# Introduction to Statistical Analysis (using Shiny Apps) CRUK:- Monday 28th November 2016

Mark Dunning, Aaron Lun & John Marioni

www.tiny.cc/crukStats

Acknowledgements: Sarah Vowler, Sarah Dawson, Liz Merrell, Deepak Parashar, Rob Nicholls

## Tests for continuous variables non-parametric methods

|                                      |             | RESPONSE                                        |                                                                |                                    |  |  |
|--------------------------------------|-------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------|--|--|
| NO OF SAMPLES                        |             | NOMINAL                                         | ORDINAL OR NON-<br>NORMAL                                      | NORMALLY<br>DISTRIBUTED            |  |  |
|                                      | ONE<br>MPLE | χ²-test,<br>Z-test                              | Kolmogorov-Smirnov<br>Sign test                                | t-test                             |  |  |
| TWO                                  | INDEPENDENT | χ²-test (r x c),<br>Fisher's exact test         | Mann-Whitney U<br>Median test                                  | Unpaired t-test                    |  |  |
| SAMPLE                               | PAIRED      | McNemar's test<br>Stuart-Maxwell test           | Wilcoxon signed rank<br>Sign test                              | Paired t-test                      |  |  |
| MULTIPLE SAMPLES INDEPENDENT         |             | χ²-test (r x k)<br>Fisher-Freeman-Halton        | Kruskal-Wallis test<br>Median Test<br>Jonckheere-Terpstra test | Analysis of variance (ANOVA)       |  |  |
| (K>2)                                | PAIRED      | Cochran Q test                                  | Friedman test<br>Page test<br>Quade test                       | Repeated measures<br>ANOVA         |  |  |
| ASSOCIATION BETWEEN<br>TWO VARIABLES |             | Contingency coefficient<br>Phi, rø<br>Cramér, C | Spearman's rank<br>Kendall's tau                               | Pearson product moment correlation |  |  |
| AGREEMENT BETWEEN<br>TWO VARIABLES   |             | Simple kappa                                    | Weighted kappa                                                 | Limits of agreement                |  |  |

|                                      |             | RESPONSE                                        |                                                                |                                    |  |  |
|--------------------------------------|-------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------|--|--|
| NO OF SAMPLES                        |             | NOMINAL                                         | ORDINAL OR NON-<br>NORMAL                                      | NORMALLY<br>DISTRIBUTED            |  |  |
|                                      | ONE<br>MPLE | χ²-test,<br>Z-test                              | Kolmogorov-Smirnov<br>Sign test                                | t-test                             |  |  |
| TWO                                  | INDEPENDENT | χ²-test (r x c),<br>Fisher's exact test         | Mann-Whitney U 👍<br>Median test                                | Unpaired t-test                    |  |  |
| SAMPLE                               | PAIRED      | McNemar's test<br>Stuart-Maxwell test           | Wilcoxon signed rank<br>Sign test                              | Paired t-test                      |  |  |
| MULTIPLE SAMPLES INDEPENDENT         |             | χ²-test (r x k)<br>Fisher-Freeman-Halton        | Kruskal-Wallis test<br>Median Test<br>Jonckheere-Terpstra test | Analysis of variance (ANOVA)       |  |  |
| (K>2)                                | PAIRED      | Cochran Q test                                  | Friedman test<br>Page test<br>Quade test                       | Repeated measures<br>ANOVA         |  |  |
| ASSOCIATION BETWEEN<br>TWO VARIABLES |             | Contingency coefficient<br>Phi, rø<br>Cramér, C | Spearman's rank<br>Kendall's tau                               | Pearson product moment correlation |  |  |
| AGREEMENT BETWEEN TWO VARIABLES      |             | Simple kappa                                    | Weighted kappa                                                 | Limits of agreement                |  |  |

