Inteligentne Systemy Interaktywne

Piotr Duch

pduch@iis.p.lodz.pl Instytut Informatyki Stosowanej Politechnika Łódzka

Lato 2020

Plan wykładu

- 1 Wprowadzenie
- 2 Uczenie pasywne
- 3 Uczenie aktywne
- 4 Exploration vs. exploitation
- 5 Aproksymacja funkcji wartości stanu
- 6 Głębokie uczenie ze wzmocnieniem

Informacje ogólne:

- Materiały wykładowe oraz laboratoryjne dostępne są na githubie (https://github.com/iis-siium/ISI).
- Literatura podstawowa:
 - Richard S. Sutton, and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
 - Csaba Szepesvári. Algorithms for reinforcement learning. Morgan and Claypool. 2009.
- Wykłady uzupełniające:
 - RL Course by David Silver https://www.youtube.com
 - CS 188: Artificial Intelligence by Pieter Abbeel (wykład 10 i 11)https://www.youtube.com/watch?v=IXuHxkpO5E8
- Materialy dodatkowe:
 - Practical RL Course by Yandex School of Data Analysis https://github.com/yandexdataschool/Practical_RL
 - CS 188: Introduction to Artificial Intelligence by Berkeley University of California https://inst.eecs.berkeley.edu/cs188/fa19/project3/

Uczenie ze wzmocnieniem Wprowadzenie

Uczenie pasywne (ang. *model based learning*)

Uczenie aktywne (ang. *model free learning*)

Co zrobić, jeżeli nie dysponujemy modelem środowiska?

Sekwencja:

- \blacksquare stany (s),
- akcje (a),
- \blacksquare nagrody (r).

Algorytmy:

- Monte Carlo.
- Metody różnic tymczasowych (ang. *Temporal Difference learning*):
 - Q-learning,
 - Sarsa.

Monte Carlo

Cechy algorytmu:

- Algorytm przeznaczony do zadań epizodycznych.
- Nie wymaga modelu środowiska.
- Uczy się na podstawie doświadczenie (ang. *experience*) sekwencji stan, akcja, nagroda.

Monte Carlo

Cechy algorytmu:

- Algorytm przeznaczony do zadań epizodycznych.
- Nie wymaga modelu środowiska.
- Uczy się na podstawie doświadczenie (ang. *experience*) sekwencji stan, akcja, nagroda.

Wersje algorytmu:

- Pierwsza wizyta (ang. First-visit Monte Carlo).
- Każda wizyta (ang. Every-visit Monte Carlo).

Monte Carlo

First-visit Monte Carlo method - oszacowanie $V pprox u_\pi$

Wejście: strategia π , która ma być oszacowana. Inicjalizacja:

- $V(s) \in \mathbb{R}$ losowe wartości, dla każdego $s \in S$,
- Returns(s) puste listy, dla każdego $s \in S$.

Nisekończona pętla (dla każdego epizodu):

Wygeneruj sekwencję przejść dla epizodu zgodnie ze strategią π :

$$s_0$$
, a_0 , r_1 , s_1 , a_1 , r_2 , ..., s_{T-1} , a_{T-1} , r_T

$$G \leftarrow 0$$
:

Dla każdego kroku w epizodzie, t = T - 1, T - 2, ..., 0:

$$G \leftarrow \gamma G + r_{t+1}$$

Jeżeli stan s_t nie pojawił się wcześniej:

Dodaj G do listy $Returns(s_t)$

$$V(s_t) \leftarrow \text{average}(Returns(s_t))$$

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

10 / 99

Monte Carlo

First-visit Monte Carlo prediciton - for estimating $V pprox u_\pi$

Input: a policy π to be evaluated Initialize:

- $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in S$,
- $Returns(s) \leftarrow \text{an empty list, for all } s \in S.$

Loop forever (for each episode):

```
Generate an episode following \pi: s_0, a_0, r_1, s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T G \leftarrow 0:
```

Loop for each step of episode, t = T - 1, T - 2, ..., 0:

$$G \leftarrow \gamma G + r_{t+1}$$

Unless s_t appears in s_0 , s_1 , ..., s_{t+1} :

Append G to Returns (s_t)

 $V(s_t) \leftarrow average(Returns(s_t))$

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Monte Carlo

Co się bardziej przyda:

- V(s),
- Q(s, a).

Monte Carlo

Metoda Monte Carlo, zmodyfikowana tak, aby wyznaczała $q_{\pi}(s, a)$ zamiast v(s) będzie wyglądała analogicznie do tej, przedstawionej wcześniej.

Odwiedzony stan będzie określany za pomocą pary stan (s) - akcja wybrana w dany stanie (a).

Metoda *every-visit Monte Carlo* oszacuje wartość w danym stanie jako średnią oczekiwanych nagród ze wszystkich wizyt w danym stanie.

Metoda *first-visit Monte Carlo* oszacuje wartość w danym stanie jako nagrodę otrzymaną przy okazji pierwszej wizyty w danym stanie.

Monte Carlo

Jak rozwiązać problem nieodwiedzanych stanów:

- eksploracja stanów początkowych (ang. exploring starts):
 - wybieramy losowy stan i akcję, dla których rozpoczynamy epizod,
 - nierealistyczne w rzeczywistym świecie, za wyjątkiem symulacji,
- algorytm ϵ -zachłanny (ang. ϵ -greedy):
 - lacksquare wybieramy najlepszą akcję z prawdopodobieństwem $1-\epsilon+rac{\epsilon}{|{\cal A}({f s})|}$,
 - lacktriangle wybieramy losową akcję z prawdopodobieństwem $rac{\epsilon}{|A(s)|}.$

Monte Carlo

First-visit Monte Carlo method (for ϵ -soft policies) - oszacowanie

$\pi \approx \pi_*$

Parametry algorytmu: mała wartość $\epsilon > 0$ Inicjalizacja:

- π losowa ϵ -miękka strategia,
- $Q(s, a) \in \mathbb{R}$ (losowe), dla każdej pary $s \in S$, $a \in A(s)$,
- Returns(s, a) ← pusta lista, dla każdej pary $s \in S$, $a \in A(s)$.

