Homework 4

Name: 方嘉聪 ID: 2200017849

Problem 1.(16 points). A cut in an undirected graph is a separation of the vertices V into two disjoint subsets S and T. The size of a cut is the number of edges that have one endpoint in S and the other in T. Let

MAX-CUT = {
$$\langle G, k \rangle \mid G \text{ has a cut of size } k \text{ or more } \}.$$

- a.) (6 points) Give a randomized algorithm that, given an graph G such that G has a cut of size k or more, outputs a cut of expected size at least k/2.
- b.) (10 points) Show that **MAX-CUT** is **NP**-complete.(Hint: Show that \neq SAT \leq_p **MAX-CUT**.)

Answer. a.) 考虑如下的随机算法:

Input: Graph G = (V, E).

Output: A cut (S,T) of expected size at least k/2.

- 1: Assign each vertex $v \in V$ to S or T randomly with equal probability.
- 2: **return** (S,T).

记得到的割为 C, 那么对于 $\forall (u,v) \in E$, $\mathbb{P}[(u,v) \in C] = 1/2$. 记示性随机变量 $\mathbf{1}_e$ 表示 e 是否在 C 中, 那么:

$$E[|C|] = \sum_{e \in E} E[\mathbf{1}_e] = \sum_{e \in E} \mathbb{P}[e \in C] = \frac{1}{2} \sum_{e \in E} 1 = \frac{1}{2} |E| \ge \frac{k}{2}.$$

因此 C 的期望大小至少为 k/2, 证毕.

b.) 首先证明 $\mathbf{MAX\text{-}CUT} \in \mathbf{NP}$. 对于 $\forall \langle G, k \rangle \in \mathbf{MAX\text{-}CUT}$, 存在一个证书 u 表示一个割 S, T. 用一个多项式时间的验证机 M 验证 (S, T) 是否合法的割且大小不小于 k, 即:

$$\langle G, k \rangle \in \mathbf{MAX\text{-}CUT} \iff \exists u \ s.t. \ M(G, k, u) = 1.$$

u 显然是多项式长度的, 故 MAX-CUT \in NP.

下面证明 **MAX-CUT** \in **NP**-hard. 对 $\forall \psi \in \neq$ SAT, 设 ψ 是一个 n 个变量 m 个子句的 3CNF, 那么我们构造一个图 G = (V, E) 如下:

- 1. 对每个变量 x_i , 分别添加 3m 个标号为 x_i 和 $\neg x_i$ 的节点.
- 2. 所有标号为 x_i 与 $\neg x_i$ 的节点之间两两连边.
- 3. 对于每个子句 C_j , 若 $C_j = (x_i \lor x_k \lor x_l)$, 那么在 x_i, x_k, x_l 对应标号的节点之间连边, 注意不要 重复使用一个节点.

注意到取 $3m \wedge x_i/\neg x_i$ 足以保证第 3 步中有足够的冗余节点用来连接每个子句. 我们来证明如下结论:

$$\psi \in \neq SAT \iff \langle G, 9nm^2 + 2m \rangle \in MAX-CUT.$$

 \triangleleft

1.) \Rightarrow : 若 $\psi \in \neq SAT$, 考虑 ψ 的任意一个合法赋值 A, \diamondsuit $S = \{x \mid x = 1 \text{ in assignment } A\}$, $T = \{x \mid x = 0 \text{ in assignment } A\}$. 考虑割 (S,T), 注意到 x_i , $\neg x_i$ 不能同时在 S/T 中,这一部分的割的大小为 $n \cdot (3m)^2 = 9nm^2$. 而对于每个子句 C_j , 由 \neq -assignment 的定义, C_j 中至少有一个变量取值为 0, 那么 每个子句对应的三角形有两条边在割中,这一部分的割的大小为 2m. 因此总的割的大小为 $9nm^2 + 2m$. 即 $\langle G, 9nm^2 + 2m \rangle \in \mathbf{MAX-CUT}$.

