2024-02-21
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 设 i 为虚数单位,且 $z(1+i)=2$,则 $\overline{z}=($) A. $-1-i$ B. $1-i$ C. $-1+i$ D. $1+i$
2. 已知非零向量 \vec{a} , \vec{b} 满足 $ \vec{a} =3 \vec{b} $,向量 \vec{a} 在向量 \vec{b} 方向上的投影向量是 $\sqrt{2}\vec{b}$,则 \vec{a} 与 \vec{b} 夹角的余弦值为()
A. $\frac{\sqrt{2}}{3}$ B. $\frac{\sqrt{2}}{6}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{2}{3}$
3. 体育课上,老师让2名女生和3名男生排成一排,要求2名女生之间至少有1名男生,则这5名学生不同的
排法共有 () A. 24 种 B. 36 种 C. 72 种 D. 96 种
4. 已知 $f(x) = \ln \left \frac{1}{x+1} - a \right + b$ 是奇函数,则 $a + e^b = ($) A. 1 B. $\frac{3}{2}$ C. 2 D. $\frac{5}{2}$
5. 已知 $a > 0, b > 0$,则下列选项中,能使 $4a + b$ 取得最小值 25 的为()
A. $ab = 36$ B. $ab = 9a + b$ C. $a^2 + b = 21$ D. $16a^2 + b^2 = 625$
6. 锐角 $\triangle ABC$ 满足 $\tan A = \tan B + \frac{1}{\sin 2A}$,则下列等式成立的是()
A. $\cos 2A + \sin B = 0$ B. $\cos 2A + \cos B = 0$ C. $\sin 2A + \cos B = 0$ D. $\sin 2A + \sin B = 0$
7. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右焦点分别为 F_1, F_2, A 是椭圆 C 的上顶点,线段 AF_1 的延长线交椭圆
C 于点 B . 若 $\overline{F_2A} \cdot \overline{F_2B} = 0$,则椭圆 C 的离心率 $e = ()$ A. $\frac{\sqrt{2}}{5}$ B. $\frac{\sqrt{5}}{5}$ C. $\frac{\sqrt{2}}{3}$ D. $\frac{\sqrt{5}}{3}$
8. 在平行四边形 $ABCD$ 中,已知 $AB=4$, $AC=2\sqrt{3}$,将 $\triangle ABC$ 沿 AC 翻折得四面体 $AB'CD$. 作一平面分别与
$AD,DC,CB',B'A$ 交于点 E,F,G,H . 若四边形 $EFGH$ 是边长为 $\sqrt{3}$ 的正方形,则四面体 $AB'CD$ 外接球的表面积为
() A. 22π B. 24π C. 44π D. 48π
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对
的得6分,部分选对的得部分分,有选错的得0分.
9. 数字经济是继农业经济、工业经济之后的主要经济形态. 近年来,在国家的大力推动下,我国数字经济规模
增长迅猛,《"十四五"数字经济发展规划》更是将数字经济上升到了国家战略的层面. 某地区 2023 年上半年月份
x与对应数字经济的生产总值(即 GDP) y (单位: 亿元)如下表
所示. 根据上表可得到回归方程 $y = \frac{102}{35}x + a$,则(
A. $a = \frac{134}{5}$ B. $y 与 x$ 正相关 C. 若 r 表示变量 $y 与 x$ 之间的相关系数,则 $r = \frac{102}{35}$
D. 若该地区对数字经济的相关政策保持不变,则该地区 7 月份的生产总值约为 $\frac{236}{5}$ 亿元
10. 已知圆 $C:(x-5)^2+y^2=8$,抛物线 $\Gamma:y^2=4x$ 的焦点为 F,P 为抛物线 Γ 上一点,则(
A.以点 P, F 为直径端点的圆与 y 轴相切 B.当 $ PC $ 最小时, $ PF $ = 1 C.当 $ PF $ = 4 时,直线 PF 与圆 C 相切
D.当 $ PF $ = 2时,以 P 为圆心,线段 PF 长为半径的圆与圆 C 相交公共弦长为 $\frac{4\sqrt{5}}{5}$

