107 377 119 617 121 937 130 337 131 617 134 417 140 321	17, 4 15, 14 5, 18 7, 18 11, 18 17, 14 19, 2 19, 6 19, 8 19, 10	824 641 838 561 847 601 867 281 893 521 941 537 944 257 961 937 988 417 1 049 201	11, 30 13, 30 25, 26 29, 20 17, 30 29, 22 31, 12 31, 14 27, 26 5, 32	2 684 161 2 690 321 2 754 481 2 825 777 2 836 961 2 839 841 2 922 737 2 930 737 3 112 321 3 157 537	37, 30 19, 40 21, 40 41, 2 35, 34 23, 40 37, 32 41, 18 5, 42 41, 24	5 211 457 5 308 417 5 309 041 5 385 761 5 391 937 5 436 961 5 663 377 5 764 817 5 768 897 5 785 537	47, 24 1, 48 5, 48 41, 40 17, 48 45, 34 33, 46 49, 2 49, 8 49, 12
149 057 151 057 160 001 160 081 166 561 168 737 204 481 243 521 260 017 279 857	17, 16 19, 12 1, 20 3, 20 9, 20 19, 14 21, 10 17, 20 21, 16 23, 2	1 050 977 1 055 137 1 089 841 1 146 097 1 178 897 1 224 337 1 328 417 1 336 347 1 336 961	7, 32 9, 32 23, 30 27, 28 19, 32 33, 14 23, 32 1, 34 3, 34 5, 34	3 195 217 3 242 017 3 362 017 3 391 537 3 428 801 3 439 537 3 457 217 3 578 801 3 635 761	17, 42 19, 42 39, 32 23, 42 43, 10 43, 12 43, 14 37, 36 43, 20 41, 30		43, 40 29, 48 45, 38 7, 50 13, 50 17, 50 21, 50 51, 2 51, 8 51, 10

15 Continued on page 255.

Half-Quartan Primes, $p = \frac{1}{2}(x^4 + y^4)$, [x and y odd].

υ	x, y	p	x, y	p	x, y	p	x, y
1	1, 1	353 681	29, 3	2 057 633	45, 11	4 715 233	55, 23
41	3, 1	378 953	29, 15	2 092 073	45, 17	4 795 481	51, 41
313	5, 1	405 641	27, 23	2 093 801	39, 37	4 928 953	55, 29
353	5, 3	450 881	29, 21	2 163 193	41, 35	4 932 713	49, 45
1 201	7, 1	461 801	31, 3	2 171 161	43, 31	5 101 961	53, 39
3 593	9, 5	462 073	31, 5	2 190 233	45, 23	5 278 001	57, 1
4 481	9, 7	465 041	31, 9	2 439 881	47, 3	5 319 761	57, 17
7 321	11, 1	476 041	31, 13	2 440 153	47, 5	5 473 313	57, 25
8 521	11, 7	487 073	31, 15	2 441 041	47, 7	5 654 641	53, 43
10 601	11, 9	548 953	29, 25	2 447 161	47, 11	5 822 441	51, 47
14 281	13, 1	559 001	31, 21	2 454 121	47, 13	5 988 193	55, 41
14 321	13, 3	593 273	33, 5	2 481 601	47, 17	6 028 313	57, 35
14 593	13, 5	594 161	33, 7	2 537 081	47, 21	6 058 993	59, 5
21 601	13, 11	750 313	35, 1	2 705 561	47, 27	6 083 993	59, 15
26 513	15, 7	750 353	35, 3	2 793 481	47, 29	6 123 841	59, 19
32 633	15, 11	757 633	35, 11	2 866 121	43, 39	6 198 601	59, 23
41 761	17, 1	764 593	35, 13	2 882 441	49, 3	6 253 993	59, 25
41 801	17, 3	792 073	35, 17	2 901 601	47, 31	6 265 001	51, 49
42 073	17, 5	815 401	31, 29	2 907 713	49, 15	6 324 401	59, 27
42 961	17, 7	937 121	37, 3	2 947 561	49, 19	6 412 321	59, 29
49 081	17, 11	940 361	37, 9	3 032 801	47, 33	6 520 441	59, 31
56 041	17, 13	951 361	37, 13	3 122 281	43, 41	6 690 881	57, 41
66 361	19, 7	1 002 241	37, 19	3 148 121	49, 27	6 922 921	61, 1
67 073	17, 15	1 016 033	35, 27	3 190 153	47, 35	6 930 241	61, 11
72 481	19, 11	1 054 721	33, 31	3 236 041	49, 29	6 948 233	61, 15
90 473	19, 15	1 132 393	37, 25	3 344 161	49, 31	6 995 761	59, 37
97 241	21, 1	1 156 721	39, 1	3 383 801	51, 7	7 020 161	61, 21
97 553	21, 5	1 157 033	39, 5	3 522 521	51, 23	7 215 401	59, 39
104 561	21, 11	1 198 481	39, 17	3 577 913	51, 25	7 471 561	59, 41
106 921	19, 17	1 398 841	37, 31	3 736 241	51, 29	7 768 081	59, 43
111 521	21, 13	1 414 081	41, 7	3 759 713	45, 43	7 941 641	63, 19
139 921	23, 1	1 416 161	41, 9	3 819 481	49, 37	8 160 401	57, 49
141 121	23, 7	1 420 201	41, 11	3 948 521	53, 9	8 230 121	63, 29
165 233	23, 15	1 510 121	41, 21	3 952 561	53, 11	8 338 241	63, 31
195 353	25, 3	1 510 361	39, 29	3 987 001	53, 17	8 925 313	65, 1
198 593	25, 9	1 618 481	39, 31	4 132 913	51, 35	8 928 593	65, 9
205 081	23, 19	1 678 601	41, 27	4 295 281	49, 41	8 967 073	65, 17
237 073	25, 17	1 687 393	37, 35	4 298 881	53, 29	9 223 241	57, 53
237 161	23, 21	1 709 713	43, 5	4 319 681	51, 37	9 278 953	65, 29
266 921	27, 7	1 710 601	43, 7	4 589 593	55, 13	9 441 281	59, 51
280 001	27, 13	1 734 713	43, 15	4 591 801	49, 43	9 585 881	63, 43
307 481	27, 17	1 975 121	43, 27	4 617 073	55, 17	9 853 313	57, 55
353 641	29, 1	2 005 841	41, 33	4 672 553	55, 21	9 862 393	65, 37

^{1.} This Table gives all Half-Quartan Primes, $p = \frac{1}{2}(x^4 + y^4) > 10^7$.

Quartan Primes (Continued from page 253).

p	x, y
6 790 897	39, 46
6 925 201	51, 20
6 964 817	47, 38 51, 22
7 101 137 7 166 897 7 222 177	49, 34 43, 44
7 222 177	51, 26
7 326 257	11, 52
7 435 921	33, 50
7 439 681	47, 40
7 506 097	21, 52
7 591 457	23, 52
7 813 777 7 843 057 7 891 777	51, 32 27, 52
7 894 577	53, 6 53, 8
7 900 481	53, 10 53, 12
7 928 897	53, 14
8 050 481	53, 20
8 124 161	37, 50
8 222 257	53, 24
8 324 801	49, 40
8 503 057	1, 54
8 503 681	5, 54
8 505 137	53, 28
8 531 617	13, 54
8 586 577	17, 54
8 627 777	47, 44
8 633 377	19, 54
8 812 241	35, 52
8 939 057	53, 32
9 075 761 9 189 041	41, 50 55, 14
9 216 161 9 226 817	55, 16
9 255 601 9 426 577	55, 18 31, 54 1, 56
9 834 497 9 918 017	1, 56 17, 50

High Quartan Primes. $p = (x^4 + y^4),$ [x odd, y even].

<i>p</i>	x,	y
29 986 577 B 40 960 001 45 212 177	1,	74 80 82
59 969 537 B 65 610 001 Da 100 000 081	1, 1,	88 90 100
100 006 561 126 247 697 193 877 777	1, 1,	100 106 118
303 595 777 384 160 001 406 586 897	1,	132 140 142
562 448 657 655 360 001 723 394 817	1,	154 160 164
916 636 177 1 049 760 001 1 416 468 497	1,	174 180 194
1 536 953 617 1 731 891 457 1 944 810 001	1,	198 204 210
2 342 560 001 2 702 336 257	1,	220 228

 $High \ \, Half-Quartan \\ Primes, \\ p = \frac{1}{2}(1+y)^4, \ \, [y \ odd].$

p	x, y
B 12 705 841 B 14 199 121 BJ 21 523 361 56 275 441 60 775 313 81 523 681 87 450 313 100 266 961 107 182 721 138 461 441 273 990 641 370 600 313 407 865 361 427 518 041 784 119 601 849 090 841 883 050 313 1 984 563 001 2 249 930 281	1, 71 1, 73 1, 81 1, 103 1, 105 1, 113 1, 115 1, 119 9, 121 1, 129 1, 153 1, 165 1, 166 1, 171 1, 199 1, 203 1, 205 1, 251 1, 259

This List is complete (with w=1) up to $y \geqslant 265$.

This List is complete (with x=1) up to $y \geqslant 236$.

This Table gives all Quartan Primes, $p = (x^4 + y^4) > 10^7$.

Sextan Primes, $p = (x^6 + y^6) \div (x^2 + y^2)$.

Become Trimes, $p = (x^2 + y^2) \div (x^2 + y^2)$.							
p	x, y	p	x, y	p	x, y	p	x, y
1 13	1, 1 1, 2	79 153 81 001	17, 4 17, 3	479 761 495 613	23, 28 27, 26	I 352 521 I 388 593	35, 33 17, 36
61 73	3, 2 1, 3	83 233 97 501	1, 17 5, 18	513 841 530 713	$\begin{bmatrix} 27, & 5 \\ 1, & 27 \end{bmatrix}$	1 405 693	37, 26 37, 24
193	3, 4 1, 4	99 721	19, 15 19, 11	547 753 554 641	29, 17 29, 24	1 429 801	37, 23 35, 6
541 601	5, 2 1, 5	107 641	19, 9 19, 6	557 521 572 281	29, 16 $29, 25$	1 481 281 1 486 561	35, 4 37, 20
1 02 I 1 80 I	5, 6 7, 5	121 921 126 241	19, 5 11, 20	595 741 606 913	29, 26 29, 12	1 489 153 1 510 273	13, 36 37, 19
1 873	7, 4 7, 6	127 921	17, 20 9, 20	607 681 613 741	3, 28 23, 30	1 535 581	37, 18 11, 36
1 933	7, 2	148 513	21, 13	620 161	29, 11	1 537 441	27, 38
3 121	7, 8	165 601	21, 19	694 081	29, 4 31, 21	1 569 241	37, 33 31, 38
4 993	9, 7 9, 4	184 081	21, 5	699 793 701 761	29, 3	1 642 813	21, 38
6 481 8 461	1, 9 9, 10	209 953	23, 16 23, 17	706 921	31, 19 31, 18	I 753 441 I 775 281	39, 25 39, 31
9 181	3, 10 1, 10	211 441	23, 15 23, 13	768 301 784 753	7, 30 31, 28	1 788 673	39, 23 37, 8
10 993	11, 8 11, 7	224 401 229 981	23, 12 3, 22	789 673 791 473	31, 13 21, 32	1 804 513 1 809 481	39, 32 37, 7
12 241	11, 5 11, 10	243 553	23, 9 19, 24	805 873 809 101	31, 12 1, 30	1811533	39, 22 35, 38
12 541	11, 3	254 161 258 061	23, 22	836 161 868 801	17, 32	1 826 173	37, 6
14 173	11, 2 5, 12	275 161 276 721	23, 3	878 833	15, 32 31, 7	1 840 561	37, 5 37, 3
20 593	1, 12 13, 9	277 741 306 541	23, 2 25, 14	900 121	31, 6 31, 5	1 868 701 1 891 501	37, 2 39, 34
21 661	13, 10 13, 8	306 913	23, 24 25, 21	919 693 922 561	31, 2 1, 31	1 921 681 1 925 041	29, 40 27, 40
23 773 26 113	13, 6 13, 4	313 561	25, 13 $5, 24$	946 801 988 033	33, 28 31, 32	1 993 441 2 083 693	23, 40 1, 38
27 901 28 393	13, 2 1, 13	339 841 343 2 61	25, 23 19, 26	1 004 461	25, 34 5, 32	2 122 513 2 144 041	41, 28 39, 11
29 101 34 141	9, 14 5, 14	345 133 346 561	17, 26 25, 9	1 030 441 1 062 913	33, 13 33, 31	2 171 341 2 181 073	39, 10 41, 33
41 161	15, 13 11, 16	353 341 355 501	21, 26 15, 26	1 120 321	33, 8 15, 34	2 189 281 2 202 253	41, 24 39, 38
49 741	15, 2	380 881	25, 4	1 129 501	35, 26	2 218 861	41, 34
50 833 51 361	13, 16 9, 16	385 081 390 001	25, 3	1 134 961	33, 7 35, 27	2 220 193 2 241 313	39, 8 39, 7
63 241	17, 13 3, 16	410 3 53 425 101	27, 16 25, 26	1 148 941	31, 34 35, 29	2 276 041 2 307 373	39, 5 39, 2
64 621	17, 10 17, 14	425 641 426 253	27, 23 7, 26	1 181 581 1 188 721	33, 2 35, 19	2 311 921 2 398 633	1, 39 41, 37
71 761	17, 7 17, 6	426 973 436 801	27, 14 27, 13	1 263 373 1 282 093	33, 34 7, 34	2 399 821 2 460 961	25, 42 41, 16
78 781	13, 18		27, 25	1 322 161	35, 13		3, 40

Continued on page 257.

Sextan Primes (Continued from page 256).

