Inteligência Artificial para Robótica Móvel CT-213

Instituto Tecnológico de Aeronáutica

Relatório do Laboratório 5 - Estratégias Evolutivas

Leonardo Peres Dias

2 de maio de 2025

Instituto Tecnológico de Aeronáutica (ITA)

Sumário

1	Bre	ve explicação em alto nível da implementação	3
	1.1	Estratégia Evolutiva Simples	3
		1.1.1 Inicialização	3
		1.1.2 Procedimento ask	3
		1.1.3 Procedimento tell	3
2	Figu	ıras comprovando funcionamento do código	4
	2.1	Função Translated Sphere	4
	2.2	Função Ackley	5
	2.3	Função Rastrigin	6
	2.4	Função Schaffer	7
3	Disc	cussão e Conclusões	7

1 Breve explicação em alto nível da implementação

1.1 Estratégia Evolutiva Simples

1.1.1 Inicialização

No construtor, os parâmetros de entrada são:

- **m**₀: média inicial da distribuição.
- C₀: matriz de covariância inicial.
- μ: número de pais selecionados por geração.
- λ : tamanho da população de amostras.

As amostras iniciais são geradas por

$$\{\mathbf{x}_i\}_{i=1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_0, \mathbf{C}_0).$$

1.1.2 Procedimento ask

A chamada ask() simplesmente retorna o conjunto de amostras

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_{\lambda} \end{bmatrix} \sim \mathcal{N}(\mathbf{m}_t, \mathbf{C}_t)$$
,

que será avaliado pela função de fitness externa.

1.1.3 Procedimento tell

Dado o vetor de fitnesses ordenados, selecionam-se os índices dos μ melhores indivíduos. Seja

$$\{\mathbf{y}_j\}_{j=1}^{\mu}$$

o subconjunto de amostras com menores valores de fitness. Definem-se então:

$$\mathbf{m}_{t+1} = \frac{1}{\mu} \sum_{j=1}^{\mu} \mathbf{y}_{j}, \qquad \mathbf{C}_{t+1} = \frac{1}{\mu} \sum_{j=1}^{\mu} (\mathbf{y}_{j} - \mathbf{m}_{t}) (\mathbf{y}_{j} - \mathbf{m}_{t})^{\top}.$$

Por fim, as amostras da próxima geração são novamente extraídas de

$$\mathcal{N}(\mathbf{m}_{t+1}, \mathbf{C}_{t+1})$$
.

Figuras comprovando funcionamento do código 2

Função Translated Sphere 2.1

Figura 1: Otimização com SES

Figura 2: Otimização com CMA-ES

benchmark

Função Ackley 2.2

Figura 6: Otimização com CMA-ES

benchmark

Função Rastrigin 2.3

Figura 10: Otimização com CMA-ES

Figura 11: Evolução do melhor fitness no Figura 12: Evolução da média do fitness benchmark

no benchmark

Função Schaffer 2.4

Figura 13: Otimização com SES

Figura 14: Otimização com CMA-ES

Mean Fitness - schaffer2d

(6,12)-SES (12,24)-SES 0.4 CMA-ES 0.3 0.2 0.1 0.0 150 175 125

benchmark

Figura 15: Evolução do melhor fitness no Figura 16: Evolução da média do fitness no benchmark

Discussão e Conclusões 3

- Pode-se observar que para as funções Translated Sphere, Ackley e Schaffer, tanto o SES quanto o CMA-ES convergiram para o mínimo global. Já no caso da função **Rastrigin**, os diferentes algoritmos convergiram para diferentes mínimos locais.
- De forma resumida, os gráficos do benchmark mostram que:

Instituto Tecnológico de Aeronáutica (ITA)

- Em funções convexas e bem comportadas (Translated Sphere, Schaffer), até
 o SES com população maior converge rápidamente e próximo ao mínimo global, com desempenho semelhante ao CMA-ES.
- Em funções com muitos mínimos locais (Ackley, Rastrigin), o SES tende a estagnar em mínimos locais, especialmente com populações pequenas, enquanto o CMA-ES atinge valores de fitness muito inferiores.