Group No. 1635 Confirmation No. 9705

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: WO 93/17098 C12N 1/21, 5/10, 15/33 **A1** C12N 15/82, C07H 21/04 (43) International Publication Date: 2 September 1993 (02.09.93) A01H 5/00

(21) International Application Number:

PCT/US93/01544

(22) International Filing Date:

18 February 1993 (18.02.93)

(30) Priority data:

838,509

19 February 1992 (19.02.92) US

(71) Applicant: THE STATE OF OREGON acting by and through THE OREGON STATE BOARD OF HIGHER EDUCATION ON BEHALF OF OREGON STATE UNIVERSITY [US/US]; Corvallis, OR 97331 (US).

(72) Inventors: DOUGHERTY, William, G.; 35163 Lillian Drive, Philomath, OR 97370 (US). LINDBO, John, A.; 2910 N.W. Polk Street, #17, Corvallis, OR 97330 (US).

(74) Agents: POLLEY, Richard, J. et al.; Klarquist, Sparkman, Campbell, Leigh & Whinston, One World Trade Center, Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204

(81) Designated States: CA, JP, NO, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: PRODUCTION OF VIRAL RESISTANT PLANTS VIA INTRODUCTION OF UNTRANSLATABLE PLUS SENSE VIRAL RNA

(57) Abstract

Plants, such as tobacco, are made resistant to potyvirus infection by transformation with vectors which include a gene, derived from a potyvirus, mutated to encode an untranslatable plus sense RNA molecule. Mutagenized potyvirus genes and plant transformation vectors containing these genes are also disclosed.

Best Avallable Copy

Best Available Copy

Ζ١

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	1E	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	ΚZ	Kazakhstan	SN	Senegal
CM	Cameroon	L.J	Liechtenstein	SU	Soviet Union
CS	Czechoslovakia •	t.K	Sri Lanka	TD	Chad
CZ.	Czech Republic	1.U	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	ŰΑ	Ukraine
DK	Denmark	MC	Madagascar	us	United States of America
ES	Spain	MI.	Mali	VN	Vict Nam
FI	Finland	MN	Mongolia		

()

5

10

15

20

25

30

35

PCT/US93/01544

"Production of viral resistant plants via introduction of untranslatable plus sense viral RNA"

-1-

FIELD OF THE INVENTION

This invention is directed to the production of plants with a reduced susceptibility to virus infection.

BACKGROUND OF THE INVENTION

Plant viruses are responsible for major losses in worldwide crop production. Much effort is directed towards the development of new plant varieties which exhibit increased resistance to viral infection. Until recently such efforts were primarily based on the traditional plant breeding approach, however this approach is often limited by a lack of sources of resistance within the crop species. The advent of modern molecular biology techniques has facilitated the development of new methods of rendering plant varieties resistant to virus attack that are not limited by a requirement for preexisting resistance genes within a species.

Molecular Approaches

Many of these molecular approaches are based on the theory of pathogen derived resistance (Sanford and Johnston, 1985). This theory predicts that a "normal" host (plant) - pathogen (virus) relationship can be disrupted if the host organism expresses essential pathogen derived genes. It has been proposed that host organisms expressing pathogen gene products in excess amounts, at an inappropriate developmental stage, or in a dysfunctional form may disrupt the normal replicative cycle of the pathogen and result in an attenuated or aborted infection of the host.

Two approaches typify this pathogen derived resistance: coat protein mediated resistance and antisense RNA expression. It has been demonstrated that transgenic plants expressing a plant virus coat protein can be resistant to infection by the homologous virus. This coat protein mediated resistance has been

demonstrated for several virus groups. While the mechanism of this resistance is not yet fully understood, it has been suggested that the presence of the plant synthesized coat protein prevents the removal of the protein coat (uncoating) of an invading virus and/or virus movement within the infected plant, leading to resistance.

Plants which express an RNA molecule which is complementary to plus sense RNA species encoded by the virus may show a decreased susceptibility to infection by that virus. Such a complementary RNA molecule is termed antisense RNA. It is thought that the plant encoded antisense RNA binds to the viral RNA and thus inhibits its function.

15 Potyviruses

10

20

25

30

35

The Potato Virus Y, or potyvirus, family represents a large number of plant viral pathogens which collectively can infect most crop species including both monocotyledonous and dicotyledonous plants. Potyvirus infection can induce a variety of symptoms including leaf mottling, seed and fruit distortion and can severely compromise crop yield and/or quality (Hollings and Brunt, 1981).

Potyviruses have a single-strand plus sense RNA of circa 10,000 nucleotides which has a viral encoded protein linked to the 5' end and a 3' polyadenylate region. A single open reading frame codes for a 351 kDa polyprotein which is proteolytically processed into mature viral gene products. The RNA is encapsidated by approximately 2,000 copies of a coat protein monomer to form a virion. This capsid protein is encoded by the sequence present at the 3' end of the large open reading frame.

Potyviruses can be transmitted by aphids and other sap feeding insects and in some instances can also be transmitted in the seeds of infected plants.

Replication of the viral RNA is thought to occur in the cytoplasm of infected plant cells after uncoating. The

O.

5

10

15

20

25

30

35

-3-

replication mechanism involves both translation of the plus sense RNA to yield viral gene products (which include a replicase and a proteinase) and also the synthesis of a minus sense RNA strand. This minus sense strand then acts as a template for the synthesis of many plus sense genomes which are subsequently encapsidated in coat protein to yield infectious mature "virions," thus completing the replicative cycle of the virus.

Experiments have been reported in which transgenic plants expressing the coat protein gene of a potyvirus show a reduced susceptibility to virus infection (Lawson et al. 1990; Ling et al. 1991; Stark and Beachy 1989).

SUMMARY OF THE INVENTION

The disclosed invention concerns a method of producing plants with a decreased susceptibility to virus infection. This is achieved by transforming plants with a DNA molecule which includes a gene derived in part from the genome of a plant virus. This gene is specifically constructed to produce an untranslatable version of a plus sense RNA molecule required for viral replication. Thus, expression of the gene within the plant causes the production of this non-functional molecule which then inhibits viral replication within the plant, rendering the plant resistant to viral infection.

In particular, invention provides an alternative and novel approach to rendering plants resistant to potyvirus infection.

Plants are transformed with a gene construct engineered to express an untranslatable form of the plus sense RNA which encodes the coat protein of a potyvirus.

In the case of Tobacco Etch Virus (TEV), it is demonstrated that tobacco plants transformed with such a gene construct accumulate the untranslatable plus sense RNA but do not produce detectable levels of the coat protein. It is further shown that these plants are resistant to TEV infection. It is also shown that

5

10

15

20

25

30

35

tobacco cells expressing this untranslatable plus sense RNA do not support TEV replication, unlike control tobacco cells and also unlike tobacco cells which are engineered to express the plus sense translatable RNA and which, as a result, accumulate TEV coat protein. Although the exact mechanism is unknown, it is proposed that the untranslatable plus sense RNA inhibits viral replication by binding to the minus sense RNA and preventing the minus sense RNA from functioning in the replication cycle.

It is believed that this approach will be applicable to other potyviruses, to genes other than the coat protein gene and to other plus sense RNA virus families. It is also believed that this means of inhibiting gene function is applicable to other biological systems, including mammalian viruses.

DESCRIPTION OF DRAWINGS

Fig. 1 represents the nucleotide sequence of the Tobacco Etch Virus genome and its deduced amino acid sequence, according to Allison et al. (1986). The nucleotide sequence of the plus sense strand of the DNA inserts is given. The first nucleotide (N) could not be determined unequivocally. The predicted amino acid sequence of the large ORF of reading frame three of the viron sense RNA is presented in the nucleotide sequence. This sequence is also set forth in SEQ ID No. 1 of the enclosed sequence listing. The termination codon at the end of the large ORF is marked with a *. The putative cleavage site between the large (54,000 Mw) nuclear inclusion protein and the capsid protein is indicated by the arrow. Oligonucleotide primer binding sites are underlined and labeled.

Fig. 2 is a schematic representation of the construction of pTC:FL, utilized in construction of transformation vectors for the invention. Restriction endonuclease sites were introduced into pTL 37/8595 at positions A, B and C in the diagram. Following these nucleotide changes the mutated pTL 37/8595 was digested

with the restriction enzyme NcoI, the DNA fragment delineated by the restriction enzyme sites at B and C was removed, and the plasmid religated to generate pTC:FL. pTC:FL contains the Tobacco Etch Virus (TEV) 5 coat protein nucleotide sequence flanked by BamHI restriction sites and the TEV 5' and 3' untranslated sequences (UTS). T7 and SP6 promoters are also shown. Abbreviations used in this diagram are as follows: T7, T7 RNA polymerase promoter sequence; SP6, SP6 RNA 10 polymerase promoter sequence; ori, origin of replication; M13 ori, bacteriophage M13 single-stranded origin of replication; amp r , β -lactamase gene. Lightly stippled areas are TEV 5' and 3' untranslated sequences; solid black area, TEV genome cDNA nucleotides 144 to 15 200; striped area, a portion of the TEV NIb gene (TEV nt 8462-8517); heavily stippled areas, cDNA of TEV CP nucleotide sequence (TEV nt 8518-9309).

Fig. 3 is a schematic representation of the forms of the Tobacco Etch Virus coat protein gene 20 inserted into tobacco in the invention. All constructs contained the enhanced CaMV 35S (Enh 35S) promoter, CaMV 35S 5' untranslated sequence (UTS) of 50 bp and the CaMV 35S 3' UTS/polyadenylation site of 110 bp. nomenclature used to describe the transgenic plant lines 25 is presented along with the gene products produced in those plant lines (far right column). Abbreviations are as follows: 35S, transgenic plants containing the CaMV 35S promoter and 5' and 3' UTS only; FL, transgenic plants containing the transgene coding for full-length, 30 AS and RC transgenic plants contain the transgene expressed as an antisense form of the TEV CP gene, or an untranslated sense form of the TEV CP gene, respectively. Stippled areas represent various forms of the TEV CP nucleotide sequence.

Fig. 4 is a graphic representation of the appearance of systemic symptoms in plants infected with Tobacco Etch Virus showing responses of control plants and transformed plants generated as described in the

5

10

15

25

35

-6-

invention. Ten B49 (wild type) plants and ten R2 plants of transgenic plant lines 35S #4, FL #3, FL #24, homozygous for the inserted TEV gene, were mechanically inoculated with 50 μ l of 1:10 dilution of infected plant sap (A). Twenty B49 plants and 20 Rl plants of lines AS #3 and RC #5 were mechanically inoculated with 50 μ l of 5 μ g/ml TEV (B). Plants were examined daily for the appearance of systemic symptoms. Plants were evaluated daily, and any plant displaying systemic symptoms (attenuated or wild-type) were recorded as symptomatic.

SEQUENCE LISTING

The attached sequence listing sets forth nucleotide sequences relevant to the present invention.

SEQ ID No. 1 is the complementary DNA sequence corresponding to the Tobacco Etch Virus Genome.

SEQ ID No. 2 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:FL.

SEQ ID No. 3 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:RC.

