Классическая механика

Содержание

1	кинематика материальнои точки	4
	1.1 Основные определения	2
	1.2 Декартовы компоненты скорости и ускорения	3
	1.3 Равномерное движение	3
	1.4 Равнопеременное движение	7
	1.5 Криволинейное движение	7
2	Относительность механического движения	
3	Принцип относительности. Преобразования Галилея и Лоренца	
	3.1 Принцип относительности Галилея	5
	3.2 Преобразования Галилея	5
	3.3 Гипотеза неподвижного эфира	6
	3.4 Преобразования Лоренца	7
4	Кинематика твёрдого тела	-
•	4.1 Поступательное движение	-
	4.2 Вращение вокруг оси	-
	4.3 Движение с одной неподвижной точкой	8
	4.4 Положение тела в пространстве	8
	4.4 Положение тела в пространстве	C
5	Кинематика вращающихся систем отсчёта	ç
6	Законы Ньютона	ç
	6.1 Основные определения	ç
	6.2 Законы Ньютона	10
7	Силы в механике	10
	7.1 Гравитационные силы	10
	7.2 Сила упругости	1
	7.3 Сила трения	1
	7.4 Электромагнитные силы	1
	7.5 Релятивистское уравнение движения	12
8	Неинерциальные системы отсчёта. Сила инерции	12
9	Импульс системы частиц. Движение центра масс	13
	9.1 Основные определения	13
	9.2 Движение центра масс	13
10	Закон сохранения импульса	14
	10.1 Законы сохранения и изменения импульса	14
	10.2 Реактивное движение	14

11	Работа и потенциальная энергия	15
	11.1 Основные определения	15
	11.2 Связь силы и потенциальной энергии	15
	11.3 Потенциальная энергия материальной точки в поле центральной силы	16
12	Кинетическая энергия	16
	12.1 Основные определения	16
	12.2 Кинетическая энергия твёрдого тела при поступательном движении	16
	12.3 Кинетическая энергия твёрдого тела при вращении вокруг оси	17
	12.4 Кинетическая энергия твёрдого тела при плоском движении	17
13	Закон сохранения энергии в механике	17
14	Импульс и энергия в теории относительности	18
	14.1 Законы сохранения импульса и энергии	18
	14.2 Превращения массы и энергии	18
	14.3 Фотоны	18
15	Момент импульса частицы и системы частиц. Момент силы	19
	15.1 Основные определения	19
	15.2 Момент импульса материальной точки	19
	15.3 Момент импульса тела при вращении вокруг оси	19
	15.4 Момент импульса при плоском движении тела	20

1 Кинематика материальной точки

1.1 Основные определения

Кинематика — это раздел механики, изучающий движение тел без рассмотрения причин этого движения. Задача кинематики — математически точно описать движение тела.

Материальная точка — это тело, размерами которого можно пренебречь. Чтобы измерить расстояние, нужно сравнить его с длиной некоторого тела, принятого за эталон. Чтобы измерить промежуток времени, нужно сравнить его с продолжительностью некоторого процесса, принятого за эталон (например, с колебанием маятника). Чтобы измерить любую физическую величину, нужно ввести единицу измерения.

Метр — это расстояние, которое проходит свет в вакууме приблизительно за $\frac{1}{3 \cdot 10^8}$ секунды.

Секунда — это продолжительность приблизительно 10^{10} колебаний электрона в атоме цезия.

Ось координат — это прямая линия, на которой выбраны начало отсчёта, положительное направление и единица измерения длины.

Радиус-вектор точки — это вектор, проведённый от начала отсчёта к данной точке.

Орты декартовых координат — это единичные векторы, направленные вдоль декартовых осей координат.

Проекция вектора на ось — это разность координат конца и начала вектора, взятых по отношению к данной оси.

Перемещение — это разность радиус-векторов точки, взятых в два разных момента времени.

$$\Delta r = r_2 - r_1$$

1.2 Декартовы компоненты скорости и ускорения

Скорость материальной точки — это отношение перемещения точки к длительности перемещения в пределе, когда эта длительность стремится к нулю (производная по времени).

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \dot{r}$$

$$\mathbf{v} = \mathbf{i} v_x + \mathbf{j} v_y + \mathbf{k} v_z$$

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{d}{dt} (\mathbf{i} x + \mathbf{j} y + \mathbf{k} z) = \mathbf{i} \dot{x} + \mathbf{j} \dot{y} + \mathbf{k} \dot{z}$$

$$|\mathbf{v}| = v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Ускорение материальной точки — это производная скорости точки по времени.

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \dot{\mathbf{v}} = \ddot{\mathbf{r}}$$

$$\mathbf{a} = ia_x + ja_y + ka_z$$

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt}(iv_x + jv_y + kv_z) = i\ddot{x} + j\ddot{y} + k\ddot{z}$$

$$|\mathbf{a}| = a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

1.3 Равномерное движение

$$v_x = const = \frac{dx}{dt}$$

$$dx = v_x dt$$

$$\int_{x_0}^{x} dx = \int_{0}^{t} v_x dt$$

$$x - x_0 = v_x t$$

$$x(t) = x_0 + v_x t$$

1.4 Равнопеременное движение

$$a_x = const = \frac{dv_x}{dt}$$

$$dv_x = a_x dt$$

$$\int_{V_{x_0}}^{V_x} dv_x = \int_0^t a_x dt$$

$$v_x - v_{x_0} = a_x t$$

$$v_X(t) = v_{X_0} + a_X t$$

$$\int_{x_0}^{x} dx = \int_0^t v_x dt$$

$$x - x_0 = v_{x_0} t + \frac{a_x t^2}{2}$$

$$x(t) = x_0 + v_{x_0}t + \frac{a_x t^2}{2}$$

1.5 Криволинейное движение

Тангенциальное ускорение — это составляющая ускорения, параллельная вектору скорости.

