X is an exponen	tial RV. P(X>++h X>+) = e Memory-less
Gaussian	
X ~ N(m.6)	pdf: $f_{x(x)} = \frac{1}{12\pi6^2} e_{xp} \left(\frac{-(x-m)^2}{26^2} \right)$
futo	CDF; $F_{X(x)} = \frac{1}{12\pi6^2} \int_{-\infty}^{\infty} e^{\frac{(x-n)^2}{26^2}} dx$
<u></u>	E[X1=m, VAR(X)=6
₹~N(0,1)	
Fa(e)	$\bar{\Phi}_{z}(z) = F_{z}(z) \Big _{z \to N(0,1)} = \frac{1}{42\pi} \int_{0}^{z} e^{\frac{z^{2}}{2}} dz$
<u> </u>	× Φ(-z)= 1-Φ(z) Q(z)=1-Φ(z)
	erf(z) = 111 g e dz
X~N(m,♂²)	P((x-m)<6) = ··· = Φ(1) = 84,1%
	P(x-m <6)=P(-6 <x-m<6)=\(\bar{q}(1)-q(1)=68\%< th=""></x-m<6)=\(\bar{q}(1)-q(1)=68\%<>
	P((x-m)<26) = 95.7% P((x-m)<36) = 99.7%