123 Corps finis. Applications.

Soient p un nombre premier, n un nombre entier, et $q = p^n$.

I - Construction

1. Caractéristique, sous-corps premier

Définition 1. Soit A un anneau. L'application

[**GOZ**] p. 7

$$f_A: n \mapsto \underbrace{1 + \dots + 1}_{n \text{ fois}}$$

On note car(A) l'unique $n \in \mathbb{N}$ tel que $Ker(f_A) = n\mathbb{Z}$: c'est la **caractéristique** de A.

Exemple 2. La caractéristique de l'anneau $\mathbb{Z}/n\mathbb{Z}$ est n.

Proposition 3. (i) Soit *A* un anneau intègre. Alors, car(A) = 0 ou *p* avec *p* premier.

- (ii) Soit A un anneau fini. Alors, $car(A) \neq 0$ et $car(A) \mid |A|$.
- (iii) Un anneau et un quelconque de ses sous-anneaux ont la même caractéristique.

Remarque 4. — Le Point (i) est en particulier vrai pour un corps.

— Si car(A) = 0, A est infini.

Définition 5. Soit K un corps.

- K est dit **premier** s'il n'a pas d'autre sous-corps que lui-même.
- Le **sous-corps premier** de \mathbb{K} est le sous-corps de \mathbb{K} engendré par 1 (ie. l'intersection de tous les sous-corps de \mathbb{K}) : c'est un corps premier.

Remarque 6. Un corps et l'un de ses sous-corps ont le même sous-corps premier.

Proposition 7. Soient \mathbb{K} un corps et \mathbb{P} son corps premier. Alors, si car(\mathbb{K}) = 0, $\mathbb{P} \cong \mathbb{Q}$.

2. Construction de \mathbb{F}_p

Proposition 8. Les conditions suivantes sont équivalentes :

- (i) n est un nombre premier.
- (ii) $\mathbb{Z}/n\mathbb{Z}$ est un anneau intègre.
- (iii) $\mathbb{Z}/n\mathbb{Z}$ est un corps.

Notation 9. On note $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

Proposition 10. Soit K un corps fini.

- (i) $car(\mathbb{K})$ est un nombre premier p.
- (ii) Le sous-corps premier de \mathbb{K} est isomorphe à \mathbb{F}_p .
- (iii) $|\mathbb{K}| = p^m$ pour $m \ge 2$.

Exemple 11. — Il n'existe pas de corps fini à 6 éléments.

— $\mathbb{F}_p(X)$, est un corps infini de caractéristique p.

Proposition 12. Tout corps fini à p éléments est isomorphe à \mathbb{F}_p .

3. Construction de \mathbb{F}_q

Proposition 13. Soit \mathbb{K} un corps de caractéristique p. L'application

Frob:
$$\begin{array}{ccc} \mathbb{K} & \to & \mathbb{K} \\ x & \mapsto & x^p \end{array}$$

est un morphisme de corps.

- (i) Si K est fini, c'est un automorphisme.
- (ii) Si $\mathbb{K} = \mathbb{F}_p$, c'est l'identité.

Corollaire 14. Dans un corps fini de caractéristique p, chaque élément admet exactement une racine p-ième.

p. 3

p. 81

p. 8

p. 85

Application 15 (Petit théorème de Fermat).

$$\forall x \in \mathbb{Z}, x^p \equiv x \mod p$$

Théorème 16. (i) Il existe un corps \mathbb{K} à q éléments : c'est le corps de décomposition de $X^q - X \operatorname{sur} \mathbb{F}_p$.

(ii) \mathbb{K} est unique à isomorphisme près : on le note \mathbb{F}_q .

Corollaire 17. Le produit des éléments de \mathbb{F}_q^* vaut -1.

Application 18 (Théorème de Wilson). Soit $n \ge 2$ un entier. Alors,

 $n \text{ est premier} \iff (n-1)! + 1 \equiv 0 \mod n$

II - Propriétés

1. Commutativité

Définition 19. L'ensemble des générateurs de μ_n , noté μ_n^* , est formé des **racines primitives** n-ièmes de l'unité.

p. 67

Proposition 20. (i) $\mu_n^* = \{e^{\frac{2ik\pi}{n}} \mid k \in [0, n-1], \operatorname{pgcd}(k, m) = 1\}.$

(ii) $|\mu_n^*| = \varphi(n)$, où φ désigne l'indicatrice d'Euler.

