

### Project by:

- Dejan Dichoski
- Marija Cveevska
- Suleyman Erim

#### Mentor:

Prof. F. Rinaldi



## INTRODUCTION

- Applications of MEB: clustering, nearest neighbor search, data classification, SVM, facility location, collision detection, computer graphics, <u>anomaly detection</u>.
- Approach: formalize the problem in terms of constrained quadratic optimization, and solve using FW variants.

We will implement 3 algorithms with the goal of solving the MEB problem and we will test them on artificial and real-world datasets for detecting anomalies. Finally, we will compare our results.



#### THE PRIMAL MEB PROBLEM

$$c^*, r^* = \underset{c,r}{\operatorname{argmin}} r^2 \ s. \ t. \ \|a_i - c\|^2 - r^2 \le 0, \qquad i = 1, ..., m$$

$$i=1,\ldots,m$$

#### THE DUAL MEB PROBLEM

$$\mathbf{u}^* = \underset{\mathbf{u}}{\operatorname{argmin}} -\Phi(\mathbf{u}) = \underset{\mathbf{u}}{\operatorname{argmin}} \mathbf{u}^T A^T A \mathbf{u} - \mathbf{u}^T \mathbf{z}$$
  
s. t.  $\mathbf{u}^T 1 = 1, \mathbf{u} \ge 0$ 



FROM LAGRANGE **MULTIPLIERS TO MEB PARAMETERS** 

$$c^* = Au^* = \sum_{i=1}^m a_i u_i^*$$

$$r^* = \sqrt{-\Phi(\boldsymbol{u}^*)}$$

## **ALGORITHMS**

| FRANK-WOLFE                              | Frank Wolfe algorithm provides a straightforward approach for solving a convex minimization problem over a compact convex set.                  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| AWAY-STEPS FW                            | A simple improvement over the standard FW that deals with the zig-zagging problem by introducing the possibility of taking "away steps"         |
| BLENDED PAIRWISE<br>CONDITIONAL GRADIENT | Combination of the Pairwise CG with the blending criterion from the Blended CG that eliminates the occurrence of swap steps.                    |
| (1+ $arepsilon$ )-APPROXIMATION TO MEB   | Adaptation of the standard FW to the MEB problem. It generates a sequence of increasing balls until a ball with desired properties is computed. |

### AWAY-STEPS FRANK-WOLFE

#### Algorithm 1: Away-steps Frank-Wolfe algorithm

```
1: u^0 \leftarrow [1 \ 0 \ 0 \dots \ 0] \in \mathbb{R}^m, S^0 \leftarrow \{u^0\}
                                                                                                        II so that \omega_v^0 = 1 for v = u^0 and 0 otherwise
2: For t = 0, ..., maxIter - 1 do
3:
            s^t \leftarrow \text{LMO}_A(\nabla \Phi(u^t)) and d_FW^t \leftarrow s^t - u^t
                                                                                                                                                 // the FW direction
            v^t \leftarrow \operatorname{argmax} \langle \nabla \Phi(u^t), v \rangle and d_A^t \leftarrow u^t - v^t
                                                                                                                                              // the away direction
            if (g_FW^t \leftarrow \langle -\nabla \Phi(u_t), d_FW^t \rangle) \leq \varepsilon then return u^t
5:
            if \langle -\nabla \Phi(u_t), d_FW^t \rangle \ge \langle -\nabla \Phi(u^t), d_A^t \rangle then
6:
                   d^t \leftarrow d_F W^t, and \alpha_{max} = 1
                                                                                                                                    // choose the FW direction
8:
            else
                  d^t \leftarrow d_A^t, and \alpha_{max} = \frac{\omega_{vt}}{1 - \omega_{vt}}
9:
                                                                                       // choose away direction; maximum feasible step-size
10:
            end if
            Line-search: \alpha^t \in \operatorname{argmin} \Phi(\boldsymbol{u^t} + \alpha \boldsymbol{d^t})
                                            \alpha \in [0, \alpha_{max}]
         u^t \leftarrow u^{t-1} + \alpha^t d^t
                                                                                                                   II and accordingly for the weights \omega^t
            S^t \leftarrow \{v \text{ s.t. } \omega_v^t > 0\}
14: end for
```