2.) \Leftarrow : \dot{A} $\langle G, 9nm^2 + 2m \rangle \in \mathbf{MAX-CUT}$. 那么 G 的割的大小至少为 $9nm^2 + 2m$. 首先说明标号相同的节点分别位于 S,T 中,否则考虑最简单的情况,如果标号为 x_i 的节点中有 3m-1 个在 S 中,1 个在 T 中,那么此时割的大小不超过 $2m+(n-1)9m^2+3m(3m-1)<9nm^2+2m$,矛盾. 再说明对于每个子句产生的三角形,不可能有存在割使得三角形的三个边都在割中. 进而其他条件给定,如果割只包含一条边,那么总的割大小严格小于 $9nm^2+2m$,矛盾. 因此每个子句对应的三角形恰有两条边在割中. 那么我们令 $x_i=1$ 当且仅当 x_i 对应的节点在 S 中,就得到了一个合法的 \neq -assignment. 因此 $\psi \in \neq SAT$.

综上所述, \neq SAT \leq_p MAX-CUT, 即 MAX-CUT 是 NP-complete.

Problem 2.(16 points). A language is called unary if every string in it is the form 1^i (the string of i ones) for some i > 0. Show that if there exists an **NP**-complete unary language, then **NP** = **P**.

Hint: If there is a n^c time reduction from 3SAT to a unary language L, then this reduction can only map size n instances of 3SAT to some string of the form 1^i where $i \leq n^c$. Use this observation to obtain a polynomial-time algorithm for 3SAT using the downward self-reducibility argument of Theorem 2.18 in our textbook.

Answer. 思路: 用类似于课本中 Theorem 2.18 的递归迭代方法, 来证明 $SAT \in \mathbf{P}$, 进而 $\mathbf{NP} = \mathbf{P}$. 设 L 是一个 \mathbf{NP} -complete 的 unary 语言, 那么 L 中的每个字符串都是形如 1^i 的 (不妨令 $I = \{i\}$). 设存在一个时间复杂度为 n^c 的规约 f 将 SAT 映射到 L, 即

 $\forall \psi \in SAT, f(\psi) = 1^i$, where size of ψ is $n, i \leq n^c$.

考虑如下的算法 A:

Input: a CNF ψ_n with $|\psi_n| = n$, and the array I represents whether $1^i \in L$ or not.

Output: 1 if ψ_n is satisfiable, 0 otherwise.

- 1: **if** n = 1 **then**
- 2: Compute ψ directly and return the result.
- 3: Compute $f(\psi_n) = 1^i$ in n^c time.
- 4: **if** I[i] is already computed **then**
- 5: return I[i].
- 6: **else**
- 7: Recursively compute $A(\psi_n \mid x_1 = 0)$, where $\psi_{n'} = (\psi_n \mid x_1 = 0)$ means the simplified formula with assignment $x_1 = 0$. Notice that $|\psi_{n'}| < |\psi_n|$.
- 8: **if** $A(\psi_n \mid x_1 = 0) = 1$ **then**

 \triangleleft

 \triangleleft

- 9: $I[i] \leftarrow 1$, then **return** 1.
- 10: **else**
- 11: $r \leftarrow A(\psi_n \mid x_1 = 1)$
- 12: $I[i] \leftarrow r$, then **return** r.

时间复杂度分析: 对每个 i, 我们会创建 2 个分支 (这是由于 1^i 是否属于 L 我们通过数组 I 存储下来, 通过两次调用 $A(x_1=0/1)$ 即可得到, 后续直接查询即可), 由于 $i \leq n^c$, 那么最多有 $2n^c$ 个分支. 而每个分支中只需要调用一次规约函数 f(复制 I 后传参), 故时间复杂度为 $O(n^c)$. 那么总的时间复杂度:

$$T(n) \le 2n^c \cdot O(n^c) = O(n^{2c}).$$

故 $SAT \in \mathbf{P}$, 进而 $\mathbf{NP} = \mathbf{P}$. 证毕.