Définition 21. On appelle n-ième polynôme cyclotomique le polynôme

$$\Phi_n = \prod_{\xi \in \mu_n^*} (X - \xi)$$

Théorème 22. (i) $X^{n} - 1 = \prod_{d|n} \Phi_{d}$.

- (ii) $\Phi_n \in \mathbb{Z}[X]$.
- (iii) Φ_n est irréductible sur \mathbb{Q} .

[DEV]

Théorème 23 (Wedderburn). Tout corps fini est commutatif.

[**GOU21**] p. 100

2. Sous-corps

Théorème 24. Tout sous-corps de \mathbb{F}_q est de cardinal p^d avec $d \mid n$. Réciproquement, pour tout $d \mid n$, \mathbb{F}_q admet un unique sous-corps de cardinal p^d .

[**ULM18**] p. 122

Exemple 25. Les sous-corps de $\mathbb{F}_{2^{12}}$ sont \mathbb{F}_{2^6} , \mathbb{F}_{2^4} , \mathbb{F}_{2^3} , \mathbb{F}_{2^2} et \mathbb{F}_2 .

Corollaire 26. Le polynôme $X^q - X \in \mathbb{F}_p[X]$ est produit de tous les polynômes irréductibles unitaires de $\mathbb{F}_p[X]$ dont le degré divise n.

Corollaire 27. Il existe des polynômes irréductibles de tout degré dans $\mathbb{F}_q[X]$.

Corollaire 28. Un corps de rupture d'un polynôme irréductible de $\mathbb{F}_q[X]$ sur \mathbb{F}_q est aussi un corps de décomposition pour ce polynôme sur \mathbb{F}_q .

3. Groupe multiplicatif

Théorème 29. Tout sous-groupe fini du groupe multiplicatif d'un corps commutatif est cyclique.

[**GOZ**] p. 83

Corollaire 30. Le groupe multiplicatif d'un corps fini est cyclique.

Corollaire 31.

$$\mathbb{F}_q^* \cong \mathbb{Z}/(q-1)\mathbb{Z}$$

4. Groupe des automorphismes

Théorème 32. Le groupe des automorphismes de \mathbb{F}_q est cyclique, engendré par Frob, et d'ordre n.

Proposition 33. Pour chaque application $f : \mathbb{F}_q \to \mathbb{F}_q$, il existe un unique polynôme $P \in \mathbb{F}_q[X]$ de degré inférieur ou égal à q-1 tel que

$$P = \sum_{u \in \mathbb{F}_q} f(u) (1 - (X - u)^{q-1})$$

Proposition 34. Les sous-groupes additifs de \mathbb{F}_q sous les sous- \mathbb{F}_q -espaces vectoriels. Ils sont au nombre de

$$\sum_{s=0}^n \frac{(p^n-1)(p^{n-1}-1)\dots(p^{n-s+1}-1)}{(p^s-1)(p^{s-1}-1)\dots(p-1)}$$

5. Carrés

Proposition 35. On note $\mathbb{F}_q^2 = \{x^2 \mid x \in \mathbb{F}_q\}$ et $\mathbb{F}_q^{*2} = \mathbb{F}_q^2 \cap \mathbb{F}_q^*$. Alors \mathbb{F}_q^{*2} est un sous-groupe de \mathbb{F}_q^* .

p. 93

Proposition 36. (i) Si p = 2, $\mathbb{F}_q^2 = \mathbb{F}_q$, donc $\mathbb{F}_q^{*2} = \mathbb{F}_q^*$.

- (ii) Si p > 2, alors:
 - \mathbb{F}_q^{*2} est le noyau de l'endomorphisme de \mathbb{F}_q^* défini par $x\mapsto x^{\frac{q-1}{2}}$.
 - \mathbb{F}_q^{*2} est un sous-groupe d'indice 2 de \mathbb{F}_q^* .
 - $-- |\mathbb{F}_q^{*2}| = \frac{q-1}{2} \text{ et } |\mathbb{F}_q^2| = \frac{q+1}{2}.$
 - $(-1) \in \mathbb{F}_q^{*2} \iff q \equiv 1 \mod 4.$

On suppose, pour la suite de cette sous-section, p > 2.

p. 155

Définition 37. On définit le **symbole de Legendre** $\left(\frac{x}{p}\right)$ pour $x \in \mathbb{F}_p^*$ par :

$$\left(\frac{x}{p}\right) = \pm 1 \text{ avec } \left(\frac{x}{p}\right) = 1 \iff x \in \mathbb{F}_p^{*2}$$

Proposition 38. $x \mapsto \left(\frac{x}{p}\right)$ est un morphisme de groupes non constant et,

$$\forall x \in \mathbb{F}_p^{*2}, \left(\frac{x}{p}\right) = x^{\frac{p-1}{2}}$$

Théorème 39 (Loi de réciprocité quadratique). Soit $q \neq p$ un premier impair. Alors,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}$$

Remarque 40. Cela signifie qu'il est équivalent d'avoir p résidu quadratique modulo q ou q résidu quadratique modulo p, sauf si $p \equiv q \equiv 3 \mod 4$ auquel cas ces propositions s'excluent mutuellement.

