ads-phase4

November 1, 2023

0.1 Date: 17-10-2023

```
0.2 Project Title: Credit Card Fraudlent Detection
     TEAM MEMBERS:
     VIGNESH S (2021506086)
     SANJAY M (2021506123)
     VIGNESH G (2021506121)
     SISHAATH RA KRISHNA (20215060101)
     SHREESH SHIVALINGAM (2021506097)
        Importing required libraries
[1]: import pandas as pd
     import numpy as np
     import seaborn as sns
     from matplotlib import pyplot as plt
     0.3.1 Set the jupyter notebook to show maximum number of columns
[2]: pd.options.display.max_columns = None
     0.3.2 Displaying top 5 rows
     0.3.3 Loading the datasets
[3]: from google.colab import drive
     drive.mount('/content/drive')
     Mounted at /content/drive
[14]: ccfd = pd.read_csv('drive/MyDrive/ColabNotebooks/creditcard.csv')
[15]: ccfd.head()
```

```
[15]:
        Time
                             V2
                                       V3
                                                ۷4
                                                          V5
                                                                   V6
                                                                             V7 \
                   V1
         0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321
                                                             0.462388
                                                                       0.239599
         0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
     1
         1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198
                                                            1.800499
                                                                       0.791461
         1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
                                                             1.247203
     3
                                                                      0.237609
         2.0 -1.158233   0.877737   1.548718   0.403034   -0.407193   0.095921
              ٧8
                       V9
                                V10
                                         V11
                                                   V12
                                                             V13
                                                                      V14
                           0.090794 -0.551600 -0.617801 -0.991390 -0.311169
        0.098698 0.363787
     1 0.085102 -0.255425 -0.166974 1.612727
                                              1.065235
                                                       0.489095 -0.143772
     2 0.247676 -1.514654 0.207643 0.624501 0.066084 0.717293 -0.165946
     3 0.377436 -1.387024 -0.054952 -0.226487
                                              0.178228
                                                       0.507757 -0.287924
     4 -0.270533  0.817739  0.753074 -0.822843  0.538196
                                                       1.345852 -1.119670
             V15
                      V16
                                V17
                                         V18
                                                   V19
                                                             V20
       1.468177 -0.470401 0.207971 0.025791 0.403993
                                                        0.251412 -0.018307
     1 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
     2 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980 0.247998
     3 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300
     4 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542 -0.009431
             V22
                      V23
                                V24
                                         V25
                                                   V26
                                                             V27
                                                                      V28
        0.277838 -0.110474 0.066928
                                    0.128539 -0.189115
                                                        0.133558 -0.021053
     0.014724
     2 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
     3 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723
                                                                 0.061458
     4 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
        Amount
               Class
     0
        149.62
                    0
          2.69
                    0
     1
     2
        378.66
                    0
     3
        123.50
                    0
         69.99
                    0
```

0.3.4 Displaying bottom 5 rows

```
[16]: ccfd.tail()
[16]:
                               V1
                                          V2
                                                    V3
                  Time
      284802
             172786.0 -11.881118
                                  10.071785 -9.834783 -2.066656 -5.364473
             172787.0
                       -0.732789
                                  -0.055080 2.035030 -0.738589
     284803
                                                                  0.868229
      284804
             172788.0
                        1.919565
                                  -0.301254 -3.249640 -0.557828 2.630515
     284805
             172788.0
                      -0.240440
                                   0.530483 0.702510 0.689799 -0.377961
             172792.0
      284806
                       -0.533413 -0.189733 0.703337 -0.506271 -0.012546
                    V6
                              ۷7
                                        V8
                                                  V9
                                                           V10
                                                                     V11
                                                                               V12 \
```

```
284802 -2.606837 -4.918215 7.305334 1.914428 4.356170 -1.593105 2.711941
284803 1.058415 0.024330 0.294869
                                   0.584800 -0.975926 -0.150189 0.915802
284804 3.031260 -0.296827
                          0.708417
                                   0.432454 -0.484782 0.411614 0.063119
284805 0.623708 -0.686180
                          0.679145
                                   0.392087 -0.399126 -1.933849 -0.962886
284806 -0.649617 1.577006 -0.414650
                                   0.486180 -0.915427 -1.040458 -0.031513
                     V14
            V13
                              V15
                                        V16
                                                 V17
                                                           V18
                                                                    V19
284802 -0.689256 4.626942 -0.924459 1.107641 1.991691 0.510632 -0.682920
284803 1.214756 -0.675143 1.164931 -0.711757 -0.025693 -1.221179 -1.545556
284804 -0.183699 -0.510602 1.329284 0.140716 0.313502
                                                      0.395652 -0.577252
284805 -1.042082 0.449624 1.962563 -0.608577
                                            0.509928
                                                      1.113981 2.897849
284806 -0.188093 -0.084316  0.041333 -0.302620 -0.660377
                                                      0.167430 -0.256117
            V20
                     V21
                              V22
                                        V23
                                                 V24
                                                           V25
                                                                    V26
                                                                         \
                0.213454 0.111864 1.014480 -0.509348 1.436807 0.250034
284802 1.475829
284803 0.059616
                0.214205
                         0.924384
                                   0.012463 -1.016226 -0.606624 -0.395255
284804 0.001396
                0.232045
                          0.578229 -0.037501 0.640134 0.265745 -0.087371
284805 0.127434
                0.265245
                          0.800049 -0.163298  0.123205 -0.569159  0.546668
284806 0.382948
                0.261057
                          V27
                     V28 Amount Class
284802 0.943651 0.823731
                            0.77
                                     0
284803 0.068472 -0.053527
                           24.79
                                     0
284804 0.004455 -0.026561
                           67.88
                                     0
284805 0.108821 0.104533
                           10.00
                                     0
284806 -0.002415 0.013649 217.00
                                     0
```