|                                                             |             | RESPONSE                                        |                                                                |                                    |  |  |
|-------------------------------------------------------------|-------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------|--|--|
| NO OF SAMPLES                                               |             | NOMINAL                                         | ORDINAL OR NON-<br>NORMAL                                      | NORMALLY<br>DISTRIBUTED            |  |  |
|                                                             | ONE<br>MPLE | $\chi^2$ -test, Z-test                          | Kolmogorov-Smirnov Sign test                                   | T_TAST                             |  |  |
| TWO                                                         | INDEPENDENT | χ²-test (r x c),<br>Fisher's exact test         | Mann-Whitney U<br>Median test                                  | Unpaired t-test                    |  |  |
| SAMPLE                                                      | PAIRED      | McNemar's test<br>Stuart-Maxwell test           | Wilcoxon signed rank<br>Sign test                              | Paired t-test                      |  |  |
| MULTIPLE SAMPLES INDEPENDENT                                |             | χ²-test (r x k)<br>Fisher-Freeman-Halton        | Kruskal-Wallis test<br>Median Test<br>Jonckheere-Terpstra test | Analysis of variance (ANOVA)       |  |  |
| (K>2)                                                       | PAIRED      | Cochran Q test                                  | Friedman test<br>Page test<br>Quade test                       | Repeated measures<br>ANOVA         |  |  |
| ASSOCIATION BETWEEN<br>TWO VARIABLES                        |             | Contingency coefficient<br>Phi, rø<br>Cramér, C | Spearman's rank<br>Kendall's tau                               | Pearson product moment correlation |  |  |
| AGREEMENT BETWEEN TWO VARIABLES Simple kappa Weighted kappa |             | Limits of agreement                             |                                                                |                                    |  |  |

#### Sign Test

- A very simple non-parametric test
  - based on the Binomial distribution

Uses directions of differences

- One-sample case: compares to proposed value
- Paired two-sample case: compares medians

#### • Assumptions:

- Order in coding system (minimally requires ordinal data)
- Randomly selected observations (independent)

#### Hypotheses:

- $-H_0$ : median is equal to a specific value
- H<sub>\(\time\)</sub>: median is not equal to that specific value

#### Method:

Compare values to a specific value:

+ : if bigger

- : if smaller

= : if equal

Count the number of +'s and -'s, and calculate:

x = smallest of the positives and negatives

n = number of non-ties

Compare to binomial tables

With p = 0.5 (binomial success probability, not p-value)

- General health section of SF-36 collected in a breast cancer study
- Expected value in general population: 72

 $H_0$ : median value in sample is equal to 72

#### **GH Value**

| <b>GH Value</b> | Sign |
|-----------------|------|
| 60              | -    |
| 55              | -    |
| 75              | +    |
| 100             | +    |
| 55              | -    |
| 60              | -    |
| 50              | -    |
| 60              | -    |
| 72              | =    |
| 40              | -    |
| 90              | +    |
| 75              | +    |
| 70              | -    |
| 75              | +    |
| 55              | -    |

9: observations <72

5 : observations >72

1 : observation =72

| <b>GH Value</b> | Sign |
|-----------------|------|
| 60              | -    |
| 55              | -    |
| 75              | +    |
| 100             | +    |
| 55              | -    |
| 60              | -    |
| 50              | -    |
| 60              | -    |
| 72              | =    |
| 40              | -    |
| 90              | +    |
| 75              | +    |
| 70              | -    |
| 75              | +    |
| 55              | -    |

9 : observations <72

5 : observations >72

1: observation =72

Binomial tables: n=14, p=0.5, x=5



| GH Value | Sign |
|----------|------|
| 60       | -    |
| 55       | -    |
| 75       | +    |
| 100      | +    |
| 55       | -    |
| 60       | -    |
| 50       | -    |
| 60       | -    |
| 72       | =    |
| 40       | -    |
| 90       | +    |
| 75       | +    |
| 70       | -    |
| 75       | +    |
| 55       | -    |

9: observations <72

5 : observations >72

1 : observation =72

Binomial tables: n=14, p=0.5, x=5



P-value = 0.42

 $H_0$ : median value in sample is equal to 72

- Sign test p-value = 0.42
- Insufficient evidence to reject H<sub>0</sub>

Conclusion: insufficient evidence to suggest that the median value is different from 72