SEQ ID No. 4 is the nucleotide sequence of the modified Tobacco Etch Virus coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

DETAILED DESCRIPTION

The present invention relates to genetically engineered plants which are transformed with a DNA molecule encoding an untranslatable plus sense RNA molecule.

30 Definition of Terms

Susceptible plant: A plant that supports viral replication and displays virus-induced symptoms.

Resistant plant: A plant wherein virus-induced symptoms are attenuated and virus replication is attenuated.

Plus sense RNA (and sense RNA): That form of an RNA which can serve as messenger RNA.

-7-

Minus sense RNA: That form of RNA used as a template for plus sense RNA production.

Antisense RNA: RNA complementary to plus sense RNA form.

Ro generation: Primary transformants.

 $$R_1^{^{\ast}}$$ generation: Progeny of primary transformants.

5

15

20

25

30

35

 $$R_{2}$$ generation: Second generation progeny of $$R_{0}$$ generation (i.e., progeny of R_{1} generation).

A gene derived in part from a plant virus RNA molecule: At least the portion of the gene encoding the untranslatable RNA molecule is derived from a plant virus RNA molecule.

GENERAL DESCRIPTION

An untranslatable plus sense RNA molecule is encoded by a gene located on the DNA molecule. The gene comprises DNA derived from a plant virus RNA genome and also DNA from heterologous sources. The DNA from heterologous sources includes elements controlling the expression of the virus-derived DNA sequences. The DNA sequence of the gene is specifically altered so as to render the RNA molecule transcribed from the gene untranslatable. The presence of this untranslatable plus sense RNA within the cells of the transformed plant reduces the susceptibility of the plant to viral infection.

More particularly, the portion of the gene which comprises DNA from a plant virus has been derived from a potyvirus. Plants transformed with the DNA molecule containing the gene are less susceptible to infection by potyviruses. Most specifically, the DNA from the potyvirus source has been derived from the coat protein gene of Tobacco Etch Virus and transformed plants are resistant to infection by Tobacco Etch Virus. Plants which can be made resistant to potyvirus infection include, but are not limited to, tobacco.

Accordingly, the present invention provides a method for genetically engineering plants by insertion,

into the plant genome, a DNA construct containing a recombinant gene derived from a potyvirus genome such that the engineered plants display resistance to the potyvirus.

5

10

15

20

25

30

35

In accordance with one aspect of the present invention, genetically transformed plants which are resistant to infection by a plant potyvirus are produced by inserting into the genome of the plant a DNA sequence which causes the production of an untranslatable coat protein RNA of the potyvirus.

In accordance with another aspect of the present invention, a DNA sequence is provided to function in plant cells to cause the production of an untranslatable plus sense RNA molecule. There has also been provided, in accordance with yet another aspect of the present invention, bacterial and transformed plant cells that contain the above-described DNA. In accordance with yet another aspect of the present invention, a differentiated tobacco plant has been provided that comprises transformed tobacco cells which express the untranslatable coat protein RNA of Tobacco Etch Virus and which plants exhibit resistance to infection by Tobacco Etch Virus.

Other features and advantages of the present invention will become apparent from the following description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

A mechanism by which an untranslatable plus sense RNA molecule, such as described in the current invention can function to inhibit the normal biological function of a minus sense RNA molecule is proposed. One skilled in the art will recognize that the novel approach described herein is not limited to the specific

5

10

15

experimental example given and will appreciate the wider potential utility of the invention.

The expression of a plant gene which exists in double-stranded DNA form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' nontranslated region which causes polyadenylate nucleotides to be added to the 3' end of the viral RNA. Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding strand of RNA.

A number of promoters which are active in plant cells have been described in the literature. which are known or are found to cause transcription of 20 viral RNA in plant cells can be used in the present invention. Such promoters may be obtained from plants or viruses and include, but are not limited to, the CaMV 35S promoter. As described below, it is preferred that the particular promoter selected should be capable of 25 causing sufficient expression to result in the production of an effective amount of untranslatable plus sense RNA to render the plant substantially resistant to virus infection. The amount of untranslatable plus sense RNA needed to induce resistance may vary with the 30 plant type. Accordingly, while the 35S promoter is preferred, it should be understood that this promoter may not be the optimal one for all embodiments of the present invention. Furthermore, the promoters used in the DNA constructs of the invention may be modified, if 35 desired, to affect their control characteristics. sequences have been identified which confer regulatory specificity on promoter regions. For example, the small subunit of the ribulose bis-phosphate carboxylase (ss

-10-

5

10

15

20

25

30

35

RUBISCO) gene is expressed in plant leaves but not in root tissues. A sequence motif that represses the expression of the ss RUBISCO gene in the absence of light, to create a promoter which is active in leaves but not in root tissue, has been identified. This and/or other regulatory sequence motifs may be ligated to promoters such as the CaMV 35S promoter to modify the expression patterns of a gene. Chimeric promoters so constructed may be used as described herein. For purposes of this description, the phrase "CaMV 35S promoter" will therefore include all promoters derived by means of ligation with operator regions, random or controlled mutagenesis, as well as tandem or multiple copies of enhancer elements, and the like.

The 3' nontranslated region of genes which are known or are found to function as polyadenylation sites for viral RNA in plant cells can be used in the present invention. Such 3' nontranslated regions include, but are not limited to, the 3' transcribed, nontranslated region of the CaMV 35S gene and the 3' transcribed, nontranslated regions containing the polyadenylation signals of the tumor-inducing (TI) genes of Agrobacterium, such as the tumor morphology large (tml) gene. For purposes of this description, the phrase "CaMV 35S 3' nontranslated region" will therefore include all such appropriate 3' nontranslated regions.

The DNA constructs of the disclosed embodiment contain, in double-stranded DNA form, a portion of a cDNA version of the single-stranded RNA genome of TEV. In potyviruses, including TEV, the viral genome includes genes encoding the coat protein, a replicase enzyme and a proteinase. The disclosed embodiment utilizes the region of the genome encoding the coat protein gene. In considering the present invention and the evidence for the proposed mechanism by which an untranslatable plus sense RNA molecule can inhibit viral replication, those skilled in the art will recognize that other portions of a potyvirus genome could be substituted for the coat

-11-

protein gene. Furthermore, it will be apparent that suitable genomic portions are not limited to complete gene sequences.

5

10

15

25

30

35

A disclosed embodiment of the invention utilizes a double-stranded complementary DNA (cDNA) derived from the region of the TEV genome encoding the coat protein gene. To the 5' end of this cDNA is ligated the CaMV 35S promoter and CaMV 35S RNA 5' To the 3' end is ligated the CaMV nontranslated region. 35S 3' nontranslated region. These 5' and 3' sequences are present to cause transcription of the gene in plant cells by the cellular enzyme RNA polymerase to produce an RNA molecule of sequence corresponding to the sequence of the coat protein cDNA sequence. Ordinarily, such an RNA would then be translated by ribosomes which would synthesize a protein of amino acid sequence specified by the nucleotide sequence of the RNA molecule. Particular amino acids are specified by nucleotide triplets termed codons. Codons which 20 stipulate translation initiation and termination are also present in DNA and RNA sequences. The current invention relates to RNA molecules which are untranslatable by ribosomes. In the preferred embodiment the sequence of the TEV cDNA encoding the coat protein is mutated by a standard in vitro mutagenesis technique to produce a frameshift mutation early in the coat protein structural gene immediately followed by three translation termination signal codons. These mutations do not affect the ability of RNA polymerase to transcribe an RNA molecule from the cDNA but prevent translation of the transcribed RNA by ribosomes. Those skilled in the art will recognize that for the disclosed gene and for other genes, DNA sequences can be altered in other ways to cause the DNA to encode an untranslatable plus sense RNA molecule. Thus the disclosed invention is not limited to the mutations disclosed.

10

15

20

25

30

35

A disclosed embodiment utilizes a cDNA encoding the coat protein gene of TEV, mutated so as to encode an untranslatable plus sense RNA. It will be obvious to one skilled in the art that further sequence alteration of the cDNA molecule could be used to confer additional features on the untranslatable plus sense RNA molecule. Additional features include those which would result in increased viral resistance of plants transformed with the cDNA molecule encoding an untranslatable plus sense RNA. The inclusion of a ribozyme sequence which causes the RNA catalyzed destruction of the target RNA molecule would constitute one such additional feature. Suitable ribozyme sequences are known, as discussed in Tabler and Tsagris (1991).

A DNA construct in accordance with the present invention is introduced, via a suitable vector and transformation method as described below, into plant cells and plants transformed with the introduced DNA are regenerated. Various methods exist for transforming plant cells and thereby generating transgenic plants. Methods which are known or are found to be suitable for creating stably transformed plants can be used in this invention. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome mediated transformation; polyethylene mediated transformation; transformation using viruses; microinjection of plant cells; microprojectile bombardment of plant cells and Agrobacterium tumefaciens (AT) mediated transformation. The latter technique is the method of choice for the disclosed preferred embodiment of the present invention.

In an embodiment of the current invention, the DNA sequences comprising the CaMV 35S promoter and CaMV 35S nontranslated 3' region and the mutated cDNA encoding an untranslatable plus sense RNA derived from

the TEV coat protein gene are combined in a single cloning vector. This vector is subsequently transformed into AT cells and the resultant cells are used to transform cultured tobacco cells.

Vectors suitable for the AT mediated transformation of plants with the DNA of the invention are disclosed. It will be obvious to one skilled in the art that a range of suitable vectors is available, including those disclosed by Bevan (1983),

5

15

20

25

30

Herrera-Estrella (1983), Klee (1985) and EPO publication 12,516 (Schilperoort et al.). Suitable vectors are available on a commercial basis from Clontech (Palo Alto, CA) and Pharmacia LKB (Pleasant Hill, CA) and other sources.

Following the transformation of plant cells and regeneration of transformed plants with the DNA molecules as described, regenerated plants are tested for increased virus resistance. Plants are preferably exposed to the virus at a concentration within a range where the rate of disease development correlates linearly with virus concentration. Methods for virus inoculation are well known to those skilled in the art and are reviewed by Kado and Agrawai (1972). One such method includes abrading a leaf surface with an aqueous suspension containing an abrasive material such as carborundrum and virus or dusting leaves with such an abrasive material and subsequently applying the virus onto the leaf surface. A virus suspension can be directly inoculated into leaf veins or alternatively plants can be inoculated using insect vectors. virus suspension may comprise purified virus particles, or alternatively, sap from virus infected plants may be utilized.

Transformed plants are then assessed for

resistance to the virus. The assessment of resistance or reduced susceptibility may be manifest in different ways dependant on the particular virus type and plant type. Those skilled in the art will realize that a

15

comparison of symptom development on a number of inoculated untransformed plants with symptom development on similarly inoculated transformed plants will provide a preferred method of determining the effects of transformation with the specified DNA molecule on plant resistance. Symptoms of infection include, but are not limited to leaf mottling, chlorosis and etching. Plants showing increased viral resistance may be recognized by delay in appearance of such symptoms or attenuation or total lack of such symptoms.

Example

Work with tobacco plants and the Tobacco Etch Virus (TEV) is illustrative of the invention.

