Outline

Apprentissage Statistique I

Introduction

validatioi Croisée

Critères de performance

Courbe ROC

K-PPV

Conclusio

léférences

Apprentissage supervisé

Master parcours SSD - UE Apprentissage Statistique I

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

Plan

Outline

Apprentissage Statistique I

- 1. Introduction formalisation
- Validation croisée.
- 3. Critères de performance de classification
- 4. Courbe ROC
- 5. Algorithme des k plus proches voisins (k-PPV)

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

References

Introduction

Apprentissage supervisé - principe

Figure: Image tirée de http://www.astroml.org/sklearn_tutorial/general_concepts.html

Outline

Apprentissage Statistique I

Introduction

Validation

Critères de performance

ourbe ROC

/ I I V

Conclusion

Apprentissage supervisé - exemples

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

Conclusion

Références

Catégorisation de textes

Catégorisation d'images

Apprentissage supervisé - exemples

▶ Prédire la fonction d'une protéine à partir de sa structure

► Diagnostic/prognostic à partir de puces à ADN

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

oritéres de performance

Courbe ROC

. . .

On dispose d'un échantillon $\{(x_i, y_i)\}$, i = 1, ..., n, :

- des observations $x_i \in \mathcal{X}$,
- ▶ des réponses associées $y_i \in \mathcal{Y}$.

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

-PPV

Conclusio

On dispose d'un échantillon $\{(x_i, y_i)\}$, i = 1, ..., n, :

- ▶ des observations $x_i \in \mathcal{X}$,
- ▶ des réponses associées $y_i \in \mathcal{Y}$.

Typiquement:

- $\mathcal{X} = \mathbb{R}^p$: on parle de vecteurs de descripteurs (features)
- ▶ Si $\mathcal{Y} = \mathbb{R}$, on parle de régression.
- ▶ Si $\mathcal{Y} = \{1, ..., K\}$, on parle de classification
- ▶ Si $\mathcal{Y} = \{-1, +1\}$, on parle de classification binaire
 - lacktriangle on note parfois également $\mathcal{Y}=\{0,1\}$

Données d'entrée : échantillon $\{(x_i, y_i)\}_{i=1,...,n} \in \mathcal{X} \times \mathcal{Y}$.

Objectif : apprendre une fonction $f:\mathcal{X}\to\mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

Critéres de performance

Courbe ROC

k-PPV

Conclusio

Données d'entrée : échantillon $\{(x_i, y_i)\}_{i=1,...,n} \in \mathcal{X} \times \mathcal{Y}$.

Objectif : apprendre une fonction $f: \mathcal{X} \to \mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Critère : une fonction de perte L (pour "loss") mesurant l'erreur entre y et f(x).

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Criteres de performance

Courbe ROC

-PPV

Conclusio

Données d'entrée : échantillon $\{(x_i, y_i)\}_{i=1,...,n} \in \mathcal{X} \times \mathcal{Y}$.

Objectif : apprendre une fonction $f:\mathcal{X}\to\mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Critère : une fonction de perte L (pour "loss") mesurant l'erreur entre y et f(x).

Typiquement:

▶ l'erreur quadratique pour la régression :

$$L(y, f(x)) = (y - f(x))^{2}$$

▶ le coût 0/1 pour la classification :

$$L(y, f(x)) = \mathbb{1}(y \neq f(x))$$

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

-PPV

Conclusio

Cadre probabiliste : on considère que nos observations (x_i, y_i) sont des variables aléatoires régies par une loi jointe P(X, Y).

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Apprentissage Statistique I

Outline

Introduction

Validatio Croisée

erformance

ourbe ROC

--- v

Conclusion

Références

Cadre probabiliste : on considère que nos observations (x_i, y_i) sont des variables aléatoires régies par une loi jointe P(X, Y).

 \Rightarrow L'objectif de l'apprentissage supervisé est donc de trouver la fonction f minimisant l'espérance de la fonction de perte :

$$R(f) = E_{X,Y}[L(Y, f(X))],$$

à partir d'un échantillon $\{(x_i, y_i)\}$, i = 1, ..., n.

