Lecture 11: LASSO

Instructor: Prof. Shuai Huang
Industrial and Systems Engineering
University of Washington

Feature selection in linear regression model

- LASSO was used to sparsify the linear regression model and allowed the regression model to select significant predictors automatically.
- The formulation of LASSO is

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \{ \|\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1} \},$$

- where $y \in \mathbb{R}^{N \times 1}$ is the measurement vector of the response, $\mathbf{X} \in \mathbb{R}^{N \times p}$ is the data matrix of the N measurement vectors of the p predictors, $\boldsymbol{\beta} \in \mathbb{R}^{p \times 1}$ is the regression coefficient vector.
- Here, $\| \boldsymbol{\beta} \|_1 = \sum_{i=1}^p |\beta_i|$.

The path solution trajectory of LASSO

Why L1 norm?

- LASSO versus Ridge regression.
- The formulation of Ridge regression is

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \{ \|\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{2} \},$$

• where $\|\boldsymbol{\beta}\|_2 = \sum_{i=1}^p |\beta_i|^2$ is called the L_2 norm.

The shooting algorithm

Let's first consider a simple case where there is only one predictor.
 Then, the objective function becomes

$$L(\beta) = \|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \lambda |\beta|.$$

• To find the optimal solution, we can solve the equation as

$$\frac{\partial L(\beta)}{\partial \beta} = 0.$$

• The complication is the L1-norm term, $|\beta|$, which has no gradient when $\beta=0$.

The shooting algorithm (cont'd)

We can discuss different scenarios and identify the solutions.

- If $\beta>0$, then $\frac{\partial L(\beta)}{\partial \beta}=2\beta-2\mathbf{X}^T\mathbf{y}+\lambda$. Thus, $\frac{\partial L(\beta)}{\partial \beta}=0$ will lead to the solution that $\beta=\frac{(2\mathbf{X}^T\mathbf{y}-\lambda)}{2}$. But if $2\mathbf{X}^T\mathbf{y}-\lambda<0$, this will result in a contradiction, and thereby, $\beta=0$.
- If $\beta < 0$, then $\frac{\partial L(\beta)}{\partial \beta} = 2\beta 2\mathbf{X}^T\mathbf{y} \lambda$. Similarly as above, we can conclude that $\beta = \frac{(2\mathbf{X}^T\mathbf{y} + \lambda)}{2}$. But if $2\mathbf{X}^T\mathbf{y} + \lambda > 0$, this will result in a contradiction, and thereby, $\beta = 0$.
- If $\beta=0$, then we have had the solution and no longer need the calculate the gradient.

The shooting algorithm (cont'd)

• In summary, we can derive the solution of β as

$$\hat{\beta} = \begin{cases} \frac{(2\mathbf{X}^T \mathbf{y} - \lambda)}{2}, & if 2\mathbf{X}^T \mathbf{y} - \lambda > 0\\ \frac{(2\mathbf{X}^T \mathbf{y} + \lambda)}{2}, & if 2\mathbf{X}^T \mathbf{y} + \lambda < 0\\ 0, & if \lambda \ge |2\mathbf{X}^T \mathbf{y}| \end{cases}$$

Generalize it to more general settings

- Let's contemplate an iterative structure that updates each eta_i at a time when fixing all the other parameters as their latest values
- Suppose that we are now at the tth iteration and we are trying to optimize for β_j , we can rewrite the general optimization problem's objective function as a function of β_j

$$L(\beta_j) = \left\| y - \sum_{k \neq j} \mathbf{X}_{(:,k)} \beta_k^{(t-1)} - \mathbf{X}_{(:,j)} \beta_j \right\|_2^2 + \lambda \sum_{k \neq j} \left| \beta_k^{(t-1)} \right| + \lambda |\beta_j|.$$

• Here, $\beta_{\nu}^{(t)}$ is the value of β_k in the tth iteration. The objective function above can be simplified as

$$L(\beta_j) = \|\mathbf{y} - \mathbf{X}_{(:,j)}\beta_j\|_2^2 + \lambda |\beta_j|,$$

• which just resembles the structure as the one-predictor special case we discussed. Thus, we can readily derive that

readily derive that
$$\hat{\beta}_{j}^{(t)} = \begin{cases} q_{j} - \lambda/2 \,, & \text{if } q_{j} - \lambda/2 > 0 \\ q_{j} + \lambda/2 \,, & \text{if } q_{j} + \lambda/2 < 0 \,, \\ 0, & \text{if } \lambda \geq \left| 2q_{j} \right| \end{cases}$$
 • where $q_{j} = \mathbf{X}_{(:,j)}^{T} \left(\mathbf{y} - \sum_{k \neq j} \mathbf{X}_{(:,k)} \beta_{k}^{(t-1)} \right)$.

A simple example

• The dataset of Y is actually randomly sampled from the true model, $Y = 0.8X_1 + \varepsilon$, where $\varepsilon \sim N(0,0.5)$.

The objective function of LASSO on this case is

$$\sum_{n=1}^{N} \left[y_n - \left(\beta_1 x_{n,1} + \beta_2 x_{n,2} \right) \right]^2 + \lambda (|\beta_1| + |\beta_2|).$$

X_1	<i>X</i> ₂	Y
-0.707	0	-0.77
0	0.707	-0.33
0.707	-0.707	0.62

Note that, here, for simplicity, we don't need to include the offset parameter β_0 in the model as the predictors are standardized with mean as zero.

A simple example (cont'd)

- Suppose that we choose $\lambda=0.96$. First, we initiate the parameters as $\hat{\beta}_1^{(0)}=0$ and $\hat{\beta}_2^{(0)}=1$.
- In the first iteration, we aim to update $\hat{\beta}_1$. We can obtain that

$$\mathbf{y} - \mathbf{X}_{(:,2)} \hat{\beta}_2^{(0)} = \begin{bmatrix} -0.77 \\ -1.037 \\ 1.327 \end{bmatrix}.$$

- Thus, $q_1 = \mathbf{X}_{(:,1)}^T \left(\mathbf{y} \mathbf{X}_{(:,2)} \hat{\beta}_2^{(0)} \right) = 1.48.$
- As $q_1 \lambda/2 = 1 > 0$, we know that $\hat{\beta}_1^{(1)} = q_1 \lambda/2 = 1$.
- Similarly, we can update $\hat{\beta}_2$. We can obtain that

$$\mathbf{y} - \mathbf{X}_{(:,1)} \hat{\beta}_1^{(1)} = \begin{bmatrix} -1.477 \\ -0.33 \\ -0.087 \end{bmatrix}.$$

- Thus, $q_2 = \mathbf{X}_{(:,2)}^T \left(\mathbf{y} \mathbf{X}_{(:,1)} \hat{\beta}_1^{(0)} \right) = -0.17.$
- As $\lambda \geq |2q_2|$, we know that $\hat{\beta}_2^{(1)} = 0$.

R lab

- Download the markdown code from course website
- Conduct the experiments
- Interpret the results
- Repeat the analysis on other datasets