1、Spark概述

- Spark是使用Scala语言开发的,用于大型分布式数据处理和分析的计算引擎。它本身不是数据库,但是可以通过其Spark和Hadoop生态系统里面的其他组建连接其他关系数据库(比如MySql),非关系数据库NoSql(redis, Hadoop HDFS),流处理和信息队列(Kafka).
- Spark的计算基于内存而不是硬盘,使用速度非常快。Spark引擎内部使用有向无环图(DAG)来优化查询和计算语句,自动建立可以分布式计算的'计算图'。其核心是弹性数据集(Resilient distributed datasets RDD)可在内存中迭代计算,更加适合运行需要交换数据的应用比如训练大型机器学习算法。
- Spark的结构和功能组件:

- Spark core: 提供核心的功能,用户使用不同语言的API然后交由Spark core优化运行,根据其支持的语言比如Scala Pyton Java等都会被优化转译为字节码,运行在集群机器中的JVM中。Spark SQL: 使用类似于SQL 语言的方式查询数据。Spark Streaming: 用于实时数据的流计算。Spark MLLib 集成了机器学习算法。Spark GraphX 实现图计算相关算法。
- Spark 语句是怎么样被"分布式"执行的:如下图每一个Spark应用有这些组成部分,driver,负责控制 cluster的运行;driver 通过spark Session作为开发的接口来控制cluster manager.和spark exscutrer.

- **Spark driver:** 主要任务 与cluster manager通信并申请计算资源(CPU 内存)给spark executor(本质上是JVM)使用;将所有操作转化成DAG形式,并分配到集群中的各个executor上执行计算。
- **Spark Session:** spark2.0后,同一的编程接口,所有操作都通过这个session进行。通过这个接口可以定义数据集并使用导入数据的函数、调整JVM参数,执行SQL语句等等。

```
// In Scala
import org.apache.spark.sql.SparkSession
```

```
// Build SparkSession
val spark = SparkSession
.builder
.appName("LearnSpark")
.config("spark.sql.shuffle.partitions", 6)
.getorCreate()
...
// Use the session to read JSON
val people = spark.read.json("...")
...
// Use the session to issue a SQL query
val resultsDF = spark.sql("SELECT city, pop, state, zip FROM table_name")
```

- Cluster manager: 负责管理集群中spark 运行中的node的资源。当前支持的有Spark 内置、Hadoop YARN, Apache Mesos, Kubernetes.
- Spark executor: 集群中的算节点,负责执行driver分配的任务,一般一个节点就只有一个 executor. 实现来说是一个JVM(java虚拟机)。可以是同一个主机,但是是虚拟机里面的不同实体创 建的jvm, 也可以是一个很大的机房里物理意义上不同的机器,通过drive程序通信和执行计算过程。
- Spark Docker 安装教程

2、Spark 的核心,RDD,DataFrames 和DataSets

- 一点背景:这三种作用都是类似的,是Spark提供的数据处理的接口,所有操作都基于这之上在提供的API里进行。Spark 1.0时代是RDD, 后来1.3有了DataFrame, 1.6之后有了DataSet. 之后在2016年为了简化Spark团队又将后两者融合在一起了。它们有自己的特点和优势,不是说有了最新的DataSet了RDD就可以完全不用了。
- **RDD优势**: 1、高效和速度。2、一致性,RDD不可更改保证了数据可靠性。3、容错性,数据分别存在节点上,可重新计算会找回丢失的数据。
- RDD **什么时候用**: 1、数据为非结构化数据,文本图像等等。2、数据没有严格的像数据库的模式 定义,不想表格数据一样每一行有严格定义。
- 在JVM实现中,DataFrame 只是DataSet 的行(row). 由于Python是动态语言,只能使用DataFrame.
- DataSet/DataFrame 优势: 使用简单,代码较少,用编译和运行速度换开发速度。有专门的优化器优化底层代码,高效。适用情况: 非结构化数据,需要对数据进行较高层次处理比如SQL语句。

