Теория функций комплексного переменного

4 семестр

Часть 1

Основные типы задач для подготовки к контрольным работам и зачету

Часть 1 построена следующим образом. По каждой теме курса математического анализа 4-го семестра приведены типовые задачи. Для успешной подготовки к контрольным работам и сдаче зачета студенту рекомендуется выполнить все такие задачи.

Задачи по теме «Комплексные числа. Области на комплексной области»

<u>Задача №1.1</u> Заданы два комплексных числа z_1 и z_2 в алгебраической форме.

- 1) Представить комплексные числа z_1 и z_2 в тригонометрической и показательной формах.
- 2) Вычислить $(z_1/z_2)^{200}$. Результат изобразить на комплексной плоскости.

вариант№	z_1	z_2	вариант№	\mathcal{Z}_1	z_2
1	2+2i	$\sqrt{2} + i\sqrt{6}$	3	$-\sqrt{3}+i$	-2 + 2i
2	$2-2\sqrt{3}i$	$4i^{51}$	4	-5-5i	$5(\sqrt{3}-i)$

<u>Задача №1.2</u>. Вычислить значение выражения A, используя действия с комплексными числами. Представить полученное комплексное число в алгебраической, тригонометрической и показательной формах.

вариант№	A	вариант№	A
1	$(2-2i)^7$	2	$\left(-\sqrt{3}-3i\right)^3$
3	$\left((-1+i)\left(-3+\sqrt{3}i\right)\right)^4$	4	$((1+i^3)(2-2^5i))^{10}$
5	$\left(-i^7\left(2-2\sqrt{3}i\right)\right)^{11}$	6	$\left(i^{11}\left(-\sqrt{2}-\sqrt{6}i\right)\right)^{13}$
7	$\left(-\sqrt{3}-i\right)^9(1+i^{17})^7$	8	$\left(\frac{1-i}{1+i}\right)^8$

B электротехнике при расчете электрических цепей широко применяются комплексные числа (метод комплексных амплитуд) (задача №1.3).

<u>Задача №1.3.</u> Для участка электрической цепи, состоящего из последовательно соединенных сопротивления r и индуктивности L, найти комплексное сопротивление Z и комплексную проводимость Y. Ответ изобразить на комплексной плоскости. Отметим, что величина WL называется индуктивным сопротивлением.

Указание: воспользоваться формулами $Z = r + wL \cdot i$, $Z = \frac{1}{Y}$.

вариант№	r	wL	вариант№	r	wL
1	20	30	3	18	64
2	35	29	4	13	81

<u>Задача №1.4</u>. Изобразить на комплексной плоскости область, заданную неравенством или системой неравенств.

вариант№		вариант№	
1	$ z-2i \le 3$	2	$\left z - 5 + 2i\right \ge 4$
3	1 < z - 5 < 4	4	2 < z + 3 - 3i < 5
5	$\operatorname{Re} z < \frac{1}{2}$	6	$\frac{\pi}{6} < \arg z < \frac{\pi}{2}$
7	$\begin{cases} z+i < 1 \\ \text{Re}z < 0 \end{cases}$	8	$ \begin{cases} 0 < \text{Re}z < 3 \\ -3 < \text{Im}z < 0 \end{cases} $
9	$ \begin{cases} 1 < z \cdot \overline{z} < 4 \\ \text{Im}\overline{z} < 0 \end{cases} $	10	$\begin{cases} z \cdot \overline{z} < 9 \\ 0 < argz < \frac{\pi}{3} \end{cases}$
11	$\left \frac{z-2}{z+2}\right < 1$	12	$Im(z^2 + 2i) > 0$

Задачи по теме «Функции комплексного переменного, их свойства» <u>Задача №1.5</u>. Вычислить все значения заданного выражения A.