Construction of gene encoding untranslatable plus sense RNA molecule.

The Highly Aphid Transmissible (HAT) isolate of Tobacco Etch Virus (TEV) was obtained from Dr. Tom Pirone (University of Kentucky) and maintained in Nicotiana tabacum (Burley 21). The virus was purified from Nicotiana tabacum (Burley 21) 20 to 30 days 20 following inoculation. Viral purification and RNA isolation procedures have been described (Dougherty and Hiebert (1980a). Complementary DNA (cDNA) was synthesized, made double-stranded and inserted into the bacterial plasmid pBR322 as described by Allison et al. 25 (1985a, 1985b, 1986), herein incorporated by reference. cDNA synthesis was accomplished as follows: Purified viral RNA primed with oligo(dT_{12-18}) served as a template for single-strand cDNA synthesis by reverse transcriptase. Following the addition of homopolymeric 30 tracts of deoxycytidine 5' monophosphate, second-strand synthesis, primed with oligo(dG_{12-18}), was completed with DNA polymerase I. SalI and EcoRI linkers were ligated to the double-stranded cDNA and inserted into the bacterial plasmid pBR322 (Kurtz and Nicodemus 1981). 35 resulting cDNA clones were screened by colony hybridization (Hanahan and Meselson 1980) with oligo(dT_{12-18}) primed, ^{32}P -labeled single-stranded TEV

cDNA. Plasmid DNA was isolated from colonies which hybridized with the probe, and the SalI/EcoRI cDNA inserts were sized by electrophoresis in a 0.8% (w/v) agarose gel using a horizontal water-cooled gel apparatus.

5

10

15

20

25

30

35

The SalI/EcoRI inserts from the recombinant molecules were isolated from an agarose gel with NA45 membrane (Schleicher & Schuell, Keene, NH) according to the manufacturer's protocol. The following restriction enzymes were used either alone or in combination to digest the isolated cDNA insert: HindIII, XhoI, AluI, HaeIII, RsaI, Sau3A, and TaqI. Restriction enzyme digestion products were inserted into the DNA of an appropriate M13 bacteriophage (Messing 1983) selected for the presence of corresponding polylinker restriction sites, and their nucleotide sequences were determined by dideoxy chain termination.

Plasmid pTL 37/8595 (Carrington and Dougherty 1987; Carrington et al. 1987, herein incorporated by reference) contains a cDNA copy of the genomic sequence of HAT TEV corresponding to nucleotides (nt) 1-200 and nt 8462-9495 (Fig. 2). (Numbering of the TEV genome nucleotides is according to that presented in Allison et al. 1986). The nucleotide sequence and deduced amino acid sequence of the Tobacco Etch Virus genome and the numbering system utilized by Allison et al. (1986) and herein is shown in Fig. 1 and SEQ ID No. 1 in the attached sequence listing. The first and last codons of the coat protein (CP) coding region in the TEV genome are nt 8518-8520 (encoding the amino acid serine) and 9307-9309 (opal stop codon) respectively. pTL 37/8595 was subject to in vitro site-directed mutagenesis as described by Taylor et al. (1985a, 1985b) herein incorporated by reference. In all cases, nucleotide changes were confirmed by dideoxy-nucleotide sequencing (Sanger et al. 1977).

TEV nt 9312-9317 were first mutated (Fig. 2) to generate a BamHI restriction site (GGATCC). TEV nt

-16-

8516-8521 were then altered to generate an NcoI site (CCATGG), changing the first codon of the TEV CP coding region from AGT (Ser), to ATG (Met). A single oligonucleotide was then used to mutate TEV nt 133-138 to a BamHI restriction site (GGATCC), nt 143-148 to an NcoI restriction site (CCATGG) and nt 142 to a deoxyadenylate residue. These mutations generated an NcoI site centered on the first codon of the TEV ORF and in a good translational start context as described by Kozak (1984). Digestion of the resulting plasmid with the restriction enzyme NcoI; removing TEV nt # 143-200/8462-8516, and religation generated plasmid pTC:FL. pTC:FL contained only the TEV CP gene flanked by BamHI restriction sites and TEV 5' and 3' untranslated sequences (see Fig. 2). The nucleotide sequence of the TEV CP gene in pTC:FL produced by this mutagenesis scheme is shown in SEQ ID No. 2 in the attached sequence listing.

10

15

20

25

30

35

Plasmid pTC:RC (RNA Control, producing untranslatable plus sense RNA) was generated by insertion of a single deoxythymidylate residue after TEV nt 8529, and point mutations of TEV nt 8522 (G to C), 8534 (C to A), 8542 (G to A), and 8543 (A to G) to create a frameshift mutation immediately followed by three stop codons. An NheI restriction site (GCTAGC) was simultaneously generated, for screening purposes, at nt 8539-8544. The nucleotide sequence of the TEV CP gene in pTC:RC produced by this mutagenesis scheme is shown in SEQ ID No. 3 in the attached sequence listing.

All plasmids described above were linearized with HindIII, transcribed with T7 RNA polymerase (Melton et al. 1984), and translated in a rabbit reticulocyte lysate containing ³⁵S Methionine (Dougherty and Hiebert 1980a). Radiolabeled translation products were analyzed by electrophoretic separation on a 12.5% acrylamide gel containing SDS (Laemmli 1970) and detected by autoradiography. Transcripts of plasmid pTC:RC produced

-17-

no detectable protein products, while transcripts from pTC:FL produced proteins of the expected sizes.

PCT/US93/01544

The various forms of the CP nucleotide sequence were then inserted as BamHI cassettes into the plant expression vector pPEV (see below and Fig. 3).

The full length TEV CP open reading frame of pTC:FL was inserted in the reverse orientation to make the antisense (AS) construct pTC:AS. The nucleotide sequence of the TEV CP gene in pTC:AS is shown in SEQ ID No. 4 in the attached sequence listing.

Transformation Vector Construction

5

10

Construction of pPEV. The vector pPEV is part of a binary vector system for Agrobacterium tumefaciens mediated plant cell transformation. Plasmid pPEV was constructed from the plasmids pCGN 2113 (Calgene), pCIB 15 710 and pCIB 200 (Ciba Geigy Corp.). pCGN 2113 contains the "enhanced" Cauliflower Mosaic Virus (CaMV) 35S promoter (CaMV sequences -941 to 90/-363 to +2, relative to the transcription start site) in a pUC derived 20 plasmid backbone. pCIB 710 has been described (Rothstein et al. 1987) and pCIB 200 is a derivative of the wide host range plasmid pTJS 75 (Schmidhauser and Helinski 1985) which contains left and right A. tumefaciens T37 DNA borders, the plant selectable 25 NOS/NPT II chimeric gene from the plasmid Bin 6 (Bevan 1984) and part of a pUC polylinker. The small EcoRI-EcoRV DNA fragment of pCIB 710 (Rothstein et al. 1987) was ligated into EcoRI-EcoRV digested pCGN 2113. This regenerated the enhanced CaMV 35S promoter (Kay et 30 al. 1987) of pCGN 2113 and introduced the CaMV 35S 5' and 3' untranslated sequences into pCGN 2113. 35S promoterterminator cassette of the resulting plasmid was isolated as an EcoRI-XbaI DNA fragment and ligated into EcoRI-XbaI digested pCIB 200 to generate pPEV. CP nucleotide sequences from PTC:FL, pTC:RC, and pTC:AS 35 were cloned as BamHI cassettes into BamHI digested pPEV and orientation of inserts confirmed by digestion with appropriate restriction endonucleases.

Transformation and Regeneration of Tobacco

5

10

15

20

25

30

35

pPEV plasmids containing TEV CP ORFs were mobilized from *E. coli* HB101 into *A. tumefaciens* A136 containing plasmid pCIB 542 (Ciba Geigy), using the helper plasmid pRK 2013 in *E. coli* HB101 and the tri-parental mating system of Ditta et al. (1980). Plasmid pCIB 42 supplied *vir* functions necessary for T-DNA transfer.

Leaf discs of Nicotiana tabacum cv Burley 49 were transformed and whole plants regenerated according to Horsch et al. (1985). Transformed tissue was selected by culturing callus on MS plates (Murashige and Skoog 1962) containing 1 μ g/ml 6-benzylaminopurine (Sigma Corp.), 01 μ g/ml α -naphthaleneacetic acid (Sigma Corp.), 500 μ g/ml carbenicillin and 100 μ g/ml Kanamycin sulfate (Sigma Corp.). Shoots were rooted on MS plates containing 500 μ g/ml carbenicillin and 100 μ g/ml kanamycin sulfate, and plantlets were transplanted into soil and transferred directly into the greenhouse approximately 2-3 weeks after rooting.

R0, R1 and R2 generation plants were screened by western and/or northern blot analyses. R2 seed (ca. 100 seeds per R2 plant) was screened for the kanamycin-resistant phenotype (kan^r) by surface sterilizing seed in 10% bleach for 5 min., washing twice in sterile water and germinating on MS plates containing 100 μ g/ml kanamycin sulfate. R2 seed lines which were 100% kanamycin resistant were screened by western blot analysis for expression of TEV coat protein. Those transgenic plant lines generated and their nomenclature are presented in Fig. 3.

Molecular Analyses of Transgenic Plants

Transgenic tobacco plants were analyzed by western and northern blot analyses to determine the nature of protein and RNA products produced respectively. Total RNA samples isolated from the various transgenic lines were analyzed in northern blot hybridization studies. Total nucleic acids were

10

2

isolated from tissue and RNA precipitated with LiCl as described by Verwoerd et al. (1989). RNAs were electrophoretically separated on 1.2% agarose gels containing 6% (v/v) formaldehyde and transferred to nitrocellulose. Prehybridization and hybridization conditions were as described in Sambrook et al. (1989). Strand specific riboprobes were generated from SP6 or T7 DNA dependent RNA polymerase transcription reactions of pTL 37/8595 linearized with the restriction enzymes Asp718 (Boehringer Mannheim, Indianapolis, IN) or HindIII, respectively, using α -labelled 32 P-CTP ribonucleotide and suggested procedures (Promega, Madison, WI).

An RNA transcript of approximately 1,000 nt was expected with all transgenic plant lines. Such a TEV CP 15 transcript was detected in CP expressing plant lines by using a minus sense riboprobe containing the TEV CP sequence. A similar transcript was detected in AS plants by using a plus sense riboprobe containing the TEV CP sequence. The transcript in the RC line, while 20 detected with a minus sense riboprobe, may have migrated as a slightly larger (ca 1,100-1,200 nt) RNA species, possibly due to termination at an alternately selected site and/or a longer poly-A tail on the transcript. Differing levels of CP transcript accumulation were 25 observed among different transgenic plant lines. Transgenic plant lines expressing the coat protein of TEV were identified by western blot analysis using polyclonal antisera to TEV CP. Tissue samples of regenerated plants were ground in 10 volumes of 2X 30 Laemmli (Tris-glicine) runner buffer (Laemmli 1970) and clarified by centrifugation in a microcentrifuge for 10 min. at 10,000xg. Protein concentration was estimated by the dye binding procedure of Bradford (1976) using BSA as a standard. Protein samples (50 μ g total 35 protein) were separated on a 12.5% polyacrylamide gel containing SDS and subjected to the immunoblot transfer procedures described by Towbin et al. (1979). Anti-TEV

coat protein polyclonal primary antibodies, alkaline phosphatase conjugated secondary antibodies and the chromogenic substrates NBT (para-nitro blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3-indoyl phosphate para-toluidine salt) were used to detect bound antigen.

