# Homogeneous Multigrid for the Hybridizable Discontinuous Galekrin Method

Final Project for 16.930 – Spring 2023

Aditya Karthik Saravanakumar

### Linear Systems

$$\underline{\underline{A}}\,\underline{x} = \underline{b}$$

- Linear systems of equations are ubiquitous in computational science and often arise from finite discretizations of partials differential equations.
- Consequentially, the ability to efficiently solve these systems is of great importance, and research in this direction has become a fundamental part of linear algebra in modern times.
- Techniques used to solve linear systems can be classified as <u>direct and iterative</u> <u>methods</u>.
- Most direct methods [1] can be interpreted as variations of the famous Gauss Elimination algorithm, which generates exact solutions at the cost of  $O(n^3)$  for a dense  $n \times n$  matrix.
- However, the matrices that arise from the discretization of physical systems often possess special structures that can be utilized to devise more efficient algorithms

### Multigrid Algorithm

$$\underline{\underline{A}} \underline{x} = \underline{b}$$

- Developed over the last 25 years Introduced in the 1970s [1,2]
- State of the art for linear <u>elliptic</u> problems
- Possibility of solving a linear system in a <u>fixed number of iterations</u>
- Good introduction to multigrid methods Bramble Multigrid Methods 2019

#### What's a smoother?

An iterative method is called a smoother if the <u>high frequency</u> components of the error decay faster than <u>low frequency</u> components

Examples: Gauss Seidel, Weighted Jacobi, Successive Overrelaxation (SOR)

#### **Fundamental Ideas**

- High frequency components of the error are removed in a few iterations
- Switching to a coarse grid makes the previously low frequency components, high-frequency components ("smooth becomes rough")

### Two-Grid Algorithm

#### **Key Ingredients:**

- Smoother
- Restriction Operator
- Prolongation Operator



$$\underline{\underline{A}}\,\underline{x} - \underline{\underline{A}}\,\underline{x}^{est} = \underline{b} - \underline{\underline{A}}\,\underline{x}^{est} \quad \Longrightarrow \quad \underline{\underline{A}}\,(\underline{x} - \underline{x}^{est}) = \underline{\underline{A}}\,\underline{e} = \underline{r}$$

#### **Algorithm** One cycle of a two-grid algorithm

- 1: Choose an initial guess  $\underline{x}_{h}^{0}$
- 2: Relax  $\nu_1$  iterations of  $\underline{\underline{A}}_h \underline{x}_h^0 = \underline{b}_h \to \underline{x}_h^{1/3}$
- 3: Compute the residual as  $\underline{r}_h = \underline{b}_h \underline{\underline{A}}_h \underline{x}_h^{1/3}$
- 4: Restrict residual to coarse grid as  $\underline{r}_{2h} = \underline{\underline{I}}_{2h}^h \underline{r}_h$ 5: Compute coarse grid error as  $\underline{\underline{A}}_{2h} \underline{e}_{2h} = \underline{r}_{2h} \to \underline{e}_{2h}$
- 6: Prolongate error to fine grid as  $\underline{e}_h = \underline{\underline{I}}_h^{2h} \underline{e}_{2h}$
- 7: Correct  $\underline{x}_{h}^{2/3} = \underline{x}_{h}^{1/3} + \underline{e}_{h}$
- 8: Relax  $\nu_2$  iterations of  $\underline{\underline{A}}_h \underline{x}_h^{2/3} = \underline{b}_h \to \underline{x}_h^1$

- ▶ Pre-smoothing iterations
  - ▶ Coarse grid correction

▶ Post-smoothing iterations

## V-Cycle Algorithm

#### **Key Ingredients:**

- Smoother
- Restriction Operator
- Prolongation Operator



#### Algorithm 4.2 One cycle of a V-cycle algorithm

- 1: Choose an initial guess  $\underline{x}_h^0$
- 2: Relax  $\nu_1$  iterations of  $\underline{\underline{A}}_h \underline{x}_h^0 = \underline{b}_h \to \underline{x}_h^{1/3}$
- 3: Compute the residual as  $\underline{r}_h = \underline{b}_h \underline{\underline{A}}_h \underline{x}_h^{1/3}$
- 4: Restrict residual to coarse grid as  $\underline{r}_{2h} = \underline{\underline{I}}_{2h}^h \underline{r}_h$
- 5: if h corresponds to coarsest grid then
- $\underline{x}_{h}^{2/3} = \underline{x}_{h}^{1/3}$
- Skip to step 13
- 8: **else**
- Compute coarse grid error as  $VG_h(0,\underline{r}_{2h}) \to \underline{e}_{2h}$ Prolongate error to fine grid as  $\underline{e}_h = \underline{\underline{I}}_h^{2h} \underline{e}_{2h}$

 $\triangleright VG_h(\underline{x}_h^n,\underline{b}_h) \rightarrow \underline{x}_h^{n+1}$ 

▶ Pre-smoothing iterations

- 10:
- Correct  $\underline{x}_h^{2/3} = \underline{x}_h^{1/3} + \underline{e}_h$ 11:
- 12: end if
- 13: Relax  $\nu_2$  iterations of  $\underline{\underline{A}}_h \underline{x}_h^{2/3} = \underline{b}_h \to \underline{x}_h^1$ 
  - $\triangleright$  Post-smoothing iterations =0

# Multigrid for HDG

#### Difficulty with HDG:

- Numerical trace defined on the edge space
- Finer meshes have edges that are not refinements of the coarse mesh