Нормальное ускорение — это составляющая ускорения, перпендикулярная вектору скорости и направленная к центру кривизны траектории движения точки.

Круг кривизны кривой в точке — это круг, проходящий через данную точку кривой M и две другие точки кривой N и P, лежащие по разные стороны от M, в пределе при N \rightarrow M и P \rightarrow M.

$$\tau = \frac{\mathbf{v}}{\mathbf{v}}, |\tau| = 1, \mathbf{n} \perp \tau, |\mathbf{n}| = 1$$

$$a = \tau a_{\tau} + na_{n}$$

$$\boldsymbol{a} = \dot{\boldsymbol{v}} = \frac{d}{dt}(\boldsymbol{\tau}v) = \boldsymbol{\tau}\frac{dv}{dt} + v\frac{d\boldsymbol{\tau}}{dt}$$

$$d\mathbf{\tau} = \mathbf{n} \frac{d\mathbf{r}}{R}$$

$$\frac{d\mathbf{\tau}}{dt} = \mathbf{n} \frac{dr}{Rdt} = \mathbf{n} \frac{\mathbf{v}}{R}$$

$$a = \tau \frac{dv}{dt} + n \frac{v^2}{R}$$

$$a = \sqrt{a_n^2 + a_T^2}$$

Найдём радиус кривизны

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

$$2(x - x_c) + 2(y - y_c)y' = 0$$
 (Дифференцируем дважды по x)

$$1 + y'^{2} + (y - y_{c})y'' = 0$$

$$y - y_{c} = -\frac{1 + y'^{2}}{y''}, x - x_{c} = \frac{1 + y'^{2}}{y''}y'$$

$$\left(\frac{1 + y'^{2}}{y''}y'\right)^{2} + \left(\frac{1 + y'^{2}}{y''}\right)^{2} = R^{2}$$

$$\left(\frac{1 + y'^{2}}{y''}\right)^{2} (1 + y'^{2}) = R^{2}$$

$$R = \frac{(1 + y'^{2})^{\frac{3}{2}}}{|y''|}$$

2 Относительность механического движения

Относительность механического движения — это различие движения одного и того же тела относительно разных тел (систем) отсчёта.

Поступательное движение — это движение, при котором направление осей не меняется. При поступательном движении подвижной системы отсчёта справедливы следующие формулы:

$$r = r_0 + r'$$

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{v}'$$

$$a = a_0 + a'$$

Здесь ${\bf v}$ — абсолютная скорость тела, ${\bf v}_0$ — относительная скорость тела в подвижной системе отсчёта, ${\bf v}'$ — скорость системы.

3 Принцип относительности. Преобразования Галилея и Лоренца

3.1 Принцип относительности Галилея

Никакими механическими опытами, проведёнными внутри данной системы отсчёта, нельзя установить, находится ли эта система в состоянии покоя или равномерно прямолинейно движется. Иначе говоря, уравнения, выражающие физические законы, должны быть инвариантны относительно преобразований, описывающих переход от неподвижной системы отсчёта к системе, движущейся равномерно и прямолинейно.

3.2 Преобразования Галилея

Рассмотрим неподвижную систему отсчёта (x, y, z) и систему, движущуюся равномерно (x', y', z', v). Тогда преобразования Галилея выглядят так:

$$\begin{cases} x = x' + vt \\ y = y' \\ z = z' \end{cases}$$

Как следствие получим правило сложения скоростей:

$$\begin{cases} v_x = v'_x + v \\ v_y = v'_y \\ v_z = v'_z \end{cases}$$

3.3 Гипотеза неподвижного эфира

Гипотеза неподвижного эфира — это предположение о том, что скорость света относительно Солнца равна $c = 3 \cdot 10^8$ м/с, а относительно Земли она определяется правилом Галилея:

$$\begin{cases} v_x^2 + v_y^2 = c^2 \\ v_x = v_x' + v \\ v_y = v_y' \end{cases}$$

Продольная скорость света — это скорость света относительно Земли в направлении её движения по орбите.

$$V_{\parallel} = |V_X'| = c \pm v$$

Поперечная скорость света — это скорость света относительно Земли в направлении, перпендикулярном её движению по орбите.

$$v_{\perp} = |v_v'| = \sqrt{c^2 - v^2}$$

Продольная и поперечная скорости света не равны друг другу.

Интерференция света — взаимная компенсация действия света в некоторых точках пространства ("свет + свет = темнота").

