Exercise 9.3

Change the Cartesian integral into an equivalent polar integral and evaluate the polar integral.

Solution: Given integral is,

$$I = \int_{-a}^{a} \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} dy dx$$

Here, the region of integration is bounded by $y = \sqrt{a^2 - x^2}$ to $y = -\sqrt{a^2 - x^2}$, x = -a to x = a. That is the region of integration is the circle $x^2 + y^2 = a^2$ as shown in figure. For the radical strip in the region, r varies from r = 0 to r = a. In order to cover the region such type of radical strip varies from $\theta = 0$ to $\theta = 2\pi$.

Therefore, the region of integration is, $0 \le r \le a$ and $0 \le \theta \le 2\pi$.

Then the above integral change to

$$I = \int_{0}^{2\pi} \int_{0}^{a} r \, dr \, d\theta = \int_{0}^{2\pi} \left[\frac{r^2}{2} \right]_{0}^{a} d\theta$$

$$= \int_{0}^{2\pi} \frac{a^2}{2} d\theta$$

$$= \frac{a^2}{2} \left[\theta\right]_{0}^{2\pi} = \frac{a^2}{2} \times 2\pi = a^2\pi$$

Thus $I = a^2 \pi$.

alution: Given integral is,

$$I = \int_{0}^{a/\sqrt{2}} \int_{y}^{\sqrt{a^2 - y^2}} x \, dx \, dy$$

Here, the variables x varies from x = y to $x = \sqrt{a^2 - y^2}$ and the variable y varies from y = 0 to $y = \frac{a}{\sqrt{2}}$.

Thus, the region of integration is from the line x = y to the circle $x^2 + y^2 = a^2$. Also, the region moves from origin to the length $\frac{a}{\sqrt{2}}$ toward y-axis.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$. Clearly the circle has radius r = 0 to r = a. So, the region of integration is, $0 \le r \le a$.

And, to find θ , the region is bounded by the line x = y. So, $\theta = \frac{\pi}{4}$.

Thus the angular form moves from $\theta = 0$ to $\theta = \frac{\pi}{4}$.

Also, $dx dy = r dr d\theta$.

Then the above integral changes to

$$I = \int_{0}^{\pi/4} \int_{0}^{\pi} r \cos\theta \cdot r dr \cdot d\theta$$

$$= \int_{0}^{\pi/4} \int_{0}^{\pi} r^{2} \cos\theta \cdot dr \cdot d\theta$$

$$= \int_{0}^{\pi/4} \int_{0}^{\pi/4} \cos\theta \left[\frac{r^{3}}{3}\right]_{0}^{a} d\theta = \int_{0}^{\pi/4} \frac{a^{3}}{3} \cos\theta \cdot d\theta = \frac{a^{3}}{3} \left[\sin\theta\right]_{0}^{\pi/4} = \frac{a^{3}}{3\sqrt{2}}$$

Thus,
$$1 = \frac{a^3}{2 \sqrt{5}} = \frac{a^3 \sqrt{2}}{5}$$

Solution: Given integral is,

$$1 = \int_{0}^{2} \int_{0}^{x} y \, dy \, dx$$

Here, the variables x varies from x = 0 to x = 2 and the variable y varies from y = 0= 0 to y = x.

Thus, in the region of integrating limits for y are y = 0 to the line y = x. Also the region moves from origin to the length 2 units toward x-axis.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$.

Then, to find r,

$$x = 0,$$
 $x = 2$
 $x \cos \theta = 0,$ $x \cos \theta = 2$

$$r\cos\theta = 0$$
, $r\cos\theta = 0$

$$r = 0$$
,

$$r = 2 \sec \theta$$

Therefore, $0 \le r \le 2\sec\theta$.

