Research Track II – First assignment

Carmine Tommaso Recchiuto, Phd

Research Track I – 22/04/2020 Carmine Tommaso Recchiuto

Package Updated

The pioneer_ctrl package has been updated with a new scene, which can be integrated with the turtlesim_controller package developed during the previous weeks:

<u>CarmineD8/pioneer ctrl: Control package for the pioneer p3dx in VRep (github.com)</u>

First assignment

Download the starting package for the assignment, by cloning the repository CarmineD8/rt2 assignment1:

<u>Package for the first assignment of the Research Track 2 course (github.com)</u> and building the workspace.

You can then run:

roslaunch rt2_assignment1 sim.launch

The launch file will open:

- a Gazebo simulation with a simple mobile robot
- four nodes which implement the robot's behaviour

First assignment

The launch file will open:

- the simulation environment
- the node PositionServer, which implements a random position service
- the node GoToPoint, which implements a service to drive a robot toward a point in the environment
- the node FSM, which implements a service to start or stop the robot, and calls the other two services to drive the robot
- the UserInterface, which asks the user to start/stop
 the robot, and calls the service implemented in the FSM
 node

First assignment

- The service implemented in the GoToPoint node is able to drive the robot towards a certain position in space (x, y) and with a certain angle (theta)
- The service implemented in the Position Server node replies with random values for x, y, and theta, where x and y should be limited between some min and max values
- The service implemented in the Robot FSM node gives the possibility to start or stop the robot behaviour.

 Please notice that the robot can be stopped only when it reaches a target

Research Track I – 22/04/2020 Carmine Tommaso Recchiuto

Expected Behaviour

- The folder contains:
 - the launch folder, with the launch file
 - the scripts folder, with two nodes (go_to_point.py and user_interface.py)
 - the src folder, with the source codes of the nodes FSM and position_server
 - the srv folder, with the custom messages and services implemented
 - the urdf folder, with the description of the robot

Requirements

The package should be modified by creating your own repository, containing the given package and two additional branches:

- ✓ action
- ✓ ros2

Moreover, you are required to create a VREP scene which can interact with the simulation.

Requirements

1) The Branch *action* should contain the same package in ROS, but with the go_to_point node modelled as a ROS action server, instead of a "simple" server.

Given that, the robot FSM node should now implement mechanisms for possibly cancelling the goal, when the related user command is received

2) In the branch *ros2*, the cpp nodes (Robot FSM and position server) should be written for ROS2, as components, so that, by using the ros1_bridge, they can be interfaces with the ROS nodes and with the simulation in Gazebo. The go to point can still be implemented as a service

Also:

- a launch file to start the container manager and the components should be created
- a script to launch all required nodes and the simulation should be implemented

Requirements

3) Finally, in the main branch (or in one of the two added branches), please add a Vrep scene containing a robot interacting with the simulation. You can choose if using ROS or ROS2 api.

Research Track I – 22/04/2020 Carmine Tommaso Recchiuto

Requirements – how to submit the assignment

- The link of a github repository containing the packages with the main branch and the two additional branches should be provided.
- The repo should have a README.md (only required for the two additional branches) file with:
 - The list of the required packages, if any
 - The description of the system,
 - Instructions about how to run the code.
- Functions and source files should be documented (optional: you can create a docs folder with DoxyGen documentation).

Schedule upcoming Classes and Assignment

22nd April: 1st assignment given (deadline 20th May)

13 th May 14 th May	Data Visualization in Python
20 th May 21 st May	Jupyter Notebooks for Robotics
27 th May 28 th May	Software Documentation + last assignment

Deadline

The deadline (hard) is set to the 20th May.

• In the next two weeks, you can contact me even outside class hours for clarifications about the assignment and the course subjects in general.

Research Track I – 22/04/2020