

Sinais Digitais

Paulo Ricardo Lisboa de Almeida

O mundo físico é analógico.

Mas (boa parte dos) nossos computadores são discretos (

Não podemos representar qualquer valor. Não existem valores intermediários entre os valores válidos.

O mundo físico é analógico.

Mas (boa parte dos) nossos computadores são discretos (

Não podemos representar qualquer valor. Não existem valores intermediários entre os valores válidos.

Exemplo: Ao olhar para um arco-íris, podemos ver uma transição contínua entre as cores. Essa transição contínua não pode ser representada perfeitamente em um mundo discreto.

Amostragem.

Podemos discretizar um sinal analógico, verificando o seu valor a cada *t* instantes de tempo (*t* é o período).

Amostragem.

Podemos discretizar um sinal analógico, verificando o seu valor a cada *t* instantes de tempo.

Quanto menor for *t*, mais fiel é o sinal discreto quando comparado ao analógico.

Podemos interpolar o sinal discreto para reconstruir (algo próximo) do sinal original.

Durante a discretização, algumas informações podem ser perdidas.

Com 2 valores

Quantização.

Com 2 valores

Quantização.

Com 4 valores

Quantização.

Com 4 valores

Quantização.

Geralmente as músicas que ouvimos possuem uma amostragem de 44.100Hz.

Isso significa que a cada t = ??? segundos um sinal é amostrado.

Geralmente as músicas que ouvimos possuem uma amostragem de 44.100Hz.

Isso significa que a cada $t = 1/441000 \approx 0,000023$ segundos um sinal é amostrado.

Geralmente as músicas que ouvimos possuem uma amostragem de 44.100Hz.

Isso significa que a cada $t = 1/441000 \approx 0,000023$ segundos um sinal é amostrado.

Lembre-se que f = 1/t, onde f é a frequência, e t o período.

Geralmente as músicas que ouvimos possuem uma amostragem de 44.100Hz.

Isso significa que a cada $t = 1/441000 \approx 0,000023$ segundos um sinal é amostrado.

Pelo Teorema de Nyquist-Shannon, sabemos que se desejamos reconstruir um sinal com um frequência x, precisamos amostrar com uma frequência de pelo menos 2x. Logo, nossas músicas podem ser reconstruídas no seu auto-falante com uma frequência de até 44.100/2 = 22.050 Hz.

A Frequência de Nyquist é definida como $f_{amostragem} \ge Z_{fmax}$

Geralmente as músicas que ouvimos possuem uma amostragem de 44.100Hz.

Isso significa que a cada $t = 1/441000 \approx 0,000023$ segundos um sinal ξ amostrado.

Pelo Teorema de Nyquist-Shannon, sabemos que se desejamos reconstruir um sinal com um frequência x, precisamos amostrar com uma frequência de pelo menos 2x. Logo, nossas músicas podem ser reconstruídas no seu auto-falante com uma frequência de até 44.100/2 = 22.050 Hz.

De onde saiu esse número mágico?

Geralmente as músicas que ouvimos possuem uma amostragem de 44.100Hz.

Isso significa que a cada $t = 1/441000 \approx 0,000023$ segundos um sinal ϵ amostrado.

Pelo Teorema de Nyquist-Shannon, sabemos que se desejamos reconstruir um sinal com um frequência x, precisamos amostrar com uma frequência de pelo menos 2x. Logo, nossas músicas podem ser reconstruídas no seu auto-falante com uma frequência de até 44.100/2 = 22.050 Hz.

De onde saiu esse número mágico? A maioria dos humanos consegue ouvir frequências de até 20.000 Hz.

Geralmente as músicas que ouvimos possuem uma amostragem de 44.100Hz.

Isso significa que a cada $t = 1/441000 \approx 0,000023$ segundos um sinal é amostrado.

Quantização de 16 bits: podemos representar 2^{16} = 65536 intensidades diferentes no "eixo y".

Ouça exemplos:

Música com diferentes amostragens: https://youtu.be/fZzMXdxbOes.

Música com diferentes quantizações: https://youtu.be/ubCMI3Jq6e4.

Exercícios

1. Veja esse vídeo com mais curiosidades sobre como um fone de ouvido sem fios funciona: https://youtu.be/_ZKNOKHpqE4

2. Você foi contratado(a) para criar fones de ouvidos para cachorros. Sabendo-se que um cachorro consegue ouvir frequências de até 65.000 Hz, qual deve ser a frequência de amostragem das músicas para cachorros, para que o sinal possa ser reproduzido com perfeição na frequência audível por eles?

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Widmer. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença Creative Commons Atribuição 4.0 Internacional.