

Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability

Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi and Sune K. Jakobsen

Zero Knowledge Proofs

- Completeness
- Soundness
- Zero-Knowledge

- Proof of Knowledge
- Interactive
- Public-coin

Statement

Goal: constant computational overhead for the Prover

Arithmetic Circuits

- Prover knows inputs
- Publicly known outputs
- Check inputs give the correct outputs
- Do valid inputs exist?
 NP-Complete

Results

- Security parameter λ
- Finite field F, 2^λ elements
- Arithmetic circuit,
 N = poly(λ) gates
- Zero-knowledge arguments and proofs

Prover	Verifier	Comm.	Rounds	Assumption
O(N) multiplications in F	o(N) multiplications in F	poly(λ)√N elements of F	O(loglog N)	It-CRHF
O(N) multiplications in F	o(N) multiplications in F	O(N) elements of F	O(loglog N)	It-OWF

Overview

Arithmetic Circuits Matrix Equations Polynomials **Ideal Linear Commitment Model** Commitments Real Protocol

High Level Structure

High Level Structure

Matrix Dimensions

Previous Arguments

- Other protocols commit to vectors ([G09], [S09])
- Random challenge x
- Prover opens linear combinations
- Check openings are correct
- Embed AC-SAT into coefficients

Ideal Linear Commitment Model

Sub-linear Verifier

Request linear

combination

Commitment Ingredients

- Linear error-correcting code
- Example: [DI14]
- Randomise for zeroknowledge

Linear code
Linear-time encoding
Linear Minimum Distance

Commitment Ingredients

- Hiding:
- Collision-resistant hash
 One-way function function
- Example: [AHIKV17]

Linear-time computable

- Binding:
- Example: [IKOS08]

Linear-time computable

Opening Commitments

Opening Commitments

Ideal Protocols to Real Protocols

Arguments using [AHIKV17]

- Hiding commitments
- Perfect Completeness
- Computational Soundness
- Statistical SHVZK

Proofs using [IKOS08]

- Binding commitments
- Perfect Completeness
- Statistical Soundness
- Computational SHVZK

$$x_1 \leftarrow \mathsf{F}$$

 $\sqrt{N/2}$

 \searrow

-

-

 $x_{\operatorname{loglog} N} \leftarrow \mathsf{F}$

$$z \leftarrow \mathsf{F}$$

P

•

•

O(1) Linear Combinations

 $I \subset \left\{1, \dots, \sqrt{N}\right\}$

Open columns in I

Comparison for Arguments

Previous work	Prover	Verifier	Comm.	Assumption
[CD96]	O(λN) mult	O(λN) mult	O(N) elem	DLOG
[G09], [S09]	O(λN/log N) mult	O(λN) mult	O(√N) elem	DLOG
SNARKs	O(λN) mult	O(λ) mult	O(1) elem	KOE, qPDH
[BSCS16]	O(N ^{1+c}) mult	O(N ^{1+c}) mult	poly(λ) log N elem	CRHF
Ligero 2017	O(N log N) mult	O(N) mult	poly(λ)√N elem	CRHF
This work	O(N) mult	o(N) mult	poly(λ)√N elem	CRHF

Thanks!

- Security parameter λ
- Finite field F, 2^λ elements
- Arithmetic circuit,
 N = poly(λ) gates
- Zero-knowledge arguments and proofs

Prover	Verifier	Comm.	Rounds	Assumption
O(N) multiplications in F	o(N) multiplications in F	poly(λ)√N elements of F	O(loglog N)	It-CRHF
O(N) multiplications in F	o(N) multiplications in F	O(N) elements of F	O(loglog N)	It-OWF