Makine Öğrenmesi

Doğrusal Regresyon İlhan AYDIN

- Birçok boyutlu lineer regresyon
- Bileşik özellikler, lineer olmayan ilişki modelleme
- Model oluşturma
- Ek: lineer regresyon normal denklemleri

Ders plani

- Regresyon probleminde, olayın modeli sürekli bir modeldir, yani
- Modellenecek değişkenler sürekli şekilde değişmesi gerekiyor
- Makine öğrenme problemi, bu modellenecek değişkenlerin değişimi için karar verme için uygun modeli oluşturmak

Regresyon problemi

- Verilen
 - Veri X={x1,....xn} burada xi dboyutlu uzaydadır.
 - Verilee karşılık gelecek etiketler y={y1,...,yn}
 ve yi değerleri reel sayıdır.

Regresyon problemi

- 67 örnek eğitim / 30 teste bölünmüş toplam 97 örnek
- Sekiz tahmin edici (özellikler):
- 🔸 6 sürekli (4 log dönüşümü), 1 binary, 1 sıralı
- Sürekli sonuç değişkeni:
 - lpsa: log(prostat spesifik anIgen seviyesi)

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
lweight	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
gleason	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Prostat Kanser Veri Kümesi

Hipotez:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d = \sum_{j=0}^d \theta_j x_j$$

 Karesi alınan hataların toplamını en aza indirerek modeli sığdır

En küçük kareler Uydurma çizgi, tahmin edici olarak kullanılır

Doğrusal Regresyon

Maliyet fonksiyonu:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

 $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$ değerini bul

En Küçük Kareler Doğrusal Regresyon

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

J 'yi çözmek için elimizde x giriş özellikleri mevcut. O zaman aşağıdaki iki parametreyi ayarlamak gerekir.

$$m{ heta} = [heta_0, heta_1]$$

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

J'yi çözmek için elimizde x giriş özellikleri mevcut. O zaman aşağıdaki iki parametreyi ayarlamak gerekir.

$$oldsymbol{ heta} = [heta_0, heta_1]$$

Maliyet Fonksiyonunun Arkasındaki Fikir

- ullet değeri için başlangıç değeri seç
- Minimuma ulaşıncaya kadar devam et
 - J (θ) 'yı azaltacak θ için yeni değerleri seç

Temel Arama Prosedürü

- ullet heta değeri için başlangıç değeri seç
- Minimuma ulaşıncaya kadar devam et
 - J (θ) 'yı azaltacak θ için yeni değerleri seç

En küçük kareler amaç fonksiyonu dışbükey (içbükey) olduğundan, yerel minimumlar hakkında endişelenmemize gerek yoktur.

Temel Arama Prosedürü

- ullet heta değerlerini başlat
- Yakınsama sağlanana kadar

•
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 j=0,1,...,d için anlık güncelleme

Öğrenme oranı α=0.05 gibi küçük bir değer seçilir

- ullet heta değerlerini başlat
- Yakınsama sağlanana kadar

•
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 j=0,1,...,d için anlık güncelleme

Lineer regression için:
$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n (h_{\theta} (x^{(i)} - y^{(i)})^2)$$

- θ değerlerini başlat
- Yakınsama sağlanana kadar

•
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 j=0,1,...,d için anlık güncelleme

Lineer regression için:
$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta} (x^{(i)} - y^{(i)})^{2})$$
$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} (\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)} - y^{(i)})^{2}$$

- θ değerlerini başlat
- Yakınsama sağlanana kadar

•
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 j=0,1,...,d için anlık güncelleme

Lineer regresyon için

$$\begin{aligned} \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) &= \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 \\ &= \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \times \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \\ &= \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) x_j^{(i)} \end{aligned}$$

- Dereceli azaltma (gradient descent) metodu, çok güclü ve çok genel optimizasyon metodudur
 - Bir (θ_0, θ_1) noktasında başlıyoruz
 - Devamlı, J'nin değerlerini azaltmak için (θ_0, θ_1) uzayda küçük adımlarını yapıyoruz
 - J'nin değerleri sürekli düşmek zorunda
 - Çünkü $J \ge 0$, bu süreç sonunda bir noktaya gelmek zorundadır (sonsuz devam edemez yanı)

Sadece lokal olarak bir minimumdur: başka noktadan başlayınca başka noktaya gelmek mümkündür

Genellikle, bu metot birkaç rastgele başlangıç nokta ile çalıştırılmalı, ve en iyi minimum seçilmeli

- Ortadaki adımları, J değerini en çok azaltması isteriz
- Bunun için, adımları "gradient" (yani eğim) yönünde yapılmaktadır
- Dereceli azaltma algoritması:
 - Yakınsamaya kadar tekrarlama {

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$
Dereceli azaltma metodu

• Yakınsamaya kadar tekrarlayın { $\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$ j = 1,2 için;

Bu formülde

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

Değer güncelleştirilmesi

Maliyet fonksiyonununtürevleri

Özel bir parametre (öğrenme hız parametresi)

• Yakınsamaya kadar tekrarlayın { $\theta_{j} := \theta_{j} - \alpha \frac{1}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$ j = 1,2 için;

Önemli Not:

Türevler, şu andaki (θ_0, θ_1) noktası için hepsi döngüden önce hesaplanmalı. Sonra, θ_0 ve θ_1 değerleri güncelleştirilmesi gerekiyor.

