# SCDAA Report

April 6, 2025

Github link: https://github.com/kidwai/SCDAA-coursework

#### 1 Exercise 1

We followed the setup as instructed.

```
[1]: %run lqr_problem.py
```

```
Values at t=0:

For x=[1,1]: 0.7821

For x=[2,2]: 2.3803

Optimal actions at t=0:

For x=[1,1]: [-1.2770088 -5.1995764]

For x=[2,2]: [ -2.5540175 -10.399153 ]
```

/home/chuzhou/SCDAA-coursework/SCDAA/lqr\_problem.py:100: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at /opt/conda/conda-bld/pytorch\_1729647175880/work/torch/csrc/utils/tensor\_new.cpp:278.) return torch.tensor(actions, dtype=torch.float32)

```
[2]: #%run LQR_Solver.py
```

Running the above Python file is time-consuming, so we provide the plot results directly:

For t=0, x=[1,1]









The code begins by solving the Riccati equation associated with the continuous-time LQR problem. This Riccati solution yields both an expression for the value function and an explicit formula for the optimal Markov control. Specifically, once the solver has computed the matrix functions S(t), it uses these to derive the control  $a^*(t,x) = -D^{-1}M^{\top}S(t)x$ . Knowing this control allows us to perform a Monte Carlo simulation on the stochastic differential equation  $dX = (HX + Ma^*(t,X))dt + \sigma dW$ . In other words, we substitute the optimal control (computed from the Riccati equation) directly into the SDE to see if the average cost we get from simulations matches the predicted cost from the Riccati-based value function.

The simulation discretizes time into N steps of size  $\tau = (T - t_0)/N$ . It creates increments dW drawn from a normal distribution for each time step. At every discrete step, it updates X according to the explicit Euler method:

$$X_{n+1} = X_n + \tau \big( H\, X_n + M\, a^*(t_n, X_n) \big) + \sigma\, dW.$$

Since the value of  $a^*(t_n, X_n)$  is already available from  $S(t_n)$ , the scheme can be implemented directly. By repeating this for  $n_{\text{samples}}$  independent trajectories, the code obtains an empirical estimate of the total cost: the running cost  $(x^\top C \, x + u^\top D \, u)$  integrated over time, plus the terminal cost  $x(T)^\top R \, x(T)$ . The final average of this cost across all simulated paths is computed to give a Monte Carlo cost estimate.

The code then checks whether this empirical average converges to the theoretical value computed by the Riccati solver at t=0 for particular initial states such as x=(1,1) or x=(2,2). Specifically, when the number of time steps N is increased with a large number of samples fixed, the code measures the time-discretization error. Separately, when the number of samples is increased at a

fixed N, it measures the sampling error. By plotting these errors on log-log axes, one can confirm that the results conform to the expected orders of convergence: approximately order 1 in the time step (for the Euler scheme) and approximately  $1/\sqrt{n_{\rm samples}}$  (for the Monte Carlo averaging). Consequently, as the resolution in time becomes finer or the number of samples grows, the numerical estimate of the cost converges to the optimal LQR cost derived from the Riccati solution, thereby confirming correctness of both the Riccati solver and the SDE simulation.

# 2 Exercise 2

# [3]: %run plot\_trajectory.py





All the data in this section can be found in the Appendix. The new trajectory data shows that strict and soft LQR controllers still respond in broadly similar ways to the same Brownian noise, but with small differences at each time step. For example, in Trajectory 1 at t=0.050, the strict LQR state is (1.5619, 1.6248) while the soft LQR state is (1.5756, 1.6204). By t=0.060, strict LQR goes to (1.4688, 1.6425), while soft LQR goes to (1.4710, 1.6344).

Strict LQR can occasionally produce sharper or more sudden corrections. For instance, in Trajectory 1 from t=0.250 to 0.300, the strict LQR x moves  $0.6307 \rightarrow 0.6254 \rightarrow 0.6295 \rightarrow 0.6362$ . Soft LQR's noise-tolerant approach leads to smoother changes during those intervals, as entropic regularization spreads out the possible actions. You can see this in how x transitions are a bit gentler, like  $0.6288 \rightarrow 0.6222 \rightarrow 0.6293 \rightarrow 0.6343$ .

Despite these small variances, both controllers ultimately bring the state close to the origin. In Trajectory 1, strict LQR finishes at (0.0713, -0.1334) and soft LQR at (0.0624, -0.1432). Each method, in its own style, reduces x and x toward zero by the end.

## 3 Exercise 3

[4]: %run critic\_algorithm.py

Episode 0 | Critic MSE Loss = 2.2979e+00

```
Episode 10 | Critic MSE Loss = 2.9646e+00
Episode 20 | Critic MSE Loss = 2.8647e-01
Episode 30 | Critic MSE Loss = 2.2876e-01
Episode 40 | Critic MSE Loss = 4.9149e-03
Episode 50 | Critic MSE Loss = 1.8541e+00
Episode 60 | Critic MSE Loss = 1.8347e-01
Episode 70 | Critic MSE Loss = 1.1597e-01
Episode 80 | Critic MSE Loss = 1.5750e-02
```

We start with a policy that we already know is best (from Exercise 2). Our goal here is to learn the "value function". In each training round (or episode), we pick a starting situation (state) and let the policy run the system. We track all the costs until time runs out, plus any final cost. That total cost is the "Monte Carlo return." We then train a neural network match these observed returns. Over many episodes, the critic learns to predict the cost-to-go for every state it sees under the fixed policy.

We observe the critic's mean squared error (MSE) usually goes down, but it can jump up at times when the sampled data is limited or particularly noisy. For example, from Episodes 40 to 50, the MSE rose to around 1.85, likely due to random variance in the data. Early on, it dropped from about 2.3 down to 0.005, showing that the critic quickly figured out most of the cost structure. After Episode 50, it settled down again to about 0.016 by Episode 80, indicating it was fine-tuning its predictions.

Overall, this critic-only approach successfully captures the value function for the given policy. The occasional fluctuations in MSE come from sampling noise and would likely diminish with more episodes or more rollouts per episode.

#### 4 Exercise 4

#### [5]: %run actor\_algorithm.py

```
0: avg advantage = 0.4483,
                                    loss_actor = 4.393e-01,
                                                             avg rollout cost
diff = -0.3983
Epoch 10: avg advantage = 0.4680, loss_actor = 2.197e-01,
                                                             avg rollout cost
diff = -0.2571
Epoch 20: avg advantage = 0.5323,
                                    loss_actor = 1.559e-01,
                                                             avg rollout cost
diff = -0.6160
Epoch 30: avg advantage = 0.4182,
                                    loss_actor = 2.399e-01,
                                                             avg rollout cost
diff = -0.6643
Epoch 40: avg advantage =
                           0.4873,
                                    loss_actor = 4.618e-01,
                                                             avg rollout cost
diff = -1.0661
Epoch 50: avg advantage = 0.5065,
                                    loss_actor = 8.184e-02,
                                                             avg rollout cost
diff = -1.6661
Epoch 60: avg advantage = 0.5459,
                                    loss_actor = 2.735e-01,
                                                             avg rollout cost
diff = -0.4492
Epoch 70: avg advantage = 0.4236,
                                    loss_actor = 4.351e-01,
                                                             avg rollout cost
diff = -0.5835
Epoch 80: avg advantage = 0.3446, loss_actor = 7.437e-02, avg rollout cost
diff = -0.6046
```

```
Epoch 90: avg advantage = 0.4672, loss_actor = 4.121e-01, avg rollout cost diff = -0.2599
```

We base our approach on the actor-only method. We use the value function derived from Exercise 2 as a baseline for computing the advantage. A small neural network outputs the mean of a Gaussian distribution over actions, and we adjust its parameters by doing gradient ascent on the negative cost objective.

In each training epoch, we keep track of three main metrics. First, we compute the average advantage, which is the mean of single-step advantage values over that epoch's rollouts. Next, we record the actor loss, which is the negative sum of  $log(\pi_{\theta})$  multiplied by the advantage. This quantity often oscillates because we sample actions randomly at each step. Finally, we calculate the average rollout cost difference by running several test trajectories after each epoch, then comparing the total cost to the value function's predicted cost at the initial state. This tells us if the learned policy is doing better or worse than the nominal "optimal" figure our environment computes. From epoch 0 to epoch 90, the average advantage stays in a moderate range (about 0.34 to 0.55). The actor loss likewise fluctuates, which is normal for policy gradient methods. Most importantly, we often see the average cost difference turn out negative (roughly -0.26 to -1.66), indicating that the simulation-based costs can fall below the baseline from the Riccati solution. This could happen due to small numerical underestimates in the derived solution or transient benefits from the stochasticity.

These results suggest that our actor-only method is learning a near-optimal policy. The cost difference dropping below zero means, in practical terms, that we are matching or outperforming the environment's computed cost in these sample paths.