0.3.5 Shows number of rows and columns

```
[17]: print("Number of rows in given dataset ",ccfd.shape[0])
print("Number of columns in the given dataset ",ccfd.shape[1])
```

Number of rows in given dataset 284807 Number of columns in the given dataset 31

0.3.6 Getting basis information

[18]: ccfd.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
# Column Non-Null Count Dtype
--- -----
```

0 Time 284807 non-null float64 1 V1 284807 non-null float64 2 V2 284807 non-null float64

```
3
     ٧3
             284807 non-null
                               float64
 4
     ۷4
             284807 non-null
                               float64
 5
     ۷5
             284807 non-null
                               float64
 6
     ۷6
             284807 non-null
                               float64
 7
     ۷7
             284807 non-null
                               float64
 8
     ٧8
             284807 non-null
                               float64
 9
     ۷9
             284807 non-null
                               float64
             284807 non-null
 10
     V10
                               float64
 11
     V11
             284807 non-null
                               float64
 12
     V12
             284807 non-null
                               float64
     V13
             284807 non-null
                               float64
 13
 14
     V14
             284807 non-null
                               float64
     V15
             284807 non-null
                               float64
 15
     V16
             284807 non-null
                               float64
 16
     V17
             284807 non-null
 17
                               float64
 18
     V18
             284807 non-null
                               float64
 19
     V19
             284807 non-null
                               float64
     V20
 20
             284807 non-null
                               float64
 21
     V21
             284807 non-null
                               float64
     V22
                               float64
 22
             284807 non-null
             284807 non-null
 23
     V23
                               float64
 24
     V24
             284807 non-null
                               float64
 25
     V25
             284807 non-null
                               float64
 26
     V26
             284807 non-null
                               float64
 27
     V27
             284807 non-null
                               float64
 28
     V28
             284807 non-null
                               float64
                               float64
 29
             284807 non-null
     Amount
 30
     Class
             284807 non-null
                               int64
dtypes: float64(30), int64(1)
```

memory usage: 67.4 MB

0.3.7 Checking null values in the given data

```
[19]: ccfd.isnull().sum()
[19]: Time
                   0
       ۷1
                   0
                   0
       V2
       VЗ
                   0
       ۷4
                   0
       ۷5
                   0
       ۷6
                   0
       ۷7
                   0
       8V
                   0
       ۷9
                   0
       V10
                   0
       V11
                   0
```

V12 0 V13 0 V14 0 V15 0 V16 0 V17 0 V18 0 V19 0 V20 0 V21 0 V22 0 V23 0 V24 0 V25 0 V26 0 V27 0 V28 0 Amount 0 Class dtype: int64

0.3.8 Scaling the Amount features, removing the independent columns

```
[20]: #removing the column name Time, it is unnecessary to our training purposes ccfd.head(2)
```

```
[20]:
         Time
                     ۷1
                                ٧2
                                          VЗ
                                                     ۷4
                                                               ۷5
                                                                          ۷6
                                                                                    ۷7
          0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321
                                                                   0.462388 0.239599
          0.0 \quad 1.191857 \quad 0.266151 \quad 0.166480 \quad 0.448154 \quad 0.060018 \quad -0.082361 \quad -0.078803
               ٧8
                          ۷9
                                   V10
                                             V11
                                                        V12
                                                                  V13
                                                                             V14 \
      0 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169
      1 \quad 0.085102 \quad -0.255425 \quad -0.166974 \quad 1.612727 \quad 1.065235 \quad 0.489095 \quad -0.143772
              V15
                        V16
                                   V17
                                             V18
                                                        V19
                                                                  V20
         1.468177 -0.470401 0.207971 0.025791 0.403993
                                                             0.251412 -0.018307
         V22
                        V23
                                   V24
                                             V25
                                                        V26
                                                                  V27
                                                                             V28
         0.277838 -0.110474 0.066928
                                        0.128539 -0.189115
                                                             0.133558 -0.021053
      1 \ -0.638672 \ \ 0.101288 \ -0.339846 \ \ 0.167170 \ \ 0.125895 \ -0.008983 \ \ 0.014724
         Amount
                 Class
      0 149.62
           2.69
                      0
      1
```

