Corrigé de la feuille TD 1 : Logique et ensembles

Exercice 1.La négation de

« tous les habitants de la rue du Havre qui ont les yeux bleus gagneront au loto et prendront leur retraite avant 50 ans » est

 \ll il y a au moins un habitant de la rue du Havre qui a les yeux bleus, et qui ne gagnera pas au loto ou qui prendra sa retraite après 50 ans \gg

Exercice 2. (a)
$$\overline{(A \text{ ou } B)} \Rightarrow \overline{C} \iff (A \vee B) \wedge \overline{C}$$
.
(b) $\overline{\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, f(x) \leqslant g(y)} \iff \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, f(x) > g(y)$.

Exercice 3.

- (a) « Si c'est lundi, alors c'est raviolis » ← Si c'est pas raviolis, alors c'est pas lundi »
- (b) « Si les étudiants ne travaillent pas, ils n'apprennent pas de mathématiques »
- « Si les étudiants apprennent des mathématiques, alors ils travaillent ».

(c)
$$\forall x \in \mathbb{R}, (x^2 \notin \mathbb{Q} \Rightarrow x \notin \mathbb{Q}) \gg \iff \forall x \in \mathbb{R}, (x \in \mathbb{Q} \Rightarrow x^2 \in \mathbb{Q}) \gg$$
.

Exercice 4.

(a) « $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, y > x^3$ » est vrai.

Démonstration. Soit $x \in \mathbb{N}$. Alors $y = x^3 + 1 \in \mathbb{N}$, et $y > x^3$.

(b) « $\forall x \in \mathbb{N}, x^2 \notin \mathbb{Q} \Rightarrow x \notin \mathbb{Z}$ » est vrai.

Démonstration. Soit $x \in \mathbb{N}$. Alors $x \in \mathbb{Z}$ et $x^2 \in \mathbb{Q}$, donc la contraposée de l'implication $x^2 \notin \mathbb{Q} \Rightarrow x \notin \mathbb{Z}$ est vraie, et donc la proposition est vraie.

(c) $\forall x \in \mathbb{R}, x \notin \mathbb{Z} \Rightarrow x^2 \notin \mathbb{Q} \gg \text{ est faux.}$

Démonstration. Prenons x = 1/2. Alors $x \notin \mathbb{Z}$, mais $x^2 = 1/4 \in \mathbb{Q}$.

(d) « $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, ((n \text{ est pair et } x \ge 0) \text{ ou } (n \text{ est impair et } x \le 0)) \Rightarrow (-1)^n x^3 \ge 0$ » est vrai.

Démonstration. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Si n est pair et $x \ge 0$, $(-1)^n = 1$ et $x^3 \ge 0$, donc $(-1)^n x^3 \ge 0$. Si n est impair et $x \le 0$, $(-1)^n = -1$ et $x^3 \le 0$, donc $(-1)^n x^3 \ge 0$

Exercise 5. $A = \{2, 3, 5, 6\}, B = \{1, 2, -3\}.$

(a) $\forall x \in A, \exists y \in B, x + y \in A$. Vrai.

Démonstration. $2+1=3\in A,\ 3+2=5\in A,\ 5+1=6\in A,\ 6+(-3)=3\in A.$

(b) $\forall x \in A, \forall y \in B, x + y \in A$. Faux.

Démonstration. $2 \in A$, $2 \in B$, mais $2 + 2 = 4 \notin A$.

(c) $\exists x \in A, \forall y \in B, x + y \in A$. Faux.

Démonstration. Pour chaque $x \in A$, on montre que la proposition « $\forall y \in B, x+y \in A$ » est fausse :

- $2 \in A, 2 \in B$, mais $2 + 2 = 4 \notin A$.
- $3 \in A, 1 \in B$, mais $3 + 1 = 4 \notin A$.
- $5 \in A, 2 \in B, \text{ mais } 5 + 2 = 7 \notin A.$
- $6 \in A, 1 \in B, \text{ mais } 6 + 1 = 7 \notin A.$

(d) $\exists x \in A, \forall y \in B, \exists z \in B, x + y + z \in A$. Vrai.