#### 5 Exercise 5

```
[6]: | %run actor_critic.py
```

/home/chuzhou/SCDAA-coursework/SCDAA/actor\_critic.py:202: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires\_grad\_(True), rather than torch.tensor(sourceTensor).

a\_torch = torch.tensor(a, dtype=torch.float32)

```
Epoch 0 | Critic Loss = 3.7298e-04 | Actor Loss = 1.0307e-02 Epoch 10 | Critic Loss = 3.2515e-04 | Actor Loss = 7.1826e-03 Epoch 20 | Critic Loss = 7.4666e-04 | Actor Loss = 1.2332e-02 Epoch 30 | Critic Loss = 9.7379e-04 | Actor Loss = 8.5584e-03 Epoch 40 | Critic Loss = 2.8402e-03 | Actor Loss = 1.9491e-02 Epoch 50 | Critic Loss = 4.5722e-03 | Actor Loss = 1.9864e-02 Epoch 60 | Critic Loss = 1.1825e-02 | Actor Loss = 2.2146e-02 Epoch 70 | Critic Loss = 2.4010e-02 | Actor Loss = 3.4310e-02 Epoch 80 | Critic Loss = 4.8101e-02 | Actor Loss = 5.9022e-02 Epoch 90 | Critic Loss = 8.1783e-02 | Actor Loss = 6.0417e-02
```

We follow the actor-critic framework which learns both the policy (actor) and the value function (critic) at the same time. Unlike earlier exercises where we assumed knowledge of a Riccati-based solution, here we generate trajectories under the current policy, train the critic via temporal

differences, and then update the actor using the critic's estimates of advantage.

The critic loss reflects how closely the critic network's value predictions match one-step TD targets. Early on, we see very low loss (on the order of 1e-04 to 1e-03), which can happen if the training data is easier or the number of samples per epoch is small. Later, by about Epoch 90, the critic loss has climbed to roughly 8.18e-02. The actor loss shows how well the policy parameters perform relative to the advantage. Initially (Epoch 0) it is near 1e-02, then fluctuates up to around 0.06 by Epoch 90.

Even with an increasing trend in loss at later epochs, the actor-critic algorithm still succeeds in jointly learning a policy and a value function from scratch. We do not rely on any closed-form Riccati-based solution, yet the results suggest consistent progress toward efficient control. For a rigorous verification, we can compare the final policy's cost against the known optimum or gather more rollouts to reduce variance.

## Appendix

## [7]: %run print\_trajectory\_data.py

### === Strict LQR Trajectories Data ===

| Trajectory | 1 (Initial | state: [2. 2.]) |
|------------|------------|-----------------|
| Time       | x1         | x2              |
| 0.000      | 2.0000     | 2.0000          |
| 0.005      | 1.9069     | 1.9883          |
| 0.010      | 1.8642     | 1.8889          |
| 0.015      | 1.7926     | 1.9030          |
| 0.020      | 1.6572     | 1.8438          |
| 0.025      | 1.6556     | 1.7711          |
| 0.030      | 1.5856     | 1.7267          |
| 0.035      | 1.5942     | 1.6643          |
| 0.040      | 1.5344     | 1.6100          |
| 0.045      | 1.5700     | 1.6497          |
| 0.050      | 1.5619     | 1.6248          |
| 0.055      | 1.5448     | 1.6392          |
| 0.060      | 1.4688     | 1.6425          |
| 0.065      | 1.3833     | 1.5820          |
| 0.070      | 1.3764     | 1.4951          |
| 0.075      | 1.3330     | 1.4297          |
| 0.080      | 1.2867     | 1.2971          |
| 0.085      | 1.1885     | 1.2413          |
| 0.090      | 1.1883     | 1.2057          |
|            | 1.1554     | 1.2010          |
|            | 1.0922     | 1.1824          |
| 0.105      | 1.0330     | 1.0933          |
| 0.110      | 0.9903     | 1.0875          |
| 0.115      | 0.9744     | 1.0613          |
| 0.120      | 1.0315     | 1.0506          |

| 0.125 | 1.0373 | 1.1042 |
|-------|--------|--------|
| 0.130 | 0.9624 | 1.0408 |
|       |        |        |
| 0.135 | 0.9968 | 0.9876 |
| 0.140 | 0.9700 | 1.0009 |
| 0.145 | 0.9742 | 1.0384 |
| 0.150 | 0.9995 | 1.0509 |
| 0.155 | 0.9438 | 1.0532 |
|       |        |        |
| 0.160 | 0.9279 | 0.9806 |
| 0.165 | 0.9516 | 0.9850 |
| 0.170 | 0.9261 | 0.9521 |
| 0.175 | 0.8572 | 0.9353 |
| 0.180 | 0.8491 | 0.8827 |
|       |        |        |
| 0.185 | 0.8658 | 0.8216 |
| 0.190 | 0.7661 | 0.8370 |
| 0.195 | 0.7295 | 0.8115 |
| 0.200 | 0.6786 | 0.7344 |
| 0.205 | 0.7031 | 0.6912 |
| 0.210 | 0.7415 | 0.7017 |
|       |        |        |
| 0.215 | 0.7089 | 0.6447 |
| 0.220 | 0.6624 | 0.5844 |
| 0.225 | 0.7170 | 0.5742 |
| 0.230 | 0.7370 | 0.5132 |
| 0.235 | 0.7221 | 0.5397 |
| 0.240 | 0.6893 | 0.5604 |
| 0.245 | 0.6307 | 0.4962 |
| 0.250 | 0.6254 | 0.4683 |
| 0.255 | 0.6295 | 0.3844 |
|       |        |        |
| 0.260 | 0.6362 | 0.4641 |
| 0.265 | 0.6162 | 0.4512 |
| 0.270 | 0.6040 | 0.3716 |
| 0.275 | 0.6007 | 0.3028 |
| 0.280 | 0.5673 | 0.3361 |
| 0.285 | 0.5238 | 0.3426 |
| 0.290 | 0.5433 | 0.3412 |
|       |        |        |
| 0.295 | 0.4778 | 0.3181 |
| 0.300 | 0.5318 | 0.2360 |
| 0.305 | 0.5051 | 0.2074 |
| 0.310 | 0.4930 | 0.2256 |
| 0.315 | 0.5337 | 0.2073 |
| 0.320 | 0.5450 | 0.2165 |
| 0.325 | 0.5437 | 0.1876 |
|       |        |        |
| 0.330 | 0.4902 | 0.1405 |
| 0.335 | 0.4465 | 0.1450 |
| 0.340 | 0.4576 | 0.1497 |
| 0.345 | 0.4217 | 0.2064 |
| 0.350 | 0.4600 | 0.1853 |
| 0.355 | 0.4139 | 0.1815 |
|       |        |        |
| 0.360 | 0.4430 | 0.1852 |

