Data Structure: Graph

graphs

- \blacksquare a graph G = (V, E)
 - V: a set of vertices (or nodes)
 - E: a set of edges (or arcs)
 each edge is represented as (v, w) where v, w ∈ V
- directed graph (Digraph): a graph with directed edges
- undirected graph: a graph with undirected edges

$$V = \{1, 2, 3\}$$

 $E = \{(1,1), (1,2), (2,3), (3,2), (1,3)\}$

directed graphs

- \blacksquare Let G = (V, E) be an directed graph
 - edge (u, v)
 - u is adjacent to v
 - u is initial vertex of (u, v)
 - v is terminal vertex of (u, v)
- degree of edges
 - in-degree of a vertex v
 - the number of edges with v as their terminal vertex
 - out-degree of a vertex v
 - the number of edges with v as their initial vertex

$$\sum_{v \in V} indeg(v) = \sum_{v \in V} outdeg(v) = |E|$$

connectivity of graphs

- For a digraph G = (V, E), n = |V|, e = |E|, $e \le n^2$
- **path** is a sequence of vertices $x_1, x_2, ..., x_{n-1}$
- the length of path is the number of edges in the path
- cycle begins and ends at the same vertex
- a path or cycle is simple if it does not contain the same edge more than once, the first and the last could be the same
- DAG (Directed Acyclic Graph): a digraph with no cycles.

graph representation: adjacency matrices

- A[u][v] = w if an edge exists between vertices u and v A[u][v] = 0 otherwise.
- $\mathbf{w} = \mathbf{I}$ or an arbitrary weight associated with edges
- use a table of size |V| to store a mapping from vertex names to array indices
- \blacksquare simple but $\Theta(|V|^2)$ space is needed
- appropriate for dense graphs with |E| approaching to $(|V|^2)$.

	1	2	3
1	1	1	1
2	0	0	1
3	0	1	0

graph representation: adjacency lists

- for each vertex, keep a list of adjacent vertices.
- \blacksquare space requirement: O(|E| + |V|)
- appropriate for sparse graphs.

partial orderings

- a relation R on a set S is partial order if it is reflexive, antisymmetric, and transitive
- \blacksquare (S, R): a set S with a partial ordering R is a partially ordered set (poset)

≥ is a partial ordering on the set of integers

reflexive: $a \ge a$ for every integer a

antisymmetric: $a \ge b$ and $b \ge a$ then a = b

transitive: $a \ge b$ and $b \ge c$ imply $a \ge c$

total orderings

■ if (S, \leq) is a poset and every two elements of S are comparable, S is a totally ordered, linearly ordered set, or chain

poset (Z, \leq) is totally ordered because $a \leq b$ or $b \leq a$ poset $(Z^+, |)$ is not totally ordered because $5 \nmid 7$ and $7 \nmid 5$ topological sorting is constructing a compatible total ordering from a partial ordering

```
procedure topological sorting ((S, \leq))

k := I

while S \neq \emptyset

a_k := a minimal elements of S

S := S - \{a_k\}

k := k + I

return a_1, a_2, \ldots a_n \ \{a_1, a_2, \ldots, a_n \ \text{is a compatible total ordering of } S\}
```

Find a compatible total ordering for the poset({1, 2, 4, 5, 12, 20}, |)

1 < 5 < 2 < 4 < 20 < 12

- ordering of vertices in a DAG, such that if there exists a path from v_i to v_j , then v_j appears after v_i
- Example: a topological ordering of courses
 - any course sequence that does not violate the prerequisite requirement

- algorithm:
 - for each vertex v whose in-degree is zero,
 - print *v*
 - remove *v* and its outgoing edges (which leads to decrementing the in-degree value of *v*'s adjacent vertices)

- use either stack or queue to keep track of vertices with in-degree = 0
- use adjacency list representation or matrix

	٧l	v2	v3	v4	v5	v6
٧l	0	I	0	I	0	0
v2	0	0	I	Ι	I	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0	I	0	0	0
v6	0	0	I	0	I	0

of in-dgree

٧l	0			
v2	1			
v3	3			
v4	3			
v5	2			
v6	0			
queue				
dequeue				

	٧l	v2	v3	v4	v5	v6
٧l	0	Ι	0	Ι	0	0
v2	0	0	I	I	I	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0	I	0	0	0
v6	0	0	ı	0	I	0

of in-dgree

٧l	0			
v2	1			
v3	3			
v4	3			
v5	2			
v6	0			
queue	vI, v6			
dequeue				

	٧l	v2	v3	v4	v5	v6
٧l	0	-	0	Ι	0	0
v2	0	0	I	I	I	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0	ı	0	0	0
v6	0	0		0	ı	0

of in-dgree

٧l	0	0		
v2	I	0		
v3	3	3		
v4	3	2		
v5	2	2		
v6	0	0		
queue	v1, v6			
dequeue	٧I			

٧l	0	0	0	0	0	0
v2	0	0	I	I	I	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0	I	0	0	0
v6	0	0	I	0	I	0

queue v6

of in-dgree

٧l	0	0		
v2	1	0		
v3	3	3		
v4	3	2		
v5	2	2		
v6	0	0		
queue	v1, v6	v6, v2		
dequeue	VI			

