Nápověda:

 $\begin{array}{lll} X_1, \dots, X_n \text{ je náhodný výběr z normálního rozdělení se střední hodnotou } \mu \text{ a rozptylem } \sigma^2 \colon \\ M = \frac{1}{n} \sum_{i=1}^n X_i & \mathbf{výběrový průměr} \dots \dots E(M) = \mu, \, D(M) = \sigma^2/n, \, M \sim N(\mu, \sigma^2/n) \\ S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - M)^2 & \mathbf{výběrový rozptyl} \dots \dots E(S^2) = \sigma^2 \\ U = (M - \mu)/(\sigma/\sqrt{n}) \sim N(0,1) & T = (M - \mu)/(S/\sqrt{n}) \sim t(n-1) \\ K = (n-1)S^2/\sigma^2 \sim \chi^2(n-1) & \sum (X_i - \mu)^2/\sigma^2 \sim \chi^2(n) \\ M_1 - M_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}) \\ \text{je-li } \sigma_1^2 = \sigma_2^2 = \sigma^2, \text{ pak } K = (m+n-2)S_*^2/\sigma^2 \sim \chi^2(m+n-2) \\ \text{kde } S_*^2 = ((m-1)S_1^2 + (n-1)S_2^2)/(m+n-2) \\ F = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(m-1,n-1). \end{array}$

Intervaly spolehlivosti:

intervary spotentiavosus	
$\mu \text{ (známe } \sigma^2\text{)}$	$\left(M - \frac{\sigma}{\sqrt{n}} u_{1-\alpha/2}, M + \frac{\sigma}{\sqrt{n}} u_{1-\alpha/2}\right)$
μ (neznáme σ^2)	$(M - \frac{S}{\sqrt{n}}t_{1-\alpha/2}(n-1), M + \frac{S}{\sqrt{n}}t_{1-\alpha/2}(n-1))$
σ^2 (neznáme μ)	$\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}\right)$
σ^2 (známe μ)	$\left(rac{\sum (X_i - \mu)^2}{\chi^2_{1-lpha/2}(n)}, rac{\sum (X_i - \mu)^2}{\chi^2_{lpha/2}(n)} ight)$
$\mu_1 - \mu_2 \text{ (známe } \sigma_1^2, \sigma_2^2)$	$M_1 - M_2 \pm \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} \cdot u_{1-\alpha/2}$
$\mu_1 - \mu_2 \text{ (neznámé } \sigma_1^2 = \sigma_2^2\text{)}$	$M_1 - M_2 \pm S_* \sqrt{\frac{1}{m} + \frac{1}{n}} \cdot t_{1-\alpha/2}(m+n-2)$
podíl rozptylů σ_1^2/σ_2^2	$\left(\frac{S_1^2/S_2^2}{F_{1-\alpha/2}(m-1,n-1)}, \frac{S_1^2/S_2^2}{F_{\alpha/2}(m-1,n-1)}\right)$

Distribuční funkce normovaného normálního rozdělení:

 $\Phi(-u) = 1 - \Phi(u), \Phi(0,05) \approx 0,52, \Phi(1,65) \approx 0,95, \Phi(1,96) \approx 0,975.$

	<u>/</u>	() / (/					<u>, , , , , , , , , , , , , , , , , , , </u>			
u	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
$\Phi(u)$	0,5398	0,5793	0,6179	0,6554	0,6915	0,7258	0,7580	0,7881	0,8159	0,8413
u	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
$\Phi(u)$	0,8643	0,8849	0,9032	0,9192	0,9332	0,9452	0,9554	0,9641	0,9713	0,9773

Kvantily Pearsonova rozdělení χ^2 :

volnost	0,025	0,05	0,95	0,975
1	0,001	0,004	3,841	5,024
2	0,051	0,103	5,991	7,378
3	0,216	0,352	7,815	9,348
5	0,831	1,145	11,070	12,833
10	3,247	3,940	18,307	20,483
20	9,591	10,851	31,410	34,710
50	$32,\!357$	34,764	$67,\!505$	71,420
100	74,222	77,929	124,342	129,561

Kvantily Studentova t-rozdělení $(t_{\alpha}(\nu) = -t_{1-\alpha}(\nu))$:

volnost ν	0,95	0,975
1	6,3138	12,7062
2	2,9200	4,3027
3	2,3534	3,1824
4	2,1318	2,7764
5	2,0150	2,5706
10	1,8125	2,2281
20	1,7247	2,0860
30	1,6973	2,0423
40	1,6839	2,0211
∞	1,6449	1,9600