# Biomechanics of human movement

Basil Mathai, Research scholar, IIT Kharagpur

### Contents

- Overview of movement analysis
- Variables in analysis of movement
- Anthropometry
- Example problems
- 3D Kinetics and Kinematics

# Overview of movement analysis



Fig 1. Schematic diagram to show the relationship between the neural, kinetic, and kinematic variables required to describe and analyze human movement

# Variables in analysis of movement

#### 1. Signals

Time domain signals of EMG, Forces, displacements, accelerations etc...

#### 2. Kinematics

Linear and angular displacements, velocities and accelerations.

#### 3. Kinetics

• Internal (muscle, friction in joints,...) and external (Ground reaction) forces.

#### 4. Anthropometry

 Masses of limb segments, location of mass centers, segment lengths, centers of rotation, angles of pull of muscles etc...

#### 5. Muscle and Joint Biomechanics

Time domain signals of EMG, Forces, displacements, accelerations etc...

#### 6. Electromyography

Neural control of each muscle

### ANTHROPOMETRY

TABLE 4.1 Anthropometric Data

|                                |                                          | Segment<br>Weight/Total | Center of Mass/<br>Segment Length |          | Radius of Gyration/<br>Segment Length |          |          |         |
|--------------------------------|------------------------------------------|-------------------------|-----------------------------------|----------|---------------------------------------|----------|----------|---------|
| Segment                        | Definition                               | Body Weight             | Proximal                          | Distal   | C of G                                | Proximal | Distal   | Density |
| Hand                           | Wrist axis/knuckle II middle finger      | 0.006 M                 | 0.506                             | 0.494 P  | 0.297                                 | 0.587    | 0.577 M  | 1.16    |
| Forearm                        | Elbow axis/ulnar styloid                 | 0.016 M                 | 0.430                             | 0.570 P  | 0.303                                 | 0.526    | 0.647 M  | 1.13    |
| Upper arm                      | Glenohumeral axis/elbow axis             | 0.028 M                 | 0.436                             | 0.564 P  | 0.322                                 | 0.542    | 0.645 M  | 1.07    |
| Forearm and hand               | Elbow axis/ulnar styloid                 | 0.022 M                 | 0.682                             | 0.318 P  | 0.468                                 | 0.827    | 0.565 P  | 1.14    |
| Total arm                      | Glenohumeral joint/ulnar styloid         | 0.050 M                 | 0.530                             | 0.470 P  | 0.368                                 | 0.645    | 0.596 P  | 1.11    |
| Foot                           | Lateral malleolus/head metatarsal II     | 0.0145 M                | 0.50                              | 0.50 P   | 0.475                                 | 0.690    | 0.690 P  | 1.10    |
| Leg                            | Femoral condyles/medial malleolus        | 0.0465 M                | 0.433                             | 0.567 P  | 0.302                                 | 0.528    | 0.643 M  | 1.09    |
| Thigh                          | Greater trochanter/femoral condyles      | 0.100 M                 | 0.433                             | 0.567 P  | 0.323                                 | 0.540    | 0.653 M  | 1.05    |
| Foot and leg                   | Femoral condyles/medial malleolus        | 0.061 M                 | 0.606                             | 0.394 P  | 0.416                                 | 0.735    | 0.572 P  | 1.09    |
| Total leg                      | Greater trochanter/medial malleolus      | 0.161 M                 | 0.447                             | 0.553 P  | 0.326                                 | 0.560    | 0.650 P  | 1.06    |
| Head and neck                  | C7-T1 and 1st rib/ear canal              | 0.081 M                 | 1.000                             | — PC     | 0.495                                 | 0.116    | — PС     | 1.11    |
| Shoulder mass                  | Sternoclavicular joint/glenohumeral axis | _                       | 0.712                             | 0.288    | _                                     | _        | _        | 1.04    |
| Thorax                         | C7-T1/T12-L1 and diaphragm*              | 0.216 PC                | 0.82                              | 0.18     | _                                     | _        | _        | 0.92    |
| Abdomen                        | T12-L1/L4-L5*                            | 0.139 LC                | 0.44                              | 0.56     | _                                     | _        | _        | _       |
| Pelvis                         | L4-L5/greater trochanter*                | 0.142 LC                | 0.105                             | 0.895    | _                                     | _        | _        | _       |
| Thorax and abdomen             | C7-T1/L4-L5*                             | 0.355 LC                | 0.63                              | 0.37     | _                                     | _        | _        | _       |
| Abdomen and pelvis             | T12-L1/greater trochanter*               | 0.281 PC                | 0.27                              | 0.73     | _                                     | _        | _        | 1.01    |
| Trunk                          | Greater trochanter/glenohumeral joint*   | 0.497 M                 | 0.50                              | 0.50     | _                                     | _        | _        | 1.03    |
| Trunk head neck                | Greater trochanter/glenohumeral joint*   | 0.578 MC                | 0.66                              | 0.34 P   | 0.503                                 | 0.830    | 0.607 M  | _       |
| Head, arms, and<br>trunk (HAT) | Greater trochanter/glenohumeral joint*   | 0.678 MC                | 0.626                             | 0.374 PC | 0.496                                 | 0.798    | 0.621 PC | _       |
| HAT                            | Greater trochanter/mid rib               | 0.678                   | 1.142                             | _        | 0.903                                 | 1.456    | _        | _       |

