Temperature is All You Need

for Generalization in Langevin Dynamics and other Data Dependent Markov Processes

Nati Srebro TTIC

Itamar Harel

Yonatan Wolanowsky

Daniel Soudry

Gal Vardi

Technion

Weizman

The journey is half the reward

- Collect Data $S = \{z_1, z_2, ..., z_m\} \sim \mathcal{D}^m$
- Learn h by running a time-invariant Markov chain based on S:
 - Init $h \sim p_0(\cdot; S)$
 - $h_{t+1}|h_t \sim r(\cdot | \cdot; S)$ (or in continuous time)

Examples:

SGD: $h_{t+1} = h_t - \nabla loss(z; h_t)$, $z \sim S$

Langevin:
$$dh_t = -\nabla L_S(h_t)dt + \sqrt{\frac{2}{\beta}}dW_t$$

- Collect Data $S = \{z_1, z_2, ..., z_m\} \sim \mathcal{D}^m$
- Learn h by running a time-invariant Markov chain based on S:
 - Init $h \sim p_0(\cdot; S)$
 - $h_{t+1}|h_t \sim r(\cdot | \cdot; S)$ (or in continuous time)

Can we bound the generalization gap?

$$|L_{S}(h_{t}) - L_{D}(h_{t})|$$

$$L_{S}(h) = \frac{1}{m} \sum loss(h; z_{i})$$

$$L_{D}(h) = \mathbb{E}_{z \sim D} loss(h; z)$$

Main tool: PAC-Bayes Bound

For any base measure/"prior" ν (over h), with probability $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$, for any p(h; S),

$$\mathbb{E}_{h \sim p(\cdot;S)}[L_{\mathcal{D}}(h) - L_{S}(h)] \le \sqrt{\frac{KL(p(\cdot;S)||\nu) + \ln \frac{1}{\delta}}{2m}}$$
for $0 < loss < 1$

Examples:

SGD: $h_{t+1} = h_t - \nabla loss(z; h_t), \ z \sim S$

Langevin: $\mathrm{d}h_t = -\nabla L_S(h_t)\mathrm{d}t + \sqrt{\frac{2}{\beta}}\mathrm{d}W_t$

Special case: $p(h; S) = \delta_{h_S}$, point mass on single h_S

 \rightarrow $KL(p||v) = -\ln v(h_S) \propto \text{#bits to describe } h_S$

$$= \ln |\mathcal{H}|$$
If $\nu(h)$ uniform on \mathcal{H}

- Collect Data $S = \{z_1, z_2, ..., z_m\} \sim \mathcal{D}^m$
- Learn h by running a time-invariant Markov chain based on S:
 - Init $h \sim p_0(\cdot; S)$
 - $h_{t+1}|h_t \sim r(\cdot | \cdot; S)$ (or in continuous time)

Can we bound the generalization gap?

$$|L_{S}(h_{t}) - L_{D}(h_{t})|$$

$$L_{S}(h) = \frac{1}{m} \sum loss(h; z_{i})$$

$$L_{D}(h) = \mathbb{E}_{z \sim D} loss(h; z)$$

Main tool: PAC-Bayes Bound

For any base measure/"prior" ν (over h), with probability $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$, for any p(h; S),

$$\mathbb{E}_{h \sim p(\cdot;S)}[L_{\mathcal{D}}(h) - L_{S}(h)] \leq \sqrt{\frac{KL(p(\cdot;S)||\nu) + \ln^{1}/\delta}{2m}}$$

for $0 \le loss \le 1$

Examples:

SGD: $h_{t+1} = h_t - \nabla loss(z; h_t), \ z \sim S$

Langevin:
$$\mathrm{d}h_t = -\nabla L_S(h_t)\mathrm{d}t + \sqrt{\frac{2}{\beta}}\mathrm{d}W_t$$

