(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 29. Juli 2004 (29.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/063171 A1

- (51) Internationale Patentklassifikation⁷: C07D 239/80, 243/02, 471/04, 285/36, 249/08, 403/12, 417/12, 405/12, A61K 31/505, 31/55, 31/435, 31/54
- (21) Internationales Aktenzeichen: PCT/EP2004/000087
- (22) Internationales Anmeldedatum:

9. Januar 2004 (09.01.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 00 973.6 14. Januar 2003 (14.01.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM INTERNA-TIONAL GMBH [DE/DE]; Binger Strasse 173, 55216 Ingelheim/Rhein (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BAUER, Eckhart [DE/DE]; Nickeleshalde 11, 88400 Biberach (DE). GER-LACH, Kai [DE/DE]; Sammlungsgasse 2, 89073 Ulm (DE). HURNAUS, Rudolf [DE/DE]; Silcherstr. 19, 88400 Biberach (DE). MUELLER, Stephan Georg [DE/DE]; Mälzerstrasse 13, 88447 Warthausen (DE). RUDOLF, Klaus [DE/DE]; Oeschweg 11, 88447 Warthausen (DE).

SCHINDLER, Marcus [DE/DE]; Kapellenweg 3, 88400 Biberach (DE). STENKAMP, Dirk [DE/DE]; Bonifaz-Locher-Weg 8, 88400 Biberach (DE).

- (74) Gemeinsamer Vertreter: BOEHRINGER INGEL-HEIM INTERNATIONAL GMBH; Binger Strasse 173, 55216 Ingelheim/Rhein (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: N- (1-BENZYL-2-OXO-2- (1-PIPERAZINYL) ETHYL) -1-PIPERIDINCARBOXAMID-DERIVATIVES AND RELATED COMPOUNDS USE AS CGRP-ANTAGONISTS FOR TREATING A HEADACHE

(54) Bezeichnung: N- (1-BENZYL-2-OXO-2- (1-PIPERAZINYL) ETHYL) -1-PIPERIDINCARBOXAMID-DERIVATE UND VERWANDTE VERBINDUNGEN ALS CGRP-ANTAGONISTEN ZUR BEHANDLUNG VON KOPFSCHMERZEN

(57) Abstract: The invention relates to carboxylic acids and esters of a general formula (I), wherein Ar, R, R^{1} , X^{1} , X^{3} , X^{4} , Y and Y¹ have a definition given in a claim 1. Said invention also relates to tautomers, the enantiomers, mixtures and salts thereof, in particular to physiologically compatible salts containing organic or inorganic acids or bases, drugs containing said compounds using them as CGRT

antagonists for treating a headache and to method for the production and use thereof for producing and cleaning antibodies and as labelled compounds for RIA and ELISA biological dosages and, finally as auxiliary diagnostics or analytics for neutrotransmitters.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft Carbonsäuren und Ester der allgemeinen Formel (I), in der Ar, R, R¹, X¹, X³, X⁴, Y und Y¹ wie in Anspruch 1 definiert sind, deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung als CGRP-Antagonisten zur Behandlung von Kopfschmerzen und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Erzeugung und Reinigung von Antikörpern und als markierte Verbindungen in RIA- und ELISA-Assays und als diagnostische oder analytische Hilfsmittel in der Neutrotransmitter-Forschung.

WO 2004/063171 A1

 vor Ablauf der f\u00fcr \u00eAnderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00eAnderungen eintreffen Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. WO 2004/063171 PCT/EP2004/000087

N-(1-BENZYL-2-OXO-2-(1-PIPERAZINYL)ETHYL)-1-PIPERIDINCARBOXAMID-DERIVATE UND VERWANDTE VERBINDUNGEN ALS CGRP-ANTAGONISTEN ZUR BEHANDLUNG VON KOPFSCHMERZEN

5 Gegenstand der vorliegenden Erfindung sind neue Carbonsäuren und deren Ester der allgemeinen Formel

$$\begin{array}{c|c} R & & \\ &$$

- deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung.
- 15 In der obigen allgemeinen Formel I bedeuten

25

30

R einen einfach ungesättigten 5- bis 7-gliedrigen Diaza-, Triaza- oder S,S-Dioxido-thiadiaza-Heterocyclus,

wobei die vorstehend erwähnten Heterocyclen über ein Stickstoffatom verknüpft und

durch eine jeweils von zwei Stickstoffatomen flankierte Carbonylgruppe oder Sulfonylgruppe charakterisiert sind,

an einem oder an zwei Kohlenstoffatomen durch je eine Alkyl-, Phenyl-, Pyridinyl-, Thienyl- oder 1,3-Thiazolyl-Gruppe substituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

und wobei die Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin- oder Chinolin-Ring kondensiert sein

kann,

wobei die in R enthaltenen Phenyl-, Pyridinyl-, Thienyl-, oder 1,3-Thiazolyl-Gruppen sowie benzo-, pyrido- und chinolinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Nitro-, Alkylthio-, Alkylsulfinyl-, Alkylsulfonyl-, Alkylsulfonyl-, Alkylsulfonyl-, Alkylsulfonyl-, Carboxy-, Dialkylamino-, Hydroxy-, Amino-, Acetylamino-, Propionylamino-, Aminocarbonyl-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Methylendioxy-, Aminocarbonylamino-, Alkanoyl-, Cyano-, Trifluormethoxy-, Trifluormethylsulfinyl- oder Trifluormethylsulfonyl-Gruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

Ar eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Tetrahydro-1-naphthyl, Tetrahydro-2-naphthyl-, 1*H*-Indol-3-yl-, 1-Methyl-1*H*-indol-3-yl-, 1-Formyl-1*H*-indol-3-yl-, 4-Imidazolyl-, 1-Methyl-4-imidazolyl-, 2-Thienyl-, 3-Thienyl-, Thiazolyl-, 1*H*-Indazol-3-yl-, 1-Methyl-1*H*-indazol-3-yl-, Benzo[b]furyl-, 2,3-Dihydrobenzo[b]furyl-, Benzo[b]thienyl, Pyridinyl-, Chinolinyl- oder Isochinolinylgruppe,

20

5

10

wobei die vorstehend erwähnten aromatischen und heteroaromatischen Reste im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkylgruppen, C₃₋₈-Cycloalkylgruppen, Phenylalkylgruppen, Alkenyl-, Alkoxy-, Phenyl-, Phenylalkoxy-, Trifluormethyl-, Alkoxycarbonyl-, Carboxy-, Dialkylamino-, Nitro-, Hydroxy-, Amino-, Alkylamino-, Acetylamino-, Propionylamino-, Methylsulfonyloxy-, Aminocarbonyl-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Alkanoyl-, Cyano-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können und die Substituenten gleich oder verschieden sein können,

30

25

Y die Methylen- oder die -NH-Gruppe,

Y¹ das Kohlenstoff- oder das Stickstoffatom,

X¹ das freie Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, ein Wasserstoffatom oder eine gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

5 X³ und X⁴ jeweils das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

mit der Maßgabe, dass mindestens einer, jedoch auch höchstens einer der Reste X^1 , X^2 , X^3 oder X^4 eine gegebenenfalls veresterte Carbonsäurefunktion enthält,

und

10

R¹ einen Rest der allgemeinen Formel

$$(N)_{m}$$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 (IIa)

in der

15

20

Y² das Kohlenstoff- oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder Stickstoffatom,

X² eine Gruppe der allgemeinen Formel

25
$$CH_2CO_2R^2$$
 , (III)

in der

 R^2 das Wasserstoffatom oder einen C_{1-5} -Alkylrest darstellt,

oder, sofern Y² das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

5 m die Zahlen 0 oder 1,

p die Zahlen 0, 1, 2 oder 3 und

q die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1, 2 oder 3 annehmen kann,

bedeuten,

10

oder einen der Reste (IIb), (IIc) oder (IId)

$$\times_{()_o}$$
 $\xrightarrow{R^3}$ $(IIb),$ $\xrightarrow{()_o}$ X^{2c} $(IIc),$ oder

$$X^{2d}$$
, (IId)

worin

20

25

X^{2b}, X^{2c} und X^{2d} jeweils das Wasserstoffatom oder eine gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

o die Zahlen 0, 1, 2 oder 3 und

R³ das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine Alkyl-, Alkoxy-, Nitro-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonyl-, Acetyl-

oder Cyanogruppe darstellen,

5

10

25

30

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 5 Kohlenstoffatome enthalten und geradkettig oder verzweigt sein können.

Die vorliegende Erfindung betrifft Racemate, sofern die Verbindungen der allgemeinen Formel I nur ein Chiralitätselement besitzen. Die Anmeldung umfasst jedoch auch die einzelnen diastereomeren Antipodenpaare oder deren Gemische, die dann vorliegen, wenn mehr als ein Chiralitätselement in den Verbindungen der allgemeinen Formel I vorhanden ist, sowie die einzelnen optisch aktiven Enantiomeren, aus denen sich die erwähnten Racemate zusammensetzen.

- Die Verbindungen der allgemeinen Formel I weisen wertvolle pharmakologische Eigenschaften auf, die auf ihre selektiven CGRP-antagonistischen Eigenschaften zurückgehen. Ein weiterer Gegenstand der Erfindung sind diese Verbindungen enthaltende Arzneimittel, deren Verwendung und deren Herstellung.
- 20 Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R einen einfach ungesättigten 5- bis 7-gliedrigen Diaza-, Triaza- oder *S,S*-Dioxido-thiadiaza-Heterocyclus,

wobei die vorstehend erwähnten Heterocyclen über ein Stickstoffatom verknüpft und

durch eine jeweils von zwei Stickstoffatomen flankierte Carbonylgruppe oder Sulfonylgruppe charakterisiert sind,

an einem Kohlenstoffatom durch eine Phenyl-, Pyridinyl-, Thienyl- oder 1,3-Thiazolylgruppe substituiert sein können,

und wobei die Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin- oder Chinolin-Ring kondensiert sein kann,

PCT/EP2004/000087

wobei die in R enthaltenen Phenyl-, Pyridinyl-, Thienyl-, oder 1,3-Thiazolylgruppen sowie benzo-, pyrido- und chinolinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Trifluormethyl-, Amino-, Cyano- oder Acetylaminogruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

Ar eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 1,2,3,4-Tetrahydro-1-naphthyl oder 2,3-Dihydrobenzo[b]fur-5-yl-Gruppe,

wobei die vorstehend erwähnten aromatischen und heteroaromatischen Reste im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkylgruppen, Alkoxy-, Trifluormethyl-, Nitro-, Hydroxy-, Amino-, Aminocarbo-nyl-, Acetyl- oder Cyanogruppen mono-, di- oder trisubstituiert sein können und die Substituenten gleich oder verschieden sein können.

Y die Methylen- oder die NH-Gruppe,

5

10

15

20

30

Y1 das Kohlenstoff- oder das Stickstoffatom,

25 X¹ ein freies Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

X³ und X⁴ jeweils das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

mit der Maßgabe, dass mindestens einer, jedoch auch höchstens einer der Reste X¹, X², X³ oder X⁴ eine gegebenenfalls veresterte Carbonsäurefunktion enthält, und

R¹ einen Rest der allgemeinen Formel

$$CH_3$$
 $(N)_m$
 $(CH_2)_q$
 X^2
, (IIa)

5 in der

Y² das Kohlenstoffatom oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

10 Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder das Stickstoffatom,

X² eine Gruppe der allgemeinen Formel

$$CH_2CO_2R^2$$
 , (III)

15

in der

R² das Wasserstoffatom oder einen C₁₋₅-Alkylrest darstellt,

oder, sofern Y² das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

m die Zahlen 0 oder 1,

25

30

p die Zahlen 0, 1 oder 2 und

q die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1 oder 2 annehmen kann,

bedeuten,

oder einen der Reste

5

$$X^{2b}$$
 (IIb), oder X^{2d} , (IId)

worin

10 X^{2b} und X^{2d} jeweils das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

o die Zahlen 0, 1, 2 oder 3 und

15 R³ das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine Methyl-, Methoxy-, Nitro-, Trifluormethyl- oder Cyanogruppe darstellen,

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 4 Kohlenstoffatome enthalten und verzweigt oder unverzweigt sein können,

bedeuten,

20

deren Tautomere, deren Diastereomere, deren Enantiomere und deren Salze.

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R einen einfach ungesättigten 5- bis 7-gliedrigen Diaza-, Triaza- oder *S,S*-Dioxido-thiadiaza-Heterocyclus,

wobei die vorstehend erwähnten Heterocyclen über ein Stickstoffatom verknüpft und

durch eine jeweils von zwei Stickstoffatomen flankierte Carbonylgruppe oder Sulfonylgruppe charakterisiert sind,

an einem Kohlenstoffatom durch eine Phenylgruppe substituiert sein können,

und wobei die Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin- oder Chinolin-Ring kondensiert sein kann,

wobei die in R enthaltenen Phenylgruppen sowie benzo-, pyrido- und chinolinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Methoxy-, Trifluormethyl-, oder Cyanogruppen mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

20 Ar eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 1,2,3,4-Tetrahydro-1-naphthyl oder 2,3-Dihydrobenzo[b]fur-5-yl-Gruppe,

wobei die vorstehend erwähnten aromatischen und heteroaromatischen Reste im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Methoxy-, Trifluormethyl-, Hydroxy- oder Aminogruppen mono-, dioder trisubstituiert sein können und die Substituenten gleich oder verschieden sein können,

Y die Methylen- oder -NH-Gruppe,

5

15

25

30

Y¹ das Kohlenstoff- oder Stickstoffatom,

X¹ ein freies Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, das Wasserstoffatom oder die gegebenenfalls mit Methanol

oder Ethanol veresterte Carbonsäuregruppe,

X³ und X⁴ jeweils das Wasserstoffatom oder die gegebenenfalls mit Methanol oder. Ethanol veresterte Carbonsäuregruppe,

5

mit der Maßgabe, dass mindestens einer, jedoch auch höchstens einer der Reste X^1 , X^2 , X^3 oder X^4 eine gegebenenfalls veresterte Carbonsäurefunktion enthält, und

R¹ einen Rest der allgemeinen Formel

10

$$(N)_{m}$$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$

in der

15

Y² das Kohlenstoff- oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder das Stickstoffatom,

X² eine Gruppe der allgemeinen Formel

20

$$CH_2CO_2R^2$$
 , (III)

in der

25

R² das Wasserstoffatom oder einen geradkettigen oder verzweigten C₁₋₄-Alkylrest darstellt,

oder, sofern Y^2 das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

m die Zahlen 0 oder 1,

p die Zahlen 0, 1 oder 2 und

5 q die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1 oder 2 annehmen kann,

bedeuten,

oder einen der Reste

$$X^{2b}$$
 (IIb), oder X^{2d} , (IId)

15 worin

10

X^{2b} und X^{2d} jeweils das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

o die Zahlen 0, 1 oder 2 und

R³ das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine Methyl-, Methoxy- oder Trifluormethylgruppe

25 darstellen,

30

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 4 Kohlenstoffatome enthalten und geradkettig oder verzweigt sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere und deren Salze.

Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel (I) sind diejenigen, in denen

5

R die 3,4-Dihydro-2(1H)-oxochinazolin-3-yl-, 2,4-Dihydro-5-phenyl-3(3H)-oxo-1,2,4-triazol-2-yl-, 1,3-Dihydro-2(2H)-oxoimidazo[4,5-c]chinolin-3-yl-, 2-Oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl-, 3,4-Dihydro-2(1H)-oxopyrido[3,4-d]pyrimidin-3-yl- oder 3,4-Dihydro-2,2-dioxido-2,1,3-benzothiadiazin-3-yl-Gruppe,

10

4-Amino-3,5-dibromphenyl-, Ar die 3,5-Dibrom-4-hydroxyphenyl-, 4-Brom-3,5-Dichlor-4-methylphenyl-, 3,4-Dibromphenyl-, 3.5-dimethylphenyl-, 3-Brom-3,5-Dibrom-4-methylphenyl-, 4.5-dimethylphenyl-, 3-Chlor-4-methylphenyl-, 4-Hydroxyphenyl-, 3,5-Dibrom-4-fluorphenyl-, 3.4-Difluorphenyl-, 1-Naphthyl-, 3.5-Bis-(trifluormethyl)-phenyl-, 3.4.5-Trimethylphenyl-, 3-(Trifluormethyl)-phenyl-, 3,5-Dimethyl-4-methoxyphenyl-, 4-Amino-3,5-dichlorphenyl-, 2,4-Bis-(trifluormethyl)phenyl-, 3,4,5-Tribromphenyl-, 3,4-Dimethoxyphenyl-, 3,4-Dichlorphenyl-, 4-Brom-3,5-dichlorphenyl-, 2-Naphthyl-, 2,3-Dihydrobenzo[b]fur-5-yl-, 1,2,3,4-Tetrahydro-1-naphthyl- oder 2,3-Dichlorphenylgruppe,

20

15

Y die Methylen- oder die -NH-Gruppe,

Y¹ das Kohlenstoff- oder das Stickstoffatom,

25

X¹ ein freies Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, das Wasserstoffatom, die Carbonsäure- oder die Methoxy-carbonylgruppe und

R¹ einen Rest der allgemeinen Formel

$$CH_3$$
 $(N)_m$
 $(CH_2)_q$
 X^2
, (IIa)

in der .

5 Y² das Kohlenstoffatom oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder das Stickstoffatom,

10 X² eine Gruppe der allgemeinen Formel

$$CH_2CO_2R^2$$
 , (III)

in der

15

25

30

 R^2 das Wasserstoffatom oder einen geradkettigen oder verzweigten $C_{1\text{--}4}$ -Alkylrest darstellt,

oder, sofern Y² das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

m die Zahlen 0 oder 1,

p und q jeweils die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1 oder 2 annehmen kann,

bedeuten,

oder einen der Reste

WO 2004/063171 - 14 - PCT/EP2004/000087

$$\times_{()_0}$$
 $\xrightarrow{R^3}$ (IIb), oder \xrightarrow{S} \xrightarrow{N} \xrightarrow{N} , (IId)

worin

5

X^{2b} das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

X^{2d} das Wasserstoffatom oder die gegebenenfalls mit Methanol veresterte 10 Carbonsäuregruppe,

o die Zahlen 0, 1 oder 2 und

R³ das Wasserstoffatom oder die Trifluormethylgruppe darstellen,

15

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 4 Kohlenstoffatome enthalten und geradkettig oder verzweigt sein können.

20

deren Tautomere, deren Diastereomere, deren Enantiomere und deren Salze.

Als ganz besonders bevorzugte Verbindungen seien beispielsweise folgende genannt:

- (1) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
- (2) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-30 carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäure,

- (3) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1- piperidinyl]-1-piperazinyl}-1-piperidinessigsäure-1,1- dimethylethylester,
- 5 (4) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinessigsäure
 - (5) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,
- (6) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäure,

- (7) *endo-4-*{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-dinyl]-D-tyrosyl]-1-piperazinyl}-cyclohexancarbonsäureethylester,
 - (8) *endo-*4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-1-piperazinyl}-cyclohexancarbonsäure,
- 20 (9) *exo-*4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-cyclohexancarbonsäureethylester,
 - (10) *exo*-4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-cyclohexancarbonsäure,
 - (11) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-1-piperidinessigsäureethylester,
- (12) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,
 - (13) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäure,

(14) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-1-piperidinessigsaureethylester,

(15) 4-{1-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessig-säureethylester,

5

20

- 10 (16) 4-{1-[3,5-Dichlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-ethylester,
- (17) 4-{1-[3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
 - (18) 4-{1-[3-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessig-säureethylester,

(19) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-ethylester,

- 25 (20) 4-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
- (21) 4-{4-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl] carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-1-piperazinyl}-1-piperidinessig-säureethylester,
 - (22) 4-{1-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,

- (23) 4-{1-[3,5-Dichlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
- 5 (24) 4-{1-[3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (25) 4-{1-[3-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (26) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,

- (27) 4-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (28) 4-{4-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-1-piperazinyl}-1-piperidinessigsäure,

::

- 20 (29) 4-{1-[3,4-Difluor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-1,1-dimethylethylester,
- (30) 1'-[*N*-[[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]
 D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,
 - (31) 4-{1-[*N*-[[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
- 30 (32) (*R*,*S*)-4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäureethylester,
 - (33) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-

20

- 1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbonsäuremethylester,
- (34) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]- carbonyl]-D-tyrosyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbonsäuremethylester,
 - (35) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbonsäure,
 - (36) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbonsäure,
- (37) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbon-säuremethylester,
 - (38) $1-\{1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-(R)-pyrrolidin-2-carbonsäuremethylester,$
 - (39) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbonsäure,
- 25 (40) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbonsäure,
 - (41) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-dinyl]carbonyl]-D-phenylalanyl]-(*R*)-[1,4']bipiperidinyl-2-carbonsäuremethylester,
 - (42) 1'-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-(R)-[1,4']bipiperidinyl-2-carbonsäuremethylester,

- (43) 1'-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperi-dinyl]carbonyl]-D-phenylalanyl]-(S)-[1,4']bipiperidinyl-2-carbonsäuremethylester,
- 5 (44) 1'-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-(S)-[1,4']bipiperidinyl-2-carbonsäuremethylester,
 - (45) 1'-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperi-dinyl]-Carbonyl]-D-phenylalanyl]-(R)-[1,4']bipiperidinyl-2-carbonsäure,
 - (46) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-(*R*)-[1,4']bipiperidinyl-2-carbonsäure,

- (47) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-(*S*)-[1,4']bipiperidinyl-2-carbonsäure,
 - (48) 1'-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperi-dinyl]-Carbonyl]-D-phenylalanyl]-(S)-[1,4']bipiperidinyl-2-carbonsäure,
- 20 (49) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4'-carbonsäuremethylester,
 - (50) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-dinyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4'-carbonsäuremethylester,
 - (51) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4'-carbonsäure,
- (52) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-30 dinyl]carbonyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4'-carbonsäure,
 - (53) 1'-[N-[[4-(3,4-Dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäure,

- (54) 4-{1-[*N*-[[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäure,
- (55) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]- carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäureethylester,
 - (56) 3-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäureethylester,
- 10 (57) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäuremethylester,
 - (58) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinylmethyl}-benzoesäureethylester,
 - (59) 4-{2-[1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-dinyl]carbonyl]-D-tyrosyl]-4-piperidinyl]-ethyl}-benzoesäureethylester,

- (60) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-1-piperazinyl}-3-(trifluormethyl)-benzoesäuremethylester,
 - (61) 3-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäuremethylester,
- 25 (62) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäureethylester,
- (63) 3-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäureethylester,
 - (64) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäure-

10

20

methylester,

- (65) 4-{2-[1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzo-diazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl]-ethyl}-benzoesäuremethylester,
- (66) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-3-(trifluormethyl)-benzoesäuremethylester,
- (67) 3-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäuremethylester,
- 15 (68) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäure,
 - (69) 3-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäure,
 - (70) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäure,
- (71) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinylmethyl}-benzoesäure,
 - (72) 4-{2-[1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl]-ethyl}-benzoesäure,
- 30 (73) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-3-(trifluormethyl)-benzoesäure,
 - (74) 3-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäure,

- (75) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäure,
- 5 (76) 3-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäure,
 - (77) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-terahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]-carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäure,
 - (78) 4-{2-[1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzo-diazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl]-ethyl}-benzoesäure,

- 15 (79) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-3-(trifluormethyl)-benzoesäure,
- (80) 3-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-20 3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäure,
 - (81) 4-{1-[3-(1-Naphthyl)-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-alanyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
 - (82) 4-{1-[3-(1-Naphthyl)-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-alanyl]-4-piperidinyl}-1-piperazinessigsäure,
- (83) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-30 carbonyl]-D-tyrosyl]-1-piperazinyl}-5-thiazolcarbonsäuremethylester,
 - (84) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-4-thiazolcarbonsäuremethylester,

- (85) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-5-thiazolcarbonsäure,
- (86) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-4-thiazolcarbonsäure,

10

20

- (87) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-pipe ridinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-4-thiazolcarbonsäuremethylester,
- (88) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-5-thiazolcarbonsäuremethylester,
- 15 (89) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)- 1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-4-thiazolcarbonsäure,
 - (90) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-5-thiazolcarbonsäure,
 - (91) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-1-piperidinessigsäure,
- (92) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-1-piperidinessigsäure,
 - (93) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-1,1-dimethylethylester,
 - (94) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-1,1-dimethylethylester,

(95) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-d-piperidinyl]-1-piperazinessigsäureethylester,

5

- (96) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessig-säureethylester,
- 10 (97) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-d-piperidinyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (98) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]-carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (99) (*R*,*S*)-4-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,

20

- (100) (*R*,*S*)-4-{1-[2-[(3,5-Dibrom-4-fluorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- 25
- (101) (*R*,*S*)-4-{1-[4-(3,4-Dihydro-2(1*H*)-oxopyrido[3,4-d]pyrimidin-3-yl)-1-piperidinyl]-2-[(1-naphthyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (102) (*R*,*S*)-4-{1-[2-[[3,5-Bis-(trifluormethyl)-phenyl]methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
 - (103) (R,S)-4-{1-[4-[4-(3,4-Dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-2- [(3,4,5-trimethylphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-

10

30

essigsäure,

- (104) (*R*,*S*)-4-{1-[2-[(3-Brom-4,5-dimethylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (105) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2- [[3-(trifluormethyl)-phenyl]methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
- (106) (R,S)-4-{1-[4-[4-(3,4-Dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(4-methoxy-3,5-dimethylphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (107) (*R*,*S*)-4-{1-[2-[(4-Amino-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (108) (*R*,*S*)-4-{1-[2-[[2,4-Bis-(trifluormethyl)-phenyl]methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
- (109) (*R*,*S*)-4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
 - (110) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,4,5-tribromphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
 - (111) (R,S)-4-{1-[4-[4-(3,4-Dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,4-dimethoxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (112) (R,S)-4-{1-[2-[(3,4-Dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1H)-oxochinazo-

- lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (113) (*R*,*S*)-4-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,

- (114) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(2-naphthyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- 10 (115) (*R*,*S*)-4-{1-[2-[(2,3-Dihydrobenzo[b]fur-5-yl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
- (116) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]2-[(1,2,3,4-tetrahydro-1-naphthyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}1-piperazinessigsäure,
 - (117) (*R*,*S*)-4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2,2-dioxido-2,1,3-benzothiadiazin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (118) (*R*,*S*)-4-{1-[2-[(2,3-Dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazo-lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- 25 (119) (*R*,*S*)-4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazo-lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure-ethylester,
- (120) (*R*,*S*)-4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazo-30 lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (121) (*R*,*S*)-4-{4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazo-lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-piperazinyl}-1-piperidinessigsäure,

- (122) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbon-säuremethylester,
- 5 (123) 1-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(S)-pyrrolidin-2-carbon-säuremethylester,
- (124) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbon-säuremethylester,
 - (125) 1-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbon-säuremethylester,

- (126) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(S)-pyrrolidin-2-carbon-säure,
- (127) 1-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbon-säure,
- 25 (128) 4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
- (129) 4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
 - (130) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbon-

säureethylester,

5

10

25

- (131) 4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
- (132) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäureethylester,
- (133) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbon-säureethylester,
- 15 (134) 4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbon-säure,
- (135) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-20 1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäure,
 - (136) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbon-säure,
 - (137) 4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-pipera-zincarbonsäure,
 - (138) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäureethylester,

- (139) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäure,
- 5 (140) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäureethylester,
- (141) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäureethylester,

- (142) 4-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
- (143) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäure,
- (144) 4-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure,
- 25 (145) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäure,
- (146) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäure,
 - (147) 4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-

10

25

30

2-piperazincarbonsäureethylester,

- (148) 4-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäureethylester,
- (149) 4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure,
- (150) 4-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
- 15 (151) 1-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazin-carbonsäureethylester,
- (152) 1-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,
 - (153) 1-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,
 - (154) 1-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,
 - (155) 1-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,

- (156) 1-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
- 5 (157) 1-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
- (158) 1-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
 - (159) 1-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
 - (160) 1-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazin-carbonsäure,
 - (161) 4-{1-[3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-phenylalanyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure-ethylester,
- 25 (162) 4-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure,
- (163) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,
 - (164) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäure,

- (165) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-methyl-2-piperazin-carbonsäureethylester,
- 5 (166) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-4-methyl-2-piperazin-carbonsäureethylester

und deren Salze.

10

Die Verbindungen der allgemeinen Formel I werden nach prinzipiell bekannten Methoden hergestellt. Die folgenden Verfahren haben sich zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I besonders bewährt:

- Zur Herstellung von Verbindungen der allgemeinen Formel (I), in der Y die NH-Gruppe bedeutet und weder X¹ noch X³ noch X⁴ noch R¹ eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie eingangs erwähnt definiert sind:
- 20 Umsetzung von Piperidinen der allgemeinen Formel

in der

25

R wie vorstehend definiert ist, mit Kohlensäurederivaten der allgemeinen Formel

in der

30

X⁵ eine nukleofuge Gruppe, bevorzugt die 1*H*-Imidazol-1-yl-, 1*H*-1,2,4-Triazol-1-yl-,

Trichlormethoxy- oder die 2,5-Dioxopyrrolidin-1-yloxygruppe, bedeutet,

und mit primären Aminen der allgemeinen Formel

$$\begin{array}{c|c} Ar & & \\ H & N & & \\ I & O & X^4 & X_X^{3|} & \\ \end{array}$$

in der

5

10

15

20

25

30

weder X^1 noch X^3 noch X^4 noch R^1 eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie oben definiert sind.

Die im Prinzip zweistufigen Reaktionen werden in der Regel als Eintopfverfahren durchgeführt, und zwar bevorzugt in der Weise, dass man in der ersten Stufe eine der beiden Komponenten (IV) oder (VI) mit äquimolaren Mengen des Kohlensäurederivats der allgemeinen Formel (V) in einem geeigneten Lösemittel bei tieferer Temperatur zur Reaktion bringt, anschließend wenigstens äquimolare Mengen der anderen Komponente (IV) oder (VI) zugibt und die Umsetzung bei höherer Temperatur beendet. Die Umsetzungen mit Bis-(trichlormethyl)-carbonat werden bevorzugt in Gegenwart von wenigstens 2 Äquivalenten (bezogen auf Bis-(trichlormethyl)-carbonat) einer tertiären Base, beispielsweise von Triethylamin; N-Ethyl-diisopropylamin, Pyridin, 1,5-Diazabicyclo[4,3,0]non-5-en, 1,4-Diazabicyclo-[2,2,2]octan oder 1,8-Diazabicyclo[5,4,0]undec-7-en, durchgeführt. Als Lösemittel, die wasserfrei sein sollten, kommen beispielsweise Tetrahydrofuran, Dioxan, Dimethylacetamid, N-Methyl-2-pyrrolidon, 1,3-Dimethyl-2-Dimethylformamid. imidazolidinon oder Acetonitril in Betracht, bei Verwendung von Bis-(trichlormethyl)carbonat als Carbonylkomponente werden wasserfreie Chlorkohlenwasserstoffe, beispielsweise Dichlormethan, 1,2-Dichlorethan oder Trichlorethylen, bevorzugt. Die Reaktionstemperaturen liegen für die erste Reaktionsstufe zwischen -30 und +25°C, bevorzugt -5 und +10°C, für die zweite Reaktionsstufe zwischen +15°C und der Siedetemperatur des verwendeten Lösemittels, bevorzugt zwischen +20°C und +70°C (Siehe auch: H. A. Staab und W. Rohr, "Synthesen mit heterocyclischen Amiden (Azoliden)", Neuere Methoden der Präparativen Organischen Chemie, Band V, S. 53 - 93, Verlag Chemie, Weinheim/Bergstr., 1967; P. Majer und R.S. Randad, J. Org. Chem. 59, 1937 - 1938 (1994); K. Takeda, Y. Akagi, A. Saiki, T. Sukahara und H. Ogura, Tetrahedron Letters 24 (42), 4569 - 4572 (1983)).

b) Zur Herstellung von Verbindungen der allgemeinen Formel (I), in der Y die CH₂-Gruppe bedeutet und weder X¹ noch X³ noch X⁴ noch R¹ eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie oben definiert sind:

Kupplung einer Carbonsäure der allgemeinen Formel

HO
$$X^{1}$$
 X^{1} , (VII)

15 in der

5

10

weder X^1 noch X^3 noch X^4 noch R^1 eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie oben definiert sind,

20 mit einem Piperidin der allgemeinen Formel

$$R \longrightarrow N - H$$

in der

25

R die eingangs erwähnten Bedeutungen besitzt.