вариант№	A	вариант№	A
1	$Ln(1+\sqrt{3}i)$	2	$(-\sqrt{3}+i)^{5i}$
3	$(-i)^{-5i-5}$	4	$e^{5+(-rac{\pi i}{2})}$
5	$\sin(5i)$	6	sh(-8i)

<u>Задача №1.6.</u> Решить уравнение. Корни уравнения изобразить на комплексной плоскости.

вариант№	уравнение	вариант№	уравнение
1	$z^3 - 27 = 0$	3	$z^4 + 16 = 0$
2	$z^3 - 8i = 0$	4	$z^8 + \left(\frac{1+i}{1-i}\right)^2 = 0$
5	$e^z + 3i - 3 = 0$	6	$\cos^2 z - \sin^2 z = 2$
7	$e^{2z} + 3e^z - 4 = 0$	8	sin5z = 2
9	cosz = -3	10	shz = -5
11	ch2z = 6	12	$\cos z - i\sin z = 2$

<u>Задача №1.7</u>. Исследовать функцию f(z) на аналитичность, используя условия Коши-Римана и свойства аналитических функций.

вариант№	f(z)	вариант№	f(z)
1	$4z^2 + 5z - 2i$	2	$e^{6z} + 3z$
3	$iz^2 + 3\overline{z} + 4i$	4	$z\operatorname{Im}(6z+2)$
5	$ie^{5iz}+z$	6	$\cos 2z$
7	$\operatorname{Re}(z^2) + 2z + 5i$	8	$ ie^{5iz} $
9	$\operatorname{Im}(e^{2iz})$	10	$i \mid (1+i\sqrt{3})z^2 \mid$
11	$iz + \sin 2z$	12	3iz + sh2z
13	$3i\overline{z} + ch2z$	14	$iz^2 + 3e^{-z} + 4i$

Задача №1.8. Исследовать функцию f(z) на дифференцируемость и аналитичность. Указать область аналитичности функции. Найти производную функции в точке z_0 .

вариант№	f(z)	z_0	вариант№	f(z)	z_0
1	4 z 2	0	2	$\frac{2z+5}{z^2+4}$	i
3	$(z+1)\operatorname{Im}(iz)$	-1	4	$(z+2i)\operatorname{Re}(3z+i)$	- 2 <i>i</i>
5	$z z+i ^2$	- <i>i</i>	6	$\frac{5i}{z^2 + z + 1}$	-i
7	$\frac{z}{e^z-1}$	πi	8	$\frac{z}{\sin 2z}$	i

Задача №1.9. Найти коэффициент растяжения и угол поворота при отображении w = f(z) в точке z_0 .

вариант№	f(z)	z_0	вариант№	f(z)	z_0
1	$4z^2$	1-i	2	$2e^{iz}$	$\frac{-\pi}{4}$
3	ie ^{4z}	$3\pi i$	4	z^3	2+2i

Задача №1.10. Показать, что заданные функции u(x,y) или v(x,y) являются гармоническими. Восстановить аналитическую функцию f(z) по ее действительной части u(x,y) или мнимой v(x,y) и значению $f(z_0)$.

вариант №	заданные функции	$f(z_0)$
1	$u = \sin 3x ch 3y$	f(0)=0
2	$v = \sin(2 - x) shy$	f(2) = 1
3	$u = \cos\frac{y}{2}ch\frac{x}{2}$	f(0) = 1
4	$v = x^2 - y^2 + 2x$	f(i) = -2 - i

5	$u = e^{2x}cos(2y+1)$	f(-i/2) = 1
6	v = cos4xch4y	f(0) = i

Задача №1.11. Задано отображение w = f(z).

Указать:

- 1) часть плоскости, которая растягивается (сжимается) при заданном отображении w=f(z) ;
 - 2) множество точек, в которых коэффициент растяжения равен 1.

вариант№	w = f(z)
1	$w = \frac{1}{z - 1}$
2	$w = e^{z-3}$
3	$w = (z + i)^2$

Задача №1.12. Вычислить интеграл $\int_{L} f(z)dz$.

