Scheduling Algorithms

(Part II)

Scheduling Unrelated Job SUM (minimization) problem: a special case with m=1.

- INPUT: one machine, n jobs (i = 1, ..., n), $p_i > 0$. (we use p_i since when m=1 clearly there is no difference between unrelated and identical machines)
- OUTPUT: a schedule $S=(S_1)$ where $S_1=(S_{1,1},...,S_{1,n})$.
- GOAL: Minimizing the Job SUM, that is minimizing $\sum_{i=1}^{n} JC_{i}(S)$

Does such problem admit a polynomial time algorithm that finds a schedule that minimizes the Job SUM?

Scheduling Unrelated Job SUM (minimization) problem with m=1: an example.

• INPUT: 5 jobs.

	J_1	J ₂	J ₃	J ₄	J ₅
p_i =	1	2	3	4	5

$$JC_2(S)=2; \ JC_4(S)=2+4=6; \ JC_5(S)=6+5=11; \ JC_1(S)=11+1=12; \ JC_3(S)=12+3=15.$$

$$\sum_{i=1}^{5} JC_i(S) = 12 + 2 + 15 + 6 + 11 = 46$$

Scheduling Unrelated Job SUM (minimization) problem with m=1: an example (2).

• INPUT: 5 jobs.

$$p_i = \begin{bmatrix} J_1 & J_2 & J_3 & J_4 & J_5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$JC_2(S)=2; \ JC_1(S)=2+1=3; \ JC_4(S)=3+4=7; \ JC_5(S)=7+5=12; \ JC_3(S)=12+3=15.$$

$$\sum_{i=1}^{5} JC_i(S) = 3 + 2 + 15 + 7 + 12 = 39$$

Scheduling Unrelated Job SUM (minimization) problem with m=1: a simple polynomial time algorithm.

- INPUT: one machine, n jobs $(i = 1, ..., n), p_i > 0$.
- OUTPUT: a schedule $S=(S_1)$ where $S_1=(S_{1,1},...,S_{1,n})$.
- GOAL: Minimizing the Job SUM, that is minimizing $\sum_{i=1}^{n} JC_{i}(S)$

ALGORITHM 1-JSUM:

- 1. Arrange jobs in non-decreasing order of p_i , and assign jobs to the unique machine by following such arrangement.
- 2. Return the obtained schedule S.

COMPLEXITY: O(n*log(n)) (A simple sort can be done in O(n*log(n)) time).

Theorem 2: Algorithm 1-JSUM finds an optimal solution for the Scheduling Unrelated Job SUM (minimization) problem with m=1.

Proof of Theorem 2.

Proof:

- Given that we have just one machine (m=1), in any schedule all the jobs have to be assigned to such a machine.
- Given a schedule S, let $p_{(j)}(S)$ be the processing time of the job in the jth position in the schedule S (i.e., $p_{(j)}(S)$ is the processing time of the job $S_{1,j}$). By the definition of job completion time, it follows that:

$$\sum_{i=1}^{n} JC_{i}(S) = n * p_{(1)}(S) + (n-1) * p_{(2)}(S) + ... + 2 * p_{(n-1)}(S) + p_{(n)}(S)$$

Clearly the above sum in minimized when $p_{(1)}(S)$ is the smallest value among all the processing times, $p_{(2)}(S)$ is the second smallest value and so on. The Algorithm JSUM uses such order to assign jobs to the machine.

Proof of Theorem 2.

Proof:

- In fact, by contradiction, suppose that a schedule S', that does not assign in non-decreasing order of p_i , is optimal.
- In the schedule S' (different than S) there exists a job i which is processed before job j and $p_i > p_j$. Then, by exachanging job i and j we get another scheduling with strictly smaller Job SUM.
- Thus, the schedule returned by Algorithm 1-JSUM is optimal.

Scheduling Unrelated Job SUM (minimization) problem with weights and m=1.

- INPUT: one machine, n jobs $(i = 1, \ldots, n)$, $p_i > 0$, $w_i > 0$.
- OUTPUT: a schedule $S=(S_1)$ where $S_1=(S_{1,1},...,S_{1,n})$.
- GOAL: Minimizing the Job (weighted) SUM, that is minimizing $\sum_{i=1}^{n} w_i * JC_i(S)$

Does such problem admit a polynomial time algorithm that finds a schedule that minimizes the Job (weighted) SUM?

Scheduling Unrelated Job SUM (minimization) problem with weights and m=1: an example.

• INPUT: 5 jobs.

 $JC_2(S)=2; \ JC_4(S)=2+4=6; \ JC_5(S)=6+5=11; \ JC_1(S)=11+1=12; \ JC_3(S)=12+3=15.$

$$\sum_{i=1}^{5} w_i * JC_i(S) = 1*12 + 3*2 + 6*15 + 2*6 + 2*11 = 142$$

Scheduling Unrelated Job SUM (minimization) problem with weights and m=1: an example (2).

• INPUT: 5 jobs.

 $JC_2(S)=2; \ JC_1(S)=2+1=3; \ JC_4(S)=3+4=7; \ JC_5(S)=7+5=12; \ JC_3(S)=12+3=15.$

$$\sum_{i=1}^{5} w_i * JC_i(S) = 1*3 + 3*2 + 6*15 + 2*7 + 2*12 = 137$$
 Is it optimal?

Scheduling Unrelated Job SUM (minimization) problem with weights and m=1: an example (3).

• INPUT: 5 jobs.

 $JC_3(S)=3; \ JC_2(S)=3+2=5; \ JC_1(S)=5+1=6; \ JC_4(S)=6+4=10; \ JC_5(S)=10+5=15.$

$$\sum_{i=1}^{5} w_i * JC_i(S) = 1*6+3*5+6*3+2*10+2*15=89$$
 Is it optimal?

