Quiz 1. True/False: The function f(x) = 9 - 5x is a linear function with slope 5 and y-intercept 9.

Solution. The statement is *false*. We know a function of the form f(x) = mx + b is a linear function with slope m and y-intercept b. Because we have f(x) = 9 - 5x = -5x + 9, we have m = -5, i.e. slope -5, and y-intercept 9, i.e. (0,9). But then the slope is -5, not the given value of 5.

Quiz 2. True/False: If f(x) = 2x - 1 and g(x) = 3 - x, then $(f \circ g)(0) = f(0)g(0) = -1 \cdot 3 = -3$.

Solution. The statement is *false*. First, note that f(0) = 2(0) - 1 = -1, g(0) = 3 - 0 = 3, and f(3) = 2(3) - 1 = 6 - 1 = 5. What was given was function multiplication, i.e. what was computed was $(fg)(0) = f(0)g(0) = -1 \cdot 3 = -3$. What was originally written was function composition. We have $(f \circ g)(0) = f(g(0)) = f(3) = 5$.

Quiz 3. *True/False*: Compared to the graph of f(x), the graph of 5 - 3f(x + 2) is stretched by a factor of 3, then shifted to the right by 2 and up by 5.

Solution. The statement is *false*. We know that f(x+2) is the graph of f(x) shifted 2 to the *left*. The graph of -3f(x+2) is then the graph of f(x) shifted two to the left, stretched by a factor of 3, and reflected across the x-axis. Finally, the graph of 5-3f(x+2) is the graph of f(x) shifted two to the left, stretched by a factor of 3, reflected across the x-axis, then shifted upwards by 5.

Quiz 4. *True/False*: The function $f(x) = 4(5^{-x})$ is a concave up, decreasing, exponential function.

Solution. The statement is *true*. A function of the form $f(x) = Ab^x$ is an exponential function. We can summarize whether f(x) is increasing or decreasing and concave up or down as follows: But

	0 < b < 1	b > 1
A > 0	Decreasing, Concave Up	Increasing, Concave Up
A < 0	Increasing, Concave Down	Decreasing, Concave Down

we have $f(x) = 4(5^{-x}) = 4(5^{-1})^x = 4\left(\frac{1}{5}\right)^x$. Therefore, f(x) is exponential with A = 4 > 0 and $0 < b = \frac{1}{5} < 1$. Therefore, f(x) is a decreasing, concave up, exponential function.

Quiz 5. True/False: The function $f(x) = 5(2^{1-2x})$ is equal to the function $g(x) = 10\left(\frac{1}{4}\right)^x$.

Solution. The statement is *true*. Observe that we have. . .

$$f(x) = 5(2^{1-2x}) = 5 \cdot 2^1 \cdot 2^{-2x} = 10 \cdot 2^{-2x} = 10(2^{-2})^x = 10\left(\frac{1}{2^2}\right)^x = 10\left(\frac{1}{4}\right)^x = g(x)$$

Quiz 6. *True/False*: $\log_5(4^{-3}) = -3$

Solution. The statement is false. Recall that $\log_b(y)$ represents the power of b that yields y; that is, $\log_b(y) = x$ if and only if $b^x = y$. Then clearly $\log_b(b^n) = n$ because $b^n = b^n$. Notice then that in the case of $\log_b(b^n)$, the logarithmic and exponential functions 'undo' each other. However, the base of the logarithm and the base of the exponential function need to match. In the case of $\log_5(4^{-3})$, $b = 5 \neq 4$ so that these do not 'undo' each other. In fact, we have $\log_5(4^{-3}) \approx -2.58406$ because $5^{-2.58406} \approx 4^{-3} = \frac{1}{64}$. One case use $\log_b(b^n) = n$ in the computation of $\log_5(4^{-3}) = -3$ if one uses the change of base formula: $\log_b(y) = \frac{\log_a(y)}{\log_a(b)}$. In this case, we have...

$$\log_5(4^{-3}) = \frac{\log_4(4^{-3})}{\log_4(5)} = \frac{-3}{\log_4(5)} \approx \frac{-3}{1.160964} \approx -2.58406$$