- 11. 已知数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})(n \in N^*)$,给出下列四个结论正确的是(
- A.若 $a_1 = \sqrt{2}$,则数列 $\{a_n\}$ 中有无穷多项等于 $\sqrt{2}$ B.②若 $a_1 < -\sqrt{2}$,则对任意 $n \in N^*$,有 $a_{n+1} > a_n$;
- C.若 $a_1 > 0$,则存在 $n_0 \in N^*$, 当 $n \ge n_0$ 时,有 $a_n \sqrt{2} \le \frac{1}{2024}$
- ④若 $a_1 > \sqrt{2}$,则对任意 $n \in N^*$,有 $a_{n+1} \sqrt{2} \ge \frac{1}{2} (a_n \sqrt{2})$;
- 三、填空题:本题共3小题,每小题5分,共15分。
- 12. $(x+2)^5$ 的展开式中 x^3 的系数为_____. (用数字作答).

- 13. 已知函数 $f(x) = \sin(\omega x + \varphi)(\omega > 0, |\varphi| < \frac{\pi}{2})$.如图,直线 $y = \frac{\sqrt{3}}{2}$ 与曲线 y = f(x) 交于 A, B 两点, $|AB| = \frac{\pi}{6}$,
- 则 $\varphi = ______$; y = f(x) 在区间 $[t, t + \frac{\pi}{4}](t \in R)$ 上的最大值与最小值的差的范围是_____.
- 14. 若函数 $f(x) = e^x + \cos x + (a-1)x$ 存在最小值,则 a 的取值范围是_____.
- 四、解答题: 本题共 5 小题, 共 77 分.解答应写出文字说明、证明过程或演算步骤.
- 15. 如图,在四棱锥 A-BCDE 中, AE 上底面 BCDE, BE \bot BC, BE \bot DE \bot , EF = 3,过点 E 作 AF 的垂线交 AD 于点 G.
- (1) 证明: $AF \perp$ 平面 BEG; (2) 求平面 BEG 与平面 ACD 夹角的余弦值.

- 16. 已知函数 $f(x) = x \ln x ax + 1$, 其中 $a \in R$. (1) 当 a = 2 时, 求曲线 f(x) 在 x = 1 处的切线方程;
- (2) 记 f'(x) 为 f(x) 的导函数,若对 $\forall x \in [1,3]$,都有 $f(x) + \frac{5(x-1)}{x+1} \le f'(x)$,求 a 的取值范围.

2024-02-21

17.某次高三数学测试中选择题有单选和多选两种题型组成.单选题每题四个选项,有且仅有一个选项正确,选对得 5 分,选错得 0 分,多选题每题四个选项,有两个或三个选项正确,全部选对得 5 分,部分选对得 2 分,有错误选择或不选择得 0 分。(1)若小明对其中 5 道单选题完全没有答题思路,只能随机选择一个选项作答,每题选到正确选项的概率均为 $\frac{1}{4}$,且每题的解答相互独立,记小明在这 5 道单选题中答对的题数为随机变量 X.

- (i) 求 P(X=3); (ii) 求使得 P(X=k) 取最大值时的整数 k;
- (2)若小明在解答最后一道多选题时,除发现 A,C 选项不能同时选择外,没有答题思路,只能随机选择若干选项作答. 已知此题正确答案是两选项与三选项的概率均为 $\frac{1}{2}$,问: 小明应如何作答才能使该题得分的期望最大 (写出小明得分的最大期望及作答方式).

18.已知双曲线 C 的中心为坐标原点,右焦点为($\sqrt{7}$,0),且过点(-4,3).(1) 求双曲线 C 的标准方程;

(2)已知点 A(4,1) ,过点 (1,0) 的直线与双曲线 C 的左、右两支分别交于点 M,N ,直线 AN 与双曲线 C 交于另一点 P ,设直线 AM,AN 的斜率分别为 k_1,k_2 . (i)求证: k_1+k_2 为定值;(ii)求证: 直线 MP 过定点,并求出该定点的坐标.

