

A one-leader multi-follower approach to distribution network development planning

Geoffrey Bailly & Manon Cornet
Smart microgrids department
University of Liège

Distribution networks

Yesterday

Today

Tomorrow

Network planning

Traditional Approach

Network planning

Our Approach

Research objective

Develop a **new framework** to devise

distribution network development plans ...

... considering the **DSO** and **grid users'** strategies ...

... that would allow to evaluate the impact of external events.

market decisions technical solutions technology prices

Problem statement

Goal: minimize investment & operational costs

Constraints:

- Budget balance
- Radial network
- Reliable network (voltage and current limits)
- Satisfied grid users' electricity demand

Goal: minimize investment & energy usage costs

Constraints:

- Grid connection capacity
- PV capacity
- Storage capacity

Distribution System Operator

- Candidate substations & lines
 Topology from the DSO
 Existing or not
- Different types of conductors
 Section, impedance, cost
- Static solution
 Optimized at once, knowing the future
 Not multistage yet
- Great flexibility
 Medium ⇔ low voltage network

Grid users

Load profiles

Domestic load

+ electric vehicles & heat pumps

PV profiles

1 summer day & 1 winter day

• Sizing

PV

Grid connection

Storage

Converters

Co-optimization

Grid user **Distribution System Operator Variables** PV installation lines to build or reinforce substations to build or reinforce grid connection capacity **Constraints** power balance with losses power balance grid connection limit distflow model budget constraint **Objectives** fixed costs energy costs & revenues loss costs PV costs grid costs Mixed-integer Linear

Second order cone

Bilevel formulation

Upper-Level (or Leader)

$$\begin{array}{ll}
\mathbf{min} & F(\mathbf{x}, \mathbf{y}) \\
\mathbf{x} \in X
\end{array}$$

s.t.
$$G_i(x, y) \leq 0$$
, $i = 1, ..., k$

Lower-Level (or Follower)

min
$$f(x, y)$$

 $y \in Y$
s.t. $g_j(x, y) \le 0, j = 1, ..., m$

Subset of upper-level variables

Bilevel formulation

Upper-Level (or Leader)

Power exchange

User grid connection capacity

min DSO's objective

s.t. DSO's constraints

Lower-Level (or Follower)

min \sum_i Grid user's objective

s.t. Grid user's constraints

Results

Next steps

✓ Proof of concept

U Future work

- Bilevel → multi-objective
- Representative days
- Multistage
- •

Back-up slides

Implementation

Solving bilevel formulation

? Bilevel problem → one single problem

Lower level → set of linear & non-linear constraints

convex

using the KKT reformulation:

- primal feasibility
- dual feasibility
- stationarity
- ⇒ primal dual equality reformulation → non convex but easier to solve

Practical consequence

The global solution optimizes the leader's objective.

Bilevel vs multi-objective

https://matheo.uliege.be/handle/2268.2/18230

Users' load & PV profile

- 48 time steps of 1 hour
- Several load profiles
- 2 representative days

- Base + EV + HP

Apparent power [MVA]

Summer day

Back-up slides