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

ourbe ROC

-PPV

Conclusion

Références

Cadre probabiliste : on considère que nos observations (x_i, y_i) sont des variables aléatoires régies par une loi jointe P(X, Y).

 \Rightarrow L'objectif de l'apprentissage supervisé est donc de trouver la fonction f minimisant l'espérance de la fonction de perte :

$$R(f) = E_{X,Y}[L(Y, f(X))],$$

à partir d'un échantillon $\{(x_i, y_i)\}$, i = 1, ..., n.

R(f) est appelée le risque (ou la perte) de la fonction f.

Apprentissage supervisé - risque empirique

les données d'apprentissage.

A minima, un "bon" prédicteur devrait bien se comporter sur

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

ritéres de erformance

ourbe ROC

-PPV

Conclusion

Apprentissage supervisé - risque empirique

A minima, un "bon" prédicteur devrait bien se comporter sur les données d'apprentissage.

On s'intéresse donc en premier lieu au risque empirique :

$$R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)).$$

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

-PPV

Conclusion

Apprentissage supervisé - risque empirique

Outline
Apprentissage
Statistique I

Introduction

Validatio: Croisée

Critéres de performance

Courbe ROC

(-FFV

Conclusion

Références

A minima, un "bon" prédicteur devrait bien se comporter sur les données d'apprentissage.

On s'intéresse donc en premier lieu au risque empirique :

$$R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)).$$

Mais minimiser le risque empirique n'est pas suffisant, il faut également contrôler la complexité du modèle pour éviter le sur-apprentissage.

Risque empirique et sur-apprentissage

Illustration de sous-apprentissage et sur-apprentissage sur un problème (jouet) de régression :

le risque empirique décroît de gauche à droite

Figure: Image tirée de http:

//www.astroml.org/sklearn_tutorial/practical.html

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Généralisation vs complexité du modèle

Une question clé : trouver le bon niveau de complexité du modèle pour éviter le sous- et le sur-apprentissage.

Figure: Image tirée de Hastie et al. (2001) (Fig.2.11)

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

ourbe ROC

-PPV

Conclusion

Complexité d'un modèle?

Les algorithmes d'apprentissage supervisé mettent en jeu un (voire des) paramètre(s) permettant de construire des modèles plus ou moins "complexes".

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

(-PPV

Conclusion

Complexité d'un modèle?

Les algorithmes d'apprentissage supervisé mettent en jeu un (voire des) paramètre(s) permettant de construire des modèles plus ou moins "complexes".

Par exemple :

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performanc

ourbe RO

k-PPV

Conclusion

Complexité d'un modèle?

Les algorithmes d'apprentissage supervisé mettent en jeu un (voire des) paramètre(s) permettant de construire des modèles plus ou moins "complexes".

Par exemple:

régression polynomiale $f(x) = \beta_0 + \sum_{i=1}^d \beta_i x^i$: degré maximal d du polynôme.

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Criteres de performance

Courbe ROC

k-PPV

Conclusio

Criteres de performance

ourbe ROC

X 1 1 V

Conclusion

Références

Les algorithmes d'apprentissage supervisé mettent en jeu un (voire des) paramètre(s) permettant de construire des modèles plus ou moins "complexes".

Par exemple:

- ▶ régression polynomiale $f(x) = \beta_0 + \sum_{i=1}^d \beta_i x^i$: degré maximal d du polynôme.
- ▶ modèles linéaires multivariés $f(x) = \sum_{i=1}^{p} w_i x_i$, où $x \in \mathbb{R}^p$: nombres de variables à inclure dans le modèle

performance

ourbe ROC

Références

Les algorithmes d'apprentissage supervisé mettent en jeu un (voire des) paramètre(s) permettant de construire des modèles plus ou moins "complexes".

Par exemple :

- ▶ régression polynomiale $f(x) = \beta_0 + \sum_{i=1}^d \beta_i x^i$: degré maximal d du polynôme.
- ▶ modèles linéaires multivariés $f(x) = \sum_{i=1}^{p} w_i x_i$, où $x \in \mathbb{R}^p$: nombres de variables à inclure dans le modèle
- ightharpoonup algorithme des k plus proches voisins : valeur de k

ourbe ROC

X-FFV

Références

Les algorithmes d'apprentissage supervisé mettent en jeu un (voire des) paramètre(s) permettant de construire des modèles plus ou moins "complexes".

