Building a Linear Regression model for housing dataset

Nithya S

2023-11-10

Introduction

Linear regression is a machine learning algorithm which estimates how a model is following a linear relationship between one response variable (denoted by y) and one or more explanatory variables (denoted by $X_1, X_2, X_3, ..., X_n$). The response variable will dependent on how the explanatory variables changes and not the other way round. Response variable is also known as target or dependent variable while the explanatory variable is known as independent or predictor variables.

There are two types of linear regression:

- 1. Simple Linear Regression
- 2. Multiple Linear Regression

Simple Linear Regression: It is a type of linear regression model where there is only independent or explanatory variable.

Objective

To choose any dataset for simple linear regression and examine the following

- 1. To comment about the different steps involved in building a simple linear regression model
- 2. To plot the scatter diagram for the data and find coefficient of correlation. What inference can be drawn from the scatter plot.
- 3. To estimate the parameters of a simple linear regression model and fit a regression line. To interpret the results.
- 4. To test the significance of the regression coefficient and interpret the results.
- 5. Different ways in which we can assess the quality of the fit.

Different steps involved in building a simple linear regression model

1. Reading and understanding the data We need to understand the data properly in order to proceed to further analysis.

- 2. Identifying the dependent and independent variables. Understanding or identifying the independent and dependent variables becomes crucial when it comes to building a linear regression model. 3. Visualizing the data We need to plot the data in order to depict the relationship the variables.
- 3. Building a linear model We then proceed to build a model in order to estimate the parameters of the model
- 4. Residual analysis Here we check if the fitted values and the predicted values collide in order to validate our model.
- 5. Testing of hypotheses Based on our objective and interest we test the hypotheses for intercept and slope parameters and draw inference for the dataset from the model.
- 6. Goodness of fit. From the results obtained we check for the significance of the test and evaluate the model.

To plot the scatter diagram for the data and find coefficient of correlation. Inference to be drawn from the scatter plot.

The housing dataset is taken from Kaggle

URL for the dataset:

https://www.kaggle.com/datasets/ashydv/housing-dataset/data?select=Housing.csv

The dataset has information about the price, area, different rooms, furniture style. Here the interested variables are price and area. Since the price increases or decreases with the decrease in area, we conclude that the independent variable is area (X) and the dependent variable is price(Y). We now proceed to check the kind of relationship between the variables of interest. First, we import the data and then proceed further

```
library(readr)
Housing_dataset <- read_csv("G:/My Drive/Linear
Regression/Datasets/Housing_dataset.csv")

## Rows: 545 Columns: 13
## — Column specification

## Delimiter: ","
## chr (7): mainroad, guestroom, basement, hotwaterheating, airconditioning, pr...
## dbl (6): price, area, bedrooms, bathrooms, stories, parking
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

View(Housing_dataset)
attach(Housing_dataset)</pre>
```

We now plot the graph as follows:

Relationship of Area and Price

From the scatter plot we interpret as: the independent variable (X) is area in square meters and the dependent variable (Y) is price in dollars. The plot shows that there is a moderately linear positive relationship between the variables under study.

The relationship can be understood better numerically by calculating the Karl Pearson's coefficient. We find the correlation of coefficient also known as Karl Pearson's correlation coefficient as follows:

```
cor(Housing_dataset$area,Housing_dataset$price)
## [1] 0.5359973
```

The correlation co-efficient between the variables is 0.5359973 So we say that there is a moderately positive linear relationship between the variables under study.

To estimate the parameters of a simple linear regression model and fit a regression line. To interpret the results.

In order to estimate the parameters, we fit the model. We build the model as below:

```
reg_model=lm(Housing_dataset$price~Housing_dataset$area)
reg_model
```

```
##
## Call:
## Im(formula = Housing_dataset$price ~ Housing_dataset$area)
##
## Coefficients:
## (Intercept) Housing_dataset$area
## 2387308 462
```

The model here is

$$Y = B_0 + B_1 X + U$$

From the model table, we see that the intercept parameter (B_0) is 2387308 and the slope parameter (B_1) is 462. The intercept term (B_0) depicts that if X sometimes becomes zero [Hypothetical situation], the intercept is simply the expected value of Y at that value. So, if B_1 becomes zero the average value of the price will be \$2387308. The slope term (B_1) depicts that for every 1 unit increase in X, the value of Y increases by \$462.