|                                      |             | RESPONSE                                        |                                                                |                                    |  |  |
|--------------------------------------|-------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------|--|--|
| NO OF SAMPLES                        |             | NOMINAL                                         | ORDINAL OR NON-<br>NORMAL                                      | NORMALLY<br>DISTRIBUTED            |  |  |
|                                      | ONE<br>MPLE | χ²-test,<br>Z-test                              | Kolmogorov-Smirnov<br>Sign test                                | irnov t-test                       |  |  |
| TWO                                  | INDEPENDENT | $\chi^2$ -test (r x c),<br>Fisher's exact test  | Mann-Whitney U<br>Median test                                  | Unpaired t-test                    |  |  |
| SAMPLE                               | PAIRED      | McNemar's test<br>Stuart-Maxwell test           | Wilcoxon signed rank Sign test                                 | Paired t-test                      |  |  |
| MULTIPLE SAMPLES INDEPENDENT         |             | χ²-test (r x k)<br>Fisher-Freeman-Halton        | Kruskal-Wallis test<br>Median Test<br>Jonckheere-Terpstra test | Analysis of variance (ANOVA)       |  |  |
| (K>2)                                | PAIRED      | Cochran Q test                                  | Friedman test<br>Page test<br>Quade test                       | Repeated measures<br>ANOVA         |  |  |
| ASSOCIATION BETWEEN<br>TWO VARIABLES |             | Contingency coefficient<br>Phi, rø<br>Cramér, C | Spearman's rank<br>Kendall's tau                               | Pearson product moment correlation |  |  |
| AGREEMENT BETWEEN TWO VARIABLES      |             | Simple kappa                                    | Weighted kappa                                                 | Limits of agreement                |  |  |

#### Method:

- Compare paired values between the two samples:
  - + : if the value in sample 1 is bigger
  - if the value in sample 1 is smaller
  - = : if the value in the two samples is equal
- Count the number of +'s and -'s, and calculate:

```
x = smallest of the positives and negatives
```

n = number of non-ties

Compare to binomial tables

```
With p = 0.5 (binomial success probability, not p-value)
```

- General health section of SF-36 collected in a breast cancer study
- Data collected at two time points
- Is there a difference between the time points?

 $H_0$ : medians of the two samples are the same

| <b>GH Value 1</b> | GH Value 2 |
|-------------------|------------|
| 60                | 70         |
| 55                | 65         |
| 75                | 100        |
| 100               | 50         |
| 55                | 70         |
| 60                | 95         |
| 50                | 95         |
| 60                | 65         |
| 72                | 85         |
| 40                | 55         |
| 90                | 95         |
| 75                | 45         |
| 70                | 75         |
|                   |            |

Data are paired

| GH Va | lue 1 | GH Va | ue 2 | Difference |
|-------|-------|-------|------|------------|
|       |       |       |      |            |

Data are paired

| GH Value 1 | GH Value 2 | Difference | Sign |
|------------|------------|------------|------|
| 60         | 70         | -10        | -    |
| 55         | 65         | -10        | -    |
| 75         | 100        | -25        | -    |
| 100        | 50         | 50         | +    |
| 55         | 70         | -15        | -    |
| 60         | 95         | -35        | -    |
| 50         | 95         | -45        | -    |
| 60         | 65         | -5         | -    |
| 72         | 85         | -13        | -    |
| 40         | 55         | -15        | -    |
| 90         | 95         | -5         |      |
| 75         | 45         | 30         | +    |
| 70         | 75         | -5         | -    |
| 75         | 65         | 10         | +    |
| 55         | 60         | -5         |      |

Data are paired

Negative signs: 12

Positive signs: 3

|  | GH | Value | 1 GH | l Value | 2 Diff | ference | Sign |
|--|----|-------|------|---------|--------|---------|------|
|--|----|-------|------|---------|--------|---------|------|

| 60  | 70  | -10 | - |
|-----|-----|-----|---|
| 55  | 65  | -10 | - |
| 75  | 100 | -25 | - |
| 100 | 50  | 50  | + |
| 55  | 70  | -15 | - |
| 60  | 95  | -35 | - |
| 50  | 95  | -45 | - |
| 60  | 65  | -5  |   |
| 72  | 85  | -13 | - |
| 40  | 55  | -15 | - |
| 90  | 95  | -5  | - |
| 75  | 45  | 30  | + |
| 70  | 75  | -5  | - |
| 75  | 65  | 10  | + |
| 55  | 60  | -5  | - |

Data are paired

Negative signs: 12

Positive signs: 3

Binomial tables: n=15, p=0.5, x=3



| 60  | 70  | -10 | -   |
|-----|-----|-----|-----|
|     |     |     |     |
| 55  | 65  | -10 | 1.7 |
| 75  | 100 | -25 | -   |
| 100 | 50  | 50  | +   |
| 55  | 70  | -15 | -   |
| 60  | 95  | -35 | -   |
| 50  | 95  | -45 | -   |
| 60  | 65  | -5  | -   |
| 72  | 85  | -13 | -   |
| 40  | 55  | -15 |     |
| 90  | 95  | -5  | -   |
|     |     |     |     |

