

Fuzzy Logic & Neural Networks (CS-514)

Dr. Sudeep Sharma

IIIT Surat

sudeep.sharma@iiitsurat.ac.in

Forward Pass

- Let's start with a simplified forward pass with just one neuron.
- Let's backpropagate the ReLU function for a single neuron.
- ➤ We're first doing this only as a demonstration to simplify the explanation.
- We'll start by showing how we can understand the chain rule with derivatives and partial derivatives to calculate the impact of each variable on the ReLU activated output.

Forward Pass

We'll use an example neuron with 3 inputs, which means that it also has 3 weights and a bias.

```
x = [1.0, -2.0, 3.0] # input values

w = [-3.0, -1.0, 2.0] # weights

b = 1.0 # bias
```

> We have to multiply the input by the weight:

$$x[0]$$
 $x[0]$
 $x[0]$
 $x[0]$
 $x[0]$
 $x[0]$
 $x[0]$
 $x[0]$
 $x[0]$

Forward Pass

The next operation to perform is a sum of all weighted inputs with a bias:

Forward Pass

The last step is to apply the ReLU activation function on this output:

The Chain Rule

- The first step is to backpropagate our gradients by calculating derivatives and partial derivatives with respect to each of our parameters.
- To do this, we're going to use the chain rule as the derivative for nested functions:

$$\frac{d}{dx}f(g(x)) = \frac{d}{dg(x)}f(g(x)) \cdot \frac{d}{dx}g(x) = f'(g(x)) \cdot g'(x)$$

For our neural network:

$$ReLU(\sum[inputs \cdot weights] + bias)$$

The Chain Rule

For our neural network:

$$ReLU(\sum[inputs \cdot weights] + bias)$$

> Or

$$ReLU(x_0w_0 + x_1w_1 + x_2w_2 + b)$$

Let's rewrite our equation to the form that will allow us to determine how to calculate the derivatives more easily:

 $y = ReLU(sum(mul(x_0, w_0), mul(x_1, w_1), mul(x_2, w_2), b))$

The Chain Rule

The equation contains 3 nested functions: ReLU, a sum of weighted inputs and a bias, and multiplications of the inputs and weights.

$$y = ReLU(sum(mul(x_0, w_0), mul(x_1, w_1), mul(x_2, w_2), b))$$

 \triangleright To calculate the impact of the parameter, w_0 , on the output, the chain rule tells us:

$$rac{\partial}{\partial w_0}ig[\mathrm{Re}LUig(sumig(mulig(x_0,w_0ig),mulig(x_1,w_1ig),mulig(x_2,w_2ig),big)ig)ig]=$$

$$rac{\partial \mathrm{Re}LU(\)}{\partial sum(\)}.rac{\partial sum(\)}{\partial mul(x_0,w_0)}.rac{\partial (x_0w_0)}{\partial w_0}$$

The Chain Rule

- We want to know the impact of a given weight or bias on the output's loss function.
- > During the backward pass, we'll calculate the derivative of the loss function.
- Then derivative of the activation function of the output layer.
- Then derivative of the output layer, and so on, through all of the hidden layers and activation functions.
- The derivative with respect to the weights and biases will form the gradients that we'll use to update the weights and biases.

The Chain Rule

Recall that the derivative of ReLU() with respect to its input is 1, if the input is greater than 0, and 0 otherwise as:

$$\frac{\partial \text{Re}LU(sum(\))}{\partial sum(\)} = \frac{\partial \text{Re}LU(z)}{\partial z} = \frac{\partial}{\partial z} \max(z,0) = 1 (z > 0)$$

The input value to the ReLU function is 6, so the derivative equals 1.

The Chain Rule

➤ Use the chain rule and multiply this derivative with the derivative received from the next layer

The Chain Rule

> The partial derivative of the sum operation

$$\frac{\partial sum(\)}{\partial mul(x_0,w_0)} = \frac{\partial (x_0w_0 + x_1w_1 + x_2w_2 + b)}{\partial x_0w_0} = 1$$

The Chain Rule

The partial derivative of the sum operation for all input & weight pairs and bias

The Chain Rule

> The partial derivative of the product terms:

$$f(x,y) = x \cdot y \rightarrow \frac{\partial}{\partial x} f(x,y) = y$$

$$\frac{\partial}{\partial y} f(x,y) = x$$

$$rac{\partial mul\left(x_{0},w_{0}
ight)}{\partial w_{0}}=rac{\partial\left(x_{0}w_{0}
ight)}{\partial w_{0}}=x_{0}$$

