

LECTURE 1: MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025

University of Sheffield

1

COURSE OVERVIEW

A practical course on effective use of the Isabelle/HOL proof assistant in mathematics and programming languages

Lectures:

- Introduction to Proof Assistants
- Formalising the basics in Isabelle/HOL
- Introduction to Isar, more types, Locales and Type-classes
- Case studies:
 - Formalising Mathematics: Combinatorics & advanced locale reasoning patterns
 - Program Verification: Formalising semantics, program properties, and introducing modularity/abstraction.

Example Classes:

- Isabelle exercises based on the previous lecture
- Will be drawing from the existing Isabelle tutorials/Nipkow's Concrete Semantic Book, as well as custom exercises (e.g. for locales).

Acknowledgement: Slides partially inspired by slides/notes by Larry Paulson, Tobias Nipkow, Gerwin Klein, Clemens Ballarin, Georg Struth, Andrei Popescu (and many more who've come before me!)

PRE-REQUISITE KNOWLEDGE

- No prior proof assistance is assumed:
 - If you've used Isabelle before, perhaps this will offer a new perspective/closer look at certain features
 - If you've used other proof assistants before, there'll be plenty of Isabelle specific concepts as well as more familiar ones.
 - We'll discuss topics that are both Isabelle specific and more general in the proof assistant landscape.
- What is assumed:
 - Some familiarity with functional programming
 - Basic logic, discrete maths, some semantics (for the last lecture).

3

A DISCLAIMER

This course IS...

...unashamedly a course on the practical use of proof assistants and in particular, Isabelle/HOL

Main course goals:

- Be able to use Isabelle to start your own project/keep learning yourself.
- Understand the importance of modularity in formal proof and use important tools/advanced proof techniques in Isabelle/HOL to manage such modularity
- Understand the role proof assistants can play in several areas of foundations research

This course IS NOT:

- A type theory course
- A course on the details of all proof assistants (or for that matter, even all the details of Isabelle/HOL!).
- An introduction to a particular foundational concept which only uses Isabelle for exercises

COURSE RESOURCES

- Documentation
 - See the course website for slides, notes, and exercises:
 - https://cledmonds.github.io/mgs2025/
 - Will be updated throughout this week!
- Other useful resources:
 - The official documentation (particularly prog-prove & locales tutorials): Comes with Isabelle distribution
 - Tobias Nipkow's Concrete Semantics Book: http://concrete-semantics.org/
 - Machine Logic Blog: Interesting exploration of Isabelle and history by Larry Paulson - https://lawrencecpaulson.github.io/

5

LECTURE 1 OVERVIEW

- Introduction to Proof Assistants
 - History, major developments, motivation
- Introduction to Isabelle/HOL
- A fast-paced "tour" through key basic concepts
 - The editors
 - Some logical proofs
 - Functions, datatypes, tactics.
 - More examples!
 - Isabelle Infrastructure: AFP, automation, search, etc
 - Summary of other advanced features

INTRODUCTION TO PROOF ASSISTANTS

7

PROOF ASSISTANTS

- Interactive proof assistants allow us to prove theorems in a logical formalism:
 - With precise definitions of concepts
 - A formal deductive system
 - And (hopefully) automated tools
- We can create hierarchies of definitions and proofs
 - Specifications of components and properties
 - Proofs that designs meet their requirements.
- Interactive = "guided" by a human user to produce a formalisation or mechanisation.

Isabelle/HOL

WHY FORMALISE?

A very simple example

Are the proofs below correct? Are they valid theorems to begin with?

$$(P \rightarrow Q), (Q \rightarrow R) \vdash R$$

1. $(P \rightarrow Q)$ hyp 2. $(Q \rightarrow R)$ hyp

3. P hyp 4. Q ($\rightarrow E$), 1, 3 5. R ($\rightarrow E$), 2, 4

5. R $(\rightarrow E)$, 2, 4 6. $P \rightarrow R$ $(\rightarrow I)$ 3-5

7. $R \qquad (\rightarrow E) 6,3$

 $\forall x \exists y P(x, y) \vdash \exists x \forall y P(x, y)$

1. $\forall x \exists y P(x, y)$ hyp

2. $\exists y P(a, y)$ $(\forall E)$ 1

 $P(a,b) \qquad (\exists E) \ 2$

4. $\forall x P(x, b)$ $(\forall I)$ 3 5. $\exists y \forall x P(x, y)$ $(\exists I)$ 4 $(P \land Q) \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

1. $(P \land Q) \rightarrow R$ hyp 2. P hyp 3. Q hyp 4. $P \land Q$ $(\land E_I) \ 2, \ 3$ 5. R $(\rightarrow E) \ 1, \ 4$

6. $Q \rightarrow R \qquad (\rightarrow I) \ 3-5$ 7. $P \rightarrow Q \rightarrow R \qquad (\rightarrow I) \ 2-6$

WHY FORMALISE?

