

www.vishay.com

Vishay Vitramon

AUTOMOTIVE

RoHS

COMPLIANT

HALOGEN

FREE

GREEN

(5-2008)

Surface Mount Multilayer Ceramic Chip Capacitors for Automotive Applications With Extended Bending Capability

FEATURES

- AEC-Q200 qualified with PPAP available
- Available in 0603, 0805, 1206, and 1210 body
- Improved bending capability performance: in addition of meeting the bending AEC-Q200 requirements, those capacitors are able to withstand typically more than 5 mm bending
- 100 % matte tin termination for soldering process
- High operating temperature
- · Wet build process
- Unique flexible termination system
- Reliable Noble Metal Electrode (NME) system
- · Parts compliant with ELV directive
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

For more than 25 years Vishay Vitramon has supported the automotive industry with robust, highly reliable MLCCs that have made it a leader in this segment. All Vishay Vitramon MLCCs are manufactured in "Precious Metal Technology" (PMT / NME) and a wet build process. They are qualified according to AEC-Q200 with PPAP available on request. Applications for these devices include automotive "under the hood", safety and comfort electronics. Their termination finish is 100 % matte tin plate finish. A polymer (flexible) termination with 100 % matte tin plate finish is offered for boardflex sensitive applications.

COG (NPO) DIELECTRIC

GENERAL SPECIFICATION

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +150 °C (above +125 °C changed characteristics, see 2.2)

Capacitance Range: 100 pF to 12 nF Voltage Range: 50 V_{DC} to 630 V_{DC}

Temperature Coefficient of Capacitance (TCC):

0 ppm/°C ± 30 ppm/°C from -55 °C to +125 °C

(specific ratings can please vary,

mlcc@vishay.com for details)

Dissipation Factor (DF):

0.1 % maximum at 1.0 V_{RMS} and 1 MHz for values \leq 1000 pF 0.1 % maximum at 1.0 V_{RMS} and 1 kHz for values > 1000 pF

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging: 0 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.

Applied test voltages

≤ 250 V_{DC}-rated: 250 % of rated voltage 500 V_{DC}-rated: 200 % of rated voltage 150 % of rated voltage 630 V_{DC}-rated:

X7R, X8R DIELECTRIC

GENERAL SPECIFICATION

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +150 °C

(X7R above +125 °C changed characteristics, see 2.2)

Capacitance Range:

X7R: 10 nF to 470 nF X8R: 10 nF to 220 nF

Voltage Range: 16 V_{DC} to 630 V_{DC}

Temperature Coefficient of Capacitance (TCC):

X7R: \pm 15 % from -55 °C to +125 °C, with 0 V_{DC} applied X8R: \pm 15 % from -55 °C to +150 °C, with 0 V_{DC} applied

Dissipation Factor (DF): 16 V, 25 V ratings: 3.5 % maximum at 1.0 V_{RMS} and 1 kHz > 25 V ratings: 2.5 % maximum at 1.0 V_{RMS} and 1 kHz

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less X8R: at +150 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging Rate: 1 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.

Applied test voltages

≤ 250 V_{DC}-rated: 250 % of rated voltage 500 V_{DC}-rated: min. 150 % of rated voltage min. 120 % of rated voltage 630 V_{DC} :

Revision: 18-May-2022 Document Number: 45254 For technical questions, contact: mlcc@vishay.com

www.vishay.com

Vishay Vitramon

QUICK REFERENCE DATA										
DIELECTRIC	CASE CODE	MAXIMUM VOLTAGE	CAPACITANCE							
DIELECTRIC	CASE CODE	(V)	MINIMUM	MAXIMUM						
	0603	200	100 pF	1.0 nF						
COC (NIDO)	0805	500	100 pF	3.9 nF						
C0G (NP0)	1206	630	100 pF	8.2 nF						
	1210	630	100 pF	12 nF						
	0603	100	10 nF	150 nF						
X7R	0805	200	10 nF	470 nF						
AIR	1206	630	10 nF	180 nF						
	1210	630	10 nF	180 nF						
	0603	50	10 nF	33 nF						
X8R	0805	100	10 nF	100 nF						
AON	1206	50	10 nF	220 nF						
	1210	50	10 nF	220 nF						

Note

· Detail ratings see "Selection Chart"

