FIBERED CATEGORIES AND EQUIVARIANT OBJECTS

1. Introduction

In these notes we often work with two distinct categories. In order to make our notation clear we denote by $h^{\mathcal{C}}:\mathcal{C}\to\widehat{\mathcal{C}}$ the Yoneda embedding for category \mathcal{C} . In particular, if X is an object of \mathcal{C} , then $h_X^{\mathcal{C}}$ is a presheaf associated with X.

2. FIBERED CATEGORIES

We fix a functor $p: \mathcal{E} \to \mathcal{B}$. We introduce now some convenient notation that will help clarifying our definitions. Consider a morphism $\phi: \xi \to \eta$ of \mathcal{E} such that $p(\phi) = f$ and $f: X \to Y$. We depict this situation by the square diagram

$$\begin{array}{ccc}
\xi & \xrightarrow{\phi} & \eta \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}$$

Note that to every such square there corresponds a commutative square

$$h_{\tilde{\xi}}^{\mathcal{E}} \xrightarrow{h_{\phi}^{\mathcal{E}}} h_{\eta}^{\mathcal{E}}$$

$$\downarrow^{p_{\text{hom}}} \downarrow^{p_{\text{hom}}}$$

$$h_{X}^{\mathcal{B}} \cdot p \xrightarrow{\left(h_{f}^{\mathcal{B}}\right)_{p}} h_{Y}^{\mathcal{B}} \cdot p$$

of presheaves on \mathcal{E} .

Definition 2.1. Consider a square

$$\begin{array}{ccc}
\xi & \xrightarrow{\phi} & \eta \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}$$

We call the square *cartesian* and ϕ *a cartesian morphism with respect to p* if the corresponding square of presheaves on \mathcal{E} is cartesian in the category of presheaves.

One can rephrase definition above in terms of presheaves as follows. Morphism $\phi: \xi \to \eta$ is cartesian with respect to p if the square

1

$$\operatorname{Mor}_{\mathcal{E}}(\zeta,\xi) \xrightarrow{\operatorname{Mor}_{\mathcal{E}}(1_{\zeta},\phi)} \operatorname{Mor}_{\mathcal{E}}(\zeta,\eta) \xrightarrow{p_{\text{hom}}} \operatorname{Mor}_{\mathcal{E}}(\zeta,\eta) \xrightarrow{p_{\text{hom}}} \operatorname{Mor}_{\mathcal{B}}(p(\zeta),p(\xi)) \xrightarrow{\operatorname{Mor}_{\mathcal{B}}(1_{p(\zeta)},p(\phi))} \operatorname{Mor}_{\mathcal{B}}(p(\zeta),p(\eta))$$

of classes is cartesian for every object ζ of \mathcal{E} .

Fact 2.2. Let $p: \mathcal{E} \to \mathcal{B}$ be a functor, let $f: X \to Y$ be a morphism of \mathcal{B} and let η be an object of \mathcal{E} . Suppose that $\phi_1: \xi_1 \to \eta, \phi_2: \xi_2 \to \eta$ are morphisms of \mathcal{E} that are cartesian with respect to p and assume that $p(\phi_1) = p(\phi_2)$. Then there exists a unique morphism $\theta: \xi_1 \to \xi_2$ such that $\phi_1 = \phi_2 \cdot \theta$. Moreover, θ is an isomorphism.

Proof. We use the presheaf reformulation of a definition of cartesian morphisms of p. It implies that there exists a unique natural transformation $\sigma:h^{\mathcal{E}}_{\xi_1}\to h^{\mathcal{E}}_{\xi_2}$ such that $h^{\mathcal{E}}_{\phi_1}=h^{\mathcal{E}}_{\phi_2}\cdot\sigma$. Moreover, σ is a natural isomorphism. Since $h^{\mathcal{E}}:\mathcal{E}\to\widehat{\mathcal{E}}$ is full and faithful, we derive that there exists a unique morphism $\theta:\xi_1\to\xi_2$ such that $h^{\mathcal{E}}_{\theta}=\sigma$. Then θ satisfies the assertion.

Definition 2.3. Let $p: \mathcal{E} \to \mathcal{B}$ be a functor, let $f: X \to Y$ be a morphism of \mathcal{B} and let η be an object of \mathcal{E} such that $p(\eta) = Y$. A pair (ξ, ϕ) such that ξ is an object of \mathcal{E} and $\phi: \xi \to \eta$ is a morphism of \mathcal{E} is called a *pullback of* η *along* f if the following conditions are satisfied.

- **(1)** $p(\phi) = f$
- **(2)** ϕ is cartesian morphism of p.

Note that Fact 2.2 implies that pullbacks are unique up to a unique isomorphism.

Definition 2.4. Let $p: \mathcal{E} \to \mathcal{B}$ be a functor. Then p is a fibered category if and only if for every morphism $f: X \to Y$ of \mathcal{B} and every object η of \mathcal{E} such that $p(\eta) = Y$ there exists a pullback of η along f. If $p: \mathcal{E} \to \mathcal{B}$ is a fibered category, then we say that \mathcal{E} is fibered over \mathcal{B} with respect to p.

Now we give some examples of fibered categories. The first is a prototypical for the notion of a cartesian category. It shows that any category $\mathcal B$ with fiber products gives rise in a canonical way to a fibered category over $\mathcal B$ with cartesian arrows as cartesian squares in $\mathcal B$.

Example 2.5 (the fibered category of arrows). Let \mathcal{B} be a category. We define the category $\operatorname{Arr}(\mathcal{B})$ of arrows of \mathcal{B} as follows. Objects of $\operatorname{Arr}(\mathcal{B})$ are morphisms $\pi: \tilde{X} \to X$ of \mathcal{B} . Now if $\pi: \tilde{X} \to X$ and $\psi: \tilde{Y} \to Y$ are objects of $\operatorname{Arr}(\mathcal{B})$, then a morphism $\pi \to \psi$ is a pair (f, ϕ) such that $f: X \to Y$ and $\phi: \tilde{X} \to \tilde{Y}$ are morphisms in \mathcal{B} making the square

$$\tilde{X} \xrightarrow{\phi} \tilde{Y} \\
\pi \downarrow \qquad \qquad \downarrow \psi \\
X \xrightarrow{f} Y$$

commutative. There exists a functor $p_{Arr}: Arr(\mathcal{B}) \to \mathcal{B}$ given by formula $p_{Arr}((f,\phi)) = f$. Suppose now that $f: X \to Y$ and $\psi: \tilde{Y} \to Y$ are morphisms of \mathcal{B} and there exists a commutative square

$$\tilde{X} \xrightarrow{\phi} \tilde{Y}$$

$$\pi \downarrow \qquad \qquad \downarrow \psi$$

$$X \xrightarrow{f} Y$$

It is a direct consequence of the definition that (f,ϕ) is a cartesian morphisms of p_{Arr} if and only if the square above is cartesian. Thus p_{Arr} is a fibered category provided that $\mathcal B$ admits fiber products.

Definition 2.6. Suppose that $p_1 : \mathcal{E}_1 \to \mathcal{B}$ and $p_2 : \mathcal{E}_2 \to \mathcal{B}$ are fibered categories. Then a functor $F : \mathcal{E}_1 \to \mathcal{E}_2$ is a morphism of fibered categories if the following two assertions are satisfied.

- (1) $p_1 = F \cdot p_2$ or in other words F is a functor over \mathcal{B} .
- (2) Image under F of a cartesian morphism of p_1 is a cartesian morphism of p_2 .

Next example is closely related to the previous one, but is of more topological flavour.

Example 2.7 (the fibered category vector bundles). Let **Top** be the category of topological spaces. We define a subcategory **VectBund**_{\mathbb{R}} of Arr(**Top**) of vector bundles as follows. Objects of **VectBund**_{\mathbb{R}} are topological \mathbb{R} -vector bundles $\pi: \mathcal{V} \to X$. Now if $\pi: \mathcal{V} \to X$ and $\psi: \mathcal{W} \to Y$ are topological \mathbb{R} -vector bundles, then a morphism $\pi \to \psi$ is a pair (f, ϕ) such that $f: X \to Y$ is a continuous map and $\phi: \mathcal{V} \to \mathcal{W}$ is a continuous making the square

$$\begin{array}{ccc}
V & \xrightarrow{\phi} & \mathcal{W} \\
\pi \downarrow & & \downarrow \psi \\
X & \xrightarrow{f} & Y
\end{array}$$

commutative and moreover, ϕ induces an \mathbb{R} -linear map on fibers i.e. for each point x in X map ϕ induces an \mathbb{R} -linear map $\pi^{-1}(x) \to \psi^{-1}(f(x))$. Since topological vector bundles are stable under continuous change of base, we obtain a fibered category **VectBund** $\mathbb{R} \to \mathbf{Top}$ as the restriction of $p_{\mathrm{Arr}}: \mathrm{Arr}(\mathbf{Top}) \to \mathbf{Top}$. Thus we have a commutative triangle

According to Example 2.5 the inclusion $VectBund_{\mathbb{R}} \hookrightarrow Arr(Top)$ is a morphism of fibered categories.

3. Example: Principal Bundles

We devote this section to another important example of a fibered category. We fix a category with finite limits \mathcal{B} and a monoid object \mathbf{M} of \mathcal{B} . We denote by $\mu: \mathbf{M} \times \mathbf{M} \to \mathbf{M}$ and $e: \mathbf{1} \to \mathbf{M}$ the multiplication and unit of \mathbf{M} , respectively.

Definition 3.1. Let \mathcal{P} be an object of \mathcal{B} equipped with an action of \mathbf{M} , let T be an object of \mathcal{B} with trivial action of \mathbf{M} and let $\pi: \mathcal{P} \to T$ be an \mathbf{M} -equivariant morphism with respect to these \mathbf{M} -actions. We say that \mathbf{M} -equivariant morphism π is a trivial principal \mathbf{M} -bundle on T if there exists an \mathbf{M} -equivariant isomorphism $\phi: \mathcal{P} \to \mathbf{M} \times T$ such that $\mathbf{M} \times T$ is equipped with an action of \mathbf{M} given by $\mu \times 1_T$ and the triangle

$$\mathcal{P} \xrightarrow{\phi} \mathbf{M} \times T$$

$$T \qquad \qquad pr_T$$

is commutative.