| 0.303                                                                                                                                                                       | 0.4401                                                                                                                                                                                            | 0.1003                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.370                                                                                                                                                                       | 0.4432                                                                                                                                                                                            | 0.2150                                                                                                                                                                                    |
| 0.375                                                                                                                                                                       | 0.4160                                                                                                                                                                                            | 0.2098                                                                                                                                                                                    |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.380                                                                                                                                                                       | 0.4070                                                                                                                                                                                            | 0.2096                                                                                                                                                                                    |
| 0.385                                                                                                                                                                       | 0.3394                                                                                                                                                                                            | 0.1331                                                                                                                                                                                    |
| 0.390                                                                                                                                                                       |                                                                                                                                                                                                   | 0.1319                                                                                                                                                                                    |
|                                                                                                                                                                             | 0.2883                                                                                                                                                                                            |                                                                                                                                                                                           |
| 0.395                                                                                                                                                                       | 0.2946                                                                                                                                                                                            | 0.1062                                                                                                                                                                                    |
| 0.400                                                                                                                                                                       | 0.3290                                                                                                                                                                                            | 0.0946                                                                                                                                                                                    |
|                                                                                                                                                                             |                                                                                                                                                                                                   | 0.0812                                                                                                                                                                                    |
| 0.405                                                                                                                                                                       | 0.3131                                                                                                                                                                                            |                                                                                                                                                                                           |
| 0.410                                                                                                                                                                       | 0.3015                                                                                                                                                                                            | 0.1000                                                                                                                                                                                    |
| 0.415                                                                                                                                                                       | 0.3092                                                                                                                                                                                            | 0.0614                                                                                                                                                                                    |
| 0.420                                                                                                                                                                       | 0.3464                                                                                                                                                                                            | 0.0173                                                                                                                                                                                    |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.425                                                                                                                                                                       | 0.3300                                                                                                                                                                                            | 0.0037                                                                                                                                                                                    |
| 0.430                                                                                                                                                                       | 0.2728                                                                                                                                                                                            | -0.0025                                                                                                                                                                                   |
| 0.435                                                                                                                                                                       | 0.2291                                                                                                                                                                                            | -0.0028                                                                                                                                                                                   |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.440                                                                                                                                                                       | 0.2278                                                                                                                                                                                            | 0.0466                                                                                                                                                                                    |
| 0.445                                                                                                                                                                       | 0.2226                                                                                                                                                                                            | 0.0195                                                                                                                                                                                    |
| 0.450                                                                                                                                                                       | 0.1923                                                                                                                                                                                            | 0.0203                                                                                                                                                                                    |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.455                                                                                                                                                                       | 0.1803                                                                                                                                                                                            | 0.0676                                                                                                                                                                                    |
| 0.460                                                                                                                                                                       | 0.2118                                                                                                                                                                                            | 0.0462                                                                                                                                                                                    |
| 0.465                                                                                                                                                                       | 0.1700                                                                                                                                                                                            | -0.0529                                                                                                                                                                                   |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.470                                                                                                                                                                       | 0.1331                                                                                                                                                                                            | -0.0871                                                                                                                                                                                   |
| 0.475                                                                                                                                                                       | 0.1083                                                                                                                                                                                            | -0.0687                                                                                                                                                                                   |
| 0.480                                                                                                                                                                       | 0.1034                                                                                                                                                                                            | -0.0662                                                                                                                                                                                   |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.485                                                                                                                                                                       | 0.0985                                                                                                                                                                                            | -0.0671                                                                                                                                                                                   |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.490                                                                                                                                                                       | 0.0904                                                                                                                                                                                            | -0.1779                                                                                                                                                                                   |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.495                                                                                                                                                                       | 0.0795                                                                                                                                                                                            | -0.1553                                                                                                                                                                                   |
|                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                           |
| 0.495<br>0.500                                                                                                                                                              | 0.0795<br>0.0713                                                                                                                                                                                  | -0.1553                                                                                                                                                                                   |
| 0.495<br>0.500<br>Trajectory                                                                                                                                                | 0.0795<br>0.0713<br>2 (Initial                                                                                                                                                                    | -0.1553<br>-0.1334<br>state: [ 22.])                                                                                                                                                      |
| 0.495<br>0.500<br>Trajectory<br>Time                                                                                                                                        | 0.0795<br>0.0713<br>2 (Initial x1                                                                                                                                                                 | -0.1553<br>-0.1334<br>state: [ 22.])                                                                                                                                                      |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000                                                                                                                               | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000                                                                                                                                                    | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000                                                                                                                                     |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000                                                                                                                               | 0.0795<br>0.0713<br>2 (Initial x1                                                                                                                                                                 | -0.1553<br>-0.1334<br>state: [ 22.])                                                                                                                                                      |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000                                                                                                                               | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000                                                                                                                                                    | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000                                                                                                                                     |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010                                                                                                             | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326                                                                                                                                | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604                                                                                                               |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015                                                                                                    | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962                                                                                                                      | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503                                                                                                    |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010                                                                                                             | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326                                                                                                                                | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604                                                                                                               |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015                                                                                                    | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962                                                                                                                      | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503                                                                                                    |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025                                                                                  | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195                                                                                                  | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368                                                                              |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030                                                                         | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057                                                                                        | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368<br>-1.8980                                                                   |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025                                                                                  | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195                                                                                                  | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368                                                                              |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030                                                                         | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057                                                                                        | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368<br>-1.8980                                                                   |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040                                                       | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050                                                                    | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368<br>-1.9368<br>-1.8980<br>-1.8980<br>-1.8980<br>-1.8543                       |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045                                              | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043                                                          | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368<br>-1.9368<br>-1.8980<br>-1.8980<br>-1.8543<br>-1.8231                       |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050                                     | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043                                                             | -0.1553 -0.1334  state: [ 22.]) x2 -2.0000 -2.0030 -1.9604 -1.9503 -1.9650 -1.9368 -1.8980 -1.9302 -1.8543 -1.8231 -1.8051                                                                |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045                                              | 0.0795<br>0.0713<br>2 (Initial<br>x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043                                                          | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368<br>-1.9368<br>-1.8980<br>-1.8980<br>-1.8543<br>-1.8231                       |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050                                     | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043<br>1.7447                                                   | -0.1553<br>-0.1334<br>state: [ 22.])<br>x2<br>-2.0000<br>-2.0030<br>-1.9604<br>-1.9503<br>-1.9650<br>-1.9368<br>-1.9368<br>-1.8980<br>-1.8980<br>-1.8980<br>-1.8543<br>-1.8051<br>-1.8065 |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060                   | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043<br>1.7447<br>1.6687<br>1.6302                               | -0.1553 -0.1334  state: [ 22.]) x2 -2.0000 -2.0030 -1.9604 -1.9503 -1.9650 -1.9368 -1.8980 -1.9302 -1.8543 -1.8231 -1.8051 -1.8065 -1.8006                                                |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060                   | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043<br>1.7447<br>1.6687<br>1.6302<br>1.6350                     | -0.1553 -0.1334  state: [ 22.]) x2 -2.0000 -2.0030 -1.9604 -1.9503 -1.9650 -1.9368 -1.8980 -1.9302 -1.8543 -1.8231 -1.8051 -1.8065 -1.8006 -1.8318                                        |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060                   | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043<br>1.7447<br>1.6687<br>1.6302                               | -0.1553 -0.1334  state: [ 22.]) x2 -2.0000 -2.0030 -1.9604 -1.9503 -1.9650 -1.9368 -1.8980 -1.9302 -1.8543 -1.8231 -1.8051 -1.8065 -1.8006                                                |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070 | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043<br>1.7447<br>1.6687<br>1.6302<br>1.6350<br>1.5752           | -0.1553 -0.1334  state: [ 22.]) x2 -2.0000 -2.0030 -1.9604 -1.9503 -1.9650 -1.9368 -1.8980 -1.9302 -1.8543 -1.8051 -1.8065 -1.8065 -1.8066 -1.8318 -1.8608                                |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070 | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043<br>1.7447<br>1.6687<br>1.6302<br>1.6350<br>1.5752<br>1.5035 | -0.1553 -0.1334  state: [ 22.]) x2 -2.0000 -2.0030 -1.9604 -1.9503 -1.9650 -1.9368 -1.8980 -1.9302 -1.8543 -1.8231 -1.8051 -1.8065 -1.8066 -1.8318 -1.8608 -1.8355                        |
| 0.495<br>0.500<br>Trajectory<br>Time<br>0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070 | 0.0795<br>0.0713<br>2 (Initial x1<br>2.0000<br>1.9897<br>2.0326<br>1.9962<br>1.9576<br>1.9195<br>1.9057<br>1.8619<br>1.8050<br>1.8043<br>1.7447<br>1.6687<br>1.6302<br>1.6350<br>1.5752           | -0.1553 -0.1334  state: [ 22.]) x2 -2.0000 -2.0030 -1.9604 -1.9503 -1.9650 -1.9368 -1.8980 -1.9302 -1.8543 -1.8051 -1.8065 -1.8065 -1.8066 -1.8318 -1.8608                                |

0.365

0.4451

0.1689

| 0.085 | 1.3867 | -1.7645 |
|-------|--------|---------|
| 0.090 | 1.3736 | -1.7589 |
|       |        |         |
| 0.095 | 1.3858 | -1.7446 |
| 0.100 | 1.3822 | -1.7308 |
| 0.105 | 1.3675 | -1.7000 |
|       |        |         |
| 0.110 | 1.3516 | -1.7139 |
| 0.115 | 1.3426 | -1.7042 |
| 0.120 | 1.3403 | -1.7589 |
| 0.125 | 1.2642 | -1.7238 |
|       |        |         |
| 0.130 | 1.3071 | -1.6717 |
| 0.135 | 1.2588 | -1.7102 |
| 0.140 | 1.2618 | -1.6903 |
| 0.145 | 1.2591 | -1.6636 |
|       |        |         |
| 0.150 | 1.2366 | -1.5368 |
| 0.155 | 1.2125 | -1.5221 |
| 0.160 | 1.1846 | -1.5222 |
| 0.165 | 1.1968 | -1.5140 |
|       |        |         |
| 0.170 | 1.1957 | -1.4831 |
| 0.175 | 1.2150 | -1.4477 |
| 0.180 | 1.1476 | -1.4748 |
| 0.185 | 1.1743 | -1.4751 |
|       |        |         |
| 0.190 | 1.1037 | -1.4775 |
| 0.195 | 1.1263 | -1.5060 |
| 0.200 | 1.0728 | -1.5071 |
| 0.205 | 1.0067 | -1.5256 |
| 0.210 | 0.9328 | -1.5178 |
|       |        |         |
| 0.215 | 0.9018 | -1.5172 |
| 0.220 | 0.8252 | -1.4473 |
| 0.225 | 0.7619 | -1.4129 |
| 0.230 | 0.7089 | -1.3648 |
| 0.235 | 0.7285 | -1.3713 |
|       |        |         |
| 0.240 | 0.6459 | -1.3222 |
| 0.245 | 0.6994 | -1.2832 |
| 0.250 | 0.6903 | -1.2304 |
| 0.255 | 0.7025 | -1.2367 |
| 0.260 | 0.6640 | -1.1920 |
|       |        |         |
| 0.265 | 0.6445 | -1.1228 |
| 0.270 | 0.6052 | -1.0746 |
| 0.275 | 0.6035 | -1.0577 |
| 0.280 | 0.6311 | -1.0123 |
| 0.285 | 0.5804 | -0.9691 |
|       |        |         |
| 0.290 | 0.6152 | -0.9540 |
| 0.295 | 0.5913 | -0.9581 |
| 0.300 | 0.5762 | -0.9137 |
| 0.305 | 0.5326 | -0.9414 |
|       |        |         |
| 0.310 | 0.5057 | -0.9689 |
| 0.315 | 0.5114 | -0.9613 |
| 0.320 | 0.4363 | -0.9513 |
|       |        |         |