Notes

- (1) Non-standard values, please contact: mlcc@vishay.com
- (2) DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: <u>mlcc@vishay.com</u>

www.vishay.com

Vishay Vitramon

SELECTIO	N CHARI	<u> </u>														
DIELECTRIC									CO	G (NPO						
STYLE		<u> </u>	GA060	3	GA0805			GA1206				GA1210				
CASE CODE			0603	1			05	1		1	1206	1		1210		Т
VOLTAGE (VD		50	100	200	50	100	200	500	50	100	200	500 / 630	50	100	200	500 / 630
VOLTAGE CO		Α	В	С	Α	В	С	E	Α	В	С	E/L	Α	В	С	E/L
CAP. CODE	CAP.															
101	100 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
121	120 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
151	150 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
181	180 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
221	220 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
271	270 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
331	330 pF	•	•		•	•	•	•	•	•	•	•	•	•	•	•
391	390 pF	•	•		•	•	•	•	•	•	•	•	•	•	•	•
471	470 pF	•	•		•	•	•	•	•	•	•	•	•	•	•	•
561	560 pF	•			•	•	•		•	•	•	•	•	•	•	•
681	680 pF	•			•	•	•		•	•	•	•	•	•	•	•
821	820 pF	•			•	•	•		•	•	•	•	•	•	•	•
102	1000 pF	•			•	•	•		•	•	•	•	•	•	•	•
122	1200 pF				•	•			•	•	•		•	•	•	•
152	1500 pF				•	•			•	•	•		•	•	•	•
182	1800 pF				•	•			•	•	•		•	•	•	•
222	2200 pF				•				•	•	•		•	•	•	
272	2700 pF				•				•	•	•		•	•	•	
332	3300 pF				•				•	•	•		•	•	•	
392	3900 pF				•				•	•			•	•	•	
472	4700 pF								•	•			•	•	•	
562	5600 pF								•	•			•	•	•	
682	6800 pF								•	•			•	•	•	
822	8200 pF								•	•			•	•	•	
103	0.010 μF												•	•		
123	0.012 μF												•	•		
153	0.015 µF															
183	0.018 µF															1
223	0.022 µF			t		t	t			t						
273	0.027 µF															
333	0.033 µF															
393	0.039 µF															
473	0.047 μF	1				<u> </u>	<u> </u>			<u> </u>						<u> </u>
563	0.056 μF						-									

Note

• See soldering recommendations within this databook, or visit www.vishay.com/doc?45034

www.vishay.com

Vishay Vitramon

DIELEC	CTRIC												X7R										
STYLE			(3A06	03		GA0805 GA1206					GA1210											
CASE (CODE	0603						080	5				1	206			1210						
VOLTA	GE (V _{DC})	16	25	50	100	200	16	25	50	100	200	16	25	50	100	200	500 / 630	16	25	50	100	200	500 / 630
VOLTA CODE	GE	J	х	Α	В	С	J	х	Α	В	С	J	Х	А	В	С	E/L	J	х	Α	В	С	E/L
CAP.	CAP.																						
103	10 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
123	12 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
153	15 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
183	18 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
223	22 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
273	27 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
333	33 nF	•	•	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•	
393	39 nF	•	•	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•	
473	47 nF	•	•	•			•	•	•	•		•	•	•	•	•		•	•	•	•	•	
563	56 nF	•	•	•			•	•	•	•		•	•	•	•	•		•	•	•	•	•	
683	68 nF	•	•	•			•	•	•	•		•	•	•	•	•		•	•	•	•	•	
823	82 nF	•	•	•			•	•	•	•		•	•	•	•	•		•	•	•	•	•	
104	100 nF	•	•	•			•	•	•	•		•	•	•				•	•	•			
124	120 nF	•					•	•	•			•	•	•				•	•	•			
154	150 nF	•					•	•	•			•	•					•	•	•			
184	180 nF						•	•				•	•					•	•	•			
224	220 nF						•	•															
274	270 nF						•	•															
334	330 nF						•	•															
394	390 nF						•																
474	470 nF						•																
564	560 nF																						
684	680 nF																						
824	820 nF																						