Par exemple :

- ▶ régression polynomiale $f(x) = \beta_0 + \sum_{i=1}^d \beta_i x^i$: degré maximal d du polynôme.
- ▶ modèles linéaires multivariés $f(x) = \sum_{i=1}^{p} w_i x_i$, où $x \in \mathbb{R}^p$: nombres de variables à inclure dans le modèle
- \blacktriangleright algorithme des k plus proches voisins : valeur de k
- ► forêts aléatoires : nombre d'arbres mis en jeu

En pratique, il est très difficile de savoir a priori quelles valeurs utiliser pour ces paramètres.

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Références

Estimation de performance et validation croisée

A partir du jeu de données on doit résoudre deux problèmes :

- 1. trouver le bon niveau de complexité du modèle
 - risque empirique et sous/sur-apprentissage
- 2. estimer ses performances de généralisation
 - performances sur de nouvelles données

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

-PPV

Conclusio

A partir du jeu de données on doit résoudre deux problèmes :

- 1. trouver le bon niveau de complexité du modèle
 - ► risque empirique et sous/sur-apprentissage
- 2. estimer ses performances de généralisation
 - performances sur de nouvelles données

Paradigme de l'apprentissage supervisé :

- ▶ données d'apprentissage pour construire le modèle
- données de test pour évaluer les performances

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

-PPV

Conclusio

Apprentissage Statistique I

Outline

Introduction

Validation Croisée

Critères de performance

ourbe R0

1 I V

Conclusion

Références

A partir du jeu de données on doit résoudre deux problèmes :

- 1. trouver le bon niveau de complexité du modèle
 - ► risque empirique et sous/sur-apprentissage
- 2. estimer ses performances de généralisation
 - performances sur de nouvelles données

Paradigme de l'apprentissage supervisé :

- données d'apprentissage pour construire le modèle
- données de test pour évaluer les performances

Attention : données de test uniquement utilisées à la toute fin pour évaluer les performances du modèle final

n'interviennent jamais dans la construction du modèle

Outline

Apprentissage Statistique I

Validation Croisée

Pour optimiser la complexité du modèle :

- besoin d'estimer les performances de généralisation
- mais sans faire appel aux données de test

Pourquoi?

- les données de test ne permettent que d'estimer l'erreur de généralisation
 - ▶ indicateurs de performance + intervalles de confiance
- optimiser le modèle pour maximiser les performances sur CE jeu de test serait une forme de sur-apprentissage!
 - et serait donc optimiste

Contrôler la complexité du modèle

Première solution : découpage train / validation / test :

- 1. train : pour apprendre les différents modèles
- 2. validation : pour les évaluer et retenir le meilleur
- 3. test: pour estimer ses performances
- ⇒ situation optimale "data rich"

Deuxième solution : validation-croisée

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

-PPV

Conclusion

Validation croisée

Si peu de données : délicat de découper train/validation

► forte incertitude sur l'estimation des performances

Principe de la validation croisée :

- ▶ découper le jeu d'apprentissage en K parties les folds
 - les données de test sont toujours de côté
- pour k = 1, ..., K:
 - fold k = données de validation
 - ► autres folds = données d'apprentissage

 \Rightarrow si on prend K = n on parle de leave one out

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

-PPV

Conclusio

Validation croisée

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critéres de performance

ourbe KC

Conclusion

Références

Pseudo-code:

- 1. Définir les K folds de validation croisée
 - en pratique : un vecteur de longueur n avec des valeurs entre 1 et K affectant les n observations aux K folds
- 2. Pour k = 1 à K:
 - 2.1 mettre de côté la k-ième fold
 - 2.2 apprendre le modèle sur les (K-1) folds restantes
 - 2.3 appliquer le modèle sur les données de la k-ième fold
- 3. Evaluer les performances du modèle en comparant les valeurs réelles et prédites.
 - estimation globale ou par fold

Validation croisée et sélection de modèle

La validation croisée est notamment utile pour choisir le meilleur modèle entre plusieurs modèles candidats.

