Quadratic Equations and Functions:

 $ax^{2}+bx+c=y$ What is a quadratic? x x^{2} What is the "parent quadratic"?

$$|x^2 + 0| \times + 0 = y$$

$$y = x^2$$

function:

$$y = x^2$$

- vertex? axis of symmetry?

What about when a <> 0?

$$y = 3x^2$$

- vertical stretch (horizontal shrink) ...

More variations:

What if a < 0? Or a fraction?

$$y = -\frac{1}{4}x^2$$

- vertical shrink and reflection

$$y = x^2$$

Still more variations:

What if $c \leftrightarrow 0$?

$$y = 2x^2 - 4$$

verticaltranslation(+ verticalstretch)

X	y
43	14
0	7
1,4	28

$$y = x^2$$

In Summary:

Graph the function and identify its domain and range. Compare the graph with the graph of $y = x^2$.

19.
$$y = x^2 + 9$$

23.
$$y = 2x^2 - 9$$

24.
$$y = -5x^2 + 2$$

Roof Shingle A roof shingle is dropped from a rooftop that is 100 feet above the ground. The height y (in feet) of the dropped roof shingle is given by the function $y = -16t^2 + 100$ where t is the time (in seconds) since the shingle is dropped.

- a. Graph the function.
- **b.** Identify the domain and range of the function in this situation.
- **c.** Use the graph to estimate the shingle's height at 1 second.
- **d.** Use the graph to estimate when the shingle is at a height of 50 feet.
- **e.** Use the graph to estimate when the shingle is at a height of 0 feet.

Homework:

p. 632, 6-21 by 3, 24-30 by 3, 37, 39