CH3: Single Factor Experiments with No Restriction On Randomization

3.1 Introduction

☐ Completely Randomized Single Factor Experiment (One-Way Factorial)

- **Model:**
$$Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$$
, $i = 1, \dots, n_j$ and $j = 1, \dots, k$

 Y_{ij} : Response of *i*-th observation on the *j*-th treatment

 μ : A common effect for the whole experiment

 τ_i : The *j*-th treatment effect

 $\rightarrow \tau_i = \mu_i - \mu$, where μ_i is true mean of j-th population

 ε_{ij} : Random error in the i-th observation on the j-th treatment, following $NID(0,\sigma^2)$ with common variance σ^2

- Assumptions:

- i) Fixed Effect Model: $H_0: \tau_1 = \cdots = \tau_k = 0$
- τ_j , $j = 1, \dots, k$ are fixed parameters
- $\sum_{j=1}^{k} \tau_j = 0$ \Rightarrow $\mu = \sum_{j=1}^{k} \mu_j / k$, where $\mu_j = \mu + \tau_j$
- ii) Random Effect Model: $H_0: \sigma_{\tau}^2 = 0$
- τ_i , $j = 1, \dots, k$ are random variables
- $\bullet \quad \tau_i \sim NID(0, \ \sigma_\tau^2)$

3.2 Analysis of Variance Rationale

- Model: $Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$
- Data Structure:

	Treatment	
	1 2 j k	
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	Y_{i1} Y_{i2} \cdots Y_{ij} \cdots Y_{ik}	
	Y_{n_11} Y_{n_22} \cdots Y_{n_jj} \cdots Y_{n_kk}	
Total	$T_{\boldsymbol{\cdot}_1}$ $T_{\boldsymbol{\cdot}_2}$ \cdots $T_{\boldsymbol{\cdot}_j}$ \cdots $T_{\boldsymbol{\cdot}_k}$	<i>T.</i>
Number	$n_1 \qquad n_2 \qquad \cdots \qquad n_j \qquad \cdots \qquad n_k$	N
Means	\overline{Y}_{\cdot_1} \overline{Y}_{\cdot_2} \cdots \overline{Y}_{\cdot_j} \cdots \overline{Y}_{\cdot_k}	\overline{Y}

Where
$$T_{.j} = \sum_{i=1}^{n_j} Y_{ij}$$
, $T_{..} = \sum_{j=1}^{k} (\sum_{i=1}^{n_j} Y_{ij}) = \sum_{j=1}^{k} T_{.j}$, $N = \sum_{j=1}^{k} n_j$, and $\overline{Y}_{..} = \sum_{j=1}^{k} n_j \overline{Y}_{.j} / N = T_{..} / N$

- Fundamental Equation of Analysis of Variance

$$Y_{ij} - \mu = (\mu_j - \mu) - (Y_{ij} - \mu_j)$$

$$Y_{ij} - \overline{Y}_{..} = (\overline{Y}_{.j} - \overline{Y}_{..}) - (Y_{ij} - \overline{Y}_{.j})$$

(Note:
$$\sum_{j=1}^{k} \sum_{i=1}^{n_j} (\overline{Y}_{\cdot,j} - \overline{Y}_{\cdot,j}) (Y_{ij} - \overline{Y}_{\cdot,j}) = 0$$
) \leftarrow Why? (HW)

- Mean Squares:

• Error Mean Square:

$$MS_{error} = \sum_{i=1}^{k} \sum_{j=1}^{n_j} (Y_{ij} - \overline{Y}_{ij})^2 / (N - k) = SS_{error} / (N - k)$$

 \leftarrow An Unbiased Estimate of σ^2

• Treatment Mean Square:

$$MS_{treatment} = \sum_{i=1}^{k} n_{j} (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot k})^{2} / (k-1) = SS_{tret} / (k-1)$$

 \leftarrow An Unbiased Estimate of σ^2 , under H_0

(Why? (HW): assume that $n_j = n$, for all j)

• Test Statistic: $F \sim \frac{MS_{tret}}{MS_{error}} \sim F_{k-1, N-k}$ (under H_0)

- The One-Way ANOVA

• **Hypothesis:** $H_0: \tau_1 = \tau_2 = \cdots = \tau_k = 0$ versus $H_1: \tau_j \neq 0$ for some j