### BLENDED PAIRWISE CONDITIONAL GRADIENT

#### Algorithm 2: Blended Pairwise Conditional Gradients (BPCG) 1: $u^0 \leftarrow [1 \ 0 \ 0 \dots \ 0] \in \mathbb{R}^m, S^0 \leftarrow \{u^0\}$ 2: **for** t = 0, ..., maxIter - 1 **do**: $a^t \leftarrow \operatorname{argmax} \langle \nabla \Phi(\boldsymbol{u}^t), \boldsymbol{v} \rangle$ // away vertex **Indices** $s^t \leftarrow \operatorname{argmax} \langle \nabla \Phi(\boldsymbol{u}^t), \boldsymbol{v} \rangle$ // local FW to find. $w^t \leftarrow \operatorname{argmax} \nabla \Phi(u^t)$ 5: // global FW if $\langle \nabla \Phi(u^t), a^t - s^t \rangle \geq \langle \nabla \Phi(u^t), u^t - w^t \rangle$ then $d^t = a^t - s^t$ local pairwise gap >= FW gap $\alpha_{max} \leftarrow \boldsymbol{u^t}[a_t]$ $\alpha^t \leftarrow \operatorname{argmax} \Phi(\boldsymbol{u^t} - \alpha \boldsymbol{d^t})$ $\alpha \in [0, \alpha_{max}]$ if $\alpha^t < \alpha_{max}$ then The weights of the active atoms in St // descent step 10: $S^t \leftarrow S^{t-1}$ 11: are optimized by the PCG locally. 12: else 13: $S^t \leftarrow S^{t-1} \setminus \{a^t\}$ // drop step Take a pairwise step = drop / descent. 14: end if 15: else 16: $d^t = u^t - w^t$ The local pairwise gap $\alpha^t \leftarrow \operatorname{argmin} \Phi(\boldsymbol{u^t} - \alpha \boldsymbol{d^t})$ is smaller than the FW 18: // FW step gap => Take a FW step. 19: end if $u^t \leftarrow u^{t-1} - \alpha^t d^t$ 21: end for

## $(1+\varepsilon)$ -APPROXIMATION TO MEB

#### Algorithm 3: $(1 + \varepsilon)$ -approximation to MEB

```
1: p \leftarrow \underset{i=1,\dots,n}{\operatorname{argmax}} \|u_i - u_1\|^2, q \leftarrow \underset{i=1,\dots,n}{\operatorname{argmax}} \|u_i - u_p\|^2
2: u^0 \leftarrow 0
3: u_p^0 \leftarrow \frac{1}{2}, u_q^0 \leftarrow \frac{1}{2}
                                                                                                                                        // Feasible solution
4: S^0 \leftarrow \{a_p, a_q\}
                                                                                                                                        // Assign core set
5: c^0 \leftarrow \sum_{i=1}^n u_i^0 a_i = \langle u^0, a \rangle
                                                                                                                                        // Assign center
6: \gamma^0 \leftarrow \Phi(u^0)
                                                                                                                                        // Assign r<sup>2</sup>
7: \kappa \leftarrow \underset{i=1,\dots,n}{\operatorname{argmax}} \|\boldsymbol{a}_i - \boldsymbol{c}^0\|^2
                                                                                                                                        // Find furthest point index
                                                                                                                                        // Find error bound
8. \delta^0 \leftarrow (\|a_{\kappa} - c^0\|^2 / \gamma^0) - 1
9: t \leftarrow 0
10: While \delta^t > (1 + \varepsilon)^2 - 1 and t < maxIter do
11: loop
                                                                                                                                        // Update learning rate
12: \alpha^t \leftarrow \delta^t/[2(1+\delta^t)]
13: t \leftarrow t + 1
14: u^t \leftarrow (1 - \alpha^{t-1})u^{t-1} + \alpha^{t-1}e_{\kappa}
                                                                                                                                        // Update Lagrangian Multipliers
15: c^t \leftarrow (1 - \alpha^{t-1})c^{t-1} + \alpha^{t-1}a_{\kappa}
                                                                                                                                        // Update center
16: S^t \leftarrow S^t \cup \{a_\kappa\}
                                                                                                                                        // Update core set
17: \gamma^t \leftarrow \Phi(u^t)
                                                                                                                                        // Update r<sup>2</sup>
18: \kappa \leftarrow \underset{i=1,...,n}{\operatorname{argmax}} \|\boldsymbol{a}_i - \boldsymbol{c}^t\|^2
                                                                                                                                        // Find furthest point index
         \delta^t \leftarrow (\|\boldsymbol{a}_{\kappa} - \boldsymbol{c}^t\|^2 / \gamma^t) - 1
                                                                                                                                        // Find error bound
19:
20: end loop
```

### LINE SEARCH STRATEGIES

| INVERSE TIME |  |
|--------------|--|
| DECAY        |  |

$$\frac{t}{t+2}$$

Initial strategy, satisfactory radius and center parameters, but didn't converge.

