TrioCFD Reference Manual V1.9.1

Support team: trust@cea.fr

Link to: TRUST Generic Guide

December 14, 2022

Contents

1	Syntax to define a mathematical function	18
2	Existing & predefined fields names	19
3	interprete	21
	3.1 Beam_model	22
	3.2 Beam_model_bloc	22
	3.3 Deactivate_sigint_catch	23
	3.4 Debogft	23
	3.5 Ijk_ft_double	23
	3.6 Bloc_lecture	27
	3.6.1 Bloc_criteres_convergence	27
	3.7 Thermique	27
	3.8 Merge_med	27
	3.9 Multiplefiles	28
	3.10 Op_conv_ef_stab_polymac_elem	28
		28
	3.11 Op_conv_ef_stab_polymac_face	28
	3.13 Option_covimac	
	• —	29
	3.14 Output_position_3d	29
	3.15 Parallel_io_parameters	29
	3.16 Projection_ale_boundary	30
	3.17 Raffiner_isotrope_parallele	30
	3.18 Read_med	30
	3.19 Lire_medfile	31
	3.20 Solver_moving_mesh_ale	32
	3.21 Test_sse_kernels	32
	3.22 Analyse_angle	32
	3.23 Associate	33
	3.24 Associer_algo	33
	3.25 Associer_pbmg_pbfin	33
	3.26 Associer_pbmg_pbgglobal	33
	3.27 Axi	34
	3.28 Bidim_axi	34
	3.29 Calculer_moments	34
	3.30 Lecture_bloc_moment_base	34
	3.30.1 Calcul	35
	3.30.2 Centre_de_gravite	35
	3.30.3 Un_point	35
	3.31 Corriger_frontiere_periodique	35
	3.32 Create_domains_from_sous_zones	36
	3.33 Criteres_convergence	36
	3.34 Debog	36
	3.35 {	37
	3.36 Decoupebord	37
	3.37 Decouper_bord_coincident	38
	3.38 Dilate	38
		38
	3.40 Disable_tu	39
	3.41 Discretiser_domaine	39
	3.42 Discretize	39
	3.43 Distance paroi	40

3.44	Ecrire_champ_med	40
		40
		40
		41
		41
		41
		42
		42 42
	-	42
	<u>−1</u>	43
	-	43
		44
	1	45
		45
		46
		46
3.60	Extruder_en3	46
3.61	End	47
3.62	}	47
		47
		48
	•	48
		48
		49
		49
2.60		49
		49 50
		50
	-	50
		50
3.74		51
		51
		51
		51
	3.74.4 List_bord	53
	3.74.5 Bord_base	53
	3.74.6 Bord	53
	3.74.7 Defbord	53
	3.74.8 Defbord_2	53
		54
		54
		54
		55
	1	55
3 75		55
	±	56
		50 57
	· · · · · · · · · · · · · · · · · · ·	57 50
		58 50
3.80	— I	59 50
	— <u> </u>	59
	±	59
		59
3 83	Orientefacesbord	60

3.84 Partition	60
3.85 Bloc_decouper	60
3.86 Partition_multi	61
3.87 Pilote_icoco	62
3.88 Polyedriser	62
3.89 Postraiter_domaine	63
3.90 Precisiongeom	63
3.91 Raffiner_anisotrope	63
3.92 Raffiner_isotrope	64
3.93 Read	65
3.94 Read_file	65
3.95 Read_file_binary	66
3.96 Lire_tgrid	66
3.97 Read_unsupported_ascii_file_from_icem	66
3.98 Orienter_simplexes	66
3.99 Redresser_hexaedres_vdf	67
3.100Refine_mesh	67
3.101Regroupebord	67
3.102Remaillage_ft_ijk	68
3.103Remove_elem	68
3.104Remove_elem_bloc	69
3.105Remove_invalid_internal_boundaries	69
3.106Reorienter_tetraedres	69
3.107Reorienter_triangles	69
3.108Reordonner	70
3.109Rotation	70
3.110Scatter	70
3.111Scattermed	71
3.112Solve	71
3.113Supprime_bord	71
3.114List_nom	71
3.115System	72
3.116Test_solveur	72
3.117Testeur	72
3.118Testeur_medcoupling	73
3.119Tetraedriser	73
3.120Tetraedriser_homogene	74
3.121Tetraedriser_homogene_compact	74
3.122Tetraedriser_homogene_fin	75
3.123Tetraedriser_par_prisme	75
3.124Thermique_bloc	76
3.125Transformer	77
3.126Trianguler	77
3.127Trianguler_fin	78
3.128Trianguler_h	78 79
3.129Type_indic_faces	
3.130Verifier_qualite_raffinements	79
3.131 Vect_nom	79
3.132Verifier_simplexes	79
3.133 Verifiercoin	79
3.134 Verifiercoin_bloc	80
3.135Ecrire	80
3.136Ecrire_fichier_bin	80
3.137Forire med	Q 1

թս_ 4.1	gen_base Pb_conduction	
4.1		
4.2	Corps_postraitement	
	4.2.1 Definition_champs	
	4.2.2 Definition_champ	
	4.2.3 Definition_champs_fichier	
	4.2.4 Sondes	
	4.2.5 Sonde	
	4.2.6 Sonde_base	
	4.2.7 Points	
	4.2.8 Listpoints	
	4.2.9 Point	
	4.2.10 Segmentpoints	
	4.2.11 Numero_elem_sur_maitre	
	4.2.12 Position_like	
	4.2.13 Segment	
	4.2.14 Plan	
	4.2.15 Volume	
	4.2.16 Circle	
	4.2.17 Circle_3	
	4.2.18 Segmentfacesx	
	4.2.19 Segmentfacesy	
	4.2.20 Segmentfacesz	
	4.2.21 Radius	
	4.2.22 Sondes_fichier	
	4.2.23 Champs_posts	
	4.2.24 Champs_a_post	
	4.2.25 Champ_a_post	
	4.2.26 Stats_posts	
	4.2.27 List_stat_post	
	4.2.28 Stat_post_deriv	
	4.2.29 T_deb	
	4.2.30 T_fin	
	4.2.31 Moyenne	
	4.2.32 Ecart_type	
	4.2.33 Correlation	
	4.2.34 Stats_serie_posts	
4.3	Post_processings	
4.5		
4.4		
4.4	Liste_post_ok	
	4.4.1 Nom_postraitement	
	4.4.2 Postraitement_base	
	4.4.3 Post_processing	
	4.4.4 Postraitement_ft_lata	
4.5	Liste_post	
	4.5.1 Un_postraitement_spec	
	4.5.2 Type_un_post	
	4.5.3 Type_postraitement_ft_lata	
4.6	Format_file	
4.7	Pb_hem	
4.8	Pb_hydraulique_turbulent_ale	
.9	Pb hydraulique sensibility	
	THE TEXAL COLUMN AND ADDRESS OF THE TEXAL PROPERTY OF THE TEXAL PR	

4.10	Pb_multiphase
4.11	Pb_rayo_conduction
4.12	Pb_rayo_hydraulique
4.13	Pb_rayo_hydraulique_turbulent
4.14	Pb_rayo_thermohydraulique
	Pb_rayo_thermohydraulique_qc
4.16	Pb_rayo_thermohydraulique_turbulent
	Pb_rayo_thermohydraulique_turbulent_qc
4.18	Pb_thermohydraulique_sensibility
	Pb_base
	Probleme_couple
	List_list_nom
	Modele_rayo_semi_transp
	Eq_rayo_semi_transp
7.23	4.23.1 Condlims
	4.23.2 Condlimlu
1 24	
	— — <u> </u>
	Listeqn
	Pb_couple_rayo_semi_transp
	Pb_hydraulique
	Pb_hydraulique_ale
	Pb_hydraulique_aposteriori
	Pb_hydraulique_concentration
	Pb_hydraulique_concentration_scalaires_passifs
	Pb_hydraulique_concentration_turbulent
	Pb_hydraulique_concentration_turbulent_scalaires_passifs
	Pb_hydraulique_melange_binaire_qc
	Pb_hydraulique_melange_binaire_wc
	Pb_hydraulique_melange_binaire_turbulent_qc
	Pb_hydraulique_turbulent
4.38	Pb_mg
	Pb_phase_field
4.40	Pb_post
4.41	Pb_thermohydraulique
4.42	Pb_thermohydraulique_qc
4.43	Pb_thermohydraulique_wc
4.44	Pb_thermohydraulique_concentration
4.45	Pb_thermohydraulique_concentration_scalaires_passifs
	Pb_thermohydraulique_concentration_turbulent
	Pb_thermohydraulique_concentration_turbulent_scalaires_passifs
	Pb_thermohydraulique_especes_qc
	Pb_thermohydraulique_especes_wc
	Pb_thermohydraulique_especes_turbulent_qc
	Pb_thermohydraulique_scalaires_passifs
	Pb_thermohydraulique_turbulent
	Pb_thermohydraulique_turbulent_qc
	Pb_thermohydraulique_turbulent_scalaires_passifs
	Pbc_med
	List_info_med
7.50	4.56.1 Info_med
1.57	Problem_read_generic
	Pb_couple_rayonnement
4 19	FIGUREUE II UNU VEH

mor	_eqn 1
5.1	Conduction
5.2	Bloc_convection
	5.2.1 Convection_deriv
	5.2.2 Amont
	5.2.3 Amont_old
	5.2.4 Centre
	5.2.5 Centre4
	5.2.6 Centre old
	5.2.7 Di 12
	5.2.8 Ef
	5.2.9 Bloc ef
	5.2.10 Muscl3
	5.2.11 Ef_stab
	5.2.13 Sous_zone_valeur
	5.2.14 Generic
	5.2.15 Kquick
	5.2.16 Muscl
	5.2.17 Muscl_old
	5.2.18 Muscl_new
	5.2.19 Negligeable
	5.2.20 Quick
	5.2.21 Ale
	5.2.22 Btd
	5.2.23 Supg
	5.2.24 Rt
	5.2.25 Sensibility
5.3	Bloc_diffusion
	5.3.1 Diffusion_deriv
	5.3.2 Negligeable
	5.3.3 P1b
	5.3.4 Plncplb
	5.3.5 Stab
	5.3.7 Bloc_diffusion_standard
	5.3.8 Option
	5.3.9 Tenseur_reynolds_externe
	5.3.10 Turbulente
	5.3.11 Tau
	5.3.12 Op_implicite
5.4	Condinits
	5.4.1 Condinit
5.5	Sources
5.6	Ecrire_fichier_xyz_valeur_param
	5.6.1 Ecrire_fichier_xyz_valeur_item
	5.6.2 Bords_ecrire
5.7	Parametre_equation_base
	5.7.1 Parametre_implicite
	5.7.2 Parametre_diffusion_implicite
5.8	Convection_diffusion_concentration_turbulent_ft_disc
5.9	Convection_diffusion_espece_binaire_turbulent_qc
	Convection_diffusion_temperature_sensibility
	Pp
J.11	. ip

	5.11.1 Penalisation_12_ftd_lec	
5.12	Echelle_temporelle_turbulente	173
5.13	Energie_multiphase	174
5.14	Energie_cinetique_turbulente	175
5.15	Energie_cinetique_turbulente_wit	176
5.16	Masse_multiphase	177
5.17	Navier_stokes_aposteriori	178
5.18	Deuxmots	180
	Floatfloat	
	Traitement_particulier	
	5.20.1 Traitement_particulier_base	
	5.20.2 Temperature	
	5.20.3 Canal	
	5.20.4 Ec	
	5.20.5 Thi	
	5.20.6 Thi_thermo	
	5.20.7 Chmoy_faceperio	
	5.20.8 Profils_thermo	
	5.20.9 Brech	
	5.20.10 Ceg	
	5.20.11 Ceg_areva	
	<u> </u>	
5 01	5.20.12 Ceg_cea_jaea	
	Navier_stokes_turbulent_ale	
5.22	Modele_turbulence_hyd_deriv	
	5.22.1 Dt_impr_ustar_mean_only	
	5.22.2 Mod_turb_hyd_ss_maille	
	5.22.3 Form_a_nb_points	
	5.22.4 Sous_maille_selectif_mod	
	5.22.5 Deuxentiers	
	5.22.6 Floatentier	
	5.22.7 Sous_maille_selectif	
	5.22.8 Sous_maille_1elt	
	5.22.9 Sous_maille_lelt_selectif_mod	
	5.22.10 Sous_maille_axi	
	5.22.11 Sous_maille_smago_filtre	195
	5.22.12 Sous_maille_smago_dyn	196
	5.22.13 Sous_maille_wale	
	5.22.14 Sous_maille_smago	199
	5.22.15 Combinaison	200
	5.22.16 Longueur_melange	201
	5.22.17 Sous_maille	202
	5.22.18 Nul	204
	5.22.19 Mod_turb_hyd_rans	204
	·	205
	— <u>*</u>	206
	· · · · · · · · · · · · · · · · · · ·	206
		207
		207
		207
		208
	<u> </u>	208
		208 209
		209 210
5 23		210 211

6	ijk_s	splitting	269
	3.04	Injection_marqueur	269
		Transport_marqueur_ft	
		Transport_k_epsilon	
	5.61	Transport_k	
		5.60.2 Lineaire	
	2.00	5.60.1 Base	
		Interpolation_champ_face_deriv	
		Parcours_interface	
	5 58	Bloc_lecture_remaillage	
		5.57.3 Vitesse_interpolee	
		5.57.2 Vitesse_imposee	
		5.57.1 Loi_horaire	
		Methode_transport_deriv	
		Transport_interfaces_ft_disc	
		Transport_epsilon	
		Navier_stokes_turbulent_qc	
		Navier_stokes_turbulent	
		Navier_stokes_standard	
		5.51.2 Bloc_mu_fonc_c	
		5.51.1 Bloc_visco2	
	5.51	Visco_dyn_cons	
		5.50.2 Bloc_rho_fonc_c	
		5.50.1 Bloc_boussinesq	
	5.50	Approx_boussinesq	
		Navier_stokes_phase_field	
		Penalisation_forcage	
		Navier_stokes_ft_disc	
		Navier_stokes_wc	
		Navier_stokes_qc	
		Eqn_base	
		Convection_diffusion_temperature_turbulent	
		Objet_lecture_maintien_temperature	
		Convection_diffusion_temperature_ft_disc	
		Convection_diffusion_temperature	
		Convection_diffusion_phase_field	
		Convection_diffusion_espece_multi_turbulent_qc	
		Convection_diffusion_espece_multi_wc	
		Convection_diffusion_espece_multi_qc	
		Convection_diffusion_espece_binaire_wc	
		Convection_diffusion_espece_binaire_qc	
		Convection_diffusion_concentration_turbulent	
		Convection_diffusion_concentration_ft_disc	
	5.31	Convection_diffusion_concentration	221
		Convection_diffusion_chaleur_turbulent_qc	
	5.29	Convection_diffusion_chaleur_wc	219
		Convection_diffusion_chaleur_qc	
		Transport_k_eps_realisable	
		Taux_dissipation_turbulent	
		Qdm_multiphase	
	5.24	Navier_stokes_std_ale	214

7	algo	_base 27
	7.1	Algo_couple_1
8	/ *	27
0	•	/*
	0.1	7
9	chan	np_generique_base 27
	9.1	Champ_post_de_champs_post
	9.2	List_nom_virgule
	9.3	Listchamp_generique
	9.4	Champ_post_operateur_base
	9.5	Champ_post_operateur_eqn
	9.6	Champ_post_statistiques_base
	9.7	Correlation
	9.8	Champ_post_operateur_divergence
	9.9	Ecart_type
	9.10	Champ_post_extraction
	9.11	Champ_post_operateur_gradient
	9.12	Champ_post_interpolation
	9.13	Champ_post_morceau_equation
	9.14	Moyenne
	9.15	Predefini
	9.16	Champ_post_reduction_0d
	9.17	Champ_post_refchamp
	9.18	Champ_post_tparoi_vef
	9.19	Champ_post_transformation
10	.1.2	<u>.</u>
10	chim	ie 28 Reactions
	10.1	10.1.1 Reaction
		10.1.1 Reaction
11	class	generic 28
		Modele_fonc_realisable
		Modele_fonc_realisable_base
		Modele_shih_zhu_lumley_vdf
		Shih_zhu_lumley
		Amgx
		Cholesky
		Dt_calc
	11.8	Dt fixe
	11.9	Dt min
	11.10	Dt_start
		Gcp_ns
		2Gen
		8Gmres
		Optimal
		5Petsc
		6Rocalution
		7Gcp
		SSolveur_sys_base
	,,	
12	#	29
	12.1	#

13 condlim_base	293
13.1 Echange_couplage_thermique	
13.2 Paroi_echange_interne_global_impose	
13.3 Paroi_echange_interne_global_parfait	
13.4 Paroi_echange_interne_impose	
13.5 Paroi_echange_interne_parfait	
13.6 Frontiere_ouverte_vitesse_imposee_ale	
13.7 Neumann_homogene	
13.8 Neumann_loi_paroi_faible_k	
13.9 Neumann_loi_paroi_faible_omega	
13.10Neumann_paroi_adiabatique	
13.11Paroi	
13.12Paroi_frottante_loi	
13.13Contact_vdf_vef	
13.14Contact_vef_vdf	
13.15Dirichlet	
13.16Echange_contact_rayo_transp_vdf	
13.17Echange_contact_vdf_ft_disc	
13.18Echange_contact_vdf_ft_disc_solid	
13.19Entree_temperature_imposee_h	
13.20Flux_radiatif	
13.21Flux_radiatif_vdf	
13.22Flux_radiatif_vef	
13.23Frontiere_ouverte	
13.24Frontiere_ouverte_concentration_imposee	
13.25Frontiere_ouverte_fraction_massique_imposee	
13.26Frontiere_ouverte_gradient_pression_impose	
13.27Frontiere_ouverte_gradient_pression_impose_vefprep1b	
13.28Frontiere_ouverte_gradient_pression_libre_vef	
13.29Frontiere_ouverte_gradient_pression_libre_vefprep1b	
13.30Frontiere_ouverte_k_eps_impose	
13.31Frontiere_ouverte_pression_imposee	
13.32Frontiere_ouverte_pression_imposee_orlansky	
13.33Frontiere_ouverte_pression_moyenne_imposee	
13.34Frontiere_ouverte_rayo_semi_transp	
13.35Frontiere_ouverte_rayo_transp	
13.36Frontiere_ouverte_rayo_transp_vdf	
13.37Frontiere_ouverte_rayo_transp_vef	
13.38Frontiere_ouverte_rho_u_impose	303
13.39Frontiere_ouverte_temperature_imposee	
13.40Frontiere_ouverte_temperature_imposee_rayo_semi_transp	
13.41Frontiere_ouverte_temperature_imposee_rayo_transp	
13.42Frontiere_ouverte_vitesse_imposee	304
13.43Frontiere_ouverte_vitesse_imposee_sortie	304
13.44Neumann	304
13.45Paroi_adiabatique	305
13.46Paroi_contact	305
13.47Paroi_contact_fictif	305
13.48Paroi_contact_rayo	306
13.49Paroi_decalee_robin	306
13.50Paroi_defilante	306
13.51Paroi_echange_contact_correlation_vdf	307
13.52Paroi_echange_contact_correlation_vef	307
13.53Paroi_echange_contact_odvm_vdf	 309

	13.54Paroi_echange_contact_rayo_semi_transp_vdf	
	13.55Paroi_echange_contact_vdf	309
	13.56Paroi_echange_contact_vdf_ft	310
	13.57Paroi_echange_contact_vdf_zoom_fin	310
	13.58Paroi_echange_contact_vdf_zoom_grossier	
	13.59Paroi_echange_externe_impose	
	13.60Paroi_echange_externe_impose_h	
	13.61Paroi_echange_externe_impose_rayo_semi_transp	
	13.62Paroi_echange_externe_impose_rayo_transp	
	13.63Paroi_echange_global_impose	
	13.64Paroi_fixe	
	13.65Paroi fixe iso genepi2 sans contribution aux vitesses sommets	
	13.66Paroi_flux_impose	
	13.67Paroi_flux_impose_rayo_semi_transp_vdf	
	13.68Paroi_flux_impose_rayo_semi_transp_vef	
	13.69Paroi_flux_impose_rayo_transp	
	13.70Paroi_ft_disc	
	13.71Paroi_ft_disc_deriv	314
	13.71.1 Symetrie	314
	13.71.2 Constant	314
	13.72Paroi_knudsen_non_negligeable	314
	13.73Paroi_rugueuse	315
	13.74Paroi_temperature_imposee	
	13.75Paroi_temperature_imposee_rayo_semi_transp	
	13.76Paroi_temperature_imposee_rayo_transp	
	13.77Periodique	
	13.78Scalaire_impose_paroi	
	13.79Sortie_libre_rho_variable	
	13.80Sortie_libre_temperature_imposee_h	
	13.81Symetrie	
	13.82Temperature_imposee_paroi	. 31/
14	discretisation_base	317
14	14.1 Covimac	
	14.1 Covinac	
	14.3 Polymac_p0p1nc	
	14.4 Vdf	
	14.5 Vef	
	14.6 Vefprep1b	318
4.5		210
15	domaine	319
	15.1 Domaineaxi1d	
	15.2 Ijk_grid_geometry	
	15.3 Domaine_ale	320
1.		220
10	champ_base	320
	16.1 Champ_base	
	16.2 Champ_fonc_med_tabule	
	16.3 Champ_fonc_medfile	
	16.4 Champ_tabule_morceaux	
	16.5 Champ_composite	322
	16.6 Champ_don_base	322
	16.7 Champ_don_lu	323
	16.8 Champ_fonc_fonction	

16.9 Champ_fonc_fonction_txyz	. 323
16.10Champ_fonc_fonction_txyz_morceaux	
16.11Champ_fonc_med	. 324
16.12Champ_fonc_reprise	
16.13Fonction_champ_reprise	. 325
16.14Champ_fonc_t	. 325
16.15Champ_fonc_tabule	. 326
16.16Champ_init_canal_sinal	. 326
16.17Bloc_lec_champ_init_canal_sinal	. 326
16.18Champ_input_base	. 327
16.19Champ_input_p0	. 328
16.20Champ_input_p0_composite	
16.21Champ_ostwald	
16.22Champ_som_lu_vdf	
16.23Champ_som_lu_vef	
16.24Champ_tabule_temps	
16.25Champ_uniforme_morceaux	
16.26Champ_uniforme_morceaux_tabule_temps	
16.27Champ_fonc_txyz	
16.28Champ_fonc_xyz	
16.29Field_uniform_keps_from_ud	
16.30Init_par_partie	
16.31Tayl_green	
16.32Uniform_field	
16.33 Valeur_totale_sur_volume	
10.00 (41.01.2.0041.0.2.0.4.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
17 champ_front_base	333
17 champ_front_base 17.1 Champ_front_base	
	. 333
17.1 Champ_front_base	. 333
17.1 Champ_front_base	. 333. 333. 333
17.1 Champ_front_base	. 333. 333. 334
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule	. 333. 333. 334. 334
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam	. 333. 333. 334. 334. 334
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale	. 333. 333. 334. 334. 334. 334
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf	. 333. 333. 334. 334. 334. 335
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t	. 333. 333. 334. 334. 334. 335. 335
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt	. 333. 333. 334. 334. 334. 335. 335
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt	. 333 . 333 . 334 . 334 . 334 . 335 . 335 . 335
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf 17.8 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward	. 333. 333. 334. 334. 334. 335. 335. 335. 336. 336
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input	 . 333 . 333 . 334 . 334 . 335 . 335 . 336 . 336 . 337
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud	 . 333 . 333 . 334 . 334 . 335 . 335 . 336 . 337 . 337
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme	 . 333 . 333 . 334 . 334 . 335 . 335 . 336 . 337 . 337 . 338
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med	 . 333 . 333 . 334 . 334 . 335 . 335 . 335 . 336 . 337 . 338 . 338
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite	 . 333 . 333 . 334 . 334 . 335 . 335 . 335 . 336 . 337 . 338 . 338 . 338
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite 17.17Champ_front_calc	 . 333 . 333 . 334 . 334 . 334 . 335 . 335 . 336 . 337 . 338 . 338 . 338 . 338 . 339
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite 17.17Champ_front_calc 17.18Champ_front_composite	 . 333 . 333 . 334 . 334 . 334 . 335 . 335 . 336 . 337 . 338 . 338 . 339 . 339
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite 17.17Champ_front_calc 17.18Champ_front_composite 17.19Champ_front_composite 17.19Champ_front_contact_rayo_semi_transp_vef	 . 333 . 333 . 334 . 334 . 335 . 335 . 336 . 337 . 337 . 338 . 338 . 339 . 339 . 339
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite 17.17Champ_front_calc 17.18Champ_front_composite 17.19Champ_front_contact_rayo_semi_transp_vef 17.20Champ_front_contact_rayo_transp_vef	 . 333 . 333 . 334 . 334 . 335 . 335 . 336 . 337 . 337 . 338 . 338 . 339 . 339 . 340
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite 17.17Champ_front_calc 17.18Champ_front_composite 17.19Champ_front_contact_rayo_semi_transp_vef 17.20Champ_front_contact_rayo_transp_vef 17.21Champ_front_contact_vef	 . 333 . 333 . 334 . 334 . 335 . 335 . 335 . 336 . 337 . 338 . 338 . 339 . 339 . 340 . 340
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite 17.17Champ_front_contact_rayo_semi_transp_vef 17.20Champ_front_contact_rayo_transp_vef 17.21Champ_front_contact_vef 17.22Champ_front_debit	 . 333 . 333 . 334 . 334 . 335 . 335 . 335 . 336 . 337 . 338 . 338 . 339 . 340 . 340 . 340
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_contact_rayo_semi_transp_vef 17.19Champ_front_contact_rayo_transp_vef 17.20Champ_front_contact_vef 17.21Champ_front_debit 17.22Champ_front_debit_massique	 333 333 334 334 335 335 335 336 337 338 338 339 340 340 340 340 340
17.1 Champ_front_base 17.2 Boundary_field_keps_from_ud 17.3 Ch_front_input_ale 17.4 Champ_front_xyz_tabule 17.5 Champ_front_ale_beam 17.6 Champ_front_ale 17.7 Champ_front_debit_qc_vdf 17.8 Champ_front_debit_qc_vdf_fonc_t 17.9 Champ_front_synt 17.10Bloc_lecture_turb_synt 17.11Boundary_field_inward 17.12Boundary_field_uniform_keps_from_ud 17.13Ch_front_input 17.14Ch_front_input_uniforme 17.15Champ_front_med 17.16Champ_front_bruite 17.17Champ_front_contoute 17.18Champ_front_composite 17.19Champ_front_contact_rayo_semi_transp_vef 17.20Champ_front_contact_rayo_transp_vef 17.21Champ_front_debit 17.22Champ_front_debit_massique 17.24Champ_front_fonc_pois_ipsn	 . 333 . 333 . 334 . 334 . 335 . 335 . 335 . 336 . 337 . 338 . 338 . 338 . 339 . 340 . 340 . 340 . 341

	17.28Champ_front_fonc_xyz	342
	17.29Champ_front_fonction	342
	17.30Champ_front_lu	342
	17.31Champ_front_normal_vef	342
	17.32Champ_front_pression_from_u	
	17.33Champ_front_recyclage	343
	17.34Champ_front_tabule	
	17.35Champ_front_tabule_lu	
	17.36Champ_front_tangentiel_vef	
	17.37Champ_front_uniforme	
	17.38Champ_front_vortex	
	17.39Champ_front_xyz_debit	
	17.40Champ_front_zoom	
	17. To Champ_Hont_Zoom	317
18	interpolation_ibm_base	347
	18.1 Ibm_aucune	347
	18.2 Ibm_element_fluide	
	18.3 Ibm_hybride	
	18.4 Ibm_gradient_moyen	
	18.5 Ibm_power_law_tbl	
	10.5 Iom_powor_law_tor	317
19	loi_etat_base	350
	19.1 Binaire_gaz_parfait_qc	350
	19.2 Binaire_gaz_parfait_wc	
	19.3 Loi_etat_gaz_parfait_base	
	19.4 Loi_etat_gaz_reel_base	
	19.5 Multi_gaz_parfait_qc	
	19.6 Multi_gaz_parfait_wc	
	19.7 Gaz_parfait_qc	
	19.8 Gaz_parfait_wc	
	19.9 Rhot_gaz_parfait_qc	
	19.10Rhot_gaz_reel_qc	
	17.Toknot_gaz_reer_qe	334
20	loi fermeture base	354
	20.1 Loi_fermeture_test	354
21	loi_horaire	355
22	milieu_base	355
	22.1 Constituant	
	22.2 Fluide_base	
	22.3 Fluide_dilatable_base	
	22.4 Fluide_diphasique	
	22.5 Fluide_incompressible	
	22.6 Fluide_ostwald	
	22.7 Fluide_quasi_compressible	
	22.8 Bloc_sutherland	361
	22.9 Fluide_reel_base	361
	22.10Fluide_sodium_gaz	
	22.11Fluide_sodium_liquide	363
	22.12Fluide_weakly_compressible	363
	22.13Solide	364
	22.14Stiffenedgas	365
23	milieu_v2_base	366

24	modele_rayonnement_base	366
	24.1 Modele_rayonnement_milieu_transparent	366
25	modele_turbulence_scal_base	368
	25.1 Prandtl	368
	25.2 Schmidt	369
	25.3 Sous_maille_dyn	370
26	nom	370
	26.1 Nom_anonyme	370
27	partitionneur_deriv	371
	27.1 Fichier_med	371
	27.2 Fichier_decoupage	
	27.3 Metis	
	27.4 Partition	
	27.5 Sous_domaine	
	27.6 Sous_zones	
	27.7 Tranche	
	27.8 Union	
	270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0
28	porosites	375
	28.1 Bloc_lecture_poro	375
29	precond_base	376
	29.1 Ilu	376
	29.2 Precondsolv	
	29.3 Ssor	
	29.4 Ssor_bloc	
30	saturation_base	377
	30.1 Saturation_constant	377
	30.2 Saturation_sodium	
31	schema_temps_base	378
31	31.1 Implicit_euler_steady_scheme	
	31.2 Sch_cn_ex_iteratif	
	31.3 Sch_cn_iteratif	
	31.4 Scheme_euler_explicit	
	31.5 Leap_frog	
	31.6 Rk3_ft	
	31.7 Runge_kutta_ordre_2	
	31.8 Runge_kutta_ordre_2_classique	
	31.9 Runge_kutta_ordre_3	
	31.10Runge_kutta_ordre_3_classique	
	31.11Runge_kutta_ordre_4_d3p	
	31.12Runge_kutta_ordre_4_classique	
	31.13Runge_kutta_ordre_4_classique_3_8	
	31.14Runge_kutta_rationnel_ordre_2	
	31.15Schema_adams_bashforth_order_2	
	31.16Schema_adams_bashforth_order_3	
	31.17Schema_adams_moulton_order_2	
	31.18Schema_adams_moulton_order_3	
	31.19Schema_backward_differentiation_order_2	
	31.20Schema backward differentiation order 3	418

	31.21Scheme_euler_implicit	420
	31.22Schema_implicite_base	423
	31.23Schema_phase_field	425
	31.24Schema_predictor_corrector	427
	31.25Schema_euler_explicite_ale	429
32	solveur_implicite_base	431
	32.1 Ice	
	32.2 Implicit_steady	
	32.3 Implicite	
	32.4 Implicite_ale	
	32.5 Piso	
	32.6 Sets	
	32.7 Simple	
	32.8 Simpler	
	32.9 Solveur_lineaire_std	
	32.10Solveur_u_p	439
33	source base	439
33	33.1 Dp_impose	
	33.2 Diffusion_croisee_echelle_temp_taux_diss_turb	
	33.3 Dissipation_echelle_temp_taux_diss_turb	
	33.4 Production_echelle_temp_taux_diss_turb	
	33.5 Production_energie_cin_turb	
	33.6 Source_constituant_vortex	
	33.7 Source_transport_k_eps_anisotherme	
	33.8 Terme_dissipation_echelle_temporelle_turbulente_elem_polymac_p0	
	33.9 Terme_dissipation_energie_cinetique_turbulente	
	33.10Acceleration	
	33.11Boussinesq_concentration	
	33.12Boussinesq_temperature	
	33.13Canal_perio	
	33.14Coriolis	
	33.15Darcy	
	33.16Dirac	
	33.17Flux interfacial	
	33.18Forchheimer	
	33.19Frottement_interfacial	
	33.20Perte_charge_anisotrope	447
	33.21Perte_charge_circulaire	447
	33.22Perte_charge_directionnelle	448
	33.23Perte_charge_isotrope	448
	33.24Perte_charge_reguliere	449
	33.25Spec_pdcr_base	449
	33.25.1 Longitudinale	449
	33.25.2 Transversale	450
	33.26Perte_charge_singuliere	450
	33.27Puissance_thermique	451
	33.28Radioactive_decay	451
	33.29Source_con_phase_field	451
	33.30Bloc_kappa_variable	452
	33.31Bloc_potentiel_chim	452
	33.32Source_constituant	
	22 22 Elettobilita	152

33.34Source_generique	
33.35Masse_ajoutee	45.
33.36Source_pdf	454
33.37Bloc_pdf_model	454
33.37.1 Troismots	
33.38Source_pdf_base	
33.39Source_qdm	
33.40Source_qdm_lambdaup	
33.41Source_qdm_phase_field	
33.42Source_rayo_semi_transp	
33.43Source_robin	
33.44Source_robin_scalaire	
33.45Listdeuxmots_sacc	
33.46Source_th_tdivu	
33.47Trainee	
33.48Source_transport_eps	
33.49Source_transport_k	
33.50Source_transport_k_eps	
33.51Source_transport_k_eps_aniso_concen	
33.52Source_transport_k_eps_aniso_therm_concen	459
33.53Tenseur_reynolds_externe	459
33.54Terme_puissance_thermique_echange_impose	
33.55Travail_pression	460
- •	
34 sous_zone	460
34.1 Bloc_origine_cotes	46
34.2 Bloc_couronne	
51.2 Dioc coulding	462
34.3 Bloc_tube	
34.3 Bloc_tube	462 46 2
34.3 Bloc_tube	46 2 462
34.3 Bloc_tube	46 46 46
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr	46
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr	46
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old	46
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr	46
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable	
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble	46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat	46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble 35.11Entierfloat	462 463 464 464 464 464 464 464 465 466 466
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble	462 463 464 464 464 464 464 464 465 466 466
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10Liste_sonde_tble 35.11Entierfloat 35.12Utau_imp	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10Liste_sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10Lste_sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire 36.2 Loi_analytique_scalaire	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire 36.2 Loi_analytique_scalaire 36.3 Loi_expert_scalaire	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10Liste_sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire 36.2 Loi_analytique_scalaire 36.3 Loi_expert_scalaire 36.4 Loi_odvm	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire 36.2 Loi_analytique_scalaire 36.3 Loi_expert_scalaire	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10Liste_sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire 36.2 Loi_analytique_scalaire 36.3 Loi_expert_scalaire 36.4 Loi_odvm	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire 36.2 Loi_analytique_scalaire 36.3 Loi_expert_scalaire 36.4 Loi_odvm 36.5 Loi_paroi_nu_impose	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.
34.3 Bloc_tube 35 turbulence_paroi_base 35.1 Loi_ciofalo_hydr 35.2 Loi_expert_hydr 35.3 Loi_puissance_hydr 35.4 Loi_standard_hydr 35.5 Loi_standard_hydr_old 35.6 Loi_ww_hydr 35.7 Negligeable 35.8 Paroi_tble 35.9 Twofloat 35.10Liste_sonde_tble 35.10.1 Sonde_tble 35.11Entierfloat 35.12Utau_imp 36 turbulence_paroi_scalaire_base 36.1 Loi_ww_scalaire 36.2 Loi_analytique_scalaire 36.3 Loi_expert_scalaire 36.4 Loi_odvm 36.5 Loi_paroi_nu_impose 36.6 Loi_standard_hydr_scalaire	46. 46. 46. 46. 46. 46. 46. 46. 46. 46.

<u>–</u> 1	469 470 470 470 470
38 objet_lecture	470
39 index	471
1 Syntax to define a mathematical function	
In a mathematical function, used for example in field definition, it's possible to use the predifined function (an object parser is used to evaluate the functions): ABS : absolute value function COS : cosine function SIN : sine function TAN : tangent function ATAN : arctangent function EXP : exponential function LN : natural logarithm function SQRT : square root function INT : integer function RND(x) : random function (values between 0 and x) COSH : hyperbolic cosine function SINH : hyperbolic sine function ATANH : hyperbolic sine function ACOS : inverse cosine function ACOS : inverse cosine function ACOS : inverse cosine function ATANH : inverse sine function ATANH : inverse sine function ATANH : inverse hyperbolic tangent function NOT(x) : NOT x (returns 1 if x is false, 0 otherwise) SGN(x) : SGN x (returns 1 if x is positive, -1 if negative, 0 if zero) x_AND_y : boolean logical operation AND (returns 1 if both x and y are true, else 0) x_GR_y : greater than (returns 1 if x>y, else 0) x_GT_y : greater than or equal to (returns 1 if x>=y, else 0) x_LE_y : less than (returns 1 if x<=y, else 0) x_LE_y : less than or equal to (returns 1 if x<=y, else 0) x_MIN_y : returns the largest of x and y x_MOD_y : modular division of x per y x_EQ_y : equal to (returns 1 if x==y, else 0) You can also use the following operations: + : addition	etion
- : subtraction / : division	

*: multiplication %: modulo \$: max • : power

< : less than > : greater than

[: less than or equal to] : greater than or equal to

You can also use the following constants:

Pi : pi value (3,1415...)

The variables which can be used are:

x,y,z : coordinates

t : time

Examples:

Champ_front_fonc_txyz 2 $cos(y+x^2)$ t+ln(y) Champ_fonc_xyz dom 2 tanh(4*y)*(0.95+0.1*rnd(1)) 0.

Possible errors:

Error 1:

Champ_fonc_txyz 1 $\cos(10^*t)^*(1< x< 2)^*(1< y< 2)$

Previous line is wrong. It should be written as:

Champ_fonc_txyz 1 $\cos(10*t)*(1<x)*(x<2)*(1<y)*(y<2)$

Error 2:

Champ_front_fonc_xyz 1 20*(x<-2)+10*(y]-5)+3*(z>0)

Previous line is wrong because negative values are not written between parentheses. It should be written as:

Champ_front_fonc_xyz 1 20*(x<(-2))+10*(y](-5))+3*(z>0)

2 Existing & predefined fields names

Here is a list of post-processable fields, but it is not the only ones.

Physical values	Keyword for field_name	Unit
Velocity	Vitesse or Velocity	$m.s^{-1}$
Velocity residual	Vitesse_residu	$m.s^{-2}$
Kinetic energy per elements		
$(0.5\rho u_i ^2)$	Energie_cinetique_elem	$kg.m^{-1}.s^{-2}$
Total kinetic energy		
$\left(\frac{\sum_{i=1}^{nb_elem} 0.5\rho u_i ^2 vol_i}{\sum_{i=1}^{nb_elem} vol_i}\right)$	Energie_cinetique_totale	$kg.m^{-1}.s^{-2}$
Vorticity	Vorticite	s^{-1}
Pressure in incompressible flow		
$(P/\rho + gz)$	Pression ¹	$Pa.m^3.kg^{-1}$
For Front Tracking probleme		or
$(P + \rho gz)$		Pa
Pressure in incompressible flow		
$(P+\rho gz)$	Pression_pa or Pressure	Pa
Pressure in compressible flow	Pression	Pa
Hydrostatic pressure (ρgz)	Pression_hydrostatique	Pa
continued on next page		

¹The post-processed pressure is the pressure divided by the fluid's density $(P/\rho + gz)$ on incompressible laminar calculation. For turbulent, pressure is $P/\rho + gz + 2/3 * k$ cause the turbulent kinetic energy is in the pressure gradient.

Physical values	Keyword for field_name	Unit
Totale pressure (when	-	
quasi compressible model		
is used)=Pth+P	Pression_tot	Pa
Pressure gradient		
$(\nabla(P/\rho+gz))$	Gradient_pression	$m.s^{-2}$
Velocity gradient	gradient_vitesse	s^{-1}
Temperature	Temperature	°C or K
Temperature residual	Temperature_residu	$^{o}\mathrm{C.}s^{-1}$ or $\mathrm{K.}s^{-1}$
Phase temperature of		
a two phases flow	Temperature_EquationName	°C or K
Mass transfer rate		0 1
between two phases	Temperature_mpoint	$\frac{kg.m^{-2}.s^{-1}}{K^2}$
Temperature variance	Variance_Temperature	
Temperature dissipation rate	Taux_Dissipation_Temperature	$K^2.s^{-1}$
Temperature gradient	Gradient_temperature	$K.m^{-1}$
Heat exchange coefficient	H_echange_Tref ²	$W.m^{-2}.K^{-1}$
Turbulent heat flux	Flux_Chaleur_Turbulente	$m.K.s^{-1}$
Turbulent viscosity	Viscosite_turbulente	$m^2.s^{-1}$
Turbulent dynamic viscosity		
(when quasi compressible	Viscosite_dynamique_turbulente	$kg.m.s^{-1}$
model is used)		2 2
Turbulent kinetic energy	K	$m^2.s^{-2}$ $m^3.s^{-1}$
Turbulent dissipation rate	Eps	$m^{3}.s^{-1}$
Turbulent quantities	W. F.	2 -2 3 -1
K and Epsilon	K_Eps	$(m^2.s^{-2}, m^3.s^{-1})$
Residuals of turbulent quantities	V Eng north	(2332)
K and Epsilon residuals Constituent concentration	K_Eps_residu Concentration	$(m^2.s^{-3}, m^3.s^{-2})$
Constituent concentration Constituent concentration residual	Concentration_residu	
	VitesseX	$m.s^{-1}$
Component velocity along X Component velocity along Y	VitesseX	$m.s^{-1}$
Component velocity along Z	VitesseZ	$m.s^{-1}$
Mass balance on each cell	Divergence_U	$m^3.s^{-1}$
Irradiancy	Irradiance	$\frac{m \cdot s}{W \cdot m^{-2}}$
Q-criteria	Critere_Q	$\frac{vv.m}{s^{-1}}$
Distance to the wall $Y^+ = yU/\nu$	Chart_V	<u> </u>
(only computed on	Y_plus	dimensionless
boundaries of wall type)	_prus	
Friction velocity	U_star	$m.s^{-1}$
Void fraction	alpha	dimensionless
Cell volumes	Volume_maille	m^3
Chemical potential	Potentiel_Chimique_Generalise	
Source term in non	1	
Galinean referential	Acceleration_terme_source	$m.s^{-2}$
Stability time steps	Pas_de_temps	S
Listing of boundary fluxes	Flux_bords	cf each *.out file
Volumetric porosity	Porosite_volumique	dimensionless
	continued on next page	1
	_ - •	

²Tref indicates the value of a reference temperature and must be specified by the user. For example, H_echange_293 is the keyword to use for Tref=293K.

Physical values	Keyword for field_name	Unit
Distance to the wall	Distance_Paroi ³	m
Volumic thermal power	Puissance_volumique	$W.m^{-3}$
Local shear strain rate defined as		
$\sqrt{(2SijSij)}$	Taux_cisaillement	s^{-1}
Cell Courant number (VDF only)	Courant_maille	dimensionless
Cell Reynolds number (VDF only)	Reynolds_maille	dimensionless
Viscous force	viscous_force	$kg.m^2.s^{-1}$
Pressure force	pressure_force	$kg.m^2.s^{-1}$
Total force	total_force	$kg.m^2.s^{-1}$
Viscous force along X	viscous_force_x	$kg.m^2.s^{-1}$
Viscous force along Y	viscous_force_y	$kg.m^2.s^{-1}$
Viscous force along Z	viscous_force_z	$kg.m^2.s^{-1}$
Pressure force along X	pressure_force_x	$kg.m^2.s^{-1}$
Pressure force along Y	pressure_force_y	$kg.m^{2}.s^{-1}$
Pressure force along Z	pressure_force_z	$kg.m^2.s^{-1}$
Total force along X	total_force_x	$kg.m^2.s^{-1}$
Total force along Y	total_force_y	$kg.m^2.s^{-1}$
Total force along Z	total_force_z	$kg.m^2.s^{-1}$

3 interprete

Description: Basic class for interpreting a data file. Interpretors allow some operations to be carried out on objects.

See also: objet_u (39) read (3.93) associate (3.23) discretize (3.42) mailler (3.73) mailler parallel (3.75) ecrire_fichier_bin (3.136) ecrire (3.135) read_file (3.94) lire_tgrid (3.96) solve (3.112) execute_parallel (3.48) end (3.61) dimension (3.39) bidim_axi (3.28) axi (3.27) transformer (3.125) rotation (3.109) dilate (3.38) criteres_convergence (3.33) testeur (3.117) test_solveur (3.116) postraiter_domaine (3.89) modif-_bord_to_raccord (3.76) remove_elem (3.103) regroupebord (3.101) supprime_bord (3.113) calculer_moments (3.29) imprimer flux (3.64) decouper bord coincident (3.37) raffiner anisotrope (3.91) raffiner isotrope (3.92) trianguler (3.126) tetraedriser (3.119) orientefacesbord (3.83) reorienter tetraedres (3.106) reorientertriangles (3.107) verifiercoin (3.133) discretiser domaine (3.41) { (3.35) } (3.62) export (3.49) debog (3.34) pilote icoco (3.87) moyenne volumique (3.78) lire ideas (3.72) system (3.115) redresser hexaedres-_vdf (3.99) analyse_angle (3.22) remove_invalid_internal_boundaries (3.105) reordonner (3.108) precisiongeom (3.90) nettoiepasnoeuds (3.81) scatter (3.110) distance paroi (3.43) extruder (3.57) extract-_2d_from_3d (3.50) extruder_en20 (3.59) extrudeparoi (3.56) decoupebord (3.36) extraire_plan (3.53) extraire domaine (3.52) extraire surface (3.54) integrer champ med (3.66) orienter simplexes (3.98) verifier-_simplexes (3.132) verifier_qualite_raffinements (3.130) testeur_medcoupling (3.118) option_vdf (3.82) espece (3.47) Option_Covimac (3.13) Op_Conv_EF_Stab_PolyMAC_Face (3.11) Op_Conv_EF_Stab_PolyMAC-_Elem (3.10) Op_Conv_EF_Stab_PolyMAC_P0_Face (3.12) ecrire_med (3.137) read_med (3.18) lata_to-_other (3.71) lata_to_med (3.69) ecrire_champ_med (3.44) Merge_MED (3.8) ecriturelecturespecial (3.46) Raffiner_isotrope_parallele (3.17) modifydomaineAxi1d (3.77) extrudebord (3.55) corriger frontiere periodique (3.31) refine mesh (3.100) polyedriser (3.88) interprete geometrique base (3.68) partition multi (3.86) partition (3.84) Deactivate_SIGINT_Catch (3.3) disable_TU (3.40) MultipleFiles (3.9) multigrid_solver (3.79) remaillage ft ijk (3.102) interfaces (3.67) thermique bloc (3.124) IJK FT double (3.5) DebogFT (3.4) Parallel_io_parameters (3.15) Test_SSE_Kernels (3.21) type_indic_faces (3.129) imposer_vit_bordsale (3.63) Output position 3D (3.14) Beam model (3.1) Solver moving mesh ALE (3.20) Projection-ALE boundary (3.16)

³distance_paroi is a field which can be used only if the mixing length model (see 2.15.1.2) is used in the data file.

Usage:

interprete

3.1 Beam_model

Description: Reduced mechanical model: a beam model. Resolution based on a modal analysis. Temporal discretization: Newmark

See also: interprete (3)

Usage:

Beam_model_bloc

where

- dom str: Name of domain.
- **Beam_model_bloc** beam_model_bloc (3.2): description of the model

3.2 Beam model bloc

Description: contains the model definition

```
See also: objet_lecture (38)
Usage:
     nb modes int
     direction int
     Young_Module float
     Rho beam float
     NewmarkTimeScheme str
     Mass and stiffness file name str
     Absc file name str
     Modal_deformation_file_name n word1 word2 ... wordn
     [ CI_file_name str]
     [ Restart_file_name str]
     [ Output_position_1D n \times 1 \times 2 \dots \times n]
     [ Output_position_3D output_position_3d]
}
where
```

- **nb_modes** *int*: Number of modes
- direction int: x=0, y=1, z=2
- Young_Module *float*: Young Module
- **Rho_beam** *float*: Beam density
- **NewmarkTimeScheme** *str*: Solve the beam dynamics. Time integration scheme: choice between MA (Newmark mean acceleration) and FD (Newmark finite differences)
- Mass_and_stiffness_file_name str: Name of the file containing the diagonal modal mass, stiffness, and damping matrices.
- **Absc file name** str: Name of the file containing the coordinates of the Beam
- Modal_deformation_file_name *n word1 word2 ... wordn*: Name of the file containing the modal deformation of the Beam
- CI_file_name str: Name of the file containing the initial condition of the Beam

- **Restart_file_name** *str*: SaveBeamForRestart.txt file to restart the calculation
- Output_position_1D n x1 x2 ... xn: nb_points position Post-traitement of specific points on the Beam
- Output_position_3D output_position_3d (3.14): nb_points position Post-traitement of specific points on the 3d FSI boundary

3.3 Deactivate_sigint_catch

```
Description: Flag to disable the detection of the signal SIGINT.
```

See also: interprete (3)

Usage:

Deactivate_SIGINT_Catch

3.4 Debogft

```
Description: not_set
See also: interprete (3)
Usage:
DebogFT {
     [ mode str into ['check_pass']]
     [ filename str]
     [ seuil_relatif float]
     [ seuil_absolu float]
     [ seuil_minimum_relatif float]
}
where
   • mode str into ['check_pass']
   • filename str
   • seuil relatif float
   • seuil_absolu float
   • seuil_minimum_relatif float
```

3.5 Ijk_ft_double

```
Description: not_set

See also: interprete (3)

Usage:

IJK_FT_double {

    [ijk_splitting str into ['grid_splitting']]
    [ijk_splitting_ft_extension int]
    [timestep float]
    [time_scheme str]
    [cfl float]
    [timestep_facsec float]
```

```
[ dt_post int]
[ dt_post_stats_bulles int]
[ dt_post_stats_plans int]
[t_debut_statistiques float]
[ champs_a_postraiter n word1 word2 ... wordn]
[ check_stop_file str]
[ dt_sauvegarde int]
[ nb_pas_dt_max int]
[tinit float]
[ Boundary_Conditions bloc_lecture]
[ multigrid_solver multigrid_solver]
[interfaces interfaces]
[thermique thermique]
[ gravite n \times 1 \times 2 \dots \times n]
[ rho_liquide float]
[ mu_liquide float]
[ rho_vapeur float]
[ mu_vapeur float]
[ sigma float]
[ fichier_post str]
[ expression_vx_init str]
[ expression vy init str]
[ expression_vz_init str]
[ expression_derivee_force str]
[expression p init str]
[expression p ana str]
[ expression_vx_ana str]
[expression_vy_ana str]
[ expression_vz_ana str]
[ expression_dPdx_ana str]
[ expression_dPdy_ana str]
[ expression_dPdz_ana str]
[expression_dUdx_ana str]
[expression_dUdy_ana str]
[ expression_dUdz_ana str]
[expression_dVdx_ana str]
[expression dVdv ana str]
[expression_dVdz_ana str]
[expression dWdx ana str]
[ expression_dWdy_ana str]
[expression dWdz ana str]
[ expression_ddPdxdx_ana str]
[expression ddPdydy ana str]
[ expression_ddPdzdz_ana str]
[ expression ddPdxdy ana
[ expression_ddPdxdz_ana
[ expression_ddPdydz_ana
[ expression_ddUdxdx_ana str]
[ expression_ddUdydy_ana str]
[ expression_ddUdzdz_ana str]
[ expression_ddUdxdy_ana str]
[ expression_ddUdxdz_ana
[ expression_ddUdydz_ana
[ expression_ddVdxdx_ana str]
```

```
[expression_ddVdzdz_ana str]
     [expression ddVdxdv ana str]
     [ expression_ddVdxdz_ana str]
     [ expression_ddVdydz_ana str]
     [ expression_ddWdxdx_ana str]
     [ expression_ddWdydy_ana str]
     [expression ddWdzdz ana str]
     [expression ddWdxdy ana str]
     [ expression_ddWdxdz_ana str]
     [expression ddWdydz ana str]
     [ expression_potential_phi str]
     [ check_divergence ]
     [ refuse_patch_conservation_QdM_RK3_source_interf ]
     [check_stats]
     [ disable_diphasique ]
     [ disable_diffusion_qdm ]
     [ disable_convection_qdm ]
     [ disable_solveur_poisson ]
     [disable source interf]
     [ nom_sauvegarde str]
     [ nom reprise str]
     [ sondes bloc_lecture]
where
   • ijk_splitting str into ['grid_splitting']
   • ijk_splitting_ft_extension int
   • timestep float
   • time_scheme str
   • cfl float
   • timestep_facsec float
   • dt_post int
   • dt_post_stats_bulles int
   • dt_post_stats_plans int
   • t_debut_statistiques float
   • champs a postraiter n word1 word2 ... wordn
   • check_stop_file str: stop file to check (if 1 inside this file, stop computation)
   • dt sauvegarde int
   • nb_pas_dt_max int
   • tinit float
   • Boundary_Conditions bloc_lecture (3.6)
   • multigrid solver multigrid solver (3.79)
   • interfaces interfaces (3.67)
   • thermique (3.7)
   • gravite n x1 x2 ... xn
   • rho_liquide float
   • mu_liquide float
   • rho_vapeur float
   • mu_vapeur float
   • sigma float
   • fichier_post str
   • expression_vx_init str
   • expression_vy_init str
```

[expression_ddVdydy_ana str]

- expression_vz_init str
- expression_derivee_force str
- expression_p_init str
- expression_p_ana str
- expression vx ana str
- expression_vy_ana str
- expression vz ana str
- expression dPdx ana str
- expression dPdy ana str
- expression_dPdz_ana str
- expression_uruz_unu str
- expression_dUdx_ana str
- $\bullet \ \ expression_dUdy_ana \ \ \mathit{str} \\$
- $\bullet \ \ expression_dUdz_ana \ \ \mathit{str} \\$
- expression_dVdx_ana strexpression_dVdy_ana str
- · ix/i
- expression_dVdz_ana str
- expression_dWdx_ana str
- expression_dWdy_ana str
- expression_dWdz_ana str
- expression_ddPdxdx_ana str
- expression_ddPdydy_ana str
- expression ddPdzdz ana str
- expression_ddPdxdy_ana str
- expression ddPdxdz ana str
- expression ddPdydz ana str
- expression ddUdxdx ana str
- expression ddUdydy ana str
- expression ddUdzdz ana str
- expression_ddUdxdy_ana str
- expression_ddUdxdz_ana str
- expression_ddUdydz_ana str
- expression_ddVdxdx_ana str
- expression_ddVdydy_ana str
- $\bullet \ \ expression_ddVdzdz_ana \ \ \mathit{str} \\$
- expression_ddVdxdy_ana str
- expression_ddVdxdz_ana str
- expression_ddVdydz_ana strexpression_ddWdxdx_ana str
- expression ddWdydy ana str
- expression_ddWdzdz_ana str
- expression ddWdxdy ana str
- expression_ddWdxdz_ana str
- expression ddWdydz ana str
- expression_potential_phi str
- check divergence
- refuse_patch_conservation_QdM_RK3_source_interf
- check_stats
- disable_diphasique
- disable_diffusion_qdm
- disable_convection_qdm
- disable_solveur_poisson
- disable_source_interf
- nom_sauvegarde str
- nom_reprise str

• sondes bloc_lecture (3.6)

3.6 Bloc_lecture

Description: to read between two braces

See also: objet_lecture (38) bloc_criteres_convergence (3.6.1)

Usage:

bloc_lecture

where

• bloc lecture str

3.6.1 Bloc_criteres_convergence

Description: Not set

See also: (3.6)

Usage:

bloc_lecture

where

• bloc_lecture str

3.7 Thermique

Description: not_set

See also: listobj (37.4)

Usage:

{ object1, object2....}

list of thermique_bloc (3.124) separeted with,

3.8 Merge_med

Description: This keyword allows to merge multiple MED files produced during a parallel computation into a single MED file.

See also: interprete (3)

Usage:

Merge_MED med_files_base_name time_iterations

where

- med_files_base_name str: Base name of multiple med files that should appear as base_name_xxxxx.med, where xxxxx denotes the MPI rank number. If you specify NOM_DU_CAS, it will automatically take the basename from your datafile's name.
- **time_iterations** *str into ['all_times', 'last_time']*: Identifies whether to merge all time iterations present in the MED files or only the last one.

```
3.9 Multiplefiles
```

```
Description: Change MPI rank limit for multiple files during I/O
See also: interprete (3)
Usage:
MultipleFiles type
where
   • type int: New MPI rank limit
      Op_conv_ef_stab_polymac_elem
Description: Class Op_Conv_EF_Stab_PolyMAC_Elem
See also: interprete (3)
Usage:
Op_Conv_EF_Stab_PolyMAC_Elem {
     [ alpha float]
}
where
   • alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)
3.11 Op_conv_ef_stab_polymac_face
Description: Class Op_Conv_EF_Stab_PolyMAC_Face
See also: interprete (3)
Usage:
Op_Conv_EF_Stab_PolyMAC_Face {
     [alpha float]
}
where
   • alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)
3.12 Op_conv_ef_stab_polymac_p0_face
Description: Class Op_Conv_EF_Stab_PolyMAC_P0_Face
See also: interprete (3)
Usage:
Op_Conv_EF_Stab_PolyMAC_P0_Face {
     [ alpha float]
where
```

• alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)

3.13 Option_covimac

```
Description: Class of PolyMAC_P0 options.

See also: interprete (3)

Usage:
Option_Covimac {
    [interp_ve1 int]
}
where
```

• **interp_ve1** *int*: Flag to enable a first order velocity face-to-element interpolation (the default value is 0 which means a second order interpolation)

3.14 Output_position_3d

Description: nb_points position Post-traitement of specific points on the 3d FSI boundary

```
Usage:

[n][x1][y1][z1][x2][y2][z2][x3][y3][z3]
where

• n int: number of points
• x1 float: x coordinate
• y1 float: y coordinate
• x2 float: x coordinate
• x2 float: x coordinate
• x2 float: x coordinate
• x3 float: x coordinate
• x3 float: x coordinate
• x3 float: y coordinate
• y3 float: y coordinate
• y3 float: y coordinate
```

3.15 Parallel_io_parameters

• **z3** *float*: z coordinate

```
Description: not_set

See also: interprete (3)

Usage:
Parallel_io_parameters {

    [ block_size_megabytes int]
    [ block_size_bytes int]
    [ writing_processes int]
    [ bench_ijk_splitting_write str]
    [ bench_ijk_splitting_read str]
}

where
```

```
• block_size_megabytes int
```

- block_size_bytes int
- writing processes int
- bench_ijk_splitting_write str
- bench_ijk_splitting_read str

3.16 Projection_ale_boundary

Description: block to compute the projection of a modal function on a mobile boundary. Use to compute modal added coefficients in FSI.

See also: interprete (3)

Usage:

Projection_ALE_boundary dom bloc

where

- dom str: Name of domain.
- **bloc** *bloc_lecture* (3.6): between the braces, you must specify the numbers of the mobile borders then list these mobile borders and indicate the modal function which must be projected on these boundaries.

Example: Projection_ALE_boundary_dom_name { 1 boundary_name 3 0.sin(pi*x)*1.e-4 0. }

3.17 Raffiner_isotrope_parallele

Description: Refine parallel mesh in parallel

```
See also: interprete (3)
```

Usage:

```
Raffiner_isotrope_parallele {
    name_of_initial_zones str
    name_of_new_zones str
    [ascii ]
    [single_hdf ]
}
where
```

• name of initial zones str: name of initial Zones

- name of new zones str: name of new Zones
- ascii: writing Zones in ascii format
- single_hdf : writing Zones in hdf format

3.18 Read med

Synonymous: lire_med

Description: Keyword to read MED mesh files where 'domain' corresponds to the domain name, 'file' corresponds to the file (written in the MED format) containing the mesh named mesh_name.

Note about naming boundaries: When reading 'file', TRUST will detect boundaries between domains

(Raccord) when the name of the boundary begins by type_raccord_. For example, a boundary named type_raccord_wall in 'file' will be considered by TRUST as a boundary named 'wall' between two domains.

NB: To read several domains from a mesh issued from a MED file, use Read_Med to read the mesh then

NB: If the MED file contains one or several subzone defined as a group of volumes, then Read_MED will read it and will create two files domain_name_ssz_geo and domain_name_ssz_par.geo defining the subzones for sequential and/or parallel calculations. These subzones will be read in sequential in the datafile by including (after Read Med keyword) something like:

```
Read_Med ....

Read_file domain_name_ssz.geo;

During the parallel calculation, you will include something:

Scatter { ... }

Read_file domain_name_ssz_par.geo;

See also: interprete (3) lire_medfile (3.19)

Usage:

read_med {

    [ convertalltopoly ]
    [ no_family_names_from_group_names ]
    domaineldomain str
    fichierlfile str
    [ maillagelmesh str]

}
```

use Create_domain_from_sous_zone keyword.

- convertalltopoly: Option to convert mesh with mixed cells into polyhedral/polygonal cells
- **no_family_names_from_group_names**: Awful option just to keep naked family names from MED file. Rarely used, to be removed very soon.
- **domaineldomain** *str*: Corresponds to the domain name.
- fichierlfile str: File (written in the MED format, with extension '.med') containing the mesh
- maillagelmesh str: Name of the mesh in med file. If not specified, the first mesh will be read.

3.19 Lire_medfile

where

Description: Obsolete keyword to read a mesh with MED file API

```
See also: read_med (3.18)

Usage:
lire_medfile {

    [ convertalltopoly ]
    [ no_family_names_from_group_names ]
    domaineldomain str
    fichierlfile str
    [ maillagelmesh str]
}

where
```

• convertalltopoly for inheritance: Option to convert mesh with mixed cells into polyhedral/polygonal cells

- no_family_names_from_group_names for inheritance: Awful option just to keep naked family names from MED file. Rarely used, to be removed very soon.
- domaineldomain *str* for inheritance: Corresponds to the domain name.
- **fichierlfile** *str* for inheritance: File (written in the MED format, with extension '.med') containing the mesh
- maillagelmesh *str* for inheritance: Name of the mesh in med file. If not specified, the first mesh will be read.

3.20 Solver_moving_mesh_ale

Description: Solver used to solve the system giving the mesh velocity for the ALE (Arbitrary Lagrangian-Eulerian) framework.

See also: interprete (3)

Usage:

 $Solver_moving_mesh_ALE \ dom \ bloc$

where

- dom str: Name of domain.
- bloc bloc_lecture (3.6): Example: { PETSC GCP { precond ssor { omega 1.5 } seuil 1e-7 impr } }

3.21 Test_sse_kernels

```
Description: not_set

See also: interprete (3)

Usage:
Test_SSE_Kernels {
    [nmax int]
}
where
```

• nmax int

3.22 Analyse_angle

Description: Keyword Analyse_angle prints the histogram of the largest angle of each mesh elements of the domain named name_domain. nb_histo is the histogram number of bins. It is called by default during the domain discretization with nb_histo set to 18. Useful to check the number of elements with angles above 90 degrees.

See also: interprete (3)

Usage:

analyse_angle domain_name nb_histo where

- domain_name str: Name of domain to resequence.
- nb_histo int

3.23 Associate

Synonymous: associer

Description: This interpretor allows one object to be associated with another. The order of the two objects in this instruction is not important. The object objet_2 is associated to objet_1 if this makes sense; if not either objet_1 is associated to objet_2 or the program exits with error because it cannot execute the Associate (Associer) instruction. For example, to calculate water flow in a pipe, a Pb_Hydraulique type object needs to be defined. But also a Domaine type object to represent the pipe, a Scheme_euler_explicit type object for time discretization, a discretization type object (VDF or VEF) and a Fluide_Incompressible type object which will contain the water properties. These objects must then all be associated with the problem.

See also: interprete (3) associer_pbmg_pbgglobal (3.26) associer_pbmg_pbfin (3.25) associer_algo (3.24)

```
Usage:
```

```
associate objet_1 objet_2
where
    objet_1 str: Objet_1
    objet_2 str: Objet_2
```

3.24 Associer_algo

Description: This interpretor allows an algorithm to be associated with multi-grid problem.

```
See also: associate (3.23)

Usage:
associer_algo objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

3.25 Associer_pbmg_pbfin

Description: This interpretor allows a local problem to be associated with multi-grid problem.

```
See also: associate (3.23)

Usage:
associer_pbmg_pbfin objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

3.26 Associer_pbmg_pbgglobal

Description: This interpretor allows a global problem to be associated with multi-grid problem.

```
See also: associate (3.23)
```

Usage:

```
associer_pbmg_pbgglobal objet_1 objet_2 where
```

```
objet_1 str: Objet_1objet_2 str: Objet_2
```

3.27 Axi

Description: This keyword allows a 3D calculation to be executed using cylindrical coordinates (R, θ, Z) . If this instruction is not included, calculations are carried out using Cartesian coordinates.

See also: interprete (3)

Usage:

axi

3.28 Bidim axi

Description: Keyword allowing a 2D calculation to be executed using axisymetric coordinates (R, Z). If this instruction is not included, calculations are carried out using Cartesian coordinates.

See also: interprete (3)

Usage:

bidim_axi

3.29 Calculer moments

Description: Calculates and prints the torque (moment of force) exerted by the fluid on each boundary in output files (.out) of the domain nom_dom.

See also: interprete (3)

Usage:

calculer_moments nom_dom mot where

• nom dom str: Name of domain.

- mot lecture_bloc_moment_base (3.30): Keyword.
- 3.30 Lecture_bloc_moment_base

Description: Auxiliary class to compute and print the moments.

See also: objet_lecture (38) calcul (3.30.1) centre_de_gravite (3.30.2)

Usage:

3.30.1 Calcul

```
Description: The centre of gravity will be calculated.
See also: (3.30)
Usage:
calcul
3.30.2 Centre_de_gravite
Description: To specify the centre of gravity.
See also: (3.30)
Usage:
centre_de_gravite point
where
   • point un_point (3.30.3): A centre of gravity.
3.30.3 Un_point
Description: A point.
See also: objet_lecture (38)
Usage:
pos
where
   • pos x1 x2 (x3): Point coordinates.
```

3.31 Corriger_frontiere_periodique

Description: The Corriger_frontiere_periodique keyword is mandatory to first define the periodic boundaries, to reorder the faces and eventually fix unaligned nodes of these boundaries. Faces on one side of the periodic domain are put first, then the faces on the opposite side, in the same order. It must be run in sequential before mesh splitting.

```
See also: interprete (3)

Usage:
corriger_frontiere_periodique {
    domaine str
    bord str
    [ direction n x1 x2 ... xn]
    [ fichier_post str]
}
where
```

- domaine str: Name of domain.
- **bord** *str*: the name of the boundary (which must contain two opposite sides of the domain)

- **direction** *n x1 x2 ... xn*: defines the periodicity direction vector (a vector that points from one node on one side to the opposite node on the other side). This vector must be given if the automatic algorithm fails, that is:
 - when the node coordinates are not perfectly periodic
 - when the periodic direction is not aligned with the normal vector of the boundary faces
- fichier_post str: .

3.32 Create_domains_from_sous_zones

Synonymous: create_domain_from_sous_zone

Description: This keyword fills the domain domaine_final with the subzone par_sous_zone from the domain domaine_init. It is very useful when meshing several mediums with Gmsh. Each medium will be defined as a subzone into Gmsh. A MED mesh file will be saved from Gmsh and read with Lire_Med keyword by the TRUST data file. And with this keyword, a domain will be created for each medium in the TRUST data file.

```
See also: interprete_geometrique_base (3.68)

Usage:
create_domains_from_sous_zones {

    [domaine_final str]
    [par_sous_zone str]
    domaine_init str
}
where

• domaine_final str: new domain in which faces are stored
• par_sous_zone str: a sub-area allowing to choose the elements
• domaine_init str: initial domain
```

3.33 Criteres_convergence

```
Description: convergence criteria

See also: interprete (3)

Usage:
aco [inco][val] acof
where

aco str into ['{'}: Opening curly bracket.
inco str: Unknown (i.e: alpha, temperature, velocity and pressure)
val float: Convergence threshold
acof str into ['}']: Closing curly bracket.
```

3.34 Debog

Description: Class to debug some differences between two TRUST versions on a same data file. If you want to compare the results of the same code in sequential and parallel calculation, first run (mode=0) in sequential mode (the files fichier1 and fichier2 will be written first) then the second run in parallel calculation (mode=1).

During the first run (mode=0), it prints into the file DEBOG, values at different points of the code thanks to the C++ instruction call. see for example in Noyau/Resoudre.cpp file the instruction: Debog::verifier(msg,value); Where msg is a string and value may be a double, an integer or an array.

During the second run (mode=1), it prints into a file Err_Debog.dbg the same messages than in the DEBOG file and checks if the differences between results from both codes are less than a given value (error). If not, it prints Ok else show the differences and the lines where it occured.

See also: interprete (3)
Usage:

debog pb fichier1 fichier2 seuil mode where

- **pb** *str*: Name of the problem to debug.
- fichier1 str: Name of the file where domain will be written in sequential calculation.
- fichier2 str: Name of the file where faces will be written in sequential calculation.
- seuil *float*: Minimal value (by default 1.e-20) for the differences between the two codes.
- **mode** *int*: By default -1 (nothing is written in the different files), you will set 0 for the sequential run, and 1 for the parallel run.

3.35 {

Description: Block's beginning.

See also: interprete (3)

Usage:
{

3.36 Decoupebord

Synonymous: decoupebord_pour_rayonnement

Description: To subdivide the external boundary of a domain into several parts (may be useful for better accuracy when using radiation model in transparent medium). To specify the boundaries of the fine_domain_name domain to be splitted. These boundaries will be cut according the coarse mesh defined by either the keyword domaine_grossier (each boundary face of the coarse mesh coarse_domain_name will be used to group boundary faces of the fine mesh to define a new boundary), either by the keyword nb_parts_naif (each boundary of the fine mesh is splitted into a partition with nx*ny*nz elements), either by a geometric condition given by a formulae with the keyword condition_geometrique. If used, the coarse_domain_name domain should have the same boundaries name of the fine_domain_name domain.

A mesh file (ASCII format, except if binaire option is specified) named by default newgeom (or specified by the nom_fichier_sortie keyword) will be created and will contain the fine_domain_name domain with the splitted boundaries named boundary_name

See also: interprete (3)

Usage:
decoupebord {

domaine str
[domaine_grossier str]
[nb_parts_naif n nl n2 ... nn]
[nb_parts_geom n nl n2 ... nn]

```
bords_a_decouper n word1 word2 ... wordn
[nom_fichier_sortie str]
[condition_geometrique n word1 word2 ... wordn]
[binaire int]
}
where

• domaine str
• domaine_grossier str
• nb_parts_naif n n1 n2 ... nn
• nb_parts_geom n n1 n2 ... nn
• bords_a_decouper n word1 word2 ... wordn
• nom_fichier_sortie str
• condition_geometrique n word1 word2 ... wordn
• binaire int
```

3.37 Decouper_bord_coincident

Description: In case of non-coincident meshes and a paroi_contact condition, run is stopped and two external files are automatically generated in VEF (connectivity_failed_boundary_name and connectivity_failed_pb_name.med). In 2D, the keyword Decouper_bord_coincident associated to the connectivity_failed_boundary_name file allows to generate a new coincident mesh.

```
See also: interprete (3)

Usage:
decouper_bord_coincident domain_name bord
where

• domain_name str: Name of domain.
• bord str: connectivity_failed_boundary_name
```

3.38 Dilate

Description: Keyword to multiply the whole coordinates of the geometry.

```
See also: interprete (3)

Usage:
dilate domain_name alpha
where
```

- domain_name str: Name of domain.
- alpha float: Value of dilatation coefficient.

3.39 Dimension

Description: Keyword allowing calculation dimensions to be set (2D or 3D), where dim is an integer set to 2 or 3. This instruction is mandatory.

See also: interprete (3)

Usage:

dimension dim

where

• dim int into [2, 3]: Number of dimensions.

3.40 Disable_tu

Description: Flag to disable the writing of the .TU files

See also: interprete (3)

Usage:

 $disable_TU$

3.41 Discretiser_domaine

Description: Useful to discretize the domain domain_name (faces will be created) without defining a problem.

See also: interprete (3)

Usage:

discretiser_domaine domain_name

where

• domain name str: Name of the domain.

3.42 Discretize

Synonymous: discretiser

Description: Keyword to discretise a problem_name according to the discretization dis. IMPORTANT: A number of objects must be already associated (a domain, time scheme, central object) prior to invoking the Discretize (Discretiser) keyword. The physical properties of this central object must also have been read.

See also: interprete (3)

Usage:

discretize problem_name dis

- problem_name str: Name of problem.
- dis str: Name of the discretization object.

3.43 Distance_paroi

Description: Class to generate external file Wall_length.xyz devoted for instance, for mixing length modelling. In this file, are saved the coordinates of each element (center of gravity) of dom domain and minimum distance between this point and boundaries (specified bords) that user specifies in data file (typically, those associated to walls). A field Distance_paroi is available to post process the distance to the wall.

See also: interprete (3)

Usage:

distance_paroi dom bords format

where

- **dom** *str*: Name of domain.
- bords n word1 word2 ... wordn: Boundaries.
- **format** *str into* ['binaire', 'formatte']: Value for format may be binaire (a binary file Wall_length.xyz is written) or formatte (moreover, a formatted file Wall_length_formatted.xyz is written).

3.44 Ecrire_champ_med

Description: Keyword to write a field to MED format into a file.

See also: interprete (3)

Usage:

ecrire_champ_med nom_dom nom_chp file where

nom_dom str: domain namenom_chp str: field name

• file str: file name

3.45 Ecrire fichier formatte

Description: Keyword to write the object of name name_obj to a file filename in ASCII format.

