

Can we use random forests for spatiotemporal CPUE modeling?

BRIAN STOCK, ERIC WARD, BRICE SEMMENS

redictive ability

Covariate effects

Story 1: Bycatch hotspots

Fast

Replicable

Robust

Predictive ability

Covariate effects

--

Uncertainty estimates

Specifiable structure

Unbiased

Story 2: Total bycatch estimation

Fast

Replicable

Robust

Predictive ability

Covariate effects

-- Uncertainty estimates

Specifiable structure

Unbiased

Story 3: CPUE standardization

Tools for dynamic management

Need map of bycatch "risk"

Tools for dynamic management

Need map of bycatch "risk"

Tools for dynamic management

Need map of bycatch "risk"

- temperature
- depth
- substrate
- spatial field

Q: Which spatial model is best?

1. Research question

Q: Which spatial model is best?

1. Research question

GLM

GAM

GMRF

RF

obs ~ environmental predictors (temp, depth, ...)

 $Y_i \sim Binomial(logit^{-1}[X_i\beta])$

 $Y_i \sim Gamma(e^{X_i\beta}, \nu)$

Binomial

Positive

GLM

obs ∼ environmental predictors (temp, depth, ...)

GAM

obs \sim environmental predictors + s(lat,lon)

GMRF

RF

1. Methods

GLM

obs ~ environmental predictors (temp, depth, ...)

GAM

obs \sim environmental predictors + s(lat,lon)

GMRF

obs \sim environmental predictors + $MVN(0, \Sigma)$

RF

GLM obs ~ environmental predictors (temp, depth, ...) obs ~ environmental predictors + s(lat,lon) obs ~ environmental predictors + $MVN(0, \Sigma)$ obs ~ environmental predictors + lat + lon

1. Methods

Fisheries observer data

U.S. West Coast Groundfish Trawl

Hawaii Swordfish Longline

1. Methods

Generally: GLM < GAM < GMRF < RF

Generally: GLM < GAM < GMRF < RF

Less clear for rarer species

1. Results

Binomial

Generally: GLM < GAM < GMRF < RF

1. Results

Positive

Crude management simulation:

1. Predict bycatch risk at test locations

1. Methods: evaluation

Crude management simulation:

- 1. Predict bycatch risk at test locations
- 2. Remove X% of fishing effort with highest bycatch risk

1. Methods: evaluation

Crude management simulation:

- 1. Predict bycatch risk at test locations
- 2. Remove X% of fishing effort with highest bycatch risk
- 3. Calculate "prevented" bycatch and target catch (bycatch:target ratio)

1. Methods: evaluation

1. Results

Covariate effects

PredOccSurvey

Depth

In/near RCA

Covariate effects

1. Results

Palczewksa (2013), Welling (2016)

How do random forests work?

Single decision tree:

Low bias, high variance model (overfit)

How do random forests work?

Idea: average across many, uncorrelated trees $E[MSE] = Model\ Bias^2 + Model\ Variance + noise$

- 1. Bagging: fit each tree on a Bootstrap sample (~63%) of the data, then **Agg**regate across trees (~1000+)
- 2. Only consider a random subset (\sim P/3)

 of covariates at each split

 Depth >= 250 fm

 Pr = 0.12

 Pr = 0.21

 Temp >= 1

 Pr = 0.15

 Pr = 0.11

Covariate effects with RF

What is a "feature contribution"??

Covariate effects with RF

What is a "feature contribution"??

Prediction_i = 0.11 = 0.18 - 0.06 (Depth) - 0.01 (Temp)

Covariate interactions with RF

Catchability varies by Julian Day

1. Discussion

#2: Total bycatch estimates

Need estimates of total bycatch / discards

- Rarely observe 100% of fishing
- Often observe ~20%

#2: Total bycatch estimates

"Ratio estimator":

$$B_{unobs} = T_{unobs} \frac{B_{obs}}{T_{obs}}$$

Assumes bycatch prop. to target catch / effort

Use a spatial model instead

Cross-validation using dataset with 100% coverage:

- 1. Choose 20% observed trips
- 2. Fit spatial model
- 3. Predict at 80% unobserved
- 4. Compare sum(predictions) to ratio estimator

2. Methods

Spatial models = lower error

2. Results

... bias in spatial model estimates

2. Results

Why are random forests biased?

