Diskretizacija kontinualnih signala

Proces odabiranja - diskretizacija u vremenu

Većina prirodnih signala su kontinualne prirode i da bi se izvršila njihova obrada na računaru, potrebno je izvršiti njihovu konverziju u digitalni oblik. Osnovna operacija kojom se kontinualni signali prevode u diskretne je diskretizacija po vremenu ili odabiranje (engl. *sampling*):

$$x[k] = x(t)|_{t=kT} = x(kT)$$

gde je:

x(kT) - vrednost kontinualnog signala x(t) u trenutku odabiranja, a

T - perioda odabiranja.

Slika 1 – Primer odbirkovanja signala

Idealizovani proces odabiranja se može predstaviti kao množenje kontinualnog signala x(t) sa periodičnom povorkom Dirakovih impulsa

$$s(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

Slika 2 - Periodična povorka Dirakovih impulsa

Na taj način se dobija takozvani idealno diskretizovani signal $x_s(t)$:

$$x_s(t) = x(t) \cdot s(t) = x(t) \cdot \sum_{k = -\infty}^{\infty} \delta(t - kT) = \sum_{k = -\infty}^{\infty} x(kT) \delta(t - kT)$$

Furijeova transformacije signala $x_s(t)$ je:

$$X_{s}(j\omega) = \int_{-\infty}^{\infty} x_{s}(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(t) \cdot s(t)e^{-j\omega t}dt$$

Razvojem periodičnog signala $s(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$ u Furijeov red:

$$s_n = \frac{1}{T} \int_{-T/2}^{T/2} s(t)e^{-jn\omega_0 t} dt = \frac{1}{T}$$

gde je $\omega_0 = 2\pi/T$, i zamenom u (4) dobijamo:

$$X_{s}(j\omega) = \int_{-\infty}^{\infty} x_{s}(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(t) \cdot s(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(t) \cdot \sum_{n=-\infty}^{\infty} s_{n}e^{jn\omega_{0}t}e^{-j\omega t}dt =$$

$$= \sum_{n=-\infty}^{\infty} \frac{1}{T} \int_{-\infty}^{\infty} x(t)e^{-j(\omega-n\omega_{0})t}dt = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(j(\omega-n\omega_{0})) = X(e^{j\Omega})$$

Iz poslednje jednačine se vidi da spektar diskretnog signala predstavlja beskonačnu sumu periodično ponovljenih spektara kontinualnog signala pomnoženih sa 1/T.

Slika 3 - Ilustracija procesa odabiranja bez efekta preklapanja: a) šematski prikaz; b) kontinualni signal x(t) i njegov spektar $X\left(j\omega\right)$; c) periodična povorka Dirakovih impulsa s(t) i njen spektar $S\left(j\omega\right)$; d) diskretni signal $x_s(t)$ i spektar diskretnog signala $X_s\left(j\omega\right)$

Teorema o odabiranju

Prilikom odabiranja signala neophodno je očuvati sve informacije iz orginalnog signala u odbircima. Ukoliko se iz odbirkovanog signala može tačno rekonstruisati orginalni signal smatra se da su sve informacije očuvane.

Neka analogni signal koji se diskretizuje ima ograničen spektar:

$$X(j\omega) = 0, za |\omega| > \omega_{max}$$

Kao što je prikazano na slici Slika 4a. Diskretizacijom signala x(t) sa periodom odabiranja T dobija se diskretni signal x[n]. Spektar diskretnog signala $X(j\omega)$ periodičan je sa periodom $2\pi/T$ i prikazan je na slici 4b za slučaj:

$$\pi/T > \omega_{max}$$
ili $T < \pi/\omega_{max}$

Odnosno, na slici Slika 4c za slučaj:

$$\pi/T < \omega_{max} \ ili \ T > \pi/\omega_{max}$$

Slika 4 - Uticaj diskretiyacije na spektar signala: (a) Spektar kontinualnog signala, (b) Spektar diskretnog signala, $\omega_0 > 2\omega_{max}$, (c) Spektar diskretnog signala $\omega_0 < 2$ ω_{max} , (d) Spektar diskretnog signala sa diskretnom učestanošću, (e) F osa

U slučaju (b) ne postoji preklapanje spektralnih komponenata iz susednih perioda. Dakle, u tom slučaju je moguće izdvojiti spektar $X(j\omega)$ iz $X^*(j\omega)$ pomoću idealnog niskofrekventnog filtra. Ako pak važi drugi uslov, slika (c), pojavljuje se *preklapanje spektra* (eng. *aliasing*) pri periodičnom produženju spektra $X(j\omega)$. Ovakvo preklapanje onemogućava tačnu rekonstrukciju orginalnog signala $x_a(t)$.

