Kicsiny metrikus terek

Legyen (X, d) metrikus tér. Az X tér Luzin vagy (L)-tulajdonságú, ha szeparábilis és bármely sehol sem sűrű altere megszámlálható.

Az X tér koncentrált vagy (C)-tulajdonságú, ha van olyan $M \subset X$ megszámlálható halmaz, hogy minden M-et tartalmazó G nyílt halmazra $X \setminus G$ megszámlálható.

Az X tér erősen nullmértékű vagy (SN), ha minden $\varepsilon_n > 0$ -ra van olyan $X = \bigcup_{n=1}^{\infty} X_n$ lefedés, hogy diam $X_n < \varepsilon_n$ minden $n = 1, 2, \ldots$ -ra.

Az X tér univerzálisan nullmértékű vagy (UN), ha X Borel-halmazain minden véges, folytonos mérték nulla. (Egy mérték akkor folytonos, ha minden pont mértéke nulla.)

Az X tér (SUN), ha szeparábilis és (UN).

Az X tér (B)-tulajdonságú, ha minden $f:X\to\mathbb{R}$ Borel-mérhető függvényre f(X) Lebesgue-nullmértékű.

Az X tér (F)-tulajdonságú, ha minden $f:X\to\mathbb{R}$ folytonos függvényre f(X) Lebesgue-nullmértékű.

Az X tér (E)-tulajdonságú, ha minden $f:X\to\mathbb{R}$ egyenletesen folytonos függvényre f(X) Lebesgue-nullmértékű.

Tétel 1 Tetszőleges metrikus térre fennállnak az alábbi implikációk:

$$\begin{array}{cccc} (L) \Longrightarrow (C) \Longrightarrow (SN) \Longrightarrow & (SUN) \\ \Downarrow & \Downarrow & \Downarrow \\ (B) \Longrightarrow (F) & \Longrightarrow (E) & \Longrightarrow & (UN). \end{array}$$

Lemma 2 Ha μ véges, folytonos Borel-mérték X-en, akkor minden $\varepsilon > 0$ -hoz van $\delta > 0$ úgy, hogy ha $B \subset X$ Borel és diam $B < \delta$, akkor $\mu(B) < \varepsilon$.

Bizonyítás. Ha ez nem igaz, akkor $\exists \varepsilon > 0$ és $\exists B_n \subset X$ Borel, amelyekre diam $B_n < 1/2^n$ és $\mu(B_n) \geq \varepsilon$. Mivel μ véges, nincs végtelen sok páronként diszjunkt B_n . Így a Ramsey-tétel szerint van végtelen sok páronként metsző B_n . Feltehető, hogy $B_n \cap B_m \neq \emptyset$ minden n, m-re. Legyen $G_n = \{x : \text{dist}(x, B_n) < 1/2^{n-1}\}$, ekkor $G_1 \supset G_2 \supset \ldots$ Mivel diam $G_n \to 0$, ezért $G = \bigcap_{n=1}^{\infty} G_n$ legfeljebb egyelemű, tehát $\mu(G) = 0$. Másrészt $\mu(G_n) \geq \mu(B_n) \geq \varepsilon$ minden n-re, ami lehetetlen, mert $\mu(G_n) \to \mu(G)$. \square

Lemma 3 Legyen $X \subset \mathbb{R}$ az altértopológiával ellátva. Ha X-en van véges, folytonos és nem azonosan nulla Borel-mérték, akkor van olyan $Y \subset \mathbb{R}$ halmaz, amely homeomorf X-szel és amelynek a Lebesgue-féle külső mértéke pozitív.

Bizonyítás. Legyen μ egy véges, folytonos és nem azonosan nulla Borelmérték X-en, és legyen

$$f(x) = \begin{cases} \mu(X \cap [0, x)) & \text{ha } x > 0, \\ 0 & \text{ha } x = 0, \\ -\mu(X \cap [x, 0)) & \text{ha } x < 0. \end{cases}$$

Ekkor f monoton növő és folytonos \mathbb{R} -en. Így g(x) = x + f(x) az \mathbb{R} homeomorfizmusa önmagára, és Y = g(X) homeomorf X-szel. Legyen $Y \subset \bigcup_{n=1}^{\infty} [a_n, b_n]$. Ha $g^{-1}(a_n) = c_n$ és $g^{-1}(b_n) = d_n$, akkor

$$b_n - a_n = g(d_n) - g(c_n) \ge f(d_n) - f(c_n) = \mu(X \cap [c_n, d_n]).$$

Mivel a $[c_n, d_n]$ intervallumok lefedik X-et, ezért

$$\sum_{n=1}^{\infty} (b_n - a_n) \ge \sum_{n=1}^{\infty} \mu(X \cap [c_n, d_n]) \ge \mu(X),$$

és így Y külső mértéke legalább $\mu(X)$. \square

Következmény 4 Tegyük fel, hogy a κ számosságon van valós mérték. Ekkor $\kappa \geq \text{non } \mathcal{N}$. \square

Tétel 5 [Szpilrajn-Marczewski] $Egy \ X \subset \mathbb{R}$ halmaz akkor és csak akkor univerzálisan nullmértékű, ha \mathbb{R} minden X-szel homeomorf részhalmaza Lebesque-nullmértékű.