19. 对于数列 $\{a_n\}$,如果存在正整数 T,使得对任意 $n(n \in N^*)$,都有 $a_{n+T} = a_n$,那么数列 $\{a_n\}$ 就叫做周期数列,T 叫做这个数列 周期. 若周期数列 $\{b_n\}$, $\{c_n\}$ 满足:存在正整数k,对每一个 $i(i \leq k, i \in \mathbf{N}^*)$,都有 $b_i = c_i$,我们称数列 $\{b_n\}$ 和 $\{c_n\}$ 为"同根数列". (1) 判断下列数列是否为周期数列. 如果是,写出该数列的周期,如果不是,

说明理由; ①
$$a_n = \sin n\pi$$
; ② $b_n = \begin{cases} 1, & n = 1, \\ 3, & n = 2, \\ b_{n-1} - b_{n-2}, n \ge 3. \end{cases}$

- (2) 若 $\{a_n\}$ 和 $\{b_n\}$ 是"同根数列",且周期的最小值分别是 3 和 5,求证: $k \le 6$;
- (3) 若 $\{a_n\}$ 和 $\{b_n\}$ 是"同根数列",且周期的最小值分别是m+2和m+4($m \in N^*$),求k的最大值.

解答

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 设 i 为虚数单位,且 z(1+i)=2,则 z=(D) A. -1-i B. 1-i C. -1+i

2. 已知非零向量 \vec{a} , \vec{b} 满足 $|\vec{a}|=3|\vec{b}|$,向量 \vec{a} 在向量 \vec{b} 方向上的投影向量是 $\sqrt{2}\vec{b}$,则 \vec{a} 与 \vec{b} 夹角的余弦值为(A)

A. $\frac{\sqrt{2}}{2}$ B. $\frac{\sqrt{2}}{6}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{2}{3}$

3. 体育课上,老师让2名女生和3名男生排成一排,要求2名女生之间至少有1名男生,则这5名学生不同的 排法共有 (C) A. 24 种 B. 36 种 C. 72 种 D. 96 种

4. 己知 $f(x) = \ln \left| \frac{1}{x+1} - a \right| + b$ 是奇函数,则 $a + e^b = (D)$ A. 1 B. $\frac{3}{2}$ C. 2 D. $\frac{5}{2}$

5. 已知 a > 0, b > 0 ,则下列选项中,能使 4a + b 取得最小值 25 的为 (B)

B. ab = 9a + b C. $a^2 + b = 21$ D. $16a^2 + b^2 = 625$ A. ab = 36

6. 锐角 $\triangle ABC$ 满足 $\tan A = \tan B + \frac{1}{\sin 2A}$,则下列等式成立的是(A)

A. $\cos 2A + \sin B = 0$ B. $\cos 2A + \cos B = 0$ C. $\sin 2A + \cos B = 0$ D. $\sin 2A + \sin B = 0$

7. 已知椭圆 $C: \frac{x^2}{c^2} + \frac{y^2}{c^2} = 1$ (a > b > 0)的左、右焦点分别为 F_1, F_2, A 是椭圆C的上顶点,线段 AF_1 的延长线交椭圆

C于点 B. 若 $\overline{F_2A} \cdot \overline{F_2B} = 0$,则椭圆 C 的离心率 e = (B) A. $\frac{\sqrt{2}}{5}$ B. $\frac{\sqrt{5}}{5}$ C. $\frac{\sqrt{2}}{3}$ D. $\frac{\sqrt{5}}{3}$

8. 在平行四边形 ABCD 中,已知 AB = 4, $AC = 2\sqrt{3}$,将 $\triangle ABC$ 沿 AC 翻折得四面体 AB'CD . 作一平面分别与

AD,DC,CB',B'A 交于点 E,F,G,H. 若四边形 EFGH 是边长为 $\sqrt{3}$ 的正方形,则四面体 AB'CD 外接球的表面积为

D. 48π (A) A. 22π B. 24π C. 44π

key:由己知得EF //AC //GH,EH //B'D //GF,且AC ⊥ B'D,E,F,G,H都是中点,

 $\perp B'D = AC = 2\sqrt{3}, AB' = CD = 4, B'C = AD,$

将此四面体补成长方体 $AB_iCD_i - A_iB'C_iD$,且 AB_iCD_i 是正方形,

$$\therefore 2R = \sqrt{\frac{12 + 16 + 16}{2}} = \sqrt{22}, \therefore S = 4\pi \cdot \frac{22}{4} = 22\pi$$

二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对 的得6分, 部分选对的得部分分, 有选错的得0分.

