

Università degli Studi di Padova

Dipartimento di Fisica e Astronomia

Corso di Laurea Triennale in Fisica

Tesi di Laurea

Caratterizzazione di fotomoltiplicatori di nuova concezione per esperimenti di grandi dimensioni dedicati allo studio delle oscillazioni di neutrini

Relatore Alberto Garfagnini

> **Laureando** Enrico Lusiani

Correlatore Riccardo Brugnera

> Anno Accademico 2015-2016

Sommario

Indice

Test Chapter

Questo è un capitolo e va in capitoli. Lo 01 davanti indica che è il primo. Può includere altri file, tipo

questo qua

Il percorso non è importante, ma deve essere relativo alla cartella latex, dove c'è il file principale e non deve essere dentro chapters or appendix

Può anche includere immagini, che devono essere messe in img nella cartella principale, e vanno incluse con

Figura 1: testimage

Lusiani Enrico 2 Analisi Dati

Analisi Dati

Capitolo inserito da Davide per l'analisi dati, voglio semplicemente vedere se la mia parte funziona, non prendetevela ragazzih

Studio della risoluzione temporale al variare dell'energia

Una volta ultimata la calibrazione, si è voluto andare a stimare la risoluzione temporale dell'apparato al variare dell'energia depositata sui rivelatori. Per farlo, si sono analizzati i dati con riferimento all'energia depositata all'interno dei rivelatori: quando la media dell'energia depositata nei due rivelatori era sopra una certa soglia (o al di fuori della finestra prescelta) si è rimosso tale dato dal campione: ripetendo più volte questo procedimento al variare della soglia e al variare della finestra è stato possibile stimare la risoluzione temporale. Tale risoluzione è stata stimata andando a fare un'interpolazione gaussiana dei dati ottenuti in uscita dal TAC, selezionati come precedentemente descritto. Dato che tale calcolo è stato fatto per molti intervalli di energia, non si riportano qui tutti i grafici creati ma si possono trovare nelle appendici, mentre nella tabella si possono leggere i risultati ottenuti. Nel grafico sottostante, inoltre, si possono vedere i risultatin dell'analisi, cioè la risoluzione al variare dell'energia rappresentati su un grafico. Si vede con evidenza che la risoluzione tende a decrescere all'aumentare dell'energia.

Risoluzione al variare dell'energia

Figura 2: cobalto risoluzioni

Tabella 1: La risoluzione temporale in funzione dell'energia

intervallo energetico	centroide	errore	sigma	errore	risoluzione
0-100	33.608	0.006	0.494	0.007	0.0346
0-200	33.670	0.002	0.347	0.002	0.0243
0-300	33.3778	0.0009	0.311	0.001	0.0219
0-500	33.6811	0.0006	0.2945	0.0007	0.0206
0-600	33.6880	0.0005	0.2899	0.0005	0.0203
0-700	33.6962	0.0004	0.2705	0.0005	0.0189
0-800	33.7002	0.0004	0.2498	0.0005	0.0175
0-900	33.7018	0.0003	0.2369	0.0003	0.0166
0-1000	33.7033	0.0003	0.2280	0.0003	0.0159
50-150	33.640	0.002	0.399	0.002	0.0279
150-250	33.6382	0.001	0.306	0.001	0.0214
250-350	33.6825	0.0009	0.281	0.001	0.0196
450-550	33.6965	0.0008	0.2707	0.0009	0.0189
550-650	33.7038	0.0007	0.2687	0.0008	0.0188
650-750	33.7069	0.0006	0.2261	0.0007	0.0158
750-850	33.7108	0.0005	0.1763	0.0005	0.0123
850-950	33.7194	0.0005	0.1503	0.0004	0.0105
950-1050	33.7245	0.0005	0.1412	0.0004	0.0099

Si vuole utilizzare l'apparato a disposizione per misurare la velocità della luce. Si noti che con tale apparato è possibile misurare solamente differenze di tempi e non tempi assoluti (vista tutta l'elettronica utilizzata). Le misure sono state prese come descritto nell'analisi dati, e a disposizione quindi si hanno:

- la distanza tra i due rivelatori
- i diversi ritardi nella rivelazione nelle due diverse configurazioni
- le dimensioni del piombo contenente la sorgente
- il datasheet dei rivelatori

Si cerchi una formula per ricavare la velocità della luce date queste informazioni. Il ragionamento farà uso di due approssimazioni: la sorgente è puntiforme lungo la direzione di volo dei fotoni rivelati (assumibile in quanto consisteva in un disco posto in maniera perpendicolare a tale direzione) e si può pensare il fotone venga rivelato sempre nella stessa posizione dentro il rivelatore.

Con tali ipotesi, si considerino le misure di lunghezze con la seguente notazione:

- R₁ indica lo spazio medio percorso dai fotoni nel rivelatore prima di interagire con lo stesso
- x_1 indica la distanza tra la placca in piombo più vicina e il rivelatore 1
- δ_1 indica lo spessore della placca in piombo più vicina al rivelatore 1

E analoga notazione per quanto riguarda il rivelatore 2. In poche parole le ipotesi fatte consistono nel fatto che $R_1 = R_2$ e che questi valori si possono prendere come esatti.¹

A questo punto, se la configurazione è la A, si possono descrivere i tempi di percorrenza dei fotoni prima che vengano rivelati come²

$$t_{1A}=\frac{\delta_1+nR_1}{c} \qquad \qquad t_{2A}=\frac{\delta_2+x_2+nR_2}{c}$$

Ove n indica il coefficiente di rigrazione all'interno del rivelatore stesso. Quindi il TAC rivelerà l'intervallo temporale:

$$\delta t_{A} = t_{2A} - t_{1A} = \frac{\delta_{2} + x_{2} + nR_{2} - \delta_{1} - nR_{1}}{c}$$

Analogamente per la configurazione B si trova:

$$t_{1B}=\frac{\delta_1+x_1+nR_1}{c} \qquad \qquad t_{2B}=\frac{\delta_2+nR_2}{c}$$

e l'intervallo rilevato dal TAC sarà:

$$\Delta t_B=t_{2B}-t_{1B}=\frac{\delta_2+nR_2-\delta_1-x_1-nR_1}{c}$$

¹In realtà, questa ipotesi viene verificata nel limite delle infinite misure; dato che il campione preso è sufficientemente grande, si suppone essa sia valida 2.