Assignment Project Exam Help

https://powwoodler.com

Add WeChat powcoder

Assignment Project Exam Help

The Misimum Spanning Tree Problem

Add WeChat powcoder

The Minimum Spanning Tree Problem

Assignment Project Exam Help

What is the "cheapest" way to interconnect objects in a network?

https://powcoder.com

Model the situation as a graph where:

- Assume edges have weights that give "cost" of a connection
- Being ne connected means light the must be at least path between every pair of objects in network

Formulating the MST Problem

Given a graph G = (V, E) and edge weight function w

Assignment Paroject Exam Help

- G' = (V, E') is connected
 The Relation we/good Wees to E things m

Two things to note:

- G' met ce a trewe Chat powcoder

 otherwise leave edge(s) out to reduce weight
- A path from u to v in G' is not necessarily shortest paths in G

MST Example

What is a minimum spanning tree for this weighted graph?

MST Example

Consider the path from v_3 to v_6 — length is more than 16

◆□▶◆□▶◆□▶◆□▶ ■ 夕♀♡

MST Example for You

Indicate nodes that are in a minimum spanning tree for this weighted graph?

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ √○

MST Example for You

Indicate nodes that are in a minimum spanning tree for this weighted graph?

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

256 / 606

Solving the MST Problem

Turns out to be easy to solve using the greedy approach Help Consider edges in order of increasing weight and include in E a long as no cycle created

- Grow tree from arbitrary starting point, repeatedly connecting in vertices that are closed to What ladden built to an
- Consider edges in decreasing order of weight and exclude from G unless it disconnects the graph

Add WeChat powcoder

Greedy approaches work because of the so-called Cut Property

Cut Property

Given a graph G = (V, E) and edge weight function w, if V is split into two disjoint sets V_1 and V_2 then the least weighted $Asedpo(y_1, y_2, y_3, y_4, y_4, y_4, y_5)$ is collapsed in the last weighted principles of G.

Proof of Cut Property

Proof by contradiction (assumes all edge weights distinct):

Assignment Project Exam Help Suppose that sets V_1 and V_2 and edge $\{u, v\}$ are as in the

- {u, hit the in the MSTOW C'5' de the graph m Consider path p in a from u to v
- Path p must cross from V_1 to V_2
- Let Add the Chaldenthipowcoder

Time for a picture

proposition

Proof of Cut Property (cont.)

- \bullet Any pair of vertices connected via $\{u',v'\}$ still connected via $\{u,v\}$
- We are reducing weight of E' by substituting $\{u', v'\}$ by $\{u, v\}$
- Contradiction G' couldn't have been a MST

Kruskal's MST Algorithm

```
Kruskal(G, w):
Assignment Project-Exam Help
    initialise E' to be the empty set
    for each vertex v \in V
       h funk the kingleton set containing com
       remove edge {u, v} from Q
       if C(u) \neq C(v) then
                  e€hat powcoder
    return F'
```


Create Q and C(v) for each $v \in V$

Remove edge $\{v_4, v_7\}$ from Q

 $C(v_4) \neq C(v_7)$ so add to E' and combine clusters

264 / 606

Remove edge $\{v_4, v_6\}$ from Q

 $C(v_4) \neq C(v_6)$ so add to E' and combine clusters

Remove edge $\{v_5, v_2\}$ from Q

4014012121 2 000

 $C(v_2) \neq C(v_5)$ so add to E' and combine clusters

7.49.41.41.1 1 000

Remove edge $\{v_2, v_1\}$ from Q

(ロト 4周 トイミトイミト ミークスへ

 $C(v_2) \neq C(v_1)$ so add to E' and combine clusters

7.49.41.41.1 1 000

Remove edge $\{v_6, v_7\}$ from Q

 $C(v_6) = C(v_7)$ so don't add to E'

Remove edge $\{v_6, v_7\}$ from Q

4 D L 4 D L

 $C(v_6) \neq C(v_8)$ so add to E' and combine clusters

7.49.41.41.1 1 000

Remove edge $\{v_4, v_5\}$ from Q

(ロ) (間) (目) (目) (目)