At $t=\infty$, perhaps $\mathrm{d} p_\infty \propto e^{-\Psi(h)} \mathrm{d} \nu$ E.g. for (regularized) Langevin $\Psi(h)=\beta L_S(h)$

$$\Rightarrow KL(p_{\infty}||\nu) + \overline{KL(\nu||p_{\infty})} = \beta \mathbb{E}_{\nu} L_{S}(h) - \overline{\beta \mathbb{E}_{p_{\infty}} L_{S}(h)}$$

$$\mathbb{E}[L_{\mathcal{D}}(\boldsymbol{h}_{\infty}) - L_{\mathcal{S}}(\boldsymbol{h}_{\infty})] \leq \sqrt{\frac{\boldsymbol{\beta} \, \mathbb{E}_{\nu} L_{\mathcal{S}}(\boldsymbol{h}) + \ln^{1}/\delta}{2m}}$$

Theorem: if p is **Gibbs** wrt q, i.e. $dp \propto e^{-\Psi} dq$ then

H: If
$$p$$
 is **Gibbs** wit q , i.e. $\mathrm{d}p \propto e^{-\tau} \mathrm{d}q$ then $KL(p\|q) + KL(q\|p) = \mathbb{E}_q \Psi - \mathbb{E}_p \Psi$ $\mathrm{d}p = \frac{1}{Z} e^{-\Psi} \mathrm{d}q$

Proof:

$$\cdots = \mathbb{E}_p \ln \frac{\mathrm{d}p}{\mathrm{d}q} + \mathbb{E}_q \ln \frac{\mathrm{d}p}{\mathrm{d}q} = \mathbb{E}_p [-\Psi - \ln Z] + \mathbb{E}_q [\Psi + \ln Z]$$

Second Law of Thermodynamics a la Thomas Cover:

for any stationary p_{∞} : $\mathit{KL}(p_{t+1}\|p_{\infty}) \leq \mathit{KL}(p_t\|p_{\infty})$

in any time-invariant Markov Chain

[Which processes satisfy the second law?, in Physical Origins of Time Asymmetry 1994]

<u>Proof</u>: Consider two joint distributions over pairs of variables in the chain

$$p(h,h_+)$$
 where $h\sim p_t$ and $h_+|h\sim r(\cdot|\cdot)$
$$q(h,h_+)$$
 where $h\sim p_\infty$ and $h_+|h\sim r(\cdot|\cdot)$

$$\begin{aligned} &\operatorname*{data\ processing} \\ &KL(p_{t+1}\|p_{\infty}) = KL\big(p(h_+)\|q(h_+)\big) \leq KL\big(p(h,h_+)\|q(h,h_+)\big) \\ &= KL\big(p(h)\|q(h)\big) + \mathbb{E}_{h\sim p}KL\big(r(h_+|h)\|r(h_+|h)\big) = KL\big(p_t\|p_{\infty}\big) \end{aligned}$$

Second Law of Thermodynamics a la Thomas Cover:

for any stationary p_{∞} : $\mathit{KL}(p_t \| p_{\infty}) \leq \mathit{KL}(p_0 \| p_{\infty})$

$$KL_{\mu}(p||q) = \mathbb{E}_{\mu} \left[\ln \frac{\mathrm{d}p}{\mathrm{d}q} \right]$$

$$KL(p_t \| \boldsymbol{\nu}) = \frac{KL(p_t \| p_{\infty})}{KL(p_t \| p_{\infty})} + KL_{p_t}(p_{\infty} \| \boldsymbol{\nu}) \leq \frac{KL(p_0 \| p_{\infty})}{KL(p_0 \| p_{\infty})} + KL_{p_t}(p_{\infty} \| \boldsymbol{\nu})$$

$$= KL(p_0 \| \boldsymbol{\nu}) + KL_{p_0}(\boldsymbol{\nu} \| p_{\infty}) + KL_{p_t}(p_{\infty} \| \boldsymbol{\nu}) \leq KL(p_0 \| \boldsymbol{\nu}) + \mathbb{E}_{p_0} \Psi - \mathbb{E}_{p_t} \Psi$$

$$= \frac{1}{2} \frac{$$

Theorem: if p is **Gibbs** wrt q, i.e. $\mathrm{d}p \propto e^{-\Psi}\mathrm{d}q$ then $KL_{\mu}(p\|q) + KL_{\eta}(q\|p) = \mathbb{E}_{\eta}\Psi - \mathbb{E}_{\mu}\Psi$