2.1 RDD和DataSet的创建

• Spark API入口: SparkSession(新, 2.0版本后)和Spark Context(旧的方式, 1.0版本)

```
import org.apache.spark.sql.SparkSession
val spark:SparkSession = SparkSession.builder()
    .master("local[1]")
    .appName("SparkByExamples.com")
    .getOrCreate()
```

• 来自内存的一个对象集合,来自外部数据集输入,对已有RDD的转换。

```
// entrance of Spark is spark context
// spark context available as sc

// 定义1到10, 并并行化计算,并行度由运行代码的内核数确定
val params = sc.parallelize(1 to 10)
val result = params.map(performExpensiveComputation)

// outside data source
// define String type RDD
val text: RDD[String] = sc.textFile(path)
```

- DataFrame 可以想象成就是一个数据库的表,或者python pandas里面的dataFrame一样,由严格定义的行和列。DF有多种方式建立,读取外部的结构化数据表,Hive,现有的RDD.
- 建立DF:

```
// create DataFrame
val data = Seq(('James','','Smith','1991-04-01','M',3000),
 ('Michael','Rose','','2000-05-19','M',4000),
 ('Robert','','Williams','1978-09-05','M',4000),
 ('Maria', 'Anne', 'Jones', '1967-12-01', 'F', 4000),
 ('Jen','Mary','Brown','1980-02-17','F',-1)
)
val columns =
Seq("firstname","middlename","lastname","dob","gender","salary")
df = spark.createDataFrame(data), schema = columns).toDF(columns:_*)
df.show()
>output:
+----+
|firstname|middlename|lastname|dob
                              |gender|salary|
+----+
                                   3000
                                   4000
                                   4000
              Jones | 1967-12-01|F
|Maria |Anne
                                   4000
      |Mary | Brown | 1980-02-17|F | -1
Jen
```

2.2 RDD的转换和动作

- RDD提供了两种操作,**转换transformation**, 即从现有RDD生成新的RDD. **动作action**. 则是对其进行某种计算执行某种操作,结果要么返回给用户或者储存到外部。转换使用lazy evaluation, 对RDD执行一个动作前对不会对转换操作执行实际动作。判断是T还是A, 如果一个操作的返回类型是RDD, 那它是一个转换操作,否则是动作。
- 常见的转换: flatMap(), map(), reduceByKey(), filter(), sortByKey()
- 常见的动作: count(), collect(), first(), max(), reduce()

2.3 持久化

- 将计算的结果数据集缓存的到内存中,便于下一步计算时调用。对于大型应用,交互频繁的迭代算 法这样可以大大节约时间。Hadoop 的MapReduce在执行另一个计算时必须要从硬盘中重新加 载,即使这个数据是作为中间数据输入的,而Spark持久化可以在集群的内存中储存,要知道内存 和硬盘的提取速度快了不止一个数量级了。
- 持久化的级别: cache()会将executor的内存持久化保存在每个分区,如果大小不够计算不会失败只是会重新计算分区大小,但是如果计算量大这样的代价还是很大,因此提供了一些折中的方法: 序列化数据,再将数据储存。默认为MEMORY_ONLY,序列化后的参数MEMORY_ONLY_SER.虽然序列化需要一些计算时间,但是它生成更小更易储存的字节而不是对象。

```
// 假设现有 年份 当年某地温度的tuple数据
// (year, tempureture)
tuples.cache()
// cache()不会立即缓存RDD, 直到下一个job运行时被缓存
// 取最大值
tuples.reduceByKey((a,b) => Math.max(a,b)).foreach(println(_))
> ...INFO: Added rdd ...
//运行另一个job, 该RDD被加载
tuples.reduceByKey((a,b) => Math.min(a,b)).foreach(println(_))
```