Definition 3.2. Let \mathcal{P} be an object of \mathcal{B} equipped with an action of \mathbf{M} , let T be an object of \mathcal{B} with trivial action of \mathbf{M} and let $\pi: \mathcal{P} \to T$ be a \mathbf{M} -equivariant morphism with respect to these \mathbf{M} -actions. Consider a sieve S on T. For every arrow $g: \widetilde{T} \to T$ in S we construct a cartesian square

$$g^* \mathcal{P} \longrightarrow \mathcal{P}$$

$$\pi_g \downarrow \qquad \qquad \downarrow \pi$$

$$\widetilde{T} \longrightarrow T$$

in \mathcal{B} . We consider g as an \mathbf{M} -equivariant morphism with respect to trivial \mathbf{M} -actions on T and \widetilde{T} . Then there exists a unique action of \mathbf{M} on $g^*\mathcal{P}$ which makes π_g into an \mathbf{M} -equivariant morphism in such a way that the square consists of objects of \mathcal{B} with \mathbf{M} -actions and \mathbf{M} -equivariant morphisms. Suppose that \mathbf{M} -equivariant morphism π_g is a trivial principal \mathbf{M} -bundle on \widetilde{T} for every g in S. Then we say that S trivializes π .

In the remaining part of this section we fix a Grothendieck topology \mathcal{J} on \mathcal{B} .

Definition 3.3. Let \mathcal{P} be an object of \mathcal{B} equipped with an action of \mathbf{M} , let T be an object of \mathcal{B} with trivial action of \mathbf{M} and let $\pi : \mathcal{P} \to T$ be a \mathbf{M} -equivariant morphism with respect to these \mathbf{M} -actions. Suppose that there exists a covering sieve S in $\mathcal{J}(T)$ that trivializes π . Then π is called a *principal* \mathbf{M} -bundle with respect to \mathcal{J} .

Now we define a category **BM** that depends on the site $(\mathcal{B}, \mathcal{J})$. Its objects are principal **M**-bundles with respect to \mathcal{J} and if $\pi : \mathcal{P} \to T$ and $\psi : Q \to Z$ are principal **M**-bundles with respect to \mathcal{J} , then a morphism $\pi \to \psi$ is a pair (f, ϕ) such that $f : T \to Z$ and $\phi : \mathcal{P} \to Q$ are morphisms in \mathcal{B} such that ϕ is **M**-equivariant and the square

$$\begin{array}{ccc}
\mathcal{P} & \xrightarrow{\phi} & Q \\
\pi \downarrow & & \downarrow \psi \\
T & \xrightarrow{f} & Z
\end{array}$$

is commutative. We have a functor $p_{\mathbf{M},\mathcal{J}}: \mathbb{B}\mathbf{M} \to \mathcal{B}$ given by $p_{\mathbf{M},\mathcal{J}}\big((f,\phi)\big) = f$. Let $\psi: Q \to Z$ be a principal **M**-bundle with respect to \mathcal{J} and let $f: T \to Z$ be a morphism. Consider the cartesian square

$$\begin{array}{ccc}
f^*Q & \xrightarrow{\phi} Q \\
\pi \downarrow & \downarrow \psi \\
T & \xrightarrow{f} Z
\end{array}$$

in \mathcal{B} . Then by the universal property there exists a unique action of \mathbf{M} on f^*Q such that the square above consists of \mathbf{M} -equivariant morphisms (T,Z) are equipped with trivial \mathbf{M} -actions). Moreover, with respect to this action $\psi: f^*Q \to T$ becomes a principal \mathbf{M} -bundle with respect to \mathcal{J} . Indeed, if S is in $\mathcal{J}(Z)$ and S trivializes ψ , then its pullback f^*S trivializes π and is an element of $\mathcal{J}(T)$ (by definition of a Grothendieck topology). This shows that $p_{\mathbf{M},\mathcal{J}}: \mathbf{B}\mathbf{M} \to \mathcal{B}$ is a fibered category. Moreover, we have a functor $\mathbf{B}\mathbf{M} \to \mathrm{Arr}(\mathcal{B})$ that forgets about \mathbf{M} -actions. Hence there exists commutative triangle

According to Example 2.5 and description of cartesian morphisms of $p_{\mathbf{M},\mathcal{J}}$ the functor $\mathbb{B}\mathbf{M} \to \operatorname{Arr}(\mathcal{B})$ described above is a morphism of fibered categories.

Definition 3.4. $p_{\mathbf{M},\mathcal{T}}: \mathbf{BM} \to \mathcal{B}$ is called the fibered category of principal \mathbf{M} -bundles on $(\mathcal{B},\mathcal{T})$.

Suppose that X is an object of \mathcal{B} equipped with an action $a: \mathbf{M} \times X \to X$ of \mathbf{M} . We define a category $[X/\mathbf{M}]$ depending on a and the site $(\mathcal{B}, \mathcal{J})$ as follows. Its objects are pairs (π, α) such that π is a principal \mathbf{M} -bundle with respect to \mathcal{J} and α is an \mathbf{M} -equivariant morphism. We depict them by diagrams

$$\begin{array}{c}
\mathcal{P} \xrightarrow{\alpha} X \\
\pi \downarrow \\
T
\end{array}$$

Suppose that $(\pi: \mathcal{P} \to T, \alpha: \mathcal{P} \to X)$ and $(\psi: Q \to Z, \beta: Q \to X)$ are two such objects. Then a morphism $(\pi, \alpha) \to (\psi, \beta)$ is a morphism $(f, \phi): \pi \to \psi$ in $\mathbb{B}\mathbf{M}$ such that $\alpha = \beta \cdot \phi$. We have a functor $[X/\mathbf{M}] \to \mathbb{B}\mathbf{M}$ which sends (π, α) to π . We denote by $p_{a,\mathcal{J}}: [X/\mathbf{M}] \to \mathcal{B}$ the composition of this functor $[X/\mathbf{M}] \to \mathbb{B}\mathbf{M}$ with $p_{\mathbf{M},\mathcal{J}}: \mathbb{B}\mathbf{M} \to \mathcal{B}$. By description of cartesian morphisms of $p_{\mathbf{M},\mathcal{J}}$ we deduce that $p_{a,\mathcal{J}}$ is a fibered category. We have a commutative triangle

and the functor $[X/M] \to \mathbb{B}M$ described above is a morphism of fibered categories. Note that if 1 is a terminal object of \mathcal{B} equipped with trivial action of M, then we have a canonical isomorphism $[1/M] \cong \mathbb{B}M$ of categories over \mathcal{B} .

Definition 3.5. $p_{a,\mathcal{J}}: \mathbb{B}\mathbf{M} \to \mathcal{B}$ is called the quotient fibered category of \mathbf{M} -object X on $(\mathcal{B}, \mathcal{J})$.

Results below show that up to some mild assumptions on Grothendieck topology \mathcal{J} fibered category $p_{a,\mathcal{J}}:[X/\mathbf{M}] \to \mathcal{B}$ encapsulates all essential information concerning action of \mathbf{M} on X. We start with the following observation.

Fact 3.6. Let X, Y be objects of \mathcal{B} equipped with actions $a : \mathbf{M} \times X \to X$ and $b : \mathbf{M} \times Y \to Y$ of \mathbf{M} . Consider a functor $F : [X/\mathbf{M}] \to [Y/\mathbf{M}]$ such that the triangle

is commutative, where two other sides are canonical functors. Then F is a morphism of fibered categories $p_{a,\mathcal{J}}$ and $p_{b,\mathcal{J}}$.

Proof. The commutativity of the triangle implies that $F \cdot p_{b,\mathcal{J}} = p_{a,\mathcal{J}}$. Since a morphism in $[X/\mathbf{M}]$ is cartesian with respect to $p_{a,\mathcal{J}}$ if and only if its image under the canonical functor $[X/\mathbf{M}] \to \mathbb{B}\mathbf{M}$ is cartesian with respect to $p_{\mathbf{M},\mathcal{J}}$ and the same holds for $p_{b,\mathcal{J}}$, we derive that F sends cartesian morphisms of $p_{a,\mathcal{J}}$ to cartesian morphisms of $p_{b,\mathcal{J}}$.

Let X, Y be objects of \mathcal{B} equipped with actions $a : \mathbf{M} \times X \to X$ and $b : \mathbf{M} \times Y \to Y$ of \mathbf{M} . We denote the class of functors in Fact 3.6 by $\mathrm{Mor}_{\mathbb{B}\mathbf{M}}([X/\mathbf{M}],[Y/\mathbf{M}])$. We also denote (by abuse of notation) the class of \mathbf{M} -equivariant morphism $(X,a) \to (Y,b)$ by $\mathrm{Mor}_{\mathbf{M}}(X,Y)$.

Theorem 3.7. Let $(\mathcal{B}, \mathcal{J})$ be a Grothendieck site and assume that representable presheaves on \mathcal{B} are separated with respect to \mathcal{J} . Let X, Y be objects of \mathcal{B} equipped with \mathbf{M} -actions $a: \mathbf{M} \times X \to X$ and $b: \mathbf{M} \times Y \to Y$, respectively. Then there exists a bijection

$$Mor_{\mathbf{M}}(X,Y) \cong Mor_{\mathbf{BM}}([X/\mathbf{M}],[Y/\mathbf{M}])$$

that sends an **M**-equivariant morphism f to a functor $F : [X/\mathbf{M}] \to [Y/\mathbf{M}]$ given by

