INTERLABORATORY PROGRAMS FOR RUBBER

ANALYSES NO. 39
JANUARY - MARCH 1979

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NBS COLLABORATIVE REFERENCE PROGRAMS

TAPPI Paper and Board (6 times per year)

Bursting strength
Tearing strength
Tensile breaking strength
Elongation to break
Tensile energy absorption
Folding endurance
Stiffness

Folding endura: Stiffness Air resistance Grammage Smoothness
Surface pick strength
K & N ink absorption
pH
Opacity
Blue reflectance (brightness)
Specular gloss, 75°
Thickness
Concora (flat crush)
Ring crush

FKBG-API Containerboard (48 times per year)

Mullen burst of linerboard Concora test of medium

MCCA Color and Appearance (4 times per year)

Gloss at 60° Color and color difference

CTS Rubber (4 times per year)

Tensile strength, ultimate elongation and tensile stress Hardness Mooney viscosity Vulcanization properties

CTS Thermal Insulation Materials (2 times per year)

19 test methods for thermal insulation materials covering: thermal properties; strength properties; dimensions, stability, and density properties; fire properties; and properties of vapor barriers

ASTM Cement (2 times per year)

Chemical (11 chemical components)
Physical (8 characteristics)

AASHTO Bituminous

Asphalt cement (2 times per year) Cutbacks (once a year)

> NBS Collaborative Reference Programs A05 Technology Building National Bureau of Standards Washington, DC 20234

INTERLABORATORY PROGRAMS FOR RUBBER

Analyses No. 39 January - March 1979

J. Horlick
Office of Testing Laboratory Evaluation Technology
Office of Engineering Standards
National Engineering Laboratory

T. L. Cummings, Research Associate, Collaborative Testing Services, Inc.

G. W. Bullman
Polymers Science and Standards Division
Center for Materials Research
National Measurement Laboratory

U. S. DEPARTMENT OF COMMERCE
National Bureau of Standards

INTRODUCTION

This report summarizes the test results for the first quarter of 1979. The tests cover the four areas in the NBS Collaborative Reference Programs for Rubber: Tensile Properties, Hardness, Mooney Viscosity, and Vulcanization Properties.

For each of the four areas, there is a set of summary tables followed by a table of data and analysis by laboratory and a graphical presentation of the data and analysis. Where applicable, the tables of data have the English and Metric expressions side-by-side. Additional details are given in the section "Key to Tables and Graphs."

If there are questions or comments on the notes, the analyses, or the reports in general, contact Jeffrey Horlick at (301) 921-2946.

Jeffrey Horlick, Administrator

NBS Collaborative Reference Programs

Office of Testing Laboratory Evaluation Technology

June 27, 1979

TABLE OF CONTENTS

		Page
Introduction	n	
Table of Con	ntents	1
Key to Table	es and Graphs	2
Program 1:	Tensile strength, ultimate elongation and stress at 300% elongation	5
Program 2:	Hardness	13
Program 4:	Mooney Viscosity	17
Program 5:	Vulcanization characteristics determined with oscillating-disk cure meter	21

KEY TO TABLES AND GRAPHS

X

LAB CODE Confidential laboratory identification number known only to the participant and the Collaborative Reference Program staff.

F A flag identifying results that are extreme in comparison with the other results.

- The plotted point for the indicated laboratory lies outside of the 99% error ellipse (not shown); ie, assuming normal distribution, 99% of laboratories similar to those participating in the program will be represented by points lying within the 99% ellipse.

- The plotted point for the indicated laboratory lies outside of the 95% error ellipse shown on graphs, but inside the 99% ellipse.

MEAN The arithmetic average of the two median values for the two sheets or samples of the same material.

% DEV The deviation or difference of the laboratory MEAN from the GR. MEAN (see below), expressed as a percent of the GR. MEAN.

The ratio of the SDR (standard deviation of replicate measurements within a laboratory) to the AVER SDR (see below). Extreme values, ie, values that are likely to occur by chance less than one time in a hundred as determined by the chisquare test, are marked with an "X".

VAR CODE

A code number designating a particular test instrument, set of environmental conditions, procedure, unit used, or other variation. The code "O1" designates the instrument, conditions and procedure specified at the top of the page either explicitly or in the cited ASTM Standard, and the unit of test shown at the top of the first column of data. A '+' in front of the VAR CODI indicates that the data has been excluded from the grand means due to a non-standard variation of the possibilities mentioned above, or the data is extreme.

GR MEAN The arithmetic average (grand mean) of all the laboratory MEAN values, excluding those flagged (F) with an "X".

SD MEANS The standard deviation among the laboratory MEAN values included in the GR. MEAN.

AVER SDR The arithmetic average of all the standard deviations of within laboratory replication, excluding those excluded from the GR. MEAN and excluding any additional ones for which the REL SDR has been flagged.

GRAPH

For each laboratory the MEAN for the second material is plotted against the MEAN for the first material, with each point representing a laboratory. The horizontal and vertical lines are the GR. MEAN values. The dashed line is drawn at 45°. The solid sloping line, which may or may not lie close to the 45° line, is the major axis of the ellipse. The ellipse is drawn so that, on the average, it will include 95% of the points representing the laboratories. The plotted symbols X and * used to represent results falling outside the ellipse are explained under "F" above. Laboratories inside the ellipse (no flag in the F column) are plotted as an O.

The graph is plotted with an ellipse when there are 20 or more laboratories in the analysis. When there are 10 through 19 laboratories in the analysis, the graph is plotted but the ellipse is omitted. When there are fewer than 10 laboratories retained in the Grand Mean the graph is not plotted.

For development of the theory, see the paper by J. Mandel and T.W. Lashof, Interpretation and Generalization of Youden's Two-Sample Diagram, J. of Quality Technology, Vol. 6, pp 22-36, Jan. 1974.

SUMMARY OF ANALYSES

LABS INCL Number of laboratories included in the GR. MEANs.

LABS OMIT Number of laboratories reporting data but excluded from the GR. MEANs.

STANDARD DEVIATIONS

LABS Same as the SD MEANs (see above)

SHEETS Standard deviation between the two sheets or samples of the same material.

REPL Same as AVER SDR (see above)

PRECISION OF METHODS

REPL CRP The number of replicate measurements per sheet or sample, as specified in the Collaborative Reference Program.

REPL ASTM The number of replicate measurements specified for a test result in the designated ASTM Standard.

REPEAT The repeatability, a measure of the within laboratory precision, i.e., of the ability of the test technician to repeat his test result: two test results obtained by the same technician on the same homogeneous sample of material may be expected 95% of the time to agree within the repeatability.

REPROD The reproducibility, a measure of the between laboratory precision: two test results obtained in different laboratories may be expected 95% of the time to agree within the reproducibility.

ABSOLUTE Values of REPEAT and REPROD expressed in the units of measurement.

PERCENT Values of REPEAT and REPROD expressed as a percent of the GR. MEANs.

TENSILE STRENGTH, ULTIMATE ELONGATION, AND STRESS AT 300% ELONGATION

NOTES

Materials A91 and A92 were sheets of the same vulcanized rubber. Similarly, materials A93 and A94 were alike.

V100 results were obtained at NBS using a pendulum tester.

