

Chapitre 3

Résolution des problèmes de dynamique plans à 1 mobilité

Cours

Savoirs et compétences :

□ ...

1	Introduction	2
2	PFD : cas général	2
2.1	Principe Fondamental de la Dynamique	2
2.2	Équations de mouvement	2
2.3	Théorèmes généraux	3
2.4	PFD : applications simplifiées	3
2.5	Méthodologie	3
3	Théorème de l'énergie cinétique dans des partic	culiers
	(mais fréquents)	4
3.1	Puissance d'une action mécanique extérieure à un s	olide 4
3.2	Puissances d'actions mutuelles dans les liaisons	4
3.3	Énergie cinétique	5
3.4	Énergie cinétique équivalente	5
3.5	Théorème de l'énergie cinétique	5
3.6	Méthodologie	5
4	Loi de mouvement en trapèze	6

Introduction

Objectif

L'objectif de ce cycle est triple. L'étude dynamique des systèmes de solide permet de

- déterminer les actions mécaniques dans les liaisons en tenant compte des masses (et des répartitions de masses) des pièces ou des classes d'équivalence cinématique;
- dimensionner les actionneurs permettant d'actionner un système;
- déterminer les équations de mouvement.

On distingue deux principaux types de problèmes en dynamique :

- type 1:
 - on connaît : les actionneurs et les inerties,
 - on détermine : les lois de mouvement et les actions mécaniques dans les liaisons ;
- - on connaît : les lois de mouvement et inerties,
 - on détermine : les caractéristiques des actionneurs et les actions mécaniques de liaison.

Définition - Référentiel galiléen

Un **référentiel galiléen** se définit à partir d'une repère spatial (orthonormé direct $(O_g; \overrightarrow{x_g}, \overrightarrow{y_g}, \overrightarrow{z_g})$ et d'une base de temps (t) et est animé d'un mouvement de translation rectiligne uniforme (à vitesse constante) par rapport à un référentiel absolu fixe ou à un autre référentiel galiléen $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$.

On peut également le définir comme un référentiel « dans lequel le principe fondamental de la dynamique s'applique ».

- Dans la pratique, on fera toujours la supposition qu'un repère est galiléen. Cela dépendra effectivement des mouvements mis en jeu et des échelles temporelles et spatiales considérées. Par exemple :
 - pour étudier des mouvements de l'ordre de quelques minutes à l'échelle humaine, le référentiel terrestre (origine liée au centre de la terre et les trois axes liés au globe terrestre) est approprié;
 - pour étudier les effets météorologiques (ouragans, courants marins), ou les mouvements des satellites, il convient alors de tenir compte de l'inertie de la terre et on pourra choisir le **référentiel géocentrique** (origine liée au centre de la terre et les trois axes dirigés vers trois étoiles très éloignées) comme référentiel
 - pour étudier le mouvement des planètes, il convient mieux d'utiliser le référentiel héliocentrique (origine liée au centre du soleil et les trois axes dirigés vers trois étoiles très éloignées).

Une chronologie galiléenne est obtenue par une horloge précise (Quartz, atomique, ou mouvement des astres). En mécanique classique (ou Newtonienne), les deux repères d'espace et de temps sont supposés indépendants ce qui n'est pas le cas de la mécanique relativiste.

Première approche du Principe Fondamental de la Dynamique

Principe Fondamental de la Dynamiaue

Définition – Énoncé du Principe Fondamental de la Dynamique

Dans le cas général, soit un ensemble matériel E en mouvement par rapport à un référentiel galiléen (R_0) , alors la somme des actions mécaniques extérieures (torseur des actions mécaniques extérieures s'appliquant sur E) est égale au **torseur dynamique** du mouvement de E par rapport à R_0 :

$$\{\mathscr{T}(\overline{E} \to E)\} = \{\mathscr{D}(E/R_0)\}.$$

De plus le **Principe Fondamental de la Dynamique** postule que pour tout mouvement, il existe au moins un référentiel dans lequel la relation est vérifiée. Ce sera donc un référentiel galiléen.

- Les démarches pour le calcul du torseur dynamique seront vues ultérieurement.
- La démarche de calcul du torseur des actions mécaniques extérieures appliquées sur E est la même que celle vu lors de l'utilisation du PFS (ce sont les mêmes torseurs).

