```
In [1]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.metrics import roc_auc_score
    import statsmodels.api as sm
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import cross_val_score, cross_validate, train_test_split
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    from sklearn.metrics import roc_curve, auc
    from sklearn.metrics import precision_recall_curve, average_precision_score
%matplotlib inline
```

```
In [2]: # Считает джини фактора или предсказаний
        def gini(y_true, y_score):
            roc_score = roc_auc_score(y_true, y_score)
            return roc score*2 - 1
        def gini_scorrer(clf, X, y):
            y_score= [p[1] for p in clf.predict_proba(X)]
            return gini(y, y_score)
        def get factors gini(data, target):
            factors gini = list()
            for c in data.columns:
                 g = gini(data[target], data[c])
                 factors_gini.append([c,g])
            factors_gini = sorted(factors_gini, key = lambda x: x[1])
            return factors_gini
        def get base line score(data, target):
            rf = RandomForestClassifier()
            cv_score = cross_val_score(rf, X = data.drop([target], axis=1), y=data[target], scoring=gini_scorrer, cv=
            return cv score
        def get feature importance(data, target):
            rf = RandomForestClassifier()
            rf.fit(X = data.drop([target], axis=1), y= data[target])
            return sorted([[v,i] for v,i in zip(data.drop([target], axis=1).columns, rf.feature_importances_)], key=1
        def show corr(data, th=None):
            if th:
                sns.heatmap(data.corr()>th)
            else:
                sns.heatmap(data.corr())
         # Вычисление VIF
        def vif(data):
            Calculate VIFs
            :param data: Data
            :return: List of VIFs for each variable in format: Variable - VIF
            res = list()
            for i in range(data.shape[1]):
                res.append([data.columns[i], variance inflation factor(data.as matrix(), i)])
            return res
        def rocs(y_true, y_pred, colors, names, name=''):
              '' Plot several ROC curves
             Keyword arguments:
             y true -- array of true values arrays
             y_pred -- array of predicted values arrays
             colors -- array of colors for curves
             names -- array of names for curves
             name -- name of graph (default empty string)
            if (len(y true) != len(y pred)) or (len(y true) != len(colors)):
                \verb|print(len(y_true), len(y_pred), len(colors))|\\
                 raise BaseException
            plt.figure(figsize=[10, 10])
            for i in range(0, len(y_true)):
                 fpr, tpr, _ = roc_curve(y_true=y_true[i], y_score=y_pred[i], pos_label=None)
                 gini_value = gini(y_true=y_true[i], y_score=y_pred[i])
                 ginis.append(gini_value)
                 plt.plot(fpr, tpr, color=colors[i], label=names[i] + ' (Gini = %0.4f)' % gini value)
            plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
            plt.xlim([0.0, 1.0])
            plt.ylim([0.0, 1.0])
            plt.xlabel('False Positive Rate')
            plt.ylabel('True Positive Rate')
            plt.title('Receiver operating characteristic ' + name)
            plt.legend(loc="lower right")
            plt.show()
        def pr_curves(y_true, y_pred, colors, names, name=''):
    ''' Plot several PR curves
             Keyword arguments:
             y_true -- array of true values arrays
             y_pred -- array of predicted values arrays
             colors -- array of colors for curves
             names -- array of names for curves
             name -- name of graph (default empty string)
```

```
plt.figure(figsize=[10, 10])
             for i in range(0, len(y true)):
                  precision, recall, thresholds = precision_recall_curve(y_true=y_true[i], probas_pred=y_pred[i])
                  avg = average_precision_score(y_true[i], y_pred[i])
                  plt.plot(recall, precision, lw=1.5, color=colors[i], label=names[i] + ' AUC={0:0.4f}'.format(avg))
             plt.xlabel('Recall')
             plt.ylabel('Precision')
             plt.ylim([0.0, 1.05])
             plt.xlim([0.0, 1.0])
             plt.legend(loc="upper right")
             plt.show()
In [3]: rename dict = {0: 'prescreaning',
          1:'MA1', 2:'MA2', 3:'MA3', 4:'MA4', 5:'MA5', 6:'MA6', 7:'MAN1', 8:'MAN2', 9:'MAN3', 10:'MAN4', 11:'MAN5', 12:'MAN6', 13:'MAN7', 14:'MAN8',
         15: 'ED', 16: 'D', 17: 'AMFM', 18: 'label'
In [4]: retinopathy = pd.read_excel('retinopathy.xlsx', sheet_name=1, header=None)
         data = retinopathy.rename(rename dict, axis=1)
In [5]: |len(data.columns)
Out[5]: 19
```

