Московский авиационный институт (Национальный исследовательский университет)

Факультет: «Информационные технологии и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование» Дисциплина: «Машинное обучение»

Лабораторная работа № 2

Тема: алгоритмы классификации

Студент: Паленов Павел

Группа: 80-301Б

Преподаватель: Ахмед Самир Халид

Дата:

Оценка:

1. Постановка задачи

Необходимо реализовать алгоритмы машинного обучения. Применить данные алгоритмы на наборы данных, подготовленных в первой работе. Провести лабораторной анализ полученных моделей, вычислить метрики классификатора. Произвести тюнинг параметров в случае необходимости. Сравнить полученные результаты с моделями, В scikit-learn. Аналогично реализованными построить классификации. Показать, что полученные модели не переобучились. Также необходимо сделать выводы о применимости данных моделей к вашей задаче.

2. Датасет

Берем датасет, подготовленный в первой лабораторной.

3. Логистическая регрессия

Логистическая регрессия — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём его сравнения с логистической кривой, которая выглядит так:

Значение сигмоидной функции всегда лежит между 0 и 1. Значение точно равно 0,5 при X=0. Мы можем использовать 0,5 в качестве порога вероятности для определения классов. Гипотеза для логистической регрессии:

$$h(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$h(x) = \begin{cases} > 0.5, & \text{if } \theta^T x > 0 \\ < 0.5, & \text{if } \theta^T x < 0 \end{cases}$$

Функция стоимости задается так:

$$cost = \begin{cases} -log(h(x), & \text{if } y = 1\\ -log(1 - h(x)), & \text{if } y = 0 \end{cases}$$

Стоимость всех обучающих примеров:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{i} log(h(x^{i})) + (1 - y^{i}) log(1 - h(x^{i}))]$$

Задача стоит в минимизации этой функции.

Результаты:

-						
(first) D:\M sklearn log:	AI\ML\lab2>py	thon lab2	.py			
_						
[01000	0010010	1 1 1 1 1	11111	1 1]		
accur: 0.869	9565217391304	3				
	precision	recall	f1-score	support		
0	0.80	0.89	0.84	9		
1	0.92	0.86	0.89	14		
accuracy			0.87	23		
macro avg	0.86	0.87	0.87	23		
weighted avg	0.87	0.87	0.87	23		
my log:						
[0, 1, 0, 0]	, 0, 0, 0, 1,	0, 0, 1,	0, 1, 1,	1, 1, 1, 1,	1, 1, 1, 1, 1]	
my accur: 0.8695652173913043						
,	precision		f1-score	support		
	p. 202320		. 2 300. 2	эаррог с		
0	0.80	0.89	0.84	9		
1	0.92	0.86	0.89	14		
_	0.32	0.00	0.03			
accuracy			0.87	23		
macro avg	0.86	0.87	0.87	23		
weighted avg						

Собственная реализация и sklearn совпадают.

4. Дерево решений

Дерево решений — в основном жадное, нисходящее, рекурсивное разбиение. Энтропия — это мера случайности или неопределенности. Уровень энтропии колеблется от 0 до 1. Для меры энтропии используют примесь Джини. Узел чистый, если все его выборки принадлежат одному и тому же классу, в то время как узел с множеством выборок из разных классов будет иметь Джини ближе к 1.

$$G = 1 - \sum_{k=1}^{n} p_k^2$$

Каждый узел делит выборку таким образом, что примесь Джини у детей (точнее, среднее значение Джини у детей, взвешенных по их размеру) сводится к минимуму. Рекурсия останавливается, когда, достигается максимальная глубина, или когда нет разделения, которое может привести к двум детям, чище, чем их родитель.