Problem 3.(16 points). Prove that the following language SPACETM is **PSPACE**-complete:

SPACETM = $\{\langle M, w, 1^n \rangle \mid \text{ DTM } M \text{ accepts } w \text{ in space } n \}.$

Answer. 先证明 SPACETM ∈ PSPACE. 考虑如下的算法:

Algorithm 3 Universal DTM U to simulate M on input w

Input: $\langle M, w, 1^n \rangle$

- 1: U simulates M on input w. If M uses more than n space, U rejects immediately.
- 2: if M accepts w in space O(n) then
- 3: **return** Accept.
- 4: **else**
- 5: **return** Reject.

那么 U 的空间复杂度是 $Poly(|\langle M, w, 1^n \rangle|)$ 的, 故 $SPACETM \in PSPACE$.

下面证明 **SPACETM** 是 **PSPACE**-hard 的. $\forall A \in \textbf{PSPACE}$, 那么存在时间复杂度为 p(n) 的 DTM M 使得 A = L(M), 其中 p(n) 是多项式函数, n 为输入长度. 考虑如下的映射:

$$f: w \to \left\langle M, w, 1^{p(|w|)} \right\rangle$$
.

f 显然是多项式时间的. 且有:

$$w \in A \iff f(w) \in \mathbf{SPACETM}$$

因此 $\forall A \in \mathbf{PSPACE}, A \leq_p \mathbf{SPACETM}$, 即 $\mathbf{SPACETM}$ 是 \mathbf{PSPACE} -hard 的.

综上所述, SPACETM 是 PSPACE-complete 的. 证毕.

Problem 4.(16 points). The class **DP** is defined as the ser of language L for which there are two language $L_1 \in \mathbf{NP}, L_2 \in \mathbf{coNP}$ such that $L = L_1 \cap L_2$. (Don't confuse **DP** with $\mathbf{NP} \cap \mathbf{coNP}$, which may seem superficially similar.) Show that:

- a.) (6 points) EXACT INDSET $\in \mathbf{DP}$.
- b.) (10 points) Every language in **DP** is polynomial-time reducible to EXACT INDSET.

Answer. Note that:

EXACT INDSET = $\{\langle G, k \rangle \mid \text{the largest independent set in } G \text{ has size exactly } k \}$ INDSET = $\{\langle G, k \rangle \mid \text{the largest independent set in } G \text{ has size at least } k \}$

a.) 令 $L = \{ \langle G, k \rangle \mid G \text{ has no independent set of size } \geq k+1 \}$, 那么:

EXACT INDSET = INDSET
$$\cap L$$

由于 $\neg L = \{ \langle G, k \rangle \mid G \text{ has an independent set of size } k+1 \} \in \mathbf{NP},$ 故 $L \in \mathbf{coNP}$, 又由于 INDSET \in **NP**, 故 EXACT INDSET \in **DP**.

b.) 对 $\forall A \in \mathbf{DP}, \exists A_1 \in \mathbf{NP}, A_2 \in \mathbf{coNP}, \ s.t. \ A = A_1 \cap A_2$. 由于 INDSET $\in \mathbf{NP}$ -complete, 类似课上 的证明同理可以得到 $L \in \mathbf{coNP}$ -complete 的. 那么存在多项式时间的规约 φ_1, φ_2 使得

$$w \in A \iff w \in A_1 \land w \in A_2 \iff \varphi_1(w) \in 3SAT \land \varphi_2(w) \in \neg 3SAT$$

而从 3SAT 可以构造合法规约 $\psi:$ 3SAT \to EXACT INDSET, 类似证明 3SAT \leq_p INDSET 的方法构造 G=(V,E). 令

V: 每个字句 $C_i \in \psi$ 对应含 7 个点的团, 分别对应 C_i 中 7 种可行的赋值方式.

