Problem

Let the *rotational closure* of language A be $RC(A) = \{yx | xy \in A\}$.

- **a.** Show that for any language A, we have RC(A) = RC(RC(A)).
- b. Show that the class of regular languages is closed under rotational closure.

Step-by-step solution

Step 1 of 4

a) The Rotational Closure of a language A is defined as $RC(A) = \{yx | xy \in A\}$. Now for any language A a string $\omega \in A$ also $\omega \in \Sigma^*$, and therefore $E \in A$.

It is known that $\omega \varepsilon = \varepsilon \omega = \omega$. Here for any language $A = \{\omega \varepsilon\}$, $RC(\omega \varepsilon) = \varepsilon \omega = \omega$ and $RC(RC(\omega \varepsilon)) = RC(\varepsilon \omega) = \omega \varepsilon = \omega$.

Therefore, RC(A) = RC(RC(A))

Comments (1)

Step 2 of 4

b) Proof: Assume the language A is being defined with the help of regular expression E. Now structural induction on the size of regular expression E is to be proved.

Now, it is to be shown that A(E) = A(RC(A)), which implies the language RC(A) is the reverse language of the specified language A.

Basis: If E is ε,\emptyset , or a for some symbol a, then RC(E)=E. That is, $RC(\varepsilon)=\varepsilon$, $RC(\varnothing)=\varnothing$ and RC(a)=a.

Induction: Three cases arise depending upon the specified expressions $\ E$ which are as follows:

• $E = E_1 + E_2$. Then $RC(E) = RC(E_1) + RC(E_2)$.

The relational closure of any two languages is obtained with the computation and after that taking the union of the specified two languages.

Comment

Step 3 of 4

•
$$E = E_1 E_2$$
. Then $RC(E) = RC(E_2)RC(E_1)$.

Here the expression is rotated with respect to two languages and language itself

For an example let if, $L(E_1) = \{01,111\}$ and $A(E_2) = \{00,10\}$, then,

$$A(E_1E_2) = \{0100, 0110, 11100, 11110\}$$
, then we can say

$$RC(A(E_1E_2)) = \{0010, 0110, 00111, 01111\}, \text{ where } \varepsilon \in A.$$

Again, $RC(A(E_1)) = \{10,111\}$

$$RC(A(E_2)) = \{00,01\}$$

$$A(RC(E_2)RC(E_1)) = \{0010,00111,0110,01111\}$$

and therefore, RC(A(E)) = A(RC(E)).

$\overline{}$				
		m		

Step 4 of 4

• $E = E_1^*$. Then $RC(E) = (RC(E_1))^*$. Here the justification is any string ω in A(E) can be written as $\omega_1\omega_2\cdots\omega_n$ where $\omega_i\in L(E)$.

 $\text{But} \ \ RC \big(\omega \big) = RC \big(\omega_n \big) RC \big(\omega_{n-1} \big) \cdots RC \big(\omega_1 \big) \ \text{where each} \ \ RC \big(\omega_1 \big) \in A \Big(RC \big(E \big) \Big) \ \text{and hence} \ \ RC \big(\omega \big) \ \text{is in} \ L \Big(\Big(RC \big(E_1 \big) \big)^* \Big).$

Therefore it is proved that the set of regular languages are closed under rotational closure.

Comment