To fit a regression line

```
plot(Housing_dataset$area, Housing_dataset$price, col="hotpink", main="Relations
hip of Area and Price", xlab="Area in sqm", ylab="price in $")
abline(reg_model)
```

Relationship of Area and Price

The interpretation that can be drawn from the above graph is that, the above graph is the best possible fit for the dataset. We also see that there are outliers in the dataset from the above graph.

We can also have a smooth line connecting the points which gives us a better visual in order to understand the data better.

plot(Housing_dataset\$area, Housing_dataset\$price, col="hotpink", main="Relations
hip of Area and Price", xlab="Area in sqm", ylab="price in \$")

Relationship of Area and Price

scatter.smooth(Housing_dataset\$area,Housing_dataset\$price,col="hotpink",main=
"Relationship of Area and Price",xlab="Area in sqm",ylab="price in \$")
abline(reg_model)

Relationship of Area and Price

To test the significance of the regression coefficient and interpret the results.

We give the hypotheses as follows:

```
H<sub>0</sub>: B<sub>1</sub>=B<sub>10</sub> [zero]
v/s
H<sub>1</sub>: B<sub>1</sub>=!B<sub>10</sub> [zero]
```

We quickly check the summary of the model as follows:

```
summary(reg model)
##
## Call:
## lm(formula = Housing_dataset$price ~ Housing_dataset$area)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                  3Q
                                          Max
## -4867112 -1022228 -200135
                              683027 7484838
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                                                     <2e-16 ***
## (Intercept)
                       2.387e+06 1.745e+05
                                             13.68
## Housing_dataset$area 4.620e+02 3.123e+01
                                             14.79
                                                     <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1581000 on 543 degrees of freedom
## Multiple R-squared: 0.2873, Adjusted R-squared: 0.286
## F-statistic: 218.9 on 1 and 543 DF, p-value: < 2.2e-16
```

From the above table the p-value in the line of units is <2e-16 which is less than 0.05 level of significance. Hence, we reject null hypothesis and hence B_1 =!0. Thus, these exist a significant linear relationship between the variables. In other words, there is a significant relationship between the area and price of the houses.

Goodness of fit-Analysis

Here t calculated value 14.79 is significantly large than t (table value) = 1.9643 [two tailed test with 344 degrees of freedom and 5% significance level], therefore there exist a very strong linear relation. Since p-value is very small compared to 0.05 there exist a very strong linear relation.

Different ways in which we can assess the quality of the fit.

We fit the observed and the predicted values as follows

```
Fitted_values=fitted.values(reg_model)
Fitted_values
```

## 1 10	2	3	4	5	6	7	8	9	
## 5815162 5043664	6526604	6988578	5852120	5815162	5852120	6351053	9871302	6129305	
## 11 20	12	13	14	15	16	17	18	19	
## 8485377 5353187	5159158	5413244	4004221	5990713	5159158	5436343	6314095	4512393	
## 21 30	22	23	24	25	26	27	28	29	
## 4383040 4928170	5692739	6106206	4493914	6452688	5408624	5159158	6487336	6060009	
## 31 40	32	33	34	35	36	37	38	39	
## 5840571 5159158	5621133	4641746	5140679	5547217	5621133	5843805	6545083	5159158	
## 41 50	42	43	44	45	46	47	48	49	
## 5413244 5824402	5325469	5380906	5159158	5159158	5159158	5159158	5436343	4373801	
## 51 60	52	53	54	55	56	57	58	59	
## 5824402 5159158									
## 61 70	62	63	64	65	66	67	68	69	
## 5159158 7972585									
## 71 80	72	73	74	75	76	77	78	79	
## 4235208 5159158									
## 81 90	82	83	84	85	86	87	88	89	
## 5159158 6351053									
## 91 100 ## 4697183		93					98	99	
5159158 ## 101					106			109	
110 ## 5436343	-								
5443272 ## 111						117		119	
120 ## 5436343									
5630372 ## 121								129	
130			'						

