PROBLEMAS DE VALORES INICIALES (Tercera parte)

ANÁLISIS NUMÉRICO/MÉTODOS MATEMÁTICOS Y NUMÉRICOS

(75.12/95.04/95.13)

CURSO TARELA

2) Dada la ecuación diferencial $y' = (t-2)y^2$, con condición inicial y(1) = 1, hallar una aproximación a y(2) empleando el método de Euler implícito con paso de cálculo h = 0,2.

Solución analítica:

$$y(t) = \frac{-2}{t^2 - 4t + 1}$$

Particularidad: es una EDO no lineal y el método de discretización es implícito.

Problema: no vamos a poder despejar $u^{(n)}$.

Solución: trabajar con métodos de resolución de ENL. Newton Raphson

Punto fijo

$$y' = f(y(t), t) = (t - 2)y^2$$

Discretizo:

$$t^{(n)} \to 1 + nh$$
$$y(t^{(n)}) \to u^{(n)}$$

$$(t^{(n)} - 2)y(t^{(n)})^2 \to (1 + nh - 2)u^{(n)^2}$$

$$u^{(0)} = 1$$

En el método de trabajo:

$$u^{(n+1)} = u^{(n)} + h * \left[(1 + (n+1)h - 2) (u^{(n+1)})^{2} \right]$$

n = 0:

$$-0.16(u^{(1)})^2 - u^{(1)} + u^{(0)} = 0$$

¿Qué solución elijo?

¿Y si trabajo con una expresión cúbica?

¿Y si no tengo la solución analítica?

De la discretización puedo definir una función de punto fijo:

$$u^{(n+1)}_{(k+1)} = u^{(n)} + h * \left[(1 + (n+1)h - 2) \left(u^{(n+1)}_{(k)} \right)^2 \right]$$
$$u^{(1)}_{(k+1)} = 1 - 0.16 \left(u^{(1)}_{(k)} \right)^2$$

¿Semilla?

k	$u^{(1)}{}_k$	$u^{(1)}_{k+1}$	\mathcal{E}
0	1	0,84	0,16
1	0,84	0,887104	0,047104
2	0,887104	0,874087439	0,01301656
3	0,87408744	0,877755384	0,00366794
4	0,87775538	0,876727278	0,00102811
5	0,87672728	0,877015885	0,00028861

$$\varepsilon = \left| u^{(1)}_{k+1} - u^{(1)}_{k} \right| < 0.01$$

n = 1:

$$u^{(2)}_{(k+1)} = 0.877755384 - 0.12(u^{(2)}_{(k)})^2$$

k	$u^{(2)}{}_k$	$u^{(2)}_{k+1}$	${\cal E}$
0	0,87775538	0,75448266	0,12327272
1	0,75448266	0,78667633	0,03219367
2	0,78667633	0,77873784	0,00793849
3	0,77873784	0,78072616	0,00198832
4	0,78072616	0,78023005	0,00049612
5	0,78023005	0,78035396	0,00012391

n	$t^{(n)}$	$u^{(n)}$	$y(t^{(n)})$	${\cal E}$
0	1	1	1	0
1	1,2	0,87775538	0,84745763	0,03029776
2	1,4	0,77873784	0,75757576	0,02116208
3	1,6	0,71671438	0,70422535	0,01248902
4	1,8	0,66448146	0,67567568	-0,01119422
5	2	0,68086874	0,66666667	0,01420208

Considerando la siguiente ecuación diferencial ordinaria con condición inicial:

$$\begin{cases} y' = y \\ y(1) = 2 \end{cases}$$

Hallar por medio de los métodos de Adams-Bashforth y de Adams-Moulton de orden 3 el valor de y(2) con paso de cálculo h=0,1, consiguiendo los primeros puntos por medio de los métodos de paso simple de Euler implícito, Punto Medio y Runge Kutta de orden 4.

