Non Linear Programming Problem (NLPP)

Weight Distribution of Types

Comp

Type	Name	May	Nov	May	Nov	May	Nov	May	Dec	May	Dec
		2018	2018	2019	2019	2022	2022	2023	2023	2024	2024
1	Optimization					05			1	06	
II	Lagrange's Method					07	14	14	08	06	08
Ш	Kuhn Tucker Condition	08	08	08	08	05	08	08	08	08	08
Total Marks		08	08	08	08	17	22	22	16	20	16

Type I: Optimization

Find maximum or minimum of the function

$$z = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$$

Solution:

Let

$$f = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$$

Consider,

$$f_{x_1} = 0$$
 gives $1 + 0 + 0 - 2x_1 - 0 - 0 = 0$ i.e. $x_1 = \frac{1}{2}$

$$f_{x_2} = 0$$
 gives $0 + 0 + x_3 - 0 - 2x_2 - 0 = 0$ i.e. $2x_2 - x_3 = 0$ (1)
 $f_{x_3} = 0$ gives $0 + 2 + x_2 - 0 - 0 - 2x_3 = 0$ i.e. $x_2 - 2x_3 = -2$ (2)

$$f_{x_3} = 0$$
 gives $0 + 2 + x_2 - 0 - 0 - 2x_3 = 0$ i...e $x_2 - 2x_3 = -2$ (2)

Solving eqn (1) & (2),

$$x_2 = \frac{2}{3}, x_3 = \frac{4}{3}$$

Now, hessian matrix

$$H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & f_{x_1x_3} \\ f_{x_2x_1} & f_{x_2x_2} & f_{x_2x_3} \\ f_{x_3x_1} & f_{x_3x_2} & f_{x_3x_3} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$\Delta_1 = -2$$

$$\Delta_2 = \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} = 4$$
$$\begin{vmatrix} -2 & 0 \end{vmatrix}$$

$$\Delta_{1} = -2$$

$$\Delta_{2} = \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} = 4$$

$$\Delta_{3} = \begin{vmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{vmatrix} = -6$$

$$f_{max} = z_{max} = \frac{1}{2} + 2\left(\frac{4}{3}\right) + \left(\frac{2}{3}\right)\left(\frac{4}{3}\right) - \left(\frac{1}{2}\right)^2 - \left(\frac{2}{3}\right)^2 - \left(\frac{4}{3}\right)^2 = \frac{19}{12}$$

Obtain the relative maximum or minimum (if any) of the function 2.

$$z = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 10x_2 - 14x_3 + 103$$

[N14/MechCivil/6M][M19/Chem/5M][N19/Chem/6M]

Solution:

Let
$$f = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 10x_2 - 14x_3 + 103$$

$$f_{x_1} = 0 \Rightarrow 2x_1 - 6 = 0 \dots (1)$$

$$f_{x_2} = 0 \Rightarrow 2x_2 - 10 = 0 \dots (2)$$

$$f_{x_3} = 0 \Rightarrow 2x_3 - 14 = 0 \dots (3)$$

Solving (1), (2) and (3), we get

$$x_1 = 3, x_2 = 5, x_3 = 7$$

Now, Hessian matrix,

How, Hessian flatfix,
$$H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & f_{x_1x_3} \\ f_{x_2x_1} & f_{x_2x_2} & f_{x_2x_3} \\ f_{x_3x_1} & f_{x_3x_2} & f_{x_3x_3} \end{bmatrix}$$

$$H = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Delta_1 = 2$$

$$\Delta_1 = 2$$

$$\Delta_2 = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$$

$$\Delta_{2} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$$

$$\Delta_{3} = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8$$

$$\therefore z_{min} = (3)^2 + (5)^2 + (7)^2 - 6(3) - 10(5) - 14(7) + 103$$

$$\therefore z_{min} = 20$$

Optimise $z = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 100$ 3. [N16/CompIT/6M][M24/CompITAI/6M] **Solution:**

Let
$$f = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 100$$

 $f_{x_1} = 0 \Rightarrow 2x_1 - 4 = 0$...(1)

$$f_{x_2} = 0 \Rightarrow 2x_2 - 8 = 0$$
 ...(2)

$$f_{x_3} = 0 \Rightarrow 2x_3 - 12 = 0$$
 ...(3)

Solving (1), (2) and (3), we get

$$x_1 = 2, x_2 = 4, x_3 = 6$$

Now, Hessian matrix,

How, Hessian flatfix,
$$H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & f_{x_1x_3} \\ f_{x_2x_1} & f_{x_2x_2} & f_{x_2x_3} \\ f_{x_3x_1} & f_{x_3x_2} & f_{x_3x_3} \end{bmatrix}$$

$$H = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A = 2$$

$$\Delta_1 = 2$$

$$\Delta_{2} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$$

$$\Delta_{3} = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 8$$

$$\Delta_3 = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8$$

$$\therefore z_{min} = (2)^2 + (4)^2 + (6)^2 - 4(2) - 8(4) - 12(6) + 100$$

$$z_{min} = 44$$

Optimise $z = x_1^2 + x_2^2 + x_3^2 - 8x_1 - 10x_2 - 12x_3 + 100$ 4.

[M22/CompITAI/5M]

Solution:

Let
$$f = x_1^2 + x_2^2 + x_3^2 - 8x_1 - 10x_2 - 12x_3 + 100$$

 $f_{x_1} = 0 \Rightarrow 2x_1 - 8 = 0 \dots (1)$
 $f_{x_2} = 0 \Rightarrow 2x_2 - 10 = 0 \dots (2)$
 $f_{x_3} = 0 \Rightarrow 2x_3 - 12 = 0 \dots (3)$

Solving (1), (2) and (3), we get

$$x_1 = 4, x_2 = 5, x_3 = 6$$

Now, Hessian matrix,

How, Hessian flatfix,
$$H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & f_{x_1x_3} \\ f_{x_2x_1} & f_{x_2x_2} & f_{x_2x_3} \\ f_{x_3x_1} & f_{x_3x_2} & f_{x_3x_3} \end{bmatrix}$$

$$H = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Delta_1 = 2$$

$$\Delta_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 4$$

$$\Delta_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 4$$

$$\Delta_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 8$$

$$\therefore z_{min} = (4)^2 + (5)^2 + (6)^2 - 8(4) - 10(5) - 12(6) + 100$$

$$z_{min} = 23$$

Optimise $z = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 8x_2 - 10x_3$ 5.

[M14/MechCivil/6M]

Solution:

Let
$$f = x_1^2 + x_2^2 + x_3^2 - 6x_1 - 8x_2 - 10x_3$$

 $f_{x_1} = 0 \Rightarrow 2x_1 - 6 = 0 \dots (1)$
 $f_{x_2} = 0 \Rightarrow 2x_2 - 8 = 0 \dots (2)$
 $f_{x_3} = 0 \Rightarrow 2x_3 - 10 = 0 \dots (3)$

Solving (1), (2) and (3), we get

$$x_1 = 3, x_2 = 4, x_3 = 5$$

Now, Hessian matrix,

How, Hessian flatfix,
$$H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & f_{x_1x_3} \\ f_{x_2x_1} & f_{x_2x_2} & f_{x_2x_3} \\ f_{x_3x_1} & f_{x_3x_2} & f_{x_3x_3} \end{bmatrix}$$

$$H = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Delta_1 = 2$$

$$\Delta_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 4$$

$$\Delta_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 4$$

$$\Delta_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 8$$

$$\therefore z_{min} = (3)^2 + (4)^2 + (5)^2 - 6(3) - 8(4) - 10(5)$$

$$\therefore z_{min} = -50$$

Obtain the relative maximum or minimum (if any) of the function 6.

$$z = -x_1^2 - x_2^2 - x_3^2 + 9x_1 + x_1x_2 + 6x_3$$

[N19/Biot/6M]

Solution:

Let
$$f = -x_1^2 - x_2^2 - x_3^2 + 9x_1 + x_1x_2 + 6x_3$$

 $f_{x_1} = 0 \Rightarrow -2x_1 + 9 + x_2 = 0 \dots (1)$
 $f_{x_2} = 0 \Rightarrow -2x_2 + x_1 = 0 \dots (2)$
 $f_{x_3} = 0 \Rightarrow -2x_3 + 6 = 0 \dots (3)$

Solving (1), (2) and (3), we get

$$x_1 = 6, x_2 = 3, x_3 = 3$$

Now, Hessian matrix,

How, Hessian flattix,
$$H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & f_{x_1x_3} \\ f_{x_2x_1} & f_{x_2x_2} & f_{x_2x_3} \\ f_{x_3x_1} & f_{x_3x_2} & f_{x_3x_3} \end{bmatrix}$$

$$H = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$\Delta_1 = -2$$

$$\Delta_2 = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 3$$

$$\Delta_3 = \begin{vmatrix} -2 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & -2 \end{vmatrix} = -6$$

$$0 & 0 & -2 \end{vmatrix}$$

Since, Δ_1 is negative, Δ_2 is psoitive and Δ_3 is negative, it is a maxima

$$\therefore z_{max} = -(6)^2 - (3)^2 - (3)^2 + 9(6) + (6)(3) + 6(3)$$

$$\therefore z_{max} = 36$$

Type II: Method of Lagrange's Multipliers

Using the method of Lagrange's multipliers, solve the following N.L.P.P.

