Finite Automata Homework 4

Due: Tuesday, Oct 6 Alexander Powell

1. Prove by the pumping lemma that the language *A* of strings of 0s and 1s whose length is a power of two is not regular.

Proof. Let's begin by assuming that *A* is a regular language so that we can apply the pumping lemma to *A*. If we let *P* be the pumping length we can choose our value of $s = 1^P$. Clearly we have that $|1^P| \ge P$, so it satisfies the length requirement. We can also express $|s| = |x| + |y| + |z| = 2^n, n \ge 0$.

From here we have two cases:

(a) |s| = |y| (or $x = \varepsilon$)

In this case, we know that $|y| = 2^n$. By choosing i = 3 then $|y^3| = |3 \times 2^n|$ and 3×2^n is clearly not a power of 2. This is a contradiction to our assumption.

(b) |s| > |y| (or $x \neq \varepsilon$)

In the cases where x is not the empty string then $|xy^2z| = |xyz| + |y|$. This can be rewritten to equal $2^n + |y|$. Because the next power of 2 after 2^n is $2^n + 2^n$ and $|y| < 2^n$ then $2^n + |y| < 2^n + 2^n$ so it cannot be a power of 2. Again, this gives us a contradiction to our assumption.

Because we reached a contradiction to the pumping lemma in both cases after assuming that *A* is regular, we can conclude that the language *A* is not regular.

2. Are the following languages regular? Prove you answers.

(a) $A = \{uww^R v | u, v, w \in 0, 1^+\}$

Proof. To prove this is a regular language we simply need to come up with a DFA, NFA, or regular expression that will generate the language. The following regular expression generates every member of the language A.

$$(0 \cup 1)^+(00 \cup 11)^+(0 \cup 1)^+$$

Therefore, this proves that *A* is regular.

(b) $B = \{uww^R v | u, v, w \in [0, 1]^+, |u| \ge |v|\}$

The language B is not a regular language. We use a proof by contradiction to establish this.

Proof. Let's assume to the contrary that B is a regular language. Then the pumping lemma applies to B. This leads to two different cases: the pumping length P is either even or odd.

i. Case 1: P is even

We take our s to be $s = (01)^{P/2}00(10)^{P/2}$ so we can deduce the length of s is |s| = 2p + 2. In this case, w goes up through the first 0 in the 00 and w^R begins at the second 0 in 00. In this case we know that u and v should be of equal length. When we examine the string resulting from fixing i = 0 we know |y| has to be at least 1 and therefore y^0 will put one more character after w^R than before w. This is a contradiction to the rule that |u| = |v|.

ii. Case 2: P is odd

In the second case, our choice of s can be written as $s = (01)^{(p-1)/2} 100(01)^{(p-1)/2}$ and again |s| = 2p + 2. Similarly to the first case, when we fix i = 0 we get another contradiction to the rule stating $u| \ge |v|$.

Therefore, after seeing in both cases that we arrive at a contradiction to our originial assumption, we can conclude that *B* is not a regular language.

Collaborators: Derek O'Connell

3. Problem 1.54 (a) on page 91. Use closure properties.

We are given the language $F = \{a^i b^j c^k | i, j, k \ge 0 \text{ and if } i = 1, \text{ then } j = k\}$. Prove that F is not regular:

Proof. To prove F is not regular, let's assume to the contrary that F is regular and thus the pumping lemma applies. Now, if we come up with a new language $L = \{ab^ic^j|i,j\geq 0\}$, then L is clearly regular because it can be described by the regular expression ab^*c^* and therefore the intersection of these two languages which we can call $G = F \cap L$ is regular as well, according to the closure properties of regular languages. The intersection, G, of these languages can further be written as $G = \{ab^ic^i|i\geq 0\}$. Now, using the pumping lemma with P being the pumping length we have $s = ab^Pc^P \in G$ and |s| > P so there exists x, y, and z such that $xy^iz \in G$, $\forall i \geq 0$ and |y| > 0 and $|xy| \leq P$. Now, let's fix i = 2 and from here there are two cases to consider:

- (a) Case 1: y includes a (so $x = \varepsilon$)
 If y includes a then our s looks like xyyz which contains two as, giving us a contradiction.
- (b) Case 2: y does not include a (so $x \neq \varepsilon$)

If y does not include a then it either contains both b and c or either b or c. In these two subcases then there are either at least 2 bcs in xyyz or the number of bs and cs in xyyz is not equal, respectively. Again, this contradicts our assumtion.

In all cases we eventually arrive at a contradiction to the statement that $G = F \cap L$ was regular. Since we know L is definitely a regular language then we can conclude that F is not regular.