$p \mid x, y$	p	x, y	p	x, y	p	x, y	Sextan 2 \Rightarrow 107.	
2 564 701 43, 36 2 570 233 41, 15 2 570 941 37, 44 2 571 073 43, 25 2 582 401 41, 36 2 637 001 41, 1. 2 653 801 43, 26 2 702 113 43, 36 2 702 113 43, 46 2 722 273 41, 8	4 452 841 4 483 201 4 545 913 4 554 481 4 582 321 4 598 701 4 654 801 4 701 661 4 726 081	47, 15 49, 29 49, 40 49, 27 49, 41 47, 12 49, 26 49, 25 37, 50 17, 48	6 909 841 6 941 293 6 999 073 7 043 713 7 085 341 7 240 333 7 287 361 7 308 913 7 313 881 7 349 473	55, 36 47, 54 11, 52 51, 52 53, 18 23, 54 3, 52 1, 52 55, 29 53, 51	9 138 541 9 147 601 9 168 961 9 226 033 9 307 513 9 405 553 9 587 041 9 734 161 9 831 361 9 957 613	55, 2 1, 55 59, 45 59, 37 59, 47 59, 48 9, 56 41, 60 1, 56 57, 14	Is This Table gives all Se Primes, $p = (x^6 + y^6) \div (x^2 + y^2)$	
2 758 141 43, 25 2 810 713 41, 5 2 819 053 41, 5 2 839 201 43, 20 2 912 893 11, 45 2 919 913 43, 36	4 771 021 4 773 841 4 774 513 4 854 781	39, 50 31, 50 47, 7 49, 23 29, 50 47, 2	7 378 081 7 378 333 7 393 681 7 476 841 7 562 701 7 580 701	39, 56 53, 14 55, 28 55, 27 55, 26 19, 54	$High Sim_p = (1^6)$	$+y^6$) \div (
2 971 873 37, 44 3 020 401 43, 40 3 075 601 45, 32 3 088 801 21, 44 3 094 813 43, 14	5 189 161 5 207 341 5 306 113 5 387 593	13, 48 51, 31 23, 50 1, 48 49, 13	7 606 561 7 619 581 7 652 401 7 714 801 7 740 001	53, 52 53, 10 55, 49 53, 8 55, 24	BC I BC I	3 842 12 4 772 49 7 846 40 7 451 43 1 630 83	3 1, 1 1, 3 1,	61 62 65 83 92
3 096 061 45, 34 3 127 681 45, 26 3 134 881 43, 15 3 188 701 45, 26 3 268 861 42, 42 3 353 533 43 43 3 354 781 45, 22 3 402 241 43, 5 3 416 953 1, 48	5 477 821 5 488 921 5 499 841 5 530 201 5 576 881 5 636 593 5 730 721	49, 12 19, 50 49, 11 35, 52 51, 25 49, 9 31, 52 43, 52 29, 52	7 820 881 7 845 793 7 865 281 7 917 601 7 920 193 8 014 033 8 047 801 8 164 861 8 258 641	53, 5 53, 4 53, 3 57, 40 57, 41 57, 44 55, 51 11, 54 57, 47	Lo 9 11 12 14 16	8 066 06 6 049 80 9 990 00 6 975 04 1 539 60 1 146 28 8 883 02 3 863 85 2 031 50	or 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	94 99 100 104 105 109 114 118 126
3 454 813 37, 46 3 499 921 45, 19 3 598 921 45, 17 3 655 633 7, 44 3 666 241 47, 32 3 729 721 47, 37 3 738 781 21, 46 3 775 201 45, 43 3 800 761 47, 27	5 899 273 5 929 633 5 979 613 6 115 441 6 161 041 6 172 381 6 200 353 6 218 161	27, 52 51, 47 53, 36 53, 34 53, 43 23, 52 53, 30 53, 44 47, 52	8 265 121 8 277 601 8 357 233 8 359 921 8 362 573 8 441 761 8 487 373 8 543 881 8 667 961	25, 56 57, 32 57, 31 55, 17 7, 54 55, 16 41, 58 55, 53 55, 13	29, 75, 79, 81, 87, 112, 117, 130,	4 482 76 9 305 58 6 565 95 5 702 16 5 183 47 1 479 63 1 316 40 3 173 90 6 430 86	I 1, I 1, 3 1, 3 1, 3 1, 3 1, 1 1, 2 1, 2 1, 3 1, 4 1, 5 2, 6 1, 7 2, 8 2, 8 2, 9 2, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 <td>131 166 168 169 172 183 185 190</td>	131 166 168 169 172 183 185 190
3 833 233 47, 39 3 949 453 17, 46 3 983 773 48, 46 3 986 641 35, 48 4 148 413 18, 46 4 156 081 47, 20 4 236 061 11, 46 4 332 721 49, 36 4 376 173 7, 46	6 293 821 6 385 213 6 448 573 6 602 833 6 684 361 6 726 961 6 753 841 6 757 981 6 765 181	51, 14 37, 54 53, 26 51, 8 53, 23 53, 48 15, 52 29, 54 53, 22	8 735 761 8 765 101 8 816 653 8 832 721 8 839 021 8 915 953 9 007 213 9 091 561 9 099 793	55, 12 47, 58 57, 26 19, 56 33, 58 53, 56 31, 58 59, 41 59, 48	1 475 1 536 1 906 2 516 2 562 2 756	5 750 64 6 914 41 7 986 08 7 580 80 2 840 00 0 006 04 7 342 96	1 1, 3 1, 1 1, 2 1, 1 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 2, 3 1, 4 2, 4 2, 5 2, 6 2, 7 2, 8 2, 8 2, 8 2, 9 2, 9 2, 1 2, 1 2, 1 2, 2 2, 1 2, 2 3, 2 3, 3 3, 4 4, 5 4, 6 4, 7 4, 8 4, 8 4, 8 4, 9 4, 1 4, 1 4, 1 <td>196 198 209 224 225 229 231</td>	196 198 209 224 225 229 231
4 382 893 49, 38 4 425 181 5, 46	6 846 193 6 883 561	53, 21 55, 37	9 123 481 9 136 201	55, 3 59, 39	This To $x = 1$	able is con up to y		for

Octavan Primes.

	$p = x^8 + y^8$	x,	y
$p < 10^7$	$\begin{array}{c} 257 \\ 65 537 \\ 2 070 241 \end{array}$ Complete to $p \gg 10^7$	1, 1, 5,	2 4 6
$p > 10^7$	$100\ 006\ 561$ None > 10^7 , up to 4.10^{12}		

Half-Octavan Primes.

	$p = \frac{1}{2} \left(x^8 + y^8 \right)$							
p < 107	$\begin{array}{c} & \text{I} \\ \text{198 593} \end{array}$ Complete to $p \gg 10^7$	1, 3,	1 5					
$p > 10^7$	BJ 21 523 361 107 182 721 407 865 361 No more < 189.108	3,	13					

Duodeciman Primes.

$p < 10^7$	1 241 5 521 6 481 51 361 346 561 380 881 390 001 1 678 321 4 332 721 4 3654 801	x, 1, 3, 1, 3, 5, 1, 1, 7, 7, 7,	y 1 2 2 3 4 5 2 5 6 6 5 5	12 707 521 7 39 336 721 9 41 432 641 9 42 942 001 9 99 990 001 1 815 702 161 1	
	Complete to $p \gg 10^7$	7,	3		

Sextodeciman Primes.

$$65 537 = (1^{16} + 2^{16}).$$

$$I = \frac{1}{2} (1^{16} + 1^{16}).$$

$$21 523 36I = \frac{1}{2} (1^{16} + 3^{16}).$$

24-man Primes.

Cuban Primes $p = (x^3 - y^3) \div (x - y)$, up to $p > 10^6$, [x - y = 1].

$p \mid x$	$p \mid x$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	p	$x \mid p$	x	p	x
1 1 7 2 19 3 37 4 61 5 127 7 271 10 331 11 397 12 547 14 631 15 919 18 1 657 24 1 801 25 2 69 28 2 437 29 2 791 31 3 169 33 3 571 35 4 219 38 4 447 39 5 167 42	10 267 59 11 719 63 12 097 64 13 267 67 13 669 68 16 651 75 19 441 81 19 927 82	81 181 165 82 171 166 87 211 171 88 237 172 89 269 173 92 401 176 96 661 180 102 121 185 103 231 186 104 347 187 110 017 192 112 327 194 114 661 196 115 837 197 126 691 206 129 169 208 131 671 210 135 469 213 140 617 217 144 541 220 145 861 221 151 201 225 155 269 228 163 567 234 169 219 238	200 467 26 202 021 26 213 067 26 231 019 27 234 361 28 241 117 26 246 247 28 251 431 28 263 737 28 263 737 28 276 337 36 279 991 36 283 669 36 285 517 36 292 969 33 298 621 33 310 087 33 329 677 33 333 667 33 347 821 33 347 821 33 351 919 33 360 187 38	559 383 419 387 721 398 581 78 407 377 80 423 001 84 436 627 452 797 95 476 407 478 801 99 493 291 904 522 919 906 527 941 909 574 210 109 574 210	358 360 365 369 376 382 389 392 400 406 418 420 430 438 442 444 445 446 449 451 452 455 466	698 419 707 131 733 591 742 519 760 537 769 627 772 669 784 897 791 047 812 761 825 301 837 937 847 477 863 497 879 667 886 177 895 985 987 909 151 915 769 925 741 929 077 932 419 929 077 932 419 939 121 955 2597	483 486 495 498 504 507 5508 5512 525 532 537 542 544 547 553 553 556 558 560 564 570

Cuban Primes $p = (x^3 - y^3) \div (x - y)$, up to $p \gg 10^6$, [x - y = 2].

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	p	x	p	x	p	x	p	x
109 7 193 9 433 13 769 17 1 201 21 1 453 23 2 029 27 3 469 35 3 889 37	21 169 85 22 189 87 28 813 99 37 633 113 43 201 121 47 629 127 60 493 143 63 949 147	84 6731 106 0331 108 301 1 112 909 1 115 249 1 129 793 2 139 969 2 142 573 2 147 853 2 169 933 2	.69 .91 .95 .97 .97 .17 .19 .23	209 089 221 953 238 573 245 389 259 309 270 001 273 613 280 909 284 593	265 273 283 287 295 301 303 307 309 317	363 313 367 501 397 489 410 701 415 153 424 129 433 201 442 369 534 253 544 429	349 351 365 371 373 377 381 385 423	640 333 645 889 685 453 720 301 762 049 786 433 823 729 842 701 940 801 961 069	463 465 479 491 505 513 525 531 561
10 093 59	65 713 149 69 313 153 73 009 157	178 609 2	145	326 701	331	565 069	435	907 873	909

Trito-Cuban Primes, $p = \frac{1}{3}(x^3 - y^3) \div (x - y)$, up to $p \geqslant 10^6$, [x - y = 3].

p	x	p	x	p	x	p	x	p	x	p	x
7 13 31 43 73 157 211 241 307	1, 2 4 5 7 8 10 14 16 17 19 20	9 901 10 303 11 131 12 211 12 433 13 807 14 281 17 293 19 183 20 023	103 107 112 113 119 121 133 140 143	84 391	247 248 268 274 280 281 289 290 292	173 473 181 903 188 791 189 661 200 257 205 663 207 481 208 393 227 053 239 611	428 436 437 449 455 457 458 478 491	446 893 450 913 459 007	623 626 628 637 644 646 670 673 679	681 451 684 757 699 733 704 761 716 563 731 881 735 307 740 461 747 361 766 501	829 838 841 848 857 859 862 866 877
343 421 463 601 757 1 123 1 483 1 723 2 551 2 971	22 23 26 29 35 40 43 52 56	20 593 21 757 22 651 23 563 24 181 26 083 26 407 27 061 28 057 28 393	149 152 155 157 163 164 166 169 170	86 143 95 791 98 911 108 571 110 557 113 233 117 307 118 681 121 453 123 553	311 316 331 334 338 344 346 350	245 521 250 501 262 657 268 843 276 151 281 431 282 493 284 623 288 907 292 141	502 514 520 527 532 533 535 539	471 283 485 113 492 103 519 121 527 803 530 713 540 961 552 793 558 757 570 781	698 703 722 728 730 737 745 749	771 763 792 991 800 131 805 507 809 101 830 833 838 141 843 643 847 321 860 257	892 896 899 901 913 917 920 922 929
3 307 3 541 3 907 4 423 4 831 5 113 5 701 6 007 6 163 6 481	59 61 64 68 71 73 77 79 80 82	30 103 31 153 35 533 35 911 37 057 37 831 41 413 42 643 43 891 46 441	178 190 191 194 196 205 208 211 217	127 807 136 531 143 263 145 543 147 073 154 057 156 421 158 803 162 007 163 621	371 380 383 385 394 397 400 404 406	304 153 307 471 314 161 320 923 322 057 327 757 335 821 339 307 341 641 364 213	556 562 568 569 574 581 584 586 605	581 407 590 593 598 303 612 307 617 011 628 057 637 603 642 403 660 157	764 770 775 784 787 794 800 803 814	903 451 920 641 922 561 939 931 949 651 963 343 975 157 981 091 985 057 987 043	961 962 971 976 983 989 992
8 191	91 92	47 743 53 593	220 233	164 431 171 811	407 416	366 631 371 491	607 611	669 943 671 581	820 821		

Prime Aurifeuillian Factors p = L or M of Sextans (B, B', D', D'').

B, B', D', D'' are all of form $N_{vi} = (x^6 + y^6) \div (x^2 + y^2) = L.M.$

B has $x = \xi^2$, $y = 2\eta^2$; B' has $x' = {\xi'}^2$, $y' = 2{\eta'}^2$.

B = LM, B' = L'M'; see Table, pages 172-179.

D' has $x' = t'^2 + u'^2$, $y' = t'^2 \sim u'^2$; D'' has $x'' = \frac{1}{2}(t'^2 + u'^2)$, y'' = t''u''.

D' = L'M', D'' = L''M''; see Table, pages 190–194.

Then B, B', D', D" have a common factor (L or M) if

$$\begin{split} \xi &= 2\eta' - \xi', \quad \eta = \eta' \sim \xi' \ ; \qquad \xi' = \xi \pm 2\eta, \qquad \eta' = \xi \pm \eta. \\ t' &= \eta', \qquad \qquad u' = \eta \ ; \qquad \qquad t'' = t' + u', \quad u'' = t' \sim u'. \end{split}$$

p	Β ξ, η		D' t', u'	$\begin{array}{c c} D^{\prime\prime} \\ t^{\prime\prime}, u^{\prime\prime} \end{array}$	p	Β ξ, η	Β' ξ', η'	$\begin{array}{ c c c } D' \\ t', u' \end{array}$	
13 M 37 I 109 M 229 I 409 I 421 M 1547 M 2689 M 3061 M 3217 M 2689 M 3217 M 4729 M 4801 M 5233 I 6073 I 6133 M 621 M 821 M 1449 I 1540 M 1540 M	1, 3, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 1, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	$egin{array}{cccccccccccccccccccccccccccccccccccc$	M, 2, 1 L, 3, 2 M, 4, 1 L, 5, 2 L, 4, 3 L, 5, 4 L, 7, 2 M, 6, 1 L, 7, 4 L, 8, 3 L, 6, 5 M, 8, 1 L, 9, 4 L, 10, 1 M, 7, 6 L, 10, 1 M, 7, 6 L, 10, 1 M, 7, 6 L, 10, 3 L, 10, 1 M, 7, 6 L, 10, 3 L, 10, 1 M, 7, 6 L, 10, 3 L, 10, 1 M, 7, 6 L, 10, 3 L, 10, 1 M, 7, 6	M, 3, 1 L, 5, 1 M, 5, 1 M, 5, 3 L, 7, 3 L, 7, 1 L, 9, 1 L, 11, 3 L, 11, 5 L, 11, 1 L, 13, 5 L, 13, 3 M, 9, 7 M, 11, 3 L, 13, 7 L,	21 277 23 473 26 317 33 349 35 869 39 181 42 841 44 221 44 257 44 269 54 013 54 421 55 897 62 773 63 409 74 209 76 129 76 129 76 129 77 105 229 105 769 113 341 123 397 139 393	M, 7, 6 L, 17, 8 M, 11, 3 M, 13, 1 L, 17, 6 M, 13, 2 L, 17, 5 M, 1, 10 L, 19, 8 L, 15, 1 M, 11, 6 M, 3, 10 M, 13, 4 L, 19, 6 M, 9, 8 M, 1, 11 L, 17, 2 M, 11, 7 L, 17, 1 L, 17, 1 L, 19, 3 M, 17, 1 L, 19, 2 L, 25, 12 M, 9, 10 M, 1, 13 L, 23, 7	L, 5, 11 L, 17, 15 L, 7, 12 L, 21, 11 L, 3, 14 L, 23, 17 L, 23, 13 L, 21, 17 L, 25, 17 L, 25, 17 L, 25, 18 L, 15, 16 L, 5, 13 L, 21, 13, 15 L, 13, 15 L, 13, 16 L, 19, 18 L, 15, 17 L, 11, 11 L, 19, 18 L, 15, 17 L, 27, 14	L, 13, 6 M, 9, 8 L, 14, 3 L, 14, 1 M, 11, 6 L, 15, 2 M, 12, 5 L, 11, 10 M, 14, 1 L, 17, 6 L, 13, 10 L, 17, 4 M, 13, 6 L, 17, 8 L, 12, 11 M, 15, 2 L, 18, 7 M, 16, 1 M, 13, 6 L, 17, 8 L, 19, 14 M, 16, 3 L, 19, 10 L, 14, 13 M, 16, 7	L, 19, 7 M, 17, 1 L, 17, 11 L, 15, 13 M, 17, 5 L, 17, 13 M, 17, 7 L, 21, 1 M, 19, 3 M, 16, 13 L, 23, 11 L, 23, 3 L, 21, 13 M, 19, 13 L, 25, 9 L, 28, 1 M, 17, 15 M, 19, 13 L, 25, 11 M, 17, 15 M, 21, 5 L, 23, 15 M, 19, 13 L, 25, 11 M, 19, 15 M, 20, 1 L, 29, 9 L, 29, 1 M, 19, 13

Prime Aurifeuillian Factors p = L or M of Sextans (B, B', D', D").