Optimize
$$z = 6x_1^2 + 5x_2^2$$

subject to $x_1 + 5x_2 = 7$
 $x_1, x_2 \ge 0$

[N13/Chem/7M][N15/N16/M17/N17/MechCivil/6M][N18/MTRX/6M] **Solution:**

Let
$$f = 6x_1^2 + 5x_2^2$$
 and $h = x_1 + 5x_2 - 7$

Consider the Lagrangian function,

$$L = f - \lambda h = (6x_1^2 + 5x_2^2) - \lambda(x_1 + 5x_2 - 7)$$

$$L_{x_1} = 0 \Rightarrow 12x_1 - \lambda = 0 \Rightarrow 12x_1 + 0x_2 - \lambda = 0 \dots (1)$$

$$L_{x_2} = 0 \Rightarrow 10x_2 - 5\lambda = 0 \Rightarrow 0x_1 + 10x_2 - 5\lambda = 0 \dots (2)$$

$$L_{\lambda} = 0 \Rightarrow -(x_1 + 5x_2 - 7) = 0 \Rightarrow x_1 + 5x_2 + 0\lambda = 7 \dots (3)$$

Solving (1), (2) and (3), we get

$$x_1 = \frac{7}{31}, x_2 = \frac{42}{31}, \lambda = \frac{84}{31}$$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} \end{bmatrix}$$

$$H = \begin{bmatrix} 0 & 1 & 5 \\ 1 & 12 & 0 \\ 5 & 0 & 10 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 5 \\ 1 & 12 & 0 \\ 5 & 0 & 10 \end{bmatrix} = -310$$

Since Δ is negative, it is a minima

$$\therefore z_{min} = 6\left(\frac{7}{31}\right)^2 + 5\left(\frac{42}{31}\right)^2 = \frac{294}{31}$$

The value of Lagrange's multiplier λ for the following NLPP is 2.

Optimize
$$z = 6x_1^2 + 5x_2^2$$

subject to $x_1 + 5x_2 = 7$
 $x_1, x_2 \ge 0$

[M22/CompITAI/2M]

Solution:

Let
$$f = 6x_1^2 + 5x_2^2$$
 and $h = x_1 + 5x_2 - 7$
Consider the Lagrangian function,
 $L = f - \lambda h = (6x_1^2 + 5x_2^2) - \lambda(x_1 + 5x_2 - 7)$
 $L_{x_1} = 0 \Rightarrow 12x_1 - \lambda = 0 \Rightarrow 12x_1 + 0x_2 - \lambda = 0$ (1)
 $L_{x_2} = 0 \Rightarrow 10x_2 - 5\lambda = 0 \Rightarrow 0x_1 + 10x_2 - 5\lambda = 0$ (2)
 $L_{\lambda} = 0 \Rightarrow -(x_1 + 5x_2 - 7) = 0 \Rightarrow x_1 + 5x_2 + 0\lambda = 7$...(3)
Solving (1), (2) and (3), we get
 $x_1 = \frac{7}{31}$, $x_2 = \frac{42}{31}$, $\lambda = \frac{84}{31}$

Optimise
$$z = 4x_1 + 8x_2 - x_1^2 - x_2^2$$

subject to $x_1 + x_2 = 4$
 $x_1, x_2 \ge 0$

[M14/N15/ChemBiot/8M][M15/MechCivil/8M][N16/ChemBiot/6M][M18/Chem/6M] [M23/CompIT/6M]

Solution:

Let
$$f=4x_1+8x_2-x_1^2-x_2^2$$
 and $h=x_1+x_2-4$ Consider the Lagrangian function,

$$L = f - \lambda h = (4x_1 + 8x_2 - x_1^2 - x_2^2) - \lambda(x_1 + x_2 - 4)$$

$$L_{x_1} = 0 \Rightarrow 4 - 2x_1 - \lambda = 0 \Rightarrow 2x_1 + 0x_2 + \lambda = 4 \dots (1)$$

$$L_{x_2} = 0 \Rightarrow 8 - 2x_2 - \lambda = 0 \Rightarrow 0x_1 + 2x_2 + \lambda = 8 \dots (2)$$

$$L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 - 4) = 0 \Rightarrow x_1 + x_2 + 0\lambda = 4$$
 ...(3)

Solving (1), (2) and (3), we get

$$x_1 = 1, x_2 = 3, \lambda = 2$$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} \end{bmatrix}$$

$$H = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} = 4$$

Since Δ is positive, it is a maxima

$$\therefore z_{max} = 4(1) + 8(3) - 1^2 - 3^2 = 18$$

Optimise
$$z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$

subject to $x_1 + 2x_2 = 2$
 $x_1, x_2 \ge 0$

[M22/CompITAI/5M]

Solution:

Let
$$f = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$
 and $h = x_1 + 2x_2 - 2$
Consider the Lagrangian function,
 $L = f - \lambda h = (4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2) - \lambda(x_1 + 2x_2 - 2)$
 $L_{x_1} = 0 \Rightarrow 4 - 4x_1 - 2x_2 - \lambda = 0 \Rightarrow 4x_1 + 2x_2 + \lambda = 4$ (1)
 $L_{x_2} = 0 \Rightarrow 6 - 2x_1 - 4x_2 - 2\lambda = 0 \Rightarrow 2x_1 + 4x_2 + 2\lambda = 6$ (2)

$$L_{\lambda} = 0 \Rightarrow -(x_1 + 2x_2 - 2) = 0 \Rightarrow x_1 + 2x_2 + 0\lambda = 2 \dots (3)$$

Solving (1), (2) and (3), we get

$$x_1 = \frac{1}{3}$$
, $x_2 = \frac{5}{6}$, $\lambda = 1$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} \end{bmatrix}$$

$$H = \begin{bmatrix} 0 & 1 & 2 \\ 1 & -4 & -2 \\ 2 & -2 & -4 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 2 \\ 1 & -4 & -2 \\ 2 & -2 & -4 \end{bmatrix} = 12$$

Since Δ is positive, it is a maxima

$$\therefore z_{max} = 4\left(\frac{1}{3}\right) + 6\left(\frac{5}{6}\right) - 2\left(\frac{1}{3}\right)^2 - 2\left(\frac{1}{3}\right)\left(\frac{5}{6}\right) - 2\left(\frac{5}{6}\right)^2 = \frac{25}{6}$$

Optimise
$$z = 2x_1 + 6x_2 - x_1^2 - x_2^2 + 14$$

subject to $x_1 + x_2 = 4$
 $x_1, x_2 \ge 0$

[N19/Chem/6M]

Solution:

Let
$$f=2x_1+6x_2-x_1^2-x_2^2+14$$
 and $h=x_1+x_2-4$
Consider the Lagrangian function,

$$L = f - \lambda h = (2x_1 + 6x_2 - x_1^2 - x_2^2 + 14) - \lambda(x_1 + x_2 - 4)$$

$$L_{x_1} = 0 \Rightarrow 2 - 2x_1 - \lambda = 0 \Rightarrow 2x_1 + 0x_2 + \lambda = 2 \dots (1)$$

$$L_{x_2} = 0 \Rightarrow 6 - 2x_2 - \lambda = 0 \Rightarrow 0x_1 + 2x_2 + \lambda = 6 \dots (2)$$

$$L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 - 4) = 0 \Rightarrow x_1 + x_2 + 0\lambda = 4 \dots (3)$$

Solving (1), (2) and (3), we get

$$x_1 = 1, x_2 = 3, \lambda = 0$$

Now, hessian matrix,

How, hessial matrix,
$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} \end{bmatrix}$$

$$H = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} = 4$$

Since Δ is positive, it is a maxima

$$\therefore z_{max} = 2(1) + 6(3) - (1)^2 - (3)^2 + 14 = 24$$

Optimise
$$z = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3$$

subject to $x_1 + x_2 + x_3 = 7$
 $x_1, x_2, x_3 \ge 0$

[M16/ChemBiot/8M][N22/CompITAI/6M]

Solution:

Let
$$f = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3$$

and $h = x_1 + x_2 + x_3 - 7$

Consider the Lagrangian function,

L =
$$f - \lambda h$$

L = $(x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3) - \lambda(x_1 + x_2 + x_3 - 7)$
 $L_{x_1} = 0 \Rightarrow 2x_1 - 10 - \lambda = 0 \Rightarrow x_1 = \frac{\lambda + 10}{2}$
 $L_{x_2} = 0 \Rightarrow 2x_2 - 6 - \lambda = 0 \Rightarrow x_2 = \frac{\lambda + 6}{2}$
 $L_{x_3} = 0 \Rightarrow 2x_3 - 4 - \lambda = 0 \Rightarrow x_3 = \frac{\lambda + 4}{2}$
 $L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 + x_3 - 7) = 0$
 $x_1 + x_2 + x_3 = 7$
 $\frac{\lambda + 10}{2} + \frac{\lambda + 6}{2} + \frac{\lambda + 4}{2} = 7$
 $\frac{3\lambda + 20}{2} = 7$
 $\lambda = -2$

$$\therefore x_1 = 4, x_2 = 2, x_3 = 1$$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} & h_{x_3} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ h_{x_3} & L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} = -4$$

$$\Delta_4 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} = -1 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} + 1 \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix} - 1 \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\Delta_4 = -4 - 4 - 4 - 4 = -12$$

Since both Δs are negative, it is a minima

$$\therefore z_{min} = (4)^2 + (2)^2 + (1)^2 - 10(4) - 6(2) - 4(1) = -35$$

Optimise
$$z = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$$

subject to $x_1 + x_2 + x_3 = 20$
 $x_1, x_2, x_3 \ge 0$

[D23/CompITAI/8M]