Coat protein products produced in FL plants were stable and accumulated to different levels in individual transgenic plant lines. It was estimated by western blot analysis that between 0.01% to 0.001% of total extracted protein was TEV CP.

Assessment of Resistance to TEV

Eight-week-old (circa 15 cm tall) R1 and R2 plants were inoculated with either purified virus preparations or infected plant sap. Inoculum was applied with sterile, premoistened cotton swabs. 15 Infected plant sap inoculum was prepared by grinding TEV-infected N. tabacum Burley 21 leaf tissue (2 weeks postinoculation) in carborundum and 50 mM sodium phosphate buffer (pH 7.8) at a ratio of lgm:02gm:10mls, 20 respectively, and filtering the homogenate through cheesecloth. TEV virons were purified as described by Dougherty and Hiebert (1980b). One leaf per plant was dusted lightly with carborundum (320 grit) and inoculated at two interveinal locations with 50 μ l 25 (total) of inoculum. Inoculated plants were examined daily and the appearance and severity of systemic symptoms recorded. Symptoms on any leaf above the inoculated leaf were considered to be systemic.

Typically, inoculation of Burley 49 plants with

TEV (either purified virus or plant sap) resulted in severe chlorosis and mosaic and mottle on systemically infected leaves approximately 6-7 days after inoculation. Severe etching of the leaf followed within a few days. It was observed that transgenic plants containing only the CaMV promoter and untranslated sequences (i.e., 35S plant line) responded to challenge inoculation in a manner similar to wild type Burley 49, developing extensive chlorosis and etching at the same

WO 93/17098

10

15

20

25

30

35

-21-

rate (Fig. 4A). Plant lines which expressed FL TEV CP showed little or no delay in the appearance of symptoms when inoculated with infected plant sap. However, FL transgenic plants did show a slight attenuation of symptoms and eventually (2-4 weeks after initial appearance of symptoms), younger leaf tissue emerged devoid of symptoms and virus as demonstrated by back inoculation experiments. Typically chlorosis and etching on older systemic leaves was limited.

Ten independently transformed RC lines and seven independently transformed AS lines were obtained. Progeny from three of the RC lines, including line RC #5 and from one of the AS lines, including AS #3, showed an altered response to viral infection relative to control plants. All of these lines were verified to be transformed and were producing expected RNA products. A possible explanation for the variation in observed phenotype is the previously noted "position effect" whereby the expression of genes from identical DNA sequences integrated at different locations within the genome show varying patterns of tissue specificity.

Ten R2 expressing plants of the FL expressing line were inoculated with infected plant sap, and 20 R1 plants of lines AS #3 and RC #5 were inoculated with 50 μ l of a 5 μ g/ml solution of purified TEV. Identical results to those obtained by purified TEV inoculation were obtained when AS #3 and RC #5 R1 plants were inoculated with TEV-infected plant sap, as described above.

Transgenic Burley 49 plant lines AS #3 and RC #5, expressing only TEV CP related RNA sequences, showed a delay in the appearance of symptoms and a modification of symptoms when inoculated with TEV (Fig. 4B). Since the 20 R1 plants were not screened for expression of CP RNA prior to inoculation, some of the symptomatic plants represented non-expressing plants in which the gene of interest had been lost during Mendelian segregation. Modified symptoms on AS #3 plants appeared as small

÷

5

10

15

chlorotic lesions often associated with a vein. Most of the leaves were devoid of symptoms and virus (determined by back inoculation experiments). Approximately 15% of RC #5 plants showed symptoms which were identical to those of infected Burley 49. However, the remaining RC #5 plants were entirely asymptomatic, and virus was not detected in back inoculation studies.

Plants from TEV resistant AS and RC lines showed no increased resistance, relative to untransformed controls, to infection by two other members of the potyvirus family, namely Tobacco Vein Mottling Virus and Potato Virus Y.

 R_2 generation plants derived from TEV-resistant RC plants showed the expected Mendelian pattern of inheritance of the TEV-resistant phenotype. Analysis of TEV Replication in Protoplasts Derived from Transgenic Plant Lines

In an attempt to explain the results obtained when AS and RC transgenic plants were challenged with 20 TEV, it was sought to determine if all of the transgenic plant lines would support virus replication at a level comparable to Burley 49. Accumulation of viral encoded proteins was used as an indirect indicator of viral replication. Protoplasts were derived from leaf tissue of homozygous CP expressing plants and electroporated 25 according to the procedure of Luciano et al. (1987) with Protoplasts were prepared from transgenic TEV RNA. plants and electroporated according to the procedure of Luciano et al. (1987). Protoplasts (1 X 106) were resuspended in 450 μ l electroporation buffer (330 mM 30 mannitol, 1 mM KPO4 pH 7.0, 150 mM KCl) and electroporated using a BTX Transfector 300 (BTX San Diego, CA) (950 micro Farads, 130-volt pulse amplitude, 3.5 mm electrode gap) in the presence or absence of 6 $\mu \mathrm{g}$ 35 of purified TEV RNA. After electroporation, protoplasts were incubated for 96 hours in incubation medium as described in Luciano et al. (1987). Protoplasts were extracted in 2X Laemmli (Trisglycine) running buffer,

10

15

and 5 \times 10 4 extracted protoplasts were then subjected to western blot analysis as described above. Protoplast viability was measured by dye exclusion as described in Luciano et al. (1987). All electroporated protoplast samples had equivalent viability counts. The results indicated that protoplasts from all FL plant lines supported virus replication at levels comparable to wild type Burley 49 protoplasts. R1 transgenic plants from lines AS #3 and RC #5 were initially screened by northern analysis, and leaves from positive expressors were used in the production of protoplasts. Transfected protoplasts derived from AS #3 plants supported TEV replication, albeit at a reduced level. Protoplasts derived from RC #5 transgenic plant leaf tissue did not support TEV replication at a detectable level. results, and those presented in the whole plant inoculation series, suggested AS and RC plants interfere with TEV replication.

Discussion of Data

20 The above example indicates that varying degrees of protection from TEV infection can be achieved by overexpression of coat protein and by expression of an antisense RNA. The current invention which comprises the expression of an untranslatable plus sense RNA 25 molecule provides protection against TEV infection that is more effective than either of these two methods. Plants of line RC #5. transformed with the disclosed DNA molecule encoding an untranslatable plus sense RNA derived from the TEV coat protein gene, were 30 asymptomatic and appear to be completely protected from virus infection. The disclosed invention therefore represents a new and effective way of generating potyvirus resistant germplasm.

Tobacco protoplasts derived from plants

expressing the antisense RNA supported a reduced level of TEV replication compared to control cells derived from untransformed plants. In contrast, tobacco protoplasts derived from plants of line RC #5,

-24-

5

10

15

20

25

30

35

expressing the untranslatable plus sense RNA did not support detectable TEV replication. This suggests that the untranslatable plus sense RNA was more effective at blocking TEV replication in the cells of those transformed plants tested.

It is proposed that the untranslatable plus sense RNA inhibits viral replication by hybridizing to the minus sense RNA replicative template of TEV. The finding that plants expressing untranslatable plus sense RNA derived from the TEV coat protein gene are not protected from infection by Potato Virus Y or Tobacco Vein Mottling Virus is therefore explained by the circa 40-50% amino acid sequence divergence between the coat proteins of these viruses and TEV (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986).

From the above-described findings, it would be reasonable and entirely predictable that if plants were transformed with a gene encoding an untranslatable plus sense RNA derived from a gene which was highly conserved between viruses of the potyvirus family, that these plants would be protected from infection by a wide range of viruses. Regions of the potyvirus genome which are sufficiently conserved between potyvirus types to be potentially useful in such an approach may be readily determined by one skilled in the art. Highly conserved regions may be determined by reference to published sequence data (Allison et al. 1986; Robaglia et al. 1989; Domier et al. 1986; Lain et al. 1989; Maiss et al. The utility of the identified regions could be readily determined using the methodologies described above and substituting the defined region for the TEV coat protein gene.

Regions of the potyvirus genome potentially suitable include, but are not limited to the genes encoding the viral replicase and the viral proteinase. Furthermore, it will be apparent to one skilled in the art that highly conserved portions of a particular gene may also serve in this role.

It will also be apparent to one skilled in the art that the described invention may also be used to produce plants resistant to viruses outside of the potyvirus family in instances where these viruses also produce a minus sense RNA replicative template.

BIBLIOGRAPHY

Allison et al. 1985a. <u>Virology</u> 147:309-316. Allison et al. 1985b. <u>Proc. Natl. Acad. Sci. USA</u> 82:3969-3972.

Allison et al. 1986. <u>Virology 154:9-20.</u>

Bevan 1984. <u>Nucl. Acids Res.</u> 12:8711-8721.

Bradford 1976. <u>Nucl. Acids Res.</u> 12:8711-8721.

Carrington and Dougherty 1987. <u>J. Virol.</u>
61:2540-2548.

Carrington et al. 1987. <u>Nucl. Acids Res.</u> 15:10066.

Ditta et al. 1980. <u>Proc. Natl. Acad. Sci. USA</u>
77:7347-7351.

Domier et al. 1986. Nucl. Acids Res.

20 14:5417-5430.

30

Dougherty and Hiebert 1980a. <u>Virology</u> 101:466-474.

Dougherty and Hiebert 1980b. <u>Virology</u> 104:183-194.

Hanahan and Meselson 1980. <u>Gene 10</u>:63-67.

Herrera-Estrella et al. 1983. <u>Nature</u> (London)

303:209-213.

Hollings and Brunt 1981. <u>Commonwealth</u>

<u>Mycological Institute/Association of Applied Biologists</u>

<u>Descrip. Plant Viruses</u>, No. 245.

Horsch et al. 1985. <u>Science 227</u>:1229-1231.

Kado and Agrawai 1972. <u>Principles and</u>

<u>Techniques in Plant Virology</u>.

Kay et al. 1987. <u>Science</u> 236:1299-1302.

Kozak 1984. <u>Nature</u> (London) 308:241-246.

Kurtz and Nicodemus 1981. <u>Gene</u> 13:145-152.

Laemmli 1970. <u>Nature</u> (London) 227:680-685.

Lain et al. 1989. <u>Virus Res.</u> 13:157-172.

Lawson et al. 1990. <u>Bio/Technology</u> 8:127-134. Ling et al. 1991. <u>Bio/Technology</u> 9:752-758. Luciano et al. 1987. <u>Plant Science</u> 51:295-303. Maiss et al. 1989. <u>J. Gen. Virol.</u> 70:513-524.

