高级软件开发——云盘系统设计文档

Koorye

2023年10月3日

目录

1	摘要	•															2
	1.1	编写目的	J														2
	1.2	阅读对象															2
	1.3	术语解释															2
2	概要	设计															3
	2.1	系统架构	J														3
	2.2	模块设计	٠														3
		2.2.1 月	月户服	多	模均	卢.											3
		2.2.2 🕏	て件服	务	模均	卢.						•					6
3	详细	设计															7
	3.1	数据表结	i构 .														7
	3.2	算法流程	<u>!</u>														9
		3.2.1 差	经录流														10
		3.2.2	7件上	.传	流程	₹.											11

1 摘要

1.1 编写目的

编写该文档的目的是对云盘系统进行详尽的设计,包括概要和详细设计,以便后续的开发工作顺利进行。

1.2 阅读对象

本文档适用于参与该项目的开发人员、项目经理和测试人员。

1.3 术语解释

本文档种的术语解释如表 1所示。

表 1: 术语解释

术语	解释								
WebDav	一种基于 HTTP 的文件操作协议								
B/S	浏览器-服务端架构								
C/S	客户端-服务端结构								
容灾	系统处理危机的能力								
SQL	一种用于数据库交互的脚本语言								
MySQL	一个开源的数据库系统								
Oracle	一个商业数据库系统								
SQLServer	一个由微软开发的数据库系统								
RPC	一种用于远程函数调用的通道协议								
MD5	一种哈希散列算法								
SHA256	一种哈希散列算法								
盐	拼接在密码后的一串字符,用于增加破译难度								
JWT	一种分布式 token 的生成方法								

2 概要设计

本章节将描述云盘系统的概要设计,包括系统架构和模板设计。

2.1 系统架构

云盘系统总体采用浏览器-服务端 (B/S) 或客户端-服务端 (C/S) 架构,而服务端内部采用微服务结构,由网关(转发)子模块、WebDav 子模块、文件存储子模块、用户存储子模块等微服务共同组成。其中每个子模块可配置单独的集群和容灾机制。

图 1: 系统架构

本系统的总体架构如图 1所示,浏览器或客户端可通过网关访端务端,网关会将请求转发给用户服务或 WebDav 服务。其中用户服务负责处理用户请求,如登录、注册等;而 WebDav 服务负责处理文件请求,如文件的上传、下载、移动、删除、预览等。

2.2 模块设计

本章节将描述云盘系统中的主要模块设计,包括用户服务模块和文件服 务模块。

2.2.1 用户服务模块

用户服务模块包括用户服务和用户存储(数据库)服务,用户服务和用户存储服务之间通过内部网络通信。

图 2: 用户服务模块

如图 2所示,用户服务中包含登录、注册、个人信息处理等业务,用户服务通过 HTTP 协议接收请求,之后通过 SQL 协议和局域网络与数据库进行交互。

考虑到与数据库的交互需要适配不同类型的数据库,如 MySQL、Oracle、SQLServer 等,逻辑较为复杂,这里提出几种设计模式来抽象为该步骤,以便之后的实现。

图 3: 基于单例模式的数据库服务实现

图 4: 基于工厂模式的数据库服务实现

图 5: 基于建造者模式的数据库服务实现

这里提出了 3 种数据库服务的设计模式,如图 3,4,5所示,分别为单例模式、工厂模式和建造者模式:

- 单例模式。数据库服务仅为整个系统创建一个单例,保证所有线程使用相同的服务,避免不同线程造成冲突。
- 工厂模式。通过一个数据库工厂来创建基于不同数据库系统的数据库 服务,保证该模块可以适配不同的数据库系统。
- 建造者模式。将数据库服务的创建逻辑分解为多个步骤,以简化操作。 事实上,在代码实现时,可以采用多个设计模式的混合策略。如工厂中 的每个创建方法都采用建造者模式逐步构建;其次可以引入单例模式,如果 服务已经被创建,就返回现有服务而不要创建新的服务。

2.2.2 文件服务模块

文件服务模块包括 WebDav 服务和文件存储服务,其中文件存储可以是本地的文件系统,也可以是远程的文件系统。

图 6: 文件服务模块

文件服务模块的架构如图 6所示,用户请求通过 HTTP 协议发送给 WebDav 服务,WebDav 处理文件的上传、下载、删除、移动、预览等请求,并于文件系统进行交互。

