RESIN COMPOSITION

Patent number:

JP2001261976

Publication date:

2001-09-26

Inventor:

INUBUSHI AKIYOSHI; TANAKA TOMOHIRO; HIRAI

MINORU; KIDO KENJI; MITSUNAKA HIROFUMI

Applicant:

OTSUKA CHEM CO LTD;; KAWAI SEKKAI KOGYO KK

Classification:

- international:

C08L101/00; C08K3/22; C08K7/00

- eúropean:

Application number: JP20000074468 20000316

Priority number(s):

Abstract of JP2001261976

PROBLEM TO BE SOLVED: To obtain a resin composition having a small anisotropy and capable of surely exhibiting prescribed performances of a filler and further suppressing damages to a processing

SOLUTION: This resin composition consists essentially of a resin and comprises at least one of a platy boehmite and a platy alumina. The above platy boehmite and the platy alumina have 0.5-15 &mu m outside diameter size and 10-100 aspect ratio and comprise at least one kind of element selected from calcium, strontium, barium and cerium. The content of at least the one element selected from the calcium, strontium, barium and cerium is within the range of 0.005-0.05 based on the aluminum contained in the platy boehmite or the platy alumina expressed in terms of atomic ratio.

Data supplied from the **esp@cenet** database - Patent Abstracts of Japan

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-261976 (P2001 - 261976A)

(43)公開日 平成13年9月26日(2001.9.26)

(51) Int.Cl.7	識別記号	F I	テーマコード(参考)
C08L 101/00		C 0 8 L 101/00	4 J 0 0 2
C 0 8 K 3/22		C 0 8 K 3/22	
7/00		7/00	

審查請求 有 請求項の数2 OL (全 7 頁)

(21)出願番号	特顧2000-74468(P2000-74468)	(71)出願人	000206901
			大塚化学株式会社
(22)出願日	平成12年3月16日(2000.3.16)		大阪府大阪市中央区大手通3丁目2番27号
		(71)出願人	591051335
			河合石灰工業株式会社
			岐阜県大垣市赤坂町2093番地
		(72)発明者	犬伏 昭嘉
			徳島県徳島市川内町加賀須野463 大塚化
			学 株式会社徳島研究所内
		(74)代理人	100068755
			弁理士 恩田 博宜 (外1名)

最終頁に続く

(54)【発明の名称】 樹脂組成物

(57)【要約】

【課題】 異方性が小さく、またフィラーの所定の性能 を確実に発現させることができるうえに、加工装置の損 傷を抑えることもできる樹脂組成物を提供する。

【解決手段】 樹脂組成物は、樹脂を主成分とし、フィ ラーとして板状ベーマイトと板状アルミナのうち少なく とも一方を含有している。前記板状ベーマイト及び板状 アルミナは、外径サイズが0.5~15μm、アスペク ト比が10~100であり、カルシウム、ストロンチウ ム、バリウム及びセリウムから選ばれる少なくとも一種 の元素を含む。また、前記板状ベーマイト及び板状アル ミナに含まれるカルシウム、ストロンチウム、バリウム 及びセリウムから選ばれる少なくとも一種の元素は、当 該板状ベーマイトあるいは板状アルミナに含まれるアル ミニウムに対して原子比で0.005~0.05の範囲 にある。

!(2) 001-261976 (P2001-蝎沓

【特許請求の範囲】

【請求項1】 板状ベーマイトと板状アルミナのうち少なくとも一方をフィラーとして含有する樹脂組成物であって、前記板状ベーマイト及び板状アルミナは、外径サイズが0.5~15μm、アスペクト比が10~100であり、カルシウム、ストロンチウム、バリウム及びセリウムから選ばれる少なくとも一種の元素を含むことを特徴とする樹脂組成物。

【請求項2】 前記板状ベーマイト及び板状アルミナに含まれるカルシウム、ストロンチウム、バリウム及びセリウムから選ばれる少なくとも一種の元素が、当該板状ベーマイトあるいは板状アルミナに含まれるアルミニウムに対して原子比で0.005~0.05であることを特徴とする請求項1に記載の樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各種樹脂とフィラーよりなる樹脂組成物に関するものである。

[0002]