Die Kupplung wird bevorzugt unter Verwendung von aus der Peptidchemie bekannten Verfahren (siehe z. B. Houben-Weyl, Methoden der Organischen

Chemie, Bd. 15/2) durchgeführt, wobei zum Beispiel Carbodiimide, wie z. B. Dicyclohexylcarbodiimid (DCC), Diisopropylcarbodiimid (DIC) oder Ethyl-(3-dimethylaminopropyl)-carbodiimid, O-(1H-Benzotriazol-1-yl)- N,N-N,N-tetramethyluroniumhexafluorophosphat (HBTU) oder -tetrafluoroborat (TBTU) oder 1 H-Benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphoniumhexafluorophosphat (BOP) eingesetzt werden. Durch Zugabe von 1-Hydroxybenzotriazol (HOBt) oder 3-Hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazin (HOObt) kann die von Reaktionsgeschwindigkeit gesteigert werden. Die Kupplungen werden normalerweise mit äguimolaren Anteilen der Kupplungskomponenten sowie des Kupplungsreagenzes in Lösemitteln wie Dichlormethan, Tetrahydrofuran, Acetonitril, Dimethylformamid (DMF), Dimethylacetamid (DMA), N-Methylpyrrolidon (NMP) oder Gemischen aus diesen und bei Temperaturen zwischen -30 und +30°C, bevorzugt -20 und +25°C, durchgeführt. Sofern erforderlich, wird als zusätzliche Hilfsbase N-Ethyl-diisopropylamin (DIEA) (Hünig-Base) bevorzugt.

15

20

25

30

10

5

Als weiteres Kupplungsverfahren zur Synthese von Verbindungen der allgemeinen Formel (I) wird das sogenannte "Anhydridverfahren" (siehe auch: M. Bodanszky, "Peptide Chemistry", Springer-Verlag 1988, S. 58-59; M. Bodanszky, "Principles of Peptide Synthesis", Springer-Verlag 1984, S. 21-27) eingesetzt. Bevorzugt wird das "gemischte Anhydridverfahren" in der Variante nach Vaughan (J.R. Vaughan Jr., J. Amer. Chem.Soc. 73, 3547 (1951)), bei der unter Verwendung von Chlorkohlensäureisobutylester in Gegenwart von Basen, wie 4-Methylmorpholin oder 4-Ethylmorpholin, das gemischte Anhydrid aus der zu kuppelnden Carbonsäure der allgemeinen Formel (VII) und dem Kohlensäure-monoisobutylester erhalten wird. Die Herstellung dieses gemischten Anhydrids und die Kupplung mit Aminen erfolgt im Eintopfverfahren, unter Verwendung der vorstehend genannten Lösemittel und bei Temperaturen zwischen -20 und +25°C, bevorzugt 0 und +25°C.

c) Zur Herstellung von Verbindungen der allgemeinen Formel (I), in der Y die CH₂-Gruppe bedeutet und weder X¹ noch X³ noch X⁴ noch R¹ eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie oben definiert sind:

Nu
$$X^{1}-R^{1}$$
 , (VIII)

in der

10

15

20

weder X¹ noch X³ noch X⁴ noch R¹ eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie oben definiert sind, und Nu eine Austrittsgruppe, beispielsweise ein Halogenatom, wie das Chlor-, Brom- oder Iodatom, eine C₁-₁₀-Alkylsulfonyloxygruppe, eine gegebenenfalls durch Chlor- oder Bromatome, durch Methyl- oder Nitrogruppen mono-, di- oder trisubstituierte Phenylsulfonyloxyoder Naphthylsulfonyloxygruppe, wobei die Substituenten gleich oder verschieden sein können, eine 1*H*-Imidazol-1-yl-, eine gegebenenfalls durch 1 oder 2 Methylgruppen im Kohlenstoffgerüst substituierte 1*H*-Pyrazol-1-yl-, eine 1*H*-1,2,4-Triazol-1-yl-, 1*H*-1,2,3-Triazol-1-yl-, 1*H*-1,2,3,4-Tetrazol-1-yl-, eine Vinyl-, Propargyl-, *p*-Nitrophenyl-, 2,4-Dinitrophenyl-, Trichlorphenyl-, Pentachlorphenyl-, Pentafluorphenyl-, Pyranyl- oder Pyridinyl-, eine Dimethylaminyloxy-, 2(1*H*)-Oxopyridin-1-yloxy-, 2,5-Dioxopyrrolidin-1-yloxy-, Phthalimidyloxy-, 1*H*-Benzo-triazol-1-yloxy- oder Azidgruppe bedeutet,

mit einem Piperidin der allgemeinen Formel

in der

25 R wie eingangs erwähnt definiert ist.

Die Umsetzung wird unter Schotten-Baumann- oder Einhorn-Bedingungen durchgeführt, das heißt, die Komponenten werden in Gegenwart von wenigstens einem Äquivalent einer Hilfsbase bei Temperaturen zwischen -50°C und +120°C,

bevorzugt -10°C und +30°C, und gegebenenfalls in Gegenwart von Lösemitteln zur Reaktion gebracht. Als Hilfsbasen kommen bevorzugt Alkali- und Erdalkalihydroxide, beispielsweise Natriumhydroxid, Kaliumhydroxid oder Bariumhydroxid, Alkalicarbonate, z. B. Natriumcarbonat, Kaliumcarbonat oder Cäsiumcarbonat, Alkaliacetate, z.B. Natrium- oder Kaliumacetat, sowie tertiäre Amine, beispielsweise Pyridin, 2,4,6-Trimethylpyridin, Chinolin, Triethylamin, *N*-Ethyl-diisopropylamin, *N*-Ethyl-dicyclohexylamin, 1,4-Diazabicyclo[2,2,2]octan oder 1,8-Diazabicyclo[5,4,0]undec-7-en, als Lösemittel beispielsweise Dichlormethan, Tetrahydrofuran, 1,4-Dioxan, Acetonitril, Dimethylformamid, Dimethylacetamid, *N*-Methylpyrrolidon oder Gemische davon in Betracht; werden als Hilfsbasen Alkali- oder Erdalkalihydroxide, Alkalicarbonate oder -acetate verwendet, kann dem Reaktionsgemisch auch Wasser als Cosolvens zugesetzt werden.

d) Zur Herstellung von Verbindungen der allgemeinen Formel (I), in der weder X¹ noch X³ noch X⁴ noch R¹ eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie oben definiert sind:

Kupplung einer Carbonsäure der allgemeinen Formel

in der

20

25

5

10

15

Ar, R und Y wie oben definiert sind,

mit einem cyclischen, sekundären Amin der allgemeinen Formel

in der

5

10

15

20

25

30

weder X^1 noch X^3 noch X^4 noch R^1 eine freie Carbonsäurefunktion enthalten, die Reste im übrigen wie eingangs definiert sind.

Die Kupplung wird bevorzugt unter Verwendung von aus der Peptidchemie bekannten Verfahren (siehe z. B. Houben-Weyl, Methoden der Organischen Chemie, Bd. 15/2) durchgeführt, wobei zum Beispiel Carbodiimide, wie z. B. Dicyclohexylcarbodiimid (DCC), Diisopropylcarbodiimid (DIC) oder Ethyl-(3-dimethylaminopropyl)-carbodiimid, O-(1H-Benzotriazol-1-yl)- N,N-N,N-tetramethyluroniumhexafluorophosphat (HBTU) oder -tetrafluoroborat (TBTU) oder 1H-Benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphoniumhexafluorophosphat (BOP) eingesetzt werden. Durch Zugabe von 1-Hydroxybenzotriazol (HOBt) oder 3-Hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazin (HOObt) kann Reaktionsgeschwindigkeit gesteigert werden. Die Kupplungen werden normalerweise mit äquimolaren Anteilen der Kupplungskomponenten sowie des Kupplungsreagenzes in Lösemitteln wie Dichlormethan, Tetrahydrofuran, Acetonitril, Dimethylformamid (DMF), Dimethylacetamid (DMA), N-Methylpyrrolidon (NMP) oder Gemischen aus diesen und bei Temperaturen zwischen -30 und +30°C, bevorzugt -20 und +25°C, durchgeführt. Sofern erforderlich, wird als zusätzliche Hilfsbase N-Ethyl-diisopropylamin (DIEA) (Hünig-Base) bevorzugt.

Als weiteres Kupplungsverfahren zur Synthese von Verbindungen der allgemeinen Formel (I) wird das sogenannte "Anhydridverfahren" (siehe auch: M. Bodanszky, "Peptide Chemistry", Springer-Verlag 1988, S. 58-59; M. Bodanszky, "Principles of Peptide Synthesis", Springer-Verlag 1984, S. 21-27) eingesetzt. Bevorzugt wird das "gemischte Anhydridverfahren" in der Variante nach Vaughan (J.R. Vaughan Jr., J. Amer. Chem.Soc. 73, 3547 (1951)), bei der unter Verwendung von Chlorkohlensäureisobutylester in Gegenwart von Basen, wie 4-Methylmorpholin 4-Ethylmorpholin, das gemischte Anhydrid aus der zu kuppelnden Carbonsäure der allgemeinen Formel (IX) und dem Kohlensäure-monoisobutylester erhalten wird. Die Herstellung dieses gemischten Anhydrids und die Kupplung mit den Aminen der allgemeinen Formel (X) erfolgt im Eintopfverfahren, unter Verwendung der vorstehend genannten Lösemittel und bei Temperaturen zwischen -20 und +25°C, bevorzugt 0 und +25°C.

e) Zur Herstellung von Verbindungen der allgemeinen Formel (I), in der weder X¹ noch X³ noch X⁴ noch R¹ eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie oben definiert sind:

5

Kupplung einer Verbindung der allgemeinen Formel

10 in der

15

20

Ar, R und Y wie oben definiert sind und Nu eine Austrittsgruppe, beispielsweise ein Halogenatom, wie das Chlor-, Brom- oder Iodatom, eine C₁₋₁₀-Alkylsulfonyloxygruppe, eine gegebenenfalls durch Chlor- oder Bromatome, durch Methyl- oder Nitrogruppen mono-, di- oder trisubstituierte Phenylsulfonyloxy- oder Naphthylsulfonyloxygruppe, wobei die Substituenten gleich oder verschieden sein können, eine 1*H*-Imidazol-1-yl-, eine gegebenenfalls durch 1 oder 2 Methylgruppen im Kohlenstoffgerüst substituierte 1*H*-Pyrazol-1-yl-, eine 1*H*-1,2,4-Triazol-1-yl-, 1*H*-1,2,3-Triazol-1-yl-, 1*H*-1,2,3,4-Tetrazol-1-yl-, eine Vinyl-, Propargyl-, *p*-Nitrophenyl-, 2,4-Dinitrophenyl-, Trichlorphenyl-, Pentachlorphenyl-, Pentafluorphenyl-, Pyranyloder Pyridinyl-, eine Dimethylaminyloxy-, 2(1*H*)-Oxopyridin-1-yl-oxy-, 2,5-Dioxopyrrolidin-1-yloxy-, Phthalimidyloxy-, 1*H*-Benzotriazol-1-yloxy- oder Azidgruppe bedeutet,

25 mit einem cyclischen, sekundären Amin der allgemeinen Formel

$$H = \begin{bmatrix} X^{1} & X^{1}$$

in der

weder X¹ noch X³ noch X⁴ noch R¹ eine freie Carbonsäurefunktion enthalten, die Reste im übrigen wie eingangs definiert sind.

5

10

15

Die Umsetzung wird unter Schotten-Baumann- oder Einhorn-Bedingungen durchgeführt, das heißt, die Komponenten werden in Gegenwart von wenigstens einem Äquivalent einer Hilfsbase bei Temperaturen zwischen -50°C und +120°C, bevorzugt -10°C und +30°C, und gegebenenfalls in Gegenwart von Lösemitteln zur Reaktion gebracht. Als Hilfsbasen kommen bevorzugt Alkali- und Erdalkalihydroxide, beispielsweise Natriumhydroxid, Kaliumhydroxid oder Bariumhydroxid, Alkalicarbonate, z. B. Natriumcarbonat, Kaliumcarbonat oder Cäsiumcarbonat, Alkaliacetate, z.B. Natrium- oder Kaliumacetat, sowie tertiäre Amine, beispielsweise Pyridin, 2,4,6-Trimethylpyridin, Chinolin, Triethylamin, *N*-Ethyl-diisopropylamin, *N*-Ethyl-dicyclohexylamin, 1,4-Di-azabicyclo[2,2,2]octan oder 1,8-Diazabicyclo[5,4,0]undec-7-en, als Lösemittel beispielsweise Dichlormethan, Tetrahydrofuran, 1,4-Dioxan, Acetonitril, Dimethylformamid, Dimethylacetamid, *N*-Methylpyrrolidon oder Gemische davon in Betracht; werden als Hilfsbasen Alkali- oder Erdalkalihydroxide, Alkalicarbonate oder -acetate verwendet, kann dem Reaktionsgemisch auch Wasser als Cosolvens zugesetzt werden.

20

f) Zur Herstellung von Verbindungen der allgemeinen Formel (I), in der X¹, X³, X⁴ oder R¹ eine freie Carbonsäurefunktion enthalten, im übrigen alle Reste wie eingangs definiert sind:

25

30

Hydrolyse von unter die allgemeine Formel (I) fallenden Carbonsäureestern, bei denen entweder X¹ oder X³ oder X⁴ oder R¹ eine Carbonsäureesterfunktion enthalten und alle übrigen Reste wie eingangs definiert sind. Die Hydrolyse kann unter saurer oder alkalischer Katalyse unter dem Fachmann geläufigen Bedingungen durchgeführt werden. Die sauer katalysierte Hydrolyse erfolgt in Gegenwart starker organischer oder anorganischer Säuren, beispielsweise Methansulfonsäure, *p*-Toluolsulfonsäure, Salzsäure, Bromwasserstoffsäure oder Schwefelsäure, bevorzugt in Gegenwart von mit Wasser mischbaren Solventien, beispielsweise Methanol, Ethanol oder 1,4-Dioxan, und bei Temperaturen zwischen

0°C und der Siedetemperatur des Hydrolysegemisches. Vorteilhaft ist es, die unter die allgemeine Formel (I) fallenden Carbonsäureester, gegebenenfalls auch in Gegenwart mit Wasser mischbarer Cosolvenzien, alkalisch zu verseifen. Zur Durchführung wird, bezogen auf den jeweiligen Carbonsäureester, wenigstens 1 Äquivalent einer anorganischen Base, beispielsweise wässerige Lithiumhydroxid-Lösung, Natron-, Kali- oder Barytlauge, eingesetzt. Geeignete Temperaturen liegen zwischen 0°C und 50°C, wobei Zimmertemperatur bevorzugt wird. Aus dem zunächst erhaltenen Salz lässt sich durch Ansäuern in bekannter Weise die gesuchte Säure freisetzen.

10

15

20

5

Die erfindungsgemäßen neuen Carbonsäuren und Carbonsäureester der allgemeinen Formel (I) enthalten ein oder mehrere Chiralitätszentren. Sind beispielsweise zwei Chiralitätszentren vorhanden, dann können die Verbindungen in Form zweier diastereomerer Antipodenpaare auftreten. Die Erfindung umfasst die einzelnen Isomeren ebenso wie ihre Gemische.

Die Trennung der jeweiligen Diastereomeren gelingt auf Grund ihrer unterschiedlichen physikochemischen Eigenschaften, z.B. durch fraktionierte Kristallisation aus geeigneten Lösemitteln, durch Hochdruckflüssigkeits- oder Säulenchromatographie unter Verwendung chiraler oder bevorzugt achiraler stationärer Phasen.

Die Trennung von unter die allgemeine Formel (I) fallenden Racematen gelingt beispielsweise durch HPLC an geeigneten chiralen stationären Phasen (z. B. Chiral AGP, Chiralpak AD). Racemate, die eine basische oder saure Funktion enthalten, lassen sich auch über die diastereomeren, optisch aktiven Salze trennen, die bei Umsetzung mit einer optisch aktiven Säure, beispielsweise (+)- oder (-)-Weinsäure, (+)- oder (-)-Diacetylweinsäure, (+)- oder (-)-Monomethyltartrat oder (+)-Camphersulfonsäure, bzw. einer optisch aktiven Base, beispielsweise mit (R)-(+)-1-Phenylethylamin, (S)-(-)-1-Phenylethylamin oder (S)-Brucin, entstehen.

30

25

Nach einem üblichen Verfahren zur Isomerentrennung wird das Racemat einer Verbindung der allgemeinen Formel (I) mit einer der vorstehend angegebenen optisch aktiven Säuren bzw. Basen in äquimolarer Menge in einem Lösemittel umgesetzt und die erhaltenen kristallinen, diastereomeren, optisch aktiven Salze

unter Ausnutzung ihrer verschiedenen Löslichkeit getrennt. Diese Umsetzung kann in jeder Art von Lösemitteln durchgeführt werden, solange sie einen ausreichenden Unterschied hinsichtlich der Löslichkeit der Salze aufweisen. Vorzugsweise werden Methanol, Ethanol oder deren Gemische, beispielsweise im Volumenverhältnis 50:50, verwendet. Sodann wird jedes der optisch aktiven Salze in Wasser gelöst, mit einer Base, wie Natriumcarbonat oder Kaliumcarbonat, oder mit einer geeigneten Säure, beispielsweise mit verdünnter Salzsäure oder wässeriger Methansulfonsäure, vorsichtig neutralisiert und dadurch die entsprechende freie Verbindung in der (+)- oder (-)-Form erhalten.

10

5

Jeweils nur das (R)- oder (S)-Enantiomer bzw. ein Gemisch zweier optisch aktiver, unter die allgemeine Formel I fallender diastereomerer Verbindungen wird auch dadurch erhalten, dass man die oben beschriebenen Synthesen mit jeweils einer geeigneten (R)- bzw. (S)-konfigurierten Reaktionskomponente durchführt.

15

20

25

30

Die Ausgangsverbindungen der allgemeinen Formel (IV) erhält man, soweit sie nicht literaturbekannt oder gar käuflich sind, entsprechend den in WO 98/11128 und DE 199 52 146 angegebenen Verfahren. Die Ausgangsverbindungen der allgemeinen Formel (V) sind käuflich. Verbindungen der allgemeinen Formel (VI) lassen sich nach dem Peptidchemiker geläufigen Methoden aus geschützten Phenylalaninen und Aminen der allgemeinen Formel (X) herstellen. Die Ausgangsverbindungen der allgemeinen Formel (VII) erhält man beispielsweise durch Umsetzung von cyclischen, sekundären Aminen der allgemeinen Formel (X) mit 2-(Alkoxycarbonylmethyl)-3-aryl-propansäuren und anschließende hydrolytische Abspaltung der Alkylgruppe. Die erforderlichen 2-(Alkoxycarbonylmethyl)-3-arylpropansäuren können in Analogie zu literaturbekannten Methoden (Saul G. Cohen und Aleksander Milovanovic, J. Am. Chem. Soc. 90, 3495-3502 [1968]; Hiroyuki Kawano, Youichi Ishii, Takao Ikariya, Masahiko Saburi, Sadao Yoshikawa, Yasuzo Uchida und Hidenori Kumobayashi, Tetrahedron Letters 28, 1905-8 [1987]) hergestellt werden. Carbonsäuren der allgemeinen Formel IX sind in WO 98/11128 beschrieben worden oder können nach den dort angegebenen Verfahren aus allgemein zugänglichen Ausgangsmaterialien hergestellt werden. Die cyclischen, sekundären Amine der allgemeinen Formel (X) lassen sich aus Verbindungen der allgemeinen Formel

WO 2004/063171 - 43 - PCT/EP2004/000087

$$PG \xrightarrow{X^4} X_X^{1-}R^1$$
, (XII)

worin PG eine abspaltbare Schutzgruppe darstellt, synthetisieren, beispielsweise durch Hydrogenolyse einer Phenylmethylgruppe. Die Vorprodukte zur Synthese der Verbindungen der allgemeinen Formel (XII) sind aus käuflichen oder nach gängigen Verfahren leicht erhältlichen Ausgangsmaterialien zugänglich. Die Ausgangsverbindungen der allgemeinen Formeln VIII und XI schließlich können nach bekannten Vorbildern aus den entsprechenden Carbonsäuren (VII) bzw. (IX) bereitet werden.

Die erhaltenen Verbindungen der allgemeinen Formel (I) können, sofern sie geeignete basische Funktionen enthalten, insbesondere für pharmazeutische Anwendungen in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure, Salpetersäure, Schwefelsäure, Methansulfonsäure, Ethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Essigsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Mandelsäure, Äpfelsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

20

25

15

5

10

Außerdem lassen sich die neuen Verbindungen der Formel (I), falls sie Carbonsäurefunktion enthalten, gewünschtenfalls in ihre Additionssalze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Additionssalze überführen. Als Basen kommen hierfür beispielsweise Natriumhydroxid, Kaliumhydroxid, Ammoniak, Cyclohexylamin, Dicyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

30

Die neuen Verbindungen der allgemeinen Formel (I) und deren physiologisch verträglichen Salze besitzen CGRP-antagonistische Eigenschaften und zeigen gute Affinitäten in CGRP-Rezeptorbindungsstudien. Die Verbindungen weisen in den nachstehend beschriebenen pharmakologischen Testsystemen CGRP-antagonisti-

sche Eigenschaften auf.

5

10

15

20

25

30

Zum Nachweis der Affinität von Verbindungen der allgemeinen Formel I zu humanen CGRP-Rezeptoren und ihrer antagonistischen Eigenschaften wurden die folgenden Versuche durchgeführt:

A. Bindungsstudien mit (den humanen CGRP-Rezeptor exprimierenden) SK-N-MC-Zellen

SK-N-MC-Zellen werden in "Dulbecco's modified Eagle Medium" kultiviert. Das Medium konfluenter Kulturen wird entfernt. Die Zellen werden zweimal mit PBS-Puffer (Gibco 041-04190 M) gewaschen, durch Zugabe von PBS-Puffer, versetzt mit 0.02% EDTA, abgelöst und durch Zentrifugation isoliert. Nach Resuspension in 20 ml "Balanced Salts Solution" [BSS (in mM): NaCl 120, KCl 5.4, NaHCO3 16.2, MgSO4 0.8, NaHPO4 1.0, CaCl2 1.8, D-Glucose 5.5, HEPES 30, pH 7.40] werden die Zellen zweimal bei 100 x g zentrifugiert und in BSS resuspendiert. Nach Bestimmung der Zellzahl werden die Zellen mit Hilfe eines Ultra-Turrax homogenisiert und 10 Minuten lang bei 3000 x g zentrifugiert. Der Überstand wird verworfen und das Pellet in Tris-Puffer (10 mM Tris, 50 mM NaCl, 5 mM MgCl2, 1 mM EDTA, pH 7.40, angereichert mit 1% Rinderserum-Albumin und 0.1% Bacitracin) rezentrifugiert und resuspendiert (1 ml / 1000000 Zellen). Das Homogenat wird bei -80°C eingefroren. Die Membranpräparationen sind bei diesen Bedingungen für mehr als 6 Wochen stabil.

Nach Auftauen wird das Homogenat 1:10 mit Assay-Puffer (50 mM Tris, 150 mM NaCl, 5 mM MgCl₂, 1 mM EDTA, pH 7.40) verdünnt und 30 Sekunden lang mit einem Ultra-Turrax homogenisiert. 230 μ l des Homogenats werden 180 Minuten lang bei Raumtemperatur mit 50 pM ¹²⁵l-lodotyrosyl-Calcitonine-Gene-Related Peptide (Amersham) und ansteigenden Konzentrationen der Testsubstanzen in einem Gesamtvolumen von 250 μ l inkubiert. Die Inkubation wird durch rasche Filtration durch mit Polyethylenimin (0.1%) behandelte GF/B-Glasfaserfilter mittels eines Zellharvesters beendet. Die an Protein gebundene Radioaktivität wird mit Hilfe eines Gammacounters bestimmt. Als nichtspezifische Bindung wird die gebundene Radioaktivität in Gegenwart von 1 μ M humanem CGRP-alpha während der

Inkubation definiert.

Die Analyse der Konzentrations-Bindungskurven erfolgt mit Hilfe einer computergestützten nichtlinearen Kurvenanpassung.

5

Die Verbindungen der allgemeinen Formel (I) zeigen in dem beschriebenen Test IC_{50} -Werte ≤ 10000 nM.

B. CGRP-Antagonismus in SK-N-MC-Zellen

10

15

20

SK-N-MC-Zellen (1 Mio. Zellen) werden zweimal mit 250 μ l Inkubationspuffer (Hanks' HEPES, 1 mM 3-Isobutyl-1-methylxanthin, 1% BSA, pH 7.4) gewaschen und bei 37°C 15 Minuten lang vorinkubiert. Nach Zugabe von CGRP (10 μ l) als Agonist in steigenden Konzentrationen (10⁻¹¹ bis 10⁻⁶ M) bzw. zusätzlich von Substanz in 3 bis 4 verschiedenen Konzentrationen wird nochmals 15 Minuten inkubiert.

Intrazelluläres cAMP wird anschließend durch Zugabe von $20\,\mu$ l 1M HCl und Zentrifugation (2000 x g, 4°C, 15 Minuten lang) extrahiert. Die Überstände werden in flüssigem Stickstoff ein-gefroren und bei -20°C gelagert.

Die cAMP-Gehalte der Proben werden mittels Radioimmunassay (Fa. Amersham) bestimmt und die pA₂-Werte antagonistisch wirkender Substanzen graphisch ermittelt.

25

Die Verbindungen der allgemeinen Formel (I) zeigen in dem beschriebenen in-vitro-Testmodell CGRP-antagonistische Eigenschaften in einem Dosisbereich zwischen 10⁻¹¹ bis 10⁻⁵ M.

30

Auf Grund ihrer pharmakologischen Eigenschaften eignen sich die Verbindungen der allgemeinen Formel I und deren Salze mit physiologisch verträglichen Säuren bzw. Basen somit zur akuten und prophylaktischen Behandlung von Kopfschmerzen, insbesondere Migräne- bzw. Cluster-Kopfschmerz. Weiterhin

beeinflussen die Verbindungen der allgemeinen Formel (I) auch die folgenden Erkrankungen positiv: "complex regional pain syndrome", nicht-insulinabhängigen Diabetes mellitus ("NIDDM"), cardiovaskuläre Erkrankungen, Morphintoleranz, Clostritiumtoxin-bedingte Durchfallerkrankungen, Erkrankungen der Haut, insbesondere thermische und strahlenbedingte Hautschäden inklusive Sonnenbrand, entzündliche Erkrankungen, z.B. entzündliche Gelenkerkrankungen (Arthritis), entzündliche Lungenerkrankungen, allergische Rhinitis, Asthma, Erkrankungen, die mit einer überschießenden Gefäßerweiterung und dadurch bedingter verringerter Gewebedurchblutung einhergehen, z.B. Schock und Sepsis. Die Symptomatik menopausaler, durch Gefäßerweiterung und erhöhten Blutfluss verursachter Hitzewallungen östrogendefizienter Frauen wird durch die CGRP-Antagonisten der vorliegenden Anwendung präventiv und akut-therapeutisch günstig beeinflusst, wobei sich dieser Therapieansatz vor der Hormonsubstitution durch Nebenwirkungsarmut auszeichnet. Darüber hinaus zeigen die Verbindungen der allgemeinen Formel I eine lindernde Wirkung auf Schmerzzustände im allgemeinen.

5

10

15

20

25

30

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt zweckmäßigerweise bei intravenöser oder subkutaner Gabe 0.001 bis 30 mg/kg Körpergewicht, vorzugsweise 0.01 bis 5 mg/kg Körpergewicht, und bei oraler, nasaler oder inhalativer Gabe 0.01 bis 50 mg/kg Körpergewicht, vorzugsweise 0.1 bis 30 mg/kg Körpergewicht, jeweils 1 bis 3 x täglich.

Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der allgemeinen Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, wie z.B. Antiemetica, Prokinetica, Neuroleptica, Antidepressiva, Neurokinin-Antagonisten, Anticonvulsiva, Histamin-H1-Rezeptorantagonisten, Antimuscarinica, β-Blockern, α-Ergotalkaloiden, schwachen Agonisten und α-Antagonisten, nichtsteroidalen Antiphlogistica, Corticosteroiden, Calcium-Antagonisten, 5-HT_{1D}-Agonisten oder anderen Antimigränemitteln, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen, Lösungen, Dosieraerosole oder Zäpfchen einarbeiten.

Für die oben erwähnten Kombinationen kommen somit als weitere Wirksubstanzen 5 Ergotamin, Dihydroergotamin, Metoclopramid, beispielsweise Meloxicam, Domperidon, Diphenhydramin, Cyclizin, Promethazin, Chlorpromazin, Dexamethason, Flunarizin, Dextropropoxyphen, Meperidin, Propranolol, Nadolol, Atenolol, Clonidin, Indoramin, Carbamazepin, Phenytoin, Valproat, Amitryptilin, Lidocain, Diltiazem oder Sumatriptan und andere 5-HT_{1D}-Agonisten wie z.B. Naratriptan, 10 Zolmitriptan, Avitriptan, Rizatriptan und Eletriptan in Betracht. Die Dosis für diese Wirksubstanzen beträgt hierbei zweckmäßigerweise 1/5 der üblicherweise empfohlenen niedrigsten Dosierung bis zu 1/1 der normalerweise empfohlenen Dosierung, also beispielsweise 20 bis 100 mg Sumatriptan.

15

Ein weiterer Gegenstand der Erfindung ist die Verwendung der Verbindungen der allgemeinen Formel (I) als wertvolle Hilfsmittel zur Erzeugung und Reinigung (Affinitätschromatographie) von Antikörpern sowie, nach geeigneter radioaktiver Markierung, beispielsweise durch direkte Markierung mit ¹²⁵I oder ¹³¹I oder durch Tritiierung geeigneter Vorstufen, beispielsweise durch Ersatz von Halogenatomen durch Tritium, in RIA- und ELISA-Assays und als diagnostische bzw. analytische Hilfsmittel in der Neurotransmitter-Forschung.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

25

20

Vorbemerkungen:

Die Verbindungen wurden teils nach klassischen Syntheseverfahren, teils unter Verwendung von Methoden der Kombinatorischen Chemie hergestellt.

