Connecting via Winsock to Dialog

Logging in to Dialog

Trying 31060000009998...Open

DIALOG INFORMATION SERVICES
PLEASE LOGON:

ENTER PASSWORD:

Welcome to DIALOG

Dialog level 05.22.00D

Last logoff: 17jun08 15:49:48 Logon file405 19jun08 10:41:13 *** ANNOUNCEMENTS ***

"Thomson File Histories" are now available directly through Dialog in selected patent and trademark files. Combined with the comprehensive patent and trademark information on Dialog, file histories give you the most complete view of a patent or trademark and its history in one place. When searching in one of the patent and trademark databases, a link to an online order form is displayed in your search results, saving you time in obtaining the file histories you need. See HELP FILEHIST for more information about how to use the link and a list of files that contain the link.

The 2008 EMTREE Thesaurus has been added to EMBASE (Files 72, 73, 772, and 972)

RESUMED UPDATING
***File 120, U.S. Copyrights

RELOADS COMPLETED

***File 50, CAB Abstracts

***File 162, Global Health

* * *

FILES REMOVED

***Files 476/Financial Times & 473/Financial Times Abstracts

***Files 359,959,804, Chemical Economics Handbook

***Files 360,960, Specialty Chemicals Update Program

SYSTEM: HOME

Cost is in DialUnits Menu System II: D2 version 1.8.0 term=ASCII *** DIALOG HOMEBASE(SM) Main Menu *** Information: 1. Announcements (new files, reloads, etc.) 2. Database, Rates, & Command Descriptions 3. Help in Choosing Databases for Your Topic 4. Customer Services (telephone assistance, training, seminars, etc.) 5. Product Descriptions Connections: 6. DIALOG(R) Document Delivery 7. Data Star(R) (c) 2003 Dialog, a Thomson business. All rights reserved. /L = Logoff /NOMENU = Command Mode/H = HelpEnter an option number to view information or to connect to an online service. Enter a BEGIN command plus a file number to search a database (e.g., B1 for ERIC). ? b 410 19jun08 10:41:13 User226352 Session D1072.1 \$0.00 0.265 DialUnits FileHomeBase \$0.00 Estimated cost FileHomeBase \$0.00 Estimated cost this search \$0.00 Estimated total session cost 0.265 DialUnits File 410:Dialog Comm.-of-Interest Newsletters 2008 /Mar (c) 2008 Dialog Set Items Description ___ ____ ? set hi ;set hi HILIGHT set on as '' HILIGHT set on as '' ? b biochem 76 is unauthorized >>> >>>1 of the specified files is not available 19jun08 10:41:22 User226352 Session D1072.2 0.115 DialUnits File410 \$0.00 \$0.00 Estimated cost File410 \$0.03 TELNET \$0.03 Estimated cost this search \$0.03 Estimated total session cost 0.380 DialUnits

SYSTEM: OS - DIALOG OneSearch

```
File
        5:Biosis Previews(R) 1926-2008/Jun W3
         (c) 2008 The Thomson Corporation
         6:NTIS 1964-2008/Jun W4
  File
         (c) 2008 NTIS, Intl Cpyrght All Rights Res
        24:CSA Life Sciences Abstracts 1966-2008/Mar
  File
        (c) 2008 CSA.
  File 34:SciSearch(R) Cited Ref Sci 1990-2008/Jun W4
        (c) 2008 The Thomson Corp
        40:Enviroline(R) 1975-2008/Apr
  File
        (c) 2008 Congressional Information Service
  File 41:Pollution Abstracts 1966-2008/May
        (c) 2008 CSA.
  File
        45:EMCare 2008/Jun W3
        (c) 2008 Elsevier B.V.
  File 50:CAB Abstracts 1973-2008/May W4
         (c) 2008 CAB International
*File 50: The file has been reloaded and accession numbers
have changed. See HELP NEWS50 for information.
  File 65:Inside Conferences 1993-2008/Jun 17
         (c) 2008 BLDSC all rts. reserv.
 File
       71:ELSEVIER BIOBASE 1994-2008/Jun W2
        (c) 2008 Elsevier B.V.
 File
        73:EMBASE 1974-2008/Jun 18
         (c) 2008 Elsevier B.V.
      73: The file has been reprocessed.
  File 98:General Sci Abs 1984-2008/May
         (c) 2008 The HW Wilson Co.
  File 103:Energy SciTec 1974-2008/Apr B2
         (c) 2008 Contains copyrighted material
*File 103: For access restrictions see Help Restrict.
  File 136:BioEngineering Abstracts 1966-2007/Jan
         (c) 2007 CSA.
*File 136: This file is closed.
  File 143:Biol. & Agric. Index 1983-2008/Apr
         (c) 2008 The HW Wilson Co
  File 144:Pascal 1973-2008/Jun W2
         (c) 2008 INIST/CNRS
  File 155:MEDLINE(R) 1950-2008/Jun 18
         (c) format only 2008 Dialog
*File 155: MEDLINE has reloaded. Please see HELP NEWS 155
for details.
  File 156:ToxFile 1965-2008/Jun W2
         (c) format only 2008 Dialog
*File 156: ToxFile has been reloaded. Accession numbers have
changed.
  File 162:Global Health 1973-2008/May W4
         (c) 2008 CAB International
*File 162: The file has been reloaded and accession numbers have
changed. See HELP NEWS 162 for information.
  File 172:EMBASE Alert 2008/Jun 13
         (c) 2008 Elsevier B.V.
  File 305: Analytical Abstracts 1980-2008/Apr W4
```

```
(c) 2008 Royal Soc Chemistry
*File 305: Alert feature enhanced for multiple files, duplicate
removal, customized scheduling. See HELP ALERT.
  File 369:New Scientist 1994-2008/May W2
         (c) 2008 Reed Business Information Ltd.
  File 370: Science 1996-1999/Jul W3
         (c) 1999 AAAS
*File 370: This file is closed (no updates). Use File 47 for more
current
information.
  File 393:Beilstein Database - Abstracts 2007/Q4
         (c) 2008 Beilstein GmbH
  File 399:CA SEARCH(R) 1967-2008/UD=14825
         (c) 2008 American Chemical Society
*File 399: Use is subject to the terms of your user/customer
agreement.
IPCR/8 classification codes now searchable as IC=. See HELP NEWSIPCR.
  File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
         (c) 2006 The Thomson Corp
      Set Items Description
? s (attenuat? or avirulent or vaccin?) and Salmonella and (PAI or
leuX or pathogenicity(w)island)
          999613 ATTENUAT?
           30122 AVIRULENT
         1153992 VACCIN?
          441715 SALMONELLA
           51654 PAI
             234 LEUX
          302725 PATHOGENICITY
          466932 ISLAND
           10789 PATHOGENICITY(W) ISLAND
            581 (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
      S1
AND
                  (PAI OR LEUX OR PATHOGENICITY(W) ISLAND)
? rd s1
>>>Duplicate detection is not supported for File 393.
>>> Records from unsupported files will be retained in the RD set.
      S2
            174 RD S1 (unique items)
? s s2 not py>2006
             174
                 S2
         8209634 PY>2006
      S3
             139 S2 NOT PY>2006
? t s3/7/1-10
>>>Format 7 is not valid in file 143
           (Item 1 from file: 5)
 3/7/1
DIALOG(R) File 5: Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.
```

19388451 BIOSIS NO.: 200700048192

Acute systemic inflammation upregulates endogeneous fibrinolysis: a counterbalancing mechanism?

AUTHOR: Dima I (Reprint); Vlachopoulos C; Aznaouridis K; Ioakeimidis N;

Vasiliadou C; Alexopoulos N; Tousoulis D; Stefanadis C AUTHOR ADDRESS: Hippokrateion Hosp, Athens Med Sch, Dept Cardiol 1, Athens,

Greece**Greece

JOURNAL: European Heart Journal 27 (Suppl. 1): p77 AUG 2006 2006 CONFERENCE/MEETING: World Congress of Cardiology Barcelona, SPAIN September 02 -06, 2006; 20060902

ISSN: 0195-668X

DOCUMENT TYPE: Meeting; Meeting Poster

RECORD TYPE: Citation LANGUAGE: English

3/7/2 (Item 2 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

19287886 BIOSIS NO.: 200600633281

Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells AUTHOR: Tobar Jaime A; Carreno Leandro J; Bueno Susan M; Gonzalez Pablo A;

Mora Jorge E; Quezada Sergio A; Kalergis Alexis M (Reprint) AUTHOR ADDRESS: Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept

Genet Mol and Microbiol, Alameda 340, Santiago, Chile**Chile AUTHOR E-MAIL ADDRESS: akalergis@bio.puc.cl

JOURNAL: Infection and Immunity 74 (11): p6438-6448 NOV 2006 2006

ISSN: 0019-9567

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular

patterns (PAMPs) in bacteria and by presenting bacterial antigens to T

cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naive T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function.

Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to ${\tt T}$

cells by avoiding lysosomal degradation in DCs. Here, we show that this

feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent

Salmonella requires functional expression of a type three secretion system (ITSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted

to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation,

which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.

3/7/3 (Item 3 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

19019187 BIOSIS NO.: 200600364582

Oral vaccine delivery by Salmonella Typhimurium

AUTHOR: Gahan M E (Reprint); Webster D E; Wesselingh S L; Finlay B B; Strugnell R A

AUTHOR ADDRESS: Burnet Inst, Childrens Vaccine Grp, Melbourne, Vic, Australia**Australia

JOURNAL: Tissue Antigens 66 (5): p422-423 NOV 2005 2005 CONFERENCE/MEETING: 35th Annual Scientific Meeting of the Australasian-Society-for-Immunology/14th International HLA and Immunogenetics Workshops Melbourne, AUSTRALIA November 29 -December 02,

2005; 20051129

SPONSOR: Australasian Soc Immunol

ISSN: 0001-2815

DOCUMENT TYPE: Meeting; Meeting Abstract

RECORD TYPE: Citation

LANGUAGE: English

3/7/4 (Item 4 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

18979823 BIOSIS NO.: 200600325218

Immune response induced by Salmonella typhimurium defective in ppGpp synthesis

AUTHOR: Na Hee Sam (Reprint); Kim Hyun Ju; Lee Hyun-Chul; Hong Yeongjin;

Rhee Joon Haeng; Choy Hyon E

AUTHOR ADDRESS: Chonnam Natl Univ, Sch Med, Dept Microbiol, Kwangju 501746,

South Korea**South Korea

AUTHOR E-MAIL ADDRESS: hyonchoy@chonnam.ac.kr

JOURNAL: Vaccine 24 (12): p2027-2034 MAR 15 2006 2006

ISSN: 0264-410X

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Systemic infection by Salmonella typhimurium requires coordinated expression of virulence genes found primarily in Salmonella Pathogenecity Islands (SPIs). We have previously reported that the intracellular signal that induces these virulence genes

is a stringent signal molecule, ppGpp [Song et al. J Biol Chem 2003;279:34183]. In this study, we found that relA and spoT double mutant

Salmonella (Delta ppGpp strain), which is defective in ppGpp synthesis, was virtually avirulent in BALB/c mice. Subsequently, the live vaccine potential of the avirulent Delta ppGpp Salmonella strain was determined. A single immunization with live Delta ppGpp Salmonella efficiently protected mice from challenge with wild-type Salmonella at a dose 10(6)-fold above the LD50 30 days after immunization. Various assays revealed that immunization

mice with the Delta ppGpp strain elicited both systemic and mucosal antibody responses, in addition to cell-mediated immunity. (c) 2005 Elsevier Ltd. All rights reserved.

3/7/5 (Item 5 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

18973841 BIOSIS NO.: 200600319236

Cloning of a functional Salmonella SPI-1 type III secretion system and development of a method to create mutations and epitope fusions in

the cloned genes

AUTHOR: Wilson James W (Reprint); Nickerson Cheryl A AUTHOR ADDRESS: Tulane Univ, Hlth Sci Ctr, Program Mol Pathogenesis and

Immun, Dept Microbiol and Immunol, 1430 Tulane Ave, Room 5728, New Orleans, LA 70112 USA**USA

AUTHOR E-MAIL ADDRESS: jwilson4@tulane.edu

JOURNAL: Journal of Biotechnology 122 (2): p147-160 MAR 23 2006 2006

ISSN: 0168-1656

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Bacterial type III secretion systems have significant potential

to be harnessed for beneficial purposes including vaccine development, anti-cancer therapies, strategies to counteract harmful bacteria-host interactions, and evolutionary studies. The ability to clone and manipulate type III secretion systems would allow researchers

to perform novel experiments that would progress the biotechnological

development of the potentially positive uses of these systems. Here, we

report the cloning of the entire Salmonella pathogenicity island 1 (SPI-1) type III secretion system on a single DNA fragment that is contained on a self-transmissible plasmid vector for convenient

transfer to alternate hosts. We demonstrate that the cloned $\ensuremath{\mathsf{SPI-1}}$ type

III system is functional for secretion and translocation via complementation of an S. typhinutrium Delta SPI-1 strain. We also present

a convenient method to construct mutations and epitope fusions in the

cloned type III genes and demonstrate that the engineered substrate protein fusions are recognized by the cloned type III system. We transferred the cloned SPI-1 type III system into bacterial strains of

different genera and found that there is a SPI-1 gene expression defect

in these strains. The results describe a novel strategy for cloning and

manipulation of bacterial secretion system gene clusters and provide a

foundation for future studies to develop the beneficial uses of cloned

type III secretion systems. (c) 2005 Elsevier B.V. All rights reserved.

3/7/6 (Item 6 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

18889641 BIOSIS NO.: 200600235036

Evaluation of Salmonella enterica serovar Typhi (Ty2 aroC-ssaV-) M01ZH09, with a defined mutation in the Salmonella pathogenicity island 2, as a live, oral typhoid vaccine in human volunteers

AUTHOR: Kirkpatrick B D (Reprint); McKenzie Robin; O'Neill J Patrick; Larsson Catherine J; Bourgeois A Louis; Shimko Janet; Bentley Matthew;

Makin Jill; Chatfield Steve; Hindle Zoe; Fidler Christine; Robinson Brad

E; Ventrone Cassandra H; Bansal Nivedita; Carpenter Colleen M; Kutzko

Deborah; Hamlet Sandra; LaPointe Casey; Taylor David N AUTHOR ADDRESS: Univ Vermont, Coll Med, Dept Med, Infect Dis Unit, 95 Carrigan Dr,110 Stafford Bldg, Burlington, VT 05405 USA**USA

AUTHOR E-MAIL ADDRESS: beth.kirkpatrick@uvm.edu

JOURNAL: Vaccine 24 (2): p116-123 JAN 12 2006 2006

ISSN: 0264-410X

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Salmonella enterica serovar Typhi strains with mutations in the Salmonella pathogenicity island-2 (SPI-2) may represent an effective strategy for human vaccine development, and a vectoring system for heterologous antigens. S. Typhi (Ty2 aroC-ssaV-)

M01ZH09 is an attenuated, live, oral typhoid vaccine harboring defined deletion mutations in ssaV, which encodes an integral

component in the SPI-2 type HI secretion system (TTSS), as well as a mutation in an aromatic biosynthetic pathway needed for bacterial growth

in vivo (aroC). SPI-2 mutant vaccines have yet to be evaluated in a large, randomized human trial. A simplified or single-oral dose oral typhoid vaccine using the SPI-2 strategy would offer significant advantages over the currently licensed typhoid vaccines. We performed a double-blinded, placebo-controlled, dose-escalating clinical

trial in 60 healthy adult volunteers to determine the tolerability and

immunogenicity of a single dose of M01ZH09. Three groups of 20 healthy

adult volunteers were enrolled; 16 in each group received a single oral

dose of the freeze-dried vaccine at 5 x 107, 5 x 108 or 5 x 109 CFU in a bicarbonate buffer. Four volunteers in each cohort received placebo

in the same buffer. Adverse events were infrequent and not statistically $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{$

different between vaccine and placebo recipients, although two subjects in the mid-range dose and three subjects in the highest dose had

temperature measurements > 37.5 degrees C. No blood or urine cultures

were positive for M01ZH09, and fecal shedding was brief. The immune response was dose-related; the highest vaccine dose (5 \times 109 CFU)

was the most immunogenic. All tested subjects receiving the highest dose

had a significant ASC response (mean 118 spots/10(6) cells). A >= 4-fold

increase in antibody titer for S. Typhi LPS or flagellin was detected in

75% of volunteers in the highest-dose cohort by day 28. The SPI-2 mutant

vaccine, M01ZH09, is a promising typhoid vaccine candidate and deserves further study as a vectoring system for heterologous vaccine antigens. (c) 2005 Elsevier Ltd. All rights reserved.

3/7/7 (Item 7 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

18806788 BIOSIS NO.: 200600152183

Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis

AUTHOR: Shah Devendra H; Lee Mi-jin; Park Jin-ho; Lee John-hwa; Eo Seong-kug; Kwon Jung-thek; Chae Joon-seok (Reprint)

AUTHOR ADDRESS: Chonbuk Natl Univ, Biosafety Res Inst, Jeonju 561756, South

Korea**South Korea

AUTHOR E-MAIL ADDRESS: jschae@chonbuk.ac.kr

JOURNAL: Microbiology (Reading) 151 (Part 12): p3957-3968 DEC 2005 2005

ISSN: 1350-0872

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Salmonella gallinarum (SG) is a non-motile host-adapted salmonella that causes fowl typhoid, a severe systemic disease responsible for significant economic losses to the poultry industry worldwide. This study describes the application of a PCR-basecl signature-tagged mutagenesis system to identify in vivo-essential genes

of SG. Ninety-six pools representing 1152 SG mutants were screened in a

natural-host chicken infection model. Twenty presumptive attenuated mutants were identified and examined further. The identity of the disrupted gene in each mutant was determined by cloning of the DNA sequences adjacent to the transposon, followed by sequencing and comparison with the bacterial genome database. In vitro and in vivo competition indices were determined for each identified mutant and a total of 18 unique, attenuating gene disruptions were identified. These mutations represented six broad genomic classes: Salmonella pathogenicity island-1 (SPI-1), SPI-2, SPI-10, SPI-13, SPI-14 and non-SPI-encoded virulence genes. SPI-1 3 and SPI-14 are newly identified and designated in this study. Most of the genes

identified in

this study were not previously believed or known to play a role in the

pathogenesis of SG infection in chickens. Each STM identified mutant showed competitiveness and/or virulence defects, confirmed by in vitro

and in vivo assays, and challenge tests. This study should contribute to

a better understanding of the pathogenic mechanisms involved in progression of disease caused by SG, and identification of novel live

vaccine candidates and new potential antibiotic targets.

3/7/8 (Item 8 from file: 5)

DIALOG(R) File 5: Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

18763986 BIOSIS NO.: 200600109381

Negative regulation of Salmonella pathogenicity island 2

is required for contextual control of virulence during typhoid AUTHOR: Coombes Brian K; Wickham Mark E; Lowden Michael J; Brown Nat F;

Finlay B Brett (Reprint)

AUTHOR ADDRESS: Univ British Columbia, Michael Smith Labs, Vancouver, BC

V6T 1Z4, Canada**Canada

AUTHOR E-MAIL ADDRESS: bfinlay@interchange.ubc.ca

JOURNAL: Proceedings of the National Academy of Sciences of the United States of America 102 (48): p17460-17465 NOV 29 2005 2005

ISSN: 0027-8424

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Salmonella enterica relies on a type III secretion system encoded in Salmonella pathogenicity island-2 (SPI-2) to survive and replicate within macrophages at systemic sites during typhoid. SPI-2 virulence is induced upon entry into macrophages, but the

mechanisms of SPI-2 gene control in vivo remain unclear, particularly

with regard to negative regulators that control the contextual activation

of SPI-2. Here, we identified and characterized YdgT as a negative modulator of the SPI-2 pathogenicity island and established that this negative regulation is central to systemic pathogenesis because

ydgT mutants overexpressing typhoid virulence genes were ultimately attenuated during infection. ydgT mutants displayed a biphasic virulence phenotype during in vivo competitive infections that consisted

of an early "gain-of-virulence" dependent on SPI-2 activation, followed

by attenuation later in infection indicating that proper contextual regulation of SPI-2 by YdgT is necessary for full virulence during systemic colonization. These data suggest that overexpression of virulence-associated type III secretion genes can have an adverse effect

on bacterial pathogenesis in vivo.

3/7/9 (Item 9 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

18720030 BIOSIS NO.: 200600065425 SlyA regulates function of Salmonella pathogenicity island 2 (SPI-2) and expression of SPI-2-associated genes AUTHOR: Linehan Sheena A; Rytkonen Anne; Yu Xiu-Jun; Liu Mei; Holden David

W (Reprint)

AUTHOR ADDRESS: Univ London Imperial Coll Sci Technol and Med, Dept Infect.

Dis, Ctr Mol Microbiol and Infect, Flowers Bldg, Armstrong Rd, London SW7

2AZ, UK**UK

AUTHOR E-MAIL ADDRESS: d.holden@imperial.ac.uk

JOURNAL: Infection and Immunity 73 (7): p4354-4362 JUL 2005 2005

ISSN: 0019-9567

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: During the systemic phase of murine infection with Salmonella enterica serovar Typhimurium, bacterial virulence is correlated with the ability to grow and survive within host macrophages.

Salmonella pathogenicity island 2 (SPI-2), encoding a type three secretion system, has emerged as an important contributor to

Salmonella intracellular growth. SPI-2 mutants have been proposed to be more accessible than wild-type Salmonella to oxyradicals generated by the NADPH phagocyte oxidase. We performed mixed infections

of mice to investigate the relationship between SPI-2 and SlyA, a transcriptional regulator that confers resistance to oxyradicals. In mixed-infection experiments, the SPI-2 null mutant was severely attenuated in virulence, whereas slyA mutants were only mildly attenuated. Surprisingly, further experiments indicated that the function of SPI-2 was partially dependent on slyA. The intracellular behavior of a slyA mutant in infected cells was consistent with inefficient SPI-2 expression, as formation of Salmonella-induced filaments and the intracellular F-actin meshwork, features that depend on

SPI-2, were present at abnormally low frequencies. Furthermore, the

translocated levels of the SPI-2 effector Ssej were severely reduced in a

strain carrying a mutation in slyA. We used flow cytometry to investigate

the role of SlyA in expression of green fluorescent protein (GFP) from

transcriptional fusions with promoters of either of two other SPI-2 effector genes, sijB and sifA. The slyA mutant exhibited reduced GFP expression from both promoters. Combining mutations in slyA and other

regulators of SPI-2 indicated that SlyA acts through the SsrAB two-component regulatory system. SlyA exhibits partial functional redundancy with OmpR-EnvZ and contributes to the transcriptional response

to low osmolarity and the absence of calcium, two environmental stimuli

that promote SPI-2 gene expression.

3/7/10 (Item 10 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

18712645 BIOSIS NO.: 200600058040

Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar typhimurium PhoP and PmrA regulons in BALB/c mice AUTHOR: Merighi Massimo; Ellermeier Craig D; Slauch James M; Gunn John S

(Reprint)

AUTHOR ADDRESS: 270 TMRF,420 W 12th Ave, Columbus, OH 43210 USA**USA AUTHOR E-MAIL ADDRESS: gunn.43@osu.edu

JOURNAL: Journal of Bacteriology 187 (21): p7407-7416 NOV 2005 2005 ISSN: 0021-9193

DOCUMENT TYPE: Article RECORD TYPE: Abstract

LANGUAGE: English

ABSTRACT: Salmonella enterica modulates resistance to antimicrobial peptides in part via covalent modifications of the lipopolysaccharide

(LPS). The two-component systems PhoP/PhoQ and PmrA/PmrB are activated

during infection and regulate several genes involved in LPS modifications

by responding to signals such as pH, iron, magnesium, and antimicrobial

peptides. A recombination-based in vivo expression technology approach

was adopted to analyze the spatial-temporal patterns of in vivo expression of genes of the PhoP and PmrA regulons and to identify the in

vivo signals modulating their transcription. In vitro, we showed PhoP-

and/or PmrA-dependent induction of pmrH (LPS aminoarabinose modification

operon) by acidic pH, low levels of magnesium, or high levels of Fe(III).

Upregullation in cultured J774A.1 macrophages was shown for pmrH, pagP

(LPS palmitate addition), and ssaB (pathogenicity island II secretion) but not for prqH (pathogenicity island I

secretion). Increased levels of pmrH, phoP, and prgH transcription but

not ssaB were observed in bacteria isolated from the lumen of the distal

ileum. Bacteria isolated from spleens of orally inoculated mice showed no

further induction of prgH but had the highest expression of pmrH, pagP,

and ssaB. In vivo induction of pmrH was fully dependent on pmrA and phoP,

and buffering stomach acidity, iron chelation, or low-iron diets did not

affect the expression of pmrH in the intestinal lumen. The observation of

pmrH and pagP expression in the intestine refutes the paradigm of PhoP/PhoQ and PmrA/PmrB in vivo expression as solely intracellularly induced and supports previous data demonstrating peroral virulence attenuation of pmrH mutants.

? ds

Set Items Description

S1 581 (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA AND (PAI

OR LEUX OR PATHOGENICITY (W) ISLAND)

S2 174 RD S1 (unique items)

S3 139 S2 NOT PY>2006

? s s3 and (leux or trna5leu)

139 S3

234 LEUX

38 TRNA5LEU

S4 0 S3 AND (LEUX OR TRNA5LEU)

? s s3 and trna

139 S3

135342 TRNA

S5 1 S3 AND TRNA

? t s5/7/all

>>>Format 7 is not valid in file 143

5/7/1 (Item 1 from file: 34)

DIALOG(R)File 34:SciSearch(R) Cited Ref Sci

(c) 2008 The Thomson Corp. All rts. reserv.

12588742 Genuine Article#: 802YL Number of References: 126 Title: Plasticity of bacterial genomes: Pathogenicity islands and the Locus

of Enterocyte Effacement (LEE) Author(s): Kirsch P; Jores J; Wieler LH (REPRINT)

Corporate Source: Free Univ Berlin, Fachbereich Vet Med, Inst

Mikrobiol &

Tierseuchen, Postfach 04 02 25/D-10061 Berlin//Germany/ (REPRINT); Free

Univ Berlin, Fachbereich Vet Med, Inst Mikrobiol & Tierseuchen, D-10061

Berlin//Germany/; Univ Ulm, Tierforschungszentrum, D-89069 Ulm//Germany/

Journal: BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT, 2004, V117,

N3-4 (MAR-APR), P116-129

ISSN: 0005-9366 Publication date: 20040300

Publisher: SCHLUETERSCHE GMBH & CO K G VERLAG UND DRUCKEREI,

HANS-BOCKLER-ALLEE 7, 30173 HANNOVER, GERMANY

Language: German Document Type: REVIEW

Abstract: Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of

the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to

the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near

genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA

elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution.

Significant G+C content deviation in pathogenicity islands with respect

to the rest of the genome, the presence of direct repeat sequences at

the flanking regions, the presence of integrase gene determinants as

other mobility features, the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer PAIs

are the fascinating proof of the plasticity of bacterial genomes.

were originally described in human pathogenic Escherichia (E.) coli

strains. In the meantime PAIs have been found in various pathogenic

bacteria of humans, animals and even plants. The Locus of Enterocyte

Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species

```
Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is
an
    important virulence feature of several animal pathogens. It is an
    obligate PAI of all animal and human enteropathogenic E coli
    (EPEC), and most enterohaemorrhegic E coli (EHEC) also harbor the
LEE.
    The LEE encodes a type III secretion system, an adhesion
(intimin) that
    mediates the intimate contact between the bacterium and the
epithelial
    cell, as well as various proteins which are secreted via the type
III
    secretion system. The LEE encoded virulence features are
responsible
    for the formation of so called attaching and effacing (AE)
lesions in
    the intestinal epithelium. Due to its wide distribution in animal
    pathogens, LEE encoded antigens are suitable vaccine antigens.
    Acquisition and structure of the LEE pathogenicity island
    is the crucial point of numerous investigations. However, the
evolution
    of the LEE, its origin and further spread in E coli, are far from
being
   resolved.
? s s3 and supp
                 S3
            3669 SUPP
                  S3 AND SUPP
      S6
              0
? ds
Set
        Items
                Description
          581
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
S1
AND (PAI
              OR LEUX OR PATHOGENICITY (W) ISLAND)
S2
          174 RD S1
                       (unique items)
S3
          139
                S2 NOT PY>2006
S4
                S3 AND (LEUX OR TRNA5LEU)
            0
S5
                S3 AND TRNA
            1
S6
            0
                S3 AND SUPP
? s (attenuat? or avirulent or vaccin?) and (typhi or dublin or
typhimurium) and (PAI or leuX or pathogenicity(w)island)
          999613
                 ATTENUAT?
           30122
                 AVIRULENT
         1153992
                 VACCIN?
                 TYPHI
           39490
           21480 DUBLIN
          209295 TYPHIMURIUM
           51654
                 PAI
             234 LEUX
          302725 PATHOGENICITY
          466932 ISLAND
```

10789 PATHOGENICITY (W) ISLAND

```
S 7
             462
                 (ATTENUAT? OR AVIRULENT OR VACCIN?) AND (TYPHI OR
DUBLIN
                  OR TYPHIMURIUM) AND (PAI OR LEUX OR
                  PATHOGENICITY (W) ISLAND)
? rd s7
>>>Duplicate detection is not supported for File 393.
>>>Records from unsupported files will be retained in the RD set.
             163 RD S7 (unique items)
? s s8 and (leux or trna or supp)
             163
                 S8
             234 LEUX
          135342 TRNA
            3669 SUPP
      S 9
               1 S8 AND (LEUX OR TRNA OR SUPP)
? t s9/7/1
>>>Format 7 is not valid in file 143
          (Item 1 from file: 34)
DIALOG(R) File 34: SciSearch(R) Cited Ref Sci
(c) 2008 The Thomson Corp. All rts. reserv.
12588742
         Genuine Article#: 802YL
                                   Number of References: 126
Title: Plasticity of bacterial genomes: Pathogenicity islands and the
    of Enterocyte Effacement (LEE)
Author(s): Kirsch P; Jores J; Wieler LH
                                         (REPRINT)
Corporate Source: Free Univ Berlin, Fachbereich Vet Med, Inst
Mikrobiol &
    Tierseuchen, Postfach 04 02 25/D-10061 Berlin//Germany/ (REPRINT);
Free
    Univ Berlin, Fachbereich Vet Med, Inst Mikrobiol &
Tierseuchen, D-10061
    Berlin//Germany/; Univ Ulm, Tierforschungszentrum, D-89069
Ulm//Germany/
Journal: BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT, 2004,
V117,
    N3-4 (MAR-APR), P116-129
ISSN: 0005-9366
                 Publication date: 20040300
Publisher: SCHLUETERSCHE GMBH & CO K G VERLAG UND DRUCKEREI,
    HANS-BOCKLER-ALLEE 7, 30173 HANNOVER, GERMANY
Language: German Document Type: REVIEW
Abstract: Many bacterial virulence attributes, like toxins, adhesins,
    invasins, iron uptake systems, are encoded within specific
regions of
    the bacterial genome. These in size varying regions are termed
    pathogenicity islands (PAIs) since they confer pathogenic
properties to
    the respective micro-organism. Per definition PAIs are exclusively
    found in pathogenic strains and are often inserted near
```

transfer-RNA

genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA

elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect

to the rest of the genome, the presence of direct repeat sequences at

the flanking regions, the presence of integrase gene determinants as

other mobility features, the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer

are the fascinating proof of the plasticity of bacterial genomes. PAIs

were originally described in human pathogenic Escherichia (E.) coli

strains. In the meantime PAIs have been found in various pathogenic

bacteria of humans, animals and even plants. The Locus of Enterocyte

Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species

Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an

important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E coli (EPEC), and most enterohaemorrhegic E coli (EHEC) also harbor the LEE.

The LEE encodes a type III secretion system, an adhesion (intimin) that

mediates the intimate contact between the bacterium and the epithelial

cell, as well as various proteins which are secreted via the type $\ensuremath{\text{III}}$

secretion system. The LEE encoded virulence features are responsible $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

for the formation of so called attaching and effacing (AE) lesions in

the intestinal epithelium. Due to its wide distribution in animal pathogens, LEE encoded antigens are suitable vaccine antigens. Acquisition and structure of the LEE pathogenicity island is the crucial point of numerous investigations. However, the

is the crucial point of numerous investigations. However, the evolution $\ \ \,$

of the LEE, its origin and further spread in E coli, are far from being

resolved.