Bizonyítás. Ha X nem univerzálisan nullmértékű, akkor a 2. Lemma szerint van X-szel homeomorf halmaz \mathbb{R} -ben, amelynek a Lebesgue-féle külső mértéke pozitív. Most legyen X univerzálisan nullmértékű, és legyen f homeomorfizmus X-ről az $Y \subset \mathbb{R}$ halmazra. Ha $\lambda(Y) > 0$, akkor λ folytonos mérték az Y relatíve Borel részhalmazain, amelyet f^{-1} átvisz X-re, ami lehetetlen. \square

Lemma 6 Legyen μ véges Borel-mérték az (X, d) metrikus téren. Ekkor az alábbi állítások közül legalább az egyik igaz.

- (i) μ -nek van szeparábilis tartója, azaz van olyan $F \subset X$ zárt halmaz, amely (altérként) szeparábilis és amelyre $\mu(X \setminus F) = 0$.
- (ii) Van olyan $Y \subset X$ halmaz, hogy $\inf\{d(x,y): x,y \in Y, \ x \neq y\} > 0$ és P(Y)-on van valós mérték.

Bizonyítás. Legyen $\varepsilon > 0$ rögzített. Legyen

$$\mathcal{H}_{\varepsilon} = \{ B \subset X : B \text{ Borel, diam } B < 3\varepsilon, \ \mu(B) > 0 \}.$$

Legyen $\mathcal{A}_{\varepsilon}$ egy maximális, páronként diszjunkt halmazokból álló részrendszere $\mathcal{H}_{\varepsilon}$ -nak. Mivel μ véges, ezért $\mathcal{A}_{\varepsilon}$ megszámlálható, tehát $A = A_{\varepsilon} = \bigcup \mathcal{A}_{\varepsilon}$ Borel. Legyen $Z = X \setminus A$. Ekkor Z is Borel. Tegyük fel, hogy $\mu(Z) > 0$.

Ha $B\subset Z$ Borel és diam $B<3\varepsilon$, akkor $\mu(B)=0$. Legyen Y olyan maximális részhalmaza Z-nek, amelyben bármely két pont távolsága legalább ε . Ekkor $\bigcup_{y\in Y} B(y,\varepsilon)$ lefedi Z-t.

Legyen $Y = \{y_{\alpha} : \alpha < \gamma\}$, és legyen $E_{\alpha} = B(y_{\alpha}, \varepsilon) \setminus \bigcup_{\beta < \alpha} B(y_{\beta}, \varepsilon)$ minden $\alpha < \gamma$ -ra. Belátjuk, hogy tetszőleges $A \subset \gamma$ rendszámhalmazra az $\bigcup_{\alpha \in A} E_{\alpha}$ halmaz Borel (pontosabban F_{σ}).

Legyen $\overline{B}_{\alpha,n}=\{x\in X:d(y_{\alpha},x)\leq \varepsilon-(1/n)\}$ minden $\alpha<\gamma$ -ra és $n=1,2,\ldots$ -re. Világos, hogy a $\overline{B}_{\alpha,n}$ és $F_{\alpha,n}=\overline{B}_{\alpha,n}\setminus\bigcup_{\beta<\alpha}B(y_{\beta},\varepsilon)$ halmazok zártak minden $\alpha<\gamma$ -ra. Azt is könnyű ellenőrizni, hogy dist $(F_{\alpha,n},F_{\beta,n})\geq 1/n$ minden $\alpha\neq\beta$ -ra, és így $\bigcup_{\alpha\in A}F_{\alpha,n}$ zárt. Mivel

$$\bigcup_{\alpha \in A} E_{\alpha} = \bigcup_{n=1}^{\infty} \bigcup_{\alpha \in A} F_{\alpha,n},$$

ezért $\bigcup_{\alpha \in A} E_{\alpha}$ valóban F_{σ} . Legyen

$$\nu(A) = \mu \left(Z \cap \bigcup_{\alpha \in A} E_{\alpha} \right)$$

minden $A \subset \gamma$ -ra. Mivel az E_{α} halmazok páronként diszjunktak, ν mérték $P(\gamma)$ -n. Minden $\alpha < \gamma$ -ra $\nu(\{\alpha\}) = \mu(Z \cap E_{\alpha}) = 0$, hiszen $E_{\alpha} \subset B(y_{\alpha}, \varepsilon)$, tehát diam $E_{\alpha} \leq 2\varepsilon < 3\varepsilon$. Végül

$$\nu(\gamma) = \mu\left(Z \cap \bigcup_{\alpha < \gamma} E_{\alpha}\right) = \nu\left(Z \cap \bigcup_{\alpha < \gamma} B(y_{\alpha}, \varepsilon)\right) = \mu(Z) > 0,$$

amivel beláttuk, hogy $P(\gamma)$ -n van valós mérték. Így P(Y)-on is van valós mérték, ekkor tehát (ii) igaz.

