2da Dirigida CC 562A

(Modelamiento y Simulación)

 [Método Transformada Inversa] Generar un valor de la variable aleatoria X con función de densidad

$$f(x) = \{e^{2x} - \infty < x < 0 e^{-2x}$$
 $0 < x < \infty$

Solución.-

La función de Distribución es dado por

$$F(x) = \frac{e^{2x}}{2} I_{(-\infty,0)}(x) + (1 - \frac{e^{-2x}}{2}) I_{(0,\infty)}(x)$$

Que al aplicar el método de la transformada inversa se tiene

$$x = \frac{1}{2}log(2u)I_{(0,0.5)}(u) - \frac{1}{2}log(2(1-u))I_{(0.5,1)}(u)$$

MATLAB

function x=trans inv();

%Trasformada inversa
for i=1:n
 u=rand;
 if u<=0.5
 x=0.5*log(2*u);
 else
 x=-0.5*log((2*(1-u)));
 end
end

2. [**Método Aceptación Rechazo**] Generar un valor de la variable aleatoria X Ga(,1) Cuya función de densidad es

$$f(x) = \frac{(1)^{\frac{3}{2}}}{\Gamma(\frac{3}{2})} x^{-1} e^{-1*x} \qquad x > 0$$

Solución.-

Como esta variable aleatoria tiene dominio positivo con media , se propone utilizar la distribución $\tilde{Y}exp()$ con la misma media. Es decir,

$$g(y) = \frac{2}{3}e^{-}$$
 $y > 0$

De donde

$$\frac{f(x)}{g(x)} = \frac{3}{\sqrt{\pi}} x^{\frac{1}{2}} e^{-\frac{x}{3}}$$

Al derivar e igualar a cero se obtiene el máximo de este cociente (para x =) Por lo tanto

$$c = \frac{32}{(2\pi e)^2}$$

Luego

$$\frac{f(x)}{cg(x)} = \left(\frac{2e}{3}\right)^{\frac{1}{2}} x^{\frac{1}{2}} e^{-\frac{x}{3}}$$

[Algoritmo]

PASO 1.- Generar
$$u_1 U(0, 1)$$
 luego $Y = -(\frac{3}{2})log(u_1)$
PASO 2.- Generar $u_2 U(0, 1)$
PASO 3.- Si $u_2 \le (\frac{2ey}{3})^{\frac{1}{2}}e^{-\frac{y}{3}}$ Calcular X=Y. Caso contrario, regresar al PASO 1.-

El promedio de iteraciones necesarias es

$$c = 3(\frac{3}{2\pi e})^{\frac{1}{2}} \approx 1.257$$

MATLAB:

```
y=-(3/2)*log(rand());
u=rand();c=1;
while (u>(((2*exp(1)*y/3)^(1/2))*(exp(1)^(-y/3))));
     y=-(3/2)*log(rand());
     u=rand();c=c+1;
end
x=y;
```

3. [Generación de $\tilde{XN}(0, 1)$ mediante el Método Polar] Sean $\tilde{XN}(0, 1)$ e $\tilde{YN}(0, 1)$ independientes, y sean R y θ las coordenadas polares del vector (X, Y). Es decir,

$$R^2 = X^2 + Y^2$$

De donde

$$tag \theta = \frac{Y}{V}$$

Como X e Y son independientes, la densidad conjunta es el producto de sus densidades individuales

$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$
$$= \frac{1}{2\pi} e^{-\frac{(x^2+y^2)}{2}}$$

Para obtener la densidad conjunta de R^2 y Θ , llamada de $f(r^2,\theta)$, se utiliza la siguiente relación

$$Y = (R^2) Sen(\theta)$$

$$X = (R^2) Cos(\theta)$$

La densidad conjunta deseada seria entonces,

$$f(r^2, \theta) = f(x(r^2, \theta), y(r^2, \theta))|J|$$

$$J = \left[\frac{dx}{dr^2} \frac{dy}{dr^2} \frac{dx}{d\theta} \frac{dy}{d\theta} \right] = -\frac{1}{2}$$

$$f(r^2, \theta) = \frac{1}{2} \frac{1}{2\pi} e^{-\frac{(r^2)^2}{2}}$$
 $0 < r^2 < \infty$ $0 < \theta < 2\pi$

Si se observa esta densidad conjunta, corresponde al producto de una densidad Uniforme $\tilde{\theta}U(0, 2\pi)$ y densidad exponencial $R^{2}exp()$

A partir de este resultado, lo que se hace despejar X e Y en función de $\it R^2$ y $\it \theta$, dando lugar al método polar (Box-Muller)

[Algoritmo]

PASO 1.- Generar
$$u_1^{T}U(0, 1)$$
 y $u_2^{T}U(0, 1)$
PASO 2.- $R^2 = -2log(u_1)$ y $\theta = 2\pi u_2$
PASO 3.-

$$Y = (R^2) Sen(\theta) = \sqrt{-2log(u_1)} Sen(2\pi u_2)$$

$$X = (R^2)$$
 $Cos(\theta) = \sqrt{-2log(u_1)}$ $Cos(2\pi u_2)$

MATLAB

```
function [x, y]=normal()
    u1=rand;
    u2=rand;
    x=sqrt(-2*log(u1))*cos(2*pi*u2);
    y=sqrt(-2*log(u1))*sin(2*pi*u2);
end
```

El Profesor LANH