NAME OF PROGRAMME: BSC (PCM/PSM)

SIX SEMESTER / YEAR: THIRD

SUBJECT NAME: SOLID STATE & NUCLEAR PHYSICS, SUBJECT CODE: BSPH 361

Some Important Guidelines for the Question Bank Setter:

- 1. Question bank must cover: Course (subject) Learning Outcomes (CLOs) and bloom's taxonomy (L1: Remember, L2: Understand, L3: Apply, L4: Analyse) details in this regard are attached with the mail.
- 2. The question bank should be prepared in the given format would also be attached.
- 3. Each question and parts of the questions should be written in clear language. Also break the questions relatively in shorter sentences if they contain brief information.
- 4. Repetition of a question is not allowed.
- 5. The file should be sent in MS-Word format.
- 6. The font size of the content should be Arial (font size 12) for English & Kruti Dev 010 (font size 14) for Hindi
- 7. Wherever the question papers have been prepared in both Hindi and English languages, the Hindi version of the question should be written immediately after English version of each question.
- 8. In case of MBA Course, Section-C must contain Case studies (one case study per unit or numerical type questions as per the format).
- 9. If the syllabus contains more than 5 units or less than 5 units then update the format accordingly.
- 10. A question bank moderation committee will be formed by the Dean of the concerned college under the supervision of the concerned department HOD. Committee will check & ensure that the question bank is prepared according to the guidelines. After that they will make a folder according to the Program, Branch & semester/year wise, and would ensure that all question banks are available according to the evaluation scheme. Hods will submit all folders to the CoE Office.

SECTION-A (Very Short Answer Type Questions)

UNIT-I

S.No.	Question	СО	Bloom's Taxonomy
a)	What is the crystalline state of matter?	CO1	L1
b)	What is space lattice?		L1
c)	What is meant by unit cell and lattice constant?	CO1	L2
d)	Explain the Bravais space lattice.	CO2	L2
e)	Explain the concept of unit cell.	CO2	L3
f)	Explain the Miller Indices	CO3	L3
g)	Explain the crystal structure.	CO3	L4
h)	Explain the Translation vector	CO4	L4
i)	What do you mean by coordination number.	CO4	L5
j)	Explain the primitive cell and Basis.	CO5	L5

UNIT-II

S.No.	Question	CO	Bloom's
			Taxonomy
a)	What is X-ray diffraction and how does it relate to Bragg's law.		L1
b)	Explain the experimental methods of X-ray diffraction: Laue, Rotating	CO1	L1
	crystal, and Powder methods.		

c)	What are reciprocal lattice vectors.	CO2	L2
d)	Explain the relationship between direct and reciprocal lattices.	CO2	L2
е)	What is the procedure for converting reciprocal lattice to face-centered cubic (FCC) lattice?	CO3	L3
f)	What are the main advantages of using the Laue method in X-ray diffraction?	CO3	L3
g)	What practical applications utilize X-ray diffraction techniques?	CO4	L4
h)	Explain the concept of reciprocal lattice and its significance in crystallography.	CO4	L4
i)	How do you convert reciprocal lattice to a simple cubic (SC) lattice?	CO5	L5
j)	Outline the process of converting reciprocal lattice to body-centered cubic (BCC) lattice.	CO5	L5

UNIT-III

S.No.	Question	СО	Bloom's Taxonomy
a)	What are the main types of crystals based on bonding, and how do they differ from each other?	CO1	L1
b)	Explain the significance of repulsive interactions in crystal structures.	CO1	L1
c)	Define cohesive energy in the context of crystal structures.	CO2	L2
d)	Describe the key characteristics of ionic crystals.	CO2	L2
e)	How is the equilibrium lattice constant of a crystal determined experimentally?	CO3	L3
f)	What are van der Waals-London forces.	CO3	L3
g)	Explain the significance of repulsive interactions in crystal structures.	CO4	L4
h)	What is the bulk modulus of a material, and how is it related to compressibility?	CO4	L4

UNIT-IV

S.No.	Question	СО	Bloom's Taxonomy
a)	What are lattice vibrations.	CO1	L1
b)	Describe the characteristics of lattice vibrations in linear diatomic.	CO1	L1

c)	What is the qualitative description of phonons in solids?	CO2	L2
d)	Explain Fermi energy and its significance.	CO2	L2
e)	What is paramagnetic susceptibility.	CO3	L3
f)	What is the Hall Effect, and how is it observed in metals?	CO3	L3
g)	What is the origin of band theory in solids?	CO4	L4
h)	Explain the concept of holes in band theory.	CO4	L4
i)	What factors influence the density of states in a solid?	CO5	L5