And, to find θ ,

$$r \sin \theta = r \cos \theta$$

$$r \sin \theta = 0$$

$$\tan\theta = 1 = \tan\frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{4}$$

So, the above integral change to.

$$\frac{\pi/4}{1} = \int_{0}^{\pi/4} \int_{0}^{\pi} r \sin\theta \cdot r dr d\theta = \int_{0}^{\pi/4} \int_{0}^{\pi^2} r^2 \sin\theta dr d\theta$$

$$= \int_{0}^{\pi/4} \sin\theta \left[\frac{r^3}{3} \right] 2 \sec\theta d\theta$$

$$= \int_{0}^{\pi/4} \sin\theta \left[\frac{r^3}{3} \right] 2 \sec\theta d\theta$$

$$= \int_{0}^{\pi/4} \sin\theta \left[\frac{(2 \sec\theta)^3}{3} d\theta \right]$$

$$= \int_{0}^{\pi/4} \sin\theta \cdot \sec^3\theta d\theta$$

$$= \frac{8}{3} \int_{0}^{\pi/4} \tan\theta \cdot \sec^3\theta d\theta$$

$$= \frac{8}{3} \int_{0}^{\pi/4} \tan\theta \cdot \sec^2\theta d\theta$$

Chapter 9 | Double Integral |

 p_{ut} , $tan\theta = t$ then $sec^2\theta$, $d\theta = dt$. Also, $\theta = 0 \Rightarrow t = 0$ and $\theta = \frac{\pi}{4} \Rightarrow t = 1$. Then,

$$1 = \frac{8}{3} \int_{0}^{1} t \, dt = \frac{8}{3} \left[\frac{t^{2}}{2} \right]_{0}^{1} = \frac{4}{3}.$$

(4)
$$\int_{0}^{3} \int_{0}^{x\sqrt{3}} \frac{dy \, dx}{\sqrt{x^{2} + y^{2}}}$$

Solution: Given integral is,

$$I = \int_{0}^{3} \int_{0}^{x\sqrt{3}} \frac{dy dx}{\sqrt{x^2 + y}}$$

Here, the variables x varies from x = 0 to x = 3 and the variable y varies from y = 0 to $y = x\sqrt{3}$.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$.

And, to find r, x = 0,

$$X = 3$$

$$r \cos\theta = 0$$

$$r \cos\theta = 3$$

 $r = 3 \sec\theta$

$$y = x\sqrt{3}$$

Also, to find
$$\theta$$
, $y = 0$

$$r \sin\theta = 0$$

$$r'\sin\theta = \sqrt{3} r \cos\theta$$

$$\theta = 0$$

$$\tan\theta = \sqrt{3} = \tan\frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{3}$$
.

Now, the above integration change to.

$$1 = \int_{0}^{\pi/3} \int_{0}^{3\sec\theta} \frac{r \, dr \, d\theta}{\sqrt{(r\cos\theta)^2 + (r\sin\theta)^2}}$$

$$= \int_{0}^{\pi/3} \int_{0}^{3\sec\theta} \frac{r \, dr \, d\theta}{r}$$

$$= \int_{0}^{\pi/3} \int_{0}^{3\sec\theta} d\theta$$

$$= \int_{0}^{\pi/3} \int_{0}^{3\sec\theta} d\theta$$

$$= \int_{0}^{\pi/3} \int_{0}^{3\sec\theta} d\theta$$

$$= 3 \left[\log \left(\sec\theta + \tan\theta \right) \right]_{0}^{\pi/3}$$

408 A Reference Book of Engineering Mathematics II

$$= 3 \left[\log \left(\sec \frac{\pi}{3} + \tan \frac{\pi}{3} \right) - \log \left(\sec 0 + \tan 0 \right) \right]$$

= 3 \left[\log (2 + \sqrt{3}) \right].

Thus, $1 = 3 [\log (2 + \sqrt{3})].$

(5)
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} e^{-(x^2 + y^2)} dy dx$$

[2003 Fall Q. No. 3(a)]

Solution: Given integral is,

$$1 = \int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} e^{-(x^2 + y^2)} dy dx$$

Here, the variables y varies from y = 0 to $y = \sqrt{a^2 - x^2}$ and the variable x varies from x = -a to x = a.

Thus, the region of integration is the half circle that is in only the positive region of y.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$. Clearly the circle has radius r = 0 to r = a. So, the region of integration is, $0 \le r \le a$.

And to find θ ,

$$y = 0 y = \sqrt{a^2 - x^2}$$

$$\Rightarrow r \sin \theta = 0 \Rightarrow r \sin \theta = \sqrt{a^2 - r^2 \cos^2 \theta}$$

$$\Rightarrow \sin \theta = 0 \Rightarrow \sin \theta = \sin \theta [being r = a]$$

$$\Rightarrow \theta = 0, \pi$$

Also, $dx dy = r d\theta dr$.

