数学ランダム問題集

Takenaga Koudai 2021年8月21日

- $\boxed{1}$ 四面体 OABC において、以下の 2 つの条件は同値であることを示せ、
 - (1) $OA^2 + BC^2 = OB^2 + AC^2 = OC^2 + AB^2$
 - (2) OA \perp BC, OB \perp AC, OC \perp AB

2 \triangle OAB を、OA=OB の直角二等辺三角形とする。OA の中点を M、OB の 3 等分点のうち O に近いほうの点を N と し、AN と BM との交点を P とする. \angle APB= θ とするとき、 $\cos\theta$ の値はいくらか.

 $\boxed{\mathbf{3}} \lim_{x \to 0} \frac{\sin x}{x} = 1 \, を示せ.$

(1)
$$x + \frac{1}{x}$$

$$\boxed{\textbf{4}} \quad x^5 = 1, \ x \neq 1 \text{ のとき, } 次の (1), \ (2) の値をそれぞれ求めよ.$$

$$(1) \ x + \frac{1}{x}$$

$$(2) \ 2x + \frac{1}{x+1} + \frac{x}{x^2+1} + \frac{x^2}{x^3+1} + \frac{x^3}{x^4+1}$$

- $\boxed{ f 5 } \ {
 m O, \ S, \ K} \ {
 m O}$ カードが 1 枚ずつ, ${
 m A}$ のカードが 2 枚の計 5 枚のカードがある.以下の問に答えよ.
 - (1) 5枚のカードを一列に並べてできる5文字の列は全部で何通りあるか.
 - (2) 5 枚のカードを箱の中にいれる.この箱から 1 枚ずつ 3 枚のカードを取り出し,取り出した順に左から一列に並べて 3 文字の列を作る試行を 100 回繰り返すことを考える.O,A,K の順に並ぶ事象が 100 回のうち r 回起こる確率を P(r) とするとき,P(r) が最大となるときの r の値を求めよ.ただし,それぞれの試行において,どのカードが取り出されることも同様に確からしいものとする.

- **6** \triangle ABC は中心 O, 半径 $\sqrt{3}$ の円に内接している。 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とおくと, 関係式 $13\overrightarrow{a} + 12\overrightarrow{b} + 5\overrightarrow{c} = \overrightarrow{0}$ が成り立つ。 このとき,次の $(1)\sim(3)$ の問いに答えよ.
 - \overrightarrow{b} と \overrightarrow{c} は直交することを示せ.
 - (2) △ABC の面積を求めよ.
 - (3) \triangle ABC の頂点 A から直線 BC に引いた垂線と直線 BC との交点を H とする.このとき, \overrightarrow{AH} を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を 用いてあらわせ.

7 xy 平面上に、次の媒介変数で与えられる曲線 C がある.

$$\left\{ \begin{array}{l} x = \theta - \sin \theta \\ \\ y = 1 - \cos \theta \end{array} \right. \quad (0 \le \theta \le 2\pi)$$

次の問いに答えよ.

- (1) 曲線 C と x 軸とで囲まれた部分の面積 S を求めよ.
- (2) 曲線 C において、 $y \geq a$ の部分の弧の長さを $\mathbf{L}(a)$ とするとき、 $\mathbf{L}(a)$ を a を用いて表せ、ただし、 $0 \leq a < 2$ とする.

9 放物線 $y=x^2$ と直線 y=x で囲まれた部分を直線 y=x の周りに 1 回転させてできる立体の体積 V を求めよ.

- **10** 点 A(1,3,0) を通りベクトル $\overrightarrow{d}=(-1,1,-1)$ に平行な直線を l とする.また,直線 $x+1=\frac{3-y}{2},\ z=2$ を m とする.以下の問いに答えよ.
 - (1) 点 P, Q がそれぞれ直線 l, m 上を動くとき、線分 PQ の長さの最小値と、そのときの P, Q の座標を求めよ.
 - (2) 直線 l, m の両方に垂直な直線 n の方程式を, $\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}$ の形で求めよ.

- **11** 関数 $f(x) = xe^{-x}$ について、以下の問いに答えよ.ただし、e は自然対数の底とし、2 < e < 3 を用いてもよい.
 - (1) f'(x), f''(x), f'''(x) をそれぞれ求めよ.
 - (2) f(x) の第 n 次導関数を $f^{(n)}(x)$ とする. (1) の結果より、 $f^{(n)}(x)$ を類推し、それが正しいことを証明せよ. た だし、n は自然数とする.
 - (3) 任意の自然数 n に対して, $f^{(n)}(x)=0$ を満たす x の値を x_n とする.このとき,次の問いに答えよ.

 - i. $\sum_{n=1}^{\infty} \frac{f(x_n)}{n}$ を求めよ. ii. $\sum_{n=1}^{\infty} f(x_n)$ を求めよ. ただし, $\lim_{n \to \infty} \frac{n}{e^n} = 0$ を用いてもよい.