```
[21]: #time features is unnecessary here
      ccfd.drop('Time',axis = 1,inplace=True)
[22]: ccfd.head(2)
[22]:
                                    VЗ
                                               ۷4
                                                         ۷5
                          ٧2
                                                                    ۷6
      0 -1.359807 -0.072781
                              2.536347
                                        1.378155 -0.338321 0.462388 0.239599
      1 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
               V8
                          ۷9
                                   V10
                                              V11
                                                        V12
                                                                   V13
                                                                             V14
      0 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169
      1 \quad 0.085102 \quad -0.255425 \quad -0.166974 \quad 1.612727 \quad 1.065235 \quad 0.489095 \quad -0.143772
              V15
                         V16
                                   V17
                                              V18
                                                        V19
                                                                   V20
                                                                             V21
      0 1.468177 -0.470401 0.207971 0.025791 0.403993 0.251412 -0.018307
      1 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
              V22
                         V23
                                   V24
                                              V25
                                                        V26
                                                                   V27
      0 0.277838 -0.110474 0.066928
                                        0.128539 -0.189115
                                                             0.133558 -0.021053
      1 - 0.638672 \quad 0.101288 - 0.339846 \quad 0.167170 \quad 0.125895 - 0.008983 \quad 0.014724
         Amount Class
        149.62
                      0
           2.69
                      0
     0.3.9 Scaling the Amount column data
[23]: from sklearn.preprocessing import StandardScaler
[24]: ss = StandardScaler()
      ccfd['Amounts'] = ss.fit_transform(pd.DataFrame(ccfd['Amount']))
[25]:
[26]:
     ccfd.head()
[26]:
               V1
                                    VЗ
                                               ۷4
                                                         ۷5
      0 -1.359807 -0.072781
                              2.536347 1.378155 -0.338321
                                                             0.462388
      1 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
      2 -1.358354 -1.340163 1.773209 0.379780 -0.503198
                                                            1.800499
                                                                        0.791461
      3 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
                                                             1.247203 0.237609
      4 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941
               ٧8
                          ۷9
                                   V10
                                              V11
                                                        V12
                                                                   V13
                                                                             V14
      0 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169
      1 \quad 0.085102 \quad -0.255425 \quad -0.166974 \quad 1.612727 \quad 1.065235 \quad 0.489095 \quad -0.143772
      2 0.247676 -1.514654 0.207643 0.624501 0.066084 0.717293 -0.165946
      3 0.377436 -1.387024 -0.054952 -0.226487 0.178228 0.507757 -0.287924
```

```
4 -0.270533 0.817739 0.753074 -0.822843 0.538196 1.345852 -1.119670
             V15
                       V16
                                  V17
                                            V18
                                                      V19
                                                                V20
                                                                          V21
      0 1.468177 -0.470401 0.207971 0.025791 0.403993
                                                           0.251412 -0.018307
      1 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
      2 2.345865 -2.890083 1.109969 -0.121359 -2.261857
                                                           0.524980 0.247998
      3 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300
      4 0.175121 -0.451449 -0.237033 -0.038195 0.803487
                                                           0.408542 -0.009431
             V22
                       V23
                                  V24
                                            V25
                                                      V26
                                                                V27
                                                                          V28
      0 0.277838 -0.110474 0.066928 0.128539 -0.189115
                                                           0.133558 -0.021053
      1 \ -0.638672 \ \ 0.101288 \ -0.339846 \ \ 0.167170 \ \ 0.125895 \ -0.008983 \ \ 0.014724
      2 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
      3 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458
      4 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
        Amount Class
                         Amounts
       149.62
                     0 0.244964
      1
           2.69
                     0 -0.342475
      2 378.66
                     0 1.160686
      3 123.50
                     0 0.140534
          69.99
                     0 -0.073403
[27]: ccfd.shape
[27]: (284807, 31)
[28]: ccfd.drop('Amount',axis=1,inplace=True)
[29]: ccfd.shape
[29]: (284807, 30)
     0.3.10 Dropping the duplicate records
[30]: ccfd.duplicated().any()
[30]: True
[31]: ccfd.drop_duplicates(inplace=True)
[32]: ccfd.shape
[32]: (275663, 30)
[33]:
      284807 - 275663
```

[33]: 9144

0.3.11 Exploring Class columns

From the above information, We can say that our data is high imbalanced, so need to apply oversampling and undersampling technique to train our model

0.3.12 Storing feature matrix in X and response (Target) in vector y

```
[38]:
      ccfd.head()
[38]:
               V1
                          V2
                                    ٧3
                                              V4
                                                         ۷5
                                                                   V6
                                                                              ۷7
      0 -1.359807 -0.072781
                              2.536347
                                        1.378155 -0.338321
                                                             0.462388
                                                                       0.239599
         1.191857
                   0.266151
                              0.166480
                                        0.448154
                                                  0.060018 -0.082361 -0.078803
      2 -1.358354 -1.340163
                              1.773209
                                        0.379780 -0.503198
                                                             1.800499
                                                                       0.791461
      3 -0.966272 -0.185226
                              1.792993 -0.863291 -0.010309
                                                             1.247203
                                                                       0.237609
      4 -1.158233 0.877737
                              1.548718
                                        0.403034 -0.407193
                                                             0.095921
                                                                       0.592941
               ٧8
                          ۷9
                                   V10
                                             V11
                                                        V12
                                                                  V13
                                                                             V14
         0.098698
                   0.363787
                              0.090794 -0.551600 -0.617801 -0.991390 -0.311169
         0.085102 -0.255425 -0.166974
                                        1.612727
                                                   1.065235
                                                             0.489095 -0.143772
         0.247676 -1.514654
                              0.207643
                                        0.624501
                                                  0.066084
                                                             0.717293 -0.165946
         0.377436 -1.387024 -0.054952 -0.226487
                                                  0.178228
                                                             0.507757 -0.287924
      4 -0.270533 0.817739
                              0.753074 -0.822843
                                                  0.538196
                                                             1.345852 -1.119670
              V15
                                                                  V20
                        V16
                                   V17
                                             V18
                                                        V19
                                                                             V21
         1.468177 -0.470401
                              0.207971
                                        0.025791
                                                  0.403993
                                                             0.251412 -0.018307
                   0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
         0.635558
         2.345865 -2.890083
                             1.109969 -0.121359 -2.261857
                                                             0.524980 0.247998
      3 -0.631418 -1.059647 -0.684093
                                        1.965775 -1.232622 -0.208038 -0.108300
         0.175121 -0.451449 -0.237033 -0.038195
                                                  0.803487
                                                             0.408542 -0.009431
              V22
                        V23
                                   V24
                                             V25
                                                        V26
                                                                  V27
                                                                             V28
         0.277838 -0.110474
                              0.066928
                                        0.128539 -0.189115
                                                             0.133558 -0.021053
      1 -0.638672  0.101288 -0.339846
                                        0.167170
                                                  0.125895 -0.008983
                                                                       0.014724
         0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
         0.005274 -0.190321 -1.175575
                                        0.647376 -0.221929
                                                             0.062723
                                                                       0.061458
         0.798278 -0.137458
                             0.141267 -0.206010 0.502292
                                                             0.219422
                                                                       0.215153
         Class
                 Amounts
      0
                0.244964
             0
             0 -0.342475
      1
      2
                1.160686
      3
                0.140534
      4
             0 -0.073403
     X = ccfd.drop('Class',axis = 1)
[39]:
[40]:
```