30 Als Syntheseautomat diente das Gerät ASW2000 der Firma Chemspeed Ltd., Rheinstraße 32, CH-4302 Augst, Schweiz.

Für alle nach klassischen Methoden hergestellten Verbindungen IR-, ¹H-NMR und in der Regel auch Massenspektren vor. Wenn nicht anders angegeben, wurden R_f-

Werte unter Verwendung von DC-Fertigplatten Kieselgel 60 F₂₅₄ (E. Merck, Darmstadt, Artikel-Nr. 1.05714) ohne Kammersättigung bestimmt. Falls nähere Angaben zur Konfiguration fehlen, bleibt offen, ob es sich um reine Enantiomere handelt oder ob partielle oder gar völlige Racemisierung eingetreten ist. Zur Chromatographie wurden die folgenden Fließmittel bzw. Fließmittelgemische verwendet:

- FM A = Essigsäureethylester/Methanol 100/5 v/v
- FM B = Essigsäureethylester/Methanol 9/1 v/v

5

- 10 FM C = Essigsäureethylester/Methanol/konz. Ammoniak 80/20/1 v/v/v
 - FM D = Dichlormethan/Cyclohexan/Methanol/konz. Ammoniak 70/15/15/2 v/v/v/v
 - FM E = Essigsäureethylester/Eisessig 99/1 v/v
 - FM F = Essigsäureethylester/Methanol/Eisessig 90/10/1 v/v/v
 - FM G = Dichlormethan/Methanol/konz. Ammoniak 90/9/1 v/v/v
- 15 FM H = Petrolether/Essigsäureethylester 4/6 v/v
 - FM I = Dichlormethan/Methanol/Eisessig 90/10/2.5 v/v/v
 - FM K = Dichlormethan/Isopropanol 9/1 v/v
 - FM M = Dichlormethan/Methanol/konz. Ammoniak 75/25/5 v/v/v
 - FM N = Dichlormethan/Essigsäureethylester 1/1 v/v
- 20 FM O = Dichlormethan/Methanol 9/1 v/v
 - FM P = Dichlormethan/Essigsäureethylester/Cyclohexan/Methanol/konz. Ammoniak 60/16/5/5/0.6 v/v/v/v
 - FM Q = Dichlormethan/Methanol/konz, Ammoniak 80/20/2 v/v/v
 - FM R = Dichlormethan/Methanol/Eisessig 80/20/1 v/v/v
- 25 FM S = Dichlormethan/Methanol 9/1 v/v (Alox-DC-Platten [E. Merck, Darmstadt])
 - FM T = Dichlormethan/Methanol/Eisessig 70/30/3 v/v/v
 - FM U = Essigsäureethylester/Petrolether 2/1 v/v
 - FM V = Essigsäureethylester/Petrolether 1/4 v/v
 - FM W = Essigsäureethylester/Petrolether 3/7 v/v
- 30 FM X = Petrolether/Essigsäureethylester/Eisessig 8/2/0.5 v/v/v
 - FM Y = Essigsäureethylester/Petrolether 1/9 v/v
 - FM Z = Toluol/Petrolether/Essigsäureethylester 5/5/2 v/v/v
 - FM AA = Essigsäureethylester/Petrolether/Triethylamin 5/5/0.1 v/v/v
 - FM BB = Dichlormethan/Methanol 3/1 v/v (Alox-DC-Platten [E. Merck, Darmstadt])

FM DD = Essigsäureethylester/Methanol/konz. Ammoniak 70/30/3 v/v/v

FM EE = Dichlormethan/Ethanol 9/1 v/v

FM FF = Dichlormethan/Ethanol 50/1 v/v

FM GG = Dichlormethan/Ethanol 40/1 v/v

5 FM HH = Dichlormethan/Methanol 5/1 v/v

FM II = Essigsäureethylester/Methanol/konz. Ammoniak 90/10/1 v/v/v

FM KK = Essigsäureethylester/Methanol/konz. Ammoniak 60/40/4 v/v/v

FM LL = Essigsäureethylester/Methanol/konz. Ammoniak 50/50/5 v/v/v

FM MM = Essigsäureethylester/Cyclohexan 1/1 v/v

10 FM NN = Essigsäureethylester/Cyclohexan 2/8 v/v

FM OO = Dichlormethan/Methanol/konz. Ammoniak 70/30/3 v/v/v

In der Versuchsbeschreibung werden die folgenden Abkürzungen verwendet:

Fp.: Schmelzpunkt

15 (Z): (Zersetzung)

DIEA: *N,N*-Diisopropylethylamin

Boc: (1,1-Dimethylethoxy)carbonyl

TBTU: 2-(1*H*-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluoroborat

HOBt: 1-Hydroxybenzotriazol-hydrat

20 CDT: 1,1'-Carbonyldi-(1,2,4-triazol)

PyBroP: Bromo-tris-pyrrolidino-phosphoniumhexafluorophosphat

HATU: O-(7-Azabenzotriazol-1-yl)-N, N, N, N-tetramethyluroniumhexafluoro-

THF: Tetrahydrofuran

25 DMF: Dimethylformamid

EE: Essigsäureethylester

phosphat

PE: Petrolether

LM: Lösemittel

ZT Zimmertemperatur

30 Lfd. Nr.: Laufende Nummer

Die Bedeutung der in den Beispielen verwendeten, aus Buchstaben und Zahlen zusammengesetzten Symbole ergibt sich aus der folgenden Übersicht:

N1

N2

N4

H,

N7

в3

CH₃

0

B10

WO 2004/063171 - 53 - PCT/EP2004/000087

WO 2004/063171 - 58 - PCT/EP2004/000087

A. Herstellung von Zwischenverbindungen

Beispiel A1

5

10

15

20

(R,S)-3,4-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-phenylalanin

Zu der Lösung von 20.0 g (0.033 mol) (*R,S*)-3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-phenylalaninethylester in 500 ml Ethanol wurden 150 ml 1M Natronlauge gegeben und die Mischung anschließend 3.5 Stunden bei Zimmertemperatur gerührt. Das Lösemittel wurde am Rotationsverdampfer entfernt und der Rückstand mit 1M Salzsäure sauer gestellt. Der ausgefallene Niederschlag wurde abgenutscht, gründlich mit Wasser gewaschen und im Umlufttrockenschrank bei 70°C getrocknet. Man erhielt 10.0 g (52% der Theorie) der gesuchten farblosen, kristallinen Substanz vom R_f 0.62 (FM M).

IR (KBr): 1705, 1645 cm⁻¹ (C=O)

Entsprechend wurden die folgenden Verbindungen der allgemeinen Formel N-B-C hergestellt:

:: .

N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	В6	ОН	aus N1-CO-B6-OEt mit	96			ESI: (M-H) =	1630, 1701	173-175
			aq. 1M NaOH, dann aq.				527/529 (Br)	(C=O)	
			1M HCl						
N1	В7	ОН	aus N1-CO-B7-OEt mit	62	D	0.19		1705	farblose
			aq. 1M NaOH, dann aq.					(C=O)	Kristalle
			1M HCI						
N1	B10	ОН	aus N1-CO-B10-OMe	79			ESI: (M+Na)+ =		farblose
			mit aq. 1M NaOH, dann				481		Kristalle
			aq. 1M HCl						
N1	B11	ОН	aus N1-CO-B11-OMe	61			ESI: (M+H)+ =		farblose
			mit aq. 1M LiOH, dann				439		Kristalle
			aq. Zitronensäure						

N	В	С	Anmerkungen	%	FM	R_{f}	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	В3	ОН	aus N1-CO-B3-OEt mit	95					farblose
			aq. 1M LiOH, dann aq.						Kristalle
	·		Zitronensäure						
N1	B4	ОН	aus N1-CO-B4-OEt mit	96	В	0.12	ESI: (M-H) =		farblose
			aq. 1M NaOH, dann aq.				503/505/507		Kristalle
			1M HCI				(Cl ₂)		
N1	B12	ОН	aus N1-CO-B12[α-	100	G	0.11	ESI: (M-H) =		farblose
			CO₂Et]-OEt mit aq.				594/596/598		Kristalle
			40proz. NaOH, dann aq.				(Br ₂)		
			5M HCI						
N1	B15	ОН	aus N1-CO-B15[α-	46	F	0.60	ESI: (M-H) ⁻ =	1647	farblose
			CO₂Et]-OEt mit aq. 1M				462; (M+H) ⁺ =	(C=O)	Kristalle
			NaOH, dann aq. 1M HCl				464		
N1	B16	ОН	aus N1-CO-B16[α-	100	F	0.49	ESI: (M-H) =	1645	farblose
			CO ₂ Et]-OEt mit aq. 1M				526	(C=O)	Kristalle
	*		NaOH, dann aq. 1M HCI						
N1	B19	ОН	aus N1-CO-B19[α-	50					farblose
			CO ₂ Et]-OEt mit aq. 1M						Kristalle
			NaOH, dann aq. 1M HCI						
N1	B20	ОН	aus N1-CO-B20[α-	55	D	0.23	$M^+ = 557$; ESI:		farblose
			CO₂Et]-OEt mit aq. 1M				$(M-H)^{-} = 556$		Kristalle
			NaOH, dann aq. 1M HCI						
N1	B22	ОН	aus N1-CO-B22[α-	91	D	0.25	ESI: (M-H) ⁻ =	1641	farblose
			CO ₂ Et]-OEt mit aq. 1M				654/656/658/6	(C=O)	Kristalle
			NaOH, dann aq. 1M HCl				60 (Br ₃)		
N1	B25	ОН	aus N1-CO-B25[α-	62	F	0.4	kein M⁺, Zerfall	1726,	farblose
			CO ₂ Et]-OEt mit aq. 1M				mit Struktur	1705, 1641	Kristalle
			KOH, dann aq. 1M HCl				vereinbar	(C=O)	
N1	B27	ОН	aus N1-CO-B27[α-	87	F	0.55			farblose
			CO₂Et]-OEt mit aq. 1M				•		Kristalle
			NaOH, dann aq. 1M HCl						

N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	B29	ОН	aus N1-CO-B29[α-	100	D	0.46	kein M ⁺ , Zerfall	1640	farblose
			. CO ₂ Et]-OEt mit KOH,				mit Struktur	(C=O)	Kristalle
			dann aq. 10M HCl				vereinbar		
N1	B21	ОН	aus N1-CO-B21[α-	71	D	0.16	kein M ⁺ , Zerfall	1724, 1643	farblose
			CO ₂ Et]-OEt mit 1M				mit Struktur	(C=O)	Kristalle
	,		NaOH, dann aq. 1M HCl	,			vereinbar		
N1	B8	ОН	aus N1-CO-B8-OEt mit	90	Q	0.23		1730, 1665	farblose
:			1M NaOH, dann aq. 1M	0			:	(C=O)	Kristalle
			HCI			·			
N1	B30	ОН	aus N1-CO-B30[α-	100	F	0.45	ESI: (M-H) =		farblose
			CO ₂ Et]-OEt mit 1M	= 4			576/578/580		Kristalle
			NaOH, dann aq. 1M HCl				(Br ₂)		
N1	B23	ОН	aus N1-CO-B23-OMe	96		_			
'		4.5	mit 1M NaOH, dann aq.					•	
·		·	1M HCI						
N1	B24	ОН	aus N1-CO-B24[α-	98	F	0.29			farblose
			CO₂Et]-OEt mit 1M				-		Kristalle
			NaOH, dann aq. 1M HCI						
N6	B21	ОН	aus N6-CO-B21[α-	89			ESI: (M-H) ⁻ =		farblose
			CO ₂ Et]-OEt mit 1M				626/628/630		Kristalle
			NaOH, dann aq. 1M HCI				(Br ₂)		
N2	B2	ОН	aus N2-CO-B2-OMe mit	96	М	0.49	ESI: (M-H) ⁻ =	1724, 1660	farblose
			1M LiOH, dann aq. 1M			!	606/608/610	(C=O)	Kristalle
			HCI				(Br ₂)		

5

3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D,L-phenylalaninethylester

Zu einer eisgekühlten Suspension von 18.0 g (0.051 Mol) (*R,S*)- 3,4-Dibrom-phenylalaninethylester in 300 ml THF gab man 9.7 g (0.056 Mol) CDT. Die Reaktionsmischung wurde anschließend 1 Stunde bei 0 °C und 1 Stunde bei Raumtemperatur

WO 2004/063171 - 61 - PCT/EP2004/000087

gerührt und dann mit 11.9 g (0.051 Mol) 3-(4-Piperidinyl)-1,3,4,5-tetrahydro-1,3-benzodiazepin-2-on versetzt. Das Gemisch wurde 4 Stunden unter Rückfluß erhitzt und über Nacht bei Raumtemperatur stehen gelassen. Das Reaktionsgemisch wurde am Rotationsverdampfer eingedampft, der Rückstand mit 300 ml wäßriger Natriumhydrogencarbonat-Lösung versetzt und 30 Minuten gerührt. Die wäßrige Lösung wurde abdekantiert, der Rückstand mit 150 ml Ethanol versetzt und unter Rückfluß erhitzt. Nach dem Abkühlen wurde der entstandene weiße Feststoff abgesaugt, mit Ethanol gewaschen und bei 50°C getrocknet. Man erhielt 20.0 g (64% der Theorie) des Produktes mit einem Rf Wert von 0.68 (FM D)

10 IR (KBr): 1734, 1680, 1662 (C=O) cm⁻¹

5

Analog wurden die folgenden Verbindungen der allgemeinen Formel N-B-C hergestellt:

N	В	С	Anmerkungen	.%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	B6	OEt	aus N1-H, CDT und H-	90	В	0.67	$M^+ = 557$	1732, 1662	farblose
			B6-OEt in THF					(C=O)	Kristalle
N1	B7	OEt	aus N1-H, CDT und H-	100	D	0.45			farblose
			B7-OEt in THF						Kristalle
N1	B11	OMe	aus N1-H, CDT, H-B11-	97			ESI:		
			OMe * HCl und DIEA in				(M-H) ⁻ =		
			THF				471		O.
N1	B10	OMe	aus N1-H, CDT, H-B10-	63	G	0.55	ESI:		
			OMe * HCl und DIEA in				(M+H) ⁺ =		
			THF				453		-
N1	ВЗ	OEt	aus N1-H, CDT, H-B3-	92				1739,	farblose
			OEt * HCl und NEt ₃ in					1682, 1664	Kristalle
			THF/DMF 2/1 v/v					(C=O)	
N1	B4	OEt	aus N1-H, CDT und H-	73	В	0.50	ESI:	3402 (NH);	200-202
			B4-OEt in THF				$(M+H)^{+} =$	1741,	
							533	1680, 1662	
								(C=O)	

N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	B8	OEt	aus N1-H, CDT und H-	72			M ⁺ =	1736, 1664	farblose
			B8-OEt in THF				498/500	(C=O)	Kristalle
							(CI)		
N2	B2	ОМе	aus N2-H, CDT und H-	96	D	0.76	ESI: (M-	1728, 1664	farblose
			B2-OMe*HCl und DIEA				$H)^{-} = 620 /$	(C=O)	Kristalle
			in THF				622 / 624		
							(Br ₂);		
							(M+Na) ⁺ =		
							644 / 646 /		
							648 (Br ₂)		

5

10

15

2-[(3,5-Dibrom-4-fluor-phenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-(ethoxycarbonyl)-4-oxobutansäureethylester

Die Mischung aus 4.39 g (0.019 Mol) 3,4-Dihydro-3-(4-piperidinyl)-2(1H)-chinazolinon, 9.25 g (0.019 Mol) β , β -Bis-(ethoxycarbonyl)-3,5-dibrom-4-fluor-benzenbutansäure, 6.08 g (0.019 Mol) TBTU, 6.9 ml (0.05 Mol) Triethylamin, 200 ml THF und 70 ml DMF wurde über Nacht bei Zimmertemperatur gerührt. Die Lösemittel wurden im Vakuum entfernt und der Rückstand mit Dichlormethan und 10%-iger wäßriger Zitronensäure-Lösung versetzt. Die organische Phase wurde abgetrennt, mit Natriumhydrogencarbonat-Lösung extrahiert und über Natriumsulfat getrocknet. Nach Entfernen des Trocken- und Lösemittels wurde der Rückstand mit tert-Butylmethylether versetzt und die ausgefallene, feste Substanz abgesaugt. Man erhielt 11.0 g (83% der Theorie) des gewünschten Produktes mit Fp = 167-170°.

IR (KBr): 1734, 1662 (C=O) cm⁻¹

ESI-MS: (M+H)⁺ 696/698/700 (Br₂)

20 Analog wurden die folgenden Verbindungen der allgemeinen Formel N-B-C erhalten:

N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	Β15[α-	OEt	aus N1-H, HO₂C-	89	AcOEt	0.7		1734,	farblose
	CO ₂ Et]		B15[α-CO ₂ Et]-					1666	Kristalle
			OEt, TBTU,					(C=O)	
			HOBt und NEt₃						
			in THF/DMF					,	
			220/70 v/v					(
N1	Β16[α-	OEt	aus N1-H, HO₂C-	72	AcOEt	0.33	ESI: (M+H)+	1739,	189-191
	CO ₂ Et]		B16[α-CO ₂ Et]-				= 628/630	1653	
			OEt, TBTU und				(Br)	(C=O)	
		•	NEt₃ in						
		:	THF/DMF				;		
			150/50 v/v						
N1	Β20[α-	OEt	aus N1-H, HO₂C-	100	D	0.73	$M^+ = 657$	1736,	farbloses,
	CO ₂ Et]	•	B20[α-CO₂Et]-					1668,	viskoses Öl
			OEt, TBTU,					1649	
			HOBt und DIEA					(C=O)	
			in THF/H₂O 10/1				"		
			v/v						
N1	Β22[α-	OEt	aus N1-H, HO₂C-	88	D	0.78		1734,	farblose
	CO ₂ Et]		B22[α-CO ₂ Et]-			'	140	1668	Kristalle
			OEt, TBTU,	i ei			,	(C=O)	
			HOBt und DIEA						
			in THF/H ₂ O 10/1				17		
			v/v						
N1	B25[α-	OEt	aus N1-H, HO₂C-	83	AcOEt	0.55	M ⁺ =	1728,	farbloses,
	CO ₂ Et]		B25[α-CO₂Et]-				667/669/671/	1664,	viskoses Öl
			OEt, TBTU,				673 (BrCl ₂)	1645	
			HOBt und DIEA					(C=O)	
			in THF/H ₂ O 10/1						
			v/v						

N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	B27[α-	OEt	aus N1-H, HO₂C-	88	AcOEt	0.56		1732,	farblose
	CO ₂ Et]		B27[α-CO ₂ Et]-					1668	Kristalle
			OEt, TBTU und					(C=O)	
			NEt ₃ in						
			THF/DMF						
			250/10 v/v						-) -
N1	B29[α-	OEt	aus N1-H, HO₂C-	87	D	0.79		1753,	
	CO ₂ Et]		B29[α-CO ₂ Et]-					1728,	
			OEt, TBTU,					1660	
	į.		HOBt und DIEA					(C=O)	
			in THF/H2O 10/1						
			v/v						
N1	B21[α-	OEt	aus N1-H, HO₂C-	75	D	0.74			farblose
	CO ₂ Et]		B21[α-CO ₂ Et]-						Kristalle
	÷		OEt, TBTU,						·
			HOBt und DIEA		•				*
			in THF/H2O 10/1	Ý					
			v/v						
N1	Β30[α-	OEt	aus N1-H, HO₂C-	93	F	0.90	ESI: (M+H) ⁺		farblose
	CO ₂ Et]		B30[α-CO₂Et]-				=	- 3	Kristalle
			OEt, TBTU,				678/680/682		:
			HOBt und DIEA				(Br ₂)		
	·		in THF/H2O 10/1	·					
			v/v						
N1	B23	ОМе	aus N1-H, HO₂C-	100					
			B23-OMe,			i			
			TBTU, HOBt und						
NI-	DC 47	OF:	NEt₃ in THF	05		0.00			farblose
FVI	B24[α-		aus N1-H, HO ₂ C-	95	D	0.82			Kristalle
	CO₂Et]		B24[α-CO ₂ Et]-						Misialie
			OEt, TBTU,						
			HOBt und DIEA						
			in THF/H2O 10/1						
			v/v						

N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.				:	
N6	B21[α-	OEt	aus N6-H, HO₂C-	86	AcOEt	0.9	M ⁺ =	1734	farbloses
	CO ₂ Et]		B21[α-CO ₂ Et]-				727/729/731	(C=O)	viskoses Öl
			OEt, TBTU,				(Br ₂)		
			HOBt und NEt₃				(*)		!
•			in THF/DMF 5/1						
			v/v						

5

10

15

20

(R,S)-3,4-Dibrom-phenylalaninethylester

g (0.167 Mol) (3,4-Dibromphenyl)-methylbromid, 6.40 g (0.020 Mol) Tetrabutyl-ammoniumbromid, 57.80 g (0.35 Mol) Kaliumcarbonat Sesquihydrat und 1000 ml Acetonitril wurde 15 Stunden unter Rückfluß gekocht. Der Feststoff wurde abfiltriert, die Mutterlauge im Vakuum eingedampft. Der Rückstand wurde in 400 ml Diethylether aufgenommen und nach Zugabe von 200 ml halbkonzentrierter Salzsäure 1 Stunde bei Zimmertemperatur gerührt. Die organische Phase wurde abgetrennt, die wässerige noch zweimal mit je 50 ml Diethylether gewaschen, dann unter äußerer Kühlung mit Eis mit festem Natriumhydrogencarbonat neutralisiert und mit Essigsäureethylester erschöpfend extrahiert. Die vereinigten Essigsäure-

ethylesterauszüge wurden über Magnesiumsulfat getrocknet, filtriert und im Vakuum eingeengt. Man erhielt das Produkt als hellbraunes Öl. Ausbeute: 33.0 g (67% der

Die Mischung aus 37.40 g (0.140 Mol) N-(Diphenylmethylen)-glycinethylester, 55.0

Theorie). R_f 0.65 (FM D). IR (KBr): 1734 (C=O) cm⁻¹

Entsprechend wurden die folgenden Verbindungen der allgemeinen Formel N-B-C erhalten:

N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
H	B6	OEt	aus Ph ₂ C=NCH ₂ CO ₂ Et	60			ESI: (M+H)+	1738	farbloses
			und 3-Br-4,5-Me ₂ -C ₆ H ₂ -				= 300/302	(C=O)	Öl
			CH₂Br				(Br)		
Н	B7	OEt	aus Ph ₂ C=NCH ₂ CO ₂ Et	60	Р	0.75		1738	farbloses
		,	und 3,5-Br ₂ -4-Me- C_6H_2 -					(C=O)	Öl
			CH₂Br						
Н	B4	OEt	aus Ph ₂ C=NCH ₂ CO ₂ Et	70	В	0.73	ESI: (M+H)+	1728	farblose
			und 3,5-Cl ₂ -4-Me-C ₆ H ₂ -				=	(C=O)	Kristalle,
			CH₂Br				276/278/280		Fp. 44-46
							(Cl_2)		
H	B8	OEt	aus Ph ₂ C=NCH ₂ CO ₂ Et	83	0	0.46		1736	
			und 3-Cl-4-Me-C $_6$ H $_3$ -					(C=O)	
			CH₂CI						

(R,S)-3,4-Difluorphenylalaninmethylester-hydrochlorid

5

10

Zu der Suspension von 0.5 g (2.485 mMoI) 3,4-Difluorphenylalanin in 10 ml Methanol gab man 4.0 ml gesättigte methanolische Chlorwasserstoff-Lösung und rührte die Mischung 4 Stunden bei Zimmertemperatur. Man dampfte im Vakuum ein, gab zum Rückstand abermals 10 ml Methanol und destillierte das Lösemittel erneut im Vakuum ab. Man erhielt 0.6 g (96% der Theorie) an farblosen Kristallen vom R_f 0.7 (FM Dichlormethan).

ESI-MS: $(M+H)^+ = 216$

Beispiel A6

15

20

 β , β -Bis-(ethoxycarbonyl)-3,5-dibrom-4-fluor-benzen-butansäure

Zu der eisgekühlten Lösung von 13.1 g (0.037 Mol) β , β -Bis-(ethoxycarbonyl)-3,5-dibrom-4-fluor-benzenbutansäure-1,1-dimethylethylester in 450 ml Dichlormethan tropfte man 70 ml Trifluoressigsäure, entfernte die Kühlung, rührte das Gemisch

WO 2004/063171 - 67 - PCT/EP2004/000087

über Nacht bei Raumtemperatur und engte es anschließend im Vakuum ein. Der Rückstand wurde zweimal durch Koevaporation mit Petrolether getrocknet, mit Petrolether verrieben, abgenutscht und im Vakuum getrocknet. Man erhielt 9.3 g (79% der Theorie) an farblosen Kristallen.

5 IR (KBr): 1707 (C=O) cm⁻¹

ESI-MS: $(M-H)^{-} = 481/483/485$ (Br₂)

Entsprechend wurden die folgenden Verbindungen der allgemeinen Formel N-B-C erhalten:

10

N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
НО	Β15[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	81	٧	0.1		1709 (C=O)	
	CO2Et]		B15[α-CO ₂ Et]-OEt						:
ľ		, .	und TFA in CH ₂ Cl ₂				,		
НО	Β16[α-	OEt	aus (H₃C)₃CO₂C-	100				1738 (C=O)	farbloses
	CO2Et]		B16[α-CO ₂ Et]-OEt					-30	viskoses
			und TFA in CH₂Cl₂	i					Öl
НО	Β20[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	77	٧	0.24		3321 (OH);	farblose
	CO2Et]		B20[α-CO ₂ Et]-OEt				:	1714	Kristalle
			und TFA in CH ₂ Cl ₂					(C=O);	
								1161, 1124	
			-					(CF ₃)	
НО	Β22[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	69	W	0.21		1736 (C=O)	farblose
	CO2Et]		B22[α-CO ₂ Et]-OEt						Kristalle
			und TFA in CH ₂ Cl ₂						
НО	Β25[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	72				1730, 1711	farbloses
	CO2Et]		B25[α-CO ₂ Et]-OEt					(C=O)	viskoses
			und TFA in CH₂Cl₂						ÖI
НО	Β27[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	93				1736 (C=O)	
	CO2Et]		B27[α-CO ₂ Et]-OEt						
			und TFA in CH ₂ Cl ₂						
НО	Β24[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	68	Х	0.28		1709 (C=O)	farblose
	CO2Et]		B24[α-CO ₂ Et]-OEt						Kristalle
			und TFA in CH ₂ Cl ₂						

N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
НО	Β19[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	46					
	CO2Et]		B19[α-CO ₂ Et]-OEt			•			
			und TFA in CH ₂ Cl ₂						
НО	Β30[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	81			ESI: (M-H) =	•	farblose
	CO2Et]		B30[α-CO ₂ Et]-OEt				463/465/467		Kristalle
			und TFA in CH₂Cl₂				(Br ₂)		
НО	Β24[α-	OEt	aus (H ₃ C) ₃ CO ₂ C-	54			ESI: (M-H) =		farblose
	CO2Et]		B24[α-CO ₂ Et]-OEt				-375/377/379		Kristalle
			und TFA in CH₂Cl₂				(Cl ₂)		

5

10

15

20

3,5-Dibrom-4-fluor- β , β -bis-(ethoxycarbonyl)-benzenbutansäure-1,1-dimethylethylester

Zu der Lösung von 6.69 g (0.024 Mol) [(1,1-Dimethylethoxy-carbonyl)methyl]-malonsäurediethylester in 170 ml wasserfreiem Tetrahydrofuran gab man unter äußerer Kühlung mit Eiswasser 0.64 g (0.0266 Mol) 95%-iges Natriumhydrid. Nach einstündigem Rühren tropfte man unter Einhaltung einer Reaktionstemperatur von 0 bis +5 °C die Lösung von 8.35 g (0.024 Mol) 3,5-Dibrom-4-fluorbenzylbromid in 30 ml Tetrahydrofuran zu und ließ den Ansatz danach innerhalb von 14 Stunden auf Zimmertemperatur erwärmen. Das Reaktionsgemisch wurde im Vakuum vom Lösemittel befreit, der Rückstand mit 200 ml 10%-iger Zitronensäure versetzt und mit tert.-Butylmethylether erschöpfend extrahiert. Die vereinigten Extrakte ergaben nach üblicher Aufarbeitung 13.1 g (100% der Theorie) eines farblosen Öls vom $R_{\rm f}$ = 0.14 (FM Y), das ohne Reinigung in der folgenden Stufe eingesetzt wurde.

IR (KBr): 1732 (C=O) cm⁻¹

ESI-MS: $(M+Na)^+ = 561/563/565$ (Br₂)

Analog wurden die folgenden Verbindungen der allgemeinen Formel N-B-C hergestellt:

N	В	С	Anmerkungen	%	FΜ	Rf	MS	IR	Fp. [°C]
				Ausb.				[cm ⁻¹]	
Me ₃ CO	B15[α-	OEt	aus (H ₃ C) ₃ COCO-	100	V	0.6			farbloses
	CO2Et]		CH ₂ C(CO ₂ Et) ₂ ,						Öl
			3,4,5-Me ₃ -						
			C ₆ H ₂ CH ₂ Br und						
			NaH in THF						
Me₃CO	Β16[α-	OEt	aus (H ₃ C) ₃ COCO-	67	CH ₂ Cl ₂	0.71	· · · · · · · · · · · · · · · · · · ·	1736	farbloses
	CO2Et]		$CH_2C(CO_2Et)_2$,					(C=O)	Öl
			3Br-4,5-Me ₂ -						
			C ₆ H₂CH₂Br und						
			NaH in THF					- 8	
Me₃CO	Β20[α-	OEt	aus (H₃C)₃COCO-	100	V	0.72	kein M+;	1736	
	CO2Et]		CH ₂ C(CO ₂ Et) ₂ , 2,4-				(M-	(C=O)	
	:		(CF ₃) ₂ -C ₆ H ₃ CH ₂ Br				$C_4H_8)^+ =$		
			und NaH in THF	-			444		
Me ₃ CO	B22[α-	OEt	aus (H ₃ C) ₃ COCO-	91	W	0.78		1734	farbloses
	CO2Et]		CH ₂ C(CO ₂ Et) ₂ ,					(C=O)	Öl
			3,4,5Br₃-					1	
			C ₆ H ₂ CH ₂ Br und						
			NaH in THF				-		
Me ₃ CO	Β25[α-	OEt	aus (H₃C)₃COCO-	100	Y	0.75			farbloses
	CO2Et]		CH ₂ C(CO ₂ Et) ₂ , 4-						viskoses
			Br-3,5Cl₂-						Öl
			C ₆ H ₂ CH ₂ Br und						
			NaH in THF						
Me ₃ CO	Β27[α-	OEt	aus (H₃C)₃COCO-	58	Υ	0.31	$M^+ = 406$	1734	
	CO2Et]		CH ₂ C(CO ₂ Et) ₂ , 3,4-				•	(C=O)	
			(CH ₂) ₂ O-						
		!	C ₆ H ₃ CH ₂ Br und						
			NaH in THF						
Me ₃ CO	Β29[α-	OEt	aus (H ₃ C) ₃ COCO-	89	Х	0.49		1736	farbloses
	CO2Et]		CH ₂ C(CO ₂ Et) ₂ ,					(C=O)	Öl
			2,3Cl ₂ -C ₆ H ₃ CH ₂ Cl					:	
			und NaH in THF						

N	В	С	Anmerkungen	%	FM	Rf	MS	IR	Fp. [°C]
				Ausb.				[cm ⁻¹]	
Me ₃ CO	Β19[α-	OEt	aus (H ₃ C) ₃ COCO-	88					farbloses
	CO2Et]		CH ₂ C(CO ₂ Et) ₂ ,						Öl
			4NH ₂ -3,5Cl ₂ -			:			
			C ₆ H ₂ CH ₂ Br und						
			NaH in THF						

5

10

15

20

3,4-Dimethoxy-β-(methoxycarbonyl)-benzenbutansäure

Die Lösung von 58.0 g (0.205 Mol) 4-[(3,4-Dimethoxyphenyl]-3-(methoxycarbonyl)-3-butensäure in 500 ml Methanol wurde in Gegenwart von 3.0 g 10%-igem Platin/-Aktivkohle bis zur Beendigung der Wasserstoffaufnahme bei 5 bar Wasserstoff hydriert. Nach der üblichen Aufarbeitung erhielt man 26.0 g (46% der Theorie) an farblosen Kristallen mit $Fp = 104-107^{\circ}C$

Entsprechend wurde die folgenden Verbindungen der allgemeinen Formel N-B-C erhalten:

N	В	С	Anmerkungen	%	FM	Rf	Fp. [°C]
			-	Ausb.			
НО	B26	OMe	aus 4-(2-Naphthyl)-3-		X	0.85	•
			(methoxycarbonyl)-3-butensäure,				
			H ₂ und Pd-C in MeOH				

Beispiel A9

4-[(3,4-Dimethoxy-phenyl]-3-(methoxycarbonyl)-3-butensäure

Zu einer frisch bereiteten Lösung von 4.6 g (0.2 Mol) Natrium in 250 ml wasserfreiem Methanol gab man 26.6 ml (0.2 Mol) Bernsteinsäuredimethylester und tropfte nach einstündigem Rühren bei Zimmertemperatur die Lösung von 33.3 g (0.2

Mol) 3,4-Dimethoxybenzaldehyd in 100 ml wasserfreiem Methanol zu. Danach kochte man 6 Stunden unter Rückfluß, entfernte das Methanol im Vakuum und hielt den verbleibenden Sumpf 30 Minuten bei einer Reaktionstemperatur von 80°C. Der erhaltene zähe Brei wurde in 500 ml Wasser aufgenommen, mit 20%-iger wässeriger Zitronensäure-Lösung angesäuert und das anfallende Gemisch mit Essigsäureethylester erschöpfend extrahiert. Die vereinigten Essigesterextrakte wurden ihrerseits fünfmal mit 5%-iger wässeriger Ammoniak-Lösung ausgezogen. Die ammoniakalischen Extrakte wurden vorsichtig mit 20%-iger wässeriger Zitronensäure-Lösung angesäuert und anschließend mit Essigester erschöpfend extrahiert. Diese Extrakte wurden mit Wasser gewaschen, über Natriumsulfat getrocknet und vom Lösemittel im Vakuum befreit. Das Rohprodukt (Ausbeute quantitativ) wurde ohne Reinigung weiter umgesetzt.

