NAME OF DEPTT./CENTRE:	Department of Civil	Engineering	
1. Subject Code: CE-241	Course Title: Fluid	Mechanics	
2. Contact Hours: L: 3	T: 1	P: 2/2	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weightage: CWS 15	PRS 15 MTE	30 ETE	40 PRE 0
5. Credits: 4 6. Sen	nester: Autumn	7. Subject Area	a: DCC
8. Pre-requisite: Nil			

9. Objective: To introduce fundamentals of stagnant, flowing fluid and flow through different conduits.

S. No.	Contents	Contact Hours
1.	Introduction: Fluid properties, types of fluids, continuum principle	3
2.	Principles of Fluid Statics: Basic equations, manometers,	7
	hydrostatic forces on submerged surfaces, buoyancy.	
3.	Kinematics of Flow: Visualisation of flow, types of flow,	4
	streamline, pathline, streakline, conservation of mass, velocity field,	
	acceleration, vortex flow, velocity potential and stream function.	
4.	Fluid Dynamics: System and control volume approaches, Euler's	7
	equation, Bernoulli's equation and its applications, Reynolds	
	transport equation, momentum and angular momentum equations	
	and their applications.	
5.	Dimensional Analysis and Similitude: Dimensional homogeneity,	3
	Buckingham's π method, dimensionless number, similitude.	
6.	Boundary Layer Theory: Concept of boundary layer, laminar and	6
	turbulent boundary layer, boundary layer thickness, von Karman	
	integral equation, laminar sublayer, hydrodynamically smooth and	
	rough boundaries, separation of flow and its control, cativation.	
7.	Laminar and Turbulent Flow through Pipes: Laminar flow	9
	through pipes, turbulent flow, Reynolds equations, Prandtl's mixing	
	length theory, velocity distribution over a plate and through pipe,	

	Darcy-Weisbach equation, friction factor, moody diagram, minor losses, pipe network, venturimeter, orifice meter, water hammer, surge tanks	
8.	Drag and Lift: Skin-friction and form drag, drag on sphere, cylinder and flat plate, Karman vortex shedding, generation of lift around a cylinder, lifting vanes.	3
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Fox, R.W. and McDonald, A.T., "Introduction to Fluid Mechanics",	2004
	John Wiley & Sons.	
2.	Garde, R.J. and Mirajgaoker, A.G., "Engineering Fluid Mechanics",	1988
	Nem Chand & Bros.	
3.	Kumar, K.L., "Engineering Fluid Mechanics", Eurasia Publishing	2000
	House.	
4.	Schlichting, H. and Gersten, K., "Boundary Layer Theory", Springer.	2004
5.	Streeter, V.L. and Benjamin, W.E., "Fluid Mechanics", McGraw-Hill.	1983
6.	Som, S.K. and Biswas, G., "Fluid Mechanics and Fluid Mechanics",	1998
	Tata McGraw Hill.	

NAME OF DEPTT./CENTRE:	Department of Civi	l Engineering		
1. Subject Code: CE-251		ling Materials, (nation	Construction &	
2. Contact Hours: L: 3	T: 1	P: 2/2		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS 15	5 PRS 15 MTE	30 ETE	40 PRE 0	_
5. Credits: 4 6. Ser	mester: Autumn	7. Subject Are	a: DCC	
8. Pre-requisite: Nil				

9. Objective: To introduce the fundamentals of building materials, construction, drawings and estimation of construction cost.

S. No.	Contents	Contact Hours
1.	Brick masonry; bonds, stone masonry; types of walls, plastering and	7
	pointing.	
2.	Types of roofs, floors and foundations, damp proofing.	3
3.	Doors and windows, stairs, staircases, lifts and escalators.	5
4.	White washing, colour washing, painting, and distempering, Shuttering, scaffolding and centering.	6
5.	Expansion and construction joints, sound and fire proof construction, principles of building drawing; preparation of working drawings.	6
6.	Common building materials, brick masonry, cement, concrete, steel/timber, wood products and wood substitutes.	3
7.	Introduction to glass, plastics with/without reinforcement, aluminium alloys, fibre reinforced concrete and ferrocement, energy efficient materials for green buildings.	6
8.	Quantity Estimation: Methods of estimation, analysis of rates, schedule of rates, estimation of materials, labour and cost.	6
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Kumar, S., "Building Construction", Standard Publishers.	2005
2.	Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford and	1987
	IBH.	
3.	Arya, A.S., "Masonry and Timber Structures including Earthquake	1992
	Resistant Design", Nem Chand & Bros.	
4.	Goyal, M.M., "Handbook of Building Construction", Amrindia	2004
	Consultancy.	
5.	Dutta, B.N., "Estimation and Costing", S. Dutta & Co.	2000
6.	Khanna, P.N., "Indian Practical Civil Engineering Handbook",	2000
	Engineers Publishers.	

NAME OF DEPTT./CENTRE:	Department of	Civil Engineering	
1. Subject Code: CE-212	Course Title:	Water Supply Engineering	
2. Contact Hours: L: 2	T: 1	P: 2	
3. Examination Duration (Hrs.):	Theory	2 Practical 2	
4. Relative Weightage: CWS	15 PRS 15	MTE 15 ETE 40	PRE 15
5. Credits: 4 6. So	emester: Spring	7. Subject Area: DCC	2
8. Pre-requisite: Nil			

9. Objective: To impart understanding of various aspects related to supply of pure and safe drinking water to communities and the conservation of water.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction and scope, source of water supply, water quality:	7
	physical, chemical and biological characteristics, water demand.	
2.	Water collection and treatment, conventional treatment; settling, coagulation-flocculation, filtration and disinfection, advanced treatment; activated carbon adsorption and ozonation, design of facilities.	9
3.	Water distribution, storage reservoirs, distribution networks.	3
4.	Water transportation, water pipes, water leakage.	3
5.	Water supply in building, plumbing and fixtures.	3
6.	Water conservations, rainwater harvesting, small water supply systems.	3
	Total	28

List of Experiments:

- 1. Characterization of water & wastewater quality
- 2. Air sampling and analysis
- 3. Measurement of noise
- 4. Coagulation flocculation
- 5. Disinfection

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Hammer, M.J. and Hammer, M.J., "Water and Wastewater	2000
	Technology", 4 th Ed., Prentice Hall of India.	
2.	Davis, M.L. and Cornwell, D.A., "Introduction to Environmental	1998
	Engineering", McGraw Hill.	
3.	McGhee, T.J., "Water Supply and Sewerage", McGraw Hill.	1991
4.	Peavy, H.S., Rowe, D.R. and Tehobanoglous, G., "Environmental	1986
	Engineering", McGraw Hill.	