Solution:

Let
$$f = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$$

and $h = x_1 + x_2 + x_3 - 20$

Consider the Lagrangian function,

Consider the Lagrangian function,
$$L = f - \lambda h$$

$$L = (2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100) - \lambda(x_1 + x_2 + x_3 - 10x_1 + 10x_2 + 10x_3) - \lambda(x_1 + x_2 + x_3 - 10x_3) - \lambda(x_1 + x_2 + x_3 - 10x_2 + 10x_3) - \lambda(x_1 + x_2 + x_3 - 10x_2 + 10x_3) - \lambda(x_1 + x_2 + x_3 - x_3) - \lambda(x_1 + x_2 + x_3 + x_3) - \lambda(x_1 + x_2$$

$$x_1 = 5, x_2 = 11, x_3 = 4$$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} & h_{x_3} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ h_{x_3} & L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 4 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 6 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix} = -6$$

$$\Delta_4 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 4 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 6 \end{bmatrix} = -1 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 6 \end{bmatrix} + 1 \begin{bmatrix} 1 & 4 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 6 \end{bmatrix} - 1 \begin{bmatrix} 1 & 4 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\Delta_4 = -12 - 24 + 8 = -28$$

Since both Δs are negative, it is a minima

$$\therefore z_{min} = 2(5)^2 + (11)^2 + 3(4)^2 + 10(5) + 8(11) + 6(4) - 100 = 281$$

Optimise
$$z = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$$

subject to
$$x_1 + x_2 + x_3 = 10$$

$$x_1, x_2, x_3 \ge 0$$

[M19/Chem/6M][M19/N19/MTRX/6M][M24/CompITAI/6M][D24/CompITAI/8M] **Solution:**

Let
$$f = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$$

and $h = x_1 + x_2 + x_3 - 10$

Consider the Lagrangian function,

$$L = f - \lambda h$$

$$L = (12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23) - \lambda(x_1 + x_2 + x_3 - 10)$$

$$L_{x_1} = 0 \Rightarrow 12 - 2x_1 - \lambda = 0 \Rightarrow x_1 = \frac{12 - \lambda}{2}$$

$$L_{x_2} = 0 \Rightarrow 8 - 2x_2 - \lambda = 0 \Rightarrow x_2 = \frac{8 - \lambda}{2}$$

$$L_{x_3} = 0 \Rightarrow 6 - 2x_3 - \lambda = 0 \Rightarrow x_3 = \frac{6 - \lambda}{2}$$

$$L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 + x_3 - 10) = 0$$

$$x_1 + x_2 + x_3 = 10$$

$$\frac{12 - \lambda}{2} + \frac{8 - \lambda}{2} + \frac{6 - \lambda}{2} = 10$$

$$\frac{26-3\lambda}{2}=10$$

$$\lambda = 2$$

$$x_1 = 5, x_2 = 3, x_3 = 1$$

Now, hessian matrix,
$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} & h_{x_3} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ h_{x_3} & L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & -2 & 0 & 0 \\ 1 & 0 & -2 & 0 \\ 1 & 0 & 0 & -2 \end{bmatrix}$$

$$\Delta_{3} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = 4$$

$$\Delta_{4} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & 0 & -2 & 0 \\ 1 & 0 & 0 & -2 \\ 1 & 0 & 0 & -2 \end{vmatrix} = -1 \begin{vmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & -2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & 0 & 0 \end{vmatrix}$$

$$\Delta_{4} = -4 - 4 - 4 = -12$$

Since both Δ_3 is positive and Δ_4 is negative, it is a maxima

$$\therefore z_{max} = 12(5) + 8(3) + 6(1) - (5)^2 - (3)^2 - (1)^2 - 23 = 32$$

Optimise
$$z = 3x_1^2 + x_2^2 + x_3^2$$

subject to $x_1 + x_2 + x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

[N13/Biot/8M]

Solution:

Let
$$f = 3x_1^2 + x_2^2 + x_3^2$$
 and $h = x_1 + x_2 + x_3 - 2$
Consider the Lagrangian function, $L = f - \lambda h = (3x_1^2 + x_2^2 + x_3^2) - \lambda(x_1 + x_2 + x_3 - 2)$
 $L_{x_1} = 0 \Rightarrow 6x_1 - \lambda = 0 \Rightarrow x_1 = \frac{\lambda}{6}$
 $L_{x_2} = 0 \Rightarrow 2x_2 - \lambda = 0 \Rightarrow x_2 = \frac{\lambda}{2}$
 $L_{x_3} = 0 \Rightarrow 2x_3 - \lambda = 0 \Rightarrow x_3 = \frac{\lambda}{2}$
 $L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 + x_3 - 2) = 0$
 $x_1 + x_2 + x_3 = 2$
 $\frac{\lambda}{6} + \frac{\lambda}{2} + \frac{\lambda}{2} = 2$
 $\frac{7\lambda}{6} = 2$

$$\therefore x_1 = \frac{2}{7}, x_2 = \frac{6}{7}, x_3 = \frac{6}{7}$$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} & h_{x_3} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ h_{x_3} & L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 6 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

$$\Delta_3 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 6 & 0 \\ 1 & 0 & 2 \end{bmatrix} = -8$$

$$\Delta_4 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 6 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} = -1 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} + 1 \begin{bmatrix} 1 & 6 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix} - 1 \begin{bmatrix} 1 & 6 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\Delta_4 = -4 - 12 - 12 = -28$$

Since both Δs are negative, it is a minima

$$\therefore z_{min} = 3\left(\frac{2}{7}\right)^2 + \left(\frac{6}{7}\right)^2 + \left(\frac{6}{7}\right)^2 = \frac{12}{7} = 1.714$$

Optimise
$$z = 2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1 - 8x_2 - 12x_3 + 196$$

subject to
$$x_1 + x_2 + x_3 = 11$$

$$x_1, x_2, x_3 \ge 0$$

[M16/MechCivil/6M][M18/Biot/8M]

Solution:

Let
$$f = 2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1 - 8x_2 - 12x_3 + 196$$

and
$$h = x_1 + x_2 + x_3 - 11$$

Consider the Lagrangian function,

$$L = f - \lambda h$$

$$L = (2x_1^2 + 2x_2^2 + 2x_3^2 - 24x_1 - 8x_2 - 12x_3 + 196) - \lambda(x_1 + x_2 + x_3 - 11)$$

$$L_{x_1} = 0 \Rightarrow 4x_1 - 24 - \lambda = 0 \Rightarrow x_1 = \frac{\lambda + 24}{4}$$

$$L_{x_2} = 0 \Rightarrow 4x_2 - 8 - \lambda = 0 \Rightarrow x_2 = \frac{\lambda + 8}{4}$$

$$L_{x_3} = 0 \Rightarrow 4x_3 - 12 - \lambda = 0 \Rightarrow x_3 = \frac{\lambda + 12}{4}$$

$$L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 + x_3 - 11) = 0$$

$$x_1 + x_2 + x_3 = 11$$

$$\frac{\lambda+24}{4} + \frac{\lambda+8}{4} + \frac{\lambda+12}{4} = 11$$

$$\frac{3\lambda+44}{4}=11$$

$$\lambda = 0$$

$$x_1 = 6, x_2 = 2, x_3 = 3$$

Now, hessian matrix,

$$H = \begin{bmatrix} 0 & h_{x_1} & h_{x_2} & h_{x_3} \\ h_{x_1} & L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ h_{x_2} & L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ h_{x_3} & L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 4 & 0 & 0 \\ 1 & 0 & 4 & 0 \\ 1 & 0 & 0 & 4 \end{bmatrix}$$

$$\Delta_3 = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 4 & 0 \\ 1 & 0 & 4 \end{vmatrix} = -8$$

$$\begin{bmatrix} h_{x_2} & h_{x_2} & h_{x_2} & h_{x_2} & h_{x_2} & h_{x_3} \\ h_{x_3} & h_{x_3} & h_{x_3} & h_{x_3} & h_{x_3} \\ h_{x_3} & h_{x_3} & h_$$

$$\Delta_4 = -16 - 16 - 16 = -48$$

Since both Δs are negative, it is a minima

$$\therefore z_{min} = 2(6)^2 + 2(2)^2 + 2(3)^2 - 24(6) - 8(2) - 12(3) + 196 = 98$$

Maximise
$$z = 6x_1 + 8x_2 - x_1^2 - x_2^2$$

subject to $4x_1 + 3x_2 = 16$
 $3x_1 + 5x_2 = 15$
 $x_1, x_2 \ge 0$

[N14/ChemBiot/7M][M15/ChemBiot/8M][N18/Chem/6M] **Solution:**

Let
$$f=6x_1+8x_2-x_1^2-x_2^2$$

Let $h_1=4x_1+3x_2-16$ & $h_2=3x_1+5x_2-15$
Consider the Lagrangian function,
$$L=f-\lambda_1h_1-\lambda_2h_2$$

$$L=6x_1+8x_2-x_1^2-x_2^2-\lambda_1(4x_1+3x_2-16)-\lambda_2(3x_1+5x_2-16)$$
 Now,

$$L_{x_1} = 0 \Rightarrow 6 - 2x_1 - 4\lambda_1 - 3\lambda_2 = 0$$

$$L_{x_2} = 0 \Rightarrow 8 - 2x_2 - 3\lambda_1 - 5\lambda_2 = 0$$

$$L_{\lambda_1} = 0 \Rightarrow -(4x_1 + 3x_2 - 16) = 0 \Rightarrow 4x_1 + 3x_2 = 16 \dots (1)$$

$$L_{\lambda_2} = 0 \Rightarrow -(3x_1 + 5x_2 - 15) = 0 \Rightarrow 3x_1 + 5x_2 = 15 \dots (2)$$

$$x_1 = \frac{35}{11}, x_2 = \frac{12}{11}$$

$$\therefore z_{max} = 6\left(\frac{35}{11}\right) + 8\left(\frac{12}{11}\right) - \left(\frac{35}{11}\right)^2 - \left(\frac{12}{11}\right)^2 = 16.5041$$