<sup>\*</sup>NOTE: These segments are presented relative to the length between the greater trochanter and the glenohumeral joint.

Source Codes: M, Dempster via Miller and Nelson; Biomechanics of Sport, Lea and Febiger, Philadelphia, 1973. P, Dempster via Plagenhoef; Patterns of Human Motion, Prentice-Hall, Inc. Englewood Cliffs, NJ, 1971. L, Dempster via Plagenhoef from living subjects; Patterns of Human Motion, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971. C, Calculated.

# Example problems

**Example 1:** In a static situation, a person is standing on one foot on a force plate. The ground reaction force is found to act 4 cm anterior to the ankle joint. Note that convention has the ground reaction force  $R_{y1}$  always acting upward. We also show the horizontal reaction force  $R_{x1}$  to be acting in the positive direction (to the right). If this force actually acts to the left, it will be recorded as a negative number. The subject's mass is 60 kg, and the mass of the foot is 0.9 kg. Calculate the joint reaction forces and net muscle moment at the ankle.  $R_{y1}$  = body weight =  $60 \times 9.8 = 588$  N.



**Fig 1:** Anatomical and free-body diagram of foot.

# Answer key

1.  $\Sigma F_x = ma_x$ ,

$$R_{x2} + R_{x1} = ma_x = 0$$

Note that this is a redundant calculation in static conditions.

2. 
$$\Sigma F_y = ma_y$$
,

$$R_{y2} + R_{y1} - mg = ma_y$$

$$R_{y2} + 588 - 0.9 \times 9.8 = 0$$

$$R_{y2} = -579.2 \,\mathrm{N}$$

3. About the COM,  $\Sigma M = I_0 \alpha$ ,

$$M_2 - R_{y1} \times 0.02 - R_{y2} \times 0.06 = 0$$

$$M_2 = 588 \times 0.02 + (-579.2 \times 0.06) = -22.99 \,\mathrm{N} \cdot \mathrm{m}$$



**Example 2:** From the data collected during the swing of the foot, calculate the muscle moment and reaction forces at the ankle. The subject's mass was 80 kg and the ankle-metatarsal length was 20.0 cm. The inertial characteristics of the foot are calculated as:

$$\begin{split} m &= 0.0145 \times 80 = 1.16 \text{ kg} \\ \rho_0 &= 0.475 \times 0.20 = 0.095 \text{ m} \\ I_0 &= 1.16(0.095)^2 = 0.0105 \text{ kg} \cdot \text{m}^2 \\ \alpha &= 21.69 \text{ rad/s}^2 \end{split}$$



**Fig 2:** FBD of foot during swing showing the linear accelerations of the COM and the angular acceleration of the segment.

# Answer key

1.  $\Sigma F_x = ma_x$ ,  $R_{x1} = 1.16 \times 9.07 = 10.52 \,\text{N}$ 

2. 
$$\Sigma F_y = ma_y$$
,

$$R_{\rm vl} - 1.16g = m(-6.62)$$

$$R_{\rm vl} = 1.16 \times 9.8 - 1.16 \times 6.62 = 3.69 \,\rm N$$

3. At the COM of the foot,  $\Sigma M = I_0 \alpha$ ,

$$M_1 - R_{x1} \times 0.0985 - R_{y1} \times 0.0195 = 0.0105 \times 21.69$$

$$M_1 = 0.0105 \times 21.69 + 10.52 \times 0.0985 + 3.69 \times 0.0195$$
  
=  $0.23 + 1.04 + 0.07 = 1.34 \,\mathrm{N} \cdot \mathrm{m}$ 



**Example 3:** For the same instant in time, calculate the muscle moments and reaction forces at the knee joint. The leg segment was 43.5 cm long:

$$\begin{split} m &= 0.0465 \times 80 = 3.72 \text{ kg} \\ \rho_0 &= 0.302 \times 0.435 = 0.131 \text{ m} \\ I_0 &= 3.72(0.131)^2 = 0.0638 \text{ kg} \cdot \text{m}^2 \\ \alpha &= 36.9 \text{ rad/s}^2 \end{split}$$



