

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE COMPUTAÇÃO

Proposta de Aplicação Móvel para Autocuidado de Diabéticos com Acuidade Visual Prejudicada

Trabalho de Conclusão de Curso

Jonathan Kelvin de Jesus Santos

São Cristóvão – Sergipe

Lista de abreviaturas e siglas

API Application Programming Interface

ADA American Diabetes Association

DCOMP Departamento de Computação

DM Diabetes Mellitus

Dev Developer

DV Deficiência Visual

DVP Deficiência Visual Parcial

DVT Deficiência Visual Total

eMag Modelo de Acessibilidade em Governo Eletrônico

IBGE Instituto Brasileiro de Geografia e Estatística

ICF International Classification of Functioning, Disability and Health

OMS Organização Mundial da Saúde

PDV Pessoa(s) com Deficiência Visual

TA Tecnologias Assistivas

TTS Text-to-speech

SO Sistema Operacional

UFS Universidade Federal de Sergipe

UX User Experience

WHO World Health Organization

W3C World Wide Web Consortium

Sumário

1	Fun	damentação Teórica
	1.1	Diabetes Mellitus
	1.2	Deficiência visual
	1.3	Acessibilidade e Leitores de tela
	1.4	Diretrizes de acessibilidade
	1.5	Desenvolvimento de aplicações multiplataforma
Re	ferên	rias

1

Fundamentação Teórica

Neste capítulo...

1.1 Diabetes Mellitus

De acordo com a Associação Americana de Diabetes (ADA), o Diabetes Mellitus (DM) é um grupo de doenças endocrinológicas crônicas caracterizado pela elevação da glicose no sangue, devido à deficiência de ação do hormônio insulina, que requer cuidados médicos contínuos para redução de risco e controle glicêmico (ADA, 2019).

O DM possui dois tipos, onde o tipo 1 afeta a produção de insulina devido à uma reação autoimune às proteínas das células das ilhotas do pâncreas e o tipo 2 afeta o processamento do açúcar no sangue e é causado por fatores genéticos relacionados à secreção prejudicada de insulina, resistência à insulina e fatores ambientais, como obesidade, alimentação excessiva, falta de exercício, estresse e o envelhecimento (OZOUGWU, 2013).

A diabetes vem se tornando um desafio global de saúde pública cada vez maior por conta do rápido aumento no número de casos. Estimativas da Federação Internacional de Diabetes (IDF), através do Atlas da Diabetes¹ de 2019, apontaram que 463 milhões de pessoas no mundo viviam com DM, o que representa cerca de 9.3% da população global adulta, e é esperado um aumento para 10,2% (578 milhões) em 2030 e 10,9% (700 milhões) em 2045 (SAEEDI et al., 2019).

O Brasil é o 5º país com mais diabéticos no mundo com 16,8 milhões em 2019, na faixa etária de 20 à 79 anos, e estimativas de 21,5 e 26 milhões de casos para 2030 e 2045, respectivamente (SAEEDI et al., 2019). Os custos totais de hipertensão, diabetes e obesidade no Sistema Único de Saúde (SUS) alcançaram 3,45 bilhões de reais em 2018, sendo 30% desse custo relacionado ao DM (NILSON et al., 2020).

^{1 &}lt;https://diabetesatlas.org/>

Já a retinopatia diabética é uma complicação vascular do diabetes, cuja prevalência está diretamente relacionada à duração do diabetes e ao controle do nível de glicemia (SOLOMON et al., 2017). Essa complicação é a maior causa de novos casos de cegueira em adultos, na faixa etária de 20 à 74 anos, em países desenvolvidos (ADA, 2019). Além disso, outros distúrbios oculares como o glaucoma e a catarata ocorrem mais cedo e com maior frequência em diabéticos (ADA, 2019).

Os resultados de uma metanálise realizada no estudo de Aminuddin et al. (2021) apontaram que as intervenções de autogerenciamento baseadas em *smartphones* pareceram ter efeitos benéficos sobre atividades de autocuidado para pacientes com DM tipo 2.

1.2 Deficiência visual

De acordo com a Classificação Internacional de Funcionalidade, Incapacidade e Saúde (ICF), a incapacidade enfrentada por pessoas com deficiência visual (PDV) não é determinada apenas pela condição ocular, mas também pelo ambiente físico e social em que a pessoa vive, bem como as dificuldades que pode enfrentar para realização de atividades como autocuidado, os problemas que sofrem cotidianamente, como em ir para o trabalho ou escola, e o acesso a cuidados, produtos e serviços oftalmológicos (WHO, 2019).

Assim, atualmente o mundo enfrenta um sério problema com relação a saúde da visão. Segundo a Organização Mundial da Saúde (OMS), pelo menos 2,2 bilhões de pessoas no mundo vivem com deficiência visual (DV) em algum grau, com isso a necessidade de cuidados com os olhos tende a crescer drasticamente nas próximas décadas (WHO, 2019).