Source	df	SS	MS	\boldsymbol{F}	p - value
Treatment Error	$v_1 = k - 1$ $v_2 = N - k$				S_{Error} $P(F_{(\nu_1,\nu_2)} \ge f)$
Totals	N-1	SS_{Total}			

← For Computational Purpose:

i)
$$SS_{Total} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} Y_{ij}^2 - T_{..}^2 / N$$

ii)
$$SS_{Tret} = \sum_{j=1}^{k} n_j (\overline{Y}_{.j} - \overline{Y}_{..})^2 = \sum_{j=1}^{k} T_{.j}^2 / n_j - T_{..}^2 / N$$

iii)
$$SS_{error} = \sum_{i=1}^{k} \sum_{i=1}^{n_i} (Y_{ij} - \overline{Y}_{\cdot i})^2 = SS_{Total} - SS_{Tret}$$

☐ Example: Fabric Wear Resistance (Weight Loss in grams)

- Y: weight loss (gram)
- X: for each Qualitative Levels (fabric,: A, B, C, D), 4 replications (n = 4)
- Problem: Any difference in the average weight loss among 4 fabrics

- Data

		Fab	ric		
	A	В	C	D	
	1.93	2.55	2.40	2.33	
	2.38	2.72	2.68	2.40	
	2.20	2.75	2.31	2.28	
	2.25	2.70	2.28	2.25	
$\operatorname{Sum}\left(T_{.j}\right)$	8.76	10.72	9.67	9.26	$T_{} = 38.41$
Average($\overline{Y}_{.j}$)	2.190	2.680	2.418	2.315	<i>N</i> = 16
Variance	.0358	.0079	.0332	.0043	$\sum \sum Y_{ij}^2 = 92.972$

$$SS_{Total} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} Y_{ij}^2 - T_{..}^2 / N = 97.972 - 38.41^2 / 16 = 0.7639$$

$$SS_{Tret} = \sum_{j=1}^{k} T_{.j}^2 / n_j - T_{..}^2 / N = 8.76^2 / 4 + \dots + 9.26^2 / 4 - 38.41^2 / 16 = 0.5201$$

$$SS_{error} = SS_{Total} - SS_{Tret} = 0.7639 - 0.5201 = 0.2438$$

- ANOVA

• **Hypothesis:** $H_0: \tau_1 = \tau_2 = \dots = \tau_4 = 0$ versus $H_1: \tau_j \neq 0$ for some j

Source	df	SS	MS	F	p - value
Treatment	$v_1 = 3$	0.5201	0.1734	f = 8.53	0.0026
Error	$v_2 = 12$	0.2438	0.0203		
Totals	15	0.7639			

 \rightarrow **Reject** H_0 : There is some difference in the means?

- → Further Questions (When Null Hypothesis is rejected): 3.3 After ANOVA
 - i) Which treatment is best?
 - ii) Mean wear of Fabric A differ from that of C? ($\mu_A = \mu_C$)
 - iii) Mean of A and B together differ from that of C and D?
 - → Need to consider:
 - What design of experiment was employed?
 - How the experiment was conducted?
 - Are the model assumptions reasonable?

3.4 Tests on Means

□ Orthogonal Contrasts

← Can be applied when set up prior to the running of experiment

$$Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$$
, $i = 1, \dots, n_j$ and $j = 1, \dots, k$

Denote
$$T_{\cdot j} = \sum_{i=1}^{n_j} Y_{ij}$$

- Contrast C_m in the Treatment Totals: (when $n_j = n, j = 1, \dots, k$)

$$C_m = c_{1m}T_{\cdot 1} + c_{2m}T_{\cdot 2} + \dots + c_{km}T_{\cdot k}$$
, where $c_{1m} + c_{2m} + \dots + c_{km} = 0$

$$ightharpoonup C_m = \sum_{j=1}^k c_{jm} T_{j} \text{ with } \sum_{j=1}^k c_{jm} = 0$$

- **Orthogonal Contrasts:** (when $n_j = n, j = 1, \dots, k$)

 C_m and C_q : Two Contrasts are Orthogonal if

$$c_{1m}c_{1q} + c_{2m}c_{2q} + \dots + c_{km}c_{kq} = 0$$

- Sum of Squares for Contrasts: (when $n_j = n, j = 1, \dots, k$)

$$SS_{C_m} = \frac{C_m^2}{n \sum_{i=1}^k c_{im}^2}$$
, where $C_m = c_{1m}T_{-1} + c_{2m}T_{-2} + \dots + c_{km}T_{-k}$