The Chain Rule

> The overall gradient terms are:

$$\frac{\partial \text{Re}LU(sum(\))}{\partial w_0} = \frac{\partial \text{Re}LU(sum(\))}{\partial sum(\)} \times \frac{\partial sum(\)}{\partial mul(x_0,w_0)} \times \frac{\partial mul(x_0,w_0)}{\partial w_0} = 1 \times 1 \times x_0 = x_0$$

$$\frac{\partial \text{Re}LU(sum(\))}{\partial w_1} = \frac{\partial \text{Re}LU(sum(\))}{\partial sum(\)} \times \frac{\partial sum(\)}{\partial mul(x_1,w_1)} \times \frac{\partial mul(x_1,w_1)}{\partial w_1} = 1 \times 1 \times x_1 = x_1$$

$$\frac{\partial \text{Re}LU(sum\left(\ \right))}{\partial w_2} = \frac{\partial \text{Re}LU(sum\left(\ \right))}{\partial sum\left(\ \right)} \times \frac{\partial sum\left(\ \right)}{\partial mul\left(x_2,w_2\right)} \times \frac{\partial mul\left(x_2,w_2\right)}{\partial w_2} = 1 \times 1 \times x_2 = x_2$$

$$\frac{\partial \text{Re}LU(sum(\))}{\partial b} = \frac{\partial \text{Re}LU(sum(\))}{\partial sum(\)} \times \frac{\partial sum(\)}{\partial b} = 1 \times 1 = 1$$

The Parameter Update Rule

 \triangleright The i^{th} weight (w_i) is updated by the rule:

$$w_i(new) = w_i(old) - \alpha \frac{\partial L}{\partial w_i}$$

- \triangleright a is known as "learning rate"
- L is known as the "loss function"

$$b_{j}(new) = b_{j}(old) - \alpha \frac{\partial L}{\partial b_{j}}$$

The Parameter Update Rule

> For our example:

$$x = [1.0, -2.0, 3.0]$$
 # input values
 $w = [-3.0, -1.0, 2.0]$ # weights
 $b = 1.0$ # bias

$$\triangleright$$
 If $\alpha = 0.01$, then

$$w_0(new) = w_0(old) - lpha rac{\partial \mathrm{Re}LU(\)}{\partial w_0}$$

$$w_0(new) = -3.0 - 0.01 \times x_0$$

$$w_0(new) = -3.0 - 0.01 \times 1 = -3.01$$

The Parameter Update Rule

> For our example:

$$x = [1.0, -2.0, 3.0]$$
 # input values
 $w = [-3.0, -1.0, 2.0]$ # weights
 $b = 1.0$ # bias

 \triangleright If $\alpha = 0.01$, then

$$egin{align} w_1(new) &= w_1(old) - lpha rac{\partial \mathrm{Re}LU()}{\partial w_1} \ & w_1(new) = -1.0 - 0.01 imes x_1 \ \end{pmatrix}$$

$$w_1(new) = -1.0 - 0.01 \times (-2) = -0.98$$

The Parameter Update Rule

> For our example:

$$x = [1.0, -2.0, 3.0]$$
 # input values
 $w = [-3.0, -1.0, 2.0]$ # weights
 $b = 1.0$ # bias

 \triangleright If $\alpha = 0.01$, then

$$w_2(new) = w_2(old) - \alpha \frac{\partial \text{Re}LU()}{\partial w_2}$$

$$w_2(new) = 2.0 - 0.01 \times x_2$$

$$w_2(new) = 2.0 - 0.01 \times 3 = 1.97$$

The Parameter Update Rule

> For our example:

$$x = [1.0, -2.0, 3.0]$$
 # input values
 $w = [-3.0, -1.0, 2.0]$ # weights
 $b = 1.0$ # bias

 \triangleright If $\alpha = 0.01$, then

$$b(new) = b(old) - \alpha \frac{\partial \text{Re}LU()}{\partial b}$$

$$b(new) = 1.0 - 0.01 \times 1.0$$

$$b(new) = 1.0 - 0.01 \times 1.0 = 0.99$$

The Parameter Update Rule

> For our example:

$$x = [1.0, -2.0, 3.0]$$
 # input values $w = [-3.0, -1.0, 2.0]$ # weights $b = 1.0$ # bias $w_0(new) = -3.01$ $w_1(new) = -0.98$ $w_2(new) = 1.97$ $b(new) = 0.99$

The Parameter Update Rule

> For our example:

$$x = [1.0, -2.0, 3.0]$$
 # input values
 $w = [-3.0, -1.0, 2.0]$ # weights
 $b = 1.0$ # bias