Proof. We first describe certain object of $[X/\mathbf{M}]$. Observe that $(\mathbf{M} \times X, \mu \times 1_X)$ is an object of \mathcal{B} equipped with the action of \mathbf{M} . Next the projection $\operatorname{pr}_X : \mathbf{M} \times X \to X$ can be considered as an \mathbf{M} -equivariant morphism from this \mathbf{M} -object to X with the trivial action of \mathbf{M} . Since the square

$$\mathbf{M} \times \mathbf{M} \times X \xrightarrow{1_{\mathbf{M}} \times a} \mathbf{M} \times X
\mu \times 1_{X} \downarrow \qquad \qquad \downarrow a
\mathbf{M} \times X \xrightarrow{a} X$$

is commutative, we derive that a is an M-equivariant morphism $(M \times X, \mu \times 1_X) \to (X, a)$. This gives (pr_X, a) the structure of an object of [X/M]. Fix a functor F in $\operatorname{Mor}_{\mathbb{BM}}([X/M], [Y/M])$. The functor F sends (pr_X, a) to some object of [Y/M]. This object is necessarily of the form (pr_X, a) for some M-equivariant morphism $\alpha: (M \times X, \mu \times 1_X) \to (Y, b)$. Indeed, this follows from the fact that F is over \mathbb{BM} . Now if F is determined by some M-equivariant morphism f as it is described in the statement, then $\alpha = f \cdot a$ and hence $f = \alpha \cdot \langle e, 1_X \rangle$. This proves that the map $\operatorname{Mor}_M(X, Y) \to \operatorname{Mor}_{\mathbb{BM}}([X/M], [Y/M])$ described in the statement is injective. Our goal is to show that it is surjective. That is our goal is to show that for the functor F in $\operatorname{Mor}_{\mathbb{BM}}([X/M], [Y/M])$ a morphism $f = \alpha \cdot \langle e, 1_X \rangle$ is M-equivariant and determines F as it is described in the statement. First we fix some object T of B and the projection $\operatorname{pr}_T: M \times T \to T$ considered as a trivial principal M-bundle. Let (pr_T, c) be an object of [X/M]. Then c is an M-equivariant morphism $c: (M \times T, \mu \times 1_T) \to (X, a)$. Functor F sends (pr_T, c) to some object $(\operatorname{pr}_T, \gamma)$. We claim that $\gamma = f \cdot c$. Let $\operatorname{pr}_{23}: M \times M \times T \to M \times T$ be the projection on the last two factors. There are diagrams

representing morphisms

$$(\operatorname{pr}_T, \mu \times 1_T) : (\operatorname{pr}_{23}, c \cdot (\mu \times 1_T)) \to (\operatorname{pr}_T, c), (c, 1_{\mathbf{M}} \times c) : (\operatorname{pr}_{23}, a \cdot (1_{\mathbf{M}} \times c)) \to (\operatorname{pr}_X, a)$$

in $[X/\mathbf{M}]$. Moreover, c is \mathbf{M} -equivariant $(\mathbf{M} \times T, \mu \times 1_T) \to (X, a)$ and hence we derive that $c \cdot (\mu \times 1_T) = a \cdot (c \times 1_{\mathbf{M}})$. Thus the morphisms in $[X/\mathbf{M}]$ described above have common domain. Since F is over $\mathbb{B}\mathbf{M}$, we derive that their images under F are

This implies that $\gamma \cdot (\mu \times 1_T) = \alpha \cdot (1_{\mathbf{M}} \times c)$. We deduce that

$$\gamma = \gamma \cdot (\mu \times 1_T) \cdot \langle e, 1_{\mathbf{M} \times X} \rangle = \alpha \cdot (1_{\mathbf{M}} \times c) \cdot \langle e, 1_{\mathbf{M} \times X} \rangle = \alpha \cdot \langle e, 1_X \rangle \cdot c = f \cdot c$$

and the claim is proved. We apply this to α to derive that $\alpha = f \cdot a$. Next recall that $\alpha \cdot (\mu \times 1_X) = b \cdot (1_{\mathbf{M}} \times \alpha)$ because α is an **M**-equivariant morphism $(\mathbf{M} \times X, \mu \times 1_X) \to (Y, b)$. Thus

$$b\cdot (1_{\mathbf{M}}\times f) = b\cdot (1_{\mathbf{M}}\times \alpha)\cdot (1_{\mathbf{M}}\times \langle e,1_X\rangle) = \alpha\cdot (\mu\times 1_X)\cdot (1_{\mathbf{M}}\times \langle e,1_X\rangle) = \alpha$$

Hence $f \cdot a = \alpha = b \cdot (1_{\mathbf{M}} \times f)$. Thus f is \mathbf{M} -equivariant and F is given as in the statement on the subcategory of $[X/\mathbf{M}]$ consisting of trivial principal \mathbf{M} -bundles. Now consider any principal \mathbf{M} -bundle $\pi: \mathcal{P} \to T$ with respect to \mathcal{J} and let $d: \mathcal{P} \to X$ be a \mathbf{M} -equivariant morphism to (X,a). We know that F sends (π,d) to some object of $[Y/\mathbf{M}]$ of the form (π,δ) . It suffices to prove that $\delta = f \cdot d$. For this consider a sieve S in $\mathcal{J}(T)$ such that S trivializes π . Pick $g: \widetilde{T} \to T$ in S and a cartesian square

$$g^* \mathcal{P} \xrightarrow{g'} \mathcal{P}$$

$$\pi_g \downarrow \qquad \qquad \downarrow_{\pi}$$

$$\widetilde{T} \xrightarrow{g} T$$

Then $(\pi_g, d \cdot g')$ is an object of $[X/\mathbf{M}]$. Since F is over $\mathbb{B}\mathbf{M}$, we derive that $F(\pi_g, d \cdot g') = (\pi_g, \delta \cdot g')$. By definition π_g is trivial \mathbf{M} -bundle. Thus (from what we proved above) we have

$$\delta \cdot g' = f \cdot d \cdot g'$$

This holds for pullback g' of every g in S along π . These pullbacks $\{g'\}_{g \in S}$ generate some sieve S' on \mathcal{P} and the formula

$$\delta \cdot h = f \cdot d \cdot h$$

holds for every h in S'. Moreover, S' is a covering sieve on a site $(\mathcal{B}, \mathcal{J})$ i.e. $S' \in \mathcal{J}(\mathcal{P})$. According to the assumption on \mathcal{J} we infer that $h_{\mathcal{P}}^{\mathcal{B}} = \operatorname{Mor}_{\mathcal{B}}(-, \mathcal{P}) : \mathcal{B}^{\operatorname{op}} \to \mathbf{Set}$ is a separated presheaf with respect to \mathcal{J} . Thus the formula

$$\delta \cdot h = f \cdot d \cdot h$$

which holds for every h in S' implies that $\delta = f \cdot d$.

4. PSEUDO-FUNCTORS AND FIBERED CATEGORIES OF ELEMENTS

Pseudo-functors are certain non-strict 2-functors. In this section we introduce a procedure that enables to construct a fibered category out of a pseudo-functor. We start by defining this notion.

Definition 4.1. Let \mathcal{B} be a category. Consider the tuple of collections

$$F = \left(\{ F(X) \}_{X \in \mathsf{Ob}(\mathcal{B})}, \{ F(f) \}_{f \in \mathsf{Mor}(\mathcal{B})}, \{ \Theta^{f,g} \}_{f,g \in \mathsf{Mor}(\mathcal{B}), \mathsf{cod}(f) = \mathsf{dom}(g)}, \{ \varepsilon^X \}_{X \in \mathsf{Ob}(\mathcal{B})} \right)$$
 of the following data.

- (1) For each object X of \mathcal{B} a category F(X).
- **(2)** For each arrow $f: X \to Y$ a functor $F(f): F(Y) \to F(X)$.
- (3) For each object X of \mathcal{B} a natural isomorphism $\epsilon^X : 1_{F(X)} \to F(1_X)$.
- **(4)** For any two composable morphisms $f: X \to Y$ and $g: Y \to Z$ of \mathcal{B} a natural isomorphism $\Theta^{g,f}: F(f) \cdot F(g) \to F(g \cdot f)$

Suppose that these data are subject to the following conditions.

(1) For every arrow $f: X \to Y$ in \mathcal{B} we have

$$1_{F(f)} = \Theta^{f,1_X} \cdot \epsilon_{F(f)}^X, 1_{F(f)} = \Theta^{1_Y,f} \cdot F(f) \left(\epsilon^Y \right)$$

(2) For any three morphisms $f: X \to Y, g: Y \to Z, h: Z \to W$ of \mathcal{B} the square of functors and natural isomorphisms

$$F(f) \cdot F(g) \cdot F(h) \xrightarrow{F(f)(\Theta^{h,g})} F(f) \cdot F(h \cdot g)$$

$$\bigoplus_{P(h)}^{g,f} \downarrow \qquad \qquad \downarrow_{\Theta^{h:g,f}}$$

$$F(g \cdot f) \cdot F(h) \xrightarrow{\Theta^{h,g,f}} F(h \cdot g \cdot f)$$

is commutative.

Then F is called a pseudo-functor on \mathcal{B}

Now we show how to construct a fibered category from a pseudo-functor. Suppose that $\mathcal B$ is a category and

$$F = \left(\{ F(X) \}_{X \in \mathrm{Ob}(\mathcal{B})}, \{ F(f) \}_{f \in \mathrm{Mor}(\mathcal{B})}, \{ \Theta^{f,g} \}_{f,g \in \mathrm{Mor}(\mathcal{B}), \mathrm{cod}(f) = \mathrm{dom}(g)}, \{ \epsilon^X \}_{X \in \mathrm{Ob}(\mathcal{B})} \right)$$

is a pseudo-functor on \mathcal{B} . We define a category $\int_{\mathcal{B}} F$. Its objects are pairs (X,ξ) such that X is an object of \mathcal{B} and ξ is an object of F(X). If (X,ξ) and (Y,η) are objects of $\int_{\mathcal{B}} F$, then a morphism between these objects is a pair (f,σ) such that $f:X\to Y$ is a morphism of \mathcal{B} and $\sigma:\xi\to F(f)(\eta)$ is a morphism of F(X). Now suppose that $(f,\sigma):(X,\xi)\to (Y,\eta)$ and $(g,\tau):(Y,\eta)\to (Z,\xi)$ are morphisms of $\int_{\mathcal{B}} F$. Then we define their composition by formula

$$(g,\tau)\cdot(f,\sigma)=\left(g\cdot f,\Theta_{\zeta}^{g,f}\cdot F(f)\left(\tau\right)\cdot\sigma\right)$$

Fact 4.2. $\int_{\mathcal{B}} F$ is a well defined category.