Proposition 41.

$$\left(\frac{2}{p}\right) = (-1)^{\frac{(p-1)^2}{8}}$$

Exemple 42.

$$\left(\frac{17}{41}\right) = (-1)^{8 \times 20} \left(\frac{41}{27}\right) = \left(\frac{7}{17}\right) = (-1)^{3 \times 8} \left(\frac{17}{7}\right) = \left(\frac{3}{7}\right) = (-1)^3 \left(\frac{7}{3}\right) = -\left(\frac{1}{3}\right) = -1$$

III - Applications

1. Irréductibilité de polynômes

Théorème 43. Soit $P \in \mathbb{K}[X]$ un polynôme irréductible sur un corps \mathbb{K} .

p. 57

- Il existe un corps de rupture de *P*.
- Si $\mathbb{L} = \mathbb{K}[\alpha]$ et $\mathbb{L}' = \mathbb{K}[\beta]$ sont deux corps de rupture de P, alors il existe un unique \mathbb{K} -isomorphisme $\varphi : \mathbb{L} \to \mathbb{L}'$ tel que $\varphi(\alpha) = \beta$.
- $\mathbb{K}[X]/(P)$ est un corps de rupture de P.

p. 10

Lemme 44 (Gauss). (i) Le produit de deux polynômes primitifs est primitif (ie. dont le PGCD des coefficients est égal à 1).

(ii) $\forall P, Q \in \mathbb{Z}[X] \setminus \{0\}, \gamma(PQ) = \gamma(P)\gamma(Q)$ (où $\gamma(P)$ est le contenu du polynôme P).

Théorème 45 (Critère d'Eisenstein). Soit $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ de degré $n \ge 1$. On suppose qu'il existe p premier tel que :

- (i) $p \mid a_i, \forall i \in [0, n-1]$.
- (ii) $p \nmid a_n$.
- (iii) $p^2 \nmid a_0$.

Alors P est irréductible dans $\mathbb{Q}[X]$.

[**PER**] p. 67

Application 46. Soit $n \in \mathbb{N}^*$. Il existe des polynômes irréductibles de degré n sur \mathbb{Z} .

[GOZ]

p. 12

Théorème 47 (Critère d'irréductibilité modulo p). Soit $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ de degré $n \ge 1$. Soit p un premier. On suppose $p \nmid a_n$.

Si \overline{P} est irréductible dans $(\mathbb{Z}/p\mathbb{Z})[X]$, alors P est irréductible dans $\mathbb{Q}[X]$.

Exemple 48. Le polynôme $X^3 - 127X^2 + 3608X + 19$ est irréductible dans $\mathbb{Z}[X]$.

2. Entiers sommes de deux carrés

Notation 49. On note

[**I-P**] p. 137

$$N: \begin{array}{ccc} \mathbb{Z}[i] & \to & \mathbb{N} \\ a+ib & \mapsto & a^2+b^2 \end{array}$$

et Σ l'ensemble des entiers qui sont somme de deux carrés.

Remarque 50. $n \in \Sigma \iff \exists z \in \mathbb{Z}[i]$ tel que N(z) = n.

Théorème 51 (Deux carrés de Fermat). Soit $n \in \mathbb{N}^*$. Alors $n \in \Sigma$ si et seulement si $v_p(n)$ est pair pour tout p premier tel que $p \equiv 3 \mod 4$ (où $v_p(n)$ désigne la valuation p-adique de n).

3. En algèbre linéaire

Lemme 52. Soient $p \ge 3$ un nombre premier et V un espace vectoriel sur \mathbb{F}_p de dimension finie. Les dilatations engendrent GL(V).

[**I-P**] p. 203

[DEV]

Théorème 53 (Frobenius-Zolotarev). Soient $p \ge 3$ un nombre premier et V un espace vectoriel sur \mathbb{F}_p de dimension finie.

$$\forall u \in GL(V), \varepsilon(u) = \left(\frac{\det(u)}{p}\right)$$

où u est vu comme une permutation des éléments de V.

