Session 12: Gradient descent

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Gradient descent
- 2. Convergence analysis for convex functions
- 3. Improvements

Gradient descent

Gradient descent 2/12

Gradient descent algorithm

Goal: minimize a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$.

Starting from a point $x_0 \in \mathbb{R}^n$, perform the updates:

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t).$$

Gradient descent

Convergence analysis for convex functions

Smoothness and strong convexity

Definition

Given $L, \mu > 0$, we say that a twice-differentiable convex function $f: \mathbb{R}^n \to \mathbb{R}$ is

- L-smooth if for all $x \in \mathbb{R}^n$, $\lambda_{\max}(H_f(x)) \leq L$.
- μ -strongly convex if for all $x \in \mathbb{R}^n$, $\lambda_{\min}(H_f(x)) \ge \mu$.

Speed for L-smooth functions

Proposition

Assume that f is convex, L-smooth and admits a global minimizer $x^\star \in \mathbb{R}^n$. Then, gradient descent with constant step size $\alpha_t = 1/L$ verifies:

$$f(x_t) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{t+4}.$$

L-smooth + μ -strongly cvx functions

Theorem

Assume that f is convex, L-smooth and μ -strongly convex. Then, gradient descent with constant step size $\alpha_t=1/L$ verifies:

$$f(x_t) - f(x^*) \le \left(1 - \frac{\mu}{L}\right)^t (f(x_0) - f(x^*)).$$

Proof

Proof					

Convergence analysis for convex functions 8/12

Choosing the step size

Backtracking line search

Start with $\alpha = 1$ and while

$$f(x_t - \alpha \nabla f(x_t)) \ge f(x_t) - \frac{\alpha}{2} ||\nabla f(x_t)||^2,$$

update $\alpha = \beta \alpha$.

Improvements

Improvements 10/12

Gradient descent + momentum

Idea: mimic the trajectory of an « heavy ball » that goes down the slope:

$$x_{t+1} = x_t + v_t$$
 where $v_t = -lpha_t
abla f(x_t) + eta_t v_{t-1}$.

Newton's method

Assume that f is $\mu\text{-strongly convex}$ and L-smooth.

Newton's method perform the updates:

$$x_{t+1} = x_t - H_f(x_t)^{-1} \nabla f(x_t).$$

Improvements

Questions?

Questions?