【従来の技術】従来より、樹脂組成物の機械的特性及び耐熱性を改善するフィラーとしてアスペクト比の高いフィラーが用いられている。このアスペクト比の高いフィラーとしては、ガラス繊維、カーボンファイバー、珪酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維等の繊維状フィラー、マイカ、タルク、ガラスフレーク等の平板状フィラーが知られている。

【0003】また、ベーマイトやアルミナの中にも針状や板状の形態を有するアスペクト比の高いものが知られている。特にベーマイトに関しては、板状(薄片状)及び針状(フィブリル状)の形態を有するベーマイト(特開昭55-116622号公報)、所定の結晶軸(a軸)方向に長く延びた六角板状の形態を有するベーマイト(特開昭60-46923号公報)、四角板状をはじめとする多角板状の形態を有するベーマイト(特開平5-279019号公報)、紡錘状、針状、鱗片状、六角板状及び四角(正方形)板状の形態を有するベーマイト(特開平4-50105号公報)等が開示されている。【0004】

【発明が解決しようとする課題】ところが、ガラス繊維をはじめとする繊維状フィラーを用いた場合には、成形時の樹脂の流れ方向とその流れ方向に直角な方向との間で樹脂組成物の性質、特に線膨張係数に差が生じる(異方性)という問題があった。この異方性は反りや歪みの原因となるため、特に精密な寸法精度が求められる用途に上記繊維状フィラーを用いることは問題があった。

【0005】マイカをはじめとする平板状フィラーを用いた場合には、樹脂組成物に生じる異方性を抑えることが可能である。しかし、タルクを除いていずれも硬度が高いため、加工装置、具体的には混練機、成形機、金型等を傷めるという欠点があった。また、アスペクト比が

比較的小さいのでフィラーとしての性能に劣る点でも問題があった。一方、タルクはそれほど硬度が高くないものの、アスペクト比の高いものが得られないという問題があった。

【0006】また、従来のベーマイトやアルミナは、樹脂との混練時や成形時に破損しやすく、アスペクト比の高いものを使用しても最終製品においては所定の性能を発現しないという問題があった。また、フィラーの破損によって樹脂組成物に異方性が付与されるおそれもあった

【0007】本発明は、上記のような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、異方性が小さく、またフィラーの所定の性能を確実に発現させることができるうえに、加工装置の損傷を抑えることができる樹脂組成物を提供することにある。

[0008]

【課題を解決するための手段】上記の目的を達成するため本発明者らは適度な硬度を有するベーマイト及びこれから導かれるアルミナの形状と組成が樹脂組成物の特性に及ぼす影響について鋭意研究を重ねた。その結果、カルシウム、ストロンチウム、バリウム及びセリウムから選ばれる少なくとも一種の元素を含む板状ベーマイト及び板状アルミナが加工時の耐破損性に優れ、大きなアスペクト比と異方性抑制の性能を保持できることを見出し本発明を完成するに至った。

【0009】すなわち、本発明は、板状ベーマイトと板状アルミナのうち少なくとも一方をフィラーとして含有する樹脂組成物であって、前記板状ベーマイト及び板状アルミナは、外径サイズが0.5~15μm、アスペクト比が10~100であり、カルシウム、ストロンチウム、バリウム及びセリウムから選ばれる少なくとも一種の元素を含むことを特徴とする樹脂組成物に関し、特に前記板状ベーマイト及び板状アルミナに含まれるカルシウム、ストロンチウム、バリウム及びセリウムから選ばれる少なくとも一種の元素が、当該板状ベーマイトあるいは板状アルミナに含まれるアルミニウムに対して原子比で0.005~0.05であることを特徴とする樹脂組成物に関する。

[0010]

【発明の実施の形態】以下、本発明を具体化した一実施形態を詳細に説明する。実施形態の樹脂組成物は、樹脂を主成分とし、フィラーとして板状ベーマイトと板状アルミナのうち少なくとも一方を含有するものである。【0011】まず、樹脂組成物の主成分である樹脂について説明する。ここで用いられる樹脂は、熱可塑性樹脂、熱硬化性樹脂、エラストマー、ゴム類等、特に限定されない。熱可塑性樹脂としては、ボリエチレン、ボリプロピレン、ポリ塩化ビニル等の汎用プラスチック、ポリアミド、ABS樹脂、ポリエステル、ポリカーボネー

