Probabilités et variables aléatoires

Proba. et Stat. - Cours

I Vocabulaire et notations

I. 1 Univers et évènement

Définition:

On appelle univers l'ensemble des issues possibles d'une expérience aléatoire. On le note souvent Ω . On appelle évènement un sous-ensemble de l'univers Ω , c'est à dire un ensemble d'issues.

I. 2 Inclusion

Définition:

Pour deux ensembles A et B, on dit que A est inclus dans B (ou que A est un sous-ensemble de B) lorsque tous les éléments appartenant à A appartiennent aussi à B. On le note $A \subset B$.

Exemple:

 $\begin{array}{l} - \{3;9\} \subset \{3;6;9\} \\ - \{1\} \subset \{0;1;1;2;3;5\} \end{array}$

I. 3 Intersection et réunion

Définition:

Soit Ω un ensemble et A, B deux sous-ensembles de Ω .

- On appelle l'intersection de A et B l'ensemble des éléments de Ω qui appartiennent à la fois à A et à B. On la note $A \cup B$.
- On appelle la réunion (ou l'union) de A et B l'ensemble des éléments de Ω qui appartiennent à au moins l'un des deux ensembles A et B. On la note $A \cap B$.

Exemple:

$$\begin{array}{ll} -- &]-\infty; 3] \cap]2; +\infty[& = \]2; 3] \\ -- & [1; 3] \cup]2; +\infty[& = \ [1; +\infty[\end{array}$$

I. 4 Complémentaire

Définition :

Soit Ω un ensemble et A un sous-ensemble de Ω . On appelle complémentaire de A dans Ω l'ensemble des éléments de Ω qui n'appartiennent pas à A. On le note \bar{A} .

Exemple:

Soit
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 et $A = \{1, 3, 5, 6\}$. On a alors $\bar{A} = \{2, 4\}$

I. 5 Notations générales

Notation	Vocabulaire ensembliste	Vocabulaire probabiliste
Ω	ensemble plein	évènement certain
Ø	ensemble vide	évènement impossible
ω	élément de Ω	évènement élémentaire
A	sous-ensemble de Ω	évènement
$\omega \in A$	ω appartient à A	ω réalise A
$A \subset B$	A inclus dans B	A implique B
$A \cup B$	réunion de A et B	A ou B
$A \cap B$	intersection de A et B	$A ext{ et } B$
$ar{A}$	complémentaire de A	évènement contraire de A
$A \cap B = \emptyset$	$A ext{ et } B ext{ disjoints}$	$A ext{ et } B ext{ incompatibles}$

I. 6 Modes de générations des ensembles

Définition:

Lorsqu'on définit un ensemble en extension, on écrit la liste complète de ses éléments entre deux accolades. L'ordre et les répétitions ne sont pas pris en compte.

Exemple:

La notation $\{1; 2; 3\}$ désigne le même ensemble que la notation $\{1; 2; 2\}$ ou encore de la notation $\{1; 2; 2; 3\}$.

Définition:

Soit E un ensemble. Lorsqu'on définit un sous-ensemble F de E en compréhension, on donne une proposition P(x) qui caractérise les éléments de F.L'ensemble des éléments de E qui vérifient P(x) est noté $\{x \in E/P(x)\}$.

Exemple:

- Soit $E = \{1, 2, 3, 4, 5\}$. La notation $\{x \in E/x \text{ est impair}\}$ désigne l'ensemble $\{1, 3, 5\}$.
- On définit en compréhension l'intervalle [2, 5] par $\{x \in \mathbb{R}/2 \le x \le 5\}$.
- En compréhension, l'ensemble des multiples de 3 se note $\{n \in \mathbb{Z}/ilexisteun entier k$ tel que $n=3k\}$