# FT II – Anotações: Coeficientes de difusão

Felipe B. Pinto 61387 – MIEQB

6 de maio de 2024

#### Conteúdo

| 1  | Coeficiente de Difusão                  | 2  | 6  | Difusão superficial           | 19 |
|----|-----------------------------------------|----|----|-------------------------------|----|
| 2  | Variação ${\cal D}$ com a temperatura . | 4  | 7  | Condensação capilar           | 20 |
| 3  | Difusão em mistura de gases             | 5  | 8  | Peneiros moleculares          | 21 |
| Ex | templo 1                                | 6  | 9  | Dif por meios não poros e sem |    |
| 4  | D em líquidos                           | 7  |    | partição de soluto            | 22 |
| 5  | D em sólidos                            | 12 | 10 | Solubilização                 | 23 |

#### 1 Coeficiente de Difusão

$$D = f(P,T, ext{natureza do componente}) \ J_A = -D_{A,B} \; 
abla c_A$$

#### Valores típicos

Gases 
$$(1 \rightarrow 10) E^{-5}$$

Líquidos 
$$(0.5 \rightarrow 2) E^{-9}$$

Sólidos 
$$(1 \rightarrow 1\,000\,000\,000\,000) \,\mathrm{E}^{-24}$$

Constante de proporcionalidade entre fluxo e força motriz

$$\dim D_{A,B}=\dim rac{-J_{A,z}}{rac{\mathrm{d} c_A}{\mathrm{d} z}}=rac{M}{L^2\,T}rac{1}{(M/L^3)/L}=rac{L^2}{T}$$

$$D_{A,B} = 1.858*10^{-3}\,rac{T^{3/2}}{P\,\sigma_{A,B}^2\,\Omega_D}\sqrt{M_A^{-1}+M_B^{-1}}$$

 $\dim D = \operatorname{cm}^2\operatorname{s}^{-1}$  Coeficiente de difusão da espécie A na espécie B

 $\dim M_X = g_X \operatorname{mol}_X^{-1}$  Massa molecular da substância gasosa X

 $\dim P = \operatorname{atm}$  Pressão total

 $\dim \sigma_X = \mathring{A}$  Diâmetro de colizão de X

 $\dim \sigma_{AB} = \mathring{A}$  Distância limite

 $\dim T = \mathbb{K}$  Temperatura

 $\dim \Omega = 0$  Integral de colisão

# Valores seguintes se encontram tabelados

Diametro de colizão

$$\sigma_{A,B} = rac{\sigma_A + \sigma_B}{2}$$

Energia de interação

$$arepsilon_{A,B} = \sqrt{arepsilon_A \, arepsilon_B}$$

Integral de colisão

$$\Omega_D = f(k\,T\,arepsilon_{A,B}^{-1})$$

$$D_{A,B,T_2,P_2} = D_{A,B,T_1,P_1} rac{P_1}{P_2} \left(rac{T_2}{T_1}
ight)^{3/2} rac{\Omega_{D,T_1}}{\Omega_{D,T_2}}$$

$$D \propto T^{3/2} \, \Omega \wedge D \propto P^{-1}$$

$$\frac{D_{A,B,T_{2},P_{2}}}{D_{A,B,T_{1},P_{1}}} = \frac{1.858 * 10^{-3} \frac{T_{2}^{3/2}}{P_{2} \sigma_{A,B}^{2} \Omega_{D,T_{2}}} \sqrt{M_{A}^{-1} + M_{B}^{-1}}}{1.858 * 10^{-3} \frac{T_{1}^{3/2}}{P_{1} \sigma_{A,B}^{2} \Omega_{D,T_{1}}} \sqrt{M_{A}^{-1} + M_{B}^{-1}}} = \frac{\left(\frac{T_{2}^{3/2}}{P_{2} \Omega_{D,T_{2}}}\right)}{\left(\frac{T_{1}^{3/2}}{P_{1} \Omega_{D,T_{1}}}\right)} = \frac{P_{1}}{P_{2}} \left(\frac{T_{2}}{T_{1}}\right)^{3/2} \frac{\Omega_{D,T_{1}}}{\Omega_{D,T_{1}}}$$

$$D_{1,m} = \left(\sum_{i=2}^n rac{y_{1,i}'}{D_{1,i}}
ight)^{-1} = \left(\sum_{i=2}^n rac{rac{y_i}{\sum_{j=2}^n y_j}}{D_{1,i}}
ight)^{-1} = rac{\sum_{j=2}^n y_j}{\sum_{i=2}^n y_i/D_{1,i}}$$