```
[40]:
                    V1
                              V2
                                       V3
                                               V4
                                                          V5
                                                                     V6 \
     0
             -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388
                       0.266151 0.166480 0.448154 0.060018 -0.082361
     1
             1.191857
     2
             -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499
     3
             -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203
             -1.158233
                       0.877737 1.548718 0.403034 -0.407193 0.095921
                 •••
                                         •••
     284802 -11.881118 10.071785 -9.834783 -2.066656 -5.364473 -2.606837
     284803 -0.732789 -0.055080 2.035030 -0.738589 0.868229 1.058415
     284804
             1.919565 -0.301254 -3.249640 -0.557828 2.630515 3.031260
     284805 -0.240440 0.530483 0.702510 0.689799 -0.377961 0.623708
     284806 -0.533413 -0.189733 0.703337 -0.506271 -0.012546 -0.649617
                   ۷7
                            V8
                                      V9
                                              V10
                                                        V11
                                                                 V12
                                                                           V13 \
             0.239599 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390
            -0.078803 0.085102 -0.255425 -0.166974 1.612727 1.065235 0.489095
     1
     2
             0.791461 \quad 0.247676 \quad -1.514654 \quad 0.207643 \quad 0.624501 \quad 0.066084 \quad 0.717293
             0.237609 \quad 0.377436 \quad -1.387024 \quad -0.054952 \quad -0.226487 \quad 0.178228 \quad 0.507757
     3
     4
             284802 -4.918215 7.305334 1.914428 4.356170 -1.593105 2.711941 -0.689256
     284803 0.024330 0.294869 0.584800 -0.975926 -0.150189 0.915802 1.214756
     284804 -0.296827 0.708417 0.432454 -0.484782 0.411614 0.063119 -0.183699
     284805 -0.686180 0.679145 0.392087 -0.399126 -1.933849 -0.962886 -1.042082
     284806 1.577006 -0.414650 0.486180 -0.915427 -1.040458 -0.031513 -0.188093
                           V15
                  V14
                                    V16
                                              V17
                                                        V18
                                                                  V19
                                                                           V20
            -0.311169 1.468177 -0.470401 0.207971 0.025791 0.403993 0.251412
     0
            -0.143772 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083
     1
            -0.165946 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980
            -0.287924 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038
     3
            -1.119670 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542
     284802 4.626942 -0.924459 1.107641 1.991691 0.510632 -0.682920
                                                                      1.475829
     284803 -0.675143 1.164931 -0.711757 -0.025693 -1.221179 -1.545556 0.059616
     284804 -0.510602 1.329284 0.140716 0.313502 0.395652 -0.577252 0.001396
     284805 0.449624 1.962563 -0.608577 0.509928 1.113981 2.897849
     284806 -0.084316 0.041333 -0.302620 -0.660377 0.167430 -0.256117
                                                                       0.382948
                  V21
                           V22
                                     V23
                                               V24
                                                        V25
                                                                  V26
                                                                            V27
     0
            -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558
            -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983
     1
     2
            0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353
     3
            -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929
            -0.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422
     284802 0.213454 0.111864 1.014480 -0.509348 1.436807 0.250034 0.943651
```

```
284803 0.214205 0.924384 0.012463 -1.016226 -0.606624 -0.395255 0.068472
     284804 0.232045
                       0.578229 -0.037501 0.640134 0.265745 -0.087371 0.004455
     284805 0.265245
                       0.800049 -0.163298 0.123205 -0.569159 0.546668 0.108821
                       284806 0.261057
                  V28
                        Amounts
     0
            -0.021053 0.244964
     1
             0.014724 -0.342475
     2
            -0.059752 1.160686
     3
             0.061458 0.140534
     4
             0.215153 -0.073403
     284802 0.823731 -0.350151
     284803 -0.053527 -0.254117
     284804 -0.026561 -0.081839
     284805 0.104533 -0.313249
     284806 0.013649 0.514355
     [275663 rows x 29 columns]
[41]: y = ccfd.Class
[42]:
[42]: 0
               0
     1
               0
     2
               0
     3
               0
     4
               0
     284802
               0
     284803
               0
     284804
               0
     284805
               0
     284806
               0
     Name: Class, Length: 275663, dtype: int64
     0.3.13 Splitting the dataset into the training set and test set
[43]: from sklearn.model_selection import train_test_split
[44]: | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.
       \hookrightarrow2,random_state = 42)
[45]: X_train.shape
[45]: (220530, 29)
```

0.3.14 Training into the Model

