РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ 26 октября 2024 г.

- **1A.** $\frac{dv}{dt} = g\left(1 \frac{v^2}{v_m^2}\right), \ln\frac{v_m + v}{v_m v} = \frac{2g}{v_m}t \approx 2, 0, v = v_m \frac{1 e^{-2gt/v_m}}{1 + e^{-2gt/v_m}} \approx 9, 8 \cdot \frac{1 e^{-2}}{1 + e^{-2}} \approx \boxed{7,5 \text{ M/c}}.$
- **2A.** По ЗСМИ (ЗСИ не выполняется из-за реакции в подвесе!) имеем $L = mvh = I\omega$, где $I = Mh^2 + M(2h)^2 = 5Mh^2$. Из ЗСЭ после удара $\frac{I\omega^2}{2} = 2Mgx_c(1-\cos\varphi), \ x_c = \frac{3}{2}h$, находим $1-\cos\varphi \approx \frac{\varphi^2}{2} = \frac{(mvh)^2}{2\cdot 5Mh^2\cdot 3Mgh} = \frac{1}{15}\left(\frac{m}{M}\right)^2\frac{v^2}{gh}$, откуда угол $\varphi = \frac{1}{\sqrt{15}}\frac{m}{M}\frac{v}{\sqrt{gh}} \approx 0,0175$ рад $\approx 1^\circ$.
- **3А.** На векторной диаграмме использованы следующие обозначения: V_1 и V_2 скорости, с которыми после столкновения стали двигаться налетающая и неподвижная частицы в лабораторной системе отсчета, V_{1c} и V_{2c} скорости этих частиц в системе их центра масс, а V_c скорость центра масс. Поскольку угол между векторами V_1 и V_{1c} прямой, то $\varphi = \alpha + \frac{\pi}{2}$, откуда $\beta = \frac{\pi-\varphi}{2} = \frac{\pi}{4} \frac{1}{2}\alpha$, и угол разлёта $\alpha + \beta = \boxed{\frac{\pi}{4} + \frac{1}{2}\alpha}$.
- 4А. Снаряд попадёт в пушку, если период его обращения будет равен T=24 ч. Начальная скорость на экваторе $v_0=\frac{2\pi}{T}R\approx 0.5$ км/с. Период обращения по низколежащей круговой орбите $T_0=\frac{2\pi R}{V}\approx 85$ мин, откуда по 3-му закону Кеплера $a=R\left(\frac{T}{T_0}\right)^{2/3}\approx 6.6R$. Из ЗСЭ и формулы для большой полуоси $\varepsilon=\frac{(v+v_0)^2}{2}-\frac{\gamma}{R}=-\frac{\gamma}{2a}$, откуда $v=V\sqrt{2-\frac{R}{a}}-v_0\approx 1.36V-v_0\approx \boxed{10.2$ км/с . Альтернативно: к этому же ответу можно прийти, применяя ЗСЭ и ЗСМИ к перигею и апогею: $\frac{(v+v_0)^2}{2}-\frac{\gamma}{R}=\frac{u^2}{2}-\frac{\gamma}{2a-R}$, $(v+v_0)R=u(2a-R)$.
- **5А.** Поскольку $v \ll u$, поток массы на тележку равен $\mu = \rho uS = 3$ г/с. Уравнение движения тележки найдём из закона изменения импульса (в системе отсчёта земли): $(m+dm)(v+dv)+\frac{1}{2}\mu dtv=mv$, где $dm=\frac{1}{2}\mu t$. Получим $m\frac{dv}{dt}=-\mu v$, где $m=m_0+\frac{1}{2}\mu t$. Интегрируя, находим $\frac{dv}{v}=-\frac{\mu dt}{m_0+\frac{1}{2}\mu t}$, $\ln\frac{v_0}{v}=2\ln\frac{m_0+\frac{1}{2}\mu t}{m_0}$, $v=\frac{v_0}{\left(1+\frac{\mu t}{2m_0}\right)^2}$. Пройденное расстояние $L=\int v\,dt=\frac{v_0t}{1+\frac{\mu t}{2m_0}}$. При $t\to\infty$ имеем $L\to\frac{2m_0v_0}{\mu}=\frac{2\cdot300\cdot1}{3}=\boxed{200}$ м].
- **6А.** По определению кривизны $\kappa = \frac{d\alpha}{dl}$. По условию $\kappa = \beta l$. Тогда угол поворота $\Delta \alpha = \int \kappa dl = \frac{1}{2}\beta l^2 = \frac{1}{2}\kappa l, \ l = 2\Delta\alpha/\kappa$. Чтобы автомобиль удержался в повороте, необходимо $ma_n \leqslant \mu mg$, где нормальное ускорение $a_n = \kappa v^2$, то есть $\kappa v^2 \leqslant \mu g$. Отсюда минимальная длина участка $l \geqslant \frac{2\Delta\alpha v^2}{\mu g} \approx \frac{\pi \cdot 30^2}{0.5 \cdot 3 \cdot 9.8} \approx \boxed{190 \text{ м}}$.