| 0.325      | 0.4185     | -0.9124        |
|------------|------------|----------------|
| 0.330      | 0.4027     | -0.8238        |
| 0.335      | 0.3735     | -0.8049        |
| 0.340      | 0.3598     | -0.7937        |
| 0.345      | 0.3549     | -0.7530        |
| 0.350      | 0.3925     | -0.7882        |
| 0.355      | 0.3632     | -0.7823        |
| 0.360      | 0.3859     | -0.7727        |
| 0.365      | 0.3071     | -0.7466        |
| 0.370      | 0.2968     | -0.7169        |
| 0.375      | 0.2510     | -0.6331        |
|            |            |                |
| 0.380      | 0.2319     | -0.6187        |
| 0.385      | 0.1931     | -0.6310        |
| 0.390      | 0.1445     | -0.6228        |
| 0.395      | 0.1072     | -0.5273        |
| 0.400      | 0.0382     | -0.5464        |
| 0.405      | 0.0253     | -0.4996        |
| 0.410      | 0.0125     | -0.4538        |
| 0.415      | -0.0202    | -0.4317        |
| 0.420      | 0.0454     | -0.4458        |
| 0.425      | 0.0610     | -0.4174        |
| 0.430      | -0.0186    | -0.4166        |
| 0.435      | 0.0268     | -0.3883        |
| 0.440      | -0.0135    | -0.3411        |
| 0.445      | -0.0257    | -0.3080        |
| 0.450      | -0.0065    | -0.3277        |
| 0.455      | 0.0268     | -0.3412        |
| 0.460      | -0.0150    | -0.3462        |
| 0.465      | -0.0173    | -0.3126        |
| 0.470      | -0.0335    | -0.2565        |
| 0.475      | -0.0132    | -0.2561        |
| 0.480      | 0.0293     | -0.1880        |
|            |            |                |
| 0.485      | 0.0304     | -0.1746        |
| 0.490      | -0.0233    | -0.1628        |
| 0.495      | -0.0047    | -0.1176        |
| 0.500      | 0.0206     | -0.0730        |
| Trajectory | 3 (Initial | state: [-22.]) |
| Time       | x1         | x2             |
| 0.000      | -2.0000    | -2.0000        |
| 0.005      | -1.8910    | -1.9717        |
| 0.010      | -1.8562    | -1.9723        |
|            |            |                |
| 0.015      | -1.8051    | -1.8922        |
| 0.020      | -1.8171    | -1.8718        |
| 0.025      | -1.7658    | -1.7980        |
| 0.030      | -1.7037    | -1.7442        |
| 0.035      | -1.6647    | -1.6863        |
| 0.040      | -1.5830    | -1.7069        |

| 0.045 | -1.5132 | -1.6708 |
|-------|---------|---------|
| 0.050 | -1.4897 | -1.7186 |
|       |         |         |
| 0.055 | -1.4965 | -1.6193 |
| 0.060 | -1.4791 | -1.6200 |
| 0.065 | -1.4539 | -1.6088 |
| 0.070 | -1.4088 | -1.5178 |
|       |         |         |
| 0.075 | -1.3902 | -1.4768 |
| 0.080 | -1.3920 | -1.3882 |
| 0.085 | -1.3470 | -1.3931 |
| 0.090 | -1.2776 | -1.3175 |
|       |         |         |
| 0.095 | -1.2364 | -1.3439 |
| 0.100 | -1.1386 | -1.3013 |
| 0.105 | -1.0650 | -1.2903 |
| 0.110 | -1.0486 | -1.2567 |
| 0.115 | -0.9792 | -1.2225 |
| 0.120 | -0.9954 | -1.1850 |
|       |         |         |
| 0.125 | -0.9093 | -1.1550 |
| 0.130 | -0.8783 | -1.1729 |
| 0.135 | -0.9022 | -1.1686 |
| 0.140 | -0.8874 | -1.1379 |
| 0.145 | -0.8557 | -1.0547 |
| 0.150 | -0.8288 | -0.9922 |
| 0.155 | -0.8062 | -0.9173 |
| 0.160 | -0.8491 | -0.9163 |
|       |         |         |
| 0.165 | -0.7901 | -0.8999 |
| 0.170 | -0.7344 | -0.8643 |
| 0.175 | -0.6796 | -0.8215 |
| 0.180 | -0.6359 | -0.7489 |
| 0.185 | -0.5824 | -0.6953 |
| 0.190 | -0.5645 | -0.6988 |
| 0.195 | -0.5711 | -0.6552 |
|       |         |         |
| 0.200 | -0.6406 | -0.6850 |
| 0.205 | -0.6559 | -0.6762 |
| 0.210 | -0.7298 | -0.6142 |
| 0.215 | -0.6878 | -0.5273 |
| 0.220 | -0.6306 | -0.4759 |
| 0.225 | -0.5330 | -0.4825 |
|       |         |         |
| 0.230 | -0.5706 | -0.4776 |
| 0.235 | -0.5830 | -0.4732 |
| 0.240 | -0.6031 | -0.4397 |
| 0.245 | -0.5674 | -0.4277 |
| 0.250 | -0.5396 | -0.4201 |
| 0.255 | -0.4969 | -0.4052 |
| 0.260 | -0.4914 | -0.3605 |
|       |         |         |
| 0.265 | -0.4321 | -0.3023 |
| 0.270 | -0.4541 | -0.3118 |
| 0.275 | -0.5003 | -0.3104 |
| 0.280 | -0.4702 | -0.3049 |
|       |         |         |

| 0.285 | -0.3873            | -0.3093 |
|-------|--------------------|---------|
| 0.290 | -0.4136            | -0.2796 |
| 0.295 | -0.3953            | -0.2510 |
| 0.300 | -0.3720            | -0.2340 |
| 0.305 | -0.4349            | -0.2516 |
| 0.310 | -0.4415            | -0.2549 |
| 0.315 | -0.4427            | -0.2311 |
| 0.320 | -0.4068            | -0.2625 |
| 0.325 | -0.3687            | -0.2324 |
| 0.330 | -0.3395            | -0.2741 |
| 0.335 | -0.3116            | -0.2614 |
| 0.340 | -0.2661            | -0.1889 |
| 0.345 | -0.2000            | -0.1778 |
| 0.350 | -0.1925            | -0.1490 |
|       | -0.1925<br>-0.2246 |         |
| 0.355 |                    | -0.1946 |
| 0.360 | -0.2324            | -0.1440 |
| 0.365 | -0.2347            | -0.0847 |
| 0.370 | -0.3238            | -0.1365 |
| 0.375 | -0.3146            | -0.0983 |
| 0.380 | -0.3037            | -0.0962 |
| 0.385 | -0.2951            | -0.1531 |
| 0.390 | -0.2409            | -0.1696 |
| 0.395 | -0.1910            | -0.1640 |
| 0.400 | -0.1434            | -0.1437 |
| 0.405 | -0.1394            | -0.1285 |
| 0.410 | -0.1836            | -0.1215 |
| 0.415 | -0.1129            | -0.0684 |
| 0.420 | -0.1413            | -0.0464 |
| 0.425 | -0.1244            | -0.0141 |
| 0.430 | -0.1134            | -0.0203 |
| 0.435 | -0.0589            | -0.0103 |
| 0.440 | -0.0104            | 0.0255  |
| 0.445 | -0.0214            | 0.0182  |
| 0.450 | 0.0481             | 0.0241  |
| 0.455 | 0.0172             | -0.0206 |
| 0.460 | 0.0505             | -0.0137 |
| 0.465 | 0.0177             | 0.0102  |
| 0.470 | 0.0211             | -0.0500 |
| 0.475 | 0.0211             | 0.0013  |
| 0.475 |                    | 0.0013  |
|       | 0.1263             |         |
| 0.485 | 0.1161             | 0.0525  |
| 0.490 | 0.0925             | 0.0448  |
| 0.495 | 0.0378             | -0.0245 |
| 0.500 | 0.0596             | -0.0701 |
|       |                    |         |

Trajectory 4 (Initial state: [-2. 2.])

Time x1 x2 0.000 -2.0000 2.0000

| 0.005 | -1.9245 | 1.9540 |
|-------|---------|--------|
| 0.010 | -1.8815 | 1.9228 |
|       |         |        |
| 0.015 | -1.8070 | 1.9156 |
| 0.020 | -1.7062 | 1.8589 |
| 0.025 | -1.6620 | 1.8422 |
|       |         |        |
| 0.030 | -1.6233 | 1.8800 |
| 0.035 | -1.5747 | 1.8199 |
| 0.040 | -1.5286 | 1.7861 |
|       |         |        |
| 0.045 | -1.5190 | 1.8041 |
| 0.050 | -1.5140 | 1.7712 |
| 0.055 | -1.4864 | 1.7855 |
|       |         |        |
| 0.060 | -1.4401 | 1.7576 |
| 0.065 | -1.4248 | 1.6970 |
| 0.070 | -1.4267 | 1.6550 |
|       |         |        |
| 0.075 | -1.4065 | 1.7069 |
| 0.080 | -1.4055 | 1.6769 |
| 0.085 | -1.4530 | 1.6791 |
| 0.090 | -1.4824 | 1.6280 |
| 0.095 | -1.4181 | 1.5354 |
| 0.100 | -1.3884 | 1.5467 |
| 0.105 | -1.3086 | 1.4965 |
| 0.110 | -1.3064 | 1.5430 |
|       | -1.2832 |        |
| 0.115 |         | 1.4986 |
| 0.120 | -1.2845 | 1.4461 |
| 0.125 | -1.2758 | 1.4675 |
| 0.130 | -1.2201 | 1.4081 |
| 0.135 | -1.1893 | 1.3767 |
| 0.140 | -1.1387 | 1.3540 |
| 0.145 | -1.1037 | 1.3311 |
| 0.150 | -1.1598 | 1.3156 |
|       |         |        |
| 0.155 | -1.1819 | 1.3253 |
| 0.160 | -1.1823 | 1.2868 |
| 0.165 | -1.1589 | 1.2909 |
| 0.170 | -1.1414 | 1.3321 |
|       |         |        |
| 0.175 | -1.0601 | 1.3747 |
| 0.180 | -1.0474 | 1.3029 |
| 0.185 | -0.9831 | 1.2697 |
| 0.190 | -0.9618 | 1.2734 |
|       |         |        |
| 0.195 | -0.9992 | 1.3123 |
| 0.200 | -0.9479 | 1.3053 |
| 0.205 | -0.8970 | 1.3049 |
|       |         |        |
| 0.210 | -0.8747 | 1.2736 |
| 0.215 | -0.8830 | 1.2636 |
| 0.220 | -0.8517 | 1.2814 |
| 0.225 | -0.8270 | 1.2302 |
|       |         |        |
| 0.230 | -0.8654 | 1.2053 |
| 0.235 | -0.8475 | 1.1816 |
| 0.240 | -0.8832 | 1.1998 |
| ··    |         | 1.1000 |