Équations de mouvement

Définition - Équations de mouvement

Une équation de mouvement est une équation différentielle du second ordre traduisant les théorèmes généraux, dans laquelle ne figure aucune composante inconnue d'action mécanique. Il est parfois nécessaire d'écrire plusieurs équations pour trouver par substitution une équation de mouvement. On nomme « intégrale

première du mouvement » une équation différentielle du premier ordre avec un second membre constant, obtenue par intégration d'une équation de mouvement.

Théorèmes généraux

Du principe fondamental de la dynamique découle plusieurs théorèmes généraux.

Théorème - Théorème de la résultante dynamique

Pour tout ensemble matériel (E) de masse m et de centre de gravité G en mouvement par rapport à un référentiel galiléen (R_0) , la somme des résultantes des efforts extérieurs s'appliquant sur E est égale à la résultante dynamique du mouvement de E par rapport à R_0 (notée $\overrightarrow{R_d}(E/R_0)$):

$$\overrightarrow{R(\bar{E} \to E)} = \overrightarrow{R_d}(E/R_0) = m\overrightarrow{\Gamma(G, E/R_0)}.$$

On peut alors définir un Newton comme l'effort à mettre en œuvre pour mettre en mouvement 1 kg avec une accélération de 1 m s^{-2} en son centre de gravité G.

Théorème - Théorème du moment dynamique

Pour tout ensemble matériel (E) de masse m en mouvement par rapport à un référentiel galiléen (R_0) , la somme des moments des efforts extérieurs s'appliquant sur E en un point quelconque A est égale au moment dynamique du mouvement de E par rapport à R_0 en A (noté $\delta(A, E/R_0)$):

$$\overrightarrow{\mathcal{M}}(A, \overline{E} \to E) = \overrightarrow{\delta}(A, E/R_0).$$

Théorème - Théorème des actions mutuelles

Soient (E_1) et (E_2) deux sous-ensembles matériels de (E), en mouvement par rapport à un référentiel galiléen, et exerçant une action mécanique l'un sur l'autre. Alors :

$$\{\mathcal{T}(E_1 \to E_2)\} = -\{\mathcal{T}(E_2 \to E_1)\}.$$

Principe Fondamental de la Dynamique : applications simplifiées

Définition – Solide en translation par rapport à un référentiel galiléen

Si un ensemble matériel E (de centre d'inertie G) est en mouvement de translation dans un référentiel galiléen (R_g) alors:

- d'après le théorème de la résultante dynamique : la résultante des efforts extérieurs est égale au produit de la masse par l'accélération de G par rapport à $R_g: m\overline{\Gamma(G, E/R_g)} = \overline{R(\bar{E} \to E)};$ • d'après le **théorème du moment dynamique :** le moment des actions mécaniques extérieures s'appliquant
- sur E est égal au vecteur nul en tout point : $\overline{\mathcal{M}(A, \bar{E} \to E)} = \overline{0} \forall A$

Définition – Solide en rotation autour d'un axe fixe par rapport à un référentiel galiléen

Si un ensemble matériel E (de centre d'inertie G) est en mouvement de rotation autour d'un axe Δ (dirigé par \overrightarrow{u} unitaire) fixe dans un référentiel galiléen (R_g) alors, d'après le **théorème du moment dynamique** :

$$\overrightarrow{\mathcal{M}(A, \overline{E} \to E)} \cdot \overrightarrow{u} = J_{\Delta}(E) \cdot \overrightarrow{\theta} \ \forall A \in \Delta \text{ avec}$$
:

- $J_{\Delta}(E)$ le moment d'inertie de E par rapport à l'axe Δ (en kg m²);
- $\ddot{\theta}$, l'accélération angulaire de E par rapport à R_g suivant $\Delta : \overrightarrow{\Omega}(E/R_g) \cdot \overrightarrow{u}$.

Méthodologie

Méthode La méthodologie de résolution d'un problème de dynamique est très similaire à celle utilisée lors de la détermination des performances statiques des systèmes.

- 1. On choisit un repère galiléen et on effectue le bilan complet des données d'entrée du problème.
- 2. On construit un graphe de structure.
- 3. On isole le solide ou le système de solides considérés.
- 4. On effectue le Bilan des Actions Mécaniques Extérieures agissant sur le système isolé.
- 5. On écrit le PFD.