All participants used Die C in ASTM D 412 with the following exceptions:

V126 used Die 2 in BS903 V208 did not specify a Die V225 used ASTM Die D

INSTRUMENTS

Instrument	Number of Labs	Percent
Electronic Manual	20	33%
Electronic Automatic	19	32%
Pendulum Manual	18	30%
Pendulum Automatic	3	5%
	60	100%

RELATIVE HUMIDITY

Relative Humidity	Number of Labs	Percent
Below 45%	17	28%
Above 55%	12	20%
45% - 55%	22	37%
Not specified	9	15%
	60	100%

SUMMARY OF ANALYSES

		LABS	LABS		STD D	EVIATION	NS	
PROPERTY	MATERIAL	INCL	TIKE	GR _• MEAN	LABS	SREETS	REPL	UNITS
TENSILE	A91-A92	54	6	2712.	95.	42.	60.	POUNDS PER SQUARE INCH
STRENGTH	A93-A94	54	6	2712.	96 •	37.	58,	POUNDS PER SQUARE INCH
TENSILE	A91-A92	54	6	18,71	.66	. 29	.42	WEGAPASCALS
STRENGTH	A93-A94	54	6	18,70	• 66	. 26	.40	MEGAPASCALS
ULTIMATE	A91-A92	5 7	3	624.	22.	7.	15.	PERCENT
ELONGATION	A93-A94	57	3	619.	23.	6.	14.	PERCENT
STRESS AT	A91-A92	56	4	1163.	73.	13.	25.	POUNDS PER SQUARE INCH
300% ELONGATION	A93-A94	56	4	1162.	70.	14.	28.	POUNDS PEP SQUARE INCH
STRESS AT	A91-A92	56	4	8.018	. 503	.114	.175	NEGAPASCALS
300% ELENGATION	A93-A94	56	4	8.017	.483	.122	.196	NEGAPA SCALS

INTERLABORATORY PROGRAM ON EVALUATION OF RUBBER

PRECISION OF METHODS

FEBRUARY 1979

			REPL	REPL		ABSE	LUTE		PERC	ENT
	PROPERTY	MATERIAL	CRP	ASTM	GR _e MEAN	REPEAT	REPROD	UNITS	REPEAT	REPPOD
	TENSILE	A91-A92	5	5	2712.	167.	264.	PSI	6.2	9.7
	STRENGTH	A93-A94	5	5	2712.	160.	265.	PST	5.9	9.8
	TENSILE	A91-A92	5	5	18.71	1.15	1.62	MEGAPA	6.2	9.7
	STRENGTH	A93-A94	5	5	18.70	1.10	1.83	MEGAPA	5.9	9.8
	ULTIMATE	A91-A92	5	5	624.	41.	60.	%	6.6	9.6
	ELONGATION	A93-A94	5	5	619.	38,	64.	%	6, 2	10.3
	STRESS AT	A91-A92	5	5	1163.	70.	202.	PSI	6. 0	17.4
300%	ELONGATION	A93-A94	5	5	1162.	79.	194.	PSI	6.8	16.7
	STRESS AT	A91-A92	5	5	8.018	. 4 84	1.393	MEGAPA	6.0	17.4
300%	ELONGATION	A93-A94	5	5	8.017	.543	1,337	MEGAPA	6,8	16.7

								AL A93-A94			
LAB		MEAN	BRCIAL T	_		MEAN	ERCIAL 1 MEAN			VAR	
	P	PSI	MEGAPA	DE V	REL	PSI	MEGAPA	DEV	REL SDR		INSTRUMENT, UNIT, OR OTHER VARIATION
0022	•		ALCOH A	221	921	. 51	ADOALA	22.	55.	0000	THE THE THE THE THE TREE THE TREE THE TREE THE TREE THE TREE THE TREE TRE
V0062		2455.	16.93	-9.5	•66	2475.	17.07	-8.7	.48	01	
V0067		2590.	17.86	-4.5	2.47X	2630.	18.14	-3 ₀ 0	•72	01	
VC069		2691.	18.56		1.38	2773.	19.12		2.12X	01	
V0070		2840.	19.59	4.7	1.06	2840.	19.59	4.7	•56	01	
V0071		2631.	18.15	-3 ₀ 0	3.40X	2678.	18.47	-1.2	1.38	C 1	
								_			
V0072		2765.	19.07	1.9	.76	2735.	18.86		1.29	•70	DATA RECEIVED LATE
V0073		2762.	19.05		1.14	2762	19.05	1.9	1.68	01	
V0076		2820.	19.45	4.0	1.24	2785	19.21	2 ₀ 7	1.66	01	
V0078 V0083		2547。 2632。	17.57 18.16	-6.1 -2.9	1.10 .41	2568 ₀ 2610 ₀		-3.8	•58	01	
10000		2002	10,10		• • •	2010	10,00	-500	• 30		
V0084		2705.	18.66	3	1.97X	2760.	19.03	1.8	2.07X	01	
V0085		2741.	18.90	1.1	.96	2722.	18.77	-	1.49	20	GRIGINAL IN MEGANEWTONS PER SO, METER
V0087		2715.	18.72	• 1	1.23	2690.		8	1.06	01	
V0088	х	2246.	15.49	-17 ₀ 2	1.61	2240.	15.45	-17.4	. 80	01	
V0092		2685.	18,52	-1.0	1.43	2720.	18.76	• З	1.06	01	
V0095		2825.	19.48	4.2		2813,	19.40		1.17	01	
V0100	*	2720.	18.76		1.39	2840.	19.59	4.7	• 76	01	
V0102		2590.	17.86	-4.5	1.24	2605.		-3,9	•78	C 1	
V0111		2795.	19.28		1.07	2810.	19.38	3.6	. 82	•70	DATA RECEIVED LATE
V0117		2675.	18.45	-1.4	.72	2655	18.31	-2.1	1.20	01	
V0 1 2 2		27.05	10 21	2 7	0.3	2745	10.07		. 89		
V0123 V0126		2785. 2879.	19.21 19.86	2.7 6.1	.83 1.01	2745. 2835.	18.93 19.56		1.01	01 20	GRIGINAL IN MEGANEWTONS PER SO, METER
V0128		2805.	19.34	3.4	•74	2855	19.50		1.36	01	ORIGINAL IN REGARDS FER SONREIER
V0141		2769.	19.10	-	1.05	2722.	18.78	-	1.00	01	
V0144		2875	19.83		1.00	2890	19.93		1.10	01	
				-•-	- •			- • -			
V0144B		2835.	19.55	4.5	•66	2965.	19.76	5.6	.67	01	
V0146		2708.	18.68	1	.46	2620.	18.07	-3.4	1.47	01	
V0149		2618.	18.06	-3.5	1.52	2662.	18.36	-1.8	.89	01	
V0150		2687.	18.53	9	.76	2767.	19.09	2.1	.81	0.1	
V0152		2900.	20.00	6.9	1.08	2865	19.76	5.6	1.41	0 1	
V0153		2622.	18.09	-3.3		2640.		-2.6	. 85	01	
VO 1 54		2950.	19.66	5 • 1	.40	2815.	19.41	3.8	.47	01	
V0156		2755.	19.00		1.20	2815.	19.41	3.8	.88	01	
V0158		2756.	19.00	1.6	1.15	2777.	19.15	2.4	.68	20	GRIGINAL IN MEGANEWTONS PER SQ. METER
V0160		2558.	17.04	-5.7	1.69	2593.	17.68	-4.4	.99	20	GRIGINAL IN MEGANEWIONS PER SO. METER
V0164		2729.	18.82	4	•95	2700.	18.62		. 80	0 1	
V0166		2723.	18.78	• 6	1.22	2712.	18.71	4	•92	01	
V0168		2846.	19.63	4.9	.46	2832.	19.53	4.4	1.08	01	
V0169		2712.	18.70		1.07	2756.	19.00	1.6	1.78	20	GRIGINAL IN MEGANEWIONS PER SQ. METER
V0176		2645.	18.24		• 56	2610.		-3.8	.58	01	
V0184		2639.	18,20	-2.7	.72	2625.	18.10	-3.2	. 82	01	
VO 190		2750.	18.97	1.4	1.41	2763.	19.06	1.9	1.40	0 1	
A0133		2647.	18,26	-2.4	1.33	2700.	18.62	4	.73	01	
V0208		2690.	18.55	8	.91	2669.		-1.6	1.25	20	ORIGINAL IN VEGANEWTONS PER SO. METER
V0213		2704.	18,65	3	•75	2670	18,41	-1.5	1.13	20	ORIGINAL IN VEGANEWIONS PER SO. METER
WA 2		07.07		_		0.5					db
V0214	v	27 27.	18.80	. 5		2756.	19.00	1.6	.67	20	GRIGINAL IN MEGANEWIONS PER SO, METER
V0219 V0223	A	3149. 2660.	21.72		1.53	3036.		12.0		01	
V0223			18,34		•77	2645	18.24			01	
V0224		2795. 2565.	19.28 17.69				18.79		1.30		
10223		2303	17,09	-3.4	2.012	23410	11.37	-0.1	1.50	01	
V0232		2692.	18.57	7	. 85	2700.	18-62	4	.92	01	
V0233		2767.	19.08			2692					
V0235			18.81								
	X		21.45						1.61		
V0243		2727.	18.81			2717.			.67		
V0244		2795.	19.28		.64	2799.			.62		ORIGINAL IN MEGANEWTONS PER SQ. METER
V0245A		2567.				2524.			.44		
V0245B			17.86				17.66				
V0249		2635.	18.17			2640.					DATA RECEIVED LATE
V0250		2737.	18.88	. 9	1.18	2687.	18,53	9	•52	0 1	
		2712	10 71		MEAN -	27.2	10 70				F TEOT DETERMINATIONS
		2712. 95.			MEAN -	2712 . 96 .	18.70				5 TEST DETERMINATIONS 4 LABORATORIES IN GRAND MEANS
		60.			R SDR -		.66 .40				O LABORATORIES REPORTING
		PSI				PSI				0	PREVELENY

