

Grafs I

Algorísmica Avançada | Enginyeria Informàtica

Santi Seguí | 2019-2020

Algunes preguntes interessants!

• Camí (Path): Hi ha cap camí entre els nodes s i t?

• Camí més curt: Quin és el camí més curt entre els nodes s i t?

Quins d'aquests problemes són fàcils? difícil? intractable?

- Cicle: Hi ha cap cicle en el graf?
- Camí d'Euler: Hi ha cap cicle que utilitzi cap aresta exactament un cop?
- Camí Hamiltonià: Hi ha cap cicle que utilitzi cada node exactament un cop?
- Connectivitat. Hi ha cap manera de connectar tots els nodes
- MST. Quina és la millor manera de connectar tots els nodes d'un graf?
- Bioconnectivitat. Hi ha cap node que la seva eliminació desconnecti el graf.
- Planaritat. Podeu dibuixar el gràfic en el pla sense vores de creuament
- Isomorfisme gràfic. Les dues llistes adjacència representen el mateix gràfic?

Propietats dels grafs

• El **grau** d'un vèrtex és el nombre d'arestes que hi incideixen

Un graf amb vèrtexs etiquetats segons el seu grau. El *vèrtex* aïllat s'etiqueta amb 0, ja que no és adjacent a cap altre vèrtex.

- Com representem un graf?
 - Linked list o array
 - Matriu d'adjacència
 - Llista d'adjacència

- Com representem un graf?
 - Linked list o array
 - Matriu d'adjacència
 - Llista d'adjacència

- Com representem un graf?
 - Linked list o array
 - Matriu d'adjacència
 - Llista d'adjacència

- A la pràctica: Quin utilitzar?
 - Els grafs reals acostumen a ser **sparse**

- A la pràctica: Quin utilitzar?
 - Els algorítmies es basen en iterar sobre els nodes adjacents del *v*
 - Els grafs reals acostumen a ser sparse

Alt nombre de nodes, grau mitja del nodes petit

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	E	1	E	E
adjacency matrix	V 2	1 *	1	V
adjacency lists	E + V	1	degree(v)	degree(v)

depth-first search

• DFS representa la connectivitat amb un bosc d'arbres

• Quina és la complexitat del **DFS**?

Exercici per a casa


```
\begin{array}{lll} & \operatorname{procedure} \ \operatorname{explore} \ (G,v) \\ & \operatorname{Input:} & G = (V,E) \ \text{is a graph; } v \in V \\ & \operatorname{Output:} & \operatorname{visited} \ (u) \ \text{is set to true for all nodes } u \ \operatorname{reachable} \ \operatorname{from} \ v \\ & \operatorname{visited} \ (v) \ = \ \operatorname{true} \\ & \operatorname{previsit} \ (v) \\ & \operatorname{for each edge} \ (v,u) \in E \colon \\ & \operatorname{if not} \ \operatorname{visited} \ (u) \colon \ \operatorname{explore} \ (u) \\ & \operatorname{postvisit} \ (v) \end{array}
```


Join at www.kahoot.it or with the Kahoot! app with Game PIN:

Go Full Screen

184513

Exit preview

56 Answers

▲ Matriu Adjacència == Llista Adjacència == |V+E|

Matriu Adjacència == Llista Adjacència == |V2|

Matriu Adjacència = |V+E| & Llista Adjacència = |V2| Matriu Adjacència = |V2| & Llista Adjacència = |V+E|

DFS complexitat

- Linked list o array = $\Theta(|E|^2)$
- Matriu d'adjacència = $\Theta(|V|^2)$
- Llista d'adjacència = $\Theta(|V|+|E|) \rightarrow \Theta(2|E|) \rightarrow \Theta(|E|)$

- Complexitat de DFS?
 - **TEOREMA**: la suma de tots els graus de tots els nodes és igual a 2 cops el nombre d'arestes del graf.

$$\Theta(|V|+|E|) \rightarrow \Theta(2|E|) \rightarrow \Theta(|E|)$$

Exemple:

Exemple:

Exemple:

 DFS també ens soluciona un altre problema de grafs: els components connexos

Cada crida a *explore* crea un nou arbre i es troba una **nova** component connexa

Quins vèrtexs són accessibles des de quins?

