1 A recursion formula for the coefficients

1.1 The coefficients of ϱ_G

Definition 1.1. Let $A \in \mathbb{R}^{n \times n}$ symmetric, $v \in \mathbb{R}^n$. For arbitrary multiindices $I = (i_1, \dots, i_k) \in \mathbb{N}^*$ with $0 \le i_1 < i_2 < \dots < i_k$ define the coefficients δ_I by

$$\delta_i \coloneqq \langle v, A^i v \rangle \text{ for } i \in \mathbb{N},$$

$$\delta_{(i_1,\dots,i_k)} \coloneqq \begin{cases} 0 & \text{if } i_j+1=i_{j+1} \text{ for some } j \\ \sum_{v \in \{0,1\}^{k-1}} (-1)^{|v|} \cdot \delta_{i_k-|v|} \cdot \delta_{(i_1,\dots,i_{k-1})+v} & \text{otherwise,} \end{cases}$$

where $|v| = \sum_{i=1}^{k} v_i$ denotes the number of ones in v.

Claim 1.2. Let $A \in \mathbb{R}^{n \times n}$ symmetric, $v \in \mathbb{R}^n$, let $d := \dim Z(v, A)$. For $i = 0, \ldots, d$ define the vector $w_i^d \in \mathbb{N}^d$ by

$$w_i^d := (0, 2, 4, \dots, 2(i-1), 2i+1, 2(i+1)+1, \dots, 2(d-1)+1).$$

Then the characteristic polynomial of $A|_{Z(v,A)}$ is given by

$$p(x) = \sum_{i=0}^{d} (-1)^{|w_i^d|} \cdot \frac{\delta_{w_i^d}}{\delta_{w_d^d}} x^i,$$

where again $|w| := \sum_{j=1}^k w_j$ denotes the L^0 -norm of a vector.

Remark 1.3. If A satisfies $tr(A) \equiv 0 \mod 2$, then every δ_I for I of length k is divisible by 2^{k-1} . If furthermore n is even, every δ_I is divisible by 2^k .

Remark 1.4. For every I of length k > d, it holds $\delta_I = 0$.

Proof. It can be verified that the vectors

$$v_j := \sum_{l=0}^{j} (-1)^{|w_i^d|} \delta_{w_i^d} A^i v$$

form an orthogonal basis of Z(v,A). This implies, that the projection of $A^k v$ onto the subspace generated by $v,\ldots,A^{k-1}v$ has coordinates $(-1)^{|w_i^k|}\cdot \frac{\delta_{w_i^k}}{\delta_{w_k^k}}$ relative to the basis $v,\ldots,A^{k-1}v$. The assertion immediately follows. \square

Hence, if G is an undirected graph with adjacency matrix A, the above approach can be used to determine the recurrence polynomial ϱ_G .

Remark 1.5. A few comments on this approach:

- 1. Even when using dynamic programming, the recursion formula for the δ_I still has exponential complexity.
- 2. The absolute value of the δ_I grows exponentially as well. Furthermore, in general the δ_I for multiindices of fixed length do not share a common factor other than 2^{k-1} .
- 3. The most interesting question that arises: Why is every $\delta_{w_i^d}$ divisible by $\delta_{w_d^d}$? In particular, in general the coefficient $\delta_{w_d^d}$ seems to be a large square number. However, I could not prove this and there seem to be exceptions. Furthermore, I could not find any meaning of the square root of $\delta_{w_d^d}$.

1.2 The recurrence degree of G

If one is only interested in the recurrence degree of G, the following procedure describes a way to compute it in time $\mathcal{O}(n^3)$:

```
1. Initialize B := I_n, v := (1, \dots, 1), k := n
 2. While k > 0 do:
       w \coloneqq vB
 3.
       if w = 0:
 4.
         return n-k
 5.
       pick i \in \{1, \ldots, k\} with w_i \neq 0
 6.
 7.
       for j \neq i:
          update the columns of B: B_j := w_i B_j - w_j B_i
 8.
 9.
       delete the i-th column of B
10.
       v := Av
       k \coloneqq k - 1
11.
12. return n
```

