Exercice 1 [Formulation variationnelle, Problème de Poisson et Principe de Dirichlet.] Soit U un ouvert borné. On considère le problème aux limites suivant :

$$\begin{cases}
-\Delta u = f & \text{dans } U \\
u = g & \text{sur } \partial U
\end{cases}$$
(1)

1. Montrer l'unicité de la solution. (Ici et dans les questions suivantes ∂U est C^1 .)

On veut montrer que la solution du problème de Poisson (1) peut être obtenue en minimisant une certaine fonctionnelle. Considérons donc la fonctionnelle d'energie

$$I[w] := \int_{U} \left(\frac{1}{2}|Dw|^2 - wf\right) dx,$$

w appartenant à l'espace

$$A := \{ w \in C^2(\bar{U}) | w = g \text{ sur } \partial U \}.$$

2. Montrer que si $u \in C^2(\bar{U})$ est une solution de (1) alors

$$I[u] = \min_{w \in A} I[w]. \tag{2}$$

3. Inversement, montrer que si $u \in A$ satisfait (2), alors u est solution du problème de Poisson (1).

Exercice 2 [fonctions semi-continues]

Soit $u:\Omega\to\mathbb{R}$.

- 1. Soit $x_0 \in \Omega$. Montrer que u est sci en x_0 si et seulement si $\underline{\lim}_{x \to x_0} u(x) \ge u(x_0)$.
- 2. Montrer que u est sci sur Ω si et seulement si son épigraphe est fermé. On rappelle que l'épigraphe de u est défini par

$$\operatorname{epi} u = \{(x, r) \in \Omega \times \mathbb{R}, \ u(x) \le r\}.$$

3. Montrer que u est sci sur Ω si et seulement si u est la limite croissante d'une suite de fonctions continues sur Ω .

pour le sens direct, dans le cas où u > 0, on pourra poser $u_n(x) = \inf_{y \in \Omega} \{u(y) + n | x - y| \}$ où $|\cdot|$ désigne la norme euclidienne sur \mathbb{R}^n .

Exercice 3 [enveloppes scs et semi-limites relaxées]

1. Soit $(u^{\alpha})_{\alpha \in A}$ une famille de fonctions de Ω dans \mathbb{R} localement bornées par dessus sur Ω . Montrer que

$$\left(\sup_{\alpha\in A}u^{\alpha}\right)^{*} = \left(\sup_{\alpha\in A}(u^{\alpha})^{*}\right)^{*}.$$

2. Soit $(u^{\epsilon})_{\epsilon>0}$ une famille de fonctions de Ω dans \mathbb{R} qui est uniformément localement bornée par dessus sur Ω . Montrer que

$$\overline{\lim}_{\epsilon}^* u^{\epsilon} = \overline{\lim}_{\epsilon}^* (u^{\epsilon})^*.$$

Exercice 4 [sur et sous-différentiels]

Soient $u: \Omega \to \mathbb{R}$ sci (resp. scs) et $x_0 \in \Omega$. Le sous-différentiel $D^{2,-}u(x_0)$ (resp. surdifférentiel $D^{2,+}u(x_0)$) d'ordre 2 en x_0 de u est l'ensemble des couples $(p,X) \in \mathbb{R}^n \times \mathcal{S}_n(\mathbb{R})$ tels qu'il existe $\varphi \in \mathcal{C}^2(\Omega)$ touchant u par dessous (resp. dessus) en x_0 telle que $(p,X) = (\nabla \varphi(x_0), D^2 \varphi(x_0))$.

- 1. Si $u \in \mathcal{C}^2(\Omega)$, déterminer $D^{2,+}u(x_0)$ et $D^{2,-}u(x_0)$ pour $x_0 \in \Omega$.
- 2. En admettant le lemme qui suit, montrer que $(p, X) \in D^{2,-}u(x_0)$ si et seulement si pour x dans un voisinage de x_0 ,

$$u(x) - u(x_0) \ge p \cdot (x - x_0) + \frac{1}{2}X(x - x_0) \cdot (x - x_0) + o(|x - x_0|^2).$$

Lemma 1 Soit U un ouvert de \mathbb{R}^n contenant 0 et $\epsilon: U \to \mathbb{R}$ localement bornée et qui tend vers 0 en 0. Alors, il existe $\eta: \mathbb{R}^n \to \mathbb{R}^+$ de classe \mathcal{C}^{∞} en dehors de 0 et telle que $|\epsilon| \leq \eta$ au voisinage de 0 et pour tout $\nu \in \mathbb{N}^n$, $|x|^{|\nu|} |\partial^{\nu} \eta(x)| \to 0$ lorsque $x \to 0$.