В 19 веке стало известно, что уравнения электромагнитного поля не инвариантны относительно преобразований Галилея. Было решено проверить правило сложения скоростей Галилея для электромагнитных волн. Мейкельсон решил использовать в качестве подвижной системы отсчёта Землю в движении вокруг Солнца. Для проведения опыта использовали интерферометр Мейкельсона, состоящего из двух перпендикулярных зеркал, экрана и светоделительного зеркала.

$$\frac{l_1}{c - v} + \frac{l_1}{c + v} = \frac{2l_2}{\sqrt{c^2 - v^2}}$$

После поворота на 90°:

$$\frac{l_2}{c - v} + \frac{l_2}{c + v} = \frac{2l_1}{\sqrt{c^2 - v^2}} + \frac{T}{2}$$

Отсюда
$$l_1 \approx l_2 = \frac{1}{4} \lambda \frac{c^2}{v^2} \approx 10$$
 м.

Опыт показал, что повороты прибора не меняли наблюдаемую интерференционную картину. Был сделан вывод, что гипотеза неподвижного эфира ошибочна — результат опыта был таким, как будто Земля неподвижна.

3.4 Преобразования Лоренца

Принцип постоянства скорости света: скорость света не зависит от того, по отношению к какой системе отсчёта (покоящейся или движущейся) она определяется. Преобразования Лоренца:

$$\begin{cases} x = \frac{x' + vt'}{\sqrt{1 - \frac{v^2}{c^2}}} \\ t = \frac{t' + \frac{x'v}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}} \\ y = y' \\ z = z' \end{cases}$$

Оказалось, что уравнения электромагнитного поля инвариантны относительно преобразований Лоренца.

Принцип относительности Эйнштейна: уравнения, выражающие физические законы, должны быть инвариантны относительно преобразований Лоренца. Как следствие можно получить правило сложения скоростей в теории относительности:

$$v_{x} = \frac{dx}{dt}, v'_{x} = \frac{dx'}{dt'}$$

$$dx = \frac{dx' + vdt'}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$dt = \frac{dt' + \frac{dx'v}{c^{2}}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$

$$v_{x} = \frac{v'_{x} + v}{1 + \frac{v'_{x}v}{c^{2}}}$$

4 Кинематика твёрдого тела

4.1 Поступательное движение

Твёрдое тело — это система материальных точек, расстояние между любой парой которых неизменно.

Поступательное движение твёрдого тела — это движение, при котором ориентация тела в пространстве сохраняется.

$$v_i = v$$

4.2 Вращение вокруг оси

Вращение твёрдого тела вокруг оси — это движение, при котором все точки тела движутся по окружностям, а центры всех окружностей лежат на одной прямой, называемой

осью вращения.

$$v = \frac{dr}{dt} \approx \frac{dS}{dt}$$

Угол поворота тела (в радианах) — это отношение длины дуги окружности, попадающей внутрь угла, к длине этой окружности.

$$\phi = \frac{S}{R}$$

$$\omega = \frac{d\varphi}{dt} = \dot{\varphi}$$

$$v \approx \frac{dS}{dt} = R \frac{d\varphi}{dt} = \omega R$$

Вектор угловой скорости — это вектор, направленный вдоль оси вращения по правилу правого винта и равный по модулю производной угла по времени.

4.3 Движение с одной неподвижной точкой

Теорема Эйлера — движение тела с одной неподвижной точкой в каждый момент времени можно рассматривать как движение вокруг некоторой неподвижной оси, проходящей через точку закрепления — мгновенной оси вращения.

$$\mathbf{v} = [\boldsymbol{\omega} \times \boldsymbol{r}]$$

4.4 Положение тела в пространстве

Матрица поворота тела S_{ij} — это матрица, составленная из скалярных произведений ортов двух координатных систем (неподвижной системы и системы, связанной с телом).

$$S_{ij} = (\boldsymbol{e_i}, \boldsymbol{e_j})$$

Найдём преобразование координат при повороте тела

$$r = e_1 x_1 + e_2 x_2 + e_3 x_3$$

$$r = e'_1 x'_1 + e'_2 x'_2 + e'_3 x'_3$$

$$(\boldsymbol{e}_{1}, \boldsymbol{r}) = x_{1} = x_{1}^{'}(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}^{'}) + x_{2}^{'}(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}^{'}) + x_{3}^{'}(\boldsymbol{e}_{1}, \boldsymbol{e}_{3}^{'})$$

$$x_i = \sum_{j=1}^3 S_{ij} x_j'$$

5 Кинематика вращающихся систем отсчёта

Какие особенности приобретают физические законы, если рассматривать их в системе отсчёта, связанной с вращающимся телом? Как связаны между собой кинематические характеристики точки в неподвижной и вращающейся системах?

$$r = r_0 + r'$$

 $dr = dr_0 + dr'$
 $r' = e'_1 x'_1 + e'_2 x'_2 + e'_3 x'_3$
 $dr' = e'_1 dx'_1 + e'_2 dx'_2 + e'_3 dx'_3 + de'_1 x'_1 + de'_2 x'_2 + de'_3 x'_3$

Здесь первая группа слагаемых характеризует изменение положения точки относительно подвижной системы отсчёта, а вторая — изменение положение подвижной системы относительно неподвижной.

