Esercitazione 12

ESERCIZIO 1

La seguente tabella riporta la distribuzione di 100 persone, suddivisi per classi d'età (Y) e a cui è stato chiesto quanti cellulari posseggono

X\Y	Giovane	Adulto	Anziano	TOTALE
0	0	0	20	20
1	35	0	0	35
2	0	45	0	45
TOTALE	35	45	20	100

- 1. Si stabilisca, giustificando la risposta, se fra i due caratteri considerati esiste indipendenza distributiva.
- 2. Si fornisca un indice che misuri il grado di connessione tra X e Y, commentando il risultato.
- 3. In relazione alla natura di X e Y, si analizzi, giustificando la scelta, la dipendenza in media che si ritiene più idonea e se ne misuri l'intensità con un opportuno indice commentando il risultato ottenuto.

SOLUZIONE

Tra i due caratteri considerati non esiste indipendenza distributiva. Siamo in un caso di dipendenza perfetta. Per misurare la connessione calcoliamo le frequenze teoriche

X\Y	Giovane	Adulto	Anziano	TOTALE
0	7	9	4	20
1	12,25	15,75	7	35
2	15,75	20,25	9	45
TOTALE	35	45	20	100

e le contingenze

X\Y	Giovane	Adulto	Anziano	TOTALE
0	-7	-9	16	0
1	22,75	-15,75	-7	0
2	-15,75	24,75	-9	0
TOTALE	0	0	0	0

Un indice opportuno per il misurare la connessione tra X e Y, basato su una media aritmetica, è l'indice di connessione di Mortara, ovvero la media aritmetica del valore assoluto delle contingenze relative

$$M_1(|\rho|) = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |\rho_{ij}| \times \hat{n}_{ij} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |c_{ij}|$$

avendo a disposizione le contingenze assolute, usiamo la seconda formula, ed otteniamo

$$M_1(|\rho|) = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |c_{ij}| = \frac{127}{100} = 1,27$$

Si poteva decidere di misurare il grado di dipendenza applicando l'indice di connessione di Pearson

$$M_2(|\rho|) = \sqrt{\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c |\rho_{ij}|^2 \times \hat{n}_{ij}} = \sqrt{\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c \frac{c_{ij}^2}{\hat{n}_{ij}}}$$

vendo a disposizione le contingenze assolute, usiamo la seconda formula, ed otteniamo

$$M_2(|\rho|) = \sqrt{\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c \frac{c_{ij}^2}{\hat{n}_{ij}}} = \sqrt{\frac{1}{100} \times 200} = \sqrt{2} = 1,414$$

Non possiamo calcolare le medie parziali della variabile Y, in quanto qualitativa. Possiamo studiare se X è indipendente in media da Y. Per calcolare l'intensità della dipendenza in media calcoliamo media e varianza della distribuzione marginale di X

x_i	n_i .	$x_i \times n_i$.	$x_i^2 \times n_i$.
0	20	0	0
1	35	35	35
2	45	90	180

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{3} x_i \times n_i = \frac{125}{100} = 1,25$$

$$\overline{x^2} = \frac{1}{n} \sum_{i=1}^{3} x_i^2 \times n_{i\cdot} = \frac{215}{100} = 2,15$$

$$\sigma^2 = \overline{x^2} - \overline{x}_1^2 = 3,05 - 1,45^2 = 0,5875$$

la devianza totale è pari a $DT = n \times \sigma^2 = 58,75$. La devianza fra i gruppi è

$$DF = \sum_{j=1}^{3} (\bar{x}_j - \bar{x})^2 \times n_{j}$$

essendo le distribuzioni parziali concentrate tutte in una modalità, abbiamo che la devianza fra i gruppi coincide con la devianza totale, e quindi

$$\eta_{(X|Y)}^2 = \frac{DF}{DT} = \frac{58,75}{58,75} = 1$$

ESERCIZIO 2

La seguente tabella riporta la distribuzione di 100 lavoratori, sui quali viene rilevato il reddito medio mensile X, espresso in migliaia di euro, ed il numero di week end dedicati a viaggiare mediamente in un mese Y.

X\Y	0	1	2	3	4	TOTALE
1	42	12	0	0	0	54
2	4	12	3	0	0	19
3	1	6	5	0	0	12
4	0	7	8	0	0	15
TOTALE	47	37	16	0	0	100

- 1. Si fornisca un indice che misuri il grado di connessione tra X e Y, commentando il risultato.
- 2. Misurare la dipendenza in media di X da Y mediante un indice opportuno.
- 3. Si determinino i parametri della retta di regressione che spiega Y in funzione di X e si commenti il valore del coefficiente angolare della retta trovata.
- 4. Si calcoli il coefficiente di correlazione. Si calcoli inoltre l'indice di determinazione lineare.

SOLUZIONE

Per calcolare la connessione tra X ed Y dobbiamo costruire la tabella di contingenze, dove ogni valore corrisponde a $c_{ij} = (n_{ij} - \hat{n}_{ij})$ e rappresenta quanto si discostano le frequenze osservate dalla situazione di indipendenza.