MATERIAL A91-A92

INTERLABORATORY PROGRAM ON EVALUATION OF RUBBER ULTIMATE ELONGATION - PERCENT REPORT 39 - 1

		_							•
			RIAL A91			FERIAL AS			
LAB		MEAN	%	REL	MEAN	%	REL	VAR	
CGDE	F	%	DEV	SDR	%	DEV	SDR	CODE	INSTRUMENT, UNIT, OR OTHER VARIATION
V0062			-3,3	.47		-3.3		01	
V0067		605.	-3 ₀ 1	2.34X	610.	-1.4	.64	01	
V0069			• 9	1.40		5.9		01	
V0070		615.	-1.5	.57	617.			01	
V0071		604.	-3, 1	3.13X	597.	-3.4	1.46	01	
V0072		605.	-3.1	•93	595.	-3.8	. 95	•70	DATA RECEIVED LATE
V0073		645.	3.3	1.22		3.4		01	DATA RECEIVED DATE
V0076		605.	-3.1	1.14	590.		1.51	01	
V0078		620.	7	1.17		6		01	
V0083		635.	1.7	.75	622.	• 6		0.1	
VQ 0 84		600.	-3.9	1.38	600.	-3.0	1.16	0 1	
VC 0 85		662.	6.1	•57		5.1	1.40	01	
V0087			-2.7	1.51		-1.6	. 99	01	
8800V	*	-	-4.5	2.73X		-8.3	1.02	01	
V0092		630.	• 9	1.09	635.	2.6	. 89	01	
			_						
V00 95		630.	• 9	1.36	615. 640.	6	1.32	01	
VO 1 00		640.	2.5	1.32	640.	3.4	. 92	01	
V0102		625.	•1 1•3	•79	625.	1.0	.61		DAMA DEGREEND TARE
V0111 V0117				1.08	631.	2.1	• 73	•70	DATA RECEIVED LATE
VOI 1 7		625.	• 1	1.05	620	• =	1.66	01	
V0123		640.	2.5	.75	625.	1.0	. 84	01	
V0126		662.	6.1	1.16			1.17		
V0128			• 1	.88	630.	1.8	.71	01	
V0141		625	• 1	.62		-1.4	.42	01	
V0144		650.	4.1	. 66	635.	2.6	1.05	01	
VO 1 44B		640.	2.5	.81	630.	1.8	. 73	01	
V0146		612.	-1.9	1.01		-3.4		01	
V0149			-1.1	1.38	612.	-1.0	.67	6.1	
V0150		620.	7	.48		1.8		01	
V0152		615.	-1.5	1.10	610.	-1.4	1.30	01	
V0153		610.	-2.3	• 95	4.05	1.0	.47	01	
V0154			-2.3 -3.1	•46		-4.6	.67	01	
VC 156				1.24		-3.0		01	
V0158			8.2	1.38	665.	7.5		c i	
V0160		605.	-3.1	1.24	620.	• 2	.91	01	
V0164		602.	-3.5	.97	592.	-4.2	. 20	01	
V0166			-3.1	. 83		-1.4	• 56	01	
V0168		645	3.3	•5 5	630.	1.8	.87	01	
V0169		635.	1.7	1.28	640.	3.4	1.49	0.1	
V0176		6.25		0.7					
VO178		625。 620。	- 1	.83	615.		. 84	01	
V0190		640.	7 2.5	•66 1•00	620 . 640.	. 2	.88 1.49	01	
V0199		625.	.1	1.32		-1.4		01	
V0208		600.	-3.9	. 84	585.	-5.4	.77	01	
		•				•	•	٠.	
V0213		633.	1.4	.90	632.	2.2	1.17	01	
V0214		640.	2.5	1.64	650.	5.1	.70	01	
V0219		615.	-1.5	1.49	610.	-1.4	1.00	01	
V0223		615.	-1.5	1.12	620.	• 2	1.10	0 1	
V0224		652.	4.5	1.72	630.	1.8	1.27	01	
VA 2.25	_	5.5				_			
V0225 V0232	*	565.	-9.5	1.32	555.	-10.3	1.22	01	
V0232		650.	4.1	•99	660.	6.7	1.16	01	
V0233		620 . 66 6.	7	.94	605.	-2.2	2.24X	01	
	*		6.8	.95	651.	5.2	1.57	01	
.0200	_	635.	1.7	1.37	600.	-3.0	1.09	01	
V0243		645.	3.3	.45	645.	4.3	.67	01	
V0244		640.	2.5	.39	640.			01	
V0244 V0245A		570.	-8.7	•68	-	3.4	• 00		
V0245B		610.	-8.7 -2.3	• 93	570. 600.	-7.9 -3.0	• 87 1 74	0 1 0 1	
V0243B		650.	4.1	.88	655.	5.9	1.74 .50	•70	DATA RECEIVED LATE
V0250		635.	1.7	.91	620.	• 2	. 39	01	TAIR ADDITION DAIL
					22.00	•-		٠.	
		624.	- GR	. MEAN -	619.				TEST DETERMINATIONS
		22.		MEANS .	23.				7 LABORATORIES IN GRAND MEANS
		15.		ER SDR -	14.			6	O LABORATORIES REPORTING
		*	•	UNIT -	%				

