| Heat Equation                                                                |
|------------------------------------------------------------------------------|
|                                                                              |
| -> Solutions will describe possible ways<br>for heat to flow (on a 1-D wire) |
| -> Any diffusion Process                                                     |
| -> Scent Orlhision                                                           |
| Scent Offision  Smoke                                                        |
| - More                                                                       |
|                                                                              |
| Physical Set up E Initial temp                                               |
|                                                                              |
|                                                                              |
|                                                                              |
| · MMa                                                                        |
|                                                                              |
|                                                                              |
| HEAT                                                                         |
|                                                                              |
| > Start A timer, & Apply &CE 70 EDGES<br>& Remove heat Souce                 |
| & Remove heat Souce                                                          |
|                                                                              |
| t=0                                                                          |
|                                                                              |
| [60]                                                                         |
|                                                                              |
|                                                                              |
| what will temp                                                               |
| t=1 7777 dist be                                                             |
|                                                                              |

| . Discrete MoDEL:                       |
|-----------------------------------------|
| × ×                                     |
| × × × × × × × × × × × × × × × × × × ×   |
| * * * * * * * * * * * * * * * * * * * * |
| At -> Each heat facket "x"              |
| Equal Probability of moving left, Right |
| of Staying.                             |
| SCENARIO 1                              |
| After Seconds                           |
| will head @ Xo                          |
|                                         |
| XXXX >> Increase V                      |
| -> Stay the Same                        |
| on average.                             |
| •                                       |
| SCENARIO 2 772                          |
|                                         |
| > Tricrease                             |
| > De Crease > Stay the Same             |
| X X X X > Stay The Same                 |
| X-1 X0 X1                               |
|                                         |

In Summary -> Decrease Concave up -> Increuse Concare down -> De crease Let u(x,t) = temp @ time t & positionx (x10)

## Scenarios Indicate

de u(x,t) proportional to d'au(x,t)

$$\frac{\partial}{\partial t} u - C^{2} \partial_{x}^{2} u = 0, \quad \chi \in [0, L], t > 0 \quad \text{etherdeyn}$$

$$u(\chi_{10}) = f(\chi), \quad \chi \in [0, L] \quad \text{e.i. Hal temp.}$$

$$U(0,t) = U(L_1t) = 0$$
,  $t>0 \in Boundary$   
Conditions

Ice @ Bndy



Conditions"