

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

# Отчет по лабораторной работе №1 по дисциплине «Моделирование»

**Тема** Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

| Студент Варламова Е. А.    |
|----------------------------|
| Группа ИУ7-61Б             |
| Оценка (баллы)             |
| Преподаватель Градов В. М. |

### Контрольные вопросы

**Bonpoc 1.** Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара, т.е. для КАЖДОГО приближения указать свои границы применимости. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

#### Ответ.

Интервал, в котором можно считать решением заданного уравнения некоторое приближение определяется так: находятся такие аргументы, при которых значение приближения отличается от приближений более высоких порядков или от результатов численных методов. Наименьший интервал, определяемый этим правилом, и будет являться искомым интервалом. На рисунках в первом столбце значение аргумента, в следующих четырёх 4 приближения (во втором столбце - 1, в третьем - 2 итд)

Таким образом,

Интервал для первого приближения: [-0.67; 0.67] (рис. 1).

| 0.67 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |  |
|------|------|------|------|------|------|------|--|
| 0.68 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |  |
| 0.69 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |  |

Рис. 1: Интервал для первого приближения

Интервал для второго приближения [-0.82; 0.82] (рис. 2).

| 7010.  | .   <del>         </del> | 0.10   | 0.10   | 0110   | 0110   | 0110   |     |
|--------|--------------------------|--------|--------|--------|--------|--------|-----|
| 0.82   | 2   0.18                 | 0.19   | 0.19   | 0.19   | 0.19   | 0.19   |     |
| 0.83   | 0.19                     | 0.19   | 0.20   | 0.20   | 0.20   | 0.20   | Ú   |
| 0.84   | 1 0.20                   | 0.20   | 0.20   | 0.20   | 0.20   | 0.20   | Ī   |
| i a or | i a sa                   | i a 21 | i i |

Рис. 2: Интервал для второго приближения

Интервал для третьего приближения [-1.27; 1.27] (рис. 3).

|        | 0.07   | VI. / V | 01.70  | <b> </b> |        | · · · · · |
|--------|--------|---------|--------|----------|--------|-----------|
| 1.27   | 0.68   | 0.77    | 0.78   | 0.78     | 0.78   | 0.78      |
| 1.28   | 0.70   | 0.79    | 0.80   | 0.81     | 0.81   | 0.81      |
| 1.29   | 0.72   | 0.81    | 0.83   | 0.83     | 0.83   | 0.83      |
| i 1 20 | i a 72 | i a oo  | i a of | i a of   | i a of | i a of i  |

Рис. 3: Интервал для третьего приближения

Интервал для четвёртого приближения [-1.58; 1.58] (рис. 4).

| 1.57 | 1.29 | 1.66 | 1.82 | 1.88 | 1.88 | 1.88 |
|------|------|------|------|------|------|------|
| 1.58 | 1.31 | 1.70 | 1.87 | 1.94 | 1.95 | 1.95 |
| 1.59 | 1.34 | 1.75 | 1.92 | 2.00 | 2.01 | 2.01 |

Рис. 4: Интервал для четвертого приближения

Вопрос 2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

### Ответ.

Доказать правильность полученного результата при фиксированном значении аргумента в численных методах можно с помощью уменьшения шага. Если при уменьшении шага полученный результат изменится незначительно, его можно считать правильным.

**Вопрос 3.** Каково значение решения уравнения в точке x=2, т.е. привести значение u(2). **Ответ.** 

При уменьшении шага (10e-2, 10e-3 .. 10e-7) видно, что значение u(2) стремится к 318 (рис. 6). При этом анализируются значения, приведённые в 6 столбце (метод Рунге), так как он точнее метода Эйлера, а приближения Пикара при аргументе 2 нельзя считать решениями (показано в вопросе № 1).



Рис. 5: Значение решения уравнения в точке х=2 при разном шаге

Вопрос 4. Дайте оценку точки разрыва решения уравнения.

Ответ. Точка разрыва второго рода в точке x=2, так как решение уходит в бесконечность.

**Вопрос 5.** Покажите, что метод Пикара сходится к точному аналитическому решению уравнения

$$u'(x) = x^2 + u,$$
$$u(0) = 0$$



Рис. 6: Решение