Лабораторная работа №2 «Дискретное и дискретное во времени преобразования Фурье (ДВПФ, ДПФ)»

Модуль 1. Основные свойства ДВПФ.

- Оценка спектра сигнала по последовательности его отсчетов
- Различные формы записи ДВПФ
- Свойства ДВПФ

Оценка спектра сигнала по последовательности его отсчетов

Дискретное во времени преобразование Фурье (ДВПФ)

Оценка спектра сигнала по последовательности его отсчетов

Пусть есть последовательность выборок $x(k\Delta t)$, некоторого аналогового сигнала x(t), где Δt — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов, $k \in \mathbb{Z}$ — номер отсчета.

 $f_{\rm д}=1/\Delta t$ — частота дискретизации — величина, обратная шагу дискретизации (размерность [Гц]=[c $^{-1}$]). Будем считать, что спектр исходного аналогового сигнала ограничен

интервалом $\left[-f_{_{\rm I\! I}}/2;\,f_{_{\rm I\! I}}/2\right]$, а соответственно при дискретизации не наблюдается эффект наложения спектров ($f_{_{\rm I\! I}}>2f_{_{\rm B}}$).

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = Tx(k\Delta t),$$

где $T=\Delta t$. Как ранее было установлено, при $T=\Delta t$ спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра $X_{\rm a}(f)$ аналогового сигнала x(t) с периодом, равным частоте дискретизации f_{π} :

$$X_{\mathrm{I}}(f) = \sum_{n=-\infty}^{\infty} X_{\mathrm{a}}(f - nf_{\mathrm{I}}).$$

Оценка спектра сигнала по последовательности его отсчетов

$$X_{\mathrm{I}}(f) = \sum_{n=-\infty}^{\infty} X_{\mathrm{a}}(f - nf_{\mathrm{I}}).$$

Необходимая спектральная информация будет содержаться в полосе $\left[-f_{_{\rm I\! I}}/2;f_{_{\rm I\! I}}/2\right]$. Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{\mathbf{I}}(t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t).$$

Вычислим его спектр (преобразование Фурье)

$$X_{\mathcal{A}}(f) = \int_{-\infty}^{\infty} x_{\mathcal{A}}(t) \exp(-j2\pi f t) dt =$$

$$= \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t) \exp(-j2\pi f t) dt =$$

$$= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t-k\Delta t) \exp(-j2\pi f t) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t),$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{\mathbf{H}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t). \tag{1}$$

Эта формула определяет прямое дискретное во времени преобразование Фурье (ДВПФ). Учитывая, что (1) представляет собой ряд Фурье для периодической функции $X_{\rm д}(f)^{\rm 1}$, получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$
 (2)

¹ Напоминание. Для 2l - периодической функции f(x), абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций $\phi_m(x) = \exp(jm\frac{\pi}{l}x)$, $m \in Z$: $f(x) = \sum_{m=-\infty}^{+\infty} c_m \exp(jm\frac{\pi}{l}x)$, где коэффициенты Фурье $c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$.

Различные формы записи ДВПФ

Различные формы записи ДВПФ

Итак, мы установили, что пара дискретного во времени преобразования Фурье (ДВПФ) имеет вид

$$X(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t),$$

$$x[k] = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$

Введем нормированные частоты $\, {\bf v} = f \, / \, f_{_{\rm I\! I}} = f \, \Delta t \, . \,$ Тогда пара ДВПФ может быть записана следующим образом:

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk),$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv.$$

Если принять $2\pi f=\omega$, а частоту дискретизации взять в рад/с $\omega_\pi=2\pi\,/\,\Delta t$, то

$$X(\omega) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\omega k \Delta t),$$

$$x[k] = \frac{\Delta t}{2\pi} \int_{-\omega/2}^{\omega_{\pi}/2} X(\omega) \exp(j\omega k \Delta t) d\omega.$$

Приняв $\theta = 2\pi v$ (нормированный угол в радианах), получаем

$$X(\theta) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\theta k),$$

$$x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) \exp(j\theta k) d\theta.$$

Частотная	Размерность	Период	
переменная		повторения	
		спектра	
f	Гц	$f_{\mathcal{A}} = 1/\Delta t$	$[-f_{\mathcal{I}}/2;f_{\mathcal{I}}/2]$
$\omega = 2\pi f$	рад/с	$\omega_{\mathcal{I}} = 2\pi / \Delta t$	$[-\omega_{\mathcal{I}}/2;\omega_{\mathcal{I}}/2]$
$v = f / f_{\mathcal{A}}$	безразмерная	1	[-0,5;0,5]
$\theta = 2\pi f / f_{\mathcal{A}}$	рад	2π	$[-\pi;\pi]$

Различные формы записи ДВПФ

Пример. Рассмотрим в качестве примера последовательность единичных импульсов

$$x[k] = \mathbf{1}[k+1] + \mathbf{1}[k] + \mathbf{1}[k-1],$$

где $\mathbf{1}[k]$ — единичный импульс, определяемый как

$$\mathbf{1}[k] = \begin{cases} 1, k = 0; \\ 0, k \neq 0. \end{cases}$$

ДВПФ x[k] в нормированных частотах v

$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = \sum_{k=-1}^{1} x[k]e^{-j2\pi vk} =$$

$$= x[-1]e^{j2\pi v} + x[0]e^{0} + x[1]e^{-j2\pi v} =$$

$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v).$$

Аналогично для частот в герцах (f)

$$X(f) = 1 + 2\cos(2\pi f \Delta t),$$

для частот в рад/с ($\omega = 2\pi f$)

$$X(\omega) = 1 + 2\cos(\omega \Delta t)$$
,

для $\theta = 2\pi v$

$$X(\theta) = 1 + 2\cos(\theta)$$
.

Функция X(v) периодическая и в силу четной симметрии x[k] относительно нуля действительная.