(Continued from page 261.)

Prime Aurifeuillian Factors p = L or M of Sextans (S', S'', T', T'').

S', S'', T', T'' are all of form $N_{vi} = (x^6 + y^6) \div (x^2 + y^2) = L.M.$

S' has $x = \xi^2$, $y = 6\eta^2$; S'' has $x'' = 3\xi''^2$, $y = 2\eta''^2$.

S' = L'M', S'' = L''M''; see Tables, pages 179-182, and 183, 184, 194.

T' has
$$\begin{cases} x' = t'^2 \sim 3x'^2, \\ y' = t'^2 + 3u'^2; \end{cases}$$
 T'' has
$$\begin{cases} x'' = \frac{1}{2}(t''^2 \sim 3u''^2), \\ y'' = \frac{1}{2}(t''^2 + 3u''^2). \end{cases}$$

T' = L'M', T'' = L''M''; see Table, pages 185-189, 194.

Then S', S", T', T" have a common factor (L or M), if

$$\begin{split} \xi' &= 3 \xi'' \pm 2 \eta'', & \eta' &= \xi'' \pm \eta'' \; ; & \xi'' &= \xi' \mp 2 \eta', & \eta'' &= \xi' \mp 3 \eta'. \\ t' &= \eta'', & u' &= \eta' \; ; & t'' &= \xi', & u'' &= \xi''. \end{split}$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11, 13 13, 3 1, 11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19, 9 11, 13 13, 3 1, 11
1	19, 9 11, 13 13, 3 1, 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11, 13 13, 3 1, 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11, 13 13, 3 1, 11
61 L, 5, 2 M, 1, 1 L, 1, 2 L, 5, 1 25 633 L, 13, 8 L, 3, 11 L, 11, 8 M, 97 M, 1, 1 L, 3, 4 L, 4, 1 L, 1, 3 27 481 M, 1, 5 L, 11, 16 L, 16, 5 L, 181 L, 5, 1 L, 3, 2 M, 2, 1 L, 5, 3 28 297 L, 17, 3 L, 11, 8 M, 8, 3 L, 277 L, 7, 3 M, 1, 2 L, 2, 3 L, 7, 1 287 53 L, 23, 8 M, 7, 1 L, 1, 8 L, 349 L, 1, 2 L, 3, 5 L, 5, 2 M, 1, 3 29 629 L, 17, 9 L, 1, 10 L, 10, 9 M, 373 L, 7, 2 L, 3, 1 M, 1, 2 L, 7, 5 48 49 L, 11, 8 L, 5, 13 L, 13, 8 M, 31 L, 15, 16 L, 16, 1 L, 16, 2 M, 18	13, 3 1,11
97 M, 1, 1 L, 3, 4 L, 4, 1 L, 1, 3 27 48 M, 1, 5 L, 11, 16 L, 16, 5 L, 181 L, 5, 1 L, 3, 2 M, 2, 1 L, 5, 3 28 753 L, 23, 8 M, 7, 1 L, 1, 8 L, 277 L, 7, 3 M, 1, 2 L, 2, 3 L, 7, 1 349 L, 1, 2 L, 3, 5 L, 5, 2 M, 1, 3 29 629 L, 17, 9 L, 1, 10 L, 10, 9 M, 373 L, 7, 2 L, 3, 1 M, 1, 2 L, 7, 3 48 484 L, 11, 8 L, 5, 13 L, 13, 8 M, 11, 2 L, 7, 3 48 484 L, 11, 8 L, 5, 13 L, 13, 8 M, 14, 12 L, 7, 5 49 789 L, 19, 3 L, 15, 16 L, 16, 16, 1 L, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	1, 11
181 L, 5, 1 L, 3, 2 M, 2, 1 L, 5, 3 28 753 L, 23, 8 M, 7, 1 L, 1, 8 L, 8 L, 8 1 L, 7, 1 2 L, 3, 5 L, 5, 2 M, 1, 3 2 L, 7, 3 L, 13, 8 L, 11, 8 L, 13, 8 L, 13, 14 L, 14, 15 L, 15, 16 L, 16, 1 L, 16, 16 L, 16, 1 L, 16, 16 L, 16,	
277 L, 7, 3M, 1, 2 L, 2, 3 L, 7, 1 349 L, 17, 9 L, 1, 10 L, 10, 9 M, 349 L, 1, 2 L, 3, 5 L, 5, 2 M, 1, 3 4849 L, 11, 8 L, 5, 13 L, 13, 8 M, 1 L, 15, 16 L, 16, 1 L, 10 09 L, 7, 1 L, 5, 4 M, 4, 1 L, 7, 5 49 801 L, 25, 11 M, 3, 8 L, 8, 11 L, 15, 16 L, 16, 1 L, 16, 16 L, 16, 1	17 11
277 L, 7, 3 M, 1, 2 L, 2, 3 L, 7, 1 29 629 L, 17, 9 L, 1, 10 L, 10, 9 M, 373 L, 7, 2 L, 3, 1 M, 1, 2 L, 7, 3 3449 L, 11, 8 L, 5, 13 L, 13, 8 M, 15 20 89 L, 7, 1 L, 5, 4 M, 4, 1 L, 7, 5 49 801 L, 25, 11 M, 3, 8 L, 8, 11 L, 12 161 L, 11, 5 M, 1, 4 L, 4, 5 L, 11, 1 5 349 L, 13, 9 L, 5, 14 L, 14, 9 M, 2521 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 55 117 M, 1, 6 L, 13, 19 L, 19, 6 L, 19, 6 L, 10, 11 L, 10, 10 M, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	11,11
349 L, 1, 2 L, 3, 5 L, 5, 2 M, 1, 3 34 849 L, 11, 8 L, 5, 13 L, 13, 8 M, 15 2 L, 7, 3 34 849 L, 11, 8 L, 5, 13 L, 13, 8 M, 15 289 M, 13, 1 L, 15, 16 L, 16, 1 L, 1009 L, 7, 1 L, 5, 4 M, 4, 1 L, 7, 5 49 789 L, 19, 3 L, 13, 10 M, 10, 3 L, 2089 L, 1, 3 L, 5, 8 L, 8, 3 M, 1, 5 49 801 L, 25, 11 M, 3, 8 L, 8, 11 L, 25, 21 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 55 117 M, 1, 6 L, 13, 19 L, 19, 6 L, 19, 6 L, 10, 10 M, 10, 10, 10 M, 10, 10, 10 M, 10,	
373 L, 7, 2 L, 3, 1 M, 1, 2 L, 7, 3 34 449 M, 13, 1 L, 15, 16 L, 16, 1 L, 1009 L, 7, 1 L, 5, 4 M, 4, 1 L, 7, 5 49 789 L, 19, 3 L, 13, 10 M, 10, 3 L, 2089 L, 1, 3 L, 5, 8 L, 8, 3 M, 1, 5 49 801 L, 25, 11 M, 3, 8 L, 8, 11 L, 25, 21 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 55 17 M, 1, 6 L, 13, 19 L, 19, 6 L, 19, 6 L, 19, 6 L, 19, 10 L,	17, 1
1 009 L, 7, 1 L, 5, 4 M, 4, 1 L, 7, 5 49 789 L, 19, 3 L, 13, 10 M, 10, 3 L, 2 089 L, 1, 3 L, 5, 8 L, 8, 3 M, 1, 5 49 801 L, 25, 11 M, 3, 8 L, 8, 11 L, 2 161 L, 11, 5 M, 1, 4 L, 4, 5 L, 11, 1 5 3 349 L, 13, 9 L, 5, 14 L, 14, 9 M, 2 5 2 1 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 5 5 1 1 7 M, 1, 6 L, 13, 19 L, 19, 6 L, 17, 18 1 L, 18 1	11, 5
2 089 L, 1, 3 L, 5, 8 L, 8, 3 M, 1, 5 49 801 L, 25, 11 M, 3, 8 L, 8, 11 L, 2 161 L, 11, 5 M, 1, 4 L, 4, 5 L, 11, 1 5 3 349 L, 13, 9 L, 5, 14 L, 14, 9 M, 2 5 2 1 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 5 5 1 1 7 M, 1, 6 L, 13, 19 L, 19, 6 L, 19, 6 L, 10, 10 M	13, 15
2 089 L, 1, 3 L, 5, 8 L, 8, 3 M, 1, 5 49 801 L, 25, 11 M, 3, 8 L, 8, 11 L, 2 161 L, 11, 5 M, 1, 4 L, 4, 5 L, 11, 1 5 3 349 L, 13, 9 L, 5, 14 L, 14, 9 M, 2 5 2 1 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 5 5 1 1 7 M, 1, 6 L, 13, 19 L, 19, 6 L, 19, 6 L, 10, 10 M	19, 13
2 161 L, 11, 5 M, 1, 4 L, 4, 5 L, 11, 1 51 349 L, 13, 9 L, 5, 14 L, 14, 9 M, 2 521 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 55 117 M, 1, 6 L, 13, 19 L, 19, 6 L, 19,	
2 521 L, 5, 4 L, 3, 7 L, 7, 4 M, 5, 3 55 117 M, 1, 6 L, 13, 19 L, 19, 6 L, 10 M	13, 5
	1,13
	17, 3
4 549 L, 13, 6 M, 1, 5 L, 5, 6 L, 13, 1 63 361 L, 25, 7 L, 11, 4 M, 4, 7 L,	25, 11
4 789 L, 11, 2 L, 7, 5 M, 5, 2 L, 11, 7 66 697 L, 11, 9 L, 7, 16 L, 16, 9 M,	11, 7
$\begin{bmatrix} 4 & 769 \\ 6 & 673 \\ \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 1 & 7 \\ \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 4 \\ \end{bmatrix} $	19, 15
7171 L, 1 , 4 L, 7 , 11 L, 11 , 4 M, 1 , 7 , 71413 M, 13 , 2 L, 17 , 19 L, 19 , 2 L, 17 , 19 L, 19 , 2 L, 17 , 19 L, 19 ,	13, 17
8 389 L, 17, 6 M, 5, 1 L, 1, 6 L, 17, 5 71 809 M, 11, 3 L, 17, 20 L, 20, 3 L,	11, 17
7 ₁ 881 L, 23, 5 L, 13, 8M, 8, 5 L	28, 13
$\begin{bmatrix} 11 & 197 \end{bmatrix} L$, 13, 2 L, 9, 7 M, 7, 2 L, 13, 9 $\begin{bmatrix} 73 & 609 \end{bmatrix} L$, 29, 12 M, 5, 7 L, 7, 12 L,	29, 5
$\begin{bmatrix} 11 & 257 & L & 13 & 7 & L & 1 & 8 & L & 8 & 7 & M & 13 & 1 & 74 & 929 & L & 1 & 7 & L & 13 & 20 & L & 20 & 7 & M & 12 & 12 & 13 & 13 & 12 & 13 & 12 & 13 & 13$	1,13
11 833 M, 1, 4 L, 9, 13 L, 13, 4 L, 1, 9 78 721 L, 5, 8 L, 11, 19 L, 19, 8 M	5, 11
12 637 M, 7, 2 L, 11, 13 L, 13, 2 L, 7, 11 80 557 L, 19, 11 L, 3, 14 L, 14, 11 M	19, 3
14 029 L, 7, 6 L, 5, 11 L, 11, 6 M, 7, 5 85 381 L, 25, 6 L, 13, 7 M, 7, 6 L	
14 737 L, 17, 8 M, 1, 7 L, 7, 8 L, 17, 1 88 741 M, 7, 5 L, 17, 22 L, 22, 5 L	
16 069 L, 11, 7 L, 3, 10 L, 10, 7 M, 11, 3 90 697 L, 23, 12 L, 1, 13 L, 13, 12 M	23, 1
17 989 L, 13, 1 L, 11, 10 M, 10, 1 L, 13, 11 91 573 L, 29, 9 L, 11, 2 M, 2, 9 L	29, 11
20 101 L, 5, 6 L, 7, 13 L, 13, 6 M, 5, 7 92 941 L, 13, 10 L, 7, 17 L, 17, 10 M	13, 7
23 833 L, 19, 9 M, 1, 8 L, 8, 9 L, 19, 1 97 789 L, 29, 13 M, 3, 10 L, 10, 13 L	
	43, 0

Prime Aurifeuillian Factors p = L or M of Sextans (S', S'', T', T'').

(Continued from page 263.)

