Advanced Machine Learning

Inner Product Spaces

Inner products, operators

Outline

1. Inner Products

2. Operators

We have looked at vector space

- Recall that vector spaces don't just apply to normal vectors (\mathbb{R}^n) , but to matrices, functions, sequences, random variables, . . .
- Proper distances or metrics, $d(\boldsymbol{x}, \boldsymbol{y})$, allow us to construct ideas about geometry of the vector space
- ullet Norms, $\|x\|$, that allow us to reason about the size of vector
- Norm induce a distance, $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$

- We have looked at vector space (closed sets where we can add elements and multiply them by a scalar)
- Recall that vector spaces don't just apply to normal vectors (\mathbb{R}^n) , but to matrices, functions, sequences, random variables, . . .
- Proper distances or metrics, $d(\boldsymbol{x}, \boldsymbol{y})$, allow us to construct ideas about geometry of the vector space
- ullet Norms, $\|x\|$, that allow us to reason about the size of vector
- Norm induce a distance, $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$

- We have looked at vector space (closed sets where we can add elements and multiply them by a scalar)
- Recall that vector spaces don't just apply to normal vectors (\mathbb{R}^n) , but to matrices, functions, sequences, random variables, . . .
- Proper distances or metrics, $d(\boldsymbol{x}, \boldsymbol{y})$, allow us to construct ideas about geometry of the vector space
- ullet Norms, $\|x\|$, that allow us to reason about the size of vector
- Norm induce a distance, $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$

- We have looked at vector space (closed sets where we can add elements and multiply them by a scalar)
- Recall that vector spaces don't just apply to normal vectors (\mathbb{R}^n) , but to matrices, functions, sequences, random variables, . . .
- Proper distances or metrics, $d(\boldsymbol{x}, \boldsymbol{y})$, allow us to construct ideas about geometry of the vector space
- ullet Norms, $\|x\|$, that allow us to reason about the size of vector
- Norm induce a distance, $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$

- We have looked at vector space (closed sets where we can add elements and multiply them by a scalar)
- Recall that vector spaces don't just apply to normal vectors (\mathbb{R}^n) , but to matrices, functions, sequences, random variables, . . .
- Proper distances or metrics, $d(\boldsymbol{x}, \boldsymbol{y})$, allow us to construct ideas about geometry of the vector space
- ullet Norms, $\|x\|$, that allow us to reason about the size of vector
- Norm induce a distance, $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$

- We have looked at vector space (closed sets where we can add elements and multiply them by a scalar)
- Recall that vector spaces don't just apply to normal vectors (\mathbb{R}^n) , but to matrices, functions, sequences, random variables, . . .
- Proper distances or metrics, $d(\boldsymbol{x}, \boldsymbol{y})$, allow us to construct ideas about geometry of the vector space
- ullet Norms, $\|x\|$, that allow us to reason about the size of vector
- Norm induce a distance, $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$

- We will often consider objects with an inner product
- For vectors in \mathbb{R}^n

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

For functions

$$\langle f, g \rangle = \int_{x \in \mathcal{I}} f(x)g(x) dx$$

$$\langle \mathbf{A}, \mathbf{B} \rangle = \text{Tr} \mathbf{A}^{\mathsf{T}} \mathbf{B} = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}$$

- We will often consider objects with an inner product
- For vectors in \mathbb{R}^n

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

For functions

$$\langle f, g \rangle = \int_{x \in \mathcal{I}} f(x)g(x) dx$$

$$\langle \mathbf{A}, \mathbf{B} \rangle = \text{Tr} \mathbf{A}^{\mathsf{T}} \mathbf{B} = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}$$

- We will often consider objects with an inner product
- For vectors in \mathbb{R}^n

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

For functions

$$\langle f, g \rangle = \int_{x \in \mathcal{I}} f(x)g(x) dx$$

$$\langle \mathbf{A}, \mathbf{B} \rangle = \text{Tr} \mathbf{A}^{\mathsf{T}} \mathbf{B} = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}$$

