Elektrische Brückenschaltung

Maximilian Sackel Philip Schäfers Maximilian.sackel@gmx.de phil.schaefers@gmail.com

Durchführung: 15.12.15 Abgabe: 05.01.2015

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	Theoretische Grundlage													3										
	1.1	.1 Fehlerrechnung																							
		1.1.1	M	litt	elw	ert																			٠
		1.1.2	G	auf	ß'sc	che	Fel	ıler	for	tp	fla	nz	un	g					 						•
		1.1.3	L	ine	are	Re	egre	ssic	n															•	•
2	Durchführung und Aufbau									3															
3	Aus	Auswertung 3 3.1 Wheatston'sche Brückeschaltung 3																							
	3.1	Wheat	itsto	on's	sch	e B	rüc	kes	cha	alt	un	g							 						•
	3.2	Kapaz	zitä	tsn	nes	sbr	ück	е.																	4
	3.3	Indukt	tivi	ität	sm	ess	brü	cke																	,
	3.4	Maxwe	vell-	Br	ück	æ.																			,
	3.5	TT-Br	rüc	ke																			•	•	,
4	Disl	cussion	ı																						7

1 Theoretische Grundlage

1.1 Fehlerrechnung

Sämtliche Fehlerrechnungen werden mit Hilfe von Python 3.4.3 durchgeführt.

1.1.1 Mittelwert

Der Mittelwert einer Messreihe $x_1,...,x_{\rm n}$ lässt sich durch die Formel

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{1}$$

berechnen. Die Standardabweichung des Mittelwertes beträgt

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2}$$
 (2)

1.1.2 Gauß'sche Fehlerfortpflanzung

Wenn $x_1, ..., x_n$ fehlerbehaftete Messgrößen im weiteren Verlauf benutzt werden, wird der neue Fehler Δf mit Hilfe der Gaußschen Fehlerfortpflanzung angegeben.

$$\Delta f = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_k}\right)^2 \cdot (\Delta x_k)^2}$$
 (3)

1.1.3 Lineare Regression

Die Steigung und y-Achsenabschnitt einer Ausgleichsgeraden werden gegebenfalls mittels Linearen Regression berechnet.

$$y = m \cdot x + b \tag{4}$$

$$m = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{5}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\,\overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{6}$$

2 Durchführung und Aufbau

3 Auswertung

3.1 Wheatston'sche Brückeschaltung

Mit Hilfe der Wheatston'schen Brückeschaltung werden zwei unbekannte Wiederstände R_{13} = Wert13 und R_{14} = Wert14 bestimmt. Dies geschieht mit Formel ??, die Werte

und Ergebnisse sind in den Tabellen 1 und 2 aufgeführt. $\overline{R_{13,14}}$ entspricht hierbei den gemittelten Werten für die gesuchten Widerstände.

R_2 /	Ω R_3 /	Ω R_4 /	$\Omega = R_{13} / \Omega$	$\overline{R_{13}} / \Omega$
332	73	5 265	$322.8 \pm 1.$.7
500	64	8 352	$321.0 \pm 1.$	326.6 ± 1.0
664	58	2 418	336.0 + 1.	.8

4 582 418 336.0 \pm 1.8 **Tabelle 1:** Werte für die Bestimmung von R_{13} .

R_2 / Ω	R_3 / Ω	R_4 / Ω	R_{14} / Ω	$\overline{R_{14}}$ / Ω
332	493	507	920.8 ± 5.0	
500	391	609	920.5 ± 5.0	921.9 ± 2.9
664	336	664	924.5 ± 5.0	

Tabelle 2: Werte für die Bestimmung von R_{14} .

3.2 Kapazitätsmessbrücke

Mit Hilfe der Kapazitätsmessbrücke werden zwei unbekannte verlustfreie Kapazitäten C_2 = Wert2 und C_3 = Wert3 und eine verlustbehaftete Kapazität C_8 = Wert8 bestimmt. Dies geschieht mit Formel ?? für C_2 , C_3 und mit den Formeln ??, ?? für C_8 und R_8 . Die Messwerte und Ergebnisse sind in den Tabellen 3 bis 5 aufgeführt. $\overline{C_{2,3,8}}$ entspricht hierbei den gemittelten Werten für die gesuchten Kapazitäten.