Base line

```
In [6]: get_base_line_score(data, 'label')
                                      \verb|c:|users| xiaomi| appdata| local| programs| python| 37 | lib| site-packages| sklearn| ensemble| forest.py: 245: Full site-packages| f
                                      tureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                               "10 in version 0.20 to 100 in 0.22.", FutureWarning)
                                      c:\users\xiaomi\appdata\local\programs\python\gamma7\lib\site-packages\sklearn\ensemble\forest.py:245: Fu
                                      tureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                              "10 in version 0.20 to 100 in 0.2\overline{2}.", FutureWarning)
                                      \verb|c:|users| xiaomi| appdata| local| programs| python| 37 | lib| site-packages| sklearn| ensemble| forest.py: 245: Full programs| forest.py: 245: Full pro
                                      tureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                               "10 in version 0.20 to 100 in 0.22.", FutureWarning)
Out[6]: array([0.42545733, 0.43578158, 0.41600708])
In [7]: | get_feature_importance(data, 'label')
                                      \verb|c:\users|xiaomi|appdata|local|programs|python|python|37|lib|site-packages|sklearn|ensemble|forest.py:245: Full results and the state of the stat
                                      tureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                               "10 in version 0.20 to 100 in 0.22.", FutureWarning)
Out[7]: [['MA1', 0.09779023323734454],
                                          ['MAN1', 0.09035458154793066],
['MAN3', 0.07979423015860702],
                                          ['ED', 0.0719682894638727],
                                           ['MAN2', 0.06931311572511288],
                                           ['D', 0.06383256044214967],
                                           ['MAN4', 0.062322423193816597],
                                            ['MAN7', 0.06179950175953459],
                                          ['MA3', 0.05693749767958459],
                                           ['MA2', 0.05652083100143793],
                                           ['MAN5', 0.05445902180296812],
                                           ['MA6', 0.053522623823726884],
                                            ['MA5', 0.04684100424418835],
                                           ['MA4', 0.04508688549940245],
                                            ['MAN6', 0.04391757534699079],
                                           ['MAN8', 0.03131866020755311],
                                            ['AMFM', 0.008157684571393584],
                                           ['prescreaning', 0.006063280294385651]]
```

Анализ переменных

Распределение

```
In [8]: g = sns.PairGrid(data[['MA1', 'MA2', 'MA3', 'MA4', 'MA5', 'MA6']])
g.map_diag(sns.kdeplot)
g.map_upper(plt.scatter)
g.map_lower(sns.kdeplot)
```

Out[8]: <seaborn.axisgrid.PairGrid at 0x1750804c9c8>

In [9]: sns.pairplot(data[['MAN1', 'MAN2', 'MAN3', 'MAN4', 'MAN5', 'MAN6', 'MAN7', 'MAN8']])

Out[9]: <seaborn.axisgrid.PairGrid at 0x1750c3b6b48>

Out[10]: <seaborn.axisgrid.PairGrid at 0x1750e3366c8>


```
In [11]: # Бинарные переменные sns.barplot(x='AMFM', y = 'label', data=data)
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1750e2f7888>


```
In [12]: sns.barplot(x='prescreaning', y = 'label', data=data)
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x175102ef408>


```
In [13]: original_features = data.columns.values[:-1]
```

Анализ корреляций

```
In [14]: corrs = data.corr()
  plt.figure(figsize=[10,10])
  sns.heatmap(corrs)

plt.figure(figsize=[10,10])
  sns.heatmap(corrs>0.7)
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x1751049ef88>

Новые фичи