Proof. We first verify that the composition of morphisms in $\int_{\mathcal{B}} F$ is associative. Suppose that $(f,\sigma):(X,\xi)\to (Y,\eta),(g,\tau):(Y,\eta)\to (Z,\zeta),(h,\rho):(Z,\zeta)\to (W,\omega)$ are morphisms of $\int_{\mathcal{B}} F$. Then

$$((h,\rho)\cdot(g,\tau))\cdot(f,\sigma) = (h\cdot g,\Theta_{\omega}^{h,g}\cdot F(g)(\rho)\cdot\tau)\cdot(f,\sigma) =$$

$$= (h\cdot g\cdot f,\Theta_{\omega}^{h\cdot g,f}\cdot F(f)(\Theta_{\omega}^{h,g}\cdot F(g)(\rho)\cdot\tau)\cdot\sigma) = (h\cdot g\cdot f,\Theta_{\omega}^{h\cdot g,f}\cdot F(f)(\Theta_{\omega}^{h,g})\cdot F(f)(F(g)(\rho))\cdot F(f)(\tau)\cdot\sigma)$$
and

$$(h,\rho)\cdot \big((g,\tau)\cdot (f,\sigma)\big)=(h,\rho)\cdot \left(g\cdot f,\Theta_\zeta^{g,f}\cdot F(f)\big(\tau\big)\cdot\sigma\right)=$$

П

 $= \left(h \cdot g \cdot f, \Theta_{\omega}^{h,g \cdot f} \cdot F(g \cdot f)(\rho) \cdot \Theta_{\zeta}^{g,f} \cdot F(f)(\tau) \cdot \sigma\right) = \left(h \cdot g \cdot f, \Theta_{\omega}^{h,g \cdot f} \cdot \Theta_{F(h)(\omega)}^{g,f} \cdot F(f)(F(g)(\rho)) \cdot F(f)(\tau) \cdot \sigma\right)$ Since $\Theta_{\omega}^{h,g,f} \cdot F(f)(\Theta_{\omega}^{h,g}) = \Theta_{\omega}^{h,g \cdot f} \cdot \Theta_{F(h)(\omega)}^{g,f}$, we deduce that

$$\big((h,\rho)\cdot(g,\tau)\big)\cdot(f,\sigma)=(h,\rho)\cdot\big((g,\tau)\cdot(f,\sigma)\big)$$

and hence the composition in $\int_{\mathcal{B}} F$ is associative. Next we prove that for each object (X,ξ) of $\int_{\mathcal{B}} F$ there exists an identity morphism. We claim that $(1_X, \epsilon_{\xi}^X) : (X, \xi) \to (X, \xi)$ is the identity. Indeed, for morphisms $(f, \sigma) : (X, \xi) \to (Y, \eta)$ and $(g, \tau) : (Z, \xi) \to (X, \xi)$ we have

$$(f,\sigma)\cdot (1_X,\epsilon_{\xi}^X) = \left(f,\Theta_{\eta}^{f,1_X}\cdot F(1_X)\left(\sigma\right)\cdot \epsilon_{\xi}^X\right) = \left(f,\Theta_{\eta}^{f,1_X}\cdot \epsilon_{F(f)(\eta)}^X\cdot \sigma\right) = (f,\sigma)$$

and

$$(1_X, \epsilon_\xi^X) \cdot (g, \tau) = \left(g, \Theta_\xi^{1_X, g} \cdot F(g) \left(\epsilon_\xi^X\right) \cdot \tau\right) = (g, \tau)$$

Therefore, $\int_{\mathcal{B}} F$ is a category.

Next we define a functor $p_F : \int_{\mathcal{B}} F \to \mathcal{B}$ by formula

$$p_F\bigg((f,\sigma):(X,\xi)\to (Y,\tau)\bigg)=f:X\to Y$$

This is clearly a well defined functor. Now we prove the following statement.

The functor $p_F: \int_{\mathcal{B}} F \to \mathcal{B}$ is a fibered category.

Proof. Let $f: X \to Y$ be a morphism in \mathcal{B} and η be an object of F(Y). Thus (Y, η) is an object of $\int_{\mathcal{B}} F$. It suffices to show that (Y, η) admits a pullback along f. We claim that

$$\left(f,1_{F(f)(\eta)}\right):\left(X,F(f)(\eta)\right)\to (Y,\eta)$$

is a cartesian morphism of p_F that yields a pullback of η along f. To prove the claim consider an object (Z,ζ) of $\int_{\mathcal{B}} F$ and suppose that $(g,\tau):(Z,\zeta)\to (Y,\eta)$ is a morphism of $\int_{\mathcal{B}} F$ such that g factors through f. Then there exists $h:Z\to X$ such that $f\cdot h=g$. Note that $\tau:\zeta\to F(g)(\eta)$. Since $g=f\cdot h$, we have

$$\tau = \Theta_{\eta}^{f,h} \cdot \left(\Theta_{\eta}^{f,h}\right)^{-1} \cdot \tau = \Theta_{\eta}^{f,h} \cdot F(h) \left(1_{F(f)(\eta)}\right) \cdot \left(\Theta_{\eta}^{f,h}\right)^{-1} \cdot \tau$$

and hence

$$(g,\tau) = \left(f, 1_{F(f)(\eta)}\right) \cdot \left(h, \left(\Theta_{\eta}^{f,h}\right)^{-1} \cdot \tau\right)$$

Thus (g,τ) factors through $(f,1_{F(f)(\eta)})$ and the formula above shows that this factorization is unique. Hence $(f,1_{F(f)(\eta)})$ is a cartesian morphism of p_F .

Definition 4.3. Let \mathcal{B} be a category and let F be a pseudo-functor on \mathcal{B} . A fibered category $p_F: \int_{\mathcal{B}} F \to \mathcal{B}$ constructed above is called *the fibered category of elements of the pseudo-functor F*.

It is possible to construct a pseudo-functor out of a fibered category. We will give a brief outline of this construction. For this we introduce notation that will be also used in other considerations.

Definition 4.4. Let $p : \mathcal{E} \to \mathcal{B}$ be a fibered category. For every object X of \mathcal{B} we denote by $p^{-1}(X)$ a subcategory of \mathcal{E} consisting of all morphisms $\phi : \xi \to \eta$ such that $p(\phi) = 1_X$. We call this category the fiber of p over X.

Suppose now that $p: \mathcal{E} \to \mathcal{B}$ is a fibered category. Let $f: X \to Y$ be a morphism. For every object η in $p^{-1}(Y)$ we pick its pullback $\tilde{f}_{\eta}: f^*\eta \to \eta$ along f. By universal property of cartesian morphisms we deduce that this induces a functor $f^*: p^{-1}(Y) \to p^{-1}(X)$. Universal property of cartesian morphisms implies also the following assertions.

- (1) For each object X of \mathcal{B} we may choose $(1_X)^* = 1_{p^{-1}(X)}$.
- (2) For any two composable morphisms $f: X \to Y$ and $g: Y \to Z$ of \mathcal{B} there exists a unique natural isomorphism $\Theta^{g,f}: f^*g^* \to (g \cdot f)^*$ of functors such that for every ζ in $p^{-1}(Z)$ we have commutative diagram

$$f^*g^*\zeta \xrightarrow{\tilde{f}_{g^*\zeta}} g^*\zeta \xrightarrow{\tilde{g}_{\zeta}} \zeta$$

$$Q_{\zeta}^{g,f} \downarrow \qquad \qquad \downarrow 1_{\zeta}$$

$$(g \cdot f)^*\zeta \xrightarrow{\widetilde{g \cdot f_{\zeta}}} \zeta$$

From (1), (2) and Fact 2.2 one can deduce that the collection

$$\left(\{p^{-1}(X)\}_{X \in \mathsf{Ob}(\mathcal{B})}, \{f^*\}_{f \in \mathsf{Mor}(\mathcal{B})}, \{\Theta^{f,g}\}_{f,g \in \mathsf{Mor}(\mathcal{B}), \mathsf{cod}(f) = \mathsf{dom}(g)}, \{1_{p^{-1}(X)}\}_{X \in \mathsf{Ob}(\mathcal{B})}\right)$$

is a pseudo-functor.

Remark 4.5. The construction of the fibered category of elements is a part of 2-equivalence between appropriately defined category of pseudo-functors on \mathcal{B} and the category of fibered categories over \mathcal{B} .

5. Example: Quasi-coherent sheaves

Note that all examples of fibered categories given so far were fibered subcategories of the fibered category of arrows $p_{Arr}: Arr(\mathcal{B}) \to \mathcal{B}$ for a given category \mathcal{B} with fibered-products. In this section we employ the procedure that produces a fibered category out of a pseudo-functor to obtain an important example of a category fibered over \mathbf{Sch}_k (the category of schemes over a ring k), which is not of this type.

Let $f: X \to Y$ be a morphism of *k*-schemes. We have an adjunction

$$\mathfrak{Qcoh}(X) \qquad \bot \qquad \mathfrak{Qcoh}(Y)$$

It is determined by the bijection

$$\operatorname{Hom}_{\mathcal{O}_{Y}}\left(f^{*}\mathcal{G},\mathcal{F}\right) \xrightarrow{\Phi_{\mathcal{G},\mathcal{F}}^{f}} \operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{G},f_{*}\mathcal{F}\right)$$

Suppose now that $f: X \to Y$ and $g: Y \to Z$ are morphisms of k-schemes. Since $(g \cdot f)_* = g_* \cdot f_*$, there exists a unique natural isomorphism $\Theta^{g,f}: f^*g^* \to (g \cdot f)^*$ such that for every quasi-coherent sheaf $\mathcal F$ in $\mathfrak{Qcoh}(X)$ and every quasi-coherent sheaf $\mathcal H$ in $\mathfrak{Qcoh}(Z)$ we have

$$\Phi_{\mathcal{H},\mathcal{F}}^{g,f} = \Phi_{\mathcal{H},f_{*}\mathcal{F}}^{g} \cdot \Phi_{g^{*}\mathcal{H},\mathcal{F}}^{f} \cdot \mathsf{Hom}_{\mathcal{O}_{X}} \left(\Theta_{\mathcal{H}}^{g,f}, 1_{\mathcal{F}}\right)$$

Now we have the following result.

Fact 5.1. Suppose that $f: X \to Y$, $g: Y \to Z$ and $h: Z \to W$ are morphism of k-schemes. Then the square

П

$$f^{*}g^{*}h^{*} \xrightarrow{f^{*}\Theta^{h,g}} f^{*} (h \cdot g)^{*}$$

$$\bigoplus_{h^{*}}^{g,f} \downarrow \qquad \qquad \downarrow_{\Theta^{h,g,f}}$$

$$(g \cdot f)^{*}h^{*} \xrightarrow{\Theta^{h,g,f}} (h \cdot g \cdot f)^{*}$$

of functors and natural isomorphisms is commutative.

