RMSC4007 Project Presentation

Investigation on Auto-callable Reverse Convertible with Memory Coupon

Group 1

Kenneth, CHENG Tsun Him Anson, LEUNG Chi Shun Edward, CHAN Chi Fung YIP Kam Pak Issued by: CREDIT SUISSE

ISIN: CH0384867401

Main Objective

- Price a structural Quanto product (3 underlyings)
 - 1. Black-Scholes Model
 - 2. Heston Stochastic Volatility Model

(to fit volatility smile)

3. Heston SV x Jump-diffusion Model

(rare events like Brexit, discontinuous sample path)

- Compare the simulation results with quoted market price
- Analyse the associated risks

Contents

- Main Objective
- Description of product (term sheet)
- 3 pricing models used
- Calibration of model parameters
- Simulation of product price
- Risk involved
- Managing Risks
- Conclusion
- Limitations of our project

Description (term sheet)

Special features

- If closing level for EACH underlying ≥ threshold
 - EURO STOXX 50 Index (SX5E) ≥ 75% of initial level Swiss Market Index (SMI) ≥ 75% of initial level FTSE 100 Index (UKX) ≥ 75% of initial level

• Otherwise: No coupon is paid.

	19/1/2018	75%
	19/4/2018	75%
	19/7/2018	75%
	19/10/2018	75%
	21/1/2019	75%
Payout Threshold	17/4/2019	75%
(% to the Initial Level)	19/7/2019	75%
	21/10/2019	75%
	21/1/2020	75%
	21/4/2020	75%
	21/7/2020	75%
	21/10/2020	75%

1. Coupon paying – Memory function

Special features

• If closing level for EACH underlying ≥ barrier

EURO STOXX 50 Index (SX5E) ≥ 100% of initial level Swiss Market Index (SMI) ≥ 100% of initial level FTSE 100 Index (UKX) ≥ 100% of initial level

Otherwise: nothing happen

Final redemption logic

Terms used in final redemption

• First define...

Final Level		100% of closing level on final fixing date		
Worst Performing Underlying		underlying having the lowest $(\frac{Final\ level}{Strike})$ ratio		
C+:1	SX5E	2705.8275		
Strike (75% of Initial)	SMI	6952.395 Predetermined		
	UKX	5637.1275		

• If *final level* for EACH underlying ≥ its strike (=75% of initial)

EURO STOXX 50 Index (SX5E) \geq 2705.8275 Swiss Market Index (SMI) \geq 6952.395 FTSE 100 Index (UKX) \geq 5637.1275

	SX5E	2705.8275
Strike	SMI	6952.395
	UKX	5637.1275

• Otherwise: pay you $\frac{USD\$1000 \times final\ level\ of\ Worst-Performing\ Underlying}{its\ corresponding\ strike}$

Coupon payout	> 75% of initial level → GOOD
Autocall barrier	> 100% of initial level → BAD
Final redemption	> 75% of initial level → GOOD

- What are we betting on?
 - If $(75\% \le underlying \ level \le 100\%)$ all the time
 - *→ Happy*~~~~~~
- What are the incentives to trade this product?
 - 1. For investors who are speculating on all 3 indices, all fall between 75%-100% of initial level
 - 2. Leveraging

What are the incentives to trade this product? (continued)

3. Reverse convertible:

➤ Favorable for **low interest rate environment**

$$-\frac{5.20\% \ p.a}{4}$$

➤ Favorable for market of high volatility

Down: Hope to bounce back, Memory Function

<u>Up</u>: Early redemption: get back capital

- ➤ Increase the protection for investor:
 - alternative to shorting ATM down-and-in put options

Pricing models adopted

1. Black-Scholes Model

```
S_1 = EURO STOXX 50 Index (SX5E)
```

 S_2 = Swiss Market Index (SMI)

 S_3 = FTSE 100 Index (UKX)

```
F_1 = EUR/USD
```

 $F_2 = CHF/USD$

 $F_3 = GBP/USD$

BS Model in physical world

• Under ℙ:

$$\begin{cases} \frac{dS_{j}}{S_{j}} = \mu_{j}^{S}dt + \sigma_{j}^{S}dW_{j}^{\mathbb{P}}(t) \\ \frac{dF_{j}}{F_{i}} = \mu_{j}^{F}dt + \sigma_{j}^{F}dW_{j+3}^{\mathbb{P}}(t) \end{cases}$$
 for $j = 1, 2, 3$

and
$$\mathbb{E}\left(dW_{a}^{\mathbb{P}}dW_{b}^{\mathbb{P}}\right) = \rho_{a,b} dt$$
 for $\begin{cases} a = 1,2,3,4,5,6 \\ b = 1,2,3,4,5,6 \end{cases}$

BS Model in foreign world

Change of measure:

```
\mathbb{Q}^{(1)} = risk-neutral world under Euro market \mathbb{Q}^{(2)} = ..... under Swiss market \mathbb{Q}^{(3)} = ..... under UK market
```

```
r_1 = Euro interest rate (Taken from yield curve)

r_2 = Swiss interest rate (Taken from govt. bond yield)

r_3 = UK interest rate (Taken from govt. bond yield)

r_3 = U.S. interest rate (Taken from govt. bond yield)
```

