UNIVERSITY of WASHINGTON

Extending t-SNE

MEGAN MORRISON AND BENJAMIN LIU DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY OF WASHINGTON

MNIST

TAIL FATNESS

OVERVIEW OF T-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE) is a dimension reduction technique for data visualization.

The similarity of N data points in the origin space is first encoded in a probability distribution $P.\ N$ new points in the low-dimensional embedding space are then randomly distributed and their

Figure 1. Illustration of t-SNE. A representation of data in a high-dimensional space \mathbb{R}^d is created in a low-dimensional space such as \mathbb{R}^2 .

similarity Q is calculated. Through gradient descent, the positions of these points are adjusted to bring P and Q into as close agreement as possible.

We show several of variants of the t-SNE algorithm that aim to produce more accurate representations of the data and improve the quality of clusters.

JOINT AND CONDITIONAL DISTRIBUTIONS

t-SNE begins by defining a family of conditional distributions P_i . The probability $p_{i|i}$ measures how similar or related point x_i is to point x_i ,

$$p_{j|i} = \frac{\exp(-\|x_j - x_i\|_2^2 / \sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_k - x_i\|_2^2 / \sigma_i^2)}.$$

Each σ_i measures the scale of the neighborhood of point x_i . Tightly packed points are assigned smaller values and more loosely packed points are given larger values.

The probabilities $p_{j|i}$ and $p_{i|j}$ are not, in general, equal. A single symmetric joint distribution *P* is defined by

$$p_{i,j} = \frac{p_{j|i} + p_{i|j}}{2N}.$$

To measure similarity in the embedding space, a joint distribution Q is defined directly,

$$q_{i,j} = \frac{(1 + \|x_k - x_l\|_2^2)^{-1}}{\sum_{k \neq l} (1 + \|x_k - x_l\|_2^2)^{-1}}.$$

conditional— σ_i that modifies the definition of Q to be defined by a conditional distribution.

Figure 2. shows snapshots of t-SNE embeddings for a data set consisting of three nested Gaussian-distributed clouds of data. The three clouds have differing variances and are successfully separated by t-SNE and the conditional— σ_i variant, but the variant does so by rapidly producing a transient clustering that distinguishing the three groups of points in a colinear arrangement.

Figure 5 shows how fat-tailed t-SNE generates tighter clusters than standard t-SNE for a subset of MNIST, leading to higher classification accuracy when using k-means clustering to classify the low-dimensional data.

0.2

distributions.

Figure 4. t-SNE embeddings for different values of v_{target} . Standard t-SNE ($v_{target} = 1$) performs well, but not best.

We propose a variant of t-SNE called fat-tailed t-SNE that

introduces a parameter v_{target} that controls the degree of

tail fatness of the distribution used to measure similarity in

fat-tailed t-SNE, and shows that values of $v_{target} < 1$ can

produce clusters that are superior to standard t-SNE.

the embedding space. Figure 4 shows sample embeddings for

Gaussian and Student's t-distributions

Figure 3. Comparison of Gaussian and Student's t-

Figure 6. K-means classification accuracy as a function of perplexity, using four variations of the fat-tailed t-SNE algorithm. Although each of these algorithms generates different cluster shapes, the resulting classification accuracy is similar for all modifications.

BLACK FRIDAY

Friday differentiates according to amount spent (a), and occupation level (b) in the low-dimensional Shopper gender (c). not data failed produce demographics meaningful clusters due to categorical features in the dataset.

CONCLUSION

- Variants of the t-SNE algorithm can generate cleaner clusters than standard t-SNE
- Clusters are maximally visually separable when using the t-SNE conditional $-\sigma_i$ variant
- t-SNE and variations of this algorithm generated meaningful clusters when applied to the highdimensional MNSIT dataset which we used to generate low-dimensional digit regions.
- t-SNE did not generate meaningful clusters when applied to a low-dimensional dataset with nonnumerical features, perhaps because distances between labels of non-numerical features do not carry any intrinsic meaning.

Figure 2. Evolution of embeddings for standard t-SNE (left) and the conditional-- σ_i variant (right). The variant rapidly produces transient clusters that distinguish features in the data better than standard t-SNE.