45

75

65

60

30

-5

10

-5

75

70

75

55

GH Value 1 GH Value 2 Difference Sign

Data are paired

Negative signs: 12

Positive signs: 3

Binomial tables: n=15, p=0.5, x=3



P-value = 0.035

 $H_0$ : medians of the two samples are the same

- Sign test p-value = 0.035
- Reject the null hypothesis

Conclusion: there is a difference in general health between the two time points

#### Presentation of the Results

#### One-sample case:

"There is insufficient evidence to suggest a significant difference between the median general health value (60) observed in this sample and the value (72) observed in the general population (p=0.42, sign test)."

#### Two-sample case:

"The median general health value observed at the second time point (70) was found to be significantly higher than the median (60) observed at the first time point (p=0.035, sign test)."

#### Sign Test - Advantages & Limitations

- Simple few assumptions thus widely applicable
- Significance threshold can be adjusted
- Less powerful than other tests
  - Does not consider magnitude of differences
  - May fail to reject null hypothesis when other tests would achieve significance.
- Can be used for quick assessment of direction

| NO OF SAMPLES                        |             | NOMINAL                                         | ORDINAL OR NON-<br>NORMAL                                      | NORMALLY<br>DISTRIBUTED            |
|--------------------------------------|-------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------|
|                                      | ONE<br>MPLE | χ²-test,<br>Z-test                              | Kolmogorov-Smirnov<br>Sign test                                | t-test                             |
| TWO                                  | INDEPENDENT | χ²-test (r x c),<br>Fisher's exact test         | Mann-Whitney U<br>Median test                                  | Unpaired t-test                    |
| SAMPLE                               | PAIRED      | McNemar's t€<br>Stuart-Maxwell test             | Wilcoxon signed rank Sign test                                 | Paired t-test                      |
| MULTIPLE<br>SAMPLES                  | INDEPENDENT | χ²-test (r x k)<br>Fisher-Freeman-Halton        | Kruskal-Wallis test<br>Median Test<br>Jonckheere-Terpstra test | Analysis of variance (ANOVA)       |
| (K>2)                                | PAIRED      | Cochran Q test                                  | Friedman test<br>Page test<br>Quade test                       | Repeated measures<br>ANOVA         |
| ASSOCIATION BETWEEN<br>TWO VARIABLES |             | Contingency coefficient<br>Phi, rø<br>Cramér, C | Spearman's rank<br>Kendall's tau                               | Pearson product moment correlation |
| AGREEMENT BETWEEN TWO VARIABLES      |             | Simple kappa                                    | Weighted kappa                                                 | Limits of agreement                |

- Alternative to sign test
- Assumptions:
  - Paired data (e.g. matched samples, repeated measurements)
  - Each pair is independent
  - Continuous or ordinal data (Normality not assumed)
  - Symmetry of difference scores about true median difference (test by looking at histogram/boxplot)
- Hypothesis:
  - $H_0$ : sum of positive ranks equals sum of negative ranks
  - H<sub>A</sub>: sum of positive ranks not equal to sum of negative ranks

#### Method:

- Calculate differences for each pair
- Rank the paired differences by magnitude
- Split the ranks into two groups:
  - positive and negative signed differences
- Calculate sum of positive ranks: W<sup>+</sup>
- Calculate sum of negative ranks: W<sup>-</sup>
- Compare smaller of and W<sup>+</sup> and W<sup>-</sup> to the critical value from the tables

- General health section of SF-36 collected in a breast cancer study
- Data collected at two time points
- Is there a difference between the time points?

 $H_0$ : medians of the two samples are the same

- General health section of SF-36 collected in a breast cancer study
- Data collected at two time points
- Is there a difference between the time points?