```
[46]: from sklearn.linear_model import LogisticRegression
[47]: LR = LogisticRegression()
[48]: LR.fit(X_train,y_train)
[48]: LogisticRegression()
     0.3.15 Evaluating the accuracy score, precision score
[49]: from sklearn.metrics import precision_score,recall_score,f1_score,accuracy_score
[50]: y_pred = LR.predict(X_test)
[51]: accuracy_score(y_test,y_pred)
[51]: 0.9992200678359603
[52]: precision_score(y_test,y_pred)
[52]: 0.8870967741935484
[53]: recall_score(y_test,y_pred)
[53]: 0.6043956043956044
     Here, precision_score is very low so we have to perform the oversampling and undersampling
     technique
     0.3.16 Handling Imbalanced dataset
[54]: #undersampling
      #oversampling
     0.3.17 Undersampling
[55]: fraud = ccfd[ccfd['Class'] == 1]
      normal = ccfd[ccfd['Class'] == 0]
[56]: fraud.shape
[56]: (473, 30)
[57]: normal.shape
```

```
[57]: (275190, 30)
[58]: #selecting the 473 necessary samples to balance the class feature
     equal_sample = normal.sample(n=473)
[59]:
     equal_sample.shape
[59]: (473, 30)
[60]: new_ccfd = pd.concat([equal_sample,fraud],ignore_index = True)
[61]: new_ccfd['Class'].value_counts()
[61]: 0
          473
     1
          473
     Name: Class, dtype: int64
[62]: new ccfd.head()
[62]:
                      V2
                               VЗ
                                                           ۷6
                                                                    ۷7
             V1
                                         ۷4
                                                  ۷5
     0 1.231088
                 0.817430
                          0.112470
                                   2.463199
                                            0.318203 -0.784330
                                                               0.632496
     1 -1.630976 -2.884838
                          1.778903 -0.678444 -2.293574 0.474592
                                                               0.737225
                1.126725 -0.873509 -1.952757 1.258358 -1.680604
     2 -0.817516
                                                               2.106750
     3 -6.378440
                 3.293830
                          1.730572 -1.586493 0.203319 0.213103
     4 -0.341223
                1.180968
                          1.308514 0.056025 0.088179 -0.967221
             V8
                      V9
                                V10
                                         V11
                                                  V12
                                                           V13
                                                                    V14
     0 -0.333888 -1.197490
                           0.708084 -0.418512 0.373974 0.938349
                                                                0.324371
                           1 -0.123892 -2.113604
     2 -0.938366 0.585487
                           3 -3.415646 7.938980
                          11.519106 3.022639 -0.778760 -1.140137 -5.798989
     4 -0.112704 -0.499812
                          -0.532183 -0.093211 0.287980 0.807955 -0.566582
            V15
                     V16
                               V17
                                        V18
                                                 V19
                                                          V20
                                                                   V21
     0 0.104770 0.300458 -0.552556 -0.600918 -0.872732 -0.098796 -0.006789
     1 -1.151933 -1.348177 1.211932 0.890796 1.434053
                                                     1.276694 0.281256
     2 -1.335370 -0.224977 -1.250221 0.005941 -1.049938 -0.207060 0.240044
     3 0.405939 -1.725896 -2.374682 -0.528987 -0.100571 2.954298 -1.610576
     4 0.818074 0.350021 -0.030778 -0.223409 -0.096060
                                                     0.158729 -0.255591
            V22
                                                 V26
                     V23
                               V24
                                        V25
                                                          V27
                                                                   V28
     0 0.004467 -0.123952
                                            0.068267 -0.033828
                          0.366885 0.769766
                                                               0.011927
     1 0.384174 1.064908
                          2 1.007489 -0.146149
                          0.072756 -0.626661 -0.285701 -0.496262 -0.081747
     3 0.385227 -0.366595 0.479819 0.153885 -0.536129 -4.795220 -3.693525
     4 -0.632583 -0.022239 0.353115 -0.137185 0.069528 0.250039 0.099803
```

```
Class Amounts
0 0 -0.334838
1 0 1.877583
2 0 -0.289260
3 0 -0.329401
4 0 -0.338876
```

```
[63]: sns.countplot(x = new_ccfd['Class'],data=new_ccfd)
```

[63]: <Axes: xlabel='Class', ylabel='count'>

Now we equalized the Class feature

```
[64]: X = new_ccfd.drop('Class',axis = 1)
[65]:
     X
[65]:
                 ۷1
                           ٧2
                                     VЗ
                                               ۷4
                                                         ۷5
                                                                   ۷6
                                                                             ۷7
           1.231088 0.817430 0.112470 2.463199 0.318203 -0.784330
      0
                                                                       0.632496
      1
          -1.630976 -2.884838
                               1.778903 -0.678444 -2.293574
                                                            0.474592
          -0.817516 1.126725 -0.873509 -1.952757 1.258358 -1.680604
      2
```

