F15T3A3

Es seien f und g holomorph auf $U_2(0)$ und $f(\zeta) \neq 0$ für alle $\zeta \in \partial \mathbb{D}$, und für jedes $\zeta \in \partial \mathbb{D}$ sei $g(\zeta)/f(\zeta)$ reell und positiv. Zeige, dass f und g in \mathbb{D} dieselbe Anzahl von Nullstellen (mit Vielfachheiten gezählt) besitzen.

1. Lösungsvariante: Satz von Rouché

Nach Voraussetzung gibt es für jedes $\zeta \in \partial \mathbb{D}$ eine positive reelle Zahl $c_{\zeta} \in \mathbb{R}^+$ mit $\frac{g(\zeta)}{f(\zeta)} = c_{\zeta}$. Für alle $\zeta \in \partial \mathbb{D}$ gilt dann die folgende Ungleichung:

$$|g(\zeta) - f(\zeta)| = |c_{\zeta}f(\zeta) - f(\zeta)| = |(c_{\zeta} - 1)f(\zeta)| < < (c_{\zeta} + 1)|f(\zeta)| = |c_{\zeta}f(\zeta)| + |f(\zeta)| = = |g(\zeta)| + |f(\zeta)|.$$

Da f und g holomorph in $U_2(0)$ sind und \mathbb{D} beschränkt ist, folgt die Aussage mit dem Satz von Rouché.

2. Lösungsvariante: Argumentprinzip

Es sei $q := \frac{g}{f}$. Dann ist q meromorph auf $U_2(0)$ und es ist $q(\zeta) > 0$ für alle $\zeta \in \partial \mathbb{D}$. Daher ist $n(0, q(\partial \mathbb{D})) = 0$ (denn für das Bild von $\partial \mathbb{D}$ unter q gilt $q(\partial \mathbb{D} \subset \mathbb{R}^+)$. Nach dem Argumentprinzip ist

$$0 = n(0, q(\partial \mathbb{D})) = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{q'}{q}(\zeta) \,\mathrm{d}\,\zeta = N_q - P_q = N_g - N_f.$$

Wobei N_h und P_n die Null- bzw. Polstellenanzahlen (mit Vielfachheiten gezählt) von h in \mathbb{D} sind. Die Polstellen von q sind gerade die Nullstellen von f. Also ist $N_g = N_f$.