Quiz 2

Consider a two qubit state
$$|\psi>=rac{1}{2}igg|egin{array}{c}1\\-1\\-1\\1\end{array}|;
ho_A=Tr_B(|\psi><\psi|);
ho_B=Tr_A(|\psi><\psi|)$$

Then

$$igcolumn{1}{c}$$
 a. $Tr(
ho_Alog_2
ho_A)=Tr(
ho_Blog_2
ho_B)=0$

b. None of the above

$$\bigcirc$$
 c. $Tr(
ho_A log_2
ho_A) = Tr(
ho_B log_2
ho_B) = 1$

$$\bigcirc$$
 d. $Tr(
ho_{A}log_{2}
ho_{A})=0
eq Tr(
ho_{B}log_{2}
ho_{B})$

Consider $P=rac{1}{2}\Sigma_{i=0}^{n-1}\Sigma_{k=0,k
eq i}^{n-1}|\phi><\phi|; where |\phi>=|ik>-|ki>and|ik>=|i>\otimes|k>$ then

$$lacksquare$$
 a. $P^2=rac{P}{2}$

$$lacksquare$$
 b. $P^*=-P$

$$\bigcirc$$
 c. $P=-P^+$

$$\bigcirc$$
 d. $P^2=P$

Consider $ho_w=r|\psi><\psi|+rac{1-r}{4}\mathbf{I}_4;|\psi>=rac{1}{\sqrt{2}}(1,0,0,1)^T$ and

 \mathbf{I}_4 =Identity matrix of 4 dimension. $0 \leq r \leq 1$.

 ho_w is entangled if

- \circ a. r>0
- lacksquare b. $r>rac{1}{3}$
- oc. independent of r
- \circ d. $r>rac{1}{4}$

Consider the following operations:

$$\begin{vmatrix} \rho_{11} & \rho_{12} & \rho_{13} \\ \rho_{21} & \rho_{22} & \rho_{23} \\ \rho_{31} & \rho_{32} & \rho_{33} \end{vmatrix} \rightarrow \begin{vmatrix} \rho_{33} & \rho_{23} & \rho_{13} \\ \rho_{32} & \rho_{22} & \rho_{12} \\ \rho_{31} & \rho_{21} & \rho_{11} \end{vmatrix}$$

The operation is

- a. Not Hermitian
- b. Completely Positive
- c. Completely negative
- d. Positive not completely positive