

Ácidos

Têm um sabor azedo (o sabor do vinagre deve-se ao ácido acético; os citrinos contêm ácido cítrico).

Reagem com certos metais produzindo hidrogénio gasoso.

Reagem com carbonatos e bicarbonatos para produzir CO₂ gasoso.

Bases

Têm um sabor amargo.

São escorregadias ao tato (muitos sabões contêm bases).

1

1

3

Um ácido de Brønsted é um dador de protões.

Uma base de Brønsted é um aceitador de protões.

Um *ácido de Arrhenius* é uma substância que produz H⁺ (H₃O⁺) em água.

Uma base de Arrhenius é uma substância que produz OH- em água.

NaOH (s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺ (aq) + HO· (aq)
Ba(OH)₂ (s) \longrightarrow Ba⁺² (aq) + 2HO· (aq)

2

2

Propriedades Ácido-Base da Água

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$

Auto-ionização da água

4

•

Produto Iónico da Água

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$
 $K_c = \frac{[H^+][OH^-]}{[H_2O]}$ $[H_2O] = const.$ $K_c[H_2O] = K_w = [H^+][OH^-]$

Produto iónico (K_w) — o produto das concentrações molares dos iões H^+ e OH^- , a uma dada temperatura.

ı	
ı	A 25°C
ı	
ı	
	$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$
ı	

	A solução é
[H+] = [OH-]	neutra
$[H^+] > [OH^-]$	ácida
[H⁺] < [OH⁻]	básica

5

7

pH — Uma Medida de Acidez

<u>A solução é</u>		A 25°C	
neutra	$[H^{+}] = [OH^{-}]$	$[H^+] = 1 \times 10^{-7}$	pH = 7
ácida	[H ⁺] > [OH ⁻]	$[H^+] > 1 \times 10^{-7}$	pH < 7
básica	[H ⁺] < [OH ⁻]	$[H^+] < 1 \times 10^{-7}$	pH > 7
	рН	[H+]	

1-Calcule a concentração de iões de OH⁻ numa solução de HCI cuja a concentração de iões de hidrogénio é de 1,3 *M* ?

 $K_w = 1.0 \times 10^{-14}$

 $[H^+] = 1,3 M$

6

6

15.1	Valores de pH de Alguns Fluidos Comuns			
۲	Amostra	Valor do pH		
TABELA	Amostra Suco gástrico no estômago Sumo de limão Vinagre Sumo de toranja Urina Água exposta ao ar* Saliva Leite Água pura Sangue Lágrimas Leite de magnésia Amónia de limpeza doméstica	1,0-2,0 2,4 3,0 3,2		
	domestica			

* Água exposta ao ar durante um longo período de tempo absorve CO₂ atmosférico formando ácido carbónico, H₂CO₃. $pOH = -log [OH^{-}]$

 $[H^+][OH^-] = K_w = 1.0 \times 10^{-14}$

 $-\log [H^+] - \log [OH^-] = 14,00$

pH + pOH = 14,00

8

8

7

12

2-O pH da água da chuva recolhida numa dada região do nordeste dos Estados Unidos num determinado dia era de 4,82. Calcule a concentração de iões H⁺ da água da chuva?

3-A concentração de iões OH⁻ de uma amostra de sangue é 2,5 × 10⁻⁷ M Qual é o pH do sangue?

9

9

11

Ácidos fracos são electrólitos fracos:

HF
$$(aq)$$
 + H₂O (I) H_3O^+ (aq) + F⁻ (aq)
HNO₂ (aq) + H₂O (I) H_3O^+ (aq) + NO₂⁻ (aq)
HSO₄⁻ (aq) + H₂O (I) H_3O^+ (aq) + SO₄²⁻ (aq)

$$H_2O(I) + H_2O(I) \longrightarrow H_3O^+(aq) + OH^-(aq)$$

Bases fortes são electrólitos fortes:

NaOH (s)
$$H_2O$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) H_2O K⁺ (aq) + OH⁻ (aq)

$$Ba(OH)_2 (s) \xrightarrow{H_2O} Ba^{2+} (aq) + 2OH^- (aq)$$

Força de ácidos e bases

NaCl (s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺ (aq) + Cl⁻ (aq)

CH₃COOH
$$\stackrel{\text{H}_2\text{O}}{\longleftrightarrow}$$
 CH₃COO⁻ (aq) + H⁺ (aq)

Ácidos fortes são electrólitos fortes

$$HCI(aq) + H2O(l) \longrightarrow H3O+(aq) + Cl-(aq)$$

$$HNO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$$

$$HCIO_4 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CIO_4^- (aq)$$

$$H_2SO_4(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$$

10

Bases fracas são electrólitos fracos:

$$F^-$$
 (aq) + H_2O (I) OH^- (aq) + HF (aq)

$$NO_2^-$$
 (aq) + H_2O (I) \longrightarrow OH^- (aq) + HNO_2 (aq)

11

12

1	Forças Relativas de Pares Ácido-Base Conjugados					
ç	Ácido		Ácido	Base conjugada		
	Força Ácida Crescente	Acidos fracos Acidos fortes	HClO4 (ácido perclorico) HI (ácido hidroiódico) HBr (ácido bromídrico) HCl (ácido clorídrico) H ₂ SO ₄ (ácido sultúrico) HNO ₃ (ácido nútrico) HNO ₃ (ácido nútrico) H ₃ O ⁴ (ião hidrónio) HSO ₄ (hidrogenossulfatiāo) HF (ácido fluorídrico) HNO ₂ (ácido nitroso) HCOOH (ácido fórmico) CH ₃ COOH (ácido acético)	Base conjugada ClO ₄ (ião perclorato) Γ (ião iodeto) Br (ião brometo) Cl (ião cloreto) HSO ₄ (hidrogenossulfatião) NO ₅ (ião nitrato) H ₂ O (água) NO ₄ (ião sulfato) F (ião fluoreto) NO ₂ (ião nitrito) HCOO (ião formiato)		
		Ácid	NH ₄ ⁺ (ião amónio) HCN (ácido hidrociânico) H ₂ O (água) NH ₄ (amónia)	CH ₃ COO ⁻ (ião acetato) NH ₃ (amónia) CN ⁻ (ião cianeto) OH ⁻ (ião hidróxido) NH ₂ (ião amida)		

4-Calcule o pH de uma solução de HNO₃ 2 × 10⁻³ M.

HNO₃ é um ácido forte – 100% dissociação.

Início: 0,002 M 0,0 M 0,0 M HNO₃ $(aq) + H_2O(I)$ \longrightarrow $H_3O^+(aq) + NO_3^-(aq)$

Fim: 0,0 *M* 0,002 *M* 0,002 *M*

 $pH = -log [H^+] = -log [H_3O^+] = -log(0,002) = 2,7$

5-Calcule o pH de uma solução de Ba(OH)₂ 1,8 × 10⁻² M.

Ba(OH)₂ é uma base forte – 100% dissociação.

Início: 0,018 M 0,0 M 0,0 M Ba(OH)₂ (s) \longrightarrow Ba²⁺ (aq) + 2OH⁻ (aq) Fim: 0,0 M 0,036 M

pH = 14,00 - pOH = 14,00 + log(0,036) = 12,56

14

13

Ácidos Fracos e Constantes de Ionização Ácida

$$HA(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + A^-(aq)$$

$$HA(aq) \longrightarrow H^+(aq) + A^-(aq)$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Ka é a constante de ionização ácida

Maior K_a => ácido mais forte

14

13

15

* No ácido ascórbico é o grupo hidroxilo superior esquerdo que está associado a esta constante de ionização.