ULTIMATE ELONGATION

		MATERIAL A91-A92 COMMERCIAL TIRE TREAD				MATERIAL					
LAB		MEAN	MEAN	%	REL	WEAN	MEAN	%		VAR	
CGDE F	F	PSI	MEGAPA	DEV	SDR	PSI	MEGAPA	DEA	SDR	CGDE	INSTRUMENT, UNIT, OR OTHER VARIATION
V0060		1120	7 704	-7.7	1 07	1116	7 (00	-4.1	7.		
V0062 V 0C 67		1120. 1187.	8.190	-3.7 2.1	.52	1115.		-4.1 1.9	•74 •58	01	
V0069		1129.			2.16X	1113.		-4.2	. 84	01	
V0070		1190.	8.207		.69	1190.			1.03	01	
V0071		1195.	8.241	2.8	1.78	1255。	8,659	8.0	1.42	01	
V0072		1140.	7.862		1.08	1150.		-1.1	1.09		DATA RECEIVED LATE
V0073 V0076		1162. 1300.	8.017	11.8		1150.		-1.1 11.4	1.83	01	
V0078		1078.		-7.3		1295. 1072.	7.397	-	.80 .83	01	
V0083		1132.	7.810		.71	1145.		-1.5	.60	01	
VO 0 84		1185.	8.172			1175.	8.103	1 0 1	.79	0 1	
V0085		1076.	7.422		1.05	1095.		-5.8	.62	20	GRIGINAL IN MEGANEWICHS PER SQ. METER
V0087		1255.	8,655			1225.			• 75	01	
V0088 #	Ω·	1025.	7.069		2.01X .63	978. 1035.		-15.8 -11.0	1.32 .92	01	
V0092		10230	7 6 60 3	-1100	.03	1000	7.130	-11.0	• 72	0.1	
V0095		1212.	8,362	4.3	1.24	1212.	8,362	4.3	1.02	0 1	
VO1 00		1120.	7.724			1160.	8.000		. 84	01	
V0102		1040.	7.172	-10 ₀ 5	.74	1030.	7.103	-11.4	.71	01	
VO 1 1 1		1165.	8.034		.84	1170.		.7	•51	•70	DATA RECEIVED LATE
V0117		1155.	7.966	7	.83	1150.	7.931	-1.1	.60	0 1	
				4 -							
V0123		1215.	8.379 7.902	-	•66	1195. 1136.	8.241	2.8 -2.2	-58	01 20	GRIGINAL IN VEGANEWIONS PER SQ. METER
V0126 V0128		1146. 1220.	8.414		.41 1.17	1225.			.67		ORIGINAL IN TEGANETIONS FER SUPEREIDE
V0141		1248.	8,610	7.4	.88	1239.			.43		
VO144		1110.	7.655		1.03	1165.	8.034			01	
V0144B		1155.	7.966	7	.92	1220.	8.414		1.84	01	
V0146		1216.	8.390	4.6	1.47	1177.	8.117	1.3	1.06	0 1	
V0149	舒		7.286		1.21	1138.		-2.1	. 94	01	
V0150 V0152		1187.	8.190 E.448	2.1 5.4	.96 .41	1200 ₀ 1235 ₀	8, 276 8, 517	3 ₀ 2	.53	01	
V0152		12230	C. 440	5,4	• 41	1235	00011	0,2	• 55	01	
Vo 1 53		1145.	7.900	-1.5	1.17	1164.	8.031	. 2	1.31	01	
V0154				7.5	.71	1230.			• 58	01	
V0156		1245.	8.586	7.1		1255.			1.21	C 1	
VO158			7.352		.97	1073.		-7.7	.72	20	GRIGINAL IN MEGANEWIGHS PER SQ. METER
V0160		1189.	8,202	2.3	1.18	1182.	8, 152	1.7	• 95	20	GRIGINAL IN VEGANEWTONS PER SQ. METER
V0164		1170	7 010	-2 6	2 367	1170	7 9 4 7	-2.6	1 70	0.1	
V0164 V0166		1132. 1131.	7.810		2.36X	1132 _• 1113 _•		-4.2		01	
V0168		1164.	8.028	. 1	.62	1175.		1.1	. 46	01	
V0169		1153.	7.952			1146.		-1.4		20	GRIGINAL IN MEGANEWTONS PER SQ. METER
V0176		1220.	8.414			1210.	8,345		1.37	01	
VO 1 84		1140.	7.862		. 96	1136.	-		1.09	0.1	
V0190		1182.	8.152			1157.		-	. 89	01	
V0199 V0208		1172.	8.086 8.452		.96 2.17X	1172. 1276.	8.086 8.802	. 9	.94 1.52	0 1 20	GRIGINAL IN MEGANEWTONS PER SQ.METER
V0213		1174.	8.097			1123.		-3.4	.80	20	GRIGINAL IN MEGANEWTONS PER SQ.METER
				- • -					,		
V0214		1117.	7.702	-3.9	.38	1124.	7.752	-3.3	.41	20	GRIGINAL IN MEGANEWTONS PER SQ. METER
V0219 #		1348.		15.9		1333.		14.7		0 1	
V0223							7.793			01	
V0224			8.362			1215.					
V0225		1291.	8.903	11.0	•98	1265	8.724	8.8	1.34	0 1	
V0232 #		1140-	7.862	-1-9	• 26	1072-	7.397	-7-7	. 16	0.1	
V0233			8.314				8.155				
V0235		1088.	7.503	-6 ₀ 4	•75		7.355				
V0238 X						1232.	8.500	6.0	1.30	01	
V0243		1046.	7.214	-10 ₀ 0	.69	1039.	7.169	-10.6	1.04	01	
V0.244		1000	0 440		-		0 7.				description of the second
V0244 V0245A		1167	8.462	5.5	.75 2.05X	1210.	8.342	4.1	1. 31	20	GRIGINAL IN MEGANEWICHS PER SQ. METER
V0245B		1123-	7.748	-3-4	1.01	1137.	7. 845	-2-1	10.01	01	
V0249		1040.	7.172	-10.5	.65	1010.	6.966	-13-1	.72	+70	DATA RECEIVED LATE
V0250		1150.	7.931	-1.1	• 76	1100.	7.586	-5.4	1.06	01	
		1163.			MEAN -	1162.	8.017				5 TEST DETERMINATIONS
		73.			MEANS =	70.					6 LABORATORIES IN GRAND MEANS
		25. PSI			R SDR = NIT =	28. P SI	.196 NEGAPA			6	O LABORATORIES REPORTING
		. 31	ALVAFA	0		131	REUAFA				

STRESS AT 300% ELONGATION

HARDNESS

NOTES

Materials A91 and A92 were sheets of the same vulcanized rubber. Similarly, materials A93 and A94 were alike.

V100 results were obtained at NBS using ASTM D2240. V200 results were obtained at NBS using ASTM D1415.

Four of the 31 participants reporting used ASTM D1415 (Wallace) for the hardness determination. All others used ASTM D2240 (Type A Durometer).

SUMMARY OF ANALYSES

PROPERTY	WATEFIAL		LABS	GR. MEAN		STD DEVIATIONS LABS SHEETS REPL			
HARDNESS	491-492	29	2	58, 16	1.42	. 20	. 54	IRHD	
	A93-A94	29	2	58.16		. 28	. 47	IRHD	

REPL REPL

ASTM

5

5

CPP

5 5

INTERLABORATORY PROGRAM ON EVALUATION OF RUBBER

ABSOLUTE

1.50

1.32

3.94

4.81

IPHD

IRHD

REPORT 39 - 2

PROPERTY MATERIAL

HAPDNESS A91-A92

A93-A94

PRECISION OF WETHODS

58.16

58.16

PERCENT GR. MEAN REPEAT REPROD UNITS REPEAT REPROD 2.6 6.8

2.3

8.3

FEBRUARY 1979

INTERLABORATORY PROGRAM ON EVALUATION OF RUBBER HARDNESS - IRHD

MATERIAL A91-A92 MATERIAL A93-A94 CONNERCIAL TIRE TREAD COMMERCIAL TIRE TREAD MEAN LAB REL MEAN 46 REL VAR IRHD INSTRUMENT, UNIT, OR OTHER VARIATION CGDE DEV SDR IRHD DEV SDR CODE V0062 60.00 3.2 .00 61.50 .58 5.7 01 V0069 58.00 -.3 1.43 3.72X 58,00 1.15 01 -.3 V0070 -2.8 -1.1 01 56.50 57.50 2.35X V0071 57.00 1.07 -2.0 57.50 -1.1 1.46 01 V0072 56.50 -2.8 1.28 57.00 -2.0 .00 DATA RECEIVED LATE V0078 57.50 -1.1 1.28 58.00 1.41 01 .41 V0 0 84 59.00 1.4 58,00 -.3 1.05 01 .72 V0085 59.35 2.1 1.19 58,55 .7 01 V0087 61.00 4.9 .00 61.50 5.7 .00 01 **.** 3 voo88 58.00 1.28 58,00 -.3 1.46 01 .6 V0002 58.50 1.24 60.00 3.2 2.23X 01 V0095 57.50 $-1 \cdot 1$.51 57.50 -1.1 .47 01 .61 VO100 55,25 -5.0 •58 54,25 -6.7 01 V0102 59.50 2.3 1.33 59,50 2.3 2.03X 0 1 VO 1 1 1 59.00 1.4 .92 59.00 1.4 •58 +70 DATA RECEIVED LATE V0 1 28 57.00 -2.0 56,50 .58 1.01 -2.8 01 VO 141 57.00 56.50 1.05 -2₀0 .83 -2.8 01 58.00 VO 144 58.50 1.34 1.20 .6 -.3 0.1 VO 144B 58.50 .6 1.62 58.50 .6 1.05 0.1 2.7 60.25 V0168 59.75 .41 3.6 .61 0 1 V0169 57.0C -2.0 .41 1.26 57.00 1.05 01 -2.0 V0176 57.75 -1.1 57.50 -.7 . 81 0.1 .41 3.2 1.15 V0190 60.00 60.50 4.0 01 .50 V0200 55,65 -4.3 .62 54,50 -6.3 01 V0208 57.30 -1.5 1.28 56,90 1.73 01 -2.2 60.00 1.73 V0214 3.2 59.35 2.1 2.51X 01 1.07 V0224 60.00 3.2 60.00 3,2 1.69 01 V0233 58.50 .6 1.33 59.00 1.4 1.35 01 .33 V0235 56.50 -2.8 56,75 -2.4 .91 01 V0243 57.50 -1.1 .00 57.50 -1.1 . 47 01 VO 244 58.50 .6 1.01 58.00 . 94 01

REPORT 39 - 2

^{58.16 -} GR. MEAN - 58.16 1.42 - SD MEANS - 1.74 .54 - AVER SDR - .47 IRHD - UNIT - IRHD

⁵ TEST DETERMINATIONS

²⁹ LABORATORIES IN GRAND MEANS

³¹ LABORATORIES REPORTING

MARCH 1979

MOONEY VISCOSITY

NOTES

Materials R91 and R92 were the same rubber. Similarly, materials R93 and R94 were the same rubber. No sample preparation was required for materials R91 and R92 whereas, mill massing was required for materials R93 and R94.

