GIT Tutorial Project

Herman Yu

Hello World! (First Commit)

Gauss's Lemma: If $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} , then f(x) is reducible over \mathbb{Z} .

Theorem: If R is a UFD, then R[x] is a UFD.

Eisenstein's Criterion: Let P be a prime ideal of the integral domain R and let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial in R[x] (here $n \ge 1$). Suppose $a_{n-1}, \ldots, a_1, a_0$ are all elements of P and suppose a_0 is not an element of P^2 . Then f(x) is irreducible in R[x].

Theorem: Let F be a field. Then f(x) is irreducible if and only if F[x]/(f(x)) is a field.

Definition: Let F be a field. A field extension of F is any field K containing F.

Proposition: Let K be a field extension of the field F. Then K is a vector space over F, with vector addition the same as addition in K as a field and F-scalar multiplication the same as multiplication in K as a field.

Definition: Let F be a field and f(x) an irreducible polynomial over F[x]. The degree of F[x]/(f(x)) over F is dimension of F[x]/(f(x)) as a vector space over F.