Çalışma Soruları 10: Bölüm 16

10.1) Ticari olarak metanol (CH₃OH), karbon monoksit ile hidrojenin tepkimesinden elde edilir.

$$CO(g) + 2 H_2(g) \leftrightarrows CH_3OH(g)$$

500 K'de 2,00 L'lik bir kapta dengede olan bir karışım, 0,0406 mol CH_3OH , 0,170 mol CO ve 0,302 mol H_2 içermektedir. Bu sıcaklık için K_d 'yi hesaplayın.

10.2) 2,0 litrelik bir kaba 0,20 mol CO_2 , 0,10 mol H_2 ve 0,16 mol H_2O gazları konuluyor. Bir süre sonra, sistem 500 K'de, aşağıda verilen tepkimeye göre dengeye ulaşıyor.

$$CO_2(g) + H_2(g) = CO(g) + H_2O(g)$$

- a) CO₂, H₂ ve H₂O 'nun başlangıçtaki kısmi basınçlarını hesaplayın.
- b) Dengede P_{H2O} = 3,51 atm olduğuna göre CO_2 , H_2 ve H_2O 'nun dengedeki kısmi basınçlarını hesaplayın.
- c) Tepkimenin K_p'sini hesaplayın.

10.3) Aşağıdaki tepkimenin 450 °C 'deki denge sabiti, $K_p = 4,51 \times 10^{-5}$ olduğuna göre;

$$N_2(g) + 3 H_2(g) \iff 2 NH_3(g)$$

Aşağıda verilen her bir karışımın 450 °C'de dengede olup olmadığına karar verin. Eğer karışım dengede değilse, dengeye ulaşabilmek için tepkime hangi yönde (tepkimeye giren maddeler veya ürünler yönünde) ilerler?

- a) 98 atm NH_3 , 45 atm N_2 , 55 atm H_2
- **b)** 57 atm NH₃, 143 atm N₂, 0 atm H₂
- c) 13 atm NH₃, 27 atm N₂, 82 atm H₂

10.4) Aşağıdaki tepkimenin 25 °C'deki denge sabiti $K_d = 2.4 \times 10^{-5}$ dir.

$$CaSO_4$$
 (k) $\leftrightarrows Ca^{2+}$ (ag) + SO_4^{2-} (ag)

- a) 25 °C'de CaSO₄(k)'ın suyla karıştırılmasıyla oluşan doymuş bir CaSO₄ çözeltisindeki Ca²⁺ ve SO_4^{2-} iyonlarının dengedeki derişimleri nedir?
- b) Cözeltinin hacmi 1,4 L ise dengeye ulaşmak için en az kaç gram CaSO₄(k) gerekir?

10.5) 4 NH₃(g) + 5 O₂(g)
$$\leftrightarrows$$
 4 NO(g)+ 6 H₂O(g) Δ H = -904,4 kJ

Yukarıdaki tepkimeye göre, NO'nun dengedeki verimini, aşağıdaki değişikliklerin her biri nasıl etkiler? Artırır, azaltır veya değiştirmez olarak cevaplarınızı yazın.

- a) [NH₃] artışı,
- b) [H₂O] artışı,
- c) [O₂] azalışı,
- d) Tepkimenin gerçekleştiği kabın hacminin küçültülmesi,
- e) Katalizör eklenmesi,
- f) Sıcaklık artışı.

10.6) Aşağıdaki tepkimenin 300 °C'deki denge sabiti $K_p = 0.087'$ dir.

$$PbCl_3(g) + Cl_2(g) \leftrightarrows PbCl_5(g)$$

300 °C'de bir kabın içinde 0,50 atm PbCl₃, 0,50 atm Cl₂ ve 0,20 atm PbCl₅ bulunuyor.

- a) Dengeye ulaşabilmek için tepkime hangi yönde (tepkimeye giren maddeler veya ürünler yönünde) ilerler? Tepkime oranını (Q) kullanın.
- **b)** Her bir gazın dengedeki kısmi basıncını hesaplayın.
- c) Kabın hacminin artırılması, dengedeki karışımdaki Cl₂'nin mol kesrini nasıl etkiler?
- **d)** Tepkime ekzotermik olduğuna göre, sistemin sıcaklığının artırılması, dengedeki karışımdaki Cl₂'nin mol kesrini nasıl etkiler?
- 10.7) Aşağıdaki tepkime için denge sabiti bağıntısını yazın.

$$C(k) + CO_2(g) \leftrightarrows 2 CO(g)$$

Aşağıdaki tablo, toplam 1 atm basınçta bulunan $CO_2(g)$ ve CO(g)'in çeşitli sıcaklıklardaki mol kesirlerini göstermektedir. Her sıcaklık için K_p değerini hesaplayın. Tepkime endotermik mi, yoksa ekzotermik midir? Açıklayın.

Sıcaklık (°C)	CO ₂ (mol %)	CO (mol %)
850	6,23	93,77
950	1,32	98,68
1050	0,37	99,63
1200	0,06	99,94