Practice Final Exam – Simulation Results

ECEn 483/ ME 431

Winter 2023

Name:	Iacob Child	

At the end of the exam, print this file and staple it to the handout portion of the exam.

To print to the digital lab Caedm printer, go to https://webprint.et.byu.edu/ and then select EB423.

Part I (25 pts)	
Part II (25 pts)	
Part III (25 pts)	
Part IV (25 pts)	
Total: (100 pts)	

Part 1. Design models

1.2 Insert plot of the output of the simulation model with initial condition $z(0) = z_e$ and input F_e directly below this line.

Part 2. PID Control

2.4 Insert a plot that shows both z and z^r when z^r is a square wave with magnitude ± 0.5 meters and frequency 0.05 Hz, and when using a PD controller.

2.5 Insert a plot that shows both z and z^r when z^r is a square wave with maginitude ± 0.5 meters and frequency 0.05 Hz, and when using a PID controller.

***If you set tr = 0.25 (and leave everything else the same) you get a bit better performance although some more tuning would need to be done to get rid of the wee bit of steady state error lingering

2.6 Insert the Python code for ${\tt ctrlPID.py}$ that implements PID control directly below this line.

import numpy as np import slopedMassParam as P

```
class ctrlPID:

def __init__(self):

tr = 0.5 #sec

wn = 2.2/tr

zeta = 2.0

a1 = P.b/ (P.m)

b0 = 1.0 / (P.m)

a0 = P.k1 / (P.m)

self.kd = (2.0*zeta*wn - a1) / b0 #these are general equations and should work

for all PD systems

self.kp = (wn**2 - a0) / b0

self.ki = 5.0 #Integrator gain that I tune

print("kd: ", self.kd, " kp: ", self.kp, " ki: ", self.ki)

#other needed parameters

self.sigma = P.sigma #0.05 I believe
```

```
self.Ts = P.Ts
    self.beta = (2.0 * self.sigma - P.Ts) / (2.0 * self.sigma + P.Ts) #dirty derivative
gain
    self.limit = P.F max #his built in saturation function uses self.limit
    #variables and delayed variables for calculation
    self.zdot = 0.0
    self.integrator = 0.0
    self.error_d1 = 0.0
    self.z_d1 = 0.0 #delayed z
  def update(self, z_r, z):
    z = z \#[0][0]
    error = z_r - z
    #integrate on error
    self.integrator = self.integrator + (P.Ts/2.0)*(error + self.error d1)
    #compute derivative
    self.zdot = self.beta*self.zdot + (1.0-self.beta)*((z - self.z_d1) / P.Ts)
    F tilde = self.kp * error - self.kd * self.zdot + self.ki * self.integrator
    z_{eq} = 0.0
    F_{eq} = P.k1 * z_{eq} + P.k2 * z_{eq}**3 - P.m * P.g * np.sin(np.pi/4)
    F = self.saturate(F tilde+F eq)
    #integrator anti windup
    if self.ki != 0.0:
      self.integrator = self.integrator + P.Ts/self.ki*(F - (F_tilde+F_eq)) #?ie if it is
saturating decrease the integrator
    #update delayed variables
    self.error_d1 = error
    self.z d1 = z
    return F
  def saturate(self, u):
    if abs(u) > self.limit:
      u = self.limit*np.sign(u)
    return u
  #this is the saturate function he gave us, I will use the one from the practice final
  # def saturate(u, limit):
      if abs(u) > limit:
        u = limit*np.sign(u)
  #
      return u
```

Part 3. Observer based control

3.5. Insert a plot of the step response of the system for the complete observer based control.

3.6 Insert a plot of the state estimation error.

3.7 Insert a copy of ${\tt ctrlObsv.py}$ that implements the observer based controller directly below this line.

```
import numpy as np
import slopedMassParam as P
import control as cnt
```

