

DW_sra

Arithmetic Shifter with Preferred Right Direction (VHDL style)

Version, STAR and Download Information: IP Directory

Features and Benefits

- Parameterized data and shift coefficient word lengths
- Uses VHDL semantics for the arithmetic shift operation
- Capable of shifting in both directions

Description

DW_sra is an arithmetic shifter that has the same semantics as the sra operator in VHDL. A list of input and output pins is shown in Table 1-1. The component has the parameters shown in Table 1-2. Parameters control the number of bits used in the component's ports.

The DW_sra may be configured to work as a bidirectional or unidirectional shifter. The SH_TC input indicates if the shifting distance (SH) is positive or negative. When SH_TC=1 the input SH is interpreted as a signed integer represented in two's complement. The component has a preferred right direction for shifting, which means that when SH > 0 the right shift operation is performed. The input data A is always shifted to the right when SH_TC=0 (the SH input value is always positive) or when SH_TC=1 and SH > 0 (the SH input is signed and positive). Otherwise, input A is shifted to the left by $(-2^{SH_width} + SH_{rep})$ bits, where SH_{rep} is the unsigned integer value of SH.

The arithmetic right shift operation is executed the same way as other arithmetic shifters, the MS bit is copied to all positions that are made open. Differently from other shifters, when shifting to the left, the LS bit is copied to all the positions that are made open. For example, when $SH_TC=1$, SH=-2, and $A=(100101)_2$, the output B is $(010111)_2$, where the LS bit of A was replicated on the rightmost positions during the left shift operation. Table 5 illustrates other combinations of the input values for a small component.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
Α	A_width	Input	Input data
SH	SH_width	Input	Shift control
SH_TC	1 bit	Input	Shift two's complement control 0 = unsigned 1 = signed
В	A_width	Output	Shifted data out

Table 1-2 Parameter Description

Parameter	Values	Description		
A_width	≥2	Word length of A and B		
SH_width	≥ 1	Word length of SH		

Table 1-3 Synthesis Implementations^a

Implementation Name	Function	License Feature Required
mx2	Static implement using 2:1 multiplexers only.	DesignWare
str	Synthesis model targeted for speed	DesignWare
astr	Synthesis model targeted for area	DesignWare

a. During synthesis, Design Compiler selects the appropriate architecture for your constraints. However, you can force Design Compiler to use one of the architectures described in this table. For more details, please refer to the *DesignWare Building Block IP User Guide*.

Table 1-4 Simulation Models

Model	Function			
dw/dw01/src/DW_sra_sim.vhd	VHDL simulation model source code			
dw/sim_ver/DW_sra.v	Verilog simulation model source code			

The following is a Truth Table for the parameter values $A_width = 8$ and $SH_width = 3$.

Table 1-5 Truth Table (A_width=8, SH_width=3)

SH(2:0)	SH_TC	B(7)	B(6)	B(5)	B(4)	B(3)	B(2)	B(1)	B(0)
000	Х	A(7)	A(6)	A(5)	A(4)	A(3)	A(2)	A(1)	A(0)
001	Х	A(7)	A(7)	A(6)	A(5)	A(4)	A(3)	A(2)	A(1)
010	Х	A(7)	A(7)	A(7)	A(6)	A(5)	A(4)	A(3)	A(2)
011	Х	A(7)	A(7)	A(7)	A(7)	A(6)	A(5)	A(4)	A(3)
100	0	A(7)	A(7)	A(7)	A(7)	A(7)	A(6)	A(5)	A(4)
101	0	A(7)	A(7)	A(7)	A(7)	A(7)	A(7)	A(6)	A(5)
110	0	A(7)	A(6)						
111	0	A(7)							
100	1	A(3)	A(2)	A(1)	A(0)	A(0)	A(0)	A(0)	A(0)

Table 1-5 Truth Table (A_width=8, SH_width=3) (Continued)

SH(2:0)	SH_TC	B(7)	B(6)	B(5)	B(4)	B(3)	B(2)	B(1)	B(0)
101	1	A(4)	A(3)	A(2)	A(1)	A(0)	A(0)	A(0)	A(0)
110	1	A(5)	A(4)	A(3)	A(2)	A(1)	A(0)	A(0)	A(0)
111	1	A(6)	A(5)	A(4)	A(3)	A(2)	A(1)	A(0)	A(0)

Related Topics

- Logic Combinational Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE, dw01;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use dw01.dw01 components.all;
entity DW_sra_inst is
      generic (
        inst_A_width : POSITIVE := 8;
        inst_SH_width : POSITIVE := 3
        );
      port (
        inst_A : in std_logic_vector(inst_A_width-1 downto 0);
        inst_SH : in std_logic_vector(inst_SH_width-1 downto 0);
        inst_SH_TC : in std_logic;
        B_inst : out std_logic_vector(inst_A_width-1 downto 0)
        );
    end DW_sra_inst;
architecture inst of DW_sra_inst is
begin
    -- Instance of DW_sra
    U1 : DW sra
    generic map ( A width => inst A width, SH width => inst SH width )
    port map ( A => inst_A, SH => inst_SH, SH_TC => inst_SH_TC, B => B_inst );
end inst;
-- pragma translate_off
configuration DW_sra_inst_cfg_inst of DW_sra_inst is
for inst
end for; -- inst
end DW_sra_inst_cfg_inst;
-- pragma translate_on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW_sra_inst( inst_A, inst_SH, inst_SH_TC, B_inst );

parameter A_width = 8;
parameter SH_width = 3;

input [A_width-1 : 0] inst_A;
input [SH_width-1 : 0] inst_SH;
input inst_SH_TC;
output [A_width-1 : 0] B_inst;

// Instance of DW_sra
DW_sra #(A_width, SH_width)
U1 ( .A(inst_A), .SH(inst_SH), .SH_TC(inst_SH_TC), .B(B_inst) );
endmodule
```

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com