2.4 序列化

- Spark 通过网络在executor之间传递数据和持久化数据前都要经过序列化,即将要对象或类转成字节。可以用Java内置的java.io.Serializable, 但是效率较低。一般使用更加高效的Kryo 序列化库。
- 使用Kyro , 先在设置中定义序列化的属性 , 然后需要先注册你定义的类。
- 序列化函数 (也称为**闭包函数**): 函数也是需要被序列化的,如果引入了不可被序列化的类方法,需要在开发的时候发现它。

```
// 设置属性
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

// 注册,重写registerClasses() 的方法
class CustomKryoRegistrator extends KryoRegistrator{
    override def registerClasses(kryo: Kryo){
        kryo.resgitere(classOf[YOUR_CLASS_NAME])
    }

// 在driver程序中设置
conf.set("spark.kryo.registrator", "CustomKryoRegistrator")
```

2.5 共享变量

• 查询经常会使用到外部变量,这个变量一般在另一个节点或者集权上,所以如上文外部函数需要通过序列化后传输,这样有时候会降低效率。广播变量(broadcast variable)提供了一种解决方法。

```
//一个程序用到另一个查找表
val lookup = Map(1 -> "a", 2 -> "e", 3 -> "i", 4 -> "o", 5 -> "u")
val result = sc.parallelize(Array(2, 1, 3)).map(lookup(_))
assert(result.collect().toSet === Set("a", "e", "i"))
```

• 广播变量:序列化后放送给各个executor并缓存以便适时调用,常规变量因为时在函数内部的,所以每次任务都需要序列化传输。现有创建一个sc.broadcast变量,返回对应类型的封装。广播变量是单向传播的,无法更新,也无法从executor传会driver.

```
val lookup: Broadcast[Map[Int, String]] =
   sc.broadcast(Map(1 -> "a", 2 -> "e", 3 -> "i", 4 -> "o", 5 -> "u"))
val result = sc.parallelize(Array(2, 1, 3)).map(lookup.value(_))
assert(result.collect().toSet === Set("a", "e", "i"))
```

3、Spark内部运行机制

• 回顾上文图2, Spark运行时有两个独立实体, driver 和executor. Driver负责管理调度 SparkContext应用, executor专属于应用, 应用运行它就运行并执行该应用的任务。

- 作业提交: 上图,当用户提供SparkContex调用一个动作(action)时,spark自动提交一个jb(步骤2),然后运行两个调度程序,**DAG调度**和**任务调度**。DAG调度负责将任务分解为若干阶段并将这些阶段构成一个DAG,任务调度这负责把这些分解的每个阶段提交到不同的集群执行。
- **DAG构建**: 一个job怎样被分为不同阶段。job阶段有两种类型的任务, shuffle map 和 result, shuffle map类似于你需要分开10kg混合在一起的红绿豆,现在将它分成10份分给你的10个倒霉朋友每个朋友作为一个cluster执行1kg的分开两种颜色的任务。result任务则是运行在最终阶段,比

如10个朋友分开完两份并统计好两种的数量,该计算任务在自己分区的cluster上计算,把结果返回给deriver(你自己),你再将最终结果10kg豆子汇总成最终结果。复杂的任务可以有多个shuffle 的阶段

- 任务调度:上图步骤3,任务集合被发生到调度程序后,构建任务到executor的映射,将任务分配到具体的内核,并在任务完成后继续分配直到任务集合完成。当任务完成或者失败时,executor都会向driver更新消息。具体向executor分配的顺序为:首先分配进程本地任务(process local),然后节点本地(node local),然后机架本地(rack local),最后分配非本地任务或者推测任务(speculative task)
- 任务执行: 上图步骤7, 首先executor会确保任务相关的依赖文件和jar包都是最新的, 然后由于任务代码经过序列化后发送到集群上的, 先反序列化任务代码和函数, 最后执行代码, 由于任务运行在executor相同的JVM中, 任务启动没有进程开销。

