

Dipartimento di Ingegneria Enzo Ferrari Laurea Magistrale in Ingegneria Informatica

> Tesina di Sistemi Informativi A.A. 2017/2018

# Data Integration: BigGorilla vs OpenRefine

Prof:
Domenico Beneventano

a cura di: Carla Lamattina Rosario Di Carlo

## Indice

| Indice    | 1                                   |    |  |  |  |  |  |
|-----------|-------------------------------------|----|--|--|--|--|--|
| 1. Introd | 1. Introduzione                     |    |  |  |  |  |  |
| 2. Data I | ntegration process                  | 3  |  |  |  |  |  |
| 2.1 🗅     | Oata Collection                     | 4  |  |  |  |  |  |
| 2.2 S     | Schema Mapping Data Translation     | 4  |  |  |  |  |  |
| 2.3 ld    | 4                                   |    |  |  |  |  |  |
| 2.4 🗅     | Data Quality Assessment Data Fusion | 5  |  |  |  |  |  |
| 3. BigGo  | orilla                              | 5  |  |  |  |  |  |
| 3.1 🗅     | Data Acquisition                    | 6  |  |  |  |  |  |
| 3.2 D     | Oata Extraction                     | 7  |  |  |  |  |  |
| 3.3 D     | Pata profiling & cleaning           | 8  |  |  |  |  |  |
| 3.4 D     | Pata matching & merging             | 9  |  |  |  |  |  |
| 4. Openl  | Refine                              | 14 |  |  |  |  |  |
| 4.1.      | Data Acquisition                    | 14 |  |  |  |  |  |
| 4.2.      | Data profiling & cleaning           | 15 |  |  |  |  |  |
| 4.3.      | 4.3. Data matching & merging        |    |  |  |  |  |  |
| 5. Risult | 5. Risultati                        |    |  |  |  |  |  |
| 6. Concl  | 6. Conclusioni                      |    |  |  |  |  |  |

#### 1. Introduzione

Data integration è il processo di consolidamento dei dati da un insieme di fonti di dati eterogenee in un dataset unico e uniforme.

Il set di dati integrato dovrebbe rappresentare correttamente e completamente il contenuto di tutte le fonti di dati, utilizzare un singolo modello di dati e un singolo schema, contenere solo una singola rappresentazione di ogni entità del mondo reale e non contenere dati in conflitto su singole entità.

Esistono diversi programmi che ci permettono di fare data integration, a questo scopo, la presente tesina si occupa di fare un confronto tra BigGorilla che è un ecosistema open source di integrazione e preparazione dei dati, basato su Python, e OpenRefine, precedentemente chiamato Google Refine, che è un'applicazione desktop open source autonoma per la pulitura e la trasformazione dei dati.

Si sono presi in considerazione due dataset di film che sono stati acquisiti da diverse fonti;

Il primo, "Kaggle dataset 5000 movie" è memorizzato in un file .csv che è già strutturato e pronto per l'uso. Il secondo "IMDB Plain Text Data", invece, è una raccolta di file di testo semi-strutturati che devono essere elaborati per estrarre i dati. Prima di proseguire nell'elaborato, ci sembra opportuno parlare di Eterogeneità. Esistono 5 tipi di eterogeneità:

- 1. **Technical Heterogeneity**: comprende tutte le differenze nei mezzi per accedere ai dati, non i dati stessi.
- 2. **Syntactical Heterogeneity**: comprende tutte le differenze nella codifica dei valori.
- 3. **Data Model Heterogeneity**: comprende le differenze nel modello di dati utilizzato per rappresentare i dati (Relational data model, XML data model, Object-oriented data model, RDF graph data model).
- **4. Structural Heterogeneity**: comprende le differenze nel modo in cui i diversi schemi rappresentano la stessa parte della realtà.
- **5. Semantic Heterogeneity**: comprende le differenze relative al significato dei dati e degli elementi dello schema.

L'obiettivo dell'integrazione dei dati è quello di superare tutti questi tipi di eterogeneità.

Nel capitolo 2 di questo elaborato spiegheremo il processo di Data Integration nelle sue 4 fasi: Data Collection, Schema Mapping Data Translation, Identity Resolution e Data Fusion.

Nel capitolo 3 inizieremo a vedere il lavoro fatto grazie all'uso di BigGorilla, riportando screenshot esplicativi della nostra analisi.

Nel capitolo 4 faremo lo stesso ma, questa volta, utilizzando OpenRefine.

Nell'ultimo capitolo faremo un confronto tra BigGorilla e OpenRefine e trarremo le conclusioni, scopo appunto di questo elaborato.

#### 2. Data Integration process

La Data integration riguarda i processi da eseguire per estrapolare i dati da diverse sorgenti e fornire una visione globale ed unificata da poter analizzare e interrogare.

L'integrazione dei dati è generalmente implementata nei data warehouse attraverso software specializzati che ospitano archivi di dati di grandi dimensioni da risorse interne ed esterne.

ETL (estrai, trasforma e carica) è la forma più comune di data integration trovata nel data warehousing.

Extract: i dati vengono estratti dalle fonti interne e esterne sulla base di un approccio che prevede una fase iniziale nella quale il data warehouse "vuoto" viene alimentato con i dati disponibili riferiti a periodi passati e fasi successive caratterizzate da estrazioni di natura incrementale.

Transform: è costituita da due fasi: fase di pulitura e fase di trasformazione.

Nella fase di pulitura, ci si propone di migliorare la qualità dei dati estratti dalle diverse fonti mediante la correzione di inconsistenze, inesattezze, carenze.

Nella fase di trasformazione si procede ad ulteriori conversioni dei dati, che ne garantiscano l'omogeneità rispetto all'integrazione delle diverse fonti, e aggregazioni, per ottenere le sintesi necessarie a svolgere le analisi.

Load: i dati opportunamente estratti e trasformati vengono infine inseriti nelle strutture informative (tabelle) predisposte.

