Introduction to Databases (IDB)

Nathan Sharp (Dr Paolo Guagliardo)

04 - 12 - 2020

Contents

IDB Lecture 1: Introduction	4
Database Management System (DBMS) Advantages	4
Database Kinds	4
Relational Model	4
Schema	4
Query Languages	5
IDB Lecture 2: Basic Structured Query Language (SQL)	5
SQL Data Model	5
$\widetilde{\mathrm{SQL}}$	5
Getting to the UOE psql prompt	5
PostgreSQL (pqsl)	5
Changing the Definition of a Table	5
Basic Queries	6
IDB Lecture 3: Basic SQL 2	6
Database Modification	6
Joins	6
Renaming attributes	6
IDB Lecture 4: Relational Algebra (RA)	6
Relational Algebra	6
Operations	6
Union Intersection & Difference	7
Joining relations	7
Translating SQL to/from Relational Algebra	7
IDB Lecture 5: Relational Algebra on Sets	8
Division	8
IDB Lecture 6: Predicate Logic	8
Interpretations	8

Semantics of FOL: Interpretations	. 8
Semantics of FOL: Terms	
Formulas	
IDB Lecture 7: Predicate Logic 2	9
Satisfiability and Validity	
Equivalence	. 9
Universal and Existential Quantification	. 9
Universal Quantification (\forall)	. 9
Existential Quantification (\exists)	. 10
Quantifier duality	. 10
Equivalence Properties	
IDB Lecture 8: Relational Calculus (RC)	10
Relational Calculus	. 10
Interpretations in RC	
Answer to Queries	
Safety	
IDB Lecture 9: Active Domain & Translating Relational Alg	e-
bra/Calculus	11
Active Domain	. 11
Evaluation of Quantifiers under active domain	
Relational Algebra (RA) \equiv Safe Relational Calculus (RC)	
Relational Algebra to Relational Calculus	
Base Relation	
Renaming	
Projection	
Selection	
Product, Union, Difference	
IDB Lecture 10: Translating Relational Calculus to Relation Algebra	al 14
Active Domain in Relational Algebra	
From RC to RA	
Assumptions	
Predicate	
Existential Quantification	
Comparisons	
Negation	
Disjunction	
Conjunction	. 15
IDB Lecture 11: Multisets and Aggregation	16
Multisets	
Operation to remove multiples (s)	16

Basic SQL	16 16 17
IDB Lecture 12: Aggregation with Grouping Order of Evaluation Precedence	17 18
IDB Lecture 13: Nested Queries (Subqueries) Revisiting WHERE	18 18 18 19
IDB Lecture 14: Nested Queries (Subqueries) 2	19
IDB Lecture 15: Nested Queries (Subqueries) 3 Examples with Exists / Not Exists	20 20 20 20 21 21 21
IDB Lecture 16: Database Constraints Integrity constraints	21 21 21
Keys (special case FD)	21 22
IDB Lecture 17: Database Constraints 2	22
Not Null	22 22 22 22
IDB Lecture 18: Entailment of Constraints	22
Implication of Constraints	22 22
Axiomatisation of Constraints	23 23 23 23
Closure of a set of FDs	23 23 23
Solution to implication Problem	23 24

IDB Lecture 19: Entailment of Constraints 2	24
Keys, candidate keys and prime candidate	24
Computing all Candidate Keys	24
Implication of Inclusion Dependencies (INDs)	24
Axiomatisation	25
FDs and INDs Together	25
IDB Lecture 20: Normal Forms	25
Boyce Codd Normal Form (BCNF)	25
Decompositions	25
Criteria for good decompositions	26
Projections of FDs	26
BCNF Decomposition Algorithm	26

IDB Lecture 1: Introduction

Database Management System (DBMS) Advantages

- Uniform data administration
- Efficient access to resources
- Data independence
- Reduced application development time
- Data integrity and security
- Concurrent access
- Recovery from crashes

Database Kinds

- Relational databases (course focus)
- Document stores
- Graph databases
- Key-value stores

Relational Model

First proposed by Edgar F. Codd, 1970

Schema

A relational model has a schema consisting of

- set of table names
- column names
- constraints

Query Languages

Procedural Specify a *sequence of steps* to obtain expected results. **Declarative** Specify *what* you want not *how* to get it.

• queries are typically declarative (the how is internal).