执行器和集群管理,executor具体是如何工作的

- Spark 任务要依赖executor来运行任务,而管理executor的为集群管理器cluster manager.Spark 提供了各种不同特征的集群管理器。
- 本地模式 local: executor 和driver在同一个JVM中,用于测试和小规模数据。
- 独立模式 standalone: 实现了简单的分布式系统,运行一个master多个worker, Spark 启动时 master 控制worker生成多一个或多个executor.
- YARN: YARN是Hadoop使用的资源管理器,每个运行的Spark应用对应一个YARN的实例,每个 executor在自己的YARN容器中运行。YARN相对于独立模式的优点是它考虑了集群上的其他应用, 同一协调它们之间的资源和调度。YARN分为客户端模式(client)和集群模式(cluster)
- YARN client: driver程序在客户端运行,即独立与集群的另一台机器。1.drier构建新的spark contex实例时就启动了与YARN之间的关联,2,3.提交YARN应用后启动集群管理器上的容器,excutorLauncher的作用是向管理器请求资源启动backend进程,"真正的"executor的JVM. 启动 executor的数量在spark-shell 中设置,还要设置每个用到的内核和内存数量。

•

Figure 19-3. How Spark executors are started in YARN client mode

• YARN Cluster: driver程序在集群上运行. 客户端会启动YARN应用但是不会运行任何代码,注意图中的spark program是在集群中的容器中运行的。

Figure 19-4. How Spark executors are started in YARN cluster mode

• 总结:不同部署模式对比:

Table 1-1. Cheat sheet for Spark deployment modes

Mode	Spark driver	Spark executor	Cluster manager
Local	Runs on a single JVM, like a laptop or single node	Runs on the same JVM as the driver	Runs on the same host
Standalone	Can run on any node in the cluster	Each node in the cluster will launch its own executor JVM	Can be allocated arbitrarily to any host in the cluster
YARN (client)	Runs on a client, not part of the cluster	YARN's NodeManager's container	YARN's Resource Manager works with YARN's Application Master to allocate the containers on NodeManagers for executors
YARN (cluster)	Runs with the YARN Application Master	Same as YARN client mode	Same as YARN client mode
Kubernetes	Runs in a Kubernetes pod	Each worker runs within its own pod	Kubernetes Master

项目实战--Spark 机器学习 用户流失分析

1. 问题定义,商业背景和要解决的问题

- 。 流失的定义,阶段内失去的客户数量/ 该阶段开始时客户数量. 可能放弃使用了可能使用了潜在竞争对手的app,等等原因
- 怎么做:通过分析用户行为数据,发现流失用户流失前的使用有什么特征,以便未来预测将要流失的用户,对这部分用户进行提前干预以降低流失率。或者把这部分用户的行为提取出主要的模式,比如哪个页面跳出率异常的高,哪个功能使用率比较低,为修改新版本界面布局提供参考。

2. 数据介绍和EDA、特征工程

```
root
 |-- artist: string (nullable = true)
 |-- auth: string (nullable = true)
 |-- firstName: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- itemInSession: long (nullable = true)
 |-- lastName: string (nullable = true)
 |-- length: double (nullable = true)
|-- level: string (nullable = true)
 |-- location: string (nullable = true)
 |-- method: string (nullable = true)
 |-- page: string (nullable = true)
 |-- registration: long (nullable = true)
 |-- sessionId: long (nullable = true)
 |-- song: string (nullable = true)
 |-- status: long (nullable = true)
 |-- ts: long (nullable = true)
 |-- userAgent: string (nullable = true)
 |-- userId: string (nullable = true)
```

- o 该产品为在线音乐播放器,数据中记录了如用户听过的歌曲,歌手,地点,设备信息等等。以 上是数据包含的所有特征列的名称,数据近28万行,包含226个用户的使用数据记录,其中 52个在周期后流失了。用户的操作数据记录在page列中,主要操作有下一首,取消,添加播 放列表取消订阅等等。
- 。 由于流失和为流失的数量相差太多(52vs174), 可以进行如SMOTE上采样的方式构建较为平衡 的类别标签。
- o Page中的用户操作,平均播放时间、看起来对流失率有相关,计算和可视化后发现它们的平 均时长确实存在统计学意义上的区别,比如流失用户添加朋友,添加歌曲次数明显少于未流失 的。
- o 特征工程: 创建新的特征,这些特征至少逻辑上要与流失率有关系,并且能够提高模型的准确 率。比如平均播放时长,连续活跃天数,付费天数,日均使用时间,平均使用间隔等,用户性 别,注册时长,听过的歌/歌手数量,设备数量等等。这些特征虽然数据没有直接给出来,但 是可以通过提取page里的信息计算出来。

