Работа 5.1.2 Эффект Комптона

Валеев Рауф Раушанович группа 825

30 октября 2020 г.

Цель работы: С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ - квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

1 Теория

Рассеяние γ -лучей в веществе относится к числу явлений, в которых особенно ясно проявляется двойственная природа излучения. Волновая теория, хорошо объясняющая рассеяние длинноволнового иЗлучения, испытывает трудности при описании рассеяния рентгеновских и γ -лучей. Эта теория, в частности, не может объяснить, почему в составе рассеянного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного излучения.

Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов (фотонов), имеющих энергию $\hbar\omega$ и импульс $p=\hbar\omega/c$. Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим - интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения покоился (его энергия равна энергии покоя mc^2), а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma = (1-\beta^2)^{-1/2}$, $\beta = v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равным и $\hbar\omega_1$ и $\hbar\omega_1/c$ (рис. 1). Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_K (1 - \cos \theta) \tag{1}$$

где λ_0 и λ_1 - длины волн γ -кванта до и после рассеяния, а величина

$$\Lambda_{\rm K} = \frac{h}{mc} = 2,42 \cdot 10^{-10} {\rm cm}$$

Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ — выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол $\theta, m-$ масса электрона.

2 Экспериментальная установка

Блок-схема установки изображена на рис. 3. Источником излучения 1 служит 137Cs, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Рис. 1: Экспериментальная установка

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком, принцип работы которого рассмотрен в работе 5.3. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ) и сцинтиллятора 4*). Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на аноде ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отсчитывается по лимбу 6.

3 Обработка результатов

Для обработки результатов используется формула (2) с замененными энергиями квантов на $N(\theta)$.

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta) \tag{3}$$

4 Ход работы

Для начала сделаем проверку того, что при увеличении угла фотопик смещается влево (то есть того, что оборудование исправно и что данные, которые мы получаем, хотя бы качественно, соответствуют эффекту Комптона в данном случае).

Рис. 2: Проверка для $\theta = 30^{0}$

Рис. 3: Проверка для $\theta = 0^0$

Далее, устанавливая сцинтилляционный датчик под разными углами мы получаем картины пиков, по которым мы измеряем уже номера каналов, в которых пик.

Ниже приведены сами графики, которые мы получали.

Рис. 4: $\theta = 10^0$

Рис. 5: $\theta = 20^{0}$

Рис. 6: $\theta = 30^{0}$

Рис. 7: $\theta = 40^{0}$

Рис. 8: $\theta = 50^{\circ}$

Рис. 9: $\theta = 60^{\circ}$

Рис. 11: $\theta = 80^{0}$

Рис. 12: $\theta = 90^0$

Рис. 13: $\theta = 100^0$

Рис. 14: $\theta = 110^0$

Рис. 15: $\theta = 120^{\circ}$

На последних графиках мы видим некую аномалию в видах графиков, поскольку и нас возникает как будто бы третий пик. На самом деле, если мы будем мерять номер канала, на котором он находится, то мы увидим, что это не пик фотоэффекта. Я предполагаю, что это из-за того, что часть графика находится ниже, чем должна быть. Это может быть связано с тем, что наш материал, на котором рассеиваются γ -кванты не идеален. Он может быть не идеально однородным, или не круглым по форме, из-за чего, при увеличении угла, мы видим данную аномалию. Очевидно, что при увеличении времени измерения до нескольких часов ушла бы даже эта аномалия, но в рамках лабораторного практикума это не представляется возможным.

Далее, мы приступим к проверке соотношения (3), коэффициент A найдем с помощью графика зависимости $1-\cos\theta$ от $\frac{1}{N(\theta)}-\frac{1}{N(0)}$. В таблице занесены все измеренные величины и процесс проверки соотношения (приведена после графика).

Теперь поговорим о погрешностях всех величин, которые мы видим ниже в таблице:

- 1. Для угла за погрешность мы берем просто половину цены деления шкалы, то есть 1^0
- 2. Для номера пика погрешность ищем как полуширину интервала, в котором сам пик достигается. Так как после этого график достаточно быстро убывает (если смотреть относительно максимума), этого будет вполне достаточно
- 3. Для того, чтобы график был характерный для нашего эксперимента, при увеличении угла мы так же увеличиваем время, в течении которого проводим один эксперимент. Это сделано из-за того, что при увеличении угла падает интенсивность квантов, из-за чего при измерении за малый промежуток времени увеличивается влияние внешних источников и флуктуации направления квантов. Для этого оно и приведено.