IDB Lecture 2: Basic Structured Query Language (SQL)

SQL Data Model

• Data is organised in tables (aka relations)

Tables (Relations) are a collection of tuples (aka rows or records)

SQL

Consists of two sublanguages,

Data Definition Language (DDL): operations on the schema Data Manipulation Language (DML): operations on the instance

Getting to the UOE psql prompt

Better instructions on pizza:

```
    ssh s1869292@ssh.inf.ed.ac.uk
    ssh student.login
    ssh student.compute (unnecessary?)
    psql -h pgteach
```

PostgreSQL (pqsl)

• psql command are case insensitive

Changing the Definition of a Table

```
ALTER TABLE <name>
RENAME TO <new_name>;
RENAME <column> TO <new_column>;
ADD <column> <type>;
DROP <column>;
ALTER <column>
TYPE <type>;
SET DEFAULT <value>;
DROP DEFAULT;
```

```
TRUNCATE TABLE <name>;
DROP TABLE <name>;
```

Basic Queries

```
SELECT <list_of_attributes>
FROM <list_of_tables>
WHERE <condtion>
```

• when multiples tables are selected in 'FROM', the tables are concatenated (all rows with all rows/nested loop)

IDB Lecture 3: Basic SQL 2

Database Modification

```
UPDATE 
SET <assignments>
WHERE <condition>
```

Joins

Joins are syntactic sugar for filters with multiple tables

```
table1 JOIN table2 ON <condition>
table1 INNER JOIN table2 ON <condition>
table1 LEFT JOIN table2 ON <condition>
table1 RIGHT JOIN table2 ON <condition>
table1 OUTER JOIN table2 ON <condition>
```

Renaming attributes

```
... FROM Customer c, Account [AS] A ...
```

ullet the AS is optional

IDB Lecture 4: Relational Algebra (RA)

Relational Algebra

Relational Algrbra Expression takes an input of relation(s) (R), applies a sequence of operations and returns a relation as an output.

Operations

Projection (π) vertical operation which chooses columns. Of general form

$$\pi_{A_1,\ldots,A_n}(R)$$

taking only the values of attributes A_1 to A_n for each tuple in R.

Selection (σ) horizontal operation on rows. Of general form

$$\sigma_{condition}(R)$$

taking only the tuples in R for which the condition is satisfied.

• for $\sigma_{\theta_1}(\sigma_{\theta_2}(R)) = \sigma_{\theta_1 \wedge \theta_2}(R)$, the RHS generally has faster runtime.

Product (\times) cartesian product *concatenates* each tuple of R with each tuples of S. Of general form

$$R \times S$$
.

- conditional on the relations having a disjoint set of atributes
- $cardinality(R \times S) = cardinality(R) \times cardinality(S)$
 - where **Cardinality** is the number of attribues.
- $arity(R \times S) = arity(R) + arity(S)$
 - where **Arity** is the number of rows.

Renaming (ρ) gives a new name to some attribute of a relation with syntax

$$\rho_{replacements}(R)$$

where a replacement has the form $A \to B$.

Union Intersection & Difference

Note: Relations must have the same attributes.

Union (\cup) set of all rows in R and S

Intersection (\cap) all rows that belong to both R and S

Difference (-) all rows in A that are not in B

Joining relations

Joins can be created by combining Cartesian product (\times) with selection (σ) .

Natural Join (⋈) joins two tables on their common attributes

Theta-join $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

Equijoin \bowtie_{θ} where θ is a conjunction of equalities

Semijoin $R \ltimes_{\theta} S = \pi_X(R \bowtie_{\theta} S)$ where X is the set of attributes of R

Antijoin $R \bar{\ltimes_{\sigma}} S = R - (R \ltimes_{\sigma} S)$

Translating SQL to/from Relational Algebra

SELECT \iff projection (π)

 $FROM \iff Product(x)$

WHERE \iff selection (σ)

```
\begin{array}{l} \mathtt{SELECT}\ A_1,...,A_n \\ \mathtt{FROM}\ T_1,...,T_m \\ \mathtt{WHERE} \\ \updownarrow \\ \pi_{A_1,...,A_n}(\sigma_{< condition>}(T_1\times ...\times T_m)) \\ \mathtt{where}\ \mathtt{common}\ \mathtt{attributes}\ \mathtt{in}\ T_1,...,T_m\ \mathtt{must}\ \mathtt{be}\ \mathtt{renamed}. \end{array}
```

IDB Lecture 5: Relational Algebra on Sets

Division

```
Divison R over a set of attributes X

S over a set of attributes Y \subset X

Let Z = X - Y

R \div S = \{r \in \pi_Z(R) \mid \forall s \in S, rs \in R\}

= \{r \in \pi_Z(R) \mid \{r\} \times S \subseteq R\}

= \pi_Z(R) - \pi_Z(\pi_Z(R) \times S - R)
```

Note: I don't really understand

IDB Lecture 6: Predicate Logic

Free variables variables that are not in the scope of any quantifier. A variable that is not free is bound.

Interpretations

A formula may be true or false w.r.t a given interpretation.

Interpretation defines the semantics of the language; an assignment of variables that gives meaning to a statement.