BS Model in foreign world

• From \mathbb{P} to $\mathbb{Q}^{(j)}$:

$$\begin{cases} \frac{dS_j}{S_j} = r_j dt + \sigma_j^S dW_j^{\mathbb{Q}^{(j)}}(t) \\ \frac{dF_j}{F_j} = (r - r_j) dt + \sigma_j^F dW_{j+3}^{\mathbb{Q}}(t) \end{cases}$$
 for $j = 1, 2, 3$

(Proof is shown in the appendix of report)

BS Model in local world

Change of measure:

 \mathbb{Q} = risk-neutral world under U.S. market

• From $\mathbb{Q}^{(j)}$ to \mathbb{Q} :

$$\frac{dS_j}{S_i} = (r_j - \rho_{j,j+3} \sigma_j^S \sigma_j^F) dt + \sigma_j^S dW_j^{\mathbb{Q}}(t) \quad \text{for } j = 1,2,3$$

(Proof is shown in the appendix of report)

Correlation structure in BS Model

	dW_1	dW_2	dW_3	dW_4	dW_5	dW_6
dW_1	dt					
dW_2	$ ho_{1,2}$	dt				
dW_3	$ ho_{1,3}$	$ ho_{2,3}$	dt			
dW_4	$ ho_{1,4}$	$ ho_{2,4}$	$ ho_{3,4}$	dt		
dW_5	$ ho_{1,5}$	$ ho_{2,5}$	$ ho_{3,5}$	$ ho_{4,5}$	dt	
dW_6	$ ho_{1,6}$	$ ho_{2,6}$	$ ho_{3,6}$	$ ho_{4,6}$	$ ho_{5,6}$	dt

Source of parameters

Parameter types	Estimated by Historical data	Calibrated by option data	Extract from Bloomberg	Imply by others
Volatilities	σ_1^S , σ_2^S , σ_3^S , σ_1^F , σ_2^F , σ_3^F	N/A	N/A	N/A
Correlations	$ ho_{1,2}, ho_{1,3}, ho_{1,4},\ ho_{2,3}, ho_{2,5}, ho_{3,6},\ ho_{4,5}, ho_{4,6}, ho_{5,6}$	N/A	N/A	$ ho_{1,5}$, $ ho_{1,6}$, $ ho_{2,4}$, $ ho_{2,6}$, $ ho_{3,4}$, $ ho_{3,5}$,
Initial values	N/A	N/A	$S_1(0), S_2(0), S_3(0),$ $F_1(0), F_2(0), F_3(0),$ r_1, r_2, r_3, r	N/A

Pricing models adopted

2. Heston Stochastic Volatility (SV) model

```
S_1 = EURO STOXX 50 Index (SX5E)
```

 S_2 = Swiss Market Index (SMI)

 S_3 = FTSE 100 Index (UKX)

```
risk-neutral world under Euro market
                 under Swiss market
                 under UK market
```

```
F_1 = EUR/USD
F_2 = CHF/USD
```

 $F_3 = GBP/USD$

 r_1 = Euro interest rate (Taken from yield curve)

 r_2 = Swiss interest rate (Taken from govt. bond yield)

 r_3 = UK interest rate (Taken from govt. bond yield)

r = U.S. interest rate (Taken from govt. bond yield)

Heston Model in physical world

and $\mathbb{E}\left(dW_a^{\mathbb{P}}dW_b^{\mathbb{P}}\right) = \rho_{a,b} dt$

ullet Under ${\mathbb P}$:

$$\begin{cases} \frac{dS_{j}}{S_{j}} = \mu_{j}^{S} dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{P}}(t) \\ dV_{j}^{S} = \kappa_{j} (\theta_{j} - V_{j}^{S}) dt + \sigma_{j}^{V} \sqrt{V_{j}^{S}} dW_{j+3}^{\mathbb{P}}(t) \end{cases}$$
 for $j = 1, 2, 3$

$$\frac{dF_{j}}{F_{j}} = \mu_{j}^{F} dt + \sigma_{j}^{F} dW_{j+6}^{\mathbb{P}}(t)$$

 κ = mean-reverting rate of V^S

 θ = long-run average V^S

for $\begin{cases} a = 1, 2, ..., 8, 9 \\ b = 1, 2, ..., 8, 9 \end{cases}$

Heston Model in foreign world

• From \mathbb{P} to $\mathbb{Q}^{(j)}$:

$$for j = \begin{cases} \frac{dS_{j}}{S_{j}} = r_{j}dt + \sqrt{V_{j}^{S}}dW_{j}^{\mathbb{Q}^{(j)}}(t) \\ dV_{j}^{S} = \kappa_{j}^{*}(\theta_{j}^{*} - V_{j}^{S})dt + \sigma_{j}^{V}\sqrt{V_{j}^{S}}dW_{j+3}^{\mathbb{Q}^{(j)}}(t) \\ \frac{dF_{j}}{F_{j}} = (r - r_{j})dt + \sigma_{j}^{F}dW_{j+6}^{\mathbb{Q}}(t) \end{cases}, \quad \begin{cases} \kappa_{j}^{*} = \kappa_{j} + c_{j} \\ \theta_{j}^{*} = \frac{\kappa_{j}\theta_{j}}{\kappa_{j} + c_{j}} \\ c_{j} \in \mathbb{R} \end{cases}$$