- We will often consider objects with an inner product
- For vectors in \mathbb{R}^n

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

For functions

$$\langle f, g \rangle = \int_{x \in \mathcal{I}} f(x)g(x) dx$$

$$\langle \mathbf{A}, \mathbf{B} \rangle = \text{Tr} \mathbf{A}^{\mathsf{T}} \mathbf{B} = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}$$

- 1. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathcal{V}$
- 2. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{x}, \boldsymbol{z} \rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\|=\sqrt{\langle x,x\rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle m{x}, m{y} \rangle = m{x}^\mathsf{T} m{y}$) is the Euclidean norm $\| m{x} \| = \sqrt{m{x}^\mathsf{T} m{x}}$

- 1. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathcal{V}$
- 2. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{x}, \boldsymbol{z} \rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\|=\sqrt{\langle x,x\rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle m{x}, m{y} \rangle = m{x}^\mathsf{T} m{y}$) is the Euclidean norm $\| m{x} \| = \sqrt{m{x}^\mathsf{T} m{x}}$

- 1. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathcal{V}$
- 2. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{x}, \boldsymbol{z} \rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\|=\sqrt{\langle x,x\rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle m{x}, m{y} \rangle = m{x}^\mathsf{T} m{y}$) is the Euclidean norm $\| m{x} \| = \sqrt{m{x}^\mathsf{T} m{x}}$

- 1. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathcal{V}$
- 2. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{x}, \boldsymbol{z} \rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\|=\sqrt{\langle x,x\rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle m{x}, m{y} \rangle = m{x}^\mathsf{T} m{y}$) is the Euclidean norm $\| m{x} \| = \sqrt{m{x}^\mathsf{T} m{x}}$

- 1. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathcal{V}$
- 2. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{x}, \boldsymbol{z} \rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\|=\sqrt{\langle x,x\rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle m{x}, m{y} \rangle = m{x}^\mathsf{T} m{y}$) is the Euclidean norm $\|m{x}\| = \sqrt{m{x}^\mathsf{T} m{x}}$

- 1. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathcal{V}$
- 2. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{x}, \boldsymbol{z} \rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\| = \sqrt{\langle x, x \rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle m{x}, m{y} \rangle = m{x}^\mathsf{T} m{y}$) is the Euclidean norm $\| m{x} \| = \sqrt{m{x}^\mathsf{T} m{x}}$

- 1. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathcal{V}$
- 2. $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- 3. $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$
- 4. $\langle \boldsymbol{x}, \boldsymbol{y} + \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \langle \boldsymbol{x}, \boldsymbol{z} \rangle$
- 5. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$
- We can show that $\|x\|=\sqrt{\langle x,x\rangle}$ satisfies the axioms of a norm, so that an inner-product space is a normed space
- The norm associated with the inner-product for vectors in \mathbb{R}^n (i.e. $\langle x,y \rangle = x^\mathsf{T} y$) is the Euclidean norm $||x|| = \sqrt{x^\mathsf{T} x}$

Cauchy-Schwarz Inequality

 One of the most important results of inner-product spaces, known as the Cauchy-Schwarz inequality is that

$$\left\langle oldsymbol{x},oldsymbol{y}
ight
angle ^{2}\leq\left\langle oldsymbol{x},oldsymbol{x}
ight
angle \left\langle oldsymbol{y},oldsymbol{y}
ight
angle =\|oldsymbol{x}\|^{2}\|oldsymbol{y}\|^{2}$$

Or

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leq \|oldsymbol{x}\| \|oldsymbol{y}\|$$

• This is a very general result so for example

$$\left| \int f(x)g(x) dx \right| \le \sqrt{\left(\int f^2(x) dx \right) \left(\int g^2(x) dx \right)}$$