9. 数字经济是继农业经济、工业经济之后的主要经济形态. 近年来,在国家的大力推动下,我国数字经济规模 增长迅猛,《"十四五"数字经济发展规划》更是将数字经济上升到了国家战略的层面. 某地区 2023 年上半年月份 x与对应数字经济的生产总值(即 GDP)y(单位:亿元)如下表

所示. 根据上表可得到回归方程 $y = \frac{102}{25}x + a$,则(ABD)

í.	月份 <i>x</i> ←	1←	2←	3←	4₽	5↩	6←
	生产总值 y $↩$	30←	33↩	35←	38↩	41←	45↩

A. $a = \frac{134}{5}$ B. y = x 正相关 C. 若 r 表示变量 y = x 之间的相关系数,则 $r = \frac{102}{35}$

D. 若该地区对数字经济的相关政策保持不变,则该地区 7 月份的生产总值约为 $\frac{236}{5}$ 亿元

10. 已知圆 $C:(x-5)^2+y^2=8$, 抛物线 $\Gamma:y^2=4x$ 的焦点为F,P 为抛物线Γ上一点,则(AD)

A.以点 P,F 为直径端点的圆与 y 轴相切 B.当 |PC| 最小时, |PF|=1 C.当 |PF|=4 时, 直线 PF 与圆 C 相切

D.当|PF|=2时,以P为圆心,线段PF长为半径的圆与圆C相交公共弦长为 $\frac{4\sqrt{5}}{5}$

11. 已知数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})(n \in N^*)$,给出下列四个结论正确的是(ABC)

A.若 $a_1 = \sqrt{2}$,则数列 $\{a_n\}$ 中有无穷多项等于 $\sqrt{2}$ B.若 $a_1 < -\sqrt{2}$,则对任意 $n \in N^*$,有 $a_{n+1} > a_n$;

C.若
$$a_1 > 0$$
,则存在 $n_0 \in N^*$, 当 $n \ge n_0$ 时,有 $a_n - \sqrt{2} \le \frac{1}{2024}$

D.若
$$a_1 > \sqrt{2}$$
 ,则对任意 $n \in N^*$,有 $a_{n+1} - \sqrt{2} \ge \frac{1}{2} (a_n - \sqrt{2})$;

$$key$$
: 设 $f(x) = \frac{1}{2}(x + \frac{2}{x})$,则 $f(x) = x \Leftrightarrow x = \pm \sqrt{2}$,如图,

$$A: a_1 = \sqrt{2}, 则 a_2 = \sqrt{2}, \therefore \{a_n\}$$
是常数数列, A 对;

$$B: a_1 < -\sqrt{2}$$
,则 $a_2 = \frac{1}{2}(a_1 + \frac{2}{a_1}) > a_1 \Leftrightarrow a_1 < -\sqrt{2}$,由蛛网图得 B 对;

$$C:: a_1 > 0, : a_2 = \frac{1}{2}(a_1 + \frac{2}{a_1}) > \sqrt{2}, :$$
由蛛网图得: $\sqrt{2} < a_{n+1} < a_n (n \ge 2),$

且
$$a_{n+1} - \sqrt{2} = \frac{a_n^2 + 2}{2a_n} - \sqrt{2} = \frac{(a_n - \sqrt{2})^2}{2a_n} = (a_n - 2) \cdot \frac{a_n - \sqrt{2}}{2a_n} \to 0, C$$
対;

$$\frac{a_{n+1} - \sqrt{2}}{a_n - \sqrt{2}} = \frac{a_n - \sqrt{2}}{2a_n} \to 0, D^{\ddagger \pm}$$

- 三、填空题: 本题共3小题,每小题5分,共15分.
- 12. $(x+2)^5$ 的展开式中 x^3 的系数为 . (用数字作答). 40

13. 已知函数
$$f(x) = \sin(\omega x + \varphi)(\omega > 0, |\varphi| < \frac{\pi}{2})$$
.如图,直线 $y = \frac{\sqrt{3}}{2}$ 与曲线 $y = f(x)$ 交于 A,B 两点, $|AB| = \frac{\pi}{6}$,

则 $\varphi = ______$; y = f(x) 在区间 $[t, t + \frac{\pi}{4}](t \in R)$ 上的最大值与最小值的差的范围是_____.