5 Melton et al. 1984. <u>Nucl. Acids Res.</u> 12:7145-7156.

Messing 1983. "Methods in Enzymology" (R. Wu, L. Grossman, and K. Moldave, eds.). Vol. 101c, pp. 20-78. Academic Press, New York.

Murashige and Skoog 1962. Plant Physiol. 15:473-497.

Robaglia et al. 1989. <u>J. Gen. Virol.</u> 70:935-947.

Rothstein et al. 1987. Gene 53:153-161.

15 Sambrook et al. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratories, Cold Spring Harbor, New York.

Sanford and Johnston 1985. <u>J. Theor. Biol.</u> 113:395-405.

20 Sanger et al. 1977. <u>Proc. Natl. Acad. Sci. USA</u>
74:5463-5467.

Schmidhauser and Helinski 1985. <u>J. Bact.</u> 164:446-455.

Stark and Beachy 1989. Bio/Technology

25 7:1257-1262.

Tabler and Tsagris 1991. <u>Gene 100</u>:175-183.

Taylor et al. 1985a. <u>Nucl. Acids Res.</u>

13:8749-8764.

Taylor et al. 1985b. Nucl. Acids Res.

30 13:8765-8785.

Towbin et al. 1979. <u>Proc. Natl. Acad. Sci. USA</u> 76:4350-4354.

Verwoerd et al. 1989. <u>Nucl. Acids Res.</u> <u>17</u>:2372.

		SEQUENCE LISTING
		(1) GENERAL INFORMATION:
	(i)	APPLICANT: William G. Dougherty and John A. Lindbo
5	(ii)	TITLE OF INVENTION: Production of Plants Showing Immunity to Viral Infection via Introduction of Genes Encoding Untranslatable Plus Sense RNA Molecules
	(iii)	NUMBER OF SEQUENCES: 4
10	(iv)	CORRESPONDENCE ADDRESS:
		(A) ADDRESSEE: Richard J. Polley
		(B) STREET: One World Trade Center 121 S.W. Salmon Street, Suite 1600
		(C) CITY: Portland
15		(D) STATE: Oregon
		(E) COUNTRY: United States of America
		(F) ZIP: 97204
	(V)	COMPUTER READABLE FORM:
		(A) MEDIUM TYPE: Diskette, 5.25 inch
20		(B) COMPUTER: IBM PC Compatible
		(C) OPERATING SYSTEM: MS DOS
		(D) SOFTWARE: WordPerfect 5.1
	(Vi)	CURRENT APPLICATION DATA:
		(A) APPLICATION NUMBER: 07/838,509
25		(B) FILING DATE: February 19, 1992
		(C) CLASSIFICATION: 435
	•	PRIOR APPLICATION DATA: None
	(vii)	ATTORNEY/AGENT INFORMATION
2.0		(A) NAME: Richard J. Polley, Esq.
30		(B) REGISTRATION NUMBER: 28,107
		(C) REFERENCE/DOCKET NUMBER: 245-35829/RJP
	(viii)	TELECOMMUNICATION INFORMATION:
		(A) TELEPHONE: (503) 226-7391
35		(B) TELEFAX: (503) 228-9446
		(2) INFORMATION FOR SEQ ID NO: 1:
	(i)	SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 9495
		(B) TYPE: Nucleic Acid
40		(C) STRANDEDNESS: Single

PCT/US93/01544

		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE:	
	•	(A) DESCRIPTION: cDNA to genomic RNA	
	(iii)	HYPOTHETICAL: No	
5	(iv)	ANTI-SENSE: No	
	(v)	FRAGMENT TYPE: N/A	
	(vi)	ORIGINAL SOURCE:	
		(A) ORGANISM: Tobacco Etch Virus (TEV)	
10		(B) STRAIN: Highly Aphid Transmitted (HAT)	
	(Vii)	IMMEDIATE SOURCE: TEV propagated in N. tabacum Burley 49	
	(viii)	POSITION IN GENOME: N/A	
	(ix)	FEATURE:	
15		(A) NAME/KEY: Coat protein gene	
		(B) LOCATION: Genomic nucleotides 8518-9306	
		(C) IDENTIFICATION METHOD:	
20		(D) OTHER INFORMATION: SEQ. ID No. 1 is the cDNA corresponding to the Tobacco Etch Virus Genome.	
	(x)	PUBLICATION INFORMATION:	
		(A) AUTHORS: Allison et al.	
25		(B) TITLE: The nucleotide sequence of the coding region of Tobacco Etch Virus Genomic RNA: Evidence for the Synthesis of a Single Polyprotein	
		(C) JOURNAL: Virology	
		(D) VOLUME: 154	
30		(E) ISSUE:	
		(F) PAGES: 9-20	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	NAAATAACAA	ATCTCAACAC AACATATACA AAACAAACGA ATCTCAAGCA ATCAAGCATT 6	0
5	CTACTTCTAT	IGCAGCAATT TAAATCATTT CTTTTAAAGC AAAAGCAATT TTCTGAAAAT 12	0
J	TTTCACCATT	TACGAACGAT AGCA ATG GCA CTG ATC TTT GGC ACA GTC AAC GCT 17 Met Ala Leu Ile Phe Gly Thr Val Asn Ala 1 5 10	4
10	AAC ATC CTG Asn Ile Leu	AAG GAA GTG TTC GGT GGA GCT CGT ATG GCT TGC GTT ACC Lys Glu Val Phe Gly Gly Ala Arg Met Ala Cys Val Thr 15 20 25	2

ε

	WO 93	/1709	8						_	29 -	_					PCT/U	JS93/01544
	AGC Ser	GCA Ala	CAT His	ATG Met 30	GCT Ala	GGA Gly	GCG Ala	AAT Asn	GGA Gly 35	AGC	ATT	TTG Leu	AAG Lys	AAG Lys 40	GCA Ala	GAA Glu	270
5	GAG Glu	ACC Thr	TCT Ser 45	CGT Arg	GCA Ala	ATC Ile	ATG Met	CAC His 50	Lys	CCA Pro	GTG Val	ATC Ile	TTC Phe 55	GGA Gly	GAA Glu	GAC Asp	318
10	TAC Tyr	ATT Ile 60	ACC Thr	GAG Glu	GCA Ala	GAC Asp	TTG Leu 65	CCT Pro	TAC Tyr	ACA Thr	CCA Pro	CTC Leu 70	CAT His	TTA Leu	GAG Glu	GTC Val	366
15	GAT Asp 75	GCT Ala	GAA Glu	ATG Met	GAG Glu	CGG Arg 80	ATG Met	TAT Tyr	TAT Tyr	CTT Leu	GGT Gly 85	CGT Arg	CGC Arg	GCG Ala	CTC Leu	ACC Thr 90	414
20	CAT His	GGC Gly	AAG Lys	AGA Arg	CGC Arg 95	AAA Lys	GTT Val	TCT Ser	GTG Val	AAT Asn 100	AAC Asn	LYa YYG	AGG Arg	AAC Asn	AGG Arg 105	AGA Arg	462
20	AGG Arg	AAA Lys	GTG Val	GCC Ala 110	T Aa Y Y Y	ACG Thr	TAC Tyr	GTG Val	GGG Gly 115	CGT Arg	GAT Asp	TCC Ser	ATT Ile	GTT Val 120	GAG Glu	AAG Lys	510
25	ATT Ile	GTA Val	GTG Val 125	CCC Pro	CAC His	ACC Thr	GAG Glu	AGA Arg 130	AAG Lys	GTT Val	GAT Asp	ACC Thr	ACA Thr 135	GCA Ala	GCA Ala	GTG Val	558
30									ACT Thr								606
35									TTC Phe							AGT Ser 170	654
40	AAC Asn	GTG Val	TAT Tyr	GCC Ala	CAA Gln 175	ACT Thr	TGG Trp	AGC Ser	ATA Ile	GTG Val 180	CGC Arg	AAA Lys	CGC Arg	CAT His	ATG Met 185	CAG Gln	702
	GTG Val	GAG Glu	ATC Ile	ATT Ile 190	AGC Ser	AAG Lys	AAG Lys	AGC Ser	GTC Val 195	CGA Arg	GCG Ala	AGG Arg	GTC Val	AAG Lys 200	AGA Arg	TTT Phe	750
45	GAG Glu	GGC Gly	TCG Ser 205	GTG Val	CAA Gln	TTG Leu	TTC Phe	GCA Ala 210	AGT Ser	GTG Val	CGT Arg	CAC His	ATG Met 215	TAT Tyr	GGC Gly	GAG Glu	798
50	AGG Arg	AAA Lys 220	AGG Arg	GTG Val	GAC	TTA Leu	CGT Arg 225	ATT	Asp	AAC Asn	TGG Trp	CAG Gln 230	CAA Gln	GAG Glu	ACA Thr	CTT Leu	846
55	CTA Leu 235	GAC Asp	CTT	GCT Ala	AAA Lys	AGA Arg 240	TTT Phe	AAG Lys	AAT Asn	GAG Glu	AGA Arg 245	GTG Val	GAT Asp	CAA Gln	TCG Ser	AAG Lys 250	894
60	Leu	ACT Thr	TTT Phe	GGT Gly	TCA Ser 255	AGT Ser	GGC Gly	CTA Leu	GTT Val	TTG Leu 260	AGG Arg	CAA Gln	GGC Gly	TCG Ser	TAC Tyr 265	GGA Gly	942
	CCT	GCG Ala	CAT His	TGG Trp 270	Tyr	CGA Arg	CAT His	GGT Gly	ATG Met 275	Phe	ATT	GTA Val	CGC Arg	GGT Gly 280	CGG Arg	TCG Ser	990
65	GAT Asp	GGG	ATG Met 285	TTG Leu	GTG Val	GAT Asp	GCT Ala	CGT Arg 290	GCG Ala	AAG Lys	GTA Val	ACG Thr	TTC Phe 295	GCT Ala	GTT Val	CAa	1038