'(3) 001-261976 (P2001-8K76

ト、ポリアセタール、ポリフェニレンサルファイド、ポ リフェニレンエーテル、ポリサルホン、ポリエーテルサ ルホン、ポリエーテルイミド、ポリエーテルエーテルケ トン等のエンジニアリングプラスチック等を挙げること ができる。エラストマーとしては、ポリスチレン系熱可 塑性エラストマー、ポリオレフィン系熱可塑性エラスト マー、ポリウレタン系熱可塑性エラストマー、ポリアミ ド系熱可塑性エラストマー等を挙げることができる。熱 硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステ ル、ビニルエステル、フェノール樹脂、アルキッド樹 脂、シリコーン樹脂、ジアリルフタレート、ビスマレイ ミドトリアジン樹脂、ポリイミド、尿素樹脂、メラミン 含有樹脂、ポリウレタン等を挙げることができる。ゴム 類としては、加硫あるいは未加硫の天然ゴム、ブタジエ ンゴム、クロロプレンゴム、エチレンープロピレンージ エン三元共重合体(EPDM)、イソプレンゴム、イソ ブチレンーイソプレンゴム、NBR、SBR等を挙げる ことができる。また、二種以上の樹脂の混合物でもよ く、例えばポリカーボネートとABS樹脂、ポリフェニ レンエーテルとポリスチレン等のポリマーアロイを用い てもよい。このとき互いに非相溶の樹脂を組み合わせる 場合には従来公知の相溶化剤を使用してもよい。

1

【0012】次に、板状ベーマイトと板状アルミナについて説明する。板状ベーマイト及び板状アルミナの外径サイズは $0.5\sim15\mu m$ 、好ましくは $3\sim10\mu m$ である。この外径サイズが $0.5\mu m$ より小さいと、アスペクト比が小さくなるために機械的特性及び耐熱性を向上させるフィラーとしての性能が著しく低下する。逆に、外径サイズが $15\mu m$ より大きいと、樹脂組成物の表面の平滑性が低下するとともに、ベーマイト粒子及びアルミナ粒子1個当たりの重量が増すためにその単位重量当たりの効果が小さくなる。

【0013】また、板状ベーマイト及び板状アルミナのアスペクト比は10~100、好ましくは20~100、さらに好ましくは30~100である。アスペクト比が10より小さいと板状の形態とは言いにくく、フィラーとしての性能に劣る。逆に、アスペクト比が100より大きいと、相対的に厚みが薄くなるために破損しやすく、フィラーとして所定の性能を発現しにくい。

【0014】ここで、板状とは、平板状、鱗片状、薄片状等を含み、その平面形状が六角形、四角形、菱形などの多角板状をなすものである。また、外径サイズとは、ベーマイト粒子あるいはアルミナ粒子の最大寸法であり、例えば長方形の場合はその対角線の長さをいう。さらに、アスペクト比とは、前記外径サイズを当該ベーマイト粒子あるいはアルミナ粒子の厚さで除したものである。

【0015】また、板状ベーマイト及び板状アルミナは、カルシウム、ストロンチウム、バリウム及びセリウムから選ばれる少なくとも一種の元素を含んでいる。前

記元素の含有量は、当該板状ベーマイトあるいは板状ア ルミナに含まれるアルミニウムに対して原子比で0.0 05~0.05の範囲であることが好ましい。この含有 量が0.005未満では耐破損性が十分でなく、またア スペクト比の高いものが得られない。逆に0.05を超 えるものは実質的に合成が困難である。0.05を超え るものは、前記元素が酸洗・水洗等の処理で容易に除去 されることから、カルシウム、ストロンチウム、バリウ ム及びセリウムから選ばれる少なくとも一種を含む化合 物がベーマイト粒子あるいはアルミナ粒子の表面に吸着 しているか混合しているにすぎないと推定される。一 方、0.05以下のものにおいては、前記元素が、層間 ヘインターカレートする形態で板状ベーマイトあるいは 板状アルミナに含有されていると考えられる。このこと は、酸洗・水洗等の処理で容易に除去されないこと、X 線回折による分析でベーマイト粒子及びアルミナ粒子の 層間が広がっていることから推定される。

【0016】なお、板状アルミナとしては、 α 、 γ 、 δ 、 θ -アルミナの各種態様のものがあるが、硬度の高い α -アルミナは成形機等の加工装置を損傷するため、硬度の比較的低い γ 、 δ 、 θ -アルミナが好ましい。ただし、 α -アルミナよりなる板状アルミナを用いた場合にも、加工装置を損傷する点を除いては、他の態様のアルミナの場合と同様の効果を発揮することができる。