Свойства ДВПФ

1) Линейность

Если $x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$ и $y[k] \overset{DTFT}{\longleftrightarrow} Y(\nu)$, то $\alpha x[k] + \beta y[k] \overset{DTFT}{\longleftrightarrow} \alpha X(\nu) + \beta Y(\nu)$, где α , β — фиксированные числа.

Это свойство следует непосредственно из соответствующих свойств интеграла и суммы.

2) Теорема запаздывания

Если

$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, to $x[k-l] \overset{DTFT}{\longleftrightarrow} X(v) \exp(-j2\pi v l)$.

где x[k-l] — это сигнал, запаздывающий по времени относительно сигнала x[k] на l отсчетов в случае l>0 и опережающий сигнал x[k] на -l отсчетов в случае l<0.

Стоит отметить, что |X(v)| для запаздывающего и исходного сигнала одинаков.

Докажем свойство. Для этого возьмем обратное ДВПФ для правой части выражения:

$$\int_{-1/2}^{1/2} X(v) \exp(-j2\pi v l) \exp(j2\pi v k) dv =$$

$$= \int_{-1/2}^{1/2} X(v) \exp(j2\pi v (k-l)) dv = x[k-l].$$

Пример

3) Теорема смещения

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, то $x[k] \exp(j2\pi v_0 k) \overset{DTFT}{\longleftrightarrow} X(v-v_0)$

Умножение сигнала на комплексную экспоненту вида $\exp(j2\pi v_0 k), \, v_0 \in R$ приводит к сдвигу спектральной функции вдоль оси частот на v_0 вправо в случае $v_0 > 0$ и на $-v_0$ влево в случае $v_0 < 0$.

Пример.

$$y[k] = x[k] \exp(j2\pi v_0 k)$$
, где $x[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$.

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} \exp(-j2\pi vk) =$$

$$= \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi v)} =$$

$$= \frac{2j}{2j} \frac{e^{-j\pi\nu N}}{e^{-j\pi\nu}} \frac{(e^{j\pi\nu N} - e^{-j\pi\nu N})}{(e^{j\pi\nu} - e^{-j\pi\nu})} = \frac{\sin(N\pi\nu)}{\sin(\pi\nu)} \exp(-j(N-1)\pi\nu).$$

$$|X(v)| = \left| \frac{\sin(N\pi v)}{\sin(\pi v)} \right|.$$

$$Y(v) = X(v - v_0) = \frac{\sin(N\pi(v - v_0))}{\sin(\pi(v - v_0))} \exp(-j(N - 1)\pi(v - v_0))$$

4) Равенство Парсеваля

$$\sum_{k=-\infty}^{\infty} |x[k]|^2 = \int_{-1/2}^{1/2} |X(v)|^2 dv$$
$$\sum_{k=-\infty}^{\infty} x[k] y^*[k] = \int_{-1/2}^{1/2} X(v) Y^*(v) dv$$

Пример.

Предположим, что имеется финитная последовательность

$$x[k]=\{1;\ 1;\ 1\}.$$
 Тогда $\sum\limits_{k=-\infty}^{\infty}\left|x[k]\right|^2=3.$ При этом $X(v)=\sum\limits_{k=-\infty}^{\infty}x[k]e^{-j2\pi vk}=x[-1]e^{j2\pi v}+x[0]e^0+x[1]e^{-j2\pi v}=\exp(j2\pi v)+1+\exp(-j2\pi v)=1+2\cos(2\pi v).$

$$\int_{-1/2}^{1/2} |X(v)|^2 dv = \int_{-1/2}^{1/2} |1 + 2\cos(2\pi v)|^2 dv = 3.$$

5) Умножение на k и дифференцирование по частоте

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, то $y[k] = kx[k] \overset{DTFT}{\longleftrightarrow} \frac{j}{2\pi} \frac{dX(v)}{dv}$.

Пример.

$$x[k] = \sum_{m=0}^{9} \mathbf{1}[k-m].$$

6) Изменение масштаба

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, то $\sum\limits_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \overset{DTFT}{\longleftrightarrow} X(vL)$.

Для того, чтобы доказать свойство, вычислим ДВПФ для последовательности в левой части.

$$\sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \exp(-j2\pi \nu k)$$

$$= \sum_{m=-\infty}^{\infty} x[m] \sum_{k=-\infty}^{\infty} \mathbf{1}[k-mL] \exp(-j2\pi \nu k) =$$

$$= \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi (\nu L)m) = X(\nu L).$$

Пример

Рассмотрим последовательность из 10 единичных импульсов.

$$x[k] = \sum_{m=0}^{N-1} \mathbf{1}[k - m].$$

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} \exp(-j2\pi vk) = \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi v)} = \frac{1 - \exp(-j2\pi v)}{1 - \exp(-j2\pi v)}$$

$$= \frac{e^{-j\pi\nu N}}{e^{-j\pi\nu}} \frac{(e^{j\pi\nu N} - e^{-j\pi\nu N})}{(e^{j\pi\nu} - e^{-j\pi\nu})} = \frac{\sin(N\pi\nu)}{\sin(\pi\nu)} \exp(-j(N-1)\pi\nu).$$
$$|X(\nu)| = \left| \frac{\sin(N\pi\nu)}{\sin(\pi\nu)} \right|.$$

Между каждой парой отсчетов добавим L-1 нулевой отсчет. Тогда модуль ДВПФ получившейся последовательности

$$|X_L(v)| = \left| \frac{\sin(10\pi vL)}{\sin(\pi vL)} \right|.$$

7) ДВПФ периодических последовательностей

а) последовательность единичных импульсов с периодом 1

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(\nu-n)$$

Вычислим ДВПФ для последовательности $\sum\limits_{m=-\infty}^{\infty}\mathbf{1}[k-m].$

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m]\right) \exp(-j2\pi vk) = \sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \mathbf{1}[k-m] \exp(-j2\pi vk).$$

$$X(v) = \sum_{m=-\infty}^{\infty} \exp(-j2\pi vm).$$

Заметим, что $\sum\limits_{m=-\infty}^{\infty} \exp(-j2\pi \nu m)$ — это ряд Фурье для

периодической (по частоте) последовательности δ -функций с периодом 1

$$\sum_{n=-\infty}^{\infty} \delta(\nu - n) = \sum_{m=-\infty}^{\infty} C_{-m} \exp(-j2\pi\nu m),$$

где коэффициенты Фурье

$$C_{-m} = \int_{-1/2}^{1/2} \delta(v) \exp(j2\pi v m) dv = e^0 = 1.$$

Тогда получаем, что

$$X(v) = \sum_{n=-\infty}^{\infty} \delta(v-n).$$

б) Периодическая последовательность единичных импульсов с периодом L.

