Corrigé proposé par :

M. Afekir - École Royale de l'Air

CPGE Marrakech

cpgeafek@yahoo.fr

Conduction électrique sous champ magnétique

Première partie Sonde à effet hall

1.1. Vecteur courant \overrightarrow{j}

$$\overrightarrow{j} = j \overrightarrow{u}_x$$
 et $I_o = \int \overrightarrow{j} . \overrightarrow{dS} = jab$ \Rightarrow $\overrightarrow{j} = \frac{I_o}{ab} \overrightarrow{u}_x$

- 1.2. Charge q animée d'une vitesse $\overrightarrow{v} = v \overrightarrow{u}_x$
 - 1.2.1. Force de Lorentz :

$$\overrightarrow{f}_L = q \overrightarrow{v} \wedge \overrightarrow{B} \quad \Rightarrow \qquad \overrightarrow{f}_L = -qvB\overrightarrow{u}_y$$

1.2.2. En absence du champ magnétostatique \overrightarrow{B} , un porteur mobile de charge q est soumis à la seule force électrostatique $\overrightarrow{f}_e = q\overrightarrow{E}$ qui est à l'origine du courant électrique I_0 .

En présence du champ magnétostatique $\overrightarrow{B}=B\overrightarrow{u}_z$, un porteur mobile de charge q est soumis à la force magnétique $\overrightarrow{f}_L=-qvB\overrightarrow{u}_y$ (q et v étant du même signe Cf. 1.2.1.) qui infléchit sa trajectoire vers la face de la plaque :

- \diamond située à droite du sens de I_0 pour $q<0\implies$ accumulation de charges négatives sur cette face et défaut de charges sur la face opposée.
- \diamond située à gauche du sens de I_0 pour $q>0 \implies$ accumulation de charges négatives sur cette face et défaut de charges sur la face opposée.

1.2.3. Champ hall:

On en déduit du résultat de la question précédente 1.2.2. les faits suivants :

 \diamond Apparition d'un champ électrostatique (champ hall noté \overrightarrow{E}_H) orienté vers la face située à droite du sens de I_0 (pour q<0) ou vers la face située à gauche du sens de I_0 (pour q>0). Dans les deux cas, un porteur de charge q est soumis à l'action de la force $\overrightarrow{f}_H=q\overrightarrow{E}_H$ (de direction l'axe Oy).

 \diamond Le régime permanent (au bout <u>d'un certain temps</u>) est atteint lorsque le champs hall atteint une valeur suffisante pour que $\overrightarrow{f}_H + \overrightarrow{f}_L = \overrightarrow{0}$; les lignes de courant redeviennent parallèles au champ \overrightarrow{E}_H , d'où :

$$\overrightarrow{f}_L = -q \, \overrightarrow{E}_h \quad \Rightarrow \qquad \overrightarrow{E}_h = -\frac{\overrightarrow{f}_L}{q} = v B \, \overrightarrow{u}_y$$

1.2.4. Tension Hall

$$V_C - V_A = \int \overrightarrow{E}_h . \overrightarrow{dy} = vBa \quad \Rightarrow \quad \boxed{V_h = vaB}$$

La tension de hall est positives et indépendante de la charge q.

1.2.5. Résistance de hall

$$I_o = jab$$
 et $j = nqv$ \Rightarrow $V_h = \frac{BI_o}{nqb} = R_h \frac{BI_o}{b}$

- 1.3. Applications
 - ${f 1.3.1}$. La plaque ${\cal P}$ est en cuivre métallique
 - 1.3.1.1. Densité particulaire

$$n = \frac{mN_A}{MV} = \rho \frac{N_A}{M} = 82,40 \times 10^{27} \, m^{-3}$$

1.3.1.2. Résistance hall

$$R_h = \frac{1}{nq} = -0.76 \times 10^{-10} \, m^3 A^{-1} s^{-1}$$

1.3.1.3. Tension hall

$$V_h = -0.76 \times 10^{-6} \, kgm^2 A^{-1} s^{-3}$$

- **1.3.2**. Les sondes de hall utilisées au laboratoire pour mesurer les champs magnétiques sont constituées d'un matériau semi-conducteur.
- 1.3.2.1. Dans un semi-conducteur et à température usuelle, la densité particulaire des porteurs majoritaires (électrons ou positrons "trous") est de l'ordre de $10^{22}\,m^{-3}$: plus faible que dans un conducteur, donc l'effet hall est plus important.
- 1.3.2.2. Dans la pratique, on mesure une tension (tension hall). Cette dernière étant proportionnelle au champ B, simple étalonnage (détermination du coefficient de proportionnalité) permet, donc, l'accès à B. exemple : utilisation en teslamètre, appelé aussi sonde à effet hall.

