

Université Mohammed Premier École Nationale des Sciences Appliquées Oujda

Prof. Kamal GHOUMID

Année universitaire 2023 - 2024

 $4^{\rm \grave{e}me}$ année : Ingénierie des Technologies de l'Information & Réseaux de Communications

Communications Numériques Avancées

Contrôle # 1 #

Durée d'examen $2h: 14h\ 30\,min$ - $16h\ 30\,min$ (Documents autorisés)

Avril 2024

Exercice 1	Exercice 2	Exercice 3	Total
/4	/8	/8	/20

Bonne chance ...

Contrôle # 1 #

.

Exercice -1-: Récepteur optimal, Probabilité d'erreur

Un système de communication binaire utilise les signaux $S_i(t)$ (i=0;1) définis dans l'équation (??) dans une transmission numérique. Le bruit présent dans le canal est de type additif, blanc et Gaussien (AWGN) de densité spectrale de puissance unilatérale $N_0 = 2 \cdot 10^{-15} \, W/Hz$.

$$s_i(t) = \begin{cases} s_1(t) = A \sin(\frac{\pi t}{T}) & 0 \le t \le T \quad \text{pour '1' \'emis} \\ s_0(t) = 0 & 0 \le t \le T \quad \text{pour '0' \'emis} \end{cases}$$
 (1)

- 1. Donner la structure du récepteur optimal qui maximise le rapport signal sur bruit.
- 2. Déterminer la probabilité d'erreur P_e en fonction de A, T et N_0 .
- 3. A.N $P(s_1) = P(s_2) = \frac{1}{2}$, $A = 0,25 \, mV$, et $T = 1 \, \mu s$. Calculer la valeur de la probabilité d'erreur P_e . (Voir la table de la fonction erfc(x) de la figure 2).

Ex -2- : Égaliseur ZF, Calcul des coefficients, Probabilité d'erreur.

Des symboles binaires équiprobables et indépendants $a_k = \{-1, 1\}$ sont envoyés via un canal de transmission de filtre total $F(z) = 0, 4 + 0, 6z^{-1}$. Le canal est soumis à un bruit de type AWGN de variance $\sigma^2 = 0, 1$ et le filtre de mise en forme est rectangulaire dans le domaine fréquentiel.

- 1. Donner l'expression de l'égaliseur ZF (Zero Forcing, "forçage à zéro") de longueur infinie.
- 2. Calculer les coefficients w_0, w_1 et w_2 de la réponse impulsionnelle finie, de longueur trois, du filtre égaliseur ZF.
- 3. Quelle est l'expression de la fonction de transfert totale?
- 4. Calculer, en sortie de l'égaliseur, l'énergie du bruit et l'énergie de l'IES (Interférences Entre Symboles).
- 5. Calculer le rapport signal sur bruit plus interférences, puis le comparer au cas sans égalisation. Conclure.

Ex -3- : Comparaison entre modulations : Borne de l'union.

On considère les trois constellations (a), (b) et (c) de la modulation 8QAM représentées sur la figure ci-dessous :

- 1. Dessiner les frontières appropriées de décisions pour chaque constellation.
- 2. Effectuer un codage de Gray pour chaque type de la modulation 8QAM.

- 3. Calculer la distance minimale d_{min} , l'énergie symbole E_s et l'énergie bit moyenne E_b dans chaque cas.
- 4. En utilisant l'approximation de la borne de l'union, calculer la probabilité d'erreur pour chaque constellation.
- 5. Quelle est la meilleure constellation en terme du rapport $\frac{E_b}{N_0}$?

FIGURE 1 – Trois constellations (a), (b) et (c) de la modulation 8QAM.