Cauchy-Schwarz Inequality

 One of the most important results of inner-product spaces, known as the Cauchy-Schwarz inequality is that

$$\left\langle oldsymbol{x},oldsymbol{y}
ight
angle ^{2}\leq\left\langle oldsymbol{x},oldsymbol{x}
ight
angle \left\langle oldsymbol{y},oldsymbol{y}
ight
angle =\|oldsymbol{x}\|^{2}\|oldsymbol{y}\|^{2}$$

Or

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leq \|oldsymbol{x}\| \|oldsymbol{y}\|$$

This is a very general result so for example

$$\left| \int f(x)g(x) dx \right| \le \sqrt{\left(\int f^2(x) dx \right) \left(\int g^2(x) dx \right)}$$

Cauchy-Schwarz Inequality

 One of the most important results of inner-product spaces, known as the Cauchy-Schwarz inequality is that

$$\left\langle oldsymbol{x},oldsymbol{y}
ight
angle ^{2}\leq\left\langle oldsymbol{x},oldsymbol{x}
ight
angle \left\langle oldsymbol{y},oldsymbol{y}
ight
angle =\|oldsymbol{x}\|^{2}\|oldsymbol{y}\|^{2}$$

Or

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leq \|oldsymbol{x}\| \|oldsymbol{y}\|$$

• This is a very general result so for example

$$\left| \int f(x)g(x) dx \right| \le \sqrt{\left(\int f^2(x) dx \right) \left(\int g^2(x) dx \right)}$$

 A natural interpretation of the inner product is in providing a measure of the angle between vectors

- Vectors are orthogonal if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$
- We can extend this idea to functions

$$\langle f(x), g(x) \rangle = \int_{x \in \mathcal{I}} f(x)g(x)dx = ||f(x)|| ||g(x)|| \cos(\theta)$$

 A natural interpretation of the inner product is in providing a measure of the angle between vectors

- Vectors are orthogonal if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$
- We can extend this idea to functions

$$\langle f(x), g(x) \rangle = \int_{x \in \mathcal{I}} f(x)g(x)dx = ||f(x)|| ||g(x)|| \cos(\theta)$$

 A natural interpretation of the inner product is in providing a measure of the angle between vectors

- Vectors are orthogonal if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$
- We can extend this idea to functions

$$\langle f(x), g(x) \rangle = \int_{x \in \mathcal{I}} f(x)g(x)dx = ||f(x)|| ||g(x)|| \cos(\theta)$$

 A natural interpretation of the inner product is in providing a measure of the angle between vectors

- Vectors are orthogonal if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$
- We can extend this idea to functions

$$\langle f(x), g(x) \rangle = \int_{x \in \mathcal{I}} f(x)g(x)dx = ||f(x)|| ||g(x)|| \cos(\theta)$$

- Any set of vectors $\{b_i|i=1,...\}$ that span the space can be used as a basis or coordinate system
- The simplest and most useful case is when the vectors are orthogonal and normalised (i.e. $||b_i|| = 1$)
- ullet In \mathbb{R}^3 we could use $m{b}_1=egin{pmatrix}1\\0\\0\end{pmatrix}$, $m{b}_2=egin{pmatrix}0\\1\\0\end{pmatrix}$, $m{b}_3=egin{pmatrix}0\\0\\1\end{pmatrix}$
- This is not unique as we can rotate our basis vectors
- ullet For an orthogonal basis we can write any vector as $\hat{x} = egin{pmatrix} x^\intercal b_1 \ x^\intercal b_2 \ x^\intercal b_3 \end{pmatrix}$

- Any set of vectors $\{ m{b}_i | i=1,... \}$ that span the space can be used as a basis or coordinate system
- The simplest and most useful case is when the vectors are orthogonal and normalised (i.e. $||b_i|| = 1$)
- ullet In \mathbb{R}^3 we could use $m{b}_1=egin{pmatrix}1\\0\\0\end{pmatrix}$, $m{b}_2=egin{pmatrix}0\\1\\0\end{pmatrix}$, $m{b}_3=egin{pmatrix}0\\0\\1\end{pmatrix}$
- This is not unique as we can rotate our basis vectors
- ullet For an orthogonal basis we can write any vector as $\hat{x} = egin{pmatrix} x^\intercal b_1 \ x^\intercal b_2 \ x^\intercal b_3 \end{pmatrix}$