NAME OF DEPTT./CENTRE:	Department of	of Civil	Engin	eering			
1. Subject Code: CE-222	Course Title:	Princi	ples of	f Surve	ying		
2. Contact Hours: L: 3	T: 0			P: 3			
3. Examination Duration (Hrs.):	Theory	3	Pr	actical		3	
4. Relative Weightage: CWS 15	PRS 15	MTE	15	ETE	40	PRE	15
5. Credits : 4 6. Sen	nester: Spring		7. Sul	oject Ar	ea: D	CC	
8. Pre-requisite: Nil							

9. Objective: To impart knowledge about basic principles of field surveying procedures and practices for civil engineering applications.

S. No.	Contents	Contact Hours
1.	Importance of surveying to engineering projects, basic principles.	2
2.	Type of maps, scales and uses, plotting accuracy, map sheet	4
	numbering, coordinate and map projection.	
3.	Surveying equipment, levels, compass, theodolites, tachometer,	5
	EDM, total Stations and other instruments.	
4.	Measurement of angles, directions and distance.	5
5.	Determination of elevation, spirit leveling, trigonometrical leveling,	8
	and tachometric surveying, contouring.	
6.	Methods of control establishment, traversing, triangulation,	6
	trilateration, adjustment of survey measurements, computation of	
	coordinates.	
7.	Plane table surveys and mapping, curve layout, horizontal, transition	8
	and vertical curves.	
8.	Astronomical terms, determination of azimuth.	4
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Anderson, J.M. and Mikhail, E.M., "Surveying: Theory and Practice",	1998
	McGraw Hill.	
2.	Arora, K.R., "Surveying", Vol. I, II and III, Standard Book House.	1995
3.	Chandra, A.M., "Surveying", New Age Publishers.	2002
4.	Schofield, W. and Breach M., "Engineering Surveying", 6th Ed.,	2007
	Butterworth-Heineman.	

NAME OF DEPTT./CENTRE:	Department of C	ivil Engineering	
1. Subject Code: CE-242	Course Title: Ch	annel Hydraulics	
2. Contact Hours: L: 3	T: 1	P: 2/2	
3. Examination Duration (Hrs.):	Theory 3	Practical	2
4. Relative Weightage: CWS 1	5 PRS 15 M	TTE 15 ETE 40	PRE 15
5. Credits: 4 6. Ser	mester: Spring	7. Subject Area: DC	CC .
8. Pre-requisite: CE-241			

9. Objective: To introduce the concepts of channel hydraulics, used in design of inland waterways for irrigation and navigation.

S. No.	Contents	Contact Hours
1.	Introduction to Free Surface Flows: Comparison between pipe	3
	and channel flows, basic equations governing channel flows.	
2.	Uniform Flow: Flow resistance in channel flows, resistance	7
	relationships, normal depth, section factor for uniform flow	
	computation, design of channels, most efficient cross-section in rigid	
	boundary channels.	
3.	Fluvial Hydraulics: Incipient motion condition, regimes of flow	6
	and resistance to flow in mobile bed channels, non-scouring erodible	
	boundary channel design, alluvial channel design, uniform flow in	
	mobile bed channels.	
4.	Concepts of Specific Energy and Specific Force: Section factor	6
	for critical flow computation, critical depth computations, control	
	sections, applications of specific energy and critical depth.	
5.	Gradually Varied Flow: Governing equations, characteristics and	5
	classification of water surface profiles, computations of GVF	
	profiles in prismatic and non-prismatic channels.	
6.	Hydraulic Jump: Types of jump, hydraulic jump in horizontal	5
	rectangular channels, forced jump, hydraulic Jump in non-	
	rectangular and sloping channels, stilling basins.	

7.	Flow Measurement in Open Channels: Broad and sharp-crested	5
	weirs, free overall, flow over spillways, side weirs, sluice gates.	
8.	Unsteady Flow: Wave celerity, surges, governing equations, method of characteristics, flood routing in channels, dam break analysis.	5
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Ranga Raju, K.G., "Flow through Open Channels", Tata McGraw-	2003
	Hill.	
2.	Chow, V.T., "Open Channel Hydraulics", McGraw Hill.	1959
3.	Chanson, H., "The Hydraulics of Open Channel Flow: An	2004
	Introduction", Elsevier Scientific.	
4.	Asawa, G.L., "Fluid Flow in Pipes and Channels", CBS Publishers.	2008
5.	Subramanya, K., "Flow in Open Channels", Tata McGraw-Hill.	1997

NAME OF DEPTT./CENTRE:	Department of Civil	l Engineering		
1. Subject Code: CE-252	Course Title: Struc	tural Analysis-	I	
2. Contact Hours: L: 3	T: 1	P: 2/2		
3. Examination Duration (Hrs.):	Theory 3	Practical	2	
4. Relative Weightage: CWS 15	PRS 15 MTE	15 ETE	40 PRE	15
5. Credits: 4 6. Sem	nester: Spring	7. Subject Area	a: DCC	
8. Pre-requisite: Nil				