Entsprechend wurden die folgenden Verbindungen der allgemeinen Formel N-B-C erhalten:

N	В	С	Anmerkungen	%	FM	R_{f}
	•			Ausb.		
4-(2-Naphthyl)-3	-(methoxycar	bonyl)-3-	aus 2-Naphthaldehyd,	65	Х	0.8
but	tensäure		Bernsteinsäure-			
			dimethylester und			
4			NaOMe in MeOH			

Beispiel A10

5

10

15

20

25

[1,4']Bipiperidinyl-4-essigsäuremethylester

Die Lösung von 0.669 g (2.024 mMol) 1'-Phenylmethyl-[1,4']bipiperidinyl-4-essigsäuremethylester in 20 ml Methanol wurde nach Zugabe von 100 mg 10%-iger Palladiumkohle bei einem Druck von 5 bar bis zur Beendigung der Wasserstoffaufnahme hydriert. Der Katalysator wurde abfiltriert, das Filtrat vom Lösemittel befreit, der Rückstand in 20 ml THF aufgenommen, die entstandene Lösung fitriert und erneut eingedampft. Der Rückstand wurde ohne weitere Reinigung verwendet. Farbloses Öl. Ausbeute: 490 mg (100% der Theorie).

ESI-MS: $(M+H)^+ = 241$

 $(M+Na)^+ = 253$

N	В	С	Anmerkungen	%	FM	Rf	MS	Fp. [°C]
				Ausb.				
Н	-	C5	aus PhCH ₂ -C5, H ₂ und	100	G	0.22	ESI: (M+H) ⁺ =	farbloses
			Pd/C in MeOH				241; (M+Na)+	Öl
						;	= 253	
Н	-	C12	aus PhCH ₂ -C12, H ₂	98	D	0.17	ESI: (M+H) ⁺ =	farblose
			und Pd/C in EtOH				284	Kristalle
Н	-	C9	aus PhCH2-C9, H2 und	78	0	0.1		farbloses
			Pd/C in EtOH					Öl
H	-	СЗ	aus PhCH2-C3, H2 und	99			ESI: (M+H) ⁺ =	farbloses
			Pd/C in MeOH				284; (M+Na)+	Öl
					•		= 306	
Н	-	C1	aus PhCH2-C1, H2 und	97	М	0.38	ESI: (M+H) ⁺ =	
:			Pd/C in EtOH				256	
Н	-	C14	aus PhCH ₂ -C14, H ₂	79	G	0.14	ESI: (M+H) ⁺ =	farblose
			und Pd/C in MeOH				213	Kristalle
Н	-	C16	aus PhCH ₂ -C16, H ₂	67	G	0.16	ESI: (M+H) ⁺ =	farblose
			und Pd/C in MeOH				213	Kristalle
Н	-	C19	aus PhCH ₂ -C19, H ₂	100	G	0.20	ESI: (M+H) ⁺ =	farbloses
			und Pd/C in MeOH				227	Öl
Н	-	C22	aus PhCH ₂ -C22, H ₂	100	С	0.06	ESI: (M+H) ⁺ =	farblose
			und Pd/C in MeOH				227	Kristalle
Н	-	C26	aus PhCH ₂ -C26, H ₂	100	i			farblose
			und Pd/C in MeOH					Kristalle

N	В	С	Anmerkungen	%	FM	Rf	MS	Fp. [°C]
				Ausb.				
Н	-	C28	aus 4-[(1-	70	S	0.4	·	farblose
			Phenylmethyl)-1,2,3,6-					Kristalle
			tetrahydro-4-					
			pyrididinyl]-					
			benzoesäuremethyl-					
			ester, H2 und Pd/C in					
			MeOH					
Н	-	C18	Acetat, aus PhCH ₂ -	88	G	0.20	ESI: (M+H) ⁺ =	farbloses
			C18, H ₂ und Pd/C in				227	viskoses Öl
			MeOH					
Н	-	.C7	aus PhCH ₂ -C7, H ₂ und	92	0	0.15	ESI: (M+H)+ =	farbloses
			Pd/C in EtOH				241; (M+Na)+	Öl
			= 263					
Н	-	C50	aus PhCH ₂ -C50, H ₂	.100	KK	0.21	ESI: (M+H) ⁺ =	
			und Pd(OH)₂				256	viskoses Öl
			(Pearlman's catalyst)					
11			in EtOH					
4-Me	thy	yl-2-	aus 1-(Phenylmethyl)-	99				farbloses
pipe			4-methyl-2-	-			i	Öl
carbo			piperazincarbonsäure-					
ethy	/les	ster	ethylester, H₂ und					0
			Pd(OH) ₂ (Pearlman's					
			catalyst) in EtOH		-			
H	-	C46		100	DD	0.24	ESI: (M+H) ⁺ =	farbloses
			und Pd(OH) ₂				256	viskosės Öl
			(Pearlman's catalyst)	100		ŀ		
	_	0:-	in EtOH	100			FOL (15 10±	
H	-	C45		100	LL	0.1	ESI: (M+H) ⁺ =	farbloses
			und Pd(OH) ₂				256	Öl
			(Pearlman's catalyst)					
			in EtOH					

N	В	С	Anmerkungen	%	FM	Rf	MS	Fp. [°C]
				Ausb.				
2-Pip	oera	azin-	aus 1,4-Bis-	100	MM	0.2	ESI: (M+H) ⁺ =	
carbo	carbonsäure-		(phenylmethyl)-2-				159	
eth	ethylester		piperazincarbonsäure-					
			ethylester, H ₂ und					
			10proz. Pd/C in EtOH					

5

10

15

20

1'-(Phenylmethyl)-[1,4']bipiperidinyl-4-essigsäuremethylester

Zu der Mischung aus 4.549 ml (24.54 mMol) 1-(Phenylmethyl)-4-piperidinon, 4.753 g (24.54 mMol) 4-Piperidinessigsäure-methylester-hydrochlorid und 40 ml THF gab man 4.0 ml Eisessig und 20 g Molekularsieb 3 Å, ließ 2 Stunden bei Zimmertemperatur rühren, kühlte auf 0 °C ab und trug unter Einhaltung dieser Temperatur in kleinen Portionen innerhalb von 8 Stunden insgesamt 6.358 g (30.0 mMol) Natriumtriacetoxyborhydrid ein. Anschließend rührte man noch 16 Stunden bei Zimmertemperatur. Man stellte den Ansatz natriumhydrogencarbonat-alkalisch, extrahierte erschöpfend mit Essigsäureethylester, trocknete die vereinigten Extrakte über Natriumsulfat und chromatographierte den Eindampfrückstand an Kieselgel unter Verwendung von anfangs Dichlormethan/Methanol 30/1, dann 20/1, zuletzt 10/1 als Eluenzien. Aufarbeitung der geeigneten Fraktionen ergab 1.804 g (22% der Theorie) eines leicht beweglichen Öls, das über Nacht zu farblosen Kristallen erstarrte. $R_f = 0.56$ (FM B).

ESI-MS: $(M+H)^+ = 331$.

N	В	С	Anmerkungen	%	FM	Rf	MS	Fp. [°C]
				Ausb.			٠	
PhCH ₂	-	C7 + C9	aus 1-(Phenylmethyl)-	cis: 14.7	AA	cis:	cis: ESI:	farblose
			piperazin, 4-	+ trans:		0.40;	$(M+H)^{+} =$	Flüssig-
			Oxocyclohexancarbon-	13.8 +		trans:	331;	keiten
		4.	säureethylester und	cis/		0.30	(M+Na)+ =	
			Na(CN)BH₃/AcOH in	trans:			353; trans:	
			MeOH bei pH 5-6;	5.8			ESI: (M+H)+	
			Trennung der beiden				= 331	
			Diastereomeren an					
			Kieselgel, FM					
			Dichlormethan / MeOH					
•			30/1 v/v					
PhCH ₂	-	СЗ	aus 1-(Phenylmethyl)-	58	0	0.67	ESI: (M+H)+	farblose
			piperazin, 4-Oxo-1-				= 374;	Kristalle
	,	*	piperidinessigsäure-1,1-			:	$(M+Na)^{+} =$	
			dimethylethylester und				396	
		ı	Na(CN)BH₃/AcOH in		+ -			
-3.		į'	MeOH bei pH 5-6				,	
4-[1-(Phe	eny	lmethyl)-4-	aus 1-(Phenylmethyl)-4-	100	D	0.60	ESI: (M+H)+	farbloses
piperid	iny	/i]-1-(1,1-	piperidinon, 1-(1,1-				= 360;	ÖI
dimethyle	tho	xycarbonyl)	Dimethylethoxycarbonyl)				(M+Na)+ =	
-pi	pe	razin	-piperazin und				382;	
			NaBH(OAc)₃/AcOH in				$(2M+Na)^{+} =$	
			THF				741	
PhCH ₂	-	C14	aus 1-(Phenylmethyl)-4-	51	G	0.50	ESI: (M+H)+	farbloses
			piperidinon, L-				= 303	ÖI
			Prolinmethylester-	·			ı	
			hydrochlorid und					
			NaBH(OAc)₃/AcOH in					
			THF			!		

N	В	С	Anmerkungen	%	FM	Rf	MS	Fp. [°C]
				Ausb.	2			
PhCH ₂	-	C16	aus 1-(Phenylmethyl)-4-	54	G	0.50	ESI: (M+H)+	farbloses
			piperidinon, D-	,			= 303;	ÖI
			Prolinmethylester-		ŀ		(M+Na)+ =	
			hydrochlorid und			,	325	
			NaBH(OAc) ₃ /AcOH in					
			THF	,				
PhCH ₂	-	C19	aus 1-(Phenylmethyl)-4-	51	G	0.40	ESI: (M+H)+	farbloses
			piperidinon, L-				= 317;	Öl
			Homoprolinmethylester-				$(M+Na)^{+} =$	
			hydrochlorid [Bachem]				339	
			und NaBH(OAc)₃ in	:				
			CH ₂ Cl ₂					
PhCH ₂	-	C18	aus 1-(Phenylmethyl)-4-	57	G	0.40	ESI: (M+H)+	farbloses
			piperidinon, D-				= 317	viskoses
		!	Homoprolinmethylester-				. •	ÖI
			hydrochlorid [Bachem]					
		ė	und NaBH(OAc)₃ in					
		*	CH ₂ Cl ₂					
PhCH ₂	-	C50	aus 1-(Phenylmethyl)-4-	22	DD	0.84	ESI: (M+H)+	1
			piperidinon, 4-Methyl-2-				= 346	i:
			piperazincarbonsäure-	:				
			ethylester und					
,			NaBH(OAc)₃ in THF					
PhCH ₂	-	C46	aus 1-Methyl-4-	100	С	0.53	ESI: (M+H)+	farbloses
			piperidinon, 1-				= 346	ÖI
			(Phenylmethyl)-2-					
			piperazincarbonsäure-					
			ethylester-bis-		;			
			(trifluoracetat) und					
			NaBH(OAc)₃ in THF					

N	В	С	Anmerkungen	%	FM	R _f	MS	Fp. [°C]
				Ausb.				:
PhCH₃	-	C45	aus 1-(Phenylmethyl)-4-	100	С	0.41	$M^+ = 345$	farbloses
:			piperidinon, 1-Methyl-2-					Öl
			piperazincarbonsäure-					
			ethylester-bis-					
			(trifluoracetat) und					
			NaBH(OAc)₃ in THF					
Вос	-	C44	aus 1-Methyl-4-	57	С	0.46	ESI: (M+H)*	farbloses
			piperidinon, 4-(1,1-				= 356	viskoses
1			Dimethylethoxycarbonyl)					Öl
			-2- ·					
			piperazincarbonsäure-					
		:	ethylester-bis-					
			(trifluoracetat) und					
			NaBH(OAc) ₃ in THF				·	

4-[1-(Phenylmethyl)-4-piperidinyl]-1-piperazinessigsäure-ethylester

r [

10

5

Zu der Suspension von 2.0 g (3.325 mMol) 1-(Phenylmethyl)-4-(1-piperazinyl)-piperidin-tris-(trifluoracetat) in 50 ml Dichlormethan gab man 3.5 ml (19.892 mMol) DIEA und rührte 10 Minuten bei Zimmertemperatur. Dann trug man 0.38 ml (3.365 mMol) Bromessigsäureethylester ein und rührte über Nacht bei Zimmertemperatur. Das Reaktionsgemisch wurde viermal mit je 50 ml Wasser ausgeschüttelt, über Natriumsulfat getrocknet und eingedampft. Man erhielt 0.70 g (61% der Theorie) des gesuchten Produkts vom R_f 0.63 (FM D) und ESI-MS: $(M+H)^+ = 346$.

LOI-MO. (M+11) = 540.

WO 2004/063171 - 78 - PCT/EP2004/000087

N	В	С	Anmerkungen	%	FM	R _f	MS	Fp. [°C]
				Ausb.				
PhCH ₂	-	C12	aus 1-(Phenylmethyl)-4-	65	D	0.51	ESI: (M+H)*	farblose
			(1-piperazinyl)-piperidin-				= 374;	Kristalle
			tris-(trifluoracetat),				(M+Na)+ =	
			Bromessigsäure-1,1-				396	
			dimethylethylester und					
			K₂CO₃ in CH₃CN					

Beispiel A13

1-(Phenylmethyl)-4-(1-piperazinyl)-piperidin-tris-(trifluoracetat)

5

10

15

Das Gemisch aus 77.6 g (0.216 Mol) 4-[1-(Phenylmethyl)-4-piperidinyl]-1-(1,1-dimethylethoxycarbonyl)-piperazin, 150 ml (1.941 Mol) Trifluoressigsäure und 450 ml Dichlormethan wurde 1 Stunde unter Rückfluß gekocht und dann 2 Stunden bei Zimmertemperatur gerührt. Das Lösemittel wurde abdestilliert, der Rückstand mit Diethylether verrieben, abgenutscht und an der Luft getrocknet. Man erhielt 119.0 g (92% der Theorie) an farblosen Kristallen vom $R_{\rm f}$ 0.20 (FM D) und

ESI-MS: $(M+H)^+ = 260$

N	В	С	Anmerkungen	%	FM	Rf	MS	Fp. [°C]
				Ausb.				
Н	-	C29	aus 4-[[1-(1,1-	89	BB	0.70		farblose
			Dimethylethoxycarbonyl)-					Kristalle
ļ			4-piperidinyl]methyl]-				V	
			benzoesäureethylester und					
			TFA in CH₂Cl₂					

WO 2004/063171 - 79 - PCT/EP2004/000087

N	В	С	Anmerkungen	%	FM	R_{f}	MS	Fp. [°C]
				Ausb.				
Н	-	C44	aus 4-(1,1-	100	DD	0.11	$M^+ = 255$	farbloses
			Dimethylethoxycarbonyl)-					viskoses
			1-(1-methyl-4-piperidinyl)-					ÖI
			2-piperazincarbonsäure-				 	
			ethylester und TFA in					
			CH ₂ Cl ₂					
	-	1-	aus 4-(1,1-	100	AcOEt	0.00	ESI:	farbloses
(Phe	∍ny	ılmethyl)	Dimethylethoxycarbonyl)-				$(M+H)^{+} =$	Öl
-2-	pip	erazin-	1-(phenylmethyl)-2-				249	
car	boı	nsäure-	piperazincarbonsäure-					
ethy	yles	ster-bis-	ethylester und TFA in					
(trif	luo	racetat)	CH ₂ Cl ₂					
1-	Ме	thyl-2-	aus 4-(1,1-	100	DD	0.16	ESI:	farbloses
p	ipe	razin-	Dimethylethoxycarbonyl)-				$(M+H)^{+} =$	viskoses
car	carbonsäure-		1-methyl-2-				173	Öl
ethy	ethylester-bis-		piperazincarbonsäure-					
(trif	(trifluoracetat)		ethylester und TFA in	Ÿ				· .
			· CH ₂ Cl ₂					

Beispiel A14

1'-(Phenylmethyl)-[1,4']bipiperidinyl-4'-carbonsäuremethylester

5

10

15

Zu der Lösung von 1.0 g (3.307 mMol) 1'-(Phenylmethyl)-[1,4']bipiperidinyl-4'-carbonsäure in 30 ml DMF gab man 1.124 g (3.5 mMol) TBTU und 1.0 ml (7.175 mMol) Triethylamin, rührte 20 Minuten bei Zimmertemperatur, fügte dann 20 ml Methanol zu und rührte weitere 3 Stunden bei Raumtemperatur. Die Mischung wurde eingedampft, der Rückstand in 50 ml Essigsäureethylester aufgenommen und filtriert. Das Filtrat wurde eingeengt, der Rückstand säulenchromatogaphisch an Kieselgel unter Verwendung von anfangs Ethylacetat, dann von Ethylacetat im Gemisch mit bis zu 5% Methanol/konz. Ammoniak (9/1 v/v) zum Eluieren gereinigt. Man erhielt 0.231 g (22% der Theorie) an farblosen Kristallen vom Fp. 84.7 °C und Rf 0.73 (FM F).

WO 2004/063171 - 80 - PCT/EP2004/000087

ESI-MS: $(M+H)^+ = 317$

Beispiel A15

5

10

15

3-(4-Piperidinyl)-benzoesäuremethylester-hydrochlorid

Die Mischung aus 500 mg (2.069 mMol) 3-(4-Piperidinyl)-benzoesäure-hydrochlorid und 10 ml gesättigter methanolischer Chlorwasserstoff-Lösung wurde über Nacht bei Zimmertemperatur gerührt. Das reaktionsgemisch wurde im Vakuum eingedampft, der Rückstand mit 3 ml Isopropanol verrührt, abgenutscht, mit Diethylether gewaschen und bei 60 °C im Umlufttrockenschrank getrocknet. Man erhielt 390 mg (74% der Theorie) an farblosen Kristallen vom R_f 0.34 (FM D).

IR (KBr): 1728 (C=O) cm⁻¹

ESI-MS: $(M+H)^+ = 220$;

 $(M+Cl+HCl)^{-} = 290/292/294 (Cl₂)$

Entsprechend wurden folgende Ester der allgemeinen Formel N-B-C erhalten:

N	В	С	Anmerkungen	%	FM	R_{f}	MS	IR	Fp. [°C]
				Ausb.				[cm ⁻¹]	
Н	-	C31	Dihydrochlorid; aus	76	D	0.58	ESI: (M+H) ⁺ =	1722	farblose
			H-C38 [BAYER],				289;	(C=O)	Kristalle
			MeOH und HCl				(M+Cl+HCl) =		
		9					359/361/363		
							(Cl_2)		
PhCH ₂	-	C41	aus PhCH ₂ -C43,	52	D	0.88	ESI: (M+H)+ =		
		:	MeOH und HCl				318; (M+Na)+		,
							= 340;		
							(2M+Na)+ =		
		,					657		
2-Am	inoth	niazol-5-	aus 2-Aminothiazol-	100	D	0.59	ESI: (M+H) ⁺ =		
carbonsäuremethyl-		remethyl-	5-carbonsäure,				159; (M-H) ⁻ =		
ester-hydrochlorid		rochlorid	MeOH und HCi				157		

N	В	С	Anmerkungen	%	FM	R_t	MS	IR	Fp. [°C]
				Ausb.				[cm ⁻¹]	
4-[1-(P	hen	ylmethyl)-	aus 4-[1-	85			ESI: (M+H)+ =	1707	
1,2,3,6	1,2,3,6-tetrahydro-4-		(Phenylmethyl)-				308	(C=O)	
р	yridi	nyl]-	1,2,3,6-tetrahydro-4-						
ber	zoe	säure-	pyridinyl]-						
me	ethyl	ester	benzoesäure, MeOH						
			und HCI						

1'-(Phenylmethyl)-[1,4']bipiperidinyl-4'-carbonsäure

5

10

15

In 15 ml konz. Schwefelsäure wurden in kleinen Portionen insgesamt 5.0 g (17.642 mMol) 1'-(Phenylmethyl)-[1,4']bipiperidinyl-4'-carbonitril eingetragen. Nachdem das Nitril in Lösung gegangen war, wurde weitere 3 Stunden bei Zimmertemperatur gerührt, dann 10 ml Wasser zugegeben und die Mischung 15 Stunden unter Rückfluß gekocht. Der erkaltete Ansatz wurde in 50 ml Eiswasser eingerührt und mit konz. Ammoniak auf pH 7 gebracht. Der ausgefallene Niederschlag wurde abgenutscht, mit wenig Wasser gewaschen, mit 10 ml Dichlormethan verrührt, erneut abgenutscht, dann im Vakuum getrocknet. Man erhielt 1.56 g (29% der Theorie) an farblosen Kristallen vom Rf 0.0 (FM DD).

ESI-MS: (M+H) = 303

Beispiel A17

3-(1-Piperazinyl)-benzoesäureethylester

20

25

Zu der Lösung von 18.5 g (0.055 Mol) 3-[4-(Phenylmethoxycarbonyl)-1-piperazinyl]-benzoesäureethylester in 30 ml Eisessig tropfte man bei Zimmertemperatur 30 ml einer gesättigten Lösung von Bromwasserstoff in Eisessig und rührte weitere 4 Stunden bei Zimmertemperatur. Der Mischung wurden 300 ml Diethylether zugesetzt, der entstandene Niederschlag anschließend abgenutscht, mit Diethylether gründlich gewaschen und an der Luft getrocknet. Ausbeute 17.8 g (82% der

WO 2004/063171 - 82 - PCT/EP2004/000087

Theorie). Farblose Kristalle vom Fp. 226 °C (Z) und R_f 0.24 (FM EE).

C₁₃H₁₈N₂O₂*2 HBr (396.13)

Ber.: C 39.42H 5.09 N 7.07 Br 40.34

Gef.: 39.27 5.06 7.15 40.35

5

10

15

20

25

30

Beispiel A18

3-[4-(Phenylmethoxycarbonyl)-1-piperazinyl]-benzoesäure-ethylester

Zu der Lösung von 26.0 g (0.08 Mol) 3-[4-(Phenylmethyl)-1-piperazinyl]-benzoesäureethylester in 260 ml Dichlormethan gab man im Abstand von 16 Stunden zweimal je 15.0 g (zusammen 0.176 Mol) Chlorkohlensäurebenzylester und rührte insgesamt 32 Stunden bei Zimmertemperatur. Das Lösemittel wurde im Vakuum entfernt, der Rückstand säulenchromatographisch an Kieselgel unter Verwendung von Dichlormethan zum Eluieren gereinigt. Man erhielt 18.8 g (70% der Theorie) eines farblosen Öls vom R_f 0.67 (FM FF).

Beispiel A19

3-[4-(Phenylmethyl)-1-piperazinyl]-benzoesäureethylester-hydroiodid

Die Mischung aus 53.6 g (0.2 Mol) N,N-Bis-(2-chlorethyl)-benzenmethanaminhydrochlorid, 40.2 g (0.2 Mol) 3-Aminobenzoesäureethylester-hydrochlorid, 30.0 g (0.2 Mol) Natriumiodid, 20.0 g Natriumcarbonat und 1 I n-Propanol wurde 2 Stunden lang unter Rückfluß gekocht. Man kühlte auf 80°C ab, gab langsam weitere 15 g Natriumcarbonat zu und kochte abermals 2 Stunden unter Rückfluß. Nach Abkühlen auf 80°C wurde das restliche Natriumcarbonat von einer Gesamtmenge von 53.0 g (0.5 Mol) zugesetzt und nochmals 2 Stunden bei Rückflußtemperatur gehalten. Man ließ erkalten, filtrierte von den unlöslichen Salzen ab und engte das Filtrat im Vakuum ein. Der Rückstand wurde in 200 ml Dichlormethan aufgenommen, die Dichlormethan-Lösung zweimal mit je 50 ml 1N Salzsäure gewaschen, dann eingedampft. Der verbliebene Rückstand ergab nach dem Umkristallisieren aus Ethanol 43.0 g (48% der Theorie) an farblosen Kristallen vom Fp. 180-182 °C und $R_f = 0.62$ (FM GG).

WO 2004/063171 - 83 - PCT/EP2004/000087

Beispiel A20

4-[1-(Phenylmethyl)-1,2,3,6-tetrahydro-4-pyridinyl]-benzoesäure

5

10

Zu der Lösung von 13.13 g (0.040 Mol) 4-(4-Bromphenyl)-1-(phenylmethyl)-1,2,3,6-tetrahydropyridin in 190 ml wasserfreiem THF tropfte man unter Argon-Atmosphäre und Einhaltung einer Reaktionstemperatur von -70 bis -60 °C 25.0 ml (0.04 Mol) einer 1.6-molaren Lösung von *n*-Butyllithium in *n*-Hexan. Nach 30 Minuten bei -60°C goß man den Ansatz unter gutem Rühren auf 500 g fein zerstoßenes Trockeneis und ließ dann die Mischung über Nacht auf Zimmertemperatur kommen. Man verdünnte mit 300 ml Diethylether und extrahierte dann mit zweimal je 100 ml Wasser. Unter äußerer Kühlung wurden die vereinigten wässerigen Auszüge mit 2N Salzsäure auf pH 7.5 gebracht. Der entstandene Niederschlag wurde abgenutscht, mit 50 ml heißem Methanol verrührt und nach dem Erkalten erneut abgenutscht. Man erhielt nach dem Trocknen im Exsikkator 8.3 g (71% der Theorie) an farblosen Kristallen vom R_f 0.5 (FM HH).

ESI-MS: $(M+H)^+ = 294$ $(M-H)^- = 292$

20

25

30

15

Beispiel A21

4-(4-Bromphenyl)-1-(phenylmethyl)-4-piperidinol

Zu der Lösung von 23.591 g (0.10 Mol) 1,4-Dibrombenzol in 250 ml wasserfreiem THF tropfte man unter Einhaltung einer Reaktionstemperatur von -60 bis -50 °C 62.5 ml (0.1 Mol) einer 1.6-molaren Lösung von n-Butyllithium in n-Hexan. Man rührte weitere 20 Minuten bei der genannten Temperatur, bevor man die Lösung von 18.926 g (0.10 Mol) 1-(Phenylmethyl)-4-piperidinon in 50 ml wasserfreiem THF zutropfte. Man ließ auf Zimmertemperatur erwärmen, rührte noch über Nacht bei dieser Temperatur, trug den Ansatz dann in Eiswasser ein und extrahierte erschöpfend mit Essigsäureethylester. Die vereinigten Essigesterextrakte wurden mit Wasser und gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Der Rückstand wurde aus Diisopropylether

WO 2004/063171 - 84 - PCT/EP2004/000087

umkristallisiert. Man erhielt 23.1 g (67% der Theorie) an farblosen Kristallen vom $R_{\rm f}$ 0.4 (FM BB).

Beispiel A22

5

10

15

20

25

30

4-[[1-(1,1-Dimethylethoxycarbonyl)-4-piperidinyl]methyl]-benzoesäureethylester

Die Lösung von 38.7 g (0.112 Mol) 1-(1,1-Dimethylethoxycarbonyl)-4-[4-(ethoxycarbonyl)-phenylmethylen]-piperidin in 350 ml Essigsäureethylester wurde in Gegenwart von 4.82 g 10%-igem Pallaium auf Kohle bis zur Beendigung der Wasserstoffaufnahme bei Zimmertemperatur und einem Druck von 5 bar hydriert. Übliche Aufarbeitung ergab 35.8 g (92% der Theorie) eines farblosen Öls, das ohne weitere Reinigung verwendet wurde.

Beispiel A23

1-(1,1-Dimethylethoxycarbonyl)-4-[4-(ethoxycarbonyl)-phenylmethylen]-piperidin

Zu der Lösung von 19.2 ml (0.135 Mol) Diisopropylamin in 400 ml wasserfreiem THF tropfte man unter Verwendung von Argon als Schutzgas und unter Einhaltung einer Reaktionstemperatur von -20 bis -10 °C 85.0 ml (0.136 Mol) einer 1.6-molaren Lösung von n-Butyllithium in n-Hexan. Man hielt noch 20 Minuten die genannte Temperatur und tropfte dann die Lösung von 39.35 g (0.131 Mol) [4-(Ethoxycarbonyl)phenyl]-methanphosphonsäure-diethylester in 100 ml THF zu. Man rührte weitere 20 Minuten bei einer Temperatur zwischen -20 und -10 °C, tropfte dann die Lösung aus 28.1 g (0.131 Mol) 1-(1,1-Dimethylethoxy-carbonyl)-4-piperidinon in 100 ml THF ein und ließ über Nacht auf Zimmertemperatur erwärmen. Der Ansatz wurde in Eiswasser eingerührt, die entstandene Mischung mit Essigsäureethylester erschöpfend extrahiert, die vereinigten Extrakte mit gesättigter wässeriger NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösemittel befreit. Der Rückstand wurde säulenchromatographisch an Kieselgel und unter Verwendung von Petrolether/Essigsäureethylester 7/1 v/v zum Eluieren gereinigt. Man erhielt 38.7 g (86% der Theorie) eines farblosen Öls, das in Gegenwart von Petrolether zu farblosen Kristallen erstarrte.