14. 若函数 $f(x) = e^x + \cos x + (a-1)x$ 存在最小值,则 a 的取值范围是_____. (-∞,1)

当
$$a = 1$$
时, $f(x) = e^x + \cos x$, 有 $\lim_{x \to +\infty} f(x) = +\infty$, 且 $f(x) > -1$, 且 $f(2k\pi + \pi) = e^{2k\pi + \pi} - 1$

 $\stackrel{\text{def}}{=}$ x ≥ 0 \text{if}, $f'(x) = e^x - \sin x \ge 0$, ∴ $f(x) \ge f(0) = 2$;

当
$$x < 0$$
时, $f(-2k\pi + \pi) = e^{2k\pi} - 1 > -1(k \in N^*)$,有 $\lim_{k \to \infty} (e^{2k\pi} - 1) = -1$,∴ $f(x)$ 没有最小值.

四、解答题: 本题共 5 小题, 共 77 分.解答应写出文字说明、证明过程或演算步骤.

2024-02-21

15. 如图,在四棱锥 A-BCDE 中, AE 上底面 BCDE, BE 上 BC, BE 上 DE, AE = BE = 4, BC = 3, DE = 5, 点 F 在 DE 上, EF = 3, 过点 E 作 AF 的垂线交 AD 于点 G.

(1) 证明: *AF* ⊥平面 *BEG*; (2) 求平面 *BEG* 与平面 *ACD* 夹角的余弦值.

19. (1) 因为 $AE \perp$ 平面BCDE, $BE \subset$ 平面BCDE, 所以 $AE \perp BE$.

又因为 $BE \perp DE$, 且 $AE \cap DE = E$, 所以 $BE \perp$ 平面AED,

又 $AF \subset$ 平面 AEF ,所以 $BE \perp AF$,而 $EG \perp AF$,且 $BE \cap EG = E$,

所以AF 上平面BEG.

$$A(0,0,4), B(4,0,0), D(0,5,0), C(4,3,0), F(0,3,0).$$

由(1)知,平面BEG的一个法向量为 $\overrightarrow{AF} = (0,3,-4)$,

设平面 ACD 的一个法向量为 $\vec{n} = (x, y, z)$,

$$\overrightarrow{AD} = (0,5,-4), \overrightarrow{CD} = (-4,-2,0)$$

设平面 BEG 与平面 ACD 的夹角为 θ ,

则
$$\cos \theta = \left|\cos\langle \overrightarrow{AF}, \overrightarrow{n} \rangle\right| = \frac{\left|\overrightarrow{AF} \cdot \overrightarrow{n}\right|}{\left|\overrightarrow{AF} \mid |\overrightarrow{n}|} = \frac{8}{5 \cdot 3\sqrt{5}} = \frac{8\sqrt{5}}{75}$$

即平面 BEG 与平面 ACD 的夹角余弦值为 $\frac{8\sqrt{5}}{75}$.

(2) 记 f'(x) 为 f(x) 的导函数,若对 $\forall x \in [1,3]$,都有 $f(x) + \frac{5(x-1)}{x+1} \le f'(x)$,求 a 的取值范围.

解: 由 $f'(x) = \ln x + 1 - a$

(1) 曲线f(x)在x = 1处的切线方程为y + 1 = -(x - 1)即y = -x

(2) 由己知得:
$$f(x) + \frac{5(x-1)}{x+1} \le f'(x) \Leftrightarrow x \ln x - ax + 1 + \frac{5(x-1)}{x+1} \le \ln x + 1 - a$$
对 $1 \le x \le 3$ 恒成立

$$\text{Im} p'(x) = \frac{1}{x} - \frac{5}{(x+1)^2} = \frac{x^2 - 3x + 1}{x(x+1)^2} > 0 \Leftrightarrow \frac{3 + \sqrt{5}}{2} < x \le 3$$

$$\therefore p(x)_{\min} = p(\frac{3+\sqrt{5}}{2}), \overline{\text{mi}}p(1) = \frac{5}{2}, p(3) = \ln 3 + \frac{5}{4} < \frac{5}{2}, \therefore a \ge \frac{5}{2}$$

17.某次高三数学测试中选择题有单选和多选两种题型组成.单选题每题四个选项,有且仅有一个选项正确,选对得5分,选错得0分,多选题每题四个选项,有两个或三个选项正确,全部选对得5分,部分选对得2分,有错误选择或不选择得0分.(1)若小明对其中5道单选题完全没有答题思路,只能随机选择一个选项作答,每题选

到正确选项的概率均为 $\frac{1}{4}$,且每题的解答相互独立,记小明在这5道单选题中答对的题数为随机变量X.

