Pismeni ispit iz kolegija:

TEORIJA ELEKTRIČNIH STROJEVA I TRANSFORMATORA

10.02.2012.

(60 bodova)

- 1. Transformator 630 kVA, $P_0 = 3$ kW, $\eta = 0.98$, T = 2 h nazivno opterećen zagrijava se na 70 K nadtemperature. Pri temperaturi okoline \mathcal{G}_0 transformator duže vremena radi s 50 % nazivnog opterećenja ($\alpha_1 = 0.5$), a zatim mu se opterećenje povisi na 150 % nazivnog tereta ($\alpha = 1.5$). Transformator promatramo kao homogeno tijelo.
 - a) Koliko dugo transformator može raditi sa 150 % nazivnog tereta, a da mu zagrijanje ostane u dopuštenim granicama (ne više od 70 K)?
 - b) Skicirajte vremensku promjenu zagrijanja transformatora i istaknite dozvoljene granice zagrijanja za svako opterećenje (uključujući i nazivno).

(8 bodova)

- 2. Pri pokusu kratkog spoja trofaznog transformatora nazivnih podataka 400 kVA, 10/0,4 kV, 50 Hz, YNd5 struja je iznosila 15 A pri naponu 500 V.
 - a) Koliki je nazivni u_k u postocima, gledano s primara?
 - b) Koliko iznosi bazna reaktancija transformatora gledano sa primara, a koliko gledano sa sekundara?
 - c) Koliko iznosi impedancija kratkog spoja u postocima, gledano s primara?
 - d) Skicirajte shemu grupe spoja i vektorski dijagram transformatora.

(10 bodova)

3. Odredite pri kojim **brzinama vrtnje** *n* će se formirati zakretni moment konstantnog iznosa tako da stroj možemo smatrati elektromehaničkim pretvaračem – električnim strojem, ako u namotima 10-polnog rotora općeg modela teku struje *i*_a frekvencije 50 Hz i *i*_b frekvencije 60 Hz, a na istaknutim polovima statora nema namota. Objašnjenje potkrijepite odgovarajućim skicama.

(8 bodova)

- 4. Podaci stroja su sljedeći $S_n = 20$ MVA, $U_n = 10.5$ kV, f = 50 Hz, promjer provrta 2 m, broj utora 120, jednoslojni namot s jednim vodičem po utoru.
 - a) Skicirajte prostornu razdiobu strujnog obloga A(x) i protjecanja $\theta(x)$ faze U i rezultantno za 10-polni trofazni stator za trenutak kad je struja faze V maksimalna. Na apscisi treba obuhvatiti dva polna koraka, a početi od sredine strujne zone faze U. Računajte s prosječnim strujnim oblogom po utorskom koraku. Označite karakteristične veličine na koordinatnim osima.
 - b) Nacrtajte razvijenu shemu namota za 4 pola faze U i označite u kojim utorima počinju faze V i W.

(12 bodova)

- 5. Raspored jednofaznog 2-polnog namota po obodu stroja koji se sastoji od koncentrično namotanih svitaka s 20 i 10 zavoja prikazan je na slici. Linije koje povezuju vodiče predstavljaju električne spojeve vodiča na različitim stranama svitaka. Duljina zračnog raspora je δ , radijus je r, a duljina jezgre znosi l.
 - a) Nacrtajte funkciju namota $N(\alpha)$ i označite odgovarajuće numeričke iznose funkcije namota i pripadne kuteve α na mjestima gdje se nalaze vodiči.
 - b) Izračunajte omjer vlastitog induktiviteta namota uzimajući u obzir samo osnovni harmonik funkcije namota i ukupnog vlastitog induktiviteta.

(10 bodova)

- 6. Asinkroni motor s nazivnim podacima 400 kW, 400 V, 50 Hz, 4 pola ima parametre nadomjesne sheme za nazivnu frekvenciju zadane u jediničnim vrijednostima: $r_s = 0.022$, $x_{\sigma s} = 0.11$, $r'_r = 0.026$, $x'_{\sigma r} = 0.11$, $x_m = 2.5$. Gubici u željezu i mehanički gubici se mogu zanemariti.
 - a) Pri nazivnoj frekvenciji i klizanju 0,035 moment na osovini iznosi 1,25. Za tu radnu točku odredite:
 - a1) struju rotora $|\vec{i}_r|$ u p.u
 - a2) snagu na osovini P₂ u W
 - a3) omske gubitke u rotoru u W
 - a4) struju magnetiziranja (struja kroz poprečnu granu) u p.u.
 - a5) struju statora $|\bar{i}_s|$ u p.u.
 - a6) korisnost u %.
 - b) Pretpostavite da je utjecaj otpora statora kompenziran, tj. da je napon statora tolikog iznosa da je struja statora na 12,5 Hz ista kao i na 50 Hz. Za istu struju statora kao u a) dijelu zadatka izračunajte:
 - b1) koliko će iznositi klizanje i klizna frekvencija da bi motor na osovini razvio isti moment $(M_{em} = 1,25)$ na frekvenciji 12,5 Hz,
 - b2) struju magnetiziranja za radnu točku iz b1) u p.u.
 - b3) snagu na osovini za radnu točku iz b1) u p.u.
 - c) Odredite frekvenciju napona u Hz kojim treba napajati motor da bi on u mirovanju razvijao maksimalni (prekretni) moment. Zanemarite otpor statora.

(12 bodova)