

BSS 295

SIPMOS ® Small-Signal Transistor

- N channel
- Enhancement mode
- Logic Level
- $V_{GS(th)} = 0.8...2.0V$

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Marking		
BSS 295	50 V	1.4 A	0.3 Ω	TO-92	SS 295		
Туре	Ordering	Code	Tape and Re	eel Information	<u> </u>		
BSS 295	Q67000-	S238	E6288				
BSS 295	Q67000-	S105	E6325				

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain source voltage	V _{DS}	50	V
Drain-gate voltage	V _{DGR}		
$R_{\rm GS}$ = 20 k Ω		50	
Gate source voltage	V_{GS}	± 20	
ESD Sensitivity (HBM) as per MIL-STD 883		Class 1	
Continuous drain current	I _D		А
$T_{A} = 24~^{\circ}C$		1.4	
DC drain current, pulsed	I _{Dpuls}		
$T_A = 25 ^{\circ}\text{C}$		5.6	
Power dissipation	P _{tot}		W
$T_{A} = 25~^{\circ}C$		1	

Maximum Ratings

Parameter	Symbol	Values	Unit
Chip or operating temperature	T _j	-55 + 150	°C
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip to ambient air 1)	R _{thJA}	≤ 125	K/W
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA, $T_{\rm j}$ = 25 °C		50	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		0.8	1.4	2	
Zero gate voltage drain current	I _{DSS}				
$V_{\rm DS} = 50 \; {\rm V}, \; V_{\rm GS} = 0 \; {\rm V}, \; T_{\rm j} = 25 \; {\rm ^{\circ}C}$		-	0.1	1	μΑ
$V_{\rm DS} = 50 \; {\rm V}, \; V_{\rm GS} = 0 \; {\rm V}, \; T_{\rm j} = 125 \; {\rm ^{\circ}C}$		-	8	50	
$V_{\rm DS} = 30 \; {\rm V}, \; V_{\rm GS} = 0 \; {\rm V}, \; T_{\rm j} = 25 \; {\rm ^{\circ}C}$		-	-	100	nA
Gate-source leakage current	I _{GSS}				nA
$V_{\text{GS}} = 20 \text{ V}, \ V_{\text{DS}} = 0 \text{ V}$		-	10	100	
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{GS} = 10 \text{ V}, I_{D} = 1.4 \text{ A}$		-	0.25	0.3	
$V_{\rm GS} = 4.5 \text{ V}, I_{\rm D} = 1.4 \text{ A}$		-	0.45	0.5	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fs}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 1.4 \text{ A}$		0.5	1.6	-	
Input capacitance	C _{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	320	425	
Output capacitance	Coss				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	110	170	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	50	75	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.29 \; {\rm A}$					
$R_{\rm G} = 50~\Omega$		-	8	12	
Rise time	t_{r}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.29 \; {\rm A}$					
$R_{\rm G} = 50~\Omega$		-	20	30	
Turn-off delay time	t _{d(off)}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.29 \; {\rm A}$					
$R_{\rm G} = 50~\Omega$		-	120	160	
Fall time	t _f				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.29 \; {\rm A}$					
$R_{\rm G}$ = 50 Ω		-	85	115	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	I _S				А
$T_A = 25 ^{\circ}\text{C}$		-	-	1.4	
Inverse diode direct current,pulsed	/ _{SM}				
$T_A = 25 ^{\circ}\text{C}$		-	-	5.6	
Inverse diode forward voltage	V_{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 2.8 \text{ A}$		-	1	1.5	

Power dissipation

$$P_{\text{tot}} = f(T_{A})$$

Safe operating area $I_{\rm D} = {\rm f}(V_{\rm DS})$

parameter : D = 0.01, $T_C = 25$ °C

Drain current

$$I_{\mathsf{D}} = f(T_{\mathsf{A}})$$

parameter: V_{GS} ≥ 10 V

Drain-source breakdown voltage

$$V_{(BR)DSS} = f(T_j)$$

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS}) \label{eq:ld}$ parameter: $t_{\rm p} = 80~\mu \rm s$, $T_{\rm j} = 25~^{\circ} \rm C$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$ $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\mathrm{DS (on)}} = f(I_{\mathrm{D}})$

parameter: $t_p = 80 \mu s$, $T_j = 25 °C$

Typ. forward transconductance $g_{fS} = f(I_D)$

parameter: $t_p = 80 \mu s$,

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter: $I_{\rm D} = 1.4~{\rm A},~V_{\rm GS} = 10~{\rm V}$

Gate threshold voltage

 $V_{\text{GS (th)}} = f(T_{\text{j}})$ parameter: $V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: V_{GS} =0V, f = 1 MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