16

6-Qual é o pH de uma solução de HF 0,5 M (a 25°C)? Ka=
$$7,1 \times 10^{-4}$$

HF (aq) \longrightarrow H⁺ (aq) + F⁻ (aq) $K_a = \frac{[H^+][F^-]}{[HF]} = 7,1 \times 10^{-4}$

Variação (*M*):
$$-x$$
 $+x$ $+x$ Equilíbrio (*M*): $0,50-x$ x x

$$K_a = \frac{x^2}{0.50 - x} = 7.1 \times 10^{-4}$$
 $K_a << 1$ $0.50 - x \approx 0.50$

$$K_a << 1$$
 0,50 – $x \approx 0.5$

$$K_a \approx \frac{x^2}{0.50} = 7.1 \times 10^{-4}$$
 $x^2 = 3.55 \times 10^{-4}$ $x = 0.019 M$

$$x^2 = 3,55 \times 10^{-4}$$

$$x = 0.019 M$$

$$[H^+] = [F^-] = x = 0.019 M$$

$$[HF] = 0.50 - x = 0.48 M$$

17

19

7-Qual é o pH de um ácido monoprótico 0,122 M cujo K_a é 5,7 × 10⁻⁴?

$$HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

Início (M):

Variação (M):

Equilíbrio (M): 0,122 - x x x

$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4}$$
 $K_a << 1$ $0.122 - x \approx 0.122$

$$K_{a} \approx \frac{x^{2}}{0.122} = 5.7 \times 10^{-4}$$
 $x^{2} = 6.95 \times 10^{-5}$ $x = 0.0083 M$

$$x^2 = 6,95 \times 10^{-3}$$

$$x = 0,0083 M$$

$$\frac{0,0083 \text{ M}}{0.122 \text{ M}} \times 100\% = 6,8\%$$
 Aproximação **não ok!**

Resolver em ordem a x utilizando a equação quadrática

19

20

Quando posso usar a aproximação?

$$K_a << 1$$
 $0.50 - x \approx 0.5$

Quando x for menor que 5% do valor do qual foi subtraído.

$$x = 0.019$$
 $\frac{0.019 M}{0.50 M} \times 100\% = 3.8\%$

18

18

$$K_0 = \frac{x^2}{0,122 - x} = 5.7 \times 10^{-4}$$
 $x^2 + 0.00057x - 6.95 \times 10^{-5} = 0$

$$ax^2 + bx + c = 0$$

$$ax^2 + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x = 0.0081$$

$$x = 0.0081$$
 $x = -0.0081$

 $HA(aq) \longrightarrow H^+(aq) + A^-(aq)$

0,122 Inicial (M):

Equilíbrio (M):

Variação (M):

-x +x +x 0,122 - x x x

 $[H^+] = x = 0,0081 M$ $pH = -log[H^+] = 2,09$

8-Qual é o pH de uma solução 0,05 *M* de $K_a = \frac{[H^+][F^-]}{[HF]} = 7,1 \times 10^{-4}$

$$HF(aq) \stackrel{\longrightarrow}{\longleftarrow} H^+(aq) + F^-(aq)$$

Início (M):

0.050

0,00 0,00

Variação (M):

+*x*

Equilíbrio (M): 0.050 - x

$$K_a = \frac{\lambda}{0,050 - x} = 7.1 \times 10^{-3}$$

 $K_a = \frac{x^2}{0.050 - x} = 7.1 \times 10^{-4}$ $K_a << 1$ $0.050 - x \approx 0.050$

$$K_a \approx \frac{x^2}{0,050} = 7.1 \times 10^{-4}$$
 $x^2 = 3.55 \times 10^{-5}$

$$e^2 = 3,55 \times 10^{-5}$$

$$x = 0,006 M$$

$$\frac{0,006 M}{0,05 M} \times 100\% = 12\%$$

Mais do que 5% Aproximação não ok!