 $C(v_4) \neq C(v_5)$ so add to E' and combine clusters

276 / 606

Remove edge $\{v_3, v_1\}$ from Q

 $\textit{Q} = (\{\textit{v}_3, \textit{v}_6\}, \{\textit{v}_3, \textit{v}_2\}, \{\textit{v}_5, \textit{v}_8\}, \{\textit{v}_5, \textit{v}_7\})$

 $C(v_1) \neq C(v_3)$ so add to E' and combine clusters

ロト 4月ト 4 三 ト 4 三 ・ りゅぐ

 $Q = (\{v_3, v_6\}, \{v_3, v_2\}, \{v_5, v_8\}, \{v_5, v_7\})$

|E'| = |V| - 1 so we have found our minimum spanning tree

 $Q = (\{v_3, v_6\}, \{v_3, v_2\}, \{v_5, v_8\}, \{v_5, v_7\})$

All done!

An example for you

An example for you

MST contains following edges (in order added):

 $\{v_1, v_3\}, \{v_4, v_7\}, \{v_4, v_6\}, \{v_2, v_3\}, \{v_5, v_8\}, \{v_5, v_2\}, \{v_5, v_4\}$

Proof of Correctness of Kruskal's Algorithm

Follows from the Cut Property

Assignment. Project Leam Help

- Let V_1 be the vertices in C(u) and V_2 be all the other vertices
- Prior to adding $\{u, v\}$ to E' there are no paths involving edges in E' from the rose in E' there are no paths involving edges in
- Since edges are being considered in increasing order of weight, $\{u, v\}$ must be the edge with the least weight connecting a vertex in V_1 with one in V_2 condets
- Hence, by the Cut Property, {u, v} is in every minimum spanning tree of the graph

Kruskal's MST Algorithm

```
Kruskal(G, w):
Assignment Project-Exam Help
    initialise E' to be the empty set
    for each vertex v \in V
       h funk the kingleton set containing com
       remove edge {u, v} from Q
       if C(u) \neq C(v) then
                  e€hat powcoder
    return F'
```

Running Time of Kruskal's Algorithm

Assignment Project Exam Help Measure of progress:

- Measure of progress is the number of edges left in Q
- Reduttip Sivery powdowder. Com
- Gives upper bound on number of iterations of O(m)

Add WeChat powcoder

Running Time of Kruskal's Algorithm (cont.)

Signment Project Exam Help

- E contains m elements
- Sorting melements can be done in (mlog m) steps
- Furthermore, $\log n^2 = 2 \log n$

Running Time of Kruskal's Algorithm (cont.)

Optimising the representation of clusters (sets)

Aussing whences to allow the teer too spaticular lest p

Answer:

- Checking equality/of two sets
 Producing the union of two sets

This is the so-called **Union-Find** data structure

We will look at this data structure in an exercise class

We can achieve an overall running time for the algorithm of $O(m \log n)$

Another MST Algorithm

Assignment Project Exam Help

- Discovered by Jarník in 1930
- Rediscovered by Prim in 1957
 Rediscovered by Prim in 1957
 Rediscovered by Prim in 1957
 Rediscovered by Prim in 1957
- Most commonly known as Prim's algorithm!

Add WeChat powcoder

Jarník's Algorithm

Assignment Project Exam Help

- As E' grows, it spans an increasing number of the vertices
- E' glows by one at leach iteration oder.com
- Selects the edge that connects the closest vertex to the tree produced so far
- Committing to this edge is eafe due to the Cut Property Add WeChat powcoder

The Closest Vertex

Assignment Project Exam Help • Suppose the algorithm has so far selected the set of edges E'

- E' spans the vertices S where $S \subseteq V$
- In ohttps://poweodanceom

Question: Which is the closest vertex to (S, E')?

