Devoir Maison de Mathématiques Expertes

Diego Van Overberghe 10 février 2021

Partie A et B

À partir des informations de l'énoncé, nous avons, dans GéoGébra, pu conjecturer l'ensemble $\mathcal E$ comme étant le cercle centré sur le point d'affixe 0.5i de rayon 0.5i.

Figure 1 – Conjecture de la Représentation Graphique de l'Ensemble ${\mathcal E}$

Partie C

(1) a.
$$z_M = 10i + x$$
 $x \in \mathbb{R}$

b.
$$z_{M'} = \frac{10}{x - 10i} = \frac{10(x + 10i)}{(x - 10i)(x + 10i)} = \frac{10x}{x^2 + 100} + \frac{100}{x^2 + 100}i$$

$$z_{M'} - \frac{1}{2}i = \frac{10x}{x^2 + 100} + \frac{200 - x^2 - 100}{2(x^2 + 100)}i = \frac{10x}{x^2 + 100} + \frac{(100 - x^2)}{2(x^2 + 100)}i$$

Posons $z_A = \frac{1}{2}i$.

$$\begin{aligned} |AM'| &= \left| \frac{10x}{x^2 + 100} + \frac{100 - x^2}{2(x^2 + 100)} i \right| = \sqrt{\left(\frac{10x}{x^2 + 100}\right)^2 + \left(\frac{(100 - x^2)}{2(x^2 + 100)}\right)^2} \\ &= \sqrt{\frac{400x^2 + (100 - x^2)^2}{4(x^2 + 100)^2}} = \frac{1}{2} \sqrt{\frac{x^4 + 200x^2 + 10000}{x^4 + 200x^2 + 10000}} \\ &= \frac{1}{2} \end{aligned}$$

c. Vu que le module est une constante, l'ensemble est un cercle de rayon $\frac{1}{2}$ et de centre A

Donc, $M \in d \implies M' \in \mathcal{E}$

$$\begin{aligned} \textcircled{2} \quad \text{a. } |AM'|^2 &= \left| \frac{10}{\overline{z_M}} - \frac{1}{2}i \right|^2 = \left| \frac{20 - \overline{z_M}i}{2\overline{z_M}} \right|^2 = \left| \frac{20z_M - (Im(z_M)^2 + Re(z_M)^2)i}{2(Im(z_M)^2 + Re(z_M)^2)} \right|^2 \\ &= \left| \frac{20Re(z_M)}{2|z_M|^2} + \frac{20Im(z_M) - |z_M|^2}{2|z_M|^2}i \right|^2 \\ &= \frac{400Re(z_M)^2 + 400Im(z_M)^2 - 40Im(z_M)|z_M|^2 + |z_M|^4}{4|z_M|^4} \\ &= \frac{100 - 10Im(z_M)}{|z_M|^2} + \frac{1}{4} \end{aligned}$$

b.
$$|AN'| = \frac{1}{2} \iff \left|\frac{10}{\overline{z_N}} - \frac{1}{2}i\right|^2 = \frac{1}{4}$$

$$\iff \frac{100 - 10Im(z_N)}{|z_N|^2} = 0$$

$$\iff Im(z_N) = 10$$

- c. On a montré que $N' \in \mathcal{E} \implies N \in d$
- d. Finalement, $M \in d \iff M' \in \mathcal{E}$ Donc, tout point M sur la droite (d) a une image M' qui appartient à \mathcal{E} , le cercle de centre $\frac{1}{2}i$, et de rayon $\frac{1}{2}$.