Introduzione Computabilità e complessità

Lucidi tratti da
P. Crescenzi · G. Gambosi · R. Grossi · G. Rossi
Strutture di dati e algoritmi
Progettazione, analisi e visualizzazione
Addison-Wesley, 2012
http://algoritmica.org

I lucidi sono utilizzabili dai soli docenti e se ne sconsiglia la distribuzione agli studenti: oltre al rischio di violare una qualche forma di copyright, il problema principale è che gli studenti studino in modo superficiale la materia senza il necessario approfondimento e la dovuta riflessione che la lettura del libro fronice.

Il simbolo [alvie] nei lucidi indica l'uso di ALVIE per visualizzare il corrispettivo algoritmo: per un proficuo rendimento dello strumento, conviene esaminare in anticipo la visualizzazione per determinare i punti salienti da mostrare a lezione (lintera visualizzazione potrebbe risultare altrimenti noiosa)

ALGORITMO

- Essenza computazionale di un programma che ne descrive i passi fondamentali
- Ingredienti: sequenze, alberi e grafi
- Servono a strutturare i dati elementari: bit, caratteri, interi, reali e stringhe
- Rappresentano istanze di problemi computazionali reali e concreti

Problemi indecidibili

- Non tutti i problemi computazionali ammettono algoritmi di risoluzione: problema della fermata (Turing, 1937)
- Terminologia moderna: dato un generico algoritmo (o programma) A in ingresso, esso **termina** o **va in ciclo**?

TERMINA?

```
1 Primo( numero ):
2   fattore = 2;
3   WHILE (numero % fattore != 0)
4   fattore = fattore + 1;
5   RETURN (fattore == numero);
```

- Si, perché la variabile fattore è incrementata di 1 e a un certo punto deve verificare la guardia
- [alvie]

TERMINA?

```
1  CongetturaGoldbach():
2    n = 2;
3    D0 {
4    n = n + 2;
5    controesempio = TRUE;
6    FOR (p = 2; p <= n-2; p = p + 1) {
7         q = n - p;
8         IF (Primo(p) && Primo(q)) controesempio = FALSE
9    }
10    } while (!controesempio);
11    RETURN n;</pre>
```

- ullet Termina se e solo se trova $n \geq 4$ per cui non esistono due primi p e q t.c. n = p + q
- Termina se e solo se confuta la congettura di Goldbach (problema aperto)

Problema della fermata

Non esiste un algoritmo per stabilire la terminazione di un ${\it generico}$ algoritmo/programma ${\bf A}$

- 1 Una sequenza di simboli può essere interpretata come dato o programma
- 2 Un programma può essere dato in pasto a un altro programma
- $\begin{tabular}{ll} {\bf Supponiamo che esista un algoritmo Termina} (A,D) che, in tempo finito, \\ restituisce SI se A termina con input D e restituisce NO se A va in ciclo con input D \\ \end{tabular}$
- 4 1+2 implicano che è legale invocare Termina (A, D)
- Onsideriamo il seguente algoritmo

```
1 Paradosso( A ):
2 while (Termina( A, A ))
```

Paradosso(Paradosso) termina? CONTRADDIZIONE

INDECIDIBILITÀ

- Il problema della fermata è quindi indecidibile, ossia non esiste alcun algoritmo di risoluzione
- Altri problemi lo sono: stabilire l'equivalenza tra due programmi (per ogni possibile input, producono lo stesso output)

DECIDIBILITÀ VS TRATTABILITÀ

Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi

- 3 pioli
- n = 64 dischi sul primo piolo (vuoti gli altri due)
- Ogni mossa sposta un disco in cima a un piolo
- Un disco non può poggiare su uno più piccolo
- Spostare tutti i dischi dal primo al terzo piolo

SOLUZIONE RICORSIVA

```
1 TorriHanoi( n, primo, secondo, terzo ):
2    If (n = 1) {
3         PRINT primo → terzo;
4    } ELSE {
5         TorriHanoi( n - 1, primo, terzo, secondo );
6         PRINT primo → terzo;
7         TorriHanoi( n - 1, secondo, primo, terzo );
8    }
• [alvie]
```

Numero di mosse: $2^n - 1$

```
1 TorriHanoi( n, primo, secondo, terzo ):
2    IF (n = 1) {
3         PRINT primo \longmapsto terzo;
4    } ELSE {
5         TorriHanoi( n - 1, primo, terzo, secondo );
6         PRINT primo \longmapsto terzo;
7         TorriHanoi( n - 1, secondo, primo, terzo );
8    }

• Caso base n=1: 2^1-1=1
• Passo induttivo: (2^{n-1}-1)+1+(2^{n-1}-1)=2^n-1
• 1 mossa/sec: circa 585 miliardi di anni!
```