A very simple example

6.

7.

$$(P \to Q), (Q \to R) \vdash R$$

1. $(P \to Q)$ hyp

2. $(Q \to R)$ hyp

3. P hyp

4. Q $(\to E), 1, 3$

5. R $(\to E), 2, 4$

NOT A THEOREM! $(\rightarrow E)$ at 7

 $(\to I)$ 3-5

 $(\rightarrow E)$ 6,3

$$\forall x \exists y P(x, y) \vdash \exists x \forall y P(x, y)$$

1.
$$\forall x \exists y P(x, y)$$
 hyp

2.
$$\exists y P(a, y)$$
 $(\forall E)$ 1
3. $P(a, b)$ $(\exists E)$ 2

4.
$$\forall x P(x,b)$$
 $(\forall I)$ 3

5.
$$\exists y \forall x P(x,y) \quad (\exists I) \ 4$$

NOT A THEOREM!
$$(\exists E)$$
 at 3

$$(P \wedge Q) \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$$

1.	$(P \wedge Q) \rightarrow R$	hyp
2.	Р	hyp
3.	Q	hyp
4.	$P \wedge Q$	$(\wedge E_{l})$ 2, 3
5.	R	(→ <i>E</i>) 1, 4
6.	Q o R	(→1) 3-5

 $P \rightarrow Q \rightarrow R$ ($\rightarrow I$) 2-6

PROOF ERROR: $(\land I)$ at 4

11

WHY FORMALISE?

- ¹ The result of Problem 11 contradicts the results announced by Levy [1963b]. Unfortunately, the construction presented there cannot be completed.
- ² The transfer to ZF was also claimed by Marek [1966] but the outlined method appears to be unsatisfactory and has not been published.
- ³ A contradicting result was announced and later withdrawn by Truss [1970].
- ⁴ The example in Problem 22 is a counterexample to another condition of Mostowski, who conjectured its sufficiency and singled out this example as a test case.
- ⁵ The independence result contradicts the claim of Felgner [1969] that the Cofinality Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner's corrections to [1969]).

*Footnotes on page 118 of Jech's The Axiom of Choice (1973)

WHY FORMALISE?

To validate complex proofs

To reveal hidden assumptions & proof steps

To create central libraries of verified mathematical/CS knowledge

To benefit from advances in automation and technology

13

PROOF ASSISTANT COMPONENTS

User Interface

Proof Libraries

Automation Tools

Notational Support

Basic Proof Language

Theory Management

Core Logical Formalism

SOME HISTORY

- Automath (de Bruijn, 1968): The first! Novel type theory. Formalised the construction of the reals.
- Mizar (Trybulec, 1973): Set theory with "soft typing". Structured formal language
- Rocq (Coq) (Coquand and Huet et al, 1984): Dependent type theory.
- HOL [Light] (Gorden, 1988, Harrison, 1992): Simple type theory/Higher-order logic. First to verify real analysis.
- **Isabelle[HOL]** (Paulson, 1986): Isabelle is a generic proof assistant. Its main instance is simple type theory/higher order logic.
- Agda (Coquand, 1999, Ulf, 2007): A dependently typed functional programming language, that is also a proof assistant. Based on Intuitionistic type theory.
- Lean (de Moura et al, 2015): Dependent type theory. Has a strong community for formalised maths.
- And many more ...

15

THE ISABELLE PROOF ASSISTANT

THE ISABELLE PROOF ASSISTANT

Isabelle

17

ISABELLE OVERVIEW

- Simple type theory/HOL
- Sledgehammer automated proof search.
- Counter-example generators
- Search tools: Query Search, Find Facts, SErAPIS

· Extra-large projects: 64 GB memory, 16 CPU cores

- The Isar structured proof language
- Jedit/VS Codium IDE
- Extensive existing libraries in Maths & Computer Science (AFP)
- Additional features: Code generation, documentation generation ...

```
theorem assumes "prime p" shows "sqrt p \notin \mathbb{Q}"
proof
  from <prime p> have p: "1 < p" by (simp add: prime_def)</pre>
  assume "sqrt p \in \mathbb{Q}"
  n: "n ≠ 0" and sqrt_rat: "|sqrt_p| = m / n"
and "coprime n n" by (rule Rats_abs_nat_div_natE)
have eq: "m" = p * n"
  proof -
    from n and sqrt_rat have "m = |sqrt p| * n" by simp
     then sho
       by {metis abs_of_nat of_nat_eq_iff of_nat_mult power2_eq_square real_sqrt_abs2 rea
  ged
  have "p dvd m A p dvd n"
                                                                                     sledgehammer proofs
    with eprime p. show "p dvd m" by (rule prime_dvd_power_nat) then obtain k where "m = p * k" ... with eq have "p * n^2 = p^2 * k^{2n} by (auto simp add: power2_eq_square ac_simps)
     with <prime p> show "p dvd n"
       by (metis dvd_triv_left nat_mult_dvd_cancell power2_eq_square prime_dvd_power_nat
  then have "p dvd gcd m n" by simp
  with <coprime m n> have "p = 1" by simp
  with p show False by simp
```

ISABELLES FAMILY OF LOGICS

- Isabelle is a generic theorem prover
- Overtime, several different logics have been developed – Isabelle/HOL is by far the most widely used.