2 Local recurrence polynomials

2.1 General theory

There exists an isomorphism between the set of all linear recurrent sequences having characteristic polynomial p and the quotient ring $\mathbb{Z}[x]/p(x)$ (see [2]). If we identify the set of integer sequences with the ring of formal power series $\mathbb{Z}[[x]]$, this isomorphism is given by $\sigma(t) \mapsto p(t)t^{-1}\sigma(t^{-1})$. The term

 $t^{-1} \cdot \sigma(t^{-1}) = \frac{r_{\sigma}(t)}{\varrho_{\sigma}(t)}$ (where r_{σ} and ϱ_{σ} are coprime polynomials) is well-defined if and only if σ is a linear recurrent sequence and $\varrho_{\sigma}(t)$ divides p(t) if and only if p is a characteristic polynomial for σ . In this case, ϱ_{σ} is the least characteristic polynomial for σ .

Let q(x) be the image of $\sigma \in \mathbb{Z}[[x]]$ in $\mathbb{Z}[x]/p(x)$. The sequence σ has a characteristic polynomial ϱ_{σ} of degree lower than p if and only if $q(x) \in \mathbb{Z}[x]/p(x)$ is a zero divisor (if and only if p and q are not coprime). The polynomial ϱ_{σ} is given by

$$\varrho_{\sigma}(x) = \frac{p(x)}{\gcd(p(x), q(x))}.$$

Hence, if q(x) is known, we can compute ϱ_{σ} by factoring p and q (resp. using the Euclidean algorithm).

When the first deg(p) terms of σ are known, it is possible to directly compute the polynomial $p(t)t^{-1}\sigma(t^{-1})$. However, if σ is the (local or global) walk count of a graph, this polynomial can be obtained in other ways.

2.2 Undirected graphs

Let G be an undirected graph with adjacency matrix A and let $u, v \in V$. The number of walks of length k starting in u and ending in v is denoted by w_k^{uv} and can be computed as $w_k^{uv} = \langle e_u, A^k e_v \rangle$. Denote the global walk count sequence of G by w_r and the images of w_r resp. w_r^{uv} in $\mathbb{Z}[x]/\chi_G[x]$ by r_G resp. r_{uv} . By linearity of the described isomorphism it follows that $r_G = \sum_{u,v \in V} r_{uv}$.

2.2.1 The global case

Let the complement of G be denoted by G^c . Then Cvetkovic et al. (cf. [1], p. 46) showed the following:

Theorem 2.1. Let $w_G(x) := \sum_{k=0}^{\infty} w_k t^k$. Then it holds that

$$\frac{\chi_{G^c}(-1-x)}{\chi_G(x)} = (-1)^n \left(w_G(x^{-1}) x^{-1} + 1 \right).$$

In our case, this immediately implies

Corollary 2.2.

$$r_G(x) = -\chi_G(x) + (-1)^n \chi_{G^c}(-1 - x).$$

This provides a convenient way to compute the recurrence polynomial of a given graph.

2.2.2 The local case

We are furthermore interested in computing recurrence polynomials for the local walk counts between particular nodes u and v of the given graph. If u = v, this is relatively easy:

Claim 2.3. Let G be an undirected graph with adjacency matrix $A, v \in V$. Then it holds that

$$r_{vv}(x) = \chi_{A_v}(x),$$

where A_v is obtained from A by removing the v-th row and column.

In other words, r_{vv} is the characteristic polynomial of $G\setminus\{v\}$. In particular, it follows that ϱ_{vv} consists of all factors of the characteristic polynomial of A which are not contained in the characteristic polynomial of A_v . Furthermore, the previously described approach can be generalized to obtain that ϱ_{vv} is the characteristic polynomial of $A|_{Z(e_v,A)}$.

If $u \neq v$, it gets more complicated. We say $p \in V^{k+1}$ is a simple path of length k, if $p = (v_1, \ldots, v_{k+1})$, such that the v_i are pairwise unequal and $\{v_i, v_{i+1}\} \in E$ for all $i = 1, \ldots, k$. In particular, the simple paths of length zero are exactly the nodes of G and the simple paths of length one are its edges (where each edge gives rise to two paths of length one). For nodes $u, v \in V$, let P_{uv} be the (finite) set of simple paths starting in u and ending in v.