Petla nieskończona (dla każdego epizodu):

Wygeneruj sekwencje przejść dla epizodu zgodnie ze strategia π :

$$s_0$$
, a_0 , r_1 , s_1 , a_1 , r_2 , ..., s_{T-1} , a_{T-1} , r_T

Dla każdego kroku w epizodzie,
$$t = T - 1, T - 2, ..., 0$$
:

$$G \leftarrow \gamma G + r_{t+1}$$

Jeżeli para s_t , a_t niepojawiła się wcześniej w sekwencji s_0 , a_0 , s_1 , a_1 , ..., s_{t+1} , a_{t+1} :

Dodaj G do listy
$$Returns(s_t, a_t)$$

$$Q(S_t, A_t) \leftarrow \text{average}(Returns(s_t, a_t))$$

$$Q(S_t, A_t) \leftarrow \text{average}(\text{Neturns}(S_t, A_t))$$

$$a^* \leftarrow \operatorname{argmax}_a Q(s_t, a)$$

Dla każdej akcji
$$a \in A(s_t)$$
:

$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A(s)|} & \text{if } a = a^* \\ \frac{\epsilon}{|A(s)|} & \text{if } a \neq a^* \end{cases}$$
 (1

15/99

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Monte Carlo

First-visit Monte Carlo method (for ϵ -soft policies) - estimates $\pi pprox \pi_*$

```
Algorithm parameter: small \epsilon > 0 Initialize:
```

- \blacksquare π an arbitrary ϵ -soft policy,
- $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in A(s)$.
- $Returns(s, a) \leftarrow \text{an empty list, for all } s \in S, a \in A(s).$

Loop forever (for each episode):

```
Generate an episode following \pi: s_0, a_0, r_1, s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T G \leftarrow 0: Loop for each step of episode, t = T-1, T-2, ..., 0: G \leftarrow \gamma G + r_{t+1} Unless the pair s_t, a_t appears in s_0, a_0, s_1, a_1, ..., s_{t+1}, a_{t+1}: Append G to Returns(s_t, a_t) Q(s_t, a_t) \leftarrow \text{average}(Returns(s_t, a_t)) a^* \leftarrow \text{argmax}_2 Q(s_t, a) For all a \in A(s_t):
```

$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A(s)|} & \text{if} \quad a = a^* \\ \frac{\epsilon}{|A(s)|} & \text{if} \quad a \neq a^* \end{cases}$$
 (2)

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

(Reinforcement Learning) Lato 2020 16 / 99

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Metody różnic tymczasowych:

- Kombinacja metody Monte Carlo i Programowania Dynamicznego.
- Nie wymagają znajomości modelu środowiska.
- Uaktualnianie przewidywanych wartości następuje natychmiastowo nie ma koniczeności oczekiwania na zakończenie epizodu.

(Reinforcement Learning)

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Szacowanie funkcji wartości za pomocą metod Monte Carlo:

$$V(s_t) \leftarrow V(s_t) + \alpha [G_t - V(s_t)]$$
 (3)

Szacowanie funkcji wartości za pomocą metod różnic tymczasowych:

$$V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$
 (4)

(Reinforcement Learning)

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Tabelaryczny algorytm różnic tymczasowych z krokiem 1 do oszacowania v_{π}

Wejście: strategia do oszacowania π

Parametr algorytmu: krok uczenia $\alpha \in (0,1]$

Inicjalizacja tablicy wartości stanów V(s) losowymi wartościami, za wyjątkiem stanu końcowego, któremu przypisana jest wartość 0.

Pętla dla każdego epizodu:

Inicjalizacja s

Dla każdego kroku w epizodzie:

Wybierz ackję a zgodnie ze strategią π dla stanu s

Wykonaj akcję a i zaobserwuj r oraz s'

$$V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

 $s \leftarrow s'$

Dopóki s nie jest stanem końcowym

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
```

Algorithm parameter: step size $\alpha \in (0, 1]$

Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop for each episode:

Initialize s

Loop for each step of episode:

 $a \leftarrow$ action given by π for s

Take action a, observe r, s'

$$V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

$$s \leftarrow s'$$

Until s is not terminal

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction MIT press, 2018.

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Błąd:

$$\delta_t \doteq r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \tag{5}$$

Metody różnic tymczasowych (ang. Temporal-Difference (TD) Learning)

Metody różnic tymczasowych nie wymagają znajomości modelu środowiska.

Obliczenia wykonywane są online - brak konieczności oczekiwania na koniec epizodu.

Dla dowolnej stałej strategii π , udowodnione zostało, że metody TD(0) są zbieżne do v_{π} , w przypadku kiedy wartość parametru uczącego (α) jest stała i dostatecznie mała lub gdy wartość tego parametru zmniejsza się.

(Reinforcement Learning)

Q-Learning

Cechy algorytmu Q-Learning:

- uczy się nie tylko na podstawie swojego doświadczenia, ale także innych ludzi / agentów,
- korzysta z optymalnej strategii nawet w trakcie eksploracji,
- korzysta z wielu strategii podążając tylko jedną.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Wartość dla strategii
$$\pi^*$$
 - optymalnej strategii
$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_{\textbf{a}} Q(s_{t+1}, \textbf{a})] - Q(s_t, a_t)]$$

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$
$$Q(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a)]$$

Q-Learning

Algorytm Q-Learning do wyznaczenia strategii $\pi pprox \pi_*$

Parametry algorytmu: krok uczenia $\alpha \in (0,1]$, $\epsilon > 0$ o małej wartości Inicjalizacja tablicy Q(s,a), dla każdego stanu $s \in S$ i akcji w tym stanie $a \in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.) = 0 Pętla po wszystkich epizodach:

Inicjalizacja s

Dla każdego kroku w epizodzie:

Wybierz akcję a w stanie s wykorzystując strategię opartą o tablicę

Q (np., ϵ -zachłanną)

Wykonaj akcję a i zaobserwuj
$$r$$
 oraz s' $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_a Q(s',a) - Q(s,a)]$ $s \leftarrow s'$

Dopóki s nie jest stanem końcowym

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Q-Learning

Q-Learning for estimating $\pi \approx \pi_*$

