Balanced Generalized Weighing Matrices and Optimal Codes

Thomas Pender

University of Lethbridge Department of Mathematics and Computer Science

Canadian Mathematical Society Winter Meeting
December 2021

*** Joint work with Hadi Kharaghani, Sho Suda, Vlad Zatiev

Codes—Definition

- Finite collection of "strings" of given length over a given finite alphabet.
- ullet Finite alphabet ${\cal A}$ with distinguished letter "0" called zero.
- Every $\mathscr{C} \subseteq \mathcal{A}^n$ is a code.
- Write \mathscr{C} is an $(n, M, d)_a$ -code, where
 - M = |𝒞|
 - $a = |\mathcal{A}|$
 - d is the Hamming distance (def. below).

Codes—Hamming Weight

• Weight of a codeword $c = c_0 \cdots c_{n-1}$.

$$\operatorname{wt}(c) = \#\{i : c_i \neq 0\}$$

Weight of \(\mathscr{C} \).

$$\operatorname{wt}(\mathscr{C}) = \min_{c \in \mathscr{C}} \operatorname{wt}(c).$$

- $\mathscr C$ is constant weight if $\#\{\mathrm{wt}(c):c\in\mathscr C\}=1$.
- Assume $\mathscr C$ is constant weight with $\operatorname{wt}(\mathscr C) = w$.

Codes—Hamming Distance

• Distance between code words $c = c_0 \cdots c_{n-1}$ and $c' = c'_0 \cdots c'_{n-1}$.

$$d(c,c') = \#\{i : c_i \neq c'_i\}$$

• Distance of \mathscr{C} .

$$d(\mathscr{C}) = \min_{\substack{c,c' \in \mathscr{C}^2 \\ c \neq c'}} d(c,c')$$

• $\mathscr C$ is equidistant if $\#\{d(c,c'):c,c'\in\mathscr C,c\neq c'\}=1$.

Codes—Restricted Johnson Bound

- Fundamental question to maximize M given n, d, w and a.
- Denote this max by $A_a(n, d, w)$.

Restricted Johnson Bound

$$A_{a}(n,d,w) \leq \left| \frac{nd(a-1)}{aw^{2} - 2(a-1)nw + nd(a-1)} \right|$$
 (1)

• $A = \{-, 0, 1\}$, where - represents -1.

 $\bullet \ \mathcal{A} = \{-,0,1\} \text{, where } - \text{ represents } -1.$ $1 \ 1 \ 1 - 0 - 1$

• $A = \{-, 0, 1\}$, where - represents -1.

$$\mathcal{A} = \{-,0,1\}, \text{ where } -\text{ represents } -1. \\ \begin{array}{c} 1 \ 1 \ 1 - 0 - - \ 1 \\ - \ 1 \ 1 \ 1 - 0 - - \\ 1 - 1 \ 1 \ 1 - 0 - - \\ 1 \ 1 - 1 \ 1 \ 1 - 0 \end{array}$$

• $A = \{-, 0, 1\}$, where - represents -1. 1 1 1 - 0 - - 1 - 1 1 1 - 0 - - 1 1 - 1 1 1 - 0 - - 1 1 - 1 1 1 - 0 - 0 1 1 - 1 1 1 - 0 0 1 1 - 1 1 1 - 0

• $\mathcal{A} = \{-, 0, 1\}$, where - represents -1. 1 1 1 - 0 - - 1 - 1 1 1 - 0 - - 1 1 - 1 1 1 - 0 - - 1 1 - 1 1 1 - 0 - 0 1 1 - 1 1 1 - 0 0 1 1 - 1 1 1 - 0 1 0 1 1 - 1 1 1

$$\mathcal{A} = \{-,0,1\}, \text{ where } -\text{ represents } -1. \\ \begin{array}{c} 1 \ 1 \ 1 - 0 - - \ 1 \\ - \ 1 \ 1 \ 1 - 0 - - \\ 1 - 1 \ 1 \ 1 - 0 - - \\ 1 - 1 \ 1 \ 1 - 0 - - \\ 1 \ 1 - 1 \ 1 \ 1 - 0 - - \\ 0 \ 1 \ 1 - 1 \ 1 \ 1 - \\ 1 \ 0 \ 1 \ 1 - 1 \ 1 \end{array}$$

