Homework 9

Math 25b

Due April 26, 2018

Topics covered: differential forms

Instructions:

- The homework is divided into one part for each CA. You will submit the assignment on Canvas as one pdf.
- $\bullet\,$ If you collaborate with other students, please mention this near the corresponding problems.

1 For Beckham M.

Problem 1. Give an example if an example exists. If no example exists, explain why.

- (a) There exists nonzero $\omega \in \Omega^1(\mathbb{R}^3)$ so that $\omega \wedge d\omega = 0$.
- (b) There exists $\omega \in \Omega^1(\mathbb{R}^3)$ so that $\omega \wedge d\omega(p) \neq 0$ for all $p \in \mathbb{R}^3$.

 \Box

Problem 2. Fix $F = (F_1, F_2, F_3) : \mathbb{R}^3 \to \mathbb{R}^3$, and view F as a vector field. Define forms

$$\omega_F = F_1 dx + F_2 dy + F_3 dz$$

$$\eta_F = F_1 \, dy \wedge dz + F_2 \, dz \wedge dx + F_3 \, dx \wedge dy.$$

- (a) Define the curl of a vector field by the formula $d(\omega_F) = \eta_{curl(F)}$. Give a formula for curl(F).
- (b) Define the divergence of a vector field by $d(\eta_F) = div(F) dx \wedge dy \wedge dz$. Give a formula for div(F).
- (c) Prove that $curl(\nabla f) = 0$ for any $f : \mathbb{R}^3 \to \mathbb{R}$ and div(curl(F)) = 0 for any vector field F. Hint: for the love of algebra, do. not. compute.

 \Box

Problem 3. Consider the differential forms

$$\omega = xy \, dx + 3 \, dy - yz \, dz$$
 and $\eta = x \, dx - yz^2 \, dy + 2x \, dz$

on \mathbb{R}^3 , and the function $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by f(x, y, z) = (y, z, x). Verify by direct computation that

- (a) $d(d\omega) = 0$,
- (b) $f^*(d\omega) = d(f^*\omega)$, and
- (c) $d(\omega \wedge \eta) = (d\omega) \wedge \eta \omega \wedge d\eta$.

 \Box

2 For Davis L.

Problem 4.

- (a) Give an example of a k-form on \mathbb{R} that is not closed.
- (b) Prove that every closed 1-form on \mathbb{R} is exact. Hint: FTC.

 \Box

Problem 5. Fix a differential 1-form $\omega = f dx + g dy$ on \mathbb{R}^2 .

(a) Show that if ω is closed, then ω is exact. Hint: define h(x,y) as the line integral of ω over the path $c:[0,x+y]\to\mathbb{R}^2$ defined by

$$c(t) = \begin{cases} (t,0) & t \in [0,x] \\ (x,t-x) & t \in [x,x+y]. \end{cases}$$

Remark: The path c is not smooth at t = x, but don't let that bother you. Hint: you will need a problem from the practice problems for Midterm $2.^2$

(b) To what extent is h unique? i.e. if $dh_1 = \omega = dh_2$, then what can you conclude about h_1, h_2 ?

Solution. \Box

Problem 6. Determine which of the following 1-forms $\omega \in \Omega^1(\mathbb{R}^2)$ are exact. If ω is exact, find h so that $dh = \omega$.

- (a) $\omega = x dx + y dy$
- (b) $\omega = xy \, dy$

Solution. \Box

¹This is a special case of the *Poincaré lemma*.

²It would be good to give a proof of that fact here.

3 For Joey F.

Problem 7. True or false. Give proof.

- (a) The kernel of the exterior derivative $d: \Omega^0(\mathbb{R}^2) \to \Omega^1(\mathbb{R}^2)$ is finite dimensional.
- (b) The kernel of the exterior derivative $d: \Omega^1(\mathbb{R}^2) \to \Omega^2(\mathbb{R}^2)$ is finite dimensional.

 \Box

Problem 8. Let $A = \mathbb{R}^2 \setminus \{0\}$. Consider the 1-form on A defined by

$$\omega = (x \, dx + y \, dy)/(x^2 + y^2).$$

- (a) Show that ω is closed.
- (b) Compute $\phi^*\omega$, where $\phi(r,\theta) = (r\cos\theta, r\sin\theta)$ is the polar coordinates transformation.
- (c) Find a function $h: \mathbb{R}^2 \to \mathbb{R}$ so that $\omega = dh$. Hint: first work in polar coordinates, using (b). Then switch back to x, y coordinates.

 \Box

Problem 9. Fix r > 0. Consider the map $c : [0,1] \times [0,2\pi] \times [0,\pi] \to \mathbb{R}^3$ defined by

$$c(\rho, \theta, \phi) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi).$$

Compute $\int_c dx \wedge dy \wedge dz$. What is the geometric meaning of this computation? Hint: spherical coordinates.

Solution. \Box

4 For Laura Z.

Problem 10. For R > 0 and n an integer, define the singular 1-cube $c_{R,n} : [0,1] \to \mathbb{R}^2 \setminus \{0\}$ by

$$c_{R,n}(t) = (R\cos 2\pi nt, R\sin 2\pi nt).$$

Fix $0 < R_2 < R_1$ and show that there is a singular 2-cube $c : [0,1]^2 \to \mathbb{R}^2 \setminus \{0\}$ such that

$$c_{R_1,n} - c_{R_2,n} = \partial c$$
.

Hint: use a "linear interpolation".

 \Box

Problem 11. Let $B \subset \mathbb{R}^2$ be the open set

$$B = \{(x, y) \in \mathbb{R}^2 : \text{ if } x = 0, \text{ then } y < 0\},\$$

i.e. B is the complement of the positive x-axis and the origin.

(a) Observe that for each $(x,y) \in B$, there is a unique $0 < \theta < 2\pi$ and $r \in (0,\infty)$ such that

$$x = r\cos\theta$$
 and $y = r\sin\theta$.

We use this to define functions $\theta: B \to (0, 2\pi)$ and $r: B \to (0, \infty)$. Show that these functions are C^1 on B.

(b) Let

$$\omega = \frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy.$$

Show that $\omega = d\theta$ in B. Hint: observe that "derivatives are local" and that $\tan \theta(x, y) = y/x$ if $x \neq 0$ and $\cot \theta(x, y) = x/y$ if $y \neq 0$.

(c) Let $g \in \Omega^0(B)$. Show that if dg = 0, then g is constant. Hint: MMVT; make sure you use it correctly.³

 \Box

Problem 12. Set $A = \mathbb{R}^2 \setminus \{0\}$, and consider $\omega \in \Omega^1(A)$ defined by

$$\omega = \frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

- (a) Show ω is closed.
- (b) Show that ω is not exact on A. Hint: If $\omega = df$ for some $f : A \to \mathbb{R}$, then $f \theta$ is constant on B. Evaluate the limit of f(1,y) as y approaches 0 through positive and negative values.

Solution. \Box

Note that there are examples of $U \subset \mathbb{R}^2$ and $g: U \to \mathbb{R}^2$ so that Dg(u) = 0 for all $u \in U$ but g is not constant.