Integrais Impróprias

Integrais Impróprias

Em muitas situações é importante calcular integrais cujo integrando está definido em intervalos não limitados do tipo $[a, +\infty)$, $(-\infty, b]$ ou mesmo $(-\infty, +\infty)$.

Em outras situações temos um integrando que não está definido em um ponto e queremos calcular a integral a partir desse ponto, ou até esse ponto. Geralmente os domínios do integrando são intervalos da forma (a, b], [a, b) ou $[a, c) \cup (c, b]$.

Integrais Impróprias do tipo I

Definição 1: Quando $f:[a,+\infty) \to \mathbb{R}$ é integrável em [a,t] para qualquer $t \geq a$, definimos

$$\int_{a}^{+\infty} f(x) \ dx = \lim_{t \to +\infty} \int_{a}^{t} f(x) \ dx.$$

Definição 2: Quando $f:(-\infty,b] \to \mathbb{R}$ é integrável em [t,b] para qualquer $t \leq b$, definimos

$$\int_{-\infty}^{b} f(x) \ dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \ dx.$$

Quando o limite é finito, dizemos que as integrais das definições acima **convergem**. Quando o limite não existir ou for $\pm \infty$, dizemos que as integrais **divergem**.

Exemplos

$$(1) \int_{1}^{+\infty} \frac{\ln x}{x} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{\ln x}{x} dx$$

Temos que

$$\int_{1}^{t} \frac{\ln x}{x} dx = \int_{0}^{\ln t} u du = \frac{u^{2}}{2} \Big|_{0}^{\ln t} = \frac{(\ln t)^{2}}{2}$$

$$u = \ln x$$
 $x = 1 \Rightarrow u = 0$
 $du = \frac{1}{x} dx$ $x = t \Rightarrow u = \ln t$

Então

$$\int_{1}^{+\infty} \frac{\ln x}{x} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{\ln x}{x} dx = \lim_{t \to +\infty} \frac{(\ln t)^{2}}{2} = +\infty$$

Logo, a integral dada diverge.

(2)
$$\int_0^{+\infty} \frac{1}{a^2 + x^2} dx$$
, $a > 0$

Temos que

$$\int_0^{+\infty} \frac{1}{a^2 + x^2} \ dx = \lim_{t \to +\infty} \int_0^t \frac{1}{a^2 + x^2} \ dx$$

Veja que

$$\int_0^t \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) \Big|_0^t = \frac{1}{a} \arctan\left(\frac{t}{a}\right)$$

Logo,

$$\int_0^{+\infty} \frac{1}{a^2 + x^2} dx = \lim_{t \to +\infty} \int_0^t \frac{1}{a^2 + x^2} dx = \lim_{t \to +\infty} \frac{1}{a} \arctan\left(\frac{t}{a}\right) = \frac{1}{a} \lim_{t \to +\infty} \arctan\left(\frac{t}{a}\right) = \frac{1}{a} \cdot \frac{\pi}{2} = \frac{\pi}{2a}$$

Portanto, a integral é convergente.

(3)
$$\int_{-\infty}^{2} \frac{1}{5 - 2x} dx = \lim_{t \to -\infty} \int_{t}^{2} \frac{1}{5 - 2x} dx$$

Temos que

$$\int_{t}^{2} \frac{1}{5 - 2x} dx = -\frac{1}{2} \int_{5 - 2t}^{1} \frac{1}{u} du = -\frac{1}{2} \ln|u| \Big|_{5 - 2t}^{1} = \frac{1}{2} \ln|5 - 2t|$$

$$u = 5 - 2x$$
 $x = t \Rightarrow u = 5 - 2t$
 $du = -2 dx$ $x = 2 \Rightarrow u = 1$

Logo,

$$\int_{-\infty}^{2} \frac{1}{5 - 2x} \, dx = \lim_{t \to -\infty} \int_{t}^{2} \frac{1}{5 - 2x} \, dx = \lim_{t \to -\infty} \frac{1}{2} \ln|5 - 2t| = +\infty$$

Portanto, a integral é divergente.

Exercício: Mostre que a integral

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \begin{cases} \text{diverge, se } p \le 1 \\ \frac{1}{p-1}, \text{se } p > 1 \end{cases}$$

Definição 3: Quando as integrais

$$\int_{-\infty}^{c} f(x) \ dx \ e \ \int_{c}^{+\infty} f(x) \ dx$$

convergem, para algum $c \in \mathbb{R}$, então definimos

$$\int_{-\infty}^{+\infty} f(x) \ dx = \int_{-\infty}^{c} f(x) \ dx + \int_{c}^{+\infty} f(x) \ dx.$$

As integrais das definições 1, 2 e 3 são chamadas de integrais impróprias do tipo I.

Observações:

- (1) O valor da integral $\int_{-\infty}^{+\infty} f(x) dx$ independe da escolha de c.
- (2) Se pelo menos uma das integrais $\int_{-\infty}^{c} f(x) dx$, $\int_{c}^{+\infty} f(x) dx$ diverge, então $\int_{-\infty}^{+\infty} f(x) dx$ diverge.