Tempo esponenziale $2^n - 1$ (1 operazione/sec)

n	5	10	15	20	25	30	35	40
tempo	31 s	17 m	9 h	12 g	1 a	34 a	1089 a	34865 a

Aumentare di un fattore **moltiplicativo** X (ossia X operazioni/sec) migliora **solo** di un fattore **additivo** $\log_2 X$

operazioni/sec	1	10	100	10^{3}	10^{4}	10^{5}	10^{6}	10^{9}
numero dischi	64	67	70	73	77	80	83	93

TEMPO POLINOMIALE

Torri di Hanoi generalizzate con k>3 pioli

- ullet Pioli numerati da 0 a k-1
- ullet Ipotesi semplificativa: n è multiplo di k-2

```
1 TorriHanoiGen( n, k ):
2   FOR (i = 1; i <= k-2; i = i+1)
3   TorriHanoi(n/(k-2), 0, k-1, i);
4   FOR (i = k-2; i >= 1; i = i-1)
5   TorriHanoi(n/(k-2), i, 0, k-1);
```

TORRI DI HANOI GENERALIZZATE

```
• Il codice richiede 2(k-2)(2^{n/(k-2)}-1) mosse

• Al più n^2 mosse, fissando k=\lfloor n/\log n\rfloor e n\geq 5

• n=64: al più 64^2=4096 mosse

• TorriHanoiGen( n, k ):

• FOR (i = 1; i <= k-2; i = i+1)

• TorriHanoi(n/(k-2), 0, k-1, i);

• FOR (i = k-2; i >= 1; i = i-1)

• TorriHanoi(n/(k-2), i, 0, k-1);
```

Tempo esponenziale n^2 (1 operazione/sec)

		10						
tempo	25 s	100 s	225 s	7 m	11 m	15 m	21 m	27 m

Aumentare di un fattore **moltiplicativo** X (ossia X operazioni/sec) migliora di un fattore **moltiplicativo** \sqrt{X}

operazioni/sec	1	10	100	10^{3}	10^{4}	10^{5}	10^{6}
numero dischi	64	202	640	2023	6400	20238	64000

Dimensione n dei dati per un problema generico

• Numero di bit: k bit possono rappresentare interi in $\{0,1,\ldots,2^k-1\}$

$$b_{k-1}\cdots b_1b_0$$
 rappresenta $n=\sum_{i=0}^{k-1}b_i\times 2^i$

Ad esempio, per k=3

Caratteri: 8 bit (ASCII) o 16 bit (Unicode/UTF8)

Reali: 32, 64 o 128 bit (segno, esponente, mantissa)

- Numero di elementi: array, stringhe, liste, insiemi
- ullet Numero di celle di memoria occupate dai dati (ciascuna contenente $O(\log n)$ bit)

ALGORITMO POLINOMIALE

Esistono due costanti $c,n_0>0$ tali che il numero di passi elementari è al più n^c per ogni input di dimensione n e per ogni $n>n_0$

- Problemi trattabili: esiste algoritmo polinomiale
- Problemi intrattabili: non esiste algoritmo polinomiale

Classi di complessità

- ullet ${f P}=$ classe dei problemi risolvibili deterministicamente in tempo polinomiale
- EXP = classe dei problemi risolvibili deterministicamente in tempo esponenziale
- P: problemi trattabili
- EXP: utile solo per piccole istanze di problemi

Generazione delle 2^n sequenze binarie

• Equivale a generare ricorsivamente tutti i sotto-insiemi di un insieme di n elementi (A[i]=1 se e solo se l'i-esimo elemento è selezionato) Ad esempio, per n=3

Struttura ricorsiva della generazione
 000, 100, 010, 110, 001, 101, 011, 111
 000, 100, 010, 110
 000

fissa il bit a 1 e ricorri come per il bit a 0

Generazione delle 2^n sequenze binarie

• Equivale a generare ricorsivamente tutti i sotto-insiemi di un insieme di n elementi (A[i]=1 se e solo se l' i-esimo elemento è selezionato)

```
1 GeneraBinarie( A, b ):
2    If (b == 0) {
3         Elabora( A );
4    } ELSE {
5         A[b-1] = 0;
6         GeneraBinarie( A, b-1 );
7         A[b-1] = 1;
8         GeneraBinarie( A, b-1 );
9    }
```

- Invocato con b=n
- [alvie]

Generazione delle n! permutazioni di A

a b c d	a b d c	a d c b	dbca
bacd	badc	d a c b	bdса
a c b d	a d b c	a c d b	dcba
cabd	dabc	c a d b	c d b a
c b a d	dbac	c d a b	c b d a
bcad	b d a c	d c a b	bcda
i = 3	i = 2	i = 1	i = 0