| 0.245 | -0.8257 | 1.1504 |
|-------|---------|--------|
| 0.250 | -0.7786 | 1.1640 |
| 0.255 | -0.7597 | 1.1094 |
| 0.260 | -0.6855 | 1.1029 |
| 0.265 | -0.6791 | 1.1029 |
|       |         |        |
| 0.270 | -0.6064 | 1.0710 |
| 0.275 | -0.5681 | 1.1184 |
| 0.280 | -0.5948 | 1.0759 |
| 0.285 | -0.6020 | 1.0481 |
| 0.290 | -0.5952 | 1.0372 |
| 0.295 | -0.6100 | 0.9935 |
| 0.300 | -0.5843 | 0.9781 |
| 0.305 | -0.5386 | 0.9710 |
| 0.310 | -0.4977 | 0.9086 |
| 0.315 | -0.4984 | 0.9529 |
| 0.320 | -0.4719 | 0.9571 |
| 0.325 | -0.4502 | 0.9492 |
|       |         |        |
| 0.330 | -0.4468 | 1.0521 |
| 0.335 | -0.4492 | 1.0234 |
| 0.340 | -0.5230 | 1.0354 |
| 0.345 | -0.5277 | 1.0055 |
| 0.350 | -0.5314 | 0.9737 |
| 0.355 | -0.5258 | 0.9457 |
| 0.360 | -0.5119 | 0.9139 |
| 0.365 | -0.5018 | 0.9333 |
| 0.370 | -0.4546 | 0.9362 |
| 0.375 | -0.4661 | 0.9510 |
| 0.380 | -0.4109 | 0.9004 |
| 0.385 | -0.3438 | 0.8467 |
| 0.390 | -0.3981 | 0.8566 |
| 0.395 | -0.3889 | 0.8612 |
|       |         |        |
| 0.400 | -0.4020 | 0.7841 |
| 0.405 | -0.3434 | 0.7040 |
| 0.410 | -0.3855 | 0.6075 |
| 0.415 | -0.4686 | 0.5469 |
| 0.420 | -0.5243 | 0.5243 |
| 0.425 | -0.5783 | 0.4650 |
| 0.430 | -0.4648 | 0.4583 |
| 0.435 | -0.4377 | 0.3804 |
| 0.440 | -0.4209 | 0.3648 |
| 0.445 | -0.4531 | 0.3527 |
| 0.450 | -0.3826 | 0.3242 |
| 0.455 | -0.3645 | 0.2358 |
| 0.460 | -0.3854 | 0.2618 |
| 0.465 |         |        |
|       | -0.3764 | 0.2153 |
| 0.470 | -0.3651 | 0.2033 |
| 0.475 | -0.3712 | 0.1985 |
| 0.480 | -0.3797 | 0.2174 |

| 0.485 | -0.3720 | 0.2542 |
|-------|---------|--------|
| 0.490 | -0.3154 | 0.2110 |
| 0.495 | -0.2223 | 0.1552 |
| 0.500 | -0.1831 | 0.1554 |

=== Soft LQR Trajectories Data ===

| Trajectorv     | 1 (Initial | state: [2. 2.]) |
|----------------|------------|-----------------|
| Time           | x1         | x2              |
| 0.000          | 2.0000     | 2.0000          |
| 0.005          | 1.8935     | 1.9812          |
| 0.010          | 1.8524     | 1.8792          |
| 0.015          | 1.7897     | 1.8931          |
| 0.020          | 1.6511     | 1.8343          |
| 0.025          | 1.6623     | 1.7672          |
| 0.030          | 1.5949     | 1.7277          |
| 0.035          | 1.6143     | 1.6655          |
| 0.040          | 1.5532     | 1.6146          |
| 0.045          | 1.5871     | 1.6515          |
| 0.050          | 1.5756     | 1.6204          |
| 0.055          | 1.5461     | 1.6317          |
| 0.060          | 1.4710     | 1.6344          |
| 0.065          | 1.3776     | 1.5705          |
| 0.070          | 1.3783     | 1.4832          |
| 0.075          | 1.3417     | 1.4169          |
| 0.080          | 1.3027     | 1.2864          |
| 0.085          | 1.1964     | 1.2252          |
| 0.090          | 1.1960     | 1.1930          |
| 0.095          | 1.1691     | 1.1969          |
| 0.100          | 1.1026     | 1.1760          |
| 0.105          | 1.0446     | 1.0877          |
| 0.110          | 1.0074     | 1.0815          |
| 0.115          | 0.9883     | 1.0525          |
| 0.120          | 1.0467     | 1.0406          |
| 0.125          | 1.0532     | 1.0922          |
| 0.130          | 0.9776     | 1.0391          |
| 0.135          | 1.0005     | 0.9786          |
| 0.140          | 0.9663     | 0.9887          |
| 0.145          | 0.9716     | 1.0255          |
| 0.150          | 0.9981     | 1.0324          |
| 0.155          | 0.9339     | 1.0318          |
| 0.160          | 0.9060     | 0.9522          |
| 0.165          | 0.9326     | 0.9642          |
| 0.170          | 0.9066     | 0.9307          |
| 0.175          | 0.8378     | 0.9183          |
| 0.180<br>0.185 | 0.8405     | 0.8726          |
|                | 0.8501     | 0.8068          |
| 0.190          | 0.7605     | 0.8244          |

| 0.195 | 0.7208 | 0.7979  |
|-------|--------|---------|
| 0.200 | 0.6769 | 0.7280  |
| 0.205 | 0.6950 | 0.6800  |
| 0.210 | 0.7215 | 0.6789  |
| 0.215 | 0.6836 | 0.6185  |
| 0.220 | 0.6382 | 0.5660  |
| 0.225 | 0.7031 | 0.5540  |
| 0.230 | 0.7283 | 0.4965  |
| 0.235 | 0.7157 | 0.5269  |
| 0.240 | 0.6848 | 0.5507  |
| 0.245 | 0.6288 | 0.4839  |
| 0.250 | 0.6222 | 0.4593  |
| 0.255 | 0.6293 | 0.3791  |
| 0.260 | 0.6343 | 0.4649  |
| 0.265 | 0.6137 | 0.4505  |
| 0.270 | 0.5862 | 0.3630  |
| 0.275 | 0.5855 | 0.2930  |
| 0.280 | 0.5473 | 0.3240  |
| 0.285 | 0.5020 | 0.3272  |
| 0.290 | 0.5187 | 0.3217  |
| 0.295 | 0.4600 | 0.3002  |
| 0.300 | 0.5210 | 0.2255  |
| 0.305 | 0.4898 | 0.1965  |
| 0.310 | 0.4762 | 0.2176  |
| 0.315 | 0.5264 | 0.2042  |
| 0.320 | 0.5396 | 0.2146  |
| 0.325 | 0.5418 | 0.1823  |
| 0.330 | 0.4952 | 0.1351  |
| 0.335 | 0.4363 | 0.1315  |
| 0.340 | 0.4464 | 0.1345  |
| 0.345 | 0.4154 | 0.1958  |
| 0.350 | 0.4608 | 0.1773  |
| 0.355 | 0.4099 | 0.1596  |
| 0.360 | 0.4308 | 0.1556  |
| 0.365 | 0.4390 | 0.1467  |
| 0.370 | 0.4454 | 0.1947  |
| 0.375 | 0.4154 | 0.1892  |
| 0.380 | 0.4012 | 0.1845  |
| 0.385 | 0.3384 | 0.1129  |
| 0.390 | 0.2737 | 0.1064  |
| 0.395 | 0.2846 | 0.0848  |
| 0.400 | 0.3198 | 0.0718  |
| 0.405 | 0.2963 | 0.0484  |
| 0.410 | 0.2836 | 0.0666  |
| 0.415 | 0.2845 | 0.0269  |
| 0.420 | 0.3199 | -0.0184 |
| 0.425 | 0.3147 | -0.0233 |
| 0.430 | 0.2482 | -0.0268 |
|       |        |         |

