ME-372: Heat transfer and Metrology lab

Vibration Measurement of Structure Using Accelerometer Sensor

Contents

- Introduction
 - Introduction of Modal analysis
 - Objective
 - Principle
- Theory
- Procedure & Precaution
- Experimental setup
- Results
- Conclusion
- Report requirements

Introduction

- Every structure has its
 - > natural frequencies and
 - > natural modes of vibration
- \diamond Modal analysis is \rightarrow *method*
- Use?
 - resonant frequencies
 - mode shapes

People walking on the bridge

Introduction contd..

Objectives of experiment:-

> To measure:

the vibration of a structure using accelerometer
the impact forces applied using the impulse-force hammer

> To determine the frequency response functions for calculating the natural frequencies and modal parameters of a

vibrating structure

Principle:-

❖ To convert the vibration signals of excitation and responses measured on a complex structure into a set of modal parameters

Theory

IMPACT

Resonant Damped

Vibration

- **&** Each function is a complex function
- ❖ Represented in terms of magnitude and phase

Theory (Contd..)

Analytical Frequency Response Function

$$\sum_{F=m\ddot{x}}^{F=m\ddot{x}}$$

$$m\ddot{x} + c\dot{x} + kx = F$$

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = \omega_n^2\frac{F}{k}$$

resulting transfer function is called as receptance function

Single-degree-of-freedom system subjected to a force excitation

Free-body Diagram

The accelerance function is

 $k/m = (\omega^2_n)$

$$rac{X(\omega)}{R(\omega)} = rac{1}{k} (rac{\omega_n^2}{\omega_n^2 - \omega^2 + j(2\zeta\omega\omega_n)})$$

The accelerance function is
$$\frac{A(\omega)}{F(\omega)} = \frac{1}{k} \left(\frac{-\omega^2 \omega_n^2}{\omega^2 - \omega^2 + i(2\zeta \omega_n)} \right)$$

Schematic of actual experimental setup & components:-

Amplifier/Signal Conditioner

Impulse-force hammer

Schematic diagram of experimental setup

5

Accelerometer sensor

Fitting of Figure 4 (from MATLAB):-

Accelerance function is
$$\longrightarrow \frac{A(\omega)}{F\omega} = \frac{1}{k} \left(\frac{-\omega^2 \omega_n^2}{\omega_n^2 - \omega^2 + j(2\zeta\omega\omega_n)} \right)$$

Knowns	Unknowns
$\frac{A(\omega)}{F(\omega)}$, ω	$oldsymbol{\omega}_{n_{,}}oldsymbol{\zeta}$, $oldsymbol{k}$

"11.lvm file screenshot"
Such set of data files will be shared
to the students

Example plot:

Procedure:-

- 1. Make sure all the devices are working properly.
- 2. Divide the structure into 5 different nodes.
- 3. Each of which will be excited to completely understand the natural modes of vibration of the plate.
- 4. Identify the two nodes where you want to take the measurement using impulse hammer at one node and accelerometer at another node.
- 5. Place the accelerometer at the node where you want to measure the response.
- 6. Start the data acquisition using the run button at the computer Labview software panel.
- 7. Tap the impact hammer at the one of the selected node to excite the structure.
- 8. Save the data of acceleration and impact force which will be in **time domain**.
- 9. Repeat the process by selecting the different nodes on the structure.

Experimental setup

Precaution:-

To avoid affecting the test result, care must be taken to ensure that the test is not disturbed by any shock or vibration.

Results & Analysis (Report requirements):-

Question 1. Plot the frequency response function (FRF) for the data acquired for different nodes.

Question 2. Determine the *natural frequency* using these FRFs at different locations.

Question 3. Determine the *modal parameters* for different modes using curve fitting method.

Question 4. Write *conclusions* and some *potential sources of error*.

Remember to also attach:

- **▶** Introduction
- Objective
- Principle
- > Theory
- Procedure & Precaution

Report Plots:

- Data *provided* to you will be:
 - MATLAB program("FFT_FRF.m")
 - ➤ 10 "**.lvm" files(coming from the LabView Software)
- Expected plots from <u>your side</u> will be:
 - \geq <u>10</u> different fitted plots with (as shown in the side example plot)
 - **<u>legend</u>** containing the mention of

 - \triangleright ω
 - > <u>k</u>
 - X and Y axis label
 - Clear <u>fitted plot in red color</u> along with the data plot in the same graph
 - Title of the input file plot (e.g. mention "Exp 23" coming from the "23.lvm" file as shown)