 ${\tt V100}$ results were obtained at NBS on the manually closed viscometer used for determining the Mooney viscosities of the standard rubbers.

SUNMARY OF ANALYSES

		LABS	LABS		STD D			
PROPERTY	MATERIAL	INCL	CHIT	GR. MEAN	LABS	SHEETS	REPL	UNITS
	R91-R92		2	67,58	2,54	. 15	.30	VI.
VISCOSITY	R93-R94	40	2	63.97	3.89	• 53	. 48	ML

INTERLABORATORY PROGRAM ON EVALUATION OF RUBBER

REPORT 39 - 4

PRECISION OF METHODS

WARCH 1979

		REPL	REPL		ABSC		PERCENT		
PROPERTY	MATERIAL	CRP	ASTM	GR, MEAN	REPEAT	REPROD	UNITS	REPEAT	PEPROD
MEGNEY	R91-R92	3	3	67.58	.83	7.02	ML	1.2	10.4
VISCOSITY	R93-R94	3	3	63.97	1.34	10.77	ML	2.1	16.8

			ERIAL R91		MA	TERIAL RO	3-R94		
			TYL RUBBE			SBR			
LAB		MEAN	%	RE L	MEAN	%	REL	VAR	
CODE	F	ML	DEV	SDR	ML	DEV	SDR	CGDE	INSTRUMENT, UNIT, OR OTHER VARIATION
V0061		66,60	-1.5	1.52	65.20	1.9	1.55	01	
V0068		72.00	6.5	5.92X	73.00	14.1	2.78X	01	
V0071		66.95	9	.62	65.50	2.4	.63	01	
V0072		67.00	9	4.24X	54.00	-15.6	1.63	01	
V0077		66.30	-1.9	.48	56.40	-11.8	5.10X	01	
10011		00,50	-100	• 40	30440	-1140	3410%	0.	
V0078	49-	60.00	-11.2	2.62X	60.05	-6.1	.60	0.1	
VC 0 83		69.50	2.8	•98	67.15	5.0	2.47X	01	
	-01-	73.75	9.1	.97	66.50	4.0	1.31	•70	DATA RECEIVED LATE
V0090		69.75	3.2	.97	63,50	7	.90	01	
V0092		67.00	9	1.94	61.50	-3.9	1.20	01	
V0 0 95		68.25	1.0	.97	63.50	7	.90	01	
V0100		69.10	2.2	•54	63.70	4	. 34	01	
V0111	0	60.50	-10.5	1.74	60.65	-5.2	. 85	01	
V0117		67.25	÷.5	1.81	64.00	.0	2.18	01	
V0128		70.75	4.7	1.32	68.50	7.1	.60	01	
,0120					00,00		•00	•	
VC144		69.50	2.8	.00	65.00	1.6	1.04	0 1	
V0146		69.00	2.1	.48	66.25	3.6	• 52	01	
V0149		68.10	. 8	.62	67.05	4.8	1.96	C 1	
V0150		68.00	. 6	.97	62.00	-3.1	5.77X	0.1	
V0156		65.50	-3.1	.97	63,50	7	1.20	01	
WA 166		40.75	. 7	1.60	60.05	6.7			
V0166 V0169		68.75 70.75	1.7	1.68	68.25	-	. 90	01	
V0109		64.45	4.7	. 48	69.50	8.6	.82 1.07	01	
			-4.6	•54	62.30	-2.6	-		
V0182		69.00	2.1	. 48	65.50	2.4	• 00	01	
V0190		68,10	. 8	.76	61.25	-4.3	. 83	01	
V0207		71.20	5.3	.19	68.30	6.8	1.08	01	
V0208		67.50	1	.97	66.00	3.2	1.20	01	
V0211		69.00	2.1	.00	66.50	4.0	.60	01	
V0213		66.25	-2.0	1.45	66.00	3.2	.60	01	
V0214		65.00	-3.8	1.32	65,00	1.6	. 90	0 1	
V0217		66.50	-1.6	•97	63.50	7	30	01	
V0217		69.55	-		63.50		.30	01	
			2.9	1.01	67.35	5.3	• 56		
V0220		66.95	9	1.51	59.60	-6.8	. 45	01	
V0221		67.55	1	.36	64.20	.4	. 83	01	
V0223		66.50	-1.6	.84	6 5. 50	2.4	1.63	01	
V0230	0	69.00	2.1	. 86	56.30	-12.0	.73	0 1	
V0236		71.00	5.1	.57	66.00	3₀2	2.39	01	
V0238		64.00	-5.3	.00	56.00	-12.5	.60	0.1	
V0244		65.00	~3.8	2.91X	61.50	-3.9	1.20	01	
V0249		64.00	-5.3	1.77	67.50	5.5	1.04	•70	DATA RECEIVED LATE
V0250		68.75	1.7	• 76	65.30	2.1	. 73	01	
V0251		67.55	1	1.91	64,45	.8	1.53	01	
.0251		0,,55	-01	4074	04945	• 0	1.00	01	
		67.58	• GR	. WEAN -	63.97				3 TEST DETERMINATIONS
		2.54		MEANS .	3.89			4	O LABORATORIES IN GRAND MEANS
		.30		ER SDR .	.48				2 LABORATORIES REPORTING
		MI		UNIT -	NL				
				-					

VULCANIZATION CHARACTERISTICS USING OSCILLATING DISK CURE METER

NOTES

Materials W91 and W92 were the same rubber formulation. Similarly, materials W93 and W94 were alike.

V100 results were obtained at NBS using a Model TM-100 Monsanto Rheometer with a disk oscillating at $\pm 1^{\circ}$ amplitude and 1.7 hertz frequency.

 $\ensuremath{\mathrm{All}}$ participants used Monsanto Rheometers operated at one degree amplitude and 1.7 hertz frequency.

SUMMARY OF ANALYSES

		LABS	LABS		STD D	EVIATIO	NS	
PROPERTY	MATERIAL	INCL	GMIT	GR. MEAN	LABS	SHEETS		UNITS
SCORCH	W91-W92	35	6	4.633	.267	.023	.077	MINUTES
TIME	993-W94	35	6	4.642	.286	.021	.050	MINUTES
CURE TIME	W91-W92	35	6	6.73	.32	.03	.07	MINUTES
(50% NH)	W93-W94	35	6	6,68	.31	.02	.06	MINUTES
CURE TIME	W91-W92	35	6	10.32	•53	.06	.11	MINUTES
(90% AH)	W93-W94	35	6	10.26	• 55	.03	.09	MINUTES
MINIMUM	W91-W92	37	4	5.07	. 46	. 04	.08	POUND-INCHES
TORQUE	₩93-₩94	37	4	5.01	.42	.03	.07	PSUND-INCHES
MINIMUM	W91-W92	34	7	• 5726	.¢521	.0058	.0086	NEWTON-METERS
TORQUE	W93-W94	34	7	• 5720 • 5664	.0472	.0039	.0077	NEWTON-METERS
TORQUE	#93-#94	34	,	6 300 4	.0472	•0039	.0077	NEW TON-METERS
MAXIMUM	W91-W92	38	3	23, 52	1.57	.06	.13	POUND-INCHES
TORQUE	W93-W94	38	3	23,46	1.51	. 04	.08	POUND-INCHES
MAXINUM	W91-W92	38	3	2.6577	.1773	.0087	.0142	NEWICH-METERS
TORQUE	W93-W94	38	3		.1710	.0054	.0092	NEWTON-METERS
TANKOOF	WA3-WA4	38	3	2.65 0 3	* T / TO	• UUS 4	• 0092	MEWION-MEIE 43

