Homework 2

DATA604 Simulation and Modeling

Daniel Dittenhafer February 21, 2016

1

Suppose that X is a discrete random variable having probability function $Pr(X = k) = ck^2$ for k = 1, 2, 3. Find c, $Pr(X \le 2)$, E[X] and Var(X).

This suggests the following:

$$Pr(X = 1) + Pr(X = 2) + Pr(X = 3) = 1$$
$$1^{2}c + 2^{2}c + 3^{2}c = 1$$
$$1c + 4c + 9c = 1$$
$$14c = 1$$
$$c = \frac{1}{14}$$

```
# Define an R function for the probability function
prXk <- function(k)</pre>
  c = 1/14
  p < -c * k^2
  return (p)
prX1 <- prXk(1)</pre>
prX1
## [1] 0.07142857
prX2 <- prXk(2)</pre>
prX2
## [1] 0.2857143
prX3 <- prXk(3)</pre>
prX3
## [1] 0.6428571
ExpVal \leftarrow prX1 + (2*prX2) + (3*prX3)
secondMoment \leftarrow prX1 + (2^2*prX2) + (3^2*prX3)
Pr(X \le 2) = 0.3571429
The expected value E[X] = 1 \times 0.0714286 + 2 \times 0.2857143 + 3 \times 0.6428571 = 2.5714286.
```

The variance $Var(X) = E[X^2] - (E[X])^2 = 7 - 6.6122449 = 0.3877551$

Suppose that X is a continuous random variable having p.d.f $f(x) = cx^2$ for $1 \le x \le 2$. Find c, $Pr(X \ge 1)$, E[X] and Var(X).

$$\int cx^2 dx = c \int x^2 dx = c \times \frac{x^3}{3} + C$$

$$\int cx^2 dx = c \times \frac{x^3}{3} + C = 1$$

$$c = \frac{3 \times 1}{x^3} = \frac{3}{x^3}$$

The probabilty $Pr(X \ge 1)$ will equal 1 due to the fact the range is $1 \le x \le 2$.

Expected value is

```
pr2X <- function(x)
{
    c <- 3 / x^3
    return( c * x^2)
}
r <- seq(1, 2, by=0.01)
pr2Xr <- pr2X(r)</pre>
```

```
g1 <- ggplot(data=data.frame(x=r, y=pr2Xr)) + geom_point(aes(x=x, y=y))
g1</pre>
```


3

Suppose the X and Y are jointly continuous random variables with

$$y - x for 0 < x < 1$$
 and $1 < y < 2$
0 otherwise

4

Suppose that the following 10 obserations come from some distribution (not highly skewed) with unknown mean μ .

```
d <- c(7.3,6.1,3.8,8.4,6.9,7.1,5.3,8.2,4.9,5.8)
kable(t(d))
```

$$7.3 \quad 6.1 \quad 3.8 \quad 8.4 \quad 6.9 \quad 7.1 \quad 5.3 \quad 8.2 \quad 4.9 \quad 5.8$$

Compute \bar{X}, S^2 and an approximate 95% confidence interval for μ .

```
Xbar <- mean(d)
varD <- var(d)
sdD <- sd(d)
n <- length(d)
seD <- sdD / sqrt(n)
tval <- qt(.975, df=n-1)</pre>
```

```
\bar{X}=6.38 S^2=2.1617778 SE=0.4649492 t-value = 2.2621572 95\% \text{ CI of } \mu=\bar{X}\pm t\times SE=(5.3282118,7.4317882)
```

5

A random variable X has the memoryless property if, for all s, t > 0,

$$Pr(X > t + s | X > t) = Pr(X > s)$$

Show that the exponential distribution has the memoryless property.

Page 193 of the DES text has an excellent proof of the the memoryless property:

$$P(X > t + s | X > t) = \frac{P(X > t + s)}{P(X > t)}$$

$$P(X > t + s | X > t) = \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} = e^{-\lambda s} = P(X > s)$$

6

Suppose $X_1, X_2, ..., X_n$ are i.i.d. $\text{Exp}(\lambda = 1)$. Use the Central Limit Theorem to find the approximate value of $Pr(100 \le \sum_{i=1}^{100} X_i \le 110$

We can take many n=100 samples from the Exp(lambda=1) distribution, and then sum them to create a distribution of the sums. Finally, use the number of sum samples that fall in the designated range divided by the total number of the n=100 samples to find an approximate probability.

```
sumX <- c()
for(j in 1:10000)
{
    X <- rexp(100)
    sX <- sum(X)
    sumX <- c(sumX, sX)
}</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

The approximate value of $Pr(100 \le \sum_{i=1}^{100} X_i \le 110) = 0.3308$

5.13

A random variable X that has pmf given by p(x) = 1/(n+1) over the range $R_X = (0, 1, 2, ..., n)$ is said to have a discrete uniform distribution.

(a) Find the mean and variance of this distribution.

The mean would be $\Sigma_{alli}ip(x)$. In this case p(x) is uniform at $\frac{1}{n+1}$. As a result, this can be factored out of the mean equation resulting in $p(x)\Sigma_{alli}i$. The hint told us that $\Sigma_{alli}i=\frac{n(n+1)}{2}$, therefore the mean would be:

$$mean = \frac{1}{n+1} \times \frac{n(n+1)}{2} = \frac{n}{2}$$

The variance works the same way for discrete distributions, therefore:

variance
$$=\frac{1}{n+1} \times \frac{n(n+1)(2n+1)}{6} = \frac{n(2n+1)}{6}$$

(b) If $R_X = (a, a+1, a+2, ..., b)$, compute the mean and variance of X.

Assuming n=b-a and therefore p(x)=1/(n+1) would still apply as in $R_X = (2,3,4,5), a=2, b=5, n=3$ and p(x)=1/(3+1)=1/4 to retain the uniform distribution. Also referring to http://mathforum.org/library/drmath/view/57166.html, the sum of R_X would be k(2a+k-1)/2 with k=# of items=n+1.

mean
$$=\frac{1}{n+1} \times \frac{n(2a+n-1)}{2} = \frac{n(2a+n-1)}{2(n+1)}$$

Variance, hmm....

5.14

The lifetime in years of a satellite placed in orbit is given by the following pdf:

$$f(x) = 0.4e^{-0.4x}, x \ge 0$$

(a) What is the probability that this satellite is still "alive" after 5 years?

```
# Define CDF and PDF functions
cdf514 <- function(x)
{
 p < -1 - exp(-0.4 * x)
 return (p)
pdf514 <- function(x)
  p < -0.4 * exp(-0.4 * x)
 return (p)
}
# prepare data set to help us visualize
rx \leftarrow data.frame(x=seq(0, 10, by=0.5))
rx$cdf <- cdf514(rx$x)
rx$pdf <- pdf514(rx$x)
# Visualize
g1 <- ggplot(rx) + geom_line(aes(x=x, y=pdf)) + myTheme
g2 <- ggplot(rx) + geom_line(aes(x=x, y=cdf)) + myTheme
grid.arrange(g1, g2, ncol=2)
```


p5 <- pdf514(5)

The probability that this satellite is still alive after 5 years is 0.0541341.

(b) What is the probability that the satellite dies between 3 and 6 years from the time it is placed in orbit?

```
# Compute probabilty of satelite's life time is between 3-6 years (i.e. it dies in this range) p36 \leftarrow cdf514(6) - cdf514(3)
```

The probabilty that this satellite dies between 3 and 6 years is 0.2104763.