	вариант№	f(z)	L	вариант№	f(z)	L
•	1	$z^2 + 2\overline{z}$	Отрезок прямой от точки A(0;0) до B(1;-3)	2	$3z - \overline{z}$	$\begin{cases} z = 1, \\ -\pi/2 \le \arg z \le \pi/2 \end{cases}$
	3	$z + 3\overline{z}$	z-1 =3	4	$z^2 + z$	Часть параболы $y = x^2 \text{ от точки}$ A(0;0) до B(1;1)

Задачи по теме «Ряд Лорана. Классификация изолированных особых точек. Вычеты»

Задача №1.13. Получить все разложения функции f(z) в ряд Лорана по степеням ($z-z_0$).

вариант №	f(z)	z_0	вариант №	f(z)	z_0
1	$z^3e^{rac{4}{z^2}}$	0	2	$(z-1)^4 \cos\left(\frac{4}{z-1}\right)$	1
3	$(z+2)\sin\left(\frac{5}{(z+2)^2}\right)$	-2	4	$(z+1)sh\left(\frac{2}{z+1}\right)$	-1
5	$(z^2+\frac{1}{z^2})e^{\frac{5}{z}}$	0	6	$\frac{z}{(z-2)(z+3)}$	0
7	$\frac{4z+5}{z^2+5z+6}$	-2	8	$\frac{z+2}{z^2(z+4)}$	0
9	$\frac{3iz + ch2z}{z^2}$	0	10	$\frac{z^4+z+1}{z^2+9}$	0

<u>Задача №1.14.</u> Получить разложение функции f(z) в ряд Лорана в заданной области.

вариант№		f(z)	вариант№		f(z)
1	z > 2	$\frac{z}{(z-1)(z+2)}$	2	2 < z < 4	$\frac{2z+1}{z^2+2z-8}$
3	z-3 > 4	$\frac{1}{(z+1)(z-2)}$	4	1< z-2 < 3	$\frac{4z+5}{z^2-6z+5}$

<u>Задача №1.15</u>. Найти изолированные особые точки функции f(z), указать их тип, вычислить вычеты в этих точках.

вариант№	f(z)	вариант№	f(z)
1	$z^5 \cdot e^{\frac{4}{z}}$	2	$(z+3)^6 \sin\left(\frac{5}{z+3}\right)$

3	$\frac{e^{8z}}{z^2+9}$	4	$\frac{z+4}{z^3+3z^2}$
5	$\frac{\sin(\pi z)}{(z-2)(2z+1)}$	6	$\frac{e^z - 1}{z^2(z + 4i)}$
7	$z \cdot e^{\frac{1}{z+2}}$	8	$(2z^3+1)\cos(1/z)$
9	$\frac{\sin(z+1)}{(z+1)^6}$	10	$\frac{e^{z+1}-1}{(z+1)^2z}$
11	$\frac{\sin^2(3\pi z)}{z^3(z-1)^2}$	12	$\frac{1 + \cos(\pi z)}{(z - 1)^3 (z - 5)^2}$
13	$\frac{e^z-1}{(z-2\pi i)^2z}$	14	$\frac{4}{(z^2+1)^2}$

Задачи по теме «Применение теории вычетов»

Задача №1.16. Вычислить интеграл $\oint_L f(z)dz$ с помощью основной теоремы о вычетах.