? ds

```
Set
       Items Description
         581
               (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
S1
AND (PAI
             OR LEUX OR PATHOGENICITY(W) ISLAND)
S2
         174
               RD S1 (unique items)
S3
         139 S2 NOT PY>2006
S4
           0 S3 AND (LEUX OR TRNA5LEU)
S5
           1 S3 AND TRNA
S6
           0 S3 AND SUPP
S7
          462
              (ATTENUAT? OR AVIRULENT OR VACCIN?) AND (TYPHI OR
DUBLIN OR
             TYPHIMURIUM) AND (PAI OR LEUX OR PATHOGENICITY(W)ISLAND)
S8
         163 RD S7
                     (unique items)
               S8 AND (LEUX OR TRNA OR SUPP)
S9
           1
? e au=cohen, paul s.
Ref
     Items Index-term
         1 AU=COHEN, PAUL R
E1
Ε2
         30 AU=COHEN, PAUL S
E3
         77 *AU=COHEN, PAUL S.
         2 AU=COHEN, PAUL SHEA
\mathrm{E}\,4
E5
         3 AU=COHEN, PAUL SIDNEY
         11 AU=COHEN, PAULA E
E6
Ε7
         27 AU=COHEN, PAULA E.
         4 AU=COHEN, PAZIT Y
Ε8
         2 AU=COHEN, PAZIT Y.
E9
         2 AU=COHEN, PD
E10
        15 AU=COHEN, PE
E11
E12
         1 AU=COHEN, PEDRO
         Enter P or PAGE for more
PLEASE ENTER A COMMAND OR BE LOGGED OFF IN 5 MINUTES
? ds
Set
       Items Description
         581 (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
S1
AND (PAI
             OR LEUX OR PATHOGENICITY(W) ISLAND)
         174 RD S1 (unique items)
S2
S3
         139
             S2 NOT PY>2006
S4
           0 S3 AND (LEUX OR TRNA5LEU)
               S3 AND TRNA
S5
           1
S6
           0 S3 AND SUPP
         462
S7
               (ATTENUAT? OR AVIRULENT OR VACCIN?) AND (TYPHI OR
DUBLIN OR
             TYPHIMURIUM) AND (PAI OR LEUX OR PATHOGENICITY(W)ISLAND)
S8
         163 RD S7 (unique items)
S9
               S8 AND (LEUX OR TRNA OR SUPP)
           1
? e au=cohen, paul s.
```

Ref Items Index-term

```
E2
         30 AU=COHEN, PAUL S
EЗ
         77 *AU=COHEN, PAUL S.
E4
         2 AU=COHEN, PAUL SHEA
         3 AU=COHEN, PAUL SIDNEY
E5
         11 AU=COHEN, PAULA E
Ε6
            AU=COHEN, PAULA E.
Ε7
         27
Ε8
         4 AU=COHEN, PAZIT Y
             AU=COHEN, PAZIT Y.
          2
E9
         2 AU=COHEN, PD
E10
         15 AU=COHEN, PE
E11
E12
             AU=COHEN, PEDRO
         1
          Enter P or PAGE for more
? s e1-e5
                 AU=COHEN, PAUL R
               1
              30
                 AU=COHEN, PAUL S
                 AU=COHEN, PAUL S.
              77
                 AU=COHEN, PAUL SHEA
                  AU=COHEN, PAUL SIDNEY
     S10
             113 E1-E5
? e au=cohen, p.s.
Ref
      Items Index-term
E1
          3 AU=COHEN, P.P.
E2
          8 AU=COHEN, P.R.
          3 *AU=COHEN, P.S.
EЗ
E4
          1 AU=COHEN, P.T.W.
E5
          7 AU=COHEN, P*
Ε6
         31 AU=COHEN, PA
Ε7
          1 AU=COHEN, PA*
             AU=COHEN, PAM
Ε8
          1
Ε9
          8 AU=COHEN, PAMELA
            AU=COHEN, PAMELA E
E10
          1
E11
          1 AU=COHEN, PAMELA E.
          3
             AU=COHEN, PAMELA S
E12
          Enter P or PAGE for more
? e au=cohen, p s
Ref
      Items Index-term
E1
        285 AU=COHEN, P
            AU=COHEN, P (EDS)
          2
E2
Е3
          0 *AU=COHEN, P S
        633 AU=COHEN, P.
\mathrm{E}\,4
E5
          2 AU=COHEN, P. (ED.)
             AU=COHEN, P. (LGH (CANADA))
Ε6
          1
Ε7
         25
            AU=COHEN, P. A.
Ε8
         2 AU=COHEN, P. ARYEH
E9
         12 AU=COHEN, P. B.
E10
         1 AU=COHEN, P. BEAZLEY
         2 AU=COHEN, P. C.
E11
```

1 AU=COHEN, PAUL R

E1

```
Enter P or PAGE for more
? e au=cohen, p. s.
     Items Index-term
Ref
E1
          4 AU=COHEN, P. P.
Ε2
        208 AU=COHEN, P. R.
        46 *AU=COHEN, P. S.
Е3
E4
        13 AU=COHEN, P. T.
E5
            AU=COHEN, P. T. W.
        26
            AU=COHEN, P. T. WADE
Ε6
         1
Ε7
         1
            AU=COHEN, P. Y.
         3
Ε8
            AU=COHEN, P.A.
Ε9
            AU=COHEN, P.B.
         1
            AU=COHEN, P.E.
E10
         1
E11
         1
            AU=COHEN, P.H.
            AU=COHEN, P.I.
E12
        35
         Enter P or PAGE for more
? s e3
    S11
            46 AU='COHEN, P. S.'
     Display 11/2/1
                        (Item 1 from file: 6)
DIALOG(R) File 6:NTIS
(c) 2008 NTIS, Intl Cpyrght All Rights Res. All rts. reserv.
1882914 NTIS Accession Number: AD-A233 255/9
            Salmonella typhimurium SL5319 and Escherichia coli
 Growth of
F-18 in
Mouse Cecal Mucus: Role of Peptides and Iron. (Reannouncement
with New
Availability Information)
  (Journal article)
 Franklin, D. P.; Laux, D. C.; Williams, T. J.; Falk, M. C.;
Cohen,
P. S.
 Naval Medical Research Inst., Bethesda, MD.
 Corp. Source Codes: 019861000; 249650
 Report Number: NMRI-90-126
 1990
        12p
 Languages: English
                     Document Type: Journal article
 Journal Announcement: GRAI9517
       in FEMS Microbiology Ecology, v74 p229-240 1990. Order this
product
from NTIS by: phone at 1-800-553-NTIS (U.S. customers);
(703)605-6000
(other
        countries); fax at (703)321-8547; and email
  at
```

E12

5 AU=COHEN, P. D.

```
Description
Set
        Items
          581
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
S1
AND (PAI
              OR LEUX OR PATHOGENICITY(W) ISLAND)
          174 RD S1
                      (unique items)
S2
          139
               S2 NOT PY>2006
S3
S4
           0 S3 AND (LEUX OR TRNA5LEU)
               S3 AND TRNA
S5
            1
S6
                S3 AND SUPP
            0
S7
          462
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND (TYPHI OR
DUBLIN OR
              TYPHIMURIUM) AND (PAI OR LEUX OR PATHOGENICITY(W)ISLAND)
               RD S7 (unique items)
S8
          163
S9
                S8 AND (LEUX OR TRNA OR SUPP)
            1
                E1-E5
S10
          113
S11
           46
               AU='COHEN, P. S.'
? s s10 or s11
             113
                 S10
              46
                 S11
     S12
             159 S10 OR S11
? s s12 and (leux or trna or supp)
             159
                 S12
             234 LEUX
          135342
                 TRNA
            3669 SUPP
               3 S12 AND (LEUX OR TRNA OR SUPP)
     S13
? t s13/7/all
>>>Format 7 is not valid in file 143
            (Item 1 from file: 399)
DIALOG(R) File 399:CA SEARCH(R)
(c) 2008 American Chemical Society. All rts. reserv.
  129038689
               CA: 129(4)38689b
                                   JOURNAL
  The leuX-encoded tRNA5Leu but not the pathogenicity islands I and II
  influences the survival of the uropathogenic Escherichia coli
strain 536
  in CD-1 mouse bladder mucus in the stationary phase
  AUTHOR(S): Dobrindt, Ulrich; Cohen, Paul S.; Utley, Maryjane;
Muhldorfer,
Inge; Hacker, Jorg
  LOCATION: Institut fur Molekulare Infektionsbiologie, Universitat
Wurzburg, Wurzburg, Germany, 97070
  JOURNAL: FEMS Microbiol. Lett. DATE: 1998 VOLUME: 162 NUMBER: 1
  PAGES: 135-141 CODEN: FMLED7 ISSN: 0378-1097 LANGUAGE: English
  PUBLISHER: Elsevier Science B.V.
  SECTION:
    CA210006 MICROBIAL, ALGAL, AND FUNGAL BIOCHEMISTRY
    CA214XXX Mammalian Pathological Biochemistry
  IDENTIFIERS: gene leuX pathogenicity Escherichia bladder
  DESCRIPTORS:
```

```
Bladder... Escherichia coli... Mouse... Mucus...
Virulence (microbial) ...
    gene leuX-encoded tRNA5Leu influences survival of uropathogenic
    Escherichia coli in mouse bladder mucus
tRNA...
    leucine-specific; gene leuX-encoded tRNA5Leu influences survival
of
    uropathogenic Escherichia coli in mouse bladder mucus
Genes (microbial) ...
    leuX; gene leuX-encoded tRNA5Leu influences survival of
uropathogenic
    Escherichia coli in mouse bladder mucus
 13/7/2
            (Item 2 from file: 399)
DIALOG(R) File 399:CA SEARCH(R)
(c) 2008 American Chemical Society. All rts. reserv.
  122211009 CA: 122(17)211009k
                                     JOURNAL
  Role of leuX in Escherichia coli colonization of the
streptomycin-treated
  mouse large intestine
  AUTHOR(S): Newman, Joseph V.; Kolter, Roberto; Laux, David C.;
Cohen,
Paul S.
 LOCATION: Department of Biochemistry, Microbiology and Molecular
Genetics
, University of Rhode Island, Kingston, RI, 02881, USA
  JOURNAL: Microb. Pathoq. DATE: 1994 VOLUME: 17 NUMBER: 5 PAGES:
301-11 CODEN: MIPAEV ISSN: 0882-4010 LANGUAGE: English
  SECTION:
    CA214003 Mammalian Pathological Biochemistry
    CA210XXX Microbial Biochemistry
  IDENTIFIERS: gene leuX Escherichia colonization intestine
  DESCRIPTORS:
Escherichia coli...
    colonization of streptomycin-treated mouse large intestine
mediated by
    Escherichia coli mediated by leuX gene encoding leucine-specific
tRNA
Gene, microbial, leuX...
    Escherichia coli colonization of the streptomycin-treated mouse
large
    intestine mediated by
Ribonucleic acids, transfer, leucine-specific CAA...
    Escherichia coli colonization of the streptomycin-treated mouse
large
    intestine mediated by leuX gene encoding
Intestine, disease, large...
    infection; Escherichia coli colonization of the
streptomycin-treated
    mouse large intestine mediated by leuX gene encoding
leucine-specific
```

tRNA

Microorganism growth, stationary phase...

leuX gene expression required for survival in stationary phase of Escherichia coli in streptomycin-treated mouse large intestine

13/7/3 (Item 3 from file: 399)

DIALOG(R) File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

121251015 CA: 121(21)251015v JOURNAL

Stimulation of Escherichia coli F-18Col- Type-1 fimbriae synthesis by

leuX

AUTHOR(S): Newman, Joseph V.; Burghoff, Robert L.; Pallesen, Lars; Krogfelt, Karen A.; Kristensen, Claus S.; Laux, David C.; Cohen, Paul S.

LOCATION: Department of Biochemistry, Microbiology, and Molecular Genetics, University of Rhode Island, Kingston, RI, 02881, USA JOURNAL: FEMS Microbiol. Lett. DATE: 1994 VOLUME: 122 NUMBER: 3 PAGES: 281-8 CODEN: FMLED7 ISSN: 0378-1097 LANGUAGE: English SECTION:

CA210004 Microbial Biochemistry

CA203XXX Biochemical Genetics

IDENTIFIERS: gene leuX type 1 fimbriae Escherichia
DESCRIPTORS:

Gene, microbial, leuX...

for leucineCAA-specific tRNA; type 1 fimbriae synthesis in Escherichia

coli is stimulated by gene leuX

Ribonucleic acids, transfer, leucine-specific CAA...

gene leuX-encoded; type 1 fimbriae synthesis in Escherichia coli
is

stimulated by gene leuX

Proteins, specific or class, 26,000-mol.-weight...

neg. regulator; gene leuX expression regulation in Escherichia coli

Proteins, specific or class, 22,000-mol.-weight...

pos. regulator; gene leuX expression regulation in Escherichia coli

Escherichia coli... Pili, type 1...

type 1 fimbriae synthesis in Escherichia coli is stimulated by gene

leuX

? s (leux or trna5leu or supp)

234 LEUX

38 TRNA5LEU

3669 SUPP

S14 3901 (LEUX OR TRNA5LEU OR SUPP)

? rd s14

>>>Duplicate detection is not supported for File 393.

```
>>> Records from unsupported files will be retained in the RD set.
>>>Record 65:6634882 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6632451 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6605265 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6579460 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6579459 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6565133 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6561907 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6555483 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6539818 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6539817 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6536278 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6512850 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6507173 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6499819 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6463017 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6455885 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6403027 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6389539 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6378712 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6368539 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6358576 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6358575 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6287485 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6240648 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6212080 incomplete bibliographic data - record retained
in RD set
```

```
>>>Record 65:6212079 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6197962 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6194832 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6193598 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6178247 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6171012 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6139490 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6139489 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6137070 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6102083 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6087100 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6068962 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6062749 incomplete bibliographic data - record retained
in RD set
>>>Record 65:6057422 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5992155 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5973134 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5970438 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5958266 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5913258 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5911952 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5902504 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5902503 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5829574 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5829572 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5747703 incomplete bibliographic data - record retained
in RD set
>>>Record 65:5573471 incomplete bibliographic data - record retained
in RD set
```

```
>>>Record 65:5049465 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4964233 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4964232 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4929027 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4929026 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4916755 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4914147 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4885263 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4793508 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4753726 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4671340 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4671337 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4660193 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4636735 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4624831 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4613973 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4589884 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4584036 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4559803 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4554786 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4543717 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4538093 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4538091 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4535854 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4528990 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4503837 incomplete bibliographic data - record retained
in RD set
```

```
>>>Record 65:4503782 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4500673 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4484937 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4481186 incomplete bibliographic data - record retained
in RD set
Processing - Examined 2200 records
>>>Record 65:4384480 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4362822 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4343367 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4307004 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4301555 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4285077 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4225906 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4183496 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4100366 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4075929 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4018563 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4006875 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4004199 incomplete bibliographic data - record retained
in RD set
>>>Record 65:4004198 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3989894 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3956243 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3944610 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3939772 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3892817 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3805132 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3793808 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3793806 incomplete bibliographic data - record retained
in RD set
```

```
>>>Record 65:3752121 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3537462 incomplete bibliographic data - record retained
in RD set
>>>Record 65:3349505 incomplete bibliographic data - record retained
in RD set
>>>Record 65:2529797 incomplete bibliographic data - record retained
in RD set
>>>Record 65:2435402 incomplete bibliographic data - record retained
in RD set
>>>Record 65:1922595 incomplete bibliographic data - record retained
in RD set
>>>Record 65:1825139 incomplete bibliographic data - record retained
in RD set
>>>Record 65:1061001 incomplete bibliographic data - record retained
in RD set
>>>Record 65:642892 incomplete bibliographic data - record retained
in RD set
>>>Record 65:642855 incomplete bibliographic data - record retained
in RD set
>>>Record 65:571249 incomplete bibliographic data - record retained
in RD set
            3349 RD S14 (unique items)
     S15
? ds
Set
        Items
                Description
          581
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
S1
AND (PAI
              OR LEUX OR PATHOGENICITY(W) ISLAND)
          174
S2
                RD S1
                       (unique items)
S3
          139
                S2 NOT PY>2006
S 4
            0
                S3 AND (LEUX OR TRNA5LEU)
S5
            1
                S3 AND TRNA
S6
            0
                S3 AND SUPP
S7
          462
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND (TYPHI OR
DUBLIN OR
              TYPHIMURIUM) AND (PAI OR LEUX OR PATHOGENICITY(W)ISLAND)
S8
          163
                RD S7
                        (unique items)
S9
                S8 AND (LEUX OR TRNA OR SUPP)
            1
S10
          113
                E1-E5
                AU='COHEN, P. S.'
S11
           46
S12
          159
                S10 OR S11
S13
            3
                S12 AND (LEUX OR TRNA OR SUPP)
S14
         3901
                (LEUX OR TRNA5LEU OR SUPP)
S15
                RD S14
                       (unique items)
         3349
? s s15 not PY>2005
            3349
                  S15
        14685404
                 PY>2005
            2662
                 S15 NOT PY>2005
? s s16 and (delet? or mutat? or variant? or mutein or avirulent or
attenuat?)
            2662
                  S16
```

```
1026086 DELET?
         2636379 MUTAT?
          915106 VARIANT?
            1462 MUTEIN
           30122 AVIRULENT
          999613 ATTENUAT?
     S17
              87 S16 AND (DELET? OR MUTAT? OR VARIANT? OR MUTEIN OR
                 AVIRULENT OR ATTENUAT?)
? t s17/7/1-10
>>>Format 7 is not valid in file 143
           (Item 1 from file: 5)
 17/7/1
DIALOG(R) File
                5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.
           BIOSIS NO.: 200600065391
18719996
Multiple insertional events, restricted by the genetic background,
have led
  to acquisition of pathogenicity island IIJ96-like domains among
  Escherichia coli strains of different clinical origins
AUTHOR: Bidet Philippe; Bonacorsi Stephane; Clermont Olivier; De
Montille
  Caroline; Brahimi Naima; Bingen Edouard (Reprint)
AUTHOR ADDRESS: Hop Robert Debre, Microbiol Serv, 48 Bd Serurier,
F-75395
 Paris 19, France**France
AUTHOR E-MAIL ADDRESS: edouard.bingen@rdb.ap-hop-paris.fr
JOURNAL: Infection and Immunity 73 (7): p4081-4087 JUL 2005 2005
ISSN: 0019-9567
DOCUMENT TYPE: Article
RECORD TYPE: Abstract
LANGUAGE: English
ABSTRACT: We investigated the dissemination of pathogenicity island
(PAI)
  IIJ96-Iike elements (hra, hly, cnfI, and pap) among 455 Escherichia
coli
  isolates from children and adults with urinary tract infection
(UTI),
  neonates with meningitis or colonized healthy neonates, and 74
reference
  strains by means of PCR phylogenetic grouping, ribotyping, and PCR
  analysis of virulence genes. Colocalization of these genes was
  by pulsed-field gel electrophoresis followed by Southern
hybridization
  and long-range PCR (LRPCR) between the hra and the papG alleles.
  Site-specific insertion of the PAI was determined by LRPCR between
  and tRNA flanking sequences. hra, hly, and cnfI were found in 113
  isolates and consistently colocalized, constituting the backbone of
PAT
```

IIJ96-like domains. The prevalence of PAI IIJ96-like domains was significantly higher among UTI isolates than among neonatal meningitis

and commensal isolates. These domains were restricted to a few ribotypes

of group B2. In contrast to the consistent colocalization of hra, hly,

and cnfI, the pap operon was varied: 12% of strains exhibited an allelic

exchange of the papG class III allele (papGIII) for the papG class II

allele (papGII) (only UTI isolates), and the pap operon was deleted in 23% of strains. No strains harbored papGIII outside the PAI, which

appears to be the only source of this allele. PAI IIJ96-like domains were

inserted in the vicinities of three different tRNAs-pheU (54%), leuX (29%), and pheV (15%)-depending on the genetic backgrounds and origins of the isolates. Multiple insertional events restricted by the

genetic background have thus led to PAI IIJ96 acquisition. Specific genetic backgrounds and insertion sites may have played a role in additional recombination processes for E. coli adaptation to different

ecological niches.

17/7/2 (Item 2 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

17916178 BIOSIS NO.: 200400286935

Inhibition of late airway responses in ovine and murine models of asthma by

oral heparin-tetrasaccharide

AUTHOR: Ahmed Tahir (Reprint); Abraham William M

AUTHOR ADDRESS: Pulmonary Division, Mount Sinai Medical Center, 4300 Alton

Road, Miam Beach, FL, 33140, USA**USA

AUTHOR E-MAIL ADDRESS: tahmed@msmc.com

JOURNAL: FASEB Journal 18 (4-5): pAbst. 769.10 2004 2004

MEDIUM: e-file

CONFERENCE/MEETING: FASEB Meeting on Experimental Biology:

Translating the

Genome Washington, District of Columbia, USA April 17-21, 2004; 20040417

SPONSOR: FASEB

ISSN: 0892-6638 _(ISSN print)

DOCUMENT TYPE: Meeting; Meeting Abstract

RECORD TYPE: Abstract

LANGUAGE: English

ABSTRACT: Inhaled heparin-derived oligosaccharides attenuate allergic airway responses in sheep. The anti-allergic activity resides in a tetrasaccharide (Tetra) sequence (J Appl Physiol 88:1721, 2000; AJR CCM

1998; 157:A826). Here, we studied the effects of orally administered Tetra on antigen-induced early (EAR) and late (LAR) airway responses and

airway hyperresponsiveness (AHR) in allergic sheep and eosinophil

in a murine model of asthma. Specific lung resistance (SRL) was measured

in 8 allergic sheep before and for 8 h after challenge with Ascaris suum

antigen, without and after treatment with oral Tetra (0.06, 0.125) and

 $0.25~\mathrm{mg/kg}$). AHR was based on the change in the dose inhaled carbachol

which increased SRL by 400% (PD400) before and 24h after antigen challenge. BALB/c mice were sensitized, challenged with aerosolized ovalbumin, following pretreatment with 100 ug oral Tetra or placebo, and

eosinophil cell count in BAL was measured 24 h later. In sheep, Tetra at

0.06, 0.125 and 0.25 mg/kg inhibited the EAR by 29%, 67%, and 74%, while

LAR was inhibited by 2%, 59% and 72%, respectively. Tetra also inhibited

the antigen-induced AHR dose-dependently: PD400 was 46% (% pre-challenge

value) in controls as compared to 100% with 0.25 mg/kg Tetra. In mice, $\,$

Tetra inhibited the antigen induced increase in BAL eosinophils by 51%.

These data demonstrate that orally administered heparin-derived Tetra may

have therapeutic potential as an anti-inflammatory agent. Supp by Ivax.

17/7/3 (Item 3 from file: 5)

DIALOG(R) File 5: Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

17378854 BIOSIS NO.: 200300335597

Swapping Solvent-Exposed Hydrophobic Amino Acids between the Factor VIII

and Factor V ${\it C2}$ Domains Causes Reciprocal Changes in Phospholipid Affinities.

AUTHOR: Gilbert Gary E (Reprint); Kaufman Randal J (Reprint); Price Patricia (Reprint); Miao Hongzhi (Reprint); Sirachainan Nongnuch (Reprint); Deng Xuehong (Reprint); Pipe Steven (Reprint) AUTHOR ADDRESS: Medicine, VA Hospital, Brigham and Women's Hospital,

Harvard Medical School, Boston, MA, USA**USA

JOURNAL: Blood 100 (11): pAbstract No. 997 November 16, 2002 2002

MEDIUM: print

CONFERENCE/MEETING: 44th Annual Meeting of the American Society of Hematology Philadelphia, PA, USA December 06-10, 2002; 20021206

SPONSOR: American Society of Hematology

ISSN: 0006-4971

DOCUMENT TYPE: Meeting; Meeting Abstract; Meeting Poster

RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Factor VIII (fVIII) binds to phospholipid (PL) membranes, von

Willebrand factor (vWf) and factor IXa (Gilbert, Thromb. Haemost. 2001

Supp OC1659) via motifs localized to the C2 domain. We have shown that PL binding and vWf binding are mediated by two pairs of hydrophobic

residues, each displayed at the tips of b-hairpin turns. The homologous

hydrophobic residues in the ${\rm C2}$ domain of factor ${\rm V}$ also contribute to ${\rm PL}$

binding. We hypothesized that the solvent-exposed hydrophobic residues of

the fVIII C2 domain make specific contacts with PL that may explain the

different PL binding properties of the two proteins. To test this hypothesis we have prepared fVIII/fV hybrid mutants in which either amino

 $\operatorname{acid}(s)$ of the fVIII C2 domain were changed to the homologous residues of

fV (Mutants 1-M/F 2199/2200 W/W, 2-L/L 2251/2252 L/S, and 3-M/F/L 2199/2200/2252 W/W/S) or the complementary fV/fVIII hybrid mutations in which amino acids of the fV C2 domain were changed to the homologous residues of fVIII (Mutants 4 W/W 2063/2064 M/F, 5 L/S 2116/2117 L/L, and 6 W/W/S 2063/2064/2117 M/F/L). All mutants were expressed in COS-1 cells and protein purified by immunoaffinity chromatography or FPLC for fVIII and fV, respectively. fVIII/fV hybrid

mutants 1-3 had fVIII specific activities that equaled or exceeded wild-type (WT) fVIII in both 1-stage and 2-stage commercial aPTT assays

that contain a large excess of PL. In a PL-limiting Xase assay (sonicated

vesicles of PS:PE:PC 4:20:76, 0.15 muM PL) the mutants had 80-95% reduction in specific activity. Phospholipid titration indicated that the

apparent phospholipid affinities were higher, lower, and unchanged for

mutants 1-3. The maximum catalytic rate with saturating PL and factor IXa

was within 25% of WT fVIII for mutants 1-3. The specific activity of the

 $\ensuremath{\text{fV/fVIII}}$ hybrids exceeded those of WT fV in a prothrombin time assay with

fV deficient plasma. Preliminary data indicate that the relative affinities for PL are > 10-fold higher than WT fV for mutants 5 and 6

which contain the Ser-->Leu change in the second hydrophobic spike. In

addition, activity of mutants 5 and 6 is completely suppressed by phospholipid concentrations > 1 muM. Together, these results ndicate

that Leu 2252 vs. Ser in the second hydrophobic spike enhances PL affinity at least 9-fold for both fVIII and fV. In contrast, the fV Trp-Trp 2163/64 pair, constituting the residues of the 1st hydrophobic

spike, appears to confer a somewhat higher affinity than the Met-Phe 2199/00 pair of fVIII. Thus, it appears that fVIII relies particularly on

the second hydrophobic spike for high affinity PL binding, whereas ${\sf fV}$

preferentially requires residues in the first hydrophobic spike.

17/7/4 (Item 4 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

17300103 BIOSIS NO.: 200300258747

Ganglioside-mediated signaling in the control of nerve regeneration. AUTHOR: Schnaar Ronald L (Reprint); Fredericks Gregory J; Vyas Alka A AUTHOR ADDRESS: Depts. of Pharmacology and Neuroscience, The Johns Hopkins

School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA**USA

AUTHOR E-MAIL ADDRESS: schnaar@jhu.edu; gfrederi@mail.jhmi.edu; avays@jhmi.edu

JOURNAL: FASEB Journal 17 (4-5): pAbstract No. 353.2 March 2003 2003 MEDIUM: e-file

CONFERENCE/MEETING: FASEB Meeting on Experimental Biology:

Translating the

Genome San Diego, CA, USA April 11-15, 2003; 20030411

SPONSOR: FASEB

ISSN: 0892-6638 _(ISSN print)

DOCUMENT TYPE: Meeting; Meeting Abstract

RECORD TYPE: Abstract

LANGUAGE: English

ABSTRACT: Gangliosides are the major sialoglycoconjugates in the brain.

Some ganglioside functions are mediated by binding to a brain lectin,

myelin-associated glycoprotein (MAG, Siglec-4), found on myelin membranes

throughout the nervous system. MAG stabilizes axon-myelin interactions

and inhibits nerve regeneration after injury. MAG binds to the major brain gangliosides GD1a and GT1b. MAG-mediated inhibition of neurite outgrowth from primary neurons in vitro is attenuated by: (i) neuraminidase; (ii) blocking ganglioside biosynthesis; (iii) genetically

modifying gangliosides; and (iv) IgG-class anti-GD1a or anti-GT1b
monoclonal antibodies. Furthermore, neurite outgrowth inhibition is
mimicked by multivalent clustering of GD1a or GT1b using
pre-complexed

antibodies. MAG and GD1a clustering both inhibit neurite outgrowth from $\$

NG108-15 neuroblastoma-glioma cells. After neuraminidase treatment

convert GD1a to GM1, neither anti-GD1a nor anti-GM1 antibodies inhibited

neurite outgrowth. Inhibition via GD1a clustering was mediated by ${\tt RhoA}$

GTPase. GD1a clustering activated RhoA and treatment with a RhoA inhibitor, C3, blocked neurite outgrowth inhibition. Transfected GFP-RhoA

redistributed from the cell body to neurites upon ganglioside clustering

and prior to neurite retraction. These data implicate gangliosides as

ligands linking MAG binding to neurite outgrowth inhibition via RhoA activation. Supp. by PHS grant NS37096. GJF is a Howard Hughes Predoctoral Fellow.

17/7/5 (Item 5 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

16891047 BIOSIS NO.: 200200484558

Efficient expression of the alpha-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA5Leu

AUTHOR: Dobrindt U; Emody L; Gentschev I; Goebel W; Hacker J (Reprint) AUTHOR ADDRESS: Institut fuer Molekulare Infektionsbiologie, Universitaet

Wuerzburg, Roentgenring 11, 97070, Wuerzburg, Germany**Germany JOURNAL: MGG Molecular Genetics and Genomics 267 (3): p370-379 May, 2002

MEDIUM: print ISSN: 1617-4615

2002

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries two alpha-haemolysin determinants which are located on different

pathogenicity islands (PAI I536 and PAI II536). PAI II536 is associated

with the tRNA gene leuX. The leuX-encoded tRNA5Leu is required for the efficient expression of the hly determinants in strain

 $536.\ \mbox{HlyA}$ levels were reduced and secretion of the protein was delayed in

the leuX-negative mutant strain 536DELTA102. The lack of a functional tRNA5Leu resulted in a decrease in hly transcript levels in comparison to the wild-type strain. Analysis of several genes whose

products are involved in the regulation of hly expression revealed that

levels of RfaH and Hha, as well as the corresponding rfaH and hha transcripts, were higher in the leuX-negative background, whereas the expression of tolC and hns was not influenced by the leuX genotype. The analysis of hly transcript levels in hha deletion mutants of the E. coli strains 536 and 536DELTA102 demonstrated that the

increase in hha expression is partially responsible for the reduction in

hly transcript levels in the leuX-negative background. These results demonstrate that the tRNA5Leu affects the expression of the alpha-haemolysin determinant at different levels in a regulatory ascade,

and imply that, in addition to Hha, at least one further, as yet unidentified, regulatory factor must be involved in the regulation of hly

transcription in the uropathogenic E. coli strain 536.

17/7/6 (Item 6 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

16630291 BIOSIS NO.: 200200223802

Effect of COX inhibitors on electrolyte conductances of the frog gastric

epithelium

AUTHOR: Carrasquer G (Reprint); Li M (Reprint)

AUTHOR ADDRESS: Dept. of Medicine/Nephrology, Univ. of Lou., Louisville,

KY, USA**USA

JOURNAL: Journal of the American Society of Nephrology 11 (Program and

Abstract Issue): p26A September, 2000 2000

MEDIUM: print

CONFERENCE/MEETING: 33rd Annual Meeting of the American Society of Nephrology and the 2000 Renal Week Toronto, Ontario, Canada October

10-16, 2000; 20001010

SPONSOR: American Society of Nephrology

ISSN: 1046-6673

DOCUMENT TYPE: Meeting; Meeting Abstract; Meeting Poster

RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Other than the electrogenic Na+/K+-ATPase (BL or nutrient (N)

memb.) and H+/K+-ATPase (apical or secretory (S) memb.) pumps, the main

conductances (g's) in the oxynctic cells are: the Na-Cl (or NA-K-2Cl) $\,$

symport and the K+ g in the N memb. and the K+ and Cl- g's in the S memb.

Cuppoletti et al. have found recently (Ped. Pulm. Supp. 19, 1999) that the COX inhibitor ibuprofen (IBU) increases the current in C1C-2 C1

channels (S memb Cl-g). Present experiments were done using an in vitro

preparation of the frog gastric mucosa to study electrophysiological and

H+ secretion (H sec) effects of COX inhibitors. With addition of $5 \times 10^{-4} \text{ M}$

IBU or 10-4 M meclofenamate (MEC) to the N soln, the short circuit (Isc)

decreased, in 20min, by 45 from 56 muA/1.3 cm2; the transepithelial resistance (R) increased by 190 from 437 OMEGAXcm2; the transepithelial

potential (PD) decreased by 18 from 26 mV; and H+ secretion (H sec) was

not affected. In order to study the effect of IBU and MEC on the ionic

partial conductivity's (pg), the ion substitution method was used. While both

COX inhibitors decreased significantly the pg's of the Na-Cl symport and

K+ in the N memb. and the K+ pg in the S memb., the Cl- pg in the S memb

increased by 50% with IBU and was not affected by MEC. The increase of

the Cl- pg in the S memb by IBU in the in vitro gastric mucosa confirms

the findings on the Cl- channel by Cuppoletti et al. The disruptive effects on the pg's, Isc, R, and PD by the two inhibitors, support the

well known deleterious effects that, particularly, inhibitors of COX-1 have on the stomach and the kidney. The lack of effect on H sec

suggests that neither of the Na+ or H+ pumps were affected by these inhibitors.

17/7/7 (Item 7 from file: 5) DIALOG(R) File 5:Biosis Previews(R) (c) 2008 The Thomson Corporation. All rts. reserv. 16627057 BIOSIS NO.: 200200220568 Three hydrophobic amino acids in the factor VIII C2 domain mediate interactions with phospholipid and with factor IXa AUTHOR: Gilbert Gary E (Reprint); Kaufman Randal J; Ahmed Ishtiaq (Reprint) ; Miao Hongzhi; Pipe Steven AUTHOR ADDRESS: Medicine Depts, VA Boston Healthcare System, Brigham Women's Hosp, Harvard Med. School, Boston, MA, USA**USA JOURNAL: Blood 98 (11 Part 1): p705a November 16, 2001 2001 MEDIUM: print CONFERENCE/MEETING: 43rd Annual Meeting of the American Society of Hematology, Part 1 Orlando, Florida, USA December 07-11, 2001; 20011207 SPONSOR: American Society of Hematology ISSN: 0006-4971 DOCUMENT TYPE: Meeting; Meeting Abstract RECORD TYPE: Abstract LANGUAGE: English ABSTRACT: Factor VIII (fVIII) binds to phospholipid (PL) membranes, to von Willebrand factor (vWf) and to factor IXa (Gilbert, Thromb. Haemost. 2001 Supp OC1659) via motifs localized to the C2 domain. We have shown that PL binding and vWf binding are mediated by two pairs of hydrophobic residues, each displayed at the tips of beta-hairpin turns. The homologous hydrophobic residues in the C2 domain of factor V also contribute to PL binding. We hypothesized that the solvent-exposed hydrophobic residues of the fVIII C2 domain make specific contacts with both PL and factor IXa rather than merely providing hydrophobic surface area. To test this hypothesis we have prepared 3 fVIII mutants in which amino acid(s) were changed to the homologous residues of factor V. Mutants were expressed in COS cells and protein purified by immunoaffinity chromatography. Mutants 1-M/F 2199/2200 W/W, 2-L/L 2251/2252 L/S, and 3-M/F/L 2199/2200/2252 W/W/S had specific activity in the range of 90-180% of wild type fVIII in both 1-stage and 2-stage commercial aPTT assays that contain a large excess of PL. In a PL-limiting Xase assay (sonicated vesicles of PS:PE:PC 4:20:76, 0.15 muM

PL) the mutants had >95% (1), >95% (2), and 85% (3) reduction in

specific

activity. Phospholipid titration indicated that $\max \max$ activity for the

mutants occurred at concentrations of 800 (1), 800 (2), and 200 muM (3)

vs. 4 muM for wild type fVIII. In a Xase assay with saturating PL, 1000

muM, the apparent affinity of factor IXa for the mutants was decreased

approximately 4-fold for the 3 mutants and the maximum catalytic rate

decreased by approximately 50 (1), 80 (2), and 50% (3). When the PS content was increased from 4% to 15% PS, all 3 mutants supported Xase

activity within 60% of wild type fVIII although the apparent affinity for $\frac{1}{2}$

phospholipid was reduced 4-8 fold and for factor IXa was reduced 5-fold.

Together these results indicate that the hydrophobic spikes composed of

 $\mbox{M/F2199/2200}$ and $\mbox{L/L2251/2252}$ mediate interactions with both phospholipid

and factor IXa that are distinct from those of the homologous residues of

factor V. Equal or increased activity of M/F/L 2199/2200/2252 W/W/S $_{\rm VS}$

either mutant in which a single hydrophobic pair was altered suggests

that the two hydrophobic pairs may interact cooperatively in the presence

of PL and factor IXa.