ETL ha degli svantaggi, quali: sono richiesti frequenti aggiornamenti e si ha la limitazione di accedere solo ad una parte dei dati, tra l'altro elaborati, invece di poter accedere alla totalità presente nelle sorgenti.

Esistono altre tecniche, tra cui data federation, database replication, data synchronization e così via. Le soluzioni basate su queste tecniche possono essere codificate a mano, effettuate attraverso dei tool o facendo un mix di entrambi.

La data integration si divide in due grandi aree: la **data integration analitica** che supporta la business intelligence e il data warehousing, e la **data integration operativa** che viene applicata al di fuori del Business intelligence/ data warehousing, per la migrazione, il consolidamento e la sincronizzazione dei database operativi, nonché allo scambio di dati in un contesto business-to-business.

Il processo della data integration si compone di 4 step:

- 1. Data Collection
- 2. Schema Mapping Data Translation
- 3. Identity Resolution
- 4. Data Quality Assessment Data Fusion.

#### 2.1 Data Collection

È la fase in cui vengono raccolti tutti i dati necessari per l'analisi da effettuare. L'obiettivo della data collection è quello di risolvere l'eterogeneità del modello tecnico e di dati in modo che i dati di tutte le fonti siano accessibili, raccolti e rappresentati nello stesso modello di dati.

#### 2.2 Schema Mapping Data Translation

L'obiettivo dello Schema Mapping Data Translation è la risoluzione dell'eterogeneità semantica strutturale trovando le corrispondenze tra gli elementi dei diversi schemi e traducendo i dati in un singolo schema di destinazione basato su queste corrispondenze.



Esistono 4 tipi di corrispondenze:

- One-to-One: movie.title → item.name
- One-to-Many: person.name → split() → FirstName(Token1)
   → Surname(Token2)
- Many-to-One: Product.basePrice \* (1+Location.taxRate) → item.price
- Higher-Order: ad esempio quando bisogna correlare diversi tipi di elementi del

modello di dati.

## 2.3 Identity Resolution

L'Identity Resolution è un processo di gestione dei dati attraverso il quale un'identità viene ricercata e analizzata tra diversi insiemi di dati e database per trovare una corrispondenza e/o risolvere l'identità. L'obiettivo è quello di risolvere l'eterogeneità semantica identificando tutti i record in tutte le fonti di dati che descrivono la stessa entità del mondo reale.

Nell'identity resolution ci sono 2 sfide chiave, <u>eliminare i duplicati</u>, confrontando più attributi dei record e usando misure di similarità specifiche per ciascun attributo,

<u>evitare confronti non necessari</u> in modo da ridurre l'elevata complessità computazionale che si ottiene nel confrontare ogni coppia di record in dataset molto grandi.

Allo scopo di trovare similarità affidabili è bene che i dati prima vengono normalizzati, quindi, portare tutto in minuscolo, rimuovere la punteggiatura, rimuovere le stopwords, sistemare il formato dei valori numerici e le unità di misura, normalizzare abbreviazioni e sinonimi.

#### 2.4 Data Quality Assessment Data Fusion

La Data Fusion è il processo di integrazione di più fonti di dati per produrre informazioni più coerenti, accurate e utili di quelle fornite da ogni singola fonte di dati. Ha come obiettivo quello di risolvere i conflitti di dati, combinando i valori degli attributi dei record duplicati in un'unica descrizione consolidata di un'entità.

La qualità dei dati è un costrutto multidimensionale che misura la "idoneità all'uso" dei dati per un'attività specifica.

Per valutare la qualità dei dati si usano metriche basate sul contenuto, come ad esempio vincoli e regole di coerenza, rilevamento di valori anomali statistici, metriche basate sulla provenienza, metriche basate sulla valutazione, ad esempio "Leggi solo articoli di notizie con almeno 100 like di Facebook", "Accetta raccomandazioni di un amico nei ristoranti, ma non si fida dei computer ", "Preferisci contenuti da siti Web con un PageRank elevato".

## 3. BigGorilla

BigGorilla, sviluppato dal Recruit Institute of Technology e dalla University of Wisconsin,è un ecosistema open-source per l'integrazione e la preparazione dei dati, basato su Python. I vari componenti per l'uso di BigGorilla sono scaricabili gratuitamente.

Al fine di poter utilizzare e testare BigGorilla è stato necessario scaricare Anaconda navigator, un framework Python, open source, utilizzato da data scientists e developers.

L'utilizzo di BigGorilla prevede l'esecuzione di 4 step:

- 1. Data Acquisition
- 2. Data Extraction
- 3. Data Profiling & cleaning
- 4. Data matching & merging

### 3.1 Data Acquisition

Come detto nell'introduzione di questa tesina, abbiamo preso in considerazione dataset diversi scaricati da diverse fonti. A tale scopo, abbiamo utilizzando **urllib**, un pacchetto python per il recupero dei dati attraverso il web.

```
In [ ]: import urllib.request
    import os
    if not os.path.exists('./data'):
        os.makedirs('./data')
    kaggle_url = 'https://github.com/sundeepblue/movie_rating_prediction/raw/master/movie_metadata.csv'
    if not os.path.exists('./data/kaggle_dataset.csv'):
        response = urllib.request.urlretrieve(kaggle_url, './data/kaggle_dataset.csv')

In [ ]: imdb_url = 'https://anaconda.org/BigGorilla/datasets/1/download/imdb_dataset.csv'
    if not os.path.exists('./data/imdb_dataset.csv'):
        response = urllib.request.urlretrieve(kaggle_url, './data/imdb_dataset.csv')
```

Kaggle\_dataset.csv è un dataset che contiene 5043 film con 28 colonne.