Semantics of FOL: Interpretations

```
First Order Structure \mathcal{I} = \langle \Delta, \mathcal{I} \rangle
```

 Δ non empty domain of objects (universe) $a^{\mathcal{I}}$ function which gives meaning to constant & predicate symbols

- $a^{\mathcal{I}} \in \Delta$ gives meaning to *constants*, "object a by means of interpretation function \mathcal{I} ".
- $R^{\mathcal{I}} \subseteq \Delta^1 \times ... \times \Delta^n$ gives meaning to *predicates*, "mapping it to an element in our domain (objects in the unverse)"

Variable Assignment (v) maps each variable to an object in Δ

• Notation: v[x/d] is v with $x \to d$

Semantics of FOL: Terms

Interpretation of terms under (\mathcal{I}, v)

$$x^{\mathcal{I},v} = v(x)$$

$$a^{\mathcal{I},v} = a^x$$

Formulas

 $(\mathcal{I}, v) \models \phi$ means interpretation (I, v) satisfies formula ϕ

$$I, v \models P(t_1, ..., t_n) \iff (t_1^{\mathcal{I}, v}, ..., t_n^{\mathcal{I}, v}) \in P$$

$$I, v \models \neg \phi \iff \mathcal{I}, v \nvDash \phi$$

$$I, v \models \phi \land \psi \iff \mathcal{I}, v \models \phi \text{ and } \mathcal{I}, v \models \psi$$

$$I, v \models \phi \lor \psi \iff \mathcal{I}, v \models \phi \text{ or } \mathcal{I}, v \models \psi$$

$$I, v \models \phi \to \psi \iff \mathcal{I}, v \models \phi \text{ then } \mathcal{I}, v \models \psi$$

$$I, v \models \forall x \phi \iff \text{for every } d \in \Delta : \mathcal{I}, v[x/d] \models \phi$$

$$I, v \models \exists x \phi \iff \text{there exists } d \in \Delta \text{ s.t } \mathcal{I}, v[x/d] \models \phi$$

IDB Lecture 7: Predicate Logic 2

Satisfiability and Validity

A formula is: Satisfiable: if it has a model.

Unsatisfiable if it has no models.

Falsifiable is thre is some interpretation that is not a model.

Valid (tautology) is every interpretation is a model.

Equivalence

Equivalence (\equiv) Two formulas are *logically equivalent* if they have the same models.

Universal and Existential Quantification

Universal Quantification (∀)

Everyone taking IDS is smart:

$$\forall x (Takes(x, dbs) \rightarrow Smart(x))$$

• typically \rightarrow is the main connective with \forall

Existential Quantification (∃)

Someone takes IDS and fails:

$$\exists x (Takes(x, dbs) \land Fails(x, dbs))$$

• typically \wedge is the main connective with \exists

Quantifier duality

Each quantifier can be expressed using the other.

$$\forall x \text{ Likes}(x, cake) \equiv \neg \exists x \neg \text{ Likes}(x, cake)$$
$$\exists x \text{ Likes}(x, broccoli) \equiv \neg \forall x \neg \text{ Likes}(x, broccoli)$$

Equivalence Properties

Commutativity, Associativity, Distributivity, Idempotence, Absorption, De Morgan, Implication

IDB Lecture 8: Relational Calculus (RC)

• extension of predicate logic

Relational Calculus

A relational calculus query is an expression of the form $\{\bar{x} \mid \phi\}$ where,

- head (\bar{x}) is a tuple of variables
- body (φ) is a FOL formula
- all the free variables in the body must be mentioned in the head.
- queries without heads are called boolean queries.

Example 1: Name the customers younger than 33 or older than 50 (where Customer = Id, Name, Age).

$$\{y \mid \exists x, z \; \text{Customer}(x, y, z) \land (z < 33 \lor z > 50)\}$$

Example 2: Name and age of customers having an account in London (where Account = Number, Branch, CustID).

$$\{y, z \mid \exists x \; \text{Customer}(x, y, z) \land \exists w \, \text{Account}(w, '\text{London'}, x)\}$$

Example 3: ID of customers who have and account in every branch.

$$\{x \mid \exists y, x \; \text{Customer}(x, y, z) \land (\forall u, w, v \; \text{Account}(u, w, v) \rightarrow \exists u' \; \text{Account}(u', w, x))\}$$

Interpretations in RC

Every constant is interpreted as itself

Answer to Queries

With every constant fixed, relational calculus queries are really a 'database' as they only operate over the relations.

The answer to a query $Q = \{\bar{x}\varphi\}$ on a database D is

$$Q(D) = \{v(\bar{x}) \mid v : \mathbf{free}(\varphi) \to \delta \text{ such that } D, v \models \varphi\}$$

Safety

Safety A query is safe if it gives a finite answer on all databases and this answer does not depend on the universe Δ .

• Safety Test: can this query give me an infinite answer (on an infinite database)?

IDB Lecture 9: Active Domain & Translating Relational Algebra/Calculus

Active Domain

Active Domain (Adom(R) all constansts occuring in the database (a set of all values).

- Calulating queries with Adom makes for *safe* relational calculus
- queries are finite as there are finitly many elements

Evaluation of Quantifiers under active domain

Assume **Adom** $(D) = \{1,2,3\}$

$$D, v \models \exists x R(x, y) \land S(x)$$

$$\iff$$

$$D, v \models (R(1, y) \land S(1)) \lor (R(2, y) \land S(2)) \lor (R(3, y) \land S(4))$$

Relational Algebra (RA) \equiv Safe Relational Calculus (RC)

RA and RC are syntactically different but semantically equally expressive.