$$\mathbf{v} = [\boldsymbol{\omega} \times \mathbf{r}]$$
 $\mathbf{v} = \frac{d\mathbf{r}}{dt}$
 $d\mathbf{r} = [\boldsymbol{\omega} \times \mathbf{r}]dt$
 $d\mathbf{e}'_1 \mathbf{x}'_1 + d\mathbf{e}'_2 \mathbf{x}'_2 + d\mathbf{e}'_3 \mathbf{x}'_3 = [\boldsymbol{\omega} \times \mathbf{r}']dt$
 $d\mathbf{r}' = \mathbf{e}'_1 d\mathbf{x}'_1 + \mathbf{e}'_2 d\mathbf{x}'_2 + \mathbf{e}'_3 d\mathbf{x}'_3 + [\boldsymbol{\omega} \times \mathbf{r}']dt$
 $d\mathbf{r} = d\mathbf{r}_0 + d\mathbf{r}'$

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{v}' + [\boldsymbol{\omega} \times \mathbf{r}']$$
 $d\mathbf{v} = d\mathbf{v}_0 + d\mathbf{v}' + [\boldsymbol{\omega} \times \mathbf{r}']$
 $d\mathbf{v}' = \mathbf{e}'_1 d\mathbf{v}'_1 + \mathbf{e}'_2 d\mathbf{v}'_2 + \mathbf{e}'_3 d\mathbf{v}'_3 + [\boldsymbol{\omega} \times \mathbf{v}']dt$ (получено аналогично $d\mathbf{r}'$)
$$[\boldsymbol{\omega} \times d\mathbf{r}'] = dt([\boldsymbol{\omega} \times \mathbf{v}'] + [\boldsymbol{\omega} \times [\boldsymbol{\omega} \times \mathbf{r}']])$$

$$[\boldsymbol{a} = \mathbf{a}_0 + \mathbf{a}' + 2[\boldsymbol{\omega} \times \mathbf{v}'] + [\boldsymbol{\omega} \times [\boldsymbol{\omega} \times \mathbf{r}']])$$

$$[\boldsymbol{a} = \mathbf{a}'_0 + \mathbf{a}_{\Pi} + \mathbf{a}_{K}], \text{ где } \mathbf{a}_{\Pi} = \mathbf{a}_0 + [\boldsymbol{\omega} \times [\boldsymbol{\omega} \times \mathbf{r}']] \text{ (переносное), } \mathbf{a}_{K} = 2[\boldsymbol{\omega} \times \mathbf{v}'] \text{ (кориолисово)}$$

6 Законы Ньютона

6.1 Основные определения

Сила — это мера действия других тел на данное тело.

Масса тела — это мера отклика тела на действие силы.

Импульс — это произведение массы точки на её скорость.

Килограмм — масса эталонного тела, представляющего собой цилиндр из сплава платины и иридия диаметром 39 мм и такой же высоты (определение устарело).

1 Ньютон — сила, вызывающая ускорение в 1 M/c^2 у тела массы 1 кг.

6.2 Законы Ньютона

Первый закон Ньютона: всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока другие тела не заставят его изменить это состояние.

Второй закон Ньютона: произведение массы материальной точки на ускорение равно действующей на него силе. В импульсной формулировке: скорость изменения импульса материальной точки равна действующей на неё силе.

p = mv

 $\dot{\mathbf{p}} = m\mathbf{a}$

Второй закон Ньютона не выполняется в двух случаях: тело движется со скоростью, близкой к скорости света, либо тело очень мало и движется в малой области пространства.

Третий закон Ньютона: действия двух тел друг на друга равны по модулю и противоположно направлены.

Силы взаимодействия приложены к разным телам, направлены вдоль одной прямой и имеют одинаковую природу.

Если на материальную точку одновременно действуют несколько сил, то оно движется так, как если бы на него действовала одна сила, равная их векторной сумме.

7 Силы в механике

7.1 Гравитационные силы

Закон всемирного тяготения: любые две частицы притягиваются друг к другу с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

$$F = G \frac{m_1 m_2}{R^2}$$
, где $G \approx 6.67 \cdot 10^{-11} \frac{\text{м}^3}{\text{кг} \cdot c^2}$

Принцип суперпозиции: каждая пара частиц взаимодействует независимо, т.е. так, как будто других частиц нет. Например, при притяжении материальной точки к однородному шару сила такова, как если бы вся масса шара находилась в его центре.

Масса Земли:

$$mg = G\frac{Mm}{R^2}$$

$$M = \frac{gR^2}{G} \approx 5.97 \cdot 10^{24} \text{K}\Gamma$$

Период вращения Луны:

$$m\frac{v^2}{r} = G\frac{Mm}{r^2}$$

$$v^2 = G\frac{M}{r}$$

$$T = \frac{2\pi r}{v} = 2\pi \frac{r\sqrt{r}}{\sqrt{GM}}$$

$$M = \frac{gR^2}{G}$$

$$T = 2\pi \frac{r\sqrt{r}}{R\sqrt{g}} \approx 30$$
 суток

7.2 Сила упругости

Упругое тело — это тело, которое восстанавливает свою форму после прекращения действия силы.

Закон Гука: сила упругости пропорциональна величине деформации. Это приближённое выражение, верное при малых деформациях.

$$F_{x} = -kx$$

7.3 Сила трения

Сила нормального давления (реакции опоры) — это составляющая силы взаимодействия соприкасающихся тел, перпендикулярная поверхности соприкосновения. **Трение покоя** — это трение, возникающее при отсутствии движения соприкасающихся тел.

$$\mathbf{F}_{\text{тр.п.}} = -\mathbf{F}_{\text{внеш.}}$$

Трение скольжения — это трение, возникающее при скольжении одного тела по поверхности другого. Опыт показывает, что сила трения скольжения примерно равна максимальной силе трения покоя.

$$F_{\text{тр.ск.}} = \mu N \approx F_{max \text{ тр.п.}}$$

Вязкое трение (сопротивление) — это трение, препятствующее движению тела в сплошной среде. Сила вязкого трения пропорциональна скорости движения.

$$F_{\rm B,TD} = kv$$

7.4 Электромагнитные силы

Электрический заряд — это метра электрического взаимодействия тела.