Adams-Bashforth:

$$u^{(n+1)} = u^{(n)} + \frac{h}{12} * \left[23f(u^{(n)}, t^{(n)}) - 16f(u^{(n-1)}, t^{(n-1)}) + 35f(u^{(n-2)}, t^{(n-2)}) \right]$$

Adams-Moulton:

$$u^{(n+1)} = u^{(n)} + \frac{h}{12} * \left[5f(u^{(n+1)}, t^{(n+1)}) + 8f(u^{(n)}, t^{(n)}) - f(u^{(n-1)}, t^{(n-1)}) \right]$$

	Euler Implícito	Punto medio	Runge Kutta O(4)
$u^{(0)}$	2	2	2
$u^{(1)}$	2,2222	2,21	2,2103
$u^{(2)}$	2,4691	2,4421	2,4428

Si aplicamos Adams-Bashforth:

$$u^{(3)} = u^{(2)} + \frac{h}{12} * \left[23f(u^{(2)}, t^{(2)}) - 16f(u^{(1)}, t^{(1)}) + 35f(u^{(0)}, t^{(0)}) \right]$$

$$u^{(4)} = u^{(3)} + \frac{h}{12} * \left[23f(u^{(3)}, t^{(3)}) - 16f(u^{(2)}, t^{(2)}) + 35f(u^{(1)}, t^{(1)}) \right]$$

• • •

Si aplicamos Adams-Moulton, debemos transformar a expresión explícita:

$$u^{(n+1)} = \frac{u^{(n)} + \frac{h}{12} * \left[8u^{(n)} - u^{(n-1)}\right]}{1 - \frac{5}{12}h}$$

$u^{(10)} \sim y(2)$	Adams-Bashforth	Adams - Moulton	
Euler implícito	5,49420117	5,46619171	
Punto Medio	5,4334065	5,43591325	
Runge Kutta O(4)	5,43510125	5,43675967	

Análisis de estabilidad

Adams-Bashforth para este ejemplo:

$$u^{(n+1)} = u^{(n)} + \frac{h}{12} * \left[23u^{(n)} - 16u^{(n-1)} + 35u^{(n-2)} \right]$$

Cambio de variables:

$$v^{(n+1)} = u^{(n)} \implies v^{(n)} = u^{(n-1)}$$

 $w^{(n+1)} = v^{(n)} = u^{(n-1)} \implies w^{(n)} = u^{(n-2)}$

Sistema de ecuaciones:

$$\begin{pmatrix} 1 + \frac{23}{12}h & -\frac{16}{12}h & \frac{35}{12}h \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u^{(n)} \\ v^{(n)} \\ w^{(n)} \end{pmatrix} = \begin{pmatrix} u^{(n+1)} \\ v^{(n+1)} \\ w^{(n+1)} \end{pmatrix}$$

Análisis de estabilidad

Aplicamos perturbaciones:

$$\begin{pmatrix} 1 + \frac{23}{12}h & -\frac{16}{12}h & \frac{35}{12}h \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u^{(n)} + \delta u^{(n)} \\ v^{(n)} + \delta v^{(n)} \\ w^{(n)} + \delta w^{(n)} \end{pmatrix} = \begin{pmatrix} u^{(n+1)} + \delta u^{(n+1)} \\ v^{(n+1)} + \delta v^{(n+1)} \\ w^{(n+1)} + \delta w^{(n+1)} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{1} + \frac{23}{12}h & -\frac{16}{12}h & \frac{35}{12}h \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix} \begin{pmatrix} u^{(n)} \\ v^{(n)} \\ w^{(n)} \end{pmatrix} + \begin{pmatrix} 1 + \frac{23}{12}h & -\frac{16}{12}h & \frac{35}{12}h \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \delta u^{(n)} \\ \delta v^{(n)} \\ \delta w^{(n)} \end{pmatrix} = \begin{pmatrix} u^{(n+1)} \\ v^{(n+1)} \\ \delta w^{(n+1)} \end{pmatrix} + \begin{pmatrix} \delta u^{(n+1)} \\ \delta v^{(n+1)} \\ \delta w^{(n+1)} \end{pmatrix}$$

Análisis de estabilidad

$$\begin{pmatrix} 1 + \frac{23}{12}h & -\frac{16}{12}h & \frac{35}{12}h \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \delta u^{(n)} \\ \delta v^{(n)} \\ \delta w^{(n)} \end{pmatrix} = \begin{pmatrix} \delta u^{(n+1)} \\ \delta v^{(n+1)} \\ \delta w^{(n+1)} \end{pmatrix}$$