#### In figura un estratto del dataset kaggle\_dataset



| plot_keywords                                     | movie_imdb_link                                    | num_user_for_reviews | language | country | content_rating |
|---------------------------------------------------|----------------------------------------------------|----------------------|----------|---------|----------------|
| avatar future marine native paraplegic            | http://www.imdb.com/title/tt0499549/?<br>ref_=fn_t | 3054.0               | English  | USA     | PG-13          |
| goddess marriage ceremony marriage<br>proposal pi | http://www.imdb.com/title/tt0449088/?<br>ref_=fn_t | 1238.0               | English  | USA     | PG-13          |
| bomb espionage sequel spy terrorist               | http://www.imdb.com/title/tt2379713/?<br>ref_=fn_t | 994.0                | English  | UK      | PG-13          |
| deception imprisonment lawlessness police offi    | http://www.imdb.com/title/tt1345836/?<br>ref_=fn_t | 2701.0               | English  | USA     | PG-13          |
| NaN                                               | http://www.imdb.com/title/tt5289954/?<br>ref_=fn_t | NaN                  | NaN      | NaN     | NaN            |
| alien american civil war male nipple mars prin    | http://www.imdb.com/title/tt0401729/?<br>ref_=fn_t | 738.0                | English  | USA     | PG-13          |
| sandman spider man symbiote venom villain         | http://www.imdb.com/title/tt0413300/?<br>ref_=fn_t | 1902.0               | English  | USA     | PG-13          |

|   | content_rating       | bu            | dget   | title_ye           | ar actor_                                            | 2_facebook_like | s imdb_score       | aspe      | ct_ratio me            | ovie_facebook_likes    |
|---|----------------------|---------------|--------|--------------------|------------------------------------------------------|-----------------|--------------------|-----------|------------------------|------------------------|
| ) | PG-13                | 2370000       | 0.00   | 2009               | .0                                                   | 936.            | 0 7.9              | All (Mac) | 1.78                   | 33000                  |
| L | PG-13                | 3000000       | 0.00   | 2007               | .0                                                   | 5000.           | 0 7.1              |           | 2.35                   | 0                      |
| 2 | PG-13                | 2450000       | 0.00   | 2015               | .0                                                   | 393.            | 0 6.8              |           | 2.35                   | 85000                  |
| 3 | PG-13                | 2500000       | 0.00   | 2012               | .0                                                   | 23000.          | 0 8.5              |           | 2.35                   | 164000                 |
| ı | NaN                  |               | NaN    | Na                 | N                                                    | 12.             | 0 7.1              |           | NaN                    | 0                      |
| ; | PG-13                | 2637000       | 0.00   | 2012               | .0                                                   | 632.            | 0 6.6              |           | 2.35                   | 24000                  |
| ; | PG-13                | 2580000       | 0.00   | 2007               | .0                                                   | 11000.          | 0 6.2              |           | 2.35                   | 0                      |
| • | PG                   | 2600000       | 0.00   | 2010               | .0                                                   | 553.            | 0 7.8              |           | 1.85                   | 29000                  |
| 3 | PG-13                | 2500000       | 0.00   | 2015               | .0                                                   | 21000.          | 0 7.5              |           | 2.35                   | 118000                 |
| ) | PG                   | 2500000       | 0.00   | 2009               | .0                                                   | 11000.          | 0 7.5              |           | 2.35                   | 10000                  |
|   |                      | genres        | actor_ | 1_name             | movie_title                                          | num_voted_users | cast_total_faceboo | k_likes   | actor_3_name           | e facenumber_in_poster |
|   | Action Adventure Far | ntasy Sci-Fi  | ССН    | Pounder            | Avatar                                               | 886204          |                    | 4834      | Wes Stud               | i 0.0                  |
|   | Action Adventu       | ure Fantasy   | John   | iny Depp           | Pirates of<br>the<br>Caribbean:<br>At World's<br>End | 471220          |                    | 48350     | Jack<br>Davenpor       |                        |
|   | Action Adven         | ture Thriller | C      | Christoph<br>Waltz | Spectre                                              | 275868          |                    | 11700     | Stephanie<br>Sigmar    |                        |
|   | Ac                   | tion Thriller | To     | m Hardy            | The Dark<br>Knight Rises                             | 1144337         |                    | 106759    | Joseph<br>Gordon-Levit |                        |
|   | Do                   | cumentary     | Dou    | g Walker           | Star Wars:<br>Episode VII<br>- The Force             | 8               |                    | 143       | NaN                    | 0.0                    |

### Imdb\_dataset.csv è un dataset che contiene 869178 film con 23 colonne



#### 3.2 Data Extraction

Nel caso presentato in questa tesina, questa parte è trascurabile perchè i dataset scelti risultano in un formato utilizzabile senza particolari trasformazioni.

#### 3.3 Data profiling & cleaning

L'obiettivo in questa fase è esaminare i dati che abbiamo acquisito ed estratto finora. Questo ci aiuta a familiarizzare con i dati, a comprendere in che modo i dati devono essere puliti o trasformati e, infine, ci consente di preparare i dati per le seguenti fasi dell'attività di integrazione dei dati.

Partendo da kaggle\_dataset, iniziamo verificando la presenza di duplicati, ovvero un film che appare più di una volta nei dati.

Esistono molte strategie per gestire i duplicati. Il metodo che abbiamo scelto di adottare è quello di mantenere soltanto la prima occorrenza di ogni record duplicato.

```
# Loading the Kaggle dataset from the .csv file (kaggle_dataset.csv)
kaggle_data = pd.read_csv('./data/kaggle_dataset.csv')
kaggle_data = kaggle_data.drop_duplicates(subset=['movie_title', 'title_year'], keep='first').copy()
```

Dopo aver eliminato i duplicati, abbiamo normalizzato gli attributi che rappresentano titolo e anno di ogni film.

