CSIT113 Problem Solving

Week 2b

Brute Force vs. Finesse

- Often, the "easy" way to solve a problem is to list all possible answers and select the best (right) one.
- However, this will generally involve far more work than is strictly needed.
- The following problems will illustrate this idea.

Problem 1: Crossing the river - v1

- A Farmer has a wolf, a goat and a cabbage and must cross a river using a small boat.
- Only two things will fit in the boat at a time.
- If left alone, the wolf will eat the goat.
- If left alone, the goat will eat the cabbage.
- Get everything safely across the river.
- What are start state, final state, operators, constraints?

Problem 1

Brute Force approach:

- 1) list all possible configurations;
- 2) eliminate the illegal ones;
- 3) find a sequence of configurations starting at the initial state and ending at the goal state.

Invariants (constants, pattern)

Goat will eat cabbage:

- $F = G = C \vee G \neq C$
- In other words either the farmer, goat and cabbage are all on the same bank (f = g = c) or the goat and cabbage are on different banks (g ≠ c).

Wolf will eat goat

- $F = W = G \lor W \ne G$
- In other words either the farmer, wolf and goat are all on the same bank (f = w = g) or the wolf and the goat are on different banks (w ≠ g)

F,G,C,W: variables

• List all possible configurations. How many?

F								
W								
G								
C								

• List all possible configurations.

F	1								
W	1								
G	1								
C	1								

• I for left bank, r for right bank

F	1	r							
W	1	1							
G	1	1							
C	1	1							

F	1	r	1							
W	1	1	r							
G	1	1	1							
C	1	1	1							

F	1	r	1	1						
W	1	1	r	1						
G	1	1	1	r						
C	1	1	1	1						

F	1	r	1	1	1						
W	1	1	r	1	1						
G	1	1	1	r	1						
C	1	1	1	1	r						

F	1	r	1	1	1	1					
W	1	1	r	1	1	1					
G	1	1	1	r	1	r					
C	1	1	1	1	r	r					

F	1	r	1	1	1	1	1					
W	1	1	r	1	1	1	r					
G	1	1	1	r	1	r	1					
C	1	1	1	1	r	r	r					

F	1	r	1	1	1	1	1	1				
W	1	1	r	1	1	1	r	r				
G	1	1	1	r	1	r	1	r				
C	1	1	1	1	r	r	r	1				

F	1	r	1	1	1	1	1	1	r				
W	1	1	r	1	1	1	r	r	1				
G	1	1	1	r	1	r	1	r	1				
C	1	1	1	1	r	r	r	1	r				

F	1	r	1	1	1	1	1	1	r	r			
W	1	1	r	1	1	1	r	r	1	1			
G	1	1	1	r	1	r	1	r	1	r			
C	1	1	1	1	r	r	r	1	r	1			

F	1	r	1	1	1	1	1	1	r	r	r			
W	1	1	r	1	1	1	r	r	1	1	r			
G	1	1	1	r	1	r	1	r	1	r	1			
C	1	1	1	1	r	r	r	1	r	1	1			

F	1	r	1	1	1	1	1	1	r	r	r	r		
W	1	1	r	1	1	1	r	r	1	1	r	r		
G	1	1	1	r	1	r	1	r	1	r	1	r		
C	1	1	1	1	r	r	r	1	r	1	1	1		

F	1	r	1	1	1	1	1	1	r	r	r	r	r		
W	1	1	r	1	1	1	r	r	1	1	r	r	r		
G	1	1	1	r	1	r	1	r	1	r	1	r	1		
C	1	1	1	1	r	r	r	1	r	1	1	1	r		

F	1	r	1	1	1	1	1	1	r	r	r	r	r	r	
W	1	1	r	1	1	1	r	r	1	1	r	r	r	1	
G	1	1	1	r	1	r	1	r	1	r	1	r	1	r	
C	1	1	1	1	r	r	r	1	r	1	1	1	r	r	

F	1	r	1	1	1	1	1	1	r	r	r	r	r	r	1	
W	1	1	r	1	1	1	r	r	1	1	r	r	r	1	r	
G	1	1	1	r	1	r	1	r	1	r	1	r	1	r	r	
C	1	1	1	1	r	r	r	1	r	1	1	1	r	r	r	

• List all possible configurations.

F	1	r	1	1	1	1	1	1	r	r	r	r	r	r	1	r
W	1	1	r	1	1	1	r	r	1	1	r	r	r	1	r	r
G	1	1	1	r	1	r	1	r	1	r	1	r	1	r	r	r
C	1	1	1	1	r	r	r	1	r	1	1	1	r	r	r	r

Can you see the symmetry?

• Eliminate the illegal ones.

F	1	r	1	1	1	1	1	1	r	r	r	r	r	r	1	r
W	1	1	r	1	1	1	r	r	1	1	r	r	r	1	r	r
G	1	1	1	r	1	r	1	r	1	r	1	r	1	r	r	r
C	1	1	1	1	r	r	r	1	r	1	1	1	r	r	r	r

• 10 states are left

 Find a sequence of configurations starting at the initial state and ending at the goal state.

vs. Finesse

- We note that the wolf and cabbage are not a threat to each other.
- The goat is a problem for both.
- Rephrase the problem:

Abstraction: Crossing the river – ver1a

- A Farmer has two alphas and a beta and must cross a river using a small boat.
- Only two things will fit in the boat at a time.
- An alpha and a beta may never be left alone together.
- Get everything safely across the river.