O estudo da WHO (2019) aponta que mais de 1 bilhão dos casos de pessoas com DV poderiam ser prevenidos ou tratados. Ainda segundo esse estudo, os principais motivos para esses casos são:

- O tempo despendido em ambientes fechados e aumento das atividades "near work" (ler, escrever, assistir TV, jogar videogames, etc);
- O aumento no número de pessoas vivendo com diabetes, principalmente o tipo 2;
- Muitas pessoas não terem acesso a serviços oftalmológicos e verificações de rotina.

No Brasil, de acordo com o último censo do Instituto Brasileiro de Geografia e Estatistica (IBGE), realizado em 2010, cerca de 18,6% da população era afetada por algum tipo de DV, sendo 3,46% por DV severa (IBGE, 2012). Embora o próximo censo esteja previsto para 2022², outra pesquisa foi realizada pelo Ministério da Saúde em 2019, a Pesquisa Nacional de Saúde (PNS), e apontou que 3,4% da população brasileira, com 2 ou mais anos de idade, possui muita dificuldade ou não enxerga (STOPA et al., 2020).

^{2 &}lt;https://censo2022.ibge.gov.br/>

1.3 Acessibilidade e Leitores de tela

Segundo o Art. 3º da Lei Brasileira de Inclusão da Pessoa com Deficiência, acessibilidade se refere à:

possibilidade e condição de alcance para utilização, com segurança e autonomia, de espaços, mobiliários, equipamentos urbanos, edificações, transportes, informação e comunicação, **inclusive seus sistemas e tecnologias**, bem como de outros serviços e instalações abertos ao público, de uso público ou privados de uso coletivo, tanto na zona urbana como na rural, por pessoa com deficiência ou com mobilidade reduzida.

Acesso a Tecnologias Assistivas (AT) adequadas e de qualidade por um preço acessível melhora o funcionamento individual e a independência, ao mesmo tempo que facilita a participação e integração na sociedade (ORGANIZATION et al., 2019).

Visando a inclusão das pessoas com DV, tecnologias conhecidas como Tecnologias Assistivas (TA) se tornam cada vez mais presentes. Cook e Polgar (2014) utilizam em seu livro, uma definição de TA mundialmente utilizada que foi definida por uma *Public Law* dos Estados Unidos da América (EUA). Os autores justificam a utilização dessa definição por a mesma contemplar os pontos mais importantes a respeito de TA, como diz a seguir:

Qualquer item, parte de equipamento ou sistema adquirido comercialmente, modificado ou customizado que é utilizado para aumentar, manter ou melhorar as capacidades funcionais de pessoas com deficiência (COOK; POLGAR, 2014).

Para que essas TAs funcionassem adequadamente, organizações como a *World Wide Web Consortium* (W3C) definiram diretrizes que deveriam ser seguidas no desenvolvimento de aplicações *web* (W3C, 2019). Já para aplicações *mobile*, como a implementação da tecnologia varia de acordo com o Sistema Operacional (SO), essa definição se deu pelas próprias proprietárias dos SOs, tais como Google e Apple.

1.4 Diretrizes de acessibilidade

Um estudo realizado por Ballantyne et al. (2018), compila um conjunto de diretrizes para acessibilidade *mobile* e realiza testes em 25 dos *apps* mais populares da *Google Play*. Os resultados do estudo revelaram que apenas 8 dos 25 selecionados possuiam taxa de conformidade com as diretrizes acima de 75%. O estudo ainda revela que 63% das violações encontradas são relacionadas ao *design* (componentes de tela).

Já Yan e Ramachandran (2019) elaboram um estudo mais abrangente, realizado com 479 apps de 23 categorias da *Google Play*. Os autores utilizaram uma ferramenta automatizada, o IBM *Mobile Accessibility Checker* (MAC), para encontrar possíveis problemas com acessibilidade nesses *apps*, categorizando-os em V (Violação), PV (Potêncial Violação) e A (Alerta). Os

resultados mostraram que 94.8%, 97.5% e 66.4% dos apps continham problemas realacionados a V, PV e A, respectivamente (YAN; RAMACHANDRAN, 2019).

Para Quispe, Scatalon e Eler (2020) os principais fatores para a baixa priorização da acessibilidade de aplicações *mobile* são o desconhecimento, a alta demanda e a falta de tempo das equipes de desenvolvimento, fazendo com que se concentrem nos requisitos funcionais em detrimento de requisitos não funcionais de usabilidade como o de acessibilidade.