(Proof is shown in the appendix of report)

Heston Model in local world

• From $\mathbb{Q}^{(j)}$ to \mathbb{Q} :

$$\begin{cases} \frac{dS_{j}}{S_{j}} = (r_{j} - \rho_{j,j+6} \sigma_{j}^{F} \sqrt{V_{j}^{S}}) dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{Q}}(t) \\ dV_{j}^{S} = \left[\kappa_{j}^{*} (\theta_{j}^{*} - V_{j}^{S}) - (\rho_{j,j+3}) (\rho_{j,j+6}) (\sigma_{j}^{F} \sigma_{j}^{V}) \sqrt{V_{j}^{S}} \right] dt & for j = 1,2,3 \\ + \sigma_{j}^{V} \sqrt{V_{j}^{S}} dW_{j+3}^{\mathbb{Q}}(t) & \end{cases}$$

(Proof is shown in the appendix of report)

Correlation structure in Heston Model

	dW_1	dW_2	dW_3	dW_4	dW_5	dW_6	dW_7	dW_8	dW_9
dW_1	dt								
dW_2	$ ho_{1,2}$	dt							
dW_3	$ ho_{1,3}$	$ ho_{2,3}$	dt						
dW_4	$ ho_{1,4}$	$ ho_{2,4}$	$ ho_{3,4}$	dt					
dW_5	$ ho_{1,5}$	$ ho_{2,5}$	$ ho_{3,5}$	$ ho_{4,5}$	dt				
dW_6	$ ho_{1,6}$	$ ho_{2,6}$	$ ho_{3,6}$	$ ho_{4,6}$	$ ho_{5,6}$	dt			
dW_7	$ ho_{1,7}$	$ ho_{2,7}$	$ ho_{3,7}$	$ ho_{4,7}$	$ ho_{5,7}$	$ ho_{6,7}$	dt		
dW_8	$ ho_{1,8}$	$ ho_{2,8}$	$ ho_{3,8}$	$ ho_{4,8}$	$ ho_{5,8}$	$ ho_{6,8}$	$ ho_{7,8}$	dt	
dW_9	$ ho_{1,9}$	$ ho_{2,9}$	$ ho_{3,9}$	$ ho_{4,9}$	$ ho_{5,9}$	$ ho_{6,9}$	$ ho_{7,9}$	$ ho_{8,9}$	dt

Source of parameters

Parameter types	Estimated by Historical data	Calibrated by option data	Extract from Bloomberg	Imply by others
Volatilities	σ_1^F , σ_2^F , σ_3^F	N/A	N/A	N/A
Heston's Parameters	N/A	$\kappa_{1}^{*}, \theta_{1}^{*}, \sigma_{1}^{V}, V_{1}^{S}(0), \rho_{1,4};$ $\kappa_{2}^{*}, \theta_{2}^{*}, \sigma_{2}^{V}, V_{2}^{S}(0), \rho_{2,5};$ $\kappa_{3}^{*}, \theta_{3}^{*}, \sigma_{3}^{V}, V_{3}^{S}(0), \rho_{3,6}$	N/A	N/A
Other Correlations $(\rho_{a,b})$	(1,2), (1,3), (1,7), (2,3), (2,8), (3,9), (7,8), (7,9), (8,9)	N/A	N/A	(2,4), (3,4), (1,5), (3,5), (4,5), (1,6), (2,6), (4,6), (5,6), (2,7), (3,7), (4,7), (5,7), (6,7), (1,8), (3,8), (4,8), (5,5), (6,5), (1,9), (2,9), (4,9), (5,9), (6,9)
Initial values	N/A	N/A	$S_1(0), S_2(0), S_3(0),$ $F_1(0), F_2(0), F_3(0),$ r_1, r_2, r_3, r	N/A

Pricing models adopted

Heston x Jump Model in physical world

ullet Under ${\mathbb P}$:

Lognormal Jump size

$$for j = \begin{cases} \frac{dS_{j}}{S_{j}} = \mu_{j}^{S} dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{P}}(t) + J_{j} dN_{j}(t) \\ = \mu_{j}^{S} dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{P}}(t) + (e^{Y_{j}} - 1) dN_{j}(t) \\ dV_{j}^{S} = \kappa_{j} (\theta_{j} - V_{j}^{S}) dt + \sigma_{j}^{V} \sqrt{V_{j}^{S}} dW_{j+3}^{\mathbb{P}}(t) \\ \frac{dF_{j}}{F_{i}} = \mu_{j}^{F} dt + \sigma_{j}^{F} dW_{j+6}^{\mathbb{P}}(t) \end{cases}$$

Independency:

- $dN_a \perp dN_b$
- $J_a \coprod J_b$ $dN_a \coprod dW_b^{\mathbb{P}}$

•
$$Y_j \sim N(m_j, v_j)$$

•
$$Y_j \sim N(m_j, v_j)$$

• $\mathbb{E}\left(dN_j^{\mathbb{P}}\right) = \lambda_j dt$

and
$$\mathbb{E}\left(dW_a^{\mathbb{P}}dW_b^{\mathbb{P}}\right) = \rho_{a,b} dt$$
 for $\begin{cases} a = 1,2,...,8,9 \\ b = 1,2,...,8,9 \end{cases}$

Heston x Jump Model in foreign world

• From \mathbb{P} to $\mathbb{Q}^{(j)}$:

$$for j = \begin{cases} \frac{dS_{j}}{S_{j}} = \left\{ r_{j} - \lambda_{j} \left[\mathbb{E}(e^{Y_{j}}) - 1 \right] \right\} dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{Q}^{(j)}}(t) \\ + (e^{Y_{j}} - 1) dN_{j}(t) \\ dV_{j}^{S} = \kappa_{j}^{*} \left(\theta_{j}^{*} - V_{j}^{S} \right) dt + \sigma_{j}^{V} \sqrt{V_{j}^{S}} dW_{j+3}^{\mathbb{Q}^{(j)}}(t) \end{cases}$$

$$\frac{dF_{j}}{F_{j}} = (r - r_{j}) dt + \sigma_{j}^{F} dW_{j+6}^{\mathbb{Q}}(t)$$

(Proof is shown in the appendix of report)

Heston x Jump Model in local world

• From $\mathbb{Q}^{(j)}$ to \mathbb{Q} :

$$\begin{cases}
\frac{dS_{j}}{S_{j}} = \left\{ r_{j} - \lambda_{j} \left[\mathbb{E}(e^{Y_{j}}) - 1 \right] - \rho_{j,j+6} \, \sigma_{j}^{F} \sqrt{V_{j}^{S}} \right\} dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{Q}}(t) \\
+ \left(e^{Y_{j}} - 1 \right) dN_{j}(t) \\
dV_{j}^{S} = \left[\kappa_{j}^{*} \left(\theta_{j}^{*} - V_{j}^{S} \right) - \left(\rho_{j,j+3} \right) \left(\rho_{j,j+6} \right) \left(\sigma_{j}^{F} \sigma_{j}^{V} \right) \sqrt{V_{j}^{S}} \right] dt \\
+ \sigma_{j}^{V} \sqrt{V_{j}^{S}} \, dW_{j+3}^{\mathbb{Q}}(t)
\end{cases}$$

(Proof is shown in the appendix of report)

Source of parameters

Others are same with Heston

Parameter types	Estimated by Historical data	Calibrated by option data	Extricom Bloomberg	Imply by others
Volatilities	σ_1^F , σ_2^F , σ_3^F	N/A	N/A	N/A
Heston's Parameters	N/A	$\kappa_{1}^{*}, \theta_{1}^{*}, \sigma_{1}^{V}, V_{1}^{S}(0), \rho_{1,4};$ $\kappa_{2}^{*}, \theta_{2}^{*}, \sigma_{2}^{V}, V_{2}^{S}(0), \rho_{2,5};$ $\kappa_{3}^{*}, \theta_{3}^{*}, \sigma_{3}^{V}, V_{3}^{S}(0), \rho_{3,6}$	N/A	N/A
Jump size- related	N/A	$\lambda_{j}, m_{j}, v_{j}$ (for $j = 1,2,3$)	N/A	N/A
Other Correlations $(\rho_{a,b})$	(1,2), (1,3), (1,7), (2,3), (2,8), (3,9), (7,8), (7,9), (8,9)	N/A	N/A	(2,4), (3,4), (1,5), (3,5), (4,5), (1,6), (2,6), (4,6), (5,6), (2,7), (3,7), (4,7), (5,7), (6,7), (1,8), (3,8), (4,8), (5,5), (6,5), (1,9), (2,9), (4,9), (5,9), (6,9)
Initial values	N/A	N/A	$S_1(0), S_2(0), S_3(0), F_1(0),$ $F_2(0), F_3(0), r_1, r_2, r_3, r$	N/A

Calibration of model parameters

Heston:

Parameter types	Histor ical data	Calibration by option data	Extract from Bloomberg	Imply by others
Volatilities	$\sigma_1^F, \ \sigma_2^F, \ \sigma_3^F$	N/A	N/A	N/A
Heston's Parameters	N/A	$\begin{array}{c} \kappa_1^*, \theta_1^*, \sigma_1^V, V_1^{\rm S}(0), \rho_{1,4}; \\ \kappa_2^*, \theta_2^*, \sigma_2^V, V_2^{\rm S}(0), \rho_{2,5}; \\ \kappa_3^*, \theta_3^*, \sigma_3^V, V_3^{\rm S}(0), \rho_{3,6} \end{array}$	N/A	N/A
Other Correlations $(\rho_{a,b})$	(1,2), (1 (2,3) , (2,8), (3,9), (7,8), (7,9), (8,9)	N/A	N/A	(2,4), (3,4), (1,5), (3,5), (4,5), (1,6), (2,6), (4,6), (5,6), (2,7), (3,7), (4,7), (5,7), (6,7), (1,8), (3,8), (4,8), (5,5), (6,5), (1,9), (2,9), (4,9), (5,9), (6,9)
Initial values	N/A	N/A	$S_1(0), S_2(0),$ $S_3(0), F_1(0),$ $F_2(0), F_3(0),$ r_1, r_2, r_3, r	N/A

