The Network Inventory for Energy Management

Qin Wu Huawei (bill.wu@Huawei.com)

Motivation

- IVY WG has recently been formed in IETF OPS area.
- IVY WG is tasked to define core network inventory model that includes both hardware and software inventory data and can be used a foundation by other model to establish inventory model specific to different hardware technology.
- Many vendors equipment offers energy saving functionalities in their hardware component such as
 - Making some of port going into idle mode by tuning off SerDes and additional electronic circuits;
 - Warm Back up to make chipset enter into energy saving mode

In scope of IVY WG

Basic Network Inventory Functionalities Physical Location Management Hardware Component Management Geo Location Management **System Software** License Management Component Management **Network Element Management Physical Port** Management Logical Element Management **Physical Connection** Management

Motivation

- Network energy consumption accounts for 85% of operators' total energy consumption
 - Wireless: 40~60%, Base Station: 75%, Core Site: 20%, Data Center: 20%~25%, Broadband access: 15%~20%, etc
- The global MBB traffic is increased 10 times in last 10 years, The number of sites increases by 30% and the frequency band increases by 3 times. Power consumption increases by 3.65 times.

Energy Management using Heat Map Use case

Design Consideration

- Design Consideration for extending Core network inventory for energy management
 - Where to Monitor
 - A network device consists of a lot of individual component, each of component consumes power
 - Based on [I-D.manral-bmwg-power-usage], the location of monitors related to network inventory includes
 - Chassis, linecard, port, TCAM, Firmware, etc
 - The external component should also be counted such as Fan, external memory, HAVC, etc
 - What to Monitor :Network Inventory related Metrics include
 - Device Level: factors include base chassis power, number of line cards, active ports, port settings, port utilisation, TCAM size, firmware version, etc.
 - Metric can be power consumption per chassis, per linecard, per port
 - Network Level: The metrics can be
 - Total energy consumption
 - Electricity from renewable sources (%)
 - Network energy efficiency (MWh/PB)
 - How to Measure and Report
 - Hardware YANG model [RFC8348] or ENTITY-SENSOR-MIB object defined in [RFC3433] can be used to collect energy consumption metric but not state
 - MIB for monitoring for Power State and energy consumption of networked [RFC7460] unable to collect energy consumption for each hardware component.
 - How to Control
 - The hardware component might have energy adjust function and indicate it to the management
 - Port has port setting allow the management system to limit line rate forwarding capacity of individual ports
 - TCAM size can be tuned to change power consumption, but not significantly
 - Change the number of active port, make some of port going into idle mode by tuning off SerDes and additional electronic circuits
 - Serdes Waking up time is the key
 - Network Processor adaptive adjust based on traffic monitoring
 - Warm Back up to make chipset enter into energy saving mode

Next Step

- Do we need a new monitoring standard for Green Power consumption measurement report?
 - Both YANG module defined in [RFC8348] and ENTITY-SENSOR-MIB object defined in [RFC3433] has its limitation
 - MIB for Power and Energy [RFC7460] can not provide component level energy monitoring
- Extend IETF network Inventory model with energy management Support? Any volunteer to work together
 - IVY work on basic network inventory model
 - Energy management is the missing piece