Answer Vertex Which minimises with power of Sand V & S

In this example we have $E' = \{\{v_5, v_7\}, \{v_5, v_2\}\}$ and $S = \{v_2, v_5, v_7\}$

The closest vertex to (S, E') is v_4 due to the edge $\{v_4, v_7\}$

Maintaining Distance from (S, E')

Assignment Project Exam Help

- As E' grows $\delta(v)$ may reduce
- · Also netup Second no un character Course

$$\delta(\mathbf{v}) = \mathbf{w}(\mathbf{v}, \mathbf{u})$$

refer Atd child We Chat powcoder

Back to the example

Recall that we have $E' = \{\{v_5, v_7\}, \{v_5, v_2\}\}$ and $S = \{v_2, v_5, v_7\}$

Consider the values $\delta(v_6)$ and $\beta(v_6)$ given this particular (T, S)

What happens to $\delta(v_6)$ when we were to add v_4 to E'

Updating Distances

An order to maintain the value of Sietherize Exam the left and the following:

When adding u into S (by adding the edge involving u into E') must leave a graph of the control of the control

As in Dijksra's Alporthy, we maintain a priority queue of vertices with lower δ values giving higher priority

Jarník's Algorithm

```
Jarník(G, w):
select some vertex s \in V and let \delta(s) = 0
signments Project Exam Help
for all v \in V let \beta(v) = \bot
let Q be a priority gueue containing elements of V
whilhttps://powcoder.com
remove u from front of priority queue Q
                      if \beta(u) \neq \bot then
                                                                                                                                                                                                                            (% i.e. u is not s)
                                And \{u, v\} to E' where \beta(y) = v and \{u, v\} \in where \beta(y) = v and \{u, v\} \in where \{u, v\} \in where \{u, v\} \in where \{u, v\} \in where \{u, v\} \in \{u, v\} \{
                                         if \delta(x) > w(u, x) then
                                                           let \delta(x) = w(u, x)
                                                           let \beta(x) = u
return E'
```


Let $s = v_7$, $E' = \{\}$, and initialise δ and β as shown

◆ロ > ◆回 > ◆ 差 > ◆ 差 > 一差 の < ②</p>

Remove v₇ from Q

Consider the edge $\{v_7, v_4\}$

 $\delta(v_4) > w(v_7, v_4)$ so update $\delta(v_4)$ and $\beta(v_4)$

ロト 4周ト 4 重ト 4 重ト 重 めなべ

Consider the edge $\{v_7, v_5\}$

<ロト < 個 ト < 重 ト < 重 ト 、 重 ・ 夕 Q (^)

 $\delta(v_5) > w(v_7, v_5)$ so update $\delta(v_5)$ and $\beta(v_5)$

ロト 4回 トイヨト イヨト ヨー かりへ

Consider the edge $\{v_7, v_6\}$

 $\delta(v_6) > w(v_7, v_6)$ so update $\delta(v_6)$ and $\beta(v_6)$

ロト 4回 トイヨト イヨト ヨー かりへ

All edges from v₇ considered

Remove v_5 from Q and add $\{v_5, v_7\}$ to E'

Consider the edge $\{v_5, v_2\}$

 $\delta(v_2) > w(v_5, v_2)$ so update $\delta(v_2)$ and $\beta(v_2)$

309 / 606

Consider the edge $\{v_5, v_4\}$

 $\delta(v_4) < w(v_4, v_5)$ so don't update $\delta(v_4)$ or $\beta(v_4)$

Consider the edge $\{v_5, v_8\}$

 $\delta(v_8) > w(v_5, v_8)$ so update $\delta(v_8)$ and $\beta(v_8)$

All edges from v₅ considered

Remove v_2 from Q and add edge $\{v_2, v_5\}$ to E'

Consider edge $\{v_2, v_1\}$

4 D > 4 B > 4 B > 4 B > 9 9 0

 $\delta(v_1) > w(v_2, v_1)$ so update $\delta(v_1)$ and $\beta(v_1)$

Consider edge $\{v_2, v_3\}$

10 + 4 A + 4 B + 4 B + 4 B + 4 B +

 $\delta(v_3) > w(v_2, v_3)$ so update $\delta(v_3)$ and $\beta(v_3)$

All edges from v_2 considered

10 + 4 A + 4 B + 4 B + 4 B + 4 B +

Remove v_4 from Q and add edge $\{v_4, v_7\}$ to E'