(i) 求 P(X=3); (ii) 求使得 P(X=k) 取最大值时的整数 k; (2) 若小明在解答最后一道多选题时,除发现 A,C 选项不能同时选择外,没有答题思路,只能随机选择若干选项作答.已知此题正确答案是两选项与三选项的概率 均为 $\frac{1}{2}$,问:小明应如何作答才能使该题得分的期望最大(写出小明得分的最大期望及作答方式).

17. (1) (i) 因为
$$X \sim B\left(5, \frac{1}{4}\right)$$
,所以 $P\left(X=3\right) = C_5^3 \left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right)^2 = \frac{45}{512}$.

(ii) 因为
$$P(X = k) = C_5^k \left(\frac{1}{4}\right)^k \left(\frac{3}{4}\right)^{5-k}, k = 0, 1, \dots, 5.$$

$$\frac{P(X=k+1)}{P(X=k)} = \frac{C_5^{k+1} \left(\frac{1}{4}\right)^{k+1} \left(\frac{3}{4}\right)^{4-k}}{C_5^k \left(\frac{1}{4}\right)^k \left(\frac{3}{4}\right)^{5-k}} = \frac{1}{3} \cdot \frac{5-k}{k+1} = \frac{1}{3} \left(-1 + \frac{6}{k+1}\right).$$

令
$$\frac{P(X=k+1)}{P(X=k)} \ge 1$$
,解得 $k \le \frac{1}{2}$,所以当 $k = 1$ 时, $P(X=k)$ 最大,此时 $P(X=k) = \frac{405}{1024}$.

(2) 由题知,A, C 选项不能同时选择,故小明可以选择单选、双选和三选.

正确答案是两选项的可能情况为 AB, AD, BC, BD, CD , 每种情况出现的概率均为 $\frac{1}{2} \times \frac{1}{5} = \frac{1}{10}$.

正确答案是三选项的可能情况为 ABD,BCD,每种情况出现的概率为 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

若小明做出的决策是单选,则 $E(A) = E(C) = 2 \times \frac{1}{10} \times 2 + \frac{1}{4} \times 2 = \frac{9}{10}$ (分),

$$E(B) = E(D) = 3 \times \frac{1}{10} \times 2 + \frac{1}{2} \times 2 = \frac{8}{5}$$
 (分)

若小明做出的决策是双选,则 $E(AB) = E(AD) = E(BC) = E(CD) = \frac{1}{10} \times 5 + \frac{1}{4} \times 2 = 1$ (分),

$$E(BD) = \frac{1}{10} \times 5 + \frac{1}{2} \times 2 = \frac{3}{2} (\%)$$
.

若小明做出的决策是三选,则 $E(ABD) = E(BCD) = \frac{1}{4} \times 5 = \frac{5}{4}$ (分).

经比较,小明选择单选 B 或单选 D 的得分期望最大,最大值为 $\frac{8}{5}$ 分

18.已知双曲线 C 的中心为坐标原点,右焦点为($\sqrt{7}$,0),且过点(-4,3).(1) 求双曲线 C 的标准方程;

(2)已知点 A(4,1) ,过点 (1,0) 的直线与双曲线 C 的左、右两支分别交于点 M,N ,直线 AN 与双曲线 C 交于另一点 P ,设直线 AM,AN 的斜率分别为 k_1,k_2 . (i)求证: k_1+k_2 为定值;(ii)求证: 直线 MP 过定点,并求出该定点的坐标。

