R-Seq2Seq: Relational Sequence to Sequence Learning for Question Answering

Xiaodong Gu 2017.08.30

Sequence to Sequence Learning

Consider Relations between Q and A

question answer What's the weather tomorrow? Good I don't know How are you? Why not ask John? What's the weather tomorrow? What's the weather tomorrow? Good I don't know Good I don't know Why not ask John Why not ask John How are you? How are you?

Proposed Model

$$\mathcal{L} = (1 - \lambda)\mathcal{L}_{dec} + \lambda\mathcal{L}_{dis}$$

Relation Summarization

Answer Sampling

Datasets

- Opensub
- Ubuntu Dialog Corpus
- Cornell Movie Dialogs Corpus
- Twitter Chat log

Training

- Optimizers:
 - Embedder:Adam
 - Encoder: Adam
 - Discriminator: Adadelta
 - Decoder:Adam
- Hyper Parameters
 - Batch Size: 128
 - λ: 0.9
 - RNN Hidden Size: 512
 - Word Embedding Size: 100
 - Learning rate=0.001

Training

0.620

10.00k

20.00k

30.00k

40.00k

0.000

50.00k

60.00k

70.00k

80.00k

90.00k

100.0k

110.0k

Training

Training – Clustering

Minibatch K-Means

• N_clusters: 10000

• batch_size: I0001

Instance Table

ID	Vector	clus
0	[0.2,0.5,0.8]	0
1		12
n		

ID	Vector	clus
0	[0.1,0.4,0.8]	11
1		7
n		

Prob
0.23
0.45
0.77

Questions Answers probs

Cluster Table

ID	Center Vector	instances
0	[0.1,0.5,0.8]	33,58,99
1		
•••		
n		

ID	Center Vector	instances
0	[0.8,0.5,0.7]	12,45,27
1		55,1004
n		

Question Clusters

Answer Clusters

Relation Table

Q_clus	A_clus	Prob
0	15	0.9
0	21	0.75
0	53	0.6
1		
1		
1		

Q-A relations

Challenges & Future Plan

- Think of better loss term for Discriminator Training
- Try to separate decoder (store the encoded vector for each answer)
- Introduce Random Noise to the Decoder (Variational Auto-Encoder)
- Applying to Source Code (API sequence) Generation

Conditional Sequence to Sequence

- I. Clustering all answers with their word embeddings (mean of word vectors in each answer sentence)
- Training Encoder-Decoder model with <q,a,C> triples, where q=question, a=answer and C=answer cluster.
 - a) Encoder: an RNN to encode q into a vector h_T
 - b) Cluster label predictor: given h_T , predict the potential cluster label \hat{C}
 - c) Decoder: an RNN to decode answer a according to h_T and answer cluster centroid/label
 - d) Train to minimize two objectives
 - Accuracy of cluster prediction
 - Accuracy of decoded answer

$$loss = -\log p(C_j|q) - \sum_{t=1}^{N} \log p(\alpha_t|q, C_j)$$

3. Prediction: given q, first predict C, then decode a using encoded q as well as C.

Q&A