Электрическое поле — это поле, созданное электрическими зарядами и проявляющее себя действием на электрические заряды.

Напряжённость поля — это мера действия электрического поля на заряд.

$$E = \frac{F}{q}$$

Сила Кулона — это сила взаимодействия двух точечных зарядов в вакууме.

$$F_a = qE$$

Электрический ток — это направленное движение заряженных частиц под воздействием электрического поля.

Магнитное поле — это поле, созданное электрическим током и проявляющее себя действием на движущиеся электрические заряды.

Магнитная индукция — это мера действия магнитного поля на заряд.

Электромагнитное поле — это поле, образованное электрическим и магнитным полями, направленными перпендикулярно друг другу.

Сила Лоренца — это сила, с которое электромагнитное поле действует движущийся точечный заряд.

$$F_1 = q[\mathbf{v} \times \mathbf{B}]$$

7.5 Релятивистское уравнение движения

Обобщим второй закон Ньютона на случай движения тел с большими скоростями. Для этого введём сопровождающую систему отсчёта, в которой выполняется второй закон Ньютона, далее перейдём к неподвижной системе отсчёта с осями координат, параллельными осям сопровождающей системы (используем преобразования Лоренца), а затем поворачиваем неподвижную систему отсчёта.

$$\boldsymbol{p} = \frac{m\boldsymbol{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

8 Неинерциальные системы отсчёта. Сила инерции

Инерциальная система отсчёта — это такая система, в которой любое тело, бесконечно удалённое от других тел, не испытывает ускорения. Систему отсчёта, связанную с Землёй, обычно можно считать инерциальной. Неинерциальными являются системы отсчёта, движущиеся с большим ускорением относительно Земли.

Сила инерции — добавочная сила, действующая на материальную точку в неинерциальной системе отсчёта. Сила инерции отлична от нуля только для наблюдателя, связанного с неинерциальной системой отсчёта, и не подчиняется третьему закону Ньютона.

$$F = ma$$

$$F = ma + ma' - ma'$$

$$m\mathbf{a}' = \mathbf{F} - m(\mathbf{a} - \mathbf{a}')$$

$$\mathbf{F}_{\mathsf{NH}} = -m(\mathbf{a} - \mathbf{a}')$$

$$\boldsymbol{a} = \boldsymbol{a}' + \boldsymbol{a}_{\Pi} + \boldsymbol{a}_{K}$$

$$\mathbf{F}_{\text{NH}} = \mathbf{F}_{\Pi} + \mathbf{F}_{K} = -m\mathbf{a}_{0} + m\omega^{2}\mathbf{r} - 2m[\boldsymbol{\omega} \times \mathbf{v}']$$

Второе слагаемое в этой сумме называется **центробежной силой**, а третье — **Кориоли- совой силой**.

На тела, движущиеся в северном полушарии, действует Кориолиса, направленная вправо относительно движения. Например, плоскость колебаний маятника Фуко медленно поворачивается за счёт силы Кориолиса. Этот опыт доказывает вращение Земли.

Невесомость — это исчезновение веса тела, вызванное ускорением системы отсчёта.

Перегрузка — это возрастание веса тела, вызванное ускорением системы отсчёта.

Центрифуга — это устройство, использующее центробежную силу инерции.

9 Импульс системы частиц. Движение центра масс

9.1 Основные определения

Импульс системы частиц — это сумма импульсов отдельных частиц системы.

$$p = \sum_{i} p_{i} = \sum_{i} m_{i} v_{i}$$

Центр масс системы частиц — это точка, радиус-вектор которой определяется формулой:

$$r_c = \frac{1}{m} \sum_i m_i r_i$$
, где $m = \sum_i m_i$

Для однородных и симметричных тел центр масс совпадает с геометрическим центром. В качестве примере рассмотрим систему из двух одинаковых точек.

$$r_c = \frac{1}{2m}(r_1m + r_2m) = \frac{r_1 + r_2}{2}$$

9.2 Движение центра масс

Импульс тела зависит от скорости центра масс

$$\begin{cases} \mathbf{v_c} = \dot{r_c} = \frac{1}{m} \sum_{i} m_i \mathbf{v_i} \\ \mathbf{a_c} = \dot{v_c} = \frac{1}{m} \sum_{i} m_i \mathbf{a_i} \end{cases}$$

$$\mathbf{p} = \sum_{i} m_{i} \mathbf{v_{i}} = m \mathbf{v_{c}}$$

Внутренние силы — это силы взаимодействия между телами данной системы.

 $oldsymbol{f_{ii}}$ — сила, действующая на і со стороны ј

Внешние силы — это силы, действующие на тела системы, со стороны тел, не входящих в данную систему.