PRECISION OF METHODS

		REPL	REPL		ABSØ	LUTE		PERC	ENT
PROPERTY	MATERIAL	CRP	ASTM	GR. MEAN	REPEAT	REPRED	UNITS	REPEAT	REPROD
000000		_	_		0.17	=			
SCORCH	W91-W92	3	3	4.633	.213	•739	MINUTE	4.6	16.0
TIME	W93-W94	3	3	4.642	.139	• 792	MINUTE	3.0	17.1
CURE TIME	W91-W92	3	3	6.73	. 20	. 89	MINUTE	3.0	13.2
(50% MH)	W93-W94	3	3	6.68	.17	_e 85	MINUTE	2.6	12.8
CURE TIME	W91-W92	-	-	10 32	3.0	1.48	MINUTE	2.9	14.3
		3	3	10.32	.30			-	
(90% MH)	W93-W94	3	3	10,26	.24	1.53	MINUTE	2.3	14.9
NININUN	W91-W92	3	3	5.07	.21	1.28	LB-IN.	4.2	25.2
TORQUE	₩93-₩94	3	3	5.01	.19	1.16	LB-IN.	3.8	23.1
MINIMUM	W91-W92	3	3	• 5726	.0238	.1443	N-M	4.2	25,2
TARQUE	W93-W94	3	3	• 5664	.0213	.1308	M-M	3.8	23.1
MAXIMUM	W91-W92	3	3	23.52	.35	4.35	LB-IN.	1.5	18.5
		3	3	23.46	. 23	4.19	LB-IN.	1.0	17.9
TORQUE	W93-W94	3	3	23,40	0 23	7017	PD-IM®	1.0	1103
MAXIMUM	W91-W92	3	3	2.6577	.0393	.4911	N-M	1.5	18.5
TERQUE	W93-W94	3	3	2.6503	.0254	. 4736	N-M	1.0	17.9
				-					

			ERIAL W91			TERIAL WO			
LAB		MEAN	*	REL	MEAN	%	REL	VAR	
CQDE	F	MINUTE	DEV	SDR	MINUTE	DEV	SDR	CODE	INSTRUMENT, UNIT, OR OTHER VARIATION
CODE	-			222	72	221	021	0322	
V0061		4.000	-13.7	1.93	4.000	-13.8	1.75	01	
V0064		4.725	2.0	•76	4.770	2.8	.67	•70	DATA RECEIVED LATE
V0071		4.615	4	1.83	4.625	4	.90	CI	DEIN RECEIVED DATE
V0074		3.750	-19.1	1.94	3.975	-14.4	1.60	01	
V0074	A	-						61	
V0 0 7 7		4.500	-2.9	8.28X	4.400	- 5•2	2.52X	V I	
V0.07.0			. 0 . 7	0.0	4.225	-9.0		01	
V0078		4.250	-8.3	•00		-	.00		
V0079		4.512	-2.6	•75	4.500	-3.1	• 00	01	
V0083		4.750	2.5	1.13	4.800	3.4	1.15	01	
V0085		4.650	• 4	• 0 0	4.550	-2.0	• 00	01	
V0086		4.800	3.6	•38	4.800	3.4	• 00	0.1	
V0090		4.750	2.5	1.84	4.925	6.1	•58	0.1	
V0092		4.300	-7.2	•76	4.300	-7.4	1.05	01	
V0095		4,550	-1.8	1.02	4.650	• 2	_e 58	01	
VO100	x	4.800	3.6	1.64	4.400	-5 ₀ 2	3.23X	01	
V0117		4.800	3.6	1.37	4.850	4.5	1.15	01	
V0120		4.750	2.5	1.50	4.870	4.9	•93	01	
V0128		4.800	3.6	.00	4.800	3.4	.00	0.1	
V0144		4.710	1.7	.19	4.565	-1.7	.40	0.1	
V0146		5,250	13.3	1.88	5,200	12.0	3.15X	01	
V0149		4.750	2.5	.38	4.775	2.9	. 58	01	
				•		_•	•		
V0150	х	5.850	26.3	1.77	5.800	24.9	2.51X	01	
V0152		4.800	3.6	.38	4.850	4.5	1.15	01	
	x	7.660	65.3	. 46	7.490	61.3	. 81	01	
V0156	-	4.850	4.7	.84	4.875	5.0	1.00	01	
V0158		4.625	- 2	.94	4.500	-3.1	.29	01	
10130		4.023	- • -	• • • •	4,500		,	٠.	
V0161		4.500	-2.9	.75	4.500	-3.1	.58	01	
V0166		4. 850	4.7	•75	4.850	4.5	2.57X	01	
V0169		4.300	-7.2	1.13	4.350	-6.3	•58	C1	
	9.7								
V0171		1.950	-57.9	.38	1.950	-58.0	. 79	0.1	
V0182		4.200	-9.4	1.62	4.150	-10.6	. 7 9	0.1	
V0190		4.125	-11.0	1.00	4.075	-12.2	. 50	01	
V0207		4.600	7	1.37	4.550	-2.0	1.57	01	
V0208		4.450	-4.0	1.00	4.505	-3.0	1.61	01	
V0211		4.600	7	.38	4.700	1.2	1.15	01	
VC213		4.750	2.5	.00	4.750	2.3	.00	01	
V0214		5.200	12.2	.00	5 _• 250	13.1	2.10	01	
V0217		4.700	1.4	• 00	4.750	2.3	• 00	01	
V0218		4.700	1.4	•75	4.700	1.2	1.15	CI	
V0221		4.500	-2.9	.38	4.500	-3.1	2.30X	01	
V0238		4.935	6.5	1.43	4.935	6.3	1.90	01	
V0243		4.750	2.5	.38	4.850	4.5	• 58	01	
		4.633	- GR	· MEAN -	4.642				3 TEST DETERMINATIONS
		· 267	- SD	MEANS -	.286			3	5 LABORATORIES IN GRAND NEANS
		.077	- AV	ER SDR -	.050			4	1 LANGRATORIES REPORTING
		MINUTE	-	UNIT -	MINUTE				

²²

SCORCH TIME

.32

MINUTE

.07

. AVER SDR .

UNIT

MATERIAL W91-W92 NATERIAL W93-W94 COMMERCIAL TIRE TREAD COMMERCIAL TIRE TREAD LAB MEAN 5 REL MEAN DEL VAD MINUTE CODE INSTRUMENT, UNIT, OR OTHER VARIATION DEV MINUTE CODE P SDR DEV SDR 6.00 1.45 V0061 -10.9 2.27 5.93 -11.2 01 V0064 DATA RECEIVED LATE •52 •70 6.7 1.06 7.18 7.18 **7.** 5 V0071 -19.2 1.00 .6 .65 3.73X 01 6.72 6.75 5.71 V0074 1.80 5.44 -14.5 01 .92 V0077 6.40 -4.9 5.97X 6.35 -5.0 01 V0078 6.12 -9.0 .40 6.17 -7.6 .00 01 V0079 -1.6 .50 6.62 -.9 4.7 .00 0 1 6.62 V0083 7.05 4.7 1.39 7.00 2.02 01 .00 6.87 -1.3 V0085 2.1 6.60 2.77X V0086 7.15 .80 .00 01 €.2 7.10 6.2 V0090 6.91 2.7 1.77 7.01 4.9 C 1 . 63 .40 V0092 6.22 **-7.**5 .62 6.25 -6.5 01 V0095 7.10 5.4 1.20 7.00 4.7 1.67 01 V0100 6.70 -.5 1.09 6.75 1.0 1.60 01 V0117 6.80 1.0 .00 6.75 1.0 1.26 01 .68 V0120 X 6.78 .7 2.21 7.07 5.8 0 1 V0128 6.85 1.7 .00 6.80 1.7 .46 01 V0144 6.81 1.2 .32 6.65 -.5 .38 01 V0146 7.35 9.2 1.46 7.10 6.2 2.99X 0 1 V0149 6.82 1.4 •75 6.77 1.4 . 64 01 8.00 V0150 X 8.05 19.6 .80 19.7 1.26 01 V0152 7.00 4.0 . 40 7.00 4.7 • 92 01 65.8 11.10 66.1 . 82 V0154 Y 11.43 .49 0.1 V0156 6.95 6.97 .69 3.2 1.04 4.3 01 V0158 -3.1 -5.0 6.52 1.12 6.35 .69 0 1 1.26 .80 V0161 6.30 6.30 -5.8 0.1 -6.4 .80 .92 7.00 7.05 5.5 V0166 4.0 0 1 -4.9 .00 V0169 .80 6.40 -4.3 01 6.40 . 84 V0171 -60.3 • 55 2.70 -59.6 X 2.67 0.1 V0182 -7.9 -8.7 .63 6.20 2.31 6.10 01 .93 .40 C 1 V0190 6.55 -2.7 6.51 -2.5 .40 6.45 6.76 -3.5 2.15 V0207 6.60 -2.0 01 v0208 6.66 -1.0 1.2 •51 0 1 .80 V0211 6.85 6.80 1.7 . 46 0.1 1.7 V0213 7.10 5.4 1.72 7.00 4.7 .92 0 1 V0214 2.77X 6.90 3.24X 5.4 3.2 . 2 V0217 .00 6.70 .00 6.75 . 2 01 6.75 V0218 1.09 6.75 .00 01 . 2 1.0 6.50 -3.5 .80 V0221 6.50 1.39 01 -2.8 V0238 1.65 7.12 5.7 .87 7.00 4.7 . 92 V0243 6.75 GR. MEAN . 6.73 6.68 3 TEST DETERMINATIONS