Proof. Suppose that \mathcal{F} is an object of $\mathfrak{Qcoh}(X)$ and \mathcal{K} is an object of $\mathfrak{Qcoh}(W)$. Then

$$\begin{split} \Phi^{h}_{\mathcal{K},g_{*}f_{*}\mathcal{F}} \cdot \Phi^{g}_{h^{*}\mathcal{K},f_{*}\mathcal{F}} \cdot \Phi^{f}_{g^{*}h^{*}\mathcal{K},\mathcal{F}} \cdot \mathsf{Hom}_{\mathcal{O}_{X}} \big(\Theta^{g,f}_{h^{*}\mathcal{K}}, 1_{\mathcal{F}} \big) \cdot \mathsf{Hom}_{\mathcal{O}_{X}} \big(\Theta^{h,g\cdot f}_{\mathcal{K}}, 1_{\mathcal{F}} \big) = \\ &= \Phi^{h}_{\mathcal{K},g_{*}f_{*}\mathcal{F}} \cdot \Phi^{g\cdot f}_{h^{*}\mathcal{K},\mathcal{F}} \cdot \mathsf{Hom}_{\mathcal{O}_{X}} \big(\Theta^{g,f}_{h^{*}\mathcal{K}}, 1_{\mathcal{F}} \big) = \Phi^{h\cdot g\cdot f}_{\mathcal{K},\mathcal{F}} \end{split}$$

and

$$\begin{split} & \Phi^{h}_{\mathcal{K},g_{*}f_{*}\mathcal{F}} \cdot \Phi^{g}_{h^{*}\mathcal{K},f_{*}\mathcal{F}} \cdot \Phi^{f}_{g^{*}h^{*}\mathcal{K},\mathcal{F}} \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(f^{*}\Theta^{h,g}_{\mathcal{K}}, 1_{\mathcal{F}} \right) \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(\Theta^{h\cdot g,f}_{\mathcal{K}}, 1_{\mathcal{F}} \right) = \\ & = \Phi^{h}_{\mathcal{K},g_{*}f_{*}\mathcal{F}} \cdot \Phi^{g}_{h^{*}\mathcal{K},f_{*}\mathcal{F}} \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(\Theta^{h,g}_{\mathcal{K}}, 1_{f_{*}\mathcal{F}} \right) \cdot \Phi^{f}_{(h\cdot g)^{*}\mathcal{K},\mathcal{F}} \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(\Theta^{h\cdot g,f}_{\mathcal{K}}, 1_{\mathcal{F}} \right) = \\ & = \Phi^{h\cdot g}_{\mathcal{K},f_{*}\mathcal{F}} \cdot \Phi^{f}_{(h\cdot g)^{*}\mathcal{K},\mathcal{F}} \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(\Theta^{h\cdot g,f}_{\mathcal{K}}, 1_{\mathcal{F}} \right) = \Phi^{h\cdot g\cdot f}_{\mathcal{K},\mathcal{F}} \end{split}$$

Therefore, we derive tha

$$\begin{split} & \Phi^{h}_{\mathcal{K},g*f*\mathcal{F}} \cdot \Phi^{g}_{h^{*}\mathcal{K},f_{*}\mathcal{F}} \cdot \Phi^{f}_{g^{*}h^{*}\mathcal{K},\mathcal{F}} \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(\Theta^{g,f}_{h^{*}\mathcal{K}}, 1_{\mathcal{F}} \right) \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(\Theta^{h,g,f}_{\mathcal{K}}, 1_{\mathcal{F}} \right) = \\ & = \Phi^{h}_{\mathcal{K},g*f*\mathcal{F}} \cdot \Phi^{g}_{h^{*}\mathcal{K},f_{*}\mathcal{F}} \cdot \Phi^{f}_{g^{*}h^{*}\mathcal{K},\mathcal{F}} \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(f^{*}\Theta^{h,g}_{\mathcal{K}}, 1_{\mathcal{F}} \right) \cdot \operatorname{Hom}_{\mathcal{O}_{X}} \left(\Theta^{h,g,f}_{\mathcal{K}}, 1_{\mathcal{F}} \right) \end{split}$$

and hence

$$\begin{split} &\operatorname{Hom}_{\mathcal{O}_{X}}\left(\Theta_{\mathcal{K}}^{h,g\cdot f}\cdot\Theta_{h^{*}\mathcal{K}}^{g,f},1_{\mathcal{F}}\right)=\operatorname{Hom}_{\mathcal{O}_{X}}\left(\Theta_{h^{*}\mathcal{K}}^{g,f},1_{\mathcal{F}}\right)\cdot\operatorname{Hom}_{\mathcal{O}_{X}}\left(\Theta_{\mathcal{K}}^{h,g\cdot f},1_{\mathcal{F}}\right)=\\ &=\operatorname{Hom}_{\mathcal{O}_{X}}\left(f^{*}\Theta_{\mathcal{K}}^{h,g},1_{\mathcal{F}}\right)\cdot\operatorname{Hom}_{\mathcal{O}_{X}}\left(\Theta_{\mathcal{K}}^{h\cdot g,f},1_{\mathcal{F}}\right)=\operatorname{Hom}_{\mathcal{O}_{X}}\left(\Theta_{\mathcal{K}}^{h\cdot g,f}\cdot f^{*}\Theta_{\mathcal{K}}^{h,g},1_{\mathcal{F}}\right) \end{split}$$

Since this equality holds for every quasi-coherent sheaf \mathcal{F} on X, we deduce that

$$\Theta_{\mathcal{K}}^{h,g\cdot f} \cdot \Theta_{h^*\mathcal{K}}^{g,f} = \Theta_{\mathcal{K}}^{h\cdot g,f} \cdot f^* \Theta_{\mathcal{K}}^{h,g}$$

for every quasi-coherent sheaf K. This proves the assertion.

Note that for every k-scheme X we may assume that $(1_X)_* = 1_{\mathfrak{Qcoh}(X)} = (1_X)^*$ and $\Phi_{\mathcal{G},\mathcal{F}}^{1_X} = 1_{\mathfrak{Qcoh}(X)}$ $\operatorname{Hom}_{\mathcal{O}_X}(1_{\mathcal{F}},1_{\mathcal{G}}).$

Fact 5.2. Let $f: X \to Y$ and $g: Z \to X$ be morphisms of k-schemes. Then

$$\Theta^{f,1_X}=1_{f^*},\,\Theta^{1_X,g}=1_{g^*}$$

Proof. Suppose that \mathcal{F} is an object of $\mathfrak{Qcoh}(X)$ and \mathcal{G} is an object of $\mathfrak{Qcoh}(Y)$. Then

$$\Phi_{\mathcal{G},\mathcal{F}}^{f} = \Phi_{\mathcal{G},\mathcal{F}}^{f \cdot 1_{X}} = \Phi_{\mathcal{G},\mathcal{F}}^{f} \cdot \Phi_{f^{*}\mathcal{G},\mathcal{F}}^{1_{X}} \cdot \operatorname{Hom}_{\mathcal{O}_{X}}\left(\Theta_{\mathcal{G}}^{f,1_{X}}, 1_{\mathcal{F}}\right) = \Phi_{\mathcal{G},\mathcal{F}}^{f} \cdot \operatorname{Hom}_{\mathcal{O}_{X}}\left(\Theta_{\mathcal{G}}^{f,1_{X}}, 1_{\mathcal{F}}\right)$$

and thus $\operatorname{Hom}_{\mathcal{O}_X}\left(\Theta_{\mathcal{G}}^{f,1_X},1_{\mathcal{F}}\right)=\operatorname{Hom}_{\mathcal{O}_X}\left(1_{f^*\mathcal{G}},1_{\mathcal{F}}\right)$. Since this holds for every quasi-coherent sheaf \mathcal{F} on X, we derive that $\Theta_{\mathcal{G}}^{f,1_X} = 1_{f^*\mathcal{G}}$. Thus $\Theta^{f,1_X} = 1_{f^*}$. Suppose that \mathcal{H} is an object of $\mathfrak{Qcoh}(X)$ and \mathcal{F} is an object of $\mathfrak{Qcoh}(Z)$. Then

$$\Phi_{\mathcal{H},\mathcal{F}}^g = \Phi_{\mathcal{H},\mathcal{F}}^{1_X \cdot g} = \Phi_{\mathcal{H},g_*\mathcal{F}}^{1_X} \cdot \Phi_{\mathcal{H},\mathcal{F}}^g \cdot \text{Hom}_{\mathcal{O}_Z} \left(\Theta_{\mathcal{H}}^{1_X \cdot g}, 1_{\mathcal{F}} \right) = \Phi_{\mathcal{H},\mathcal{F}}^g \cdot \text{Hom}_{\mathcal{O}_Z} \left(\Theta_{\mathcal{H}}^{1_X \cdot g}, 1_{\mathcal{F}} \right)$$

and thus $\operatorname{Hom}_{\mathcal{O}_Z}\left(\Theta_{\mathcal{H}}^{1_{X,\mathcal{G}}},1_{\mathcal{F}}\right)=\operatorname{Hom}_{\mathcal{O}_Z}\left(1_{g^*\mathcal{H}},1_{\mathcal{F}}\right)$. Since this holds for every quasi-coherent sheaf \mathcal{F} on Z, we derive that $\Theta_{\mathcal{H}}^{1_{X},g} = 1_{g^*\mathcal{H}}$. Thus $\Theta^{1_{X},g} = 1_{g^*}$. Now Facts 5.1 and 5.2 imply that the collection

$$\left(\{\mathfrak{Qcoh}(X)\}_{X \in \mathbf{Sch}_{k'}}, \{f^*\}_{f \in \mathrm{Mor}(\mathbf{Sch}_{k})}, \{\Theta^{f,g}\}_{f,g \in \mathrm{Mor}(\mathbf{Sch}_{k}), \mathrm{cod}(f) = \mathrm{dom}(g)}, \{1_{1_{\mathfrak{Qcoh}(X)}}\}_{X \in \mathbf{Sch}_{k}}\right)$$

forms a pseudo-functor on \mathbf{Sch}_k .

Definition 5.3. *The fibered category of quasi-coherent sheaves on* \mathbf{Sch}_k is the fibered category of elements of the pseudo-functor

$$\left(\{\mathfrak{Qcoh}(X)\}_{X \in \mathbf{Sch}_k}, \{f^*\}_{f \in \mathrm{Mor}(\mathbf{Sch}_k)}, \{\Theta^{f,g}\}_{f,g \in \mathrm{Mor}(\mathbf{Sch}_k), \mathrm{cod}(f) = \mathrm{dom}(g)}, \{1_{1_{\mathfrak{Qcoh}(X)}}\}_{X \in \mathbf{Sch}_k}\right)$$

We denote it by $\mathfrak{Qcoh} \rightarrow \mathbf{Sch}_k$.