• $\mathcal{A} = \{-, 0, 1\}$, where - represents -1. 1011-111 - 1 0 1 1 - 1 1

• $\mathcal{A} = \{-, 0, 1\}$, where - represents -1. 1 1 1 - 0 - 1 - 1 1 1 - 0 - 1 1 - 1 1 1 - 0 - 1 1 - 1 1 1 - 0 - 1 1 1 - 1 1 1 - 0 0 1 1 - 1 1 1 - 0 1011-111 -1011-111 - 0 - - 1 - -1 1 - 0 - - 1 -

Codes—Example cont.

- n = 8, a = 3, d = 5, w = 7.
- Extremal case of (1).
- Consequence of the following result due to Östergård, Svanström [2].

Theorem

If p is an odd prime,

$$A_3(p^m+1,(p^m+3)/2,p^m)=2p^m+2,$$
 (2)

for $m \ge 1$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□

7 / 18

T. Pender (U of L) BGWs and Codes CMS Dec 2021

(Balanced) Weighing Matrices—Definition

- (-1,0,1)-matrix W of order v such that $WW^t = kI_v$, for some k.
- \bullet k is the weight of the matrix.
- Denoted W(v, k).
- The W(v, v) are the Hadamard matrices, and W(v, v 1) are the conference matrices.
- If W * W is an SBIBD, then W is balanced.
- Every conference matrix is balanced.

Weighing Matrices—Example

• The first seven codewords of the previous example form a W(8,7).

$$W = \begin{bmatrix} 1 & 1 & 1 & - & 0 & - & - & 1 \\ - & 1 & 1 & 1 & - & 0 & - & - \\ 1 & - & 1 & 1 & 1 & - & 0 & - \\ 1 & 1 & - & 1 & 1 & 1 & - & 0 \\ 0 & 1 & 1 & - & 1 & 1 & 1 & - \\ 1 & 0 & 1 & 1 & - & 1 & 1 & 1 \\ - & 1 & 0 & 1 & 1 & - & 1 & 1 \\ - & 1 & 0 & 1 & 1 & - & 1 \end{bmatrix}$$

BGWs—Definition

- G a finite group.
- $W = [w_{ij}]$ a (0, G)-matrix of order v with k nonzero entries in every row such that the multisets

$$\{w_{i\ell}w_{j\ell}^{-1}: w_{i\ell} \neq 0 \neq w_{j\ell}, 0 \leq \ell < v\}, \qquad i \neq j,$$

contains each group element $\lambda/|G|$ times, for some λ .

- W is a balanced generalized weighing matrix.
- Denoted as $BGW(v, k, \lambda, G)$.

BGWs—Classical Parameters

- q a prime power, d > 1.
- Take K = GF(q), $F = GF(q^d)$.
- Relative trace $\operatorname{Tr}_{F/K}: F \to K$ defined as

$$\operatorname{Tr}_{F/K}(\alpha) = \alpha + \alpha^{q} + \dots + \alpha^{q^{d-1}}, \qquad \alpha \in F$$

BGWs—Classical Parameters cont.

- α a primitive element of F.
- $m = \frac{q^d 1}{q 1}$.
- Define $\omega = \alpha^{-m}$.
- Form the *m* dimensional vector

$$u = (\operatorname{Tr}_{F/K}(\alpha^0), \dots, \operatorname{Tr}_{F/K}(\alpha^{m-1})).$$

- Form the matrix W over K of order m by taking u together with its first m-1 ω -shifts.
- ullet Jungnickel, Tonchev [1] showed that W is BGW with parameters

$$\left(\frac{q^d-1}{q-1},q^{d-1},q^{d-1}-q^{d-2}\right)$$

with respect to K^* .

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩♡

• Take K = GF(7) and d = 2. Then m = 8.

