IP 地址分类

IP 地址的前四位用来决定地址所属的类型。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
A类	0	网络号				主机号																										
B类	1 0 网络号 主机号																															
C类	1	1	1 0 网络号 主机号																													
D类	1	1	1	1 0 组播地址																												
E类	1	1 1 1 保留地址																														

类型	IP 地址范围	保留 IP	私用 IP
A类	1. 0. 0. 1—126. 255. 255. 254	127. X. X. X	10. 0. 0. 0-10. 255. 255. 255
B类	128. 0. 0. 1—191. 255. 255. 254	169. 254. X. X	172. 16. 0. 0—172. 31. 255. 255
C类	192. 0. 0. 1—223. 255. 255. 254		192. 168. 0. 0–192. 168. 255. 255
D类	224. 0. 0. 1—239. 255. 255. 254		
E类	240. 0. 0. 1—255. 255. 255. 254		

IP 地址分为网络地址和主机地址二个部分,A 类地址前 8 位为网络地址,后 24 位为主机地址,B 类地址 16 位为网络地址,后 16 位为主机地址,C 类地址前 24 位为网络地址,后 8 位为主机地址,网络地址范围如下表所示:

种类	网络地址范围
----	--------

A	1.0.0.0 到 126.0.0 有效
	0.0.0.0 和 127.0.0 保留
В	128. 1. 0. 0 到 191. 254. 0. 0 有效 128. 0. 0. 0 和 191. 255. 0. 0 保留
С	192. 0. 1. 0 到 223. 255. 254. 0 有效 192. 0. 0. 0 和 223. 255. 255. 0 保留
D	224. 0. 0. 0 到 239. 255. 255. 255 用于组播
Е	240. 0. 0. 0 到 255. 255. 255. 254 保留 255. 255. 255. 255 用于广播

1. A 类地址

- (1) A 类地址第1字节为网络地址, 其它3个字节为主机地址。
- (2) A 类地址范围: 1.0.0.1—126.255.255.254
- (3) A 类地址中的私有地址和保留地址:
- ① 10. X. X. X 是私有地址(所谓的私有地址就是在互联网上不使用,而被用在局域网络中的地址)。 范围(10. 0. 0. 0-10. 255. 255. 255)
- ② 127. X. X. X 是保留地址,用做循环测试用的。

2. B 类地址

- (1) B类地址第1字节和第2字节为网络地址,其它2个字节为主机地址。
- (2) B 类地址范围: 128.0.0.1—191.255.255.254。
- (3) B 类地址的私有地址和保留地址
- ① 172.16.0.0—172.31.255.255 是私有地址

- ② 169. 254. X. X 是保留地址。如果你的 IP 地址是自动获取 IP 地址,而你在网络上又没有找到可用的 DHCP 服务器。就会得到其中一个 IP。
- 3. C 类地址
- (1) C 类地址第 1 字节、第 2 字节和第 3 个字节为网络地址,第 4 个个字节为主机地址。另外第 1 个字节的前三位固定为 110。
- (2) C 类地址范围: 192. 0. 0. 1—223. 255. 255. 254。
- (3) C 类地址中的私有地址:
- 192. 168. X. X 是私有地址。(192. 168. 0. 0-192. 168. 255. 255)
- 4. D 类地址
- (1) D 类地址不分网络地址和主机地址,它的第1个字节的前四位固定为1110。
- (2) D 类地址范围: 224.0.0.1—239.255.255.254
- 5. E 类地址
- (1) E 类地址不分网络地址和主机地址,它的第1个字节的前五位固定为11110。
- (2) E 类地址范围: 240.0.0.1—255.255.255.254
- IP 网段的问题就要关系到子网掩码了。

标准子网掩码的 IP 地址段比较容易识别,只要相同的子网掩码,网络为相同就为同一网段。

例如 192. 168. 10. 5 和 192. 168. 10. 220,如果都是标准 255. 255. 255. 255. 0 的子网掩码,表明两个 IP 地址的 192. 168. 10 是网段,两个 IP 处于同一网段。

如果是不标准子网掩码,就需要计算了,还是例如 192. 168. 10. 5 和 192. 168. 10. 220 这两个 IP,如果子网掩码是 255. 255. 255. 240 的话,表明标准子网掩码借了 4 位,网段宽度是 16,也就是说 192. 168. 10. 5 处于 192. 168. 10. 0 这个网段,而 192. 168. 10. 220 处于 192. 168. 10. 192 这个网段。

IP 地址分类方法

基本的 IP 地址是分成 8 位一个单元(称为 8 位位组)的 32 位二进制数。二进制与十进制大家都懂吧。为了方便人们的使用,对机器友好的二进制地址转变为人们更熟悉的十进制地址。IP 地址中的每一个 8 位位组用 0~255 之间的一个十进制数表示。这些数之间用点(.)隔开,这是所谓的点-十进制格式。

因此,最小的 IPv4 地址值为 0.0.0.0,最大的地址值为 255.255.255,然而这两个值是保留的,没有分配给私人的端系统。

点分十进制数表示的 IPv4 地址分成几类,以适应大型、中型、小型的网络。这些类的不同之处在于用于表示网络的位数与用于表示主机的位数 之间的差别。IP 地址分成五类,用字母表示:

- A 类地址
- B 类地址
- C类地址
- D 类地址
- E类地址

每一个 IP 地址包括两部分: 网络地址和主机地址, 上面五类地址对所支持的网络数和主机数有不同的组合。

1. A 类地址

一个 A 类 IP 地址仅使用第一个 8 位位组表示网络地址。剩下的 3 个 8 位位组表示主机地址。A 类地址的第一个位总为 0,这一点在数学上限制了 A 类地址的范围小于 127,127 是 64+32+16+8+4+2+1 的和。最左边位表示 128,在这里空缺。因此仅有 127 个可能的 A 类网络。A 类地址后面的 24 位(3 个点-十进制数)表示可能的主机地址,A 类网络地址的范围从 1.0.0.0 到 126.0.0.0。注意只有第一个 8 位位组表示网络地址,剩余的 3 个 8 位位组用于表示第一个 8 位位组所表示网络中惟一的主机地址,当用于描述网络时这些位置为 0。注意技术上讲,127.0.0.0 也是一个 A 类地址,但是它已被保留作闭环(look back)测试之用而不能分配给一个网络。每一个 A 类地址能支持 16777214 个不同的主机地址,这个数是由 2 的 24 次方再减去 2 得到的。减 2 是必要的,因为 IP 把全 0 保留为表示网络而全 1 表示网络内的广播地址。其中 10.0.0.0 和 10.255.255.255 保留

2. B 类地址

设计 B 类地址的目的是支持中到大型的网络。B 类网络地址范围从 128.1.0.0 到 191.254.0.0。B 类地址蕴含的数学逻辑是相当简单的。一个 B 类 IP 地址使用两个 8 位位组表示网络号,另外两个 8 位位组表示主机号。B 类地址的第 1 个 8 位位组的前两位总置为 10,剩下的 6 位既可以是 0 也可以是 1,这样就限制其范围小于等于 191,由 128+32+16+8+4+2+1 得到。最后的 16 位(2 个 8 位位组)标识可能的主机地址。每一个 B 类地址能支持 64534 个惟一的主机地址,这个数由 2 的 16 次方减 2 得到。B 类网络仅有 16382 个,其中 172.16.0.0 和 172.31.255.255 保留。

3. C 类地址

C类地址用于支持大量的小型网络。这类地址可以认为与A类地址正好相反。A类地址使用第一个8位位组表示网络号,剩下的3个表示主机号,而C类地址使用三个8位位组表示网络地址,仅用一个8位位组表示主机号。C类地址的前3位数为110,前两位和为192(128+64),这形成了C类地址空间的下界。第三位等于十进制数32,这一位为0限制了地址空间的上界。不能使用第三位限制了此8位位组的最大值为255-32等于223。因此C类网络地址范围从192.0.1.0至223.255.254.0。最后一个8位位组用于主机寻址。每一个C类地址理论上可支持最大256个主机地址(0~255),但是仅有254

个可用, 因为 0 和 255 不是有效的主机地址。可以有 2097150 个不同的 C 类网络地址, 其中 192.168.0.0 和 192.168.255.255 保留。

4. D 类地址

D 类地址用于在 IP 网络中的组播(multicasting , 又称为多目广播)。D 类地址的前 4 位恒为 1110 , 预置前 3 位为 1 意味着 D 类地址开始于 128+64+32 等于 224。第 4 位为 0 意味着 D 类地址的最大值为 128+64+32+8+4+2+1 为 239,因此 D 类地址空间的范围从 224.0.0.0 到 239, 255, 255, 256.

5. E 类地址

E 类地址保留作研究之用。因此 Internet 上没有可用的 E 类地址。E 类地址的前 4 位恒为 1,因此有效的地址范围从 240.0.0.0 至 255.255.255.255。 总的来说,ip 地址分类由第一个八位组的值来确定。任何一个 0 到 127 间的网络地址均是一个 A 类地址。任何一个 128 到 191 间的网络地址是一个 B 类地址。任何一个 192 到 223 间的网络地址是一个 C 类地址。任何一个第一个八位组在 224 到 239 间的网络地址是一个组播地址即 D 类地址。E 类保留。

IP 和子网掩码

我们都知道, IP是由四段数字组成, 在此, 我们先来了解一下 3 类常用的 IP

A 类 IP 段 0.0.0.0 到 127.255.255.255

B 类 IP 段 128.0.0.0 到 191.255.255.255

C 类 IP 段 192.0.0.0 到 223.255.255.255

XP默认分配的子网掩码每段只有 255 或 0

A类的默认子网掩码 255.0.0.0 一个子网最多可以容纳 1677 万多台电脑

B类的默认子网掩码 255.255.0.0 一个子网最多可以容纳 6 万台电脑

C类的默认子网掩码 255.255.255.0 一个子网最多可以容纳 254 台电脑

把子网掩码切换至二进制,我们会发现,所有的子网掩码是由一串连续的1和一串连续的0组成的(一共4段,每段8位,一共32位数)。

这是 A/B/C 三类默认子网掩码的二进制形式,其实,还有好多种子网掩码,只要是一串连续的 1 和一串连续的 0 就可以了(每段都是 8 位)。如

255.255.248.0 这个子网掩码可以最多容纳多少台电脑?