- **12** 2点(0,1), $(a_n,0)$ $(n=1,2,3,\cdots)$ を通る直線と、直線 y=(n+2)x の交点の x 座標を a_{n+1} とする。 $a_1=\frac{1}{3}$ のと き,以下の問いに答えよ.
 - (1) a_2 を求めよ.

 - (2) a_{n+1} を a_n を用いて表し, $\{a_n\}$ の一般項を求めよ.
 (3) $\sum_{n=1}^{\infty} (n+2)a_n a_{n+1}$ を求めよ.

13 以下の問いに答えよ.

- (1) $\angle AOB=36^\circ$, OA=OB, AB=1 である二等辺三角形 OAB において, $\angle A$ の二等分線と OB の交点を C とする.このとき,BC の長さを求めよ.
- (2) 正五角形 OABCD において, $\overrightarrow{OA} = \overrightarrow{d}$, $\overrightarrow{OD} = \overrightarrow{d}$ とするとき, \overrightarrow{OC} を \overrightarrow{d} , \overrightarrow{d} を用いて表せ.

 $\boxed{ 14 } \log_2 1$ から $\log_2 20$ の数が書かれた 20 枚のカードがある.

以下の問いに答えなさい.

- (1) この 20 枚のカードの中から同時に 2 枚のカードを選ぶとき,2 枚のカードに書かれた数の和が整数となる確率を求めよ
- (2) この 20 枚のカードの中から同時に 2 枚のカードを選ぶとき,2 枚のカードに書かれた数の差が整数となる確率を求めよ.
- (3) この 20 枚のカードの中から同時に 3 枚のカードを選ぶとき,選んだ 3 枚のどの 2 枚のカードに書かれた数の和も整数とならない確率を求めよ.

15 媒介変数 θ を用いて,

$$\begin{cases} x = 2\cos^3\theta \\ y = 2\sin^3\theta \end{cases} \left(0 \le \theta \le \frac{\pi}{2}\right)$$

と表される曲線をCとする.

 $\theta = t$ における曲線の接線を l とするとき,以下の問いに答えよ.ただし, $0 < t < \frac{\pi}{2}$ とする.

- (1) $\frac{dy}{dx}$ を θ を用いて表せ、ただし、 $0<\theta<\frac{\pi}{2}$ とする、(2) 直線 l の方程式を求めなさい.
- (3) 曲線 C, 直線 l, x 軸で囲まれる領域を S_1 とし、曲線 C, 直線 l, y 軸で囲まれる領域を S_2 とする. $S_1,\ S_2$ を x 軸の周りに一回転して得られる立体の体積をそれぞれ $V_1,\ V_2$ とするとき, V_1+V_2 の最小値を求 めよ.

16 平面上に直径 8 の円がある.直径 AB 上の任意の点 P において,AB に垂直な弦 CD をとり,QC=QD,PQ= 3 である \triangle QCD を,円に垂直な平面上に作る.P を A から B まで動かすとき, \triangle QCD が通過してできる立体の体積 V を求めよ.

- **17** 2 つの曲線 y=x と $y=x^n$ (n は 2 以上の整数) について,以下の問いに答えよ.
 - (1) 2 つの曲線に囲まれた部分を y=x 周りに回転させてできる立体の体積を V_n とする. V_n を求めよ.
 - (2) $\lim_{n \to \infty} V_n$ を求めよ.

- 18 p を素数とし、自然数 a は p と互いに素であるとき、以下の問いに答えよ.
 - (1) a , 2a , 3a $, \cdots$, (p-1)a を p で割った余りはそれぞれ異なることを示せ.
 - (2) a^{p-1} は p の倍数であることを示せ.
 - (3) 2018^{1800} を 181 で割ったあまりを求めよ.

19 辺の長さが a ,b ,c である三角形の面積 S が $s=\frac{a+b+c}{2}$ を用いて, $S=\sqrt{s(s-a)(s-b)(s-c)}$ と表されることを示せ.

任意の $x_1,\ x_2$ と任意の $0 \le \lambda \le 1$ に対し、 $\lambda f(x_1) + (1-\lambda)f(x_2) \ge f(\lambda x_1 + (1-\lambda)x_2)$

さて、f(x) が凸関数であるとする。任意の x_1 、 x_2 、 \cdots 、 x_n と $\lambda_i \geq 0$ 、 $\sum_{i=1}^n \lambda_i = 1$ をみたす任意の λ_1 、 λ_2 、 \cdots 、 λ_n に対して、以下が成立することを示せ.

$$\sum_{i=1}^{n} \lambda_i f(x_i) \ge f\left(\sum_{i=1}^{n} \lambda_i x_i\right)$$

 $egin{bmatrix} oldsymbol{21} & a,\ b,\ c\ \geq 0$ とする. 以下が成立することを示せ.

$$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}$$

22 任意の三角形において、外心を O、重心を G、垂心を H とおく、O、G、H が一直線上にあることを示せ、また、OG:GH=1:2 を示せ、