Heston x Jump:

Parameter types	Histor ical data	Calibration by option data	Extract from Bloomberg	Imply by others
Volatilities	$\sigma_1^F, \ \sigma_2^F, \ \sigma_3^F$	N/A	N/A	N/A
Heston's Parameters	N/A	$\begin{array}{l} \kappa_{1}^{*},\theta_{1}^{*},\sigma_{1}^{V},V_{1}^{S}(0),\rho_{1,4};\\ \kappa_{2}^{*},\theta_{2}^{*},\sigma_{2}^{V},V_{2}^{S}(0),\rho_{2,5};\\ \kappa_{3}^{*},\theta_{3}^{*},\sigma_{3}^{V},V_{3}^{S}(0),\rho_{3,6} \end{array}$	N/A	N/A
Jump size- related	N/A	λ_j, m_j, v_j (for $j = 1,2,3$)	N/A	N/A
Other Correlations $(\rho_{a,b})$	(1,2), (1 (2,3) , (2,8), (3,9), (7,8), (7,9), (8,9)	N/A	N/A	(2,4), (3,4), (1,5), (3,5), (4,5), (1,6), (2,6), (4,6), (5,6), (2,7), (3,7), (4,7), (5,7), (6,7), (1,8), (3,8), (4,8), (5,5), (6,5), (1,9), (2,9), (4,9), (5,9), (6,9)
Initial values	N/A	N/A	$S_1(0), S_2(0),$ $S_3(0), F_1(0),$ $F_2(0), F_3(0),$ r_1, r_2, r_3, r	N/A

How our model differs from the truth

Minimizing $\sum weight * (call price_{mkt} - call price_{model})^2$

Obtain the best set of parameters $(\kappa_1^*, \theta_1^*, \sigma_1^V \dots)$

Differential Evolution (DE)

- > Evolves a class of parameters in parallel at each generation
- > Obtain the parameter set that minimize the cost function
- Similar to the concept of 'Natural selection'

For the j^{th} generation...

- 1. Select initial population (Random / Best from last gen.)
- 2. Mutation (Basis for the "Evolution")
- 3. Crossover of parameters into individual
- 4. Select individuals for next generation (Compare cost function)

Why we choose DE algorithm

- Avoid staying at the local minimum
- Stable speed for standard setting (NP=75, Gen=1500, CR=0.5, F=0.8)
- Cost function may not be continuous:

$$\min_{\Xi} \sum_{i=1}^{N} (w_i (c_i^{mkt} - c_i^{model})^2)$$

Where $\Xi = Parameter\ set\ \{\kappa_j^*, \theta_j^*, \sigma_j^V, V_j^S(0), \rho_{(j,j+3)}\}\$

Cost function

Using calls of ≈50 different strikes

$$\sum_{i=1}^{N} (w_i(c_i^{mkt} - c_i^{model})^2)$$

```
where c_i^{mkt} = market \ observed \ call \ price
c_i^{model} = call \ price \ calculated \ by \ model \ (IFFT)
w_i = weighting \ (Vega)
```

(Proof is shown in the appendix of report)

•
$$c^{Heston \, model}(S, V, t) = e^{-rT} e^{-\alpha k} \mathcal{F}_{\xi, k}^{-1} \left\{ \frac{\phi_H(\log S, V, t; \varphi = \xi - (\alpha + 1)i)}{\alpha^2 + \alpha - \xi^2 + i(2\alpha + 1)\xi} \right\}$$

By inverse FFT

where
$$\phi_H(x, v, t; \varphi) = characteristic function of lnS_t$$

= $exp\{i\varphi x + A(t, T) + B(t, T)v\}$

Calibration result of Heston model

	κ_{j}^*	$ heta_{ exttt{j}}^{*}$	σ^V_{j}	$V_{\rm j}^{\rm S}(0)$	$ ho_{(j,j+3)}$
SX5E (j=1)	0.363477	0.0745492	0.530653	0.0218171	-0.405048
SMI (j=2)	0.535387	0.0654437	0.999361	0.0308053	-0.229081
UKX (j=3)	0.485086	0.104248	0.996793	0.0337472	-0.432254

- Feller condition: $2\kappa_j^*\theta_j^* > \sigma_j^{V^2}$ (negative variance)
 - ➤ Not satisfied....
- Use 'Full Truncation Scheme' to sim V: $\hat{V}(t) = max\{\hat{V}(t), 0\}$
 - Ensuring no negative variance
- Not satisfying Feller condition → possibly better fit

Calibration result of Heston x Jump model

	κ_{j}^{*}	$ heta_{ m j}^*$	σ^V_{j}	$V_{\rm j}^{\rm S}(0)$	$ ho_{(j,j+3)}$	λ_j	m_{j}	v_{j}
SX5E (j=1)	0.000439	0.59683	0.098254	0.359915	0.645909	0.033407	-886.227	0.081417
SMI (j=2)	0.000105	0.827242	0.071353	0.616089	0.848338	0.034248	-379.826	0.914164
UKX (j=3)	0.052035	-0.36572	0.056172	0.509112	0.952581	0.045038	-806.159	0.666227

