

ALGEBRA Chapter 21

MILLOUI A TILL DOLOT

MOTIVATINGSTRATEGY

ciudau ue oxioru en el ano 1500 y lanecio el 2 de juno de 1621 en Londres. Fue el creador de notaciones y símbolos que se utilizan en álgebra tales como: > (mayor que) y < (menor que). Además observó los satélites de Júpiter y las manchas solares.

La vida de Thomas Harriot sobresale notablemente en diferentes campos. Viaja a las Américas y realiza un trabajo etnográfico; en la astronomía observa la luna y dibuja mapas de sus descubrimientos; además se convierte en un matemático prolífico y se le atribuye la teoría de la refracción.

Fue

INECUACIÓN DE SEGUNDO GRADO

Una inecuación de segundo grado con una incógnita (ecuación cuadrática), es aquella desigualdad condicional que reducida a su más simple expresión tiene la forma:

$$ax^2 + bx + c > 0$$

$$ax^2 + bx + c \ge 0$$

$$ax^2 + bx + c < 0$$

$$ax^2 + bx + c \le 0$$

$$a \neq 0$$

Para su resolución utilizaremos el criterio de los PUNTOS CRÍTICOS.

RESOLUCIÓN DE UNA ECUACIÓN CUADRÁTICA

La solución de la inecuación de segundo grado depende del sentido de la desigualdad.

$$(x-a)(x-b)\geq 0$$

$$x \in \langle -\infty; a] \cup [b; +\infty \rangle$$

$$(x-a)(x-b) \leq 0$$

$$x \in [a; b]$$

$$(x-a)(x-b)>0$$

$$x \in \langle -\infty; a \rangle \cup \langle b; +\infty \rangle$$

$$(x-a)(x-b)<0$$

$$x \in \langle a; b \rangle$$

REGLA PRÁCTICA:

Puntos críticos abiertos	Puntos críticos cerrados	
<	<u> </u>	_
>	>	+

PROPIEDAD:

Para que
$$ax^2 + bx + c > 0$$
, $\forall x \in \mathbb{R}$

se debe cumplir:
$$a > 0$$
 \wedge $\Delta = b^2 - 4ac < 0$

Problema 1

Resuelva

$$3x^2 + 10x + 1 \ge 3x + 7$$

$$3x^2 + 10x + 1 \ge 3x + 7$$

$$3x^2 + 7x - 6 \ge 0$$

$$3x - 2$$

$$x + 3$$

$$(3x-2)(x+3) \ge 0$$

$$\therefore x \in \langle -\infty; -3] \cup \left[\frac{2}{3}; +\infty\right\rangle$$

Resolución?

Problema 2

Obtenga el conjunto solución de

$$x^2 - 11x + 18 > 0$$

$$(x-2)(x-9) > 0$$

$$\therefore x \in \langle -\infty; 2 \rangle \cup \langle 9; +\infty \rangle$$

Problema 3

Halle el conjunto solución de

$$(x+6)(2x+3) > (x+6)(x+2)$$

$$(x+6)(2x+3) > (x+6)(x+2)$$

$$2x^2 + 3x + 12x + 18 > x^2 + 8x + 12$$

$$x^{2} + 7x + 6 > 0$$

$$x + 6$$

$$x + 1$$

$$(x+6)(x+1) > 0$$

$$\therefore x \in \langle -\infty; -6 \rangle \cup \langle -1; +\infty \rangle$$

Resolución?

Problema 4

Determine el conjunto solución de la inecuación

$$(3x-2)^2 \ge (2x-3)^2$$

01

Resuelva

Problema 5

$$x^2 \leq 10x$$

sabiendo que la suma de los valores enteros de x representa la edad del profesor Victor. Si dentro de 25 años se jubilará el <u>Edad del profesor Victor:</u> profesor, ¿a los cuántos años se jubilará?

$$x^2 \leq 10x$$

$$x^2 - 10x \le 0$$

$$x(x-10) \leq 0$$

$$0+1+2+...+8+9+10=\frac{10\times11}{2}=55$$
 años

: El profesor Victor se jubilará a los 80 años.

Problema 6

Calcule el conjunto solución de

$$\frac{x^2 - 8}{4} + \frac{x(x+2)}{2} \le 3$$

ত ব

Problema 7

Determine el menor valor entero de m que verifica a

$$2x^2-12x-7>-m$$
 , $\forall x\in\mathbb{R}$

RECUERDA:

Para que $ax^2 + bx + c > 0$, $\forall x \in \mathbb{R}$

se debe cumplir:

Resolution
$$2x^2-12x-7>-m$$
 , $\forall x\in\mathbb{R}$ $2x^2-12x+(m-7)>0$ positivo Calculando el discriminante: $\Delta=b^2-4$

Calculando el discriminante:
$$\Delta = b^2 - 4ac < 0$$

$$\Delta = (-12)^2 - 4(2)(m-7) < 0$$

$$144 - 8m + 56 < 0$$

$$\longrightarrow$$
 $m > 25$

$$m_{min} = 26$$

ত ব

Problema 8

Obtenga el mínimo valor que

$$x^2 - 4x + 2b > 0$$
 , $\forall x \in \mathbb{R}$

RECUERDA:

Para que $ax^2 + bx + c > 0$, $\forall x \in \mathbb{R}$

se debe cumplir:

$$1x^2 - 4x + 2b > 0 \quad , \forall x \in \mathbb{R}$$
positivo

Resolución?

entero de b si se cumple Calculando el discriminante: $\Delta = b^2 - 4\alpha c < 0$

$$\Delta = (-4)^2 - 4(1)(2b) < 0$$

$$16 - 8b < 0$$

$$b_{min}=3$$

