《黑白棋》程序报告

姓名: 聂志强 学号: 2012307 班级: 信息安全

一. 问题重述

黑白棋问题:使用『蒙特卡洛树搜索算法』实现 miniAlphaGo for Reversi。

二. 五大核心设计思想

1. 蒙特卡洛树框架

a. 选择:

从搜索树的根节点开始,向下递归选择子节点,直至到达叶子节点或者到达具有还未被扩展过的子节点的节点L。选择过程中:

。如果所有可行动作都已经被拓展过了,那么我们将使用UCB公式计算该节点所有子节点的 UCB值,并找到值最大的一个子节点继续检查。反复向下迭代。

UCB:
$$l_t = \operatorname{argmax}_i \overline{x}_{i, T_{(i,t-1)}} + C \sqrt{\frac{2 \ln t}{T_{(i,t-1)}}}$$

- 。 如果被检查的局面依然存在没有被拓展的子节点,那么认为这个节点就是本次迭代的的目标 节点N,并找出N还未被拓展的动作A。执行步骤[2]
- 。 如果被检查到的节点是一个游戏已经结束的节点。那么从该节点直接执行步骤[4]

每一个被检查的节点的被访问次数在这个阶段都会自增。在反复的迭代之后, 我们将在搜索树的底端找到一个节点,来继续后面的步骤。

b. 扩展:

在选择阶段结束时候,如果还没有到达终止状态,那么我们就要对这个节点进行扩展,扩展出一个或多个节点(也就是进行一个可能的action然后进入下一个状态)。

c. 模拟:

我们基于目前的这个状态,根据某一种策略(例如random policy)进行模拟,直到游戏结束为止,以棋差作为评分。

d. 反向传播:

模拟结束之后,根据模拟的结果,我们要自底向上,反向更新所有节点的信息。如果在[1]的选择中直接发现了一个游戏结局的话,根据该结局来更新评分。每一次迭代都会拓展搜索树,随着迭代次数的增加,搜索树的规模也不断增加。当到了一定的迭代次数或者时间之后结束,选择根节点下最好的子节点作为本次决策的结果。

e. 代码框架

采用蒙特卡洛搜索树算法,定义了TreeNode树节点类和MCTS算法类。分别在两个类中定义相关方法

。 Node搜索树节点类:

```
判断节点是否完全扩展:
def full_expand(self)
判断当前是否为终结状态
def isfinish(self):
添加子节点
def add_child(self, child_state, action, color)
```

AIplayer算法类:

```
选择: 所有子节点都扩展完了,计算所有节点的UCB值def get_bestchild(self,node,is_exploration)拓展节点:
def expand(self,node)选择节点策略def SelectPolicy(self)模拟过程:
def SimulatePolicy(self,node)反向传播:
def BackPropogate(self,node,rewrd)
```

2. 剪枝搜索

当黑白棋黑子先手,在前面12步中,也就是抛开开局系统给出的四颗棋子外,最好不要把棋子放在中心两圈方框之外。这个部分的宗旨是先占满中心两圈方框,把对方逼出方框。因此设计剪枝搜索函数并且设置每次搜索深度为6,每搜索一次计算一次当前棋盘得分并根据得分计算出最佳走法

3. 超参数搜索

第一组以5递增对C进行超参数搜索,根据第一组结果确定C区间40—65,第二组以1递增对C进行超参数搜索,为减小不确定性和增加鲁棒性,对每组C重复3次搜索并调用matplotlib库绘制曲线图

4. 棋盘加权

根据黑白棋下棋技巧,当不同合法落子位置计算出的UCB值相近时,应该优先选择最边上的合法落子位置,尤其是四个角的落子点,因此给棋盘赋权重,达到以上效果

5. 蒙特卡洛搜索次数

黑白棋规则限制落子时间在60s内,若固定搜索次数则可能会超时或未能完全利用60s,因此采用time.time()函数记录时间并控制整个落子过程小于60s

三. 重点代码解析

```
class treeNode(object):
    def __init__(self, color, board, parent=None): #初始化函数
        self.parent = parent #当前节点的父节点,以备反向传播使用
        self.children=[] #当前节点的子节点集合
        self.numVisits=0 #访问次数
        self.totalReward = 0 #获取的奖励
        self.color=color #当前的执棋方颜色
        self.board=board #当前board状态
```

判断节点是否完全扩展:如果当前节点的孩子数等于所有合法的可能坐标,则判定这个节点已经被完全扩展

```
def full_expand(self):
    action = list(self.state.get_legal_actions(self.color))
    if len(self.children) == len(action):
        return True
    return False
```