Quiz 7. True/False:
$$\ln\left(\frac{x^5}{\sqrt[3]{y}}\right) = 5\ln(x) - \frac{1}{3}\ln(y)$$

Solution. The statement is *true*. Recall that $\log_b(x^n) = n \log_b(x)$ and $\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$; that is, for logarithms, you can turn powers into coefficients (and vice versa) and quotients into differences (and vice versa). But then we have...

$$\ln\left(\frac{x^5}{\sqrt[3]{y}}\right) = \ln\left(\frac{x^5}{y^{1/3}}\right) = \ln(x^5) - \ln(y^{1/3}) = 5\ln(x) - \frac{1}{3}\ln(y)$$

Quiz 8. *True/False*: If $2^{\sqrt{x}} - 5 = 3$, then x = 9.

Solution. The statement is *true*. One way of being somewhat convinced is to substitute x = 9:

$$\left(2^{\sqrt{x}} - 5\right)\Big|_{x=9} = 2^{\sqrt{9}} - 5 = 2^3 - 5 = 8 - 5 = 3$$

However, all this shows is that if x=9, then $2^{\sqrt{x}}-5=3$. We need to show that $2^{\sqrt{x}}-5=3$, then it must be the case that x=9; that is, we need to solve the equation $2^{\sqrt{x}}-5=3$ for x. We have...

$$2^{\sqrt{x}} - 5 = 3$$

$$2^{\sqrt{x}} = 8$$

$$\log_2(2^{\sqrt{x}}) = \log_2(8)$$

$$\sqrt{x} = 3$$

$$(\sqrt{x})^2 = 3^2$$

$$x = 9$$

Quiz 9. *True/False*: $tan(\theta) cot(\theta) = 1$

Solution. The statement is *true*. Recall that $\cot(\theta) = \frac{1}{\tan \theta}$. But then we have...

$$\tan(\theta)\cot(\theta) = \tan(\theta) \cdot \frac{1}{\tan \theta} = 1$$

Quiz 10. True/False: The reference angle for the angle that is 30° clockwise from the negative y-axis is 240° .

Solution. The statement is *false*. A reference angle is always an angle 'in' Quadrant I; that is, a reference angle θ is always such that $0 \le \theta \le \frac{\pi}{2}$, i.e. $0 \le \theta \le 90^{\circ}$. Therefore, it is impossible to have a reference angle of 240° . We can see in the diagram below that an angle that is 30° clockwise from the negative y-axis below.

This is indeed an angle of 240° with the positive x-axis (coming from $270^{\circ} - 30^{\circ} = 240^{\circ}$). However, the smallest possible angle this ray makes with the x-axis is 60° . Therefore, the reference angle is 60° (represented in red in the diagram above).

Quiz 11. True/False: Because we have $\tan(\theta + 2\pi) = \tan(\theta)$ for all $\theta \in \mathbb{R}$, the period of $\tan \theta$ is 2π . **Solution.** The statement is *false*. The period of a function f(x) (if it exists) is the *smallest* positive value P such that f(x+P) = f(x) for all x. While it is true that $\tan(\theta + 2\pi) = \tan(\theta)$ for all $\theta \in \mathbb{R}$, this is not necessarily the *smallest* possible value such that this is true. Observe that...

$$\tan(\theta + \pi) = \frac{\sin(\theta + \pi)}{\cos(\theta + \pi)} = \frac{-\sin(\theta)}{-\cos(\theta)} = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta)$$

But then the period is at most π . In fact, the period of tangent is π . Therefore, $\tan(\theta + \pi) = \tan(\theta)$ for all $\theta \in \mathbb{R}^1$.

¹Note: We have only shown that the period is at most π . To show that the period is π , we need to show that there can be no smaller value, say P, such that $\tan(\theta+P)=\tan(\theta)$. Suppose that $\tan(\theta+P)=\tan(\theta)$. Then using the angle sum formula for tangent, we then have $\tan(\theta)=\tan(\theta+P)=\frac{\tan(\theta)+\tan(P)}{1-\tan(\theta)\tan(P)}$. But this gives $\tan(\theta)+\tan(P)=\tan(\theta)-\tan^2(\theta)\tan(P)$. But then we have $\tan(P)\left(\tan^2(\theta)+1\right)=0$. If $\tan^2(\theta)+1=0$, then $(\tan(\theta))^2=-1$, which is impossible. But then it must be $\tan(P)=0$. This implies that $P=k\pi$ for some integer k. The smallest (positive) solution is clearly when k=1, which gives $P=\pi$.

