Curso: Engenharia

DISCIPLINA: Gestão de Processos

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Análise de processos

O primeiro passo para definir um novo processo ou atualizar um processo que já exista é criar um entendimento comum do estado atual ("AS-IS") do processo e como ele cumpre seus objetivos.

CBOK V 3.0

Quando realizar a análise

A análise dos processos pode ser programada ou acionada por eventos externos e desvios de desempenho. Alguns exemplos:

- Atualização de Planos Estratégicos
- Qualidade de produto não aceitável e descumprimento de requisitos regulatórios
- > Avanços tecnológicos
- Fusões, aquisições e fusões frequentemente desarticulam processos
- Mudanças em regulamentações podem alterar regras de negócio CBOK V 3.0

Informações geradas

Em um nível de gestão mais elevado

- Compreensão da estratégia, metas e objetivos organizacionais
- 2. Compreensão do ambiente de negócio e contexto do processo (razão da existência do processo)
- 3. Formulação de uma perspectiva interfuncional da execução das atividades do processo, incluindo os papeis e os limites
- 4. Compreensão das regras de negócio, ou seja, diretrizes ou critérios que orientam as operações, tomadas de decisão e comportamentos.

Informações geradas

Em uma perspectiva mais específica

- 1. Identificação das entradas e saídas, resultados avaliação da agregação de valor ao cliente
- 2. Escalabilidade, aplicação e qualificação dos recursos
- 3. Métricas e indicadores, usados para medir desempenho

Priorização dos processos a analisar

- Definição de critérios e os respectivos pesos para priorização e ordenação dos processos a serem analisados.
- Aplicação de ferramentas de gestão da qualidade, como
 - Matriz GUT

Matriz GUT

Análise qualitativa x quantitativa

- A análise qualitativa se baseia no emprego de princípios e técnicas que permitem concluir o desempenho do processo, sem, entretanto, detalhar as medidas que o classifica em uma escala numérica, próprio da análise quantitativa.
- Em nossa abordagem, na análise qualitativa, discutimos princípios destinados a tornar o processo mais enxuto, identificando elementos do processo desnecessários com vistas à sua eliminação; e técnicas para identificar e analisar aqueles que criam problemas, afetando negativamente o desempenho do processo.
- Na análise quantitativa, discutimos técnicas para estabelecer medidas de desempenho como tempo de ciclo, tempo total de espera e custo.

Análise qualitativa

- Análise de Valor Agregado
- Análise de Causa Raiz

Análise qualitativa

- Análise de Valor Agregado. Destina-se a identificar etapas desnecessárias com vistas à sua eliminação.
- Consiste em duas etapas:
 - Classificação de valor
 - Eliminação de desperdício

Análise de valor agregado

1. Classificação de valor da etapa

Análise de valor agregado

1. Classificação de valor da etapa

- Categorias de etapas no processo. Categorização de cada uma das etapas do processo.
 - a. Valor Agregado (VA). Etapa que produz valor ao cliente.
 - b. Valor agregado para o negócio (VBA). Necessária ou útil à organização.
 - c. Não agregadora de valor (NVA).

Análise de valor agregado

2. Eliminar desperdícios

- Minimizar ou eliminar as etapas NVA.
- Lembrar que a análise contribui na sequência para o redesenho do processo.

Análise de causa raiz

Análise de causa raiz

- É um valioso instrumento para o gerenciamento da qualidade
- Apresenta a relação de causa-efeito
- Uma das formas bastante usada é a 6M+E, indicando as causas gerais
 - Man (Homem)
 - Machine (Máquina)
 - Material (Material)
 - Method (Método)
 - Managment (Gerenciamento)
 - Mesurement (Medida)
 - Enviroment (Ambiente)

Análise de causa raiz

Análise de causa raiz o método

Análise de causa raiz determinação dos pesos

• Matriz paritária de comparação: entrada pela linha

		MATERIA	٦L	AMBIENTE	MÁQUINA	MEDIDA	HOMEM	GERENCIAMENTO	MÉTODO	SOMA	PROB
	MATERIAL			0,5	1	0,5	1	1	0,5	4,5	21,43%
	AMBIENTE	0	,5		1	0,5	0,5	1	0	3,5	16,67%
_	MÁQUINA		0	0		0	0,5	0,5	0	1	4,76%
	MEDIDA	0	,5	0,5	1		0,5	1	0,5	4	19,05%
	HOMEM		0	0,5	0,5	0,5		1	0	2,5	11,90%
	GERENCIAMENTO		0	0	0,5	0	0		0	0,5	2,38%
	MÉTODO	0	,5	1	1	0,5	1	1		5	23,81%
										21	100,00%

Sugestão de escala

ESCALA	SEM IMPORTÂNCIA	PEQUENA IMPORTÂNCIA	IGUAL IMPORTÂNCIA	MAIS IMPORTANTE	MUITO MAIS IMPORTANTE
	0	0,25	0,5	0,75	1

Análise de causa raiz determinação dos pesos

• Repetir o processo para as subcausas para obter as probabilidades condicionais das subcausas

Processos priorizados Análise realizada

Registrar o problema &

Avaliar o impacto

Redesenho do processo

Registro do problema

	Coluna	Significado
1	Nome do problema	Um nome curto e compreensível para todos os stakeholders.
2	Descrição	Uma breve descrição do problema, sem abordar consequências ou impactos.
3	Prioridade	Número indicando a importância do problema em relação aos outros.
4	Pressupostos (ou dados de entrada)	Dados ou estimativas usados na avaliação do impacto do problema.
5	Impacto qualitativo	Descrição do impacto do problema de forma qualitativa, como satisfação do cliente ou reputação.
6	Impacto quantitativo	Estimativa do impacto em termos quantitativos, como perda de tempo, receita ou custos.

Avaliar o impacto Análise de Pareto

- Usado na identificação de algumas fontes críticas responsáveis pela maioria dos efeitos de um problema
- O princípio de Pareto indica que 80% das consequências associadas a um evento são decorrentes de 20% das suas causas.
- Esse princípio é útil para estabelecer as prioridades no tratamento das causas, considerando as consequências prováveis.

Forma

- Eixo horizontal
 Apresenta os fatos que se constituem a causa de um evento
- Eixo vertical à esquerda
 Representa a frequência das observações, em um diagrama de barras, em ordem decrescente, dos fatos causadores

Forma

Eixo vertical à direita
 Representa a probabilidade cumulativa dos fatos causadores

www.ibmec.br