вариант №	f(z)	L	вариант №	f(z)	L
1	$(z+i)^4 \sin\!\left(\frac{i}{z+i}\right)$	z+i =2	2	$(z-1)^5 \cos\left(\frac{2}{z-1}\right)$	$ z-1 =\frac{1}{2}$
3	$(z^2+3z+5)e^{\frac{1}{z}}$	z-i =2	4	$\frac{iz^3 + sh2z}{z^4}$	z-i =2
5	$\frac{\sin z}{z(z^2+9)}$	z-i =3	6	$\frac{1}{(z+2)(z^2-4)}$	z + 2 = 1
7	$\frac{e^z}{z^2(z+2i)}$	z+i =2	8	$\frac{z}{\sin z}$	z + 2 = 3
9	$\frac{z+2}{\left(z^2+4\right)^2}$	z-i =2	10	$\frac{z}{e^{2z}-1}$	z-i =3

11	$\frac{\sin^2 2z}{z^3(2z-\pi)}$	z = 2	12	$\frac{\sin \pi z}{z^3 - z^2}$	z - 1 = 2
13	$\frac{\cos(\pi z)}{z^2(4z^2-1)}$	$ 2z-1 =\frac{1}{2}$	14	$\frac{e^z}{z(z+2)^2}$	z +1 = 2

<u>Задача №1.17.</u> Вычислить несобственный интеграл $\int_{a}^{b} f(z)dz$ с помощью вычетов.

вариант№	f(z)	(a,b)	вариант№	f(z)	(a,b)
1	$\frac{x^2 + 1}{(x^2 + 9)(x^2 + 16)}$	(0,+∞)	2	$\frac{x^2}{(x^2+9)^2}$	(0,+∞)
3	$\frac{1}{x^2 + 6x + 13}$	$(-\infty,+\infty)$	4	$\frac{1}{\left(x^2+4\right)^3}$	(0,+∞)
5	$\frac{1}{(x^2 - 4x + 13)^2}$	$(-\infty,+\infty)$	6	$\frac{x^2}{x^4 + 6x^2 + 5}$	(0,+∞)
7	$\frac{\cos 2x}{\left(x^2+1\right)^2}$	$(-\infty,+\infty)$	8	$\frac{x\sin 2x}{x^2+9}$	(0,+∞)

<u>Задача №1.18.</u> С помощью теоремы Руше найти количество корней уравнения f(z) = 0 в указанной области \mathcal{I} .

вариант	f(z)	Д	вариант№	f(z)	Д
1	$z^5 - 5z^2 + 2z + 1$	1< Z <2	2	$z^4 - 5z^3 - z^2 - 1$	0,5< Z <1
3	$2z^3 - 7z^2 + 3z + 1$	1< Z <4	4	$z^7 - 5z^5 + 2z^4 + 1$	1< Z <3

<u>Задача №1.19</u>. Решить задачу Коши операторным методом, используя теорию вычетов при нахождении оригинала по полученному изображению.

1)
$$y'' + 2y' - 3y = 1$$
 $y(0) = -1$, $y'(0) = 2$

2)
$$y'' - y' - 2y = 2x - 1$$
 $y(0) = 1$, $y'(0) = 2$

3)
$$y'' + y = 1$$
 $y(0) = 0$, $y'(0) = 0$

Задачи по теме «Интегралы Эйлера: Гамма и Вета - функции»

<u>Задача №1.20</u>. Вычислить интегралы с помощью Гамма и Вета – функций

вариант№		вариант№	
1	$\int_{0}^{+\infty} x^4 \cdot e^{-x^2} dx$	2	$\int_{0}^{1} \ln^{5}(\frac{1}{x}) dx$
3	$\int_{0}^{1} x^4 \cdot \sqrt[3]{1-x^3} dx$	4	$\int_{0}^{+\infty} \frac{x^2}{(1+x^2)^3} dx$
5	$\int_{0}^{\pi/2} \sin^6 x \cdot \cos^2 x dx$	6	$\int_{0}^{\pi/2} \sqrt{tgx} dx$
7	$\int_{0}^{1} \frac{dx}{\sqrt[4]{1-x^4}}$	8	$\int_{0}^{+\infty} \frac{dx}{1+x^4}$
9*	$\int_{0}^{+\infty} \frac{x \cdot \ln x}{1 + x^{3}} dx$	10*	$\int_{0}^{+\infty} \frac{\ln^2 x}{1+x^4} dx$