Computer software engineering

June 2020

OPMENT OF AGGREGATION MET OF PARTIALLY ORDERED SETS

César garcía cabeza

Tutors: irene díaz rodríguez & elías fernández combarro

Table of contents

introduction

Real life application

real life application

best

worst

motivation

n	combinations
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800
11	39916800
12	479001600

Basic concepts

Set p with a binary relati

Reflexivity Antisymm transitivit etry y

Set p with a binary relati

Reflexivity

Antisymm etry

transitivit y

 $x \leq x$

Set p with a binary relati

Reflexivity

Antisymm etry

transitivit y

$$x \le y, y \le x \Rightarrow x = y$$

Set p with a binary relati

Reflexivity

Antisymm etry

transitivit y

$$x \le y, y \le z \Rightarrow x \le z$$

Comparable objects

or

poset representation

matrix

Linear extension

Total order relationship

All elements are comparable to each other

Aggregation of posets

Aggregation matrix

Aggregation matrix

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Aggregation matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Not optimal

Partial restrictions violated by the linear extension

Wo

 W_2

Cost =

Not optimal

Partial restrictions violated by the linear extension

Wo

 W_2

Cost = 0

Not optimal

Partial restrictions violated by the linear extension

$$\begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Wo

 W_2

$$Cost = 0 + 1$$

Not optimal

Partial restrictions violated by the linear extension

$$\begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Wo

 W_2

$$Cost = 0 + 1 + 2 = 3$$

algorithms

example

Mincost st

Computing all the posible linear extensions and

Sequentially calculates the cost

Optimal algorithm

High execution times

Mincost st - example

W ₂	W ₁	W ₂	w ₀	w ₁	w ₀	Possible solution	Cost
						S ₀	3
$\mathbf{w_1}$	W ₂	\mathbf{W}_{0}	W ₂	\mathbf{W}_{0}	W ₁	S ₁	3
						S ₂	4
			ı			S ₃	3
W ₀	W ₀	W ₁	W ₁	W ₂	W ₂	S ₄	4
S ₀	S ₁	S ₂	S ₃	S ₄	S ₅	S ₅	4

minimals⁴

What is a *minimal* ele

An element $a \in P$ is a minimal element if there is no $b \in P$

Vector up

Vector down

Bound constant

Vector up

Vector down Bound constant

$$up[i] = \sum_{i}^{\infty} A[i,j] \quad up = [6,5,5]$$

Vector up

Vector down

Bound constant

down[i] =
$$\sum_{j=1}^{n} A[j, i]$$
 down= [5, 5, 6]

Vector up

Vector down

Bound constant

bound =
$$\sum up[i]$$
 bound = 16

Vector up

Vector down

Bound

$$used = [False, False, False]$$

1º) Lowest numb Elements below

$$P(i) = \frac{up[i]}{\sum_{j \ minimal} up[i]}$$

2º) minim

Minimals = $[w_0,$

3º) Choose mir

probabilities = $\left[\frac{6}{11}\right]$

 W_1

4º) upda

A	=		$\overline{}$	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
		\ ₁	1	3/

	\mathbf{w}_0	W_1	W_2
up	6	5	5
down	5	5	6
used	False	False	False

1º) Lowest numb Elements below Min =

2º) minim

Minimals = $[w_0]$

3º) Choose mir

probabilities = $\left[\frac{6}{11}\right]$

4º) upda

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix} \stackrel{\text{def}}{=}$$

	\mathbf{w}_0	W ₁	W ₂
ир	6-1 = 5	5-3 = 2	5-1 = 4
down	5-1 = 4	5-3 = 2	6-1=5
used	false	true	False

 W_1

- 1º) Lowest numb Elements below
- 2º) minim
- 3º) Choose mir
- 4º) upda

Minimals = [

probabilities =

$$egin{array}{c} oldsymbol{\mathsf{w}}_0 \ oldsymbol{\mathsf{w}}_1 \end{array}$$

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix} \stackrel{\mathsf{d}}{\underset{\mathsf{u}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}}}{\overset{\mathsf{d}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{d}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}}{\overset{\mathsf{d}}}{\overset{\mathsf{d}}}}{\overset{$$