- 6. On projette les relations vectorielles sur les axes choisis.
- 7. On injecte les lois de comportement (ressort, lois de Coulomb, ...).
- 8. On effectue la résolution.

Méthode - Équations de mouvement

Idée de base : minimiser le nombre d'équations à écrire.

- Si on cherche à déterminer un couple moteur, on écrirera plutôt un théorème du moment dynamique en projection sur l'axe de rotation.
- Si on cherche à déterminer l'effort transmis par un vérin, on écrirera plutôt un théorème ce la résultante dynamique en projection sur l'axe de translation.

3 Théorème de l'énergie cinétique dans des particuliers (mais fréquents)

Hypothèse(s) Nous allons traiter ici de cas particuliers du théorème de l'énergie cinétique. Une formulation plus générale sera vue ultérieurement. Les solides isolés seront forcément :

- ou bien en translation par rapport à un référentiel galiléen;
- ou bien en rotation par rapport à un axe fixe d'un référentiel galiléen;
- ou bien de masse (ou d'inertie) négligeable.

3.1 Puissance d'une action mécanique extérieure à un solide

Définition – Puissance d'une action mécanique extérieure à un solide (S)

La puissance d'une action mécanique extérieure à un solide (S) en mouvement dans un référentiel R peut s'écrire comme le comoment entre le torseur des actions mécaniques que subit (S) et le torseur cinématique du mouvement de S dans le référentiel R.

$$\mathscr{P}(\operatorname{ext} \to S/R) = \{\mathscr{T}(\operatorname{ext} \to S)\} \otimes \{\mathscr{V}(S/R)\}.$$

- Le comoment des torseurs est défini par $\{\mathcal{T}(\text{ext} \to S)\} \otimes \{\mathcal{V}(S/R)\} = \left\{\begin{array}{c} \overline{R(\text{ext} \to S)} \\ \overline{\mathcal{M}(P, \text{ext} \to S)} \end{array}\right\}_{P} \otimes \left\{\begin{array}{c} \overline{\Omega(S/R)} \\ \overline{V(P, S/R)} \end{array}\right\}_{P}$
- Lorsque le torseur cinématique de S/R est un couple (mouvement de translation) alors en tout point A la puissance est alors donnée par $\mathscr{P}(\text{ext} \to S/R) = \overrightarrow{R(\text{ext} \to S)} \cdot \overrightarrow{V(P, S/R)} \forall P$.
- Lorsque le torseur des actions mécaniques est un torseur couple alors la puissance est donnée par $\mathscr{P}(\text{ext} \to S/R) = \overline{\mathscr{M}(P, \text{ext} \to S)} \cdot \overline{\Omega(S/R)} \, \forall P$.

3.2 Puissances d'actions mutuelles dans les liaisons

Définition – **Puissances d'actions mutuelles dans les liaisons** Si deux solides S_1 et S_2 sont en liaison, on a :

$$\mathscr{P}(S_1 \longleftrightarrow S_2) = \{\mathscr{T}(S_1 \to S_2)\} \otimes \{\mathscr{V}(S_2/S_1)\}.$$

La **liaison parfaite** si et seulement si quel que soit le mouvement de S_2 par rapport à S_1 autorisé par la liaison entre ces deux solides, la **puissance des actions mutuelles entre** S_1 **et** S_2 **est nulle**.

$$\mathscr{P}(S_1 \longleftrightarrow S_2) = 0.$$

- La notion de **liaison parfaite** s'étend facilement à une liaison équivalente à plusieurs liaisons placées en parallèle et en série entre deux solide S_1 et S_2 . Pour cela il suffit de considérer les torseurs d'action mécanique transmissible et cinématique de la liaison équivalente.
- L'hypothèse d'une liaison parfaite a pour avantage de mettre en place le théorème de l'énergie cinétique (qui est une conséquence du principe fondamental de la dynamique) sans préjuger de la technologie de la liaison.

3.3 Énergie cinétique

Propriété - Expression avec les comoments

L'énergie cinétique peut s'exprimer comme le comoment du torseur cinématique et du torseur cinétique :

$$E_c(S/R) = \frac{1}{2} \left\{ \mathscr{V}(S/R) \right\} \otimes \left\{ \mathscr{C}(S/R) \right\}.$$

🚺 Il faudra bien veiller à ce que chacun des torseurs soit exprimé en un même point.