17/7/8 (Item 8 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

15616718 BIOSIS NO.: 200000335031

Influence of pathogenicity islands and the minor leuX-encoded tRNA5Leu on the proteome pattern of the uropathogenic Escherichia coli strain 536

AUTHOR: Piechaczek Katharine; Dobrindt Ulrich; Schierhorn Angelika; Fischer

Gunter S; Hecker Michael; Hacker Joerg (Reprint)

AUTHOR ADDRESS: Institut fuer Molekulare Infektionsbiologie, Roentgenring

11, D-97070, Wuerzburg, Germany**Germany

JOURNAL: IJMM International Journal of Medical Microbiology 290 (1): p

75-84 March, 2000 2000

MEDIUM: print ISSN: 1438-4221

DOCUMENT TYPE: Article

RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries four distinct DNA regions in its chromosome, termed pathogenicity

islands (PAIs I536 to IV536). Each of these PAIs encodes at least one

virulence factor. All four PAIs are associated with tRNA genes. PAI 1536

and PAI II536 can be spontaneously deleted from the chromosome by homologous recombination between flanking direct repeats. The deletion of PAI II536 results in the truncation of the associated gene leuX encoding the tRNA5Leu. This tRNA influences the expression of various virulence traits. In order to get a deeper insight

into the role of PAI I536/II536 and of the tRNA5Leu for the protein expression, the protein expression patterns of Escherichia coli 536 and

different derivatives were studied. Differences in the protein expression

patterns of the wild-type strain Escherichia coli 536, its mutants 536-21

(PAI I536-, PAI II536-, leuX-), 536DELTA102 (PAI I536+, PAI II536+, leuX-) as well as of the strain 536R3 (PAI I536-, PAI II536-, leuX+) were analyzed by two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF mass spectrometry. We identified about 39

different intracellular proteins whose expression is markedly altered in

the different strain backgrounds. These differences can be linked either

to the presence or absence of the PAI I536 and PAI II536 or to that of

the tRNA gene leuX. The identities of 34 proteins have been determined by MALDI-TOF-MS. The identification of five proteins was not

possible. The results suggest that proteome analysis is an efficient approach to study differences in global gene expression. The comparison

of protein expression patterns of the uropathogenic E. coli strain 536

and different derivatives revealed that in this strain the expression of

various proteins including those encoded by many housekeeping genes is

affected by the presence of PAI I536 and Pai II536 or by that of the $\ensuremath{\text{tRNA5Leu}}$.

17/7/9 (Item 9 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

15307143 BIOSIS NO.: 200000025456

Microglia only weakly present glioma antigen to cytotoxic T cells

AUTHOR: Fluegel Alexander; Labeur Marta S; Grasbon-Frodl Eva-Maria;

Kreutzberg Georg W; Graeber Manuel B (Reprint)

AUTHOR ADDRESS: Department of Neuromorphology, Max-Planck-Institute of Neurobiology, Am Klopferspitz 18a, 82152, Martinsried,

Germany**Germany

JOURNAL: International Journal of Developmental Neuroscience 17 (5-6): p

547-556 Aug.-Oct., 1999 1999

MEDIUM: print ISSN: 0736-5748

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Microglia and brain macrophages represent a substantial fraction

of the cells present in astrocytic gliomas. Yet, the functional role of

microglia in these tumors has remained enigmatic. We have compared rat

microglial cells and thymocytes with regard to their ability to present

purified CNS proteins, MBP and S100beta, as well as C6 glioma cells to

specific T lymphocytes. In addition, a new cytotoxicity assay based on

fluorescence activated cell sorting of tumor cells carrying the green

fluorescent protein was established. This assay was used to determine the

influence of microglial population density and activational state on C6

glioma cell survival in vitro. Microglia were consistently found to present MBP and S100beta less efficiently than thymocytes and appeared to

be unable to present C6 glioma cells to cytotoxic T lymphocytes. In addition, high concentrations of microglial cells attenuated the cytotoxic effects of these T cells on C6 glioma cells whereas thymocytes

significantly supp orted their specific killing. It is suggested that defense functions of microglial cells against C6 glioma are severely

compromised and that the observed deficiency in antigen presentation may

play an important role for astrocytoma growth in vivo.

```
DIALOG(R) File 5: Biosis Previews (R)
(c) 2008 The Thomson Corporation. All rts. reserv.
14524127
          BIOSIS NO.: 199800318374
Novel temperature-sensitive mutants of Escherichia coli that are
unable to
  grow in the absence of wild-type tRNA6Leu
AUTHOR: Nakayashiki Toru; Inokuchi Hachiro (Reprint)
AUTHOR ADDRESS: Dep. Biophysics, Faculty Science, Kyoto Univ.,
  Kyogo 606-8502, Japan**Japan
JOURNAL: Journal of Bacteriology 180 (11): p2931-2935 June, 1998 1998
MEDIUM: print
ISSN: 0021-9193
DOCUMENT TYPE: Article
RECORD TYPE: Abstract
LANGUAGE: English
ABSTRACT: Escherichia coli has only a single copy of a gene for
tRNA6Leu
  (Y. Komine et al., J. Mol. Biol. 212:579-598, 1990). The anticodon
of
  this tRNA is CAA (the wobble position C is modified to
  02-methylcytidine), and it recognizes the codon UUG. Since UUG is
also
  recognized by tRNA4Leu, which has UAA (the wobble position U is
modified
  to 5-carboxymethylaminomethyl-02-methyluridine) as its anticodon,
  tRNA6Leu is not essential for protein synthesis. The BT63 strain
has a
  mutation in the anticodon of tRNA6Leu with a change from CAA to
  CUA, which results in the amber suppressor activity of this strain (
  supP, Su+6). We isolated 18 temperature-sensitive (ts) mutants of
  the BT63 strain whose temperature sensitivity was complemented by
  introduction of the wild-type gene for tRNA6Leu. These
tRNA6Leu-requiring
  mutants were classified into two groups. The 10 group I mutants had
  mutation in the miaA gene, whose product is involved in a
  modification of tRNAs that stabilizes codon-anticodon interactions.
  Overexpression of the gene for tRNA4Leu restored the growth of
group I
  mutants at 42degree C. Replacement of the CUG codon with UUG
  efficiency of translation in group I mutants. These results suggest
  unmodified tRNA4Leu poorly recognizes the UUG codon at 42degree C
and
  that the wild-type tRNA6Leu is required for translation in order to
  maintain cell viability. The mutations in the six group II mutants
  were complemented by introduction of the gidA gene, which may be
involved
```

in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA6Leu remains to be investigated.

? ds

RECORD TYPE: Abstract

```
Set
        Items
                Description
S1
          581
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
AND (PAI
              OR LEUX OR PATHOGENICITY (W) ISLAND)
S2
          174
                RD S1
                      (unique items)
S3
          139
                S2 NOT PY>2006
S4
            0
               S3 AND (LEUX OR TRNA5LEU)
               S3 AND TRNA
S5
            1
S6
            0
                S3 AND SUPP
S 7
          462
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND (TYPHI OR
DUBLIN OR
              TYPHIMURIUM) AND (PAI OR LEUX OR PATHOGENICITY(W) ISLAND)
S8
          163
                RD S7 (unique items)
S9
            1
                S8 AND (LEUX OR TRNA OR SUPP)
S10
          113
              E1-E5
S11
          46 AU='COHEN, P. S.'
          159
              S10 OR S11
S12
S13
            3 S12 AND (LEUX OR TRNA OR SUPP)
         3901 (LEUX OR TRNA5LEU OR SUPP)
S14
         3349 RD S14
S15
                       (unique items)
         2662 S15 NOT PY>2005
S16
S17
           87
                S16 AND (DELET? OR MUTAT? OR VARIANT? OR MUTEIN OR
AVIRULE-
             NT OR ATTENUAT?)
? t s17/7/11-87
>>>Format 7 is not valid in file 143
 17/7/11
           (Item 11 from file: 5)
DIALOG(R) File
                5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.
          BIOSIS NO.: 199800272849
14478602
The leuX-encoded tRNA5Leu but not the pathogenicity islands I
  and II influence the survival of the uropathogenic Escherichia coli
  strain 536 in CD-1 mouse bladder mucus in the stationary phase
AUTHOR: Dobrindt Ulrich; Cohen Paul S; Utley Maryjane; Muehldorfer
Inqe;
  Hacker Joerg (Reprint)
AUTHOR ADDRESS: Inst. Mol. Infektionsbiol., Univ. Wuerzburg,
Roentgenring
  11, 97070 Wuerzburg, Germany ** Germany
JOURNAL: FEMS Microbiology Letters 162 (1): p135-141 May 1, 1998 1998
MEDIUM: print
ISSN: 0378-1097
DOCUMENT TYPE: Article
```

LANGUAGE: English

ABSTRACT: The uropathogenic Escherichia coli strain 536 carries two pathogenicity islands, each of which is associated with either of the

tRNA genes selC or leuX, respectively. Growth competition in CD-1 mouse mucus between the wild-type strain E. coli 536, its leuX mutant 536DELTA102 and its mutant 536R3, lacking both pathogenicity islands but expressing a functional tRNA5Leu, revealed a major impact of leuX on E. coli survival in bladder mucus. The impaired survival in CD-1 mouse mucus observed upon deletion of the leuX gene was abolished after complementation with the leuX gene. The survival of bacteria in bladder mucus was not influenced by the

presence of pathogenicity islands I and II.

17/7/12 (Item 12 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

14151982 BIOSIS NO.: 199799786042

The Pai-associated leuX specific tRNA-5-Leu affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase

expression

AUTHOR: Ritter Angelika; Gally David L; Olsen Peter B; Dobrindt Ulrich;

Friedrich Arne; Klemm Per; Hacker Joerg (Reprint)

AUTHOR ADDRESS: Inst. Molekulare Infektionsbiologie, Roentgenring 11, D-97070 Wurzburg, Germany**Germany

JOURNAL: Molecular Microbiology 25 (5): p871-882 1997 1997

ISSN: 0950-382X

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: The uropathogenic Escherichia coli strain 536 (06:K15: H31) carries two large chromosomal pathogenicity islands (Pals). Both Pais are

flanked by tRNA genes. Spontaneous deletion of Pal II results in truncation of the leuX tRNA-5-Leu gene. This tRNA is required for the expression of type 1 fimbriae (Fim) and other virulence factors. Transcription of fimA, encoding the major type 1 fimbrial subunit is controlled by an invertable DNA switch. The inversion is catalysed two

recombinases, FimB and FimE. FimB is able to turn the switch on, $\ensuremath{\mathsf{FimE}}$

only off. The fimB gene of strain 536 contains five TTG codons recognized

by tRNA-5-Leu fimE contains only two. It was proposed that turning on the

fim switch requires efficient translation of FimB, in turn requiring tRNA-5-Leu. Strains in which the TTG codons in fimB were replaced with

CTG codons at the wild-type locus were able to produce type 1 fimbriae in

the absence of leuX. fimB transcription was influenced by the presence of leuX, but only slightly affected by the presence or absence of leuX codons in fimB. FimB translation was significantly higher from codon-replaced fimB genes than that of wild type fimB genes

in various strain backgrounds. The fim switch was shown to be switched

off in leuX- derivatives of E. coli 536, but could be found in the on position when the codon-altered fimB gene was exchanged into the chromosome of these strains. From these data, it is apparent that tRNA-5-Leu is required for efficient translation of FimB, in turn, leading to type 1 fimbrial expression.

17/7/13 (Item 13 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

12118001 BIOSIS NO.: 199497139286

Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type

pathogen

AUTHOR: Blum Gabriele; Ott Manfred; Lischewski Axel; Ritter Angelika; Imrich Horst; Tschaepe Helmut; Hacker Joerg (Reprint)
AUTHOR ADDRESS: Inst. Mol. Infektionsbiol., Univ. Wuerzburg,

Roentgenring

11, D-97070 Wuerzburg, Germany **Germany

JOURNAL: Infection and Immunity 62 (2): p606-614 1994 1994

ISSN: 0019-9567

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Uropathogenic Escherichia coli 536 (06:K15:H31) carries two unstable DNA regions, which were shown to be responsible for virulence.

These regions, on which the genes for hemolysin production (hly) and P-related fimbriae (prf) are located, are termed pathogenicity islands

(PAI) I and II, and were mapped to positions 82 and 97, respectively, on

the E. coli K-12 linkage map. Sequence analysis of the PAI region junction sites revealed sequences of the leuX and selC loci specific for leucine and selenocysteine tRNAs. The tRNA loci function as

the targets for excision events. Northern (RNA) blot analysis revealed

that the sites of excision are transcriptionally active in the wild-type

strain and that no tRNA-specific transcripts were found in the deletion mutant. The analysis of deletion mutants revealed that the excision of these regions is specific and involves direct repeats of 16 and 18 nucleotides, respectively, on both sides of the deletions. By using DNA long-range mapping techniques, the size of PAI 1, located at position 82, was calculated to be 70 kb, while PAI II,

mapped at position 97, comprises 190 kb. The excision events described

here reflect the dynamics of the E. coli chromosome.

17/7/14 (Item 14 from file: 5)

DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

10689364 BIOSIS NO.: 199191072255

TEMPERATURE SENSITIVITY CAUSED BY MISSENSE SUPPRESSOR SUPH AND AMBER SUPPRESSOR SUPF IN ESCHERICHIA-COLI

AUTHOR: THORBJARNARDOTTIR S (Reprint); BJORNSSON A; AMUNDADOTTIR L; EGGERTSSON G

AUTHOR ADDRESS: INST BIOL, UNIV ICELAND, 108 REYKJAVIK,

ICELAND**ICELAND

JOURNAL: Journal of Bacteriology 173 (1): p412-416 1991

ISSN: 0021-9193

DOCUMENT TYPE: Article RECORD TYPE: Abstract

LANGUAGE: ENGLISH

ABSTRACT: The temperature-sensitive missense suppressor supH and amber suppressor supP in Escherichia coli are mutations of the serU and leuX genes, respectively. The supH tRNA, tRNACAASER, is expected to recognize UUG codons, which are normally read by the tRNACAALeu and tRNAUAALeu, coded for bu the leuX gene and the leuZ gene, respectively. We show that supP and supH are incompatible and that strains carrying both supP and a restrictive rpsL allele are temperature sensitive. It is suggested that the temperature sensitivity

of both $\sup H$ and $\sup P$ strains is caused by deficient reading of UUG codons by tRNAUAALeu.

17/7/15 (Item 15 from file: 5)

DIALOG(R) File 5: Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

10667128 BIOSIS NO.: 199191050019

IDENTIFICATION OF A DNA SEQUENCE RESPONSIBLE FOR BINDING OF THE 1 25 DIHYDROXYVITAMIN D-3 RECEPTOR AND 1 25 DIHYDROXYVITAMIN D-3 ENHANCEMENT

OF MOUSE SECRETED PHOSPHOPROTEIN 1 SPP-1 OR OSTEOPONTIN GENE EXPRESSION

AUTHOR: NODA M (Reprint); VOGEL R L; CRAIG A M; PRAHL J; DELUCA H F; DENHARDT D T

AUTHOR ADDRESS: DEP BONE BIOLOGY OSTEOPOROSIS RESEARCH, MERCK SHARP DOHME

RESEARCH LABORATORIES, WEST POINT, PA 19486, USA**USA

JOURNAL: Proceedings of the National Academy of Sciences of the United States of America 87 (24): p9995-9999 1990

ISSN: 0027-8424

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: ENGLISH

ABSTRACT: Secreted phosphoprotein 12 (Supp-1; osteopontin) is one of the abundant noncollagenous proteins in bone matrix and is produced by

osteoblasts. We examined the promoter region of the mouse $\operatorname{Spp-1}$ gene and

identified a sequence responsible for 1,25-dihydroxyvitamin D3 enhancement of the Spp-1 gene expression. This 24-base-pair (bp) sequence

(vitamin D response element) is located 761 bp upstream of the transcription start site and consists of two direct repeats of a unique

9-bp motif, AGGTTCACG. The vitamin D response element confers responsiveness of a heterologous promoter to 1,25-dihydroxyvitamin D3 in

a position- and orientation-independent and copy-number-dependent manner.

The basal level of expression of the receptor constructs containing this

sequence and its response to 1,25-dihydroxyvitamin D3 were not affected

by cotreatment with transforming growth factor β or the tumor promoter phorbol 12-myristate 13-acetate or by cotransfection with a JUN

expression vector. The vitamin D response element forms DNA-protein complexes, as indicated by gel-retardation assays. The addition of a monoclonal antibody raised against the vitamin D receptor further retarded the mobility of the DNA-protein complex. Another antibody that

recognizes the DNA binding region of the vitamin D receptor attenuated its binding to the sequence. These results indicate that this 24-bp sequence containing two 9-bp motifs binds to the vitamin

receptor and mediates the vitamin D3 enchancement of murine $\operatorname{Spp-1}$ gene

expression.

DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

09715504 BIOSIS NO.: 198988030619

PCLODF13-ENCODED BACTERIOCIN RELEASE PROTEINS WITH SHORTENED CARBOXYL-TERMINAL SEGMENTS ARE LIPID MODIFIED AND PROCESSED AND FUNCTION

IN RELEASE OF CLOACIN DF13 AND APPARENT HOST CELL LYSIS AUTHOR: LUIRINK J (Reprint); CLARK D M; RAS J; VERSCHOOR E J; STEGEHUIS F;

DE GRAAF F K; OUDEGA B

AUTHOR ADDRESS: DEP MOL MICROBIOL, BIOL LAB, VRIJE UNIV, DE BOELELAAN 1087,

1081 HV AMSTERDAM, NETHERLANDS**NETHERLANDS

JOURNAL: Journal of Bacteriology 171 (5): p2673-2679 1989

ISSN: 0021-9193

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: ENGLISH

ABSTRACT: By oligonucleotide-directed mutagenesis, stop codon mutations were introduced at various sites inthe pCloDF13-derived bacteriocin release protein (BRP) structural gene. The expression, lipid

modification (incorporation of [3H] palmitate), and processing (in the

presence and absence of globomycin) of the various carboxyl-terminal shortened BRPs were analyzed by a special electorphoresis system and immunoblotting with an antiserum raised against a synthetic BRP peptide,

and their functioning with respect to release of cloacin DF13, lethality,

and apparent host cell lysis were studied in Sup-, supF, and supP strains of Escherichia coli. All mutant BRPs were stably expressed, lipid

modified, and processed by signal peptidase II, albeit with different

efficiencies. The BRP signal peptide appeared to be extremely stable and

accumulated in induced cells. Full induction of the mutant BRPs, including the shortest containing only 4 amino acid resudues of the mature polypeptide, resulted in phospholipase A-dependent and Mg2+-suppressible apparent cell lysis. The extent of this lysis ried

withthe mutant BRP used. Induction of all mutant BRPs also prevented colony formation, whech appeared to be phospholipase A independent.

shortened BRP, containing 20 amino acid residues of the mature polypeptide, was still able to bring about the release of cloacin DF13.

The results indicated that the 8-amino-acid carboxyl-terminal segment of

the BRP contains a stong antigenic determinant and that a small segment

between amino acid residues 17 and 21, located int eh carboxyl-terminal

half of the BRP, is important for release of cloacin DF13. Either the $\ensuremath{\text{SRP}}$

stable signal peptide or the acylated amino-terminal BRP fragments (or

both) are involved in host cell lysis and lethality.

17/7/17 (Item 17 from file: 5)

DIALOG(R) File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

07611742 BIOSIS NO.: 198579030641

IDENTIFICATION OF TRANSFER RNA SUPPRESSORS IN ESCHERICHIA-COLI 4. AMBER

SUPPRESSOR SU-PLUS-6 A DOUBLE MUTANT OF A NEW SPECIES OF LEUCINE TRANSFER

RNA

AUTHOR: YOSHIMURA M (Reprint); INOKUCHI H; OZEKI H

AUTHOR ADDRESS: DEP BIOPHYS, FAC SCI, KYOTO UNIV, KYOTO 606,

JPN**JAPAN

JOURNAL: Journal of Molecular Biology 177 (4): p627-644 1984

ISSN: 0022-2836

DOCUMENT TYPE: Article RECORD TYPE: Abstract

LANGUAGE: ENGLISH

ABSTRACT: An E. coli DNA fragment containing an Su+6 amber suppressor gene

(supP) was cloned into a $\lambda gt\lambda Ch$ vector by the shotgun method, selecting a Su+6 transducing phage $\lambda pSu+6$. Through prophage integration followed by induction occurring at the transducing

region of the $\lambda pSu+6$ in Su- E. coli, a counterpart transducing phage carrying the wild-type allele (Su°6) was isolated ($\lambda pSu°6$). The fingerprint of a tRNA encoded by

 $\lambda \text{pSu}\,^\circ\text{6}$ was identical to that of an unidentified tRNAE previously reported. The cloverleaf structure of this tRNA was

determined by combining the results of tRNA analysis and DNA sequencing of the

Judging from the anticodon of 5'-CAA-3', Su°6 tRNA was identified as a new type of leucine isoacceptor in E. coli. Unlike other suppressors

analyzed, Su+6 tRNA differed by 2 nucleotides from Su°6 tRNA; one at the anticodon (CAA to CUA) and the other at the junction of D- and

anticodon-stem (A27 to G27). DNA sequence analysis revealed that a single $\,$

stretch of tRNA is flanked by the putative sequences of promoter and terminator. Thus, a single copy of the Su°6 tRNA gene constitutes a solitary tRNA transcription unit. Southern blotting showed only 1 copy

of Su°6 tRNA gene/haploid genome of E. coli. Since this single gene can mutate to the Su+6 suppressor, the Su°6 leucine tRNA may be accounted as a dispensable species among the leucine isoacceptor tRNA species. Two possible open reading frames are found immediately following the Su°6 tRNA gene.

17/7/18 (Item 18 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

07328331 BIOSIS NO.: 198478063738

PURKINJE CELL ACTIVITY IN THE PRIMATE MACACA-MULATTA FLOCCULUS DURING OPTO

KINETIC STIMULATION SMOOTH PURSUIT EYE MOVEMENTS AND VESTIBULO OCULAR

REFLEX SUPPRESSION

AUTHOR: BUTTNER U (Reprint); WAESPE W

AUTHOR ADDRESS: DEP NEUROL, UNIV DUESSELDORF, MOORENSTR 5, D-4000 DUESSELDORF, W GER**WEST GERMANY

JOURNAL: Experimental Brain Research 55 (1): p97-104 1984

ISSN: 0014-4819

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: ENGLISH

ABSTRACT: Purkinje cell (PC) activity in the flocculus of trained monkeys

[M. mulatta] was recorded during: vestibular stimulation in darkness;

suppression of the vestibulo-ocular reflex (VOR-supp) by fixation of a small light spot stationary with respect to the monkey; visual-vestibular conflict (i.e., the visual surround moves together with

the monkey during vestibular stimulation), which leads to attenuation or suppression of vestibular nystagmus; smooth pursuit eye movements; optkinetic nystagmus (OKN); and suppression of nystagmus

during optokinetic stimulation (OKN-supp) by fixation of a small light spot. Stimulus velocity corresponds then to image slip velocity.

Results were obtained from PC, which were activated with VOR-supp during rotation to the ipsilateral side. The same PC were also modulated

during smooth pursuit and visual-vestibular conflict. No tonic modulation

during constant velocity OKN occurred with slow-phase nystagmus velocities below 40-60 degrees/s. Tonic responses were only seen at

higher nystagmus velocities. Transient activity changes appeared at

beginning and end of optokinetic stimulation. PC were not modulated by

image slip velocity during OKN-supp. In primates, the same population of floccular PC is involved in different mechanisms of visual-vestibular interaction. Smooth pursuit and certain components of

OKN slow-phase velocity share the same neural pathway. The activity of

these neurons can neither be related strictly to gaze, eye or image slip

velocity; instead, their activity pattern can be best interpreted by assuming a modulation, which is complementary to that of central vestibular neurons of the vestibular nuclei, in the control of slow eye

movements.

17/7/19 (Item 19 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2008 The Thomson Corporation. All rts. reserv.

05397510 BIOSIS NO.: 197865058497 REGULATION OF BIOSYNTHESIS OF AMINOACYL TRANSFER RNA SYNTHETASES AND

TRANSFER RNA IN ESCHERICHIA-COLI PART 3 BIOCHEMICAL CHARACTERIZATION OF

REGULATORY MUTANTS AFFECTING LEUCYL TRANSFER RNA SYNTHETASE LEVELS AUTHOR: LAROSSA R A (Reprint); MAO J-I; LOW K B; SOLL D AUTHOR ADDRESS: DEP MOL BIOPHYS BIOCHEM, YALE UNIV, NEW HAVEN, CONN 06520,

USA**USA

JOURNAL: Journal of Molecular Biology 117 (4): p1049-1060 1977

ISSN: 0022-2836

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: ENGLISH

ABSTRACT: The consequences of 2 mutations, leuX and leuY, which affect the level of leucyl-tRNA synthetase on the amount of tRNA and other aminoacyl-tRNA syntheases and on the expression of the ilv and leu

operons in E. coli were studied. Neither mutation appears to alter the cellular concentrations of other aminoacyl-tRNA syntheases or

isoacceptor families. Leucyl-tRNA rather than leucyl-tRNA synthetase is

the defective control element responsible for derepression of the leu and

ilv operon in leuS31 strains. Steady-state levels of leucine, isoleucine,

valine, ppGpp, pppGpp and leucyl-tRNA, and the rate of protein synthesis

were measured in leuS+, leuS-, leuS- leuX- and leuS- leuY- strains. The levels of magic spot compounds appear to correlate with the extent

that protein synthesis is arrested rather than the concentration of limiting leucyl-tRNA.

17/7/20 (Item 20 from file: 5)

DIALOG(R)File 5:Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

04929674 BIOSIS NO.: 197662025813

MUTATIONAL PROPERTIES OF SUPP AMBER OCHRE SUPER SUPPRESSORS IN SACCHAROMYCES-CEREVISIAE

AUTHOR: GERLACH W L

JOURNAL: Molecular and General Genetics 144 (2): p213-215 1976

ISSN: 0026-8925

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: Unspecified

ABSTRACT: Mutational properties of the supP amber-ochre supersuppressor locus in S. cerevisiae are described. They are consistent

with the proposition that the supP locus encodes a protein.

17/7/21 (Item 21 from file: 5)

DIALOG(R) File 5: Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

03392637 BIOSIS NO.: 197006079183

THE EFFECT OF LIVE ATTENUATED MEASLES VIRUS VACCINE ON THE CENTRAL NERVOUS SYSTEM

BOOK TITLE: BURDZY, KRYSTINA AND P. KALLOS (EDITED BY), INTERNATIONAL ARCHIVES OF ALLERGY AND APPLIED IMMUNOLOGY. VOL. 36. SUPP.

PATHOGENESIS AND ETIOLOGY OF DEMYELINATING DISEASES. XI + 701P. ILLUS. S.

AUTHOR: KATZ S L

KARGER: BASEL, SWITZERLAND AND NEW YORK, N.Y., U.S.A

p125-133 1969

DOCUMENT TYPE: Book RECORD TYPE: Citation LANGUAGE: Unspecified

17/7/22 (Item 22 from file: 5)

DIALOG(R) File 5: Biosis Previews(R)

(c) 2008 The Thomson Corporation. All rts. reserv.

0001259504 BIOSIS NO.: 19624000007137

Lipase activity of the tubercle bacilli and atypic Mycobacteria [English

summ.]

ORIGINAL LANGUAGE TITLE: Activite lipasique des bacilles tubercu-leux et des Mycobacteries atypiques [English summ.]

AUTHOR: ANDRE JEW A; GERNEZ-RIEUX C; TACQUET A

AUTHOR ADDRESS: Inst. Pasteur Lille, France

JOURNAL: ANN INST PASTEUR [PARIS] 99 ((1)): p56-68 1960 1960

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: Unspecified

ABSTRACT: Quantitative studies on lipase activity (hydrolysis of Tweens)

and esterase activity (hydrolysis of tributyrin and triacetin) in various

mycobacteria is presented. A simple technic for the demonstration of these activities is described. According to their lipase activity, the

mycobacteria can be divided into 2 main groups: mycobacteria possessing a

weak or no activity; mycobacteria possessing a strong activity. The lipase activity is weak in all virulent and avirulent tubercle bacilli (human, bovine and avian. The lipase activity of all the atypical

photochromogeneous mycobacteria is tenfold that of typical tubercle bacilli. The lipase activity of mycobacteria belonging to other groups is

either weak (like that of typical t. b. or relatively strong (like that

of the photochromogeneous mycobacteria). Both "rapid growth" and scotochromogeneous mycobacteria groups are heterogeneous: their lipase

activity is rather strong (M. phlei QMS 11), moderate (M. lacticola) or

weak (M. fortuitum R 322) according to the strains. Mycobacteria possessing a strong lipase activity hydrolyze Tween 20 twice as rapidly

as the other Tweens. The findings are different with the simple esterases: their activity is always rather strong whichever mycobacteria

is studied. ABSTRACT AUTHORS: Authors

17/7/23 (Item 1 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

0002744017 IP ACCESSION NO: 6426156 Multiple Insertional Events, Restricted by the Genetic Background, Have Led

to Acquisition of Pathogenicity Island II sub(J96)-Like Domains among Escherichia coli Strains of Different Clinical Origins

Bidet, Philippe; Bonacorsi, Stephane; Clermont, Olivier; De Montille,

Caroline; Brahimi, Naima; Bingen, Edouard

Laboratoire d'etudes de genetique bacterienne dans les infections de l'enfant (EA3105), Universite Denis Diderot-Paris 7, Service de Microbiologie, Hopital Robert Debre (AP-HP), 75019 Paris, France

Infection and Immunity, v 73, n 7, p 4081-4087, July 2005 PUBLICATION DATE: 2005

PUBLISHER: American Society for Microbiology, 1752 N Street N.W. Washington, DC 20036 USA, [URL:http://www.asm.org/]

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 0019-9567

FILE SEGMENT: Bacteriology Abstracts (Microbiology B); Genetics

Abstracts

ABSTRACT:

We investigated the dissemination of pathogenicity island (PAI) II sub(J96)-like elements (hra, hly, cnf1, and pap) among 455 Escherichia coli

isolates from children and adults with urinary tract infection (UTI), neonates with meningitis or colonized healthy neonates, and 74 reference

strains by means of PCR phylogenetic grouping, ribotyping, and PCR analysis

of virulence genes. Colocalization of these genes was documented by pulsed-field gel electrophoresis followed by Southern hybridization and

long-range PCR (LRPCR) between the hra and the papG alleles. Site-specific

insertion of the PAI was determined by LRPCR between hra and $\ensuremath{\mathsf{tRNA}}$ flanking

sequences. hra, hly, and cnf1 were found in 113 isolates and consistently

colocalized, constituting the backbone of PAI II sub(J96)-like domains. The

prevalence of PAI II sub(J96)-like domains was significantly higher among

UTI isolates than among neonatal meningitis and commensal isolates. These

domains were restricted to a few ribotypes of group B2. In contrast to the

consistent colocalization of hra, hly, and cnf1, the pap operon was varied:

12% of strains exhibited an allelic exchange of the papG class III allele

(papGIII) for the papG class II allele (papGII) (only UTI isolates), and

the pap operon was deleted in 23% of strains. No strains harbored papGIII outside the PAI, which appears to be the only source of this allele. PAI II sub(J96)-like domains were inserted in the vicinities of

three different tRNAs-pheU (54%), leuX (29%), and pheV (15%)-depending on the genetic backgrounds and origins of the isolates.

Multiple insertional events restricted by the genetic background have thus

led to PAI II sub(J96) acquisition. Specific genetic backgrounds and insertion sites may have played a role in additional recombination processes for E. coli adaptation to different ecological niches.

17/7/24 (Item 2 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

0002464086 IP ACCESSION NO: 5594999 Transient IL-7/IL-7R Signaling Provides a Mechanism for Feedback Inhibition

of Immunoglobulin Heavy Chain Gene Rearrangements

Chowdhury, D; Sen, R

Rosenstiel Basic Medical Research Center and, Department of Biology, Brandeis University, Waltham, MA 02454 USA, [mailto:sen@brandeis.edu]

Immunity, v 18, n 2, p 229-241, February 2003 PUBLICATION DATE: 2003

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 1074-7613

FILE SEGMENT: Immunology Abstracts; Nucleic Acids Abstracts

ABSTRACT:

Production of immunoglobulin heavy chain (IgH) protein feeds back to terminate further V sub(H) gene recombination, a phenomenon also referred

to as allelic exclusion. Here we provide evidence to supp the proposition that allelic exclusion is the consequence of terminating signals that activate V sub(H) genes recombination. For the largest V sub(H)J558 family of genes, this occurs by attenuating $\rm IL-7/IL-7R$ signals pre-B cells. Loss of these signals reverts the V sub(H) locus to a

chromatin state that is associated with hypoacetylated histones and is less

accessible to nucleases. Furthermore, hyperacetylation and accessibility of

unrearranged V sub(H) genes can be restored in allelically excluded splenic

B cells by activating this pathway. Thus, transient signals mediate V sub(H) gene activation and inactivation during development.

17/7/25 (Item 3 from file: 24)

DIALOG(R)File 24:CSA Life Sciences Abstracts

(c) 2008 CSA. All rts. reserv.

p53-dependent downregulation of metastasis-associated laminin receptor

Modugno, M; Tagliabue, E; Ardini, E; Berno, V; Galmozzi, E; De

Bortoli, M; Castronovo, V; Menard, S

Molecular Targeting Unit, Department of Experimental Oncology,

Instituto

Nazionale Tumori, Via Venezian 1, 20133 Milano, Italy,

[mailto:menard@institutotumori.mi.it]

Oncogene, v 21, n 49, p 7478-7487, October 24, 2002

PUBLICATION DATE: 2002

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract

LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 0950-9232

DOI: 10.1038/sj.onc.1205957

FILE SEGMENT: Oncogenes & Growth Factors Abstracts

ABSTRACT:

Based on observations suggesting a role for the tumor suppressor protein

p53 in regulating expression of the 67-kDa laminin receptor precursor, 37LRP, we analysed the 37LRP promoter activity in a wild-type p53 (wt p53)

ovarian carcinoma cell line and in a cisplatin-resistant subline with mutated p53. We observed an increased promoter activity in wt p53 cells as compared to the mutated-p53 line when the first intron of the 37LRP gene was present in the reporter construct. Cotransfection experiments showed that the promoter is downregulated by both wt and mutated p53. Deletion analysis of the first intron localized an enhancer activity in the first 5' 214 bp that upregulates both 37LRP and

SV40 promoter activity and is repressed by both wt and mutant p53. Contransfection, mutagenesis and gel-shift experiments identified a functional AP-2 cis-acting element in this intron region that is repressed

by increased levels of both wt and mutated p53. Coimmunoprecipitation

studies revealed AP-2 in physical association in vivo with both wt and mutated p53, indicating for the first time that interaction of p53 with AP-2 is involved in the repression mechanism and in the regulation of

genes involved in cancer growth and progression.

