GENERAL FORMULA

Aldehvde Ketones 0 R - C - R'

where R and R' can where R is alkyl group be same or different. 9. ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

CLASSIFICATION Aliphatic Aromatic

ALDEHYDES AND

KETONES

PREPARATIONS

+Oxidation of alcohol

1° Alcohol $\xrightarrow{K_2Cr_2O_7 + H_2SO_4}$ Aldehyde

$$\text{R-CH}_2\text{OH} \xrightarrow{\text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4} \text{R-CHO} + \text{H}_2\text{O}$$

2° Alcohol ^{K₂Cr₂O₇ + H₂SO₄}→ Ketone

 $R-CH(OH)R' \xrightarrow{K_2Cr_2O_7 + H_2SO_4} R-CO-R' + H_2O$

+Ozonolysis of alkenes

 $CH_3-CH=CH-CH_3 + O_3 \xrightarrow{H_2O, Zn} 2CH_3CHO$

→ From Gem-Dihalides

$$\begin{array}{c} R' \\ R-\overset{1}{C}-CI & \xrightarrow{aq. \ KOH} & R-\overset{1}{C}=O \\ CI & \end{array}$$

(Aldehyde when R' = H Ketone when R' = alkyl group)

+ Hydroboration Oxidation of Alkynes

R-C=C-H
$$\xrightarrow{\text{B}_2\text{H}_6}$$
 R-C=C-H $\xrightarrow{\text{THF}}$ R-C=C-H $\xrightarrow{\text{THF}}$ R-C=C-H $\xrightarrow{\text{H}_2\text{O}_2}$ OH·

+ Rosenmund Reduction

PHYSICAL PROPERTIES

- **→ Odour:** Lower Aldehyde have an unpleasant odour.
- → Physical State: HCHO is a gas. All other aldehyde and ketone upto C₁₁ are volatile liquids.
- **→ Solubility:** Larger Carbonyl compounds are soluble in water due to the formation of H-bond.
- → Boiling Point and Melting **Point:** Boiling/Melting point ∝ Molecular weight
- → Due to electron donating alkyl group ketones have higher boiling point than aldehye.
- ★ Reactivity: It depends on the nature of alkyl group. Smaller the group, more reactive will be compound.

CHEMICAL PROPERTIES

Aldehyde > Ketones

Reactivity ∝ steric factor and electronic factror

♦ Nucleophilic Addition-reaction

$$C=O + NaHSO_3 \longrightarrow C^{SO_3Na}$$

$$C=O + H_2N-Z \longrightarrow C=N-Z + H_2O$$

+ Clemmensen Reduction

$$C=0 \xrightarrow{Zn-Hg} CH_2 + H_2O$$

+Wolf-kishner reduction

$$C=O \xrightarrow{NH_2-NH_2} CH_2 + N_2$$

+ Aldol Condensation

2CH₃- CHO
$$\xrightarrow{\text{dil.NaOH}}$$
 CH₃CH(OH)CH₂CHO \downarrow Δ -H₂O CH₃-CH=CH-CHO

+ Cannizaro reaction

2HCHO Conc. KOH CH₃OH + HCOOK

DISTINCTION TEST

TEST	ALDEHYDES	KETONES
Schiff's reagent	Pink Colour	No colour
Fehling's solution	Red ppt.	No ppt.
Tollen's reagent	Silver Mirror	No ppt.

CLASSIFICATION Aliphatic Aromatic CH₃COOH COOH

PREPARATIONS /

+Oxidation of primary alcohols

$$RCH_2OH \xrightarrow{1) alk. KMnO_4} R-COOH$$

→ Hydrolysis of Nitriles and Amides

$$R-C \equiv N + H_2O \xrightarrow{H+} R-COOH + NH_3$$

→ Hydrolysis of Esters

$$RCOOR' + H_2O \xrightarrow{H+} R-COOH + R'OH$$

→ From Grignard Reagent

$$CO_2 + RMgBr \xrightarrow{Dry \text{ ether}} R-COOH + Mg(OH)Br$$

PHYSICAL PROPERTIES

+ Physical State: Polar Substances soluble in organic solvents.

★ Acidity: The acidic character is due to the presence of resonance.

$$\begin{array}{ccc} R-C-\overset{..}{\circ}-H & \longleftrightarrow R-C=\overset{\bullet}{0}-H \\ :0 & \overset{|}{0} & \end{array}$$

- → Boiling Points: High boiling point due to intermolecular hydrogen bonding.
- → Melting Point and Boiling Point of aromatic acid greater than aliphatic acid.

CARBOXYLIC ACIDS

O R - C - OH

CHEMICAL PROPERTIES /

+ Esterification

RCOOH + R'OH → RCOOR' + H₂O

♦Ring Substitution in Aromatic Acids:

COOH group is deactivating and meta directing.

ACIDIC ORDER

Caboxylic Acid > Phenol > Alcohol

DISTINCTION TEST FOR CARBOXYLIC ACID

- → Brisk effervescence of CO₂ gas with NaHCO₃
- → Gives buff coloured ppt. with FeCl₃

USES

- → Rubber, textiles.
- **→** Food industry.
- → Manufacture of soap and detergent.

→ Reduction of Carboxylic Acid

$$\begin{array}{c} \overset{\text{O}}{\underset{\parallel}{\text{II}}} \text{ - OH} \xrightarrow{\text{1) LiAlH}_{\text{4}}/\text{ ether}} \text{R-CH}_{\text{2}}\text{OH} \end{array}$$

♦ Decarboxylation of Carboxylic Acid

$$R - C - OH \xrightarrow{NaOH} R - H + Na2CO3$$

→ Reaction involving cleavage of -OH group

$$\begin{array}{c}
O \\
R - C - OH
\end{array} \xrightarrow{NH_3, \Delta} \begin{array}{c}
O \\
R - C - NH_2
\end{array}$$

$$R - C - OH$$

$$PCl_3, PCl_5 \longrightarrow R - COCl$$

$$P_2O_5, \Delta \longrightarrow (R - CO)_2O$$

+ Hell-volhard Zelinsky Reaction

$$\mathsf{RCH_2COOH} \xrightarrow{1) \: \mathsf{X_2}, \: \mathsf{Red} \: \mathsf{P}} \: \: \mathsf{R-CH}(\mathsf{X}) \mathsf{COOH}$$