

EECE 5644, Machine Learning and pattern Recognition

Mayur Bhise, Derek Koechlin

General Adversarial Network (GAN)

Algorithm

While not converged do

- 1. For k steps do
 - 1.1 Draw B training samples $\{\mathbf{x}_1, \dots, \mathbf{x}_B\}$ from $p_{data}(\mathbf{x})$
 - 1.2 Draw B latent samples $\{\mathbf{z}_1, \dots, \mathbf{z}_B\}$ from $p(\mathbf{z})$
 - 1.3 Update the **discriminator** D by **ascending** its stochastic gradient:

$$\nabla_{\mathbf{w}_D} \frac{1}{B} \sum_{b=1}^{B} \log D(\mathbf{x}_b) + \log(1 - D(G(\mathbf{z}_b)))$$

- 2. Draw B latent samples $\{\mathbf{z}_1, \dots, \mathbf{z}_B\}$ from $p(\mathbf{z})$
- 3. Update the **generator** *G* by **descending** its stochastic gradient:

$$\nabla_{\mathbf{w}_G} \frac{1}{B} \sum_{b=1}^{B} \log(1 - D(G(\mathbf{z}_b)))$$

Super-Resolution GAN (SRGAN)

- Given LR image enhances image resolution and reconstruct SR approx. equal to HR image.
- CNN Based

Challenges

- Network architecture
- Loss function
- Training procedure
- Upsampling method
- Real-time

Applications: Medical imaging, Video and Image enhancement, Satellite images, Video Game upscaling, Low Res camera upscaling

SRGAN architecture

2D Convolution

Pixel Shuffle

Loss Function

MSE LOSS

PERCEPTUAL LOSS

$$l_{MSE}^{SR} = \frac{1}{r^2WH} \sum_{x=1}^{rW} \sum_{y=1}^{rH} (I_{x,y}^{HR} - G_{\theta_G}(I^{LR})_{x,y})^2$$

$$l^{SR} = \underbrace{l_X^{SR}}_{\text{content loss}} + \underbrace{10^{-3}l_{Gen}^{SR}}_{\text{adversarial loss}}$$
perceptual loss (for VGG based content losses)

Hyperparameter Selection

General Adversarial Networks have a massive amount of hyperparameters to choose

Specific model hyperparameters were selected according to IEEE research into GANs and SRGANs

Additional hyperparameters include:

Input size 64x64 - 256x256 Output size 16

Residual Blocks -

- 750 & 4000 Epochs

Batch Size 8 & 1 .0001 Learning Rate

Dataset

- Mirflickr Dataset with 25k images of different sizes.
- Other benchmark datasets: Set5, BSD100, Set14

Preprocessing and Augmentation

- LR images with size 64 x 64
- LR images 4x downscaled (Bicubic)
- 0-1 Normalization

Metrics

MSE

$$MSE = \frac{1}{NxM} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} [X(i,j) - Y(i,j)]^{2}$$

PSNR

$$PSNR = 10.\log(\frac{MAX_I^2}{MSE})$$

SSIM

$$ext{SSIM}(x,y) = \left[l(x,y)^{lpha} \cdot c(x,y)^{eta} \cdot s(x,y)^{\gamma}
ight]$$

Results:

Metrics	SR-ResNet-L2	SRGAN (authors)	SRGAN (ours) _{at 4k epochs}
MSE	280	N/A	68.16
PSNR	21.97	29.4	29.75
SSIM	0.47	0.84	0.72

Training Time:

Epochs: 750 Batch Size: 8 Time: 11 Hours Epochs: 4000 Barch Size: 1 Time: 15 Hours

Input 128 x 128

SR 512 x 512, 750E

SR 512 x 512, 4000E

Input 128 x 128

SR 512 x 512, 750E

SR 512 x 512, 4000E

Input 128 x 128

SR 512 x 512, 750E

SR 512 x 512, 4000E

Optimal SRGAN

- GANs require massive datasets in order to generate quality images
- The optimal training would use the ImageNet dataset containing over 1,000,000 images
- Longer training times also improve the accuracy of the model. Using the ImageNet dataset, training could take multiple days

Optimal Results

Code links and References

- [1] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi (Twitter) Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, https://arxiv.org/abs/1609.04802v5
- [2] Ian J. Goodfellow, Jean Pouget-Abadie*, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio D´epartement d`informatique et de recherche opérationnelle Université de Montréal arXiv:1406.2661v1 [stat.ML] 10 Jun 2014 Montreal, QC H3C 3J7, https://arxiv.org/abs/1406.2661
- [3] https://theaisummer.com/skip-connections/
- [4] https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html?highlight=pixel%20shuffle#torch.nn.PixelShuffle
- [5] https://towardsdatascience.com/srgan-a-tensorflow-implementation-49b959267c60
- [6] https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/deep-learning/
- [7] https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
- [8] https://arxiv.org/abs/1609.07009