Exercise # 1. Numerical methods for ODES.

Alexandre Rodrigues (2039952)

November 24, 2021

Answers

Question 1

The Simpson's method is

$$y_{n+2} = y_n + \frac{h}{3} \left(f_n + 4f_{n+1} + f_{n+2} \right) \tag{1}$$

The Ordinary Differential Equation to solve in this question is

$$y'(t) = -5y(t) = f(t_n, y_n) \quad y(0) = 1.$$
(2)

To solve this ODE with the Simpson's method the value of $y_1 = y(h)$ also needs to be determined. One approach is to use the Forward Euler, in the following way:

$$y_1 = y(t = h) = y(0) + hf(0, y(0))$$
(3)

Another method one can use is the 4-th order Runge Kutta, given by the following equations

$$k_1 = f(0, y(0)) (4)$$

$$k_2 = f\left(\frac{h}{2}, y(0) + \frac{h}{2}k_1\right) \tag{5}$$

$$k_3 = f\left(\frac{h}{2}, y(0) + \frac{h}{2}k_2\right)$$
 (6)

$$k_4 = f(h, y(0) + hk_3) (7)$$

$$y_1 = y(t = h) = y(0) + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
 (8)

The results of the computations were then compared with the exact solution

$$y(t) = e^{-5t}, (9)$$

to understand the influence of the methods used to compute y(h).

Figure 1: Absolute error in function of time using Forward Euler method to compute y_1 The final error when using the Forward Euler to compute y_1 is 4.2916×10^{10} .

Figure 2: Absolute error in function of time using RK4 method to compute y(1)

The final error when using the 4-th order Runge Kutta method to compute y_1 is 4.3146×10^{10} . The Simpson's method has an empty stability region, which explains the large final error. The FE calculation for y_1 is better then the RK4 calculation given the lower final error. This is, although, not very relevant because the difference is of about $0.5 \times 10^{-10}\%$.

Question 2

The method used for this question is the 4-th order Runge Kutta method defined by

$$k_1 = f(t_n, y_n) \tag{10}$$

$$k_2 = f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right) \tag{11}$$

$$k_3 = f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2\right) \tag{12}$$

$$k_4 = f(t_n + h, y_n + hk_3) (13)$$

$$y_{n+1} = y_n + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
(14)

The Ordinary Differential Equation to solve in this question is

$$y'(t) = -10y^{2}(t) = f(t_{n}, y_{n}) \quad y(0) = 1.$$
 (15)

The exact solution

$$y(t) = \frac{1}{10t+1},\tag{16}$$

which will be used to compute the error as the difference between the exact and the experimental solutions.

Figure 3: LogLog plot of the error as a function of the number of steps.

\mathbf{h}	error	
3.125000×10^{-2}	2.291844×10^{-7}	
1.562500×10^{-2}	1.785763×10^{-8}	
7.812500×10^{-3}	1.160234×10^{-9}	
3.906250×10^{-3}	7.312862×10^{-11}	
1.953125×10^{-3}	4.579586×10^{-12}	
9.765625×10^{-4}	2.863750×10^{-13}	

In figure 3 and table $\ref{eq:condition}$, you can see the clear decrease in the final error with the increase of the number of steps (halving h) as expected in theory.

Question 3

BDF2 derivation

The usual form of the ODE:

$$y'(t) = f(t, y(t)) \tag{17}$$

$$y(t_0) = y_0 \tag{18}$$

Writing this ODE on a point t_{n+k} :

$$y'(t_{n+k}) = f(t_{n+k}, y_{n+k}) \tag{19}$$

The general expression of the Backward Differentiation Formulas is:

$$\sum_{j=0}^{k} \alpha_j y_{n+j} = h \beta_k f(t_{n+k}, y_{n+k}) \quad \beta_{k-1} = \dots = \beta_0 = 0.$$
 (20)

