FEATURES

• 8,192 × 8 bit organization

Access times: 80/100 ns (MAX.)

• Low-power consumption:

Operating:

303 mW (MAX.) LH5164A/D/N

@ 80 ns

248 mW (MAX.) LH5164A/D/N/T

@ 100 ns

275 mW (MAX.) LH5164AH/HD/HN/HT

@ 100 ns

Standby:

LH5164A/D/N/T: 5.5 μW (MAX.)

LH5164AH/HD/HN/HT:

 $T_A \le 85^{\circ}C$: 16.5 μW (MAX.)

 $T_A \le 70^{\circ}C$: 5.5 µW (MAX.)

Fully-static operation

Three-state outputs

Single +5 V power supply

TTL compatible I/O

Wide temperature range available

LH5164A: -10 to +70°C LH5164AH: -40 to +85°C

Packages:

28-pin, 600-mil DIP

28-pin, 300-mil SK-DIP

28-pin, 450-mil SOP

28-pin, $8 \times 13 \text{ mm}^2 \text{ TSOP (Type I)}$

DESCRIPTION

The LH5164A/AH are static RAMs organized as $8,192 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The LH5164AH is designed for wide temperature range from -40 to +85°C.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

Figure 2. Pin Connections for TSOP Package

Figure 3. LH5164A/AH Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
A ₀ - A ₁₂	Address inputs
CE ₁ - CE ₂	Chip Enable input
WE	Write Enable input
OE	Output Enable input

SIGNAL	PIN NAME
I/O ₁ - I/O ₈	Data inputs and outputs
Vcc	Power supply
GND	Ground
NC	No connection

TRUTH TABLE

Œ ₁	CE ₂	WE	ŌĒ	MODE	I/O ₁ - I/O ₈	SUPPLY CURRENT	NOTE
Н	Х	Х	Х	Deselect	High-Z	Standby (I _{SB})	1
Х	L	Х	Х	Deselect High-Z Standby (I _{SB})		1	
L	Н	L	Х	Write	D _{IN}	Operating (I _{CC})	1
L	Н	Н	L	Read	D _{оит}	Operating (I _{CC})	
L	Н	Н	Н	Output disable	High-Z	Operating (I _{CC})	

NOTE:

1. X = H or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	80 ns	100 ns	UNIT	NOTE
TANAMETER	OTHIDOL	RATING	RATING	OMI	NOTE
Supply voltage	Vcc	-0.3 to +7.0	-0.3 to +7.0	V	1
Input voltage	V _{IN}	-0.3 to V _{CC} + 0.3	-0.3 to V _{CC} + 0.3	V	1, 2
Operating temperature	Topr	-10 to +70	-10 to +70	°C	3
Operating temperature	ТОРІ		-40 to +85	°C	4
Storage temperature	Tstg	-55 to +150	-55 to +150	°C	

NOTES:

- 1. The maximum applicable voltage on any pin with respect to GND.
- 2. V_{IN} (MIN.) = -3.0 V for pulse width \leq 50 ns.
- 3. LH5164A/AD/AN/AT
- 4. LH5164AH/AHD/AHN/AHT

RECOMMENDED OPERATING CONDITIONS 1

PARAMETER	SYMBOL	80 ns				100 ns	UNIT	NOTE	
	STWIBOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	ONII	NOIE
Supply voltage	Vcc	4.5	5.0	5.5	4.5	5.0	5.5	V	
Input voltage	ViH	2.2		Vcc + 0.3	2.2		Vcc + 0.3	V	
	V _{IL}	-0.3		0.8	-0.3		0.8	V	2

NOTES:

- 1. $T_A = -10 \text{ to } +70 ^{\circ}\text{C} \text{ (LH5164A/AD/AN/AT)}, T_A = -40 \text{ to } +85 ^{\circ}\text{C} \text{ (LH5164AH/AHD/AHN/AHT)}.$
- 2. V_{IN} (MIN.) = -3.0 V for pulse width \leq 50 ns.