p		$\begin{bmatrix} S^{\prime\prime} & T^{\prime} \\ \xi^{\prime\prime}, \eta^{\prime\prime} \end{bmatrix} = t^{\prime}$, p	S' ξ', η'	S'' ξ'', η''	T' t', u'	$\mathbf{T}^{\prime\prime}$ $t^{\prime\prime},u^{\prime\prime}$
99 529 L, 99 709 M, 101 209 L, 106 861 M, 118 369 L, 124 021 L, 135 301 L, 135 577 L, 149 113 L, 155 809 L, 169 129 M, 177 109 L, 178 021 L, 178 693 M, 186 841 L, 188 941 L, 188 941 L, 189 517 L, 196 501 L, 223 549 L, 235 069 L, 235 069 L, 237 157 M, 244 669 M, 246 217 L, 263 953 M, 244 669 M, 246 217 L, 263 953 M, 249 649 L, 307 261 L, 316 201 L, 316 201 L, 316 201 L, 325 009 L, 333 049 M, 348 949 L, 335 261 L, 335 261 L, 335 989 L, 335 6989 L,	31, 13 M, 1, 7 L, 17, 11 L, 5, 6 L, 29, 8 L, 31, 14 M, 5, 9 L, 13, 11 L, 23, 2 L, 13, 11 L, 23, 2 L, 13, 11 L, 24, 2 L, 15, 14 M, 7, 10 L, 17, 14 M, 17, 10 L, 19, 1 L, 25, 1 L, 17, 3 L, 28, 14 L, 17, 3 L, 21, 14 L, 17, 3 L, 21, 14 L, 17, 18 L, 17, 18 L, 1, 11 L, 1, 12 L, 1, 12 L, 1, 12 L, 1, 12 L, 1, 1, 12 L, 1	5, 8 L, 8 l5, 22 L, 22 l7, 23 l, 23 l, 23 l, 23 l, 23 l1, 24 l1, 25 l, 25 l2, 25 l4, 26 l2, 26 l3, 25 l2, 25 l3, 22 l2, 22 l3, 26 l2, 26 l2, 26 l2, 26 l3, 25 l2, 25 l3, 26 l2, 26 l2, 26 l3, 25 l2, 25 l3, 26 l2, 26 l3, 2	7 L, 31, 5, 7, 11 L, 35, 13, 14 L, 37, 14 L, 37, 15, 16 L, 37, 17, 11 L, 35, 13, 18 L, 37, 11 L, 35, 13 L, 37, 14 L, 37, 11 L, 35, 13 L, 37, 17, 14 M, 23, 5, 2 L, 19, 23, 12 M, 13, 17, 14 M, 23, 5, 2 L, 19, 23, 12 M, 13, 17, 18 M, 17, 9, 9 L, 1, 19, 16 L, 41, 9, 9 L, 1, 19, 16 L, 41, 9, 16 L, 41, 9, 16 L, 41, 15, 15 M, 23, 7, 11 L, 35, 35, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37	400 069 411 241 423 097 443 629 445 141 451 897 459 961 469 153 489 061 500 713 512 269 557 249 520 609 558 457 575 077 583 753 594 829 630 901 668 509 715 777 723 181 729 457 746 041 753 001 756 601 760 993 805 573 808 837 812 137 826 621 845 809 864 361 870 901 922 513 951 061 952 873 970 969	\$\xi\$, \text{7} \\ \text{L}, \text{37}, 9 \\ \text{M}, 5, 9 \\ \text{L}, \text{31}, 4 \\ \text{L}, \text{33}, 18 \\ \text{M}, \text{17}, \text{18} \\ \text{M}, \text{18}, \text{18} \\ \text{L}, \text{18} \\ \text{L},	L, 19, 10 M L, 23, 32 I L, 23, 32 I L, 23, 31 M M, 5, 14 I L, 1, 19 I L, 27, 31 I L, 17, 32 I L, 17, 4 M L, 11, 26 I L, 19, 8 M L, 25, 34 I L, 9, 25 I M, 15, 1 I L, 19, 7 M L, 27, 26 M M, 15, 2 I L, 27, 26 M M, 15, 2 I L, 27, 26 M L, 23, 16 M M, 15, 2 I L, 27, 26 M L, 27, 27 I L, 27, 37 I L, 27, 37 I L, 11, 28 I L, 27, 23 M L, 31, 37 I L, 27, 23 M L, 31, 37 I L, 27, 22 M L, 31, 37 I L, 21, 8 M L, 31, 37 I L, 27, 22 M L, 31, 37 I L, 11, 38 I L, 11, 28 I L, 17, 20 L L, 21, 11 M L, 23, 11 M L, 23, 11 M L, 23, 11 M L, 23, 11 M L, 31, 40 L	I, 10, 9 J, 32, 9 I, 19, 4 J, 14, 19 J, 19, 18 J, 19, 18 J, 19, 18 J, 26, 15 I, 4, 18 J, 26, 15 I, 8, 11 J, 34, 9 J, 25, 16 J, 7, 12 I, 26, 15 I, 1, 16 I, 7, 12 I, 26, 17 J, 25, 18 J, 27, 20 I, 28, 17 J, 31, 2 J, 28, 17 J, 37, 8 J, 37, 8 J, 37, 8 J, 37, 10 J, 28, 17 J, 37, 6 J, 28, 17 J, 28, 19 J,	L, 37, 19 L, 31, 23 L, 31, 23 L, 33, 5 M, 35, 1 L, 19, 27 L, 17, 27 L, 43, 17 M, 19, 11 L, 41, 19 L, 7, 25 M, 23, 9 L, 47, 15 L, 48, 19 L, 29, 27 L, 37, 23 L, 49, 15 L, 25, 29 M, 29, 7 L, 13, 29 L, 7, 27 M, 23, 11 L, 53, 13 L, 35, 27 M, 37, 3 L, 31, 29 L, 19, 31 M, 31, 7 L, 47, 21 L, 47, 21 L, 47, 21 L, 37, 27 L, 25, 41 L, 55, 13 M, 11, 19 M, 29, 9 L, 47, 23 L, 13, 31

Product Cubic Forms, N = N1 N2 N3 ... Nr.

Two-factor forms, $\mathbf{N} = X^3 + Y^3 = N_1 \cdot N_2$; $N_1 = x_1^3 + y_1^3$, $N_2 = x_2^3 + y_2^3$. $Y = \frac{1}{3}(N_1 - 1) = -y_2, \quad x_2 + y_2 = 1, \quad X - 2Y = 1.$

x_1, y_1	x_2 , y_2	X , Y	x_1, y_1	x_2 ,	<i>y</i> ₂	X ,	$\sqrt{2}\mathbf{Y}$
5, -1 3, -2 6, -2 4, -3 7, -3 5, -4 8, -4 6, -5 12, -5 7, -6 10, -6	$ \begin{array}{c} 7, -6 \\ 70, -69 \\ 13, -12 \\ 106, -105 \\ 21, -20 \\ 150, -149 \\ 31, -30 \\ 202, -201 \\ 535, -534 \\ 43, -42 \\ 262, -261 \\ 661, -660 \\ 57, -56 \\ 73, -72 \\ \end{array} $	43, 21 229, 114 5, 2 83, 41 13, 6 139, 69 25, 12 211, 105 41, 20 299, 149 61, 30 403, 201 1069, 534 85, 42 523, 261 1321, 660 113, 56 145, 72 181, 90	5, 5 8, 5 11, 5 7, 6 10, 6 13, 6 9, 7 8, 8 10, 9 19, 9 25, 12		$\begin{array}{c} -72 \\ -5 \\ -44 \\ -30 \\ -123 \\ -93 \\ -264 \\ -83 \\ -212 \\ -485 \\ -186 \\ -405 \\ -804 \\ -357 \\ -341 \\ -576 \\ -2529 \\ \end{array}$	89, 61, 247, 187, 529, 167, 425, 971, 373, 811, 1609, 715, 683,	30 123 93 264 83 212 485 186 405 804 357 341 52529 5784

Three-factor forms, $\mathbf{N} = X^3 + Y^3 = N_1 N_2 N_3$; $N_r = x_r^3 + y_r^3$. From above form, $L = N_1N_2$, $\mathbf{N} = LN_3 = N_1N_2N_3$.

x_1, y_1	x_2, y_2	x_3 , y_3	X , Y
$\frac{3}{3}, -2$ $\frac{1}{3}$	$\begin{bmatrix} 6, & -5 \\ 7, & -6 \\ 10, & -9 \end{bmatrix}$	$\begin{array}{r} 45, -44 \\ 486, -485 \\ 805, -804 \\ 2530, -2529 \\ 5785, -5784 \end{array}$	89, 44 971, 485 1609, 804 5059, 2529 11069, 5784

Four-factor forms, $\mathbf{N} = X^3 + Y^3 = N_1 N_2 N_3 N_4$; $N_r = x_r^3 + y_r^3$. $From \ above \ form, \ \ L_1 = N_1 N_2, \ \ L_2 = L_1 N_3, \ \ \boldsymbol{N} = L_2 N_4 = N_1 N_2 N_3 N_4.$

Quarto and Half-Quarto Cubans, $[N = N_{iii} = N_{iv} \text{ or } \frac{1}{2}N_{iv}].$

$$N_1 = N_{iv} = N_{iii}; \quad N_2 = \frac{1}{2}N_{iv} = N_{iii};$$

 $N_{iv} = x^4 + y^4, \quad N_{iii} = (x'^3 \sim y'^3) \div (x' \sim y')^*$

	N_1	x, y	x' ,	y'	N_2	x, y	x' ,	y'
Proper.	97 337 1297 3697 4177 6577	3, 2 3, 4 1, 6 7, 6 3, 8 9, 2	8, 13, 32, 57, 53, 56,	3 8 7 7 19 37	313 1201 7321 8521	5, 1 7, 1 11, 1 11, 7	16, 21, 71, 80,	3 19 24 21
	73.409	,	$\begin{cases} 112, \\ 143, \end{cases}$	87 49	73.2017	23, 11	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15 104
Improper.	17 ² .673 7 ⁴ ·97	21, 2 21, 14	17.21, 1 {477, 293,	7.8 11 264	17 ² .1249 7 ⁴ ·313	29, 11 35, 7	17.27, (789, (576,	17.13 139 421

Duo-Cubics, $N = N_3 = N_2$.

 ${\rm N} \ = x^3 + y^3 = {\rm L.M} \ ; \ {\rm N}_2 = t^2 + u^2 \ ; \ {\rm L} = x + y = l^2 \ {\rm or} \ (\alpha^2 + \beta^2) \ ; \ {\rm M} = x^2 - xy + y^2 = \alpha^2 + b^2.$

			\mathbf{L}'	$= \xi^2 -$	$2\eta^2 =$	= x + y		$L^{\prime\prime} = 2\eta^2 - \xi^2 = x + y$						
L = 1	ξ, η x, y t, u N	3, 5, 5, 61	$\frac{2}{4}$	145, 145,	204	,	70 4900 6930 4701			$\frac{7}{24}$, 24 , 180	5 25 35	41, 840, 840, 2119	841 1189	
$L = 7^2$	ξ, η x, y t, u N	9, 65, 7.65, 7 49·55		85, 7.85,	$\begin{array}{c} \overline{36} \\ 7.66 \end{array}$	949, 7.949, 7	7.1290	24, 7.24,	$\frac{25}{7.5}$	$ \begin{array}{c} 17, \\ \hline 120, \\ 7.120, 7\\ 49.63. \end{array} $.221		289 7.391	
L = 17	ξ, η α, y t, u N	5, 21, (19, 61, 17.54	2 4 94 74	· ·	$\overline{16}$	273, 1199, 1745,	$ \begin{array}{r} 16 \\ \hline 256 \\ 1460 \\ 724 \\ 9953 \end{array} $	1, 8, 29, 35,	4	9, 32, 65, 191,	7 • 49 284 222	251, 581,	11 121 764 556 3041	

	L' =	$x+y=\xi^2$	$-2\eta^2$	$L'' = x + y = 2\eta^2 - \xi^2$					
L	x , y ;	t ,	rı	x ,	y ;	t ,	rı		
$ \begin{array}{c c} 1 \\ l^2 \\ \alpha^2 + \beta^2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* ·	$\xi\eta$ $l\xi\eta$ $\beta x \Rightarrow a\xi\eta$		η^2 ;		ξη <i>lξη</i> βx ≈ αξη		

Duo-Cubics,
$$N = N_3 = N_2$$
.

$$N_3 = x^3 + y^3 = L.M; N_2 = t^2 + u^2;$$

 $L = x + y = l^2 \text{ or } (\alpha^2 + \beta^2); \quad M = x^2 + xy + y^2 = a^2 + b^2.$

$\mathbf{L}' = 3\eta^2 - \xi^2 = x$	$\mathbf{L}' = 3\eta^2 - \xi^2 = x + y$				
$\mathbf{L}' x , y; t ,$	u				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$2 - \xi^2, 3\eta^2;$ 2	,				

L'=1	ξ, η x, y t, u N	2, 1 4, $\frac{1}{3}$ 1, 6 37	7, 49, 1, 7057	4 48 84	26, 676, 1, 136890	15 675 1170	L' = 2	ξ, η x, y t, u N	1, 1, 1, 2.13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{5}$, 27 3, 47	19, 361, 625, 2.393	629
L' = 13	ξ, η x, y t, u N	$ \begin{array}{c} 4, \ 1\\ 16, \ 3\\ (15, 62)\\ (63, 10)\\ 13 \cdot 3 \cdot 3 \end{array} $	5, 25, 21, 99,		11, 121, 357, 435,	$\frac{6}{108}$ 620 568 673	L' = 26	ξ, η x, y t, u N	$ \begin{array}{c c} 1, \\ \hline{1}, \\ 19, 13\\ 71, 15\\ 26.75 \end{array} $	$\begin{bmatrix} 27 & \bar{4} \\ 39 & 49 \\ 21 & 55 \end{bmatrix}$.9, 75 9, 235	$\begin{vmatrix} 11, \\ 121, \\ 101, \\ 361, \\ 26.54 \end{vmatrix}$	1181 1129
$L' = 11^2$	ξ, η x, y t, u N		13, 169, 11.121, 11 121.389		14, 196, 11.121, 1								

$L'' = 2\xi^2 + 3\eta^2 = x + y = a^2 + \beta^2$ $x = \xi^2 + 3\eta^2$ $y = \xi^2$ $t = a\alpha + \beta b, u = \beta a \Rightarrow ab$	$L''' = \xi^2 + 6\eta^2 = x + y = \alpha^2 + \beta^2$ $x = \xi^2 - 3\eta^2$ $y = 3\eta^2$ $b = 3\xi\eta$ $t = \alpha\alpha + \beta b, u = \beta\alpha \neq ab$
$L'' \mid \xi, \eta \mid x, y \mid a, b \mid t, u \mid N$	$L^{\prime\prime\prime} \left \xi, \eta \right x, y \left a, b \right t, u \qquad N$
5 1, 1 4, 1 2, 3 (1, 8) 5.13 29 1, 3 28, 1 26, 9 (97, 112) 29.757	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Four-factor Bin-Aurifeuillians, (N).

$$N = x^4 + 4y^4 = X^4 - x'^4 = PQRS.$$

$$\begin{array}{lll} {\rm P} = {\rm X} - x', & {\rm Q} = {\rm X} + x', & {\rm R} = r - s, & {\rm S} = r + s, & s = x' + 2y, \\ x = \frac{1}{2}\eta^4 - \xi^4, & y = \xi^3\eta, & {\rm X} = \frac{1}{2}\eta^4 + \xi^4, & x' = \xi\eta^3, & r = {\rm X} + 2\xi^2\eta^2. \\ & [\xi = 1.] \end{array}$$

Ω	23 23 13.73 13.73 5.541 6221 13.7409 37409 5.11801 73.1217 5.11801 73.1217 73.121
R.	5.13.137 2.37.113 5.13.137 2.25.73 2.25.73 2.25.73 2.25.73 2.25.73 13.29.193 5.21481 89.1721 13.724109 37.74461 29.27437 13.13.5861 17.7749 13.13.5861 17.7749 13.15541 5.77113 5.77.101.173 101.17749 13.15541 5.704101 5.704
, C	173 13.197 13.197 1.353 12.097 12.1097 5.73.101 88001 13.9829 88001 13.9829 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 5.29.6197 13.9899 15.277 17.115249 16.297 17.115249 18.767
P ,	23.441 433. 4401 4401 401 401 401 5.3393 13.29077 13.29077 13.29077 13.29077 13.29077 13.29077 13.29077 13.29073 13.29077 13.29077 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.29073 13.39073 13.39073 13.39073 13.39073 13.39073 13.39073 13.39073 13.39073 13.39073 13.490841 13.490841
, x	8 116 11000 1728 2744 2744 4096 8000 10648 13824 17576 21952 270000 270000 27000 27000 27000 27000 27000 27000 27000 27000 27000 27000 270000 27000 27000 27000 27000 27000 27000 27000 27000 27000 270000 27000 2
X	9, 129, 649, 5049, 5049, 5049, 5049, 10269, 10269, 32769, 82489, 80001, 117129, 1165889, 228489, 80001, 54289, 668169, 839809, 1280001, 1280001, 1255849, 12568489, 1258869, 1258869, 1258869, 1258869, 12588869, 12588869, 12588869, 12588869, 12588869, 12588869, 12588869, 12588869, 125888869, 12588869, 125888869, 1258888869, 12588888869, 125888888888888888888888888888888888888
y	040000000000000000000000000000000000000
x,	7, 127, 647, 2047, 4999, 10367, 19207, 32767, 52487, 72989, 117127, 165887, 228487, 307327, 839807, 187999, 117999, 1179999, 117999,
ξ, η	1, 1

Four-factor Bin-Aurifeuillians, (N).

$$N = x^4 + 4y^4 = X^4 - x'^4 = PQRS.$$

$$\begin{array}{lll} {\rm P} = {\rm X} - x', & {\rm Q} = {\rm X} + x', & {\rm R} = r - s, & {\rm S} = r + s, & s = x' + 2y, \\ x = \eta^4 - 2\xi^4, & y = 2\xi^3\eta, & {\rm X} = \eta^4 + 2\xi^4, & x' = 2\xi\bar{\eta}^3, & r = {\rm X} + 4\xi^2\eta^2. \\ & [\xi = 1.] \end{array}$$