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[k - mL \right] \overset{DTFT}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{L} \right)$$

Найдем ДВПФ для последовательности $x[k] = \sum_{m=-\infty}^{\infty} \mathbf{1} \big[k - mL \big].$

Используя свойство об изменении масштаба

$$\sum_{m=-\infty}^{\infty}xigl[migl]\mathbf{1}igl[k-mLigr]\overset{DTFT}{\longleftrightarrow}X(\mathbf{V}L)$$
, из

$$\sum\limits_{m=-\infty}^{\infty}\mathbf{1}ig[k-mig]\overset{DTFT}{\longleftrightarrow}\sum\limits_{n=-\infty}^{\infty}\deltaig(
u-nig)$$
 получаем

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-mL] \overset{n-\infty}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(\nu L - n)$$

Воспользовавшись свойством δ -функции

$$\delta(av - b) = \frac{1}{|a|} \delta\left(v - \frac{b}{a}\right),$$

получаем

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-mL] \overset{DTFT}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{L}\right)$$

в) Гармонические сигналы

$$\exp(j2\pi\nu_0 k), -\infty < k < +\infty \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(\nu - \nu_0 - n).$$

$$y[k] = \exp(j2\pi\nu_0 k)$$

Если $x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$, то $x[k] \exp(j2\pi\nu_0 k) \overset{DTFT}{\longleftrightarrow} X(\nu-\nu_0)$. (теорема смешения для ДВПФ). При этом $\sum\limits_{m=-\infty}^{\infty} \mathbf{1} \big[k-m\big] \overset{DTFT}{\longleftrightarrow} \sum\limits_{n=-\infty}^{\infty} \delta(\nu-n)$. Получаем, что

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \exp(j2\pi v_0 k) \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v-v_0-n).$$
$$\exp(j2\pi v_0 k), -\infty < k < +\infty \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v-v_0-n).$$

8) Теорема о свертке во временной области.

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
 и $y[k] \overset{DTFT}{\longleftrightarrow} Y(v)$, то
$$\sum_{m=-\infty}^{\infty} x[m] y[k-m] \overset{DTFT}{\longleftrightarrow} X(v) Y(v).$$

В левой части стоит дискретная свертка сигналов, в правой — произведение спектров.

9) Теорема о свертке в частотной области

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
 и $y[k] \overset{DTFT}{\longleftrightarrow} Y(v)$, то $x[k]y[k] \overset{DTFT}{\longleftrightarrow} \int_{-1/2}^{1/2} X(\tilde{v})Y(v-\tilde{v})d\tilde{v}.$

В левой части стоит произведение сигналов, в правой -- циклическая свертка спектров.

Лабораторная работа №2 «Дискретное и дискретное во времени преобразования Фурье (ДВПФ, ДПФ)»

Модуль 2. Основные свойства ДПФ.

- Две формы записи ДПФ.
- Свойства ДПФ
- Дискретные экспоненциальные функции (ДЭФ)
- Матричная форма ДПФ

Две формы записи ДПФ.

Две формы записи ДПФ.

Пусть x[k] — последовательность отсчетов сигнала либо длиной в N отсчетов, либо периодическая с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

Примечание. Именно такая запись ДПФ используется в качестве основной в библиотеках Python SciPy, NumPy, в Octave и MATLAB.

Далее в лекции мы будем использовать такую запись ДПФ для последовательностей отсчетов конечной длительности.

Наряду с приведенной парой формул, существует запись ДПФ с нормирующем множителем 1/N в прямом преобразовании:

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

Далее в лекции мы будем использовать такую запись ДПФ для периодических последовательностей отсчетов. Для того, чтобы различать две записи, будем использовать обозначения $\tilde{X}[n]$ и X[n]. Очевидно, что

$$\tilde{X}[n] = \frac{1}{N}X[n].$$

Две формы записи ДПФ.

Пример. Пусть
$$x[k] = \cos\left(2\pi \frac{3}{16}k\right)$$
.

Вычислить 16-точечное ДПФ этой последовательности $\tilde{X}[n]$ по формуле с нормирующим множителем 1/N (N=16) в прямом преобразовании.

Решение.

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \cos(2\pi \frac{3}{16}k) \exp(-j2\pi \frac{n}{N}k) =$$

$$= \frac{1}{16} \sum_{k=0}^{15} \left\{ \frac{1}{2} \exp\left(j2\pi k \left(\frac{3}{16} - \frac{n}{16}\right)\right) + \frac{1}{2} \exp\left(-j2\pi k \left(\frac{3}{16} + \frac{n}{16}\right)\right) \right\}$$

Рассмотрим отдельно сумму вида $\sum\limits_{k=0}^{15} \exp \left(j2\pi k \frac{m}{16}\right)$ при

условии, что m — целое число, не равное нулю и не кратное 16. В таком случае по формуле суммы геометрической прогрессии

$$\sum_{k=0}^{15} \exp\left(j2\pi k \frac{m}{16}\right) = \frac{1 - \exp(j2\pi m)}{1 - \exp(j2\pi m \frac{1}{16})} = 0.$$

В случае когда m либо равно нулю, либо кратно 16, будет

выполняться
$$\sum\limits_{k=0}^{15} \exp\biggl(j2\pi k \, \frac{m}{16}\biggr) = \sum\limits_{k=0}^{15} \mathrm{e}^0 = 16$$
. В итоге на

периоде есть только два ненулевых отсчета ДПФ — $\tilde{X}[3] = 1/2$ и $\tilde{X}[13] = 1/2$.

