Palavras-c Density forecasting time series

Autores Ano	Nome do a Categorias Resumo Comentáric Pontos em comum com o nosso			
Carlier, Ch	2016 Vector Quantile R Definição da RQ ConcEstimação de regressão quantilic			
Castillo, B€	2016 On-line qu≀Wind PoweUtilização do ReproduPenalização na função objetivo. ☐			
Swift e Jan	1991 Forecasting Non-Normal Time Series			
Takeuchi e	2016 Nonparam Nonparam Define e motiva a RQ Motivação da restrição de non-cr			
Haque et a	2014 A Hybrid Ir Wind PoweUtiliza algoritmos comUtilização de RQ para determinal			
Wan et al.	2016 Direct QuaWind PoweUtilização de Redes NUtilização de RQ para determinar			
Bacher et a	2009 Online short-term sola Método simples para ¡Ideia dos modelos horários			
Moller et al	2007 Time-adaptive quantile regression			
Machado ε	2005 Counterfac Quantile Regression			
Bertsimas	2014 Least QuarQuantile Regression, MILP			

a conjunta, em que há mais variáveis explicativas. Fratamento de series de vento

ossing e estimação conjunta de todos os quantis. Utilização de uma função livre com penalização. Ne a distribuição dos erros a distribuição dos erros

lo entanto, nós não utilizamos funções kernel

Autores	Ano	Nome do artigo	QR	Empirical Distribution
Bacher et al	2009	Online short-term solar power forecasting		
Bertsimas e Mazumder	2014	Least Quantile Regression via Modern Optimization	1	l .
Bertsimas et al	2015	Best Subset Selection via a Modern Optimization Lens		
Bosch et al	1995	A convergent algorithm for quantile regression with smoothing splines	1	1
Cai	2002	Regression Quantiles for time series	1	1
Carlier, Chernozhukov, Galichon	2016	Vector Quantile Regression: an optimal transport approach	1	I
Castillo, Bessa et al	2016	On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power	1	l
Ciuperca	2013	Adaptive LASSO model selection in a multiphase quantile regression	1	
Gaglianone e Lima	2012	Canaday ating Danaity Faragast	;	1
Gaglianone et al	2009	Evaluating Value-at-Risk models via Quantile Regression	1	
Haque et al	2014	A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting	1	l
Machado e Mata	2005	Counterfactual decomposition of changes in wage distributions using quantile regression		
Moller et al	2007	Time-adaptive quantile regression	1	l

Swift e Janacek	1991 Forecasting Non-Normal Time Series		
Гакеuchi e Le	2016 Nonparametric Quantile Estimation	1	1
Wan et al.	Direct Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power Generation	1	

Distribution- based TS	Model identification	Energy application	MILP
			1
			1
		1	1
1			
			1
			1
		1	
1			
			1
1			

1		-
		-
1	1	-

Resumo	Pontos em comum com o nosso
Método simples (ARX) para previsão de dados solares online. Propõe normalização dos dados horários.	Ideia dos modelos horários na estimação das séries solares
Resolve o problema de Least Quantile Regression através de otimização MILP	Resolução de um problema de regressão quantílica com uso de MILP
Propõe a utilização de MILP para encontrar o melhor subconjunto	Parte quantílica não- paramétrica. Nossa estimação é diferente
Encontra funções quantílicas não lineares com auxílio de splines cúbicos. A função objetivo é \int_a^b [f"(x)]^2 dx	
Propõe um modelo de TS em que a distribuição do erro \varepsilon_t é estimado através de regressão quantílica. Utiliza como principal motivação problemas em que há heterogeneidade	
Definição da RQ Condicional Multivariada, em que há dependencia entre as variáveis aleatórias que se calculam os quantis	Estimação de regressão quantilica conjunta, em que há mais variáveis explicativas.
Utilização do Reproducing Kernel Hilbert Space. Utiliza-se a norma RKHS para penalização da complexidade da funções quantílica. A função quantílica é um somatório de funções Kernel.	Penalização na função objetivo. Tratamento de series de vento
Adaptive ADALASSO para selecionar variáveis em regressão quantílica. Também introduz a possiblilidade de mudança de modelo	Mesmo setup para seleção de variáveis. Utilização do Adalasso
Foco na estimação e avaliação de quantis específicos, para aplicações de VAR. Propõe novo teste de cobertura	
Utiliza algoritmos como Wavelet e SVM para fornecer previsões pontuais de vento, para em seguida utilizar RQ. A RQ é formada com B-Spline.	Utilização de RQ para determinar a distribuição dos erros

Define e motiva a RQ não-paramétrica. Utiliza o RKHS	Motivação da restrição de non- crossing e estimação conjunta de todos os quantis. Utilização de uma função livre com penalização. No entanto, nós não utilizamos funções kernel
Utilização de Redes Neurais com 2 layers e RQ para fazer previsões probabilisticas de vento	Utilização de RQ para determinar a distribuição dos erros