Accident Severity Prediction

1. Project Overview

Road accidents are a serious global issue causing fatalities, injuries, and economic losses. This project aims to predict accident severity (Slight, Serious, Fatal) using machine learning models trained on traffic accident datasets.

Motivation

- Human Impact: Early prediction helps prioritize emergency response and allocate resources effectively.
- Operational Efficiency: Enables EMS and police to triage faster and respond optimally.
- Policy & Prevention: Identifies road, vehicle, and environmental risk factors to guide safety measures.

2. Dataset Details

Primary Dataset

Name: Addis Ababa City Road Traffic Accident Severity Dataset (Figshare)

Records: 1,000+ accident cases

Target Variable: Accident Severity (Slight, Serious, Fatal)

Key Predictors:

- Number of Vehicles
- Number of Casualties
- Road Type
- Weather Conditions
- Light Conditions
- Speed Limit
- Day, Time
- Latitude, Longitude

Quality & Characteristics

- Source: Official government dataset → reliable and verified
- Challenges:
- Missing values in Weather condition and Road surface type
- Class imbalance (Slight >> Serious >> Fatal)
- Outliers in casualty counts
- Course Fit: Tabular dataset, >6 features, >1,000 rows (ideal for ML tasks)

Alternative Datasets

- UK Road Safety Accidents (2005–2017) 1.8M records
- US Accidents (2016–2023) 7.7M records

3. Preprocessing Pipeline

- Handling Missing Data: Imputation: Categorical → Mode, Numeric → Mean
- ullet Encoding Categorical Variables: Target variable o Label Encoding; Predictors o One-Hot Encoding
- Outlier Removal: IQR-based filtering for casualties and vehicles
- Normalization / Scaling: Applied MinMaxScaler to bring numeric features to [0,1]
- Feature Selection: Correlation analysis & variance threshold; dropped weak predictors
- \bullet Dimensionality Reduction (PCA): Applied PCA; first 3 components explained ${\sim}85\%$ variance

4.Group Members and Roles

IT number	Name	Preprocessing Technique
IT24102810	Fernando W.M.S.	Handling Missing Data
IT24102911	Ravihansi L. U. M.	Encoding Categorical Variables
IT24102509	Hettiarachchi T. J.	Outlier Removal
IT24102362	Teshan Mathintha S.L.A	Normalization / Scaling
IT24102603	Rajapaksha K. M. P.	Feature Selection
IT24102275	Wijayananda W. J. W.	Dimensionality Reduction (PCA)

5. How to Run the Code

Requirements

Python 3.8+

Libraries: pandas, numpy, matplotlib, seaborn, scikit-learn

Steps

1. Load the dataset:

```
import pandas as pd
df = pd.read_csv('accidents.csv')
```

- 2. Preprocessing (apply sequentially: missing values \rightarrow encoding \rightarrow outliers \rightarrow scaling \rightarrow feature selection \rightarrow PCA)
- 3. Train-Test Split:

```
from sklearn.model_selection import train_test_split
X = df.drop('Accident_severity', axis=1)
y = df['Accident_severity']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

4. Model Training (example: Random Forest):

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

5. Evaluation: Use accuracy, precision, recall, F1-score; apply SMOTE/class weighting for imbalance if needed.