```
In [15]: #хочется логарифмировать всё кроме бинарных признаков и ED, D
          to_be_logged = ['MA1', 'MA2', 'MA3', 'MA4', 'MA5', 'MA6', 'MAN1', 'MAN2', 'MAN3', 'MAN4', 'MAN5', 'MAN6', 'MAN7', 'MAN8']
          logged = ['{}_log'.format(c) for c in to_be_logged]
          for c in to_be_logged:
              data['{}_log'.format(c)] = np.log1p(data[c])
In [16]: # и попробуем ещё все отношения
          from itertools import combinations
          feature comb = list(combinations(original features,2))
          for fc in feature_comb:
              data['{}/{}'.format(fc[0],fc[1])] = data[fc[0]]/data[fc[1]]
               \#data['\{\}/\{\}'.format(fc[1],fc[0])] = data[fc[1]]/data[fc[0]]
In [17]: # и произведения
          for fc in feature comb:
              data['{}*{}]*.format(fc[0],fc[1])] = data[fc[0]]*data[fc[1]]
              \#data['\{\}/\{\}'.format(fc[1],fc[0])] = data[fc[1]]/data[fc[0]]
In [18]: data.replace(np.inf, np.nan, inplace=True)
          clear_data = data.dropna(axis=1)
```

Baseline с новыми фичами

```
In [19]: | get_base_line_score(clear_data, 'label')
                                      \verb|c:|users| xiaomi| appdata| local| programs| python| 37 | lib| site-packages| sklearn| ensemble| forest.py: 245: Full site-packages| f
                                      tureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                              "10 in version 0.20 to 100 in 0.22.", FutureWarning)
                                      c:\users\xiaomi\appdata\local\programs\python\gamma7\lib\site-packages\sklearn\ensemble\forest.py:245: Fu
                                      tureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                             "10 in version 0.20 to 100 in 0.22.", FutureWarning)
                                      \verb|c:|users| xiaomi| appdata| local| programs| python| 37 | lib| site-packages| sklearn| ensemble| forest.py: 245: Full programs| forest.py: 245: Full pro
                                      tureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                              "10 in version 0.20 to 100 in 0.2\overline{2}.", FutureWarning)
Out[19]: array([0.58771497, 0.67740169, 0.603725021)
In [20]: all_features_importance = get_feature_importance(clear_data, 'label')
                                      all_features_importance
                                      FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
                                              "10 in version 0.20 to 100 in 0.22.", FutureWarning)
```

Однофакторный анализ

```
In [21]: new_features_gini = get_factors_gini(clear_data, 'label')
    new_features_gini_df = pd.DataFrame(new_features_gini, columns=['variable', 'gini'])
    new_features_gini_df['gini_abs'] = new_features_gini_df['gini'].abs()
    new_features_gini_df.sort_values('gini_abs', ascending=False, inplace=True)
```

In [22]: new_features_gini_df.iloc[:40]

	variable	gini	gini_abs
252	label	1.000000	1.000000
251	MA1/MA3	0.577363	0.577363
250	MA1/MA4	0.559989	0.559989
249	MA1/MA2	0.520602	0.520602
248	MA2/MA4	0.467615	0.467615
247	MA1/MA5	0.454296	0.454296
246	MA2/MA3	0.437529	0.437529
245	MA2/MA5	0.382924	0.382924
244	MA3/MA4	0.377559	0.377559
243	MA1/MA6	0.376933	0.376933
0	prescreaning/MA1	-0.332642	0.332642
242	MA1_log	0.324602	0.324602
241	MA1	0.324602	0.324602
240	MA1*ED	0.323607	0.323607
239	MA2/MA6	0.323595	0.323595
238	MA1/D	0.323033	0.323033
237	MA1/ED	0.322538	0.322538
236	MA3/MA5	0.317552	0.317552
235	MA1*MA2	0.308135	0.308135
1	prescreaning/MA2	-0.307442	0.307442
234	MA1*D	0.301024	0.301024
233	MA2_log	0.294920	0.294920
232	MA2	0.294920	0.294920
231	MA2/D	0.294715	0.294715
230	MA2*ED	0.293952	0.293952
229	MA2/ED	0.293750	0.293750
228	MA1*MA3	0.291335	0.291335
2	prescreaning/MA3	-0.278984	0.278984
227	MA3/MA6	0.278626	0.278626
226	MA2*MA3	0.276880	0.276880
225	MA2*D	0.273255	0.273255
224	MA1*MA4	0.272904	0.272904
222	MA3	0.262012	0.262012
223	MA3_log	0.262012	0.262012
221		0.261799	0.261799
220	MA3*ED	0.261567	0.261567
219	MA3/ED	0.261432	0.261432
218	MA2*MA4	0.257960	0.257960
217	MA1*MA5	0.255857	0.255857
216	prescreaning*MA1	0.249099	0.249099

значимость