H<sub>o</sub>: medians of the two samples are the same

H<sub>0</sub>: distribution of paired differences is symmetric about zero

| <b>GH Value 1</b> | <b>GH Value 2</b> | Difference | Sign |
|-------------------|-------------------|------------|------|
| 60                | 70                | -10        | -    |
| 55                | 65                | -10        | -    |
| 75                | 100               | -25        | -    |
| 100               | 50                | 50         | +    |
| 55                | 70                | -15        | -    |
| 60                | 95                | -35        | -    |
| 50                | 95                | -45        | -    |
| 60                | 65                | -5         | -    |
| 72                | 85                | -13        | -    |
| 40                | 55                | -15        |      |
| 90                | 95                | -5         | -    |
| 75                | 45                | 30         | +    |
| 70                | 75                | -5         | -    |
| 75                | 65                | 10         | +    |
| 55                | 60                | -5         | -    |





| <b>GH Value 1</b> | <b>GH Value 2</b> | Difference | Sign | Abs.Diff. |
|-------------------|-------------------|------------|------|-----------|
| 60                | 70                | -10        | -    | 10        |
| 55                | 65                | -10        | -    | 10        |
| 75                | 100               | -25        | -    | 25        |
| 100               | 50                | 50         | +    | 50        |
| 55                | 70                | -15        | -    | 15        |
| 60                | 95                | -35        | -    | 35        |
| 50                | 95                | -45        | -    | 45        |
| 60                | 65                | -5         | -    | 5         |
| 72                | 85                | -13        | -    | 13        |
| 40                | 55                | -15        |      | 15        |
| 90                | 95                | -5         | -    | 5         |
| 75                | 45                | 30         | +    | 30        |
| 70                | 75                | -5         | -    | 5         |
| 75                | 65                | 10         | +    | 10        |
| 55                | 60                | -5         | -    | 5         |

| GH Value 1 | GH Value 2 | Difference | Sign | Abs.Diff. |
|------------|------------|------------|------|-----------|
| 60         | 65         | -5         | -    | 5         |
| 90         | 95         | -5         | -    | 5         |
| 70         | 75         | -5         | -    | 5         |
| 55         | 60         | -5         | -    | 5         |
| 60         | 70         | -10        | -    | 10        |
| 55         | 65         | -10        | -    | 10        |
| 75         | 65         | 10         | +    | 10        |
| 72         | 85         | -13        | -    | 13        |
| 55         | 70         | -15        | -    | 15        |
| 40         | 55         | -15        | -    | 15        |
| 75         | 100        | -25        | -    | 25        |
| 75         | 45         | 30         | +    | 30        |
| 60         | 95         | -35        | -    | 35        |
| 50         | 95         | -45        | -    | 45        |
| 100        | 50         | 50         | +    | 50        |

| GH Value 1 | GH Value 2 | Difference | Sign | Abs.Diff. | Rank |
|------------|------------|------------|------|-----------|------|
| 60         | 65         | -5         | -    | 5         | 2.5  |
| 90         | 95         | -5         | -    | 5         | 2.5  |
| 70         | 75         | -5         | -    | 5         | 2.5  |
| 55         | 60         | -5         | -    | 5         | 2.5  |
| 60         | 70         | -10        | -    | 10        | 6    |
| 55         | 65         | -10        | -    | 10        | 6    |
| 75         | 65         | 10         | +    | 10        | 6    |
| 72         | 85         | -13        | -    | 13        | 8    |
| 55         | 70         | -15        | -    | 15        | 9.5  |
| 40         | 55         | -15        | -    | 15        | 9.5  |
| 75         | 100        | -25        | -    | 25        | 11   |
| 75         | 45         | 30         | +    | 30        | 12   |
| 60         | 95         | -35        | -    | 35        | 13   |
| 50         | 95         | -45        | -    | 45        | 14   |
| 100        | 50         | 50         | +    | 50        | 15   |

| GH Value 1 | GH Value 2 | Difference | Sign | Abs.Diff. | Rank | Signed-Rank |
|------------|------------|------------|------|-----------|------|-------------|
| 60         | 65         | -5         | -    | 5         | 2.5  | -2.5        |
| 90         | 95         | -5         | -    | 5         | 2.5  | -2.5        |
| 70         | 75         | -5         | -    | 5         | 2.5  | -2.5        |
| 55         | 60         | -5         | -    | 5         | 2.5  | -2.5        |
| 60         | 70         | -10        |      | 10        | 6    | -6          |
| 55         | 65         | -10        | -    | 10        | 6    | -6          |
| 75         | 65         | 10         | +    | 10        | 6    | 6           |
| 72         | 85         | -13        | -    | 13        | 8    | -8          |
| 55         | 70         | -15        | -    | 15        | 9.5  | -9.5        |
| 40         | 55         | -15        | -    | 15        | 9.5  | -9.5        |
| 75         | 100        | -25        | -    | 25        | 11   | -11         |
| 75         | 45         | 30         | +    | 30        | 12   | 12          |
| 60         | 95         | -35        | -    | 35        | 13   | -13         |
| 50         | 95         | -45        | -    | 45        | 14   | -14         |
| 100        | 50         | 50         | +    | 50        | 15   | 15          |