1. Extreme values modeled using average of less-extreme points \rightarrow Regression to the mean

2. Bycatch distribution is right-skewed

Thoughts on RF bias

Bias correction methods:

- Fit linear model in nodes instead of mean ('Cubist')
- Fit second model on RF residuals (Xu 2013)

Bycatch estimates (absolute abundance) vs.

CPUE standardization (relative abundance)

2. Discussion

#3: CPUE data

Eastern Pacific Ocean yellowfin tuna

- 2000-2009 catch + effort
- 1-deg lat/lon bins

Model:

- 2000-2009 catch + effort
- 1-deg lat/lon bins

```
'ranger' ranger(cpue ~ lat + lon + year, ...)
'grf' regression_forest(dat[,covar], Y=dat$cpue, ...)
```

CPUE data

Create prediction grid

'alphahull' R package

CPUE data

Predicted mean(CPUE)

Predicted Var(CPUE)

Relative abundance trend

Predicted CV(CPUE)

log(CV) vs. log(Effort)

3. Diagnostics

Standardized residuals

3. Diagnostics

Bias (regression to the mean)

3. Diagnostics

Uncertainty estimates

Need *covariance* between spatiotemporal predictions Rapidly evolving... 34,336 citations Breiman (2001)

- 1. Quantile regression forests prediction quantiles ('ranger', 'grf', Meinshausen 2006)
- 2. Jackknife & infinitesimal jackknife standard error ('ranger', Wager et al. 2014)

- 3. U-statistics asymptotically normal variance estimate ('surfin', Mentch & Hooker 2016)
- 4. Generalized random forests asymp. normal variance est. ('grf', Athey et al. 2017)

5. Bayesian additive regression trees – full posterior inference ('bayesMachine', 'dbarts', 'BART', Chipman et al. 2010)

3. Discussion

Other thoughts

Multivariate response:

Include model.matrix as covariates:

Buffer distances to smooth predictions:

What we want (from Rick Methot)

Discussion

Thank you!

SIO

Brice Semmens

SWFSC

Tomo Eguchi

NWFSC

- Eric Ward
- Jim Thorson
- Essential Fish Habitat (Blake Feist)
- West Coast Groundfish Observer Program (Jason Jannot)

Bias-variance tradeoff by species...

More worthwhile for rarer species

Q1: Which spatial model is best?

Goal: *prediction*

5-fold cross validation repeated 10x

Binomial

Methods: evaluation

Q1: Which spatial model is best?

Goal: prediction

5-fold cross validation repeated 10x

Binomial

Positive

AUC

RMSE, R^2 (pred – obs)

$$\sqrt{rac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n}}$$

Methods: evaluation

West Coast Groundfish covariates

```
Binomial
            \sim sst + sst<sup>2</sup> +
Positive
               depth + depth^2 +
               distance to rocky substrate +
               size of rocky patch +
               in Rockfish Conservation Area +
               predicted occurrence (survey) +
               day of year +
               spatial field
```

Hawaii Longline covariates

```
Positive ~ sst + sst<sup>2</sup> + day of year + spatial field
```

RF

- + Better at prediction
- + More complex covariate relationships (incl. interactions)
- + Easier to set up and run
- + Not just a "black box"?

GMRF

- + Statistical inference, marginal posteriors for covariate effects
- + Ability to include observation error

Discussion

Variance of predictions

Variance of predictions

Variance of predictions

Non-parametric delta method / "infinitesimal jackknife"