Ezért feltehetjük, hogy $\mu(X \setminus \bigcup \mathcal{A}_{\varepsilon}) = 0$ minden $\varepsilon > 0$ -ra. Legyen $C = \bigcap_{n=1}^{\infty} \bigcup \mathcal{A}_{1/n}$. Ekkor C Borel és $\mu(X \setminus C) = 0$. Világos, hogy C (mint X altere) szeparábilis, hiszen minden n-re lefedhető megszámlálhatóan sok 3/n-nél kisebb átmérőjű halmazzal. Ekkor $F = \operatorname{cl} C$ szintén szeparábilis, tehát (i) teljesül. Ezzel a lemmát beláttuk. \square

Lemma 7 Legyen (X,d) metrikus tér, és legyen $f:A\to\mathbb{R}$ korlátos és egyenletesen folytonos, ahol $A\subset X$. Ekkor f kiterjeszthető X-re egyenletesen folytonos függvényként.

Bizonyítás. Legyen $\omega(\delta) = \sup\{|f(x) - f(y)| : x, y \in A, \ d(x, y) \leq \delta\}$ minden $\delta \geq 0$ -ra. Ekkor $\omega(0) = 0$, ω monoton növő és korlátos $[0, \infty)$ -n, valamint jobbról folytonos 0-ban. Belátjuk, hogy van olyan $\eta : [0, \infty) \to \mathbb{R}$ függvény, amelyre $\omega(x) \leq \eta(x)$ minden $x \geq 0$ -ra, $\eta(0) = 0$, η monoton növő, korlátos és konkáv $[0, \infty)$ -n, valamint jobbról folytonos 0-ban.

Tegyük fel, hogy $\omega(x) \leq K$ minden $x \geq 0$ -ra, és legyen $a_n > 0$ olyan, hogy $\omega(a_n) \leq K/2^n$ $(n=1,2,\ldots)$. Legyen $b_0 = a_1$. Ha a $b_0 > \ldots > b_{n-1} > 0$ számokat már definiáltuk, akkor legyen $b_n = \min(b_{n-1}/3, a_{n+1})$. Legyen $\eta(0) = 0$, $\eta(b_n) = K/2^n$ minden $n = 0, 1, \ldots$ -re, $\eta(x) = K$ minden $x \geq b_0$ -ra, valamint legyen η lineáris a $[b_n, b_{n-1}]$ intervallumban minden $n = 1, 2, \ldots$ -re. Ekkor $\eta(0) = 0$, η monoton és korlátos $[0, \infty)$ -n, valamint jobbról folytonos 0-ban. Ha $x \in [b_n, b_{n-1}]$, akkor $\eta(x) \geq \eta(b_n) = K/2^n \geq \omega(x)$, hiszen $x \leq b_{n-1} \leq a_n$. Ha $x \geq b_0$, akkor $\eta(x) = K \geq \omega(x)$, amivel beláttuk, hogy $\omega(x) \leq \eta(x)$ minden $x \geq 0$ -ra. Mivel η grafikonjának meredeksége a $[b_{n+1}, b_n]$ és $[b_n, b_{n-1}]$ intervallumokban $K/(2^{n+1}(b_n - b_{n+1}))$, illetve $K/(2^n(b_{n-1} - b_n))$, továbbá $b_{n-1} - b_n \geq 2b_n > 2(b_n - b_{n+1})$, látható, hogy η konkáv.

Ebből következik, hogy az $\eta(x+b)-\eta(x)$ függvény monoton csökken $[0,\infty)$ -ben, amiből nyilvánvaló, hogy $\eta(a+b)\leq \eta(a)+\eta(b)$ minden $a,b\geq 0$ -ra. Legyen

$$g(y) = \inf\{f(x) + \eta(d(x, y)) : x \in A\}$$

minden $y \in X$ -re. Nyilvánvaló, hogy g kiterjesztése f-nek. Belátjuk, hogy $|g(y)-g(z)| \leq \eta(d(y,z))$ minden $y,z \in X$ -re, és így g egyenletesen folytonos. Legyen $y,z \in X$ rögzített. Elég belátni, hogy $g(y)-g(z) \leq \eta(d(y,z))$, azaz $g(y)-\eta(d(y,z)) \leq g(z)$. Ehhez elég megmutatni, hogy $g(y)-\eta(d(y,z)) \leq f(x)+\eta(d(x,z))$, azaz $g(y) \leq f(x)+\eta(d(x,z))+\eta(d(y,z))$ minden $x \in A$ -ra.