#State Space Matrices
self.A = np.array([[0.0, 1.0],

```
class ctrlObsv:
    def __init__(self):
        tr = 0.5
        tr_obs = tr/5.0 #this satisfies the 5x faster requirment
        zeta = 0.707
        wn = 2.2/tr
        wn_obs = 2.2/tr_obs
        integrator_pole = -2.0 #make sure when I make the poly this is a positive value
so it comes out negative in the left hand plane
        zeta_obs = 0.707
        self.limit = P.F_max
```

```
[-P.k1/(P.m), -P.b/(P.m)]]
    self.B = np.array([[0.0],
           [1/(P.m)]]
    self.C = np.array([[1.0, 0.0]])
    self.D = np.array([[0.0]])
    #form augmented system
    A1 = np.vstack((np.hstack((self.A, np.zeros((np.size(self.A, 1),1)))),
            np.hstack((-self.C, np.array([[0.0]]))) ))
    self.B1 = np.vstack((self.B, 0.0))
    #gain calculation
    des_char_poly = np.convolve([1, 2 * zeta*wn, wn**2],
                  [1, -integrator_pole]) #!when is the integrator pole negative vs
positive?
    des_poles = np.roots(des_char_poly)
    # Compute the gains if the system is controllable
    if np.linalg.matrix_rank(cnt.ctrb(A1, self.B1)) != 3:
      print("The system is not controllable")
    else:
      self.K1 = (cnt.place(A1, self.B1, des_poles))
      self.K = self.K1[0][0:2]
      self.Ki = self.K1[0][2]
    print('K: ', self.K)
    print('ki: ', self.Ki)
    #print(des_poles)
    #?3.3 for disturbance observer
    #do this
    #augmented matrices for observer design
    self.A2 = np.concatenate((
              np.concatenate((self.A, self.B), axis=1),
              np.zeros((1,3))),
              axis=0
    self.B2 = np.concatenate((self.B, np.zeros((1, 1))), axis=0)
    self.C2 = np.concatenate((self.C, np.zeros((1, 1))), axis=1)
    #disturbance observer design
    dist obs pole = -20.0 #same as above, both negative or both positive
    wn obs = 2.2/\text{tr obs}
    des_obs_char_poly = np.convolve([1, 2*zeta_obs*wn_obs, wn_obs**2],
                     [1.0, -dist_obs_pole]) #! should this pole input be negative or
positive?
    des obs poles = np.roots(des obs char poly)
    #compute the gains if the system is observable
    if np.linalg.matrix_rank(cnt.ctrb(self.A2.T, self.C2.T)) != 3:
```

```
print("The system is not observable")
    else:
      self.L2 = cnt.acker(self.A2.T, self.C2.T, des_obs_poles).T
    print('L2: ', self.L2)
    print("\n")
    print('A2: ', self.A2)
    print("\n")
    print('B1: ', self.B1)
    print("\n")
    print("C2: ", self.C2)
    #variables to stay behind
    self.zdot = 0.0 #estimated derivative of z
    self.z_d1 = 0.0 \#z delayed by one sample
    self.integrator = 0.0
    self.error_d1 = 0.0
    self.x_hat = np.array([[0.0], \#z_hat_0])
                [0.0]]) #zdot_hat_0
    self.F d1 = 0.0
    self.obs_state = np.array([
      [0.0], #z_hat
      [0.0], #zdot hat
      [0.0], # estimate of the disturbance
    1)
  def update(self, z_r, y):
    x_hat, d_hat = self.update_observer(y)
    z_hat = x_hat[0][0]
    error = z_r - z_hat
    #integrate the error
    self.integrator = self.integrator + (P.Ts/2.0)*(error + self.error d1)
    self.error_d1 = error #update the error
    #copmute the state feedback controller
    z_{eq} = 0.0 \# do I use 0.0 or z_{hat}?
    F = P.k1 * z = P.k2 * z = q**3 - P.m * P.g * np.sin(np.pi/4)
    F_tilde = -self.K @ x_hat - self.Ki * self.integrator - d_hat
    F = self.saturate(F_tilde.item(0) + F_eq)
    # self.F d1 = F
    self.F d1 = F tilde #make sure down below in the observer that F d1 *does not*
include F ea
    return F, x_hat, d_hat
  def update_observer(self, y):
    # update the observer using RK4 integration
    F1 = self.observer_f(self.obs_state, y)
    F2 = self.observer_f(self.obs_state + P.Ts / 2 * F1, y)
```

```
F3 = self.observer_f(self.obs_state + P.Ts / 2 * F2, y)
    F4 = self.observer_f(self.obs_state + P.Ts * F3, y)
    self.obs_state += P.Ts / 6 * (F1 + 2 * F2 + 2 * F3 + F4)
    x_hat = self.obs_state[0:2]
    d_hat = self.obs_state[2][0]
    return x hat, d hat
  def observer_f(self, x_hat, y):
    #this is called in the update observer function for RK4
    # xhat = [z_hat, zdot_hat]
    # xhatdot = A*(xhat-xe) + B*(u-ue) + L(y-C*xhat)
    #!is it always going to be B1 and A2 and C2 etc????
    xhat_dot = self.A2 @ x_hat
          + self.B1 * (self.F d1)\
          + self.L2 * (y - self.C2 @ x_hat)
    return xhat_dot
  def saturate(self,u):
    if abs(u) > self.limit:
      u = self.limit*np.sign(u)
    return u
#this is the saturate function he gave us, I am going to use the one from the practice
# def saturate(u, limit):
   if abs(u) > limit:
#
      u = limit * np.sign(u)
#
  return u
```

