

de-activating said power control algorithm if said criterion is met,
wherein said de-activation includes performing a different type of algorithm than
said power control algorithm, and
wherein said different type of algorithm includes an algorithm showing better
performances than said different type of algorithm in fast changing environments and/or
high mobile speed.

G1 circled

32. (Amended) A method for improving performances of a mobile
radiocommunication system using a power control algorithm, said method comprising:

regularly estimating if a criterion is met as to whether said power control
algorithm should better be de-activated; and
de-activating said power control algorithm if said criterion is met,
wherein said de-activation includes performing a different type of algorithm than said
power control algorithm,
wherein said algorithm and said other algorithm are chosen in a group comprising
closed-loop power control algorithms and open-loop power control algorithms, and
wherein said estimation as to whether said criterion is met is based on an
estimation of a deviation value, representative of a deviation between an estimated
transmission quality and a target transmission quality, and
wherein said estimation as to whether said criterion is met includes:

G2 circled

- an estimation of a first deviation value, which would have been obtained if said power control algorithm had always been activated, on a given time-interval on which said deviation value is estimated,
- an estimation of a second deviation value, which would have been obtained if said power control algorithm had never been activated, on said given time-interval on which said deviation value is estimated,
- a choice between activation and de-activation of said algorithm depending on which of said first and second deviation values is the lowest.

Sub H1
35. (Amended) A method for improving performances of a mobile

radiocommunication system using a power control algorithm, said method comprising:
regularly estimating if a criterion is met as to whether said power control

algorithm should better be de-activated; and

G3 cont'
de-activating said power control algorithm if said criterion is met,
wherein said de-activation includes performing a different type of algorithm than said
power control algorithm,

wherein said algorithm and said other algorithm are chosen in a group comprising
closed-loop power control algorithms and open-loop power control algorithms, and

wherein said estimation as to whether said criterion is met is based on an
estimation of a deviation value, representative of a deviation between an estimated
transmission quality and a target transmission quality, and

wherein said estimated deviation value is represented by the variance of said

G7 *cancel* *sub* *H1*
estimated transmission quality.

G4 *cancel* *sub* *H1*
43. (Amended) A method according to claim 28, wherein said power control

algorithm is one of a closed loop and open loop algorithm, and said different type of
algorithm is the other of said closed loop or open loop algorithm.

G4 *cancel* *sub* *H1*
46. (Amended) A method for improving performances of a mobile
radiocommunication system using a power control algorithm, said method comprising:

regularly estimating whether a criterion is met as to whether said power control
algorithm should better not be performed, and

G5 *cancel* *sub* *H1*
not performing any power control algorithm in accordance with a result of said
estimating step,

wherein said estimation as to whether said criterion is met is based on an
estimation of a deviation value, representative of a deviation between an estimated
transmission quality and a target transmission quality.

Please add the following new claim:

G6 *cancel* *sub* *H1*
58. (New) A method for improving performances of a mobile radiocommunication
system using a power control algorithm, said method comprising:

regularly estimating if a criterion is met as to whether said power control algorithm should better be de-activated; and
de-activating said power control algorithm if said criterion is met,
wherein said de-activation includes performing a different type of algorithm than said power control algorithm,
wherein said algorithm is one of a closed loop power control algorithm and a open loop power control algorithm and said other algorithm is the other of said closed loop power control algorithm and said open loop power control algorithm.

Op cancel