## 5408624	5727849	5276499	5768965	5401695	9594117	5695049	5390145	4928170
7681541 ## 131	132	133	134	135	136	137	138	139
140 ## 4604788	5079698	4789578	4604788	5621133	5159158	4881973	4530872	4697183
5325469 ## 141	142	143	144	145	146	147	148	149
150 ## 5066763	5464061	7238045	4604788	4558590	4697183	7238045	4928170	5325469
5436343								
## 151 160	152	153	154	155	156	157	158	159
## 4760012 3842529	4419998	4881973	3911826	4073517	5205355	5574935	3688692	6073868
## 161 170	162	163	164	165	166	167	168	169
## 5256173 5408624	5205355	5436343	5540287	5487160	5367047	5990713	4512393	4355322
## 171	172	173	174	175	176	177	178	179
180 ## 4928170	7131329	6267898	4835775	4142813	6914662	6323335	5182257	5660401
3856389 ## 181	182	183	184	185	186	187	188	189
190 ## 4466196	5713528	3962643	6073868	3773233	3773233	7658442	5205355	5029805
4022700	3713320	3302013	0075000	3,,3233	3773233	7030112	3203333	3023003
## 191 200	192	193	194	195	196	197	198	199
## 5898318 4327603	7330440	5436343	4604788	6152404	4424618	5938048	3680838	5135135
## 201	202	203	204	205	206	207	208	209
210 ## 4475435	1270006	1200615	1001072	4500020	E2077E0	5066762	2772722	2750274
5491780	4273030	4230043	40013/3	4330323	3237730	3000703	3//3233	3/333/4
## 211 220	212	213	214	215	216	217	218	219
## 4533644 5621133	8346785	3967263	4694873	4396899	4309124	5177637	5557380	4611718
## 221	222	223	224	225	226	227	228	229
230 ## 6129305	3967263	6621770	5307452	7117931	5362427	4775719	5159158	4064277
6853220 ## 231	232	233	234	235	236	237	238	239
240	4202040	4447404		44-04		2742474	4704000	4470045
## 4881973 4235208								
## 241 250	242	243	244	245	246	247	248	249
## 4161292 4692563	4124334	4068897	3565344	4845015	4863494	4013460	6267898	4281406

шш	251	252	252	254	255	256	257	250	250	
## 260	251	252	253	254	255	256	257	258	259	
		3981122	6942381	4013460	4470815	5106031	4235208	6198601	4253687	
## 270	261	262	263	264	265	266	267	268	269	
		4008840	4119714	4220425	4650985	3717796	4641746	4660225	4674084	
## 280	271	272	273	274	275	276	277	278	279	
		3267371	4269856	4004221	5367047	4249991	4419998	7173368	3958023	
## 290	281	282	283	284	285	286	287	288	289	
		4466196	3392104	4401519	5976853	5459442	3674833	4928170	4715662	
## 300	291	292	293	294	295	296	297	298	299	
## 359 562113		3751520	3656354	4424618	4235208	3461400	4512393	4068897	5066763	
## 310	301	302	303	304	305	306	307	308	309	
## 427 452717		4013460	3378245	4466196	6198601	3981122	4623267	4272166	4256459	
## 320	311	312	313	314	315	316	317	318	319	
## 515 377323		5186876	4050418	4087376	4253687	4974368	5112960	4693487	4392280	
## 330	321	322	323	324	325	326	327	328	329	
## 438 421672		4064277	3985742	4881973	4466196	3985742	4281406	5380906	4466196	
## 340	331	332	333	334	335	336	337	338	339	
## 425 385638		5741246			3907206					
## 350	341	342	343						349	
461402	27				4165912					
## 360	351	352				356			359	
405041	.8				6267898					
## 370	361					366			369	
405041	.8				3828670					
## 380	371	372	373	374	375	376	377	378	379	