Claim 2.4. Let G be an undirected graph with adjacency matrix A, let $u, v \in V$. Then it holds, that

$$r_{uv}(x) = \sum_{p \in P_{uv}} \chi_{G \setminus p}(x).$$

Note, that this is a generalization of the previous Claim 2.3, since $P_{vv} = \{(v)\}$. Using that $r_G = \sum_{u,v \in V} r_{uv}$, we get the following equation:

$$r_G(x) = \sum_{p \subseteq G \text{ simple path}} \chi_{G \setminus p}(x).$$

Therefore, the recurrence polynomial ϱ_G consists of all factors of the characteristic polynomial, which do not divide this sum.

Remark 2.5. This is particularly interesting in the case when G is a tree, due to the fact that for every pair of nodes u, v there exists exactly one simple path connecting these nodes. Hence, the sum r_{uv} consists of only one characteristic polynomial of the induced subgraph of G containing all nodes outside this unique path.

Figure 1: Every local recurrence polynomial is a proper divisor of the minimal polynomial.

Corollary 2.6. The recurrence polynomial for the sequence of closed walks on G is equal to its minimal polynomial.

Proof. Let the sequence of closed walks on G be denoted by w_r^{cl} and let $r_{cl}(x)$ be the image of $w^{cl}(x)$ in $\mathbb{Z}[x]/_{\chi_G(x)}$. Then it holds that

$$r_{cl}(x) = \sum_{v \in V} r_{vv}(x) = \sum_{v \in V} \chi_{A_v}(x) = \chi'_G(x).$$

Obviously, $\frac{\chi_G(x)}{\gcd(\chi_G(x),\chi'_G(x))}$ equals the minimal polynomial of G.

Corollary 2.7. Let d be the minimal degree among the degrees of the factors of the characteristic polynomial of G. If G contains two nodes with (shortest path) distance n-d, then the characteristic polynomial of G equals its minimal polynomial.

Indeed, if (u, v) is a pair of nodes with distance n - d, then the local residual r_{uv} has degree d - 1 (since the shortest path connecting u and v contains n - d + 1 nodes) and can therefore not contain a factor of χ_G . Hence, the local recurrence polynomial ϱ_{uv} is equal to χ_G . But since ϱ_{uv} divides the minimal polynomial of G, they have to be equal.

Remark 2.8. The local recurrence polynomials ϱ_{uv} are always a factor of the minimal polynomial of G. However, ϱ_{uv} can be a multiple of ϱ_G , a factor of ϱ_G or neither of those. This can be seen for example in the path P_4 on five

vertices. It holds

$$\varrho_{G}(x) = x(x^{2} - 3),$$

$$\varrho_{1,5}(x) = x(x - 1)(x + 1)(x^{2} - 3) = \chi_{G}(x),$$

$$\varrho_{1,3}(x) = x(x^{2} - 3),$$

$$\varrho_{2,3}(x) = x^{2} - 3,$$

$$\varrho_{2,4}(x) = (x - 1)(x + 1)(x^{2} - 3)$$

In general however, we can make no statement about the local recurrence polynomials. There exist graphs where every local recurrence polynomial is a proper divisor of the minimal polynomial of G (see Figure 1). On the other hand, there exist graphs where every local recurrence polynomial is equal to χ_G , while ϱ_G is a proper divisor of the characteristic polynomial (e.g. the path P_3).

Proof. Proof of Claim 2.4.

Rough idea: First use that ϱ_{uu} is equal to the characteristic polynomial of A restricted to $Z(e_u, A)$, to show the claim for closed walks.

Afterwards: Every walk from u to v can (uniquely) be decomposed as $(v_0 = u, C_0, v_1, C_1, \dots, v_{n-1}, C_{n-1}, v_n = v, C_n)$, where $(u, v_1, \dots, v_{n-1}, v)$ is a simple path and every C_i is a closed walk on v_i not passing through any v_j for j < i. This should lead to the desired result.