(3) A integral $\int_{-\infty}^{+\infty} f(x) dx$ não é necessariamente igual a $\lim_{t \to +\infty} \int_{-t}^{t} f(x) dx$.

Por exemplo, a integral

$$\int_{-\infty}^{+\infty} x \ dx$$

é divergente, pois

$$\int_{-\infty}^{+\infty} x \ dx = \int_{-\infty}^{0} x \ dx + \int_{0}^{+\infty} x \ dx \qquad e \qquad \int_{-\infty}^{0} x \ dx = \lim_{t \to -\infty} \int_{t}^{0} x \ dx = \lim_{t \to -\infty} -\frac{t^{2}}{2} = -\infty.$$

Por outro lado,

$$\int_{-\infty}^{+\infty} x \ dx = \lim_{t \to +\infty} \int_{-t}^{t} x \ dx = \lim_{t \to +\infty} \frac{x^2}{2} \bigg|_{-t}^{t} = \lim_{t \to +\infty} \left(\frac{t^2}{2} - \frac{t^2}{2} \right) = 0.$$

Logo,

$$\int_{-\infty}^{+\infty} x \ dx \neq \lim_{t \to +\infty} \int_{-t}^{t} x \ dx.$$

Integrais Impróprias do tipo II

Definição 4: Quando $f:[a,b) \to \mathbb{R}$ não está definida em b e é integrável [a,t] para qualquer $a \le t < b$, definimos

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx.$$

Definição 5: Quando $f:(a,b] \to \mathbb{R}$ não está definida em a e é integrável em [t,b] para qualquer $a < t \le b$, definimos

$$\int_a^b f(x) \ dx = \lim_{t \to a^+} \int_t^b f(x) \ dx.$$

Quando o limite é finito, dizemos que as integrais das definições acima **convergem.** Quando o limite não existir ou for $\pm \infty$, dizemos que as integrais **divergem.**

Definição 6: Quando $f:[a,c) \cup (c,b] \to \mathbb{R}$ é contínua em $[a,c) \cup (c,b]$ e as integrais $\int_a^c f(x) dx$ e $\int_c^b f(x) dx$ forem convergentes, então $\int_a^b f(x) dx$ é convergente e

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx.$$

As integrais das definições 4, 5 e 6 são chamadas de integrais impróprias do tipo II.

Exemplos:

(1)
$$\int_0^3 \frac{1}{\sqrt{3-x}} \, dx = \lim_{t \to 3^-} \int_0^t \frac{1}{\sqrt{3-x}} \, dx$$

Temos que

$$\int_0^t \frac{1}{\sqrt{3-x}} dx = -\int_3^{3-t} \frac{1}{\sqrt{u}} du = -\int_3^{3-t} u^{-1/2} du = -2\sqrt{u} \Big|_3^{3-t} = -2\sqrt{3-t} + 2\sqrt{3}$$

$$u = 3 - x \quad x = 0 \Rightarrow u = 3$$

$$du = -dx$$
 $x = t \Rightarrow u = 3 - t$

Então

$$\int_0^3 \frac{1}{\sqrt{3-x}} dx = \lim_{t \to 3^-} \int_0^t \frac{1}{\sqrt{3-x}} dx = \lim_{t \to 3^-} \left(-2\sqrt{3-t} + 2\sqrt{3} \right) = 2\sqrt{3}$$

Portanto, a integral converge.

(2)
$$\int_0^4 \frac{1}{(x-1)^2} dx = \int_0^1 \frac{1}{(x-1)^2} dx + \int_1^4 \frac{1}{(x-1)^2} dx$$

Temos que

$$\int_0^1 \frac{1}{(x-1)^2} \ dx = \lim_{t \to 1^-} \int_0^t \frac{1}{(x-1)^2} \ dx.$$

Agora,

$$\int_0^t \frac{1}{(x-1)^2} dx = \int_{-1}^{t-1} \frac{1}{u^2} du = \int_{-1}^{t-1} u^{-2} du = -\frac{1}{u} \Big|_{-1}^{t-1} = -\frac{1}{t-1} - 1$$

$$u = x - 1$$
 $x = 0 \Rightarrow u = -1$

$$du = dx$$
 $x = t \Rightarrow u = t - 1$

Logo,

$$\int_0^1 \frac{1}{(x-1)^2} dx = \lim_{t \to 1^-} \int_0^t \frac{1}{(x-1)^2} dx = \lim_{t \to 1^-} \left(-\frac{1}{t-1} - 1 \right) = +\infty$$

Portanto, a integral

$$\int_0^4 \frac{1}{(x-1)^2} \ dx$$

é divergente.

Observação: Naturalmente, quando f é não negativa, a área A da região abaixo do gráfico de f e acima do eixo x pode ser definida em termos das integrais impróprias. É comum termos **regiões** não limitadas cuja área é finita!

As situações mais comuns são ilustradas nas figuras abaixo.