17/7/26 (Item 4 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

0002335882 IP ACCESSION NO: 5400323

Efficient expression of the alpha -haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA sub(5) super(Leu)

Dobrindt, U; Emoedy, L; Gentschev, I; Goebel, W; Hacker, J Institut fuer Molekulare Infektionsbiologie, Universitaet Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany

Molecular Genetics and Genomics, v 267, n 3, p 370-379, May 2002 PUBLICATION DATE: 2002

PUBLISHER: Springer-Verlag,

[URL:http://link.springer.de/link/service/journals/00438/bibs/2267003/22670370.htm]

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 1617-4615

DOI: 10.1007/s00438-002-0668-3

FILE SEGMENT: Genetics Abstracts; Bacteriology Abstracts

(Microbiology B)

ABSTRACT:

The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries two

alpha -haemolysin determinants which are located on different pathogenicity

islands (PAI I sub(536) and PAI II sub(536)). PAI II sub(536) is associated

with the tRNA gene leuX. The leuX-encoded tRNA sub(5)

super(Leu) is required for the efficient expression of the hly determinants

in strain 536. HlyA levels were reduced and secretion of the protein was

delayed in the leuX-negative mutant strain 536 Delta 102. The lack of a functional tRNA sub(5) super(Leu) resulted in a decrease in hly transcript levels in comparison to the wild-type strain. Analysis of several genes whose products are involved in the regulation of hly

expression revealed that levels of RfaH and Hha, as well as the corresponding rfaH and hha transcripts, were higher in the leuX -negative background, whereas the expression of tolC and hns was not influenced by the leuX genotype. The analysis of hly transcript levels in hha deletion mutants of the E. coli strains 536 and 536 Delta 102 demonstrated that the increase in hha expression is partially

responsible for the reduction in hly transcript levels in the leuX -negative background. These results demonstrate that the tRNA sub(5) super(Leu) affects the expression of the alpha -haemolysin determinant at

different levels in a regulatory cascade, and imply that, in addition to

Hha, at least one further, as yet unidentified, regulatory factor must be

involved in the regulation of hly transcription in the uropathogenic ${\tt E.}$

coli strain 536.

17/7/27 (Item 5 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

0002086151 IP ACCESSION NO: 4700763
Influence of pathogenicity islands and the minor leuX-encoded tRNA sub(5) super(Leu) on the proteome pattern of the uropathogenic Escherichia coli strain 536

Piechaczek, K; Dobrindt, U; Schierhorn, A; Fischer, GS; Hecker, M; Hacker, J^*

Institut fuer Molekulare Infektionsbiologie, Roentgenring 11, D-97070 Wuerzburg, Germany, [mailto:j.hacker@mail.uni-wuerzburg.de]

International Journal of Medical Microbiology, v 290, n 1, p 75-84, March 2000

PUBLICATION DATE: 2000

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 1438-4221

FILE SEGMENT: Bacteriology Abstracts (Microbiology B)

ABSTRACT:

The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries

distinct DNA regions in its chromosome, termed pathogenicity islands (PAIs

I sub(536) to IV sub(536)). Each of these PAIs encodes at least one

virulence factor. All four PAIs are associated with tRNA genes. PAI I $\operatorname{sub}(536)$ and PAI II $\operatorname{sub}(536)$ can be spontaneously deleted from the chromosome by homologous recombination between flanking direct repeats. The

deletion of PAI II $\operatorname{sub}(536)$ results in the truncation of the associated gene leuX encoding the tRNA $\operatorname{sub}(5)$ super(Leu). This tRNA influences the expression of various virulence traits. In order to get a

deeper insight into the role of PAI I sub(536)/II sub(536) and of the tRNA

sub(5) super(Leu) for the protein expression, the protein expression patterns of Escherichia coli 536 and different derivatives were studied.

Differences in the protein expression patterns of the wild-type strain Escherichia coli 536, its mutants 536-21 (PAI I sub(536) super(-), PAI II

sub(536) super(-), leuX super(-)), 536 Delta 102 (PAI I sub(536) super(+), PAI II sub(536) super(+), leuX super(-)) as well as of the strain 536R3 (PAI I sub(536) super(-), PAI II sub(536) super(-), leuX super(+)) were analyzed by two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF mass spectrometry. We identified about 39

different intracellular proteins whose expression is markedly altered in

the different strain backgrounds. These differences can be linked either to

the presence or absence of the PAI I sub(536) and PAI II sub(536) or to

that of the tRNA gene leuX. The identities of 34 proteins have been determined by MALDI-TOF-MS. The identification of five proteins was not

possible. The results suggest that proteome analysis is an efficient approach to study differences in global gene expression. The comparison of

protein expression patterns of the uropathogenic E. coli strain 536 and

different derivatives revealed that in this strain the expression of various proteins including those encoded by many housekeeping genes is affected by the presence of PAI I sub(536) and Pai II sub(536) or by that

of the tRNA sub(5) super(Leu).

17/7/28 (Item 6 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

Novel temperature-sensitive mutants of Escherichia coli that are unable to

grow in the absence of wild-type tRNA sub(6) super(Leu)

Nakayashiki, T; Inokuchi, H

Department of Biophysics, Faculty of Science, Kyoto University, Sakyo-ku,

Kyoto 606-8502, Japan, [mailto:00hachi@molbio.biophys.kyoto-u.ac.jp]

Journal of Bacteriology, v 180, n 11, p 2931-2935, June 1998 PUBLICATION DATE: 1998

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 0021-9193

FILE SEGMENT: Genetics Abstracts; Bacteriology Abstracts

(Microbiology B);

Nucleic Acids Abstracts

ABSTRACT:

Escherichia coli has only a single copy of a gene for tRNA sub(6) super(Leu). The anticodon of this tRNA is CAA (the wobble position C is

modified to 0 super(2)-methylcytidine), and it recognizes the codon UUG.

Since UUG is also recognized by $tRNA \ sub(4) \ super(Leu)$, which has UAA (the

wobble position U is modified to 5-carboxymethylaminomethyl-0 super(2)-methyluridine) as its anticodon, tRNA sub(6) super(Leu) is not

essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNA sub(6) super(Leu) with a change from CAA to CUA, which results in the amber suppressor activity of this strain (supP, Su super(+)6). We isolated 18 temperature-sensitive (ts) mutants of the

BT63 strain whose temperature sensitivity was complemented by introduction

of the wild-type gene for tRNA sub(6) super(Leu). These tRNA sub(6) super(Leu)-requiring mutants were classified into two groups. The 10 group

I mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions.

Overexpression of the gene for tRNA sub(4) super(Leu) restored the growth

of group I mutants at 42 degree C. Replacement of the CUG codon with UUG

reduced the efficiency of translation in group I mutants. These results

suggest that unmodified tRNA sub(4) super(Leu) poorly recognizes the UUG

codon at 42 degree C and that the wild-type tRNA sub(6) super(Leu) is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by

introduction of the gidA gene, which may be involved in cell division. The

reduced efficiency of translation caused by replacement of the CUG codon

with UUG was also observed in group II mutants. The mechanism of requirement for tRNA sub(6) super(Leu) remains to be investigated.

17/7/29 (Item 7 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

The leuX-encoded tRNA sub(5) super(Leu) but not the pathogenicity islands I and II influence the survival of the uropathogenic Escherichia

coli strain 536 in CD-1 mouse bladder mucus in the stationary phase

Dobrindt, U; Cohen, PS; Utley, M; Muhldorfer, I; Hacker, J Institut fur Molekulare Infektionsbiologie, Universitat Wurzburg, Rontgenring 11, 97070 Wurzburg, Germany

FEMS Microbiology Letters, v 162, n 1, p 135-141, May 1, 1998 PUBLICATION DATE: 1998

PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 0378-1097

FILE SEGMENT: Bacteriology Abstracts (Microbiology B); Genetics

Abstracts ABSTRACT:

The uropathogenic Escherichia coli strain 536 carries two pathogenicity

islands, each of which is associated with either of the tRNA genes sel $\ensuremath{\text{C}}$ or

leu X, respectively. Growth competition in CD-1 mouse mucus between the

wild-type strain E. coli 536, its leu X mutant 536 Delta 102 and its mutant

536R3, lacking both pathogenicity islands but expressing a functional tRNA

5 Leu, revealed a major impact of leu X on E. coli survival in bladder mucus. The impaired survival in CD-1 mouse mucus observed upon deletion of the leu X gene was abolished after complementation with the leu X gene. The survival of bacteria in bladder mucus was not influenced by the presence of pathogenicity islands I and II.

17/7/30 (Item 8 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

The Pai-associated leuX specific tRNA sub(5) super(Leu) affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression

Ritter, A; Gally, DL; Olsen, PB; Dobrindt, U; Friedrich, A;
Klemm, P;
Hacker, J*

Inst. fuer Molekulare Infektionsbiologie, Roentgenring 11, D-97070 Wuerzburg, FRG

Molecular Microbiology, v 25, n 5, p 871-882, September 1997 PUBLICATION DATE: 1997

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 0950-382X

FILE SEGMENT: Bacteriology Abstracts (Microbiology B); Nucleic Acids Abstracts

ABSTRACT:

The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries two

large chromosomal pathogenicity islands (Pais). Both Pais are flanked by

tRNA genes. Spontaneous deletion of Pai II results in truncation of the leuX tRNA sub(5) super(Leu) gene. This tRNA is required for the expression of type 1 fimbriae (Fim) and other virulence factors. Transcription of fimA, encoding the major type 1 fimbrial subunit is controlled by an invertable DNA switch. The inversion is catalysed by two

recombinases, FimB and FimE. FimB is able to turn the switch on, FimE only

off. The fimB gene of strain 536 contains five TTG codons recognized by

tRNA sub(5) super(Leu), fimE contains only two. It was proposed that turning on the fim switch requires efficient translation of FimB, in turn

requiring tRNA sub(5) super(Leu). Strains in which the TTG codons in fimB

were replaced with CTG codons at the wild-type locus were able to produce

type 1 fimbriae in the absence of leuX. fimB transcription was influenced by the presence of leuX, but only slightly affected by the presence or absence of leuX codons in fimB. FimB translation was significantly higher from codon-replaced fimB genes than that of wild-type

fimB genes in various strain backgrounds. The fim switch was shown to be

switched off in leuX super(-) derivatives of E. coli 536, but could be found in the on position when the codon-altered fimB gene was exchanged

into the chromosome of these strains. From these data, it is apparent that

tRNA sub(5) super(Leu) is required for efficient translation of FimB, in

turn, leading to type 1 fimbrial expression.

17/7/31 (Item 9 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

Temperature sensitivity caused by missense suppressor $\sup H$ and amber suppressor $\sup P$ in Escherichia coli .

Thorbjarnardottir, S; Bjoernsson, A; Amundadottir, L; Eggertsson, G Inst. Biol., University Iceland, 108 Reykjavik, Iceland

Journal of Bacteriology, v 173, n 1, p 412-416, 1991 ADDL. SOURCE INFO: Journal of Bacteriology [J. BACTERIOL.], volume 173, number

1, pp. 412-416, 1991 PUBLICATION DATE: 1991

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 0021-9193

FILE SEGMENT: Bacteriology Abstracts (Microbiology B)

ABSTRACT:

The temperature-sensitive missense suppressor $\ensuremath{\mathsf{suppressor}}$ and amber $\ensuremath{\mathsf{suppressor}}$

supP in Escherichia coli are mutations of the serU and leuX genes, respectively. The supH tRNA, tRNA sub(C) sub(A) super(S)er) is expected to recognize UUG codons, which are normally read by

 $tRNA \ sub(C) \ sub(A) \ sub(A) \ super(L)eua)nd \ tRNA \ sub(U) \ sub(A) \ super(L)eu)coded for by the leuX gene and the leuZ gene, respectively. We show that supP and supH are incompatible and that strains carrying both supP and a restrictive rpsL allele are temperature sensitive. It is suggested that the temperature sensitivity of$

both supH and supP strains is caused by deficient reading of UUG codons by tRNA sub(U) sub(A) sub(A) super(L)eu)

17/7/32 (Item 10 from file: 24)
DIALOG(R)File 24:CSA Life Sciences Abstracts
(c) 2008 CSA. All rts. reserv.

Anticodon shift in tRNA: A novel mechanism in missense and nonsense suppression.

Murgoal, EJ; Prather, NE; Mims, BH; Pagel, FT; Hijazi, KA Dep. Mol. Biol., University Texas M.D. Anderson Hosp. and Tumor Inst., Houston, TX 77030, USA

Proceedings of the National Academy of Sciences, USA, v 80, n 16, p 4936-4939, 1983

ADDL. SOURCE INFO: Proceedings of the National Academy of Sciences,

[PROC. NATL. ACAD. SCI. USA.], vol. 80, no. 16, pp. 4936-4939, 1983 PUBLICATION DATE: 1983

CONFERENCE:

Gorini Memorial Symposium on Procaryotic Gene Expression, Lloyd Harbor, NY (USA), 27 Jun-1 Jul 1982

DOCUMENT TYPE: Journal Article; Conference

RECORD TYPE: Abstract

LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 0027-8424

FILE SEGMENT: Nucleic Acids Abstracts; Genetics Abstracts;

Bacteriology

Abstracts (Microbiology B)

ABSTRACT:

In a previous publication, an unusual UGG-reading missense suppressor

caused by insertion of an extra adenylate residue in the anticodon \boldsymbol{l} oop of

an Escherichia coli glycine tRNA was described. In this st udy, the authors

provide in vito evidence that the additional nucleot ide causes an "anticodon shift" by one nucleotide in the 3' direction and that the "new"

anticodon can explain the unanticipated coding pr operties of the suppressor. They converted the UGG suppressor to supp ressors that read codons related to UGG by a single base change. As d etermined on the

basis of their in vivo coding specificities, the new mutant tRNAs do not

continue to utilize the original anticodon tripl et for decoding.

Further-more, the failure of the UGG suppressor to c orrect frameshift mutations throughout each of three genes of the trp operon suggests that the addition of a nucleotide to the anticod on loop of a tRNA does not

necessarily result in out-of-frame decodin g by the tRNA. Therefore, a "frameshift" mutation in a tRNA has princ ipally changed the triplet codon recognition properties of the molecules.

17/7/33 (Item 1 from file: 34)
DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
(c) 2008 The Thomson Corp. All rts. reserv.

07922877 Genuine Article#: 223XY Number of References: 6
Title: Apraxia of opening of the eyelids - Diagnostic and therapeutic problems

Author(s): Fiedler J; Kerndlova E

Corporate Source: NEUROL KLIN FN, /PLZEN//CZECH REPUBLIC/

Journal: CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 1999, V62, N4, P

226-228

ISSN: 1210-7859 Publication date: 19990000

Publisher: CZECH MEDICAL SOCIETY, SOKOLSKA 31, PRAGUE 2 120 26, CZECH REPUBLIC

Language: Czech Document Type: ARTICLE

Abstract: The authors discuss the differential diagnosis and

treatment of

the

one of the not infrequent possible failures of treatment of blepharospasm. Atypical blepharospasm (AB) differs from idiopathic blepharospasm in particular by the temporary inability to start opening

of the eyelids and the absence of an obvious spasm of the m. orbicularis oculi which is typical for idiopathic blepharospasm.

investigated group the authors used botulotoxin A injections for 5 years in a total of 17 patients with blepharospasm, incl. 5 with the

atypical variety, The injections were directed to the place of pretarsal portion of m, orbicularis oculi. The injections were strictly

medial and lateral 2 on each upper eyelid up to its border - i.e. to

the site where the eyelashes originate. The therapeutic effect was very

satisfactory in the whole group of patients and when the mentioned procedure was respected the results in the atypical variant did not differ from those in classical idiopathic blepharospasm. In

authors' opinion the pathophysiological basis of the lesion in $\ensuremath{\mathsf{AB}}$ is a

disorder of the normal reciprocal alternation of activity of the m.

orbicularis oculi and the m. levator palpebrae supp,, but only in its pretarsal portion.

(Item 2 from file: 34) DIALOG(R) File 34: SciSearch(R) Cited Ref Sci (c) 2008 The Thomson Corp. All rts. reserv.

Genuine Article#: NE053 Number of References: 60 03078419 Title: FACTOR FOR INVERSION STIMULATION-DEPENDENT GROWTH-RATE REGULATION OF

INDIVIDUAL TRANSFER-RNA SPECIES IN ESCHERICHIA-COLI

Author(s): NILSSON L; EMILSSON V

Corporate Source: UPPSALA UNIV, CTR BIOMED, DEPT MOLEC

BIOL/S-75124UPPSALA//SWEDEN/

Journal: JOURNAL OF BIOLOGICAL CHEMISTRY, 1994, V269, N13 (APR 1), P 9460-9465

ISSN: 0021-9258

Language: ENGLISH Document Type: ARTICLE

Abstract: We have studied the involvement of the factor for inversion stimulation (FIS) in the growth rate-dependent expression of the arginine, leucine, and methionine acceptor tRNA species. The concentration of individual tRNA species relative to 16 S rRNA was determined by blot hybridization using RNA preparations from bacteria

with the fis gene deleted and from isogenic wild type bacteria. The RNA preparations were obtained from bacteria growing under steady

state conditions in different media.

The levels of tRNA1Leu, tRNA2Arg, tRNA4Arg, and tRNA5Arg decreased

in the fis bacteria, relative to the wild type. The difference in levels increased with increasing growth rate. Surprisingly, tRNA3Leu.

tRNA(f)Met, and tRNA(e)Met showed the opposite response, with an increase of the tRNA/16 S ratio in the fis bacteria. The tRNA2Leu, tRNA4Leu, tRNA5Leu, and tRNA3Arg had unaffected tRNA/16 S ratios in fis cells. We conclude that FIS, directly or indirectly, is involved

in growth rate regulation of some tRNA species and that it

composition of the cellular tRNA pool.

17/7/35 (Item 1 from file: 45) DIALOG(R) File 45: EMCare

(c) 2008 Elsevier B.V. All rts. reserv.

EMCare No: 127673855 00406137

Nociceptive and morphine antinociceptive sensitivity of 129 and ${\rm C57BL/6}$

inbred mouse strains: Implications for transgenic knock-out studies Mogil J.S.; Wilson S.G.

J.S. Mogil, Department of Psychology, University Illinois at Urbana-Champaign,

603 E Daniel Street, Champaign, IL 61820 United States European Journal of Pain (EUR. J. PAIN) (United Kingdom) 1997, 1/4

(293 - 297)

CODEN: EJPAF ISSN: 1090-3801 DOCUMENT TYPE: Journal ; Article

LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH

NUMBER OF REFERENCES: 15 RECORD TYPE: Abstract

Gene-targeting studies of pain, using transgenic 'knock-out' mice possessing null mutations of pain-relevant genes, are becoming increasingly common. This approach is a potentially powerful tool for the

molecular dissection of complex traits such as pain modulation, but is subject to several theoretical drawbacks. One problem arises from the fact

that the genetic background of knock-out mice is virtually always a mixture

of alleles from two different strains; commonly 129 and C57BL/6. A more

general caveat to knock-out findings derives from the demonstration that

null mutations interact with genetic background to produce phenotypic changes. The present study investigated basal nociceptive sensitivity (on

the 49 degreesC tail-immersion/withdrawal test) and sensitivity to morphine

antinociception in 129 and C57BL/6 mice (129/J, 129/Sv - \pm SUPTyr-c+SUPMgf-SIJ, and C57BL/6J substrains). C57BL/6 mice displayed almost two-fold greater initial sensitivity to thermal stimulation than 129

mice, and three-fold reduced sensitivity to morphine inhibition of that

noxious stimulus. These findings suggest that gene targeting studies of

pain are particularly subject to the aforementioned concerns, and that C57BL/6 mice represent a suboptimal background strain for such efforts.

Copyright 2006 Elsevier B.V., All rights reserved.

17/7/36 (Item 1 from file: 65)
DIALOG(R)File 65:Inside Conferences
(c) 2008 BLDSC all rts. reserv. All rts. reserv.

```
04201614 INSIDE CONFERENCE ITEM ID: CN044083759
Human gene mutation in pathology and evolution
  Cooper, D. N.
  CONFERENCE: Society for the Study of Inborn Errors of
Metabolism-Annual
    symposium; 39th
  JOURNAL OF INHERITED METABOLIC DISEASE, 2002; VOL 25; NO 3 P:
157-182
  Kluwer Academic, 2001
  ISSN: 0141-8955
  LANGUAGE: English DOCUMENT TYPE: Conference Papers and abstracts
    CONFERENCE SPONSOR: Society for the Study of Inborn Errors of
            Metabolism
    CONFERENCE LOCATION: Prague 2001; Sep (200109)
    See also same s/m vol 24 supp 1 2001 for abstracts
             (Item 2 from file: 65)
 17/7/37
DIALOG(R)File 65:Inside Conferences
(c) 2008 BLDSC all rts. reserv. All rts. reserv.
           INSIDE CONFERENCE ITEM ID: CN041446808
Pathogenic Implication of Altered Tau Properties Caused by FTDP-17
Mutations
  Nacharaju, P.; Yen, S.; DeTure, M.; Easson, C.; Hutton, M.; Yen,
S.-H.
  CONFERENCE: Alzheimer's disease and related disorders-International
    conference; 7th
    P: 621-630
  Chichester, New York, Wiley, 2001
  ISBN: 0471521760
  LANGUAGE: English DOCUMENT TYPE: Conference Selected papers
    CONFERENCE EDITOR(S): Iqbal, K.; Sisodia, S. S.; Winblad, B.
    CONFERENCE LOCATION: Washington, DC 2000; Jul (200007)
  NOTE:
    Held as part of the World Alzheimer's congress; See also
shelfmark
    6081.311 vol 21 supp 1 2000 for abstracts
            (Item 3 from file: 65)
 17/7/38
DIALOG(R)File 65:Inside Conferences
(c) 2008 BLDSC all rts. reserv. All rts. reserv.
           INSIDE CONFERENCE ITEM ID: CN041446705
03946433
Familial Alzheimer's Disease-linked Mutant Presenilins Attenuate
Capacitative Calcium Entry
  Cheng, I.; Yoo, A. S.; Tanzi, R. E.; Kim, T.-W.
  CONFERENCE: Alzheimer's disease and related disorders-International
    conference; 7th
    P: 515-520
```

```
ISBN: 0471521760
  LANGUAGE: English DOCUMENT TYPE: Conference Selected papers
    CONFERENCE EDITOR(S): Iqbal, K.; Sisodia, S. S.; Winblad, B.
    CONFERENCE LOCATION: Washington, DC 2000; Jul (200007)
  NOTE:
    Held as part of the World Alzheimer's congress; See also
shelfmark
    6081.311 vol 21 supp 1 2000 for abstracts
            (Item 4 from file: 65)
 17/7/39
DIALOG(R)File 65:Inside Conferences
(c) 2008 BLDSC all rts. reserv. All rts. reserv.
           INSIDE CONFERENCE ITEM ID: CN041446663
03946429
Intracellular and Secreted Abeta SUB 4 SUB 2 SUB / SUB 4 SUB 0
Ratios Are
Differently Influenced by APP Mutations
  Grimm, H. S.; Lichtenthaler, S. F.; Beyreuther, K.; Hartmann, T.
  CONFERENCE: Alzheimer's disease and related disorders-International
    conference; 7th
    P: 479-486
  Chichester, New York, Wiley, 2001
  ISBN: 0471521760
  LANGUAGE: English DOCUMENT TYPE: Conference Selected papers
    CONFERENCE EDITOR(S): Iqbal, K.; Sisodia, S. S.; Winblad, B.
    CONFERENCE LOCATION: Washington, DC 2000; Jul (200007)
  NOTE:
    Held as part of the World Alzheimer's congress; See also
shelfmark
    6081.311 vol 21 supp 1 2000 for abstracts
 17/7/40
            (Item 5 from file: 65)
DIALOG(R) File 65: Inside Conferences
(c) 2008 BLDSC all rts. reserv. All rts. reserv.
03946428
           INSIDE CONFERENCE ITEM ID: CN041446651
The Amyloid Precursor Protein V717I Mutation Increases
Susceptibility to Cell Death in a Cholesterol-dependent Manner
  Puglielli, L.; Ingano, L. A. M.; Tanzi, R. E.; Kovacs, D. M.
  CONFERENCE: Alzheimer's disease and related disorders-International
    conference; 7th
    P: 469-478
  Chichester, New York, Wiley, 2001
  ISBN: 0471521760
  LANGUAGE: English DOCUMENT TYPE: Conference Selected papers
    CONFERENCE EDITOR(S): Iqbal, K.; Sisodia, S. S.; Winblad, B.
    CONFERENCE LOCATION: Washington, DC 2000; Jul (200007)
    Held as part of the World Alzheimer's congress; See also
shelfmark
```

Chichester, New York, Wiley, 2001

(Item 1 from file: 71)

17/7/43

```
17/7/41
            (Item 6 from file: 65)
DIALOG(R) File 65: Inside Conferences
(c) 2008 BLDSC all rts. reserv. All rts. reserv.
03946392
           INSIDE CONFERENCE ITEM ID: CN041446298
Familial Alzheimer's Disease with Spastic Paraparesis Associated
Mutation at Codon 261 of the Presenilin 1 Gene
  Farlow, M. R.; Murrell, J. R.; Unverzagt, F. W.; Phillips, M.;
Takao, M.
; Hulette, C.; Ghetti, B.
  CONFERENCE: Alzheimer's disease and related disorders-International
    conference; 7th
    P: 53-60
  Chichester, New York, Wiley, 2001
  ISBN: 0471521760
  LANGUAGE: English DOCUMENT TYPE: Conference Selected papers
    CONFERENCE EDITOR(S): Iqbal, K.; Sisodia, S. S.; Winblad, B.
    CONFERENCE LOCATION: Washington, DC 2000; Jul (200007)
  NOTE:
   Held as part of the World Alzheimer's congress; See also
shelfmark
    6081.311 vol 21 supp 1 2000 for abstracts
 17/7/42
           (Item 7 from file: 65)
DIALOG(R)File 65:Inside Conferences
(c) 2008 BLDSC all rts. reserv. All rts. reserv.
           INSIDE CONFERENCE ITEM ID: CN039808687
TAU GENE MUTATIONS AND TAU PATHOLOGY IN FRONTOTEMPORAL DEMENTIA AND
PARKINSONISM LINKED TO CHROMOSOME 17
  Spillantini, M. G.; Goedert, M.
  CONFERENCE: Swiss Society of Neuropathology-International winter
meeting;
    18th
  ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, 2001; VOL 487 P:
 New York, Kluwer Academic/Plenum Publishers, 2001
  ISSN: 0065-2598 ISBN: 0306465582
  LANGUAGE: English DOCUMENT TYPE: Conference Papers
    CONFERENCE EDITOR(S): Tolnay, M.; Probst, A.
    CONFERENCE SPONSOR: Swiss Society of Neuropathology
    CONFERENCE LOCATION: St. Moritz, Switzerland 2000; Mar (200003)
  NOTE:
    See also 0806.25536 vol 3 supp 1 2000 for abstracts
```

DIALOG(R)File 71:ELSEVIER BIOBASE

(c) 2008 Elsevier B.V. All rts. reserv.

03016787 2005175815

Multiple insertional events, restricted by the genetic background, have led

to acquisition of pathogenicity island IISUBJ96-like domains among Escherichia coli strains of different clinical origins

Bidet P.; Bonacorsi S.; Clermont O.; De Montille C.; Brahimi N.; Bingen E.

ADDRESS: E. Bingen, Service de Microbiologie, Hopital Robert Debre, 48 Bd.

Serurier, 75395 Paris Cedex 19, France

EMAIL: edouard.bingen@rdb.ap-hop-paris.fr

Journal: Infection and Immunity, 73/7 (4081-4087), 2005, United States

CODEN: INFIB
ISSN: 0019-9567

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 41

We investigated the dissemination of pathogenicity island (PAI) II SUBJ96-like elements (hra, hly, cnf1, and pap) among 455 Escherichia coli

isolates from children and adults with urinary tract infection (UTI), neonates with meningitis or colonized healthy neonates, and 74 reference

strains by means of PCR phylogenetic grouping, ribotyping, and PCR analysis $\,$

of virulence genes. Colocalization of these genes was documented by pulsed-field gel electrophoresis followed by Southern hybridization and

long-range PCR (LRPCR) between the hra and the papG alleles. Site-specific

insertion of the PAI was determined by LRPCR between hra and tRNA flanking

sequences, hra, hly, and cnf1 were found in 113 isolates and consistently

colocalized, constituting the backbone of PAI IISUBJ96-like domains. The

prevalence of PAI II SUBJ96-like domains was significantly higher among UTI

isolates than among neonatal meningitis and commensal isolates. These domains were restricted to a few ribotypes of group B2. In contrast to the

consistent colocalization of hra, hly, and cnf1, the pap operon was varied:

12% of strains exhibited an allelic exchange of the papG class III allele

(papGIII) for thepapG class II allele (papGII) (only UTI isolates), and the

pap operon was deleted in 23% of strains. No strains harbored papGIII

outside the PAI, which appears to be the only source of this allele. $\mbox{\footnotemath{\text{PAI}}}$

IISUBJ96-like domains were inserted in the vicinities of three different

tRNAs-pheU (54%), leuX (29%), and pheV (15%)-depending on the genetic backgrounds and origins of the isolates. Multiple insertional events restricted by the genetic background have thus led to PAI IISUBJ96 acquisition. Specific genetic backgrounds and insertion sites may have played a role in additional recombination processes for E. coli adaptation

to different ecological niches. Copyright (c) 2005, American Society for

Microbiology. All Rights Reserved.

17/7/44 (Item 2 from file: 71)

DIALOG(R)File 71:ELSEVIER BIOBASE

(c) 2008 Elsevier B.V. All rts. reserv.

02941116 2005096817

Binding mode and transcriptional activation potential of high affinity ligands for the CBP KIX domain

Volkman H.M.; Rutledge S.E.; Schepartz A.

ADDRESS: A. Schepartz, Department of Chemistry, Yale University, New Haven,

CT 06520-8107, United States

EMAIL: Alanna.Schepartz@yale.edu

Journal: Journal of the American Chemical Society, 127/13 (4649-4658), 2005

, United States

PUBLICATION DATE: April 6, 2005

CODEN: JACSA ISSN: 0002-7863

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 37

We recently described a pair of ligands, PPKID4SUPP (4SUPP) and PPKID6SUPU

(6SUPU), which present the alpha-helical functional epitope found on helix

B of the CREB KID activation domain (KID SUPP) on a pancreatic fold protein scaffold 4SUPP and 6 SUPU bind the natural target of KIDSUPP, the

KIX domain of the coactivator CBP, with equilibrium dissociation constants

between 515 nM and 1.5 muM and compete effectively with KIDSUPP for binding

to CBP KIX (KIX).SUP1 Here we present a detailed investigation of the binding mode, orientation, and transcriptional activation potential of 4SUPP and 6SUPU. Equilibrium binding experiments using a panel of well-characterized KIX variants support a model in which 4SUPP binds

 ${\tt KIX}$ in a manner that closely resembles that of ${\tt KIDSUPP}$ but ${\tt 6SUPU}$ binds an

overlapping, yet distinct region of the protein. Equilibrium binding experiments using a judiciously chosen panel of 4SUPP variants containing alanine or sarcosine substitutions along the putative alpha- or $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

PPII helix of 4SUPP support a model in which 4SUPP folds into a pancreatic

fold structure upon binding to KIX. Transcriptional activation assays performed in HEK293 cells using GAL4 DNA-binding domain fusion proteins

indicate that 4SUPP functions as a potent activator of p300/CBP-dependent

transcription. Notably, 6SUPU is a less potent transcriptional activator in

this context than 4SUPP despite the similarity of their affinities for CBP

KIX. This final result suggests that thermodynamic affinity is an important, although not exclusive, criterion controlling the level of KIX-dependent transcriptional activation. (c) 2005 American Chemical Society.

17/7/45 (Item 3 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE
(c) 2008 Elsevier B.V. All rts. reserv.

02529677 2003317885

The Amino Acid Sequence SUP442GDASESUP446 in Na/K-ATPase Is an Important

Motif in Forming the High and Low Affinity ATP Binding Pockets Imagawa T.; Kaya S.; Taniguchi K.

ADDRESS: T. Imagawa, Division of Chemistry, Graduate School of Science,

Hokkaido University, Kita-Ku, Kita 10 Nishi 8, Sapporo 060-0810,

Japan

EMAIL: toshi@sci.hokudai.ac.jp

Journal: Journal of Biological Chemistry, 278/50 (50283-50292), 2003, United States

PUBLICATION DATE: December 12, 2003

CODEN: JBCHA
ISSN: 0021-9258

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 54

A highly conserved amino acid sequence SUP442GDASESUP446 in the ATP binding

pocket of rat Na/K-ATPase was mutated, and the resulting proteins, G442A, G442P, D443A, S445A, and E446A, were expressed in HeLa cells to investigate the effect of individual ligands on Na/K-ATPase. The apparent

KSUBm for the high and low affinity ATP effects was estimated by ATP concentration dependence for the formation of the Na-dependent phosphoenzyme (KSUBmSUPh) and Na/K-ATPase activity (KSUBm SUPl). The apparent KSUBm for p-nitrophenylphosphate (pNPP) for K-dependent-pNPPase

(KSUBmSUPP) and its inhibition by ATP (KSUBi, 0.5) and the apparent KSUBm

MgSUP2+, Na SUP+, KSUP+, and vanadate in Na/K-ATPase were also estimated.

For all the mutants, the value for ATP was (similar)2-10-fold larger than

that of the wild type. While the turnover number for Na/K-ATP as activity

were unaffected or reduced by 20 (similar) 50% in mutants G442 (A/P) and D443A. Although both affinities for ATP effects were reduced as a result of

the mutations, the ratio, KSUBmSUP1/KSUBmSUPh, for each mutant was 1.3(similar)3.7, indicating that these mutations had a greater impact on the low affinity ATP effect than on the high affinity effect. Each KSUBm

SUPP value with the turnover number suggests that these mutations favor the binding of pNPP over that of ATP. These data and others indicate that the sequence SUP442GDASESUP446 in the ATP binding pocket is an important motif that it is involved in both the high and low

affinity ATP effects rather than in free MgSUP2+, NaSUP+, and KSUP+ effects.

17/7/46 (Item 4 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE
(c) 2008 Elsevier B.V. All rts. reserv.

02432610 2003216537

Mutations in the nomad retroelement are modifiers of position-effect variegation in Drosophila melanogaster

Whalen J.H.; O'Grady M.; Grigliatti T.A.

ADDRESS: J.H. Whalen, Department of Biological Sciences, Stanford University, Gilbert Laboratories 109, Stanford, CA 94305-5020,

United States

EMAIL: jhwhalen@stanford.edu

Journal: Chromosome Research, 11/6 (573-583), 2003, Netherlands

CODEN: CRRSE ISSN: 0967-3849

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 33

The E(var) 63ASUPP mutation of Drosophila melanogaster was isolated in a genetic screen for P-element induced enhancers of wSUPm4 variegation.