Свойства ДПФ

Далее запись вида $x[k]_N$ обозначает $x[k \mod N]$. Символ * обозначает здесь комплексное сопряжение.

N –точечные ДПФ $ ilde{X}[n]$ и $ ilde{Y}[n]$		N—точечное ДПФ $X[n]$ и $Y[n]$		
(с нормирующим множителем $1/N$ в прямом преобразовании)		(без нормирующего множителя $1/\sqrt{N}$ в прямом		
		1	преобразовании)	
$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$		$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$		
$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$		$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$		
	N-точечные ДП	otag $ otag [n]$ и $ otag [n]$	N–точечное ДПФ $X[n]$ и $Y[n]$	
Сигналы $x[k]$ и $y[k]$	(с нормирующим множителем $1/N$ в		(без нормирующего множителя	
	прямом преобразовании)		1/N в прямом преобразовании)	
Линейность				
$\alpha x[k] + \beta y[k], \ \alpha, \beta \in \mathbb{C}$	$\alpha \tilde{X}[n] + \beta \tilde{Y}[n]$		$\alpha X[n] + \beta Y[n]$	
	Единичный им	ипульс		
[1, k = 0,	$ ilde{X}[n]$:	_ 1	$X[n] \equiv 1$	
$x[k] = 1[k] = \begin{cases} 1, k = 0, \\ 0, k \neq 0. \end{cases}$	$\Lambda[n]$	$\equiv \frac{1}{N}$	$\uparrow X[n]$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ N \end{array} $ $ \begin{array}{c} 1 \\ N = 4 \end{array} $ $ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Сигналы $x[k]$ и $y[k]$	N –точечные ДПФ $ ilde{X}[n]$ и $ ilde{Y}[n]$	N–точечное ДПФ $X[n]$ и $Y[n]$		
Теорема запаздывания				
$x[k-m]_N$	$\tilde{X}[n]\exp\left(-j\frac{2\pi}{N}nm\right)$	$X[n]\exp\left(-j\frac{2\pi}{N}nm\right)$		
	Теорема смещения			
$x[k]\exp\left(\pm j\frac{2\pi}{N}n_0k\right), n_0 \in \mathbb{Z}$	$\tilde{X}[n \mp n_0]_N$	$X[n \mp n_0]_N$		
	Симметрия			
$x^*[k]$	${ ilde X}^*[N-n]_N,$	$X^*[N-n]_N$,		
$x[N-k]_N$	$\tilde{X}[N-n]_N$	$X[N-n]_N$		
$x[k] = x^*[k]$	$\tilde{X}[n] = \tilde{X}^*[N-n]_N$	$X[n] = X^*[N-n]_N$		
действительная последовательность				
$x[k] = -x^*[k]$	$\tilde{X}[n] = -\tilde{X}^*[N-n]_N$	$X[n] = -X^*[N-n]_N$		
мнимая последовательность				
Теорема о свертке (во временной области)				
$\sum_{m=0}^{N-1} x[m]y[k-m]_N$	$N\widetilde{X}[n]\widetilde{Y}[n]$	X[n]Y[n]		
Произведение сигналов (теорема о свертке в частотной области)				
x[k]y[k]	$\sum_{m=0}^{N-1} \tilde{X}[m] \tilde{Y}[n-m]_N$	$\frac{1}{N} \sum_{m=0}^{N-1} X[m] Y[n-m]_{N}$		

Равенство Парсеваля			
x[k], y[k]	$\frac{1}{N} \sum_{k=0}^{N-1} x[k] y^*[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \tilde{Y}^*[n],$ $\frac{1}{N} \sum_{k=0}^{N-1} x[k] ^2 = \sum_{n=0}^{N-1} \tilde{X}[n] ^2.$	$\sum_{k=0}^{N-1} x[k] y^*[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] Y^*[n],$ $\sum_{k=0}^{N-1} x[k] ^2 = \frac{1}{N} \sum_{n=0}^{N-1} X[n] ^2.$	

Пример. Циклический сдвиг последовательности.

Пусть X[n] — восьмиточечное ДПФ последовательности $x[k] = \{0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8\}$

изображенной на графике. Изобразить последовательность y[k], ДПФ которой имеет вид

$$Y[n] = \exp\left(-j\frac{2\pi}{8}mn\right)X[n]$$

для m = 3, m = 4, m = 5.

Решение.

Воспользуемся теоремой запаздывания для ДПФ:

Если
$$x[k] \stackrel{DFT}{\longleftrightarrow} X[n]$$
, то

$$x[k-m]_N \stackrel{DFT}{\longleftrightarrow} X[n] \exp\left(-j\frac{2\pi}{N}nm\right).$$

Тогда последовательность y[k] получается путем циклического сдвига x[k] на m отсчетов вправо (для положительных m):

$$y[k] = x[k-m]_N = x[(k-m) \mod N].$$

Дискретные экспоненциальные функции

Пример. Симметрия ДПФ.

Пусть дана последовательность $x[k] = \cos(2\pi k 0, 2)$, k = 0, 1, 2, ..., 15. Эта последовательность не является периодом для $\cos(2\pi k 0, 2)$. Частота косинусоиды $\mathbf{v}_{\cos} = 0, 2$ не совпадает с частотами отсчетов ДПФ $\mathbf{v}_n = n/N$, N = 16. Максимально близкий отсчет к частоте $\mathbf{v}_{\cos} = 0, 2$ — это n = 3 ($\mathbf{v}_3 = 0, 1875$). ДПФ этой последовательности представлено на рисунке.

