Lineaarialgebran jatkoa

Jimi Käyrä

Sisällys

1	Avaruuden \mathbb{R}^n vektorit	1
2	Vektoreiden virittämä aliavaruus	2
3	Vapaus ja kanta	3
4	Ominaisarvo ja ominaisvektori	4
5	Piste- ja ristitulo	5
6	Sovelluksia	6

1 Avaruuden \mathbb{R}^n vektorit

Oletetaan, että $n \in {1,2,3,....}$ Avaruuden \mathbb{R}^n alkiot ovat jonoja, joissa on nreaalilukua eli

$$\mathbb{R}^n = \{ (v_1, v_2, ..., v_n) \mid v_1, v_2, ..., v_n \in \mathbb{R} \}.$$

Avaruuden \mathbb{R}^n alkioita kutsutaan **vektoreiksi**.

Jos $u_1, u_2, ..., u_n \in \mathbb{R}$, niin $\overline{u} = (u_1, u_2, ..., u_n)$ on avaruuden \mathbb{R}^n vektori ja sanotaan, että $u_1, u_2, ..., u_n$ ovat vektorin \overline{u} komponentit.

Vektori \overline{w} on vektoreiden $\overline{v}_1,\overline{v}_2,...,\overline{v}_k$ lineaarikombinaatio, jos on olemassa sellaiset reaaliluvut $a_1,a_2,...,a_k$, että

$$\overline{w} = a_1 \overline{v}_1 + a_2 \overline{v}_2 + \dots + a_k \overline{v}_k.$$

Esim. Olkoot $\overline{v}_1=(1,1), \ \overline{v}_2=(-1,2)$ ja $\overline{w}=(5,-1)$. Osoita, että vektori \overline{w} on vektoreiden \overline{v}_1 ja \overline{v}_2 lineaarikombinaatio.

2 Vektoreiden virittämä aliavaruus

Vektoreiden $\overline{v}_1, \overline{v}_2, ..., \overline{v}_k \in \mathbb{R}$ virittämä aliavaruus tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden joukkoa eli

$$W=\operatorname{span}(\overline{v}_1,\overline{v}_2,...,\overline{v}_k)=\{a_1\overline{v}_1+a_2\overline{v}_2+...+a_k\overline{v}_k\mid a_1,...,a_k\in\mathbb{R}\}.$$

Aliavaruuden W dimensio $\dim(W)$ on alivaruuden W kannan vektoreiden lukumäärä.

Esim. Tutki, kuuluuko vektori $\overline{w} = (6,3,2,-1)$ vektoreiden $\overline{v}_1 = (0,-1,2,1)$, $\overline{v}_2 = (2,0,1,-1)$ ja $\overline{v}_3 = (4,2,2,0)$ virittämään aliavaruuteen span $(\overline{v}_1,\overline{v}_2,\overline{v}_3)$.

3 Vapaus ja kanta

Vektorijono $(\overline{v}_1,\overline{v}_2,...,\overline{v}_k)$ on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos

$$c_1\overline{v}_1 + c_2\overline{v}_2 + \dots + c_k\overline{v}_k = \overline{0}$$

joillakin $c_1,...,c_k \in \mathbb{R}$, niin

$$c_1 = 0, c_2 = 0, ..., c_k = 0.$$

Jos jono ei ole vapaa, niin se on sidottu.

Esim. Olkoot $\overline{v}_1=(1,2)$ ja $\overline{v}_2=(-3,-1)$. Onko jono $(\overline{v}_1,\overline{v}_2)$ vapaa?

Vektorijono $(\overline{w}_1, \overline{w}_2, ..., \overline{w}_k)$ on aliavaruuden W kanta, jos

$$W = \operatorname{span}(\overline{w}_1, \overline{w}_2, ..., \overline{w}_k)$$

ja jono

$$(\overline{w}_1, \overline{w}_2, ..., \overline{w}_k)$$

on vapaa.

Esim. Olkoot $\overline{e}_1=(1,0)$ ja $\overline{e}_2=(0,1)$. Osoita, että jono $(\overline{e}_1,\overline{e}_2)$ on avaruuden \mathbb{R}^2 kanta.

4 Ominaisarvo ja ominaisvektori

Oletetaan, että A on $n \times n$ -neliömatriisi. Reaaliluku λ on matriisin **ominais-arvo**, jos on olemassa sellainen **ominaisvektori** $\overline{v} \in \mathbb{R}^n$, että $\overline{v} \neq \overline{0}$ ja

$$A\overline{v} = \lambda \overline{v}$$
.