(1) 解:由己知得
$$\begin{cases} c = \sqrt{7} \\ \frac{16}{a^2} - \frac{9}{b^2} = 1 \end{cases}$$
 得 $a = 2, b = \sqrt{3}, \therefore$ 双曲线 C 的标准方程为 $\frac{x^2}{4} - \frac{y^2}{3} = 1$

(2) 证明: 设
$$l_{MN}: x = ty + 1$$
代入 C 方程得: $(3t^2 - 4)y^2 + 6$

$$\begin{cases} y_M + y_N = -\frac{6t}{3t^2 - 4}, \\ y_M y_N = -\frac{9}{3t^2 - 4}, \\ \end{bmatrix}$$
 (2) 证明: 设 $l_{MN}: x = ty + 1$ 代入 C 方程得: $(3t^2 - 4)y^2 + 6$

$$(i): k_1 + k_2 = \frac{y_M - 1}{x_M - 4} + \frac{y_N - 1}{x_N - 4} = \frac{y_M - 1}{ty_M - 3} + \frac{y_N - 1}{ty_N - 3} = \frac{2ty_M y_N - (t + 3)(y_M + y_N) + 6}{t^2 y_M y_N - 3t(y_M + y_N) + 9}$$

$$=\frac{\frac{-18t}{3t^2-4} + \frac{6t^2+18t}{3t^2-4} + \frac{18t^2-24}{3t^2-4}}{\frac{-9t^2}{3t^2-4} + \frac{18t^2}{3t^2-4} + \frac{27t^2-36}{3t^2-4}} = \frac{2}{3}$$

$$\therefore \begin{cases} y_P + y_M = \frac{-6sn}{3s^2 - 4} \\ y_P y_M = \frac{3n^2 - 12}{3s^2 - 4} \end{cases}, \text{ } \underline{\mathbb{H}} \Delta_1 = 48(3s^2 + n^2 - 4) > 0$$

$$\therefore k_{AP} + k_{AM} = k_1 + k_2 = \frac{y_M - 1}{x_M - 4} + \frac{y_P - 1}{x_P - 4} = \frac{(y_M - 1)(sy_P + n - 4) + (y_P - 1)(sy_M + n - 4)}{(sy_M + n - 4)(sy_P + n - 4)} = \frac{2}{3}$$

$$\Leftrightarrow 6sy_{M}y_{P} + 3(n - s - 4)(y_{M} + y_{P}) - 6(n - 4) = 2s^{2}y_{M}y_{P} + 2s(n - 4)(y_{P} + y_{M}) + 2(n - 4)^{2}$$

$$\Leftrightarrow (2s^2 - 6s) \cdot \frac{3n^2 - 12}{3s^2 - 4} + (2sn - 5s - 3n + 12) \cdot \frac{-6sn}{3s^2 - 4} + 2(n - 4)^2 + 6(n - 4) = 0$$

⇔
$$n^2 + 9sn - 5n - 9s + 4 = (n-1)(n+9s-4) = 0$$
,∴ $n + 9s - 4 = 0$, $\vec{\otimes}$ \vec{n} = 1 $\hat{\otimes}$ $\vec{\otimes}$ $\vec{\wedge}$

:. 直线
$$l_{MN}$$
: $x = sy + 4 - 9s$ 经过定点(4,9).

19. 对于数列 $\{a_n\}$,如果存在正整数 T,使得对任意 $n(n \in N^*)$,都有 $a_{n+T} = a_n$,那么数列 $\{a_n\}$ 就叫做周期数列,T 叫做这个数列 周期.若周期数列 $\{b_n\}$, $\{c_n\}$ 满足:存在正整数 k,对每一个 $i(i \le k, i \in N^*)$,都有 $b_i = c_i$,我们称数列 $\{b_n\}$ 和 $\{c_n\}$ 为"同根数列".(1)判断下列数列是否为周期数列.如果是,写出该数列的周期,如果不是,

说明理由; ①
$$a_n = \sin n\pi$$
; ② $b_n = \begin{cases} 1, & n = 1, \\ 3, & n = 2, \\ b_{n-1} - b_{n-2}, n \ge 3. \end{cases}$

- (2) 若 $\{a_n\}$ 和 $\{b_n\}$ 是"同根数列",且周期的最小值分别是 3 和 5,求证: $k \le 6$;
- (3) 若 $\{a_n\}$ 和 $\{b_n\}$ 是"同根数列",且周期的最小值分别是m+2和m+4($m \in N^*$),求k的最大值.

