## **ACTOR-CRITIC**

# Algorithm Practice

Diego Klabjan
Professor, Industrial Engineering and Management Sciences



### Recap: Policy Gradients

#### REINFORCE algorithm:



- 1. sample  $\{\tau^i\}$  from  $\pi_{\theta}(a_t|s_t)$  (run the policy)
- 2.  $\nabla_{\theta} J(\theta) \approx \sum_{i} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) \left( \sum_{t'=t}^{T} r(s_{t'}^{i}, a_{t'}^{i}) \right) \right)$

3. 
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\hat{Q}^{\pi}(x_t, u_t) = \sum_{t'=t}^{l} r(x_{t'}, u_{t'})$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) \hat{Q}_{i,t}^{\pi_{\theta}}$$
 "reward to go"



## Improving Policy Gradient

$$\begin{split} \nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) \sum_{t'=t}^{T} r(s_{t'}^{i}, a_{t'}^{i}) \\ \text{"reward to go"} \\ \hat{Q}_{i,t}^{\pi_{\theta}} \end{split}$$

 $\hat{Q}_{i,t}^{\pi_{\theta}}$  : estimate of expected reward if we take action  $a_t^i$  in state  $s_t^i$ 

$$Q^{\pi_{\theta}}(s_t, a_t) = \sum_{t'=t}^T E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) \left( Q^{\pi_{\theta}} \left( s_{t}^{i}, a_{t}^{i} \right) - V^{\pi_{\theta}} \left( s_{t}^{i} \right) \right)$$



$$V^{\pi_{\theta}}(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi_{\theta}}(s_t, a_t)]$$

### **Baseline**

$$Q^{\pi_{\theta}}(s_t, a_t) = \sum_{t'=t}^T E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) \left( Q^{\pi_{\theta}} \left( s_{t}^{i}, a_{t}^{i} \right) - V^{\pi_{\theta}} \left( s_{t}^{i} \right) \right)$$

$$b_t = \frac{1}{N} \sum_i Q^{\pi_{\theta}} (s_t^i, a_t^i)$$

$$V^{\pi_{\theta}}(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi_{\theta}}(s_t, a_t)]$$



### State and Q Value Functions

 $Q^{\pi_{\theta}}(s_t, a_t) = \sum_{t'=t}^T E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t]$ : total reward from taking  $a_t$  in  $s_t$ 

 $V^{\pi_{\theta}}(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi_{\theta}}(s_t, a_t)]$ : total reward from  $s_t$ 

 $A^{\pi_{\theta}}(s_t, a_t) = Q^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t)$ : how much better  $a_t$  is

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) A^{\pi_{\theta}} \left( s_{t}^{i}, a_{t}^{i} \right)$$

the better this estimate, the lower the variance

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) \left( \sum_{t'=t}^{T} r \left( s_{i,t'}, a_{i,t'} \right) - b \right)$$

unbiased, but high variance single-sample estimate



### **Value Function Fitting**

$$Q^{\pi_{\theta}}(s_{t}, a_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_{t}, a_{t}]$$

$$V^{\pi_{\theta}}(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi_{\theta}}(s_t, a_t)]$$

$$A^{\pi_{\theta}}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi_{\theta}}(s_t)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) A^{\pi_{\theta}} \left( s_{t}^{i}, a_{t}^{i} \right)$$

Neural network to fit  $Q^{\pi_{\theta}}$ ,  $V^{\pi_{\theta}}$ ,  $A^{\pi_{\theta}}$ ?

$$Q^{\pi_{\theta}}(s_t, a_t) = r(s_t, a_t) + E_{s_{t+1} \sim p(s_{t+1} \mid s_t, a_t)}[V^{\pi_{\theta}}(s_{t+1})]$$

$$A^{\pi_{\theta}}(s_t, a_t) \approx r(s_t, a_t) + V^{\pi_{\theta}}(s_{t+1}) - V^{\pi_{\theta}}(s_t)$$

Let's just fit  $V^{\pi}(s)$ !



## **Policy Evaluation**

$$V^{\pi_{\theta}}(s_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t]$$

$$J(\theta) = E_{s_1 \sim p(s_1)}[V^{\pi_\theta}(s_1)]$$

How can we perform policy evaluation?

