

The Problem

Algorithms

Algorithm Selection

Results & Observations

Maximum Common Subgraph

Definition

A maximum common (induced) subgraph between graphs G_1 and G_2 is a graph $G_3 = (V_3, E_3)$ such that G_3 is isomorphic to induced subgraphs of both G_1 and G_2 with $|V_3|$ maximised.

Maximum Common Subgraph

Definition

A maximum common (induced) subgraph between graphs G_1 and G_2 is a graph $G_3 = (V_3, E_3)$ such that G_3 is isomorphic to induced subgraphs of both G_1 and G_2 with $|V_3|$ maximised.

Clique Encoding

Which Is Better?

 (G_1, G_2)

$$(G_1, G_2) \stackrel{\textcircled{\tiny 1}}{\longrightarrow} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$$

$$(G_1, G_2) \xrightarrow{f} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \xrightarrow{\mathsf{ML} \ \not\square}$$

Overall Performance

Observations

- Most important features:
- labelling percentage
- standard deviation of degrees (for both graphs)
- Looking at a single feature is not enough

Observations

- Most important features:
- labelling percentage
- standard deviation of degrees (for both graphs)
- Looking at a single feature is not enough

Thank You!