Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Вариант №13 Лабораторная работа №2 по дисциплине Вычислительная математика

> Выполнил студент группы Р3212 Соколов Анатолий Владимирович Преподаватель: Наумова Надежда Александровна

Содержание

1	Зада	ание	1
	1.1	Вариант	1
	1.2	Для нелинейных уравнений должно быть реализовано	1
	1.3	Для систем нелинейных уравнений должно быть реализовано	2
	1.4	Варианты задания	2
	1.5	Цель работы	
2	Выі	полнение	3
	2.1	Рабочие формулы	3
	2.2	Графики функций	
	2.3	Метод простой итерации для x_3	
	2.4	Метод хорд для x_1	
	2.5	Метод Ньютона для x_2	
	2.6	Решение системы нелинейных уравнений	6
	2.7	Блок-схема реализованного алгоритма	
	2.8	Ссылка на GitHub с основной реализацией	
	2.9	Примеры и результаты работы программы	
3	Зак	лючение	10
4	Спи	сок литературы	10

1 Задание

Вычислительная часть лабораторной работы должна быть представлена в виде таблиц и отображена только в отчете.

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 2.6)
- 2. График исследуемой функции отобразить в отчете
- 3. Определить интервалы изоляции корней
- 4. Уточнить корни заданного нелинейного уравнения с точностью $\varepsilon = 10^{-2}$
- 5. Используемые методы для уточнения каждого из трех корней многочлена представлены в табл. 2.7
- 6. Вычисления оформить в виде таблиц (табл. 2.1–2.5), в зависимости от заданного метода. Для всех значений в таблицах удержать 3 знака после запятой;

1.1 Вариант

1.2 Для нелинейных уравнений должно быть реализовано

- 1. Все численные методы (см. табл. 2.8) должны быть реализованы в виде класса /метода/функции;
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3–5 функций, в том числе и трансцендентные), из тех, которые предлагает программа;
- 3. Предусмотреть ввод исходных данных (границы интервала, погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя;
- 4. Организовать вывод графика функции на исследуемом интервале (с запасом);
- 5. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные;
- 6. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения (а или b) вычислять в программе;

- 7. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале. Если оно не выполняется, выводить соответствующее сообщение. При этом попытаться решить нелинейное уравнение, ограничив итерационный процесс заданным в программе максимальным числом итераций;
- 8. Для каждого метода учитывать все критерии выхода из итерационного цикла. Проверить, как изменятся результаты, если учитывать либо критерии по аргументу, либо критерии по функции;
- 9. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя;
- 10. Проанализировать полученные результаты, оценить точность решения задачи;
- 11. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.

1.3 Для систем нелинейных уравнений должно быть реализовано

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2–3 системы);
- 2. Организовать вывод графика функций.
- 3. Ввести начальные приближения с клавиатуры;
- 4. Для метода простой итерации проверить достаточное условие сходимости. Если оно не выполняется, выводить соответствующее сообщение. При этом попытаться решить систему нелинейных уравнений, ограничив итерационный процесс заданным в программе максимальным числом итераций;
- 5. Организовать вывод вектора неизвестных:;
- 6. Организовать вывод количества итераций, за которое было найдено решение;
- 7. Организовать вывод вектора погрешностей: ;
- 8. Проверить правильность решения системы нелинейных уравнений.
- 9. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.

1.4 Варианты задания

Выбор метода для вычислительной реализации задачи

$$x^3 + 4.81x^2 - 17.37x + 5.38$$

Метод простой итерации

$$\begin{cases} \sin y + 2x = 2\\ y + \cos(x - 1) = 0.7 \end{cases}$$

Выбор метода для программной реализации задачи

Решение нелинейных уравнений: метод половинного деления, метод секущих, метод простой итерации Решение систем нелинейных уравнений: метод Ньютона.

1.5 Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

2 Выполнение

$$x_3(2.138,0)$$

 $x_2(0.345,0)$
 $x_1(-7.293,0)$

Номер	Номер Крайний		Центральный	
варианта	правый корень	левый корень	корень	
13	Метод простой итерации (5)	Метод хорд (2)	Метод Ньютона (3)	

Таблица 1: Методы для вычислительной реализации

2.1 Рабочие формулы

Метод Ньютона $x_i=x_{i-1}-\frac{f(x_{i-1})}{f'(x_{i-1})}$ Метод половинного деления $x_i=\frac{x_{i-1}+x_{i+1}}{2}$ Метод простой итерации $x_{i+1}=\varphi(x_i)$, где $\varphi(x)=x$ (x выражается из исходной функции f(x)) Метод хорд $x_{i+1}=\frac{a_if(b_i)-b_if(a_i)}{f(b_i)-f(a_i)}$