	_	-	_	_	_		-	_	-	_	_		_	_		_						_		_	_	-	_	
ďΩ	13;	5.37;	: 266	3313;	17.17.29:	. I.	5.6737:	58337;	94573;	13.11197;	214853;	5.29.2113;	53.8009;	13.37.1193;	797.953:	29.101.337:	K.252457:	1591417	1981093;	2438321;	1220.2417:	5.17.42181	13.17.19417;	1409.3617:	: 1006009	29.242797;	.13.101.1249;	1361.6977;
R,	# 6 H	53;	4573	5.13.29;	5303:	12421	24793;	97.461;	5.14957;	117973;	349.509;	17.15749;	13.17.1637;	5.29.3413;	277.2389:	80.0740:	13.86021:	29.48953;	5.229.1553;	173.12721;	2694481:	157.20809:	3926297;	5.37.25301:	29.190997;	13.500777;	. H	7
٥,	70	137;	877;	3089 ;	13.617;	5.3461;	32957;	181.317;	277.337;	17.37.229;	5.13.29.113;	37.8221;	101.4177;	17.33577;	73.10357;	5.353.557;	137.0181:	13.122029;	53.37273;	97.25073;	5.397.1493:	20.123373:	53.80809;	13.89.4397;	6000101;	5.1406101;	7.17.29.977;	29.349.937;
Ъ,	I ,	29;	13.29;	17.101;	5.1021;	11981;	24169;	17.29.89;	13.5669;	5.23321;	175961;	197.1297;	359377;	492077;	5.131701;	13.66457;	1114049;	181.7817;	29.61133;	5.438961;	17.158113;	13.250753:	3918377;	4672037;	5.17.65053;	37.175673;	7592729; 1	37.238321;
x'	22	54	250	989	1458	2992	4394	6750	9856	13718	18522	24334	31250	39366	48778	59582	71874	85750	101306	118638	137842	159014	182250	207646	235298	265302	297754	332750
Х,	ස	83,	627,	2403,	6563,	14643,	28563,	50627,	83523,	130323,	194483,	279843,	390627,	531443,	707283,	923523,	1185923,	1500627,	1874163,	2313443,	2825763,	3418803,	4100627,	4879683,	5764803,	6765203,		9150627,
y	01	9	10	14	18	22	26	30	34	38	42	46	20	54	58	62	99	20	74	78	82	98	90	94	98	105	106	110
, x	-1,	79,	623,	2399,	6559,	14639,	28559,	50623,	83519,	130319,	194479,	279839,	390623,	531439,	707279,	923519,	1185919,	1500623,	1874159,	2313439,	2825759,	3418799,	4100623,	4879679,	5764799,	6765199,	7890479,	9150623,
ξ, η	1, 1	י כה	5	-	6	11	13	15	17	19	21	23	25	22	53	31	33	35	37	33	41	43	45	47	49	51	53	1,55

Four-factor Bin-Aurifeuillians, (N).

$$N = x^4 + 4y^4 = X^4 - x^{4} = PQRS.$$

$$\begin{array}{lll} {\rm P}={\rm X}-x', & {\rm Q}={\rm X}+x', & {\rm R}=r-s, & {\rm S}=r+s, & s=x'+2y, \\ x=2\eta^4-\xi^4, & y=2\xi\eta^3, & {\rm X}=2\eta^4+\xi^4, & x'=2\xi^3\eta, & r={\rm X}+4\xi^2\eta^2. \\ & [\xi=1,] \end{array}$$

		• •	• •	• •	• •	• •	. 6				••	• •	• •	• •	••	• •	• •	••	• •	••	• •		
ω	5.17	29.29	3613	10513	24421	5.97.101	13.17.401	148513	234613	353641	5.89.1153	13.29.1913	987013	193.6841	1229.1409	5.446477	2834581	17.17.15817	4395613	13.414037	5.29.45013	CI.	181.51673
R ,	13;	313;	1861;	5.1277;	16381;	13.37.73;	29.2297;	29.3989;	5.53.709;	17.17033;	427813;	181.3373;	37.89.257;	5.13.17609;	1515541;	17.17.17.401;	29.113.769;	53.59957;	5.13.60869;	101.48221;	1553.3821;	7163113;	1061.8081;
ر ۵	37;	521;	5.521;	8209;	20021;	17.2441;	101.761;	5.13.2017;	13.29.557;	320041;	468557;	663601;	5.17.10753;	1229369;	677.2393;	73.28729;	1613.1657;	5.89.7549;	4170349;	89.57529;	13.478729;	13.576637;	5.17.137.769;
Ъ,	29;	5.101;	29.89;	13.17.37;	13.29.53;	181.229;	5.15361;	131041;	209917;	53.6039;	17.17.1621;	5.132701;	709.1289;	1229257;	1619941;	461.4549;	5.13.41117;	13.233.1109;	1009.4133;	29.176549;	17.36677;	5.1499221;	809.11069;
x'	4	00	12	16	20	24	28	32	36	40	44	48	52	56	09	64	89	72	94	80	84	88	92
, ×	33,	513,	2593,	8193,	20001,	41473,	76833,	131073,	209953,	320001,	468513,	663553,	913953,	1229313,	1620001,	2097153,	2672673,	3359233,	4170273,	5120001,	6223393,	7496193,	8954913,
y	16	128	432	1024	2000	3456	5488	8192	11664	16000	21296	27648	35152	43904	54000	65536	78608	93312	109744	128000	148176	170368	194672
, 8	31,	511,	2591,	8191,	19999,	41471,	76831,	131071,	209951,	319999,	468511,	663551,	913951,	1229311,	1619999,	2097151,	2672671,	3359231,	4170271,	5119999,	6223391,		8954911,
ξ, η	1, 2	4	9	00	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	1,46

Four-factor Bin Aurifeuillians, (N).

$$N = x^4 + 4y^4 = X^4 - {x'}^4 = PQRS.$$

$$\begin{array}{lll} {\rm P} = {\rm X} - x', & {\rm Q} = {\rm X} + x', & {\rm R} = r - s, & {\rm S} = r + s, & s = x' + 2y, \\ x = 2\eta^4 - \xi^4, & y = 2\xi\eta^3, & {\rm X} = 2\eta^4 + \xi^4, & x' = 2\xi^3\eta, & r = {\rm X} + 4\xi^2\eta^2. \\ & [\xi = 1.] \end{array}$$

		_			_	_	_	_					_	_	_		_						
ß	13;	313;	1861;	5.1277;	16381;	13.37.73;	29.2297;	29.3989;	5.53.709;	17.17033;	427813;	181.3373:	37.89.257;	5.13.17609;	1515541;	17.17.17.401;	29.113.769;	53.59957;	5.13.60869;	101.48221;	1553.3821;	7163113;	1061.8081;
R ,	ı.	5.17;	29.29;	3613;	10513;	24421;	5.97.101;	13.17.401;	148513;	234613;	353641;	5.89.1153;	13.29.1913;	987013;	193.6841;	1229.1409;1	5.446477;	2834581;	17.208889;	4395613;	13.13.31849;	5.29.45013;	29.270509;
٥,	r.c	13.13;	13.97;	4817;	17.773;	5.5861;	57149;	101281;	167077;	29.89.101;	5.77801;	29.19301;	781301;	29.36653;	13.17.37.173;	5.13.157.181;	53-44753;	3001321;	3748397;	37.12553;	5.1130321;	17.53.7589;	8201341;
Ъ,	H	157;	17.73;	4789;	5.2621;	29.1009;	57097;	101221;	167009;	5.52121;	13.29917;	13.43049;	17.45953;	97.10957;	5.101.2801;	29.63689;	193.12289;	29.37.2797;	1249.3001;	5.17.29.1877;	73.77417;	113.60509;	37.221653;
x'	22	9	10	14	18	22	97	30	34	38	42	46	20	54	28	62	99	20	74	28	82	98	06
, X	œ	163,	1251,	4803,	13123,	29283,	57123,	101251,	167043,	260643,	388963,	559683,	781251,	1062883,	1414563,	1847043,	2371843,	3001251,	3748323,	4626883,	5651523,	6837603,	8201251,
'n	2	54	250	989	1458	2992	4394	6750	9856	13718	18522	24334	31250	39366	48778	59582	71874	85750	101306	118638	137842	159014	182250
, x	1,	161,	1249,	4801,					167041,	260641,		559681,	781249,	1062881,	1414561,		2371841,	3001249,	3748321,	4626881,			8201249,
ξ, η	1, 1	ග	5	<u></u>	6	11	13	15	17	19	21	23	25	27	29	31	99	35	37	33	41	43	1,45

Product Quartans, $\mathbf{N}_{iv} = \Pi(N_{iv})$.

 $= (X, Y) = (X^4 + Y^4); \quad \frac{1}{2}\mathbf{N} = \left\{X, Y\right\} = \frac{1}{2}\left\{X^4 + Y^4\right\}; \quad N_r = (x_r, y_r) = (x_r^4 + y_r^4); \quad \frac{1}{2}N_r = \left\{x_r, y_r\right\} = \frac{1}{2}\left\{x_r^4 + y_r^4\right\}.$ Z

(X, Y) = (13, 8) =	N 17:17:13:	11 11	$(x_1, y_1) \cdot (x_2, y_2)$ (1, 2) · (5, 6)	(X, Y) = (15, 4) = 4	N = 41; 17.73; =	${x_1, y_1} \cdot {x_2, y_2}$ ${1, 3} \cdot {7, 3}$
(X, Y) = (23, 14) = (27, 22) =	N 97; 17.193; 17; 73.617;	0 0 0	$(x_1, y_1) \cdot \{x_2, y_2\} $ $(3, 2) \cdot \{1, 9\} $ $(1, 2) \cdot \{17, 9\} $	$\{X, Y\} = \{33, 17\} = \dots$	$\{X, Y\} = \frac{1}{2}N = 33, 17\} = 41, 113.137; = $	$ \begin{cases} x_1, y_1 \} \cdot \{x_2, y_2 \} \\ \{1, 3\} \cdot \{13, 7\} \end{cases} $
(X, Y) = (13, 2) = (129, 2) = 4	N 17.41.41; 1.41.257.641;		$(X, Y) = \mathbf{N} = \Pi(x_1, y_1) \cdot \Pi\{x_2, y_2\} $ $(13, 2) = 17, 41, 41; = (1, 2) \cdot \{1, 3\} \cdot \{1, 3\} $ $(129, 2) = 41, 41, 257, 641; = (1, 4), (5, 2), \{1, 3\} \cdot \{1, 3\} $	(X, Y) = $(37, 21) = 1$	N = (7:17:17:449: = (1)	$(X, Y) = \mathbf{N} = \Pi(x_1, y_1) \cdot \Pi\{x_2, y_2\} $ $(37, 21) = 17; 17; 17; 449; = (1, 2), (1, 2), \{11, 5\}$

Dimorph Quarten Products, $\Pi(N_{iv}) = \Pi(N'_{iv})$.

 $N_r = (x_r, y_r) = (x_r^4 + y_r^4), \quad N_r' = (x_r', y_r') = (x_r' + y_r'); \quad \frac{1}{2}N_r = \left\{x_r, y_r\right\} = \frac{1}{2}\left\{x_r' + y_r'\right\}, \quad \frac{1}{2}N_r' = \left\{x_r', y_r'\right\} = \frac{1}{2}\left\{x_r' + y_r'\right\}.$

$(3,2) \cdot (15,4) = 17.41 \cdot 73.97; = (1,2) \cdot (19,20) $ $(1,2) \cdot \{23,5\} = 17.17 \cdot 73.113; = (5,6) \cdot \{7,3\} $ $(5,12) \cdot \{7,5\} = 17.41 \cdot 89.521; = (1,3) \cdot \{33,2\} $ $(x_1, y_1) \cdot (x_2, y_2) = $ $(x_2, y_1) \cdot \{x_2, y_2\} = (x_1, y_1) \cdot \{x_2, y_2\} $ $(3,4) \cdot \{57,99\} = 17.257.337.1289; = (1,4) \cdot \{61,3\} $
$(x_1,y_1)\cdot(x_2,y_2) = \mathbf{N} = (x_1,y_1)\cdot(x_2,y_2) ((x_1,y_1)\cdot(x_2,y_2) = \mathbf{N} = (x_1,y_1)\cdot(x_2,y_2)$

Polymorph Sum of three 4th-powers, N = N' = N'' = &c.

$$\begin{split} \mathbf{N} &= x^4 + y^4 + z^4 = 2u^2, \quad \mathbf{N}' = {x'}^4 + {y'}^4 + {z'}^4 = 2{u'}^2, \quad \mathbf{N}'' = {x''}^4 + {y''}^4 + {z''}^4 = 2{u''}^2 = \&c. \\ u &= \mathbf{A}^2 + 3\mathbf{B}^2, \quad u' = \mathbf{A}'^2 + 3\mathbf{B}'^2, \quad u'' = \mathbf{A}''^2 + 3\mathbf{B}''^2 = \&c.; \quad u = u' = u'' = \&c. = \mathbf{N}_{iii}. \\ x &= \mathbf{B} \sim \mathbf{A}, \quad y = \mathbf{B} + \mathbf{A}, \quad z = 2\mathbf{B}; \quad x' = \mathbf{B}' \sim \mathbf{A}', \quad y' = \mathbf{B}' + \mathbf{A}', \quad z' = 2\mathbf{B}'; \quad \&c. \end{split}$$

$u = N_{iii}$ A, B x, y, z	$u = N_{iii}$	А, В	x , y , z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1729 = 7.13.19	$\begin{pmatrix} 41, & 4\\ 31, & 16\\ 23, & 20\\ & 1, & 24\\ & 44, & 15 \end{pmatrix}$	15, 47, 32
$\begin{bmatrix} 217 & = 7.31 & 5.8 & 3.13, 16 \\ 247 & = 13.19 & 10.7 & 3.17, 14 \\ 2.50 & = 7.27 & 16. & 1 & 15.17, 2 \end{bmatrix}$	2611 = 7.373	$\begin{pmatrix} 32, 23 \\ 46, 131 \\ 118, 115 \\ 82, 125 \end{pmatrix}$	9, 55, 46 85,177,262 3,233,230
$ 301 = 7.43 \begin{pmatrix} 4, & 9 & 5, 13, 18 \\ 17, & 2 & 15, 19, & 4 \\ 1, & 10 & 9, 11, 20 \end{pmatrix} $	53599 = 7.13.19.31-	134, 109 226, 29 214, 51	25, 243, 218 197, 255, 58 163, 265, 102 173, 263, 90

 $2 \, \mathrm{N}$

Dimorph Sum of four or five 4-th powers.

$$N_1 = x_1^4 + y_1^4 + z_1^4 = {x_1'}^4 + {y_1'}^4 + z_1'^4 = N_1';$$
 For u_1, u_2 see Table at foot of $N_2 = x_2^4 + y_2^4 + z_2^4 = {x_2'}^4 + {y_2'}^4 + {z_2'}^4 = N_2';$ previous page.

$$\mathbf{N} = \mathbf{N}_1 + \mathbf{N}_2 = \mathbf{\Sigma} \left(x^i \right) = \mathbf{\Sigma} \left(x^i \right) = \mathbf{N}_1' + \mathbf{N}_2' = \mathbf{N}' \; ; \quad [6 \text{ elements in } \mathbf{N}, \mathbf{N}'].$$
 Omit one equal element (v) in \mathbf{N}, \mathbf{N}' leaves 5 elements in \mathbf{N}, \mathbf{N}' . Omit two equal elements (v, w) in \mathbf{N}, \mathbf{N}' leaves 4 elements in \mathbf{N}, \mathbf{N}' .

n	u_1, u_2	v, w	$x_1, y_1, z_1, x_2, y_2, z_2 x_1', y_1', z_1', x_2', y_2', z_2' $	s
5	91, 217 91, 247 91, 259 133, 217 133, 247 133, 259 217, 247 217, 301 247, 301 259, 301	9 11 5 9 11 13 3 9 11 15	$\begin{array}{c} v,11,&6,15,17,&2&1,&9,10,&v,13,18\\ v,13,&4,&3,13,16&1,11,12,&v,17,&8\\ 1,&v,12,&3,17,14+&9,13,&4,&7,&v,18\\ 9,&v,&4,15,17,&2&1,11,12,&5,&v,18\\ v,13,16,&7,11,18& &9,17,&8,&v,17,14\\ v,17,&8,15,19,&4&3,13,16,&v,11,20\\ 7,&v,18,15,19,&4&3,17,14,&9,&v,20\\ \end{array}$	45 51 49 47 65 63 63 59
4	217, 259 247, 259		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Dimorph Sum of six or seven 4-th powers.

$$\mathbf{N}_{1} = \alpha^{4} + b^{4} + c^{4} + d^{4} + e^{4} = {\alpha'}^{4} + {b'}^{4} + {c'}^{4} + {d'}^{4} + {e'}^{4} = \mathbf{N}_{1}';$$

$$N_3 = x_3^4 + y_3^4 + z_3^4 = x_3^{\prime 4} + y_3^{\prime 4} + z_3^{\prime 4} = N_3^{\prime}.$$

$$N = N_1 + N_3 = N_1' + N_3' = N'$$
 has 8 elements.