GOLDEN SECTION \_\_\_\_

Good results with Algorithm 1 but didn't converge with Algorithm 2.

ARMIJO'S RULE ——

Even though the obtained results for the center and radius were close to the optimal ones, it was evident that this line search strategy is very slow, and often failed to converge.

**EXACT LINE SEARCH** 

Best results, fast convergence for both algorithms.

$$\alpha = -\frac{\nabla \Phi(\boldsymbol{u}^t)^T \boldsymbol{d}^t}{2\boldsymbol{d}^{t^T} \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{d}^t}$$

## **EXPERIMENTS**

☐ Goal: Assess the quality of the three algorithms.

Hyperparameter: epsilon  $(\varepsilon)$  – stopping criteria

☐ Methodology: Training and testing the algorithms on:

#### **SYNTHETIC DATA:**

- Uniform data
- Gaussian data

**DATASETS** 

#### **REAL-WORLD DATA:**

- Breast Cancer Wisconsin dataset
- Customer Churn dataset

### EXPERIMENT: UNIFORM DATASET

|           |            | TRAIN        | TEST     |                 |            |                 |
|-----------|------------|--------------|----------|-----------------|------------|-----------------|
| ALGORITHM | ITERATIONS | CPU TIME (S) | RADIUS   | ACTIVE SET SIZE | RECALL (%) | F1 SCORE<br>(%) |
| ASFW      | 379        | 23.632       | 1.019375 | 15              | 100        | 100             |
| BPCD      | 272        | 16.606       | 1.019365 | 14              | 100        | 100             |
| APPFW     | 747        | 22.108       | 1.019697 | 18              | 100        | 100             |



We created two closely spaced yet separable clusters:

- Train (nominal data): 8000 data points ~ U[0.0, 0.7);
- Test (anomaly data): 2000 points ~ U[0.7, 1.0).

Blue cluster = training data.

Red cluster = test points.

The circle shows the MEB constructed by Algorithm 2.

## TRAINING RESULTS - UNIFORM DATASET













### EXPERIMENT: GAUSSIAN DATASET

|           |            | TRAIN        | TEST    |                 |            |                 |
|-----------|------------|--------------|---------|-----------------|------------|-----------------|
| ALGORITHM | ITERATIONS | CPU TIME (S) | RADIUS  | ACTIVE SET SIZE | RECALL (%) | F1 SCORE<br>(%) |
| ASFW      | 177        | 9.614        | 5.45032 | 9               | 100        | 99.85           |
| BPCG      | 130        | 7.219        | 5.45032 | 9               | 100        | 99.85           |
| APPFW     | 733        | 21.904       | 5.45191 | 12              | 100        | 99.85           |



We created two very separable clusters:

- Training (nominal data): 8000 data points ~ N(0, 1);
- Testing (nominal + anomaly data): 1000 points  $\sim N(0, 1)$ , and  $1000 \sim N(7, 1)$ .

Blue cluster = training points.

Red cluster = test points:

- nominal: around the center of the MEB
- anomaly: the red cluster on the top right.

The circle shows the MEB constructed by Algorithm 2.

## TRAINING RESULTS: GAUSSIAN DATASET













### EXPERIMENT: BREAST CANCER WISCONSIN DATASET

The <u>Breast Cancer Wisconsin</u> dataset consists of: **569 samples** and **32 features.** 

To create training and testing datasets, we first separated the two classes:

- nominal data = 357 benign cases;
- anomaly data = 212 malignant cases.
- ☐ <u>Training data</u>: Half of the nominal cases (178 samples).
- $\Box$  <u>Testing data</u>: Nominal (179) + anomaly (212) samples = 391 samples.

Various thresholds ( $\epsilon$ ) were employed as stopping criteria (next slide).

