

Digital Electronics

- Part I: Digital Principle -

Dr. Lê Dũng

Department of Electronics and Computer System (C9-401)
School of Electronics and Telecommunications
Hanoi University of Science and Technology

Email: ledung-fet@mail.hut.edu.vn

Part I: Digital Principles - Contents

Chapter 1: Binary system and Binary Codes

Chapter 2: Boolean Algebra

Chapter 3: Logic Gates and Digital Integrated Circuits

Dr. Le Dung - School of Electronics and Telecommunications

Page :

Chapter 1

Binary system and Binary Codes

- 1.1 Binary System
- 1.2 Binary Arithmetic
- 1.3 Sign Number Representation
- 1.4 Real Number Code
- 1.5 Binary Coded Decimal (BCD)
- 1.6 Character Code
- 1.7 Gray Code
- 1.8 Error Detection Codes and Error Correction Codes
- 1.9 Other (Information) Codes

Dr. Le Dung - School of Electronics and Telecommunications

➤ Decimal System

$$+ 10 \text{ digits} = \{0,1,2,3,4,5,6,7,8,9\} \rightarrow \text{radix} = 10 \text{ (Decimal)}$$

+ A number

$$D = 1974.28_{10} = 1 \cdot 10^3 + 9 \cdot 10^2 + 7 \cdot 10^1 + 4 \cdot 10^0 + 2 \cdot 10^{-1} + 8 \cdot 10^{-2}$$

r (radix) = 10 and i (weighted position) runs from -2 to 3

Dr. Le Dung - School of Electronics and Telecommunications

1.1 Binary System

➤ Number System

- + An ordered set of symbols
- + A number = Positional Notation

$$N = (a_{n-1}a_{n-2} \dots a_1 a_0 \dots a_{-1}a_{-2} \dots a_{-m})_r$$

where

.= radix point separating the integer and fractional digits

r = radix or base of the number system being used

n = number of integer digits to the left of the radix point

m = number of fractional digits to the right of the radix point

 a_i = integer digit i when $n-1 \ge i \ge 0$

 a_i = fractional digit i when $-1 \ge i \ge -m$

 $a_{n-1} = \text{most significant digit}$

 $a_{-m} = \text{least significant digit}$

+ Polynomial Notation

(with r- radix and i-weighted position)

$$N = \sum_{i=1}^{n-1} a_i \bullet r^i \qquad r-1 \ge a_i \ge 0$$

Dr. Le Dung - School of Electronics and Telecommunications

- ➤ Counting in Decimal System
 - + Based on the order $\{0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9\}$
 - + When 9 return 0 at the weighted position (i)

 → a change at the weighted position (i+1)

For example:
$$00 \rightarrow 01 \rightarrow 02 \rightarrow ... \rightarrow 09$$

 $10 \rightarrow 11 \rightarrow 12 \rightarrow ... \rightarrow 19$
 $20 \rightarrow 21 \rightarrow 22 \rightarrow ... \rightarrow 29$
 $... \rightarrow 099 \rightarrow 100$

Dr. Le Dung - School of Electronics and Telecommunications

Page '

1.1 Binary System

- ➤ Binary System
- + Two ordered symbols (2 bits) = $\{0,1\}$ \rightarrow radix=2 (Binary)
- + Binary number

B = 1011.101₂ = 1•2³ + 0•2² + 1•2¹ + 1•2⁰ + 1•2⁻¹ + 0•2⁻² + 1•2⁻³
= 11.625₁₀
r (radix) = 2,
$$a_i$$
 = digit (0 $\leq a_i \leq$ 1) $B = \sum_{i=n}^{m-1} a_i \cdot 2^i$

+ Binary counting $\{0 \rightarrow 1\}$

$$\{00 \rightarrow 01 \rightarrow 10 \rightarrow 11\}$$

 $\{000 \rightarrow 001 \rightarrow \rightarrow 111\}$
 $\{0000 \rightarrow 0001 \rightarrow ... \rightarrow 1111\}$

Dr. Le Dung - School of Electronics and Telecommunications

➤ Why do we use the binary system?

Calculating machine (Müller 1784) with decimal system

<u>Because:</u> Two bits {0, 1} can be represented more easily by:

- + Two positions of an electrical switch.
- + Two distinct voltage or current levels allowed by a circuit.
- + Two distinct levels of light intensity
- + Two directions of magnetization or polarization

+ ...

