Greining Rása

Kerfisjöfnur

Ólafur Bjarki Bogason

 $4.\ \mathrm{mars}\ 2021$

Inngangur

- Rafmagnsrás er mynduð úr samtengingu rásaeininga
- Þessar rásaeiningar hlíta lögmálum Kirchoffs:
 - KVL: Summa allra spennufalla eftir lokaðri leið í rás er núll
 - KCL: Summa allra strauma inn í hnútpunkt er núll
- Með því að beita lögmálum Kirchoffs á almennar rásir fáum við kerfisjöfnur sem eru almennt tegur-diffurjöfnur (e. integro differential equation)

Inngangur

- Hafi rásin fleiri en einn hnútpunkt eða möskva, þá fæst fleiri en ein tegur-diffurjafna; þessar jöfnur þarf að leysa saman
 - Viðnámsrásir eru bara sértilfelli af þessum almennu rásum
 - Þegar orkugeymandi rásaeiningar (þéttar og spólur) bætast við breytast jöfnurnar úr venjulegum algebrískum jöfnum í tegur-diffurjöfnur
- Almennt gildir að fyrir rás sem inniheldur n orkugeymandi rásaeiningar verður hæsti diffurkvótinn af gráðu n.
- Þá er talað um n-**tu gráðu rás** (kerfi)

Virkjatáknun

• Til að geta höndlað tegur-diffurjöfnur eins og algebrískar jöfnur (þó ekki leyst þær) skilgreinum við virkjann p, diffurvirkjann

$$p \equiv \frac{d}{dt}$$

Þá er

$$pf = \frac{df}{dt}$$

• Diffrum n sinnum

$$p^n f = \frac{d^n f}{dt^n}$$

Virkjatáknun

• Við skilgreinum 1/p sem tegrun

$$\boxed{\frac{1}{p}f \equiv \int_{-\infty}^{t} f(\tau)d\tau}$$

ef f = 0 fyrir t < 0 þá

$$\frac{1}{p}f \equiv \int_{0-}^{t} f(\tau)d\tau$$

Virkjatáknun

• Eins og áður þá gerum við ráð að það kveikni á rásunum okkar við tímann t=0 og notum lindir til að tákna byrjunargildi í þéttum og spólum

- Lögmál Kirchoffs gilda alveg jafnt um rásir sem innihalda orkugeymandi rásaeiningar eins og um rásir sem innihalda eingöngu viðnám og lindir
- Til að setja upp hnútpunkta- eða möskvajöfnur fyrir tiltekna rás beitum við lögmálum Kirchoffs
- Með því að nota p-virkja táknunina fáum við jöfnurnar á snyrtilegu og samþjöppuðu formi
- \implies Dæmi 9.7.
 - Í ofangreindu dæmi má líta á i(t) sem **innmerki** og v_a , v_b , og i_4 sem **útmerki**

• Sýnum þetta með kassamynd

 \bullet Þeð sem stendur í hverjum kassa fyrir sig kallast **yfirfærslufall** og er táknað með H(p)

• Yfirfærsluföll tengja innmerki og útmerki

yfirfærslufall \times innmerki = útmerki

- Ef útmerkið er spenna og innmerkið er straumur þá hefur rásafallið eininguna Ω og kallast samviðnám (e. impedance)
- $\bullet\,$ Við notum táknið Z(p) fyrir samviðnám og
- Ef innmerkið er spenna og útmerkið er straumur þá hefur rásafallið eininguna ℧ og kallast samleiðni (e. admittance)
- \bullet Við notum táknið Y(p) fyrir samleiðni

	viðnám	þéttir	spóla
Z(p)	R	$\frac{1}{Cp}$	Lp
Y(p)	$\frac{1}{R}$	Cp	$\frac{1}{Lp}$

• Sjáum að

$$Z(p) = \frac{1}{Y(p)}$$

 $\bullet\,$ Sýna má fram á að samviðnám Z(p)hlíta sömu reglum og viðnám R varðandi raðtengingu, hliðtengingu o.þ.h.

• Hér er

$$v = v_1 + v_2$$

og

$$v = (Z_1(p) + Z_2(p))i = Z_{eq}(p)i$$

eða

$$Z_{\rm eq} = (Z_1(p) + Z_2(p))$$

• Hér er

$$i = i_1 + i_2$$

og

$$i = (Y_1(p) + Y_2(p))v = Y_{eq}(p)v$$

eða

$$Y_{\text{eq}} = (Y_1(p) + Y_2(p))$$

• Eins gildir spennudeilingarformúlan

$$v_2 = \frac{Z_2(p)}{Z_1(p) + Z_2(p)} v_1$$

• Eins gildir straumdeilingarformúlan

$$i_2 = \frac{Z_1(p)}{Z_1(p) + Z_2(p)}i$$

Kerfisjöfnur

- Kerfisjafna er diffurjafna sem tengir háðu (óþekktu) breyturnar við lindirnar í rásinni
- Skrifum jöfnurnar venjulega þannig að hæsti diffurkvóti sé fyrstur og hafi stuðulinn 1

- Við getum fundið Thévenin- og Norton jafngildisrásir fyrir rásir sem innihalda þétta og spólur eins og fyrir venjulegar viðnámsrásir
- $\bullet\,$ Munurinn er sá að nota verður p-virkja samviðnám
- $\bullet\,$ Tómgangsspenna, skammhlaupsstraumur og útgangsviðnám verða þá föll af p-virkjanum

• Spennu-straumkennilínan (fyrir pólana) fyrir einhverja rás er á forminu

$$i = \frac{V_{\rm Th}}{Z_{\rm Th}} - \frac{1}{Z_{\rm Th}}v$$

eða

$$v = V_{\rm Th} - Z_{\rm Th}i$$

 Með lögmálum Kirchhoffs getum við alltaf fundið hnútpunktajöfnu fyrir eftri pólinn (a) á forminu

$$v = \sum_{j=1}^{n} ((\text{virki}j)(\text{innri lind}j)) - (\text{virki}\phi)i(t)$$

þar sem n er fjöldi innri linda

Samanburður gefur að

$$V_{\text{Th}} = \sum_{j=1}^{n} ((\text{virki} j)(\text{innri lind} j))$$

og

$$Z_{\mathrm{Th}} = (\mathrm{virki}\phi)$$