Question number	Scheme	Marks
2 (a)	Gradient = $\frac{4+1}{3+7} = \frac{1}{2}$	M1
	$y+1=\frac{1}{2}(x+7)$	M1
	x-2y+5=0	A1 (3)
(b)	$AB = \sqrt{10^2 + 5^2} = 5\sqrt{5}$ $AC = \sqrt{(-73)^2 + (71)^2} = 4\sqrt{5}$	M1
	$k = \frac{5}{4}$	A1 (2)
(c)	$-2 = \frac{7-p}{-3-3}$	M1
	12 = 7 - p $p = -5$	dM1
	p = -5	A1
Total 8 ma		(3) 1 8 marks

Part	Mark	Notes	
(a)	M1	For finding the gradient of AB	
	M1	For a fully correct method for finding the equation of a straight line. If $y = mx + c$ is used, then they must find a value for c for the award of this mark.	
		For $x-2y+5=0$ in the required form.	
	A1	Accept the terms in any order provided they are all on one side of the equation with the other $= 0$	
		e.g., $-2y + x + 5 = 0$ or $2y - x - 5 = 0$ etc	
(b)		For using Pythagoras to find both AB and AC	
	M1	$AB = \sqrt{(7-3)^2 + (4-1)^2} = 5\sqrt{5}$ and $AC = \sqrt{4^2 + 8^2} = 4\sqrt{5}$	
	A1	For $k = \frac{5}{4}$	
(c)	M1	Obtains an equation using the perpendicular of their gradient from (a) and the point (3, p) $-2 = \frac{7 - p}{-3 - 3}$	
	dM1	For a linear equation in p 12 = 7 - p	
	A1	For $p = -5$	
	ALT		
	M1	Finds the equation of the perpendicular using their gradient form part (a) $y-7=-2(x+3) \Rightarrow y=-2x+1$	
	dM1	Substitutes $x = 3$ into their equation of the perpendicular to find a value for y	
	A1	For $p = -5$	