【0017】続いて、上記のように構成された樹脂組成物の製造方法について説明する。まず、上記の板状ベーマイトを製造する場合には、カルシウム、ストロンチウム、バリウム及びセリウムから選ばれる少なくとも一種を含む化合物と水酸化アルミニウムとを反応原料としてオートクレーブ内に投入する。そして、水の存在下で加圧加温し、静置下あるいは低速攪拌下にて水熱合成を行う。その後、過剰の前記化合物を酸・水等で処理して除去することにより、目的とする板状ベーマイトが得られる。

【0018】反応原料を構成する前記化合物としては、カルシウム、ストロンチウム、バリウム及びセリウムの水酸化物、酸化物、塩化物、炭酸塩、硫酸塩、硝酸塩、リン酸塩、有機酸塩(酢酸塩、蟻酸塩など)等が挙げられる。これらは単独で使用してもよいし、併用してもよい。

【0019】反応原料中の前記化合物と水酸化アルミニウムは、好ましくはモル比で1:6~1:14、さらに好ましくは1:8~1:12になるように設定される。これらのモル比の割合は、板状ベーマイトを効率よく製造するためである。

【0020】反応原料と共にオートクレーブ内に投入される水の量は、水酸化アルミニウムに対して重量比で好ましくは2~24倍、さらに好ましくは3~10倍に設定される。2倍未満では反応に不十分であり、24倍を超えるとコストが増すとともに生産性も低下する。

【0021】水熱合成の際、オートクレープ内の温度 は、好ましくは150~300℃、より好ましくは17 0~220℃に設定される。150℃未満では反応生成 物としてベーマイトを得ることが困難であり、300℃ を超えるとコストが無駄に増してしまう。

1

【0022】反応時間は、攪拌下又は静置下のそれぞれ の状況に応じて相違するが、好ましくは4~48時間で ある。4時間未満では反応に不十分である。また、48 時間を超えて反応させることにより結晶性を高めること もできるが、48時間以内に約95%以上の反応が終了 するため、それ以上反応時間を延ばすことは経済的でな いうえに生産効率も落ちてしまう。

【0023】攪拌下で水熱合成を行う場合は、回転速度 150 rpm以下で攪拌するのが好ましい。この回転速 度が150rpmを超えると、剪断力によって反応生成 物が小さくなるおそれがある。なお、攪拌下で水熱合成 を行った場合には反応系内を均一にして反応効率を向上 させることができる。一方、静置下で水熱合成を行った 場合には反応生成物の結晶成長を促進させることができ る。このため、反応を静置下で行うか攪拌下で行うかは 目的に応じて選択することが好ましく、両者を組み合わ

【0024】次に、板状アルミナの製造方法について説 明する。板状アルミナは、上述の方法で得られる板状へ ーマイトを例えば電気炉等で450~1500℃の温度 で焼成することにより得られる。このとき、450~9 00℃では*γ* − アルミナ、900~1100℃ではδ − アルミナ、1100~1200°Cではθ-アルミナ、1 200~1500℃では α -アルミナが主に得られる。 また、450℃未満ではアルミナを得ることが困難であ り、1500℃を超えると経済的でないうえに焼結又は 粒成長するおそれもあるため好ましくない。

【0025】焼成時間は好ましくは1~4時間、さらに 好ましくは1.5~3.5時間である。1時間未満では 焼成が不十分となってアルミナを得ることが困難であ る。また、4時間以内でアルミナ化がほぼ完了するので 4時間を超える焼成は経済的でない。

【0026】なお、この焼成によって板状ベーマイトに 含まれていたカルシウム、ストロンチウム、バリウム及 びセリウムから選ばれる少なくとも一種の元素が除去さ れることはなく、また焼成前の板状ベーマイトの形状を 板状アルミナは保持している。これはアルミナの種類に よらない。

【0027】続いて、樹脂組成物の製造方法について説 明する。樹脂組成物は、各種樹脂とフィラーよりなる従 来の樹脂組成物と同様にして製造される。具体的には板 状ベーマイトと板状アルミナの少なくとも一方を原料樹 脂に配合して混練機にて混練し、成形機にて成形加工す ることにより得られる。