Siis matriisin A ominaisvektori on vektori, jolle matriisilla A kertominen vastaa reaaliluvulla λ kertomista.

Esim. Matriisilla $A=\begin{bmatrix}3&1\\1&3\end{bmatrix}$ on ominaisvektori $\begin{bmatrix}1\\1\end{bmatrix}$. Määritä jokin tätä vastaava ominaisarvo.

Samaa ominaisarvoa voi vastata useampi ominaisvektori. Ominaisarvoa λ vastaava ominaisavaruus on joukko

$$V_{\lambda} = \{ \overline{v} \in \mathbb{R}^n | A\overline{v} = \lambda \overline{v} \}.$$

Yhtälö saadaan muotoon $A\overline{v} = \lambda I\overline{v}$ eli $A\overline{v} - \lambda I\overline{v}$, josta $(A - \lambda I)\overline{v} = \overline{0}$. Jotta yhtälöllä olisi ratkaisuja $\overline{v} \neq \overline{0}$, on oltava $\det(A - \lambda I) = 0$. Kirjoittamalla determinantti auki saadaan matriisin A karakteristinen polynomi.

Esim. Määritä matriisin $A=\begin{bmatrix}1&2\\3&2\end{bmatrix}$ karakteristinen polynomi ja kaikki ominaisarvoa 4 vastaavat ominaisvektorit.

5 Piste- ja ristitulo

Vektoreiden \overline{x} ja \overline{y} **pistetulo** on

$$\overline{x} \cdot \overline{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Vektorin **normilla** ja pistetulolla on yhteys

$$||\overline{x}||^2 = \overline{x} \cdot \overline{x}.$$

Pistetulolle pätee myös

$$\overline{x} \cdot \overline{y} = ||\overline{x}||||\overline{y}||\cos\theta,$$

missä θ on vektorien välinen kulma.

 ${\bf Esim.}\,$ Määritä vektoria $\overline{r}=-3\overline{i}+5\overline{j}$ vastaan kohtisuora yksikkövektori.

Olkoot \overline{a} ja \overline{b} avaruuden \mathbb{R}^3 vektoreita. Tällöin **ristitulolle** $\overline{c} = \overline{a} \times \overline{b}$ pätee

$$||\overline{c}|| = ||\overline{a}||||\overline{b}||\sin\alpha,$$

jossa α on vektoreiden \overline{a} ja \overline{b} välinen kulma. Vektorin suunta määräytyy oikean käden säännön mukaan siten, että $\overline{a} \perp \overline{c}$ ja $\overline{b} \perp \overline{c}$. Huomaa, että ristitulo ei ole vaihdannainen eikä liitännäinen.

Ristitulovektorin \overline{c} pituus on vektoreiden \overline{a} ja \overline{b} rajoittaman suunnikkaan pintaala.

Vektoreiden \overline{a} , \overline{b} ja \overline{c} rajoittaman suuntaissärmiön tilavuus saadaan **skalaarikolmitulon** $\overline{a} \times \overline{b} \cdot \overline{c}$ avulla.

Esim. Määritä suuntaissärmiön tilavuus, kun $\overline{a}=2\overline{i}+\overline{j},\ \overline{b}=\overline{i}+2\overline{j}$ sekä $\overline{c}=3\overline{i}+\overline{k}.$

6 Sovelluksia

Olkoot $\overline{v}, \overline{w} \in \mathbb{R}^n, \overline{w} \neq \overline{0}$. Tällöin vektorin \overline{v} **projektio** vektorin \overline{w} virittämälle aliavaruudelle on sellainen vektori $\overline{p} \in \mathbb{R}^n$, että vektori \overline{p} on yhdensuuntainen vektorin \overline{w} kanssa ja vektori $\overline{v} - \overline{p}$ on kohtisuorassa vektoria \overline{w} vastaan. Tällöin

$$\overline{p} = \operatorname{proj}_{\overline{w}}(\overline{v}) = \frac{\overline{v} \cdot \overline{w}}{\overline{w} \cdot \overline{w}} \overline{w}.$$

Esim. Suora S kulkee pisteiden A=(2,-3,5) ja B=(4,1,7) kautta. Määritä pisteen C=(4,-1,9) etäisyys suorasta S projektion avulla.

Tason normaalimuotoinen yhtälö

Piste Q=(x,y,z) on tasossa T, jos ja vain jos $\overline{n}\cdot(\overline{q}-\overline{p})=0$, missä \overline{n} on jokin tasoa T vastaan kohtisuora vektori.