Monte Carlo policy evaluation

$$V^{\pi_{\theta}}(s_t) \approx \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) |s_t|$$

$$V^{\pi_{\theta}}(s_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(s_{t'}^i, a_{t'}^i) |s_t|$$

(requires us to reset the simulator to given state)



### **Monte Carlo Evaluation**

Need trajectories using given state at t

$$V^{\pi_{\theta}}(s_t) \approx \sum_{t'=t}^T r(s_{t'}, a_{t'}) |s_t|$$



 $\hat{V}^{\pi_{ heta}}(s)$  parameters  $\phi$ 

- Hard to obtain
- Instead sample trajectories from beginning
  - Record reward from t onwards

$$V^{\pi_{\theta}}(s_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(s_{t'}^i, a_{t'}^i)$$

$$y_i$$
training data:  $\{(s_t^i, \sum_{t'=t}^{T} r(s_{t'}^i, s_{t'}^i))\}$ 



### **Monte Carlo Evaluation**

- Generate trajectories from initial state
- Capture
  - State at time t
  - Reward to the end

training data: 
$$\{(s^i, y_i = \sum_{t'=t}^T r(s_{t'}^i, s_{t'}^i))\}$$

supervised regression: 
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi_{\theta}}(s^{i}) - y_{i} \right\|^{2}$$

## **Improvement**

Ideal target: 
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(s_{t'}, a_{t'}) | s_t^i] \approx r(s_t^i, a_t^i) + V^{\pi_{\theta}} (s_{t+1}^i) \approx r(s_t^i, a_t^i) + \hat{V}_{\phi}^{\pi_{\theta}} (s_{t+1}^i)$$

Directly use previous fitted value function!

Training data: 
$$\left\{\left(s_t^i, r\left(s_t^i, a_t^i\right) + \hat{V}_{\phi_{old}}^{\pi_{\theta}}\left(s_{t+1}^i\right)\right)\right\}$$
Previous value of  $\phi$ 

Supervised regression: 
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi_{\theta}}(s_{i}) - y_{i} \right\|^{2}$$

- Lower accuracy than starting at time t in state s<sub>t</sub>
- Variance reduced
  - Do not reset in each iteration

## **Actor-critic Algorithm**

#### Batch actor-critic algorithm:



1. sample  $\{s_t^i, a_t^i\}$  from  $\pi_{\theta}(a|s)$  // several trajectories

2. fit  $\hat{V}_{\phi}^{\pi_{\theta}}(s)$  to samples reward sums

3. evaluate  $\hat{A}^{\pi_{\theta}}(s_t^i, a_t^i) = r(s_t^i, a_t^i) + \hat{V}_{\phi}^{\pi_{\theta}}(s_t^{i'}) - \hat{V}_{\phi}^{\pi_{\theta}}(s_t^i)$ 4.  $\nabla_{\theta} J(\theta) \approx \Sigma_i \Sigma_t \nabla_{\theta} \log \pi_{\theta} (a_t^i | s_t^i) \hat{A}^{\pi_{\theta}}(s_t^i, a_t^i)$ 

5.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 



$$y_{i,t} = r(s_t^i, a_t^i) + \hat{V}_{\phi}^{\pi_{\theta}}(s_t^{i'} = s_{t+1}^i)$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi_{\theta}}(s_{i}) - y_{i} \right\|^{2}$$



### **Actor-Critic Enhancement**

- When T large
  - $\hat{V}_{\phi}^{\pi_{\theta}}(s_t^{i'})$  tend to grow
- Modified advantage

$$\hat{A}^{\pi_{\theta}}(s_t^i, a_t^i) = r(s_t^i, a_t^i) + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s_t^{i'}) - \hat{V}_{\phi}^{\pi_{\theta}}(s_t^i)$$

- $\gamma$  unrelated to the discount factor
  - Set to value close to 1
    - For example 0.99
  - Use mostly for infinite time horizon