▶ e.g., des modèles + ou - complexes

Pseudo-code:

- 1. Définir un ensemble de modèles candidats
 - régression polynomiale : différents degrés de polynôme
 - ▶ k-PPV : différentes valeurs de k
 - **>** ...
- 2. Pour chaque modèle :
 - 2.1 Appliquer la procédure de validation croisée
 - 2.2 Enregistrer les performances de prédiction
- 3. Choisir le meilleur modèle.

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

-PPV

Conclusion

En pratique : choisir le nombre de folds

Impact du nombre de folds :

- ► K élevé = beaucoup de points pour l'apprentissage
 - construction de meilleurs modèles
- K faible = beaucoup de données pour le test
 - meilleure évaluation des performances

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

-PPV

Conclusio

En pratique : choisir le nombre de folds

Impact du nombre de folds :

- ► K élevé = beaucoup de points pour l'apprentissage
 - construction de meilleurs modèles
- K faible = beaucoup de données pour le test
 - meilleure évaluation des performances

 \Rightarrow la "bonne" valeur de K dépend de la complexité du problème, qu'on ne connaît pas!

▶ ("bon" = permet d'estimer au mieux les performances)

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

C-PPV

Conclusio

En pratique : choisir le nombre de folds

Impact du nombre de folds :

- ► K élevé = beaucoup de points pour l'apprentissage
 - construction de meilleurs modèles
- K faible = beaucoup de données pour le test
 - meilleure évaluation des performances

 \Rightarrow la "bonne" valeur de K dépend de la complexité du problème, qu'on ne connaît pas!

► ("bon" = permet d'estimer au mieux les performances)

En général K = 10 ou K = 5, selon le jeu de données.

- ▶ jeu petit : K elevé pour maintenir un nombre d'observations suffisant pour l'apprentissage
- ▶ jeu conséquent : on peut être tenté de diminuer *K*

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

ourbe ROC

k-PPV

Conclusio

Il est en général recommandé :

- de construire les folds de manière stratifiée, i.e., de respecter les proportions relatives des différentes classes au sein des folds
- d'effectuer plusieurs répétitions de la procédure de validation croisée, pour être robuste aux aléas de la définition des folds
- de considérer plusieurs indicateurs de performance (pour la classification notamment).

Généralisation et jeu de test

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

-PPV

Conclusion

Références

Deux remarques importantes :

- procédure valide si les données d'apprentissage et de test sont indépendantes et identiquement distribuées (iid)
 - attention aux modifications / dérives "cachées"

Généralisation et jeu de test

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

. . . .

D/ 6/

Références

Deux remarques importantes :

- procédure valide si les données d'apprentissage et de test sont indépendantes et identiquement distribuées (iid)
 - attention aux modifications / dérives "cachées"
- ▶ le jeu de test ne permet que d'estimer l'erreur de généralisation
 - ▶ indicateurs de performance + intervalles de confiances

Outline

Apprentissage Statistique I

Introduction

/alidatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Références

Critères de performance de prédiction

Mesure de performance les plus simples (et classiques) :

► régression : erreur quadratique moyenne (MSE) :

$$MSE(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

(à minimiser)

classification : taux de bonne classification (accuracy) :

$$Acc(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(y_i = f(x_i))$$

(à maximiser)

⇒ liées aux deux fonctions de perte évoquées précédemment.

Outline

Apprentissage Statistique I

Introduction

/alidatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

En pratique, la notion de meilleur modèle peut être dictée par l'application

- ▶ classification ⇒ éviter certains types d'erreur
- e.g., contexte médical, ne pas déclarer un malade sain

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

-PPV

onclusion

En pratique, la notion de meilleur modèle peut être dictée par l'application

- ▶ classification ⇒ éviter certains types d'erreur
- e.g., contexte médical, ne pas déclarer un malade sain

Pour la classification binaire, on travaille souvent à partir de la matrice de confusion

▶ table de contingence valeurs réelles / valeurs prédites

		Prédiction	
		+	-
Réalité	+	TP	FN
	-	FP	TN

- ► TP = True Positive
- ► TN = True Negative
- ▶ FP = False Positive
- ► FN = False Negative