Grafs dirigits

- En els grafs no dirigits, una component connexa conté com a mínim un cicle
- En els grafs dirigits, un cicle ha de començar i acabar en el mateix vèrtex existint connectivitat, sinó és acíclic

$$v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_0$$

- Els grafs dirigits **acíclics** són molt comuns:
- Nosaltres modelem ó "intentem" modelar les nostres tasques quotidianes en un ordre determinat, una rere l'altre.
 - Els grafs acíclics modelen relacions com jerarquies o dependències temporals

- Connectivitat en grafs dirigits
- Hi ha d'haver connectivitat $u \rightarrow v$ i $v \rightarrow u$
- Components forts connexes

També els podem trobar amb complexitat lineal fent ús de l'algorisme DFS

- Fins ara hem parlat de connectivitat, però no hem analitzat el cost del camí que hem trobat entre els punts connectats.
- DFS assegura el camí més curt entre 2 punts connectats en un graf no dirigit???

Podem definir el **camí més curt entre 2 vèrtexs** com el número d'arestes fins arribar, o el número de vèrtexs que travessem, o la suma dels pesos de les arestes, dels vèrtexs, etc.

Aplicacions

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

input

floodFill mask

Aplicacions

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

input

floodFill mask

Solution. Build a grid graph.

- · Vertex: pixel.
- · Edge: between two adjacent gray pixels.
- · Blob: all pixels connected to given pixel.

breadth-first search recorregut en amplada!

Output:

Output: 1

Output: 1 - 2 - 6 - 8

Output: 1 - 2 - 6 - 8 - 3

Output: 1 - 2 - 6 - 8 - 3 - 7

Output: 1 - 2 - 6 - 8 - 3 - 7 - 4 - 9

Output: 1 - 2 - 6 - 8 - 3 - 7 - 4 - 9 - 5

Alguna idea?

- BFS té un codi similar a DFS, però fa ús d'una cua en lloc d'una pila.
- Els arbres generats per BFS es diuen arbres de camí mínim.
- Si fem ús correcte del "cost del camí" a l'algorisme BFS trobem el camí mínim d'un vèrtex a la resta de vèrtex dins d'un graf!

Cerca en amplada (Breadth-first search): BFS

```
# visits all the nodes of a graph (connected component) using BFS
def bfs connected component (graph, start):
    # keep track of all visited nodes
    explored = []
    # keep track of nodes to be checked
    queue = [start]
    # keep looping until there are nodes still to be checked
   while queue:
        # pop shallowest node (first node) from queue
        node = queue.pop(0)
        if node not in explored:
            # add node to list of checked nodes
            explored.append(node)
            neighbours = graph[node]
            # add neighbours of node to queue
            for neighbour in neighbours:
                queue.append(neighbour)
    return explored
```


GRAF

DFS

BFS

Order	Queue contents
of visitation	after processing node
	[S]
S	$[A \ C \ D \ E]$
A	[C D E B]
C	[D E B]
D	$[E\ B]$
E	[B]
B	[]

- BFS vs DFS
 - Una altra diferència és que BFS només té en compte els nodes que estan connectats a un node s, els altres són ignorats
 - només es genera un arbre de camins mínims

Applications

• El menor nombre de salts en una xarxa de comunicació.

Aplicacions

- Ruta més curta de gràfics no ponderats
- Descobriu tots els nodes accessibles des d'un vèrtex inicial
- Trobar els nodes veïns a xarxes peer-2-peer com BitTorrent.
- Els rastrejadors usats pels motors de cerca per visitar enllaços d'una pàgina web i seguir fent el mateix de manera recursiva.
- Trobar les persones a una distància determinada a les xarxes socials.
- Identificar totes les ubicacions veïnes dels sistemes GPS.
- Cercar si hi ha un camí entre dos nodes d'un gràfic.
- Permet que els paquets emesos arribin a tots els nodes d'una xarxa.

Exercicis

- Dibuixa els arbres DFS indicant els passos a cada node del següent graf.
- 2. Dibuixa començant amb explore(S) l'arbre BFS del mateix graf, indicant en cada iteració el contingut de la cua

Exercici

• Identifica el camí més curt entre dos nodes. Escriu el pseudo-codi.

Grafs amb pesos

Pesos a les arestes

Exemple amb distàncies

$e \in E$	Aresta
$l_{m{e}}$	Longitud
e = (u, v)	Notació d'aresta I
l(u, v)	Notació d'aresta II
l_{uv}	Notació d'aresta III

- De moment suposem que tots els pesos són positius >= 0
- BFS troba camins mínims on les arestes tenen un cost unitari.
- Cóm ho fem general per a qualsevol graf G=(V,E) amb I_e enters positius?
 - Algorisme de Dijkstra

- Algorisme de **Dijkstra**
 - Una versió per fer ús de BFS
 - Dividir les longituds en valors unaris incloent vèrtexs extra

Un problema evident...

 Pensem millor en posar una "alarma" a cada node i l'actualitzem a mida que arribem fent ús de DFS. Els valors de les alarmes podrien ser els costos de les arestes!!!

