Reinforcement Learning Computer Engineering Department Sharif University of Technology

Mohammad Hossein Rohban, Ph.D.

Spring 2025

Courtesy: Some slides are adopted from CS 285 Berkeley, and CS 234 Stanford, and Pieter Abbeel's compact series on RL.

Disadvantages of Monte-Carlo Learning

We have seen MC algorithms can be used to learn value predictions

- But when episodes are long, learning can be slow
 - we have to wait until an episode ends before we can learn...
 - return can have high variance
 - Which one is more? First-visit or every-visit
- Are there alternatives? (Spoiler: yes)

Monte-Carlo Control

Repeat:

- Sample episode $1, \ldots, k, \ldots$, using π : $\{S_1, A_1, R_2, \ldots, S_T\} \sim \pi$ For each state S_t and action A_t in the episode: $q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha_t \left(G_t q(S_t, A_t)\right)$ e.g.,

$$q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha_t (G_t - q(S_t, A_t))$$

• e.g.,
$$\alpha_t = \frac{1}{N(S_t, A_t)} \quad \text{of} \quad \alpha_t = 1/k$$
• Improve policy based on new action-value function

$$\pi^{new}(s) = \underset{a \in A}{\operatorname{argmax}} q(s, a)$$

Any issue?

- Let's consider this example:
- Discount = 1, start in state H.

	-	_	_		×				
Α	В	С	D	Е	F	G	Н	I	J
r=10	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	1	\rightarrow	\rightarrow	r=1

$$H, \rightarrow, 0, I, \rightarrow, 1, J$$

$$Q(H, \rightarrow) = 1 \qquad Q(I, \rightarrow) = 1$$

$$\forall s, a \ Q(s, a) = 0$$

$$\forall s \ \pi(s) = argmax \ Q(s, a)$$

Epsilon Greedy Policy

- Simple idea to balance exploration and achieving rewards
- Let |A| be the number of actions
- Then an ϵ -greedy policy w.r.t a state action value Q(s,a) is

$$\begin{array}{l} \pi(a|s) = \\ \bullet \ \operatorname{arg\,max}_a Q(s,a), \ \text{w. prob} \ 1 - \epsilon + \frac{\epsilon}{|A|} \\ \bullet \ a' \neq \operatorname{arg\,max} Q(s,a) \ \text{w. prob} \ \frac{\epsilon}{|A|} \end{array}$$

Does this hurt improvement?

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi_i}$

Monte-Carlo Control (done right)

Repeat:

- Sample episode 1, ..., k, ..., using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode:

$$q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha_t (G_t - q(S_t, A_t))$$

• e.g.,

$$\alpha_t = \frac{1}{N(S_t, A_t)}$$
 of $\alpha_t = 1/k$

Improve policy based on new action-value function

$$\pi(a|s) =$$

- arg max_a Q(s, a), w. prob $1 \epsilon + \frac{\epsilon}{|A|}$
- $a' \neq \arg\max Q(s, a)$ w. prob $\frac{\epsilon}{|A|}$

Disadvantages of MC Learning

- We have seen MC algorithms can be used to learn value predictions
- But when episodes are long, learning can be slow
 - ...we have to wait until an episode ends before we can learn
 - ...return can have high variance
- Are there alternatives? (Yes)

Temporal Difference Learning

Prediction

TD Overview

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from *incomplete* episodes, by *bootstrapping*

TD updates a guess towards a guess
$$\hat{V}^{\pi}(s) = \frac{1}{n} \sum_{i=1}^{n} \left[R(s, \pi(s), s_i^{\epsilon}) + V^{\pi}(s_i^{\epsilon}) \right]$$

Temporal Difference Learning by Sampling Bellman Equations

Bellman update equations:

$$v_{k+1}(s) = \mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t \sim \pi(S_t)\right]$$

We can sample this!

$$v_{t+1}(S_t) = R_{t+1} + \gamma v_t(S_{t+1})$$

• Samples could be averaged, in a similar way to MC:

$$v_{t+1}(S_t) = v_t(S_t) + \alpha_t \left(\underbrace{R_{t+1} + \gamma v_t(S_{t+1})}_{\text{target}} - v_t(S_t) \right)$$

temporal difference error $\,\delta_t\,$

Temporal Difference Learning

- Prediction setting: learn v_{π} online from experience under policy π
- Monte Carlo
 - Update value $v_n(S_t)$ towards sampled return G_t

$$v_{n+1}(S_t) = v_n(S_t) + \alpha \left(\mathbf{G_t} - v_n(S_t) \right)$$

- TD Learning
 - Update value $v_t(S_t)$ towards estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$v_{t+1}(S_t) \leftarrow v_t(S_t) + \alpha \underbrace{\left(\underbrace{\frac{\mathbf{R}_{t+1} + \gamma v_t(S_{t+1}) - v_t(S_t)}{\mathbf{R}_{t+1} + \gamma v_t(S_{t+1})} - v_t(S_t) \right)}_{\text{target}}$$

Backup (Dynamic Programming)

Backup (Monte Carlo)

Backup (Temporal Difference)

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

TD Learning for action values

- We can apply the same idea to action values
- Temporal-difference learning for action values:
 - Update value $q_t(S_t, A_t)$ towards estimated return $R_{t+1} + \gamma q(S_{t+1}, A_{t+1})$

$$q_{t+1}(S_t, A_t) \leftarrow q_t(S_t, A_t) + \alpha \underbrace{\left(\underbrace{\frac{\mathbf{R}_{t+1} + \gamma q_t(S_{t+1}, A_{t+1}) - q_t(S_t, A_t)}_{\text{target}} \right)}_{\text{target}}$$

TD vs. MC

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - MC must wait until end of episode before return is known
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments
- TD is independent of the temporal span of the prediction
 - TD can learn from single transitions
 - MC must store all predictions (or states) to update at the end of an episode
- TD needs reasonable value estimates

Temporal Difference Learning

Control

SARSA Algorithm for On-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma Q(S',A') - Q(S,A) \big]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```


Off-Policy TD and Q-Learning

On and Off-Policy Learning

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from μ

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- While using behavior policy $\mu(a, s)$ to generate actions
- Why is this important?
 - Learn from observing humans or other agents (e.g., from logged data)
 - Re-use experience from old policies (e.g., from your own past experience)
 - Learn about multiple policies while following one policy
 - Learn about greedy policy while following exploratory policy

Q-Learning

Q-learning estimates the value of the greedy policy
$$q_{t+1}(s,a) = q_t(S_t,A_t) + \alpha_t \left(R_{t+1} + \gamma \max_{a'} q_t(S_{t+1},a') - q_t(S_t,A_t)\right)$$
Acting greedy all the time would not explore sufficiently
$$\left(S_{t+1}, a_{t+1}, a_{t+1$$

$$(S_t, a_t, S', r)$$

$$(S_t, a_t, S', \Gamma)$$
 on-policy $(SARSA)$
 $Q_{th}^{\pi}(S, a) \leftarrow Q_t^{\pi}(S, a) + \alpha_t (R(S, a, S') + \alpha_t)$

Theorem

Q-learning control converges to the optimal action-value function, $q \to q^*$, as long as we take each action in each state infinitely often.

Note: no need for greedy behavior!
$$Q^{\pi}(s, a) = IE_{\pi,s} \cdot [R(s, a, s') + V(s')]$$
Works for **any** policy that eventually selects all actions sufficiently often $Q^{\pi}(s, a')$

Q-Learning for Off-Policy Control

Initialize $Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode): Initialize SRepeat (for each step of episode): Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$ $S \leftarrow S';$ until S is terminal

(S,A,S',R)