

Diffraction Grating:

- A set of many closely spaced slits is called diffraction grating.
- It is useful in spectroscopic analysis of light.
- Diffraction grating disperses white light into its constituent colors.
- It has several thousand slits called lines per cm.

dSin θ =m λ for m = 0 , all wavelengths peak together at the central maximum, but for larger m the angular position of the maximum depends on wavelength.

Diffraction grating can be used in place of prism to disperse light into its component wavelength.

m is the order of the dispersion.

Resolving Power:

A measure of ability to distinguish closely spaced wavelength.

• RESOLVING POWER:

- A measure of ability to distinguish closely spaced wavelength.
- Two wavelengths λ and λ' passing through grating, one can distinguish two spectral lines if the peak of one line is corresponding to the first minimum of the other.
- Let λ has its m-th order max. at θ . The criterion for this max is
- $dSin\theta_{max} = m\lambda$, equally write this as $dSin\theta_{max} = \frac{mN\lambda}{N}$, where N is no. of slits.
- For minimum $dSin\theta_{max} = \frac{(mN+1)\lambda}{N}$,

Two wavelengths λ and λ' be just distinguishable when maximum of λ' fall at the location of this minimum for λ .

But maximum for λ' satisfies $dsin\theta_{max} = \frac{mN\lambda'}{N}$, $(m N + 1)\lambda = m N \lambda'$, solving this equation $mN\lambda + \lambda = m N \lambda'$ $\lambda = m N \lambda' - m N\lambda = m N(\lambda' - \lambda)$ $\frac{\lambda}{\lambda' - \lambda} = m N$ $\Delta \lambda = \lambda' - \lambda$

$$\frac{\lambda}{\Delta \lambda}$$
 = m N =R =resolving power

•
$$\frac{\lambda}{\Delta \lambda} = mN = R$$

- Quantity $\frac{\lambda}{\Delta \lambda}$ is resolving power of the grating.
- Equation shows that resolving power increases with the no. of the slits, N, on the grating and also with order, m, of the spectrum.
- Higher the resolving power, smaller the wavelength difference that can be distinguished in the spectrum .

Maximilien Luce, The Seine at Herblay, 1890. Musée d'Orsay, Paris, France. Photo by Erich Lessing/Art Resource