To obtain the BDF2 formula I will interpolate the function y(t) using the points (t_n, y_n) , $(t_{n+1}, y_{n+1}), (t_{n+2}, y_{n+2})$. The resulting polynomial P(t) is

$$P(t) = y_n \frac{(t - t_{n+1})(t - t_{n+2})}{2h^2} + y_{n+1} \frac{(t - t_n)(t - t_{n+2})}{-h^2} + y_{n+2} \frac{(t - t_n)(t - t_{n+1})}{2h^2}$$
(21)

 $P'(t_{n+2})$ is then used to approximate $y'(t_{n+2})$

$$P'(t) = \frac{1}{2h^2}y_n(t - t_{n+1}) - \frac{1}{h^2}y_{n+1}(t - t_n) + \frac{1}{2h^2}y_{n+2}[(t - t_n) + (t - t_{n+1})] + terms\ (t - t_{n+2})$$
(22)

The terms with $t - t_{n+2}$ are ommitted because they are null for $t = t_{n-2}$.

$$P'(t_{n+2}) = \frac{1}{2h^2} y_n(t_{n+2} - t_{n+1}) - \frac{1}{h^2} y_{n+1}(t_{n+2} - t_n) + \frac{1}{2h^2} y_{n+2} [(t_{n+2} - t_n) + (t_{n+2} - t_{n+1})]$$
(23)

$$P'(t_{n+2}) = \frac{1}{2h^2} y_n h - \frac{1}{h^2} y_{n+1} 2h + \frac{1}{2h^2} y_{n+2} [2h + h]$$
(24)

$$P'(t_{n+2}) = \frac{1}{2h}y_n - \frac{2}{h}y_{n+1} + \frac{3}{2h}y_{n+2}$$
(25)

(26)

The BDF2 formula can be derived from

$$P'(t_{n+2}) = f(t_{n+2}, y_{n+2}) (27)$$

$$\frac{1}{2h}y_n - \frac{2}{h}y_{n+1} + \frac{3}{2h}y_{n+2} = f(t_{n+2}, y_{n+2})$$
(28)

$$\frac{3}{2h}y_{n+2} - \frac{2}{h}y_{n+1} + \frac{1}{2h}y_n = f(t_{n+2}, y_{n+2})$$
(29)

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf(t_{n+2}, y_{n+2})$$
(30)

Truncation Error

The general expression for the interpolation error is

$$E(t) = \frac{(t - t_{n+k})\dots(t - t_n)f^{(k+1)}(\eta(t))}{(k+1)!}$$
(31)

For the BDF2 formula, k = 2,

$$E(t) = \frac{(t - t_{n+2})(t - t_{n+1})(t - t_n)f^{(3)}(\eta(t))}{6}$$
(32)

The local truncation error is obtained using the maximum of the derivative of |E'(t)|

$$\left| E'(t) \right| = \frac{1}{6} \left| -t_{n+2}(t - t_{n+1})(t - t_n) f^{(3)}(\eta(t)) \right| \tag{33}$$

$$-t_{n+1}(t-t_{n+2})(t-t_n)f^{(3)}(\eta(t))$$
(34)

$$-t_n(t - t_{n+2})(t - t_{n+1})f^{(3)}(\eta(t))$$
(35)

$$-(t - t_{n+2})(t - t_{n+1})(t - t_n)f^{(4)}(\eta(t))\eta'(t)$$
(36)

This function |E'(t)| has its maximum value for $t = t_n$ or $t = t_{n+1}$ or $t = t_{n+2}$. Choosing $t = t_n$ we simplify it to

$$|E'(t_n)| = \left| \frac{-t_n(t_n - t_{n+2})(t_n - t_{n+1})f^{(3)}(\eta(t_n))}{6} \right|$$
(37)

$$= \left| \frac{-t_n(-2h)(-h)f^{(3)}(\eta(t_n))}{6} \right|$$
 (38)

$$= \frac{h^2}{3} \left| t_n f^{(3)}(\eta(t_n)) \right| \tag{39}$$

The local truncation error can then be approximated, $\tau_n = \frac{h^2}{3} |t_n f^{(3)}(\eta(t_n))| \approx O(h^2)$

Absolute stability

The characteristic polynomial for the BDF2 method is

$$t^2(3-2\bar{h}) - 4t + 1 = 0 (40)$$

with roots

$$t_{12} = \frac{2 \pm \sqrt{1 + 2\bar{h}}}{3 - \bar{h}} \tag{41}$$

For $-\frac{1}{2} \leq \bar{h} < 0$, t_{12} are both real, $t_1 \leq t_1(\bar{h} = -\frac{1}{2}) = 0.5$ and $t_2 < t_2(\bar{h} = 0) = 1$. Since the roots are less then 1 for the interval $-\frac{1}{2} \leq h < 0$, the method is A-stable in this interval.