- 30 -

	CAC	TCA	ATG	ACA	CAT	TAT	AGC	GAC	AAA	TCA	ATC	TCT	GAG	GCA	TTC	TTC	1086
	His	Ser 300	Met	Thr	His	Tyr	Ser 305	Asp	Lys	Ser	Ile	Ser 310	Glu	Ala	Phe	Phe	
5	ATA Ile 315	CCA Pro	TAC Tyr	TCT Ser	AAG Lys	AAA Lys 320	TTC Phe	TTG Leu	GAG Glu	TTG Leu	AGA Arg 325	CCA Pro	GAT Asp	GGA Gly	ATC Ile	TCC Ser 330	1134
10	CAT His	GAG Glu	TGT Cys	ACA Thr	AGA Arg 335	GGA Gly	GTA Val	TCA Ser	GTT Val	GAG Glu 340	CGG Arg	TGC Cys	GGT Gly	GAG Glu	GTG Val 345	GCT Ala	1182
15	GCA Ala	ATC Ile	CTG Leu	ACA Thr 350	CAA Gln	GCA Ala	CTT Leu	TCA Ser	CCG Pro 355	TGT Cys	GGT Gly	AAG Lys	ATC Ile	ACA Thr 360	TGC Cys	AAA Lys	1230
20	CGT Arg	TGC Cys	ATG Met 365	GTT Val	GAA Glu	ACA Thr	CCT Pro	GAC Asp 370	ATT Ile	GTT Val	GAG Glu	GGT Gly	GAG Glu 375	TCG Ser	GGA Gly	GAA Glu	1278
20	AGT Ser	GTC Val 380	ACC Thr	AAC Asn	CAA Gln	GGT Gly	AAG Lys 385	CTC Leu	CTA Leu	GCA Ala	ATG Met	CTG Leu 390	AAA Lys	GAA Glu	CAG Gln	TAT Tyr	1326
25	CCA Pro 395	GAT Asp	TTC Phe	CCA Pro	ATG Met	GCC Ala 400	GAG Glu	TÀR	CTA Leu	CTC Leu	ACA Thr 405	AGG Arg	TTT Phe	TTG Leu	CAA Gln	CAG Gln 410	1374
30	AAA Lys	TCA Ser	CTA Leu	GTA Val	AAT Asn 415	ACA Thr	AAT Asn	TTG Leu	ACA Thr	GCC Ala 420	TGC Cys	GTG Val	AGC Ser	GTC Val	AAA Lys 425	CAA Gln	1422
35	CTC Leu	ATT Ile	GGT Gly	GAC Asp 430	CGC Arg	AAA Lys	CAA Gln	GCT Ala	CCA Pro 435	TTC Phe	ACA Thr	CAC His	GTA Val	CTG Leu 440	GCT Ala	GTC Val	1470
40	AGC Ser	GAA Glu	ATT Ile 445	CTG Leu	TTT Phe	TAa YYY	GGC Gly	AAT Asn 450	Lys	CTA Leu	ACA Thr	GGG Gly	GCT Ala 455	GAT Asp	CTC Leu	GAA Glu	1518
40	GAG Glu	GCA Ala 460	AGC Ser	ACA Thr	CAT His	ATG Met	CTT Leu 465	GAA Glu	ATA Ile	GCA Ala	AGG Arg	TTC Phe 470	TTG Leu	AAC Asn	AAT Asn	CGC Arg	1566
45	ACT Thr 475	Glu	AAT Asn	Met	Arg	Ile	Gly	His	Leu	GGT Gly	Ser	Phe	AGA Arg	AAT Asn	AAA Lys	ATC Ile 490	1614
50	TCA Ser	TCG Ser	ГЛа УУС	GCC Ala	CAT His 495	GTG Val	AAT Asn	AAC Asn	GCA Ala	CTC Leu 500	ATG Met	TGT Cys	GAT Asp	AAT Asn	CAA Gln 505	CTT Leu	1662
55	GAT Asp	CAG Gln	AAT Asn	GGG Gly 510	Asn	TTT Phe	ATT Ile	TGG Trp	GGA Gly 515	CTA Leu	AGG Arg	GGT Gly	GCA Ala	CAC His 520	GCA Ala	AAG Lys	1710
	AGG Arg	TTT Phe	CTT Leu 525	AAA Lys	GGA Gly	TTT Phe	TTC Phe	ACT Thr 530	Glu	ATT	GAC Asp	CCA Pro	AAT Asn 535	GAA Glu	GGA Gly	TAC Tyr	1758
60	GAT Asp	AAG Lys 540	TAT Tyr	GTT Val	ATC Ile	AGG Arg	AAA Lys 545	CAT His	ATC Ile	AGG Arg	GGT Gly	AGC Ser 550	AGA Arg	AAG Lys	CTA Leu	GCA Ala	1806
65	ATT Ile 555	Gly	AAT Asn	TTG Leu	ATA Ile	ATG Met 560	Ser	ACT Thr	GAC Asp	TTC Phe	CAG Gln 565	Thr	CTC Leu	AGG Arg	CAA Gln	CAA Gln 570	1854

					-					
						GGG Gly				1902
5						Cya				1950
10						CAC His				1998
15						TAC Tyr 630				2046
20						GAA Glu	_		_	2094
20						TA2 TY2				2142
25						GTT Val				2190
30						TGC Cys				2238
35						CCC Pro 710				2286
40						TCG Ser				2334
40						ACA Thr				2382
45						AAA Lys				2430
50						GCA Ala				2478
55						CAG Gln 790				2526
60						CCT Pro				2574
60						TTA Leu				2622
65						ATC Ile				2670

	GCG Ala	CAA Gln	AAG Lys 845	TTA Leu	ACT Thr	TTG Leu	GCA Ala	GAT Asp 850	TTG Leu	TTC Phe	GTC Val	CAG Gln	CAG Gln 855	CGT Arg	AAT Asn	TTG Leu	2718
5	ATT Ile	AAT Asn 860	GAG Glu	TAT Tyr	GCG Ala	Gln	GTA Val 865	ATT Ile	TTG Leu	GAC Asp	AAT Asn	CTG Leu 870	ATT Ile	GAC Asp	GGT Gly	GTC Val	2766
10	AGG Arg 875	GTT Val	AAT Asn	CAT His	TCG Ser	CTA Leu 880	TCC Ser	CTA Leu	GCA Ala	ATG Met	GAA Glu 885	ATT Ile	GTT Val	ACT Thr	ATT Ile	AAG Lys 890	2814
15	CTG Leu	GCC Ala	ACC Thr	CAA Gln	GAG Glu 895	ATG Met	GAC Asp	ATG Met	GCG Ala	TTG Leu 900	AGG Arg	GAA Glu	GGT Gly	GGC Gly	TAT Tyr 905	GCT Ala	2862
	GTG Val	ACC Thr	TCT Ser	GAA Glu 910	AAG Lys	GTG Val	CAT His	GAA Glu	ATG Met 915	TTG Leu	GAA Glu	AAA Lys	AAC Asn	TAT Tyr 920	GTA Val	AAG Lys	2910
20	GCT Ala	TTG Leu	AAG Lys 925	GAT Asp	GCA Ala	TGG Trp	GAC Asp	GAA Glu 930	TTA Leu	ACT Thr	TGG Trp	TTG Leu	GAA Glu 935	AAA Lys	TTC Phe	TCC Ser	2958
25	GCA Ala	ATC Ile 940	AGG Arg	CAT His	TCA Ser	AGA Arg	AAG Lys 945	CTC Leu	TTG Leu	AAA Lys	TTT Phe	GGG Gly 950	CGA Arg	AAG Lys	CCT Pro	TTA Leu	3006
30	ATC Ile 955	ATG Met	AAA Lys	AAC Asn	ACC Thr	GTA Val 960	GAT Asp	TGC Cys	GGC Gly	GGA Gly	CAT His 965	ATA Ile	GAC Asp	TTG Leu	TCT Ser	GTG Val 9 7 0	3054
35	AAA Lys	TCG Ser	CTT Leu	TTC Phe	AAG Lys 975	TTC Phe	CAC His	TTG Leu	GAA Glu	CTC Leu 980	CTG Leu	AAG Lys	GGA Gly	ACC Thr	ATC Ile 985	TCA Ser	3102
	AGA Arg	GCC Ala	GTA Val	AAT Asn 990	GGT Gly	GGC Gly	GCA Ala	AGA Arg	AAG Lys 995	GTA Val	AGA Arg	GTA Val	GCG Ala	AAG Lys 1000	Asn	GCC Ala	3150
40	ATG Met	ACA Thr	AAA Lys 100	Gly	GTT Val	TTT Phe	CTC Leu	AAA Lys 101	Ile	TAC Tyr	AGC Ser	ATG Met	CTT Leu 101	CCT Pro	GAC Asp	GTC Val	3198
45	Tyr	AAG Lys 1020	Phe	ATC Ile	Thr	GTC Val	Ser	Ser	Val	Leu	Ser	Leu	Leu	TTG Leu	ACA Thr	TTC Phe	3246
50	TTA Leu 103	Phe	CAA Gln	ATT Ile	GAC Asp	TGC Cys 104	Met	ATA Ile	AGG Arg	GCA Ala	CAC His 104	Arg	GAG Glu	GCG Ala	AAG Lys	GTT Val 1050	3294
55	GCT Ala	GCA Ala	CAG Gln	TTG Leu	CAG Gln 105	Lys	GAG Glu	AGC Ser	GAG Glu	TGG Trp 106	Asp	AAT Asn	ATC Ile	ATC Ile	AAT Asn 106	AGA Arg 5	3342
-	ACT Thr	TTC Phe	CAG Gln	TAT Tyr 107	Ser	AAG Lys	CTT Leu	GAA Glu	AAT Asn 107	Pro	ATT	GGC	TAT Tyr	CGC Arg 108	Ser	ACA Thr	3390
60	GCG Ala	GAG Glu	GAA Glu 108	Arg	CTC Leu	CAA Gln	TCA Ser	GAA Glu 109	His	CCC Pro	GAG Glu	GCT Ala	TTC Phe 109	Glu	TAC Tyr	TAC Tyr	3438
65	AAG Lys	TTT Phe 110	Cys	ATT Ile	GGA Gly	AAG Lys	GAA Glu 110	Asp	CTC Leu	GTT Val	GAA Glu	CAG Gln 111	Ala	AAA Lys	CAA Gln	CCG Pro	3486

w	93/	17098	3						-	33 •	-				P	CT/US93.	/01544
	GAG Glu 1115	Ile	GCA Ala	TAC Tyr	TTT Phe	GAA Glu 1120	Lys	ATT Ile	ATA Ile	GCT Ala	TTC Phe 1125	Ile	ACA Thr	CTT Leu	GTA Val	TTA Leu 1130	3534
5						Glu					Val			ATA Ile		Asn	3582
0					Ile					Glu				ATC Ile 1160	Tyr		3630
5				qeA					Thr					ATG Met			3678
0			Glu					Glu					Ser	CTT Leu		GGA Gly	3726
o		Thr					Trp					Ser		GGC Gly		GTG Val 1210	3774

AAG CCA CAT TAT AGA ACT GAG GGG CAC TTC ATG GAG TTT ACC AGA GAT Lys Pro His Tyr Arg Thr Glu Gly His Phe Met Glu Phe Thr Arg Asp ACT GCG GCA TCG GTT GCC AGC GAG ATA TCA CAC TCA CCC GCA AGA GAT Thr Ala Ala Ser Val Ala Ser Glu Ile Ser His Ser Pro Ala Arg Asp TTT CTT GTG AGA GGT GCT GTT GGA TCT GGA AAA TCC ACA GGA CTT CCA Phe Leu Val Arg Gly Ala Val Gly Ser Gly Lys Ser Thr Gly Leu Pro TAC CAT TTA TCA AAG AGA GGG AGA GTG TTA ATG CTT GAG CCT ACC AGA Tyr His Leu Ser Lys Arg Gly Arg Val Leu Met Leu Glu Pro Thr Arg CCA CTC ACA GAT AAC ATG CAC AAG CAA CTG AGA AGT GAA CCA TTT AAC Pro Leu Thr Asp Asn Met His Lys Gln Leu Arg Ser Glu Pro Phe Asn TGC TTC CCA ACT TTG AGG ATG AGA GGG AAG TCA ACT TTT GGG TCA TCA Cys Phe Pro Thr Leu Arg Met Arg Gly Lys Ser Thr Phe Gly Ser Ser CCG ATC ACA GTC ATG ACT AGT GGA TTC GCT TTA CAC CAC TTT GCA CGA Pro Ile Thr Val Met Thr Ser Gly Phe Ala Leu His His Phe Ala Arg AAC ATA GCT GAG GTA AAA ACA TAC GAT TTT GTC ATA ATT GAT GAA TGT Asn Ile Ala Glu Val Lys Thr Tyr Asp Phe Val Ile Ile Asp Glu Cys CAT GTG AAT GAT GCT TCT GCT ATA GCG TTT AGG AAT CTA CTG TTT GAA His Val Asn Asp Ala Ser Ala Ile Ala Phe Arg Asn Leu Leu Phe Glu CAT GAA TTT GAA GGA AAA GTC CTC AAA GTG TCA GCC ACA CCA CCA GGT His Glu Phe Glu Gly Lys Val Leu Lys Val Ser Ala Thr Pro Pro Gly AGA GAA GTT GAA TTT ACA ACT CAG TTT CCC GTG AAA CTC AAG ATA GAA