So that the above integral changes to,

$$\begin{split} I &= \int\limits_0^\pi \int\limits_0^a \ e^{-(r^2\cos 2\theta + r^2\sin 2\theta)} \, r \, dr. \, d\theta \\ &= \int\limits_0^\pi \int\limits_0^a \ e^{-r^2} r \, dr \, d\theta \end{split}$$

Put, $t = r^2$ then $\frac{dt}{dr} = 2r \Rightarrow \frac{dt}{2} = r$ dr. Also, $r = 0 \Rightarrow t = 0$ and $r = a \Rightarrow t = 0$.

$$1 = \int_{0}^{\pi} \int_{0}^{a^2} e^{-t} \frac{dt}{2} d\theta$$

$$\begin{split} &=\frac{1}{2}\int\limits_{0}^{\pi}\left[\frac{e^{-t}}{-1}\right]_{0}^{2^{2}}d\theta\\ &=\frac{1}{-2}\int\limits_{0}^{\pi}\left(e^{-a^{2}}-1\right)d\theta=\frac{1}{2}\left(1-e^{-a^{2}}\right)\int\limits_{0}^{\pi}d\theta=\frac{1}{2}\left(1-e^{-a^{2}}\right)\left[\theta\right]_{0}^{\pi}\\ &=\frac{\pi}{2}\left(1-e^{-a^{2}}\right). \end{split}$$

Thus,
$$I = \frac{\pi}{2}(1 - e^{-a^2})$$
.

$$\begin{array}{ccc}
2 & x & \underline{dy \, dx} \\
5 & \sqrt{x^2 + y^2}
\end{array}$$

Solution: Given integral is,

$$I = \int_{1}^{2} \int_{0}^{x} \frac{dy dx}{\sqrt{x^2 + y^2}}$$

Here, the variables x varies from x = 1 to x = 2 and the variable y varies from y = 0 to y = x.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$.

Then, to find r,
$$x = 1$$
, $\Rightarrow r \cos\theta = 1$ $\Rightarrow r \cos\theta = 2$ $\Rightarrow r = 2 \sec\theta$

And to find θ , $y = 0$ $\Rightarrow r \sin\theta = 0$ $\Rightarrow \sin\theta = 0$ $\Rightarrow \tan\theta = 1 = \tan\frac{\pi}{4}$
 $\Rightarrow \theta = 0$ $\Rightarrow \theta = \frac{\pi}{4}$

Thus, $0 \le \theta \le \frac{\pi}{4}$.

So that, the above integral changes to

$$1 = \int_{0}^{\pi/4} \int_{\sec\theta}^{2\sec\theta} \frac{r \, dr. \, d\theta}{\sqrt{r^2 \cos^2\theta + r^2 \sin^2\theta}}$$

$$= \int_{0}^{\pi/4} [r]_{\sec\theta}^{2\sec\theta} \, d\theta$$

$$\pi/4$$

$$= \int_{0}^{\pi/4} \sec\theta \cdot d\theta$$

$$= [\log(\sec\theta + \tan\theta)]_{0}^{\pi/4}$$

$$= \log\left(\sec\frac{\pi}{4} + \tan\frac{\pi}{4}\right) - \log(\sec\theta + \tan\theta) = \log(\sqrt{2} + 1)$$

Thus, $1 = \log (\sqrt{2} + 1)$.

(7)
$$\int_{0}^{2} \int_{0}^{\sqrt{4-y^2}} \cos(x^2+y^2) dx dy$$

$$1 = \int_{0}^{2} \int_{0}^{\sqrt{4 - y^2}} \cos(x^2 + y^2) dx dy$$

Here, the variables x varies from x = 0 to $x = \sqrt{4 - y^2}$ and the variable y varies from y = 0 to y = 2

Thus, the region of integration is from the line x = 0 to the circle $x^2 + y^2 = y^2$ Also, the region moves from origin to the length 2 toward y-axis.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$ Clearly the circle has radius r = 0 to r = 2. So, the region of integration is $0 \le r \le 2$.