Exercício: Calcule as integrais impróprias abaixo.

$$(\mathbf{a}) \int_0^{+\infty} \frac{1}{(1+x)^3} \ dx$$

$$(\mathbf{b}) \int_{-\infty}^{+\infty} \frac{1}{1+x^2} \ dx$$

$$(\mathbf{c}) \int_0^1 \frac{1}{\sqrt{1-x}} \, dx$$

$$(\mathbf{d}) \int_0^{\pi/2} \mathsf{tg} \, x \, \, dx$$

(e)
$$\int_0^2 \frac{\ln x}{\sqrt{x}} \ dx$$

Observação: Há situações em que temos uma combinação das integrais impróprias dos tipos I e II.

Exemplo:
$$\int_0^{+\infty} \frac{1}{x(x+2)} dx$$

Solução: Observe que o domínio do integrando é $\mathbb{R} - \{-2, 0\}$. Seja $c \in (0, +\infty)$, então:

$$\begin{split} \int_0^{+\infty} \frac{1}{x(x+2)} dx &= \int_0^c \frac{1}{x(x+2)} dx + \int_c^{+\infty} \frac{1}{x(x+2)} dx \\ &= \lim_{t \to 0^+} \int_t^c \frac{1}{x(x+2)} dx + \lim_{t \to +\infty} \int_c^t \frac{1}{x(x+2)} dx \\ &= \lim_{t \to 0^+} \int_t^c \left(\frac{1}{x} + \frac{-\frac{1}{2}}{x+2} \right) dx + \lim_{t \to +\infty} \int_c^t \left(\frac{1}{x} + \frac{-\frac{1}{2}}{x+2} \right) dx; \ (\text{m\'etodo das frações parciais}) \\ &= \lim_{t \to 0^+} \left(\frac{1}{2} \left(\ln \left(|x| \right) - \ln \left(|x+2| \right) |_t^c \right) \right) + \lim_{t \to +\infty} \left(\frac{1}{2} \left(\ln \left(|x| \right) - \ln \left(|x+2| \right) |_c^t \right) \right) \\ &= \lim_{t \to 0^+} \left(\frac{1}{2} \left(\ln \left(\left| \frac{x}{x+2} \right| \right) \right|_t^c \right) \right) + \lim_{t \to +\infty} \left(\frac{1}{2} \left(\ln \left(\left| \frac{x}{x+2} \right| \right) \right|_c^t \right) \right) \\ &= \lim_{t \to 0^+} \left(\frac{1}{2} \left(\ln \left(\frac{c}{c+2} \right) - \ln \left(\frac{t}{t+2} \right) \right) \right) + \lim_{t \to +\infty} \left(\frac{1}{2} \left(\ln \left(\frac{t}{t+2} \right) - \ln \left(\frac{c}{c+2} \right) \right) \right) \\ &= \lim_{t \to 0^+} \left(\frac{1}{2} \ln \left(\frac{\frac{c}{c+2}}{t+2} \right) \right) + \lim_{t \to +\infty} \left(\frac{1}{2} \ln \left(\frac{\frac{t}{t+2}}{c+2} \right) \right) = \lim_{t \to 0^+} \left(\ln \sqrt{\frac{c(t+2)}{t(c+2)}} \right) + \lim_{t \to +\infty} \left(\ln \left(\sqrt{\frac{c(t+2)}{c(t+2)}} \right) \right) \\ &= \lim_{t \to 0^+} \left(\ln \left(\sqrt{\frac{c(t+2)}{t(c+2)}} \right) \right) + \lim_{t \to +\infty} \left(\ln \left(\sqrt{\frac{c+2}{c(1+\frac{2}{t})}} \right) \right) = +\infty + \ln \left(\sqrt{\frac{c+2}{c}} \right) = +\infty. \end{split}$$

$$Portanto, \int_0^{+\infty} \frac{1}{x(x+2)} dx \ diverge.$$

Teste da Comparação

Muitas vezes não é possível calcular o valor exato de uma integral imprópria. No entanto, com o auxílio do critério abaixo, podemos investigar sua convergência.

Teste da Comparação: Sejam f e g funções integráveis em $[a, +\infty)$ tais que $0 < f(x) \le g(x)$, para todo $x \ge a$.

(1) Se
$$\int_a^{+\infty} g(x) dx$$
 converge, então $\int_a^{+\infty} f(x) dx$ converge.

(2) Se
$$\int_a^{+\infty} f(x) dx$$
 diverge, então $\int_a^{+\infty} g(x) dx$ diverge.

Exemplo: Utilize o Teste da Comparação para analisar a convergência das integrais:

(a)
$$\int_{1}^{+\infty} \frac{1}{x^5 + 3x + 1} dx$$

(c)
$$\int_{1}^{+\infty} \frac{1 + e^{-x}}{x} dx$$

(b)
$$\int_{1}^{+\infty} \frac{\operatorname{sen} x + 2}{\sqrt{x}} \, dx$$

(d)
$$\int_{1}^{+\infty} e^{-x^2} dx$$