Análise Descrições Empresas

Bruno Leme

• Análise 360º com descrições de empresas.

Objetivo:

- Geração de Insights
- Segmentação de Empresas
- Geração de Oportunidades
- Extração de Informação
- Modelagem de Linguagem

Análise Exploratória de Dados

- Para realização da EDA, seguimos os seguintes passos:
 - Pre-processamento
 - Vetorização de Descrições
 - Análise Global de Ocorrência de Palavras.
 - Análise Semântica Latente
 - Clusterização de Descrições

Pre-Processamento

- Limpeza
- Remoção de Caracteres Especiais
- Remoção de Stopwords
- Lematização

Vetorização

- Normalização Tfidf
- Max Features = 2.000

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDFTerm x within document y

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

Análise Global de Ocorrência de Palavras

• Decomposição de Valores Singulares

Top 40 tokens dispostos em 2 dimenções

top_	_tokens_	on_	_dims	[0]

	token	weight
0	data	0.236927
1	company	0.234708
2	health	0.194038
3	platform	0.192911
4	healthcare	0.156139
top	_tokens_on	_dims[3]

	token	weight
0	healthcare	0.338967
1	service	0.248632
2	payment	0.244145
3	solution	0.211205
4	management	0.185214

top_tokens	on	dims	[1]
cop_concilio	_~		

	token	weight
0	health	0.472303
1	care	0.392219
2	patient	0.317365
3	healthcare	0.278442
4	medical	0.181515
top_tokens_on_dims[4]		

	token	weight
0	data	0.404468
1	health	0.248170
2	security	0.172029
3	care	0.147860
4	customer	0.139286

ton	_tokens_	on	dims	[2]
rop_	_cokens_	_011_	_u TIII 2	[4]

	token	weight
0	data	0.599208
1	learning	0.172951
2	ai	0.167069
3	machine	0.158412
4	patient	0.136679

	token	weight
0	patient	0.457729
1	healthcare	0.237910
2	customer	0.176873
3	experience	0.148743
4	brand	0.131781

cluster 0 2275 1 764 2 514

• Cluster 0

• Cluster 1

• Cluster 2

Natural Language Understanding and Language Models

• Suposição:

- Problema: o cadastro manual das empresas gera um esforço operacional de tamanho significativo.
- Solução 1: treinar modelos de extração de informação para identificar e extrair a empresa (NER), bem como extrair o que é a empresa (Answering Extraction) no conjunto de descrições das empresas.
- Solução 2: treinar modelos de linguagem para disponibilizar um autocomplete de escrita.

Data Labeling

```
def sample_id_generator(data_sample_ids):
def insert_new_labels(sample_id, skip_ner = False, skip_answer = False):
sample_id = next(data_sample_ids)
print(sample id)
encoded_input = tokenizer(dict_data[sample_id]['desc'])
dict data[sample id]['desc']
2094
'Amelia renders banking, HR, banking, insurance, healthcare, telecommunication and IT services.'
" ".join([tokenizer.decode(token) + get_super(str(i)) for i, token in enumerate(encoded_input["input_ids"])])
'[CLS] Amelia1 render2 ##s3 banking4 ,5 H6 ##R7 ,8 banking9 ,10 insurance11 ,12 healthcare13 ,14 te15 ##le16 ##
start ner company = 1
end_ner_company = 1 + 1
#Q1
start answer = 1
end_answer = 22 + 1
print(tokenizer.decode(encoded_input["input_ids"][start_ner_company:end_ner_company]))
print(tokenizer.decode(encoded_input["input_ids"][start_answer:end_answer]))
Amelia
Amelia renders banking, HR, banking, insurance, healthcare, telecommunication and IT services.
insert_new_labels(sample_id)
NER: {'start': 1, 'end': 2}
Answer: {'start': 1, 'end': 23}
Total Labeling Count: 7
```

NER and Answering Extraction (unfinished)

Language Model (unfinished)

Conclusões

- NLP é muito útil para análise e automatização de problemas de texto.
- Observamos associações relevantes entre palavras, bem como tópicos que permitem uma análise semântica das descrições
- Através da Análise de Cluster, segmentamos as descrições em 3 grupos: (1) tecnologia, (2) saúde e medicina e (3) AI, machine learning e analytics.
- Observamos a possibilidade de realizar tarefas adicionais como:
 - NER, Answering Extraction, Language Models, entre outras.