(due Friday, October 29, by 5:00 p.m. CDT)

No credit will be given without supporting work.

Let $\psi > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x; \psi) = \frac{\psi}{2\psi} \cdot (2-x)^{\psi-1}, \quad 0 < x < 2,$$
 zero otherwise.

A method of moments estimator of ψ is $\tilde{\psi} = \frac{2}{\bar{x}} - 1$. Recall:

The maximum likelihood estimator of ψ is

$$\hat{\Psi} = \frac{n}{n \cdot \ln 2 - \sum_{i=1}^{n} \ln (2 - X_i)} = \frac{n}{\sum_{i=1}^{n} \left(-\ln \left(1 - \frac{X_i}{2} \right) \right)}.$$

$$\ln \left(1 - \frac{X}{2} \right) \text{ has an Exponential distribution with mean } \theta = \frac{1}{\Psi}$$

Is the method of moments estimator of ψ , $\tilde{\psi}$, an unbiased estimator of ψ ? If $\tilde{\Psi}$ is not an unbiased estimator of Ψ , does $\tilde{\Psi}$ underestimate or overestimate ψ (on average)?

 $\tilde{\Psi} = g(\bar{X})$. Is g(x) a linear function? Hint:

If it is not a linear function, does it curve up or down?

Is $\tilde{\Psi}$ a consistent estimator of Ψ ? Justify your answer.

(NOT enough to say "because it is a method of moments estimator")

"Hint": Start with the WLLN and X. in STAT 410 Is the maximum likelihood estimator $\hat{\psi}$ an unbiased estimator of ψ ?

If $\hat{\psi}$ is not an unbiased estimator of ψ , construct an unbiased estimator of ψ based on $\hat{\psi}$.

"Hint" 0: If U has a Gamma (α_1, θ) distribution, V has a Gamma (α_2, θ) distribution, U and V are independent, then U + V has a Gamma $(\alpha_1 + \alpha_2, \theta)$ distribution.

"Hint" 1: $E(a \odot) = a E(\odot)$. "Hint" 2: $\frac{1}{\blacktriangledown} = \blacktriangledown^{-1}$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

 $E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$

g) Find MSE($\hat{\psi}$) = (bias($\hat{\psi}$))² + Var($\hat{\psi}$).

"Hint" 1: bias $(\hat{\psi}) = E(\hat{\psi}) - \psi$. You have $E(\hat{\psi})$ from part (f).

"Hint" 2: $\operatorname{Var}(a \odot) = a^2 \operatorname{Var}(\odot)$. $\operatorname{Var}(\odot) = \operatorname{E}(\odot^2) - [\operatorname{E}(\odot)]^2$.

"Hint" 3: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

 $E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha + m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha + m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$

in STAT 410

h) Is $\hat{\psi}$ a consistent estimator of ψ ? Justify your answer.

(NOT enough to say "because it is the maximum likelihood estimator")

"Hint": Start with the WLLN and \overline{W} .

in STAT 410

Using Chegg is cheating

in STAT 410

8. Let $\xi > 0$ and let $X_1, X_2, ..., X_n$ be a random sample from a probability distribution with probability density function

$$f(x;\xi) = \frac{1}{2} \xi^4 x^{11} e^{-\xi x^3}, \quad x > 0,$$
 zero elsewhere.

in STAT 410

Recall: The maximum likelihood estimator of ξ is $\hat{\xi} = \frac{4n}{\sum_{i=1}^{n} X_i^3}$.

 $W = X^3$ has a Gamma ($\alpha = 4$, $\theta = \frac{1}{\xi}$) distribution.

- c) Is the maximum likelihood estimator $\hat{\xi}$ an unbiased estimator of ξ ?
- If $\hat{\xi}$ is not an unbiased estimator of ξ , construct an unbiased estimator of ξ based on $\hat{\xi}$.

in STAT 410

d) Find MSE($\hat{\xi}$) = (bias($\hat{\xi}$))² + Var($\hat{\xi}$).

e) Is $\hat{\xi}$ a consistent estimator of ξ ? Justify your answer.

(NOT enough to say "because it is the maximum likelihood estimator")

in STAT 410

f) Suppose n = 5 and $\xi = 1.5$. Find the probability $P\left(\sum_{i=1}^{5} X_i^3 > 10\right)$.

in STAT 410

Using CourseHero is cheating Using Chegg is cheating

in STAT 410