Proof:

$$\cdots = \mathbb{E}_{\mu} \ln \frac{\mathrm{d}p}{\mathrm{d}q} + \mathbb{E}_{\eta} \ln \frac{\mathrm{d}p}{\mathrm{d}q} = \mathbb{E}_{\mu} [-\Psi - \ln Z] + \mathbb{E}_{\eta} [\Psi + \ln Z]$$

If exists stationary dist $dp_{\infty} \propto e^{-\Psi} d\nu$, $\Psi \geq 0$ $\Rightarrow KL(p_t || \nu) \leq KL(p_0 || \nu) + \mathbb{E}_{p_0} \Psi$

Conclusion: For any time-inv data-dependent Markov Process with some stationary distribution $p_{\infty}(\cdot; S)$ that is Gibbs w.r.t. a fixed (non data dependent) ν with potential $\Psi(h; S) \geq 0$, with prob $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$:

$$\mathbb{E}_{h_t}[L_{\mathcal{D}}(h_t) - L_S(h_t)] \le \sqrt{\frac{\mathbb{E}_{h \sim p_0} \Psi(h) + KL(p_0 || \nu) + \ln \frac{1}{\delta}}{m}} \le \sqrt{\frac{\beta + \ln \frac{1}{\delta}}{m}}$$

for $0 \le loss \le 1$

If p_0 not data dependent, $\mathrm{d}p_\infty \propto e^{-\beta\mathcal{L}_S}\mathrm{d}p_0$, $\mathbb{E}_{p_0}\mathcal{L}_S \leq 1$

In-Expectation PAC-Bayes Bound

For any (data independent) ν and data dependent p_S , with probability $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$

$$\mathbb{E}_{h \sim p_S}[L_{\mathcal{D}}(h) - L_S(h)] \le \sqrt{\frac{KL(p_S || \nu) + \ln \frac{1}{\delta}}{m}}$$

for $0 \le loss \le 1$

$$D_{\infty}(p||q) = \sup_{p} \ln \frac{\mathrm{d}p}{\mathrm{d}q}$$

Single Sample PAC-Bayes Bound

For any (data independent) ν and data dependent p_S , with probability $\geq 1-\delta$ over $S\sim \mathcal{D}^m$ AND $h\sim p_S$

$$L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h) \le \sqrt{\frac{\ln \frac{\mathrm{d}p_{\mathcal{S}}}{\mathrm{d}\nu}(h) + \ln^{1}/\delta}{2m}} \le \sqrt{\frac{D_{\infty}(p_{\mathcal{S}}||\nu) + \ln^{1}/\delta}{2m}}$$
based on [Alquier 2024]

$$kl(L_S(h)||L_D) \le \frac{D_\infty(p_S||v) + \ln \frac{2m}{\delta}}{m}$$

for $0 \le loss \le 1$

Second Law of Thermodynamics (pointwise):

$$D_{\infty}(p_t || p_{\infty}) \le D_{\infty}(p_0 || p_{\infty})$$

Theorem: if
$$p$$
 is **Gibbs** wrt q , i.e. $dp \propto e^{-\Psi} dq$ then $D_{\infty}(p||q) + D_{\infty}(q||p) = \sup \Psi - \inf \Psi$