■ The equivalence of "Feller condition" in this case is unknown

- Use 'Full Truncation Scheme' to sim V: $\hat{V}(t) = max\{\hat{V}(t), 0\}$
 - ➤ Ensuring no negative variance

Simulation of product price

Simulation procedure (BS)

- Generate 3 independent Normal R.V.s and perform Cholesky decomposition
- Exactly simulate the stock prices for the 3 indices on each payout/trigger observation day
- 3. Check on each <u>payout observation day</u> whether all three indices are above 75%*Initial level
 - a) if yes and memory function = j (where $j \ge 0$) then
 - i. payout given at payout day = (0.052/4)*(denomination)*(j+1) and set memory = 0
 - ii. Discounted payout = exp(-rt)*payout
 - b) if no then
 - i. no coupon given and memory = memory + 1

- 4. Check on each <u>trigger observation day</u> whether all the three indices are above 100%*Initial level
 - a) if yes and memory function = j (where $j \ge 0$) then
 - i. Redemption at redemption day =denomination + (0.052/4)*(denomination)*(j+1) and PATH END
 - ii. Discounted redemption = exp(-rt)*redemption
 - b) if no then continue to check other dates
- 5. On *final redemption date*, check whether all three indices are above 75%*Initial level
 - a) If yes, final redeem = denomination
 - b) If no, final redeem = (denomination)*(final level of worst underlying)/(corresponding strike)
 - c) Discounted final redemption = exp(-rt)*(final redeem)

- 6. Store the discounted total payout = payout (i),discounted final/early redemption = redemption (i)
- 7. Repeat step 1 to 7 from i = 1 to 10,000
- 8. Estimated price = $\sum \{payout(i) + redemption(i)\}/10,000$

Simulation procedure (Heston/Jump added)

- 1. Generate 3 independent Normal R.V.s and perform Cholesky decomposition
- 2. Exactly simulate the stock prices for the 3 indices on each payout/trigger observation day
- 3. Check on each payout obsergation day whether all three indices are above 75%stInitial level
 - a) if yes and function i (where $j \ge 0$) then

 $\sqrt{4}$ (denomination)*(j+1) and set memory = 0

Not possible anymore

and memory = memory + 1

- 4. Check on each trigger observation day whether all the three indices are above 100%*Initial level
 - a) if yes and memory function = j (where $j \ge 0$) then
 - i. Redemption at redemption day = denomination + (0.052/4)*(denomination)*(j+1) and **PATH END**
 - ii. Discounted redemption = exp(-rt)*redemption
 - b) if no then continue to check other dates
- 5. On final redemption date, check whether all three indices are above 75%*Initial level
 - a) If yes, final redeem = denomination
 - b) If no, final redeem = (denomination)*(final level of worst underlying)/(corresponding strike)
 - c) Discounted final redemption = exp(-rt)*(final redeem)
- 6. Store the discounted total payout = payout(i), discounted (final) redemption = redemption (i)
- 7. Repeat step 1 to 7 from i = 1 to 10,000
- 8. Estimated price = $\sum {payout(i) + redemption(i)}/10,000$

Simulation of V and S (Heston / Jump added)

- 1. Generate 6 Normal R.V.s and perform Cholesky decomposition
- 2. Discretize the SDE of V as aforementioned
- 3. Employ the full truncation scheme [V* = max(V,0)]

Explain in the coming slides

- 4. Use the V* obtained to simulate S at each time step
 - a. If Jump added, also do the following to simulate S

Generate 3 independent Poisson R.V.s for jump frequency
Generate another 3 independent Normal R.V.s for jump size

5. Repeat step 1 to 4 for m times (m = defined time step)

Recall: Heston Model under Q (local world):

$$\begin{cases} \frac{dS_{j}}{S_{j}} = \left(r_{j} - \rho_{j,j+6} \sigma_{j}^{F} \sqrt{V_{j}^{S}}\right) dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{Q}}(t) \\ dV_{j}^{S} = \left[\kappa_{j}^{*} \left(\theta_{j}^{*} - V_{j}^{S}\right) - \left(\rho_{j,j+3}\right) \left(\rho_{j,j+6}\right) \left(\sigma_{j}^{F} \sigma_{j}^{V}\right) \sqrt{V_{j}^{S}}\right] dt \\ + \sigma_{j}^{V} \sqrt{V_{j}^{S}} dW_{j+3}^{\mathbb{Q}}(t) \end{cases}$$

