```
algoritmo "Elemento_impar"
var
 A: vetor[1..5] de inteiro
  i, R, SOMA: inteiro
inicio
  soma <- 0
 para i de 1 ate 5 passo 1 faca
    leia(A[i])
  fimpara
  para i de 1 ate 5 passo 1 faca
     R \leftarrow A[i] - 2*(A[i] div 2)
     se (R <> 0) entao
        SOMA <- SOMA + A[i]
     fimse
  fimpara
  escreva(SOMA)
fimalgoritmo
```

6.4 - Exercícios de Entrega Obrigatória (até ___/___) (Lista 06)

- 1) Desenvolva os algoritmos, seus respectivos diagramas de bloco e codificação em português estruturado (Você deve gravar o exercício "a" como L06A, o exercício "b" como L06B, e assim por diante).
 - a) Ler 10 elementos de uma matriz tipo vetor e apresentá-los.
 - b) Ler 8 elementos em uma matriz A tipo vetor. Construir uma matriz B de mesma dimensão com os elementos da matriz A multiplicados por 3. O elemento B[i] deverá ser implicado pelo elemento A[i]*3, o elemento B[2] implicado pelo elemento A[2]*3 e assim por diante, até 8. Apresentar o vetor B.
 - c) Ler duas matrizes A e B do tipo vetor com 20 elementos. Construir uma matriz C, onde cada elemento de C é a subtração do elemento correspondente de A com B. Apresentar a matriz C.
 - d) Ler 15 elementos de uma matriz tipo vetor. Construir uma matriz B de mesmo tipo, observando a seguintes lei de formação: "Todo elemento de B deverá ser o quadrado do elemento de A correspondente". Apresentar as matrizes A e B.
 - e) Ler duas matrizes A e B do tipo vetor com 15 elementos cada. Construir uma matriz C, sendo esta a junção das duas outras matrizes. Desta forma, C deverá ter o dobro de elementos, ou seja, 30. Apresentar a matriz C.
 - f) Ler duas matrizes do tipo vetor, sendo A com 20 elementos e B com 30 elementos. Construir uma matriz C, sendo esta a junção das duas outras matrizes. Desta forma, C deverá ter a capacidade de armazenar 50 elementos. Apresentar a matriz C.
 - g) Ler 20 elementos de uma matriz A tipo vetor e construir uma matriz B de mesma dimensão com os mesmo elementos da matriz A, sendo que deverão estar invertidos. Ou seja, o primeiro elemento de A passa a ser o último de B, o segundo elemento de A passa a ser o penúltimo elemento de B e assim por diante. Apresentar as matrizes A e B lado a lado.
 - h) Ler três matrizes (A, B e C) de uma dimensão com 5 elementos cada. Construir uma matriz D, sendo esta a junção das três outras matrizes. Desta forma D deverá ter o triplo de elementos, ou seja, 15. Apresentar os elementos da matriz D.
 - i) Ler 15 elementos reais para uma matriz A de uma dimensão do tipo vetor. Construir uma matriz B de mesmo tipo e dimensão, observando a seguinte lei de formação: "Todo elemento da matriz A que possuir índice par deverá ter seu elemento dividido por 2; caso contrário, o elemento da matriz A deverá ser multiplicado por 1.5". Apresentar as matrizes A e B lado a lado.
 - j) Ler duas matrizes A e B de uma dimensão com 6 elementos. A matriz A deverá aceitar apenas a