

Projet de Mécatronique : Turtlebot3

Encadré par Rémi FABRE

Pierre GRASSET
Carolan CHOL
Clément PETRIAT
Adam LUCAS
Yorick MAPET

Sommaire

- Présentation et objectifs du projet
- I. L'environnement de développement
- II. Turtlebot3 et navigation autonome
 - ► A. Principe d'un LiDAR
 - B. SLAM
- III. Fonctionnalités du robot
 - A. Follow me
 - Navigation autonome
- Conclusion et perspectives d'améliorations

Fig.1: Logo du Turtlebot3

Présentation et objectifs du projet

- Navigation autonome avec un robot (Turtlebot3)
- Plusieurs fonctionnalités (Follow me, point A vers B, ...)
- Objectifs du projet :
 - Comprendre le fonctionnement d'un robot
 - Manipuler ROS2
 - Réussir les épreuves

Fig.2: Photo du Turtlebot3 (Burger)

I. L'environnement de développement

I. l'Environnement de développement

- ROS2 : Développement de robot
- Simulation, cartographie, pilotage,
- Bagage théorique nécessaire

Fig.3: Logo de ROS2 Foxy

I. Environnement de développement

 Gazebo : Application permettant la simulation d'un robot dans une carte en 3D

Fig.5: RVIZ

Fig.4: Gazebo

RVIZ : Permet de simuler beaucoup de choses (cartographie, odométrie, LiDAR, ...)

II. Turtlebot3 et navigation autonome

A. Principe d'un LiDAR

Fig.6: Cartographie en direct par un LiDAR

- Système opto-électronique utilisant des impulsions infrarouge
- Permet de **cartographier** en 2D, ou en 3D une zone
- Le faisceau émit revient vers le LiDAR : Distance connu
- LiDAR sur le Turtlebot3 : LiDAR 2D

B. SLAM

- SLAM : Simultaneous Localization And Mapping
- Permet de cartographier et de se localiser en simultané
- Utilisation de RVIZ pour faire le SLAM
- Beaucoup de paramètres ((tunable))

Fig.7: Carte de l'épreuve

B. SLAM

Fig.8: Exemple de tuning: inflation radius

Fig.9: Exemple de tuning: cos scaling factor

III. Fonctionnalitées du robot

12

A. Follow me

Fig. 10 : Schéma calcul barycentre

Fig.11: Diagramme fonctionnel du Follow me

B. Navigation autonome

Fig.12 : Diagramme fonctionnel de la navigation autonome

- Programme permettant de naviguer automatiquement entre un point A et un point B
- Améliorable grâce aux paramètres du robot (burger.yaml)

Conclusion et perspectives d'améliorations

- Robot semi-fonctionnel (follow me)
- Plusieurs points à améliorer :
 - **► Tuning** de la navigation
 - Follow me plus performant
 - Ajout d'autres fonctionnalités

Fig. 13: Illustration d'un Turtlebot

Bibliographie

- https://docs.ros.org/en/foxy/_static/foxy-small.png
- https://ynov-bordeaux.com/wpcontent/themes/ynov/dist/images/svg/logo_ynov_campus_bordeaux.svg? x37061
- https://emanual.robotis.com/assets/images/platform/turtlebot3/appendix_l ds/lds_small.png

