Evaluación del Laboratorio Número 1

Sistemas con Microprocesadores y Microcontroladores

23/09/2021

Instrucciones

- La presente evaluación es individual y podrá utilizar todo el material escrito del que disponga.
- La misma consta de 1 ejercicio en total y la duración será de 90 minutos.
- En cada ejercicio se indica el tiempo estimado para resolverlo y el puntaje que otorga el mismo.
- La evaluación se desarrollará en el entorno de Google Classroom.
- La evaluación deberá ser desarrollada en la maquina virtual otorgada por la cátedra y deberán enviar el/ los archivos como adjuntos a la tarea de Google Classroom.
- Se deberá completar los datos (nombre, apellido y DNI) del encabezado en cada código fuente.
- No se admitirán otros archivos o formatos a menos que sean explícitamente solicitados.
- No se permitirá intercambiar ni prestar ningún tipo de elementos o información entre los estudiantes.
- La legibilidad del código, la cantidad de comentarios y la buena presentación serán tenidas en cuenta para la calificación final.

Ejercicios para resolver

1) 90 Minutos - 100 Puntos (65,35)

Se tiene un bloque de datos de 8 bits, guardados en codificación magnitud y signo. El primer elemento está guardado en la dirección vector y el final del bloque está marcado con el valor 0x80.

a) Escriba un programa que modifique los elementos del bloque para quedar almacenados en codificación complemento a 2. Los elementos deben quedar almacenados en las mismas direcciones de memoria en que se encontraban originalmente.

A continuación se muestra un ejemplo de funcionamiento del programa. Tenga en cuenta que el programa debe funcionar para diferentes valores y diferentes longitudes de bloques, además del caso particular del ejemplo.

Dato		Resultado			
(vector)	$= 0 \times 06$	(vector) = 0x06			
(vector + 1)	= 0x85	(vector + 1) = 0xFB			
(vector + 2)	= 0x78	(vector + 2) = 0x78			
(vector + 3)	= 0xF8	(vector + 3) = 0x88			
(vector + 4)	$= 0 \times E0$	(vector + 4) = 0xA0			
(vector + 5)	$= 0 \times 80$	(vector + 5) = 0x80			

b) Guarde en el registro R1 el mapa de bits correspondiente para mostrar la cantidad de elementos negativos del vector del ejercicio anterior. Para ello, considere la siguiente conexión del display 7 segmentos.

b7	b6	b5	b4	b3	b2	b1	b0
	g	f	е	d	С	b	а