```
Algorithm parameter: step size \alpha \in (0,1], small \epsilon > 0
Initialize Q(s, a), for all s \in S, a \in A(s), arbitrarily except that Q(terminal, .) = 0
Loop for each episode:
       Initialize s
```

Loop for each step of episode:

Choose a from s using policy derived from Q (e.g., ϵ -greedy)

Take action a, observe r, s'

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_a Q(s', a) - Q(s, a)]$$

 $s \leftarrow s'$

Until s is not terminal

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Q-Learning

Algorytm ϵ -zachłanny:

$$a = \begin{cases} \operatorname{argmax}_{a} Q(s,.) & \text{z prawdopodobieństwem} \quad 1 - \epsilon * \\ \operatorname{losowa akcja} & \text{z prawdopodobieństwem} \quad \epsilon \end{cases}$$
 (6)

* w przypadku kilku akcji z taką samą wartością należy wybierać losową

Q-Learning - przykład liczbowy

Nowe środowisko:

Aktualizowanie funkcji wartości dla pary stan-akcja (s_t, a_t) :

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Parametry algorytmu:

- $\alpha = 0.1$
- $\gamma = 0.9$
- $ightharpoonup r_G = 1$, w pozostałych przypadkach r = 0.

Q-Learning - przykład liczbowy cd.

Epizod 1:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 1:

Akcja

Nagroda

$$Q(5, P) = Q(5, P) + \alpha[r + \gamma \max_{a} Q(6, a) - Q(5, P)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 1:

Akcja

Nagroda

$$Q(5, P) = 0 + 0.1[1 + 0.9 * 0 - 0] = 0.1$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 1:

Akcja

Nagroda

$$Q(5, P) = 0 + 0.1[1 + 0.9 * 0 - 0] = 0.1$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

Nagroda

$$Q(4, P) = Q(4, P) + \alpha[r + \gamma \max_{a} Q(5, a) - Q(4, P)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

 ${\sf Nagroda}$

$$Q(4, P) = 0 + 0.1[0 + 0.9 * 0.1 - 0] = 0.009$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

Nagroda

$$Q(4, P) = 0 + 0.1[0 + 0.9 * 0.1 - 0] = 0.009$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

 ${\sf Nagroda}$

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

 ${\sf Nagroda}$

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

Nagroda

$$Q(5, P) = Q(5, P) + \alpha[r + \gamma \max_{a} Q(6, a) - Q(5, P)]$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

 ${\sf Nagroda}$

$$Q(5, P) = 0.1 + 0.1[1 + 0.9 * 0 - 0.1] = 0.19$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.1
6	0	0

Q-Learning - przykład liczbowy cd.

Epizod 2:

Akcja

Nagroda

$$Q(5, P) = 0.1 + 0.1[1 + 0.9 * 0 - 0.1] = 0.19$$

Stan	L	Р
1	0	0
2	0	0
3	0	0
4	0	0.009
5	0	0.19
6	0	0

Q-Learning - przykład liczbowy cd.

 ${\sf Nagroda}$

Epizod 3

Sta	an	L	Р
1		0	0
2	<u> </u>	0	0
3	3	0	0.00081
4	Ļ	0	0.02520
5	•	0	0.27100
6	<u> </u>	0	0

Epizod 4

Stan	L	Р
1	0	0
2	0	0.00007
3	0	0.00300
4	0	0.04707
5	0	0.34390
6	0	0

Uczenie aktywne SARSA

Przykład algorytmu On-Policy.

Do aktualizacji wartości funkcji w stanie (s_t, a_t) używana jest wartość z następnego stanu dla akcji, która później rzeczywiście będzie wykonana (s_{t+1}, a_{t+1}) .

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

(Reinforcement Learning)

Algorytm SARSA do wyznaczenia strategii $\pi \approx \pi_*$

Parametry algorytmu: krok uczenia $lpha \in (0,1], \ \epsilon > 0$ o małej wartości

Inicjalizacja tablicy Q(s,a), dla każdego stanu $s\in S$ i akcji w tym stanie $a\in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.)=0

Pętla po wszystkich epizodach:

Inicjalizacja s

Wybierz akcję a w stanie s wykorzystując strategię opartą o tablicę Q (np., ϵ -zachłanną) Dla każdego kroku w epizodzie:

Wykonaj akcję a i zaobserwuj r oraz s'

Wybierz akcję a' w stanie s' wykorzystując strategię opartą o tablicę Q (np.,

 ϵ -zachłanną)

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$$

 $s \leftarrow s', a \leftarrow a'$

Dopóki s nie jest stanem końcowym

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

SARSA

SARSA for estimating $\pi \approx \pi_*$

Algorithm parameter: step size $\alpha \in (0,1]$, small $\epsilon > 0$ Initialize Q(s, a), for all $s \in S$, $a \in A(s)$, arbitrarily except that Q(terminal, .) = 0Loop for each episode:

Initialize s

Choose a from s using policy derived from Q (e.g., ϵ -greedy)

Loop for each step of episode:

Take action a, observe r, s'

Choose a' from s' using policy derived from Q (e.g., ϵ -greedy)

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$$

 $s \leftarrow s', a \leftarrow a'$

Until s is not terminal

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Expected SARSA

Przykład algorytmu On-Policy.

Do aktualizacji wartości funkcji w stanie (s_t, a_t) używana jest oczekiwana wartość z następnego stanu obliczona zgodnie z założoną strategią.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \sum_{a} \pi(a|s_{t+1})Q(s_{t+1}, a) - Q(s_t, a_t)]$$

(Reinforcement Learning)

Uczenie aktywne SARSA(λ)

Połączenie algorytmu Monte Carlo oraz SARSA.

"Śledzenie" odwiedzonych stanów oraz aktualizacja wartości wszystkich odwiedzonych stanów w każdym kroku.

 $E_t(s, a)$ - ślad w dla pary stan - akcja w chwili czasowej t.

$$Q_{t+1}(s, a) = Q_t(s, a) + \alpha \delta_t E_t(s, a).$$

 $\delta_t = r_{t+1} \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t).$

 $SARSA(\lambda)$

Algorytm $\mathsf{SARSA}(\lambda)$ do wyznaczenia strategii $\pi pprox \pi_*$

Parametry algorytmu: krok uczenia $\alpha \in (0,1]$, $\epsilon > 0$ o małej wartości, $\lambda \in [0,1]$ Inicjalizacja tablicy Q(s,a), dla każdego stanu $s \in S$ i akcji w tym stanie $a \in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.) = 0 Petla po wszystkich epizodach:

Inicjalizacja s oraz E(s,a)=0, dla każdego stanu $s\in S$ i akcji w tym stanie $a\in A(s)$ Wybierz akcję a w stanie s wykorzystując strategię opartą o tablicę Q (np., ϵ -zachłanną) Dla każdego kroku w epizodzie:

Wykonaj akcję a i zaobserwuj r oraz s'

Wybierz akcję a' w stanie s' wykorzystując strategię opartą o tablicę Q (np.,

 ϵ -zachłanną)

$$\begin{split} \delta &\leftarrow r + \gamma \, Q(s',a') - Q(s,a) \\ E(s,a) &= E(s,a) + 1 \\ \text{Dla każdeg } s \in S, \ a \in A(s): \\ Q(s,a) &\leftarrow Q(s,a) + \alpha \delta E(s,a) \\ E(s,a) &\leftarrow \gamma \lambda E(s,a) \\ s \leftarrow s', \ a \leftarrow a' \end{split}$$

Dopóki s nie jest stanem końcowym

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2015.

 $SARSA(\lambda)$

$\mathsf{SARSA}(\lambda)$ for estimating $\pi \approx \pi_*$