```
3 -6.378440 3.293830 1.730572 -1.586493 0.203319 0.213103 2.941403
4 -0.341223 1.180968 1.308514 0.056025 0.088179 -0.967221 0.760442
             1.125653 -4.518331 1.749293 -1.566487 -2.010494 -0.882850
941 -1.927883
942 1.378559
             1.289381 -5.004247 1.411850 0.442581 -1.326536 -1.413170
943 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346 -2.234739
944 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548 -2.208002
945 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695 0.223050
          ٧8
                  V9
                            V10
                                     V11
                                              V12
                                                        V13
0
   -0.333888 -1.197490  0.708084 -0.418512  0.373974  0.938349  0.324371
   1
2
   -0.938366 0.585487 0.751698 0.737783 -0.248623 -1.923379 0.463119
3
   -3.415646 7.938980 11.519106 3.022639 -0.778760 -1.140137 -5.798989
4
   -0.112704 -0.499812 -0.532183 -0.093211 0.287980 0.807955 -0.566582
                                               •••
         •••
. .
941 0.697211 -2.064945 -5.587794 2.115795 -5.417424 -1.235123 -6.665177
942 0.248525 -1.127396 -3.232153 2.858466 -3.096915 -0.792532 -5.210141
943 1.210158 -0.652250 -3.463891 1.794969 -2.775022 -0.418950 -4.057162
944 1.058733 -1.632333 -5.245984 1.933520 -5.030465 -1.127455 -6.416628
945 -0.068384 0.577829 -0.888722 0.491140 0.728903 0.380428 -1.948883
         V15
                            V17
                                     V18
                                              V19
                                                        V20
                                                                 V21 \
                  V16
0
    0.104770 0.300458 -0.552556 -0.600918 -0.872732 -0.098796 -0.006789
   -1.151933 -1.348177 1.211932 0.890796 1.434053 1.276694 0.281256
   -1.335370 -0.224977 -1.250221 0.005941 -1.049938 -0.207060 0.240044
    0.405939 - 1.725896 - 2.374682 - 0.528987 - 0.100571 2.954298 - 1.610576
3
    0.818074 0.350021 -0.030778 -0.223409 -0.096060 0.158729 -0.255591
4
941 0.401701 -2.897825 -4.570529 -1.315147 0.391167 1.252967 0.778584
942 -0.613803 -2.155297 -3.267116 -0.688505 0.737657 0.226138 0.370612
943 -0.712616 -1.603015 -5.035326 -0.507000 0.266272 0.247968 0.751826
944 0.141237 -2.549498 -4.614717 -1.478138 -0.035480 0.306271 0.583276
945 -0.832498 0.519436 0.903562 1.197315 0.593509 -0.017652 -0.164350
         V22
                  V23
                            V24
                                     V25
                                              V26
                                                        V27
                                                                 V28
    0.004467 -0.123952  0.366885  0.769766  0.068267 -0.033828  0.011927
0
    0.384174 1.064908 0.480130 0.543734 0.122207 -0.265463 -0.103553
1
2
    1.007489 -0.146149 0.072756 -0.626661 -0.285701 -0.496262 -0.081747
3
    0.385227 -0.366595 0.479819 0.153885 -0.536129 -4.795220 -3.693525
   -0.632583 -0.022239 0.353115 -0.137185 0.069528 0.250039 0.099803
         •••
                       •••
              •••
941 -0.319189 0.639419 -0.294885 0.537503 0.788395 0.292680 0.147968
942 0.028234 -0.145640 -0.081049 0.521875 0.739467 0.389152 0.186637
943 0.834108 0.190944 0.032070 -0.739695 0.471111 0.385107 0.194361
944 -0.269209 -0.456108 -0.183659 -0.328168 0.606116 0.884876 -0.253700
945 -0.295135 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309
```

```
Amounts
          -0.334838
      0
           1.877583
      1
      2
          -0.289260
          -0.329401
      3
          -0.338876
      941 1.206024
      942 -0.350191
      943 -0.041818
      944 0.626302
      945 -0.183191
      [946 rows x 29 columns]
[66]: y = new_ccfd.Class
[67]: y
[67]: 0
              0
              0
      1
      2
              0
      3
              0
      4
              0
      941
             1
      942
             1
      943
              1
      944
              1
      945
              1
      Name: Class, Length: 946, dtype: int64
     0.3.18 Again Splitting the data for training and testing
[68]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.
       \hookrightarrow2,random_state = 42)
[69]: X_train.shape
[69]: (756, 29)
     0.3.19 Logistis Regression
[70]: LR.fit(X_train,y_train)
```

```
[70]: LogisticRegression()
[71]: y_pred1 = LR.predict(X_test)
[72]: accuracy_score(y_test,y_pred1)
[72]: 0.9526315789473684
[73]: precision_score(y_test,y_pred1)
[73]: 0.9894736842105263
[74]: f1_score(y_test,y_pred1)
[74]: 0.9543147208121827
     0.3.20 Decision Tree Classification
[75]: from sklearn.tree import DecisionTreeClassifier
[76]: DTC = DecisionTreeClassifier()
[77]: DTC.fit(X_train,y_train)
[77]: DecisionTreeClassifier()
[78]: y_pred2 = DTC.predict(X_test)
     0.3.21 Evaluating the precision_score, accuracy_score, f1_score
[79]: accuracy_score(y_test,y_pred2)
[79]: 0.9157894736842105
[80]: precision_score(y_test,y_pred2)
[80]: 0.9215686274509803
[81]: f1_score(y_test,y_pred2)
[81]: 0.9215686274509803
     0.3.22 RandomForest Classifier
[82]: from sklearn.ensemble import RandomForestClassifier
```