For every k-scheme X we have a category $\mathbf{Alg}(\mathfrak{Qcoh}(X))$ of quasi-coherent \mathcal{O}_X -algebras. If $f: X \to Y$ is a morphism of k-schemes, then we have an adjuntion

$$\mathbf{Alg}(\mathfrak{Qcoh}(X)) \qquad \bot \qquad \mathbf{Alg}(\mathfrak{Qcoh}(Y))$$

Using similar argument as above one can show that there exists a canonical structure of a pseudo-functor on the collection

$$\left(\{ \mathbf{Alg} \left(\mathfrak{Qcoh}(X) \right) \}_{X \in \mathbf{Sch}_{k'}} \{ f^* \}_{f \in \mathbf{Mor}(\mathbf{Sch}_{k})} \right)$$

Definition 5.4. *The fibered category of quasi-coherent algebras on* \mathbf{Sch}_k is the fibered category of elements of the canonical pseudo-functor determined by the collection

$$(\{\operatorname{Alg}(\mathfrak{Qcoh}(X))\}_{X \in \operatorname{\mathbf{Sch}}_k}, \{f^*\}_{f \in \operatorname{Mor}(\operatorname{\mathbf{Sch}}_k)})$$

We denote it by $\mathbf{Alg}(\mathfrak{Qcoh}) \to \mathbf{Sch}_k$.

Remark 5.5. For every k-scheme X we also have a canonical functor $|-|: \mathbf{Alg}(\mathfrak{Qcoh}(X)) \to \mathfrak{Qcoh}(X)$ that forgets about an algebra structure. The collection of all these functors for all k-schemes gives rise to a morphism of fibered categories

$$\operatorname{Alg}(\mathfrak{Qcoh}) \xrightarrow{|-|} \mathfrak{Qcoh}$$

$$\operatorname{Sch}_k$$

Remark 5.6. Note that $Arr(\mathbf{Sch}_k)$ admits a fibered subcategory that consists of affine morphisms $\pi:\widetilde{X}\to X$ of k-schemes. We denote this fibered category by $\mathbf{Aff}(\mathbf{Sch}_k)\to\mathbf{Sch}_k$. For every k-scheme X we have the relative affine spectrum functor $\operatorname{Spec}_X:\mathbf{Alg}(\mathfrak{Qcoh}(X))\to\mathbf{Aff}_X$, where \mathbf{Aff}_X is the category of schemes affine over X. It is an equivalence of categories and note that \mathbf{Aff}_X is the fiber of $\mathbf{Aff}(\mathbf{Sch}_k)\to\mathbf{Sch}_k$ over X. Moreover, if $f:X\to Y$ is a morphism of k-schemes and A is a quasi-coherent \mathcal{O}_Y -algebra, then the canonical square

$$\begin{array}{c}
\operatorname{Spec}_{X} f^{*} A \longrightarrow \operatorname{Spec}_{Y} A \\
\downarrow \qquad \qquad \downarrow \\
X \longrightarrow f
\end{array}$$

is cartesian. Thus the collection of functors Spec_X for all k-schemes X gives rise to a morphism of fibered categories

6. EQUIVARIANT OBJECTS IN FIBERED CATEGORIES

Let k be a commutative ring. We fix a monoid k-scheme \mathbf{M} with multiplication morphism μ . The following notion is useful for studying actions of algebraic groups and monoids.

Definition 6.1. Let X be a k-scheme and let \mathbf{M} be a monoid k-scheme with an action $a : \mathbf{M} \times_k X \to X$ on X. We denote by $\pi : \mathbf{M} \times_k X \to X$ the projection. Consider a pair (\mathcal{F}, τ) consisting of a quasi-coherent sheaf \mathcal{F} on X and an isomorphism $\tau : \pi^* \mathcal{F} \to a^* \mathcal{F}$. We call it a quasi-coherent \mathbf{M} -sheaf on (X, a) if the following equality

$$(\mu \times_k 1_X)^* \phi = (1_{\mathbf{M}} \times_k a)^* \phi \cdot \pi_{2,3}^* \phi$$

holds, where $\mu : \mathbf{M} \times_k \mathbf{M} \to \mathbf{M}$ is the multiplication on \mathbf{M} and $\pi_{2,3} : \mathbf{M} \times_k \mathbf{M} \times_k X \to \mathbf{M} \times_k X$ is the projection on the last two factors.

Definition 6.2. Let X be a k-scheme and let \mathbf{M} be a monoid k-scheme with an action $a: \mathbf{M} \times_k X \to X$ on X. We denote by $\pi: \mathbf{M} \times_k X \to X$ the projection. Let (\mathcal{F}_1, τ_1) and (\mathcal{F}_2, τ_2) be quasi-coherent \mathbf{M} -sheaves on (X,a). Suppose that $\phi: \mathcal{F}_1 \to \mathcal{F}_2$ is a morphism of quasi-coherent sheaves on X such that the square

$$\begin{array}{ccc}
\pi^* \mathcal{F}_1 & \xrightarrow{\tau_1} & a^* \mathcal{F}_1 \\
 & \downarrow & \downarrow \\
\pi^* \phi & \downarrow & \downarrow & \downarrow \\
\pi^* \mathcal{F}_2 & \xrightarrow{\tau_2} & a^* \mathcal{F}_2
\end{array}$$

is commutative. Then ϕ is a morphism of quasi-coherent **M**-sheaves on (X,a). We denote by $\mathfrak{Qcoh}_{\mathbf{M}}(X)$ the category of quasi-coherent **M**-sheaves and call it *the category of quasi-coherent* **M**-sheaves on (X,a).

Our goal in this section is to explain somewhat nonintuitive notion of quasi-coherent **M**-sheaf on a k-scheme X equipped with action of **M**. For this we use the machinery of fibered categories. We fix a fibered category $p: \mathcal{E} \to \mathcal{B}$. If $f: X \to Y$ and η is an object of $p^{-1}(Y)$, then we denote by $\tilde{f}_{\eta}: f^*\eta \to \eta$ a pullback of η . That is the square

$$\begin{array}{ccc}
f^*\eta & \xrightarrow{\widetilde{f_{\eta}}} & \eta \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}$$

is cartesian. Using some choice of pullback we obtain a functor $f^*: p^{-1}(Y) \to p^{-1}(X)$. We start with the following observation.

Remark 6.3. Consider morphisms f_1 , f_2 , g_1 , g_2 in \mathcal{B} such that $g_1 \cdot f_1 = g_2 \cdot f_2$ with $\operatorname{cod}(g_1) = Y = \operatorname{cod}(g_2)$. For every object η in $p^{-1}(Y)$ we have a unique identification $f_1^* g_1^* \eta \cong f_2^* g_2^* \eta$ such that the square

$$f_{2}^{*}g_{2}^{*}\eta \cong f_{1}^{*}g_{1}^{*}\eta \xrightarrow{\widetilde{f_{1}}_{g_{1}^{*}\eta}} g_{1}^{*}\eta \xrightarrow{\widetilde{f_{1}}_{g_{1}^{*}\eta}} g_{1}^{*}\eta$$

$$g_{2}^{*}\eta \xrightarrow{\widetilde{g_{2}}_{\eta}} \eta$$

is commutative.

Now we have the following result.

Fact 6.4. Let X, M be objects of \mathcal{B} and let ξ be an object of \mathcal{E} in $p^{-1}(X)$. Assume that the cartesian product of X and M exists in \mathcal{B} and denote by $\pi: M \times X \to X$ the projection. Then there exists a unique morphism (depicted by dotted arrow) such that the diagram

is commutative, where $pr_{h_{\overline{\chi}}^{\mathcal{E}}}$ and $pr_{h_{\overline{\chi}}^{\mathcal{B}},p}$ are projections. Moreover, this morphism is an isomorphism.

Proof. This is a consequence of the fact that both squares

$$h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}} \xrightarrow{pr_{h_{\xi}^{\mathcal{E}}}} h_{\xi}^{\mathcal{E}} \xrightarrow{h_{\pi_{\xi}}^{\mathcal{E}}} h_{\pi_{\xi}^{\mathcal{E}}}^{\mathcal{E}} \xrightarrow{h_{\pi_{\xi}^{\mathcal{E}}}^{\mathcal{E}}} h_{\xi}^{\mathcal{E}} \xrightarrow{h_{\pi_{\xi}^{\mathcal{E}}}^{\mathcal{E}}} h_{\xi}^{\mathcal{E}}$$

$$\downarrow p_{\text{hom}} \downarrow p$$

are cartesian. \Box

Fix now two objects \mathbf{M} and X of \mathcal{B} such that the product of \mathbf{M} and X exists. Denote by $\pi: \mathbf{M} \times X \to X$ the projection on X. Let $a: \mathbf{M} \times X \to X$ be a morphism in \mathcal{B} , let ξ be an object in $p^{-1}(X)$ and let $\sigma: h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}} \to h_{\xi}^{\mathcal{E}}$ be a morphism of presheaves on \mathcal{E} . Suppose that the square

$$h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}} \xrightarrow{\sigma} h_{\xi}^{\mathcal{E}}$$

$$\downarrow^{p_{\text{hom}}} \downarrow^{p_{\text{hom}}}$$

$$h_{\mathbf{M} \times X}^{\mathcal{B}} \cdot p \xrightarrow{(h_{a}^{\mathcal{B}})_{p}} h_{X}^{\mathcal{B}} \cdot p$$

is commutative. According to Fact 6.4 we deduce that σ is representable by some morphism $\alpha^{\sigma}: \pi^*\xi \to \xi$ of \mathcal{E} . By universal property of cartesian square

$$\begin{array}{ccc}
a^*\xi & \xrightarrow{\widetilde{a}_{\xi}} & \xi \\
\downarrow & & \downarrow \\
\mathbf{M} \times X & \xrightarrow{a} & X
\end{array}$$

we deduce that there exists a unique morphism $\tau^{\sigma}: \pi^*\xi \to a^*\xi$ in $p^{-1}(\mathbf{M} \times X)$ such that $\alpha^{\sigma} = \widetilde{a}_{\xi} \cdot \tau^{\sigma}$. Using this notation and Fact 6.4 we can now state the following result.