		(Complem	enta	ry Error F	unct	ion Tabl	e					
х	erfc(x)	х	erfc(x)	х	erfc(x)	х	erfc(x)	х	erfc(x)	х	erfc(x)	х	erfc(x)
0	1.000000	0.5	0.479500	1	0.157299	1.5	0.033895	2	0.004678	2.5	0.000407	3	0.00002209
0.01	0.988717	0.51	0.470756	1.01	0.153190	1.51	0.032723	2.01	0.004475	2.51	0.000386	3.01	0.00002074
0.02	0.977435	0.52	0.462101	1.02	0.149162	1.52	0.031587	2.02	0.004281	2.52	0.000365	3.02	0.00001947
0.03	0.966159	0.53	0.453536	1.03	0.145216	1.53	0.030484	2.03	0.004094	2.53	0.000346	3.03	0.00001827
0.04	0.954889	0.54	0.445061	1.04	0.141350	1.54	0.029414	2.04	0.003914	2.54	0.000328	3.04	0.00001714
0.05	0.943628	0.55	0.436677	1.05	0.137564	1.55	0.028377	2.05	0.003742	2.55	0.000311	3.05	0.00001608
0.06	0.932378	0.56	0.428384	1.06	0.133856	1.56	0.027372	2.06	0.003577	2.56	0.000294	3.06	0.00001508
0.07	0.921142	0.57	0.420184	1.07	0.130227	1.57	0.026397	2.07	0.003418	2.57	0.000278	3.07	0.00001414
0.08	0.909922	0.58	0.412077	1.08	0.126674	1.58	0.025453	2.08	0.003266	2.58	0.000264	3.08	0.00001326
0.09	0.898719	0.59	0.404064	1.09	0.123197	1.59	0.024538	2.09	0.003120	2.59	0.000249	3.09	0.00001243
0.1	0.887537	0.6	0.396144	1.1	0.119795	1.6	0.023652	2.1	0.002979	2.6	0.000236	3.1	0.00001165
0.11	0.876377	0.61	0.388319	1.11	0.116467	1.61	0.022793	2.11	0.002845	2.61	0.000223	3.11	0.00001092
0.12	0.865242	0.62	0.380589	1.12	0.113212	1.62	0.021962	2.12	0.002716	2.62	0.000211	3.12	0.00001023
0.13	0.854133	0.63	0.372954	1.13	0.110029	1.63	0.021157	2.13	0.002593	2.63	0.000200	3.13	0.00000958
0.14	0.843053	0.64	0.365414	1.14	0.106918	1.64	0.020378	2.14	0.002475	2.64	0.000189	3.14	0.00000897
0.15	0.832004	0.65	0.357971	1.15	0.103876	1.65	0.019624	2.15	0.002361	2.65	0.000178	3.15	0.00000840
0.16	0.820988	0.66	0.350623	1.16	0.100904	1.66	0.018895	2.16	0.002253	2.66	0.000169	3.16	0.00000786
0.17	0.810008	0.67	0.343372	1.17	0.098000	1.67	0.018190	2.17	0.002149	2.67	0.000159	3.17	0.00000736
0.18	0.799064	0.68	0.336218	1.18	0.095163	1.68	0.017507	2.18	0.002049	2.68	0.000151	3.18	0.00000689
0.19	0.788160	0.69	0.329160	1.19	0.092392	1.69	0.016847	2.19	0.001954	2.69	0.000142	3.19	0.00000644
0.2	0.777297	0.7	0.322199	1.2	0.089686	1.7	0.016210	2.2	0.001863	2.7	0.000134	3.2	0.00000603
0.21	0.766478	0.71	0.315335	1.21	0.087045	1.71	0.015593	2.21	0.001776	2.71	0.000127	3.21	0.00000564
0.22	0.755704	0.72	0.308567	1.22	0.084466	1.72	0.014997	2.22	0.001692	2.72	0.000120	3.22	0.00000527
0.23	0.744977	0.73	0.301896	1.23	0.081950	1.73	0.014422	2.23	0.001612	2.73	0.000113	3.23	0.00000493
0.24	0.734300	0.74	0.295322	1.24	0.079495	1.74	0.013865	2.24	0.001536	2.74	0.000107	3.24	0.00000460