Per $i = n - 1, \dots, 1, 0$:

- ullet scambia A[i] con quello in ultima posizione, ovvero con A[n-1]
- \bullet i primi n-1 elementi di A sono ricorsivamente permutati **nella stessa maniera** (indipendentemente da i)
- ullet scambia lultimo elemento A[n-1] con A[i] (per rimetterli a posto)

Generazione delle n! permutazioni di A

```
1  GeneraPermutazioni( A, p ):
2    IF (p == 0) {
3        Elabora( A );
4    } ELSE {
5        FOR (i = p-1; i >= 0; i = i-1) {
6             Scambia( i, p-1 );
7             GeneraPermutazioni( A, p-1 );
8             Scambia( i, p-1 );
9        }
10    }
• Invocato con p = n
• [alvie]
```

ZONA "GRIGIA": CLASSI NP E NPC

- NP = classe dei problemi risolvibili nondeterministicamente in tempo polinomiale
- NPC = classe dei problemi completi per NP, detti NP-completi

Sudoku

- ullet Tabella 9×9 contenente numeri compresi tra 1 e 9
- Divisa in 3×3 sottotabelle (di taglia 3×3)
- Alcune celle contengono numeri, altre vuote
- Riempire le celle vuote in modo che
 - ① Ogni riga contiene una permutazione di $1, 2, \ldots, 9$
 - 2 Ogni colonna contiene una permutazione di $1, 2, \dots, 9$
 - $\ensuremath{\mathfrak{3}}$ Ogni sottotabella contiene una permutazione di $1,2,\ldots,9$

Sudoku

3	9							8
	7	1			3			
		8		4	9		6	
1			2	7				9
6								3
5				3	6			4
	4		1	5		9		
			9			8	2	
9							4	7

3	9	6	5	1	2	4	7	8
4	7	1	6	8	3	5	9	2
2	5	8	7	4	9	3	6	1
1	3	4	2	7	5	6	8	9
6	8	7	4	9	1	2	5	3
5	2	9	8	3	6	7	1	4
8	4	2	1	5	7	9	3	6
7	1	3	9	6	4	8	2	5
9	6	5	3	2	8	1	4	7

- Soluzione ottenibile in questo caso attraverso implicazioni logiche
- Ad esempio, nella sottotabella in alto a destra il 3 può stare solo in basso a sinistra

BACKTRACK CON SCELTE NON UNICHE

			6		2		9	
								6
			7	3	1	5		8
4		9	3			6		5
		3				1		
5		8			7	9		2
		1	5	2	3			
7								
	6	2	9		4			

			6		2		9	
			8					6
			7	3	1	5		8
4	2	9	3	1	8	6	7	5
6	7	3	2			1	8	4
5	1	8	4	6	7	9	3	2
		1	5	2	3			
7			1	8	6			
	6	2	9	7	4			

Partendo dalla configurazione a sinistra, giungiamo nella configurazione a destra che ammette diverse scelte per ogni casella

Backtrack: algoritmo che esplora tali scelte, annullando gli effetti nel caso che non conducano a soluzione

[alvie]

BACKTRACK PER SUDOKU

ullet Esamina le m caselle vuote nell'ordine indicato da PriVuo, SucVuo, UltVuo

```
1 Sudoku( c ):
2 elenco = insieme cifre ammissibili per c;
3 FOR (i = 0; i < |elenco|; i = i+1) {
4 Assegna( c, elenco[i] );
5 IF (!UltVuo(c) && !Sudoku(SucVuo(c))) {
6 Svuota( c );
7 } ELSE {
8 RETURN TRUE;
9 }
10 }
11 RETURN FALSE;
```

Invocata con c = PriVuo()

- Nel caso pessimo, esplora circa 9^m scelte $(m \le 9^2)$
- In generale, tabella $n \times n$: circa $n^m \le n^{n^2} = 2^{n^2 \log n}$

SUDOKU: QUALE COMPLESSITÀ?

- \bullet L'algoritmo di backtrack è quindi esponenziale, ma il Sudoku $n \times n$ è trattabile o meno?
- o Dipende dall'esistenza di un algoritmo polinomiale: a oggi, tale algoritmo è ignoto
- Sudoku sembra avere una natura computazionale diversa da quella delle Torri di Hanoi: possiamo verificare la correttezza di una soluzione in tempo polinomiale (cosa non possibile con le Torri di Hanoi)

SUDOKU: VERIFICA POLINOMIALE DI UNA SOLUZIONE

```
VerificaSudoku( sequenza ):
    casella = PriVuo( );

FOR (i = 0; i < m; i = i+1) {
    c = sequenza[i];

    If (c in casella.riga) RETURN FALSE;

    If (c in casella.colonna) RETURN FALSE;

    If (c in casella.sotto_tabella) RETURN FALSE;

    Assegna( casella, c );
    casella = SucVuo(casella);
}

RETURN TRUE;</pre>
```