```
Algorithm parameter: step size \alpha \in (0,1], small \epsilon > 0, \lambda \in [0,1]
Initialize Q(s, a), for all s \in S, a \in A(s), arbitrarily except that Q(terminal, .) = 0
Loop for each episode:
          E(s,a)=0, for all s\in S, a\in A(s)
          Initialize s
          Choose a from s using policy derived from Q (e.g., \epsilon-greedy)
          Loop for each step of episode:
                    Take action a, observe r, s'
                    Choose a' from s' using policy derived from Q (e.g., \epsilon-greedy)
                   \delta \leftarrow r + \gamma Q(s', a') - Q(s, a)
                    E(s, a) = E(s, a) + 1
                    For all s \in S, a \in A(s):
                              Q(s, a) \leftarrow Q(s, a) + \alpha \delta E(s, a)
                             E(s,a) \leftarrow \gamma \lambda E(s,a)
                    s \leftarrow s', a \leftarrow a'
```

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2015.

Until s is not terminal

Model środowiska

Rysunek 1: Windy Gridworld

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2015.

Uczenie aktywne SARSA(λ)

Rysunek 2: Porównanie działania algorytmów SARSA i SARSA (λ)

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2015.

 $SARSA(\lambda)$

Strategie aktualizacji śladu:

- $E_t(s, a) = \gamma \lambda E_{t-1}(s, a) + 1$ ang. accumulating traces,
- $E_t(s, a) = 1$ ang. replacing traces,
- \blacksquare $E_t(s,a) = (1-\alpha)\gamma\lambda E_{t-1}(s,a) + 1$ ang. dutch traces.

Uczenie aktywne SARSA(λ)

Rysunek 3: Porównanie strategii aktualizacji śladu

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2015.

Uczenie aktywne SARSA(λ)

Rysunek 4: Porównanie strategii aktualizacji śladu

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2015.

Maximization Bias

Aktualizowanie funkcji wartości dla pary stan-akcja (s_t, a_t) :

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

- Użycie maksimum dla kolejnego stanu do aktualizacji wartości funkcji może prowadzić do nadmiernie optymistycznego przeszacowania wartości.
- $\blacksquare \mathbb{E}_{s'}(\textit{max}_{a'}(\textit{Q}(\textit{s}_{t+1}, a'))) \geqslant \textit{max}_{a'}(\mathbb{E}_{s'}(\textit{Q}(\textit{s}_{t+1}, a')))$
- Problem ten jest nazywany Maximization Bias.

Double Q-Learning

Rozwiązanie problemu:

Uczenie oddzielnie dwóch funkcji $Q - Q_1$ i Q_2 .

Aktualizacja wartości funkcji Q_1 na podstawie wartości funkcji Q_2 :

$$Q_1(s_t, a_t) = Q_1(s_t, a_t) + \alpha[r_{t+1} + \gamma Q_2(s_{t+1}, argmax_a(Q_1(s_{t+1}, a))) - Q_1(s_t, a_t)]$$

Aktualizacja wartości funkcji Q_2 na podstawie wartości funkcji Q_1 :

$$Q_2(s_t, a_t) = Q_2(s_t, a_t) + \alpha[r_{t+1} + \gamma Q_1(s_{t+1}, argmax_a(Q_2(s_{t+1}, a))) - Q_2(s_t, a_t)]$$

Double Q-Learning

Algorytm Double Q-Learning do szacowania $Q_1 \approx Q_2 \approx q_*$

Parametry algorytmu: krok uczenia $\alpha \in (0,1], \ \epsilon > 0$ o małej wartości Inicjalizacja tablic $Q_1(s,a)$ i $Q_2(s,a)$, dla każdego stanu $s \in S$ i akcji w tym stanie $a \in A(s)$, losowymi wartościami oprócz stanu końcowego Q(terminal,.) = 0Petla po wszystkich epizodach:

Inicializacia s

Dla każdego kroku w epizodzie:

Wybierz akcję a w stanie s wykorzystując strategię ϵ -zachłanną dla Q_1+Q_2

Wykonaj akcję a i zaobserwuj r oraz s'

Z prawdopodobieństwem 0.5 aktualizuj:

$$Q_1(s,a) = Q_1(s,a) + \alpha[r + \gamma Q_2(s', argmax_a(Q_1(s',a))) - Q_1(s,a)]$$

lub.

$$Q_2(s, a) = Q_2(s, a) + \alpha[r + \gamma Q_1(s', argmax_a(Q_2(s', a))) - Q_2(s, a)]$$

Dopóki s nie jest stanem końcowym

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Double Q-Learning

Double Q-Learning, for estimating $Q_1 pprox Q_2 pprox q_*$

Algorithm parameter: step size $\alpha \in (0,1]$, small $\epsilon > 0$ Initialize $Q_1(s,a)$ and $Q_2(s,a)$, for all $s \in S$, $a \in A(s)$, arbitrarily except that Q(terminal,.) = 0Loop for each episode:

Initialize s

Loop for each step of episode:

Choose a from s using the policy ϵ -greedy in Q_1+Q_2

Take action a, observe r, s'

With 0.5 probability:

$$Q_1(s, a) = Q_1(s, a) + \alpha[r + \gamma Q_2(s', argmax_a(Q_1(s', a))) - Q_1(s, a)]$$

else:

$$Q_2(s, a) = Q_2(s, a) + \alpha[r + \gamma Q_1(s', argmax_a(Q_2(s', a))) - Q_2(s, a)]$$

$$s \leftarrow s'$$

Until s is not terminal

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Model środowiska

Frozen Lake:

Oznaczenia:

- \blacksquare S stan początkowy,
- F zamrożone pole,
- H dziura (stan końcowy),
- *G* cel (stan końcowy).

Nagrody:

- 1 po dotarciu do pola G,
- 0 w pozostałych przypadkach.

Akcje:

- lewo,
- prawo,
- góra,
- dół.

Model środowiska

Cliff World:

Akcje:

- lewo,
- prawo,
- góra,
- dół.

Oznaczenia:

- S stan początkowy,
- F wolne pole,
- H dziura (stan końcowy),
- \blacksquare G cel (stan końcowy).

Nagrody:

- 1 po dotarciu do pola G,
- -100 po dotarciu do pola H,
- -1 w pozostałych przypadkach.

Model środowiska

Double Q-Learning:

Oznaczenia:

■ S - stan początkowy,

- C and (atom ko á nove)

■ *G* - cel (stan końcowy).

Akcje:

■ lewo,

prawo.

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdziały 5.1, 5.2, 5.3 i 5.4 Monte Carlo Methods.
 - Rozdziały 6.1, 6.2, 6.3 i 6.5 TD Learning and Q-Learning.
 - Rozdziały 6.4 i 6.6 SARSA i Expected SARSA.
 - Rozdziały 6.7 Double Q-Learning.
- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, 2015.
 - Rozdziały 7.1 7.5 *Eligibility traces* i $SARSA(\lambda)$.
- Video Artificial Intelligence Course by Pieter Abbeel Lecture 10: Reinforcement Learning - od 0:38:00.
- Video RL Course by David Silver Lecture 5: Model Free Control od 1:00:00.

52 / 99

Exploration vs. exploitation

Podsumowanie dotychczasowo zdobytej wiedzy:

środowiska (uczenie pasywne),

opracowanie idealnej strategii na podstawie znajomości modelu

- opracowanie strategii na podstawie doświadczenia (uczenie aktywne),
- do tej pory wartości opisujące stan lub parę stan-akcja przechowywane były w tablicy, co może okazać się problematyczne:
 - w przypadku próby rozwiązania rzeczywistych problemów liczba stanów lub akcji może być zbyt duża, do przechowywania ich wartości w tablicy,
 - Backgammon 10²⁰ stanów,
 - Szachy 10⁴⁰ stanów,
 - Go 10⁷⁰ stanów.

(Reinforcement Learning)

Podsumowanie dotychczasowo zdobytej wiedzy:

środowiska (uczenie pasywne),

opracowanie idealnej strategii na podstawie znajomości modelu

- opracowanie strategii na podstawie doświadczenia (uczenie aktywne),
- do tej pory wartości opisujące stan lub parę stan-akcja przechowywane były w tablicy, co może okazać się problematyczne:
 - w przypadku próby rozwiązania rzeczywistych problemów liczba stanów lub akcji może być zbyt duża, do przechowywania ich wartości w tablicy,
 - Backgammon 10²⁰ stanów,
 - Szachy 10⁴⁰ stanów,
 - Go 10⁷⁰ stanów.

Reprezentacja tabelaryczna jest niewystarczająca!

(Reinforcement Learning)

Reprezentacja stanu (stanu-akcji) za pomocą sparametryzowanej funkcji:

Wiele możliwości aproksymacji funkcji wartości stanu:

- Liniowa kombinacja cech.
- Sieci neuronowe.
- Drzewa decyzyjne.

Funkcja powinna być różniczkowalna.

Dwie najpopularniejsze klasy różniczkowalnych funkcji aproksymacyjnych:

- Liniowa kombinacja cech.
- Sieci neuronowe.

(Reinforcement Learning)

Liniowa kombinacja cech

- Określenie optymalnej strategii poprzez wyznaczenie wartości funkcji
 V(s) lub Q(s, a).
- Przechowywanie wartości funkcji w tablicy.
- Aktualizacja po każdym epizodzie (metody Monte Carlo) lub po każdym kroku (metody różnic tymczasowych).

Liniowa kombinacja cech

- Określenie optymalnej strategii poprzez wyznaczenie wartości funkcji
 V(s) lub Q(s, a).
- Przechowywanie wartości funkcji w tablicy.
- Aktualizacja po każdym epizodzie (metody Monte Carlo) lub po każdym kroku (metody różnic tymczasowych).

W przypadku funkcji aproksymujących po każdym kroku następuje zmiana parametrów tych funkcji (dopasowanie).

58 / 99

Liniowa kombinacja cech

Funkcja f(s, a) zwraca wektor cech dla stanu s i akcji a. Wartość dla pary stan-akcja będzie obliczana zgodnie ze wzorem:

$$Q(s,a) = \sum_{i=1}^{n} f_i(s,a) w_i$$
 (7)

Błąd tymczasowy:

$$\delta = (r + \gamma \max_{a'} Q(s', a')) - Q(s, a)$$
(8)

Liniowa kombinacja cech

Aktualizacja wartości wag:

$$w_i = w_i + \alpha \delta f_i(s, a) \tag{9}$$

Minimalizacja błędu:

$$J(w) = ||(r + \gamma \max_{a'} Q(s', a')) - Q(s, a)||^2$$
 (10)

Pacman

Cechami są funkcje przekształcające stan na liczbę rzeczywistą (najczęściej z zakresu < 0, 1 >) w taki sposób, żeby uchwycić najważniejsze właściwości stanu.

Przykładowe cechy w grze Pacman:

- odległość od najbliższego duszka,
- odległość od najbliższego jedzenia ...

61/99

Lato 2020

Uczenie aktywne

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdziały 9.4 *Linear Methods*.
- Video Artificial Intelligence Course by Pieter Abbeel Lecture 11: Reinforcement Learning II od 0:31:00.
- Video RL Course by David Silver Lecture 6: Value Function Approximation.

62/99

Keras

Przydatne funkcje:

- Sequential funkcja tworząca model sieci w postaci liniowej serii warstw.
- add funkcja dodaje warstwę do modelu.
- Dense(units, [input_dim, activation]) funkcja tworzy warstwę składającą się z units neuronów, dodatkowo można podać m.in. liczbę wejść (inputs_dim) i funkcję aktywacji (activation). Sugerowane funkcje aktywacji to relu i linear.
- compile(loss, optimizer) funkcja konfiguruje model do treningu, jako parametry przyjmuje funkcję kosztu (loss, sugerowana mse) oraz metodę aktualizacji wag (optimizer, sugerowane metody to: sgd oraz Adam).

Keras

Przydatne funkcje cd:

- predict(x) funkcja zwraca odpowiedź sieci dla danych wejściowych (x).
- fit(x, y, epochs, verbose) trenuje model przez podaną liczbe epok:
 - x dane wejściowe,
 - y dane oczekiwane,
 - epochs liczba epok trenowania modelu,
 - verbose poziom szczegółowości wyświetlanych informacji sugerowana wartość 0.

Lato 2020

65/99

Keras - przykład