If exists stationary dist
$$dp_{\infty} \propto e^{-\Psi} d\nu$$
, $\Psi \geq 0$
 $D_{\infty}(p_t || \nu) \leq D_{\infty}(p_0 || \nu) + \sup \Psi$

$$D_{\infty}(p||q) = \sup_{p} \ln \frac{\mathrm{d}p}{\mathrm{d}q}$$

Single Sample PAC-Bayes Bound

For any (data independent) ν and data dependent p_S , with probability $\geq 1-\delta$ over $S\sim \mathcal{D}^m$ AND $h\sim p_S$

$$L_{\mathcal{D}}(h) - L_{S}(h) \leq \sqrt{\frac{\ln \frac{\mathrm{d}p_{S}}{\mathrm{d}\nu}(h) + \ln^{1}/\delta}{2m}} \leq \sqrt{\frac{D_{\infty}(p_{S}||\nu) + \ln^{1}/\delta}{2m}}$$

$$|kl(L_S(h)||L_{\mathcal{D}}) \le \frac{D_{\infty}(p_S||\nu) + \ln \frac{2m}{\delta}}{m}$$

for $0 \le loss \le 1$

Second Law of Thermodynamics (pointwise):

$$D_{\infty}(p_t || p_{\infty}) \le D_{\infty}(p_0 || p_{\infty})$$

Theorem: if p is **Gibbs** wrt q, i.e. $dp \propto e^{-\Psi} dq$ then $D_{\infty}(p||q) + D_{\infty}(q||p) = \sup \Psi - \inf \Psi$

If exists stationary dist
$$\mathrm{d} p_\infty \propto e^{-\Psi} \mathrm{d} \nu, \Psi \geq 0$$

 $\Rightarrow D_\infty(p_t \| \nu) \leq D_\infty(p_0 \| \nu) + \sup \Psi$

$$D_{\infty}(p||q) = \sup_{p} \ln \frac{\mathrm{d}p}{\mathrm{d}q}$$

Conclusion: For any time-inv data-dependent Markov Process with some stationary distribution $p_{\infty}(\cdot; S)$ that is Gibbs w.r.t. a fixed (non data dependent) ν with potential $0 \le \Psi(h; S) \le \beta$, with prob $\ge 1 - \delta$ over S, h_t :

$$L_{\mathcal{D}}(h_t) - L_{\mathcal{S}}(h_t) \le \sqrt{\frac{\beta + D_{\infty}(p_0 \| \nu) + \ln \frac{1}{\delta}}{m}} \le \sqrt{\frac{\beta + \ln \frac{1}{\delta}}{m}}$$

for $0 \le loss \le 1$

 p_0 not data dependent, $\mathrm{d}p_\infty \propto e^{-\beta \mathcal{L}_S} \mathrm{d}p_0, \mathcal{L}_S \leq 1$

Application to Langevin Dynamics

$$\mathrm{d}h_t = -\nabla \mathcal{L}_S(h_t) \mathrm{d}t + \sqrt{\frac{2}{\beta}} \, \mathrm{d}W_t$$

$$\rightarrow \mathrm{d} p_\infty \propto e^{-\beta \mathcal{L}_S}$$

Application to Langevin Dynamics

Reflective Langevin Dynamics on Bounded Domain:

$$\mathrm{d}h_t = -\nabla \mathcal{L}_S(h_t) \mathrm{d}t + \sqrt{\frac{2}{\beta}} \, \mathrm{d}W_t + \mathrm{d}r_t$$

- $ightarrow \mathrm{d} p_\infty \propto e^{-\beta \mathcal{L}_S} \mathrm{d} \nu$, $p_0 = \nu$ Uniform on box
- Regularized Langevin Dynamics:

$$dh_t = -\nabla \mathcal{L}_S(h_t)dt + \sqrt{\frac{2}{\beta}}dW_t - \frac{\lambda}{\beta}h_t dt$$

$$\rightarrow dp_{\infty} \propto e^{-\beta \mathcal{L}_S} d\nu$$
, $p_0 = \nu = \mathcal{N}(0, \lambda^{-1}I)$