[4-(Ethoxycarbonyl)phenyl]-methanphosphonsäurediethylester

5

10

15

20

25

30

In einer Rührapparatur wurden 55 ml (0.316 Mol) Triethylphosphit vorgelegt und auf eine Innentemperatur von 90°C vorgeheizt. Hierzu wurde langsam und in kleinen Portionen die Suspension von 60.0 g (0.247 Mol) 4-(Brommethyl)-benzoesäureethylester in 100 ml Dichlormethan gegeben, wobei das entstandene Ethylbromid und das verdampfende Dichlormethan laufend abdestilliert wurden. Nachdem die Menge des entstandenen Ethylbromids deutlich zurückgegangen war, wurde die Reaktionstemperatur langsam auf 140°C gesteigert und diese Temperatur bis zur Beendigung der Ethylbromidbildung (ca. 2 Stunden) gehalten. Das überschüssige Triethylphosphit wurde im Vakuum entfernt, der Rückstand in wenig Essigsäureethylester suspendiert und an Kieselgel unter Verwendung von Essigsäureethylester/Petrolether (Gradient 1/1 → 1/0 v/v) zum Eluieren säulenchromatographisch gereinigt. Nach üblicher Aufarbeitung erhielt man 56.3 g (76% der Theorie) der obigen Titelverbindung in Form eines farblosen Öls.

Beispiel A25

4-[2-(4-Piperidinyl)ethyl]-benzoesäureethylester

Die Lösung von 22.0 g (0.076 Mol) 4-[2-(4-Pyridinyl)vinyl]-benzoesäureethylesterhydrochlorid in 800 ml Ethanol wurde in Gegenwart von 2 g Platin(IV)-oxid bei 3.8 bar Wasserstoffdruck 8 Stunden lang hydriert. Katalysator und Lösemittel wurden entfernt, der Rückstand in 5%-iger Salzsäure aufgenommen und zweimal mit je 50 ml Diethylether extrahiert. Die wässerige Phase wurde sodaalkalisch gestellt und mit Essigsäureethylester erschöpfend ausgeschüttelt. Die vereinigten Ethylacetatauszüge wurden mit gesättigter Kochsalz-Lösung gewaschen, über Natriumsulfat getrocknet und eingedampft. Das erhaltene ölige Produkt (17.0 g, 86% der Theorie) wurde ohne weitere Reinigung verwendet.

WO 2004/063171 - 86 - PCT/EP2004/000087

Beispiel A26

5

10

15

30

(E)-4-[2-(4-Pyridinyl)vinyl]-benzoesäureethylester-hydrochlorid

Zu der Suspension von 1.87 g (78 mMol) Natriumhydrid in 150 ml THF tropfte man unter Einhaltung einer Reaktionstemperatur von -10 bis 0°C die Lösung von 9.1 g (85.0 mMol) 4-Pyridin-carboxaldehyd und 25.0 g (83.3 mMol) [4-(Ethoxycarbonyl)-phenyl]-methanphosphonsäurediethylester in 150 ml THF. Die Mischung wurde 35 Stunden unter Stickstoffatmosphäre gerührt. Dann wurde zwischen Wasser und Diethylether verteilt, die etherische Phase über Natriumsulfat getrocknet, auf ein Volumen von ca. 200 ml eingedampft und mit etherischer Chlorwasserstoff-Lösung bis zur Beendigung der Fällungsreaktion versetzt. Die entstandenen farblosen Kristalle wurden abgenutscht, mit Diethylether gewaschen und an der Luft getrocknet. Ausbeute: 22.0 g (87% der Theorie). Fp. 215-225 °C.

Beispiel A27

2-(1-Piperazinyl)-thiazol-5-carbonsäuremethylester

Zu der Lösung von 4.2 g (23.647 mMol) 2-Chlorthiazol-5-carbonsäuremethylester in 5 ml Ethanol gab man 10.0 g (116.09 mMol) wasserfreies Piperazin und kochte 3 Stunden unter Rückfluß. Das Reaktionsgemisch wurde mit gesättigter wässeriger Natriumhydrogencarbonat-Lösung versetzt und mit Essigsäureethylester erschöpfend extrahiert. Die vereinigten organischen Auszüge wurden gründlich mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhielt 1.8 g (34% der Theorie) an farblosen Kristallen vom Rf 0.44 (FM D).

Beispiel A28

2-Chlorthiazol-5-carbonsäuremethylester

Zu der Suspension von 14.0 g (71.927 mMol) 2-Aminothiazol-5-carbonsäuremethylester-hydrochlorid in 8 ml konz. Salzsäure gab man 20 g gestoßenes Eis und tropfte unter äußerer Kühlung die Lösung von 5.0 g (72.464 mMol) Natriumnitrit in 30 ml

WO 2004/063171 - 87 - PCT/EP2004/000087

Wasser ein, wobei die Reaktionstemperatur stets unter 0 °C gehalten wurde. Nach 30 Minuten gab man 7.2 g (72.735 mMol) Kupfer(I)-chlorid zu, rührte noch 1 Stunde unter Kühlung und ließ in den folgenden 1½ Stunden langsam auf Zimmertemperatur kommen. Das Gemisch wurde mit Diethylether erschöpfend extrahiert, die vereinigten Extrakte wurden mit gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Man erhielt 4.3 g (34% der Theorie) eines farblosen Öls vom Rf = 0.94 (FM D), das ohne weitere Reinigung in den nachfolgenden Stufen verwendet wurde.

MS: $M^+ = 177/179$ (CI)

10

15

20

25

5

Beispiel A29

2-(1-Piperazinyl)-thiazol-4-carbonsäuremethylester-hydrochlorid

Zu der eisgekühlten Lösung von 8.0 g (15.752 mMol) 2-[4-(Phenylmethyl)-1-piperazinyl]-thiazol-4-carbonsäuremethylester in 60 ml 1,2-Dichlorethan gab man 4.0 ml (35.973 mMol) Chlorameisensäure-1-chlorethylester, rührte noch 20 Minuten bei 0 °C und kochte über Nacht unter Rückfluß, bevor man das Lösemittel abdestillierte. Der Rückstand wurde mit 60 ml Methanol versetzt und abermals 4 Stunden unter Rückfluß gekocht. Das Lösemittel wurde im Vakuum entfernt, der Rückstand mit 3 ml Methanol verrieben, dann abgenutscht. Nach dem Trocknen im Vakuumtrockenschrank erhielt man 2.5 g (60% der Theorie) an farblosen Kristallen vom $R_f = 0.49$ (FM D).

ESI-MS: $(M+H)^+ = 228;$ $(M+Na)^+ = 250$

Beispiel A30

2-[4-(Phenylmethyl)-1-piperazinyl]-thiazol-4-carbonsäure-hydrobromid

30

Zu der Lösung von 18.0 g (76.482 mMol) 1-(Aminothiocarbonyl)-4-(phenylmethyl)-piperazin in 300 ml Ethanol gab man 12.7 g (76.066 mMol) Brombrenztraubensäure und kochte 3 Stunden unter Rückfluß. Man ließ über Nacht stehen, nutschte das ausgefallene Festprodukt ab und wusch es mit Ethanol. Nach dem Trocknen erhielt

WO 2004/063171 - 88 - PCT/EP2004/000087

```
man 23.0 g (79% der Theorie) an farblosen Kristallen vom R_f 0.10 (FM D). 
ESI-MS: (M-H)^- = 302; (M+Na)^+ = 326
```

5 Beispiel A31

10

15

20

25

30

1-(Aminothiocarbonyl)-4-(phenylmethyl)-piperazin

Zu der eisgekühlten Lösung von 19.08 g (108.25 mMol) 1-(Phenylmethyl)-piperazin in 150 ml Dichlormethan tropfte man 12.596 g (108.247 mMol) *tert.*-Butylisothiocyanat, wobei man die Reaktionstemperatur unter +5 °C hielt. Man rührte über Nacht bei Zimmertemperatur, befreite vom Lösemittel und kochte den verbliebenen Rückstand 1½ Stunden lang mit 100 ml konz. Salzsäure. Nach dem Erkalten neutralisierte man unter äußerer Kühlung mit 12M Natronlauge und extrahierte erschöpfend mit Dichlormethan. Die vereinigten Dichlormethanauszüge wurden über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhielt 25.2 g (99% der Theorie) an hellgelben Kristallen vom

```
R<sub>f</sub> = 0.45 (FM D).
ESI-MS: (M+H)^+ = 236;
(M-H)^- = 234;
(M+Na)^+ = 258
```

Beispiel A32

4-Methyl-1-(phenylmethyl)-2-piperazincarbonsäureethylester

Zu der Mischung aus 15.12 g (31.739 mMol) 1-(Phenylmethyl)-2-piperazincarbon-säureethylester-bis-(trifluoracetat), 20 ml DIEA und 250 ml THF tropfte man bei Zimmertemperatur die Lösung von 2.2 ml (35.029 mMol) lodmethan in 50 ml THF und rührte 4 weitere Stunden bei Zimmertemperatur. Man filtrierte, dampfte den Rückstand im Vakuum ein und chromatographierte den Rückstand an einer Kieselgelsäule unter Verwendung von FM II zum Eluieren. Nach der üblichen Aufarbeitung der geeigneten Fraktionen erhielt man 2.43 g (29% der Theorie) eines farblosen Öls, das ohne weitere Reinigung in der nächsten Stufen verwendet wurde.

Analog wurden die folgenden Verbindungen der allgemeinen Formel N-B-C erhalten:

N	В	С	Anmerkungen	%	FM	\mathbf{R}_{f}	MS	Fp. [°C]
				Ausb.			·	
	4-(1,1-		aus 4-(1,1-	79	AcOEt	0.58	ESI:	farbloses
Dimethyl	ethoxyca	rbonyl)-	Dimethylethoxy-				(M+H) ⁺ =	Öl
1-	methyl-2-	•	carbonyl)-2-				273	
piperaz	piperazincarbonsäure-		piperazincarbonsäure-					
e	ethylester		ethylester, CH₃l und					
			DIEA in THF					
	4-(1,1-		aus 4-(1,1-	90	NN	0.51	ESI:	
Dimethyl	ethoxyca	rbonyl)-	Dimethylethoxy-				$(M+H)^{+} =$	
1-(phe	1-(phenylmethyl)-2-		carbonyl)-2-				349	
piperaz	piperazincarbonsäure-		piperazincarbonsäure-					
e	ethylester		ethylester, PhCH ₂ Br		,;			
<u> </u>			und DIEA in THF	8				

Beispiel A33

5

10

15

4-(1,1-Dimethylethoxycarbonyl)-2-piperazincarbonsäure-ethylester

Zu der Lösung von 17.07 g (0.108 Mol) 2-Piperazincarbonsäure-ethylester in 400 ml Ethanol tropfte man unter Eiskühlung 22.0 g (0.101 Mol) Pyrokohlensäure-di-*tert.*-butylester und rührte weitere 3 Stunden unter äußerer Kühlung mit Eis. Das Lösemittel wurde, zuletzt im Vakuum, abdestilliert und der verbleibende Rückstand zwischen Wasser und Essigsäureethylester verteilt. Die organische Phase wurde über Natriumsulfat getrocknet und im Vakuum eingeengt, der Rückstand unter Verwendung von Essigsäureethylester/Ethanol 95/5 v/v zum Eluieren säulenchromatographisch an Kieselgel gereinigt. Ausbeute: 11.798 g (42% der Theorie) einer farblosen Festsubstanz.

WO 2004/063171 - 90 - PCT/EP2004/000087

1,4-Bis-(phenylmethyl)-2-piperazincarbonsäureethylester

Zu der 40 °C warmen Lösung von 52.190 g (217.141 mMol) *N,N*-Dibenzylethylendiamin und 60 ml Triethylamin in 165 ml Toluol tropfte man unter kräftigem Rühren die Lösung von 56.441 g (217.141 mMol) 2,3-Dibrompropansäureethylester in 55 ml Toluol und rührte weitere 3 Stunden bei einer Badtemperatur von 80 °C. Man ließ erkalten, filtrierte, wusch die Filtrate zweimal mit je 50 ml Wasser, dann einmal mit 100 ml gesättigter Kochsalzlösung, trocknete sie über Natriumsulfat und dampfte sie im Vakuum ein. Man erhielt 73.4 g (100% der Theorie) eines farblosen, viskosen Öls vom R_f 0.79 (FM MM), das ohne weitere Reinigung in der folgenden Stufe verwendet wurde.

ESI-MS: $(M+H)^+ = 339$

B. Herstellung der Endverbindungen

15
Beispiel 1

4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäureethylester (Lfd. Nr. 1)

20

25

30

5

10

Die Mischung aus 954.048 mg (1.6 mmol) 3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosin, 955.898 mg (1.6 mmol) 4-(4-Piperidinyl)-1-piperazin-essigsäureethylester, 802.75 mg (2.5 mmol) TBTU, 216.208 mg (1.6 mmol) HOBt, 2.4 ml (14.02 mmol) DIEA und 8 ml THF-DMF-Gemisch (5/3 v/v) wurde über Nacht bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde in 50 ml gesättigte wässerige Natriumhydrogencarbonat-Lösung eingerührt, der ausgefallene Feststoff an Kieselgel unter Verwendung von FM G zum Eluieren säulenchromatographisch gereinigt. Nach üblicher Aufarbeitung der geeigneten Eluate erhielt man 283 mg (21% der Theorie) eines farblosen, amorphen Produkts vom $R_{\rm f}$ 0.39 (FM G).

IR (KBr): 3405(NH, OH); 1731 (C=O) cm⁻¹

ESI: $(M-H)^- = 830/832/834(Br_2);$ $(M+Na)^+ = 854/856/858(Br_2)$ WO 2004/063171 - 91 - PCT/EP2004/000087

Analog wurden die folgenden Verbindungen der allgemeinen Formel N-B-C hergestellt:

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
3	N1	B1	СЗ	aus N1-CO-B1-	71	G	0.34	ESI: (M-H) =	1740	farblose,
				OH, H-C3, TBTU,				858/860/862	(C=O)	amorphe
				HOBt und DIEA in				(Br ₂); (M+Na)+		Substanz
				THF				= 882/884/886		
								(Br ₂)		
5	N1	B1	C5	aus N1-CO-B1-	56	G	0.36	ESI: (M-H) =		farblose,
				OH, H-C5 * 2				815/817/819		amorphe
		:		CF₃CO₂H, TBTU,				(Br ₂); (M+Na) ⁺		Substanz
				HOBt und DIEA in				= 839/841/843		
				THF				(Br ₂)		
7	N1	B1	C7	aus N1-CO-B1-	53	G	0.37	ESI: (M-H) =	3421	farblose,
				OH, H-C7, TBTU,				815/817/819	breit	amorphe
				HOBt und DIEA in				$(Br_2); (M+H)^+ =$	(NH,	Substanz
				THF				817/819/821	OH);	
								(Br2);(M+Na)+	1726	
								= 839/841/843	(C=O)	
								(Br ₂)		"
9	N1	B1	C9	aus N1-CO-B1-	46	G	0.40	ESI: (M-H) ⁻ =		farblose,
				OH, H-C9, TBTU,				815/817/819		amorphe
				HOBt und DIEA in				$(Br_2); (M+H)^+ =$		Substanz
				THF				817/819/821		
								(Br ₂)		
11	N1	B1	C11	aus N1-CO-B1-	51	G	0.32	ESI: (M-H) =	3317	farblose,
				OH, H-C11,				830/832/834	breit	amorphe
		i		TBTU, HOBt und				(Br ₂)	(NH,	Substanz
				DIEA in THF					OH);	
									1738	
									(C=O)	

Lfd.	N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
12	N2	B2	C 5	aus N2-CO-B2-	96	G	0.61	ESI: (M+H)+ =	3377	farblose,
				OH, H-C5, TBTU,				830/832/834;	breit	amorphe
				HOBt und DIEA in				(M+HCO2)- =	(NH,	Substanz
				THF				874/876/878	NH ₂);	
								(Br ₂)	1734	
									(C=O)	
14	N2	B2	C11	aus N2-CO-B2-	82	G	0.57	ESI:	3446	farblose,
				OH, H-C11,	ás.			(M+HCO2)- =	breit	amorphe
				TBTU, HOBt und				889/891/893	(NH,	Substanz
				DIEA in THF				(Br ₂)	NH ₂);	
									1734	
									(C=O)	
15	N1	В3	C1	aus N1-CO-B3-	26			ESI: (M+H) ⁺ =	1669	
				OH, H-C1 * 3				766/768 (Br)	_(C=O)	
				CF₃CO₂H, TBTU,						
				HOBt und DIEA in	·					
				DMF						
				(Chemspeed)						
16	N1	B4	C1	aus N1-CO-B4-	24			ESI: (M+H)+ =		
			-	OH, H-C1 * 3				742/744/746		
				CF₃CO₂H, TBTU,				(Cl ₂)		
İ				HOBt und DIEA in						
				DMF				·		
				(Chemspeed)						
17	N1	B5	C1	aus N1-CO-B5-	37			ESI: (M+H) ⁺ =		
				OH, H-C1 * 3				816/818/820		
				CF₃CO₂H, TBTU,				(Br ₂) .		
				HOBt und DIEA in						
				DMF						
				(Chemspeed)						

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
18	N1	В6	C1	aus N1-CO-B6-	26	•		ESI: (M+Na) ⁺		
				OH, H-C1 * 3				= 788/790 (Br)		
				CF₃CO₂H, TBTU,						
				HOBt und DIEA in						
				DMF						
				(Chemspeed)						
19	N1	B7	C1	aus N1-CO-B7-	18			ESI: (M+Na)+		
				OH, H-C1 * 3				= 852/854/856		
				CF₃CO₂H, TBTU,				(Br ₂)		
				HOBt und DIEA in						
			:	DMF						
				(Chemspeed)						
20	N1	B8	C1	aus N1-CO-B8-	13			ESI: (M+H) ⁺ =		
				OH, H-C1 * 3				708/710 (CI)		:
				CF₃CO₂H, TBTU,			j.			
	,			HOBt und DIEA in						
	:			DMF						
				(Chemspeed)				:		
21	N1	B3	C11	aus N1-CO-B3-	26			ESI: (M+Na)+		
				OH, H-C11,				= 788/790 (Br)		
				TBTU, HOBt und						
				DIEA in DMF						
				(Chemspeed)						
29	N1	B9	C12	aus N1-CO-B9-	40			ESI: (M+H)+=		
				OH, H-C12,	:			724		
				TBTU, HOBt und						
				DIEA in DMF]			
				(Chemspeed)						
30	N1	B10	C 5	aus N1-CO-B10-	66	G	0.35	ESI: (M+H) ⁺ =	1662	farblose,
				OH, H-C5, TBTU,				661	(C=O)	amorphe
				HOBt und DIEA in						Substanz
				DMF						
				(Chemspeed)						

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
31	N1	B10	C1	aus N1-CO-B10-	22			ESI: (M+H)+ =	1734,	farblose,
				OH, H-C1, TBTU,				676	1660	amorphe
				HOBt und DIEA in					(C=O)	Substanz
	,			DMF				-		
				(Chemspeed)						
32	N1	B21	C1	aus N1-CO-B21-	13			ESI: (M-H) =	1670	farblose,
				OH, H-C1, TBTU				827/829/831	(C=O)	amorphe
				und NEt₃ in				$(Br_2); (M+H)^+ =$		Substanz
				THF/DMF (10/1				829/831/833		
				v/v)				(Br ₂)		
33	N1	B2	C14	aus N1-CO-B2-	33	S	0.67	ESI: (M+H)+ =	3435,	184.6
				OH, H-C14, TBTU	-			788/790/792	3373	
	:			und NEt ₃ in				(Br ₂); (M+Na)+	(NH,	
				THF/DMF (1/1 v/v)				= 810/812/814	NH ₂);	
							<u> </u>	(Br ₂)	1734,	
									1668	
									(C=O)	
34	N1	B1	C14	aus N1-CO-B1-	· 6	S	0.67	ESI: (M-H) =	1653	141.9
				OH, H-C14, TBTU				787/789/791	(C=O)	
				und NEt₃ in			-	$(Br_2); (M+H)^+ =$		
				THF/DMF (1/1 v/v)				789/791/793		,
								(Br ₂)		
37	N1	B2	C16	aus N1-CO-B2-	53	S	0.67	ESI: (M+H) ⁺ =	3437	farblose
				OH, H-C16, TBTU				788/790/792	(NH,	Kristalle
				und NEt₃ in				(Br ₂)	NH ₂);	
				THF/DMF (1/1 v/v)					1653	
									(C=O)	
38	N1	B1	C16	aus N1-CO-B1-	32	S	0.67	ESI: (M+H)+ =	3321	farblose
				OH, H-C16, TBTU				789/791/793	(NH,	Kristalle
				ùnd NEt₃ in				(Br ₂)	OH);	
				THF/DMF (1/1 v/v)					1662	
									(C=O)	

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
41	N1	B2	C18	aus N1-CO-B2-	26	G	0.35	ESI: (M+H) ⁺ =		farblose
				OH, H-C18 *				802/804/806		Kristalle
	1			AcOH, TBTU und				(Br ₂)		
	ļ			NEt ₃ in THF/DMF						
				(1/1 v/v)						
42	N1	B1	C18	aus N1-CO-B1-	35	G	0.47	ESI: (M+H) ⁺ =		farblose
				OH, H-C18 *		*		803/805/807		Kristalle
				AcOH, TBTU und				(Br ₂)		
				${\sf NEt_3}$ in THF/DMF	8					
				(1/1 v/v)						
43	N1	B2	C19	aus N1-CO-B2-	52	Q	0.73	ESI: (M+H) ⁺ =		farblose
				OH, H-C19, TBTU				802/804/806		Kristalle
				und NEt₃ in	·			(Br ₂); (M+Na) ⁺		
	·			THF/DMF (1/1 v/v)				= 824/826/828		
	·							(Br ₂)		
44	N1	B1	C19	aus N1-CO-B1-	63	Q	0.72	ESI: (M+H) ⁺ =		farblose
				OH, H-C19, TBTU				803/805/807		Kristalle
				und NEt₃ in			ĺ	(Br ₂)		
				THF/DMF (1/1 v/v)				•		
49	N1	В1	C22	aus N1-CO-B1-	49	G	0.44	ESI: (M-H) ⁻ =		farblose
1				OH, H-C22, TBTU			1	801/803/805		Kristalle
				und NEt₃ in				(Br ₂)		
				THF/DMF (1/1 v/v)					_	
50	N1	B2	C22	aus N1-CO-B2-	70	G	0.65	ESI: (M+H)+ =		farblose
				OH, H-C22, TBTU				802/804/806		Kristalle
			,	und NEt₃ in		<u> </u>		(Br ₂)		·
				THF/DMF (1/1 v/v)						
55	N1	B1	C26	aus N1-CO-B1-	52	D	0.55	ESI: (M-H) ⁻ =		farblose
				OH, H-C26,				809/811/813		Kristalle
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.				·	Ausb.					
56	N1	B1	C27	aus N1-CO-B1-	54	D	0.56	ESI: (M-H) ⁻ =		farblose
				OH, H-C27 * 2	1			809/811/813		Kristalle
				HBr, TBTU, HOBt				(Br ₂)		
				und DIEA in THF						
57	N1	B1	C28	aus N1-CO-B1-	33	D	0.56	ESI: (M-H) ⁻ =		farblose
				OH, H-C28,				794/796/798		Kristalle
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						
58	N1	B1	C29	aus N1-CO-B1-	32	D	0.57	ESI: (M-H) =		farblose
				OH, H-C29,				822/824/826		Kristalle
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						
59	N1	B1	C30	aus N1-CO-B1-	25	D	0.68	ESI: (M-H) =	1716,	farblose
				OH, H-C30,				836/838/840	1662	Kristalie
				TBTU, HOBt und				(Br ₂); (M+Na) ⁺	(C=O)	
•		•		DIEA in THF				= 860/862/864		:
								(Br ₂)		
60	N1	B1	C31	aus N1-CO-B1-	55	D	0.59	ESI: (M-H) ⁻ =		farblöse
				OH, H-C31 * 2				863/865/867		Kristalle
		,		HCI, TBTU, HOBt				(Br ₂)		
				und DIEA in THF	:					
61	N1	B1	C32	aus N1-CO-B1-	45	D	0.59	ESI: (M-H) ⁻ =		farblose
				OH, H-C32 * HCI,				794/796/798		Kristalle
				TBTU, HOBt und				(Br ₂); (M+Na) ⁺		
				DIEA in THF				= 818/820/822		
								(Br ₂)		
62	N2	B2	C26	aus N2-CO-B2-	62	D	0.81	ESI: (M-H) ⁻ =		farblose
				OH, H-C26,				822/824/826		Kristalle
				TBTU, HOBt und				(Br ₂); (M+Na) ⁺		
			·	DIEA in THF				= 846/848/850		
								(Br ₂)		

Lfd.	N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
63	N2	B2	C27	aus N2-CO-B2-	65	D	0.79	ESI: (M+Na)+		farblose
				OH, H-C27 * 2				= 846/848/850		Kristalle
				HBr, TBTU, HOBt				(Br ₂)		
				und DIEA in THF						
64	N2	B2	C28	aus N2-CO-B2-	38	D	0.81	ESI: (M-H) ⁻ =		farblose
				OH, H-C28,			ļ	807/809/811		Kristalle
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						
65	N2	B2	C30	aus N2-CO-B2-	54	D	0.87	ESI: (M+Na)+		farblose
				OH, H-C30,				= 873/875/877		Kristalle
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						
66	N2	B2	C31	aus N2-CO-B2-	50	· D	0.85	ESI: (M+Na)+		farblose
				OH, H-C31 * 2				= 900/902/904		Kristalle
				HCI, TBTU, HOBt				(Br ₂)		
				und DIEA in THF				·		
67	N2	B2	C32	aus N2-CO-B2-	52	D	0.88	ESI: (M-H) =	1723	farblose
	·			OH, H-C32 * HCl,				807/809/811	(C=O)	Kristalle
				TBTU, HOBt und				(Br ₂); (M+Na)+		
				DIEA in THF				= 831/833/835		
								(Br ₂)		
83	N1	B1	C40	aus N1-CO-B1-	17	D	0.50	ESI: (M-H) ⁻ =		farblose
				OH, H-C40,				802/804/806		Kristalle
				TBTU, HOBt und				(Br ₂); (M+Na)+		
				DIEA in THF				= 826/828/830		
								(Br ₂)		
84	N1	B1	C41	aus N1-CO-B1-	82	D	0.41	ESI: (M-H) ⁻ =		
				OH, H-C41 * HCl,				802/804/806		
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						
87	N1	B2	C41	aus N1-CO-B2-	75	D	0.62	ESI: (M-H) =		
				OH, H-C41 * HCI,				801/803/805		
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						

Lfd.	N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
88	N1	B2	C40	aus N1-CO-B2-	62	D	0.52	ESI: (M+Na)+		
				OH, H-C40,				= 825/827/829		
				TBTU, HOBt und				(Br ₂)		
				DIEA in THF						
93	N1	B2	C12	aus N1-CO-B2-	55	D	0.47	ESI: (M-H) =	1665	farblose
				OH, H-C12,				857/859/861	(C=O)	Kristalle
				TBTU, HOBt und				(Br ₂); (M+H) ⁺		
				DIEA in THF			İ	= 859/861/863	=	
								(Br ₂); (M+Na) ⁺	-	
								= 881/883/885		
								(Br ₂)		
94	N2	B2	C12	aus N2-CO-B2-	65	D	0.49	ESI: (M-H) =		farblose
				OH, H-C12,				871/873/875		Kristalle
				TBTU, HOBt und				(Br ₂); (M+Na) ⁺		
				DIEA in THF				= 895/897/899		
								(Br ₂)		
95	N1	B2	C1	aus N1-CO-B2-	57	D	0.68	ESI: (M+H)+ =	1665	farblose
				OH, H-C1, TBTU,				831/833/835	(C=O)	Kristalle
				HOBt und DIEA in				(Br ₂)		
				THF						
96	N2	B2	C1	aus N2-CO-B2-	58	D	0.72	ESI: (M-H) ⁻ =	1658	farblose
				OH, H-C1, TBTU,				843/845/847	(C=O)	Kristalle
		**		HOBt und DIEA in				$(Br_2); (M+H)^+ =$		
				THF				845/847/849		
								(Br ₂)		
119	N1	B30	C1	aus N1-CO-B30-	50			ESI: (M+H) ⁺ =		farblose
				OH, H-C1, TBTU,				815/817/819		Kristalle
				HOBt und DIEA in				(Br ₂)		
				THF						
122	N1	B7	C14	aus N1-CO-B7-	26	II	0.44	ESI: (M+H) ⁺ =		farblose
				OH, H-C14, TBTU				787/789/791		amorphe
				und NEt₃ in DMF				(Br ₂)		Substanz

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
123	N1	B8	C14	aus N1-CO-B8-	28	С	0.68	ESI: (M+H)+ =		hoch-
				OH, H-C14, TBTU				665/667 (CI)		viskoses
				und NEt₃ in DMF						Öl
124	N1	B7	C16	aus N1-CO-B7-	20	С	0.80	ESI: (M+H)+ =		hoch-
				ОН, H-C16, ТВТU		,		787/789/791		viskoses
				und NEt₃ in DMF				(Br ₂)		ÖI
125	N1	В8	C16	aus N1-CO-B8-	. 11	II.	0.58	ESI: (M+H)+ =		farblose
				OH, H-C16, TBTU				665/667 (CI)		amorphe
				und NEt₃ in DMF		-		•		Substanz
128	N1	B32	C45	aus N1-CO-B32-	4	C	0.45	ESI: (M+H)+ =		farblose
				OH, H-C45,				703		Fest-
				TBTU, HOBt und						substanz
				NEt₃ in DMF						
129	N1	B30	C45	aus N1-CO-B30-	. 19	С	0.72	ESI: (M+H)+ =		farblose
				OH, H-C45, TBTU				815/817/819		Fest-
				und DIEA in THF				(Br ₂)		substanz
130	N1	B30	C44	aus N1-CO-B30-	18	С	0.81	ESI: (M+H)+ =		farblose
				OH, H-C44, TBTU				815/817/819		Fest-
				und DIEA in THF				(Br ₂)		substanz
131	N1	B21	C45	aus N1-CO-B21-	14	С	0.67	ESI: (M+H)+ =		farblose
				OH, H-C45, TBTU				829/831/833		Fest-
				und DIEA in THF				(Br ₂)		substanz
132	N1	B21	C44	aus N1-CO-B21-	24	C	0.48	ESI: (M+H)+ =		farblose
				OH, H-C44, TBTU				829/831/833		Fest-
		,		und DIEA in THF				(Br ₂)		substanz
133	N1	B30	C46	aus N1-CO-B30-	16	С	0.55	ESI: (M+H)+ =		farblose
				OH, H-C46, TBTU				815/817/819		Feșt-
				und DIEA in THF				(Br ₂)		substanz
138	N1	B21	C46	aus N1-CO-B21-	26	Q	0.65	ESI: (M+H)+ =		farblose
				OH, H-C46,				829/831/833		Fest-
				PyBroP und DIEA				(Br ₂)		substanz
				in THF						