Recall: Heston Model under Q (local world):

$$\begin{cases} \frac{dS_{j}}{S_{j}} = \left(r_{j} - \rho_{j,j+6} \, \sigma_{j}^{F} \sqrt{V_{j}^{S}}\right) dt + \sqrt{V_{j}^{S}} dW_{j}^{\mathbb{Q}}(t) \\ dV_{j}^{S} = \left[\kappa_{j}^{*} \left(\theta_{j}^{*} - V_{j}^{S}\right) - \left(\rho_{j,j+3}\right) \left(\rho_{j,j+6}\right) \left(\sigma_{j}^{F} \sigma_{j}^{V}\right) \sqrt{V_{j}^{S}}\right] dt \\ + \sigma_{j}^{V} \sqrt{V_{j}^{S}} \, dW_{j+3}^{\mathbb{Q}}(t) \end{cases}$$

$$V_{j}^{S} \text{ need to stay non-negative}$$

• Discrete-time approximation for $\widehat{V_j^{\rm S}}$:

$$\widehat{V_{j}^{\mathrm{S}}}(t+\Delta) = \widehat{V_{j}^{\mathrm{S}}}(t) + \left[\kappa_{j}^{*} \left(\theta_{j}^{*} - \widehat{V_{j}^{\mathrm{S}}}(t)\right) - \left(\rho_{j,j+3}\right) \left(\rho_{j,j+6}\right) \left(\sigma_{j}^{F} \sigma_{j}^{V}\right) \sqrt{\widehat{V_{j}^{\mathrm{S}}}(t)}\right] \Delta$$
$$+ \sigma_{j}^{V} \sqrt{\widehat{V_{j}^{\mathrm{S}}}(t)} Z_{V} \sqrt{\Delta}$$

• Discrete-time approximation for $\widehat{V_j^S}$: $\widehat{V_j^S}(t+\Delta) = \widehat{V_j^S}(t) + \left[\kappa_j^* \left(\theta_j^* - \widehat{V_j^S}(t)\right) - \left(\rho_{j,j+3}\right) \left(\rho_{j,j+6}\right) \left(\sigma_j^F \sigma_j^V\right) \sqrt{\widehat{V_j^S}(t)}\right] \Delta + \sigma_j^V \sqrt{\widehat{V_j^S}(t)} Z_V \sqrt{\Delta}$

If large NEGATIVE value is generated...

May then be Negative!!! If large NEGATIVE value is generated...

'Full Truncation' scheme

• <u>Traditional Juler scheme</u> (Cholesky decomposition):

$$Z_S = \Psi^{-1}(U_1), \qquad Z_V = \rho Z_S + \sqrt{1 - \rho^2} \Psi^{-1}(U_2)$$

 \blacktriangleright can generate NEGANVE $oldsymbol{Z_V}$!!!

• Full Truncation scheme:

$$\hat{V}(t) = \max\{\hat{V}(t), 0\}$$

Other scheme...?

- Quadratic-exponential (QE) discretization scheme, Andersen (2008):
 - ➤ Outperforms the normal truncation scheme in all cases tested¹!!!!!!!!
 - ➤ Maintains pricing accuracy even when the parameters are extreme¹

¹ N.H. Chan and H.Y. Wong (2013). Handbook of Financial Risk Management: Simulations and Case Studies, Wiley, New York.

Comparing pricing result of different models

	No. of simulation	Mean of price	Sd of price	$\left price^{market} - price^{model} ight $
Black-Scholes Model	100	USD \$986.5	4.212	USD \$38.5
Heston Model	100	USD \$828.4	3.914	USD \$119.6
Heston x Jump Model	100	USD \$805.0	3.703	USD \$143

- Mid bid-ask price as @ 19/11/2018 = USD \$948
- ➤ Closest = BS Model
- ➤ Market fails to consider SV + jump event

Risk involved

Currency Risk

e.g. ρ between underlying and foreign exchange rate

$$BS: \frac{dS_j}{S_i} = (r_j - \rho_{j,j+3} \sigma_j^S \sigma_j^F) dt + \sigma_j^S dW_j^{\mathbb{Q}}(t)$$

Heston:
$$\frac{dS_j}{S_j} = (r_j - \left[\rho_{j,j+6} \sigma_j^F \sqrt{V_j^S}\right] dt + \sqrt{V_j^S} dW_j^{\mathbb{Q}}(t)$$

Credit risk

Debts issued by Credit Suisse	Moody's	S&P
Rating on Senior Unsecured Debt	Baa2	BBB+
Rating on Subordinated Debt	Baa3	BBB+

- Credit rating of issuer
- Slight lower than industry average
- > Further explained in 'Limitations' part

Model risk

• Black-Scholes model:

- Constant volatility (Violate with the observed volatility smile)
- > Constant interest rate
- Normal assumption (Size of tail)

Heston model:

- > Parameters are sensitive to initial data set
- > Still assumed continuous sample path

• Heston x Jump Model:

- Over-parametrized
- > Assumed independent jump sizes & Poisson processes
- ➤ Size of tail for Jump sizes (may not be Gaussian)

Managing Risk

Hedging

- Greeks $(\Delta, V, \Theta, \Gamma)$
 - ➤ Partial derivatives exist?
- Replicating cash flow
 - ➤ Early redemption: Not a concern
 - ➤ Coupon payments: Cash-or-nothing put (Over-hedge? Credit risk?)
 - Final redemption: Standard European put (Transaction cost?)
- Even if perfect replication by structural product(s)
 - ➤ More risk(s)/cost is introduced

Pay you fixed amount of money IF $S_i(t) < K$

Value-at-Risk (VaR)

Assumed initial investment = USD 1,000

	99% Absolute VaR
BS model	USD 340.3

Suppose...