```
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam, SGD
model = Sequential()
model.add(Dense(32, input_dim=16, activation = 'relu'))
#now the model will take as input arrays of shape (*,
   16)
#and output arrays of shape (*, 32) and uses ReLU
   activation function
#after the first layer, you don't need to specify
#the size of the input anymore:
model.add(Dense(32))
model.compile(loss='mse', optimizer=SGD(lr=0.001))
```

Deep Q Neural Network

Rysunek 5: Q-Learning

Rysunek 6: Deep Q Neural Network

Deep Q Neural Network

Sposób działania:

- na wejście sieci podawany jest aktualny stan,
- następna akcja jest wybierana na podstawie odpowiedzi sieci (akcja o największej wartości),
- funkcją kosztu jest błąd średniokwadratowy z wartości przewidzianej przez sieć, a tej docelowej (wyznaczonej za pomocą równania Bellmana) $R + \gamma \max_a(Q(s',a))$,
- jako wartość oczekiwaną funkcji predict podajemy wektor wartości Q zwrócony przez sieć dla danego stanu, z zaktualizowaną wartością dla wybranej akcji.

68 / 99

Deep Q Neural Network

Problemy z podejściem DQN:

- sekwencyjnie skorelowane dane może wpływać na zbieżność i wydajność sieci,
- niestabilność dystrybucji danych z powodu zmian strategii strategia może nie być zbieżna lub oscylować.

Deep Q Neural Network - Experience Replay

Rozwiązanie problemu sekwencyjnie skorelowanych danych - zapamiętanie całej serii wykonanych działań, to znaczy stanu (s), akcji podjętej w tym stanie (a), otrzymanej nagrody (r) oraz kolejnego stanu (s'). Uczenie sieci na podstawie losowo dobranych próbek z zebranych danych.

70 / 99

Deep Q Neural Network - Experience Replay

Sposób działania:

- I zebranie zbioru danych w postaci krotek (s, a, r, s') na podstawie akcji podjętych przez agenta (sieć), korzystając z algorytmu ϵ -zachłannego,
- 2 wybór losowych krotek z zebranego zbioru,
- Itrenowanie modelu sieci na podstawie wybranych danych,
- 4 podejmowanie nowych akcji na podstawie zaktualizowanego modelu i algorytmu ϵ -zachłannego,
- 5 powrót do punktu 2.

Double Deep Q Neural Network

Rozwiązanie problemu niestabilności dystrybucji danych z powodu zmian strategii, ocena wybranej akcji odbywa się za pomocą innej sieci, niż sam wybór akcji.

Double Deep Q Neural Network

Korzystanie z dwóch sieci:

- sieć Q' wykorzystywana do wyboru akcji podejmowanych przez agenta,
- sieć Q wykorzystywana do oszacowania wybranej akcji.

Funkcją kosztu jest błąd średniokwadratowy z wartości przewidzianej przez sieć Q', a tej oszacowanej prze sieć Q (wyznaczonej za pomocą równania Bellmana):

$$Q^*(s_t, a_t) \approx r_t + \gamma argmax_{a'} Q'(s_{t+1}, a')$$

Double Deep Q Neural Network

Rysunek 7: Double Deep Q-Learning

[DDQN] Deep Reinforcement Learning with Double Q-learning Foundational)

Uczenie aktywne

Double Deep Q Neural Network

Double Q-Learning

Initialize primary network Q_{θ} , target network Q_{θ}' , replay buffer D, au << 1. For each iteration do:

For each environment step do:

Observe state s and select action a using network Q_{θ} :

Take action a, observe r, s'

Store (s, a, r, s') in replay buffer D

For each update step do:

Sample e = (s, a, r, s) from D

Compute target Q value:

$$Q^*(s, a) \approx r + \gamma argmax_{a'} Q'_{\theta}(s', a')$$

Perform gradient descent step on $(Q^*(s,a)-Q_{\theta}(s,a))^2$

Update target network parameters:

$$\theta' \leftarrow \tau * \theta + (1 - \tau) * \theta'$$

Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

Double Deep Q Neural Network

Rysunek 8: Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." (2013).

Double Deep Q Neural Network

Rysunek 9: Network Architecture

Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

Double Deep Q Neural Network

Double Deep Q Neural Network

Double Deep Q Neural Network

Double Deep Q Neural Network

Przetwarzania wstępne obrazów:

- wycięcie istotnego fragmentu obrazu,
- zamiana na odcienie szarości,
- zmniejszenie obrazu.

Double Deep Q Neural Network

Hyperparameter	Value	Description
minibatch size	32	Number of training cases over which each stochastic gradient descent (SGD) update is computed.
replay memory size	1000000	SGD updates are sampled from this number of most recent frames.
agent history length	4	The number of most recent frames experienced by the agent that are given as input to the Q network.
discount factor	0.99	Discount factor gamma used in the Q-learning update.
action repeat	4	Repeat each action selected by the agent this many times. Using a value of 4 results in the agent seeing only every 4th input frame.
update frequency	4	The number of actions selected by the agent between successive SGD updates. Using a value of 4 results in the agent selecting 4 actions between each pair of successive updates.
learning rate	0.00025	The learning rate used by RMSProp.
gradient momentum	0.95	Gradient momentum used by RMSProp.
squared gradient momentum	0.95	Squared gradient (denominator) momentum used by RMSProp.
min squared gradient	0.01	Constant added to the squared gradient in the denominator of the RMSProp update.
initial exploration	1	Initial value of ϵ in ϵ -greedy exploration.
final exploration	0.1	Final value of ϵ in ϵ -greedy exploration.
final exploration frame	1000000	The number of frames over which the initial value of ϵ is linearly annealed to its final value.
replay start size	50000	A uniform random policy is run for this number of frames before learning starts and the resulting experience is used to populate the replay memory.
no-op max	30	Maximum number of "do nothing" actions to be performed by the agent at the start of an episode.

Rysunek 10: Przykładowe parametry sieci

Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

(Reinforcement Learning) Lato 2020 80 / 99

Double Deep Q Neural Network

Dla chętnych:

Yandex School of Data Analysis - Practical RL

Krótkie podsumowanie

- Uczenie pasywne (ang. *model-based learning*):
 - Iteracyjne doskonalenie strategii (ang. *Policy Iteration*).
 - Iteracyjne obliczanie funkcji wartości (ang. Value Iteration).

Krótkie podsumowanie

- Uczenie pasywne (ang. model-based learning):
 - Iteracyjne doskonalenie strategii (ang. *Policy Iteration*).
 - Iteracyjne obliczanie funkcji wartości (ang. Value Iteration).
- Uczenie aktywne (ang. *model-free learning*):
 - Algorytmy bazujące na wyznaczaniu funkcji wartości:
 - Q-Learning (off-policy).
 - SARSA (on-policy).
 - Metody aproksymacyjne (Liniowa kombinacja cech, Deep Q Networks).

Krótkie podsumowanie

- Uczenie pasywne (ang. model-based learning):
 - Iteracyjne doskonalenie strategii (ang. *Policy Iteration*).
 - Iteracyjne obliczanie funkcji wartości (ang. Value Iteration).
- Uczenie aktywne (ang. model-free learning):
 - Algorytmy bazujące na wyznaczaniu funkcji wartości:
 - Q-Learning (off-policy).
 - SARSA (on-policy).
 - Metody aproksymacyjne (Liniowa kombinacja cech, *Deep Q Networks*).
 - Algorytmy bazujące na wyznaczaniu strategii (ang. *REINFORCE*).

Policy Gradients

Dotychczasowe podejście:

■ Aproksymacja funkcji wartości:

$$v_*(s) \approx v_\pi(s)$$

$$q_*(s,a) \approx q_{\pi}(s,a)$$

■ Wyznaczanie strategii na podstawie tych funkcji (algorytm zachłanny, ϵ -zachłanny).

Nowe podejście:

■ Wyznaczanie strategii bezpośrednio:

$$\pi_{\theta}(s) = p(a|s, \theta)$$

Policy Gradients

Zalety optymalizacji strategii:

- Strategia wyznaczana przez metody Q-Learning jest zawsze deterministyczna. Metody te nie mogą opracować strategii stochastycznej, co może być przydatne w niektórych środowiskach. W takim przypadku wykorzystywane są algorytmy, np. ε-zachłanne, ale to podejście nie zawsze jest wystarczające i optymalne.
- Metody należące do grupy optymalizujących strategie mogą być zastosowane w przypadku środowisk, gdzie akcje mają charakter ciągły.
- W sposób ciągły poprawiana jest strategia, a przypadku metod Q-Learning aproksymowana jest funkcja wartości, a dopiero na jej podstawie wyznaczana jest strategia.

Policy Gradients

- Algorytmy optymalizacji strategii należą do dziedziny algorytmów optymalizacyjnych.
- Celem jest znalezienie takich wartości parametrów θ , które będą dawały najwyższy wynik funkcji $J(\theta)$.
- Metody nie wykorzystujące gradientów (np. algorytmy genetyczne).
- Metody wykorzystujące gradient (np. metoda gradientu prostego).

Policy Gradients

$$\theta_{t+1} = \theta_t + \alpha \nabla \pi_{\theta_t}(s, a^*)$$

Policy Gradients

$$\theta_{t+1} = \theta_t + \alpha \nabla \pi_{\theta_t}(s, a^*)$$

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla \pi_{\theta_t}(s, a)$$

Policy Gradients

$$\theta_{t+1} = \theta_t + \alpha \nabla \pi_{\theta_t}(s, a^*)$$

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla \pi_{\theta_t}(s, a)$$

$$\theta_{t+1} = \theta_t + \alpha \frac{\hat{Q}(s, a) \nabla \pi_{\theta_t}(s, a)}{\pi_{\theta}(s, a)}$$

Policy Gradients

$$\theta_{t+1} = \theta_t + \alpha \nabla \pi_{\theta_t}(s, a^*)$$

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla \pi_{\theta_t}(s, a)$$

$$\theta_{t+1} = \theta_t + \alpha \frac{\hat{Q}(s, a) \nabla \pi_{\theta_t}(s, a)}{\pi_{\theta}(s, a)}$$

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla_{\theta} \log \pi_{\theta_t}(s, a)$$

Monte-Carlo Policy Gradient (REINFORCE)

Aktualizacja parametrów metodą gradientu prostego (ang. stochastic gradient ascent).

Wykorzystanie nagrody skumulowanej jako wartości funkcji $Q(\hat{s}, a)$.

$$\Delta\theta_t = \alpha G_t \nabla_{\theta} \log \pi_{\theta_t}(s, a)$$

Monte-Carlo Policy Gradient (REINFORCE)

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s,\theta)$.

Algorithm parameter: step size $\alpha > 0$.

Initialize policy parameter $\theta \in \mathbb{R}$.

For each episode:

Generate an episode s_0 , a_0 , r_1 , ..., s_{t-1} , a_{t-1} , r_t , following $\pi(.|., \theta)$. Loop for each step of the episode t = 0, 1, ..., T-1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} r_k$$

$$\theta \leftarrow \theta + \alpha G_t \nabla_{\theta} log \pi_{\theta}(a_t, s_t | \theta)$$

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

REINFORCE with Baseline

$$\theta_{t+1} = \theta_t + \alpha (G_t - b(s_t)) \nabla_{\theta} \log \pi_{\theta_t}(s_t, a_t)$$
(11)

Metody wyznaczania wartości odniesienia:

whitening:

$$G_t^* = \frac{G_t - \mu_G}{\sigma_G} \tag{12}$$

learned baseline:

$$\theta_{t+1} = \theta_t + \alpha (G_t - \hat{v}(s_t, w)) \nabla_{\theta} \log \pi_{\theta_t}(s_t, a_t)$$
 (13)

$$w_{t+1} = w_t + \beta(G_t - \hat{v}(s_t, w))\nabla_v(s_t, w)$$

REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_{*}$