Optimise
$$z = 6x_1 + 8x_2 - x_1^2 - x_2^2$$

subject to $4x_1 + 3x_2 = 16$
 $3x_1 + 5x_2 = 15$
 $x_1, x_2 \ge 0$

[M23/CompIT/8M]

Solution:

Let
$$f = 6x_1 + 8x_2 - x_1^2 - x_2^2$$
 $h_1 = 4x_1 + 3x_2 - 16$
 $h_2 = 3x_1 + 5x_2 - 15$
Lagrangian function,
$$L = f - \lambda_1 h_1 - \lambda_2 h_2$$

$$L = (6x_1 + 8x_2 - x_1^2 - x_2^2) - \lambda_1 (4x_1 + 3x_2 - 16) - \lambda_2 (3x_1 + 5x_2 - 15)$$
Consider,
$$L_{x_1} = 0 \text{ gives } 6 - 2x_1 - 4\lambda_1 - 3\lambda_2 = 0$$

$$L_{x_2} = 0 \text{ gives } 8 - 2x_2 - 3\lambda_1 - 5\lambda_2 = 0$$

$$L_{\lambda_1} = 0 \text{ gives } -(4x_1 + 3x_2 - 16) = 0 \text{ i.e. } 4x_1 + 3x_2 = 16 \dots (1)$$

$$L_{\lambda_2} = 0 \text{ gives } -(3x_1 + 5x_2 - 15) = 0 \text{ i.e. } 3x_1 + 5x_2 = 15 \dots (2)$$
Solving (1) & (2),
$$x_1 = \frac{35}{11}, x_2 = \frac{12}{11}$$

$$H_B = \begin{bmatrix} O & P \\ P' & Q \end{bmatrix}$$
Where, $P = \begin{bmatrix} h_{1x_1} & h_{1x_2} \\ h_{2x_1} & h_{2x_2} \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 3 & 5 \end{bmatrix}$
Where, $P = \begin{bmatrix} L_{x_1x_1} & L_{x_1x_2} \\ h_{x_2x_1} & L_{x_2x_2} \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$

$$H_B = \begin{bmatrix} 0 & 4 & 3 \\ 0 & 0 & 3 & 5 \\ 4 & 3 & -2 & 0 \\ 3 & 5 & 0 & -2 \end{bmatrix}$$

$$\Delta = 0 \begin{bmatrix} 3 & 5 \\ 3 & -2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 0 & 3 & 5 \\ 4 & 3 & 0 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$\Delta = 4[55] - 3[33]$$

$$\Delta = 121$$

Since Δ is positive, its a maxima

$$z_{max} = 6\left(\frac{35}{11}\right) + 8\left(\frac{12}{11}\right) - \left(\frac{35}{11}\right)^2 - \left(\frac{12}{11}\right)^2 = 16.5041$$

Solve the NLPP using the method of Lagrangian multipliers

Minimize
$$z = x_1^2 + x_2^2 + x_3^2$$

Subject to $x_1 + x_2 + 3x_3 = 2$
 $5x_1 + 2x_2 + x_3 = 5$
 $x_1, x_2, x_3 \ge 0$

Thus, $x_1 = \frac{37}{46}$, $x_2 = \frac{8}{23}$, $x_3 = \frac{13}{46}$

 $\therefore z_{min} = \left(\frac{37}{46}\right)^2 + \left(\frac{8}{33}\right)^2 + \left(\frac{13}{46}\right)^2 = \frac{39}{46}$

[N17/N18/Biot/8M]

[N17/N18/Biot/8M] Solution:
Let
$$f = x_1^2 + x_2^2 + x_3^2$$
Let $h_1 = x_1 + x_2 + 3x_3 - 2$ & $h_2 = 5x_1 + 2x_2 + x_3 - 5$
Consider the Lagrangian function,
$$L = f - \lambda_1 h_1 - \lambda_2 h_2$$

$$L = x_1^2 + x_2^2 + x_3^2 - \lambda_1 (x_1 + x_2 + 3x_3 - 2) - \lambda_2 (5x_1 + 2x_2 + x_3 - 5)$$
Now,
$$L_{x_1} = 0 \Rightarrow 2x_1 - \lambda_1 - 5\lambda_2 = 0 \text{ i.e. } x_1 = \frac{\lambda_1 + 5\lambda_2}{2}$$

$$L_{x_2} = 0 \Rightarrow 2x_2 - \lambda_1 - 2\lambda_2 = 0 \text{ i.e. } x_2 = \frac{\lambda_1 + 2\lambda_2}{2}$$

$$L_{x_3} = 0 \Rightarrow 2x_3 - 3\lambda_1 - \lambda_2 = 0 \text{ i.e. } x_3 = \frac{3\lambda_1 + \lambda_2}{2}$$

$$L_{\lambda_1} = 0 \Rightarrow -(x_1 + x_2 + 3x_3 - 2) = 0 \Rightarrow x_1 + x_2 + 3x_3 = 2 \dots (1)$$

$$L_{\lambda_2} = 0 \Rightarrow -(5x_1 + 2x_2 + x_3 - 5) = 0 \Rightarrow 5x_1 + 2x_2 + x_3 = 5 \dots (2)$$
Putting x_1, x_2, x_3 in eqn (1) we get
$$\left(\frac{\lambda_1 + 5\lambda_2}{2}\right) + \left(\frac{\lambda_1 + 2\lambda_2}{2}\right) + 3\left(\frac{3\lambda_1 + \lambda_2}{2}\right) = 2$$

$$11\lambda_1 + 10\lambda_2 = 4 \dots (3)$$
Putting x_1, x_2, x_3 in eqn (2) we get
$$5\left(\frac{\lambda_1 + 5\lambda_2}{2}\right) + 2\left(\frac{\lambda_1 + 2\lambda_2}{2}\right) + \left(\frac{3\lambda_1 + \lambda_2}{2}\right) = 5$$

$$10\lambda_1 + 30\lambda_2 = 10 \dots (4)$$
Solving (3) & (4), we get
$$\lambda_1 = \frac{2}{23}, \lambda_2 = \frac{7}{23}$$

14. Solve the NLPP using the method of Lagrangian multipliers

Optimize
$$z = x_1^2 + x_2^2 + x_3^2$$

subject to $x_1 + x_2 + 3x_3 = 2$
 $5x_1 + 2x_2 + x_3 = 5$
 $x_1, x_2, x_3 \ge 0$

[N22/CompITAI/8M]

Solution:

Let
$$f = x_1^2 + x_2^2 + x_3^2$$

Let $h_1 = x_1 + x_2 + 3x_3 - 2 \& h_2 = 5x_1 + 2x_2 + x_3 - 5$
Consider the Lagrangian function,

$$L = f - \lambda_1 h_1 - \lambda_2 h_2$$

$$L = x_1^2 + x_2^2 + x_3^2 - \lambda_1 (x_1 + x_2 + 3x_3 - 2) - \lambda_2 (5x_1 + 2x_2 + x_3 - 5)$$
Now,

$$L_{x_1} = 0 \Rightarrow 2x_1 - \lambda_1 - 5\lambda_2 = 0 \text{ i.e. } x_1 = \frac{\lambda_1 + 5\lambda_2}{2}$$

 $L_{x_2} = 0 \Rightarrow 2x_2 - \lambda_1 - 2\lambda_2 = 0 \text{ i.e. } x_2 = \frac{\lambda_1 + 2\lambda_2}{2}$

$$L_{x_3} = 0 \Longrightarrow 2x_3 - 3\lambda_1 - \lambda_2 = 0$$
 i.e. $x_3 = \frac{3\lambda_1^2 + \lambda_2}{2}$

$$L_{\lambda_1} = 0 \Rightarrow -(x_1 + x_2 + 3x_3 - 2) = 0 \Rightarrow x_1 + x_2 + 3x_3 = 2 \dots (1)$$

$$L_{\lambda_2} = 0 \Rightarrow -(5x_1 + 2x_2 + x_3 - 5) = 0 \Rightarrow 5x_1 + 2x_2 + x_3 = 5 \dots (2)$$