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

-PPV

Conclusio

Matrice de confusion et critères de performance :

- ► TP = True Positive
- ► TN = True Negative
- ► FP = False Positive
- FN = False Negative
- ▶ accuracy = (TP + TN)/n
 - ▶ taux de bonne classification global
- ▶ sensibilité (sensitivity) = TP / (TP + FN)
 - taux de bonne classification des instances positives
- ▶ spécificité (specificity) = TN / (TN + FP)
 - taux de bonne classification des instances négatives

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Matrice de confusion et critères de performance :

		Prédiction	
		+	-
Réalité	+	TP	FN
	-	FP	TN

- ▶ TP = True Positive
- ► TN = True Negative
- FP = False Positive
- ► FN = False Negative
- ▶ valeur prédictive positive (VPP) = TP / (TP + FP)
 - taux d'instances positives dans les prédictions positives
- ▶ valeur prédictive négative (VPN) = TN / (TN + FN)
 - taux d'instances négatives dans les prédictions négatives

Indicateurs utilisés en recherche d'information :

- ▶ précision = TP / (TP + FP)
 - proportion de "documents" au sein des résultats
 - taux de vraies positives au sein des prédictions positives.
 - ⇒ équivalent à la Valeur Prédictive Positive
- ▶ rappel (recall) = TP / (TP + FN)
 - proportion de "documents" retrouvés
 - taux de bonne classification des instances positives
 - ⇒ équivalent à la sensibilité

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

(-PPV

Conclusio

Outline

Apprentissage Statistique I

Introduction

'alidation Iroisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Références

Analyse ROC

Motivation

Outline

Apprentissage Statistique I

Introduction

'alidation Iroisée

Critères de performance

Courbe ROC

-PPV

Conclusion

léférences

Taux de bonne classification et classes déséquilibrées :

		Prédiction	
		+	-
Réalité	+	0	1
	-	0	99

⇒ modèle "nul" : prédit la classe majoritaire

 \Rightarrow accuracy = 99%

Motivation

Outline

Apprentissage Statistique I

Introduction

alidation roisée

Critères de performance

Courbe ROC

-PPV

Conclusion

éférences

Références

Taux de bonne classification et classes déséquilibrées :

 $\begin{tabular}{c|c|c} & & Pr\'{e}diction \\ \hline & + & - \\ \hline R\'{e}alit\'{e} & + & 0 & 1 \\ - & 0 & 99 \\ \hline \end{tabular}$

- ⇒ modèle "nul" : prédit la classe majoritaire
- \Rightarrow accuracy = 99%

Dans cet exemple :

- ► sensibilité = 0%
- ► spécificité = 100%
- \Rightarrow meilleur reflet des performances de prédiction...
- ...si prises ensemble (et pas séparément)

Espace ROC

- ► Cadre de la classification binaire
- ▶ Représentation sensibilité = f(1 spécificité)
- ▶ 1 modèle = 1 point dans l'espace ROC
 - ▶ modèle ⇔ matrice de confusion

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Références

⇒ taux de vrai positifs en fonction du taux de faux positifs

Outline

Apprentissage Statistique I

Introductio

/alidation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Outline

Apprentissage Statistique I

Introductio

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Outline

Apprentissage Statistique I

Introduction

alidation roisée

Critères de performance

Courbe ROC

-PPV

Conclusio

Outline

Apprentissage Statistique I

Introduction

alidation roisée

Critères de performance

Courbe ROC

-PPV

Conclusion

Espace ROC - modèle aléatoire

Diagonale de l'espace ROC = modèle aléatoire

 \Rightarrow si sensi = 1 - speci le modèle n'a pas de valeur prédictive

ightharpoonup i.e., si sensi + speci = 1

Outline

Apprentissage Statistique I

Introduction

/alidatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Espace ROC - modèle aléatoire

Diagonale de l'espace ROC = modèle aléatoire

 \Rightarrow si sensi = 1 - speci le modèle n'a pas de valeur prédictive

ightharpoonup i.e., si sensi + speci = 1

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

Critères de performance

Courbe ROC

-PPV

Conclusion

Comment choisir le meilleur modèle?