考虑到该模块需要支持不同的文件系统,本系统进行了高度的抽象,将本地/远程的文件系统交互抽象为一个接口,在此基础上实现本地文件系统的交互逻辑和基于 RPC 协议的远程文件系统交互逻辑。该部分同样可以采用单例、工厂、建造者等设计模式,与上一部分大致相同。

3 详细设计

本章节将描述云盘系统的详细设计,包括数据表结构和算法流程。

3.1 数据表结构

本章节将描述云盘系统的数据表结构。

表 2: 用户表

名称	类型	必	特殊	描述
		填		
用户 ID	bigint	是	主键	用户的唯一标识符。
用户名	varchar(20)	是	-	用户的名称
密码	varchar(20)	是	-	用户的密码
手机号	varchar(15)	是	-	用户的手机号(包括区号)
电子邮箱	varchar(100)	否	_	用户的电子邮箱
生日	date	否	_	用户的生日,包括年-月-日
角色	short	是	_	用户的角色,0表示普通用户,
				1表示管理员用户

用户表结构如表 2所示,用户表中包含唯一标识符、用户名、密码,以 及手机号、电子邮箱等描述信息。

表 3: 文件表

名称	类型	必	特殊	描述
		填		
文件 ID	bigint	是	主键	文件的唯一标识符
文件名	varchar(100)	是	-	文件的名称
文件类型	varchar(20)	是	-	文件类型,即后缀名
文件大小	long	是	-	文件大小,以 KB 为单位
hash 值	char(64)	是	-	哈希值,用于检测文件已经存
				在
创建时间	datetime	是	-	文件创建的时间
本地路径	varchar(200)	是	-	存储在本地文件系统中的路径
				或对象存储的 key
所属用户	bigint	是	外键	所属用户的唯一标识符
ID				

文件表结构如表 3所示,文件表中包含唯一标识符、文件名、类型、大小、hash 值、创建时间、本地路径和所属用户 ID 的外键信息。

表 4: 共享表

欠秒	米刑		(4: 共子 特殊	描述
名称	类型	必	行外	押坯
		填		
共享 ID	bigint	是	主键	分享的唯一标识符
属性	short	是	-	共享属性,0表示私人,1表示
				公共
密码	varchar(8)	否	-	分享链接的密码,如果有
截止时间	datetime	是	-	分享链接的有效期限
共享文件	bigint	是	外键	共享文件的唯一标识符
ID				
接收用户	bigint	否	外键	接收用户的唯一标识符,如果
ID				有

共享表结构如表 4所示,共享表中包含唯一标识符、属性、密码、截止时间和文件 ID、用户 ID 的外键信息。

图 7: 数据表结构

数据表结构和关系如图 7所示,其中用户可以拥有 0 至多个文件,一个文件只能属于一个用户,如果不同用户拥有的文件完整相同,将为其创建链接。一个共享链接只能指定一个文件,当模式为私人时,该共享只属于一个用户;否则,该文件属于所有公共用户。

3.2 算法流程

本章节将描述详细一些主要部分的算法流程。

3.2.1 登录流程

图 8: 登录流程

登录流程如图 8所示,图中展示了一些细节:

- 密码不能采用明文保存,而是采用 MD5/SHA256 等哈希算法加密后保存,之后在比对密码时也需要比对其哈希值,避免密码原文被泄露。
- 在比对通过后,将返回一个 JWT Token, 该 token 不需要在服务端存储,而是可以直接将一些用户信息,如盐、用户名、过期时间等信息写入并加密。当服务器收到一个 token 后,会尝试进行解码,只有解码成功才能拿到该用户的操作权限。

3.2.2 文件上传流程

图 9: 上传流程

文件上传流程如图 9所示,图中展示了一些细节:

- 文件上传时首先会进行比对,具体来说,当读到文件的第一个数据流之后,就将其哈希值与库中保存的哈希值进行比对。如果有相同的值,则视为该文件已经存在,此时只需要对现有文件生成链接,避免文件的重复上传。
- 当文件不存在时, 才需要写入文件系统并持续接收数据流直到关闭。