## **Discount Factors for Policy Gradient**

option 1: 
$$\nabla_{\theta}J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^{i}, a_{t'}^{i}) \right)$$
Not the same! option 2: 
$$\nabla_{\theta}J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \right) \left( \sum_{t=1}^{T} \gamma^{t-1} r(s_{t'}^{i}, a_{t'}^{i}) \right)$$

$$\nabla_{\theta}J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \left( \sum_{t'=t}^{T} \gamma^{t'-1} r(s_{t'}^{i}, a_{t'}^{i}) \right)$$

$$\nabla_{\theta}J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^{i}, a_{t'}^{i}) \right)$$

$$\nabla_{\theta}J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^{i}, a_{t'}^{i}) \right)$$
equivalent

$$r(\tau) = \sum_{t'=1}^{T} \gamma^{t-1} r(s_{t'}^{i}, a_{t'}^{i})$$

### **Discount Factor**

- Mathematically correct
  - Option 2

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^i, a_{t'}^i) \right)$$

- Discount factor part of input
- In practice option 1 used

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^i, a_{t'}^i) \right)$$

- Variance reduction
  - Scale down rewards
  - Factor as hyperparameter
    - Needs tuning

## **Online Actor-critic Algorithm**

#### Batch actor-critic algorithm:

- 1. sample  $\{s_t^i, a_t^i\}$  from  $\pi_{\theta}(a|s)$
- 2. fit  $\hat{V}_{\phi}^{\pi_{\theta}}(s)$  to samples reward sums
  3. evaluate  $\hat{A}^{\pi_{\theta}}(s_i, a_i) = r(s_i, a_i) + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s_i') \hat{V}_{\phi}^{\pi_{\theta}}(s_i)$ 4.  $\nabla_{\theta} J(\theta) \approx \Sigma_i \nabla_{\theta} \log \pi_{\theta} (a_i | s_i) \hat{A}^{\pi_{\theta}}(s_i, a_i)$ 

  - 5.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} I(\theta)$

#### Online actor-critic algorithm:

- 1. take action  $a \sim \pi_{\theta}(a|s)$ , get (s, a, s', r)
- 2. update  $\hat{V}_{\phi}^{\pi_{\theta}}(s)$  using target  $r + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s')$ 3. evaluate  $\hat{A}^{\pi_{\theta}}(s, a) = r(s, a) + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s') \hat{V}_{\phi}^{\pi_{\theta}}(s)$ 4.  $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta} (a|s) \hat{A}^{\pi_{\theta}}(s, a)$ 

  - 5.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} I(\theta)$

### **Architecture Design**

#### Online actor-critic algorithm:



- 1. take action  $a \sim \pi_{\theta}(a|s)$ , get (s, a, s', r)
- 2. update  $\hat{V}_{\phi}^{\pi_{\theta}}(s)$  using target  $r + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s')$
- 3. evaluate  $\hat{A}^{\pi_{\theta}}(s, a) = r(s, a) + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s') \hat{V}_{\phi}^{\pi_{\theta}}(s)$
- 4.  $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta} (a|s) \hat{A}^{\pi_{\theta}}(s, a)$
- 5.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} I(\theta)$



- + simple & stable
- no shared features between actor & critic



- + less prone to overfitting
- harder to train different learning rate for each task

### Online Actor-critic in Practice – Batch Version

#### Online actor-critic algorithm:



- 1. take action  $a \sim \pi_{\theta}(a|s)$ , get (s, a, s', r)
- 2. update  $\hat{V}_{\phi}^{\pi_{\theta}}(s)$  using target  $r + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s')$ 3. evaluate  $\hat{A}^{\pi_{\theta}}(s, a) = r(s, a) + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s') \hat{V}_{\phi}^{\pi_{\theta}}(s)$ 4.  $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta} (a|s) \hat{A}^{\pi_{\theta}}(s, a)$
- 5.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} I(\theta)$

#### synchronized parallel actor-critic



#### asynchronous parallel actor-critic



### Critics as State-dependent Baselines

Actor-critic: 
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i}|s_{t}^{i}) \left( r(s_{t}^{i}, a_{t}^{i}) + \gamma \hat{V}_{\phi}^{\pi_{\theta}}(s_{t}^{i'}) - \hat{V}_{\phi}^{\pi_{\theta}}(s_{t}^{i}) \right)$$

+ lower variance (due to critic)