Il seguente frammento di codice opera le seguenti trasformazioni:

- trasforma tutti i titoli dei film in minuscolo,
- rimuove alcuni caratteri come il simbolo apice e il simbolo "?"
- sostituisce alcuni caratteri speciali come "&" con "and".

```
def preprocess title(title):
   title = title.lower()
   title = title.replace(',', ' ')
   title = title.replace("'", '')
   title = title.replace('&', 'and')
   title = title.replace('?', '')
   return title.strip()
kaggle_data['norm_movie_title'] = kaggle_data['movie_title'].map(preprocess_title)
kaggle_data.sample(3, random_state=0)
def preprocess_year(year):
   if pd.isnull(year):
       return '?'
    else:
       return str(int(year))
kaggle_data['norm_title_year'] = kaggle_data['title_year'].map(preprocess_year)
kaggle data.head()
```

Nelle figure seguenti vediamo il risultato della trasformazione



Abbiamo poi effettuato lo stesso tipo di normalizzazione sul secondo dataset imdb\_dataset.csv

## 3.4 Data matching & merging

L'obiettivo principale di questa fase è trovare delle corrispondenze tra i dati acquisiti da diverse fonti per unificarli in un unico dataset.

Dato che i dataset presi in considerazione sono raccolti da fonti diverse, è probabile che il nome di uno stesso film compaia in modo leggermente diverso.

Per essere in grado di trovare tali corrispondenze, si può guardare la somiglianza dei titoli dei film e considerare stessa entità i titoli con un'elevata somiglianza.

A tale scopo, BigGorilla fornisce un package Python chiamato **py\_stringsimjoin** che effettua un join di similarità su due dataset.

Il seguente frammento di codice usa py\_stringsimjoin per abbinare tutti i titoli che hanno una distanza di modifica, identificata con threshold, pari a 1, cioè, al massimo c'è un carattere che deve essere modificato, aggiunto o rimosso per rendere identici entrambi i titoli.

Una volta completata l'unione di similarità, vengono selezionate solo le coppie di titoli prodotte nello stesso anno.

Il matching effettuato in questo modo trova 4689 corrispondenze.

Per ottenere un risultato migliore abbiamo ripetuto il processo utilizzando Magellan che è uno strumento disponibile pubblicamente in Python nel package py\_entitymatching, sviluppato dalla University of Wisconsin.

Magellan consente di abbinare due tabelle (o una tabella con se stessa) usando tecniche di apprendimento supervisionate.

Abbiamo creato una nuova colonna in ogni dataset in modo da combinare i valori di attributi importanti in una singola stringa, che abbiamo chiamato mixiture.

Quindi, come prima, usiamo py\_stringsimjoin per trovare un insieme di entità che si sovrappongono nei valori delle colonne.

Alla fine di questo processo otteniamo un numero di corrispondenze **pari a 18317**, significativamente superiore al caso precedente.

Il dataset candidato, chiamato C, formato, si compone dei seguenti attributi:

\_id l\_id r\_id

```
I_norm_movie_title
I_norm_title_year
I_duration
I_budget
I_content_rating
r_norm_title
r_norm_year
r_length
r_budget
r_mpaa
_sim_score
```

In cui il prefisso "I" indica le features della tabella sinistra (kaggle\_dataset) e il prefisso "r" quelle della tabella destra (imdb\_dataset).

Tramite le funzioni del pacchetto py\_entitymatching specifichiamo quali attributi corrispondono alle chiavi in ciascun dataframe.

Inoltre, dobbiamo specificare quali attributi corrispondono alle chiavi esterne dei due dataframes in C.

```
import py_entitymatching as em

em.set_key(kaggle_data, 'id')  # specifying the key column in the kaggle dataset
em.set_key(imdb_data, 'id')  # specifying the key column in the imdb dataset
em.set_key(C, '_id')  # specifying the key in the candidate set
em.set_ltable(C, kaggle_data)  # specifying the left table
em.set_rtable(C, imdb_data)  # specifying the right table
em.set_fk_rtable(C, 'r_id')  # specifying the column that matches the key in the right table
em.set_fk_ltable(C, 'l_id')  # specifying the column that matches the key in the left table
True
```

|   | I_norm_movie_title    | r_norm_title | I_norm_title_year | r_norm_year | l_budget | r_budget | I_content_rating | r_mpaa |
|---|-----------------------|--------------|-------------------|-------------|----------|----------|------------------|--------|
| 0 | dude wheres my dog!   | #hacked      | 2014              | 2014        | 20000    | 20000    | PG               | NaN    |
| 1 | road hard             | #horror      | 2015              | 2015        | 1500000  | 1500000  | NaN              | NaN    |
| 2 | #horror               | #horror      | 2015              | 2015        | 1500000  | 1500000  | Not Rated        | NaN    |
| 3 | me you and five bucks | #horror      | 2015              | 2015        | 1500000  | 1500000  | NaN              | NaN    |
| 4 | checkmate             | #horror      | 2015              | 2015        | 1500000  | 1500000  | NaN              | NaN    |

Lo step successivo è quello di selezionare tra le coppie candidate quali di queste è una corrispondenza corretta o meno.

Innanzitutto abbiamo considerato una semplificazione del dataset C, formato da 500 elementi, che abbiamo chiamato sampled e che abbiamo convertito in .csv (sampled.csv).