Dr. Le Dung - School of Electronics and Telecommunications

Page 9

1.1 Binary System

- ➤ Disadvantage of Binary System ?
 - Not easy to read and remember → Hexadecimal system
- > Hexadecimal System
 - $+ 16 \text{ symbols} = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,\}$
 - + Hexadecimal Number

$$2DC.1E_{16} = 2 \cdot 16^2 + 13 \cdot 16^1 + 12 \cdot 16^0 + 1 \cdot 16^{-1} + 14 \cdot 16^{-2}$$

radix = 16 (Hexadecimal system) \rightarrow Why?.

Dr. Le Dung - School of Electronics and Telecommunications

➤ Base Conversions

Name	Decimal	Binary	Hexadecima
Radix	10	- 2	16
Digits	0, 1, 2, 3, 4,	0, 1	0, 1, 2, 3, 4, 5
	5, 6, 7, 8, 9		6, 7, 8, 9, A, E
			C, D, E, F
First	0	0	0
seventeen	1	1	1
positive	2	10	2
integers	3	11	3
	4	100	4
	5	101	5
	6	110	6
	7	111	7
	8	1000	8
	9	1001	. 9
	10	1010	\boldsymbol{A}
	11	1011	B
	12	1100	C
	13	1101	D
	14	1110	E
	15	1111	F
	16	10000	10

- ☐ Convert to base 10
 - → use the polynomial notation with radix and weighted positions
- ☐ Convert to base 2
 - → use radix divide method for the integer part (remainders and quotient)
 - → use radix multiply method for the fraction part.
- ☐ Convert between base 2 and 16
 - → 4 bits ←→ 1 hexadecimal digit

Dr. Le Dung - School of Electronics and Telecommunications

Page 11

1.2 Binary Arithmetic

➤ Addition

Binary addition table

$$1 + 1 = 0$$
 carry $1 = 10$,

Add two binary numbers

Dr. Le Dung - School of Electronics and Telecommunications

1.2 Binary Arithmetic

➤ Subtraction

$$A ext{ (Minuend)}$$
 $1 ext{ 1 1 0 1}$ $1 ext{ 1 0 1}$ $1 ext{ 1 0 1}$ $1 ext{ 1 1 1 1}$ $1 ext{ borrow 1}$

difference 0 1 1 1 0

<u>Note:</u> A - B = A + (-B) that means Sub \rightarrow Add

Dr. Le Dung - School of Electronics and Telecommunications

Page 1

1.2 Binary Arithmetic

➤ Multiplication

Binary multiplication table Multiply two binary numbers

Note: - Multiplication by repeated Add & Shift - Can be implemented in a faster way

Dr. Le Dung - School of Electronics and Telecommunications

1.2 Binary Arithmetic

▶ Division

Note: - Division by repeated Sub & Shift

Dr. Le Dung - School of Electronics and Telecommunications

Page 1

1.3 Sign Number Representation

➤ Sign Number Format

N = S Representing the magnitude

$$\downarrow \\
Sign = 0 \rightarrow positive + \\
= 1 \rightarrow negative -$$

- > Representing the magnitude
 - ☐ Sign magnitude representation
 - ☐ Two's complement system

Dr. Le Dung - School of Electronics and Telecommunications

1.3 Sign Number Representation

☐ Two's Complement System

```
Radix-complement D* of a number D with n digits is
D^* = r^n - D \longrightarrow D^* + D = r^n
```

Eg. The 2-complement of
$$D = 0011_2$$
 is
$$D^* = 2^4 - 3 = 13 = 1101_2$$
+ 0011 +3
1101 (+3)_{2-complement} represents (-3)
Carry 11110
0000 0 \rightarrow Ok

→ Two's Complement Calculation?

Dr. Le Dung - School of Electronics and Telecommunications

Page 19

1.3 Sign Number Representation

☐ Two's Complement System

Two's Complement Calculation:

Algorithm 1: Complement bits then add 1

$$N = 01100101$$

 10011010 Complement the bits
 $+1$ Add 1
 $[N]_2 = (10011011)_2$

Algorithm 2: Copy from LSB to the first 1-bit then continue replace the bits with their complement until the MSB has been replaced

Dr. Le Dung - School of Electronics and Telecommunications

1.3 Sign Number Representation

☐ Summary of Two's Complement Addition and Subtraction

Case*	Carry	Sign Bit	Condition	Overflow?
B+C	0	0	$B+C\leq 2^{n-1}-1$	No
	0	1	$B+C>2^{n-1}-1$	Yes
B-C	1	0	$B \leq C$	No
	0	1	B > C	No
-B-C	1	1	$-(B+C) \ge -2^{n-1}$	No
	1	0	$-(B+C)<-2^{n-1}$	Yes

^{*} B and C are positive numbers.

