INP-ENSEEIHT 1e année SN

TP3 – Estimation robuste

Exercice 1 : estimation du point de fuite dans une image

Lancez le script $exercice_0$, qui affiche l'image d'un parquet constitué de lames parallèles, ainsi que les segments détectés par l'algorithme du TP3 de Probabilités (méthode LSD, pour $Line\ Segment\ Detection$). Un ensemble de droites parallèles de l'espace 3D forment, par projection perspective dans l'image, un ensemble de droites concourantes qui se croisent en un point F appelé $point\ de\ fuite$. Le but de cet exercice est d'estimer la position du point de fuite.

Il a déjà été vu (cf. TP2 de Statistiques) qu'une droite du plan est représentable par son équation cartésienne normalisée $x\cos\theta + y\sin\theta = \rho$, équation dans laquelle ρ et θ peuvent être interprétés comme suit :

- Le paramètre $\theta \in [0, \pi]$ désigne l'angle polaire d'un vecteur orthogonal à D.
- Le paramètre $\rho = x_P \cos \theta + y_P \sin \theta \in \mathbb{R}$ peut être calculée en un point $P = (x_P, y_P)$ quelconque de D. Les paramètres (ρ, θ) des droites qui portent les alignements détectés dans l'image de parquet sont stockés dans deux vecteurs **rho** et **theta** de même taille $n \times 1$ (n désigne donc le nombre d'alignements détectés). L'équation cartésienne normalisée d'une droite passant par $F = (x_F, y_F)$ s'écrit :

$$x_F \cos \theta + y_F \sin \theta = \rho \tag{1}$$

Par ailleurs, les coordonnées polaires (ρ_F, θ_F) de F sont liées à ses coordonnées cartésiennes (x_F, y_F) par :

$$x_F = \rho_F \cos \theta_F$$
 et $y_F = \rho_F \sin \theta_F$ (2)

et réciproquement :

$$\rho_F = \sqrt{x_F^2 + y_F^2} \quad \text{et} \quad \theta_F = \arctan\left(\frac{y_F}{x_F}\right)$$
(3)

On déduit de (1) et (2) :

$$\rho = \rho_F \left(\cos \theta_F \cos \theta + \sin \theta_F \sin \theta\right) \tag{4}$$

qui se réécrit :

$$\rho = \rho_F \cos(\theta - \theta_F) \tag{5}$$

Par conséquent, si l'on reporte les points $Q_i = (\rho_i, \theta_i)$, $i \in [1, n]$, dont les coordonnées sont les paramètres (ρ_i, θ_i) de n droites concourantes en F, dans un repère cartésien ayant pour axes θ en abscisse et ρ en ordonnée, ces points doivent être portés par une sinusoïde d'équation (5). L'estimation des paramètres (ρ_F, θ_F) peut donc être effectuée grâce à ces contraintes.

Écrivez la fonction estimation_F permettant d'estimer les coordonnées (ρ_F, θ_F) du point de fuite F. Pour cela, commencez par estimer les coordonnées cartésiennes (x_F, y_F) de F, en résolvant le système des n équations suivantes, qui correspondent aux n droites de paramètres (ρ_i, θ_i) , au sens des moindres carrés linéaires (cf. l'exercice 2 du TP2 de Statistiques) :

$$x_F \cos \theta_i + y_F \sin \theta_i = \rho_i, \qquad i \in [1, n]$$
 (6)

qui peuvent être réécrites sous forme matricielle AX = B, avec $X = [x_F, y_F]^\top$, puis calculez (ρ_F, θ_F) grâce à (3).

Lorsque le résultat du script exercice_1 vous semble satisfaisant, relancez le script exercice_0 en lisant le fichier bateau.mat et non plus parquet.mat. Relancez ensuite le script exercice_1. Vous constatez que l'estimation du point de fuite n'est plus satisfaisante. L'explication est simple : cette nouvelle image contient deux ensembles de lignes parallèles, qui forment un quadrillage régulier sur le pont du bateau. Les points $Q_i = (\rho_i, \theta_i), i \in [1, n]$, se situent donc maintenant sur deux sinusoïdes, ayant deux équations de la forme (5), qui correspondent à deux points de fuite. Une façon d'estimer simultanément ces deux points de fuite est d'utiliser l'estimation robuste. La méthode d'estimation robuste la plus connue est l'algorithme RANSAC.