Abstraction

- Note: the single invariant is now:
 - $f = \alpha = b \lor \alpha \neq b$
- The solution should now be obvious.

Dilbert: 27th November 2013

Problem 2: Crossing the river – ver2

- Three couples (husband and wife) wish to cross a river using a small boat.
- Only two people will fit in the boat at a time.
- Each husband is too jealous to leave his wife with another man.
- Get everyone safely across the river.

Jealous Husbands

Brute Force approach:

- 1) list all possible configurations;
- 2) eliminate the illegal ones;
- 3) find a sequence of configurations starting at the initial state and ending at the goal state.

- How many possible configurations are there?
- This is getting silly.
- We call this the "State Space Explosion"
- Clearly the brute force approach quickly becomes unattractive.
- So we need to find a finesse solution.

What's the Problem?

- We can look at the problem in more than one way.
 - 3 couples must cross.
 - 3 wives and 3 husbands must cross.
 - 6 people must cross.
- Some ways are more useful than others.

What's the Problem

- Also, multiple possible strategies suggest themselves:
 - Get all the wives across first;
 - Get all the husbands across first;
 - Get one couple across at a time.
- Can we make use of symmetry and solve only half the problem?

State Representation

- We need a good notation to represent positions (states) in the problem.
- We do not need to identify individual people.
- We have three types of thing to deal with.
 - Couples.
 - Husbands.
 - Wives.

State Representation

Thus:

- 3c represents 3 couples on one bank.
- 2ch represents 2 couples and a husband (the wife is on the other bank).
- 2w represents two wives (the other bank will have 2ch).

State Representation

- We can represent a state in the problem using a notation of the form {I || r} where I and r represent the current contents of the left and right bank respectively.
- Thus:
 - {3c || } is the initial state;
 - { | 3c} is the goal state.
 - {2h || c2w} might be an intermediate state.

Move Representation

- We can represent moves by using a notation of the form {I | b | r} where I and r have the same meanings as before and b is the contents of the boat.
- The following are some valid moves:
 - {C | C | C}
 - {2ch | w | w}
 - {3h | 2w | w}

Invariants

- $0 \le c \le 3$
 - There are always between 0 and 3 couples present.
- c + h = 3
 - Law of conservation of husbands.
- c + w = 3
 - Law of conservation of wives.
- ∴ h = w

Illegal states and moves

- States in which couples are present with wives...
 - {2cw || h}, {cw || ch}, {c2w || 2h}... are all forbidden.
- Moves must obey these rules with the additional rule that the boat can only take the values h, c, w, 2h and 2w.

State Transitions

- We denote a transition between two states, the result of a move, by the notation:
 - {p} m {q}
- Where:
 - {p} is the state before the move;
 - {q} is the state after the move and
 - m is the move

State Transitions

- We can combine moves as follows:
 - If $\{p_0\}$ m_1 $\{p_1\}$ and $\{p_1\}$ m_2 $\{p_2\}$
 - then we can write $\{p_0\}$ m1, m2 $\{p_2\}$.
- In general we write:
 - {p} S {q}
 - where S is a sequence of individual moves.

Restating the problem

- The problem now becomes find a sequence of moves, S, so that.
 - {3c || } S { || 3c}.
- We can decompose this to the following symmetric sub-problems.
- Find S_1 , S_2 and S_3 such that:
 - $\{3c \mid | \} S_1 \{3h \mid | 3w\}$
 - {3h | 3w} S₂ {3w | 3h}
 - $\{3w \mid | 3h\} S_3 \{ | | 3c\}.$

Restating the problem

- We now have two smaller problems:
 - Get the wives across (S₁)
 - Swap the husbands and wives (S₂)
- Note that S₃ will simply be the reverse of S₁ so we do not have to find it as well.
- It turns out that finding S_1 (and hence S_3) is easy.

S₁

- Send over two wives:
- $\{3c||\}\{c2h|2w|\}\{c2h||2w\}$
- Bring one back:
- {c2h||2w}{c2h|w|w}{2ch||w}
- Send two wives over:
- {2ch||w}{3h|2w|w}{3h||3w}

Finding S₂

- If we keep assuming the we are going to have a symmetric solution we need to find two sequences T₁ and T₂ so that
 - {3h || 3w}
 - T₁
 - {C | C | C}
 - T₂
 - {3w || 3h}
- Again, T₂ will simply be the reverse of T₁.

Finding T₁

- The middle move, {c | c | c}, can be interpreted in two ways:
 - the couple is crossing left-to-right;
 - the couple is crossing right-to-left.
- We do not yet know which is the case.
- Either
 - {2c || c} {c | c | c} {c || 2c} or
 - {c | 2c} {c | c | c} {2c | c}
- We need to find a set of moves which gets from {3h || 3w} to one of these two states ({c || 2c} or {2c || c}).

T_{1}

- Send a wife back.
- {3h||3w}{3h|w|2w}{c2h||2w}
- Send two husbands over.
- $\{c2h||2w\}\{c|2h|2w\}\{c||2c\}$