#### Different approaches to resolve issue

Two-level multigrid scheme with a coarse space that consists of a piece-wise linear conforming (CG) FEM space [1,2]

$$u_{\ell} = \mathcal{U}_{\ell}\lambda + \mathcal{U}_{\ell}f,$$

Homogeneous HDG multigrid proposed in [3]

$$q_{\ell} = \mathcal{Q}_{\ell} \lambda + \mathcal{Q}_{\ell} f$$

$$\begin{array}{c|c}
M_{\ell} & V_{\ell}^{c} \\
\downarrow I_{\ell} & I_{\ell}^{c} \\
M_{\ell-1} & V_{\ell-1}^{c}
\end{array}$$

$$M_{\ell} \longleftarrow V_{\ell}^{c}$$

$$I_{\ell} \qquad I_{\ell}^{c}$$

$$U_{\ell-1}^{c} \longrightarrow V_{\ell-1}^{c}$$

$$I_{\ell}^{c} \qquad I_{\ell}^{c}$$

$$I_{\ell}^{c} \qquad I_{\ell}^{c} \qquad I_{\ell}^{c}$$

$$I_{\ell}^{c} \qquad I_{\ell}^{c} \qquad I_{\ell}^{c}$$

$$I_{\ell}^{c} \qquad I_{\ell}^{c} \qquad I_{\ell}^{c$$

### Injection and Restriction



As a sanity check, here we solve the equation, prolong the numerical trace to a finer mesh and reconstruct uh on this grid. Then, we restrict the numerical trace from the finer grid back to the coarser grid and reconstruct the uh.

### Numerical Results

<u>Test Case</u>: Poisson equation with f = 1 and homogeneous boundary conditions

| Mesh level |            | h = 0.354 | h = 0.177 | h = 0.088 | h = 0.044 |
|------------|------------|-----------|-----------|-----------|-----------|
| p=1        | $\tau = 1$ | 82        | 308       | 1211      | 4816      |
| p=2        | $\tau = 1$ | 113       | 435       | 1721      | 6860      |
| p=3        | $\tau = 1$ | 147       | 581       | 2315      | 9249      |
| p=4        | $\tau = 1$ | 186       | 722       | 2863      | 11422     |

Table 2: Number of iterations when using a Gauss Seidel iterative method

The number of iterations until convergence shoots up rapidly with resolution



### Numerical Results

<u>Test Case</u>: Poisson equation with f = 1 and homogeneous boundary conditions

We see that the number of iterations until convergence is almost constant for our implementation

| $C_{11}$ | rre | nt | W | 04 | /ح |
|----------|-----|----|---|----|----|

| Smo        | other                |                       | Two smoot | thing steps           |     | Four smoothing steps |           |                       |    |  |
|------------|----------------------|-----------------------|-----------|-----------------------|-----|----------------------|-----------|-----------------------|----|--|
| Mesh level |                      | h = 0.354 $h = 0.177$ |           | h = 0.088 $h = 0.044$ |     | h = 0.354            | h = 0.177 | h = 0.177 $h = 0.088$ |    |  |
| n = 1      | $\tau = \frac{1}{h}$ | 16                    | 34        | 57                    | 69  | 10                   | 25        | 48                    | 65 |  |
| p = 1      | $\tau = 1$           | 16                    | 33        | 56                    | 69  | 9                    | 24        | 47                    | 64 |  |
| n - 2      | $\tau = \frac{1}{h}$ | 29                    | 39        | 51                    | 56  | 12                   | 27        | 42                    | 48 |  |
| p=2        | $\tau = 1$           | 31                    | 39        | 51                    | 56  | 12                   | 27        | 41                    | 48 |  |
| n - 2      | $\tau = \frac{1}{h}$ | 54                    | 57        | 62                    | 69  | 14                   | 24        | 29                    | 31 |  |
| p=3        | $\tau = 1$           | 62                    | 75        | 96                    | 153 | 14                   | 23        | 29                    | 31 |  |
| n = 4      | $\tau = \frac{1}{h}$ | 90                    | 82        | 77                    | 72  | 18                   | 35        | 48                    | 54 |  |
| p=4        | $\tau = 1$           | 105                   | 99        | 95                    | 90  | 18                   | 35        | 48                    | 54 |  |

Table 1: Number of iterations with two and four smoothing steps as a function of polynomial order, grid size and stability parameter value

Table 1 Numbers of iterations with one and two smoothing steps for  $f \equiv 1$ . The polynomial degree of the HDG method is p

Lu et al 2021

| Smoother<br>Mesh level |                         |    | One step |    |    |    |    | Two steps |    |    |    |    |    |
|------------------------|-------------------------|----|----------|----|----|----|----|-----------|----|----|----|----|----|
|                        |                         | 1  | 2        | 3  | 4  | 5  | 6  | 1         | 2  | 3  | 4  | 5  | 6  |
| p = 1                  | $\tau = \frac{1}{h}$    | 33 | 39       | 38 | 36 | 35 | 35 | 17        | 20 | 19 | 19 | 18 | 18 |
|                        | $\tau = 1$              | 33 | 39       | 36 | 35 | 34 | 33 | 17        | 19 | 18 | 18 | 17 | 17 |
| p=2                    | $\tau = \frac{1}{L}$    | 13 | 12       | 11 | 10 | 10 | 09 | 08        | 07 | 07 | 06 | 06 | 05 |
| •                      | $\tau = \overset{n}{1}$ | 13 | 12       | 11 | 10 | 10 | 09 | 08        | 07 | 07 | 06 | 06 | 05 |
| p = 3                  | $\tau = \frac{1}{L}$    | 24 | 25       | 25 | 25 | 25 | 25 | 15        | 15 | 15 | 15 | 15 | 15 |
|                        | $\tau = \overset{n}{1}$ | 24 | 25       | 25 | 25 | 25 | 25 | 15        | 15 | 15 | 15 | 15 | 15 |