1 Eigenvalue Characteristics

We denote the identity matrix of $\mathbb{F}^{n\times n}$ by I. Let $A\in\mathbb{F}^{n\times n}$ be a matrix. Some value $\lambda\in\mathbb{C}$ is called eigenvalue of A, if there is a vector $v\neq 0$ in \mathbb{F}^n such that

$$(A - \lambda I)v = 0$$
,

where $0 \in \mathbb{F}^n$ denotes the zero vector. Use the above definition to prove the following assertions.

- 1. If A is invertible, then for all eigenvalues λ of A we have $\lambda \neq 0$ and $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .
- 2. If λ is an eigenvalue of A, then $(\lambda \alpha)$ is an eigenvalue of $(A \alpha I)$ for any $\alpha \in \mathbb{C}$.
- 3. If λ is an eigenvalue of A, then λ is also an eigenvalue of $Q^{\top}AQ$ for any orthogonal matrix $Q \in \mathbb{F}^{n \times n}$.

Solution:

Let $A \in \mathbb{F}^{n \times n}$.

1. Let $A \in GL_n(\mathbb{F})$ and $\lambda \in \sigma(A)$ (with eigenvector $v \neq 0$). To show, that $\lambda \neq 0$ holds, we assume $\lambda = 0$. $\Rightarrow Av = \lambda v = 0 \Rightarrow v = A^{-1} \cdot 0 = 0$. Here we see the contradiction

Now we proof $\frac{1}{\lambda} \in \sigma(A^{-1})$:

$$Av \quad \overset{A \in GL_n(\mathbb{F})}{\Leftrightarrow} \quad v = \lambda A^{-1}v \quad \overset{\lambda \neq 0}{\Leftrightarrow} \quad \tfrac{1}{\lambda}v = A^{-1}v \quad \Leftrightarrow \quad \tfrac{1}{\lambda} \in \sigma(A^{-1}) \quad \text{(with the same eigenvector v)}.$$

2. Let $\alpha \in \mathbb{C}$.

$$((A - \alpha I) - (\lambda - \alpha)I)v = (A - \lambda I)v \stackrel{\lambda \in \sigma(A)}{=} 0 \quad \checkmark$$

$$\Rightarrow \quad (\lambda - \alpha) \text{ eigenvalue of } (A - \alpha I) \text{ with the same eigenvector } v$$

3.

$$Av = \lambda v \quad \Leftrightarrow \quad Q^T A v = Q^T \lambda v \\ \Leftrightarrow \quad Q^T A \underbrace{QQ^T}_{=I} v = \lambda Q^T \underbrace{QQ^T}_{=I} v \\ \Leftrightarrow \quad Q^T A Q (Q^T v) = \lambda (Q^T v) \\ \Leftrightarrow \quad \lambda \text{ is eigenvalue of } Q^T A Q \text{ with eigenvector } Q^T v.$$