Algoritmia y Complejidad

Salvador Carrillo Fuentes

Grado Ingeniería Informática Universidad de Málaga

 $MineConsistency \in NPC$

Tabla de contenidos

- MineConsistency está en NP
 - Demostración mediante una mTnD
 - Demostración mediante un verficador poli-t

- 2 MineConsistency es NP-completo
 - 3SAT es reducible en tiempo polinomial a MINECONSISTENCY
 - Ejemplo de la reducción

MINESWEEPER

Descripción del Buscaminas

- Tablero en el que cada casilla contiene una mina o está vacía.
- Si se elige una casilla que contiene una mina, se pierde.
- Si se elige una casilla que está vacía, se proporciona información acerca del número de minas adyacentes.
- Por ejemplo, si una casilla tiene el número 3, significa que de las 8 casillas adyacentes (si no es una esquina o borde) hay 3 con minas.
- Objetivo: marcar todos las casillas vacías.

Variante del Buscaminas

- ullet El tablero y las casillas se representan mediante un grafo no dirigido G.
- Algunos nodos de G están etiquetados con números, G es un grafo parcialmente etiquetado.
- Objetivo: determinar si es posible una asignación de minas en los nodos sin etiquetar que sea consistente.
- ullet Una asignación es consistente si cualquier nodo v etiquetado con el número m tiene exactamente m nodos adyacentes que contienen minas.

Definición formal

Definición

Un **grafo parcialmente etiquetado** es una tupla (V,E,L,m) donde (V,E) es un grafo, $L\subseteq V$ y $m:L\to\mathbb{N}$ es una función de etiquetado.

Definición

Una asignación consistente de minas en un grafo parcialmente etiquetado es un subconjunto de $V\setminus L$ tal que para cada $v\in L$, $m(v)=|N(v)\cap M|$, donde N(v) son los nodos vecinos de v y M los nodos que contienen minas.

Definición

Sea $MineConsistency = \{\langle G \rangle \mid G \text{ es un grafo parcialmente etiquetado que admite una asignación consistente de minas}\}$

Tablero y grafo equivalentes

Tablero y grafo equivalentes

Puede haber más de una solución

Inconsistencia

Tablero inconsistente

La casilla con el 3 no puede tener 3 minas adyacentes porque solo tiene dos casillas adyacentes sin descubrir.

Inconsistencia

$MineConsistency \in NP$

Demostración mediante una mTnD

Teorema

Mineconsistency está en NP.

Demostración: Sea M una máquina de Turing no determinista que se ejecuta en tiempo polinomial para MineConsistency.

M= "Para la entrada $\langle G \rangle$, donde G es un grafo parcialmente etiquetado:

- 1. De forma no determinista, realiza una asignación de minas en los nodos sin etiquetar de G.
- 2. Comprueba si la asignación es consistente.
- 3. Si lo es, aceptar; en otro caso, rechazar."

MineConsistency ∈ NP

Demostración mediante un verficador poli-t

Idea de la demostración alternativa: El certificado es la asignación de minas consistente.

Demostración alterntiva:

Sea V una verificador en tiempo polinomial para MineConsistency.

V= "Para la entrada $\langle G,c
angle$, donde G es un grafo parcialmente etiquetado:

- 1. Comprueba que c es una asignación consistente de minas para G.
- **2.** Comprueba que los nodos de c están en G sin etiquetar.
- 3. Si se dan ambas comprobaciones, aceptar; en otro caso, rechazar."

3SAT

Descripción del problema

- ullet Caso particular de SAT en el que la fórmula está en una forma especial.
- ullet Un literal es una variable Booleana o su negación: $x,ar{x}$.
- Una cláusula es la conexión de varios literales mediante ∨'s:

$$(x_1 \vee \bar{x_2} \vee \bar{x_3} \vee x_4)$$

• Una fórmula está en forma normal conjuntiva (fnc) si está formada por varias cláusulas conectadas mediante \land 's:

$$(x_1 \vee \bar{x_2} \vee \bar{x_3} \vee x_4) \wedge (x_3 \vee \bar{x_5} \vee x_6) \wedge (x_3 \vee \bar{x_6})$$

ullet Tenemos una fórmula 3fnc si todas las cláusulas tiene tres literales:

$$(x_1 \vee \bar{x_2} \vee \bar{x_3}) \wedge (x_3 \vee \bar{x_5} \vee x_6) \wedge (x_3 \vee \bar{x_6} \vee x_4)$$

Definición

Sea $3SAT = \{\langle \phi \rangle \mid \phi \text{ es una fórmula } 3fnc \text{ satisfacible} \}$

ullet Tomamos como resultado previo que 3SAT es NP-completo.

Función necesaria

- Reducimos en tiempo polinomial 3SAT a MineConsistency.
- $egin{align*} \bullet & ext{Buscamos una función computable en tiempo polinómico} \ f: \Sigma^*
 ightarrow \Sigma^*, ext{ tal que, para cada } w, \ & w \in 3SAT \Leftrightarrow f(w) \in MineConsistency \ & \phi \in 3SAT \Leftrightarrow G \in MineConsistency \ \end{aligned}$
- El objetivo es encontrar estructuras en MineConsistency que simulen a las variables y las cláusulas de la fórmula 3fnc.
- ullet Sean $c_1,...,c_s$ las cláusulas de ϕ y $x_1,...,x_n$ sus variables.
- Una variable x_i aparece en ϕ si x_i o $\bar{x_i}$ aparece en alguna cláusula de ϕ .