Nr. Nr.	Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
CH, H-C44, PyBroP und DIEA in THF Substanz	Nr.					Ausb.					
141 N1 B31 C46 aus N1-C0-B31- OH, H-C46, PyBroP und DIEA in THF 112 N1 B31 C45 aus N1-C0-B31- OH, H-C45, PyBroP und DIEA in THF 1142 N1 B31 C45 aus N1-C0-B31- OH, H-C45, PyBroP und DIEA in THF 115 N1 B32 C44 aus N1-C0-B32- OH, H-C44, HATU und DIEA in THF 164, HATU und DIEA in THF 164, HATU und DIEA in THF 165 166, HATU und DIEA in THF 167	140	N1	B31	C44	aus N1-CO-B31-	22	Q	0.57	ESI: (M+H)+ =		farblose
In THF					OH, H-C44,	. (830/832/834		Fest-
141 N1 B31 C46 aus N1-CO-B31- OH, H-C46, PyBroP und DIEA in THF					PyBroP und DIEA				(Br ₂)		substanz
OH, H-C46, PyBroP und DIEA in THF Substanz Fest-substanz					in THF						
PyBroP und DIEA in THF	141	N1	B31	C46	aus N1-CO-B31-	15	Q	0.47	ESI: (M+H)+ =		farblose
in THF 142 N1 B31 C45 aus N1-CO-B31-OH, H-C45, PyBroP und DIEA in THF 148 N1 B32 C44 aus N1-CO-B32-OH, H-C44, HATU und DIEA in THF 149 N1 B32 C46 aus N1-CO-B32-OH, H-C46, HATU und DIEA in THF 151 N1 B25 C45 aus N1-CO-B25-OH, H-C45, TBTU und DIEA in THF 152 N1 B30 C50 aus N1-CO-B30-OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 155 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 156 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 157 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 158 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 159 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 158 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 159 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 159 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF					OH, H-C46,				830/832/834		Fest-
142 N1 B31 C45 aus N1-CO-B31- OH, H-C45, PyBroP und DIEA in THF					PyBroP und DIEA				(Br ₂)		substanz
OH, H-C45, PyBroP und DIEA in THF					in THF						
PyBroP und DIEA in THF Substanz	142	N1	B31	C45	aus N1-CO-B31-	11	Q	0.59	ESI: (M+H) ⁺ =		farblose
in THF 148 N1 B32 C44 aus N1-CO-B32-OH, H-C44, HATU und DIEA in THF 149 N1 B32 C46 aus N1-CO-B32-OH, H-C46, HATU und DIEA in THF 151 N1 B25 C45 aus N1-CO-B25-OH, H-C45, TBTU und DIEA in THF 152 N1 B30 C50 aus N1-CO-B30-OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 154 N1 B26 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 155 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 156 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 157 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 158 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 159 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 159 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF 150 N1 B21 C50 aus N1-C0-B21-OH, H-C50, TBTU und DIEA in THF					OH, H-C45,				830/832/834		Fest-
148 N1 B32 C44 aus N1-CO-B32-OH, H-C44, HATU and DIEA in THF Q 0.50 ESI: (M+H)* = 1736, 1637					PyBroP und DIEA				(Br ₂)		substanz
OH, H-C44, HATU und DIEA in THF OH, H-C44, HATU und DIEA in THF OH, H-C46, HATU und DIEA in THF OH, H-C46, HATU und DIEA in THF IST N1 B25 C45 aus N1-C0-B25- OH, H-C45, TBTU und DIEA in THF OH, H-C45, TBTU und DIEA in THF OH, H-C50, TBTU und DIEA in THF					in THF						
149 N1 B32 C46 aus N1-CO-B32-OH, H-C46, HATU und DIEA in THF Q 0.50 M* = 702 farblose Fest-substanz 151 N1 B25 C45 aus N1-CO-B25-OH, H-C45, TBTU und DIEA in THF G 0.38 ESI: (M+H)* = Fest-substanz 152 N1 B30 C50 aus N1-CO-B30-OH, H-C50, TBTU und DIEA in THF G 0.28 ESI: (M+H)* = Fest-substanz 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF G 0.36 ESI: (M+H)* = S439 farblose 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF G 0.36 ESI: (M+H)* = S439 farblose 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF G 0.36 ESI: (M+H)* = S439 farblose 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF G 0.36 ESI: (M+H)* = S439 farblose	148	N1	B32	C44	aus N1-CO-B32-	24	Q	0.50	ESI: (M+H)* =	1736,	farblose
149 N1 B32 C46 aus N1-CO-B32- 3					OH, H-C44, HATU				703	1664,	Fest-
149 N1 B32 C46 aus N1-CO-B32-OH, H-C46, HATU und DIEA in THF 3 Q 0.50 M* = 702 farblose Fest-substanz 151 N1 B25 C45 aus N1-CO-B25-OH, H-C45, TBTU und DIEA in THF 10 G 0.38 ESI: (M+H)* = Fest-substanz farblose Fest-substanz 152 N1 B30 C50 aus N1-CO-B30-OH, H-C50, TBTU und DIEA in THF G 0.28 ESI: (M+H)* = Fest-substanz farblose Fest-substanz 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF G 0.36 ESI: (M+H)* = 3439 farblose S29/831/833 (NH); Fest-substanz 1666, 1639 1738, 1666, 1639 1666, 1639 1639					und DIEA in THF					1637	substanz
OH, H-C46, HATU und DIEA in THF 151 N1 B25 C45 aus N1-CO-B25- OH, H-C45, TBTU und DIEA in THF 152 N1 B30 C50 aus N1-CO-B30- OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF 154 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF 155 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF 156 OH, H-C50, TBTU und DIEA in THF 157 OH, H-C50, TBTU und DIEA in THF 158 OH, H-C50, TBTU und DIEA in THF 159 OH, H-C50, TBTU und DIEA in THF 150 OH, H-C50, TBTU und DIEA in THF 151 OH, H-C50, TBTU und DIEA in THF 152 OH, H-C50, TBTU und DIEA in THF 153 OH, H-C50, TBTU und DIEA in THF 155 OH, H-C50, TBTU und DIEA in THF 156 OH, H-C50, TBTU und DIEA in THF 157 OH, H-C50, TBTU und DIEA in THF 158 OH, H-C45, HATU und DIEA in THF 159 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 151 OH, H-C45, HATU und DIEA in THF 152 OH, H-C45, HATU und DIEA in THF 153 OH, H-C45, HATU und DIEA in THF 155 OH, H-C45, HATU und DIEA in THF 156 OH, H-C45, HATU und DIEA in THF 157 OH, H-C45, HATU und DIEA in THF 158 OH, H-C45, HATU und DIEA in THF 159 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 151 OH, H-C45, HATU und DIEA in THF 152 OH, H-C45, HATU und DIEA in THF 153 OH, H-C45, HATU und DIEA in THF 155 OH, H-C45, HATU und DIEA in THF 156 OH, H-C45, HATU und DIEA in THF 157 OH, H-C45, HATU und DIEA in THF 158 OH, H-C45, HATU und DIEA in THF 159 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in THF 150 OH, H-C45, HATU und DIEA in T					4.	:				(C=O)	
und DIEA in THF 151 N1 B25 C45 aus N1-CO-B25- OH, H-C45, TBTU und DIEA in THF (Cl ₂) 152 N1 B30 C50 aus N1-CO-B30- OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF (Br ₂) 154 G 0.36 ESI: (M+H) ⁺ = 3439 farblose (Br ₂) (Br ₂) 155 Substanz 1566, 1639	149	N1	B32	C46	aus N1-CO-B32-	3	Q	0.50	$M^+ = 702$		farblose
151 N1 B25 C45 aus N1-CO-B25- OH, H-C45, TBTU und DIEA in THF (CI ₂) 152 N1 B30 C50 aus N1-CO-B30- OH, H-C50, TBTU und DIEA in THF (Br ₂) 153 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF (Br ₂) 154 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF (Br ₂) 155 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF (Br ₂) 1566, 1639					OH, H-C46, HATU	·					Fest-
OH, H-C45, TBTU und DIEA in THF (CI ₂) 152 N1 B30 C50 aus N1-CO-B30-OH, H-C50, TBTU und DIEA in THF (Br ₂) 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF (Br ₂) OH, H-C50, TBTU und DIEA in THF (Br ₂) OH, H-C50, TBTU und DIEA in THF (Br ₂) OH, H-C50, TBTU und DIEA in THF (Br ₂) OH, H-C50, TBTU und DIEA in THF (Br ₂) OH, H-C50, TBTU und DIEA in THF (Br ₂) OH, H-C50, TBTU und DIEA in THF (Br ₂) OH, H-C50, TBTU und DIEA in THF (Br ₂)					und DIEA in THF						substanz
und DIEA in THF (Cl ₂) substanz 152 N1 B30 C50 aus N1-CO-B30- OH, H-C50, TBTU und DIEA in THF (Br ₂) Substanz 153 N1 B21 C50 aus N1-CO-B21- OH, H-C50, TBTU und DIEA in THF (Br ₂) Substanz 1666, 1639	151	N1	B25	C45	aus N1-CO-B25-	10	G	0.38	ESI: (M+H)+ =		farblose.
152 N1 B30 C50 aus N1-CO-B30- OH, H-C50, TBTU und DIEA in THF					OH, H-C45, TBTU				805/807/809		Fest-
OH, H-C50, TBTU und DIEA in THF 153 N1 B21 C50 aus N1-CO-B21-OH, H-C50, TBTU und DIEA in THF OH, H-C50, TBTU und DIEA in THF	ļ.				und DIEA in THF				(Cl ₂)		substanz
und DIEA in THF (Br ₂) substanz 153 N1 B21 C50 aus N1-CO-B21- 34 G 0.36 ESI: (M+H) ⁺ = 3439 farblose OH, H-C50, TBTU und DIEA in THF (Br ₂) 1738, substanz (Br ₂) substanz (Br ₂) substanz	152	N1	B30	C50	aus N1-CO-B30-	21	G	0.28	ESI: (M+H) ⁺ =		farblose
153 N1 B21 C50 aus N1-CO-B21- 34 G 0.36 ESI: (M+H) ⁺ = 3439 farblose OH, H-C50, TBTU und DIEA in THF (Br ₂) 1738, substanz 1666, 1639					ОН, Н-С50, ТВТИ				815/817/819		Fest-
OH, H-C50, TBTU und DIEA in THF 829/831/833 (NH); Fest-substanz 1666, 1639					und DIEA in THF				(Br ₂)		substanz
und DIEA in THF (Br ₂) 1738, substanz 1666, 1639	153	N1	B21	C50	aus N1-CO-B21-	34	G	0.36	ESI: (M+H)+ =	3439	farblose
1666, 1639					ОН, Н-С50, ТВТИ				829/831/833	(NH);	Fest-
1639			į	1	und DIEA in THF				(Br ₂)	1738,	substanz
				į						1666,	
										1639	
										(C=O)	

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
154	N1	B32	C50	aus N1-CO-B32-	46	G	0.35	ESI: (M+H)+ =	1736,	farblose
		:		OH, H-C50, TBTU				703	1660,	Fest-
				und DIEA in THF					1628	substanz
									(C=O)	
155	N1	B31	C50	aus N1-CO-B31-	30	Q	0.66	ESI: (M+H) ⁺ =	3458	farblose
				OH, H-C50, TBTU				830/832/834	(NH,	Fest-
				und DIEA in THF				(Br ₂)	NH ₂);	substanz
									1734	
									(C=O)	
156	N1	B25	C50	aus N1-CO-B25-	29	Q	0.68	ESI: (M+H)+ =	3439	farblose
				OH, H-C50, TBTU				806/807/809/8	(NH);	Fest-
				und DIEA in THF				11 (Br ₂ , CI)	1639	substanz
									(C=O) .	
162	N1	B5	C45	aus N1-CO-B5-	22	С	0.69	ESI: (M+H)+ =		farblose
				OH, H-C45, TBTU				816/818/820		Fest-
				und DIEA in				(Br ₂)		substanz
				THF/DMF (3/1 v/v)					,	
164	N1	B33	C5	aus N1-CO-B33-	70	С	0.79	ESI: (M+H)+ =		farblose
				OH, H-C5, TBTU				801/803/805		Fest-
				und DIEA in THF				(Br ₂)		substanz
166	N1	B7	C45	aus N1-CO-B7-	25	С	0.69	ESI: (M+H) ⁺ =	1738,	farblose
				OH, H-C45, TBTU			,	830/832/834	1660	Fest-
				und DIEA in				(Br ₂)	(C=O)	substanz
x.				THF/DMF						
167	N1	B7	C50	aus N1-CO-B7-	41	С	0.71	ESI: (M+H)+ =	1736,	farblose
				OH, H-C50, TBTU				830/832/834	1662	Fest-
				und DIEA in				(Br ₂)	(C=O)	substanz
				THF/DMF						

Beispiel 2

5

4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazin-essigsäure (Lfd. Nr. 2)

WO 2004/063171 - 102 - PCT/EP2004/000087

Zu der Lösung von 85.0 mg (0.102 mMol) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazin-essigsäureethylester in 3.5 ml Methanol gab man bei Zimmertemperatur 0.5 ml 1M wässerige Natronlauge und rührte die Mischung 1 Stunde bei einer Reaktionstemperatur von 40°C. Man entfernte das Lösemittel im Vakuum und neutralisierte dann unter äußerer Kühlung mit Eis durch Zugabe von 0.5 ml 1M Salzsäure. Man ließ 2 Stunden bei Zimmertemperatur stehen, bevor man die ausgefallenen Kristalle sammelte. Die Mutterlauge wurde abermals eingedampft, der Rückstand zur Entfernung anorganischer Salze mit wenigen Tropfen Wasser digeriert und nach zweistündigem Stehenlassen filtriert. Die vereinigten Festkörper wurden im Vakuum getrocknet, mit Diethylether verrieben und ergaben 80.0 mg (97% der Theorie) an farblosen Kristallen.

ESI-MS: $(M+Na)^+ = 826/828/830 (Br_2)$ $(M-H)^- = 802/804/806 (Br_2)$

5

10

15

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
4	N1	B1	C4	aus N1-CO-B1-	88	G	0.02	ESI: (M-H) =		farblose
				C3 mit aq. 1M				802/804/806		Kristalle
				NaOH, dann aq.				$(Br_2); (M+Na)^+ =$		
				1M HCI				826/828/830		
								(Br ₂)	!	
6	N1	B1	C6	aus N1-CO-B1-	88	G	0.02	ESI: (M-H) ⁻ =	3420 (NH,	farblose
				C5 mit aq. 1M				801/803/805	OH), 1734,	Kristalle
				NaOH, dann aq.				$(Br_2); (M+H)^+ =$	1653	
				1M HCI				803/805/807	(C=O)	
								(Br2); $(M+Na)^+=$		
								825/827/829		
				14 =				(Br ₂)		

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
8	N1	B1	C8	aus N1-CO-B1-	96	G	0.02	ESI: (M-H) =	3420 (NH,	farblose
				C7 mit aq. 1M				787/789/791	OH), 1709,	Kristalle
		,		NaOH, dann aq.				$(Br_2); (M+Na)^+ =$	1653	
				1M HCI				811/813/815	(C=O)	
				•				(Br ₂)		
10	N1	B1	C10	aus N1-CO-B1-	72	G	0.03	ESI: (M-H) ⁻ =	3413 (NH,	farblose
				C9 mit aq. 1M				787/789/791	OH), 1707,	Kristalle
				NaOH, dann aq.				$(Br_2); (M+Na)^+ =$	1653	
				1M HCI				811/813/815	(C=O)	
								(Br ₂)		
13	N2	B2	C6	aus N2-CO-B2-	78	G	0.04	ESI: (M-H) =	3431 (NH,	farblose
				C5 mit aq. 1M				814/816/818	NH ₂); 1653	Kristalle
				NaOH, dann aq.				$(Br_2); (M+H)^+ =$	(C=O)	
				1M HCI				816/818/820		
								(Br2);		
								$(M+HCO_2)^-=$		
								859/861/863		
								(Br ₂)		
22	N1	В3	C2	aus N1-CO-B3-	97			ESI: (M+H) ⁺ =	3425 (NH),	farblose
				C1 mit aq. 1M				738/740 (Br)	1659, 1632	Kristalle
				NaOH, dann aq.					(C=O)	
				1M HCI						
23	N1	B4	C2	aus N1-CO-B4-	99			ESI: (M+CI) =	3419 (NH),	farblose
				C1 mit aq. 1M				748/750/752/754	1655, 1628	Kristalle
				NaOH, dann aq.				$(Cl_2); (M+Na)^+ =$	(C=O)	
				1M HCI				736/738/740		
								(Cl ₂)		
24	N1	B5	C2	aus N1-CO-B5-	98			ESI: (M+CI) =	3419 (NH),	farblose
				C1 mit aq. 1M				822/824/826/828	1655, 1635	Kristalle
				NaOH, dann aq.				$(Br_2); (M+Na)^+ =$	(C=O)	
				1M HCI				810/812/814		
								(Br ₂)		

Lfd.	N	В	С	Anmerkungen	%	FM	R _f	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
25	N1	B6	C2	aus N1-CO-B6-	98			ESI: (M+CI) =	3427 (NH),	farblose
				C1 mit aq. 1M				772/774/776	1630	Kristalle
				NaOH, dann aq.				(Br); (M+Na)+ =	(C=O)	
				1M HCI				760/762 (Br)		
26	N1	B7	C2	aus N1-CO-B7-	99			ESI: (M+CI) =	3419 (NH),	farblose
				C1 mit aq. 1M				836/838/840/842	1655, 1635	Kristalle
				NaOH, dann aq.				(Br ₂); (M+Na) ⁺ =	(C=O)	
				1M HCI				824/826/828		
								(Br ₂)		
27	N1	B8	C2	aus N1-CO-B8-	89			ESI: (M+CI) ⁻ =	3419 (NH),	farblose
				C1 mit aq. 1M				714/716/718	1655, 1635	Kristalle
				NaOH, dann aq.				(Cl); (M+Na) ⁺ =	(C=O)	
		•		1M HCI				702/704 (Cl)	i	
28	N1	В3	C4	aus N1-CO-B3-	97			ESI: (M+CI) =	3416 (NH),	farblose
				C11 mit aq. 1M				772/774/776	1655, 1635	Kristalle
				NaOH, dann aq.		:	-	(Br); (M+Na) ⁺ =	(C=O)	
				1M HCI				760/762 (Br)		
35	N1	B2	C15	aus N1-CO-B2-	78	Т	0.46	ESI:(M+Na) ⁺ =	3339 (NH,	farblose
				C14 mit aq. 1M				796/798/800	NH ₂); 1653	Kristalle
				LiOH, dann aq.				(Br ₂)	(C=O)	
				1M HCI						
36	N1	B1	C15	aus N1-CO-B1-	78	Т	0.42	ESI: (M-H)⁻ =		farblose
				C14 mit aq. 1M				773/775/779		Kristalle
				LiOH, dann aq.				$(Br_2); (M+H)^+ =$		
				1M HCI				775/777/779		
								$(Br_2); (M+Na)^+ =$		
ŀ								797/799/801		
								(Br ₂)		•
39	N1	B2	C17	aus N1-CO-B2-	76	T	0.46	ESI: (M-H) =	3429 (NH,	farblose
				C16 mit aq. 1M				772/774/776	NH ₂); 1653	Kristalle
				LiOH, dann aq.				(Br ₂); (M+Na) ⁺ =	(C=O)	
				1M HCI				796/798/800		
								(Br ₂)		

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
40	N1	B1	C17	aus N1-CO-B1-	70	Т	0.42	ESI: (M-H) =	3420 (NH,	farblose
				C16 mit aq. 1M				773/775/777	OH); 1653	Kristalle
				LiOH, dann aq.				$(Br_2); (M+Na)^+ =$	(C=O)	
				1M HCI				797/799/801		
								(Br ₂)		
45	N1	B2	C20	aus N1-CO-B2-	96			ESI: (M-H) =		farblose
				C18 mit aq. 1M				786/788/790		Kristalle
				LiOH, dann aq.				(Br ₂)		
				1M HCl						
46	N1	B1	C20	aus N1-CO-B1-	97			ESI: (M-H) =		farblose
				C18 mit aq. 1M				787/789/791		Kristalle
				LiOH, dann aq.				(Br ₂)		
ļ	*			1M HCI						
47	N1	B1	C21	aus N1-CO-B1-	86	:.		ESI: (M-H) =		farblose
				C19 mit aq. 1M				787/789/791		Kristalle
				LiOH, dann aq.				· (Br ₂)		
				1M HCI						
48	N1	B2	C21	aus N1-CO-B2-	2			ESI: (M-H) =		farblose
				C19 mit aq. 1M				786/788/790		Kristalle
				LiOH, dann aq.				$(Br_2); (M+Na)^+ =$	-	
				1M HCI				810/812/814		
•								(Br ₂)		
51	N1	B1	C23	aus N1-CO-B1-	12			ESI: (M-H) ⁻ =		farblose
				C22 mit aq. 1M				787/789/791		amorphe
				LiOH, dann aq.				(Br ₂)		Substanz
				1M HCI			•			
52	N1	B2	C23	aus N1-CO-B2-	14			ESI: (M+H) ⁺ =	*	farblose
				C22 mit aq. 1M				788/790/792		amorphe
				LiOH, dann aq.				(Br ₂)		Substanz
				1M HCI						
53	N1	B10	C6	aus N1-CO-B10-	36			ESI: (M+H) ⁺ =		farblose
				C5 mit aq. 1M				647		amorphe
				LiOH, dann aq.						Substanz
				Zitronensäure						

Lfd.	N	В	С	Anmerkungen	%	FM	R _f	MS	iR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
54	N1	B10	C2	aus N1-CO-B10-	21			ESI: (M+H) ⁺ =	1711, 1639	farblose
				C1 mit aq. 1M				648	(C=O)	Kristalle
				LiOH, dann aq.						
				Zitronensäure						
68	N1	B1	C33	aus N1-CO-B1-	77	ı	0.51	ESI: (M-H) =	1655	farblose
				C26 mit aq. 1M				781/783/785	(C=O)	Kristalle
				LiOH, dann aq.				(Br ₂)		
				1M HCI						
69	N1	B1	C34	aus N1-CO-B1-	75	ı	0.50	ESI: (M-H) =	1637	farblose
				C27 mit aq. 1M				781/783/785	(C=O)	Kristalle
	8			LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
				1M HCI	i			805/807/809		
							·	(Br ₂)		
70	N1	B1	C35	aus N1-CO-B1-	82	ı	0.52	ESI: (M-H) ⁻ =		farblose
				C28 mit aq. 1M		:		780/782/784		Kristalle
				LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
		·		1M HCI				804/806/808		
				•				(Br ₂)		
71	N1	B1	C36	aus N1-CO-B1-	76	1	0.54	ESI: (M-H) ⁻ =	1658	farblose
				C29 mit aq. 1M				794/796/798	(C=O)	Kristalle
				LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
ļ				1M HCI				818/820/822		
į								(Br ₂)		
72	N1	B1	C37	aus N1-CO-B1-	75	I	0.53	ESI: (M-H) ⁻ =	1707, 1659	farblose
•				C30 mit aq. 1M				808/810/812	(C=O)	Kristalle
				LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
				1M HCI				832/834/836		
								(Br ₂)		
73	N1	B1	C38	aus N1-CO-B1-	73	ı	0.47	ESI: (M-H) =		farblose
				C31 mit aq. 1M				849/851/853		Kristalle
				LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
				1M HCI				873/875/877		
								(Br ₂)		

N	В	C	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
				Ausb.					
N1	B1	C39	aus N1-CO-B1-	68	I	0.49	ESI: (M-H) ⁻ =	1711, 1657	farblose
			C32 mit aq. 1M				780/782/784	(C=O)	Kristalle
			LiOH, dann aq.				(Br ₂)		
			1M HCI				i		
N2	B2	C33	aus N2-CO-B2-	82	T	0.55	ESI: (M-H) ⁻ =		farblose
:			C26 mit aq. 1M				794/796/798		Kristalle
			LiOH, dann aq.				(Br ₂); (M+Na)+ =		
			1M HCI				818/820/822		
			•				(Br ₂)		
N2	B2	C34	aus N2-CO-B2-	76	i	0.54	ESI: (M-H) ⁻ =	1709, 1637	farblose
			C27 mit aq. 1M			,	794/796/798	(C=O)	Kristalle
			LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
			1M HCI				818/820/822		
	٠						(Br ₂)		
N2	B2	C35	aus N2-CO-B2-	76	ı	0.54	ESI: (M-H)" =	1657	farblose
			C28 mit aq. 1M				793/795/797	(C=O)	Kristalle
			LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
			1M HCl				817/819/821		
							(Br ₂)		
N2	B2	C37	aus N2-CO-B2-	86	1	0.56	ESI: (M-H) ⁻ =		farblose
			C30 mit aq. 1M				821/823/825		Kristalle
			LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
			1M HCI				845/847/849		
							(Br ₂)		
N2	B2	C38	aus N2-CO-B2-	77	1	0.56	ESI: (M-H) ⁻ =		farblose
			C31 mit aq. 1M				862/864/866		Kristalle
			LiOH, dann aq.				$(Br_2); (M+Na)^+ =$		
			1M HCI	:			886/888/890		
							(Br ₂)		
N2	B2	C39	aus N2-CO-B2-	71	ı	0.57	ESI: (M-H) =	1711	farblose
			C32 mit aq. 1M				793/795/797	(C=O)	Kristalle
			LiOH, dann aq.				(Br ₂)		
			1M HCI						
	N2 N2 N2 N2	N2 B2 N2 B2 N2 B2 N2 B2	N2 B2 C34 N2 B2 C35 N2 B2 C37 N2 B2 C38	N2 B2 C32 mit aq. 1M N2 B2 C33 aus N2-CO-B2-C26 mit aq. 1M C26 mit aq. 1M LiOH, dann aq. 1M HCI N2 B2 C34 aus N2-CO-B2-C27 mit aq. 1M C27 mit aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M HCI LiOH, dann aq. 1M LiOH, dann aq. 1M N2 B2 C37 aus N2-CO-B2-C30 mit aq. 1M LiOH, dann aq. 1M HCI LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M HCI LiOH, dann aq. 1M N2 B2 C39 aus N2-CO-B2-C32 mit aq. 1M C32 mit aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M	N1 B1 C39 aus N1-CO-B1-C32 mit aq. 1M LiOH, dann aq. 1M HCI 68 N2 B2 C33 aus N2-CO-B2-C26 mit aq. 1M LiOH, dann aq. 1M HCI 82 N2 B2 C34 aus N2-CO-B2-C27 mit aq. 1M LiOH, dann aq. 1M HCI 76 N2 B2 C35 aus N2-CO-B2-C28 mit aq. 1M LiOH, dann aq. 1M HCI 76 N2 B2 C37 aus N2-CO-B2-C30 mit aq. 1M LiOH, dann aq. 1M HCI 77 N2 B2 C38 aus N2-CO-B2-C31 mit aq. 1M LiOH, dann aq. 1M HCI 77 N2 B2 C38 aus N2-CO-B2-C31 mit aq. 1M LiOH, dann aq. 1M HCI 77 N2 B2 C39 aus N2-CO-B2-C32 mit aq. 1M LiOH, dann aq. 1M LiOH,	C32 mit aq. 1M	N1 B1 C39 aus N1-CO-B1- C32 mit aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M HCl N2 B2 C34 aus N2-CO-B2- C27 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C35 aus N2-CO-B2- C28 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C37 aus N2-CO-B2- C28 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C37 aus N2-CO-B2- C30 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C38 aus N2-CO-B2- C30 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C38 aus N2-CO-B2- C30 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C38 aus N2-CO-B2- 77 I 0.56 C31 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C39 aus N2-CO-B2- 77 I 0.56 C32 mit aq. 1M LiOH, dann aq. 1M HCl	N1 B1 C39 aus N1-CO-B1- C32 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C33 aus N2-CO-B2- C26 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C34 aus N2-CO-B2- C27 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C35 aus N2-CO-B2- C27 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C35 aus N2-CO-B2- C28 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C35 aus N2-CO-B2- C28 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C37 aus N2-CO-B2- C38 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C37 aus N2-CO-B2- C30 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C37 aus N2-CO-B2- C30 mit aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M HCl N2 B2 C38 aus N2-CO-B2- C30 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C38 aus N2-CO-B2- C30 mit aq. 1M LiOH, dann aq. 1M HCl N2 B2 C38 aus N2-CO-B2- C31 mit aq. 1M LiOH, dann aq. 1M LiOH, dann aq. 1M HCl N2 B2 C38 aus N2-CO-B2- C31 mit aq. 1M LiOH, dann aq. 1M HCl N3 B2 C38 aus N2-CO-B2- C31 mit aq. 1M LiOH, dann aq. 1M HCl N4 B2 C39 aus N2-CO-B2- 77 I 0.56 ESI: (M-H) = 862/864/866 (Br ₂); (M+Na) ⁺ = 866/888/890 (Br ₂) N2 B2 C39 aus N2-CO-B2- 71 I 0.57 ESI: (M-H) = 793/795/797 (Br ₂)	N1

C1 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 85 N1 B1 C42 aus N1-CO-B1- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 86 N1 B1 C43 aus N1-CO-B1- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 89 N1 B2 C43 aus N1-CO-B2- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 90 N1 B2 C42 aus N1-CO-B2- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 90 N1 B2 C42 aus N1-CO-B2- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl	Fp. [°C]
C1 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 85 N1 B1 C42 aus N1-CO-B1- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 86 N1 B1 C43 aus N1-CO-B1- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 89 N1 B2 C43 aus N1-CO-B2- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 90 N1 B2 C42 aus N1-CO-B2- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 90 N1 B2 C42 aus N1-CO-B2- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl	İ
LiOH, dann aq.	farblose,
0.1M HCl 0.1M HCl 85 N1 B1 C42 aus N1-CO-B1- C40 mit aq. 0.1M C40 mit aq. 0.1M LiOH, dann aq.	amorphe
85 N1 B1 C42 aus N1-CO-B1- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 86 N1 B1 C43 aus N1-CO-B1- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 89 N1 B2 C43 aus N1-CO-B2- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 90 N1 B2 C42 aus N1-CO-B2- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl	Substanz
C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 86 N1 B1 C43 aus N1-CO-B1- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 89 N1 B2 C43 aus N1-CO-B2- C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 90 N1 B2 C42 aus N1-CO-B2- C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 803/805/807 (Br ₂); (M+H)*= 803/805/807 (Br ₂); (M+H)*=	
LiOH, dann aq.	farblose
0.1M HCl 88	Kristalle
86 N1 B1 C43 aus N1-CO-B1-	
C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 89 N1 B2 C43 aus N1-CO-B2- 76 D 0.15 ESI: (M-H)" = 787/789/791 (Br ₂) 90 N1 B2 C42 aus N1-CO-B2- 86 D 0.16 ESI: (M-H)" = 787/789/791 (Br ₂) 101M HCl 91 N1 B2 C4 aus N1-CO-B2- 86 M 0.24 ESI: (M-H)" = 1653 (Br ₂) 11 mit aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M HCl (Br ₂)	
LiOH, dann aq.	farblose
0.1M HCl	Kristalle
89 N1 B2 C43 aus N1-CO-B2- 76 D 0.15 ESI: (M-H) = 787/789/791 (Br ₂) 90 N1 B2 C42 aus N1-CO-B2- 86 D 0.16 ESI: (M-H) = 787/789/791 (Br ₂) 91 N1 B2 C4 aus N1-CO-B2- 86 M 0.24 ESI: (M-H) = 1653 (C11 mit aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M HCl (Br ₂)	
C41 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 90 N1 B2 C42 aus N1-CO-B2- 86 D 0.16 ESI: (M-H) = 787/789/791 (Br ₂) 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- 86 M 0.24 ESI: (M-H) = 1653 (C11 mit aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M HCl (Br ₂); (M+H) = 803/805/807 (Br ₂); (M+H) = 803/805/807	
LiOH, dann aq.	farblose
90 N1 B2 C42 aus N1-CO-B2-C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2-C1 86 M 0.24 ESI: (M-H) = 1653 801/803/805 (C=O) LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M HCl 803/805/807 (Br ₂)	Kristalle
90 N1 B2 C42 aus N1-CO-B2-C40 mit aq. 0.1M LiOH, dann aq. 0.1M LiOH, dann aq. 0.1M LiOH aus N1-CO-B2-C11 mit aq. 0.1M LiOH, dann aq. C11 mit aq. 0.1M LiOH, dann aq. C11 mit aq. 0.1M LiOH, dann aq. C11M LiOH, dann aq. 0.1M HCl 803/805/807 (Br ₂); (M+H) ⁺ = 803/805/807 (Br ₂)	
C40 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M C3 C10H, dann aq. C40 mit aq. 0.1M C51 mit aq. 0.1M C61 mit aq. 0.1M C62 mit aq. 0.1M C63 mit aq. 0.1M C64 mit aq. 0.1M C65 mit aq. 0.1M C65 mit aq. 0.1M C66 mit aq. 0.1M C67 mit aq. 0.1M C67 mit aq. 0.1M C67 mit aq. 0.1M C67 mit aq. 0.1M C67 mit aq. 0.1M C68 mit aq. 0.1M C68 mit aq. 0.1M C68 mit aq. 0.1M C68 mit aq. 0.1M C68 mit aq. 0.1M C69 mit aq.	
LiOH, dann aq. 0.1M HCl 91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl 803/805/807 (Br ₂) (Br ₂) (Br ₂)	farblose
91 N1 B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl B2 C4 aus N1-CO-B2- C11 mit aq. 0.1M (Br ₂); (M+H) ⁺ = 803/805/807 (Br ₂); (Br ₂)	Kristalle
91 N1 B2 C4 aus N1-CO-B2- 86 M 0.24 ESI: (M-H) = 1653 (C=O) LiOH, dann aq. 0.1M HCl 803/805/807 (Br ₂); (M+H) ⁺ = 803/805/807 (Br ₂)	
C11 mit aq. 0.1M LiOH, dann aq. 0.1M HCl B01/803/805 (C=O) (Br ₂); (M+H) ⁺ = 803/805/807 (Br ₂)	
LiOH, dann aq. (Br ₂); (M+H) ⁺ = 803/805/807 (Br ₂)	farblose
0.1M HCl 803/805/807 (Br ₂)	Kristalle
(Br ₂)	
92 N2 B2 C4 aus N2-CO-B2- 69 M 0.31 ESI: (M-H) =	farblose
C11 mit aq. 0.1M 815/817/819	Kristalle
LiOH, dann aq. (Br ₂); (M+Na) ⁺ =	
0.1M HCl 839/841/843	
(Br ₂)	