### Exemplo 1

Determine o coeficiente de difusão do CO numa mistura gasosa cuja composição é:

| $y_{O_2}$ | $y_{ m N_2}$ | <i>y</i> co |
|-----------|--------------|-------------|
| 0.20      | 0.70         | 0.10        |

- A mistura está à temperatura de 298 K e à pressão de 2 atm
- · Os coeficientes de difusão do CO em oxigênio e azoto são:

- 
$$D_{\text{CO,O}_2} = 0.185 \,\mathrm{E}^{-4} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$$
 273 K, 1 atm

- 
$$D_{\text{CO,N}_2} = 0.192 \,\mathrm{E}^{-4} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$$
 288 K, 1 atm

#### Resposta

Coeff de Dif de CO na mistura :

$$D_{\text{CO},M} = \frac{\sum_{j=2}^{n} y_j}{\sum_{i=2}^{n} y_i / D_{\text{CO},i}} = \frac{0.9}{\begin{pmatrix} 0.20 / D_{\text{CO},O_2,298 \text{ K},2 \text{ atm}} & + \\ +0.70 / D_{\text{CO},N_2,298 \text{ K},2 \text{ atm}} \end{pmatrix}};$$

Coeff de Difuão do CO:

$$D_{\text{CO,O}_2,298 \text{ K},1 \text{ atm}} = D_{\text{CO,O}_2,273 \text{ K},2 \text{ atm}} \frac{1}{2} \left(\frac{298}{273}\right)^{3/2} =$$

$$= 0.185 \text{ E}^{-4} \frac{1}{2} \left(\frac{298}{273}\right)^{3/2} \cong 1.055 \text{ E}^{-3} \text{ m}^2 \text{ s}^{-1};$$

Coeff de Difs do NO

$$D_{\text{CO,N}_2,298 \text{ K},2 \text{ atm}} = D_{\text{CO,N}_2,288 \text{ K},1 \text{ atm}} \frac{1}{2} \left(\frac{298}{288}\right)^{3/2} =$$

$$= 0.192 * 10^{-4} \frac{1}{2} \left(\frac{298}{288}\right)^{3/2} \cong 1.010 \text{ E}^{-3} \text{ m}^2 \text{ s}^{-1} \implies$$

$$\implies D_{\text{CO},M} \cong \frac{0.9}{\left(\frac{0.20/1.055 \,\mathrm{E}^{-3} + }{+0.70/1.010 \,\mathrm{E}^{-3}}\right)} \cong 1.020 \,\mathrm{E}^{-3} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$$

## 4 D em líquidos

#### Stokes-Einstein

$$D_A = rac{k_B\,T}{6\,\pi\,\mu\,R_A}$$

$$\left. \begin{array}{ll} D_A = u_A \, R \, T & \text{(Nernst-Einstein)} \\ u_A \sim (6 \, \pi \, \mu \, R_A)^{-1} & \text{(Stokes)} \end{array} \right\} \implies D_A = \frac{R \, T}{6 \, \pi \, \mu \, R_A}$$

 $u_A$  Mobilidade da partícula

 $k_B$  Constante de boltsman: (1.380 649  $\mathrm{E}^{-23}\,\mathrm{J}\,\mathrm{K}^{-1}$ )

#### Constante de boltsman

$$k_B = \frac{R}{N_A} \cong \frac{8.314462618 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}}{6.02214076\,\mathrm{E}^{23}\,\mathrm{mol}^{-1}} \cong$$
 $\cong 1.380648999974554\,\mathrm{E}^{-23}\,\mathrm{J}\,\mathrm{K}^{-1}$ 
 $k_B = 1.380649\,\mathrm{E}^{-23}\,\mathrm{J}\,\mathrm{K}^{-1}$ 

Transforma a lei dos gases perfeitos numa verão por molécula

#### Casos especificos

#### Prolate ellipsoid

$$D = rac{k_B \, T}{6 \, \pi \, \mu \left( rac{\sqrt{a^2 - b^2}}{\ln \left( rac{a + \sqrt{a^2 - b^2}}{b} 
ight)} 
ight)}$$

#### Oblate ellipsoid

$$D=rac{k_B\,T}{6\,\pi\,\mu\left(rac{\sqrt{a^2-b^2}}{ an^{-1}\,\sqrt{rac{a^2-b^2}{b^2}}}
ight)}$$

#### 4.1 Correlação de Wilke-Chang

$$rac{D_{A,B}\,\mu_B}{T} = rac{7.4*10^{-8}\,\sqrt{\Phi_B\,M_B}}{V_A^{0.6}}$$

Soluções diluidas

 $\dim D = \operatorname{cm}^3/\operatorname{s}$  Coeficiente de difusão

 $\dim M_B = g(B)/\text{mol}$  Peso molecular do solvente B

 $\dim \mu_B = cP = 0.1 \, cPa \, s \, Viscosidade do solvente B$ 

 $\dim V_A = \operatorname{cm}^3 \operatorname{mol}^{-1}$  Volume molar do soluto A no seu ponto de vaporização normal