Reducción

Teorema

3SAT es reducible en tiempo polinomial a MineConsistency.

Demostración: El algoritmo R computa la reducción.

R= "Para la entrada $\langle \phi
angle$, donde ϕ es una fórmula 3fnc:

- 1. Para cada variable x_i que aparece en ϕ :
 - **1.1** Crear tres nodos v_i, x_i^t, x_i^f .
 - **1.2** Añadir las aristas $(v_i, x_i^t), (v_i, x_i^f)$.
 - 1.3 Establecer $m(v_i)=1$ y $m(x_i^t)$, $m(x_i^f)$ sin etiquetas.
- **2.** Para cada cláusula c_j de ϕ :
 - **2.1** Crear tres nodos c_j, c_j^1, c_j^2 .
- **2.2** Añadir aristas desde c_j hasta los nodos correspondientes a los tres literales de c_j .
 - **2.3** Establecer $m(c_j)=3$ y $m(c_j^1)$, $m(c_j^2)$ sin etiquetas."

• Tras la ejecución de R, obtenemos un grafo parcialemente etiquetado $G_\phi=(V,E,L,m)$ con el etiquetado $m_\phi=L o\mathbb{N}$ donde:

$$\bullet \ V = \{v_i, x_i^t, x_i^t \mid i \leq n\} \sqcup \{c_j, c_j^1, c_j^2 \mid j \leq s\}$$

$$\begin{split} \bullet \ E &= \{ \{v_i, x_i^t\}, \{v_i, x_i^f\} \mid i \leq n \ \cup \\ & \{ \{c_j, c_j^1\}, \{c_j, x c_j^2\} \mid j \leq s \ \cup \\ & \{ \{x_i, c_j\} \mid x_i \text{ es un literal en } c_j \text{ como } \textit{true } (x_i^t) \text{ o } \textit{false } (x_i^f) \end{split}$$

$$ullet L = \{v_i \mid i \leq n\} \cup \{c_j \mid j \leq s\}$$
, donde $m_\phi(v_i) = 1$ y $m_\phi(c_j) = 3$

La reducción es poli-t

- La conversión se computa en tiempo polinomial ya que tenemos que:
 - 3n + 3s vértices.
 - 2n + 5s aristas.
 - (n+s) etiquetas.
- Obtenemos $\langle G_\phi, m_\phi
 angle$ en tiempo polinómico para el tamaño de entrada de ϕ .

La reducción funciona

Afirmación (\rightarrow)

Si hay una asignación satisfacible para ϕ , hay una asignación de minas consistente para G_{ϕ} .

Demostración: Consideremos a M como el conjunto de los literales que se evalúan a true en ϕ . Solo se seleccionará uno de entre $\{x_i^t, x_i^f\}$ para cada i, así que en los vecinos de v_i habrá exactamente $1 = m(v_i)$ minas.

Además, en los vecinos de cada c_j habrá al menos un literal que se evalúe a true (ya que la asignación es satisfacible) y como máximo tres. Por tanto, podemos añadir c_j^1 o c_j^2 a M para que c_j sea adyacente a $3=m(c_j)$ minas exactamente.

La reducción funciona

Afirmación (\leftarrow)

Si existe una asignación de minas consistente para G_{ϕ} , hay una asignación satisfacible para ϕ .

Demostración: Sea M la asignación de minas y consideremos $M \cap \{x_i^t, x_i^f \mid i \leq n\}$. Como cada v_i es adyacente a una sola mina, contendrá uno de entre $\{x_i^t, x_i^f\}$.

Como cada c_j es adyacente a exactamente tres minas, y solo dos de sus vecinos no son literales, debe ser adyacente a algún literal que es una mina $(true \$ en la evaluación). Por tanto, la evaluación es $true \$ para toda cláusula, obteniendo una asignación que satisface a ϕ .

Como $\langle \phi \rangle \in 3SAT$ sii $\langle G_{\phi} \rangle \in MineConsistency$ y la función $\langle \phi \rangle \mapsto \langle G_{\phi} \rangle$, concluimos que $MineConsistency \in \mathsf{NP}$ -completo \checkmark .

$$\phi = (x_1 \vee \bar{x}_2 \vee x_3)$$

$$\phi = (x_1 \vee \bar{x}_2 \vee x_3)$$

$$\phi = (x_1 \vee \bar{x}_2 \vee x_3)$$

Aristas desde c_j hasta los nodos de los tres literales de c_j

- ullet Dada una asignación que satisface a ϕ ,
 - ullet Si $x_i=true$, ponemos una mina en x_i
 - ullet Si $x_i=false$, ponemos una mina en $ar{x}_i$
- Los nodos etiquetados con el número '1' fuerzan a que solo uno de entre $\{x_i, \bar{x}_i\}$ tengan una mina.

Aristas desde c_j hasta los nodos de los tres literales de c_j

• Dada una asignación $\{x_1=true, x_2=false, x_3=false\}$, que satisface a $\phi=(x_1\vee \bar{x}_2\vee x_3)$, podemos encontrar una asignación satisfacible:

• Dada una asignación $\{x_1=false, x_2=true, x_3=false\}$, que no satisface a $\phi=(x_1\vee \bar{x}_2\vee x_3)$, no podemos encontrar una asignación satisfacible:

Colocación de minas en un ejemplo inconsistente

Fuentes

- CS4102 Algorithms
- CS CMU
- CS MIT
- bitjoy