Putting
$$x_1, x_2, x_3$$
 in eqn (1) we get

$$\left(\frac{\lambda_1 + 5\lambda_2}{2}\right) + \left(\frac{\lambda_1 + 2\lambda_2}{2}\right) + 3\left(\frac{3\lambda_1 + \lambda_2}{2}\right) = 2$$

$$11\lambda_1 + 10\lambda_2 = 4 \dots (3)$$

Putting x_1, x_2, x_3 in eqn (2) we get

$$5\left(\frac{\lambda_1+5\lambda_2}{2}\right)+2\left(\frac{\lambda_1+2\lambda_2}{2}\right)+\left(\frac{3\lambda_1+\lambda_2}{2}\right)=5$$

$$10\lambda_1 + 30\lambda_2 = 10 \dots (4)$$

Solving (3) & (4), we get

$$\lambda_1 = \frac{2}{23}, \lambda_2 = \frac{7}{23}$$

Thus,
$$x_1 = \frac{37}{46}$$
, $x_2 = \frac{8}{23}$, $x_3 = \frac{13}{46}$

Now, hessian matrix

$$\begin{split} H^B &= \begin{bmatrix} O & P \\ P' & Q \end{bmatrix} \\ \text{where, } P &= \begin{bmatrix} h_{1x_1} & h_{1x_2} & h_{1x_3} \\ h_{2x_1} & h_{2x_2} & h_{2x_3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 1 \end{bmatrix} \end{split}$$

$$Q = \begin{bmatrix} L_{x_1x_1} & L_{x_1x_2} & L_{x_1x_3} \\ L_{x_2x_1} & L_{x_2x_2} & L_{x_2x_3} \\ L_{x_3x_1} & L_{x_3x_2} & L_{x_3x_3} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\therefore H^B = \begin{bmatrix} 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 5 & 2 & 1 \\ 1 & 5 & 2 & 0 & 0 \\ 1 & 2 & 0 & 2 & 0 \\ 3 & 1 & 0 & 0 & 2 \end{bmatrix}$$

$$\text{By } C_4 - C_3, C_5 - 3C_1$$

$$H^B = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 5 & -3 & -14 \\ 1 & 5 & 2 & -2 & -6 \\ 1 & 2 & 0 & 2 & 0 \\ 3 & 1 & 0 & 0 & 2 \end{bmatrix}$$

$$\Delta = 1 \begin{vmatrix} 1 & 5 & -2 & -6 \\ 1 & 2 & 2 & 0 \\ 3 & 1 & 0 & 2 \end{vmatrix} = -3 \begin{vmatrix} 1 & 5 & -6 \\ 1 & 2 & 0 \\ 3 & 1 & 2 \end{vmatrix} - (-14) \begin{vmatrix} 1 & 5 & -2 \\ 1 & 2 & 2 \\ 3 & 1 & 0 \end{vmatrix}$$

$$\Delta = -3(24) + 14(38) = 460$$
Since, Δ is positive, it is a minima
$$\therefore z_{min} = \left(\frac{37}{46}\right)^2 + \left(\frac{8}{23}\right)^2 + \left(\frac{13}{46}\right)^2 = \frac{39}{46}$$

Type III: Kuhn-Tucker conditions

Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Maximise
$$z = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$$

subject to $2x_1 + x_2 \le 5$
 $x_1, x_2 \ge 0$

[N15/M16/CompIT/6M][N19/MTRX/8M][M22/CompITAI/5M][M23/CompIT/8M] **Solution:**

Let
$$f = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$$

Let $h = 2x_1 + x_2 - 5$
Consider, $L = f - \lambda h$
 $L = 10x_1 + 4x_2 - 2x_1^2 - x_2^2 - \lambda(2x_1 + x_2 - 5)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 10 - 4x_1 - 2\lambda = 0$ (1)
 $L_{x_2} = 0 \Rightarrow 4 - 2x_2 - \lambda = 0$ (2)
 $\lambda h = 0 \Rightarrow \lambda(2x_1 + x_2 - 5) = 0$ (3)
 $h \le 0 \Rightarrow 2x_1 + x_2 - 5 \le 0$ (4)
 $x_1, x_2, \lambda \ge 0$ (5)
Case I: If $\lambda = 0$

From (1),
$$x_1 = \frac{5}{2}$$

From (2),
$$x_2 = 2$$

We see that eqn (4) is not satisfied

Case II: If $\lambda \neq 0$

From (1),
$$4x_1 + 0x_2 + 2\lambda = 10$$

From (2),
$$0x_1 + 2x_2 + \lambda = 4$$

From (3),
$$2x_1 + x_2 + 0\lambda = 5$$

On solving,

$$x_1 = \frac{11}{6}, x_2 = \frac{4}{3}, \lambda = \frac{4}{3}$$

$$z_{max} = 10\left(\frac{11}{6}\right) + 4\left(\frac{4}{3}\right) - 2\left(\frac{11}{6}\right)^2 - \left(\frac{4}{3}\right)^2 = \frac{91}{6}$$

Thus, the optimal solution is $z_{max} = \frac{91}{6}$ at $x_1 = \frac{11}{6}$, $x_2 = \frac{4}{2}$

Using the Kuhn-Tucker conditions, solve the following N.L.P.P. 2.

Maximise
$$z = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

subject to $2x_1 + 5x_2 \le 98$
 $x_1, x_2 \ge 0$

[N13/Chem/7M][M14/ComplT/6M][N14/MechCivil/8M][M18/N19/Comp/8M] [M18/N18/Biot/8M][N22/M24/CompITAI/8M][D24/CompITAI/8M] **Solution:**

Let
$$f = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

Let $h = 2x_1 + 5x_2 - 98$
Consider, $L = f - \lambda h$
 $L = 2x_1^2 - 7x_2^2 + 12x_1x_2 - \lambda(2x_1 + 5x_2 - 98)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 4x_1 + 12x_2 - 2\lambda = 0$ (1)
 $L_{x_2} = 0 \Rightarrow -14x_2 + 12x_1 - 5\lambda = 0$ (2)
 $\lambda h = 0 \Rightarrow \lambda(2x_1 + 5x_2 - 98) = 0$ (3)
 $h \le 0 \Rightarrow 2x_1 + 5x_2 - 98 \le 0$ (4)
 $x_1, x_2, \lambda \ge 0$ (5)
Case I: If $\lambda = 0$
From (1), $4x_1 + 12x_2 = 0$
From (2), $12x_1 - 14x_2 = 0$
 $x_1 = 0, x_2 = 0$
 $x_{max} = 2(0)^2 - 7(0)^2 + 12(0)(0) = 0$
Case II: If $\lambda \ne 0$
From (2), $12x_1 - 14x_2 - 5\lambda = 0$
From (3), $2x_1 + 5x_2 + 0\lambda = 98$
On solving,
 $x_1 = 44, x_2 = 2, \lambda = 100$
 $z_{max} = 2(44)^2 - 7(2)^2 + 12(44)(2) = 4900$
Thus, the optimal solution is $z_{max} = 4900$ at $x_1 = 44, x_2 = 2$

Using the Kuhn-Tucker conditions, solve the following N.L.P.P. 3.

Maximise
$$z = 8x_1 + 10x_2 - x_1^2 - x_2^2$$

subject to $3x_1 + 2x_2 \le 6$
 $x_1, x_2 \ge 0$

[M15/N17/CompIT/8M]

Solution:

Let
$$f = 8x_1 + 10x_2 - x_1^2 - x_2^2$$

Let $h = 3x_1 + 2x_2 - 6$
Consider, $L = f - \lambda h$
 $L = 8x_1 + 10x_2 - x_1^2 - x_2^2 - \lambda(3x_1 + 2x_2 - 6)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 8 - 2x_1 - 3\lambda = 0$ (1)
 $L_{x_2} = 0 \Rightarrow 10 - 2x_2 - 2\lambda = 0$ (2)

$$\lambda h = 0 \Rightarrow \lambda (3x_1 + 2x_2 - 6) = 0 \dots (3)$$

$$h < 0 \Rightarrow 3x_1 + 2x_2 - 6 < 0$$

$$h \le 0 \Rightarrow 3x_1 + 2x_2 - 6 \le 0$$
(4)

$$x_1, x_2, \lambda \ge 0$$
(5)

Case I: If
$$\lambda = 0$$

From (1),
$$x_1 = 4$$

From (2),
$$x_2 = 5$$

We see that eqn (4) is not satisfied

Case II: If
$$\lambda \neq 0$$

From (1),
$$2x_1 + 0x_2 + 3\lambda = 8$$

From (2),
$$0x_1 + 2x_2 + 2\lambda = 10$$

From (3),
$$3x_1 + 2x_2 + 0\lambda = 6$$

$$x_1 = \frac{4}{13}, x_2 = \frac{33}{13}, \lambda = \frac{32}{13}$$

$$z_{max} = 8\left(\frac{4}{13}\right) + 10\left(\frac{33}{13}\right) - \left(\frac{4}{13}\right)^2 - \left(\frac{33}{13}\right)^2 = \frac{277}{13}$$
Thus, the optimal solution is $z = -\frac{277}{13}$ at $x_1 = \frac{4}{13}$.