Ez azért igaz, mert

$$g(y) \le f(x) + \eta(d(x,y)) \le f(x) + \eta(d(x,z)) + \eta(d(y,z)).$$

Tétel 8 [K. Prikry tételének élesítése] Tetszőleges metrikus térre $(E) \Longrightarrow (UN)$.

Bizonyítás. Tegyük fel, hogy X nem univerzálisan nullmértékű, és legyen μ egy véges, folytonos Borel-mérték X-en, amelyre $\mu(X) > 0$. A 3. Lemma szerint elég a következő két esetet megvizsgálni.

I: Van olyan $Y \subset X$ halmaz, hogy $\inf\{d(x,y): x,y \in Y, \ x \neq y\} > 0$ és P(Y)-on van valós mérték. Ekkor a 4. Következmény szerint $|Y| \geq \operatorname{non} \mathcal{N}$. Legyen $A \subset [0,1]$ olyan pozitív külső mértékű halmaz, amelyre $|A| \leq |Y|$. Legyen f egy szürjekció Y-ról A-ra. Mivel $d(x,y) \geq \delta > 0$ minden $x,y \in Y, x \neq y$ -ra, ezért f egyenletesen folytonos (sőt Lipschitz), és így egyenletesen folytonosan kiterjeszthető X-re. A kiterjesztett függvény X-et \mathbb{R} egy pozitív külső mértékű részhalmazába képezi, ami lehetetlen.

II: Van olyan $F \subset X$ zárt halmaz, amely (altérként) szeparábilis és amelyre $\mu(X \setminus F) = 0$. Elég belátni, hogy ekkor F-et egy egyenletesen folytonos függvénnyel \mathbb{R} egy pozitív külső mértékű részhalmazára képezhetjük, mert a függvényt egyenletesen folytonosan X-re kiterjesztve ellentmondást kapunk. Feltehetjük tehát, hogy X szeparábilis. Azt is feltehetjük, hogy $\mu(X) = 1$.

Minden $x \in X$ -re van olyan r > 0, hogy $\mu(B(x,r)) < 1/2$. Ezért a tér szeparabilitása miatt vannak olyan $B(x_n, r_n)$ gömbök, amelyek lefedik X-et, és amelyekre $\mu(B(x_n, r_n)) < 1/2$ minden $n = 1, 2, \ldots$ -re. Legyen

$$D_{n,k} = B(x_n, r_n - (1/k)) \setminus \bigcup_{i < n} B(x_i, r_i)$$

minden $n, k = 1, 2, \dots$ -re. Ekkor

$$\bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} D_{n,k} = \bigcup_{n=1}^{\infty} B(x_n, r_n) = X,$$

ezért van olyan k, hogy $\mu\left(\bigcup_{n=1}^{\infty} D_{n,k}\right) > 1/2$. Így választhatunk egy N_1 indexet, amelyre $\mu\left(\bigcup_{n=1}^{N_1} D_{n,k}\right) > 1/2$. Legyen $X_i = D_{i,k}$ minden $i = 1, \ldots, N_1$ -re. Ekkor X_1, \ldots, X_{N_1} olyan Borel-halmazok, melyek mértéke kisebb mint

1/2, összmértékük nagyobb mint 1/2, és bármely $1 \le i < j \le N_1$ -re az X_i és X_j halmazok távolsága pozitív.

Rögzített i-re a fenti konstrukciót megismételjük az X_i altérben. Így olyan $X_{i,1},\ldots,X_{i,N_2}\subset X_i$ Borel-halmazokat kapunk, melyek mértéke kisebb mint 1/4, összmértékük tetszőlegesen megközelíti $\mu(X_i)$ -t, és bármely $1\leq j< k\leq N_2$ -re az $X_{i,j}$ és $X_{i,k}$ halmazok távolsága pozitív. Az N_2 szám lehet minden i-re ugyanaz, mert az $X_{i,j}$ halmazrendszereket kipótolhatjuk üres halmazokkal. Végül is olyan $X_{i,j}$ $(1\leq i\leq N_1,\ 1\leq j\leq N_2)$ halmazokat kapunk, amelyekre $X_{i,j}\subset X_i$ minden i,j-re, mindegyik mértéke kisebb mint 1/4, az összmértékük nagyobb mint 1/2, és közülük bármely kettő távolsága pozitív.

