EPFL - Autumn 2021	Dr. Pablo Antolin
Analysis III SV MT	Exercises
Serie 13	December, 23

Note: several exercises are directly taken from [B.Dacorogna and C.Tanteri, *Analyse avancée pour ingénieurs* (2018)]. Their corrections can be found there.

Exercise 1 (Ex 17.7 page 271).

Find the function $y: \mathbb{R} \to \mathbb{R}$ solution of:

$$\forall x \in \mathbb{R} : y''(x) + 5y'(x - \pi) - y(x) = \cos x - 3\sin(2x) + 2,$$

: $y(x + 2\pi) = y(x).$

Exercise 2.

Compute:

$$\int_0^{+\infty} \frac{t}{(t^2+4)^2} \sin\left(\frac{t}{2}\right) dt.$$

Hint: The Fourier transform of the function f defined by $f(x) = xe^{-\omega|x|}$ with $\omega > 0$ is given by:

$$\mathfrak{F}(f)(\alpha) = \frac{4\omega}{i\sqrt{2\pi}} \frac{\alpha}{(\alpha^2 + \omega^2)^2}.$$

Exercise 3 (Exemple 17.7 page 269).

Find a solution y of the following equation by using the properties of the Fourier transform (Convolution):

$$y(x) + 3 \int_{-\infty}^{+\infty} e^{-|t|} y(x-t) dt = e^{-|x|}, \quad \forall x \in \mathbb{R}.$$

Hint: The Fourier transform of the function f defined by $f(x) = \frac{e^{-\omega|x|}}{\omega}$ with $\omega > 0$ is given by:

$$\mathfrak{F}(f)(\alpha) = \sqrt{\frac{2}{\pi}} \frac{1}{\alpha^2 + \omega^2} \ .$$

Exercise 4 (Ex 17.11 page 272).

Find a solution y of the following equation by using the properties of the Fourier transform (Convolution and Differentiation):

$$3y(x) + \int_{-\infty}^{+\infty} \left[y''(t) - y(t) \right] f(x - t) dt = g(x), \quad \forall x \in \mathbb{R}.$$

where $f(x) = e^{-|x|}$, and $g(x) = xe^{-x^2}$.

 Hint : The Fourier transforms of functions f and g are respectively given by:

$$\mathfrak{F}(f)(\alpha) = \sqrt{\frac{2}{\pi}} \frac{1}{\alpha^2 + 1}$$
 and $\mathfrak{F}(g)(\alpha) = \frac{-i\alpha}{2\sqrt{2}} e^{-\frac{\alpha^2}{4}}$.