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

-PPV

Conclusio

léférences

Comment choisir le meilleur modèle?

Première solution : le plus proche du modèle idéal

Outline

Apprentissage Statistique I

Introductio

Validatioi Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Comment choisir le meilleur modèle?

Première solution : le plus proche du modèle idéal

- ⇒ pas toujours le meilleur choix vis à vis de l'application
 - sensi/speci & risques de 1ère/2ème espèces

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Deuxième solution : considérer le compromis sensi/speci réalisable par le modèle

- ▶ l'importance de la sensi et la speci peut être différente
- ► (e.g., dans le domaine médical)

Outline

Apprentissage Statistique I

Introduction

Validatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Deuxième solution : considérer le compromis sensi/speci réalisable par le modèle

- ▶ l'importance de la sensi et la speci peut être différente
- (e.g., dans le domaine médical)

Première approche : perte asymétrique pour l'apprentissage

$$R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))$$

$$R_{emp}^{(w)}(f) = \frac{1}{n_{+}} \sum_{i:y_{i}=+1} C_{+}L(y_{i}, f(x_{i})) + \frac{1}{n_{-}} \sum_{i:y_{i}=-1} C_{-}L(y_{i}, f(x_{i}))$$

- ► C₊ / C₋ : poids donné aux instances positives/négatives
- facteurs multiplicatifs à la fonction de perte L(y, fx(x))
- (e.g., pour perte 0/1, une erreur +1 = $\frac{C_+}{C_-}$ erreur -1)

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

Critères de performance

Courbe ROC

-PPV

Conclusion

Espace ROC et comparaison de modèles Illustration :

- on construit plusieurs modèles avec différents coûts
 - $M': C_- > C_+ \Rightarrow$ gain en spéci, perte en sensi
 - $M'': C_+ > C_- \Rightarrow$ gain en sensi, perte en spéci
 - ► (NB : même modèle, différentes paramétrisations)

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

L'enveloppe convexe permet de balayer toute la gamme :

- ▶ 1 point = 1 combinaison de deux classifieurs
- ightharpoonup pas forcément atteignable pour un choix de C_+/C_-

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Approche par coûts asymétriques :

- + : applicable pour tout classifieur
 - ► (si coûts asymétriques pour l'apprentissage)
- : besoin de construire plusieurs modèles
- : on discrétise le compromis sensi/speci
 - (enveloppe convexe)

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

-PPV

Canalusia

- : besoin de construire plusieurs modèles

- : on discrétise le compromis sensi/speci

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

-PPV

Conclusi

éférences

Approche alternative = courbe ROC

(enveloppe convexe)

Approche par coûts asymétriques :

+ : applicable pour tout classifieur

- ▶ + : basé sur 1 seul modèle
- + : balaye l'ensemble des compromis sensi/speci

(si coûts asymétriques pour l'apprentissage)

- : nécessite un classifieur fournissant un score
 - e.g., une probabilité P(y = +1|x) voir cours suivants

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

Critères de performance

Courbe ROC

-PPV

Conclusion

Références

On dispose d'un classifieur fournissant un score f(x)

- e.g., f(x) = P(y = +1|x)
- \Rightarrow convention : score élevé = classe positive

- On dispose d'un classifieur fournissant un score f(x)
 - e.g., f(x) = P(y = +1|x)
- ⇒ convention : score élevé = classe positive
- Critère de décision = seuil sur le score
 - e.g., $\hat{y}(x) = +1$ si P(y = +1|x) >seuil

On dispose d'un classifieur fournissant un score f(x)

• e.g.,
$$f(x) = P(y = +1|x)$$

Critère de décision = seuil sur le score

• e.g.,
$$\hat{y}(x) = +1 \text{ si } P(y = +1|x) > \text{seuil}$$

Sensi/speci "nominales" basées sur un seuil par défaut

• e.g.,
$$\hat{y}(x) = +1$$
 si $P(y = +1|x) > 0.5$

Principe de la courbe ROC : faire varier le seuil par défaut pour obtenir différents compromis sensi/speci