Omit one equal element (q) from \mathbf{N}, \mathbf{N}' , leaves 7 elements in \mathbf{N}, \mathbf{N}' . Omit two equal elements (q, c) from \mathbf{N}, \mathbf{N}' , leaves 6 elements in \mathbf{N}, \mathbf{N}' . For u_1, u_2, u_3 see Table above, and Table at foot of previous page.

n	u_1 , u_2 ,	$u_3 \mid q$	a, b, c, d, e	x_3, y_3, z_3	a, b, c, d, e	x_3', y_3', z_3'
7	91, 247, 91, 259,	1729 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23, 25, 48 37, 45, q ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5, 11, 6, 17, q 1, 9, 10, 7, 18 1, 9, 10, 13, 18	15, 47, 32 23, 25, 48 q, 43, 40
	,, ,,	,, 15 1729 15 ,, 3	8 9, q, 5, 18 5 9, 8, 5, 18 5 3, 14, 5, 13 7 4, 14, 5, 13 8 7, 14, 5, 13	q, 47, 32 q, 43, 40 q, 47, 32	3, 16, 15, 2 3, 16, q, 2 q, 6, 15, 2 7, 11, q, 2 7, 11, 15, 2 ", ", "	37, 45, q 23, 25, 48 37, 45, 8 23, 25, 48 q, 43, 40

 N_1 , N_1' come from Table above; N_3 , N_3' come from Table at foot of previous page.

Product-Sextans, $\mathbf{N} = \Pi(\mathbf{N}_r)$.

$$\mathbf{N} = (X^6 + Y^6) \div (X^2 + Y^2) ; \quad N_r = (x_r^6 + y_r^6) \div (x_r^2 + y_r^2).$$

N	N_1	N_2	N	N_1	N_2	N_3	N_4	N_5
Х, Ү	x_1, y_1	x_2, y_2	X, Y	x_1, y_1	x_2, y_2	x_3, y_3	x_4, y_4	x_5, y_5
9, 2 9, 2 17, 5 49, 8 11, 14 11, 14	3, 2 17, 5 5, 4	I, 2 I, 6 3, 1 3, 2	23, 4 49, 8 7, 36 25, 54 21, 10 39, 52	1, 6 7, 3	3, 2 1, 2 3, 2 1, 2	3, 2 1, 4 1, 2		

 $\textit{Dimorph Sextan Products}, \ \ N_1N_2N_3=N_1'N_2'N_3'.$

$$\mathbf{N}_r = (x_r^6 + y_r^6) \div (x_r^2 + y_r^2) \; ; \qquad \mathbf{N}_r^\prime = (x_r^{\prime 6} + y_r^{\prime 6}) \div (x_r^{\prime 2} + y_r^{\prime 2}).$$

N ₁	N_2	N_3	N_1'	\mathbf{N}_{2}^{\prime}	$N_3^{'}$
x_1, y_1	x_2, y_2	x_3, y_3	x_1', y_1'	x_2', y_2'	x_3', y_3'
I, 2	25, 6	_	7, I	7, 3	
17, 8 17, 15	I, 3		25, 2 25, 2	I, 2 I, 2	
29, 10 29, 14	I, 2 I, 2	_	1, 8	7, 3 I, 3	
11, 40 29, 1	I, 2 I, 2		21, 10 21, 17	3, 4 3, 2	
29, 21 27, 8	I, 2	I, 2	9, 5 7, 1	6, 1 5, 4	3, I
27, 8	I, 2	1, 2	7, I	5, 3	3, 1
47, 5 41, 23	1, 2 5, 3	1, 2	1, 3	1, 6	3, 1
41, 23	5, 4	I, 2	21, 17	1, 6	3, 1

Dimorph Sums and Differences of Niv and Nvi.

Dimorph Differences.

Dimorph Sums, (from above).

$$\begin{array}{lll} 1^{\circ} & & \mathrm{Q}\left(x,x'\right) + \mathrm{S}\left(y,y'\right) & = \mathrm{Q}\left(y,y'\right) + \mathrm{S}\left(x,x'\right). \\ \\ 2^{\circ} & & \mathrm{Q}\left(\mathrm{X},\mathrm{X}'\right) + 2\mathrm{Q}\left(y,y'\right) & = \mathrm{Q}\left(\mathrm{Y},\mathrm{Y}'\right) + 2\mathrm{Q}\left(x,x'\right). \\ \\ 3^{\circ} & & \mathrm{Q}\left(\mathrm{X},\mathrm{X}'\right) + 2\mathrm{S}\left(y,y'\right) & = \mathrm{Q}\left(\mathrm{Y},\mathrm{Y}'\right) + 2\mathrm{S}\left(x,x'\right). \\ \\ 4^{\circ} & & \mathrm{Q}\left(x,x'\right) + \mathrm{S}\left(y,y'\right) & = \mathrm{Q}\left(y,y'\right) + \mathrm{S}\left(\mathrm{X},\mathrm{X}'\right). \\ \\ 5^{\circ} & & \mathrm{S}\left(\mathrm{X},\mathrm{X}'\right) + \mathrm{S}\left(y,y'\right) & = \mathrm{S}\left(\mathrm{Y},\mathrm{Y}'\right) + \mathrm{S}\left(x,x'\right). \\ \\ 6^{\circ} & & \mathrm{Q}\left(\mathrm{X},\mathrm{X}'\right) + 2\mathrm{S}\left(\mathrm{Y},\mathrm{Y}'\right) & = \mathrm{Q}\left(\mathrm{Y},\mathrm{Y}'\right) + 2\mathrm{S}\left(\mathrm{X},\mathrm{X}'\right). \end{array}$$

Dimorph Sums and Differences of $N_{viii}, N_{xii}; N_{xvi}, N_{xxiv}, &c.$

$$\begin{array}{lll} \mathrm{i.} & \mathrm{N_{8}}\left(x,x'\right) \ = \ x^{8} + x'^{8} \ ; & \mathrm{N_{12}}\left(x,x'\right) = \ x^{8} - x^{4}x'^{4} + x'^{8} \\ \mathrm{ii.} & \mathrm{N_{16}}\left(x,x'\right) = \ x^{16} + x'^{16} \ ; & \mathrm{N_{24}}\left(x,x'\right) = \ x^{16} - x^{8}x'^{8} + x'^{16} \) & xx' = yy' = Z. \\ \mathrm{iii.} & \mathrm{N_{8}}\left(x,x'\right) - \mathrm{N_{12}}\left(x,x'\right) = Z^{4} = \mathrm{N_{8}}\left(y,y'\right) - \mathrm{N_{12}}\left(y,y'\right) \\ \mathrm{iv.} & \mathrm{N_{8}}\left(x,x'\right) + \mathrm{N_{12}}\left(y,y'\right) & = \mathrm{N_{8}}\left(y,y'\right) + \mathrm{N_{12}}\left(x,x'\right) \\ \mathrm{v.} & \mathrm{N_{16}}\left(x,x'\right) - \mathrm{N_{24}}\left(x,x'\right) = Z^{8} = \mathrm{N_{16}}\left(y,y'\right) - \mathrm{N_{24}}\left(y,y'\right) \\ \mathrm{vi.} & \mathrm{N_{16}}\left(x,x'\right) + \mathrm{N_{24}}\left(y,y'\right) & = \mathrm{N_{16}}\left(y,y'\right) + \mathrm{N_{24}}\left(x,x'\right) \end{array}\right].$$

Number of Odd Primes (p > 1) of Various Forms.

[p > 1, but < the limit stated.]

48 w + 1	8 69	$12\varpi + 11$	42 307 2397	$\frac{y^{12}+1}{y^4+1}$	H 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\frac{x^{12} + y^{12}}{x^4 + y^4}$	I & 41/II
32 a + 1	10,	$12\varpi + 7$	44, 3 ¹¹ , 24 ¹⁰ ,	$\frac{y^6+1}{y^2+1}$	66, 20, 20, 4,	$\frac{x^6 + y^6}{x^2 + y^2}$, , , , , , , , , , , , , , , , , , ,
$24\varpi + 1$	14, 143, 1181,	12 a + 5	44, 309, 2409,	$\frac{1}{3}\frac{y^3-1}{y-1}$, 29, 65, 173, 438,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\frac{x^3 - y^3}{x - y}$	80, 611, 4784, —,
16-w+1	19, 144, 1188,	-		$\frac{y^3-1}{y-1}$	15, 32, 76, 189, 520, 1410, 1992,		
12 m + 1 1	36, 300, 2374,	12æ+	36, 300, 2374,	$\frac{1}{2}(y^{S}+1)$	0, 0, 1, 1,	$\frac{1}{2}(x^8+y^8)$	0, 0, I,
	- 7	8 - 7	43 308 2399	$y^s + 1$	- ับ ัญ ญัญ ญั [^] ญั	$x^s + y^s$	3,2,7,
8 1 + 1	, 295, , 2384,	.+5	43, 314, 2399,	$\frac{1}{2}(y^4+1)$	31, 15, 15, 15, 15, 15, 15, 15, 15, 15, 1	$\frac{1}{2}(x^4+y^4)$	28, 72, 172,
6w+1	8c, 611, 4784,	3 8 ar	2	$y^{4} + 1$	3, 2, 17, 12, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17	$x^4 + y^4$	6, 13, 32, 89, 240,
$4\omega + 1$	80, 609, 4783,	8 4 5	44, 311, 2409,	$\frac{1}{2}(y^2+1)$	11, 2,7, 69, 1,76, 462, 1226, — ,	$x^2 + y^2$	80, 609, 478 3,
$2\varpi + 1$	167, 1228, 9591,	8 ar + 1	37, 295, 2384,	$y^2 + 1$	9, 18, 50, 111, 315, 840, 1199,		
Limit.	10³ 10⁴ 10⁵	Limit.	10 ³ 10 ⁴ 10 ⁵	Limit.	$\begin{array}{c} 10^3 \\ 10^4 \\ 10^5 \\ 10^6 \\ 10^7 \\ 10^8 \\ 2\frac{1}{4} \cdot 10^8 \end{array}$	Limit.	103 104 106 106

References to Factorising Tables.

See Dr. C. G. Reuschle's Tafeln Complexer Primzahlen, &c., Berlin, 1875.

Tables of the sets of Least Roots (y) of $F(y) \equiv 0 \pmod{p}$ for all primes < 1,000 will be found on the pages quoted of the above work.

_							he above wor			1)
F(y)	c	Page	$\mathbf{F}(y)$	С	Page	$\mathbf{F}(y)$	b , c	Page	F(y)	c ,	d,	e	Page
$3^{9}+c^{4}$ $3^{4}+c^{2}$ $3^{9}+c$	- 2	444 445 468 474 488 511 571 592 633 481 502 546 627	$y+c$ y^2+y+c	- I + 2 + 3 - 3 - 4 + 5 + 6 - 7 - 7 + 8 - 9 - 9 - 10 + 11 + 12 - 13 + 15 - 15 + 17 + 18 + 20 - 24 - 26 - 8 + 9 + 9 + 10 + 13	3 7 10 16 20 27 31 37 46 55 62 71 74 81 84 98 107 115 129 139 144 153 170 440	$y^4 + by^2 + c$; $[bc > 1]$	+ 1, + 4 + 2, + 4 - 2, + 4 + 3, + 1 - 3, + 4 - 4, + 1 + 4, + 2 - 4, + 9 + 5, + 1 - 5, + 5 - 5, + 25 - 6, + 16 + 7, + 1 + 7, + 9 - 7, + 16 - 8, + 9 + 8, + 9 + 9, + 15 - 10, + 36 + 11, + 36 - 12, + 25	558 480 483 473 477 478 447 448 503 505 615 472 510 556 547 548 500 557 618 543 544 568 591 617 626 628 616 631 624	$y^4 - y^3 + cy^2 + dy + e$ $y^4 + y^3 + cy^2 + dy + e$	+ 11, + 5, - 14, + 8, - 4, - 7,	- 41, + 39, + + 11, + - 2, + + 17, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, + + 14, +	+ 11 + 23 + 49 + 49 + 47 + 117 + 2 + 16 + 11 + 1 + 4 + 3 + 3 + 16 + 17 + 16 + 17 + 16 + 17 + 16 + 17 + 16 + 17 + 17 + 17 + 17 + 18 + 18 + 18 + 18 + 18 + 18 + 18 + 18	13 19 36 53 61 80 96 126 152 167 194 195 202 221 222 235 255 269 281 339 350 351 352 358 359
			$\eta^2 - \eta$	+ 14 - 14 - 17 - 19 + 22 - 23 + 24	271 282 319 340 360 394 409	$p + h_2 + ch + sh$	$\begin{array}{c} +12, +25 \\ -13, +13 \\ -17, +68 \\ \hline \\ c , d \\ \hline \\ -2, -1 \\ -4, +1 \\ -6, -7 \\ -10, -8 \\ -12, +11 \\ -14, +8 \\ -20, -9 \\ -22, +5 \\ -24, -27 \\ -26, +41 \\ -32, -79 \\ \end{array}$	625 529 569 6 15 26 45 54 69 97 105 128 138	$\mathbf{F} = \frac{y}{\imath} \hat{h} - \frac{y}{\imath} \hat{h} - \frac{y}{\imath} \hat{h}$	- 30	1	Page 385 385	

APPENDIX.

ERRATA IN WORKS CONSULTED.