For $\bar{h} < -\frac{1}{2}$, t_{12} are complex and $t_{12} < t_{12}(\bar{h} = -\frac{1}{2}) = 0.5$. Since the roots are less then 1 for the interval $\bar{h} < -\frac{1}{2}$, the method is A-stable also in this interval.

I can hereby conclude that the method is A-stable for $\bar{h} \in (-\infty, 0)$.

Question 4

Stability for RK4

The 4-th order Runge-Kutta method, as showed before, is defined by

$$y_{n+1} = \left(1 + \frac{1}{6}hk_1 + \frac{1}{3}hk_2 + \frac{1}{3}hk_3 + \frac{1}{6}hk_4\right)y_n \tag{42}$$

, where

$$k1 = f(y_n) (43)$$

$$k2 = f(y_n + \frac{h}{2}k_1) (44)$$

$$k3 = f(y_n + \frac{h}{2}k_2) (45)$$

$$k4 = f(y_n + hk_3). (46)$$

Using $\bar{h} = h\lambda$, one can simplify this equation to:

$$y_{n+1} = \left(1 + \bar{h} + \frac{1}{2}\bar{h}^2 + \frac{1}{6}\bar{h}^3 + \frac{1}{24}\bar{h}^4\right)y_n \tag{47}$$

The relation of the current iteration value y_n with the initial value y_0 is:

$$y_{n+1} = \left(1 + \bar{h} + \frac{1}{2}\bar{h}^2 + \frac{1}{6}\bar{h}^3 + \frac{1}{24}\bar{h}^4\right)^n y_o \tag{48}$$

This implies the absolute stability region satisfies the following inequality:

$$|1 + \bar{h} + \frac{1}{2}\bar{h}^2 + \frac{1}{6}\bar{h}^3 + \frac{1}{24}\bar{h}^4| < 1 \tag{49}$$

Assuming h as a real number we have the following stability region:

$$-2.78529 < \bar{h} < 0 \tag{50}$$

This can be extended to a system of ODEs by using the largest modulus eigenvalue as λ found using lambda = -eigs(A,1,'lm') to be $\lambda = -7.8388262 \times 10^4$.

So,

$$h_{max} = \frac{-2.78529}{-7.8388262 \times 10^4} = 3.5531978 \times 10^{-5}$$
 (51)

$$0 < h < 3.5531978 \times 10^{-5} \tag{52}$$

I tested various values of h around this value and found that the method produced NaN values for $h > 3.6 \times 10^{-5}$. The error for $h = h_{max}$ was $error(h_{max}) = 0.2231543$. The experimental h_{max} I found to be in the region: $3.55596 \times 10^{-5} < h_{max} < 3.55675 \times 10^{-5}$ This was noticeable because the error increased from 0.22624 to 5.1645.

Results

The following table shows the error and CPU elapsed time for each of the methods used and each of the different numbers of steps.

Method	Number of steps	Error	CPU time (secs)
ODE45	9445	1.155269×10^{-5}	8.791882s
CN	100	4.467899×10^{-3}	208.038764s
CN	1000	4.441078×10^{-4}	514.197773s
CN	10000	4.438412×10^{-5}	3086.958397s
BDF3	100	4.482679×10^{-3}	188.455409s
BDF3	1000	4.442484×10^{-4}	557.765280s
BDF3	10000	4.438552×10^{-5}	3399.768021s

Question 5

Figure 4: Evolution of the number of preys and predators.

Results

Outputs