- Richiede circa $m \times n \le n^3$ passi (ordine di crescita)
- Sudoku è uno delle migliaia di problemi NPC: possiamo verificare ogni sua soluzione con un algoritmo polinomiale; sappiamo soltanto trovarla con un algoritmo esponenziale (e non si sa se ne esiste uno polinomiale)

PROBLEMI IN **NP** (DEFINIZIONE INFORMALE)

- ullet Certificato polinomiale per un problema computazionale Π :
 - ullet chi ha la soluzione per un'istanza di Π , può convincerci di ciò in tempo polinomiale
 - o chi non ha tale soluzione, deve procedere per tentativi mediante backtrack esponenziale
- NP = classe dei problemi che ammettono un certificato polinomiale

Osservazione. $P \subseteq NP$ (basta certificato nullo se $\Pi \in P$)

PROBLEMI NP-COMPLETI: NPC (DEFINIZIONE INFORMALE)

- NPC ⊂ NP e non si sa se tali problemi siano trattabili
- Ogni problema $\Pi \in \mathsf{NP}$ può essere ricondotto a un problema $\Sigma \in \mathsf{NPC}$ attraverso una **riduzione polinomiale** ($\Pi \leq \Sigma$)
- Di conseguenza:
 - ullet se un problema in NPC è **trattabile**, allora tutti lo sono in NPC e vale ${f P}={f NP}$
 - ${\tt o}\,$ se un problema in NPC è <code>intrattabile</code>, allora tutti lo sono in NPC e vale ${\bf P} \neq {\bf NP}$
- P=NP? è un famoso problema aperto in informatica (definizioni più rigorose a fine corso)

Modello di Calcolo RAM (Random Access Machine)

- Schema di von Neumann: dati e programmi sono sequenze binarie contenute nella memoria
- Caratteristiche principali:
 - o contatore di programma e registro accumulatore
 - memoria di dimensione illimitata
 - processore esegue operazioni aritmetiche, di confronto, logiche, di trasferimento e di controllo
- Costo uniforme delle operazioni: costante e non dipende dalla dimensione n dei dati

Analisi di complessità

- Costo di un algoritmo è in funzione di n (dimensione dei dati in input):
 - tempo = numero di operazioni RAM eseguite
 - spazio = numero di celle di memoria occupate (escluse quelle per contenere l'input)
- Notazione asintotica al crescere di n:
 - $\mathbf{g}(\mathbf{n}) = \mathbf{O}(\mathbf{f}(\mathbf{n}))$ se solo se $\exists c, n_0 > 0 : \mathbf{g}(\mathbf{n}) \le \mathbf{c}\mathbf{f}(\mathbf{n}) \ \forall n > n_0$
 - $\mathbf{g}(\mathbf{n}) = \mathbf{\Omega}(\mathbf{f}(\mathbf{n}))$ se solo se $\exists c, n_0 > 0 : \mathbf{g}(\mathbf{n}) \geq \mathbf{cf}(\mathbf{n})$ per infiniti valori $n > n_0$
 - $\mathbf{g}(\mathbf{n}) = \Theta(\mathbf{f}(\mathbf{n}))$ se solo se g(n) = O(f(n)) e $g(n) = \Omega(f(n))$

Caso pessimo e medio

Complessità o costo computazionale f(n) in tempo e in spazio di un problema Π :

- o caso pessimo o peggiore = costo max tra tutte le istanze di Π aventi dimensioni dei dati pari a n
- ullet caso medio = costo mediato tra tutte le istanze di Π aventi dimensioni pari a n

Guida per il calcolo del costo al caso pessimo

• IF (guardia) { blocco1 } ELSE { blocco2 }
$$\cos(guardia) + \max\{\cos(blocco1 + \cos(blocco2)\}$$
 • FOR (i = 0; i < m; i = i + 1) { corpo }
$$\sum_{i=0}^{m-1} t_i$$

dove t_i è il costo di corpo all'iterazione i

• WHILE (guardia) { corpo }

$$\sum_{i=0}^{m} (t_i' + t_i)$$

dove m sono le volte in cui guardia è soddisfatta, t_i' è il costo di guardia all'iterazione $i,\ t_i$ è il costo di corpo all'iterazione i

Guida per il calcolo del costo al caso pessimo

- Il costo di una chiamata a funzione è il costo del suo corpo più il passaggio dei parametri (le funzioni ricorsive saranno trattate in seguito)
- Il costo di una sequenza di istruzioni è la somma dei costi delle istruzioni nella sequenza
- Applicheremo implicitamente queste semplici regole nel resto del libro