

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2017

BRANCHE	SECTION	ÉPREUVE ÉCRITE
Mathématiques 2	В	Durée de l'épreuve 4 heures
		Date de l'épreuve 19 septembre 2017
		Numéro du candidat

Question 1 (3+4+3 = 10 points)

- a) Résoudre, en donnant des valeurs exactes, l'équation $2^x \log_2(x) 8\log_2(x) 2^{x+2} = -32$.
- b) Résoudre, en donnant des valeurs exactes, l'inéquation $\ln |x^2 2| 2 \ln (1 x) > 0$.
- c) Calculer $\lim_{x \to +\infty} \left(\frac{x-1}{x+1} \right)^{\sqrt{x}}$.

Question 2 (1+3+3+2=9 points)

Soit f la fonction définie par $f(x) = \begin{cases} e^{\frac{x^2}{x-1}} & \text{si } x \neq 1 \\ 0 & \text{si } x = 1 \end{cases}$ et G_f son graphe dans un repère orthonormé.

- a) Étudier la continuité de f en 1.
- b) Étudier la dérivabilité à gauche de f en 1 et interpréter graphiquement le résultat.
- c) Étudier l'existence de branches infinies de G_f .
- d) Étudier le sens de variation de f et dresser son tableau des variations.

Question 3 (5 points)

Soit f la fonction définie par $f(x) = (2x+1)e^x$ et G_f son graphe dans un repère orthonormé.

Montrer qu'il y a deux tangentes à G_f qui passent par l'origine et déterminer une équation de chacune d'elles.

Question 4 (7+2+5=14 points)

Soit f la fonction définie par $f(x) = \frac{\ln(x^3)}{x}$ et G_f son graphe dans un repère orthonormé.

- a) Étudier (domaine de définition, limites aux bornes du domaine de définition, branches infinies, dérivée, tableau des variations, concavité, tableau de concavité) la fonction f et représenter-la dans un repère orthonormé (unité : 2 cm).
- b) Déterminer une équation cartésienne des tangentes t_1 et t_e à G_f aux points de G_f d'abscisses 1 et e respectivement.
- c) Déterminer la valeur exacte, en unités d'aire, de l'aire de la surface délimitée par G_t , t_1 et t_e .

Question 5 (5+5=10 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \left(x - \frac{9}{2}\right) \ln\left(x^2 + 1\right)$ et G_f son graphe dans un repère orthonormé.

- a) Étudier l'existence de points d'inflexion de G_f et donner les valeurs exactes de leurs abscisses.
- b) Calculer la valeur exacte, en unités d'aire, de l'aire de la surface finie délimitée par G_f et (Ox).

Question 6 (7 points)

Dans un repère orthonormé, on considère le cercle c de centre O(0;0) et de rayon 1 et le cercle c' de centre $K(0;-\frac{1}{2})$ et de rayon $\frac{\sqrt{5}}{2}$. Soit S la surface délimitée par c et c' située dans le demi-plan de bord (Ox) contenant le point J(0;1) (voir figure ci-dessous). Déterminer la valeur exacte, en unités de volume, du volume du solide de révolution engendré par la rotation de S autour de (Ox).

Question 7 (5 points)

a)
$$\left(\forall \lambda \in \left[0; \frac{\pi}{4} \right] \right)$$
, on pose : $I(\lambda) = \int_0^{\lambda} \frac{\sin^2(2x)}{\cos(2x)} dx$. Calculer $I(\lambda)$.

b) Calculer
$$\lim_{\lambda \to \frac{\pi}{4}} I(\lambda)$$
.

Indication: En cas de besoin, déterminer les réels a et b tels que $\frac{1}{1-x^2} = \frac{a}{1-x} + \frac{b}{1+x}$.