53.

55. (a) domain: [0,2]; range: [2,3]

(c) domain: [0,2]; range: [0,2]

(e) domain: [-2, 0]; range: [0, 1]

(g) domain: [-2,0]; range: [0,1]

54.

(b) domain: [0,2]; range: [-1,0]

(d) domain: [0,2]; range: [-1,0]

(f) domain: [1, 3]; range: [0, 1]

(h) domain: [-1, 1]; range: [0, 1]

14 Chapter 1 Functions

56. (a) domain: [0,4]; range: [-3,0]

(c) domain: [-4, 0]; range: [0, 3]

(e) domain: [2,4]; range: [-3,0]

(g) domain: [1,5]; range: [-3,0]

- 57. $y = 3x^2 3$
- 59. $y = \frac{1}{2}(1 + \frac{1}{x^2}) = \frac{1}{2} + \frac{1}{2x^2}$
- 61. $y = \sqrt{4x + 1}$
- 63. $y = \sqrt{4 \left(\frac{x}{2}\right)^2} = \frac{1}{2}\sqrt{16 x^2}$
- 65. $y = 1 (3x)^3 = 1 27x^3$

(b) domain: [-4, 0]; range: [0, 3]

(d) domain: [-4, 0]; range: [1, 4]

(f) domain: [-2,2]; range: [-3,0]

(h) domain: [0, 4]; range: [0, 3]

- 58. $y = (2x)^2 1 = 4x^2 1$
- 60. $y = 1 + \frac{1}{(x/3)^2} = 1 + \frac{9}{x^2}$
- 62. $y = 3\sqrt{x+1}$
- 64. $y = \frac{1}{3}\sqrt{4 x^2}$
- 66. $y = 1 \left(\frac{x}{2}\right)^3 = 1 \frac{x^3}{8}$

67. Let $y=-\sqrt{2x+1}=f(x)$ and let $g(x)=x^{1/2}$, $h(x)=\left(x+\frac{1}{2}\right)^{1/2}$, $i(x)=\sqrt{2}\left(x+\frac{1}{2}\right)^{1/2}$, and $j(x)=-\left[\sqrt{2}\left(x+\frac{1}{2}\right)^{1/2}\right]=f(x)$. The graph of h(x) is the graph of g(x) shifted left $\frac{1}{2}$ unit; the graph of i(x) is the graph of h(x) stretched vertically by a factor of $\sqrt{2}$; and the graph of j(x)=f(x) is the graph of i(x) reflected across the x-axis.

69. $y = f(x) = x^3$. Shift f(x) one unit right followed by a shift two units up to get $g(x) = (x - 1)^3 + 2$.

71. Compress the graph of $f(x) = \frac{1}{x}$ horizontally by a factor of 2 to get $g(x) = \frac{1}{2x}$. Then shift g(x) vertically down 1 unit to get $h(x) = \frac{1}{2x} - 1$.

72. Let $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{2}{x^2} + 1 = \frac{1}{\left(\frac{x^2}{2}\right)} + 1$ $= \frac{1}{\left(\frac{x}{\sqrt{2}}\right)^2} + 1 = \frac{1}{\left[\left(\frac{1}{\sqrt{2}}\right)x\right]^2} + 1.$ Since

 $\sqrt{2} \approx 1.4$, we see that the graph of f(x) stretched horizontally by a factor of 1.4 and shifted up 1 unit is the graph of g(x).

73. Reflect the graph of $y=f(x)=\sqrt[3]{x}$ across the x-axis to get $g(x)=-\sqrt[3]{x}$.

74. $y = f(x) = (-2x)^{2/3} = [(-1)(2)x]^{2/3}$ = $(-1)^{2/3}(2x)^{2/3} = (2x)^{2/3}$. So the graph of f(x) is the graph of $g(x) = x^{2/3}$ compressed horizontally by a factor of 2.

75.

76.

77. $9x^2 + 25y^2 = 225 \Rightarrow \frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$

78. $16x^2 + 7y^2 = 112 \Rightarrow \frac{x^2}{\left(\sqrt{7}\right)^2} + \frac{y^2}{4^2} = 1$

79.
$$3x^2 + (y-2)^2 = 3 \Rightarrow \frac{x^2}{1^2} + \frac{(y-2)^2}{\left(\sqrt{3}\right)^2} = 1$$

80.
$$(x+1)^2 + 2y^2 = 4 \Rightarrow \frac{[x-(-1)]^2}{2^2} + \frac{y^2}{(\sqrt{2})^2} = 1$$

81.
$$3(x-1)^2 + 2(y+2)^2 = 6$$

$$\Rightarrow \frac{(x-1)^2}{\left(\sqrt{2}\right)^2} + \frac{\left[y - (-2)\right]^2}{\left(\sqrt{3}\right)^2} = 1$$

83. $\frac{x^2}{16} + \frac{y^2}{9} = 1$ has its center at (0, 0). Shiftinig 4 units left and 3 units up gives the center at (h, k) = (-4, 3). So the equation is $\frac{[x - (-4)]^2}{4^2} + \frac{(y - 3)^2}{3^2} = 1$ $\Rightarrow \frac{(x + 4)^2}{4^2} + \frac{(y - 3)^2}{3^2} = 1$. Center, C, is (-4, 3), and major axis, \overline{AB} , is the segment from (-8, 3) to (0, 3).

84. The ellipse $\frac{x^2}{4} + \frac{y^2}{25} = 1$ has center (h, k) = (0, 0). Shifting the ellipse 3 units right and 2 units down produces an ellipse with center at (h, k) = (3, -2) and an equation $\frac{(x-3)^2}{4} + \frac{[y-(-2)]^2}{25} = 1$. Center, C, is (3, -2), and \overline{AB} , the segment from (3, 3) to (3, -7) is the major axis.

85. (a)
$$(fg)(-x) = f(-x)g(-x) = f(x)(-g(x)) = -(fg)(x)$$
, odd
(b) $\left(\frac{f}{g}\right)(-x) = \frac{f(-x)}{g(-x)} = \frac{f(x)}{-g(x)} = -\left(\frac{f}{g}\right)(x)$, odd

18 Chapter 1 Functions

(c)
$$\left(\frac{g}{f}\right)(-x) = \frac{g(-x)}{f(-x)} = \frac{-g(x)}{f(x)} = -\left(\frac{g}{f}\right)(x)$$
, odd

(d)
$$f^2(-x) = f(-x)f(-x) = f(x)f(x) = f^2(x)$$
, even

(e)
$$g^2(-x) = (g(-x))^2 = (-g(x))^2 = g^2(x)$$
, even

(f)
$$(f \circ g)(-x) = f(g(-x)) = f(-g(x)) = f(g(x)) = (f \circ g)(x)$$
, even

(g)
$$(g \circ f)(-x) = g(f(-x)) = g(f(x)) = (g \circ f)(x)$$
, even

(h)
$$(f \circ f)(-x) = f(f(-x)) = f(f(x)) = (f \circ f)(x)$$
, even

(i)
$$(g \circ g)(-x) = g(g(-x)) = g(-g(x)) = -g(g(x)) = -(g \circ g)(x)$$
, odd

86. Yes, f(x) = 0 is both even and odd since f(-x) = 0 = f(x) and f(-x) = 0 = -f(x).

87. (a)

(b)

(c)

(d)

88.

