Sustainable Smart City Assistant – Project Report

Team ID: NM2025TMID00553

Team Size: 4

Team Leader: MURALIKARTHICK R

Team member: DINESH KUMAR M

Team member: LOGESH WARAN M

Team member: RAGUL M

INTRODUCTION

1.1 Project Overview

Sustainable Smart City Assistant is an AI-powered dashboard designed to enhance sustainability efforts in urban environments. It leverages IBM Watsonx LLM, FastAPI, Streamlit, and machine learning to support data-driven decision-making in areas like anomaly detection, KPI monitoring, policy assistance, and eco-friendly ci zen engagement.

1.2 Purpose

The primary goal is to empower citizens, city administrators, and sustainability officers with intelligent tools to understand, monitor, and improve urban sustainability metrics effectively.

2. IDEATION PHASE

2.1 Problem Statement

Urban ci es face challenges in efficiently managing environmental data, detecting anomalies in u li es, and communicating policies clearly to citizens. Lack of centralization and AI tools makes it harder to achieve sustainability targets.

2.2 Empathy Map Canvas

Who: Citizens, City Administrators

Think & Feel: Want clean ci es, transparency, eco-solutions

See: Fragmented data, unresponsive systems

Hear: Complaints about pollution, waste, and poor infrastructure Do

& Say: Demand be er feedback mechanisms and guidance

2.3 Brainstorming

We explored problems like poor air quality tracking, lack of anomaly alerts in water/electricity usage, and the absence of AI-based sustainability chat. The idea evolved into a central dashboard assistant for smart ci es.

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

3.2 Natural language chat assistant

- · User-friendly data upload & dashboard
- · Feedback collection and eco-suggestions
- · Vector-based smart search
 - 3.3 Data Flow Diagram

User \rightarrow Streamlit Frontend \rightarrow FastAPI Backend \rightarrow

- |→ Watsonx Granite (LLM)
- |→ ML Model (Anomaly Detection)
- |→ Pinecone (Smart Search Vector DB)
 - 3.4 Technology Stack
 - Frontend: Streamlit
 - Backend: FastAPI
 - LLM: IBM Watsonx Granite
 - ML: Scikit-learn
 - Vector DB: Pinecone
 - Embeddings: Sentence Transformers
 - Others: Pandas, NumPy, Uvicorn

4. PROJECT DESIGN

4.1 Problem-Solu on Fit

We observed the need for a single platform combining AI, sustainability insights, and interactivity. Our solution provides all-in-one capability to handle KPIs, generate insights, and interact with city data.

4.2 Proposed Solu on

A unified assistant that allows:

- CSV upload for KPIs
- · Auto anomaly detection
- Feedback collection
- Eco p display
- AI chat with LLM

• Smart semantic search on documents

4.3 Solu on Architecture

Frontend (Streamlit)

 \downarrow

Backend (FastAPI with routers: /chat, /feedback, /eco, /anomaly, /kpi, /vector) \

External APIs/Models: IBM Watsonx LLM, Pinecone Vector DB, ML models

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Phase Timeline Tasks

Week 1 Idea on & UI design Empathy map, wireframes

Week 2 Backend setup FastAPI routes, ML model

Week 3 Frontend integra on Streamlit components

Week 4 Testing & Debugging Unit and performance tests

Week 5 Final deployment GitHub, documenta on, screenshots

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

- Response me for chat and anomaly endpoints: < 2s
- Streamlit UI tested across browsers
- · API tested using Swagger for correctness

7. RESULTS

7.1 Output Screenshots

Home/Dashboard

Policy Chat Interface

KPI Upload Form

• Anomaly Detect on Results

· Feedback Submission Form

8 ADVANTAGES & DISADVANTAGES

Advantages

- Integrates LLM, ML, and search in one dashboard
- Interactive and intuitive design
- Customizable for any smart city

Disadvantages

- Requires internet connectivity
- LLM inference may be costly without free- er APIs
- Limited KPI formats (currently only CSV)

9. CONCLUSION

The Sustainable Smart City Assistant showcases the effective use of AI and data science in urban development. It simplifies sustainability tracking and promotes actionable insights for citizens and administrators.

10. FUTURE SCOPE

- Expand data formats (Excel, JSON)
- Add alert notifications via email/SMS
- Enable real- me IoT sensor integra on
- Mul -language chat support
- Admin login and role-based access

11. APPENDIX

Source Code

https://github.com/Shirisha-Kuruva/Smart-City-Assistant

Dataset Link

 $https://raw.githubusercontent.com/Shirisha-Kuruva/Smart-City-Assistant/refs/heads/main/Smart-City-Assistant-main/sample_kpi.csv.csv$