

TOC

1. Give a regular expression over the alphabet $\{0, 1\}$ to denote the set of proper non-null substrings of the string 0110.

[GATE 1987]

- 2. Choose the correct alternatives (more than one may be correct) and write the corresponding letters only.
 - Let $r = 1(1 + 0)^*$, $s = 11^* 0$ and $t = 1^* 0$ be three regular expressions. Which one of the following is true?
 - (A) $L(s) \subseteq L(r)$ and $L(s) \subseteq L(t)$
 - (B) $L(r) \subseteq L(s)$ and $L(s) \subseteq L(t)$
 - (C) $L(s) \subseteq L(t)$ and $L(s) \subseteq L(r)$
 - (D) $L(t) \subseteq L(s)$ and $L(s) \subseteq L(r)$
 - (E) None of the above

[GATE 1991]

- 3. Choose the correct alternatives (more than one may be correct) and write the corresponding letters only:
 - Which of the following regular expression identities is/are TRUE?
 - (A) $r^{(*)} = r^*$
 - (B) $(r^* s^*) = (r + s)^*$
 - (C) $(r + s)^* = r^* + s^*$
 - (D) $r^* s^* = r^* + s^*$

[GATE 1992]

4. The regular expression for the language recognized by the finite state automaton of figure is

[GATE 1994]

- 5. In some programming language, an identifier is permitted to be a letter followed by any number of letters or digits. If L and D denote the sets of letters and digits respectively, which of the following expressions defines an identifier?
 - (A) $(L + D)^+$
 - (B) (L. D)*
 - (C) $L(L + D)^*$
 - (D) L(L.D)*

[GATE 1995], [ISRO 2017]

- 6. Which two of the following four regular expressions are equivalent? (ε is the empty string).
 - i. $(00)^* (\epsilon + 0)$
 - ii. $(00)^*$
 - iii. 0^*
 - iv. $0(00)^*$
 - (A) (i) and (ii)
 - (B) (ii) and (iii)
 - (C) (i) and (iii)
 - (D) (iii) and (iv)

[GATE 1996]

- 7. Which one of the following regular expressions over {0, 1} denotes the set of all strings not containing 100 as substring?
 - (A) $0^*(1+0)^*$
 - (B) 0* 1010*
 - (C) 0* 1* 01*
 - (D) $0^* (10 + 1)^*$

[GATE 1997]

- 8. The string 1101 does not belong to the set represented by
 - (A) $110^* (0+1)$
 - (B) $1(0+1)^*101$
 - (C) $(10)^* (01)^* (00 + 11)^*$
 - (D) $(00 + (11)^*0)^*$

[GATE 1998]

- 9. If the regular set A is represented by $A = (01 + 1)^*$ and the regular set B is represented by $B = ((01)^* 1^*)^*$, which of the following is true?
 - (A) $A \subset B$
 - (B) $B \subset A$
 - (C) A and B are incomparable
 - (D) A = B

[GATE 1998]

10. Give a regular expression for the set of binary strings where every 0 is immediately followed by exactly k 1's and preceded by atleast k 1's (k is a fixed integer)

[GATE 1998]

2

- 11. Let S and T be languages over $\Sigma = \{a, b\}$ represented by the regular expressions $(a + b^*)^*$ and $(a + b)^*$, respectively. Which of the following is true?
 - (A) $S \subset T$
 - (B) $T \subset S$
 - (C) S = T
 - (D) $S \cap T = \emptyset$

[GATE 2000]

- 12. The regular expression $0^*(10^*)^*$ denotes the same set as
 - (A) $(1^*0)^*1^*$
 - (B) $0 + (0 + 10)^*$
 - (C) $(0+1)^* 10(0+1)^*$
 - (D) None of the above

[GATE 2003]

- 13. Which one of the following regular expressions is NOT equivalent to the regular expression $(a + b + c)^*$?
 - (A) $(a^* + b^* + c^*)^*$
 - (B) $(a^*b^*c^*)^*$
 - (C) $((ab)^* + c^*)^*$
 - (D) $(a^*b^* + c^*)^*$

[GATE 2004] [IT]

- 14. Which of the following statements is TRUE about the regular expression 01*0?
 - (A) It represents a finite set of finite strings
 - (B) It represents an infinite set of finite stings.
 - (C) It represents a finite set of infinite strings.
 - (D) It represents an infinite set of infinite strings.

[GATE 2005]

15. Which regular expression best describes the languages accepted by the non-deterministic automaton below?

- (A) $(a + b)^* a (a + b)b$
- (B) (abb)*
- (C) $(a + b)^* a(a + b)^* b(a + b)^*$
- (D) $(a + b)^*$

[GATE 2006]

16. Consider the regular expression $R = (a + b)^* (aa + bb)(a + b)^*$

Which one of the regular expressions given below defines the same language as defined by the regular expression R?

- (A) $(a(ba)^* + b(ab)^*)(a + b)^+$
- (B) $(a(ba)^* + b(ab)^*)^*(a + b)^*$
- (C) $(a(ba)^*(a+bb) + b(ab)^*(b+aa))(a+b)^*$
- (D) $(a(ba)^*(a+bb) + b(ab)^*(b+aa))(a+b)^+$

[GATE 2007][IT]

- 17. Which of the following regular expressions describes the language over {0,1} consisting of strings that contain exactly two 1's?
 - (A) $(0+1)^* 11(0+1)^*$
 - (B) 0* 110*
 - (C) $0^* 10^* 10^*$
 - (D) $(0+1)^* 1(0+1)^* 1(0+1)^*$

[GATE 2008][IT]

- 18. Which one of the following languages over the alphabet $\{0,1\}$ is described by the regular expression: $(0+1)^* 0(0+1)^* 0(0+1)^*$?
 - (A) The set of all strings containing the substring 00
 - (B) The set of all strings containing at most two 0's
 - (C) The set of all strings containing at least two 0's
 - (D) The set of all strings that begin and end with either 0 or 1

[GATE 2009]

- 19. Let $L = \{w \in (0+1)^* | w \text{ has even number of 1s} \}$. i.e., L is the set of all the bit strings with even numbers of 1s. Which one of the regular expressions below represents L?
 - (A) $(0^* 10^* 1)^*$
 - (B) $0^* (10^* 10^*)^*$
 - (C) $0^* (10^* 1)^* 0^*$
 - (D) 0*1(10*1)*10*

[GATE 2010]

20. Which of the regular expressions given below represents the following DFA?

- I. $0^* 1(1 + 00^*1)^*$
- II. $0^*1^*1 + 11^*0^*1$
- III. $(0+1)^* 1$
- (A) I and II only
- (B) I and III only
- (C) II and III only
- (D) I, II and III

[GATE 2014]

21. The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is _____.

[GATE 2014]

22. Which one of the following regular expressions represents the language: the set of all binary strings having two consecutive

0's and two consecutive 1's?

- (A) $(0+1)^* 0011(0+1)^* + (0+1)^*1100(0+1)^*$
- (B) $(0+1)^*(00(0+1)^*11+11(0+1)^*00)(0+1)^*$
- (C) (0+1)*00(0+1)* + (0+1)*11(0+1)*
- (D) $00(0+1)^*11+11(0+1)^*00$

[GATE 2016]