Numerical Optimization Methods in Imaging

Exercice .

Let \mathcal{H} and \mathcal{G} be real Hilbert spaces (e.g., $\mathcal{H} = \mathbb{R}^N$ and $\mathcal{G} = \mathbb{R}^M$). Let $f \in \Gamma_0(\mathcal{H})$, let $g \in \Gamma_0(\mathcal{G})$, and let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ (e.g., $L \in \mathbb{R}^{M \times N}$). Let $\widetilde{x} \in \mathcal{H}$ and $\gamma \in]0, +\infty[$. We denote by L^* the adjoint of L (e.g., $L^* = L^{\top}$ in the finite dimensional case).

1. Consider the operator defined as

$$(\forall y \in \mathcal{G}) \quad B(y) = -L \operatorname{prox}_f(\widetilde{x} - L^*y).$$

Show that B is β_B -cocoercive where β_B will be specified.

2. In the following, we assume that $\gamma \in]0,2/\|L\|^2[$. Deduce from the previous question that the operator defined as

$$(\forall y \in \mathcal{G}) \quad T(y) = \operatorname{prox}_{\gamma q^*} (y + \gamma L \operatorname{prox}_f (\widetilde{x} - L^* y))$$

is α_T -averaged where α_T will be specified.

3. Assume that $FixT \neq \emptyset$. Consider the iterative algorithm :

$$(\forall n \in \mathbb{N})$$
 $y_{n+1} = y_n + \lambda_n (T(y_n) - y_n).$

where $y_0 \in \mathcal{G}$. Give a sufficient condition on $(\lambda_n)_{n \in \mathbb{N}}$ for the weak convergence of $(y_n)_{n \in \mathbb{N}}$. What can be said about the limit point?

- 4. Show that the fixed points of T are the minimizers of a function to be determined.
- 5. Let $y \in \text{Fix}T$. Show that $x = \text{prox}_f(\widetilde{x} L^*y)$ is the solution to a minimization problem.