

SÍLABO MATERIALES DE INGENIERÍA

ÁREA CURRICULAR: PRODUCCIÓN E INGENIERÍA INDUSTRIAL

CICLO V SEMESTRE ACADÉMICO 2017-I

I. CÓDIGO DEL CURSO : 09008605040

II. CRÉDITOS : 04

III. REQUISITOS : 09007204050 Química Industrial

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de materiales de ingeniería es un curso teórico experimental, cuyo propósito es brindar a los alumnos un conocimiento general que permita aplicar los conceptos y principios de la física, la química a la interpretación de las propiedades de los diferentes materiales de ingeniería. El desarrollo del curso comprende: Familia de Materiales, Celda Unitaria, Pruebas de Materiales, Diagramas de Fases. El Hierro. El Acero, Los Tratamientos Térmicos, Aceros de Alta y Baja Aleación, Superaleaciones. Aleaciones Ligeras y Ultraligeras, Cerámicos, Los Polímeros. Cemento y Concreto. Nuevos Materiales. Biomateriales.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Askelan R, Donald. (2012) Ciencia e Ingeniería de Materiales. Mexico, D.F. Cengage Learning, Editores S.A.
- Keyser Carl A; (1992) Ciencia de Materiales para Ingeniería. Editorial Limusa, S. A. De C. V. Sétima Reimpresión.
- Flinn Richard A Paul K. Trojan: (1993) Materiales de Ingeniería y sus Aplicaciones.
 Mcgraw-Hill/ Interamerica De México, S.A. De C.V.
- · Landauro, Alberto; "Siderurgia". Editorial Gamma, 1996; Lima
- Lasheras Esteba, José; (1994); Tecnología de los Materiales Industriales, Ediciones Cedel.
 Barcelona
- Van Vlack Lawrence H (1991) Tecnología de Los Materiales, Ediciones Alfaomega, S. A. De C.V.

Electrónicas

Askelan Donal R., Phulé Pradeep P. (2006). The Science and Engineering of Materials.
 Cengage Learning

http://books.google.com.pe/books?id=fRbZslUtpBYC&pg=PA432&lpg=PA432&dq=Cengage+Learning+askeland&source=bl&ots=wN0Zo79QbC&sig=7dCq67nH4ZJdZ9wwl3o2vkYqOyA&hl=es&ei=7sisS4aXGs2XtgfEy6DaDw&sa=X&oi=book_result&ct=result&resnum=8&ved=0CB8Q6AEwBw#v=onepage&q=Cengage%20Learning%20askeland&f=false

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: TEORÍA DE LOS METALES

OBJETIVOS DE APRENDIZAJE:

- Observar los diferentes materiales de ingeniería
- Experimentar la prueba de los materiales

PRIMERA SEMANA

Primera Sesión:

Prueba de Entrada

Introducción.- Los materiales de ingeniería y la importancia de su selección en proyectos industriales. La familia de los materiales Características.

Segunda Sesión:

Prueba de entrada; La celda unitaria, tipos y características

SEGUNDA SEMANA

Primera Sesión:

Estructuras microscópicas y macrocospicas.

Segunda Sesión:

Posición y dirección en la celda unitaria, planos direcciones, ejercicios

TERCERA SEMANA

Primera Sesión:

Defectos estructuras, puntuales, lineales, superficiales

Segunda Sesión:

Grano, tamaño de grano

Control de Lectura Nº 1.

CUARTA SEMANA

Primera Sesión:

Curvas de Esfuerzo deformación, construcción, interpretación,

Segunda Sesión:

Propiedades de la curva Esfuerzo-deformación, dureza, ductilidad, modulo de elasticidad. Punto de Fluencia.

QUINTA SEMANA

Primera Sesión:

Prueba de Materiales, tensión, Impacto, Izod, charpy, dureza, Brinell, Rockwell, fatiga

Segunda Sesión:

Diagramas de Equilibrio o de Fases. Diagramas binarios, eutecticos, eutectoides, ferrita, cementita, austenita.

Control de Lectura 2.

