Exact Solutions > Ordinary Differential Equations > Second-Order Linear Ordinary Differential Equations > Bessel Equation

13.
$$x^2y''_{xx} + xy'_x + (x^2 - \nu^2)y = 0$$
.

Bessel equation.

1°. Let ν be an arbitrary noninteger. Then the general solution is given by:

$$y = C_1 J_{\nu}(x) + C_2 Y_{\nu}(x), \tag{1}$$

where C_1 and C_2 are arbitrary constants, $J_{\nu}(x)$ and $Y_{\nu}(x)$ are the Bessel functions of the first and second kind:

$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}, \quad Y_{\nu}(x) = \frac{J_{\nu}(x) \cos \pi \nu - J_{-\nu}(x)}{\sin \pi \nu}.$$
 (2)

Solution (1) is denoted by $y = Z_{\nu}(x)$ which is referred to as the cylindrical function.

The functions $J_{\nu}(x)$ and $Y_{\nu}(x)$ can be expressed in terms of definite integrals (with x > 0):

$$\pi J_{\nu}(x) = \int_0^{\pi} \cos(x \sin \theta - \nu \theta) d\theta - \sin \pi \nu \int_0^{\infty} \exp(-x \sinh t - \nu t) dt,$$
$$\pi Y_{\nu}(x) = \int_0^{\pi} \sin(x \sin \theta - \nu \theta) d\theta - \int_0^{\infty} (e^{\nu t} + e^{-\nu t} \cos \pi \nu) e^{-x \sinh t} dt.$$

 2° . In the case $\nu = n + \frac{1}{2}$, where $n = 0, 1, 2, \dots$, the Bessel functions are expressed in terms of elementary functions:

$$\begin{split} J_{n+\frac{1}{2}}(x) &= \sqrt{\frac{2}{\pi}} \, x^{n+\frac{1}{2}} \left(-\frac{1}{x} \frac{d}{dx} \right)^n \frac{\sin x}{x}, \quad J_{-n-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi}} \, x^{n+\frac{1}{2}} \left(\frac{1}{x} \frac{d}{dx} \right)^n \frac{\cos x}{x}, \\ Y_{n+\frac{1}{2}}(x) &= (-1)^{n+1} J_{-n-\frac{1}{2}}(x). \end{split}$$

References

Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.

Abramowitz, M. and Stegun, I. A. (Editors), *Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables*, National Bureau of Standards Applied Mathematics, Washington, 1964.

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Bessel Equation