UNIT-V

S.No.	Question	СО	Bloom's Taxonomy
a)	What are nuclear constituents?	CO1	L1
b)	Write down the formula for representing size of nucleus.	CO1	L1
c)	Define the magnetic dipole moment.	CO2	L2
d)	Define the electric dipole moment.	CO2	L2
e)	Calculate the binding energy of Hydrogen atom.	CO3	L3
f)	Define the binding energy of nucleus.	CO3	L3
g)	What is mass defect?	CO4	L4
h)	Define the packing fraction of nucleus.	CO4	L4
i)	Define the nuclear stability.	CO5	L5
j)	Give the nuclear properties.	CO5	L5

UNIT-V

S.No.	Question	СО	Bloom's Taxonomy
a)	Give the main assumptions of liquid drop model of nucleus.	CO1	L1
b)	What are magic number?	CO1	L1
c)	Explain the nuclear forces.	CO2	L2
d)	What type of nuclear forces is arises?	CO2	L2
e)	Give the characteristics of nuclear forces.	CO3	L3
f)	What is a nuclear reaction?	CO3	L3
g)	Classify major categories of nuclear reaction.	CO4	L4
h)	Explain nuclear fission.	CO4	L4
i)	Explain the nuclear fusion	CO5	L5
j)	Define chain reaction.	CO5	L5

UNIT-VII

S.No.	Question	СО	Bloom's
			Taxonomy
a)	Define the linear accelerator.	CO1	L1
b)	Give the name of proton synchrotron parts.	CO1	L1
c)	Name four areas of science using the nuclear accelerators.	CO2	L2
d)	On which basic principle the electron cyclotron resource source	CO2	L2
	works		

e)	Why do you call the Van de Graaff accelerator at nuclear science	CO3	L3
	centre?		

UNIT-VIII

S.No.	Question	СО	Bloom's
			Taxonomy
a)	Define the Baryon number.	CO1	L1
b)	Explain Lepton number.	CO1	L1
c)	Define the linear momentum.	CO2	L2
d)	Define the angular momentum.	CO2	L2
e)	Define the Terms: boson, fermion,	CO3	L3
f)	Define the terms : hadron, baryon	CO3	L3
g)	The electrostatic force between the earth and moon can be ignored	CO4	L4
	because explain		

SECTION-B (Short Answer Type Questions)

UNIT-I

S.No.	Question	СО	Bloom's Taxonomy
a)	Explain the crystalline state of matter. Give seven system of crystal.	CO1	L1
b)	What is meant by lattice constant? Find the number of atoms per unit cell in FCC lattice.	CO1	L1
c)	Calculate the coordination number, number of lattice points per unit cell in FCC type of cubic lattice.	CO2	L2
d)	Explain the different lattices of a cubic crystal and determine the number of atoms per unit cell in each case.	CO2	L2
e)	Explain how lattice constant in a cubic crystal can be calculated.	CO3	L3

UNIT-II

S.No.	Question	СО	Bloom's Taxonomy
a)	What are some practical applications of X-ray diffraction techniques and Bragg's law in various scientific fields?	CO1	L1
b)	What are some recent advancements or developments in X-ray diffraction technology and methodology?	CO1	L1
c)	Describe the process of converting the reciprocal lattice to a face-centered cubic (FCC) lattice.	CO2	L2
d)	Derive Bragg,s Law for diffraction by a crystals. Describe Laue method in a detail and mentions its applications.	CO2	L2
e)	What are the characteristic of X-rays? How is their production accounted for ?	CO3	L3
f)	How does the understanding of reciprocal lattice contribute to the determination of crystal structures using X-ray diffraction data?	CO3	L3

UNIT-III

S.No.	Question	CO	Bloom's
			Taxonomy

a)	Describe the key characteristics of ionic crystals, including their cohesive energy and Madelung energy.	CO1	L1
b)	Explain the cohesive energy and compressibility of bulk modulus.	CO1	L1
c)	Define the Ionic and covalent bond with suitable examples.	CO2	L2
d)	Define the Equilibrium lattice constant.	CO2	L2
е)	How is the Madelung constant used to calculate the Madelung energy of an ionic crystal?	CO3	L3
f)	What does compressibility indicate about the physical properties of a crystal?	CO3	L3