【0028】熱可塑性樹脂の場合を例にとると、板状べ

ーマイトと板状アルミナの少なくとも一方と原料樹脂と をタンブラー、リボンミキサー等であらかじめ混合し、 その混合物を混練機としての一軸又は二軸押出機にて溶 融混練した後、射出成形機等にて成形を行う。なお、板 状ベーマイトと板状アルミナの少なくとも一方と原料樹 脂とを混練機にそれぞれ別個に定量供給するようにして もよい。また、混錬機は、バンバリーミキサー、ロー ル、各種ニーダー等、適用する樹脂等に応じて適宜選択 して使用される。

【0029】以上詳述した本実施形態によれば次のよう な効果が発揮される。

樹脂組成物にフィラーとして配合される板状ベーマ イト及び板状アルミナは、外径サイズが0.5~15μ mと大きく、またアスペクト比も10~100と高い。 そのうえ適度な硬度を有しているため加工時に破損する おそれがなく、フィラーとしての所定の性能を樹脂組成 物において確実に発揮することができる。従って、機械 的強度が向上され、膨張収縮が抑制されるなど樹脂組成 物は優れた機械的特性を有し、さらには優れた耐熱性を も有する。

【0030】・ 樹脂組成物に配合される板状ベーマイ ト及び板状アルミナは、従来の繊維状フィラーに比べて 異方性が小さいため、樹脂組成物に生じる異方性を小さ く抑えることができる。従って、樹脂組成物の機械的特 性及び耐熱性の方向によるばらつきを小さく抑えること ができる。よって、精密な寸法精度が要求される用途に も好適に用いることができる。

【0031】・ 樹脂組成物に配合される板状ベーマイ ト及び板状アルミナは、α-アルミナを除いて硬度がそ れほど高くないため、混練機、成形機、金型等の加工装 置を損傷するおそれが少ない。よって、加工装置を長期 にわたって使用することができる。

【0032】・ 樹脂組成物に配合される板状ベーマイ ト及び板状アルミナは、カルシウム、ストロンチウム、 バリウム及びセリウムから選ばれる少なくとも一種の元 素を含み、その含有量は当該板状ベーマイトあるいは板 状アルミナに含まれるアルミニウムに対して原子比で 0.005~0.05の範囲とされる。このため、その 合成を容易に行えるうえに、樹脂組成物の加工時に板状 ベーマイトあるいは板状アルミナが破損するおそれを一 層抑えることができる。よって、フィラーとしての所定 の性能を樹脂組成物において一層確実に発揮させること ができる。

[0033]

【実施例】次に、実施例及び比較例を挙げ、前記実施形 態をさらに具体的に説明する。

(実施例1)ナイロン66(株式会社東レ製;アミラン CM3001N) 70重量%と、カルシウムを含有する板状べ ーマイト30重量%とを、二軸押出機(株式会社日本製 鋼所製; TEX44) を用いてサイドフィード方式で混練し

!(5) 001-261976 (P2001-B複沓

た。そして、径3.5mmのダイから押し出し、冷却後、ストランドカットを行ってペレットを得た。続いて、射出成形機(日精樹脂工業株式会社製;FS-150N)を用いてそのペレットから樹脂組成物を成形した。なお、二軸押出機のシリンダー温度は270℃、スクリュー回転数は150rpmに設定し、射出成形機のシリンダー温度は280℃、金型温度は80℃に設定した。【0034】得られた樹脂組成物を試験片として、引張強度(JISK7113)、曲げ強度(JISK7203)、樹脂の流れ方向とその直角方向との成形収縮率(ASTMD955)の比を測定した。また、加工装置に対する損傷性の評価として、50×70×2mmの板状物成形金型をS50C鋼で作製し、その金型の2000ショット後におけるゲート部の中心線平均粗さRa(JISB0601)を測定した。これらの測定結果を表1に示す。さらに、レーザー回折式

粒度分布計を用いて測定したフィラー(板状ベーマイト)の外径サイズ、走査型電子顕微鏡で観察して求めた同じくフィラーのアスペクト比の結果も併せて表1に示す

【0035】(実施例2~4)フィラーを表1中に示す 板状ベーマイトに変更した以外は実施例1と同様の操作 を行った。その結果を表1に示す。

【0036】(比較例1~6)フィラーを表2中に示す ものに変更した以外は実施例1と同様の操作を行った。 その結果を表2に示す。また、比較例3~6においては 走査型電子顕微鏡による形態観察の結果も併せて表2に 示す。