## 4364561	4036559	3856389	3773233	4013460	5140679	4295265	3703937	3438301
4013460 ## 381	382	383	384	385	386	387	388	389
390 ## 4466196 4512393	4235208	3842529	4466196	4466196	4068897	4165912	4346082	4073517
## 391 400	392	393	394	395	396	397	398	399
## 3373625 5782824	3789864	4230588	5817010	3994981	4050418	4068897	5112960	3828670
## 401 410	402	403	404	405	406	407	408	409
## 4009764 3858699	6776070	5103721	8367112	4650985	3800952	4845015	3378245	4235208
## 411 420	412	413	414	415	416	417	418	419
## 4165912 4678704	3378245	3593063	3288160	4253687	4597858	3981122	4068897	4004221
## 421 430	422	423	424	425	426	427	428	429
## 4290645 4593239	4581689	4105855	4119714	3819431	3858699	3634641	3378245	4253687
## 431 440	432	433	434	435	436	437	438	439
## 3542246 4202870	3856389	5186876	3994981	4139117	4253687	3378245	5103721	4466196
## 441 450	442	443	444	445	446	447	448	449
## 4068897 3149567	4406139	3627249	4383040	3828670	3981122	4228740	4004221	4279096
## 451 460	452	453	454	455	456	457	458	459
## 3981122 4004221	5505639	6545083	3805109	4466196	4925861	3495124	3773233	4165912
## 461 470	462	463	464	465	466	467	468	469
## 6129305 4512393	4678704	3385174	3814811	4466196	4142813	3814811	3884107	3697007
## 471 480	472	473	474	475	476	477	478	479
## 4732293 4078137	4119714	4064277	6106206	4397823	3773233	5089862	4678704	4050418
## 481 490	482	483	484	485	486	487	488	489
## 3994981 3911826								
## 491 500	492	493	494	495	496	497		499
## 4396899 4064277	3606922	3611542	4216729	5528738	4235208	4235208	4204718	3311258

## 510	501	502	503	504	505	506	507	508	509	
	3680838 50418	3509907	3994981	4235208	3858699	4235208	3731655	4050418	4419998	
## 526	511	512	513	514	515	516	517	518	519	
##		3856389	3773233	4419998	3773233	3870248	3884107	3773233	4004221	
## 530	521	522	523	524	525	526	527	528	529	
##		4066587	3530696	3674833	3895195	4068897	3856389	3235494	4221349	
## 546	531	532	533	534	535	536	537	538	539	
##		4835775	3773233	3496048	3773233	3939544	3967263	3172666	4073055	
##	541 3773233	542 3496048	543 4059658	544 3731655	545 4165912					

After calculating the fitted values with the help of the estimated coefficients B_0 and B_1 along with the independent variable area(X), we plot the observed and the predicted values. We also use "scatter.smooth" in order to get better understanding from the graph

plot(Housing_dataset\$price,Fitted_values,col="hotpink",main="Observed values
and the Predicted values",xlab="Observed values",ylab="Predicted/Fitted
values")

Observed values and the Predicted values

scatter.smooth(Housing_dataset\$price,Fitted_values,col="hotpink",main="Observ
ed values and the Predicted values",xlab="Observed
values",ylab="Predicted/Fitted values")

Observed values and the Predicted values

When observed from the graph, the error is very small (y and y^{hat} are very close to each other.)

Coefficient of determination

Determining the coefficient is important in order to assess the quality of the fit We calculate the coefficient of determination (r) as follows:

```
r=cor(Housing_dataset$price,Fitted_values)
r
## [1] 0.5359973
r^2
## [1] 0.2872932
```

 r^2 = 0.2872932, we draw the inference as 29% of the data's total variability is explained by the independent variable (area) of the dependent variable(price). Although 50% of the data should be explained for the consideration of prediction for it to be model that can be considered as a good fit. According to the r^2 , the model is a poor fit for the considered dataset.

Conclusion

We constructed the linear regression model and the estimated model obtained is

$$Y = 2387308 + 462X + U$$

The model has been tested for the hypotheses

 $H_0: B_1=B_{10} [zero]$

v/s

H₁: B₁=!B₁₀ [zero]

and the null hypothesis has been rejected and concluded that B_1 was not zero and thus there is a significant relationship between the variables, area and price.

The correlation of determination has been calculated and observed that 29% of the data's total variability is explained by area of the price which is a poor fit for the taken dataset.