HW1P2 IDL

Author Name: Nora NgoAndrewID: nngongoc

• Kaggle Username: norango

Description:

This homework involved building a Multi-Layer Perceptron (MLP) network for phoneme detection and classification. Using the provided dataset, the goal was to classify phonemes into 42 distinct classes using a trained model.

Requirements:

Given in the requirements.txt file

Dataset:

The dataset used is the MFCC dataset provided by the professor and can be found in the given Kaggle competition: https://www.kaggle.com/competitions/11785-spring-25-hw-1-p-2

Model Architecture

- The model follows a pyramid MLP architecture with approximately 19.88M parameters.
- It comprises 32 layers. There are 9 linear layers, 9 batch normalization layers, 8 Mish activation layers, 7 dropout layers
- Activation function: Mish
- Optimizer: AdamW
- Scheduler: CosineAnnealingWarmRestarts
- Weight initialization: Xavier_Normal
- Dropout: 0.25 Batch size: 8162
- **Epochs**: 30
- Augmentations: Both (Frequency Masking and Time Masking)
 Masking parameters: Frequency Mask = 5, Time Mask = 10
- Training time: Approximately 5-6 hours

Experimentation:

For given HW1P2, 57 ablations were run until an accuracy of **86.811%** accuracy was achieved. To summarize the given studies:

• (1 - 30 Ablations):

- Initial experiments focused on using GELU activation and tuning the number of perceptrons from 1024-4096 for input layers and 512-64 for output layers.
- Network sizes ranged between 4M to 10M parameters.
- Achieved ~75% validation accuracy.

• (31 - 40 Ablations):

- Fix the code for the dataset classification
- Validation accuracy improved to ~83%.
- Network sizes ranged between 4M to 10M parameters.

• (41 - 50 Ablations):

- Switch to Mish activation and tune the number of perceptrons to 8162.
- Network sizes ranged between 4M to 10M parameters.
- Validation accuracy stagnated at ~84%.

(51 - 57 Ablations):

- Final models focused on a pyramid architecture with Mish activation, simplifying earlier complex designs.
- Achieved **86.8% validation accuracy**, the best observed.
- Network sizes ranged around 19 parameters.
- Training loss and validation loss showed stable convergence patterns, as seen in WandB logs.
- The learning rate schedule with CosineAnnealingWarmRestarts contributed to smoother convergence.

Key Takeaways from the Updated Studies:

- **Best-performing model**: Pyramid MLP, Mish activation, AdamW optimizer, CosineAnnealingWarmRestarts scheduler.
- Training strategy: Running for 30+ epochs significantly improved results.
- Avoid overly complex gating mechanisms: Simple architectures performed better.
- A batch size of 8162 worked optimally without convergence issues.

Training

Instructions on how to train the model.

- For training, just run the attached .ipynb file in Google Colab and ensure a "saved models" folder is made for the given runtime.
- Also, ensure that the given Wandb part of the ipynb is renamed for the new training model for checkpoints.

Evaluation

How to test the trained model.

• Directly run the code after the "Experimentation" section of the ipynb file, ensuring that "saved models" has the wandb .pth file of the model for testing.

Inference

Steps to use the trained model for predictions.

 Predictions can be checked directly through the generated "submission.csv" file after running the .ipynb file.

Notes

 The WandB link for the updated ablation studies: https://wandb.ai/ngon78790-carnegie-mellon-university/hw1p2/workspace?nw=nwuserngon78790

Acknowledgment

 I would like to acknowledge my study group members: Aditya Sannabhadti for helping me reach the initial 83% accuracy by suggesting model architecture, parameter configuration changes, and dataset class, and Phoebe Zhou for helping me change the model architecture.