2.2 Графики функций

Рис. 1: $x^3 + 4.81x^2 - 17.37x + 5.38$

Рис. 2:
$$\begin{cases} & \sin y + 2x = 2 \\ & y + \cos(x - 1) = 0.7 \end{cases}$$

2.3 Метод простой итерации для x_3

Приведём уравнение:

$$x^3 + 4.81x^2 - 17.37x + 5.38$$

Решим через параметр λ : Пусть начальное приближение будет:

$$a_0 = 1.4; \ b_0 = 1.9$$

$$f(x) = x^3 + 4.81x^2 - 17.37x + 5.38$$

$$\lambda f(x) = 0 \ (\lambda! = 0)$$

$$\varphi(x) = x + \lambda f(x)$$

$$\varphi'(x) = 1 + \lambda f'(x)$$

$$f'(x) = -17.37 + 9.62x + 3x^2$$

$$f'(1.4) = -17.37 + 9.62 \cdot 1.4 + 3 \cdot (1.4)^2 = 1.978$$

$$f'(2.2) = -17.37 + 9.62 \cdot 2.2 + 3 \cdot (2.2)^2 = 18.314$$

Так как f'[a, b] > 0, то рассматриваем:

$$\lambda = -\frac{1}{\max|f'(x)|} = -\frac{1}{18.314} = 0.054$$

Подставим:

$$\varphi(x) = x + (-1/(-17.37 + 9.62 * 2.2 + 3 * (2.2)^{2})) * (x^{3} + 4.81x^{2} - 17.37x + 5.38)$$
$$= -0.293764 + 1.94845 \cdot x - 0.262641 \cdot x^{2} - 0.054603 \cdot x^{3}$$

$$\varphi'(x) = 1.94845 - 0.525282 * x - 0.163809 * x^2$$

Проверим точки:

$$\varphi'(1.4) = 1.94845 - 0.525282 * 1.4 - 0.163809 * 1.4^2 < 1$$

$$\varphi'(2.2) = 1.94845 - 0.525282 * 2.2 - 0.163809 * 2.2^2 < 1$$

Условие сходимости выполняется!

$$x_0 = 1.4$$

$$x_1 = \varphi(x_0) = -0.293764 + 1.94845 \cdot (1.4) - 0.262641 \cdot (1.4)^2 - 0.054603 \cdot (1.4)^3 = 1.769459008$$

$$x_2 = -0.293764 + 1.94845 \cdot (1.769459008) - 0.262641 \cdot (1.769459008)^2 - 0.054603 \cdot (1.769459008)^3 = 2.0291045184565837$$

$$f(x_2) = (1.769459008)^3 + 4.81 \cdot (1.769459008)^2 - 17.37 \cdot (1.769459008) + 5.38 = -4.755314315965413$$

 $f(x) = x^3 + 4.81x^2 - 17.37x + 5.38$ $\varphi(x) = -0.293764 + 1.94845 \cdot x - 0.262641 \cdot x^2 - 0.054603 \cdot x^3$

Номер	x_i	x_{i+1}	$\varphi(x_{i+1})$	$f(x_{i+1})$	$ x_{i+1} - x_i $
0	1.4	1.76945901	2.02910452	-1.7071388	0.36945901
1	1.76945901	2.02910452	2.12230887	-0.2600345	0.25964551
2	2.02910452	2.12230887	2.13649639	-0.0228481	0.09320435
3	2.12230887	2.13649639	2.13773272	-0.0019654	0.01418751
4	2.13649639	2.13773272	2.13782878	-0.0003413	0.00123633

Таблица 2: Уточнение корня уравнения методом простой итерации

2.4 Метод хорд для x_1

Возьму за изолированный интервал [-8, -7]

$$x^3 + 4.81x^2 - 17.37x + 5.38$$

Вычисление будем производить по формуле:

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Номер	a	b	x	f(a)	f(b)	f(x)	$ x_{i+1}-x_i $
0	-8	-7	-7.2473578	-59.82	19.66	3.24634659	0.24735783
1	-8	-7.2473578	-7.2861002	-59.82	3.24634659	0.49019797	0.03874233
2	-8	-7.2861002	-7.2919027	-59.82	0.49019797	0.07300449	0.00580254
3	-8	-7.2919027	-7.2927658	-59.82	0.07300449	0.01085004	0.00086311

