

Heart Disease

Muhammad Faraz Akram

Introduction

Dataset

Heart Diseases

Data source

CDC Official Website

Reason

To find which Age, Gender, Race is more at risk of getting Heart Disease

Expectation

To run classification models on the Dataset at hand

Cleaning of the Dataset

Missing Values

Target Values

Unneeded Columns

Plan of Action

Unique Values

Fixing Outliers

Cleaning Examples

"Data Value Footnote" had 81.66% missing values

Target values were Topics (Heart Diseases)

Unneeded Columns (Data source)

Topics had 6 unique values

Break out and Break out Category had 17 unique values combined

Feature Engineering

Diseases

Dummying up Target Variable (6 Types of Heart Conditions)

Categories

Dummying up Categories (Age, Race, Gender,..)

Binary Data

Converting Columns into Binary Data

Distribution

Lineplot for Data Value and Years

Data Value is the Point Estimate rate per 100,000

Lineplot for Data Value and Year

Data Value is the Point Estimate rate per 100,000

Types of Heart Condition

- Stroke
- Cardiovascular Disease
- Heart Attack
- Heart Failure
- Coronary Heart Disease
- Other Heart Diseases

Modeling

One Vs Rest Classification

Multiclassification Model used for more than two classes. (6 diseases)

Random Forest Classification

Using it to predict One Disease at a time (Binary Data)

Extra Tree Classification

Using it to predict One Disease at a time (Binary Data)

One Vs Rest Classification

Disease	Train Score	Test Scores	Overfit
Stroke	86 %	81 %	Yes
Cardiovascular Disease	95 %	93 %	No
Coronary Heart Disease	95 %	94 %	No
Heart Attack	89 %	88 %	No
Heart Failure	92 %	91 %	No
Other Heart Disease	93 %	90 %	No

Baseline Accuracy = 63.2%

Classification Models for Diseases Random Forest Classification

Diseases	Train Score	Test Score	Overfit
Stroke	84 %	80 %	Yes
Cardiovascular Disease	94 %	93 %	No
Coronary Heart Disease	94 %	93 %	No
Heart Attack	89 %	88 %	No
Heart Failure	90.5 %	90.2 %	No
Other Heart Diseases	91 %	89 %	No

Classification
Models for
Diseases
Extra Tree
Classification

Baseline Accuracy = 63.2%

Confusion Matrix

In this Confusion Matrix, we can better explain the outcome

True negatives means that we correctly predicted the people who don't have Heart Disease

True positives means that we correctly predicted the people who have Heart Disease

False positives means that we incorrectly predicted the people who have Heart Disease(who don't have Heart Disease)

False negatives means that we incorrectly predicted the people who don't have Heart Disease(who have Heart Disease)

Confusion Matrix for Cardiovascular Disease

- Better able to predict True Negatives
- Will be helpful in specifying the people with no Heart Conditions
- Will be able to make better Healthcare plans for the members

Conclusion

Values related to Stoke 62%

One Vs Rest Classification was Overfit

Models worked well

Success in True Negatives

Thank You for Listening