L. Euler's Commentationes Arithmeticae, Petropol., 184.

```
VOL. I.
Page
104; line of 55; read 32 (not 33). Line of 710; read 1123, 293459 for \( 710.
                 79 \mid 2^4.5 \mid 79^2 \mid 3.7^2.43 \mid 79^3 \mid 2^5.5.3121 \mid.
105: Add
       line of 173<sup>2</sup>; read 30103 for n^2.
367; insert a = 1080, aa + 1 = 1166401 in Table
368; omit a = 1234 [as aa + 1 = 421.3617]
                                                           in top Table.
 \alpha = 1320 gives aa + 1 = 1742401 (not 1747401)
      a = 1434 gives aa + 1 = 2056357 (not 2056351)
      middle Table, lines 2, 3; interchange 299 and 199.
369; top Table, line 3; read a = 698 (not 798).
      middle Table, line 6; omit a = 553.
370; col. 2, a = 82; omit factor 193. Col. 4, a = 193; omit factor 3.
375; col. 4, a = 1080; here aa + 1 = prime.
378; col. 3, a = 1490; omit factor 313.
475; last line; for \frac{8.150911}{169^3}, read \frac{8.89736}{169^2} = \frac{64.3739}{169^2}
                                                    169^{2}
476; Correct x: y, x, y, p, q, r, s, A, B, C, D to agree with above.
```

VOL. II.

x = 1014, y = 2739; (p = 11014, q = 11217, r = 6642, s = 3739);

495; line 4; for 91, read 92. Line 5; insert m = 141.

A = 12231, B = 2903, C = 10381, D = 10203.

- 498; lines 1, 2, 3; for (m, x, y) = (76, 3, 25) read (86, 3, 28).
 - ,, line 4; for m = 189, 182; read 191, 132.
 - ,, lines 5, 6; the values of x, y under m = 4, 42, 106, 116 are incorrect.
 - ,, line 7; for m = 102, 198; read 104, 200.
 - ,, line 12; for y = 14.57 read 14.58.

Dr. C. G. Reuschle's Tafeln Complexer Primzahlen, Berlin, 1875.

Page	Line	For	Read	Page	Line	For	Read
8	9	$a^4 = 55$	$a^{\dagger} = 85$	476	7 up	$\omega^{11} = -306$	$\omega^{11} = +295$
106		$\lambda = 43$	$\lambda = 67$	487	15	$\varpi^4-2\varpi^2+4$	$w^4 - 3w^2 + 4$
187	1	$\lambda = 89$	$\lambda = 49$	511	4	40m - 5	44m - 5
193	4 up	p = 881	p = 811	513	10	$\omega^{17} = -10$	$\omega^{17} = -11$
282	5 up	$w^2 + w - 14$	$\varpi^2 - \varpi - 14$		19	ω^5 , ω^{11} , ω^{19}	ω^5 , ω^{11} , ω^{19}
392	8 up	IV, 3	VI. 3	,,	15	$\overline{174}$, 57, $\overline{154}$	$163, 38, \overline{153}$
446	9 up	$\omega = -43$	$\omega = -48$	546	8	$\pi^{4}-49$	$w^4 + 49$
450	10 up	$\omega = +35$	$\omega = +15$	621	1	n = 68	n = 88
461	12 up	$\omega^{12} = -275$	$\omega^{12} = +305$	628	1	n = 76	n = 88
,,	11 up	$\omega^{29} = -138$	$\omega^{12} = -38$	635	9 up	$\omega^{23} = -197$	$\omega^{23} = -196$

CORRIGENDA in the present Work.

Page.	Line.	Col.	For.	Read.
17	21	y, y	18679, 21030	18179, 21430
101	3		$\eta_{_{eta}}$	$\eta^{\scriptscriptstyle eta}$
108	3 of top Table		4183	4813
112	9 up	5	1151	1181
115	y = 838	6	2470 [247001
126	3 of Heading		$x, y \gg 11$	$\xi, \eta \gg 11$
128	4	3	2048	2047
130	17 and 23	1 and 6	d d	d d
130	9 up		$n + n' = \xi$	$n_0 + n'_0 = \xi$
132, 133	Head-line		SIMPLE	Omit SIMPLE
136	4 up	4	34957	34457
141	2 up	4	461	401
144	3 up	$8 \varpi - 1$	$p = 977, u_4 = 23, t_4 = 3$	Transfer to Col. 8w + 1
145	1st formula		$2(x^2 \pm xy + y)^2$	$2(x^2 \pm xy + y^2)^2$
145	2 of Heading		$(t_1^4 - u_1^2)$	$(t_1^4 - 2u_1^2)$
145	(3 up of) (left Table)	N	839	833
149	7 up		$Y = 3\eta^2$	$Y = y^2$
150	3 of Heading		$2_{3r}-1$	$2^{3r}-1$
150	15 up	6	7.38336223	3.7.12778741
150	14 up	6	7.38057583	3.7.12685861
151	10 up	5	419450801	419450881
155	12 up		$(C^{(2)}-1)y^2$	$(C^{\sqrt{2}}-1) x^2$
157-160	2 of Heading		<	<
159	y = 345	2	17764857	17864857
159	y = 422	6	9122481	10122481
184	22 up	6	60373	4560373
194	y = 2029	L	:	Omit:
219	Heading	3	$y^{64} + 0$	$y^{64} + 1 \equiv 0$
221	4 of Heading		$\frac{1}{2}(\lambda'+l'), \frac{1}{2}(\lambda'-l')$	$\frac{1}{2}(\lambda'+2l'), \frac{1}{2}(\lambda'-2l')$
221	3 of top Table	y'	199	197
221	9 of top Table	2l	440271	440171
221	9 of top Table	x, y	$220136, \overline{220135}$	$220086, \overline{220085}$
228	11 up		$z = k^2$	z = 1
230	2	Side	$x^4 \sim K \cdot y_r^4$	$x_r^4 \sim \mathrm{K} \cdot y_r^4$
230	k = 68	2, 3	$z = 43, \ y_1 = 172$	$z = 33, y_1 = 132$
230	k = 34	6	$x_1 = 81$	$x_1 = 1169$
230	k = 77	6	$x_1 = 7792$	$x_1 = 7793$
230	k = 90	6	$x_1 = 2488$	$x_1 = 3841$
230	k = 97	5	z = 2	z=4
230	k = 97	6		x = 178, y = 24, z = 31172, -
232	i of Heading		$k=k^2, y=k$	$k = \kappa^2, y = \kappa$
232	iii of Heading		<i>l:</i> =	-k =
233	1	k	(blank)	k = 140
261	5 of Heading		$t^{\prime\prime}u^{\prime\prime}$	$\frac{1}{2}(t''^2-u''^2)$

SUPPLEMENT.

High Simple Quartan and Half-Quartan Primes (p).

Quartans, $p = x^4 + y^4$.

Half-Quartans, $p = \frac{1}{2}(x^4 + y^4)$.

p	x, y
29 986 577	1, 74
B 40 960 001	1, 80
- 45 212 177	1, 82
- 59 969 537	1, 88
B 65 610 001	1, 90
Da 100 000 681	3, 100
100 006 561	9, 100
126 247 697	1, 106
193 877 777	1, 118
303 595 777	1, 132
384 160 001	1, 140
406 586 897	1, 142
562 448 657	1, 154
655 360 001	1, 164
723 394 817	1, 164
916 636 177	1, 174
1 049 760 001	1, 180
1 416 468 497	1, 194
1 536 953 617	1, 198
1 731 891 457	1, 198
1 944 810 001	1, 210
2 342 560 001	1, 220
2 702 336 257	1, 228
3 208 542 737	1, 238
3 429 742 097	1, 242
3 782 742 017	1, 248
4 162 314 257	1, 254
5 006 411 537	1, 266
5 473 632 257	1, 272
5 802 782 977	1, 276
5 972 816 657	1, 278
6 879 707 137	1, 288
7 676 563 457	1, 296
9 475 854 337	1, 312

Table	complet	e up	to	y =	312,
	with	x =	1.		

I

p	x, y
B 12 708 841	1, 71
B 14 199 121	1, 73
BJ 21 523 361	1, 81
56 275 441	1, 103
60 775 313	1, 105
81 523 681	1, 113
87 450 313	1, 115
100 266 961	1, 119
107 182 721	9, 121
138 461 441	1, 129
273 990 641	1, 153
370 600 313	1, 165
407 865 361	1, 169
427 518 041	1, 171
784 119 601	1, 199
849 090 841	1, 203
883 050 313	1, 205
1 984 563 001	1, 251
2 249 930 281	1, 259
2 541 060 761	1, 267
2 859 570 313	1, 275
4 558 310 681	1, 309
4 798 962 481	1, 313
5 049 019 561	1, 317
6 148 185 161	1, 333
6 6 448 958 881	1, 337
6 603 418 121	1, 339
7 763 701 441	1, 353
8 681 534 681	1, 363

Table complete up to y = 399, with x = 1.

20

High Prime Factors (p) of Simple Quartans. $p=(x^{i}+y^{i})\div f\;;\;\;[x=1,\;f>1].$

p	y	now f	p	y	f
10 088 489 11 165 137 11 505 017 11 966 641	934 528 942 252	241.313 6961 89.769 337	40 514 561 44 669 593 44 711 201 49 916 473	162 736 548 378	17 6569 2017 409
12 321 041 13 294 121 13 374 089 14 394 409	474 502 336 362	17.241 17.281 953 1193	50 855 561 50 897 897 51 244 313 51 483 121	486 330 572 172	1097 233 2089 17
14 579 681 14 641 849	970 456	41.1481 2953	52 216 841 57 734 881	608 676	2617 3617
15 120 673 L 15 790 321 16 673 401 16 782 449 16 898 729 17 137 129 17 957 969	766 128 674 326 684 514 956	22769 17 12377 673 12953 4073 193.241	60 880 681 63 798 737 65 798 849 73 853 993 74 046 641 74 524 553	872 668 700 680 644 666 728	9497 3121 41.89 2897 17.137 2657 3769
18 145 313 18 468 497 19 050 289	388 434 750	1249 17.113 17.977	75 297 473 77 938 409 78 374 441	724 586 816	41.89 17.89 5657
20 260 553 20 361 377 20 905 193 21 333 761 22 925 033 24 132 457 24 290 249 25 068 521 25 397 761	960 770	1289 2161 97.137 17 41.449 17.73 1033 17.1993 13841	82 509 577 86 631 049 94 106 561 97 089 257 97 905 289 98 672 257 Lo,R 99 990 001 113 607 841 113 947 529	814 282 422 686 630 446 1000 324 302	17.313 73 337 2281 1609 401 73.137 97 73
25 737 017 25 744 921 27 126 929 27 475 081 29 497 513 31 142 473 36 268 129 36 269 529 39 818 929 40 054 897	950	1801 17.41 20353 17.41 2969 17.617 3889 433 17.1321 593 401	118 821 361 123 993 929 126 041 329 126 431 801 134 472 673 137 123 009 141 456 017 157 341 673 165 991 393 194 213 177 201 796 057	958 908 976 444 534 722 344 468 564 626	17 6793 5393 7177 17.17 593 17.113 89 17.17 521 761

High Prime Factors (p) of Simple Quartans.

p	y	f	p	y	f
205 048 201 206 063 593 238 275 601 241 632 361 273 148 633 287 803 777 334 140 193 361 562 353 389 961 553	904 368 994 740 890 834 762 280 830	3257 89 17.241 17.73 2297 41.41 1009 17 1217	1 505 882 353 1 598 288 641 1 644 737 441 1 705 386 889 1 723 043 929 2 139 412 049 2 398 657 561 3 173 244 601 3 227 992 561	40 0 406 632 594 796 990 560 812 484	17 17 97 73 233 449 41 137
400 495 049 431 830 177 403 504 289 463 891 201 535 609 489 503 676 649 599 786 777 606 454 393 611 416 873 613 350 137 613 775 969	802 470 636 298 496 602 396 482 870 460 718	1033 113 353 17 113 233 41 89 937 73 433	3 421 541 657 3 441 994 489 3 497 620 921 3 557 705 897 3 703 804 177 4 143 394 217 4 840 780 177 4 914 907 561 5 132 694 433 5 183 822 921 5 461 442 801	708 832 618 972 642 860 670 840 918 552	78 137 41 241 41 113 41 97 137
670 464 121 707 646 281 714 666 481 775 275 233 788 278 297 825 799 841 937 534 777 1 150 215 097 1 175 716 081 1 293 339 569 1 366 540 169 1 493 089 193	376 822 562	457 137 17 17.17 41 97 521 281 17 353 73 409	5 657 883 817 6 677 102 713 6 946 100 401 7 286 326 409 7 704 575 369 7 828 865 521 8 144 612 353 8 360 352 001 8 691 962 353 8 908 046 729 9 121 014 697 9 746 165 761		41 89 97 73 73 17 17 17 17 17 73 41

High Prime Factors (p) of Simple Half Quartans. $p=\tfrac{1}{2}(x^4+y^4)\div f; \ [x=1,\ y\ odd,\ f>1].$

p	y	f	p	y	f
10 316 017	197	73	39 785 017	369	233
10 509 841	303	401	40 124 537	755	4049
10 771 417	347	673	41 912 953	877	7057
11 616 697	433	17.89	B 42 521 761	243	41
11 756 681	831	17.1193	42 526 489	195	17
12 084 217	215	89	43 026 433	585	1361
12 452 641	797	17.953	43 068 329	495	17.41
12 602 857	915	27809	45 509 137	697	2593
12 732 529	327	449	45 721 937	663	2113
13 001 489 13 068 697 13 974 721 14 042 233 14 314 841 14 414 377 14 751 089 14 896 841 15 290 753 15 499 417	209 621 907 993 457 983 631 151 599	17 73 17.313 24097 33961 17.89 31649 17.313 17 4153	50 088 697 51 909 329 52 048 313 52 333 297 53 152 753 53 203 889 58 175 849 60 539 593 60 665 273 65 886 001	695 493 519 377 709 955 319 213 867 943	17.137 569 17.41 193 2377 7817 89 17 4657 17.353
15 601 081	901	21121	66 062 657	793	41.73
16 230 041	191	41	68 530 937	469	353
17 137 793	385	641	69 593 033	903	17.281
17 522 137	483	1553	87 748 937	429	193
17 808 841	921	20201	93 621 401	851	2801
19 007 873	439	977	95 392 169	541	449
20 253 553	391	577	100 104 161	301	41
23 019 641	511	1481	108 003 089	873	2689
23 754 217	255	89	116 490 961	885	2633
24 840 737	535	17.97	119 577 209	953	3449
24 953 633	633	3217	128 307 953	257	17
27 093 617	803	7673	131 579 017	581	433
27 766 481	175	16273	135 447 881	375	73
28 271 569	425	577	183 377 633	281	17
D,B 29 423 041	625	2593	186 643 993	825	17.73
31 308 961	779	5881	210 907 993	291	17
33 510 401	295	113	219 192 097	737	673
33 621 673	813	73.89	233 726 369	937	17.97
34 040 569	279	89	240 110 729	887	1289
37 529 113	189	17	268 083 401	727	521
39 606 769	767	17.257	288 959 497	967	17.89

High Prime Factors (p) of Simple Half Quartans.