See also: ecrire_fichier_bin (3.136)

Usage:

ecrire_fichier_formatte name_obj filename where

- name_obj str: Name of the object to be written.
- **filename** *str*: Name of the file.

3.46 Ecriturelecturespecial

Description: Class to write or not to write a .xyz file on the disk at the end of the calculation.

See also: interprete (3)

Usage:

ecriturelecturespecial type

• **type** *str*: If set to 0, no xyz file is created. If set to EFichierBin, it uses prior 1.7.0 way of reading xyz files (now LecFicDiffuseBin). If set to EcrFicPartageBin, it uses prior 1.7.0 way of writing xyz files (now EcrFicPartageMPIIO).

3.47 Espece

```
Description: not_set

See also: interprete (3)

Usage:
espece {
    mu champ_base
    cp champ_base
    masse_molaire float
}

where

• mu champ_base (16.1): Species dynamic viscosity value (kg.m-1.s-1).
• cp champ_base (16.1): Species specific heat value (J.kg-1.K-1).
• masse molaire float: Species molar mass.
```

3.48 Execute_parallel

Description: This keyword allows to run several computations in parallel on processors allocated to TRUST. The set of processors is split in N subsets and each subset will read and execute a different data file. Error messages usualy written to stderr and stdout are redirected to .log files (journaling must be activated).

```
See also: interprete (3)

Usage:
execute_parallel {
    liste_cas n word1 word2 ... wordn
    [nb_procs n n1 n2 ... nn]
}
where
```

- **liste_cas** *n word1 word2 ... wordn*: N datafile1 ... datafileN. datafileX the name of a TRUST data file without the .data extension.
- **nb_procs** *n n1 n2 ... nn*: nb_procs is the number of processors needed to run each data file. If not given, TRUST assumes that computations are sequential.

3.49 Export

Description: Class to make the object have a global range, if not its range will apply to the block only (the associated object will be destroyed on exiting the block).

```
See also: interprete (3)
Usage:
export
```

3.50 Extract_2d_from_3d

Description: Keyword to extract a 2D mesh by selecting a boundary of the 3D mesh. To generate a 2D axisymmetric mesh prefer Extract_2Daxi_from_3D keyword.

```
See also: interprete (3) extract_2daxi_from_3d (3.51)
Usage:
```

extract_2d_from_3d dom3D bord dom2D where

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

3.51 Extract_2daxi_from_3d

Description: Keyword to extract a 2D axisymetric mesh by selecting a boundary of the 3D mesh.

```
See also: extract_2d_from_3d (3.50)
```

Usage:

extract_2daxi_from_3d dom3D bord dom2D where

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

3.52 Extraire_domaine

Description: Keyword to create a new domain built with the domain elements of the pb_name problem verifying the two conditions given by Condition_elements. The problem pb_name should have been discretized.

Keyword Discretize should have already been used to read the object. See also: interprete (3)

```
Usage:
extraire_domaine {
    domaine str
    probleme str
    [ condition_elements str]
    [ sous_zone str]
}
```

- domaine str: Domain in which faces are saved
- probleme str: Problem from which faces should be extracted
- condition_elements str
- sous zone str

3.53 Extraire_plan

Description: This keyword extracts a plane mesh named domain_name (this domain should have been declared before) from the mesh of the pb_name problem. The plane can be either a triangle (defined by the keywords Origine, Point1, Point2 and Triangle), either a regular quadrangle (with keywords Origine, Point1 and Point2), or either a generalized quadrangle (with keywords Origine, Point1, Point2, Point3). The keyword Epaisseur specifies the thickness of volume around the plane which contains the faces of the extracted mesh. The keyword via_extraire_surface will create a plan and use Extraire_surface algorithm. Inverse_condition_element keyword then will be used in the case where the plane is a boundary not well oriented, and avec_certains_bords_pour_extraire_surface is the option related to the Extraire_surface option named avec_certains_bords.

```
Keyword Discretize should have already been used to read the object.
See also: interprete (3)
Usage:
extraire_plan {
      domaine str
      probleme str
      epaisseur float
      origine n \times 1 \times 2 \dots \times n
      point1 n \times 1 \times 2 \dots \times n
      point2 n \times 1 \times 2 \dots \times n
      [ point3 n \times 1 \times 2 \dots \times n]
      [triangle]
      [via extraire surface]
      [inverse condition element]
      [ avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn]
where
   • domaine str: domain_namme
   • probleme str: pb_name
   • epaisseur float
   • origine n x1 x2 ... xn
   • point1 n x1 x2 ... xn
   • point2 n x1 x2 ... xn
   • point3 n x1 x2 ... xn
   • triangle
   • via extraire surface
   • inverse condition element
   • avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn
```

3.54 Extraire surface

Description: This keyword extracts a surface mesh named domain_name (this domain should have been declared before) from the mesh of the pb_name problem. The surface mesh is defined by one or two conditions. The first condition is about elements with Condition_elements. For example: Condition_elements $x^*x+y^*y+z^*z<1$

Will define a surface mesh with external faces of the mesh elements inside the sphere of radius 1 located at (0,0,0). The second condition Condition_faces is useful to give a restriction.

By default, the faces from the boundaries are not added to the surface mesh excepted if option avec_lesbords is given (all the boundaries are added), or if the option avec certains bords is used to add only

some boundaries.

```
Keyword Discretize should have already been used to read the object.
See also: interprete (3)
Usage:
extraire_surface {
     domaine str
     probleme str
     [condition_elements str]
     [condition_faces str]
     [ avec_les_bords ]
     [ avec_certains_bords n word1 word2 ... wordn]
}
where
   • domaine str: Domain in which faces are saved
   • probleme str: Problem from which faces should be extracted
   • condition elements str
   • condition faces str
```

• avec certains bords n word1 word2 ... wordn

3.55 Extrudebord

• avec les bords

Description: Class to generate an extruded mesh from a boundary of a tetrahedral or an hexahedral mesh. Warning: If the initial domain is a tetrahedral mesh, the boundary will be moved in the XY plane then extrusion will be applied (you should maybe use the Transformer keyword on the final domain to have the domain you really want). You can use the keyword Ecrire_Fichier_Meshty to generate a meshty file to visualize your initial and final meshes.

This keyword can be used for example to create a periodic box extracted from a boundary of a tetrahedral or a hexaedral mesh. This periodic box may be used then to engender turbulent inlet flow condition for the main domain.

Note that ExtrudeBord in VEF generates 3 or 14 tetrahedra from extruded prisms.

```
See also: interprete (3)

Usage:
extrudebord {

domaine_init str
direction x1 x2 (x3)
nb_tranches int
domaine_final str
nom_bord str
[ hexa_old ]
[ trois_tetra ]
[ vingt_tetra ]
[ sans_passer_par_le2d int]
}
where
```

- **domaine_init** *str*: Initial domain with hexaedras or tetrahedras.
- **direction** $x1 \ x2 \ (x3)$: Directions for the extrusion.
- **nb** tranches *int*: Number of elements in the extrusion direction.
- domaine final str: Extruded domain.
- nom_bord str: Name of the boundary of the initial domain where extrusion will be applied.
- hexa_old : Old algorithm for boundary extrusion from a hexahedral mesh.
- trois tetra: To extrude in 3 tetrahedras instead of 14 tetrahedras.
- vingt tetra: To extrude in 20 tetrahedras instead of 14 tetrahedras.
- sans_passer_par_le2d int: Only for non-regression

3.56 Extrudeparoi

Description: Keyword dedicated in 3D (VEF) to create prismatic layer at wall. Each prism is cut into 3 tetraedra.

```
See also: interprete (3)

Usage:
extrudeparoi {

domaine str
nom_bord str
[epaisseur n x1 x2 ... xn]
[critere_absolu int]
[projection_normale_bord]
}
where
```

- domaine str: Name of the domain.
- nom_bord str: Name of the (no-slip) boundary for creation of prismatic layers.
- epaisseur n x1 x2 ... xn: n r1 r2 rn : (relative or absolute) width for each layer.
- **critere_absolu** *int*: relative (0, the default) or absolute (1) width for each layer.
- **projection_normale_bord**: keyword to project layers on the same plane that contiguous boundaries. defaut values are: epaisseur_relative 1 0.5 projection_normale_bord 1

3.57 Extruder

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 14) from a 2D triangular/quadrangular mesh.

```
See also: interprete (3) extruder_en3 (3.60)

Usage:
extruder {
    domaine str
    direction troisf
    nb_tranches int
}
where
```

- domaine str: Name of the domain.
- **direction** *troisf* (3.58): Direction of the extrude operation.
- **nb** tranches *int*: Number of elements in the extrusion direction.

3.58 Troisf

```
Description: Auxiliary class to extrude.

See also: objet_lecture (38)

Usage:
lx ly lz
where

lx float: X direction of the extrude operation.
ly float: Y direction of the extrude operation.
lz float: Z direction of the extrude operation.
```

3.59 Extruder_en20

Description: It does the same task as Extruder except that a prism is cut into 20 tetraedra instead of 3. The name of the boundaries will be devant (front) and derriere (back). But you can change these names with the keyword RegroupeBord.

```
See also: interprete (3)

Usage:
extruder_en20 {

domaine str
[direction troisf]
nb_tranches int
}
where
```

- domaine str: Name of the domain.
- **direction** *troisf* (3.58): 0 Direction of the extrude operation.
- **nb** tranches int: Number of elements in the extrusion direction.

3.60 Extruder en3

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 3) from a 2D triangular/quadrangular mesh. The names of the boundaries (by default, devant (front) and derriere (back)) may be edited by the keyword nom_cl_devant and nom_cl_derriere. If NULL is written for nom_cl, then no boundary condition is generated at this place.

Recommendation: to ensure conformity between meshes (in case of fluid/solid coupling) it is recommended to extrude all the domains at the same time.

```
See also: extruder (3.57)

Usage:
extruder_en3 {

domaine n word1 word2 ... wordn
[nom_cl_devant str]
[nom_cl_derriere str]
direction troisf
```

```
nb_tranches int
}
where
   • domaine n word1 word2 ... wordn: List of the domains
   • nom_cl_devant str: New name of the first boundary.
   • nom cl derriere str: New name of the second boundary.
   • direction troisf (3.58) for inheritance: Direction of the extrude operation.
   • nb_tranches int for inheritance: Number of elements in the extrusion direction.
3.61 End
Synonymous: fin
Description: Keyword which must complete the data file. The execution of the data file stops when reach-
ing this keyword.
See also: interprete (3)
Usage:
end
3.62
Description: Block's end.
See also: interprete (3)
```

3.63 Imposer_vit_bords_ale

Usage: }

Description: For the Arbitrary Lagrangian-Eulerian framework: block to indicate the number of mobile boundaries of the domain and specify the speed that must be imposed on them.

```
See also: interprete (3)

Usage: imposer_vit_bords_ale dom bloc where
```

- dom str: Name of domain.
- **bloc** *bloc_lecture* (3.6): between the braces, you must specify the numbers of the mobile borders of the domain then list these mobile borders and indicate the speed which must be imposed on them Example: Imposer_vit_bords_ALE dom_name { 1 boundary_name Champ_front_ALE 2 (y-0.1)*0.01 (x-0.1)*0.01 }

3.64 Imprimer_flux

Description: This keyword prints the flux per face at the specified domain boundaries in the data set. The fluxes are written to the .face files at a frequency defined by dt_impr, the evaluation printing frequency (refer to time scheme keywords). By default, fluxes are incorporated onto the edges before being displayed.

```
See also: interprete (3) imprimer_flux_sum (3.65)

Usage:
imprimer_flux domain_name noms_bord
where

• domain_name str: Name of the domain.
• noms_bord bloc_lecture (3.6): List of boundaries, for ex: { Bord1 Bord2 }
```

3.65 Imprimer_flux_sum

Description: This keyword prints the sum of the flux per face at the domain boundaries defined by the user in the data set. The fluxes are written into the .out files at a frequency defined by dt_impr, the evaluation printing frequency (refer to time scheme keywords).

```
See also: imprimer_flux (3.64)

Usage: imprimer_flux_sum domain_name noms_bord where

• domain_name str: Name of the domain.

• noms_bord bloc_lecture (3.6): List of boundaries, for ex: { Bord1 Bord2 }
```

3.66 Integrer_champ_med

Description: his keyword is used to calculate a flow rate from a velocity MED field read before. The method is either debit_total to calculate the flow rate on the whole surface, either integrale_en_z to calculate flow rates between z=zmin and z=zmax on nb_tranche surfaces. The output file indicates first the flow rate for the whole surface and then lists for each tranche: the height z, the surface average value, the surface area and the flow rate. For the debit_total method, only one tranche is considered. file:z Sum(u.dS)/Sum(dS) Sum(dS) Sum(u.dS)

```
See also: interprete (3)

Usage:
integrer_champ_med {
    champ_med str
    methode str into ['integrale_en_z', 'debit_total']
    [ zmin float]
    [ zmax float]
    [ nb_tranche int]
    [ fichier_sortie str]
}
where
```

- champ_med str
- **methode** *str into ['integrale_en_z', 'debit_total']*: to choose between the integral following z or over the entire height (debit_total corresponds to zmin=-DMAXFLOAT, ZMax=DMAXFLOAT, nb_tranche=1)
- zmin float
- zmax float
- nb tranche int
- **fichier_sortie** *str*: name of the output file, by default: integrale.

3.67 Interfaces

```
Description: not_set

See also: interprete (3)

Usage:
interfaces {

    [fichier_reprise_interface str]
    [timestep_reprise_interface int]
    [lata_meshname str]
    [remaillage_ft_ijk remaillage_ft_ijk]
    [compute_distance_autres_interfaces]
}
where

• fichier_reprise_interface str
• timestep_reprise_interface int
• lata_meshname str
```

3.68 Interprete_geometrique_base

remaillage_ft_ijk remaillage_ft_ijk (3.102)
 compute_distance_autres_interfaces

```
Description: Class for interpreting a data file
```

See also: interprete (3) create_domains_from_sous_zones (3.32)

Usage:

interprete_geometrique_base

3.69 Lata_to_med

Description: To convert results file written with LATA format to MED file. Warning: Fields located on faces are not supported yet.

```
See also: interprete (3)
```

Usage:

```
lata_to_med [ format ] file file_med where
```

• **format** *format_lata_to_med* (3.70): generated file post_med.data use format (MED or LATA or LML keyword).

- file str: LATA file to convert to the new format.
- file_med str: Name of the MED file.

3.70 Format lata to med

Description: not_set

See also: objet_lecture (38)

Usage:

mot [format]

where

- mot str into ['format_post_sup']
- **format** *str into ['lml', 'lata', 'lata_v2', 'med']*: generated file post_med.data use format (MED or LATA or LML keyword).

3.71 Lata_to_other

Description: To convert results file written with LATA format to MED or LML format. Warning: Fields located at faces are not supported yet.

See also: interprete (3)

Usage:

lata_to_other [format] file file_post

where

- **format** *str into ['lml', 'lata', 'lata_v2', 'med']*: Results format (MED or LATA or LML keyword).
- file str: LATA file to convert to the new format.
- file_post str: Name of file post.

3.72 Lire_ideas

Description: Read a geom in a unv file. 3D tetra mesh elements only may be read by TRUST.

See also: interprete (3)

Usage:

lire_ideas nom_dom file

where

- nom_dom str: Name of domain.
- file str: Name of file.

3.73 Mailler

Description: The Mailler (Mesh) interpretor allows a Domain type object domaine to be meshed with objects objet_1, objet_2, etc...

See also: interprete (3)

Usage:

```
mailler domaine bloc
where
   • domaine str: Name of domain.
   • bloc list_bloc_mailler (3.74): Instructions to mesh.
3.74 List_bloc_mailler
Description: List of block mesh.
See also: listobj (37.4)
Usage:
{ object1, object2....}
list of mailler_base (3.74.1) separeted with,
3.74.1 Mailler_base
Description: Basic class to mesh.
See also: objet_lecture (38) pave (3.74.2) epsilon (3.74.12) domain (3.74.13)
Usage:
3.74.2 Pave
Description: Class to create a pave (block) with boundaries.
See also: mailler_base (3.74.1)
Usage:
pave name bloc list_bord
where
   • name str: Name of the pave (block).
   • bloc bloc_pave (3.74.3): Definition of the pave (block).
   • list_bord list_bord (3.74.4): Domain boundaries definition.
3.74.3 Bloc_pave
Description: Class to create a pave.
See also: objet_lecture (38)
Usage:
     [ Origine x1 x2 (x3)]
     [longueurs x1 \ x2 \ (x3)]
     [ nombre_de_noeuds n1 n2 (n3)]
```

[facteurs $x1 \ x2 \ (x3)$]

[symx] [symy] [symz]

```
[xtanh_float]
[xtanh_dilatation int into [-1, 0, 1]]
[xtanh_taille_premiere_maille float]
[ytanh float]
[ytanh_dilatation int into [-1, 0, 1]]
[ytanh_taille_premiere_maille float]
[ztanh_float]
[ztanh_dilatation int into [-1, 0, 1]]
[ztanh_taille_premiere_maille float]
}
where
```

- Origine x1 x2 (x3): Keyword to define the pave (block) origin, that is to say one of the 8 block points (or 4 in a 2D coordinate system).
- **longueurs** x1 x2 (x3): Keyword to define the block dimensions, that is to say knowing the origin, length along the axes.
- **nombre_de_noeuds** *n1 n2 (n3)*: Keyword to define the discretization (nodenumber) in each direction.
- **facteurs** x1 x2 (x3): Keyword to define stretching factors for mesh discretization in each direction. This is a real number which must be positive (by default 1.0). A stretching factor other than 1 allows refinement on one edge in one direction.
- **symx**: Keyword to define a block mesh that is symmetrical with respect to the YZ plane (respectively Y-axis in 2D) passing through the block centre.
- **symy**: Keyword to define a block mesh that is symmetrical with respect to the XZ plane (respectively X-axis in 2D) passing through the block centre.
- symz: Keyword defining a block mesh that is symmetrical with respect to the XY plane passing through the block centre.
- xtanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction.
- xtanh_dilatation int into [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction. xtanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the left side of the channel and smaller at the right side 1: coarse mesh at the right side of the channel and smaller near the left side of the channel.
- **xtanh_taille_premiere_maille** *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the X-direction.
- ytanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- ytanh_dilatation int into [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction. ytanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the bottom of the channel and smaller near the top 1: coarse mesh at the top of the channel and smaller near the bottom.
- ytanh_taille_premiere_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- **ztanh** *float*: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction.
- **ztanh_dilatation** *int into* [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction. tanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the back of the channel and smaller near the front 1: coarse mesh at the front of the channel and smaller near the back.
- **ztanh_taille_premiere_maille** *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Z-direction.

```
3.74.4 List_bord
```

```
Description: The block sides.
```

Usage:

{ object1 object2 } list of bord_base (3.74.5)

See also: listobj (37.4)

3.74.5 Bord base

Description: Basic class for block sides. Block sides that are neither edges nor connectors are not specified. The duplicate nodes of two blocks in contact are automatically recognized and deleted.

```
See also: objet lecture (38) bord (3.74.6) raccord (3.74.10) internes (3.74.11)
```

Usage:

3.74.6 Bord

Description: The block side is not in contact with another block and boundary conditions are applied to it.

See also: bord_base (3.74.5)

Usage:

bord nom defbord

where

- nom str: Name of block side.
- **defbord** *defbord* (3.74.7): Definition of block side.

3.74.7 Defbord

Description: Class to define an edge.

```
See also: objet_lecture (38) defbord_2 (3.74.8) defbord_3 (3.74.9)
```

Usage:

3.74.8 **Defbord_2**

Description: 1-D edge (straight line) in the 2-D space.

```
See also: (3.74.7)
```

Usage:

dir eq pos pos2_min inf1 dir2 inf2 pos2_max where

- **dir** *str into* ['X', 'Y']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- pos float: Position value.
- pos2_min *float*: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.

- **dir2** *str into ['X', 'Y']*: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2_max float: Maximal value.

3.74.9 **Defbord_3**

Description: 2-D edge (plane) in the 3-D space.

See also: (3.74.7)

Usage:

dir eq pos pos2_min inf1 dir2 inf2 pos2_max pos3_min inf3 dir3 inf4 pos3_max where

- dir str into ['X', 'Y', 'Z']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- pos float: Position value.
- pos2_min *float*: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.
- **dir2** *str into ['X', 'Y']*: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2 max float: Maximal value.
- pos3_min float: Minimal value.
- inf3 str into ['<=']: Less than or equal to sign.
- dir3 str into ['Y', 'Z']: Edge is parallel to this direction.
- inf4 str into ['<=']: Less than or equal to sign.
- pos3_max float: Maximal value.

3.74.10 Raccord

Description: The block side is in contact with the block of another domain (case of two coupled problems).

See also: bord_base (3.74.5)

Usage:

raccord type1 type2 nom defbord where

- type1 str into ['local', 'distant']: Contact type.
- type2 str into ['homogene']: Contact type.
- nom str: Name of block side.
- **defbord** *defbord* (3.74.7): Definition of block side.

3.74.11 Internes

Description: To indicate that the block has a set of internal faces (these faces will be duplicated automatically by the program and will be processed in a manner similar to edge faces).

Two boundaries with the same boundary conditions may have the same name (whether or not they belong to the same block).

The keyword Internes (Internal) must be used to execute a calculation with plates, followed by the equation of the surface area covered by the plates.

See also: bord_base (3.74.5)

```
Usage: internes nom defbord where
```

- nom str: Name of block side.
- **defbord** *defbord* (3.74.7): Definition of block side.

3.74.12 **Epsilon**

Description: Two points will be confused if the distance between them is less than eps. By default, eps is set to 1e-12. The keyword Epsilon allows an alternative value to be assigned to eps.

```
See also: mailler_base (3.74.1)

Usage:
epsilon eps
where
```

• eps float: New value of precision.

3.74.13 Domain

where

Description: Class to reuse a domain.

See also: mailler_base (3.74.1)

Usage:
domain_domain_name

• domain_name str: Name of domain.

3.75 Maillerparallel

Description: creates a parallel distributed hexaedral mesh of a parallelipipedic box. It is equivalent to creating a mesh with a single Pave, splitting it with Decouper and reloading it in parallel with Scatter. It only works in 3D at this time. It can also be used for a sequential computation (with all NPARTS=1)}

```
See also: interprete (3)

Usage:
maillerparallel {

domain str
nb_nodes n n1 n2 ... nn
splitting n n1 n2 ... nn
ghost_thickness int
[perio_x]
[perio_y]
[perio_z]
[function_coord_x str]
[function_coord_y str]
```

```
[ function_coord_z str]
[ file_coord_x str]
[ file_coord_y str]
[ file_coord_z str]
[ boundary_xmin str]
[ boundary_ymin str]
[ boundary_ymin str]
[ boundary_ymax str]
[ boundary_zmin str]
[ boundary_zmin str]
[ boundary_zmin str]
[ boundary_zmin str]
] boundary_zmin str]
}
where
```

- **domain** *str*: the name of the domain to mesh (it must be an empty domain object).
- **nb_nodes** *n n1 n2* ... *nn*: dimension defines the spatial dimension (currently only dimension=3 is supported), and nX, nY and nZ defines the total number of nodes in the mesh in each direction.
- **splitting** *n n1 n2 ... nn*: dimension is the spatial dimension and npartsX, npartsY and npartsZ are the number of parts created. The product of the number of parts must be equal to the number of processors used for the computation.
- **ghost_thickness** *int*: he number of ghost cells (equivalent to the epaisseur_joint parameter of Decouper.
- **perio_x**: change the splitting method to provide a valid mesh for periodic boundary conditions.
- **perio_y** : change the splitting method to provide a valid mesh for periodic boundary conditions.
- perio_z : change the splitting method to provide a valid mesh for periodic boundary conditions.
- function_coord_x str: By default, the meshing algorithm creates nX nY nZ coordinates ranging between 0 and 1 (eg a unity size box). If function_coord_x} is specified, it is used to transform the [0,1] segment to the coordinates of the nodes. funcX must be a function of the x variable only.
- function_coord_y str: like function_coord_x for y
- function coord z str: like function coord x for z
- file_coord_x str: Keyword to read the Nx floating point values used as nodes coordinates in the file.
- file coord y str: idem file coord x for y
- file coord z str: idem file coord x for z
- **boundary_xmin** *str*: the name of the boundary at the minimum X direction. If it not provided, the default boundary names are xmin, xmax, ymin, ymax, zmin and zmax. If the mesh is periodic in a given direction, only the MIN boundary name is used, for both sides of the box.
- boundary_xmax str
- boundary_ymin str
- boundary_ymax str
- boundary zmin str
- boundary_zmax str

3.76 Modif bord to raccord

Description: Keyword to convert a boundary of domain_name domain of kind Bord to a boundary of kind Raccord (named boundary_name). It is useful when using meshes with boundaries of kind Bord defined and to run a coupled calculation.

```
See also: interprete (3)

Usage:
modif_bord_to_raccord domaine nom_bord
where
```

- domaine str: Name of domain
- **nom_bord** *str*: Name of the boundary to transform.

3.77 Modifydomaineaxi1d

```
Description: Convert a 1D mesh to 1D axisymmetric mesh

See also: interprete (3)

Usage:
modifydomaineAxi1d dom bloc
where

• dom str
• bloc bloc_lecture (3.6)
```

3.78 Moyenne_volumique

Description: This keyword should be used after Resoudre keyword. It computes the convolution product of one or more fields with a given filtering function.

```
See also: interprete (3)

Usage:
moyenne_volumique {
    nom_pb str
    nom_domaine str
    noms_champs n word1 word2 ... wordn
    [nom_fichier_post str]
    [format_post str]
    [localisation str into ['elem', 'som']]
    fonction_filtre bloc_lecture
}
where
```

- nom_pb str: name of the problem where the source fields will be searched.
- **nom_domaine** *str*: name of the destination domain (for example, it can be a coarser mesh, but for optimal performance in parallel, the domain should be split with the same algorithm as the computation mesh, eg, same tranche parameters for example)
- **noms_champs** *n word1 word2 ... wordn*: name of the source fields (these fields must be accessible from the postraitement) N source_field1 source_field2 ... source_fieldN
- nom_fichier_post str: indicates the filename where the result is written
- **format_post** *str*: gives the fileformat for the result (by default : lata)
- **localisation** *str into ['elem', 'som']*: indicates where the convolution product should be computed: either on the elements or on the nodes of the destination domain.
- **fonction_filtre** *bloc_lecture* (3.6): to specify the given filter Fonction_filtre { type filter_type demie-largeur l [omega w] [expression string]

}

type filter_type: This parameter specifies the filtering function. Valid filter_type are:

Boite is a box filter, $f(x, y, z) = (abs(x) < l) * (abs(y) < l) * (abs(z) < l)/(8l^3)$

Chapeau is a hat filter (product of hat filters in each direction) centered on the origin, the half-width of the filter being 1 and its integral being 1.

Quadra is a 2nd order filter.

Gaussienne is a normalized gaussian filter of standard deviation sigma in each direction (all field elements outside a cubic box defined by clipping_half_width are ignored, hence, taking clipping_half_width=2.5*sigma yields an integral of 0.99 for a uniform unity field).

Parser allows a user defined function of the x,y,z variables. All elements outside a cubic box defined by clipping_half_width are ignored. The parser is much slower than the equivalent c++ coded function...

demie-largeur 1: This parameter specifies the half width of the filter

[omega w] : This parameter must be given for the gaussienne filter. It defines the standard deviation of the gaussian filter.

[expression string]: This parameter must be given for the parser filter type. This expression will be interpreted by the math parser with the predefined variables x, y and z.

3.79 Multigrid_solver

```
Description: not set
See also: interprete (3)
Usage:
multigrid solver {
      [ solver_precision str into ['mixed', 'double']]
      [coarsen operators coarsen operators]
      [ghost size int]
      [ pre_smooth_steps n n1 n2 ... nn]
      [ smooth\_steps n n1 n2 ... nn]
      [ relax_jacobi n \times 1 \times 2 \dots \times n]
      [ seuil float]
      [ nb full mg steps n n1 n2 ... nn]
      [solveur_grossier solveur_sys_base]
      [iterations_mixed_solver int]
      [impr]
}
where
   • solver precision str into ['mixed', 'double']
   • coarsen_operators coarsen_operators (3.80)
   • ghost_size int
   • pre_smooth_steps n n1 n2 ... nn
   • smooth_steps n n1 n2 ... nn
   • relax_jacobi n x1 x2 ... xn
   • seuil float
   • nb_full_mg_steps n n1 n2 ... nn
   • solveur_grossier solveur_sys_base (11.18)
   • iterations_mixed_solver int
   • impr
```

3.80 Coarsen_operators

```
Description: not_set
See also: listobj (37.4)
Usage:
n object1 object2 ....
list of coarsen_operator_uniform (3.80.1)
3.80.1 Coarsen operator uniform
Description: not_set
See also: objet_lecture (38)
Usage:
[ Coarsen_Operator_Uniform ] aco [ coarsen_i ] [ coarsen_i_val ] [ coarsen_j ] [ coarsen_j val ] [
coarsen_k ] [ coarsen_k_val ] acof
where
   • Coarsen_Operator_Uniform str
   • aco str into ['{'}]: opening curly brace
   • coarsen_i str into ['coarsen_i']
   • coarsen_i_val int
   • coarsen_j str into ['coarsen_j']
   • coarsen_j_val int
   • coarsen_k str into ['coarsen_k']
   • coarsen_k_val int
   • acof str into ['}']: closing curly brace
3.81
       Nettoiepasnoeuds
Description: Keyword NettoiePasNoeuds does not delete useless nodes (nodes without elements) from a
domain.
See also: interprete (3)
Usage:
nettoiepasnoeuds domain_name
where
   • domain_name str: Name of domain.
3.82 Option_vdf
Description: Class of VDF options.
See also: interprete (3)
Usage:
option_vdf {
     [traitement_coins str into ['oui', 'non']]
```

```
[ p_imposee_aux_faces str into ['oui', 'non']]
}
where
```

- **traitement_coins** *str into ['oui', 'non']*: Treatment of corners (yes or no). This option modifies slightly the calculations at the outlet of the plane channel. It supposes that the boundary continues after channel outlet (i.e. velocity vector remains parallel to the boundary).
- p_imposee_aux_faces str into ['oui', 'non']: Pressure imposed at the faces (yes or no).

3.83 Orientefacesbord

Description: Keyword to modify the order of the boundary vertices included in a domain, such that the surface normals are outer pointing.

See also: interprete (3)

Usage:
orientefacesbord domain_name
where

• domain_name str: Name of domain.

3.84 Partition

Synonymous: decouper

Description: Class for parallel calculation to cut a domain for each processor. By default, this keyword is commented in the reference test cases.

See also: interprete (3)

Usage:
partition domaine bloc_decouper
where

- **domaine** *str*: Name of the domain to be cut.
- **bloc_decouper** *bloc_decouper* (3.85): Description how to cut a domain.

3.85 Bloc decouper

Description: Auxiliary class to cut a domain.

```
See also: objet_lecture (38)

Usage:
{
     [ Partition_toollpartitionneur partitionneur_deriv]
     [ larg_joint int]
     [ zones_namelnom_zones str]
     [ ecrire_decoupage str]
     [ ecrire_lata str]
     [ nb_parts_tot int]
```

```
[ periodique n word1 word2 ... wordn]
  [ reorder int]
  [ single_hdf ]
  [ print_more_infos int]
}
where
```

- **Partition_toollpartitionneur** *partitionneur_deriv* (27): Defines the partitionning algorithm (the effective C++ object used is 'Partitionneur_ALGORITHM_NAME').
- larg_joint *int*: This keyword specifies the thickness of the virtual ghost zone (data known by one processor though not owned by it). The default value is 1 and is generally correct for all algorithms except the QUICK convection scheme that require a thickness of 2. Since the 1.5.5 version, the VEF discretization imply also a thickness of 2 (except VEF P0). Any non-zero positive value can be used, but the amount of data to store and exchange between processors grows quickly with the thickness.
- **zones_nameInom_zones** *str*: Name of the files containing the different partition of the domain. The files will be:

```
name_0001.Zones name_0002.Zones
```

...

name_000n.Zones. If this keyword is not specified, the geometry is not written on disk (you might just want to generate a 'ecrire_decoupage' or 'ecrire_lata').

- ecrire_decoupage str: After having called the partitionning algorithm, the resulting partition is written on disk in the specified filename. See also partitionneur Fichier_Decoupage. This keyword is useful to change the partition numbers: first, you write the partition into a file with the option ecrire_decoupage. This file contains the zone number for each element's mesh. Then you can easily permute zone numbers in this file. Then read the new partition to create the .Zones files with the Fichier_Decoupage keyword.
- ecrire_lata str
- **nb_parts_tot** *int*: Keyword to generates N .Zone files, instead of the default number M obtained after the partitionning algorithm. N must be greater or equal to M. This option might be used to perform coupled parallel computations. Supplemental empty zones from M to N-1 are created. This keyword is used when you want to run a parallel calculation on several domains with for example, 2 processors on a first domain and 10 on the second domain because the first domain is very small compare to second one. You will write Nb_parts 2 and Nb_parts_tot 10 for the first domain and Nb_parts 10 for the second domain.
- **periodique** *n word1 word2* ... *wordn*: N BOUNDARY_NAME_1 BOUNDARY_NAME_2 ... : N is the number of boundary names given. Periodic boundaries must be declared by this method. The partitionning algorithm will ensure that facing nodes and faces in the periodic boundaries are located on the same processor.
- **reorder** *int*: If this option is set to 1 (0 by default), the partition is renumbered in order that the processes which communicate the most are nearer on the network. This may slighly improves parallel performance.
- **single_hdf**: Optional keyword to enable you to write the partitioned zones in a single file in hdf5 format.
- **print_more_infos** *int*: If this option is set to 1 (0 by default), print infos about number of remote elements (ghosts) and additional infos about the quality of partitionning. Warning, it slows down the cutting operations.

3.86 Partition multi

Synonymous: decouper_multi

Description: allows to partition multiple domains in contact with each other in parallel: necessary for

resolution monolithique in implicit schemes and for all coupled problems using PolyMAC. By default, this keyword is commented in the reference test cases.

See also: interprete (3)

Usage:

partition_multi aco domaine1 dom blocdecoupdom1 domaine2 dom2 blocdecoupdom2 acof where

- aco str into ['{'}]: Opening curly bracket.
- domaine1 str into ['domaine']: not set.
- dom str: Name of the first domain to be cut.
- **blocdecoupdom1** *bloc_decouper* (3.85): *Partition bloc for the first domain.*
- domaine2 str into ['domaine']: not set.
- dom2 str: Name of the second domain to be cut.
- **blocdecoupdom2** *bloc decouper* (3.85): *Partition bloc for the second domain.*
- acof str into ['}']: Closing curly bracket.

3.87 Pilote icoco

```
Description: not_set

See also: interprete (3)

Usage:
pilote_icoco {
    pb_name str
    main str

}
where

• pb_name str
• main str
```

3.88 Polyedriser

Description: cast hexahedra into polyhedra so that the indexing of the mesh vertices is compatible with PolyMAC discretization. Must be used in PolyMAC discretization if a hexahedral mesh has been produced with TRUST's internal mesh generator.

See also: interprete (3)

Usage:

polyedriser domain_name where

• domain name str: Name of domain.

3.89 Postraiter_domaine

Description: To write one or more domains in a file with a specified format (MED,LML,LATA).

```
See also: interprete (3)

Usage:
postraiter_domaine {
    format str into ['lml', 'lata', 'lata_v2', 'med']
    [ filelfichier str]
    [ domaine str]
    [ sous_zone str]
    [ domaines bloc_lecture]
    [ joints_non_postraites int into [0, 1]]
    [ binaire int into [0, 1]]
    [ ecrire_frontiere int into [0, 1]]
}
where
```

- format str into ['lml', 'lata', 'lata_v2', 'med']: File format.
- filelfichier str: The file name can be changed with the fichier option.
- domaine str: Name of domain
- sous zone str: Name of the sub zone
- **domaines** *bloc_lecture* (3.6): Names of domains : { name1 name2 }
- **joints_non_postraites** *int into* [0, 1]: The joints_non_postraites (1 by default) will not write the boundaries between the partitioned mesh.
- **binaire** *int into* [0, 1]: Binary (binaire 1) or ASCII (binaire 0) may be used. By default, it is 0 for LATA and only ASCII is available for LML and only binary is available for MED.
- **ecrire_frontiere** *int into* [0, 1]: This option will write (if set to 1, the default) or not (if set to 0) the boundaries as fields into the file (it is useful to not add the boundaries when writing a domain extracted from another domain)

3.90 Precisiongeom

Description: Class to change the way floating-point number comparison is done. By default, two numbers are equal if their absolute difference is smaller than 1e-10. The keyword is useful to modify this value. Moreover, nodes coordinates will be written in .geom files with this same precision.

```
See also: interprete (3)

Usage:

precisiongeom precision
where
```

• **precision** *float*: New value of precision.

3.91 Raffiner_anisotrope

Description: Only for VEF discretizations, allows to cut triangle elements in 3, or tetrahedra in 4 parts, by defining a new summit located at the center of the element:

Note that such a cut creates flat elements (anisotropic).

See also: interprete (3)

Usage:

raffiner_anisotrope domain_name

where

• domain_name str: Name of domain.

3.92 Raffiner_isotrope

Synonymous: raffiner_simplexes

Description: For VDF and VEF discretizations, allows to cut triangles/quadrangles or tetrahedral/hexaedras elements respectively in 4 or 8 new ones by defining new summits located at the middle of edges (and center of faces and elements for quadrangles and hexaedra). Such a cut preserves the shape of original elements (isotropic). For 2D elements:

For 3D elements:

See also: interprete (3)

Usage:

raffiner_isotrope domain_name

where

• domain_name str: Name of domain.

3.93 Read

Synonymous: lire

Description: Interpretor to read the a_object objet defined between the braces.

See also: interprete (3)

Usage:

read a_object bloc

where

• a_object str: Object to be read.

• bloc str: Definition of the object.

3.94 Read_file

Synonymous: lire_fichier

Description: Keyword to read the object name_obj contained in the file filename.

This is notably used when the calculation domain has already been meshed and the mesh contains the file filename, simply write read_file dom filename (where dom is the name of the meshed domain).

If the filename is ;, is to execute a data set given in the file of name name_obj (a space must be entered between the semi-colon and the file name).

See also: interprete (3) read_unsupported_ascii_file_from_icem (3.97) read_file_binary (3.95)

Usage:

read_file name_obj filename

- name_obj str: Name of the object to be read.
- filename str: Name of the file.

3.95 Read_file_binary

Synonymous: lire_fichier_bin

Description: Keyword to read an object name_obj in the unformatted type file filename.

See also: read_file (3.94)

Usage:

 $read_file_binary \quad name_obj \quad filename$

where

- name_obj str: Name of the object to be read.
- **filename** *str*: Name of the file.

3.96 Lire_tgrid

Description: Keyword to reaf Tgrid/Gambit mesh files. 2D (triangles or quadrangles) and 3D (tetra or hexa elements) meshes, may be read by TRUST.

See also: interprete (3)

Usage:

lire tgrid dom filename

where

- dom str: Name of domaine.
- filename str: Name of file containing the mesh.

3.97 Read_unsupported_ascii_file_from_icem

Description: not_set

See also: read_file (3.94)

Usage:

read_unsupported_ascii_file_from_icem name_obj filename

where

- name_obj str: Name of the object to be read.
- filename str: Name of the file.

3.98 Orienter_simplexes

Synonymous: rectify_mesh

Description: Keyword to raffine a mesh

See also: interprete (3)

Usage:

 $orienter_simplexes \quad domain_name$

where

• domain_name str: Name of domain.

3.99 Redresser_hexaedres_vdf

Description: Keyword to convert a domain (named domain_name) with quadrilaterals/VEF hexaedras which looks like rectangles/VDF hexaedras into a domain with real rectangles/VDF hexaedras.

See also: interprete (3)

Usage:

 $redresser_hexaedres_vdf \quad domain_name$

where

• domain_name str: Name of domain to resequence.

3.100 Refine_mesh

Description: not_set

See also: interprete (3)

Usage:

refine_mesh domaine

where

• domaine str

3.101 Regroupebord

Description: Keyword to build one boundary new_bord with several boundaries of the domain named domaine.

See also: interprete (3)

Usage:

regroupebord domaine new_bord bords

- domaine str: Name of domain
- new_bord str: Name of the new boundary
- **bords** *bloc_lecture* (3.6): { Bound1 Bound2 }

3.102 Remaillage_ft_ijk

```
Description: not_set
See also: interprete (3)
Usage:
remaillage_ft_ijk {
     [ nb_iter_barycentrage int]
     [relax_barycentrage int]
     [ nb_iter_correction_volume int]
     [ lissage_courbure_iterations_systematique int]
}
where
```

- nb_iter_barycentrage int
- relax_barycentrage int
- nb iter correction volume int
- lissage courbure iterations systematique int

3.103 Remove_elem

Description: Keyword to remove element from a VDF mesh (named domaine_name), either from an explicit list of elements or from a geometric condition defined by a condition f(x,y)>0 in 2D and f(x,y,z)>0in 3D. All the new borders generated are gathered in one boundary called: newBord (to rename it, use RegroupeBord keyword. To split it to different boundaries, use DecoupeBord_Pour_Rayonnement keyword). Example of a removed zone of radius 0.2 centered at (x,y)=(0.5,0.5):

Remove_elem dom { fonction $0.2 * 0.2 - (x - 0.5)^2 - (y - 0.5)^2 > 0$ }

Warning: the thickness of removed zone has to be large enough to avoid singular nodes as decribed below:

See also: interprete (3)

Usage:

remove_elem domaine bloc

- domaine str: Name of domain
- **bloc** remove elem bloc (3.104)

3.104 Remove_elem_bloc

```
Description: not_set

See also: objet_lecture (38)

Usage:
{
    [liste n n1 n2 ... nn]
    [fonction str]
}
where
• liste n n1 n2 ... nn
```

• fonction str

3.105 Remove_invalid_internal_boundaries

Description: Keyword to suppress an internal boundary of the domain_name domain. Indeed, some mesh tools may define internal boundaries (eg: for post processing task after the calculation) but TRUST does not support it yet.

See also: interprete (3)

Usage:

remove_invalid_internal_boundaries domain_name where

• domain_name str: Name of domain.

3.106 Reorienter_tetraedres

Description: This keyword is mandatory for front-tracking computations with the VEF discretization. For each tetrahedral element of the domain, it checks if it has a positive volume. If the volume (determinant of the three vectors) is negative, it swaps two nodes to reverse the orientation of this tetrahedron.

See also: interprete (3)

Usage:

reorienter_tetraedres domain_name where

• domain_name str: Name of domain.

3.107 Reorienter_triangles

Description: not_set

See also: interprete (3)

Usage:
reorienter_triangles domain_name

• domain_name str: Name of domain.

3.108 Reordonner

Description: The Reordonner interpretor is required sometimes for a VDF mesh which is not produced by the internal mesher. Example where this is used:

Read_file dom fichier.geom

Reordonner dom

Observations: This keyword is redundant when the mesh that is read is correctly sequenced in the TRUST sense. This significant mesh operation may take some time... The message returned by TRUST is not explicit when the Reordonner (Resequencing) keyword is required but not included in the data set...

See also: interprete (3)

Usage:

reordonner domain_name

where

• **domain_name** *str*: Name of domain to resequence.

3.109 Rotation

Description: Keyword to rotate the geometry of an arbitrary angle around an axis aligned with Ox, Oy or Oz axis.

See also: interprete (3)

Usage:

rotation domain_name dir coord1 coord2 angle

where

- **domain_name** *str*: Name of domain to wich the transformation is applied.
- dir str into ['X', 'Y', 'Z']: X, Y or Z to indicate the direction of the rotation axis
- **coord1** *float*: coordinates of the center of rotation in the plane orthogonal to the rotation axis. These coordinates must be specified in the direct triad sense.
- coord2 float
- angle *float*: angle of rotation (in degrees)

3.110 Scatter

Description: Class to read a partionned mesh in the files during a parallel calculation. The files are in binary format.

See also: interprete (3) scattermed (3.111)

Usage:

scatter file domaine

- file str: Name of file.
- domaine str: Name of domain.

3.111 Scattermed

Description: This keyword will read the partition of the domain_name domain into a the MED format files file.med created by Medsplitter.

See also: scatter (3.110)

Usage: scattermed file domaine where

• file str: Name of file.

• domaine str: Name of domain.

3.112 Solve

Synonymous: resoudre

Description: Interpretor to start calculation with TRUST.

Keyword Discretize should have already been used to read the object.

See also: interprete (3)

Usage: solve pb where

• **pb** *str*: Name of problem to be solved.

3.113 Supprime_bord

Description: Keyword to remove boundaries (named Boundary_name1 Boundary_name2) of the domain named domain name.

See also: interprete (3)

Usage:

supprime_bord domaine bords where

- **domaine** *str*: Name of domain
- **bords** *list_nom* (3.114): { Boundary_name1 Boundaray_name2 }

3.114 List_nom

Description: List of name.

See also: listobj (37.4)

Usage:
{ object1 object2 }

list of nom_anonyme (26.1)

3.115 System

```
Description: To run Unix commands from the data file. Example: System 'echo The End | mail trust@cea.fr'
```

Usage: system cmd where

See also: interprete (3)

• cmd str: command to execute.

3.116 Test_solveur

```
Description: To test several solvers
See also: interprete (3)
Usage:
test_solveur {
     [fichier_secmem str]
     [fichier_matrice str]
     [fichier_solution str]
     [ nb_test int]
     [impr]
     [solveur_sys_base]
     [ fichier_solveur str]
     [genere_fichier_solveur float]
     [ seuil_verification float]
     [ pas_de_solution_initiale ]
     [ascii]
}
```

- fichier_secmem str: Filename containing the second member B
- fichier_matrice str: Filename containing the matrix A
- fichier_solution str: Filename containing the solution x
- **nb_test** *int*: Number of tests to measure the time resolution (one preconditionnement)
- impr : To print the convergence solver
- solveur solveur_sys_base (11.18): To specify a solver
- fichier_solveur str: To specify a file containing a list of solvers
- genere_fichier_solveur float: To create a file of the solver with a threshold convergence
- **seuil_verification** *float*: Check if the solution satisfy ||Ax-B||precision
- pas_de_solution_initiale : Resolution isn't initialized with the solution x
- ascii : Ascii files

3.117 Testeur

where

Description: not_set

See also: interprete (3)

Usage:

testeur data

where

• data bloc_lecture (3.6)

3.118 Testeur_medcoupling

Description: not_set

See also: interprete (3)

Usage:

testeur_medcoupling pb_name field_name

where

- **pb_name** *str*: Name of domain.
- field_name str: Name of domain.

3.119 Tetraedriser

Description: To achieve a tetrahedral mesh based on a mesh comprising blocks, the Tetraedriser (Tetrahedralise) interpretor is used in VEF discretization. Initial block is divided in 6 tetrahedra:

See also: interprete (3) tetraedriser_homogene (3.120) tetraedriser_homogene_fin (3.122) tetraedriser_homogene_compact (3.121) tetraedriser_par_prisme (3.123)

Usage:

tetraedriser domain_name where

• domain_name str: Name of domain.

3.120 Tetraedriser_homogene

Description: Use the Tetraedriser_homogene (Homogeneous_Tetrahedralisation) interpretor in VEF discretization to mesh a block in tetrahedrals. Each block hexahedral is no longer divided into 6 tetrahedrals (keyword Tetraedriser (Tetrahedralise)), it is now broken down into 40 tetrahedrals. Thus a block defined with 11 nodes in each X, Y, Z direction will contain 10*10*10*40=40,000 tetrahedrals. This also allows problems in the mesh corners with the P1NC/P1iso/P1bulle or P1/P1 discretization items to be avoided. Initial block is divided in 40 tetrahedra:

See also: tetraedriser (3.119)

Usage:

tetraedriser_homogene domain_name where

• domain_name str: Name of domain.

3.121 Tetraedriser_homogene_compact

Description: This new discretization generates tetrahedral elements from cartesian or non-cartesian hexahedral elements. The process cut each hexahedral in 6 pyramids, each of them being cut then in 4 tetrahedral. So, in comparison with tetra_homogene, less elements (*24 instead of*40) with more homogeneous volumes are generated. Moreover, this process is done in a faster way. Initial block is divided in 24 tetrahedra:

See also: tetraedriser (3.119)

Usage:

tetraedriser_homogene_compact domain_name where

• domain_name str: Name of domain.

3.122 Tetraedriser_homogene_fin

Description: Tetraedriser_homogene_fin is the recommended option to tetrahedralise blocks. As an extension (subdivision) of Tetraedriser_homogene_compact, this last one cut each initial block in 48 tetrahedra (against 24, previously). This cutting ensures:

- a correct cutting in the corners (in respect to pressure discretization PreP1B),
- a better isotropy of elements than with Tetraedriser_homogene_compact,
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness and ii/ by the way, a 3D cartesian grid based on summits can be engendered and used to realise spectral analysis in HIT for instance). Initial block is divided in 48 tetrahedra:

See also: tetraedriser (3.119)

Usage:

tetraedriser_homogene_fin domain_name where

• domain_name str: Name of domain.

3.123 Tetraedriser_par_prisme

Description: Tetraedriser_par_prisme generates 6 iso-volume tetrahedral element from primary hexahedral one (contrarily to the 5 elements ordinarily generated by tetraedriser). This element is suitable for calculation of gradients at the summit (coincident with the gravity centre of the jointed elements related with) and spectra (due to a better alignment of the points).

Initial block is divided in 6 prismes.

```
See also: tetraedriser (3.119)
```

Usage:

tetraedriser_par_prisme domain_name where

• domain_name str: Name of domain.

3.124 Thermique_bloc

```
Description: not_set
See also: interprete (3)
Usage:
thermique_bloc {
     [conv_temperature_negligible]
     [ diff_temp_negligible ]
     [ Boundary_Conditions bloc_lecture]
     [ expression_T_init str]
     [ expression_T_ana str]
     [ expression_source_temperature str]
     [ cp_vapor float]
     [lambda_vapor float]
     [ fo float]
     [ cp_liquid float]
     [ lambda_liquid float]
     [type_T_source str into ['dabiri', 'patch_dabiri', 'unweighted_dabiri']]
     [ wall_flux ]
where
   • conv_temperature_negligible
   • diff_temp_negligible
   • Boundary_Conditions bloc_lecture (3.6)
```

- expression_T_init str
- expression_T_ana str
- expression_source_temperature str
- cp_vapor float

- lambda_vapor float
- fo float
- cp_liquid float
- lambda_liquid float
- type_T_source str into ['dabiri', 'patch_dabiri', 'unweighted_dabiri']
- wall_flux

3.125 Transformer

Description: Keyword to transform the coordinates of the geometry.

Exemple to rotate your mesh by a 90o rotation and to scale the z coordinates by a factor 2: Transformer domain_name -y -x 2*z

See also: interprete (3)

Usage:

transformer domain_name formule

where

- domain_name str: Name of domain.
- **formule** *word1 word2 (word3)*: Function_for_x Function_for_y

 $Function_forz$

3.126 Trianguler

Description: To achieve a triangular mesh from a mesh comprising rectangles (2 triangles per rectangle). Should be used in VEF discretization. Principle:

See also: interprete (3) trianguler_h (3.128) trianguler_fin (3.127)

Usage:

trianguler domain_name

where

• domain_name str: Name of domain.

3.127 Trianguler_fin

Description: Trianguler_fin is the recommended option to triangulate rectangles.

As an extension (subdivision) of Triangulate_h option, this one cut each initial rectangle in 8 triangles (against 4, previously). This cutting ensures :

- a correct cutting in the corners (in respect to pressure discretization PreP1B).
- a better isotropy of elements than with Trianguler_h option.
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness, and, by this way, a 2D cartesian grid based on summits can be engendered and used to realize statistical analysis in plane channel configuration for instance). Principle:

See also: trianguler (3.126)

Usage:

trianguler_fin domain_name where

• domain_name str: Name of domain.

3.128 Trianguler_h

Description: To achieve a triangular mesh from a mesh comprising rectangles (4 triangles per rectangle). Should be used in VEF discretization. Principle:

See also: trianguler (3.126)

Usage:

trianguler_h domain_name where

• domain name str: Name of domain.

3.129 Type_indic_faces

```
Description: not_set

See also: interprete (3)

Usage:
[ type ] [ bloc ]
where

• type str
• bloc bloc_lecture (3.6)
```

3.130 Verifier_qualite_raffinements

```
Description: not_set

See also: interprete (3)

Usage:
verifier_qualite_raffinements domain_names
where

• domain_names vect_nom (3.131)
```

3.131 **Vect_nom**

```
Description: Vect of name.

See also: listobj (37.4)

Usage:
n object1 object2 ....
list of nom_anonyme (26.1)
```

3.132 Verifier_simplexes

```
Description: Keyword to raffine a simplexes
```

```
See also: interprete (3)
```

Usage:

verifier_simplexes domain_name where

• domain name str: Name of domain.

3.133 Verifiercoin

Description: This keyword subdivides inconsistent 2D/3D cells used with VEFPreP1B discretization. Must be used before the mesh is discretized. The Read_file option can be used only if the file.decoupage_som was previously created by TRUST. This option, only in 2D, reverses the common face at two cells (at least one is inconsistent), through the nodes opposed. In 3D, the option has no effect.

The expert_only option deactivates, into the VEFPreP1B divergence operator, the test of inconsistent cells.

```
See also: interprete (3)
Usage:
verifiercoin domain_name bloc
where
   • domain name str: Name of the domaine
   • bloc verifiercoin_bloc (3.134)
3.134 Verifiercoin bloc
Description: not_set
See also: objet_lecture (38)
Usage:
{
     [Lire_fichier|Read_file str]
     [expert_only]
where
   • Lire_fichier|Read_file str: name of the *.decoupage_som file
   • expert_only: to not check the mesh
3.135 Ecrire
Description: Keyword to write the object of name name_obj to a standard outlet.
See also: interprete (3)
Usage:
ecrire name_obj
where
   • name_obj str: Name of the object to be written.
3.136 Ecrire_fichier_bin
Synonymous: ecrire_fichier
Description: Keyword to write the object of name name_obj to a file filename. Since the v1.6.3, the
default format is now binary format file.
See also: interprete (3) ecrire_fichier_formatte (3.45)
Usage:
ecrire_fichier_bin name_obj filename
where
```

• name_obj str: Name of the object to be written.

• filename str: Name of the file.

```
3.137 Ecrire_med
```

```
Description: Write a domain to MED format into a file.
See also: interprete (3) ecrire_medfile (3.138)
Usage:
ecrire_med nom_dom file
where
   • nom dom str: Name of domain.
   • file str: Name of file.
3.138 Ecrire medfile
Description: Obsolete keyword to write a mesh with MED file API
See also: ecrire_med (3.137)
Usage:
ecrire_medfile nom_dom file
where
   • nom dom str: Name of domain.
   • file str: Name of file.
    pb_gen_base
Description: Basic class for problems.
See also: objet u (39) Pb base (4.19) probleme couple (4.20) pbc med (4.55) pb mg (4.38)
Usage:
4.1 Pb_conduction
Description: Resolution of the heat equation.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19) Pb_Rayo_Conduction (4.11)
Usage:
Pb_Conduction str
Read str {
     [solide solide]
     [Conduction conduction]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
```

[sauvegarde format_file]

```
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- solide solide (22.13): The medium associated with the problem.
- Conduction conduction (5.1): Heat equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.2 Corps postraitement

```
Description: not_set

See also: post_processing (4.4.3)

Usage:
{

    [fichier str]
    [format str into ['lml', 'lata', 'lata_v2', 'med', 'med_major']]
    [domaine str]
    [sous_zone str]
    [parallele str into ['simple', 'multiple', 'mpi-io']]
    [definition_champs definition_champs]
    [definition_champs_file|definition_champs_fichier]
    [probes|sondes]
```

```
[ probes_filelsondes_fichier sondes_fichier]
  [ deprecatedkeepduplicatedprobes int]
  [ fieldslchamps champs_posts]
  [ statistiques stats_posts]
  [ statistiques_en_serie stats_serie_posts]
}
where
```

- fichier str for inheritance: Name of file.
- **format** *str into* ['lml', 'lata', 'lata_v2', 'med', 'med_major'] for inheritance: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml.
- **domaine** *str* for inheritance: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- **sous_zone** *str* for inheritance: This optional parameter specifies the sous_zone on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- parallele *str into ['simple', 'multiple', 'mpi-io']* for inheritance: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format
- **definition_champs** *definition_champs* (4.2.1) for inheritance: Keyword to create new or more complex field for advanced postprocessing.
- **definition_champs_fileIdefinition_champs_fichier** *definition_champs_fichier* (4.2.3) for inheritance: Definition_champs read from file.
- **probes|sondes** *sondes* (4.2.4) for inheritance: Probe.
- probes_filelsondes_fichier sondes_fichier (4.2.22) for inheritance: Probe read in a file.
- **deprecatedkeepduplicatedprobes** *int* for inheritance: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- **fieldslchamps** champs posts (4.2.23) for inheritance: Field's write mode.
- **statistiques** *stats_posts* (4.2.26) for inheritance: Statistics between two points fixed : start of integration time and end of integration time.
- **statistiques_en_serie** *stats_serie_posts* (4.2.34) for inheritance: Statistics between two points not fixed: on period of integration.

4.2.1 Definition champs

```
Description: List of definition champ

See also: listobj (37.4)

Usage:
{ object1 object2 .... }
list of definition_champ (4.2.2)

4.2.2 Definition_champ
```

Description: Keyword to create new complex field for advanced postprocessing.

```
See also: objet_lecture (38)
```

Usage:

name champ_generique

where

- name str: The name of the new created field.
- champ_generique champ_generique_base (9)

4.2.3 Definition_champs_fichier

Description: Keyword to read definition_champs from a file

```
See also: objet_lecture (38)

Usage:
{

filelfichier str
}
where
```

• filelfichier str: name of file containing the definition of advanced fields

4.2.4 Sondes

```
Description: List of probes.
```

```
See also: listobj (37.4)
Usage:
{ object1 object2 .... }
```

list of sonde (4.2.5)

4.2.5 Sonde

where

Description: Keyword is used to define the probes. Observations: the probe coordinates should be given in Cartesian coordinates (X, Y, Z), including axisymmetric.

```
See also: objet_lecture (38)

Usage:
nom_sonde [ special ] nom_inco mperiode prd type
```

probes. Several options are available:

• nom_sonde str: Name of the file in which the values taken over time will be saved. The complete

- file name is nom_sonde.son.

 special str into ['grav', 'som', 'nodes', 'chsom', 'gravcl']: Option to change the positions of the
 - grav: each probe is moved to the nearest cell center of the mesh;
 - som: each probe is moved to the nearest vertex of the mesh
 - nodes: each probe is moved to the nearest face center of the mesh;

chsom: only available for P1NC sampled field. The values of the probes are calculated according to P1-Conform corresponding field.

gravel: Extend to the domain face boundary a cell-located segment probe in order to have the boundary condition for the field. For this type the extreme probe point has to be on the face center of gravity.

- nom_inco str: Name of the sampled field.
- **mperiode** *str into ['periode']*: Keyword to set the sampled field measurement frequency.

- **prd** *float*: Period value. Every prd seconds, the field value calculated at the previous time step is written to the nom_sonde.son file.
- **type** *sonde_base* (4.2.6): Type of probe.

4.2.6 Sonde_base

Description: Basic probe. Probes refer to sensors that allow a value or several points of the domain to be monitored over time. The probes may be a set of points defined one by one (keyword Points) or a set of points evenly distributed over a straight segment (keyword Segment) or arranged according to a layout (keyword Plan) or according to a parallelepiped (keyword Volume). The fields allow all the values of a physical value on the domain to be known at several moments in time.

See also: objet_lecture (38) points (4.2.7) numero_elem_sur_maitre (4.2.11) position_like (4.2.12) segment (4.2.13) plan (4.2.14) volume (4.2.15) circle (4.2.16) circle_3 (4.2.17) segmentfacesx (4.2.18) segmentfacesy (4.2.19) segmentfacesz (4.2.20) radius (4.2.21)

Usage:

sonde base

4.2.7 Points

Description: Keyword to define the number of probe points. The file is arranged in columns.

```
See also: sonde_base (4.2.6) point (4.2.9) segmentpoints (4.2.10)
```

Usage:

points points

where

• points listpoints (4.2.8): Probe points.

4.2.8 Listpoints

```
Description: Points.
```

See also: listobj (37.4)

Usage:

n object1 object2 list of un_point (3.30.3)

4.2.9 Point

Description: Point as class-daughter of Points.

See also: points (4.2.7)

Usage:

point points

where

• points listpoints (4.2.8): Probe points.

4.2.10 Segmentpoints

Description: This keyword is used to define a probe segment from specifics points. The nom_champ field is sampled at ns specifics points.

See also: points (4.2.7)

Usage:

segmentpoints points

where

• points *listpoints* (4.2.8): Probe points.

4.2.11 Numero_elem_sur_maitre

Description: Keyword to define a probe at the special element. Useful for min/max sonde.

See also: sonde_base (4.2.6)

Usage:

numero_elem_sur_maitre numero

where

• numero int: element number

4.2.12 Position like

Description: Keyword to define a probe at the same position of another probe named autre_sonde.

See also: sonde_base (4.2.6)

Usage:

position_like autre_sonde

where

• autre_sonde str: Name of the other probe.

4.2.13 Segment

Description: Keyword to define the number of probe segment points. The file is arranged in columns.

See also: sonde_base (4.2.6)

Usage:

segment nbr point_deb point_fin

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- **point_deb** *un_point* (3.30.3): First outer probe segment point.
- **point_fin** *un_point* (3.30.3): Second outer probe segment point.

4.2.14 Plan

Description: Keyword to set the number of probe layout points. The file format is type .lml

See also: sonde_base (4.2.6)

Usage:

plan nbr nbr2 point_deb point_fin point_fin_2
where

- **nbr** *int*: Number of probes in the first direction.
- **nbr2** *int*: Number of probes in the second direction.
- point_deb un_point (3.30.3): First point defining the angle. This angle should be positive.
- point fin un point (3.30.3): Second point defining the angle. This angle should be positive.
- point_fin_2 un_point (3.30.3): Third point defining the angle. This angle should be positive.

4.2.15 Volume

Description: Keyword to define the probe volume in a parallelepiped passing through 4 points and the number of probes in each direction.

See also: sonde_base (4.2.6)

Usage:

volume nbr nbr2 nbr3 point_deb point_fin point_fin_2 point_fin_3 where

- **nbr** *int*: Number of probes in the first direction.
- **nbr2** *int*: Number of probes in the second direction.
- **nbr3** *int*: Number of probes in the third direction.
- **point_deb** *un_point* (3.30.3): Point of origin.
- **point_fin** *un_point* (3.30.3): Point defining the first direction (from point of origin).
- point fin 2 un point (3.30.3): Point defining the second direction (from point of origin).
- point fin 3 un point (3.30.3): Point defining the third direction (from point of origin).

4.2.16 Circle

Description: Keyword to define several probes located on a circle.

See also: sonde_base (4.2.6)

Usage:

circle nbr point_deb [direction] radius theta1 theta2 where

- **nbr** *int*: Number of probes between teta1 and teta2 (angles given in degrees).
- point_deb un_point (3.30.3): Center of the circle.
- direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
- radius float: Radius of the circle.
- theta1 *float*: First angle.
- theta2 float: Second angle.

4.2.17 Circle_3

Description: Keyword to define several probes located on a circle (in 3-D space).

See also: sonde base (4.2.6)

Usage:

circle_3 nbr point_deb direction radius theta1 theta2 where

- **nbr** *int*: Number of probes between teta1 and teta2 (angles given in degrees).
- point_deb un_point (3.30.3): Center of the circle.
- direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
- radius float: Radius of the circle.
- theta1 float: First angle.
- theta2 float: Second angle.

4.2.18 Segmentfacesx

Description: Segment probe where points are moved to the nearest x faces

See also: sonde_base (4.2.6)

Usage:

segmentfacesx nbr point_deb point_fin

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- point deb un point (3.30.3): First outer probe segment point.
- point_fin un_point (3.30.3): Second outer probe segment point.

4.2.19 Segmentfacesy

Description: Segment probe where points are moved to the nearest y faces

See also: sonde_base (4.2.6)

Usage:

 $segment facesy \ nbr \ point_deb \ point_fin$

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- point_deb un_point (3.30.3): First outer probe segment point.
- point_fin un_point (3.30.3): Second outer probe segment point.

4.2.20 Segmentfacesz

Description: Segment probe where points are moved to the nearest z faces

See also: sonde_base (4.2.6)

Usage:

segmentfacesz nbr point_deb point_fin

where

```
• nbr int: Number of probe points of the segment, evenly distributed.
```

- point_deb un_point (3.30.3): First outer probe segment point.
- point_fin un_point (3.30.3): Second outer probe segment point.

4.2.21 Radius

```
Description: not_set
See also: sonde_base (4.2.6)
Usage:
radius nbr point_deb radius teta1 teta2
where
   • nbr int: Number of probe points of the segment, evenly distributed.
   • point_deb un_point (3.30.3): First outer probe segment point.
   • radius float
   • teta1 float
   • teta2 float
4.2.22 Sondes_fichier
Description: not_set
See also: objet_lecture (38)
Usage:
{
     file|fichier str
where
   • filelfichier str: name of file
4.2.23 Champs_posts
Description: Field's write mode.
See also: objet_lecture (38)
Usage:
[format] mot period fields|champs
where
```

- format str into ['binaire', 'formatte']: Type of file.
- mot str into ['dt_post', 'nb_pas_dt_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.*t).
- **fieldslchamps** *champs_a_post* (4.2.24): Post-processed fields.

4.2.24 Champs_a_post

Description: Fields to be post-processed.

See also: listobj (37.4)

Usage: { object1 object2 } list of *champ_a_post* (4.2.25)

4.2.25 Champ_a_post

Description: Field to be post-processed.

See also: objet_lecture (38)

Usage:

champ [localisation]

where

- **champ** *str*: Name of the post-processed field.
- **localisation** *str into* ['elem', 'som', 'faces']: Localisation of post-processed field values: The two available values are elem, som, or faces (LATA format only) used respectively to select field values at mesh centres (CHAMPMAILLE type field in the lml file) or at mesh nodes (CHAMPPOINT type field in the lml file). If no selection is made, localisation is set to som by default.

4.2.26 Stats posts

Description: Field's write mode.

Dt_post: This keyword is used to set the calculated statistics write period.

dts: frequency value.

t_deb value: Start of integration timet fin value: End of integration time

stat: Set to Moyenne (average) to calculate the average of the field nom_champ (field name) over time or Ecart_type (std_deviation) to calculate the standard deviation (statistic rms) of the field nom_champ (field_name) or Correlation to calculate the correlation between the two fields nom_champ and second_nom_champ.

nom_champ: name of the field on which statistical analysis will be performed. Possible keywords are **Vitesse (velocity)**, **Pression (pressure)**, **Temperature**, **Concentration**,...

localisation: localisation of post-processed field values (elem or som).

Example:

It will write every **dt_post** the mean, standard deviation and correlation value:

$$\begin{split} t <& = t_{\text{deb}} : \\ \text{average: } \overline{P(t)} = 0 \\ \text{std_deviation: } &< P(t) > = 0 \\ \text{correlation: } &< U(t).V(t) > = 0 \\ t > t_{\text{deb}} : \\ \text{average: } \overline{P(t)} = \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} P(t) \mathrm{d}t \\ \text{std_deviation: } &< P(t) > = \sqrt{\frac{1}{t - t_{\text{deb}}}} \int\limits_{t_{\text{deb}}}^{t} \left[P(t) - \overline{P(t)} \right]^2 \mathrm{d}t \\ \text{correlation: } &< U(t).V(t) > = \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[U(t) - \overline{U(t)} \right]. \left[V(t) - \overline{V(t)} \right] \mathrm{d}t \\ \end{split}$$

See also: objet_lecture (38)

Usage:

mot period fields|champs

where

- **mot** *str into ['dt_post', 'nb_pas_dt_post']*: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.*t).
- **fieldslchamps** *list_stat_post* (4.2.27): Post-processed fields.

4.2.27 List_stat_post

Description: Post-processing for statistics

See also: listobj (37.4)

Usage:

{ object1 object2 }

list of *stat_post_deriv* (4.2.28)

4.2.28 Stat_post_deriv

Description: not_set

See also: objet_lecture (38) t_deb (4.2.29) t_fin (4.2.30) moyenne (4.2.31) ecart_type (4.2.32) correlation (4.2.33)

Usage:

stat_post_deriv

4.2.29 T_deb

Description: not_set

See also: stat_post_deriv (4.2.28)

Usage:

t_deb val

where

• val float

4.2.30 T_fin

Description: not_set

See also: stat_post_deriv (4.2.28)

Usage: **t_fin val** where

• val float

4.2.31 Moyenne

Synonymous: champ_post_statistiques_moyenne

Description: not_set

See also: stat_post_deriv (4.2.28)

Usage:

moyenne field [localisation]

where

- field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.32 Ecart_type

Synonymous: champ_post_statistiques_ecart_type

Description: not_set

See also: stat_post_deriv (4.2.28)

Usage:

ecart_type field [localisation]

where

- field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.33 Correlation

Synonymous: champ_post_statistiques_correlation

Description: not_set

See also: stat_post_deriv (4.2.28)

Usage:

correlation first_field second_field [**localisation**] where

- first field str
- second_field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.34 Stats_serie_posts

Description: Post-processing for statistics.

Statistiques_en_serie: This keyword is used to set the statistics. Average on **dt_integr** time interval is post-processed every **dt_integr** seconds

dt_integr value : Period of integration and write period.

stat: Set to Moyenne (average) to calculate the average of the field nom_champ (field name) over time or Ecart_type (std_deviation) to calculate the standard deviation (statistic rms) of the field nom_champ (field_name).

nom_champ: name of the field on which statistical analysis will be performed. Possible keywords are **Vitesse (velocity)**, **Pression (pressure)**, **Temperature**, **Concentration**,...

localisation: localisation of post-processed field values (elem or som).

Example:

Statistiques_en_serie Dt_integr dtst {
Moyenne Pression
}

Will calculate and write every dtst seconds the mean value:

$$(n+1) \text{dt_integr} > t > n * \text{dt_integr}, \overline{P(t)} = \frac{1}{t-n*\text{dt_integr}} \int\limits_{t_n*\text{dt_integr}}^t P(t) \text{dt}$$

See also: objet_lecture (38)

Usage:

mot dt_integr stat

where

- mot str into ['dt_integr']: Keyword is used to set the statistics period of integration and write period.
- dt_integr float: Average on dt_integr time interval is post-processed every dt_integr seconds.
- **stat** *list_stat_post* (4.2.27)

```
4.3 Post_processings
Synonymous: postraitements
Description: Keyword to use several results files. List of objects of post-processing (with name).
See also: listobj (37.4)
Usage:
{ object1 object2 .... }
list of un_postraitement (4.3.1)
4.3.1 Un_postraitement
Description: An object of post-processing (with name).
See also: objet_lecture (38)
Usage:
nom post
where
   • nom str: Name of the post-processing.
   • post corps_postraitement (4.2): Definition of the post-processing.
4.4 Liste_post_ok
Description: Keyword to use several results files. List of objects of post-processing (with name)
See also: listobj (37.4)
Usage:
{ object1 object2 .... }
list of nom_postraitement (4.4.1)
4.4.1 Nom_postraitement
Description:
See also: objet_lecture (38)
Usage:
nom post
where
   • nom str: Name of the post-processing.
   • post postraitement_base (4.4.2): the post
4.4.2 Postraitement_base
Description: not_set
```

See also: objet_lecture (38) post_processing (4.4.3) postraitement_ft_lata (4.4.4)

Usage:

4.4.3 Post_processing

```
Synonymous: postraitement
Description: An object of post-processing (without name).
See also: postraitement base (4.4.2) corps postraitement (4.2)
Usage:
post_processing {
     [fichier str]
     [format str into ['lml', 'lata', 'lata_v2', 'med', 'med_major']]
     [domaine str]
     [ sous zone str]
     [ parallele str into ['simple', 'multiple', 'mpi-io']]
     [ definition_champs | definition_champs]
     [definition champs file|definition champs fichier]
     [ probes|sondes | sondes]
     [ probes_file|sondes_fichier | sondes_fichier]
     [ deprecatedkeepduplicatedprobes int]
     [ fields|champs champs_posts]
     [statistiques stats posts]
     [statistiques en serie stats serie posts]
}
where
```

- fichier str: Name of file.
- **format** *str into* ['lml', 'lata', 'lata_v2', 'med', 'med_major']: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml.
- **domaine** *str*: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- **sous_zone** *str*: This optional parameter specifies the sous_zone on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- parallele *str into ['simple'*, *'multiple'*, *'mpi-io']*: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format
- **definition_champs** *definition_champs* (4.2.1): Keyword to create new or more complex field for advanced postprocessing.
- **definition_champs_file|definition_champs_fichier** *definition_champs_fichier* (4.2.3): Definition_champs read from file.
- probes|sondes sondes (4.2.4): Probe.
- probes_file|sondes_fichier sondes_fichier (4.2.22): Probe read in a file.
- **deprecatedkeepduplicatedprobes** *int*: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- fieldslchamps champs_posts (4.2.23): Field's write mode.
- **statistiques** *stats_posts* (4.2.26): Statistics between two points fixed : start of integration time and end of integration time.
- **statistiques_en_serie** *stats_serie_posts* (4.2.34): Statistics between two points not fixed : on period of integration.

