Kleens Theorem i-Pact 1:- for any R.E 's' that represents language

L(r) there is a finite automate that accepts same language Proof: - R.E. a* Kleen's Part-1 Kleen's Part-2) for any RiE we show how to Construct an Veguiralent NFA. I the Induction wethod! Basic Step: (i) $\text{Min. } \mathcal{R} \in \mathcal{A}$

Scanned with CamScanner

Yart 2: - For any FA 'M' shart accepts language L(M), there is a regular expressions that represents the laure language. Proof: - & DFA accepts even no, of string once $\leq (916)$,
i'e. $\leq (916)$,
L= even no. of strings once $\{9,6\}$ $\Rightarrow \left(\left(a+b\right) \left(a+b\right) \right)^{\frac{1}{2}}$ Equivalent RrE. Hence Boved.