Temă seminar/proiect ED 2022 – 2023

Descrierea sistemului

Fie un sistem format dintr-un microcontroler și mai multe dispozitive periferice, având ca scop citirea datelor de la niște senzori și transmiterea periodică a acestora la un server prin intermediul unui modul de comunicație. Dispozitivele din componența sistemului sunt personalizate conform tabelelor următoare:

N	U	M	Е	P	R	Е	N	U	M	Е
L1	L2			L3	L4					

L1	Microcontroler, tensiunea sa de alimentare, frecvența sa de ceas	L2	Senzor 1		
ΑĂÂ	ATmega324PB la 5 V și 10 MHz	ΑĂÂ	contact mecanic normal-deschis		
В	ATmega328P la 5 V și 10 MHz	В	termistor NTC de 10 kΩ		
С	ATmega644PA la 5 V și 10 MHz	С	fotorezistor de min. $10~\text{k}\Omega$		
D	ATmega324PB la 2,5 V și 8 MHz	D	semnal digital industrial având V_{OL} de 0 6 V; V_{OH} de 18 30 V		
Е	ATmega328P la 2,5 V și 8 MHz	Е	senzor de proximitate Hall tip SL353		
F	ATmega644PA la 2,5 V și 8 MHz	F	receptor de semnal infraroşu TSOP4438		
G	PIC32MM0064GPL020, 3 V, 24 MHz	G	contact mecanic normal-închis		
Н	PIC32MM0064GPL020, 2,5 V, 24 MHz	Н	termistor NTC de 5 kΩ		
ΙÎ	PIC32MM0064GPL020, 3 V, 8 MHz	ΙÎ	fotorezistor de min. 5 k Ω		
J	PIC32MM0064GPL020, 2,5 V, 8 MHz	J	semnal digital industrial având V _{OL} de 0 3 V; V _{OH} de 9 15 V		
K	PIC32MM0064GPM028, 3 V, 24 MHz	K	senzor tip opto-interuptor EE-SG3		
L	PIC32MM0064GPM028, 2,5 V, 24 MHz	L	receptor de semnal infraroșu TSOP2456		
M	PIC32MM0064GPM028, 3 V, 8 MHz	M	contact mecanic normal-deschis		
N	PIC32MM0064GPM028, 2,5 V, 8 MHz	N	termistor NTC de 10 kΩ		
О	STM32G030C6, 3 V, 24 MHz	O	fotorezistor de min. $10 \text{ k}\Omega$		
P	STM32G030C6, 2,5 V, 24 MHz	P	semnal digital industrial având V_{OL} de $0 \dots 6 V$; V_{OH} de $18 \dots 30 V$		
Q	STM32G030C6, 3 V, 8 MHz	Q	senzor de proximitate Hall tip SL353		
R	STM32G030C6, 2,5 V, 8 MHz	R	receptor de semnal infraroşu TSOP4438		
S Ş	STM32L431RB, 3 V, 24 MHz	S Ş	contact mecanic normal-închis		
ΤŢ	STM32L431RB, 2,5 V, 24 MHz	ΤŢ	termistor NTC de 5 kΩ		
U	STM32L431RB, 3 V, 8 MHz	U	fotorezistor de min. 5 k Ω		
V	STM32L431RB, 2,5 V, 8 MHz	V	semnal digital industrial având V _{OL} de 0 3 V; V _{OH} de 9 15 V		
WXYZ	STM32L431RB, 3 V, 16 MHz	WXYZ	senzor tip opto-interuptor EE-SG3		