```
In [23]: all_features = set(data.columns) - {'label'}
```

```
In [24]: import statsmodels.api as sm
         import statsmodels.formula.api as smf
         one_dim_models_res = []
         for feature name in all features:
             model = smf.logit(f'label ~ {feature_name}', data).fit()
             model.summary()
             \verb"one_dim_models_res.append" (\{
                  'feature': feature_name,
                  'AIC': model.aic,
                  'LLR': model.llr,
                  'LLR pval': model.llr pvalue
             })
         one_dim_models_res = pd.DataFrame(one_dim_models_res).set_index('feature')
                  Iterations 9
         Optimization terminated successfully.
                  Current function value: 0.654189
                  Iterations 5
         Optimization terminated successfully.
                  Current function value: 0.666627
                  Iterations 8
         Optimization terminated successfully.
                  Current function value: 0.689542
                  Iterations 4
         Optimization terminated successfully.
                  Current function value: 0.646857
                  Iterations 11
         Optimization terminated successfully.
                  Current function value: 0.684393
                  Iterations 5
         Optimization terminated successfully.
                  Current function value: 0.690939
                  Iterations 3
In [25]: def get_significance(pval):
             if pval < 0.001:</pre>
                 return '***'
             elif pval < 0.01:
                 return '**
             elif pval < 0.05:
                 return '*'
             elif pval < 0.1:</pre>
                return '.'
             else:
                 return ''
         one_dim_models_res['significance'] = one_dim_models_res['LLR_pval'].apply(get_significance)
In [26]: one_dim_models_res[one_dim_models_res['significance'] == '***'].shape
Out[26]: (282, 4)
```

In [27]: one_dim_models_res.loc[one_dim_models_res['significance'] == '***'].sort_values(by='LLR_pval').head(40)

Out[27]:

AIC LLR LLR_pval significance feature *** MA1*MA3 1178.898954 414.273080 1.792138e-89 *** MA1*MA4 1218.432787 374.739247 6.551871e-81 MA1*MA2 1248.262139 344.909895 1.887185e-74 MA1*MA5 1281.724492 311.447542 3.311661e-67 *** 1309.669649 283.502385 3.698124e-61 MA2*MA4 1311.053141 282.118893 7.367977e-61 MA2*MA3 *** MA2*MA5 1346.056044 247.115991 2.751578e-53 1365.792001 227.380033 *** MA1*MA6 5.096439e-49 MA3*MA4 1395.630717 197.541317 1.433504e-42 *** MA3*MA5 1403.752421 189.419613 8.146689e-41 MA2*MA6 1410.371585 182.800449 2.191150e-39 MA1/MAN7 1417.604906 173.567128 2.043511e-38 MA1*MAN7 1415.359521 177.812513 2.617259e-38 *** MA1/MAN8 1422.994089 168.177945 3.024289e-37 169.580133 1.567864e-36 *** MA1*MAN8 1423.591901 MA2*MAN7 1427.637325 165.534709 1.171061e-35 *** MA2/MAN7 1430.451260 160.720774 1.258715e-35 MA2/MAN8 1436.474537 154.697497 2.557793e-34 MA2*MAN8 1436.639633 156.532401 1.026624e-33 MA3*MAN7 1439.191995 153.980040 3.648589e-33 *** MA3/MAN7 1443.803286 147.368748 9.983503e-33 MA3/MAN8 1450.115605 141.056429 2.344151e-31 *** MA1/MAN6 1450.189392 140.982642 2.432251e-31 *** MA1*MAN6 1447.791624 145.380410 2.613336e-31 MA1*AMFM 1449.054817 144.117217 4.893557e-31 MA3*MAN8 1449.207454 143.964580 5.278888e-31 MA4*MAN7 1450,201273 142,970762 8,646964e-31 *** MA1/MA6 1453.510784 137.661251 1.280086e-30 MA3*MA6 1451.815122 141.356912 1.926973e-30 MA1/MA5 1454.522682 136.649352 2.123099e-30 *** MA4/MAN7 1456.321933 134.850101 5.220024e-30 MA5*MAN7 1457.101642 136.070392 2.658697e-29 1460.130416 131.041618 3.504888e-29 MA1/AMFM MA4/MAN8 1463.242512 127.929522 1.661335e-28 *** 1463.446052 127.725982 1.839312e-28 MA1/MAN5 MA4*MAN8 1461.218378 131.953656 2.051319e-28 *** 1463.677605 127.494429 2.065078e-28 *** MA1/MAN1 MA2*MAN6 1461.385825 131.786209 2.229061e-28 **MA6*MAN7** 1462.225552 130.946482 3.381420e-28 MA1*MAN5 1462.546050 130.625984 3.964333e-28

Регрессия