	٧l	v2	v3	v4	v5	v6
٧l	0	0	0	0	0	0
v2	0	0	I	I	I	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0		0	0	0
v6	0	0	ı	0	ı	0

queue v6

of in-dgree

٧l	0	0		
v2	I	0		
v3	3	3		
v4	3	2		
v5	2	2		
v6	0	0		
queue	v1, v6	v6, v2		
dequeue	VI	v6		-

		_
queue	v6	v2

	٧l	v2	v3	v4	v5	v6
٧l	0	0	0	0	0	0
v2	0	0	I	I	I	0
v3	0	0	0	-	0	0
v4	0	0	0	0	0	0
v5	0	0	I	0	0	0
v6	0	0		0	-	0

of in-dgree

٧l	0	0	0		
v2	I	0	0		
v3	3	3	2		
v4	3	2	2		
v5	2	2			
v6	0	0	0		
queue	v1, v6	v6, v2	v2		
dequeue	٧l	v6	v2		

queue	v6	v 2	none

	٧l	v2	v3	v4	v5	v6
٧l	0	0	0	0	0	0
v2	0	0	I	I	I	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0	I	0	0	0
v6	0	0	0	0	0	0

of in-dgree

٧l	0	0	0	0	
v2	I	0	0	0	
v3	3	3	2	I	
v4	3	2	2	I	
v5	2	2	-	0	
v6	0	0	0	0	
queue	v1, v6	v6, v2	v2	v5	
dequeue	٧l	v6	v2	v5	

queue	v6	v 2	none	none

	٧l	v2	v3	v4	v5	v6
٧l	0	0	0	0	0	0
v2	0	0	0	0	0	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0	I	0	0	0
v6	0	0	0	0	0	0

of in-dgree

٧l	0	0	0	0	0	
v2	I	0	0	0	0	
v3	3	3	2	1	0	
v4	3	2	2	1	I	
v5	2	2		0	0	
v6	0	0	0	0	0	
queue	v1, v6	v6, v2	v2	v5	v3	
dequeue	٧l	v6	v2	v5	v3	

queue	v6	v2	none	none	none
I					

	٧l	v2	v3	v4	v5	v6
٧l	0	0	0	0	0	0
v2	0	0	0	0	0	0
v3	0	0	0	Ι	0	0
v4	0	0	0	0	0	0
v5	0	0	0	0	0	0
v6	0	0	0	0	0	0

of in-dgree

٧l	0	0	0	0	0	0
v2	I	0	0	0	0	0
v3	3	3	2		0	0
v4	3	2	2		I	0
v5	2	2		0	0	0
v6	0	0	0	0	0	0
queue	v1, v6	v6, v2	v2	v5	v3	v4
dequeue	٧l	v6	v2	v5	v3	v4
queue	v6	v2	none	none	none	none

	٧l	v2	v3	v4	v5	v6
٧l	0	0	0	0	0	0
v2	0	0	0	0	0	0
v3	0	0	0	0	0	0
v4	0	0	0	0	0	0
v5	0	0	0	0	0	0
v6	0	0	0	0	0	0

```
void Topsort (Graph G)
   Queue Q;
   Vertex V, W;
   int *Indegree;
   Q = CreateQueue();
   checkIndegree(Indegree);
   for each vertex V
      if( Indegree[V] == 0 )
          Enqueue(V, Q);
   while( !IsEmtpy(Q) )
      V = Dequeue(Q);
      for each W adjacent to V
         if (--Indegree[W] == 0)
             Enqueue(W, Q);
   }
```

- \blacksquare n = |V|, e = |E|
- the number of iterations of the while loop is at most n
- the number of iterations of the for loop is proportional to outdeg(v) and each iteration takes constant time
- since outdeg(v) may be zero and we need to spend some time updating loop variables, etc. in this case, the time is $\Theta(\text{outdeg}(v) + 1)$
- the running time is

$$T(n) = n + \sum_{v \in V} (outdeg(v) + 1)$$

$$= n + \sum_{v \in V} outdeg(v) + \sum_{v \in V} 1 = n + e + n \in \Theta(n + e)$$

tree traversal

level-order traversal

```
void levelOrder (Tree ptr) {
     int front = rear = 0;
     Tree queue[MAX];
     if (! node)
                 return;
     addq(ptr);
     for (;;) {
           ptr = deleteq();
           if (ptr) {
                printf("%d", ptr->data);
                if (ptr -> leftChild)
                      addq(ptr -> leftChild);
                if (ptr -> rightChild)
                      addq(ptr -> rightChild);
           else break;
```

breadth-first search

- vertices closest to the start are evaluated first, and the most distant vertices are evaluated last
- use Queue to keep track of vertices to evaluate