Uvodi se pojam diskretne učestanosti:

$$\Omega = \omega T$$

Spektar signala na osi Ω prikazan je na slici 4c, dok je na slici 4d prikazana F osa.

Furijeova transformacija diskretnog signala:

$$X^*(e^{j\Omega}) = \sum_{-\infty}^{+\infty} x(n)e^{-jn\Omega}$$

Inverzna furijeova transformacija:

$$x^*(t) = 1/2\pi \int_{-\pi}^{\pi} X(e^{j\Omega})e^{jn\Omega}d\Omega$$

Slika 5 predstavlja vremenski domen orginalnog signala i novog signala koji je loše odbirkovan.

Slika 5 – Primer pojave aliasinga u vremenskom domenu - dva signala različitih učestanosti imaju iste vrednosti u trenucima odabiranja

Dakle, uslov koji mora da se zadovolji da ne bi došlo do gubitka informacija jeste:

$$f_{max} = \frac{1}{\tau} \ge \frac{\omega_{max}}{\pi} = 2f_{max}$$

gde je f_{max} maksimalna učestanost u spektru kontinualnog signala $X_a(j\omega)$.

Ovaj uslov predstavlja matematički iskaz *teoreme odabiranja* koja je poznata i kao Šenonova ili Nikvistova teorema, ili Koteljnikova i koja glasi:

Vremenski kontinualni signal može se potpuno rekonstruisati iz svojih odbiraka, akko je učestanost odabiranja bar dva puta veća od najbiže učestanosti u spektru signala.

Minimalna učestanos odabiranja $2f_{max}$ se naziva Nikvistova brzina odabiranja (engl. *Nyquist rate*), dok se učestanost $f_{max}/2$ (koja predstavlja najvišu dozvoljenu učestanost u spektru) nativa Nikvistova učestanost (engl. *Nyquist frequency*)

Nakon odabiranja signala, neophodno je signal propustiti kroz niskofrekventni filtar koji odseca spektar diskretnog signala koji se ponavla.

Furijeova transformacije idealno diskretizovanog signala $x_s(t)$ je:

$$\begin{split} X_s(j\omega) &= \int\limits_{-\infty}^{\infty} x_s(t) e^{-j\omega t} dt = \int\limits_{-\infty}^{\infty} \sum\limits_{n=-\infty}^{\infty} x(nT) \delta(t-nT) e^{-j\omega t} dt = \\ &= \sum\limits_{n=-\infty}^{\infty} x(nT) \int\limits_{-\infty}^{\infty} \delta(t-nT) e^{-j\omega t} dt = \sum\limits_{n=-\infty}^{\infty} x(nT) e^{-jn\omega T} = \sum\limits_{n=-\infty}^{\infty} x(n) e^{-jn\Omega} = X\left(e^{j\Omega}\right) \end{split}$$

Sa Ω je označena diskretna učestanost, koja je sa kontinualnom kružnom učestanošću u sledećoj vezi:

$$\Omega = \omega T$$

Spektar signala na osi Ω prikazan je na slici 4c, dok je na slici 4d prikazana F osa.

Furijeova transformacija diskretnog signala je:

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-jn\Omega}$$
.

 $X\left(e^{j\Omega}\right)$ predstavlja frekvencijski sadržaj signala x(n), odnosno njegovu dekompoziciju na frekvencijske komponente. Za razliku od signala x(n) koji je diskretne prirode, njegova Furijeova transformacija $X\left(e^{j\Omega}\right)$ je kontinualna funkcija. Osim toga ona je i periodična funkcija sa periodom 2π . Kada je poznat spektar $X\left(e^{j\Omega}\right)$, signal x(n) se može odrediti primenom inverzne Furijeove transformacije:

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$$

Elementarni diskretni signali

Postoji čitava klasa signala diskretnih u vremenu koja je vrlo korisna u cilju analize signala i sistema.

