SOME DISCRETE DISTRIBUTIONS

Name	Genesis	Notation	Probability function	E(X)	Var(X)	Applications	Comments
Uniform (dis-	Set of k equally likely out-	U(1,, k)	p(x) = 1/k	$\frac{k+1}{2}$	$\frac{k^2-1}{12}$	Dice	
crete)	comes (usually, not necessarily, the integers)	(not standard)	x = 1,, k				
Bernoulli trial	Expt. with two outcomes: 'success' w.p. θ and 'failure' w.p. $1-\theta$ $X \equiv \text{no. successes}$	$Ber(\theta)$	$p(x) = \theta^{x} (1 - \theta)^{1 - x}$ $x = 0, 1$ $\theta \epsilon [0, 1]$	θ	$\theta(1-\theta)$	Coins, constituent of more complex dis- tributions	
Binomial	$X \equiv \text{no. successes in } n \text{ ind.}$ $Ber(\theta) \text{ trials}$	$Bi(n, \theta)$	$p(x) = {}^{n} C_{x} \theta^{x} (1 - \theta)^{n - x}$ x = 0, 1, 2,, n $\theta \epsilon [0, 1]$	$n\theta$	$n\theta(1-\theta)$	Sampling with replacement	$Bi(1,\theta) \equiv Ber(\theta)$
Geometric	$X \equiv$ no. failures until 1st success in sequence of ind. $Ber(\theta)$ trials	$Ge(\theta)$	$p(x) = \theta(1 - \theta)^{x}$ $x = 0, 1, 2, \dots$ $\theta \epsilon [0, 1]$	$\frac{1-\theta}{\theta}$	$\frac{1-\theta}{\theta^2}$	Waiting times (for single events)	For alternative formulation see next line.
Geometric (alternative definition)	$X \equiv \text{total no. trials until}$ 1st success in sequence of ind. $Ber(\theta)$ trials	$\operatorname{Ge}(\theta)$	$p(x) = \theta(1 - \theta)^{x-1}$ $x = 1, 2, \dots$ $\theta \epsilon [0, 1]$	$\frac{1}{\theta}$	$\frac{1-\theta}{\theta^2}$	Waiting times (for single events)	Includes the first success it- self, so in a given situation gives a value one higher than the previous defini- tion
Negative binomial (or Pascal)	$X \equiv \text{no.}$ failures to m th success in sequence of ind. $Ber(\theta)$ trials. Generalization of Geometric	Neg $Bi\ (m, \theta)$ (not standard)	$p(x) = {}^{m+x-1} C_x \theta^m (1-\theta)^x$ $x = 0, 1, 2,$ $\theta \epsilon [0, 1]$	$\frac{m(1-\theta)}{\theta}$	$\frac{m(1-\theta)}{\theta^2}$	Waiting times (for compound events)	Neg $Bi(1,\theta) \equiv Ge(\theta)$ Remains valid for any $k > 0$ (not necessarily integer). Alternative formulation as for Geometric.
Hypergeometric	$X \equiv$ no. of defectives in sample of size n taken without replacement from population of size N of which N^* are defective	Hypergeom (N, N^*, n) (not standard, esp. order of arguments)	$p(x) = \frac{{N^*}{C_x} {N^{-N^*}}{C_{n-x}}}{x = 0,, n}$ (strictly $x = \max(0, n + N^* - N),, \dots, \min(n, N^*)$)	$\frac{nN^*}{N}$	$\frac{N-n}{N-1}n\frac{N^*}{N}(1-\frac{N^*}{N})$	Sampling without replacement	Sampling with replacement leads to the $Bi(n, \frac{N^*}{N})$ - a suitable approx if $\frac{n}{N} < 0.1$
Poisson	Arises empirically or via Poisson Process for counting events. For Po. Proc. rate ν the no. of events in time $t \sim Po(\nu t)$. Also as an approx. to the Binomial	$Po(\lambda)$	$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ $x = 0, 1, 2, \dots$ $\lambda > 0$	λ	λ	Counting events occurring 'at random' in space or time	$Bi(n,\theta) \equiv Po(n\theta)$ if n large, θ small