	\mathbf{w}_{0}	W_1	W_2
up	5	2	4
down	4	2	5
used	false	true	False

- 1º) Lowest numb Elements below
- 2º) minim
- 3º) Choose mir
- 4º) upda

Min =

Minimals = [

probabilities =

W ₍)
- 1	
W	1

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

	\mathbf{w}_{0}	W_1	W_2
up	5-3 = 2	2-1 = 1	4-1 = 3
down	4-3 = 1	2-1 = 1	5-2 = 3
used	true	true	False

Minimals – search of the minimals

- 1º) Lowest numb Elements below
- 2º) minim
- 3º) Choose mir
- 4º) upda

Minimals	=
----------	---

	\mathbf{w}_{0}	W_1	W_2
up	2	1	3
down	1	1	3
used	true	true	False

Bound =

Minimals – search of the minimals

1º) Lowest numb Elements below

2º) minim

3º) Choose mir

4º) upda

Min =

Minimals =

probabilities =

W_2
1
\mathbf{w}_0
1
W_1

A	=	1	3	
Α	=	1	3	

	\mathbf{w}_{0}	W_1	W_2
up	2-2=0	1-1=0	3-3=0
down	1-1=0	1-1=0	3-3=0
used	true	true	true

Bound =

Minimals random

Randomly cho

Minimals random - example

minima

Minimals = $[w_0]$

probabilities =
$$\left[\frac{6}{11}\right]$$

Minimals rand

Minimals = $[w_0]$

probabilities =
$$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$P(i) = P(i) = \frac{1}{k} \frac{i}{up[i]}$$

mincost mt

Based on mincost st

parallel⁵

Sorting algorithms

```
bubble
selectio
insertio
Quickso
merges
```

sorting_method(what_to_order, cor

Sorting algorithms — comparison a

only take into account the times an *i* element is

lower or greater
than anc+har i
lower → A[i, j]

$$P(i \le j) = \begin{cases} \frac{lower}{lower + greater} & if lower + greater \ne \\ 0.5 & otherwise \end{cases}$$

greater \rightarrow A[j, i]

Sorting algorithms – comparison b

the times an *i* element is lower or greater than

The times objects i and j are not comparable

P (
$$i \le j$$
) = $\begin{cases} lower + 0.5 \times notCompared \\ total \end{cases}$

lower \rightarrow A[i, j] greater \rightarrow A[j, i]

total \rightarrow A[i, i]

Not compared \rightarrow total – (lower + greater)

Sorting algorithms — example

$$\begin{bmatrix}
 3 & 1 & 2 \\
 1 & 3 & 1 \\
 1 & 1 & 3
 \end{bmatrix}$$

Comparison a

Comparison b

$$\begin{bmatrix} 1 & \frac{A[0,1]}{A[0,1] + A[1,0]} & \frac{A[0,2]}{A[0,2] + A[2,0]} \\ \frac{A[1,0]}{A[1,0] + A[0,1]} & 1 & \frac{A[1,2]}{A[1,2] + A[2,1]} \\ \frac{A[2,0]}{A[2,0] + A[0,2]} & \frac{A[2,1]}{A[2,1] + A[1,2]} & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \frac{A[0,1] + 0.5 \times 1}{3} & \frac{A[0,2] + 0.5 \times 0}{3} \\ \frac{A[1,0] + 0.5 \times 1}{3} & 1 & \frac{A[1,2] + 0.5 \times 1}{3} \\ \frac{A[2,0] + 0.5 \times 0}{3} & \frac{A[2,1] + 0.5 \times 1}{3} & 1 \end{bmatrix}$$

Sorting algorithms — example

$$\begin{bmatrix}
 3 & 1 & 2 \\
 1 & 3 & 1 \\
 1 & 1 & 3
 \end{bmatrix}$$

Comparison a

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{2}{3} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 1 \end{bmatrix}$$