Для действительной последовательности $x[k] = x^*[k]$ $x[k] \leftrightarrow X^*[N-n]_N$. Это означает, что $X[n] = X^*[N-n]_N$. Например, $X[3] = X^*[13]$.В данном случае мы наблюдаем симметрию действительной части и модуля и антисимметрию мнимой части и фазы коэффициентов ДПФ относительно отсчета с номером n = N/2 = 8.

Дискретные экспоненциальные функции (ДЭФ)

Функции ДЭФ определяются следующим образом:

$$\varphi_n[k] = W_N^{nk} = \exp\left(j\frac{2\pi}{N}nk\right).$$

Здесь n и k — целые числа, n, k = 0, 1, ..., N-1, т. е. число функций в системе равно числу отсчетов каждой функции. Система ДЭФ является ортонормированной и полной в пространстве $\mathbf{l}_2^{\mathbf{N}}$.

Основные свойства ДЭФ.

- 1. ДЭФ являются комплекснозначными функциями.
- 2. Матрица $\left\|W_N^{nk}\right\|$ является симметричной.

Дискретные экспоненциальные функции

- 3. Система ДЭФ периодична с периодом N по обеим переменным.
- 4. Система ДЭФ ортогональна:

$$\sum_{k=0}^{N-1} \varphi_n[k] \varphi_m^*[k] = \sum_{k=0}^{N-1} W_N^{nk} W_N^{-mk} = \begin{cases} N, & n=m, \\ 0, & n \neq m. \end{cases}$$

5. Система ДЭФ мультипликативная:

$$W_N^{nk} W_N^{mk} = W_N^{lk},$$

где $l = (n+m)_{\bmod N}$, т. е. индексы суммируются по модулю N .

6. Ряд Фурье по этой системе

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n]W_N^{nk}$$
,

где коэффициенты Фурье

$$\tilde{X}[n] = \frac{1}{N} \sum_{n=0}^{N-1} x[k] W_N^{-nk}.$$

Эти два соотношения определяют пару (прямое и обратное) дискретного преобразования Фурье (ДПФ).

Пример. Вычислить 16-точечное ДПФ для периодической последовательности

$$x[k] = \cos\left(2\pi \frac{3}{16}k\right).$$

Обратное ДПФ:

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi k \frac{n}{16}) = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{-j2\pi k \frac{3}{16}}$$
$$x[k] = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{j2\pi k \frac{13}{16}}$$

Отсюда

$$\tilde{X}[n] = \begin{cases} \frac{1}{2}, & n = \pm 3 + 16m, m \in \mathbb{Z}, \\ 0, & n \neq \pm 3 + 16m, m \in \mathbb{Z}. \end{cases}$$

Значения ДПФ на основном периоде (n = 0, 1, ..., N-1)

n	3, 13	0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15
$ ilde{X}[n]$	0,5	0

Матричная форма ДПФ

Матричная форма ДПФ

Введем в рассмотрение квадратную матрицу $[W]_N$ порядка N с элементами

$$W_N^{nk} = \exp(-j\frac{2\pi}{N}nk), \quad n, k \in \{0, 1, 2, ..., N-1, \}$$

так, что номер строки совпадает с номером дискретной экспоненциальной функции, а номер столбца совпадает с номером отсчета функций. При этом произведение $n \cdot k$ обычно берется по модулю N , т. е.

$$W_N^{n\,k} = W_N^{n\,k \mod N}.$$

Например, nk=17, тогда $nk\mod 8=1$. Эти свойства матрицы ДПФ следуют из N-периодичности функции $W_N^{n\,k}$ по обоим аргументам. Для случая N=8 матрица ДПФ имеет вид

$$\begin{bmatrix} W \end{bmatrix}_8 = \begin{bmatrix} W_8^0 & W_8^0 \\ 1 & W_8^0 & W_8^1 & W_8^2 & W_8^3 & W_8^4 & W_8^5 & W_8^6 & W_8^7 \\ 2 & W_8^0 & W_8^2 & W_8^4 & W_8^6 & W_8^8 & W_8^{10} & W_8^{12} & W_8^{14} \\ 4 & W_8^0 & W_8^3 & W_8^6 & W_8^9 & W_8^{12} & W_8^{15} & W_8^{18} & W_8^{21} \\ 5 & W_8^0 & W_8^5 & W_8^{10} & W_8^{15} & W_8^{20} & W_8^{24} & W_8^{28} \\ 5 & W_8^0 & W_8^5 & W_8^{10} & W_8^{15} & W_8^{20} & W_8^{25} & W_8^{30} & W_8^{35} \\ 6 & W_8^0 & W_8^6 & W_8^{12} & W_8^{18} & W_8^{24} & W_8^{30} & W_8^{35} \\ 7 & W_8^0 & W_8^7 & W_8^{14} & W_8^{21} & W_8^{28} & W_8^{35} & W_8^{42} & W_8^{49} \end{bmatrix}$$

Эта же матрица с минимальными фазами будет

$$\begin{bmatrix} W \end{bmatrix}_{8} = \begin{bmatrix} W_{8}^{0} & W$$

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$
$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

Матричная форма ДПФ

$$[W]_{8} = \begin{bmatrix} W_{8}^{0} & W_{8}^{0} \\ 1 & W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\ 2 & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ 2 & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ 4 & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ 5 & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ 7 & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\ 7 & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\ 7 & W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2} & W_{8}^{1} \end{bmatrix}$$

Через множители W_N^{nk} пара ДПФ записывается в виде

$$X[n] = \sum_{k=0}^{N-1} x[k] W_N^{nk},$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] W_N^{-nk}.$$

Пусть \vec{X} и \vec{x} – N-мерные вектор-столбцы:

$$\vec{X} = \begin{bmatrix} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}.$$

Тогда в матричной форме пара ДПФ (с нормирующим множителем в обратном преобразовании) имеет вид $\vec{X} = [W]_N \ \vec{x}$ – прямое ДПФ,

$$\vec{x} = [W_N]^{-1} \vec{X}$$
 — обратное ДПФ.