C_2 / nF	R_3 / Ω	R_4 / Ω	C_2 / $\mu { m F}$	$\overline{C_2} / \mu F$
597	285	715	1.498 ± 0.008	
750	329	671	1.530 ± 0.008	1.517 ± 0.005
994	395	605	1.522 + 0.008	

Tabelle 3: Werte für die Bestimmung von C_2 .

C_2 / nF	R_3 / Ω	R_4 / Ω	C_3 / μF	$\overline{C_3} / \mu F$
597	593	607	40.97 ± 0.22	
750	639	361	42.37 ± 0.23	41.65 ± 0.13
994	705	295	41.59 ± 0.22	

Tabelle 4: Werte für die Bestimmung von C_3 .

C_2 / nF	R_2 / Ω	R_3 / Ω	R_4 / Ω	C_8 / $\mu { m F}$	R_8 / Ω	$\overline{C_8}$ / $\mu { m F}$	$\overline{R_8} / \Omega$
597	304	671	329	29.27 ± 0.16	149.1 ± 4.5		
750	228	722	278	28.88 ± 0.16	87.8 ± 2.7	29.11 ± 0.09	96.5 ± 1.8
994	179	773	227	29.19 ± 0.16	52.6 ± 1.6		

Tabelle 5: Werte für die Bestimmung von C_8 und R_8 .

3.3 Induktivitätsmessbrücke

Mit Hilfe der Induktivitätsmessbrücke wird die Induktivität $L_{19} = \text{Wert19}$ einer unbekannten Spule bestimmt. Dies geschieht mit Formel ??. Die Messwerte und Ergebnisse sind in der Tabelle 6 aufgeführt.

L_2 / mH	R_2 / Ω	R_3 / Ω	R_4 / Ω	L_{19} / mH	R_{19} / Ω	$\overline{L_{19}}$ / mH	$\overline{R_{19}} / \Omega$
14.6	286	281	719	5.706 ± 0.029	111.8 ± 0.6		
20.1	287	287	713	8.090 ± 0.040	115.5 ± 0.6	6.898 ± 0.025	113.6 ± 0.4

Tabelle 6: Werte für die Bestimmung von L_{19} und R_{19} .

3.4 Maxwell-Brücke

Mit Hilfe der Maxwell-Brücke soll die gleiche Spule untersucht werden welche auch für die Induktivitätsmessbrücke verwendet wurde. Dadurch erhält man einen referenz Wert und kann die beiden Ergebnisse vergleichen. Die verwendete Kapazität $C_4=750~\mathrm{nF}$ bleibt für die gesamte Messung unverändert. Durch einsetzen in die Formeln ??, ?? erhält man L_{19} und R_{19} . Die Messwerte und Ergebnisse sind in Tabelle 7 aufgelistet.

R_2 / Ω	R_3 / Ω	R_4 / Ω	L_{19} / mH	R_{19} / Ω	$\overline{L_{19}}$ / mH	$\overline{R_{19}}$ / Ω
332	215	655	53.5 ± 1.6	109.0 ± 4.6		
664	95	538	47.3 ± 1.4	117.2 ± 5.0	57.6 ± 1.0	115.6 ± 2.8
1000	96	796	72.0 ± 2.2	120.6 ± 5.1		

Tabelle 7: Werte für die Bestimmung von L_{19} und R_{19} .

3.5 TT-Brücke

$$f_{0,\text{theo}} = (382.1 \pm 1.2) \text{ Hz}$$

f / Hz	$U_{ m br}$ / V
20	4.56
70	3.76
180	1.78
200	1.51
220	1.28
240	1.07
260	0.88
280	0.70
300	0.56
320	0.40
340	0.26
360	0.14
380	0.02
400	0.21
420	0.23
440	0.33
460	0.43
480	0.52
500	0.61
520	0.70
540	0.78
560	0.87
580	0.96
700	1.37
1000	2.14
2000	3.26
7000	3.90
15000	3.92
30000	3.92

Tabelle 8: Brückenspannung gegen die Frequenz aufgetragen.

Abbildung 1: Brückenschaltung

Der experimentelle und der theoretische Wert liegen im Durchschnitt um $5{,}5\%$ auseinander.

4 Diskussion