| GH Value 1 | GH Value 2 | Difference | Sign | Abs.Diff. | Rank | Signed-Rank |                     |
|------------|------------|------------|------|-----------|------|-------------|---------------------|
| 60         | 65         | -5         | -    | 5         | 2.5  | -2.5        | Davide Compan       |
| 90         | 95         | -5         | -    | 5         | 2.5  | -2.5        | Rank-Sums:          |
| 70         | 75         | -5         | -    | 5         | 2.5  | -2.5        | $W^{+} = 33$        |
| 55         | 60         | -5         | -    | 5         | 2.5  | -2.5        | W <sup>-</sup> = 87 |
| 60         | 70         | -10        | -    | 10        | 6    | -6          | VV - 07             |
| 55         | 65         | -10        | -    | 10        | 6    | -6          |                     |
| 75         | 65         | 10         | +    | 10        | 6    | 6           |                     |
| 72         | 85         | -13        | -    | 13        | 8    | -8          |                     |
| 55         | 70         | -15        | -    | 15        | 9.5  | -9.5        |                     |
| 40         | 55         | -15        | -    | 15        | 9.5  | -9.5        |                     |
| 75         | 100        | -25        | -    | 25        | 11   | -11         |                     |
| 75         | 45         | 30         | +    | 30        | 12   | 12          |                     |
| 60         | 95         | -35        | -    | 35        | 13   | -13         |                     |
| 50         | 95         | -45        | -    | 45        | 14   | -14         |                     |
| 100        | 50         | 50         | +    | 50        | 15   | 15          |                     |

| GH Value 1 | GH Value 2 | Difference | Sign | Abs.Diff. | Rank | Signed-Rank |                       |
|------------|------------|------------|------|-----------|------|-------------|-----------------------|
| 60         | 65         | -5         | -    | 5         | 2.5  | -2.5        | Davids Courses        |
| 90         | 95         | -5         | -    | 5         | 2.5  | -2.5        | Rank-Sums:            |
| 70         | 75         | -5         | -    | 5         | 2.5  | -2.5        | $W^{+} = 33$          |
| 55         | 60         | -5         | -    | 5         | 2.5  | -2.5        | \A/ 07                |
| 60         | 70         | -10        | -    | 10        | 6    | -6          | $W^{-} = 87$          |
| 55         | 65         | -10        | -    | 10        | 6    | -6          |                       |
| 75         | 65         | 10         | +    | 10        | 6    | 6           |                       |
| 72         | 85         | -13        | -    | 13        | 8    | -8          |                       |
| 55         | 70         | -15        | -    | 15        | 9.5  | -9.5        |                       |
| 40         | 55         | -15        | -    | 15        | 9.5  | -9.5        |                       |
| 75         | 100        | -25        | -    | 25        | 11   | -11         | 0 20 40 60 80 100 120 |
| 75         | 45         | 30         | +    | 30        | 12   | 12          | Test Statistic        |
| 60         | 95         | -35        | -    | 35        | 13   | -13         |                       |
| 50         | 95         | -45        | -    | 45        | 14   | -14         |                       |
| 100        | 50         | 50         | +    | 50        | 15   | 15          |                       |

