The Hygroscopic Capacity of Different Types of Paper Towel

 Project Members:
 Chan Tsz Ngai
 1155110087

 Chan King Yeung
 1155119394

 Ching Sze Wai
 1155126012

 Lam Zi Jin
 1155126578

Tsang Wai Ying

1155127086

Abstract

- Background
- Methods
 - Defining the objectives
 - Identifying the variations
 - Rules
 - Difficulties
- Results
 - Data
 - Result
 - Discussion
- Conclusion

Background

- Topic: Hygroscopic Capacity of Paper Towels
 - Different types and brands
- From a broken cup of water
- Being Curious
- Close to life
 - Anywhere
 - Anytime

Define the objectives of the experiment

- Compare the hygroscopic capacity of different types of paper towel.
- Each type of paper towel is designed for different use.
- The weight of the water which is absorbed by the paper towel is different.

a. Treatment factors and their levels

- Three types of paper towel
 - kitchen paper
 - mini pocket tissue
 - toilet paper
- purchased at a local popular store
- cut into similar size

b. Identify the experimental units

- The weight loss of water.
- Different types of paper towel and water.

Experiment procedure:

- A cup of water will be put on a digital scale.
- The paper towel will be cut to the same size by using rulers and scissors.
- The paper towel can be completely beneath the water and put under the water for 10 seconds.
- Wait for 10 seconds to drip water into the cup.

Blocking factors:

- Water trapping ability of the paper.
- After the paper towel absorbed water and be picked up, the paper towels are held and extra water on the paper surface would be dripped off.
- Weak water trapping ability makes the dripping non-stop and causing extra of water is dripped out.
- The data collected is smaller than expected and cannot show the true power of water absorption of the paper.

Noise factors:

- Air humidity
 - Hong Kong has a humid weather and paper towels used for the experiment may unavoidably absorb the moisture in the air.
 - The data collected would be smaller than expected and cannot show the true power of water absorption of the paper.
- The accuracy of the digital scale
 - The digital scale was bought in the local popular store and the small error of the digital scale was neglectable.

Covariates:

- The difference in brands of paper towel may resulting in different hygroscopic capacity.
 - Cluster random sampling is used in the experiment.

Choose a rule by which to assign the experimental units to the levels of the treatment factors

Cluster random sampling

150 observations

Choose a rule by which to assign the experimental units to the levels of the treatment factors

- Using different brands of the same type of paper towels
- The same area (10×20cm)
- Time for absorption: 10 seconds
- Time for water dripping: 10 seconds
- Newly bought paper towels

The experimental procedure

Picked up A piece of paper towel using the forceps.

Immerse the paper towel in water for 10 s.

removed the paper towel from the water and drip for 10 s.

The measurements to be made

Types (Levels)	Paper towel	Pre-weight of the water (grams)	9	Post-we (grams)	ight of th	e water	Weight (grams)	
Kitchen Paper	1		1000			992		14
	2		1000			991		15
	3		1000			991		13
Mini pocket tissue	51		1000			992		11
	52		1000			991		10
	53		1000			992		12
Toilet paper	101		1000			990		9
	102		1000			990		8
	103		1000			991		9

Neglecting the decimal point of the data

Difficulties & Solution

How we ensure the fairness and reliability of the data

We will discuss...

- Expected Difficulties & Solution
- Pilot experiment
- Difficulties encountered & Solution

Expected Difficulties

- Damage due to unifying size
- Water stick on tools
- Damage due to operations

Solution

Regulate a specific size

Gentle flick

Gentle handle and dull surface of tool

Pilot experiment

Random container

Random Amount of water

Difficulties encountered

- Irregular shape
- Splash of water

Solution

Lager size of container & Flatly put

Gentle manner

Data management

How we analysis data that we collected

Software

- Excel 2020 (Microsoft Corp)
 - Data organization, such as data entering and cleaning
- SAS University Edition (SAS Institute)
 - Statistical analysis, such as constructing graphs and tables

Test of Normality

- QQ plot
- Data focus on the center
- A nearly 45° straight line

DATA ARE NORMALLY DISTRIBUTED

One-way classification model

- Identify the fixed effects in our treatments
 - Each treatment is categorized with a single factor
 - An insight into the different population means from others
- Model: $Y_{ij} = \mu_i + \epsilon_{ij}$ established
 - Fact: data are normally distributed
- We rewrite into $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$

Why not other methods?

