Sheaves on Manifolds Exercise II.16 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise II.16, KS02] の解答です。

II Sheaves

問題 II.16. A を可換環、 A^{\times} を単元のなす群とする。X を位相空間、 $\mathcal{U} = \{U_i\}_i$ を X の開被覆として、 $c \in C^2(\mathcal{U}, A_X^{\times})$ を $\delta c = 0$ となる元とする。c' を c の $H^2(C^{\bullet}(\mathcal{U}, A_X^{\times}))$ での剰余類として、c'' を c' の $H^2(X, A_X^{\times})$ での像とする (cf. [Exercise 2.15 (2), KS02])。圏 $\mathsf{Sh}(X, c)$ を次によって定義する:

• 対象は A_{U_i} -加群 F_i と同型射 $\rho_{ij}: F_j|_{U_i\cap U_j}\stackrel{\sim}{\longrightarrow} F_i|_{U_i\cap U_j}$ の族 $\{F_i,\rho_{ij}\}$ で、任意の i,j,k に対して $\rho_{ij}\rho_{jk}\rho_{ki}=c_{ijk}\operatorname{id}_{F_i|U_i\cap U_i\cap U_k}$

を満たすものとする。

• 射 $f:\{F_i,\rho_{ij}\}\to \{F_i',\rho_{ij}\}$ は U_i 上の射の族 $f_i:F_i\to F_i'$ で $U_i\cap U_j$ 上で $\rho_{ij}'\circ f_j=f_i\circ \rho_{ij}$ を満たすものとする。

以下を示せ:

- (1) Sh(X,c) はアーベル圏であることを証明せよ。
- (2) $\tilde{c} \in C^2(\mathcal{U}, A_X^{\times})$ を別の元で $\tilde{c}'' = c''$ を満たすものとする。 $\mathsf{Sh}(X, c)$ と $\mathsf{Sh}(X, \tilde{c})$ の間の圏同値が存在することを示せ。

証明. (1) を示す。 $\operatorname{Sh}(X,c)$ は明らかな 0-対象を持つ (各 U_i 上で 0 であるもの)。また、明らかに、二つの対象 $\{F_i,\rho_{ij}\},\{F'_i,\rho'_{ij}\}$ に対して $\{F_i\oplus F'_i,\rho ij\oplus \rho'_{ij}\}$ は $\operatorname{Sh}(X,c)$ の対象である。さらに、二つの対象の間の射 $f=(f_i):\{F_i,\rho_{ij}\}\to \{F'_i,\rho'_{ij}\}$ に対し、各 i ごとに $\operatorname{ker}(f_i)$ をとり、 $\rho_{ij}^{\operatorname{ker}(f)}:\stackrel{\operatorname{def}}{=}\rho_{ij}|_{\operatorname{ker}(f_i)|_{U_i\cap U_j}}$ と定めることにより、明らかに $\{\operatorname{ker}(f_i),\rho_{ij}^{\operatorname{ker}(f)}\}$ は $\operatorname{Sh}(X,c)$ の対象となる。余核についても同様である。核と余核が各i ごとに定義されるので、余像と像は一致し、これにより $\operatorname{Sh}(X,c)$ がアーベル圏であることが従う。以上で (1) の証明を完了する。

(2) を示す。 $\{F_i, \rho_{ij}\}$ を $\mathsf{Sh}(X,c)$ の対象とする。 $\bar{c} : \stackrel{\mathrm{def}}{=} c - \tilde{c}$ とおく。このとき $\bar{c}'' = 0$ である。本文 [Proposition 2.8.4, KS02] より、augmentation map $\delta : F \xrightarrow{\mathrm{qis}} \mathcal{C}^{\bullet}(\mathcal{U},F)$ は擬同型であるので、 $H^2(R\Gamma(X,\mathcal{C}^{\bullet}(\mathcal{U},A_X^{\times})))$ での \bar{c}'' の像は0 である。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.