Az eljárást folytatva minden k-ra kapjuk az N_k indexeket és az $X_{n_1...n_k}$ ($1 \leq n_1 \leq N_1, \ldots, 1 \leq n_k \leq N_k$) Borel-halmazokat a következő tulajdonságokkal: $X_{n_1...n_{k+1}} \subset X_{n_1,...,n_k}$ minden szóbajövő indexsorozatra, $\mu(X_{n_1...n_k}) < 1/2^k$ szintén minden szóbajövő indexsorozatra,

$$\mu\left(\bigcup_{n_1}^{N_1}\ldots\bigcup_{n_k}^{N_k}X_{n_1,\ldots,n_k}\right)>\frac{1}{2},$$

valamint rögzített k-ra bármely két $X_{n_1\dots n_k}$ halmaz távolsága pozitív. Legyen

$$Y = \bigcap_{k=1}^{\infty} \bigcup_{n_1}^{N_1} \dots \bigcup_{n_k}^{N_k} X_{n_1,\dots,n_k}.$$

Ekkor $Y \subset X$ Borel és $\mu(Y) \geq 1/2$.

Vegyünk fel zárt $I_{n_1\dots n_k}$ intervallumokat a következő tulajdonságokkal: $I_{n_1\dots n_{k+1}}\subset I_{n_1\dots n_k}$ és

$$|I_{n_1,\dots,n_k}| = \mu(X_{n_1,\dots,n_k}) < \frac{1}{2^k}$$
 (1)

minden szóbajövő indexsorozatra, valamint adott k-ra az $I_{n_1...n_k}$ intervallumok egymásba nem nyúlóak.

Tetszőleges $x \in Y$ -ra van egy egyértelmű n_1, n_2, \ldots sorozat, amelyre $x \in X_{n_1...n_k}$ minden k-ra. Ekkor az $I_{n_1...n_k}$ ($k = 1, 2, \ldots$) intervallumok egymásba vannak skatulyázva és a hosszuk nullához tart (1) szerint, így $\bigcap_{k=1}^{\infty} I_{n_1...n_k}$ pontosan egyelemű. Legyen f(x) ez az elem. Ekkor $f: Y \to \mathbb{R}$ jóldefiniált. Belátjuk, hogy f egyenletesen folytonos. Adott $\varepsilon > 0$ -hoz legyen k olyan,

hogy $1/2^k < \varepsilon$. Létezik egy $\delta > 0$ szám azzal a tulajdonsággal, hogy az $X_{n_1...n_k}$ halmazok közül bármely kettőnek a távolsága nagyobb mint δ . Ha $x, y \in Y$ és $d(x,y) < \delta$, akkor van olyan n_1, \ldots, n_k indexsorozat, hogy $x, y \in X_{n_1...n_k}$. Ekkor $f(x), f(y) \in I_{n_1...n_k}$, és így (1) alapján $|f(x) - f(y)| \le 1/2^k < \varepsilon$.

Könnyen láthatóan f(Y) minden pontjának legfeljebb két ősképe van. Ha ui. $x,y,z\in Y$ különböző pontok, akkor van olyan k, hogy az $X_{n_1...n_k}$ halmazok mindegyike csak egyet tartalmaz x,y,z közül. E halmazok között tehát három különböző van, amelyik tartalmazza x,y,z valamelyikét. Ekkor a három, ezeknek megfelelő $I_{n_1...n_k}$ intervallum között van két diszjunkt, tehát x,y,z képei nem lehetnek azonosak. Jelöljük M-mel azon $x\in Y$ pontok halmazát, amelyek valamelyik $I_{n_1...n_k}$ intervallum végpontjába képződnek. Ekkor tehát M megszámlálható.

Most belátjuk, hogy $\lambda(f(Y)) \geq 1/2$. Tegyük fel, hogy $\lambda(f(Y)) < 1/2$, és legyen $f(Y) \subset \bigcup_{n=1}^{\infty} J_n$ egy olyan intervallum-lefedés, amelyre $\sum_{n=1}^{\infty} |J_n| <$ $1/2 - \varepsilon$, ahol $\varepsilon > 0$. Minden n-re választunk egy k-t, amelyre $1/2^k < \varepsilon/2^{n+1}$, és kicseréljük J_n -et azon $I_{n_1...n_k}$ intervallumok uniójára, amelyek metszik J_n et. Az így kapott intervallumok szintén lefedik f(Y)-t, és az összhosszuk legfeljebb $\sum_{n=1}^{\infty} 2 \cdot (\varepsilon/2^{n+1}) = \varepsilon$ -nal nagyobb $\sum_{n=1}^{\infty} |J_n|$ -nél, tehát még mindig kisebb 1/2-nél. Vegyük a lefedő $I_{n_1...n_k}$ intervallumok rendszerének maximális elemeit; legyenek ezek az $I_{n_1...n_k}$ $((n_1,\ldots,n_k)\in S)$ intervallumok. Ezek még mindig lefedik f(Y)-t, és páronként egymásba nem nyúló intervallumokból állnak. Belátjuk, hogy az $X_{n_1...n_k}$ $((n_1,\ldots,n_k)\in S)$ halmazok lefedik az $Y \setminus M$ halmazt. Tegyük fel ui., hogy egy $x \in Y$ pontot nem fednek le. Ekkor f(x)-et lefedi az $I_{n_1...n_k}$ intervallum valamely $(n_1,\ldots,n_k)\in S$ -re, de x-et nem fedi le $X_{n_1...n_k}$. Ha $x \in X_{m_1...m_k}$, akkor $(m_1, \ldots, m_k) \neq (n_1, \ldots, n_k)$. Az f(x) pont közös pontja az $I_{n_1...n_k}$ és $I_{m_1...m_k}$ intervallumoknak, tehát f(x) az $I_{n_1...n_k}$ intervallum egyik végpontja kell hogy legyen. Ezzel beláttuk, hogy $x \in M$.