- Any set of vectors $\{ m{b}_i | i=1,... \}$ that span the space can be used as a basis or coordinate system
- The simplest and most useful case is when the vectors are orthogonal and normalised (i.e. $||b_i|| = 1$)

$$ullet$$
 In \mathbb{R}^3 we could use $m{b}_1=egin{pmatrix}1\\0\\0\end{pmatrix}$, $m{b}_2=egin{pmatrix}0\\1\\0\end{pmatrix}$, $m{b}_3=egin{pmatrix}0\\0\\1\end{pmatrix}$

This is not unique as we can rotate our basis vectors

ullet For an orthogonal basis we can write any vector as $\hat{x} = egin{pmatrix} x^\intercal b_1 \ x^\intercal b_2 \ x^\intercal b_3 \end{pmatrix}$

- Any set of vectors $\{ m{b}_i | i=1,... \}$ that span the space can be used as a basis or coordinate system
- The simplest and most useful case is when the vectors are orthogonal and normalised (i.e. $||b_i|| = 1$)
- ullet In \mathbb{R}^3 we could use $m{b}_1=egin{pmatrix}1\\0\\0\end{pmatrix}$, $m{b}_2=egin{pmatrix}0\\1\\0\end{pmatrix}$, $m{b}_3=egin{pmatrix}0\\0\\1\end{pmatrix}$
- This is not unique as we can rotate our basis vectors
- ullet For an orthogonal basis we can write any vector as $\hat{x} = egin{pmatrix} x^\intercal b_1 \ x^\intercal b_2 \ x^\intercal b_3 \end{pmatrix}$

- Any set of vectors $\{ m{b}_i | i=1,... \}$ that span the space can be used as a basis or coordinate system
- The simplest and most useful case is when the vectors are orthogonal and normalised (i.e. $||b_i|| = 1$)
- ullet In \mathbb{R}^3 we could use $m{b}_1=egin{pmatrix}1\\0\\0\end{pmatrix}$, $m{b}_2=egin{pmatrix}0\\1\\0\end{pmatrix}$, $m{b}_3=egin{pmatrix}0\\0\\1\end{pmatrix}$
- This is not unique as we can rotate our basis vectors
- ullet For an orthogonal basis we can write any vector as $\hat{x} = egin{pmatrix} x^{+} b_1 \ x^{ extsf{T}} b_2 \ x^{ extsf{T}} b_3 \end{pmatrix}$

- For functions we can use any ortho-normal set of functions as a basis
- The most familiar are the Fourier functions $\sin(n\theta)$ and $\cos(n\theta)$
- Any function in $C(0,2\pi)$ can be represented by a point ${m f}=\begin{pmatrix} \langle f(x),b_0(x)\rangle \\ \langle f(x),b_1(x)\rangle \end{pmatrix}$

- There might be an infinite number of components
- This is analogous to points in \mathbb{R}^n (for large n)

- For functions we can use any ortho-normal set of functions as a basis
- The most familiar are the Fourier functions $\sin(n\theta)$ and $\cos(n\theta)$

There might be an infinite number of components

- For functions we can use any ortho-normal set of functions as a basis
- The most familiar are the Fourier functions $\sin(n\theta)$ and $\cos(n\theta)$
- $b_0(x)$ $b_1(x)$ $b_2(x)$ $b_3(x)$ $b_4(x)$ $b_5(x)$
- ullet Any function in $C(0,2\pi)$ can be represented by a

point
$$\boldsymbol{f} = \begin{pmatrix} \langle f(x), b_0(x) \rangle \\ \langle f(x), b_1(x) \rangle \\ \vdots \end{pmatrix}$$