Quiz 12. *True/False*: $\cos^2(\theta) = \sin(\theta) (\csc(\theta) - \sin(\theta))$

Solution. The statement is *true*. Starting with the right hand side, we have...

$$\sin(\theta) \left(\csc(\theta) - \sin(\theta) \right) = \sin(\theta) \left(\frac{1}{\sin(\theta)} - \sin(\theta) \right)$$
$$= \frac{\sin(\theta)}{\sin(\theta)} - \sin^2(\theta)$$
$$= 1 - \sin^2(\theta)$$
$$= \cos^2(\theta)$$

where for the last equality we have used the fact that $\sin^2(\theta) + \cos^2(\theta) = 1$, i.e. $\cos^2(\theta) = 1 - \sin^2(\theta)$.

Quiz 13. *True/False*: There are only two solutions to the equation $\tan \theta = \sqrt{3}$.

Solution. The statement is *false*. We know that $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ and $\tan\left(\frac{4\pi}{3}\right) = \sqrt{3}$. There are then at least two solutions. However, the period of $\tan(\theta)$ is 2π . Then any rotation of $\frac{\pi}{3}$ by any multiple of π radians counterclockwise or clockwise will also be a solution of the equation. For instance, all of the following are solutions to the equation $\tan(\theta) = \sqrt{3}$.

$$\frac{\pi}{3} - 2\pi = -\frac{5\pi}{3} \qquad \frac{\pi}{3} + 2\pi = \frac{7\pi}{3}$$
$$\frac{\pi}{3} - \pi = -\frac{2\pi}{3} \qquad \frac{\pi}{3} + \pi = \frac{4\pi}{3}$$

Quiz 14. *True/False*: The function $f(x) = \cos x$ has a well-defined 'global' inverse.

Solution. The statement is *false*. This is immediately false because $\cos(0) = 1$ and $\cos(2\pi) = 1$ so that $\cos^{-1}(1)$ is not well defined. Alternatively, observe that the graph of $f(x) = \cos x$ fails the horizontal line test so that it cannot have a global inverse.

Therefore, $f(x) = \cos x$ can only have an inverse on a restricted domain. In fact, the entirety of the range of $f(x) = \cos x$ is seen on the interval $[0, \pi]$ and $f(x) = \cos x$ is one-to-one on this interval. Therefore, $\cos^{-1}(x)$ is well defined on this interval.

Quiz 15. True/False: To solve the equation $\sqrt{2}(\sqrt{2}\cos x - 1) = 0$, we divide by $\sqrt{2}$, add 1, then divide by $\sqrt{2}$ to obtain $\cos x = \frac{1}{\sqrt{2}}$. Because the period of $\cos x$ is 2π , we find the solutions in $[0,2\pi]$, which are $x = \frac{\pi}{4}$ and $x = \frac{7\pi}{4}$. But then because the period of $\cos x$ is 2π , the solutions are $x = \frac{\pi}{4} \pm 2k\pi$ and $x = \frac{7\pi}{4} \pm 2k\pi$.

Solution. The statement is *true*. We can simply solve this equation:

$$\sqrt{2}(\sqrt{2}\cos x - 1) = 0$$

$$\sqrt{2}\cos x - 1 = 0$$

$$\sqrt{2}\cos x = 1$$

$$\cos x = \frac{1}{\sqrt{2}}$$

We know that $\cos\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and $\cos\left(\frac{7\pi}{4}\right)=\frac{1}{\sqrt{2}}$. But because the period of $\cos x$ is 2π , we know the solutions are $\frac{\pi}{4}\pm 2k\pi$ and $\frac{7\pi}{4}\pm 2k\pi$, where k is an integer.