• Example of Fabric Wear: (Equal Sample Size)

$$C_1 = T_{-1}$$
 $- T_{-4} \rightarrow 1(8.76) - 1(9.26) = -0.50$
 $C_2 = T_{-2} - T_{-3} \rightarrow 1(10.72) - 1(9.67) = 1.05$
 $C_1 = T_{-1} - T_{-2} - T_{-3} + T_{-4} \rightarrow 1(8.76) - 1(10.72) - 1(9.67) + 1(9.26) = -2.37$

	T. ₁	T. ₂	<i>T</i> . ₃	<i>T</i> .4	$n\sum_{j=1}^k c_{jm}^2$	SS_{C_i}
C_1	+1	0	0	-1	8	0.0312
C_2	0	+1	-1	0	8	0.1378
C_3	+1	-1	-1	+1	16	0.3511

 \leftarrow Note that: $SS_{Tret} = SS_{C_1} + SS_{C_2} + SS_{C_3} = 0.5201$

- Hypothesis Test Using Contrasts:

$$H_{0}: c_{1m}\mu_{1} + \dots + c_{km}\mu_{k} = 0, \text{ for each } m = 1, 2, 3$$

$$\leftarrow C_{m} = c_{1m}T_{.1} + c_{2m}T_{.2} + \dots + c_{km}T_{.k}$$

$$Y_{ij} = \mu + \tau_{j} + \varepsilon_{ij} = \mu_{j} + \varepsilon_{ij} \text{ and } T_{.j} = \sum_{i=1}^{n} Y_{ij} = n\mu_{j} + \sum_{i=1}^{n} \varepsilon_{ij}$$

$$E[C_{m}] = n(c_{1m}\mu_{1} + c_{2m}\mu_{2} + \dots + c_{km}\mu_{k}) \leftarrow E[T_{.j}] = n\mu_{j}$$

$$Var[C_{m}] = (c_{1m}^{2} + c_{2m}^{2} + \dots + c_{km}^{2})(n\sigma^{2}) \leftarrow Var[T_{.j}] = n\sigma^{2}$$

$$T = \frac{C_{m} - E(C_{m})}{\sqrt{Var(C_{m})}} = \frac{C_{m} - n(c_{1m}\mu_{1} + c_{2m}\mu_{2} + \dots + c_{km}\mu_{k})}{\sqrt{n(c_{1m}^{2} + \dots + c_{2m}^{2})(MSE)}} \sim t_{N-k}, \text{ under } H_{0}$$

- Contrast Expressed in Terms of Sample Means:

$$C_a = c_{1a} \overline{Y}_{\cdot 1} + c_{2a} \overline{Y}_{\cdot 2} + \dots + c_{ka} \overline{Y}_{\cdot k}$$
 with $c_{1a} + c_{2a} + \dots + c_{ka} = 0$

 \rightarrow SS_{C_q} is the same as that of Contrast with Treatment Totals (Why? HW)

- Case of Different Sample Sizes:

- Contrast in the Treatment Totals: $C_m = c_{1m}T_{-1} + c_{2m}T_{-2} + \cdots + c_{km}T_{-k}$, where $n_1c_{1m} + n_2c_{2m} + \cdots + n_kc_{km} = 0$
- C_m and C_q are Orthogonal: $n_1c_{1m}c_{1q} + n_2c_{2m}c_{2q} + \cdots + n_kc_{km}c_{kq} = 0$
- Sum of Squares: $SS_{C_m} = \frac{C_m^2}{n_1 c_{1m}^2 + \dots + n_k c_{km}^2}$

• Example of Fabric Wear: (continue)

$$C_{1} = T_{.1} \qquad -T_{.4} \Rightarrow H_{0}: \mu_{1} - \mu_{4} = 0 \quad (H_{1}: \mu_{1} - \mu_{4} \neq 0)$$

$$C_{2} = T_{.2} - T_{.3} \Rightarrow H_{0}: \mu_{2} - \mu_{3} = 0$$

$$C_{3} = T_{.1} - T_{.2} - T_{.3} + T_{.4} \Rightarrow H_{0}: (\mu_{1} + \mu_{4}) - (\mu_{2} + \mu_{3}) = 0$$

→ ANOVA Summary:

Source	df	SS	MS	F	P - value
Treatment	3	0.5201	0.1734	8.53	0.003
Contrast 1	1	0.0312	0.0312	1.54	0.238
Contrast 2	1	0.1378	0.1378	6.76	0.023
Contrast 3	1	0.3511	0.3511	17.30	0.001
Error	12	0.2438	0.0203		
Totals	15	0.7639			