And, to find 0,

$$y = 0$$

$$\Rightarrow r \sin \theta = 0$$

$$\Rightarrow \sin \theta = 0$$

$$\Rightarrow \sin \theta = 0$$

$$\Rightarrow \theta = 0$$

$$\Rightarrow \theta = 0$$

$$\Rightarrow \theta = \frac{\pi}{2}$$

$$\Rightarrow \theta = 0$$

$$\Rightarrow \theta = \frac{\pi}{2}$$

The above integral change to

$$\pi/2 \quad 2$$

$$1 = \int_{0}^{\pi/2} \int_{0}^{2\pi} \cos(r^2 \cos^2\theta + r^2 \sin^2\theta) r dr. d\theta$$

$$0 \quad 0$$

$$\pi/2 \quad 2$$

$$= \int_{0}^{\pi/2} \int_{0}^{2\pi} \cos^2r dr. d\theta$$

 $r^2 = 1$ then $\frac{dt}{dr} = 2r \Rightarrow \frac{dt}{2} = r dr$. Also, $r = 0 \Rightarrow t = 0$ and $r = 2 \Rightarrow t = 4$ Then.

Chapter 9 | Double Integral | 411

$$1 = \int_{0}^{\pi/2} \int_{0}^{4} \cot \frac{dt}{2} d\theta = \frac{1}{2} \int_{0}^{\pi/2} \left[\sin t \right]_{0}^{4} d\theta = \frac{\sin 4}{2} \int_{0}^{\pi/2} d\theta = \frac{\pi}{4} \sin 4.$$

Thus,
$$1 = \frac{\pi}{4} \sin 4$$
.

$$\begin{array}{cccc}
a & a \\
& \int \int \frac{x \, dx \, dy}{x^2 + y^2} \\
& 0 & y
\end{array}$$

Solution: Given integral is,

$$1 = \int_{0}^{a} \int_{y}^{a} \frac{x \, dx \, dy}{x^2 + y^2} \qquad ... (i)$$

Here, the region be $y \le x \le a$, $0 \le y \le a$.

Now, reversing the order of integration, for which x varies from x = 0 to x = a. Also, the strip moves from y = 0 to y = x. Therefore, after changing the order of integration of (i), it becomes,

$$1 = \int_{0}^{a} \int_{0}^{x} \frac{x \, dy \, dx}{x^2 + y^2} \qquad(ii)$$

Here, the variables y varies from y = 0 to y = x and the variable x varies from x

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$

Then to find r,

$$x = 0,$$
 $x = a$
 $\Rightarrow r \cos \theta = 0,$ $\Rightarrow r \cos \theta = a$
 $\Rightarrow r = 0,$ $\Rightarrow r = a \sec \theta$
So, $0 \le r \le a \sec \theta$.

And, to find θ ,

$$y = 0,$$

$$\Rightarrow r \sin\theta = 0,$$

$$\Rightarrow \theta = 0,$$

$$\Rightarrow \tan\theta = 1 = \tan\frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{4}$$

So that, the above integral changes to,

$$=a[\theta]_0^{\pi/4} = \frac{\pi a}{4}.$$

Thus,
$$1 = \frac{\pi a}{4}$$
.
(9) $\int_{0}^{4a} \int_{y^2/4a}^{y} \frac{x^2 - y^2}{x^2 + y^2} dx dy$

Solution: Given integral is

$$I = \int_{0}^{4a} \int_{v^2/4a}^{y} \frac{x^2 - y^2}{x^2 + y^2} dx dy$$

Here, the variables x varies from $x = \frac{y^2}{4a}$ to x = y and the variable y varies from y = 0 to y = 4a.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$. Then, to find r,

$$x = 0,$$
 $x = 4a$
 $\Rightarrow r \cos\theta = 0$ $\Rightarrow r \cos\theta = 4a$
 $\Rightarrow r = 0$ $\Rightarrow r = 4a \sec\theta$

And, to find θ ,

$$y = 0$$
 $y = x$
 $\Rightarrow r \sin \theta = 0$ $\Rightarrow r \sin \theta = r \cos \theta$
 $\Rightarrow \theta = 0$ $\Rightarrow \tan \theta = 1 = \tan \frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{4}$

