

## Forelesning nr.6 IN 1080 Elektroniske systemer

Strøm, spenning og impedans i RC-kretser Anvendelser av RC-krester



#### Dagens temaer

- Strøm, spenning og impedans i serielle RC-kretser
- Mer om ac-signaler og sinussignaler
- Filtre
- Bruk av RC-kretser
- Temaene hentes fra Kapittel 10.8, 11.1-11.6, 12.1-12.6



#### Fasedreining

 Hvis et sinussignal forskyves i tid oppstår en faseforskyvning eller fasedreining φ



Kurven er forskjøvet til høyre, φ er negativ og forsinket (eng: "lags") i forhold til referansen



Kurven er forskjøvet til venstre, φ er positiv og *leder (eng: "leads")* i forhold til referansen

# Fra forelesning 5

#### Faseforhold mellom strøm og spenning

- I en resistor er strømmen gjennom og spenningen over i fase, dvs φ=0
- I en kondensator er det fasedreining mellom strøm og spenning
- Fasedreiningen kan forstås ved å se på når endringen i en sinuskurve er størst og minst





#### Faseforhold mellom strøm og spenning (forts)

 Strømmen gjennom en kondensator er størst når endringen i spenningen over den er størst, og minst når endringen i spenningen er minst

- Når spenningen er på det største (minste) er endringen lik 0, dvs strømmen lik 0
- Når spenningen er 0, er endringen størst, dvs strømmen er størst
- Strømmen er derfor faseforskøvet med +90 grader i forhold til spenningen (dvs. til høyre)



$$i = C \frac{dv}{dt}$$



#### **RC-kretser**

RC-kretser består av én eller flere resistorer og én eller flere

kondensatorer  $V_{\rm R}$  I  $V_{\rm in}$   $V_{\rm c}$ 

- RC-kretser er enten serielle eller parallelle, dvs en resistor og en kondensator i serie eller i parallell
- Større og mer kompliserte kretser kan deles opp i mindre serielle og/eller parallelle kretser som analyseres separat
- Lettest å analysere oppførselen for sinussignaler



#### Serielle RC-kretser

- I en ren resistiv krets er strøm og spenning i fase, dvs  $\varphi=0$
- I en seriell RC-krets vil det være faseforskyvning mellom
  - Spenningen over hvert element i forhold til de andre elementene
  - Spenningene over elementene i forhold til strømmen
- Strømmen gjennom alle elementene vil være i fase
- Avhengig av forholdet mellom resistansen og den kapasitive reaktansen, vil faseforskyvningen ligge mellom 0° og 90°



#### Serielle RC-kretser (forts)

- En seriell RC-krets består av minst én resistor og minst én kondensator
- Spenningen V<sub>R</sub> over motstanden R er i fase med strømmen I, og leder over V<sub>s</sub>, dvs φ>0



For å finne fasedreiningen mellom  $V_S$  og  $V_C$  eller mellom  $V_S$  og I må man beregne den totale impedansen i kretsen





#### Total impedans i seriell RC-krets

- Z er den samlede impedansen mot vekselstrøm i en krets
- Impedansen har en frekvensuavhengig resistiv del R og en frekvensavhengig reaktiv del  $X_C$



 Den resistive og reaktive delen har en fasedreining på -90° i forhold til hverandre

## Fra forelesning 5 Total impedans i seriell RC-krets (forts)

- Den totale impedansen er gitt av  $Z=R+X_C$ , R og  $X_C$  er vektorer («phasors»).
- Z finner man ved vektorsummasjon



- Siden **Z** er en vektor har den både en fasevinkel θ og en magnitude
- $\boldsymbol{Z}$  har fortsatt Ohm ( $\Omega$ ) som enhet
- Skal senere se hvordan impedans enklere beregnes hvis vi innfører komplekse impedans og frekvens

# Fra forelesning 5

#### Total impedans i seriell RC-krets (forts)



Magnituden er lengden til Z og finnes ved Pythagoras:

$$Z = \sqrt{R^2 + X_C^2}$$

Fasen θ finnes ved å beregne invers tangens til vinkelen

$$\theta = \tan^{-1}(\frac{X_C}{R})$$

# Fra forelesning 5

#### Serielle kretser og Ohms lov, KVL og KCL

- Når strøm, spenning og impedans er på vektorform, vil fortsatt Ohms lov, KVL og KCL gjelde
  - Forutsatt at det er korte ledere/lave frekvenser
- Når man beregner faktiske ampere-, volt- og Ohmverdier samt fasedreining gjelder disse kun for en bestemt frekvens
- Andre frekvenser gir andre Z-, I- og V-verdier og ulik fasedreining  $\varphi$



