Exercise 2

- 2. To show Q^P is a lattice, we have to show that for any $f,g \in Q^P$, we have $\sup\{f,g\},\inf\{f,g\}\in Q^P$. For any f,g let h be a mapping from P to Q, such that for any $a\in P$, $h(a)=\sup\{f(a),g(a)\}$, since Q is a lattice this element exists. To see that h is order-preserving, assume that $a,b\in P$ and $a\leq b$, then $f(a)\leq f(b)$ and $g(a)\leq g(b)$. Then it follows that $f(a)\leq \sup\{f(b),g(b)\}$ and $g(a)\leq \sup\{f(b),g(b)\}$, and finally $\sup\{f(a),g(b)\}\leq \sup\{f(b),g(b)\}$, which means $h(a)\leq h(b)$. Therefore $h\in Q^P$. By definition we have that h is an upper bound for $\{f,g\}$. To show that it is the least upper bound, consider other h' which is an upper bound for it. Then by definition we have $f(a)\leq h'(a)$ and $g(a)\leq h'(a)$, but $h(a)=\sup\{f(a),g(a)\}$, thus $h(a)\leq h'(a)$, which means $h\leq h'$.
- **4.** Let C be the set of lower segments of P, clearly \subseteq makes a partial order set on C. Consider some $p \in P$, if $x \in X \cap Y$ and $p \leq x$, since X and Y are lower segments, we get $p \in X$ and $p \in Y$, thus $p \in X \cap Y$. Therefore $X \cap Y \in C$. Consider some $p \in P$, if $x \in X \cup Y$ and $p \leq x$, then either $x \in X$ or $x \in Y$. Since X and Y are lower segments, we get $p \in X$ or $p \in Y$, thus $p \in X \cup Y$. Therefore $X \cup Y \in C$. It is straightforward to see that $X \cup Y$ and $X \cap Y$ are supremum and infimum, respectively. Suppose that P has the least element u, the argument above can be repeated, except for the case that X and Y are disjoint lower segments, but this case can be ruled out because for every $Z \in L(P)$ we have $u \in Z$.
- 5. Let $I, J \in I(L)$, we show that $sup\{I, J\}, inf\{I, J\} \in I(L)$. It is trivial to check that $I \cap J$ is an ideal, thus $I \cap J = inf\{I, J\} \in I(L)$. Let S_i be an ideal such that $I \cup J \subseteq S_i$, and define $sup\{I, J\} = \bigcap S_i$ for all such S_i . Now for any ideal X such that $I \cup J \subseteq X$, we have $\bigcap S_i \subseteq X$, therefore it is the least upper bound for $\{I, J\}$. We just need to show that such S_i exists: Let $P = I \cup J \cup \{a \lor b : a, b \in I \cup J\}$ and let $S = P \cup \{a : a \in L \text{ and } a \leq p \text{ for some } p \in P\}$. Clearly $I, J \subseteq S$, we show that P is closed under V: let $A, b \in S$, if both A, b are in A or A we are done. If A if A and A if A i

downward, we just need to show that it is closed under \vee : Let $a, b \in S$, we know that $a \leq c$ for some $c \in P$ and $b \leq d$ for some $d \in P$, which means $d \vee c$ is an upper bound for $\{a, b\}$, therefore $a \vee b \leq d \vee c$. But we showed P is closed under \vee , thus $d \vee c \in P$, since S is closed downward for P, we get $a \vee b \in S$.

6. We denote principal ideal generated from a by $p(a) = \{x \in L : x \leq a\}$. Let PI(L) be the set of all principal ideals of L, since I(L) is a lattice and $PI(L) \subseteq I(L)$, we need to show PI(L) is closed under sup and inf: Let $X, Y \in PI(L)$, then X = p(a) and Y = p(b) for some a, b, we show that $sup\{X,Y\} = p(a \lor b)$: let $x \in sup\{X,Y\}$, then $x \leq a_X \lor b_Y$, for some $a_X \in X$ and $b_Y \in Y$, but $a_X \leq a$ and $b_Y \leq b$, thus $a_X \leq a \lor b$ and $b_Y \leq a \lor b$, therefore $x \leq a_X \lor b_Y \leq a \lor b$ and $sup\{X,Y\} = p(a \lor b) \in PI(L)$. Now let $x \in inf\{X,Y\} = X \cap Y$, then $x \leq a$ and $x \leq b$, therefore $x \leq a \land b$, so $inf\{X,Y\} = p(a \land b)$. We proved that PI(L) is a sublattice of I(L). To show that it is isomorphic to L, consider the mapping $f: L \to PL(L)$ such that f(a) = p(a). f is order-preserving, since $a \leq b$ implies $p(a) \subseteq p(b)$, so is f^{-1} ; $p(a) \subseteq p(b)$ implies $a \leq b$.

Exercise 3

- **1.** Su(X) is a partial order by inclusion. Exercise 1.1 implies it is a lattice by operations \cup and \cap . The distributivity follows from the simple set-theoretical fact that $a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$ and $a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$.
- **2.** Exercise 2.5 implies that L and PI(L) are isomorphic, assume that f is the isomorphism, then $f(a \lor (b \land c)) = f(a) \lor [f(b) \land f(c)]$ and $f((a \lor b) \land (a \lor c)) = [f(a) \lor f(b)] \land [f(a) \lor f(c)]$, but since L is distributive, $a \lor (b \land c) = (a \lor b) \land (a \lor c)$, therefore $f(a) \lor [f(b) \land f(c)] = [f(a) \lor f(b)] \land [f(a) \lor f(c)]$.

Exercise 4

 \subseteq forms a partial order relation on any set. Now just notice that the union and intersection of arbitrary set of binary relations is still a binary relation.