COMP4611: Design and Analysis of Computer Architectures

RAID (Redundant Array of Inexpensive Disks)

Lin Gu CSE, HKUST

Disk Latency & Bandwidth Improvements

- Disk latency is one average seek time plus the rotational latency
- Disk bandwidth is the peak transfer rate of formatted data
- In the time that the disk bandwidth doubles the latency improves by a factor of only 1.2 to 1.4

Media Bandwidth/Latency Demands

- Bandwidth requirements
 - High quality video
 - Digital data = $(30 \text{ frames/s}) \times (640 \times 480 \text{ pixels}) \times (24-\text{b color/pixel}) = 221 \text{ Mb/s}$ (27.625 MB/s)
 - High quality audio
 - Digital data = $(44,100 \text{ audio samples/s}) \times (16\text{-b audio samples}) \times (2 \text{ audio channels for stereo}) = 1.4 \text{ Mb/s} (0.175 \text{ MB/s})$
- Latency issues
 - How sensitive is your eye (ear) to variations in video (audio) rates?
 - How can you ensure a constant rate of delivery?
 - How important is synchronizing the audio and video streams?
 - 15 to 20 ms early to 30 to 40 ms late is tolerable

Storage Pressures

- Storage capacity growth estimates: 60-100% per year
 - Growth of e-business, e-commerce, and e-mail ⇒ now common for organizations to manage hundreds of TBs of data
 - Mission critical data must be continuously available
 - Regulations require long-term archiving
 - More storage-intensive applications on market
- Storage and Security are leading pain points for the IT community
- Managing storage growth effectively is a challenge

Data Growth Trends

Storage Cost

Storage ■ Server

Storage vs. server costs in IT spending

Availability/Reliability and Performance are EXTREMLY important

Importance of Storage Reliability

RAID

- To increase the availability and the performance (bandwidth) of a storage system, instead of a single disk, a set of disks (disk arrays) can be used.
- Similar to memory interleaving, data can be spread among multiple disks (striping), allowing simultaneous access to the data, improving the throughput and latency besides availability.
- However, the reliability of the system drops (n
 devices have 1/n the reliability of a single device).

Dependability Measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
 - Reduce MTTR: improved tools and processes for diagnosis and repair

Array Reliability

Reliability of N disks = Reliability of 1 Disk ÷N
 50,000 Hours ÷ 70 disks = 700 hours
 Disk system Mean Time To Failure (MTTF):

 Drops from 6 years to 1 month!

Disks without redundancy are too unreliable to be useful!

RAID

- A disk array's availability can be improved by adding redundant disks:
 - If a single disk in the array fails, the lost information can be reconstructed from redundant information.
- This leads to a technology known as RAID -Redundant Array of Inexpensive Disks.
 - Depending on the number of redundant disks and the redundancy scheme used, RAIDs are classified into levels.
 - At least 6 levels of RAID (0-5) are accepted by the industry.
 - Level 2 is not commercially available

RAID-0

- Striped, non-redundant
 - Parallel access to multiple disks
 - → Excellent data transfer rate
 - → Excellent I/O request processing rate (for large stripes) if the controller supports independent Reads/Writes
 - → Not fault tolerant (AID)
- Typically used for applications requiring high performance for non-critical data (e.g., video streaming and editing)

RAID-1 - Mirroring

- Called mirroring or shadowing, uses an extra disk (mirror) for each disk in the array
 - costly form of redundancy (but some FS, e.g., GFS, makes 3 copies)
- Whenever data is written to one disk, the data is also written to the mirror: good for reads (lower latency), fair for writes
- If a disk fails, the system goes to the mirror and gets the desired data.
- Fast, but very expensive.
- Typically used in system drives and critical files
 - Banking, insurance data
 - e-commerce servers

RAID-2: Memory-Style ECC

- Multiple disks record the (error correcting code) ECC information to determine which disk is in fault
- A parity disk is then used to reconstruct corrupted or lost data Needs log2(number of disks) redundancy disks
- Least used since ECC is irrelevant because most new Hard drives support built-in error correction

RAID-3 - Parity

Logical record

Physical record

- Use 1 extra disk for each array of *n* disks. Bytes in a data block are stored alternately on all disks except for the parity disk.
- Reads or writes go to all disks in the array, with the extra disk to hold the parity information in case there is a failure.
- The parity is carried out at bit level:
 - A parity bit is kept for each bit position across the disk array and stored in the redundant disk.
 - Parity: sum modulo 2.
 - parity of 1010 is 0
 - parity of 1110 is 1

Or use XOR of bits

RAID-3 - Parity

If one of the disks fails, the data for the failed disk must be recovered from the parity information:

- This is achieved by subtracting the parity of good data from the original parity information:
- Recovering from failures takes longer than in mirroring
- Examples:

Original data	Original Parity	Failed Bit	Recovered data	
1010	0	101X	0-0 = 0	
1010	0	10X0	0-1 = 1	
1110	1	111X	1-1 = 0	
1110	1	11X0	1-0 = 1	

RAID-4 - Block-interleaved Parity

- In RAID 3, every read or write needs to go to all disks since bits are interleaved among the disks.
- Performance of RAID 3:
 - Only one request can be serviced at a time
 - Poor I/O request rate
 - Excellent data transfer rate
 - Typically used in large I/O request size applications, such as imaging or CAD
- RAID 4: If we distribute the information block-interleaved, where a disk sector is a block, then for normal reads different reads can access different segments in parallel. Only if a disk fails will we need to access all the disks to recover the data.

RAID-4: Block Interleaved Parity

- Allow for parallel access by multiple I/O requests
- Doing multiple small reads is now faster than before.
- A write, however, is a different story since we need to update the parity information for the block.
- · Large writes (full stripe), update the parity:

$$P' = dO' \oplus d1' \oplus d2' \oplus d3'$$
:

Small writes (eg. write on d0), update the parity:

$$P = d0 \oplus d1 \oplus d2 \oplus d3$$

$$P' = dO' \oplus d1 \oplus d2 \oplus d3 = dO' \oplus dO \oplus P$$
;

However, writes are still very slow since parity disk is the bottleneck.

RAID-4: Small Writes

© 2003 Elsevier Science (USA). All rights reserved.

RAID-5 - Block-interleaved Distributed Parity

RAID 5 distributes the parity blocks among all the disks.

RAID 5

Why is this helpful?

RAID-5 - Block-interleaved Distributed Parity

This allows *some* writes to proceed in parallel

 For example, writes to blocks 8 and 5 can occur simultaneously.

RAID 5

RAID-5 - Block-interleaved Distributed Parity

 However, writes to blocks 8 and 11 cannot proceed in parallel.

RAID 5

Performance of RAID-5 - Block-interleaved Distributed Parity

Performance of RAID-5

- I/O request rate: excellent for reads, good for writes
- Data transfer rate: good for reads, good for writes
- Typically used for high request rate, read-intensive data lookup
- File and Application servers, Database servers,
 WWW, E-mail, and News servers, Intranet servers
- Widely used.

RAID-6 – Row-Diagonal Parity

- To handle 2 disk errors
 - In practice, another disk error can occur before the first problem disk is repaired
- Use p-1 data disks, 1 row-parity disk, 1 diagonalparity disk
- If any two of the p+1 disks fail, data can still be recovered

Data Disk 0	Data Disk 1	Data Disk 2	Data Disk 3	Row Parity Disk	Diagonal Parity Disk
0		2	3	4	0
	2	3	4	0	
2	3	4	0		2
3	4	0		2	3