DC CHARACTERISTICS 1 (V_{CC} = 5 V $\pm 10\%$)

PARAMETER	SYMBOL	CONDITIONS			MAX.	UNIT	NOTE
Input leakage current	IЦ	V _{IN} = 0 to V _{CC}			1.0	μΑ	
Output leakage current	lLO	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 = V_{IL}$ or $\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ $V_{I/O} = 0 \text{ to } V_{CC}$			1.0	μΑ	
		$\overline{CE}_1 = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH}$ $CE_2 = V_{IH}, \text{ Outputs open}$	t _{CYCLE} = 80 ns		55	mA	
	Icc	$\overline{CE}_1 = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH}$	tcycle =		45		2
Operating current		$CE_2 = V_{IH}$, Outputs open	100 ns		50		3
		$\overline{\text{CE}}_1 = \text{V}_{\text{IL}}, \text{V}_{\text{IN}} = 0.2 \text{V}$ or $\text{V}_{\text{CC}} - 0.2 \text{V}$ $\text{CE}_2 = \text{V}_{\text{IH}}, \text{Outputs open}$	t _{CYCLE} = 1.0 μs		10	mA	
		$CE_1 = V_{IH}$ or $CE_2 =$	V _{IL}		5	mA	
Standby current	I _{SB1}	CE ₂ ≤ 0.2 V or	T _A ≤ 70°C		1.0	μΑ	2, 3, 4
		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V}$	T _A ≤ 85°C		3.0	μΑ	3, 4
Output voltage	V _{OL}	I _{OL} = 2.1 mA			0.4	V	
Output voltage	Voh	I _{OH} = -1 mA		2.4		V	

NOTES:

- 1. T_A = -10 to 70°C (LH5164A/AD/AN/AT), T_A = -40 to +85°C (LH5164AH/AHD/AHN/AHT)
- 2. LH5164A/AD/AN/AT
- 3. LH5164AH/AHD/AHN/AHT
- 4. CE_2 should be \geq V_{CC} 0.2 V or \leq 0.2 V when \overline{CE}_1 \geq V_{CC} 0.2 V

AC CHARACTERISTICS 1

(1) READ CYCLE ($V_{CC} = 5 \text{ V} \pm 10\%$)

PARAMETER		SYMBOL	80	ns	100	ns	UNIT	NOTE
		STWIDOL	MIN.	MAX.	MIN.	MAX.	ONIT	NOIL
Read cycle time		t _{RC}	80		100		ns	
Address access time)	t _{AA}		80		100	ns	
Chip enable	(CE ₁)	t _{ACE1}		80		100	ns	
access time	(CE ₂)	t _{ACE2}		80		100	ns	
Output enable acces	s time	toE		40		40	ns	
Output hold time		toH	10		10		ns	
Chip enable to	(CE ₁)	t _{LZ1}	10		10		ns	1
output in Low-Z	(CE ₂)	tLZ2	10		10		ns	1
Output enable to out Low-Z	Output enable to output in Low-Z		5		5		ns	1
Chip enable to	(CE ₁)	t _{HZ1}	0	30	0	30	ns	1
output in High-Z	(CE ₂)	t _{HZ2}	0	30	0	30	ns	1
Output disable to output in High-Z		tonz	0	20	0	20	ns	1

(2) WRITE CYCLE ($V_{CC} = 5 \text{ V} \pm 10\%$)

PARAMETER	SYMBOL	80	ns	100) ns	UNIT	NOTE
IANAMETER	STMBOL	MIN.	MAX.	MIN.	MAX.	ONIT	NOTE
Write cycle time	twc	80		100		ns	
Chip enable to end of write	tcw	70		80		ns	
Address valid to end of write	t _{AW}	70		80		ns	
Address setup time	tas	0		0		ns	
Write pulse width	twp	60		60		ns	
Write recovery time	twR	0		0		ns	
Data valid to end of write	tow	40		40		ns	
Data hold time	tDH	0		0		ns	
Output active from end of write	tow	10		10		ns	2
WE to output in High-Z	twz	0	30	0	30	ns	2
OE to output in High-Z	tonz	0	20	0	20	ns	2

NOTES:

- 1. $T_A = -10$ to +70°C (LH5164A/AD/AN/AT), $T_A = -40$ to +85°C (LH5164AH/AHD/AHN/AHT)
- 2. Active output to high-impedance and high-impedance to output active tests specified for a ± 200 mV transition from steady state levels into the test load.