```
4.4.4 Postraitement_ft_lata
Description: not_set
See also: postraitement_base (4.4.2)
Usage:
postraitement_ft_lata bloc
where
   • bloc str
4.5 Liste_post
Description: Keyword to use several results files. List of objects of post-processing (with name)
See also: listobj (37.4)
Usage:
{ object1 object2 .... }
list of un_postraitement_spec (4.5.1)
4.5.1 Un_postraitement_spec
Description: An object of post-processing (with type +name).
See also: objet_lecture (38)
Usage:
[ type_un_post ] [ type_postraitement_ft_lata ]
where
   • type_un_post type_un_post (4.5.2)
   • type_postraitement_ft_lata type_postraitement_ft_lata (4.5.3)
4.5.2 Type_un_post
Description: not_set
See also: objet_lecture (38)
Usage:
type post
where
   • type str into ['postraitement', 'post_processing']
   • post un_postraitement (4.3.1)
4.5.3 Type_postraitement_ft_lata
Description: not_set
See also: objet_lecture (38)
```

Usage:

```
type nom bloc
where
   • type str into ['postraitement_ft_lata', 'postraitement_lata']
   • nom str: Name of the post-processing.
   • bloc str
4.6 Format_file
Description: File formatted.
See also: objet_lecture (38)
Usage:
[format] name_file
where
   • format str into ['binaire', 'formatte', 'xyz', 'single_hdf']: Type of file (the file format).
   • name file str: Name of file.
4.7 Pb_hem
Description: A problem that allows the resolution of 2-phases mechanicaly and thermally coupled with 3
equations
Keyword Discretize should have already been used to read the object.
See also: Pb_Multiphase (4.10)
Usage:
Pb HEM str
Read str {
     [ milieu_composite bloc_lecture]
     [correlations bloc_lecture]
     QDM_Multiphase qdm_multiphase
     Masse_Multiphase masse_multiphase
     Energie_Multiphase energie_multiphase
     [ Energie_cinetique_turbulente energie_cinetique_turbulente]
     [ Echelle_temporelle_turbulente echelle_temporelle_turbulente]
     [ Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit]
     [ Taux_dissipation_turbulent taux_dissipation_turbulent]
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
```

where

- milieu_composite bloc_lecture (3.6) for inheritance: The composite medium associated with the problem.
- **correlations** *bloc_lecture* (3.6) for inheritance: List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **QDM_Multiphase** *qdm_multiphase* (5.25) for inheritance: Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse_Multiphase masse_multiphase (5.16) for inheritance: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- **Energie_Multiphase** *energie_multiphase* (5.13) for inheritance: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature
- Energie_cinetique_turbulente energie_cinetique_turbulente (5.14) for inheritance: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- **Echelle_temporelle_turbulente** *echelle_temporelle_turbulente* (5.12) for inheritance: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit (5.15) for inheritance: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- Taux_dissipation_turbulent taux_dissipation_turbulent (5.26) for inheritance: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.8 Pb hydraulique turbulent ale

Description: Resolution of hydraulic turbulent problems for ALE

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19)
Usage:
Pb Hydraulique Turbulent ALE str
Read str {
     fluide_incompressible fluide_incompressible
     Navier_Stokes_Turbulent_ALE navier_stokes_turbulent_ale
     [milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- Navier_Stokes_Turbulent_ALE navier_stokes_turbulent_ale (5.21): Navier-Stokes_ALE equations as well as the associated turbulence model equations on mobile domain (ALE)
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.9 Pb_hydraulique_sensibility

where

```
Description: Resolution of hydraulic sensibility problems
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.19)
Usage:
Pb Hydraulique sensibility str
Read str {
     fluide_incompressible fluide_incompressible
     Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility (5.23): Navier-Stokes sensibility equations
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.10 Pb_multiphase

where

Description: A problem that allows the resolution of N-phases with 3*N equations

```
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.19) Pb HEM (4.7)
Usage:
Pb_Multiphase str
Read str {
     [ milieu_composite bloc_lecture]
     [correlations bloc_lecture]
     QDM_Multiphase qdm_multiphase
     Masse_Multiphase masse_multiphase
     Energie Multiphase energie multiphase
     [ Energie_cinetique_turbulente energie_cinetique_turbulente]
     [ Echelle temporelle turbulente echelle temporelle turbulente]
     [ Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit]
     [ Taux_dissipation_turbulent taux_dissipation_turbulent]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
```

- milieu_composite bloc_lecture (3.6): The composite medium associated with the problem.
- **correlations** *bloc_lecture* (3.6): List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **QDM_Multiphase** *qdm_multiphase* (5.25): Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse_Multiphase masse_multiphase (5.16): Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- **Energie_Multiphase** *energie_multiphase* (5.13): Internal energy conservation equation for a multiphase problem where the unknown is the temperature
- Energie_cinetique_turbulente energie_cinetique_turbulente (5.14): Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- **Echelle_temporelle_turbulente** *echelle_temporelle_turbulente* (5.12): Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit (5.15): Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)

- Taux_dissipation_turbulent taux_dissipation_turbulent (5.26): Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.11 Pb_rayo_conduction

Description: Resolution of the heat equation with rayonnement.

```
Keyword Discretize should have already been used to read the object. See also: Pb_Conduction (4.1)
```

Usage:

```
Pb_Rayo_Conduction str Read str {
```

```
[ Conduction conduction]
[ milieu milieu_base]
[ constituant constituant]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
```

```
}
where
```

- **Conduction** *conduction* (5.1) for inheritance: Heat equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.12 Pb rayo hydraulique

Description: Resolution of the Navier-Stokes equations with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb_hydraulique (4.27)

```
Usage:
```

```
Pb_Rayo_Hydraulique str

Read str {

    navier_stokes_standard navier_stokes_standard
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
```

[sauvegarde_simple format_file]

[reprise format_file]

```
[ resume_last_time format_file] } where
```

- navier_stokes_standard navier_stokes_standard (5.52) for inheritance: Navier-Stokes equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.13 Pb_rayo_hydraulique_turbulent

```
Description: Resolution of pb_hydraulique_turbulent with rayonnement.

Keyword Discretize should have already been used to read the object.

See also: pb_hydraulique_turbulent (4.37)

Usage:

Pb_Rayo_Hydraulique_Turbulent str

Read str {

navier_stokes_turbulent navier_stokes_turbulent

[milion_milion_base]
```

```
[ milieu milieu_base]
[ constituant constituant]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
```

```
[ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- navier_stokes_turbulent navier_stokes_turbulent (5.53) for inheritance: Navier-Stokes equations as well as the associated turbulence model equations.
- milieu milieu base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.14 Pb_rayo_thermohydraulique

Description: Resolution of pb_thermohydraulique with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique (4.41)

Usage:

```
Pb_Rayo_Thermohydraulique str

Read str {

    [fluide_ostwald fluide_ostwald]
    [fluide_sodium_liquide fluide_sodium_liquide]
    [fluide_sodium_gaz fluide_sodium_gaz]
    [navier_stokes_standard navier_stokes_standard]
    [convection_diffusion_temperature]
```

```
[ milieu milieu_base]
  [ constituant constituant]
  [ Post_processing|postraitement corps_postraitement]
  [ Post_processings|postraitements post_processings]
  [ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- **fluide_ostwald** *fluide_ostwald* (22.6) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_liquide** *fluide_sodium_liquide* (22.11) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_gaz** *fluide_sodium_gaz* (22.10) for inheritance: The fluid medium associated with the problem (only one possibility).
- navier_stokes_standard navier_stokes_standard (5.52) for inheritance: Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.40) for inheritance: Energy equation (temperature diffusion convection).
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements** post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.15 Pb_rayo_thermohydraulique_qc

Description: Resolution of pb_thermohydraulique_QC with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique_QC (4.42)

Usage:

where

```
Pb_Rayo_Thermohydraulique_QC str

Read str {

    navier_stokes_QC navier_stokes_qc
    convection_diffusion_chaleur_QC convection_diffusion_chaleur_qc
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
}
```

- navier_stokes_QC navier_stokes_qc (5.45) for inheritance: Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.28) for inheritance: Temperature equation for a quasi-compressible fluid.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.16 Pb_rayo_thermohydraulique_turbulent

Pb_Rayo_Thermohydraulique_Turbulent str

[liste_postraitements liste_post] [sauvegarde format_file]

[sauvegarde_simple format_file]

[resume_last_time format_file]

[reprise format file]

Description: Resolution of pb_thermohydraulique_turbulent with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique_turbulent (4.52)

Usage:

```
Read str {
    navier_stokes_turbulent navier_stokes_turbulent
    convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent
    [ milieu milieu_base]
    [ constituant constituant]
    [ Post_processing|postraitement corps_postraitement]
    [ Post_processings|postraitements post_processings]
    [ liste de postraitements liste_post_ok]
```

} where

- navier_stokes_turbulent navier_stokes_turbulent (5.53) for inheritance: Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.43) for inheritance: Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituent constituent (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.

- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.17 Pb_rayo_thermohydraulique_turbulent_qc

Description: Resolution of pb_thermohydraulique_turbulent_qc with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique_turbulent_qc (4.53)

```
Pb Rayo Thermohydraulique Turbulent QC str
Read str {
     navier_stokes_turbulent_qc navier_stokes_turbulent_qc
     convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.54) for inheritance: Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- **convection_diffusion_chaleur_turbulent_qc** *convection_diffusion_chaleur_turbulent_qc* (5.30) for inheritance: Energy equation under low Mach number as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde simple format file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file (see the class format file). If format reprise is xyz, the name file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- resume_last_time format_file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.18 Pb_thermohydraulique_sensibility

Description: Resolution of Resolution of thermohydraulic sensitivity problem

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique (4.41)

Usage:

}

```
Pb_Thermohydraulique_sensibility str
Read str {
```

```
fluide_incompressible fluide_incompressible
     Convection_Diffusion_Temperature_Sensibility convection_diffusion_temperature_sensibility
     Navier Stokes standard sensibility navier stokes standard sensibility
     [fluide_ostwald] [fluide_ostwald]
     [ fluide_sodium_liquide | fluide_sodium_liquide]
     [ fluide_sodium_gaz | fluide_sodium_gaz]
     [ navier_stokes_standard navier_stokes_standard]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume last time format file]
where
```

- fluide_incompressible fluide_incompressible (22.5): The fluid medium associated with the prob-
- Convection_Diffusion_Temperature_Sensibility convection_diffusion_temperature_sensibility (5.10): Convection diffusion temperature sensitivity equation

- Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility (5.23): Navier Stokes sensitivity equation
- **fluide_ostwald** *fluide_ostwald* (22.6) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_liquide** *fluide_sodium_liquide* (22.11) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_gaz** *fluide_sodium_gaz* (22.10) for inheritance: The fluid medium associated with the problem (only one possibility).
- navier_stokes_standard navier_stokes_standard (5.52) for inheritance: Navier-Stokes equations.
- milieu milieu base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.19 Pb base

Description: Resolution of equations on a domain. A problem is defined by creating an object and assigning the problem type that the user wishes to resolve. To enter values for the problem objects created, the Lire (Read) interpretor is used with a data block.

Keyword Discretize should have already been used to read the object. See also: pb_gen_base (4) pb_post (4.40) problem_read_generic (4.57) Pb_Conduction (4.1) Pb_Multiphase

(4.10) pb_avec_passif (4.24) pb_thermohydraulique_QC (4.42) pb_hydraulique_melange_binaire_QC (4.34) pb_thermohydraulique_WC (4.43) pb_hydraulique_melange_binaire_WC (4.35) pb_thermohydraulique (4.41) pb_hydraulique_concentration (4.30) pb_thermohydraulique_concentration (4.44) pb_hydraulique_turbulent (4.52) pb_hydraulique_concentration_turbulent (4.32) pb_thermohydraulique_concentration_turbulent (4.32) pb_thermohydraulique_concentration_turbulent (4.46) pb_thermohydraulique_turbulent-qc (4.53) modele_rayo_semi_transp (4.22) pb_hydraulique_ALE (4.28) Pb_Hydraulique_Turbulent_ALE (4.8) pb_hydraulique_aposteriori (4.29) pb_phase_field (4.39) pb_hydraulique_melange_binaire_turbulent-

```
_qc (4.36) Pb_Hydraulique_sensibility (4.9)

Usage:
Pb_base str
Read str {

    [milieu milieu_base]
    [constituant constituant]
    [Post_processinglpostraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
}
where
```

- milieu milieu_base (22): The medium associated with the problem.
- constituent constituent (22.1): Constituent.
- Post_processing|postraitement corps_postraitement (4.2): One post-processing (without name).
- Post_processings|postraitements post_processings (4.3): List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4): This
- **liste_postraitements** *liste_post* (4.5): This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6): Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6): The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6): Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6): Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.20 Probleme_couple

Description: This instruction causes a probleme_couple type object to be created. This type of object has an associated problem list, that is, the coupling of n problems among them may be processed. Coupling between these problems is carried out explicitly via conditions at particular contact limits. Each problem may be associated either with the Associate keyword or with the Read/groupes keywords. The difference is that in the first case, the four problems exchange values then calculate their timestep, rather in the second case, the same strategy is used for all the problems listed inside one group, but the second group of problem

exchange values with the first group of problems after the first group did its timestep. So, the first case may then also be written like this:

```
Probleme_Couple pbc
```

```
Read pbc { groupes { { pb1 , pb2 , pb3 , pb4 } } }
```

There is a physical environment per problem (however, the same physical environment could be common to several problems).

Each problem is resolved in a domain.

Warning: Presently, coupling requires coincident meshes. In case of non-coincident meshes, boundary condition 'paroi_contact' in VEF returns error message (see paroi_contact for correcting procedure).

See also: pb_gen_base (4) pb_couple_rayonnement (4.58) pb_couple_rayo_semi_transp (4.26)

```
Usage:
probleme_couple str
Read str {
      [groupes list_list_nom]
}
where
• groupes list_list_nom (4.21): { groupes { { pb1 , pb2 } , { pb3 , pb4 } } }
```

4.21 List_list_nom

```
Description: pour les groupes
```

```
See also: listobj (37.4)

Usage:
{ object1, object2 .... }
```

list of list_un_pb (37.1) separeted with,

4.22 Modele_rayo_semi_transp

Description: Radiation model for semi transparent gas. The model should be associated to the coupling problem BEFORE the time scheme.

Keyword Discretize should have already been used to read the object.

```
See also: Pb base (4.19)
```

Usage:

```
modele_rayo_semi_transp str
Read str {
```

```
[ eq_rayo_semi_transp eq_rayo_semi_transp]
[ milieu milieu_base]
[ constituant constituant]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
```

```
[ resume_last_time format_file]
}
where
```

- eq_rayo_semi_transp eq_rayo_semi_transp (4.23): Irradiancy G equation. Radiative flux equals -grad(G)/3/kappa.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.23 Eq_rayo_semi_transp

```
Description: Irradiancy equation.

See also: objet_lecture (38)

Usage:
{

    solveur solveur_sys_base
    [boundary_conditions|conditions_limites condlims]
}
where
```

- solveur solveur_sys_base (11.18): Solver of the irradiancy equation.
- boundary_conditions|conditions_limites condlims (4.23.1): Boundary conditions.

4.23.1 Condlims

```
Description: Boundary conditions.

See also: listobj (37.4)

Usage:
{ object1 object2 .... }
list of condlimlu (4.23.2)

4.23.2 Condlimlu

Description: Boundary condition specified.

See also: objet_lecture (38)

Usage:
bord cl
where

• bord str: Name of the edge where the boundary condition applies.
• cl condlim_base (13): Boundary condition at the boundary called bord (edge).
```

4.24 Pb_avec_passif

where

Description: Class to create a classical problem with a scalar transport equation (e.g. temperature or concentration) and an additional set of passive scalars (e.g. temperature or concentration) equations.

Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.19) pb_thermohydraulique_especes_QC (4.48) pb_thermohydraulique_especes_WC (4.49) pb_thermohydraulique_concentration_scalaires_passifs (4.45) pb_thermohydraulique_scalaires_passifs (4.51) pb_hydraulique_concentration_scalaires_passifs (4.31) pb_thermohydraulique_concentration_turbulent_scalaires_passifs (4.47) pb_thermohydraulique_turbulent_scalaires_passifs (4.54) pb_hydraulique_concentration_turbulent_scalaires_passifs (4.33) pb_thermohydraulique_especes_turbulent_qc (4.50)

```
Usage:

pb_avec_passif str

Read str {

    equations_scalaires_passifs listeqn
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
}
```

- equations_scalaires_passifs listeqn (4.25): Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.25 Listegn

Description: List of equations.

See also: listobj (37.4)

Usage: { object1 object2 } list of eqn base (5.44)

4.26 Pb_couple_rayo_semi_transp

Description: Problem coupling several other problems to which radiation coupling is added (for semi transparent gas).

You have to associate a modele_rayo_semi_transp

You have to add a radiative term source in energy equation

Warning: Calculation with semi transparent gas model may lead to divergence when high temperature differences are used. Indeed, the calculation of the stability time step of the equation does not take in account the source term. In semi transparent gas model, energy equation source term depends strongly of temperature via irradiance and stability is not guaranteed by the calculated time step. Reducing the facsec of the time scheme is a good tip to reach convergence when divergence is encountered.

```
See also: probleme couple (4.20)
Usage:
pb_couple_rayo_semi_transp str
Read str {
     [groupes list_list_nom]
}
where
   • groupes list_list_nom (4.21) for inheritance: { groupes { { pb1, pb2 }, { pb3, pb4 } } }
4.27
       Pb_hydraulique
Description: Resolution of the Navier-Stokes equations.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19) Pb_Rayo_Hydraulique (4.12)
Usage:
pb_hydraulique str
Read str {
     fluide incompressible fluide incompressible
     navier_stokes_standard navier_stokes_standard
     [ milieu milieu_base]
     [constituant constituant]
     [ Post _processing|postraitement _corps_postraitement]
     [ Post processings|postraitements post processings]
      [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [resume last time format file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- navier_stokes_standard navier_stokes_standard (5.52): Navier-Stokes equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.28 Pb_hydraulique_ale

where

```
Description: Resolution of hydraulic problems for ALE
```

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.19)
Usage:
pb_hydraulique_ALE str
Read str {
     fluide_incompressible fluide_incompressible
     navier_stokes_standard_ALE navier_stokes_standard
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- navier_stokes_standard_ALE navier_stokes_standard (5.52): Navier-Stokes equations for ALE problems
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).

- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.29 Pb_hydraulique_aposteriori

where

Description: Modification of the pb_hydraulique problem in order to accept the estimateur_aposteriori post-processing.

```
Keyword Discretize should have already been used to read the object. See also: Pb_base (4.19)
```

```
Usage:

pb_hydraulique_aposteriori str

Read str {

fluide_incompressible fluide_incompressible
    Navier_Stokes_Aposteriori navier_stokes_aposteriori
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
```

• **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.

- Navier_Stokes_Aposteriori navier_stokes_aposteriori (5.17): Modification of the Navier_Stokes_standard class in order to accept the estimateur_aposteriori post-processing. To post-process estimateur_aposteriori, add this keyword into the list of fields to be post-processed. This estimator whill generate a map of aposteriori error estimators; it is defined on each mesh cell and is a measure of the local discretisation error. This will serve for adaptive mesh refinement
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.30 Pb hydraulique concentration

[liste_de_postraitements liste_post_ok]

Description: Resolution of Navier-Stokes/multiple constituent transport equations.

```
Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.19)

Usage:
pb_hydraulique_concentration str

Read str {

fluide_incompressible fluide_incompressible
[constituant constituant]
[navier_stokes_standard navier_stokes_standard]
[convection_diffusion_concentration convection_diffusion_concentration]
[milieu milieu_base]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
```

```
[ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.52): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.31): Constituent transport vectorial equation (concentration diffusion convection).
- milieu milieu base (22) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.31 Pb hydraulique concentration scalaires passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.24)

Usage: pb_hydraulique_concentration_scalaires_passifs str

Read str {
```

```
fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier stokes standard navier stokes standard]
     [convection_diffusion_concentration convection_diffusion_concentration]
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- constituent constituent (22.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.52): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.31): Constituent transport equations (concentration diffusion convection).
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- resume_last_time format_file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved

files).

where

4.32 Pb_hydraulique_concentration_turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.19) Usage: pb hydraulique concentration turbulent str Read str { **fluide_incompressible** *fluide_incompressible* [constituant constituant] [navier_stokes_turbulent navier_stokes_turbulent] [convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent] [milieu milieu_base] [Post processing|postraitement corps postraitement] [Post_processings|postraitements post_processings] [liste de postraitements liste post ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde_simple format_file] [reprise format file] [resume_last_time format_file] }

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.53): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.33): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.33 Pb_hydraulique_concentration_turbulent_scalaires_passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.24) pb_hydraulique_concentration_turbulent_scalaires_passifs str Read str { fluide incompressible fluide incompressible [constituant constituant] [navier stokes turbulent navier stokes turbulent] $[\ \textbf{convection_diffusion_concentration_turbulent}\ \ \textit{convection_diffusion_concentration_turbulent}]$ equations_scalaires_passifs listeqn [milieu milieu base] [Post_processing|postraitement corps_postraitement] [Post_processings|postraitements post_processings] [liste_de_postraitements liste_post_ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde simple format file] [reprise format_file] [resume_last_time format_file] } where

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.53): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_concentration_turbulent** *convection_diffusion_concentration_turbulent* (5.33): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This

kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.

- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.34 Pb_hydraulique_melange_binaire_qc

navier_stokes_QC navier_stokes_qc

[milieu milieu_base]

Description: Resolution of a binary mixture problem for a quasi-compressible fluid with an iso-thermal condition.

```
Keywords for the unknowns other than pressure, velocity, fraction_massique are:
masse_volumique: density
pression: reduced pressure
pression_tot: total pressure.

Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19)

Usage:
pb_hydraulique_melange_binaire_QC str
Read str {

fluide_quasi_compressible fluide_quasi_compressible
    [constituant]
```

[Post_processing|postraitement corps_postraitement]

convection_diffusion_espece_binaire_QC convection_diffusion_espece_binaire_gc

```
[ liste_de_postraitements liste_post_ok]
    [ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (22.7): The fluid medium associated with the problem.
- constituant constituant (22.1): The various constituants associated to the problem.
- navier_stokes_QC navier_stokes_qc (5.45): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_espece_binaire_QC** *convection_diffusion_espece_binaire_qc* (5.34): Species conservation equation for a binary quasi-compressible fluid.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.35 Pb_hydraulique_melange_binaire_wc

Description: Resolution of a binary mixture problem for a weakly-compressible fluid with an iso-thermal condition.

Keywords for the unknowns other than pressure, velocity, fraction_massique are :

masse_volumique : density pression : reduced pressure pression_tot : total pressure

pression hydro: hydro-static pressure

```
pression_eos: pressure used in state equation.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19)
Usage:
pb hydraulique melange binaire WC str
Read str {
     fluide weakly compressible fluide weakly compressible
     navier_stokes_WC navier_stokes_wc
     convection_diffusion_espece_binaire_WC convection_diffusion_espece_binaire_wc
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_weakly_compressible** *fluide_weakly_compressible* (22.12): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.46): Navier-Stokes equation for a weakly-compressible fluid.
- **convection_diffusion_espece_binaire_WC** *convection_diffusion_espece_binaire_wc* (5.35): Species conservation equation for a binary weakly-compressible fluid.
- milieu milieu base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.36 Pb_hydraulique_melange_binaire_turbulent_qc

Description: Resolution of a turbulent binary mixture problem for a quasi-compressible fluid with an isothermal condition.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19)
Usage:
pb_hydraulique_melange_binaire_turbulent_qc str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier_stokes_turbulent_qc navier_stokes_turbulent_qc
     Convection_Diffusion_Espece_Binaire_Turbulent_QC convection_diffusion_espece_binaire_turbulent-
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [resume last time format file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (22.7): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.54): Navier-Stokes equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- Convection_Diffusion_Espece_Binaire_Turbulent_QC convection_diffusion_espece_binaire_turbulent_qc (5.9): Species conservation equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.37 Pb_hydraulique_turbulent

Description: Resolution of Navier-Stokes equations with turbulence modelling.

```
Keyword Discretize should have already been used to read the object. See also: Pb_base (4.19) Pb_Rayo_Hydraulique_Turbulent (4.13)

Usage:
pb_hydraulique_turbulent str

Read str {

fluide_incompressible fluide_incompressible
    navier_stokes_turbulent navier_stokes_turbulent
    [ milieu milieu_base]
    [ constituant constituant]
    [ Post_processing|postraitement corps_postraitement]
    [ Post_processings|postraitements post_processings]
```

[liste_de_postraitements liste_post_ok]
[liste_postraitements liste_post]
[sauvegarde format file]

[sauvegarde_simple format_file]

[resume_last_time format_file]

[reprise format_file]

where

```
• fluide_incompressible fluide_incompressible (22.5): The fluid medium associated with the problem.
```

- navier_stokes_turbulent navier_stokes_turbulent (5.53): Navier-Stokes equations as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).

- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.38 Pb_mg

Description: Multi-grid problem.

Keyword Discretize should have already been used to read the object.

See also: pb_gen_base (4)

Usage:

pb_mg

4.39 Pb phase field

Description: Problem to solve local instantaneous incompressible-two-phase-flows. Complete description of the Phase Field model for incompressible and immiscible fluids can be found into this PDF: TRUST_ROOT/doc/TRUST/phase_field_non_miscible_manuel.pdf

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.19)
```

```
Usage:
```

```
pb_phase_field str
Read str {
```

```
fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_phase_field navier_stokes_phase_field]

[ convection_diffusion_phase_field convection_diffusion_phase_field]

[ milieu milieu_base]

[ Post_processing|postraitement corps_postraitement]

[ Post_processings|postraitements post_processings]
```

```
[ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_phase_field navier_stokes_phase_field (5.49): Navier Stokes equation for the Phase Field problem.
- **convection_diffusion_phase_field** *convection_diffusion_phase_field* (5.39): Cahn-Hilliard equation of the Phase Field problem. The unknown of this equation is the concentration C.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- Post_processing|postraitement corps_postraitement (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.40 Pb_post

```
Description: not_set

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.19)

Usage:
pb_post str
Read str {
```

```
[ milieu milieu_base]
  [ constituant constituant]
  [ Post_processing|postraitement corps_postraitement]
  [ Post_processings|postraitements post_processings]
  [ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
```

- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.41 Pb_thermohydraulique

Description: Resolution of thermohydraulic problem.

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.19) Pb_Thermohydraulique_sensibility (4.18) Pb_Rayo_Thermohydraulique (4.14)

Usage: **pb_thermohydraulique** str **Read** str {

```
[ fluide_incompressible | fluide_incompressible ]
     [fluide_ostwald]
     [fluide sodium liquide fluide sodium liquide]
     [ fluide_sodium_gaz | fluide_sodium_gaz]
     [ navier stokes standard navier stokes standard]
     [convection_diffusion_temperature convection_diffusion_temperature]
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem (only one possibility).
- **fluide_ostwald** *fluide_ostwald* (22.6): The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_liquide** *fluide_sodium_liquide* (22.11): The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_gaz** *fluide_sodium_gaz* (22.10): The fluid medium associated with the problem (only one possibility).
- navier_stokes_standard navier_stokes_standard (5.52): Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.40): Energy equation (temperature diffusion convection).
- milieu milieu base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.42 Pb_thermohydraulique_qc

```
Description: Resolution of thermo-hydraulic problem for a quasi-compressible fluid.
Keywords for the unknowns other than pressure, velocity, temperature are:
masse_volumique : density
enthalpie: enthalpy
pression: reduced pressure
pression_tot: total pressure.
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.19) Pb Rayo Thermohydraulique QC (4.15)
Usage:
pb_thermohydraulique_QC str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier_stokes_QC navier_stokes_qc
     convection diffusion chaleur QC convection diffusion chaleur qc
     [ milieu milieu base]
     [constituant constituant]
      [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
      [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
      [ resume_last_time format_file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (22.7): The fluid medium associated with the problem.
- navier_stokes_QC navier_stokes_qc (5.45): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.28): Temperature equation for a quasi-compressible fluid.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This

block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.43 Pb_thermohydraulique_wc

```
Description: Resolution of thermo-hydraulic problem for a weakly-compressible fluid.
Keywords for the unknowns other than pressure, velocity, temperature are:
masse_volumique: density
pression: reduced pressure
pression tot: total pressure
pression_hydro: hydro-static pressure
pression eos: pressure used in state equation.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19)
Usage:
pb thermohydraulique WC str
Read str {
     fluide_weakly_compressible fluide_weakly_compressible
     navier stokes WC navier stokes wc
     convection_diffusion_chaleur_WC convection_diffusion_chaleur_wc
     [milieu milieu base]
     [constituant constituant]
      [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_weakly_compressible** *fluide_weakly_compressible* (22.12): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.46): Navier-Stokes equation for a weakly-compressible fluid.
- **convection_diffusion_chaleur_WC** *convection_diffusion_chaleur_wc* (5.29): Temperature equation for a weakly-compressible fluid.
- milieu milieu base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.44 Pb thermohydraulique concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

```
Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.19)

Usage:

pb_thermohydraulique_concentration str

Read str {

fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_standard navier_stokes_standard]

[ convection_diffusion_concentration convection_diffusion_concentration]

[ convection_diffusion_temperature convection_diffusion_temperature]

[ milieu milieu_base]

[ Post_processinglpostraitement corps_postraitement]
```

```
[ Post_processings|postraitements post_processings]
  [ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.52): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.31): Constituent transport equations (concentration diffusion convection).
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.40): Energy equation (temperature diffusion convection).
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.45 Pb_thermohydraulique_concentration_scalaires_passifs

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object.

```
See also: pb_avec_passif (4.24)
Usage:
pb_thermohydraulique_concentration_scalaires_passifs str
Read str {
     fluide incompressible fluide incompressible
     [constituant constituant]
     [ navier stokes standard navier stokes standard]
     [convection diffusion concentration convection diffusion concentration]
     [ convection_diffusion_temperature | convection_diffusion_temperature]
     equations_scalaires_passifs listeqn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.52): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.31): Constituent transport equations (concentration diffusion convection).
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.40): Energy equations (temperature diffusion convection).
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu base (22) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.

- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.46 Pb_thermohydraulique_concentration_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: Pb base (4.19) Usage: pb_thermohydraulique_concentration_turbulent str Read str { fluide_incompressible fluide_incompressible [constituant constituant] [navier stokes turbulent navier stokes turbulent] [convection diffusion concentration turbulent] convection diffusion concentration turbulent] [convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent] [milieu milieu base] [Post_processing|postraitement corps_postraitement] [Post processings|postraitements post processings] [liste_de_postraitements liste_post_ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde_simple format_file] [reprise format_file] [resume_last_time format_file] }

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- constituant constituant (22.1): Constituents.

where

- navier_stokes_turbulent navier_stokes_turbulent (5.53): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.33): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.43): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.47 Pb thermohydraulique concentration turbulent scalaires passifs

Keyword Discretize should have already been used to read the object.

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

```
See also: pb avec passif (4.24)
pb_thermohydraulique_concentration_turbulent_scalaires_passifs str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_turbulent navier_stokes_turbulent]
     [convection diffusion concentration turbulent] convection diffusion concentration turbulent]
     [ convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]
     equations scalaires passifs listegn
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
```

```
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.53): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.33): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.43): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.48 Pb_thermohydraulique_especes_qc

Description: Resolution of thermo-hydraulic problem for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: pb_avec_passif (4.24)
Usage:
pb_thermohydraulique_especes_QC str
Read str {
     fluide quasi compressible fluide quasi compressible
     navier stokes QC navier stokes qc
     convection_diffusion_chaleur_QC convection_diffusion_chaleur_qc
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [resume last time format file]
}
where
```

- fluide_quasi_compressible fluide_quasi_compressible (22.7): The fluid medium associated with the problem.
- navier stokes QC navier stokes qc (5.45): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.28): Temperature equation for a quasi-compressible fluid.
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- constituant constituant (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file

created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.49 Pb_thermohydraulique_especes_wc

Description: Resolution of thermo-hydraulic problem for a multi-species weakly-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
```

```
See also: pb_avec_passif (4.24)
pb thermohydraulique especes WC str
Read str {
     fluide_weakly_compressible fluide_weakly_compressible
     navier stokes WC navier stokes wc
     convection_diffusion_chaleur_WC convection_diffusion_chaleur_wc
     equations_scalaires_passifs listeqn
     [ milieu milieu_base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_weakly_compressible** *fluide_weakly_compressible* (22.12): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.46): Navier-Stokes equation for a weakly-compressible fluid
- **convection_diffusion_chaleur_WC** *convection_diffusion_chaleur_wc* (5.29): Temperature equation for a weakly-compressible fluid.
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).

- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.50 Pb_thermohydraulique_especes_turbulent_qc

Description: Resolution of turbulent thermohydraulic problem under low Mach number with passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_passif (4.24)
Usage:
pb thermohydraulique especes turbulent qc str
Read str {
     fluide quasi compressible fluide quasi compressible
     navier stokes turbulent qc navier stokes turbulent qc
     convection diffusion chaleur turbulent qc convection diffusion chaleur turbulent qc
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (22.7): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.54): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- **convection_diffusion_chaleur_turbulent_qc** convection_diffusion_chaleur_turbulent_qc (5.30): Energy equation under low Mach number as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.51 Pb_thermohydraulique_scalaires_passifs

Description: Resolution of thermohydraulic problem, with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.24)

Usage:

pb_thermohydraulique_scalaires_passifs str
Read str {

fluide_incompressible *fluide_incompressible*

```
[constituant constituant]
[navier_stokes_standard navier_stokes_standard]
[convection_diffusion_temperature convection_diffusion_temperature]
equations_scalaires_passifs listeqn
[milieu milieu_base]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
[liste_de_postraitements liste_post_ok]
[liste_de_postraitements liste_post]
[sauvegarde format_file]
[sauvegarde_simple format_file]
[reprise format_file]
[resume_last_time format_file]
]
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- **constituant** *constituant* (22.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.52): Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.40): Energy equations (temperature diffusion convection).
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.52 Pb_thermohydraulique_turbulent

Description: Resolution of thermohydraulic problem, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.19) Pb_Rayo_Thermohydraulique_Turbulent (4.16)
Usage:
pb thermohydraulique turbulent str
Read str {
     fluide_incompressible fluide_incompressible
     navier_stokes_turbulent navier_stokes_turbulent
     convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [resume last time format file]
}
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- navier_stokes_turbulent navier_stokes_turbulent (5.53): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.43): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.

where

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file

created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.53 Pb_thermohydraulique_turbulent_qc

```
Description: Resolution of turbulent thermohydraulic problem under low Mach number.
Warning: Available for VDF and VEF P0/P1NC discretization only.
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.19) Pb Rayo Thermohydraulique Turbulent QC (4.17)
Usage:
pb thermohydraulique turbulent qc str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier_stokes_turbulent_qc navier_stokes_turbulent_qc
     convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
```

- fluide_quasi_compressible fluide_quasi_compressible (22.7): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.54): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc (5.30): Energy equation under low Mach number as well as the associated turbulence model equations.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.

where

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This

block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.54 Pb_thermohydraulique_turbulent_scalaires_passifs

Description: Resolution of thermohydraulic problem, with turbulence modelling and with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_passif (4.24)
pb_thermohydraulique_turbulent_scalaires_passifs str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_turbulent navier_stokes_turbulent]
     [convection_diffusion_temperature_turbulent] convection_diffusion_temperature_turbulent]
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (22.5): The fluid medium associated with the problem.
- constituent constituent (22.1): Constituents.

- navier_stokes_turbulent navier_stokes_turbulent (5.53): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.43): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.25) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.55 Pbc_med

Description: Allows to read med files and post-process them.

```
See also: pb_gen_base (4)

Usage:
pbc_med list_info_med
where

• list_info_med list_info_med (4.56)
```

4.56 List info med

Description: not_set

```
See also: listobj (37.4)

Usage:
{ object1, object2....}
list of info_med (4.56.1) separeted with,

4.56.1 Info_med

Description: not_set

See also: objet_lecture (38)

Usage:
file_med domaine pb_post
where

• file_med str: Name of the MED file.
• domaine str: Name of domain.
• pb_post pb_post (4.40)
```

4.57 Problem_read_generic

Description: The probleme_read_generic differs rom the rest of the TRUST code: The problem does not state the number of equations that are enclosed in the problem. As the list of equations to be solved in the generic read problem is declared in the data file and not pre-defined in the structure of the problem, each equation has to be distinctively associated with the problem with the Associate keyword.

See also: Pb_base (4.19) probleme_ft_disc_gen (4.59) Usage: problem_read_generic str Read str { [milieu milieu_base] [constituant constituant] [**Post_processing|postraitement** corps_postraitement] [Post_processings|postraitements post_processings] [liste_de_postraitements liste_post_ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde simple format file] [reprise format_file] [resume last time format file] } where

Keyword Discretize should have already been used to read the object.

- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (22.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements** post_processings (4.3) for inheritance: List of Postraitement objects (with name).

- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.58 Pb_couple_rayonnement

Description: This keyword is used to define a problem coupling several other problems to which radiation coupling is added.

```
See also: probleme_couple (4.20)

Usage:
pb_couple_rayonnement str
Read str {
      [groupes list_list_nom]
}
where

• groupes list_list_nom (4.21) for inheritance: { groupes { pb1 , pb2 } , { pb3 , pb4 } } }
```

4.59 Probleme_ft_disc_gen

Description: The generic Front-Tracking problem in the discontinuous version. It differs from the rest of the TRUST code: The problem does not state the number of equations that are enclosed in the problem. Two equations are compulsory: a momentum balance equation (alias Navier-Stokes equation) and an interface tracking equation. The list of equations to be solved is declared in the beginning of the data file. Another difference with more classical TRUST data file, lies in the fluids definition. The two-phase fluid (Fluide_Diphasique) is made with two usual single-phase fluids (Fluide_Incompressible). As the list of equations to be solved in the generic Front-Tracking problem is declared in the data file and not predefined in the structure of the problem, each equation has to be distinctively associated with the problem with the Associer keyword.

Keyword Discretize should have already been used to read the object.

```
Usage:

probleme_ft_disc_gen str

Read str {

[ milieu milieu_base]

[ Post_processing|postraitement corps_postraitement]

[ Post_processings|postraitements post_processings]

[ liste_de_postraitements liste_post_ok]

[ liste_postraitements liste_post]

[ sauvegarde format_file]

[ sauvegarde_simple format_file]

[ reprise format_file]

[ resume_last_time format_file]

}

where
```

- milieu milieu_base (22) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

5 mor_eqn

```
Description: Class of equation pieces (morceaux d'equation).

See also: objet_u (39) eqn_base (5.44)

Usage:
```

5.1 Conduction

```
Description: Heat equation.
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44)
Usage:
Conduction str
Read str {
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.2 Bloc_convection

Description: not_set

See also: objet_lecture (38)

Usage:

aco operateur acof

where

- aco str into ['{'}]: Opening curly bracket.
- operateur convection_deriv (5.2.1)
- acof str into ['}']: Closing curly bracket.

5.2.1 Convection_deriv

Description: not_set

See also: objet_lecture (38) amont (5.2.2) amont_old (5.2.3) centre (5.2.4) centre4 (5.2.5) centre_old (5.2.6) di_12 (5.2.7) ef (5.2.8) muscl3 (5.2.10) ef_stab (5.2.11) generic (5.2.14) kquick (5.2.15) muscl (5.2.16) muscl_old (5.2.17) muscl_new (5.2.18) negligeable (5.2.19) quick (5.2.20) ale (5.2.21) btd (5.2.22) supg (5.2.23) RT (5.2.24) sensibility (5.2.25)

Usage:

convection_deriv

5.2.2 Amont

Description: Keyword for upwind scheme for VDF or VEF discretizations. In VEF discretization equivalent to generic amont for TRUST version 1.5 or later. The previous upwind scheme can be used with the obsolete in future amont_old keyword.

See also: convection_deriv (5.2.1)

Usage:

amont

5.2.3 Amont_old

Description: Only for VEF discretization, obsolete keyword, see amont.

See also: convection_deriv (5.2.1)

Usage:

amont_old

5.2.4 Centre

Description: For VDF and VEF discretizations.

See also: convection_deriv (5.2.1)

Usage:

centre

5.2.5 Centre4

```
Description: For VDF and VEF discretizations.
```

See also: convection_deriv (5.2.1)

Usage: centre4

5.2.6 Centre_old

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

Usage: centre old

5.2.7 Di_l2

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

Usage: di 12

5.2.8 Ef

Description: For VEF calculations, a centred convective scheme based on Finite Elements formulation can be called through the following data:

Convection { EF transportant_bar val transporte_bar val antisym val filtrer_resu val }

This scheme is 2nd order accuracy (and get better the property of kinetic energy conservation). Due to possible problems of instabilities phenomena, this scheme has to be coupled with stabilisation process (see Source_Qdm_lambdaup). These two last data are equivalent from a theoretical point of view in variationnal writing to: div((u. grad ub , vb) - (u. grad vb, ub)), where vb corresponds to the filtered reference test functions.

Remark:

This class requires to define a filtering operator: see solveur_bar

See also: convection_deriv (5.2.1)

Usage:

```
ef [ mot1 ] [ bloc_ef ]
```

where

- mot1 str into ['defaut_bar']: equivalent to transportant_bar 0 transporte_bar 1 filtrer_resu 1 antisym
- **bloc_ef** *bloc_ef* (5.2.9)

```
5.2.9 Bloc_ef
Description: not_set
See also: objet_lecture (38)
Usage:
mot1 val1 mot2 val2 mot3 val3 mot4 val4
where
   • mot1 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
   • val1 int into [0, 1]
   • mot2 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
   • val2 int into [0, 1]
   • mot3 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
   • val3 int into [0, 1]
   • mot4 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
   • val4 int into [0, 1]
5.2.10 Muscl3
Description: Keyword for a scheme using a ponderation between muscl and center schemes in VEF.
See also: convection_deriv (5.2.1)
Usage:
muscl3 {
     [alpha float]
where
   • alpha float: To weight the scheme centering with the factor double (between 0 (full centered) and 1
     (muscl), by default 1).
5.2.11 Ef stab
Description: Keyword for a VEF convective scheme.
See also: convection_deriv (5.2.1)
Usage:
ef_stab {
     [ alpha float]
     [test int]
     [tdivu]
     [ old ]
     [volumes etendus]
     [ volumes_non_etendus ]
     [ amont_sous_zone str]
     [ alpha_sous_zone listsous_zone_valeur]
}
```

where

- **alpha** *float*: To weight the scheme centering with the factor double (between 0 (full centered) and 1 (mix between upwind and centered), by default 1). For scalar equation, it is adviced to use alpha=1 and for the momentum equation, alpha=0.2 is adviced.
- test int: Developer option to compare old and new version of EF_stab
- **tdivu**: To have the convective operator calculated as div(TU)-TdivU(=UgradT).
- old : To use old version of EF_stab scheme (default no).
- volumes_etendus: Option for the scheme to use the extended volumes (default, yes).
- volumes non etendus: Option for the scheme to not use the extended volumes (default, no).
- amont_sous_zone *str*: Option to degenerate EF_stab scheme into Amont (upwind) scheme in the sub zone of name sz_name. The sub zone may be located arbitrarily in the domain but the more often this option will be activated in a zone where EF_stab scheme generates instabilities as for free outlet for example.
- **alpha_sous_zone** *listsous_zone_valeur* (5.2.12): Option to change locally the alpha value on N subzones named sub_zone_name_I. Generally, it is used to prevent from a local divergence by increasing locally the alpha parameter.

5.2.12 Listsous zone valeur

Description: List of groups of two words.

```
See also: listobj (37.4)

Usage:
n object1 object2 ....
list of sous_zone_valeur (5.2.13)
```

5.2.13 Sous_zone_valeur

```
Description: Two words.

See also: objet_lecture (38)

Usage:
sous_zone valeur
```

sous_zone str: sous zonevaleur float: value

5.2.14 Generic

where

Description: Keyword for generic calling of upwind and muscl convective scheme in VEF discretization. For muscl scheme, limiters and order for fluxes calculations have to be specified. The available limiters are: minmod - vanleer -vanalbada - chakravarthy - superbee, and the order of accuracy is 1 or 2. Note that chakravarthy is a non-symmetric limiter and superbee may engender results out of physical limits. By consequence, these two limiters are not recommended.

```
Examples: convection { generic amont } convection { generic muscl minmod 1 }
```

convection { generic muscl vanleer 2 }

In case of results out of physical limits with muscl scheme (due for instance to strong non-conformal velocity flow field), user can redefine in data file a lower order and a smoother limiter, as : convection { generic muscl minmod 1 }

```
Usage:
generic type [limiteur][ordre][alpha]
where
   • type str into ['amont', 'muscl', 'centre']: type of scheme
   • limiteur str into ['minmod', 'vanleer', 'vanalbada', 'chakravarthy', 'superbee']: type of limiter
   • ordre int into [1, 2, 3]: order of accuracy
   • alpha float: alpha
5.2.15 Kquick
Description: Only for VEF discretization.
See also: convection_deriv (5.2.1)
Usage:
kquick
5.2.16 Muscl
Description: Keyword for muscl scheme in VEF discretization equivalent to generic muscl vanleer 2 for the
1.5 version or later. The previous muscl scheme can be used with the obsolete in future muscl_old keyword.
See also: convection_deriv (5.2.1)
Usage:
muscl
5.2.17 Muscl_old
Description: Only for VEF discretization.
See also: convection_deriv (5.2.1)
Usage:
muscl_old
5.2.18 Muscl new
Description: Only for VEF discretization.
See also: convection_deriv (5.2.1)
Usage:
muscl_new
5.2.19 Negligeable
Description: For VDF and VEF discretizations. Suppresses the convection operator.
```

See also: convection_deriv (5.2.1)

See also: convection_deriv (5.2.1)

```
Usage:
negligeable
5.2.20 Quick
Description: Only for VDF discretization.
See also: convection_deriv (5.2.1)
Usage:
quick
5.2.21 Ale
Description: A convective scheme for ALE (Arbitrary Lagrangian-Eulerian) framework.
See also: convection_deriv (5.2.1)
Usage:
ale opconv
where
   • opconv bloc_convection (5.2): Choice between: amont and muscl
      Example: convection { ALE { amont } }
5.2.22 Btd
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
btd {
     btd float
     facteur float
}
where
   • btd float
   • facteur float
5.2.23 Supg
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
supg {
```

facteur float

```
}
where
   • facteur float
5.2.24 Rt
Description: Keyword to use RT projection for P1NCP0RT discretization
See also: convection_deriv (5.2.1)
Usage:
RT
5.2.25 Sensibility
Description: A convective scheme for the sensibility problem.
See also: convection_deriv (5.2.1)
Usage:
sensibility opconv
where
   • opconv bloc convection (5.2): Choice between: amont and muscl
      Example: convection { Sensibility { amont } }
5.3 Bloc diffusion
Description: not_set
See also: objet_lecture (38)
Usage:
aco [operateur][op_implicite] acof
where
   • aco str into ['{'}]: Opening curly bracket.
   • operateur diffusion_deriv (5.3.1): if none is specified, the diffusive scheme used is a 2nd-order
      scheme.
   • op_implicite op_implicite (5.3.12): To have diffusive implicitation, it use Uzawa algorithm. Very
      useful when viscosity has large variations.
   • acof str into ['}']: Closing curly bracket.
5.3.1 Diffusion_deriv
Description: not_set
See also: objet_lecture (38) negligeable (5.3.2) p1b (5.3.3) p1ncp1b (5.3.4) stab (5.3.5) standard (5.3.6)
option (5.3.8) tenseur_Reynolds_externe (5.3.9) turbulente (5.3.10) tau (5.3.11)
Usage:
diffusion_deriv
```

5.3.2 Negligeable

```
Description: the diffusivity will not taken in count
See also: diffusion_deriv (5.3.1)
Usage:
negligeable
5.3.3 P1b
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
p<sub>1</sub>b
5.3.4 P1ncp1b
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
5.3.5 Stab
Description: keyword allowing consistent and stable calculations even in case of obtuse angle meshes.
See also: diffusion_deriv (5.3.1)
Usage:
stab {
      [standard int]
      [ info int]
      [ new_jacobian int]
      [ nu int]
      [ nut int]
      [ nu_transp int]
      [ nut_transp int]
```

- **standard** *int*: to recover the same results as calculations made by standard laminar diffusion operator. However, no stabilization technique is used and calculations may be unstable when working with obtuse angle meshes (by default 0)
- **info** *int*: developer option to get the stabilizing ratio (by default 0)
- **new_jacobian** *int*: when implicit time schemes are used, this option defines a new jacobian that may be more suitable to get stationary solutions (by default 0)
- **nu** *int*: (respectively nut 1) takes the molecular viscosity (resp. eddy viscosity) into account in the velocity gradient part of the diffusion expression (by default nu=1 and nut=1)
- nut int

} where

- nu_transp int: (respectively nut_transp 1) takes the molecular viscosity (resp. eddy viscosity) into account in the transposed velocity gradient part of the diffusion expression (by default nu_transp=0 and nut_transp=1)
- nut_transp int

5.3.6 Standard

Description: A new keyword, intended for LES calculations, has been developed to optimise and parameterise each term of the diffusion operator. Remark:

- 1. This class requires to define a filtering operator : see solveur_bar
- 2. The former (original) version: diffusion { } -which omitted some of the term of the diffusion operatorcan be recovered by using the following parameters in the new class : diffusion { standard grad_Ubar 0 nu 1 nut 1 nu_transp 0 nut_transp 1 filtrer_resu 0}.

See also: diffusion_deriv (5.3.1)

Usage:

```
standard [ mot1 ] [ bloc_diffusion_standard ] where
```

- mot1 str into ['defaut_bar']: equivalent to grad_Ubar 1 nu 1 nut 1 nu_transp 1 nut_transp 1 filtrer_resu 1
- bloc_diffusion_standard bloc_diffusion_standard (5.3.7)

5.3.7 Bloc_diffusion_standard

Description: grad_Ubar 1 makes the gradient calculated through the filtered values of velocity (P1-conform). nu 1 (respectively nut 1) takes the molecular viscosity (eddy viscosity) into account in the velocity gradient part of the diffusion expression.

nu_transp 1 (respectively nut_transp 1) takes the molecular viscosity (eddy viscosity) into account according in the TRANSPOSED velocity gradient part of the diffusion expression.

filtrer_resu 1 allows to filter the resulting diffusive fluxes contribution.

See also: objet_lecture (38)

Usage:

mot1 val1 mot2 val2 mot3 val3 mot4 val4 mot5 val5 mot6 val6 where

```
mot1 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val1 int into [0, 1]
mot2 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val2 int into [0, 1]
mot3 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val3 int into [0, 1]
mot4 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val4 int into [0, 1]
mot5 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val5 int into [0, 1]
mot6 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val6 int into [0, 1]
```

```
5.3.8 Option
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
option bloc_lecture
where
   • bloc_lecture bloc_lecture (3.6)
5.3.9
     Tenseur_reynolds_externe
Description: Estimate the values of the Reynolds tensor.
See also: diffusion_deriv (5.3.1)
Usage:
tenseur_Reynolds_externe
5.3.10 Turbulente
Description: Turbulent diffusion for tau equation (see problem multi-phase)
See also: diffusion_deriv (5.3.1)
Usage:
turbulente [type_diffusion][bloc]
where
   • type_diffusion str into ['k_omega', 'k_tau', 'SGDH']: Specify for which equation the diffusion is
      applied
   • bloc bloc_lecture (3.6)
5.3.11 Tau
Description: Turbulent diffusion for tau equation (see problem multi-phase)
See also: diffusion_deriv (5.3.1)
Usage:
tau [type_diffusion][bloc]
where
   • type_diffusion str into ['k_omega', 'k_tau', 'SGDH']: Specify for which equation the diffusion is
      applied
   • bloc bloc_lecture (3.6)
5.3.12 Op_implicite
Description: not_set
```

See also: objet_lecture (38)

```
5.4 Condinits
Description: Initial conditions.
See also: listobj (37.4)
Usage:
{ object1 object2 .... }
list of condinit (5.4.1)
5.4.1 Condinit
Description: Initial condition.
See also: objet_lecture (38)
Usage:
nom ch
where
   • nom str: Name of initial condition field.
   • ch champ_base (16.1): Type field and the initial values.
5.5 Sources
Description: The sources.
See also: listobj (37.4)
Usage:
{ object1, object2.... }
list of source_base (33) separeted with,
5.6 Ecrire_fichier_xyz_valeur_param
Description: not_set
Keyword Discretize should have already been used to read the object.
See also: listobj (37.4)
Usage:
n object1, object2....
list of ecrire_fichier_xyz_valeur_item (5.6.1) separeted with,
```

Usage:

where

implicite mot solveur

implicite str into ['implicite']mot str into ['solveur']

• solveur_sys_base (11.18)

5.6.1 Ecrire_fichier_xyz_valeur_item

Description: To write the values of a field for some boundaries in a text file.

The name of the files is pb_name_field_name_time.dat

Several Ecrire_fichier_xyz_valeur keywords may be written into an equation to write several fields. This kind of files may be read by Champ_don_lu or Champ_front_lu for example.

See also: objet_lecture (38)

Usage:
name dt_ecrire_fic [bords]
where

- name str: Name of the field to write (Champ_Inc, Champ_Fonc or a post_processed field).
- dt_ecrire_fic float: Time period for printing in the file.
- **bords** bords ecrire (5.6.2): to post-process only on some boundaries

5.6.2 Bords_ecrire

Description: not_set

See also: objet_lecture (38)

Usage:

chaine bords where

- chaine str into ['bords']
- **bords** *n word1 word2 ... wordn*: Keyword to post-process only on some boundaries : bords nb bords boundary1 ... boundaryn

where

nb_bords: number of boundaries

boundary1 ... boundaryn: name of the boundaries.

5.7 Parametre_equation_base

Description: Basic class for parametre_equation

See also: objet_lecture (38) parametre_implicite (5.7.1) parametre_diffusion_implicite (5.7.2)

Usage:

5.7.1 Parametre_implicite

Description: Keyword to change for this equation only the parameter of the implicit scheme used to solve the problem.

```
See also: parametre_equation_base (5.7)
```

Usage:

```
parametre_implicite {
```

```
[ seuil_convergence_implicite float] [ seuil_convergence_solveur float] [ solveur solveur_sys_base]
```

```
[ resolution_explicite ]
    [ equation_non_resolue ]
    [ equation_frequence_resolue str]
}
where
```

- **seuil_convergence_implicite** *float*: Keyword to change for this equation only the value of seuil_convergence_implicite used in the implicit scheme.
- **seuil_convergence_solveur** *float*: Keyword to change for this equation only the value of seuil_convergence_solveur used in the implicit scheme
- **solveur** *solveur_sys_base* (11.18): Keyword to change for this equation only the solver used in the implicit scheme
- resolution_explicite: To solve explicitly the equation whereas the scheme is an implicit scheme.
- equation_non_resolue : Keyword to specify that the equation is not solved.
- equation_frequence_resolue *str*: Keyword to specify that the equation is solved only every n time steps (n is an integer or given by a time-dependent function f(t)).

5.7.2 Parametre_diffusion_implicite

Description: To specify additional parameters for the equation when using impliciting diffusion

```
See also: parametre_equation_base (5.7)

Usage:
parametre_diffusion_implicite {

    [ crank int into [0, 1]]
    [ preconditionnement_diag int into [0, 1]]
    [ niter_max_diffusion_implicite int]
    [ seuil_diffusion_implicite float]
    [ solveur solveur_sys_base]
}

where
```

- **crank** *int into* [0, 1]: Use (1) or not (0, default) a Crank Nicholson method for the diffusion implicitation algorithm. Setting crank to 1 increases the order of the algorithm from 1 to 2.
- **preconditionnement_diag** *int into* [0, 1]: The CG used to solve the implicitation of the equation diffusion operator is not preconditioned by default. If this option is set to 1, a diagonal preconditionning is used. Warning: this option is not necessarily more efficient, depending on the treated case.
- **niter_max_diffusion_implicite** *int*: Change the maximum number of iterations for the CG (Conjugate Gradient) algorithm when solving the diffusion implicitation of the equation.
- **seuil_diffusion_implicite** *float*: Change the threshold convergence value used by default for the CG resolution for the diffusion implicitation of this equation.
- **solveur** *solveur_sys_base* (11.18): Method (different from the default one, Conjugate Gradient) to solve the linear system.

5.8 Convection_diffusion_concentration_turbulent_ft_disc

Description: equation_non_resolue

Keyword Discretize should have already been used to read the object.

See also: convection_diffusion_concentration_turbulent (5.33)

Usage:

```
Convection_Diffusion_Concentration_Turbulent_FT_Disc str
Read str {
```

```
[ equation interface str]
     phase int into [0, 1]
     [ option str]
     [ equations_source_chimie n word1 word2 ... wordn]
     [ modele_cinetique int]
     [ equation_nu_t str]
     [ constante_cinetique | float]
     [ modele_turbulence modele_turbulence_scal_base]
     [ nom_inconnue str]
     [ masse_molaire float]
     [alias str]
     [disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
where
```

- **equation_interface** *str*: his is the name of the interface tracking equation to watch. The scalar will not diffuse through the interface of this equation.
- phase int into [0, 1]: tells whether the scalar must be confined in phase 0 or in phase 1
- **option** *str*: Experimental features used to prevent the concentration to leak through the interface between phases due to numerical diffusion.

RIEN: do nothing

RAMASSE_MIETTES_SIMPLE: at each timestep, this algorithm takes all the mass located in the opposite phase and spreads it uniformly in the given phase.

- equations_source_chimie n word1 word2 ... wordn: This term specifies the name of the concentration equation of the reagents. It should be specified only in the bloc that concerns the convection/diffusion equation of the product.
- modele_cinetique *int*: This is the keyword that the user defines for the reaction model that he wants to use. Four reaction models are currently offered (1 to 4). Model 1 is the default one and is based on the laminar rate formulation. Model 2 employs an LES diffusive EDC formulation. Model 3 defines an LES variance formulation. Model 4 is a mix between models 2 and 3.
- equation_nu_t str: This specifies the name of the hydraulic equation used which defines the turbulent (basically SGS) viscosity.
- **constante_cinetique** *float*: This is the constant kinetic rate of the reaction and is used for the laminar model 1 only.
- **modele_turbulence** *modele_turbulence_scal_base* (25) for inheritance: Turbulence model to be used in the constituent transport equations. The only model currently available is Schmidt.
- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with

this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).

- masse molaire *float* for inheritance
- alias str for inheritance
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- **parametre_equation** *parametre_equation_base* (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.9 Convection_diffusion_espece_binaire_turbulent_qc

Description: Species conservation equation for a binary quasi-compressible fluid as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_espece_binaire_QC (5.34)

Usage:

```
[ modele_turbulence modele_turbulence_scal_base] [ disable_equation_residual str] [ convection bloc_convection] [ diffusion bloc_diffusion] [ boundary_conditions|conditions_limites condlims]
```

```
[ initial_conditions|conditions_initiales condinits]
  [ sources sources]
  [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
  [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
  [ parametre_equation parametre_equation_base]
  [ equation_non_resolue str]
}
```

- **modele_turbulence** *modele_turbulence_scal_base* (25): Turbulence model for the species conservation equation.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x n y n [z n] val n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.10 Convection diffusion temperature sensibility

Description: Energy sensitivity equation (temperature diffusion convection)

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_temperature (5.40)

Usage:

```
Convection_Diffusion_Temperature_sensibility str
Read str {
```

```
velocity_state bloc_lecture
     temperature_state bloc_lecture
     uncertain variable bloc lecture
     [ convection_sensibility convection_deriv]
     [ penalisation 12 ftd pp]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

• **velocity_state** *bloc_lecture* (3.6): Block to indicate the state problem. Between the braces, you must specify the key word 'pb_champ_evaluateur' then the name of the state problem and the velocity unknown

Example: velocity_state { pb_champ_evaluateur pb_state velocity }

• **temperature_state** *bloc_lecture* (3.6): Block to indicate the state problem. Between the braces, you must specify the key word 'pb_champ_evaluateur' then the name of the state problem and the temperature unknown

Example: velocity state { pb champ evaluateur pb state temperature }

• uncertain_variable *bloc_lecture* (3.6): Block to indicate the name of the uncertain variable. Between the braces, you must specify the name of the unknown variable (choice between: temperature, beta_th, boussinesq_temperature, Cp and lambda.

Example: uncertain_variable { temperature }

- **convection_sensibility** *convection_deriv* (5.2.1): Choice between: amont and muscl Example: convection { Sensibility { amont } }
- penalisation_l2_ftd pp (5.11) for inheritance: to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named : pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format:

```
n_valeur
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.11 Pp

```
Description: not_set

See also: listobj (37.4)

Usage:
{ object1 object2 .... }
list of penalisation_l2_ftd_lec (5.11.1)
```

5.11.1 Penalisation 12 ftd lec

Description: not_set

See also: objet_lecture (38)

Usage:

[postraiter_gradient_pression_sans_masse] [correction_matrice_projection_initiale] [correction_calcul_pression_initiale] [correction_vitesse_projection_initiale] [correction_matrice_pression] [matrice_pression_penalisee_H1] [correction_vitesse_modifie] [correction_pression_modifie] [gradient_pression_qdm_modifie] bord val where

- **postraiter_gradient_pression_sans_masse** *int*: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **correction_matrice_projection_initiale** *int*: (IBM advanced) fix matrix of initial projection for PDF
- correction_calcul_pression_initiale int: (IBM advanced) fix initial pressure computation for PDF
- correction_vitesse_projection_initiale int: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int: (IBM advanced) fix pressure matrix for PDF
- matrice_pression_penalisee_H1 int: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int: (IBM advanced) fix velocity for PDF
- correction_pression_modifie int: (IBM advanced) fix pressure for PDF
- **gradient_pression_qdm_modifie** *int*: (IBM advanced) fix pressure gradient
- bord str
- val n x1 x2 ... xn

5.12 Echelle_temporelle_turbulente

Description: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.44)

```
Usage:
```

```
Echelle_temporelle_turbulente str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.13 Energie_multiphase

Description: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.44) Usage: Energie_Multiphase str Read str { [disable_equation_residual str] [convection bloc_convection] [**diffusion** bloc_diffusion] [boundary_conditions|conditions_limites condlims] [initial_conditions|conditions_initiales condinits] [sources sources] [ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param] [ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param] [parametre_equation parametre_equation_base] [equation non resolue str] }

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

where

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.14 Energie_cinetique_turbulente

Description: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.44)
```

```
Energie_cinetique_turbulente str
Read str {
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire fichier xyz valeur bin ecrire fichier xyz valeur param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre equation parametre equation base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation non resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier Sokes Standard
{ equation non resolue (t>t0)*(t<t1) }
```

5.15 Energie_cinetique_turbulente_wit

Description: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn base (5.44)
```

Usage:

```
Energie cinetique turbulente WIT str
Read str {
     [disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur bin ecrire fichier xyz valeur param]
     [ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
The created files are named: pbname fieldname [boundaryname] time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.16 Masse_multiphase

Description: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.44)
```

```
Usage:
```

where

```
Masse_Multiphase str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.17 Navier_stokes_aposteriori

Description: Modification of the Navier_Stokes_standard class in order to accept the estimateur_aposteriori post-processing. To post-process estimateur_aposteriori, add this keyword into the list of fields to be post-processed. This estimator whill generate a map of aposteriori error estimators; it is defined on each mesh cell and is a measure of the local discretisation error. This will serve for adaptive mesh refinement

Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.52)

```
Usage:
```

```
Navier_Stokes_Aposteriori str
Read str {
```

```
[ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
_operateurs', 'sans_rien']]
[ projection_initiale int]
[solveur pression solveur sys base]
[solveur_bar solveur_sys_base]
[ dt projection deuxmots]
[ seuil_divU floatfloat]
[traitement particulier traitement particulier]
[ correction_matrice_projection_initiale int]
[correction calcul pression initiale int]
[ correction_vitesse_projection_initiale int]
[ correction_matrice_pression int]
[ correction_vitesse_modifie int]
[ gradient_pression_qdm_modifie int]
[correction pression modifie int]
[ postraiter_gradient_pression_sans_masse ]
[ disable_equation_residual str]
[convection bloc_convection]
[ diffusion bloc_diffusion]
[boundary_conditions|conditions_limites condlims]
```

```
[ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (|max(DivU)*dt|<value)
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.18 Deuxmots

```
Description: Two words.

See also: objet_lecture (38)

Usage:
mot_1 mot_2
where

• mot_1 str: First word.
• mot_2 str: Second word.
```

5.19 Floatfloat

```
Description: Two reals.

See also: objet_lecture (38)

Usage:
a b
where
```

```
a float: First real.b float: Second real.
```

5.20 Traitement_particulier

Description: Auxiliary class to post-process particular values.

```
See also: objet_lecture (38)

Usage:
aco trait_part acof
where

• aco str into ['{'}]: Opening curly bracket.
• trait_part traitement_particulier_base (5.20.1): Type of traitement_particulier.
• acof str into ['}']: Closing curly bracket.
```

5.20.1 Traitement_particulier_base

Description: Basic class to post-process particular values.

```
See also: objet_lecture (38) temperature (5.20.2) canal (5.20.3) ec (5.20.4) thi (5.20.5) chmoy_faceperio (5.20.7) profils_thermo (5.20.8) brech (5.20.9) ceg (5.20.10)
```

Usage:

5.20.2 Temperature

```
Description: not_set

See also: traitement_particulier_base (5.20.1)

Usage:
temperature {
    bord str
    direction int
}
where

• bord str
```

5.20.3 Canal

• direction int

Description: Keyword for statistics on a periodic plane channel.

```
See also: traitement_particulier_base (5.20.1)

Usage:
canal {
```

```
[ dt_impr_moy_spat float]
```

```
[ dt_impr_moy_temp float]
[ debut_stat float]
[ fin_stat float]
[ pulsation_w float]
[ nb_points_par_phase int]
[ reprise str]
}
where
```

- **dt_impr_moy_spat** *float*: Period to print the spatial average (default value is 1e6).
- **dt_impr_moy_temp** *float*: Period to print the temporal average (default value is 1e6).
- **debut_stat** *float*: Time to start the temporal averaging (default value is 1e6).
- fin_stat float: Time to end the temporal averaging (default value is 1e6).
- **pulsation_w** *float*: Pulsation for phase averaging (in case of pulsating forcing term) (no default value).
- **nb_points_par_phase** *int*: Number of samples to represent phase average all along a period (no default value).
- **reprise** *str*: val_moy_temp_xxxxxx.sauv : Keyword to resume a calculation with previous averaged quantities.

Note that for thermal and turbulent problems, averages on temperature and turbulent viscosity are automatically calculated. To resume a calculation with phase averaging, val_moy_temp_xxxxxx.sauv_phase file is required on the directory where the job is submitted (this last file will be then automatically loaded by TRUST).

5.20.4 Ec

Description: Keyword to print total kinetic energy into the referential linked to the domain (keyword Ec). In the case where the domain is moving into a Galilean referential, the keyword Ec_dans_repere_fixe will print total kinetic energy in the Galilean referential whereas Ec will print the value calculated into the moving referential linked to the domain

See also: traitement_particulier_base (5.20.1)

```
Usage:
ec {

[Ec]
[Ec_dans_repere_fixe]
[periode float]
}
where
```

- Ec
- Ec dans repere fixe
- **periode** *float*: periode is the keyword to set the period of printing into the file datafile_Ec.son or datafile_Ec_dans_repere_fixe.son.

5.20.5 Thi

Description: Keyword for a THI (Homogeneous Isotropic Turbulence) calculation.

See also: traitement_particulier_base (5.20.1) thi_thermo (5.20.6)

```
Usage:
thi {

    init_Ec int
    [val_Ec float]
    [facon_init int into [0, 1]]
    [calc_spectre int into [0, 1]]
    [periode_calc_spectre float]
    [3D int into [0, 1]]
    [1D int into [0, 1]]
    [conservation_Ec]
    [longueur_boite float]
}
where
```

- init_Ec int: Keyword to renormalize initial velocity so that kinetic energy equals to the value given by keyword val_Ec.
- val_Ec *float*: Keyword to impose a value for kinetic energy by velocity renormalizated if init_Ec value is 1.
- **facon_init** *int into* [0, 1]: Keyword to specify how kinetic energy is computed (0 or 1).
- calc_spectre int into [0, 1]: Calculate or not the spectrum of kinetic energy.

Files called Sorties_THI are written with inside four columns:

time:t global_kinetic_energy:Ec enstrophy:D skewness:S

If calc_spectre is set to 1, a file Sorties_THI2_2 is written with three columns :

time:t kinetic_energy_at_kc=32 enstrophy_at_kc=32

If calc_spectre is set to 1, a file spectre_xxxxx is written with two columns at each time xxxxx : frequency:k energy:E(k).

- periode_calc_spectre float: Period for calculating spectrum of kinetic energy
- 3D int into [0, 1]: Calculate or not the 3D spectrum
- 1D int into [0, 1]: Calculate or not the 1D spectrum
- **conservation_Ec**: If set to 1, velocity field will be changed as to have a constant kinetic energy (default 0)
- longueur boite float: Length of the calculation domain

5.20.6 Thi_thermo

Description: Treatment for the temperature field.

It offers the possibility to:

- evaluate the probability density function on temperature field,
- give in a file the temperature field for a future spectral analysis,
- monitor the evolution of the max and min temperature on the whole domain.

```
See also: thi (5.20.5)

Usage:
thi_thermo {

    init_Ec int
    [val_Ec float]
    [facon_init int into [0, 1]]
    [calc_spectre int into [0, 1]]
    [periode_calc_spectre float]
    [3D int into [0, 1]]
```

```
[ 1D int into [0, 1]]
[ conservation_Ec ]
[ longueur_boite float]
}
where
```

- init_Ec int for inheritance: Keyword to renormalize initial velocity so that kinetic energy equals to the value given by keyword val_Ec.
- val_Ec *float* for inheritance: Keyword to impose a value for kinetic energy by velocity renormalizated if init Ec value is 1.
- **facon_init** *int into* [0, 1] for inheritance: Keyword to specify how kinetic energy is computed (0 or 1).
- calc_spectre int into [0, 1] for inheritance: Calculate or not the spectrum of kinetic energy.

Files called Sorties_THI are written with inside four columns:

time:t global_kinetic_energy:Ec enstrophy:D skewness:S

If calc_spectre is set to 1, a file Sorties_THI2_2 is written with three columns :

time:t kinetic_energy_at_kc=32 enstrophy_at_kc=32

If calc_spectre is set to 1, a file spectre_xxxxx is written with two columns at each time xxxxx : frequency:k energy:E(k).

- periode_calc_spectre float for inheritance: Period for calculating spectrum of kinetic energy
- 3D int into [0, 1] for inheritance: Calculate or not the 3D spectrum
- 1D int into [0, 1] for inheritance: Calculate or not the 1D spectrum
- **conservation_Ec** for inheritance: If set to 1, velocity field will be changed as to have a constant kinetic energy (default 0)
- longueur boite float for inheritance: Length of the calculation domain

5.20.7 Chmoy_faceperio

```
Description: non documente

See also: traitement_particulier_base (5.20.1)

Usage:
chmoy_faceperio bloc
where

• bloc bloc_lecture (3.6)

5.20.8 Profils_thermo

Description: non documente

See also: traitement_particulier_base (5.20.1)

Usage:
profils_thermo bloc
where
```

• bloc bloc_lecture (3.6)

5.20.9 Brech

```
Description: non documente

See also: traitement_particulier_base (5.20.1)

Usage:
brech bloc
where

• bloc bloc_lecture (3.6)
```

5.20.10 Ceg

Description: Keyword for a CEG (Gas Entrainment Criteria) calculation. An objective is deepening gas entrainment on the free surface. Numerical analysis can be performed to predict the hydraulic and geometric conditions that can handle gas entrainment from the free surface.

See also: traitement_particulier_base (5.20.1)

```
Usage:

ceg {

frontiere str
t_deb float
[t_fin float]
[dt_post float]
haspi float
[debug int]
[areva ceg_areva]
[cea_jaea ceg_cea_jaea]
}
where
```

- frontiere str: To specify the boundaries conditions representing the free surfaces
- t_deb float: value of the CEG's initial calculation time
- t_fin float: not_set time during which the CEG's calculation was stopped
- dt_post float: periode refers to the printing period, this value is expressed in seconds
- haspi float: The suction height required to calculate AREVA's criterion
- debug int
- areva ceg_areva (5.20.11): AREVA's criterion
- cea_jaea ceg_cea_jaea (5.20.12): CEA_JAEA's criterion

5.20.11 Ceg_areva

```
Description: not_set

See also: objet_lecture (38)

Usage:
{
    [c float]
}
where
    c float
```

5.20.12 Ceg_cea_jaea

```
Description: not_set

See also: objet_lecture (38)

Usage:
{
    [normalise int]
    [nb_mailles_mini int]
    [min_critere_q_sur_max_critere_q float]
}
where
```

- **normalise** *int*: renormalize (1) or not (0) values alpha and gamma
- **nb mailles mini** *int*: Sets the minimum number of cells for the detection of a vortex.
- min_critere_q_sur_max_critere_q float: Is an optional keyword used to correct the minimum values of Q's criterion taken into account in the detection of a vortex

5.21 Navier_stokes_turbulent_ale

Description: Resolution of hydraulic turbulent Navier-Stokes eq. on mobile domain (ALE)

Keyword Discretize should have already been used to read the object.

```
See also: Navier_Stokes_std_ALE (5.24)
```

Usage:

where

```
Navier_Stokes_Turbulent_ALE str

Read str {

    [ modele_turbulence modele_turbulence_hyd_deriv] |
    [ disable_equation_residual str] |
    [ convection bloc_convection] |
    [ diffusion bloc_diffusion] |
    [ boundary_conditions|conditions_limites condlims] |
    [ initial_conditions|conditions_initiales condinits] |
    [ sources sources] |
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param] |
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param] |
    [ parametre_equation parametre_equation_base] |
    [ equation_non_resolue str] |
```

- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.22): Turbulence model for Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.23.1) for inheritance: Boundary conditions.

- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

5.22 Modele_turbulence_hyd_deriv

Description: Basic class for turbulence model for Navier-Stokes equations.