Scheduling Unrelated Job SUM (minimization) problem with weights and m=1: a simple polynomial time algorithm.

- INPUT: one machine, n jobs $(i = 1, ..., n), p_i > 0, w_i > 0$.
- OUTPUT: a schedule $S=(S_1)$ where $S_1=(S_{1,1},...,S_{1,n})$.
- GOAL: Minimizing the Job (weighted) SUM, that is minimizing

$$\sum_{i=1}^{n} w_i * JC_i(S)$$

ALGORITHM (weighted)1-JSUM:

- 1. Arrange jobs in non-increasing order of w_i/p_i , and assign jobs to the machine by following such arrangement.
- 2. Return the obtained schedule *S*.

COMPLEXITY: O(n*log(n))

Theorem 3: Algorithm (weighted)1-JSUM finds an optimal solution for the Scheduling Unrelated Job SUM (minimization) problem with weights and m=1.

Proof of Theorem 3.

Proof:

- By contradiction. Suppose a schedule S', that does not assign jobs in non-increasing order of w_i/pi , is optimal.
- In this schedule there must be at least two adjacent (or consecutive) jobs, say job i_1 followed by job i_2 , such that:

$$\frac{w_{i_1}}{p_{i_1}} < \frac{w_{i_2}}{p_{i_2}}$$

Assume job i_1 starts its processing at some time t. Now suppose to exchange jobs i_1 and i_2 and let us call such a new schedule S'' (i.e. in S'' i_2 is scheduled before i_1). All other jobs remain in their original position of S'.

Proof of Theorem 3. (2)

Proof:

- The total weighted job completion times of the jobs processed before jobs i_1 and i_2 is not affected by the interchange. Neither is the total weighted job completion times of the jobs processed after jobs i_1 and i_2 .
- Thus the difference in the values of the objectives under schedules S' and S'' is due only to jobs i_1 and i_2 .
- Under the schedule S', the total weighted job completion times of jobs i_1 and i_2 is:

$$(t+p_{i_1})*w_{i_1}+(t+p_{i_1}+p_{i_2})*w_{i_2}$$

• While under the schedule S", the total weighted job completion times of jobs i_1 and i_2 is:

$$(t+p_{i_2})*w_{i_2}+(t+p_{i_2}+p_{i_1})*w_{i_1}$$

Proof of Theorem 3. (3)

Proof:

• It can be verified that if $w_{i_1}/p_{i_1} < w_{i_2}/p_{i_2}$ (that is our assumption in this proof!), then the sum of the two weighted job completion times under schedule S'' is strictly less than under S'. In fact:

$$s'-s'' = (t+p_{i_1})*w_{i_1} + (t+p_{i_1}+p_{i_2})*w_{i_2} - [(t+p_{i_2})*w_{i_2} + (t+p_{i_2}+p_{i_1})*w_{i_1}]$$

$$\downarrow S'-s'' = tw_{i_1} + p_{i_1}w_{i_1} + tw_{i_2} + p_{i_1}w_{i_2} + p_{i_2}w_{i_2} - [tw_{i_2} + p_{i_2}w_{i_2} + tw_{i_1} + p_{i_2}w_{i_1} + p_{i_1}w_{i_1}]$$

$$\downarrow S'-s'' = p_{i_1}w_{i_2} - p_{i_2}w_{i_1}$$

We want to prove that S' - S''>0

Proof of Theorem 3. (4)

Our assumption

$$\frac{w_{i_2}}{p_{i_2}} > \frac{\dot{w}_{i_1}}{p_{i_1}}$$

Proof:

$$s'-s''=p_{i_1}w_{i_2}-p_{i_2}w_{i_1} > 0$$

$$p_{i_1} w_{i_2} > p_{i_2} w_{i_1} \xrightarrow{\text{Diving by } p_{i_2}} \frac{p_{i_1} w_{i_2}}{p_{i_2}} > w_{i_1} \xrightarrow{\text{Diving by } p_{i_1}} \frac{w_{i_2}}{p_{i_2}} > \frac{w_{i_1}}{p_{i_1}}$$

• This contradicts the optimality of S' and completes the proof of the theorem.

Scheduling Identical Job SUM (minimization) problem.

- INPUT: m identical machine (h = 1, ..., m), n jobs (i = 1, ..., n), $p_i > 0$.
- OUTPUT: a schedule $S = (S_{1,...,}S_m)$ where $S_h = (S_{h,1},...,S_{h,k_h})$.
- GOAL: Minimizing the Job SUM, that is minimizing

$$\sum_{i=1}^{n} JC_{i}(S)$$

Does such problem admit a polynomial time algorithm that finds a schedule that minimizes the Job SUM?

Scheduling Identical Job SUM (minimization) problem: an example.

• INPUT: 5 jobs, 3 machines.

 M_1 J_1 J_2

 M_2 J_3 J_5 J_4

 M_3 0 t

$$JC_1(S)=1$$
; $JC_2(S)=1+2=3$; $JC_3(S)=3$; $JC_5(S)=3+5=8$; $JC_4(S)=8+4=12$.

$$\sum_{i=1}^{5} JC_i(S) = 1 + 3 + 3 + 12 + 8 = 27$$

Is it optimal?

Of course not! (By Theorem 2)

Scheduling Identical Job SUM (minimization) problem: an example. (2)

• INPUT: 5 jobs, 3 machines.

 M_1 J_1 J_2

 M_2 J_3 J_4 J_5

 M_3 0

 $JC_1(S)=1$; $JC_2(S)=1+2=3$; $JC_3(S)=3$; $JC_4(S)=3+4=7$; $JC_5(S)=7+5=12$.

$$\sum_{i=1}^{5} JC_i(S) = 1 + 3 + 3 + 7 + 12 = 26$$