Jedinična odskočna funkcija

Diskretna jedinična odskočna funkcija se uobičajeno obeležava kao i definiše se na sledeći način:

Zadaci

Odrediti Furijeove transformacije sledećih diskretnih signala:

a) $x(n) = \delta(n)$, gde je $\delta(n)$ Dirakov delta impuls,

b)
$$x(n) = \delta(n-m)$$

c)
$$x(n) = a^n h(n), |a| < 1,$$

d)
$$x(n) = (n+1)a^n h(n)$$
, $|a| < 1$ i

e)
$$x(n) = \frac{a^n \sin((n+1)\Omega_p)}{\sin(\Omega_p)} h(n), |a| < 1$$

Rešenje:

a)
$$X\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-jn\Omega} = \sum_{n=-\infty}^{\infty} \delta(n)e^{-jn\Omega} = 1 \cdot e^{-j\Omega 0} = 1$$

b)
$$X\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} \delta(n-m)e^{-jn\Omega} = \sum_{p=-\infty}^{\infty} \delta(p)e^{-j\Omega p}e^{-j\Omega m} = e^{-j\Omega m}$$

c)
$$X\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} a^n h(n) e^{-jn\Omega} = \sum_{n=0}^{\infty} \left(ae^{-j\Omega}\right)^n = \frac{1}{1 - ae^{-j\Omega}}$$

d)
$$X\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} (n+1)a^n h(n)e^{-jn\Omega} = \sum_{n=0}^{\infty} (n+1)\left(ae^{-j\Omega}\right)^n$$

Ako su svi izvodi funkcije f_n neprekidni i ako red $\sum f_n^{'}$ konvergira, tada je:

$$\sum f_n' = \left(\sum f_n\right)$$

U našem slučaju je $f_n = \left(ae^{-j\Omega}\right)^n$, pa ako primenimo ovo pravilo, dobijamo:

$$X\left(e^{j\Omega}\right) = \sum_{n=0}^{\infty} (n+1)\left(ae^{-j\Omega}\right)^n = \frac{1}{\left(1 - ae^{-j\Omega}\right)^2}$$

a)

$$\begin{split} X\left(e^{j\Omega}\right) &= \sum_{n=-\infty}^{\infty} x(n)e^{-jn\Omega} = \sum_{n=0}^{\infty} \frac{a^n \sin\left(\left(n+1\right)\Omega_p\right)}{\sin\Omega_p} e^{-jn\Omega} = \\ &= \frac{1}{\sin\Omega_p} \sum_{n=0}^{\infty} a^n \frac{e^{j(n+1)\Omega_p} - e^{-j(n+1)\Omega_p}}{2j} e^{-j\Omega} = \\ &= \frac{1}{2j\sin\Omega_p} \left[e^{j\Omega_p} \sum_{n=0}^{\infty} \left(ae^{j\Omega_p} e^{-j\Omega}\right)^n - e^{-j\Omega_p} \sum_{n=0}^{\infty} \left(ae^{-j\Omega_p} e^{-j\Omega}\right)^n \right] = \\ &= \frac{1}{2j\sin\Omega_p} \left[\frac{e^{j\Omega_p}}{1 - ae^{j\Omega_p} e^{-j\Omega}} - \frac{e^{-j\Omega_p}}{1 - ae^{-j\Omega_p} e^{-j\Omega}} \right] \end{split}$$

Posle sređivanja ovog izraza dobija se:

$$X\left(e^{j\Omega}\right) = \frac{1}{1 - 2a\cos\Omega_{n}e^{-j\Omega} + a^{2}e^{-j2\Omega}}$$

1. Odrediti signal čija je Furijeova transformacija

$$X(e^{j\Omega}) = \begin{cases} 1, & |\Omega| \le \Omega_{c1} \\ 1/2, & \Omega_{c1} < |\Omega| < |\Omega| \\ 0, & \Omega_{c2} \le |\Omega| < \pi \end{cases}$$