 $\dim \Phi_B = 0$  parametro de associação

- 2.26 → Água
- 1.90  $\rightarrow$  Metanol
- $1.50 \rightarrow \text{Etanol}$

1.00 → Benzeno, éter...
 (não associados / pola-

res)

#### 4.2 Diluição Infinita (Hayduk–Ludie)

$$D_{A,B} = 13.26*10^{-5}\,\mu_B^{-1.14}\,V_A^{-0.589}$$

 $\dim \mu_B = cP = 0.1 \, cPa \, s \, Viscosidade do solvente B$ 

 $\dim V_A = \operatorname{cm}^3 \operatorname{mol}^{-1}$  Volume molar do soluto A no seu ponto de vaporização normal

4.3 Equação de Sheibel

 $D_{A,B}\,\mu_B$ 

 $8.2*10^{-8} \left(1 + (3 V_B/V_A)^{2/3}\right)$ 

### 4.4 Tabela de volumes moleculares

| Compound          |                 | Molecular<br>volume,<br>cm³ g <sup>-1</sup> mol <sup>-1</sup> |
|-------------------|-----------------|---------------------------------------------------------------|
| Hydrogen,         | $H_2$           | 14.3                                                          |
| Oxygen,           | $O_2$           | 25.6                                                          |
| Nitrogen,         | $N_2$           | 31.2                                                          |
| Air               |                 | 29.9                                                          |
| Carbon monoxide,  | CO              | 30.7                                                          |
| Carbon dioxide,   | $CO_2$          | 34.0                                                          |
| Carbonyl sulfide, | COS             | 51.5                                                          |
| Sulfur dioxide,   | $SO_2$          | 44.8                                                          |
| Nitric oxide,     | NO              | 23.6                                                          |
| Nitrous oxide,    | $N_2O$          | 36.4                                                          |
| Ammonia,          | $NH_3$          | 25.8                                                          |
| Water,            | $H_2O$          | 18.9                                                          |
| Hydrogen sulfide, | $H_2S$          | 32.9                                                          |
| Bromine,          | $\mathrm{Br}_2$ | 53.2                                                          |
| Chlorine,         | $Cl_2$          | 48.4                                                          |
| Iodine,           | $I_2$           | 71.5                                                          |

#### 5 D em sólidos

Difusão através de

Meios porosos

• não porosos (densos) compósitos

#### Aplicação meios porosos e não porosos

- Processos catalíticos (CatHet)
- Processos membranas (permeação de gases e vapores)
- · Permeação através de embalagens
- · Liberação controlada de farmacos, agroquímicos,...

#### 5.1 Difusão em meios porosos

Defin. IUPAC

 $d > 50 \, \mathrm{nm}$  Macroporos  $2 < d < 50 \, \mathrm{nm}$  Mesoporos  $d < 2 \, \mathrm{nm}$  Microporos



#### 5.2 Difusão de Knudsen

Considere uma difusão de baixa densidade por poros capilares bem pequenos onde o diametro dos póros são menores que a distancia média de colisão entre moléculas, estas vao colidir mais com os poros do que consigo próprias.

$$K_n = \lambda/d_{LJ}$$

- $\lambda$  Distancia média percorrida livremente pelas partículas (sem colisão)
- $d_{LJ}$  diametro de Lennard–Jones do poro

#### Mede a influencia desse tipo de difusão no evento

- $0.1 < K_n < 1$  A difusão de Knudsen tem parte mesurável porem moderada na difusão geral
- $1 < K_n$  A dif de K é importante
- $10 < K_n$  A dif de K domina

#### $\lambda$ Distancia média percorrida livremente pelas partículas (sem colisão)

$$\lambda = rac{k_B\,T}{\sqrt{2}\,\pi\,d^2\,p}$$

- p Pressão do lado da alimentação
- $d_{LJ}$  Diametro de Lennard–Jones, colisão entre gases que se difundem (tabelado)

 $k_B = 1.380\,649\,\mathrm{E}^{-23}\,\mathrm{J/K}$  Constante de Boltzmann

#### 5.3 Condições para considerarmos difusão de Knudsen

| $d_{LJ}/{ m nm}$ | $< 10^{3}$ | $< 10^{2}$ | < 10                     | < 2        |
|------------------|------------|------------|--------------------------|------------|
| $p/\mathrm{bar}$ | 0.1        | 1          | 10                       | 50         |
|                  |            |            | $K_n > 1 \wedge \lambda$ | $> d_{LD}$ |