Node	Estat	Cami més curt desde A	Node previ
а	Node actual	0	
b		∞	
С		∞	
d		∞	
е		∞	
f		∞	

Node	Estat	Cami més curt desde A	Node previ
а	Node actual	0	
b		∞ 4	A
С		∞ 2	A
d		∞	
е		∞	
f		∞	

Node	Estat	Cami més curt desde A	Node previ
а	visitat	0	
b		4	Α
С	Node actual	2	A
d		∞	
е		∞	
f		∞	

Node	Estat	Cami més curt desde A	Node previ
а	visitat	0	
b		4 2+1 = 3	A C
С	Node actual	2	A
d		∞ 2+8 = 10	С
е		∞ 2+10 = 12	С
f		∞	

Node	Estat	Cami més curt desde A	Node previ
а	visitat	0	
b	Node actual	3	С
С	visitat	2	A
d		10 -3+5 = 8	€ B
е		12	С
f		∞	

Node	Estat	Cami més curt desde A Node pr	
а	visitat	0	
b	visitat	3	С
С	visitat	2	A
d	Node actual	8	В
е		12 8+2 = 10	C -D
f		<u>∞</u> 8+6 = 14	D

Node	Estat	Cami més curt desde A	Node previ
а	visitat	0	
b	visitat	3	С
С	visitat	2	A
d	visitat	8	В
е	Node actual	10	D
f		14	D

Node	Estat	Cami més curt desde A	Node previ
а	visitat	0	
b	visitat	3	C
С	visitat	2	A
d	visitat	8	В
е	Node actual	10	D
f		14	D

- Set an alarm clock for node s at time 0.
- Repeat until there are no more alarms:
 Say the next alarm goes off at time T, for node u. Then:
 - The distance from s to u is T.
 - For each neighbor v of u in G:
 - * If there is no alarm yet for v, set one for time T + l(u, v).
 - * If v's alarm is set for later than T + l(u, v), then reset it to this earlier time.

Ara ens queda implementar el sistema d'alarmes

- Algorisme de **Dijkstra**
 - Cua amb prioritats -> generalment Heap
 - Manté un conjunt d'elements (nodes) amb les valors numèrics associats com a claus (temps de l'alarma) i suporta les següents operacions:

Inserció: inclou un nou element al conjunt.

Decrementar-clau: Decrementa el valor de la clau d'un element particular. La cua amb prioritats normalment no canvia el valor de les claus, el que fa és notificar a la cua que el valor d'una certa clau ha estat decrementat.

Eliminar-min: Retorna l'element amb la menor clau i l'elimina del conjunt.

Fer-cua: Construeix una cua amb prioritats amb els elements donats i els seus valors de clau associats.

Heap Data Structure

Inserció: inclou un nou element al conjunt.

Decrementar-clau: Decrementa el valor de la clau d'un element particular. La cua amb prioritats normalment no canvia el valor de les claus, el que fa és notificar a la cua que el valor d'una certa clau ha estat decrementat.

Eliminar-min: Retorna l'element amb la menor clau i l'elimina del conjunt.

Fer-cua: Construeix una cua amb prioritats amb els elements donats i els seus valors de clau associats.

 Inserir i decrementar clau ens permet fixar les alames, mentres que eliminar-min ens diu quina és la pròxima alarma a tenir en compte.


```
procedure dijkstra(G, l, s)
           Graph G = (V, E), directed or undirected;
Input:
           positive edge lengths \{l_e: e \in E\}; vertex s \in V
          For all vertices u reachable from s, dist(u) is set
Output:
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty:
   u = deletemin(H)
   for all edges (u, v) \in E:
      if dist(v) > dist(u) + l(u, v):
          dist(v) = dist(u) + l(u, v)
          prev(v) = u
          decreasekey(H, v)
```


- **dist(u)** es refereix als valors actuals d'alarma del node u. Un valor infinit significa que encara no hem posat valor a l'alarma.
- L'array prev: guarda informació del node immediat abans del node actual u dins la ruta més curta entre s i u.
- Si retornem fent ús dels valor d'aquests punters podem reconstruir els camins més curts de forma senzilla.
- Podem veure que la diferència principal entre l'algorisme Dijkstra I BFS és que el primer usa una cua amb prioritats en lloc d'una cua regular, de forma que prioritza nodes en funció dels costos de les arestes.

• Algorisme de **Dijkstra**: exemple graf dirigit

• Algorisme de **Dijkstra**: exemple graf dirigit

A : 0	D: 6
B: 3	E: 7
C: 2	

A : 0	D: 5
B: 3	E: 6
C: 2	

• Algorisme de **Dijkstra**: exemple graf dirigit

A: 0 D: 5 B: 3 E: 6 C: 2

• Algorisme de **Dijkstra**: exemple graf **NO** dirigit