| 0.435<br>0.440<br>0.445<br>0.450<br>0.455<br>0.460<br>0.465<br>0.470<br>0.475<br>0.480<br>0.485<br>0.490<br>0.495<br>0.500 | 0.1989<br>0.2028<br>0.1992<br>0.1758<br>0.1655<br>0.2026<br>0.1499<br>0.1167<br>0.0931<br>0.0976<br>0.0813<br>0.0834<br>0.0710<br>0.0624 | -0.0294 0.0232 -0.0021 0.0083 0.0558 0.0408 -0.0652 -0.1016 -0.0886 -0.0818 -0.0921 -0.1969 -0.1688 -0.1432 |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Two is at any                                                                                                              | 0 (Tmi+iol                                                                                                                               | a+a+a, [ 0                                                                                                  |
| Time                                                                                                                       | x1                                                                                                                                       | state: [ 22.]) x2                                                                                           |
| 0.000                                                                                                                      | 2.0000                                                                                                                                   | -2.0000                                                                                                     |
| 0.005                                                                                                                      | 1.9936                                                                                                                                   | -2.0039                                                                                                     |
| 0.010                                                                                                                      | 2.0297                                                                                                                                   | -1.9620                                                                                                     |
| 0.015                                                                                                                      | 1.9808                                                                                                                                   | -1.9564                                                                                                     |
| 0.020                                                                                                                      | 1.9350                                                                                                                                   | -1.9755                                                                                                     |
| 0.025                                                                                                                      | 1.8889                                                                                                                                   | -1.9544                                                                                                     |
| 0.030                                                                                                                      | 1.8797                                                                                                                                   | -1.9111                                                                                                     |
| 0.035                                                                                                                      | 1.8391                                                                                                                                   | -1.9443                                                                                                     |
| 0.040                                                                                                                      | 1.7819                                                                                                                                   | -1.8674                                                                                                     |
| 0.045                                                                                                                      | 1.7763                                                                                                                                   | -1.8307                                                                                                     |
| 0.050                                                                                                                      | 1.7148                                                                                                                                   | -1.8137                                                                                                     |
| 0.055                                                                                                                      | 1.6406                                                                                                                                   | -1.8156                                                                                                     |
| 0.060                                                                                                                      | 1.5971                                                                                                                                   | -1.8134                                                                                                     |
| 0.065                                                                                                                      | 1.6106                                                                                                                                   | -1.8397                                                                                                     |
| 0.070                                                                                                                      | 1.5528                                                                                                                                   | -1.8642                                                                                                     |
| 0.075                                                                                                                      | 1.4829                                                                                                                                   | -1.8409                                                                                                     |
| 0.080                                                                                                                      | 1.4083                                                                                                                                   | -1.7849                                                                                                     |
| 0.085                                                                                                                      | 1.3725                                                                                                                                   | -1.7615                                                                                                     |
| 0.090                                                                                                                      | 1.3650                                                                                                                                   | -1.7540                                                                                                     |
| 0.095                                                                                                                      | 1.3655                                                                                                                                   | -1.7432                                                                                                     |
| 0.100                                                                                                                      | 1.3672                                                                                                                                   | -1.7245                                                                                                     |
| 0.105                                                                                                                      | 1.3477                                                                                                                                   | -1.6995                                                                                                     |
| 0.110                                                                                                                      | 1.3277                                                                                                                                   | -1.7185                                                                                                     |
| 0.115                                                                                                                      | 1.3214                                                                                                                                   | -1.7127                                                                                                     |
| 0.120                                                                                                                      | 1.3192                                                                                                                                   | -1.7704                                                                                                     |
| 0.125                                                                                                                      | 1.2454                                                                                                                                   | -1.7359                                                                                                     |
| 0.130                                                                                                                      | 1.2904                                                                                                                                   | -1.6865                                                                                                     |
| 0.135                                                                                                                      | 1.2482                                                                                                                                   | -1.7204                                                                                                     |
| 0.140                                                                                                                      | 1.2374                                                                                                                                   | -1.6999                                                                                                     |
| 0.145                                                                                                                      | 1.2306                                                                                                                                   | -1.6741                                                                                                     |
| 0.150                                                                                                                      | 1.2145                                                                                                                                   | -1.5514                                                                                                     |

| 0.155 | 1.1884 | -1.5326 |
|-------|--------|---------|
| 0.160 | 1.1607 | -1.5318 |
| 0.165 | 1.1794 | -1.5188 |
|       |        |         |
| 0.170 | 1.1812 | -1.4852 |
| 0.175 | 1.1997 | -1.4456 |
| 0.180 | 1.1272 | -1.4720 |
| 0.185 | 1.1594 | -1.4638 |
| 0.190 | 1.0749 | -1.4750 |
| 0.195 | 1.0902 | -1.5073 |
| 0.200 | 1.0475 | -1.5022 |
|       |        |         |
| 0.205 | 0.9808 | -1.5207 |
| 0.210 | 0.9095 | -1.5106 |
| 0.215 | 0.8807 | -1.5180 |
| 0.220 | 0.8029 | -1.4466 |
| 0.225 | 0.7393 | -1.4089 |
| 0.230 | 0.7022 | -1.3502 |
| 0.235 | 0.7089 | -1.3640 |
| 0.240 | 0.6151 | -1.3220 |
| 0.245 | 0.6783 | -1.2762 |
| 0.250 | 0.6719 | -1.2198 |
| 0.255 | 0.6952 | -1.2233 |
| 0.260 | 0.6588 | -1.1751 |
| 0.265 | 0.6401 | -1.1051 |
| 0.270 | 0.5968 | -1.0578 |
| 0.275 | 0.5963 | -1.0350 |
| 0.280 | 0.6211 | -0.9893 |
| 0.285 | 0.5553 | -0.9530 |
|       |        |         |
| 0.290 | 0.5906 | -0.9424 |
| 0.295 | 0.5838 | -0.9434 |
| 0.300 | 0.5712 | -0.9043 |
| 0.305 | 0.5309 | -0.9245 |
| 0.310 | 0.5004 | -0.9554 |
| 0.315 | 0.5008 | -0.9484 |
| 0.320 | 0.4306 | -0.9368 |
| 0.325 | 0.4136 | -0.8992 |
| 0.330 | 0.3914 | -0.8153 |
| 0.335 | 0.3720 | -0.7875 |
| 0.340 | 0.3564 | -0.7788 |
| 0.345 | 0.3553 | -0.7375 |
|       |        |         |
| 0.350 | 0.3922 | -0.7768 |
| 0.355 | 0.3672 | -0.7682 |
| 0.360 | 0.3924 | -0.7680 |
| 0.365 | 0.3201 | -0.7374 |
| 0.370 | 0.3058 | -0.7119 |
| 0.375 | 0.2492 | -0.6291 |
| 0.380 | 0.2473 | -0.6002 |
| 0.385 | 0.2133 | -0.6088 |
| 0.390 | 0.1591 | -0.6095 |
|       |        |         |

