

CZ3002 - Advanced Software Engineering

Software Project Management - Project Estimation (COCOMO)

Faculty: Dr Shen Zhiqi

School : School of Computer Science and Engineering

Email : zqshen@ntu.edu.sg

Office : N4-02B-43

Lesson Objectives

At the end of the lesson, you should be able to:

- Use the COCOMO to estimate effort, cost, schedule and resources
- Apply COCOMO 81 and COCOMO II into different projects
- Investigate schedule compression

Steps in Creating a Project Estimate

Estimate the effort needed to create the system (e.g., personsmonth)

Estimate the manpower (e.g., how many people)

Estimate the phase schedule

Step 6

Step 1

Estimate the <u>size</u> of the product/ system

Step 2

Step 3

Estimate the <u>duration</u> (calendar time)

Step 4

Step 5

Estimate the costs (\$)

Size — Effort, Schedule & Cost

Constraints and Priorities

- Constraint examples:
 - Maximum schedule
 - Maximum effort
 - Maximum cost
- Priority examples:
 - E.g., "Least cost" or "Shortest schedule" or "Smallest number of staff" is top priority

Cost (or Productivity) Drivers

Additional parameters that affect productivity:

COCOMO

- COCOMO (Constructive Cost Model)
 - Barry Boehm's work started in 1970's, book 1981
 - COCOMO 81

Model type	Effort
Basic	size (static single-valued model)
Intermediate	size + cost drivers
Advanced	size + cost drivers + driver impact on each project phase

❖ COCOMO II (1997)

COCOMO 81: Basic Model

Effort E = a (KDSI)^b
Duration D = $c(E)^d$ Recommended Staff Size S = E / D
KDSI – thousand delivered source instruction

Constants For Different Development Modes:

Organic	2.4	1.05	2.5	.38
Semi-detached	3.0	1.12	2.5	.35
Embedded	3.6	1.2	2.5	.32
	a	b	С	d

COCOMO 81: Intermediate Model

- Uses slightly different 'a' constants
 - Organic (3.2)
 - Semi-detached (3.0)
 - Embedded (2.8)
- Adds "Effort Adjustment Factor" (EAF) computed from 15 cost drivers
- The EAF is the product of the cost drivers

```
Effort E = a (KDSI)<sup>b</sup> × EAF

Duration D = c(E)<sup>d</sup>

EAF = Val_1 \times Val_2 \times \cdots \times Val_n

Val<sub>i</sub> is the rating value of cost driver i
```


Cost Drivers

- Personnel attributes: analyst capability, application experience, programming language experience
- Product attributes: required reliability, database size, product complexity
- Project attributes: modern programming practices, software tools, schedule constraints
- Hardware attributes: execution time constraints, storage constraints

Example of Cost Drivers

			RATINGS		
COST DRIVERS	Very Low	Low	Nominal	High	Very High
Product attributes					
Software reliability	0.75	0.88	1.00	1.15	1.40
Product complexity	0.70	0.85	1.00	1.15	1.34
Personnel attributes					
Analyst capability	1.46	1.19	1.00	0.86	0.71
Applications experience	1.29	1.13	1.00	0.91	0.82
Language and tools experience	1.22	1.09	1.00	0.86	0.70

COCOMO II 1997: Efforts

Effort =
$$2.94 \times EAF \times (KSLOC)^{E}$$

Where:

- EAF is the Effort Adjustment Factor derived from the cost drivers, it is the product of the cost drivers
- E is an exponent derived from the five scale drivers (precedentedness, development flexibility, architecture/ risk resolution, team cohesion, process maturity)

COCOMO II 1997: Duration

Duration = $3.67 \times (Effort)^{SE}$

- Where:
 - Effort is the effort from the COCOMO II effort equation
 - SE is the schedule equation exponent derived from the five scale drivers

Using Historical Project Data

The best "estimation model" is based on your own organisation's historical data.

The Practice Sheet

Effort Adjustment Factor (EAF) =

Effort =

Duration =

Average staffing =

Effort Adjustment Factor Example

- Assuming your project consists of
 - 8,000 source lines of code, and
 - is rated "Very High" for complexity, and
 - "Low" for language and tools experience, and
 - all of the other cost drivers are rated to be "Nominal"
- The schedule equation exponents are SE = 0.3179 and E = 1.0997.

Practice

- Figure 1.46 Effort Adjustment Factor (EAF) = $1.34 \times 1.09 = 1.46$
- \triangleright Effort = 2.94 × (1.46) × (8)^{1.0997} = 42.3 Person-Months (PM)
- Duration = $3.67 \times (42.3)^{0.3179} = 12.1$ months
- Average staffing = (42.3 PM) / (12.1 Months) = 3.5 people

Step 5: Project Cost (\$)

Internal cost (cost to developers)

- Labour (team)
- Software and hardware
- Overheads (rent, utilities, office supplies, executive salaries, etc.)

Profit margin (less other factors at work)

External cost (cost to client)

Step 6: From Effort or Duration to a Phase Schedule (Roughly)

Know the percentage of time spent in each phase:

Requirements analysis	8%	of 11 months = 3.5 weeks
Architectural design	12%	
Detailed design	20%	
Coding and unit testing	20%	
Integration and testing	40%	

Distribution of Effort

Schedule Compression

- Desired schedule / initial schedule = compression factor
 - E.g., 8 months / 10.7 months = 75%
- Compressed schedule effort = initial effort / compression factor
 - ❖ E.g., 46.8 PM / 75% = 62.4 PM
- Extra 15.6 PM to reduce schedule by about three calendar months
- ≥ 25% reduction in schedule → 33% increase in effort

Schedule Compression - How?

- Compression = shrink schedule by adding people
 - Team size = Effort / Duration

46.8 PM / 10.7 months	4.4
	people
Now 62.4 PM / 8 months	7.8 people
Not 46.8 PM / 8 months	5.85 people

Schedule Compression Limits

"There is a shortest possible schedule, and you can't beat it!"

Research suggests no less than 75% - 80% compression factor is possible

Highlights

- Project estimation
 - Function Points Analysis
 - COCOMO Model basic, intermediate and COCOMO 2
- Estimation steps and methods