



## TABLE OF CONTENTS

01

SPICE

02

**Netlist Structure** 

03

Examples





# Spice

### ■ SPICE

(Simulation Program with Integrated Circuit Emphasis) is a widely used computer software tool for simulating and analyzing electronic circuits. It is a general-purpose circuit simulation program that allows engineers and designers to model and simulate the behavior of analog and digital circuits.

### Our Tool provide the following capabilities:

- Linear dc analysis
- AC Analysis
- Transient Analysis



# **Netlist Structure**

☐ Passive Elements

| Instance Name | Component Type | From Node | To Node | Value                         |
|---------------|----------------|-----------|---------|-------------------------------|
| R             | resistor       | -         | -       | (T   G   M   K   nothing   m) |
| С             | capacitor      | -         | -       | (f   p   n   u   m   nothing) |
| L             | inductor       | -         | -       | (f   p   n   u   m   nothing) |

### ☐ Independent Sources

| Instance Name | Component type | From Node | To Node | Туре    | Value         |
|---------------|----------------|-----------|---------|---------|---------------|
| V             | vsource        | -         | -       | dc   ac | (m   nothing) |
| I             | Isource        | -         | -       | dc   ac | (m   nothing) |

## **Netlist Structure**

☐ Dependent Sources:

| Instance Name | Component type | К | k' | J | J' | Туре    | Value         |  |
|---------------|----------------|---|----|---|----|---------|---------------|--|
| 1             | vccs           | - | -  | - | -  | dc   ac | (m   nothing) |  |
| V             | vcvs           | - | -  | - | -  | dc   ac | (m   nothing) |  |
| I             | cccs           | - | -  | - | -  | dc   ac | (m   nothing) |  |
| V             | ccvs           | - | -  | - | -  | dc   ac | (m   nothing) |  |

☐ Analysis Types:

| Analysis Name | type |
|---------------|------|
| dcOp          | dc   |

| Analysis Name | type | Start | stop | dec |
|---------------|------|-------|------|-----|
| AC Analysis   | ac   | -     | -    | -   |

| Analysis Name      | type | Time step | Stop time |
|--------------------|------|-----------|-----------|
| Transient Analysis | tran | -         | -         |

☐ Operational Amplifier (ideal):

| Analysis Name         | Component type | Negative terminal | Negative terminal | Output terminal |
|-----------------------|----------------|-------------------|-------------------|-----------------|
| Operational_Amplifier | opamp          | -                 | -                 | -               |

☐ Multiple Plot:

| plot V0 | V1 | V2 |  | V# | I_V# |
|---------|----|----|--|----|------|
|---------|----|----|--|----|------|

# Examples



# Simple DC Circuit #1



```
// Simple DC Circuit
R1 resistor 1 2 3
R2 resistor 2 0 1
R3 resistor 3 4 2
R4 resistor 4 5 1
R5 resistor 5 0 5
V1 vsource 0 1 dc 10
V2 vsource 4 0 dc 15
V3 vsource 3 5 dc 5
I1 isource 0 2 dc 2
I2 isource 2 3 dc 5
dcOp dc
```

#### Circuit Schematic

Netlist

```
PS D:\Python Projects\Netlist> python.exe .\main.py
V1 = [-10.]
V2 = [-4.75]
V3 = [19.70588235]
V4 = [15.]
V5 = [14.70588235]
I_V1 = [-1.75]
I_V2 = [2.05882353]
I_V3 = [2.64705882]
```

Simulation Result

# Simple DC Circuit #2



Circuit Schematic

```
// Dependent Sources
R1 resistor 1 0 270
R2 resistor 1 2 330
R3 resistor 2 3 220
R4 resistor 3 4 470
I1 isource 1 0 dc 50m
Vdep ccvs 2 4 0 4 dc 100
dcOp dc
```

Netlist

```
PS D:\Python Projects\Netlist> python.exe .\main.py
V1 = [-6.21]
V2 = [2.7]
V3 = [1.83913043]
V4 = [-0.]
I_Vdep_1 = [0.027]
I_Vdep_2 = [-0.03091304]
```

Simulation Result

# **AC Analysis**



#### Circuit Schematic



```
// 5th order 1dB Ripple Chebycheve HPF
C1 capacitor 1 2 10n
C2 capacitor 2 3 10n
R1 resistor 2 4 3612
R2 resistor 3 0 28170
Opamp1 opamp 3 4 4
C3 capacitor 4 5 10n
C4 capacitor 5 6 10n
R3 resistor 5 7 1380
R4 resistor 6 0 170219
Opamp2 opamp 6 7 7
C5 capacitor 7 8 10n
R5 resistor 8 0 4456
Opamp1 opamp 8 9 9
V vsource 1 0 ac 1
ac ac 100 10K 100
plot V9
```

# **Transient Analysis**



Circuit Schematic



Simulation Result

```
// LPF
R1 resistor 1 2 1
C1 capacitor 2 0 1
Vin vsource 1 0 dc 1
tran tran 1m 10
plot V2
```

Netlist