Deep Anomaly Detection Using Geometric Transformations

Павел Латышев 151

Задача поиска аномалий

Дана выборка объектов из нормального класса, необходимо обучить классификатор, находящий аномалии, то есть объекты, не принадлежащие нормальному классу.

Существующие подходы

- One Class SVM на картинках
- One Class SVM на латентном представлении автоэнкодера
- Оценка качества реконструкции картинки автоэнодером или GAN

Autoencoder

ADGAN

Figure 1: An illustration of ADGAN. In this example, ones from MNIST are considered normal. After an initial draw from p_z , the loss between the first generation $g_{\theta_0}(z_0)$ and the image x whose anomaly we are assessing is computed. This information is used to generate a consecutive image $g_{\theta_1}(z_1)$ more alike x. After k steps, samples are scored. If x is similar to the training data (blue example), then a similar object should be contained in the image of g_{θ_k} . For a dissimilar x (red example), no similar image is found, resulting in a large loss.

Постановка задачи

 \mathscr{X} - пространство изображений

 $X \subseteq \mathcal{X}$ - множество нормальных изображений

 $S \subseteq X$ - обучающая выборка

$$h_S(x): \mathcal{X} \to \{0,1\}, \quad h_S(x) = 1 \Leftrightarrow x \in X$$

$$h_S^{\lambda}(x) = \begin{cases} 1 & n_S(x) \ge \lambda \\ 0 & n_S(x) < \lambda \end{cases}$$

Предложенный метод

- Выберем множество преобразований Т (К комбинаций из горизонтального отражения, переноса и поворота)
- Применим преобразования к датасету
- Обучим классификатор определять тип преобразования
- Сумма вероятностей каждого класса или Dirichlet normality score ответ искомого классификатора n

Построение датасета

$$\mathscr{T} = \{T_0, T_1, ..., T_{k-1}\}$$
- набор геометрических преобразований

$$S_{\mathcal{T}} = \{ (T_j(x), j) : x \in S, T_j \in \mathcal{T} \}$$

На этом датасете обучаем k-классовый классификатор

$$f_{\theta}: \mathscr{R} \to \mathbb{R}^k$$

Упрощенный normality score

Пусть $y(x) = \mathbf{softmax}(f_{\theta}(x))$

$$\hat{n}_S = \frac{1}{k} \sum_{j=0}^{k-1} [y(T_j(x))]_j$$

- Легко реализуется
- Быстро вычисляется
- Работает чуть хуже, чем Dirichlet normality score

Dirichlet normality score

$$n_s(x) = \sum_{i=0}^{k-1} \log p(y(T_i(x)) | T_i)$$

Приблизим

$$y(T_i(x)) | T_i \sim Dir(a_i), \quad a_i \in \mathbb{R}^k_+, x \sim p_X(x), i \sim Uni(0, k-1)$$

$$n_{S}(x) = \sum_{i=0}^{k-1} \left[\log \Gamma(\sum_{j=0}^{k-1} [\hat{a}_{i}]_{j}) - \sum_{j=0}^{k-1} \log \Gamma([\hat{a}_{i}]_{j}) + \sum_{j=0}^{k-1} ([\hat{a}_{i}]_{j} - 1) \log y(T_{i}(x))_{j} \right]$$

$$n_{S}(x) = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} ([\hat{a}_{i}]_{j} - 1) \log y(T_{i}(x))_{j}$$

Алгоритм

Algorithm 1 Deep Anomaly Detection Using Geometric Transformations

```
Input: S: a set of "normal" images. \mathcal{T} = \{T_0, T_1, \dots, T_{k-1}\}: a set of geometric transformations.
       f_{\theta}: a softmax classifier parametrized by \theta.
       Output: A normality scoring function n_S(x).
 1: procedure GETNORMALITYSCORE(S, \mathcal{T}, f_{\theta})
            S_{\mathcal{T}} \leftarrow \{(T_i(x), j) : x \in S, T_i \in \mathcal{T}\}
 2:
            while not converged do
 3:
                   Train f_{\theta} on the labeled set S_{\mathcal{T}}
            end while
 5:
            n \leftarrow |S|
            for i \in \{0, ..., k-1\} do
                  S_i \leftarrow \{\mathbf{y}(T_i(x)) | x \in S\}
\bar{\mathbf{s}} \leftarrow \frac{1}{n} \sum_{\mathbf{s} \in S_i} \mathbf{s}
                  ar{l} \leftarrow rac{1}{n} \sum_{m{s} \in S_i} \log m{s}
10:
                  	ilde{m{lpha}}_i \leftarrow ar{m{s}} rac{(k-1)(-\Psi(1))}{ar{m{s}} \cdot \log ar{m{s}} - ar{m{s}} \cdot ar{m{l}}}
                                                                                                                             ▶ Initialization from [31]
11:
                   while not converged do
12:
                         	ilde{m{lpha}}_i \leftarrow \Psi^{-1} \left( \Psi \left( \sum_j [m{lpha}_i]_j 
ight) + ar{m{l}} 
ight)
                                                                                                                 ▶ Fixed point method from [21]
13:
                   end while
14:
             end for
15:
             return n_S(x) \triangleq \sum_{i=0}^{k-1} (\tilde{\boldsymbol{\alpha}}_i - 1) \cdot \log \mathbf{y}(T_i(x))
16:
17: end procedure
```