• important as your database engine needs to be able translate your what to a how.

Relational Algebra to Relational Calculus

Translate each RA expression E into a FOL formula φ .

Environment (η) *Injective Map* from attributes to values.

• map convention to be used in class $\eta(A) = x_A$

Base Relation

R over $A_1, ..., A_n$ is translated to $R(\eta(A_1), ..., \eta(A_n))$

Example: If R is a base realtion over A, B

$$\eta = \{A \mapsto x_A, B \mapsto x_B\}$$

Renaming

$$\rho_{\text{OLD} \to \text{NEW}}(E)$$

Process $Rename(\rho_{OLD \rightarrow NEW}(E)) \rightarrow RC$:

- 1. Translate E to φ .
- 2. If there is no mapping for NEW in η add {NEW $\mapsto x_{\text{new}}$ }.
- 3. Replace every occurrence of eta(NEW) in φ with a *fresh* variable.
- 4. Replace every (free) occurrence of $\eta(\text{OLD})$ in φ by $\eta(\text{NEW})$.

Example: If R is a base relation over A, B then translate the following (RA) to relational calculus, $\rho_{A\to B}(\rho_{B\to C}(R))$.

- 1. Translate inner bracket $\rho_{B\to C}(R)$)
 - 1. Translate inner bracket R over A, B gives

$$R(x_A, x_B)$$

2. No mapping for C (NEW) so adding C to map,

$$M = \{A \mapsto x_A, B \mapsto x_B, C \mapsto x_C\}$$

- 3. no occurrence of x_C ($\eta(NEW)$) in $R(x_A, x_B)$ so this step does nothing.
- 4. Replacing x_B with x_C gives

$$R(x_A, x_C)$$

- 2. Mapping for B so does nothing.
- 3. No instance of x_B so this step does nothing.
- 4. Replacing x_A with x_B

$$R(x_B, x_C)$$

Hence,

$$\rho_{A \to B}(\rho_{B \to C}(R)) \iff R(x_B, x_C)$$

Projection

 $\pi(E)$ is translated to $\exists X \varphi$

where

- φ is the translation of E
- $X = \mathbf{free}(\varphi) \eta(\alpha)$
 - attributes that are *not* projected become quantified

Example: For a base relation R over A, B, translate $\pi_A(R)$.

$$\exists x_B R(a_A, x_B)$$

Selection

 $\sigma_{\theta}(E)$ is translated to $\varphi \wedge \eta(\theta)$

where

- φ is the translation of E
- $\eta(\theta)$ is obtained from θ by replacing each attribute A by $\eta(A)$

Example: For relation R over A, B, translate $\sigma_{A=B\vee B=21}(R)$.

$$R(x_A, x_B) \wedge (x_A = x_B \vee x_B = 21)$$

Product, Union, Difference

Product $E_1 \times E_2$ is translated to $\varphi \wedge \varphi$

Union $E_1 \cup E_2$ is translated to $\varphi \vee \varphi$

Difference $E_1 \times E_2$ is translated to $\varphi \wedge \neg \varphi$

Example: For Relations,

- Customer (C): CustID, Name
- Account (A): Number, CustID
- Environment : $\eta = \{ \text{CustID} \mapsto x_1, \text{Name} \mapsto x_2, \text{Number} \mapsto x_1 \}$

Translate the following, Customer \bowtie Account.

Solution: Expressing the join in primitive operations

$$\pi_{CustID,Name,Number}(\sigma_{CustID=CustID'}(C \times \rho_{CustID\rightarrow CustID'}(A)))$$

Translating to RC

- 1. Customer: $C \Rightarrow C(x_1, x_x)$
- 2. Account: $A \Rightarrow A(x_3, x_1)$
- 3. Renaming: $\rho_{CustID \to CustID'}(2) \Rightarrow A(x_3, x_1')$
- 4. Innermost product: $1 \times 3 \Rightarrow C(x_1, x_2) \wedge A(x_3, x_1)$
- 5. Selection: $\sigma_{CustID=CustID'}(4) \Rightarrow C(x_1, x_2) \land A(x_3, x_1) \land x_1 = x_4$

6. Projection: $\pi_{CustID,Name,Number}(5) \Rightarrow$

$$\exists x_4 \, C(x_1, x_2) \land A(x_3, x_1) \land x_1 = x_4$$

IDB Lecture 10: Translating Relational Calculus to Relational Algebra

Active Domain in Relational Algebra

For a Relation R over attributes $A_1, ..., A_n$

Adom(R) given by
$$\rho_{A_1 \to A}(\pi_{A_1}(R)) \cup \ldots \cup \rho_{A_n \to A}(\pi_{A_n}(R))$$

Adom(D) $\bigcup_{R \in D} Adom(R)$ (where D is a Database)

- Intuition: return all elements of database in single column
- we denote $Adom_N$ (where N is a name) to the RA expression that returns the query.