Remobilization of the P-element in E(var)63ASUPP resulted in a loss of its

ability to enhance position-effect variegation (PEV) of w SUPm4, indicating

that the P-element in this mutant resulted in the E(var) phenotype. An allele of E(var)63ASUPP, Su(var)63ASUPLTR was isolated following mobilization of the P-element. Su(var)63ASUPLTR was demonstrated to suppress PEV associated with the variegating rearrangements wSUPm4 and bwSUPDe2. The P-element insert in E(var)63A SUPP was located in the cytogenetic region 63A by in-situ hybridization and was shown to be inserted into the 3primeLTR of a copy of the nomad retroelement. Two additional P-element containing lines were identified that also contained

P-inserts into copies of the nomad element and were Su(var)s. The level of

nomad transcription in the E(var)63ASUPP and Su(var)63ASUPLTR mutations was shown to correlate with their effect on PEV, suggesting that the nomad element may be directly involved in the regulation of chromatin structure. Several models to explain the effect of mutations in the nomad element on PEV and retroelement expression are presented.

17/7/47 (Item 5 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE
(c) 2008 Elsevier B.V. All rts. reserv.

02044678 2002125480

Efficient expression of the alpha-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNASUB5SUPLeu

Dobrindt U.; Emody L.; Gentschev I.; Goebel W.; Hacker J.

ADDRESS: J. Hacker, Inst. fur Molek. Infektionsbiologie, Universitat Wurzburg, Rontgenring 11, 97070 Wurzburg, Germany

EMAIL: j.hacker@mail.uni-wuerzburg.de

Journal: Molecular Genetics and Genomics, 267/3 (370-379), 2002,

Germany

CODEN: MGGOA ISSN: 1617-4615

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 43

The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries two alpha-haemolysin determinants which are located on different pathogenicity

islands (PAI ISUB536 and PAI IISUB536). PAI IISUB536 is associated with the $\,$

tRNA gene leuX. The leuX-encoded tRNASUB5SUPLeu is required for the efficient expression of the hly determinants in strain 536. HlyA levels

were reduced and secretion of the protein was delayed in the leuX

-negative mutant strain 536DELTA102. The lack of a functional tRNASUB5SUPLeu resulted in a decrease in hly transcript levels in comparison to the wild-type strain. Analysis of several genes whose products are involved in the regulation of hly expression revealed that

levels of RfaH and Hha, as well as the corresponding rfaH and hha transcripts, were higher in the leuX-negative background, whereas the expression of tolC and hns was not influenced by the leuX genotype. The analysis of hly transcript levels in hha deletion mutants of the E. coli strains 536 and 536DELTA102 demonstrated that the increase in hha

expression is partially responsible for the reduction in hly transcript

levels in the leuX-negative background. These results demonstrate that the tRNASUB5SUPLeu affects the expression of the alpha-haemolysin determinant at different levels in a regulatory cascade, and imply that, in

addition to Hha, at least one further, as yet unidentified, regulatory factor must be involved in the regulation of hly transcription in the uropathogenic E. coli strain 536.

17/7/48 (Item 6 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE
(c) 2008 Elsevier B.V. All rts. reserv.

01975667 2002056614

Recombinogenic effects of suppressors of position-effect variegation in

Drosophila

Westphal T.; Reuter G.

ADDRESS: G. Reuter, Institute of Genetics, Martin Luther University, D-06120 Halle, Weinbergweg 10, Germany

EMAIL: reuter@genetik.uni-halle.de

Journal: Genetics, 160/2 (609-621), 2002, United States

CODEN: GENTA ISSN: 0016-6731

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 68

Compact chromatin structure, induction of gene silencing in position-effect

variegation (PEV), and crossing-over suppression are typical features of

heterochromatin. To identify genes affecting crossing-over suppression by

heterochromatin we tested PEV suppressor mutations for their effects on crossing over in pericentromeric regions of Drosophila autosomes. From

the 46 mutations (28 loci) studied, 16 Su(var) mutations of the nine genes Su(var)2-1, Su(var)2-2, Su(var)2-5, Su(var)2-10, Su(var)2-14,

Su(var) 2-15, Su(var)3-3, Su(var)3-7, and Su(var)3-9 significantly increase

in heterozygotes or by additive effects in double and triple heterozygotes

crossing over in the rip-SUPp region of chromosome 3. Su(var)2-2SUP01 and Su(var) 2-14SUP01 display the strongest recombingenic effects and were

also shown to enhance recombination within the light-rolled heterochromatic

region of chromosome 2. The dominant recombinogenic effects of Su(var) mutations are most pronounced in proximal euchromatin and are accompanied with significant reduction of meiotic nondisjunction. Our data

suggest that crossing-over suppression by heterochromatin is controlled at

chromatin structure as well as illustrate the possible effects of heterochromatin on total crossing-over frequencies in the genome.

17/7/49 (Item 7 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE
(c) 2008 Elsevier B.V. All rts. reserv.

01421702 2000094567

Influence of pathogenicity islands and the minor leuX-encoded
 tRNA\$D5(Leu) on the proteome pattern of the uropathogenic
Escherichia

coli strain 536

Piechaczek K.; Dobrindt U.; Schierhorn A.; Fischer G.S.; Hecker M.; Hacker

J.

ADDRESS: Dr. J. Hacker, Inst. fur Molekul. Infektionsbiol., Rontgenring 11,

D-97070 Wurzburg, Germany

EMAIL: j.hacker@mail.uni-wuerzburg.de

Journal: International Journal of Medical Microbiology, 290/1 (75-84), 2000

, Germany

CODEN: IMEMF
ISSN: 1438-4221

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 37

The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries four

distinct DNA regions in its chromosome, termed pathogenicity islands (PAIs

I\$D5inf 3inf 6 to IV\$D5inf 3inf 6). Each of these PAIs encodes at least one

virulence factor. All four PAIs are associated with tRNA genes. PAI $\ensuremath{\mathtt{I\$D5inf}}$

 $3\inf\ 6$ and PAI II\$D5inf $3\inf\ 6$ can be spontaneously deleted from the chromosome by homologous recombination between flanking direct repeats. The

deletion of PAI II\$D5inf 3inf 6 results in the truncation of the associated gene leuX encoding the tRNA\$D5(Leu). This tRNA influences the expression of various virulence traits. In order to get a deeper insight into the role of PAI I\$D5inf 3inf 6/II\$D5inf 3inf 6 and of the tRNA\$D5(Leu) for the protein expression, the protein expression patterns of

Escherichia coli 536 and different derivatives were studied. Differences in

the protein expression patterns of the wild-type strain Escherichia coli

536, its mutants 536-21 (PAI I\$D5inf 3inf 6sup -, PAI II\$D5inf 3inf 6sup -,

leuXsup -), 536Delta102 (PAI I\$D5inf 3inf 6sup +, PAI II\$D5inf 3inf 6sup +,

leuXsup -) as well as of the strain 536R3 (PAI I\$D5inf 3inf 6sup -, PAI

II\$D5inf 3inf 6sup -, leuXsup +) were analyzed by two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF mass spectrometry. We identified about 39 different intracellular proteins whose expression is

markedly altered in the different strain backgrounds. These differences can

be linked either to the presence or absence of the PAI I\$D5inf 3inf 6 and

PAI II\$D5inf 3inf 6 or to that of the tRNA gene leuX. The identities of 34 proteins have been determined by MALDI-TOF-MS. The identification of

five proteins was not possible. The results suggest that proteome analysis

is an efficient approach to study differences in global gene expression.

The comparison of protein expression patterns of the uropathogenic E. coli

strain 536 and different derivatives revealed that in this strain the expression of various proteins including those encoded by many housekeeping

genes is affected by the presence of PAI I\$D5inf 3inf 6 and Pai II\$D5inf

3inf 6 or by that of the tRNA\$D5(Leu).

17/7/50 (Item 8 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE
(c) 2008 Elsevier B.V. All rts. reserv.

01086882 1998110253

The leuX-encoded tRNA\$D5(Leu) but not the pathogenicity islands I and II influence the survival of the uropathogenic Escherichia colistrain

536 in CD-1 mouse bladder mucus in the stationary phase

Dobrindt U.; Cohen P.S.; Utley M.; Muhldorfer I.; Hacker J.

ADDRESS: J. Hacker, Inst. fur Mole. Infektionsbiologie, Universitat

Wurzburg, Rontgenring 11, 97070 Wurzburg, Germany

EMAIL: j.hacker@rzbox.uni-wuerzburg.de

Journal: FEMS Microbiology Letters, 162/1 (135-141), 1998, Netherlands

PUBLICATION DATE: May 1, 1998

CODEN: FMLED ISSN: 0378-1097

PUBLISHER ITEM IDENTIFIER: S0378109798001141

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 22

The uropathogenic Escherichia coil strain 536 carries two pathogenicity

islands, each of which is associated with either of the $\ensuremath{\mathsf{tRNA}}$ genes $\ensuremath{\mathsf{selC}}$ or

leuX, respectively. Growth competition in CD-1 mouse mucus between the wild- type strain E. coli 536, its leuX mutant 536Delta102 and its mutant 536R3, lacking both pathogenicity islands but expressing a functional tRNA\$D5(Leu), revealed a major impact of leuX on E. coli survival in bladder mucus. The impaired survival in CD-1 mouse mucus observed upon deletion of the leuX gene was abolished after complementation with the leuX gene. The survival of bacteria in bladder mucus was not influenced by the presence of pathogenicity islands I and II.

17/7/51 (Item 9 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE

(c) 2008 Elsevier B.V. All rts. reserv.

01074126 1999062550

Novel temperature-sensitive mutants of Escherichia coli that are unable to

grow in the absence of wild-type tRNAinf 6/(Leu)

Nakayashiki T.; Inokuchi H.

ADDRESS: H. Inokuchi, Department of Biophysics, Faculty of Science, Kyoto

University, Sakyo-ku, Kyoto 606-8502, Japan

EMAIL: 00hachi@molbio.biophys.kyoto-u.ac.jp

Journal: Journal of Bacteriology, 180/11 (2931-2935), 1998, United

States

CODEN: JOBAA ISSN: 0021-9193

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 27

Escherichia coli has only a single copy of a gene for tRNAinf 6/(Leu) (Y.

Komine et al., J. Mol. Biol. 212:579-598, 1990). The anticodon of this tRNA

is CAA (the wobble position ${\tt C}$ is modified to Osup 2-methylcytidine), and it

recognizes the codon UUG. Since UUG is also recognized by tRNAinf 4/(Leu),

which has UAA (the wobble position U is modified to

5-carboxymethylaminomethyl- Osup 2-methyluridine) as its anticodon, tRNAinf

6/(Leu) is not essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNAinf 6/(Leu) with a change from CAA to CUA, which results in the amber suppressor activity of this strain (

supP, Susup +6). We isolated 18 temperature—sensitive (ts) mutants of the BT63 strain whose temperature sensitivity was complemented by introduction of the wild-type gene for tRNAinf 6/(Leu). These tRNAinf 6/(Leu)-requiring mutants were classified into two groups. The 10 group I

mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNAinf 4/(Leu) restored the growth of group

I mutants at 42 degreeC. Replacement of the CUG codon with UUG reduced the

efficiency of translation in group I mutants. These results suggest that

unmodified tRNAinf 4/(Leu) poorly recognizes the UUG codon at 42degreeC and

that the wild-type $tRNAinf\ 6/(Leu)$ is required for translation in order to

maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene, which may be involved

in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNAinf 6/(Leu) remains to be

investigated.

17/7/52 (Item 10 from file: 71)
DIALOG(R)File 71:ELSEVIER BIOBASE
(c) 2008 Elsevier B.V. All rts. reserv.

00703127 97207820

The Pai-associated leuX specific tRNA\$D5(Leu) affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase

expression

Ritter A.; Gally D.L.; Olsen P.B.; Dobrindt U.; Friedrich A.; Klemm P.;

Hacker J.

ADDRESS: J. Hacker, Inst. fur Mol. Infektionsbiologie, Rontgenring 11, D-97070 Wurzburg, Germany

EMAIL: j.hacker@rzbox.uni-wuerzburg.de

Journal: Molecular Microbiology, 25/5 (871-882), 1997, United Kingdom

PUBLICATION DATE: 19970000

CODEN: MOMIE ISSN: 0950-382X

DOCUMENT TYPE: Article

LANGUAGES: English SUMMARY LANGUAGES: English

NO. OF REFERENCES: 52

The uropathogenic Escherichia coli strain 536 (06:K15: H31) carries two

large chromosomal pathogenicity islands (Pais). Both Pais are flanked by

tRNA genes. Spontaneous deletion of pai II results in truncation of the leuX tRNA\$D5(Leu) gene. This tRNA is required for the expression of type 1 fimbriae (Fim) and other virulence factors. Transcription of fimA, encoding the major type 1 fimbrial subunit is controlled by an invertable DNA switch. The inversion is catalysed by two recombinases, FimB

and FimE. FimB is able to turn the switch on, FimE only off. The fimB

of strain 536 contains five TTG codons recognized by tRNA\$D5(Leu) fimE contains only two. It was proposed that turning on the fim switch

efficient translation of FimB, in turn requiring tRNA\$D5(Leu). Strains in

which the TTG codons in fimB were replaced with CTG codons at the wild-type

locus were able to produce type 1 fimbriae in the absence of leuX. fimB transcription was influenced by the presence of leuX, but only slightly affected by the presence or absence of leuX codons in fimB. FimB translation was significantly higher from codon-replaced fimB genes

than that of wild-type fimB genes in various strain backgrounds. The

switch was shown to be switched off in leuXsup - derivatives of E. coli

536, but could be found in the on position when the codon-altered fimB gene

was exchanged into the chromosome of these strains. From these data,

apparent that tRNA\$D5(Leu) is required for efficient translation of FimB,

in turn, leading to type 1 fimbrial expression.

17/7/53 (Item 1 from file: 73) DIALOG(R)File 73:EMBASE

(c) 2008 Elsevier B.V. All rts. reserv.

0079032913 EMBASE No: 2002196621 Efficient expression of the alpha-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA SUB 5 SUP Leu Dobrindt U.; Emody L.; Gentschev I.; Goebel W.; Hacker J. Institut fur Molekulare Infektionsbiologie, Universitat Wurzburg, Rontgenring 11, 97070 Wurzburg, Germany AUTHOR EMAIL: j.hacker@mail.uni-wuerzburg.de CORRESP. AUTHOR/AFFIL: Hacker J.: Inst. fur Molek. Infektionsbiologie, Universitat Wurzburg, Rontgenring 11, 97070 Wurzburg, Germany CORRESP. AUTHOR EMAIL: j.hacker@mail.uni-wuerzburg.de Molecular Genetics and Genomics (Mol. Genet. Genomics) (Germany) June 15, 2002, 267/3 (370-379) CODEN: MGGOA ISSN: 1617-4615 DOI: 10.1007/s00438-002-0668-3 DOCUMENT TYPE: Journal; Article RECORD TYPE: Abstract LANGUAGE: English SUMMARY LANGUAGE: English NUMBER OF REFERENCES: 43 The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries two alpha-haemolysin determinants which are located on different pathogenicity islands (PAI I SUB 536 and PAI II SUB 536). PAI II SUB 536 is associated with the tRNA gene leuX. The leuX-encoded tRNA SUB 5 SUP Leu is required for the efficient expression of the hly determinants in 536. HlyA levels were reduced and secretion of the protein was delayed in the leuX-negative mutant strain 536Delta102. The lack of a functional tRNA SUB 5 SUP Leu resulted in a decrease in hly transcript levels in comparison to the wild-type strain. Analysis of several genes whose products are involved in the regulation of hly expression revealed that levels of RfaH and Hha, as well as the corresponding rfaH and hha transcripts, were higher in the leuX-negative background, whereas the expression of tolC and hns was not influenced by the leuX genotype. The analysis of hly transcript levels in hha deletion mutants of the E. coli strains 536 and 536Delta102 demonstrated that the increase in expression is partially responsible for the reduction in hly transcript levels in the leuX-negative background. These results demonstrate that the tRNA SUB 5 SUP Leu affects the expression of the alpha-haemolysin determinant at different levels in a regulatory cascade, and imply

addition to Hha, at least one further, as yet unidentified, regulatory

that, in

factor must be involved in the regulation of hly transcription in the uropathogenic E. coli strain 536.

```
(Item 2 from file: 73)
 17/7/54
DIALOG(R) File
              73:EMBASE
(c) 2008 Elsevier B.V. All rts. reserv.
               EMBASE No: 1999094182
0077608023
  Novel temperature-sensitive mutants of Escherichia coli that are
unable
to grow in the absence of wild-type tRNA SUB 6/(Leu)
  Nakayashiki T.; Inokuchi H.
  Department of Biophysics, Faculty of Science, Kyoto University,
Sakyo-ku,
  Kyoto 606-8502, Japan
  AUTHOR EMAIL: 00hachi@molbio.biophys.kyoto-u.ac.jp
  CORRESP. AUTHOR/AFFIL: Inokuchi H.: Department of Biophysics,
Faculty of
Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
  CORRESP. AUTHOR EMAIL: 00hachi@molbio.biophys.kyoto-u.ac.jp
  Journal of Bacteriology ( J. Bacteriol. ) (United States) June 1,
1998,
  180/11 (2931-2935)
  CODEN: JOBAA ISSN: 0021-9193
  DOCUMENT TYPE: Journal; Article RECORD TYPE: Abstract
  LANGUAGE: English
                     SUMMARY LANGUAGE: English
  NUMBER OF REFERENCES: 27
 Escherichia coli has only a single copy of a gene for tRNA SUB
6/(Leu)
(Y. Komine et al., J. Mol. Biol. 212:579-598, 1990). The anticodon of
tRNA is CAA (the wobble position C is modified to O SUP
2-methylcytidine),
and it recognizes the codon UUG. Since UUG is also recognized by tRNA
SUB
4/(Leu), which has UAA (the wobble position U is modified to
5-carboxymethylaminomethyl- O SUP 2-methyluridine) as its anticodon,
SUB 6/(Leu) is not essential for protein synthesis. The BT63 strain
has a
mutation in the anticodon of tRNA SUB 6/(Leu) with a change from CAA
to CUA, which results in the amber suppressor activity of this strain
supP, Su SUP +6). We isolated 18 temperature- sensitive (ts) mutants
of the BT63 strain whose temperature sensitivity was complemented by
introduction of the wild-type gene for tRNA SUB 6/(Leu). These tRNA
SUB
6/(Leu)-requiring mutants were classified into two groups. The 10
group I
```

mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNA SUB 4/(Leu) restored the growth of group I mutants at 42(deg)C. Replacement of the CUG codon with UUG reduced

the efficiency of translation in group I mutants. These results suggest

that unmodified tRNA SUB 4/(Leu) poorly recognizes the UUG codon at 42(deg)C and that the wild-type tRNA SUB 6/(Leu) is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene,

which may be involved in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA SUB

6/(Leu) remains to be investigated.

17/7/55 (Item 3 from file: 73) DIALOG(R)File 73:EMBASE

(c) 2008 Elsevier B.V. All rts. reserv.

0077250110 EMBASE No: 1998160268

The leuX-encoded tRNA SUB 5(Leu) but not the pathogenicity islands I and II influence the survival of the uropathogenic Escherichia coli strain 536 in CD-1 mouse bladder mucus in the stationary phase

Dobrindt U.; Cohen P.S.; Utley M.; Muhldorfer I.; Hacker J. Inst. fur Molec. Infektionsbiologie, Universitat Wurzburg,

Rontgenring

11, 97070 Wurzburg, Germany

AUTHOR EMAIL: j.hacker@rzbox.uni-wuerzburg.de

CORRESP. AUTHOR/AFFIL: Hacker J.: Inst. fur Mole.

Infektionsbiologie,

Universitat Wurzburg, Rontgenring 11, 97070 Wurzburg, Germany CORRESP. AUTHOR EMAIL: j.hacker@rzbox.uni-wuerzburg.de

FEMS Microbiology Letters (FEMS Microbiol. Lett.) (Netherlands) May 1,

1998, 162/1 (135-141)

CODEN: FMLED ISSN: 0378-1097

PUBLISHER ITEM IDENTIFIER: S0378109798001141

DOI: 10.1016/S0378-1097(98)00114-1

DOCUMENT TYPE: Journal; Article RECORD TYPE: Abstract

LANGUAGE: English SUMMARY LANGUAGE: English

NUMBER OF REFERENCES: 22

The uropathogenic Escherichia coil strain 536 carries two pathogenicity

islands, each of which is associated with either of the $\ensuremath{\mathsf{tRNA}}$ genes $\ensuremath{\mathsf{selC}}$ or

leuX, respectively. Growth competition in CD-1 mouse mucus between the wild- type strain $E.\ coli\ 536$, its leuX mutant 536Delta102 and

its mutant 536R3, lacking both pathogenicity islands but expressing a functional tRNA SUB 5(Leu), revealed a major impact of leuX on E. coli survival in bladder mucus. The impaired survival in CD-1 mouse mucus observed upon deletion of the leuX gene was abolished after complementation with the leuX gene. The survival of bacteria in bladder mucus was not influenced by the presence of pathogenicity islands I and II. 17/7/56 (Item 4 from file: 73) DIALOG(R)File 73:EMBASE (c) 2008 Elsevier B.V. All rts. reserv. 0076992778 EMBASE No: 1997285998 The Pai-associated leuX specific tRNA SUB 5(Leu) affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression Ritter A.; Gally D.L.; Olsen P.B.; Dobrindt U.; Friedrich A.; Klemm P.; Hacker J. Inst. F. Molec. Infektionsbiologie, Rontgenring 11, D-97070 Wurzburg, Germany AUTHOR EMAIL: j.hacker@rzbox.uni-wuerzburg.de CORRESP. AUTHOR/AFFIL: Hacker J.: Inst. fur Mol. Infektionsbiologie, Rontgenring 11, D-97070 Wurzburg, Germany Molecular Microbiology (MOL. MICROBIOL.) (United Kingdom) October 2, 1997, 25/5 (871-882) ISSN: 0950-382X CODEN: MOMIE DOCUMENT TYPE: Journal; Article RECORD TYPE: Abstract LANGUAGE: English SUMMARY LANGUAGE: English NUMBER OF REFERENCES: 52 The uropathogenic Escherichia coli strain 536 (06:K15: H31) carries two large chromosomal pathogenicity islands (Pais). Both Pais are flanked tRNA genes. Spontaneous deletion of pai II results in truncation of the leuX tRNA SUB 5(Leu) gene. This tRNA is required for the expression of type 1 fimbriae (Fim) and other virulence factors. Transcription of fimA, encoding the major type 1 fimbrial subunit is controlled by an invertable DNA switch. The inversion is catalysed by two recombinases, FimB and FimE. FimB is able to turn the switch on, FimE

off. The fimB gene of strain 536 contains five TTG codons recognized

by

 ${\tt tRNA}$ SUB 5(Leu) fimE contains only two. It was proposed that turning on the

fim switch requires efficient translation of FimB, in turn requiring tRNA

SUB 5(Leu). Strains in which the TTG codons in fimB were replaced with CTG

codons at the wild-type locus were able to produce type 1 fimbriae in the

absence of leuX. fimB transcription was influenced by the presence of leuX, but only slightly affected by the presence or absence of leuX codons in fimB. FimB translation was significantly higher from codon-replaced fimB genes than that of wild-type fimB genes in various strain backgrounds. The fim switch was shown to be switched off in leuX SUP - derivatives of E. coli 536, but could be found in the on position when the codon-altered fimB gene was exchanged into the chromosome

of these strains. From these data, it is apparent that tRNA SUB 5(Leu) is

required for efficient translation of FimB, in turn, leading to type 1 fimbrial expression.

17/7/57 (Item 5 from file: 73)
DIALOG(R)File 73:EMBASE
(c) 2008 Elsevier B.V. All rts. reserv.

0073267668 EMBASE No: 1986031702

Identification of transfer RNA suppressors in Escherichia coli. IV. $\mbox{\sc Amber}$

suppressor Su SUP +6 a double mutant of a new species of leucine tRNA
Yoshimura M.; Inokuchi H.; Ozeki H.

Department of Biophysics, Faculty of Science, Kyoto University, Kyoto 606

, Japan:

CORRESP. AUTHOR/AFFIL: Department of Biophysics, Faculty of Science, Kyoto University, Kyoto 606, Japan

Journal of Molecular Biology (J. MOL. BIOL.) (United Kingdom) December

1, 1984, 177/4 (627-644)

CODEN: JMOBA ISSN: 0022-2836

DOCUMENT TYPE: Journal; Article RECORD TYPE: Abstract

LANGUAGE: English

An Escherichia coli DNA fragment containing an Su SUP +6 amber suppressor

gene (supP) was cloned into a lambdagtlambdaCh vector by the shotgun method, selecting a Su SUP +6 transducing phage lambdapSu SUP +6. Through

prophage integration followed by induction occurring at the transducing

region of the lambdapSu SUP +6 in Su SUP - E. coli, a counterpart

transducing phage carrying the wild-type allele (Su(deg)6) was isolated

(lambdapSu(deg)6). The fingerprint of a tRNA coded by lambdapSU(deg)6 was

identical to that of an unindentified tRNA(E) previously reported (Ikemura

& Ozeki, 1977). The cloverleaf structure of this tRNA was determined by

combining the results of tRNA analysis and DNA sequencing of the gene. Judging from the anticodon of 5'-CAA'3', Su(deg)6 tRNA was identified as a

new type of leucine isoacceptor in E. coli. Unlike other suppressors analyzed, Su SUP +6 tRNA differed by two nucleotides fromSu(deg)6 tRNA; one

at the anticodon (CAA to CUA) and the other at the junction of D- and anticodon-stem (A27 to G27). DNA sequence analysis revealed that a single $\frac{1}{2}$

stretch of tRNA is flanked by the putative sequences of promoter and terminator. Thus a single copy of the Su(deg)6 tRNA gene constitutes a solitary tRNA transcription unit. Southern blotting showed only one copy of

Su(deg)6 tRNA gene per haploid genome of E. coli. Since this single gene

can mutate to the Su SUP +6 suppressor, the Su(deg)6 leucine tRNA may be accounted as a dispensable specis among the leucine isoacceptor tRNAs.

Two possible open reading frames are found immediately following the Su(deg)6 tRNA gene.

17/7/58 (Item 6 from file: 73)
DIALOG(R)File 73:EMBASE

(c) 2008 Elsevier B.V. All rts. reserv.

0072626367 EMBASE No: 1984156782

Purkinye cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression Buttner U.; Waespe W.

Department of Neurology, University of Zurich, CH-8091 Zurich, Switzerland:

CORRESP. AUTHOR/AFFIL: Department of Neurology, University of Zurich,

CH-8091 Zurich, Switzerland

Experimental Brain Research (EXP. BRAIN RES.) (Germany) August 23,

1984, 55/1 (97-104)

CODEN: EXBRA ISSN: 0014-4819

DOCUMENT TYPE: Journal RECORD TYPE: Abstract

LANGUAGE: English

Purkinje cell (PC) activity in the flocculus of trained monkeys was

recorded during: 1) Vestibular stimulation in darkness. 2) Suppression of

the vestibulo-ocular reflex (VOR-supp) by fixation of a small light spot stationary with respect to the monkey. 3) Visual-vestibular conflict

(i.e. the visual surround moves together with the monkey during vestibular

stimulation), which leads to attenuation or suppression of vestibular nystagmus. 4) Smooth pursuit eye movements. 5) Optokinetic nystagmus (OKN).

6) Suppression of nystagmus during optokinetic stimulation (OKN-supp) by fixation of a small light spot; whereby stimulus velocity corresponds

then to image slip velocity. Results were obtained from PCs, which were

activated with VOR-supp during rotation to the ipsilateral side. The same PCs were also modulated during smooth pursuit and visual-vestibular

conflict. No tonic modulation during constant velocity OKN occurred with

slow-phase nystagmus velocities below $4-60~\mathrm{deg/s}$. Tonic responses were only

seen at higher nystagmus velocities. Transient activity changes appeared at

the beginning and end of optokinetic stimulation. PCs were not modulated by

image slip velocity during OKN-supp. The results show that in primates the same population of floccular PCs is involved in different mechanisms of visual-vestibular interaction and that smooth pursuit and

certain components of OKN slow-phase velocity share the same neural pathway. It is argued that the activity of these neurons can neither be

related strictly to gaze, eye or image slip velocity; instead, their activity pattern can be best interpreted by assuming a modulation, which is

complementary to that of central vesibular neurons of the vestibular nuclei, in the control of slow eye movements.

17/7/59 (Item 7 from file: 73)

DIALOG(R) File 73: EMBASE

(c) 2008 Elsevier B.V. All rts. reserv.

0071414055 EMBASE No: 1979146374

Suppression of cytotoxic response to histoincompatible cells. II. Analysis of the role of two independent T suppressor pools in maintenance

of neonatally induced allograft tolerance in mice Gorczynski R.M.; MacRae S.

Ontario Cancer Inst., Toronto, Canada:

CORRESP. AUTHOR/AFFIL: Ontario Cancer Inst., Toronto, Canada

Journal of Immunology (J. IMMUNOL.) (United States) July 23, 1979,

122/3 (747-752)

CODEN: JOIMA ISSN: 0022-1767

DOCUMENT TYPE: Journal; Article RECORD TYPE: Abstract

LANGUAGE: English

The kinetics of appearance of the precursors of Supp(A) cells (capable of inhibiting CTL(p)-->CTL) or Supp(B) cells (capable of inhibiting (stem cells -->CTL(p)) in neonatal mice, as well as the appearance of Supp(A)/Supp(B) cells in mice given neonatal innoculations of semiallogeneic spleen cells has been investigated. The

data obtained are consistent with the idea that Supp(A) cells have a natural role to play in the induction of neonatal tolerance, whereas Supp(B) cells may be more important for the maintenance of the tolerant state. Unlike the level of Supp(B) cells, the level of Supp(A) cells in tolerant mice seems to be modulated by the presence of the tolerizing determinants. Data are provided to show that Supp (B) cells, once induced in tolerant mice, can adoptively transfer specific

allograft unresponsiveness to newborn syngeneic mice in the absence of added tolerizing antigen, whereas Supp(A) cells are not able to do so. These data fit the notion that Supp(B) cells may be responsible for the phenotype of clonal deletion.

17/7/60 (Item 1 from file: 136)
DIALOG(R)File 136:BioEngineering Abstracts
(c) 2007 CSA. All rts. reserv.

0000158441 IP ACCESSION NO: 6244514 Investigating metabolite essentiality through genome-scale analysis of

Escherichia coli production capabilities

Imielinski, Marcin; Belta, Calin; Halasz, Adam; Rubin, Harvey Genomics and Computational Biology Graduate Group, University of Pennsylvania School of Medicine Philadelphia, PA, 19104, USA. Department of

Medicine, University of Pennsylvania School of Medicine Philadelphia, PA.

19104, USA. Department of Mechanical Engineering, Drexel University Philadelphia, PA, 19104, USA. General Robotics, Automation, Sensing and

Perception Laboratory, University of Pennsylvania Philadelphia, PA, 19104, USA

Bioinformatics, v 21, n 9, p 2008-2016, May 1, 2005 PUBLICATION DATE: 2005

PUBLISHER: Oxford University Press, Oxford Journals, Great Clarendon

Street

Oxford OX2 6DP UK, [mailto:jnl.samples@oup.co.uk],

[URL:http://www3.oup.co.uk/jnls/]

DOCUMENT TYPE: Journal Article

RECORD TYPE: Abstract LANGUAGE: English

SUMMARY LANGUAGE: English

ISSN: 1367-4803

ELECTRONIC ISSN: 1460-2059

FILE SEGMENT: BioEngineering Abstracts

ABSTRACT:

MOTIVATION: A phenotype mechanism is classically derived through the study of a set of mutants and comparison of their biochemical capabilities.

One method of comparing mutant capabilities is to characterize producible

and knocked out metabolites. However such an effect is difficult to manually assess, especially for a large biochemical network and a complex

media. Current algorithmic approaches towards analyzing metabolic networks

either do not address this specific property or are computationally infeasible on the genome-scale. RESULTS: We have developed a novel genome-scale computational approach that identifies the full set of biochemical species that are knocked out from the metabolome following a

gene deletion. Results from this approach are combined with data from in vivo mutant screens to examine the essentiality of metabolite production

for a phenotype. This approach can also be a useful tool for metabolic network annotation validation and refinement in newly sequenced organisms.

Combining an in silico genome-scale model of Escherichia coli metabolism

with in vivo survival data, we uncover possible essential roles for several

cell membranes, cell walls, and quinone species. We also identify specific

biomass components whose production appears to be non-essential for survival, contrary to the assumptions of previous models. AVAILABILITY:

Programs are available upon request from the authors in the form of ${\tt Matlab}$

script files. CONTACT: imielns[at]mail.med.upenn.edu Supplementary
information:

http://www.cis.upenn.edu/biocomp/manuscripts/bioinformaticsbti245 / supp-info.html

```
17/7/61
            (Item 1 from file: 144)
DIALOG(R) File 144: Pascal
(c) 2008 INIST/CNRS. All rts. reserv.
            PASCAL Number: 05-0308420
  17236738
 Multiple insertional events, restricted by the genetic background,
have
led to acquisition of pathogenicity island II SUB J SUB 9 SUB 6 -like
domains among Escherichia coli strains of different clinical origins
 BIDET Philippe; BONACORSI Stephane; CLERMONT Olivier; DE MONTILLE
Caroline; BRAHIMI Naima; BINGEN Edouard
 Laboratoire d'etudes de genetique bacterienne dans les infections de
l'enfant (EA3105), Universite Denis Diderot-Paris 7, Service de
Microbiologie, Hopital Robert Debre (AP-HP), 75019 Paris, France
 Journal: Infection and immunity, 2005, 73 (7) 4081-4087
  ISSN: 0019-9567 CODEN: INFIBR Availability: INIST-15757;
354000138518200290
 Number of Refs.: 41 reference
 Document Type: P (Serial) ; A (Analytic)
 Country of Publication: United States
 Language: English
 We investigated the dissemination of pathogenicity island (PAI) II
SUB J
    9 SUB 6 -like elements (hra, hly, cnfl, and pap) among 455
Escherichia
coli isolates from children and adults with urinary tract infection
(UTI),
neonates with meningitis or colonized healthy neonates, and 74
reference
strains by means of PCR phylogenetic grouping, ribotyping, and PCR
analysis
of virulence genes. Colocalization of these genes was
documented by
pulsed-field gel electrophoresis followed by Southern
hybridization and
long-range PCR (LRPCR) between the hra and the papG alleles.
Site-specific
insertion of the PAI was determined by LRPCR between hra and tRNA
flanking
sequences. hra, hly, and cnfl were found in 113 isolates and
consistently
colocalized, constituting the backbone of PAI II SUB J SUB 9 SUB 6
-like
domains. The prevalence of PAI
                                  II SUB J SUB 9 SUB 6 -like
domains was
significantly higher among UTI isolates than among neonatal
meningitis and
commensal
          isolates. These domains were restricted to a few
ribotypes of
group B2. In contrast to the consistent colocalization of hra,
hly, and
      the pap operon was varied: 12% of strains exhibited an
cnfl,
allelic
```

exchange of the papG class III allele (papGIII) for the papG class II $\,$

allele (papGII) (only UTI isolates), and the pap operon was deleted in 23% of strains. No strains harbored papGIII outside the PAI, which

appears to be the only source of this allele. PAI II SUB J SUB 9 $\,$ SUB 6 $\,$

-like domains were inserted in the vicinities of three different $\ensuremath{\mathsf{tRNAs}}\xspace-\ensuremath{\mathsf{pheU}}$

(54%), leuX (29%), and pheV (15%)-depending on the genetic backgrounds and origins of the isolates. Multiple insertional events

restricted by the genetic background have thus led to PAI II SUB J $\,$ SUB $\,9\,$

SUB 6 acquisition. Specific genetic backgrounds and insertion sites may

have played a role in additional recombination processes for ${\sf E.}$ coli

adaptation to different ecological niches.