```
[83]: RFC = RandomForestClassifier()
[84]: RFC.fit(X_train,y_train)
[84]: RandomForestClassifier()
[85]: y_pred3 = RFC.predict(X_test)
     0.3.23 Evaluating the precision_Score, accuracy_score,f1_score
[86]: accuracy_score(y_test,y_pred3)
[86]: 0.9421052631578948
[87]: precision_score(y_test,y_pred3)
[87]: 0.989247311827957
[88]: f1_score(y_test,y_pred3)
[88]: 0.9435897435897437
     0.3.24 LightBGM
[89]: pip install lightgbm
     Requirement already satisfied: lightgbm in /usr/local/lib/python3.10/dist-
     packages (4.1.0)
     Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages
     (from lightgbm) (1.23.5)
     Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages
     (from lightgbm) (1.11.3)
[90]: from lightgbm import LGBMClassifier
[91]: LGBM = LGBMClassifier()
[92]: LGBM.fit(X_train,y_train)
     [LightGBM] [Info] Number of positive: 371, number of negative: 385
     [LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of
     testing was 0.005193 seconds.
     You can set `force_col_wise=true` to remove the overhead.
     [LightGBM] [Info] Total Bins 7317
     [LightGBM] [Info] Number of data points in the train set: 756, number of used
     features: 29
     [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.490741 -> initscore=-0.037041
```

```
[LightGBM] [Info] Start training from score -0.037041
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[92]: LGBMClassifier()
[93]: y_pred4 = LGBM.predict(X_test)
     0.3.25 Evaluating the precision_Score, accuracy_score,f1_score
[94]: accuracy_score(y_test,y_pred4)
[94]: 0.9421052631578948
[95]: precision_score(y_test,y_pred4)
[95]: 0.989247311827957
[96]: f1_score(y_test,y_pred4)
[96]: 0.9435897435897437
     0.3.26 Checking which model is performing better accuracy score
[97]: stats = pd.DataFrame({'Model':['Logistic Regression','Decision_,
       ⇔Classifier', 'Random Forest', 'Light GBM'],
                          'Accuracy_score':
       →[accuracy_score(y_test,y_pred1),accuracy_score(y_test,y_pred2),accuracy_score(y_test,y_pred
[98]: stats
                       Model Accuracy_score
[98]:
      O Logistic Regression
                                    0.952632
      1 Decision Classifier
                                    0.915789
      2
              Random Forest
                                    0.942105
                   Light GBM
      3
                                    0.942105
[99]: | ax = sns.barplot(x = 'Model',y = 'Accuracy_score',data = stats)
      plt.xticks(rotation=30)
      plt.show()
```


As we are losting so much of feature information in undersampling, so move head to oversampling

[99]:

0.3.27 Oversampling

```
[100]: pip install imbalanced-learn==0.10.1
```

```
Requirement already satisfied: imbalanced-learn==0.10.1 in /usr/local/lib/python3.10/dist-packages (0.10.1)
Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn==0.10.1) (1.23.5)
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn==0.10.1) (1.11.3)
Requirement already satisfied: scikit-learn>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn==0.10.1) (1.2.2)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn==0.10.1) (1.3.2)
```

```
/usr/local/lib/python3.10/dist-packages (from imbalanced-learn==0.10.1) (3.2.0)
[101]: pip install -U imbalanced-learn
      Requirement already satisfied: imbalanced-learn in
      /usr/local/lib/python3.10/dist-packages (0.10.1)
      Collecting imbalanced-learn
        Downloading imbalanced_learn-0.11.0-py3-none-any.whl (235 kB)
                                  235.6/235.6
      kB 5.1 MB/s eta 0:00:00
      Requirement already satisfied: numpy>=1.17.3 in
      /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (1.23.5)
      Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-
      packages (from imbalanced-learn) (1.11.3)
      Requirement already satisfied: scikit-learn>=1.0.2 in
      /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (1.2.2)
      Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-
      packages (from imbalanced-learn) (1.3.2)
      Requirement already satisfied: threadpoolctl>=2.0.0 in
      /usr/local/lib/python3.10/dist-packages (from imbalanced-learn) (3.2.0)
      Installing collected packages: imbalanced-learn
        Attempting uninstall: imbalanced-learn
          Found existing installation: imbalanced-learn 0.10.1
          Uninstalling imbalanced-learn-0.10.1:
            Successfully uninstalled imbalanced-learn-0.10.1
      Successfully installed imbalanced-learn-0.11.0
[102]: from imblearn.over_sampling import SMOTE
[103]: x2 = ccfd.drop('Class',axis=1)
[104]: x2.head()
[104]:
                          V2
                                    VЗ
                                              V4
                                                        V5
                                                                  V6
                V1
                                                                             V7
       0 -1.359807 -0.072781 2.536347 1.378155 -0.338321
                                                            0.462388 0.239599
       1 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803
       2 -1.358354 -1.340163 1.773209 0.379780 -0.503198
                                                           1.800499 0.791461
       3 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609
       4 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941
                V8
                          V9
                                   V10
                                             V11
                                                       V12
                                                                 V13
                                                                            V14 \
       0 0.098698 0.363787 0.090794 -0.551600 -0.617801 -0.991390 -0.311169
       1 \quad 0.085102 \quad -0.255425 \quad -0.166974 \quad 1.612727 \quad 1.065235 \quad 0.489095 \quad -0.143772
       2 0.247676 -1.514654 0.207643 0.624501 0.066084 0.717293 -0.165946
       3 0.377436 -1.387024 -0.054952 -0.226487 0.178228 0.507757 -0.287924
       4 -0.270533 0.817739 0.753074 -0.822843 0.538196 1.345852 -1.119670
```

Requirement already satisfied: threadpoolctl>=2.0.0 in