Abbiamo poi scaricato dal sito Anaconda.org lo stesso subset classificato manualmente, labeled.csv e che rappresenta il "gold standard" per questo dataset. La colonna label contiene il valore 1 se la coppia è una corrispondenza corretta e 0 altrimenti.

| sam                                                                                      | Sampling 500 pairs and writing this sample into a .csv file ampled = C.sample(500, random_state=0) ampled.to_csv('./data/sampled.csv', encoding='utf-8') |       |      |        |                       |      |       |          |          |                                           |             |          |          |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------|-----------------------|------|-------|----------|----------|-------------------------------------------|-------------|----------|----------|
| labeled = em.read_csv_metadata('data/labeled.csv', ltable=kaggle_data, rtable=imdb_data, |                                                                                                                                                          |       |      |        |                       |      |       |          |          |                                           |             |          |          |
|                                                                                          | Jnnamed:<br>0                                                                                                                                            | _id   | l_id | -      | I_norm_movie_title    |      | -     |          |          | r_norm_title                              | r_norm_year | r_length | r_budget |
| 0                                                                                        | 4771                                                                                                                                                     | 4771  | 2639 | 235925 | eye of the beholder   | 1999 | 109.0 | 15000000 | R        | eye of the<br>beholder                    | 1999        | 109.0    | 35000000 |
| 1                                                                                        | 11478                                                                                                                                                    | 11478 | 2001 | 600301 | rocky balboa          | 2006 | 139.0 | 24000000 | PG       | rocky<br>balboa                           | 2006        | 139.0    | 24000000 |
| 2                                                                                        | 13630                                                                                                                                                    | 13630 | 4160 | 691766 | from russia with love | 1963 | 115.0 | 2000000  | Approved | the aeolians:<br>from russia<br>with love | 2012        | NaN      | 20000    |
| 3                                                                                        | 1972                                                                                                                                                     | 1972  | 1248 | 101029 | sex tape              | 2014 | 94.0  | 40000000 | R        | blended                                   | 2014        | 117.0    | 40000000 |
| 4                                                                                        | 15903                                                                                                                                                    | 15903 | 722  | 758133 | the scorch trials     | 2015 | 132.0 | 61000000 | PG-13    | the scorch<br>trials                      | 2015        | 132.0    | 61000000 |



Dal gold standard si evince che **soltanto 113 match dei 500** candidati sono dei match reali, ovvero **circa il 23%** di quelli abbinati automaticamente tramite Magellan. Tramite gli algoritmi di machine learning vogliamo allenare un classificatore a riconoscere i match corretti tra quelli candidati.

Per fare ciò, abbiamo diviso il dataset labeled in test e train e abbiamo addestrato un classificatore di tipo Random Forest a riconoscere la label fornita dal gold standard sulla base di features estratte dai seguenti attributi:

- Titolo
- Anno
- Valutazione
- Budget

Per poter estrarre le features ci viene in aiuto il pacchetto py\_entitymatching che automatizza il processo di estrazione semplicemente specificando gli attributi e la loro corrispondenza nei due dataset.

Il seguente frammento di codice utilizza inoltre il pacchetto py\_entitymatching per determinare il tipo di ciascuna colonna. Considerando i tipi di colonne in ogni set di dati (memorizzati nelle variabili l\_attr\_types e r\_attr\_types) e utilizzando le funzioni di tokenizer e similarity suggerite dal pacchetto, possiamo estrarre un set di istruzioni per l'estrazione di features.

Una volta creato l'insieme delle features desiderate, sostituiamo i valori mancanti nei nostri dati con la media della colonna.

Dopo la fase di training, l'accuratezza del nostro classificatore risulta molto alta, pari a 98.08%.

Ciò significa che il nostro classificatore può discriminare, molto bene, quali sono i match reali tra quelli candidati trovati.

Precision: 96.23% (51/53)
Recall: 100.0% (51/51)

F1: 98.08%

False positives: 2 (out of 53 positive predictions)
False negatives: 0 (out of 197 negative predictions)

Come ultimo step utilizziamo il nostro classificatore sul dataset completo per tenere soltanto i match reali.

Eliminiamo inoltre gli attributi superflui.

Il risultato finale è la seguente tabella

|   | _id | l_id | r_id | I_norm_movie_title    | I_norm_title_year | l_budget | I_content_rating | r_norm_title          | r_norm_year | r_budget | r_mpaa |
|---|-----|------|------|-----------------------|-------------------|----------|------------------|-----------------------|-------------|----------|--------|
| 0 | 2   | 4352 | 106  | #horror               | 2015              | 1500000  | Not Rated        | #horror               | 2015        | 1500000  | NaN    |
| 1 | 8   | 2726 | 450  | crocodile dundee ii   | 1988              | 15800000 | PG               | crocodile dundee ii   | 1988        | 14000000 | NaN    |
| 2 | 11  | 3406 | 838  | 500 days of summer    | 2009              | 7500000  | PG-13            | (500) days of summer  | 2009        | 7500000  | PG-13  |
| 3 | 24  | 3631 | 1872 | 10 cloverfield lane   | 2016              | 15000000 | PG-13            | 10 cloverfield lane   | 2016        | 15000000 | PG-13  |
| 4 | 27  | 2965 | 1883 | 10 days in a madhouse | 2015              | 12000000 | R                | 10 days in a madhouse | 2015        | 12000000 | R      |

Contenente **3963 valori** matchati tra i due dataset.

Abbiamo reso disponibile il dataset integrato all'indirizzo https://goo.gl/jEVZ9v

## 4. OpenRefine

OpenRefine è un software desktop open source e multipiattaforma sviluppato da Google.

Consente la trasformazione e la pulitura dei dati tramite una comoda interfaccia web avviata dal servizio web-server di OpenRefine operante sulla macchina locale.

Le espressioni di trasformazione possono essere scritte utilizzando il linguaggio GREL (General Refine Expression Language) o in Python.

#### 4.1. Data Acquisition

OpenRefine supporta l'acquisizione dei dati da tutti i formati più comuni: CSV, XML, JSON, RDF, Text.

Utilizziamo semplicemente l'interfaccia web per aprire i dataset "kaggle\_dataset" e "imdb dataset" in due istanze separate di OpenRefine.

Accediamo ad Open Refine e selezioniamo la voce Create Project dal menu sulla sinistra. Poi selezioniamo dal computer il file che vogliamo importare e premiamo il pulsante next. A questo punto compare un'anteprima del progetto. Nella parte bassa, appare un altro menu, da cui è possibile selezionare alcune opzioni, come ad esempio il carattere di separazione dei campi del CSV ed altre opzioni sulla destra. Un'altra opzione, situata in alto a sinistra, da la possibilità di settare la codifica. A questo punto, nella parte in alto a destra della pagina possiamo cambiare il nome del progetto e poi premere il tasto Create Project.