Результаты:

1 63 9 31	1 csymbrath.								
<pre>(first) D:\MAI\ML\lab2>python lab2.py sklearn Dtree:</pre>									
[0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1									
accur:									
0.9047619047619048									
	precision	recall f	1-score	support					
0	0.82	1.00	0.90	9					
1	1.00	0.83	0.91	12					
accuracy			0.90	21					
macro avg	0.91	0.92		21					
weighted avg				21					
	3.52	3.23	0.02						
my Dtree:									
my beree.									
[0, 0, 0, 0,	a a a 1 ·	1 0 0 1	1 1 1	1 1 1 1	1 11				
my accur: 0.			1, 1, 1,	1, 1, 1, 1,	1, 1]				
my accur. 0.	precision		1_ccono	cuppont					
	precision	recall 1.	1-30016	Support					
0	a 92	1.00	0 00	9					
1	1.00	0.83	0.91	12					
			0.00	24					
accuracy	2.24	0.00	0.90	21					
_	0.91			21					
weighted avg	0.92	0.90	0.91	21					

Собственная реализация и sklearn совпадают.

5. Случайный лес

Random forest — это множество решающих деревьев. В задаче регрессии их ответы усредняются, в задаче классификации принимается решение голосованием по большинству. Все деревья строятся независимо по следующей схеме:

- Выбирается подвыборка обучающей выборки по ней строится дерево (для каждого дерева своя подвыборка).
- Для построения каждого расщепления в дереве просматриваем max_features случайных признаков (для каждого нового расщепления свои случайные признаки).
- Выбираем наилучшие признаки и расщепляем по нему. Дерево строится, как правило, до исчерпания выборки (пока в листьях не останутся представители только одного класса.

Результаты:

(first) D:\MAI\ML\lab2>python lab2.py sklearn RF:									
[000010	[0 0 0 0 1 0 0 0 0 1 1 1 1 1]								
accur:									
0.8571428571428571									
	precision	recall	f1-score	support					
0	0.88	0.88	0.88	8					
1	0.83	0.83	0.83	6					
accuracy			0.86	14					
macro avg	0.85	0.85	0.85	14					
weighted avg		0.86	0.86	14					
0 0									
my RF:									
[0 0 0 0 1 0 0 0 0 1 1 1 1 1]									
my accur: 0.8571428571428571									
,	precision		f1-score	support					
	pi colsion	, court	11 3001 0	заррог с					
0.0	0.88	0.88	0.88	8					
1.0			0.83	6					
110	3.03	0.03	0.05						
accuracy			0.86	14					
macro avg		0.85							
weighted avg		0.86	0.86	14					
mergineed avg	0.00	0.00	0.00	14					

Собственная реализация и sklearn совпадают.

Запуск для тренировочных данных:

```
(first) D:\MAI\ML\lab2>python lab2.py
LR train: 0.8846153846153846
DT train: 0.9538461538461539
RF train: 0.9307692307692308
```

Точность для тестовых упала не сильно, значит модели не переобучены.

6. Выводы о применимости

Оценка применимости сводится к размеру датасета и количеству параметров. Логистическая регрессия хорошо подходит, так как изначально наши данные разделены на два класса. Дерево решений также подходит — из-за небольшого размера и малого количества параметров в дереве производится меньше вычислений и оно быстрее строится. А вот случайный лес плохо подходит из-за малого количества параметров, так как основная идея леса именно в выборе случайных параметров, чтобы уменьшить значимость доминирующих параметров, и в дальнейшем усреднении результатов. По умолчанию для задач классификации количество случайных параметров равняется

корню из числа параметров, а в случае, когда их два это не имеет смысла. Более того, если убрать один из двух параметров это приведет к большим потерям в точности. Хотя, так как в основе лежат деревья решений, которые показывают хороший результат, сам лес также показывает хороший результат.

СПИСОК ЛИТЕРАТУРЫ

1. Построение логистической регрессии

 $\underline{https://www.machinelearningmastery.ru/building-a-logistic-regression-in-python-}\\301d27367c24/$

2. Дерево решений в Python

https://www.machinelearningmastery.ru/decision-tree-in-python-b433ae57fb93/

3. Случайный лес

 $\frac{https://dyakonov.org/2016/11/14/\%D1\%81\%D0\%BB\%D1\%83\%D1\%87\%D0\%B0}{\%D0\%B9\%D0\%BD\%D1\%8B\%D0\%B9-\%D0\%BB\%D0\%B5\%D1\%81-random-forest/}$