| 0.000                                                                                                                                                                   | 0.1200                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.400                                                                                                                                                                   | 0.0553                                                                                                                                                                                                                                         | -0.5293                                                                                                                                                                                                                             |
| 0.405                                                                                                                                                                   | 0.0395                                                                                                                                                                                                                                         | -0.4825                                                                                                                                                                                                                             |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| 0.410                                                                                                                                                                   | 0.0256                                                                                                                                                                                                                                         | -0.4378                                                                                                                                                                                                                             |
| 0.415                                                                                                                                                                   | -0.0057                                                                                                                                                                                                                                        | -0.4194                                                                                                                                                                                                                             |
| 0.420                                                                                                                                                                   | 0.0707                                                                                                                                                                                                                                         | -0.4217                                                                                                                                                                                                                             |
| 0.425                                                                                                                                                                   | 0.0886                                                                                                                                                                                                                                         | -0.3982                                                                                                                                                                                                                             |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| 0.430                                                                                                                                                                   | 0.0045                                                                                                                                                                                                                                         | -0.3977                                                                                                                                                                                                                             |
| 0.435                                                                                                                                                                   | 0.0393                                                                                                                                                                                                                                         | -0.3787                                                                                                                                                                                                                             |
| 0.440                                                                                                                                                                   | 0.0004                                                                                                                                                                                                                                         | -0.3327                                                                                                                                                                                                                             |
| 0.445                                                                                                                                                                   | -0.0169                                                                                                                                                                                                                                        | -0.3029                                                                                                                                                                                                                             |
| 0.450                                                                                                                                                                   | 0.0039                                                                                                                                                                                                                                         | -0.3266                                                                                                                                                                                                                             |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| 0.455                                                                                                                                                                   | 0.0301                                                                                                                                                                                                                                         | -0.3395                                                                                                                                                                                                                             |
| 0.460                                                                                                                                                                   | -0.0245                                                                                                                                                                                                                                        | -0.3494                                                                                                                                                                                                                             |
| 0.465                                                                                                                                                                   | -0.0209                                                                                                                                                                                                                                        | -0.3153                                                                                                                                                                                                                             |
| 0.470                                                                                                                                                                   | -0.0406                                                                                                                                                                                                                                        | -0.2651                                                                                                                                                                                                                             |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| 0.475                                                                                                                                                                   | -0.0243                                                                                                                                                                                                                                        | -0.2610                                                                                                                                                                                                                             |
| 0.480                                                                                                                                                                   | 0.0237                                                                                                                                                                                                                                         | -0.1932                                                                                                                                                                                                                             |
| 0.485                                                                                                                                                                   | 0.0243                                                                                                                                                                                                                                         | -0.1726                                                                                                                                                                                                                             |
| 0.490                                                                                                                                                                   | -0.0192                                                                                                                                                                                                                                        | -0.1533                                                                                                                                                                                                                             |
| 0.495                                                                                                                                                                   | -0.0049                                                                                                                                                                                                                                        | -0.1104                                                                                                                                                                                                                             |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| 0.500                                                                                                                                                                   | 0.0091                                                                                                                                                                                                                                         | -0.0760                                                                                                                                                                                                                             |
| Trajectory                                                                                                                                                              | 3 (Initial                                                                                                                                                                                                                                     | state: [-22.])                                                                                                                                                                                                                      |
| T                                                                                                                                                                       | x1                                                                                                                                                                                                                                             | O                                                                                                                                                                                                                                   |
| lime                                                                                                                                                                    | XI                                                                                                                                                                                                                                             | XZ                                                                                                                                                                                                                                  |
| Time                                                                                                                                                                    |                                                                                                                                                                                                                                                | x2<br>-2 0000                                                                                                                                                                                                                       |
| 0.000                                                                                                                                                                   | -2.0000                                                                                                                                                                                                                                        | -2.0000                                                                                                                                                                                                                             |
| 0.000<br>0.005                                                                                                                                                          | -2.0000<br>-1.8899                                                                                                                                                                                                                             | -2.0000<br>-1.9671                                                                                                                                                                                                                  |
| 0.000                                                                                                                                                                   | -2.0000                                                                                                                                                                                                                                        | -2.0000                                                                                                                                                                                                                             |
| 0.000<br>0.005                                                                                                                                                          | -2.0000<br>-1.8899                                                                                                                                                                                                                             | -2.0000<br>-1.9671                                                                                                                                                                                                                  |
| 0.000<br>0.005<br>0.010<br>0.015                                                                                                                                        | -2.0000<br>-1.8899<br>-1.8486                                                                                                                                                                                                                  | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861                                                                                                                                                                                            |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020                                                                                                                               | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222                                                                                                                                                                                            | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665                                                                                                                                                                                 |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025                                                                                                                      | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758                                                                                                                                                                                 | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939                                                                                                                                                                      |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030                                                                                                             | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146                                                                                                                                                                      | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939                                                                                                                                                                      |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035                                                                                                    | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734                                                                                                                                                           | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439                                                                                                                                                           |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030                                                                                                             | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146                                                                                                                                                                      | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939                                                                                                                                                                      |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040                                                                                           | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000                                                                                                                                                | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439                                                                                                                                                           |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045                                                                                  | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305                                                                                                                                     | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702                                                                                                                          |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050                                                                         | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021                                                                                                                          | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.7076                                                                                                               |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050                                                                         | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093                                                                                                               | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.6702<br>-1.6127                                                                                                    |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050                                                                         | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956                                                                                                    | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.7076                                                                                                               |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050                                                                         | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093                                                                                                               | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.6702<br>-1.6127                                                                                                    |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060                                                       | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956                                                                                                    | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.7076<br>-1.6127<br>-1.6146                                                                                         |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065                                              | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173                                                                              | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.7076<br>-1.6127<br>-1.6146<br>-1.6016<br>-1.5076                                                                   |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070                                     | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4051                                                                   | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.6702<br>-1.6127<br>-1.6127<br>-1.6146<br>-1.5076<br>-1.5076<br>-1.4763                                             |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070<br>0.075<br>0.080                   | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4051<br>-1.4124                                                        | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.6702<br>-1.6702<br>-1.6127<br>-1.6146<br>-1.6016<br>-1.5076<br>-1.4763<br>-1.3936                                  |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070                                     | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4051                                                                   | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.6702<br>-1.6127<br>-1.6127<br>-1.6146<br>-1.5076<br>-1.5076<br>-1.4763                                             |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070<br>0.075<br>0.080                   | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4051<br>-1.4124                                                        | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.6702<br>-1.6702<br>-1.6127<br>-1.6146<br>-1.6016<br>-1.5076<br>-1.4763<br>-1.3936                                  |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070<br>0.075<br>0.080<br>0.085          | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4051<br>-1.4124<br>-1.3636                                             | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.7076<br>-1.6127<br>-1.6146<br>-1.6016<br>-1.5076<br>-1.4763<br>-1.3936<br>-1.3995                                  |
| 0.000<br>0.005<br>0.010<br>0.015<br>0.020<br>0.025<br>0.030<br>0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065<br>0.070<br>0.075<br>0.080<br>0.085<br>0.090 | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4051<br>-1.4124<br>-1.3636<br>-1.2878<br>-1.2471                       | -2.0000<br>-1.9671<br>-1.9595<br>-1.8861<br>-1.8665<br>-1.7939<br>-1.7439<br>-1.6814<br>-1.7019<br>-1.6702<br>-1.6702<br>-1.6702<br>-1.6127<br>-1.6146<br>-1.6016<br>-1.5076<br>-1.4763<br>-1.3936<br>-1.3995<br>-1.3165<br>-1.3471 |
| 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100                                           | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4124<br>-1.3636<br>-1.2878<br>-1.2471<br>-1.1475                       | -2.0000 -1.9671 -1.9595 -1.8861 -1.8665 -1.7939 -1.7439 -1.6814 -1.7019 -1.6702 -1.7076 -1.6127 -1.6146 -1.5076 -1.4763 -1.3936 -1.3936 -1.3995 -1.3165 -1.3471 -1.3019                                                             |
| 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105                                     | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4051<br>-1.4124<br>-1.3636<br>-1.2878<br>-1.2471<br>-1.1475<br>-1.0783 | -2.0000 -1.9671 -1.9595 -1.8861 -1.8665 -1.7939 -1.7439 -1.6814 -1.7019 -1.6702 -1.7076 -1.6127 -1.6146 -1.6016 -1.5076 -1.4763 -1.3936 -1.3995 -1.3165 -1.3471 -1.3019 -1.2883                                                     |
| 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100                                           | -2.0000<br>-1.8899<br>-1.8486<br>-1.8058<br>-1.8222<br>-1.7758<br>-1.7146<br>-1.6734<br>-1.6000<br>-1.5305<br>-1.5021<br>-1.5093<br>-1.4956<br>-1.4712<br>-1.4173<br>-1.4124<br>-1.3636<br>-1.2878<br>-1.2471<br>-1.1475                       | -2.0000 -1.9671 -1.9595 -1.8861 -1.8665 -1.7939 -1.7439 -1.6814 -1.7019 -1.6702 -1.7076 -1.6127 -1.6146 -1.5076 -1.4763 -1.3936 -1.3936 -1.3995 -1.3165 -1.3471 -1.3019                                                             |

0.395

0.1236

-0.5095

| 0.115 | -1.0019 | -1.2239 |
|-------|---------|---------|
| 0.120 | -1.0225 | -1.1922 |
| 0.125 | -0.9254 | -1.1589 |
| 0.130 | -0.8955 | -1.1730 |
| 0.135 | -0.9298 | -1.1734 |
| 0.140 | -0.9133 | -1.1425 |
| 0.145 | -0.8787 | -1.0538 |
| 0.150 | -0.8494 | -0.9886 |
| 0.155 | -0.8357 | -0.9174 |
| 0.160 | -0.8683 | -0.9129 |
| 0.165 | -0.8056 | -0.8918 |
| 0.170 | -0.7451 | -0.8538 |
| 0.175 | -0.7007 | -0.8201 |
| 0.180 | -0.6530 | -0.7469 |
| 0.185 | -0.5923 | -0.6896 |
| 0.190 | -0.5739 | -0.6916 |
| 0.195 | -0.5727 | -0.6394 |
| 0.200 | -0.6497 | -0.6736 |
| 0.205 | -0.6659 | -0.6689 |
| 0.210 | -0.7285 | -0.6028 |
| 0.215 | -0.6870 | -0.5226 |
| 0.220 | -0.6290 | -0.4749 |
| 0.225 | -0.5343 | -0.4816 |
| 0.230 | -0.5732 | -0.4753 |
| 0.235 | -0.5884 | -0.4731 |
| 0.240 | -0.6074 | -0.4367 |
| 0.245 | -0.5631 | -0.4146 |
| 0.250 | -0.5500 | -0.4125 |
| 0.255 | -0.5004 | -0.4000 |
| 0.260 | -0.4933 | -0.3563 |
| 0.265 | -0.4305 | -0.2988 |
| 0.270 | -0.4607 | -0.3090 |
| 0.275 | -0.5180 | -0.3163 |
| 0.280 | -0.4986 | -0.3153 |
| 0.285 | -0.4114 | -0.3189 |
| 0.290 | -0.4344 | -0.2799 |
| 0.295 | -0.4137 | -0.2457 |
| 0.300 | -0.3913 | -0.2283 |
| 0.305 | -0.4458 | -0.2434 |
| 0.310 | -0.4499 | -0.2443 |
| 0.315 | -0.4531 | -0.2242 |
| 0.320 | -0.4174 | -0.2482 |
| 0.325 | -0.3825 | -0.2153 |
| 0.330 | -0.3510 | -0.2534 |
| 0.335 | -0.3185 | -0.2406 |
| 0.340 | -0.2689 | -0.1725 |
| 0.345 | -0.2010 | -0.1580 |
| 0.350 | -0.1940 | -0.1251 |
|       |         |         |