4. Погрешность $\frac{1}{N(\theta)} - \frac{1}{N(0)}$ считаем по формуле

$$\sigma_{\frac{1}{N(\theta)} - \frac{1}{N(0)}} = \left(\frac{1}{N(\theta)} - \frac{1}{N(0)}\right) \cdot \sqrt{\frac{\sigma_{N(0)}^2}{N^6(0)} + \frac{\sigma_{N(\theta)}^2}{N^6(\theta)}}$$

5. Погрешность $1 - \cos \theta$ считаем по формуле

$$\sigma_{1-\cos\theta} = (1-\cos\theta) \left| \frac{\sin\theta}{\theta} \sigma_{\theta} \right|$$

6. Погрешность $A(1-\cos\theta)$ считаем по формуле

$$\sigma_{A(1-\cos\theta)} = A(1-\cos\theta)\sqrt{\frac{\sigma_A^2}{A^2} + \frac{\sigma_{1-\cos\theta}^2}{(1-\cos\theta)^2}}$$

7. Погрешность $f = \frac{A(1-\cos\theta)}{\frac{1}{N(\theta)} - \frac{1}{N(0)}}$ считаем по формуле

$$\sigma_f = f \sqrt{\frac{\sigma_{A(1-\cos\theta)}^2}{(1-\cos\theta)^2} + \frac{\sigma_{\frac{1}{N(\theta)}-\frac{1}{N(0)}}^2}{\left(\frac{1}{N(\theta)} - \frac{1}{N(0)}\right)^2}}$$

Рис. 16: График зависимости $1-\cos\theta$ от $\frac{1}{N(\theta)}-\frac{1}{N(0)}$

θ , 0	$\sigma_{ heta},~^0$	$N(\theta)$	$\sigma_{N(heta)}$	t, c
0	1	930	20	61
10	1	920	20	121
20	1	820	20	133
30	1	780	20	150
40	1	710	20	165
50	1	610	20	361
60	1	530	20	365
70	1	470	20	341
80	1	420	10	325
90	1	380	10	373
100	1	350	10	373
110	1	320	10	333
120	1	310	10	333
θ , 0	$\frac{1}{N(\theta)} - \frac{1}{N(0)}, 10^{-3}$	$\sigma_{\left(\frac{1}{N(\theta)} - \frac{1}{N(0)}\right)}, 10^{-10}$	$1 - \cos\theta, 10^{-3}$	$\sigma_{(1-\cos\theta)}, 10^{-3}$
0	0	0	0	0
10	0,0117	0,004	15,2	0,3
20	0,1442	0,06	60	1
30	0,2068	0,1	134	2
40	0,3332	0,2	234	4
50	$0,\!5641$	0,5	357	5
60	0,8115	1	500	10
70	1,0524	2	660	10
80	1,3057	2	830	10
90	1,5563	3	1000	10
100	1,7819	4	1170	10
110	2,0497	6	1340	10
120	2,1505	7	1500	10
θ , 0	$A(1-\cos\theta), 10^{-3}$	$\sigma_{A(1-\cos\theta)}, 10^{-3}$	$\frac{A(1-\cos\theta)}{\frac{1}{N(\theta)} - \frac{1}{N(0)}}$	$\sigma_{\frac{A(1-\cos\theta)}{\frac{1}{N(\theta)}-\frac{1}{N(0)}}}$
0	0	0	1	0
10	$0,\!024$	0,001	2,1	0,1
20	0,094	$0,\!005$	0,65	0,03
30	$0,\!21$	0,01	1,02	0,05
40	$0,\!37$	0,02	1,11	0,06
50	$0,\!56$	0,03	0,99	0,05
60	0,78	0,04	0,96	0,05
70	1,03	0,05	0,98	0,05
80	1,3	0,06	1	0,05
90	1,56	0,07	1	0,04
100	1,8	0,1	1,01	0,06
110	2,1	0,1	1,02	0,05
120	2,3	0,1	1,07	0,05

Таблица 1: Измеренные величины и проверка формулы (3)

В итоге получаем, что соотношение (3) справедливо и эффект Комптона в данном эксперименте имеет место быть.

Теперь посчитаем энергию γ -кванта по формуле, полученной из формулы (2). В итоге получаем формулы для энергии и погрешности

$$E_{\gamma} = mc^{2} \frac{N(0) - N(90)}{N(90)}$$

$$\sigma_{E_{\gamma}} = E_{\gamma} \sqrt{m^{2}c^{4} \frac{\sigma_{N(0)}^{2}}{N(0)^{2}N(90)^{2}} + m^{2}c^{4} \frac{\sigma_{N(90)}^{2}N^{2}(0)}{N(90)^{6}}}$$
(4)

В итоге

$$E_{\gamma} = (0,739 \pm 0,002)$$
 эВ

5 Вывод

В работе мы исследовали спектр излучения γ -квантов на графите и получили, что соотношение (3), приведенное в теории справедливо (с точностью до некоторой погрешности). А поскольку это соотношение было получена из предположения того, что мы наблюдаем рассеяние Комптона, то мы убедились в наличии данного эффекта. Так же мы измерили энергию γ -квантов и поняли, что его энергия равна $(0,739\pm0,002)$ эВ.