```
See also: objet lecture (38) mod turb hyd ss maille (5.22.2) NUL (5.22.18) mod turb hyd rans (5.22.19)
```

Usage:

```
modele_turbulence_hyd_deriv {
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [ turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut_max float]
}
where
```

- correction_visco_turb_pour_controle_pas_de_temps: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

- **turbulence_paroi** *turbulence_paroi_base* (35): Keyword to set the wall law.
- **dt_impr_ustar** *float*: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.22.1): This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.1 Dt_impr_ustar_mean_only

```
Description: not_set

See also: objet_lecture (38)

Usage:
{
    dt_impr float
    [boundaries n word1 word2 ... wordn]
}
where
    • dt_impr float
    • boundaries n word1 word2 ... wordn
```

5.22.2 Mod turb hyd ss maille

Description: Class for sub-grid turbulence model for Navier-Stokes equations.

See also: modele_turbulence_hyd_deriv (5.22) sous_maille_selectif_mod (5.22.4) sous_maille_selectif (5.22.7) sous_maille_1elt (5.22.8) sous_maille_axi (5.22.10) sous_maille_smago_filtre (5.22.11) sous_maille_smago_dyn (5.22.12) sous_maille_wale (5.22.13) sous_maille_smago (5.22.14) combinaison (5.22.15) longueur_melange (5.22.16) sous_maille (5.22.17)

Usage:

```
mod_turb_hyd_ss_maille {
    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
}
where
```

• **formulation_a_nb_points** *form_a_nb_points* (5.22.3): The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.

- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']*: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.3 Form_a_nb_points

Description: The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.

See also: objet_lecture (38)

Usage:

nb dir1 dir2

where

- **nb** int into [4]: Number of points.
- dir1 int: First direction.
- dir2 int: Second direction.

5.22.4 Sous maille selectif mod

Description: Selective structure sub-grid function model (modified).

See also: mod_turb_hyd_ss_maille (5.22.2)

```
Usage:
sous_maille_selectif_mod {

[thi deuxentiers]
[canal floatentier]
[formulation_a_nb_points form_a_nb_points]
[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
[correction_visco_turb_pour_controle_pas_de_temps]
[correction_visco_turb_pour_controle_pas_de_temps_parametre float]
[turbulence_paroi turbulence_paroi_base]
[dt_impr_ustar_float]
[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[nut_max float]
}
where
```

- **thi** *deuxentiers* (5.22.5): For homogeneous isotropic turbulence (THI), two integers ki and kc are needed in VDF (not in VEF).
- **canal** *floatentier* (5.22.6): h dir_faces_paroi: For a channel flow, the half width h and the orientation of the wall dir_faces_paroi are needed.
- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete'] for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete : For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi_turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will

be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.

• nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

```
5.22.5 Deuxentiers
```

```
Description: Two integers.
See also: objet_lecture (38)
Usage:
int1 int2
where
   • int1 int: First integer.
   • int2 int: Second integer.
5.22.6 Floatentier
Description: A real and an integer.
See also: objet_lecture (38)
Usage:
the_float the_int
where
   • the_float float: Real.
   • the_int int: Integer.
5.22.7 Sous maille selectif
Description: Selective structure sub-grid function model (a filter is applied to the structure function).
See also: mod_turb_hyd_ss_maille (5.22.2)
Usage:
sous_maille_selectif {
     [formulation_a_nb_points form_a_nb_points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [correction_visco_turb_pour_controle_pas_de_temps]
     [correction visco turb pour controle pas de temps parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt impr ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut_max float]
}
where
```

• **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.

- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.8 Sous_maille_1elt

```
Description: Turbulence model sous_maille_1elt.

See also: mod_turb_hyd_ss_maille (5.22.2) sous_maille_1elt_selectif_mod (5.22.9)

Usage:
sous_maille_1elt {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
}
where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence paroi turbulence paroi base (35) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u★) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.9 Sous maille 1elt selectif mod

```
Description: Turbulence model sous_maille_1elt_selectif_mod.

See also: sous_maille_1elt (5.22.8)

Usage:
sous_maille_1elt_selectif_mod {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max_float]
```

```
}
where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete'] for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi_turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.10 Sous maille axi

Description: Structure sub-grid function turbulence model available in cylindrical co-ordinates.

```
See also: mod_turb_hyd_ss_maille (5.22.2)

Usage:
sous_maille_axi {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt impr_ustar_float]
```

```
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
        [ nut_max float]
}
where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi_turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.11 Sous_maille_smago_filtre

Description: Smagorinsky sub-grid turbulence model should be used with low-filter.

```
See also: mod_turb_hyd_ss_maille (5.22.2)

Usage:
sous_maille_smago_filtre {

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[correction visco turb pour controle pas de temps]
```

```
[ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [ turbulence_paroi turbulence_paroi_base]
    [ dt_impr_ustar float]
    [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [ nut_max float]
}
where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.12 Sous_maille_smago_dyn

Description: Dynamic Smagorinsky sub-grid turbulence model (available in VDF discretization only).

```
See also: mod_turb_hyd_ss_maille (5.22.2)

Usage:
sous_maille_smago_dyn {

[ stabilise str into ['6_points', 'moy_euler', 'plans_paralleles']]
```

```
[ nb_points int]
[ formulation_a_nb_points form_a_nb_points]
[ longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
[ correction_visco_turb_pour_controle_pas_de_temps ]
[ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
[ turbulence_paroi turbulence_paroi_base]
[ dt_impr_ustar float]
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[ nut_max float]
}
where
```

- **stabilise** *str into* ['6_points', 'moy_euler', 'plans_paralleles']
- nb_points int
- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete'] for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.13 Sous_maille_wale

Description: This is the WALE-model. It is a new sub-grid scale model for eddy-viscosity in LES that has the following properties:

- it goes naturally to 0 at the wall (it doesn't need any information on the wall position or geometry)
- it has the proper wall scaling in o(y3) in the vicinity of the wall
- it reproduces correctly the laminar to turbulent transition.

- cw float: The unique parameter (constant) of the WALE-model (by default value 0.5).
- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will

be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.

• nut max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.14 Sous_maille_smago

```
Description: Smagorinsky sub-grid turbulence model.
Nut=Cs1*Cs1*l*l*sqrt(2*S*S)
K=Cs2*Cs2*1*1*2*S
See also: mod_turb_hyd_ss_maille (5.22.2)
Usage:
sous_maille_smago {
     [cs float]
     [formulation a nb points form a nb points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut_max float]
}
where
```

- **cs** *float*: This is an optional keyword and the value is used to set the constant used in the Smagorinsky model (This is currently only valid for Smagorinsky models and it is set to 0.18 by default).
- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete : For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.15 Combinaison

Description: This keyword specifies a turbulent viscosity model where the turbulent viscosity is user-defined.

```
Usage:

combinaison {

    [nb_var n word1 word2 ... wordn]
    [fonction str]
    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
}
where
```

- **nb_var** *n word1 word2* ... *wordn*: Number and names of variables which will be used in the turbulent viscosity definition (by default 0)
- function str: Fonction for turbulent viscosity. X,Y,Z and variables defined previously can be used.
- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr visco turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi_turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** float for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.16 Longueur_melange

Description: This model is based on mixing length modelling. For a non academic configuration, formulation used in the code can be expressed basically as:

```
nu\_t = (Kappa.y)^2.dU/dy
```

Till a maximum distance (dmax) set by the user in the data file, y is set equal to the distance from the wall (dist_w) calculated previously and saved in file Wall_length.xyz. [see Distance_paroi keyword] Then (from y=dmax), y decreases as an exponential function: y=dmax*exp[-2.*(dist_w-dmax)/dmax]

See also: mod_turb_hyd_ss_maille (5.22.2)

```
Usage:
```

}

```
longueur melange {
     [ canalx float]
     [tuyauz float]
     [verif_dparoi str]
     [dmax float]
     [fichier str]
     [fichier_ecriture_K_Eps str]
     [formulation_a_nb_points form_a_nb_points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction visco turb pour controle pas de temps parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut max float]
where
```

- **canalx** *float*: [height]: plane channel according to Ox direction (for the moment, formulation in the code relies on fixed heigh: H=2).
- **tuyauz** *float*: [diameter] : pipe according to Oz direction (for the moment, formulation in the code relies on fixed diameter : D=2).
- verif_dparoi str
- dmax float: Maximum distance.
- fichier str
- fichier_ecriture_K_Eps str: When a resume with k-epsilon model is envisaged, this keyword allows to generate external MED-format file with evaluation of k and epsilon quantities (based on eddy turbulent viscosity and turbulent characteristic length returned by mixing length model). The frequency of the MED file print is set equal to dt_impr_ustar. Moreover, k-eps MED field is automatically saved at the last time step. MED file is then used for resuming a K-Epsilon calculation with the Champ_Fonc_Med keyword.
- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.17 Sous_maille

Description: Structure sub-grid function model.

```
Usage:
sous_maille {

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[correction_visco_turb_pour_controle_pas_de_temps]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

[turbulence_paroi turbulence_paroi_base]

[dt_impr_ustar_float]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[nut_max float]

}

where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.22.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.18 Nul

```
Description: not_set

See also: modele_turbulence_hyd_deriv (5.22)
```

Usage:

 $NUL\ [\ correction_visco_turb_pour_controle_pas_de_temps\]\ [\ correction_visco_turb_pour_controle_pas_de_temps\]\ [\ dt_impr_ustar\]\ [\ dt_impr_ustar_mean_only\]\ [\ nut_max\]\ where$

• correction_visco_turb_pour_controle_pas_de_temps: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr visco turb field which is the correction of

turbulent viscosity: it should be 1. on the whole domain.

• correction_visco_turb_pour_controle_pas_de_temps_parametre float: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

- turbulence_paroi turbulence_paroi_base (35): Keyword to set the wall law.
- dt_impr_ustar float: This keyword is used to print the values (U +, d+, u*) obtained with the wall
 laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period,
 this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.22.1): This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut_max** *float*: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.19 Mod_turb_hyd_rans

Description: Class for RANS turbulence model for Navier-Stokes equations.

See also: modele_turbulence_hyd_deriv (5.22) k_epsilon (5.22.20) K_Epsilon_Bicephale (5.22.27) K_Epsilon_Realisable (5.22.28) K_Epsilon_Realisable_Bicephale (5.22.29)

Usage:

```
mod_turb_hyd_rans {
    [eps_min float]
    [eps_max float]
    [k_min float]
    [quiet ]
    [prandtl_k float]
    [prandtl_eps float]
    [correction_visco_turb_pour_controle_pas_de_temps ]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar float]
```

```
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
        [ nut_max float]
}
where
```

- eps_min *float*: Lower limitation of epsilon (default value 1.e-10).
- eps_max float: Upper limitation of epsilon (default value 1.e+10).
- k min *float*: Lower limitation of k (default value 1.e-10).
- quiet: To disable printing of information about k and epsilon.
- **prandtl k** *float*: Keyword to change the Prk value (default 1.0).
- prandtl_eps float: Keyword to change the Pre value (default 1.3)
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.20 **K_epsilon**

```
Description: Turbulence model (k-eps).

See also: mod_turb_hyd_rans (5.22.19)

Usage:
k_epsilon {

    transport_k_epsilon transport_k_epsilon
    [modele_fonc_bas_reynolds modele_fonction_bas_reynolds_base]
    [cmu float]
    [prandtl_k float]
    [prandtl_eps float]
    [eps_min float]
    [eps_max float]
    [k_min float]
    [quiet ]
    [correction_visco_turb_pour_controle_pas_de_temps ]
    [correction_visco_turb_pour_controle_pas_de_temps parametre float]
```

```
[ turbulence_paroi turbulence_paroi_base]
[ dt_impr_ustar float]
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[ nut_max float]
}
where
```

- **transport_k_epsilon** *transport_k_epsilon* (5.62): Keyword to define the (k-eps) transportation equation.
- modele_fonc_bas_reynolds modele_fonction_bas_reynolds_base (5.22.21): This keyword is used to set the bas Reynolds model used.
- **cmu** *float*: Keyword to modify the Cmu constant of k-eps model : Nut=Cmu*k*k/eps Default value is 0.09
- **prandtl_k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float*: Keyword to change the Pre value (default 1.3).
- eps_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi_turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.21 Modele_fonction_bas_reynolds_base

Description: not_set

See also: objet_lecture (38) Jones_Launder (5.22.22) Launder_Sharma (5.22.23) Lam_Bremhorst (5.22.24)

Usage:

5.22.22 Jones_launder

Description: Model described in 'Jones, W. P. and Launder, B. E. (1972), The prediction of laminarization with a two-equation model of turbulence, Int. J. of Heat and Mass transfer, Vol. 15, pp. 301-314.'

```
See also: modele_fonction_bas_reynolds_base (5.22.21)
```

Usage:

5.22.23 Launder_sharma

Description: Model described in 'Launder, B. E. and Sharma, B. I. (1974), Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-138.'

```
See also: modele_fonction_bas_reynolds_base (5.22.21)
```

Usage:

5.22.24 Lam_bremhorst

Description: Model described in 'C.K.G.Lam and K.Bremhorst, A modified form of the k- epsilon model for predicting wall turbulence, ASME J. Fluids Engng., Vol.103, p456, (1981)'. Only in VEF.

```
See also: modele_fonction_bas_reynolds_base (5.22.21) standard_KEps (5.22.25) EASM_Baglietto (5.22.26)
```

Usage:

```
Lam_Bremhorst {
      [fichier_distance_paroi str]
      [reynolds_stress_isotrope int]
}
where
```

- fichier_distance_paroi str: refer to distance_paroi keyword
- reynolds_stress_isotrope int: keyword for isotropic Reynolds stress

5.22.25 Standard_keps

Description: Model described in 'E. Baglietto, CFD and DNS methodologies development for fuel bundle simulaions, Nuclear Engineering and Design, 1503–1510 (236), 2006. '

```
See also: Lam_Bremhorst (5.22.24)

Usage:
standard_KEps {

    [fichier_distance_paroi str]
        [reynolds_stress_isotrope int]
}
where
```

- fichier_distance_paroi str for inheritance: refer to distance_paroi keyword
- reynolds_stress_isotrope int for inheritance: keyword for isotropic Reynolds stress

5.22.26 Easm_baglietto

Description: Model described in 'E. Baglietto and H. Ninokata, A turbulence model study for simulating flow inside tight lattice rod bundles, Nuclear Engineering and Design, 773–784 (235), 2005. '

```
See also: Lam_Bremhorst (5.22.24)

Usage:
EASM_Baglietto {
    [fichier_distance_paroi str]
    [reynolds_stress_isotrope int]
}
where
```

- fichier_distance_paroi str for inheritance: refer to distance_paroi keyword
- reynolds stress isotrope int for inheritance: keyword for isotropic Reynolds stress

5.22.27 K_epsilon_bicephale

Description: Turbulence model (k-eps) en formalisation bicephale.

```
See also: mod_turb_hyd_rans (5.22.19)
```

Usage:

```
K_Epsilon_Bicephale {
```

```
transport k str
     transport_epsilon str
     [ modele_fonc_bas_reynolds modele_fonc_realisable_base]
     [ cmu float]
     [eps_min float]
     [eps_max float]
     [ k_min float]
     [quiet]
     [ prandtl_k float]
     [ prandtl eps float]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut max float]
}
where
```

- transport_k str: Keyword to define the realisable (k) transportation equation.
- transport epsilon str: Keyword to define the realisable (eps) transportation equation.
- modele_fonc_bas_reynolds modele_fonc_realisable_base (11.2): This keyword is used to set the model used
- cmu float: Keyword to modify the Cmu constant of k-eps model : Nut=Cmu*k*k/eps Default value is 0.09
- eps_min float for inheritance: Lower limitation of epsilon (default value 1.e-10).

- **eps_max** *float* for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- **prandtl_k** *float* for inheritance: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float* for inheritance: Keyword to change the Pre value (default 1.3)
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.28 K_epsilon_realisable

```
Description: Realizable K-Epsilon Turbulence Model.
See also: mod_turb_hyd_rans (5.22.19)
Usage:
K Epsilon Realisable {
     transport k epsilon realisable str
     modele_fonc_realisable modele_fonc_realisable_base
     prandtl_k float
     prandtl_eps float
     [eps_min float]
     [eps_max float]
     [ k_min float]
     [quiet]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction visco turb pour controle pas de temps parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [dt impr ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut max float]
}
where
```

- transport_k_epsilon_realisable str: Keyword to define the realisable (k-eps) transportation equation.
- modele_fonc_realisable modele_fonc_realisable_base (11.2): This keyword is used to set the
 model used
- **prandtl_k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float*: Keyword to change the Pre value (default 1.3)
- eps_min float for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.22.29 K_epsilon_realisable_bicephale

```
Description: Realizable Two-headed K-Epsilon Turbulence Model

See also: mod_turb_hyd_rans (5.22.19)

Usage:
K_Epsilon_Realisable_Bicephale {
```

```
transport_k str
transport_epsilon str
modele_fonc_realisable modele_fonc_realisable_base
prandtl_k float
prandtl_eps float
[eps_min float]
[eps_max float]
[k_min float]
[quiet ]
[correction_visco_turb_pour_controle_pas_de_temps ]
[correction_visco_turb_pour_controle_pas_de_temps_parametre float]
[turbulence_paroi turbulence_paroi_base]
[dt impr ustar float]
```

```
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
        [ nut_max float]
}
where
```

- **transport_k** *str*: Keyword to define the realisable (k) transportation equation.
- **transport_epsilon** *str*: Keyword to define the realisable (eps) transportation equation.
- modele_fonc_realisable modele_fonc_realisable_base (11.2): This keyword is used to set the model used
- **prandtl k** *float*: Keyword to change the Prk value (default 1.0).
- prandtl_eps float: Keyword to change the Pre value (default 1.3)
- eps_min float for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence_paroi_turbulence_paroi_base (35) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.22.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.23 Navier_stokes_standard_sensibility

Navier_Stokes_standard_sensibility str

Description: Resolution of Navier-Stokes sensitivity problem

Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.52)

Usage:

```
[solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [dt projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement particulier traitement particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction vitesse projection initiale int]
     [correction matrice pression int]
     [ correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur bin ecrire fichier xyz valeur param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre equation parametre equation base]
     [ equation_non_resolue str]
where
```

- **state** *bloc_lecture* (3.6): Block to indicate the state problem. Between the braces, you must specify the key word 'pb_champ_evaluateur' then the name of the state problem and the velocity unknown Example: state { pb_champ_evaluateur pb_state velocity }
- uncertain_variable *bloc_lecture* (3.6): Block to indicate the name of the uncertain variable. Between the braces, you must specify the name of the unknown variable. Choice between velocity and mu.

Example: uncertain_variable { velocity }

- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **seuil_divU** *floatfloat* (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step

('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn , the linear system Ax=B is considered as solved if the residual $\|Ax-B\|$ <seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (|max(DivU)*dt|<value)

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1)= Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction vitesse modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
```

...

x_n y_n [z_n] val_n

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

•

x_n y_n [z_n] val_n

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

Navier Sokes Standard

```
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.24 Navier_stokes_std_ale

[equation_non_resolue str]

} where

Description: Resolution of hydraulic Navier-Stokes eq. on mobile domain (ALE)

```
Keyword Discretize should have already been used to read the object.

See also: eqn_base (5.44) Navier_Stokes_Turbulent_ALE (5.21)

Usage:

Navier_Stokes_std_ALE str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur_equation_base]
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named : pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation

• equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

5.25 Qdm_multiphase

Description: Momentum conservation equation for a multi-phase problem where the unknown is the velocity

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.44)
```

```
Usage:
```

```
QDM Multiphase str
Read str {
     [solveur_pression solveur_sys_base]
     [ evanescence bloc lecture]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- solveur_pression solveur_sys_base (11.18): Linear pressure system resolution method.
- evanescence bloc_lecture (3.6): Management of the vanishing phase (when alpha tends to 0 or 1)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.26 Taux_dissipation_turbulent

Description: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.44)
```

Usage:

where

```
Taux_dissipation_turbulent str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.27 Transport_k_eps_realisable

Description: Realizable K-Epsilon Turbulence Model Transport Equations for K and Epsilon.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.44)

```
Usage:
```

```
Transport_K_Eps_Realisable str
Read str {
```

```
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)

• ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.28 Convection_diffusion_chaleur_qc

Description: Temperature equation for a quasi-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44) convection_diffusion_chaleur_turbulent_qc (5.30)
```

Usage:

```
convection_diffusion_chaleur_QC str

Read str {
```

```
[ mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']]
    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

• mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']: Option to set the form of the convective operator divrhouT_moins_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T) - Tdiv(rho.u.1) ancien: u.gradT = div(u.T) - T.div(u) divuT_moins_Tdivu: u.gradT = div(u.T) - Tdiv(u.1)

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.29 Convection diffusion chaleur wc

Description: Temperature equation for a weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.44)
```

Usage:

convection_diffusion_chaleur_WC str
Read str {

```
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
```

```
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x n y n [z n] val n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.30 Convection_diffusion_chaleur_turbulent_qc

Description: Temperature equation for a quasi-compressible fluid as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_chaleur_QC (5.28)

Usage:

convection_diffusion_chaleur_turbulent_qc str
Read str {

```
[ modele_turbulence modele_turbulence_scal_base]
[ mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial conditions|conditions initiales condinits]
```

```
[ sources sources]
  [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
  [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
  [ parametre_equation parametre_equation_base]
  [ equation_non_resolue str]
}
```

- **modele_turbulence** *modele_turbulence_scal_base* (25): Turbulence model for the temperature (energy) conservation equation.
- mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou'] for inheritance: Option to set the form of the convective operator divrhouT_moins_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T) Tdiv(rho.u.1) ancien: u.gradT = div(u.T) T.div(u) divuT_moins_Tdivu: u.gradT = div(u.T) Tdiv(u.1)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x n y n [z n] val n
```

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.31 Convection_diffusion_concentration

Description: Constituent transport vectorial equation (concentration diffusion convection).

Keyword Discretize should have already been used to read the object.

See also: eqn_base (5.44) convection_diffusion_concentration_turbulent (5.33) convection_diffusion_concentration_ft_disc (5.32) convection_diffusion_phase_field (5.39)

```
Usage:
```

```
convection diffusion concentration str
Read str {
     [ nom inconnue str]
     [ masse_molaire float]
     [alias str]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre equation parametre equation base]
     [ equation non resolue str]
where
```

- **nom_inconnue** *str*: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- masse_molaire float
- alias str
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
 \begin{array}{l} x\_1 \ y\_1 \ [z\_1] \ val\_1 \\ ... \\ x\_n \ y\_n \ [z\_n] \ val\_n \\ \end{array}  The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.32 Convection_diffusion_concentration_ft_disc

```
Description: not_set
Keyword Discretize should have already been used to read the object.
See also: convection_diffusion_concentration (5.31)
Usage:
convection diffusion concentration ft disc str
Read str {
     [ equation interface str]
     phase int into [0, 1]
     [ option str]
     [ nom_inconnue str]
      [ masse_molaire float]
     [alias str]
     [disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
      [ equation_non_resolue str]
}
```

- equation_interface *str*: his is the name of the interface tracking equation to watch. The scalar will not diffuse through the interface of this equation.
- phase int into [0, 1]: tells whether the scalar must be confined in phase 0 or in phase 1
- **option** *str*: Experimental features used to prevent the concentration to leak through the interface between phases due to numerical diffusion.

RIEN: do nothing

where

- RAMASSE_MIETTES_SIMPLE: at each timestep, this algorithm takes all the mass located in the opposite phase and spreads it uniformly in the given phase.
- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- masse_molaire float for inheritance
- alias str for inheritance

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions londitions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.33 Convection_diffusion_concentration_turbulent

Description: Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object.

See also: convection_diffusion_concentration (5.31) Convection_Diffusion_Concentration_Turbulent_FT-_Disc (5.8)

Usage:

convection_diffusion_concentration_turbulent str
Read str {

```
[ modele_turbulence modele_turbulence_scal_base]
[ nom_inconnue str]
[ masse_molaire float]
[ alias str]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
```

```
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
```

- modele_turbulence modele_turbulence_scal_base (25): Turbulence model to be used in the constituent transport equations. The only model currently available is Schmidt.
- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- masse molaire float for inheritance
- alias str for inheritance
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x n y n [z n] val n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
_
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

5.34 Convection_diffusion_espece_binaire_qc

Description: Species conservation equation for a binary quasi-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44) Convection_Diffusion_Espece_Binaire_Turbulent_QC (5.9)
Usage:
convection diffusion espece binaire QC str
Read str {
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.35 Convection_diffusion_espece_binaire_wc

Description: Species conservation equation for a binary weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.44)
```

Usage:

where

```
convection_diffusion_espece_binaire_WC str
Read str {
    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.36 Convection_diffusion_espece_multi_qc

Description: Species conservation equation for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.44)

```
Usage:
```

where

```
convection_diffusion_espece_multi_QC str

Read str {

    [espece espece]
    [disable_equation_residual str]
    [convection bloc_convection]
    [diffusion bloc_diffusion]
    [boundary_conditions|conditions_limites condlims]
    [initial_conditions|conditions_initiales condinits]
    [sources sources]
    [ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [parametre_equation parametre_equation_base]
    [equation_non_resolue str]
}
```

- espece espece (3.47): Assosciate a species (with its properties) to the equation
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not

```
solved between time t0 and t1.
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.37 Convection_diffusion_espece_multi_wc

Description: Species conservation equation for a multi-species weakly-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44)
```

where

```
Usage:
convection_diffusion_espece_multi_WC str
Read str {
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
```

- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x 1 y 1 [z 1] val 1
x n y n [z n] val n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
The created files are named: pbname_fieldname_[boundaryname]_time.dat
```

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.38 Convection_diffusion_espece_multi_turbulent_qc

```
Description: not_set
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44)
Usage:
convection diffusion espece multi turbulent qc str
Read str {
     [ modele turbulence modele turbulence scal base]
     espece espece
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
where
```

- modele_turbulence modele_turbulence_scal_base (25): Turbulence model to be used.
- **espece** *espece* (3.47)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

• ecrire_fichier_xyz_valeur_ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre equation parametre equation base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation non resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

Convection diffusion phase field

Description: Cahn-Hilliard equation of the Phase Field problem. The unknown of this equation is the concentration C.

Keyword Discretize should have already been used to read the object.

See also: convection_diffusion_concentration (5.31)

```
Usage:
```

```
convection_diffusion_phase_field str
Read str {
     [ mu_1 float]
     [ mu_2 float]
     [ rho_1 float]
     [ rho 2 float]
     potentiel_chimique_generalise str into ['avec_energie_cinetique', 'sans_energie_cinetique']
     [ nom_inconnue str]
     [ masse_molaire float]
     [alias str]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
where
```

- mu_1 *float*: Dynamic viscosity of the first phase.
- mu_2 *float*: Dynamic viscosity of the second phase.
- **rho_1** *float*: Density of the first phase.
- rho_2 float: Density of the second phase.

- potentiel_chimique_generalise str into ['avec_energie_cinetique', 'sans_energie_cinetique']: To define (chaine set to avec_energie_cinetique) or not (chaine set to sans_energie_cinetique) if the Cahn-Hilliard equation contains the cinetic energy term.
- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- masse molaire float for inheritance
- alias str for inheritance
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.40 Convection diffusion temperature

Description: Energy equation (temperature diffusion convection).

Keyword Discretize should have already been used to read the object.

See also: eqn_base (5.44) convection_diffusion_temperature_ft_disc (5.41) Convection_Diffusion_Temperature_sensibility (5.10)

```
Usage:
```

```
convection_diffusion_temperature str

Read str {

[penalisation 12 ftd pp]
```

```
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- **penalisation_12_ftd** *pp* (5.11): to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.41 Convection_diffusion_temperature_ft_disc

Description: not_set

Keyword Discretize should have already been used to read the object.

```
See also: convection_diffusion_temperature (5.40)
Usage:
convection_diffusion_temperature_ft_disc str
Read str {
     [ equation interface str]
     phase int into [0, 1]
     [ equation navier stokes str]
     [stencil width int]
     [ maintien_temperature objet_lecture_maintien_temperature]
     [ penalisation_l2_ftd pp]
     [ disable equation residual str]
     [ convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur bin ecrire fichier xyz valeur param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
where
```

- equation interface str: The name of the interface equation should be given.
- phase int into [0, 1]: Phase in which the temperature equation will be solved. The temperature, which may be postprocessed with the keyword temperature_EquationName, in the orther phase may be negative: the code only computes the temperature field in the specified phase. The other phase is supposed to physically stay at saturation temperature. The code uses a ghost fluid numerical method to work on a smooth temperature field at the interface. In the opposite phase (1-X) the temperature will therefore be extrapolated in the vicinity of the interface and have the opposite sign, saturation temperature is zero by convention).
- equation_navier_stokes str: The name of the Navier Stokes equation of the problem should be given.
- **stencil_width** *int*: distance in mesh elements over which the temperature field should be extrapolated in the opposite phase.
- maintien_temperature objet_lecture_maintien_temperature (5.42): maintien_temperature SOUS_ZONE_NAME VALUE: experimental, this acts as a dynamic source term that heats or cools the fluid to maintain the average temperature to VALUE within the specified region. At this time, this is done by multiplying the temperature within the SOUS_ZONE by an appropriate uniform value at each timestep. This feature might be implemented in a separate source term in the future.
- **penalisation_12_ftd** *pp* (5.11) for inheritance: to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be

separated by a comma)

• ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.42 Objet_lecture_maintien_temperature

```
Description: not_set

See also: objet_lecture (38)

Usage:
sous_zone temperature_moyenne
where

• sous_zone str
• temperature_moyenne float
```

5.43 Convection_diffusion_temperature_turbulent

Description: Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.44)

Usage:
convection_diffusion_temperature_turbulent str

Read str {

[modele_turbulence modele_turbulence_scal_base]
[disable_equation_residual str]
[convection bloc_convection]
[diffusion bloc_diffusion]
[boundary_conditions|conditions_limites condlims]

[initial conditions|conditions initiales condinits]

```
[ sources sources]
  [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
  [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
  [ parametre_equation parametre_equation_base]
  [ equation_non_resolue str]
}
```

- modele_turbulence modele_turbulence_scal_base (25): Turbulence model for the energy equation.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat
• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritan

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.44 Eqn base

Description: Basic class for equations.

Keyword Discretize should have already been used to read the object.

See also: mor_eqn (5) navier_stokes_standard (5.52) convection_diffusion_temperature (5.40) convection_diffusion_concentration (5.31) Conduction (5.1) QDM_Multiphase (5.25) Masse_Multiphase (5.16) Energie_Multiphase (5.13) Energie_cinetique_turbulente (5.14) Echelle_temporelle_turbulente (5.12) Energie_cinetique_turbulente_WIT (5.15) Taux_dissipation_turbulent (5.26) convection_diffusion_chaleur_QC (5.28) convection_diffusion_chaleur_WC (5.29) convection_diffusion_espece_multi_QC (5.36) convection_diffusion_espece_binaire_QC (5.34) convection_diffusion_espece_binaire_WC (5.35) convection_diffusion_espece_multi-

```
_WC (5.37) convection_diffusion_temperature_turbulent (5.43) convection_diffusion_espece_multi_turbulent-
_qc (5.38) transport_k_epsilon (5.62) transport_k (5.61) transport_epsilon (5.55) transport_interfaces_ft-
_disc (5.56) transport_marqueur_ft (5.63) Navier_Stokes_std_ALE (5.24) Transport_K_Eps_Realisable
(5.27)
Usage:
eqn base str
Read str {
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [ initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre equation parametre equation base]
     [ equation non resolue str]
}
where
```

- **disable_equation_residual** *str*: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2): Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3): Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1): Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4): Initial conditions.
- **sources** *sources* (5.5): To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6): This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname fieldname [boundaryname] time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6): This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur x_1 y_1 [z_1] val_1

```
...
x_n y_n [z_n] val_n
```

- parametre_equation parametre_equation_base (5.7): Keyword used to specify additional parameters for the equation
- equation_non_resolue *str*: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.45 Navier_stokes_qc

where

Description: Navier-Stokes equation for a quasi-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.52)
Usage:
navier stokes QC str
Read str {
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [dt_projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [ correction_vitesse_modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [postraiter gradient pression sans masse]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
```

- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source-Odm lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is

the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).

- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (lmax(DivU)*dtl<value)

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1) = Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction vitesse modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

...

x_n y_n [z_n] val_n

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

• • •

x_n y_n [z_n] val_n

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.46 Navier_stokes_wc

}

Description: Navier-Stokes equation for a weakly-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.52)
```

```
Usage:
navier stokes WC str
Read str {
     methode calcul pression initiale str into ['avec les cl', 'avec sources', 'avec sources et-
     _operateurs', 'sans_rien']
     [ projection initiale int]
     [solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [ dt projection deuxmots]
     [ seuil divU floatfloat]
     [traitement particulier traitement particulier]
     [ correction matrice projection initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [ correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [ correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
where
```

• methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f

is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.

- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (|max(DivU)*dt|<value)

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1) = Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

x_1 y_1 [z_1] val_1

```
...
x_n y_n [z_n] val_n
The created files are named: pbname fieldname [boundaryname] time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
_
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.47 Navier_stokes_ft_disc

Description: Two-phase momentum balance equation.

Keyword Discretize should have already been used to read the object.

See also: navier_stokes_turbulent (5.53)

```
Usage:
```

```
navier_stokes_ft_disc str
Read str {
```

```
[ equation_interfaces_proprietes_fluide str]
[ equation interfaces vitesse imposee str]
[ equations_interfaces_vitesse_imposee n word1 word2 ... wordn]
[ clipping_courbure_interface int]
[ terme_gravite str into ['rho_g', 'grad_i']]
[ equation_temperature_mpoint str]
[ matrice_pression_invariante ]
[ penalisation forcage penalisation forcage]
[ equation_temperature_mpoint_vapeur str]
[ mpoint_inactif_sur_qdm ]
[ mpoint_vapeur_inactif_sur_qdm ]
[ modele turbulence modele turbulence hyd deriv]
[ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
_operateurs', 'sans_rien']]
[projection_initiale int]
[solveur_pression solveur_sys_base]
[solveur_bar solveur_sys_base]
[dt_projection deuxmots]
[ seuil divU floatfloat]
[traitement_particulier traitement_particulier]
[ correction_matrice_projection_initiale int]
[ correction_calcul_pression_initiale int]
[ correction_vitesse_projection_initiale int]
[correction_matrice_pression int]
```

```
[ correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [ correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- equation_interfaces_proprietes_fluide str: This keyword is used for liquid-gas, liquid-vapor and fluid-fluid deformable interface, which transported at the Eulerian velocity. When this case is selected, the keyword sequence Methode_transport vitesse_interpolee is used in the block Transport_Interfaces_FT_Disc to define the velocity field for the displacement of the interface.
- equation_interfaces_vitesse_imposee str: This keyword is used to specify the velocity field to be used when using an interface that mimics a solid interface moving with a given solid speed of displacement. When this case is selected, the keyword sequence Methode_transport vitesse_imposee in the Transport_Interfaces_FT_Disc block will define the velocity field for the displacement of the interface.
- equations_interfaces_vitesse_imposee n word1 word2 ... wordn: This keyword is used to specify the velocity field to be used when using an interface that mimics a solid interface moving with a given solid speed of displacement. When this case is selected, the keyword sequence Methode_transport vitesse_imposee in the Transport_Interfaces_FT_Disc block will define the velocity field for the displacement of the interface. If two or more solid interfaces are defined, then the keyword equations_interfaces_vitesse_imposee should be used.
- clipping_courbure_interface int: This keyword is used to numerically limit the values of curvature used in the momentum balance equation. Curvature is computed as usual, but values exceeding the clipping value are replaced by this threshold, before using the clipped curvature in the momentum balance. Each time a curvature value is clipped, a counter is increased by one unity and the value of the counter is written in the .err file at the end of the time step. This clipping allows not reducing drastically the time stepping when a geometrical singularity occurs in the interface mesh. However, physical phenomena may be concealed with the use of such a clipping.
- **terme_gravite** *str into ['rho_g', 'grad_i']*: The Terme_gravite keyword changes the numerical scheme used for the gravity source term. The default is grad_i, which is designed to remove spurious currents around the interface. In this case, the pressure field does not contain the hydrostatic part but only a jump across the interface. This scheme seems not to work very well in vef. The rho_g option uses the more traditional source term, equal to rho*g in the volume. In this case, the hydrostatic pressure is visible in the pressure field and the boundary conditions in pressure must be set accordingly. This model produces spurious currents in the vicinity of the fluid-fluid interfaces and with the immersed boundary conditions.
- equation_temperature_mpoint str: The equation_temperature_mpoint should be used in the case of liquid-vapor flow with phase-change (see the TRUST_ROOT/doc/TRUST/ft_chgt_phase.pdf written in French for more information about the model). The name of the temperature equation, defined with the convection_diffusion_temperature_ft_disc keyword, should be given.
- matrice_pression_invariante: This keyword is a shortcut to be used only when the flow is a single-phase one, with interface tracking only used for solid-fluid interfaces. In this peculiar case, the

density of the fluid does not evolve during the computation and the pressure matrix does not need to be actuated at each time step.

- penalisation_forcage penalisation_forcage (5.48): This keyword is used to specify a strong formulation (value set to 0) or a weak formulation (value set to 1) for an imposed pressure boundary condition. The first formulation converges quicker and is stable in general cases except some rare cases (see Ecoulement_Neumann test case for example) where the second one should be used despite of its slow convergence.
- equation temperature mpoint vapeur str
- mpoint_inactif_sur_qdm
- mpoint_vapeur_inactif_sur_qdm
- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.22) for inheritance: Turbulence model for Navier-Stokes equations.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (|max(DivU)*dt|<value)

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1)= Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient pression qdm modifie int for inheritance: (IBM advanced) fix pressure gradient

- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x n y n [z n] val n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.48 Penalisation_forcage

```
Description: penalisation_forcage

See also: objet_lecture (38)

Usage:
{
    [pression_reference float]
    [domaine_flottant_fluide x1 x2 (x3)]
}
where
```

- pression_reference float
- domaine_flottant_fluide x1 x2 (x3)

5.49 Navier_stokes_phase_field

```
Description: Navier Stokes equation for the Phase Field problem.
```

```
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.52)
Usage:
navier stokes phase field str
Read str {
     approximation_de_boussinesq approx_boussinesq
     [viscosite_dynamique_constante visco_dyn_cons]
     [gravite n \times 1 \times 2 \dots \times n]
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [solveur pression solveur sys base]
     [solveur bar solveur sys base]
     [dt projection deuxmots]
     [ seuil divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction matrice projection initiale int]
     [correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [ correction_matrice_pression int]
     [correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
where
```

- approximation_de_boussinesq approx_boussinesq (5.50): To use or not the Boussinesq approximation.
- **viscosite_dynamique_constante** *visco_dyn_cons* (5.51): To use or not a viscosity which will depends on concentration C (in fact, C is the unknown of Cahn-Hilliard equation).
- gravite n x1 x2 ... xn: Keyword to define gravity in the case Boussinesq approximation is not used.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-

Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.

- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18) for inheritance: Linear pressure system resolution method.
- solveur_bar solveur_sys_base (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (lmax(DivU)*dtl<value)
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

••

```
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.50 Approx_boussinesq

Description: different mass density formulation are available depending if the Boussinesq approximation is made or not

```
See also: objet_lecture (38)

Usage:
yes_or_no bloc_bouss
where
```

- yes_or_no str into ['oui', 'non']: To use or not the Boussinesq approximation.
- **bloc_bouss** *bloc_boussinesq* (5.50.1): to choose the rho formulation

5.50.1 Bloc_boussinesq

Description: choice of rho formulation

```
See also: objet_lecture (38)

Usage:
{

    [probleme str]
    [rho_1 float]
    [rho_2 float]
    [rho_fonc_c bloc_rho_fonc_c]
}
where
```

- **probleme** *str*: Name of problem.
- **rho_1** *float*: value of rho
- rho_2 float: value of rho
- rho_fonc_c bloc_rho_fonc_c (5.50.2): to use for define a general form for rho

```
Description: if rho has a general form
See also: objet_lecture (38)
Usage:
[ Champ_Fonc_Fonction ] [ problem_name ] [ concentration ] [ dim ] [ val ] [ Champ_Uniforme ] [
fielddim ] [ val2 ]
where
   • Champ_Fonc_Fonction str into ['Champ_Fonc_Fonction']: Champ_Fonc_Fonction
   • problem_name str: Name of problem.
   • concentration str into ['concentration']: concentration
   • dim int: dimension of the problem
   • val str: function of rho
   • Champ_Uniforme str into ['Champ_Uniforme']: Champ_Uniforme
   • fielddim int: dimension of the problem
   • val2 str: function of rho
5.51 Visco_dyn_cons
Description: different treatment of the kinematic viscosity could be done depending of the use of the
Boussinesq approximation or the constant dynamic viscosity approximation
See also: objet_lecture (38)
Usage:
yes_or_no bloc_visco
where
   • yes_or_no str into ['oui', 'non']: To use or not the constant dynamic viscosity
   • bloc_visco bloc_visco2 (5.51.1): to choose the mu formulation
5.51.1 Bloc_visco2
Description: choice of mu formulation
See also: objet_lecture (38)
Usage:
{
     [ probleme str]
     [ mu 1 float]
     [ mu_2 float]
     [ mu_fonc_c bloc_mu_fonc_c]
where
   • probleme str: Name of problem.
   • mu_1 float: value of mu
   • mu_2 float: value of mu
   • mu_fonc_c bloc_mu_fonc_c (5.51.2): to use for define a general form for mu
```

5.50.2 Bloc_rho_fonc_c

```
5.51.2 Bloc_mu_fonc_c
Description: if mu has a general form
See also: objet lecture (38)
Usage:
[ Champ Fonc Fonction ] [ problem name ] [ concentration ] [ dim ] [ val ]
where
   • Champ_Fonc_Fonction str into ['Champ_Fonc_Fonction']: Champ_Fonc_Fonction
   • problem name str: Name of problem.
   • concentration str into ['concentration']: concentration
   • dim int: dimension of the problem
   • val str: function of mu
5.52 Navier_stokes_standard
Description: Navier-Stokes equations.
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44) navier_stokes_QC (5.45) navier_stokes_WC (5.46) navier_stokes_turbulent
(5.53) navier stokes phase field (5.49) Navier Stokes Aposteriori (5.17) Navier Stokes standard sensibility
(5.23)
Usage:
navier_stokes_standard str
Read str {
     operateurs', 'sans rien']
     [ projection_initiale int]
     [solveur pression solveur sys base]
     [solveur_bar solveur_sys_base]
     [dt projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction_matrice_pression int]
     [ correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
```

[parametre_equation parametre_equation_base]

```
[ equation_non_resolue str]
}
where
```

- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien']: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int*: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18): Linear pressure system resolution method.
- **solveur_sys_base** (11.18): This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18): nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19): value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- traitement_particulier traitement_particulier (5.20): Keyword to post-process particular values.
- correction_matrice_projection_initiale int: (IBM advanced) fix matrix of initial projection for PDF
- correction calcul pression initiale int: (IBM advanced) fix initial pressure computation for PDF
- correction_vitesse_projection_initiale int: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int: (IBM advanced) fix pressure matrix for PDF
- **correction_vitesse_modifie** *int*: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int: (IBM advanced) fix pressure gradient
- correction_pression_modifie int: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** : (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.

- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1 ... 
x_n y_n [z_n] val_n
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.53 Navier_stokes_turbulent

Description: Navier-Stokes equations as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.52) navier_stokes_turbulent_qc (5.54) navier_stokes_ft_disc (5.47)
```

Usage:

```
navier_stokes_turbulent str
Read str {
```

```
[ modele turbulence modele turbulence hyd deriv]
_operateurs', 'sans_rien']]
[ projection_initiale int]
[solveur_pression solveur_sys_base]
[solveur_bar solveur_sys_base]
[dt projection deuxmots]
[ seuil_divU floatfloat]
[traitement particulier traitement particulier]
[ correction_matrice_projection_initiale int]
[ correction_calcul_pression_initiale int]
[ correction vitesse projection initiale int]
[correction_matrice_pression int]
[ correction_vitesse_modifie int]
[ gradient_pression_qdm_modifie int]
[ correction_pression_modifie int]
[ postraiter_gradient_pression_sans_masse ]
```

```
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.22): Turbulence model for Navier-Stokes equations.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- projection_initiale *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur pression solveur sys base (11.18) for inheritance: Linear pressure system resolution method.
- **solveur_bar** *solveur_sys_base* (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF

- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x n y n [z n] val n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.54 Navier_stokes_turbulent_qc

Description: Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object. See also: navier_stokes_turbulent (5.53)
```

```
Usage:
```

```
navier_stokes_turbulent_qc str
Read str {
```

```
[ modele_turbulence modele_turbulence_hyd_deriv]
[ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien']]
```

```
[ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur bar solveur sys base]
     [ dt_projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction matrice projection initiale int]
     [ correction calcul pression initiale int]
     [ correction vitesse projection initiale int]
     [correction matrice pression int]
     [correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [ correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [ convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur param]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
where
```

- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.22) for inheritance: Turbulence model for Navier-Stokes equations.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur_pression solveur_sys_base (11.18) for inheritance: Linear pressure system resolution method.
- solveur_bar solveur_sys_base (11.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt_projection** *deuxmots* (5.18) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (|max(DivU)*dt|<value)

```
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement_particulier** *traitement_particulier* (5.20) for inheritance: Keyword to post-process particular values.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.55 Transport_epsilon

Description: The eps transport equation in bicephale (standard or realisable) k-eps model.

Keyword Discretize should have already been used to read the object.

```
Usage:
transport_epsilon str
Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1 ... 
x_n y_n [z_n] val_n
```

where

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.56 Transport_interfaces_ft_disc

Description: Interface tracking equation for Front-Tracking problem in the discontinuous version.

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44)
Usage:
transport interfaces ft disc str
Read str {
     [initial conditions|conditions initiales bloc lecture]
     [ methode_transport methode_transport_deriv]
     [iterations_correction_volume int]
     [ n_iterations_distance int]
     [ maillage str]
     [ remaillage bloc_lecture_remaillage]
     [ collisions str]
     [ methode interpolation v str into ['valeur a elem', 'vdf lineaire']]
     [volume_impose_phase_1 float]
     [parcours interface parcours interface]
     [interpolation_repere_local]
     [interpolation champ face interpolation champ face deriv]
     [ n iterations interpolation ibc int]
     [ type vitesse imposee str into ['uniforme', 'analytique']]
     [ nombre_facettes_retenues_par_cellule int]
     [ seuil_convergence_uzawa float]
     [ nb_iteration_max_uzawa int]
     [injecteur_interfaces str]
     [vitesse_imposee_regularisee int]
     [ indic_faces_modifiee bloc_lecture]
     [ distance_projete_faces str into ['simplifiee', 'initiale', 'modifiee']]
     [ voflike_correction_volume int]
     [ nb_lissage_correction_volume int]
     [ nb iterations correction volume int]
     [type indic faces type indic faces]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

• initial_conditions|conditions_initiales bloc_lecture (3.6): The keyword conditions_initiales is used to define the shape of the initial interfaces through the zero level-set of a function, or through a mesh fichier_geom. Indicator function is set to 0, that is fluide0, where the function is negative; indicator function is set to 1, that is fluide1, where the function is positive; the interfaces are the level-set 0 of that function:

```
conditions_initiales { fonction (-((x-0.002)^2+(y-0.002)^2+z^2-(0.00125)^2))*((x-0.005)^2+(y-0.007)^2+z^2(0.00150)^2))*((0.020-z)) }
```

In the above example, there are three interfaces: two bubbles in a liquid with a free surface. One bubble has a radius of 0.00125, i.e. 1.25 mm, and its center is $\{0.002, 0.002, 0.000\}$. The other bubble has a radius of 0.00150, i.e. 1.5 mm, and its center is $\{0.005, 0.007, 0.000\}$. The free surface is above the two bubble, at a level z=0.02.

Additional feature in this block concerns the keywords ajout_phase0 and ajout_phase1. They can be used to simplify the composition of different interfaces. When using these keywords, the initial function defines the indicator function; ajout_phase0 and ajout_phase1 are used to modify this initial field. Each time ajout_phase0 is used, the field is untouched where the function is positive whereas the indicator field is set to 0 where the function is negative. The keyword ajout_phase1 has the symmetrical use, keeping the field value where the function is negative and setting the indicator field to 1 where the function is positive. The previous example can also be written:

```
conditions_initiales { fonction z-0.020 , NL fonction ajout_phase1 (x-0.002)^2+(y-0.002)^2+z^2-(0.00125)^2 , fonction ajout_phase1 (x-0.005)^2+(y-0.007)^2+z^2-(0.00150)^2 }
```

- **methode_transport** *methode_transport_deriv* (5.57): Method of transport of interface.
- iterations_correction_volume int: Keyword to specify the number or iterations requested for the correction process that can be used to keep the volume of the phases constant during the transport process.
- n_iterations_distance int: Keyword to specify the number or iterations requested for the smoothing process of computing the field corresponding to the signed distance to the interfaces and located at the center of the Eulerian elements. This smoothing is necessary when there are more Lagrangian nodes than Eulerian two-phase cells.
- maillage *str*: This optional block is used to specify that we want a Gnuplot drawing of the initial mesh. There is only one keyword, niveau_plot, that is used only to define if a Gnuplot drawing is active (value 1) or not active (value -1). By default, skipping the block will produce non Gnuplot drawing. This option is to be used only in a debug process.
- **remaillage** *bloc_lecture_remaillage* (5.58): This block is used to specify the operations that are used to keep the solid interfaces in a proper condition. The remaillage block only contains parameter's values.
- **collisions** *str*: This block is used to specify the operations that are used when a collision occurs between two parts of interfaces. When this occurs, it is necessary to build a new mesh that has locally a clear definition of what is inside and what is outside of the mesh. The collisions can either be active or inactive. If the collisions are active (highly recommended), the keyword juric_pour_tout indicates that the Juric level-set reconstruction method will be used to re-create the new mesh after each coalescence or breakup. The next line (type_remaillage) is used to state whose field will be used for the level-set computation. Main option is Juric, a remeshing that is compatible with parallel computing. When using Juric level-set remeshing, the source field (source_isovaleur) that is used to compute the level-sets is then defined. It can be either the indicator function (indicatrice), a choice which is the default one and the most robust, or a geometrical distance computed from the mesh at the beginning of the time step (fonction_distance), a choice that may be more accurate in specific situations.

Type_remaillage Thomas is an enhancement of the Juric global remeshing algorithm designed to compensate for mass loss during remeshing. The mesh is always reconstructed with the indicator function (not with the distance function). After having reconstructed the mesh with the Juric algorithm, the difference between the old indicator function (before remeshing) and the new indicator function is computed. The differences occurring at a distance below or equal to N elements from the

interface are summed up and used to move the interface in the normal direction. The displacement of the interface is such that the volume of each phase after displacement is equal to the volume of the phase before remeshing. N (default value 1) must be smaller than n_iterations_distance (suggested value: 2).

An alternate choice for the remeshing type (type_remaillage) is collision_seq, which is more complex and tries to sew the two meshes that have collided, once the collision zone has been removed. This algorithm does not work in parallel computation.

- methode_interpolation_v str into ['valeur_a_elem', 'vdf_lineaire']: In this block, two keywords are possible for method to select the way the interpolation is performed. With the choice valeur_a_elem the speed of displacement of the nodes of the interfaces is the velocity at the center of the Eulerian element in which each node is located at the beginning of the time step. This choice is the default interpolation method. The choice VDF_lineaire is only available with a VDF discretization (VDF). In this case, the speed of displacement of the nodes of the interfaces is linearly interpolated on the 4 (in 2D) or the 6 (in 3D) Eulerian velocities closest the location of each node at the beginning of the time step. In peculiar situation, this choice may provide a better interpolated value. Of course, this choice is not available with a VEF discretization (VEFPreP1B).
- **volume_impose_phase_1** *float*: this keyword is used to specify the volume of one phase to keep the volume of the phases constant during the remeshing process. It is an alternate solution to trouble in mass conservation. This option is mainly realistic when only one inclusion of phase 1 is present in the domain. In most other situations, the iterations_correction_volume keyword seems easier to justify. The volume to be keep is in m3 and should agree with initial condition.
- parcours_interface parcours_interface (5.59): Parcours_interface allows you to configure the algorithm that computes the surface mesh to volume mesh intersection. This algorithm has some serious trouble when the surface mesh points coincide with some faces of the volume mesh. Effects are visible on the indicator function, in VDF when a plane interface coincides with a volume mesh surface. To overcome these problems, the keyword correction_parcours_thomas keyword can be used: it allows the algorithm to slightly move some mesh points. This algorithm is experimental and is NOT activated by default.
- interpolation_repere_local: Triggers a new transport algorithm for the interface: the velocity vector of lagrangian nodes is computed in the moving frame of reference of the center of each connex component, in such a way that relative displacements of nodes within a connex component of the lagrangian mesh are minimized, hence reducing the necessity of barycentering, smooting and local remeshing. Very efficient for bubbly flows.
- interpolation_champ_face interpolation_champ_face_deriv (5.60): It is possible to compute the imposed velocity for the solid-fluid interface by direct affectation (interpolation_scheme would be set to base) or by multi-linear interpolation (interpolation_scheme would be set to lineaire). The default value is base.
- n_iterations_interpolation_ibc int: Useful only with interpolation_champ_face positioned to lineaire. Set the value concerning the width of the region of the linear interpolation. For the Penalized Direct Forcing model, a value equals to 1 is enough.
- type_vitesse_imposee str into ['uniforme', 'analytique']: Useful only with interpolation_champ_face positioned to lineaire. Value of the keyword is uniforme (for an uniform solid-fluide interface's velocity, i.e. zero for instance) or analytique (for an analytic expression of the solid-fluide interface's velocity depending on the spatial coordinates). The default value is uniforme.
- nombre_facettes_retenues_par_cellule int: Keyword to specify the default number (3) of facets per cell used to describe the geometry of the solid-solid interface. This number should be increased if the geometry of the solid-solid interface is complex in each cell (eulerian mesh too coarse for example).
- seuil_convergence_uzawa float: Optional option to change the default value (10-8) of the threshold convergence for the Uzawa algorithm if used in the Penalized Direct Forcing model. Sometime, the value should be decreased to insure a better convergence to force equality between sequential and parallel results.
- **nb_iteration_max_uzawa** *int*: Optional option to change the default value (10-8) of the threshold convergence for the Uzawa algorithm if used in the Penalized Direct Forcing model. Sometime, the

value should be decreased to insure a better convergence to force equality between sequential and parallel results.

- injecteur_interfaces str
- vitesse_imposee_regularisee int
- indic_faces_modifiee bloc_lecture (3.6)
- distance_projete_faces str into ['simplifiee', 'initiale', 'modifiee']
- voflike correction volume int
- nb lissage correction volume int
- nb_iterations_correction_volume int
- type_indic_faces type_indic_faces (3.129)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.23.1) for inheritance: Boundary conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1 ... 
x_n y_n [z_n] val_n
```

The created files are named: pbname fieldname [boundaryname] time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.57 Methode_transport_deriv

Description: Basic class for method of transport of interface.

```
See also: objet_lecture (38) loi_horaire (5.57.1) vitesse_imposee (5.57.2) vitesse_interpolee (5.57.3)
```

Usage:

methode_transport_deriv

5.57.1 Loi_horaire

Description: not_set

```
See also: methode_transport_deriv (5.57)

Usage:
loi_horaire nom_loi
where

• nom_loi str
```

5.57.2 Vitesse_imposee

Description: Class to specify that the speed of displacement of the nodes of the interfaces is imposed with an analytical formula.

```
See also: methode_transport_deriv (5.57)

Usage:
vitesse_imposee val
where
```

• val word1 word2 (word3): Analytical formula.

5.57.3 Vitesse_interpolee

Description: Class to specify that the interpolation will use the velocity field of the Navier-Stokes equation named val to compute the speed of displacement of the nodes of the interfaces.

```
See also: methode_transport_deriv (5.57)

Usage: vitesse_interpolee val
where

• val str: Navier-Stokes equation.
```

5.58 Bloc_lecture_remaillage

```
Description: Parameters for remeshing.

See also: objet_lecture (38)

Usage:
{

    [ pas float]
    [ pas_lissage float]
    [ nb_iter_remaillage int]
    [ nb_iter_barycentrage int]
    [ relax_barycentrage float]
    [ critere_arete float]
    [ critere_remaillage float]
    [ impr float]
    [ facteur_longueur_ideale float]
    [ nb_iter_correction_volume int]
    [ seuil_dvolume_residuel float]
```

```
[ lissage_courbure_coeff float]
  [ lissage_courbure_iterations int]
  [ lissage_courbure_iterations_systematique int]
  [ lissage_courbure_iterations_si_remaillage int]
  [ critere_longueur_fixe float]
}
where
```

- pas *float*: This keyword has default value -1.; when it is set to a negative value there is no remeshing. It is the time step in second (physical time) between two operations of remeshing.
- pas_lissage *float*: This keyword has default value -1.; when it is set to a negative value there is no smoothing of mesh. It is the time step in second (physical time) between two operations of smoothing of the mesh.
- **nb_iter_remaillage** *int*: This keyword has default value 0; when it is set to the zero value there is no remeshing. It is the number of iterations performed during a remeshing process.
- **nb_iter_barycentrage** *int*: This keyword has default value 0; when it is set to the zero value there is no operation of barycentrage. The barycentrage operation consists in moving each node of the mesh tangentially to the mesh surface and in a direction that let it closer the center of gravity of its neighbors. If relax_barycentrage is set to 1, the node is move to the center of gravity. For values lower than unity, the motion is limited to the corresponding fraction. The parameter nb_iter_barycentrage is the number of iteration of these node displacements.
- relax_barycentrage *float*: This keyword has default value 0; when it is set to the zero value there is no motion of the nodes. When 0 < relax_barycentrage <= 1, this parameter provides the relaxation ratio to be used in the barycentrage operation described for the keyword nb_iter_barycentrage.
- **critere_arete** *float*: This keyword is used to compute two sub-criteria: the minimum and the maximum edge length ratios used in the process of obtaining edges of length close to critere_longueur_fixe. Their respective values are set to (1-critere_arete)**2 and (1+critere_arete)**2. The default values of the minimum and the maximum are set respectively to 0.5 and 1.5. When an edge is longer than critere_longueur_fixe*(1+critere_arete)**2, the edge is cut into two pieces; when its length is smaller than critere_longueur_fixe*(1-critere_arete)**2, this edge has to be suppressed.
- **critere_remaillage** *float*: This keyword was previously used to compute two sub-criteria: the minimum and the maximum length used in the process of remeshing. Their respective values are set to (1-critere_remaillage)**2 and (1+critere_remaillage)**2. The default values of the minimum and the maximum are set respectively to 0.2 and 1.7. There are currently not used in data files.
- **impr** *float*: This keyword is followed by a value that specify the printing time period given. The default value is -1, which means no printing.
- facteur_longueur_ideale *float*: This keyword is used to set a ratio between edge length and the cube root of volume cell for the remeshing process. The default value is 1.0.
- **nb_iter_correction_volume** *int*: This keyword give the maximum number of iterations to be performed trying to satisfy the criterion seuil_dvolume_residuel. The default value is 0, which means no iteration.
- **seuil_dvolume_residuel** *float*: This keyword give the error volume (in m3) that is accepted to stop the iterations performed to keep the volume constant during the remeshing process. The default value is 0.0.
- **lissage_courbure_coeff** *float*: This keyword is used to specify the diffusion coefficient used in the diffusion process of the curvature in the curvature smoothing process with a time step. The default value is 0.05. That value usually provides a stable process. Too small values do not stabilize enough the interface, especially with several Lagrangian nodes per Eulerian cell. Too high values induce an additional macroscopic smoothing of the interface that should physically come from the surface tension and not from this numerical smoothing.
- **lissage_courbure_iterations** *int*: This keyword is used to specify the number of iterations to perform the curvature smoothing process. The default value is 1.
- **lissage_courbure_iterations_systematique** *int*: These keywords allow a finer control than the previous lissage courbure iterations keyword. N1 iterations are applied systematically at each timestep.

For proper DNS computation, N1 should be set to 0.

- **lissage_courbure_iterations_si_remaillage** *int*: N2 iterations are applied only if the local or the global remeshing effectively changes the lagrangian mesh connectivity.
- **critere_longueur_fixe** *float*: This keyword is used to specify the ideal edge length for a remeshing process. The default value is -1., which means that the remeshing does not try to have all edge lengths to tend towards a given value.

5.59 Parcours interface

Description: allows you to configure the algorithm that computes the surface mesh to volume mesh intersection. This algorithm has some serious trouble when the surface mesh points coincide with some faces of the volume mesh. Effects are visible on the indicator function, in VDF when a plane interface coincides with a volume mesh surface.

To overcome these problems, the keyword correction_parcours_thomas keyword can be used: it allows the algorithm to slightly move some mesh points. This algorithm, which is experimental and is NOT activated by default, triggers a correction that avoids some errors in the computation of the indicator function for surface meshes that exactly cross some eulerian mesh edges (strongly suggested!).

```
See also: objet_lecture (38)
Usage:
{
     [correction_parcours_thomas]
}
where
   • correction_parcours_thomas
5.60
       Interpolation_champ_face_deriv
Description: not set
See also: objet_lecture (38) base (5.60.1) lineaire (5.60.2)
Usage:
5.60.1 Base
Description: not set
See also: interpolation_champ_face_deriv (5.60)
Usage:
base
5.60.2 Lineaire
Description: not_set
See also: interpolation_champ_face_deriv (5.60)
Usage:
lineaire {
```

```
[ vitesse_fluide_explicite ]
}
where
• vitesse_fluide_explicite
```

5.61 Transport_k

Description: The k transport equation in bicephale (standard or realisable) k-eps model.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.44)
```

```
Usage:
transport_k str

Read str {

    [disable_equation_residual str]
    [convection bloc_convection]
    [diffusion bloc_diffusion]
    [boundary_conditions|conditions_limites condlims]
    [initial_conditions|conditions_initiales condinits]
    [sources sources]
    [ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
    [ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
    [parametre_equation parametre_equation_base]
    [equation_non_resolue str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n valeur

```
x_1 y_1 [z_1] val_1 ... 
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
The created files are named : pbname fieldname [boundaryname] time.dat
```

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.62 Transport_k_epsilon

Description: The (k-eps) transport equation. To resume from a previous mixing length calculation, an external MED-format file containing reconstructed K and Epsilon quantities can be read (see fichier_ecriture_k_eps) thanks to the Champ_fonc_MED keyword.

Warning, When used with the Quasi-compressible model, k and eps should be viewed as rho k and rho epsilon when defining initial and boundary conditions or when visualizing values for k and eps. This bug will be fixed in a future version.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.44)

```
Usage:
transport_k_epsilon str
Read str {
     [ with nu str into ['yes', 'no']]
     [disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- with_nu str into ['yes', 'no']: yes/no
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.23.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
```

```
...
x_n y_n [z_n] val_n
The created files are named : pbname_fieldname_[boundaryname]_time.dat
```

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

- parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.63 Transport_marqueur_ft

```
Description: not_set
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.44)
Usage:
transport_marqueur_ft str
Read str {
     [initial_conditions|conditions_initiales bloc_lecture]
     [injection injection marqueur]
     [transformation_bulles bloc_lecture]
     [ phase_marquee int]
     [ methode_transport str into ['vitesse_interpolee', 'vitesse_particules']]
      [ methode_couplage str into ['suivi', 'one_way_coupling', 'two_way_coupling']]
     [ nb_iterations int]
     [ contribution one way int into [0, 1]]
     [ implicite int into [0, 1]]
      [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [sources sources]
     [ ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
where
```

- initial_conditions|conditions_initiales bloc_lecture (3.6): ne semble pas standard
- **injection** *injection_marqueur* (5.64): The keyword injection can be used to inject periodically during the calculation some other particles. The syntax for ensemble_points and proprietes_particles is the

same than the initial conditions for the particles. The keyword t_debut_injection give the injection initial time (by default, given by t_debut_integration) and dt_injection gives the injection time period (by default given by dt_min).

- transformation_bulles bloc_lecture (3.6): This keyword will activate the transformation of an inclusion (small bubbles) into a particle. localisation gives the sub-zones (N number of sub-zones and their names) where the transformation may happen. The diameter size for the inclusion transformation is given by either diameter_min option, in this case the inclusion will be suppressed for a diameter less than diameter_size, either by the beta_transfo option, in this case the inclusion will be suppressed for a diameter less than diameter_size*cell_volume (cell_volume is the volume of the cell containing the inclusion). interface specifies the name of the inclusion interface and t_debut_transfo is the beginning time for the inclusion transformation operation (by default, it is t_debut_integr value) and dt_transfo is the period transformation (by default, it is dt_min value). In a two phase flow calculation, the particles will be suppressed when entring into the non marked phase
- phase_marquee *int*: Phase number giving the marked phase, where the particles are located (when they leave this phase, they are suppressed). By default, for a the two phase fluide, the particles are supposed to be into the phase 0 (liquid).
- methode_transport str into ['vitesse_interpolee', 'vitesse_particules']: Kind of transport method for the particles. With vitesse_interpolee, the velocity of the particles is the velocity a fluid interpolation velocity (option by default). With vitesse_particules, the velocity of the particules is governed by the resolution of a momentum equation for the particles.
- methode_couplage str into ['suivi', 'one_way_coupling', 'two_way_coupling']: Way of coupling between the fluid and the particles. By default, (keyword suivi), there is no interaction between both. With one_way_coupling keyword, the fluid act on the particles. With two_way_coupling keyword, besides, particles act on the fluid.
- **nb_iterations** *int*: Number of sub-timesteps to solve the momentum equation for the particles (1 per default).
- **contribution_one_way** *int into* [0, 1]: Activate (1, default) or not (0) the fluid forces on the particles when one_way_coupling or two_way_coupling coupling method is used.
- **implicite** *int into* [0, 1]: Impliciting (1) or not (0) the time scheme when weight added source term is used in the momentum equation
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.23.1) for inheritance: Boundary conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur_bin ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a binary file with the following format: n_valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur_param (5.6) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n valeur

```
x_1 y_1 [z_1] val_1
...
x_n y_n [z_n] val_n
```

The created files are named: pbname_fieldname_[boundaryname]_time.dat

• parametre_equation parametre_equation_base (5.7) for inheritance: Keyword used to specify ad-

ditional parameters for the equation

• equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.64 Injection_marqueur

```
Description: not_set
See also: objet_lecture (38)
Usage:
     ensemble_points bloc_lecture
     proprietes_particules bloc_lecture
     [t_debut_injection float]
     [ dt_injection float]
}
where
   • ensemble_points bloc_lecture (3.6)
   • proprietes_particules bloc_lecture (3.6)
   • t_debut_injection float
   • dt_injection float
    ijk_splitting
Description: not_set
See also: objet_u (39)
Usage:
IJK_Splitting str
Read str {
```

• ijk_grid_geometry str

nproc_i int
nproc_j int
nproc_k int

[ijk_grid_geometry str]

• nproc_i int

} where

- nproc_j int
- nproc_k int

```
7 algo_base
```

Description: Basic class for multi-grid algorithms.

```
See also: objet_u (39) algo_couple_1 (7.1)
Usage:
7.1 Algo_couple_1
Description: not_set
See also: algo_base (7)
Usage:
algo_couple_1 str
Read str {
     [ dt_uniforme ]
}
where
   • dt_uniforme
    /*
8
8.1 /*
Description: bloc of Comment in a data file.
See also: objet_u (39)
Usage:
/* comm
where
   • comm str: Text to be commented.
    champ_generique_base
Description: not_set
See also: objet_u (39) champ_post_de_champs_post (9.1) champ_post_refchamp (9.17) predefini (9.15)
Usage:
9.1 Champ_post_de_champs_post
Description: not_set
See also: champ_generique_base (9) champ_post_operateur_eqn (9.5) champ_post_transformation (9.19)
champ_post_operateur_base (9.4) champ_post_statistiques_base (9.6) champ_post_extraction (9.10) champ-
_post_morceau_equation (9.13) champ_post_tparoi_vef (9.18) champ_post_interpolation (9.12) champ-
_post_reduction_0d (9.16)
```

```
Usage:
champ_post_de_champs_post str
Read str {
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (9): the source field.
   • nom_source str: To name a source field with the nom_source keyword
   • source_reference str
   • sources_reference list_nom_virgule (9.2)
   • sources listchamp_generique (9.3): sources { Champ_Post.... { ... } Champ_Post... { ... }}
9.2 List_nom_virgule
Description: List of name.
See also: listobj (37.4)
Usage:
{ object1, object2.... }
list of nom_anonyme (26.1) separeted with,
9.3 Listchamp_generique
Description: XXX
See also: listobj (37.4)
Usage:
{ object1, object2.... }
list of champ_generique_base (9) separeted with,
9.4 Champ_post_operateur_base
Description: not_set
See also: champ_post_de_champs_post (9.1) champ_post_operateur_gradient (9.11) champ_post_operateur-
_divergence (9.8)
Usage:
champ_post_operateur_base str
Read str {
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
```

```
[sources_reference list_nom_virgule]
[sources listchamp_generique]

where

• source champ_generique_base (9) for inheritance: the source field.

• nom_source str for inheritance: To name a source field with the nom_source keyword

• source_reference str for inheritance

• sources_reference list_nom_virgule (9.2) for inheritance

• sources listchamp_generique (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
```

9.5 Champ_post_operateur_eqn

{ ... }}

```
Synonymous: operateur eqn
Description: not set
See also: champ_post_de_champs_post (9.1)
Usage:
champ_post_operateur_eqn str
Read str {
     [ numero op int]
     [ numero_source int]
     [sans solveur masse]
     [ compo int]
     [source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
```

• numero_op int

where

- numero source int
- sans_solveur_masse
- **compo** *int*: If you want to post-process only one component of a vector field, you can specify the number of the component after compo keyword. By default, it is set to -1 which means that all the components will be post-processed. This feature is not available in VDF disretization.
- **source** *champ_generique_base* (9) for inheritance: the source field.
- nom source str for inheritance: To name a source field with the nom source keyword
- source reference str for inheritance
- sources_reference list_nom_virgule (9.2) for inheritance
- **sources** *listchamp_generique* (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

9.6 Champ_post_statistiques_base

```
Description: not_set
See also: champ_post_de_champs_post (9.1) correlation (9.7) moyenne (9.14) ecart_type (9.9)
Usage:
champ_post_statistiques_base str
Read str {
     t_deb float
     t_fin float
     [source champ_generique_base]
     [ nom_source str]
     [source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • t_deb float: Start of integration time
   • t_fin float: End of integration time
   • source champ_generique_base (9) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (9.2) for inheritance
   • sources listchamp_generique (9.3) for inheritance: sources { Champ_Post... { ... } Champ_Post...
     { ... }}
9.7 Correlation
Synonymous: champ_post_statistiques_correlation
Description: to calculate the correlation between the two fields.
See also: champ_post_statistiques_base (9.6)
Usage:
correlation str
Read str {
     t_deb float
     t_fin float
     [ source champ_generique_base]
     [ nom_source str]
     [source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
```

- t_im jiour for innertunce. End of integration time
- t_deb float for inheritance: Start of integration time
 t_fin float for inheritance: End of integration time

```
• source champ_generique_base (9) for inheritance: the source field.
```

- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- sources_reference list_nom_virgule (9.2) for inheritance
- sources listchamp_generique (9.3) for inheritance: sources { Champ_Post... { ... } Champ_Post... { ... }}

9.8 Champ_post_operateur_divergence

```
Synonymous: divergence
Description: To calculate divergency of a given field.
See also: champ_post_operateur_base (9.4)
Usage:
champ_post_operateur_divergence str
Read str {
     [ source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [sources reference list nom virgule]
     [sources listchamp_generique]
}
where
   • source champ generique base (9) for inheritance: the source field.
```

- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (9.2) for inheritance
- sources listchamp_generique (9.3) for inheritance: sources { Champ_Post... { ... } Champ_Post... { ... }}

9.9 Ecart_type

Synonymous: champ_post_statistiques_ecart_type

Description: to calculate the standard deviation (statistic rms) of the field nom_champ.

See also: champ_post_statistiques_base (9.6)

```
Usage:
ecart type str
Read str {
     t_deb float
     t_fin float
     [source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
```

```
• t_deb float for inheritance: Start of integration time
   • t_fin float for inheritance: End of integration time
   • source champ_generique_base (9) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (9.2) for inheritance
   • sources listchamp generique (9.3) for inheritance: sources { Champ Post.... { ... } Champ Post...
      { ... }}
9.10
       Champ_post_extraction
Synonymous: extraction
Description: To create a surface field (values at the boundary) of a volume field
See also: champ post de champs post (9.1)
Usage:
champ_post_extraction str
Read str {
     domaine str
     nom_frontiere str
     [ methode str into ['trace', 'champ_frontiere']]
     [source champ_generique_base]
      [ nom source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • domaine str: name of the volume field
   • nom_frontiere str: boundary name where the values of the volume field will be picked
   • methode str into ['trace', 'champ_frontiere']: name of the extraction method (trace by_default or
     champ_frontiere)
   • source champ_generique_base (9) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (9.2) for inheritance
   • sources listchamp_generique (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
```

9.11 Champ_post_operateur_gradient

Synonymous: gradient

} where

Description: To calculate gradient of a given field.