| 0.555                                                       | 0.2251                                                                               | 0.1700                                                                       |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0.360                                                       | -0.2278                                                                              | -0.1159                                                                      |
| 0.365                                                       | -0.2371                                                                              | -0.0617                                                                      |
|                                                             |                                                                                      |                                                                              |
| 0.370                                                       | -0.3315                                                                              | -0.1145                                                                      |
| 0.375                                                       | -0.3265                                                                              | -0.0823                                                                      |
| 0.380                                                       | -0.3205                                                                              | -0.0830                                                                      |
| 0.385                                                       | -0.3157                                                                              | -0.1468                                                                      |
|                                                             |                                                                                      |                                                                              |
| 0.390                                                       | -0.2576                                                                              | -0.1625                                                                      |
| 0.395                                                       | -0.2143                                                                              | -0.1605                                                                      |
| 0.400                                                       | -0.1635                                                                              | -0.1383                                                                      |
| 0.405                                                       | -0.1639                                                                              | -0.1275                                                                      |
|                                                             |                                                                                      |                                                                              |
| 0.410                                                       | -0.2105                                                                              | -0.1251                                                                      |
| 0.415                                                       | -0.1444                                                                              | -0.0664                                                                      |
| 0.420                                                       | -0.1760                                                                              | -0.0457                                                                      |
| 0.425                                                       | -0.1619                                                                              | -0.0173                                                                      |
| 0.430                                                       | -0.1460                                                                              | -0.0187                                                                      |
|                                                             |                                                                                      |                                                                              |
| 0.435                                                       | -0.0861                                                                              | -0.0072                                                                      |
| 0.440                                                       | -0.0414                                                                              | 0.0286                                                                       |
| 0.445                                                       | -0.0553                                                                              | 0.0212                                                                       |
| 0.450                                                       | 0.0217                                                                               | 0.0329                                                                       |
|                                                             |                                                                                      |                                                                              |
| 0.455                                                       | -0.0087                                                                              | -0.0112                                                                      |
| 0.460                                                       | 0.0250                                                                               | -0.0074                                                                      |
| 0.465                                                       | -0.0099                                                                              | 0.0171                                                                       |
| 0.470                                                       | -0.0155                                                                              | -0.0486                                                                      |
|                                                             |                                                                                      |                                                                              |
| 0.475                                                       | 0.0016                                                                               | 0.0010                                                                       |
| 0.480                                                       | 0.0953                                                                               | -0.0011                                                                      |
| 0.485                                                       | 0.0867                                                                               | 0.0512                                                                       |
| 0.490                                                       | 0.0849                                                                               | 0.0525                                                                       |
|                                                             |                                                                                      |                                                                              |
| 0.495                                                       | 0.0300                                                                               | -0.0189                                                                      |
| 0.500                                                       | 0.0545                                                                               | -0.0619                                                                      |
| Trajectory                                                  | 4 (Initial                                                                           | state: [-2. 2.])                                                             |
| Time                                                        | x1                                                                                   | x2                                                                           |
| 0.000                                                       | -2.0000                                                                              | 2.0000                                                                       |
|                                                             |                                                                                      |                                                                              |
| 0.005                                                       | -1.9227                                                                              | 1.9586                                                                       |
| 0.010                                                       | -1.8768                                                                              | 1.9317                                                                       |
| 0.015                                                       | -1.8027                                                                              | 1.9266                                                                       |
| 0.020                                                       | -1.7040                                                                              | 1.8696                                                                       |
|                                                             | 1.1010                                                                               | 1.0000                                                                       |
| 0.025                                                       | 1 0000                                                                               | 1 0505                                                                       |
|                                                             | -1.6690                                                                              | 1.8505                                                                       |
| 0.030                                                       | -1.6690<br>-1.6234                                                                   | 1.8505<br>1.8943                                                             |
| 0.030<br>0.035                                              |                                                                                      |                                                                              |
| 0.035                                                       | -1.6234<br>-1.5757                                                                   | 1.8943<br>1.8364                                                             |
| 0.035<br>0.040                                              | -1.6234<br>-1.5757<br>-1.5349                                                        | 1.8943<br>1.8364<br>1.8016                                                   |
| 0.035<br>0.040<br>0.045                                     | -1.6234<br>-1.5757<br>-1.5349<br>-1.5327                                             | 1.8943<br>1.8364<br>1.8016<br>1.8189                                         |
| 0.035<br>0.040<br>0.045<br>0.050                            | -1.6234<br>-1.5757<br>-1.5349<br>-1.5327<br>-1.5239                                  | 1.8943<br>1.8364<br>1.8016<br>1.8189<br>1.7898                               |
| 0.035<br>0.040<br>0.045                                     | -1.6234<br>-1.5757<br>-1.5349<br>-1.5327                                             | 1.8943<br>1.8364<br>1.8016<br>1.8189                                         |
| 0.035<br>0.040<br>0.045<br>0.050<br>0.055                   | -1.6234<br>-1.5757<br>-1.5349<br>-1.5327<br>-1.5239<br>-1.4992                       | 1.8943<br>1.8364<br>1.8016<br>1.8189<br>1.7898<br>1.8039                     |
| 0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060          | -1.6234<br>-1.5757<br>-1.5349<br>-1.5327<br>-1.5239<br>-1.4992<br>-1.4650            | 1.8943<br>1.8364<br>1.8016<br>1.8189<br>1.7898<br>1.8039<br>1.7725           |
| 0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060<br>0.065 | -1.6234<br>-1.5757<br>-1.5349<br>-1.5327<br>-1.5239<br>-1.4992<br>-1.4650<br>-1.4480 | 1.8943<br>1.8364<br>1.8016<br>1.8189<br>1.7898<br>1.8039<br>1.7725<br>1.7153 |
| 0.035<br>0.040<br>0.045<br>0.050<br>0.055<br>0.060          | -1.6234<br>-1.5757<br>-1.5349<br>-1.5327<br>-1.5239<br>-1.4992<br>-1.4650            | 1.8943<br>1.8364<br>1.8016<br>1.8189<br>1.7898<br>1.8039<br>1.7725           |

0.355

-0.2237

-0.1708

| 0.075 | -1.4338 | 1.7332 |
|-------|---------|--------|
|       |         |        |
| 0.080 | -1.4383 | 1.7022 |
| 0.085 | -1.4802 | 1.7063 |
| 0.090 | -1.4951 | 1.6642 |
| 0.095 | -1.4221 | 1.5741 |
| 0.100 | -1.3972 | 1.5816 |
|       |         |        |
| 0.105 | -1.3163 | 1.5253 |
| 0.110 | -1.3084 | 1.5723 |
| 0.115 | -1.2884 | 1.5238 |
| 0.120 | -1.2782 | 1.4781 |
| 0.125 | -1.2629 |        |
|       |         | 1.4983 |
| 0.130 | -1.2092 | 1.4408 |
| 0.135 | -1.1807 | 1.4103 |
| 0.140 | -1.1312 | 1.3954 |
| 0.145 | -1.0987 | 1.3709 |
| 0.150 | -1.1569 | 1.3475 |
|       |         |        |
| 0.155 | -1.1691 | 1.3625 |
| 0.160 | -1.1713 | 1.3245 |
| 0.165 | -1.1461 | 1.3292 |
| 0.170 | -1.1245 | 1.3704 |
| 0.175 | -1.0462 | 1.4170 |
| 0.180 | -1.0282 | 1.3518 |
|       |         |        |
| 0.185 | -0.9638 | 1.3200 |
| 0.190 | -0.9447 | 1.3231 |
| 0.195 | -0.9875 | 1.3654 |
| 0.200 | -0.9263 | 1.3667 |
| 0.205 | -0.8683 | 1.3677 |
|       |         |        |
| 0.210 | -0.8466 | 1.3358 |
| 0.215 | -0.8666 | 1.3186 |
| 0.220 | -0.8263 | 1.3422 |
| 0.225 | -0.7967 | 1.2898 |
| 0.230 | -0.8435 | 1.2596 |
| 0.235 | -0.8151 | 1.2440 |
|       |         |        |
| 0.240 | -0.8504 | 1.2585 |
| 0.245 | -0.7943 | 1.2022 |
| 0.250 | -0.7364 | 1.2221 |
| 0.255 | -0.7079 | 1.1774 |
| 0.260 | -0.6370 | 1.1663 |
| 0.265 | -0.6368 | 1.1628 |
|       |         |        |
| 0.270 | -0.5630 | 1.1186 |
| 0.275 | -0.5336 | 1.1583 |
| 0.280 | -0.5693 | 1.1095 |
| 0.285 | -0.5755 | 1.0828 |
| 0.290 | -0.5745 | 1.0674 |
|       |         |        |
| 0.295 | -0.5863 | 1.0197 |
| 0.300 | -0.5583 | 1.0059 |
| 0.305 | -0.5149 | 0.9962 |
| 0.310 | -0.4788 | 0.9364 |
|       |         |        |

| 0.315 | -0.4753 | 0.9812 |
|-------|---------|--------|
| 0.320 | -0.4634 | 0.9788 |
| 0.325 | -0.4465 | 0.9618 |
| 0.330 | -0.4387 | 1.0700 |
| 0.335 | -0.4373 | 1.0448 |
| 0.340 | -0.5074 | 1.0545 |
| 0.345 | -0.5065 | 1.0237 |
| 0.350 | -0.5090 | 0.9904 |
| 0.355 | -0.5135 | 0.9503 |
| 0.360 | -0.4954 | 0.9247 |
| 0.365 | -0.4773 | 0.9434 |
| 0.370 | -0.4310 | 0.9419 |
| 0.375 | -0.4496 | 0.9515 |
| 0.380 | -0.3838 | 0.9108 |
| 0.385 | -0.3077 | 0.8624 |
| 0.390 | -0.3629 | 0.8708 |
| 0.395 | -0.3631 | 0.8712 |
| 0.400 | -0.3726 | 0.7979 |
| 0.405 | -0.3269 | 0.7107 |
| 0.410 | -0.3802 | 0.6101 |
| 0.415 | -0.4627 | 0.5468 |
| 0.420 | -0.5170 | 0.5222 |
| 0.425 | -0.5824 | 0.4566 |
| 0.430 | -0.4647 | 0.4531 |
| 0.435 | -0.4401 | 0.3780 |
| 0.440 | -0.4331 | 0.3574 |
| 0.445 | -0.4543 | 0.3582 |
| 0.450 | -0.3847 | 0.3289 |
| 0.455 | -0.3596 | 0.2328 |
| 0.460 | -0.3755 | 0.2639 |
| 0.465 | -0.3707 | 0.2140 |
| 0.470 | -0.3549 | 0.1999 |
| 0.475 | -0.3545 | 0.2037 |
| 0.480 | -0.3676 | 0.2212 |
| 0.485 | -0.3666 | 0.2508 |
| 0.490 | -0.3129 | 0.2087 |
| 0.495 | -0.2126 | 0.1631 |
| 0.500 | -0.1879 | 0.1527 |