```
In [30]: predictors = ['MA1/MA3', 'AMFM']
#predictors = ['MA1/MA4', 'MA1*ED']

model = sm.Logit(train['label'], sm.add_constant(train[predictors]))
fitted_model = model.fit()
test_model(train, test, fitted_model)
```

c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\numpy\core\fromnumeric.py:2389: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
return ptp(axis=axis, out=out, **kwargs)

Optimization terminated successfully.

Current function value: 0.556833

Iterations 7

c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\numpy\core\fromnumeric.py:2389: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
 return ptp(axis=axis, out=out, **kwargs)
c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\numpy\core\fromnumeric.py:2389: Fu

c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
return ptp(axis=axis, out=out, **kwargs)

Train gini: 0.5984699453551914 Test gini: 0.5651836348906294

Logit Regression Results

LOGIC REGIESSION RESULTS							
Dep. Variab	ole:		label No.	Observations:	:	802	
Model:		-	Logit Df E	Residuals:		799	
Method:			MLE Df 1	Model:		2	
Date:	I	Fri, 03 Jan	2020 Psei	ıdo R-squ.:		0.1942	
Time:		13:	27:33 Log-	-Likelihood:		-446.58	
converged:			True LL-1	Null:		-554.22	
Covariance	Type:	nonro	obust LLR	p-value:		1.795e-47	
	coef	std err	Z	P> z	[0.025	0.975]	
const	-14.9697	1.384	-10.819	0.000	-17.682	-12.258	
MA1/MA3	14.2637	1.315		0.000		16.841	
AMFM	-0.7263	0.183	-3.958	0.000	-1.086	-0.367	
variable	 vif	=======	=======			=======	
	1.529027						

c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\ipykernel_launcher.py:44: FutureWa
rning: Method .as_matrix will be removed in a future version. Use .values instead.

AMFM 1.529027


```
In [31]: g3 = sns.PairGrid(clear_data[predictors])
    g3.map_diag(sns.kdeplot)
    g3.map_upper(plt.scatter)
    g3.map_lower(sns.kdeplot)
```

Out[31]: <seaborn.axisgrid.PairGrid at 0x17510bbca88>

Влияние выбросов

```
In [32]: from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.genmod import families

final_features = np.array(train[predictors])
    cooks_model = GLM(train['label'], final_features, family=families.Binomial()).fit()

infl = cooks_model.get_influence()
    plt.figure(figsize=(12, 4))
    sns.scatterplot(fitted_model.fittedvalues, infl.cooks_distance[0])
```

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x17510ac68c8>


