XXX

by

Thesis title goes here

A Thesis Submitted to

The Hong Kong University of Science and Technology
in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy
in the Department of Physics

March 2024, Hong Kong

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce the thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

March 2024, Hong Kong

XXX

Thesis title goes here

h	7
IJ.	v

XXX

This is to certify that I have examined the above PhD thesis and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the thesis examination committee have been made.

Professor XoX (Physics), Thesis Supervisor

Professor X-X (Physics), Head of the Physics Department

Department of Physics

The Hong Kong University of Science and Technology

March 2024, Hong Kong

${\bf Acknowledgment}$

 $. \ 32 Acknowledgment \ goes \ here$

Contents

Ti	tle F	age	Ι
\mathbf{A}	utho	ization Page	Ί
Si	gnat	are Page	Ι
A	ckno	vledgments Γ	V
Ta	able (f Contents	V
Li	st of	Figures	Ι
Li	st of	Tables VII	Ι
\mathbf{A}	bstra	et	1
\mathbf{A}	bbre	iations	1
1	Intr	oduction	2
	1.1	'First part'	2
	1.2	'Second part'	2
	1.3	'Third part'	2
	1.4	Thesis Contributions	2
2	The	ory and Methods	3
	2.1	'1st section'	3
		2.1.1 '1st Subsection'	3
		2.1.2 '2nd Subsection'	3
3	Firs	t Project	4
	3.1	Results-1st section	4
	3.2	Results-2nd section	5

	3.3	Conclusion	6
	3.4	Appendix	7
		3.4.1 1st part of Appendix	7
4	2nd	Project	8
5	3rd	Project	9
6	Con	aclusion and Future Work	10
	6.1	Conculsion	10
		6.1.1 1st Project	10
		6.1.2 2nd Project	10
		6.1.3 3rd Project	10
	6.2	Future Work and Challenges	10
R	efere	nces	11
Li	\mathbf{st} of	Publications	12

List of Figures

3.1 **Simulation setup.** Two walls are in z-direction separated by a distance of L_z . Easy axis is in the y-direction. Couette flow is imposed by moving top and bottom wall in y-direction with speed u_0 and $-u_0$, respectively. Poiseuille flow is imposed by applying a pressure gradient G along y-direction. Director field \mathbf{n} is represented by a polar angle θ and an azimuthal angle ϕ

List of Tables

4.1	Handedness of the periodic double-twist configuration, obtained	
	in 21 independent simulations	

Simulation Investigation of Active and Driven Flows in Achiral and Chiral Nematics

XXX

Department of Physics
The Hong Kong University of Science and Technology

Abstract

Abstract goes here.

Introduction

- 1.1 'First part'
- 1.2 'Second part'
- 1.3 'Third part'
- 1.4 Thesis Contributions

Theory and Methods

- 2.1 '1st section'
- 2.1.1 '1st Subsection'
- 2.1.2 '2nd Subsection'

First Project

Figure 3.1: **Simulation setup.** Two walls are in z-direction separated by a distance of L_z . Easy axis is in the y-direction. Couette flow is imposed by moving top and bottom wall in y-direction with speed u_0 and $-u_0$, respectively. Poiseuille flow is imposed by applying a pressure gradient G along y-direction. Director field \mathbf{n} is represented by a polar angle θ and an azimuthal angle ϕ .

In this study, we conduct all the simulation in this flat channel Fig. 3.1.

3.1 Results-1st section

3.2 Results-2nd section

3.3 Conclusion

-Your conclusion of 1st project goes here

- 3.4 Appendix
- 3.4.1 1st part of Appendix

2nd Project

-Your table goes as following example

Table 4.1: Handedness of the periodic double-twist configuration, obtained in 21 independent simulations.

	left-handed twist in x -direction	right-handed twist in x -direction
left-handed twist in z -direction	10	0
$\begin{array}{c} \text{right-handed twist} \\ \text{in } z\text{-direction} \end{array}$	0	11

3rd Project

 $\hbox{\it -The 3rd Project goes here}$

Conclusion and Future Work

-A biref summary goes here

6.1 Conculsion

6.1.1 1st Project

In the Chapter. 3

- 6.1.2 2nd Project
- 6.1.3 3rd Project
- 6.2 Future Work and Challenges

References

List of Publications

Jounrnal

• Wang, W., Ren, H. and Zhang, R. (2024). Symmetry breaking of self-propelled topological defects in thin-film active chiral nematics, *Physical Review Letters*, vol. 132(3). doi:10.1103/physrevlett.132.038301.

Conference

• (Oral) Wang, W., Ren, H., Zhang, R.. Symmetry breaking of self-propelled topological defects in thin-film active chiral nematics. *American Physical Society March Meeting*, Las Vegas, 2023.