> The new output

$$w_0(new) = -3.01, \ w_1(new) = -0.98, \ w_2(new) = 1.97$$
 $b(new) = 0.99$

$$out(new) = \text{Re}LU(-3.01 \times 1.0 - 0.98 \times -2.0 + 1.97 \times 3.0 + 0.99)$$

= 5.85

Training Neural Network for "OR Gate"

- > Step 1: The Truth Table
- Step 2: Initialize Weights and Bias
- Step 3: Define the Activation Function
- > Step 4: Forward Pass
- > Step 5: Compute Loss
- > Step 6: Compute the Gradient/Backward Pass
- Step 7: Update Weights and Bias
- > Step 8: Repeat the Process

Training Neural Network for "OR Gate"

Step 1: The Truth Table/Input & Outputs

2 - input OR gate

Α	В	Output		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Source: Google Images

Training Neural Network for "OR Gate"

> Step 1: The Truth Table/Input & Outputs

```
import numpy as np

# OR gate inputs and outputs

inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
outputs = np.array([[0], [1], [1], [1]])
```

Training Neural Network for "OR Gate"

> Step 2: Initialize Weights and Bias

```
# Initialize weights and bias

np.random.seed(43)
weights = np.random.rand(2, 1)
bias = np.random.rand(1)
learning_rate = 0.2
```

Training Neural Network for "OR Gate"

> Step 3: Define the Activation Function

```
# Sigmoid function
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
# Derivative of the Sigmoid function
def sigmoid derivative(x):
    return x * (1 - x)
```

Training Neural Network for "OR Gate"

- Step 4: Forward Pass
- Step 5: Compute Loss
- Step 6: Compute the Gradient/Backward Pass
- > Step 7: Update Weights and Bias
- Step 8: Repeat the Process

Model Training

Training Neural Network for "OR Gate"

Model

Training

```
# Training the model
for epoch in range(10000):
   # Forward pass
    z = np.dot(inputs, weights) + bias
    predictions = sigmoid(z)
    # Compute loss (Mean Squared Error)
    loss = (1/2) * (predictions - outputs) ** 2
   # Backpropagation
    d loss = predictions - outputs
    d pred = d loss * sigmoid derivative(predictions)
   # Gradient descent
    weights =weights - learning rate * np.dot(inputs.T, d pred)
    bias = bias - learning rate * np.sum(d pred)
   # Optionally print loss to see the progress
    if epoch % 1000 == 0:
        print('Epoch', epoch)
        print("Loss:", np.mean(loss))
```

Training Neural Network for "OR Gate"

```
# Testing the model
print("Weights after training:", weights)
print("Bias after training:", bias)

# Final predictions
final_predictions = sigmoid(np.dot(inputs, weights) + bias)
print("Final predictions:", final_predictions.round())
```

Model Results

```
Weights after training: [[6.95515984] [6.95517589]]
Bias after training: [-3.23702087]
Final predictions: [[0.] [1.] [1.] [1.]
```

Training Neural Network for "AND Gate"

2 - input AND gate

Α	В	Output	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Training Neural Network for "AND Gate"

3 Input AND Gate Truth Table

Inputs			Outputs
A	В	С	х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Training NN for "3-Input AND Gate"

Training NN for "3-Input AND Gate"

```
# Initialize weights and bias

np.random.seed(43)
weights = np.random.rand(3, 1)
bias = np.random.rand(1)
learning_rate = 0.2
```

```
# Sigmoid function
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# Derivative of the Sigmoid function
def sigmoid_derivative(x):
    return x * (1 - x)
```

Logic Gates Implementation Training NN for "3-Input AND Gate"

```
# Training the model
for epoch in range(10000):
    # Forward pass
    z = np.dot(inputs, weights) + bias
    predictions = sigmoid(z)
    # Compute loss (Mean Squared Error)
    loss = (1/2) * (predictions - outputs) ** 2
    # Backpropagation
    d loss = predictions - outputs
    d pred = d loss * sigmoid derivative(predictions)
    # Gradient descent
    weights =weights - learning rate * np.dot(inputs.T, d pred)
    bias = bias - learning rate * np.sum(d pred)
    # Optionally print loss to see the progress
    if epoch % 1000 == 0:
        print('Epoch', epoch)
        print("Loss:", np.mean(loss))
```

Logic Gates Implementation Training NN for "3-Input AND Gate"