The above integration is changes to

$$I = \int_{0}^{\pi/4} \int_{0}^{4a \sec \theta} \frac{r^{2}(\cos^{2}\theta - \sin^{2}\theta)}{r^{2}} r dr d\theta$$

$$= \int_{0}^{\pi/4} \int_{0}^{4a \sec \theta} \cos 2\theta \cdot r dr d\theta$$

$$= \int_{0}^{\pi/4} \cos 2\theta \left[\frac{r^{2}}{2}\right]_{0}^{4a \sec \theta} d\theta$$

$$= \int_{0}^{\pi/4} \cos 2\theta \cdot \left[\frac{r^{2}}{2}\right]_{0}^{4a \sec \theta} d\theta$$

$$= \int_{0}^{\pi/4} \cos 2\theta \cdot \left[\frac{16a^{2} \sec^{2}\theta}{2}\right]_{0}^{4a \sec \theta} d\theta$$

$$= 8a^{2} \int_{0}^{\pi/4} \left(\frac{\cos^{2}\theta - \sin^{2}\theta}{\cos^{2}\theta} \right) d\theta$$

$$= 8a^{2} \int_{0}^{\pi/4} (1 - \tan^{2}\theta) d\theta$$

$$= 8a^{2} \int_{0}^{\pi/4} (1 - \sec^{2}\theta + 1) d\theta$$

$$= 8a^{2} \int_{0}^{\pi/4} (2 - \sec^{2}\theta) d\theta = 8a^{2} \left[2\theta - \tan\theta \right]_{0}^{\pi/4} = 8a^{2} \left[\frac{\pi}{2} - 1 \right].$$
Thus, $I = 8a^{2} \left[\frac{\pi}{2} - 1 \right].$

(10)
$$\int_{0}^{a} \int_{y}^{a} \frac{x^{2} dx dy}{\sqrt{x^{2} + y^{2}}}$$

Solution: Given integral is,

$$1 = \int_{0}^{a} \int_{y}^{a} \frac{x^{2} dx dy}{\sqrt{x^{2} + y^{2}}}$$

Here, the variables y varies from y = 0 to y = a and the variable x varies from x = y to x = a.

Now, changing the region to polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$.

Then, to find r,

$$x = 0,$$
 $x = a$
 $\Rightarrow r \cos \theta = 0$ $\Rightarrow r \cos \theta = a$
 $\Rightarrow r = 0$ $\Rightarrow r = a \sec \theta.$
So, $0 \le r \le a \sec \theta$.

And, to find 0,

$$y = 0$$

$$\Rightarrow r \sin\theta = 0$$

$$\Rightarrow \theta = 0$$

$$\tan\theta = 1 = \tan 45^{\circ} \Rightarrow \theta = \frac{\pi}{4}$$

So that the above integral changes to

414 A Reference Book of Engineering Mathematics II

$$1 = \int_{0}^{\pi/4} \int_{0}^{\operatorname{asec}\theta} \frac{(\operatorname{rcos}\theta)^{2} \operatorname{rdr.} d\theta}{\sqrt{(\operatorname{rcos}\theta)^{2} + (\operatorname{rsin}\theta)^{2}}}$$

$$= \int_{0}^{\pi/4} \int_{0}^{\operatorname{asec}\theta} \frac{\operatorname{r^{2}cos^{2}\theta} \operatorname{dr} d\theta}{\operatorname{r}}$$

$$= \int_{0}^{\pi/4} \cos^{2}\theta \left[\frac{\operatorname{r^{3}}}{3}\right]_{0}^{\operatorname{asec}\theta} d\theta$$

$$= \int_{0}^{\pi/4} \cos^{2}\theta \times \frac{\operatorname{a^{3}sec^{3}\theta}}{3} d\theta$$

$$= \frac{\operatorname{a^{3}}}{3} \int_{0}^{\pi/4} \operatorname{sec}\theta d\theta = \frac{\operatorname{a^{3}}}{3} [\log (\operatorname{sec}\theta + \tan\theta)]_{0}^{\pi/4}$$

$$= \frac{\operatorname{a^{3}}}{3} \left[\log \left(\operatorname{sec}\frac{\pi}{4} + \tan\frac{\pi}{4}\right) - \log (\operatorname{sec}\theta + \tan\theta)\right]$$

$$= \frac{\operatorname{a^{3}}}{3} [\log (\sqrt{2} + 1)].$$

Thus,
$$I = \frac{a^3}{3} [\log (\sqrt{2} + 1)].$$