Note

• See soldering recommendations within this databook, or visit www.vishay.com/doc?45034

www.vishay.com

Vishay Vitramon

SELEC.	TION CHA	RT									
DIELECTI	RIC					X8R					
STYLE		GA	0603		GA0805		GA	1206	GA1	210	
CASE CO	DE	0	603		0805		12	206	1210		
VOLTAGE	(V _{DC})	25	50	25	50	100	25	50	25	50	
VOLTAGE	CODE	Х	Α	Х	Α	В	Х	Α	Х	Α	
CAP. CODE	CAP.										
103	10 nF	•	•	•	•	•	•	•	•	•	
123	12 nF	•	•	•	•	•	•	•	•	•	
153	15 nF	•	•	•	•	•	•	•	•	•	
183	18 nF	•	•	•	•	•	•	•	•	•	
223	22 nF	•		•	•	•	•	•	•	•	
273	27 nF	•		•	•	•	•	•	•	•	
333	33 nF	•		•	•		•	•	•	•	
393	39 nF			•	•		•	•	•	•	
473	47 nF			•	•		•	•	•	•	
563	56 nF			•	•		•	•	•	•	
683	68 nF			•			•	•	•	•	
823	82 nF			•			•	•	•	•	
104	100 nF			•			•	•	•	•	
124	120 nF						•	•	•	•	
154	150 nF						•		•	•	
184	180 nF						•		•		
224	220 nF						•		•		
274	270 nF										
334	330 nF										
394	390 nF										
474	470 nF										
564	560 nF										
684	680 nF										
824	820 nF										
105	1.0 µF										
125	1.2 µF										

Note

• See soldering recommendations within this databook, or visit www.vishay.com/doc?45034

STANDARD PACKAGING QUANTITIES (1)									
		7" REEL QUANTITIES	11 1/4" AND 13" REEL QUANTITIES						
CASE CODE	TAPE SIZE	PLASTIC TAPE PACKAGING CODE "T"	PLASTIC TAPE PACKAGING CODE "R"						
0603	8 mm	4000	10 000						
0805	8 mm	3000	10 000						
1206	8 mm	3000	10 000						
1210	8 mm	3000	10 000						

Note

(1) Reference: EIA standard RS 481 - "Taping of Surface Mount Components for Automatic Placement"

Vishay Vitramon

1 - GENERAL CERTIFICATES

# Quality management system according to ISO/IATF 16949: 2016	Yes
# Quality management system according to ISO 9001: 2015	Yes
# Environmental certification according to ISO 14001: 2015	Yes
# Health and safety system according to ISO 45001	Yes

2 - TECHNICAL REQUIREMENTS

Unless specified in component specification, these parameters are the minimum requirements for the components.

2.1 OPERATING TEMPERATURE RANGE

For standard applications	T _A : -55 °C to +125 °C	See characteristics 2.2
For high temperature applications	T _A : -55 °C to +150 °C	See characteristics 2.2

2.2 CHARACTERISTICS

PARAMETER		CERAMIC TYPE	SYMBOL	RATINGS	TEST CONDITIONS / REMARKS
	-55 °C to +125 °C	C0G (NP0)		50 V to 500 V	
Rated voltage in temperature range	-55 C to +125 C	X7R	U_R	16 V to 630 V	
	-55 °C to +150 °C	X8R		25 V to 100 V	
		C0G (NP0)		50 V to 100 V	$U_{DC} \le {}^{1}/_{2} U_{R}$
Derating at higher temperature up to				$U_{DC} \le \frac{1}{2} U_{R}$	
	X7R		16 V to 100 V	$U_{DC} \le {}^{1}/_{4} U_{R}$ for GA0603Y104*A (100 nF / 50 V)	
Temperature coefficient in temperatu	C0G (NP0)	α_{C}	≤ ± 30 ppm/°C	Specific ratings can vary, please contact mlcc@vishay.com for details	
		X7R	ΔC	≤ ± 15 %	
Temperature coefficient in temperatu	C0G (NP0)	α_{C}	≤ ± 30 ppm/°C	Specific ratings can vary, please contact mlcc@vishay.com for details	
-55 °C to +150 °C	Ç	X7R	ΔC	+ 15 % / - 30 %	
		X8R	ΔC	± 15 %	

2.3 STORAGE AND HANDLING CONDITIONS

- (1) Store the components at 5 °C to 40 °C ambient temperature and ≤ 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 year after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

Precautions:

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight and so on.

www.vishay.com

Vishay Vitramon

www.vishay.com

Vishay Vitramon

Note

⁽¹⁾ Except for GA0603Y104*A (100 nF / 50 V), see section "2.2 Characteristics"

www.vishay.com

Vishay Vitramon

www.vishay.com

Vishay Vitramon

www.vishay.com

Vishay Vitramon

3 - LOT ACCEPTANCE TESTS

Process tests available in classes (on request)

GROUP	ACTION
А	Components are tested within the monitoring program of the supplier. The supplier shall submit the part numbers of the selected component to the customer during the component specification discussions.
В	Components (customer P/N) shall be tested quarterly. Records available only on special request by the customer.
С	Test with each shipment. Records are provided on a monthly basis. Customer special requirement; requirement should be determined in a specific component specification.

