CEFET-MG TIMÓTEO

GAAV - PROF. FABRÍCIO ALMEIDA DE CASTRO

6ª Lista de exercícios – ERE

1) Resolva, usando propriedades, os determinantes abaixo:

a)
$$\begin{vmatrix} 1 & 2 & 7 & -3 \\ 0 & 1 & -4 & 1 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 3 \end{vmatrix} =$$

b)
$$\begin{vmatrix} 3 & 1 & 9 \\ -1 & 2 & -3 \\ 1 & 5 & 3 \end{vmatrix} =$$

$$\begin{vmatrix} -2 & 1 & 3 \\ 1 & -7 & 4 \\ -2 & 1 & 3 \end{vmatrix} =$$

2) Encontre o determinante dado sabendo que $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6$.

a)
$$\begin{vmatrix} d & e & f \\ g & h & i \\ a & b & c \end{vmatrix} =$$

b)
$$\begin{vmatrix} a+g & b+h & c+i \\ d & e & f \\ g & h & i \end{vmatrix} =$$

c)
$$\begin{vmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 4g & 4h & 4i \end{vmatrix} =$$

3) Sejam A e B matrizes 4×4 tais que det(A) = -2 e det(B) = 5. Calcule

(a)
$$det(2A)$$

(b)
$$det(-A)$$

(c)
$$\det(A^t B)$$

(d)
$$\det\left(\mathbf{A}^{-1}\mathbf{B}^2\right)$$

4) A matriz B foi obtida a partir da matriz A (4 × 4) através das seguintes operações elementares:

- Multiplicação da linha L₁ por 2.

(fico multiplicado por 2)

- Troca da linha L₂ pela linha L₃.

(trocou o sinal)

- Substituição da linha L₄ por L₄ + 2L₁

(não altera o valor)

(a) Sabendo que detA = 1, calcule detB.

GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR - GAAV

(b) Se C =
$$\begin{pmatrix} 3 & 10 & 13 & \pi \\ 0 & -1 & 0,1 & -5 \\ 0 & 0 & \sqrt{2} & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \text{ calcule det(B.C}^{-1}.B^{T}).$$

- 5) Sejam A e B matrizes $n \times n$ invertíveis. Considere as matrizes $C = AB^tA^{-1}$ e $D = A (AB^{-1})^{-1}$. Sabendo que $B^{-1} = B^t$, mostre que $C^{-1} = D$.
- 6) Sejam A e B matrizes 3×3 invertíveis tais que det $A = \frac{1}{2}$ e $A^3B^{-1}A^{-1}(2B)B^t = I_3$ onde I_3 denota a matriz identidade 3×3 . Calcule o determinante da matriz B. Justifique os passos de sua resolução.
- 7) Uma matriz é chamada de ortogonal se a sua inversa é igual a sua transposta. Mostre que se A é uma matriz ortogonal, então $det(A) = \pm 1$.
- 8) Considere o sistema de equações $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + 2x_2 x_3 = 4 \\ x_1 + x_2 + ax_3 = b \end{cases}$

Determine os valores de **a** e **b** para os quais o sistema possui nenhuma solução, apenas uma solução, um número infinito de soluções, respectivamente.

- 9) Considere o sistema linear $\begin{cases} 2x 5y + 2z = 0 \\ x + y + z = 0 \end{cases}$.2x + kz = 0
- (a) Para que valor(es) de k o sistema tem uma infinidade de soluções?
- (b) Para que valor(es) de k o sistema possui solução única?
- 10) Determine condições sobre a e b para que o sistema linear $\begin{cases} ax & +2z=2\\ 5x+2y & =1 \text{ possua uma única solução;}\\ x-2y+bz=3 \end{cases}$

infinitas soluções; e nenhuma solução.

