Dimension finie

QCOP DIM.1

Soient E et F deux espaces vectoriels de dimension finie. Soit $f \in L(E, F)$.

- \blacksquare Donner la définition du rang de f.
- \mathcal{Z} (a) Justifier l'existence de S supplémentaire de Ker(f) dans E.
 - **(b)** Montrer que $f_{|S|}|_{Im(f)}$ est un isomorphisme d'espaces vectoriels.
 - (c) En déduire que

$$dim(E) = dim(Ker(f)) + rg(f).$$

 \aleph On se place dans le cas où E=F. Montrer que

$$Im(f) = Im(f^2) \iff Ker(f) = Ker(f^2).$$

QCOP DIM.2

Soit *E* un espace vectoriel de dimension finie. Soient F et G deux sous-espaces vectoriels de E.

(a) Écrire la formule du rang pour

$$\varphi: \left| \begin{array}{ccc} F \times G & \longrightarrow & F + G \\ (u, v) & \longmapsto & u + v, \end{array} \right.$$

application dont on justifiera la linéarité et la surjectivité.

(b) Montrer que l'application

$$\psi: \left| \begin{array}{ccc} F \cap G & \longrightarrow & \mathsf{Ker}(\varphi) \\ u & \longmapsto & (u, -u) \end{array} \right|$$

est correctement définie et est un isomorphisme d'espaces vectoriels.

(c) Conclure que

$$\dim(F+G)+\dim(F\cap G)=\dim(F)+\dim(G).$$

% On considère les assertions suivantes :

(i)
$$F \cap G = \{0_E\}$$
;

(ii)
$$\dim(E) = \dim(F) + \dim(G)$$
;
(iii) $E = F + G$.

(iii)
$$E = F + G$$

Montrer que $E = F \oplus G$ si, et seulement si, deux des assertions sont vérifiées.

QCOP DIM.3

Soit *E* un espace vectoriel de dimension finie.

- E Énoncer le théorème du rang.
- Donner un exemple d'endomorphisme $f \in L(E)$ tel que

$$E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$$
.

lacktriangledown Donner un exemple de $f\in\mathsf{L}ig(\mathbb{R}^2ig)$ tel que

$$Ker(f) = Im(f)$$
.

On pourra chercher f tel que

$$\mathsf{Ker}(f) = \mathsf{Im}(f) = \mathsf{Vect}\left\{(1,0)\right\}.$$

QCOP DIM.5

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

Soit φ une forme linéaire non nulle de E.

- \blacksquare Écrire la formule du rang pour φ .
- **%** On suppose que n=2. Montrer que φ est surjective.
- Déterminer la dimension des espaces suivants :

$$\begin{cases} M \in \mathsf{M}_n(\mathbb{R}) & | \mathsf{Tr}(M) = 0 \}, \\ \left\{ P \in \mathbb{R}_2[\mathsf{X}] & | P(0) = 0 \right\}, \\ \left\{ P \in \mathbb{R}_4[\mathsf{X}] & \int_0^1 P(t) \, \mathrm{d}t = 0 \right\}, \\ \left\{ (x, y, z) \in \mathbb{R}^3 & | x + y + z = 0 \right\}. \end{cases}$$

QCOP DIM.4

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}$.

$$\mathcal{F}$$
 est libre \Longrightarrow $|\mathcal{F}|$... n ; \mathcal{F} est génératrice \Longrightarrow $|\mathcal{F}|$... n ; \mathcal{F} est une base \Longrightarrow $|\mathcal{F}|$... n .

- Montrer que les implications réciproques ne sont pas vraies.
- Soit $f \in L(E)$.

 Montrer que $\{f^k\}_{k \in \mathbb{N}}$ est liée.

QCOP DIM.6

Soient $n, p \in \mathbb{N}^*$.

- Donner une base et la dimension de $M_{n,p}(\mathbb{K})$.
- **№** Montrer que $M_n(\mathbb{K}) = S_n(\mathbb{K}) \oplus A_n(\mathbb{K})$. On donnera une base et la dimension des espaces mis en jeu.
- **•** Donner une base et la dimension des sousespaces des matrices triangulaires supérieures et diagonales de $M_n(\mathbb{K})$.
- Donner la dimension des espaces suivants :

$$egin{aligned} \left\{ M \in \mathsf{M}_n(\mathbb{K}) & \middle| & \mathsf{Tr}(M) = 0
ight\}, \ \left\{ M \in \mathsf{M}_n(\mathbb{R}) & \middle| & \mathsf{Tr}(M^\top M) = 0
ight\}. \end{aligned}$$

QCOP DIM.7

- Soient E, F deux espaces vectoriels de même dimension finie. Soit $u \in L(E, F)$ injective. Que dire de u?
- - (a) Montrer que, pour tout $n \in \mathbb{N}$, $\varphi_{|\mathbb{K}_n[X]}$ est bijective.
 - (b) En déduire que φ est bijective.