19

ISABELLE/HOL FOUNDATIONS

- Isabelle/HOL is based on a Higher-Order logic (i.e. simple type theory)
 - First order logic extended with functions and sets.
 - Extended to also incorporate rank-1 polymorphism (we'll get to type classes later!).
 - ML-style functional programming.
- Often introduced as HOL
- Variation of Gordon's HOL (also led to the logic behind HOL4/HOL Light)

BASIC TYPES / TERMS / FUNCTIONS

-Postfix types have precedence over function types (i.e. $'a \Rightarrow 'b \ list \ means 'a \Rightarrow ('b \ list))$

TERMS

21

- i.e. The language of terms is a simply type λ calculus, noting Isabelle performs β -reduction $((\lambda x.t)u$ to t[u/x]) automatically.
- Terms must be **well-typed** $(t :: \tau)$
- Isabelle automatically computers the type of each variable in a term (type inference), except for overloaded functions where type annotations can be useful.

ISABELLE'S META LOGIC

- Implication: ⇒
 - For separating premises and conclusions of theorems
- Equality ≡
 - For definitions
- Universal Quantifier ∧
 - For binding local variables

Do not use inside HOL formula!

Logically the same meaning, but differences is usability/automation

NB: The Metalogic, has itself been formalised! https://www.isa-afp.org/entries/Metalogic_ProofChecker.html

23

EDITORS

ISABELLE JEDIT

Includes the most customised support for Isabelle developments

25

ISABELLE VSCODE

```
| Street | Street | Stop Complex Saley X | St
```

New VSCode based editor

- Must use instance in the Isabelle download
- Start via:
 - "isabelle vscode"
- Nice html previewMany less Isabelle
 - features than jedit
- Don't use the old
 VSCode extension

INTRODUCTION BY EXAMPLE

1. BOOLEAN LOGIC AND FUNCTIONS

27

FUNCTIONS/DATATYPES

DATATYPES

- Functional style datatypes
- Generates lots of useful facts/properties:
 - distinctness and injectivity (applied automatically).
 - Induction (needs to be applied)

```
datatype 'a mylist = Nill | Consl 'a " 'a mylist"
thm mylist.induct
thm mylist.case
```

29

FUNCTIONS & DEFINITIONS

- All Functions must be total!
- Fun termination proved automatically (most things we'll deal with),

```
fun app :: "'a mylist \Rightarrow 'a mylist \Rightarrow 'a mylist" where "app Nill ys = ys" | "app (Consl x xs) ys = Consl x (app xs ys)"
```

- Function user supplied termination proof.
- Definition: non-recursive definitions

```
definition prime :: "nat \Rightarrow bool" where "prime p = (1 \land (\forall m. m dvd p \longrightarrow m = 1 \lor m = p))"
```

Recursive functions have more built in facts that are useful in proofs than a definition.

TACTICS

31

AUTO VS SIMP

Auto

- auto applies simp rules + all obvious logical steps, e.g.:
 - Splitting conjunctive goals and disjunctive assumptions
 - Performing obvious quantifier removal
- It operates on all subgoals
- Designated intro and elimination rules included in this

Simp

- Simp performs rewriting (along with simple arithmetic simplification)
- It only operates on the first subgoal
- Some facts are included in the simplifier
- Other facts are often useful, e.g. for arithmetic, consider trying the following:
 - algebra_simps
 - field_simps
 - divide_simps

MORE REWRITING

- Simp rules work left to right, i.e. at each step transform the LHS into the RHS
- Isabelle enables you to add rules to the simplifier by declaring them as such
- Rewrite rules can be conditional (and are applied if the conditions can themselves be recursively proved via simplification)
- But! We need to be careful to avoid loops.
 - The following pair of "simp" rules would cause issues:

$$f(x) = h(g(x)), g(x) = f(x+2)$$

Permutative rewrite rules (e.g. x + y = y + x) are applied but only if they make the term "lexicographically smaller"

33

VARIATIONS ON SIMP/AUTO

- Add a fact (once-off) to be used for simplification: simp add: app assoc
- Omit a fact (once-off) from simplification: simp del: rev rev
- Don't simplify the assumptions: simp (no_asm_simp)
- Ignore the assumptions: simp (no_asm)
- Simplify all the subgoals: simp_all
- Add rewriting rules/introduction rules etc to auto: auto simp add: ... intro: ...
- You can combine many of these!