- 3. Soit $u(x) = |\cos x| \sin \mathbb{R}$. Calculer $D^{2,-}u(x_0)$ pour $x_0 \in \mathbb{R}$.
- 4. Montrer que les propositions suivantes sont équivalentes :
 - (i) $(p, X) \in D^{2,-}u(x_0)$.
 - (ii) Il existe une fonction φ de classe C^2 telle que $u \varphi$ atteint un minimum local en x_0 et $(p, X) = (\nabla \varphi(x_0), D^2 \varphi(x_0))$.
 - (iii) Il existe une fonction φ de classe \mathcal{C}^2 telle que $u \varphi$ atteint un minimum local strict en x_0 et $(p, X) = (\nabla \varphi(x_0), D^2 \varphi(x_0))$.
- 5. On considère l'équation

$$F(x, u, \nabla u, D^2 u) = 0 \quad \text{sur} \quad \Omega$$
 (3)

où $F:(x,z,p,A)\in\Omega\times\mathbb{R}\times\mathbb{R}^n\times\mathcal{S}_n(\mathbb{R})\mapsto F(x,z,p,A)\in\mathbb{R}$ est continue, croissante en z et elliptique dégénérée.

On rappelle la définition de sur-solution de viscosité : $u : \Omega \to \mathbb{R}$ est sur-solution de viscosité de (3) sur Ω si u est localement bornée inférieurement et si pour tout $x_0 \in \Omega$ et pour toute fonction $\varphi \in \mathcal{C}^2(\Omega)$ touchant u_* par dessous en $x_0 \in \Omega$, alors $F(x_0, u(x_0), \nabla \varphi(x_0), D^2 \varphi(x_0)) \geq 0$.

Déduire de l'exercice une nouvelle définition des sur-solutions de viscosité en termes de sous-différentiels.

Exercice 5 [plusieurs définitions des solutions de viscosité]

Le cadre est le même que dans la question 5. de l'exercice précédent.

- 1. Montrer que dans la définition de sur-solution de viscosité, on peut remplacer la condition " φ touche u_* par dessous en x_0 " par " $u_* \varphi$ admet un minimum local en x_0 ".
- 2. Montrer qu'en changeant $\varphi \in \mathcal{C}^2(\Omega)$ par $\varphi \in \mathcal{C}^{\infty}(\Omega)$, on ne change pas la notion de sur-solution de viscosité.
- 3. Montrer que lorsque l'équation est d'ordre 1, on ne change pas la notion de sursolution de viscosité en remplaçant $\varphi \in C^2(\Omega)$ par $\varphi \in C^1(\Omega)$.

Exercice 6 [Équation de Hamilton-Jacobi] On se propose, dans cette partie, d'étudier le problème de Cauchy suivant pour l'équation de Hamilton-Jacobi

$$\begin{cases}
\partial_t u(t,x) + H(x,d_x u) = 0, \forall (t,x) \in \mathbb{R}^+ \times \mathbb{R}^n \\
u(0,x) = g(x), \forall x \in \mathbb{R}^n.
\end{cases}$$
(4)

On a $H(x,p): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}$, $u: \mathbb{R}^n \times [0,+\infty[\to \mathbb{R} \text{ est l'inconnue}, u=u(t,x).$ Déterminer l'équation différentielle hamiltonnienne (d'ordre 1) que doivent vérifier les caractéristiques $t \mapsto (x(t),p(t))$ associées à 4. Donner également l'équation vérifiée par $\varphi(t)=u(t,x(t))$. On définit $L(x(t),\dot{x}(t))=\dot{x}(t)p(t)-H(x,p)$.

Exercice 7 [Méthode de Viscosité évanescente.] On considère l'equation de Burgers avec un terme supplémentaire de viscosité.

$$\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = \varepsilon \, \partial_x^2 u. \tag{5}$$

On cherche les solutions qui sont des ondes

$$u(t,x) = u_{\varepsilon}(x - \sigma t). \tag{6}$$

On impose aussi les limites de u(t,.) en $-\infty$ et $+\infty$ par u_g et u_d (où $u_g > u_d$ sont des réels). Enfin, on impose aussi les limites de $\partial_x u(t,.)$ par 0.

- 1. Calculer u_{ε} pour que l'onde associé (6) soit solution de (5), et retrouver au passage la relation de Rankine-Hugoniot.
- 2. Montrer que $\varepsilon |\partial_x u_\varepsilon|^2 \xrightarrow[\varepsilon \to 0]{} M \delta$ où M est un réel et δ est la distribution de Dirac.