Consider edge $\{v_4, v_6\}$

4 D > 4 A > 4 B > 4 B > B 9 9 9

 $\delta(v_6) > w(v_4, v_6)$ so update $\delta(v_6)$ and $\beta(v_6)$

All edges from v_4 considered

Remove v_6 from Q and add edge $\{v_6, v_4\}$ to E'

Consider edge $\{v_6, v_3\}$

4D + 4A + 4B + 4B + 4D +

 $\delta(v_3) < w(v_6, v_3)$ so don't update $\delta(v_3)$ and $\beta(v_3)$

Consider edge $\{v_6, v_8\}$

4D + 4A + 4B + 4B + 4D +

 $\delta(\textit{v}_8) > \textit{w}(\textit{v}_6, \textit{v}_8)$ so update $\delta(\textit{v}_8)$ and $\beta(\textit{v}_8)$

ロト 4 周 ト 4 重 ト 4 画 ト 4 回 ト 4

All edges from v_6 considered

Remove v_8 from Q and add edge $\{v_8, v_6\}$ to E'

No edges from v_8 need to be considered

Remove v_1 from Q and add edge $\{v_1, v_2\}$ to E'

ロト (個) (重) (重) (重) の(で)

Consider edge $\{v_1, v_3\}$

4 D > 4 A > 4 E > 4 E > 9 Q Q

 $\delta(v_3) > w(v_1, v_3)$ so update $\delta(v_3)$ and $\beta(v_3)$

All edges from v_1 considered

ロト 4回ト 4 三 ト 4 三 ト 9 9 0

Remove v_3 from Q and add edge $\{v_3, v_1\}$ to E'

No edges from v_3 need to be considered

All done!

ロト 4月 ト 4 三 ト 4 三 ト 9 9 0 0

An example for you

Start with v7

Start with v_7 MST contains following edges (in order added):

 $\{v_4, v_7\}, \{v_4, v_6\}, \{v_5, v_4\}, \{v_5, v_8\}, \{v_5, v_2\}, \{v_2, v_3\}, \{v_1, v_3\}$

Correctness of Jarník's Algorithm

Assignment Project Exam Help

- Let V_1 be the vertices no longer in Q
- Let the bethe vertices still in a content of the left of the vertices still in a content of the left of the left
- $\{u, v\}$ is least weighted edge with one end in V_1 and other in V_2
- {u, v} can safely the selected for inclusion in E' Add WeChat powcoder

Running time of Jarník's Algorithm

Assignment Project Exam Help • Analysis is identical to that for Dijkstra's Algorithm

- O(m) updates to the value of δ and β
- · Assintangle of power der.com
- Each update of δ takes log n time
- Total running time is $O(m \log n)$

Add WeChat powcoder

Assignment Project Exam Help

https://premycodesr.com

Add WeChat powcoder

Efficient Transmission of Messages

Assignmental Projecta Exam Help

- How efficiently can messages involving these characters be encoded in binary?
- Efficiency property of the first of the second of the se
- Huffman Codes are used to find optimally efficient ways to solve this pable we Chat powcoder

A Straightforward Encoding

Assignment Projecting xamte Help

- 26 lower case letters and 26 upper case letters
 space tabpevime powcoder.com
- full-stop, comma, exclamation mark, question mark and dash
- round brackets and square brackets
 Add WeChat powcoder

A Straightforward Encoding (cont.)

Assignment of the encoded using a distinct of the life of the encoded using a distinct of the life of the encoding of the life of the encoded using a distinct of the life of the life of the encoded using a distinct of the life of the

Message length

Assignment Project Exam Help

Exactly 6 bits per character

But this destrip sploid processes Coldeter, Godenses

• 'e', 't', 'a', 'i', 'n', 'o', 's' are far more common than 'z', 'j' and 'x'

Encoding and depend a Contracter production der

Character Probabilities

Assignment Project Exam Help

Probabilittps://poixigoder.com

Add We explain the powcoder

Variable Length Encoding

Assignment Project Exam Help

Let more common characters have shorter encodings than less common characters https://powcoder.com

- This will result in shorter messages on average
- Morse code takes this approach

Add WeChat powcoder

Average Character Length

Question: When is one encoding preferable to another?

