SVMs

- SVMs
 - Choice of cost function
 - Use the hinge loss function
 - $max(0, 1 y\theta^T x)$

- Not differentiable (non-smooth)
- Assigns zero penalty to all values of θ which ensure $\theta^T x \ge 1$ when y = 1, and $\theta^T x \le -1$ when y = -1
- So long as $y\theta^T x > 0$, we can scale up θ sufficiently
 - I.e. we can always force $y\theta^T x > 1$ which will allow for 0 cost outputs
- To get sensible behavior we have to penalise large values of θ
 - By adding this penalty: $\theta^T \theta = \sum_{j=1}^n \theta_j^2$
- So our final cost function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \theta^{T} x^{(i)}) + \lambda \theta^{T} \theta$$

- Where $\lambda > 0$ is some weighting parameter that we set
- Maximising the margin
 - We have freedom in choosing the line to separate two classes
 - Idea: choose the line which maximises the margin
 - The margin is determined by the points which support (the support vectors) the upper and lower boundaries
 - The cost function we chose, only penalises points for which $y\theta^Tx\leq 1$
 - $\theta^T x = 0$ is the decision boundary, and $\theta^T x = b$ is a parallel line shifted up by b, which passes through the point x^i for which $b = \theta^T x^{(i)}$

-
$$|b| = y^{(i)} \theta^T x^{(i)}$$
 since $y^{(i)} = 1$ or -1

- The margin =
$$\frac{|b|}{\theta^T \theta} = \frac{y^{(i)} \theta^T x^{(i)}}{\theta^T \theta}$$

- Maximising
$$\frac{y^{(i)}\theta^Tx^{(i)}}{\theta^T\theta}$$
 is the same as minimising
$$-\frac{y^{(i)}\theta^Tx^{(i)}}{\theta^T\theta}$$

Trade off exists between classification accuracy and maximised margin

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \theta^{T} x^{(i)}) + \lambda \theta^{T} \theta$$

- Decreasing λ increases accuracy but decreases margin
- Increasing λ decreases accuracy but increases margin

Gradient Descent for SVMs

 As we said before, the hinge loss function is not differentiable due to max() (non continuous function)

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \theta^{T} x^{(i)}) + \lambda \theta^{T} \theta$$

- We can use a subgradient though
 - Subgradient of max(0,1-z) is -1 when z≤1 and 0 when z>1
 - Derivative of $1-y\theta^T x$ with respect to θ_i is yx_i
 - Putting these together, subgradient of max $(0,1-y\theta^Tx)$ is

$$\begin{cases} -yx_j & \text{when } y\theta^T x \leq 1 \\ 0 & \text{when } y\theta^T x > 1 \end{cases}$$

For $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)}\theta^T x^{(i)}) + \lambda \theta^T \theta$, subgradient with respect to θ_j is:

• $2\lambda\theta_j - \frac{1}{m}\sum_{i=1}^m y^{(i)}x_j^{(i)}\mathbbm{1}(y^{(i)}\theta^Tx^{(i)} \leq 1)$ where $\mathbbm{1}(y^{(i)}\theta^Tx^{(i)} \leq 1) = 1$ when $y^{(i)}\theta^Tx^{(i)} \leq 1$ and zero otherwise.

So subgradient descent algorithm for SVMs is:

- Start with some θ
- · Repeat:

for
$$j=0$$
 to n { $tempj := \theta_j - \alpha(2\lambda\theta_j - \frac{1}{m}\sum_{i=1}^m y^{(i)}x_j^{(i)}\mathbb{1}(y^{(i)}\theta^Tx^{(i)} \leq 1))$ for $j=0$ to n { $\theta_j := tempj$ }

 $J(\theta)$ is convex, has a single minimum. Iteration moves downhill until it reaches the minimum

- Nonlinear decision boundary
 - Add extra (polynomial) features