From RC to RA

Translate each FOL formula ρ to a RA expression E

Assumptions

- no universal quantifiers, implications or double negations
 see L07 "Quantifier Duality" for conversions
- no distinct pair of quantifiers binds the same variable name
- no variable name occurs both free and bound
- no variable names repeated within a predicate
- no constants in predicates
- no atoms of the form x **op** x or c_1 **op** c_2

Predicate

$$R(x_1,...,x_n) \implies \rho_{A_1 \text{is translated to}\eta(x_1),...,A_n \to \eta(x_n)}(R)$$

Example: For R over A, B, C, R(x, y, z) is translated to $\rho_{A \to A_x, B \to A_y, C \to A_z}(R)$

Existential Quantification

 $\exists x \varphi$ is translated to $\pi_{\eta(X-\{x\})}(E)$ where

- E is the translation of φ
- X is free(φ)

Example: For φ with free variables x,y,z and translation E,, $\exists y\varphi$ is translated to $\pi_{A_x,A_z}(E)$.

Comparisons

x op y is translated to $\sigma_{\eta(x)}$ op $\eta(y)(\mathbf{Adom}_{\eta(x)} \times \mathbf{Adom}_{\eta(y)})$ x op c is translated to $\sigma_{\eta(x)}$ op $c(\mathbf{Adom}_{\eta(x)})$

• where c is a constant

Example 1: x = y is translated to $\sigma_{A_x = A_y}(\mathbf{Adom}_{A_x} \times \mathbf{Adom}_{A_y})$

Example 2: x > 1 is translated to $\sigma_{A_x > 1}(\mathbf{Adom}_{A_x})$

Negation

 $\neg \varphi$ is translated to $\prod_{x \in \mathbf{free}_{i}} \mathbf{Adom}_{\eta(x)}$) -E

- where E is the translation of ϕ
- \prod is the Cartesian product

Example: For φ with free variables x, y and translation E, $\neg \varphi$ is translated to $\mathbf{Adom}_{A_x} \times \mathbf{Adom}_{A_y} - E$

Disjunction

 $\varphi_1 \lor \varphi_2$ is translated to $E_1 \times (\prod_{x \in X_2 - X_1} \mathbf{Adom}_{\eta(x)} \cup E_2 \times (\prod_{x \in X_1 - X_2} \mathbf{Adom}_{\eta(x)})$ where

- E_i is the translation of φ_i
- $X_i = \mathbf{free}(\varphi_i)$

Conjunction

Same as disjunction, but uses \cap for \cup

Example: For Relations,

- Customer (C): CustID, Name
- Account (A): Number, CustID

Translate $\exists x_4 C(x_1, x_2) \land A(x_3, x_4) \land x_1 = x_4$

Solution:

Environment $\eta = \{x_1 \mapsto A, x_2 \mapsto B, x_3 \mapsto C, x_4 \mapsto D\}$

- 1. $C(x_1, x_2) \Rightarrow C$
- 2. $A(x_3, x_4) \Rightarrow \rho_{x_1 \to x_4}(A)$
 - to remove clashes
- 3. $x_1 = x_4 \Rightarrow \sigma_{A=D}(\mathbf{Adom}_A \times \mathbf{Adom}_D)$
- 4. $2 \wedge 3 \Rightarrow 2 \times \mathbf{Adom}_A \cap 3 \times \mathbf{Adom}_B$
 - note 2 (LHS) and 3 (RHS) do not have same free variables, so we need to add the missing variables to each side

```
5. 1 \land 4 \Rightarrow (C \times \mathbf{Adom}_C \times \mathbf{Adom}_D) \cap 4 \times \mathbf{Adom}_B
6. \exists x_4 5 \Rightarrow \pi_{A,B,C}(5)
```

Expanding out:

$$\begin{split} \pi_{A,B,C}((C \times \mathbf{Adom}_C \times \mathbf{Adom}_D) \cap \\ & ((\rho_{x_1 \to x_4}(A) \times \mathbf{Adom}_A) \cap \\ & (\sigma_{A=D}(\mathbf{Adom}_A \times \mathbf{Adom}_D)) \times \mathbf{Adom}_B) \times \mathbf{Adom}_B) \end{split}$$

• suspicious of final adom?

Equivalent to (solution on slides):

$$\pi_{A,B,C}((C \times \mathbf{Adom}_C \times \mathbf{Adom}_D) \cap \\ (A \times \mathbf{Adom}_A \times \mathbf{Adom}_B) \cap \\ (\sigma_{A=D}(\mathbf{Adom}_A \times \mathbf{Adom}_D)) \times \mathbf{Adom}_B \times \mathbf{Adom}_C))$$

- Where $C = \rho_{CustID \to A, Name \to B}(C)$
- $A = \rho_{Number \to C, CustID \to D}(A)$

IDB Lecture 11: Multisets and Aggregation

Multisets

Multiset sets where the same element can occur multiples times (SQL uses multisets)

- Multiplicity is the number of occurences of an element.
- Bags another name for multisets.