```
See also: champ_post_operateur_base (9.4)
Usage:
champ_post_operateur_gradient str
Read str {
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (9) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (9.2) for inheritance
   • sources listchamp_generique (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
9.12
      Champ post interpolation
Synonymous: interpolation
Description: To create a field which is an interpolation of the field given by the keyword source.
See also: champ_post_de_champs_post (9.1)
Usage:
champ_post_interpolation str
Read str {
     localisation str
     [ methode str]
     [domaine str]
     [ optimisation_sous_maillage str into ['default', 'yes', 'no']]
     [source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
```

- **localisation** *str*: type_loc indicate where is done the interpolation (elem for element or som for node).
- methode str: The optional keyword methode is limited to calculer_champ_post for the moment.
- **domaine** *str*: the domain name where the interpolation is done (by default, the calculation domain)
- optimisation_sous_maillage str into ['default', 'yes', 'no']
- **source** *champ_generique_base* (9) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- **source_reference** *str* for inheritance

```
• sources_reference list_nom_virgule (9.2) for inheritance
```

```
• sources listchamp_generique (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
  { ... }}
```

Champ_post_morceau_equation

Synonymous: morceau_equation

Description: To calculate a field related to a piece of equation. For the moment, the field which can be calculated is the stability time step of an operator equation. The problem name and the unknown of the equation should be given by Source refChamp { Pb_Champ problem_name unknown_field_of_equation }

See also: champ_post_de_champs_post (9.1)

```
champ_post_morceau_equation str
Read str {
     type str
     numero int
     option str into ['stabilite', 'flux_bords', 'flux_surfacique_bords']
     [compo int]
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [sources reference list nom virgule]
     [sources listchamp_generique]
}
where
```

- type str: can only be operateur for equation operators.
- **numero** *int*: numero will be 0 (diffusive operator) or 1 (convective operator).
- option str into ['stabilite', 'flux_bords', 'flux_surfacique_bords']: option is stability for time steps or flux_bords for boundary fluxes or flux_surfacique_bords for boundary surfacic fluxes
- compo int: compo will specify the number component of the boundary flux (for boundary fluxes, in this case compo permits to specify the number component of the boundary flux choosen).
- **source** *champ_generique_base* (9) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (9.2) for inheritance
- sources listchamp_generique (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

9.14 Moyenne

```
Synonymous: champ_post_statistiques_moyenne
```

Description: to calculate the average of the field over time

```
See also: champ post statistiques base (9.6)
```

Usage:

```
moyenne str

Read str {

    [moyenne_convergee champ_base]
    t_deb float
    t_fin float
    [source champ_generique_base]
    [nom_source str]
    [source_reference str]
    [sources_reference list_nom_virgule]
    [sources listchamp_generique]
}
where
```

- moyenne_convergee champ_base (16.1): This option allows to read a converged time averaged field in a .xyz file in order to calculate, when resuming the calculation, the statistics fields (rms, correlation) which depend on this average. In that case, the time averaged field is not updated during the resume of calculation. In this case, the time averaged field must be fully converged to avoid errors when calculating high order statistics.
- **t_deb** *float* for inheritance: Start of integration time
- t_fin float for inheritance: End of integration time
- **source** *champ_generique_base* (9) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (9.2) for inheritance
- **sources** *listchamp_generique* (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

9.15 Predefini

Description: This keyword is used to post process predefined postprocessing fields.

```
See also: champ_generique_base (9)

Usage:
predefini str
Read str {
    pb_champ deuxmots
}
where
```

• **pb_champ** *deuxmots* (5.18): { Pb_champ nom_pb nom_champ } : nom_pb is the problem name and nom_champ is the selected field name. The available keywords for the field name are: energie_cinetique_totale, energie_cinetique_elem, viscosite_turbulente, viscous_force_x, viscous_force_y, viscous_force_z, pressure_force_x, pressure_force_y, pressure_force_z, total_force_x, total_force_y, total_force_z, viscous_force, pressure_force, total_force

9.16 Champ_post_reduction_0d

Synonymous: reduction_0d

Description: To calculate the min, max, sum, average, weighted sum, weighted average, weighted sum by porosity, weighted average by porosity, euclidian norm, normalized euclidian norm, L1 norm, L2 norm of a field.

```
Usage:
champ_post_reduction_0d str

Read str {

methode str into ['min', 'max', 'moyenne', 'average', 'moyenne_ponderee', 'weighted_average', 'somme', 'sum', 'somme_ponderee', 'weighted_sum', 'somme_ponsity', 'euclidian_norm', 'normalized_euclidian_norm', 'L1_norm', 'L2_norm', 'valeur_a_gauche', 'left_value']

[ source champ_generique_base]

[ nom_source str]

[ source_reference str]

[ sources reference list nom virgule]
```

} where

- methode str into ['min', 'max', 'moyenne', 'average', 'moyenne_ponderee', 'weighted_average', 'somme', 'sum', 'somme_ponderee', 'weighted_sum', 'somme_ponderee_porosite', 'weighted_sum-_porosity', 'euclidian_norm', 'normalized_euclidian_norm', 'L1_norm', 'L2_norm', 'valeur_a_gauche', 'left_value']: name of the reduction method:
 - min for the minimum value,

[sources listchamp generique]

- max for the maximum value,
- average (or moyenne) for a mean,
- weighted_average (or moyenne_ponderee) for a mean ponderated by integration volumes, e.g. cell volumes for temperature and pressure in VDF, volumes around faces for velocity and temperature in VEF,
- sum (or somme) for the sum of all the values of the field,
- weighted_sum (or somme_ponderee) for a weighted sum (integral),
- weighted_average_porosity (or moyenne_ponderee_porosite) and weighted_sum_porosity (or somme_ponderee_porosite) for the mean and sum weighted by the volumes of the elements, only for ELEM localisation,
- euclidian norm for the euclidian norm,
- normalized_euclidian_norm for the euclidian norm normalized,
- L1 norm for norm L1,
- L2_norm for norm L2
- **source** *champ_generique_base* (9) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- **sources_reference** *list_nom_virgule* (9.2) for inheritance
- **sources** *listchamp_generique* (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

9.17 Champ_post_refchamp

Synonymous: refchamp

Description: Field of prolem

```
See also: champ_generique_base (9)

Usage:
champ_post_refchamp str

Read str {

    pb_champ deuxmots
    [nom_source str]
}

where
```

- **pb_champ** *deuxmots* (5.18): { Pb_champ nom_pb nom_champ } : nom_pb is the problem name and nom_champ is the selected field name.
- nom_source str: The alias name for the field

9.18 Champ_post_tparoi_vef

Synonymous: tparoi_vef

Description: This keyword is used to post process (only for VEF discretization) the temperature field with a slight difference on boundaries with Neumann condition where law of the wall is applied on the temperature field. nom_pb is the problem name and field_name is the selected field name. A keyword (temperature_physique) is available to post process this field without using Definition_champs.

```
See also: champ_post_de_champs_post (9.1)
Usage:
champ_post_tparoi_vef str
Read str {
     [ source champ_generique_base]
     [ nom_source str]
     [source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ generique base (9) for inheritance: the source field.
   • nom source str for inheritance: To name a source field with the nom source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (9.2) for inheritance
   • sources listchamp_generique (9.3) for inheritance: sources { Champ_Post... { ... } Champ_Post...
      { ... }}
```

9.19 Champ_post_transformation

Synonymous: transformation

Description: To create a field with a transformation.

```
See also: champ_post_de_champs_post (9.1)

Usage:
champ_post_transformation str

Read str {

methode str into ['produit_scalaire', 'norme', 'vecteur', 'formule', 'composante']

[ expression n word1 word2 ... wordn]

[ numero int]

[ localisation str]

[ source champ_generique_base]

[ nom_source str]

[ source_reference str]

[ sources_reference list_nom_virgule]

[ sources listchamp_generique]

}

where
```

- methode str into ['produit_scalaire', 'norme', 'vecteur', 'formule', 'composante']: methode norme : will calculate the norm of a vector given by a source field methode produit_scalaire: will calculate the dot product of two vectors given by two sources fields methode composante numero integer: will create a field by extracting the integer component of a field given by a source field methode formule expression 1: will create a scalar field located to elements using expressions with x,y,z,t parameters and field names given by a source field or several sources fields. methode vecteur expression N f1(x,y,z,t) fN(x,y,z,t): will create a vector field located to elements by defining its N components with N expressions with x,y,z,t parameters and field names given by a source field or several sources fields.
- expression n word1 word2 ... wordn: see methodes formule and vecteur
- **numero** int: see methode composante
- **localisation** *str*: type_loc indicate where is done the interpolation (elem for element or som for node). The optional keyword methode is limited to calculer_champ_post for the moment
- **source** *champ_generique_base* (9) for inheritance: the source field.
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- sources reference list nom virgule (9.2) for inheritance
- **sources** *listchamp_generique* (9.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}

10 chimie

Description: Keyword to describe the chmical reactions

```
See also: objet_u (39)

Usage:
chimie str

Read str {

reactions reactions
[modele_micro_melange int]
[constante_modele_micro_melange float]
[espece_en_competition_micro_melange str]
```

```
where
   • reactions reactions (10.1): list of reactions
   • modele_micro_melange int: modele_micro_melange (0 by default)
   • constante_modele_micro_melange float: constante of modele (1 by default)
   • espece_en_competition_micro_melange str: espece in competition in reactions
10.1 Reactions
Description: list of reactions
See also: listobj (37.4)
Usage:
{ object1, object2.... }
list of reaction (10.1.1) separeted with,
10.1.1 Reaction
Description: Keyword to describe reaction:
w = K pow(T,beta) \exp(-Ea/(RT)) \prod pow(Reactif_i,activitivity_i).
If K_{inv} > 0,
w= K pow(T,beta) exp(-Ea/( R T)) ( Π pow(Reactif_i,activitivity_i) - Kinv/exp(-c_r_Ea/(R T)) Π pow(Produit-
i,activitivity i))
See also: objet_lecture (38)
Usage:
     reactifs str
     produits str
     [constante_taux_reaction float]
     [coefficients activites bloc lecture]
     enthalpie reaction float
     energie_activation float
     exposant_beta float
     [contre_reaction float]
     [contre_energie_activation float]
}
where
   • reactifs str: LHS of equation (ex CH4+2*O2)
   • produits str: RHS of equation (ex CO2+2*H20)
   • constante_taux_reaction float: constante of cinetic K
   • coefficients_activites bloc_lecture (3.6): coefficients od ativity (exemple { CH4 1 O2 2 })
   • enthalpie_reaction float: DH
   • energie_activation float: Ea
   • exposant_beta float: Beta
   • contre_reaction float: K_inv
   • contre_energie_activation float: c_r_Ea
```

}

11 class_generic

```
Description: not_set

See also: objet_u (39) dt_start (11.10) solveur_sys_base (11.18) Modele_Fonc_Realisable_base (11.2)

Usage:
```

11.1 Modele_fonc_realisable

Description: Deriv for instanciation of functions necessary to Realizable K-Epsilon Turbulence Model

```
See also: Modele_Fonc_Realisable_base (11.2)
```

Usage:

11.2 Modele_fonc_realisable_base

Description: Base class for Functions necessary to Realizable K-Epsilon Turbulence Model

```
See also: class_generic (11) Modele_Fonc_Realisable (11.1) Modele_Shih_Zhu_Lumley_VDF (11.3) Shih_Zhu_Lumley (11.4)
```

Usage:

11.3 Modele_shih_zhu_lumley_vdf

Description: Functions necessary to Realizable K-Epsilon Turbulence Model in VDF

```
See also: Modele_Fonc_Realisable_base (11.2)

Usage:

Modele_Shih_Zhu_Lumley_VDF str

Read str {

[ a0 float]
```

where

}

• a0 float: value of parameter A0 in U* formula

11.4 Shih_zhu_lumley

Description: Functions necessary to Realizable K-Epsilon Turbulence Model in VEF

```
See also: Modele_Fonc_Realisable_base (11.2)

Usage:
Shih_Zhu_Lumley str
```

```
Shih_Zhu_Lumley str
Read str {
    [a0 float]
}
where
```

• a0 float: value of parameter A0 in U* formula

11.5 Amgx

```
Description: Solver via AmgX API

See also: petsc (11.15)

Usage:
amgx solveur option_solveur [ atol ] [ rtol ]
where

• solveur str
• option_solveur bloc_lecture (3.6)
• atol float: Absolute threshold for convergence (same as seuil option)
• rtol float: Relative threshold for convergence
```

11.6 Cholesky

```
Description: Cholesky direct method.

See also: solveur_sys_base (11.18)

Usage:
cholesky str
Read str {
    [impr]
    [quiet]
}
where
```

- impr: Keyword which may be used to print the resolution time.
- quiet : To disable printing of information

11.7 **Dt_calc**

Description: The time step at first iteration is calculated in agreement with CFL condition.

```
See also: dt_start (11.10)
Usage:
dt_calc
```

11.8 Dt fixe

Description: The first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).

```
See also: dt_start (11.10)

Usage:
dt_fixe value
where
```

• value float: first time step.

```
11.9 Dt_min
```

```
Description: The first iteration is based on dt_min.
See also: dt_start (11.10)
Usage:
dt_min
11.10
        Dt_start
Description: not_set
See also: class generic (11) dt calc (11.7) dt min (11.9) dt fixe (11.8)
Usage:
dt_start
11.11
        Gcp_ns
Description: not_set
See also: gcp (11.17)
Usage:
gcp_ns str
Read str {
     solveur0 solveur_sys_base
     solveur1 solveur_sys_base
     [ precond precond_base]
     [ precond nul ]
     seuil float
     [impr]
     [quiet]
     [ save_matrix|save_matrice ]
     [ optimized ]
     [ nb_it_max int]
}
where
```

- solveur0 solveur_sys_base (11.18): Solver type.
- solveur1 solveur_sys_base (11.18): Solver type.
- **precond** *precond_base* (29) for inheritance: Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:
 - when the solver does not converge during initial projection,
 - when comparing sequential and parallel computations.

With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.

- **precond_nul** for inheritance: Keyword to not use a preconditioning method.
- **seuil** *float* for inheritance: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **impr** for inheritance: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet for inheritance: To not displaying any outputs of the solver.
- save matrix|save matrice for inheritance: to save the matrix in a file.
- **optimized** for inheritance: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged.

Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.

• **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gcp.

11.12 Gen

where

```
Description: not_set

See also: solveur_sys_base (11.18)

Usage:
gen str
Read str {

    solv_elem str
    precond precond_base
    [ seuil float]
    [ impr ]
    [ save_matrix|save_matrice ]
    [ quiet ]
    [ nb_it_max int]
    [ force ]
```

- solv_elem str: To specify a solver among gmres or bicgstab.
- precond precond_base (29): The only preconditionner that we can specify is ilu.
- **seuil** *float*: Value of the final residue. The solver ceases iterations when the Euclidean residue standard ||Ax-B|| is less than this value. default value 1e-12.
- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- save_matrix|save_matrice : To save the matrix in a file.
- quiet: To not displaying any outputs of the solver.
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the GEN solver.
- **force**: Keyword to set ipar[5]=-1 in the GEN solver. This is helpful if you notice that the solver does not perform more than 100 iterations. If this keyword is specified in the datafile, you should provide nb_it_max.

11.13 **Gmres**

Description: Gmres method (for non symetric matrix).

See also: solveur_sys_base (11.18)

Usage:
gmres str
Read str {

 [impr]
 [quiet]
 [seuil float]
 [diag]
 [nb_it_max int]
 [controle_residu int into [0, 1]]
 [save_matrix|save_matrice]
 [dim_espace_krilov int]
}

where

- **impr** : Keyword which may be used to print the convergence.
- quiet : To disable printing of information
- seuil *float*: Convergence value.
- diag: Keyword to use diagonal preconditionner (in place of pilut that is not parallel).
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** *int into* [0, 1]: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.
- save_matrix|save_matrice : to save the matrix in a file.
- dim_espace_krilov int

11.14 Optimal

Description: Optimal is a solver which tests several solvers of the previous list to choose the fastest one for the considered linear system.

```
See also: solveur_sys_base (11.18)

Usage:
optimal str
Read str {

    seuil float
    [impr]
    [quiet]
    [save_matrix|save_matrice]
    [frequence_recalc int]
    [nom_fichier_solveur str]
    [fichier_solveur_non_recree]
}
where
```

• seuil *float*: Convergence threshold

- impr : To print the convergency of the fastest solver
- quiet : To disable printing of information
- save_matrix|save_matrice : To save the linear system (A, x, B) into a file
- frequence_recalc int: To set a time step period (by default, 100) for re-checking the fatest solver
- nom_fichier_solveur str: To specify the file containing the list of the tested solvers
- fichier_solveur_non_recree : To avoid the creation of the file containing the list

11.15 Petsc

Description: Solver via Petsc API

Usage:

```
Solveur_pression Petsc Solver { precond Precond [ seuil seuil | nb_it_max integer ] [ impr | quiet ] [ save_matrix | read_matrix] }
```

Solver: Several solvers through PETSc API are available:

GCP: Conjugate Gradient

PIPECG: Pipelined Conjugate Gradient (possible reduced CPU cost during massive parallel calculation due to a single non-blocking reduction per iteration, if TRUST is built with a MPI-3 implementation).

GMRES: Generalized Minimal Residual

BICGSTAB: Stabilized Bi-Conjugate Gradient

IBICGSTAB: Improved version of previous one for massive parallel computations (only a single global reduction operation instead of the usual 3 or 4).

CHOLESKY: Parallelized version of Cholesky from MUMPS library. This solver accepts since the 1.6.7 version an option to select a different ordering than the automatic selected one by MUMPS (and printed by using the **impr** option). The possible choices are **Metis** | **Scotch** | **PT-Scotch** | **Parmetis**. The two last options can only be used during a parallel calculation, whereas the two first are available for sequential or parallel calculations. It seems that the CPU cost of A=LU factorization but also of the backward/forward elimination steps may sometimes be reduced by selecting a different ordering (Scotch seems often the best for b/f elimination) than the default one. Notice that this solver requires a huge amont of memory compared to iterative methods. To know how many RAM you will need by core, then use the **impr** option to have detailled informations during the analysis phase and before the factorisation phase (in the following output, you will learn that the largest memory is taken by the 0th CPU with 108MB):

```
** Rank of proc needing largest memory in IC facto : 0

** Estimated corresponding MBYTES for IC facto : 108
```

Thanks to the following graph, you read that in order to solve for instance a flow on a mesh with 2.6e6 cells, you will need to run a parallel calculation on 32 CPUs if you have cluster nodes with only 4GB/core (6.2GB*0.42~2.6GB):

Relative evolution compare to a 16 CPUs parallel calculation on a 2.6e6 cells mesh (163000 cells/CPU) where:

Peak RAM/CPU is 6.2GB A=LU in factorization in 206 s x=A-1.B solve in 0.83 s

CHOLESKY_OUT_OF_CORE: Same as the previous one but with a written LU decomposition of disk (save RAM memory but add an extra CPU cost during Ax=B solve)

CHOLESKY_SUPERLU: Parallelized Cholesky from SUPERLU_DIST library (less CPU and RAM efficient than the previous one)

CHOLESKY_PASTIX: Parallelized Cholesky from PASTIX library

CHOLESKY_UMFPACK: Sequential Cholesky from UMFPACK library (seems fast).

CLI { string } : Command Line Interface. Should be used only by advanced users, to access the whole solver/preconditioners from the PETSC API. To find all the available options, run your calculation with the -ksp_view -help options:

trust datafile [N] -ksp_view -help

. . .

Preconditioner (PC) Options -----

-pc_type Preconditioner:(one of) none jacobi pbjacobi bjacobi sor lu shell mg

eisenstat ilu icc cholesky asm ksp composite redundant nn mat fieldsplit galerkin openmp spai hypre tfs (PCSetType)

HYPRE preconditioner options

-pc_hypre_type <pilut> (choose one of) pilut parasails boomeramg

HYPRE ParaSails Options

- -pc_hypre_parasails_nlevels <1>: Number of number of levels (None)
- -pc_hypre_parasails_thresh <0.1>: Threshold (None)
- -pc_hypre_parasails_filter <0.1>: filter (None)
- -pc_hypre_parasails_loadbal <0>: Load balance (None)
- -pc_hypre_parasails_logging: <FALSE> Print info to screen (None)

-pc_hypre_parasails_reuse: <FALSE> Reuse nonzero pattern in preconditioner (None)

-pc_hypre_parasails_sym <nonsymmetric> (choose one of) nonsymmetric SPD nonsymmetric,SPD

Krylov Method (KSP) Options -----

- -ksp_type Krylov method:(one of) cg cgne stcg gltr richardson chebychev gmres tcqmr bcgs bcgsl cgs tfqmr cr lsqr preonly qcg bicg fgmres minres symmlq lgmres lcd (KSPSetType)
- -ksp_max_it <10000>: Maximum number of iterations (KSPSetTolerances)
- -ksp_rtol <0>: Relative decrease in residual norm (KSPSetTolerances)
- -ksp_atol <1e-12>: Absolute value of residual norm (KSPSetTolerances)
- -ksp divtol <10000>: Residual norm increase cause divergence (KSPSetTolerances)
- -ksp_converged_use_initial_residual_norm: Use initial residual residual norm for computing relative convergence
- -ksp_monitor_singular_value <stdout>: Monitor singular values (KSPMonitorSet)
- -ksp_monitor_short <stdout>: Monitor preconditioned residual norm with fewer digits (KSPMonitorSet)
- -ksp_monitor_draw: Monitor graphically preconditioned residual norm (KSPMonitorSet)
- -ksp_monitor_draw_true_residual: Monitor graphically true residual norm (KSPMonitorSet)

Example to use the multigrid method as a solver, not only as a preconditioner:

Solveur_pression Petsc CLI { -ksp_type richardson -pc_type hypre -pc_hypre_type boomeramg -ksp_atol 1.e-7 }

Precond: Several preconditioners are available:

NULL { }: No preconditioner used

BLOCK_JACOBI_ICC { level k ordering natural | rcm } : Incomplete Cholesky factorization for symmetric matrix with the PETSc implementation. The integer k is the factorization level (default value, 1). In parallel, the factorization is done by block (one per processor by default). The ordering of the local matrix is **natural** by default, but **rcm** ordering, which reduces the bandwith of the local matrix, may interestingly improves the quality of the decomposition and reduces the number of iterations.

SSOR { **omega** double } : Symmetric Successive Over Relaxation algorithm. **omega** (default value, 1.5) defines the relaxation factor.

EISENTAT { **omega** double } : SSOR version with Eisenstat trick which reduces the number of computations and thus CPU cost

SPAI { **level** nlevels **epsilon** thresh } : Spai Approximate Inverse algorithm from Parasails Hypre library. Two parameters are available, nlevels and thresh.

PILUT { **level** k **epsilon** thresh }: Dual Threashold Incomplete LU factorization. The integer k is the factorization level and **epsilon** is the drop tolerance.

DIAG { }: Diagonal (Jacobi) preconditioner.

BOOMERAMG { }: Multigrid preconditioner (no option is available yet, look at CLI command and Petsc documentation to try other options).

seuil corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than the value *seuil*.

nb_it_max integer: In order to specify a given number of iterations instead of a condition on the residue with the keyword **seuil**. May be useful when defining a PETSc solver for the implicit time scheme where convergence is very fast: 5 or less iterations seems enough.

impr is the keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).

quiet is a keyword which is used to not displaying any outputs of the solver.

save_matrix|read_matrix are the keywords to savelread into a file the constant matrix A of the linear system Ax=B solved (eg: matrix from the pressure linear system for an incompressible flow). It is useful

when you want to minimize the MPI communications on massive parallel calculation. Indeed, in VEF discretization, the overlapping width (generaly 2, specified with the **largeur_joint** option in the partition keyword **partition**) can be reduced to 1, once the matrix has been properly assembled and saved. The cost of the MPI communications in TRUST itself (not in PETSc) will be reduced with length messages divided by 2. So the strategy is:

I) Partition your VEF mesh with a largeur_joint value of 2

II) Run your parallel calculation on 0 time step, to build and save the matrix with the **save_matrix** option. A file named *Matrix_NBROWS_rows_NCPUS_cpus.petsc* will be saved to the disk (where NBROWS is the number of rows of the matrix and NCPUS the number of CPUs used).

III) Partition your VEF mesh with a largeur joint value of 1

IV) Run your parallel calculation completly now and substitute the **save_matrix** option by the **read_matrix** option. Some interesting gains have been noticed when the cost of linear system solve with PETSc is small compared to all the other operations.

TIPS:

A) Solver for symmetric linear systems (e.g. Pressure system from Navier-Stokes equations):

- -The **CHOLESKY** parallel solver is from MUMPS library. It offers better performance than all others solvers if you have enough RAM for your calculation. A parallel calculation on a cluster with 4GBytes on each processor, 40000 cells/processor seems the upper limit. Seems to be very slow to initialize above 500 cpus/cores.
- -When running a parallel calculation with a high number of cpus/cores (typically more than 500) where preconditioner scalability is the key for CPU performance, consider **BICGSTAB** with **BLOCK_JACOBI_ICC(1)** as preconditioner or if not converges, **GCP** with **BLOCK_JACOBI_ICC(1)** as preconditioner.
- -For other situations, the first choice should be **GCP/SSOR**. In order to fine tune the solver choice, each one of the previous list should be considered. Indeed, the CPU speed of a solver depends of a lot of parameters. You may give a try to the **OPTIMAL** solver to help you to find the fastest solver on your study.
- B) Solver for non symmetric linear systems (e.g.: Implicit schemes): The **BICGSTAB/DIAG** solver seems to offer the best performances.

Additional information is available into the PETSC documentation available on:

 $\$TRUST_ROOT/lib/src/LIBPETSC/petsc/*/docs/manual.pdf$

See also: solveur_sys_base (11.18) amgx (11.5) rocalution (11.16)

Usage:

petsc solveur option_solveur [atol] [rtol]
where

- solveur str
- option_solveur bloc_lecture (3.6)
- atol float: Absolute threshold for convergence (same as seuil option)
- rtol float: Relative threshold for convergence

11.16 Rocalution

Description: Solver via rocALUTION API

See also: petsc (11.15)

Usage:

```
rocalution solveur option_solveur [ atol ] [ rtol ] where
solveur str
option_solveur bloc_lecture (3.6)
atol float: Absolute threshold for convergence (same as seuil option)
rtol float: Relative threshold for convergence
```

11.17 Gcp

Description: Preconditioned conjugated gradient.

```
See also: solveur_sys_base (11.18) gcp_ns (11.11)

Usage:
gcp str
Read str {

    [precond precond_base]
    [precond_nul]
    seuil float
    [impr]
    [quiet]
    [save_matrix|save_matrice]
    [optimized]
    [nb_it_max int]

}

where
```

- **precond** *precond_base* (29): Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:
 - when the solver does not converge during initial projection,
 - when comparing sequential and parallel computations.

With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.

- **precond nul**: Keyword to not use a preconditioning method.
- **seuil** *float*: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet: To not displaying any outputs of the solver.
- save matrix|save matrice: to save the matrix in a file.
- **optimized**: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged. Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gcp.

11.18 Solveur_sys_base

Description: Basic class to solve the linear system.

```
See also: class generic (11) optimal (11.14) gen (11.12) petsc (11.15) gcp (11.17) cholesky (11.6) gm-
res (11.13)
```

Usage:

12

12.1

Description: Comments in a data file.

See also: objet u (39)

Usage: # comm

where

• comm str: Text to be commented.

13 condlim base

Description: Basic class of boundary conditions.

See also: objet_u (39) paroi_fixe (13.64) symetrie (13.81) periodique (13.77) paroi_adiabatique (13.45) dirichlet (13.15) neumann (13.44) paroi_contact (13.46) paroi_contact_fictif (13.47) paroi_echange_contact-_vdf (13.55) paroi_echange_externe_impose (13.59) paroi_echange_global_impose (13.63) Paroi (13.11) paroi_flux_impose (13.66) frontiere_ouverte_fraction_massique_imposee (13.25) paroi_echange_contact-_correlation_vdf (13.51) paroi_echange_contact_correlation_vef (13.52) Paroi_echange_interne_global-_impose (13.2) Paroi_echange_interne_global_parfait (13.3) Paroi_echange_interne_parfait (13.5) Paroi_ _echange_interne_impose (13.4) Neumann_homogene (13.7) frontiere_ouverte_k_eps_impose (13.30) paroi-_decalee_robin (13.49) paroi_ft_disc (13.70) sortie_libre_rho_variable (13.79) paroi_contact_rayo (13.48) flux_radiatif (13.20) contact_vdf_vef (13.13) contact_vef_vdf (13.14) Paroi_frottante_loi (13.12) Neumannloi paroi faible k (13.8) echange contact vdf ft disc (13.17) Neumann loi paroi faible omega (13.9) echange contact vdf ft disc solid (13.18)

Usage:

condlim base

Echange_couplage_thermique

```
Description: Thermal coupling boundary condition
```

```
See also: paroi_echange_global_impose (13.63)
```

```
Echange_couplage_thermique str
Read str {
     [temperature_paroi champ_base]
     [flux_paroi champ_base]
```

```
}
where
```

- temperature_paroi champ_base (16.1): Temperature
- flux_paroi champ_base (16.1): Wall heat flux

13.2 Paroi_echange_interne_global_impose

Description: Internal heat exchange boundary condition with global exchange coefficient.

See also: condlim_base (13)

Usage:

Paroi_echange_interne_global_impose h_imp ch where

- **h_imp** *str*: Global exchange coefficient value. The global exchange coefficient value is expressed in W.m-2.K-1.
- **ch** *champ_front_base* (17.1): Boundary field type.

13.3 Paroi_echange_interne_global_parfait

Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.

See also: condlim_base (13)

Usage:

Paroi_echange_interne_global_parfait

13.4 Paroi_echange_interne_impose

Description: Internal heat exchange boundary condition with exchange coefficient.

See also: condlim base (13)

Usage:

Paroi_echange_interne_impose h_imp ch where

• h_imp str: Exchange coefficient value expressed in W.m-2.K-1.

• ch champ_front_base (17.1): Boundary field type.

13.5 Paroi_echange_interne_parfait

Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.

See also: condlim_base (13)

Usage:

Paroi_echange_interne_parfait

13.6 Frontiere_ouverte_vitesse_imposee_ale

Description: Class for velocity boundary condition on a mobile boundary (ALE framework).

To be used when Reichardt's wall law is applied on a moving boundary.

The imposed velocity field is vectorial of type Ch_front_input_ALE or Champ_front_ALE. Example: frontiere_ouverte_vitesse_imposee_ALE Champ_front_ALE 2 0.5*cos(0.5*t) 0.0

See also: dirichlet (13.15)

Usage:

Frontiere_ouverte_vitesse_imposee_ALE

13.7 Neumann_homogene

Description: Homogeneous neumann boundary condition

See also: condlim_base (13) Neumann_paroi_adiabatique (13.10)

Usage:

Neumann_homogene

13.8 Neumann_loi_paroi_faible_k

Description: Weak adaptive wall-law boundary condition for turbulent kinetic energy

See also: condlim_base (13)

Usage:

13.9 Neumann_loi_paroi_faible_omega

Description: Weak adaptive wall-law boundary condition for tau and omega equations

See also: condlim_base (13)

Usage:

13.10 Neumann_paroi_adiabatique

Description: Adiabatic wall neumann boundary condition

See also: Neumann_homogene (13.7)

Usage:

Neumann_paroi_adiabatique

13.11 Paroi

Description: Impermeability condition at a wall called bord (edge) (standard flux zero). This condition must be associated with a wall type hydraulic condition.

See also: condlim_base (13)

Usage:

Paroi

13.12 Paroi_frottante_loi

```
Description: Adaptive wall-law boundary condition for velocity
```

See also: condlim base (13)

Usage:

13.13 Contact_vdf_vef

Description: Boundary condition in the case of two problems (VDF -> VEF).

See also: condlim base (13)

Usage:

contact_vdf_vef champ

where

• champ champ_front_base (17.1): Boundary field type.

13.14 Contact vef vdf

Description: Boundary condition in the case of two problems (VEF -> VDF).

See also: condlim base (13)

Usage:

contact_vef_vdf champ

where

• **champ** *champ_front_base* (17.1): Boundary field type.

13.15 Dirichlet

Description: Dirichlet condition at the boundary called bord (edge): 1). For Navier-Stokes equations, velocity imposed at the boundary; 2). For scalar transport equation, scalar imposed at the boundary.

See also: condlim_base (13) paroi_defilante (13.50) paroi_knudsen_non_negligeable (13.72) frontiere_ouverte_vitesse_imposee (13.42) frontiere_ouverte_temperature_imposee (13.39) frontiere_ouverte_concentration_imposee (13.24) paroi_temperature_imposee (13.74) scalaire_impose_paroi (13.78) paroi_rugueuse (13.73) Frontiere_ouverte_vitesse_imposee_ALE (13.6)

Usage:

dirichlet

13.16 Echange_contact_rayo_transp_vdf

Description: Exchange boundary condition in VDF between the transparent fluid and the solid for a problem coupled with radiation. Without radiation, it is the equivalent of the Paroi_Echange_contact_VDF exchange condition.

See also: paroi_echange_contact_vdf (13.55)

```
Usage:
```

```
echange_contact_rayo_transp_vdf autrepb nameb temp h where
```

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- **h** *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

13.17 Echange_contact_vdf_ft_disc

```
Description: echange_conatct_vdf en prescisant la phase
```

```
See also: condlim_base (13)

Usage:
echange_contact_vdf_ft_disc str

Read str {

    autre_probleme str
    autre_bord str
    autre_champ_temperature str
    nom_mon_indicatrice str
    phase int
}

where
```

- autre_probleme str: name of other problem
- autre_bord str: name of other boundary
- autre_champ_temperature str: name of other field
- nom_mon_indicatrice str: name of indicatrice
- phase int: phase

13.18 Echange_contact_vdf_ft_disc_solid

```
Description: echange_conatct_vdf en prescisant la phase
```

```
See also: condlim_base (13)

Usage:
echange_contact_vdf_ft_disc_solid str

Read str {

    autre_probleme str
    autre_bord str
    autre_champ_temperature_indic1 str
```

autre_champ_temperature_indic0 str

```
autre_champ_indicatrice str
where
autre_probleme str: name of other problem
autre_bord str: name of other boundary
autre_champ_temperature_indic1 str: name of temperature indic 1
```

• autre_champ_temperature_indic0 str: name of temperature indic 0

• autre champ indicatrice str: name of indicatrice

13.19 Entree temperature imposee h

Description: Particular case of class frontiere_ouverte_temperature_imposee for enthalpy equation.

See also: frontiere ouverte temperature imposee (13.39)

Usage:

entree_temperature_imposee_h ch
where

• ch champ_front_base (17.1): Boundary field type.

13.20 Flux_radiatif

Description: Boundary condition for radiation equation.

See also: condlim_base (13) flux_radiatif_vdf (13.21) flux_radiatif_vef (13.22)

Usage:

flux_radiatif na a ne emissivite where

- na str into ['A']: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- ne str into ['emissivite']: Keyword for wall emissivity.
- emissivite champ_front_base (17.1): Wall emissivity, value between 0 and 1.

13.21 Flux radiatif vdf

Description: Boundary condition for radiation equation in VDF.

See also: flux_radiatif (13.20)

Usage:

flux_radiatif_vdf na a ne emissivite

where

• na *str into ['A']*: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).

- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- **ne** *str into ['emissivite']*: Keyword for wall emissivity.
- emissivite champ_front_base (17.1): Wall emissivity, value between 0 and 1.

13.22 Flux_radiatif_vef

Description: Boundary condition for radiation equation in VEF.

See also: flux radiatif (13.20)

Usage:

flux_radiatif_vef na a ne emissivite

where

- na *str into ['A']*: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- ne str into ['emissivite']: Keyword for wall emissivity.
- emissivite champ_front_base (17.1): Wall emissivity, value between 0 and 1.

13.23 Frontiere_ouverte

Description: Boundary outlet condition on the boundary called bord (edge) (diffusion flux zero). This condition must be associated with a boundary outlet hydraulic condition.

See also: neumann (13.44) frontiere_ouverte_rayo_transp (13.35) frontiere_ouverte_rayo_semi_transp (13.34)

Usage:

frontiere_ouverte var_name ch

where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext']: Field name.
- ch champ front base (17.1): Boundary field type.

13.24 Frontiere_ouverte_concentration_imposee

Description: Imposed concentration condition at an open boundary called bord (edge) (situation corresponding to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: dirichlet (13.15)

Usage:

frontiere_ouverte_concentration_imposee ch

where

• **ch** champ front base (17.1): Boundary field type.

13.25 Frontiere_ouverte_fraction_massique_imposee

Description: not_set

See also: condlim_base (13)

Usage:

frontiere_ouverte_fraction_massique_imposee ch where

• **ch** champ front base (17.1): Boundary field type.

13.26 Frontiere_ouverte_gradient_pression_impose

Description: Normal imposed pressure gradient condition on the open boundary called bord (edge). This boundary condition may be only used in VDF discretization. The imposed $\partial P/\partial n$ value is expressed in Pa.m-1.

See also: neumann (13.44) frontiere_ouverte_gradient_pression_impose_vefprep1b (13.27)

Usage:

frontiere_ouverte_gradient_pression_impose ch where

• **ch** champ front base (17.1): Boundary field type.

13.27 Frontiere_ouverte_gradient_pression_impose_vefprep1b

Description: Keyword for an outlet boundary condition in VEF P1B/P1NC on the gradient of the pressure.

See also: frontiere_ouverte_gradient_pression_impose (13.26)

Usage:

 $frontiere_ouverte_gradient_pression_impose_vefprep1b \quad ch \\$ where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.28 Frontiere_ouverte_gradient_pression_libre_vef

Description: Class for outlet boundary condition in VEF like Orlansky. There is no reference for pressure for theses boundary conditions so it is better to add pressure condition (with Frontiere_ouverte_pression_imposee) on one or two cells (for symmetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (13.44)

Usage:

frontiere_ouverte_gradient_pression_libre_vef

13.29 Frontiere_ouverte_gradient_pression_libre_vefprep1b

Description: Class for outlet boundary condition in VEF P1B/P1NC like Orlansky.

See also: neumann (13.44)

Usage:

frontiere_ouverte_gradient_pression_libre_vefprep1b

13.30 Frontiere_ouverte_k_eps_impose

Description: Turbulence condition imposed on an open boundary called bord (edge) (this situation corresponds to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: condlim base (13)

Usage:

frontiere_ouverte_k_eps_impose ch

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.31 Frontiere_ouverte_pression_imposee

Description: Imposed pressure condition at the open boundary called bord (edge). The imposed pressure field is expressed in Pa.

See also: neumann (13.44)

Usage:

frontiere_ouverte_pression_imposee ch where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.32 Frontiere_ouverte_pression_imposee_orlansky

Description: This boundary condition may only be used with VDF discretization. There is no reference for pressure for this boundary condition so it is better to add pressure condition (with Frontiere_ouverte_pression_imposee) on one or two cells (for symetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (13.44)

Usage:

frontiere_ouverte_pression_imposee_orlansky

13.33 Frontiere_ouverte_pression_moyenne_imposee

Description: Class for open boundary with pressure mean level imposed.

See also: neumann (13.44)

Usage:

frontiere_ouverte_pression_moyenne_imposee pext where

• pext float: Mean pressure.

13.34 Frontiere_ouverte_rayo_semi_transp

Description: Keyword to set a boundary outlet temperature condition on the boundary called bord (edge) (diffusion flux zero) for a radiation problem with semi transparent gas.

See also: frontiere ouverte (13.23)

Usage:

frontiere_ouverte_rayo_semi_transp var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext']: Field name.
- **ch** *champ_front_base* (17.1): Boundary field type.

13.35 Frontiere_ouverte_rayo_transp

Description: Keyword to set a boundary outlet temperature condition on the boundary called bord (edge) (diffusion flux zero) for a radiation problem with transparent gas.

See also: frontiere_ouverte (13.23) frontiere_ouverte_rayo_transp_vdf (13.36) frontiere_ouverte_rayo_transp_vef (13.37)

Usage:

frontiere_ouverte_rayo_transp var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext']: Field name.
- ch champ_front_base (17.1): Boundary field type.

13.36 Frontiere_ouverte_rayo_transp_vdf

Description: doit disparaitre

See also: frontiere_ouverte_rayo_transp (13.35)

Usage:

frontiere_ouverte_rayo_transp_vdf var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext']: Field name.
- **ch** champ front base (17.1): Boundary field type.

13.37 Frontiere_ouverte_rayo_transp_vef

Description: doit disparaitre

See also: frontiere_ouverte_rayo_transp (13.35)

Usage:

frontiere_ouverte_rayo_transp_vef var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext']: Field name.
- ch champ_front_base (17.1): Boundary field type.

13.38 Frontiere_ouverte_rho_u_impose

Description: This keyword is used to designate a condition of imposed mass rate at an open boundary called bord (edge). The imposed mass rate field at the inlet is vectorial and the imposed velocity values are expressed in kg.s-1. This boundary condition can be used only with the Quasi compressible model.

See also: frontiere_ouverte_vitesse_imposee_sortie (13.43)

Usage:

frontiere_ouverte_rho_u_impose ch where

• ch champ_front_base (17.1): Boundary field type.

13.39 Frontiere_ouverte_temperature_imposee

Description: Imposed temperature condition at the open boundary called bord (edge) (in the case of fluid inlet). This condition must be associated with an imposed inlet velocity condition. The imposed temperature value is expressed in oC or K.

See also: dirichlet (13.15) entree_temperature_imposee_h (13.19) frontiere_ouverte_temperature_imposee_rayo_transp (13.41) frontiere_ouverte_temperature_imposee_rayo_semi_transp (13.40)

Usage:

frontiere_ouverte_temperature_imposee ch where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.40 Frontiere_ouverte_temperature_imposee_rayo_semi_transp

Description: Imposed temperature condition for a radiation problem with semi transparent gas.

See also: frontiere_ouverte_temperature_imposee (13.39)

Usage:

frontiere_ouverte_temperature_imposee_rayo_semi_transp ch where

• ch champ_front_base (17.1): Boundary field type.

13.41 Frontiere_ouverte_temperature_imposee_rayo_transp

Description: Imposed temperature condition for a radiation problem with transparent gas.

See also: frontiere_ouverte_temperature_imposee (13.39)

Usage:

 $\label{lem:continuous} \textbf{frontiere_ouverte_temperature_imposee_rayo_transp} \quad \textbf{ch} \\ \textbf{where} \\$

• **ch** champ front base (17.1): Boundary field type.

13.42 Frontiere_ouverte_vitesse_imposee

Description: Class for velocity-inlet boundary condition. The imposed velocity field at the inlet is vectorial and the imposed velocity values are expressed in m.s-1.

See also: dirichlet (13.15) frontiere ouverte vitesse imposee sortie (13.43)

Usage:

frontiere_ouverte_vitesse_imposee ch where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.43 Frontiere_ouverte_vitesse_imposee_sortie

Description: Sub-class for velocity boundary condition. The imposed velocity field at the open boundary is vectorial and the imposed velocity values are expressed in m.s-1.

See also: frontiere_ouverte_vitesse_imposee (13.42) frontiere_ouverte_rho_u_impose (13.38)

Usage:

frontiere_ouverte_vitesse_imposee_sortie ch where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.44 Neumann

Description: Neumann condition at the boundary called bord (edge): 1). For Navier-Stokes equations, constraint imposed at the boundary; 2). For scalar transport equation, flux imposed at the boundary.

See also: condlim_base (13) frontiere_ouverte_gradient_pression_libre_vef (13.28) frontiere_ouverte_gradient_pression_libre_vefprep1b (13.29) frontiere_ouverte_gradient_pression_impose (13.26) frontiere_ouverte_pression_imposee (13.31) frontiere_ouverte_pression_imposee_orlansky (13.32) frontiere_ouverte_pression_moyenne_imposee (13.33) frontiere_ouverte (13.23) sortie_libre_temperature_imposee_h (13.80)

Usage:

neumann

13.45 Paroi_adiabatique

Description: Normal zero flux condition at the wall called bord (edge).

See also: condlim_base (13)

Usage:

paroi_adiabatique

13.46 Paroi_contact

Description: Thermal condition between two domains. Important: the name of the boundaries in the two domains should be the same. (Warning: there is also an old limitation not yet fixed on the sequential algorithm in VDF to detect the matching faces on the two boundaries: faces should be ordered in the same way). The kind of condition depends on the discretization. In VDF, it is a heat exchange condition, and in VEF, a temperature condition.

Such a coupling requires coincident meshes for the moment. In case of non-coincident meshes, run is stopped and two external files are automatically generated in VEF (connectivity_failed_boundary_name and connectivity_failed_pb_name.med). In 2D, the keyword Decouper_bord_coincident associated to the connectivity_failed_boundary_name file allows to generate a new coincident mesh.

In 3D, for a first preliminary cut domain with HOMARD (fluid for instance), the second problem associated to pb_name (solide in a fluid/solid coupling problem) has to be submitted to HOMARD cutting procedure with connectivity_failed_pb_name.med.

Such a procedure works as while the primary refined mesh (fluid in our example) impacts the fluid/solid interface with a compact shape as described below (values 2 or 4 indicates the number of division from primary faces obtained in fluid domain at the interface after HOMARD cutting):

2-2-2-2-2

2-4-4-4-4-2 2-2-2

2-4-4-4-2 2-4-2

2-2-2-2 2-2

OK

2-2 2-2-2

2-4-2 2-2

2-2 2-2

NOT OK

See also: condlim_base (13)

Usage:

paroi_contact autrepb nameb

where

- autrepb str: Name of other problem.
- nameb str: boundary name of the remote problem which should be the same than the local name

13.47 Paroi_contact_fictif

Description: This keyword is derivated from paroi_contact and is especially dedicated to compute coupled fluid/solid/fluid problem in case of thin material. Thanks to this option, solid is considered as a fictitious media (no mesh, no domain associated), and coupling is performed by considering instantaneous thermal equilibrium in it (for the moment).

See also: condlim_base (13)

```
Usage:
```

paroi_contact_fictif autrepb nameb conduct_fictif ep_fictive
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- **conduct_fictif** *float*: thermal conductivity
- ep_fictive float: thickness of the fictitious media

13.48 Paroi_contact_rayo

Description: Thermal condition between two domains.

```
See also: condlim_base (13)
```

Usage:

paroi_contact_rayo autrepb nameb type
where

- autrepb str: Name of other problem.
- nameb str: boundary name of the remote problem which should be the same than the local name
- type str into ['TRANSP', 'SEMI_TRANSP']

13.49 Paroi decalee robin

Description: This keyword is used to designate a Robin boundary condition (a.u+b.du/dn=c) associated with the Pironneau methodology for the wall laws. The value of given by the delta option is the distance between the mesh (where symmetry boundary condition is applied) and the fictious wall. This boundary condition needs the definition of the dedicated source terms (Source_Robin or Source_Robin_Scalaire) according the equations used.

```
See also: condlim_base (13)

Usage:
paroi_decalee_robin str

Read str {
    delta float
}
where
• delta float
```

13.50 Paroi defilante

Description: Keyword to designate a condition where tangential velocity is imposed on the wall called bord (edge). If the velocity components set by the user is not tangential, projection is used.

```
See also: dirichlet (13.15)
Usage:
paroi_defilante ch
```

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.51 Paroi_echange_contact_correlation_vdf

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with the keyword Tranche.

```
See also: condlim base (13)
Usage:
paroi_echange_contact_correlation_vdf str
Read str {
     dir int
     tinf float
     tsup float
     lambda str
     rho str
     cp float
     dt_impr float
     mu str
     debit float
     dh float
     volume str
     nu str
     [reprise_correlation]
}
where
```

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- tinf *float*: Inlet fluid temperature of the 1D model (oC or K).
- **tsup** *float*: Outlet fluid temperature of the 1D model (oC or K).
- **lambda** *str*: Thermal conductivity of the fluid (W.m-1.K-1).
- rho str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- dt_impr float: Printing period in name_of_data_file_time.dat files of the 1D model results.
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- debit float: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **dh** *float*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **volume** *str*: Exact volume of the 1D domain (m3) which may be a function of the hydraulic diameter (Dh) and the lateral surface (S) of the meshed boundary.
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- reprise_correlation : Keyword in the case of a resuming calculation with this correlation.

13.52 Paroi_echange_contact_correlation_vef

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with the keyword Tranche_geom.

```
See also: condlim_base (13)
Usage:
paroi_echange_contact_correlation_vef str
Read str {
     dir int
     tinf float
     tsup float
     lambda str
     rho str
     cp float
     dt_impr float
     mu str
     debit float
     dh float
     n int
     surface str
     nu str
     xinf float
     xsup float
     [ emissivite_pour_rayonnement_entre_deux_plaques_quasi_infinies | float]
     [reprise_correlation]
}
where
```

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- **tinf** *float*: Inlet fluid temperature of the 1D model (oC or K).
- **tsup** *float*: Outlet fluid temperature of the 1D model (oC or K).
- lambda str: Thermal conductivity of the fluid (W.m-1.K-1).
- **rho** str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- dt impr float: Printing period in name of data file time.dat files of the 1D model results.
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- **debit** *float*: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **dh** *float*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **n** *int*: Number of 1D cells of the 1D mesh.
- **surface** *str*: Section surface of the channel which may be function f(Dh,x) of the hydraulic diameter (Dh) and x position along the 1D axis (xinf <= x <= xsup)
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- xinf float: Position of the inlet of the 1D mesh on the axis direction.
- **xsup** *float*: Position of the outlet of the 1D mesh on the axis direction.
- emissivite_pour_rayonnement_entre_deux_plaques_quasi_infinies float: Coefficient of emissivity for radiation between two quasi infinite plates.
- reprise_correlation : Keyword in the case of a resuming calculation with this correlation.

13.53 Paroi_echange_contact_odvm_vdf

Description: not_set

See also: paroi_echange_contact_vdf (13.55)

Usage:

paroi_echange_contact_odvm_vdf autrepb nameb temp h
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where 1/h = d1/lambda1 + 1/val h contact + d2/lambda2

where di : distance between the node where Ti and the wall is found.

13.54 Paroi_echange_contact_rayo_semi_transp_vdf

Description: Exchange boundary condition in VDF between the semi transparent fluid and the solid for a problem coupled with radiation.

See also: paroi_echange_contact_vdf (13.55)

Usage:

 ${\bf paroi_echange_contact_rayo_semi_transp_vdf} \ \ {\bf autrepb} \ \ {\bf nameb} \ \ {\bf temp} \ \ {\bf h}$ where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- **h** *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by :

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

13.55 Paroi_echange_contact_vdf

Description: Boundary condition type to model the heat flux between two problems. Important: the name of the boundaries in the two problems should be the same.

See also: condlim_base (13) paroi_echange_contact_odvm_vdf (13.53) paroi_echange_contact_vdf_ft (13.56) echange_contact_rayo_transp_vdf (13.16) paroi_echange_contact_rayo_semi_transp_vdf (13.54)

Usage:

paroi_echange_contact_vdf autrepb nameb temp h
where

• autrepb str: Name of other problem.

- nameb str: Name of bord.
- temp str: Name of field.
- **h** *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

13.56 Paroi_echange_contact_vdf_ft

Description: This boundary condition is used between a conduction problem and a thermohydraulic problem with two phases flow (Front-Tracking method) to modelize heat exchange.

See also: paroi_echange_contact_vdf (13.55)

Usage:

paroi_echange_contact_vdf_ft autrepb nameb temp h
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

13.57 Paroi echange contact vdf zoom fin

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature in the case of zoom (fine).

See also: paroi_echange_externe_impose (13.59)

Usage:

 $paroi_echange_contact_vdf_zoom_fin \ h_imp \ himpc \ text \ ch$ where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- **himpc** *champ_front_base* (17.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** *champ_front_base* (17.1): Boundary field type.

13.58 Paroi_echange_contact_vdf_zoom_grossier

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature in the case of zoom (coarse).

See also: paroi echange externe impose (13.59)

Usage:

paroi_echange_contact_vdf_zoom_grossier h_imp himpc text ch
where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (17.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** *champ_front_base* (17.1): Boundary field type.

13.59 Paroi_echange_externe_impose

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature.

See also: condlim_base (13) paroi_echange_externe_impose_h (13.60) paroi_echange_externe_impose_rayo_transp (13.62) paroi_echange_externe_impose_rayo_semi_transp (13.61) paroi_echange_contact_vdf_zoom_grossier (13.58) paroi_echange_contact_vdf_zoom_fin (13.57)

Usage:

paroi_echange_externe_impose h_imp himpc text ch where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (17.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** *champ_front_base* (17.1): Boundary field type.

13.60 Paroi_echange_externe_impose_h

Description: Particular case of class paroi_echange_externe_impose for enthalpy equation.

See also: paroi_echange_externe_impose (13.59)

Usage:

paroi_echange_externe_impose_h h_imp himpc text ch
where

- h imp str: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ front base (17.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ_front_base (17.1): Boundary field type.

13.61 Paroi echange externe impose rayo semi transp

Description: External type exchange condition for a coupled problem with radiation in semi transparent gas.

See also: paroi_echange_externe_impose (13.59)

Usage:

paroi_echange_externe_impose_rayo_semi_transp h_imp himpc text ch
where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- **himpc** *champ_front_base* (17.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ_front_base (17.1): Boundary field type.

13.62 Paroi_echange_externe_impose_rayo_transp

Description: External type exchange condition for a coupled problem with radiation in transparent gas.

See also: paroi_echange_externe_impose (13.59)

Usage:

paroi_echange_externe_impose_rayo_transp h_imp himpc text ch where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (17.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** *champ_front_base* (17.1): Boundary field type.

13.63 Paroi_echange_global_impose

Description: Global type exchange condition (internal) that is to say that diffusion on the first fluid mesh is not taken into consideration.

See also: condlim_base (13) Echange_couplage_thermique (13.1)

Usage:

paroi_echange_global_impose h_imp himpc text ch where

- **h_imp** *str*: Global exchange coefficient value. The global exchange coefficient value is expressed in W.m-2.K-1.
- **himpc** *champ_front_base* (17.1): Boundary field type.
- text str: External temperature value. The external temperature value is expressed in oC or K.
- ch champ front base (17.1): Boundary field type.

13.64 Paroi fixe

Description: Keyword to designate a situation of adherence to the wall called bord (edge) (normal and tangential velocity at the edge is zero).

See also: condlim_base (13) paroi_fixe_iso_Genepi2_sans_contribution_aux_vitesses_sommets (13.65)

Usage:

paroi fixe

13.65 Paroi fixe iso genepi2 sans contribution aux vitesses sommets

Description: Boundary condition to obtain iso Geneppi2, without interest

See also: paroi_fixe (13.64)

Usage:

paroi_fixe_iso_Genepi2_sans_contribution_aux_vitesses_sommets

13.66 Paroi_flux_impose

Description: Normal flux condition at the wall called bord (edge). The surface area of the flux (W.m-1 in 2D or W.m-2 in 3D) is imposed at the boundary according to the following convention: a positive flux is a flux that enters into the domain according to convention.

See also: condlim_base (13) paroi_flux_impose_rayo_transp (13.69) paroi_flux_impose_rayo_semi_transp_vdf (13.67) paroi_flux_impose_rayo_semi_transp_vef (13.68)

Usage:

paroi_flux_impose ch

where

• ch champ_front_base (17.1): Boundary field type.

13.67 Paroi_flux_impose_rayo_semi_transp_vdf

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in semi transparent gas (in VDF).

See also: paroi_flux_impose (13.66)

Usage:

paroi_flux_impose_rayo_semi_transp_vdf ch where

• ch champ_front_base (17.1): Boundary field type.

13.68 Paroi_flux_impose_rayo_semi_transp_vef

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in semi transparent gas (in VEF).

See also: paroi_flux_impose (13.66)

Usage:

paroi_flux_impose_rayo_semi_transp_vef ch

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.69 Paroi_flux_impose_rayo_transp

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in transparent gas.

See also: paroi_flux_impose (13.66)

Usage:

paroi_flux_impose_rayo_transp ch

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.70 Paroi_ft_disc

Description: Boundary condition for Front-Tracking problem in the discontinuous version.

See also: condlim_base (13)

Usage:

paroi_ft_disc type

where

• type paroi_ft_disc_deriv (13.71): Symetrie condition.

13.71 Paroi_ft_disc_deriv

Description: not_set

See also: objet_lecture (38) symetrie (13.71.1) constant (13.71.2)

Usage:

paroi_ft_disc_deriv

13.71.1 Symetrie

Description: Symetrie condition in the case of two-phase flows

See also: paroi_ft_disc_deriv (13.71)

Usage:

symetrie

13.71.2 Constant

Description: condition contact angle fidex. The angle is measured between the wall and the interface in the phase 0.

See also: paroi_ft_disc_deriv (13.71)

Usage:

constant ch

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.72 Paroi_knudsen_non_negligeable

Description: Boundary condition for number of Knudsen (Kn) above 0.001 where slip-flow condition appears: the velocity near the wall depends on the shear stress: Kn=l/L with l is the mean-free-path of the molecules and L a characteristic length scale.

U(y=0)-Uwall=k(dU/dY)

Where k is a coefficient given by several laws:

```
Mawxell: k=(2-s)*1/s
Bestok&Karniadakis :k=(2-s)/s*L*Kn/(1+Kn)
Xue\&Fan : k=(2-s)/s*L*tanh(Kn)
s is a value between 0 and 2 named accommodation coefficient. s=1 seems a good value.
Warning: The keyword is available for VDF calculation only for the moment.
See also: dirichlet (13.15)
Usage:
paroi_knudsen_non_negligeable name_champ_1 champ_1 name_champ_2 champ_2
where
   • name_champ_1 str into ['vitesse_paroi', 'k']: Field name.
   • champ_1 champ_front_base (17.1): Boundary field type.
   • name_champ_2 str into ['vitesse_paroi', 'k']: Field name.
   • champ_front_base (17.1): Boundary field type.
13.73 Paroi_rugueuse
Description: Rough wall boundary
See also: dirichlet (13.15)
Usage:
paroi_rugueuse str
Read str {
     erugu float
}
where
   • erugu float: Constant value for roughness
13.74 Paroi_temperature_imposee
Description: Imposed temperature condition at the wall called bord (edge).
See also: dirichlet (13.15) temperature imposee paroi (13.82) paroi temperature imposee rayo transp
(13.76) paroi_temperature_imposee_rayo_semi_transp (13.75)
```

Usage:

paroi temperature imposee ch

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.75 Paroi_temperature_imposee_rayo_semi_transp

Description: Imposed temperature condition at the wall called bord (edge) for a radiation problem in semi transparent gas.

See also: paroi_temperature_imposee (13.74)

Usage:

paroi_temperature_imposee_rayo_semi_transp ch
where

• ch champ_front_base (17.1): Boundary field type.

13.76 Paroi_temperature_imposee_rayo_transp

Description: Imposed temperature condition at the wall called bord (edge) for a radiation problem in transparent gas.

See also: paroi_temperature_imposee (13.74)

Usage:

 $\begin{picture}{ll} paroi_temperature_imposee_rayo_transp & ch \\ where \end{picture}$

• ch champ front base (17.1): Boundary field type.

13.77 Periodique

Description: 1). For Navier-Stokes equations, this keyword is used to indicate that the horizontal inlet velocity values are the same as the outlet velocity values, at every moment. As regards meshing, the inlet and outlet edges bear the same name.; 2). For scalar transport equation, this keyword is used to set a periodic condition on scalar. The two edges dealing with this periodic condition bear the same name.

See also: condlim_base (13)

Usage:

periodique

13.78 Scalaire_impose_paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: dirichlet (13.15)

Usage:

scalaire_impose_paroi ch

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.79 Sortie libre rho variable

Description: Class to define an outlet boundary condition at which the pressure is defined through the given field, whereas the density of the two-phase flow may varies (value of P/rho given in Pa/kg.m-3).

See also: condlim_base (13)

Usage:

 $sortie_libre_rho_variable \quad ch$

where

• **ch** *champ_front_base* (17.1): Boundary field type.

13.80 Sortie_libre_temperature_imposee_h

Description: Open boundary for heat equation with enthalpy as unknown.

See also: neumann (13.44)

Usage:

 $sortie_libre_temperature_imposee_h \ ch$

where

• ch champ_front_base (17.1): Boundary field type.

13.81 Symetrie

Description: 1). For Navier-Stokes equations, this keyword is used to designate a symmetry condition concerning the velocity at the boundary called bord (edge) (normal velocity at the edge equal to zero and tangential velocity gradient at the edge equal to zero); 2). For scalar transport equation, this keyword is used to set a symmetry condition on scalar on the boundary named bord (edge).

See also: condlim_base (13)

Usage:

symetrie

13.82 Temperature_imposee_paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: paroi_temperature_imposee (13.74)

Usage:

temperature_imposee_paroi ch

where

• ch champ_front_base (17.1): Boundary field type.

14 discretisation_base

Description: Basic class for space discretization of thermohydraulic turbulent problems.

See also: objet_u (39) vdf (14.4) vef (14.5) covimac (14.1) polymac_p0p1nc (14.3) ef (14.2)

Usage:

14.1 Covimac

Synonymous: polymac_p0

Description: covimac discretization.

```
See also: discretisation_base (14)
```

Usage:

14.2 Ef

Description: Element Finite discretization.

See also: discretisation_base (14)

Usage:

14.3 Polymac_p0p1nc

Synonymous: polymac

Description: polymac discretization.

See also: discretisation_base (14)

Usage:

14.4 Vdf

Description: Finite difference volume discretization.

See also: discretisation_base (14)

Usage:

14.5 Vef

Description: Finite element volume discretization (P1NC/P0 element)

Warning: it becomes an obsolete discretization.

See also: discretisation_base (14) vefprep1b (14.6)

Usage:

14.6 Vefprep1b

Description: Finite element volume discretization (P1NC/P1-bubble element). Since the 1.5.5 version, several new discretizations are available thanks to the optional keyword Read. By default, the VEFPreP1B keyword is equivalent to the former VEFPreP1B formulation (v1.5.4 and sooner). P0P1 (if used with the strong formulation for imposed pressure boundary) is equivalent to VEFPreP1B but the convergence is slower. VEFPreP1B dis is equivalent to VEFPreP1B dis Read dis { P0 P1 Changement_de_base_P1Bulle 1 Cl_pression_sommet_faible 0 }

```
See also: vef (14.5)
Usage:
```

vefprep1b str Read str {

```
[ changement_de_base_p1bulle int]
      [ p0 ]
      [ p1 ]
      [ pa ]
      [ rt ]
      [ modif_div_face_dirichlet int]
      [ cl_pression_sommet_faible int]
}
where
```

- **changement_de_base_p1bulle** *int*: (into=[0,1]) changement_de_base_p1bulle 1 This option may be used to have the P1NC/P0P1 formulation (value set to 0) or the P1NC/P1Bulle formulation (value set to 1, the default).
- **p0** : Pressure nodes are added on element centres
- p1 : Pressure nodes are added on vertices
- pa : Only available in 3D, pressure nodes are added on bones
- rt: For P1NCP1B
- modif_div_face_dirichlet *int*: (into=[0,1]) This option (by default 0) is used to extend control volumes for the momentum equation.
- cl_pression_sommet_faible int: (into=[0,1]) This option is used to specify a strong formulation (value set to 0, the default) or a weak formulation (value set to 1) for an imposed pressure boundary condition. The first formulation converges quicker and is stable in general cases. The second formulation should be used if there are several outlet boundaries with Neumann condition (see Ecoulement_Neumann test case for example).

15 domaine

```
Description: Keyword to create a domain.

See also: objet_u (39) DomaineAxi1d (15.1) IJK_Grid_Geometry (15.2) domaine_ale (15.3)

Usage:

15.1 Domaineaxi1d
```

```
Description: 1D domain
See also: domaine (15)
Usage:
```

15.2 Ijk_grid_geometry

```
Description: not_set

See also: domaine (15)

Usage:
IJK_Grid_Geometry str

Read str {

nbelem_i int
nbelem_j int
```

```
nbelem_k int
     [ origin_i float]
     [ origin_j float]
     [origin_k float]
     [uniform_domain_size_i float]
     [ uniform_domain_size_j float]
     [uniform_domain_size_k float]
     [ perio_i ]
     [ perio_j ]
     [ perio_k ]
}
where
   • nbelem i int
   • nbelem_j int
   • nbelem_k int
   • origin_i float
   • origin_j float
   • origin_k float
   • uniform_domain_size_i float
   • uniform_domain_size_j float
   • uniform_domain_size_k float
   • perio_i
   • perio_j
   • perio_k
```

15.3 Domaine_ale

Description: Domain with nodes at the interior of the domain which are displaced in an arbitrarily prescribed way thanks to ALE (Arbitrary Lagrangian-Eulerian) description.

Keyword to specify that the domain is mobile following the displacement of some of its boundaries.

```
See also: domaine (15)
Usage:
```

16 champ_base

16.1 Champ_base

Description: Basic class of fields.

See also: objet_u (39) champ_don_base (16.6) champ_ostwald (16.21) champ_input_base (16.18) champ_fonc_med (16.11) field_uniform_keps_from_ud (16.29)

Usage:

16.2 Champ_fonc_med_tabule

```
Description: not_set

See also: champ_fonc_med (16.11)
```

```
Usage:
Champ_Fonc_MED_Tabule str
Read str {

    [use_existing_domain]
    [last_time]
    [decoup str]
    domain str
    file str
    field str
    [loc str into ['som', 'elem']]
    [time float]
}
where
```

- use_existing_domain for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- **last_time** for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str* for inheritance: specify a partition file (only functional with Champ_Fonc_MEDFile ...)
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str for inheritance: Name of the .med file.
- field str for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

16.3 Champ_fonc_medfile

Description: Obsolete keyword to read a field with MED file API

```
Usage:
Champ_Fonc_MEDfile str
Read str {

[ use_existing_domain ]
  [ last_time ]
  [ decoup str]
  domain str
  file str
  field str
  [ loc str into ['som', 'elem']]
  [ time float]
}
where
```

- use_existing_domain for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- **last_time** for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** str for inheritance: specify a partition file (only functional with Champ_Fonc_MEDFile ...)
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str for inheritance: Name of the .med file.
- **field** str for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

16.4 Champ_tabule_morceaux

Description: Field defined by tabulated data in each sub-zone. It makes possible the definition of a field which is a function of other fields.

See also: champ_don_base (16.6)

Usage:

Champ_Tabule_Morceaux domain_name nb_comp data where

- **domain_name** *str*: Name of the domain.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.6): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object function, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_tabule_morceaux type object.

16.5 Champ_composite

Description: Composite field. Used in multiphase problems to associate data to each phase.

See also: champ_don_base (16.6)

Usage:

champ_composite dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.6): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

16.6 Champ_don_base

Description: Basic class for data fields (not calculated), p.e. physics properties.

See also: champ_base (16.1) uniform_field (16.32) champ_uniforme_morceaux (16.25) champ_fonc_xyz (16.28) champ_fonc_txyz (16.27) champ_don_lu (16.7) init_par_partie (16.30) champ_tabule_temps (16.24) champ_fonc_t (16.14) champ_fonc_tabule (16.15) champ_init_canal_sinal (16.16) champ_som_lu_vdf (16.22) champ_som_lu_vef (16.23) tayl_green (16.31) Champ_Tabule_Morceaux (16.4) champ_composite (16.5) champ_fonc_fonction_txyz_morceaux (16.10) champ_fonc_reprise (16.12)

Usage:

16.7 Champ_don_lu

Description: Field to read a data field (values located at the center of the cells) in a file.

See also: champ_don_base (16.6)

Usage:

champ_don_lu dom nb_comp file

where

- dom str: Name of the domain.
- **nb_comp** *int*: Number of field components.
- file str: Name of the file.

This file has the following format:

nb_val_lues -> Number of values readen in th file

Xi Yi Zi -> Coordinates readen in the file

Ui Vi Wi -> Value of the field

16.8 Champ_fonc_fonction

Description: Field that is a function of another field.

See also: champ_fonc_tabule (16.15) champ_fonc_fonction_txyz (16.9)

Usage:

champ_fonc_fonction problem_name inco expression where

- **problem_name** *str*: Name of problem.
- inco str: Name of the field (for example: temperature).
- **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

16.9 Champ_fonc_fonction_txyz

Description: this refers to a field that is a function of another field and time and/or space coordinates

See also: champ_fonc_fonction (16.8)

Usage:

champ_fonc_fonction_txyz problem_name inco expression
where

- problem_name str: Name of problem.
- inco str: Name of the field (for example: temperature).

• **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

16.10 Champ_fonc_fonction_txyz_morceaux

Description: Field defined by analytical functions in each sub-zone. It makes possible the definition of a field that depends on the time and the space.

See also: champ_don_base (16.6)

Usage:

champ_fonc_fonction_txyz_morceaux problem_name inco nb_comp data where

- **problem_name** *str*: Name of the problem.
- inco str: Name of the field (for example: temperature).
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.6): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object function, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_fonction_txyz_morceaux type object.

16.11 Champ_fonc_med

Description: Field to read a data field in a MED-format file .med at a specified time. It is very useful, for example, to resume a calculation with a new or refined geometry. The field post-processed on the new geometry at med format is used as initial condition for the resume.

See also: champ base (16.1) Champ Fonc MEDfile (16.3) Champ Fonc MED Tabule (16.2)

```
Usage: champ_fonc_med str
```

```
Read str {

[ use_existing_domain ]
    [last_time ]
    [decoup str]
    domain str
    file str
    field str
    [loc str into ['som', 'elem']]
    [time float]
}
where
```

- **use_existing_domain**: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- last_time: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str*: specify a partition file (only functional with Champ_Fonc_MEDFile ...)
- **domain** *str*: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use existing domain'.

- file str: Name of the .med file.
- field str: Name of field to load.
- loc str into ['som', 'elem']: To indicate where the field is localised. Default to 'elem'.
- time *float*: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

16.12 Champ_fonc_reprise

Description: This field is used to read a data field in a save file (.xyz or .sauv) at a specified time. It is very useful, for example, to run a thermohydraulic calculation with velocity initial condition read into a save file from a previous hydraulic calculation.

See also: champ_don_base (16.6)

Usage:

- **format** *str into* ['binaire', 'formatte', 'xyz', 'single_hdf']: Type of file (the file format). If xyz format is activated, the .xyz file from the previous calculation will be given for filename, and if formatte or binaire is choosen, the .sauv file of the previous calculation will be specified for filename. In the case of a parallel calculation, if the mesh partition does not changed between the previous calculation and the next one, the binaire format should be preferred, because is faster than the xyz format. If single_hdf is used, the same constraints/advantages as binaire apply, but a single (HDF5) file is produced on the filesystem instead of having one file per processor.
- filename str: Name of the save file.
- **pb_name** *str*: Name of the problem.
- **champ** *str*: Name of the problem unknown. It may also be the temporal average of a problem unknown (like moyenne_vitesse, moyenne_temperature,...)
- **fonction** *fonction_champ_reprise* (16.13): Optional keyword to apply a function on the field being read in the save file (e.g. to read a temperature field in Celsius units and convert it for the calculation on Kelvin units, you will use: fonction 1 273.+val)
- **temps** *str*: Time of the saved field in the save file or last_time. If you give the keyword last_time instead, the last time saved in the save file will be used.

16.13 Fonction_champ_reprise

Description: not_set

See also: objet_lecture (38)

Usage:

mot fonction

where

- **mot** str into ['fonction']
- **fonction** *n word1 word2 ... wordn*: n f1(val) f2(val) ... fn(val)] time

16.14 Champ_fonc_t

Description: Field that is constant in space and is a function of time.

See also: champ_don_base (16.6)

```
Usage:
```

champ_fonc_t val

where

• val n word1 word2 ... wordn: Values of field components (time dependant functions).

16.15 Champ_fonc_tabule

Description: Field that is tabulated as a function of another field.

See also: champ_don_base (16.6) champ_fonc_fonction (16.8)

Usage:

champ_fonc_tabule inco dim bloc

where

- inco str: Name of the field (for example: temperature).
- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.6): Values (the table (the value of the field at any time is calculated by linear interpolation from this table) or the analytical expression (with keyword expression to use an analytical expression)).

16.16 Champ_init_canal_sinal

Description: For a parabolic profile on U velocity with an unpredictable disturbance on V and W and a sinusoidal disturbance on V velocity.

See also: champ_don_base (16.6)

Usage:

champ_init_canal_sinal dim bloc

where

Usage: {

- dim int: Number of field components.
- bloc bloc_lec_champ_init_canal_sinal (16.17): Parameters for the class champ_init_canal_sinal.

16.17 Bloc_lec_champ_init_canal_sinal

```
Description: Parameters for the class champ_init_canal_sinal. in 2D:

U=ucent*y(2h-y)/h/h

V=ampli_bruit*rand+ampli_sin*sin(omega*x)

rand: unpredictable value between -1 and 1.

in 3D:

U=ucent*y(2h-y)/h/h

V=ampli_bruit*rand1+ampli_sin*sin(omega*x)

W=ampli_bruit*rand2

rand1 and rand2: unpredictables values between -1 and 1.

See also: objet_lecture (38)
```

```
ucent float
h float
ampli_bruit float
[ampli_sin float]
omega float
[dir_flow int into [0, 1, 2]]
[dir_wall int into [0, 1, 2]]
[min_dir_flow float]
[min_dir_wall float]
}
where
```

- ucent *float*: Velocity value at the center of the channel.
- h float: Half hength of the channel.
- ampli bruit *float*: Amplitude for the disturbance.
- ampli_sin float: Amplitude for the sinusoidal disturbance (by default equals to ucent/10).
- omega *float*: Value of pulsation for the of the sinusoidal disturbance.
- dir_flow int into [0, 1, 2]: Flow direction for the initialization of the flow in a channel.
 - if dir flow=0, the flow direction is X
 - if dir_flow=1, the flow direction is Y
 - if dir flow=2, the flow direction is Z

Default value for dir flow is 0

- dir wall int into [0, 1, 2]: Wall direction for the initialization of the flow in a channel.
 - if dir_wall=0, the normal to the wall is in X direction
 - if dir_wall=1, the normal to the wall is in Y direction
 - if dir_wall=2, the normal to the wall is in Z direction

Default value for dir_flow is 1

- min_dir_flow float: Value of the minimum coordinate in the flow direction for the initialization of the flow in a channel. Default value for dir_flow is 0.
- min_dir_wall float: Value of the minimum coordinate in the wall direction for the initialization of the flow in a channel. Default value for dir_flow is 0.

16.18 Champ_input_base

• initial value n x1 x2 ... xn

```
Description: not_set

See also: champ_base (16.1) champ_input_p0 (16.19) champ_input_p0_composite (16.20)

Usage:
champ_input_base str

Read str {

    nb_comp int
    nom str
    [initial_value n x1 x2 ... xn]
    probleme str
    [sous_zone str]

}
where

• nb_comp int
• nom str
```

```
• sous_zone str

16.19 Champ_input_p0

Description: not_set

See also: champ_input_base (16.18)

Usage:
champ_input_p0 str

Read str {

nb_comp int
```

• probleme str

nom str

} where

probleme str
[sous_zone str]

• **nb_comp** *int* for inheritance

[initial_value $n \times 1 \times 2 \dots \times n$]

• nom str for inheritance

• initial_value n x1 x2 ... xn for inheritance

• probleme str for inheritance

• sous_zone str for inheritance

16.20 Champ_input_p0_composite

Description: Field used to define a classical champ input p0 field (for ICoCo), but with a predefined field for the initial state.

