École de technologie supérieure

Département de génie électrique

SYS-835 : Processeur numérique du signal et ses applications

Professeur: Marcel Gabrea

Session: Automne 2014

Laboratoire 3

Optimisation des programmes pour les processeurs de traitement numérique de signal TMS320C6x.

3.1 Objectifs

Ce laboratoire a pour but de familiariser l'étudiant(e) avec l'optimisation des programmes pour les processeurs de traitement numérique de signal TMS320C6x.

3.2 Matériel requis

Traitement de texte (MS Word) Code Composer Studio (CCS 5.2.1.00018)

3.3 Méthodes d'optimisation

Écrire 4 fonctions en assembleur qui calculent $y = \sum_{i=0}^{N} x(i)h(i)$ en utilisant les méthodes

d'optimisation présentées au chapitre 5.3 (voir le tableau de la page 33 du Chapitre_5_2014_optimisation TMS320C6x.pdf) :

- 1. non optimisée,
- 2. optimisation par la méthode ||,
- 3. optimisation par la méthode de remplacement des NOPs par des instructions utiles et
- 4. optimisation par la méthode de déroulement des boucles combinée avec le chargement de deux valeurs à la fois (load word wide LDW à la place de load half word LDH).

Utiliser CCS 5.2.1.00018 en mode simulation afin de pouvoir mesurer (en utilisant le profiler) le nombre de cycles de chaque fonction.

Ces 4 fonctions doivent être appelées à partir du programme principal (main.c) où vous devez :

- 1. définir globalement deux tableaux de 40 éléments x[40] et h[40],
- 2. initialiser ces tableau tel que x(i) = 2i-1 et h(i) = 40-i pour i=0, ..., 39 et
- 3. déclarer ces 4 fonctions.

Faire les captures d'écran de toutes les étapes **importantes** et les copier dans le fichier Word lab3.doc ou lab3.docx avec une description de maximum deux – trois lignes de chaque étape.

Vérifier le résultat final de y et le nombre de cycles requis pour chaque type d'optimisation.

3.4 Optimisation par l'utilisation de la technique pipeline (Software Pipelining)

Écrire une fonction en assembleur qui calcule $y = \sum_{i=0}^{N} x(i)h(i)$ en utilisant la méthode d'optimisation présentées au chapitre 5.4. Cette fonction doit être appelée à partir du programme principal de 3.3.

Faire les captures d'écran de toutes les étapes **importantes** et les copier dans le fichier Word lab3.doc ou lab3.docx avec une description de maximum deux – trois lignes de chaque étape.

Vérifier le résultat final de y et le nombre de cycles requis.