Arg Glu Val Glu Phe Thr Thr Gln Phe Pro Val Lys Leu Lys Ile Glu

ΔF --

	GAG GCT Glu Ala	Leu S	AGC TTT Ser Phe 1390	CAG Gln	GAA Glu	TTT Phe	GTA Val 1395	Ser	TTA Leu	CAA Gln	GGG Gly	ACA Thr 1400	Gly	GCC Ala	4350
5	AAC GCC Asn Ala	GAT (Asp \ 1405	GTG ATT Val Ile	AGT Ser	TGT Cys	GGC Gly 1410	Asp	AAC Asn	ATA Ile	CTA Leu	GTA Val 1415	Tyr	GTT Val	GCT Ala	4398
10	AGC TAC Ser Tyr 1420	Asn A				Leu					Val				4446
15	TAC AAA Tyr Lys 1435	GTG : Val :	ICG AAG Ser Lys	ATT Ile 1440	qeA	GGA Gly	AGA Arg	ACA Thr	ATG Met 1445	Lys	AGT Ser	GGA Gly	GGA Gly	ACT Thr 1450	4494
20	GAA ATA Glu Ile	ATC I	ACT GAA Thr Glu 145	Gly	ACT Thr	TCA Ser	GTG Val	AAA Lys 1460	Lys	CAT His	TTC Phe	ATA Ile	GTC Val 1465	Ala	4542
20	ACT AAC Thr Asn	Ile :						Ile					Val		4590
25	GAT TTT Asp Phe						Val					Asn			4638
30	GTG CAG Val Gln 1500	Tyr I				Val					Arg				4686
35	CTC GGT Leu Gly 1515				His					Ala					4734
40	CAA ACA Gln Thr			Leu					Glu					Glu	4782
40	GCT GCC Ala Ala	Phe 1						Leu					Gln		4830
45	GTT TCA Val Ser		Thr Leu		Glu	Asn	Ala	Thr	Leu	Leu		Ala			4878
50	ATG GCA Met Ala 1580	Gln 1				Tyr					Asn				4926
55	TTT GAT Phe Asp 1595				Pro					Lys					4974
. 60	AAG CTA Lys Leu			Glu					Lys					Asn	5022
	AAA GGC Lys Gly	Leu :	TCC TCT Ser Ser 1630	TGG	CTT Leu	ACG Thr	AGT Ser 163	Gly	GAG Glu	TAT Tyr	AAG Lys	CGA Arg 1640	Leu	GGT Gly	5070
65	TAC ATA Tyr Ile	GCA (Ala (1645	Glu Asp	GCT Ala	GGC Gly	ATA Ile 1650	Arg	ATC Ile	CCA Pro	TTC Phe	GTG Val 1655	Суз	AAA Lys	GAA Glu	5118

~ 35

	ATT Ile	CCA Pro 1660	Asp	TCC Ser	TTG Leu	CAT His	GAG Glu 1665	Glu	ATT Ile	TGG Trp	CAC His	ATT Ile 1670	Val	GTC Val	GCC Ala	CAT His	5166
5	AAA Lys 1675	Gly	GAC Asp	TCG Ser	GGT Gly	ATT Ile 1680	Gly	AGG Arg	CTC Leu	ACT Thr	AGC Ser 1685	GTA Val	CAG Gln	GCA Ala	GCA Ala	AAG Lys 1690	5214
10	GTT Val	GTT Val	TAT Tyr	ACT Thr	CTG Leu 1699	Gln	ACG Thr	GAT Asp	GTG Val	CAC His 1700	Ser	ATT Ile	GCG Ala	AGG Arg	ACT Thr 1705	Leu	5262
15	GCA Ala	TGC Cys	ATC Ile	AAT Asn 1710	Arg	CGC Arg	ATA Ile	GCA Ala	GAT Asp 1715	Glu	CAA Gln	ATG Met	AAG Lys	CAG Gln 1720	Ser	CAT His	5310
20				Ala					Phe			ACA Thr		Tyr			5358
20			Ile					Lys				GCT Ala 1750	Thr				5406
25	AAA Lys 1755	Glu	TAA neA	ATT Ile	GCA Ala	GTG Val 1760	Leu	CAG Gln	CAG Gln	GCA Ala	AAA Lys 1765	GAT Asp	CAA Gln	TTG Leu	CTA Leu	GAG Glu 1770	5454
30						Lys					Thr	GGT Gly				Asp	5502
35	TTC Phe	AAT Asn	CAC His	CTG Leu 1790	Glu	ACT Thr	ATC Ile	TAT Tyr	CTC Leu 179	Gln	TCA Ser	GAT Asp	AGC Ser	GAA Glu 1800	Val	GCT Ala	5550
				Lys					Trp			AGC Ser		Ile			5598
40			Ile					Val				GGT Gly 1830	Gly				5646
45		Thr	Tyr	Phe	Lys	Asp	Lys	Phe	Asn	Glu	Pro	GTC Val	Tyr	Phe	Gln		5694
50						His					Arg	GAG Glu				Ala	5742
55					Glu					Pro		GCG Ala			His		5790
				Ala					Gly			AAG Lys		Thr			5838
60			Gly					Lys				ATG Met 1910	Tyr				5886
65		Thr					Ile					CCA Pro.					5934

									-	30 -							
	ACT Thr	ATT Ile	GAT Asp	GAG Glu	TCC Ser 1935	Thr	AAC Asn	GCA Ala	CCT Pro	ATT Ile 1940	Asp	TTA Leu	GTG Val	CAG Gln	CAT His 1945	Glu	5982
5	TTT Phe	GGA Gly	AAG 'Lys	GTT Val 1950	Arg	ACA Thr	CGC Arg	ATG Met	TTA Leu 1955	Ile	GAC Asp	GAT Asp	GAG Glu	ATA Ile 1960	Glu	CCT Pro	6030
10	CAA Gln	AGT Ser	CTT Leu 1965	Ser	ACC Thr	CAC His	ACC Thr	ACA Thr 1970	Ile	CAT His	GCT Ala	TAT Tyr	TTG Leu 1975	GTG Val	AAT Asn	AGT Ser	6078
15	GGC Gly	ACG Thr 1980	Lys	AAA Lys	GTT Val	CTT Leu	AAG Lys 1985	Val	GAT Asp	TTA Leu	ACA Thr	CCA Pro 1990	His	TCG Ser	TCG Ser	CTA Leu	6126
20	CGT Arg 1995	Ala	AGT Ser	GAG Glu	AAA Lys	TCA Ser 2000	Thr	GCA Ala	ATA Ile	ATG Met	GGA Gly 2005	Phe	CCT Pro	GAA Glu	AGG Arg	GAG Glu 2010	6174
20	AAT Asn	GAA Glu	TTG Leu	CGT Arg	CAA Gln 2015	Thr	GGC Gly	ATG Met	GCA Ala	GTG Val 2020	Pro	GTG Val	GCT Ala	TAT Tyr	GAT Asp 2025	Gln	6222
25	TTG Leu	CCA Pro	CCA Pro	AAG Lys 2030	Asn	GAG Glu	Aab GYC	TTG Leu	ACG Thr 2035	Phe	GAA Glu	GGA Gly	GAA Glu	AGC Ser 2040	Leu	TTT Phe	6270
30	AAG Lys	GGA Gly	CCA Pro 204	Arg	GAT Asp	TAC Tyr	AAC Asn	CCG Pro 2050	Ile	TCG Ser	AGC Ser	ACC Thr	ATT Ile 205!	TGT Cys	CAT His	TTG Leu	6318
35	ACG Thr	AAT Asn 206	Glu	TCT Ser	GAT Asp	GGG Gly	CAC His 206	Thr	ACA Thr	TCG Ser	TTG Leu	TAT Tyr 2070	Gly	ATT Ile	GGA Gly	TTT Phe	6366
40	GGT Gly 207	Pro	TTC Phe	ATC Ile	ATT Ile	ACA Thr 2080	Asn	AAG Lys	CAC His	TTG Leu	TTT Phe 208	Arg	AGA Arg	AAT Asn	AAT Asn	GGA Gly 2090	6414
40	ACA Thr	CTG Leu	TTG Leu	GTC Val	CAA Gln 209	Ser	CTA Leu	CAT His	GGT Gly	GTA Val 210	Phe	AAG Lys	GTC Val	AAG Lys	AAC Asn 210	Thr	6462
45	ACG Thr	ACT Thr	TTG Leu	CAA Gln 211	Gln	CAC His	CTC Leu	ATT Ile	GAT Asp 211	Gly	AGG Arg	GAC Asp	ATG Met	ATA Ile 212	Ile	ATT Ile	6510
50	CGC Arg	ATG Met	CCT Pro 212	Lys	GAT Asp	TTC Phe	CCA Pro	CCA Pro 213	Phe	CCT Pro	CAA Gln	AAG Lys	CTG Leu 213	Lys	TTT Phe	AGA Arg	6558
55	GAG Glu	CCA Pro 214	Gln	AGG Arg	GAA Glu	GAG Glu	CGC Arg 214	Ile	TGT Cys	CTT Leu	GTG Val	Thr	ACC Thr O	AAC Asn	TTC Phe	CAA Gln	6606
60	ACT Thr 215	Lys	AGC Ser	ATG Met	TCT Ser	AGC Ser 216	Met	GTG Val	TCA Ser	GAC Asp	ACT Thr 216	Ser	TGC Cys	ACA Thr	TTC Phe	CCT Pro 2170	6654
00	TCA Ser	TCT Ser	GAT Asp	GGC Gly	ATA Ile 217	Phe	TGG Trp	AAG Lys	CAT	TGG Trp 218	Ile	CAA Gln	ACC Thr	AAG Lys	GAT Asp 218	GGG Gly 5	6702
65	CAG Gln	TGT Cys	GGC Gly	AGT Ser 219	Pro	TTA Leu	GTA Val	TCA Ser	ACT Thr 219	Arg	GAT	GGG Gly	TTC Phe	ATT Ile 220	Val	GGT Gly	6750

