Chapter 5 – con't

Flip-flops

- Hold their state
- 3 Basic Types
 - **—** JK
 - D
 - T

Characteristics Tables

JK Flip-Flop

J	K	Q(t + 1))
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D Flip-Flop

D	Q(t + 1))
0	0	Reset
1	1	Set

T Flip-Flop

T	Q(t + 1)	
0 1	Q(t) $Q'(t)$	No change Complement

Characteristic Equations

$$Q(t+1) = D$$

D Flip-Flop

D	Q(t	+	1)
0	0		
1	1		

$$Q(t+1) = JQ' + K'Q$$

$$Q(t+1) = T XOR Q$$

= $TQ' + T'Q$

Asynchronous Inputs

- Used to force a flip-flop to a desired state.
 - Preset or Direct Set
 - Q = 1
 - Clear or Direct Reset
 - Q = 0

Analysis

- Analysis is about describing what a given circuit will do under certain operating conditions.
- Takes into account the inputs, the outputs, and current state of the flip-flops.
- Consists of obtaining a table/diagram

State Equations

- Algebraic description of the behavior of a circuit
- Specifies the next state as a function of the current state and inputs.

State Equations: Figure 5.15

Copyright ©2013 Pearson Education, publishing as Prentice Hall

State Table: Figure 5.15

Present State		Input		ext ate	Output
A	В	X	A	В	у
0	0	0			

State Table: Figure 5.15

	Present State Input		Next State		Output	
A	В	X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Present State		N	Next State				tput
		x = 0		x = 1		x = 0	<i>x</i> = 1
A	В	A	В	A	В	у	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

A little bit about graphs

Made of nodes and edges.

State Table

(Another form)

Present			Next State					Output	
	ate	,	K =	0	X =	= 1		x = 0	<i>x</i> = 1
A	В		A	В	A	В		у	у
0	0		0	0	0	1)	0	0
0	1		0	0				1	

Input/Output

State Table

(Another form)

Present		N	Next State				Output	
	ate	x =	0	X =	= 1	x = 0	<i>x</i> = 1	
A	В	A	В	A	В	у	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

State Diagram