AC TEST CONDITIONS

PARAMETER	MODE	NOTE
Input voltage amplitude	0.6 to 2.4 V	
Input rise/fall time	10 ns	
Timing reference level	1.5 V	
Output load conditions	1TTL + C _L (100 pF)	1

NOTE:

1. Includes scope and jig capacitance.

CAPACITANCE 1 (T_A = 25°C, f = 1 MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C _{IN}	V _{IN} = 0 V			7	pF
Input/output capacitance	C _{I/O}	V _{I/O} = 0 V			10	pF

NOTE:

DATA RETENTION CHARACTERISTICS 1

PARAMETER	SYMBOL	CONDITIONS		MIN.	MAX.	UNIT	NOTE
Data retention voltage	V _{CCDR}	$\frac{CE_2 \le 0.2 \; V \; or}{CE_1 \ge V_{CCDR} \; - \; 0.2 \; V}$		2.0	5.5	V	2
		$V_{CCDR} = 3 \text{ V},$ $CE_2 \le 0.2 \text{ V or}$ $CE_1 \ge V_{CCDR} - 0.2 \text{ V}$	T _A = 25°C		0.2	μΑ	2, 3
	Iccdr		T _A = 40°C		0.4	μΑ	2, 3
Data retention current					0.6	μΑ	2, 3
		V _{CCDR} = 3 V,	T _A = 25°C		0.2	μΑ	2, 4
		$\frac{\text{CE}_2 \le 0.2 \text{ V or}}{\text{CE}_1 \ge \text{V}_{\text{CCDR}} - 0.2 \text{ V}}$	T _A = 70°C		0.6	μΑ	2, 4
					1.5	μΑ	2, 4
Chip disable to data retention	tcdr			0		ns	
Recovery time	t _R			t _{RC}		ns	5

NOTES:

- 1. $T_A = -10 \text{ to } +70^{\circ}\text{C} \text{ (LH5164A/AD/AN/AT)}, \ T_A = -40 \text{ to } +85^{\circ}\text{C} \text{ (LH5164AH/AHD/AHN/AHT)}$
- 2. CE_2 should be \geq V_{CCDR} 0.2 V or \leq 0.2 V when $\overline{CE}_1 \geq V_{CCDR} 0.2$ V
- 3. LH5164A/AD/AN/AT
- 4. LH5164AH/AHD/AHN/AHT
- 5. t_{RC} = Read cycle time

^{1.} This parameter is sampled and not production tested.

Figure 4. Low Voltage Data Retention

Figure 5. Read Cycle

6

NOTES:

- 1. The writing occurs during an overlapping period of \overline{CE}_1 = 'LOW,' CE_2 = 'HIGH,' and \overline{WE} = 'LOW' (t_{WP}).
- 2. t_{CW} is defined as the time from the last occuring transition, either $\overline{\text{CE}_1}$ LOW transition or CE₂ HIGH transition, to the time when the writing is finished.
- 3. t_{AS} is defined as the time from address change to writing start.
- 4. t_{WR} is defined as the time from writing finish to address change.
- 5. If $\overline{\text{CE}}_1$ LOW transition or CE_2 HIGH transition occurs at the same time or after $\overline{\text{WE}}$ LOW transition, the outputs will remain high-impedance.
- 6. While I/O pins are in the output state, input signals with the opposite logic level must not be applied.

5164A-4

Figure 6. Write Cycle 1

NOTES:

- 1. The writing occurs during an overlapping period of \overline{CE}_1 = 'LOW,' CE_2 = 'HIGH,' and \overline{WE} = 'LOW' (t_{WP}).
- 2. t_{CW} is defined as the time from the last occurring transition, either CE₁ LOW transition or CE₂ HIGH transition, to the time when the writing is finished.
- 3. $t_{\mbox{\scriptsize AS}}$ is defined as the time from address change to writing start.
- 4. $t_{\rm WR}$ is defined as the time from writing finish to address change.
- If CE₁ LOW transition or CE₂ HIGH transition occurs at the same time or after WE LOW transition, the outputs will remain high-impedance.
- 6. If \overrightarrow{CE}_1 HIGH transition or \overrightarrow{CE}_2 LOW transition occurs at the same time or before \overline{WE} HIGH transition, the outputs will remain high-impedance.
- 7. While I/O pins are in the output state, input signals with the opposite logic level must not be applied.

5164A-5

Figure 7. Write Cycle 2

PACKAGE DIAGRAMS

28-pin, 600-mil DIP

28-pin, 300-mil SK-DIP

28-pin, 450-mil SOP

28-pin, $8 \times 13 \text{ mm}^2$ TSOP (Type I)

ORDERING INFORMATION

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (360) 834-2500 Fax: (360) 834-8903 http://www.sharpsma.com

EUROPE

SHARP Microelectronics Europe Sonninstraße 3 20097 Hamburg, Germany Phone: (49) 40 2376-2286 Fax: (49) 40 2376-2232 http://www.sharpsme.com

ASIA

SHARP Corporation Integrated Circuits Group 2613-1 Ichinomoto-Cho Tenri-City, Nara, 632, Japan Phone: +81-743-65-1321 Fax: +81-743-65-1532 http://www.sharp.co.jp