Чтобы найти обратную матрицу $\left[W_N^{}\right]^{-1}$, достаточно заметить,

$$\frac{1}{N} [W_N]^* [W_N] = I_N,$$

где I_N — единичная матрица размером $N \times N$. В итоге получаем, что $\left[W_N\right]^{-1} = \frac{1}{N} \left[W_N\right]^*$,

т.е. для нахождения обратной матрицы достаточно выполнить комплексное сопряжение для $\left[W_{N}\right]$ и нормировать результат на N .

Матричная форма ДПФ

В таблице ниже приведены стандартные функции для работы с ДПФ и БПФ в MATLAB и библиотеках Python.

	Python (SciPy, NumPy)	MATLAB
Матрица $\left[W ight]_N$	scipy.linalg.dft(n,	dftmtx(n)
из матричной	scale)	
формы ДПФ		
Вычисление	scipy.fft.fft(x)	fft(x)
прямого ДПФ		
по алгоритму	np.fft.fft(x)	
БПФ		
Вычисление	scipy.fft.ifft(x)	ifft(x)
обратного ДПФ		
по алгоритму	np.fft.ifft(x)	
БПФ		
Сдвиг	scipy.fft.fftshift	fftshift
коэффициентов		
ДПФ на	np.fft.fftshift	
половину		
периода		

Вычисление	scipy.fft.next_fast_len	нет аналога
следующего		
значения N ,		
для которого		
вычисления по		
алгоритму БПФ		
эффективны		

Лабораторная работа №2 «Дискретное и дискретное во времени преобразования Фурье (ДВПФ, ДПФ)»

Модуль 3. Связь между ДВПФ и ДПФ.

- ДПФ для последовательностей отсчетов конечной длительности.
 - о Форма записи ДПФ
 - \circ Связь между ДПФ и ДВПФ в точках v = n / N.
 - о Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

- \circ Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках v
 eq n / N
- ДПФ периодических последовательностей
 - о Форма записи ДПФ
 - о Связь между ДПФ и ДВПФ для периодических последовательностей.
- Частотная ось ДПФ

ДПФ для последовательностей отсчетов конечной длительности.

Форма записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала длиной в N отсчетов $k=0,1,\ldots,N-1$. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right), \quad k = 0, 1, ..., N-1.$$

Функцию X[n] обычно рассматривают только для значений $n=0,1,\dots,N-1$, при этом она является периодической с периодом N , $n\in Z$.

В обратном преобразовании необходимо ограничить длительность восстанавливаемой последовательности отсчетов сигнала, т.е. рассматривать x[k] для значений

k = 0, 1, ..., N-1. Если длительность не ограничить, то будет восстановлена последовательность, являющаяся периодическим продолжением x[k].

Связь между ДПФ и ДВПФ в точках v = n / N.

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

ДПФ для последовательности x[k], имеет следующий вид:

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{n}{N}k\right).$$

Сравнивая формулы, в точках v = n / N получаем равенство

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n]$$

Это означает, что коэффициенты ДПФ X[n] равны отсчетам функции X(v), взятым в точках v=n/N (с шагом $\Delta v=1/N$).

Пример.

Рассмотрим для N = 20 последовательность отсчетов

$$x[k] = \begin{cases} \sin\left(2\pi \frac{4,5}{20}k\right) + \sin\left(2\pi \frac{7,5}{20}k\right), 0 \le k < N, \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

ДПФ и ДВПФ этой последовательности для частот $v \in [0;1]$ изображены по модулю на рисунке. Заметим, что в точках v = n/20

$$X(\mathbf{v})\big|_{\mathbf{v}=n/20}=X[n],$$

т.е. значения ДВПФ и ДПФ (с точностью до использованной нормировки) совпадают. Расстояние между соседними отсчетами по оси частот $\Delta v = 1/N = 1/20 = 0.05$.

Заметим, что частоты синусоид в ней не совпадают с бинами ДПФ (1 бин соответствует 1/N):

$$v_1 = \frac{4.5}{20} = 0.225$$
, $v_2 = \frac{7.5}{20} = 0.375$.

В ДВПФ вблизи 1 этих частот мы наблюдаем максимумы.

Вопрос. Как улучшить качество визуализации этих максимумов с помощью ДПФ?

¹ Максимумы могут быть смещены из-за влияния соседних спектральных компонент.

Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

Улучшим качество визуализации ДВПФ при помощи отсчетов ДПФ. Получим M — точечную последовательность. Добавим в исходную последовательность x[k] M-N отсчетов, равных нулю:

$$y[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, N \le k \le M - 1. \end{cases}$$

Ее ДПФ M — точечное и определяется формулой

$$Y[n] = \sum_{k=0}^{M-1} y[k] \exp\left(-j\frac{2\pi}{M}nk\right) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{M}nk\right).$$

При этом ДВПФ не изменяется:

$$Y(v) = \sum_{k=0}^{M-1} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

С помощью добавления нулевых отсчетов улучшено качество визуализации ДВПФ, поскольку число точек $\mathbf{v}_n = n \, / \, M$ на одном периоде больше, чем $\mathbf{v}_n = n \, / \, N$.

Возврат к примеру.

Теперь дополним рассматриваемый в ДПФ участок сигнала нулевыми отсчетами до длины 50. Отсчетов ДПФ на одном периоде станет больше, расстояние между ними $\Delta v = 1/50$.

Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках $v \neq n / N$

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

Обратное ДПФ для последовательности x[k]

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

$$X(v) = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right) \right) \exp\left(-j2\pi vk\right) =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X[n] \sum_{k=0}^{N-1} \exp\left(-j2\pi \left(v - \frac{n}{N}\right)k\right).$$

Рассмотрим отдельно множитель $\sum\limits_{k=0}^{N-1} \exp \left(-j2\pi \left(v-n/N\right)k\right)$.

Это сумма N членов геометрической прогрессии с первым членом $b_1=1$, и знаменателем $q=\exp \left(-j2\pi (\nu-n/N)\right)$.