Operation to remove multiples (ϵ)

As described.

Basic SQL

```
Q := SELECT [DISTINCT] a FROM t WHERE c
| Q1 UNION [ALL] Q2
| Q1 INTERSECT [ALL] Q2
| Q1 EXCEPT [ALL] Q2
```

SELECT a FROM t WHERE c - keeps duplicates, [DISTINCT] removes them UNION, INTERSECT & EXCEPT - remove duplicates, [ALL] keeps them

SQL to RA on bags

SQL	RA on bags
$\begin{array}{c} \text{SELECT} \ \alpha \dots \\ \text{SELECT DISTINCT} \ \alpha \dots \\ Q_1 \ \text{UNION ALL} \ Q_2 \\ Q_1 \ \text{INTERSECT ALL} \ Q_2 \\ Q_1 \ \text{EXCEPT ALL} \ Q_2 \end{array}$	$\pi_{\alpha}(.)$ $\epsilon(\pi_{\alpha}(.))$ $Q_1 \cup Q_2$ $Q_1 \cap Q_2$ $Q_1 - Q_2$
$\begin{array}{c} Q_1 \text{ UNION } Q_2 \\ Q_1 \text{ INTERSECT } Q_2 \\ Q_1 \text{ EXCEPT } Q_2 \end{array}$	$ \epsilon(Q_1 \cup Q_2) \epsilon(Q_1 \cap Q_2) \epsilon(Q_1) - Q_2 $

• duplicates are good because they give you a true distribution of the data

Aggregate Functions in SQL

```
COUNT number of elements in a column

AVG average value of all elements in column

SUM Adds up all elements in a column

MIN / MAX min/max values of elements in a column

COUNT (*) counts all rows in table

COUNT (DISTINCT *) is ILLEGAL! use, SELECT COUNT(DISTINCT T.*)
```

IDB Lecture 12: Aggregation with Grouping

For table Account with columns Number, Branch, CustID, Balance, Spend

1. How much money does each customer have in total across all of their accounts?

```
SELECT A.custID, SUM(A.balance)
FROM Account A
GROUP BY A.custID ;
```

2. How much money is there total in each branch?

```
SELECT A.branch SUM(A.balance)
FROM Account A
GROUP BY A.branch;
```

3. How much money does each customer have in each branch?

```
SELECT A.custID, A.branch, SUM(A.balance)
FROM Account A
GROUP BY A.custID, A.branch;
```

4. Branches with a total balance (across accounts) of at least 500?

```
SELECT A.branch SUM(A.balance)
FROM Account A
GROUP BY A.branch
HAVING SUM(A.balance) >= 500 ;
```

• can't use WHERE as its has evaluation precedence over GROUP BY

Order of Evaluation Precedence

- 1. FROM taking rows from (joined) tables listed
- 2. WHERE discard rows not satisfying the condition
- 3. GROUP BY partition rows according to attributes
- 4. Compute Aggregates
- 5. HAVING discard rows not satisfying
- 6. SELECT output the value of expressions listed
- 7. Money available in total to each customer across their accounts?

```
SELECT custID, SUM(A.balance - A.spend)
FROM Account A
GROUP BY A.custID ;
```

IDB Lecture 13: Nested Queries (Subqueries)

Question 1: Accounts with a higher balance that the average of all accounts?

Revisiting WHERE

```
term := attribute \mid value
```

Comparison

- (term,...,term) op (term,...,term)
- term IS [NOT] NULL
- (term,...,term) op ANY (query)

```
(term,...,term) op ALL (query)(term,...,term) op [NOT] IN (query)
```

• EXISTS (query)

Condition

- comparison
- condition AND condition
- condition OR condition
- NOT condition

All / Any

• All/Any vs. empty set -> true

IDB Lecture 14: Nested Queries (Subqueries) 2

```
Question 1. Id of customers from London who own an account?
SELECT C.ID
FROM Customer C
WHERE C.City = 'London'
  AND C.ID = ANY ( SELECT A.custID
                     FROM Account A ) ;
Question 2. Customers living in a city without a branch?
SELECT *
FROM Customer C
WHERE C.city <> ALL ( SELECT A.branch
                       FROM Account A ) ;
  • <> ALL could be replaced with NOT IN
Question 3. Return all the customers if there are some accounts in London?
SELECT *
FROM Customer C
WHERE EXISTS ( SELECT 1
                 FROM Account A
                 WHERE A.branch = 'London'
                   AND A.CustID = C.id );
Question 4. ID of customers who own an account (living in London)?
SELECT C.Id
FROM Customer C
WHERE C.City = 'London'
  AND EXISTS ( SELECT *
```

```
FROM Account A
WHERE A.CustId = C.id );
```