Resolver em ordem a x utilizando a equação quadrática

21

23

21

Constantes de Ionização de Algumas Bases Fracas e dos Seus Ácidos Conju Ácido conjugado $C_2H_5\dot{N}H_3$ Etilamina 5,6 × 10⁻⁴ 1.8×10^{-11} Metilamina CH₃NH₂ Basicidade crescente Amónia $5,9 \times 10^{-6}$ Piridina $C_6H_5NH_3$ 2,6 × 10⁻⁵ H₂NCONH₃ 0,67

Bases Fracas e Constantes de Ionização Básicas

 $NH_3(aq) + H_2O(l) \longrightarrow NH_4^+(aq) + OH^-(aq)$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

K_b é a constante de ionização básica

Maior K_b => base mais forte

Resolvemos os problemas de bases fracas como os problemas de ácidos fracos com a diferença que calculamos primeiro [OH-] em vez de [H+].

22

Constantes de Ionização de Pares Ácido-Base Conjugados

$$HA$$
 $(aq) \longrightarrow H^+ (aq) + A^- (aq)$

$$A^-$$
 (aq) + H₂O (/) \longrightarrow OH⁻ (aq) + MA (aq) K_b

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$
 K_w

$$K_aK_b = K_w$$

24

22

 K_a

23

Ácidos dipróticos e polipróticos

-podem dar origem a mais do que 1 protão

- ionizam-se por etapas

$$H_{2}A \longrightarrow H^{+} + HA^{-}$$
 $K_{a1} = \frac{[H^{+}][HA^{-}]}{[H_{2}A]}$
 $HA^{-} \longrightarrow H^{+} + A^{-2}$
 $K_{a2} = \frac{[H^{+}][A^{-2}]}{[HA^{-}]}$
 $H_{2}A \longrightarrow 2 H^{+} + A^{-2}$
 $K_{a} = \frac{[H^{+}]^{2}[A^{-2}]}{[H_{2}A]}$

 $K_a = K_{a1} \times K_{a2}$

25

8 - Calcula o pH de uma solução de H_2SO_4 0,01 M Ka (HSO_4 ·)=1,3x10-2.

15.5	Constantes de Ion	ização de Alg	uns Ácidos Dipróticos, de um Á	cido Poliprótico e da	s Suas Bases C	onjugadas, a 25°C
TABELA	Nome do Ácido	Fórmula	Estrutura	K _a	Base Conjugada	κ _b
TAB	Ácido sulfúrico	H ₂ SO ₄	о н-о-s-о-н о	muito grande	HSO ₄	muito pequena
	Hidrogenosulfa- tião	HSO ₄	O H-O-\$-O- I O	1,3 × 10 ⁻²	SO ₄ ²	$7,7 \times 10^{-13}$
	Ácido oxálico	$C_2H_2O_4$	о о н—о—С—С—о—н	6,5 × 10 ⁻²	C ₂ HO ₄	$1,5 \times 10^{-13}$
	Hidrogenoxa- latião	$C_2HO_4^-$	O O H-O-C-C-O-	$6,1 \times 10^{-5}$	C ₂ O ₄ ²	$1,6 \times 10^{-10}$
	Ácido sulfuroso*	H ₂ SO ₃	о н—о— s —о—н	1,3 × 10 ⁻²	HSO ₃	$7,7 \times 10^{-13}$
	Hidrogenossul- fitião	HSO ₃	O H—O—\$—O ⁻	6,3 × 10 ⁻⁸	SO ₃ ²⁻	1,6×10 ⁻⁷

- a 1ª ionização é mais extensa que a 2ª e esta é mais extensa que a 3ª

Exercício 8

26

26

9- O ácido oxálico ($H_2C_2O_4$) é um ácido diprótico. Calcule as concentrações de $H_2C_2O_4$, C_2HO_4 -1, C_2O_4 -2 e H+ numa solução de ácido oxálico 0,20M.

