Домашнее задание.

Потенциальное векторное поле.

Определить является ли векторное поле $\stackrel{-}{a}(M)$ потенциальным. Для потенциального поля найти его потенциал тремя способами.

1)
$$\bar{a}(M) = y\bar{\iota} + x\bar{\jmath} + e^z\bar{k}$$

2)
$$\bar{a}(M) = (x^2 - z^2)\bar{\iota} - 3xy\bar{\jmath} + (y^2 + z^2)\bar{k}$$

3)
$$\bar{a}(M) = 2xyz\bar{\iota} + x^2z\bar{\jmath} + yx^2\bar{k}$$

Вычислить линейный интеграл в векторном поле $\bar{a}(M)$ по дуге, соединяющей точки A и B (A — начало дугии, B- конец дуги)

4)
$$\bar{a}(M) = (x^2 - 2zy)\bar{\iota} + (y^2 - 2xz)\bar{\jmath} + (z^2 - 2xy)\bar{k};$$

 $A(1;-1;2), B(-2;4;2)$

5)
$$\bar{a}(M) = (z^2 + 2yx)\bar{\iota} + (x^2 + 2zy)\bar{\jmath} + (y^2 + 2xz)\bar{k};$$

 $A(0;1;-2), B(2;3;1)$

6) определить тип векторного поля (потенциальное, соленоидальное, гармоническое или общего вида):

$$6.1 \quad \overline{a} = 6x\overline{i} - 15y\overline{j} + 9z\overline{k}$$

6.2
$$\overline{a} = 5x^2y\overline{i} - 10xyz\overline{k}$$

6.3
$$\overline{a} = 6y^2 \overline{i} + 6z\overline{j} + 6x\overline{k}$$

6.4
$$\bar{a}(M) = x^2 y \bar{\imath} - 2xy^2 \bar{\jmath} + 2xyz \bar{k}$$

6.5
$$\bar{a}(M) = (2xy + z)\bar{\iota} + (x^2 - 2y)\bar{\jmath} + x\bar{k}$$

- 7) Пользуясь оператор Гамильтона, найти следующие дифференциальные операции. Сделать проверку непосредственным вычислением в декартовых координатах
 - 7.1 $div(\bar{a} \times \bar{b})$
 - 7.2 $rot(\bar{c} \times \bar{r})$, \bar{c} постоянный вектор; $\bar{r} = \{x; y; z\}$
- 8) Для векторного поля $a(M) = 6x^2 i + 3\cos(3x + 2z) j + \cos(3y + 2z) k$
 - 8.1 определить класс поля
 - 8.2 в точке (1; 2; 3) поле имеет источник или сток
- 8.3 Расписать через оператор «набла», если существует такая диффернциальная операция 2 порядка, и вычислить следующие дифференциальные операции:

grad div
$$a(M)$$
; rot div $a(M)$; div rot $a(M)$.

- 9) Для векторного поля $a(M) = \frac{x i + yj}{\sqrt{x^2 + y^2 + 4}}$
 - 9.1 определить класс поля и найти соответсвующий ему потенциал
 - 9.2 в точке (1; 2; 3) поле имеет источник или сток
- 9.3 Расписать через оператор «набла», если », если существует такая диффернциальная операция 2 порядка, и вычислить следующие дифференциальные операции:

grad div
$$a(M)$$
; rot div $a(M)$; div rot $a(M)$.