Propriété - Cas particuliers

• Solide S de masse M de centre d'inertie G en mouvement de **translation** par rapport à R:

$$E_c(S/R_0) = \frac{1}{2}M \overrightarrow{V(G, S/R)}^2.$$

• Solide S de moment d'inertie $I_{Oz}(S)$ en mouvement de rotation par rapport à l'**axe fixe** (O, \overline{z}) par rapport R:

$$E_c(S/R) = \frac{1}{2}I_{Oz}(S)\overrightarrow{\Omega(S/R)}^2.$$

3.4 Énergie cinétique équivalente

Définition - Énergie cinétique équivalente

Lorsqu'un problème ne comporte qu'un seul degré de liberté et pour simplifier les calculs, on peut exprimer l'énergie cinétique galiléenne d'un ensemble E composé de n solides S_i en fonction d'un seul paramètre cinématique. On peut alors écrire $E_c(E/R)$

• avec son inertie équivalente $J_{eq}(E)$ (en kg m²) rapportée à un paramètre de rotation $\dot{\theta}(t)$:

$$E_c(E/R_g) = \frac{1}{2} J_{eq}(E) \dot{\theta}^2.$$

• avec sa masse équivalente $M_{eq}(E)$ (en kg) rapportée à un paramètre de translation $\dot{x}(t)$:

$$E_c(E/R_g) = \frac{1}{2} M_{eq}(E) \dot{x}^2.$$

3.5 Théorème de l'énergie cinétique

Théorème -Théorème de l'énergie cinétique

La dérivée par rapport au temps de l'énergie cinétique d'un solide S dans son mouvement par rapport au référentiel galiléen R_g est égale à la puissance galiléenne des actions mécaniques extérieures à S. Soit :

$$\frac{\mathrm{d}E_c(S/R_g)}{\mathrm{d}t} = \mathscr{P}(\bar{S} \to S/R_g).$$

3.6 Méthodologie

Méthode - Équations de mouvement

- On réalise le graphe de liaisons exhaustif.
- On isole l'ensemble du mécanisme (à l'exclusion du bâti).
- On fait un bilan des puissances extérieures (et on les calcule).
- On fait un bilan des puissances intérieures (et on les calcule).
- On calcule l'énergie cinétique de l'ensemble isolé.
- On applique le théorème de l'énergie cinétique (TEC).

4 Loi de mouvement en trapèze

Une des lois usuellement suivie par un actionneur pour aller d'un point à un autre est une loi de mouvement de vitesse en trapèze. Ce mouvement peut être décomposé en 3 phases :

- phase 1 mouvement uniformément décéléré. L'accélération est donc constante, la vitesse croit de façon linéaire et la position de façon parabolique;
- phase 2 : mouvement uniforme. L'accélération est nulle, la vitesse est constante et la position évolue linéairement :
- phase 3 : mouvement uniformément décéléré. L'accélération est constante est négative, la vitesse décroît linéairement et la position évolue de façon parabolique.

Dans le cas général, il sera souvent inutile d'écrire les équations horaires de chacune des phases. En effet, les questions liées à ces lois de mouvements sont généralement :

- d'identifier le « pire des cas » en terme de vitesse/accélération;
- de déterminer les temps de une ou plusieurs des phases en fonction de la distance à parcourir, la vitesse maximale, l'accélération accélérations maximale;
- de déterminer la hauteur du palier de vitesse;
- de déterminer la distance parcourue.

Position x(t) (mvt de translation) ou θ (t) (mvt de rotation)

Résultat Dans les 3 derniers points, il est souvent suffisant de remarquer en utilisant les courbes que :

- $t_1 = \frac{\dot{x}_m}{\ddot{x}_m}$
- en utilisant la courbe de vitesse et en remarquant que l'intégrale sous la courbe correspond à la distance parcourue, la distance parcourue lors de l'accélération est donnée par $\frac{1}{2}t_1\dot{x}_m$;
- en utilisant la courbe de vitesse et en remarquant que l'intégrale sous la courbe correspond à la distance parcourue, la distance parcourue lors des 3 phases est donnée par $2 \cdot \frac{1}{2} t_1 \dot{x}_m + (t_2 t_1) \dot{x}_m$.