- Multiple linear regression
 - Requires a precise design matrix
 - Tedious full-scale matrix multiplication

Level of significance

- Set to be 5%
 - Good enough for our experiment

Results

Information we obtained in statistical analysis

Summary Statistics

Analysi	s Variable: Amount	
, tildiyo	o ranabion / time and	

Level of Type Kitchen Paper	N 50	Mean 13.02	Std Error 0.46	Minimum 8.00	Maximum 18.00	Lower 95% CL for Mean 12.10	Upper 95% CL for Mean 13.94
Mini Pocket Tissue	50	9.88	0.21	7.00	12.00	9.46	10.30
Toilet Paper	50	9.72	0.22	6.00	14.00	9.28	10.16

(Table 1)

Summary Statistics (con't)

- Kitchen paper absorbs more
 - Large variation
- The amount of absorption is similar among mini pocket tissue and toilet paper

Test of fixed effects

 H_0 : $\alpha_{kitchen} = \alpha_{tissue} = \alpha_{toilet} = 0$ vs H_1 : at least one α_i is NOT zero

The ANOVA Procedure Dependent Variable: Amount					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	346.25	173.13	34.19	<.0001
Error	147	744.34	5.06		1
Corrected Total	149	1090.59			1

(Table 2)

- The p-value is smaller than 0.05
- Reject H₀ at the 5% level of significance
- The means of different types of paper are differ

 THE TREATMENTS IN THE EXPERIMENT

 THE MEAN THE TREATMENTS IN THE EXPERIMENT

 THE MEAN THE TREATMENTS IN THE EXPERIMENT

 THE MEAN THE TREATMENTS IN THE EXPERIMENT

 THE TREATMENT THE TREATMEN

Two tails test for means

$$H_0: \frac{\sigma_{toilet}^2}{\sigma_{tissue}^2} = 1$$
 vs $H_1: \frac{\sigma_{toilet}^2}{\sigma_{tissue}^2} \neq 1$

• The p-value is greater than 0.05

 Equality of Variances

 Method
 Num DF
 Den DF
 F Value
 Pr > F

 Folded F
 49
 49
 1.08
 0.79

(Table 3)

- Not reject H₀ at the 5% level of significance
- Two variances are assumed to be equal

 H_0 : $\mu_{tissue} - \mu_{toilet} = 0$ vs H_1 : $\mu_{tissue} - \mu_{toilet} \neq 0$

The p-value is greater than 0.05

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	0.53	0.6006

Not reject H₀ at the 5% level of significance

(Table 4)

 Insufficient evidence to conclude two means are not different

t-test for means

$$H_0: \frac{\sigma_{tissue}^2}{\sigma_{kitchen}^2} = 1$$
 vs $H_1: \frac{\sigma_{tissue}^2}{\sigma_{kitchen}^2} \neq 1$

- The p-value is less than 0.05
- Reject H₀ at the 5% level of significance
- Two variance are assumed to be unequal

$H_0: \mu_{kitchen} - \mu_{tissue} \leq 0$ vs $H_1: \mu_k$	$_{itchen} - \mu_{tissue} > 0$
--	--------------------------------

- The p-value is less than 0.05
- Reject H₀ at the 5% level of significance
- kitchen paper greater than mini pocket paper KITCHEN PAPER ABSORBS MORE WATER

Equality of Variances					
Method Num DF Den DF F Value Pr > F					
Folded F	49	49	4.73	<.0001	

(Table 5)

Method	Variances	DF	t Value	Pr > t
Satterthwaite	Unequal	68.83	6.21	<.0001

(Table 6)

Discussion

Summarize the key points that we found

Discussion

- Fixed effects exist in our treatment
 - Different hydroscopic capacity among different types of paper
- Kitchen paper has the highest hygroscopic capacity
 - Absorbs 13.02g of water on average
- Mini pocket tissue and toilet paper are similar in water absorption
 - Mini pocket paper (9.88g)
 - Toilet paper (9.72g)

Conclusion

Conclusion

- Relationship between different types of paper towel and absorption of water
 - Winner: Kitchen paper
- Not a perfect pilot
 - Limited budget
 - Not using the precise tools
 - Social situation
 - Not able to buy different paper towels
- Further studies
 - Comprehensive comparing
- Using kitchen paper instead of others when cleaning

Thank you!