SIMP TRACE

Insert: using [[simp_trace]] (inline proof) or declare [[simp_trace]] (theory wide)

```
lemma ordered merge[simp]: "ordered (merge xs ys) = (ordered xs ∧ ordered ys)"
apply (induct xs ys rule: merge.induct)
apply simp_all
using [[simp trace]]
apply [[simp trace]]
```

35

MORE TACTICS

- Basic tactics such as rule, erule, assumption, intro, elim, used in conjunction with a known fact
- These can often be combined with auto/simp (like other variations of simp)
- We also have other automated tactics:
 - force, fastforce
 - blast: uses intro + elimination rules with powerful search heuristics (not simplification/arithmetic reasoning) and won't terminate if it doesn't work
 - Arithmetic tactics: arith, linarith
 - Use of tactics like "metis" and "smt" often indicate use of sledgehammer
- Other good tactics for starting a proof (less powerful, but safer): safe, clarify, standard
- And many more tactics: cases, split ...
- Tactics can be combined e.g. by (induction) (blast | fastforce)+ applies induction then repeatedly shows the subgoals using either blast or fastforce

INDUCTION

- Inductive tactics are well-developed with many options for application.
- The induction tactic tries to figure out what to do automatically:

```
lemma app_assoc: "app (app xs ys) zs = app xs (app ys zs)"
apply (induction xs)
apply auto
done
```

Sometimes it can't, and we need to be more specific

Specify n should be universally quantified in induction

```
lemma "itlen xs n = size xs + n"
apply (induct xs arbitrary: n rule: list.induct)
apply auto
done
```

Specify induction rule to use (unnecessary in this case)

37

USEFUL FEATURES

THE ISABELLE AFP

- A significant archive of (refereed) formalised mathematics and computer science concepts.
 - More of an "archive" than a constantly modified "library"
- https://www.isa-afp.org/
- It can be easily imported into a local instance of Isabelle by adding it as a component, see here: https://www.isa-afp.org/help/
- Over 4.5 million lines of code across 894 entries and still growing!

39

SLEDGEHAMMER

SLEDGEHAMMER

- Simplify the goal and break down into pieces
- Sledgehammer doesn't prove the goal, but returns a "proof" which is a call to metis, smt, blast, auto etc...
- Translations are not sound, hence sledgehammer provided proof may not work when inserted.
- Generated proofs can be ugly/messythere are usually cleaner ways!
- For more history: https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html
- For a more technical overview: https://www.cl.cam.ac.uk/~lp15/papers/Automation/paar.pdf (or many of Jasmin Blanchette's papers for more recent work).

41

COUNTER EXAMPLE

Nitpick

```
lemma ex2: "∀x .∃ y . P x y ⇒ ∃ x. ∀ y . P x y"
nitpick
oops

Nitpicking formula...
Nitpick found a counterexample for card 'b = 3 and card 'a = 2:
Free variable:
P = (\lambda x . _)(b_1 := False, b_2 := False, b_3 := True),
a_2 := (\lambda x . _)(b_1 := True, b_2 := True, b_3 := False))
Skolem constants:
\[ \lambda x \ y = (\lambda x . _)(a_1 := b_3, a_2 := b_2) \]
\[ \lambda x \ y = (\lambda x . _)(a_1 := b_1, a_2 := b_3) \]
```

Quickcheck

SEARCH: QUERY

43

SEARCH: FINDFACTS

https://search.isabelle.in.tum.de/

OR
Local Database with Isabelle2025

32 Blocks Found

MMP2 ternantics

726 * fun small_step :: "program = com × state -- com × state" where

727 * "small_step m (x[1]::a,s) = Some (SKIP, s(x := (x x)(eval i s := aval a s)))"

728 | "small_step m (x[1]::y,t) = Some (SKIP, s(x := s y))"

 $is abelle\ find_facts_server\ -p\ 8080\ -o\ find_facts_database_name = is abelle$

SEARCH: SERAPIS

https://behemoth.cl.cam.ac.uk/search/

Note: Last AFP Index was in 2021

45

OTHER COOL FEATURES

- Code Generation
- Document Preparation
- Lifting and Transfer
- Eisbach => Proof Method language
- Polymorphism (Type classes) and a powerful module system (Locales)

NEXT TIME...

- Example Class:
 - Get started with Isabelle: Logic and function proofs
 - Test out sledgehammer for yourself
 - Try out different tactics
 - Gain familiarity with Isabelle tools
- Next Lecture
 - Starting on modularity!
 - Finish off your "tour" overview of Isabelle with the Isar proof language and more advanced types
 - Introducing type classes and locales
- To come... more advanced case studies in mathematics and program verification!