- For functions we can use any ortho-normal set of functions as a basis
- The most familiar are the Fourier functions $\sin(n\theta)$ and $\cos(n\theta)$
- Any function in $C(0,2\pi)$ can be represented by a point ${m f}=\begin{pmatrix} \langle f(x),b_0(x)\rangle \\ \langle f(x),b_1(x)\rangle \end{pmatrix}$

- There might be an infinite number of components
- This is analogous to points in \mathbb{R}^n (for large n)

- For functions we can use any ortho-normal set of functions as a basis
- The most familiar are the Fourier functions $\sin(n\theta)$ and $\cos(n\theta)$

- There might be an infinite number of components
- This is analogous to points in \mathbb{R}^n (for large n)

- We have gone to these lengths as we want to show that many properties of vectors are shared by other objects (matrices, functions, etc.)
- The notions of distance (geometry), norms (size of vectors) and inner products (angles between vectors) provides a very rich set of concepts
- Vectors form the backbone of objects we will use repeated in machine learning
- The next piece of the jigsaw is to understand how we can transform these objects

- We have gone to these lengths as we want to show that many properties of vectors are shared by other objects (matrices, functions, etc.)
- The notions of distance (geometry), norms (size of vectors) and inner products (angles between vectors) provides a very rich set of concepts
- Vectors form the backbone of objects we will use repeated in machine learning
- The next piece of the jigsaw is to understand how we can transform these objects

- We have gone to these lengths as we want to show that many properties of vectors are shared by other objects (matrices, functions, etc.)
- The notions of distance (geometry), norms (size of vectors) and inner products (angles between vectors) provides a very rich set of concepts
- Vectors form the backbone of objects we will use repeated in machine learning
- The next piece of the jigsaw is to understand how we can transform these objects

- We have gone to these lengths as we want to show that many properties of vectors are shared by other objects (matrices, functions, etc.)
- The notions of distance (geometry), norms (size of vectors) and inner products (angles between vectors) provides a very rich set of concepts
- Vectors form the backbone of objects we will use repeated in machine learning
- The next piece of the jigsaw is to understand how we can transform these objects

Outline

- 1. Inner Products
- 2. Operators

- In machine learning we are interested in transforming our input vectors into some output predictions
- ullet To accomplish this we will apply some mapping or operators on the vector $\mathcal{T}:\mathcal{V}
 ightarrow \mathcal{V}'$
- ullet This says that ${\mathcal T}$ maps some object $m x \in {\mathcal V}$ to an object $m y = {\mathcal T}[m x]$ in a new vector space ${\mathcal V}'$
- This new vector space may or may not be the same as the original vector space
- Our objects may be any object in a vector space such as a function

- In machine learning we are interested in transforming our input vectors into some output predictions
- ullet To accomplish this we will apply some mapping or operators on the vector $\mathcal{T}:\mathcal{V}
 ightarrow \mathcal{V}'$
- ullet This says that ${\mathcal T}$ maps some object $m x \in {\mathcal V}$ to an object $m y = {\mathcal T}[m x]$ in a new vector space ${\mathcal V}'$
- This new vector space may or may not be the same as the original vector space
- Our objects may be any object in a vector space such as a function

- In machine learning we are interested in transforming our input vectors into some output predictions
- ullet To accomplish this we will apply some mapping or operators on the vector $\mathcal{T}:\mathcal{V}
 ightarrow \mathcal{V}'$
- ullet This says that ${\mathcal T}$ maps some object $m x \in {\mathcal V}$ to an object $m y = {\mathcal T}[m x]$ in a new vector space ${\mathcal V}'$
- This new vector space may or may not be the same as the original vector space
- Our objects may be any object in a vector space such as a function

- In machine learning we are interested in transforming our input vectors into some output predictions
- ullet To accomplish this we will apply some mapping or operators on the vector $\mathcal{T}:\mathcal{V}
 ightarrow \mathcal{V}'$
- ullet This says that ${\mathcal T}$ maps some object $m x \in {\mathcal V}$ to an object $m y = {\mathcal T}[m x]$ in a new vector space ${\mathcal V}'$
- This new vector space may or may not be the same as the original vector space
- Our objects may be any object in a vector space such as a function