Part 4. Loopshaping

4.6 Insert the Bode plots for the PID controlled plant, and the loopshaped controlled plant below this line.

This plot below I used to help tune etc...

4.7 Insert simulation results for the loopshaping controller below this line.

4.8 Insert the file loopshapeRodMass.py for the controller below this line. import slopedMassParam as P import matplotlib.pyplot as plt from control import TransferFunction as tf from control import tf, bode, margin, step_response, mag2db import numpy as np import loopshape_tools as ls from ctrlPID import ctrlPID PID = ctrlPID()

```
PLOT = True
dB flag = True
##############
# Control Design
#############
C = C_{pid} * ls.lead(w=14.7769, M=125.0) * ls.lag(z=12.0, M=120.0) * ls.lpf(p=27.0)
#lead is for phase margin, lag is for disturbances/tracking, lpf is for noise
print('C(s)=',C)
# add a prefilter to eliminate the overshoot
F = tf(1, 1) * ls.lpf(p=3.0) #originally this was p=3.0 from the example I think?
print('F(s)=', F)
# Convert Controller to State Space Equations if following method in 18.1.7
C \text{ num} = \text{np.asarray}(C.\text{num}[0])
C den = np.asarray(C.den[0])
F_{num} = np.asarray(F.num[0])
F_{den} = np.asarray(F.den[0])
if name == " main ":
 # calculate bode plot and gain and phase margin for just the plant dynamics
  #for the above see the quick code just below
 #### Code added to find gammaN and gammaR and to plot the noise and tracking
specifications
 #for the controller
 # #Also quick code to plot just the plant
 mag, phase, omega = bode(Plant, dB=True,
          omega=np.logspace(-3, 5),
          Plot=True, label="$P(s)$")
 gm, pm, Wcg, Wcp = margin(Plant * C_pid)
 magCP, phaseCP, omegaCP = bode(Plant*C_pid, plot=False,
```

```
omega = [0.01, 1000.0], dB=dB flag) #TODO fill out these omega's for
gammaN and gammaR
 mag4Plt, phase4Plt, omega4Plt = bode(Plant*C_pid, plot=False,
             omega = [0.1, 1000.0], dB=dB flag) #TODO fill out these omegas for
the tracking and noise specifications
 #Tracking and noise specifications
 ls.spec_tracking(gamma=0.1*1.0/mag4Plt[0], omega=0.1, flag=dB_flag) #tracking
specification, the 0.1 is a "factor of 10", omega is at where
 ls.spec noise(gamma=0.1*mag4Plt[1], omega=1000.0, flag=dB flag)
 print("MagCP: ", magCP)
 print("for original C_pid system:")
 #It will spit out absolute magnitude, so I will not need to convert
 print(" pm: ", pm, " Wcp: ", Wcp, "gm: ", gm, " Wcg: ", Wcg)
 print("gammaR = ", 1.0/magCP[0])
 print("gammaN = ", magCP[1])
 #A few additional print statements
 print("\n")
 print("C(s): ", C)
 print("\n")
 print("F(s): ", F)