 $\mathbf{\emph{F}_{i}}$ — сила, действующая на і

Просуммируем все силы

$$\sum_{i} m_{i} \mathbf{a}_{i} = \sum_{i,j} f_{ij} + \sum_{i} F_{i}$$

По третьему закону Ньютона $f_{ij} = -f_{ji}$, то есть сумма внутренних сил для любой пары частиц равна нулю. Следовательно, сумма всех внутренних сил системы равна нулю

$$\sum_{i} m_{i} \mathbf{a_{i}} = \sum_{i} \mathbf{F_{i}} = m \mathbf{a_{c}}$$

Центр масс движется так, как если бы в нём находилась вся масса системы и к ней были бы приложены все внешние силы.

10 Закон сохранения импульса

10.1 Законы сохранения и изменения импульса

Закон сохранения импульса: если сумма внешних сил равна нулю, то импульс системы сохраняется.

Закон изменения импульса: изменение импульса равно сумме внешних сил, действующих на систему.

$$\mathbf{p} = \sum_{i} m_{i} \mathbf{v_{i}}$$

$$\dot{\mathbf{p}} = \sum_{i} m_{i} \mathbf{a_{i}} = m \mathbf{a_{c}} = \mathbf{F}_{\text{внеш}}$$

Закон сохранения импульса: если существует ось, проекция внешних сил на которую равна нулю, то импульс системы относительно этой оси сохраняется.

10.2 Реактивное движение

Введём следующие обозначения: \mathbf{v} — скорость ракеты относительно Земли, \mathbf{u} — скорость газов относительно Земли, \mathbf{c} — скорость газов относительно ракеты, μ — удельный расход топлива, \mathbf{m} — масса ракеты с топливом, \mathbf{dm} — масса сгорающего топлива.

$$\begin{cases} \mathbf{u} = \mathbf{v} + \mathbf{c} \\ m\mathbf{v} = (m - dm)(\mathbf{v} + d\mathbf{v}) + \mathbf{u}dm \end{cases}$$
$$md\mathbf{v} = -\mathbf{c}dm$$

$$m\mathbf{a} = -\mathbf{c}\frac{dm}{dt} = -\mathbf{c}\mu$$

$$\mathbf{F} = -\mu\mathbf{c}$$

$$m\frac{dv}{dt} = \mu c$$

$$\frac{dv}{c} = \frac{\mu dt}{m}$$

$$m(t) = m_0 - \mu t$$

$$\int_0^v \frac{dv}{c} = \int_0^t \frac{\mu dt}{m0 - \mu t}$$

$$\frac{v}{c} = \ln \frac{m_0}{m}$$

11 Работа и потенциальная энергия

11.1 Основные определения

Элементарная работа — это скалярное произведение силы на бесконечно малое перемещение точки приложения силы.

$$dA = (\mathbf{F}, d\mathbf{r})$$

1 Джоуль — это работа, которую совершает сила в 1 Ньютон при перемещении точки приложения на 1 метр в направлении силы.

Работа — это сумма элементарных работ.

$$A = \int dA$$

Потенциальная сила — это сила, работа которой равна нулю при перемещении точки приложения по любому замкнутому контуру. Потенциальными являются, например, сила тяжести, сила упругости, сила Кулона. Непотенциальной является сила трения.

Элементарная потенциальная энергия — это элементарная работа потенциальной силы, взятая со знаком минус.

$$d\Pi = -dA$$

Потенциальная энергия — это сумма элементарных потенциальных энергий.

$$\Pi = \int d\Pi$$

11.2 Связь силы и потенциальной энергии

$$d\Pi = -dA = -(\mathbf{F}, d\mathbf{r})$$

$$(\mathbf{F}, d\mathbf{r}) = F_x dx + F_d y + F_z dz = \frac{\partial \Pi}{\partial x} dx + \frac{\partial \Pi}{\partial y} dy + \frac{\partial \Pi}{\partial z} dz$$

$$F = -\left(\mathbf{i} \frac{\partial \Pi}{\partial x} + \mathbf{j} \frac{\partial \Pi}{\partial y} + \mathbf{z} \frac{\partial \Pi}{\partial z}\right)$$

Потенциальная энергия системы частиц — это сумма потенциальных энергий отдельных частиц системы.

Потенциальная энергия материальной точки в поле центральной силы

Центральная сила — это сила, направленная в сторону одной точки, называемой силовым центром.

$$F = G\frac{Mm}{r^2}$$

$$d\Pi = -dA = -(\mathbf{F}, d\mathbf{r}) = \frac{F}{r}\mathbf{r}d\mathbf{r}$$

$$\mathbf{r}d\mathbf{r} = xdx + ydy + zdz = \frac{1}{2}d(x^2 + y^2 + z^2) = \frac{1}{2}d(r^2) = rdr$$

$$d\Pi = Fdr$$

$$\Pi = GMm \int_{r}^{r} = GMm \left(\frac{1}{r} - \frac{1}{r_0}\right)$$

12 Кинетическая энергия

12.1 Основные определения

Кинетическая энергия материальной точки — это величина, определяемая формулой:

$$K = \frac{mv^2}{2}$$

Закон изменения кинетической энергии: приращение кинетической энергии материальной точки равно работе действующей на неё силы.