```
Input: a differentiable policy parameterization \pi(a|s,\theta).
```

Input: a differentiable state-value function parameterization v(s, w).

Algorithm parameter: step sizes $\alpha > 0$ and $\beta > 0$.

Initialize policy parameter $\theta \in \mathbb{R}$ and state-value weights $w \in \mathbb{R}$.

For each episode:

Generate an episode $s_0, a_0, r_1, ..., s_{t-1}, a_{t-1}, r_t$, following $\pi(.|., \theta)$.

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} r_k$$

$$\delta \leftarrow G - \hat{v}(s_t, w)$$

$$w \leftarrow w + \beta \delta \nabla_w v(s_t, w)$$

$$\theta \leftarrow \theta + \alpha \delta \nabla_{\theta} \log \pi_{\theta}(a_t, s_t | \theta)$$

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Actor-Critic

- uczy się strategii $\pi_{\theta}(s, a)$,
- lacktriangle uczy się funkcji oceny stanu $V_{ heta}(s)$,
- wykorzystać $V_{\theta}(s)$, żeby szybciej nauczyć się strategii $\pi_{\theta}(s,a)$.

Actor-Critic

$$\theta_{t+1} = \theta_t + \alpha (G_{t:t+1} - \hat{v}(s_t, w)) \nabla_{\theta} \log \pi_{\theta}(a_t, s_t | \theta)$$
(15)

$$= \theta_t + \alpha(r_{t+1} + \gamma \hat{v}(s_{t+1}, w) - \hat{v}(s_t, w)) \nabla_{\theta} \log \pi_{\theta}(a_t, s_t | \theta)$$
 (16)

$$= \theta_t + \alpha \delta_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t, \mathbf{s}_t | \theta) \tag{17}$$

Actor-Critic

One-step Actor-Critic, for estimating $\pi_{\theta} \approx \pi_{*}$ Input: a differentiable policy parameterization $\pi(a|s,\theta)$.