L3	Senzor 2	L4	Modul de comunicație, alimentat la 1,8 V
ΑĂÂ	senzor umiditate SHT30-DIS	A Ă Â	DA14531MOD
В	senzor umiditate SHT31-DIS	В	BMD-330-A-R
С	senzor umiditate SHT35-DIS	C	CYBLE-013030-00
D	senzor temperatură TMP116	D	iSP1507-AC
Е	senzor temperatură TMP117	E	BMD-300-A-R
F	senzor temperatură TMP1075	F	NINA-B40
G	senzor temperatură AT30TS75A	G	ANNA-B112
Н	senzor temperatură AT30TS74	Н	DA14531MOD
ΙÎ	senzor temperatură AT30TS750A	ΙÎ	BMD-330-A-R
J	senzor umiditate SHT30-DIS	J	CYBLE-013030-00
K	senzor umiditate SHT31-DIS	K	iSP1507-AC
L	senzor umiditate SHT35-DIS	L	BMD-300-A-R
M	senzor temperatură TMP116	M	NINA-B40
N	senzor temperatură TMP117	N	ANNA-B112
O	senzor temperatură TMP1075	О	DA14531MOD
P	senzor temperatură AT30TS75A	P	BMD-330-A-R
Q	senzor temperatură AT30TS74	Q	CYBLE-013030-00
R	senzor temperatură AT30TS750A	R	iSP1507-AC
SŞ	senzor umiditate SHT30-DIS	S Ş	BMD-300-A-R
ΤŢ	senzor umiditate SHT31-DIS	ΤŢ	NINA-B40
U	senzor temperatură TMP1075	U	ANNA-B112
V	senzor temperatură AT30TS75A	V	DA14531MOD
WXYZ	senzor temperatură AT30TS74	WXYZ	BMD-330-A-R

Cerințe

1. Propuneți o soluție pentru interfațarea corectă a perifericelor la microcontroler.

Aveți în vedere pentru fiecare semnal discutat:

- tipul acestuia analogic, digital
- domeniul în care se poate situa tensiunea de ieșire
- domeniul în care e permis să se situeze tensiunea de intrare (non-distructiv)
- domeniul valid al tensiunii de intrare
- relația parametrilor electrici cu tensiunile de alimentare
- curentul consumat în regim static preferabil cât mai mic

2. Propuneți o soluție pentru alimentarea corectă a dispozitivelor din schemă de la o baterie de acumulatori tip litiu-ion având 2 celule cu capacitatea de 3 Ah conectate în serie (tensiunea poate varia între 6 și 8,4 V).

Pentru alegerea stabilizatoarelor de tensiune aveți în vedere:

- tensiunea de alimentare necesară fiecărui dispozitiv
- curentul maxim ce poate fi consumat de fiecare dispozitiv (aveți în vedere faptul că dispozitivele pot avea mai multe stări / moduri de lucru, cu valori mult diferite ale curentului de alimentare)
- curentul minim consumat de fiecare dispozitiv (în stare de inactivitate / așteptare *idle / sleep / power save*) stabilizatorul de tensiune trebuie să nu aibă un consum propriu (*quiescent current*) semnificativ mai mare decât curentul minim consumat de dispozitivele alimentate
- tensiunea maximă tolerată de stabilizator pe intrare

3. Propuneți o strategie rezonabilă de management energetic în vederea citirii periodice a datelor de la senzori și a transmiterii acestora la un server prin intermediul modulului de comunicație o dată la 10 secunde.

Sugestii:

- exploatați capabilitatea dispozitivelor de a trece între starea de activitate (în care operează efectiv) și diverse stări de inactivitate / așteptare de consum redus (ce pot fi denumite în documentație în diverse moduri *idle, sleep, power save* etc.)
- estimați durata minimă pe care fiecare dispozitiv trebuie să o petreacă în starea de activitate (de consum mare) și considerați că restul timpului va fi petrecut într-o stare de consum redus. Nu se cere un calcul precis, este suficientă o estimare rezonabilă.

4. Estimați curentul mediu consumat de sistem de la baterie și timpul de funcționare între două încărcări ale bateriei.

Sugestii:

- estimați curentul consumat de fiecare dispozitiv în starea activă, respectiv în starea de consum redus
- calculați curentul mediu consumat de fiecare dispozitiv, cunoscând duratele stărilor și curentul consumat în fiecare stare
- calculați curentul mediu consumat de la baterie incluzând efectul stabilizatoarelor de tensiune
- calculați timpul de funcționare până la descărcarea bateriei, cunoscând curentul mediu consumat și capacitatea bateriei.