- In machine learning we are interested in transforming our input vectors into some output predictions
- ullet To accomplish this we will apply some mapping or operators on the vector $\mathcal{T}:\mathcal{V}
 ightarrow \mathcal{V}'$
- ullet This says that ${\mathcal T}$ maps some object $m x \in {\mathcal V}$ to an object $m y = {\mathcal T}[m x]$ in a new vector space ${\mathcal V}'$
- This new vector space may or may not be the same as the original vector space
- Our objects may be any object in a vector space such as a function

Linear Operators

- Operators are in general very complicated, but a particular nice set of operators are linear operators
- ullet \mathcal{T} is a linear operator if

1.
$$\mathcal{T}[a\mathbf{x}] = a\mathcal{T}[\mathbf{x}]$$

2.
$$T[x + y] = T[x] + T[y]$$

ullet For normal vectors $(oldsymbol{x} \in \mathbb{R}^n)$ the most general linear operation is

$$\mathcal{T}[x] = \mathbf{M}x$$

where M is a matrix

Linear Operators

- Operators are in general very complicated, but a particular nice set of operators are linear operators
- ullet \mathcal{T} is a linear operator if
 - 1. $\mathcal{T}[a\mathbf{x}] = a\mathcal{T}[\mathbf{x}]$
 - 2. $\mathcal{T}[x+y] = \mathcal{T}[x] + \mathcal{T}[y]$
- ullet For normal vectors $(oldsymbol{x} \in \mathbb{R}^n)$ the most general linear operation is

$$\mathcal{T}[x] = \mathbf{M}x$$

where M is a matrix

Linear Operators

- Operators are in general very complicated, but a particular nice set of operators are linear operators
- ullet $\mathcal T$ is a linear operator if

1.
$$\mathcal{T}[a\mathbf{x}] = a\mathcal{T}[\mathbf{x}]$$

2.
$$T[x + y] = T[x] + T[y]$$

ullet For normal vectors $(oldsymbol{x} \in \mathbb{R}^n)$ the most general linear operation is

$$\mathcal{T}[x] = \mathbf{M}x$$

where M is a matrix

Matrix multiplication

• For an $\ell \times m$ matrix \mathbf{A} and an $m \times n$ matrix \mathbf{B} we can compute the $(\ell \times n)$ product, $\mathbf{C} = \mathbf{A}\mathbf{B}$, such that

$$C_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj} \qquad \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right)$$

ullet Treating the vector $oldsymbol{x}$ as a n imes 1 matrix then

$$oldsymbol{y} = \mathbf{A} oldsymbol{x} \qquad \Rightarrow \qquad y_i = \sum_j M_{ij} x_j \qquad \left(\boxed{} \right) \left(\boxed{} \right) = \left(\boxed{} \right)$$

Using the same matrix notation we can define the inner product as

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

Matrix multiplication

• For an $\ell \times m$ matrix \mathbf{A} and an $m \times n$ matrix \mathbf{B} we can compute the $(\ell \times n)$ product, $\mathbf{C} = \mathbf{A}\mathbf{B}$, such that

$$C_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj} \qquad \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right)$$

ullet Treating the vector $oldsymbol{x}$ as a n imes 1 matrix then

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x} \qquad \Rightarrow \qquad y_i = \sum_j M_{ij} x_j \qquad \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right) \left(\begin{array}{c} & & \\ & & \end{array} \right) \left(\begin{array}{c} & & \\ & & \end{array} \right)$$

Using the same matrix notation we can define the inner product as

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

Matrix multiplication

• For an $\ell \times m$ matrix \mathbf{A} and an $m \times n$ matrix \mathbf{B} we can compute the $(\ell \times n)$ product, $\mathbf{C} = \mathbf{A}\mathbf{B}$, such that

$$C_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj} \qquad \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right)$$

ullet Treating the vector $oldsymbol{x}$ as a n imes 1 matrix then

$$oldsymbol{y} = \mathbf{A} oldsymbol{x} \qquad \Rightarrow \qquad y_i = \sum_j M_{ij} x_j \qquad \left(\boxed{} \right) \left(\boxed{} \right) = \left(\boxed{} \right)$$