0.25	0.723674	0.75	0.288845	1.25	0.077100	1.75	0.013328	2.25	0.001463	2.75	0.000101	3.25	0.00000430
0.26	0.713100	0.76	0.282463	1.26	0.074764	1.76	0.012810	2.26	0.001393	2.76	0.000095	3.26	0.00000402
0.27	0.702582	0.77	0.276179	1.27	0.072486	1.77	0.012309	2.27	0.001326	2.77	0.000090	3.27	0.00000376
0.28	0.692120	0.78	0.269990	1.28	0.070266	1.78	0.011826	2.28	0.001262	2.78	0.000084	3.28	0.00000351
0.29	0.681717	0.79	0.263897	1.29	0.068101	1.79	0.011359	2.29	0.001201	2.79	0.000080	3.29	0.00000328
0.3	0.671373	8.0	0.257899	1.3	0.065992	1.8	0.010909	2.3	0.001143	2.8	0.000075	3.3	0.00000306
0.31	0.661092	0.81	0.251997	1.31	0.063937	1.81	0.010475	2.31	0.001088	2.81	0.000071	3.31	0.00000285
0.32	0.650874	0.82	0.246189	1.32	0.061935	1.82	0.010057	2.32	0.001034	2.82	0.000067	3.32	0.00000266
0.33	0.640721	0.83	0.240476	1.33	0.059985	1.83	0.009653	2.33	0.000984	2.83	0.000063	3.33	0.00000249
0.34	0.630635	0.84	0.234857	1.34	0.058086	1.84	0.009264	2.34	0.000935	2.84	0.000059	3.34	0.00000232
0.35	0.620618	0.85	0.229332	1.35	0.056238	1.85	0.008889	2.35	0.000889	2.85	0.000056	3.35	0.00000216
0.36	0.610670	0.86	0.223900	1.36	0.054439	1.86	0.008528	2.36	0.000845	2.86	0.000052	3.36	0.00000202
0.37	0.600794	0.87	0.218560	1.37	0.052688	1.87	0.008179	2.37	0.000803	2.87	0.000049	3.37	0.00000188
0.38	0.590991	0.88	0.213313	1.38	0.050984	1.88	0.007844	2.38	0.000763	2.88	0.000046	3.38	0.00000175
0.39	0.581261	0.89	0.208157	1.39	0.049327	1.89	0.007521	2.39	0.000725	2.89	0.000044	3.39	0.00000163
0.4	0.571608	0.9	0.203092	1.4	0.047715	1.9	0.007210	2.4	0.000689	2.9	0.000041	3.4	0.00000152
0.41	0.562031	0.91	0.198117	1.41	0.046148	1.91	0.006910	2.41	0.000654	2.91	0.000039	3.41	0.00000142
0.42	0.552532	0.92	0.193232	1.42	0.044624	1.92	0.006622	2.42	0.000621	2.92	0.000036	3.42	0.00000132
0.43	0.543113	0.93	0.188437	1.43	0.043143	1.93	0.006344	2.43	0.000589	2.93	0.000034	3.43	0.00000123
0.44	0.533775	0.94	0.183729	1.44	0.041703	1.94	0.006077	2.44	0.000559	2.94	0.000032	3.44	0.00000115
0.45	0.524518	0.95	0.179109	1.45	0.040305	1.95	0.005821	2.45	0.000531	2.95	0.000030	3.45	0.00000107
0.46	0.515345	0.96	0.174576	1.46	0.038946	1.96	0.005574	2.46	0.000503	2.96	0.000028	3.46	0.00000099
0.47	0.506255	0.97	0.170130	1.47	0.037627	1.97	0.005336	2.47	0.000477	2.97	0.000027	3.47	0.00000092
0.48	0.497250	0.98	0.165769	1.48	0.036346	1.98	0.005108	2.48	0.000453	2.98	0.000025	3.48	0.00000086
0.49	0.488332	0.99	0.161492	1.49	0.035102	1.99	0.004889	2.49	0.000429	2.99	0.000024	3.49	0.00000080

FIGURE 2 — Table de quelques valeurs de la fonction $\operatorname{erfc}(x)$.