Chapter 2 Inverse Trigonometric Functions Formulas

Those Notes are written by Mount Institute of Maths.

The domains and ranges of Inverse Trigonometric (or Inverse Circular) functions are :-

Function	Domain	Range
$\sin^{-1} x$	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1} x$	[-1,1]	[0, π]
$\tan^{-1} x$	$[x : x = (2n+1)\frac{\pi}{2}, n \in Z]$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cot^{-1} x$	[x : x = nπ, n ε Z]	[0, π]
$sec^{-1} x$	[x:x=(2n+1) $\frac{\pi}{2}$, n \in Z] or [-1,1]	$[0,\pi]-\frac{\pi}{2}$
cosec ^{−1} x	[x : x = $n\pi$, $n \in Z$] or [-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

❖ Some Important Results:

$$\bullet \quad \sin^{-1}(-x) = -\sin^{-1}x$$

•
$$tan^{-1}(-x) = -tan^{-1}(x)$$

•
$$\csc^{-1}(-x) = -\csc^{-1}(x)$$

•
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$

•
$$\cot^{-1}(-x) = \pi - \cot^{-1}(x)$$

•
$$\sec^{-1}(-x) = \pi - \sec^{-1}(x)$$

Chapter 2 Inverse Trigonometric Functions Formulas

$$\bullet \quad \sin^{-1} x = \frac{1}{\csc^{-1} x}$$

•
$$\cos^{-1} x = \frac{1}{\sec^{-1} x}$$

•
$$\tan^{-1} x = \frac{1}{\cot^{-1} x}$$

$$\bullet \quad \cot^{-1} x = \frac{1}{\tan^{-1} x}$$

$$\bullet \quad \sec^{-1} x = \frac{1}{\cos^{-1} x}$$

•
$$\operatorname{cosec}^{-1} x = \frac{1}{\sin^{-1} x}$$

***** 1

$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$$

$$\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x$$

$$\Rightarrow \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

$$\bullet \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$$

•
$$\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x$$

$$ightharpoonup \cos c^{-1} x + \sec^{-1} x = \frac{\pi}{2}$$

Chapter 2 Inverse Trigonometric Functions Formulas

$$\bullet \quad \csc^{-1} x = \frac{\pi}{2} - \sec^{-1} x$$

•
$$\sec^{-1} x = \frac{\pi}{2} - \csc^{-1} x$$

***** 2

$$\rightarrow \tan^{-1} x + \tan^{-1} x = \tan^{-1} (\frac{x+y}{1-xy})$$

***** 6

$$ightharpoonup 2 \tan^{-1} x = \sin^{-1}(\frac{2x}{1+x^2})$$

>
$$2 \tan^{-1} x = \cos^{-1} (\frac{1-x^2}{1+x^2})$$

$$\ge 2 \tan^{-1} x = \tan^{-1} (\frac{2x}{1-x^2})$$

$$\ge 2\sin^{-1}x = \sin^{-1}2x\sqrt{1-x^2})$$

$$\ge 2\cos^{-1}x = \cos^{-1}2x\sqrt{1-x^2})$$