Assignment Project Fxam Help

We want to minimise the average bits per letter

- The weighted average of character produing engineer
- Weight is the probability of the character

Common Prefix Problem

Assignment Project Exam Help Morse Code is potentially ambiguious

- Entire encoding of some characters could be the start of others
- Consider the transmission wooder.com
 This could be: TTEE, or TTI, or TD, etc
- Morse code uses a space (pause) to separate characters

Add WeChat powcoder

Prefix Codes

Assimoning from the prefix of the constraint of possible encodings:

Decoding can then be done without need to mark end of character

'Eager' dettips: powcoder.com

- Consider bits from left to right
- As soon as a sequence of bits $\gamma(x)$ is found for some $x \in \Sigma$, decome the bit strong as $x \in \Sigma$ hat $y \in \Sigma$
- Consider remaining bit string starting with the next bit

Example

Compare the following two encoding:

Consider decoding:

0010000110

Prefix Code Trees

Every prefix code can be expressed as a tree

Characters appear only at the leaves

Efficient Prefix Code

Assignment Project Exam Help

Property of good prefix code trees:

https://powgader.com

Otherwise it would be better to twan codes for x and x der

a b e j s t v 0.12 0.10 0.28 0.06 0.23 0.18 0.09

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Order alphabet in increasing order of probability

https://powcoder.com

Add WeChat powcoder

Combine first two characters

Add WeChat powcoder

Now left with identical type of problem to solve

This time we need to re-order the characters

David Weir (U of Sussex)

Now we combine the first two

Again we must re-order

And so on ...

Quality of the Prefix Code

Assignment Project Exam Help

$$\mathsf{ABL} = \sum_{x \in \Sigma} p(x) \cdot |\gamma(x)|$$

https://powcoder.com

 $0.28 \cdot 2 + 0.1\overline{2} \cdot 3 + 0.1\overline{8} \cdot 3 + 0.03 \cdot 4 + 0.06 \cdot 4 + 0.10 \cdot 3 + 0.23 \cdot 2$

Add WeChat powcoder

With fixed length encoding 7 characters needs 3 bits per letter

Huffman Code Algorithm

Assignment Project Exam Help let Q be a priority queue of $x \in \Sigma$ prioritized by lowest P(x)

while |Q| > 1

lenter by first troctions candeler .com

let z be the parent of x and y

Correctness of Algorithm

Assignment berojectes Examat Help iteration

- Order in which algorithm considers characters guarantees this
- Characters considered at the part of the considered at the consi

Efficiency of Huffman Code Algorithm

Assignment Project Exam Help

- Creating Q takes O(k log k) time
- White loop executed k 1 times
 O(log k) to remove each item from cler.com
- Assumes Q implemented as a heap
- Total Aunning time (kleek) that powcoder

Assignment Project Exam Help https://powcoder.com 0.05 Add WeChat powcoder • How many bits would be needed without compression?

Example scenario

Assignment Profest Exam Help https://powers.der.com

• How Aary bits Works needed with the compression of the compression o

$$2^2 < 6 \le 2^3$$

Example scenario Assignment Project Exam Help https://pow&bder.com 0.02 • Add WeChat powcoder

Example scenario

Assignment Project Exam Help https://powersder.com

• Apply Anglorit Wie is that powcoder

$$\gamma(e) = 1$$
, $\gamma(i) = 001$, $\gamma(c) = 000$, $\gamma(f) = 011$, $\gamma(k) = 0101$, $\gamma(z) = 0100$

Example scenario Assignment Project Exam Help https://pow&bder.com 0.02 • Find the ABL of the resulting code powcoder

Example scenario

Assignment Project Exam Help

https://powegader.com

0.02

• Find the ded of the reciting hat powcoder

 $0.4 \times 1 + 0.2 \times 3 + 0.18 \times 3 + 0.15 \times 3 + 0.05 \times 4 + 0.02 \times 4 = 2.27$