IDB Lecture 15: Nested Queries (Subqueries) 3

Examples with Exists / Not Exists

• universal quantification expressed with NOT EXISTS Question 1. Customers living in a city without a branch (repeat question)?

```
SELECT *
FROM Customer C
WHERE NOT EXISTS ( SELECT *
                       FROM Account A
                       WHERE A.brach = c.city );
Scoping
A subquery has - a local scope (its FROM clause) - an outer scope
Question 2. Branches with a total balance (across accounts) of at least 500?
SELECT subquery.branch
FROM ( SELECT A.branch, SUM(A.balance) AS total
       FROM Account A
       GROUP BY A.branch ) AS subquery
WHERE subquery.total >= 500 ;
Question 3: Average the total balances across each customer's accounts?
Strategy 1. find the total balance across each customers accounts 2. take the
average of the totals
SELECT AVG(subquery.tot)
       ( SELECT
                   A.custid, SUM(A.balance) AS tot
         FROM
                   Account A
         GROUP BY A.custid ) AS subquery;
```

Ordering

```
Syntax: ORDER BY \langle \text{column}_1 \rangle [DESC] ,..., \langle \text{column}_n \rangle [DESC] 
 Example\ 1 
 SELECT * FROM Accounts 
 ORDER BY custid ASC, balance DESC;
```

Casting

```
syntax: CAST(term\ AS\ \langle\ type\ \rangle
```

Conditional Expressions

```
CASE WHEN (bool-exp)
THEN (value-exp)
...
WHEN (bool-exp)
THEN (value-exp)
ELSE (value-exp)
END
```

 \bullet ELSE is optional -> NULL if no match

Pattern Matching

Syntax: term LIKE pattern

Question 4: Customers with a name that begins with 'K' and has at least 5 characters?

```
SELECT *
FROM Customer
WHERE name LIKE 'K___%';
```

IDB Lecture 16: Database Constraints

Integrity constraints

• instances that satisfy the constraints are called legal

Functional Dependencies (FD)

Syntax: $X \to Y$, read X determines Y

Definition: A relation R satisfies $X \to Y$ if for every two tuples $t_1, t_2 \in R$

$$\pi_X(t_1) = \pi_X(t_2) \implies \pi_Y(t_1) = \pi_Y(t_2)$$

Keys (special case FD)

Definition: A set of attributes X which satisfy

$$\pi_X(t_1) = \pi_X(t_2) \implies t_1 = t_2 \quad \forall t_1, t_2 \in R$$

Intuition: each value in the attribute (column) uniquely identifies the tuple (row)

Inclusion Dependencies (IND)

Syntax: $R[X] \subseteq S[Y]$ where R, S are relations and X, Y are sequences of attributes

Definition: R and S satisfy $R[X] \subseteq S[Y]$ if

$$\pi_X(t_1) = \pi_Y(t_2) \quad \forall t_1 \in R \quad \exists t_2 \in S$$

• Note: the projection must respect attribute order

Intuition: the projection of one table must be a subset of a projection of another table

IDB Lecture 17: Database Constraints 2

Not Null

• repetition of stuff I already know

Unique

• allows multiple null

Primary Key

• repetition

Foreign Key

• repetition

IDB Lecture 18: Entailment of Constraints

Implication of Constraints

A set σ of constraints **implies** (or **entails**) a constraint ϕ if *every* instance that satisfies σ also satisfies ϕ

Syntax: $\sigma \models \phi$

Question: Does σ imply ϕ ?

Relevance

- do the given constraints imply bad ones
- to the given constraints look bad but imply good ones

Axiomatisation of Constraints

An axiomatisation is-

Sound if every derived constraint is implied **Complete** if every implied constraint can be derived

Sound + **Complete** axiomatisation gives a procedure ⊢ such that

$$\sigma \models \phi \iff \sigma \vdash \phi$$

Intuition: if we derive there is an implicit constraint

Armstrong's Axioms (for FDs)

Essential Axioms

Reflexivity $Y \subseteq X \Rightarrow X \rightarrow Y$ Argumentation $X \rightarrow Y \Rightarrow XZ \rightarrow YZ \forall Z$ Transitivity $X \rightarrow Y \land Y \rightarrow Z \Rightarrow X \rightarrow Z$

Derived Axioms

Union $X \to Y \land Y \to Z \Rightarrow X \to YZ$ Decomposition $X \to YZ \Rightarrow X \to Y \land X \to Z$

Closure of a set of FDs

Let F be a set of FDs, the **Closure** (F^+) of F is the set of all FDs implied by the FDs in F.