3. 建立模型

o 创建了三个模型,逻辑回归,随机森林和提升树。Spark和sk learn 不同的是,输入的X值需要先向量化再输入模型中拟合。

4. 模型评估

- 由于测试数据0和1样本不平衡,单纯的使用accuracy不能很好反应模型效果,比如100个样本了80个位1,20个位0,一个模型及时把全部测试数据预测为1,也有80%正确率。
- 。 定义confusion矩阵的四个量,TP ture positive真实为正预测也为正标签,FP false positive, 真实为正预测为负,FN false negative, 和 Ture negative.
- 。 精准率表示在全部预测为真的例子里面,有多少是正确的。precission=TP/(TP+FP),

- 。 召回recall = TP/(TP+FN), 表示真实为真的标签中有多少被预测出来了。
- o F1 score是两者的结合, F1=2*p/(p+r)
- 。 其中一次训练表现最好的随机森林f1=0.82, 比没有特征工程前0.72提升不少。
- 下一步需要将完整数据集12GB 部署到集群上运行和训练。

5. 总结、对应的业务策略建议

- 数据可视化很重要,拿到不熟悉的数据先检查数据的完整性,相关性,将一些特征图形化,再 检查我们要分析的指标是什么,弄清定义和计算后考虑和这个指标相关性高的特征,同样不明 显时借助可视化工具。
- 特征工程也很重要,要理解业务流程,指标的产生取创建新的特征。同样的,计算出新特征先按照不同类别(这里是流失vs 不流失)做图,如果一个特征两者差别明显,比如平均听歌时长,流失的明显比未流失的短,这个就是一个新特征的备选项,可以加入模型里训练。
- 。 就App这个使用场景来说,**以时间为一个维度,另一个变量为一个维度可以衍生出很多有用的特征**,使用时长是一个,还要页面停留时间,以天为单位哪个时间段出现高峰,连续使用天数,平均/最大间隔使用天数等等,app核心功能时长占使用总时间的比例等等(听歌 vs 看社区,查找歌曲看热榜,商店等等)。
- 。 通过提升树模型的feature importance 图,发现决定模型最重要的有这几个特征:活跃天数,app内使用的session个数,注册时间,按歌曲'不喜欢'键等等。
- 根据上面的结论, app用户流失其实转化成了常见的问题了: 怎么提高日活等指标。如果将一个服务/产品分为三个重要维度, 我会从这三个方面分析: 内容, 平台和用户。
- 内容就是这个app提供的服务本身,音乐app当然也没有全面优质的音乐版权,决定了用户的使用频率。其他向视频类app,新闻类,社交类甚至游戏类,服务本身的质量和怎么样,不同阶段这些内容提供者出现了什么变化可能会影响到相关指标。
- 平台本身,平台怎么样能好用,易用,能吸引到用户轻易发现他们喜欢的内容也很重要。UI 布局,节点的转换逻辑等等。比如上面的例子中session_num很大的用户,可能的切换歌曲 频繁造成的。

参考资料

主要笔记来自阅读以下两本书:

- 1. Hadoop: The definitive guide
- 2. Learning Spark 2nd

有用的网页:

- 1. https://phoenixnap.com/kb/rdd-vs-dataframe-vs-dataset
- 2. [Apache Spark Tutorial with Examples Spark by {Examples} (sparkbyexamples.com)](https://sparkbyexamples.com/
- 3. 项目来自于udecity的课程大项目