 θ_0, θ_1' nin güncelleştirilmesi türevler hesaplanmasıyla aynı zamanda yapılmaz ! yani, (θ_0, θ_1) parça-parça şekilde güncelleştirilmez!

Yakınsamaya kadar tekrarlayın {

$$j=1,2 \text{ igin;}$$

$$\theta_{j}:=\theta_{j}-\alpha\frac{\partial}{\partial\theta_{j}}J(\theta_{0},\theta_{1})$$

/akınsamaya kadar tekrarlayın {

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

Yakınsamaya kadar tekrarlayın {

Yakınsamaya kadar tekrarlayın {

$$\theta_{0} := \theta_{0} - \alpha \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1})$$

$$\theta_{1} := \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1})$$
Yanlış

İlk adımda değişmiş oldu !!

Yakınsamaya kadar tekrarlayın {

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

j=1,2 için;

Doğru

Yakınsamaya kadar tekrarlayın { Yakınsamaya kadar tekrarlayı

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$temp_{0} := \theta_{0} - \alpha \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1})$$

$$temp_{1} := \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1})$$

$$\theta_{0} := temp_{0}$$

$$\theta_{1} := temp_{0}$$

Lineer regresyonu

$$(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2})$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (\overline{\theta}_0 + \overline{\theta}_1 x^i - y^i)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m x^i \cdot (\overline{\theta}_o + \overline{\theta}_1 x^i - y^i)$$

- Alpha seçme (biraz dikkat edilmeli)
 - Küçük alpha yavaş yakınsama
 - Büyük alpha –ilerli geri yakınsama

- Alpha seçme
 - Küçük alpha yavaş yakınsama
 - Büyük alpha –ilerli geri yakınsama

yavaş!

- Alpha seçme
 - Küçük alpha yavaş yakınsama
 - Büyük alpha –ilerli geri yakınsama

- Alpha seçme
 - Küçük alpha yavaş yakınsama
 - Büyük alpha –ilerli geri yakınsama
- İyi bir alpha seçmek için, birkaç alpha değerini denemek lazım
- Bu değerler için, dereceli azaltma metodunu çalıştırıp performansını incelemek lazım

Tipik denenecek alpha değerleri:

```
alpha=0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10,... ↑
yavaşyavaş iyi ilerli geri ilerli geri hkt
```


Cibbin) Model polinomu ho(x)= 0++01x,

Başlangın asamasında 0.=0 41=0 O kullanılarık X giriçlerine Karşıkt hipoter tahmirlerini heraplayalını:

 $\frac{x}{0}$ $\frac{h_0(x)}{0}$ $\frac{y}{0}$ $\frac{h_0(x)}{1}$ $\frac{h_0(x)}{0}$ $\frac{y}{0}$ $\frac{h_0(x)}{1}$ $\frac{h_$

Ortelana maliyeti hesepleyalın:
$$J(\theta) = \frac{1}{2} \cdot \frac{2}{12} \left(h_{\theta}(x_i) - y_i^2 \right)$$

 $J(\theta) = \frac{1}{2.3} \cdot \frac{3}{121} \left(h_{\theta}(x_i) - y_i^2 \right) = \frac{1}{6} \cdot \left((-1)^2 + (-1)^2 + (-3)^2 \right) = \frac{14}{6}$

Ortelana maliyeti hesepleyelim:
$$J(\theta) = \frac{1}{2n} \cdot \frac{2}{1-1} \left(h_{\theta}(x_1) - y_1^2 \right)^2 = \frac{1}{6} \left((-1)^2 + (-1)^2 + (-3)^2 \right) = \frac{1}{6}$$

$$J(\theta) = \frac{1}{2 \cdot 3} \cdot \frac{2}{1-1} \left(h_{\theta}(x_1) - y_1^2 \right)^2 = \frac{1}{6} \cdot \left((-1)^2 + (-1)^2 + (-3)^2 \right) = \frac{1}{6}$$

Sindi ortoloma hetern herbir paranetraje türevini alarah parametreleri mysun yönde süncelleyeli

$$\Theta_{3} = \Theta_{5} - \alpha \cdot \frac{\partial J(\Theta)}{\partial \Theta_{5}}$$

$$\frac{\partial J(\Theta)}{\partial \Theta_{0}} = \frac{1}{m} \sum_{j=1}^{m} \left(\Theta_{0} + \Theta_{1} \times_{i} - Y_{j}\right), 1 = \frac{1}{3} \left[(-1) + (-2) + (-3)\right] = -2$$

$$\frac{\partial J(\Theta)}{\partial \Theta_{0}} = \frac{1}{m} \sum_{j=1}^{m} \left(\Theta_{0} + \Theta_{1} \times_{i} - Y_{j}\right) \cdot \times_{i} = \frac{1}{3} \left[(-1) \cdot 0 + (-1) \cdot 1 + (-3) \cdot 2\right] = \frac{3}{3} = -2 \cdot 6$$

$$\frac{\partial J(\Theta)}{\partial \Theta_{1}} = \frac{1}{m} \sum_{i=1}^{m} \left(\Theta_{0} + \Theta_{1} \times_{i} - Y_{j}\right) \cdot \times_{i} = \frac{1}{3} \left[(-1) \cdot 0 + (-1) \cdot 1 + (-3) \cdot 2\right] = \frac{3}{3} = -2 \cdot 6$$

$$\alpha = 0.1, \quad \Theta_{0} = 0 - (0.1) \cdot (-2.4) = 0.26$$

$$\Theta_{1} = 0 - (0.1) \cdot (-2.4) = 0.26$$