Corollary 2.9. Let G be an undirected graph, $u \in V$, let $d := \max_{v \in V} (dist(u, v))$. Then the local recurrence polynomial ϱ_{uu} has degree at least d + 1.

Proof. Recall that ϱ_{uu} is the characteristic polynomial of $A|_{Z(e_u,A)}$. Since $(A^i e_u)_v = 0$ for all i < d, but $(A^d e_u)_v > 0$, the vector $A^d e_u$ is linearly independent of all $A^i e_u$ for all i < d. Hence, $\deg(\varrho_{uu}) = \dim(Z(e_u,A)) \ge d+1$.

Corollary 2.10. Let G be an undirected graph, $u, v \in V$. Then ϱ_{uv} is a divisor of ϱ_{uu} .

Proof. Let $\varrho_{uu} = x^d - \sum_{i=0}^{d-1} \beta_i x^i$. Then it holds that

$$A^k e_u = \sum_{i=k-d}^{k-1} \beta_i A^i e_u$$

for all $k \geq d$. In particular, this implies

$$w_k^{uv} = \langle e_u, A^d e_v \rangle = \sum_{i=k-d}^{k-1} \beta_i \langle e_u, A^i e_v \rangle = \sum_{i=k-d}^{k-1} \beta_i w_i^{uv}$$

and hence, ϱ_{uu} is a characteristic polynomial for w_r^{uv} as desired.

Unfortunately, in general ϱ_{uv} is a proper divisor of the greatest common divisor of ϱ_{uu} and ϱ_{vv} .

2.3 A collection of semi-useful equations

This section holds a collection of equations which could possibly later be of some use.

Let G = (V, E) be again an undirected graph with adjacency matrix A. Denote its characteristic polynomial by $\chi_G(x)$ and define the quotient ring $B_G := \mathbb{Z}[x]/_{\chi_G(x)}$.

Recall, that we are interested in computing the polynomials $r_{uv}(x) \in \mathbb{Z}[x]$ for $u, v \in V$. Observe, that for our application it suffices to compute the image of the polynomials $r_{uv}(x)$ in the quotient ring B_G . This is due to the fact, that the recurrence polynomial consists of exactly those factors of the characteristic polynomial, which do not divide $r_G(x)$. Furthermore, a factor of χ_G divides r_G if and only if it divides the image of r_G in B_G .

The following equations hold inside the quotient ring B_G :

- 1. For all $u, v \in V$: $\sum_{w \in N(u)} r_{wv}(x) = x \cdot r_{uv}(x)$. In other words, the costly matrix multiplication by A on a \mathbb{Z}^n -level can be replaced by a simple multiplication by x on the B_G -level.
- 2. $\sum_{\{u,v\}\in E} r_{uv}(x) = x \cdot \chi'_G(x)$.
- 3. $\sum_{u,v \in V} \deg(u) r_{uv}(x) = x \cdot r_G(x).$
- 4. $r_{uv}(x)^2 = r_{uu}(x) \cdot r_{vv}(x)$.
- 5. $\sum_{u,v \in V} r_{uv}(x)^2 = \chi'_G(x)^2$.

The following equations hold absolutely (e.g. not only in B_G):

- 1. $r'_G(x) = \sum_{v \in V} r_{G \setminus \{v\}}(x)$.
- 2. $r_G(x) = (-1)^{n-1} r_{G^c}(-1-x)$.
- 3. $r_{vv}(x) + (-1)^{n-1} r_{vv}^c(-1-x) = r_{G\setminus\{v\}}(x) = \sum_{u\neq v} r_{uv}(x) + (-1)^{n-1} r_{uv}^c(-1-x)$ for all $v \in V$.

Here, r^c denotes the corresponding polynomial of G^c .

4. The number of length two walks in G and G^c differs exactly by

$$w_G^2 - w_{G^c}^2 = (n-1)(4m - n(n-1)).$$

References

- [1] D. M. Cvetkovic et al. Spectra of graphs. theory and application. 1980.
- [2] M. Hall. An isomorphism between linear recurring sequences and algebraic rings. *Transactions of the American Mathematical Society*, 44(2):196–218, 1938.