【0037】 【表1】

	実施例1	実施例2	実施例3	実施例4
樹脂	ナイロン66	ナイロン66	ナイロン66	ナイロン66
フィラー	板状ペーマイト	板状ペーマイト	板状ペーマイト	板状ペーマイト
外径サイズ (μ m)	3	11	8	1.5
アスペクト比	25	85	43	25
含有成分とその原子比	Ca (0.019)	Sr (0.045)	Ba (0.036)	Ce (0.010)
引張強度 (MPa)	91	102	97	90
曲げ強度 (MPa)	145	160	151	142
成形収縮率の比 TD/MD	1.05	1.08	1.07	1.05
金型の荒れ Ra (μm)	0.07	0.08	0.08	0.06

[0038]

【表2】

	比較例1	比較例2	比較例3	比較例4	比較例5	比较例6
樹脂	ナイロン 66	ナイロン 66	ナイロン 65	ナイロン 66	ナイロン 66	ナイロン 66
フィラー	板状 ベーマイト	板状 ペーマイト	マイカ	ガラス フレーク	タルク	チタン酸 カリウム
外径サイズ (μm)	2	4	6	16	4	14
アスペクト比	25	35	45	4	8	36
含有成分とその原子比	-	-	-	-	_	-
形態		-	無定形 板状	無定形 板状	無定形 板状	繊維状
引張強度 (MPa)	88	90	105	90	88	122
曲げ強度 (MPa)	135	140	161	135	129	182
成形収縮率の比 TD/MC	1.18	1.27	1.21	1.20	1.25	1.80
金型の荒れ Rs (μm)	0.06	0.08	0.13	0.15	0.05	_

表1及び表2の結果より、実施例1~4の樹脂組成物は、比較例1~6の樹脂組成物に比べて成形収縮率の比が小さく、また金型の荒れも少ない一方で、引張強度及び曲げ強度はほぼ同等であることが示された。このことから、実施例1~4の樹脂組成物は、異方性が小さく、また加工装置に対する損傷も少ない一方で、従来のフィラーを用いた場合と同程度の機械的強度を有することが示された。

【0039】(実施例5~11)樹脂とフィラーを表3中に示すものに変更し、さらにその混合割合を樹脂80重量%、フィラー20重量%に変更した以外は実施例1と同様の操作を行った。その結果を表3に示す。また、この実施例5~11においては射出成形機のシリンダー温度と金型温度についても併せて表3に示す。

【0040】なお、表3中の樹脂の詳細は次の通りである。

!(6) 001-261976 (P2001-@76

PP : ポリプロピレン (チッソ株式会社製: K523

POM;ポリアセタール (ポリプラスチックス株式会

(ポリプラスチックス株式会

社製:ジュラコンM90-44)

PBT: PBT樹脂

社製:ジュラネックス2002)

PC ; ポリカーボネート (三菱エンジニアリングプラ

スチックス株式会社製;ユーピロンS-2000)

[0041]

【表3】

	実施例5	実施例6	実施例7	実施例8	実施例9	実施例10	実施例11
樹脂	PP	РОМ	PBT	PC	PBT	PBT	PBT
フィラー	板状 ベーマイト	板状 ベーマイト	板状 ベーマイト	板状 ベーマイト	ァー アルミナ	δ- アルミナ	θ – アルミナ
外径サイズ(μm)	5	5	5	5	4.6	4.5	4.7
アスペクト比	35	35	35	35	33	35	34
含有成分と その原子比	Ca (0.026)	Ca (0.026)	Ca (0.026)	Ca (0.026)	Ca (0.026)	Ba (0.031)	Sr (0.024)
シリンダ温度(℃)	210	200	245	280	245	245	245
金型温度 (°C)	60	80	80	80	80	80	80
引張強度 (MPa)	39	82	86	73	90	88	89
曲げ強度 (MPa)	60	125	136	112	141	140	142
成形収縮率の比 TD/MD	1.08	1.09	1.08	1.05	1.08	1.09	1,09

表3の結果より、実施例5~8の樹脂組成物は、いずれ も成形収縮率の比の値が小さく、このことから、樹脂組 成物における異方性の抑制効果は樹脂の種類に依らない ことが示された。また、実施例9~11の樹脂組成物 も、いずれも成形収縮率の比の値が小さく、このことか ら、アルミナの種類にも依らないことが示された。