X\Y	0	1	2	TOTALE
1	16,62	-7,98	-8,64	54
2	-4,93	4,97	-0,04	19
3	-4,64	1,56	3,08	12
4	-7,05	1,45	5,6	15
TOTALE	47	37	16	100

Un indice opportuno per il misurare la connessione tra X e Y, basato su una media aritmetica, è l'indice di connessione di Mortara, ovvero la media aritmetica del valore assoluto delle contingenze relative

$$M_1(|\rho|) = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |\rho_{ij}| \times \hat{n}_{ij} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |c_{ij}|$$

avendo a disposizione le contingenze assolute, usiamo la seconda formula, ed otteniamo

$$M_1(|\rho|) = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |c_{ij}| = \frac{66, 56}{100} = 0,666$$

in media aritmetica le frequenze osservate differiscono (in valore assoluto) del 66% dalle frequenze teoriche. Si poteva decidere di misurare il grado di dipendenza applicando l'indice di connessione di Pearson

$$M_2(|\rho|) = \sqrt{\frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |\rho_{ij}|^2 \times \hat{n}_{ij}} = \sqrt{\frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{c_{ij}^2}{\hat{n}_{ij}}}$$

Le contingenze al quadrato, diviso le frequenze teoriche, sono

$X \setminus Y$	0	1	2
1	10,884	3,187	8,640
2	2,722	$3,\!514$	0,001
3	3,817	0,548	4,941
4	7,050	0,379	13,067

usando la seconda formula otteniamo

$$M_2\left(|\rho|\right) = \sqrt{\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c \frac{c_{ij}^2}{\hat{n}_{ij}}} = \sqrt{\frac{1}{100} \times 58,748} = \sqrt{0,587} = 0,766$$

in media quadratica le frequenze osservate differisconodel 76% dalle frequenze teoriche. Per calcolare la dipendenza in media di X da Y, abbiamo bisogno delle medie parziali di X, dato un valore di Y.

$$\overline{x}_1 = M_1^{X|Y=0} = \frac{1}{n_{\cdot 1}} \sum_{i=1}^{k_X} n_{i1} x_i = \frac{1}{47} (53) = 1,128$$

$$\overline{x}_2 = M_1^{X|Y=1} = \frac{1}{n_{\cdot 2}} \sum_{i=1}^{k_X} n_{i2} x_i = \frac{1}{37} (82) = 2,216$$

$$\overline{x}_3 = M_1^{X|Y=2} = \frac{1}{n_{\cdot 3}} \sum_{i=1}^{k_X} n_{i3} x_i = \frac{1}{16} (53) = 3,313$$

La media marginale è

$$\overline{x} = M_1 = \frac{1}{n} \sum_{i=1}^{k_X} n_i \cdot x_i = \frac{1}{100} (188) = 1,88$$

La devianza fra i gruppi è pari a

$$DF = \sum_{j=1}^{k_Y} (\bar{x}_j - \bar{x})^2 \times n_{j} = 63,618$$

La devianza totale corrisponde alla devianza della variabile X, ovvero

$$DT = \sum_{i=1}^{k_X} (x_i - \bar{x})^2 \times n_i. = 124,56$$

quindi possiamo calcolare il rapporto di correlazione di Pearson come

$$\eta_{(X|Y)}^2 = \frac{DF}{DT} = \frac{63,618}{124,56} = 0,511$$

Dobbiamo stimare una retta di regressione

$$y = \alpha_0 + \alpha_1 x$$

La cui soluzione è data dalle equazioni di stima

$$\hat{\alpha}_1 = \frac{cov(X,Y)}{Var(X)}$$

$$\hat{\alpha}_0 = \bar{y} - \hat{\alpha}_1 \times \bar{x}$$

Il valore \overline{x} è stato calcolato precedentemente, la varianza di X possiamo ottenerla partendo dalla devianza totale calcolata precedentemente:

$$\sigma_X^2 = \frac{1}{100}DT = 1,246$$

Per Y abbiamo

$$M_1^Y = \frac{1}{100} \sum_{j=1}^{k_Y} n_{\cdot j} \times y_j = 0,69$$

$$M_2^Y = \frac{1}{100} \sum_{i=1}^{k_Y} n_{\cdot i} \times y_j^2 = 1,01$$

$$\sigma_Y^2 = M_2^Y - \left[M_1^Y\right]^2 = 1,01 - 0,69^2 = 0,534$$

Per il calcolo della covarianza abbiamo che

$x_i \times y_j \times n_{ij}$	0	1	2
1	0	12000	0
2	0	24000	12000
3	0	18000	30000
4	0	28000	64000

La covarianza può essere calcolata come

$$M_1^{XY} = \frac{1}{n} \sum_{i=1}^{k_X} \sum_{j=1}^{k_Y} x_i \times y_j \times n_{ij} = \frac{1}{100} 188 = 1,88$$

$$cov(X,Y) = M_1^{XY} - M_1^X \times M_1^Y = 1,88 - (1,88 \times 0,69) = 0,523$$

La retta può essere quindi stimata come

$$\hat{\alpha}_1 = \frac{cov(X,Y)}{Var(X)} = \frac{0,523}{1,246} = 0,468$$

$$\hat{\alpha}_0 = \bar{y} - \hat{\alpha}_1 \times \bar{x} = 0,69 - 0,468 \times 1,88 = -4,402$$