In both cases:
$$\mathbb{E}_{h \sim p_t}[L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)] \leq \sqrt{\frac{\beta \mathbb{E}_{p_0} \mathcal{L}_{\mathcal{S}} + \ln^1/\delta}{m}}$$
, with w.p. $\geq \delta$, $L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \sqrt{\frac{\beta \sup \mathcal{L}_{\mathcal{S}} + \ln^1/\delta}{m}}$

Paper	Trajectory dependent	dimension dependence	Bound (big O)	
Mou et al. [40]	✓	through gradients	$\sqrt{rac{eta}{N}} \cdot \sqrt{rac{1}{\lambda}g_t^2} = rac{e^{4eta C}\sqrt{eta}}{2} \cdot rac{2K}{2}$	
Li et al. [32]	×	through K	$\frac{e^{4eta C}\sqrt{eta}}{N}\cdot rac{2K}{\sqrt{\lambda}}$	K = Lip const
Futami and Fujisawa [16]	✓	through gradients	$\sqrt{\frac{\beta}{N}}e^{8\beta C}\cdot\sqrt{\frac{1}{\lambda}g_t^2}$	$\mathcal{L}_{S} \leq C$
Ours (11)	×	×	$\sqrt{\frac{\beta}{N}} \cdot \sqrt{C}$	

"We are approaching AGI and it's not clear that knowing this tighter bound will get us closer to that" —Reviewer 2 (of another paper)

The journey is half the reward

Temperature is All You Need

for Generalization in Langevin Dynamics and other Markov Processes

Itamar Harel (Technion), Yonathan Walonowsky (Technion), Gal Vardi (Weizmann), Nati Srebro (TTIC), Daniel Soudry (Technion)

Second Law of Thermodynamics

$$KL(p_t || p_{\infty}) \le KL(p_0 || p_{\infty})$$

$$KL(p_t||p_\infty) \le KL(p_0||p_\infty)$$
 $D_\infty(p_t||p_\infty) \le D_\infty(p_0||p_\infty)$

If
$$p$$
 is Gibbs wrt q , i.e. $\mathrm{d}p \propto e^{-\Psi}\mathrm{d}q$ then $KL(p\|q) + KL(q\|p) = \mathbb{E}_q\Psi - \mathbb{E}_p\Psi$ $D_{\infty}(p\|q) + D_{\infty}(q\|p) = \sup_{\mathcal{D}}\Psi - \inf_{\mathcal{D}}\Psi$

If exists stationary dist
$$\mathrm{d}p_{\infty} \propto e^{-\Psi}\mathrm{d}\nu$$
, $\Psi \geq 0$
$$KL(p_t \| \nu) \leq KL(p_0 \| \nu) + \mathbb{E}_{p_0} \Psi$$

$$D_{\infty}(p_t \| \nu) \leq D_{\infty}(p_0 \| \nu) + \sup \Psi$$

For any time-inv data-dependent Markov Process with some stationary distribution $p_{\infty}(\cdot;S)$ that is Gibbs w.r.t. a fixed (non data dependent) ν with potential $\Psi(h;S) \geq 0$, with prob $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$:

$$\mathbb{E}_{h_t}[L_{\mathcal{D}}(h_t) - L_S(h_t)] \le \sqrt{\frac{\mathbb{E}_{h \sim p_0} \Psi(h) + KL(p_0 || \nu) + \ln \frac{1}{\delta}}{m}} \le \sqrt{\frac{\beta + \ln \frac{1}{\delta}}{m}}$$

And if $\Psi \leq \beta$ then with prob $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ AND h_t :

$$L_{\mathcal{D}}(h_t) - L_S(h_t) \le \sqrt{\frac{\beta + D_{\infty}(p_0 || \nu) + \ln \frac{1}{\delta}}{m}}$$

 p_0 not data dependent, $\mathrm{d}p_{\infty} \propto e^{-\beta \mathcal{L}_S} \mathrm{d}p_0$, $\mathbb{E}_{p_0} \mathcal{L}_S \leq 1$