#### 4.2. Data profiling & cleaning

Come precedentemente visto con BigGorilla vogliamo esaminare i dati che abbiamo acquisito e prepararli per le seguenti fasi dell'attività di integrazione dei dati.

Partendo da kaggle\_dataset utilizziamo la funzione fingerprint, messa a disposizione dal linguaggio GREL per normalizzare i valori della colonna che contiene il titolo del film.



La funzione fingerprint opera le seguenti trasformazioni:

- Rimuove gli spazi bianchi iniziali e finali
- Cambia tutti i caratteri nella loro rappresentazione in minuscolo
- Rimuove tutti i caratteri di punteggiatura e controllo
- Normalizza i caratteri occidentali estesi nella loro rappresentazione ASCII
- Divide la stringa in token separati da spazi bianchi
- Ordina i token e rimuove i duplicati
- Unisce i token di nuovo insieme

Notiamo la mancanza di un attributo id per identificare univocamente le righe, dunque lo aggiungiamo tramite la funzione index.



Ripetiamo poi le stesse trasformazioni sul dataset "imdb\_dataset".

#### 4.3. Data matching & merging

Iniziamo adesso la fase più importante di trovare delle corrispondenze tra i due dataset acquisiti.

Anche questa volta adottiamo la strategia di associare i dati in funzione della similarità tra i titoli dei film.

A tale scopo, OpenRefine fornisce un servizio chiamato "Reconcile Csv" che effettua il matching utilizzando l'algoritmo di similarità di Dice tra stringhe.

Lanciamo il servizio Reconcile Csv con i seguenti parametri:

- Nome del file csv (kaggle\_dataset)
- Nome della colonna sulla quale fare il merge (titolo)
- Nome della colonna che contiene la chiave (id)

```
Windows PowerShell
Copyright (C) Microsoft Corporation. Tutti i diritti sono riservati.

PS C:\Users\rsdic> cd Desktop
PS C:\Users\rsdic\Desktop> java -jar .\reconcile-csv-0.1.2.jar .\data2\kaggle_dataset-v1.csv movie
_title_norm id_kaggle
Starting CSV Reconciliation service
Point refine to http://localhost:8000 as reconciliation service
2018-03-15 12:33:05.198:INFO:oejs.Server:jetty-7.x.y-SNAPSHOT
2018-03-15 12:33:05.385:INFO:oejs.AbstractConnector:Started SelectChannelConnector@0.0.0.0:8000
```

Il servizio è ora attivo sul dataset "kaggle dataset".

Il dataset "imdb\_dataset" contiene più di 800.000 righe il che rende l'operazione di matching estremamente lenta.

Per velocizzare il processo lo riduciamo ad un subset di circa 200.000 righe.

Avviamo il processo tramite interfaccia Renconcile - Start reconcile.



Al termine dell'operazione ogni riga è stata matchata con il suo miglior candidato.

Tramite le seguenti istruzioni in linguaggio GREL:

- Cell.recon.best.id
- Cell.recon.best.score
- Cell.recon.best.name

Possiamo generare le colonne:

- Match id: contenente l'id del record matchato
- Match score: contenente il valore di similarità tra i record
- Match title: contenente il titolo del film matchato



Decidiamo di tenere solamente i valori che hanno un **Match score** che supera il valore di soglia = 0.6.

Le corrispondenze trovate imponendo questa condizione risultano 17105.

Lo step successivo è quello di selezionare tra le coppie candidate quali di queste è una corrispondenza corretta o meno.

Per fare ciò possiamo utilizzare ancora una volta gli algoritmi di machine learning. Modifichiamo la struttura del dataset, in modo che corrisponda a quella utilizzata precedentemente in BigGorilla, tramite le seguenti trasformazioni.

Rinominare gli attributi:

- id -> r id
- title --> r norm title
- year r\_norm\_year
- length r norm length
- budget r budget
- mpaa r mpaa
- match id I id
- match title I norm movie title

• match\_score - \_sim\_score

Aggiungere i seguenti attributi mancanti dal dataset kaggle tramite join sull'attributo I id:

- I\_norm\_title\_year
- I\_budget
- L content rating

Per effettuare il join utilizziamo la seguente sintassi GREL:

cell.cross("kaggle\_dataset csv", "id\_kaggle").cells["budget"].value[0]



#### Il dataset ottenuto è il seguente:



Importiamo ora il dataset in Python.

Utilizziamo la libreria Scikit per allenare un classificatore di tipo Random Forest, sul dataset classificato manualmente (gold standard), per riconoscere i match reali tra quelli candidati.

Utilizziamo come features i seguenti attributi:

- Title year
- Duration
- Budget
- Length
- Sim score

Come nel caso di BigGorilla, otteniamo una accuracy pari a 98% per il nostro classificatore.



