WO 2005/022758 PCT/US2004/027981

WHAT IS CLAIMED IS:

1. A method of generating a scrambled signal having real symbols $I_{s,k}$ and imaginary signals $Q_{s,k}$ from a signal having real symbols I_k and imaginary symbols Q_k , comprising the steps of:

generating a real part of a k^{th} element of a complex scrambling sequence $(d_{I,k})$;

generating an imaginary part of the k^{th} element of the complex scrambling sequence $(d_{Q,k})$;

generating a scrambling phase multiplier n_k according to:

10
$$n_k = 2d_{I,k} + d_{Q,k}$$
; and

generating the scrambled signal:

$$I_{S,k} + jQ_{S,k} = (I_k + jQ_k)e^{j\left(\frac{2\pi n_k}{4}\right)}.$$

2. A method of scrambling symbols in a data transmission system,

15 comprising:

scrambling all elements of a frame prior to transmission of the frame by the system so that all of the elements have a common reference phase.

- 3. The method of claim 2, wherein the elements of the frame comprise a 20 frame header or frame body.
 - 4. The method of claim 2, wherein the elements of the frame further comprise one or more pilot symbols.

WO 2005/022758 PCT/US2004/027981

5. The method of claim 2, wherein the scrambling step comprises performing a complex scrambling operation according to:

$$I_{S,k} + jQ_{S,k} = \left(I_k + jQ_k\right) \cdot \exp\left\{j\frac{2\pi n_k}{4}\right\}$$

wherein:

5 I_k, Q_k represents original symbols,

 $I_{s,k}, Q_{s,k}$ represents scrambled symbols,

 n_k represents a scrambling phase multiplier, such that $n_k = 2d_{I,k} + d_{Q,k}$, and

 $d_{I,k}$ and $d_{Q,k}$ are real (I) and imaginary (Q) components of a k^{th} element of the complex scrambling sequence.

10

6. The method of claim 5, wherein the complex scrambling operation comprises simple component swapping and sign changing according to:

$d_{I,k}$	$d_{Q,k}$	n_k	Rotation	$I_{S,k} + jQ_{S,k}$
0	0	0	0°	$I_k + jQ_k$
0	1	1	90°	$-Q_k + jI_k$
1	0	2	180°	$-I_k - jQ_k$
1	1	3	270°	$Q_k - jI_k$

7. An apparatus for scrambling symbols in a data transmission system, comprising:

means for scrambling all elements of a frame prior to transmission of the frame by the system so that all of the elements have a common reference phase.

20 8. The apparatus of claim 7, wherein the elements of the frame comprise a frame header or frame body.

WO 2005/022758 PCT/US2004/027981

9. The apparatus of claim 7, wherein the elements of the frame further comprise one or more pilot symbols.

5 10. The apparatus of claim 7, wherein the means for scrambling comprises means for performing a complex scrambling operation according to:

$$I_{S,k} + jQ_{S,k} = \left(I_k + jQ_k\right) \cdot \exp\left\{j\frac{2\pi n_k}{4}\right\}$$

wherein:

 I_k, Q_k represents original symbols,

10 $I_{S,k}, Q_{S,k}$ represents scrambled symbols,

 n_k represents a scrambling phase multiplier, such that $n_k=2d_{I,k}+d_{Q,k}$, and $d_{I,k}$ and $d_{Q,k}$ are real (I) and imaginary (Q) components of a k^{th} element of

the complex scrambling sequence.

15 11. The apparatus of claim 10, wherein the complex scrambling operation comprises simple additions and subtractions according to:

$d_{I,k}$	$d_{\mathcal{Q},k}$	n_k	Rotation	$I_{S,k} + jQ_{S,k}$
0	0	0	0°	$I_k + jQ_k$
0	1	1	90°	$-Q_k + jI_k$
1	0	2	180°	$-I_k - jQ_k$
1	1	3	270°	$Q_k - jI_k$