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}$$

$$\mathbf{F}d\mathbf{r} = d\mathbf{A} = m\frac{d\mathbf{r}}{dt}d\mathbf{v} = d\left(\frac{mv^2}{2}\right) = dK$$

$$dK = dA$$

Кинетическая энергия системы частиц — это сумма кинетических энергий отдельных частиц системы.

$$K = \sum_{i} K_{i} = \sum_{i} \frac{m_{i} v_{i}^{2}}{2}$$

12.2 Кинетическая энергия твёрдого тела при поступательном движении

$$K = \sum_{i} K_{i} = \sum_{i} \frac{m_{i} v_{i}^{2}}{2} = \frac{m v^{2}}{2}$$

12.3 Кинетическая энергия твёрдого тела при вращении вокруг оси

$$v_i = \omega r_i$$

$$K = \sum_{i} K_{i} = \sum_{i} \frac{m_{i} v_{i}^{2}}{2} = \frac{\omega^{2}}{2} \sum_{i} m_{i} r_{i}^{2}$$

Момент инерции — это величина, определяемая формулой:

$$I = \sum_{i} m_i r_i^2$$

$$K = \frac{I\omega^2}{2}$$

12.4 Кинетическая энергия твёрдого тела при плоском движении

Плоское движение — это движение, при котором все точки тела движутся параллельно неподвижной плоскости.

$$\begin{aligned} & \boldsymbol{r_i} = \boldsymbol{r_c} + \boldsymbol{r_{ic}} \\ & \boldsymbol{v_i} = \boldsymbol{v_c} + \boldsymbol{v_{ic}} \\ & \boldsymbol{K} = \sum_{i} \frac{m_i v_i^2}{2} = \frac{1}{2} \sum_{i} m_i (\boldsymbol{v_c} + \boldsymbol{v_{ic}}) (\boldsymbol{v_c} + \boldsymbol{v_{ic}}) = \frac{1}{2} m v_c^2 + \frac{1}{2} \sum_{i} m_i v_{ic}^2 + (\boldsymbol{v_c}, \sum_{i} m_i \boldsymbol{v_{ic}}) \\ & \sum_{i} m_i \boldsymbol{v_{ic}} = \sum_{i} m_i (\boldsymbol{v_i} - \boldsymbol{v_c}) = \sum_{i} m_i \boldsymbol{v_i} - m \boldsymbol{v_c} = 0 \end{aligned}$$

$$K = \frac{1}{2}mv_c^2 + \frac{1}{2}\sum_{i}m_{i}v_{ic}^2$$

Кинетическая энергия тела равна сумме кинетических энергий движения центра и движения относительно центра.

Теорема Кёнига: кинетическая энергия твёрдого тела при плоском движении выражается формулой:

$$K = \frac{mv_c^2}{2} + \frac{I\omega^2}{2}$$

13 Закон сохранения энергии в механике

Полная механическая энергия системы — это сумма кинетической и потенциальной энергий.

Закон сохранения механической энергии: если работа непотенциальных сил равна нулю, то полная механическая энергия системы сохраняется.

Закон изменения механической энергии: приращение полной механической энергии системы равно работе непотенциальных сил.

$$dK = dA = (\boldsymbol{F}, d\boldsymbol{r}) = (\boldsymbol{F}_\Pi, d\boldsymbol{r}) + (\boldsymbol{F}_{H\Pi}, d\boldsymbol{r}) = dA_\Pi + dA_{H\Pi} = -d\Pi + dA_{H\Pi}$$

$$d(K + \Pi) = dA_{H\Pi}$$

14 Импульс и энергия в теории относительности

14.1 Законы сохранения импульса и энергии

Релятивистские импульс и энергия определяются формулами:

$$\boldsymbol{p} = \frac{m\boldsymbol{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Импульс и энергия системы определяются как алгебраические суммы:

$$p = \sum_{i} p_{i}, E = \sum_{i} E_{i}$$

Если сумма внешних сил равна нулю, то релятивистский импульс и энергия сохраняются. Эти два закона действуют в теории относительности действуют вместе. Закон сохранения энергии является следствием закона сохранения импульса и принципа относительности Эйнштейна.

14.2 Превращения массы и энергии

Рассмотрим абсолютно неупругий удар двух одинаковых частиц.

$$\begin{cases} \frac{m\mathbf{v}}{\sqrt{1 - \frac{v^2}{c^2}}} - \frac{m\mathbf{v}}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{M\mathbf{v}'}{\sqrt{1 - \frac{v'^2}{c^2}}} \\ \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{Mc^2}{\sqrt{1 - \frac{v'^2}{c^2}}} \end{cases}$$

$$\mathbf{v}' = 0$$

$$M = \frac{2m}{\sqrt{1 - \frac{v^2}{2}}} > 2m$$

Это означает, что возможны взаимные превращения массы и энергии.

14.3 Фотоны

Фотон — это частица, энергия и импульс которой связаны соотношениями E = pc и v = c. Их можно получить из релятивистских уравнений энергии и импульса, положив m = 0. Свет отказывает давление на поглощающие, отражающие и преломляющие его тела.