- not unbiased (if the critic is not perfect)

Policy gradient: 
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \left( \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^{i}, a_{t'}^{i}) \right) - b \right)$$

+ no bias

- higher variance (because single-sample estimate)

New variant - best of both worlds

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \left( \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^{i}, a_{t'}^{i}) \right) - \hat{V}_{\phi}^{\pi_{\theta}}(s_{t}^{i}) \right)$$

+ no bias

+ lower variance (baseline is closer to rewards) Average equals to advantage

### **Action-dependent Baselines for Online**

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t] \qquad V^{\pi}(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi}(s_t, a_t)]$$

$$V^{\pi}(s_t) = E_{a_t \sim \pi_{\Theta}(a_t|s_t)}[Q^{\pi}(s_t, a_t)]$$

$$A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

$$\hat{A}^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^i, a_{t'}^i) - \hat{V}_{\phi}^{\pi}(s_t)$$

- + no bias
- higher variance (because single-sample estimate)
- $\hat{A}^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}^i, a_{t'}^i) \hat{Q}_{\phi}^{\pi}(s_t, a_t)$
- + goes to zero in expectation if critic is correct
- + low variance
- biased [any function depending on s,a is biased]; incorrect

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left( a_{t}^{i} \middle| s_{t}^{i} \right) \left( \hat{Q}_{i,t}^{\pi_{\theta}} - Q_{\phi}^{\pi_{\theta}} (s_{t}^{i}, a_{t}^{i}) \right) + \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} E_{a \sim \pi_{\theta}(a \mid s_{t}^{i})} \left[ Q_{\phi}^{\pi_{\theta}} \left( s_{t}^{i}, a \right) \right]$$

Use a critic without the bias (still unbiased), provided second term can be evaluated

## Eligibility Traces

$$\hat{A}_{C}^{\pi}(s_{t}, a_{t}) = r(s_{t}, a_{t}) + \gamma \hat{V}_{\phi}^{\pi}(s_{t+1}) - \hat{V}_{\phi}^{\pi}(s_{t})$$

$$\hat{A}_{MC}^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \gamma^{t'-t} r(s_{t'}, a_{t'}) - \hat{V}_{\phi}^{\pi}(s_t)$$

- + lower variance
- higher bias if value is wrong (it always is)
- + no bias
- higher variance (because single-sample estimates)

Combine these two to control bias/variance tradeoff:



$$\hat{A}_n^{\pi}(s_t, a_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(s_{t'}, a_{t'}) - \hat{V}_{\phi}^{\pi}(s_t) + \gamma^n \hat{V}_{\phi}^{\pi}(s_{t+n})$$

Choosing n > 1 often works better

bigger variance

cut here before variance gets too big

smaller variance

### **Generalized Advantage Estimation**



Do it for many n and then weigh them

$$\hat{A}_n^{\pi}(s_t, a_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(s_{t'}, a_{t'}) - \hat{V}_{\phi}^{\pi}(s_t) + \gamma^n \hat{V}_{\phi}^{\pi}(s_{t+n})$$

$$\hat{A}_{GAE}^{\pi}(s_t, a_t) = \sum_{n=1}^{\infty} w_n \hat{A}_n^{\pi}(s_t, a_t)$$
 weighted combination of n-step returns

Mostly prefer cutting earlier (less variance)

$$w_n \propto \lambda^{n-1}$$

$$\hat{A}_{GAE}^{\pi}(s_t, a_t) = r(s_t, a_t) + \gamma((1 - \lambda)\hat{V}_{\phi}^{\pi}(s_{t+1}) + \lambda(r(s_{t+1}, a_{t+1}) + \gamma\left((1 - \lambda)\hat{V}_{\phi}^{\pi}(s_{t+2}) + \lambda r(s_{t+2}, a_{t+2}) + \dots\right)$$

$$\hat{A}^{\pi}_{GAE}(s_t,a_t) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-t} \delta_{t'} \qquad \qquad \delta_{t'} = r(s_{t'},a_{t'}) + \gamma \hat{V}^{\pi}_{\phi}(s_{t'+1}) - \hat{V}^{\pi}_{\phi}(s_{t'})$$
 similar effects as discount!