4□ > 4□ > 4 = > 4 = > = 90

• Take $K=\mathrm{GF}(7)$ and d=2. Then m=8. $\omega^4 \quad 1 \quad \omega^4 \quad \omega^3 \quad 0 \quad \omega^5 \quad \omega^5 \quad 1$

• Take K = GF(7) and d = 2. Then m = 8.

1	ω^{4}	ω^3	0	ω^5	ω^{5}	1
ω^{4}	1	ω^{4}	ω^3	0	ω^{5}	ω^{5}
ω	ω^{4}	1 '	ω^4	ω^3	0	ω^{5}
1	ω	ω^4	1	ω^4	ω^3	0
1	1	ω	ω^{4}	1	ω^{4}	ω^3
	ω^4 ω	ω^4 1 ω ω^4	ω^4 1 ω^4 ω ω^4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

ω^4	1	ω^{4}	ω^3	0	ω^5	ω^5	1
ω	ω^{4}	1	ω^{4}	ω^3	$0 \ \omega^3$	ω^{5}	ω^{5}
1	ω	ω^{4}	1 '	ω^4	ω^3	0	ω^{5}
1	1	ω	ω^4	1	ω^4	ω^3	0
0	1	1	ω	ω^{4}	1	ω^{4}	ω^3
ω^{4}	0	1 🗸	1	ω	ω^{4}	1	ω^4

ω^4	1	ω^{4}	ω^3	0	ω^5	ω^{5}	1
ω	ω^{4}	1	ω^{4}	ω^3	$0 \omega^3$	ω^{5}	ω^5
1	ω	ω^{4}	1	ω^4	ω^3	0	ω^5
1	1	ω	ω^4	1	ω^4	ω^3	0
					1		
ω^{4}	0	1 🗸	1_	ω	ω^{4}	1	ω^4
ω^{5}	ω^{4}	0	1	1	ω	ω^{4}	1

• Take K = GF(7) and d = 2. Then m = 8.

• A BGW(8, 7, 6; $GF(7)^*$).