В точках $v \neq n/N$, где $q \neq 1$, получаем (используя известные формулы $S_N = b_1(1-q^N)/(1-q)$ и $\sin \varphi = (e^{j\varphi} - e^{-j\varphi})/(2j)$):

$$\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right) = \frac{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)}{1 - \exp\left(-j2\pi\left(\nu - n/N\right)\right)} =$$

$$= \frac{e^{-j\pi(\nu - n/N)N} \left\{\exp\left(j\pi\left(\nu - n/N\right)N\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}}{e^{-j\pi(\nu - n/N)} \left\{\exp\left(j\pi\left(\nu - n/N\right)\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}} =$$

$$= \exp\left(-j\pi\left(\nu - n/N\right)(N-1)\right) \frac{\sin\left(\pi(\nu - n/N)N\right)}{\sin\left(\pi(\nu - n/N)\right)}$$

Подставив формулу для суммы в связь, получаем интерполяционную формулу восстановления континуальной функции X(v) по коэффициентам ДПФ X[n]:

$$X(v) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \frac{\sin(\pi(v-n/N)N)}{\sin(\pi(v-n/N))} \exp(-j\pi(v-n/N)(N-1)).$$

Заметим, что для последовательностей конечной длительности ДВПФ непрерывно, а значит для интерполяционной формулы выполняется

$$\lim_{v\to n/N} X(v) = X[n].$$

ДПФ периодических последовательностей Форма записи ДПФ

Пусть x[k], $k \in \mathbb{Z}$ — периодическая последовательность отсчетов сигнала с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

 $ilde{X}[n]$ может рассматриваться как N- точечная последовательность коэффициентов ДПФ (отсчетов ДПФ), где $n=0,1,\dots,N-1$. $ilde{X}[n]$ может также рассматриваться как периодическая последовательность с периодом N, $n\in Z$. В обратном преобразовании последовательность x[k] также получится периодической.

Связь между ДПФ и ДВПФ для периодических последовательностей.

Пусть аналоговый периодический сигнал x(t) с периодом T дискретизован с шагом $\Delta t = T/N$. Тогда на одном периоде x(t) будет содержаться N отсчетов (если крайний правый отсчет попадает на границу периода, то будем считать его относящимся к следующему периоду). Выделим для последовательности отсчетов x[k] один период

$$x_N[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

DTFT

Пусть $x_N[k] \leftrightarrow X_N(\nu)$. Последовательность x[k] может быть представлена в виде дискретной сверки

$$x_N[k] \otimes \sum_{m=-\infty}^{\infty} \mathbf{1}[k-mN].$$

Причем

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-mN] \overset{DTFT}{\longleftrightarrow} \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(\nu - \frac{n}{N}\right).$$

Тогда

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Последовательность $x_N[k]$ имеет конечную длительность, является абсолютно суммируемой. $X_N(v)$ непрерывна.

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

При этом X(v) (ДВПФ периодической последовательности x[k]) имеет дискретную структуру, которой в континуальной записи соответствует некоторый периодический набор δ -функции.

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Заметим, что для каждого слагаемого в сумме по свойствам δ -функции выполняется равенство

$$\frac{1}{N}X_N(\nu)\delta\left(\nu-\frac{n}{N}\right) = \frac{1}{N}X_N\left(\frac{n}{N}\right)\delta\left(\nu-\frac{n}{N}\right).$$

Введем периодическую функцию дискретного аргумента $\tilde{X}[n]$, значения которой будут соответствовать площадям дельта-функций в X(v) в точках v=n/N:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \,\delta\left(v - \frac{n}{N}\right).$$

При этом

$$\tilde{X}[n] = \frac{1}{N} X_N \left(\frac{n}{N} \right) = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k).$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv = \int_0^1 X(v) \exp(j2\pi vk) dv =$$

$$= \int_0^1 X_N(v) \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right) \exp(j2\pi vk) dv =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X_N(\frac{n}{N}) \exp(j2\pi \frac{n}{N}k).$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k).$$

Получаем следующую пару формул

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k),$$

определяющую прямое и обратное дискретное преобразование Фурье (ДПФ). В ДПФ частотная (n) и временная (k) переменная дискретны, функция $\tilde{X}[n]$ периодична с периодом N, а в качестве главного периода для отсчетов ДПФ выбирают такой, на котором $n=0,\ldots,N-1$.

Пример. Предположим, что имеется периодическая последовательность ($\infty < k < +\infty$)

$$x[k] = \cos(2\pi \frac{3}{16}k).$$

Учитывая, что

$$\cos(2\pi \frac{3}{16}k) = \frac{1}{2}\exp(j2\pi \frac{3}{16}k) + \frac{1}{2}\exp(-j2\pi \frac{3}{16}k),$$

получаем для ДВПФ этой последовательности

$$X(v) = \sum_{n=-\infty}^{\infty} \frac{1}{2} \delta(v - \frac{3}{16} - n) + \frac{1}{2} \delta(v + \frac{3}{16} - n).$$

X(v) содержит две δ -функции с площадями 1/2 на каждом периоде. Рассмотрим период $0 \le v < 1$ (правую крайнюю точку можем не включать из-за периодичности X(v)). На нем содержится две δ -функции в точках $v_1 = \frac{3}{16}$ и $v_2 = \frac{13}{16}$. Последовательность имеет период N = 16 точек. Это означает, что можно установить значения 16-точечного ДПФ $\tilde{X}[3] = 1/2$, $\tilde{X}[13] = 1/2$, а в остальных точках главного периода $\tilde{X}[n] = 0$.

Пример. ДВПФ и окна

Пример.