Mivel $\mu(Y \setminus M) = \mu(Y) \ge 1/2$, ezért az $X_{n_1...n_k}$ $((n_1, ..., n_k) \in S)$ halmazok mértékösszege legalább 1/2. Az $I_{n_1...n_k}$ $((n_1, ..., n_k) \in S)$ intervallumok hosszösszege ugyanez az összeg, tehát nem lehet 1/2-nél kisebb. Ez az ellentmondás bizonyítja, hogy $\lambda(f(Y)) \ge 1/2$. Az f függvényt kiterjeszthetjük X-re egyenletesen folytonos függvényként, amivel a tételt beláttuk. \square

Az 1. Tétel bizonyítása. (L) \Longrightarrow (C): Ha M tetszőleges megszámlálható és sűrű halmaz X-ben, akkor könnyen láthatóan X M-re koncentrált.

(C) \Longrightarrow (SN): Legyen $M = \{x_1, x_2, \ldots\} \subset X$ olyan megszámlálható halmaz, hogy X M-re koncentrált. Legyenek ε_n $(n = 1, 2, \ldots)$ tetszőleges pozitív

számok. Ha $G = \bigcup_{n=1}^{\infty} B(x_n, \varepsilon_{2n}/3)$, akkor $X \setminus G$ megszámlálható, amiből világos, hogy X (SN).

 $(SN) \Longrightarrow (SUN)$: Világos, hogy X szeparábilis. Az 2. Lemmából egyszerűen következik, hogy X (UN).

 $A(B) \Longrightarrow (F) \Longrightarrow (E)$ implikációk triviálisak. Az $(E) \Longrightarrow (UN)$ impliációt beláttuk a 8. Tételben.

 $(L)\Longrightarrow(B)$: Tegyük fel, hogy (B) nem igaz, és legyen $f:X\to\mathbb{R}$ olyan Borelmérhető függvény, amelyre $\lambda(f(X))>0$. Tudjuk, hogy f Baire-tulajdonságú, tehát van egy első kategóriájú H halmaz X-ben, amelyre az $f|_{X\backslash H}$ megszorítás folytonos. Mivel X Luzin, ezért H megszámlálható. Legyen $M\subset X\setminus H$ olyan megszámlálható halmaz, amely sűrű $X\setminus H$ -ban. Ekkor f(M) megszámlálható, tehát van olyan $G\subset \mathbb{R}$ nyílt halmaz, amelyre $f(M)\subset G$ és $\lambda(G)<\lambda(f(X))$. Az $f^{-1}(G)$ halmaz relatíve sűrű és nyílt $X\setminus H$ -ban, tehát $(X\setminus H)\setminus f^{-1}(G)$ sehol sem sűrű $X\setminus H$ -ban, tehát X-ben is, tehát megszámlálható. Így f(X) csak egy megszámlálható halmazzal lehet bővebb G-nél, tehát $\lambda(f(X))\leq \lambda(G)$, ami lehetetlen.

(C) \Longrightarrow (F): Legyen $f: X \to \mathbb{R}$ folytonos. Tegyük fel, hogy $\lambda(f(X)) > 0$. Legyen $M \subset X$ olyan megszámlálható halmaz, amelyre teljesül, hogy X M-re koncentrált. Ekkor f(M) megszámlálható, tehát van olyan $G \subset \mathbb{R}$ nyílt halmaz, amelyre $f(M) \subset G$ és $\lambda(G) < \lambda(f(X))$. Az $f^{-1}(G)$ nyílt és tartalmazza M-et, tehát $X \setminus f^{-1}(G)$ megszámlálható. Így f(X) csak egy megszámlálható halmazzal lehet bővebb G-nél, tehát $\lambda(f(X)) \leq \lambda(G)$, ami lehetetlen.

 $(SN) \Longrightarrow (E)$: Ez világos.

 $(SUN) \Longrightarrow (UN)$: Triviális. Ezzel a tételt beláttuk. \square

Kiegészítések az 1. Tételhez.