- Restrict 99% Absolute VaR of portfolio = USD 50,000
- Maximum holding unit = [50,000/340.3] = 146 units

Parameter Sensitivity (BS model)

• Analyze Sensitivity = $\left| \frac{\Delta Price}{\Delta \Theta} \right|_{\Theta}$ for each parameter in Θ

	S_1	S_2	S_3
Sensitivity	0.114	0.000714	0.0253

	σ_1	σ_2	σ_3
Sensitivity	0.0376	0.00865	0.0217

	r_1	r_2	r_3
Sensitivity	≈ 0	≈ 0	≈ 0

Parameter Sensitivity (Heston)

	κ_1	κ_2	κ_3
Sensitivity	0.0197	0.00860	0.0119
	θ_1	θ_2	θ_3
Sensitivity	0.0199	0.0154	0.0266

	$oldsymbol{\sigma_{v_1}}$	σ_{v_2}	σ_{v_3}
Sensitivity	0.00596	0.00132	0.00742

	V_{0_1}	$V_{0}{}_{2}$	V_{0_3}
Sensitivity	0.00944	0.00601	0.0104

Parameter Sensitivity (Heston x Jump)

	λ_1	λ_2	λ_3
Sensitivity	0.0295	0.0352	0.0206

	m_1	m_2	m_3
Sensitivity	≈ 0	≈ 0	≈ 0

	v_1	v_2	v_3
Sensitivity	≈ 0	≈ 0	≈ 0

Conclusion

• Market consensus ≈ Black-Scholes price

Neglect stochastic volatility (maybe Pure Jump diffusion...?)

Hard to perform perfect hedging

• Sensitive to ΔS , ΔV^S , λ

Limitations

Limitation in model assumption...

➤ Will the distribution of jump sizes change <u>over time</u>?

Independency:

- $dN_a \perp dN_b$
- *J_a* ⊥ *J_b*
- $dN_a \perp dW_b^{\parallel p}$

Limitation in calibration...

- 1. We want to fit the volatility smile well, given (T-t) ≈ 2 :
 - > Hard to find call options with the **EXACT same maturity** of our product, for calibration
 - > ••Only calls with **T= 1,2** are used in calibration
 - When maturity (T-t) decreases → recalibration is needed
- 2. Not feasible to obtain <u>a single set of parameters</u> which fits the volatility surface well
 - > We can only separately obtain one set for one specific day, using different value of T
 - ➤ Then combine all smiles to obtain the surface
 - > Theoretically possible but **EXTREMELY** time consuming

Why we gave up on QE scheme...

QE scheme discovered/required that:

For
$$dV_j^{\mathrm{S}} = \left[\kappa_j^* \left(\theta_j^* - V_j^{\mathrm{S}}\right)\right] dt + \sigma_j^V \sqrt{V_j^{\mathrm{S}}} dW_{j+3}^{\mathbb{Q}}(t)$$

For sufficiently large
$$\widehat{V_j^S}(t)$$
:
$$\widehat{V_j^S}(t+\Delta) \propto \text{non-central chi-square random variable}^1$$
 For a small $\widehat{V_j^S}(t)$:
$$\widehat{V_j^S}(t+\Delta) \sim \text{ordinary central chi-square}^1$$

$$\widehat{V_j^{\mathrm{S}}}(t+\Delta) \sim \mathrm{ordinary}$$
 central chi-square¹

¹ N.H. Chan and H.Y. Wong (2013). Handbook of Financial Risk Management: Simulations and Case Studies, Wiley, New York.

Why we gave up on QE scheme...

$$dV_{j}^{S} = \left[\kappa_{j}^{*}(\theta_{j}^{*} - V_{j}^{S}) - (\rho_{j,j+3})(\rho_{j,j+6})(\sigma_{j}^{F}\sigma_{j}^{V})\sqrt{V_{j}^{S}}\right]dt + \sigma_{j}^{V}\sqrt{V_{j}^{S}}dW_{j+3}^{\mathbb{Q}}(t)$$

- an extra $\sqrt{\widehat{V_j^S}}$ appears in the coefficient of dt
- Unsure about the distribution of $\widehat{V_j^S}$
- So we find an alternative...

Limitation in simulation...

• Full Truncation scheme:

$$\widehat{V}(t) = \max\{\widehat{V}(t), 0\}$$

- Fail to reflect the true distribution of V(t) when it approaches zero¹
- ➤ Computational time ↑ ↑ ↑
- > Further studies needed...

¹ N.H. Chan and H.Y. Wong (2013). Handbook of Financial Risk Management: Simulations and Case Studies, Wiley, New York.

Limitation in credit risk involved...

• Credit Risk:

- > Actually can calculate 'Default Probability' (DP) of Credit Suisse...
 - not the main focus of this project
- Lower medium rating
 - ➤ May be because of Credit Suisse needing more funds
 - ➤ Raise the risk premium
 - ➤ Thus, rating institutions gave Credit Suisse low rating

Thank you!