<i>p</i>	y	f	p p	y	f
319 585 921 334 629 161 436 337 753 468 260 633 478 014 457 492 387 713 499 445 449 504 988 801 508 142 377 522 026 489 552 784 657 563 402 449 635 151 689 701 849 009 793 707 041 889 334 833 I 142 991 841 I 200 229 417 I 351 728 281	651 407 349 549 899 687 759 751 365 533 785 849 775 987 815 647 577	281 41 17 97 17.41 233 337 17.17 641 313 17 73 337 409 257 593 17 193 73	1 355 128 457 1 355 659 057 1 398 906 233 1 591 050 761 1 627 376 489 1 709 413 193 2 234 386 489 2 299 999 841 2 653 804 721 2 750 563 073 2 960 153 873 3 082 976 033 3 217 692 553 3 559 061 593 3 736 099 273 3 888 573 673 4 842 602 393 6 628 236 113 7 265 701 489 8 036 635 513	989 667 467 601 485 491 525 659 683 553 949 569 969 735 597 603 637 689 7723	353 73 17 41 17 17 17 17 137 17 137 41 17 17 17 17 17

High Simple Sextan Primes.

$$p = (x^6 + y^6) \div (x^2 + y^2), [x = 1].$$

p x	<i>p</i>	x, y	p	x,	<i>y</i>
Lo 99 990 ooi 1 116 975 041 1 121 539 601 1 141 146 281 1 168 883 021 1 193 863 853 1 252 031 501 1 294 482 761 1 759 305 581 1	, 62 875 183 2 , 65 1 121 479 6 , 83 1 171 316 2 , 92 1 303 173 6 , 94 1 416 430 8 , 99 1 475 750 6 , 100 1 536 914 2 , 104 1 907 986 6 , 105 2 577 580 8 , 109 2 562 840 6 , 114 2 750 006 6 , 118 2 847 342 6 , 126 3 262 751 8 , 131 3 544 475 7	1, 185 1, 190 1, 194 61 1, 194 61 1, 196 1, 198 81 1, 209 80 1, 224 1, 225 1, 231 1, 231 1, 231 1, 231 1, 244 1, 231 1,	4 640 402 521 4 784 281 393 5 236 041 961 5 314 337 101 5 473 558 273 5 972 739 373 7 170 787 081 7 676 475 841 7 992 449 401 8 099 910 001 8 318 078 413 8 999 083 633 9 354 855 121 9 597 826 993 Lo 999 999 000 001	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	261 263 269 270 272 278 291 296 299 300 302 308 311 313

Table complete up to y = 319.

High Prime Aurifeuillian Factors (L, M) of Simple Sextans.

Of Bin-Aurifeuillians, $[x = 1, y = 2\eta^2].$

[, 9 -,]-								
η	p	L,M	y					
41 45 47 50 50 51 54 55 55	11 030 641 16 771 141 19 107 757 24 504 901 25 505 101 27 596 713 33 388 093 35 942 941 37 274 161 46 053 277	$egin{array}{ccc} \mathbf{M} & \mathbf{L} & \\ \mathbf{L} & \mathbf{M} & \\ \mathbf{M} & \mathbf{L} & \\ \mathbf{L} & \mathbf{M} & \\ \mathbf{L} & \mathbf{M} & \\ \end{array}$	3 362 4 050 4 418 5 000 5 000 5 202 5 832 6 050 6 050 6 728					
59 61 65 67 68 72 73 75 75	47 654 773 54 482 761 72 509 581 79 410 277 86 792 617 106 012 657 112 047 409 124 886 101 128 261 401 146 174 029	L M L M L L L M	6 962 7 442 8 450 8 978 9 248 10 368 10 658 11 250 11 250 12 168					
80 81 83 84 86 87 88 89 91	165 900 961 170 074 081 187 559 749 201 533 641 216 273 661 226 539 967 242 619 697 248 164 753 271 301 941 315 639 781		12 800 13 122 13 778 14 112 14 792 15 138 15 488 15 842 16 562 17 672					
95 96 100 101 102 104 112 114 119 120	329 250 241 343 296 193 396 019 801 412 140 601 437 238 702 472 464 721 623 812 897 669 683 653 795 423 133 822 556 561 938 089 513	L M M M L L L L L L L	18 050 18 432 20 000 20 402 20 808 21 632 25 088 25 992 28 322 28 800 30 752					

Table complete to $\eta = 128$.

Of Sext-Aurifeuillians, $[x = 1, y = 6\eta^2]$.

η	ņ	L,M	y
26	17 096 197	M	4 056
28	21 351 289	L	4 704
32	36 587 329	L	6 144
32	38 947 009	M	6 144
33	41 418 829	L	6 534
33	44 006 689	M	6534
35	55 588 261	M	7 350
38	73 115 269	L	8 664
39	85 446 973	M	9 126
41	99 276 253	L	10 086
42	109 385 389	L	10 584
43	120 247 609	L	11 094
45	150 939 721	M	12 150
47	171 970 369	L	13 254
48	187 162 849	L	13 824
49	211 811 713	M	14 406
52	258 204 649	L	16 224
52	268 329 049	M	16 224
55	323 487 121	L	18 150
56	347 775 793	L	18 816
59	443 681 653	M	20 886
60	458 848 441	L	21 600
61	506 688 937	M	22 326
67	714 693 289	L	26 934
68	758 492 809	L	27 744
70	876 796 621	M	29 400
72	954 114 769	L	31 104
72	980 989 489		31 104
		1	

Table complete to $\eta = 75$.

High Prime Factors (p) of Simple Sextans. $p = N_{vi} \div f, \ [f > 1]; \ N_{vi} = (x^6 + y^6) \div (x^2 + y^2), \ [x = 1]. \quad p > 10^7.$

p	$y \mid f$	p	y	f	p	y	f
10 122 481 4 10 201 693 4 10 452 577 7 10 566 001 5 10 613 929 8 10 636 513 6 11 407 993 5 11 676 517 1	334 13.3697 1322 13.241 111 2797 175 34513 147 37.229 13.3229 13.6553 13.6553	21 889 297 La 22 253 377 22 745 929 23 225 533 23 352 181 23 552 257 24 263 377 24 362 557 25 588 837 25 683 817	945 256 249 352 132 928 603 957 581 892	36433 193 13.13 661 13 31489 5449 34429 61.73 157.157	59 341 273 59 828 341 61 380 769 62 375 569 64 571 173 65 510 521 65 997 769 67 285 993 68 119 489 68 570 329	925 167 286 577 787 694 553 669 789 918	13.13.73 13 109 1777 13.457 3541 13.109 13.229 5689 10357
12 480 913 5 12 590 113 4 12 951 793 4 13 090 873 2 13 123 009 3 13 303 621 8 13 895 449 4 14 242 321 8	526 13.13.37 592 13.757 440 13.229 460 3457 241 937 61.541 1418 13.13.13 367 97.409 542 61.193	25 949 893 26 650 453 27 425 833 27 464 293 27 692 173 27 809 581 27 980 989 28 080 553 28 390 981 29 412 529	330 391 444 786 627 672 827 617 204 946	457 877 13.109 13.1069 5581 7333 73.229 13.397 61 73.373	73 550 329 73 806 277 75 631 273 79 076 209 80 282 557 80 375 089 81 271 753 81 385 921 83 575 993 84 041 641	514 176 230 506 471 759 439 566 529 666	13.73 13 37 829 613 4129 457 13.97 937 2341
15 593 593 8 15 651 913 5 15 688 837 8 15 712 849 6 15 998 977 5 16 005 853 16 020 997 5 16 156 597 9 16 253 437 2	391 13.3109 569 37.181 181.229 324 9649 504 37.109 156 37 13.433 175 55933 247 229 381 36709	29 573 209 30 939 253 30 955 129 32 936 341 33 113 413 33 272 101 34 002 277 34 208 509 36 197 893 36 562 777	408 264 414 884 212 222 145 312 970 473	937 157 13.73 18541 61 73 13 277 37.661 37.37	84 991 813 86 327 149 87 746 821 88 168 837 90 865 189 92 697 193 95 126 341 96 113 137 100 712 509 103 532 053	829 535 355 184 941 902 276 357 709 678	5557 13.73 181 13 8629 37.193 61 13.13 13.193 13.157
17 605 501 1 17 864 857 3 18 185 077 1 18 359 713 4 18 462 421 6 18 639 013 6 18 937 693 9 19 199 821 3	079 54469 123 13 345 13.61 124 13 425 1777 380 37.313 550 61.157 40357 13.37 714 13477	37 230 241 39 760 921 41 066 089 41 465 521 42 383 773 43 707 541 47 763 361 47 936 641 48 006 457 48 682 873	994 683 360 720 199 342 243 158 462 901	13.2017 13.421 409 6481 37 313 73 13 13.73 13537	111 815 653 113 225 953 114 877 921 115 544 389 125 553 877 125 685 421 126 064 093 128 071 201 132 892 369 133 114 357	364 711 984 335 201 937 454 202 930 570	157 37.61 8161 109 13 6133 337 13 13.433 13.61
19 459 717 7 19 663 681 9 19 806 337 1 20 254 777 9 21 033 541 5 21 153 361 8	824 23857 741 15493 934 13.13.229 195 73 950 40213 13.397 13.397 13.2161 2833	49 961 341 50 796 841 51 470 401 51 605 161 54 298 861 55 463 437 55 576 681 58 343 977	501 448 712 784 163 373 841 763	13.97 13.61 4993 7321 13 349 9001 31.157	133 370 989 136 590 697 140 908 081 143 960 581 148 696 897 153 308 581 156 248 161 164 529 709	966 316 497 863 880 848 806 981	6529 73 433 3853 37.109 3373 37.73 13.433

High Prime Factors (p) of Simple Sextans.

P	y	f	p	y	f	p	y	f
169 289 641 170 918 569 176 939 197 181 080 349 185 155 441 188 178 937 192 191 221 196 708 177 201 586 597	888 282 219 821 326 664 819 427 620 334	3673 37 13 13.193 61 1033 2341 13.13 733 61	438 517 393 466 087 957 469 299 013 474 946 957 498 789 913 505 557 721 518 118 697 551 775 529 559 831 549	818 279 521 477 469 550 441 378 965 996	1021 13 157 109 97 181 73 37 1549 1753	1 380 313 537 1 457 300 557 1 521 173 077 1 545 367 933 1 650 999 529 1 761 994 177 1 773 652 357 1 828 425 673 1 871 932 921	366 371 375 489 932 662 887 510 608 756	13 13 13 37 457 109 349 37 73 13.13
204 010 321 204 245 101 206 273 401 207 868 021 210 246 697 213 163 477 222 455 881 224 176 669 238 265 017 240 050 257	227 936 228 639 904 844 476 546 538	13 61.61 13 13.61 13.241 2281 229 373 349	561 377 497 563 176 981 566 920 381 588 957 577 599 173 273 612 054 637 635 399 977 640 468 813 644 711 869 665 658 277	677 293 655 491 873 790 649 393 305	373 13 313 97 13.73 613 277 37 13	1 932 856 969 1 959 874 177 2 069 541 277 2 164 927 069 2 190 890 677 2 269 810 633 2 289 164 253 2 315 185 813 2 462 723 701 2 599 272 937	885 405 532 910 685 971 541 423 660	313 13 37 313 97 397 37 13 73
248 433 613 252 828 109 261 931 693 262 259 653 264 568 741 268 799 581 280 790 413 289 006 981 291 357 697 294 885 673 307 854 997	394 976 519 980 760 580 679 573 688 804 428	97 37.97 277 3517 13.97 421 757 373 769 13.109 109	684 994 573 698 838 577 708 806 101 734 634 097 747 774 817 749 535 361 791 764 741 805 898 161 879 515 701 912 284 521 919 019 293	399 846 456 751 314 986 809 628 327 508 746	37 733 61 433 13 13.97 541 193 13 73 337	2 654 381 797 2 715 379 189 2 754 437 029 3 239 271 421 3 355 207 381 3 474 227 917 3 759 184 453 3 883 006 177 4 056 283 489 4 186 424 941 4 507 287 541	431 563 826 453 457 461 692 474 792 483 492	13 37 13.13 13 13 13 61 13 97 13
315 160 621 318 987 289 320 173 057 320 233 009 335 575 897 342 009 721 355 383 913 367 714 813 375 702 673 382 395 061	253 601 254 870 488 572 643 387 652 897	13 409 13 1789 13.13 313 13.37 61 13.37 1693	923 346 397 923 395 273 934 555 381 955 452 061 1 014 206 161 1 049 940 313 1 059 328 573 1 078 748 269 1 128 105 949 1 134 793 633	331 430 332 802 947 843 736 705 452 576	13 37 13 433 13.61 13.37 277 229 37 97	4 563 007 093 4 807 673 075 5 002 884 277 5 044 594 417 5 270 469 493 5 538 269 281 5 560 975 249 5 585 253 061 5 933 316 901 6 168 031 669	920 500 505 779 753 518 857 764 527 992	157 13 13 73 61 13 97 61 13 157
385 103 137 388 336 537 391 843 429 405 837 121 408 831 757 411 338 833 424 505 401	266 715 347 597 530 398 845	13 673 37 313 193 61 1201	1 163 908 321	865 815 353 588 358 528 560	13.37 373 13 97 13 61 73	6 439 242 193 6 540 789 877 7 759 643 869 7 893 135 253 8 987 660 137 9 384 374 437 9 963 805 853	889 540 732 833 900 591 883	97 13 37 61 73 13 61

MATHEMATICAL WORKS By Lt.-Col. ALLAN J. C. CUNNINGHAM. R.E.

- 1, published by Taylor & Francis, Red Lion Court, Fleet St., London, E.C.4.
 - A Binary Canon Reduced price 5s., 1900, showing Residues of Powers of 2 for divisors under 1,000, and Indices to Residues.
- 2 to 7, published by Francis Hodgson, 89 Farringdon St., London, E.C.4.
- 2. Quadratic Partitions ... Reduced price 7s. 6d., 1904, giving the partitions $p = a^2 + b^2$, $c^2 + 2d^2$, $A^2 + 3B^2$, $\frac{1}{4}(L^2 + 27M^2)$, up to p > 100,000, and $p = e^2 2f^2$ up to p > 25,000, and many others up to p > 10,000, &c.
- 3. Haupt Exponents, Residue Indices, Primitive Roots, and Standard Congruences, [Joint Authors, H. J. Woodall and T. G. Creak] price 10s., 1922, giving Haupt-Exponents and Residue-Indices of 2, 3, 5, 6, 7, 10, 11, 12 for all primes up to p ≥ 25,049, and the Least Primitive Roots of those primes; also solutions of the Congruences

$$2^{x_0} \equiv \pm y^{a_0}, \quad 2^{x'_0} \cdot y^{a_0} \equiv \pm 1$$
 (mod p), up to $p \geqslant 10,000$.
 $10^{x_0} = +y^{a_0}, \quad 10^{x'_0} \cdot y^{a_0} = +1$ [$y = 3, 5, 7, 11$.]

- 4. Fundamental Congruence Solutions ... price 10s., 1923, giving one root (y) of every Congruence $y^{\xi} \equiv +1 \pmod{p}$ and p^{κ} , up to p and $p^{\kappa} \geqslant 10,000$. [Joint Author, T. G. Creak.]
- 5. Binomial Factorisations, [7 Volumes] ... 1923, &c., giving extensive Tables of solutions of $\phi(y^n \mp 1) \equiv 0 \pmod{p}$ and p^{κ} , up to p and $p^{\kappa} \gg 100,000$, with n=2 to 30, and extensive Tables of Factorisation of $(x^n \mp y^n)$, and allied Forms, up to n=30.
 - Vol. I, price 15s.; Vol. IV, price 5s. 1923, contain the above Tables for n=2,4,8,16; 3,6,12,24, &c.
 - Vol. II, price 15s.; Vol. VI, price 5s. 1924, contain similar Tables for n = 5, 10, 15, 20, 25, 30, &c.
 - Vol. III, price 15s. 1924, contains similar Tables for n = 7, 14, 21, &c.; 9, 18, 27, &c.

 - Vol. VII, price 5s. (Supplemy. to Vols. III and V) 1925.
- 6. Factorisation of $(y^n \mp 1)$, [y = 2 to 12] price 10s., 1925. [Joint Author, H. J. Woodall.]
- 7. Quadratic and Linear Tables ... price 10s., 1927 contains numerous Tables useful in factorisation.