breadth-first search

```
BFS(Table T)
  Q = CreateQueue(NumVertex);
  MakeEmpty(Q);
  Enqueue(s, Q);
  while(!IsEmtpy(Q)) do
      v = Dequeue(Q);
      for each w adjacent to v
         if( d[w] == infinity ) { /* d[w] : depth, d[w] == infinity means "not visited yet" */
              d[w] = d[v] + 1;
              pred[w] = v;
              Enqueue(w, Q);
    DisposeQueue(Q);
```

depth-first search

- travel as deep as possible from neighbour to neighbour before backtracking
- use Stack to keep track of vertices to evaluate

depth-first search: recursive implementation

```
void DFS (G, u){
    while u has an unvisited neighbour in G
    v = an unvisited neighbour of u
    mark v visited
    DFS(G, v)
}
```

depth-first search: iterative implementation using stack

```
void DFS (G, u){

S = stack initialized
S.push (u)
while S is not empty
v = S.pop()
if v not visited
    mark v as visited
    for w is a neighbour of v
S. push(w)
```

depth-first search: iterative implementation using stack


```
S = stack initialized

S.push (u)

while S is not empty

v = S.pop()

if v not visited

mark v as visited

for w is a neighbour of v

S. push(w)
```


S = stack initialized

S.push (u)

while S is not empty

v = S.pop()

if v not visited

mark v as visited

for w is a neighbour of v

S. push(w)

- a weighted graph: a graph G = (V, E), where a cost c_{ij} is associated with each edge
 - weighted path length: $\sum_{i=1}^{n-1} c_{i,i+1}$ for the path $v_1, v_2, \dots v_n$
 - \blacksquare unweighted path length: the number of edges on the path, i.e. $c_{i,i+1} = I$
- Single source shortest-path problem
 - given as input a weighted graph G and a distinguished vertex s as source
 - find the shortest weighted path from s to every other v vertex in G

- In many practical applications, we consider finding the shortest path from one vertex s to another t
 - currently no algorithm can find the path from one source to one vertices (ie. s to t) any faster than finding the path from one source to all vertices
- When negative-cost cycles are present in the graph, the shortest path may be undefined

$$5 \rightarrow 4$$
: I
 $5 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 4$: -5

shortest path from 0 to 1?

shortest path from 0 to 1?

- S is a set of vertices that have the shortest path from v to those vertices
- We generate the paths in non-descending order of length
- When the next shortest path is to vertex u, it possible to have a shortest path v to u through w?
- If vertex u is chosen, it has the minimum distance among all the vertices not in S

weighted single-source shorted path: Dijkstra's algorithm

- length of a path: sum of edge weights along the path
- Inding minimum length of the path from u to v: $\delta(s, v)$
- given a directed graph with non-negative edge weights G = (V, E), and a special source vertex $s \in V$, determine the distance from the source vertex to every vertex in G
 - d[v]: shortest path from the source to v
 - pred[v]: previous vertex of v in the path
- each node is one of the status, permanent or temporary
 - the status of a node is permanent if its distance value is equal to the shortest distance from node s
 - otherwise, the status of a node is temporary

weighted single-source shorted path: Dijkstra's algorithm

- how does the algorithm work
 - start by assigning some initial values for the distance D[v] from a node s to every other node v in the graph
 - at each step, update the distance to every node and determine a node j that has the smallest distance value d_i among all nodes in the temporary sets
 - if all nodes are labeled as permanent, stop

weighted single-source shorted path: Dijkstra's algorithm

- relaxation (update) process
 - d[v]: shortest path from the source to v
 - pred[v]: previous vertex of v in the path

- initially d[s] = 0, $d[v] = \infty$ v: all other nodes except the starting node
- d[v] is updated until d[v] is converged to minimum distance $\delta(s, v)$
- implemented with a priority queue: every operation (insert, delete_min, decrease_key) can be done in Θ (log n) time

```
if (d[u] + w[u, v] < d[v])
{
   d[v] = d[u] + w[u, v];
   pred[v] = u;
}</pre>
```



```
Dijkstra(G=(V, E, w), s)
      SP = \{\};
                                                      \Theta(n)
      for each v in V do {
           d[v] = +infinity; pred[v] = nil;
     d[s] = 0;
     for each v in Adj[s] do {
           d[v] = w[s, v]; pred[v] = s;
     Add each vertex to priority queue Q;
     While (Q is not empty) do { /* for each node*/
                                                                 \Theta(\log n)
           u = Delete_Min(Q);
           SP = SP + \{u\};
           for each v in Adj[u] do { /* for each outdeg(u)*/
             if (d[u] + w(u, v) < d[v]) then {
                 d[v] = d[u] + w(u, v);
                 pred[v] = u;
                                                                 \Theta(\log n)
                 Decrease_Priority(Q, v);
                                        \sum_{u \in V} (\log n + 1 + outdeg(u) \times \log n) =
                                       n \log n + n + (\sum_{u \in V} outdeg(u)) \log n \in \Theta((n + e) \log n)
```