Copyright (c) 2005 INIST-CNRS. All rights reserved.

17/7/62 (Item 2 from file: 144)
DIALOG(R)File 144:Pascal
(c) 2008 INIST/CNRS. All rts. reserv.

14673396 PASCAL Number: 00-0346817

Influence of pathogenicity islands and the minor leuX-encoded tRNA SUB 5 SUP L SUP e SUP u on the proteome pattern of the uropathogenic Escherichia coli strain 536

PIECHACZEK K; DOBRINDT U; SCHIERHORN A; FISCHER G S; HECKER M; HACKER J

Institut fuer Molekulare Infektionsbiologie, Roentgenring 11, 97070 Wuerzburg, Germany; Forschungsstelle Enzymologie der Proteinfaltung der

Max-Planck-Gesellschaft, Weinbergweg 22, D-06120 Halle/Saale and Martin-Luther-Universitaet, Fachbereich Biochemie, Biotechnologie, 06099

Halle (Saale), Germany; Institut fuer Mikrobiologie und Molekularbiologie,

Universitaet Greifswald, F.-L.-Jahn-Str. 15, 17487 Greifswald, Germany Journal: IJMM. International journal of medical microbiology, 2000, 290

(1) 75-84

ISSN: 1438-4221 Availability: INIST-3329; 354000086952320080

Number of Refs.: 1 p.1/4

Document Type: P (Serial) ; A (Analytic)

Country of Publication: Germany

Language: English

The uropathogenic Escherichia coli strain 536 (06:K15:H31) carries four

distinct DNA regions in its chromosome, termed pathogenicity islands (PAIs

- I SUB 5 SUB 3 SUB 6 to IV SUB 5 SUB 3 SUB 6). Each of these PAIs encodes
- at least one virulence factor. All four PAIs are associated with tRNA
- genes. PAI I SUB 5 SUB 3 SUB 6 and PAI II SUB 5 SUB 3 SUB 6 can be
- spontaneously deleted from the chromosome by homologous recombination between flanking direct repeats. The deletion of PAI II SUB 5 SUB 3 SUB 6 results in the truncation of the associated gene leuX encoding the tRNA SUB 5 SUP L SUP e SUP u . This tRNA influences the expression of
- various virulence traits. In order to get a deeper insight into the role of
- PAI I SUB 5 SUB 3 SUB 6 /II SUB 5 SUB 3 SUB 6 and of the tRNA SUB 5 SUP L
- SUP e SUP u for the protein expression, the protein expression patterns of
- Escherichia coli 536 and different derivatives were studied. Differences in
- the protein expression patterns of the wild-type strain Escherichia coli
- 536, its mutants 536-21 (PAI I SUB 5 SUB 3 SUB 6 SUP , PAI II SUB 5 SUB 3
- SUB 6 SUP , leuX SUP), 536A102 (PAI I SUB 5 SUB 3 SUB 6 SUP + , PAI II SUB 5 SUB 3 SUB 6 SUP + , leuX SUP) as well as of the strain 536R3 (PAI I SUB 5 SUB 3 SUB 6 SUP , PAI II SUB 5 SUB 6 SUP -
- , leuX SUP +) were analyzed by two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF mass spectrometry. We identified about $39\,$
- different intracellular proteins whose expression is markedly altered in
- the different strain backgrounds. These differences can be linked either to
- the presence or absence of the PAI I SUB 5 SUB 3 SUB 6 and PAI II SUB 5 SUB
- 3 SUB 6 or to that of the tRNA gene leux. The identities of 34 proteins have been determined by MALDI-TOF-MS. The identification of five
- proteins was not possible. The results suggest that proteome analysis is an
- efficient approach to study differences in global gene expression. The
- comparison of protein expression patterns of the uropathogenic E. coli
- strain 536 and different derivatives revealed that in this strain the
- expression of various proteins including those encoded by many housekeeping
- genes is affected by the presence of PAI I SUB 5 SUB 3 SUB 6 and Pai II SUB
- 5 SUB 3 SUB 6 or by that of the tRNA SUB 5 SUP L SUP e SUP u .

Copyright (c) 2000 INIST-CNRS. All rights reserved.

(Item 3 from file: 144) 17/7/63 DIALOG(R) File 144: Pascal (c) 2008 INIST/CNRS. All rts. reserv. PASCAL No.: 98-0330446 13624427 The leuX-encoded tRNA SUB 5 SUP L SUP e SUP u but not the pathogenicity islands I and II influence the survival of the uropathogenic Escherichia coli strain 536 in CD-1 mouse bladder mucus in the stationary phase DOBRINDT U; COHEN P S; UTLEY M; MUEHLDORFER I; HACKER J Institut fuer Molekulare Infektionsbiologie, Universitaet Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany; Department of Biochemistry, Microbiology and Molecular Genetics, University of Rhode Island, Kingston, RI 02881, United States Journal: FEMS microbiology letters, 1998, 162 (1) 135-141 ISSN: 0378-1097 CODEN: FMLED7 Availability: INIST-17567A; 354000075599340200 No. of Refs.: 22 ref. Document Type: P (Serial) ; A (Analytic) Country of Publication: Netherlands Language: English The uropathogenic Escherichia coli strain 536 carries two pathogenicity islands, each of which is associated with either of the tRNA genes selC or leuX , respectively. Growth competition in CD-1 mouse mucus between the wild-type strain E. coli 536, its leuX mutant 536 DELTA 102 and its mutant 536R3, lacking both pathogenicity islands but expressing a functional tRNA, SUP L SUP e SUP u revealed a major impact of leuX on Ε. coli survival in bladder mucus. The impaired survival in CD-I mouse mucus observed upon deletion of the leuX gene was abolished after complementation with the leuX gene. The survival of bacteria in bladder mucus was not influenced by the presence of pathogenicity islands I and II.

Copyright (c) 1998 INIST-CNRS. All rights reserved.

17/7/64 (Item 4 from file: 144)
DIALOG(R)File 144:Pascal
(c) 2008 INIST/CNRS. All rts. reserv.

```
12560537 PASCAL No.: 96-0242892
  Remodelage du code genetique chez Escherichia coli
  (Remodelling the genetic code in Escherichia coli)
  LEMEIGNAN Beatrice; LACROUTE F, dir
  Universite de Paris 06, Paris, Francee
  Univ.: Universite de Paris 06. Paris. FRA Degree: Th. doct.
  1995-02; 1995 148 p.
  Availability: INIST-T 103086; T95PA066140
  No. of Refs.: 175 ref.
  Document Type: T (Thesis) ; M (Monographic)
  Country of Publication: France
  Language: French
                    Summary Language: French; English
  La constitution chimique des proteines semble restreinte aux
combinaisons
d'un meme jeu de vingt acides amines chez tous les etres vivants
connus.
Cette invariance, fondee sur l'extreme conservation des processus
de la
traduction genetique, n'implique neanmoins nullement que
l'elargissement du
jeu des acides amines ne puisse etre accompli artificiellement. Nous
avons
entrepris d'installer des deviations systematiques du code
genetique chez
E. coli dans le but de: (i) produire des proteines aux proprietes
chimiques
                   diversifiees, (ii) relancer l'evolution de
et
     structurales
souches
microbiennes en milieu controle. Ainsi, j'ai construit un mutant
defectif
de la thymidylate synthase d'E. coli suppressible par
incorporation
statistique d'azaleucine. Ce mutant a ete obtenu par mutagenese
dirigee du
gene thyA surexprime a partir d'un plasmide, en substituant un
codon Arg
par un codon Leu au site 126. D'autres mutants au site 126
s'averent
suppressibles par incorporation d'un analogue de la proline,
l'azetidine
carboxylate. Ces souches, qui montrent une auxotrophie pour un
composant
metabolique additionnel, procurent
                                        des
                                              modeles experimentaux
reconstituer certaines etapes de l'evolution du code
genetique. La
mutagenese d'un deuxieme exemplaire de la leucyl-tRNA synthetase
d'E. coli
n'a pas permis d'isoler des variants enzymatiques dont la specificite
serait deviee vers l'azaleucine ou d'autres termes de la serie
homologue de
la methylaminoalanine. J'ai par consequent opte pour la mise en place
```

d'une

enclave traductionnelle chez E. coli, et dans ce but construit des genes derives de leuX d'E. coli et de cysT de B subtilis exprimant des tRNA SUP L SUP e SUP u et tRNA SUP C SUP y SUP s refractaires a la charge par les aminoacyl-tRNA synthetases cellulaires, et susceptibles d'etre recrutes pour former des aminoacyl-tRNA non-canoniques. Enfin, j'ai construit a partir d'E. coli un prototype genetique compo 17/7/65 (Item 5 from file: 144) DIALOG(R) File 144: Pascal (c) 2008 INIST/CNRS. All rts. reserv. 09564726 PASCAL No.: 91-0355156 Tempeature sensitivity caused by missense suppressor supH and amber suppressore supP in Escherichia coli THORBJARNARDOTTIR S; BJOERNSSON A; AMUNDADOTTIR L; EGGERTSSON G Univ. hosp., inst. biology, Reykjavik 108, Ireland Journal: Journal of bacteriology, 1991, 173 (1) 412-416 ISSN: 0021-9193 CODEN: JOBAAY Availability: INIST-2041; 354000019765480570/NUM; INIST; 354000019765480570/NUM No. of Refs.: 26 ref. Document Type: P (Serial) ; A (Analytic) Country of Publication: USA Language: English 17/7/66 (Item 6 from file: 144) DIALOG(R) File 144: Pascal (c) 2008 INIST/CNRS. All rts. reserv. 00994604 PASCAL No.: 76-0185608 MUTATIONAL PROPERTIES OF SUP P AMBER-OCHRE SUPERSUPPRESSORS IN SACCHAROMYCES CEREVISIAE GERLACH W L DEP. GENET., UNIV. ADELAIDE, AUSTRALIA Journal: MOLEC. GEN. GENET., 1976, 144 (2) 213-215 Availability: CNRS-3571 No. of Refs.: 12 REF. Document Type: P (SERIAL); DU (DUPLICATION) ; A (ANALYTIC) Country of Publication: FEDERAL REPUBLIC OF GERMANY Language: ENGLISH LES RESULTATS SONT COMPATIBLES AVEC LA PROPOSITION QUE LE LOCUS SUPP CODE POUR UNE PROTEINE

17/7/67 (Item 1 from file: 155) DIALOG(R)File 155:MEDLINE(R)

(c) format only 2008 Dialog. All rts. reserv.

16441665 PMID: 15961494

Automatic detection of subsystem/pathway variants in genome analysis.

Ye Yuzhen; Osterman Andrei; Overbeek Ross; Godzik Adam

Program in Bioinformatics and Systems Biology, The Burnham Institute

10901 N. Torrey Pines Road, La Jolla CA 92037, USA. yye@burnham.org Bioinformatics (Oxford, England) (England) Jun 2005, 21 Suppl 1

pi478-86, ISSN 1367-4803--Print Journal Code: 9808944 Contract/Grant No.: U54 RR020843; RR; United States NCRR

Publishing Model Print

Document type: Journal Article; Research Support, N.I.H., Extramural Languages: ENGLISH

Main Citation Owner: NLM

Record type: MEDLINE; Completed

MOTIVATION: Proteins work together in pathways and networks, collectively

comprising the cellular machinery. A subsystem (a generalization of pathway

concept) is a group of related functional roles (such as enzymes)
jointly

involved in a specific aspect of the cellular machinery. Subsystems provide

a natural framework for comparative genome analysis and functional

annotation. A subsystem may be implemented in a number of different

functional variants in individual species. In order to reliably project functional assignments across multiple genomes, we have to be able

to identify the variants implemented in each genome. The analysis of such variants across diverse species is an interesting problem by itself and may provide new evolutionary insights. However, no computational

techniques are presently available for an automated detection and analysis

of subsystem variants. RESULTS: Here we formulate the subsystem variant detection problem as finding the minimum number of subgraphs of a subsystem, which is represented as a graph, and solve the optimization

problem by integer programming approach. The performance of our method was

tested on subsystems encoded in the SEED, a genomic integration platform $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

developed by the Fellowship for Interpretation of Genomes as a component of

a large-scale effort on comparative analysis and annotation of multiple

diverse genomes. Here we illustrate the results obtained for two

expert-encoded subsystems of the biosynthesis of Coenzyme A and FMN/FAD

cofactors. Applications of variant detection, to support genomic annotations and to assess divergence of species, are briefly discussed in

the context of these universally conserved and essential metabolic

subsystems. SUPPLEMENTARY INFORMATION: The details of the variant detection results are available at http://ffas.burnham.org/svar/supp.html.

Record Date Created: 20050617
Record Date Completed: 20060622

17/7/68 (Item 2 from file: 155)

DIALOG(R) File 155: MEDLINE(R)

(c) format only 2008 Dialog. All rts. reserv.

15055286 PMID: 12584124

GenePath: a system for automated construction of genetic networks from mutant data.

Zupan Blaz; Demsar Janez; Bratko Ivan; Juvan Peter; Halter John A; Kuspa

Adam; Shaulsky Gad

University of Ljubljana, Faculty of Computer and Information Science

Jozef Stefan Institute, Ljubljana, Slovenia.

Bioinformatics (Oxford, England) (England) Feb 12 2003, 19 (3)

p383-9, ISSN 1367-4803--Print Journal Code: 9808944 Contract/Grant No.: P01 HD39691-01; HD; United States NICHD Publishing Model Print

Document type: Evaluation Studies; Journal Article; Research Support,

Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Research Support,

U.S. Gov't, P.H.S.

Languages: ENGLISH

Main Citation Owner: NLM

Record type: MEDLINE; Completed

MOTIVATION: Genetic networks are often used in the analysis of biological

phenomena. In classical genetics, they are constructed manually from

experimental data on mutants. The field lacks formalism to quide such

analysis, and accounting for all the data becomes complicated when large

amounts of data are considered. RESULTS: We have developed GenePath, an

intelligent assistant that automates the analysis of genetic data. GenePath $\ensuremath{}$

```
employs expert-defined patterns to uncover gene relations from the
data,
and uses these relations as constraints in the search for a
plausible
genetic network. GenePath formalizes genetic data analysis,
facilitates the
consideration of all the available data in a consistent manner,
and the
examination of the large number of possible consequences of
planned
experiments. It also provides an explanation mechanism that traces
every
finding to the pertinent data. AVAILABILITY: GenePath can be
accessed at
http://genepath.org. SUPPLEMENTARY INFORMATION: Supplementary
material is
available at http://genepath.org/bi-.supp
 Record Date Created: 20030213
 Record Date Completed: 20030606
 17/7/69
             (Item 3 from file: 155)
DIALOG(R) File 155: MEDLINE(R)
(c) format only 2008 Dialog. All rts. reserv.
07356292
          PMID: 6745359 Record Identifier: 84261792
 Purkinje cell activity in the primate flocculus during
optokinetic
stimulation, smooth pursuit eye movements and VOR-suppression.
 Buttner U; Waespe W
 Experimental
                brain
                            research.
                                          Experimentelle
Hirnforschung.
Experimentation cerebrale (GERMANY, WEST)
                                            1984,
                                                   55 (1) p97-104,
                       Journal Code: 0043312
ISSN 0014-4819--Print
 Publishing Model Print
 Document type: Journal Article; Research Support, Non-U.S. Gov't
 Languages: ENGLISH
 Main Citation Owner: NLM
 Other Citation Owner: NASA
 Record type: MEDLINE; Completed
 Purkinje cell (PC) activity in the flocculus of trained
monkeys was
recorded during: 1) Vestibular stimulation in darkness. 2)
Suppression of
the vestibulo-ocular reflex (VOR-supp) by fixation of a small light
spot stationary with respect to the monkey. 3) Visual-vestibular
conflict
(i.e. the visual surround moves together with the monkey during
vestibular
stimulation), which leads to attenuation or suppression of vestibular
nystagmus. 4) Smooth pursuit eye movements. 5) Optokinetic nystagmus
(OKN).
```

6) Suppression of nystagmus during optokinetic stimulation (OKN-supp) by fixation of a small light spot; whereby stimulus velocity corresponds

then to image slip velocity. Results were obtained from PCs, which were

activated with VOR-supp during rotation to the ipsilateral side. The same PCs were also modulated during smooth pursuit and visual-vestibular

conflict. No tonic modulation during constant velocity OKN occurred with

slow-phase nystagmus velocities below 40-60 deg/s. Tonic responses were

only seen at higher nystagmus velocities. Transient activity changes

appeared at the beginning and end of optokinetic stimulation. PCs were not

modulated by image slip velocity during OKN-supp. The results show that in primates the same population of floccular PCs is involved in

different mechanisms of visual-vestibular interaction and that smooth

pursuit and certain components of OKN slow-phase velocity share the same

neural pathway. It is argued that the activity of these neurons can neither

be related strictly to gaze, eye or image slip velocity; instead, their

activity pattern can be best interpreted by assuming a modulation, which is

complementary to that of central vestibular neurons of the vestibular

nuclei, in the control of slow eye movements.

Record Date Created: 19840831 Record Date Completed: 19840831

17/7/70 (Item 4 from file: 155)

DIALOG(R) File 155: MEDLINE(R)

(c) format only 2008 Dialog. All rts. reserv.

06090127 PMID: 45219

Regulation of biosynthesis of aminoacyl-transfer RNA synthetases and of

transfer-RNA in Escherichia coli.

Morgan S; Larossa R; Cheung A; Low B; Soll D

Archivos de biologia y medicina experimentales (CHILE) Oct 1979, 12

(3) p415-26, ISSN 0004-0533--Print Journal Code: 0321546

Contract/Grant No.: CA06519; CA; United States NCI; GM22854; GM; United

States NIGMS; HD09167; HD; United States NICHD Publishing Model Print

Document type: Journal Article; Research Support, U.S. Gov't, P.H.S.

Languages: ENGLISH

Main Citation Owner: NLM

Record type: MEDLINE; Completed

We have isolated temperature resistant revertants from temperature

sensitive E. coli strains containing either a thermolabile glutaminyl-tRNA

synthetase or leucyl-tRNA synthetase. Among the revertants which still

contained the thermolabile leucyl-tRNA synthetase we found two classes of

regulatory mutants (leuX and leu Y) which have elevated levels of this enzyme. The leuX mutation specifies an operator-promoter region adjacent to the structural gene (leuS) for the enzyme. The leuY gene

maps away from the leuS gene and codes for a protein. Using these mutants

we demonstrated that the levels of leucyl-tRNA are related to the $\,$

derepression of the leucine and isoleucine-valine operons. Among the

revertants which still contained the thermolabile glutaminyl-tRNA

synthetase were characterized three classes of mutants, glnT, glnU, and

glnR. The glnT and glnU mutants contain elevated levels of tRNAgln, while

the glnR mutant possesses elevated levels of glutaminyl-tRNA synthetase.

The level of glutamine synthetase, the enzyme responsible for the formation

of glutamine, is also derepressed in the glnT and glnR mutants.

Record Date Created: 19810116
Record Date Completed: 19810116

17/7/71 (Item 1 from file: 156)

DIALOG(R) File 156: ToxFile

(c) format only 2008 Dialog. All rts. reserv.

1066246 NLM Doc No: CRISP/2000/ES21227-04 Sec. Source ID:

CRISP/2000/ES21227-04

RELEVANCE OF CHEMICALLY INDUCED HEMANGIOSARCOMAS IN B6C3F1 MOUSE SILLS RC

NIEHS, NIH

Source: Crisp Data Base National Institutes of Health

Pub. Year: 2000

Sponsoring Agency: U.S. DEPT. OF HEALTH AND HUMAN SERVICES; PUBLIC HEALTH

SERVICE; NATIONAL INSTITUTES OF HEALTH, NATIONAL INSTITUTE OF ENVIRONMENTAL

HEALTH SCIENCES

Award Type: Intramural Project

Document type: Research

Languages: ENGLISH

Record type: Completed

Summary of Work: It is hypothesized that epoxide intermediates play a

role in t he pathogenesis of hemangiosarcomas by causing genetic

alterations in tumor supp ressor genes and proto-oncogenes.

Preliminary data has shown that chloroprene i nduced

hemangiosarcomas have

elevated p53 protein and specific point mutations h ave been detected in exon 5-8. Chemically induced hemangiosarcomas in 1, 3 butad iene

o-nitrotoluene and tetrafluoroethylene studies are being evaluated for spec

ific genetic alterations in the P53 gene. Tumor suppressor gene and

oncogene a nalysis will provide valuable information on the relationship

between carcinogen exposure and DNA damage and the relevance to humans.

Record Date Created: 200108

17/7/72 (Item 2 from file: 156)

DIALOG(R) File 156: ToxFile

(c) format only 2008 Dialog. All rts. reserv.

1064969 NLM Doc No: CRISP/2000/DK56105-02 Sec. Source ID:

CRISP/2000/DK56105-02

FOOD FOLATE FORTIFICATION EFFECT ON FOLATE STATUS SELHUB J

TUFTS UNIVERSITY, 711 WASHINGTON ST, BOSTON, MA 02111

Source: Crisp Data Base National Institutes of Health

City or State: MASSACHUSETTS Zip Code: 02111

Pub. Year: 2000

Sponsoring Agency: U.S. DEPT. OF HEALTH AND HUMAN SERVICES; PUBLIC HEALTH

SERVICE; NATIONAL INSTITUTES OF HEALTH, NAT INST OF DIABETES AND DIGESTIVE

AND KIDNEY DISEASES

Award Type: Grant

Document type: Research

Languages: ENGLISH

Record type: Completed

In 1996, the U.S. Food and Drug Administration published a regulation to

be effe ctive by January 1998 that all enriched fluor, breads, rive, pasta,

- corn meal, a nd other grain products would contain 140 micrograms of folic
- acid per 100 grams . The main purpose of this proposed study is to examine
- the impact of fortificat ion on folate status in the Framingham Offspring
- Study cohort. We have measured plasma folate and homocysteine
- concentrations at the 5th examination cycle (Jan uary 1991-December 1994),
- and have preliminary data on a subset of subjects from the 6th examination
- cycle (January 1995-September 1998). We propose to measure folate and
- homocysteine status at the 7th examination cycle (September 1998-Augu st
- 2001) so that we can establish post-fortification concentrations of plasma
- fo late and homocysteine in the entire cohort. We plan to test the
- following hypoth eses: 1) Current folic acid fortification levels are
- adequate to virtually elimi nate low folate status and elevated
- homocysteine concentrations associated with inadequate folate status in
- relatively healthy, non- institutionalized adults. 2) Folic acid
- fortification at current levels will largely remove the methylenete
- trahydrofolate reductase (MTHFR) C677T mutation as a risk factor for elevated ho mocysteine concentrations. 3) The increase in folate intake due
- to fortification will increase the prevalence of low vitamin B12 status in
- association with fola te intakes above 1 microgram/day. 4) The important
- sources of folate in the diet are dramatically changed in the area of folic
- acid fortification. The following specific aims address each of these
- hypotheses in the Framingham Offspring coho rt, a population-based sample
- of adults, in which three serial blood samples wil 1 be obtained between
- the years 1991 and 2001 (with at least one sample obtained before and after $\ensuremath{\mathsf{after}}$
- implementation of fortification) in combination with members of the $% \left(1\right) =\left(1\right) +\left(1\right)$
- Framingham Omni minority cohort, which was established between 1994 and 19
- 98: 1) To assess the change in plasma and RBC folate and plasma

homocysteine con centrations associated with the FDA-RBC folate at the $7 \mathrm{th}$

examination cycle, and RBC folate at the 6th examination. 2) To determine

if the relation between homo cysteine and MTHFR C677T genotype is weakened

after implementation of folic acid fortification, we will determine \mathtt{MTHFR}

genotype for the C677T mutation in the O ffspring cohort. 3) To evaluate the potential for an increased prevalence of low vitamin $\rm B12$

status in the presence of high folic acid intakes after fortificati on, we

will measure plasma vitamin B12 and dietary supplemental nutrient intake

using the Willett food frequency questionnaire at examination 7.4) To

determine the contribution of folic acid from fortification of folic acid

from fortificat ion to total dietary folate and the change in percent

contribution for each sour ce before and after fortification so that we can

characterize the most important sources of folate in the era of

fortification, we will measure dietary and supp lemental nutrient intake using the Willett food frequency questionnaire at exami nation 7.

Record Date Created: 200108

17/7/73 (Item 3 from file: 156)

DIALOG(R) File 156: ToxFile

(c) format only 2008 Dialog. All rts. reserv.

1058130 NLM Doc No: CRISP/1999/BC05748-07 Sec. Source ID:

CRISP/1999/BC05748-07

GENOMIC ALTERATIONS IN FOOD-DERIVED HETEROCYCLIC

AMINE-INDUCED RAT

MAMMARY GLAND

SNYDERWINE E

NCI BC, NIH

Source: Crisp Data Base National Institutes of Health

Pub. Year: 1999

Sponsoring Agency: U.S. DEPT. OF HEALTH AND HUMAN SERVICES; PUBLIC HEALTH

SERVICE; NATIONAL INSTITUTES OF HEALTH, DIVISION OF BASIC SCIENCES - NCI

Award Type: Intramural Project

Document type: Research

Languages: ENGLISH

Record type: Completed

- 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a mutagenic
- compound fou nd the human diet in cooked meat, is a mammary gland
- carcinogen in female Spragu e-Dawley rats. PhIP-induced rat mammary gland
- carcinomas were examined for mutat ions in several genes (exons) known to regulate cell growth and apoptosis includ ing p53 (4-8), p21Waf1
- (coding region), Apc (14, 15), B-catenin (3), E-cadherin (9,13,15), Bcl-x
- (coding region), Bax (3), IGFIIR (28), and TGFBIIR (3). DNA from 30
- carcinomas were examined by single strand conformation polymorphism analysi
- s but no mutations were detected in these genes/gene regions. DNA from carcinoma s and matching normal tissue were further screened for
- allelic imbalance using a polymerase chain reaction-based approach with $% \left(1\right) =\left(1\right) +\left(1\right) +\left($
- primers to known microsatellite r egions located throughout the rat genome.
- Out of 53 markers examined, twelve rev ealed allelic imbalance.
- Microsatellite instability (MSI) was detected at two markers, one on
- chromosome 4 and one on chromosome 6. Sixty-five percent and 96% of all
- carcinomas examined (N=23) showed MSI at these loci on chromosomes 4 and 6 $\,$
- , respectively, supporting the notion that MSI plays a role in $\mbox{PhIP-induced}$
- mamm ary carcinogenesis. Loss of heterozygosity (LOH), an indication of a
- possible tu mor suppressor gene, was observed at ten markers distributed on
- chromosomes $\,$ 3, $\,$ 1 $\,$ 0, 11, 14, and $\,$ X. The frequency of LOH at these markers
- ranged from 75%-94% supp orting that the regions of allelic imbalance were largely similar for the PhIP-i nduced carcinomas examined in this
- study. When PhIP-induced carcinomas from rats placed on high fat and low
- fat diet were compared, no unique regions of allelic imbalance nor
- statistical differences in the frequency of allelic imbalance were $% \left(1\right) =\left(1\right) +\left(1\right)$
- observed. The results indicate that the high fat diet, known to be a
- promoter of PhIP-induced rat mammary carcinogenesis, did not influence

allelic imbalance in the carcinomas. Interestingly, DMBA-induced mammary carcinomas did not show a llelic imbalance at 11 of the 12 loci which showed allelic imbalance in PhIP-ind uced carcinomas. findings suggest that distinct chemical carcinogens induc e different patterns of allelic imbalance during rat mammary carcinogenesis. Fur ther studies are needed to determine whether regions of LOH harbor potentially n ovel tumor suppressor genes involved in breast cancer. - Breast cancer, Allelic imbalance, Heterocyclic amines, Diet, Microsatellite instability, Loss of hetero zygosity, Rat, Record Date Created: 200010 17/7/74 (Item 4 from file: 156) DIALOG(R) File 156: ToxFile (c) format only 2008 Dialog. All rts. reserv. NLM Doc No: DART/TER/95001633 Sec. Source ID: 174142 DART/TER/95001633 Placental lysyl oxidase RNA expression after vitamin E supplementation and prenatal alcohol exposure in rats. Puryear TK; Schildkrout A; Krawetz SA; Hannigan JH Fetal Alcohol Research Center, Wayne State University, Detroit, MI. Source: Alcohol Clin Exp Res 1994 Apr; 18(2):471 Journal Name: Alcohol Clin Exp Res Pub. Year: 1994 ISSN: 0145-6008 Contract/Grant No.: NIAAA06721; NIAAA07531; NIAAA07606 Document type: ABSTRACT Languages: ENGLISH Record type: Completed We studied nutritional deficiency in Vitamin E (VitE) as a potential risk factor for FAS. VitE is an essential nutrient that protects cells from cytotoxic free radicals that are increased by alcohol. We hypothesized that VitE deficiency would exacerbate VitE supplementation and would attenuate alcohol-induced fetopathy in rats. Female rats were fed VitE DEFicient diets (0 IU/kg) for 2 weeks before mating. From gestation day 0 (GD0) dams either ate DEF diet, or diets with NORMal (35 IU/kg) or SUPPlemented (70 IU/kg) levels of VitE. From GD8 to GD20,

dams were

intubated with 0, 3 or 5 g/kg/day of ethanol. Controls were unintubated. On

GD20, 30 min after intubation, maternal blood, amniotic fluid, fetuses and

placentae were collected. EtOH decreased litter size and increased

placental weight. Maternal weight gain and fetal weight were reduced

additively by VitE DEF and EtOH. VitE DEF decreased fecundity. While EtOH

effects were unchanged, VitE DEF decreased and VitE SUPP increased placental lysyl oxidase RNA levels. The results suggest that VitE DEF can

exacerbate some signs of FAS (e.g. low fetal weight), but that VitE

SUPP may not ameliorate fetal alcohol effects.
Record Date Created: 199601

17/7/75 (Item 1 from file: 369)

DIALOG(R) File 369: New Scientist

(c) 2008 Reed Business Information Ltd. All rts. reserv.

00126264 16622434.800 (THIS IS THE FULLTEXT)

Left right and wrong

AINSWORTH, CLAIRE; Claire Ainsworth is a science writer living in London

New Scientist, vol. 166, no. 2243, p. 40 June 17, 2000

TEXT: When an embryo can't tell one side from the other the result can

be catastrophic. Claire Ainsworth sorts out the confusion

CHECKED your insides recently? They could be the wrong way round. No

kidding. The chances are that at least 75 New Scientist readers are the

mirror image of the rest of us, and they're probably none the wiser.

Most of us don't give our internal body plans a second thought.

probably been taught that your heart lies on the left-hand side of your

chest, and if you've got a right-sided pain in your belly you start getting

paranoid about your appendix. But for one in 8500 people, the exact opposite is true. It's as though they had stepped through a mirror into

looking-glass land: the handedness and placing of their internal organs are

completely reversed. It's a secret that many of them carry to the grave,

because the reversal is so perfect they never even notice.

But these people are the lucky ones. An unlucky few find themselves

stuck halfway through the mirror in a deadly limbo where their body pattern

is neither fully one way nor the other. Their internal organs can get tangled up in a life-threatening jumble, and many need emergency surgery as

soon as they are born. Even partial forays into looking-glass land can land

you in trouble: minor disruptions of this left-right patterning process

could be a leading cause of congenital heart problems in newborn babies.

Curiouser and curiouser indeed, but how do these problems arise? You

might think that college-educated biologists would have figured out how to

tell left from right by now. But for an embryo it's not that simple. How it

does this, and then sets up its internal asymmetry, has puzzled developmental biologists for decades. At last, though, researchers think

they may have found the answer in a thoroughly unexpected place: a tiny

molecular motor that waves things to the left like a police officer directing traffic.

Packing puzzle

Why should our internal organs be asymmetric in the first place? For

two main reasons, says Joseph Yost, a developmental biologist at the University of Utah. The first is a straightforward packing problem—how to

fit everything together in a restricted space. The lungs, for example, have

to share space in the chest with the heart and its great blood vessels. To

make room, your left lung has two lobes and your right has three, and

major airways, the left and right bronchi, are tilted at different angles.

The upshot is that if you manage to inhale a peanut in some bizarre drunken

accident at a party, it's practically guaranteed to lodge in your right

lung. A neat piece of trivia to test the doctors on when you finally stagger, hacking and spluttering, into your local casualty department.

The second reason is to do with making organs function efficiently,

and making sure that they link up to each other properly. Nowhere is this

more apparent than in the heart, says Nigel Brown, a heart development expert at St George's Hospital Medical School in London. Researchers in

Britain have recently confirmed that the heart's asymmetric design improves

blood flow and makes it an extremely efficient pump. In addition, the right

side of the heart is smaller than the left, because it collects blood from

the body and only has to pump it across to the lungs, while the left side

has to pump oxygenated blood all the way round the body. So not only does

the heart have to be asymmetric itself, it must also be plumbed into the

lungs and the body the correct way.

If your left-right pattern is completely reversed, a condition called

situs inversus, there's no problem, because all the organs are reversed

with respect to each other (see Diagram). (Curiously, such people have no

more chance of being left-handed than the rest of the population.) But between there and normality lies dangerous ground. "Anything in between and

you're in various degrees of trouble, depending on exactly what's wrong,"

says Brown.

CAPTION: How body organs may be reversed (FIGURE OMITTED)

The most extreme problem is called isomerism. In this

condition, the

organs are entirely symmetrical, as if you're standing with a mirror placed

down the midline of your body. The way your organs are affected depends on

which side of your body is being reflected in the mirror. If it's the right

side, your spleen will be missing and both your lungs will have three lobes. Worst of all, your heart will be symmetrical, too.

Too right

A heart with two right sides is a double whammy of bad news. First,

the chambers won't be strong enough to pump blood around the body. And even

if they could manage, you run into a second problem, which is that the blood vessels that connect other organs to the heart don't know where to

attach. So they just plug themselves in randomly to the nearest blood vessels, such as the hepatic vein, which carries blood from the liver. It's

as if someone's done a cowboy job on the body's plumbing. Babies born with

a double-right heart need urgent surgery to have any hope of surviving.

But you don't have to go to anything like this extreme to be affected. A mix of organs, some the right way and others inverted—a condition called heterotaxia—also lands you with plumbing problems. More

subtle problems with left-right patterning could affect many of the 8 per

1000 British children born with congenital heart defects, says Brown.

As well as being important clinically, understanding left-right patterning is a challenging intellectual problem that has puzzled developmental biologists for years. When an embryo starts to develop, it

needs to find its bearings so that it knows where different parts such as

legs and guts should grow. So it establishes reference lines or "axes" that

run from head to tail and belly to back, marking which end is the head and

which side is the front. Biologists have a fair idea of how the embryo does

this, but the left-right decision is trickier. To establish left-right asymmetry, an embryo must break its bilateral symmetry in a consistently

handed fashion, and set up a new axis exactly perpendicular to the other

two.