9. Objective: To introduce the fundamentals of the analysis of statically determinate and indeterminate structures

S. No.	Contents	Contact Hours
1.	Analysis of statically determinate beams, frames and trusses.	4
2.	Deflection of frames and trusses, conjugate beam and area moment	8
	theorems; unit load method.	
3.	Strain energy method for slopes and deflections.	4
4.	Statically indeterminate structures, static and kinematic	2
	indeterminacies.	
5.	Castigliano's theorems, theory of least work.	2
6.	Use of symmetry and antisymmetry, approximate methods for the	2
	analysis of building frames.	
7.	Analysis of indeterminate structures by flexibility method, consistent	10
	deformation method, strain energy method, influence coefficient	
	method, Column analogy method.	
8.	Analysis of three hinged, two hinged and fixed arches, analysis of	10
	cables and two hinged suspension bridges, unsymmetrical bending	
	and shear centre.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	William F. Riley et al., "Mechanics of Materials", John Wiley & Sons.	2004
2.	Norris, C.H. et.al., "Elementary Structural Analysis", Tata McGraw	2003
	Hill.	
3.	Hibbeler, R.C., "Structural Analysis", Pearson Press.	2007
4.	Wang, C.K., "Intermediate Structural Analysis", McGraw Hill.	1987
5.	Reddy, C.S., "Basic Structural Analysis", Tata McGraw Hill.	2000

NAME OF DEPTT./CENTRE:	Department of (Civil Engineering	
1. Subject Code: CE-311	Course Title: W	Vaste Management	
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weightage: CWS	25 PRS 0 M	TTE 25 ETE 50	PRE 0
5. Credits: 4 6. Se	emester: Autumn	7. Subject Area: I	OCC
8 Pre-requisite Nil			

9. Objective: To impart basics of waste collection, its characterization, treatment and safe disposal practices.

S. No.	Contents	Contact Hours
1.	Wastewater Collection: Plumbing, types of sewers, design	6
	considerations, construction & maintenance, stormwater sewers.	
2.	Wastewater Characterization: Constituents.	2
3.	Wastewater Treatment: On site and centralized treatment systems.	2
4.	Pre-and Primary Treatment: Screen, grit removal, oil and grease	3
	removal.	
5.	Secondary Treatment: Activated sludge process, conventional and	9
	extended aeration, waste stabilization ponds, UASB process, UASB	
	post treatment.	
6.	Advanced Wastewater Treatment.	2
7.	Wastewater and Sludge Disposal: Reuse systems, wastewater	4
	disposal on land and water bodies, disposal of sludge.	
8.	Municipal Solid Waste: Collection, characterization, transport,	6
	treatment & disposal,	
9.	Types of Industrial Waste: Liquid, solid, atmospheric and	8
	hazardous, Hazardous wastes: Characterization and treatment.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Davis, M.L. and Cornwell, D.A., "Introduction to Environmental	1998
	Engineering", McGraw Hill.	
2.	Masters, G.M., "Introduction to Environmental Engineering and	1998
	Science", Prentice Hall of India.	
3.	Peavy, H.S., Rowe, D.R. and Tchobanoglous, G., "Environmental	1986
	Engineering", McGraw Hill.	
4.	Arcievala, S.J., "Wastewater Treatment for Pollution Control", Tata	2000
	McGraw Hill.	

NAME OF DEPTT./CENTRE:	Department of C	ivil Engineering		
1. Subject Code: CE-321	Course Title: Ge	eomatics Engineering		
2. Contact Hours: L: 3	T: 0	P: 3		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS 1	5 PRS 15 M	ГЕ 30 ЕТЕ 40	PRE	0
5. Credits: 4 6. Ser	mester: Autumn	7. Subject Area: D	OCC	
8. Pre-requisite: Nil				

9. Objective: To impart knowledge of concepts advanced surveying, photogrammetry, remote sensing, Geographic Information Systems (GIS) and Global Positioning Systems (GPS).

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction of Geomatics Engineering.	1
2.	Photogrammetry, aerial and terrestrial, applications of	6
	photogrammetry, types and geometry of aerial photograph, flying height and scale, relief (elevation) displacement.	
3.	Stereoscopy, measurement and parallax and height determination, photogrammetric mapping.	6
4.	Basic remote sensing, interaction mechanism with atmospheric and earth surface, platforms and sensors, remote sensing data products, visual data interpretation for information extraction.	7
5.	Digital data bank, digital image, introduction to digital image processing, preprocessing, enhancement, classification.	8
6.	Introduction of geographic information system (GIS), digital elevation model (DEM).	7
7.	Introduction to GPS surveys.	4
8.	Applications to various projects.	3
	Total	42

Note: Includes field survey camp for 10 days.

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Agarwal, C.S. and Garg, P.K., "Remote Sensing in Natural Resources	2000
	Monitoring and Management", Wheeler Publishing House.	
2.	Bossler, J.D., "Manual of Geospatial Science and Technology",	2002
	Taylor and Francis.	
3.	Burrough, P.A. and McDonnell, R.A., "Principles of Geographic	2000
	Information System", Oxford University Press.	
4.	Chandra, A.M. and Ghosh, S.K., "Remote Sensing and Geographical	2005
	Information Systems", Alpha Science.	
5.	Gopi, S., "Global Positioning System: Principles and Applications",	2005
	Tata McGraw Hill.	
6.	Lillesand, T.L., and Kiefer, R.W., "Remote Sensing and Image	2005
	Interpretation", 4 th Ed., John Wiley and Sons.	

