OTIMIZAÇÃO DE ABERTURA DINÂMICA COM O RCDS

Envolvidos: Ana, Fernando, Liu, Matheus, Murilo, Ximenes FAC - LNLS Quarta-feira, 14 de dezembro de 2022

RESUMO

Realizamos a otimização online da abertura dinâmica do SIRIUS mediante variações das forças dos sextupolos. Foram adotadas duas funções-objetivo: a taxa de perda de feixe mediante *kicks* dipolares e a eficiência de injeção. Em ambos os casos foi possível otimizar o objetivo. No primeiro deles, entretanto, não obtivemos uma boa eficiência de injeção após a ciclagem. No segundo caso, a otimização resultou em configurações de máquina que renderam eficiências de 95–100%, com boa repetibilidade, mas com piora do tempo de vida. Verificamos também *drifts* de cromaticidade no decorrer das iterações da otimização de eficiência de injeção.

O ALGORITMO

O robust conjugate direction search (RCDS) é um algoritmo de otimização online robusto aos ruídos de medida da função objetivo (detalhes aqui.) Os *inputs* do algoritmo são a função objetivo (um indicador da abertura dinâmica, neste caso), o nível de ruído experimental da função objetivo, o *range* de variação de cada um dos botões (famílias de sextupolos), o *step* inicial dado na busca do *bracket* (intervalo que contém o mínimo) ao longo de cada direção, as direções iniciais de procura (usamos direções canônicas) e os valores iniciais dos botões (posição inicial no espaço de parâmetro), além dos possíveis critérios de parada: número de avaliações da função objetivo, número de iterações ou tolerância de variação.

SETUP DO EXPERIMENTO E RESULTADOS

Os botões de otimização foram as famílias de sextupolos SDA0, SDB0, SDP0, SFA0, SFB0, SFP0, SDA1, SDB1, SDP1, SDA3, SDB3, SDP3, SFA1, SFB1, SFP1. As famílias SDA2, SDB2, SDP2 e SFA2, SFB2, SFP2 foram usadas para garantir que a ação dos botões de otimização não alterasse a cromaticidade de operação da máquina. Isto foi implementado da seguinte forma: para cada variação proposta pelo algoritmo aos botões de otimização, calculávamos qual seria a variação de cromaticidade e determinávamos a variação de força nas famílias de correção de modo a anular a mudança de cromaticidade ¹. Testamos a otimização com duas funções objetivo:

Otimização da resiliência a kicks

A primeira função objetivo adotada foi a taxa de perda do feixe após um *kick* dos *pingers* dipolares. A ideia era

Figura 1: Histórico da função objetivo ao longo das iterações da primeira rodada de otimização de taxa de perda.

minimizar a perda para um dado *kick* e ir aumentando os *kicks* a cada rodada, sondando, assim, uma aceitância em ângulo cada vez maior. A taxa de perda era calculada por meio da comparação entre o sinal soma médio das primeiras 10 e as últimas 10 medidas durante a aquisição de BPMs após o *kick* dipolar.

Partindo da ref-config, configuramos o *kick* na horizontal em $\Delta x' = -0.760$ mrad, que rendia uma taxa de perda girando em torno de 35 - 60%. Um *kick* na vertical $\Delta y' = 0.03$ mrad também era disparado.

Resultados Em uma iteração, a taxa de perda foi de aproximadamente 60% para 0 (ver Figura 1). A cada avaliação da função objetivo ao longo das 15 direções no espaço de parâmetros observou-se a queda sistemática da função objetivo. Ao iniciar a segunda iteração, verificamos que a função objetivo tomou valores negativos e interrompemos a rodada. As configurações das famílias de sextupolos antes e após a rodada de otimização, bem como suas respectivas variações são apresentadas na Figura 2.

O procedimento de minimização da taxa de perda aumentou significativamente a resiliência do feixe. Foi necessário chutá-lo com aproximadamente 0.850 mrad para obter a taxa de 30–40% de perda. A máquina foi ciclada e, ao fim do procedimento, verificamos uma eficiência de injeção baixa. A resiliência ao kick se manteve, o que levantou a suspeita de que a abertura em -x tenha sofrido prejuízos com o procedimento de otimização, enquanto a abertura em x' foi maximizada. Partimos então para otimização com outra função objetivo, com esperanças de otimizar simultaneamente as aberturas em posição e em ângulo.

 $^{^{\}rm 1}$ Usamos a matriz jacobiana de cromaticidade por variações de sextupolos, obtida do modelo

Figura 2: Configurações das famílias de sextupolos ao fim da primeira rodada de otimização de taxa de perda

Otimização de eficiência de injeção

Partindo da configuração de referência, pioramos as condições de injeção reduzindo a intensidade dos *kicks* do NLK de -2.45 mrad para -2.25 mrad. Desse modo o feixe era injetado na beirada esquerda superior da abertura (x, x'), com uma eficiência de injeção em torno de 30 %. Adotamos como função objetivo o negativo da eficiência de injeção. Sua maximização seria uma consequência do aumento da abertura tanto em posição quanto em ângulo nestas condições de injeção.

Resultados A primeira rodada de otimização foi disparada e em três iterações do algorítmo atingimos 70% de eficiência. O algoritmo foi encerrado por ter atingido o máximo número de avaliações da função objetivo (100). Partimos destas configurações e disparamos outra rodada. Em mais quatro iterações atingimos 85% de eficiência de injeção. Restauramos o NLK ao valor de referência e realizamos a injeção após rápida otimização de pos-ang. A eficiência flutuou em torno de 95–100% com bastante repetibilidade e houve piora no tempo de vida. As configurações e variações das famílias de sextupolos ao fim das rodadas de otimização de eficiência são apresentadas nas Figuras 5 e 6.

MEDIDAS DE CROMATICIDADE

Realizamos medidas de cromaticidade da máquina nas configurações de referência e nas configurações encontradas ao fim das iterações 0, 2, e 3 da última rodada de otimização de eficiência de injeção (figura 4). A tabela 1 apresenta os resultados das medidas. Verifica-se um *drift* de cromaticidade, mesmo com o procedimento de de variações isocromáticas implementado.

Figura 3: Objetivo ao longo das iterações na segunda rodada de otimização de eficiência de injeção

Figura 4: Objetivo ao longo das iterações na segunda rodada de otimização de eficiência de injeção

Figura 5: Configurações das famílias de sextupolos ao fim da primeira rodada de otimização de eficiência de injeção

Figura 6: Configurações das famílias de sextupolos ao fim da segunda rodada de otimização de eficiência de injeção

configuração	ξ_x	ξ_y
ref-config	2.33 ± 0.02	2.531 ± 0.008
iteração 0	2.59 ± 0.02	3.700 ± 0.008
iteração 2	2.72 ± 0.04	3.704 ± 0.008
iteração 3	2.76 ± 0.05	3.510 ± 0.01

Tabela 1: Medidas de Cromaticidade

Não tivemos tempo de ciclar a máquina e injetar com as configurações ótimas encontradas para verificar se as condições de injeção se manteriam.