- → i) Fabric 2 (B) differs from Fabric 3 (C), in mean wear resistance!
 - ii) Fabric 1 and 4 (A & D) differs from that of Fabric 2 and 3 (B & C)

☐ Multiple Comparison Procedures

← Can be applied even after the data have been examined

• Student-Newman-Keuls Range Test: Comparing two Means Step 1: Arrange the k sample means in order from low to high

k = 4 means: 2.19 2.32 2.42 2.68 Treatment A D C B

Step 2: Take MSE and error df from ANOVA Table

MSe = 0.0203 and $df_{error} = 12$

Step 3: Obtain the s.e. $(\overline{Y}_{\cdot j})$ for each treatment by $s_{\overline{Y}_{\cdot j}} = \sqrt{MSE/n_j}$

$$s_{\overline{Y}_{.j}} = \sqrt{0.0203/4} = 0.0712$$

Step 4: Find significant ranges (from Table E.1 or E.2) at α desired

→ Using $n_2 = df$ of error and $p = 2, 3, \dots, k$, list k-1 ranges

From Table E.1 with $\alpha = 0.05$ and $n_2 = 12$:

p: 2 3 4 (= k-1)

Ranges: 3.08 3.77 4.20

Step 5: Obtain k-1 Least Significant Ranges (LSR) by $s_{\overline{Y}_{k,l}} \times \text{ranges}$

p: 2 3 4 (=k-1)LSR: 0.22 0.27 0.30 (\leftarrow 0.0712* Ranges) (Ranges: 3.08 3.77 4.20)

Step 6: Test the observed ranges between means, beginning with the largest versus smallest, comparing with the LSR for p = k; then test largest versus 2^{nd} smallest with the LSR for p = k - 1; and so on ...

 \rightarrow When $\alpha = 0.05$ is applied:

$$\frac{\overline{y}_{B} - \overline{y}_{A}}{\overline{y}_{B} - \overline{y}_{D}} = 2.68 - 2.19 = 0.49 > 0.30 \implies \text{conclude } \mu_{B} > \mu_{A}$$

$$\frac{\overline{y}_{B} - \overline{y}_{D}}{\overline{y}_{D}} = 2.68 - 2.32 = 0.36 > 0.27 \implies \text{conclude } \mu_{B} > \mu_{D}$$

$$\frac{\overline{y}_{B} - \overline{y}_{C}}{\overline{y}_{C} - \overline{y}_{A}} = 2.68 - 2.42 = 0.26 > 0.22 \implies \text{conclude } \mu_{B} > \mu_{C}$$

$$\frac{\overline{y}_{C} - \overline{y}_{A}}{\overline{y}_{C} - \overline{y}_{D}} = 2.42 - 2.19 = 0.23 < 0.27 \implies \text{may be } \mu_{C} \approx \mu_{D}$$

$$\frac{\overline{y}_{C} - \overline{y}_{D}}{\overline{y}_{D} - \overline{y}_{A}} = 2.32 - 2.19 = 0.13 < 0.22 \implies \text{may be } \mu_{A} \approx \mu_{D}$$

→ In Summary,

→ The effect of B differs significantly from those of A, D, C, But the effects of A, D, C do not differ significantly from each other

- Question: Interpretation of SNK Test
 - → Seek a minimum response as the best treatment (in Red)
 - i. Case I

<u>B</u> <u>A</u> D C E

ii. Case II

Case II

B A D C E

Scheffe's Test: Examine Contrast (Combination of Treatments)
 ← Can be applied to Contrasts which are Non-Orthogonal

Step 1: Set up all contrast of interest

- Example: Fabric Wear Data, Non-Orthogonal Contrasts

Contrast	Observed Values
$C_1 = T_{\cdot 1} - T_{\cdot 2}$	$c_1 = 8.76 - 10.72 = -1.96$
$C_2 = 3T_{.1} - T_{.2} - T_{.3} - T_{.4}$	$c_2 = -3.37$