#### Faseforskjell strøm - spenning

- I en seriell RC-krets er strømmen gjennom resistoren og kondensatoren den samme
- For å finne sammenhengen mellom  $V_s$ ,  $V_R$  og  $V_C$  bruker man KVL og vektoraddisjon (samme som for å finne Z)



$$V_S = \sqrt{V_R^2 + V_C^2}$$



$$\theta = \tan^{-1}(\frac{V_C}{V_R})$$



### Faseforskjell strøm - spenning (forts)

• Siden strømmen I og resistorspenning  $V_R$  er i fase, er fasedreiningen mellom I og  $V_S$  lik den mellom  $V_R$  og  $V_S$  eller  $X_C$ 

og **R** 



$$\theta = \tan^{-1}(\frac{X_C}{R}) = \tan^{-1}(\frac{V_C}{V_R})$$



#### Impedans, fasedreining og frekvens

 Diagrammet under oppsummerer sammenhengen mellom impedans, frekvens og fasedreining



#### Tid- og frekvensdomene

- Et domene eller plan kan tenkes på som hvilket perspektiv eller sett av egenskaper vi studerer kretsen med tanke på
  - I elektronikk jobber vi med to hoveddomener: Tid og frekvens
  - Tid og frekvens betraktes som uavhengige variabele
  - "Alt det andre" er funksjoner av enten tid eller frekvens
- Alle kretser har oppførsel i begge domener :
  - Egenskapene er ulike i de ulike domenene
  - Egenskaper i ett domene p\u00e5virker egenskapene i det andre domenet
  - Stort sett studeres de to domenene uavhengig av hverandre
  - For å få et bredt bilde av en krets' oppførsel trengs beskrivelse av oppførselen i både tids- og frekvensdomenet



#### Anaylyse ved ulike frekvenser

- Hvis kretsen bare jobber med dc-strøm/-spenning blir verden ganske enkel:
  - Signalene varierer ikke mhp tid dvs frekvensen = 0
- Hvis kretsen kun brukes ved en bestemt frekvens eller i et begrenset frekvensområde:
  - Trenger kun ta hensyn til én frekvens ved analyse
  - Hvis frekvensen er veldig høy kan analysen allikevel bli ganske komplisert
  - Er frekvensen veldig lav, kan kretsen ses på som en dc-krets
- Hvis kretsen skal brukes over store frekvensområder:
  - Analyse i tids- og frekvensdomenet blir komplisert
  - Hvis kretsen skal brukes ved lave frekvenser kan man bruke enklere modeller (mer ideel oppførsel til komponenter) enn ved høye frekvenser

#### Generelle ac-signaler og sinussignaler

- Tro det eller ei: Det er mye lettere å jobbe med kun sinusformede ac-signaler enn helt tilfeldige ac-signaler
- Konvertering av vilkårlige ac-signaler til sinussignaler gjør videre analyse enklere



 Fourier-transform er prosessen med å finne Fourier-serien



$$g(t) = a_0 + \sum_{m=1}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$
$$= \sum_{m=0}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$

#### UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

## Generelle ac-signaler og sinussignaler



#### UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

#### Generelle ac-signaler og sinussignaler



### Generelle ac-signaler og sinussignaler

Eksempel 2: Firkantbølge og sagtannbølge som sum av fire grunnfrekvenser



$$\frac{2\sin\theta}{-\pi}$$

$$\frac{2\sin 2\theta}{2\pi}$$

$$\frac{2\sin 3\theta}{-3\pi}$$

$$\frac{2\sin 4\theta}{4\pi}$$

### Sammenheng mellom frekvens og tid

- Et ac-signal kan representeres både i tids- og frekvensdomenet
- Signalets amplitude er den samme i begge domener





#### RC-anvendelser

- RC-kretser bruker i mange typer kretser
  - Likeretting (omvandling fra ac til dc-spenninger)
  - Klokkesignaler (oscillatorer), tidsstyring og kontroll av f.eks blinklys
  - Fjerning av u
    ønskede spenningstopper
- Skal se på noen eksempler:
  - Filtre
  - AC-koblinger
  - Forsinkelseskretser
  - Integrasjon og derivasjon



#### Filtre (1)

- Et *filter* er en innretning som slipper gjennom bestemte ting og blokkerer andre
- F.eks en tesil: Slipper gjennom vann (veldig små molekyler), men blokkerer teblader (store objekter sammenlignet med vannmolekyler)

- Utesteder med aldersgrense har også en type filter:
  - Yngre 20 år: Ingen adgang
  - 20 år eller eldre: Adgang

#### Filtre (2)

 I elektronikk trenger vi også ulike typer filtre for å slippe gjennom det vi ønsker og sperre det vi ikke ønsker:



- Forhindre at det går for mye strøm gjennom ledninger (overbelstning): Automatsikring
- Hvordan og hva man stopper varierer fra en anvendelse til en annen, men formålet er uansett å stoppe det vi ikke ønsker og slippe gjennom det vi ønsker