## Il risultato finale è la seguente tabella contenente **1196 valori** matchati tra i due dataset.

| r_id      | r_norm_title                      | I_norm_movie_title                      | I_id     | content_rating | title_year | I_duration | I-budget          | r_norm_year | r_length          | r_budget           | r_mpaa | _sim_score         | lab |
|-----------|-----------------------------------|-----------------------------------------|----------|----------------|------------|------------|-------------------|-------------|-------------------|--------------------|--------|--------------------|-----|
| 450 450   | crocodile dundee ii               | crocodile dundee iiaÂ                   | 2766.0   | PG             | 1988.0     | 108.0      | 15800000.0        | 1988.0      | 108.0             | 14000000.0         |        | 0.944444444444444  | 1   |
| 838 838   | 500 days of summer                | 500 days of summeraÂ                    | 3468.0   | PG-13          | 2009.0     | 95.0       | 7500000.0         | 2009.0      | 95.0              | 7500000.0          | PG-13  | 0.944444444444444  | 1   |
| 1137 1137 | at first sight                    | at first sightaÅ                        | 1286.0   | PG-13          | 1999.0     | 128.0      | 60000000.0        | 2000.0      | 47.02984636682366 | 2339564.7796096266 |        | 0.9230769230769232 | 1   |
| 1287 1287 | a thousand words                  | a thousand wordsaÂ                      | 1315.0   | PG-13          | 2012.0     | 91.0       | 40000000.0        | 2010.0      | 9.0               | 2339564.7796096266 |        | 0.967741935483871  | 1   |
| 1872 1872 | 10 cloverfield lane               | 10 cloverfield laneaÂ                   | 3698.0   | PG-13          | 2016.0     | 104.0      | 15000000.0        | 2016.0      | 104.0             | 15000000.0         | PG-13  | 0.9473684210526316 | 1   |
| 1883 1883 | 10 a days in madhouse             | 10 a days in madhouseaÂ                 | 3015.0   | R              | 2015.0     | 111.0      | 12000000.0        | 2015.0      | 111.0             | 12000000.0         | R      | 0.9523809523809524 | 1   |
| 1964 1964 | 10 about hate I things you        | 10 about hate i things youaÂ            | 2845.0   | PG-13          | 1999.0     | 97.0       | 16000000.0        | 1999.0      | 97.0              | 16000000.0         | PG-13  | 0.96               | 1   |
| 2352 2352 | 102 dalmatians                    | 102 dalmatiansaÂ                        | 406.0    | G              | 2000.0     | 100.0      | 85000000.0        | 2000.0      | 100.0             | 85000000.0         |        | 0.9285714285714286 | 1   |
| 2430 2430 | 10th wolf                         | 10th wolfaÂ                             | 3420.0   | R              | 2006.0     | 107.0      | 8000000.0         | 2006.0      | 107.0             | 8000000.0          | R      | 0.888888888888891  | 1   |
| 2609 2609 | 12 angry men                      | 12 angry menaÅ                          | 4822.0   | Not Rated      | 1957.0     | 96.0       | 350000.0          | 1957.0      | 96.0              | 350000.0           |        | 0.916666666666666  | 1   |
| 2671 2671 | 12 rounds                         | 12 roundsaÂ                             | 2281.0   | PG-13          | 2009.0     | 108.0      | 22000000.0        | 2009.0      | 108.0             | 22000000.0         | PG-13  | 0.888888888888891  | 1   |
| 2694 2694 | 12 a slave years                  | 12 a slavea years                       | 2174.0   | R              | 2013.0     | 134.0      | 20000000.0        | 2013.0      | 134.0             | 20000000.0         | R      | 0.9032258064516128 | 1   |
| 3179 3179 | 15 minutes                        | 15 minutesaÂ                            | 1168.0   | R              | 2001.0     | 120.0      | 42000000.0        | 1999.0      | 25.0              | 2339564.7796096266 |        | 0.9                | 1   |
| 4087 4087 | 2 fast furious                    | 2 fast furiousaÂ                        | 515.0    | PG-13          | 2003.0     | 107.0      | 76000000.0        | 2003.0      | 107.0             | 76000000.0         | PG-13  | 0.9230769230769232 | 1   |
| 4459 4459 | 000 20 leagues sea the under      | 20000 leagues seaaÅ the under           | 3711.0   | Approved       | 1954.0     | 127.0      | 5000000.0         | 1954.0      | 127.0             | 5000000.0          |        | 0.8979591836734694 | 1   |
| 4480 4480 | 20000 leagues sea the under       | 20000 leagues seaa the under            | 3711.0   | Approved       | 1954.0     | 127.0      | 5000000.0         | 2012.0      | 12.0              | 2339564.7796096266 |        | 0.916666666666666  | 1   |
| 4497 4497 | 200 cigarettes                    | 200 cigarettesaÅ                        | 3612.0   | R              | 1999.0     | 101.0      | 6000000.0         | 1999.0      | 101.0             | 6000000.0          | R      | 0.9285714285714286 | 1   |
| 4544 4544 | 2001 a odyssey space              | 2001 a odysseyaÅ space                  | 3079.0   | G              | 1968.0     | 161.0      | 12000000.0        | 1968.0      | 149.0             | 12000000.0         |        | 0.9                | 1   |
| 4656 4656 | 2016 america obamas               | 2016 americaa Aobamas                   | 4181.0   | PG             | 2012.0     | 87.0       | 2500000.0         | 2012.0      | 87.0              | 2500000.0          | PG     | 0.888888888888891  | 1   |
| 4789 4789 | 21 jump street                    | 21 jump streetaÅ                        | 1154.0   | R              | 2012.0     | 109.0      | 42000000.0        | 2012.0      | 109.0             | 42000000.0         | R      | 0.9285714285714286 | 1   |
| 4875 4875 | 22 jump street                    | 22 jump streetaÅ                        | 939.0    | R              | 2014.0     | 112.0      | 50000000.0        | 2014.0      | 112.0             | 50000000.0         | R      | 0.9285714285714286 | 1   |
| 5008 5008 | 24 7 four seven twenty            | 24 7 four sevena twenty                 | 4302.0   | R              | 1997.0     | 96.0       | 38074653.44875128 | 1997.0      | 96.0              | 2339564.7796096266 | R      | 0.9047619047619048 | 1   |
| 5282 5282 | 25th hour                         | 25th houraÂ                             | 3846.0   | R              | 2002.0     | 108.0      | 15000000.0        | 2002.0      | 108.0             | 15000000.0         | R      | 0.888888888888891  | 1   |
| 5329 5329 | 27 dresses                        | 27 dressesaÂ                            | 1607.0   | PG-13          | 2008.0     | 111.0      | 30000000.0        | 2008.0      | 111.0             | 30000000.0         | PG-13  | 0.8888888888888891 | 1   |
| 5370 5370 | 28 days later                     | 28 days lateraÂ                         | 3363.0   | R              | 2002.0     | 113.0      | 8000000.0         | 2002.0      | 113.0             | 8000000.0          | R      | 0.9230769230769232 | 1   |
| 5597 5597 | 3 backyards                       | 3 backyardsaÂ                           | 4834.0   | R              | 2010.0     | 88.0       | 300000.0          | 2010.0      | 88.0              | 300000.0           | R      | 0.9090909090909092 | 1   |
| 5732 5732 | 3 a and baby men                  | 3 a and babya men                       | 2602.0   | PG             | 1987.0     | 102.0      | 11000000.0        | 1987.0      | 102.0             | 11000000.0         |        | 0.866666666666667  | 1   |
| 5775 5775 | 3 back kick ninjas                | 3 backa kick ninjas                     | 2283.0   | PG             | 1994.0     | 93.0       | 20000000.0        | 1994.0      | 99.0              | 20000000.0         | PG     | 0.9090909090909092 | 1   |
| 6088 6088 | 30 less minutes or                | 30 lessa minutes or                     | 1773.0   | R              | 2011.0     | 83.0       | 28000000.0        | 2011.0      | 83.0              | 28000000.0         | R      | 0.9090909090909092 | 1   |
| 6094 6094 | 30 activity devil dragon girl ins | ii 30 activity devil dragon girl inside | e 4133.0 | R              | 2013.0     | 80.0       | 3000000.0         | 2013.0      | 80.0              | 3000000.0          | R      | 0.9682539682539684 | 1   |
| 6222 6222 | 3000 graceland miles to           | 3000 gracelanda miles to                | 705.0    | R              | 2001.0     | 125.0      | 42000000.0        | 2001.0      | 125.0             | 62000000.0         | R      | 0.9090909090909092 | 1   |
| 6231 6231 | 300 an empire of rise             | 300 an empirea of rise                  | 261.0    | R              | 2014.0     | 102.0      | 110000000.0       | 2014.0      | 102.0             | 110000000.0        | R      | 0.9047619047619048 | 1   |
| 6599 6599 | 310 to yuma                       | 310 to yumaaÂ                           | 1052.0   | R              | 2007.0     | 122.0      | 55000000.0        | 1957.0      | 92.0              | 2339564.7796096266 |        | 0.9090909090909092 | 1   |
| 6600 6600 | 310 to yuma                       | 310 to yumaaÂ                           | 1052.0   | R              | 2007.0     | 122.0      | 55000000.0        | 2007.0      | 122.0             | 55000000.0         | R      | 0.9090909090909092 | 1   |
|           |                                   |                                         |          |                |            |            |                   |             |                   |                    |        |                    |     |