Step 2: Determine the
$$f = \alpha - \text{quantile}$$
 of $F_{k-1,N-k}$

If
$$\alpha = 0.05$$
, $f = F_{k-1,N-k}(\alpha) = F_{3,12}(0.05) = 3.49$

Step 3: Compute
$$A = \sqrt{(k-1)f}$$

 $A = \sqrt{(k-1)f} = \sqrt{3 \times 3.49} = 3.24$

Step 4: Compute the s.e. =
$$s_{C_m} = \sqrt{MSe(n_1c_{1m}^2 + \dots + n_kc_{km}^2)}$$
 of Contrast

Note that
$$C_m = c_{1m}T_{.1} + c_{2m}T_{.2} + \cdots + c_{km}T_{.k}$$

And
$$T_{\cdot j} = \sum_{i=1}^{n_j} Y_{ij} = n\mu_j + \sum_{i=1}^{n_j} \varepsilon_{ij} \quad (Var[T_{\cdot j}] = n_j \sigma^2)$$

$$s_{C_1} = \sqrt{0.0203(4(1)^2 + 4(-1)^2 + 4(0)^2 + 4(0)^2)} = 0.40$$

$$s_{C_2} = \sqrt{0.0203(4(3)^2 + 4(-1)^2 + 4(-1)^2 + 4(-1)^2}) = 0.99$$

Step 5: Reject H_0 (true contrast among means is 0), if $|c_m| > A \cdot s_{C_m}$

$$|c_1| = 1.96 > 1.30 = A \cdot s_{c_1} (= 3.24 \times 0.40)$$
 Reject H_0

$$|c_2| = 3.37 > 3.21 = A \cdot s_{c_2} (= 3.24 \times 0.99)$$
 \rightarrow **Reject** H_0

3.5 Confidence Limits on Means

- Under Normal Assumption, $y_{ij} \sim N(\mu + \tau_j = \mu_j, \sigma^2 / n_j)$
- $100(1-\alpha)\%$ Confidence Limits on μ_j : $y_{\bullet j} \pm t_{N-k,1-\alpha/2} \sqrt{MSe/n_j}$ where MSe came from ANOVA
- See Example 3.8

3.6 Components of Variance

- Model: Single-Factor Experiment with No Restriction on Randomization

$$Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$$

	Fixed Effect Model	Random Effect Model
Levels	Intentionally Selected	Randomly Selected
Assumption	$\sum\nolimits_{j=1}^k {\tau _j } = 0$	$\tau_j \sim NID(0, \ \sigma_\tau^2)$
Hypothesis	$H_0: \tau_1 = \cdots = \tau_k = 0$	$H_0: \sigma_{\tau}^2 = 0$
Decision	Restricted to selected levels	All levels of population
Interest	Mean Difference	Component of Variance

- i) Fixed Model: Testing hypothesis/ Confidence Intervals/ Contrast in Means
- ii) Random Model: Estimating Components of Variance.
 - → Variance attributed from the true differences in treatment means, and Variance due to random error about these means

□ Expected Mean Square (EMS: Cases for $n_j = n$)

- **Model:** $Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$ where $i = 1, \dots, n_j$ and $j = 1, \dots, k$
- **Facts:** $\overline{Y}_{\cdot j} = \sum_{i=1}^{n} Y_{ij} / n = \mu + \tau_{j} + \overline{\varepsilon}_{\cdot j}$, where $\overline{\varepsilon}_{\cdot j} = \sum_{i=1}^{n} \varepsilon_{ij} / n \sim N(0, \sigma^{2} / n)$ $\overline{Y}_{\cdot \cdot \cdot} = \sum_{j=1}^{k} \sum_{i=1}^{n} Y_{ij} / (nk) = \mu + \sum_{i=1}^{k} \tau_{j} / k + \overline{\varepsilon}_{\cdot \cdot \cdot} \text{ where } \overline{\varepsilon}_{\cdot \cdot \cdot} \sim N(0, \sigma^{2} / nk)$
- **EMS of Treatment:** Denoting $\bar{\tau} = \sum_{i=1}^{k} \tau_i / k$,

$$\begin{split} SS_{Tret} &= n \sum_{j=1}^{k} (\overline{Y}_{\cdot,j} - \overline{Y}_{\cdot,j})^{2} \\ &= n \sum_{j=1}^{k} (\tau_{j} - \overline{\tau})^{2} + n \sum_{j=1}^{k} (\overline{\varepsilon}_{\cdot,j} - \overline{\varepsilon}_{\cdot,j})^{2} + 2n \sum_{j=1}^{k} (\tau_{j} - \overline{\tau})(\overline{\varepsilon}_{\cdot,j} - \overline{\varepsilon}_{\cdot,j}) \end{split}$$