添加子节点

```
def add_child(self, child_state, action, color):
    child_node = Node(child_state, parent=self, action=action, color=color)
    self.children.append(child_node)
```

UCT search的核心框架

- 为平衡搜索次数与60s时间限制,使用time.time()函数记录时间,当循环时间大于55s时退出循环, 根据UCB的值计算出下一步最佳落子位置
- 复盘数次蒙特卡洛树搜索落子过程,发现蒙特卡洛搜索算法在前期表现并不是很佳,根据黑白棋技巧: 当黑白棋黑子先手,在前面12步中(抛开开局系统给出的四颗棋子外),最好不要把棋子放在中心两圈方框之外。这个部分的宗旨是先占满中心两圈方框,把对方逼出方框。根据如上技巧,设计剪枝搜索算法,当棋盘总子数小于28时,调用剪枝搜索函数给被选的节点权重,优先选择剪枝搜索的结果,后面过程仅利用蒙特卡洛搜索算法

```
def uct(self, max_times, root):
    board_a=deepcopy(root.state)
    action_a, _= self.max_value(board_a, -65, 65, 0)
    for t in range(0, max_times):
        if time.time() - self.start >= 58:
        leave_node = self.select_expand_node(root)
        reward = self.random_stimulate_chess(leave_node)
        if leave_node.action==action_a and
((leave_node.state.count('X')+leave_node.state.count('0'))<=28):</pre>
            reward+=1000
        self.backup(leave_node, reward)
     n = len(root.children)
     for i in range(0, n):
            if 'A1' == root.children[i]:
                return 'A1'
            if 'H8' == root.children[i]:
                return 'H8'
            if 'A8' == root.children[i]:
                return 'A8'
            if 'H1' == root.children[i]:
                return 'H1'
     best_child = self.ucb(root, self.SCALAR)
     return best_child.action
```

选择+拓展过程:

- 1. 如果当前节点所有合法落子结果已经扩展,则根据当前节点各个孩子UCB的值选择节点 (选择过程)
- 2. 拓展子节点的策略:在这里对随机选择算法进行了改进,优先考虑目前期望值较大的节点,有0.5的概率在当前节点存在可扩展节点时选择不扩展。

```
def select_expand_node(self, node):
    if not self.game_overed(node.state):
        1 = list(node.state.get_legal_actions(node.color))
    if len(1) == 0:
        return node.parent
    if len(node.children) < len(1):</pre>
        r = random.uniform(0, 1)
        if r < self.balance or len(node.children) == 0:
            new_action = 1[len(node.children)]
            new_state = deepcopy(node.state)
            new_state._move(new_action, node.color)
            if node.color == 'X':
                new_color = '0'
            else:
                new\_color = 'x'
                node.add_child(new_state, new_action, new_color)
                return node.children[-1]
        else:
```

```
return random.choice(node.children)
else:
    new_node = self.ucb(node, self.SCALAR)
    return self.select_expand_node(new_node)
return node
```

UCB函数计算

```
def ucb(self, node, scalar):
    if node.color == self.color:
        best\_score = -1000
        best_children = []
        for child in node.children:
            exploit = child.reward / child.visits
            if child.visits == 0:
                best_children = [child]
                break
                explore = math.sqrt(2.0 * math.log(node.visits) /
float(child.visits))
                now_score = exploit + scalar * explore
                if now_score == best_score:
                    best_children.append(child)
                if now_score > best_score:
                    best_children = [child]
                    best_score = now_score
                return random.choice(best_children
     else:
         best_score = 1000
         best_children = []
         for child in node.children:
              exploit = child.reward / child.visits
              if child.visits == 0:
                  best_children = [child]
                  break
              explore = math.sqrt(2.0 * math.log(node.visits) / float(child.visits))
              now_score = exploit + scalar * explore
              if now_score == best_score:
                  best_children.append(child)
              if now_score < best_score:</pre>
                  best_children = [child]
                  best_score = now_score
        return random.choice(best_children)
```

模拟过程:

- 1. 经过奖励机制的超参数搜索,发现以 50+|棋差| 作为奖励机制效果最好,如下模拟过程代码,模拟过程采取随即策略,通过 current_node.isfinish() 判断是否到终结节点,到达终结节点后,返回 reward的值作为奖励
- 2. 在上述奖励机制的前提下又做了优化,因为四个角是黑白棋中的关键,所以在合法落子中如果存在四个角,则reward+=10增加该落点的reward权重

```
def SimulatePolicy(self, node):
      board = deepcopy(node.state)
        color = node.color
        count = 0
        while not self.game_overed(board):
            action_list = list(node.state.get_legal_actions(color))
            if not len(action_list) == 0:
                action = random.choice(action_list)
                board._move(action, color)
                if color == 'x':
                    color = '0'
                else:
                    color = 'x'
            else:
                if color == 'X':
                    color = '0'
                else:
                    color = 'X'
                action_list = list(node.state.get_legal_actions(color))
                action = random.choice(action_list)
                board._move(action, color)
                if color == 'X':
                    color = 'o'
                else:
                    color = 'x'
            count = count + 1
            if count >= 61:
                break
        winner, difference = board.get_winner()
        if winner == 2:
            reward = 0
        elif winner == 1:
            reward = 50+difference
        else:
            reward = -(50+difference)
        if node.state[0][0] == self.color:
            reward += 10
        if node.state[0][7] == self.color:
            reward += 10
        if node.state[7][0] == self.color:
            reward += 10
        if node.state[7][7] == self.color:
            reward += 10
        if self.color == 'X':
            reward = - reward
        return reward
```

反向传播过程:从拓展节点向上递归至根节点,每个节点访问次数+1,reward值相应增加模拟结果的返回值

```
def backup(self, node, reward):
    while node is not None:
    node.changevisits(1)
    node.changereward(reward)
    node = node.parent
    return 0
```

判断游戏是否结束:根据当前棋盘,判断棋局是否终止,如果当前选手没有合法下棋的位子,则切换选手;如果另外一个选手也没有合法的下棋位置,则比赛停止。

```
def game_overed(self, state):
   now_loc = list(state.get_legal_actions('X'))
   next_loc = list(state.get_legal_actions('0'))
   over = len(now_loc) == 0 and len(next_loc) == 0
   return over
```

为棋盘赋权:

- 1. 使一开始黑棋先占满中心两圈方框,把对方逼出方框
- 2. 当多个合法落子点reeward值相近时优先选择靠边,尤其是四个角

四. 实验结果

1. 初级

1) 黑棋先手 (黑棋赢)

2) 白棋后手 (白棋赢)

2. 中级

1) 黑棋先手 (黑棋赢)

2) 白棋后手 (白棋赢)

3. 高级

1) 黑棋先手 (黑棋赢)

2) 白棋后手 (白棋赢)

五. 总结

1. 共改进13版代码, 提交mo平台测试100次

- 2. 初级/中级/高级*黑棋先手/白棋后手共六次测试均获胜
- 3. 超参数搜索全过程: UCB起到探索和利用之间的平衡,所以C的参数设定很关键
 - 。 首先输出每次的reward大小及访问次数,观察后预先判断C的一个范围,使UCB等式加号两端的计算值量级匹配,否则会使选择过程仅根据搜索或利用单一维度在进行超参数搜索
 - 。 超参数搜索过程分为两组,第一组的目的是判断一个大致区间,因此使C以5递增,通过第一次的搜索结果,估计出最佳C的范围后,以1递增在所找范围内进行第二次超参数搜索,找到 精确值

如下为第二次超参数搜索时(Random[黑方]—Al[白方])绘制的图像,每个参数黑白棋均重复对抗3次以增加稳定性(每种颜色代表一次),函数值在0轴以下代表我方(Al)赢,具体数值为赢子的个数

4. 要注意对列表为空进行判断,例如如下实验中某次错误,模拟阶段中,children列表为空但未进行判断,仍调用函数random.choice随机选取 children列表中的元素产生报错

```
/cmp/ipykernei_os/i/244si/o.py in select_expand_node(self, node)
                      else:
                         new_node = self.ucb(node, self.SCALAR)
      --> 109
                         return self.select_expand_node(new_node)
              return node
         111
      /tmp/ipykernel_69/172449176.py in select_expand_node(self, node)
        111
     111
              return random.choice(node.children)
      /tmp/ipykernel_69/172449176.py in select_expand_node(self, node)
         106
107
       -> 108
109 return node
                        new_node = self.ucb(node, self.SCALAR)
return self.select_expand_node(new_node)
     /tmp/ipykernel_69/172449176.py in ucb(self, node, scalar)

148 best_children = [child]

149 best_score = now_score
--> 150 return random.choice(best_children)
         151
              def uct(self, max_times, root):
         152
      except ValueError:
         260
                      raise IndexError('Cannot choose from an empty sequence') from None
        263
     IndexError: Cannot choose from an empty sequence
[SA]: # from game import Game
```