# Diametros de Lennard-Jones

|                 | Diametro      | Diametro de      |
|-----------------|---------------|------------------|
| Gás             | cinético      | Lennard–Jones    |
|                 | $d_k/	ext{Å}$ | $d_{LJ}/	ext{Å}$ |
| Не              | 2.6           | 2.551            |
| $\mathrm{H}_2$  | 2.89          | 2.827            |
| $O_2$           | 3.46          | 3.467            |
| $N_2$           | 3.64          | 3.798            |
| CO              | 3.76          | 3.69             |
| $CO_2$          | 3.3           | 3.941            |
| $\mathrm{CH_4}$ | 3.8           | 3.758            |
| $C_2H_6$        |               | 4.443            |
| $C_2H_4$        | 3.9           | 4.163            |
| $C_3H_8$        | 4.3           | 5.118            |
| $C_3H_6$        | 4.5           | 4.678            |
| $n-C_4H_{10}$   | 4.3           | 4.971            |
| $i-C_4H_{10}$   | 5             | 5.278            |
| $H_2O$          | 2.65          | 2.641            |
| $H_2S$          | 3.6           | 3.623            |

#### 5.4 D de Knudsen

$$D_{Kn,eff,i} = rac{arepsilon\,D_{Kn,i}}{ au} = rac{arepsilon\,d_{LJ}}{ au\,3}\,\sqrt{8\,R\,T}\pi\,M\,W_i\,.$$

$$D_{Kn,i} \propto (M \, W_i)^{-1/2} \quad D_{Kn,i} \propto T^{1/2}$$

 $\dim D_{Kn,i}=\mathrm{m}^2\,\mathrm{s}^{-1}$  Coeficiente de difusão de Kn do gás i  $\dim D_{Kn,eff,i}=\mathrm{m}^2\,\mathrm{s}^{-1}$  Coeff de diff de Kn efetivo do gás i  $\dim \varepsilon=0$  Porosidade do meio poroso

 $\dim \tau = 0$  tortuosidade do meio poroso

# 5.5 Seletividade de sep da D de Kn

 $lpha = \sqrt{rac{M\,W_j}{M\,W_i}}$ 



# 6 Difusão superficial

- $1 \, \text{nm} < d_{LR} < 4 \, \text{nm}$
- · Molec de gas adsv nas paredes do poro
- relacionada com a mobilidade das moléculas à superficie
- rela. c a natureza química do gás e do mat poroso ( ${\rm CO_2} > {\rm CH_4} > {\rm N_2} > {\rm H_2} > {\rm He}$ )
- Referente a misturas gasosas e vapores
- depende fortemente de T

# Condensação capilar

- $0.6 \, \text{nm} < d_{LB} < 6 \, \text{nm}$
- Moléculas de gás ou vapor condensam denro dos poros e movem-se como líquidos
  - elevada seletividade para gases ou vapores que condensam
- relacionado com a nat quimica do soluto

# Peneiros moleculares

- $0.2 \, \text{nm} < d_{LR} < 1 \, \text{nm}$
- · Tamanho dos poros comparaveis com o tamanho do gás alvo
- elevada seletividade
- · relaciondado com o tamanho do soluto
- referente a mistuas gasosas e vapores

9 Dif por meios não poros e sem partição de soluto

1<sup>a</sup> lei de fick

$$J_i = -D_i rac{\mathrm{d} c_i}{\mathrm{d} z}$$

• estrutura do meior é considerada homogenea e tratada como "blackbox"

#### 9.1 Transporte de massa através do filme

$$J_i = rac{D_i}{\delta} \; \Delta c_i \ J_i = rac{D_i}{\delta} \; \Delta p_i$$

#### 10 Solubilização

#### Difusão depende de

- · Tamanho do soluto que permeia
- · natureza do material e meio sólido
- pode ser necessário considerar resistencias externas ao transporte do soluto (transf de massa externa)

$$rac{D_{eff}-D}{D_{eff}+2\,D}=\phi_s\,rac{D_s-D}{D_s+2\,D}$$

- $\phi_S$  fração de volume das esferas do material compósito
- D Coef de dif na fase continua
- $D_S$  Coef de dif da através das esferas (fase dispersa)
  - Depende apenas da fração de volume das esferas (não do tamanho)

#### Se as esferas fossem impermeaveis

$$egin{aligned} rac{D_{eff}}{D} &= rac{2(1-\phi_S)}{2+\phi_S} \ \lim_{D_S o \infty} rac{D_{eff}}{D} &= 1.33 \end{aligned}$$