SOME CONTINUOUS DISTRIBUTIONS

Name	Notation	p.d.f.	E(X)	Var(X)	Applications	Comments
Uniform (continuous) (or Rectangular)	Un(lpha,eta)	$f(x) = \frac{1}{\beta - \alpha}$ $x \in [\alpha, \beta]$ $\alpha < \beta$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$	Rounding errors $Un(-\frac{1}{2},\frac{1}{2})$. Simulating other distributions from $Un(0,1)$.	
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x > 0$ $\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Inter-event times for Poisson Process. Models life-times of non-ageing items.	Alternative parameterization in terms of $1/\lambda$ $Ga(1,\lambda) \equiv Ex(\lambda)$
Gamma	Ga(lpha,eta)	$f(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$ $x \ge 0$ $\alpha, \beta > 0$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	Times between k events for Poisson Process. Lifetimes of ageing items.	Alternative parameterization in terms of $1/\beta$ $Ga(1,\lambda) \equiv Ex(\lambda)$, $Ga(\nu/2,1/2) \equiv X_{\nu}^{2}$,
Beta	Be(lpha,eta)	$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$ $x \in [0, 1]$ $\alpha, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	Useful model for variables with finite range. Also as a Bayesian conjugate prior.	$Be(1,1) \equiv Un(0,1)$ $Be(\alpha,\beta)$ is reflection about $\frac{1}{2}$ of $Be(\beta,\alpha)$. Can transform $Be(\alpha,\beta)$ on $[0,1]$ to any finite range $[a,b]$ by Y = (b-a)X + a
Normal	$N(\mu,\sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$ $x \in (-\infty, \infty)$	μ	σ^2	Empirically and theoretically (via CLT etc.) a good model in many situations. Often easy to handle mathematically.	$\begin{split} X &\sim N(\mu, \sigma^2) \Longrightarrow aX + b \sim \\ N(a\mu + b, a^2 \sigma^2) \\ &\Longrightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1) \\ \text{So} \\ P[X \in (u, v)] &= P[Z \in \left(\frac{u - \mu}{\sigma}, \frac{v - \mu}{\sigma}\right)] \\ N(0, 1) \text{ special case has p.d.f.} \\ \text{denoted } \phi, \text{ c.d.f. } \Phi \text{ (tabulated).} \\ \text{Note } \Phi(-z) &= 1 - \Phi(z). \end{split}$
Chi-square	$\chi^2_{ u}$	$f(x) = 2^{-\nu/2} \Gamma(\nu/2)^{-1} x^{\nu/2 - 1} e^{-x/2}$ $x > 0$ $\nu > 0$	ν	2ν	Sum of squares of ν standard normals	$X_{\nu}^{2} \equiv Ga(\nu/2, 1/2)$ If $X_{1}, X_{2}, \dots, X_{n} \sim N(0, 1)$ independent, then $\sum_{i=1}^{n} X_{i}^{2} \sim X_{n}^{2}$
Student t	$t_{ u}$	$f(x) = \frac{1}{\nu^{-1/2}B\left(\frac{1}{2}, \frac{\nu}{2}\right)^{-1}\left(1 + x^2/\nu\right)^{-(\nu+1)/2}}$ $x \in (-\infty, \infty)$ $\nu > 0$	$0 \\ (if \ \nu > 1)$	$\frac{\nu}{\nu-2}$ (if $\nu>2$)	Useful alternative to Normal for variables with heavy tails.	If $X \sim N(0,1)$ and $Y \sim \chi_{\nu}^2$ independent then $\frac{X}{\sqrt{Y/\nu}} \sim t_{\nu}.$ $t_1 \equiv \text{Cauchy.} t_{\nu}^2 \equiv F_{1,\nu}.$
F	$F_{ u,\delta}$	$f(x) = \frac{\nu^{\nu/2} \delta^{\delta/2} x^{\nu/2 - 1}}{B(\nu/2, \delta/2)(\nu x + \delta)^{(\nu + \delta)/2}}$ $x > 0$ $\nu, \delta > 0$	$\frac{\delta}{\delta - 2}$ (if $\delta > 2$)	$\frac{2\delta^{2}(\nu+\delta-2)}{\nu(\delta-2)^{2}(\delta-4)}$ (if $\delta > 4$)	Scaled ratio of chi-squares. Used in tests to compare variances	If $X \sim \chi_{\nu}^2$ and $Y \sim \chi_{\delta}^2$ independent then $\frac{X/\nu}{Y/\delta} \sim F_{\nu,\delta}$. If $T \sim t_{\nu}$ then $T^2 \sim F_{1,\nu}$. If $Z \sim Be(\alpha,\beta)$ then $\frac{\beta Z}{\alpha(1-Z)} \sim F_{2\alpha,2\beta}$.