Exploratory Data Analysis Linear Regression and QDA Classification

Introduction

Data stored in OJ.CSV file with 18 Columns and 1070 Rows. By using the data set, we will find EDA on the dataset. And perform classification on Linear Regression & QDA.

Exploratory Data Analysis:

First, The Categorical data in the columns 'Store7' was changed to numerical data. Since the data had no outliers and no missing values, no additional filtering was used. Reading the data manually to get some insights into the format of the data. Finding the unique values in each column. Checking for missing values in the data. Storing the unique category of each categorical data.

Making the correlation matrix between the features. A heatmap for the correlation matrix was also created to evaluate the relationship between the variables. It was created the correlation matrix shown below: -

Shuffling the data and splitting it into training and test dataset

```
# shuffling the data and splitting it into training and test dataset
dataset.sample(frac=1)
#storing the predictor variable data in data_x
data_x= dataset.drop('Purchase',axis=1)
data_x=data_x.to_numpy()
#storing the target variable data in data_y
data_y= dataset['Purchase']
data_y=data_y.to_numpy()
#Splitting the data into testing and training data.

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(data_x,data_y,test_size=0.3)
```

Linear Regression Classification:

Train Data results before feature selection

Train Data		Before ision		Selection: f1-score	support
C	Н	0.87	0.88	0.87	464
M	1M	0.80	0.79	0.79	285
accurac	:y			0.84	749
macro av	g g	0.83	0.83	0.83	749
weighted av	g g	0.84	0.84	0.84	749
[[406 58] [59 226]]					

Test Data results before feature selection

Test	Data	Results	Before	Feature S	election:	
		pred	cision	recall	f1-score	support
		CH	0.83	0.87	0.85	189
		MM	0.80	0.75	0.77	132
	accura	асу			0.82	321
m	acro a	avg	0.82	0.81	0.81	321
weig	hted a	avg	0.82	0.82	0.82	321
[[16	4 25]				
Ī 3	3 99	11				
	-					

QDA:

Code;

```
# QDA
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
qda = QuadraticDiscriminantAnalysis()
qda.fit(x_train,y_train)

y_pred_qda_train = qda.predict(x_train)
y_pred_qda_test = qda.predict(x_test)

print('QDA on training Data :\n\n',classification_report(y_train,y_pred_qda_train))
print('\n\nQDA on testing Data :\n\n',classification report(y test,y pred_qda_test))
```

QDA on Training data

QDA on training Data :					
	precision	recall	f1-score	support	
0 1	0.68 0.57	0.83 0.38	0.75 0.46	464 285	
accuracy macro avg weighted avg	0.63 0.64	0.60 0.66	0.66 0.60 0.64	749 749 749	

QDA on Testing data

QDA on testing Data :						
	precision	recall	f1-score	support		
0	0.70	0.86	0.77	189		
1	0.69	0.46	0.55	132		
accuracy			0.69	321		
macro avg	0.69	0.66	0.66	321		
weighted avg	0.69	0.69	0.68	321		

Conclusion:

As we can observe that here Linear Regression is more considerably than Quadratic Discriminant Analysis (QDA) by checking their harmonic mean of precision and recall (i.e f1-score).