Ka₁=6,5x10⁻²; Ka₂=6,1x10⁻⁵

Propriedades Ácido-Base de Sais

Sais - são compostos iónicos

- formam-se por reação entre um ácido e uma base
- são eletrólitos fortes
- alguns reagem com a água

Hidrólise salina – reação de um anião ou catião de um sal, ou de ambos, com a água

Hidrólise salina, em geral, afeta o pH da solução

29

Propriedades Ácido-Base de Sais

Soluções Ácidas:

Sais derivados de um ácido forte e de uma base fraca.

$$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(aq) + Cl^-(aq)$$

Hidrólise salina

31

$$NH_4^+$$
 (aq) \longrightarrow NH_3 (aq) $+$ H^+ (aq)

O que acontecerá em soluções que contem dois solutos e que possuem o mesmo ião (catião ou anião)?

Propriedades Ácido-Base de Sais

Soluções Neutras:

Sais que contêm um ião de um metal alcalino ou um ião de um metal alcalino-terroso (excepto o Be²⁺) **e** a base conjugada de um ácido **forte** (por exemplo Cl⁻, Br⁻ e NO₃⁻).

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Soluções Básicas:

Sais derivados de uma base forte e de um ácido fraco.

$$CH_3COONa(s) \xrightarrow{H_2O} Na^+(aq) + CH_3COO^-(aq)$$

Hidrólise salina
$$CH_3COO^-(aq) + H_2O(l) \longrightarrow CH_3COOH(aq) + OH^-(aq)$$

30

30

32

Efeito do ião comum — desvio do equilíbrio causado pela adição de um composto que tem um ião comum com a substância dissolvida.

A presença de um ião comum **suprime** a ionização de um ácido fraco ou de uma base fraca.

Considere a mistura de CH₃COONa (electrólito forte) e CH₃COOH (ácido fraco):

$$CH_3COONa (s) \longrightarrow Na^+ (aq) + CH_3COO^- (aq)$$
 $ião$
 $CH_3COOH (aq) \longrightarrow H^+ (aq) + CH_3COO^- (aq)$
 $comum$

32

36

Considere um ácido fraco HA:

$$HA (aq) \longleftrightarrow H^{+} (aq) + A^{-} (aq) \qquad K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \qquad [H^{+}] = \frac{K_{a}[HA]}{[A^{-}]}$$

$$-\log [H^{+}] = -\log K_{a} - \log \frac{[HA]}{[A^{-}]} = -\log K_{a} + \log \frac{[A^{-}]}{[HA]}$$

$$pH = pK_{a} + \log \frac{[A^{-}]_{eq}}{[HA]_{eq}}$$

$$pK_{a} = -\log K_{a}$$

Considere uma mistura do sal NaA e de um ácido fraco HA:

HA (aq) \longleftrightarrow H⁺ (aq) + A⁻ (aq)NaA (s) \longleftrightarrow Na⁺ (aq) + A⁻ (aq) \longleftrightarrow Na⁺ (aq) + A⁻ (aq) \longleftrightarrow Na⁺ (aq) + A⁻ (aq)

- 9 a)Calcula o pH de uma solução contendo CH₃COOH 0,20 M e CH₃COONa 0,30 M (Ka=1,8x10-⁵)
 - b) Qual seria o pH de uma solução de CH₃COOH 0,20 M se não estivesse presente nenhum sal?
- 11 Qual a concentração inicial de uma solução de ácido fórmico (HCOOH) cujo pH no equilíbrio é 3,26? (Ka=1,7x10-4)

13- Calcule o pH de uma solução que contém HCOOH 0,30 M e HCOOK 0,52 M?

34

33

Definição de um Ácido

Um *ácido de Arrhenius* é uma substância que produz H⁺ (H₃O⁺) em água. Um *ácido de Brønsted* é um doador de protões.

Um ácido de Lewis é uma substância que pode aceitar um par de electrões.

Uma base de Lewis é uma substância que pode doar um par de electrões.

36

35

Ácidos e Bases de Lewis

Não há doação nem aceitação de protões!

37