NAME OF DEPTT./CENTRE:	Department of	Civil Engineering		
1. Subject Code: CE-331	Course Title: S	oil Mechanics and	Engineering	Geology
2. Contact Hours: L: 3	T: 1	P: 2		
3. Examination Duration (Hrs.):	Theory 3	Practical	2	
4. Relative Weightage: CWS 1	5 PRS 15 M	15 ETE	40 PRE	15
5. Credits: 5 6. Ser	mester: Autumn	7. Subject Are	ea: DCC	
8. Pre-requisite: Nil				

9. Objective: To provide basic concepts of soil mechanics and engineering geology.

S. No.	Contents	Contact Hours
1.	Soil Formation : Soil types, composition, three phase relations.	2
2.	Physical Properties: Specific gravity, water content, shape and	5
	size, grain size distribution curves, relative density, consistency of	
	soils, Unified soil classification system, IS soil classification system,	
	field identification tests.	
3.	Compaction: General principles, tests, factors affecting compaction,	2
	field compaction, compaction techniques.	
4.	Capillarity, Permeability: Darcy's law, determination of	10
	permeability, equivalent permeability in stratified soils, insitu	
	permeability test, 1-D flow, Laplace's equation, flow nets, seepage,	
	uplift pressure, confined and unconfined flows, piping, filter criteria.	
5.	Compressibility and Consolidation: Fundamentals, 1-D	7
	consolidation, normally and over-consolidated clays, void ratio – pressure relationships, compressibility characteristics, time rate of	
	consolidation, coefficient of consolidation, curve fitting techniques,	
	settlement, secondary consolidation, 3-D consolidation, vertical sand	
	drains.	
6.	Shear Strength of Soil: Principle of effective stress, Mohr-Coulomb	10
	failure criterion, direct shear test, unconfined compression test,	10
	Triaxial shear test: consolidated drained, consolidated undrained,	
	unconsolidated undrained, vane shear test, shear strength of clays and	
	sands, critical void ratio, stress path, pore-pressure coefficient.	
	, , , , , , , , , , , , , , , , , , ,	

7.	Geological Processes: Rock forming minerals, rock types and their	2
	engineering properties.	
8.	Structural Geology: Dip, strike, faults, folds, joints, their formation	4
	and importance in respect of civil engineering structures, rock mass	
	movements, causes of landslides.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Holtz, R.D. and Kovacs, W.D., "An Introduction to Geotechnical	1981
	Engineering", Prentice Hall.	
2.	Couduto, D.P., "Geotechnical Engineering – Principles and Practices",	2002
	Prentice Hall of India.	
3.	Ranjan, G. and Rao, A.S.R., "Basic and Applied Soil Mechanics",	2007
	New Age International Publishers.	
4.	Murthy, V.N.S., "Text Book of Soil Mechanics and Foundation	2007
	Engineering", CBS Publishers.	
5.	Lambe, T.W. and Whitman, R.V., "Soil Mechanics", John Wiley and	2000
	Sons.	
6.	Das, B.M., "Principles of Geotechnical Engineering", Thomson Asia.	2002

NAME OF DEPTT./CENTRE:	Department of	of Civil Engineering	
1. Subject Code: CE-341	Course Title:	Hydrology	
2. Contact Hours: L: 2	T: 0	P: 2/2	
3. Examination Duration (Hrs.):	Theory	2 Practical	0
4. Relative Weightage: CWS	15 PRS 15	MTE 30 ETE	40 PRE 0
5. Credits: 2 6. So	emester: Autumn	7. Subject Area	: DCC
8. Pre-requisite: Nil			

9. Objective: To familiarize the students with the concepts of hydrological process, climate change and rain harvesting.

S. No.	Contents	Contact Hours
1.	Hydrological Cycle and Budget: Definitions, space – time scales	2
	in hydrology, hydrologic cycle and budget.	
2.	Precipitation Measurement and Analysis: Precipitation	5
	variability, rainfall and snow measurement techniques, design of	
	precipitation gauging network, consistency of rain record, filling up	
	of missing record, estimation of mean areal rainfall, IDF and DAD	
	analysis, Snow measurement and determination of snow melt.	
3.	Hydrologic Abstractions: Infiltration, factors affecting infiltration,	5
	measurement of infiltration, empirical and analytical models of	
	infiltration, evaporation: its measurement and estimation, evapo-	
	transpiration: its measurement and estimation, interception and	
	depression storage; rain harvesting: procedure and its design.	
4.	Stream Flow: Measurement of stream flow; factors affecting	5
	stream flow; hydrograph analysis, base flow separation, unit	
	hydrograph and curve number methods of stream flow	
	determination, synthetic unit hydrograph, hydrological modeling for	
	stream flow estimation, methods for peak discharge estimation.	
5.	Frequency Analysis: Return period, random variable, checks for	4
	persistency, frequency distributions, frequency analysis of	

	hydrological data.	
6.	Regression and Correlation Analysis: Dependent and independent variables, simple correlation coefficient, method of least squares, variance analysis, partial correlation coefficient, simple and multiple regression analysis.	3
7.	Ground Water: Aquifers, hydraulic conductivity, transmissivity, well	2
	hydraulics.	
8.	Flood Routing: Governing equations, reservoir flood routing,	2
	hydrologic routing: Muskingum method.	
	Total	28

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Singh, V.P., "Elementary Hydrology", Prentice Hall.	1992
2.	Chow, V.T., Maidment, D.R. and Mays, W.L., "Applied Hydrology",	1988
	McGraw Hill.	
3.	Wanielista, M., Kersten, R. and Eaglin, R., "Hydrology", John Wiley.	1997
4.	Ojha, C.S.P., Berndtsson, R. and Bhunya, P., "Engineering	2008
	Hydrology", Oxford University Press.	