• can be computed using Armstrong's axioms

Attribute Closure

The Closure $(C_f(X))$ of a set X of Attributes w.r.t. a set F of FDs is the set of attributes we can derive from X using th FDs in F

$$C_F(X) = \{ A \mid F \vdash X \to A \}$$

Properties

- $X \subseteq C_F(X)$
- $X \subseteq Y \Rightarrow C_F(X) \subseteq C_F(Y)$
- $C_F(C_F(X)) = C_F(X)$

Solution to implication Problem

$$F \models Y \to Z \iff Z \subseteq C_F(Y)$$

Closure Algorithm

```
Input: a set F of of FDs and a set X of attributes
Output: C_F(X), the closure of X with respect to F
```

Algorithm $Closure(F : \{FD\}, X : \{Attribute\}) \rightarrow CFX : \{Attribute\}$

```
1. unused := F
```

2. closure :=
$$X$$

3. while $(Y \to Z) \in$ unused and $Y \subseteq$ closure

4. closure := closure
$$\cup Z$$

5. unused := unused
$$-\{Y \to Z\}$$

6. return closure

IDB Lecture 19: Entailment of Constraints 2

Keys, candidate keys and prime candidate

Let R be a relation with set of attributes U and FDs F. $X \in U$ is a **key** for R if $F \models X \to U$. Equivalently, X is a key if $C_F(X) = U$ as $C_F(X) = U \iff \{A \mid F \models X \to A\}$.

Candidate Key (minimal set of attributes) X such that $\forall Y \subset X$, Y is not a key.

Prime attribute an attribute of a candidate key.

Computing all Candidate Keys

Algorithm CandidateKeys($U : \{Attribute\}, F : \{FD\}) \rightarrow CK : \{\{Attribute\}\}\$

```
1. ck := \emptyset
```

2.
$$G(V, E) := V = \{v \mid v \in \mathcal{P}(U)\}, E = \{\overrightarrow{XY} \mid X \in v, Y \in V, X - Y = \{A\}\}$$

3. while G is not empty:

4. v := node without children

5. **if** $C_F(X) = U$:

6. $ck := ck \cup \{X\}$

7. $G := G - (X + X_{ancestors})$

8. **else**:

 $9. \qquad G := G - X$

• more optimal variant in the tutorial (lazy expansion of graph)

Implication of Inclusion Dependencies (INDs)

Inclusion Dependency Every X is a Y, such as in a foreign key constraint. *Example:* every manager is an employee.

Axiomatisation

Reflexivity $R[X] \subseteq R[X]$

Transitivity $R[X] \subseteq S[Y] \land S[Y] \subseteq T[Z] \Rightarrow R[X] \subseteq R[Z]$

Projection $R[X,Y] \subseteq S[W,Z]$ with $|X| = |W| \Rightarrow R[X] \subseteq S[W]$

Permutation $R[A_1,...,A_n] \subseteq S[B_1,...,B_n] \Rightarrow R[A_{i_1},...,A_{i_n}]S[B_{i_1},...,B_{i_n}]$ where $i_1,...,i_n$ is a permutation of 1,...,n.

FDs and INDs Together

We have shown.

- 1. Given a set F of FDs and an FD f we can decide whether $F \models f$
- 2. Given a set G of INDs and an INDs g we can decide whether $G \models g$

Implication Problem: Asking $F \cup G \models f$ or $F \cup G \models g$ is UNDECIDABLE, no algorithm exists can always solve it. This holds for the case of keys and foreign keys.

IDB Lecture 20: Normal Forms

Redundancy Principle don't repeat constrained information in a table. Every FD should define a key.

Boyce Codd Normal Form (BCNF)

"Problems with bad designs are caused by FDs $X \to Y$ where X is not a key."

A relation with FDs F is in **BCNF** if $\forall X \to Y \in F$

- 1. $Y \subseteq X$ (the FD is trivial), OR
- 2. X is a key (the closure contains all all attributes in the relation).
- a database is BCNF is all relations are BCNF

Decompositions

Given a set of attributes U and a set of FDs F, a **decomposition** of (U, F) is a set

$$(U_1, F_1), ..., (U_n, F_n)$$

such that $U = \bigcup_{i=1}^n U_i$ and F is a set of FDs over U_i

• dont really understand

Criteria for good decompositions

Lossnessness No information is lost

Dependency Preservation no constraints are lost

• formal definitions missed

Projections of FDs

The **projection** of F on $V \subseteq U$ is a subset of the closure containing only the attributes of V.

BCNF Decomposition Algorithm

Algorithm BCNF- $Decomposition(U: \{Attribute\}, F: \{\{FD\}\}\}) \rightarrow S: \{(\{Attribute\}, \{FD\})\}:$

- 1. $S := \{(U, F)\}$
- 2. while $\exists (U_i, F_i) \in S$ not BCNF:
- 3. $S[U_i, F_i] := decompose(U_i, F_i)$
- 4. if $\exists \{U_i | (U_i, F_i) \in S, U_i \subseteq U_j, (U_j, F_j) \in S\}$
- 5. remove $S[U_i, F_i]$
- 6. return S

Algorithm $Decompose(U_i: \{Attribute\}, F_i: \{FD\})) \rightarrow (\{U\}, \{F\}):$

- 1. find $(X \to Y) \in F$ not BCNF
- 2. $V, Z := C_F(X), U V$
- 3. return $(V, \pi_V(F))$ and $(XZ, \pi_{XZ}(F))$