E: 在团内部两两加边, 在互斥的赋值对应的点之间加边

可以使得 $\forall w \in 3\text{SAT}$ with k clauses $\iff \psi(w) = \langle G, k \rangle \in \text{EXACT INDSET}$. 同理可以构造出合法 归约 $\hat{\psi} : \neg 3\text{SAT} \to \text{EXACT INDSET}$.

故对 $\forall w \in A$, 存在多项式时间规约 f_1, f_2 (把上面讨论的两次规约步骤复合一下即可), 使得

$$f_1(w) = \langle G_1, k_1 \rangle \in \text{EXACT INDSET}, \quad f_2(w) = \langle G_2, k_2 \rangle \in \text{EXACT INDSET}.$$

考虑如下的规约 f:

$$f(w) = \langle (n \cdot G_1) \cup G_2, nk_1 + k_2 \rangle.$$

其中 n 是一个足够大的常数, $n \cdot G_1 \cup G_2$ 表示 n 个图 G_1 和 1 个 G_2 合并成一个新的图. 那么 f 是多项式时间的, 且有 $w \in A \iff f(w) \in \text{EXACT INDSET}$. 故任意的 $A \in \mathbf{DP}$ 都可以多项式时间规约到 EXACT INDSET, 即 EXACT INDSET 是 \mathbf{DP} -complete 的. 证毕.

Problem 5.(16 points). Show that the following language is NL-complete:

 $\{\langle G \rangle \mid G \text{ is strongly connected digraph}\}.$

 \triangleleft

Answer. 不妨设 $A = \{\langle G \rangle \mid G \text{ is strongly connected digraph} \}$. 首先证明 $A \in \mathbf{NL}$, 对任意的一个图 G = (V, E), 设 $V = \{1, 2, \dots, n\}$, 考虑如下的算法:

Input: Directed graph G = (V, E)

Output: Accept if G is strongly connected, reject otherwise.

- 1: **for** i from 1 to n **do**
- 2: Check whether $\langle G, i, i+1 \rangle \in PATH$ (let i+1=1 if i=n).
- 3: **if** All the above checks are true **then**
- 4: return Accept.
- 5: **else**
- 6: return Reject.

注意到 $PATH \in \mathbf{NL}$, 那么第 2 行可以在 $O(\log n)$ 的空间内完成. 循环时重复使用同一空间则总的空间复杂度为 $O(\log n)$, 因此 $A \in \mathbf{NL}$.

下面证明 $A \in \mathbf{NL}$ -hard 的. 对任意有向图 G = (V, E), 如下构造出一个新的图 G' = (V', E'):

令
$$V'=V, E'=E$$
, 选取两个点 $s,t, \ \forall v \in V/\{s,t\}, \ \$ 向 E' 中添加边 $(t,v),(v,s).$

那么我们可以证明如下引理:

Lemma 1. G' 是强连通图当且仅当 $\langle G, s, t \rangle \in PATH$.

证明. 1). \Rightarrow : 如果 G' 是一个强连通图,那么存在路径 $s \rightsquigarrow t$,注意到由 G 构造 G' 时只添加了 $t \rightarrow u \rightarrow s$,那么 $\forall e \in E'/E, e \notin \{s \rightsquigarrow t\}$. 因此 $s \rightsquigarrow t \in G$ 中的一条路径,即 $\langle G, s, t \rangle \in PATH$.

2). \Leftarrow : 若 $\langle G, s, t \rangle \in PATH$, 那么 $\forall u, v \in G'$, 在 G' 中存在有向边 $u \to s, t \to v$ 与路径 $s \leadsto t$, 因此存在路径 $u \to s \leadsto t \to v$ 连接 u 和 v, 由于 u, v 是任意的, 故 G' 是强连通图.

回到本题, 给定任意的 $\langle G, s, t \rangle$, 上述的构造过程 $f: G \to G'$ 只需要空间 $O(\log |\langle G, s, t \rangle|)$ 的工作带 (按顺序遍历点, 只在工作带上记录当前的点, 在输出纸带上添加相应的边), 由引理:

$$\langle G, s, t \rangle \in PATH \iff G' = f(\langle G, s, t \rangle)$$
 is strongly connected.

