Mo Tu We Th Fr Sa Su	Memo No/
LEC 2 INDUCTION	
1. To prove P is true, we	
(ie, 7p isT) & then use that	hypsthe heph
hypothesis to devoe a taken	good or contradiction
If TP => F is true.	
Ex. Thm. 12 is irrational.	
Pt (by Contradiction)	
assume for purpose of	contradiction that
52 is rational	lowest
(=) 5= 0/b (frate fraction	
$\frac{1}{a} = \frac{1}{2b^2} = \frac{a^2}{b^2} = \frac{a^2}{a^2}$	
even $+\infty$, $(2 \alpha) = 4 \alpha^2 = -1$	
bis even too 1/miltip	,
so a/b is not in lovest	t term
=> cotto contradiction *	
() E is irrational, check	

\(\frac{\pi}{2}\)	Z	5	R				
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.	-		
Date	/	/	

INDUCTION axiom

Let P(n) be a predicate, If P(o) is true and $\forall n \in \mathbb{N}$, $(P(n) \ni P(n+1))$ is true then $\forall n \in \mathbb{N}$, P(n) is true, by notation If P(o), $P(o) \ni P(1)$, $P(1) \ni P(2)$, ...

then P(o), $P(o) \ni P(1)$, $P(1) \rightarrow P(2)$, ...

then P(o), P(1), P(2) --- are true

EXI Thm: $\forall n \ge 0$ $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$ $\sum_{i=1}^{n} i = \sum_{i=1}^{n} i = \sum_{i=1}^{n} n$

If n=1 $1+2+\cdots+n=1$ If $n \le 0$ $1+2+\cdots+n=0$ n=4 $1+2+3+4=10=\frac{4(4+1)}{2}$

Let P(n) be proposition that $\frac{1}{2}i = \frac{n(n+1)}{2}$.

Base case: P(0) is true, $\frac{1}{2}i = 0 = \frac{o(n+1)}{2}$.

Inductive step for $n \ge 0$, show $P(n) \Rightarrow P(n+1)$ is true.

Assume P(n) is true for purposes of induction.

(i.e., assume $1+2--+n = \frac{n(n+1)}{2}$. $\frac{(n+1)(n+2)}{2}$.

-	\triangle	Y	5	R				
	Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	/	1	

) + 2 + · · · + n + cn + 1)
$\forall n \geq 0$, $\frac{n(n+1)}{2} + (n+1) = \frac{n^2 + n + 2n + 2}{2} = \frac{(n+1)(n+2)}{2}$
$P(n) \Rightarrow P(n+1)$, cheek
$[Exi]$ Thm: $\forall n \in \mathbb{N}, \leq (n^3 - n) $
PE by induction (et P'(n) 3/ (n3-n)
base case: n=0, 3/10-0)
Inductive step: For n >0 show xm) => p(n+1)
Assume P(n) is True, k.31 (n3-n)
Examine $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - (n+1)$
$=n^3+3n^2+2n$
$= n^3 - n + 3n^2 + 3n$
$=(n^2-m+3(n^2+n))$
$\Rightarrow 3 \left((n+1)^3 - (n+1) \right) $ mutiple by 3
=> Pim=> pin+1) Is true, check

Base case P(B) is true, assume P(n) true/file

Inductive step: $\forall n \ ?b$, $P(n) \Rightarrow P(n+1)$ Conclude $\forall n \ ?b$. P(n)

Ö	Z	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.		
Date	1	1

EX3. Them (NOT) All hourse one the same
alor
PE by induction
P(n) I any set of n horses, the horses one
all the same oder
Base case: P(1) true smæjust one horse
Inductive Step: assume Pin to prive Pin+1)
nt1 horses 17, H2,, 17, 11
P(n) are the same alor
172, · · Hp+1 also the same alor
3 Since (Hi)colon = Color (H, 1+n) = Color (Hn+1)
> all n+1 one same colon > Prn+1), check√
Why? What's wrong? In=1. is a empty set
$P(1) \Rightarrow P(2) \times P(2) \Rightarrow P(3) \Rightarrow P(4) \Rightarrow \cdots P(n)$
base one P(2) is take