.31

MINUTE

.06

³⁵ LABORATORIES IN GRAND MEANS

⁴¹ LABORATORIES REPORTING

MATERIAL W91-W92

			ERIAL WS1		MATERIAL W93-W94				
		CONMER	CIAL TIRE	TREAD	COMMER	CIAL TIRE	TREAD		
LAB		MEAN	%	REL	MEAN	%	REL	VAR	
CGDE	F	MINUTE	DEV	SDR	MINUTE	DEV	SDR	CGDE	INSTRUMENT, UNIT, OR OTHER VARIATION
V0061		9.31	-9.8	2.56X	9.06	-11.7	1.94	01	
V0064		9.50	-7.9	.32	9.50	-7.4	1.12	•70	DATA RECEIVED LATE
V0071		10.44	1. 2	. 40	10.43	1.7	. 98	01	
V0074	X	8.43	-18.2	1.86	8.94	-12.9	1.81	01	
V0077		10.20	-1.1	6.13X	9,90	-3,5	1.00	01	
V0078		9.50	-7.9	. 94	9.60	-6.5	1.66	01	
V0079		10.31	0	•00	10.31	_e 5	.00	0.1	
V0083		11.00	6.6	1.44	10.85	5.7	1.53	01	
V0085		10.12	-1.9	.00	10.00	-2.6	2.00	01	
V0086		10.80	4.7	• 27	10,80	5.2	• 00	0 1	
V0090		10.86	5.3	.90	10.96	6.8	1.30	01	
V0092		9.50	-7.9	•73	9.45	-7.9	. 83	0.1	
V0095	4	10.25	7	.81	10.85	5.7	1.00	01	
A0100		9.80	-5.0	1.18	9.80	-4.5	1.76	01	
V0117		10.60	2.7	1.00	10.30	• 4	1.55	01	
V0120	х	10.65	3.2	2.49X	12.18	18.7	3.15X	01	
V0128		10.40	. 8	.00	10.40	1.3	.33	0.1	
V0144		10.12	-1.9	.89	9.79	-4.6	.30	01	
V0146		10.85	5.2	1.74	10.70	4.2	2.40X	0 1	
V0149		10.35	•З	1.69	10,37	1 + 1	. 45	0 1	
V0150	x	13.30	28.9	1.34	12.90	25.7	1.15	01	
V0152		10.70	3.7	.00	10.70	4.2	. 33	01	
V0154	X	18.06	75.0	. 25	17.49	70.4	. 37	01	
V0156		10,62	3.0	2.07	10.67	4.0	.95	01	
V0158		9.90	-4.0	.32	9.67	-5.7	1.00	0 1	
V0161		9,95	-3,6	.73	9.85	-4.0	. 67	01	
V0166		10,50	1.8	1.00	10.45	1.8	1.00	0 1	
V0169		9.80	-5.0	1.47	9.90	-3.5	1.45	01	
V0171	х	3.97	-61.5	.50	3,95	-61.5	.57	0.1	
V0182		9.47	-8,2	. 94	9.32	-9.1	.33	01	
V0190		10.52	2.0	.94	10.52	2.5	. 17	0.1	
V0207		10.05	-2.6	.73	10.15	-1.1	1.33	01	
V0208		10.02	-2.8	3.69X	10.40	1.3	3.69X	0.1	
V0211		10.60	2.7	.73	10.65	3.8	.67	01	
V0213	*	11.00	6.6	2.13	10.35	. 8	.67	0 1	
V0214	40	11.95	15.8	.54	11.90	15.9	.67	01	
V0217		9.95	-3.6	.00	10.00	-2.6	.00	0.1	
V0218		10.50	1.8	. 27	10.40	1.3	. 33	01	
V0221		10.00	-3.1	1.61	9.70	-5.5	1.21	01	
V0238		10.87	5.4	4.16X	10.75	4.7	1.44	01	
V0243		10.25	7	•54	10,25	1	1.15	01	
		10.32	- GR	. MEAN -	10.26				3 TEST DETERMINATIONS
		• 53		MEANS -	•55			3	5 LAUGRATORIES IN GRAND MEANS
		.11	• A V	ER SDR .	.09			4	1 LABORATORIES REPORTING
		HINUTE	-	UNIT -	MINUTE				

CURE TIME (90% MH)

			MATERIAL				MATERIAL				
			ERCIAL			Семя	ERCIAL '	TIRE TR	EAD		
LAB		MEAN	MEAN		REL	MEAN	MEAN		REL	VAR	
CODE	F	LB-IN.	N - M	DEV	SDR	LB-IN.	N-M	DEV	SDR	CODE	INSTRUMENT, UNIT, OR OTHER VARIATION
V0061		5.45	.6158	-	•38	5.40	.6101		• 42	0.1	
V0064		5, 52	• 6243	-	•52	5.50	.6214		•42	+70	DATA RECEIVED LATE
V0071	*	5.90	•6666		3.34X	5.35	.6045		1.16	01	
V0074		4.62	• 5226	- 8 _e 7	1.82	4.77	• 5395	-4.8	1.82	01	
V0077	X	7.25	.8192	43.1	3.04X	6.95	.7853	38,6	1.16	01	
V0078		5.10	• 5762	. 6	.00	5.15	•5819	2.7	.00	01	
V0079		5.00	.5649	-1.3	.00	5.00	.5647	3	.00	0 1	
E800V		5.20	.5875	2.6	1.38	5.10	• 5762	1.7	.73	01	
V0085		4.69	. 5300	-7.4	.00	4.74	•5350	-5.5	.00	40	GRIGINAL IN NEWTON-WETER
V0086		4.70	•5311	-7 _• 2	.00	4.65	· 5254	-7. 2	.42	01	
VOC 90		4.80	.5424	-5.3	1.57	4.85	.5480	-3.3	1.48	01	
V0092		5.40	.6101	6.6	1.14	5,35	.6045	6.7	.00	01	
V0095		5.20	.5875	2.6	.76	5.15	.5819	2.7	.00	01	
V0100	49-	4.50	.5085	-11.2	.00	4.90	.5537		.00	01	
V0117		4.90	.5537	-3.3		4.95	.5593		.73	0.1	
						_	-		• -		
V0120		4.65	.5254	-8.2	1.14	4.60	.5198	-8.2	. 85	01	
V0128		5.20	.5875		.00	5.00	.5649		.00	0.1	
VO144		6.85	.7740			6.70	.7570		1.16	0.1	
V0146		5.50	.6214	-	1.76	5.60	6327		1.58	01	
V0149		5.00	5649	-	1.40	4.92	• 5565		2.383		
10143		5,00	. 5045	-100	1.40	40 72	. 5505	-160	2.002	. 01	
V0150		5.35	.6C45	5.6	3.55X	5.10	.5762	1.7	1.85	01	
V0152		4.80	.5424		.38	4.80	.5424		.42	01	
V0154	v	8.35	9435		.76	8.30	.9378		• 42	01	
V0156		5.00	.5649	-	.76	4.85	.5480		• 42	01	
V0158		4.99		-1.5	. 46	4.99	.5644			01	
10130		4033	. 3036	-105	• 40	4. 79	. 3044	- 0 4	.00	C I	
V0161		4.35	4015	-14.2	.38	4.40	4072	+12 ₀ 2	1.16	01	
V0166		4.70	.5311		.76	4.65	.5254		.42	01	
V0169		4.87	.55(0	-	1.80	4.65	.5250		1.73	40	GRIGINAL IN NEWTON-METER
V0109		4.50	-	-11.2	1.14	4.20		-16.2		01	ORIGINAL IN NEWION-MAILER
V0182	w					_	-	-	. 85		
V0182		5.50	.6214	8.5	1.04	5.45	.6158	8.7	2, 201	. 01	
V0190	v	12.00	1.3559	99.9	2.28X	11 75	1.3276	00.0	1.53	01	
V0207	Α.	5.25	.5932	-	.76	5.10	.5762		. 85	01	
V0207		4.56	-	-	1.44	4.47		-10.8	.81	01	
V0208		5.40	.6101		.76	5.30	.5988		1.97%		
V0211		5.45	.6158				.6101	7.7		01	
VUZ 13		5,45	.0136	7.0	.38	5.40	.0101	/ 0 /	.00	01	
V0214		5.25	. 5932	3.6	1.00	5.15	.5819	2.7	. 85	0.1	
V0217		4.60	.5198	-	.00	4.80	.5424	-4.3	.00	01	
V0217		5.00	. 5649		.00	4.90	• 5537		•42	01	
V0210		5.00	.5650	_	.34	5.04	.5700	•6	1.72	40	GRIGINAL IN NEWTON-METER
V0238		5.00	.5649		.95	5.00	.5649	3	.55	01	ONIGINAL IN MEWION-MELEK
10230		3.00	. 3049	-1.3	. 33	3.00	. 3049	3	. 55	01	
V0243		5, 25	•5932	3.6	1.04	5.05	.5706	. 7	1.58	01	
		* = 3		3.0		200		•			
		5.07	.5726	- GR.	MEAN =	5.01	. 5664				3 TEST DETERMINATIONS
		.46	.0521	= SD	MEANS -	• 42	.0472			3	7 LABORATORIES IN GRAND MEANS
		.08	.0086	- AVE	R SDR .	. 07	.0077			4	1 LABORATORIES REPORTING
		LB-IN.	N = M	= U	NIT "	LB-IN.	N-M				