故 f 是一个对数空间规约, 那么 $PATH \leq_l A$, 即 A 是 NL-hard 的.

综上所述, A 是 NL-complete.

Problem 6.(20 points). Prove that in the certificate deinifion of **NL**, if we allow the verifier machine to move its head back and forth on the certificate, then the class being defined changes to **NP**. ◀

Answer. 记 NL^* 为允许验证机在证书上来回移动的复杂性类.

1). 首先证明 $\mathbf{NL}^* \subseteq \mathbf{NP}$. 对于 $\forall A \in \mathbf{NL}^*$, 存在空间复杂度为 $O(\log n)$ 的验证机 M, 以及多项式时间函数 p(n), 使得对于

$$\forall x \in \Sigma^*, \ x \in A \iff \exists u \in \{0,1\}^{p(|x|)} \ s.t. \ M(x,u) = 1.$$

注意到任意一个空间复杂度为 $O(\log n)$ 的验证机可以在多项式时间内被模拟 (遍历空间的所有可能状态即可). 那么存在一个多项式时间的 $DTM\ M'$, 使得对于

$$\forall x \in \Sigma^*, \ x \in A \iff \exists u \in \{0,1\}^{p(|x|)} \ s.t. \ M'(x,u) = 1.$$

因此 $A \in \mathbf{NP}$, 即 $\mathbf{NL}^* \subseteq \mathbf{NP}$.

2). 接着证明 $\mathbf{NP} \subseteq \mathbf{NL}^*$. $\forall A \in \mathbf{NP}$, 设存在一个 $\mathbf{NDTM}\ N$ 使得 L(N) = A. 那么:

 $x \in A \iff \exists \text{ configurations } C_1, C_2, \cdots, C_T, s.t.$

- (1) C_1 is the start configuration of N
- (2) C_T is the accept configuration of N
- (3) $\forall i \in [1, T-1], C_i \vdash C_{i+1}$ under the transition function of N.

那么我们可以如下构造一个空间复杂度为 $O(\log n)$ 的验证机 M, 其中 $\langle \cdot \rangle$ 表示编码:

Input: string x and certificate $u = \langle C_1 C_2 \cdots C_T \rangle$

Output: 1 if N accepts x, 0 otherwise.

- 1: Check if C_1 is the start configuration of N.
- 2: Check if C_T is the accept configuration of N.
- 3: **for** i = 1 to T 1 **do**
- 4: Check if $C_i \vdash C_{i+1}$ under the transition function of N.

首先证书 $u = \langle C_1 C_2 \cdots C_T \rangle$ 的长度显然是 Poly(n) 的. 第 1,2 步按顺序检查格局中的每个字符, 这样做的空间复杂度是 $O(\log n)$ 的. 第 3 行可以每次检查两个格局之间的转移是否合法 (一次检查一个字符), 这样做的空间复杂度也是 $O(\log n)$ 的. 因此 $A \in \mathbf{NL}^*$, 即 $\mathbf{NP} \subseteq \mathbf{NL}^*$.

综上所述, $NL^* = NP$.

除了课上给出的这种证明, 这里尝试一个其他证明 (麻烦助教一并看一下):

设 NL* 定义中的验证机为 M, M 的空间复杂度为 $O(\log |x|)$, 那么 M 最多运行 $2^{O(\log |x|)} = O(|x|^c)$ 步 (其中 c 是一个常数). 我们允许 M 在证书上来回移动, 那么每次最多访问整个证书纸带 (由定义, 设证书长度为多项式 p(|x|)), 那么 M 每一步的时间复杂度为为 O(p(|x|)), 故整个验证过程的时间复杂度为 $O(|x|^c \cdot p(|x|))$. 因此, M 是多项式时间验证机, 且:

$$x \in A \iff \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x,u) = 1.$$

这即是 NP 的定义, 故 $NL^* = NP$.