Calculus: #1. Basic Properties of Numbers

Last modified on 2017-03-01

Alexandre Leibler

Problem 1

Prove the following:

(i). If ax = a for some number $a \neq 0$, then x = 1.

(ii).
$$(x^2 - y^2) = (x - y)(x + y)$$
.

(iii). If
$$x^2 = y^2$$
, then $x = y$ or $x = -y$.

(iv).
$$(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$$
.

(v).
$$(x^n - y^n) = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}).$$

(vi).
$$(x^3 + y^3) = (x + y)(x^2 - xy + y^2)$$
.

Solution

(i). Proof.

Since
$$a \neq 0$$
, a^{-1} exists. (P7)

hence,
$$a^{-1} \cdot (a \cdot x) = a^{-1} \cdot a;$$

hence,
$$(a^{-1} \cdot a) \cdot x = a^{-1} \cdot a;$$
 (P5)

hence,
$$1 \cdot x = 1$$
; (P7)

consequently,
$$x = 1$$
. (P6)

(ii). Proof.

$$(x-y)(x+y) = x(x+y) + (-y)(x+y); (P9)$$

$$= x \cdot x + x \cdot y + (-y) \cdot x + (-y) \cdot y; \tag{P9}$$

$$= x^2 + xy - yx - y^2;$$

$$=x^2 + xy - xy - y^2;$$
 (P8)

$$= x^2 + 0 - y^2; (P3)$$

$$=0+x^2-y^2;$$
 (P4)

$$= 0 + (x^2 - y^2; (P1)$$

$$=x^2 - y^2. (P2)$$

Problem 2

What is wrong with the following "proof"? Let x = y. Then

$$x^{2} = xy,$$

$$x^{2} - y^{2} = xy - y^{2},$$

$$(x+y)(x-y) = y(x-y),$$

$$x+y = y,$$

$$2y = y,$$

$$2 = 1.$$

Problem 3

- (i). $\frac{a}{b} = \frac{ac}{bc}$, if $b, c \neq 0$.
- (ii). $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$, if $b, d \neq 0$.
- (iii). $(ab)^{-1} = a^{-1}b^{-1}$, if $a, b \neq 0$.
- (iv). $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}$, if $b, d \neq 0$.
- (v). $\frac{a}{b} / \frac{c}{d}$, if $b, c, d \neq 0$.
- (vi). If $b, d \neq 0$, then $\frac{a}{b} = \frac{c}{d}$ if and only if ad = bc. Also determine when $\frac{a}{b} = \frac{b}{a}$.

Problem 4

Find all numbers x for which

- (i). 4 x < 3 2x.
- (ii). $5 x^2 < 8$.
- (iii). $5 x^2 < -2$.
- (iv). (x-1)(x-3) > 0.
- (v). $x^2 2x + 2 > 0$.
- (vi). $x^2 + x + 1 > 2$.
- (vii). $x^2 x + 10 > 16$.
- (viii). $x^2 + x + 1 > 0$.
- (ix). $(x-\pi)(x+5)(x-3) > 0$.
- (x). $(x \sqrt[3]{2})(x \sqrt{2}) > 0$.
- (xi). $2^x < 8$.
- (xii). $x + 3^x < 4$.
- (xiii). $\frac{1}{x} + \frac{1}{1-x} > 0$.
- (xiv). $\frac{x-1}{x+1} > 0$.