Először is megjegyezzük, hogy a (B) feltétel ekvivalens a következővel: ha egy Y metrikus tér az X tér Borel-mérhető leképezés általi képe, akkor Y (UN). Világos, hogy ez utóbbi tulajdonságból következik (B). A fordított irányt bizonyítandó tegyük fel, hogy (B) igaz, és legyen Y = f(X) metrikus tér, ahol f Borel-mérhető. Ha $g: Y \to \mathbb{R}$ Borel-mérhető, akkor $g \circ f$ is, tehát X (B)-tulajdonsága alapján $g(Y) = (g \circ f)(X)$ Lebesgue-nullmértékű. Így Y-ra teljesül (B), tehát (UN) is.

Most belátjuk, hogy az (F) feltétel ekvivalens a következővel: ha egy Y metrikus tér az X tér folytonos képe, akkor Y (UN). Világos, hogy ez utóbbi tulajdonságból következik (F). A fordított irányt bizonyítandó tegyük fel, hogy (F) igaz, és legyen Y = f(X) metrikus tér, ahol f folytonos. Ha $g: Y \to \mathbb{R}$ folytonos, akkor $g \circ f$ is, tehát X (F)-tulajdonsága alapján $g(Y) = (g \circ f)(X)$ Lebesgue-nullmértékű. Így Y-ra teljesül (F), tehát (UN) is

Ugyanígy láthatjuk be, hogy az (E) feltétel ekvivalens a következővel: ha egy Y metrikus tér az X tér egyenletesen folytonos képe, akkor Y (UN).

Az alábbiakban megmutatjuk, hogy az 1. Tételben szereplő implikációk megfordításai nem bizonyíthatóak ZFC-ben.

Tétel 9 [Rothberger] Ha (CH) igaz, $akkor van olyan halmaz <math>\mathbb{R}$ -ben, amely \mathbb{Q} -ra koncentrált és amely kölcsönösen egyértelműen és folytonosan \mathbb{R} -re ké-pezhető.

Bizonyítás. Jelöljük N-nel az irracionális számok halmazát. Ismeretes, hogy N és $N \times N$ homeomorfak; legyen ϕ egy homeomorfizmus N-ről $N \times N$ -re. Legyen G_{α} ($\alpha < \omega_1$) a \mathbb{Q} -t tartalmazó nyílt halmazok egy felsorolása, és legyen c_{α} ($\alpha < \omega_1$) az N elemeinek egy felsorolása.

Minden $\alpha < \omega_1$ -re az $U_{\alpha} = \bigcap_{\beta < \alpha} G_{\beta}$ halmaz G_{δ} és sűrű, mert tartalmazza \mathbb{Q} -t. Belátjuk, hogy minden $c \in N$ -re $U_{\alpha} \cap \phi^{-1}(\{c\} \times N) \neq \emptyset$.

Az $N \setminus U_{\alpha} = \mathbb{R} \setminus U_{\alpha}$ halmaz F_{σ} , tehát σ -kompakt. Így $\phi(N \setminus U_{\alpha})$ is σ -kompakt. Mivel $\{c\} \times N$ nem σ -kompakt, ezért $(\{c\} \times N) \setminus \phi(N \setminus U_{\alpha})$ nem üres, és így

$$U_{\alpha} \cap \phi^{-1}(\{c\} \times N) = \phi^{-1}((\{c\} \times N) \setminus \phi(N \setminus U_{\alpha})) \neq \emptyset.$$

Válasszunk ki minden $\alpha < \omega_1$ -re egy $x_\alpha \in U_\alpha \cap \phi^{-1}(\{c_\alpha\} \times N)$ pontot, és legyen $X = \{x_\alpha : \alpha < \omega_1\}$. Ekkor X koncentrált, hiszen ha $G \supset \mathbb{Q}$ nyílt, akkor $G = G_\alpha$ valamely $\alpha < \omega_1$ -re, tehát $X \setminus G \subset \{x_\beta : \beta \leq \alpha\}$ megszámlálható. A $\phi(X)$ halmaz homeomorf X-szel, és minden $c \in N$ -re $\phi(N) \cap (\{c\} \times N)$ pontosan egyelemű. Így a vetítés $\phi(X)$ -et kölcsönösen egyértelműen és folytonosan N-re képezi. Másrészt N kölcsönösen egyértelműen és folytonosan \mathbb{R} -re képezhető, amivel a tételt beláttuk. \square

A fenti tételben szereplő X halmaz (SN). Így (CH) esetén nem teljesül (SN) \Longrightarrow (F).

Legyen X a 9. Tételben konstruált halmaz, és legyen f olyan folytonos függvény, amely X-et \mathbb{R} -re képezi. Legyen $Y = X \cup \mathbb{Q}$. Világos, hogy Y kielégíti a (C) feltételt. Az f függvényt tetszőlegesen Y-ra kiterjesztve Borelmérhető függvényt kapunk, amely Y-t \mathbb{R} -re képezi. Így Y-ra nem teljesül (B).

