Problem 4.1:

 $1. \ \frac{m}{n} = f(k)$

Da $n = 2^k - 1$ und $m = 2^k - k - 1$, ist $f(k) = \frac{2^k - k - 1}{2^k - 1}$.

 $f(1) = 0, f(2) = \frac{1}{3}, ..., f(12) = \frac{4083}{4095}$

2. $2^k - k - 1 = 11 \Rightarrow k = 4$

3. $CW = 0110 \Rightarrow$ Kontrollstellen = (0110) * (01101010110) = 0110

a)
$$Z = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 $b)Z = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ $c)$ $Z = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$

4.

Problem 4.2:

- 1. Anzahl der Nutzworte ist $2^3 = 8$
 - 000
 - 001
 - 010
 - 011
 - 100
 - 101 110
 - 111
- $2. \ a(0) = 1$
 - a(1) = 3
 - a(2) = 4

$$a(3) = 1$$

- 3. Hamming-Distanz $h = min(d(C_i, C_i)) = min(d(G_2, G_3)) = 3$
- 4. $G_2 = 10010 \rightarrow Fehl\"{u}bertragung: 10101$ $\Rightarrow scheinbar fehlerloses G3, ist aber fehlerhaftes G2.$ $G^*_1 = 011 \quad G^*_2 = 100 \quad G^*_3 = 101$

Problem 4.3:

- 5. p ist Bitfehlerwahrscheinlichkeit Wahrscheinlichkeit, dass ein Bit korrekt übertragen wird ist 1-pWahrscheinlichkeit für m korrekt übertragene Bits ist $(1-p)^m$
- 2.

Anzahl übertragener Bits =
$$m$$

$$P(\text{Bitfehler}) = p$$

$$P(\text{Bit korrekt}) = (1 - p)$$

$$P(n \text{ von } m \text{ Bits fehlerhaft}) = (1 - p)^{m - n} \cdot p^n \cdot \underbrace{\frac{m!}{(m - n)! n!}}_{Permutationen}$$

$$P(1 \text{ von } m \text{ Bit fehlerhaft}) = (1 - p)^{m - 1} \cdot p \cdot m$$

3. Sei CW_h ein Codewort aus einem Hamming-Code mit der Hamming-Distanz h

$$n=\text{ L\"{a}nge von }CW_h$$

$$\eta=\left\lfloor\frac{h-1}{2}\right\rfloor\text{ ist die Anzahl der korrigierbaren Fehler.}$$

$$P(\text{h\"{o}chstens }\eta\text{ von }n\text{ Bit fehlerhaft})=\sum_{i=0}^{\eta}{(1-p)^{n-i}\cdot p^i\cdot\frac{n!}{(n-i)!i!}}$$

Die Wahrscheinlichkeit ein Code-Wort korrekt (oder korrigierbar) zu übertragen wird also größer, je mehr Fehler Korrigierbar sind.