Rešenje

Inverzna Furijeova transformacija diskretnog signala je:

$$\begin{split} x(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega = \frac{1}{2\pi} \left(\int_{-\Omega_{c2}}^{-\Omega_{c1}} \frac{1}{2} e^{j\Omega n} d\Omega + \int_{-\Omega_{c1}}^{\Omega_{c1}} e^{j\Omega n} d\Omega + \int_{\Omega_{c1}}^{\Omega_{c2}} \frac{1}{2} e^{j\Omega n} d\Omega \right) = \\ &= \frac{1}{2\pi} \left(\frac{1}{2} \cdot \frac{1}{jn} e^{j\Omega n} \Big|_{-\Omega_{c2}}^{-\Omega_{c1}} + \frac{1}{jn} e^{j\Omega n} \Big|_{-\Omega_{c1}}^{\Omega_{c1}} + \frac{1}{2} \cdot \frac{1}{jn} e^{j\Omega n} \Big|_{\Omega_{c1}}^{\Omega_{c2}} \right) = \\ &= \frac{1}{2n\pi} \sin(\Omega_{c1} n) + \frac{1}{2n\pi} \sin(\Omega_{c2} n) \end{split}$$

Dat je signal:

$$x(t) = \begin{cases} 0, & 0 \le t < 1 s \\ 1, & 1s \le t < 2s \\ e^{-(t-2)}, & t \ge 2s \end{cases}$$

- a) Odrediti Furijeovu transformaciju signala x(t).
- b) Diskretizovati signal x(t) sa periodom odabiranja T=250 ms. Odrediti Furijeovu transformaciju tako diskretizovanog signala.

Rešenje:

a)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{1}^{2} e^{-j\omega t}dt + \int_{2}^{\infty} e^{-(t-2)}e^{-j\omega t}dt =$$

$$= -\frac{1}{j\omega}e^{-j\omega t}\Big|_{1}^{2} - e^{2}\frac{1}{1+j\omega}e^{-(1+j\omega)t}\Big|_{2}^{\infty} = \frac{e^{-j\omega}(1+j\omega) - e^{-j2\omega}}{j\omega(1+j\omega)}$$

b)

$$\begin{split} X\left(e^{j\Omega}\right) &= \sum_{n=-\infty}^{\infty} x(n)e^{-jn\Omega} = \sum_{n=4}^{7} e^{-jn\Omega} + \sum_{n=8}^{\infty} e^{-(nT-2)}e^{-jn\Omega} = \\ &= \sum_{n=0}^{7} e^{-jn\Omega} - \sum_{n=0}^{3} e^{-jn\Omega} + e^{2}\sum_{n=0}^{\infty} e^{-(T+j\Omega)n} - e^{2}\sum_{n=0}^{7} e^{-(T+j\Omega)n} = \\ &= \frac{1-e^{-j8\Omega}}{1-e^{-j\Omega}} - \frac{1-e^{-j4\Omega}}{1-e^{-j\Omega}} + \frac{e^{2}}{1-e^{-T-j\Omega}} - \frac{e^{2}(1-e^{-8(T+j\Omega)})}{1-e^{-(T+j\Omega)}} \end{split}$$

Za T = 250 ms dobija se:

$$X(e^{j\Omega}) = \frac{e^{-j4\Omega} - e^{-j8\Omega}}{1 - e^{-j\Omega}} + \frac{e^{-j8\Omega}}{1 - e^{-0.25}e^{-j\Omega}}$$

1. Na slici je prikazan spektar jednog signala. Učestanosti od interesa su u opsegu od 0 do f_0 . Poremećaj ima konstantnu učestanost f_p =5 f_0 .

Slika *Amplitudski spektar signala* x(t)

- a) Nacrtati spektar idealno diskretizovanog signala ako je f_s =2.5 f_0 , gde je f_s frekvencija odabiranja.
- b) Nacrtati spektar idealno diskretizovanog signala ako je f_s =3.5 f_0 .
- c) Odrediti intervale u kojima mora da se nalazi frekvencija odabiranja kako ne bi došlo do preklapanja spektra korisnog signala sa spektrom šuma u spektru idealno diskretizovanog signala.