- i) **Fixed:** $E[SS_{Tret}] = n \sum_{j=1}^{k} \tau_{j}^{2} + (k-1)\sigma^{2}$
- ii) **Random:** $E[SS_{Tret}] = n(k-1)\sigma_{\tau}^{2} + (k-1)\sigma^{2}$
- Theorem 3.1 (EMS of Treatment)

i) Fixed Effect:
$$E[MS_{Tret}] = E[SS_{Tret} / (k-1)] \\ = n\sum_{i=1}^{k} \tau_{i}^{2} / (k-1) + \sigma^{2} = \sigma^{2} + n\phi_{\tau}$$
 $\leftarrow \phi_{\tau} = \frac{\sum_{j=1}^{k} \tau_{j}^{2}}{(k-1)}$

- ii) Random Effect: $E[MS_{Tret}] = \sigma^2 + n\sigma_{\tau}^2$
- Theorem 3.2 (EMS of Error)

$$SS_{error} = \sum_{j=1}^{k} \sum_{i=1}^{n} (Y_{ij} - \overline{Y}_{\cdot j})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n} (\varepsilon_{ij} - \overline{\varepsilon}_{\cdot j})^2$$

$$\Rightarrow E[SS_{error}] = \sum_{i=1}^{k} E[\sum_{i=1}^{n} (\varepsilon_{ij} - \overline{\varepsilon}_{\cdot j})^{2}] = k(n-1)\sigma^{2}$$

$$\rightarrow E[MS_{error}] = \sigma^2$$

3.00

3.7 Checking the Model

- **Model:** $Y_{ij} = \mu + \tau_j + \varepsilon_{ij} = \mu_j + \varepsilon_{ij}$, where $\tau_j = \mu_j - \mu_j$

$$\rightarrow \hat{Y}_{ij} = \overline{Y}_{\cdot j}$$
 since $\hat{\mu}_{i} = \overline{Y}_{\cdot j}$

$$\rightarrow e_{ij} = Y_{ij} - \hat{Y}_{ij} = Y_{ij} - \overline{Y}_{.j}$$
: Residual from Y_{ij}

- **Diagnostics:** Checking $e_{ij} \approx \varepsilon_{ij} \sim NID(0, \sigma^2)$

→ 1) Independence 2) Equal Variance 3) Normality

☐ Example (Fabric Wear)

Level	Y	Fitted	Residual	Level	Y	Fitted	Residual
A	1.93	2.1900	-0.2600	С	2.40	2.4175	-0.0175
A	2.38	2.1900	0.1900	C	2.68	2.4175	0.2625
A	2.20	2.1900	0.0100	C	2.31	2.4175	-0.1075
A	2.25	2.1900	0.0600	C	2.28	2.4175	-0.1375
В	2.55	2.6800	-0.1300	D	2.33	2.3150	0.0150
В	2.72	2.6800	0.0400	D	2.40	2.3150	0.0850
В	2.75	2.6800	0.0700	D	2.28	2.3150	-0.0350
В	2.70	2.6800	0.0200	D	2.25	2.3150	-0.0650

Estimation

One-way ANOVA: response versus level

Source	DF	SS	MS	\mathbf{F}	P
level	3	0.5201	0.1734	8.53	0.003
Error	12	0.2438	0.0203		
Total	15	0.7639			
S = 0.14	S = 0.1425 R-Sq = $68.09%$		R-S	q(adj)	= 60.11%

- Individual 95% CIs For Mean Based on Pooled StDev (= 0.1425)

• Residual Plot (Equal Variance & Independence)

• Normal Probability Plot (Normality)

- → Plot of i) Residuals versus experimental order
 - ii) Residuals versus Fitted values

- Test for Independence:

- i) D-W Statistics
- ii) Plot of e_i versus e_{i-1}

- Transforming Y to achieve Normality/ Equal Variance
 - → Equal Variance:

Relationship (μ and σ^2)	Transformation
$s_j^2 \propto \overline{y}_{.j}$	$\sqrt{y_{ij}}$ (Poisson)
$s_j^2 \propto \overline{y}_{.j}(1-\overline{y}_{.j})$	$\arcsin \sqrt{y_{ij}}$ (Binomial)
$s_j \propto \overline{y}_{,j}$	$ln(y_{ij})$ or $ln(y_{ij} + 1)$
$s_j \propto \overline{y}_{.j}^2$	$1/y_{ij}$