计算方法:

把将其转换为二进制的四段数字(每段要是8位,如果是0,可以写成8个0,也就是00000000)

11111111.11111111.11111000.00000000

然后,数数后面有几颗 0,一共是有 11 颗,那就是 2 的 11 次方,等于 2048,这个子网掩码最多可以容纳 2048 台电脑。

一个公司有530台电脑,组成一个对等局域网,子网掩码设多少最合适?

首先,无疑,530 台电脑用B类IP最合适(A类不用说了,太多,C类又不够,肯定是B类),但是B类默认的子网掩码是255.255.0.0,可以容纳6万台电脑,显然不太合适,那子网掩码设多少合适呢?我们先来列个公式。

2的m次方=560

首先,我们确定 2 一定是大于 8 次方的,因为我们知道 2 的 8 次方是 256,也就是 C 类 I P 的最大容纳电脑的数目,我们从 9 次方一个一个试 2 的 9 次方是 512,不到 560,2 的 10 次方是 1024,看来 2 的 10 次方最合适了。子网掩码一共由 32 位组成,已确定后面 10 位是 0 了,那前面的 22 位就是 1,最合适的子网掩码就是: 11111111.1111111111111111100.000000000,转换成 10 进制,那就是 255.255.252.0。

分配和计算子网掩码你会了吧,下面,我们来看看 I P地址的网段。

相信好多人都和偶一样,认为 I P 只要前三段相同,就是在同一网段了,其实,不是这样的,同样,我样把 I P 的每一段转换为一个二进制数,这里就拿 I P: 192.168.0.1,子网掩码: 255.255.255.0 做实验吧。

192.168.0.1

11000000.10101000.00000000.00000001

(这里说明一下,和子网掩码一样,每段8位,不足8位的,前面加0补齐。)

I P 11000000.10101000.00000000.00000001

子网掩码 111111111111111111111111111000000000

在这里, 向大家说一下到底怎么样才算同一网段。

要想在同一网段,必需做到网络标识相同,那网络标识怎么算呢?各类 I P的网络标识算法都是不一样的。A 类的,只算第一段。B 类,只算第一、二段。C 类,算第一、二、三段。

算法只要把 I P和子网掩码的每位数 AND 就可以了。

AND 方法: 0 和 1=0 0 和 0=0 1 和 1=1

如: And 192.168.0.1, 255.255.255.0, 先转换为二进制, 然后 AND 每一位

I P 11000000.10101000.00000000.00000001

得出 AND 结果 11000000.10101000.000000000.00000000

转换为十进制 192.168.0.0, 这就是网络标识,

再将子网掩码反取,也就是00000000.000000000000.111111111,与IP AND

得出结果 00000000.00000000.000000001, 转换为 10 进制,即 0.0.0.1,

这 0.0.0.1 就是主机标识。要想在同一网段,必需做到网络标识一样。

我们再来看看这个改为默认子网掩码的B类IP

如 I P: 188.188.0.111, 188.188.5.222, 子网掩码都设为 255.255.254.0, 在同一网段吗?

先将这些转换成二进制

 $188.188.0.111 \quad 101111100.101111100.000000000.01101111$

 $188.188.5.222 \quad 10111100.10111100.00000101.11011010$

 $255.255.254.0 \quad 11111111111111111111111110.000000000$

分别 AND,得

10111100.10111100.00000000.000000000

101111100.101111100.00000100.00000000

网络标识不一样,即不在同一网段。

判断是不是在同一网段, 你会了吧, 下面, 我们来点实际的。

一个公司有530台电脑,组成一个对等局域网,子网掩码和IP设多少最合适?

子网掩码不说了,前面算出结果来了11111111111111111111100.00000000,也就是255.255.252.0

我们现在要确定的是 I P如何分配, 首先, 选一个 B类 I P段, 这里就选 188.188.x.x 吧

这样, I P 的前两段确定的, 关键是要确定第三段, 只要网络标识相同就可以了。我们先来确定网络号。(我们把子网掩码中的 1 和 IP 中的?对就起来, 0 和*对应起来, 如下:)

255.255.252.0 1111111111111111111111100.000000000

188.188.x.x 101111100.101111100.??????**.*******

网络标识 10111100.10111100.??????00.00000000

由此可知,?处随便填(只能用0和1填,不一定全是0和1),我们就用全填0吧,*处随便,这样呢,我们的IP就是

有人也许会说,既然算法这么麻烦,干脆用A类IP和A类默认子网掩码得了,偶要告诉你的是,由于A类IP和A类默认子网掩码的主机数目过大,这样做无疑是大海捞针,如果同时局域网访问量过频繁、过大,会影响效率的,所以,最好设置符合自己的IP和子网掩码