Предположим, что нужно вычислить ДВПФ последовательности отсчетов y[k] = x[k]w[k], где

$$x[k] = \cos(2\pi \frac{3}{16}k),$$

w[k] — прямоугольное окно длиной N = 16 отсчетов:

$$w[k] = \sum_{m=0}^{15} \mathbf{1}[k-m].$$

Решение. Заметим, что

$$W(v) = e^{-j(N-1)\pi v} \frac{\sin(N\pi v)}{\sin(\pi v)},$$

$$X(v) = 0.5 \sum_{m=-\infty}^{\infty} \delta(v - \frac{3}{16} - m) + 0.5 \sum_{m=-\infty}^{\infty} \delta(v + \frac{3}{16} - m).$$

Способ 1. ДВПФ последовательности Y(v) может быть представлено в виде циклической свертки

$$Y(\mathbf{v}) = \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) W(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}} = \int_{-1/2}^{1/2} W(\tilde{\mathbf{v}}) X(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}$$

Используя фильтрующее свойство дельта-функции

$$\int_{a}^{b} W(v)\delta(v-v_{1})dv = \begin{cases}
W(v_{1}), a < v_{1} < b, \\
0.5W(v_{1}), (v_{1} = a) \cup (v_{1} = b), \\
0, (v_{1} < a) \cup (v_{1} > b),
\end{cases}$$

получаем, что

$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

Пример. ДВПФ и окна

Способ 2. Аналогично через теорему смещения

$$y[k] = \left(\frac{1}{2}\exp(j2\pi k\frac{3}{16}) + \frac{1}{2}\exp(-j2\pi k\frac{3}{16})\right)w[k],$$
$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

ДПВФ последовательности y[k]

$$Y(v) = \frac{1}{2} \exp\left(-j(N-1)\pi(v - \frac{3}{16})\right) \frac{\sin(N\pi(v - \frac{3}{16}))}{\sin(\pi(v - \frac{3}{16}))} +$$

$$+\frac{1}{2}\exp\left(-j(N-1)\pi(\nu+\frac{3}{16})\right)\frac{\sin(N\pi(\nu+\frac{3}{16}))}{\sin(\pi(\nu+\frac{3}{16}))}.$$

Частотная ось ДПФ

Частотная ось ДПФ

Отчету N- точечного ДПФ с номером n в случае сигнала конечной длительности соответствует значение ДВПФ в точке v=n/N по оси нормированных частот:

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n].$$

Если рассматривается периодическая последовательность отсчетов, и коэффициенты ДПФ вычисляются по периоду последовательности, то весам дельта-функций в точках v=n/N в ДВПФ соответствуют отсчеты ДПФ с номерами n:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \,\delta\left(v - \frac{n}{N}\right).$$

Эти два обстоятельства позволяют сопоставить отсчётам ДПФ частоты в спектре дискретизованного сигнала. Учитывая, что $v=f/f_{\pi}=f\Delta t$, где f_{π} — частота дискретизации, Δt — шаг дискретизации, получаем, что отсчету с номером n соответствует частота $f=nf_{\pi}/N=n/(N\Delta t)$ Гц. Разрешение по оси частот при ДПФ анализе составляет f_{π}/N Гц.

Частотная	Связь	Разрешение	Диапазон
переменная и	частотной	по частоте	изменения
ee	переменной		частоты,
размерность	с номером		соответствующий
	отсчета ДПФ		отсчетам $[0,N)$
f , [Гц]	$f = \frac{nf_{\pi}}{N}$	$\Delta f = \frac{f_{\pi}}{N}$	$[0,f_{_{ m I\!\! I}})$
ω, [рад/с]	$\omega = \frac{n\omega_{\rm d}}{N}$	$\Delta \omega = \frac{\omega_{_{\rm I\! I}}}{N}$	$[0,\omega_{_{ m I\!\! I}})$
v, безразмерная	$v = \frac{n}{N}$	$\Delta v = \frac{1}{N}$	[0,1)
θ, [рад]	$\theta = 2\pi \frac{n}{N}$	$\Delta\theta = \frac{2\pi}{N}$	$[0,2\pi)$

В таблице ниже рассмотрены основные способы введения частотной оси для отсчетов ДПФ.

Частотная ось ДПФ

Заметим, что $f=nf_{\pi}/N$ Гц — это частота в спектре дискредитированного сигнала, который при отсутствии наложения спектров образуется путем периодического продолжения (повторения) спектра исходного аналогово сигнала с периодом, равным частоте дискретизации (f_{π} в случае оси в Гц или 1 в случае оси нормированных частот). Это означает, что отсчет ДПФ с номером n будет соответствовать в спектре аналогового сигнала частоте $f \in [-f_{\pi}/2; f_{\pi}/2]$, такой, что $f = (n+mN)f_{\pi}/N$, где m — целое число.

Пример.

Частотная ось ДПФ

Пояснения к примеру.

Рассмотрим для $f_0 = 5$ Γ ц сигнал длительностью 1 с вида $x_a(t) = \sin\left(2\pi f_0 t\right), \ 0 \le t < 1.$

Выберем частоту дискретизации $f_{\pi}=20~\Gamma$ ц ($\Delta t=0.05~\mathrm{c}$)

Последовательность отсчетов дискретизованного сигнала

$$x[k] = x_a(k\Delta t) = \sin\left(2\pi \frac{f_0}{f_{\pi}}k\right).$$

Спектр $X_{{\mbox{\tiny L}}}(f)$ дискретизованного сигнала связан со спектром $X_a(f)$ аналогового сигнала соотношением

$$X_{\mathrm{II}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{\mathrm{II}}).$$

где T определено соотношением $x[k]=\mathrm{T}x_a(k\Delta t)$. Если бы эффекта наложения не было, то $X_{_{\mathrm{I\! I}}}(f)$ и $X_a(f)$ совпадали бы на интервале $\left[-f_{_{\mathrm{I\! I}}}/2,\,f_{_{\mathrm{I\! I\! I}}}/2\right]$, т.е. от $-10~\mathrm{\Gamma I\! I\! I}$ до $10~\mathrm{\Gamma I\! I\! I}$.

Заметим, что отсчеты ДПФ размерности N=32 для n=0,1,...,N-1 находятся на полуинтервале $[0,\,f_{_{\rm I\! I}}).$