Thus, the optimal solution is
$$z_{max}=\frac{277}{13}$$
 at $x_1=\frac{4}{13}$, $x_2=\frac{33}{13}$

4. Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Maximise
$$z = 2x_1 + x_2 - x_1^2$$

subject to $2x_1 + 3x_2 \le 6$
 $2x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

[N14/ChemBiot/7M][N15/ChemBiot/8M][N17/Biot/6M] Solution:

Let
$$f=2x_1+x_2-x_1^2$$

Let $h_1=2x_1+3x_2-6$, $h_2=2x_1+x_2-4$
Consider, $L=f-\lambda_1h_1-\lambda_2h_2$
 $L=2x_1+x_2-x_1^2-\lambda_1(2x_1+3x_2-6)-\lambda_2(2x_1+x_2-4)$
According to Kuhn Tucker conditions,
 $L_{x_1}=0\Rightarrow 2-2x_1-2\lambda_1-2\lambda_2=0$ (1)
 $L_{x_2}=0\Rightarrow 1-3\lambda_1-\lambda_2=0$ (2)

$$\lambda_1 h_1 = 0 \Rightarrow \lambda_1 (2x_1 + 3x_2 - 6) = 0$$
(3)
 $\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (2x_1 + x_2 - 4) = 0$ (4)

$$h_1 \le 0 \Rightarrow 2x_1 + 3x_2 - 6 \le 0$$
(5)

$$h_2 \le 0 \Rightarrow 2x_1 + x_2 - 4 \le 0$$
(6)

$$x_1, x_2, \lambda_1, \lambda_2 \ge 0$$
(7)

Case I: If
$$\lambda_1 = 0$$
, $\lambda_2 = 0$

From (1),
$$x_1 = 1$$

From (2),
$$1 = 0$$
 which is absurd

Case II: If
$$\lambda_1 = 0$$
, $\lambda_2 \neq 0$

From (1),
$$2x_1 + 0x_2 + 2\lambda_2 = 2$$

From (2),
$$\lambda_2 = 1$$

From (4),
$$2x_1 + x_2 + 0\lambda_2 = 4$$

On solving,

$$x_1 = 0, x_2 = 4, \lambda_2 = 1$$

We see that, eqn (5) is not satisfied

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$2x_1 + 0x_2 + 2\lambda_1 = 2$$

From (2),
$$\lambda_1 = \frac{1}{3}$$

From (3),
$$2x_1 + 3x_2 + 0\lambda_1 = 6$$

$$x_1 = \frac{2}{3}, x_2 = \frac{14}{9}, \lambda_1 = \frac{1}{3}$$

$$z_{max} = 2\left(\frac{2}{3}\right) + \left(\frac{14}{9}\right) - \left(\frac{2}{3}\right)^2 = \frac{22}{9}$$

Case IV: If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$

From (3), $2x_1 + 3x_2 = 6$

From (4), $2x_1 + x_2 = 4$

On solving,

$$x_1 = \frac{3}{2}$$
, $x_2 = 1$

From (1), $2\lambda_1 + 2\lambda_2 = -1$

From (2), $3\lambda_1 + \lambda_2 = 1$

On solving,

$$\lambda_1 = \frac{3}{4}$$
, $\lambda_2 = -\frac{5}{4}$

We see that eqn (7) is not satisfied

Thus, the optimal solution is $z_{max} = \frac{22}{9}$ at $x_1 = \frac{2}{3}$, $x_2 = \frac{14}{9}$

Using the Kuhn-Tucker conditions, solve the following N.L.P.P. 5.

Maximise
$$z = 2x_1 + 3x_2 - x_1^2 - x_2^2$$

subject to $x_1 + x_2 \le 1$
 $2x_1 + 3x_2 \le 6$
 $x_1, x_2 \ge 0$

[N13/Biot/8M][M16/MechCivil/8M]

Solution:

Let
$$f = 2x_1 + 3x_2 - x_1^2 - x_2^2$$

Let $h_1 = x_1 + x_2 - 1$, $h_2 = 2x_1 + 3x_2 - 6$
Consider, $L = f - \lambda_1 h_1 - \lambda_2 h_2$
 $L = 2x_1 + 3x_2 - x_1^2 - x_2^2 - \lambda_1 (x_1 + x_2 - 1) - \lambda_2 (2x_1 + 3x_2 - 6)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 2 - 2x_1 - \lambda_1 - 2\lambda_2 = 0$ (1)
 $L_{x_2} = 0 \Rightarrow 3 - 2x_2 - \lambda_1 - 3\lambda_2 = 0$ (2)

$$L_{x_2} = 0 \Rightarrow 3 - 2x_2 - \lambda_1 - 3\lambda_2 = 0 \dots (2)$$

$$L_{x_2} = 0 \Rightarrow 3 - 2x_2 - \lambda_1 - 3\lambda_2 = 0 \dots (2)$$

$$\lambda_1 h_1 = 0 \Rightarrow \lambda_1 (x_1 + x_2 - 1) = 0$$
(3)

$$\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (2x_1 + 3x_2 - 6) = 0$$
(4)

$$h_1 \le 0 \Rightarrow x_1 + x_2 - 1 \le 0$$
(5)

$$h_2 \le 0 \Rightarrow 2x_1 + 3x_2 - 6 \le 0$$
(6)

$$x_1, x_2, \lambda_1, \lambda_2 \ge 0$$
(7)

Case I: If
$$\lambda_1 = 0$$
, $\lambda_2 = 0$

From (1),
$$x_1 = 1$$

From (2),
$$x_2 = \frac{3}{2}$$

We see that eqn (5) is not satisfied

Case II: If
$$\lambda_1 = 0$$
, $\lambda_2 \neq 0$

From (1),
$$2x_1 + 0x_2 + 2\lambda_2 = 2$$

From (2),
$$0x_1 + 2x_2 + 3\lambda_2 = 3$$

From (4),
$$2x_1 + 3x_2 + 0\lambda_2 = 6$$

On solving,

$$x_1 = \frac{12}{13}, x_2 = \frac{18}{13}, \lambda_2 = \frac{1}{13}$$

We see that, eqn (5) is not satisfied

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$2x_1 + 0x_2 + \lambda_1 = 2$$

From (2),
$$0x_1 + 2x_2 + \lambda_1 = 3$$

From (3),
$$x_1 + x_2 + 0\lambda_1 = 1$$

$$x_1 = \frac{1}{4}, x_2 = \frac{3}{4}, \lambda_1 = \frac{3}{2}$$

$$z_{max} = 2\left(\frac{1}{4}\right) + 3\left(\frac{3}{4}\right) - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2 = \frac{17}{8}$$

Case IV: If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$

From (3), $x_1 + x_2 = 1$

From (4), $2x_1 + 3x_2 = 6$

On solving,

$$x_1 = -3, x_2 = 4$$

We see that eqn (7) is not satisfied

Thus, the optimal solution is $z_{max} = \frac{17}{8}$ at $x_1 = \frac{1}{4}$, $x_2 = \frac{3}{4}$

6. Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Minimise
$$z = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$$

subject to $x_1 + 3x_2 \le 6$
 $5x_1 + 2x_2 \le 10$
 $x_1, x_2 \ge 0$

[M15/M16/ChemBiot/8M][N15/MechCivil/8M]

Solution:

Let
$$f = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$$

Let $h_1 = x_1 + 3x_2 - 6$, $h_2 = 5x_1 + 2x_2 - 10$
Consider, $L = f - \lambda_1 h_1 - \lambda_2 h_2$
 $L = 2x_1 + 3x_2 - x_1^2 - 2x_2^2 - \lambda_1 (x_1 + 3x_2 - 6) - \lambda_2 (5x_1 + 2x_2 - 10)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 2 - 2x_1 - \lambda_1 - 5\lambda_2 = 0$ (1)
 $L_{x_2} = 0 \Rightarrow 3 - 4x_2 - 3\lambda_1 - 2\lambda_2 = 0$ (2)
 $\lambda_1 h_1 = 0 \Rightarrow \lambda_1 (x_1 + 3x_2 - 6) = 0$ (3)

$$\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (5x_1 + 2x_2 - 10) = 0$$
(4)

$$h_1 \le 0 \Rightarrow x_1 + 3x_2 - 6 \le 0$$
(5)

$$h_2 \le 0 \Rightarrow 5x_1 + 2x_2 - 10 \le 0$$
(6)

$$x_1, x_2 \ge 0 \& \lambda_1, \lambda_2 \le 0$$
(7)

Case I: If
$$\lambda_1 = 0$$
, $\lambda_2 = 0$

From (1),
$$x_1 = 1$$

From (2),
$$x_2 = \frac{3}{4}$$

$$z_{min} = 2(1) + 3\left(\frac{3}{4}\right) - (1)^2 - 2\left(\frac{3}{4}\right)^2 = \frac{17}{8} = 2.125$$

Case II: If
$$\lambda_1 = 0, \lambda_2 \neq 0$$

From (1),
$$2x_1 + 0x_2 + 5\lambda_2 = 2$$

From (2),
$$0x_1 + 4x_2 + 2\lambda_2 = 3$$

From (4),
$$5x_1 + 2x_2 + 0\lambda_2 = 10$$

On solving,

$$x_1 = \frac{89}{54}, x_2 = \frac{95}{108}, \lambda_2 = -\frac{7}{27}$$

$$z_{min} = 2\left(\frac{89}{54}\right) + 3\left(\frac{95}{108}\right) - \left(\frac{89}{54}\right)^2 - 2\left(\frac{95}{108}\right)^2 = \frac{361}{216} = 1.671$$

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$2x_1 + 0x_2 + \lambda_1 = 2$$

From (2),
$$0x_1 + 4x_2 + 3\lambda_1 = 3$$

From (3),
$$x_1 + 3x_2 + 0\lambda_1 = 6$$

$$x_1 = \frac{3}{2}, x_2 = \frac{3}{2}, \lambda_1 = -1$$

$$z_{min} = 2\left(\frac{3}{2}\right) + 3\left(\frac{3}{2}\right) - \left(\frac{3}{2}\right)^2 - 2\left(\frac{3}{2}\right)^2 = \frac{3}{4} = 0.75$$

Case IV: If $\lambda_1 \neq 0, \lambda_2 \neq 0$

From (3), $x_1 + 3x_2 = 6$

From (4), $5x_1 + 2x_2 = 10$

On solving,

$$x_1 = \frac{18}{13}, x_2 = \frac{20}{13}$$

From (1),
$$\lambda_1 + 5\lambda_2 = -\frac{10}{13}$$

From (2),
$$3\lambda_1 + 2\lambda_2 = -\frac{41}{13}$$

On solving,

$$\lambda_1 = -\frac{185}{169}, \lambda_2 = \frac{11}{169}$$

$$z_{min} = 2\left(\frac{18}{13}\right) + 3\left(\frac{20}{13}\right) - \left(\frac{18}{13}\right)^2 - 2\left(\frac{20}{13}\right)^2 = 0.7337$$