**Fig 3:** FBD of leg at the same instant in time as the foot in Figure 2. Linear and angular accelerations are as shown. Distances are in centimeters. The distal end and reaction forces and moments have been reversed, recognizing Newton's third law.

From Example 2,  $R_{x1} = 10.52 \,\text{N}$ ,  $R_{y1} = 3.69 \,\text{N}$ , and  $M_1 = 1.34 \,\text{N} \cdot \text{m}$ .

1. 
$$\Sigma F_x = ma_x$$
,

$$R_{x2} - R_{x1} = ma_x$$

$$R_{x2} = 10.52 + 3.72(-0.03) = 10.41 \,\mathrm{N}$$

2.  $\Sigma F_y = ma_y$ ,

$$R_{v2} - R_{v1} - mg = ma_v$$

$$R_{v2} = 3.69 + 3.72 \times 9.8 + 3.72(-4.21) = 24.48 \,\mathrm{N}$$

3. About the COM of the leg,  $\Sigma M = I\alpha$ ,

$$M_2 - M_1 - 0.169R_{x1} + 0.185R_{y1} - 0.129R_{x2} + 0.142R_{y2} = I\alpha$$
  
 $M_2 = 1.34 + 0.169 \times 10.52 - 0.185 \times 3.69 + 0.129 \times 10.41$   
 $-0.142 \times 24.48 + 0.0638 \times 36.9$   
 $= 1.34 + 1.78 - 0.68 + 1.34 - 3.48 + 2.35 = 2.65 \text{ N} \cdot \text{m}$ 



### 3D Kinetics and Kinematics



Fig 5: An anatomical segment showing the GRS, the marker axes, and anatomical axes.

# Reference Systems

### Global Reference System (GRS)

- global reference system (GRS) is fixed coordinates in the laboratory or data collection space.
- X: forward/backward direction,
- Y: vertical (gravitational) axis,
- Z: left/right (medial/lateral) axis.

#### 2. Local Reference Systems

 Anatomical axis system is set with its origin at the center of mass (COM) of the segment.

### 3. Marker Axes System

- marker axis system for each segment can vary from laboratory to laboratory.
- there must be at least three independent markers per body segment.

# Newtonian 3D Equations of Motion

**Step 1:** Calculate the reaction forces at the proximal end of the segment in the GRS:

$$\Sigma F_X = ma_X \quad or \quad R_{XP} - R_{XD} = ma_X$$
  

$$\Sigma F_Y = ma_Y \quad or \quad R_{YP} - R_{YD} - mg = ma_Y$$
  

$$\Sigma F_Z = ma_Z \quad or \quad R_{ZP} - R_{ZD} = ma_Z$$

where  $a_X$ ,  $a_Y$ ,  $a_Z$  are the segment COM accelerations in the X, Y, Z GRS directions and  $R_{XP}$ ,  $R_{XD}$ ,  $R_{YP}$ ,  $R_{YD}$ ,  $R_{ZP}$ ,  $R_{ZD}$  are the proximal and distal reaction forces in the X, Y, and Z axes.

**Step 2:** Transform both proximal and distal reaction forces into the anatomical axes using the [G to A] matrix transformation based on  $\theta_1$ ,  $\theta_2$ , and  $\theta_3$ . We will now have the proximal and distal reaction forces in the anatomical axes x, y, z:  $R_{xp}$ ,  $R_{xd}$ ,  $R_{yp}$ ,  $R_{yd}$ ,  $R_{zp}$ ,  $R_{zd}$ .

**Step 3:** Transform the distal moments from those previously calculated in the GRS using the [G to A] matrix to the anatomical axes, as before, based on  $\theta_1$ ,  $\theta_2$ , and  $\theta_3$ :  $M_{xd}$ ,  $M_{yd}$ ,  $M_{zd}$ . We now have all the variables necessary to calculate the proximal moments in the anatomical axes.



End

Thank you