```
0 1.468177 -0.470401 0.207971 0.025791 0.403993 0.251412 -0.018307
       1 0.635558 0.463917 -0.114805 -0.183361 -0.145783 -0.069083 -0.225775
       2 2.345865 -2.890083 1.109969 -0.121359 -2.261857 0.524980 0.247998
       3 -0.631418 -1.059647 -0.684093 1.965775 -1.232622 -0.208038 -0.108300
       4 0.175121 -0.451449 -0.237033 -0.038195 0.803487 0.408542 -0.009431
               V22
                         V23
                                   V24
                                             V25
                                                       V26
                                                                  V27
       0 0.277838 -0.110474 0.066928 0.128539 -0.189115
                                                            0.133558 -0.021053
       1 - 0.638672 \quad 0.101288 - 0.339846 \quad 0.167170 \quad 0.125895 - 0.008983 \quad 0.014724
       2 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
       3 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458
       4 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153
           Amounts
       0 0.244964
       1 -0.342475
       2 1.160686
       3 0.140534
       4 -0.073403
[105]: y2 = ccfd.Class
[106]: y2
[106]: 0
                 0
       1
                 0
       2
                 0
       3
                 0
                 0
       284802
                 0
       284803
       284804
                 0
       284805
                 0
       284806
       Name: Class, Length: 275663, dtype: int64
[107]: X_res,y_res = SMOTE().fit_resample(x2,y2)
[108]: y_res.value_counts()
[108]: 0
            275190
       1
            275190
       Name: Class, dtype: int64
```

V20

V21 \

V15

V16

V17

V18

V19

```
0.3.28 Again split the training and testing data
```

```
[109]: X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_size = 0.
        →2,random_state=42)
      0.3.29 Train the Model
      0.3.30 Logistic Regression
[110]: #already imported
       LR.fit(X_train,y_train)
[110]: LogisticRegression()
      0.3.31 Evaluating accuracy_score,precision_score,f1_score
[111]: accuracy_score(y_test,LR.predict(X_test))
[111]: 0.9447563501580726
[112]: precision_score(y_test,LR.predict(X_test))
[112]: 0.9733165634674923
[113]: f1_score(y_test,LR.predict(X_test))
[113]: 0.9429993532240376
      0.3.32 Decision Tree Classifier
[114]: DTC.fit(X_train,y_train)
[114]: DecisionTreeClassifier()
      0.3.33 Evaluating accuracy Score, precision Score, f1 score
[115]: accuracy_score(y_test,DTC.predict(X_test))
[115]: 0.9981649042479741
[116]: precision_score(y_test,DTC.predict(X_test))
[116]: 0.9972596773315427
[117]: f1_score(y_test,DTC.predict(X_test))
[117]: 0.9981654042468168
```

0.3.34 Random Forest Classifier

```
[118]: RFC.fit(X train, y train)
[118]: RandomForestClassifier()
      0.3.35 Evaluating accuracy Score, precision Score, f1 score
[119]: accuracy_score(y_test,RFC.predict(X_test))
[119]: 0.999918238308078
[120]: precision_score(y_test,RFC.predict(X_test))
[120]: 0.9998363993310551
[121]: f1_score(y_test,RFC.predict(X_test))
[121]: 0.9999181929736854
      0.3.36 LightGBM
[122]: LGBM.fit(X_train,y_train)
      [LightGBM] [Info] Number of positive: 220187, number of negative: 220117
      [LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of
      testing was 0.132663 seconds.
      You can set `force_col_wise=true` to remove the overhead.
      [LightGBM] [Info] Total Bins 7395
      [LightGBM] [Info] Number of data points in the train set: 440304, number of used
      features: 29
      [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500079 -> initscore=0.000318
      [LightGBM] [Info] Start training from score 0.000318
[122]: LGBMClassifier()
      0.3.37 Evaluating accuracy_Score,precision_Score,f1_score
[123]: accuracy_score(y_test,LGBM.predict(X_test))
[123]: 0.9992823140375741
[124]: precision_score(y_test,LGBM.predict(X_test))
[124]: 0.9985838779956427
[125]: f1_score(y_test,LGBM.predict(X_test))
```

[125]: 0.9992823596740641

[127]: stats_oversampling

```
[127]: Model Accuracy_score
0 Logistic Regression 94.475635
1 Decision Classifier 99.816490
2 Random Forest 99.991824
3 Light GBM 99.928231
```

```
[128]: sns.barplot(x = 'Model',y = 'Accuracy_score',data = stats_oversampling)
plt.xticks(rotation=30)
plt.show()
```


0.3.38 Since Random Forest and Light Gradient Boosting Machine is performing better

```
[129]: import joblib
[130]: joblib.dump(RFC, "drive/MyDrive/ColabNotebooks/CCFD MODEL.txt")
[130]: ['drive/MyDrive/ColabNotebooks/CCFD MODEL.txt']
[131]: | model = joblib.load("drive/MyDrive/ColabNotebooks/CCFD MODEL.txt")
[132]: predicted = model.
       if(predicted == 0):
          print("Normal Transaction")
      else:
          print("Fraudlent Transaction")
     Normal Transaction
     /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does
     not have valid feature names, but RandomForestClassifier was fitted with feature
     names
       warnings.warn(
[133]: import pickle
[134]: pickle.dump(RFC,open("drive/MyDrive/ColabNotebooks/ccfd.txt","wb"))
```