 ##### End of my input stuff
 # calculate bode plot and gain and phase margin for original PID * plant dynamics
 mag, phase, omega = bode(Plant * C_pid, dB=True,
             omega=np.logspace(-3, 5),
             Plot=True, label="$P(s)C_{pid}(s)$")
 gm, pm, Wcg, Wcp = margin(Plant * C_pid)
 print("for original C_pid system:")
 if dB flag is True:
   print(" pm: ", pm, " Wcp: ", Wcp, "gm: ", mag2db(gm), " Wcg: ", Wcg)
 elif dB flag is False:
   print(" pm: ", pm, " Wcp: ", Wcp, "gm: ", gm, " Wcg: ", Wcg)
 # Define Design Specifications
 # specs go here
 # ls.spec_...
```

```
# plot the effect of adding the new compensator terms
mag, phase, omega = bode(Plant * C, dB=dB flag,
            omega=np.logspace(-4, 5),
            Plot=True, label="$P(s)C_{final}(s)$")
gm, pm, Wcg, Wcp = margin(Plant * C)
print("for final P*C:")
if dB_flag is True:
 print("pm: ", pm, "Wcp: ", Wcp, "gm: ", mag2db(gm), "Wcg: ", Wcg)
elif dB flag is False:
 print(" pm: ", pm, " Wcp: ", Wcp, "gm: ", gm, " Wcg: ", Wcg)
plt.figure(1)
fig = plt.gcf()
fig.axes[0].legend()
# now check the closed-loop response with prefilter
# Closed loop transfer function from R to Y - no prefilter
CLOSED_R_{to}Y = (Plant * C / (1.0 + Plant * C))
# Closed loop transfer function from R to Y - with prefilter
CLOSED R to Y with F = (F * Plant * C / (1.0 + Plant * C))
# Closed loop transfer function from R to U - no prefilter
CLOSED_R_{to}U = (C / (1.0 + Plant * C))
# Closed loop transfer function from R to U - with prefilter
CLOSED_R_{to}_U_{with}_F = (F * C / (1.0 + Plant * C))
fig = plt.figure(2)
plt.clf()
plt.grid(True)
mag, phase, omega = bode(CLOSED_R_to_Y, dB=dB_flag, Plot=True,
            color=[0, 0, 1], label='closed-loop $\\frac{Y}{R}$ - no pre-filter')
mag, phase, omega = bode(CLOSED_R_to_Y_with_F, dB=dB_flag, Plot=True,
            color=[0, 1, 0], label='closed-loop $\\frac{Y}{R}$ - with pre-filter')
fig.axes[0].set_title('Closed-Loop Bode Plot')
fig.axes[0].legend()
plt.figure(4)
plt.clf()
plt.subplot(211), plt.grid(True)
T = np.linspace(0, 2, 100)
_, yout_no_F = step_response(CLOSED_R_to_Y, T)
, yout F = \text{step response}(CLOSED R \text{ to } Y \text{ with } F, T)
plt.plot(T, yout_no_F, 'b', label='response without prefilter')
plt.plot(T, yout_F, 'g', label='response with prefilter')
```

```
plt.legend()
plt.ylabel('Step Response')

plt.subplot(212), plt.grid(True)
_, Uout_no_F = step_response(CLOSED_R_to_U, T)
_, Uout_F = step_response(CLOSED_R_to_U_with_F, T)
plt.plot(T, Uout_no_F, color='b', label='control effort without prefilter')
plt.plot(T, Uout_F, color='g', label='control effort with prefilter')
plt.ylabel('Control Effort')
plt.legend()

plt.show()
```