具有恒流源的差动放大电路

一. 实验目的

- 1. 学习差动放大电路静态工作点的测试方法。
- 2. 学习差动放大电路动态指针(单端输入,单端输出或双端输出时差模放大倍数 Avd、共模放大倍数 Avc 以及共模抑制比 K_{ONE})的测试方法。
 - 3. 熟悉双电源的接法以及用示波器观察信号波形的相位关系。

二. 电路原理简述

实验电路见图 8-1,是一个带恒流源的差动放大电路。它具有静态工作点稳定,对共模信号有高抑制能力,而对差模信号具有放大能力的特点。根据结构,该电路有四种形式:单端输入,单端输出;单端输入、双端输出;双端输入、单端输出和双端输入、双端输出。

图 8-1

其中: $R_{\text{b}}*3$ =4. 7k Ω , R_{c} =2k Ω , R_{e} =100 Ω , R_{p} =1k Ω , R_{0} - R_{p} =1. 5k Ω , D_{1} = D_{2} =1N4007, V_{4} = V_{2} = V_{3} =9013

双端输出的差模放大倍数为: $\dot{A}_{vd} = -\frac{\beta R_L'}{R_b + r_{be}}$

而共模放大倍数 $Avc \approx 0$ 。共模抑制比 $K_{CMR} = \left| \frac{A_{vd}}{A_{vc}} \right| \rightarrow \infty$,单端输出时,差模放大

倍数为双端输出的一半,即, $\dot{A}_{vd1} = -\dot{A}_{vd2} = \frac{\dot{A}_{vd}}{2} = \frac{-\beta R_L'}{2(R_b + r_{be})}$

而共模放大倍数 $\dot{A}_{vc} \approx -\frac{R_c}{2R_c}$, Re'为恒流源的等效电阻。

三. 实验设备

	名称	数量	型号
1.	直流稳压电源	1台	MC1095
2.	低频信号发生器	1台	学校自备
3.	示波器	1台	学校自备
4.	万用表	1台	学校自备
5.	差动放大电路模块	1 块	ST2020
6.	短接桥和连接导线	若干	P8-1 和 50148
7.	实验用9孔插件方板		$297 \text{mm} \times 300 \text{mm}$

四. 实验内容与步骤

- 1. 测试各级静态工作点
- 1)在 ST2020 差动放大电路模块上进行实验,接通电源±12V,调节电位器 R_p ,使 V_i =0 时(输入端对地短接), V_o =0(即 V_{o1} = V_{o2})。然后,用万用表分别测量 V_{c1} 、 V_{c2} 、 V_{c3} 填入表 8-1 中。
- 2) 用万用表测出 R_e 两端电压 V_{Re} (0.605V), 然后计算出 I_{E3} 和 I_{C1} 、 I_{C2} (I_{E3} = V_{Re}/R_e , I_{C1} = I_{C2} = $\frac{1}{2}$ I_{E3}), 填入表 8-1 中。

表 8-1

I_{c_1}	(mA)	I_{c2} (mA)	I_{E3} (mA)	V _{C1} (V)	V_{c2} (V)	$V_{C3}=V_{E1}=V_{E2}$ (V)
,	3.025	3.025	6.05	6. 14	6. 23	-0. 752

2. 测试单端输入、双端输出时差模电压放大倍数

调节 XD-2 信号发生器,将 V_{IPP} =100mV, f=1kHz 的音频信号送至三极管 V_1 的输入端 B_1 (B_2 接地)。用示波器观察和测量 V_{IPP} 与 V_{OPP} 的大小及相位,算出差模放大倍数 A_{vd} ,并与理论值比较,填入表 8-2 中。

注意:示波器的信号负端和信号源的信号负端均与电源地相接,故在测单入双出方式的 Vorr 时,必须使二者的电源地隔离,否则会引起短路。或者采用万用表或其他仪表代替示波器测试,但注意万用表测出的值是有效值。

表 8-2 (V_{IPP} =100mV,f=1kHz)

输入 输出方式	V _{OPP}	$\mathrm{Av}_{\scriptscriptstyle \mathrm{d}}$	$V_{\rm O1PP}$	V_{02PP}	$A_{\rm vd1}$	$ m A_{vd2}$
单入双出 单入单出	5. 21V	-52. 1	2. 722V	-2. 520V	-27. 22	25. 20

3. 测试单端输入、单端输出时差模放大倍数

步骤同上,用示波器观察和测量 V_{OLPP} 、 V_{O2PP} (即集电极输出)的大小及相位,算出差模放大倍数 A_{vdl} 和 A_{vd2} ,并与理论值比较,填入表 8-2 中。

4. 测试单端输出的共模抑制比 K_{MR}

将差模电压改为共模电压,将 $V_{\text{IPP}}=100\text{mV}$, f=1kHz 的信号同时送入三极管 V_1 和 V_2 的输入端 B_1 、 B_2 ,用示波器测量 V_{O2PP} ,算出 A_{vc2} 及 $K_{\text{CMR}}=A_{\text{vd2}}/A_{\text{vc2}}$,填入表 8-3 中。表 8-3($V_{\text{INP}}=100\text{mV}$, f=1kHz)

-1000	· IPP I COM · /	1 111112/
$ m V_{\rm O2PP}$	$A_{ m vc2}$	$K_{CMR} = \frac{Avd2}{Avc2}$

- 5. 从 XD-2 信号发生器输出 V_{IPP}=100mV, f=1kHz 的正弦波
- 1) 将信号送 B_1 端, B_2 端接地。观察并定性测绘出 V_{IPP} 与 V_{01} 、 V_{02} 波形及相位关系。
- 2) 将信号送 B_2 端, B_1 端接地。观察并定性测绘出 $V_{\text{\tiny IPP}}$ 与 $V_{\text{\tiny OI}}$ 、 $V_{\text{\tiny O2}}$ 波形及相位关系。

以上波形均绘于图 8-2 中。

五. 分析与讨论

- 1. 差模放大器的差模输出电压是与输入电压的差还是和成正比?
- 2. 加到差动放大器的两管基极的输入信号幅值相等、相位相同时,输出电压等于多少?
 - 3. 差动放大器对差模输入信号起放大作用,还是起抑制作用?
- 4. 现假设放大器的 V_1 集电极为输出端,试指出该放大器的反相输入端和同乡输入端。