Rešenje:

a) Spektar diskretnog signala za f_s =2.5 f_0 :

Slika *Spektar idealno diskretizovanog signala ako je* f_s =2.5 f_0 Kao što se vidi sa slike, dolazi do preklapanja spektra korisnog signala sa spektrom šuma što znači da frekvencija odabiranja nije dobro odabrana.

a) Spektar diskretnog signala za fs=3.5f0:

Slika Spektar idealno diskretizovanog signala ako je f_s =3.5 f_0

b) Obeležićemo sa f_n frekvenciju na kojoj se nalazi šum, tj. $f_n = 5f_0$. Kako ne bi došlo do preklapanja spektra šuma sa spektrom korisnog signala mora da važi:

$$f_n - nf_s \notin [-f_0, f_0]$$
$$-f_n + nf_s \notin [-f_0, f_0]$$

odnosno

$$f_n + f_0 < nf_s \lor f_n - f_0 > nf_s \implies$$

$$6f_0 < nf_s \lor 4f_0 > nf_s \implies$$

$$f_s > \frac{6f_0}{n} \lor f_s < \frac{4f_0}{n}$$

Za

$$n = 2 f_s > 3f_0 \lor f_s < 2f_0$$

$$n = 3 f_s > 2f_0 \lor f_s < \frac{4}{3}f_0$$

$$n = 4 f_s > \frac{3}{2}f_0 \lor f_s < f_0 \dots$$

Na osnovu ovoga, dolazimo do zaključka da frekvencija odabiranja može biti u sledećem opsegu:

$$f_s \in (3f_0, 4f_0) \cup (6f_0, \infty)$$

- 1. Dat je signal $c(t) = A\cos\omega_0 t$.
 - a) Odrediti Furijeovu transformaciju signala nacrtati njegov spektar.
 - b) Nacrtati spektar signala $f(t) = 10\cos(2\pi t) + 10\cos(4\pi t)$.
 - c) Signal f(t) se dovodi na ulaz odabirača sa periodom odabiranja T= 0.2s. Nacrtati spektar idealno diskretizovanog signala.
 - d) Tako idealno diskretizovan signal se dovodi na ulaz sistema opisanog funkcijom prenosa $G(s) = \frac{1 e^{-Ts}}{s}$. Odrediti amplitudsku i faznu karakteristiku ovog sistema i nacrtati spektar signala na njegovom izlazu.

Rešenje:

a)

$$C(j\omega) = \int_{-\infty}^{\infty} A\cos(\omega_0 t) e^{-j\omega t} dt = A \int_{-\infty}^{\infty} \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j\omega t} dt = \frac{A}{2} \int_{-\infty}^{\infty} e^{-j(\omega - \omega_0)t} dt + \frac{A}{2} \int_{-\infty}^{\infty} e^{-j(\omega + \omega_0)t} dt$$

Nakon uvođenja smene $\tau = -t$, uzimajući u obzir da je $\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\omega$ dobijamo:

$$C(j\omega) = A\pi\delta(\omega - \omega_0) + A\pi\delta(\omega + \omega_0)$$

Slika Spektar kosinusoide $c(t) = A\cos\omega_0 t$

b)
$$f(t) = 10\cos(2\pi t) + 10\cos(4\pi t)$$

Slika Spektar signala $f(t) = 10\cos(2\pi t) + 10\cos(4\pi t)$

- c) $T = 0.2s \Rightarrow \omega_s = \frac{2\pi}{T} = 10\pi [rad/s]$ frekvencija semplovanja Slika spektra diskretnog signala
- d) Slika odabiranje i kolo zadrške

 $G(s) = \frac{1 - e^{-Ts}}{s}$ je funkcija prenosa kola zadrške nultog reda

$$G(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = \frac{e^{-j\omega T/2} \cdot 2j\sin(\omega T/2)}{j\omega} = T\frac{\sin(\omega T/2)}{\omega T/2}e^{-j\omega T/2}$$

Amplitudska karakteristika je:

$$|G(j\omega)| = T \left| \frac{\sin(\omega T/2)}{\omega T/2} \right|,$$

a fazna:

$$\varphi(\omega) = -\frac{\omega T}{2} + \arg\left\{\frac{\sin(\omega T/2)}{\omega T/2}\right\}$$

Slike Amplitudska i fazna karakteristika kola zadrške nultog reda za T=1s

2. Dat je kontinualni signal $x(t) = \sin(2\pi f t + \pi/6)$. Ako je učestanost sinusoide f=200 Hz, a učestanost odabiranja f_s = 8 kHz, kolika je "diskretna" ugaona učestanost Ω i "diskretna" frekvencija F sinusnog niza koji se dobija odabiranjem kontinualnog signala?