NAME OF DEPTT./CENTRE:	Department of Civil	Engineering		
1. Subject Code: CE-351	Course Title: Struct	tural Analysis-I	I	
2. Contact Hours: L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS	25 PRS 0 MTE	25 ETE	50 PRE	0
5. Credits: 4 6. S	Semester: Autumn	7. Subject Area	: DCC	
8. Pre-requisite: CE-252				

9. Objective: To introduce the stiffness approach for analysis of statically indeterminate structures.

S. No.	Contents	Contact Hours
1.	Influence Lines: Analysis for different types of moving loads, use	7
	of influence line diagrams, application to determinate structures.	
2.	Muller-Breslau principle with application to determinate and	6
	redundant structures. Qualitative ILD for continuous beams, frames	
	and arches.	
3.	Displacement approach; basic principles.	3
4.	Slope deflection method.	4
5.	Moment distribution method, frame with/without sway, use of	5
	symmetry and anti-symmetry	
6.	Matrix displacement method, basic principles, application to planar	13
	structures-trusses, beams and frames. Introduction to computer	
	program and applications to 2D building frames.	
7.	Plastic analysis of beams and frames.	4
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Wang, C.K., "Intermediate Structural Analysis", McGraw Hill.	1987
2.	Norris, C.H. et.al., "Elementary Structural Analysis", Tata McGraw	2003
	Hill.	
3.	James, M. Gere, "Mechanics of Materials", 5 th Ed., Nelson Thornes.	2002
4.	Reddy, C.S., "Basic Structural Analysis", Tata McGraw Hill.	2000
5.	Weaver, W. Jr. and Gere, J.M., "Matrix Analysis of Framed	2000
	Structures", CBS Publishers.	

NAME OF DEPTT./CENTRE: Department of Civil Engineering				
1. Subject Code: CE-332	Course Title: Found	lation Engineering		
2. Contact Hours: L: 3	T: 1	P: 2/2		
3. Examination Duration (Hrs.):	Theory 3	Practical 0		
4. Relative Weightage: CWS 15	PRS 15 MTE	30 ETE 40 PRE 0)	
5. Credits: 4 6. Sen	nester: Spring	7. Subject Area: DCC		

- 8. Pre-requisite: **CE-331**
- 9. Objective: To provide knowledge base on the current practices in foundation engineering to carry out the job of selection, design and construction of foundations.

S. No.	Contents	Contact Hours
1.	Introduction: Role of civil engineer in the selection, design and	3
	construction of foundation of civil engineering structures, brief	
	review of soil mechanics principles used in foundation engineering.	
2.	Soil Exploration: Methods of soil exploration; boring, sampling,	4
	penetration tests, correlations between penetration resistance and soil	
	design parameters.	
3.	Earth Pressure and Retaining Walls: Earth pressure at rest, active	6
	and passive earth pressure, Rankine and Coulomb's earth pressure	
	theories, earth pressure due to surcharge, retaining walls, stability	
	analysis of retaining walls, proportioning and design of retaining	
	walls.	
4.	Foundations: Types of foundations, mechanism of load transfer in	11
	shallow and deep foundations, shallow foundations, Terzaghi's	
	bearing capacity theory, computation of bearing capacity in soils,	
	effect of various factors, use of field test data in design of shallow	
	foundations, stresses below the foundations, settlement of footings	
	and rafts, proportioning of footings and rafts, sheeting and bracing of	
	foundation excavation.	
5.	Pile Foundation: Types and methods of construction, estimation of	5
	pile capacity, capacity and settlement of group of piles,	
	proportioning of piles.	

6.	Well foundations: Methods of construction, tilt and shift, remedial	4
	measures, bearing capacity, settlement and lateral stability of well	
	foundation.	
7.	Slopes: Mode of failure – mechanism, stability analysis of infinite	5
	slopes, methods of slices, Bishop's simplified method.	
8.	Machine Foundations: Types of machine foundations, mathematical	4
	models, response of foundation – soil system to machine excitation,	
	cyclic plate load test, block resonance test, criteria for design.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Ranjan, G. and Rao, A.S.R., "Basic and Applied Soil Mechanics",	2000
	New Age.	
2.	Das, B.M., "Principles of Foundation Engineering", PWS.	2004
3.	Som, N.N. and Das, S.C., "Theory and Practice of Foundation	2003
	Design", Prentice-Hall.	
4.	Couduto, Donald P., "Geotechnical Engineering - Principles and	1999
	Practices", Prentice-Hall.	
5.	Peck, R.B., Hanson, W.E. and Thornburn, T.H., "Foundation	1974
	Engineering", John Wiley.	

NAME OF DEPTT./CENTRE:	Department of Civ	il Engineering	
1. Subject Code: CE-352	Course Title: Desi	gn of Reinforced Con	crete Elements
2. Contact Hours: L: 3	T: 1	P: 2/2	
3. Examination Duration (Hrs.):	Theory 3	Practical	2
4. Relative Weightage: CWS 15	PRS 15 MTE	E 15 ETE 40	PRE 15
5. Credits: 4 6. Sen	nester: Spring	7. Subject Area: D C	CC
8 Pre-requisite: Nil			

- 9. Objective: To introduce the fundamentals of reinforced concrete design
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Properties of Concrete: Compressive strength, tensile strength,	5
	stress-strain behavior, modulus of elasticity, shrinkage, creep,	
	characteristic strength, grades of concrete, design stress-strain curve	
	of concrete, reinforcing steel, types and grades, stress-strain	
	behavior, design stress-strain curve.	
2.	Basic Concepts of Reinforced Concrete Design: Working stress	3
	and limit state design methods.	
3.	Design of R.C. Beams in Flexure: Singly and doubly reinforced	8
	rectangular/flanged sections, design for shear, bond and anchorage	
	of reinforcement, limit states of deflection and cracking.	
4.	Design for Torsion : Design of RC beams subjected to torsion.	5
5.	One-way and two-way slabs, design of staircases.	5
6.	Design of compression members for axial loads and axial load plus uniaxial moment.	6
7.	Foundation types, design of isolated footings, introduction to combined footings.	4
8.	Stability analysis of retaining walls, design of gravity, cantilever	6
	type retaining walls.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Shah, V.L. et.al., "Limit State Theory and Design of Reinforced	2007
	Concrete", Structures Publications.	
2.	Pillai, S.U. and Menon, D., "Reinforced Concrete Design", Tata	2003
	McGraw- Hill.	
3.	Varghese, P.C., "Limit State Design of Reinforced Concrete",	2002
	Prentice-Hall.	
4.	Park, R. and Pauley, T., "Reinforced Concrete Structures", John	1976
	Wiley.	
5.	Gambhir, M.L., "Fundamentals of Reinforced Concrete Design",	2006
	Prentice-Hall of India.	