Using the same matrix notation we can define the inner product as

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

ullet In general AB
eq BA

• In general $AB \neq BA$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

• In general $AB \neq BA$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

• In general $AB \neq BA$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

 $oldsymbol{\dot{x}}$

ullet For all $oldsymbol{x}$ we have $oldsymbol{A}(Boldsymbol{C})oldsymbol{x}=(AB)oldsymbol{C}oldsymbol{x}$

- ullet For all $oldsymbol{x}$ we have $oldsymbol{A}(BC)oldsymbol{x}=(AB)Coldsymbol{x}$
- This implies A(BC) = (AB)C

Kernels

• The equivalent of a matrix for functions (i.e. a linear operator) is known as a kernel K(x,y)

$$g(x) = \mathcal{T}[f] = \int_{y \in \mathcal{I}} K(x, y) f(y) dy$$

Our domain does not need to be one dimensional, e.g.

$$g(\boldsymbol{x}) = \mathcal{T}[f] = \int_{\boldsymbol{y} \in \mathcal{I}} K(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d\boldsymbol{y}$$

We shall soon see examples of high-dimensional kernels

Kernels

• The equivalent of a matrix for functions (i.e. a linear operator) is known as a kernel K(x,y)

$$g(x) = \mathcal{T}[f] = \int_{y \in \mathcal{I}} K(x, y) f(y) dy$$

Our domain does not need to be one dimensional, e.g.

$$g(\boldsymbol{x}) = \mathcal{T}[f] = \int_{\boldsymbol{y} \in \mathcal{I}} K(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d\boldsymbol{y}$$

We shall soon see examples of high-dimensional kernels

Kernels

• The equivalent of a matrix for functions (i.e. a linear operator) is known as a kernel K(x,y)

$$g(x) = \mathcal{T}[f] = \int_{y \in \mathcal{I}} K(x, y) f(y) dy$$

Our domain does not need to be one dimensional, e.g.

$$g(\boldsymbol{x}) = \mathcal{T}[f] = \int_{\boldsymbol{y} \in \mathcal{I}} K(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d\boldsymbol{y}$$

We shall soon see examples of high-dimensional kernels

- Kernels are used heavily in machine learning
- In kernel methods such as SVM, SVR, Kernel-PCA
- They are also used in Gaussian Processes
- In all these cases we consider symmetric, positive semi-definite kernels
- Sometimes they can be interpreted as covariance between random functions

$$K(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{f \sim \mathcal{P}} \left[\left(f(\boldsymbol{x}) - \mu(\boldsymbol{x}) \right) \left(f(\boldsymbol{y}) - \mu(\boldsymbol{y}) \right) \right]$$

- Kernels are used heavily in machine learning
- In kernel methods such as SVM, SVR, Kernel-PCA
- They are also used in Gaussian Processes
- In all these cases we consider symmetric, positive semi-definite kernels
- Sometimes they can be interpreted as covariance between random functions

$$K(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{f \sim \mathcal{P}} \left[\left(f(\boldsymbol{x}) - \mu(\boldsymbol{x}) \right) \left(f(\boldsymbol{y}) - \mu(\boldsymbol{y}) \right) \right]$$

- Kernels are used heavily in machine learning
- In kernel methods such as SVM, SVR, Kernel-PCA
- They are also used in Gaussian Processes
- In all these cases we consider symmetric, positive semi-definite kernels
- Sometimes they can be interpreted as covariance between random functions

$$K(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{f \sim \mathcal{P}} \left[\left(f(\boldsymbol{x}) - \mu(\boldsymbol{x}) \right) \left(f(\boldsymbol{y}) - \mu(\boldsymbol{y}) \right) \right]$$