## EXPERIMENT: BREAST CANCER WISCONSIN

|             | TRAIN |            |               |           |                    | TEST       |              |
|-------------|-------|------------|---------------|-----------|--------------------|------------|--------------|
| ALGORITHM   | 3     | ITERATIONS | CPU TIME (ms) | RADIUS    | ACTIVE<br>SET SIZE | RECALL (%) | F1 SCORE (%) |
|             | 0.1   | 64         | 26.38         | 11.077366 | 6                  | 76.415     | 85.488       |
| <b>ASFW</b> | 0.01  | 92         | 36.97         | 11.077386 | 6                  | 76.415     | 85.488       |
|             | 0.001 | 118        | 98.634        | 11.077386 | 6                  | 76.415     | 85.488       |
|             | 0.1   | 32         | 18.165        | 11.077378 | 6                  | 76.415     | 85.488       |
| <b>BPFW</b> | 0.01  | 50         | 24.112        | 11.077386 | 6                  | 76.415     | 85.488       |
|             | 0.001 | 66         | 31.402        | 11.077386 | 6                  | 76.415     | 85.488       |
| APPFW       | 0.1   | 4          | 2.004         | 11.758557 | 5                  | 72.17      | 83.152       |
|             | 0.01  | 35         | 11.0          | 11.130932 | 7                  | 76.415     | 85.488       |
|             | 0.001 | 608        | 146.278       | 11.080393 | 7                  | 76.415     | 85.488       |

## TRAINING RESULTS: BREAST CANCER DATASET













## EXPERIMENT: CUSTOMER CHURN DATASET

The <u>Iranian Churn Dataset</u> consists of **3,150 samples** and **14 features**:

To create training and testing datasets, we first separated the two classes:

- nominal data = 2655 retention cases;
- anomaly data = 495 churn cases.
- ☐ <u>Training data</u>: Half of the nominal cases (1327 samples).
- $\Box$  Testing data: Nominal (1327) + anomaly (495) samples = 1823 samples.

Various thresholds ( $\epsilon$ ) were employed as stopping criteria (next slide).

## EXPERIMENT: CUSTOMER CHURN DATASET

|           | TRAIN |            |                  |          |                    | TEST       |              |
|-----------|-------|------------|------------------|----------|--------------------|------------|--------------|
| ALGORITHM | 3     | ITERATIONS | CPU TIME<br>(ms) | RADIUS   | ACTIVE<br>SET SIZE | RECALL (%) | F1 SCORE (%) |
|           | 0.1   | 55         | 131.633          | 6.708818 | 6                  | 10.101     | 18.282       |
| ASFW      | 0.01  | 80         | 154.788          | 6.709065 | 6                  | 9.697      | 17.615       |
|           | 0.001 | 100        | 217.184          | 6.709067 | 6                  | 9.697      | 17.615       |
| BPFW      | 0.1   | 32         | 74.47            | 6.709004 | 6                  | 9.495      | 17.248       |
|           | 0.01  | 40         | 97.306           | 6.709067 | 6                  | 9.697      | 17.615       |
|           | 0.001 | 54         | 116.559          | 6.709067 | 6                  | 9.697      | 17.615       |
| APPFW     | 0.1   | 3          | 5.293            | 7.184624 | 4                  | 0.808      | 1.6          |
|           | 0.01  | 13         | 14.184           | 6.753838 | 6                  | 8.283      | 15.27        |
|           | 0.001 | 178        | 178.887          | 6.711496 | 7                  | 9.697      | 17.615       |

## TRAINING RESULTS: CUSTOMER CHURN DATASET













### CONCLUSION

We implemented 3 adaptations of the Frank-Wolfe algorithm:

- **1.** Away-steps FW satisfactory results, highlighting its improvement over the vanilla FW algorithm.
- 2. BPCG consistently outperformed the others in terms of metrics such as iterations, CPU time, and active set size, displaying a superior convergence rate.
- 3. (1+ $\epsilon$ )-approx. to MEB initially underperformed with a strict stopping criterion but showed significant improvement with a larger  $\epsilon$  value.

Ultimately, our evaluation on different datasets emphasized the importance of selecting optimization algorithms based on the dataset's characteristics, as the algorithm's performance is highly dependent on data structure.



# THANK YOU FOR YOUR ATTENTION

You can find the project at the following <u>link</u>.