Algebra liniowa 2

dr Joanna Jureczko

Zestaw zadań nr 4

Pierścień wielomianów

- **4.1.** Dany wielomian z pierścienia $\mathbb{Z}[x]$ zapisać w postaci sumy jednomianów (tj. w tradycyjnej postaci)
 - a) $(5, 1, -4, 8, 0, 0, \dots)$,
 - b) $(1,0,6,-3,0,\ldots)$,
 - c) $(0,0,1,7,0,\ldots)$.
- **4.2.** Dany wielomian z pierściania $\mathbb{Z}[x]$ zapisać w postaci ciągu
 - a) $-9x^3 + x^2 7x + 6$,
 - b) $x^4 + 8$,
 - c) $x^4 + 2x^2 + 4x 5$.
- **4.3.** Niech $f(x) = 2x^2 + 6x + 5$ oraz $g = x^3 + 7x^2 + 4x + 3$ będą wielomianami z pierścienia $\mathbb{Z}_8[x]$. Obliczyć a) f + g, b) f g, c) fg.
- **4.4.** W pierścieniu $\mathbb{Z}_8[x]$ wykonać działania
 - a) $(x^3 + 2x^2 + 2x + 3) + (x^4 + 2x^2 + 1)$,
 - b) $(2x^2 + 3x + 1) (3x^3 + x^2 + x + 3)$,
 - c) $(x^2 + 3x + 1)(x^5 + 2x + 3)$.
- **4.5.** W pierścieniu $\mathbb{Z}_5[x]$ wykonać dzielenie
 - a) $(x^4 + 4x^3 + 2x^2 + 3x + 4) : (x^3 + x^2 + 2x + 2),$
 - b) $(2x^4 + x^3 + x^2 + 3x + 3) : (3x^2 + x + 4)$.
- **4.6.** W pierścieniu $\mathbb{Z}_{11}[x]$ wykonać dzielenie $(2x^5+8x^4+7x^3+3x+5):(3x^3+7x^2+5x+1).$
- **4.7.** Korzystając ze schematu Hornera w pierścieniu $\mathbb{Z}_6[x]$ wykonać wskazane dzielenie z resztą
 - a) $x^4 + 5x^3 + 2x^2 + 4x + 3$ przez x + 2,
 - b) $4x^6 + x^5 + 3x^4 + 5x^3 + 4x + 2$ przez x + 1.
- 4.8. Wyznaczyć ilorazy i reszty z dzielenia
 - a) $x^7 + x^6 + x^4 + x + 1$ przez $x^3 + x + 1$ w $\mathbb{Z}_2[x]$,
 - b) $2x^5 + x^4 + 2x^3 + x^2 + 2$ przez $x^3 + 2x + 2$ w $\mathbb{Z}_3[x]$.
- **4.9.** Dobrać takie liczby $a, b \in \mathbb{Z}_6[x]$, aby przy dzieleniu wielomianu $2x^4 + 5x^3 + 4x^2 + ax + b$ przez x + 1 dawał resztę 5, a przy dzieleniu przez x + 3 dawał resztę 1.

- ${\bf 4.10.}$ Korzystając z algortymu Euklidesa znaleźć największy wspólny dzielnik elementów figwe wskazanym pierścieniu
 - a) $f(x) = x^4 + x + 1, g(x) = x^3 + x^2 + x \in \mathbb{Z}_3[x],$
 - b) $f(x) = x^4 + 2, g(x) = x^3 + 3 \in \mathbb{Z}_5[x],$
 - c) $f(x) = x^4 + 2x^2 + x + 2$, $g(x) = x^3 + 5x + 3 \in \mathbb{Z}_7[x]$.
- 4.11. Rozłożyć wielomiany na czynniki nierozkładalne w podanym pierścieniu:
 - a) $x^5 + 1 \le \mathbb{Z}_2[x],$
 - b) $x^4 + 1 \le \mathbb{Z}_5[x],$
 - c) $x^8 16 \le \mathbb{Z}_{17}[x]$.
- **4.12.** Wykorzystując schemat Hornera przedstawić dany wielomian $f \in \mathbb{Z}_5[x]$ w postaci $f = (x x_0)^k g$, gdzie $g \in \mathbb{Z}_5[x]$ i k jest wielokrotnością danego pierwiastka x_0 wielomianu f:
 - a) $f = x^4 + 4x^3 + 4x^2 + 4x + 2, x_0 = 1$,
 - b) $f = 2x^5 + 3x^4 + 2x^3 + x^2 + x + 1, x_0 = 2$
 - c) $f = x^6 + x^5 + x + 1, x_0 = 4.$

Odpowiedzi:

4.1. a)
$$f(x) = 5 + x - 4x^2 + 8x^3$$
, b) $f(x) = 1 + 6x^2 - 3x^3$, c) $f(x) = x^2 + 7x^3$.

4.3. a)
$$f(x) + g(x) = 2x + x^2 + x^3$$
, b) $f(x) - g(x)2 + 2x + 3x^2 + 7x^3$, c) $f(x) \cdot g(x) = 7 + 6x + x^2 + 7x^3 + 4x^4 + 2x^5$.

4.4.
$$x^4 + x^3 + 4x^2 + 2x + 4$$
, b) $5x^3 + x^2 + 2x + 6$, c) $x^7 + 3x^6 + x^5 + 2x^3 + x^2 + 3x + 3$.

4.5. a)
$$(x^3 + x^2 + 2x + 2) \cdot (x + 3) + \frac{2x^2 + 3}{x^3 + x^2 + 2x + 2}$$
, b) $(3x^2 + x + 4) \cdot (4x^2 + 4x + 2)$.

4.6.
$$(3x^3 + 7x^2 + 5x + 1) \cdot (8x^2 + 6x + 8) + \frac{8x^2 + x + 8}{3x^3 + 7x^2 + 5x + 1}$$
.

4.8. a)
$$x^4 + x^3 + x^2 + x$$
 oraz 1, b) $2x^2 + 2$ oraz $2x + 1$.

4.9. a = b = 0, wskazówka
$$f(5) = 5, f(3) = 1$$
.

4.10. a)
$$2x + 1$$
, b) $x + 2$, c) $(3x + 1)$.

4.11. a)
$$(x^4 + x^3 + x^2 + x + 1)(x + 1)$$
, b) $(x^2 + 2)(x^2 + 3)$, c) $(x + 1)(x + 16)(x + 2)(x + 15)(x + 4)(x + 13)(x + 8)(x + 9)$.

4.12. a)
$$(x+4)(x^3+4x+3)$$
, b) $(x+3)(2x^4+2x^3+x^2+3x+2)$, c) $(x+1)^4(x+1)^2$.