Comparison b

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{2}{3} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 1 \end{bmatrix}$$

simulated annealing⁶

Optimization algor

Initial solution

simulated annealing - flowchart

Compute new soll

Compute c

Accept and up

Update optir

Lower tempera

simulated annealing – calculate new so

Swap two positi

[w₀, w₂, v

[w₁, w₂, v

I = random(n)

simulated annealing – calculate cost so

Algorithm of the

simulated annealing – accept and upda

$$P(accepted) = 1$$

$$P^7(accepted) = e^{\frac{-\Delta cost}{T}}$$

simulated annealing – update best

Keep best solu

simulated annealing – lower temperatu

Initial temperat Cooling system Limit temperat

$$T_{i+1} = \beta T_i$$

linear programming – 4 concepts⁶

Decision Domain Objectiv Constrai variable nts • X ≥ 0 function • Ax ≤ b $\bullet C^T X$ Vector

linear programming – standard form⁷

$$\max\{\mathbf{c}^{\mathsf{T}} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \land \mathbf{x} \geq 0\}$$

$$\min\{\mathbf{c}^{\mathsf{T}} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \land \mathbf{x} \geq 0\}$$

linear programming — example

variables

3 objects V matrix n x n size

$$V = \begin{bmatrix} V_{o,o} & V_{o,1} & V_{o,2} \\ V_{1,0} & V_{1,1} & V_{1,2} \\ V_{2,0} & V_{2,1} & V_{2,2} \end{bmatrix}$$

linear programming – example

domain

binary

zero-one innear

$$D = \{0, 1\}$$

linear programming – example

constraints

Constraint	Туре
V[0,0] = 1	Diagonal
V[1,1] = 1	Diagonal
V[2,2] = 1	Diagonal
V[0,1] + V[1,0] = 1	No cycles
V[0,2] + V[2,0] = 1	No cycles
V[2,1] + V[1,2] = 1	No cycles
V[0,1] + V[1,2] - V[0,2]	
≤ 1	Transitivity
V[0,2] + V[2,1] - V[0,1]	
≤ 1	Transitivity
V[1,0] + V[0,2] - V[1,2]	
≤ 1	Transitivity
V[1,2] + V[2,0] - V[1,0]	
≤ 1	Transitivity

linear programming – example

Objective function

aggregation

minimise

variable x partial

$$objectiveFunction(V,A) = \sum_{i,j}^{n} V[i,j]x A[j,i] = V[0,1]x A[1,0] + V[0,2]x A[2,0] + \dots + V[2,1]x A[1,2]$$

$$\forall i \neq j$$

experiments

parameters

Size of the pos

Amount of po

results

averag

Mincost st vs mincost mt

Minimals vs minimals random

Sorting algorithms: comparison A vs cor

selecti on

Simulated annealing: initial algorithm

Random

Simulated annealing: initial algorithm

Random

quicksort

Simulated annealing: initial algorithm

Random

quicksort

minimals

Linear programming

quicksort

quicksort

minimals

quicksort

minimals

Minimals +

quicksort minimals Minimals + Minimals +

	Minimals	QuickSort(m	Minimals+SA LT	Minimals+SA HT	Linear Programming	MinCost MT
N	(ms)	s)	(ms)	(ms)	(ms)	(ms)
3	0,19894	0,03990	0,63184	55,24363	6963,14810	32,82010
4	0,09810	0,01943	0,52893	61,15640	6234,57310	0,97050
5	0,19574	0,01995	0,60648	79,48764	6438,74210	1,99220
6	0,19478	0,05738	0,69495	89,79747	7002,72700	12,14280
7	0,25991	0,04095	0,96700	97,62566	7868,88970	41,58960
8	0,19948	0,05933	1,00327	106,92099	9126,45090	264,87810
9	0,27718	0,05987	1,24245	134,00389	11065,30240	2569,49330
10	0,35919	0,05987	1,39723	148,50157	13921,74060	27600,38580
11	0,35117	0,09916	1,60339	158,93650	18212,21800	275991,06630
						3147048,2383
12	0,47300	0,06042	1,74745	172,52270	23393,36860	0
Total time						3453563,5770
(ms)	2,60750	0,51625	10,42301	1104,19646	110227,16050	0

conclusions

summary

Two categories of algorithms

Aggregation methods

Optimal

MinCost MT

LinearProgram ming

Minimal

QuickSo rt

Simulated Annealing

Nonoptimal

Simulated annealing

Quality of the initial sol

temperature and cooling co

Optimal algorithms

minCost mT or LinearProgra

Non-Optimal algorithms

Minimals + simulated an

What is the best aggregation method?

What is the best aggregation method?

High temperature

Minimals + simulated annealing

low cooling constant