Deuxième partie loi d'ohm anisotrope

- **2.1**. τ est homogène à un temps; son unité est, donc, la seconde (s).
- 2.2.

$$\overrightarrow{j} = nq\overrightarrow{v}$$

2.**3**. Deuxième loi de Newton

$$m\overrightarrow{d} = m\frac{d\overrightarrow{v}}{dt} = q\left(\overrightarrow{E} + \overrightarrow{v} \wedge \overrightarrow{B}\right) - \frac{m}{\tau}\overrightarrow{v} \qquad \text{et} \qquad \overrightarrow{v} = \frac{1}{nq}\overrightarrow{j}$$

En régime permanent :

$$q\left(\overrightarrow{E}+\overrightarrow{v}\wedge\overrightarrow{B}\right)-\frac{m}{\tau}\overrightarrow{v}=q\left(\overrightarrow{E}+\frac{1}{nq}\overrightarrow{j}\wedge\overrightarrow{B}\right)-\frac{m}{nq\tau}\overrightarrow{j}=0$$
 ou:
$$\overrightarrow{E}=\frac{m}{nq^2\tau}\overrightarrow{j}+\frac{1}{nq}\overrightarrow{B}\wedge\overrightarrow{j}$$
 soit:
$$\overrightarrow{E}=\frac{1}{\sigma}\overrightarrow{j}+R_h\overrightarrow{B}\wedge\overrightarrow{j}$$
 (2) avec
$$\sigma=n\frac{q^2\tau}{m} \quad \text{et} \quad R_h=\frac{1}{nq}$$

- L'axe Oz est choisi tel que $\overrightarrow{B} = B\overrightarrow{u}_z$ **2**.**4**.
 - **2.4.1**. Projection de l'équation vectorielle (2)

$$\begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = \frac{1}{\sigma} \begin{pmatrix} j_x \\ j_y \\ j_z \end{pmatrix} + R_h \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix} \wedge \begin{pmatrix} j_x \\ j_y \\ j_z \end{pmatrix} = \begin{pmatrix} \frac{j_x}{\sigma} - R_h B j_y \\ \frac{j_y}{\sigma} + R_h B j_x \\ \frac{j_z}{\sigma} \end{pmatrix}$$

Soient:
$$\begin{cases} j_x = \frac{\sigma E_y - \sigma^2 R_h B E_x}{1 + \sigma^2 R_h^2 B^2} \\ j_y = \frac{\sigma E_x + \sigma^2 R_h B E_y}{1 + \sigma^2 R_h^2 B^2} \\ j_z = \sigma E_z \end{cases} \quad \text{ou}: \quad \begin{cases} j_x = \frac{\sigma}{1 + \tau^2 \omega_c^2} \left(E_y - \tau \omega_c E_x \right) \\ j_y = \frac{\sigma}{1 + \tau^2 \omega_c^2} \left(E_x + \tau \omega_c E_y \right) \\ j_z = \sigma E_z \end{cases}$$

2.4.2. $\overrightarrow{j} = j_x \overrightarrow{u}_x + j_y \overrightarrow{u}_y + j_z \overrightarrow{u}_z$

D'où :
$$\overrightarrow{j} = \overline{\overline{\sigma}} \overrightarrow{E}$$
 avec :

$$\overline{\overline{\sigma}} = \frac{\sigma}{1 + \tau^2 \omega_c^2} \begin{pmatrix} 1 & \tau \omega_c & 0 \\ -\tau \omega_c & 1 & 0 \\ 0 & 0 & 1 + \tau^2 \omega_c^2 \end{pmatrix}$$
(3)

- **2.4.3**. les vecteurs \overrightarrow{j} et \overrightarrow{E} ne sont pas collinéaires \Longrightarrow le milieu est anisotrope.
- Oui, le milieu reste linéaire en présence du champ magnétique \overrightarrow{B} . 2.4.4.
- En absence du champ magnétique \overrightarrow{B} , l'équation (3) s'écrit : 2.4.5.

$$\overrightarrow{j} = \sigma \overrightarrow{E}$$

On retrouve, ainsi, la loi d'ohm pur un milieu isotrope.

Conclusion: les phénomènes liés à l'anisotropie précédente (Cf. 2.4.3.) sont plus importants dans les semi-conducteurs et ils dépendent de la géométrie du système étudié!!