Thus, the optimal solution is $z_{min}=0.75$ at $x_1=\frac{3}{2}$, $x_2=\frac{3}{2}$

7. Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Maximise
$$z = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$$

subject to $x_1 + 3x_2 \le 6$
 $5x_1 + 2x_2 \le 10$
 $x_1, x_2 \ge 0$

[M18/Chem/8M]

Solution:

Let
$$f=2x_1+3x_2-x_1^2-2x_2^2$$

Let $h_1=x_1+3x_2-6$, $h_2=5x_1+2x_2-10$
Consider, $L=f-\lambda_1h_1-\lambda_2h_2$
 $L=2x_1+3x_2-x_1^2-2x_2^2-\lambda_1(x_1+3x_2-6)-\lambda_2(5x_1+2x_2-10)$
According to Kuhn Tucker conditions,

$$L_{x_1} = 0 \Rightarrow 2 - 2x_1 - \lambda_1 - 5\lambda_2 = 0$$
(1)

$$L_{x_2} = 0 \Rightarrow 3 - 4x_2 - 3\lambda_1 - 2\lambda_2 = 0$$
(2)

$$\lambda_1 \tilde{h}_1 = 0 \Rightarrow \lambda_1 (x_1 + 3x_2 - 6) = 0$$
(3)

$$\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (5x_1 + 2x_2 - 10) = 0$$
(4)

$$h_1 \le 0 \Rightarrow x_1 + 3x_2 - 6 \le 0$$
(5)

$$h_2 \le 0 \Rightarrow 5x_1 + 2x_2 - 10 \le 0$$
(6)

$$x_1, x_2 \ge 0 \& \lambda_1, \lambda_2 \ge 0$$
(7)

Case I: If
$$\lambda_1 = 0$$
, $\lambda_2 = 0$

From (1),
$$x_1 = 1$$

From (2),
$$x_2 = \frac{3}{4}$$

$$z_{max} = 2(1) + 3\left(\frac{3}{4}\right) - (1)^2 - 2\left(\frac{3}{4}\right)^2 = \frac{17}{8} = 2.125$$

Case II: If
$$\lambda_1 = 0, \lambda_2 \neq 0$$

From (1),
$$2x_1 + 0x_2 + 5\lambda_2 = 2$$

From (2),
$$0x_1 + 4x_2 + 2\lambda_2 = 3$$

From (4),
$$5x_1 + 2x_2 + 0\lambda_2 = 10$$

On solving,

$$x_1 = \frac{89}{54}, x_2 = \frac{95}{108}, \lambda_2 = -\frac{7}{27}$$

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$2x_1 + 0x_2 + \lambda_1 = 2$$

From (2),
$$0x_1 + 4x_2 + 3\lambda_1 = 3$$

From (3),
$$x_1 + 3x_2 + 0\lambda_1 = 6$$

$$x_1 = \frac{3}{2}$$
, $x_2 = \frac{3}{2}$, $\lambda_1 = -1$

Eqn (7) is not satisfied

Case IV: If
$$\lambda_1 \neq 0$$
, $\lambda_2 \neq 0$

From (3),
$$x_1 + 3x_2 = 6$$

From (4),
$$5x_1 + 2x_2 = 10$$

On solving,

$$x_1 = \frac{18}{13}, x_2 = \frac{20}{13}$$

From (1),
$$\lambda_1 + 5\lambda_2 = -\frac{10}{13}$$

From (1),
$$\lambda_1 + 5\lambda_2 = -\frac{10}{13}$$

From (2), $3\lambda_1 + 2\lambda_2 = -\frac{41}{13}$

On solving,

$$\lambda_1 = -\frac{185}{169}, \lambda_2 = \frac{11}{169}$$

Eqn (7) is not satisfied

Thus, the optimal solution is
$$z_{max}=2.125$$
 at $x_1=1, x_2=\frac{3}{4}$

8. Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Minimise
$$z = 7x_1^2 + 5x_2^2 - 6x_1$$

subject to $x_1 + 2x_2 \le 10$
 $x_1 + 3x_2 \le 9$
 $x_1, x_2 \ge 0$

[M17/CompIT/8M]

Solution:

Let
$$f = 7x_1^2 + 5x_2^2 - 6x_1$$

Let $h_1 = x_1 + 2x_2 - 10$, $h_2 = x_1 + 3x_2 - 9$
Consider, $L = f - \lambda_1 h_1 - \lambda_2 h_2$
 $L = 7x_1^2 + 5x_2^2 - 6x_1 - \lambda_1 (x_1 + 2x_2 - 10) - \lambda_2 (x_1 + 3x_2 - 9)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 14x_1 - 6 - \lambda_1 - \lambda_2 = 0$ (1)
 $L_{x_2} = 0 \Rightarrow 10x_2 - 2\lambda_1 - 3\lambda_2 = 0$ (2)
 $\lambda_1 h_1 = 0 \Rightarrow \lambda_1 (x_1 + 2x_2 - 10) = 0$ (3)

$$\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (x_1 + 3x_2 - 9) = 0 \dots (4)$$

$$h_1 \le 0 \Rightarrow x_1 + 2x_2 - 10 \le 0 \dots (5)$$

$$h_2 \le 0 \Rightarrow x_1 + 3x_2 - 9 \le 0$$
(6)

$$x_1, x_2 \ge 0 \& \lambda_1, \lambda_2 \le 0$$
(7)

Case I: If
$$\lambda_1 = 0$$
, $\lambda_2 = 0$

From (1),
$$x_1 = \frac{3}{7}$$

From (2),
$$x_2 = 0$$

$$z_{min} = 7\left(\frac{3}{7}\right)^2 + 5(0)^2 - 6\left(\frac{3}{7}\right) = -\frac{9}{7} = -1.2857$$

Case II: If
$$\lambda_1 = 0, \lambda_2 \neq 0$$

From (1),
$$14x_1 + 0x_2 - \lambda_2 = 6$$

From (2),
$$0x_1 + 10x_2 - 3\lambda_2 = 0$$

From (4),
$$x_1 + 3x_2 + 0\lambda_2 = 9$$

On solving,

$$x_1 = \frac{18}{17}, x_2 = \frac{45}{17}, \lambda_2 = \frac{150}{17}$$

Eqn (7) is not satisfied

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$14x_1 + 0x_2 - \lambda_1 = 6$$

From (2),
$$0x_1 + 10x_2 - 2\lambda_1 = 0$$

From (3),
$$x_1 + 2x_2 + 0\lambda_1 = 10$$

$$x_1 = \frac{62}{33}$$
, $x_2 = \frac{134}{33}$, $\lambda_1 = \frac{670}{33}$

Eqn (7) is not satisfied

Case IV: If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$

From (3), $x_1 + 2x_2 = 10$

From (4), $x_1 + 3x_2 = 9$

On solving,

$$x_1 = 12, x_2 = -1$$

Eqn (7) is not satisfied

Thus, the optimal solution is $z_{min}=-rac{9}{7}$ at $x_1=rac{3}{7}$, $x_2=0$

Using the Kuhn-Tucker conditions, solve the following N.L.P.P. 9.

Maximise
$$z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$$

subject to $x_1 + x_2 \le 2$
 $2x_1 + 3x_2 \le 12$
 $x_1, x_2, x_3 \ge 0$

[M14/N16/ChemBiot/8M][M14/N17/MechCivil/8M][N14/CompIT/8M] [N18/MTRX/8M][N19/Biot/8M][D23/CompITAI/8M]

Solution:

Case II: If
$$\lambda_1 = 0, \lambda_2 \neq 0$$

From (1),
$$2x_1 + 0x_2 + 2\lambda_2 = 4$$

From (2),
$$0x_1 + 2x_2 + 3\lambda_2 = 6$$

From (4),
$$2x_1 + 3x_2 + 0\lambda_2 = 12$$

On solving,

$$x_1 = \frac{24}{13}, x_2 = \frac{36}{13}, \lambda_2 = \frac{2}{13}$$

We see that, eqn (5) is not satisfied

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$2x_1 + 0x_2 + \lambda_1 = 4$$

From (2),
$$0x_1 + 2x_2 + \lambda_1 = 6$$

From (3),
$$x_1 + x_2 + 0\lambda_1 = 2$$

$$x_1 = \frac{1}{2}, x_2 = \frac{3}{2}, \lambda_1 = 3$$

$$z_{max} = -\left(\frac{1}{2}\right)^2 - \left(\frac{3}{2}\right)^2 - (0)^2 + 4\left(\frac{1}{2}\right) + 6\left(\frac{3}{2}\right) = \frac{17}{2}$$

Case IV: If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$

From (3), $x_1 + x_2 = 2$

From (4), $2x_1 + 3x_2 = 12$

On solving,

$$x_1 = -6, x_2 = 8$$

We see that eqn (7) is not satisfied

Thus, the optimal solution is
$$z_{max}=\frac{17}{2}$$
 at $x_1=\frac{1}{2}$, $x_2=\frac{3}{2}$, $x_3=0$

10. Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Maximise
$$z = x_1^2 + x_2^2$$

subject to $x_1 + x_2 - 4 \le 0$
 $2x_1 + x_2 - 5 \le 0$
 $x_1, x_2 \ge 0$

[M15/MechCivil/8M][N18/Comp/8M][N19/Chem/8M] **Solution:**

Let
$$f = x_1^2 + x_2^2$$

Let $h_1 = x_1 + x_2 - 4$, $h_2 = 2x_1 + x_2 - 5$
Consider, $L = f - \lambda_1 h_1 - \lambda_2 h_2$
 $L = x_1^2 + x_2^2 - \lambda_1 (x_1 + x_2 - 4) - \lambda_2 (2x_1 + x_2 - 5)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 2x_1 - \lambda_1 - 2\lambda_2 = 0$ (1)
 $L_{x_2} = 0 \Rightarrow 2x_2 - \lambda_1 - \lambda_2 = 0$ (2)
 $\lambda_1 h_1 = 0 \Rightarrow \lambda_1 (x_1 + x_2 - 4) = 0$ (3)
 $\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (2x_1 + x_2 - 5) = 0$ (4)
 $h_1 \le 0 \Rightarrow x_1 + x_2 - 4 \le 0$ (5)
 $h_2 \le 0 \Rightarrow 2x_1 + x_2 - 5 \le 0$ (6)
 $x_1, x_2, \lambda_1, \lambda_2 \ge 0$ (7)
Case I: If $\lambda_1 = 0, \lambda_2 = 0$
From (1), $x_1 = 0$

From (1),
$$x_1 = 0$$

From (2),
$$x_2 = 0$$

$$z_{max}=0$$

Case II: If
$$\lambda_1 = 0$$
, $\lambda_2 \neq 0$

From (1),
$$2x_1 + 0x_2 - 2\lambda_2 = 0$$

From (2),
$$0x_1 + 2x_2 - \lambda_2 = 0$$

From (4),
$$2x_1 + x_2 + 0\lambda_2 = 5$$

On solving,

$$x_1 = 2, x_2 = 1, \lambda_2 = 2$$

 $z_{max} = 2^2 + 1^2 = 5$

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$2x_1 + 0x_2 - \lambda_1 = 0$$

From (2),
$$0x_1 + 2x_2 - \lambda_1 = 0$$

From (3),
$$x_1 + x_2 + 0\lambda_1 = 4$$

On solving,

$$x_1 = 2, x_2 = 2, \lambda_1 = 4$$

We see that eqn (6) is not satisfied

Case IV: If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$

From (3),
$$x_1 + x_2 = 4$$

From (4),
$$2x_1 + x_2 = 5$$

On solving,

$$x_1 = 1, x_2 = 3$$

From (1),
$$\lambda_1 + 2\lambda_2 = 2$$

From (2),
$$\lambda_1 + \lambda_2 = 6$$

On solving,

$$\lambda_1 = 10, \lambda_2 = -4$$

We see that eqn (7) is not satisfied

Thus, the optimal solution is $z_{max}=5$ at $x_1=2$, $x_2=1$

11. Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Maximise
$$z = 10x_1 + 10x_2 - x_1^2 - x_2^2$$

subject to $x_1 + x_2 \le 8$
 $-x_1 + x_2 \le 5$
 $x_1, x_2 \ge 0$

[N16/M17/MechCivil/8M][N18/Chem/8M][M19/MTRX/8M][M19/Comp/8M] **Solution:**

Let
$$f=10x_1+10x_2-x_1^2-x_2^2$$

Let $h_1=x_1+x_2-8$, $h_2=-x_1+x_2-5$
Consider, $L=f-\lambda_1h_1-\lambda_2h_2$
 $L=10x_1+10x_2-x_1^2-x_2^2-\lambda_1(x_1+x_2-8)-\lambda_2(-x_1+x_2-5)$

$$L_{x_1} = 0 \Rightarrow 10 - 2x_1 - \lambda_1 + \lambda_2 = 0 \dots (1)$$

$$L_{x_2} = 0 \Rightarrow 10 - 2x_2 - \lambda_1 - \lambda_2 = 0 \dots (2)$$

$$\lambda_1 \tilde{h}_1 = 0 \Rightarrow \lambda_1 (x_1 + x_2 - 8) = 0$$
(3)

$$\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (-x_1 + x_2 - 5) = 0$$
(4)

$$h_1 \le 0 \Rightarrow x_1 + x_2 - 8 \le 0$$
(5)

$$h_2 \le 0 \Rightarrow -x_1 + x_2 - 5 \le 0$$
(6)

$$x_1, x_2 \lambda_1, \lambda_2 \ge 0$$
(7)

Case I: If
$$\lambda_1 = 0$$
, $\lambda_2 = 0$

From (1),
$$x_1 = 5$$

From (2),
$$x_2 = 5$$

We see that eqn (5) is not satisfied

Case II: If
$$\lambda_1 = 0$$
, $\lambda_2 \neq 0$

From (1),
$$2x_1 + 0x_2 - \lambda_2 = 10$$

From (2),
$$0x_1 + 2x_2 + \lambda_2 = 10$$

From (4),
$$-x_1 + x_2 + 0\lambda_2 = 5$$

On solving,

$$x_1 = \frac{5}{2}$$
, $x_2 = \frac{15}{2}$, $\lambda_2 = -5$

We see that, eqn (7) is not satisfied

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$2x_1 + 0x_2 + \lambda_1 = 10$$

From (2),
$$0x_1 + 2x_2 + \lambda_1 = 10$$

From (3),
$$x_1 + x_2 + 0\lambda_1 = 8$$

$$x_1 = 4, x_2 = 4, \lambda_1 = 2$$

$$z_{max} = 10(4) + 10(4) - 4^2 - 4^2 = 48$$

Case IV: If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$

From (3),
$$x_1 + x_2 = 8$$

From (4),
$$-x_1 + x_2 = 5$$

On solving,

$$x_1 = \frac{3}{2}, x_2 = \frac{13}{2}$$

From (1),
$$\lambda_1 - \lambda_2 = 7$$

From (2),
$$\lambda_1 + \lambda_2 = -3$$

On solving,

$$\lambda_1 = 2, \lambda_2 = -5$$

We see that eqn (7) is not satisfied

Thus, the optimal solution is $z_{max}=48$ at $x_1=4$, $x_2=4$

12. Using the Kuhn-Tucker conditions, solve the following N.L.P.P.

Maximise
$$z = 12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$$

subject to $x_1 + x_2 \le 10$
 $x_2 \le 8$
 $x_1, x_2 \ge 0$

[M19/Chem/8M]

Solution:

Let
$$f=12x_1+21x_2+2x_1x_2-2x_1^2-2x_2^2$$

Let $h_1=x_1+x_2-10, h_2=0x_1+x_2-8$
Consider, $L=f-\lambda_1h_1-\lambda_2h_2$
 $L=12x_1+21x_2+2x_1x_2-2x_1^2-2x_2^2-\lambda_1(x_1+x_2-10)-\lambda_2(0x_1+x_2-8)$
According to Kuhn Tucker conditions,
 $L_{x_1}=0\Rightarrow 12+2x_2-4x_1-\lambda_1=0$ (1)
 $L_{x_2}=0\Rightarrow 21+2x_1-4x_2-\lambda_1-\lambda_2=0$ (2)

$$\lambda_1 h_1 = 0 \Rightarrow \lambda_1 (x_1 + x_2 - 10) = 0 \dots (3)$$

$$\lambda_2 h_2 = 0 \Rightarrow \lambda_2 (0x_1 + x_2 - 8) = 0 \dots (4)$$

$$h_1 \le 0 \Rightarrow x_1 + x_2 - 10 \le 0$$
(5)
 $h_2 \le 0 \Rightarrow 0x_1 + x_2 - 8 \le 0$ (6)

$$h_2 \le 0 \Rightarrow 0x_1 + x_2 - 8 \le 0 \dots$$

$$x_1, x_2 \lambda_1, \lambda_2 \ge 0$$
(7)

Case I: If
$$\lambda_1=0$$
 , $\lambda_2=0$

From (1),
$$4x_1 - 2x_2 = 12$$

From (2),
$$-2x_1 + 4x_2 = 21$$

Solving the equations, we get,
$$x_1 = \frac{15}{2}$$
, $x_2 = 9$

We see that eqn (6) is not satisfied

Case II: If
$$\lambda_1 = 0$$
, $\lambda_2 \neq 0$

From (1),
$$4x_1 - 2x_2 + 0\lambda_2 = 12$$

From (2),
$$-2x_1 + 4x_2 + \lambda_2 = 21$$

From (4),
$$0x_1 + x_2 + 0\lambda_2 = 8$$

On solving,

$$x_1 = 7, x_2 = 8, \lambda_2 = 3$$

We see that eqn (5) is not satisfied

Case III: If
$$\lambda_1 \neq 0$$
, $\lambda_2 = 0$

From (1),
$$4x_1 - 2x_2 + \lambda_1 = 12$$

From (2),
$$-2x_1 + 4x_2 + \lambda_1 = 21$$

From (3),
$$x_1 + x_2 + 0\lambda_1 = 10$$

$$x_1 = \frac{17}{4}, x_2 = \frac{23}{4}, \lambda_1 = \frac{13}{2}$$

Case IV: If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$

From (3), $x_1 + x_2 = 10$

From (4), $0x_1 + x_2 = 8$

On solving, we get $x_1 = 2$, $x_2 = 8$

From (1), $\lambda_1 = 20$

From (2), $\lambda_2 = -27$

We see that eqn (7) is not satisfied

Thus, the optimal solution is $z_{max} = \frac{947}{8}$ at $x_1 = \frac{17}{4}$, $x_2 =$