```
Usage:
champ_input_p0_composite str
Read str {

[initial_field champ_base]
[input_field champ_input_p0]
nb_comp int
nom str
[initial_value n x1 x2 ... xn]
probleme str
[sous_zone str]
}
where
```

- initial field champ base (16.1): The field used for initialization
- input_field champ_input_p0 (16.19): The input field for ICoCo
- **nb_comp** *int* for inheritance
- nom str for inheritance

- initial_value n x1 x2 ... xn for inheritance
- probleme str for inheritance
- sous_zone str for inheritance

16.21 Champ_ostwald

Description: This keyword is used to define the viscosity variation law:

Mu(T) = K(T)*(D:D/2)**((n-1)/2)

See also: champ_base (16.1)

Usage:

champ_ostwald

16.22 Champ_som_lu_vdf

Description: Keyword to read in a file values located at the nodes of a mesh in VDF discretization.

See also: champ_don_base (16.6)

Usage:

champ_som_lu_vdf domain_name dim tolerance file where

- domain name str: Name of the domain.
- dim int: Value of the dimension of the field.
- tolerance float: Value of the tolerance to check the coordinates of the nodes.
- file str: name of the file

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

16.23 Champ_som_lu_vef

Description: Keyword to read in a file values located at the nodes of a mesh in VEF discretization.

See also: champ_don_base (16.6)

Usage:

champ_som_lu_vef domain_name dim tolerance file

where

- domain_name str: Name of the domain.
- dim int: Value of the dimension of the field.
- tolerance float: Value of the tolerance to check the coordinates of the nodes.
- file str: Name of the file.

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

16.24 Champ_tabule_temps

Description: Field that is constant in space and tabulated as a function of time.

See also: champ_don_base (16.6)

Usage:

$champ_tabule_temps \ dim \ bloc$

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.6): Values as a table. The value of the field at any time is calculated by linear interpolation from this table.

16.25 Champ_uniforme_morceaux

Description: Field which is partly constant in space and stationary.

See also: champ_don_base (16.6) champ_uniforme_morceaux_tabule_temps (16.26) valeur_totale_sur_volume (16.33)

Usage:

champ_uniforme_morceaux nom_dom nb_comp data where

- nom dom str: Name of the domain to which the sub-areas belong.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.6): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

16.26 Champ_uniforme_morceaux_tabule_temps

Description: this type of field is constant in space on one or several sub_zones and tabulated as a function of time.

See also: champ_uniforme_morceaux (16.25)

Usage:

champ_uniforme_morceaux_tabule_temps nom_dom nb_comp data where

- nom_dom str: Name of the domain to which the sub-areas belong.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.6): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

16.27 Champ_fonc_txyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on the time and the space.

```
See also: champ_don_base (16.6)

Usage:
champ_fonc_txyz dom val
where

• dom str: Name of domain of calculation.
• val n word1 word2 ... wordn: List of functions on (t,x,y,z).
```

16.28 Champ_fonc_xyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on (x,y,z).

```
See also: champ_don_base (16.6)

Usage:
champ_fonc_xyz dom val
where

• dom str: Name of domain of calculation.
• val n word1 word2 ... wordn: List of functions on (x,y,z).
```

16.29 Field_uniform_keps_from_ud

Description: field which allows to impose on a domain K and EPS values derived from U velocity and D hydraulic diameter

```
See also: champ_base (16.1)

Usage: field_uniform_keps_from_ud str
Read str {
    u float
    d float
}
where
```

- **u** *float*: value of velocity specified in boundary condition.
- d float: value of hydraulic diameter specified in boundary condition

16.30 Init_par_partie

```
Description: ne marche que pour n_comp=1
See also: champ_don_base (16.6)
```

Usage:

init_par_partie n_comp val1 val2 val3 where

- **n_comp** *int into* [1]
- val1 float
- val2 float
- val3 float

16.31 Tayl_green

Description: Class Tayl_green.

See also: champ_don_base (16.6)

Usage:

tayl_green dim

where

• dim int: Dimension.

16.32 Uniform field

Synonymous: champ_uniforme

Description: Field that is constant in space and stationary.

See also: champ_don_base (16.6)

Usage:

uniform_field val

where

• val n x1 x2 ... xn: Values of field components.

16.33 Valeur_totale_sur_volume

Description: Similar as Champ_Uniforme_Morceaux with the same syntax. Used for source terms when we want to specify a source term with a value given for the volume (eg: heat in Watts) and not a value per volume unit (eg: heat in Watts/m3).

See also: champ_uniforme_morceaux (16.25)

Usage:

valeur_totale_sur_volume nom_dom nb_comp data where

- nom_dom str: Name of the domain to which the sub-areas belong.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.6): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

17 champ_front_base

17.1 Champ_front_base

Description: Basic class for fields at domain boundaries.

See also: objet_u (39) champ_front_uniforme (17.37) champ_front_fonc_pois_ipsn (17.24) champ_front_fonc_pois_tube (17.25) champ_front_tangentiel_vef (17.36) champ_front_lu (17.30) boundary_field_inward (17.11) champ_front_pression_from_u (17.32) champ_front_contact_vef (17.21) champ_front_calc (17.17) champ_front_recyclage (17.33) ch_front_input (17.13) champ_front_normal_vef (17.31) Champ_front_debit_QC_VDF_fonc_t (17.8) Champ_front_debit_QC_VDF (17.7) champ_front_MED (17.15) champ_front_fonction (17.29) champ_front_debit_massique (17.23) champ_front_tabule (17.34) champ_front_debit (17.22) champ_front_xyz_debit (17.39) champ_front_bruite (17.16) champ_front_fonc_txyz (17.27) champ_front_fonc_t (17.26) champ_front_composite (17.18) champ_front_fonc_xyz (17.28) champ_front_vortex (17.38) boundary_field_uniform_keps_from_ud (17.12) Champ_front_synt (17.9) champ_front_zoom (17.40) Champ_front_ALE_Beam (17.5) Ch_front_input_ALE (17.3) Champ_front_ale (17.6) Boundary_field_keps_from_ud (17.2)

Usage:

17.2 Boundary_field_keps_from_ud

Description: To specify a K-Eps inlet field with hydraulic diameter, speed, and turbulence intensity (VDF only)

```
See also: champ_front_base (17.1)

Usage:
Boundary_field_keps_from_ud str

Read str {

    u champ_front_base
    d float
    i float
}

where

• u champ_front_base (17.1): U 0 Initial velocity magnitude
• d float: Hydraulic diameter
• i float: Turbulence intensity [
```

17.3 Ch_front_input_ale

Description: Class to define a boundary condition on a moving boundary of a mesh (only for the Arbitrary Lagrangian-Eulerian framework) .

Example: Ch_front_input_ALE { nb_comp 3 nom VITESSE_IN_ALE probleme pb initial_value 3 1. 0. 0. }

```
See also: champ_front_base (17.1)
```

Usage:

17.4 Champ_front_xyz_tabule

Description: Space dependent field on the boundary, tabulated as a function of time.

See also: champ_front_fonc_txyz (17.27)

Usage:

Champ_Front_xyz_Tabule val bloc

where

- val n word1 word2 ... wordn: Values of field components (mathematical expressions).
- **bloc** *bloc_lecture* (3.6): {nt1 t2 t3tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...] }

Values are entered into a table based on n couples (ti, ui) if nb_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

17.5 Champ_front_ale_beam

Description: Class to define a Beam on a FSI boundary.

See also: champ_front_base (17.1)

Usage:

Champ_front_ALE_Beam val

where

• val *n word1 word2* ... *wordn*: Example: 3 0 0 0

17.6 Champ_front_ale

Description: Class to define a boundary condition on a moving boundary of a mesh (only for the Arbitrary Lagrangian-Eulerian framework).

See also: champ_front_base (17.1)

Usage:

Champ_front_ale val

where

• **val** *n word1 word2* ... *wordn*: Example: 2 -y*0.01 x*0.01

17.7 Champ_front_debit_qc_vdf

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate is kept constant during a transient.

See also: champ_front_base (17.1)

Usage:

Champ_front_debit_QC_VDF dimension liste [moyen] pb_name where

- dimension int: Problem dimension
- **liste** *bloc_lecture* (3.6): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim }
- moyen str: Option to use rho mean value
- **pb_name** *str*: Problem name

17.8 Champ_front_debit_qc_vdf_fonc_t

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate could be constant or time-dependent.

See also: champ_front_base (17.1)

Usage:

 $Champ_front_debit_QC_VDF_fonc_t \ \ dimension \ \ liste \ [\ moyen \] \ pb_name$

- dimension int: Problem dimension
- **liste** *bloc_lecture* (3.6): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim } where val1 ... valdim are constant or function of time.
- moyen str: Option to use rho mean value
- **pb_name** *str*: Problem name

17.9 Champ_front_synt

Description: Boundary condition to create the synthetic fluctuations as inlet boundary. Available only for 3D configurations.

See also: champ_front_base (17.1)

Usage:

Champ_front_synt dim bloc

where

- dim int: Number of field components. It should be 3!
- bloc bloc_lecture_turb_synt (17.10): bloc containing the parameters of the synthetic turbulence

17.10 Bloc_lecture_turb_synt

Description: bloc containing parameters of the synthetic turbulence

```
See also: objet_lecture (38)

Usage:
{

moyenne x1 x2 (x3)
lenghtScale float
nbModes int
turbKinEn float
turbDissRate float
ratioCutoffWavenumber float
KeOverKmin float
```

```
timeScale float
     dir_fluct x1 x2 (x3)
}
where
```

- moyenne x1 x2 (x3): components of the average velocity fields
- lenghtScale float: turbulent length scale
- **nbModes** *int*: number of Fourier modes
- turbKinEn float: turbulent kinetic energy (k)
- turbDissRate *float*: turbulent dissipation rate (epsilon)
- ratioCutoffWavenumber float: ratio between the cut-off wavenumber and pi/delta
- KeOverKmin float: ratio of the most energetic wavenumber Ke over the minimum wavenumber Kmin representing the largest turbulent eddies
- timeScale float: turbulent time scale
- dir_fluct x1 x2 (x3): directions for the velocity fluctations (e.g 1 0 0 generates velocity fluctuations in the x-direction only)

17.11 Boundary field inward

Description: this field is used to define the normal vector field standard at the boundary in VDF or VEF discretization.

```
See also: champ_front_base (17.1)
Usage:
boundary_field_inward str
Read str {
     normal_value str
}
where
```

• normal_value str: normal vector value (positive value for a vector oriented outside to inside) which can depend of the time.

Boundary_field_uniform_keps_from_ud

Description: field which allows to impose on a boundary K and EPS values derived from U velocity and D hydraulic diameter

```
See also: champ_front_base (17.1)
boundary_field_uniform_keps_from_ud str
Read str {
     u float
     d float
}
where
   • u float: value of velocity
```

- d float: value of hydraulic diameter

17.13 Ch_front_input

```
Description: not_set
See also: champ_front_base (17.1) ch_front_input_uniforme (17.14)
Usage:
ch_front_input str
Read str {
     nb_comp int
     nom str
     [initial_value n \times 1 \times 2 \dots \times n]
     probleme str
      [ sous_zone str]
}
where
   • nb comp int
   • nom str
   • initial_value n x1 x2 ... xn
   • probleme str
   • sous_zone str
```

17.14 Ch front input uniforme

Description: for coupling, you can use ch_front_input_uniforme which is a champ_front_uniforme, which use an external value. It must be used with Problem.setInputField.

```
See also: ch_front_input (17.13)
Usage:
ch_front_input_uniforme str
Read str {
      nb_comp int
      nom str
      [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
      [ sous_zone str]
}
where
   • nb_comp int for inheritance
   • nom str for inheritance
   • initial_value n x1 x2 ... xn for inheritance
   • probleme str for inheritance
   • sous_zone str for inheritance
```

17.15 Champ_front_med

Description: Field allowing the loading of a boundary condition from a MED file using Champ_fonc_med

See also: champ_front_base (17.1)

Usage:

 $champ_front_MED \quad champ_fonc_med$

where

• **champ_fonc_med** *champ_base* (16.1): a champ_fonc_med loading the values of the unknown on a domain boundary

17.16 Champ_front_bruite

Description: Field which is variable in time and space in a random manner.

See also: champ front base (17.1)

Usage:

champ_front_bruite nb_comp bloc

where

- **nb comp** *int*: Number of field components.
- **bloc** *bloc_lecture* (3.6): { [N val L val] Moyenne m_1....[m_i] Amplitude A_1....[A_i]}: Random nois: If N and L are not defined, the ith component of the field varies randomly around an average value m_i with a maximum amplitude A_i.

White noise: If N and L are defined, these two additional parameters correspond to L, the domain length and N, the number of nodes in the domain. Noise frequency will be between 2*Pi/L and 2*Pi*N/(4*L).

For example, formula for velocity: u=U0(t) v=U1(t)Uj(t)=Mj+2*Aj*bruit_blanc where bruit_blanc (white_noise) is the formula given in the mettre_a_jour (update) method of the Champ_front_bruite (noise_boundary_field) (Refer to the Ch_fr_bruite.cpp file).

17.17 Champ_front_calc

Description: This keyword is used on a boundary to get a field from another boundary. The local and remote boundaries should have the same mesh. If not, the Champ_front_recyclage keyword could be used instead. It is used in the condition block at the limits of equation which itself refers to a problem called pb1. We are working under the supposition that pb1 is coupled to another problem.

See also: champ_front_base (17.1)

Usage:

champ_front_calc problem_name bord field_name
where

- **problem_name** *str*: Name of the other problem to which pb1 is coupled.
- **bord** *str*: Name of the side which is the boundary between the 2 domains in the domain object description associated with the problem_name object.
- **field_name** *str*: Name of the field containing the value that the user wishes to use at the boundary. The field_name object must be recognized by the problem_name object.

17.18 Champ_front_composite

Description: Composite front field. Used in multiphase problems to associate data to each phase.

See also: champ_front_base (17.1)

Usage:

 $champ_front_composite \ dim \ bloc$

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.6): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

17.19 Champ_front_contact_rayo_semi_transp_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems with radiation in semi transparent fluid.

See also: champ_front_contact_vef (17.21)

Usage:

champ_front_contact_rayo_semi_transp_vef local_pb local_boundary remote_pb remote_boundary

where

- **local_pb** *str*: Name of the problem.
- local_boundary str: Name of the boundary.
- remote_pb str: Name of the second problem.
- remote_boundary str: Name of the boundary in the second problem.

17.20 Champ_front_contact_rayo_transp_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems with radiation in transparent fluid.

See also: champ_front_contact_vef (17.21)

Usage:

champ_front_contact_rayo_transp_vef local_pb local_boundary remote_pb remote_boundary where

- local_pb str: Name of the problem.
- local_boundary str: Name of the boundary.
- remote_pb str: Name of the second problem.
- remote_boundary str: Name of the boundary in the second problem.

17.21 Champ_front_contact_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems.

See also: champ_front_base (17.1) champ_front_contact_rayo_transp_vef (17.20) champ_front_contact_rayo_semi_transp_vef (17.19)

Usage:

champ_front_contact_vef local_pb local_boundary remote_pb remote_boundary where

- **local_pb** *str*: Name of the problem.
- local_boundary str: Name of the boundary.
- remote_pb str: Name of the second problem.
- remote_boundary str: Name of the boundary in the second problem.

17.22 Champ_front_debit

Description: This field is used to define a flow rate field instead of a velocity field for a Dirichlet boundary condition on Navier-Stokes equations.

See also: champ_front_base (17.1)

Usage:

champ_front_debit ch

where

• **ch** *champ_front_base* (17.1): uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_txyz that depends only on time.

17.23 Champ_front_debit_massique

Description: This field is used to define a flow rate field using the density

See also: champ_front_base (17.1)

Usage:

champ_front_debit_massique ch

where

• **ch** champ_front_base (17.1): uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_txyz that depends only on time.

17.24 Champ_front_fonc_pois_ipsn

Description: Boundary field champ_front_fonc_pois_ipsn.

See also: champ_front_base (17.1)

Usage:

```
champ_front_fonc_pois_ipsn r_tube umoy r_loc
where
```

- r_tube float
- **umoy** n x1 x2 ... xn
- $r_{loc} x1 x2 (x3)$

17.25 Champ_front_fonc_pois_tube

Description: Boundary field champ_front_fonc_pois_tube.

See also: champ_front_base (17.1)

Usage:

champ_front_fonc_pois_tube r_tube umoy r_loc r_loc_mult
where

- r_tube float
- **umoy** n x1 x2 ... xn
- r_loc x1 x2 (x3)
- r_loc_mult n1 n2 (n3)

17.26 Champ_front_fonc_t

Description: Boundary field that depends only on time.

See also: champ_front_base (17.1)

Usage:

champ_front_fonc_t val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

17.27 Champ_front_fonc_txyz

Description: Boundary field which is not constant in space and in time.

See also: champ_front_base (17.1) Champ_Front_xyz_Tabule (17.4)

Usage:

champ_front_fonc_txyz val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

17.28 Champ_front_fonc_xyz

Description: Boundary field which is not constant in space.

See also: champ_front_base (17.1)

Usage:

champ_front_fonc_xyz val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

17.29 Champ_front_fonction

Description: boundary field that is function of another field

See also: champ_front_base (17.1)

Usage:

champ_front_fonction dim inco expression

where

- dim int: Number of field components.
- inco str: Name of the field (for example: temperature).
- **expression** *str*: keyword to use a analytical expression like 10.*EXP(-0.1*val) where val be the keyword for the field.

17.30 Champ_front_lu

Description: boundary field which is given from data issued from a read file. The format of this file has to be the same that the one generated by Ecrire fichier xyz valeur

Example for K and epsilon quantities to be defined for inlet condition in a boundary named 'entree': entree frontiere_ouverte_K_Eps_impose Champ_Front_lu dom 2pb_K_EPS_PERIO_1006.306198.dat

See also: champ_front_base (17.1)

Usage:

champ_front_lu domaine dim file

where

- domaine str: Name of domain
- dim int: number of components
- file str: path for the read file

17.31 Champ_front_normal_vef

Description: Field to define the normal vector field standard at the boundary in VEF discretization.

See also: champ_front_base (17.1)

Usage:

champ_front_normal_vef mot vit_tan

where

- mot str into ['valeur_normale']: Name of vector field.
- vit tan *float*: normal vector value (positive value for a vector oriented outside to inside).

17.32 Champ_front_pression_from_u

Description: this field is used to define a pressure field depending of a velocity field.

```
See also: champ_front_base (17.1)

Usage: champ_front_pression_from_u expression where
```

• expression str: value depending of a velocity (like $2 * u_moy^2$).

17.33 Champ_front_recyclage

Description: This keyword is used on a boundary to get a field from another boundary. New keyword since the 1.6.1 version which replaces and generalizes several obsolete ones:

```
Champ_front_calc_intern
Champ_front_calc_recycl_fluct_pbperio
Champ_front_calc_recycl_champ
Champ_front_calc_intern_2pbs
Champ_front_calc_recycl_fluct
```

It is to use, in a general way, on a boundary of a local_pb problem, a field calculated from a linear combination of an imposed field g(x,y,z,t) with an instantaneous f(x,y,z,t) and a spatial mean field f(x,y,z) extracted from a plane of a problem named pb (pb may be local_pb itself): For each component i, the field F applied on the boundary will be:

```
F_{i}(x,y,z,t) = alpha_{i}*g_{i}(x,y,z,t) + xsi_{i}*[f_{i}(x,y,z,t) - beta_{i}*<fi>]
```

Usage:

```
Champ_front_recyclage {
```

```
pb_champ_evaluateur problem_name field nb_comp
  [ distance_plan x1 x2 (x3) ]
  [ moyenne_imposee methode_moy [fichier file [second_file]] ]
  [ moyenne_recyclee methode_recyc [fichier file [second_file]] ]
  [ direction_anisotrope int ]
  [ ampli_moyenne_imposee n x1 x2 ... xn ]
  [ ampli_moyenne_recyclee n x1 x2 ... xn ]
  [ ampli_fluctuation n x1 x2 ... xn ]
}
where:
```

- **pb_champ_evaluateur** *problem_name field nb_comp*: To give the name of the problem, the name of the field of the problem and its number of components nb_comp.
- **distance_plan** x1 x2 (x3): Vector which gives the distance between the boundary and the plane from where the field F will be extracted. By default, the vector is zero, that should imply the two domains have coincident boundaries.
- ampli_moyenne_imposee 2|3 alpha(0) alpha(1) [alpha(2)]: alpha_i coefficients (by default =1)
- ampli movenne recyclee 2|3 beta(0) beta(1) [beta(2)]: beta i coefficients (by default =1)

- ampli_fluctuation 2|3 gamma(0) gamma(1) [gamma(2)]: gamma_i coefficients (by default =1)
- **direction_anisotrope** *int into* [1,2,3]: If an integer is given for direction (X:1, Y:2, Z:3, by default, direction is negative), the imposed field g will be 0 for the 2 other directions.
- moyenne_imposee methode_moy: Value of the imposed g field. The methode_moy option can be:

profil [2|3] valx(x,y,z,t) valy(x,y,z,t) [valz(x,y,z,t)]: To specify analytic profile for the imposed g field.

interpolation fichier *file*: To create an imposed field built by interpolation of values read from a file. The imposed field is applied on the direction given by the keyword direction_anisotrope (the field is zero for the other directions). The format of the file is:

```
pos(1) val(1)
pos(2) val(2)
...
pos(N) val(N)
```

If direction given by direction_anisotrope is 1 (or 2 or 3), then pos will be X (or Y or Z) coordinate and val will be X value (or Y value, or Z value) of the imposed field.

connexion_approchee fichier *file*: To read the imposed field from a file where positions and values are given (it is not necessary that the coordinates of points match the coordinates of the boundary faces, indeed, the nearest point of each face of the boundary will be used). The format of the file is:

```
N
x(1) y(1) [z(1)] valx(1) valy(1) [valz(1)]
x(2) y(2) [z(2)] valx(2) valy(2) [valz(2)]
...
x(N) y(N) [z(N)] valx(N) valy(N) [valz(N)]
```

connection_exacte fichier *file second_file*: To read the imposed field from two files. The first file contains the points coordinates (which should be the same as the coordinates of the boundary faces) and the second file contains the mean values. The format of the first file is:

```
N
1 x(1) y(1) [z(1)]
2 x(2) y(2) [z(2)]
...
N x(N) y(N) [z(N)]
```

while the format of the second_file is:

```
N
1 valx(1) valy(1) [valz(1)]
2 valx(2) valy(2) [valz(2)]
...
N valx(N) valy(N) [valz(N)]
```

logarithmique diametre *float* **u_tau** *float* **visco_cin** *float* **direction** *int*: To specify the imposed field (in this case, velocity) by an analytical logarithmic law of the wall: $g(x,y,z) = u_tau * (log(0.5*diametre*u_tau/visco_cin)/Kappa + 5.1)$ with g(x,y,z)=u(x,y,z) if **direction** is set to 1 (g=v(x,y,z) if **direction** is set to 2, and g=w(w,y,z) if it is set to 3)

• moyenne_recylee methode_recyc: Method used to perform a spatial or a temporal averaging of f field to specify <f>. <f> can be the surface mean of f on the plane (surface option, see below) or it can be read from several files (for example generated by the chmoy_faceperio option of the Traitement particulier keyword to obtain a temporal mean field). The option methode recyc can be:

```
surfacique: Surface mean for <f> from f values on the plane
Or one of the following methode_moy options applied to read a temporal mean field <f>(x,y,z):
interpolation
connexion_approchee
connexion_exacte
```

See also: champ_front_base (17.1)

Usage:

champ_front_recyclage bloc
where

• bloc str

17.34 Champ_front_tabule

Description: Constant field on the boundary, tabulated as a function of time.

See also: champ_front_base (17.1) champ_front_tabule_lu (17.35)

Usage:

champ_front_tabule nb_comp bloc where

- **nb_comp** *int*: Number of field components.
- **bloc** *bloc_lecture* (3.6): {nt1 t2 t3tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...] }

Values are entered into a table based on n couples (ti, ui) if nb_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

17.35 Champ_front_tabule_lu

Description: Constant field on the boundary, tabulated from a specified column file. Lines starting with # are ignored.

See also: champ_front_tabule (17.34)

Usage:

champ_front_tabule_lu nb_comp column_file
where

- **nb_comp** *int*: Number of field components.
- column file str: Name of the column file.

17.36 Champ_front_tangentiel_vef

Description: Field to define the tangential velocity vector field standard at the boundary in VEF discretization.

See also: champ_front_base (17.1)

Usage:

champ_front_tangentiel_vef mot vit_tan
where

- mot str into ['vitesse_tangentielle']: Name of vector field.
- vit_tan float: Vector field standard [m/s].

17.37 Champ_front_uniforme

Description: Boundary field which is constant in space and stationary.

See also: champ_front_base (17.1)

Usage:

champ_front_uniforme val

where

• val n x1 x2 ... xn: Values of field components.

17.38 Champ_front_vortex

Description: not_set

See also: champ_front_base (17.1)

Usage:

champ_front_vortex dom geom nu utau

where

- dom str: Name of domain.
- geom str
- nu float
- utau float

17.39 Champ_front_xyz_debit

Description: This field is used to define a flow rate field with a velocity profil which will be normalized to match the flow rate chosen.

See also: champ_front_base (17.1)

Usage:

champ_front_xyz_debit str
Read str {

[velocity_profil champ_front_base]

```
flow_rate champ_front_base
}
where
• velocity_profil champ_front_
```

- **velocity_profil** *champ_front_base* (17.1): velocity_profil 0 velocity field to define the profil of velocity.
- flow_rate champ_front_base (17.1): flow_rate 1 uniform field in space to define the flow rate. It could be, for example, champ front uniforme, ch front input uniform or champ front fonc t

17.40 Champ_front_zoom

Description: Basic class for fields at boundaries of two problems (global problem and local problem).

See also: champ_front_base (17.1)

Usage:

```
champ_front_zoom pbMg pb_1 pb_2 bord inco
where
```

- **pbMg** *str*: Name of multi-grid problem.
- **pb_1** *str*: Name of first problem.
- **pb_2** *str*: Name of second problem.
- bord str: Name of bord.
- inco str: Name of field.

18 interpolation ibm base

Description: Base class for all the interpolation methods available in the Immersed Boundary Method (IBM).

See also: objet_u (39) ibm_element_fluide (18.2) ibm_aucune (18.1) ibm_gradient_moyen (18.4)

Usage:

interpolation_ibm_base [impr] where

• impr: To print IBM-related data

18.1 Ibm aucune

Synonymous: interpolation_ibm_aucune

Description: Immersed Boundary Method (IBM): no interpolation.

See also: interpolation_ibm_base (18)

Usage:

```
ibm_aucune [ impr ]
where
```

• impr : To print IBM-related data

18.2 Ibm_element_fluide

```
Synonymous: interpolation_ibm_element_fluide

Description: Immersed Boundary Method (IBM): fluid element interpolation.

See also: interpolation_ibm_base (18) ibm_hybride (18.3) ibm_power_law_tbl (18.5)

Usage: ibm_element_fluide str

Read str {

    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [impr]

}

where
```

- **points_fluides** *champ_base* (16.1): Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (16.1): Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (16.1): Node field giving the number of the element (cell) containing the pure fluid point
- correspondance_elements champ_base (16.1): Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data

18.3 Ibm_hybride

Synonymous: interpolation_ibm_hybride

Description: Immersed Boundary Method (IBM): hybrid (fluid/mean gradient) interpolation.

```
See also: ibm_element_fluide (18.2)

Usage:
ibm_hybride str

Read str {

    est_dirichlet champ_base
    elements_solides champ_base
    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [impr]

}

where
```

• est_dirichlet champ_base (16.1): Node field of booleans indicating whether the node belong to an element where the interface is

- **elements_solides** *champ_base* (16.1): Node field giving the element number containing the solid point
- **points_fluides** *champ_base* (16.1) for inheritance: Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (16.1) for inheritance: Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (16.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance_elements** *champ_base* (16.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data

18.4 Ibm_gradient_moyen

Synonymous: interpolation_ibm_gradient_moyen

Description: Immersed Boundary Method (IBM): mean gradient interpolation.

```
See also: interpolation_ibm_base (18)

Usage:
ibm_gradient_moyen str

Read str {

    points_solides champ_base
    est_dirichlet champ_base
    correspondance_elements champ_base
    elements_solides champ_base
    [ impr ]

}

where
```

- **points_solides** *champ_base* (16.1): Node field giving the projection of the node on the immersed boundary
- **est_dirichlet** *champ_base* (16.1): Node field of booleans indicating whether the node belong to an element where the interface is
- correspondance_elements champ_base (16.1): Cell field giving the SALOME cell number
- **elements_solides** *champ_base* (16.1): Node field giving the element number containing the solid point
- impr for inheritance: To print IBM-related data

18.5 Ibm_power_law_tbl

Synonymous: interpolation_ibm_power_law_tbl

Description: Immersed Boundary Method (IBM): power law interpolation.

```
See also: ibm_element_fluide (18.2)

Usage:
ibm_power_law_tbl str

Read str {
```

```
points_fluides champ_base
points_solides champ_base
elements_fluides champ_base
correspondance_elements champ_base
[ impr ]
}
where
```

- **points_fluides** *champ_base* (16.1) for inheritance: Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (16.1) for inheritance: Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (16.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance_elements** *champ_base* (16.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data

19 loi_etat_base

Description: Basic class for state laws used with a dilatable fluid.

```
See also: objet_u (39) loi_etat_gaz_reel_base (19.4) loi_etat_gaz_parfait_base (19.3)
```

Usage:

19.1 Binaire_gaz_parfait_qc

Description: Class for perfect gas binary mixtures state law used with a quasi-compressible fluid under the iso-thermal and iso-bar assumptions.

```
See also: loi_etat_gaz_parfait_base (19.3)

Usage:
binaire_gaz_parfait_QC str

Read str {

    molar_mass1 float
    molar_mass2 float
    mu1 float
    mu2 float
    temperature float
    diffusion_coeff float
}

where
```

- molar_mass1 *float*: Molar mass of species 1 (in kg/mol).
- molar_mass2 *float*: Molar mass of species 2 (in kg/mol).
- mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
- mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
- **temperature** *float*: Temperature (in Kelvin) which will be constant during the simulation since this state law only works for iso-thermal conditions.
- diffusion_coeff float: Diffusion coefficient assumed the same for both species (in m2/s).

19.2 Binaire_gaz_parfait_wc

Description: Class for perfect gas binary mixtures state law used with a weakly-compressible fluid under the iso-thermal and iso-bar assumptions.

```
See also: loi_etat_gaz_parfait_base (19.3)
Usage:
binaire gaz parfait WC str
Read str {
     molar_mass1 float
     molar_mass2 float
     mu1 float
     mu2 float
     temperature float
     diffusion_coeff float
}
where
   • molar_mass1 float: Molar mass of species 1 (in kg/mol).
   • molar_mass2 float: Molar mass of species 2 (in kg/mol).
   • mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
   • mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
   • temperature float: Temperature (in Kelvin) which will be constant during the simulation since this
     state law only works for iso-thermal conditions.
```

• diffusion_coeff float: Diffusion coefficient assumed the same for both species (in m2/s).

19.3 Loi_etat_gaz_parfait_base

Description: Basic class for perfect gases state laws used with a dilatable fluid.

```
See also: loi_etat_base (19) rhoT_gaz_parfait_QC (19.9) binaire_gaz_parfait_QC (19.1) multi_gaz_parfait_QC (19.5) gaz_parfait_QC (19.7) multi_gaz_parfait_WC (19.6) binaire_gaz_parfait_WC (19.2) gaz_parfait_WC (19.8)
```

Usage:

19.4 Loi_etat_gaz_reel_base

Description: Basic class for real gases state laws used with a dilatable fluid.

```
See also: loi etat base (19) rhoT gaz reel QC (19.10)
```

Usage:

19.5 Multi_gaz_parfait_qc

Description: Class for perfect gas multi-species mixtures state law used with a quasi-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (19.3)
```

Usage:

```
multi_gaz_parfait_QC str
Read str {
    sc float
    prandtl float
    [cp float]
    [dtol_fraction float]
    [correction_fraction ]
    [ignore_check_fraction ]
}
where
```

- sc *float*: Schmidt number of the gas Sc=nu/D (D: diffusion coefficient of the mixing).
- **prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda
- cp float: Specific heat at constant pressure of the gas Cp.
- dtol_fraction float: Delta tolerance on mass fractions for check testing (default value 1.e-6).
- **correction fraction**: To force mass fractions between 0. and 1.
- ignore check fraction: Not to check if mass fractions between 0. and 1.

19.6 Multi_gaz_parfait_wc

Description: Class for perfect gas multi-species mixtures state law used with a weakly-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (19.3)

Usage:
multi_gaz_parfait_WC str

Read str {

    species_number int
    diffusion_coeff champ_base
    molar_mass champ_base
    mu champ_base
    cp champ_base
    prandtl float

}

where
```

- species_number int: Number of species you are considering in your problem.
- **diffusion_coeff** *champ_base* (16.1): Diffusion coefficient of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **molar_mass** *champ_base* (16.1): Molar mass of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **mu** *champ_base* (16.1): Dynamic viscosity of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **cp** *champ_base* (16.1): Specific heat at constant pressure of the gas Cp, defined with a Champ_uniforme of dimension equals to the species_number..
- **prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda.

19.7 Gaz_parfait_qc

```
Description: Class for perfect gas state law used with a quasi-compressible fluid.
```

```
See also: loi_etat_gaz_parfait_base (19.3)
Usage:
gaz_parfait_QC str
Read str {
     Cp float
     [Cv float]
     [gamma float]
     Prandtl float
     [ rho_constant_pour_debug champ_base]
}
where
   • Cp float: Specific heat at constant pressure (J/kg/K).
   • Cv float: Specific heat at constant volume (J/kg/K).
   • gamma float: Cp/Cv
   • Prandtl float: Prandtl number of the gas Pr=mu*Cp/lambda
   • rho_constant_pour_debug champ_base (16.1): For developers to debug the code with a constant
```

19.8 Gaz_parfait_wc

Description: Class for perfect gas state law used with a weakly-compressible fluid.

- Cp float: Specific heat at constant pressure (J/kg/K).
- Cv float: Specific heat at constant volume (J/kg/K).
- gamma float: Cp/Cv
- Prandtl float: Prandtl number of the gas Pr=mu*Cp/lambda

19.9 Rhot_gaz_parfait_qc

Description: Class for perfect gas used with a aquasi-compressible fluid where the state equation is defined as rho = f(T).

```
See also: loi_etat_gaz_parfait_base (19.3)
```

- cp float: Specific heat at constant pressure of the gas Cp.
- prandtl float: Prandtl number of the gas Pr=mu*Cp/lambda
- **rho_xyz** *champ_base* (16.1): Defined with a Champ_Fonc_xyz to define a constant rho with time (space dependent)
- rho_t str: Expression of T used to calculate rho. This can lead to a variable rho, both in space and in time.

19.10 Rhot_gaz_reel_qc

Description: Class for real gas state law used with a quasi-compressible fluid.

```
See also: loi_etat_gaz_reel_base (19.4)

Usage:
rhoT_gaz_reel_QC bloc
where

• bloc bloc_lecture (3.6): Description.
```

20 loi_fermeture_base

Description: Class for appends fermeture to problem

Keyword Discretize should have already been used to read the object. See also: objet_u (39) loi_fermeture_test (20.1)

Usage:

20.1 Loi_fermeture_test

```
Description: Loi for test only
```

Keyword Discretize should have already been used to read the object.

See also: loi_fermeture_base (20)

Usage:

```
loi_fermeture_test str
Read str {
    [ coef float]
```

```
}
where
   • coef float: coefficient
21
      loi horaire
Description: to define the movement with a time-dependant law for the solid interface.
See also: objet_u (39)
Usage:
loi horaire str
Read str {
     position n word1 word2 ... wordn
     vitesse n word1 word2 ... wordn
     [ rotation n word1 word2 ... wordn]
     [ derivee rotation n word1 word2 ... wordn]
where
   • position n word1 word2 ... wordn
   • vitesse n word1 word2 ... wordn
   • rotation n word1 word2 ... wordn
   • derivee_rotation n word1 word2 ... wordn
22
      milieu base
Description: Basic class for medium (physics properties of medium).
See also: objet u (39) constituant (22.1) solide (22.13) fluide base (22.2) fluide diphasique (22.4)
Usage:
milieu base str
Read str {
     [gravite champ_base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [porosites porosites]
}
where
   • gravite champ_base (16.1): Gravity field (optional).
```

- **porosites_champ** *champ_base* (16.1): The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1): Hydraulic diameter field (optional).
- porosites porosites (28): Porosities.

22.1 Constituant

where

```
Description: Constituent.
See also: milieu base (22)
Usage:
constituant str
Read str {
     [ rho champ_base]
     [ cp champ_base]
     [lambda champ_base]
     [coefficient diffusion champ base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
   • rho champ base (16.1): Density (kg.m-3).
   • cp champ_base (16.1): Specific heat (J.kg-1.K-1).
   • lambda champ_base (16.1): Conductivity (W.m-1.K-1).
   • coefficient_diffusion champ_base (16.1): Constituent diffusion coefficient value (m2.s-1). If a
     multi-constituent problem is being processed, the diffusivite will be a vectorial and each components
     will be the diffusion of the constituent.
   • porosites champ champ base (16.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
   • porosites porosites (28) for inheritance: Porosities.
22.2
       Fluide_base
Description: Basic class for fluids.
Keyword Discretize should have already been used to read the object.
See also: milieu_base (22) fluide_reel_base (22.9) fluide_dilatable_base (22.3) fluide_incompressible (22.5)
Usage:
fluide base str
Read str {
     [indice champ_base]
     [kappa champ_base]
     [gravite champ base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
```

356

• **indice** *champ_base* (16.1): Refractivity of fluid.

- **kappa** *champ_base* (16.1): Absorptivity of fluid (m-1).
- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ *champ_base* (16.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (28) for inheritance: Porosities.

22.3 Fluide_dilatable_base

Description: Basic class for dilatable fluids.

Keyword Discretize should have already been used to read the object.

See also: fluide_base (22.2) fluide_quasi_compressible (22.7) fluide_weakly_compressible (22.12)

```
Usage:
```

where

```
fluide_dilatable_base str

Read str {

    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}
```

- **indice** *champ_base* (16.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- porosites_champ champ_base (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (28) for inheritance: Porosities.

22.4 Fluide_diphasique

```
Description: Two-phase fluid.

See also: milieu_base (22)

Usage:
fluide_diphasique str

Read str {

    sigma champ_don_base
    fluide0 str
    fluide1 str

[ chaleur latente champ don base]
```

```
[ formule_mu str]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
   • sigma champ_don_base (16.6): surfacic tension (J/m2)
   • fluide0 str: first phase fluid
   • fluide1 str: second phase fluid
   • chaleur_latente champ_don_base (16.6): phase changement enthalpy h(phase1_) - h(phase0_)
     (J/kg/K)
   • formule_mu str: (into=[standard,arithmetic,harmonic]) formula used to calculate average
   • porosites_champ champ_base (16.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
   • porosites porosites (28) for inheritance: Porosities.
      Fluide incompressible
Description: Class for non-compressible fluids.
Keyword Discretize should have already been used to read the object.
See also: fluide_base (22.2) fluide_ostwald (22.6)
Usage:
fluide_incompressible str
Read str {
     [beta_th champ_base]
     [ mu champ_base]
     [beta_co champ_base]
     [rho champ_base]
     [cp champ_base]
     [lambda champ_base]
     [ porosites bloc_lecture]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [porosites_champ champ_base]
     [diametre hyd champ champ base]
}
where
   • beta_th champ_base (16.1): Thermal expansion (K-1).
   • mu champ_base (16.1): Dynamic viscosity (kg.m-1.s-1).
```

• beta_co champ_base (16.1): Volume expansion coefficient values in concentration.

rho champ_base (16.1): Density (kg.m-3).
cp champ_base (16.1): Specific heat (J.kg-1.K-1).
lambda champ_base (16.1): Conductivity (W.m-1.K-1).
porosites bloc_lecture (3.6): Porosity (optional)

- indice champ_base (16.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).

22.6 Fluide ostwald

Description: Non-Newtonian fluids governed by Ostwald's law. The law applicable to stress tensor is: tau=K(T)*(D:D/2)**((n-1)/2)*D Where:

D refers to the deformation tensor

K refers to fluid consistency (may be a function of the temperature T)

n refers to the fluid structure index n=1 for a Newtonian fluid, n<1 for a rheofluidifier fluid, n>1 for a rheofluid.

Keyword Discretize should have already been used to read the object. See also: fluide_incompressible (22.5)

```
Usage:
fluide ostwald str
Read str {
     [k champ base]
     [n champ base]
     [beta_th champ_base]
     [ mu champ_base]
     [beta_co champ_base]
     [rho champ base]
     [cp champ_base]
     [lambda champ_base]
     [ porosites bloc_lecture]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
}
where
   • k champ_base (16.1): Fluid consistency.
   • n champ base (16.1): Fluid structure index.
   • beta_th champ_base (16.1) for inheritance: Thermal expansion (K-1).
   • mu champ base (16.1) for inheritance: Dynamic viscosity (kg.m-1.s-1).
   • beta_co champ_base (16.1) for inheritance: Volume expansion coefficient values in concentration.
   • rho champ_base (16.1) for inheritance: Density (kg.m-3).
   • cp champ_base (16.1) for inheritance: Specific heat (J.kg-1.K-1).
   • lambda champ_base (16.1) for inheritance: Conductivity (W.m-1.K-1).
   • porosites bloc_lecture (3.6) for inheritance: Porosity (optional)
   • indice champ_base (16.1) for inheritance: Refractivity of fluid.
   • kappa champ_base (16.1) for inheritance: Absorptivity of fluid (m-1).
```

- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).

22.7 Fluide_quasi_compressible

Description: Quasi-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) is uniform in space.

Keyword Discretize should have already been used to read the object. See also: fluide dilatable base (22.3)

```
Usage:
fluide_quasi_compressible str
Read str {
     [ sutherland bloc_sutherland]
     [ pression float]
     [loi_etat loi_etat_base]
     [ traitement_pth str into ['edo', 'constant', 'conservation_masse']]
     [traitement_rho_gravite str into ['standard', 'moins_rho_moyen']]
     [ temps_debut_prise_en_compte_drho_dt float]
     [omega relaxation drho dt float]
     [lambda champ_base]
     [mu champ base]
     [indice champ_base]
     [kappa champ base]
     [gravite champ base]
     [porosites champ champ base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
```

- sutherland bloc sutherland (22.8): Sutherland law for viscosity and for conductivity.
- **pression** *float*: Initial thermo-dynamic pressure used in the assosciated state law.
- loi_etat loi_etat_base (19): The state law that will be associated to the Quasi-compressible fluid.
- **traitement_pth** *str into ['edo', 'constant', 'conservation_masse']*: Particular treatment for the thermodynamic pressure Pth; there are three possibilities:
 - 1) with the keyword 'edo' the code computes Pth solving an O.D.E.; in this case, the mass is not strictly conserved (it is the default case for quasi compressible computation):
 - 2) the keyword 'conservation_masse' forces the conservation of the mass (closed geometry or with periodic boundaries condition)
 - 3) the keyword 'constant' makes it possible to have a constant Pth; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
 - It is possible to monitor the volume averaged value for temperature and density, plus Pth evolution in the .evol_glob file.
- **traitement_rho_gravite** *str into ['standard', 'moins_rho_moyen']*: It may be :1) standard: the gravity term is evaluated with rho*g (It is the default). 2) moins_rho_moyen: the gravity term is evaluated with (rho-rhomoy) *g. Unknown pressure is then P*=P+rhomoy*g*z. It is useful when you apply uniforme pressure boundary condition like P*=0.

- temps_debut_prise_en_compte_drho_dt *float*: While time<value, dRho/dt is set to zero (Rho, volumic mass). Useful for some calculation during the first time steps with big variation of temperature and volumic mass.
- omega_relaxation_drho_dt *float*: Optional option to have a relaxed algorithm to solve the mass equation. value is used (1 per default) to specify omega.
- lambda champ_base (16.1): Conductivity (W.m-1.K-1).
- mu champ_base (16.1): Dynamic viscosity (kg.m-1.s-1).
- indice champ_base (16.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (28) for inheritance: Porosities.

22.8 Bloc_sutherland

Description: Sutherland law for viscosity mu(T)=mu0*((T0+C)/(T+C))*(T/T0)**1.5 and (optional) for conductivity lambda(T)=mu0*Cp/Prandtl*((T0+Slambda)/(T+Slambda))*(T/T0)**1.5

```
See also: objet_lecture (38)

Usage: 
problem_name mu0 mu0_val t0 t0_val [Slambda][s] C c_val where
```

- **problem name** *str*: Name of problem.
- mu0 str into ['mu0']
- mu0 val float
- **t0** str into ['T0']
- t0_val float
- Slambda str into ['Slambda']
- s float
- **C** str into ['C']
- c_val float

22.9 Fluide_reel_base

Description: Class for real fluids.

Keyword Discretize should have already been used to read the object.

See also: fluide_base (22.2) fluide_sodium_gaz (22.10) stiffenedgas (22.14) fluide_sodium_liquide (22.11)

```
Usage:
```

```
fluide_reel_base str
Read str {

    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
```

```
[ porosites porosites] } where
```

- **indice** *champ base* (16.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (28) for inheritance: Porosities.

22.10 Fluide_sodium_gaz

Description: Class for Fluide_sodium_liquide

Keyword Discretize should have already been used to read the object.

See also: fluide_reel_base (22.9)

```
Usage:
```

```
fluide_sodium_gaz str

Read str {

    [P_ref float]
    [T_ref float]
    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}

where
```

- **P_ref** *float*: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- indice champ_base (16.1) for inheritance: Refractivity of fluid.
- **kappa** champ base (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (28) for inheritance: Porosities.

22.11 Fluide_sodium_liquide

```
Description: Class for Fluide_sodium_liquide

Keyword Discretize should have already been used to read the object. See also: fluide_reel_base (22.9)

Usage: fluide_sodium_liquide str

Read str {

    [P_ref float]
    [T_ref float]
    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}
```

- **P_ref** *float*: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- indice champ base (16.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (28) for inheritance: Porosities.

22.12 Fluide_weakly_compressible

Description: Weakly-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) can vary in space.

Keyword Discretize should have already been used to read the object. See also: fluide_dilatable_base (22.3)

```
Usage:
```

where

```
fluide_weakly_compressible str

Read str {

    [loi_etat loi_etat_base]
    [sutherland bloc_sutherland]
    [traitement_pth str into ['constant']]
    [lambda champ_base]
    [mu champ_base]
    [pression thermo float]
```

```
[ pression_xyz champ_base]
[ use_total_pressure int]
[ use_hydrostatic_pressure int]
[ use_grad_pression_eos int]
[ time_activate_ptot float]
[ indice champ_base]
[ kappa champ_base]
[ gravite champ_base]
[ porosites_champ champ_base]
[ diametre_hyd_champ champ_base]
[ porosites porosites]
}
where
```

- loi_etat loi_etat_base (19): The state law that will be associated to the Weakly-compressible fluid.
- sutherland bloc_sutherland (22.8): Sutherland law for viscosity and for conductivity.
- **traitement_pth** *str into ['constant']*: Particular treatment for the thermodynamic pressure Pth; there is currently one possibility:
 - 1) the keyword 'constant' makes it possible to have a constant Pth but not uniform in space; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
- lambda champ_base (16.1): Conductivity (W.m-1.K-1).
- mu champ_base (16.1): Dynamic viscosity (kg.m-1.s-1).
- pression_thermo float: Initial thermo-dynamic pressure used in the assosciated state law.
- **pression_xyz** *champ_base* (16.1): Initial thermo-dynamic pressure used in the assosciated state law. It should be defined with as a Champ_Fonc_xyz.
- **use_total_pressure** *int*: Flag (0 or 1) used to activate and use the total pressure in the assosciated state law. The default value of this Flag is 0.
- use_hydrostatic_pressure *int*: Flag (0 or 1) used to activate and use the hydro-static pressure in the assosciated state law. The default value of this Flag is 0.
- use_grad_pression_eos int: Flag (0 or 1) used to specify whether or not the gradient of the thermodynamic pressure will be taken into account in the source term of the temperature equation (case of a non-uniform pressure). The default value of this Flag is 1 which means that the gradient is used in the source.
- time_activate_ptot float: Time (in seconds) at which the total pressure will be used in the assosciated state law.
- **indice** *champ_base* (16.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
- **porosites** *porosites* (28) for inheritance: Porosities.

22.13 Solide

Description: Solid with cp and/or rho non-uniform.

See also: milieu_base (22)

Usage:

```
Read str {
     [rho champ base]
     [ cp champ_base]
     [lambda champ base]
     [user field champ base]
     [gravite champ_base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
   • rho champ_base (16.1): Density (kg.m-3).
   • cp champ_base (16.1): Specific heat (J.kg-1.K-1).
   • lambda champ_base (16.1): Conductivity (W.m-1.K-1).
   • user_field champ_base (16.1): user defined field.
   • gravite champ_base (16.1) for inheritance: Gravity field (optional).
   • porosites_champ champ_base (16.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
   • porosites porosites (28) for inheritance: Porosities.
22.14
        Stiffenedgas
Description: Class for Stiffened Gas
Keyword Discretize should have already been used to read the object.
See also: fluide_reel_base (22.9)
Usage:
stiffenedgas str
Read str {
     [gamma float]
     [ pinf float]
     [ mu float]
     [lambda float]
     [ Cv float]
     [ q float]
     [ q_prim float]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
```

solide str

where

- gamma *float*: Heat capacity ratio (Cp/Cv)
- **pinf** *float*: Stiffened gas pressure constant (if set to zero, the state law becomes identical to that of perfect gases)
- mu float: Dynamic viscosity
- lambda float: Thermal conductivity
- Cv float: Not set TODO: FIXME
- q float: Not set TODO: FIXME
- **q_prim** *float*: Not set TODO : FIXME
- **indice** *champ_base* (16.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (16.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (16.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (16.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (16.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (28) for inheritance: Porosities.

23 milieu_v2_base

Description: Basic class for medium (physics properties of medium) composed of constituents (fluids and solids).

```
See also: objet_u (39)
Usage:
```

24 modele_rayonnement_base

Description: Basic class for wall thermal radiation model.

```
See also: objet_u (39) modele_rayonnement_milieu_transparent (24.1)
```

Usage:

24.1 Modele rayonnement milieu transparent

```
Description: Wall thermal radiation model for a transparent gas and resolving a radiation-conduction-thermohydraulics coupled problem in VDF or VEF.
```

```
Modele Rayonnement Milieu Transparent mod
```

```
Read mod {
nom_pb_rayonnant
problem_name
fichier_fij
file_name
fichier_face_rayo
file_name
[fichier_matrice | fichier_matrice_binaire file_name]
}
```

nom_pb_rayonnant problem_name : problem_name is the name of the radiating fluid problem fichier_fij file_name : file_name is the name of the file which contains the shape factor matrix between all the faces.

fichier_face_rayo file_name : file_name is the name of the file which contains the radiating faces characteristics (area, emission value ...)

fichier_matricelfichier_matrice_binaire file_name : file_name is the name of the ASCII (or binary) file which contains the inverted shape factor matrix. It is an optional keyword, if not defined, the inverted shape factor matrix will be calculated and written in a file.

The two first files can be generated by a preprocessor, they allow the radiating face characteristics to be entered (set of faces considered to be uniform with respect to radiation for emission value, flux, etc.) and the form factors for these various faces. These files have the following format:

File on radiating faces:

N M -> N nombre de faces rayonnantes (=bords) et

(N is the number of radiating faces (=edges) and

-> M nombre de faces rayonnantes a emissivitee non nulle

M equals the number of non-zero emission radiating faces

Nom(i) S(i) E(i) -> Nom du bord i, surface du bord i, valeur de

(Name of the edge i, surface area of the edge i)

-> l'emissivite (comprise entre 0 et 1) (emission value (between 0 an 1))

Exemple:

134

Gauche 50.0 0.0

Droit1 50.0 0.5

Bas 10.0 0.0

Haut 10.0 0.0

Arriere 5.0 0.0

Avant 5.0 0.0

Droit2 30.0 0.5

Bas1 40.0 0.0

Haut1 20.0 0.0

Avant1 20.0 0.0

Arriere1 20.0 0.0

Entree 20.0 0.5

Sortie 20.0 0.5

File on form factors:

N -> Nombre de faces rayonnantes (Number of radiating faces)

Fij -> Matrice des facteurs de formes avec i,j entre 1 et N (Matrix of form factors where i, j between 1 and N)

Example:

13

 $1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$

 $0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.24\ 0.20\ 0.10\ 0.10\ 0.10\ 0.10\ 0.16$

 $0.00\ 0.00\ 1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$

 $0.00\ 0.00\ 0.00\ 1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$

 $0.00\ 0.00\ 0.00\ 0.00\ 1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$

 $0.00\ 0.25\ 0.00\ 0.00\ 0.00\ 0.00\ 0.15\ 0.30\ 0.00\ 0.10\ 0.10\ 0.00\ 0.10$

0.00 0.25 0.00 0.00 0.00 0.00 0.15 0.20 0.10 0.00 0.10 0.10 0.10

 $0.00\ 0.25\ 0.00\ 0.00\ 0.00\ 0.00\ 0.15\ 0.20\ 0.10\ 0.10\ 0.00\ 0.10\ 0.10$

0.00 0.25 0.00 0.00 0.00 0.00 0.15 0.30 0.00 0.10 0.10 0.00 0.10

 $0.00\ 0.40\ 0.00\ 0.00\ 0.00\ 0.00\ 0.20\ 0.10\ 0.10\ 0.10\ 0.10\ 0.00$

Caution:

a) The radiation model's precision is decided by the user when he/she names the domain edges. In fact, a radiating face is recognised by the preprocessor as the set of domain edges faces bearing the same name.

Thus, if the user subdivides the edge into two edges which are named differently, he/she thus creates two radiating faces instead of one.

- b) The form factors are entered by the user, the preprocessor carries out no calculations other than checking preservation relationships on form factors.
- c) The fluid is considered to be a transparent gas.

```
Keyword Discretize should have already been used to read the object. See also: modele rayonnement base (24)
```

Usage:

modele_rayonnement_milieu_transparent bloc where

• **bloc** *bloc_lecture* (3.6): See description.

25 modele_turbulence_scal_base

Description: Basic class for turbulence model for energy equation.

```
See also: objet_u (39) sous_maille_dyn (25.3) prandtl (25.1) schmidt (25.2)

Usage:
modele_turbulence_scal_base str

Read str {
    turbulence_paroi turbulence_paroi_scalaire_base
    [dt_impr_nusselt float]
}

where
```

- **turbulence_paroi** *turbulence_paroi_scalaire_base* (36): Keyword to set the wall law.
- **dt_impr_nusselt** *float*: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

25.1 Prandtl

Description: The Prandtl model. For the scalar equations, only the model based on Reynolds analogy is available. If K_Epsilon was selected in the hydraulic equation, Prandtl must be selected for the convection-diffusion temperature equation coupled to the hydraulic equation and Schmidt for the concentration equations.

```
See also: modele_turbulence_scal_base (25)

Usage:
prandtl str
Read str {
```

```
[ prdt str]
  [ prandt_turbulent_fonction_nu_t_alpha str]
  turbulence_paroi turbulence_paroi_scalaire_base
  [ dt_impr_nusselt float]
}
where
```

- **prdt** *str*: Keyword to modify the constant (Prdt) of Prandtl model : Alphat=Nut/Prdt Default value is 0.9
- **prandt_turbulent_fonction_nu_t_alpha** *str*: Optional keyword to specify turbulent diffusivity (by default, alpha_t=nu_t/Prt) with another formulae, for example: alpha_t=nu_t2/(0,7*alpha+0,85*nu_t) with the string nu_t*nu_t/(0,7*alpha+0,85*nu_t) where alpha is the thermal diffusivity.
- turbulence_paroi turbulence_paroi_scalaire_base (36) for inheritance: Keyword to set the wall law
- **dt_impr_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

25.2 Schmidt

Description: The Schmidt model. For the scalar equations, only the model based on Reynolds analogy is available. If K_Epsilon was selected in the hydraulic equation, Prandtl must be selected for the convection-diffusion temperature equation coupled to the hydraulic equation and Schmidt for the concentration equations

```
See also: modele_turbulence_scal_base (25)

Usage:
schmidt str

Read str {

    [scturb float]
    turbulence_paroi turbulence_paroi_scalaire_base
    [dt_impr_nusselt float]
}
where
```

- **scturb** *float*: Keyword to modify the constant (Sct) of Schmlidt model : Dt=Nut/Sct Default value is 0.7.
- **turbulence_paroi** *turbulence_paroi_scalaire_base* (36) for inheritance: Keyword to set the wall law.
- **dt_impr_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

25.3 Sous_maille_dyn

```
Description: Dynamic sub-grid turbulence modele.

Warning: Available in VDF only. Not coded in VEF yet.

See also: modele_turbulence_scal_base (25)

Usage:
sous_maille_dyn str

Read str {

[stabilise str into ['6_points', 'moy_euler', 'plans_paralleles']]
[nb_points int]
turbulence_paroi turbulence_paroi_scalaire_base
[dt_impr_nusselt float]
}

where
```

- **stabilise** *str into* ['6_points', 'moy_euler', 'plans_paralleles']
- nb_points int
- turbulence_paroi turbulence_paroi_scalaire_base (36) for inheritance: Keyword to set the wall law
- **dt_impr_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

26 nom

Description: Class to name the TRUST objects.

```
See also: objet_u (39) nom_anonyme (26.1)
Usage:
nom [ mot ]
where
```

• mot str: Chain of characters.

26.1 Nom anonyme

Description: not_set

```
See also: nom (26)
Usage:
[ mot ]
where
```

• mot str: Chain of characters.

27 partitionneur_deriv

```
Description: not_set

See also: objet_u (39) metis (27.3) sous_zones (27.6) tranche (27.7) partition (27.4) fichier_decoupage (27.2) fichier_med (27.1) sous_domaine (27.5) union (27.8)

Usage:
partitionneur_deriv str
Read str {
    [nb_parts int]
}
where
```

• **nb_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.1 Fichier med

Description: Partitioning a domain using a MED file containing an integer field providing for each element the processor number on which the element should be located.

```
See also: partitionneur_deriv (27)
Usage:
fichier_med str
Read str {
    file str
    field str
    [ nb_parts int]
}
where
```

- file str: file name of the MED file to load
- field str: field name of the integer field to load
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.2 Fichier_decoupage

Description: This algorithm reads an array of integer values on the disc, one value for each mesh element. Each value is interpreted as the target part number n>=0 for this element. The number of parts created is the highest value in the array plus one. Empty parts can be created if some values are not present in the array.

The file format is ASCII, and contains space, tab or carriage-return separated integer values. The first value is the number nb_elem of elements in the domain, followed by nb_elem integer values (positive or zero). This algorithm has been designed to work together with the 'ecrire_decoupage' option. You can generate a partition with any other algorithm, write it to disc, modify it, and read it again to generate the .Zone files. Contrary to other partitioning algorithms, no correction is applied by default to the partition (eg. element 0 on processor 0 and corrections for periodic boundaries). If 'corriger_partition' is specified, these corrections are applied.

See also: partitionneur_deriv (27)

Usage:
fichier_decoupage str

Read str {
fichier str
[corriger_partition]
[nb_parts int]

- fichier str: FILENAME
- corriger partition
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.3 Metis

} where

Description: Metis is an external partitionning library. It is a general algorithm that will generate a partition of the domain.

See also: partitionneur_deriv (27)

Usage:
metis str
Read str {
 [kmetis]
 [use_weights]
 [nb_parts int]

}
where

• **kmetis**: The default values are pmetis, default parameters are automatically chosen by Metis. 'kmetis' is faster than pmetis option but the last option produces better partitioning quality. In both cases, the partitioning quality may be slightly improved by increasing the nb_essais option (by default N=1). It will compute N partitions and will keep the best one (smallest edge cut number). But this option is CPU expensive, taking N=10 will multiply the CPU cost of partitioning by 10. Experiments show that only marginal improvements can be obtained with non default parameters.

- use_weights: If use_weights is specified, weighting of the element-element links in the graph is used to force metis to keep opposite periodic elements on the same processor. This option can slightly improve the partitionning quality but it consumes more memory and takes more time. It is not mandatory since a correction algorithm is always applied afterwards to ensure a correct partitionning for periodic boundaries.
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.4 Partition

Synonymous: decouper

Description: This algorithm re-use the partition of the domain named DOMAINE_NAME. It is useful to partition for example a post processing domain. The partition should match with the calculation domain.

See also: partitionneur_deriv (27)

Usage:
partition str

Read str {
 domaine str
 [nb_parts int]
}
where

- domaine str: domain name
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.5 Sous_domaine

Description: Given a global partition of a global domain, 'sous-domaine' allows to produce a conform partition of a sub-domain generated from the bigger one using the keyword create_domain_from_sous_zone. The sub-domain will be partitionned in a conform fashion with the global domain.

See also: partitionneur_deriv (27)

```
Usage:
sous_domaine str
Read str {
fichier str
fichier_ssz str
[nb_parts int]
}
where
```

- fichier str: fichier domaine
- fichier_ssz str: fichier sous zonne
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.6 Sous_zones

Description: This algorithm will create one part for each specified subzone/domain. All elements contained in the first subzone/domain are put in the first part, all remaining elements contained in the second subzone/domain in the second part, etc...

If all elements of the current domain are contained in the specified subzones/domain, then N parts are created, otherwise, a supplemental part is created with the remaining elements.

If no subzone is specified, all subzones defined in the domain are used to split the mesh.

```
See also: partitionneur_deriv (27)

Usage:
sous_zones str

Read str {

    [sous_zones n word1 word2 ... wordn]
    [domaines n word1 word2 ... wordn]
    [nb_parts int]
}
where
```

- sous zones n word1 word2 ... wordn: N SUBZONE NAME 1 SUBZONE NAME 2 ...
- **domaines** *n word1 word2 ... wordn*: N DOMAIN_NAME_1 DOMAIN_NAME_2 ...
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.7 Tranche

Description: This algorithm will create a geometrical partitionning by slicing the mesh in the two or three axis directions, based on the geometric center of each mesh element. nz must be given if dimension=3. Each slice contains the same number of elements (slices don't have the same geometrical width, and for VDF meshes, slice boundaries are generally not flat except if the number of mesh elements in each direction is an exact multiple of the number of slices). First, nx slices in the X direction are created, then each slice is split in ny slices in the Y direction, and finally, each part is split in nz slices in the Z direction. The resulting number of parts is nx*ny*nz. If one particular direction has been declared periodic, the default slicing (0, 1, 2, ..., n-1) is replaced by (0, 1, 2, ... n-1, 0), each of the two '0' slices having twice less elements than the other slices.

```
See also: partitionneur_deriv (27)

Usage:
tranche str

Read str {
    [tranches n1 n2 (n3)]
    [nb_parts int]
}
where
```

- **tranches** *n1 n2 (n3)*: Partitioned by nx in the X direction, ny in the Y direction, nz in the Z direction. Works only for structured meshes. No warranty for unstructured meshes.
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

27.8 Union

Description: Let several local domains be generated from a bigger one using the keyword create_domain_from_sous_zone, and let their partitions be generated in the usual way. Provided the list of partition files for each small domain, the keyword 'union' will partition the global domain in a conform fashion with the smaller domains.

See also: partitionneur_deriv (27)

Usage:
union liste [nb_parts]
where

- **liste** *bloc_lecture* (3.6): List of the partition files with the following syntaxe: {sous_zone1 decoupage1 ... sous_zoneim decoupageim } where sous_zone1 ... sous_zoneim are small domains names and decoupage1 ... decoupageim are partition files.
- **nb_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

28 porosites

Description: To define the volume porosity and surface porosity that are uniform in every direction in space on a sub-area.

Porosity was only usable in VDF discretization, and now available for VEF P1NC/P0.

Observations:

- Surface porosity values must be given in every direction in space (set this value to 1 if there is no porosity),
- Prior to defining porosity, the problem must have been discretized.

Can 't be used in VEF discretization, use Porosites_champ instead.

```
See also: objet_u (39)

Usage:
porosites aco sous_zone1|sous_zone bloc [ sous_zone2 ] [ bloc2 ] acof where
```

- aco str into ['{'}]: Opening curly bracket.
- sous_zone1|sous_zone str: Name of the sub-area to which porosity are allocated.
- **bloc** *bloc_lecture_poro* (28.1): *Surface and volume porosity values.*
- sous_zone2 str: Name of the 2nd sub-area to which porosity are allocated.
- bloc2 bloc_lecture_poro (28.1): Surface and volume porosity values.
- acof str into ['}']: Closing curly bracket.

28.1 Bloc_lecture_poro

Description: Surface and volume porosity values.

```
See also: objet_lecture (38)

Usage:
{

volumique float
surfacique n x1 x2 ... xn
```

```
}
where
   • volumique float: Volume porosity value.
   • surfacique n x1 x2 ... xn: Surface porosity values (in X, Y, Z directions).
29
      precond_base
Description: Basic class for preconditioning.
See also: objet_u (39) ssor (29.3) ssor_bloc (29.4) precondsolv (29.2) ilu (29.1)
Usage:
29.1 Ilu
Description: This preconditionner can be only used with the generic GEN solver.
See also: precond_base (29)
Usage:
ilu str
Read str {
     [type int]
     [ filling int]
}
where
   • type int: values can be 0|1|2|3 for null|left|right|left-and-right preconditionning (default value = 2)
   • filling int: default value = 1.
29.2 Precondsolv
Description: not_set
See also: precond_base (29)
Usage:
precondsolv solveur
where
   • solveur solveur_sys_base (11.18): Solver type.
29.3 Ssor
Description: Symmetric successive over-relaxation algorithm.
See also: precond_base (29)
Usage:
ssor str
Read str {
```

```
[ omega float]
}
where
   • omega float: Over-relaxation facteur (between 1 and 2, default value 1.6).
29.4
       Ssor_bloc
Description: not_set
See also: precond_base (29)
Usage:
ssor_bloc str
Read str {
     [ alpha_0 float]
     [ precond0 precond_base]
     [ alpha_1 float]
     [ precond1 precond_base]
     [ alpha_a float]
     [ preconda precond_base]
}
where
   • alpha_0 float
   • precond0 precond_base (29)
   • alpha_1 float
   • precond1 precond_base (29)
   • alpha a float
   • preconda precond_base (29)
30
      saturation_base
Description: Basic class for a liquid-gas interface (used in pb_multiphase)
See also: objet_u (39) saturation_sodium (30.2) saturation_constant (30.1)
Usage:
       Saturation_constant
30.1
Description: Class for saturation constant
See also: saturation_base (30)
Usage:
saturation_constant str
Read str {
     [ P_sat float]
     [ T_sat float]
```

```
[ Lvap float]
[ Hlsat float]
[ Hvsat float]
}
where
• P_sat float: Define the saturation pressure value (this is a required parameter)
• T_sat float: Define the saturation temperature value (this is a required parameter)
• Lvap float: Latent heat of vaporization
• Hlsat float: Liquid saturation enthalpy
• Hvsat float: Vapor saturation enthalpy
```

30.2 Saturation sodium

```
Description: Class for saturation sodium

See also: saturation_base (30)

Usage:
saturation_sodium str

Read str {

    [P_ref float]
    [T_ref float]
}
where
```

- P_ref *float*: Use to fix the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to fix the temperature value in the closure law. If not specified, the value of the temperature unknown will be used

31 schema_temps_base

Description: Basic class for time schemes. This scheme will be associated with a problem and the equations of this problem.

See also: objet_u (39) scheme_euler_explicit (31.4) schema_predictor_corrector (31.24) Sch_CN_iteratif (31.3) leap_frog (31.5) schema_implicite_base (31.22) schema_adams_bashforth_order_2 (31.15) schema_adams_bashforth_order_3 (31.16) runge_kutta_ordre_2 (31.7) runge_kutta_ordre_3 (31.9) runge_kutta_ordre_4_d3p (31.11) runge_kutta_rationnel_ordre_2 (31.14) runge_kutta_ordre_2_classique (31.8) runge_kutta_ordre_3_classique (31.10) runge_kutta_ordre_4_classique (31.12) runge_kutta_ordre_4_classique-3_8 (31.13) schema_euler_explicite_ALE (31.25) schema_phase_field (31.23)

Usage:

```
schema_temps_base str
Read str {
    [ tinit float]
    [ tmax float]
    [ tcpumax float]
    [ dt_min float]
```

```
\begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
     [ dt impr float]
     [facsec float]
      [seuil statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
      [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
      [ no_check_disk_space ]
     [ disable_progress ]
      [disable dt ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float*: Value of initial calculation time (0 by default).
- tmax *float*: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float*: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float*: Minimum calculation time step (1e-16s by default).
- **dt_max** *str*: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float*: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float*: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float*: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float*: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int
- **diffusion_implicite** *int*: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.

- **seuil_diffusion_implicite** *float*: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int*: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int
- no_conv_subiteration_diffusion_implicite int
- dt_start dt_start (11.10): dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb_pas_dt_max** *int*: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int*: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int*: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float*: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space: To disable the check of the available amount of disk space during the calculation.
- **disable_progress**: To disable the writing of the .progress file.
- **disable_dt_ev** : To disable the writing of the .dt_ev file.
- **gnuplot_header** *int*: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.1 Implicit_euler_steady_scheme

Synonymous: schema euler implicite stationnaire

Description: This is the Implicit Euler scheme using a dual time step procedure (using local and global dt) for steady problems. Remark: the only possible solver choice for this scheme is the implicit_steady solver.

```
See also: schema_implicite_base (31.22)
Usage:
implicit_euler_steady_scheme str
Read str {
      [ max iter implicite int]
      [steady_security_facteur float]
      [steady global dt float]
      solveur solveur implicite base
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
```

```
[ seuil_statio_relatif_deconseille int]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

- max_iter_implicite int: Maximum number of iterations allowed for the solver (by default 200)
- **steady_security_facteur** *float*: Parameter used in the local time step calculation procedure in order to increase or decrease the local dt value (by default 0.5). We expect a strictly positive value
- **steady_global_dt** *float*: This is the global time step used in the dual time step algorithm (by default 100). We expect a strictly positive value
- solveur solveur_implicite_base (32) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.2 Sch_cn_ex_iteratif

Description: This keyword also describes a Crank-Nicholson method of second order accuracy but here, for scalars, because of instablities encountered when dt>dt_CFL, the Crank Nicholson scheme is not applied to scalar quantities. Scalars are treated according to Euler-Explicite scheme at the end of the CN treatment for velocity flow fields (by doing p Euler explicite under-iterations at dt<=dt_CFL). Parameters are the sames (but default values may change) compare to the Sch_CN_iterative scheme plus a relaxation keyword: niter_min (2 by default), niter_max (6 by default), niter_avg (3 by default), facsec_max (20 by default), seuil (0.05 by default)

See also: Sch_CN_iteratif (31.3)

```
Usage:
Sch_CN_EX_iteratif str
Read str {
     [ omega float]
     [ niter min int]
     [ niter_max int]
     [ niter_avg int]
     [ facsec_max float]
     [ seuil float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

- omega *float*: relaxation factor (0.1 by default)
- **niter_min** *int* for inheritance: minimal number of p-iterations to satisfy convergence criteria (2 by default)
- **niter_max** *int* for inheritance: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter_avg** *int* for inheritance: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter_avg, facsec is reduced, if lesser than niter_avg, facsec is increased (but limited by the facsec_max value).
- **facsec_max** *float* for inheritance: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).
- **seuil** *float* for inheritance: criteria for ending iterative process (Max(|| u(p) u(p-1)||/Max || u(p) ||) < seuil) (0.001 by default)
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).

- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- gnuplot header int for inheritance: Optional keyword to modify the header of the .out files, Allows

to use the column title instead of columns number.

31.3 Sch_cn_iteratif

Description: The Crank-Nicholson method of second order accuracy. A mid-point rule formulation is used (Euler-centered scheme). The basic scheme is:

$$u(t+1) = u(t) + du/dt(t+1/2) * dt$$

The estimation of the time derivative du/dt at the level (t+1/2) is obtained either by iterative process. The time derivative du/dt at the level (t+1/2) is calculated iteratively with a simple under-relaxations method. Since the method is implicit, neither the cfl nor the fourier stability criteria must be respected. The time step is calculated in a way that the iterative procedure converges with the less iterations as possible.

Remark: for stationary or RANS calculations, no limitation can be given for time step through high value of facsec_max parameter (for instance: facsec_max 1000). In counterpart, for LES calculations, high values of facsec_max may engender numerical instabilities.

See also: schema_temps_base (31) Sch_CN_EX_iteratif (31.2)

```
Usage:
Sch_CN_iteratif str
Read str {
     [ niter min int]
     [ niter max int]
     [ niter_avg int]
     [ facsec_max float]
     [ seuil float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
      [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
      [gnuplot header int]
```

} where

- **niter_min** *int*: minimal number of p-iterations to satisfy convergence criteria (2 by default)
- **niter_max** *int*: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter_avg** *int*: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter_avg, facsec is reduced, if lesser than niter_avg, facsec is increased (but limited by the facsec-max value).
- **facsec_max** *float*: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).
- seuil *float*: criteria for ending iterative process (Max(|| u(p) u(p-1)||/Max || u(p) ||) < seuil) (0.001 by default)
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- dt_start dt_start (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculated).

tion with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.