Troisième partie Effet corbino

- **3.1.** Cas d'un champ magnétique B = 0
 - **3.1.1**. Le conducteur compris entre les deux cylindres n'est pas en équilibre électrostatique.
 - **3.1.2**. En M le champ $\overrightarrow{E} = \overrightarrow{E}(r, \theta, z)$

<u>Invariance</u>:

 \mathcal{C}_a et \mathcal{C}_b sont supposés suffisamment longs, la distribution entre les deux cylindres est, donc, invariante par translation le long de l'axe $Oz \Rightarrow E$ indépendant de la coordonnée axiale z.

$$\overrightarrow{E} = \overrightarrow{E}(r, \theta)$$

la distribution entre les deux cylindres est <u>invariante par rotation</u> autour de l'axe $Oz \Rightarrow \overrightarrow{E}$ indépendant de la coordonnée orthoradiale θ .

$$\overrightarrow{E} = \overrightarrow{E}(r)$$

Symétrie:

Le plan $(\overrightarrow{u}_r, \overrightarrow{u}_z)$ est un plan de symétrie pour la distribution entre les deux cylindres $\Rightarrow \overrightarrow{E} \in$ à ce plan

Le plan $(\overrightarrow{u}_r, \overrightarrow{u}_\theta)$ est un plan de symétrie pour la distribution entre les deux cylindres $\Rightarrow \overrightarrow{E} \in$ à ce plan

Le champ \overrightarrow{E} appartient, donc, à l'intersection des deux plan, soit : \overrightarrow{u}_r

Soit:
$$\overrightarrow{E} = E(r)\overrightarrow{u}_r$$

3.1.3. Expression de E(r)

Théorème de Gauss :
$$\iint_{(\Sigma)} \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{q_{\text{intérieur à }(\Sigma)}}{\varepsilon_0} = \frac{Q_a}{\varepsilon_0}$$

 (Σ) surface de gauss : cylindre de section $\,\pi r^2\, {\rm et}$ de hauteur h

3.1.4. En r = a

$$E_a = \frac{\rho_a^s}{\varepsilon_0}$$

3.1.5. La circulation du champ \overrightarrow{E} :

$$\int_{\mathcal{C}_a}^{\mathcal{C}_b} \overrightarrow{E}.\overrightarrow{dr} = \int_a^b E(r)dr = V_a - V_b \qquad \Rightarrow \qquad \frac{\rho_a^s a}{\varepsilon_{\rm o}} \ln \left(\frac{b}{a}\right) = V_a - V = V_{ab}$$

D'où :
$$\rho_a^s = \frac{\varepsilon_{\mathsf{o}} V_{ab}}{a \ln \left(\frac{b}{a}\right)}$$

3.1.6. Champ \overrightarrow{E} :

$$\overrightarrow{E} = \frac{\varepsilon_0 V_{ab}}{r \ln\left(\frac{b}{a}\right)} \overrightarrow{u}_r$$

3.1.7. En
$$r = b$$

$$E_b = \frac{\varepsilon_o V_{ab}}{b \ln \left(\frac{b}{a}\right)} = \frac{\rho_a^s a}{\varepsilon_o b}$$

Les deux cylindres sont en influence totale $\implies Q_a = -Q_b$ ou $\rho_a^s a = \rho_b^s b$

Soit:
$$E_b = -\frac{\rho_b^s}{\varepsilon_0}$$

3.1.8.

Les lignes de courant sont des droites radiales.

 ${f 3.1.9}.$ Intensité du courant électrique I_o

$$I_o = \iint_{(C_h)} \overrightarrow{j} \cdot \overrightarrow{dS}$$
 avec : $\overrightarrow{j} = \sigma \overrightarrow{E} = \frac{\sigma V_{ab}}{r \ln\left(\frac{b}{a}\right)} \overrightarrow{u}_r \Rightarrow I_o = \frac{2\pi h \sigma V_{ab}}{\ln\left(\frac{b}{a}\right)}$

3.1.10. Résistance électrique R_o

$$R_o = \frac{V_a - V_b}{I_o} = \frac{V_{ab}}{I_o} \Rightarrow \qquad R_o = \frac{1}{2\pi h \sigma} \ln\left(\frac{b}{a}\right)$$

 ${f 3.2.}$ Étude du milieu en présence d'un champ magnétique uniforme et permanent $\overrightarrow{B}=B\overrightarrow{u}_z$

3.2.1.

$$\overrightarrow{E} = \frac{1}{\sigma} \overrightarrow{j} + R_h \overrightarrow{B} \wedge \overrightarrow{j}$$
 Relation vectorielle de chasle

$$E^2 + \frac{j^2}{\sigma^2} - 2\frac{jE}{\sigma}\cos\theta_h = R_h B^2 j^2$$

3.2.2.

$$\tan \theta_h = \sigma \frac{||R_h \overrightarrow{B} \wedge \overrightarrow{j}||}{||\overrightarrow{j}||} = \sigma R_h B$$