#### Filtre (3)



- Vi skal se nærmere på filtre som stopper visse frekvenser samtidig som de slipper gjennom andre frekvenser
- Filtre har ulike egenskaper og parametre; en av de viktigste er hvilke frekvenser som stoppes og hvilke som slipper gjennom :
  - Høypassfiltre stopper lave frekvenser og slipper gjennom høye
  - Lavpassfiltre slipper gjennom lave frekvenser og stopper høye
  - Båndpassfiltre slipper igjennom frekvenser i et bestemt område og stopper frekvenser utenfor dette området
  - Båndstoppfiltre stopper frekvenser innenfor et bestemt område og slipper gjennom frekvenser utenfor dette området

#### UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

## Filteregenskaper og gain (1)

- Egenskapene og oppførselen til et filter kalles filterkarakteristikken
- En viktig egenskap er gain (forsterkning) og er forholdet mellom utsignalet og innsignalet
- Den enkleste varianten er se på forholdet mellom utgang og inngang for samme signaltype:  $G_v = A_v = \frac{v_{out}}{v_{in}} \qquad G_i = A_i = \frac{i_{out}}{i_{in}}$
- A = "Amplification" ≈ "Gain" og måles ofte i decibel (dB)

$$G_{dB} = 20 * \log(A_v)$$
  $G_{dB} = 20 * \log(A_i)$  dB for spenningsgain dB for strømgain

20.02.2018 IN 1080 28

### Filteregenskaper og gain (2)

- Sammenheng mellom noen dB-verdier og Gain
  - 0 dB tilsvarer  $V_{out}=V_{in}$  og  $A_v=1$ , dvs ingen forsterkning
  - ~6 dB tilsvarer  $V_{out} = 2*V_{in}$
  - 20 dB tilsvarer  $V_{out} = 10^*V_i$  og  $A_v = 10$
  - -20 dB tilsvarer  $V_{out} = 0.1 \text{ V}_i \text{ og } A_v = 0.1$
  - 30 dB tilsvarer  $V_{out} = 1000^*V_i \text{ og } A_v = 1000$
- decibel-skalaen er svært utbredt innen bla akustikk, antennemålinger, audioelektronikk, energi, feltstyrke, osv. MEN (liten advarsel):
  - Både formlene for å regne ut og navnene varier, f.eks dBV, dBA, dB Q, dBsm, dBJ
  - For eksempel: Forholdet mellom effekt ut og effekt in er  $A_p = A_v * A_i$  og i desibel:

$$G_{dB} = 10 * \log(A_p)$$

#### UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

#### Ideelle versus fysiske filtre



20.02.2018 IN 1080 30

#### Knekkfrekvens

20.02.2018

- Knekkfrekvensen («cutoff») er frekvensen hvor filteret begynner å slippe igjennom (eller stoppe) signaler
- Ideelle filtre slipper gjennom signaler i passområdet uten dempning, og stopper fullstendig signaler utenfor
- I praksis dempes signaler i passområdet, og stoppes ikke helt i stoppområdet
- Båndbredden er frekvensområdet som slipper igjennom filteret



31

#### Ulike filtre og filterkarakteristikker

- Filtre finnes i mange typer med ulike navn
  - Filterets orden angir hvor raskt filteret demper
  - Jo brattere kurve desto bedre, men det straffer seg i passområdet





Frequency Response Curve

080 32

#### RC-krets som lavpassfilter

RC krets kan benyttes som et lavpassfilter





#### RC-krets som høypassfilter

RC-krets som høypassfilter





#### AC-kopling med DC-bias

 I noen kretser må man isolere et AC (input)signal fra resten av kretsen, og samtidig legge til et DC-offset



# Fra forelesning 5

#### RC lead/lag kretser

RC «lead»- og «lag»-kretser er faseskiftkretser

• I en RC «lag»-krets er utspenningen  $V_{out}$  forskjøvet  $\varphi$  grader i

forhold til  $V_{in}$ 



(a) A basic RC lag circuit (b) Phasor voltage



between  $V_{in}$  and  $V_{out}$ 

(phase lag)



(c) Input and output voltage waveforms

- $V_{out}$  er lik  $V_c$ ,  $V_{in}$  lik  $V_s$  og  $\varphi=90^\circ-\theta$
- Kretsen kan også ses på som en spenningsdeler hvor

$$\varphi = 90^{\circ} - \tan^{-1}(\frac{X_C}{R})$$

$$V_{out} = \left(\frac{X_C}{\sqrt{R^2 + X_C^2}}\right) V_{in}$$

13.02.2018 IN 1080

36



#### RC lead/lag kretser (forts)

Ved å bytte om R og C får man en RC-«lead»-krets



• Utspenningen tas over resistoren og arphi og  $V_{out}$  er her gitt av

 $R \log X_C$ 

$$\varphi = \tan^{-1}(\frac{X_C}{R})$$

$$V_{out} = \left(\frac{R}{\sqrt{R^2 + X_C^R}}\right) V_{in}$$

#### Nøtt til neste gang

Hva er dette?



UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

## Oppsummeringsspørsmål

• Spørsmål fra forelesningene 5 og 6