Démonstration. Prenons $x=3\in A$. Alors si $y\in B,\ t=x+y\in C=\{4,5,0\}$. Or pour chaque élément $t\in C$, il existe un $z\in B$ tel que $t+z\in A$. En effet $:1\in B$ et $4+1=5\in A$, $1\in B$ et $5+1=6\in A,\ 2\in B$ et $0+2=2\in A$. Au total, pour tout $y\in B$, on a bien trouvé $z\in B$ tel que $3+y+z=x+y+z=t+z\in A$.

Exercice 6.

$$\begin{array}{lll} \text{(a)} \ 1 \in \mathbb{N} & \text{(b)} \ \{1\} \subset \mathbb{N} & \text{(c)} \ A \subset B \iff \forall y \in A, y \in B \\ \text{(d)} \ \{1,2\} \subset \mathbb{N} & \text{(e)} \ 1 \in \{1\} & \text{(f)} \ A = B \iff \forall y \in A, y \in B \text{ et } \forall y \in B, y \in A \end{array}$$

$$\begin{array}{l} \textbf{Exercice 7.} \ A = \{1,2,4\}, B = \{1,3,4\} \ \text{et} \ C = [-2,4[.\\ A \cup B = \{1,2,3,4\}, \quad A \cup C = [-2,4], \quad B \cup C = [-2,4], \quad A \cap B = \{1,4\}, \\ A \cap C = \{1,2\}, \quad B \cap C = \{1,3\}, \quad A \setminus B = \{2\}, \quad C \setminus A = [-2,1[\cup]1,2[\cup]2,4[, C \cap Z = \{-2,-1,0,1,2,3\}, \quad C \cap N = \{0,1,2,3\}. \end{array}$$

Exercice 8.
$$X = \{\heartsuit, \clubsuit, \spadesuit\}$$
. $\mathcal{P}(X) = \{\emptyset, \{\heartsuit\}, \{\clubsuit\}, \{\spadesuit\}, \{\heartsuit, \clubsuit\}, \{\heartsuit, \spadesuit\}, \{\clubsuit, \spadesuit\}, X\}$

Exercice 9. Soit $A = \{0, 1, 8\}$ et $B = \{\{0\}, \{1, 2\}, \{1\}\}$.

(a)
$$A \in \mathbb{N}$$
: Faux (par contre, il est vrai que $A \subset \mathbb{N}$). (b) $A \in \mathcal{P}(\mathbb{N})$: Vrai. (c) $A \subset \mathcal{P}(\mathbb{N})$: Faux (par contre, il est vrai que $\{A\} \subset \mathcal{P}(\mathbb{N})$). (d) $B \in \mathcal{P}(\mathbb{N})$: Faux. (e) $B \subset \mathcal{P}(\mathbb{N})$: Vrai.

Exercice 10. Soit $\{a_1, \ldots, a_N\}$ un ensemble de N nombres réels. Soit C un autre réel, et on suppose que

$$a_1 + \dots + a_N \ge C$$
.

Alors il existe $i \in \{1, ..., N\}$ tel que $a_i \ge \frac{C}{N}$.

Pour montrer l'implication

(I)
$$(a_1 + \dots + a_N \geqslant C) \Rightarrow \left(\exists i \in \{1, \dots, N\}, a_i \geqslant \frac{C}{N}\right),$$

on va montrer sa contraposée. Supposons donc

$$\forall i \in \{1, \dots, N\}, a_i < \frac{C}{N}.$$

Alors

$$a_1 + \dots + a_N < \underbrace{\frac{C}{N} + \dots + \frac{C}{N}}_{N \text{ fois}} = C,$$

proposition qui est bien la négation de la proposition de gauche de l'implication (I). Donc le résultat voulu est montré.