Upon request the records can be submitted in electronic format on monthly basis.

3.1 THERMAL STRENGTH, THERMAL SHOCK SENSIBILITY

Sample size	200				
Handling	Mounted on PCB				
Thermal shock	1 x 280 °C, no pre-heat, 5 s to 10 s				
IR - test (IRATS)	U = U _R , T = room temperature, verified				
Burn in (BIATS)	Equivalent to 12 h burn-in, 2 x U _R /125 °C, verification time to failure				

Acceptance criteria: zero defects (IRATS and BIATS).

3.2 BOARD FLEX TEST

Sample size	20 pcs/lot
Frequency	Each lot
Max. deflection	5 mm

4 - ENVIRONMENTAL REQUIREMENTS

A list of the chemical substances content, which must not be used or whose use shall be limited by international law, is available on request.

Vishay confirms that the components specified in this specification do not contain asbestos nor cadmium, not even in the smallest volumes.

The manufacturer / supplier confirms that the component during normal handling, storage and assembly, as well as during operation in the automobile, is non toxic.

5 - INSPECTION CRITERIA

The supplier shall carry out visual examination with suitable equipment with approximately 10 x magnification and lighting appropriate to the specimen under test and the required quality level.

Chipping

The components shall be free of cracks or fissures. Small damages which do not deteriorate the performance of the component as defined in EIA 595.

www.vishay.com

Vishay Vitramon

Delamination or Exposed Electrodes

No visible separation or delamination between layers of the capacitor and no exposed electrodes between the two terminals of the capacitor must be seen.

Metallization

For the metallization, no visible detachment of the metallized terminals and no exposed electrodes must be seen. Defects and gaps in the metallization on each sides of the terminal must not exceed 10 % of the total area (e.g. A, B, C, ...) as defined in EIA 595.

Electrode Distance

The ceramic body shall be free of any conducting material between the terminals which reduces the distance of the electrodes. The minimum distance "D" is 350 µm for all package sizes.

6 - BOARD FLEX TEST CONDITIONS

6.1 BOARD FLEX DEFINITIONS OF TEST

PCB thickness = (1.6 ± 0.1) mm

Copper thickness = 35 µm

Material FR4 (EP-GC 02 according to DIN 40 802)

LAYOUT / PAD DESIGN (Dimensions in mm)									
CASE CODE	PAD SIZE								
CASE CODE	LL	LB	LEL						
0603	2.20	1.00	0.75						
0805	3.40	1.30	1.20						
1206	4.50	1.80	1.20						
1210	4.50	2.80	1.30						

Note

• LL = total length; LB = width of the pad; LEL = single pad length

Vishay Vitramon

6.2 SOLDERING INSTRUCTIONS

THICKNESS, RECOMMENDED FOR SOLDER PASTE (Reflow soldering)		
CASE CODE	THICKNESS in µm	
0603	150 to 200	
0805	150 to 200	
1206	150 to 200	
1210	150 to 200	

6.3 TYPICAL TEMPERATURE PROFILE FOR REFLOW SOLDERING (Boardflex test)

6.4 MOUNTING, DIMENSIONS, AND TESTING

Mounting

Testing

www.vishay.com

Vishay Vitramon

6.5 PERFORMANCE OF THE TEST(S)

- A) Electrical test according to component specification (Cap, DF, IR)
- B) Mounting to PCB
- C) Storage at room temperature (min. 10 h)
- D) Board flex test bending to the required bending depth (5 mm) with a speed of 1 mm/s and a hold time of 5 s

6.6 DETAILS

X8R	PCB to be deflected up to 5 mm. Parametric testing (capacitance) after each step to detect eventual development of cracks
X7R	PCB to be deflected up to 5 mm. Parametric testing (capacitance) after each step to detect eventual development of cracks
COG	PCB to be deflected up to 5 mm. Parametric testing (capacitance) after each step to detect eventual development of cracks

