Rectangular Partitioning of Rectilinear Polygons

Exercise 15

Alexandre Ros

November 4, 2023

Introduction to the problem

Introduction

Exercise 15

Decompose a rectilinear polygon into rectangles, using segments aligned with the edges of the polygon. The algorithm must produce the **minimum number of pieces**, and the output must give a complete description of the partition.

Input

A polygon whose sides meet at right angles.

Output

A **partition** of the polygon into rectangles, with no overlaps.

We will call this problem MNC (minimal nonoverlapping cover).

Examples

Figure 1: Two rectilinear polygons.

Figure 2: A minimum partition of both.

Preliminaries

Concave and convex vertices

In a rectilinear polygon, we can distinguish between concave and convex vertices.

- A vertex is said to be **concave** if its interior angle is over 180°.
- A vertex is said to be convex if its interior angle is under 180°.

Figure 3: Convex (red) and concave (purple) vertices.

Co-vertical, co-horizontal and chords

- Two vertices (x_1, y_1) , (x_2, y_2) that share no edge are **co-vertical** \iff $y_1 = y_2$ and **co-horizontal** \iff $x_1 = x_2$.
- A **chord** is a segment fully contained inside the polygon that connects two co-horizontal or co-vertical vertices.

Figure 4: Examples of chords (orange) and **not** chords (red).

Chord-less polygons

Concave vertices observations

Suppose, for now, that there are no chords in polygon P.

Observation #1

P is a rectangle \iff P has exactly four convex vertices.

Observation #2

A concave vertex must be a vertex of two rectangles of the partition. See example below.

Observation #3

If P is not a rectangle then it must have at least one concave vertex.

Idea to solve the problem

For each concave vertex, extend its vertical edge until it hits another edge. If it hits a vertex, then that extension is a chord!

Figure 6: Chord-less polygons optimal solution.

Algorithm 1 Chord-less MNC in $O(n \log n)$

procedure MNC(P)

$$E \leftarrow \emptyset$$
; $R \leftarrow \emptyset$

 $L \leftarrow \text{sorted vertices of } P \text{ by } x\text{-coordinate}^{1}.$

for each vertex v in P **do**

Insert v to E in position, delete position if duplicate.

if v is concave then

Extend vertical edge.

Insert to R the vertical edge.

Return R as the paritioning edges of P.

¹ If using y-coordinate as tiebreaker, we can read pairs of vertices at a time (vertical edges).

Problem #1

Suppose there are two co-horizontal vertices which form a chord. We may prefer joining that chord rather than extending the vertical edge.

We would end up with one more rectangle!

Problem #2

If we drew all chords, there may be intersections.

Chords ab and ch intersect. So do chords ij and di.

Solution

Draw the largest set of non-intersecting chords. After this step, no chords can remain. The remaining sub-polygons can be partitioned as usual.

Theorem

A rectilinear polygon R has a minimum partition of order

N-L+1, where

N = Total number of concave vertices on the boundary of R.

L = Maximum number of nonintersecting chords.

N = 10 and L = 4 therefore the optimal order is 7.

Finding the largest set of nonintersecting chords

Process

Construct a bipartite graph, with vertices v_i for vertical chords, h_i for horizontal chords, and edges $\{v_i, h_j\}$ if v_i and h_j intersect.

Conclusion

Conclusion

- Summarize key points.
- Highlight takeaways.

Thank you for your attention!