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
97	N1	B2	C2	aus N1-CO-B2-	61	D	0.06	ESI: (M-H) =	1653	farblose
				C1 mit aq. 1M				801803/805	(C=O)	Kristalle
				LiOH, dann aq.				(Br ₂); (M+Na) ⁺ =		
				1M HCI				825/827/829		
								(Br ₂)		
98	N2	B2	C2	aus N2-CO-B2-	73	D	0.05	ESI: (M-H) ⁻ =		farblose
1				C1 mit aq. 1M				815/817/819		Kristalle
				LiOH, dann aq.				$(Br_2); (M+H)^+ =$		
				1M HCI				817/819/821		
							i	(Br ₂); (M+Na) ⁺ =		
								839/841/843		i .
								(Br ₂)		
120	N1	B30	C2	aus N1-CO-B30-	40			ESI: (M-H) =		farblose
				C1 mit aq. 1M				785/787/789		amorphe
				NaOH, dann aq.	•			$(Br_2); (M+H)^+ =$:	Substanz
				1M HCI				787/789/791		
								(Br ₂)		
121	N1	B30	C4	aus N1-CO-B30-	48			ESI: (M-H) ⁻ =		farblose
				C11 mit aq. 1M				785/787/789		amorphe
				NaOH, dann aq.				$(Br_2); (M+H)^+ =$		Substanz
		:		1M HCI				787/789/791		
								(Br ₂)		
126	N1	B7	C15	aus N1-CO-B7-	77	С	0.00	ESI: (M+H) ⁺ =		farblose
				C14 mit aq. 1M				773/775/777		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI						
127	N1	B8	C15	aus N1-CO-B8-	100	С	0.00	ESI: (M+H) ⁺ =		farblose
				C14 mit aq. 1M				651/657 (CI)		Fest-
				LiOH, dann aq.						substanz
				1M HCI						,
134	N1	B30	C47	aus N1-CO-B30-	68	KK	0.25	ESI: (M+H)+ =		farblose
				C45 mit aq. 1M				787/789/791		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI						

Lfd.	N	В	C	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
135	N1	B30	C48	aus N1-CO-B30-	29	KK	0.14	ESI: (M+H) ⁺ =		farblose
				C44 mit aq. 1M				787/789/791		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI						
136	N1	B30	C49	aus N1-CO-B30-	78	KK	0.10	ES1: (M-H) =		farblose
				C46 mit aq. 1M				785/787/789		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI						
137	N1	B21	C47	aus N1-CO-B21-	81	KK	0.24	ESI: (M+H)+ =		farblose
				C45 mit aq. 1M				801/803/805		Fest-
ļ				LiOH, dann aq.				(Br ₂)		substanz
	ī			1M HCI	:			,		
139	N1	B21	C48	aus N1-CO-B21-	51	KK	0.11	ESI: (M+H)+ =		farblose
				C44 mit aq. 1M				801/803/805		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI						
143	N1	B31	C48	aus N1-CO-B31-	74	KK	0.11	ESI: (M+H) ⁺ =		farblose
				C44 mit aq. 1M				802/804/806		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI						
145	N1	B31	C47	aus N1-CO-B31-	72	ΚK	0.23	ESI: (M+H) ⁺ =		farblose
				C45 mit aq. 1M				802/804/806		Fest-
				LìOH, dann aq.				(Br ₂)		substanz
				1M HCI						
146	N1	B31	C49	aus N1-CO-B31-	62	KK	0.07	ESI: (M+H) ⁺ =		farblose
				C46 mit aq. 1M				802/804/806		Fest-
				LiOH, dann aq.				(Br ₂)	-	substanz
			•	1M HCI					_	
147	N1	B21	C49	aus N1-CO-B21-	92	KK	0.08	ESI: (M+H)+=		farblose
				C46 mit aq. 1M				801/803/805		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI		12-				
				1M HCI					···	

Lfd.	N	В	С	Anmerkungen	%	FM	Rf	MS	IR [cm ⁻¹]	Fp. [°C]
Nr.					Ausb.					
150	N1	B32	C47	aus N1-CO-B32-	17	KK	0.14	ESI: (M+H)+ =		farblose
				C45 mit aq. 1M				675		Fest-
				LiOH, dann aq.		ļ				substanz
				1M HCI						
157	N1	B21	C51	aus N1-CO-B21-	75	Q	0.35	ESI: (M+H) ⁺ =	·*************************************	farblose
				C50 mit aq. 1M				801/803/805		amorphe
				LìOH, dann aq.	Ì			(Br ₂)		Substanz
				1M HCI						
158	N1	B32	C51	aus N1-CO-B32-	20	KK	0.13	ESI: (M-H) ⁻ =		farblose
				C50 mit aq. 1M				673; (M+H) ⁺ =		amorphe
				LiOH, dann aq.				675		Substanz
				1M HCI				,		
159	N1	B31	C51	aus N1-CO-B31-	91	00	0.60	ESI: (M+H)+ =		farblose
				C50 mit aq. 1M				802/804/806		amorphe
}		,		LiOH, dann aq.				(Br ₂)		Substanz
				1M HCI						
160	N1	B25	C51	aus N1-CO-B25-	82	Q	0.25	ESI: (M+H) ⁺ =		farblose
				C50 mit aq. 1M				777/779/781/783		amorphe
				LiOH, dann aq.				(BrCl ₂)		Substanz
				1M HCI						
161	N1	B30	C51	aus N1-CO-B30-	73	Q	0.32	ESI: (M+H) ⁺ =		farblose
				C50 mit aq. 1M				787/789/791		amorphe
				LiOH, dann aq.				(Br ₂)		Substanz
1				1M HCI						
163	N1	B25	C47	aus N1-CO-B25-	90	KK	0.17	ESI: (M+H) ⁺ =		farblose
				C45 mit aq. 1M				777/779/781/783		amorphe
				LiOH, dann aq.				(BrCl ₂)		Substanz
				1M HCI					•	
165	N1	B33	C6	aus N1-CO-B33-	78	KK	0.16	ESI: (M+H) ⁺ =		farblose
				C5 mit aq. 1M				787/789/791		Fest-
				LiOH, dann aq.				(Br ₂)		substanz
				1M HCI						
				1M HCI						

Beispiel 3

5

10

15

20

30

4-{1-[3-(1-Naphthyl)-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]-alanyl]-4-piperidinyl}-1-piperazinessigsäureethylester (Lfd. Nr. 81)

Eine Tetrahydrofuran-Lösung (20 ml) von 380.0 mg (0.84 mmol) 4-{1-[3-(1-Naphthyl)-D-alanyl]-4-piperidinyl}-1-piperazinessigsäureethylester wurde über einen Zeitraum von 40 Minuten zu einer auf -5 °C gekühlten und gerührten Suspension von 149.356 mg (0.91 mmol) CDT in 10 ml Tetrahydrofuran tropfenweise zugegeben. Die Reaktionsmischung wurde anschließend 1 Stunde bei –5 °C und 1 Stunde bei Raumtemperatur gerührt und mit der Suspension von 206.075 mg (0.84 mmol) 3-(4-Piperidinyl)-1,3,4,5-tetrahydro-1,3-benzodiazepin-2-on in 10 ml DMF versetzt. Um eine homogene Mischung zu erhalten, wurde das Tetrahydrofuran bei Normaldruck abdestilliert, nochmals 15 ml DMF zugegeben und das Gemisch anschließend 2 Stunden auf 100 °C erhitzt. Das Reaktionsgemisch wurde im Vakuum eingeengt, der Rückstand unter Verwendung einer im Hause entwickelten Gradientenmethode mittels Mischungen aus Dichlormethan, Methanol und konz. Ammoniak an Kieselgel säulenchromatographisch gereinigt, entsprechende Fraktionen mit Ether verrieben und der anfallende Feststoff (450.0 mg; 74% der Theorie) abgenutscht und getrocknet.

ESI-MS: $(M+H)^+ = 724$

Beispiel 4

25

(*R*,*S*)-4-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure (Lfd. Nr. 99)

Diese und die nachfolgenden Synthesen wurden vom Syntheseroboter Chemspeed ASW2000 (Chemspeed Ltd., Rheinstraße 32, CH-4302 Augst, Schweiz) durchgeführt.

Ansatz:

AGV 1: 118.862 mg (0.200 mMol) (R,S)-2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-

WO 2004/063171 - 113 - PCT/EP2004/000087

(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-4-oxobutansäure in 3 ml THF;

AGV 2: 51.073 mg (0.200 mMol) 4-(4-Piperidinyl)-1-piperazinessigsäureethylester in 2 ml THF;

5 AGV 3: 64.220 mg (0.200 mMol) TBTU in 2 ml DMF;

AGV 4: 1.00 ml (1.00 mMol) Triethylamin;

AGV 5: 1.00 ml 4M Natronlauge;

AGV 6: 1.00 ml 4M Salzsäure;

AGV 7: 6 ml THF.

10

15

20

25

Die AGV 1 bis 4 wurden entsprechend positioniert, dann vom Roboter zusammenpipettiert und 8 Stunden bei Zimmertemperatur geschüttelt. Die Reaktionsgemische wurden eingedampft, mit je 7 ml Essigsäureethylester versetzt, die entstandenen Lösungen jeweils mit 10 ml 10%-iger wässeriger Kaliumcarbonat-Lösung und mit 6 ml Wasser gewaschen und abermals vom Lösemittel befreit. Die Rückstände wurden jeweils in AGV 7 gelöst und nach Zugabe von AGV 5 sechs Stunden bei Zimmertemperatur gerührt. Die Reaktionsgemische wurden jeweils durch Zugabe von AGV 6 neutralisiert, danach eingedampft. Der erhaltene Rückstand wurde in je 1.9 ml DMF gelöst und auf eine Mikrotiterplatte gegeben. Die Proben wurden jeweils an einer HPLC-MS-Anlage ((Agilent Technologies, Agilent 1100 Series Modules and Systems for HPLC and LC/MS) getrennt, die interessierenden Produkte massengesteuert gesammelt. Die Endprodukte wurden gefriergetrocknet.

Ausbeute: 26.0 mg (15% der Theorie).

ESI-MS: $(M-H)^{-} = 800/802/804 (Br_2)$

 $(M+H)^+ = 802/804/806 (Br_2)$

Analog wurden die folgenden Verbindungen der allgemeinen Formel N-B-C erhalten:

Lfd.	N	В	С	Anmerkungen	%	MS
Nr.				0	Ausb.	
100	N1	B12	C2	Kupplung von N1-CO-B12-OH	8	ESI: $(M-H)^{-} = 803/805/807$
				mit H-C1 und anschließende	;	(Br_2) ; $(M+H)^+ = 805/807/809$
				Verseifung mit aq. NaOH		. (Br ₂)

Lfd.	N	В	С	Anmerkungen	%	MS
Nr.			Ą		Ausb.	
101	N5	B13	C2	Kupplung von N5-CO-B13-OH	6	ESI: (M+H) ⁺ = 682
		!		mit H-C1 und anschließende		
				Verseifung mit aq. NaOH		
102	N1	B14	C2	Kupplung von N1-CO-B14-OH	6	ESI: (M+H) ⁺ = 767
				mit H-C1 und anschließende		
				Verseifung mit aq. NaOH		*
103	N1	B15	C2	Kupplung von N1-CO-B15-OH	6	ESI: $(M+H)^+ = 673$
				mit H-C1 und anschließende		ė
				Verseifung mit aq. NaOH		
104	N1	B16	C2	Kupplung von N1-CO-B16-OH	6	ESI: $(M-H)^{-} = 735/737$ (Br);
				mit H-C1 und anschließende		$(M+H)^+ = 737/739 (Br)$
٩				Verseifung mit aq. NaOH		
105	N1	B17	C2	Kupplung von N1-CO-B17-OH	10	ESI: $(M+H)^+ = 699$
	1	-		mit H-C1 und anschließende	1	
			;	Verseifung mit aq. NaOH		
106	N1	B18	C2	Kupplung von N1-CO-B18-OH	. 4	ESI: $(M+H)^+ = 689$
,				mit H-C1 und anschließende		
				Verseifung mit aq. NaOH		
107	N1	B19	C2	Kupplung von N1-CO-B19-OH	4	ESI: (M-H) = 712/714/716
				mit H-C1 und anschließende		(Cl_2) ; $(M+H)^+ = 714/716/718$
100	111	700	00	Verseifung mit aq. NaOH	4	(Cl ₂)
108	N1	B20	C2	Kupplung von N1-CO-B20-OH	4	ESI: $(M+H)^+ = 767$
			ı	mit H-C1 und anschließende		
109	N1	B21	C2	Verseifung mit aq. NaOH Kupplung von N1-CO-B21-OH	13	ESI: (M-H) ⁻ = 799/801/803
109	INI	621	02	mit H-C1 und anschließende	10	(Br_2) ; $(M+H)^+ = 801/803/805$
				Verseifung mit aq. NaOH		(Br ₂)
110	N1	B22	C2	Kupplung von N1-CO-B22-OH	4	ESI: (M+H) ⁺ =
110	111	022	02	mit H-C1 und anschließende		865/867/869/871 (Br ₃)
				Verseifung mit aq. NaOH		200,001,000,011 (\$2.0)
111	N1	B23	C2	Kupplung von N1-CO-B23-OH	12	ESI: (M+H) ⁺ = 691
				mit H-C1 und anschließende		
				Verseifung mit aq. NaOH		
L	<u> </u>	<u></u>	<u> </u>		<u> </u>	

Lfd.	N	В	С	Anmerkungen	%	MS
Nr.					Ausb.	
112	N1	B24	C2	Kupplung von N1-CO-B24-OH	2	ESI: $(M+H)^+ = 699/701/703$
				mit H-C1 und anschließende		(Cl ₂)
				Verseifung mit aq. NaOH		
113	N1	B25	C2	Kupplung von N1-CO-B25-OH	4	ESI: $(M+H)^+ = 777/779/781$
				mit H-C1 und anschließende		(Br, Cl ₂)
	/			Verseifung mit aq. NaOH		
114	N1	B26	C2	Kupplung von N1-CO-B26-OH	3	ESI: (M+H) ⁺ = 681
				mit H-C1 und anschließende		
				Verseifung mit aq. NaOH		
115	N1	B27	C2	Kupplung von N1-CO-B27-OH	4	ESI: $(M-H)^{-} = 671$; $(M+H)^{+} =$
				mit H-C1 und anschließende		673
				Verseifung mit aq. NaOH		
116	N1	B28	C2	Kupplung von N1-CO-B28-OH	4	ESI: (M+H) ⁺ = 685
				mit H-C1 und anschließende		
				Verseifung mit aq. NaOH		Ü
117	N6	B21	C2	Kupplung von N6-CO-B21-OH	. 3	ESI: $(M+H)^+ = 837/839/841$
		E		mit H-C1 und anschließende		(Br ₂)
				Verseifung mit aq. NaOH		
118	N1	B29	C2	Kupplung von N1-CO-B29-OH	4	ESI: (M+H) ⁺ = 699/701/703
				mit H-C1 und anschließende		(Cl ₂)
				Verseifung mit aq. NaOH		

Die nachfolgenden Beispiele beschreiben die Herstellung pharmazeutischer Anwendungsformen. die als Wirkstoff eine beliebige Verbindung der allgemeinen Formel (I) enthalten:

5

Beispiel I

Kapseln zur Pulverinhalation mit 1 mg Wirkstoff

10 Zusammensetzung:

1 Kapsel zur Pulverinhalation enthält:

Wirkstoff

1.0 mg

Milchzucker

20.0 mg

Hartgelatinekapseln 50.0 mg

71.0 mg

Herstellungsverfahren: 5

Der Wirkstoff wird auf die für Inhalativa erforderliche Korngröße gemahlen. Der gemahlene Wirkstoff wird mit dem Milchzucker homogen gemischt. Die Mischung wird in Hartgelatinekapseln abgefüllt.

Beispiel II 10

Inhalationslösung für Respimat® mit 1 mg Wirkstoff

Zusammensetzung:

1 Hub enthält: 15

Wirkstoff

1.0 mg

Benzalkoniumchlorid

0.002 mg

Dinatriumedetat

0.0075 mg

Wasser gereinigt ad

15.0 *µ*l

20

Herstellungsverfahren:

Der Wirkstoff und Benzalkoniumchlorid werden in Wasser gelöst und in Respimat®-Kartuschen abgefüllt.

25 Beispiel III

Inhalationslösung für Vernebler mit 1 mg Wirkstoff

Zusammensetzung:

1 Fläschchen enthält: 30

Wirkstoff

0.1 g

Natriumchlorid

0.18 g

Benzalkoniumchlorid

0.002 g

Wasser gereinigt ad

20.0 ml

WO 2004/063171 - 117 - PCT/EP2004/000087

Herstellungsverfahren:

Wirkstoff, Natriumchlorid und Benzalkoniumchlorid werden in Wasser gelöst.

5 Beispiel IV

Treibgas-Dosieraerosol mit 1 mg Wirkstoff

Zusammensetzung:

10 1 Hub enthält:

Wirkstoff

1.0 mg

Lecithin

0.1%

Treibgas ad

 50.0μ l

15 <u>Herstellungsverfahren:</u>

Der mikronisierte Wirkstoff wird in dem Gemisch aus Lecithin und Treibgas homogen suspendiert. Die Suspension wird in einen Druckbehälter mit Dosierventil abgefüllt.

20 Beispiel V

Nasalspray mit 1 mg Wirkstoff

Zusammensetzung:

25 Wirkstoff

1.0 mg

Natriumchlorid

0.9 mg

Benzalkoniumchlorid

0.025 mg

Dinatriumedetat

0.05 mg

Wasser gereinigt ad

0.1 ml

30

Herstellungsverfahren:

Der Wirkstoff und die Hilfsstoffe werden in Wasser gelöst und in ein entsprechendes Behältnis abgefüllt. WO 2004/063171 - 118 - PCT/EP2004/000087

Beispiel VI

Injektionslösung mit 5 mg Wirksubstanz pro 5 ml

5 Zusammensetzung:

Wirksubstanz 5 mg
Glucose 250 mg

Human-Serum-Albumin 10 mg

Glykofurol 250 mg

10 Wasser für Injektionszwecke ad 5 ml

Herstellung:

Glykofurol und Glucose in Wasser für Injektionszwecke auflösen (Wfl); Human-Serum-Albumin zugeben; Wirkstoff unter Erwärmen auflösen; mit Wfl auf Ansatzvolumen auffüllen; unter Stickstoff-Begasung in Ampullen abfüllen.

Beispiel VII

Injektionslösung mit 100 mg Wirksubstanz pro 20 ml

20

15

Zusammensetzung:

Wirksubstanz 100 mg
Monokaliumdihydrogenphosphat = KH_2PO_4 12 mg

Dinatriumhydrogenphosphat = Na₂HPO₄-2H₂O 2 mg

25 Natriumchlorid 180 mg

Human-Serum-Albumin 50 mg

Polysorbat 80 20 mg

Wasser für Injektionszwecke ad 20 ml

30 Herstellung:

Polysorbat 80, Natriumchlorid, Monokaliumdihydrogenphosphat und Dinatriumhydrogenphosphat in Wasser für Injektionszwecke (Wfl) auflösen; Human-Serum-Albumin zugeben; Wirkstoff unter Erwärmen auflösen; mit Wfl auf Ansatzvolumen auffüllen; in Ampullen abfüllen.

Beispiel VIII

5 Lyophilisat mit 10 mg Wirksubstanz

Zusammensetzung:

Wirksubstanz

10 mg

Mannit

300 mg

10 Human-Serum-Albumin

20 mg

Herstellung:

Mannit in Wasser für Injektionszwecke (Wfl) auflösen; Human-Serum-Albumin zugeben; Wirkstoff unter Erwärmen auflösen; mit Wfl auf Ansatzvolumen auffüllen; in Vials abfüllen; gefriertrocknen.

Lösungsmittel für Lyophilisat:

Polysorbat 80 = Tween 80

20 mg

Mannit

200 mg

Wasser für Injektionszwecke ad

10 ml

Herstellung:

Polysorbat 80 und Mannit in Wasser für Injektionszwecke (Wfl) auflösen; in Ampullen abfüllen.

25

15

20

Beispiel IX

Tabletten mit 20 mg Wirksubstanz

30 Zusammensetzung:

Wirksubstanz

20 mg

Lactose

120 mg

Maisstärke

40 mg

Magnesiumstearat

2 mg

WO 2004/063171 - 120 - PCT/EP2004/000087

Povidon K 25

18 mg

Herstellung:

Wirksubstanz, Lactose und Maisstärke homogen mischen; mit einer wässerigen 5 Lösung von Povidon granulieren; mit Magnesiumstearat mischen; auf einer Tablettenpresse abpressen; Tablettengewicht 200 mg.

Beispiel X

10 Kapseln mit 20 mg Wirksubstanz

Zusammensetzung:

Wirksubstanz

20 mg

Maisstärke

15

80 mg

Kieselsäure. hochdispers

5 mg

Magnesiumstearat

2.5 mg

Herstellung:

Wirksubstanz, Maisstärke und Kieselsäure homogen mischen; mit Magnesiumstearat mischen; Mischung auf einer Kapselfüllmaschine in Hartgelatine-Kapseln Grösse 3 abfüllen.

Beispiel XI

25 Zäpfchen mit 50 mg Wirksubstanz

Zusammensetzung:

Wirksubstanz

50 mg

Hartfett (Adeps solidus) q.s. ad

1700 mg

Herstellung:

30

Hartfett bei ca. 38°C aufschmelzen; gemahlene Wirksubstanz im geschmolzenen Hartfett homogen dispergieren; nach Abkühlen auf ca. 35°C in vorgekühlte Formen ausgiessen.

WO 2004/063171 - 121 - PCT/EP2004/000087

Beispiel XII

Injektionslösung mit 10 mg Wirksubstanz pro 1 ml

5

15

Zusammensetzung:

Wirksubstanz 10 mg
Mannitol 50 mg
Human-Serum-Albumin 10 mg

10 Wasser für Injektionszwecke ad 1 ml

Herstellung:

Mannitol in Wasser für Injektionszwecke auflösen (WfI); Human-Serum-Albumin zugeben; Wirkstoff unter Erwärmen auflösen; mit WfI auf Ansatzvolumen auffüllen; unter Stickstoff-Begasung in Ampullen abfüllen.

<u>Patentansprüche</u>

1. Carbonsäuren und Ester der allgemeinen Formel

in der

15

20

25

30

10 R einen einfach ungesättigten 5- bis 7-gliedrigen Diaza-, Triaza- oder *S,S*-Dioxido-thiadiaza-Heterocyclus,

wobei die vorstehend erwähnten Heterocyclen über ein Stickstoffatom verknüpft und

durch eine jeweils von zwei Stickstoffatomen flankierte Carbonylgruppe oder Sulfonylgruppe charakterisiert sind,

an einem oder an zwei Kohlenstoffatomen durch je eine Alkyl-, Phenyl-, Pyridinyl-, Thienyl- oder 1,3-Thiazolyl-Gruppe substituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

und wobei die Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin- oder Chinolin-Ring kondensiert sein kann,

wobei die in R enthaltenen Phenyl-, Pyridinyl-, Thienyl-, oder 1,3-Thiazolyl-Gruppen sowie benzo-, pyrido- und chinolinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Nitro-, Alkylthio-, Alkylsulfinyl-, Alkylsulfonyl-

amino-, Phenyl-, Trifluormethyl-, Alkoxycarbonyl-, Carboxy-, Dialkylamino-, Hydroxy-, Amino-, Acetylamino-, Propionylamino-, Aminocarbonyl-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Methylendioxy-, Aminocarbonylamino-, Alkanoyl-, Cyano-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

Ar eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Tetrahydro-1-naphthyl, Tetrahydro2-naphthyl-, 1*H*-Indol-3-yl-, 1-Methyl-1*H*-indol-3-yl-, 1-Formyl-1*H*-indol-3-yl-,
4-Imidazolyl-, 1-Methyl-4-imidazolyl-, 2-Thienyl-, 3-Thienyl-, Thiazolyl-, 1*H*-Indazol-3-yl-, Benzo[b]furyl-, 2,3-Dihydrobenzo[b]furyl-,
Benzo[b]thienyl, Pyridinyl-, Chinolinyl- oder Isochinolinylgruppe,

wobei die vorstehend erwähnten aromatischen und heteroaromatischen Reste im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkylgruppen, C₃₋₈-Cycloalkylgruppen, Phenylalkylgruppen, Alkenyl-, Alkoxy-, Phenyl-, Phenylalkoxy-, Trifluormethyl-, Alkoxycarbonyl-, Carboxy-, Dialkylamino-, Nitro-, Hydroxy-, Amino-, Alkylamino-, Acetylamino-, Propionylamino-, Methylsulfonyloxy-, Aminocarbonyl-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Alkanoyl-, Cyano-, Trifluormethoxy-, Trifluormethylthio-, Trifluormethylsulfinyl- oder Trifluormethylsulfonylgruppen mono-, di- oder trisubstituiert sein können und die Substituenten gleich oder verschieden sein können,

25 Y die Methylen- oder die -NH-Gruppe,

5

15

20

30

Y¹ das Kohlenstoff- oder das Stickstoffatom,

X¹ das freie Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

 X^3 und X^4 jeweils das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

mit der Maßgabe, dass mindestens einer, jedoch auch höchstens einer der Reste X^1 , X^2 , X^3 oder X^4 eine gegebenenfalls veresterte Carbonsäurefunktion enthält,

5 und

R¹ einen Rest der allgemeinen Formel

10

in der

Y² das Kohlenstoff- oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

15 Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder das Stickstoffatom,

X² eine Gruppe der allgemeinen Formel

$$CH_2CO_2R^2$$
 , (III)

20

in der

R² das Wasserstoffatom oder einen C₁₋₅-Alkylrest darstellt,

oder, sofern Y² das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

m die Zahlen 0 oder 1,

p die Zahlen 0, 1, 2 oder 3 und

q die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1, 2 oder 3 annehmen kann,

bedeuten,

oder einen der Reste (IIb), (IIc) oder (IId)

10

5

$$X^{2b} = X^{2b}$$

$$X^{2c} = X^{2c}$$

$$X^{2d} = X^{2d}$$

$$X^{2d} = X^$$

15 worin

 X^{2b} , X^{2c} und X^{2d} jeweils das Wasserstoffatom oder eine gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

o die Zahlen 0, 1, 2 oder 3 und

R³ das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine Alkyl-, Alkoxy-, Nitro-, Trifluormethyl-, Hydroxy-, Amino-, Acetylamino-, Aminocarbonyl-, Acetyloder Cyanogruppe darstellen,

25

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 5 Kohlenstoffatome enthalten und geradkettig oder verzweigt sein können, bedeuten,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

5 2. Carbonsäuren und Ester der allgemeinen Formel I gemäß Anspruch 1, in denen

R einen einfach ungesättigten 5- bis 7-gliedrigen Diaza-, Triaza- oder *S,S*-Dioxido-thiadiaza-Heterocyclus,

wobei die vorstehend erwähnten Heterocyclen über ein Stickstoffatom verknüpft und

15

20

25

durch eine jeweils von zwei Stickstoffatomen flankierte Carbonylgruppe oder Sulfonylgruppe charakterisiert sind,

an einem Kohlenstoffatom durch eine Phenyl-, Pyridinyl-, Thienyl- oder 1,3-Thiazolylgruppe substituiert sein können,

und wobei die Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin- oder Chinolin-Ring kondensiert sein kann,

wobei die in R enthaltenen Phenyl-, Pyridinyl-, Thienyl-, oder 1,3-Thiazolylgruppen sowie benzo-, pyrido- und chinolinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkyl-, Alkoxy-, Trifluormethyl-, Amino-, Cyano- oder Acetylaminogruppen mono-, di- oder trisubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

30 Ar eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 1,2,3,4-Tetrahydro-1-naphthyl oder 2,3-Dihydrobenzo[b]fur-5-yl-Gruppe,

wobei die vorstehend erwähnten aromatischen und heteroaromatischen Reste im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Alkylgruppen, Alkoxy-, Trifluormethyl-, Nitro-, Hydroxy-, Amino-, Aminocarbo-nyl-, Acetyl- oder Cyanogruppen mono-, di- oder trisubstituiert sein können und die Substituenten gleich oder verschieden sein können,

5 Y die Methylen- oder die NH-Gruppe,

Y¹ das Kohlenstoff- oder das Stickstoffatom,

X¹ ein freies Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

X³ und X⁴ jeweils das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

mit der Maßgabe, dass mindestens einer, jedoch auch höchstens einer der Reste X^1 , X^2 , X^3 oder X^4 eine gegebenenfalls veresterte Carbonsäurefunktion enthält, und

R¹ einen Rest der allgemeinen Formel

30

15

$$(N)_{m}$$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$

in der

Y² das Kohlenstoffatom oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder das Stickstoffatom,

X² eine Gruppe der allgemeinen Formel

 $CH_2CO_2R^2$, (III)

in der

5

R² das Wasserstoffatom oder einen C₁₋₅-Alkylrest darstellt,

oder, sofern Y² das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

m die Zahlen 0 oder 1,

p die Zahlen 0, 1 oder 2 und

15

10

q die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1 oder 2 annehmen kann,

20 bedeuten,

oder einen der Reste

$$\times_{()_0}$$
 $\stackrel{S}{\underset{R^3}{\bigvee}}$ X^{2d} X^{2d} , (IId)

25

worin

 X^{2b} und X^{2d} jeweils das Wasserstoffatom oder die gegebenenfalls mit einem niederen aliphatischen Alkohol veresterte Carbonsäuregruppe,

30

o die Zahlen 0, 1, 2 oder 3 und

R³ das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine Methyl-, Methoxy-, Nitro-, Trifluormethyl- oder Cyanogruppe darstellen,

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 4 Kohlenstoffatome enthalten und verzweigt oder unverzweigt sein können,

10 bedeuten,

15

20

25

30

deren Tautomere, deren Diastereomere, deren Enantiomere und deren Salze.