1B.
$$\frac{dv}{dt} = g\left(1 - \frac{v^2}{v_m^2}\right), \ln\frac{v_m + v}{v_m - v} = \frac{2g}{v_m}t \approx 1, 0, v = v_m \frac{1 - e^{-2gt/v_m}}{1 + e^{-2gt/v_m}} \approx 220 \cdot \frac{1 - e^{-1}}{1 + e^{-1}} \approx \boxed{100 \text{ km/y}}$$

2Б.
$$\varphi = \frac{2}{\sqrt{15}} \frac{m}{M} \frac{v}{\sqrt{gh}} \approx 0.035 \text{ рад } \approx \boxed{2^{\circ}}.$$

 ${f 3 B.}$ В обозначениях решения задачи ${f 3 A},\, V_C=m_1 V/(m_1+m_2)$ и $V_{1{f c}}=m_2 V/(m_1+m_2),$

где V — скорость частицы 1 до столкновения. Поскольку, после рассеяния, угол между V_c и V_{1c} прямой, то искомый угол рассеяния α удовлетворяет соотношению $\operatorname{tg} \alpha = V_{1c}/V_C \Rightarrow \boxed{\operatorname{tg} \alpha = m_2/m_1}$, при этом отношение масс может быть любым.

4Б. Ядро может залететь обратно в дуло, если период обращения будет равен T=12 ч. Период обращение на низкой круговой орбите $T_0=\frac{2\pi R}{V}\approx 85$ мин. По 3-му закону Кеплера $a=R\left(\frac{T}{T_0}\right)^{2/3}\approx 4,2R$. Апогей будет над противоположным полюсом на расстоянии $R_{\max}=2a-R=7,2R$ от центра, высота $h_{\max}=6,2R$. Из ЗСЭ и формулы для большой полуоси имеем $\varepsilon=\frac{v^2}{2}-\frac{\gamma}{R}=-\frac{\gamma}{2a}$, где $\gamma/R=V^2$, откуда $v=V\sqrt{2-\frac{R}{a}}\approx 1,33V\approx \boxed{10,5~\text{кm/c}}$.

5Б. Поскольку $v \ll u$, поток массы на тележку равен $\mu = \rho u S = 30 \text{ г/c}$. Вертикальная сила реакции: $N = \mu u + mg \approx 1,2mg$. Уравнение движения тележки найдём из закона изменения импульса (в системе отсчёта земли): $m(v+dv) + \mu dtv = mv - kNdt$, откуда $m\frac{dv}{dt} = -\mu v - kN$, $\frac{dv}{v+kN/\mu} = -\frac{\mu}{m}dt$ и интегрируя находим $t = \frac{m}{\mu} \ln \left(\frac{v_0}{k(u+mg/\mu)} + 1 \right) \approx 5 \cdot \ln \left(\frac{1}{0.01 \cdot (10+150 \cdot 10/30)} + 1 \right) \approx 5 \ln 2,7 \approx \boxed{5 \text{ c}}$.

6Б. Аналогично 6A, $t = \frac{l}{v} \geqslant \frac{2\Delta\alpha v}{\mu g} \approx \frac{\pi \cdot 20}{0.5 \cdot 9.8} \approx \boxed{13 \text{ c}}$.