Università di Parma - Facoltà di Ingegneria

Prova intermedia di sistemi multivariabili del 25 Novembre 2016

Es. 1) (7 punti)

a) Trova una rappresentazione con un modello di stato per il seguente circuito elettrico, in cui il generatore di tensione u rappresenta l'ingresso e la tensione y l'uscita.

- b) Trova l'insieme di raggiungibilità X_R .
- c) Metti il sistema nella forma standard di raggiungibilità.
- d) Trova la funzione di trasferimento.

Es. 2) (5 punti)

Considera il sistema a tempo discreto

$$\begin{cases} x(k+1) = Ax(k) \\ x(0) = x_0, \end{cases}$$

con

$$A = \left[\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & -3 & -5 \\ 1 & 0 & 0 & 2 \end{array} \right] \,.$$

- a) Verifica che $v = [1, 0, 0, 0]^T$ è un autovettore generalizzato associato all'autovalore $\lambda = 2$.
- b) Trova la soluzione del sistema per $x_0 = v$.

Es. 3) (7 punti) Considera il sistema a tempo discreto

$$x(k+1) = Ax(k) + Bu(k),$$

$$\operatorname{dove} A = \begin{bmatrix} 0 & 2 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

- a) Trova gli insiemi di raggiungibilità $X_R(k)$ per ogni $k \in \mathbb{N}$.
- b) Trova un controllo che consenta di raggiungere lo stato $x_1 = [1, 0, 0, -1]^T$ a partire dallo stato iniziale $x_0 = [0, 0, 0, 0]^T$ nel numero minimo di passi.

Continua dietro.

Es. 4) (7 punti) Considera il sistema a tempo continuo

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

$$\operatorname{con} A = \left[\begin{array}{cccc} -1 & 0 & 0 & 0 \\ -2 & 2 & 1 & 1 \\ 0 & 0 & -2 & 0 \\ 2 & 0 & 0 & 1 \end{array} \right], \, B = \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right], \, C = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \end{array} \right].$$

- a) Metti il sistema nella forma standard per i sistemi non completamente raggiungibili, indicando le diverse sottomatrici che compongono \hat{A} , \hat{B} , \hat{C} .
 - b) Trova la funzione di trasferimento.
 - c) Trova gli autovalori raggiungibili e non raggiungibili.

Es. 5) (6 punti) Determina per quali valori del parametro $a \in \mathbb{R}$ la seguente coppia (A, B) è raggiungibile

$$A = \begin{bmatrix} 0 & a-1 & 0 \\ 0 & 1 & 0 \\ -a & -2 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

Es. 6) (3 punti bonus) Considera i due sistemi

$$\begin{cases} \dot{x}_1(t) = A_1 x_1(t) \\ y_1(t) = C_1 x_1(t) \end{cases}$$

$$\begin{cases} \dot{x}_2(t) = A_2 x_2(t) + B_2 u(t) \\ y_2(t) = C_2 x(t) . \end{cases}$$

L'uscita del primo determina l'ingresso del secondo con la legge di controllo $u(t) = Fy_1(t)$.

Dimostra che il sistema complessivo è asintoticamente stabile se e solo se A_1 e A_2 hanno tutti gli autovalori a parte reale negativa.