Roll No. 2

Ajay Kumar Garg Engineering College, Ghaziabad Department of ECE Pre-University Test

Course:

B.Tech

Session: 2024-25

Semester: Ist

Section: S11-S20

Sub. Code: BEC101

Time:3Hrs.

Subject: Fundamental of Electronics Engineering Max Marks: 70

OBE Remarks:

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
CO No.	1	1	3	2	3	4	5	1	2	3	1	2	4	4	5	5	3
Bloom's Level	L1	L1,L3	L1	L5	L2	L5	L6	L5	L4	L2	L3	L5	L5	L6	L5	L7	L6

Weightage CO4: 16 Weightage CO5: 1

Note: Answer all the sections.

Section-A

A. Attempt all the parts.

(7x2 = 14)

- 1. Explain Voltage tripler circuit in brief.
- 2. Compare between Avalanche breakdown and Zener breakdown
- 3. Define CMRR and Slew rate of Op-Amp
- 4. For a transistor $I_E = 10$ mA and $\alpha = 0.987$. Find I_C and I_B
- 5. Write down the characteristics of ideal Op-Amp.
- 6. Design EX-OR gate using NAND gate only
- 7. What is modulation. Explain modulation index used in AM.

Section-B

B. Attempt Anythree.

(3x7 = 21)

8. Determine and draw the output voltage of given network.

						1	_
Roll No.	100	4					

- 9. Draw and explain the construction and working of N-channel Depletion and Enhancement type MOSFET with characteristic graphs.
- 10. Draw the circuit diagram and explain the working of the Adder and Subtractor using OPAMP. Also, derive the expression for the output voltage.
- 11. Write short notes on the following topics
 - (ii) Photo Detector (i) LED
- (iii) Varactor diode
- 12. Draw and explain the working of the N-P-N Transistor in Common-Emitter (CE) configuration with its characteristic graphs.

Section-C

(5x7 = 35)

C. Attempt all the parts.

13. Attempt any one.

a) Convert the following:

i) (53.625)10 to (?)2

ii) Find the base x if $(211)_x = (152)_8$

- iii) Subtract using 1's complement: (10111)₂ (110011)₂
- iv) find the 1's and 2's compliment of (010100)2
- $f(A, B, C, D, E) = \sum m(0,1,2,3,7,8,9,12,13,15,16,22,23,27,28,29,30,31) + d(5,6,19,20)$ b) Simplify the following Boolean expression using K-map.

14. Attempt any one.

- a) Minimize $F(A, B, C, D) = \Pi M(3, 4, 5, 7, 9, 13, 14, 15).D(0, 2, 8)$ using K-Map and realize logic circuit using NOR gates only.
- b) Perform the following as mentioned:
- (i) Convert (63.250)₁₀ to binary number.
- (ii) Convert (10010.101)₂ to decimal number.
- (iii) Convert (A6B.0F)₁₆ to octal number. (iv) Perform subtraction using 2s complement (111-1010)₂.
- (v) Design AND, OR, and NOT gates using only NOR gates

15. Attempt any one.

- a) Define Amplitude modulation technique with the help of required waveform. Also derive the relation of total power of AM waves. A 450 W carrier is simultaneously modulated by two audio waves withmodulation percentage of 50 and 60, respectively. What is the sideband and otal power radiated?
- b) Explain RADAR and Satellite Communication in brief with necessary block diagram. Also explain Its application.

Format A AKGEC/IQAC/QP/04

	ı
	J
Doll No.	
Kon Lio.	

16. Attempt any one.

- a) An Audio frequency signal $10\sin(4\pi \times 500t)$ is used to amplitude modulate a carrier of $30 \operatorname{Sin}(4\pi \times 10^5 t)$. Calculate
 - (i) Modulation Index
 - (ii) Amplitude of each side band 😛
 - (iii) Total power delivered to the load of $1K\Omega$
 - (iv) Bandwidth
 - (v) Transmission efficiency
- b) Explain why modulation is necessary in communication systems. Explain the demodulation techniques techniques used to retrieve the original signal from an AM waveform.

17. Attempt any one.

- a) Explain the working of op-amp as an Integrator, Unity Follower and differentiator and drive its output equation.
- b) Determine and draw the output voltage of given network.