	Phase 1	Phase 2	Phase 3
Équation de position	$x(t) = \frac{1}{2}\ddot{x}_m t^2$	$x(t) = \dot{x}_m(t)(t-t_1) + x_m(t_1)$	$x(t) = -\frac{1}{2}\ddot{x}_m(t - t_2)^2 + \dot{x}_m(t)(t - t_2) + x_m(t_2)$
Équation de vi-	$\dot{x}(t) = \ddot{x}_m t$	$\dot{x}(t) = \dot{x}_m$	$\dot{x}(t) = -\ddot{x}_m(t - t_2) + \dot{x}_m$
tesse			
Équation d'ac- célération	$\ddot{x}(t) = \ddot{x}_m$	$\ddot{x}(t) = 0$	$\ddot{x}(t) = -\ddot{x}_m$

Références

- [1] Émilien Durif, Introduction à la dynamique des solides, Lycée La Martinière Monplaisir, Lyon.
- [2] Florestan Mathurin, *Introduction à la dynamique du solide, Lycée Bellevue, Toulouse*, http://florestan.mathurin.free.fr/.

l'Ingénieur

Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Chapitre 3 - Résolution des problèmes de dynamique plans à 1 mobilité

Application 1

Application – Pompe à plateau

C. Gamelon & P. Dubois

Savoirs et compétences :

- Res1.C2: principe fondamental de la dynamique;
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement.

Considérons le mécanisme de pompe représenté sur la figure ci-dessous.

L'arbre excentrique (1), animé d'un mouvement de rotation autour de l'axe $(O, \overrightarrow{x_0})$ horizontal, agit sur le piston (2) en liaison pivot glissant d'axe $(O, \overline{z_0})$ avec le bâti (0). Pendant la phase de descente du piston (2), le contact ponctuel en I avec l'excentrique est maintenu par un ressort (\mathbf{r}).

Paramétrage

Le repère $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ lié au bâti **(0)** est supposé galiléen. Le repère $(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est lié à l'arbre excentrique **(1)**. On a de plus :

•
$$(\overrightarrow{y_0}, \overrightarrow{y_1}) = (\overrightarrow{z_0}, \overrightarrow{z_1}) = \theta$$
;

•
$$\overrightarrow{OB} = e \overrightarrow{z_1}, \overrightarrow{BI} = R \overrightarrow{z_0}, \overrightarrow{OA} = z \overrightarrow{z_0}.$$

Les liaisons pivot entre (0) et (1), ponctuelle entre (1) et (2), et pivot glissant entre (0) et (2) sont supposées sans frottement. Le solide (1) possède un moment d'inertie I_1 par rapport à l'axe $(O, \overrightarrow{x_0})$. Le piston (2) possède une masse m_2 . Le ressort (\mathbf{r}), de raideur k, est toujours comprimé. Pour $\theta = \pm \frac{\pi}{2}$, l'effort de compression est égal à $\overrightarrow{F_0} = -F_0 \overrightarrow{z_0}$. Un moteur exerce un couple connu de moment $\overrightarrow{C_m} = C_m \overrightarrow{x_0}$ sur l'arbre (1). Le fluide exerce sur le piston une action connue, représentée par un glisseur d'axe $(O, \overrightarrow{z_0})$ et de résultante $\overrightarrow{F_h} = -F_h \overrightarrow{z_0}$.

Résolution cinématique

Question 1 En utilisant une fermeture géométrique ou la méthode de votre choix, déterminer la exprimer z en fonction de θ et de constantes du problème. Déterminer alors V(A, 2/0) et $\Gamma(A, 2/0)$.

Résolution dynamique

Question 2 Proposer une méthode permettant de déterminer l'équation différentielle du mouvement relative au paramètre θ en utilisant le PFD.

Question 3 *Mettre en œuvre la méthode proposée précédemment.*

Résolution énergétique

Question 4 Proposer une méthode permettant de déterminer l'équation différentielle du mouvement relative au paramètre θ en utilisant le théorème de l'énergie cinétique.

Question 5 *Mettre en œuvre la méthode proposée précédemment.*

Pour aller plus loin...

Question 6 En considérant un frottement sec au niveau de la liaison ponctuelle entre (1) et (2), déterminer l'équation différentielle du mouvement.