K nearest neighbor

LING 572 Advanced Statistical Methods for NLP January 22, 2019

The term "weight" in ML

Weights of features

Weights of instances

Weights of classifiers

The term "binary" in ML

- Classification problem:
 - Binary: the number of classes is 2
 - Multi-class: the number is classes is > 2

- Features:
 - Binary: the number of possible feature values is 2.
 - Real-valued: the feature values are real numbers

- File format:
 - Binary: human un-readable
 - Text: human readable

kNN

Instance-based (IB) learning

- No training: store all training instances.
 - "Lazy learning"

- Examples:
 - kNN
 - Locally weighted regression
 - Case-based reasoning
 - ...

The most well-known IB method: kNN

kNN

kNN

Training: record labeled instances as feature vectors

- Test: for a new instance d,
 - find k training instances that are closest to d.
 - perform majority voting or weighted voting.

- Properties:
 - A "lazy" classifier. No learning in the training stage.
 - Feature selection and distance measure are crucial.

The algorithm

- Determine parameter K
- Calculate the distance between the test instance and all the training instances
- Sort the distances and determine K nearest neighbors
- Gather the labels of the K nearest neighbors
- Use simple majority voting or weighted voting.

Issues

• What's *K*?

How do we weight/scale/select features?

How do we combine instances by voting?

Picking K

- Split the data into
 - Training data (true training data and validation data)
 - Dev data
 - Test data

- Pick k with the lowest error rate on the validation set
 - use N-fold cross validation if the training data is small

Normalizing attribute values

- Distance could be down naited toyls by a cattributes with large. withberse numbers:
 - Ex: features: aggeincomene
 - Corriginal data $x = (3.53.76 \text{ K})_5 \text{ K}_2 = (3.6 + 8.0 \text{ K})_3 \text{ K}_2 + (7.0 \text{ K}_2 + 9.0 \text{ K})_2$ 79K)
- Rescale: i.e., normalize to [0,1]
- Rescale: l.e., normalize, income ∈ [0, 200K]

 - After normalization: $x_1 = (0.35, 0.38)$ Assume: age [0,100], income [0, 200K] $x_2 = (0.36, 0.40), x_3 = (0.70, 0.395)$ After normalization: $x_1 = (0.35, 0.38)$,

$$x_2 = (0.36, 0.40), x_3 = (0.70, 0.395).$$

The Choice of Features

 Imagine there are 100 features, and only 2 of them are relevant to the target label.

- Differences in irrelevant features likely to dominate:
 - kNN is easily misled in high-dimensional space.
 - Feature weighting or feature selection is key
 (It will be covered next time)

Feature weighting

- Reweighting a dimension j by weight w_i
 - Can increase or decrease weight of feature on that dimension
 - Setting w_j to zero eliminates this dimension altogether.

• Use cross-validation to automatically choose weights $w_1, ..., w_n$

Some similarity measures

Euclidean distance:

$$dist(d_i, d_j) = \sqrt{\sum_k (a_{i,k} - a_{j,k})^2}$$

Weighted Euclidean distance:

$$dist(d_i, d_j) = \sqrt{\sum_k w_k (a_{i,k} - a_{j,k})^2}$$

$$\cos(d_i, d_j) = \frac{\sum_k a_{i,k} a_{j,k}}{\sqrt{\sum_k a_{i,k}^2} \sqrt{\sum_k a_{j,k}^2}}$$

Voting by k-nearest neighbors

- Suppose we have found the k-nearest neighbors.
- Let $f_i(x)$ be the class label for the i-th neighbor of x.

```
\delta(c, f_i(x)) is the identity function; that is, it is 1 if f_i(x) = c, and is 0 otherwise.
```

Let $g(c) = \sum_{i} \delta(c, f_i(x))$; that is, g(c) is the number of neighbors with label c.

Voting

- Majority voting: $c^* = arg max_c g(c)$
- Weighted voting: weighting is on each neighbor $c^* = \text{arg max}_c \ \Sigma_i \ w_i \ \delta(c, f_i(x))$ Where $\delta(c, f_i(x))$ is 1 if $f_i(x) = c$ and 0 otherwise
- Weighted voting allows us to use more training examples: e.g., $w_i = 1/\text{dist}(x, x_i)$
 - ☐ We can use all the training examples.

Summary of kNN algorithm

 Decide k, feature weights, and similarity measure

- Given a test instance x
 - Calculate the distances between x and all the training data
 - Choose the k nearest neighbors
 - Let the neighbors vote

- Strengths:
 - Simplicity (conceptual)
 - Efficiency at training: no training
 - Handling multi-class
 - Stability and robustness: averaging k neighbors
 - Predication accuracy: when the training data is large

Weakness:

- Efficiency at testing time: need to calculate all distances
 - Better search algorithms: e.g., use k-d trees
 - Reduce the amount of training data used at the test time: e.g., Rocchio algorithm
- Sensitivity to irrelevant or redundant features
- Distance metrics unclear on non-numerical/binary values