Выбранные трансформации

- Горизонтальное отражение
- Перенос на -0.25, 0, 0.25 по вертикали и горизонтали
- Поворот на 0, 90, 180, 270 градусов по часовой стрелке

Всего 2 * 3 * 3 * 4 = 72 комбинации

Пробовали другие типы трансформаций: гауссово размытие, гамма-коррекцию, качество ухудшалось

Оптимизация изображения под нормальный класс

Figure 1: Optimizing digit images to maximize the normality score

Результаты

Dataset	c_i	OC-SVM			D. (C) D. (AD-	OVIDA
		RAW	CAE	E2E	DAGMM	DSEBM	GAN	OURS
CIFAR-10 (32x32x3)	0	70.6	74.9	61.7±1.3	41.4±2.3	56.0±6.9	64.9	74.7±0.4
	1	51.3	51.7	65.9 ± 0.7	57.1 ± 2.0	48.3 ± 1.8	39.0	95.7 ± 0.0
	2	69.1	68.9	50.8 ± 0.3	53.8 ± 4.0	61.9 ± 0.1	65.2	78.1 ± 0.4
	3	52.4	52.8	59.1 ± 0.4	51.2 ± 0.8	50.1 ± 0.4	48.1	72.4 ± 0.5
	4	77.3	76.7	60.9 ± 0.3	52.2 ± 7.3	73.3 ± 0.2	73.5	87.8 ± 0.2
	5	51.2	52.9	65.7 ± 0.8	49.3 ± 3.6	60.5 ± 0.3	47.6	87.8 ± 0.1
	6	74.1	70.9	67.7 ± 0.8	64.9 ± 1.7	68.4 ± 0.3	62.3	83.4 ± 0.5
	7	52.6	53.1	67.3 ± 0.3	55.3 ± 0.8	53.3 ± 0.7	48.7	95.5 ± 0.1
	8	70.9	71.0	75.9 ± 0.4	51.9 ± 2.4	73.9 ± 0.3	66.0	93.3 ± 0.0
	9	50.6	50.6	73.1 ± 0.4	54.2 ± 5.8	63.6 ± 3.1	37.8	91.3 ± 0.1
	$\bar{a}vg^-$	62.0	62.4	64.8	53.1	60.9	55.3	86.0
Fashion- MNIST (32x32x1)	0	98.2	97.7	-	42.1±9.1	91.6±1.2	89.9	99.4±0.0
	1	90.3	89.9	-	55.1 ± 3.5	71.8 ± 0.5	81.9	97.6 \pm 0.1
	2	90.7	91.4	-	50.4 ± 7.3	88.3 ± 0.2	87.6	91.1 ± 0.2
	3	94.2	90.7	-	57.0 ± 6.7	87.3 ± 3.6	91.2	89.9 ± 0.4
	4	89.4	89.1	-	26.9 ± 5.4	85.2 ± 0.9	86.5	92.1 ± 0.0
	5	91.8	88.5	-	70.5 ± 9.7	87.1 ± 0.0	89.6	93.4 ± 0.9
	6	83.4	81.7	-	48.3 ± 5.0	73.4 ± 4.1	74.3	83.3 ± 0.1
	7	98.8	98.7	-	83.5 ± 11.4	98.1 ± 0.0	97.2	98.9 ± 0.1
	8	91.9	90.6	-	49.9 ± 7.2	86.0 ± 3.2	89.0	90.8 ± 0.1
	9	99.0	98.6	-	34.0 ± 3.0	97.1 ± 0.3	97.1	99.2 ± 0.0
	$\bar{a} \bar{v} g^{-}$	92.8	91.7		51.8	86.6	88.4	93.5
CatsVsDogs (64x64x3)	0	50.4	55.2	-	43.4 ± 0.5	47.1±1.7	50.7	88.3±0.3
	_ 1	53.0	49.9	- _	52.0±1.9	56.1 ± 1.2	_ 48.1_	89.2±0.3
	$\bar{a} \bar{v} g^{-}$	51.7	52.5		47.7	51.6	49.4	88.8

Литература

- Deep Anomaly Detection Using Geometric
 Transformations https://arxiv.org/abs/1805.10917
- Anomaly Detection with Generative Adversarial Networks https://openreview.net/forum?id=S1EfylZ0Z
- https://skymind.ai/wiki/generative-adversarial-networkgan
- https://towardsdatascience.com/applied-deep-learningpart-3-autoencoders-1c083af4d798