- Viewport: $W_v \times H_v$: we defined this, e.g., to be 1:1
- o World Coordinate: $W_{wc} \times H_{wc}$:
 - we want this to match viewport: $\frac{W_{wc}}{H_{wc}} = \frac{W_v}{H_v}$
 - W_v and H_v are knowns (we define these)
 - ullet We typically set W_{wc} to whatever we like, and compute H_{wc} in the camera
- o In this case:
 - We have an image with resolution: $W_i \times H_i \leftarrow \text{Given}$
 - We want to Define a Renderable: $W_r imes H_r$
 - We want an aspect ratio that matches the image: $\frac{W_r}{H_r} = \frac{W_i}{H_i}$

$$W_r = H_r \frac{W_i}{H_i} \text{ and }$$

$$H_r = W_r \frac{H_i}{W_i}$$

- We want our Renderable to cover as much WC space as possible!
- So, either W_r covers the entire W_{wc} or H_r covers the entire H_{wc}
- Conditions:

```
if (W_i > H_i) // wide image, Renderable covers the WC width Renderable.setWidth(W_{wc}, W_{wc} \frac{H_i}{W_i});

// since W_i > H_i, Renderable is wider than tall else
// tall image, Renderable covers the WC height Renderable.setWidth(H_{wc} \frac{W_i}{H_i}, H_{wc});
```