NAME OF DEPTT./CENTRE: Department of Civil Engineering				
1. Subject Code: CE-354	Course Title:	Design of Steel Elem	ments	
2. Contact Hours: L: 2	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	2 Practical	0	
4. Relative Weightage: CWS 25	PRS 0	MTE 25 ETE	50 PRE 0	
5. Credits: 3 6. Sen	nester: Spring	7. Subject Ar	rea: DCC	
8. Pre-requisite: Nil				

9. Objective: To impart knowledge of design of basic structural steel elements as per relevant codal practices.

S. No.	Contents	Contact Hours
1.	Introduction, properties of structural steel, I.S. rolled sections, I.S.	2
	specifications.	
2.	Design approach, elastic method, limit state design.	2
3.	Connections, simple and moment resistant riveted, bolted and welded connections.	3
4.	Tension members, steel members subject to axial tension.	2
5.	Compression members, struts and columns.	3
6.	Roof trusses, roof & side coverings, design loads, purlins, members,	2
	end bearings.	
7.	Built-up columns, beams, stability of flange and web, built-up sections.	5
8.	Plate-girders including stiffeners, splices and curtailment of flange plates.	4
9.	Beam column, stability consideration, interaction formulae, column	5
).	bases, slab base, gusseted base and grillage footings.	3
	Total	28

S. No.	Name of Books / Authors/ Publishers	Year of Publication
1.	Arya, A.S. and Ajmani, J.L., "Design of Steel Structures", Nem Chand & Bros.	2000
2.	Duggal, S.K., "Design of Steel Structures", Tata McGraw-Hill.	2006
4.	Negi, L.S., "Design of Steel Structures", Tata McGraw-Hill.	2006

NAME OF DEPTT./CENTRE: Department of Civil Engineering				
1. Subject Code: CE-362	Course Title: Tr	ansportation Engine	eering-I	
2. Contact Hours: L: 3	T: 1	P: 2/2		
3. Examination Duration (Hrs.):	Theory 3	Practical [2	
4. Relative Weightage: CWS 1	5 PRS 15 M	ΤΕ 20 ΕΤΕ 4 0	PRE 10	
5. Credits: 4 6. Se	mester: Spring	7. Subject Area:	DCC	
8. Pre-requisite: Nil				

9. Objective: To introduce the fundamentals and present practices of pavement engineering, highway construction, traffic engineering and geometric design.

S. No.	Contents	Contact Hours
1.	Highway Development and Planning: Historical Development,	6
	road patterns, master plans, road development plans, PMGSY,	
	engineering surveys, highway projects.	
2.	Highway Materials and Testing: Subgrade soil, sub base and base	6
	course materials, bituminous materials, testing of soil, stone	
	aggregates and bitumen.	
3.	Highway Geometric Design: Cross section elements, sight	6
	distances, horizontal and vertical alignment.	
4.	Traffic Engineering: Traffic characteristics, road user & vehicular	8
	characteristics, traffic studies, accident studies, traffic operations,	
	traffic control devices, intelligent transport systems, pollution due to	
	traffic.	
5.	Design of Highway Pavements: Flexible pavements and their	6
	design, review of old methods, CBR method, IRC:37-2001,	
	equivalent single wheel load factor, rigid pavements, stress in rigid	
	pavement, IRC design method (IRC:58-2002).	
6.	Highway Construction: Construction of various layers, earthwork,	6
	WBM, GSB, WMM, various types of bituminous layers, joints in rigid	
	pavements	
7.	Highway Maintenance: Various type of failures, evaluation and	4
	remedial measures.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Khanna, S.K. and Justo, C.E.G., "Highway Engineering", Nem Chand	2004
	& Bros.	
2.	Khanna, S.K. and Justo, C.E.G., "Highway Material Testing Manual",	2004
	Nem Chand & Bros.	
3.	Kadiyali, L.R., "Traffic Engineering and Transportation Planning",	2002
	Khanna Publishers.	
4.	Sharma, S.K., "Principles and Design of Highway Engineering", S.	1995
	Chand & Co.	
5.	Papacostas, C.S. and Prevedouros, P.D., "Transportation Engineering	2002
	and Planning", Prentice Hall.	
6.	Jotin Khisty, C. and Kent Lall, B., "Transportation Engineering – An	2002
	Introduction", Prentice Hall.	

NAME OF DEPTT./CENTRE:	Department of Civi	il Engineering	
1. Subject Code: CE-451	Course Title: Desig	gn of Reinforced Concrete	Structures
2. Contact Hours: L: 2	T: 1	P: 2/2	
3. Examination Duration (Hrs.):	Theory 3	Practical 0	
4. Relative Weightage: CWS	15 PRS 15 MTE	2 30 ETE 40 PRE	0
5. Credits: 3 6. See	emester: Autumn	7. Subject Area: DCC	
8. Pre-requisite: CE-352			
9. Objective: To introduce pre-stressed concrete structures and	-	alysis and design of concret	te buildings

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Design of continuous R.C. beams, moment redistribution.	3
2.	Design loads on buildings, wind and earthquake loads.	3
3.	Analysis and design of RC framed buildings; Framing systems,	5
	member proportioning, loadings, static and dynamic analysis and	
	component design, provisions of ductile detailing.	
4.	Design of T-beams bridge, standard specifications and general	5
	design considerations.	
5.	Design of overhead water tanks, general design consideration for	6
	circular & Intze tanks.	
6.	Pre-stressed concrete; Materials, prestressing systems, stress analysis	6
	& losses of prestress, design of simple beams.	
	Total	28

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Jain, A.K., "Reinforced Concrete", Limit State Design, 5 th Ed., Nem	2006
	Chand & Bros.	
2.	Krishna, J. and Jain O.P., "Plain and Reinforced Concrete", Vol. 2,	1983
	Nem Chand and Bros.	
3.	Pillai, S.U. and Menon, D., "Reinforced Concrete Design", Tata	2003
	McGraw-Hill.	