Legyen ϕ 9. Tételben konstruált homeomorfizmus. Ekkor $\phi(X)$ homeomorf X-szel, tehát szeparábilis és (UN), hiszen az (UN) tulajdonség invariáns a homeomorfizmusokra nézve. Mivel $\phi(X)$ egy vetítéssel $\mathbb{R} \setminus \mathbb{Q}$ -ra képezhető, így (CH) esetén nem teljesül (SUN) \Longrightarrow (E).

A fenti példák mutatják, hogy (CH) esetén a 1. Tételben szereplő vízszintes nyilak egyike sem fordítható meg.

A következő tétel szerint, ha a κ számosságon van valós mérték, akkor $\kappa > \text{non } \mathcal{N}$. Ismert, hogy non $\mathcal{N} > \omega_1$ konzisztens ZFC-vel. Tegyük ezt fel, és legyen X egy ω_1 számosságú diszkrét metrikus tér. Ekkor minden, X-et \mathbb{R} -be képező függvény képe nullmértékű, tehát X-re teljesül (B). Másrészt X nem szeparábilis, ami azt mutatja hogy a függőleges nyilak egyike sem fordítható meg.

ZFC-vel konzisztens, hogy a függőleges nyilak (az utolsó kivételével) akkor sem fordíthatók meg, ha csak szeparábilis metrikus tereket tekintünk. Ismeretes ui., hogy ZFC-nek van olyan modellje, amelyben non $\mathcal{N} > \omega_1$, valamint $\mathbb{R} \ \omega_1$ számosságú részhalmazai nem rendelkeznek az (SN) tulajdonsággal. Ebben a modellben \mathbb{R} tetszőleges ω_1 számosságú X részhalmaza rendelkezik a (B) tulajdonsággal (hiszen X minden \mathbb{R} -beli képe nullmértékű), de nem rendelkezik az (SN) tulajdonsággal. Így ebben a modellben nem igaz a (B) \Longrightarrow (SN) implikáció.

Tétel 10 Ha a κ számosságon van valós mérték, akkor $\kappa > \text{non } \mathcal{N}$.

Bizonyítás. A 4. Következmény szerint $\kappa \geq \text{non } \mathcal{N}$, tehát elég belátni, hogy $\kappa \neq \text{non } \mathcal{N}$. Tegyük fel, hogy $\kappa = \text{non } \mathcal{N}$, és legyen $X \subset \mathbb{R}$ olyan halmaz, amelyre $|X| = \kappa = \text{non } \mathcal{N}$ és $\lambda(X) = 1$. Legyen $X = \{x_{\alpha} : \alpha < \kappa\}$ és $X_{\alpha} = \{x_{\beta} : \beta < \alpha\}$ minden $\alpha < \kappa$ -ra. Legyen μ folytonos mérték P(X)-en, amelyre $\mu(X) = 1$. Ekkor $\mu(X_{\alpha}) = 0$ és $\lambda(X_{\alpha}) = 0$ minden $\alpha < \kappa$ -ra. (Mindkét állítás abból következik, hogy $|X_{\alpha}| < \kappa = \text{non } \mathcal{N}$.)

Legyen $\mathcal{A} = \{X \cap B : B \subset \mathbb{R} \text{ Borel}\}$, ekkor λ mérték \mathcal{A} -n. Legyen $\{B_n : n = 1, 2, \ldots\}$ egy bázis \mathbb{R} -ben. Minden $\alpha < \kappa$ -ra van olyan G_α nyílt halmaz, hogy $X_\alpha \subset G_\alpha$ és $\lambda(G_\alpha) < 1/2$. Legyen $U_n = \{x_\alpha : B_n \subset G_\alpha\}$

minden n-re, és legyen

$$A = \bigcup_{n=1}^{\infty} ((X \cap B_n) \times U_n).$$

Ekkor $A \subset X \times X$, és A mérhető abban a szorzattérben, amelynek az első tényezője $(X, \mathcal{A}, \lambda)$, második tényezője $(X, P(X), \mu)$.

Ha $\alpha < \beta < \kappa$, akkor $x_{\alpha} \in X_{\beta} \subset G_{\beta}$, tehát van olyan B_n , hogy $x_{\alpha} \in B_n \subset G_{\beta}$, és így $x_{\beta} \in U_n$ és $(x_{\alpha}, x_{\beta}) \in A$. Ebből $A_{x_{\alpha}} \supset X \setminus (X \cup \{x_{\alpha}\})$ és $\mu(A_{x_{\alpha}}) = 1$ minden α -ra, tehát A mértéke a szorzatmérték szerint 1.

Másrészt, ha $(x_{\alpha}, x_{\beta}) \in A$, akkor alkalmas n-nel $x_{\beta} \in U_n$ és $x_{\alpha} \in B_n \subset G_{\beta}$, tehát $A^{x_{\beta}} \subset G_{\beta}$ és $\lambda(A^{x_{\beta}}) < 1/2$. Így A mértéke a szorzatmérték szerint $\leq 1/2$, ami lehetetlen. \square