```
Input: a differentiable state-value function parameterization \upsilon(s,w). Algorithm parameter: step sizes \alpha>0 and \beta>0. Initialize policy parameter \theta\in\mathbb{R} and state-value weights w\in\mathbb{R}. For each episode: Initialize s (first step of episode). Loop while s is not terminal (for each time step): Choose action a according to the policy \pi_{\theta}(.,s,\theta), Take action a, observe s', r, \delta\leftarrow r+\gamma\hat{\upsilon}(s',w)-\hat{\upsilon}(s,w). w\leftarrow w+\beta\delta\nabla_w\upsilon(s',w). \theta\leftarrow\theta+\alpha\delta\nabla_\theta\log\pi_\theta(a,s|\theta). s\leftarrow s'.
```

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

93 / 99

Materiały uzupełniające

- Książka Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, wydanie drugie, 2018.
 - Rozdziały 13.1 13.4 Policy Gradient Methods.
 - Rozdziały 13.5 *Actor–Critic Methods*.
- Video Hado Van Hasselt, Advanced Deep Learning & Reinforcement Learning Lectures. Reinforcement Learning 6: Policy Gradients and Actor Critics.
- Video RL Course by David Silver Lecture 7: Policy Gradient Methods.

94 / 99

Model środowiska

Frozen Lake:

Stan jest reprezentowany za pomocą pojedynczej wartości z przedziału <0,15> oznaczającej pozycję agenta na planszy.

W przypadku sieci wejściem będzie wektor 16 elementowy, gdzie wartością 1 będzie zaznaczony aktualny stan - pozostałe wartości będą równe 0.

Model środowiska

Frozen Lake Extended:

Stan jest reprezentowany za pomocą trzech tablic - w pierwszej zaznaczone cyfrą 1 są dziury, w drugiej pozycja gracza, a w trzeciej cel. W przypadku sieci wejściem będzie wektor złożony z trzech tablic.

Model środowiska

OpenAl Gym - CartPole:

Akcje:

- ruch wózka w lewo,
- ruch wózka w prawo.

Stan:

- pozycja wózka,
- prędkość wózka,
- kąt słupa,
- predkość końcówki słupa.

Nagrody:

■ 1 - za każdy krok.

Uczenie ze wzmocnieniem

Kursy online

- Reinforcement Learning:
 - Practical Reinforcement Learning Yandex School of Data Analysis,
 - Deep Reinforcement Learning CS 285 at UC Berkeley.
- Deep Learning:
 - MIT 6.S191 Introduction to Deep Learning Massachusetts Institute of Technology,
 - Natural Language Processing with Deep Learning CS224n at Stanford.

Uczenie ze wzmocnieniem Wykłady

- Hado Van Hasselt, Advanced Deep Learning & Reinforcement Learning.
- RL Course by David Silver.
- Deep Learning State of the Art MIT Deep Learning Series.