4.	Sinha, S.N., "Reinforced Concrete Design", Tata McGraw-Hill.	2005

NAME OF DEPTT./CENTRE:	Department of Civil	Engineering
1. Subject Code: CE-461	Course Title: Trans	sportation Engineering-II
2. Contact Hours: L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory 3	Practical 0
4. Relative Weightage: CWS	25 PRS 0 MTE	25 ETE 50 PRE 0
5. Credits: 4 6. Se	emester: Autumn	7. Subject Area: DCC

- 8. Pre-requisite: CE-362
- 9. Objective of Course: To introduce the fundamentals of railway engineering, geometric design of railway tracks and runways.

10. Details of the Course.

S. No.	Contents	Contact hours
1	Introduction, Permanent Way and Components: History and administrative setup of Indian Railways; rail gauges, permanent way – functions, requirements, sections in embankment and cutting (single/double track), electrified tracks, locomotives, wheel and axle arrangement, coning of wheels, components – rails, sleepers, ballast and formation.	8
2	Resistances and Stresses in Tracks, Hauling Capacity: Types of resistances to traction, stresses in different components of track, hauling capacity of a locomotive, tractive effort.	3
3	Joints and Fastenings: Types of joints, short welded rails, long welded rails and continuous welded rails, rail to rail and rail to sleeper fastenings, elastic fastenings.	4
4	Track Geometrics, Turnouts and Crossings: Railway alignment, vertical alignment – gradients and grade effects, horizontal alignment – horizontal curves, super-elevation, concepts of cant excess and deficiency, safe permissible speed, transition curves, widening of gauges and track clearances, points and crossings – terminologies, types of turnouts, design of turnouts, types of crossings, design of crossings.	7
5	Track Safety, High speed tracks, Urban railways: Signals classification and their functions, train operation control systems – absolute, automatic block systems, centralized train control system, ATS, interlocking of tracks – principle of interlocking, types of interlocking, high speed tracks - track	6

	requirements, speed limitations, high speed technologies, urban railway - railway systems in urban areas.	
6	Introduction, Aircraft Characteristics and Airport selection: Air transport development in India, national and international organizations in air transport, aircraft characteristics and their impact on planning of an airport, selection of site for an airport, airport obstruction, imaginary surfaces, runway orientation clam period and wind coverage.	6
7	Geometric Designs: Runway and taxiway geometric designs, exit taxiway, its design and fillet curves, runway configuration, separation clearance, design of apron and their layouts.	7
8	Airport Traffic control Aids: Visual aids, marking and lighting of runway and apron area, wind and landing direction indicator.	2
	Total	42

S. No.	Name of Books/Authors / Publishers	Year of
		publication
1	Chandra, S. and Agarwal, M. M., "Railway Engineering", Oxford.	2007
2	Arora, S. P. and Saxena, S. C., "A Text Book of Railway	2004
	Engineering", Dhanpat Rai Publications.	
3	Mundrey, J. S., "Railway Track Engineering", Tata Mcgraw Hill.	2000
4	Khanna, S. K., Arora, M. G. and Jain, S. S., "Airport Planning &	2000
	Design", Nem Chand and Bros.	
5.	Horonjeff, Robert and McKelvey, Francis X., "Planning & Design of	1993
	airports', 4 th Ed., McGraw Hill.	
6.	Saxena, S.C., "Airport Engineering – Planning and Design", CBS	2008
	Publishers.	

NAME OF DEPTT./CENTRE:	Department of	of Civil Engineering	
1. Subject Code: ICE-01	Course Title:	Mechanics of Lami	nated Composites
2. Contact Hours: L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory	3 Practical	0
4. Relative Weightage: CWS 25	PRS 0	MTE 25 ETE	50 PRE 0
5. Credits: 4 6. Sem	nester : Autum r	7. Subject Aı	rea: ESEC
8. Pre-requisite: Nil			

9. Objective: To impart knowledge about the behavior of laminated composites at lamina as well as at laminate level and special features of composites for engineering applications.

S. No.	Contents	Contact Hours
1.	Introduction: Classification and characteristics of composite	8
	materials, basic terminology, uses of laminated composites,	
	comparison of properties with traditional materials.	
2.	Behavior of Lamina: Stress-strain relationship for anisotropic,	11
	orthotropic and isotropic materials, transformation of elastic	
	constans, failure criteria for an orthotropic lamina, introduction to	
	micromechanical behavior, law of mixture for E_1 , E_2 , G_{12} , V_{12} .	
3.	Behavior of Laminate: Classical lamination theory, stress-strain	12
	relationship for laminate, extensional bending and coupling stiffness,	
	different configurations and corresponding stiffness, strength of	
	laminates, inter-laminar stresses, introduction to behavior of thin	
	walled laminated structures.	
4.	Computer Aided Analysis and Design: Introduction to numerical	11
	and soft computing techniques for the analysis and design of	
	laminated composites.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Agarwal, B.D. and Broutman, L.J., "Analysis and Performance of	1980
	Fiber Composite", John Wiley.	
2.	Johns, R.M., "Mechanics of Composite Materials", Taylor & Francis.	1999
3.	Kollar, L.P. and Springer, G.S., "Machanics of Composites	2003
	Structures", Cambridge Press.	