On se place pour la suite de cette sous-section dans le cadre d'un espace vectoriel E de dimension m sur le corps \mathbb{F}_q .

[**ULM21**] p. 124

Proposition 54. Les groupes précédents sont finis, et :

- (i) $|GL(E)| = q^{\frac{m(m-1)}{2}}((q^m 1)...(q 1)).$
- (ii) $|PGL(E)| = |SL(E)| = \frac{|GL(E)|}{q-1}$.
- (iii) $|PSL(E)| = |SL(E)| = \frac{|GL(E)|}{(q-1)\operatorname{pgcd}(m,q-1)}$.

[**ROM21**] p. 157

Application 55. Pour tout entier $p \in [1, m]$, il y a

$$\frac{\prod_{k=m-(p-1)}^{n}(q^{k}-1)}{\prod_{k=1}^{p}(q^{k}-1)}$$

sous-espaces vectoriels de dimension p dans E.

4. Codes correcteurs

Définition 56. On appelle :

- **Mot** un vecteur à coefficients dans \mathbb{F}_q .
- Code correcteur de taille m un sous-ensemble de \mathbb{F}_q^m .
- **Code linéaire** de taille m et de dimension r un sous-espace vectoriel de dimension r de \mathbb{F}_q^m .
- **Code cyclique** de taille *m*, un code linéaire stable par décalage circulaire.

Exemple 57. Soit un code linéaire \mathscr{C} de taille m et de dimension r. On peut décrire \mathscr{C} avec une matrice $G \in \mathscr{M}_{m \times r}(\mathbb{F}_q)$, dont les colonnes forment une base de \mathscr{C} , de la manière suivante :

$$\mathcal{C} = \{Gx \mid x \in \mathbb{F}_a^m\}$$

G est la **matrice génératrice** de \mathscr{C} . Le codage consiste alors à transformer un mot m du message d'origine en un mot $c \in \mathscr{C}$.

Définition 58. — Le **poids** d'un mot $x \in \mathbb{F}_q^m$, noté $\omega(x)$ est le nombre de coefficients non nuls de x.

— La **distance de Hamming** entre deux mots $x, y \in \mathbb{F}_q^m$, est définie par $d_H(x, y) = \omega(x - y)$.

Cette distance permet de mesurer la qualité d'un code comme l'atteste la remarque ci-dessous.

Remarque 59. d_H est une distance, elle quantifie la notion de "mot le plus proche".

Définition 60. Un code \mathscr{C} est dit t-correcteur si les boules de centre un mot du code et de rayon t (pour d_H) sont disjointes : les mots de \mathscr{C} sont à une distance d'au moins 2t + 1 les uns des autres.

[**BMP**] p. 190

Proposition 61. Soit $\mathscr C$ un code correcteur. On note d la **distance minimale** de $\mathscr C$:

$$d = \min_{\substack{x,y \in \mathcal{C} \\ x \neq y}} \{d_H(x,y)\}$$

Alors \mathscr{C} est *t*-correcteur si et seulement si $d \ge 2t + 1$.

Exemple 62. On considère le code $\mathscr C$ de taille 7 et de dimension 4 sur $\mathbb F_2$ dont la matrice génératrice est

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\mathscr C$ est un code linéaire, dont chacun des mots non nuls est de poids supérieur à 3 : il est 1-correcteur.

Proposition 63 (Borne de Singleton). Soit $\mathscr C$ un code linéaire de longueur m, de dimension r et de distance minimale d. Alors,

$$d = \min_{x \in \mathcal{C} \setminus \{0\}} \{\omega(x)\} \leq m+1-r$$

Annexes

Figure 1 – Sous-corps de $\mathbb{F}_{2^{12}}$.

[**ULM18**] p. 122

Bibliographie

Objectif agrégation [BMP]

Vincent Beck, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-l3-m1-2e-edition-9782729842772.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$

Anneaux, corps, résultants

[ULM18]

Felix ULMER. *Anneaux*, *corps*, *résultants*. *Algèbre pour L3/M1/agrégation*. Ellipses, 28 août 2018. https://www.editions-ellipses.fr/accueil/9852-20186-anneaux-corps-resultants-algebre-pour-13-m1-agregation-9782340025752.html.

Théorie des groupes [ULM21]

Felix Ulmer. *Théorie des groupes. Cours et exercices.* 2e éd. Ellipses, 3 août 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html.|$