| GH Value 1 | GH Value 2 | Difference | Sign | Abs.Diff. | Rank | Signed-Rank | •                     |
|------------|------------|------------|------|-----------|------|-------------|-----------------------|
| 60         | 65         | -5         | -    | 5         | 2.5  | -2.5        | Davids Comme          |
| 90         | 95         | -5         | -    | 5         | 2.5  | -2.5        | Rank-Sums:            |
| 70         | 75         | -5         | -    | 5         | 2.5  | -2.5        | $W^{+} = 33$          |
| 55         | 60         | -5         | -    | 5         | 2.5  | -2.5        | W⁻ = 87               |
| 60         | 70         | -10        | -    | 10        | 6    | -6          | VV = 87               |
| 55         | 65         | -10        | -    | 10        | 6    | -6          |                       |
| 75         | 65         | 10         | +    | 10        | 6    | 6           |                       |
| 72         | 85         | -13        | -    | 13        | 8    | -8          |                       |
| 55         | 70         | -15        |      | 15        | 9.5  | -9.5        |                       |
| 40         | 55         | -15        | -    | 15        | 9.5  | -9.5        |                       |
| 75         | 100        | -25        | -    | 25        | 11   | -11         | 0 20 40 60 80 100 120 |
| 75         | 45         | 30         | +    | 30        | 12   | 12          | Test Statistic        |
| 60         | 95         | -35        | -    | 35        | 13   | -13         | P-value = 0.12        |
| 50         | 95         | -45        | -    | 45        | 14   | -14         |                       |
| 100        | 50         | 50         | +    | 50        | 15   | 15          |                       |

H<sub>0</sub>: distribution of paired differences is symmetric about zero

- Wilcoxon test p-value = 0.12
- Insufficient evidence to reject the null hypothesis

Conclusion: Insufficient evidence to conclude that there is a difference in general health between the two time points

#### Note:

Validity of assumptions may affect results.



H<sub>o</sub>: medians of the two samples are the same

 ${\rm H_0}$ : distribution of paired differences is symmetric about zero



#### Advantages and Limitations

- Easy to apply
- Powerful
  - Utilises more information than the Sign test (but less than the paired t-test)
- Sometimes misinterpreted
  - Assumes symmetry of difference scores about the true median difference

#### When to use which test

| NO OF SAMPLES                        |             | NOMINAL                                         | ORDINAL OR NON-<br>NORMAL                                      | NORMALLY<br>DISTRIBUTED            |
|--------------------------------------|-------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------|
|                                      | ONE<br>MPLE | χ²-test,<br>Z-test                              | Kolmogorov-Smirnov<br>Sign test                                | t-test                             |
| TWO                                  | INDEPENDENT | χ²-test (r x c , Fisher's exact test            | Mann-Whitney U<br>Median test                                  | Unpaired t-test                    |
| SAMPLE                               | PAIRED      | McNemar's test<br>Stuart-Maxwell test           | Wilcoxon signed rank<br>Sign test                              | Paired t-test                      |
| MULTIPLE<br>SAMPLES                  | INDEPENDENT | χ²-test (r x k)<br>Fisher-Freeman-Halton        | Kruskal-Wallis test<br>Median Test<br>Jonckheere-Terpstra test | Analysis of variance (ANOVA)       |
| (K>2)                                | PAIRED      | Cochran Q test                                  | Friedman test<br>Page test<br>Quade test                       | Repeated measures<br>ANOVA         |
| ASSOCIATION BETWEEN<br>TWO VARIABLES |             | Contingency coefficient<br>Phi, rø<br>Cramér, C | Spearman's rank<br>Kendall's tau                               | Pearson product moment correlation |
| AGREEMENT BETWEEN TWO VARIABLES      |             | Simple kappa                                    | Weighted kappa                                                 | Limits of agreement                |

- Also called the Wilcoxon Rank Sum test
- Assumptions:
  - Two independent groups
  - At least ordinal dependent variable
  - Randomly selected observations
  - Population distributions same shape
- Hypotheses:
  - $-H_{n}$ : populations have the same median
  - $-H_0$ : populations have the same spread and shape

#### Misunderstood test



| Statistics            | Group 1       | Group 2 |  |
|-----------------------|---------------|---------|--|
| Minimum               | 9.03          | 0.40    |  |
| Median                | 9.94          | 9.94    |  |
| Maximum               | 19.48         | 10.85   |  |
| <b>Mann-Whitney U</b> | U=303, p=0.03 |         |  |

#### Method:

- Pool the whole sample
- Rank observations from smallest to largest (assign average rank to ties)
- Calculate sum of ranks for each group
- Calculate U test statistic
- Compare U to critical value in the tables

- Coronary artery surgery study (Fisher's book)
- Exercise times in seconds for 2 groups:
  - Control and 3-Vessel Disease group
- Is there a difference in exercise times between the two groups?