NAME OF DEPTT./CENTRE:	Department of C	Civil Engineering	
1. Subject Code: ICE-03		lobal Positioning pplications	System and Its
2. Contact Hours: L: 3	T: 0	P: 2	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weightage: CWS 15	9 PRS 15 M	TE 30 ETE	40 PRE 0
5. Credits: 4 6. Sen	nester: Autumn	7. Subject Ar	ea: ESEC
8. Pre-requisite: Nil			

- 9. Objective: To impart knowledge about the use and applications of GPS in various fields.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Fundamentals of GPS: Components of GPS, GPS receivers,	9
	reference coordinates systems – datums, geoid, ellipsoid, WGS 84	
	system, time, signal propagation through atmosphere-their modelling	
	and estimation, satellite orbit.	
2.	GPS Signals: Navigational data.	4
3.	GPS Data: Collection methods – static positioning, kinematic	3
	positioning – pseudo-kinematic and stop & go, observation planning	
	and strategy.	
4.	GPS Observables: Pseudo range and carrier phase, parameters	8
	estimations, data handling, cycle slip detection and correction,	
	ambiguity resolution, GPS data processing – single, double and triple	
	differences.	
5.	Errors in GPS Data: Satellite geometry, errors in different segments,	7
	multipath errors, accuracy of GPS data and measures, network	
	adjustments.	
6.	Datum Transformation : Reduction of observation, transformation	3
	to various map projection systems.	
7.	Differential GPS : Real time kinematic GPS, multiple reference	3
	stations, virtual reference stations.	
8.	Engineering Applications of GPS.	5
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Kaplan, E.D. and Hegarty, C.J., "Understanding GPS: Principles and	2006
	Applications", Artech House.	
2.	Leick, A., "GPS Satellite Surveying", John Wiley.	2004
3.	Satheesh, G., "Global Positioning System and its Applications",	2005
	McGraw Hill.	
4.	Gunter, S., "Satellite Geodesy", 2 nd Ed., Walterbde Gruyter.	2003

NAME OF DEPTT./CENTRE:	Department of Civi	1 Engineering	
1. Subject Code: ICE-02	Course Title: Digit	al Image Processing	9
2. Contact Hours: L: 3	T: 0	P: 2	
3. Examination Duration (Hrs.):	Theory 3	Practical	0
4. Relative Weightage: CWS 15	PRS 15 MTE	30 ETE 40	PRE 0
5. Credits: 4 6. Sem	nester: Spring	7. Subject Area: E	SEC
8. Pre-requisite: Nil			

9. Objective: To provide knowledge about various techniques and applications of digital remote sensing images.

S. No.	Contents	Contact Hours
1.	Introduction to remote sensing data analysis, spectral, spatial and	6
	radiometric resolutions, visual data interpretation, image formats,	
	digital image and its characteristics, image processing systems.	
2.	Initial data statistics, Histogram and Scatterplot.	2
3.	Image Preprocessing, atmospheric, radiometric an geometric	6
	corrections, image enhancement and restoration, contrast stretching-	
	linear and non-linear.	
4.	Noise removal, low, medium and high pass filters, other filters, multi-	5
	spectral enhancement.	
5.	Image transformation - mathematical operators, KLT, PCA, FFT,	9
	image analysis - feature extraction, pattern recognition.	
6.	Classification - Supervised and unsupervised techniques.	5
7.	Accuracy assessment procedures, post classification techniques.	2
8.	Data fusion, fuzzy logic, advance image processing techniques and	7
	concepts, application of digital image processing to various	
	engineering problems.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Agarwal, C.S. and Garg, P.K., "Remote Sensing in Natural Resources	2000
	Monitoring and Management", A.H. Wheeler & Co.	
2.	Chandra, A.M. and Ghosh, S.K., "Remote Sensing and Geographical	2005
	Information Systems", Alpha Science.	
3.	Gonzalez, R.C. and Wintz, P., "Digital Image Processing", Addison	2000
	Wesley.	
4.	Jia, X. and Richards, J.A., "Remote Sensing Digital Image Analysis",	1999
	3 rd Ed., Springer Verlag.	
5.	Mather, P.M., "Computer Processing of Remotely sensed Data", John	1999
	Wiley.	

NAME OF DEPTT./CENTRE:	Department of Civil	Engineering		
1. Subject Code: ICE-04	Course Title: Theory Inform	and Applications mation Systems	s of Geograp	hic
2. Contact Hours: L: 3	T: 0	P: 2		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS 1	PRS 15 MTE	30 ETE 40	PRE 0	
5. Credits: 4 6. Se	mester: Spring	7. Subject Area:	ESEC	
8. Pre-requisite: Nil				
9. Objective: To provide know technology for various	•	ic principles a	and use of	GIS

S. No.	Contents	Contact Hours
1.	Introduction, Geographical concepts and terminology, difference	3
	between image processing system and GIS.	
2.	Utility of GIS, various GIS packages and their salient features,	3
	essential components of a GIS.	
3.	Data acquisition through scanners and digitizers, methods of	3
	digitization.	
4.	Raster and vector data, data storage, verification and editing.	5
5.	Data preprocessing, format conversion, data compression and	6
	reduction techniques, run length coding, rectification and registration,	
	interpolation.	
6.	Database structure – Hierarchical data, network systems, relational	6
	database, data management role of remote sensing in GIS.	
7.	Data manipulation and analysis, spatial and mathematical operations	9
	on data, area analysis, query-based analysis, measurement and	
	statistical modeling.	
8.	Programming language in GIS, data output, applications of GIS for	7
	various neutral resources mapping & monitoring and for engineering	
	applications.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of
		Publication
1.	Burrough, P.A. and McDonnell, R.A., "Principles of Geographic	1998
	Information for Land Resources Assessment", Oxford University	
	Press.	
2.	DeMers, M.N., "Fundamentals of Geographic Information System",	2005
	3 rd Ed., John Wiley.	
3.	Legg, C.A., "Remote Sensing and Geographic Information System",	1999
	John Wiley.	
4.	Chandra, A.M. and Ghosh, S.K., "Remote Sensing and Geographical	2005
	Information Systems", Alpha Science.	
5.	Maguire, D.J., Batty, M. and Goodchild, M. (Eds.)., "GIS, Spatial	2005
	Analysis and Modelling", ESRI Press.	