Rešenje:

Diskretna frekvencija F se računa kao $F=\frac{f}{f_s}=\frac{200}{8000}=\frac{1}{40}$, a diskretna ugaona učestanost Ω kao $\Omega=2\pi F=\frac{2\pi}{40}=\frac{\pi}{20}\big[rad\big]$.

- 3. Dat je signal $x(t) = e^{-t}h(t)$.
 - a) Analitički odrediti Furijeovu transformaciju ovog signala. Skicirati amplitudsku karakteristiku.
 - b) Diskretizovati signal x(t) sa periodom T. Analitički odrediti Furijeovu transfomaciju diskretnog signala. Skicirati spektar diskretnog signala u slučaju da je zadovoljena teorema o odabiranju i u slučaju da ova teorema nije zadovoljena. Komentarisati dobijene rezultate.

Rešenje:

a) Furijeova transformacija signala x(t) je:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-t}e^{-j\omega t}dt = \int_{0}^{\infty} e^{-(1+j\omega)t}dt = -\frac{1}{1+j\omega}e^{-(1+j\omega)t}\Big|_{0}^{\infty} = \frac{1}{1+j\omega}$$

Amplitudska karakteristika je

b) Furijeova transformacija diskretnog signala je

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Omega n} = \sum_{n=0}^{\infty} e^{-nT}e^{-j\Omega n} = \sum_{n=0}^{\infty} e^{-(T+j\Omega)n} = \frac{1}{1-e^{-(T+j\Omega)}}$$

U slučaju da je perioda odabiranja dobro izabrana, tj. u slučaju da je zadovoljena teorema o odabiranju, spektar diskretnog signala će biti kao na sledećoj slici.

U ovom slučaju je moguće izdvojiti spektar kontinualnog signala iz spektra diskretnog signala pomoću niskofrekventnog filtra.

U slučaju velike periode odabiranja, teorema o odabiranju neće biti zadovoljena i doćiće do preklapanja spektara (engl. *aliasing*) pri periodičnom produženju spektra kontinualnog signala (slika).

- 4. Na ulaz anti-aliasing fitera dovodi se kauzalni signal $x(t) = 0.5^t$. Frekvencijska karakteristika filtra je data sa $H(j\omega) = \begin{cases} 1, & -5 \, rad \, / \, s < \omega < 5 \, rad \, / \, s \\ 0, & drugde \end{cases}$.
 - a) Odrediti Furijeovu transformaciju signala.
 - b) Skicirati spektar signala na ulazu filtra, amplitudsku karakteristiku filtra i spektar signala na izlazu filtra.

Rešenje:

a) Furijeova transformacija signala $x(t) = 0.5^t$ je:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{0}^{\infty} 0.5^{t} e^{-j\omega t}dt = \int_{0}^{\infty} \left(0.5e^{-j\omega}\right)^{t}dt = \frac{\left(0.5e^{-j\omega}\right)^{t}}{\ln\left(0.5e^{-j\omega}\right)}\Big|_{0}^{\infty} = \frac{1}{j\omega - \ln 0.5}$$

b) Amplitudska karakteristika signala na ulazu, amplitudska karakteristika filtra, kao i amplitudska karakteristika signala na izlazu, prikazane su na sledećoj slici.

5. Furijeova transformacija kauzalnog signala $x(t) = 0.1^t$ je $X(j\omega) = \frac{1}{j\omega - \ln 0.1}$. Odabiranjem ovog signala dobija se diskretni niz $x(n) = 0.1^{nT} h(n)$, čija je Furijeova transformacija $X(e^{j\Omega}) = \frac{1}{1 - 0.1^T e^{j\Omega}}$. Crtanjem amplitudskih spektara kontinualnog i diskretnog signala odrediti vrednost periode T za koju se iz diskretnog signala može rekonstruisati analogni signal i za koju se to ne može uraditi.