RICOH |

R1100D SERIES

ULTRA SMALL PACKAGE VOLTAGE REGULATOR

NO.EA-117-111018

OUTLINE

The R1100D Series are CMOS-based voltage regulator ICs with high accuracy output voltage and ultra-low supply current developed. Each of these ICs consists of a driver transistor, a voltage reference unit, an error amplifier, resistors for setting output voltage and a current limit circuit.

The output voltage of these ICs is fixed with high accuracy.

Even if V_{OUT} is shorted to the GND, the included current limit circuit protects the ICs from the destruction.

Since the package for these ICs is SON1408-3, high density mounting of the ICs on boards is possible.

FEATURES

Supply current	Typ. 0.8μA (Vouτ=1.0V, Vdd=3.0V)
Dropout Voltage	Тур. 20mV (Іоит=1mA, Vоит=3.0V)
Output Voltage	0.9V to 4.0V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy	±2.0%(1.2V ≤ V _{OUT} ≤ 4.0V),
	±24mV(Vоит <1.2V)
• Temperature-Drift Coefficient of Output Voltage .	Typ. ±100ppm/°C
Line Regulation	Typ. 0.05%/V
Package	SON1408-3
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
• Ceramic capacitors are recommended to be use	ed with this IC0.1μF or more

APPLICATIONS

- Power source for battery-powered equipment.
- Power source for cameras, VCRs, camcorders, hand-held audio instruments and hand-held communication equipment.
- Precision voltage references.

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1100Dxx1C-TR-F	SON1408-3	9,000 pcs	Yes	Yes

xx: The output voltage can be designated in the range from 0.9V(09) to 4.0V(40) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)

PIN CONFIGURATION

• SON1408-3

PIN DESCRIPTION

• SON1408-3

Pin No	Symbol	Pin Description
1	Vout	Output pin
2	V _{DD}	Input Pin
3	GND	Ground Pin

ABSOLUTE MAXIMUM RATINGS

(GND=0V)

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.5	V
Vоит	Output Voltage	Vss-0.3 to V _{IN} +0.3	V
Іоит	Output Current	180	mA
P _D	Power Dissipation * (SON1408-3)	250	mW
Topt	Operating Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	-55 to∼ 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field

The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

• R1100D301C

Topt=25°C

Symbol	Item	Test Conditions	Min.	Тур.	Max.	Unit
Vouт	Output Voltage	V _{IN} =5.0V 10µA ≤ I _{OUT} ≤ 10mA	2.940	3.000	3.060	V
louт	Output Current	V _{IN} =5.0V	100			mA
Δ V ουτ/Δ I ουτ	Load Regulation	V _{IN} =5.0V, 1mA ≤ I _{OUT} ≤ 50mA		35	60	mV
V _{DIF}	Dropout Voltage	Iouт=1mA		20	30	mV
Iss	Supply Current	V _{IN} =5.0V		1.5	3.0	μΑ
Δ V ουτ/Δ V ιΝ	Line Regulation	Iouт=1mA Set Vouт+0.5V ≤ Vin ≤ 6.0V	-0.20		0.20	%/V
Vin	Input Voltage				6.0	V
ΔVουτ/ΔTopt	Output Voltage Temperature Coefficient	louτ=10mA -40°C ≤ Topt ≤ 85°C		±100		ppm/ °C
Isc	Short Current Limit	Vout=0V		40		mA

ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE

Topt=25°C

	(Output V	oltage		Output	Output Current Load Regulation		on	Drop	out Vol	tage				
Part Number		V ουτ[v]		lou	Ιουτ[mA] ΔVΟUΤ/ΔΙΟUΤ[mV] VDIF[mV		[mA] ΔVOUT/ΔΙΟUT[mV] VDIF[mV]		Vdif[mV]					
	Condi- tions	MIN.	TYP.	MAX.	Condi- tions	MIN.	TYP.	Condi- tions	TYP.	MAX.	Condi- tions	TYP.	MAX.		
R1100D091C		0.876	0.900	0.924				VIN-Set VOUT				380	750		
R1100D101C	7	0.976	1.000	1.024				=2.0V				280	700		
R1100D111C	7	1.076	1.100	1.124		35			7.5	20		200	600		
R1100D121C	7	1.176	1.200	1.224		33		1mA ≤	7.5	20		200	600		
R1100D131C	7	1.274	1.300	1.326				louт≤				100	400		
R1100D141C	7	1.372	1.400	1.428				20mA				100	400		
R1100D151C	1	1.470	1.500	1.530								50	100		
R1100D161C	7	1.568	1.600	1.632								50	100		
R1100D171C	7	1.666	1.700	1.734											
R1100D181C	1	1.764	1.800	1.836											
R1100D191C	1	1.862	1.900	1.938											
R1100D201C	VIN-	1.960	2.000	2.040			VIN-Set Vout					ĺ			
R1100D211C	Set Vout	2.058	2.100	2.142				=2.0V					ĺ		
R1100D221C	=2.0V	2.156	2.200	2.244		65		1mA ≤	20	40					
R1100D231C	1	2.254	2.300	2.346	14		Ic		louт≤	louт≤				25	50
R1100D241C	1	2.352	2.400	2.448	VIN- Set Vout	/out						35mA			
R1100D251C	10μΑ	2.450	2.500	2.550	=2.0V			John					=1mA		
R1100D261C	≤	2.548	2.600	2.652	=2.0 V										
R1100D271C	lout	2.646	2.700	2.754									İ		
R1100D281C	_ ≤	2.744	2.800	2.856											
R1100D291C	10mA	2.842	2.900	2.958											
R1100D301C	7	2.940	3.000	3.060											
R1100D311C	7	3.038	3.100	3.162											
R1100D321C	7	3.136	3.200	3.264				.,							
R1100D331C	1	3.234	3.300	3.366				VIN-Set Vout							
R1100D341C		3.332	3.400	3.468				=2.0V							
R1100D351C		3.430	3.500			100		1mA ≤	35	60		20	30		
R1100D361C		3.528	3.600	3.672				IIIIA ≤ Iout ≤							
R1100D371C	7	3.626	3.700	3.774				50mA							
R1100D381C	7	3.724	3.800	3.876				JUITA							
R1100D391C		3.822	3.900	3.978											
R1100D401C	7	3.920	4.000	4.080											

ELECTRICAL CHARACTERISTICS

(Common characteristics)

Symbol	Item	Item Test Conditions		Тур.	Max.	Unit
Δ V ουτ/Δ V ιΝ	Line Regulation	Iouт=1mA Set Vour+0.5V ≤ V _{IN} ≤ 6V	-0.20		0.20	%/V
VIN	Input Voltage		(1.2)		6.0	V
ΔVουτ/ΔTopt	Output Voltage Temperature Coefficient	Iou⊤=10mA -40°C ≤ Topt ≤ 85°C		±100		ppm/°
Isc	Short Current Limit	Vout=0V		40		mA

ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE

Symbol	Item	Output Voltage	Conditions	Min.	Тур.	Max.	Unit
	Iss Supply Current	0.9V ≤ V _{OUT} ≤ 1.0V			8.0	1.8	
loo		1.1V ≤ Vouт ≤ 1.4V	VIN=Set Vour+2.0V		1.0	2.4	
188		1.5V ≤ V _{OUT} ≤ 2.0V			1.2	2.7	μΑ
		2.1V ≤ V _{OUT} ≤ 4.0V			1.5	3.0	

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

OPERATION

These ICs, the output voltage VouT is detected by Feedback Resisters, and the detected output voltage is compare with a reference voltage by the error amplifier, so that a constant voltage is output.

A current limit circuit against short protection and a chip enable circuit are included.

TEST CIRCUITS

Standard Test Circuit

Test Circuit for Supply Current

Test Circuit for Line Transient Response

TECHNICAL NOTES

In R1100D Series, a constant voltage can be obtained without using capacitors. However, when the wire connected V_{IN} is long, use a capacitor. Output noise can be reduced with using capacitor.

Insert capacitors with the capacitance of $0.1\mu F$ to $2.2\mu F$ between input/output pins and GND pin as close as possible.

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current

R1100D301C

R1100D401C

2) Output Voltage vs. Input Voltage R1100D091C

R1100D091C

R1100D301C

R1100D301C

R1100D401C

3) Dropout Voltage vs. Output Current

4) Output Voltage vs. Temperature R1100D091C

R1100D301C

R1100D401C

5) Supply Current vs. Input Voltage R1100D091C

R1100D301C

6) Supply Current vs. Temperature

7) Dropout Voltage vs. Set Output Voltage R1100Dxx1C

8) Line Transient Response

R1100D091C

R1100D301C

R1100D301C

R1100D401C

9) Load Transient Response

R1100D301C

R1100D401C

10) Ripple Rejection vs. Frequency R1100D091C

R1100D301C

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999.

Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.
Electronic Devices Company

● Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japar
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands
 P.O.Box 114, 1180 AC Amstelveen
 Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company

■ Taipei office

Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.