ME3130	DEPARTAMENTO DE INGENIERÍA MECÁNICA
MECÁNICA ESTÁTICA	UNIVERSIDAD DE CHILE
Rev: 0 (26/11/2023)	Profesor: A. Ortiz Bernardin

UNIDAD: MÉTODO DEL TRABAJO VIRTUAL

PROBLEMA 1

La barra mostrada en la Fig. 1.1, cuya masa es de 100 kg, está apoyada sobre superficies lisas en *A* y *B*. Desarrollar lo siguiente:

- 1. Mediante equilibrio de fuerzas, determinar F, y las reacciones A_x y B_y en A y B, respectivamente.
- 2. Mediante el método del trabajo virtual, determinar el valor de *F* que mantiene a la barra en equilibrio.
- 3. Mediante el método del trabajo virtual, determinar la reacción B_{ν} .
- 4. Mediante el método del trabajo virtual, determinar la reacción A_x .

Fig. 1.1: Barra apoyada sobre superficies lisas.

SOLUCIÓN

1. Mediante equilibrio de fuerzas, determinar F, y las reacciones A_x y B_y en A y B, respectivamente.

La Fig. 1.2 muestra el diagrama de cuerpo libre de la barra.

Fig. 1.2: Diagrama de cuerpo libre de la barra.

El equilibrio de fuerzas es el siguiente:

```
\sum F_x = 0: 	 F - A_x = 0
\sum F_y = 0: 	 B_y - W = 0
\sum M_B = 0: 	 A_x \sqrt{(3.6 + 3.6)^2 - (2 + 2)^2} - W (3.6 \cos \theta) = 0, 	 \cos \theta = \frac{2}{3.6}.
```

Resolvemos estas ecuaciones:

```
M = 100; % masa de la barra
a = 2; % distancia horizontal entre B y G, y G y A
b = 3.6; % distancia total entre B y G, y G y A
W = M*9.81; % peso de la barra
cost = a/b;
Ax = W*b*cost/sqrt((b+b)^2-(a+a)^2);
F = Ax;
By = W;
```

Resultados:

```
fprintf('Ax = %.2f N\n',Ax);

Ax = 327.73 N

fprintf('By = %.2f N\n',By);

By = 981.00 N

fprintf('F = %.2f N\n',F);
```

```
F = 327.73 N
```

2. Mediante el método del trabajo virtual, determinar el valor de *F* que mantiene a la barra en equilibrio.

Para determinar la fuerza F se impone un desplazamiento virtual horizontal en B, el que puede ser en el sentido de F o en sentido opuesto. Se elige imponerlo en el sentido opuesto. Esto produce el movimiento virtual mostrado en la Fig. 1.3.

Fig. 1.3: Desplazamientos virtuales impuestos en la barra.

Solo producen trabajo virtual las fuerzas que están en la dirección de los desplazamientos virtuales.

Obs.: En este ejemplo, manejaremos el signo del trabajo virtual de manera directa utilizando el siguiente criterio: si la fuerza sigue el sentido del desplazamiento virtual, su trabajo virtual será positivo; en caso contrario, será negativo. En 2D, esta convención es fácil de seguir. Sin embargo, en 3D no lo es. En 3D, es más sencillo dejar que el producto punto defina el signo directamente: $\delta U = \mathbf{F} \cdot \delta \mathbf{r} \ (= \|F\| \|\delta r\| \cos \alpha)$.

Solo las fuerzas F y W producen trabajo virtual. Igualando a cero el trabajo virtual total, se obtiene

$$\delta U = -F \, \delta x_B + W \, \delta y_G = 0.$$

Utilizando relaciones geométricas, se obtienen los siguientes desplazamientos virtuales:

$$x_B = (3.6 + 3.6)\cos\theta \Rightarrow \delta x_B = -(3.6 + 3.6)\sin\theta \,\delta\theta$$
$$y_G = 3.6\sin\theta \Rightarrow \delta y_G = 3.6\cos\theta \,\delta\theta.$$

Dado que los signos de los trabajos virtuales ya fueron considerados en δU , se consideran solo los valores absolutos de los desplazamientos virtuales calculados. Por lo tanto,

$$\delta U = -F (3.6 + 3.6) \sin \theta \, \delta \theta + W \, 3.6 \cos \theta \, \delta \theta = 0,$$

y dado que $\delta\theta \neq 0$, se obtiene

$$-F(3.6+3.6)\sin\theta + W 3.6\cos\theta = 0$$
, $\cos\theta = \frac{2}{3.6}$, $\sin\theta = \frac{\sqrt{3.6^2 - 2^2}}{3.6}$.

Resolvemos esta ecuación:

```
sint = sqrt(b^2-a^2)/b;
F = W*b*cost/((b+b)*sint);
fprintf('F = %.2f N\n',F);
```

F = 327.73 N

3. Mediante el método del trabajo virtual, determinar la reacción B_{ν} .

Para determinar B_y se imponen los desplazamientos virtuales que se muestran en la Fig. 1.4.

Fig. 1.4: Desplazamientos virtuales impuestos en la barra.

En este caso, solo producen trabajo virtual las fuerzas B_y y W. Igualando a cero el trabajo virtual total, se obtiene

$$\delta U = B_y \, \delta y - W \, \delta y = 0.$$

Dado que $\delta y \neq 0$, se obtiene

$$B_y - W = 0.$$

Resolviendo B_y , se obtiene

```
By = W;
fprintf('By = %.2f N\n',By);
```

By = 981.00 N

4. Mediante el método del trabajo virtual, determinar la reacción A_x .

Para determinar A_x se imponen los desplazamientos virtuales que se muestran en la Fig. 1.5.

Fig. 1.5: Desplazamientos virtuales impuestos en la barra.

En este caso, solo producen trabajo virtual las fuerzas A_x y F. Igualando a cero el trabajo virtual total, se obtiene

$$\delta U = A_x \, \delta x - F \, \delta x = 0.$$

Dado que $\delta x \neq 0$, se obtiene

$$A_x - F = 0.$$

Resolviendo A_x (y usando el valor de F ya encontrado mediante el método del trabajo virtual), se obtiene

```
Ax = F;
fprintf('Ax = %.2f N\n',Ax);
```

Ax = 327.73 N

OBTENER ARCHIVO MATLAB LIVE: U6_problema1.mlx