Epoch 0

Loss: 0.18759102456500887

Epoch 1000

Loss: 0.008572265054800333

Epoch 2000

Loss: 0.0042007062427118795

Epoch 3000

Loss: 0.0026951472840618003

Epoch 4000

Loss: 0.0019588809680481903

Epoch 5000

Loss: 0.0015286926391372003

Epoch 6000

Loss: 0.001248755158471711

Epoch 7000

Loss: 0.001052968744502725

Epoch 8000

Loss: 0.0009087847292562013

Epoch 9000

Loss: 0.0007984096086282896

Logic Gates Implementation Training NN for "3-Input AND Gate"

```
# Testing the model
print("Weights after training:", weights)
print("Bias after training:", bias)
# Final predictions
final predictions = sigmoid(np.dot(inputs, weights) + bias)
print("Final predictions:", final predictions.round())
Weights after training: [[5.60522228]
 [5.60522228]
 [5.60522228]]
Bias after training: [-14.23936938]
Final predictions: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [1.]]
```

Logic Gates Implementation Training NN for "XOR Gate"

Fig: Two Input XOR Gate

Source: Google Images

Logic Gates Implementation Training NN for "XOR Gate"

Source: Google Images

Training NN for "XOR Gate"

```
import numpy as np
# Sigmoid function
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
# Derivative of the Sigmoid function
def sigmoid derivative(x):
    return x * (1 - x)
# XOR gate inputs and outputs
inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
outputs = np.array([[0], [1], [1], [0]])
```

Training NN for "XOR Gate"

```
# Initialize weights and biases
np.random.seed(42)
input layer neurons = 2
hidden layer neurons = 2
output neuron = 1
# Weights and biases for layers
weights input hidden = np.random.rand(input layer neurons, hidden layer neurons)
bias hidden = np.random.rand(1, hidden layer neurons)
weights hidden output = np.random.rand(hidden layer neurons, output neuron)
bias output = np.random.rand(1, output neuron)
learning rate = 0.1
```

```
# Training the model
                                Training NN for "XOR Gate"
for epoch in range(10000):
   # Forward pass
    hidden layer activation = np.dot(inputs, weights input hidden) + bias hidden
    hidden layer output = sigmoid(hidden layer activation)
   output layer activation = np.dot(hidden layer output, weights hidden output) + bias output
    predicted output = sigmoid(output layer activation)
   # Compute loss (Mean Squared Error)
    loss = (1/2) * (predicted output - outputs) ** 2
   # Backpropagation
    error = predicted output - outputs
    d predicted output = error * sigmoid derivative(predicted output)
    error hidden layer = d predicted output.dot(weights hidden output.T)
    d hidden layer = error hidden layer * sigmoid derivative(hidden layer output)
   # Update weights and biases
   weights hidden output -= learning rate * hidden layer output.T.dot(d predicted output)
    bias output -= learning rate * np.sum(d predicted output, axis=0, keepdims=True)
   weights input hidden -= learning rate * inputs.T.dot(d hidden layer)
    bias hidden -= learning rate * np.sum(d hidden layer, axis=0, keepdims=True)
```

Logic Gates Implementation Training NN for "XOR Gate"

```
# Print loss to see the progress
    if epoch % 1000 == 0:
        print(f'Epoch {epoch} Loss: {np.mean(loss)}')
# Testing the model
print("Weights after training (Input to Hidden):", weights input hidden)
print("Bias after training (Hidden):", bias hidden)
print("Weights after training (Hidden to Output):", weights hidden output)
print("Bias after training (Output):", bias output)
# Final predictions
final_predictions = sigmoid(np.dot(sigmoid(np.dot(inputs, weights_input_hidden))
                    + bias hidden), weights hidden output) + bias output)
print("Final predictions:", final predictions.round())
```

Training NN for "XOR Gate"

```
Epoch 0 Loss: 0.1623292907322122
Epoch 1000 Loss: 0.12029469015989666
Epoch 2000 Loss: 0.09801483919906334
Epoch 3000 Loss: 0.06033163566764212
Epoch 4000 Loss: 0.015229506425732262
Epoch 5000 Loss: 0.006270561346238988
Epoch 6000 Loss: 0.0036842395233663574
Epoch 7000 Loss: 0.0025463194370964996
Epoch 8000 Loss: 0.0019234352833803127
Epoch 9000 Loss: 0.00153558770449285
Weights after training (Input to Hidden): [[3.79198478 5.81661184]
 [3.80004873 5.8545897 ]]
Bias after training (Hidden): [[-5.82020057 -2.46277158]]
Weights after training (Hidden to Output): [[-8.32186051]
 [ 7.66063503]]
Bias after training (Output): [[-3.45550373]]
Final predictions: [[0.]
 [1.]
 [1.]
 [0.]]
```

Logic Gates Implementation Training NN for "XNOR Gate"

Fig: Two Input XNOR Gate

Source: Google Images

Training NN for "XNOR Gate"

Fig: Two Input XNOR Gate using NOR, AND and OR gates

Source: Google Images