R einen einfach ungesättigten 5- bis 7-gliedrigen Diaza-, Triaza- oder *S,S*-Dioxido-thiadiaza-Heterocyclus,

3. Carbonsäuren und Ester der allgemeinen Formel I gemäß Anspruch 1, in denen

wobei die vorstehend erwähnten Heterocyclen über ein Stickstoffatom verknüpft und

durch eine jeweils von zwei Stickstoffatomen flankierte Carbonylgruppe oder Sulfonylgruppe charakterisiert sind,

an einem Kohlenstoffatom durch eine Phenylgruppe substituiert sein können,

und wobei die Doppelbindung eines der vorstehend erwähnten ungesättigten Heterocyclen mit einem Benzol-, Pyridin- oder Chinolin-Ring kondensiert sein kann,

wobei die in R enthaltenen Phenylgruppen sowie benzo-, pyrido- und chinolinokondensierten Heterocyclen im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Methoxy-, Trifluormethyl-, oder Cyanogruppen mono- oder disubstituiert sein können, wobei die

Substituenten gleich oder verschieden sein können,

Ar eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 1,2,3,4-Tetrahydro-1-naphthyl oder 2,3-Dihydrobenzo[b]fur-5-yl-Gruppe,

5

wobei die vorstehend erwähnten aromatischen und heteroaromatischen Reste im Kohlenstoffgerüst zusätzlich durch Fluor-, Chlor- oder Bromatome, durch Methyl-, Methoxy-, Trifluormethyl-, Hydroxy- oder Aminogruppen mono-, dioder trisubstituiert sein können und die Substituenten gleich oder verschieden sein können,

Y die Methylen- oder -NH-Gruppe,

Y¹ das Kohlenstoff- oder Stickstoffatom,

15

10

X¹ ein freies Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

20 X³ und X⁴ jeweils das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

mit der Maßgabe, dass mindestens einer, jedoch auch höchstens einer der Reste X^1 , X^2 , X^3 oder X^4 eine gegebenenfalls veresterte Carbonsäurefunktion enthält, und

25

R¹ einen Rest der allgemeinen Formel

$$(N)_{m}$$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$

Y² das Kohlenstoff- oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder das Stickstoffatom,

X² eine Gruppe der allgemeinen Formel

$$CH_2CO_2R^2$$
 , (III)

10 in der

5

R² das Wasserstoffatom oder einen geradkettigen oder verzweigten C₁₋₄-Alkylrest darstellt,

oder, sofern Y² das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

m die Zahlen 0 oder 1,

20 p die Zahlen 0, 1 oder 2 und

q die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1 oder 2 annehmen kann,

bedeuten,

25

30

oder einen der Reste

$$\times_{0}$$
 \times_{0} \times_{0

worin

X^{2b} und X^{2d} jeweils das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

5

o die Zahlen 0, 1 oder 2 und

R³ das Wasserstoffatom, das Fluor-, Chlor- oder Bromatom, eine Methyl-, Methoxyoder Trifluormethylgruppe

10

15

25

30

darstellen,

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 4 Kohlenstoffatome enthalten und geradkettig oder verzweigt sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere und deren Salze.

4. Carbonsäuren und Ester der allgemeinen Formel I gemäß Anspruch 1, in denen

R die 3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl-, 2,4-Dihydro-5-phenyl-3(3*H*)-oxo-1,2,4-triazol-2-yl-, 1,3-Dihydro-2(2*H*)-oxoimidazo[4,5-c]chinolin-3-yl-, 2-Oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl-, 3,4-Dihydro-2(1*H*)-oxopyrido[3,4-d]pyrimidin-3-yl- oder 3,4-Dihydro-2,2-dioxido-2,1,3-benzothiadiazin-3-yl-Gruppe,

Ar die 3,5-Dibrom-4-hydroxyphenyl-, 4-Amino-3,5-dibromphenyl-, 4-Brom-3,5-dimethylphenyl-, 3,5-Dichlor-4-methylphenyl-, 3,4-Dibromphenyl-, 3-Brom-4,5-dimethylphenyl-, 3,5-Dibrom-4-methylphenyl-, 3-Chlor-4-methylphenyl-, 3,4-Difluorphenyl-, 4-Hydroxyphenyl-, 1-Naphthyl-, 3,5-Dibrom-4-fluorphenyl-, 3,5-Bis-(trifluormethyl)-phenyl-, 3,4,5-Trimethylphenyl-, 3-(Trifluormethyl)-phenyl-, 3,5-Dimethyl-4-methoxyphenyl-, 4-Amino-3,5-dichlorphenyl-, 2,4-Bis-(trifluormethyl)-phenyl-, 3,4,5-Tribromphenyl-, 3,4-Dimethoxyphenyl-, 3,4-Dichlorphenyl-, 4-Brom-3,5-dichlorphenyl-, 2-Naphthyl-, 2,3-Dihydrobenzo[b]fur-5-yl-, 1,2,3,4-Tetrahydro-

1-naphthyl- oder 2,3-Dichlorphenylgruppe,

Y die Methylen- oder die -NH-Gruppe,

5 Y¹ das Kohlenstoff- oder das Stickstoffatom,

X¹ ein freies Elektronenpaar, wenn Y¹ das Stickstoffatom bedeutet, oder, sofern Y¹ das Kohlenstoffatom ist, das Wasserstoffatom, die Carbonsäure- oder die Methoxy-carbonylgruppe und

R¹ einen Rest der allgemeinen Formel

$$(N)_{m}$$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(D_{p}-Y^{2})_{q}$
 $(D_{p}-Y^{2})_{q}$
 $(D_{p}-Y^{2})_{q}$

15 in der

10

Y² das Kohlenstöffatom oder, sofern m den Wert 0 annimmt, auch das Stickstoffatom,

20 Y³, das von Y¹ stets verschieden ist, das Kohlenstoff- oder das Stickstoffatom,

X² eine Gruppe der allgemeinen Formel

$$CH_2CO_2R^2$$
 , (III)

in der

 R^2 das Wasserstoffatom oder einen geradkettigen oder verzweigten $\mathsf{C}_{1\text{-}4}\text{-}\mathsf{Alkylrest}$ darstellt,

oder, sofern Y² das Kohlenstoffatom ist, auch das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

m die Zahlen 0 oder 1,

5

p und q jeweils die Zahlen 0, 1 oder 2,

wobei die Summe von m, p und q die Werte 1 oder 2 annehmen kann,

10 bedeuten,

oder einen der Reste

$$\times_{()_0}$$
 $\xrightarrow{R^3}$ (IIb), oder \xrightarrow{S} \xrightarrow{N} \times , (IId)

15

worin

X^{2b} das Wasserstoffatom oder die gegebenenfalls mit Methanol oder Ethanol veresterte Carbonsäuregruppe,

20

X^{2d} das Wasserstoffatom oder die gegebenenfalls mit Methanol veresterte Carbonsäuregruppe,

o die Zahlen 0, 1 oder 2 und

25

30

R³ das Wasserstoffatom oder die Trifluormethylgruppe darstellen,

wobei die vorstehend genannten Alkylgruppen oder die in den vorstehend genannten Resten enthaltenen Alkylgruppen, sofern nichts anderes angegeben wurde, 1 bis 4 Kohlenstoffatome enthalten und geradkettig oder verzweigt sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere und deren Salze.

5

15

- 5. Folgende Carbonsäuren und Ester der allgemeinen Formel I gemäß Anspruch 1:
- (1) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
- (2) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-10 carbonyl]-0-tyrosyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (3) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1- piperidinyl]carbonyl]-D-tyrosyl]-1-piperazinyl}-1-piperidinessigsäure-1,1-dimethylethylester,
 - (4) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-D-tyrosyl]-1-piperazinyl}-1-piperidinessigsäure
- (5) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-20 carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,
 - (6) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäure,
- 25 (7) endo-4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-cyclohexancarbonsäureethylester,
 - (8) *endo-*4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-cyclohexancarbonsäure,
 - (9) *exo-*4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-1-piperazinyl}-cyclohexancarbonsäureethylester,
 - (10) exo-4-{4-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperi-

- dinyl]carbonyl]-D-tyrosyl]-1-piperazinyl}-cyclohexancarbonsäure,
- (11) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-1-piperidinessigsäureethylester,
- (12) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,

15

20

- 10 (13) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäure,
 - (14) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-1-piperidinessigsäureethylester,
 - (15) 4-{1-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessig-säureethylester,
 - (16) 4-{1-[3,5-Dichlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-ethylester,
- 25 (17) 4-{1-[3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
 - (18) 4-{1-[3-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
 - (19) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-ethylester,

- (20) 4-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-ethylester,
- (21) 4-{4-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl] carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-1-piperazinyl}-1-piperidinessig-säureethylester,

15

- 10 (22) 4-{1-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (23) 4-{1-[3,5-Dichlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (24) 4-{1-[3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
- (25) 4-{1-[3-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-20 carbonyl]-4,5-dimethyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (26) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
- 25 (27) 4-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (28) 4-{4-[4-Brom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-3,5-dimethyl-D,L-phenylalanyl]-1-piperazinyl}-1-piperidinessigsäure,
 - (29) 4-{1-[3,4-Difluor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D,L-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-1,1-dimethylethylester,

- (30) 1'-[N-[[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,
- (31) 4-{1-[*N*-[[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-5 D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
 - (32) (*R*,*S*)-4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäureethylester,
 - (33) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbonsäuremethylester,

- 15 (34) $1-\{1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl<math>\}-(S)$ -pyrrolidin-2-carbonsäuremethylester,
- (35) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-20 carbonsäure,
 - (36) $1-\{1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-(S)-pyrrolidin-2-carbonsäure,$
- 25 (37) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbon-säuremethylester,
- (38) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-30 carbonyl]-D-tyrosyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbonsäuremethylester,
 - (39) 1-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbonsäure,

- (40) $1-\{1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1 H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl]-(R)-pyrrolidin-2-carbonsäure,$
- 5 (41) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-dinyl]carbonyl]-D-phenylalanyl]-(*R*)-[1,4']bipiperidinyl-2-carbonsäuremethylester,
- (42) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]
 carbonyl]-D-tyrosyl]-(*R*)-[1,4']bipiperidinyl-2-carbonsäuremethylester,
 - (43) 1'-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperi-dinyl]carbonyl]-D-phenylalanyl]-(S)-[1,4']bipiperidinyl-2-carbonsäuremethylester,
 - (44) 1'-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-(S)-[1,4']bipiperidinyl-2-carbonsäuremethylester,

- (45) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-20 dinyl]carbonyl]-D-phenylalanyl]-(*R*)-[1,4']bipiperidinyl-2-carbonsäure,
 - (46) 1'-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-(R)-[1,4']bipiperidinyl-2-carbonsäure,
- 25 (47) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-(*S*)-[1,4']bipiperidinyl-2-carbonsäure,
 - (48) 1'-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperi-dinyl]-carbonyl]-D-phenylalanyl]-(S)-[1,4']bipiperidinyl-2-carbonsäure,
 - (49) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4'-carbonsäuremethylester,
 - (50) 1'-[4-Amino-3,5-dibrom-N-[[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-1-piperi-

- dinyl]carbonyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4'-carbonsäuremethylester,
- (51) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4'-carbonsäure,
- (52) 1'-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperi-dinyl]-carbonyl]-D-phenylalanyl]-[1,4']bipiperidinyl-4'-carbonsäure,
- (53) 1'-[*N*-[[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-[1,4']bipiperidinyl-4-essigsäure,

- (54) 4-{1-[*N*-[[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-4-piperidinyl}-1-piperazinessigsäure,
- 15 (55) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäureethylester,
 - (56) 3-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäureethylester,
 - (57) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäuremethylester,
- (58) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinylmethyl}-benzoesäureethylester,
 - (59) 4-{2-[1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl]-ethyl}-benzoesäureethylester,
- 30 (60) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-3-(trifluormethyl)-benzoesäuremethylester,
 - (61) 3-{1-[3,5-Dibrom-N-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäuremethylester,

(62) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäureethylester,

(63) 3-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäureethylester,

5

- 10 (64) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäure-methylester,
- (65) 4-{2-[1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzo-diazepin-3-yi)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl]-ethyl}-benzoesäuremethylester,
- (66) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-3-(trifluormethyl) 20 benzoesäuremethylester,
 - (67) 3-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäuremethylester,
 - (68) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäure,
- (69) 3-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-30 carbonyl]-D-tyrosyl]-1-piperazinyl}-benzoesäure,
 - (70) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäure,

- (71) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinylmethyl}-benzoesäure,
- (72) 4-{2-[1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-4-piperidinyl]-ethyl}-benzoesäure,
 - (73) 4-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-3-(trifluormethyl)-benzoesäure,
- 10 (74) 3-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-4-piperidinyl}-benzoesäure,

- (75) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäure,
- (76) 3-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-benzoesäure,
- (77) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-terahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäure,
 - (78) 4-{2-[1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzo-diazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl]-ethyl}-benzoesäure,
 - (79) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-3-(trifluormethyl)-benzoesäure,
- 30 (80) 3-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-benzoesäure,
 - (81) 4-{1-[3-(1-Naphthyl)-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-alanyl]-4-piperidinyl}-1-piperazinessigsäureethyl-

ester,

5

- (82) 4-{1-[3-(1-Naphthyl)-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-alanyl]-4-piperidinyl}-1-piperazinessigsäure,
- (83) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-5-thiazolcarbonsäuremethylester,
- (84) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-10 carbonyl]-D-tyrosyl]-1-piperazinyl}-4-thiazolcarbonsäuremethylester,
 - (85) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-5-thiazolcarbonsäure,
- 15 (86) 2-{4-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-D-tyrosyl]-1-piperazinyl}-4-thiazolcarbonsäure,
- (87) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-pipe ridinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-4-thiazolcarbonsäuremethylester,
 - (88) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-5-thiazolcarbonsäuremethylester,
 - (89) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-4-thiazolcarbonsäure,
- (90) 2-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-30 1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-5-thiazolcarbonsäure,
 - (91) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-1-piperidinessigsäure,

- (92) 4-{4-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-1-piperazinyl}-1-piperidinessigsäure,
- 5 (93) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-1,1-dimethylethylester,
- (94) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure-1,1-dimethylethylester,
- (95) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl) 1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure ethylester,
 - (96) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäureethylester,
 - (97) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,

- (98) 4-{1-[4-Amino-3,5-dibrom-*N*-[[4-(2-oxo-1,3,4,5-tetrahydro-1,3-benzodiazepin-3-yl)-1-piperidinyl]carbonyl]-D-phenylalanyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (99) (*R*,*S*)-4-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (100) (*R*,*S*)-4-{1-[2-[(3,5-Dibrom-4-fluorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,

- (101) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxopyrido[3,4-d]pyrimidin-3-yl)-1-piperidinyl]-2-[(1-naphthyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- 5 (102) (*R*,*S*)-4-{1-[2-[[3,5-Bis-(trifluormethyl)-phenyl]methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
- 10 (103) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,4,5-trimethylphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
- (104) (*R*,*S*)-4-{1-[2-[(3-Brom-4,5-dimethylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (105) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[[3-(trifluormethyl)-phenyl]methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,

- (106) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(4-methoxy-3,5-dimethylphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (107) (*R*,*S*)-4-{1-[2-[(4-Amino-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- 30 (108) (*R*,*S*)-4-{1-[2-[[2,4-Bis-(trifluormethyl)-phenyl]methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
 - (109) (R,S)-4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1H)-

- oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (110) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]2-[(3,4,5-tribromphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,

- $(111) \quad (R,S)-4-\{1-[4-(3,4-\text{Dihydro-2}(1\textit{H})-\text{oxochinazolin-3-yl})-1-\text{piperidinyl}\}-2-[(3,4-\text{dimethoxyphenyl})\text{methyl}]-1,4-\text{dioxobutyl}]-4-\text{piperidinyl}\}-1-\text{piperazinessigs}\\ \text{aure,}$
- (112) (*R,S*)-4-{1-[2-[(3,4-Dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazo-lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (113) (*R*,*S*)-4-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (114) (R,S)-4-{1-[4-(4-(3,4-Dihydro-2(1H)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(2-naphthyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (115) (*R*,*S*)-4-{1-[2-[(2,3-Dihydrobenzo[b]fur-5-yl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazin-essigsäure,
- 25 (116) (*R*,*S*)-4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(1,2,3,4-tetrahydro-1-naphthyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (117) (*R*,*S*)-4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2,2-dioxido-2,1,3-benzothiadiazin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
 - (118) (R,S)-4-{1-[2-[(2,3-Dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1H)-oxochinazo-lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,

15

- (119) (*R*,*S*)-4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazo-lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure-ethylester,
- (120) (R,S)-4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1H)-oxochinazo-lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-piperazinessigsäure,
- (121) (*R*,*S*)-4-{4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazo-10 lin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-piperazinyl}-1-piperidinessigsäure,
 - (122) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbon-säuremethylester,
 - (123) 1-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(S)-pyrrolidin-2-carbon-säuremethylester,
- 20 (124) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbon-säuremethylester,
- (125) 1-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-25 carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*R*)-pyrrolidin-2-carbon-säuremethylester,
 - (126) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(S)-pyrrolidin-2-carbon-säure,
 - (127) 1-{1-[3-Chlor-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-(*S*)-pyrrolidin-2-carbon-säure,

- (128) 4-{1-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
- 5 (129) 4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbon-säureethylester,
- 10 (130) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäureethylester,
- (131) 4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
 - (132) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäureethylester,
 - (133) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbon-säureethylester,
 - (134) 4-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure,
- 30 (135) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbon-säure,
 - (136) 4-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1H)-oxochinazolin-3-yl)-

- 1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäure,
- (137) 4-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-pipera-zincarbonsäure,
 - (138) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäureethylester,

- (139) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäure,
- (140) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäureethylester,
- 20 (141) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäureethylester,
- (142) 4-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
- (143) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-30 2-piperazincarbonsäure,
 - (144) 4-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure,

20

- (145) 4-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäure,
- (146) 4-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäure,
- 10 (147) 4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-2-piperazincarbonsäureethylester,
- (148) 4-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-15 4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-1-(1-methyl-4-piperidinyl)-3-piperazincarbonsäureethylester,
 - (149) 4-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure,
 - (150) 4-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäureethylester,
 - (151) 1-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazin-carbonsäureethylester,
- 30 (152) 1-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,
 - (153) 1-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-di-

- methyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,
- (154) 1-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,
 - (155) 1-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäureethylester,

- (156) 1-{1-[2-[(3,5-Dibrom-4-methylphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
- (157) 1-{1-[4-[4-(3,4-Dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-2-[(3,5-dimethyl-4-hydroxyphenyl)methyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
- 20 (158) 1-{1-[2-[(4-Amino-3,5-dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
- (159) 1-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazincarbonsäure,
- (160) 1-{1-[2-[(3,4-Dibromphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-4-methyl-2-piperazin
 carbonsäure,
 - (161) 4-{1-[3,4-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-phenylalanyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure-ethylester,

- (162) 4-{1-[2-[(4-Brom-3,5-dichlorphenyl)methyl]-4-[4-(3,4-dihydro-2(1*H*)-oxo-chinazolin-3-yl)-1-piperidinyl]-1,4-dioxobutyl]-4-piperidinyl}-1-methyl-2-piperazincarbonsäure,
- (163) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäuremethylester,
- (164) 1'-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]
 carbonyl]-phenylalanyl]-[1,4']bipiperidinyl-4-essigsäure,
 - (165) 4-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-1-methyl-2-piperazin-carbonsäureethylester,
 - (166) 1-{1-[3,5-Dibrom-*N*-[[4-(3,4-dihydro-2(1*H*)-oxochinazolin-3-yl)-1-piperidinyl]-carbonyl]-4-methyl-D,L-phenylalanyl]-4-piperidinyl}-4-methyl-2-piperazin-carbonsäureethylester
- 20 und deren Salze.

- 6. Physiologisch verträgliche Salze der Verbindungen nach einem der Ansprüche 1 bis 5 mit anorganischen oder organischen Säuren oder Basen.
- 7. Arzneimittel, enthaltend eine Verbindung nach einem der Ansprüche 1 bis 5 oder ein physiologisch verträgliches Salz gemäß Anspruch 6 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 8. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 6 zur Herstellung eines Arzneimittels zur akuten oder prophylaktischen Behandlung von Kopfschmerzen, zur Behandlung des nicht-insulinabhängigen Diabetes mellitus, von cardiovaskulären Erkrankungen, der Morphintoleranz, von Erkrankungen der Haut, entzündlichen Erkrankungen, allergischer Rhinitis, Asthma, von Erkrankungen, die mit einer überschießenden Gefäßerweiterung und dadurch bedingter verringerter

WO 2004/063171 - 153 - PCT/EP2004/000087

Gewebedurchblutung einhergehen, der akuten oder präventiven Behandlung von menopausalen Hitzewallungen östrogendefizienter Frauen oder zur Behandlung von Schmerzzuständen.

INTERNATIONAL SEARCH REPORT

Intermenal Application No
PCT/EP2004/000087

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D239/80 C07D243/02 CO7D471/04 CO7D285/36 C07D249/08 A61K31/505 CO7D417/12 C07D405/12 C07D403/12 A61K31/55 A61K31/435 A61K31/54 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 98/11128 A (DR. KARL THOMAE GMBH (DE)) Х 1-8 19 March 1998 (1998-03-19) page 173, paragraph 2 - page 177 z.B. Beispiel 1 , z.B. Lfd. Nr. 193, 205, 206, 81, 82, 85, 90, 354, 101, 104, 105, 199, 200, 435, 438, 439, 444, 445, 447, 449-452, 455, 457-465, 469-472 und viele weitere Einzelverbindungen. z.B. Beispiel 3, z.B. Lfd. Nr. 110, 112 und viele weitere Einzelverbindungen z.B. Beispiel 4. Lfd. Nr. 87, 96, 97 und viele weitere Einzelverbindungen z.B. Beispiel 8, Lfd. Nr. 123, 124, 322 und viele weitere Einzelverbindungen z.B. Beispiel 19, Lfd. Nr. 647, 648, 652 und viele weitere Einzelverbindungen examples I-XVIII claims -/--Х Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 7 May 2004 24/05/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Cortés, J

INTERNATIONAL SEARCH REPORT

Intermenal Application No
PCT/EP2004/000087

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
alegory *	Oration of document, with indication, where appropriate, of the relevant passages	nelevant to claim No.
(WO 01/10425 A (BOEHRINGER INGELHEIM PHARMA (DE)) 15 February 2001 (2001-02-15) the whole document	1-8
X	MALLEE J J ET AL: "Receptor Activity-modifying Protein 1 Determines the Species Selectivity of Non-peptide CGRP Receptor Antagonists" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 277, no. 16, 19 April 2002 (2002-04-19), pages 14294-14298, XP002271313 ISSN: 0021-9258 Seite 14295, Abbildung 1, Verbindungen 1 und 2	1-8
Р, Х	WO 03/104236 A (BRISTOL-MYERS SQUIBB CO (US)) 18 December 2003 (2003-12-18) the whole document	1-8
P,X	WO 2004/000289 A (BOEHRINGER INGELHEIM PHARMA (DE)) 31 December 2003 (2003-12-31) the whole document	1-8

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/EP2004/000087

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9811128	A	19-03-1998	DE DE AU BG BR CA CN CZ EA EE WO PHR JP JP JP	19636623 A1 19720011 A1 721035 B2 4119697 A 103250 A 9712023 A 2262818 A1 1230196 A ,B 9900823 A3 4037 B1 9900115 A 9811128 A1 0927192 A1 970481 A1 21045 A 3483893 B2 2000505100 T 2003300959 A	12-03-1998 19-11-1998 22-06-2000 02-04-1998 31-05-2000 31-08-1999 19-03-1998 29-09-1999 16-06-1999 25-12-2003 15-10-1999 19-03-1998 07-07-1999 31-08-1998 08-04-1999 06-01-2004 25-04-2000 21-10-2003
		· ()	NO NZ PL SK TR TW US US ZA HU KR	991130 A 334543 A 331989 A1 29799 A3 9900537 T2 477792 B 498076 B 6344449 B1 2001036946 A1 9708083 A 9904501 A2 2000044040 A	05-05-1999 23-06-2000 16-08-1999 13-03-2000 21-07-1999 01-03-2002 11-08-2002 05-02-2002 01-11-2001 17-12-1999 28-04-2000 15-07-2000
WO 0110425	A	15-02-2001	DE AU BBR CCN CZE WO EP HRU JP NOK TRS ZA	19937304 A1 6992800 A 106391 A 0013009 A 2378428 A1 1370069 T 20020497 A3 200200061 A 0110425 A2 1207884 A2 20020117 A2 0202397 A2 2003506403 T 20020605 A 1972002 A3 200200359 T2 6521609 B1 200200997 A	15-03-2001 05-03-2001 30-09-2002 30-04-2002 15-02-2001 18-09-2002 12-06-2002 15-04-2003 15-02-2001 29-05-2002 31-10-2003 28-10-2002 18-02-2003 07-02-2002 04-06-2002 21-05-2002 18-02-2003 21-08-2002
WO 03104236	Α	18-12-2003	WO US	03104236 A1 2004063735 A1	18-12-2003 01-04-2004
WO 2004000289	Α	31-12-2003	DE WO US	10227294 A1 2004000289 A2 2004076587 A1	08-01-2004 31-12-2003 22-04-2004

INTERNATIONALER RECHERCHENBERICHT

Inter nales Aktenzeichen
PCT/EP2004/000087

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D239/80 C07D243/02 C07D471/04 C07D285/36 C07D249/08 C07D403/12 C07D417/12 C07D405/12 A61K31/505 A61K31/55

A61K31/435 A61K31/54

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \ C07D \ A61K$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der miernationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, BEILSTEIN Data, CHEM ABS Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	WO 98/11128 A (DR. KARL THOMAE GMBH (DE)) 19. März 1998 (1998-03-19) Seite 173, Absatz 2 - Seite 177 z.B. Beispiel 1 , z.B. Lfd. Nr. 193, 205, 206, 81, 82, 85, 90, 354, 101, 104, 105, 199, 200, 435, 438, 439, 444, 445, 447,	1-8
	449-452, 455, 457-465, 469-472 und viele weitere Einzelverbindungen. z.B. Beispiel 3, z.B. Lfd. Nr. 110, 112 und viele weitere Einzelverbindungen z.B. Beispiel 4, Lfd. Nr. 87, 96, 97 und viele weitere Einzelverbindungen z.B. Beispiel 8, Lfd. Nr. 123, 124, 322 und viele weitere Einzelverbindungen z.B. Beispiel 19, Lfd. Nr. 647, 648, 652 und viele weitere Einzelverbindungen Beispiele I-XVIII Ansprüche	·

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
اننا	entnehmen

χ Siehe Ani

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- 'L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden, wenn die Ver\u00f6fentlichung mit einer oder mehreren anderen Ver\u00f6ffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung f\u00fcr einen Fachmann naheliegend ist
- *&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

24/05/2004

7. Mai 2004

Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswij Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Cortés, J

INTERNATIONALER RECHERCHENBERICHT

Inter nales Aktenzeichen
PCT/EP2004/000087

C.(Fortest	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	<u> </u>	
Kategorie°		nenden Teile	Betr. Anspruch Nr.
Х	WO 01/10425 A (BOEHRINGER INGELHEIM PHARMA (DE)) 15. Februar 2001 (2001-02-15) das ganze Dokument		1-8
X	MALLEE J J ET AL: "Receptor Activity-modifying Protein 1 Determines the Species Selectivity of Non-peptide CGRP Receptor Antagonists" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, Bd. 277, Nr. 16, 19. April 2002 (2002-04-19), Seiten 14294-14298, XP002271313 ISSN: 0021-9258 Seite 14295, Abbildung 1, Verbindungen 1 und 2		1-8
Р,Х	WO 03/104236 A (BRISTOL-MYERS SQUIBB CO (US)) 18. Dezember 2003 (2003-12-18) das ganze Dokument		1-8
P,X	WO 2004/000289 A (BOEHRINGER INGELHEIM PHARMA (DE)) 31. Dezember 2003 (2003-12-31) das ganze Dokument		1-8

INTERNATIONALER RECHERCHENBERICHT

Intermetales Aktenzeichen
PCT/EP2004/000087

Im Recherchenberic geführtes Patentdoku		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9811128	L	19-03-1998	DE	19636623		12-03-1998
			DE	19720011		19-11-1998
			ΑÜ	721035		22-06-2000
			AU	4119697		02-04-1998
			BG	103250		31-05-2000
			BR	9712023	Α	31-08-1999
			CA	2262818	A1	19-03-1998
			CN	1230196	A .B	29-09-1999
			CZ	9900823	A3	16-06-1999
			EΑ	4037		25-12-2003
			EE	9900115	Α	15-10-1999
			WO	9811128		19-03-1998
			EP	0927192		07-07-1999
			HR	970481		31-08-1998
			ID	21045		08-04-1999
			ĴΡ	3483893		06-01-2004
			JP	2000505100	T	25-04-2000
			JP		Å	21-10-2003
			NO	991130		05-05-1999
			NZ	334543		23-06-2000
			PL	331989		16-08-1999
			SK	29799		13-03-2000
			TR	9900537		21-07-1999
			TW	477792		01-03-2002
			TW		В	
			US	498076 6344449		11-08-2002
			US	2001036946		05-02-2002
			ZA			01-11-2001
			HU	9708083		17-12-1999
			KR	9904501 2000044040		28-04-2000
					л 	15-07-2000
WO 0110425	Α	15-02-2001	DE	19937304		15-03-2001
			AU	6992800		05-03-2001
			BG	106391		30-09-2002
			BR	0013009	Α	30-04-2002
			CA	2378428		15-02-2001
			CN	1370069	T	18-09-2002
			CZ	20020497		12-06-2002
			EE	200200061		15-04-2003
			WO	0110425		15-02-2001
			EP	1207884		29-05-2002
			HR	20020117		31-10-2003
			HU	0202397		28-10-2002
			JP	2003506403		18-02-2003
			NO	20020605		07-02-2002
			SK	1972002		04-06-2002
			TR	200200359		21-05-2002
			ÜS	6521609		18-02-2003
			ZA	200200997		21-08-2002
WO 03104236	 А	18-12-2003	WO	03104236	 A1	18-12-2003
		20 12 2000	US	2004063735		01-04-2004
WO 200400028	9 A	31-12-2003	DE	10227294	 A1	08-01-2004
,			WO	2004000289		31-12-2003
			US	2004076587	Δ7	22-04-2004