Proposition 6.5. Let \mathbf{M} be a monoid object in \mathcal{B} and let X be an object of \mathcal{B} equipped with an action $a: \mathbf{M} \times X \to X$ of \mathbf{M} on X. Denote by $\pi: \mathbf{M} \times X \to X$ the projection on X. Consider an object ξ in $p^{-1}(X)$ and let $\sigma: h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}} \to h_{\xi}^{\mathcal{E}}$ be a morphism of presheaves on \mathcal{E} . Suppose that the square

$$h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}} \xrightarrow{\sigma} h_{\xi}^{\mathcal{E}}$$

$$\downarrow^{p_{\text{hom}}} \downarrow^{p_{\text{hom}}}$$

$$h_{\mathbf{M} \times X}^{\mathcal{B}} \cdot p \xrightarrow{(h_{q}^{\mathcal{B}})_{n}} h_{X}^{\mathcal{B}} \cdot p$$

is commutative. Then the following assertions are equivalent.

- (i) σ is an action of a monoid presheaf $h_{\mathbf{M}}^{\mathcal{E}} \cdot p$ on a presheaf $h_{\tilde{c}}^{\mathcal{E}}$.
- (ii) Morphism τ^{σ} satisfies (up to identifications described in Remark 6.3) the identities

$$(\mu \times 1_X)^* \tau^{\sigma} = (1_{\mathbf{M}} \times a)^* \tau^{\sigma} \cdot \pi_{23}^* \tau^{\sigma}, \langle e, 1_X \rangle^* \tau^{\sigma} = 1_{\mathcal{E}}$$

where $\mu : \mathbf{M} \times \mathbf{M} \to \mathbf{M}$ is the multiplication on \mathbf{M} , $\pi_{2,3} : \mathbf{M} \times \mathbf{M} \times X \to \mathbf{M} \times X$ is the projection on the last two factors and $e : \mathbf{1} \to \mathbf{M}$ is the unit of \mathbf{M} .

Proof. Our first goal is to prove that

$$\sigma \cdot \left(\mathbf{1}_{h_{\mathbf{M}}^{\mathcal{B}} \cdot p} \times \sigma \right) = \sigma \cdot \left(\mathbf{1}_{h_{\mu}^{\mathcal{B}} \cdot p} \times \mathbf{1}_{h_{z}^{\mathcal{E}}} \right)$$

if and only if

$$(1_{\mathbf{M}} \times a)^* \tau^{\sigma} \cdot \pi_{23}^* \tau^{\sigma} = (\mu \times 1_X)^* \tau^{\sigma}$$

First note that the commutative square of presheaves

$$h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{a^{*}\xi}^{\mathcal{E}} \xrightarrow{1_{h_{\mathbf{M}}^{\mathbf{M}}, p} \times h_{a^{*}\xi}^{\mathcal{E}}} h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}}$$

$$\downarrow p_{\text{hom}} \qquad \downarrow p_{\text{hom}}$$

$$h_{\mathbf{M} \times \mathbf{M} \times \mathbf{X}}^{\mathcal{B}} \cdot p \xrightarrow{\left(h_{1_{\mathbf{M}} \times a}^{\mathcal{B}}\right)_{p}} h_{\mathbf{M} \times \mathbf{X}}^{\mathcal{B}} \cdot p$$

on \mathcal{E} is cartesian. Next according to Fact 6.4 we infer that projections

$$pr_{h_{a^*\xi}^{\mathcal{E}}}: h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{a^*\xi}^{\mathcal{E}} \rightarrow h_{a^*\xi'}^{\mathcal{E}} \ pr_{h_{\xi}^{\mathcal{E}}}: h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}} \rightarrow h_{\xi}^{\mathcal{E}}$$

are representable by morphisms $\widetilde{\pi_{23}}_{a^*\xi}:\pi_{23}^*a^*\xi\to a^*\xi$, $\widetilde{\pi}_{\xi}:\pi^*\xi\to\xi$ in \mathcal{E} , respectively. Thus $1_{h^{\mathcal{B}}_{\mathbf{M}}\cdot p}\times h^{\mathcal{E}}_{\widetilde{a}_{\xi}}$ is representable by a cartesian morphism

$$\pi_{23}^* a^* \xi \xrightarrow{\cong} \left(1_{\mathbf{M}} \times a \right)^* \pi^* \xi \xrightarrow{\widehat{(\mathbf{1_M} \times a)_{\pi^* \xi}}} \pi^* \xi$$

where \cong is the identification described in Remark 6.3. Since we have equality

$$\sigma \cdot \left(1_{h_{\mathbf{M}}^{\mathcal{B}},p} \times \sigma\right) = h_{\widetilde{a}_{\xi}}^{\mathcal{E}} \cdot h_{\tau^{\sigma}}^{\mathcal{E}} \cdot \left(1_{h_{\mathbf{M}}^{\mathcal{B}},p} \times h_{\widetilde{a}_{\xi}}^{\mathcal{E}}\right) \cdot \left(1_{h_{\mathbf{M}}^{\mathcal{B}},p} \times h_{\tau^{\sigma}}^{\mathcal{E}}\right)$$

we derive that $\sigma \cdot \left(1_{h_{\mathbf{M}}^{\mathcal{B}} \cdot p} \times \sigma\right)$ is representable (again up to identifications of Remark 6.3) by a morphism

$$\widetilde{a}_{\xi} \cdot \tau^{\sigma} \cdot (\widetilde{1_{\mathbf{M}} \times a})_{\pi^* \xi} \cdot \pi_{23}^* \tau^{\sigma} = \widetilde{a}_{\xi} \cdot (\widetilde{1_{\mathbf{M}} \times a})_{a^* \xi} \cdot (1_{\mathbf{M}} \times a)^* \tau^{\sigma} \cdot \pi_{23}^* \tau^{\sigma}$$

in \mathcal{E} . Next note that the square of presheaves on \mathcal{E}

$$h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi}^{\mathcal{E}} \xrightarrow{h_{\mu}^{\mathcal{B}} \cdot p \times 1_{h_{\xi}^{\mathcal{E}}}} h_{\mathbf{M} \cdot p}^{\mathcal{B}} \times h_{\xi}^{\mathcal{E}}$$

$$\operatorname{can} \times p_{\operatorname{hom}} \downarrow \qquad \qquad \downarrow p_{\operatorname{hom}}$$

$$h_{\mathbf{M} \times \mathbf{M} \times X}^{\mathcal{B}} \cdot p \xrightarrow{\left(h_{\mu \times 1_{X}}^{\mathcal{B}}\right)_{p}} h_{\mathbf{M} \times X \cdot p}^{\mathcal{B}}$$

is cartesian. According to Fact 6.4 we infer that projections

$$pr_{h_{\mathbf{M}}^{\mathcal{B}}\cdot p\times h_{\tilde{\xi}}^{\mathcal{E}}}:h_{\mathbf{M}}^{\mathcal{B}}\cdot p\times h_{\mathbf{M}}^{\mathcal{B}}\cdot p\times h_{\xi}^{\mathcal{E}}\rightarrow h_{\mathbf{M}}^{\mathcal{B}}\cdot p\times h_{\xi}^{\mathcal{E}},\ pr_{h_{\tilde{\xi}}^{\mathcal{E}}}:h_{\mathbf{M}}^{\mathcal{B}}\cdot p\times h_{\xi}^{\mathcal{E}}\rightarrow h_{\xi}^{\mathcal{E}}$$

are representable by morphisms $\widetilde{\pi_{23}}_{\pi^*\xi}:\pi_{23}^*\pi^*\xi\to\pi^*\xi$, $\widetilde{\pi}_\xi:\pi^*\xi\to\xi$ in \mathcal{E} , respectively. Thus $h^{\mathcal{B}}_{\mu}\cdot p\times 1_{h^{\mathcal{E}}_{\xi}}$ is representable by a cartesian morphism

$$\pi_{23}^*\pi^*\xi \xrightarrow{\cong} (\mu \times 1_X)^*\pi^*\xi \xrightarrow{(\widetilde{\mu \times 1_X})_{\pi^*\xi}} \pi^*\xi$$

where \cong is the identification described in Remark 6.3. Since we have equality

$$\sigma \cdot \left(\mathbf{1}_{h_{\mathcal{U}}^{\mathcal{B}} \cdot p} \times \mathbf{1}_{h_{\tilde{z}}^{\mathcal{E}}}\right) = h_{\tilde{a}_{\tilde{z}}}^{\mathcal{E}} \cdot h_{\tau^{\sigma}}^{\mathcal{E}} \cdot \left(\mathbf{1}_{h_{\mathcal{U}}^{\mathcal{B}} \cdot p} \times \mathbf{1}_{h_{\tilde{z}}^{\mathcal{E}}}\right)$$

we derive that $\sigma \cdot \left(1_{h_{\mu}^{\mathcal{B}},p} \times 1_{h_{\xi}^{\mathcal{E}}}\right)$ is representable (again up to identifications of Remark 6.3) by a morphism

$$\widetilde{a}_{\xi} \cdot \tau^{\sigma} \cdot (\widetilde{\mu \times 1_X})_{\pi^* \xi} = \widetilde{a}_{\xi} \cdot (\widetilde{\mu \times 1_X})_{a^* \xi} \cdot (\mu \times 1_X)^* \, \tau^{\sigma}$$

We deduce that

$$\sigma \cdot \left(\mathbf{1}_{h_{\mathbf{M}}^{\mathcal{B}} \cdot p} \times \sigma \right) = \sigma \cdot \left(\mathbf{1}_{h_{\mu}^{\mathcal{B}} \cdot p} \times \mathbf{1}_{h_{\xi}^{\mathcal{E}}} \right)$$

if and only if

$$\widetilde{a_{\xi}} \cdot (\widetilde{\mathbf{1_M} \times a})_{a^*\xi} \cdot (\mathbf{1_M} \times a)^* \, \tau^{\sigma} \cdot \pi_{23}^* \tau^{\sigma} = \widetilde{a_{\xi}} \cdot (\widetilde{\mu \times 1_X})_{a^*\xi} \cdot (\mu \times 1_X)^* \, \tau^{\sigma}$$

Since $\underline{a} \cdot (1_{\mathbf{M}} \times a) = \underline{a} \cdot (\underline{\mu} \times 1_X)$ and according to Remark 6.3, we have canonical identification $\widetilde{a}_{\xi} \cdot (1_{\mathbf{M}} \times a)_{a^*\xi} = \widetilde{a}_{\xi} \cdot (\underline{\mu} \times 1_X)_{a^*\xi}$ of these cartesian morphisms. Therefore, we deduce that the formula above holds if and only if

$$(1_{\mathbf{M}} \times a)^* \tau^{\sigma} \cdot \pi_{23}^* \tau^{\sigma} = (\mu \times 1_X)^* \tau^{\sigma}$$

