INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère

Acide nitrique

SEUILS DE TOXICITÉ AIGUË

■ Identification

Formule Chimique	N°CAS	N°Index	N°CE	Dénominations (Designation)	Etat physique (*)	
HNO ₃	7697-37-2	007-004-00-1	231-714-2	Acide nitrique	Liquide fumant incolore ou jaunâtre	

^(*) à T et P ambiante (20°C / 1 atm)

■ Principales utilisations

Les utilisations principales de l'acide nitrique sont l'industrie des engrais et des explosifs. Son utilisation en synthèse organique comme agent de nitration notamment, en industries métallurgique, textile et pharmaceutique est également rapportée.

■ Étiquetage

O, C R8 - R35 S1/2 - S23 - S 26 - S36- S45

■ Paramètres physico-chimiques

· Température de fusion (°C)42,5						
· Température d'ébullition (°C) 83						
· Température d'auto-inflammation (°C) (*)						
• Point éclair (°C) (*)						
· Limites d'explosivité (% dans l'air)						
Inférieure (LIE)(*)						
Supérieure (LSE) (*)						
• Facteur de conversion (à °C / 1 atm)						

· Solubilité dans l'eau à °C (g/L)..... Miscible

(*) Non concerné

INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seuls de toxicité aiguë

Acide nitrique

■ Seuils des effets toxiques (juin 2010)

Concentration	Temps (min.)							
	1	10	20	30	60	120	240	480
Seuil des effets létaux significatifs - SELS								
· mg/m³	11939	5542	4398	3842	3050	1525	762	381
• ppm	4561	2117	1680	1468	1164	583	291	146
Seuil des premiers effets létaux - SPEL								
· mg/m³	8557	3972	3153	2754	2186	1093	546	273
• ppm	3269	1517	1204	1052	835	418	209	104
Seuil des effets irréversibles - SEI								
· mg/m³	888	412	327	286	227	113	57	28
• ppm	339	157	125	109	87	43	22	11
Seuil des effets réversibles – SER								
· mg/m³	ND	ND	ND	ND	ND	ND	ND	ND
· ppm	ND	ND	ND	ND	ND	ND	ND	ND

ND: Non déterminé

■ Justification scientifique

Effets létaux :

- Etude critique : Dupont, 1987¹ (étude bien documentée et en accord avec les principes scientifiques, acceptable pour l'évaluation, cotation de Klimisch2)
- Etude expérimentale chez des rats, mesure de létalité. Exposition sous forme de vapeurs et aérosols. Huit concentrations d'exposition (260 à 3100 ppm), un temps d'exposition (60 minutes)
- Utilisation du logiciel probit-standard et utilisation de la loi de Haber (méthodologie française) pour détermination des CLx%.
- Pas d'application de facteurs d'incertitude.

Effets irréversibles :

- Etude critique : Dupont, 1987¹ (étude bien documentée et en accord avec les principes scientifiques, acceptable pour l'évaluation, cotation de Klimisch 2)
- Etude expérimentale chez des rats, lésions ulcératives cutanées. Exposition sous forme de vapeurs et aérosols. Huit concentrations d'exposition (260 à 3100 ppm), un temps d'exposition (60 minutes)
- Méthodologie française pour l'extrapolation aux différents temps d'exposition.
- Application d'un facteur d'incertitude de 3 (intra-espèces)

Effets réversibles :

- La détermination des SER n'a pas été possible compte-tenu des études disponibles.

Dupont, 1987. One-hour inhalation median lethal concentration (LC50) study with nitric acid. Haskell Laboratory. Report N°451– 87. Newark, Delaware. 26p.

INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seulls de Toxicité Aiguë

Acide nitrique

■ Remarques importantes

Compte tenu des caractéristiques physico-chimiques de l'acide nitrique (liquide très réactif), les émissions d'acide nitrique sont considérées comme un mélange d'aérosol et de gaz.

En cas d'émission accidentelle à de l'acide nitrique, la co-exposition à du NO₂ n'est pas exclue. L'utilisation des seuils de toxicité du NO₂ doit être considérée dans des situations où la quantité de NO₂ est supposée importante (par exemple en situation d'incendie).

■ Courbes des seuils SELS, SPEL, SEI, et SP en fonction du temps d'exposition