Dr. Le Dung - School of Electronics and Telecommunications

Page 2

1.4 Real Number Code

- > Coding the position of the radix point
 - \Box Fixed-point

☐ Floating-point

Dr. Le Dung - School of Electronics and Telecommunications

1.4 Real Number Code

> Computer floating-point number

System/ Format	Total bits	Significand bits	Exponent bits	Exponent bias	Mantissa coding
IEEE Std. 754-1985:					Sign/Mag: (radix 2):
Single Precision	32	23 (+1)	8	127	$1 \le M < 2$
Double Precision	64	52 (+1)	11	1023	$1 \le M < 2$
IBM System/360:					Sign/Mag (radix 16):
Single Precision	32	24	7	64	$1/16 \le M < 1$
Double Precision	64	56	7	64	$1/16 \le M < 1$
DEC VAX 11/780:					Sign/Mag (radix 2):
F Format	32	23 (+1)	8	128	$1/2 \le M < 1$
D Format	64	55 (+1)	8	128	$1/2 \le M < 1$
G Format	64	52 (+1)	11	1024	$1/2 \le M < 1$
CDC Cyber 70:	60	48	11	1024	1's Complement (radix 2)
					$1 \leq M < 2^{48}$

Dr. Le Dung - School of Electronics and Telecommunications

Dage 2

1.5 Binary Coded Decimal (BCD)

➤ Coding 10 decimal digits by 4 bits DCBA

Decimal	BCD
digit	DCBA
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Encode the decimal number $N=\left(9750\right)_{10}$ in BCD.

First, the individual digits are encoded from Table 1.10. $9 \rightarrow 1001, \ 7 \rightarrow 0111, \ 5 \rightarrow 0101, \ \text{and} \ 0 \rightarrow 0000$ Then the individual codes are concatenated to give $N = (100101110100000)_{\mbox{BCD}}$

Problem: Add two BCD codes?

Dr. Le Dung - School of Electronics and Telecommunications

1.6 Character Codes

➤ American Standard Code for Information Interchange (ASCII 7-bit code)

b3b2b1b0 0000	000 NUL	001	010	011	100	101	110	111
0000	NUL							111
		DLE	SP	0	@	P	4	р
0001	SOH	DC1		1	Α	Q	а	q
0010	STX	DC2	66	2	В	R	b	r
0011	ETX	DC3	#	3	C	s	С	s
0100	EOT	DC4	\$	4	D	т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	4	7	G	w	g	w
1000	BS	CAN	(8	н	X	h	x
1001	HT	EM)	9	- 1	Υ	i i	У
1010	LF	SUB	*	:	J	z	j	z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	١	- 1	1
1101	CR	GS	-	=	M	1	m	}
1110	so	RS		>	N	۸	n	~
1111	SI	US	1	?	0		0	DEL

Unicode

Dr. Le Dung - School of Electronics and Telecommunications

Page 27

1.7 Gray Code

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

$$00 \rightarrow 01 \rightarrow 11 \rightarrow 10$$

$$10 \rightarrow 11 \rightarrow 01 \rightarrow 00$$

→ Two consecutive number differ in only 1 bit (distance = 1)

Why do we use the gray code?.

Dr. Le Dung - School of Electronics and Telecommunications

1.8 Error Detection Code Error Correction Code

- > Error?
- > Error Control: Error Detection and Error Correction
- > Party Code
- ➤ Hamming Code
- ➤ Cyclic Redundancy Code (CRC-16, CRC-32)

Dr. Le Dung - School of Electronics and Telecommunications

Page 2

1.9 Other Code

- ➤ Voice Encoding (Pulse Code Modulation)
- ➤ Image and Video Encoding (Pixels, Frames)
- > Other information Encoding (ADC, DAC)

Dr. Le Dung - School of Electronics and Telecommunications

1.9 Other Code

➤ Voice Encoding (Pulse Code Modulation)

Dr. Le Dung - School of Electronics and Telecommunications

Page 31

1.9 Other Code

➤ Image Encoding (Raster Image → Pixels)

Dr. Le Dung - School of Electronics and Telecommunications