So what immortal hand or eye could break bilateral symmetry? In the

early 1990s, Brown and Lewis Wolpert, a developmental biologist now at University College London, suggested a mechanism. Imagine a molecule in the

shape of the letter F, they said. No matter how hard you try, you can never

superimpose this F molecule on a mirror image of itself with the same side

facing upward--in other words, it's "chiral". This intrinsic handedness

means that embryos could use the F molecule to reliably tell their left

hand from their right (see Diagram).

CAPTION: Left-right patterning on a mouse (FIGURE OMITTED)

That's fine and dandy in theory, but finding this hypothetical molecule has been another matter. For a start, nobody knew what it was, or

even what it looked like. Biologists have built up a fairly good picture of

the genes and biochemical pathways that act once the symmetry is broken.

But it's only now that the F molecule's identity may have been unmasked.

The first clue came in 1976 from studies on a group of people with a

rare condition called Kartagener's syndrome. These people show a range of

left-right problems, and intriguingly, the men are infertile. When Bjorn

Afzelius of Stockholm University took a closer look he found that the sperm

tails, or flagella, of these men are paralysed, as are similar hair-like

structures called cilia on other cells. What was the link between cilia and

left-right asymmetry? Afzelius suggested a connection. When cilia beat, he

said, they might force developing organs to bend in a particular direction.

Nobody paid much attention to this idea at the time, but 22 years later, a

chance discovery by researchers in Japan pushed cilia back into the limelight.

Nobutaka Hirokawa and his colleagues at Tokyo University were studying a group of proteins called kinesins. These are the packhorses of

the cell, large protein complexes that shoulder packages called vesicles

that contain anything from chemical messengers that cells use to talk

each other to the bricks and mortar needed to build cellular structures.

Kinesins tramp up or down the cell's scaffolding, the cytoskeleton, to deliver their load to its required destination. Hirokawa's group had identified a new kinesin complex in mice, and to find out exactly what it

was doing they genetically engineered mice that lacked part of the complex.

All these mice died as young embryos -- and about half turned out to

have reversed left-right patterning. Intrigued by this result, the researchers took a closer look at very young embryos, specifically at a

structure called the node that was known to be important for dictating left-right asymmetry. The node is a triangular patch of cells that forms a

pit at the head end of the developing embryo before marching down the embryo laying down cells that establish the head-tail axis. It's the embryo's Mission Control, telling cells where to go and what to do. The

node is normally covered in cilia, but those of Hirokawa's mice were bare.

Without the special kinesin, the cells couldn't build any.

However, this still didn't explain why half the mice had situs inversus. Studying the nodal cilia under an electron microscope only deepened the mystery, as they turned out to have an unusual structure. Cilia are usually made up of nine pairs or "doublets" of tubes called microtubules arrayed around two central singlets: this is the classical

"9+2" arrangement. Large protein motors called dyneins form arms which link

the outer tubule of one doublet with the inner tubule of the next. The action of these motors forces the doublets to slide past each other lengthways, driving the lashing motion of the cilia in the process, although nobody knows exactly how.

The nodal cilia have a slightly different structure that lacks the

central pair, and scientists have generally assumed that these sorts of

structures, called monocilia, don't beat. Biologists have largely thought

of them as sensory structures: the light-detecting rods and cones in our

retinas, for example, are monocilia. Just to be sure, though, Hirokawa's

group watched these cilia in normal living mouse embryos, using a sophisticated wide-angled microscope to provide maximum depth of field. To

their astonishment, they found that the cilia were moving. But instead of

following the whip-like motion of 9+2 cilia, they were whizzing around clockwise like tiny propellers. "This was a very big surprise," says Hirokawa. When the researchers added tiny fluorescent beads to the fluid

around the embryos, the beads were consistently wafted from right to left.

Suddenly, the penny dropped. What if, instead of beads, this "nodal flow"

wafted a chemical signal over to mark the left side of the embryo?

It's an intriguing possibility, but Hirokawa's mutant mice alone don't prove that cilia hold the smoking gun. After all, kinesins could influence a number of cellular processes, and it's not just asymmetry that's affected in the mutant embryos. So how do we know that nodal cilia

are anything more than gyrating red herrings?

Well, we don't know for sure yet. Nodal cilia are tiny, and hardly

anyone has actually witnessed them moving because they are so hard to see.

so many researchers remain sceptical. One of the doubters was Martina Brueckner, a cardiologist at Yale University, who wanted to see the cilia

for herself. "I spent most of last winter struggling with this using every

microscope on this campus," she recalls. "I couldn't see it." Finally, she

managed to borrow a microscope with a very wide-angle lens like Hirokawa's--and there the cilia were, twirling away. "They're there," she

says now. "It's real."

Brueckner had a special interest in the outcome because she had been

studying mice with a mutated gene called inversus viscerum, or iv, which causes various forms of left-right reversal similar to those seen in

people. When she and her colleagues isolated the gene, it turned out to

encode a dynein--they called it left-right dynein--that was similar to the

dyneins found in the outer arms of cilia. The team then genetically engineered a mouse strain that lacked only the head-end of the dynein, which is crucial for its motor function. Under the borrowed microscope, the

nodal cilia on her engineered mice stood stock-still like a battalion of

tin soldiers, their dynein motors jammed. And sure enough, the mice had

situs inversus. "This supports our hypothesis very well," says Hirokawa.

The case for nodal flow was starting to look stronger.

So are cilia truly the movers and shakers of symmetry breaking? To

find out when the cilia and nodal flow were active, Hirokawa and his team

looked at the expression pattern of a gene involved in left-right asymmetry. It is the earliest-acting gene known so far, and is normally

expressed only on the left-hand side of the developing embryo. In the mutant mice, however, it was expressed either on both sides or not at all.

So whatever process is going wrong in Hirokawa's mutants, it acts earlier

than any other known step, possibly forming the initial symmetry-breaking

mechanism that biologists are searching for.

Moreover, cilia themselves have all the qualities that researchers

were looking for in the elusive F molecule. Imagine you've clambered up a

nodal cell's cytoskeleton, and are peering up a cilium as it towers out of

constructed, and you'll notice that the cilium itself is asymmetric (see

Diagram). The dynein arms that link the nine outer doublets are all angled

to the right, like spokes on a pinwheel. Cut a slice across the cilium, and

you will find that it cannot be superimposed on a mirror-image of itself:

the structure is chiral. Could this whole massive structure fulfil the role

of the handed molecule postulated by Brown and Wolpert? "If you broaden the

concept at that level," says Brueckner, "then the cilium is a perfectly

beautiful F molecule." Combined with the shape of the node, the clockwise

twirling of the cilia generates the leftward flow.

CAPTION: The asymmetric pattern of the cilium (FIGURE OMITTED) It's an elegant solution to a complex problem, but the jury is still

out, and the response to Hirokawa's nodal flow model has been mixed.

developmental biologists are intrigued, but cautious. Intellectually, it's

a very appealing model, says Brown, but he questions whether the subtle

wafting currents would be robust enough to do the trick reliably. Another

problem with the theory is that researchers have yet to pinpoint an equivalent population of cilia in other species. Finding them in other animals—especially in standard lab creatures such as chicks and frogs—would add more weight to the idea, says Yost. "My general sense is

that the cilia [model] is a very exciting possibility, but there are still

a few issues that need to be resolved—as far as knowing that they are the $\ensuremath{\mathsf{E}}$

instigators of left-right patterning," he adds.

Wolpert is also hesitant to hail the unmasking of his elusive F molecule just yet. "I think it's a remarkable observation, but you've got

to be a little careful," he says. "How does one know that it is the cilia

that are doing it, and not just a mutation that affects something else and the cilia?" His reservations are echoed by Denys Wheatley, a cell

biologist at the University of Aberdeen. We need more robust evidence that

the twirling motion of cilia actually causes left-right patterning, he says.

What would convince the doubting Thomases? If someone were to use a

jet of water to interfere with the nodal flow, says Wolpert, then he'd be

impressed. "It's a trivial experiment," he laments. "I can't
understand why

they don't do it." But Kyle Vogan, a researcher at Harvard Medical School

who studies chick development, is enthusiastic about the theory. "It does

have the power to explain some of the most challenging issues related to

left-right patterning," he says. The problem of finding similar cilia in

other animals could all be down to timing, he says. They may be active at

different stages in different species.

If Hirokawa's theory turns out to be right, it opens up a whole new

understanding of how embryos tell left from right and how this critical

asymmetry goes wrong. The irony is that the human race has always knocked

asymmetry, seeing it as a sign of imperfection. Your symmetrical outside

might make you a beauty, but it's your asymmetrical insides that keep you

alive. It's something to ponder as you inspect yourself in the mirror in

the morning. The next time you claim your heart's in the right place, you

may want to think again.

References and Notes:

Further reading: Mechanisms of left-right determination in vertebrates

by Javier Capdevila and others, Cell, vol 101, p 9 (2000) Molecular motors: the driving force behind mammalian left-right development by Dorothy Supp and others, Trends in Cell Biology, vol 10, p 41 (2000)

17/7/76 (Item 1 from file: 370)

DIALOG(R) File 370: Science

(c) 1999 AAAS. All rts. reserv.

00500056 (USE 9 FOR FULLTEXT)

Determining Divergence Times of the Major Kingdoms of Living Organisms with

a Protein Clock

Doolittle, Russell F.; Feng, Da-Fei; Tsang, Simon; Cho, Glen; Little, Elizabeth

The authors are at the Center for Molecular Genetics University of California, San Diego, La Jolla, CA 92093-0634, USA.

Science Vol. 271 5248 pp. 470

Publication Date: 1-26-1996 (960126) Publication Year: 1996

Document Type: Journal ISSN: 0036-8075

Language: English

Section Heading: Articles

Word Count: 5901

Abstract: Amino acid sequence data from 57 different enzymes were used

to determine the divergence times of the major biological groupings. Deuterostomes and protostomes split about 670 million years ago and plants,

animals, and fungi last shared a common ancestor about a billion years ago.

With regard to these protein sequences, plants are slightly more similar to

animals than are the fungi. In contrast, phylogenetic analysis of the same

sequences indicates that fungi and animals shared a common ancestor more

recently than either did with plants, the greater difference resulting from $\ensuremath{\mathsf{T}}$

the fungal lineage changing faster than the animal and plant lines over the

last 965 million years. The major protist lineages have been changing at a

somewhat faster rate than other eukaryotes and split off about 1230 million

years ago. If the rate of change has been approximately constant, then prokaryotes and eukaryotes last shared a common ancestor about 2 billion

years ago, archaebacterial sequences being measurably more similar to eukaryotic ones than are eubacterial ones.

References and Notes:

- 1. Schopf, J. W., Science, 260 1993, 640 ;
- 2. Knoll, A. H., ibid., 256 1992, 622 ;
- 3. Zuckerkandl, E., Pauling, L., Ed. by Bryson, V., Vogel, H.

Evolving Genes and Proteins, 1965, 97166 Academic Press, New York,

- 4. Doolittle, R. F., Blomback, B., Nature, 202 1964, 147 ;
- 5. As an example, an entire issue of J. Mol. Evol. [26, 1-164 (1987)] was

devoted to molecular clocks and their use in different settings.;

- 6. Jukes, T. H., Space Life Sci., 1 1969, 469 ;
- 7. McLaughlin, P. J., Dayhoff, M. O., Science, 168 1970, 1469 Kimura, M., Ohta, T., Nature New Biol, . 243 1973, 199 Hori, H.,
- Osawa, S., Proc. Natl. Acad. Sci. U.S.A., 76 1979, 381 Dayhoff, M.
- O., Atlas of Protein Sequence and Structure, vol. 5 1978, suppl National Biomedical Research Foundation, Washington, DC, , </BOOK>
 3.;
- 8. Schopf, J. W., Oehler, D. Z., Science, 193 1976, 47;

```
9. Woese, C. R., Ed. by Bendall, D. S., Evolution from
Molecules to
 Men, 1983, 209233 Cambridge Univ. Press, London, , Sogin, M.
L.,
 Ed. by Warren, L., Koprowski, H., New Perspectives on Evolution,
1991,
 175188 Wiley-Liss, New York, ,
10. Long-term amino acid replacement in proteins is subject to a
large
 number of independently acting factors, each of which may have only
 small effect on the overall process. In our study we have assumed
 the replacement process is approximately uniform, an assumption
 open to question [see Gillespie, J. H., The Causes of Molecular
 Evolution, 1991, Oxford Univ. Press, New York, , ].;
       Doolittle, R. F., Anderson, K. L., Feng, D. F.,
 Fernholm, B., Bremer, K., Jornvall, H., The Hierarchy of Life,
1989,
 7385 Elsevier, Amsterdam, ,
12. Some enzymes that have the same name and Enzyme Commission (E.C.)
 numbers, but are derived from independent origins, include
superoxide
 dismutases, carbonic anhydrases, aldolases, and serine proteases.;
      Fitch, W. M., Syst. Zool., 19 1970, 99
14.
      Smith, M. W., Feng, D. F., Doolittle, R. F., Trends
Biochem.
 Sci., 17 1992, 489
15. Most of the 531 amino acid sequences used in our study were
taken from
 Release 42 (30 September 1994) of the Protein Identification
  (PIR) although some sequences identified recently were abstracted
from
 GenBank. First, a list was compiled of all entries in the PIR that
 included official E.C. numbers (B16) . Then a tally was made of how
many
 different entries were listed for each E.C. number. Any enzyme with
four
 or more entries was examined to see whether at least three major
 were represented (animal, plants or fungi, and eubacteria); if so,
  enzyme was considered a possible candidate for inclusion in the
 All told, Release 42 of the PIR contained 13,653 entries with E.C.
 identification numbers. Of these, 1262 E.C. numbers were present,
 accounting for just under 40 percent of the officially declared 3196
 enzymes (B16) . About half of these had three entries or fewer and
were
```

not considered further. The half with four or more entries was

screened

with regard to organismic representation. Sequences for enzymes encoded

by organellar DNA (mitochondria and chloroplasts) and sequences from viruses were not included. The sequences of candidate groups were aligned

and phylogenies were constructed (B17) (B18) (B19) (B20) (B21) (B22) . If

the phylogenetic trees seemed reasonable, by which we mean there was no

evidence of horizontal gene transfer or adulteration by paralogous comparisons (B23) , the sequence subset became a part of the study. The

entire set (divided into the six standard enzyme groups) can be obtained

by anonymous ftp from juno.ucsd.edu. cd to directory pickup.; 16. Enzyme Nomenclature, Recommendations of the Nomenclature Committee of

the International Union of Biochemistry and Molecular Biology (Academic

Press, New York, 1992).;

- 17. Candidate groups were aligned by the progressive method (B18) , a procedure that uses the Needleman-Wunsch algorithm (B19) . Several different substitution matrices were used, including the Dayhoff PAM-250
- (B20) , GCB matrix (B21) , and the BLOSUM-62 matrix (B22) . The GCB comparisons were not significantly different from those obtained with the

Dayhoff PAM-250 scale, and those results have not been included in this

study. The BLOSUM-62 scale, however, resulted in obviously improved alignments for the most distant of the relationships. We therefore used

it to obtain all the final alignments, even though we then used the PAM-250 table to calculate distances for comparison with those obtained

from the BLOSUM table. The comparison data were conveniently managed with

the aid of the commercially available Microsoft Excel spreadsheet software. Entry sheets listing species represented, lengths of sequences,

and such items were prepared for each of the 57 enzymes, as were other

sets of primary data sheets that included all resemblances and distances

between groups. Summary "charts" of distances and percent identities were

prepared from the entire data set or from designated subsets (Table 4).

As new data become available, it is relatively easy to update the records

and recalculate all values.;

18. Feng, D. F., Doolittle, R. F., J. Mol. Evol., 25 1987, 351;

```
Methods Enzymol. 183, 375 (1990).;
      Needleman, S. B., Wunsch, C. D., J. Mol. Biol., 48 1970,
19.
443 ;
20.
    R. M. Schwartz and M. O. Dayhoff in Atlas of Protein Sequence
and
 Structure (National Biomedical Research Foundation, Washington, DC,
 1978), vol. 5, supp. 3, pp. 353-358.;
     Gonnet, G. H., Cohen, M. A., Benner, S. A., Science, 56
1992,
 1443 ;
     Henikoff, S., Henikoff, J. G., Proteins: Struct. Funct.
22.
Genet.,
 17 1993, 49
23. Several situations in which displacement during evolution has
 functional convergence after paralogous radiations include bacterial
 ornithine decarboxylase (E.C. 4.1.1.17), which is obviously more
  lysine decarboxylase (E.C. 4.1.1.18) than it is to eukaryotic
ornithine
 decarboxylases, and bacterial tyrosine transaminase (E.C. 2.6.1.5),
which
  is more similar to bacterial aspartate transminase (E.C. 2.6.1.1)
 is to the eukaryotic tyrosine enzyme. Other enzyme sets that were
  included on the basis of anomalous phylogenetic trees were catalase
  1.11.16), pyrroline carboxylate reductase (E.C. 1.5.1.2),
glutathione
 reductase (E.C. 1.6.4.2), phosphoribosylglycineamide formyl
transferase
  (E.C. 2.1.2.2), transketolase (E.C. 2.2.1.1), glycogen phosphorylase
  (E.C. 2.4.1.1), hypoxanthine transferase (E.C. 2.4.2.8), orotate
 phosphate transferase (E.C. 2.4.2.10), glutathione transferase (E.C.
  2.5.1.18), galactokinase (E.C. 2.7.1.6), adenylate kinase (E.C.
2.7.4.3),
 uridine 5 (prime) -diphosphate-glucose-hexose phosphate uridyl
 transferase (E.C. 2.7.7.9 and E.C. 2.7.7.12), ornithine
decarboxylase
  (E.C. 4.1.1.17), glucose phosphate isomerase (E.C. 5.3.1.9), and
 phosphoglycerate mutase (E.C. 5.4.2.1).;
24.
      Doolittle, R. F., Ed. by Imahori, K., Sakiyama, F.,
 Protein Sequence Analysis, 1993, 241246 Plenum, New York, ,
25. Average percent identities notwithstanding, the data were not
entirely
 consistent. Of the nine possible comparisons, in five cases the
 archaebacterial sequences clustered with the eukaryotes, and in
three
 with the eubacteria. In one case (phosphoglycerate kinase, E.C.
2.7.2.3)
```

```
the eubacteria and eukaryote sequences were more similar to each
other
 than to the archaebacterial sequence.;
26.
      Feng, D. F., Johnson, M. S., Doolittle, R. F., J. Mol.
Evol., 21
 1985, 112 ;
27. The use of the Poisson distribution as a probabilistic model for
  acid replacement dates back to Zuckerkandl and Pauling (B3) . It is
 used in the simple form D = -\ln (1 - p/n), with p/n being the
fraction of
 changed residues. In this form, the equation mainly corrects for the
 unobserved occurrence of two or more replacements at the same site
(B28)
 . Numerous modifications have been reported, including attempts to
 correct for invariant residues (B29) (B30) or chance occurrences
(B31)
  (B26) . ;
28. For example, M. Kimura and T. Ohta, J. Mol. Evol. 1, 1 (1971);
 Dickerson, ibid., p. 26; M. Kimura and T. Ohta, ibid. 2, 87 (1972).
29.
     Margoliash, E., Smith, E., Ed. by Bryson, V., Vogel, H.
 Evolving Genes and Proteins, 1965, 221242 Academic Press, New
York, ,
30.
      Fitch, W. M., Markowitz, E., Biochem. Genet., 4 1970, 579;
      Jukes, T. H., Cantor, C. R., Ed. by Munro, H. N., Mammalian
 Protein Metabolism, 1969, 21132 Academic Press, New York, , ;
      Johnson, R., Elementary Statistics, 1984, Duxbury Press,
Boston,
33. Marshall, C. R., J. Mol. Evol., 30 1990, 400 Benton, M. J.,
  ibid 409 Carroll, R. L., Vertebrate Paleontology and Evolution,
1988.
 Freeman, New York, ,
34. Conway Morris, S. C., Nature, 361 1993, 219
35. The "relative rate test" [V. M. Sarich and A. C. Wilson, Science
  1144 (1973)] can be used whenever the intergroup distances for
three taxa
  (or more) are available. For example, it was clear from a
consideration
 of the fungi-eubacteria and animal-eubacteria distances that fungal
 sequences were changing faster than animal ones. We were able to
apply
 this simple test to all the taxa in our study.;
36. Baldourf, S. L., Palmer, J. D., Proc. Natl. Acad. Sci.
U.S.A., 90
 1993, 11558 Wainright, P. O., Hinkle, G., Sogin, M. L.,
Stickel, S.
```

```
Science, 260 1993, 340 ;
37.
      Knoll, A. H., Proc. Natl. Acad. Sci. U.S.A., 91 1994, 6743 ;
      Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R.
38.
Α.,
 Peattie, D. Q. A, Science, 243 1989, 75;
      Cavalier-Smith, T., Microbiol. Rev., 57 1993, 953 ;
40.
      Loomis, W. F., Smith, D. W., Proc. Natl. Acad. Sci. U.S.A.,
87
 1990, 9093 ;
      Zhang, Z., J. Micropalaeontol,, 5 1986, 9;
41.
      Han, T.-H., Runnegar, B., Science, 257 1992, 232 ;
42.
43.
      Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S., Miyata,
T.,
 Proc. Natl. Acad. Sci., U.S.A., 86 1989, 9355 ;
      Ochman, H., Wilson, A. C., J. Mol. Evol., 26 1987, 74;
   Matrices of pairwise distances were examined by the program BLEN
(B18)
 which uses a least squares approach (B46) .;
46. Klotz, L. C., Blanken, R. L., J. Theoret. Biol., 91 1981,
261 ;
47.
      Langley, C. H., Fitch, W. M., J. Mol. Evol., 3 1974, 161
Fitch,
 W. M., Langley, C. H., Fed. Proc., 35 1976, 2092 Fitch, W. M.,
 Ayala, F. J., Proc. Natl. Acad. Sci. U.S.A., 91 1994, 6802 ;
48. An extreme but valid example is the case of enzyme sequences in
 retroviruses. For example, a survey of 26 ribonuclease H sequences
 revealed that only 4 of 120 residues remained unchanged; R. F.
Doolittle,
 D-F. Feng, M. S. Johnson, M. A. McClure, Q. Rev. Biol. 64, 1
(1989).;
49.
     Nei, M., Molecular Evolutionary Genetics, 1987, Columbia
Univ.
 Press, New York, ,
50. Although, on the average, eukaryote and eubacteria sequences are
37
 percent identical, the observed fraction of irreplaceable residues
  again on average, only 17 percent. There was also a natural
tendency for
 the fraction of irreplaceable residues to be smaller; the larger the
 number of sequences in a set, the extrapolated fraction being about
 percent.;
51. A computer model has been constructed that follows the
divergence of
 mutated protein sequences under various circumstances of constraint
  (R. F. Doolittle and D. F. Feng, in preparation).;
52. One of the earliest estimates made about the prokaryote-eukaryote
 divergence concluded, on the basis of a relatively small number of
 transfer RNA sequences, that the split occurred about twice as long
ago
 as the divergence of plants, animals, and fungi (B6) . ;
```

53. There will be some who will remind us of alternative scenarios concerning the origin of eukaryotic organisms, and especially of the possibility that some of the sequences discussed here were actually imported by an archaebacterial symbiont destined to become the nucleus.

The fusion of a eubacterial "prokaryote" and an archaebacterium has been

widely discussed (B54). Although we are skeptical of such models on other grounds, we should point out that such an occurrence would not affect our findings, except that the time we are reporting as a divergence time for eukaryotes and eubacteria would instead chronicle the

alleged fusion event. ;

- 54. Gupta, R. S., Golding, G. B., J. Mol. Evol., 37 1993, 573 Golding, G. B., Gupta, R. S., Mol. Biol. Evol., 12 1995, 1; 55. We thank K. Anderson for assistance in preparing this manuscript and
 - S. Frank, J. Gillespie, and two anonymous reviewers for helpful suggestions. Supported in part by NIH grant HL-26873.

17/7/77 (Item 1 from file: 399)

DIALOG(R) File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

144126215 CA: 144(8)126215j JOURNAL

A novel interstitial deletion on the long arm of chromosome 16 in a patient with chronic myelomonocytic leukemia

AUTHOR(S): Kozon, Lukasz K.; Wesley, Deborah L.; Van Brunt, John; Li,

Marilyn M.

LOCATION: Human Genetics Program, Hayward Genetics Center, Tulane University Health Science Center, New Orleans, LA, 70112, USA JOURNAL: Cancer Genet. Cytogenet. (Cancer Genetics and Cytogenetics) DATE: 2005 VOLUME: 162 NUMBER: 1 PAGES: 92-94 CODEN: CGCYDF ISSN:

0165-4608 PUBLISHER ITEM IDENTIFIER: 0165-4608(05)00091-9 LANGUAGE: English PUBLISHER: Elsevier Inc.

SECTION:

CA214001 Mammalian Pathological Biochemistry

CA203XXX Biochemical Genetics

IDENTIFIERS: chromosome 16 interstitial deletion myelomonocytic leukemia

leukemogenesis

DESCRIPTORS:

Mutation...

deletion; long arm of chromosome 16 showed interstitial deletion, extending from 16q11.2 to q24 in chronic myelomonocytic leukemia patient suggesting this may results in deletion of tumor

suppressor q

Chromosome...

human 16; long arm of chromosome 16 showed interstitial deletion,

extending from 16q11.2 to q24 in chronic myelomonocytic leukemia patient suggesting this may results in deletion of tumor suppressor q

Chronic myelomonocytic leukemia... Human...

long arm of chromosome 16 showed interstitial deletion, extending from

16q11.2 to q24 in chronic myelomonocytic leukemia patient suggesting

this may results in deletion of tumor suppressor gene and ma Gene, animal...

tumor suppressor; long arm of chromosome 16 showed interstitial deletion, extending from 16q11.2 to q24 in chronic myelomonocytic leukemia patient suggesting this may results in deletion of tumor supp

17/7/78 (Item 2 from file: 399)

DIALOG(R) File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

144125949 CA: 144(8)125949q JOURNAL

Krebs cycle enzymes as tumor suppressors

AUTHOR(S): Baysal, Bora E.

LOCATION: Department of Obstetrics, Gynecology and Reproductive Sciences,

Otolaryngology and Human Genetics, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA

JOURNAL: Drug Discovery Today: Dis. Mech. (Drug Discovery Today: Disease

Mechanisms) DATE: 2005 VOLUME: 2 NUMBER: 2 PAGES: 247-254 CODEN: DDTDAO UNIFORM RESOURCE LOCATOR (URL):

http://www.sciencedirect.com/science/journal/17406765 MEDIA TYPE: online

computer file ISSN: 1740-6765 LANGUAGE: English PUBLISHER: Elsevier B.V.

SECTION:

CA214000 Mammalian Pathological Biochemistry

IDENTIFIERS: review Krebs cycle tumor suppressor succinate dehydrogenase

fumarate hydratase, paraganglioma hereditary leiomyomatosis renal cell

cancer syndrome review

DESCRIPTORS:

Gene, animal...

Fumarate hydratase; germline inactivation mutations in Krebs cycle enzyme fumarate hydratase genes causes hereditary

leiomyomatosis/renal

cell cancer syndrome in human suggesting these as tumor suppre ${\tt Kidney...}$

germline inactivation mutations in Krebs cycle enzyme fumarate hydratase genes causes hereditary leiomyomatosis/renal cell cancer

syndrome in human suggesting these as tumor suppressors and can be the

Tricarboxylic acid cycle... Human...

mutations in Krebs cycle enzymes succinate dehydrogenase and fumarate

hydratase genes causes paraganglioma and hereditary

leiomyomatosis/renal cell cancer syndrome in human suggesting these as

tumor s

Kidney, neoplasm...

renal cell carcinoma; germline inactivation mutations in Krebs cycle

enzyme fumarate hydratase genes causes hereditary leiomyomatosis/renal

cell cancer syndrome in human suggesting these as tumor supp Carcinoma...

renal cell; germline inactivation mutations in Krebs cycle enzyme fumarate hydratase genes causes hereditary leiomyomatosis/renal cell

cancer syndrome in human suggesting these as tumor suppressors an Gene, animal...

Succinate dehydrogenase; germline inactivation mutations in Krebs cycle

enzyme succinate dehydrogenase genes causes paraganglioma in human suggesting these as tumor suppressors and can be therapeutic Gene, animal...

tumor suppressor; germline inactivation mutations in Krebs cycle enzymes like succinate dehydrogenase and fumarate hydratase genes causes paraganglioma and hereditary leiomyomatosis/renal cell cancer

CAS REGISTRY NUMBERS:

9032-88-6 germline inactivation mutations in Krebs cycle enzyme fumarate

hydratase genes causes hereditary leiomyomatosis/renal cell cancer syndrome in human suggesting these as tumor suppressors and can be therapeutic target

9002-02-2 germline inactivation mutations in Krebs cycle enzyme succinate

dehydrogenase genes causes paraganglioma in human suggesting these as

tumor suppressors and can be therapeutic target

17/7/79 (Item 3 from file: 399)

DIALOG(R) File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

143109403 CA: 143(7)109403f JOURNAL

Geranylgeranylacetone ameliorates ischemic acute renal failure via induction of ${\tt Hsp70}$

AUTHOR(S): Suzuki, Satoshi; Maruyama, Shoichi; Sato, Waichi; Morita, Yoshiki; Sato, Fumihiko; Miki, Yusuke; Kato, Sawako; Katsuno, Masahisa;

Sobue, Gen; Yuzawa, Yukio; Matsuo, Seiichi

LOCATION: Division of Clinical Immunology, Department of Medicine, Nagoya

University Graduate School of Medicine, Nagoya, Aichi, Japan,

JOURNAL: Kidney Int. (Kidney International) DATE: 2005 VOLUME: 67

NUMBER: 6 PAGES: 2210-2220 CODEN: KDYIA5 ISSN: 0085-2538

LANGUAGE:

English PUBLISHER: Blackwell Publishing, Inc.

SECTION:

CA201008 Pharmacology

IDENTIFIERS: heat shock protein geranylgeranylacetone kidney ischemia

reperfusion injury renoprotectant

DESCRIPTORS:

Antiulcer agents...

antiulcer agent GGA induced Hsp70 and protected tubular epithelial cell

from apoptosis, inturn ameliorated tubular damage by $\ensuremath{\mathsf{I/R}}$ injury in rat,

induced Hsp70 and suppressed apoptosis in rat tubular ep Kidney, disease...

failure, acute; geranylgeranylacetone induced Hsp70, attenuated tubular

damage and macrophage infiltration and protected tubular epithelial $\ensuremath{\mathsf{P}}$

cell from apoptosis, inturn ameliorated ischemic acute renal Kidney...

geranylgeranylacetone induced Hsp70, attenuated tubular damage and macrophage infiltration and protected tubular epithelial cell from apoptosis, inturn ameliorated ischemic acute renal failure in rat Oxidative stress, biological...

geranylgeranylacetone induced Hsp70, protected tubular epithelial cell

from apoptosis, inturn ameliorated tubular damage by $\ensuremath{\mathsf{I/R}}$ injury in rat

and induced Hsp70 rat tubular epithelial cell culture Apoptosis...

geranylgeranylacetone protected tubular epithelial cell from apoptosis,

inturn ameliorated tubular damage by $\ensuremath{\mathsf{I/R}}$ injury in rat and suppressed

apoptosis in rat tubular epithelial cell culture Heat-shock proteins...

GGA induced Hsp70 but not Hsp90, Hsc70, Hsp60, Hsp32 and protected tubular epithelial cell from apoptosis, inturn ameliorated tubular damage by I/R injury in rat, induced Hsp70 and suppressed apoptosi Proteins...

hsc 70 (heat-shock cognate, 70 kDa); geranylgeranylacetone induced Hsp70, protected tubular epithelial cell from apoptosis, inturn ameliorated tubular damage by I/R injury in rat and induced Hsp70

Heat-shock proteins...

rat

HSP 32; geranylgeranylacetone induced Hsp70, protected tubular epithelial cell from apoptosis, inturn ameliorated tubular damage by

 $\ensuremath{\text{I/R}}$ injury in rat and induced $\ensuremath{\text{Hsp70}}$ rat tubular epithelial cell cult

Heat-shock proteins...

HSP 60; geranylgeranylacetone induced Hsp70, protected tubular epithelial cell from apoptosis, inturn ameliorated tubular damage by

 $\ensuremath{\mathsf{I/R}}$ injury in rat and induced $\ensuremath{\mathsf{Hsp70}}$ rat tubular epithelial cell cult

Heat-shock proteins...

HSP 70; geranylgeranylacetone induced Hsp70, protected tubular epithelial cell from apoptosis, inturn ameliorated tubular damage by

 $\ensuremath{\mathsf{I/R}}$ injury in rat and induced $\ensuremath{\mathsf{Hsp70}}$ rat tubular epithelial cell cult

Heat-shock proteins...