- **nb_pas_dt_max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.4 Scheme_euler_explicit

```
Synonymous: schema_euler_explicite
Description: This is the Euler explicit scheme.
See also: schema_temps_base (31)
Usage:
scheme_euler_explicit str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
      [ seuil statio relatif deconseille int]
      [ diffusion_implicite int]
      [ seuil_diffusion_implicite float]
      [ impr_diffusion_implicite int]
      [impr extremums int]
      [ no error if not converged diffusion implicite int]
      [ no conv subiteration diffusion implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter max diffusion implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
      [ no_check_disk_space ]
      [ disable_progress ]
      [ disable_dt_ev ]
```

```
[ gnuplot_header int] } where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter_max_diffusion_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).

- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.5 Leap_frog

where

Description: This is the leap-frog scheme.

```
See also: schema_temps_base (31)
Usage:
leap frog str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot header int]
}
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).

- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.6 Rk3_ft

Description: Keyword for Runge Kutta time scheme for Front_Tracking calculation.

```
See also: runge kutta ordre 3 (31.9)
Usage:
rk3 ft str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
      [ dt_max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
      [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.7 Runge kutta ordre 2

Description: This is a low-storage Runge-Kutta scheme of second order that uses 2 integration points. The method is presented by Williamson (case 1) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema_temps_base (31)

Usage:
runge_kutta_ordre_2 str

Read str {
    [tinit float]
```

```
[tmax float]
     [tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil statio float]
      [ seuil statio relatif deconseille int]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
      [ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
     [disable progress]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened

meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.

- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- dt_start dt_start (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.8 Runge_kutta_ordre_2_classique

Description: This is a classical Runge-Kutta scheme of second order that uses 2 integration points.

```
See also: schema_temps_base (31)

Usage:
runge_kutta_ordre_2_classique str

Read str {

    [ tinit float]
    [ tmax float]
    [ tcpumax float]
    [ dt_min float]
    [ dt_max str]
    [ dt_sauv float]
    [ dt_impr float]
    [ facsec float]
    [ seuil_statio_relatif_deconseille int]
    [ diffusion_implicite int]
```

```
[ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode sauvegarde securite en heures float]
     [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [ gnuplot_header int]
}
```

- where
 - **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
 - tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
 - tcpumax float for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
 - **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
 - dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
 - dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt sauv is in terms of physical time (not cpu time).
 - dt impr float for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
 - facsec float for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-_Adams_Bashforth_order_3.
 - seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
 - seuil statio relatif deconseille int for inheritance
 - diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
 - seuil_diffusion_implicite float for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
 - impr_diffusion_implicite int for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
 - impr_extremums int for inheritance: Print unknowns extremas
 - no_error_if_not_converged_diffusion_implicite int for inheritance
 - no conv subiteration diffusion implicite int for inheritance

- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.9 Runge_kutta_ordre_3

Description: This is a low-storage Runge-Kutta scheme of third order that uses 3 integration points. The method is presented by Williamson (case 7) in https://www.sciencedirect.com/science/article/pii/0021999180900339

See also: schema_temps_base (31) rk3_ft (31.6)

```
Usage:
runge kutta ordre 3 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
```

```
[ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.

- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.10 Runge_kutta_ordre_3_classique

Description: This is a classical Runge-Kutta scheme of third order that uses 3 integration points.

```
See also: schema_temps_base (31)
Usage:
runge_kutta_ordre_3_classique str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt sauv float]
     [ dt_impr float]
     [ facsec float]
     [ seuil_statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [ disable dt ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).

- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

 Warring: Some schemes needs a facese lower than 1 (0.5 is a good start), for example Scheme.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.11 Runge_kutta_ordre_4_d3p

Synonymous: runge_kutta_ordre_4

Description: This is a low-storage Runge-Kutta scheme of fourth order that uses 3 integration points. The method is presented by Williamson (case 17) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema temps base (31)
Usage:
runge_kutta_ordre_4_d3p str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [disable progress]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.

- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil statio relatif deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.12 Runge_kutta_ordre_4_classique

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points.

See also: schema_temps_base (31)

Usage:

```
runge_kutta_ordre_4_classique str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [dt max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode sauvegarde securite en heures float]
     [ no check disk space ]
     [disable progress]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil statio relatif deconseille int for inheritance

- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.13 Runge_kutta_ordre_4_classique_3_8

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points and the 3/8 rule.

```
See also: schema_temps_base (31)

Usage:
runge_kutta_ordre_4_classique_3_8 str

Read str {

    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
    [dt_sauv float]
    [dt_simpr float]
```

```
[facsec float]
     [ seuil_statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil statio relatif deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.

- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr extremums** *int* for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.14 Runge_kutta_rationnel_ordre_2

Description: This is the Runge-Kutta rational scheme of second order. The method is described in the note: Wambeck - Rational Runge-Kutta methods for solving systems of ordinary differential equations, at the link: https://link.springer.com/article/10.1007/BF02252381. Although rational methods require more computational work than linear ones, they can have some other properties, such as a stable behaviour with explicitness, which make them preferable. The CFD application of this RRK2 scheme is described in the note: https://link.springer.com/content/pdf/10.1007%2F3-540-13917-6 112.pdf.

```
See also: schema_temps_base (31)
Usage:
runge_kutta_rationnel_ordre_2 str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      \begin{bmatrix} dt max str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
      [ seuil_statio_relatif_deconseille int]
      [ diffusion_implicite int]
      [ seuil_diffusion_implicite float]
      [ impr_diffusion_implicite int]
```

```
[ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
      [ no_check_disk_space ]
      [ disable_progress ]
      [ disable_dt_ev ]
      [ gnuplot_header int]
}
where
```

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance

- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.15 Schema_adams_bashforth_order_2

```
Description: not_set
See also: schema_temps_base (31)
Usage:
schema_adams_bashforth_order_2 str
Read str {
     [tinit float]
      [tmax float]
     [tcpumax float]
     [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
     [ dt_sauv float]
     [ dt impr float]
     [facsec float]
      [ seuil statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
      [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
```

```
[ disable_dt_ev ]
        [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb_pas_dt_max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).

- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.16 Schema_adams_bashforth_order_3

```
Description: not set
See also: schema_temps_base (31)
Usage:
schema adams bashforth order 3 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot header int]
}
```

where

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).

- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.17 Schema_adams_moulton_order_2

Description: not set

```
See also: schema implicite base (31.22)
Usage:
schema adams moulton order 2 str
Read str {
     [facsec_max float]
     [ max iter implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [disable progress]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

• facsec_max float: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100

- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable
- These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.
- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (32) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.

- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.18 Schema_adams_moulton_order_3

```
Description: not_set
See also: schema_implicite_base (31.22)
Usage:
schema_adams_moulton_order_3 str
Read str {
     [ facsec_max float]
     [ max_iter_implicite int]
     solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [dt impr float]
     [ facsec float]
     [ seuil statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
```

```
[ nb_pas_dt_max int]
  [ niter_max_diffusion_implicite int]
  [ precision_impr int]
  [ periode_sauvegarde_securite_en_heures float]
  [ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

• facsec_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur_implicite_base* (32) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- **no_conv_subiteration_diffusion_implicite** *int* for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.19 Schema_backward_differentiation_order_2

Description: not_set

See also: schema implicite base (31.22)

```
schema backward differentiation order 2 str
Read str {
      [facsec max float]
      [ max iter implicite int]
      solveur solveur_implicite_base
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec float]
      [ seuil_statio float]
      [ seuil statio relatif deconseille int]
      [ diffusion implicite int]
      [ seuil_diffusion_implicite float]
      [impr diffusion implicite int]
      [ impr_extremums int]
```

[no_error_if_not_converged_diffusion_implicite int] [no_conv_subiteration_diffusion_implicite int]

[periode_sauvegarde_securite_en_heures float]

• facsec_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

} where

[dt_start dt_start] [nb_pas_dt_max int]

[precision_impr int]

[no_check_disk_space]
[disable_progress]
[disable_dt_ev]
[gnuplot_header int]

[niter_max_diffusion_implicite int]

Usage:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (32) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- **no_error_if_not_converged_diffusion_implicite** *int* for inheritance
- **no_conv_subiteration_diffusion_implicite** *int* for inheritance
- dt_start dt_start (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min.

dt_start dt_calc : the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value : the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.

- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.20 Schema_backward_differentiation_order_3

```
Description: not_set
See also: schema_implicite_base (31.22)
Usage:
schema backward differentiation order 3 str
Read str {
     [ facsec_max float]
     [ max iter implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
      [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
      [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil_statio_relatif_deconseille int]
      [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
      [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
```

```
[ no_check_disk_space ]
    [ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

• facsec_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur_implicite_base* (32) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does

not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil statio relatif deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.21 Scheme_euler_implicit

Synonymous: schema euler implicite

Description: This is the Euler implicit scheme.

See also: schema_implicite_base (31.22)

Usage:

```
scheme_euler_implicit str
Read str {
     [facsec max float]
     [resolution monolithique bloc lecture]
     [ max_iter_implicite int]
     solveur solveur implicite base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
     [ dt_sauv float]
     [ dt impr float]
     [facsec float]
      [ seuil_statio float]
      [ seuil_statio_relatif_deconseille int]
      [ diffusion_implicite int]
     [ seuil diffusion implicite float]
      [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures | float]
      [ no_check_disk_space ]
     [ disable_progress ]
      [disable dt ev ]
     [gnuplot_header int]
where
```

• **facsec_max** *float*: 1 Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

• **resolution_monolithique** *bloc_lecture* (3.6): Activate monolithic resolution for coupled problems. Solves together the equations corresponding to the application domains in the given order. All apli-

cation domains of the coupled equations must be given to determine the order of resolution. If the monolithic solving is not wanted for a specific application domain, an underscore can be added as prefix. For example, resolution_monolithique { dom1 { dom2 dom3 } _dom4 } will solve in a single matrix the equations having dom1 as application domain, then the equations having dom2 or dom3 as application domain in a single matrix, then the equations having dom4 as application domain in a sequential way (not in a single matrix).

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (32) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil statio relatif deconseille int for inheritance
- diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.

- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.22 Schema_implicite_base

schema_implicite_base str

Description: Basic class for implicite time scheme.

See also: schema_temps_base (31) schema_adams_moulton_order_2 (31.17) schema_adams_moulton_order_3 (31.18) schema_backward_differentiation_order_2 (31.19) schema_backward_differentiation_order_3 (31.20) scheme_euler_implicit (31.21) implicit_euler_steady_scheme (31.1)

Usage:

```
Read str {
     [ max_iter_implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [dt max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
```

```
[ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- max_iter_implicite int: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (32): This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains. Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened

meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.

- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.23 Schema_phase_field

Description: Keyword for the only available Scheme for time discretization of the Phase Field problem.

```
See also: schema_temps_base (31)

Usage:
schema_phase_field str

Read str {

    [schema_ch schema_temps_base]
    [schema_ns schema_temps_base]
    [tinit float]
    [tmax float]
    [tepumax float]
    [dt_min float]
    [dt_max str]
    [dt_sauv float]
    [dt_impr float]
    [facsec float]
    [seuil_statio_float]
    [seuil_statio_relatif_deconseille int]
```

```
[ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

- schema_ch schema_temps_base (31): Time scheme for the Cahn-Hilliard equation.
- schema_ns schema_temps_base (31): Time scheme for the Navier-Stokes equation.
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.

- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr extremums** *int* for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb_pas_dt_max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.24 Schema_predictor_corrector

Description: This is the predictor-corrector scheme (second order). It is more accurate and economic than MacCormack scheme. It gives best results with a second ordre convective scheme like quick, centre (VDF).

```
See also: schema_temps_base (31)
Usage:
schema predictor corrector str
Read str {
     [tinit float]
     [tmax float]
      [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [dt impr float]
     [ facsec float]
     [ seuil statio float]
     [ seuil statio relatif deconseille int]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
```

```
[ nb_pas_dt_max int]
  [ niter_max_diffusion_implicite int]
  [ precision_impr int]
  [ periode_sauvegarde_securite_en_heures float]
  [ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.

- **nb_pas_dt_max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

31.25 Schema_euler_explicite_ale

Description: This is the Euler explicit scheme used for ALE problems.

```
See also: schema_temps_base (31)
Usage:
schema_euler_explicite_ALE str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [dt sauv float]
     [ dt_impr float]
     [facsec float]
     [ seuil_statio float]
     [ seuil_statio_relatif_deconseille int]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [disable progress]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *float* for inheritance: Value assigned to the safety factor for the time step (1. by default). The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- seuil_statio_relatif_deconseille int for inheritance
- diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (11.10) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb pas dt max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.

- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

32 solveur_implicite_base

Description: Class for solver in the situation where the time scheme is the implicit scheme. Solver allows equation diffusion and convection operators to be set as implicit terms.

```
See also: objet_u (39) solveur_lineaire_std (32.9) simpler (32.8)
Usage:
```

32.1 Ice

Description: Implicit Continuous-fluid Eulerian solver which is useful for a multiphase problem. Robust pressure reduction resolution.

```
See also: sets (32.6)
Usage:
ice str
Read str {
     [ pression_degeneree int]
     [ criteres_convergence bloc_criteres_convergence]
     [iter_min int]
     [ seuil_convergence_implicite | float]
      [ nb corrections max int]
     [ seuil_convergence_solveur | float]
     [seuil generation solveur float]
     [ seuil_verification_solveur float]
     [ seuil test preliminaire solveur float]
     [solveur solveur sys base]
     [no qdm]
     [ nb_it_max int]
     [ controle_residu ]
}
where
```

- **pression_degeneree** *int*: set to 1 if the pressure field is degenerate (ex. : incompressible fluid with no imposed-pressure BCs). Default: autodetected
- **criteres_convergence** *bloc_criteres_convergence* (3.6.1) for inheritance: Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter_min int for inheritance: Number of minimum iterations
- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier Stokes equation and the

scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).

- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil_verification_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

32.2 Implicit_steady

Description: this is the implicit solver using a dual time step. Remark: this solver can be used only with the Implicit_Euler_Steady_Scheme time scheme.

```
See also: implicite (32.3)
Usage:
implicit_steady str
Read str {
     [ seuil_convergence_implicite float]
     [ nb_corrections_max int]
     [ seuil convergence solveur float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [ no_qdm ]
     [ nb it max int]
     [controle_residu]
}
where
```

- seuil convergence implicite *float* for inheritance: Convergence criteria.
- nb_corrections_max *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).

- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

32.3 Implicite

Description: similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps. But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

```
See also: piso (32.5) implicite_ALE (32.4) implicit_steady (32.2)
Usage:
implicite str
Read str {
     [ seuil convergence implicite float]
     [ nb_corrections_max int]
     [ seuil convergence solveur float]
     [ seuil generation solveur float]
     [ seuil verification solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no qdm]
     [ nb_it_max int]
     [controle_residu]
}
where
```

- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil_verification_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.

- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

32.4 Implicite_ale

Description: Implicite solver used for ALE problem

```
See also: implicite (32.3)
Usage:
implicite ALE str
Read str {
     [ seuil_convergence_implicite | float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur | float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur solveur sys base]
     [no qdm]
     [ nb it max int]
     [ controle_residu ]
}
where
```

- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil_verification_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb it max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

32.5 Piso

Description: Piso (Pressure Implicit with Split Operator) - method to solve N_S.

```
See also: simpler (32.8) sets (32.6) implicite (32.3) simple (32.7)
Usage:
piso str
Read str {
     [ seuil convergence implicite float]
     [ nb corrections max int]
     [ seuil_convergence_solveur | float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur | float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb_it_max int]
     [controle_residu]
}
where
```

- seuil_convergence_implicite float: Convergence criteria.
- **nb_corrections_max** *int*: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

32.6 Sets

Description: Stability-Enhancing Two-Step solver which is useful for a multiphase problem.

```
See also: piso (32.5) ice (32.1)
```

Usage:

```
sets str
Read str {
     [ criteres_convergence bloc_criteres_convergence]
     [iter min int]
     [ seuil_convergence_implicite float]
     [ nb corrections max int]
     [ seuil_convergence_solveur | float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb_it_max int]
     [controle_residu]
}
where
```

- **criteres_convergence** *bloc_criteres_convergence* (3.6.1): Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter min int: Number of minimum iterations
- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- seuil_test_preliminaire_solveur *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

32.7 Simple

```
Description: SIMPLE type algorithm

See also: piso (32.5) solveur_u_p (32.10)

Usage:
```

```
simple str

Read str {

    [relax_pression float]
    [seuil_convergence_implicite float]
    [nb_corrections_max int]
    [seuil_convergence_solveur float]
    [seuil_generation_solveur float]
    [seuil_verification_solveur float]
    [seuil_test_preliminaire_solveur float]
    [solveur solveur_sys_base]
    [no_qdm]
    [nb_it_max int]
    [controle_residu]
}
where
```

- **relax_pression** *float*: Value between 0 and 1 (by default 1), this keyword is used only by the SIM-PLE algorithm for relaxing the increment of pressure.
- seuil_convergence_implicite float for inheritance: Convergence criteria.
- nb_corrections_max int for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

32.8 Simpler

```
Description: Simpler method for incompressible systems.

See also: solveur_implicite_base (32) piso (32.5)

Usage:
simpler str

Read str {

seuil convergence implicite float
```

```
[ seuil_convergence_solveur float]
[ seuil_generation_solveur float]
[ seuil_verification_solveur float]
[ seuil_test_preliminaire_solveur float]
[ solveur solveur_sys_base]
[ no_qdm ]
[ nb_it_max int]
[ controle_residu ]
}
where
```

- seuil_convergence_implicite float: Keyword to set the value of the convergence criteria for the resolution of the implicit system build to solve either the Navier_Stokes equation (only for Simple and Simpler algorithms) or a scalar equation. It is adviced to use the default value (1e6) to solve the implicit system only once by time step. This value must be decreased when a coupling between problems is considered.
- seuil_convergence_solveur *float*: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float*: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil_verification_solveur *float*: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float*: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18): Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- no_qdm: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu**: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

438

32.9 Solveur lineaire std

```
Description: not_set

See also: solveur_implicite_base (32)

Usage:
solveur_lineaire_std str

Read str {
    [solveur solveur_sys_base]
}
where

• solveur solveur_sys_base (11.18)
```

32.10 Solveur_u_p

```
Description: similar to simple.
See also: simple (32.7)
Usage:
solveur u p str
Read str {
     [relax_pression float]
     [ seuil_convergence_implicite | float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur | float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no qdm]
     [ nb it max int]
     [controle residu]
}
where
```

- **relax_pression** *float* for inheritance: Value between 0 and 1 (by default 1), this keyword is used only by the SIMPLE algorithm for relaxing the increment of pressure.
- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (11.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

33 source_base

Description: Basic class of source terms introduced in the equation.

```
See also: objet_u (39) source_generique (33.34) boussinesq_temperature (33.12) boussinesq_concentration (33.11) dirac (33.16) puissance_thermique (33.27) source_qdm_lambdaup (33.40) source_th_tdivu (33.46) source_robin (33.43) source_robin_scalaire (33.44) canal_perio (33.13) source_constituant (33.32) radioactive_decay (33.28) acceleration (33.10) coriolis (33.14) source_qdm (33.39) perte_charge_singuliere (33.26) DP_Impose (33.1) terme_puissance_thermique_echange_impose (33.54) perte_charge_directionnelle (33.22) perte_charge_isotrope (33.23) perte_charge_anisotrope (33.20) perte_charge_circulaire (33.21) darcy (33.15) forchheimer (33.18) perte_charge_reguliere (33.24) flux_interfacial (33.17) frottement_interfacial (33.19) travail_pression (33.55) source_pdf_base (33.38) source_transport_eps (33.48) source_transport_k (33.49) source_transport_k_eps (33.50) trainee (33.47) flottabilite (33.33) masse_ajoutee (33.35) Source_Constituant_Vortex (33.6) source_rayo_semi_transp (33.42) source_con_phase_field (33.29) tenseur_Reynolds_externe (33.53) Terme_dissipation_echelle_temporelle_turbulente_Elem_PolyMAC_P0 (33.8) Terme_dissipation_echelle_temp_taux_diss_turb (33.4) Dissipation_echelle_temp_taux_diss_turb (33.2) Production_energie_cin_turb (33.5) source_qdm_phase_field (33.41)
```

Usage:

33.1 Dp_impose

Description: Source term to impose a pressure difference according to the formula : DP = A + B * (Q - Q0)

```
See also: source_base (33)

Usage:

DP_Impose str

Read str {
    dp champ_base surface bloc_lecture
}

where
```

- **dp** *champ_base* (16.1): the parameters of the previous formula champ_uniforme 3 A B Q0 where Q0 is a volume flow (m3/s).
- **surface** *bloc_lecture* (3.6): Three syntaxes are possible for the surface definition block: For VDF and VEF: { X|Y|Z = location subzone_name } Only for VEF: { Surface surface_name }. For polymac { Surface surface name Orientation champ uniforme }.

33.2 Diffusion_croisee_echelle_temp_taux_diss_turb

Description: Cross-diffusion source term used in the tau and omega equations

```
See also: source_base (33)

Usage:
Diffusion_croisee_echelle_temp_taux_diss_turb str
Read str {
    [ sigma_d float]
}
where
```

• sigma_d float: Constant for the used model

33.3 Dissipation_echelle_temp_taux_diss_turb

```
Description: Dissipation source term used in the tau and omega equations
```

```
See also: source_base (33)

Usage:
Dissipation_echelle_temp_taux_diss_turb str
Read str {
    [beta_omega float]
}
where
```

• beta_omega float: Constant for the used model

33.4 Production_echelle_temp_taux_diss_turb

Description: Production source term used in the tau and omega equations

```
See also: source_base (33)

Usage:

Production_echelle_temp_taux_diss_turb str

Read str {

[alpha_omega float]
}
where
```

• alpha_omega float: Constant for the used model

33.5 Production_energie_cin_turb

Description: Production source term for the TKE equation

```
See also: source_base (33)
```

Usage:

33.6 Source_constituant_vortex

Description: Special treatment for the reactor of vortex effect where reagents are injected just below the free surface in the liquid phase

```
See also: source_base (33)

Usage:
Source_Constituant_Vortex str

Read str {

[ senseur_interface bloc_lecture]
        [ rayon_spot float]
```

```
[ delta_spot n x1 x2 ... xn]
[ integrale float]
[ debit float]
}
where
```

- senseur_interface bloc_lecture (3.6): This is to be defined for the concentration equation of the reagents only and in the bloc of the sources. Here the user defines the position of the reagents injection.
- rayon_spot float: defines the radius of the concentration spot (tracer) injected in the fluid
- delta_spot n x1 x2 ... xn: dimensions of the injection (segment). the syntax is dim val1 val2 [val3]
- integrale *float*: the molar flowrate of injection
- **debit** *float*: a normalization of the molar flow rate. Advice: keep this value to 1.

33.7 Source_transport_k_eps_anisotherme

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92 C3_eps=1.0

```
See also: source_transport_k_eps (33.50)

Usage:
Source_Transport_K_Eps_anisotherme str

Read str {
    [c3_eps float]
    [c1_eps float]
    [c2_eps float]
}
where

• c3_eps float: Third constant.
• c1_eps float for inheritance: First constant.
• c2_eps float for inheritance: Second constant.
```

33.8 Terme_dissipation_echelle_temporelle_turbulente_elem_polymac_p0

Description: Source term which corresponds to the dissipation source term that appears in the transport equation for tau (in the k-tau turbulence model)

```
See also: source_base (33)

Usage:
Terme_dissipation_echelle_temporelle_turbulente_Elem_PolyMAC_P0
```

33.9 Terme_dissipation_energie_cinetique_turbulente

```
Description: Dissipation source term used in the TKE equation
```

```
See also: source_base (33)

Usage:
Terme_dissipation_energie_cinetique_turbulente str
Read str {
```

```
[ beta_k float]
}
where
```

• beta k float: Constant for the used model

33.10 Acceleration

Description: Momentum source term to take in account the forces due to rotation or translation of a non Galilean referential R' (centre 0') into the Galilean referential R (centre 0).

```
See also: source_base (33)

Usage:
acceleration str

Read str {

    [vitesse champ_base]
    [acceleration champ_base]
    [omega champ_base]
    [domegadt champ_base]
    [centre_rotation champ_base]
    [option str into ['terme_complet', 'coriolis_seul', 'entrainement_seul']]
}
where
```

- **vitesse** *champ_base* (16.1): Keyword for the velocity of the referential R' into the R referential (dOO'/dt term [m.s-1]). The velocity is mandatory when you want to print the total cinetic energy into the non-mobile Galilean referential R (see Ec_dans_repere_fixe keyword).
- acceleration *champ_base* (16.1): Keyword for the acceleration of the referential R' into the R referential (d2OO'/dt2 term [m.s-2]). field_base is a time dependant field (eg: Champ_Fonc_t).
- omega *champ_base* (16.1): Keyword for a rotation of the referential R' into the R referential [rad.s-1]. field_base is a 3D time dependant field specified for example by a Champ_Fonc_t keyword. The time_field field should have 3 components even in 2D (In 2D: 0 0 omega).
- **domegadt** *champ_base* (16.1): Keyword to define the time derivative of the previous rotation [rad.s-2]. Should be zero if the rotation is constant. The time_field field should have 3 components even in 2D (In 2D: 0 0 domegadt).
- **centre_rotation** *champ_base* (16.1): Keyword to specify the centre of rotation (expressed in R' coordinates) of R' into R (if the domain rotates with the R' referential, the centre of rotation is 0'=(0,0,0)). The time_field should have 2 or 3 components according the dimension 2 or 3.
- **option** *str into ['terme_complet', 'coriolis_seul', 'entrainement_seul']:* Keyword to specify the kind of calculation: terme_complet (default option) will calculate both the Coriolis and centrifugal forces, coriolis_seul will calculate the first one only, entrainement_seul will calculate the second one only.

33.11 Boussinesq_concentration

Description: Class to describe a source term that couples the movement quantity equation and constituent transport equation with the Boussinesq hypothesis.

```
See also: source base (33)
```

```
Usage:
boussinesq_concentration str
Read str {
    c0 n x1 x2 ... xn
    [verif_boussinesq int]
}
where
```

- **c0** *n x1 x2 ... xn*: Reference concentration field type. The only field type currently available is Champ_Uniform (Uniform field).
- **verif_boussinesq** *int*: Keyword to check (1) or not (0) the reference concentration in comparison with the mean concentration value in the domain. It is set to 1 by default.

33.12 Boussinesq_temperature

Description: Class to describe a source term that couples the movement quantity equation and energy equation with the Boussinesq hypothesis.

```
See also: source_base (33)

Usage:
boussinesq_temperature str
Read str {

t0 str
[verif_boussinesq int]
}
where
```

- **t0** *str*: Reference temperature value (oC or K). It can also be a time dependant function since the 1.6.6 version.
- **verif_boussinesq** *int*: Keyword to check (1) or not (0) the reference temperature in comparison with the mean temperature value in the domain. It is set to 1 by default.

33.13 Canal_perio

Description: Momentum source term to maintain flow rate. The expression of the source term is: S(t) = (2*(Q(0) - Q(t))-(Q(0)-Q(t-dt))/(coeff*dt*area)

Where:

coeff=damping coefficient area=area of the periodic boundary Q(t)=flow rate at time t dt=time step

Three files will be created during calculation on a datafile named DataFile.data. The first file contains the flow rate evolution. The second file is useful for resuming a calculation with the flow rate of the previous stopped calculation, and the last one contains the pressure gradient evolution:

```
-DataFile_Channel_Flow_Rate_ProblemName_BoundaryName
```

-DataFile_Channel_Flow_Rate_repr_ProblemName_BoundaryName

-DataFile_Pressure_Gradient_ProblemName_BoundaryName

```
See also: source_base (33)

Usage:
canal_perio str
Read str {

bord str
[h float]
[coeff float]
[debit_impose float]
}
where
```

- **bord** *str*: The name of the (periodic) boundary normal to the flow direction.
- h float: Half heigth of the channel.
- **coeff** *float*: Damping coefficient (optional, default value is 10).
- **debit_impose** *float*: Optional option to specify the aimed flow rate Q(0). If not used, Q(0) is computed by the code after the projection phase, where velocity initial conditions are slightly changed to verify incompressibility.

33.14 Coriolis

Description: Keyword for a Coriolis term in hydraulic equation. Warning: Only available in VDF.

```
See also: source_base (33)

Usage:
coriolis omega
where
```

• omega str: Value of omega.

33.15 Darcy

Description: Class for calculation in a porous media with source term of Darcy -nu/K*V. This keyword must be used with a permeability model. For the moment there are two models: permeability constant or Ergun's law. Darcy source term is available for quasi compressible calculation. A new keyword is aded for porosity (porosite).

```
See also: source_base (33)

Usage:
darcy bloc
where

• bloc bloc lecture (3.6): Description.
```

33.16 Dirac

Description: Class to define a source term corresponding to a volume power release in the energy equation.

See also: source_base (33)

Usage:
dirac position ch
where

- **position** *n x1 x2 ... xn*
- **ch** *champ_base* (16.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ_Uniforme_Morceaux (partly_uniform_field) type must be used.

Warning: The volume thermal power is expressed in W.m-3.

33.17 Flux_interfacial

Description: Source term of mass transfer between phases connected by the saturation object defined in saturation_xxxx

See also: source_base (33)

Usage:

flux_interfacial

33.18 Forchheimer

Description: Class to add the source term of Forchheimer -Cf/sqrt(K)*V2 in the Navier-Stokes equations. We must precise a permeability model: constant or Ergun's law. Moreover we can give the constant Cf: by default its value is 1. Forchheimer source term is available also for quasi compressible calculation. A new keyword is aded for porosity (porosite).

See also: source_base (33)

Usage:

forchheimer bloc

where

• **bloc** *bloc_lecture* (3.6): Description.

33.19 Frottement_interfacial

Description: Source term which corresponds to the phases friction at the interface

See also: source_base (33)

Usage:
frottement_interfacial str
Read str {

[a_res float]

[dv_min float] [exp_res int]

```
}
where
```

- **a_res** *float*: void fraction at which the gas velocity is forced to approach liquid velocity (default alpha_evanescence*100)
- dv_min float: minimal relative velocity used to linearize interfacial friction at low velocities
- exp res int: exponent that callibrates intensity of velocity convergence (default 2)

33.20 Perte_charge_anisotrope

```
Description: Anisotropic pressure loss.

See also: source_base (33)

Usage:
perte_charge_anisotrope str
Read str {
    lambda str
    lambda_ortho str
    diam_hydr champ_don_base
    direction champ_don_base
    [sous_zone str]
}

where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- lambda_ortho *str*: Function for loss coefficient in transverse direction which may be Reynolds dependant (Ex: 64/Re).
- diam_hydr champ_don_base (16.6): Hydraulic diameter value.
- **direction** *champ_don_base* (16.6): Field which indicates the direction of the pressure loss.
- sous_zone str: Optional sub-area where pressure loss applies.

33.21 Perte_charge_circulaire

```
Description: New pressure loss.

See also: source_base (33)

Usage:
perte_charge_circulaire str
Read str {
    lambda str
    lambda_ortho str
    diam_hydr champ_don_base
    diam_hydr_ortho champ_don_base
    direction champ_don_base
    [sous_zone str]
}

where
```

• lambda str: Function f(Re_tot, Re_long, t, x, y, z) for loss coefficient in the longitudinal direction

- lambda_ortho str: function: Function f(Re_tot, Re_ortho, t, x, y, z) for loss coefficient in transverse direction
- diam_hydr champ_don_base (16.6): Hydraulic diameter value.
- diam_hydr_ortho champ_don_base (16.6): Transverse hydraulic diameter value.
- **direction** *champ_don_base* (16.6): Field which indicates the direction of the pressure loss.
- sous_zone str: Optional sub-area where pressure loss applies.

33.22 Perte_charge_directionnelle

```
Description: Directional pressure loss.

See also: source_base (33)

Usage:
perte_charge_directionnelle str
Read str {
    lambda str
    diam_hydr champ_don_base
    direction champ_don_base
    [ sous_zone str]
}
where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- **diam_hydr** *champ_don_base* (16.6): Hydraulic diameter value.
- **direction** *champ_don_base* (16.6): Field which indicates the direction of the pressure loss.
- sous_zone str: Optional sub-area where pressure loss applies.

33.23 Perte_charge_isotrope

```
Description: Isotropic pressure loss.

See also: source_base (33)

Usage:
perte_charge_isotrope str
Read str {
    lambda str
    diam_hydr champ_don_base
    [ sous_zone str]
}
where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- **diam_hydr** *champ_don_base* (16.6): Hydraulic diameter value.
- sous_zone str: Optional sub-area where pressure loss applies.

33.24 Perte_charge_reguliere

Description: Source term modelling the presence of a bundle of tubes in a flow.

See also: source_base (33)
Usage:

perte_charge_reguliere spec zone_name
where

- **spec** *spec_pdcr_base* (33.25): Description of longitudinale or transversale type.
- **zone_name** *str*: Name of the sub-area occupied by the tube bundle. A Sous_Zone (Sub-area) type object called zone_name should have been previously created.

33.25 Spec_pdcr_base

Description: Class to read the source term modelling the presence of a bundle of tubes in a flow. Cf=A Re-B.

See also: objet_lecture (38) longitudinale (33.25.1) transversale (33.25.2)

Usage:

spec_pdcr_base ch_a a [ch_b] [b]
where

- **ch_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a *float*: Value of a law coefficient for regular pressure losses.
- ch_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

33.25.1 Longitudinale

Description: Class to define the pressure loss in the direction of the tube bundle.

See also: spec_pdcr_base (33.25)

Usage:

longitudinale dir dd ch_a a [ch_b][b] where

- dir str into ['x', 'y', 'z']: Direction.
- **dd** *float*: Tube bundle hydraulic diameter value. This value is expressed in m.
- **ch_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

33.25.2 Transversale

Description: Class to define the pressure loss in the direction perpendicular to the tube bundle.

```
See also: spec_pdcr_base (33.25)

Usage: transversale dir dd chaine_d d ch_a a [ch_b][b] where
```

- dir str into ['x', 'y', 'z']: Direction.
- **dd** *float*: Value of the tube bundle step.
- chaine_d str into ['d']: Keyword to be used to set the value of the tube external diameter.
- **d** *float*: Value of the tube external diameter.
- **ch_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

33.26 Perte_charge_singuliere

Description: Source term that is used to model a pressure loss over a surface area (transition through a grid, sudden enlargement) defined by the faces of elements located on the intersection of a subzone named subzone_name and a X,Y, or Z plane located at X,Y or Z = location.

```
See also: source_base (33)

Usage:
perte_charge_singuliere str

Read str {

    dir str into ['kx', 'ky', 'kz', 'K']
    [coeff float]
    [regul bloc_lecture]
    surface bloc_lecture
}

where
```

- dir str into ['kx', 'ky', 'kz', 'K']: KX, KY or KZ designate directional pressure loss coefficients for respectively X, Y or Z direction. Or in the case where you chose a target flow rate with regul. Use K for isotropic pressure loss coefficient
- coeff float: Value (float) of friction coefficient (KX, KY, KZ).
- **regul** *bloc_lecture* (3.6): option to have adjustable K with flowrate target { K0 valeur_initiale_de_k deb debit_cible eps intervalle_variation_mutiplicatif}.
- **surface** *bloc_lecture* (3.6): Three syntaxes are possible for the surface definition block: For VDF and VEF: { X|Y|Z = location subzone_name } Only for VEF: { Surface surface_name }.

For polymac { Surface surface_name Orientation champ_uniforme }

33.27 Puissance_thermique

Description: Class to define a source term corresponding to a volume power release in the energy equation.

```
See also: source_base (33)

Usage:
puissance_thermique ch
where
```

• **ch** *champ_base* (16.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ_Uniforme_Morceaux (partly_uniform_field) type must be used.

Warning: The volume thermal power is expressed in W.m-3 in 3D (in W.m-2 in 2D). It is a power per volume unit (in a porous media, it is a power per fluid volume unit).

33.28 Radioactive_decay

Description: Radioactive decay source term of the form $-\lambda_{-}ic_{-}i$, where $0 \le i \le N$, N is the number of component of the constituent, $c_{-}i$ and $\lambda_{-}i$ are the concentration and the decay constant of the i-th component of the constituent.

```
See also: source_base (33)

Usage:
radioactive_decay val
where
```

• val n x1 x2 ... xn: n is the number of decay constants to read (int), and val1, val2... are the decay constants (double)

33.29 Source_con_phase_field

Description: Keyword to define the source term of the Cahn-Hilliard equation.

```
See also: source_base (33)
Usage:
source con phase field str
Read str {
     temps_d_affichage int
     alpha float
     beta float
     kappa float
     kappa_variable bloc_kappa_variable
     moyenne_de_kappa str
     multiplicateur_de_kappa float
     couplage NS CH str
     implicitation_CH str into ['oui', 'non']
     gmres non lineaire str into ['oui', 'non']
     seuil_cv_iterations_ptfixe float
     seuil_residu_ptfixe float
     seuil_residu_gmresnl float
```

```
dimension_espace_de_krylov int
   nb_iterations_gmresnl int
   residu_min_gmresnl float
   residu_max_gmresnl float
   [ potentiel_chimique bloc_potentiel_chim]
}
where
```

- temps_d_affichage int: Time during the caracteristics of the problem are shown before calculation.
- alpha float: Internal capillary coefficient alfa.
- beta *float*: Parameter beta of the model.
- kappa *float*: Mobility coefficient kappa0.
- **kappa_variable** *bloc_kappa_variable* (33.30): To define a mobility which depends on concentration C.
- moyenne_de_kappa str: To define how mobility kappa is calculated on faces of the mesh according to cell-centered values (chaine is arithmetique/harmonique/geometrique).
- multiplicateur_de_kappa *float*: To define the parameter of the mobility expression when mobility depends on C.
- **couplage_NS_CH** *str*: Evaluating time choosen for the term source calculation into the Navier Stokes equation (chaine is mutilde(n+1/2)/mutilde(n), in order to be conservative, the first choice seems better).
- implicitation_CH str into ['oui', 'non']: To define if the Cahn-Hilliard will be solved using a implicit algorithm or not.
- **gmres_non_lineaire** *str into ['oui', 'non']*: To define the algorithm to solve Cahn-Hilliard equation (oui: Newton-Krylov method, non: fixed point method).
- seuil_cv_iterations_ptfixe *float*: Convergence threshold (an option of the fixed point method).
- **seuil_residu_ptfixe** *float*: Threshold for the matrix inversion used in the method (an option of the fixed point method).
- seuil_residu_gmresnl float: Convergence threshold (an option of the Newton-Krylov method).
- **dimension_espace_de_krylov** *int*: Vector numbers used in the method (an option of the Newton-Krylov method).
- **nb_iterations_gmresnl** *int*: Maximal iteration (an option of the Newton-Krylov method).
- residu_min_gmresnl float: Minimal convergence threshold (an option of the Newton-Krylov method).
- **residu_max_gmresnl** *float*: Maximal convergence threshold (an option of the Newton-Krylov method).
- potentiel_chimique bloc_potentiel_chim (33.31): chemical potential function

33.30 Bloc_kappa_variable

Description: if the parameter of the mobility, kappa, depends on C

```
See also: objet_lecture (38)

Usage:
expr
where
```

• **expr** *bloc_lecture* (3.6): choice for kappa_variable

33.31 Bloc_potentiel_chim

Description: if the chemical potential function is an univariate function

```
See also: objet_lecture (38)

Usage:
expr
where

• expr bloc_lecture (3.6): choice for potentiel_chimique
```

33.32 Source_constituant

Description: Keyword to specify source rates, in [[C]/s], for each one of the nb constituents. [C] is the concentration unit.

See also: source_base (33)

Usage:

source_constituant ch

where

• ch champ_base (16.1): Field type.

33.33 Flottabilite

Description: buoyancy effect

See also: source_base (33)

Usage: **flottabilite**

33.34 Source_generique

Description: to define a source term depending on some discrete fields of the problem and (or) analytic expression. It is expressed by the way of a generic field usually used for post-processing.

See also: source_base (33)

Usage:

source_generique champ

where

• champ champ_generique_base (9): the source field

33.35 Masse_ajoutee

Description: weight added effect

See also: source_base (33)

Usage:

masse_ajoutee

33.36 Source_pdf

Description: Source term for Penalised Direct Forcing (PDF) method.

```
See also: source_pdf_base (33.38)

Usage:
source_pdf str

Read str {

    aire champ_base
    rotation champ_base
    [transpose_rotation]
    modele bloc_pdf_model
    [interpolation interpolation_ibm_base]
}
where
```

- aire *champ_base* (16.1) for inheritance: volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- **rotation** *champ_base* (16.1) for inheritance: volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- transpose_rotation for inheritance: whether to transpose the basis change matrix.
- modele bloc_pdf_model (33.37) for inheritance: model used for the Penalized Direct Forcing
- interpolation interpolation_ibm_base (18) for inheritance: interpolation method

33.37 Bloc_pdf_model

```
Description: not_set

See also: objet_lecture (38)

Usage:
{

    eta float
        [ temps_relaxation_coefficient_PDF float]
        [ local ]
        [ vitesse_imposee_data champ_base]
        [ vitesse_imposee_fonction troismots]
}

where
```

- eta float: penalization coefficient
- temps_relaxation_coefficient_PDF float: time relaxation on the forcing term to help
- echelle_relaxation_coefficient_PDF float: time relaxation on the forcing term to help convergence
- local: rien whether the prescribed velocity is expressed in the global or local basis
- vitesse imposee data champ base (16.1): Prescribed velocity as a field
- vitesse_imposee_fonction troismots (33.37.1): Prescribed velocity as a set of analytical component

33.37.1 Troismots

```
Description: Three words.

See also: objet_lecture (38)

Usage:
mot_1 mot_2 mot_3
where

• mot_1 str: First word.
• mot_2 str: Snd word.
• mot_3 str: Third word.
```

33.38 Source_pdf_base

Description: Base class of the source term for the Immersed Boundary Penalized Direct Forcing method (PDF)

```
See also: source_base (33) source_pdf (33.36)

Usage:
source_pdf_base str

Read str {

    aire champ_base
    rotation champ_base
    [transpose_rotation]
    modele bloc_pdf_model
    [interpolation interpolation_ibm_base]
}

where
```

- aire champ_base (16.1): volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- **rotation** *champ_base* (16.1): volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- transpose_rotation : whether to transpose the basis change matrix.
- modele bloc_pdf_model (33.37): model used for the Penalized Direct Forcing
- interpolation interpolation_ibm_base (18): interpolation method

33.39 Source_qdm

Description: Momentum source term in the Navier-Stokes equations.

```
See also: source_base (33)

Usage:
source_qdm ch
where
• ch champ_base (16.1): Field type.
```

33.40 Source_qdm_lambdaup

Description: This source term is a dissipative term which is intended to minimise the energy associated to non-conformscales u' (responsible for spurious oscillations in some cases). The equation for these scales can be seen as: du'/dt= -lambda. u' + grad P' where -lambda. u' represents the dissipative term, with lambda = a/Delta t For Crank-Nicholson temporal scheme, recommended value for a is 2.

Remark: This method requires to define a filtering operator.

```
See also: source_base (33)

Usage:
source_qdm_lambdaup str

Read str {

    lambda float
    [lambda_min float]
    [lambda_max float]
    [ubar_umprim_cible float]

}
where

• lambda float: value of lambda
• lambda_min float: value of lambda_min
• lambda_max float: value of lambda_max
• ubar_umprim_cible float: value of ubar_umprim_cible
```

33.41 Source_qdm_phase_field

Description: Keyword to define the capillary force into the Navier Stokes equation for the Phase Field problem.

```
See also: source_base (33)
Usage:
source_qdm_phase_field str
Read str {
    forme_du_terme_source int
}
where
```

• **forme_du_terme_source** *int*: Kind of the source term (1, 2, 3 or 4).

33.42 Source_rayo_semi_transp

Description: Radiative term source in energy equation.

```
See also: source_base (33)
Usage:
source_rayo_semi_transp
```

33.43 Source_robin

Description: This source term should be used when a Paroi_decalee_Robin boundary condition is set in a hydraulic equation. The source term will be applied on the N specified boundaries. To post-process the values of tauw, u_tau and Reynolds_tau into the files tauw_robin.dat, reynolds_tau_robin.dat and u_tau_robin.dat, you must add a block Traitement_particulier { canal { } }

```
See also: source_base (33)

Usage:
source_robin bords
where

• bords vect nom (3.131)
```

33.44 Source_robin_scalaire

Description: This source term should be used when a Paroi_decalee_Robin boundary condition is set in a an energy equation. The source term will be applied on the N specified boundaries. The values temp_wall_valueI are the temperature specified on the Ith boundary. The last value dt_impr is a printing period which is mandatory to specify in the data file but has no effect yet.

```
See also: source_base (33)

Usage:
source_robin_scalaire bords
where

• bords listdeuxmots_sacc (33.45)
```

33.45 Listdeuxmots sacc

Description: List of groups of two words (without curly brackets).

```
See also: listobj (37.4)

Usage:
n object1 object2 ....
list of deuxmots (5.18)
```

33.46 Source_th_tdivu

Description: This term source is dedicated for any scalar (called T) transport. Coupled with upwind (amont) or muscl scheme, this term gives for final expression of convection: div(U.T)-T.div(U)=U.grad(T) This ensures, in incompressible flow when divergence free is badly resolved, to stay in a better way in the physical boundaries.

Warning: Only available in VEF discretization.

```
See also: source_base (33)
Usage:
source_th_tdivu
```

33.47 Trainee

```
Description: drag effect
See also: source base (33)
Usage:
trainee
```

33.48 Source_transport_eps

Description: Keyword to alter the source term constants for eps in the bicephale k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92

```
See also: source base (33)
Usage:
source_transport_eps str
Read str {
      [ c1_eps float]
      [ c2_eps float]
}
where
   • c1_eps float: First constant.
   • c2_eps float: Second constant.
```

33.49 Source_transport_k

Description: Keyword to alter the source term constants for k in the bicephale k-eps model epsilon transport equation.

```
See also: source_base (33)
Usage:
```

33.50 Source_transport_k_eps

Description: Keyword to alter the source term constants in the standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92

See also: source_base (33) Source_Transport_K_Eps_anisotherme (33.7) source_transport_k_eps_aniso-_concen (33.51) source_transport_k_eps_aniso_therm_concen (33.52)

```
Usage:
```

```
source_transport_k_eps str
Read str {
     [ c1_eps float]
     [ c2_eps float]
where
```

```
• c1_eps float: First constant.
```

• c2_eps float: Second constant.

33.51 Source_transport_k_eps_aniso_concen

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92 C3_eps=1.0

```
See also: source_transport_k_eps (33.50)

Usage:
source_transport_k_eps_aniso_concen str

Read str {
      [ c3_eps float]
      [ c1_eps float]
      [ c2_eps float]
}
where

• c3_eps float: Third constant.
• c1_eps float for inheritance: First constant.
• c2_eps float for inheritance: Second constant.
```

33.52 Source_transport_k_eps_aniso_therm_concen

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92 C3_eps=1.0

```
See also: source_transport_k_eps (33.50)

Usage:
source_transport_k_eps_aniso_therm_concen str

Read str {

    [ c3_eps float]
    [ c1_eps float]
    [ c2_eps float]
}

where

• c3_eps float: Third constant.
• c1_eps float for inheritance: First constant.
• c2_eps float for inheritance: Second constant.
```

33.53 Tenseur_reynolds_externe

Description: Use a neural network to estimate the values of the Reynolds tensor. The structure of the neural networks is stored in a file located in the share/reseaux_neurones directory.

```
See also: source_base (33)
```

```
Usage:
tenseur_Reynolds_externe str
Read str {
    nom_fichier str
}
where
• nom_fichier str: The base name of the file.
```

33.54 Terme_puissance_thermique_echange_impose

Description: Source term to impose thermal power according to formula: P = himp * (T - Text). Where T is the Trust temperature, Text is the outside temperature with which energy is exchanged via an exchange coefficient himp

```
See also: source_base (33)

Usage:
terme_puissance_thermique_echange_impose str

Read str {
    himp champ_base
    Text champ_base
}
where

• himp champ_base (16.1): the exchange coefficient
• Text champ_base (16.1): the outside temperature
```

33.55 Travail_pression

Description: Source term which corresponds to the additional pressure work term that appears when dealing with compressible multiphase fluids

```
See also: source_base (33)
Usage:
travail_pression
```

34 sous zone

Description: It is an object type describing a domain sub-set.

A Sous_Zone (Sub-area) type object must be associated with a Domaine type object. The Read (Lire) interpretor is used to define the items comprising the sub-area.

Caution: The Domain type object nom_domaine must have been meshed (and triangulated or tetrahedralised in VEF) prior to carrying out the Associate (Associer) nom_sous_zone nom_domaine instruction; this instruction must always be preceded by the read instruction.

```
See also: objet_u (39)
```

```
Usage:
sous zone str
Read str {
     [ restriction str]
     [rectangle bloc origine cotes]
     [ segment bloc_origine_cotes]
     [boite bloc_origine_cotes]
     [ liste n n1 n2 \dots nn]
     [fichier str]
     [intervalle deuxentiers]
     [ polynomes bloc_lecture]
     [couronne bloc_couronne]
     [tube bloc_tube]
     [fonction_sous_zone str]
     [union str]
}
where
```

- **restriction** *str*: The elements of the sub-area nom_sous_zone must be included into the other sub-area named nom_sous_zone2. This keyword should be used first in the Read keyword.
- **rectangle** *bloc_origine_cotes* (34.1): The sub-area will include all the domain elements whose centre of gravity is within the Rectangle (in dimension 2).
- **segment** bloc_origine_cotes (34.1)
- **boite** *bloc_origine_cotes* (34.1): The sub-area will include all the domain elements whose centre of gravity is within the Box (in dimension 3).
- liste n n1 n2 ... nn: The sub-area will include n domain items, numbers No. 1 No. i No. n.
- fichier str: The sub-area is read into the file filename.
- **intervalle** *deuxentiers* (5.22.5): The sub-area will include domain items whose number is between n1 and n2 (where n1<=n2).
- polynomes bloc_lecture (3.6): A REPRENDRE
- **couronne** *bloc_couronne* (34.2): In 2D case, to create a couronne.
- **tube** *bloc_tube* (34.3): In 3D case, to create a tube.
- **fonction_sous_zone** *str*: Keyword to build a sub-area with the elements included into the area defined by fonction>0.
- **union** *str*: The elements of the sub-area nom_sous_zone3 will be added to the sub-area nom_sous_zone. This keyword should be used last in the Read keyword.

34.1 Bloc origine cotes

```
Description: Class to create a rectangle (or a box).

See also: objet_lecture (38)

Usage:
name origin name2 cotes
where
```

- name str into ['Origine']: Keyword to define the origin of the rectangle (or the box).
- origin $x1 \ x2 \ (x3)$: Coordinates of the origin of the rectangle (or the box).
- name2 str into ['Cotes']: Keyword to define the length along the axes.
- cotes x1 x2 (x3): Length along the axes.

34.2 Bloc_couronne

Description: Class to create a couronne (2D).

See also: objet lecture (38)

Usage:

name origin name3 ri name4 re where

- name str into ['Origine']: Keyword to define the center of the circle.
- origin x1 x2 (x3): Center of the circle.
- name3 str into ['ri']: Keyword to define the interior radius.
- ri *float*: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- **re** *float*: Exterior radius.

34.3 Bloc_tube

Description: Class to create a tube (3D).

See also: objet_lecture (38)

Usage:

name origin name2 direction name3 ri name4 re name5 h where

- name str into ['Origine']: Keyword to define the center of the tube.
- **origin** $x1 \ x2 \ (x3)$: Center of the tube.
- name2 str into ['dir']: Keyword to define the direction of the main axis.
- **direction** str into ['X', 'Y', 'Z']: direction of the main axis X, Y or Z
- name3 str into ['ri']: Keyword to define the interior radius.
- ri float: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- re *float*: Exterior radius.
- name5 str into ['hauteur']: Keyword to define the heigth of the tube.
- h float: Heigth of the tube.

35 turbulence_paroi_base

Description: Basic class for wall laws for Navier-Stokes equations.

See also: objet_u (39) loi_puissance_hydr (35.3) loi_standard_hydr (35.4) loi_standard_hydr_old (35.5) paroi_tble (35.8) negligeable (35.7) utau_imp (35.12)

Usage:

35.1 Loi_ciofalo_hydr

Description: A Loi_ciofalo_hydr law for wall turbulence for NAVIER STOKES equations.

See also: loi_standard_hydr (35.4)

Usage:

loi ciofalo hydr

35.2 Loi_expert_hydr

Description: This keyword is similar to the previous keyword Loi_standard_hydr but has several additional options into brackets.

```
See also: loi_standard_hydr (35.4)

Usage:
loi_expert_hydr str

Read str {

    [u_star_impose float]
    [methode_calcul_face_keps_impose str into ['toutes_les_faces_accrochees', 'que_les_faces_des_elts_dirichlet']]
    [kappa float]
    [Erugu float]
    [A_plus float]
}
where
```

- u_star_impose float: The value of the friction velocity (u*) is not calculated but given by the user.
- methode_calcul_face_keps_impose str into ['toutes_les_faces_accrochees', 'que_les_faces_des_elts_dirichlet']: The available options select the algorithm to apply K and Eps boundaries condition (the algorithms differ according to the faces).

toutes_les_faces_accrochees: Default option in 2D (the algorithm is the same than the algorithm used in Loi_standard_hydr)

que_les_faces_des_elts_dirichlet : Default option in 3D (another algorithm where less faces are concerned when applying K-Eps boundary condition).

- **kappa** *float*: The value can be changed from the default one (0.415)
- **Erugu** *float*: The value of E can be changed from the default one for a smooth wall (9.11). It is also possible to change the value for one boundary wall only with paroi_rugueuse keyword/
- **A_plus** *float*: The value can can be changed from the default one (26.0)

35.3 Loi_puissance_hydr

Description: A Loi_puissance_hydr law for wall turbulence for NAVIER STOKES equations.

See also: turbulence_paroi_base (35)

Usage:

35.4 Loi_standard_hydr

Description: Keyword for the logarithmic wall law for a hydraulic problem. Loi_standard_hydr refers to first cell rank eddy-viscosity defined from continuous analytical functions, whereas Loi_standard_hydr_3couches from functions separataly defined for each sub-layer

See also: turbulence_paroi_base (35) loi_ww_hydr (35.6) loi_ciofalo_hydr (35.1) loi_expert_hydr (35.2)

Usage:

 $loi_standard_hydr$

35.5 Loi_standard_hydr_old

```
Description: not_set

See also: turbulence_paroi_base (35)

Usage:
loi_standard_hydr_old
```

35.6 Loi_ww_hydr

Description: laws have been qualified on channel calculation

```
See also: loi_standard_hydr (35.4)
```

Usage:

35.7 Negligeable

Description: Keyword to suppress the calculation of a law of the wall with a turbulence model. The wall stress is directly calculated with the derivative of the velocity, in the direction perpendicular to the wall (tau_tan /rho= nu dU/dy).

Warning: This keyword is not available for k-epsilon models. In that case you must choose a wall law.

```
See also: turbulence_paroi_base (35)
```

Usage:

negligeable

35.8 Paroi tble

Description: Keyword for the Thin Boundary Layer Equation wall-model (a more complete description of the model can be found into this PDF file). The wall shear stress is evaluated thanks to boundary layer equations applied in a one-dimensional fine grid in the near-wall region.

```
See also: turbulence_paroi_base (35)
Usage:
paroi_tble str
Read str {
      [ n int]
      [facteur float]
      [ modele_visco str]
      [stats twofloat]
      [ sonde_tble liste_sonde_tble]
      [restart]
      [stationnaire entierfloat]
      [lambda str]
      \begin{bmatrix} \mathbf{mu} & str \end{bmatrix}
      [ sans_source_boussinesq ]
      [ alpha float]
      [kappa float]
```

```
}
where
   • n int: Number of nodes in the TBLE grid (mandatory option).
   • facteur float: Stretching ratio for the TBLE grid (to refine, the TBLE facteur must be greater than
      1).
   • modele_visco str: File name containing the description of the eddy viscosity model.
   • stats twofloat (35.9): Statistics of the TBLE velocity and turbulent viscosity profiles. 2 values are
      required: the starting time and ending time of the statistics computation.
   • sonde tble liste sonde tble (35.10)
   • restart
   • stationnaire entierfloat (35.11)
   • lambda str
   • mu str
   • sans_source_boussinesq
   • alpha float
   • kappa float
35.9 Twofloat
Description: two reals.
See also: objet_lecture (38)
Usage:
a b
where
   • a float: First real.
   • b float: Second real.
35.10 Liste_sonde_tble
Description: not_set
See also: listobj (37.4)
Usage:
n object1 object2 ....
list of sonde_tble (35.10.1)
35.10.1 Sonde_tble
Description: not_set
See also: objet_lecture (38)
Usage:
name point
where
```

• name str

• **point** *un_point* (3.30.3)

35.11 Entierfloat

```
Description: An integer and a real.

See also: objet_lecture (38)

Usage:
the_int the_float
where

• the_int int: Integer.
• the_float float: Real.
```

35.12 Utau_imp

Description: Keyword to impose the friction velocity on the wall with a turbulence model for thermohydraulic problems. There are two possibilities to use this keyword:

1 - we can impose directly the value of the friction velocity u_star.

2 - we can also give the friction coefficient and hydraulic diameter. So, TRUST determines the friction velocity by : $u_star = U*sqrt(lambda_c/8)$.

```
See also: turbulence_paroi_base (35)

Usage:
utau_imp str
Read str {

    [u_tau champ_base]
    [lambda_c str]
    [diam_hydr champ_base]
}
where
```

- **u_tau** *champ_base* (16.1): Field type.
- lambda_c str: The friction coefficient. It can be function of the spatial coordinates x,y,z, the Reynolds number Re, and the hydraulic diameter.
- **diam_hydr** *champ_base* (16.1): The hydraulic diameter.

36 turbulence_paroi_scalaire_base

Description: Basic class for wall laws for energy equation.

```
See also: objet_u (39) loi_odvm (36.4) loi_WW_scalaire (36.1) loi_standard_hydr_scalaire (36.6) loi_analytique_scalaire (36.2) paroi_tble_scal (36.8) loi_paroi_nu_impose (36.5) negligeable_scalaire (36.7)
```

Usage:

36.1 Loi_ww_scalaire

```
Description: not_set

See also: turbulence_paroi_scalaire_base (36)

Usage:
loi WW scalaire
```

36.2 Loi_analytique_scalaire

```
Description: not_set

See also: turbulence_paroi_scalaire_base (36)

Usage:
loi_analytique_scalaire
```

36.3 Loi_expert_scalaire

Description: Keyword similar to keyword Loi_standard_hydr_scalaire but with additional option.

```
See also: loi_standard_hydr_scalaire (36.6)

Usage:
loi_expert_scalaire str

Read str {
    [prdt_sur_kappa float]
    [calcul_ldp_en_flux_impose int into [0, 1]]
}
where
```

- **prdt_sur_kappa** *float*: This option is to change the default value of 2.12 in the scalable wall function.
- calcul_ldp_en_flux_impose int into [0, 1]: By default (value set to 0), the law of the wall is not applied for a wall with a Neumann condition. With value set to 1, the law is applied even on a wall with Neumann condition.

36.4 Loi odvm

} where

Description: Thermal wall-function based on the simultaneous 1D resolution of a turbulent thermal boundary-layer and a variance transport equation, adapted to conjugate heat-transfer problems with fluid/solid thermal interaction (where a specific boundary condition should be used: Paroi_Echange_Contact_OVDM_VDF). This law is also available with isothermal walls.

```
See also: turbulence_paroi_scalaire_base (36)

Usage:
loi_odvm str

Read str {

    n int
    gamma float
    [ stats floatfloat]
    [ check_files ]
```

- **n** *int*: Number of points per face in the 1D uniform meshes. n should be choosen in order to have the first point situated near Δ y+=1/3.
- **gamma** *float*: Smoothing parameter of the signal between 10e-5 (no smoothing) and 10e-1 (high averaging).

- stats floatfloat (5.19): value_t0 value_dt: Only for plane channel flow, it gives mean and root mean square profiles in the fine meshes, since value_t0 and every value_dt seconds. The values are printed into files named ODVM fields*.dat.
- **check_files**: It gives for one boundary face a historical view of local instantaneous and filtered values, as well as the calculated variance profiles from the resolution of the equation. The printed values are into the file Suivi_ndeb.dat.

36.5 Loi_paroi_nu_impose

Description: Keyword to impose Nusselt numbers on the wall for the thermohydraulic problems. To use this option, it is necessary to give in the data file the value of the hydraulic diameter and the expression of the Nusselt number.

```
See also: turbulence_paroi_scalaire_base (36)

Usage:
loi_paroi_nu_impose str

Read str {

    nusselt str
    diam_hydr champ_base
}
where

• nusselt str: The Nusselt number. This expression can be a function of x, y, z, Re (Reynolds number),
```

36.6 Loi_standard_hydr_scalaire

Pr (Prandtl number).

Description: Keyword for the law of the wall.

See also: turbulence_paroi_scalaire_base (36) loi_expert_scalaire (36.3)

• **diam hydr** champ base (16.1): The hydraulic diameter.

Usage:

loi_standard_hydr_scalaire

36.7 Negligeable_scalaire

Description: Keyword to suppress the calculation of a law of the wall with a turbulence model for thermohydraulic problems. The wall stress is directly calculated with the derivative of the velocity, in the direction perpendicular to the wall.

```
See also: turbulence_paroi_scalaire_base (36)
Usage:
negligeable_scalaire
```

36.8 Paroi_tble_scal

Description: Keyword for the Thin Boundary Layer Equation thermal wall-model.

```
See also: turbulence_paroi_scalaire_base (36)

Usage:
paroi_tble_scal str

Read str {

        [ n int]
        [ facteur float]
        [ modele_visco str]
        [ nb_comp int]
        [ stats fourfloat]
        [ sonde_tble liste_sonde_tble]
        [ prandtl float]
}

where
```

- **n** *int*: Number of nodes in the TBLE grid (mandatory option).
- **facteur** *float*: Stretching ratio for the TBLE grid (to refine, the TBLE facteur must be greater than 1).
- modele_visco str: File name containing the description of the eddy viscosity model.
- **nb_comp** *int*: Number of component to solve in the fine grid (1 if 2D simulation (2D not available yet), 2 if 3D simulation).
- stats fourfloat (36.9): Statistics of the TBLE velocity and turbulent viscosity profiles. 4 values are required: the starting time of velocity averaging, the starting time of the RMS fluctuations, the ending time of the statistics computation and finally the print time period for the statistics.
- sonde_tble liste_sonde_tble (35.10)
- prandtl float

36.9 Fourfloat

```
Description: Four reals.

See also: objet_lecture (38)

Usage:
a b c d
where

a float: First real.
b float: Second real.
c float: Third real.
d float: Fourth real.
```

37 listobj_impl

```
Description: not_set

See also: objet_u (39) listobj (37.4)

Usage:
```

37.1 List_un_pb

```
Description: pour les groupes

See also: listobj (37.4)

Usage:
{ object1 , object2 .... }
list of un_pb (37.2) separeted with ,

37.2 Un_pb

Description: pour les groupes

See also: objet_lecture (38)

Usage:
mot
where
```

• mot str: the string

37.3 Liste mil

Description: Composite medium made of several sub mediums.

```
See also: listobj (37.4)

Usage: { object1 object2 .... } list of milieu_base (22)
```

37.4 Listobj

Description: List of objects.

See also: listobj_impl (37) champs_a_post (4.2.24) list_stat_post (4.2.27) listpoints (4.2.8) sondes (4.2.4) listchamp_generique (9.3) list_nom_virgule (9.2) definition_champs (4.2.1) post_processings (4.3) liste_post (4.5) liste_post_ok (4.4) condinits (5.4) condlims (4.23.1) sources (5.5) vect_nom (3.131) list_nom (3.114) list_bord (3.74.4) list_bloc_mailler (3.74) list_un_pb (37.1) list_list_nom (4.21) ecrire_fichier_xyz_valeur_param (5.6) pp (5.11) listdeuxmots_sacc (33.45) liste_sonde_tble (35.10) list_info_med (4.56) listsous_zone_valeur (5.2.12) reactions (10.1) liste_mil (37.3) listeqn (4.25) coarsen_operators (3.80) thermique (3.7)

Usage:

38 objet_lecture

Description: Auxiliary class for reading.

