

planetmath.org

Math for the people, by the people.

invertible elements in a Banach algebra form an open set $\,$

 $Canonical\ name \qquad Invertible Elements In ABanach Algebra Form An Open Set$

Date of creation 2013-03-22 17:23:22 Last modified on 2013-03-22 17:23:22 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Theorem Classification msc 46H05

Theorem - Let \mathcal{A} be a Banach algebra with identity element e and $G(\mathcal{A})$ be the set of invertible elements in \mathcal{A} . Let $B_r(x)$ denote the open ball of radius r centered in x.

Then, for all $x \in G(\mathcal{A})$ we have that

$$B_{\parallel x^{-1}\parallel^{-1}}(x)\subseteq G(\mathcal{A})$$

and therefore $G(\mathcal{A})$ is open in \mathcal{A} .

Proof: Let $x \in G(\mathcal{A})$ and $y \in B_{\|x^{-1}\|^{-1}}(x)$. We have that

$$\|e - x^{-1}y\| = \|x^{-1}x - x^{-1}y\| = \|x^{-1}(x - y)\| \le \|x^{-1}\| \|x - y\| < \|x^{-1}\| \|x^{-1}\|^{-1} = 1$$

So, by the http://planetmath.org/NeumannSeriesInBanachAlgebrasNeumann series we conclude that $e-(e-x^{-1}y)$ is invertible, i.e. $x^{-1}y\in G(\mathcal{A})$.

As G(A) is a group we must have $y \in G(A)$.

So $B_{\|x^{-1}\|^{-1}}(x) \subseteq G(\mathcal{A})$ and the theorem follows. \square