UNIT-IV

b) Explain F c) How is the metals? d) What is possible how does e) How are f) Discuss to the behalf	on	СО	Bloom's Taxonomy
c) How is the metals? d) What is placed how doe e) How are f) Discuss to the behall g) What dis	re lattice vibrations, and how are they represented in linear comic chains?	CO1	L1
metals? d) What is plow doe e) How are f) Discuss to the behal g) What dis	Fermi energy and its significance in the Free Electron Theory.	CO1	L1
how doe e) How are f) Discuss t the beha g) What dis	the heat capacity of conduction electrons determined in	CO2	L2
f) Discuss t the beha	paramagnetic susceptibility of conduction electrons, and es it relate to the Free Electron Theory?	CO2	L2
the beha g) What dis	e solids classified based on band theory principles?	CO3	L3
	the relationship between paramagnetic susceptibility and avior of conduction electrons.	CO3	L3
	stinguishes different types of solids based on band theory rations?	CO4	L4

UNIT-V

S.No.	Question	СО	Bloom's Taxonomy
a)	Discuss essential properties of a nucleus.	CO1	L1
b)	Write down the formula for representing size of nucleus.	CO1	L1
c)	Show how the concept of binding energy is related to the stability of atomic nucleus	CO2	L2

d)	Explain the following terms: (i) Magnetic dipole moment (ii) Angular moment.	CO2	L2
е)	Explain the following terms: (iii) Spin (iv) Parity (v) Electric Moments.	СОЗ	L3
f)	Explain the nuclear forces responsible for holding the nucleons together. Discuss the nature of these forces.	СОЗ	L3

UNIT-VI

S.No.	Question	СО	Bloom's Taxonomy
a)	Describe liquid drop model of nucleus. What experimental results does it predict correct and what are its failure?	CO1	L1
b)	What are magic numbers? Explain spin-orbit interaction.	CO1	L1
c)	Describe laws of conservation. Give the name of the quantities generally conserved in nuclear reaction.	CO2	L2
d)	Explain the mechanism of nuclear reaction.	CO2	L2
е)	What are necessary conditions to be filled in nuclear reaction? Give two major types of nuclear reactions. Discuss major difference between them.	CO3	L3

UNIT-VII

S.No.	Question	СО	Bloom's
			Taxonomy
a)	Give the working principle of Van-de Graaff accelerator.		L1
b)	Give the working principle of Cyclotron accelerator	CO1	L1
c)	Give the working principle of Synchrotron accelerator	CO2	L2
d)	Give the advantages and disadvantages of Cyclotron	CO2	L2
e)	Give the advantages and disadvantages of Synchrotron	CO3	L3

UNIT-VIII

S.No.	Question	СО	_Bloom's
			Taxonomy
a)	Give the classification of fundamental elementary particle.	CO1	L1

b)	Give the concept of quark model.	CO1	L1
c)	Give the concept of Baryons.	CO2	L2
d)	Give the families of leptons	CO2	L2
e)	Explain the mediating quanta.	CO3	L3

SECTION-C [Descriptive Answer Type Questions / Case Study (for MBA COURSES only)]

UNIT-I

S.No.	Question	СО	Bloom's Taxonomy
a)	What are differences between amorphous and crystalline solids.	CO1	L1
b)	What are lattice planes? How are they represented in term of Miller Indices.	CO1	L1
c)	Show that the distance between successive planes of Miller indices (h,k,l) is given by: $d_{hkl} = [h^2/a^2 + k^2/b^2 + l^2/c^2]^{-1/2}$ where abc are the primitive vectors of the lattice.	CO2	L2
d)	What are Miller indices and how are they obtained for a given plane in a crystal? Discuss the procedure step by step.	CO2	L2
e)	Derive expression for interplanar spacing between two successive lattice planes in cubic lattice.	CO3	L3

UNIT-II

S.No.	Question	СО	Bloom's Taxonomy
a)	How is the scattered wave amplitude derived in X-ray diffraction experiments?	CO1	L1
b)	Discuss the action of a crystal as a three-dimensional grating and deduce Bragg's Law for X-ray diffraction.	CO1	L1
c)	Describe the experimental setup of powder method for crystal structure analysis.	CO2	L2
d)	Describe powder method for obtaining X-rays diffraction. What are the various applications of powder method?	CO2	L2
e)	How does the Laue method work in X-ray diffraction experiments, and what are its advantages and limitations?	CO3	L3
f)	Describe the process of converting the reciprocal lattice to a face-centered cubic (FCC) lattice.	CO3	L3