See also: objet_u (39) bloc_lecture (3.6) deuxmots (5.18) troismots (33.37.1) format_file (4.6) deuxentiers (5.22.5) floatfloat (5.19) entierfloat (35.11) champ_a_post (4.2.25) champs_posts (4.2.23) stat_post_deriv (4.2.28) stats_posts (4.2.26) stats_serie_posts (4.2.34) sonde_base (4.2.6) un_point (3.30.3) sonde (4.2.5)

```
definition_champ (4.2.2) postraitement_base (4.4.2) Definition_champs_fichier (4.2.3) sondes_fichier (4.2.22)
un_postraitement (4.3.1) type_un_post (4.5.2) type_postraitement_ft_lata (4.5.3) un_postraitement_spec
(4.5.1) nom postraitement (4.4.1) condinit (5.4.1) condlimlu (4.23.2) mailler base (3.74.1) defbord (3.74.7)
bord_base (3.74.5) bloc_pave (3.74.3) bloc_lecture_poro (28.1) un_pb (37.2) bords_ecrire (5.6.2) ecrire-
_fichier_xyz_valeur_item (5.6.1) convection_deriv (5.2.1) bloc_convection (5.2) diffusion_deriv (5.3.1)
op_implicite (5.3.12) bloc_diffusion (5.3) traitement_particulier_base (5.20.1) traitement_particulier (5.20)
parametre equation base (5.7) penalisation 12 ftd lec (5.11.1) dt impr ustar mean only (5.22.1) modele-
turbulence hyd deriv (5.22) form a nb points (5.22.3) fourfloat (36.9) twofloat (35.9) sonde tble (35.10.1)
bloc origine cotes (34.1) bloc couronne (34.2) bloc tube (34.3) remove elem bloc (3.104) lecture bloc-
_moment_base (3.30) verifiercoin_bloc (3.134) bloc_lec_champ_init_canal_sinal (16.17) fonction_champ-
_reprise (16.13) troisf (3.58) spec_pdcr_base (33.25) info_med (4.56.1) methode_transport_deriv (5.57)
bloc_ef (5.2.9) sous_zone_valeur (5.2.13) bloc_diffusion_standard (5.3.7) reaction (10.1.1) bloc_pdf_model
(33.37) bloc_sutherland (22.8) format_lata_to_med (3.70) bloc_decouper (3.85) floatentier (5.22.6) modele-
_fonction_bas_reynolds_base (5.22.21) bloc_lecture_turb_synt (17.10) Coarsen_Operator_Uniform (3.80.1)
paroi_ft_disc_deriv (13.71) bloc_lecture_remaillage (5.58) objet_lecture_maintien_temperature (5.42) interpolation-
_champ_face_deriv (5.60) parcours_interface (5.59) injection_marqueur (5.64) penalisation_forcage (5.48)
eq_rayo_semi_transp (4.23) ceg_areva (5.20.11) ceg_cea_jaea (5.20.12) bloc_rho_fonc_c (5.50.2) bloc-
_boussinesq (5.50.1) approx_boussinesq (5.50) bloc_mu_fonc_c (5.51.2) bloc_visco2 (5.51.1) visco_dyn-
_cons (5.51) bloc_kappa_variable (33.30) bloc_potentiel_chim (33.31) Beam_model_bloc (3.2)
```

Usage:

39 index

Index

/*, 270	a_ext, 299, 302, 303
#, 293	all_times , 27
11, 253	amont, 159
, 36, 59, 62, 155, 161, 181, 375	analytique , 258, 260
associer, 33	ancien, 218, 220, 221
champ_post_statistiques_correlation, 92, 273	antisym, 157
champ_post_statistiques_ecart_type, 92, 274	arrete, 188–203
champ_post_statistiques_moyenne, 92, 277	avec_energie_cinetique, 231, 232
champ_uniforme, 332	avec_les_cl , 178, 179, 211, 212, 238, 240, 242, 244,
create_domain_from_sous_zone, 36	246, 250–255
decoupebord_pour_rayonnement, 37	avec_sources, 178, 179, 211, 212, 238, 240, 242,
decouper, 60, 373	244, 246, 250–255
decouper_multi, 61	avec_sources_et_operateurs , 178, 179, 211, 212,
discretiser, 39	238, 240, 242, 244, 246, 250–255
divergence, 274	average, 279
ecrire_fichier, 80	b, 449, 450
extraction, 275	binaire, 40, 89, 97, 325
fin , 47	bords, 166
gradient, 275	C, 361
interpolation, 276	C_ext, 299, 302, 303
interpolation_ibm_aucune, 347	centre, 159
interpolation_ibm_element_fluide, 348	cf, 449, 450
interpolation_ibm_gradient_moyen, 349	chakravarthy, 159
interpolation_ibm_hybride, 348	Champ_Fonc_Fonction, 249, 250
interpolation_ibm_power_law_tbl, 349	champ_frontiere, 275
lire, 65	Champ_Uniforme, 249
lire_fichier, 65	check_pass, 23
lire_fichier_bin, 66	chsom, 84
lire_med, 30	coarsen_i, 59
morceau_equation, 277	coarsen_j, 59
operateur_eqn, 272	coarsen_k, 59
polymac, 318	composante, 281
polymac_p0, 317	concentration, 249, 250
postraitement, 95	conservation_masse, 360
postraitements, 94	constant, 360, 363, 364
raffiner_simplexes, 64	coriolis_seul, 443
rectify_mesh, 66	Cotes , 461
reduction_0d, 278	d, 450
refchamp, 279	dabiri, 76, 77
resoudre, 71	debit_total, 48, 49
runge_kutta_ordre_4, 400	default, 276
schema_euler_explicite, 387	defaut_bar, 156, 163
schema_euler_implicite, 420	dir, 462
schema_euler_implicite_stationnaire, 380	distant, 54
tparoi_vef, 280	divrhouT_moins_Tdivrhou, 218, 220, 221
transformation, 280	divuT_moins_Tdivu, 218, 220, 221
6_points, 196, 197, 370	domaine, 62
<=,53,54	double, 58
= , 53, 54	dt_integr, 93
A, 298, 299	dt_post, 89, 91
a, 449, 450	

edo, 360	mu0, 361
elem, 57, 90, 92, 93, 321, 322, 324, 325	multiple, 82, 83, 95
emissivite, 298, 299	muscl, 159
entrainement_seul, 443	nb_pas_dt_post, 89, 91
euclidian_norm, 279	no , 266, 276
faces, 90, 92, 93	nodes, 84
filtrer_resu , 157, 163	non, 59, 60, 248, 249, 451, 452
Fluctu_Temperature_ext, 299, 302, 303	normalized_euclidian_norm, 279
flux_bords , 277	norme , 281
Flux_Chaleur_Turb_ext , 299, 302, 303	nu , 163
flux_surfacique_bords, 277	nu_transp, 163
fonction, 325	nut, 163
format_post_sup, 50	nut_transp, 163
formatte, 40, 89, 97, 325	omega_ext , 299, 302, 303
formule, 281	one_way_coupling, 267, 268
grad_i , 242, 243	Origine , 461, 462
grad_Ubar, 163	oui, 59, 60, 248, 249, 451, 452
grav , 84	patch_dabiri, 76, 77
gravel, 84	periode, 84
grid_splitting, 23, 25	plans_paralleles , 196, 197, 370
hauteur, 462	post_processing, 96
homogene, 54	postraitement, 96
implicite, 165	postraitement_ft_lata, 97
initiale, 258, 261	postraitement_lata, 97
integrale_en_z, 48, 49	produit_scalaire, 281
K, 450	que_les_faces_des_elts_dirichlet, 463
k, 315	re, 462
K_Eps_ext, 299, 302, 303	rho_g , 242, 243
k_ext, 299, 302, 303	ri , 462
k_omega , 164	sans_energie_cinetique, 231, 232
k_tau, 164	sans_rien, 178, 179, 211, 212, 238, 240, 242, 244,
kx, 450	246, 250–255
ky , 450	scotti, 188–203
kz, 450	SEMI_TRANSP, 306
L1_norm, 279	SGDH, 164
L2_norm , 279	simple, 82, 83, 95
last_time, 27	simplifiee , 258, 261
lata, 50, 63, 82, 83, 95	single_hdf , 97, 325
lata_v2, 50, 63, 82, 83, 95	Slambda, 361
left_value, 279	solveur, 165
lml, 50, 63, 82, 83, 95	som , 57, 84, 90, 92, 93, 321, 322, 324, 325
local, 54	somme, 279
max , 279	somme_ponderee , 279
med, 50, 63, 82, 83, 95	somme_ponderee_porosite, 279
	<u>.</u>
med_major, 82, 83, 95	stabilite , 277 standard , 360
min , 279	
minmod, 159	suivi , 267, 268
mixed, 58	sum , 279
modifiee , 258, 261	superbee , 159
moins_rho_moyen, 360	T0, 361
moy_euler, 196, 197, 370	T_ext, 299, 302, 303
moyenne, 279	tau_ext, 299, 302, 303
moyenne_ponderee , 279	terme_complet, 443
mpi-io, 82, 83, 95	toutes_les_faces_accrochees, 463

```
trace, 275
                                                 postraitements , 82, 98–100, 102–109, 111, 112,
TRANSP, 306
                                                           114, 116-118, 120-123, 125-129, 131-
transportant bar, 157
                                                           134, 136–138, 140–143, 145–148, 150, 151,
                                                           153
transporte_bar, 157
two_way_coupling, 267, 268
                                                 Read file, 80
uniforme, 258, 260
                                                 save_matrice , 286-288, 292
unweighted dabiri, 76, 77
                                                 sondes , 83, 95
V2 ext, 299, 302, 303
                                                 sondes fichier, 83, 95
valeur a elem, 258, 260
                                                 1D, 183, 184
                                                 3D, 183, 184
valeur_a_gauche, 279
                                                 a0, 283
valeur normale, 343
vanalbada, 159
                                                 A_plus, 463
vanleer, 159
                                                 a_res , 447
vdf lineaire, 258, 260
                                                 Absc_file_name , 22
vecteur, 281
                                                 acceleration, 443
vitesse_interpolee, 267, 268
                                                 aire, 454, 455
vitesse_paroi, 315
                                                 alias, 169, 222, 223, 225, 232
vitesse_particules, 267, 268
                                                 alpha, 28, 157, 452, 465
                                                 alpha_0 , 377
vitesse_tangentielle, 346
volume, 188-203
                                                 alpha 1, 377
volume_sans_lissage, 188-203
                                                 alpha_a, 377
weighted average, 279
                                                 alpha omega, 441
weighted_sum, 279
                                                 alpha_sous_zone, 158
weighted sum porosity, 279
                                                 amont sous zone, 158
X, 53, 54, 70, 462
                                                 ampli bruit, 327
x, 449, 450
                                                 ampli sin . 327
xyz, 97, 325
                                                 approximation de boussinesq, 246
Y, 53, 54, 70, 462
                                                 areva, 185
y, 449, 450
                                                 ascii, 30, 72
Y_ext, 299, 302, 303
                                                 autre_bord , 297, 298
yes, 266, 276
                                                 autre_champ_indicatrice, 298
Z, 54, 70, 462
                                                 autre_champ_temperature, 297
z, 449, 450
                                                 autre_champ_temperature_indic0, 298
, 36, 59, 62, 155, 161, 181, 375
                                                 autre_champ_temperature_indic1, 298
champs , 83, 95
                                                 autre_probleme, 297, 298
conditions_initiales , 154, 169–171, 173–177, 180,
                                                 avec_certains_bords, 44
         186, 213–217, 219–222, 224–230, 232–
                                                 avec certains bords pour extraire surface, 43
         234, 236, 237, 239, 241, 245, 247, 251,
                                                 avec les bords, 44
         254, 256–258, 265–267
                                                 bench ijk splitting read, 30
conditions_limites , 114, 154, 169–171, 173–177,
                                                 bench_ijk_splitting_write, 30
         180, 186, 213–217, 219–222, 224–230, 232–beta, 452
         234, 236, 237, 239, 241, 245, 247, 251,
                                                 beta_co , 358, 359
         254, 256, 257, 261, 265, 266, 268
                                                 beta k , 443
definition champs fichier, 83, 95
                                                 beta omega, 441
domain, 31, 32
                                                 beta th, 358, 359
fichier, 63, 84, 89
                                                 binaire, 38, 63
file, 31, 32
                                                 block_size_bytes, 30
mesh , 31, 32
                                                 block_size_megabytes, 29
nom zones, 61
                                                 boite , 461
                                                 bord, 35, 181, 445
partitionneur, 61
postraitement , 82, 98–100, 102–109, 111, 112,
                                                 bords_a_decouper, 38
         114, 116–118, 120–123, 125–129, 131– boundaries, 188
         134, 136–139, 141–143, 145–148, 150, 151, Boundary_Conditions, 25, 76
         153
```

boundary_conditions , 114, 154, 169–171, 173–	139, 141–143, 145–149, 151
177, 180, 186, 213–217, 219–222, 224–	contre_energie_activation, 282
230, 232–234, 236, 237, 239, 241, 245,	contre_reaction, 282
247, 251, 254, 256, 257, 261, 265, 266,	contribution_one_way , 268
268	controle_residu , 287, 432–439
boundary_xmax , 56	conv_temperature_negligible , 76
boundary_xmin , 56	convection , 154, 169–171, 173–177, 180, 186,
boundary_ymax , 56	213–217, 219–222, 224–230, 232–234, 236,
boundary_ymin, 56	237, 239, 241, 245, 247, 251, 254, 256,
boundary_zmax , 56	257, 261, 265, 266, 268
boundary_zmin , 56	convection_diffusion_chaleur_QC , 107, 134, 142
btd , 160	convection_diffusion_chaleur_turbulent_qc , 109,
c, 185	145, 148
c0 , 444	convection_diffusion_chaleur_WC , 136, 143
c1_eps , 442, 458, 459	convection_diffusion_concentration , 121, 122,
c2_eps , 442, 458, 459	137, 138
c3_eps , 442, 459	convection_diffusion_concentration_turbulent ,
calc_spectre, 183, 184	123, 124, 139, 141
calcul_ldp_en_flux_impose , 467	convection_diffusion_espece_binaire_QC , 126
canal , 190	Convection_Diffusion_Espece_Binaire_Turbulent-
canalx, 201	_QC , 128
cea_jaea , 185	convection_diffusion_espece_binaire_WC , 127
centre_rotation , 443	convection_diffusion_phase_field , 131
cfl, 25	convection_diffusion_temperature , 106, 133, 137,
chaleur_latente , 358	138, 146
champ_med , 48	Convection_Diffusion_Temperature_Sensibility ,
champs_a_postraiter , 25	110
changement_de_base_p1bulle , 319	convection_diffusion_temperature_turbulent , 108,
check_divergence, 26	139, 141, 147, 150
check_files , 468	convection_sensibility , 171
check_stats, 26	convertalltopoly , 31
check_stop_file , 25	correction_calcul_pression_initiale , 179, 213, 239,
CI_file_name , 22	241, 244, 247, 251, 253, 256
cl_pression_sommet_faible , 319	correction_fraction , 352
clipping_courbure_interface , 243	correction_matrice_pression , 179, 213, 239, 241,
cmu , 206, 208	244, 247, 251, 253, 256
coarsen_operators , 58	correction_matrice_projection_initiale , 179, 213,
coef , 355	239, 241, 244, 247, 251, 253, 256
coeff , 445, 450	correction_parcours_thomas , 264
coefficient_diffusion , 356	correction_pression_modifie , 179, 213, 239, 241,
coefficients_activites , 282	244, 247, 251, 254, 256
collisions , 259	correction_visco_turb_pour_controle_pas_de_temps
compo , 272, 277	, 187, 189, 190, 192–200, 202, 203, 205,
compute_distance_autres_interfaces , 49	206, 209–211
condition_elements , 42, 44	correction_visco_turb_pour_controle_pas_de_temps
condition_faces , 44	_parametre , 187, 189, 190, 192–199,
condition_geometrique , 38	201–203, 205, 206, 209–211
Conduction, 82, 103	correction_vitesse_modifie , 179, 213, 239, 241,
conservation_Ec , 183, 184	244, 247, 251, 254, 256
constante_cinetique , 168	correction_vitesse_projection_initiale , 179, 213,
constante_modele_micro_melange , 282	239, 241, 244, 247, 251, 253, 256
constante_taux_reaction, 282	correlations, 98, 101
constituant , 82, 98–100, 102–109, 111, 112, 114,	
116–118 120–124 126–129 131–134 136	<u>-</u>

```
couplage_NS_CH , 452
                                                           409, 410, 413, 415, 418, 420, 423, 425,
                                                           427, 429, 430
couronne, 461
Cp , 353
                                                  disable equation residual , 154, 169–171, 173–
                                                           177, 179, 186, 213–218, 220–223, 225–
cp , 41, 307, 308, 352, 354, 356, 358, 359, 365
cp liquid, 77
                                                           230, 232–234, 236, 237, 239, 241, 245,
                                                           247, 251, 254, 256, 257, 261, 265, 266,
cp_vapor, 76
crank , 167
                                                           268
                                                  disable progress, 380, 382, 384, 387, 389, 390,
critere absolu, 45
critere arete, 263
                                                           392, 394, 396, 398, 399, 401, 403, 405,
                                                           407, 409, 410, 413, 415, 418, 420, 423,
critere longueur fixe, 264
                                                           425, 427, 429, 430
critere remaillage, 263
criteres_convergence, 431, 436
                                                  disable_solveur_poisson, 26
cs, 199
                                                  disable_source_interf, 26
Cv, 353, 366
                                                  distance_projete_faces, 261
cw, 198
                                                  dmax, 202
d , 331, 333, 336
                                                  domain, 56, 321, 322, 324
debit, 307, 308, 442
                                                  domaine, 31, 32, 35, 38, 42–47, 63, 83, 95, 275,
                                                           276, 373
debit_impose, 445
debug , 185
                                                  domaine_final, 36, 45
debut stat, 182
                                                  domaine flottant fluide, 245
decoup, 321, 322, 324
                                                  domaine_grossier, 38
definition champs, 83, 95
                                                  domaine init, 36, 44
definition_champs_file, 83, 95
                                                  domaines , 63, 374
delta, 306
                                                  domegadt, 443
delta spot, 442
                                                  dp, 440
deprecatedkeepduplicatedprobes, 83, 95
                                                  dt impr . 188, 307, 308, 379, 381, 384, 386, 388,
derivee rotation, 355
                                                           390, 391, 393, 395, 397, 399, 400, 402,
dh, 307, 308
                                                           404, 406, 408, 410, 412, 414, 417, 419,
diag, 287
                                                           422, 424, 426, 428, 430
diam_hydr , 447, 448, 466, 468
                                                  dt_impr_moy_spat , 182
diam_hydr_ortho , 448
                                                  dt_impr_moy_temp , 182
                                                  dt_impr_nusselt, 368-370
diametre_hyd_champ , 355-366
diff_temp_negligible, 76
                                                  dt_impr_ustar , 188–190, 192–198, 200–203, 205,
diffusion, 154, 169–171, 173–177, 180, 186, 213–
                                                           206, 209-211
         217, 219–222, 224–230, 232–234, 236, 237, dt_impr_ustar_mean_only , 188–190, 192–198,
         239, 241, 245, 247, 251, 254, 256, 257,
                                                           200-203, 205, 206, 209-211
         261, 265, 266, 268
                                                  dt injection, 269
diffusion coeff, 350–352
                                                  dt_max , 379, 381, 384, 386, 388, 389, 391, 393,
diffusion implicite, 379, 382, 384, 386, 388, 390,
                                                           395, 397, 399, 400, 402, 404, 406, 408,
         392, 393, 395, 397, 399, 401, 402, 404,
                                                           409, 412, 414, 417, 419, 422, 424, 426,
         406, 408, 410, 412, 415, 417, 420, 422,
                                                           428, 430
                                                  dt_min , 379, 381, 384, 386, 388, 389, 391, 393,
         424, 426, 428, 430
dim espace krilov, 287
                                                           395, 397, 398, 400, 402, 404, 406, 408,
                                                           409, 412, 414, 417, 419, 422, 424, 426,
dimension espace de krylov, 452
dir . 307, 308, 450
                                                           428, 430
dir_flow, 327
                                                  dt_post, 25, 185
dir_fluct, 336
                                                  dt_post_stats_bulles, 25
dir_wall, 327
                                                  dt_post_stats_plans, 25
direction, 22, 35, 45-47, 181, 447, 448
                                                  dt_projection, 179, 212, 239, 241, 244, 247, 251,
disable_convection_qdm, 26
                                                           253, 255
disable_diffusion_qdm , 26
                                                  dt_sauv , 379, 381, 384, 386, 388, 389, 391, 393,
                                                           395, 397, 399, 400, 402, 404, 406, 408,
disable_diphasique, 26
disable_dt_ev , 380, 382, 384, 387, 389, 390, 392,
                                                           409, 412, 414, 417, 419, 422, 424, 426,
         394, 396, 398, 399, 401, 403, 405, 407,
                                                           428, 430
```

```
dt_sauvegarde, 25
                                                equations_scalaires_passifs , 115, 122, 124, 138,
dt_start , 380, 382, 384, 386, 388, 390, 392, 394,
                                                         141-143, 145, 146, 150
        395, 397, 399, 401, 403, 405, 406, 408,
                                                equations source chimie, 168
        410, 413, 415, 417, 420, 423, 425, 427,
                                                Erugu , 463
        428, 430
                                                erugu, 315
dt_uniforme, 270
                                                espece, 228, 230
dtol fraction, 352
                                                espece en competition micro melange, 282
dv min, 447
                                                est dirichlet, 348, 349
Ec . 182
                                                eta . 454
Ec dans repere fixe, 182
                                                evanescence, 215
echelle relaxation coefficient PDF, 454
                                                exp res , 447
Echelle temporelle turbulente , 98, 101
                                                expert_only, 80
ecrire_decoupage, 61
                                                exposant_beta, 282
ecrire_fichier_xyz_valeur , 154, 169–171, 173–
                                                expression, 281
         176, 178, 180, 187, 213–215, 217–222,
                                                expression ddPdxdx ana, 26
        224-230, 232, 233, 235-237, 239, 242,
                                                expression_ddPdxdy_ana, 26
        245, 248, 252, 254, 256, 257, 261, 265,
                                                expression_ddPdxdz_ana, 26
        267, 268
                                                expression_ddPdydy_ana, 26
ecrire_fichier_xyz_valeur_bin , 154, 169-171, 173- expression_ddPdydz_ana , 26
         177, 180, 187, 213–217, 219–222, 224–
                                                expression ddPdzdz ana , 26
        230, 232, 233, 235–237, 239, 241, 245,
                                                expression_ddUdxdx_ana, 26
        247, 252, 254, 256, 257, 261, 265, 266,
                                                expression ddUdxdy ana, 26
        268
                                                expression_ddUdxdz_ana, 26
ecrire frontiere, 63
                                                expression ddUdydy ana, 26
ecrire lata, 61
                                                expression ddUdydz ana, 26
elements fluides , 348–350
                                                expression ddUdzdz ana . 26
elements solides , 348, 349
                                                expression ddVdxdx ana, 26
emissivite\_pour\_ray on nement\_entre\_deux\_plaque \\ \texttt{sexpression\_ddV} \\ dx \\ dy\_ana~, \\ 26
         quasi infinies, 308
                                                expression ddVdxdz ana, 26
energie_activation, 282
                                                expression_ddVdydy_ana, 26
Energie_cinetique_turbulente , 98, 101
                                                expression_ddVdydz_ana, 26
Energie_cinetique_turbulente_WIT , 98, 101
                                                expression ddVdzdz ana , 26
Energie_Multiphase , 98, 101
                                                expression_ddWdxdx_ana, 26
ensemble_points, 269
                                                expression_ddWdxdy_ana, 26
enthalpie_reaction, 282
                                                expression_ddWdxdz_ana, 26
epaisseur, 43, 45
                                                expression_ddWdydy_ana, 26
eps max , 205, 206, 208, 210, 211
                                                expression ddWdvdz ana , 26
eps min , 205, 206, 208, 210, 211
                                                expression ddWdzdz ana, 26
eq rayo semi transp , 114
                                                expression derivee force, 26
equation_frequence_resolue, 167
                                                expression_dPdx_ana, 26
equation interface, 168, 223, 234
                                                expression dPdy ana, 26
equation_interfaces_proprietes_fluide, 243
                                                expression_dPdz_ana, 26
equation interfaces vitesse imposee . 243
                                                expression dUdx ana . 26
                                                expression dUdy ana, 26
equation navier stokes, 234
equation non resolue, 154, 167, 169, 170, 172,
                                                expression dUdz ana . 26
                                                expression_dVdx_ana, 26
         173, 175–178, 180, 187, 213, 214, 216–
        221, 223–228, 230–233, 235–237, 240, 242, expression_dVdy_ana, 26
        245, 248, 252, 254, 256, 257, 261, 266,
                                                expression_dVdz_ana, 26
        267, 269
                                                expression dWdx ana, 26
equation_nu_t , 168
                                                expression_dWdy_ana, 26
equation_temperature_mpoint, 243
                                                expression_dWdz_ana, 26
equation_temperature_mpoint_vapeur, 244
                                                expression_p_ana, 26
                                                expression\_p\_init\ , \\ \frac{26}{}
equations_interfaces_vitesse_imposee , 243
                                                expression potential phi, 26
```

expression_source_temperature , 76	fonction_filtre , 57
expression_T_ana , 76	fonction_sous_zone , 461
expression_T_init , 76	force , 286
expression_vx_ana , 26	format , 63, 83, 95
expression_vx_init , 25	format_post, 57
expression_vy_ana , 26	forme_du_terme_source , 456
expression_vy_init , 25	formulation_a_nb_points , 188, 190-192, 194-
expression_vz_ana , 26	200, 202, 203
expression_vz_init , 25	formule_mu , 358
facon_init , 183, 184	frequence_recalc , 288
facsec , 379, 381, 384, 386, 388, 390, 391, 393,	frontiere, 185
395, 397, 399, 400, 402, 404, 406, 408,	function_coord_x , 56
410, 412, 415, 417, 419, 422, 424, 426,	function_coord_y , 56
428, 430	function_coord_z , 56
facsec_max , 383, 386, 411, 414, 416, 419, 421	gamma , 353, 365, 467
facteur , 160, 161, 465, 469	genere_fichier_solveur , 72
facteur_longueur_ideale , 263	ghost_size , 58
facteurs, 52	ghost_thickness, 56
fichier , 31, 32, 83, 95, 202, 372, 373, 461	gmres_non_lineaire , 452
fichier_distance_paroi , 207, 208	gnuplot_header , 380, 382, 384, 387, 389, 390,
fichier_ecriture_K_Eps , 202	-
	392, 394, 396, 398, 399, 401, 403, 405,
fichier_matrice , 72	407, 409, 410, 413, 415, 418, 420, 423,
fichier_post , 25, 36	425, 427, 429, 431
fichier_reprise_interface , 49	gradient_pression_qdm_modifie , 179, 213, 239,
fichier_secmem , 72	241, 244, 247, 251, 254, 256
fichier_solution, 72	gravite, 25, 246, 355, 357, 359, 361–366
fichier_solveur, 72	groupes , 113, 117, 152
fichier_solveur_non_recree , 288	h , 327, 445
fichier_sortie , 49	haspi , 185
fichier_ssz, 373	hexa_old , 45
field , 321, 322, 325, 371	himp , 460
fields , 83, 95	Hlsat , 378
file , 63, 84, 89, 321, 322, 324, 371	Hvsat , 378
file_coord_x , 56	i , 333
file_coord_y , 56	ignore_check_fraction, 352
file_coord_z , 56	ijk_grid_geometry, 269
filename, 23	ijk_splitting, 25
filling, 376	ijk_splitting_ft_extension, 25
fin_stat , 182	implicitation_CH , 452
flow_rate , 347	implicite, 268
fluide0, 358	impr , 58, 72, 263, 284, 286, 287, 292, 348–350
nuideo , 550	
fluide1,358	impr_diffusion_implicite, 380, 382, 384, 386, 388
fluide1, 358	impr_diffusion_implicite , 380, 382, 384, 386, 388 390, 392, 394, 395, 397, 399, 401, 403,
	390, 392, 394, 395, 397, 399, 401, 403,
fluide1 , 358 fluide_incompressible , 99, 100, 110, 117–119,	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420,
fluide1 , 358 fluide_incompressible , 99, 100, 110, 117–119, 121–124, 129, 131, 133, 137–139, 141, 146, 147, 149	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430
$\begin{array}{c} \textbf{fluide1} \ , 358 \\ \textbf{fluide_incompressible} \ , \ 99, \ 100, \ 110, \ 117-119, \\ 121-124, \ 129, \ 131, \ 133, \ 137-139, \ 141, \\ 146, \ 147, \ 149 \\ \textbf{fluide_ostwald} \ , \ 106, \ 111, \ 133 \end{array}$	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390,
$\begin{array}{c} \textbf{fluide1} \ \ , 358 \\ \textbf{fluide_incompressible} \ \ , 99, \ 100, \ 110, \ 117-119, \\ 121-124, \ 129, \ 131, \ 133, \ 137-139, \ 141, \\ 146, \ 147, \ 149 \\ \textbf{fluide_ostwald} \ \ , 106, \ 111, \ 133 \\ \textbf{fluide_quasi_compressible} \ \ , \ 126, \ 128, \ 134, \ 142, \end{array}$	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390, 392, 394, 395, 397, 399, 401, 403, 405,
$\begin{array}{c} \textbf{fluide1} \ , 358 \\ \textbf{fluide_incompressible} \ \ , 99, \ 100, \ 110, \ 117-119, \\ 121-124, \ 129, \ 131, \ 133, \ 137-139, \ 141, \\ 146, \ 147, \ 149 \\ \textbf{fluide_ostwald} \ \ , 106, \ 111, \ 133 \\ \textbf{fluide_quasi_compressible} \ \ , \ 126, \ 128, \ 134, \ 142, \\ 144, \ 148 \end{array}$	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390, 392, 394, 395, 397, 399, 401, 403, 405, 406, 408, 410, 412, 415, 417, 420, 423,
$\begin{array}{c} \textbf{fluide1} \ , 358 \\ \textbf{fluide_incompressible} \ \ , 99, \ 100, \ 110, \ 117-119, \\ 121-124, \ 129, \ 131, \ 133, \ 137-139, \ 141, \\ 146, \ 147, \ 149 \\ \textbf{fluide_ostwald} \ \ , 106, \ 111, \ 133 \\ \textbf{fluide_quasi_compressible} \ \ , \ 126, \ 128, \ 134, \ 142, \\ 144, \ 148 \\ \textbf{fluide_sodium_gaz} \ \ , 106, \ 111, \ 133 \\ \end{array}$	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390, 392, 394, 395, 397, 399, 401, 403, 405, 406, 408, 410, 412, 415, 417, 420, 423, 425, 427, 428, 430
$\begin{array}{c} \textbf{fluide1} \ , 358 \\ \textbf{fluide_incompressible} \ , 99, \ 100, \ 110, \ 117-119, \\ 121-124, \ 129, \ 131, \ 133, \ 137-139, \ 141, \\ 146, \ 147, \ 149 \\ \textbf{fluide_ostwald} \ , 106, \ 111, \ 133 \\ \textbf{fluide_quasi_compressible} \ , \ 126, \ 128, \ 134, \ 142, \\ 144, \ 148 \\ \textbf{fluide_sodium_gaz} \ , \ 106, \ 111, \ 133 \\ \textbf{fluide_sodium_liquide} \ , \ 106, \ 111, \ 133 \\ \end{array}$	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390, 392, 394, 395, 397, 399, 401, 403, 405, 406, 408, 410, 412, 415, 417, 420, 423, 425, 427, 428, 430 indic_faces_modifice , 261
$\begin{array}{c} \textbf{fluide1} \ , 358 \\ \textbf{fluide_incompressible} \ , 99, \ 100, \ 110, \ 117-119, \\ 121-124, \ 129, \ 131, \ 133, \ 137-139, \ 141, \\ 146, \ 147, \ 149 \\ \textbf{fluide_ostwald} \ , 106, \ 111, \ 133 \\ \textbf{fluide_quasi_compressible} \ , 126, \ 128, \ 134, \ 142, \\ 144, \ 148 \\ \textbf{fluide_sodium_gaz} \ , 106, \ 111, \ 133 \\ \textbf{fluide_sodium_liquide} \ , 106, \ 111, \ 133 \\ \textbf{fluide_weakly_compressible} \ , 127, \ 135, \ 143 \\ \end{array}$	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390, 392, 394, 395, 397, 399, 401, 403, 405, 406, 408, 410, 412, 415, 417, 420, 423, 425, 427, 428, 430 indic_faces_modifiee , 261 indice , 356–359, 361–364, 366
fluide1 , 358 fluide_incompressible , 99, 100, 110, 117–119,	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390, 392, 394, 395, 397, 399, 401, 403, 405, 406, 408, 410, 412, 415, 417, 420, 423, 425, 427, 428, 430 indic_faces_modifiee , 261 indice , 356–359, 361–364, 366 info , 162
$\begin{array}{c} \textbf{fluide1} \ , 358 \\ \textbf{fluide_incompressible} \ , 99, \ 100, \ 110, \ 117-119, \\ 121-124, \ 129, \ 131, \ 133, \ 137-139, \ 141, \\ 146, \ 147, \ 149 \\ \textbf{fluide_ostwald} \ , 106, \ 111, \ 133 \\ \textbf{fluide_quasi_compressible} \ , 126, \ 128, \ 134, \ 142, \\ 144, \ 148 \\ \textbf{fluide_sodium_gaz} \ , 106, \ 111, \ 133 \\ \textbf{fluide_sodium_liquide} \ , 106, \ 111, \ 133 \\ \textbf{fluide_weakly_compressible} \ , 127, \ 135, \ 143 \\ \end{array}$	390, 392, 394, 395, 397, 399, 401, 403, 404, 406, 408, 410, 412, 415, 417, 420, 422, 425, 426, 428, 430 impr_extremums , 380, 382, 384, 386, 388, 390, 392, 394, 395, 397, 399, 401, 403, 405, 406, 408, 410, 412, 415, 417, 420, 423, 425, 427, 428, 430 indic_faces_modifiee , 261 indice , 356–359, 361–364, 366

```
initial_conditions , 154, 169-171, 173-177, 180,
                                                          130–134, 136–138, 140–142, 144–148, 150,
         186, 213-217, 219-222, 224-230, 232-
                                                          152, 153
         234, 236, 237, 239, 241, 245, 247, 251,
                                                loc , 321, 322, 325
         254, 256–258, 265–267
                                                 local, 454
initial field, 328
                                                 localisation , 57, 276, 281
initial_value , 327, 328, 337
                                                 loi_etat , 360, 364
injecteur interfaces, 261
                                                 longueur boite, 183, 184
injection, 267
                                                 longueur maille , 188, 190, 191, 193–200, 202,
input field, 328
                                                          203
integrale, 442
                                                 longueurs, 52
interfaces, 25
                                                 Lvap , 378
interp_ve1, 29
                                                 maillage , 31, 32, 259
interpolation, 454, 455
                                                 main , 62
interpolation_champ_face, 260
                                                 maintien_temperature, 234
interpolation repere local, 260
                                                 Mass and stiffness file name, 22
intervalle, 461
                                                 masse_molaire , 41, 169, 222, 223, 225, 232
inverse_condition_element, 43
                                                 Masse_Multiphase, 98, 101
iter_min , 431, 436
                                                 matrice_pression_invariante, 243
                                                 max_iter_implicite, 381, 412, 414, 416, 419, 422,
iterations_correction_volume , 259
iterations mixed solver, 58
                                                          424
joints_non_postraites , 63
                                                 methode, 49, 275, 276, 279, 281
k, 359
                                                 methode calcul face keps impose, 463
k_min, 205, 206, 209–211
                                                 methode_calcul_pression_initiale, 179, 212, 238,
kappa , 356, 357, 359, 361–364, 366, 452, 463,
                                                          240, 244, 246, 251, 253, 255
         465
                                                 methode couplage, 268
kappa_variable, 452
                                                 methode interpolation v, 260
KeOverKmin, 336
                                                 methode transport, 259, 268
kmetis, 372
                                                 milieu , 82, 98–100, 102–109, 111, 112, 114, 116–
lambda , 307, 308, 356, 358, 359, 361, 364–366,
                                                          118, 120–123, 125–129, 131–134, 136–
        447, 448, 456, 465
                                                          139, 141–143, 145–148, 150, 151, 153
lambda_c , 466
                                                 milieu composite, 97, 101
lambda liquid , 77
                                                 min_critere_q_sur_max_critere_q , 186
lambda_max , 456
                                                 min_dir_flow, 327
lambda_min, 456
                                                 min_dir_wall, 327
                                                 Modal_deformation_file_name , 22
lambda_ortho , 447
                                                 mode , 23
lambda_vapor, 76
larg joint, 61
                                                 mode calcul convection, 218, 221
last time, 321, 322, 324
                                                 modele, 454, 455
lata meshname, 49
                                                 modele cinetique, 168
lenghtScale, 336
                                                 modele_fonc_bas_reynolds, 206, 208
Lire fichier, 80
                                                 modele fonc realisable, 210, 211
lissage_courbure_coeff , 263
                                                 modele_micro_melange, 282
lissage courbure iterations . 263
                                                 modele turbulence, 168, 170, 186, 221, 225, 230,
lissage courbure iterations si remaillage, 264
                                                          236, 244, 253, 255
lissage_courbure_iterations_systematique, 68, 263 modele_visco, 465, 469
liste, 69, 461
                                                 modif_div_face_dirichlet, 319
liste_cas, 41
                                                 molar_mass, 352
liste_de_postraitements , 82, 98–100, 102–109,
                                                molar_mass1, 350, 351
         111, 112, 114, 116-118, 120-123, 125-
                                                 molar_mass2, 350, 351
         129, 131–134, 136–138, 140–142, 144–
                                                 moyenne, 336
         148, 150, 151, 153
                                                 moyenne_convergee , 278
liste_postraitements , 82, 98–100, 102–109, 111,
                                                 moyenne_de_kappa, 452
         112, 114, 116, 117, 119–123, 125–128,
                                                 mpoint_inactif_sur_qdm , 244
                                                 mpoint vapeur inactif sur qdm, 244
```

```
mu , 41, 307, 308, 352, 358, 359, 361, 364, 366,
                                                nb_test, 72
                                                nb_tranche, 49
        465
mu1, 350, 351
                                                nb tranches , 45–47
mu2, 350, 351
                                                nb_var, 200
mu_1, 231, 249
                                                nbelem i, 320
mu_2, 231, 249
                                                nbelem_j , 320
mu fonc c, 249
                                                nbelem k, 320
mu liquide, 25
                                                nbModes, 336
                                                new_jacobian, 162
mu vapeur . 25
multigrid solver, 25
                                                NewmarkTimeScheme, 22
multiplicateur de kappa, 452
                                                niter_avg , 383, 386
n, 308, 359, 465, 467, 469
                                                niter max , 383, 386
                                                niter_max_diffusion_implicite, 167, 380, 382, 384,
n_iterations_distance, 259
n_iterations_interpolation_ibc , 260
                                                         387, 388, 390, 392, 394, 396, 397, 399,
name_of_initial_zones, 30
                                                         401, 403, 405, 407, 408, 410, 413, 415,
name_of_new_zones, 30
                                                         418, 420, 423, 425, 427, 429, 430
Navier_Stokes_Aposteriori, 119
                                                niter_min , 383, 386
navier_stokes_phase_field , 131
                                                nmax , 32
navier_stokes_QC , 107, 126, 134, 142
                                                no_check_disk_space , 380, 382, 384, 387, 389,
navier stokes standard, 104, 106, 111, 117, 121,
                                                          390, 392, 394, 396, 398, 399, 401, 403,
         122, 133, 137, 138, 146
                                                         405, 407, 409, 410, 413, 415, 418, 420,
navier stokes standard ALE, 118
                                                         423, 425, 427, 429, 430
Navier_Stokes_standard_sensibility, 100, 110
                                                no_conv_subiteration_diffusion_implicite, 380,
navier stokes turbulent, 105, 108, 123, 124, 129,
                                                          382, 384, 386, 388, 390, 392, 394, 395,
         139, 141, 147, 149
                                                         397, 399, 401, 403, 405, 406, 408, 410,
Navier Stokes Turbulent ALE . 99
                                                         413, 415, 417, 420, 423, 425, 427, 428,
navier stokes turbulent qc , 109, 128, 145, 148
                                                         430
navier_stokes_WC , 127, 136, 143
                                                no error if not converged diffusion implicite,
nb_comp , 327, 328, 337, 469
                                                         380, 382, 384, 386, 388, 390, 392, 394,
                                                         395, 397, 399, 401, 403, 405, 406, 408,
nb_corrections_max , 431–437, 439
                                                         410, 413, 415, 417, 420, 423, 425, 427,
nb_full_mg_steps, 58
nb_it_max , 286, 287, 292, 432–439
                                                         428, 430
nb_iter_barycentrage , 68, 263
                                                no_family_names_from_group_names , 31
nb_iter_correction_volume, 68, 263
                                                no_qdm , 432-439
nb_iter_remaillage , 263
                                                nom , 327, 328, 337
nb_iteration_max_uzawa , 260
                                                nom_bord, 45
nb iterations, 268
                                                nom cl derriere, 47
nb_iterations_correction_volume , 261
                                                nom_cl_devant, 47
nb iterations gmresnl, 452
                                                nom domaine, 57
nb_lissage_correction_volume , 261
                                                nom fichier, 460
nb mailles mini, 186
                                                nom fichier post, 57
nb_modes, 22
                                                nom_fichier_solveur, 288
nb nodes, 56
                                                nom fichier sortie, 38
                                                nom frontiere, 275
nb parts , 371–374
nb parts geom, 38
                                                nom inconnue, 168, 222, 223, 225, 232
nb_parts_naif, 38
                                                nom_mon_indicatrice, 297
nb_parts_tot, 61
                                                nom_pb , 57
                                                nom_reprise, 26
nb_pas_dt_max, 25, 380, 382, 384, 387, 388, 390,
        392, 394, 396, 397, 399, 401, 403, 405,
                                                nom_sauvegarde, 26
        407, 408, 410, 413, 415, 418, 420, 423,
                                                nom_source , 271–281
        425, 427, 428, 430
                                                nombre_de_noeuds, 52
nb_points, 197, 370
                                                nombre_facettes_retenues_par_cellule, 260
nb_points_par_phase , 182
                                                noms_champs, 57
nb procs, 41
                                                normal value, 336
```

```
normalise, 186
                                                 perio_z, 56
nproc_i , 269
                                                 periode, 182
nproc_j , 269
                                                 periode calc spectre, 183, 184
nproc_k , 269
                                                 periode_sauvegarde_securite_en_heures, 380, 382,
nu , 162, 307, 308
                                                          384, 387, 388, 390, 392, 394, 396, 398,
                                                          399, 401, 403, 405, 407, 408, 410, 413,
nu_transp , 162
numero, 277, 281
                                                          415, 418, 420, 423, 425, 427, 429, 430
                                                 periodique, 61
numero op , 272
                                                 phase, 168, 223, 234, 297
numero source, 272
                                                 phase marquee, 268
nusselt, 468
nut . 162
                                                 pinf , 366
nut_max, 188, 189, 191–197, 199–203, 205, 206,
                                                 point1, 43
         209-211
                                                 point2, 43
nut\_transp , 163
                                                 point3, 43
old, 158
                                                 points_fluides , 348–350
omega , 327, 377, 383, 443
                                                 points_solides , 348–350
omega_relaxation_drho_dt , 361
                                                 polynomes, 461
                                                 porosites , 355–359, 361–366
optimisation_sous_maillage, 276
optimized , 286, 292
                                                 porosites_champ , 355-366
option, 168, 223, 277, 443
                                                 position, 355
                                                 Post_processing , 82, 98–100, 102–109, 111, 112,
origin_i , 320
origin j , 320
                                                          114, 116–118, 120–123, 125–129, 131–
origin_k , 320
                                                          134, 136–139, 141–143, 145–148, 150, 151,
Origine, 52
origine, 43
                                                 Post processings, 82, 98–100, 102–109, 111, 112,
Output position 1D, 23
                                                          114, 116-118, 120-123, 125-129, 131-
Output_position_3D , 23
                                                          134, 136–138, 140–143, 145–148, 150, 151,
p0, 319
p1,319
                                                 postraiter_gradient_pression_sans_masse , 179,
p_imposee_aux_faces , 60
                                                          213, 239, 241, 245, 247, 251, 254, 256
P_ref , 362, 363, 378
                                                 potentiel_chimique, 452
                                                 potentiel_chimique_generalise, 231
P_sat, 378
pa, 319
                                                 prandt_turbulent_fonction_nu_t_alpha , 369
                                                 Prandtl, 353
par_sous_zone , 36
                                                 prandtl, 352, 354, 469
parallele, 83, 95
parametre_equation , 154, 169, 170, 172–174,
                                                prandtl_eps , 205, 206, 209–211
                                                prandtl k , 205, 206, 209–211
         176–178, 180, 187, 213, 214, 216–222,
         224–229, 231–233, 235–237, 239, 242, 245, prdt, 369
         248, 252, 254, 256, 257, 261, 265, 267,
                                                prdt sur kappa, 467
         268
                                                 pre_smooth_steps, 58
parcours interface, 260
                                                 precision_impr , 380, 382, 384, 387, 388, 390,
                                                          392, 394, 396, 397, 399, 401, 403, 405,
Partition_tool, 61
pas . 263
                                                          407, 408, 410, 413, 415, 418, 420, 423,
pas de solution initiale, 72
                                                          425, 427, 429, 430
                                                 precond, 285, 286, 292
pas lissage, 263
pb_champ, 278, 280
                                                 precond0, 377
pb_name, 62
                                                 precond1, 377
penalisation_forcage, 244
                                                 precond_nul , 286, 292
penalisation_l2_ftd , 171, 233, 234
                                                 preconda, 377
perio_i , 320
                                                 preconditionnement_diag , 167
perio_j , 320
                                                 pression, 360
perio_k , 320
                                                 pression_degeneree , 431
perio_x , 56
                                                 pression_reference, 245
perio_y , 56
                                                 pression thermo, 364
```

pression_xyz , 364	rho_xyz , 354
print_more_infos , 61	rotation , 355, 454, 455
probes , 83, 95	rt, 319
probes_file, 83, 95	sans_passer_par_le2d , 45
probleme , 42–44, 248, 249, 327–329, 337	sans_solveur_masse, 272
produits, 282	sans_source_boussinesq , 465
projection_initiale , 179, 212, 238, 241, 244, 247,	sauvegarde, 82, 98–100, 102–109, 111, 112, 114,
251, 253, 255	116, 117, 119–123, 125–128, 130–133, 135-
projection_normale_bord , 45	138, 140–142, 144–147, 149, 150, 152,
proprietes_particules , 269	153
pulsation_w , 182	sauvegarde_simple , 82, 98–100, 102–108, 110–
q , 366	112, 114, 116, 118–123, 125–127, 129–
q_prim , 366	133, 135–138, 140–142, 144–147, 149, 150,
QDM_Multiphase , 98, 101	152, 153
quiet , 205, 206, 209–211, 284, 286–288, 292	save_matrix , 286–288, 292
ratioCutoffWavenumber , 336	sc , 352
	schema_ch , 426
rayon_spot , 442	
reactifs , 282	schema_ns , 426
reactions, 282	scturb, 369
rectangle , 461	segment, 461
refuse_patch_conservation_QdM_RK3_source_in	
, 26	seuil , 58, 286, 287, 292, 383, 386
regul , 450	seuil_absolu , 23
relax_barycentrage , 68, 263	seuil_convergence_implicite , 167, 431–439
relax_jacobi , 58	seuil_convergence_solveur , 167, 431–439
relax_pression , 437, 439	seuil_convergence_uzawa , 260
remaillage , 259	seuil_cv_iterations_ptfixe , 452
remaillage_ft_ijk , 49	seuil_diffusion_implicite, 167, 379, 382, 384, 386,
reorder , 61	388, 390, 392, 394, 395, 397, 399, 401,
reprise, 82, 98–100, 102–108, 110–112, 114, 116,	403, 404, 406, 408, 410, 412, 415, 417,
118–122, 124–127, 129–133, 135–138, 140	420, 422, 425, 426, 428, 430
142, 144–147, 149, 150, 152, 153, 182	seuil_divU , 179, 212, 239, 241, 244, 247, 251,
reprise_correlation , 307, 308	253, 255
residu_max_gmresnl , 452	seuil_dvolume_residuel , 263
residu_min_gmresnl , 452	seuil_generation_solveur , 432–439
resolution_explicite , 167	seuil_minimum_relatif, 23
resolution_monolithique , 421	seuil_relatif, 23
restart, 465	seuil_residu_gmresnl , 452
Restart_file_name , 22	seuil_residu_ptfixe , 452
restriction , 461	seuil_statio , 379, 382, 384, 386, 388, 390, 392,
resume_last_time , 82, 98–100, 102–107, 109–	393, 395, 397, 399, 401, 402, 404, 406,
112, 114, 116, 118–122, 124–126, 128–	408, 410, 412, 415, 417, 420, 422, 424,
132, 134–137, 139–141, 143–146, 148–	426, 428, 430
150, 152, 153	
	seuil_statio_relatif_deconseille , 379, 382, 384,
reynolds_stress_isotrope , 207, 208	386, 388, 390, 392, 393, 395, 397, 399,
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365	386, 388, 390, 392, 393, 395, 397, 399, 401, 402, 404, 406, 408, 410, 412, 415,
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365 rho_1 , 231, 248	386, 388, 390, 392, 393, 395, 397, 399, 401, 402, 404, 406, 408, 410, 412, 415, 417, 420, 422, 424, 426, 428, 430
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365 rho_1 , 231, 248 rho_2 , 231, 248	386, 388, 390, 392, 393, 395, 397, 399, 401, 402, 404, 406, 408, 410, 412, 415, 417, 420, 422, 424, 426, 428, 430 seuil_test_preliminaire_solveur , 432–439
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365 rho_1 , 231, 248 rho_2 , 231, 248 Rho_beam , 22	$\begin{array}{c} 386,\ 388,\ 390,\ 392,\ 393,\ 395,\ 397,\ 399,\\ 401,\ 402,\ 404,\ 406,\ 408,\ 410,\ 412,\ 415,\\ 417,\ 420,\ 422,\ 424,\ 426,\ 428,\ 430 \\ \textbf{seuil_test_preliminaire_solveur}\ \ ,432–439 \\ \textbf{seuil_verification}\ \ ,72 \end{array}$
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365 rho_1 , 231, 248 rho_2 , 231, 248	386, 388, 390, 392, 393, 395, 397, 399, 401, 402, 404, 406, 408, 410, 412, 415, 417, 420, 422, 424, 426, 428, 430 seuil_test_preliminaire_solveur , 432–439
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365 rho_1 , 231, 248 rho_2 , 231, 248 Rho_beam , 22	$\begin{array}{c} 386,\ 388,\ 390,\ 392,\ 393,\ 395,\ 397,\ 399,\\ 401,\ 402,\ 404,\ 406,\ 408,\ 410,\ 412,\ 415,\\ 417,\ 420,\ 422,\ 424,\ 426,\ 428,\ 430 \\ \textbf{seuil_test_preliminaire_solveur}\ \ ,432–439 \\ \textbf{seuil_verification}\ \ ,72 \end{array}$
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365 rho_1 , 231, 248 rho_2 , 231, 248 Rho_beam , 22 rho_constant_pour_debug , 353	$\begin{array}{c} 386,\ 388,\ 390,\ 392,\ 393,\ 395,\ 397,\ 399,\\ 401,\ 402,\ 404,\ 406,\ 408,\ 410,\ 412,\ 415,\\ 417,\ 420,\ 422,\ 424,\ 426,\ 428,\ 430 \\ \textbf{seuil_test_preliminaire_solveur}\ ,\ 432-439 \\ \textbf{seuil_verification_solveur}\ ,\ 432-439 \\ \end{array}$
reynolds_stress_isotrope , 207, 208 rho , 307, 308, 356, 358, 359, 365 rho_1 , 231, 248 rho_2 , 231, 248 Rho_beam , 22 rho_constant_pour_debug , 353 rho_fonc_c , 248	386, 388, 390, 392, 393, 395, 397, 399, 401, 402, 404, 406, 408, 410, 412, 415, 417, 420, 422, 424, 426, 428, 430 seuil_test_preliminaire_solveur , 432–439 seuil_verification , 72 seuil_verification_solveur , 432–439 sigma , 25, 358

```
solide, 82
                                                  temperature , 350, 351
solv_elem , 286
                                                  temperature_paroi, 294
solver precision, 58
                                                  temperature state, 171
solveur , 72, 114, 167, 381, 412, 414, 417, 419,
                                                 temps_d_affichage, 452
         422, 424, 432–439
                                                  temps debut prise en compte drho dt, 360
solveur0, 285
                                                  temps_relaxation_coefficient_PDF , 454
solveur1, 285
                                                  terme gravite, 243
                                                 test, 158
solveur bar , 179, 212, 238, 241, 244, 247, 251,
         253, 255
                                                  Text . 460
                                                  thermique, 25
solveur grossier, 58
solveur_pression , 179, 212, 215, 238, 241, 244,
                                                 thi, 190
         247, 251, 253, 255
                                                  time, 321, 322, 325
sonde_tble , 465, 469
                                                  time_activate_ptot, 364
sondes, 26
                                                  time scheme , 25
source, 271-281
                                                  timeScale, 336
source_reference , 271–281
                                                  timestep, 25
sources , 154, 169–171, 173–177, 180, 187, 213–
                                                 timestep_facsec , 25
         217, 219–222, 224–230, 232–234, 236, 237, timestep_reprise_interface, 49
         239, 241, 245, 247, 251, 254, 256, 257, tinf, 307, 308
         261, 265, 266, 268, 271–281
                                                  tinit , 25, 379, 381, 383, 386, 388, 389, 391, 393,
sources_reference, 271-281
                                                           395, 397, 398, 400, 402, 404, 406, 408,
sous zone , 42, 63, 83, 95, 328, 329, 337, 447, 448
                                                           409, 412, 414, 417, 419, 422, 424, 426,
sous_zones , 374
                                                           428, 429
species number, 352
                                                  tmax, 379, 381, 383, 386, 388, 389, 391, 393, 395,
                                                           397, 398, 400, 402, 404, 406, 408, 409,
splitting, 56
stabilise . 197, 370
                                                           412, 414, 417, 419, 422, 424, 426, 428,
standard, 162
                                                           430
state , 212
                                                  traitement coins, 60
stationnaire, 465
                                                  traitement_particulier , 179, 213, 239, 241, 244,
                                                           247, 251, 253, 256
statistiques , 83, 95
                                                  traitement_pth , 360, 364
statistiques_en_serie, 83, 95
stats, 465, 467, 469
                                                  traitement rho gravite, 360
steady_global_dt, 381
                                                  tranches, 374
steady_security_facteur, 381
                                                  transformation_bulles, 268
stencil_width, 234
                                                  transport_epsilon, 208, 211
surface, 308, 440, 450
                                                  transport_k, 208, 211
surfacique, 376
                                                  transport k epsilon, 206
sutherland , 360, 364
                                                  transport_k_epsilon_realisable, 209
symx , 52
                                                  transpose rotation, 454, 455
symy , 52
                                                  triangle, 43
symz , 52
                                                  trois tetra, 45
                                                  tsup, 307, 308
t0,444
t deb , 185, 273, 275, 278
                                                  tube, 461
                                                  turbDissRate, 336
t debut injection, 269
t debut statistiques, 25
                                                  turbKinEn . 336
                                                  turbulence_paroi , 187, 189, 190, 192–199, 201–
t_fin, 185, 273, 275, 278
T_ref , 362, 363, 378
                                                           203, 205, 206, 209-211, 368-370
T_sat, 378
                                                  tuyauz, 202
Taux_dissipation_turbulent , 98, 101
                                                  type, 277, 376
tcpumax, 379, 381, 383, 386, 388, 389, 391, 393,
                                                  type_indic_faces, 261
         395, 397, 398, 400, 402, 404, 406, 408,
                                                  type_T_source, 77
         409, 412, 414, 417, 419, 422, 424, 426,
                                                  type_vitesse_imposee, 260
         428, 430
                                                  u, 331, 333, 336
tdivu . 158
                                                  u star impose, 463
```

n ton 166	Algo_base, 270
u_tau , 466	e – ·
ubar_umprim_cible , 456	Algo_couple_1, 270
ucent , 327	Amgx, 284
uncertain_variable , 171, 212	Amont, 155
uniform_domain_size_i , 320	Amont_old, 155
uniform_domain_size_j , 320	Analyse_angle, 32
uniform_domain_size_k , 320	Associate, 32
union , 461	Associer_algo, 33
use_existing_domain , 321, 324	Associer_pbmg_pbfin, 33
use_grad_pression_eos , 364	Associer_pbmg_pbgglobal, 33
use_hydrostatic_pressure , 364	Axi, 34
use_total_pressure , 364	
use_weights , 372	Base, 264
user_field , 365	Beam_model, 22
val_Ec , 183, 184	Bidim_axi, 34
velocity_profil , 347	Binaire_gaz_parfait_qc, 350
velocity_state , 171	Binaire_gaz_parfait_wc, 350
verif_boussinesq , 444	Bord, 53
verif_dparoi , 202	Bord_base, 53
<u>-</u>	Boundary_field_inward, 336
via_extraire_surface , 43	Boundary_field_keps_from_ud, 333
vingt_tetra , 45	Boundary_field_uniform_keps_from_ud, 336
viscosite_dynamique_constante , 246	Boussinesq_concentration, 443
vitesse , 355, 443	•
vitesse_fluide_explicite , 265	Boussinesq_temperature, 444
vitesse_imposee_data , 454	Brech, 184
vitesse_imposee_fonction , 454	Btd, 160
vitesse_imposee_regularisee , 261	Calcul, 34
voflike_correction_volume , 261	
volume, 307	Calculer_moments, 34
volume_impose_phase_1 , 260	Canal, 181
volumes_etendus , 158	Canal_perio, 444
volumes_non_etendus , 158	Ceg, 185
volumique, 376	Centre, 155
wall_flux , 77	Centre4, 155
with_nu , 266	Centre_de_gravite, 35
writing_processes , 30	Centre_old, 156
xinf , 308	Ch_front_input, 336
xsup, 308	Ch_front_input_ale, 333
xtanh , 52	Ch_front_input_uniforme, 337
xtanh_dilatation, 52	Champ_base, 320
xtanh_taille_premiere_maille , 52	Champ_composite, 322
Young_Module , 22	Champ_don_base, 322
ytanh , 52	Champ_don_lu, 323
ytanh_dilatation , 52	Champ_fonc_fonction, 323
ytanh_taille_premiere_maille , 52	Champ_fonc_fonction_txyz, 323
zmax, 49	Champ_fonc_fonction_txyz_morceaux, 324
zmin , 49	Champ_fonc_med, 324
zones_name , 61	Champ_fonc_med_tabule, 320
	Champ_fonc_medfile, 321
ztanh, 52	Champ_fonc_reprise, 325
ztanh_dilatation , 52	Champ_fonc_t, 325
ztanh_taille_premiere_maille , 52	Champ_fonc_tabule, 326
Acceleration, 443	Champ_fonc_txyz, 330
	Champ_fonc_xyz, 331
Ale, 160	

Champ_front_ale, 334	Champ_tabule_morceaux, 322
Champ_front_ale_beam, 334	Champ_tabule_temps, 329
Champ_front_base, 333	Champ_uniforme_morceaux, 330
Champ_front_bruite, 338	Champ_uniforme_morceaux_tabule_temps, 330
Champ_front_calc, 338	Champ_front_fonc_txyz, 19
Champ_front_composite, 338	Chimie, 281
Champ_front_contact_rayo_semi_transp_vef, 339	Chmoy_faceperio, 184
Champ_front_contact_rayo_transp_vef, 339	Cholesky, 284, 288–290
Champ_front_contact_vef, 339	Circle, 87
Champ_front_debit, 340	Circle_3, 87
Champ_front_debit_massique, 340	Class_generic, 283
Champ_front_debit_qc_vdf, 334	Combinaison, 200
Champ_front_debit_qc_vdf_fonc_t, 335	Concentration, 90, 93
Champ_front_fonc_pois_ipsn, 340	Condinits, 165
Champ_front_fonc_pois_tube, 341	Condlim_base, 293
Champ_front_fonc_t, 341	Condlims, 114
Champ_front_fonc_txyz, 341	Conduction, 153
Champ_front_fonc_xyz, 341	Constant, 314
Champ_front_fonction, 342	Constituant, 355
Champ_front_lu, 342	Contact_vdf_vef, 296
Champ_front_med, 337	Contact_vef_vdf, 296
Champ_front_normal_vef, 342	Convection_deriv, 155
Champ_front_pression_from_u, 343	Convection_diffusion_chaleur_qc, 218
Champ_front_recyclage, 343	Convection_diffusion_chaleur_turbulent_qc, 220
Champ_front_synt, 335	Convection_diffusion_chaleur_wc, 219
Champ_front_tabule, 345	Convection_diffusion_concentration, 221
Champ_front_tabule_lu, 345	Convection_diffusion_concentration_ft_disc, 223
Champ_front_tangentiel_vef, 345	Convection_diffusion_concentration_turbulent, 224
Champ_front_uniforme, 346	$Convection_diffusion_concentration_turbulent_ft_disc,$
Champ_front_vortex, 346	167
Champ_front_xyz_debit, 346	Convection_diffusion_espece_binaire_qc, 225
Champ_front_xyz_tabule, 333	Convection_diffusion_espece_binaire_turbulent_qc,
Champ_front_zoom, 347	169
Champ_generique_base, 270	Convection_diffusion_espece_binaire_wc, 226
Champ_init_canal_sinal, 326	Convection_diffusion_espece_multi_qc, 228
Champ_input_base, 327	Convection_diffusion_espece_multi_turbulent_qc, 230
Champ_input_p0, 328	Convection_diffusion_espece_multi_wc, 229
Champ_input_p0_composite, 328	Convection_diffusion_phase_field, 231
Champ_ostwald, 329	Convection_diffusion_temperature, 232
Champ_post_de_champs_post, 270	Convection_diffusion_temperature_ft_disc, 233
Champ_post_extraction, 275	Convection_diffusion_temperature_sensibility, 170
Champ_post_interpolation, 276	Convection_diffusion_temperature_turbulent, 235
Champ_post_morceau_equation, 277	Coriolis, 445
Champ_post_operateur_base, 271	Correlation, 90, 92, 273
Champ_post_operateur_divergence, 274	Corriger_frontiere_periodique, 35
Champ_post_operateur_eqn, 272	Covimac, 317
Champ_post_operateur_gradient, 275	Create_domains_from_sous_zones, 36
Champ_post_reduction_0d, 278	D 445
Champ_post_refchamp, 279	Darcy, 445
Champ_post_statistiques_base, 272	Deactivate_sigint_catch, 23
Champ_post_tparoi_vef, 280	Debog, 36
Champ_post_transformation, 280	Debogft, 23
Champ_som_lu_vdf, 329	Decoupebord, 37
Champ_som_lu_vef, 329	Decouper_bord_coincident, 38

Di_12, 156	Extraire_plan, 42
Diffusion_croisee_echelle_temp_taux_diss_turb, 440	Extraire_surface, 43
Diffusion_deriv, 161	Extrudebord, 44
Dilate, 38	Extrudeparoi, 45
Dimension, 38	Extruder, 45
Dirac, 445	Extruder_en20, 46
Dirichlet, 296	Extruder_en3, 46
Disable_tu, 39	
Discretisation_base, 317	Fichier_decoupage, 371
Discretiser_domaine, 39	Fichier_med, 371
Discretize, 39	Field_uniform_keps_from_ud, 331
Dissipation_echelle_temp_taux_diss_turb, 440	Flottabilite, 453
Distance_paroi, 39	Fluide_base, 356
Domain, 55	Fluide_dilatable_base, 357
Domaine, 319	Fluide_diphasique, 357
Domaine_ale, 320	Fluide_incompressible, 358
Domaineaxi1d, 319	Fluide_ostwald, 359
Dp_impose, 440	Fluide_quasi_compressible, 360
Dt_calc, 284	Fluide_reel_base, 361
Dt_fixe, 284	Fluide_sodium_gaz, 362
Dt_min, 285	Fluide_sodium_liquide, 362
Dt_start, 285	Fluide_weakly_compressible, 363
Dt_post, 90	Flux_interfacial, 446
<u></u>	Flux_radiatif, 298
Easm_baglietto, 207	Flux_radiatif_vdf, 298
Ec, 182	Flux_radiatif_vef, 299
Ecart_type, 92, 274	Forchheimer, 446
Ecart_type, 90, 93	Frontiere_ouverte, 299
Echange_contact_rayo_transp_vdf, 296	Frontiere_ouverte_concentration_imposee, 299
Echange_contact_vdf_ft_disc, 297	Frontiere_ouverte_fraction_massique_imposee, 299
Echange_contact_vdf_ft_disc_solid, 297	Frontiere_ouverte_gradient_pression_impose, 300
Echange_couplage_thermique, 293	Frontiere_ouverte_gradient_pression_impose_vefprep1b
Echelle_temporelle_turbulente, 172	300
Ecrire, 80	Frontiere_ouverte_gradient_pression_libre_vef, 300
Ecrire_champ_med, 40	Frontiere_ouverte_gradient_pression_libre_vefprep1b,
Ecrire_fichier_bin, 80	300
Ecrire_fichier_formatte, 40	Frontiere_ouverte_k_eps_impose, 301
Ecrire_med, 80	Frontiere_ouverte_pression_imposee, 301
Ecrire_medfile, 81	Frontiere_ouverte_pression_imposee_orlansky, 301
Ecriturelecturespecial, 40	Frontiere_ouverte_pression_moyenne_imposee, 301
Ef, 156, 318	Frontiere_ouverte_rayo_semi_transp, 302
Ef_stab, 157	Frontiere_ouverte_rayo_transp, 302
End, 47	Frontiere_ouverte_rayo_transp_vdf, 302
Energie_cinetique_turbulente, 175	Frontiere_ouverte_rayo_transp_vef, 302
Energie_cinetique_turbulente_wit, 176	Frontiere_ouverte_rho_u_impose, 303
Energie_multiphase, 174	Frontiere_ouverte_temperature_imposee, 303
Entree_temperature_imposee_h, 298	Frontiere_ouverte_temperature_imposee_rayo_semi-
Epsilon, 55	_transp, 303
Eqn_base, 236	Frontiere_ouverte_temperature_imposee_rayo_transp,
Execute_parallel, 41	303
Export, 41	Frontiere_ouverte_vitesse_imposee, 304
Extract_2d_from_3d, 41	Frontiere_ouverte_vitesse_imposee_ale, 294
Extract_2daxi_from_3d, 42	Frontiere_ouverte_vitesse_imposee_sortie, 304
Extraire domaine, 42	Frottement interfacial, 446

Gaz_parfait_qc, 352	List_bloc_mailler, 51
Gaz_parfait_wc, 353	List_bord, 52
GCP, 288, 291	List_nom, 71
Gcp, 292	List_nom_virgule, 271
Gcp_ns, 285	Liste_mil, 470
Gen, 286	Liste_post, 96
Generic, 158	Liste_post_ok, 94
Gmres, 286	Listobj, 470
Gradient, 288	Listobj_impl, 469
Gradient, 200	local, 290
IBICGSTAB, 288	Loi_analytique_scalaire, 466
Ibm_aucune, 347	Loi_ciofalo_hydr, 462
Ibm_element_fluide, 347	Loi_etat_base, 350
Ibm_gradient_moyen, 349	
Ibm_hybride, 348	Loi_etat_gaz_parfait_base, 351
Ibm_power_law_tbl, 349	Loi_etat_gaz_reel_base, 351
Ice, 431	Loi_expert_hydr, 462
Ijk_ft_double, 23	Loi_expert_scalaire, 467
9 — — ·	Loi_fermeture_base, 354
Ijk_grid_geometry, 319	Loi_fermeture_test, 354
Ijk_splitting, 269	Loi_horaire, 261, 355
Ilu, 376	Loi_odvm, 467
Implicit_euler_steady_scheme, 380	Loi_paroi_nu_impose, 468
Implicit_steady, 432	Loi_puissance_hydr, 463
Implicite, 433	Loi_standard_hydr, 463
Implicite_ale, 434	Loi_standard_hydr_old, 463
Imposer_vit_bords_ale, 47	Loi_standard_hydr_scalaire, 468
Imprimer_flux, 47	Loi_ww_hydr, 464
Imprimer_flux_sum, 48	Loi_ww_scalaire, 466
Init_par_partie, 331	Longitudinale, 449
Integrer_champ_med, 48	Longueur_melange, 201
Interface, 289	
Internes, 54	Mailler, 50
Interpolation_champ_face_deriv, 264	Mailler_base, 51
Interpolation_ibm_base, 347	Maillerparallel, 55
Interprete, 21	Masse_ajoutee, 453
Interprete_geometrique_base, 49	Masse_multiphase, 177
1 –2 1 – /	Merge_med, 27
Jones_launder, 206	Methode_transport_deriv, 261
	Metis, 372
K_epsilon, 205	Milieu_base, 355
K_epsilon_bicephale, 208	Milieu_v2_base, 366
K_epsilon_realisable, 209	Mod_turb_hyd_rans, 204
K_epsilon_realisable_bicephale, 210	Mod_turb_hyd_ss_maille, 188
Kquick, 159	Modele_fonc_realisable, 283
•	
Lam_bremhorst, 207	Modele_fonc_realisable_base, 283
Lata_to_med, 49	Modele_fonction_bas_reynolds_base, 206
Lata_to_other, 50	Modele_rayo_semi_transp, 113
Launder_sharma, 207	Modele_rayonnement_base, 366
Leap_frog, 389	Modele_rayonnement_milieu_transparent, 366
Lineaire, 264	Modele_shih_zhu_lumley_vdf, 283
Lire_ideas, 50	Modele_turbulence_hyd_deriv, 187
Lire_medfile, 31	Modele_turbulence_scal_base, 368
Lire_tgrid, 66	Modif_bord_to_raccord, 56
	Modifydomaineaxi1d, 57

Mor_eqn, 153	Paroi_adiabatique, 304
Moyenne, 90, 92, 93, 277	Paroi_contact, 305
Moyenne_volumique, 57	Paroi_contact_fictif, 305
Multi_gaz_parfait_qc, 351	Paroi_contact_rayo, 306
Multi_gaz_parfait_wc, 352	Paroi_decalee_robin, 306
Multiplefiles, 27	Paroi_defilante, 306
Muscl, 159	Paroi_echange_contact_correlation_vdf, 307
Muscl3, 157	Paroi_echange_contact_correlation_vef, 307
Muscl_new, 159	Paroi_echange_contact_odvm_vdf, 308
Muscl_old, 159	Paroi_echange_contact_rayo_semi_transp_vdf, 309
	Paroi_echange_contact_vdf, 309
N, 289	Paroi_echange_contact_vdf_ft, 310
Navier_stokes_aposteriori, 178	Paroi_echange_contact_vdf_zoom_fin, 310
Navier_stokes_ft_disc, 242	Paroi_echange_contact_vdf_zoom_grossier, 310
Navier_stokes_phase_field, 245	Paroi_echange_externe_impose, 311
Navier_stokes_qc, 237	Paroi_echange_externe_impose_h, 311
Navier_stokes_standard, 250	Paroi_echange_externe_impose_rayo_semi_transp, 311
Navier_stokes_standard_sensibility, 211	Paroi_echange_externe_impose_rayo_transp, 312
Navier_stokes_std_ale, 214	Paroi_echange_global_impose, 312
Navier_stokes_turbulent, 252	Paroi_echange_interne_global_impose, 294
Navier_stokes_turbulent_ale, 186	Paroi_echange_interne_global_parfait, 294
Navier_stokes_turbulent_qc, 254	Paroi_echange_interne_impose, 294
Navier_stokes_wc, 240	Paroi_echange_interne_parfait, 294
Negligeable, 159, 161, 464	Paroi_fixe, 312
Negligeable_scalaire, 468	Paroi_fixe_iso_genepi2_sans_contribution_aux_vitesses-
Nettoiepasnoeuds, 59	_sommets, 312
Neumann, 304	Paroi_flux_impose, 313
Neumann_homogene, 295	Paroi_flux_impose_rayo_semi_transp_vdf, 313
Neumann_loi_paroi_faible_k, 295	Paroi_flux_impose_rayo_semi_transp_vef, 313
Neumann_loi_paroi_faible_omega, 295	Paroi_flux_impose_rayo_transp, 313
Neumann_paroi_adiabatique, 295	Paroi_frottante_loi, 295
Nom, 370	Paroi_ft_disc, 314
Nul, 203	Paroi_ft_disc_deriv, 314
NULL, 290	Paroi_knudsen_non_negligeable, 314
Numero_elem_sur_maitre, 86	Paroi_rugueuse, 315
	Paroi_tble, 464
Objet_lecture, 470	Paroi_tble_scal, 468
Op_conv_ef_stab_polymac_elem, 28	Paroi_temperature_imposee, 315
Op_conv_ef_stab_polymac_face, 28	Paroi_temperature_imposee_rayo_semi_transp, 315
Op_conv_ef_stab_polymac_p0_face, 28	Paroi_temperature_imposee_rayo_transp, 316
Optimal, 287	Partition, 60, 373
Option, 163	Partition_multi, 61
Option_covimac, 28	Partitionneur_deriv, 371
Option_vdf, 59	Pave, 51
Orientefacesbord, 60	Pb_avec_passif, 115
Orienter_simplexes, 66	Pb_base, 111
	Pb_conduction, 81
P1b, 162	Pb_couple_rayo_semi_transp, 116
P1ncp1b, 162	Pb_couple_rayonnement, 152
Parallel_io_parameters, 29	Pb_gen_base, 81
Parametre_diffusion_implicite, 167	Pb_hem, 97
Parametre_equation_base, 166	Pb_hydraulique, 117
Parametre_implicite, 166	Pb_hydraulique_ale, 118
Paroi, 295	Ph hydraulique anosteriori 119

```
Pb_hydraulique_concentration, 120
                                                   Porosites, 375
Pb_hydraulique_concentration_scalaires_passifs, 121 Position_like, 86
Pb hydraulique concentration turbulent, 123
                                                   Post processing, 94
Pb_hydraulique_concentration_turbulent_scalaires_paRist_processings, 93
                                                   Postraitement base, 94
Pb_hydraulique_melange_binaire_qc, 125
                                                   Postraitement_ft_lata, 95
Pb hydraulique melange binaire turbulent qc, 128 Postraiter domaine, 62
Pb hydraulique melange binaire wc, 126
                                                   Pp, 172
Pb hydraulique sensibility, 99
                                                   Prandtl, 368
Pb hydraulique turbulent, 129
                                                   Precisiongeom, 63
Pb hydraulique turbulent ale, 98
                                                   Precond, 288, 290
Pb mg, 130
                                                   Precond base, 376
Pb_multiphase, 101
                                                   Precondsolv, 376
Pb_phase_field, 130
                                                   Predefini, 278
Pb_rayo_conduction, 102
                                                   Pression, 90, 93
Pb_rayo_hydraulique, 103
                                                   Print, 289
Pb_rayo_hydraulique_turbulent, 104
                                                   Problem_read_generic, 151
Pb_rayo_thermohydraulique, 105
                                                   Probleme_couple, 112
Pb_rayo_thermohydraulique_qc, 106
                                                   Probleme_ft_disc_gen, 152
Pb rayo thermohydraulique turbulent, 108
                                                   Production echelle temp taux diss turb, 441
Pb rayo thermohydraulique turbulent qc, 109
                                                   Production energie cin turb, 441
Pb thermohydraulique, 132
                                                   Profils thermo, 184
Pb_thermohydraulique_concentration, 136
                                                   Projection_ale_boundary, 30
Pb thermohydraulique concentration scalaires passif@uissance thermique, 450
         137
Pb_thermohydraulique_concentration_turbulent, 139 Qdm_multiphase, 215
Pb_thermohydraulique_concentration_turbulent_scalarwick, 160
         passifs, 140
                                                   Raccord, 54
Pb_thermohydraulique_especes_qc, 141
                                                   Radioactive_decay, 451
Pb_thermohydraulique_especes_turbulent_qc, 144
                                                   Radius, 89
Pb_thermohydraulique_especes_wc, 143
                                                   Raffiner_anisotrope, 63
Pb_thermohydraulique_qc, 134
                                                   Raffiner isotrope, 64
Pb_thermohydraulique_scalaires_passifs, 145
                                                   Raffiner_isotrope_parallele, 30
Pb_thermohydraulique_sensibility, 110
                                                   Read, 65
Pb_thermohydraulique_turbulent, 147
                                                   Read file, 65
Pb_thermohydraulique_turbulent_qc, 148
                                                  Read_file_binary, 66
Pb thermohydraulique turbulent scalaires passifs, 1
                                                   Read med, 30
Pb thermohydraulique wc, 135
                                                   Read_unsupported_ascii_file_from_icem, 66
Pbc med, 150
                                                   Redresser hexaedres vdf, 67
Periodique, 316
                                                   Refine_mesh, 67
Perte charge anisotrope, 447
                                                   Regroupebord, 67
Perte_charge_circulaire, 447
                                                   Remove_elem, 68
Perte charge directionnelle, 448
                                                   Remove_invalid_internal_boundaries, 69
Perte charge isotrope, 448
                                                   Reordonner, 70
Perte charge reguliere, 448
                                                   Reorienter_tetraedres, 69
Perte_charge_singuliere, 450
                                                   Reorienter_triangles, 69
Petsc, 288, 290
                                                   Rhot_gaz_parfait_qc, 353
Pilote_icoco, 62
                                                   Rhot_gaz_reel_qc, 354
Piso, 434
                                                   Rk3 ft, 390
Plan, 86
                                                   Rocalution, 291
Point, 85
                                                   Rotation, 70
Points, 85
                                                   Rt. 161
Polyedriser, 62
                                                   Runge kutta ordre 2, 392
Polymac p0p1nc, 318
```

Runge_kutta_ordre_2_classique, 394	Source_con_phase_field, 451
Runge_kutta_ordre_3, 396	Source_constituant, 453
Runge_kutta_ordre_3_classique, 398	Source_constituant_vortex, 441
Runge_kutta_ordre_4_classique, 401	Source_generique, 453
Runge_kutta_ordre_4_classique_3_8, 403	Source_pdf, 453
Runge_kutta_ordre_4_d3p, 399	Source_pdf_base, 455
Runge_kutta_rationnel_ordre_2, 405	Source_qdm, 455
	Source_qdm_lambdaup, 455
Saturation_base, 377	Source_qdm_phase_field, 456
Saturation_constant, 377	Source_rayo_semi_transp, 456
Saturation_sodium, 378	Source_robin, 456
Scalaire_impose_paroi, 316	Source_robin_scalaire, 457
Scatter, 70	Source_th_tdivu, 457
Scattermed, 70	Source_transport_eps, 458
Sch_cn_ex_iteratif, 382	Source_transport_k, 458
Sch_cn_iteratif, 385	Source_transport_k_eps, 458
Schema_adams_bashforth_order_2, 407	Source_transport_k_eps_aniso_concen, 459
Schema_adams_bashforth_order_3, 409	Source_transport_k_eps_aniso_therm_concen, 459
Schema_adams_moulton_order_2, 410	Source_transport_k_eps_anisotherme, 442
Schema_adams_moulton_order_3, 413	Sources, 165
Schema_backward_differentiation_order_2, 415	Sous_domaine, 373
Schema_backward_differentiation_order_3, 418	Sous_maille, 202
Schema_euler_explicite_ale, 429	Sous_maille_1elt, 192
Schema_implicite_base, 423	Sous_maille_1elt_selectif_mod, 193
Schema_phase_field, 425	Sous_maille_axi, 194
Schema_predictor_corrector, 427	Sous_maille_dyn, 370
Schema_temps_base, 378	Sous_maille_selectif, 191
Scheme_euler_explicit, 387	Sous_maille_selectif_mod, 189
Scheme_euler_implicit, 420	
Schmidt, 369	Sous_maille_smago, 199 Sous_maille_smago_dyn, 196
Segment, 86	- ·
Segmentfacesx, 88	Sous_maille_smago_filtre, 195
Segmentfacesy, 88	Sous_maille_wale, 197
Segmentfacesz, 88	Sous_zone, 460
Segmentpoints, 85	Sous_zones, 373
Sensibility, 161	Spai, 290
Sets, 435	Spec_pdcr_base, 449
Shih_zhu_lumley, 283	SSOR, 290, 291
- .	Ssor, 376
Simple, 436 Simpler, 437	Ssor_bloc, 377
•	Stab, 162
Solide, 364	Standard, 163
Solve, 71	Standard_keps, 207
Solver, 288, 291	Stat_post_deriv, 91
Solver_moving_mesh_ale, 32	Statistiques, 90, 93
Solveur, 288, 290	Statistiques_en_serie, 93
Solveur_implicite_base, 431	Stiffenedgas, 365
Solveur_lineaire_std, 438	Supg, 160
Solveur_sys_base, 292	Supprime_bord, 71
Solveur_u_p, 438	Symetrie, 314, 317
Solveur_pression, 288, 290	System, 71
Sonde_base, 85	T 1-1 01
Sortie_libre_rho_variable, 316	T_deb, 91
Sortie_libre_temperature_imposee_h, 317	T_fin, 92
Source_base, 439	Tau, 164

```
Taux_dissipation_turbulent, 216
                                                    Vitesse_imposee, 262
Tayl_green, 332
                                                    Vitesse_interpolee, 262
Temperature, 90, 93, 181
                                                    Volume, 87
Temperature_imposee_paroi, 317
                                                    xyz, 19
Tenseur_reynolds_externe, 164, 459
Terme_dissipation_echelle_temporelle_turbulente_elem-
         _polymac_p0, 442
Terme_dissipation_energie_cinetique_turbulente, 442
Terme puissance thermique echange impose, 460
Test_solveur, 72
Test_sse_kernels, 32
Testeur, 72
Testeur_medcoupling, 73
Tetraedriser, 73
Tetraedriser_homogene, 73
Tetraedriser_homogene_compact, 74
Tetraedriser_homogene_fin, 75
Tetraedriser_par_prisme, 75
Thermique, 27
Thi, 182
Thi thermo, 183
Trainee, 457
Traitement_particulier_base, 181
Tranche, 374
Transformer, 77
Transport epsilon, 256
Transport_interfaces_ft_disc, 258
Transport_k, 265
Transport_k_eps_realisable, 217
Transport_k_epsilon, 266
Transport_marqueur_ft, 267
Transversale, 449
Travail_pression, 460
Trianguler, 77
Trianguler_fin, 77
Trianguler_h, 78
Turbulence paroi base, 462
Turbulence_paroi_scalaire_base, 466
Turbulente, 164
type, 90, 93, 289, 290
Uniform_field, 332
Union, 374
Utau_imp, 466
Valeur_totale_sur_volume, 332
Vdf, 318
Vect_nom, 79
Vef, 318
Vefprep1b, 318
Verifier_qualite_raffinements, 79
Verifier simplexes, 79
Verifiercoin, 79
Vitesse, 90, 93
```