18

$$F = \dot{p} = \frac{\dot{E}}{c} = \frac{P}{c}$$

15 Момент импульса частицы и системы частиц. Момент силы

15.1 Основные определения

Момент импульса частицы — это векторное произведение радиус-вектора частицы на её импульс.

$$N = [r \times p]$$

Момент импульса системы частиц — это сумма моментов импульса отдельных частиц.

$$N = \sum_{i} N_{i}$$

Момент силы — это векторное произведение радиус-вектора точки приложения силы (плеча) на вектор силы.

$$M = [r \times F]$$

Момент силы относительно оси — это проекция вектора момента силы на данную ось. Найдём момент силы относительно оси. Для этого разложим векторы силы и плеча на составляющие, параллельные и перпендикулярные данной оси.

$$\begin{aligned} & \boldsymbol{F} = \boldsymbol{F}_{\parallel} + \boldsymbol{F}_{\perp} \\ & \boldsymbol{r} = \boldsymbol{r}_{\parallel} + \boldsymbol{r}_{\perp} \\ & \boldsymbol{M} = [\boldsymbol{r}_{\parallel} + \boldsymbol{r}_{\perp} \times \boldsymbol{F}_{\parallel} + \boldsymbol{F}_{\perp}] = [\boldsymbol{r}_{\parallel} \times \boldsymbol{F}_{\parallel}] + [\boldsymbol{r}_{\parallel} \times \boldsymbol{F}_{\perp}] + [\boldsymbol{r}_{\perp} \times \boldsymbol{F}_{\parallel}] + [\boldsymbol{r}_{\perp} \times \boldsymbol{F}_{\perp}] \\ & \boldsymbol{M} = \boldsymbol{M}_{\perp} + [\boldsymbol{r}_{\perp} \times \boldsymbol{F}_{\perp}] \end{aligned}$$

Чтобы найти составляющую момента силы, параллельную некоторой оси, нужно взять в векторном произведении компоненты векторов, перпендикулярные этой оси. Аналогичное утверждение верно и для момента импульса.

15.2 Момент импульса материальной точки

Момент импульса материальной точки равен произведению её импульса на расстояние от линии движения до начала отсчёта.

$$M = Fr \sin \alpha = FR$$

15.3 Момент импульса тела при вращении вокруг оси

Найдём составляющую момента импульса, параллельную оси вращения.

$$\begin{aligned} \mathbf{N}_{\parallel} &= \sum_{i} [\mathbf{r}_{i\perp} \times m \mathbf{v}_{i}] \\ \mathbf{v}_{i} &= [\boldsymbol{\omega} \times \mathbf{r}_{i\perp}] \\ \mathbf{N}_{\parallel} &= \sum_{i} [\mathbf{r}_{i\perp} \times m [\boldsymbol{\omega} \times \mathbf{r}_{i\perp}]] = \sum_{i} m_{i} r_{i\perp}^{2} \boldsymbol{\omega} = \boldsymbol{\omega} I \\ \hline N_{x} &= \omega_{x} I \end{aligned}$$

15.4 Момент импульса при плоском движении тела

$$\mathbf{r}_{i} = \mathbf{r}_{c} + \mathbf{r}_{ic}$$
 $\mathbf{v}_{i} = \mathbf{v}_{c} + \mathbf{v}_{ic}$
 $\mathbf{N} = \sum_{i} [\mathbf{r}_{i} \times m_{i} \mathbf{v}_{i}] = \sum_{i} m_{i} [\mathbf{r}_{c} + \mathbf{r}_{i} \mathbf{c} \times \mathbf{v}_{c} + \mathbf{v}_{ic}] = [\mathbf{r}_{c} \times m \mathbf{v}_{c}] + [\mathbf{r}_{c} \times \sum_{i} m_{i} \mathbf{v}_{ic}] + [\sum_{i} m_{i} \mathbf{r}_{ic} \times \mathbf{v}_{i}] + \sum_{i} [\mathbf{r}_{ic} \times m_{i} \mathbf{v}_{ic}]$
 $\mathbf{r}_{c} = \frac{1}{m} \sum_{i} m_{i} \mathbf{r}_{i}$
 $\mathbf{v}_{c} = \frac{1}{m} \sum_{i} m_{i} \mathbf{v}_{i}$
 $\mathbf{N} = \mathbf{N}_{c} + \mathbf{N}_{oc}$, где $\mathbf{N}_{c} = [\mathbf{r}_{c} \times m \mathbf{v}_{c}]$, $\mathbf{N}_{oc} = \sum_{i} [\mathbf{r}_{ic} \times m_{i} \mathbf{v}_{ic}]$

16 Теорема моментов. Закон сохранения момента импульса

Теорема моментов: скорость изменения момента импульса материальной точки равна моменту действующей на неё силы.

$$N = [r \times mv]$$

$$M = [r \times F]$$

$$\dot{N} = [\dot{r} \times mv] + [r \times m\dot{v}]$$

$$\dot{N} = M$$

Закон изменения момента импульса: скорость изменения момента импульса системы частиц равна сумме моментов внешних сил.

Закон изменения момента импульса: если сумма моментов внешних сил равна нулю, то момент импульса системы сохраняется.

$$N = \sum_{i} [\mathbf{r}_{i} \times m\mathbf{v}_{i}]$$

$$\dot{N} = \sum_{i} [\dot{\mathbf{r}}_{i} \times m\mathbf{v}_{i}] + [\mathbf{r}_{i} \times m\dot{\mathbf{v}}_{i}]$$

$$M_{ij} = [\mathbf{r}_{i} \times f_{ij}] + [\mathbf{r}_{j} \times f_{ji}] = [\mathbf{r}_{i} - \mathbf{r}_{j} \times f_{ij}] = 0$$

$$\dot{N} = \mathbf{M}$$