Codes from BGWs—Example

 $\omega^4 \ 1 \ \omega^4 \ \omega^3 \ 0 \ \omega^5 \ \omega^5 \ 1 \ | \omega^5 \ \omega \ \omega^5 \ \omega^4 \ 0 \ 1 \ 1 \ \omega \ | 1 \ \omega^2 \ 1 \ \omega^5 \ 0 \ \omega \ \omega \ \omega^2$ $\omega \omega^4 + \omega^4 \omega^3 = \omega^5 \omega^5 \omega^2 \omega^5 = \omega^5 \omega^4 = 0.1 + \omega^3 + \omega^2 + \omega^5 = \omega$ 1 ω ω^4 1 ω^4 ω^3 0 ω^5 ω ω^2 ω^5 ω ω^5 ω^4 0 1 ω^2 ω^3 1 ω^2 1 ω^5 0 ω 1 1 ω ω^4 1 ω^4 ω^3 0 $|\omega$ ω ω^2 ω^5 ω ω^5 ω^4 0 $|\omega^2$ ω^2 ω^3 1 ω^2 1 ω^5 0 0 1 1 ω ω^4 1 ω^4 ω^3 0 ω ω ω^2 ω^5 ω^4 0 ω^2 ω^2 ω^3 1 ω^2 1 ω^5 $\omega^4 \ 0 \ 1 \ 1 \ \omega \ \omega^4 \ 1 \ \omega^4 | \omega^5 \ 0 \ \omega \ \omega \ \omega^2 \omega^5 \ \omega \ \omega^5 | 1 \ 0 \ \omega^2 \ \omega^2 \ \omega^3 \ 1 \ \omega^2 \ 1$ $\omega^5 \omega^4 0 1 1 \omega \omega^4 1 | 1 \omega^5 0 \omega \omega \omega^2 \omega^5 \omega | \omega 1 0 \omega^2 \omega^2 \omega^3 1 \omega^2$ $\omega \ \omega^5 \ \omega^4 \ 0 \ 1 \ 1 \ \omega \ \omega^4 | \omega^2 \ 1 \ \omega^5 \ 0 \ \omega \ \omega^2 \ \omega^5 | \omega^3 \ \omega \ 1 \ 0 \ \omega^2 \ \omega^2 \ \omega^3 \ 1$ ω ω^3 ω 1 0 ω^2 ω^2 ω^3 ω^2 ω^4 ω^2 ω 0 ω^3 ω^3 ω^4 ω^3 ω^5 ω^3 ω^2 0 ω^4 ω^4 ω^5 $\omega^4 \omega \omega^3 \omega 1 0 \omega^2 \omega^2 |_{\omega^5 \omega^2 \omega^4 \omega^2 \omega} 0 \omega^3 \omega^3 |_{1} \omega^3 \omega^5 \omega^3 \omega^2 0 \omega^4 \omega^4$ $\omega^3 \omega^4 \omega \omega^3 \omega 1 0 \omega^2 |_{\omega^4 \omega^5 \omega^2 \omega^4 \omega^2 \omega} 0 \omega^3 |_{\omega^5 1} \omega^3 \omega^5 \omega^3 \omega^2 0 \omega^4$ $0 \quad \omega^3 \quad \omega^3 \quad \omega^4 \quad \omega \quad \omega^3 \quad \omega \quad 1 \quad 0 \quad \omega^4 \quad \omega^4 \quad \omega^5 \quad \omega^2 \quad \omega^4 \quad \omega^2 \quad \omega \quad 0 \quad \omega^5 \quad \omega^5 \quad 1 \quad \omega^3 \quad \omega^5 \quad \omega^3 \quad \omega^2 \quad \omega^4 \quad \omega^4 \quad \omega^4 \quad \omega^5 \quad \omega^$ ω 0 ω^3 ω^3 ω^4 ω ω^3 ω ω^2 0 ω^4 ω^4 ω^5 ω^2 ω^4 ω^2 ω^3 0 ω^5 ω^5 1 ω^3 ω^5 ω^3 $\omega^2 \omega = 0$ $\omega^3 \omega^3 \omega^4 \omega = \omega^3 |\omega^3 \omega^2 = 0$ $\omega^4 \omega^4 \omega^5 \omega^2 \omega^4 |\omega^4 \omega^3 = 0$ $\omega^5 \omega^5 = 1$ $\omega^3 \omega^5 = 0$ $\omega^4 \omega^2 \omega = 0 \quad \omega^3 \omega^3 \omega^4 \omega \quad |\omega^5 \omega^3 \omega^2 = 0 \quad \omega^4 \omega^4 \omega^5 \omega^2 = 0 \quad \omega^4 \omega^4 \omega^5 \omega^3 = 0 \quad \omega^5 \omega^5 = 0 \quad \omega^3 \omega^3 \omega^4 \omega = 0 \quad \omega^5 \omega^5 = 0 \quad \omega^4 \omega^4 \omega^5 \omega^2 = 0 \quad \omega^4 \omega^4 \omega^5 \omega^5 = 0 \quad \omega^4 \omega^4 \omega^5 \omega^5 = 0 \quad \omega^4 \omega^4 \omega^5 \omega^5 = 0 \quad \omega^5 = 0 \quad \omega^5 \omega^5 = 0 \quad \omega^5 =$

Codes from BGWs—Example cont.

•
$$n = 8, w = 7, d = 7, \text{ and } a = 7.$$

- Equality in (1).
- $A_7(8,7,7) = 48$.

Main Result

Theorem

If q is a prime power, and if d > 1, then

$$A_q\left(\frac{q^d-1}{q-1}, q^{d-1}, q^{d-1}\right) = q^d - 1.$$

Moreover, the code can be assumed to be completely generated by a single codeword and equidistant.

• If q odd, taking d = 2 implies (2) as a corollary.

16 / 18

T. Pender (U of L) BGWs and Codes CMS Dec 2021

References

Dieter Jungnickel and Vladimir D. Tonchev.

Perfect codes and balanced generalized weighing matrices. II.

Finite Fields Appl., 8(2):155–165, 2002.

Patric R. J. Östergård and Mattias Svanström. Ternary constant weight codes.

Electron. J. Combin., 9(1). Research Paper 41, 23, 2002.