UNIDAD II: DIAGRAMAS DE FASES OBJETIVOS DE APRENDIZAJE:

- Representar gráficamente un diagrama de fases simple
- Identificar las micro estructuras del hierro y acero
- Evaluar las diferentes formas de obtención del hierro y el acero

SEXTA SEMANA

Primera Sesión:

Laboratorio de Ensayo de Tracción y Compresión (UNI) Grupo A

Segunda Sesión:

Laboratorio de Ensayo de Tracción y Compresión (UNI) Grupo B

SÉPTIMA SEMANA

Primera Sesión:

Diagrama de equilibrio hierro - carbono. Análisis del diagrama hierro carbono, Aleaciones Hierro-Carbono. Fundiciones

Segunda Sesión:

El hierro, obtención, el alto horno, productos, El acero, métodos de obtención, proceso Bessemer, hornos eléctricos, métodos especiales y otros.

Control de Lectura 3.

OCTAVA SEMANA

Examen Parcial

UNIDAD III: TRATAMIENTOS TERMICOS Y ACEROS ESPECIALES OBJETIVOS DE APRENDIZAJE:

- Elaborar una lista de tratamientos térmicos
- Observar el proceso de tratamiento térmico de diferentes aceros Elaborar una lista de diferentes aceros utilizados en la industria

NOVENA SEMANA

Primera Sesión:

Tratamiento térmico de los aceros, Recocido, normalizado

Segunda Sesión:

Tratamiento térmico de los aceros, Temple y revenido Control de Lectura 4.

DÉCIMA SEMANA

Primera Sesión:

Soldadura tipos de soldadura, soldadura de aceros

Segunda Sesión:

Visita a empresa de tratamientos térmicos

UNDÉCIMA SEMANA

Primera Sesión:

Aceros de alta aleación, inoxidables, ferriticos, austeniticos, martensiticos Aceros maragin, hadfield, de herramientas

Segunda Sesión:

Superaleaciones, Aceros de baja aleación y alta resistencia Control de Lectura 5.

UNIDAD IV: MATERIALES CERAMICOS POLIMERICOS Y OTROS

OBJETIVOS DE APRENDIZAJE:

- Manejar una muestra de diferentes Materiales Cerámicos y Materiales Poliméricos
- Reconocer las características de los materiales ligeros y ultraligeros
- Elaborar una lista de nuevos materiales

DUODÉCIMA SEMANA

Primera Sesión:

Cerámicos; materiales relacionados, propiedades, fuerzas de enlace, materiales cerámicos simples: sílice, alúmina, magnesia, silicatos, el vidrio, procesamiento y productos. Asbestos: mica, arcilla, Mullita, titanato de bario, otros compuestos cerámicos

Segunda Sesión:

Cementos, aspectos generales del concreto, Concreto Reforzado y pretensado

DECIMOTERCERA SEMANA

Primera Sesión:

Polímeros: Formación de estructuras poliméricas, monomeros y meros mecanismos de polimerización, modificaciones en la estructura y en las propiedades, Grado de Polimerización, Polimeros Cristales Liquidos. Copolimeros; Elastómeros, vulcanización, Elastómeros Típicos, Polímeros Termoestables; Adhesivos, el Pet y el Kevlar

Segunda Sesión:

Propiedades eléctricas de los materiales: conductividad eléctrica, conductividad en los metales, aplicaciones, vidrios conductores, superconductividad.

Aspectos generales de semiconductores, semiconductores y aislantes, celdas solares, transistores (producción)

DECIMOCUARTA SEMANA

Primera Sesión:

Exposición de trabajos de investigación A

Segunda Sesión:

Exposición de trabajos de investigación B

DECIMOQUINTA SEMANA

Primera Sesión:

Exposición de trabajos de investigación C

Segunda Sesión:

Exposición de trabajos de investigación D

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
5
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con qu se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: cran, proyector de multimedia

Materiales: Separata "Materiales de Ingeniería" Falcón Arnaldo, transparencias, direcciones electrónicas

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (PE+EP+EF)/3 PE= (P1 + P2 + P3)/3

Donde:

PF = Promedio final

PE = Promedio de evaluaciones

EP = Examen parcial

EF = Examen final

P# = Practica calificada

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

V alaya

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial, se establece en la tabla siguiente:

Deguadra vasía na oplica

	$\mathbf{K} = \text{clave}$ $\mathbf{K} = \text{relacionado}$ Recuadro vacio = no aplica		
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería		
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas		
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		

D relegionede

(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	R
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	К

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
3	0	2

b) Sesiones por semana: Dos sesiones.c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Arnaldo, Falcón Soto.

XV. FECHA

La Molina, marzo de 2017.