②
$$b_1 = 1, b_2 = 3, b_3 = 2, b_4 = -1, b_5 = -3, b_6 = -2, b_7 = 1, b_8 = 3, \therefore b_{n+6} = b_n, \therefore \{b_n\}$$
是周期数列

2024-02-21

由已知得
$$\{a_n\}$$
: $a_1,a_2,\cdots,a_{m+2},a_1,a_2,\cdots,a_{m+2},a_1,a_2,\cdots,$ $\{b_n\}$: $a_1,a_2,\cdots,a_{m+2},a_1,a_2,\cdots,$

则 $\{b_n\}$ 的周期也为m+2,与周期为m+4矛盾,

 $\therefore k \leq 2m + 4$,

当m = 2l - 1为奇数时,取

$$\{a_n\}: \underbrace{1,2,1,2,\cdots,1,2,1,2}_{2l/\overline{\mathfrak{g}}},1|,\underbrace{1,2,1,2,\cdots,1,2}_{2l/\overline{\mathfrak{g}}},1,|1,2,\cdots,1,2|,1,|1,2,\cdots,1,2|$$

$$\{b_n\}$$
: 1,2,1,2,…,1,2,1,1,1,1,1,2,| 1,2,1,2,…,1,2,1,2,…,此时 $k=2m+4$

当m = 2l时,取 $a_i = 2(1 \le i \le 2l + 1), a_{2l+2} = 1$,

则
$$\{a_n\}: \underbrace{2,\cdots,2}_{2l+1\bar{y}},1,2,2,|\underbrace{2,\cdots,2}_{2l-1\bar{y}},1,|2,2,\cdots$$

【小问 3 详解二】当m 是奇数时,首先证明 $k \ge 2m + 5$ 不存在数列满足条件.

假设 $k \ge 2m+5$,即对于 $1 \le i \le 2m+5$,都有 $a_i = b_i$.

因为
$$a_{m+t} = b_{m+t} (5 \le t \le m+4)$$
,

所以
$$a_{t-2} = b_{t-4} = a_{t-4} (5 \le t \le m+4)$$
,

$$\mathbb{H} a_1 = a_3 = a_5 = \dots = a_{m+2}$$
, $\mathbb{R} a_2 = a_4 = a_6 = \dots = a_{m+1}$.

又
$$t = m + 5$$
 时, $a_1 = a_{2(m+2)+1} = b_{2m+5} = b_{m+1} = a_{m+1}$,

所以 $a_{n+1}=a_n$,与 T_1 的最小值是m+2矛盾.

其次证明k = 2m + 4存在数列满足条件.

对于 $1 \le i \le 2m+4$,都有 $a_i = b_i$.

当m 是偶数时,首先证明 $k \ge 2m + 4$ 时不存在数列满足条件.

假设 $k \ge 2m+4$, 即对于 $1 \le i \le 2m+4$, 都有 $a_i = b_i$.

因为
$$a_{m+t} = b_{m+t} (5 \le t \le m+3)$$
,

所以
$$a_{t-2} = b_{t-4} = a_{t-4} (5 \le t \le m+3)$$
,

$$\mathbb{H} a_1 = a_3 = a_5 = \dots = a_{m+1}$$
, $\mathcal{R} a_2 = a_4 = a_6 = \dots = a_m$.

又
$$t = m + 4$$
 时, $a_{m+2} = b_m = a_m$,

所以 $a_{n+2}=a_n$,与 T_1 的最小值是m+2矛盾.

其次证明k = 2m + 3时存在数列满足条件.

$$\mathbb{E}_{k} a_{(m+2)l+i} = \begin{cases}
1, i = 2k - 1(1 \le k \le \frac{m+2}{2}) \\
2, i = 2k(1 \le k \le \frac{m}{2}) \\
3, i = m+2
\end{cases} (l \in \mathbb{N})$$

对于 $1 \le i \le 2m+3$,都有 $a_i = b_i$.

综上, 当m 是奇数时, k 的最大值为2m+4;

当m 是偶数时,k 的最大值为2m+3.