UNIT-III

S.No.	Question	СО	Bloom's Taxonomy
a)	How are crystals classified based on their bonding, and what are the distinguishing characteristics of ionic, covalent, metallic, van der Waals molecular, and hydrogen-bonded crystals?	CO1	L1
b)	What is the nature of attractive interactions, particularly van der Waals-London forces, within crystals, and how do they influence the crystal structure?	CO1	L1

	I		
c)	Explain the concept of cohesive energy in crystals and its significance in understanding the stability and bonding within a crystal lattice.	CO2	L2
d)	Could you elaborate on the characteristics of ionic crystals, including their cohesive energy, Madelung energy, and the process of evaluating the Madelung constant?	CO2	L2
e)	Discuss the relationship between the structure and properties of ionic crystals, with specific reference to their cohesive energy and stability.	CO3	L3
f)	Discuss the concept of repulsive interactions within crystals and their impact on the stability and structure of the crystal lattice.	CO3	L3

UNIT-IV

S.No.	Question	СО	Bloom's Taxonomy
a)	Explore the Free Electron Theory, including its foundational principles, assumptions, and implications for the behavior of electrons in metals.	CO1	L1
b)	Describe Fermi energy in detail, explaining its significance in determining the electronic properties of materials.	CO1	L1
c)	Elaborate on the paramagnetic susceptibility of conduction electrons, including its relationship to the density of states and Fermi energy.	CO2	L2
d)	Provide a detailed explanation of the Hall Effect in metals, including the underlying principles and experimental observations.	CO2	L2
e)	Explain the qualitative idea of the Bloch theorem, illustrating how it accounts for the periodicity of electron wave functions in a crystalline solid.	CO3	L3
f)	Discuss the Kronig-Penney model in band theory, including its assumptions, mathematical formulation, and implications for electronic band structure.	CO3	L3

UNIT-V

S.No.	Question	СО	Bloom's Taxonomy
a)	Describe basic structure of Nucleus. Discus	S CO1	L1
	essential properties of a nucleus?		

b)	What do you mean by energy of nucleons? Show how	CO1	L1
	the concept of binding energy is related to the		
	stability of atomic nucleus.		
c)	What is mass defect? Explain nuclear binding	CO2	L2
	energy in terms of mass defect		
d)	Discuss the principle of various methods employed to study	CO2	L2
	nuclear size.		
e)	Atomic weight of oxygen is 16.00 amu. If its nucleus contain 8	CO3	L3
	protons and 8 neutrons, evaluated binding energy of the		
	nucleus. Given masses of proton= 1.00759 amu,		
	neutron=1.00848 amu and electron 0.00063 amu.		

UNIT-VI

S.No.	Question	СО	Bloom's Taxonomy
a)	Describe major features of nuclear forces. Explain the role of neutron only	CO1	L1
b)	What do you mean by nuclear forces? What are their characteristics?	CO1	L1
c)	Describe liquid drop model of nucleus. What experimental results does it predict correct and what are its failure?	CO2	L2
d)	Describe laws of conservation. Give the name of the quantities generally conserved in nuclear reaction.	CO2	L2
e)	Explain the construction and working of Nuclear reactors	CO3	L3
f)	Explain the nuclear fission and fusion with suitable examples.	CO3	L3

UNIT-VII

S.No.	Question	СО	Bloom's Taxonomy
a)	Give the construction and working of a Van-de Graaf generator.	CO1	L1
b)	Calculate the magnetic field in which the cyclotron dees should be placed to accelerate protons, the frequency applied being 8x10 ⁶ c/s e=4.8x10 ⁻¹⁰ esu mass of proton = 1.67 x10 ⁻²⁴ gm	CO1	L1
c)	Show that the cyclotron frequency of given kind of ions is independent of energy.	CO2	L2
d)	Describe the construction and working of a Synchrotron accelerator.	CO2	L2

UNIT-VIII

S.No.	Question	CO	Bloom's
			Taxonomy
a)	Explain the conservation law of fundamental elementary particles.	CO1	L1
b)	Explain the elementary particles and its interaction with matter.	CO1	L1

c)	Explain the theory of : (i) Neutrons and antineutrons (ii) Mesons and	CO2	L2
	Pions		
d)	Explain the K-Mesons and its decay modes	CO2	L2
e)	Explain the fundamental interaction with mediating quanta.	CO3	L3