MINIMUM TORQUE

INTERLABGRATORY PROGRAM ON EVALUATION OF RUBBER MAXINUM TORQUE - POUND-INCHES

			ATERIAL			ATERIAL					
7.47			ERCIAL				RCIAL T				
LAB	-	MEAN	MEAN		REL	MEAN	MEAN	% DD1		VAR	THEMPHYPUM HATT AD AMUED WALTANTAN
CODE	F	LB-IN.	N-M	DE V	SDR	LB-IN.	N - M	DEV	SDR	CODE	INSTRUMENT, UNIT, OR OTHER VARIATION
V0061		25.10	2.8360	6.7	1.51	25.10	2.8360	7.0	.00	01	
V0064			2.6609	.1	• 53		2.6553	. 2	•53		DATA RECEIVED LATE
V0071	45		2.7174		4.72X	-	2.6270		1.98	01	
V0074			2.6440	-	.35	-	2.6609	. 4	1.42	01	
V0077			2.9095		1.06		2.8530		1.07	01	
		_	-	-	•	_ •					
V0078			2.8360		.92		2.8360		.71	01	
V0079			2.6779	. 8	.92		2.6750		.00	0.1	
V0083			2.7344		1.84		2.7061		2.01	01	
V0085			2.3451		•61		2.3701		.00	40	GRIGINAL IN NEWTON-METER
V0086		22.85	2,5818	-2.9	.69	22.70	2.5649	-3 ₀ 2	.71	01	
V00 90		24. 25	2.7400	3.1	1.15	24.02	2.7146	2.4	.49	01	
V0092		-	2.8643		1.32		2.8360		.94	01	
V0095			2.6270		.46		2.6496		.71	01	
VO 1 0 0			2.5197		•00		2.5423		.00	01	
V0117			2.4858		•63		2.4971		.36	C I	
		22800	28 40 30	-0.5	• 00	22.10	2.43.11	- 58 0	•50	• •	
V0120		22.80	2.5762	-3.1	. 69	22.90	2.5875	-2.4	. 97	01	
V0128		23.75	2.6835	1.0	1.44	23.50	2.6553	. 2	.71	01	
V0144		24.95	2.8191	6.1	.46	24.80	2.8022		.71	01	
V0146		23,50	2.6553	1	2.90X	23.45	2.6496	0	1.64	01	
V0149		22,25	2.5140	- 5. 4	•58	22.12	2.4999	-5.7	1.24	01	
VO 150			2.6553		.00		2.6270			01	
V0152			2.5988	-	•00	-	2.5988		• 36	0.1	
V0154	45		3.1468		. 69		3.1411		• 97	01	
V0156			2.6214			-	2.5705	-3. 0	.71	01	
VO158		24.00	2.7118	2.0	1.38	23.90	2.7005	1.9	.67	6.1	
V0161		21 . 10	2.3841	-10.3	1.01	21.30	2.4067	-0. 2	1.07	01	
V0166					1.29	22.10			•00	01	
V0169					2.47X		2.5351		. 94		GRIGINAL IN NEWTON-NETER
	45	19.00			.23		2.1581		.71	0.1	ORGUZNAS IN NEWTON RESERVE
V0182	-		2.7852				2.8248		1.33	01	
VO 102		24,03	201032	4.0	1.90	25.00	200240	0.0	1,00	٠.	
V0190	X	48.25	5.4518	99.9	.63	48.30	5.4574	99.9	.62	0 1	
V0207		23.65	2.6722	• 5	1.01	23.70	2.6779	1.0	1.29	01	
V0208		24.30	2.7462	3.3	.83	24.67	2.7880	5.2	4.01)	K 01	
V0211		24.85	2.8078	5.6	1.63	24.65	2.7852		.62		
V0213		25.00	2.8248	6.3	.46	24.80	2.8022	5.7	3, 103	(01	
		04 45							7.		
V0214		-	2.7852		1.03		2.7683		. 36	01	
V0217	**		2.4688		•00	22.10			.00	01	
V0218 V0221	X.	-	1.1807		• 23		1.1694		. 36	01	GRIGINAL IN NEWTON-VETER
			2.6301				2.6401				ORIGINAL IN NEWTON-VETER
VC238		22,00	2.4858	-0.5	•58	21.75	2.4575	-7.3	3, 55)	01	
VC243		23.70	2.6779	• 8	1.01	23.65	2.6 7 22	. 8	1.55	01	
		23 52	2.6577	e CP	MEAN -	27 44	2 6503				3 TEST DETERMINATIONS
		1.57			MEANS *	1.51	2.6503 .1710				8 LABORATORIES IN GRAND MEANS
		.13			R SDR =	.08	.092				1 LABORATORIES REPORTING
		LE-IN.	N=N			LB-IN.	N+M				a seesary rest of SABW PARVERSON
		_ = =		•		20 1					

MATERIAL W93-W94

NBS-114A (REV. 9-78)	
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET 1. PUBLICATION OR REPORT NO. 2. Gov't. A	cossion No. 3. Recipient's Accession No.
4. TITLE AND SUBTITLE	5. Publication Date
INTERLABORATORY PROGRAMS FOR RUBBER	June 27, 1979
Analyses No. 39 January - March 1979	6. Performing Organization Code
7. AUTHOR(S)	8. Performing Organ, Report No.
J. Horlick, G. W. Bullman, T. Cummings	NBSIR 79-1377
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. Project/Task/Work Unit No.
	7825578
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234	11. Contract/Grant No.
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State,	ZIP) 13. Type of Report & Period Covered
Collaborative Testing Services, Inc., 9241 Wood Glad	e Drive, FINAL
Great Falls, VA 22066	14. Sponsoring Agency Code
Collaborative Reference Programs provide participati means for checking periodically the level and unifor in comparison with that of other participating labor by-product of the programs is the provision of reali of the testing art. This is one of the periodic rep for each participant, within and between laboratory information for participants and standards committee	mity of their testing atories. An important stic pictures of the state orts showing averages variability, and other s.
17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of separated by semicolons)	
Collaborative reference program; Laboratory evaluation Reference samples; Rubber; Testing calibration.	on; Precision;
18. AVAILABILITY Unlimited 1	9. SECURITY CLASS (THIS REPORT) 21. NO. OF PRINTED PAGES
(XX) For Official Distribution. Do Not Release to NTIS	unclassified 36
Order From Sup. of Doc., U.S. Government Printing Office, Washington, DC 20402, SD Stock No. SN003-003-	20. SECURITY CLASS (THIS PAGE)
Order From National Technical Information Service (NTIS), Springfield,	UNCLASSIFIED