3.2.3. Projection de l'équation vectorielle (2) dans la base cylindrique $(\overrightarrow{u}_r, \overrightarrow{u}_\theta, \overrightarrow{u}_z)$

$$\begin{pmatrix} E(r) \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} j_r \\ j_\theta \\ j_z \end{pmatrix} + R_h B \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} j_r \\ j_\theta \\ j_z \end{pmatrix} = \frac{1}{\sigma} \begin{pmatrix} j_r - \sigma R_h B j_\theta \\ j_\theta + \sigma R_h B j_r \\ j_z \end{pmatrix} \text{ ou } \begin{cases} j_r = \sigma E(r) + \sigma R_h B j_\theta \\ j_\theta = -\sigma R_h B j_r \\ j_z = 0 \end{cases}$$

L'équation de la ligne de courant : $\overrightarrow{j} \wedge \overrightarrow{dr} = \overrightarrow{0}$

$$\mathrm{donc}: rj_r d\theta = j_\theta dr \ \Rightarrow \ \frac{dr}{r} = \frac{j_r}{j_\theta} d\theta = -\frac{1}{R_b B \sigma} d\theta \quad \Rightarrow \quad \ln r \left(\theta\right) = -\frac{1}{R_b B \sigma} \theta + k$$

La ligne de courant passe par le point de coordonnées (r_o,θ_o,z_o) donc : $k=\ln r\left(\theta_o\right)+rac{1}{R_hB\sigma}\theta_o$

soit:
$$r(\theta) = r_o \exp[f(\theta)]$$
 (4) avec $f(\theta) = \frac{1}{R_h B \sigma} (\theta_o - \theta)$

En absence du champ $(\overrightarrow{B} = \overrightarrow{0})$, $\overrightarrow{j} = j_r \overrightarrow{u}_r = \sigma E(r) \overrightarrow{u}_r$ et $r \to \infty$: les lignes de courant sont radiales.

<u>Commentaire</u>: En présence du champ \overrightarrow{B} , les ligne de courant sont des spirales logarithmique avec le terme $-1/R_hB\sigma$ est positif car $R_h=-1/ne<0$. Les porteurs de charges parcourent, donc, une distance plus grande en présence du champ \overrightarrow{B} et les spirales sont d'autant plus (incurvées) que le champ \overrightarrow{B} est plus intense.

3.2.4. Équation (2)

$$\overrightarrow{E} = \frac{1}{\sigma} \overrightarrow{j} + R_h \overrightarrow{B} \wedge \overrightarrow{j}$$

3.2.4.1. D (2) on a :

$$\sigma\overrightarrow{E} = \overrightarrow{j} + \sigma R_h \overrightarrow{B} \wedge \overrightarrow{j} \ \Rightarrow \ (\sigma E)^2 = j^2 + (\sigma R_h B j)^2 \ \text{ou} \ j_o^2 = j^2 \left(1 + \sigma^2 B^2 R_h^2\right)$$

soit : $j = \frac{j_o}{\sqrt{1 + \sigma^2 B^2 R_h^2}}$

3.2.4.2. Expression de j_r

$$j_r = \overrightarrow{j} \cdot \overrightarrow{u}_r = j \cos \theta_h \quad \text{avec} \quad \cos \theta_h = \frac{j}{\sigma E(r)} = \frac{j}{j_o} = \frac{1}{\sqrt{1 + \sigma^2 B^2 R_h^2}}$$

soit :
$$j_r = \frac{j_o}{1 + \sigma^2 B^2 R_h^2}$$

- **3.2.5**. Intensité de courant I traversant la section cylindrique C_h
 - 3.2.5.1.

$$I = \iint_{(C_h)} \overrightarrow{j} \cdot \overrightarrow{dS} = 2\pi r h j_r = \frac{2\pi r h j_o}{1 + \sigma^2 B^2 R_h^2} \Rightarrow \boxed{I = \frac{I_o}{1 + \sigma^2 B^2 R_h^2}}$$

3.2.5.2. Résistance électrique R en présence du champ magnétique \overrightarrow{B} : Magnétorésistance

$$I = \frac{I_o}{1 + \sigma^2 B^2 R_h^2} = \frac{V_{ab}}{R_o \left(1 + \sigma^2 B^2 R_h^2 \right)} = \frac{V_{ab}}{R}$$

soit:
$$R = R_o \left(1 + \sigma^2 B^2 R_h^2 \right)$$

3.2.5.3. Variation relative de résistance

$$\delta = \frac{R - R_o}{R_o} = R_h^2 B^2 \sigma^2$$

- 3.2.5.4. !!!!
- 3.2.5.5. Application numérique : (conducteur)

$$\delta = 1.76 \times 10^{-5}$$

La valeur de δ est faible, cependant elle est mesurable!

3.2.5.6. Application numérique : (semi-conducteur)

$$\delta = 4.9 \times 10^{-1}$$

Dans le cas d'un semi-conducteur, l'effet de magnétorésistance est considérable comparé à un conducteur!