- Kernels are used heavily in machine learning
- In kernel methods such as SVM, SVR, Kernel-PCA
- They are also used in Gaussian Processes
- In all these cases we consider symmetric, positive semi-definite kernels
- Sometimes they can be interpreted as covariance between random functions

$$K(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{f \sim \mathcal{P}} [(f(\boldsymbol{x}) - \mu(\boldsymbol{x})) (f(\boldsymbol{y}) - \mu(\boldsymbol{y}))]$$

Kernels in Machine Learning

- Kernels are used heavily in machine learning
- In kernel methods such as SVM, SVR, Kernel-PCA
- They are also used in Gaussian Processes
- In all these cases we consider symmetric, positive semi-definite kernels
- Sometimes they can be interpreted as covariance between random functions

$$K(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{f \sim \mathcal{P}} \left[\left(f(\boldsymbol{x}) - \mu(\boldsymbol{x}) \right) \left(f(\boldsymbol{y}) - \mu(\boldsymbol{y}) \right) \right]$$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

 In general a linear operator will map vectors between different vector spaces

• E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

 In general a linear operator will map vectors between different vector spaces

• E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

 In general a linear operator will map vectors between different vector spaces

• E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- In general a linear operator will map vectors between different vector spaces
- E.g. $\mathbb{R}^3 \to \mathbb{R}^2$

- ullet We will spend a lot of time on operators that map from a vector space onto itself $\mathcal{T}:\mathcal{V} \to \mathcal{V}$
- ullet For vectors in \mathbb{R}^n such linear operators are represented by square matrices
- When there is a one-to-one mapping then we have a unique inverse
- We will study such mappings in detail in the next lecture

- We will spend a lot of time on operators that map from a vector space onto itself $\mathcal{T}: \mathcal{V} \to \mathcal{V}$
- ullet For vectors in \mathbb{R}^n such linear operators are represented by square matrices
- When there is a one-to-one mapping then we have a unique inverse
- We will study such mappings in detail in the next lecture

- We will spend a lot of time on operators that map from a vector space onto itself $\mathcal{T}: \mathcal{V} \to \mathcal{V}$
- ullet For vectors in \mathbb{R}^n such linear operators are represented by square matrices
- When there is a one-to-one mapping then we have a unique inverse
- We will study such mappings in detail in the next lecture

- We will spend a lot of time on operators that map from a vector space onto itself $\mathcal{T}: \mathcal{V} \to \mathcal{V}$
- ullet For vectors in \mathbb{R}^n such linear operators are represented by square matrices
- When there is a one-to-one mapping then we have a unique inverse
- We will study such mappings in detail in the next lecture

- We haven't covered much machine learning as such
- But mathematics is the language of machine learning and you have to get used to it
- Mathematics is like programming, if you don't understand the syntax and you can't write it down then its meaningless
- We've taken a high level view of inner product spaces and operator, this will pay us back later as we look at kernel methods

- We haven't covered much machine learning as such—sorry
- But mathematics is the language of machine learning and you have to get used to it
- Mathematics is like programming, if you don't understand the syntax and you can't write it down then its meaningless
- We've taken a high level view of inner product spaces and operator, this will pay us back later as we look at kernel methods

- We haven't covered much machine learning as such—sorry
- But mathematics is the language of machine learning and you have to get used to it
- Mathematics is like programming, if you don't understand the syntax and you can't write it down then its meaningless
- We've taken a high level view of inner product spaces and operator, this will pay us back later as we look at kernel methods

- We haven't covered much machine learning as such—sorry
- But mathematics is the language of machine learning and you have to get used to it
- Mathematics is like programming, if you don't understand the syntax and you can't write it down then its meaningless
- We've taken a high level view of inner product spaces and operator, this will pay us back later as we look at kernel methods

- We haven't covered much machine learning as such—sorry
- But mathematics is the language of machine learning and you have to get used to it
- Mathematics is like programming, if you don't understand the syntax and you can't write it down then its meaningless
- We've taken a high level view of inner product spaces and operator, this will pay us back later as we look at kernel methods