【0042】なお、前記実施形態を次のように変更して 構成することもできる。

· 樹脂組成物の製造の際に、本発明の効果を損なわな い範囲で従来公知の各種添加剤を原料樹脂に配合しても よい。この添加剤としては、酸化防止剤、熱安定剤、紫 外線吸収剤、滑剤、離型剤、顔料等の着色剤、難燃剤、 帯電防止剤、導電性付与剤、核形成剤、加硫剤等を挙げ ることができる。また、タルク、マイカ、炭酸カルシウ ム、ワラストナイト、チタン酸カリウム、ガラス繊維、 カーボン繊維等、その他のフィラーを併用してもよい。 【0043】・ 板状ベーマイト及び板状アルミナを従 来公知の方法で表面処理してから樹脂組成物の製造に用 いるようにしてもよい。この表面処理の方法としては、 インテグラルブレンド法、乾式法、湿式法を挙げること ができる。また、シラン系、チタネート系、アルミニウ ム系、ジルコニウム系、リン酸系、アミノ酸系の表面処 理剤を使って表面処理を行ってもよい。

【0044】・ 板状ベーマイトの製造の際に、ナトリ ウム化合物、アルコール化合物、アミン化合物等の添加 剤を反応原料に添加してもよい。ナトリウム化合物を添 加した場合には、反応原料中のアルカリ度を調整できる ため、水酸化アルミニウムの溶解性を調整して水熱合成 を促進させることができる。アルコール化合物の場合 は、反応生成物が粒子状に成長するのを抑制することが できる。アミン化合物の場合は、水熱合成を促進させる

機能と反応生成物が粒子状に成長するのを抑制する機能 との両機能を発揮することができる。

【0045】次に、前記実施形態から把握できる技術的 思想について以下に記載する。

前記元素が、板状ベーマイトと板状アルミナのうち 少なくとも一方の層間にインターカレートしていること を特徴とする請求項1又は請求項2に記載の樹脂組成 物。このように構成した場合、請求項1又は請求項2に 記載の発明の効果を確実に発揮することができる。

【0046】・ 前記板状アルミナが γ -アルミナ、 δ -アルミナ及びθ-アルミナから選ばれる少なくとも-種よりなることを特徴とする請求項1又は請求項2に記 載の樹脂組成物。このように構成した場合、加工装置の 損傷を確実に抑えることができる。

【0047】· 前記外径サイズが3~10µmであ り、アスペクト比が20~100であることを特徴とす る請求項1又は請求項2に記載の樹脂組成物。このよう に構成した場合、板状ベーマイト及び板状アルミナのフ ィラーとしての性能を一層向上させることができるの で、請求項1又は請求項2に記載の発明の効果を一層向 上させることができる。

[0048]

【発明の効果】本発明は、以上のように構成されている ため、次のような効果を奏する。請求項1に記載の発明 によれば、異方性が小さく、またフィラーの所定の性能 を確実に発現させることができる。そのうえ、加工装置 の損傷を抑えることもできる。

【0049】請求項2に記載の発明によれば、請求項1 に記載の発明の効果に加え、樹脂組成物の加工時に板状 ベーマイト又は板状アルミナが破損するおそれを抑える ことができる。

!(7) 001-261976 (P2001-¥76

フロントページの続き

(72)発明者 田中 智博 徳島県徳島市川内町加賀須野463 大塚化 学 株式会社徳島研究所内

(72) 発明者 平井 稔 岐阜県大垣市赤坂町2093番地 河合石灰工 業 株式会社内

(72)発明者 木戸 健二 岐阜県大垣市赤坂町2093番地 河合石灰工 業 株式会社内

(72)発明者 満仲 宏文

岐阜県大垣市赤坂町2093番地 河合石灰工

業 株式会社内

Fターム(参考) 4J002 AA001 AC011 AC031 AC061

ACO71 ACO81 ACO91 BB001 BB031 BB121 BB181 BC021 BD041 BF051 BN151 BP021 CB001 CC031 CC161 CC181

CD001 CF001 CF011 CF211 CG001 CH071 CH091 CK021 CL001 CM031 CM041 CN011

CN031 CP031 DE146 FA016

FD016

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.