MATRÍZ DE AMPLIFICACIÓN

Aseguramos estabilidad si: $|\lambda_i| < 1$

Considere el siguiente problema matemático:

$$\frac{d^2y}{dt^2} = -g + \beta * \left(\frac{dy}{dt}\right)^2 * e^{-\frac{y}{\alpha}}$$
$$y(0) = y_0$$
$$y'(0) = 0$$

Con:
$$g = 9.8$$
, $y_0 = 40000$, $\alpha = 7000$, $\beta = 0.005$

- o Discretizar el problema matemático utilizando el método RK2.
- \circ Avanzar numéricamente la solución durante 3 pasos, para un paso h=0,1.

RK2:

$$u^{(n+1)}_{*} = u^{(n)} + hf(u^{(n)}, t^{(n)})$$

$$u^{(n+1)} = u^{(n)} + \frac{h}{2} [f(u^{(n)}, t^{(n)}) + f(u^{(n+1)}_{*}, t^{(n+1)})]$$

TIPO DE EDO: LINEAL NO LINEAL

GRADO DE EDO: PRIMER GRADO SEGUNDO GRADO O MÁS

IMPLÍCITO EXPLÍCITO

TIPO DE MÉTODO:

PASO SIMPLE MULTIPASO

Cambio de variables:

$$\begin{cases} y' = z = f(y, z, t) \\ z' = -g + \beta * z^2 * e^{-\frac{y}{\alpha}} = F(y, z, t) \end{cases}$$

Discretización:

$$t^{(n)} \to t_0 + nh$$

$$y(t^{(n)}) \to u^{(n)}$$
$$z(t^{(n)}) \to v^{(n)}$$

$$u^{(0)} = 40000$$
$$v^{(0)} = 0$$

En el método:

$$u^{(n+1)}_{*} = u^{(n)} + hf(u^{(n)}, v^{(n)}, t^{(n)})$$

$$u^{(n+1)} = u^{(n)} + \frac{h}{2} [f(u^{(n)}, v^{(n)}, t^{(n)}) + f(u^{(n+1)}_{*}, v^{(n+1)}_{*}, t^{(n+1)})]$$

$$v^{(n+1)}_{*} = v^{(n)} + hF(u^{(n)}, v^{(n)}, t^{(n)})$$

$$v^{(n+1)} = v^{(n)} + \frac{h}{2} [F(u^{(n)}, v^{(n)}, t^{(n)}) + F(u^{(n+1)}_{*}, v^{(n+1)}_{*}, t^{(n+1)})]$$

En el método:

$$u^{(n+1)}_{*} = u^{(n)} + hv^{(n)}$$

$$u^{(n+1)} = u^{(n)} + \frac{h}{2} [v^{(n)} + v^{(n+1)}]$$

$$v^{(n+1)}_{*} = v^{(n)} + h \left[-g + \beta v^{(n)}^{2} e^{-\frac{u^{(n)}}{\alpha}} \right]$$

$$v^{(n+1)} = v^{(n)} + \frac{h}{2} \left[\left(-g + \beta v^{(n)^2} e^{-\frac{u^{(n)}}{\alpha}} \right) + \left(-g + \beta v^{(n+1)} \right)^2 e^{-\frac{u^{(n+1)}}{\alpha}} \right]$$

n	$f(\bar{X})$	$F(\bar{X})$	$u^{(n+1)}_{*}$	$v^{(n+1)}$ *	$f(ar{Y})$	$F(ar{Y})$	$u^{(n+1)}$	$v^{(n+1)}$
0	0	-9,8	40000	-0,98	-0,98	-9,79998416	39999,951	-0,97999921
1	-0,97999921	-9,79998416	39999,853	-1,95999762	-1,95999762	-9,79993664	39999,804	-1,95999525
2	-1,95999525	-9,79993664	39999,608	-2,93998891	-2,93998891	-9,79985744	39999,559	-2,93998495

¡MUCHAS GRACIAS!