1.5 Desenvolvimento de aplicações multiplataforma

Segundo as estimativas, mais de 5 bilhões de pessoas possuem dispositivos móveis no mundo, sendo mais da metade destes, *smartphones*. No Brasil, a taxa de adultos que dizem possuir dispositivos móveis é de 83% no total e 60% para *smartphones*. Na faixa etária entre 18 e 34 anos, houve um aumento no número de proprietários de *smartphones* de 61% em 2015 para 85% em 2018 (TAYLOR; SILVER, 2019). //CETIC.br, NIC-BR, ITU (ONU)

Referências

ADA. 8. obesity management for the treatment of type 2 diabetes: Standards of medical care in diabetes—2019. *Diabetes Care*, American Diabetes Association, v. 42, n. Supplement 1, p. S81–S89, 2019. ISSN 0149-5992. Disponível em: https://care.diabetesjournals.org/content/42/Supplement_1/S81>. Citado 2 vezes nas páginas 3 e 4.

AMINUDDIN, H. B. et al. Effectiveness of smartphone-based self-management interventions on self-efficacy, self-care activities, health-related quality of life and clinical outcomes in patients with type 2 diabetes: A systematic review and meta-analysis. *International Journal of Nursing Studies*, v. 116, p. 103286, 2021. ISSN 0020-7489. Self-care in long term conditions. Disponível em: https://www.sciencedirect.com/science/article/pii/S0020748919300306. Citado na página 4.

BALLANTYNE, M. et al. Study of accessibility guidelines of mobile applications. In: . [S.l.]: Association for Computing Machinery, 2018. p. 305–315. ISBN 9781450365949. Citado na página 5.

COOK, A. M.; POLGAR, J. M. Assistive technologies: Principles and practice: Fourth edition. [S.l.: s.n.], 2014. Citado na página 5.

IBGE. Cartila do censo 2010 - pessoas com deficiências. Secretaria de Direitos Humanos da Presidência da República (SDH/PR), Secretaria Nacional de Promoção dos Direitos da Pessoa com Deficiência (SNPD), p. 32, 2012. ISSN 1098-6596. Disponível em: https://inclusao.enap.gov.br/wp-content/uploads/2018/05/cartilha-censo-2010-pessoas-com-deficienciareduzido-original-eleitoral.pdf>. Citado na página 4.

NILSON, E. A. F. et al. *Custos atribuíveis a obesidade, hipertensão e diabetes no Sistema Único de Saúde, Brasil, 2018*. Pan American Health Organization, 2020. 1 p. Disponível em: http://dx.doi.org/10.26633/RPSP.2020.32>. Citado na página 3.

ORGANIZATION, W. H. et al. Global perspectives on assistive technology: proceedings of the great consultation 2019, world health organization, geneva, switzerland, 22–23 august 2019. volume 1. World Health Organization, 2019. Citado na página 5.

OZOUGWU, O. *The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus*. Academic Journals, 2013. 46–57 p. Disponível em: http://dx.doi.org/10.5897/JPAP2013.0001. Citado na página 3.

QUISPE, F.; SCATALON, L.; ELER, M. Prioritization of mobile accessibility guidelines for visual impaired users. In: . SciTePress, 2020. v. 2, p. 563–570. Cited By 0. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091396826&partnerID=40&md5=f30643b9bc6f6f843d4c94328b592afc. Citado na página 6.

SAEEDI, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. *Diabetes Research and Clinical Practice*, v. 157, p. 107843, 2019. ISSN 0168-8227. Disponível em: https://www.sciencedirect.com/science/article/pii/S0168822719312306. Citado na página 3.

Referências 8

SOLOMON, S. D. et al. Diabetic retinopathy: A position statement by the american diabetes association. *Diabetes Care*, American Diabetes Association, v. 40, n. 3, p. 412–418, 2017. ISSN 0149-5992. Disponível em: https://care.diabetesjournals.org/content/archive/40/3/412/1. Citado na página 4.

STOPA, S. R. et al. Pesquisa nacional de saúde 2019: histórico, métodos e perspectivas. *Epidemiologia e Serviços de Saúde*, SciELO Brasil, v. 29, 2020. Citado na página 4.

TAYLOR, K.; SILVER, L. Smartphone ownership is growing rapidly around the world, but not always equally | pew research center. p. 47, 2019. Disponível em: https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/. Citado na página 6.

W3C, W. W. C. Web content accessibility guidelines (wcag) overview. Web Accessibility Initiative (WAI), 2019. Citado na página 5.

WHO. World report on vision. [S.l.]: World Health Organization, 2019. v. 214. Citado na página 4.

YAN, S.; RAMACHANDRAN, P. G. The current status of accessibility in mobile apps. *ACM Transactions on Accessible Computing*, Association for Computing Machinery, v. 12, 2 2019. ISSN 19367228. Citado 2 vezes nas páginas 5 e 6.