HSP 90; geranylgeranylacetone induced Hsp70, protected tubular epithelial cell from apoptosis, inturn ameliorated tubular damage by

 $\ensuremath{\mathsf{I/R}}$ injury in rat and induced $\ensuremath{\mathsf{Hsp70}}$ rat tubular epithelial cell cult

Reperfusion...

injury; geranylgeranylacetone induced Hsp70, attenuated tubular damage

and macrophage infiltration and protected tubular epithelial cell from $% \left(\frac{1}{2}\right) =0$

apoptosis, inturn ameliorated ischemic acute renal failure Kidney, disease...

ischemia; geranylgeranylacetone induced Hsp70, attenuated tubular damage and macrophage infiltration and protected tubular epithelial

cell from apoptosis, inturn ameliorated ischemic acute renal failu Epithelium...

renal tubular; GGA induced Hsp70 but not Hsp90, Hsc70, Hsp60, Hsp32 and

protected tubular epithelial cell from apoptosis, inturn ameliorated

tubular damage by I/R injury in rat, induced Hsp70 and supp Ischemia...

renal; geranylgeranylacetone induced Hsp70, attenuated tubular damage

and macrophage infiltration and protected tubular epithelial cell $\ensuremath{\mathsf{from}}$

apoptosis, inturn ameliorated ischemic acute renal failure Cytoprotective agents...

renoprotective; geranylgeranylacetone induced Hsp70, protected tubular

epithelial cell from apoptosis, inturn ameliorated tubular damage by

I/R injury in rat and induced Hsp70 rat tubular epithelial c

Injury...

reperfusion; geranylgeranylacetone induced Hsp70, attenuated tubular

damage and macrophage infiltration and protected tubular epithelial $\ensuremath{\mathsf{P}}$

cell from apoptosis, inturn ameliorated ischemic acute renal fa ${\tt Kidney...}$

tubule, epithelium; GGA induced Hsp70 but not Hsp90, Hsc70, Hsp60, Hsp32 and protected tubular epithelial cell from apoptosis, inturn ameliorated tubular damage by I/R injury in rat, induced Hsp70 and CAS REGISTRY NUMBERS:

57-13-6 biological studies, Blood nitrogen; geranylgeranylacetone decreased blood urea nitrogen following ischemia reperfusion injury in

rat

7722-84-1 biological studies, geranylgeranylacetone induced Hsp70, protected tubular epithelial cell from apoptosis, inturn ameliorated

tubular damage by I/R injury in rat and induced Hsp70 rat tubular epithelial cell culture

60-27-5 geranylgeranylacetone decreased serum creatinine levels after ischemia reperfusion injury in rat

143-33-9 154-17-6 geranylgeranylacetone induced Hsp70, protected tubular

epithelial cell from apoptosis, inturn ameliorated tubular damage by

 $\ensuremath{\mathsf{I/R}}$ injury in rat and induced $\ensuremath{\mathsf{Hsp70}}$ rat tubular epithelial cell culture

6809-52-5 117-39-5 GGA induced Hsp70, decreased BUN, serum creatinine and

protected tubular epithelial cell from apoptosis, inturn ameliorated

tubular damage by I/R injury in rat, induced Hsp70 and suppressed apoptosis in rat tubular epithelial cell culture

17/7/80 (Item 4 from file: 399)

DIALOG(R) File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

143057357 CA: 143(4)57357x JOURNAL

Mouse models incorporating alterations in the major tumor suppressor genes P53 and P16: their use in screening for potential carcinogens, developing further relevant mouse models, and screening for potential

chemopreventive and chemotherapetutic agents

AUTHOR(S): Lubet, Ronald; Wang, Yian; Zhang, Zhongqiu; You, Ming LOCATION: Chemoprevention Agent Development Research Group, National Cancer Institute, Rockville, MD, USA

JOURNAL: Exp. Lung Res. (Experimental Lung Research) DATE: 2005 VOLUME: 31 NUMBER: 1 PAGES: 117-133 CODEN: EXLRDA ISSN: 0190-2148

```
LANGUAGE: English PUBLISHER: Taylor & Francis, Inc.
  SECTION:
    CA214000 Mammalian Pathological Biochemistry
    CA203XXX Biochemical Genetics
    CA204XXX Toxicology
  IDENTIFIERS: review tumor suppressor gene screening carcinogen
    chemopreventive chemotherapetutic agent
  DESCRIPTORS:
Gene, animal...
    CDKN2A; potential use of mutant mice in screening for carcinogens
as
    well as preventive or therapeutic agents and pros, cons with
germline
    mutation in tumor suppressor genes P16/Ink4AARFlocus in devel
Disease models... Mus musculus... Mutation... Carcinogens...
p53(protein)
    potential use of mutant mice in screening for carcinogens as well
as
    preventive or therapeutic agents showed relevance of
dominant-neg. P53
    and pros and cons with germline mutation in tumor suppressor
Cyclin dependent kinase inhibitors...
    p16INK4A; potential use of mutant mice in screening for
carcinogens as
    well as preventive or therapeutic agents and pros, cons with
germline
    mutation in tumor suppressor genes P16/Ink4AARFlocus in dev
Gene, animal...
    TP53; potential use of mutant mice in screening for carcinogens
as well
    as preventive or therapeutic agents showed relevance of
dominant-neg.
    P53 and pros and cons with germline mutation in tumor supp
Gene, animal...
    tumor suppressor; potential use of mutant mice in screening for
    carcinogens as well as preventive or therapeutic agents showed
    relevance of dominant-neq. P53 and pros and cons with germline
mutation
    i
             (Item 5 from file: 399)
DIALOG(R) File 399:CA SEARCH(R)
(c) 2008 American Chemical Society. All rts. reserv.
               CA: 134(11)142618s
  134142618
                                     JOURNAL
  Structure and mutation analysis of the gene encoding DNA
fragmentation
  factor 40 (caspase-activated nuclease), a candidate neuroblastoma
tumor
  suppressor gene
```

```
AUTHOR(S): Judson, Hannah; Van Roy, Nadine; Strain, Lisa;
Vandesompele,
Jo; Van Gele, Mireille; Speleman, Frank; Bonthron, David T.
  LOCATION: Molecular Medicine Unit, St. James's University Hospital,
University of Leeds, Leeds, UK, LS9 7TF
  JOURNAL: Hum. Genet. DATE: 2000 VOLUME: 106 NUMBER: 4 PAGES:
406 - 413
  CODEN: HUGEDQ ISSN: 0340-6717 LANGUAGE: English PUBLISHER:
Springer-Verlag
  SECTION:
    CA203003 Biochemical Genetics
    CA213XXX Mammalian Biochemistry
    CA214XXX Mammalian Pathological Biochemistry
  IDENTIFIERS: gene DFFB structure DNA fragmentation factor 40 human,
    caspase activated nuclease gene DFFB structure human,
neuroblastoma
    tumor suppressor gene mutation human DFFB
  DESCRIPTORS:
Gene, animal...
    DFFB; structure and mutation anal. of human gene DFFB encoding DNA
    fragmentation factor 40 (caspase-activated nuclease) suggest that
DFFB
    is not a neuroblastoma tumor suppressor gene
Genetic element ...
    exon, organization of DFFB gene; structure and mutation anal. of
    gene DFFB encoding DNA fragmentation factor 40 (caspase-activated
    nuclease) suggest that DFFB is not a neuroblastoma tumor suppre
Chromosome...
    human 1, localization of DFFB gene; structure and mutation anal.
of
    human gene DFFB encoding DNA fragmentation factor 40
(caspase-activated
    nuclease) suggest that DFFB is not a neuroblastoma tumor sup
Chromosome...
    human 9, localization of a DFFB pseudogene; structure and mutation
    anal. of human gene DFFB encoding DNA fragmentation factor 40
    (caspase-activated nuclease) suggest that DFFB is not a
neuroblastoma t
Genetic polymorphism... Mutation...
    in DFFB gene; structure and mutation anal. of human gene DFFB
encoding
    DNA fragmentation factor 40 (caspase-activated nuclease) suggest
    DFFB is not a neuroblastoma tumor suppressor gene
Genetic element ...
    intron, organization of DFFB gene; structure and mutation anal. of
    human gene DFFB encoding DNA fragmentation factor 40
(caspase-activated
    nuclease) suggest that DFFB is not a neuroblastoma tumor supp
Nerve, neoplasm...
    neuroblastoma, tumor suppressor gene; structure and mutation
```

anal. of

human gene DFFB encoding DNA fragmentation factor 40 (caspase-activated nuclease) suggest that DFFB is not a neuroblastoma tumor s

Genetic mapping...

of DFFB gene and a DFFB pseudogene; structure and mutation anal. of

human gene DFFB encoding DNA fragmentation factor 40 (caspase-activated

nuclease) suggest that DFFB is not a neuroblastoma tumor sup Gene, animal...

pseudogene, DFFB-like; structure and mutation anal. of human gene DFFB

encoding DNA fragmentation factor 40 (caspase-activated nuclease) suggest that DFFB is not a neuroblastoma tumor suppressor gene Genomic imprinting...

structure and mutation anal. of human gene DFFB encoding DNA fragmentation factor 40 (caspase-activated nuclease) suggest that DFFB

is not a neuroblastoma tumor suppressor gene Gene, animal...

tumor suppressor, neuroblastoma; structure and mutation anal. of human

gene DFFB encoding DNA fragmentation factor 40 (caspase-activated nuclease) suggest that DFFB is not a neuroblastoma tumor suppre CAS REGISTRY NUMBERS:

208939-71-3 gene DFFB; structure and mutation anal. of human gene DFFB

encoding DNA fragmentation factor 40 (caspase-activated nuclease) suggest that DFFB is not a neuroblastoma tumor suppressor gene

17/7/82 (Item 6 from file: 399) DIALOG(R)File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

131318574 CA: 131(24)318574d PATENT

Cloning vectors not using antibiotic resistance markers for use in lactic

acid bacteria in food processing

INVENTOR(AUTHOR): Sorensen, Kim Ib; Larsen, Rasmus; Johansen, Eric LOCATION: Den.

ASSIGNEE: Chr. Hansen A/S

PATENT: PCT International; WO 9954488 Al DATE: 19991028

APPLICATION: WO 99DK209 (19990414) *DK 98551 (19980421) *US 82555 (19980421)

PAGES: 61 pp. CODEN: PIXXD2 LANGUAGE: English

PATENT CLASSIFICATIONS:

CLASS: C12N-015/74A; C12N-015/68B; C12N-009/88B; C12N-009/48B DESIGNATED COUNTRIES: AE; AL; AM; AT; AT; AU; AZ; BA; BB; BG; BR; BY; CA;

CH; CN; CU; CZ; CZ; DE; DE; DK; DK; EE; EE; ES; FI; FI; GB; GD; GE; GH; GM;

```
HR; HU; ID; IL; IN; IS; JP; KE; KG; KP; KR; KZ; LC; LK; LR; LS; LT;
LU; LV;
MD; MG; MK; MN; MW; MX; NO; NZ; PL; PT; RO; RU; SD; SE; SG; SI; SK;
SK; SL;
TJ; TM; TR; TT; UA; UG; US; UZ; VN; YU; ZA; ZW; AM; AZ; BY; KG; KZ;
MD; RU;
TJ; TM DESIGNATED REGIONAL: GH; GM; KE; LS; MW; SD; SL; SZ; UG; ZW;
AT; BE
; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; BF;
CF; CG; CI; CM; GA; GN; GW; ML; MR; NE; SN; TD; TG
  SECTION:
    CA203002 Biochemical Genetics
    CA210XXX MICROBIAL, ALGAL, AND FUNGAL BIOCHEMISTRY
    CA217XXX Food and Feed Chemistry
  IDENTIFIERS: Lactococcus cloning vector suppressor mutation marker,
supD
    marker cloning vector Lactococcus, lactic acid bacteria cloning
vector
    suppressor mutation marker
  DESCRIPTORS:
Mutation...
    amber, suppressible, as selectable marker; cloning vectors not
    antibiotic resistance markers for use in lactic acid bacteria in
food
    processing
tRNA...
    amber suppressor, as selectable marker; cloning vectors not using
    antibiotic resistance markers for use in lactic acid bacteria in
food
    processing
Lysins...
    bacteriolysins, gene for, expression in Lactococcus of; cloning
    not using antibiotic resistance markers for use in lactic acid
bacteria
    in food processing
Food...
    batter, genetic manipulation of lactic acid bacteria for
processing of;
    cloning vectors not using antibiotic resistance markers for use in
    lactic acid bacteria in food processing
Bifidobacterium... Lactic acid bacteria... Lactobacillus...
Lactococcus
lactis diacetylactis... Lactococcus lactis lactis... Lactococcus
lactis...
Lactococcus... Leuconostoc... Pediococcus... Streptococcus...
    cloning vectors not using antibiotic resistance markers for use in
    lactic acid bacteria in food processing
Dough... Fruit and vegetable juices... Meat... Musts... Vegetable...
Wine
```

. . .

genetic manipulation of lactic acid bacteria for processing of; cloning

vectors not using antibiotic resistance markers for use in lactic acid

bacteria in food processing

Lactococcus phage ϕ vML3...

lysin gene of, expression in lactic acid bacteria of; cloning vectors

not using antibiotic resistance markers for use in lactic acid bacteria

in food processing

Gene, microbial...

pepN, plasmid-borne expression in Lactococcus lactis of; cloning vectors not using antibiotic resistance markers for use in lactic acid

bacteria in food processing

Plasmid vectors...

pFG100, food-grade plasmid vector for lactic acid bacteria; cloning

vectors not using antibiotic resistance markers for use in lactic acid

bacteria in food processing

Plasmid vectors...

pFG101, food-grade plasmid vector for lactic acid bacteria; cloning

vectors not using antibiotic resistance markers for use in lactic acid

bacteria in food processing

Plasmid vectors...

pFG200, food-grade plasmid vector for lactic acid bacteria; cloning

vectors not using antibiotic resistance markers for use in lactic acid

bacteria in food processing

Plasmid vectors...

pFG202, pepN gene on, expression in Lactococcus of; cloning vectors not

using antibiotic resistance markers for use in lactic acid bacteria in

food processing

Milk...

plasmid stability in Lactococcus lactis cultured in; cloning vectors

not using antibiotic resistance markers for use in lactic acid bacteria

in food processing

Gene, microbial...

pyrF, suppressible nonsense mutation of, as selectable marker; cloning

vectors not using antibiotic resistance markers for use in lactic acid

bacteria in food processing Gene, microbial...

supD, as selectable marker; cloning vectors not using antibiotic
resistance markers for use in lactic acid bacteria in food
processing

Gene, microbial ...

supE gene, as selectable marker; cloning vectors not using antibiotic

resistance markers for use in lactic acid bacteria in food processing $% \left(1\right) =\left(1\right) +\left(1$

Gene, microbial ...

supF, as selectable marker; cloning vectors not using antibiotic
resistance markers for use in lactic acid bacteria in food
processing

Gene, microbial...

supP, as selectable marker; cloning vectors not using antibiotic
resistance markers for use in lactic acid bacteria in food
processing

Mutation... tRNA...

suppressor, as selectable marker in lactic acid bacteria; cloning vectors not using antibiotic resistance markers for use in lactic acid

bacteria in food processing

Gene, microbial ...

supU, as selectable marker; cloning vectors not using antibiotic
resistance markers for use in lactic acid bacteria in food
processing

Gene, microbial...

supZ, as selectable marker; cloning vectors not using antibiotic
resistance markers for use in lactic acid bacteria in food
processing

CAS REGISTRY NUMBERS:

289-95-2 auxotrophy for, as selectable marker in lactic acid bacteria;

cloning vectors not using antibiotic resistance markers for use in lactic acid bacteria in food processing

9001-92-7 9025-40-5 9031-41-8 9031-99-6 9068-81-9 9074-83-3 54249-88-6 gene for, expression in Lactococcus of; cloning vectors not

using antibiotic resistance markers for use in lactic acid bacteria in

food processing

1414-45-5 gene for synthesis of or resistance to, expression in Lactococcus of; cloning vectors not using antibiotic resistance markers

for use in lactic acid bacteria in food processing 55467-39-5 pepN gene for, expression in Lactococcus of; cloning vectors

not using antibiotic resistance markers for use in lactic acid bacteria

in food processing

249270-40-4 249270-41-5 249270-42-6 249270-43-7 249270-44-8

```
249270 - 45 - 9 249270 - 46 - 0 249270 - 47 - 1 249270 - 48 - 2 249270 - 49 - 3
    249270-50-6 249270-51-7 249270-52-8 249270-53-9 249270-54-0
    249270-55-1 249270-56-2 249270-57-3 249270-58-4 249270-59-5
    249270-60-8 249270-61-9 249270-63-1 249270-64-2 249270-65-3
    unclaimed nucleotide sequence; cloning vectors not using
antibiotic
    resistance markers for use in lactic acid bacteria in food
processina
249270-62-0 unclaimed protein sequence; cloning vectors not using
    antibiotic resistance markers for use in lactic acid bacteria in
food
    processing
248583-15-5 unclaimed sequence; cloning vectors not using antibiotic
    resistance markers for use in lactic acid bacteria in food
processing
 17/7/83
             (Item 7 from file: 399)
DIALOG(R) File 399:CA SEARCH(R)
(c) 2008 American Chemical Society. All rts. reserv.
  131014777 CA: 131(2)14777u
                                   JOURNAI.
  Regulation of cytochrome P-450 (CYP) 1B1 in mouse Hepa-1 variant
  lines: a possible role for aryl hydrocarbon receptor nuclear
  (ARNT) as a suppressor of CYP 1B1 gene expression
  AUTHOR(S): Eltom, Sakina E.; Zhang, Leying; Jefcoate, Colin R.
  LOCATION: Center for Environmental Toxicology and Department of
Pharmacology, University of Wisconsin Medical School, Madison, WI, USA
  JOURNAL: Mol. Pharmacol. DATE: 1999 VOLUME: 55 NUMBER: 3 PAGES:
594-604 CODEN: MOPMA3 ISSN: 0026-895X LANGUAGE: English PUBLISHER:
American Society for Pharmacology and Experimental Therapeutics
  SECTION:
    CA203004 Biochemical Genetics
    CA206XXX General Biochemistry
    CA213XXX Mammalian Biochemistry
  IDENTIFIERS: cytochrome P4501B1 regulation mouse Hepa1 variant cell
line,
    aryl hydrocarbon receptor nuclear translocator suppressor CYP1B1
gene
    expression
  DESCRIPTORS:
Promoter (genetic element) ...
    ARNT shows inhibitory effect on proximal; regulation of
cytochrome P
    450 (CYP) 1B1 in mouse Hepa-1 variant cell lines indicates
possible
    role for anyl hydrocarbon receptor nuclear translocator (ARNT)
Enhancer (genetic element) ...
    ARNT shows stimulatory effects in; regulation of cytochrome P 450
(CYP)
```

1B1 in mouse Hepa-1 variant cell lines indicates possible role for aryl

hydrocarbon receptor nuclear translocator (ARNT) as supp Proteins, specific or class...

aryl hydrocarbon receptor nuclear translocator; regulation of cytochrome P 450 (CYP1B1) in mouse Hepa-1 variant cell lines indicates

role for ARNT as suppressor of CYP 1B1 expression Gene, animal...

CYP1A1, mRNA levels in LA2 were extremely low and unresponsive to TCDD ;

regulation of cytochrome P 450 (CYP1B1) in mouse Hepa-1 variant cell

lines indicates role for ARNT as suppressor of CYP 1B1 expr $\texttt{mRNA}\ldots$

CYP1B1 mRNA and protein were expressed at levels seen in TCDD-induced

WT; regulation of cytochrome P 450 (CYP1B1) in mouse Hepa-1 variant

cell lines indicates role for ARNT as suppressor of CYP 1B1 ex Gene, animal...

CYP1B1; regulation of cytochrome P 450 (CYP) 1B1 in mouse Hepa-1 variant cell lines indicates possible role for aryl hydrocarbon receptor nuclear translocator (ARNT) as suppressor of CYP 1B1 gene expr

Animal cell line...

in; regulation of cytochrome P 450 (CYP1B1) in mouse Hepa-1 variant

cell lines indicates role for ARNT as suppressor of CYP 1B1 e Mouse...

regulation of cytochrome P 450 (CYP) 1B1 in mouse Hepa-1 variant cell

lines indicates possible role for aryl hydrocarbon receptor nuclear

translocator (ARNT) as suppressor of CYP 1B1 gene expression Transcriptional regulation...

repression; regulation of cytochrome P 450 (CYP) 1B1 in mouse $\mbox{\ensuremath{\mbox{\sc Hepa-1}}}$

variant cell lines indicates possible role for aryl hydrocarbon receptor nuclear translocator (ARNT) as suppressor of CYP 1B1 gene Enhancer(genetic element)...

xenobiotic-responsive element (XRE) 1/2 and XRE4, formed TCDD-unresponsive complexes; regulation of cytochrome P 450 (CYP1B1) in

mouse Hepa-1 variant cell lines indicates role for ARNT as suppressor o

CAS REGISTRY NUMBERS:

9035-51-2 biological studies, 1B1; regulation of cytochrome P 450 (CYP)

1B1 in mouse Hepa-1 variant cell lines indicates possible role for aryl

hydrocarbon receptor nuclear translocator (ARNT) as suppressor of $\ensuremath{\mathtt{CYP}}$

1B1 gene expression

1746-01-6 CYP1B1 mRNA and protein were expressed at levels seen in TCDD-induced WT; regulation of cytochrome P 450 (CYP1B1) in mouse Hepa-1 variant cell lines indicates role for ARNT as suppressor of CYP

1B1 expression

17/7/84 (Item 8 from file: 399)

DIALOG(R) File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

130247725 CA: 130(19)247725♥ JOURNAL

Identification of the mouse neuromuscular degeneration gene and mapping

of a second site suppressor allele

AUTHOR(S): Cox, Gregory A.; Mahaffey, Connie L.; Frankel, Wayne N.

LOCATION: The Jackson Laboratory, Bar Harbor, ME, 04609, USA

JOURNAL: Neuron DATE: 1998 VOLUME: 21 NUMBER: 6 PAGES: 1327-1337

CODEN: NERNET ISSN: 0896-6273 LANGUAGE: English PUBLISHER: Cell Press

SECTION:

CA203003 Biochemical Genetics

CA214XXX Mammalian Pathological Biochemistry

IDENTIFIERS: mouse neruomuscular degeneration gene identification mapping

suppressor allele

DESCRIPTORS:

DNA helicases...

ATPase-, nmd mutation as transcriptional activator and ATPase/DNA helicase; identification of the mouse neuromuscular degeneration gene

and mapping of a second site suppressor allele

Mouse... Muscle atrophy...

identification of the mouse neuromuscular degeneration gene and mapping

of a second site suppressor allele

Mutation...

nmd, transcriptional activator and ATPase/DNA helicase previously described as Smbp2, Rip1, Gf1, or Catf1; identification of the mouse

neuromuscular degeneration gene and mapping of a second site supp Genes(animal)...

Nmd; identification of the mouse neuromuscular degeneration gene and

mapping of a second site suppressor allele

Genetic mapping... Mouse chromosome 13... Phenotypes...

severity of nmd phenotype is attenuated in a semidominant fashion by

locus on chromosome 13; identification of the mouse neuromuscular

degeneration gene and mapping of a second site suppressor allele Deletion(mutation)...

single amino acid, in nmdJ, and splice donor mutation in nmd2J; identification of the mouse neuromuscular degeneration gene and mapping $\frac{1}{2} \frac{1}{2} \frac{1$

of a second site suppressor allele Genes(animal)...

Smbp2, Rip1, Gf1, or Catf1, mutated gene identified as nmd previously

described as; identification of the mouse neuromuscular degeneration $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

gene and mapping of a second site suppressor allele Motor neurons...

spinal, degeneration of; identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele CAS REGISTRY NUMBERS:

9000-83-3 -DNA helicase, nmd mutation as transcriptional activator and

ATPase/DNA helicase; identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele

17/7/85 (Item 9 from file: 399)
DIALOG(R)File 399:CA SEARCH(R)
(c) 2008 American Chemical Society. All rts. reserv.

127315579 CA: 127(23)315579r PATENT

Designing genes that can be used to replace a number of deleterious alleles and their use with extragenic suppressors in gene therapy INVENTOR(AUTHOR): Farrar, Gwenyth Jane; Humphries, Peter; Kenna, Paul

Francis

LOCATION: Ire.,

ASSIGNEE: Provost, Fellows and Scholars of the College of the Holy and

Undivided Trini; Farrar, Gwenyth Jane; Humphries, Peter; Kenna, Paul Francis

PATENT: PCT International; WO 9737014 A1 DATE: 19971009 APPLICATION: WO 97GB929 (19970402) *GB 966961 (19960402)

PAGES: 89 pp. CODEN: PIXXD2 LANGUAGE: English PATENT CLASSIFICATIONS:

CLASS: C12N-015/11A; C12N-009/00B; A61K-048/00B; A61K-031/70B; C07H-021/00B

DESIGNATED COUNTRIES: AL; AM; AT; AU; AZ; BA; BB; BG; BR; BY; CA; CH; CN;

CU; CZ; DE; DK; EE; ES; FI; GB; GE; GH; HU; IL; IS; JP; KE; KG; KP;

KR; KZ;

LC; LK; LR; LS; LT; LU; LV; MD; MG; MK; MN; MW; MX; NO; NZ; PL; PT;

RO; RU;

SD; SE; SG; SI; SK; TJ; TM; TR; TT; UA; UG; US; UZ; VN; YU; AM; AZ;

BY; KG;

KZ; MD; RU; TJ; TM DESIGNATED REGIONAL: GH; KE; LS; MW; SD; SZ; UG;

AT; BE

```
; CH; DE; DK; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; BF; BJ;
CG; CI; CM; GA; GN; ML; MR; NE; SN; TD; TG
  SECTION:
    CA203002 Biochemical Genetics
  IDENTIFIERS: gene therapy allele suppression replacement, synthetic
gene
    replacement design wobble base, ribozyme suppression mutant allele
    expression
  DESCRIPTORS:
Synthetic genes ...
    animal, for replacement of mutant allele; designing genes that
can be
    used to replace no. of deleterious alleles and their use with
    extragenic suppressors in gene therapy
Gene therapy...
    designing genes that can be used to replace no. of deleterious
    and their use with extragenic suppressors in gene therapy
Antibodies... Antisense DNA... Peptide nucleic acids... Ribozymes...
    for suppression of mutant allele expression; designing genes that
can
    be used to replace no. of deleterious alleles and their use with
    extragenic suppressors in gene therapy
Peptides, biological studies...
    inhibitory, for suppression of mutant allele expression; designing
    genes that can be used to replace no. of deleterious alleles and
    use with extragenic suppressors in gene therapy
Rhodopsins...
    mutant allele of gene for, specific ribozyme cleavage of;
designing
    genes that can be used to replace no. of deleterious alleles and
    use with extragenic suppressors in gene therapy
Proteins (specific proteins and subclasses) ...
    peripherins (eye rod outer segment), mutant allele of gene for,
    specific ribozyme cleavage of; designing genes that can be used to
    replace no. of deleterious alleles and their use with extragenic
supp
Genes (animal) ...
    synthetic, for replacement of mutant allele; designing genes that
can
    be used to replace no. of deleterious alleles and their use with
    extragenic suppressors in gene therapy
Oligonucleotides...
    triple helix-forming, for suppression of mutant allele expression;
    designing genes that can be used to replace no. of deleterious
alleles
    and their use with extragenic suppressors in gene therapy
Collagens, biological studies...
    type 1A2, mutant allele of gene for, specific ribozyme cleavage
```

of;

designing genes that can be used to replace no. of deleterious alleles $\ensuremath{\mathsf{S}}$

and their use with extragenic suppressors in gene therapy

17/7/86 (Item 10 from file: 399)

DIALOG(R)File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

127273843 CA: 127(20)273843q JOURNAL

IS911-mediated intramolecular transposition is naturally temperature sensitive

AUTHOR(S): Haren, Laurence; Betermier, Mireille; Polard, Patrice; Chandler, Michael

LOCATION: Laboratoire de Microbiologie et Genetique Moleculaires, CNRS

UPR9007, 31062, Toulouse, Fr.

JOURNAL: Mol. Microbiol. DATE: 1997 VOLUME: 25 NUMBER: 3 PAGES: 531-540 CODEN: MOMIEE ISSN: 0950-382X LANGUAGE: English PUBLISHER: Blackwell

SECTION:

CA203005 Biochemical Genetics

CA207XXX Enzymes

CA210XXX MICROBIAL, ALGAL, AND FUNGAL BIOCHEMISTRY

IDENTIFIERS: IS911 mediated intramol transposition temp sensitive DESCRIPTORS:

Insertion sequence...

IS911; IS911-mediated intramol. transposition is naturally temp. sensitive

Circular DNA...

IS911-mediated intramol. transposition at 30°C was sufficiently high to permit detection in vivo of an excised circular form of defective single IS911 chromosomal copy when OrfAB is supplied in Transposition(genetic)...

IS911-mediated intramol. transposition is naturally temp.

sensitive

Transposases...

OrfAB; IS911-mediated intramol. transposition at 30°C was sufficiently high to permit detection in vivo of an excised circular

form of defective single IS911 chromosomal copy when OrfAB is supp Heat effects(biological)...

transposition was greatly reduced at $42\,^{\circ}\text{C}$ compared with $37\,^{\circ}\text{C}$; IS911-mediated intramol. transposition is naturally temp. sensitive

Point mutation...

two point mutants of OrfAB rendered reactions partially temp. resistant; IS911-mediated intramol. transposition is naturally temp.

sensitive

17/7/87 (Item 11 from file: 399)

DIALOG(R) File 399:CA SEARCH(R)

(c) 2008 American Chemical Society. All rts. reserv.

122153276 CA: 122(13)153276g JOURNAL

Transcription factor ATF2 regulation by the JNK signal transduction pathway

AUTHOR(S): Gupta, Shashi; Campbell, Debra; Derijard, Benoit; Davis, Roger

J.

LOCATION: Med. Sch., Univ. Massachusetts, Worcester, MA, 01605, USA JOURNAL: Science (Washington, D. C.) DATE: 1995 VOLUME: 267 NUMBER:

5196 PAGES: 389-93 CODEN: SCIEAS ISSN: 0036-8075 LANGUAGE: English SECTION:

CA203004 Biochemical Genetics

CA213XXX Mammalian Biochemistry

IDENTIFIERS: Jun protein kinase pathway regulation ATF2, transactivator

ATF2 regulation JNK signal transduction DESCRIPTORS:

Phosphorylation, biological...

ATF2 was phosphorylated by c-Jun amino-terminal protein kinase on two

closely spaced threonine residues within the $\ensuremath{\mathtt{NH2-terminal}}$ activation

domain

Mutation, substitution...

 $\hbox{replacement of threonine residue phosphorylation sites with} \\$

within the NH2-terminal activation domain of c-Jun amino-terminal protein kinase inhibited the transcriptional activity of ATF2 Gene, animal... Phosphoproteins, gene E1A...

threonine to alanine mutations within the NH2-terminal activation domain of c-Jun amino-terminal protein kinase also inhibited ATF2-stimulated gene expression mediated by the retinoblastoma tumor

supp

Ribonucleic acid formation factors, ATF-2 (activating transcription factor

2) ... Signal transduction, biological ...

transcription factor ATF2 regulation by the c-Jun amino-terminal protein kinase signal transduction pathway

Eye, neoplasm, retinoblastoma...

tumor suppressor; mutations of phosphorylation sites within the NH2-terminal activation domain of c-Jun amino-terminal protein kinase

inhibited ATF2-stimulated gene expression mediated by retinoblasto CAS REGISTRY NUMBERS:

72-19-5 biological studies, ATF2 was phosphorylated by c-Jun amino-terminal protein kinase on two closely spaced threonine residues

```
within the NH2-terminal activation domain
155215-87-5 transcription factor ATF2 regulation by the c-Jun
    amino-terminal protein kinase signal transduction pathway
PLEASE ENTER A COMMAND OR BE LOGGED OFF IN 5 MINUTES
Set
        Items
               Description
                (ATTENUAT? OR AVIRULENT OR VACCIN?) AND SALMONELLA
          581
S1
AND (PAI
             OR LEUX OR PATHOGENICITY(W) ISLAND)
S2
         174 RD S1 (unique items)
S3
         139
               S2 NOT PY>2006
S 4
               S3 AND (LEUX OR TRNA5LEU)
           0
S5
           1
               S3 AND TRNA
               S3 AND SUPP
S6
           0
S7
          462 (ATTENUAT? OR AVIRULENT OR VACCIN?) AND (TYPHI OR
DUBLIN OR
             TYPHIMURIUM) AND (PAI OR LEUX OR PATHOGENICITY(W) ISLAND)
S8
         163
               RD S7 (unique items)
S9
           1 S8 AND (LEUX OR TRNA OR SUPP)
         113 E1-E5
S10
             AU='COHEN, P. S.'
S11
          46
S12
         159 S10 OR S11
           3 S12 AND (LEUX OR TRNA OR SUPP)
S13
S14
        3901 (LEUX OR TRNA5LEU OR SUPP)
        3349 RD S14 (unique items)
S15
        2662 S15 NOT PY>2005
S16
          87 S16 AND (DELET? OR MUTAT? OR VARIANT? OR MUTEIN OR
S17
AVIRULE-
            NT OR ATTENUAT?)
---Logging off of Dialog---
? logoff
       19jun08 11:16:13 User226352 Session D1072.3
           $7.68
                   1.241 DialUnits File5
              $78.08 32 Type(s) in Format
           $78.08 32 Types
    $85.76
          Estimated cost File5
                 0.372 DialUnits File6
            $2.80
              $2.66 1 Type(s) in Format 2
           $2.66 1 Types
     $5.46 Estimated cost File6
           $4.26
                 0.660 DialUnits File24
              $27.00 10 Type(s) in Format 7
          $27.00 10 Types
    $31.26 Estimated cost File24
          $48.55 1.824 DialUnits File34
              $30.96 4 Type(s) in Format 7
```

```
$30.96 4 Types
$79.51 Estimated cost File34
       $0.73
               0.098 DialUnits File40
$0.73 Estimated cost File40
       $0.83
               0.128 DialUnits File41
$0.83 Estimated cost File41
       $2.16 1 Type(s) in Format 7
       $2.16 1 Types
$3.40 Estimated cost File45
             0.449 DialUnits File50
       $2.14
$2.14 Estimated cost File50
       $3.28
               0.768 DialUnits File65
          $9.10 7 Type(s) in Format 7
       $9.10 7 Types
$12.38 Estimated cost File65
       $7.06
             0.702 DialUnits File71
         $24.50 10 Type(s) in Format 7
      $24.50 10 Types
$31.56 Estimated cost File71
      $13.65
             1.062 DialUnits File73
         $24.85 7 Type(s) in Format 7
      $24.85 7 Types
$38.50 Estimated cost File73
       $0.75
             0.170 DialUnits File98
$0.75 Estimated cost File98
       $1.68
             0.259 DialUnits File103
$1.68 Estimated cost File103
       $0.75 0.116 DialUnits File136
          $2.70 1 Type(s) in Format 7
       $2.70 1 Types
$3.45 Estimated cost File136
       $0.47 0.152 DialUnits File143
$0.47 Estimated cost File143
       $4.93 0.964 DialUnits File144
         $11.52 6 Type(s) in Format 7
      $11.52 6 Types
$16.45 Estimated cost File144
       $4.39
             1.247 DialUnits File155
          $0.96 4 Type(s) in Format 7
       $0.96 4 Types
$5.35
       Estimated cost File155
       $2.23 0.363 DialUnits File156
          $4.32 4 Type(s) in Format 7
       $4.32 4 Types
$6.55 Estimated cost File156
       $1.07
             0.229 DialUnits File162
$1.07 Estimated cost File162
       $1.45
               0.113 DialUnits File172
$1.45 Estimated cost File172
       $1.19 0.092 DialUnits File305
$1.19 Estimated cost File305
```

\$0.80 0.220 DialUnits File369 \$1.57 1 Type(s) in Format 7 \$1.57 1 Types \$2.37 Estimated cost File369 \$0.47 0.128 DialUnits File370 \$1.62 1 Type(s) in Format 7 \$1.62 1 Types \$2.09 Estimated cost File370 \$0.34 0.119 DialUnits File393 \$0.34 Estimated cost File393 \$16.72 1.279 DialUnits File399 \$41.72 14 Type(s) in Format 7 \$41.72 14 Types \$58.44 Estimated cost File399 \$4.28 0.161 DialUnits File434 \$4.28 Estimated cost File434 OneSearch, 26 files, 13.153 DialUnits FileOS \$9.33 TELNET \$406.79 Estimated cost this search \$406.82 Estimated total session cost 13.533 DialUnits Logoff: level 05.22.00 D 11:16:13