This proves our first claim. Now it suffices to prove that

$$\sigma \cdot \langle h_e^{\mathcal{B}} \cdot p, 1_{h_{\xi}^{\mathcal{E}}} \rangle = 1_{h_{\xi}^{\mathcal{E}}}$$

if and only if $\langle e, 1_X \rangle^* \tau^{\sigma} = 1_{\xi}$. Note that the square of presheaves on \mathcal{E}

$$h_{\xi}^{\mathcal{E}} \xrightarrow{(h_{\varepsilon}^{\mathcal{B}} \cdot p, 1_{h_{\xi}^{\mathcal{E}}})} h_{\mathbf{M} \cdot p}^{\mathcal{B}} \times h_{\xi}^{\mathcal{E}}$$

$$\downarrow^{p_{\text{hom}}} \downarrow^{p_{\text{hom}}} h_{X}^{\mathcal{B}} \cdot p \xrightarrow{\left(h_{(\varepsilon, 1_{X})}^{\mathcal{B}}\right)_{p}} h_{\mathbf{M} \times X \cdot p}^{\mathcal{B}}$$

is cartesian. Thus according to Fact 6.4 we derive that $\langle h_e^{\mathcal{B}} \cdot p, 1_{h_{\tilde{\epsilon}}^{\mathcal{E}}} \rangle$ is representable by morphism

$$\xi \xrightarrow{\cong} \langle e, 1_X \rangle^* \pi^* \xi \xrightarrow{\overline{\langle e, 1_X \rangle}_{\pi^* \xi}} \pi^* \xi$$

where \cong is the identification described in Remark 6.3. Therefore, the morphism $\sigma \cdot \langle h_e^{\mathcal{B}} \cdot p, 1_{h_{\xi}^{\mathcal{E}}} \rangle$ is representable (up to identifications of Remark 6.3) by

$$\widetilde{a}_{\xi} \cdot \tau^{\sigma} \cdot \widetilde{\langle e, 1_X \rangle}_{\pi^* \xi} = \widetilde{a}_{\xi} \cdot \widetilde{\langle e, 1_X \rangle}_{a^* \xi} \cdot \langle e, 1_X \rangle^* \tau^{\sigma} = \langle e, 1_X \rangle^* \tau^{\sigma}$$

Thus

$$\sigma \cdot \langle h_e^{\mathcal{B}} \cdot p, 1_{h_{\xi}^{\mathcal{E}}} \rangle = 1_{h_{\xi}^{\mathcal{E}}}$$

if and only if

$$\langle e, 1_X \rangle^* \tau^{\sigma} = 1_{\mathcal{E}}$$

This finishes the proof.

Fact 6.6. Let \mathbf{M} , X be objects of \mathcal{B} such that the cartesian product of \mathbf{M} and X exist. Let $a: \mathbf{M} \times X \to X$ be a morphism. Denote by $\pi: \mathbf{M} \times X \to X$ the projection on X. Consider objects ξ_1, ξ_2 in $p^{-1}(X)$ and let $\sigma_1: h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi_1}^{\mathcal{E}} \to h_{\xi_1}^{\mathcal{E}}$, $\sigma_2: h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi_2}^{\mathcal{E}} \to h_{\xi_2}^{\mathcal{E}}$ be morphisms of presheaves on \mathcal{E} . Suppose that squares

$$h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\tilde{\xi}_{1}}^{\mathcal{E}} \xrightarrow{\sigma_{1}} h_{\tilde{\xi}_{1}}^{\mathcal{E}} \qquad h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\tilde{\xi}_{2}}^{\mathcal{E}} \xrightarrow{\sigma_{2}} h_{\tilde{\xi}_{2}}^{\mathcal{E}}$$

$$\downarrow p_{\text{hom}} \qquad \downarrow p_{\text{h$$

are commutative. Let $\phi: \xi_1 \to \xi_2$ be a morphism in \mathcal{E} . Then the following assertions are equivalent.

(i) The square

$$h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi_{1}}^{\mathcal{E}} \xrightarrow{\sigma_{1}} h_{\xi_{1}}^{\mathcal{E}}$$

$$\downarrow h_{\mathbf{M}}^{\mathcal{B}} \cdot p \times h_{\xi_{2}}^{\mathcal{E}} \xrightarrow{\sigma_{2}} h_{\xi_{2}}^{\mathcal{E}}$$

is commutative.

(ii) The square

$$\begin{array}{ccc}
\pi^* \xi_1 & \xrightarrow{\tau^{\sigma_1}} & a^* \xi_1 \\
\pi^* \phi & & \downarrow & \downarrow \\
\pi^* \xi_2 & \xrightarrow{\tau^{\sigma_2}} & a^* \xi_2
\end{array}$$

is commutative.

Proof. Note that up to identifications of Remark 6.3 and according to Fact 6.4 morphism $h_{\phi}^{\mathcal{E}} \cdot \sigma_1$ is representable by

$$\phi \cdot \alpha^{\sigma_1} = \phi \cdot \widetilde{a}_{\xi_1} \cdot \tau^{\sigma_1} = \widetilde{a}_{\xi_2} \cdot a^* \phi \cdot \tau^{\sigma_1}$$

and on the other hand morphism $\sigma_2 \cdot \left(1_{h_{\bullet}^{\mathcal{B}}, p} \times h_{\phi}^{\mathcal{E}} \right)$ is representable by

$$\alpha^{\sigma_2} \cdot \pi^* \phi = \widetilde{a}_{\xi_2} \cdot \tau^{\sigma_2} \cdot \pi^* \phi$$

Since \widetilde{a}_{ξ_2} is cartesian with respect to p, we derive that

$$h_{\phi}^{\mathcal{E}} \cdot \sigma_1 = \sigma_2 \cdot \left(1_{h_{\mathbf{M}}^{\mathcal{B}} \cdot p} \times h_{\phi}^{\mathcal{E}} \right)$$

if and only if

$$a^*\phi\cdot\tau^{\sigma_1}=\tau^{\sigma_2}\cdot\pi^*\phi$$

This proves the assertion.

Guided by these two results we formulate a general notion of equivariant object in a fibered category.

Definition 6.7. Let $M: \mathcal{B}^{\mathrm{op}} \to \mathbf{Mon}$ be a presheaf of monoids on \mathcal{B} and assume that for some object X of \mathcal{B} the presheaf $h_X^{\mathcal{B}}$ admits an action of M given by the morphism $\alpha: M \times h_X^{\mathcal{B}} \to h_X^{\mathcal{B}}$. Consider an object ξ in $p^{-1}(X)$. Suppose that there is an action $\sigma: M \cdot p \times h_{\xi}^{\mathcal{E}} \to h_{\xi}^{\mathcal{E}}$ of a monoid presheaf $M \cdot p$ on $h_{\xi}^{\mathcal{E}}$ such that the square

$$\begin{array}{ccc}
M \cdot p \times h_{\xi}^{\mathcal{E}} & \xrightarrow{\sigma} & h_{\xi}^{\mathcal{E}} \\
\downarrow^{1_{M \cdot p} \times p_{\text{hom}}} & & \downarrow^{p_{\text{hom}}} \\
M \cdot p \times h_{X}^{\mathcal{B}} \cdot p & \xrightarrow{\alpha_{y}} & h_{X}^{\mathcal{B}} \cdot p
\end{array}$$

is commutative. Then a pair (ξ, σ) is called an *M-equivariant object over* α .

Definition 6.8. Let $M: \mathcal{B}^{op} \to \mathbf{Mon}$ be a presheaf of monoids on \mathcal{B} and assume that for some object X of \mathcal{B} the presheaf $h_X^{\mathcal{B}}$ admits an action of M given by the morphism $\alpha: M \times h_X^{\mathcal{B}} \to h_X^{\mathcal{B}}$. Suppose that (ξ_1, σ_1) and (ξ_2, σ_2) are objects over X with M-equivariant structures. Then a morphism $\phi: \xi_1 \to \xi_2$ in \mathcal{E} is M-equivariant if the square

$$\begin{array}{c}
M \cdot p \times h_{\xi_{1}}^{\mathcal{E}} & \xrightarrow{\sigma_{1}} h_{\xi_{1}}^{\mathcal{E}} \\
\downarrow^{1_{M \cdot p} \times h_{\phi}^{\mathcal{E}}} & \downarrow^{\phi} \\
M \cdot p \times h_{\xi_{2}}^{\mathcal{E}} & \xrightarrow{\sigma_{2}} h_{\xi_{2}}^{\mathcal{E}}
\end{array}$$

is commutative.

We denote the category of M-equivariant objects over α with respect to the fibered category $p : \mathcal{E} \to \mathcal{B}$ by $p^{-1}(X)_M$.

Now we can apply Proposition 6.5 and Fact 6.6 to the fibered category $\mathfrak{Q}\mathfrak{coh} \to \mathbf{Sch}_k$.

Corollary 6.9. Suppose that **M** is a monoid k-scheme that acts on a k-scheme X through morphism $a: \mathbf{M} \times_k X \to X$ of k-schemes. Then the category $\mathfrak{Q} \mathfrak{coh}(X)_{\mathbf{M}}$ is isomorphic to the category of $h_{\mathbf{M}}^{\mathbf{Sch}_k}$ -objects over $h_a^{\mathbf{Sch}_k}$ with respect to the fibered category $\mathfrak{Q} \mathfrak{coh} \to \mathbf{Sch}_k$.

Moreover, we have the following general result.

Corollary 6.10. Let \mathcal{B} be a category with all finite limits. Suppose that \mathbf{M} is a monoid object in \mathcal{B} that acts on an object X of \mathcal{B} via $a: \mathbf{M} \times X \to X$. Then the category of $h_{\mathbf{M}}^{\mathcal{B}}$ -objects over $h_a^{\mathcal{B}}$ with respect to the fibered category $p_{\mathrm{Arr}}: \mathrm{Arr}(\mathcal{B}) \to \mathcal{B}$ is isomorphic to the category of \mathbf{M} -equivariant morphisms $\pi: \widetilde{X} \to X$ as objects and with

7. EQUIVARIANT SHEAVES OF QUASI-COHERENT ALGEBRAS

In this section we fix a commutative ring k. Let \mathbf{M} be a monoids scheme and let X be a k-scheme together with an action $a : \mathbf{M} \times_k X \to X$ of \mathbf{M} .