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

> Critères de erformance

Courbe ROC

-PPV

Conclusion

Principe de la courbe ROC : faire varier le seuil par défaut pour obtenir différents compromis sensi/speci

Exemple: réduction du seuil:

$$\hat{y}(x) = +1 \text{ si } P(y = +1|x) > 0.3$$

⇒ + de prédictions positives : ne peut qu'améliorer la sensi

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Principe de la courbe ROC : faire varier le seuil par défaut pour obtenir différents compromis sensi/speci

Exemple : réduction du seuil :

$$\hat{y}(x) = +1 \text{ si } P(y = +1|x) > 0.3$$

 \Rightarrow + de prédictions positives : ne peut qu'améliorer la sensi

Procédure :

- 1. on part de la valeur maximum du score
 - ▶ toutes prédictions négatives : sensi = 0 / speci = 1
- 2. on réduit graduellement le score
- 3. on termine à sa valeur minimum
 - ▶ toutes prédictions positives : sensi = 1 / speci = 0

Outline

Apprentissage Statistique I

Introduction

/alidatior Croisée

Critères de performance

Courbe ROC

-PPV

Conclusion

▶ t0 : on trie les labels y_i en fonction du score $f(x_i)$

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

- ▶ t0 : on choisit un seuil supérieur à $\max_i f(x_i)$
 - ▶ tout le monde est classifié comme négatif
 - ightharpoonup sensi = 0; speci = 1

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validatio: Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1: faux positif

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

on diminue le seuil case par case et on fait un pas :

- vers le haut si y = +1 : vrai positif
- ▶ vers la droite si y = -1 : faux positif

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

- ightharpoonup on atteint min; $f(x_i)$
 - ▶ tout le monde est classifié comme positif
 - ightharpoonup sensi = 1; speci = 0

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Courbe ROC - remarque

Modèle aléatoire = séquence de +1/-1 dans les labels triés

- pas de structure dans les scores
- on se déplace sur la diagonale

Outline

Apprentissage Statistique I

Introductio

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Courbe ROC & comparaison de modèles

Outline

Apprentissage Statistique I

Introduction

Validation Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

- comparaison de performances aux différents niveaux de sensi/speci : on s'affranchit du choix du seuil
- modèles bleu et vert : optimaux à différents niveaux
- ► modèle rouge : jamais optimal

Aire sous la courbe ROC (AUC)

Critère AUC: Area Under the (ROC) Curve

une manière de résumer une courbe ROC

Interprétation :

$$AUC = P(f(x_1) > f(x_2) \mid y_1 = +1, y_2 = -1)$$

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

Courbe ROC

-PPV

Conclusion

Courbe ROC - mise en oeuvre

Différentes implémentations en R : exemple du package ROCR

Outline

Apprentissage Statistique I

Introduction

/alidatior Croisée

Critères de performance

Courbe ROC

-PPV

Conclusio

Pré-requis :

- 1. vecteur de labels :
 - $\mathbf{v} = c(1,1,0,1,0,1,1,0,0,1,0,0)$
- 2. vecteur de scores associés :
 - \triangleright score = c(1,1,1,0.9,0.8,0.7,0.5,0.5,0.4,0.3,0.2,0.1)

Différentes implémentations en R : exemple du package ROCR

vecteur de scores associés :

Pré-requis :

1. vecteur de labels :

1. calculer un objet de type prediction :

 $\mathbf{v} = c(1,1,0,1,0,1,1,0,0,1,0,0)$

pred = prediction(score, y, label.ordering = c(0,1))

 \triangleright score = c(1.1.1.0.9.0.8.0.7.0.5.0.5.0.4.0.3.0.2.0.1)

Différentes implémentations en R : exemple du package ROCR

- 2. calculer un objet de type performance :
 - perf.roc = performance(pred, measure = "tpr", x.measure = "fpr")
- afficher la courbe ROC
 - plot(perf.roc, main = "ROC curve")

Courbe ROC - mise en oeuvre

Outline

Apprentissage Statistique I

Introduction

Validatioi Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Courbe ROC

Remarques:

- 1. fonction prediction:
 - rappel : score élevé = classe positive
 - ▶ label.ordering = identifiant des classes -1 et +1
 - facultatif
- 2. fonction performance:
 - permet de calculer de nombreux indicateurs
 - courbe ROC ·
 - y = sensi = taux de TP ⇒ measure = "tpr"
 - x = 1-speci = taux de FP \Rightarrow x.measure = "fpr"
 - AUC :
 - perf.auc = performance(pred, measure = "auc")
 - auc = perf.auc@y.values[[1]]
- 3. fonction plot:
 - option colorize = TRUE : affiche les valeurs de seuils sur la courbe ROC

Courbe ROC - mise en oeuvre

Option colorize = TRUE :

Outline

Apprentissage Statistique I

Introduction

/alidation Proisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Outline

Apprentissage Statistique I

Introduction

/alidation Croisée

Critères de performance

Courbe ROC

$k\text{-}\mathsf{PPV}$

Conclusio

Références

Algorithme des k plus proches voisins (k-PPV)

Algorithme des k-PPV

Algorithme des k-plus proches voisins :

- 1. trouver les k observations x_i les plus proches de l'observation x' à classifier
- 2. définir f(x') en fonction des réponses y_i des k-PPV
 - régression : valeur moyenne
 - classification : vote majoritaire

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Criteres de performance

Courbe ROC

k-PPV

Conclusion

Algorithme des k-PPV

Algorithme des k-plus proches voisins :

- 1. trouver les k observations x_i les plus proches de l'observation x' à classifier
- 2. définir f(x') en fonction des réponses y_i des k-PPV
 - régression : valeur moyenne
 - classification : vote majoritaire

Approche de mémorisation

- ▶ + : très simple à mettre en oeuvre
- ► : passage à l'échelle

Outline

Apprentissage Statistique I

Introduction

/alidatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

Algorithme des k-PPV

Algorithme des k-plus proches voisins :

- 1. trouver les k observations x_i les plus proches de l'observation x' à classifier
- 2. définir f(x') en fonction des réponses y_i des k-PPV
 - régression : valeur moyenne
 - classification : vote majoritaire

Approche de mémorisation

- ▶ + : très simple à mettre en oeuvre
- ► : passage à l'échelle

Questions ouvertes:

- ► choix du critère de distance
- ► choix de la valeur de k

Outline

Apprentissage Statistique I

Introduction

/alidatior Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusio

oerformance

Courbe ROC

k-PPV

Conclusion

Références

Illustration tirée de Hastie et al. (2001) :

▶ à gauche : k = 15; à droite : k = 1.

Des petites valeurs de k conduisent à des modèles plus locaux et donc (en général) plus complexes.

Algorithme des k-PPV - mise en oeuvre

Outline

Apprentissage Statistique I

k-PPV

Fonction knn du package class: knn(X, X.test, y, k)

- X,X.test : données d'apprentissage et de test
 - matrices de descripteurs
 - ▶ NB : uniquement pour la distance Euclidienne
- y : vecteur des catégories des données d'apprentissage
- k : nombre de voisins à considérer
- ⇒ renvoie un vecteur avec les catégories prédites
 - ▶ si option prob=TRUE : proportion des votes de la classe prédite (~ mesure de confiance dans la prédiction)

Outline

Apprentissage Statistique I

Introduction

'alidation Iroisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Références

Conclusion

Conclusion (1/2)

Validation croisée

Apprentissage supervisé

Outline

Apprentissage Statistique I

Conclusion

Critères de performance de prédiction

erreur quadratique vs matrice de confusion

risque empirique, généralisation et complexité

estimer l'erreur de généralisation par ré-échantillonnage

compromis sensibilité / spécificité

Conclusion (2/2)

Courbe ROC

- s'affranchir du seuil de décision
- critère AUC

Algorithme des k-PPV

- approche par mémorisation
- ▶ le BA-BA de la classification

TP: courbe ROC, k-PPV.

Outline

Apprentissage Statistique I

Introduction

Validatioi Croisée

Critères de performance

Courbe ROC

k-PPV

Conclusion

Références

Outline

Apprentissage Statistique I

Introduction

Validatio Croisée

Critères de performance

ourbe ROC

-PPV

Conclusion

Références

T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. Springer, 2001.