

实验与创新实践教育中心

实验报告

课程名称:			电路:	<u>实验 I</u>	IB				
实验名称:	自主	<u>:学习</u>	莫式下	探究	<u>实验</u> [的研究			
专业-班级:						学号: _			
姓名:			_						
实验日期:	2023	年	10	月_	26	目	评	² 分:	
老小工2页2五									

教师评语:

教师签字:	

日	期:	

一、实验目的 (5分)

- 1. 掌握回转器的基本特性。
- 2. 学习回转器基本参数的测量方法。
- 3. 了解回转器的应用。

二、总体设计方案或技术路线 (包括实验电路图) (30分)

回转器是一种线性非互易的多端元件。其电路符号如图所示;

理想的回转器可以视为一个二端口,器端口电压和端口电流的关系可以表示为:

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 0 & g \\ -g & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

其中 g 称为回转电导。 也可用如下方程表示:

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & -r \\ r & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

其中r称为回转电阻,g、r也简称为回转常数。

若在 22`端接一负载电容 C,如图所示,则从 11`端看进去就相当于一个电感;相反,也可以把一个电感元件看成一个电容元件,故也称为阻抗逆变器。

由于回转器的阻抗逆变作用,使其在继承电路中得到了重要应用。在集成电路的制造中,可以用一带有电容负载的回转器来获得难以集成的大电感。

三、实验设备和元器件名称与型号 (5分)

 直流稳压电源
 1台

 信号发生器
 1台

 双踪示波器
 1台

 回转器
 1个

 差分探头
 1个

 九孔板
 1块

 电阻、导线
 若干

四、理论分析或仿真分析结果 (15分)

数据具件处理结果加下文中表所示

分析结果: ①回转系数随 见的增加而逐渐减少

② 回转器的其效电威大小 随 編 》源 频率的增大 即涿渐 减小

实验预习和实验过程原始数据记录

实 验 名 称:	自主学习模式下	探究实验的研究		
学生姓名:				
实验日期与时间:	2023. 10. 26		实验台号:	
预习结果审核: _		原始数据审核	₹:	

五、详细实验步骤及实验测量数据记录 (20分)

(叙述具体实验过程的步骤和方法,记录实验数据在设计的数据表格中)

1. 回转系数的测量

图 1 回转系数测量电路

接 图 1 所示接线。信号发生器输出频率 f=1 kHz 、电压 U=1.5 V 的正弦波信号,电阻 R=1 k Ω 。分别观察记录不同负载电阻 R_L 时的 U1、U2 和 U_R ,并计算相应电流 I_1 、 I_2 和回转常数 g,记录至表中。

D /1-0		測量值		计算值					
$R_L/\mathrm{k}\Omega$	U_1/V	U_2/V	U_R/V	I_1/mA	I_2/mA	g/mS	g'/mS	g/mS	
0.5	0.297	0.147	0.742	0.297	0.294	2.02	0.99	1.505	
1	0. 261	0. 258	0.779	0.261	0.258	1.012	o. 989	1.0	
1.5	0.232	0. 345	0. 807	0.232	0.23	0.672	0.991	0.832	
2	0.210	0.410	0.829	0.2	0.205	0.512	0.976	0.744	
3	0.176	0.514	о. 864	0. 176	o. 171	0. 342	0.972	0.657	
4	0.15)	0.588	v. 888	0.151	0.147	0.257	0.974	0.615	
5	0.133	0.643	0.906	0.133	0.129	0. 207	0.97	0.589	

其中
$$g' = \frac{I_1}{U_2}, g'' = \frac{I_2}{U_1}, g = \frac{g' + g''}{2}$$
。

2. 测量等效电感

电路如图所示,R=1 $k\Omega$, $C=1\mu f$,信号发生器输出电压 U=1.5V 的正弦信号,并保持恒定。调节

信号发生器频率,观察记录不同频率时的电压 \mathbf{u} 、 \mathbf{u} 1、 \mathbf{u} 8,由此计算 \mathbf{u} 1、 \mathbf{u} 1、 \mathbf{u} 2、 \mathbf{u} 3、 \mathbf{u} 4、 由此计算 \mathbf{u} 5、 \mathbf{u} 6 及误差 \mathbf{u} 6 上,填入表格中。

f/kHz	0.2	0.4	0.5	0.7	0.8	0.9	1.0	1.2	1.3	1.5
U/V	0.755	0.131	0.104	0.075	0.065	0.058	0.052	0.043	0.039	0.033
U_1/V	0.342	0.349	0.350	0.349	0.349	0.348	0.347	0.346	0.344	0.340
U_R/V	0.728	0.708	0.704	0.699	0.697	0.695	0.693	0.689	0.687	0.682
I_1/mA	0.342	0.349	0.350	0.349	0.349	0.348	0.347	0.346	0.344	0.340
L'/H	0.796	0.398	0.318	0.227	0.199	0.177	0.159	0.133	0.132	0.1%
$L = (C/g)^2/H$	0.919	0.433	0.298	0.169	o. 13	0.105	0.086	0.06	0.05	0.037
$\Delta L = (L' - L) / H$	-0.123	-0.035	0.02	0.058	0.069	0.072	0.073	0.073	0.072	0.069

其中
$$I_1=\frac{U_R}{R}$$
 , $L'=\frac{U_1}{2\pi f I_1}$ 。

六、实验结论 (15分)

- ① 回转系数随 见的增加而逐渐减少
- ② 回转器的甘效电威大小 随 输入源 频率的增大 而逐渐减小

七、实验中出现的问题及解决对策 (5分)

按照设计好的流程进行操作,并未出现问题

八、实验体会与建议 (3分)

通过自主设计电路实验,我对电路中的各种元器件的认识更进一岁

[参考文献] (2 分)

《电路实验教程》