IN THE CLAIMS:

 (Currently Amended) A method of mapping an input image split into input triangles including texels onto an output image also split into corresponding output triangles including pixels, said method comprising the steps of:

determining an inverse affine transform for transforming an intermediate rectangle triangle into an input triangle;

determining a direct affine transform (FT) for transforming the intermediate rectangle triangle into an output triangle;

applying the inverse affine transform to intermediate points of the intermediate rectangle triangle so as to determine intermediate intensity values corresponding to said intermediate points on the basis of input intensity values of texels; and

applying the direct affine transform to the intermediate points so as to determine output intensity values of pixels on the basis of the intermediate intensity values;

wherein the step of applying the inverse affine transform is adapted to transform an intermediate point into an input transformed point in the input triangle, and to determine, for said intermediate point, an intermediate intensity value based on a filtering operation of texels surrounding the input transformed point.

(Canceled)

 (Currently Amended) A method as claimed in claim 21, wherein the filtering operation comprises a bilinear interpolation using four texels surrounding the input transformed point.

Amendment Docket No. FR04 0005US1 Serial No. 10/585,062

4. (Currently Amended) A method as claimed in claim 2 1, wherein the filtering

operation comprises applying sequentially a first mono-dimensional finite impulse

response filter in a horizontal direction and a second mono-dimensional finite impulse

response filter in a vertical direction.

5. (Previously Presented) A method as claimed in claim 1, wherein the step of

applying the direct affine transform is adapted to transform an intermediate point into an

output transformed point in the output triangle, and to determine, for said intermediate

point, a contribution to output intensity values of pixels surrounding said output

transformed point on the basis of the intermediate intensity value.

6. (Original)A method as claimed in claim 1, further comprising a step of

determining lengths of the intermediate rectangle triangle opposite to the hypotenuse

which are equal to a power of 2 greater than the length of corresponding edges in the

output triangle.

7. (Original) A method as claimed in claim 1, further comprising a step of

dividing the output triangle into two sub-triangles before the step of applying the direct

affine transform.

8. (Previously Presented)A method as claimed in claim 1, wherein: the step of

applying the direct affine transform is adapted to determine an output point and a

Amendment Serial No. 10/585.062

corresponding output surface in the output triangle from an intermediate point and a corresponding intermediate unitary surface to determine a pixel with integer coordinates belonging to the output surface, and to determine an output vector defined by the output point and the pixel with integer coordinates; and the step of applying the inverse affine transform is adapted to determine an input transformed point in the input triangle from the intermediate point and the output vector, and to filter the input intensity values of texels surrounding said input transformed point so as to derive an output intensity value of the pixel with integer coordinates.

9. (Currently amended) A device for rendering an output image split into corresponding output triangles including pixels on the basis of textured data of an input image split into input triangles including texels, said device comprising:

means for determining an inverse affine transform for transforming an intermediate rectangle triangle into an input triangle, and for determining a direct affine transform for transforming an intermediate rectangle triangle into an output triangle;

means for applying the inverse affine transform to intermediate points of the intermediate rectangle triangle so as to determine intermediate intensity values corresponding to said predetermined points on the basis of input intensity values of texels; and

means for applying the direct affine transform to the intermediate points so as to determine output intensity values of pixels on the basis of the intermediate intensity values;

Amendment Serial No. 10/585,062

wherein the means for applying the inverse affine transform includes transforming an intermediate point into an input transformed point in the input triangle, and to determining, for said intermediate point, an intermediate intensity value based on a filtering operation of texels surrounding the input transformed point.

10. (Original) A portable apparatus comprising a device as claimed in claim 9.

11. (Currently Amended) A computer program product comprising <u>machine</u>

readable media storing executable code program instructions for implementing, when
said program is executed by a processor, a the method as claimed in claim 1.