Abbiamo reso disponibile il dataset integrato al seguente indirizzo <a href="https://goo.gl/xKGBzf">https://goo.gl/xKGBzf</a>

## 5. Risultati

Il seguente report riporta i risultati ottenuti.

| Dataset    | Kaggle          | Imdb        |
|------------|-----------------|-------------|
| Record     | 5043            | 869178      |
| BigGorilla | Match Candidati | Match Reali |
| n°         | 18317           | 3963        |

Per il test con OpenRefine abbiamo dovuto ridurre il dataset imdb per accelerare il processo.

| Dataset    | Kaggle          | Imdb        |
|------------|-----------------|-------------|
| Record     | 5043            | 208649      |
| OpenRefine | Match Candidati | Match Reali |
| n°         | 17105           | 1153        |

Sia i match trovati con BigGorilla che con OpenRefine hanno una probabilità di essere corretti pari al 98%, in quanto abbiamo utilizzato lo stesso tipo di classificatore per selezionarli.

#### 6. Conclusioni

Dall'analisi di questi due ambienti di integrazione dati ci è stato possibile trarre alcune considerazioni.

BigGorilla si rivela uno strumento efficace per l'integrazione, dotato di una documentazione molto chiara e ricca di esempi pratici, utile per chi si approccia per la prima volta a questa libreria di funzioni.

Non è dotato di un'interfaccia grafica e richiede una conoscenza preliminare di Python e la scrittura manuale del codice.

Le funzioni di Magellan sono molto ottimizzate per lo scopo e permettono l'integrazione di grandi quantità di dati in tempi brevi.

Si rivela molto utile anche l'integrazione all'interno di questo ecosistema degli algoritmi di machine learning, seppur facilmente sostituibili da librerie esterne come Scikit.

OpenRefine è uno strumento che non teme il confronto con software simili.

A differenza di BigGorilla, fornisce un'interfaccia web intuitiva anche per chi non ha esperienza pregressa con linguaggi di programmazione.

Le sue numerose funzioni sono anche estendibili tramite plug-in di terze parti.

Ad affiancare l'interfaccia grafica vi è la possibilità di utilizzare script sia in Python che in un linguaggio proprietario chiamato GREL (<u>General Refine Expression Language</u>).

Inoltre, OpenRefine, è un software open-source in continuo sviluppo, supportato da una vasta comunità di data scientist.

Tra gli aspetti negativi riscontrati vi è la non chiara documentazione dei servizi esterni che si integrano ad OpenRefine per estendere le sue funzioni e soprattutto dei tempi di computazione più lenti rispetto a BigGorilla durante la fase di matching.

I risultati sono invece comparabili e di alto livello in entrambi gli ambienti di integrazione dati.

In conclusione riteniamo questa esperienza utile per aver averci aperto la possibilità di familiarizzare con dei software che rappresentano lo stato dell'arte nell'ambito di data integration. Per averci fatto scoprire OpenRefine che è uno strumento molto utile di cui non avevamo sentito parlare prima di iniziare questo lavoro. Per la possibilità di poter unire competenze diverse quali l'utilizzo di linguaggi di programmazione come Python e GREL a tecniche di Machine Learning, fondamentali nelle fasi finali di integrazione per discriminare i falsi positivi dai match reali.