Social Data Science: Machine Learning & Econometrics

Exercise class 9

May 14, 2020

Todays quick warmup

Consider a sequence $\{(x_k, y_k)\}$ of points in \mathbb{R}^2 where

- $ightharpoonup \forall k: x_{k+1} > x_k \text{ and } y_{k+1} > y_k$
- $ightharpoonup \forall k: x_k \in [0,1]$
- $\triangleright \forall k : y_k \in [0,1]$

Q1: Write a function simulate(n) that simulates such a sequence with length n by drawing x and y according to $z_{k+1}-z_k\sim U(0,2/n)$ and clipping any $z_k>1$ to the bounding box.

Todays quick warmup

Q2: By the *divided sum at* x_0 of such a sequence we mean the the sum

$$s(x_0) = \sum_{k} y_k \mathbf{1}_{(x_k < x_0)} + (1 - y_k) \mathbf{1}_{(x_k \ge x_0)}$$
 (1)

I.e. the sum of the vertical bars marked in the figure below. Write a function minimize that takes as its inputs a simulated sequence and returns x_k^* that minimizes $s(x_0 = x_k)$ as well as the corresponding y_k^* .

Todays quick warmup

Q3: Run simulate with n = np.arange(10,1000,10) and plot the resulting y_k^* against n. What value does y_k^* seem to converge to? Does this make sense to you?