Таблица 3: Уточнение корня уравнения методом хорд

Тогда ответ:

$$x \approx -7.2927658$$

2.5 Метод Ньютона для x_2

Возьму за изолированный интервал [0.3, 0.4]

$$x^3 + 4.81x^2 - 17.37x + 5.38$$

Вычисление будем производить по формуле:

$$f(0.3) = 0.3^3 + 4.81 * 0.3^2 - 17.37 * 0.3 + 5.38 = 0.6289$$

$$f(0.4) = 0.4^3 + 4.81 * 0.4^2 - 17.37 * 0.4 + 5.38 = -0.7344$$

Найдем производные:

$$f'(x) = -17.37 + 9.62x + 3x^{2}$$

$$f'(0.3) = -17.37 + 9.62 * 0.3 + 3 * 0.3^{2} = -14.214$$

$$f'(0.4) = -17.37 + 9.62 * 0.4 + 3 * 0.4^{2} = -13.042$$

Первая производная сохраняет знаки

Найдем вторую производную

$$f''(x) = 9.62 + 6x f''(0.3) = 9.62 + 6 * 0.3 = 11.42 f''(0.4) = 9.62 + 6 * 0.4 = 12.02$$

Вторая производная сохраняет знаки

Выполняется условие $f(a_0) \cdot f''(a_0) > 0$, тогда $x_0 = a_0 = 0.3$

Номер	x_i	$f(x_i)$	$f'(x_i)$	x_{i+1}	$ x_{i+1}-x_i $
0	0.3	0.34424511	0.6289	20.526	0.04424511
1	0.34424511	0.34506718	0.01126468	21.0371521	0.00082207
2	0.34506718	0.34506747	3.9491E-06	21.0467603	2.8839E-07

Таблица 4: Уточнение корня уравнения методом Ньютона

Условие окончания итер метода соблюдается:

$$|x_n - x_{n-1}| \le \varepsilon |f(x_n)| \le \varepsilon$$

Тогда ответ:

$$x \approx 0.34506747$$

2.6 Решение системы нелинейных уравнений

$$\begin{cases} \sin y + 2x = 2\\ y + \cos(x - 1) = 0.7 \end{cases}$$

Определяем, что решение системы уравнений находится в квадрате:

$$1 \leqslant x \leqslant 2$$

$$-1 \leqslant y \leqslant 0$$

$$\begin{cases} x = \frac{(2-\sin y)}{2} \\ y = 0.7 - \cos(x-1) \end{cases}$$

$$\frac{\partial x}{\partial x} = 0$$

$$\frac{\partial x}{\partial y} = \frac{(2-\sin y)}{2}$$

$$\frac{\partial y}{\partial y} = 0$$

$$\frac{\partial y}{\partial x} = 0.7 - \cos(x-1)$$

$$\left| \frac{\partial x}{\partial x} \right| + \left| \frac{\partial x}{\partial y} \right| = \left| \frac{(2-\sin y)}{2} \right| \leqslant 1$$

$$\left| \frac{\partial y}{\partial x} \right| + \left| \frac{\partial y}{\partial y} \right| = |\cos(x-1)| \leqslant 1$$

 $\max_{[x \in G]} |\varphi'| < 1 \to \Pi$ роцесс сходящийся

Номер итерации	x_i	y_i	x_{i+1}	y_{i+1}	$ x_{i+1}-x_i $	$ y_{i+1} - y_i $
0	0	0	1	0.1597	1	0.1597
1	1	0.1597	0.9205	-0.3	0.0795	0.4597
2	0.9205	-0.3	1.1478	-0.2968	0.2273	0.0032
3	1.1478	-0.2968	1.1463	-0.2891	0.0015	0.0077

Таблица 5: Уточнение корня уравнения методом простой итерации

2.7 Блок-схема реализованного алгоритма

2.8 Ссылка на GitHub с основной реализацией

Github

2.9 Примеры и результаты работы программы

Рис. 3: *UI 1*

Рис. 4: UI 2

Рис. 5: *UI 3*

3 Заключение

В ходе выполнения данной Π Р я ознакомился с основыми методами решения нелинейных уравнений и систем нелинейных уравнений. Вообще с кайфом написал 2к строк кода

4 Список литературы

[1] Слайды с лекций (2023). // Кафедра информатики и вычислительной техники – Малышева Татьяна Алексеевна, к.т.н., доцент.