Derivadas parciales

Definición 1. Sea $X \subseteq \mathbb{R}^n$ abierto, $a \in X$ y $f: X \to \mathbb{R}^m$. Sea $u \in \mathbb{R}^n$, ||u|| = 1. Definimos la derivada direccional de f en a en la dirección u, como

$$D_u f(a) := \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}.$$

Ejemplo 2. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que para cada $x \in \mathbb{R}^2$,

$$f(x) := \begin{cases} \frac{x_1 x_2^2}{x_1^2 + x_2^4}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Calcular las derivadas direccionales de f en (0,0).

Demostración. Sea $u \in \mathbb{R}^2$, tal que ||u|| = 1. Entonces,

$$D_u f(0) = \lim_{t \to 0} \frac{t^3 u_1 u_2^2}{t(t^2 u_1^2 + t^4 u_2^4)} = \lim_{t \to 0} \frac{u_1 u_2^2}{u_1^2 + t^2 u_2^4}.$$

Luego,

$$D_u f(0) = \begin{cases} 0, & u_1 = 0; \\ \frac{u_2^2}{u_1}, & u_1 \neq 0. \end{cases}$$

Por lo tanto, la derivada direccional en 0 existe en todas direcciones. Sin embargo, f no es diferenciable en 0, debido a que f no es continua en 0.

Proposición 3. Sea $X \subseteq \mathbb{R}^n$ abierto, $a \in X$ y $f \colon X \to \mathbb{R}^m$. Si f es diferenciable en a, entonces existe $D_u f(a)$ para cada $u \in \mathbb{R}^n$, ||u|| = 1.

Demostración. Como f es diferenciable en a, existe $\varphi \colon X \to \mathbb{R}^m$ tal que φ es continua en $a, \varphi(a) = 0$ y para cada $x \in X$,

$$f(x) = f(a) + df(a)(x - a) + ||x - a||\varphi(a).$$

Sea $u \in \mathbb{R}^n$, ||u|| = 1. Entonces,

$$D_{u}f(a) = \lim_{t \to 0} \frac{f(a+tu) - f(a)}{t} = \lim_{t \to 0} \frac{\mathrm{d}f(a)(tu) + ||tu||\varphi(a+tu)}{t}$$
$$= \lim_{t \to 0} \frac{t \,\mathrm{d}f(a)(tu) + |t|||u||\varphi(a+tu)}{t} = \mathrm{d}f(a)u.$$

Definición 4. Sea $(e_j)_{j=1}^n$ la base canónica de \mathbb{R}^n . Sea $X \subseteq \mathbb{R}^n$ abierto, $a \in X$ y $f: X \to \mathbb{R}^m$. Para cada $j \in \{1, \ldots, m\}$ definimos la derivada parcial de f respecto a x_j como

$$D_j f(a) := D_{e_j} f(a).$$

Para las derivadas parciales, es común encontrar en libros de texto la notación $\frac{\partial f}{\partial x_i}(a)$.

Proposición 5. Sean $X \subseteq \mathbb{R}^n$ abierto, $a \in X$ y $f \colon X \to \mathbb{R}^m$ diferenciable en a. Entonces,

$$\mathrm{d}f(a) = [\mathrm{D}_j f_k(a)]_{i,k=1}^{n,m}.$$

Demostración. Para cada $x \in X$, $x = \sum_{j=1}^{n} x_j e_j$. Entonces,

$$df(a)x = \sum_{j=1}^{n} x_j df(a)e_j = \sum_{j=1}^{n} x_j D_j f(a).$$

Notemos que $D_j f(a) = (D_j f_1(a), \dots, D_j f_m(a))$. Por lo tanto,

$$df(a) = \begin{bmatrix} D_1 f_1(a) & \cdots & D_n f_1(a) \\ D_1 f_2(a) & \cdots & D_n f_2(a) \\ \vdots & \ddots & \vdots \\ D_1 f_m(a) & \cdots & D_n f_m(a) \end{bmatrix}.$$

La matriz asociada a la transformación df(a) se llama matriz jacobiana de f en a.

Proposición 6 (Regla de la cadena). Sean $X \subseteq \mathbb{R}^n$ abierto, $a \in X$, $f: X \to \mathbb{R}^n$ diferenciable en $a, Y \subseteq \mathbb{R}^m$ tal que $f[X] \subseteq Y$, $g: Y \to \mathbb{R}^p$ diferenciable en f(a). Entonces, $g \circ f: X \to \mathbb{R}^p$ es diferenciable en a

$$d(g \circ f)(a) = dg(f(a)) df(a).$$

Demostración. Como f es diferenciable en a, existe $\varphi \colon X \to \mathbb{R}^m$ tal que para cada $x \in X$,

$$f(x) = f(a) + df(a)(x - a) + ||x - a||\varphi(x).$$

Por otro lado, como g es diferenciable en f(a), existe $\psi \colon Y \to \mathbb{R}^p$ tal que para cada $y \in Y$,

$$g(y) = g(f(a)) + dg(f(a))(y - f(a)) + ||y - f(a)||\psi(y).$$

Como $g[X] \subseteq Y$, para cada $x \in X$,

$$g(f(x)) = g(f(a)) + dg(f(a))(f(x) - f(a)) + ||f(x) - f(a)||\psi(f(x)).$$

Luego,

$$g(f(x)) = g(f(a)) + dg(f(a))(d(a)(x-a) + ||x-a||\varphi(x)) + ||d(a)(x-a) + ||x-a||\varphi(x)||\psi(f(x)).$$

Hacemos $\Psi \colon X \to \mathbb{R}^p$, donde para cada $x \in X$,

$$\Phi(x) := \begin{cases} \frac{\|d(a)(x-a) + \varphi(x)\|x - a\|\|\|\psi(f(x))\|}{\|x - a\|}, & x \neq a; \\ 0, & x = a. \end{cases}$$
 (1)

 Φ es continua en a y $\Phi(a) = 0$ y para cada $x \in X$. Entonces,

$$g(f(x)) = g(f(a)) + dg(f(a))d(a)(x - a) + df(a)\varphi(x)||x - a|| + ||x - a||\Phi(x).$$

Como φ y Φ son continuas en a, y $\varphi(a) = \Phi(a) = 0$, tenemos que $g \circ f$ es diferenciable en a y $d(g \circ f)(a) = dg(f(a))d(a)$.

Ejercicios

- 1. Sea $f: \mathbb{R}^2 \to \mathbb{R}$, donde para cada $x \in \mathbb{R}^2$, $f(x) := e^{-x_1^2 x_2^2}$. Calcular las derivadas parciales de f y construir su matríz jacobiana.
- 2. Demostrar que la función (1) es continua en a.
- 3. Calcular la derivada de $h: \mathbb{R}^2 \to \mathbb{R}$, h(x,y) = f(u(x,y),v(x,y)) en un punto arbitrario de \mathbb{R}^2 , donde

$$f(u,v) = \frac{u^2 + v^2}{u^2 - v^2}, \quad u(x,y) = e^{-x-y}, \quad v(x,y) = e^{xy}.$$

4. Hacer un diagrama que explique cómo se relacionan las funciones continuas, funciones diferenciables y funciones continuamente diferenciables.