INP-ENSEEIHT 1e année SN

Algorithme RANSAC

RANSAC (abréviation de $RANdom\ SAmple\ Consensus$) est un algorithme itératif d'estimation robuste, publié par Fischler et Bolles en 1981, qui consiste à effectuer une partition entre les données conformes au modèle (inliers) et les données dites « aberrantes » (outliers). Cet algorithme est non déterministe : le résultat n'est garanti qu'avec une certaine probabilité, qui croît avec le nombre $k_{\rm max}$ d'itérations.

Le principe de RANSAC consiste à tirer aléatoirement un sous-ensemble de données de cardinal égal au nombre minimal de données permettant d'estimer le modèle (par exemple 2 si l'on estime les paramètres d'une droite de régression, 3 si l'on estime le rayon et le centre d'un cercle, etc.). Ces données sont considérées comme des données conformes au modèle (cela reste à vérifier), puis la séquence suivante est répétée en boucle :

- 1. Les paramètres du modèle sont estimés à partir de ce sous-ensemble de données.
- 2. Toutes les autres données sont testées relativement au modèle estimé, afin de détecter les données conformes, c'est-à-dire celles dont l'écart au modèle est inférieur à un seuil S_1 .
- 3. Le modèle estimé en 1 est accepté si la proportion de données conformes est supérieure à un seuil S₂.
- 4. Si le modèle est accepté, il est réestimé à partir de l'ensemble des données conformes.

Le modèle retenu est celui qui minimise l'écart moyen des données conformes.

Exercice 2 : estimation de deux points de fuite dans une image

Ëcrivez la fonction RANSAC_2, qui est appelée deux fois par le script exercice_2, et dont le rôle est d'effectuer l'estimation d'un point de fuite à l'aide de l'algorithme RANSAC, sachant que :

- Les valeurs des paramètres de l'algorithme, à savoir $S_1 = 5$, $S_2 = 0.3$ et $k_{\text{max}} = \frac{C_n^2}{n}$, sont passées en entrée par l'intermédiaire de parametres.
- L'expression randperm(n,2), qui tire deux entiers aléatoires distincts entre 1 et n, permet de tirer aléatoirement les indices de deux points.
- L'estimation, à l'étape 4 de l'algorithme RANSAC, peut être effectuée par la fonction estimation_F déjà écrite pour l'exercice 1, mais cette fonction doit être légèrement modifiée, de manière à retourner un troisième paramètre égal à l'écart moyen des données conformes, soit $\frac{1}{m} \sum_{i=1}^{m} |\rho_i \rho^* \cos(\theta_i \theta^*)|$, où m désigne le nombre de données conformes et (ρ^*, θ^*) les paramètres estimés.
- Avant d'estimer le deuxième point de fuite, il est nécessaire de retirer les données conformes à la première sinusoïde, sans quoi le même point de fuite serait estimé deux fois!

Au vu du résultat obtenu, pensez-vous que le pont du bateau était horizontal au moment de la prise de vue?

Exercice 3: estimation robuste d'un cercle (exercice facultatif)

Lancez le script donnees_aberrantes, qui affiche un nuage de points tirés aléatoirement au voisinage d'un cercle, auxquels sont ajoutés une certaine proportion de points tirés aléatoirement selon une loi uniforme à l'intérieur de la fenêtre d'affichage. Ces dernières constituent donc des données aberrantes vis-à-vis du cercle. Le but de cet exercice est d'effectuer une estimation robuste du cercle.

Écrivez la fonction RANSAC_3, appelée par le script exercice_3, qui doit effectuer l'estimation du centre et du rayon d'un cercle selon l'algorithme RANSAC, sachant que :

- Les valeurs des paramètres sont fixées à $S_1=2,\,S_2=0.5$ et $k_{\rm max}=\frac{{\rm C}_n^3}{n}$
- Le cercle passant par trois points distincts est unique. Il peut être déterminé par la fonction cercle_3_points, qui vous est fournie.
- L'estimation, à l'étape 4 de l'algorithme RANSAC, doit être effectuée par maximum de vraisemblance car, contrairement à l'exercice 2, ce nouveau problème n'est plus linéaire. Il vous est donc conseillé de vous inspirer de l'exercice 2 du TP1 de Statistiques pour écrire la fonction RANSAC_3.