Il coefficiente di correlazione di Pearson è pari a

$$r = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{0,523}{1,246 \times 0,534} = 0,801$$

C'è alta correlazione tra le due variabili $(-1 \le r \le 1)$. Possiamo calcolare l'indice di determinazione lineare partendo da r

$$I_d^2 = r^2 = \left[\frac{cov(X, Y)}{\sigma_X \sigma_Y}\right]^2 = 0,801^2 = 0,642$$

Con il modello spieghiamo il 64,2% della variabilità del fenomeno

ESERCIZIO 3

La seguente tabella riporta la distribuzione di 100 persone, sui quali viene rilevato l'essere fumatore (3 modalità: non fumatore - ex fumatore - fumatore) ed il sesso.

$X \setminus Y$	Uomo	Donna	TOTALE
Non fumatore	20	25	45
Ex fumatore	25	5	30
Fumatore	10	15	25
TOTALE	55	45	100

- 1. Calcolare le distribuzioni di frequenze relative parziali di X e di Y
- 2. Si calcolino le contingenze assolute e si commentino quelle della prima colonna.
- 3. Si misuri la connessione tra X e Y mediante un indice basato su un'opportuna media quadratica delle contingenze relative e mediante un indice basato sulle medie aritmetiche delle contingenze.

SOLUZIONE

Le distribuzioni parziali di frequenze relative del carattere X si ottengono calcolando le distribuzioni di frequenze relative, fissata una modalità del carattere Y, quindi ogni valore è ottenuto come

$$f_{i|j} = \frac{n_{ij}}{n_{\cdot j}}$$

ed otteniamo

$X \setminus Y$	Uomo	Donna	TOTALE
Non fumatore	0,364	0,556	0,450
Ex fumatore	0,455	0,111	0,300
Fumatore	0,182	0,333	0,250
TOTALE	1,000	1,000	1,000

Le distribuzioni parziali di frequenze relative del carattere Y si ottengono calcolando le distribuzioni di frequenze relative, fissata una modalità del carattere X, quindi ogni valore è ottenuto come

$$f_{j|i} = \frac{n_{ij}}{n_{i\cdot}}$$

ed otteniamo

$X \setminus Y$	Uomo	Donna	TOTALE
Non fumatore	0,444	0,556	1,000
Ex fumatore	0,833	0,167	1,000
Fumatore	0,400	0,600	1,000
TOTALE	0,550	0,450	1,000

Le frequenze teoriche sono

$X \setminus Y$	Uomo	Donna	TOTALE
Non fumatore	24,75	$20,\!25$	45
Ex fumatore	16,5	13,5	30
Fumatore	13,75	11,25	25
TOTALE	55	45	100

Le contingenze sono definite come la differenza dalle

$X \setminus Y$	Uomo	Donna	TOTALE
Non fumatore	-4,75	4,75	0
Ex fumatore	$8,\!5$	-8,5	0
Fumatore	-3,75	3,75	0
TOTALE	0	0	0

La prima colonna ci dice che abbiamo osservato 4,75 non fumatori uomini in meno rispetto alla situazione di indipendenza, 8,5 ex fumatori uomini in più rispetto alla situazione di indipendenza e 3,75 fumatori uomini in meno rispetto alla situazione di indipendenza.

Un indice opportuno per il misurare la connessione tra X e Y, basato su una media aritmetica, è l'indice di connessione di Mortara, ovvero la media aritmetica del valore assoluto delle contingenze relative

$$M_1(|\rho|) = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c |\rho_{ij}| \times \hat{n}_{ij} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c |c_{ij}|$$

avendo a disposizione le contingenze assolute, usiamo la seconda formula, ed otteniamo

$$M_1(|\rho|) = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{c} |c_{ij}| = \frac{34}{100} = 0,34$$

in media aritmetica le frequenze osservate differiscono (in valore assoluto) del 34% dalle frequenze teoriche. Si poteva decidere di misurare il grado di dipendenza applicando l'indice di connessione di Pearson

$$M_2(|\rho|) = \sqrt{\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c |\rho_{ij}|^2 \times \hat{n}_{ij}} = \sqrt{\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^c \frac{c_{ij}^2}{\hat{n}_{ij}}}$$

Le contingenze al quadrato, diviso le frequenze teoriche, sono

X\Y	Uomo	Donna
Non fumatore	0,912	1,114
Ex fumatore	4,379	5,352
Fumatore	1,023	1,250

usando la seconda formula otteniamo

$$M_2\left(|\rho|\right) = \sqrt{\frac{1}{n}\sum_{i=1}^r\sum_{j=1}^c\frac{c_{ij}^2}{\hat{n}_{ij}}} = \sqrt{\frac{1}{100}\times14,029} = \sqrt{0,140} = 0,375$$

in media quadratica le frequenze osservate differisconodel 37% dalle frequenze teoriche.