H<sub>0</sub>: distributions of both populations are equal

Control: 1014 684 810 990 840 978 1002 1110

3-Vessel: 864 636 638 708 786 600 1320 750 594 750

Control: 1014 684 810 990 840 978 1002 1110

3-Vessel: 864 636 638 708 786 600 1320 750 594 750

Data: 1014 684 810 990 840 978 1002 1110 864 636 638 708 786 600 1320 750 594 750

Control: 1014 684 810 990 840 978 1002 1110

**3-Vessel:** 864 636 638 708 786 600 1320 750 594 750

Data: 1014 684 810 990 840 978 1002 1110 864 636 638 708 786 600 1320 750 594 750

Sorted: 594 600 636 638 684 708 750 750 786 810 840 864 978 990 1002 1014 1110 1320

Control: 1014 684 810 990 840 978 1002 1110

3-Vessel: 864 636 638 708 786 600 1320 750 594 750

Data: 1014 684 810 990 840 978 1002 1110 864 636 638 708 786 600 1320 750 594 750

Sorted: 594 600 636 638 684 708 750 750 786 810 840 864 978 990 1002 1014 1110 1320

Ranks: 1 2 3 4 5 6 7.5 7.5 9 10 11 12 13 14 15 16 17 18

Control: 1014 684 810 990 840 978 1002 1110

3-Vessel: 864 636 638 708 786 600 1320 750 594 750

Data: 1014 684 810 990 840 978 1002 1110 864 636 638 708 786 600 1320 750 594 750

Sorted: 594 600 636 638 684 708 750 750 786 810 840 864 978 990 1002 1014 1110 1320

Ranks: 1 2 3 4 5 6 7.5 7.5 9 10 11 12 13 14 15 16 17 18

Rank-sums: Test statistics:

Control: 101 U<sub>1</sub>: 65

3-Vessel: 70 U<sub>2</sub>: 15

Control: 1014 684 810 990 840 978 1002 1110

3-Vessel: 864 636 638 708 786 600 1320 750 594 750

Data: 1014 684 810 990 840 978 1002 1110 864 636 638 708 786 600 1320 750 594 750

Sorted: 594 600 636 638 684 708 750 750 786 810 840 864 978 990 1002 1014 1110 1320

Ranks: 1 2 3 4 5 6 7.5 7.5 9 10 11 12 13 14 15 16 17 18

Rank-sums: Test statistics:

Control: 101  $U_1$ : 65

3-Vessel: 70 U<sub>2</sub>: 15



Control: 1014 684 810 990 840 978 1002 1110

3-Vessel: 864 636 638 708 786 600 1320 750 594 750

Data: 1014 684 810 990 840 978 1002 1110 864 636 638 708 786 600 1320 750 594 750

Sorted: 594 600 636 638 684 708 750 750 786 810 840 864 978 990 1002 1014 1110 1320

Ranks: 1 2 3 4 5 6 7.5 7.5 9 10 11 12 13 14 15 16 17 18

Rank-sums: Test statistics:

Control: 101 U<sub>1</sub>: 65

3-Vessel: 70 U<sub>2</sub>: 15



#### Advantages and limitations

- Almost as powerful as t-test
  - almost as likely as t-test to reject H<sub>0</sub> if false

Sensitive to central tendencies of scores

- Often misinterpreted:
  - Difference in medians if same shape distributions
  - Otherwise tests for a combination of differences
     between the distributions, including spread and shape

### Summary: One Sample

#### One-sample t-test:

Compares mean to a proposed value, providing the data can be assumed to be Normally distributed.

#### One-sample Sign test:

Compares the median to a proposed value.

## Summary: Two Independent Samples

#### Two-sample t-test:

Compares means, providing the data can be assumed to be Normally distributed.

#### Mann-Whitney U test (Wilcoxon Rank Sum test):

Compares medians in two independent groups, without assuming Normality. However, does assume similarity of distributions. Otherwise, compares the shape and spread of the two groups, leading to potential misinterpretation of results.

### Summary: Paired Groups

#### Paired t-test:

Compares means, providing paired differences can be assumed to be Normally distributed.

#### Wilcoxon Signed Rank test:

Compares means, providing the distribution of differences is symmetric.

#### Two-sample Sign test:

Compares the medians between matched pairs.