Nota. Изоморфизм $E^n \to E'^n$ позволяет переносить свойства скалярного произведения из одного в другое пространство

 $Ex. \|x+y\| \leq \|x\| + \|y\|$ - арифметические векторы со скалярным произведением $(x,y) = \sum_{i=1}^n x_i y_i$ $E'^n \in C_{[a;b]}$ со скалярным произведением $(f,g) = \int_a^b f \cdot g dx$

$$\sqrt{\int_a^b (f \cdot g)^2 dx} \le \sqrt{\int_a^b f^2 dx} + \sqrt{\int_a^b g^2 dx}$$

1.4. Задача о перпендикуляре

Постановка: Нужно опустить перпендикуляр из точки пространства \boldsymbol{E}^n на подпространство \boldsymbol{G}

Точка M - конец вектора x в пространстве E^n . Нужно найти M_0 (конец вектора x_0 , проекции x на G), причем $x_0 + h = x$, где $h \perp G$. Правда ли что, длина перпендикулярного вектора h - минимальная длина от точки M до G?

Th.
$$h \perp G, x_0 \in G, x = x_0 + h$$
. Тогда $\forall x' \in G(x' \neq x_0) \ \|x - x'\| > \|x - x_0\|$

$$\|x-x'\| = \|x-x_0+x_0-x'\| \xrightarrow{\text{по теореме Пифагора}} \|x-x_0\| + \|x_0-x'\| = \|h\| + \|x_0-x'\| > \|x-x_0\|$$

 $Nota.\ x_0$ называется ортогональной проекцией, возникает вопрос о ее вычислении (так находятся основания перпендикуляров)

Алгоритм: представим $x_0 = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_k e_k$, $\{e_i\}_{i=1}^k$ - базис G (необязательно ортонормированный)

Дан вектор x, пространство G, нужно найти λ_i

 $h = x - x_0$, $h \perp G$ $(h, e_i) = 0$, так как $h \perp e_i \ \forall i$

$$(x - x_0, e_i) = (x, e_i) - (x_0, e_i) = 0 \Longrightarrow (x, e_i) = (x_0, e_i)$$

Тогда $\forall i \ (x_0, e_i) = (\lambda_1 e_1 + \dots + \lambda_k e_k, e_i) = \lambda_1 (e_1, e_i) + \dots + \lambda_k (e_k, e_i)$. Здесь (e_k, e_i) - числа, а λ_i неизвестные переменные. Из этого получаем СЛАУ:

$$\begin{pmatrix} (e_1, e_1) & (e_1, e_2) & \dots & (e_1, e_k) \\ \dots & \dots & \dots & \dots \\ (e_k, e_1) & (e_k, e_2) & \dots & (e_k, e_k) \end{pmatrix} \times \begin{pmatrix} \lambda_1 \\ \dots \\ \lambda_k \end{pmatrix} = \Gamma \times \begin{pmatrix} \lambda_1 \\ \dots \\ \lambda_k \end{pmatrix} = \begin{pmatrix} (x, e_1) \\ \dots \\ (x, e_k) \end{pmatrix}$$

Nota. В матрице Γ нет нулевых строк, так как e_i - вектор базиса и $e_i^2 \neq 0$ Таким образом по теореме Крамера $\exists!(\lambda_1,\ldots,\lambda_k)$

 $\mathbf{Def.}$ Матрицу $\Gamma = \{(e_i, e_j)\}_{i,j=1...k}$ называют матрицей Γ рама

В простейшем случае, $\Gamma = I = \begin{pmatrix} 1 & 0 & \dots \\ 0 & 1 & \dots \\ & & 1 \end{pmatrix}$, если базис ортонормированный

Далее, І - единичная матрица Грама

$$Nota.$$
 Тогда $I imes \begin{pmatrix} \lambda_1 \\ \dots \\ \lambda_k \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \dots \\ \lambda_k \end{pmatrix} = \begin{pmatrix} (x, e_1) \\ \dots \\ (x, e_k) \end{pmatrix}$

Приложения задачи о перпендикуляре

1. Метод наименьших квадратов

В качестве простейшей модели зависимости y = y(x) берем линейную функцию $y = \lambda x$ Ищем минимально отстоящую прямую от данных (x_i, y_i) , то есть ищем λ

Определим расстояние (в этом методе) как $\sigma^2 = \sum_{i=1}^n (y_i - y_{0i})^2 = \sum_{i=1}^n (y_i - \lambda x_i)^2$ - наша задача состоит в минимизации этой величины¹

Таким образом, ищем y_0 (ортогональная проекция) такой, что $(y-y_0)^2 = \sigma^2$ минимальна. Найдем производную функции $\sigma^2(\lambda)$:

Папдем проповодную функции
$$\sigma$$
 (τ).
$$\left(\sigma^2(\lambda)\right)' = \sum_{i=1}^n (2\lambda x_i^2 - 2x_i y_i) = 0 \Longrightarrow \sum_{i=1}^n \lambda x_i^2 = \sum_{i=1}^n x_i y_i$$
Отсюда получаем $\lambda = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$

Отсюда получаем
$$\lambda = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

¹ Эта величина также известна как дисперсия

В общем случае для аппроксимирующей функции $f(x, \lambda_1, \dots, \lambda_k)$ с k неизвестными параметрами составляем $\sigma^2(\lambda_1, \dots, \lambda_k) = \sum_{i=1}^n (y_i - f(x_i, \lambda_1, \dots, \lambda_k))^2$,

решаем систему
$$\begin{cases} \frac{\partial \sigma^2}{\partial \lambda_1} = 0\\ \vdots & \text{и получаем } \lambda_1, \dots, \lambda_k\\ \frac{\partial \sigma^2}{\partial \lambda_k} = 0 \end{cases}$$

2. Многочлен Фурье

 $P(t)=rac{a_0}{2}+a_1\cos t+b_1\sin t+\dots a_n\cos nt+b_n\sin nt$ - линейная комбинация

Функции $1, \cos t, \sin t, \ldots, \cos nt, \sin nt$ - ортогональны

Задача в том, чтобы для функции f(t), определенной на отрезке $[0;2\pi]$, найти минимально отстоящий многочлен P(t) при том, что расстояние определяется как $\sigma^2 = \int_0^{2\pi} (f(t) - P(t))^2 dt$

Нужно найти a_i и b_i - обычные скалярные произведения $a_i = k \int_0^{2\pi} f(t) \cos(it) dt, \ b_i = m \int_0^{2\pi} f(t) \sin(it) dt \ (k, m$ - нормирующие множители)

2. Линейный оператор

2.1. Определение

Def. Линейный оператор - это отображение $V^n \stackrel{\mathcal{A}}{\Longrightarrow} W^m$ (V^n, W^m - линейные пространства размерностей $n \neq m$ в общем случае), которое $\forall x \in V^n$ сопоставляет один какой-либо $y \in W^m$ и $\boxed{\mathcal{A}(\lambda x_1 + \mu x_2) = \lambda \mathcal{A} x_1 + \mu \mathcal{A} x_2 = \lambda y_1 + \mu y_2}$

Nota. Заметим, что если 0 представим как $0 \cdot x$, где $x \neq 0$, то $\mathcal{A}(0) = \mathcal{A}(0 \cdot x) = 0 \cdot \mathcal{A}x \stackrel{0 \cdot y}{=} 0$ *Nota.* Если V = W, то \mathcal{A} называют линейным преобразованием, но далее будем рассматривать в основном операторы $\mathcal{A}: V \to V$, $\mathcal{A}: V^n \to W^n$

 $Ex. \ 1. \ V = \mathbb{R}^2$ - пространство направленных отрезков

 $\mathcal{A}:V\to V$

 $\mathcal{A}x = y = \lambda y_1 + \mu y_2$ для таких \mathcal{A} как сдвиг, поворот, гомотетия, симметрия

 $Ex. \ 2. \ V^n = W^m$, где m < n

 \mathcal{A} - оператор проектирования (убедиться, что он линейный)

 $Ex. \ 3. \ V^n$ - пространство числовых строк длины n

 $\mathcal{A}: V^n \to V^n$

 $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$

Выражение $\mathcal{A}x=y$ можно представить как $\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} x=y$

2.2. Действия с операторами

 $\mathbf{Def.}$ Пусть $\mathcal{A},\mathcal{B}:V\to W,$ тогда определены операции:

- 1. $(\mathcal{A} + \mathcal{B})x \stackrel{def}{=} \mathcal{A}x + \mathcal{B}x$ определение суммы $\mathcal{A} + \mathcal{B} = C$
- 2. $(\lambda \mathcal{A})x \stackrel{def}{=} \lambda(\mathcal{A}x) \lambda \mathcal{A} = \mathcal{D}$

Nota. Сформируем линейное пространство из операторов $\mathcal{A}: V \to W$

- 1. Ассоциативность сложения (очевидно)
- 2. Коммутативность (очевидно)
- 3. Нейтральный элемент Ox = 0
- 4. Противоположный: $-\mathcal{A} = (-1) \cdot A$

5. ...<u>Lab.</u>

Def. I - тождественный оператор, если $\forall x \in V \ I x = x$