```
In [33]: new_train = train[infl.cooks_distance[0] < 0.01]
    print('Fitting on {} / {} of samples'.format(len(new_train), len(train)))
    model_cooks = sm.Logit(new_train['label'], sm.add_constant(new_train[predictors])).fit()
    test_model(new_train, test, model_cooks)</pre>
```

Fitting on 802 / 802 of samples
Optimization terminated successfully.
Current function value: 0.556833
Iterations 7

c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\numpy\core\fromnumeric.py:2389: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
return ptp(axis=axis, out=out, **kwargs)

 $\verb|c:|users|xiaomi|appdata|local|programs|python|python|37|lib|site-packages|numpy|core|from numeric.py:2389: Full ture warning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. \\$

return ptp(axis=axis, out=out, **kwargs)
c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\numpy\core\fromnumeric.py:2389: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
return ptp(axis=axis, out=out, **kwargs)

c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\ipykernel_launcher.py:44: FutureWa rning: Method .as_matrix will be removed in a future version. Use .values instead.

Train gini: 0.5984699453551914 Test gini: 0.5651836348906294

Logit Regression Results

========		======						
Dep. Varia	ble:		1	abel	No. Ob	servations:		802
Model:			L	ogit	Df Res	iduals:		799
Method:				MLE	Df Mod	lel:		2
Date:		Fri	, 03 Jan	2020	Pseudo	R-squ.:		0.1942
Time:			13:2	7:38	Log-Li	kelihood:		-446.58
converged:				True	LL-Nul	1:		-554.22
Covariance	Type:		nonro	bust	LLR p-	value:		1.795e-47
========								
		coef	std err		Z	P> z	[0.025	0.975]
const	 -14	9697	1.384	 -1(0.000	-17.682	-12.258

MA1/MA3 14.2637 1.315 10.848 0.000 11.686 16.841 AMFM -0.7263 0.183 -3.958 0.000 -1.086 -0.367 variable vif MA1/MA3 1.529027 0 AMFM 1.529027 MA1/MA3 0.90 - 0.75 0.60 0.45 0.30

0.15

Выбросы не оказывают большого влияния, удалять их не будем

AMFM

Оценка качества модели

MA1/MA3

```
In [34]: test_scores = fitted_model.predict(sm.add_constant(test[predictors]))
    train_scores = fitted_model.predict(sm.add_constant(train[predictors]))
```

c:\users\xiaomi\appdata\local\programs\python\python37\lib\site-packages\numpy\core\fromnumeric.py:2389: Fu
tureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.
 return ptp(axis=axis, out=out, **kwargs)

Разделяющая способность

Средняя точность (PR-кривая)

Чувствительность и специфичность

```
In [37]: n1 = test['label'].sum()
    n = len(test['label'])

sensitivity = np.zeros_like(test_scores)
specificity = np.zeros_like(test_scores)
for j, u in enumerate(sorted(test_scores)):
    sensitivity[j] = np.sum((test_scores >= u) * test['label']) / float(n1)
    specificity[j] = np.sum((test_scores <= u) * (1 - test['label'])) / float(n - n1)

plt.figure(figsize=(6, 6))
sns.lineplot(sorted(test_scores), specificity, label='specificity',)
sns.lineplot(sorted(test_scores), sensitivity, label='sensitivity')
plt.xlabel('Cutoffs')</pre>
```

```
Out[37]: Text(0.5, 0, 'Cutoffs')
```


Порог отсечения

For cutoff 0.4522: specificity=0.6832, sensitivity=0.72826

Выводы и интерпретация

```
In [39]: confint_results = np.exp(pd.concat((fitted_model.params, fitted_model.conf_int()), axis=1))
    confint_results.columns = ['coef', 'confint_2.5', 'confint_97.5']
    confint_results
```

Out[39]:

```
        coef
        confint_2.5
        confint_97.5

        const
        3.153142e-07
        2.094216e-08
        4.747507e-06

        MA1/MA3
        1.565492e+06
        1.189549e+05
        2.060247e+07

        AMFM
        4.836963e-01
        3.375911e-01
        6.930339e-01
```

В логистической регрессии

Вероятность наступления события зависит от z: $p=\frac{1}{1+e^{-z}}$, где $z=a_0+a_1*x_1+\ldots+a_n*x_n$ Шанс наступления события зависит от z: $\frac{p}{1-p}=e^z=e^{a_0+a_1*x_1+\ldots+a_n*x_n}$

Таким образом, коэффициент регрессии a_i показывает, что при увеличении значения объясняющей переменной на 1, шанс наступления события увеличивается в e^{a_i} раз

Интерпретация модели

Разберём значения коэффициентов в полученной модели. Переменные вошедшие в модель:

- MA1/MA4 отношение количества MA, найденных на уровне p-value 0.5, к количеству MA, найденных на уровне p-value 0.7
- MA1*ED результат АМ/FM классификации Видим, что:
- увеличение MA1/MA3 на 1 приводит к увеличению шанса возникновения целевого события в $e^{14.2637}=1565475.23$ раз
- положительный (1) результат АМ/FM классификации приводит к уменьшению шанса возникновения целевого события в $e^{0.7263}=2.07$ раз