6.7 FAILURE CRITERIA

X8R	Board flex JIS-6429, AEC-Q200-005, no failure. Board flex (5 mm typical) 5 % ΔC/C
X7R	Board flex JIS-6429, AEC-Q200-005, no failure. Board flex (5 mm typical) 5 % ΔC/C
COG	Board flex JIS-6429, AEC-Q200-005, no failure. Board flex (5 mm typical) 5 % Δ C/C
All	Electrical test according to component specification

7 - AEC-Q200 QUALIFICATION TESTING

NO.	AEC-Q200 TEST ITEM	REFERENCE
1	Pre- and post stress electrical test	User spec
3	High temp exposure (storage)	MIL-STD-202, method 108
4	Temperature cycling	JESD22, method JA-104
5	Destructive physical analysis	EIA-469
6	Moisture resistance	MIL-STD-202, method 106
7	Biased humidity	MIL-STD-202, method 103
8	Operation life	MIL-STD-202 method 108
9	External Visual	MIL-STD-883 method 2009
10	Physical dimension	JESD22, method JB-100
13	Mechanical shock	MIL-STD-202, method 213
14	Vibration	MIL-STD-202, method 204
15	Resistance to solder heat	MIL-STD-202, method 210
16	ESD	AEC-Q200-002
17	Solderability	J-STD-002
20	Electrical characterization	User spec
21	Board flex	AEC-Q200-005
22	Terminal strength	AEC-Q200-006
23	Beam load	AEC-Q200-003

www.vishay.com

Vishay Vitramon

Solder Pad Dimensions for Vishay Surface-Mount Multilayer Ceramic Chip Capacitors

Notes

⁽¹⁾ For safety capacitors and voltages above 3000 V, corner rounding (R) of 0.5 mm is recommended to suppress arcing

⁽²⁾ Add a 1 mm slot in PCB between pads to allow cleaning and coating under MLCC

⁽³⁾ For VJ HiFREQ Series, this dimension is 0.6 mm

⁽⁴⁾ For safety capacitors, the A dimension should be 5.80 mm

VISHAY.

Guidelines for MLCC Solder Pads and PCBs

www.vishay.com

Vishay Vitramon

PRINTED CIRCUIT BOARD PCB DESIGN CONSIDERATIONS FOR HIGH VOLTAGE SURFACE-MOUNT MLCCS

Special assembly process and design considerations should be employed for today's high voltage rating MLCCs. As case sizes remain the same and voltage ratings increase, MLCC manufacturers must design, evaluate, and qualify their capacitors using methods that reduce the occurrence of corona discharge and arcover events. To meet similar capability in high voltage applications, users should employ similar cautionary design and assembly methods.

MLCC PAD LAYOUT

A capacitor's arcover inception point can degrade due to factors such as the MLCC termination, PCB pad design, PCB cleanliness, solder flux residue, surface contamination / deposits and environmental conditions. PCB pads and their design affect the air gap distance between the opposing polarities of the MLCC termination. For voltage rating greater than 1500 V_{DC} add a corner radius to the inward facing edge of the MLCC pads and as large a gap as possible between the pads. Too small of a pad gap distance will reduce the capacitor's own arcover inception voltage level. Refer to the Figure and Table Figure 1.0, MLCC Pad Layout and Table 1.0, Vishay MLCC Solder Pad Dimensions for the recommended MLCC solder pad dimensions.

SLOT OR TRENCH BETWEEN PADS

PCB assembly can deposit dust, trap solder balls, or flux residue underneath the capacitors. These contaminants will reduce conductive clearances and the arcover inception level. Assembly methods must include a final PCB cleaning process. A slot or trench can be cut into the PCB in between the pads to allow cleaners to penetrate underneath the MLCC. The slot will also allow conformal or epoxy coatings to flow underneath the MLCC and build an insulative barrier between pads. Refer to Figure 1.0 MLCC Pad Layout for slot reference location.

COATING PRINTED CIRCUIT BOARD

Coating a printed circuit board with materials such as acrylic, silicone and urethane resins provide a protective dielectric barrier that is non-conductive and will enhance the resistance to arcing. Various processes exist which include dipping, brushing, and spaying. Optimal performance will come from coating the MLCC on all sides, top and bottom. The PCB slot in between the pads should extend slightly beyond the width of the MLCC. Refer to Figure 1.0 MLCC Pad Layout for slot reference location.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.