			TCG AAT Ser Asn	Phe 1				Phe T		6798
5		Lys Asn	TTC ATG Phe Met							6846
10			TGG CGA Trp Arg 2240	Leu A			Val Leu			6894
15			ATG AGC Met Ser 2255					Pro Va		6942
20			CTC ATG Leu Met O			Val Tyr				6990
			GTG GAA Val Glu	Ala I				Pro Va		7038
25		Pro Ser	CAG TTA Gln Leu							7086
30	CCC CTC Pro Leu 2315	TTT GAG Phe Glu	CTC TAC Leu Tyr 2320	Leu C	CAG TTG Gln Leu	AAT CCA Asn Pro 232	Glu Lys	GAA GO	CA TAT la Tyr 2330	7134
35			ATG GGA Met Gly 2335					Asn A		7182
40			GAC ATT Asp Ile O			Ala Ser				7230
			GAC TTG Asp Leu	Leu G				Leu Va		7278
45		Lys Ala	TTA GGA Leu Gly							7326
50			AGT GCA Ser Ala 2400	Leu A			Ala Met			7374
55			AAG AAA Lys Lys 2415					Leu As		7422
60			CTC AAA Leu Lys O			Leu Arg				7470
00			AAT GGC Asn Gly	Ser I				Pro I		7518
65	AAG GTT Lys Val 246	Glu Asn	AAC AAA Asn Lys	ACG C Thr A 2465	CGA ACT Arg Thr	TTC ACA Phe Thr	GCA GCA Ala Ala 2470	CCA A	TA GAC le Asp	7566

- 38 -

	ACT CT Thr Le 2475	FT (CTT Leu	GCT Ala	GGT Gly	AAA Lys 2480	Val	TGC Cys	GTG Val	GAT Asp	GAT Asp 2485	Phe	AAC Asn	AAT Asn	CAA Gln	TTT Phe 2490	7614
5	TAT GA	AT (CTC Leu	AAC Asn	ATA Ile 2495	Lys	GCA Ala	CCA Pro	TGG Trp	ACA Thr 2500	Val	GGT Gly	ATG Met	ACT Thr	AAG Lys 2505	Pne	7662
10	TAT CA	AG (ln (GGG Gly	TGG Trp 2510	Asn	GAA Glu	TTG Leu	ATG Met	GAG Glu 2515	Ala	TTA Leu	CCA Pro	AGT Ser	GGG Gly 2520	Trp	GTG Val	7710
15	TAT TO	ys :	GAC Asp 2525	Ala	GAT Asp	GGT Gly	TCG Ser	CAA Gln 2530	Phe	GAC Asp	AGT Ser	TCC Ser	TTG Leu 2535	Thr	CCA Pro	TTC Phe	7758
20	CTC AT Leu II	rr le 540	Asn	GCT Ala	GTA Val	TTG Leu	AAA Lys 2545	Val	CGA Arg	CTT Leu	GCC Ala	TTC Phe 2550	Met	GAG Glu	GAA Glu	TGG Trp	7806
	GAT AT Asp II 2555	TT le	GGT Gly	GAG Glu	CAA Gln	ATG Met 2560	Leu	CGA Arg	AAT Asn	TTG Leu	TAC Tyr 256	Thr	GAG Glu	ATA Ile	GTG Val	TAT Tyr 2570	7854
25	ACA CO	CA .	ATC Ile	CTC Leu	ACA Thr 2579	Pro	GAT Asp	GGT Gly	ACT Thr	ATC Ile 2580	Ile	AAG Lys	AAG Lys	CAT His	AAA Lys 258	Gly	7902
30	AAC A	AT sn	AGC Ser	GGG Gly 2590	Gln	CCT Pro	TCA Ser	ACA Thr	GTG Val 259	Val	GAC Asp	AAC Asn	ACA Thr	CTC Leu 2600	Met	GTC Val	7950
35	ATT A	le	GCA Ala 2605	Met	TTA Leu	TAC Tyr	ACA Thr	TGT Cys 261	Glu	AAG Lys	TGT Cys	GGA Gly	ATC Ile 261	Asn	AAG Lys	GAA Glu	7998
40	GAG A Glu I 2	TT le 620	Val	TAT Tyr	TAC Tyr	GTC Val	AAT Asn 262	Gly	GAT Asp	GAC Asp	CTA Leu	TTG Leu 263	Ile	GCC Ala	ATT	CAC His	8046
40	CCA G Pro A 2635	AT sp	AAA Lys	GCT Ala	GAG Glu	AGG Arg 264	Leu	AGT Ser	AGA Arg	TTC Phe	AAA Lys 264	Glu	TCT Ser	TTC Phe	GGA Gly	GAG Glu 2650	8094
45	TTG G Leu G	GC Ly	CTG Leu	Lys	Tyr	Glu	Phe	Asp	Cys	ACC Thr 266	Thr	Arg	yab	AAG Lys	ACA Thr 266	GIN	8142
50	TTG T Leu T	GG TP	TTC Phe	ATG Met 267	Ser	CAC His	AGG Arg	GCT Ala	TTG Leu 267	Glu	AGG Arg	GAT Asp	GGC	ATG Met 268	Tyr	ATA Ile	8190
55	CCA A Pro L	AG Ys	CTA Leu 268	Glu	GAA Glu	GAA Glu	AGG Arg	ATT Ile 269	Val	TCT Ser	ATT	TTG	GAA Glu 269	Trp	GAC	AGA Arg	8238
50	TCC A Ser I	AA .ys !700	Glu	CCG Pro	TCA Ser	CAT His	AGG Arg 270	Leu	GAA Glu	GCC Ala	ATC	TGT Cys 271	Ala	TCA Ser	ATG Met	ATT	8286
60	GAA G Glu A 2715	CA la	TGG Trp	GGT Gly	TAT	GAC Asp 272	Lys	CTG	GTT Val	GAA Glu	GAA Glu 272	. Ile	cgc Arg	AAT Asn	TTC Phe	TAT Tyr 2730	8334
65	GCA T Ala T	GG Trp	GTT Val	TTG Leu	GAA Glu 273	Gln	GCG Ala	CCG Pro	TAT Tyr	TCA Ser 274	Gln	CTI Leu	GCA Ala	GAA Glu	GAA Glu 274	Gly	8382

- 39 -

	AAG GCG CC Lys Ala Pr		Thr A				Thr Se	
5	CAG CAC GG Gln His Gl 27							
10	GAT TAC GA Asp Tyr As 2780		Glu A			Gln Ser		
15	GTG GAT GC Val Asp Al 2795							•
20	AAA GTC GC Lys Val Al	Ala Ser			Asp Val			
	TCA GGA AC		Arg I				Lys Le	
25	CAA TAT CC Gln Tyr Pr 28							
30	TTA GGA TA Leu Gly Ty 2860		Ile A			Ala Arg		
35	CAT GAG CA His Glu Gl 2875							Y
40	GTG AAT GA Val Asn Gl	Met Lys			Asn Gly			
	TGC ATA GA		Pro A				Val Met	
45	ATG GAT GG Met Asp Gl 29	Gln Val	Ser T	yr Pro	Leu Lys	Pro Met		
50	AAC GCG CA Asn Ala Gl 2940		Gln I			Phe Ser		
55	GCT GAA GC Ala Glu Al 2955							>
60	AGG TAT GG Arg Tyr Gl	Arg Asn			Met Ser			
55	GCG TTC GA Ala Phe As		Thr S				Ala Arg	
65 [°]	GAG GCG CA Glu Ala Hi 30							

	AGG TTA TT Arg Leu Ph 3020	T GGT CTT GAT GGC AAC GTG GGT ACT GCA GAG GAA GAC ACT e Gly Leu Asp Gly Asn Val Gly Thr Ala Glu Glu Asp Thr 3025 3030	246
5	GAA CGG CA Glu Arg Hi 3035	AC ACA GCG CAC GAT GTG AAC CGT AAC ATG CAC ACA CTA TTA S Thr Ala His Asp Val Asn Arg Asn Met His Thr Leu Leu 3040 3045 3050	9294
10	GGG GTC CG	C CAG 1GA 1AG111C1GC GIGICITIGC 111CCCC111 111CCC	349
	GTAATATATA	A TGAATAGCTA TTCACAGTGG GACTTGGTCT TGTGTTGAAT AGTATCTTAT	9409
	ATATTTTAAT	ATGTCTTATT AGTCTCATTA CTTAGGCGAA CGACAAAGTG AGGTCACCTC	9469
15			9495
		(3) INFORMATION FOR SEQ ID NO: 2:	
	(i)	SEQUENCE CHARACTERISTICS:	
20		(A) LENGTH: 792	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Double	
		(D) TOPOLOGY: Circular	
	(ii)	MOLECULE TYPE: cDNA to genomic RNA	
25	(iii)	HYPOTHETICAL: No	
	(iv)	ANTI-SENSE: No	
	(v)	FRAGMENT TYPE: N/A	
	(vi)	ORIGINAL SOURCE:	
		(A) ORGANISM: Tobacco Etch Virus	
30		(B) STRAIN: Highly Aphid Transmitted	
		(C) INDIVIDUAL ISOLATE: N/A	
	(vii)	IMMEDIATE SOURCE:	
		(A) LIBRARY: No	
		(B) CLONE: pTC:FL	
35	(viii)	POSITION IN GENOME: N/A	
	(ix)	FEATURE:	
40		(A) NAME/KEY: Mutations (AGT→ATG) introduced into nucleotides corresponding to genomic nucleotides 8518-8520 of SEQ ID No. 1, to create initiating methionine codon.	<u>.</u>
		(B) LOCATION: Nucleotides 1-3 of SEQ ID No. 2	
		(C) IDENTIFICATION METHOD:	
45		(D) OTHER INFORMATION: SEQ ID NO: 2 is the modified Tobacco Etch Virus coat protein gene present in pTC:FL.	:

PUBLICATION INFORMATION: (x) AUTHORS: Allison et al. The nucleotide sequence of the coding region of Tobacco Etch Virus 5 Genomic RNA: Evidence for the Synthesis of a Single Polyprotein (C) JOURNAL: Virology (D) VOLUME: 154 ISSUE: (E) 10 (F) PAGES: 9-20 AUTHORS: Lindbo and Dougherty (A) TITLE: Untranslatable Transcripts of (B) the tobacco etch virus coat protein gene sequence can interfere with 15 tobacco etch virus replication in Transgenic Plants and Protoplasts (C) JOURNAL: Virology (D) VOLUME: 189 20 (E) ISSUE: (F) PAGES: 725-733 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: ATG GGC ACT Met Gly Thr 25 GTG GAT GCT GCT GAC GCT GGT AAG AAG AAA GAT CAA AAG GAT GAT 57 Val Asp Ala Gly Ala Asp Ala Gly Lys Lys Lys Asp Gln Lys Asp Asp 30 105 AAA GTC GCT GAG CAG GCT TCA AAG GAT AGG GAT GTT AAT GCT GGA ACT Lys Val Ala Glu Gln Ala Ser Lys Asp Arg Asp Val Asn Ala Gly Thr 35 153 TCA GGA ACA TTC TCA GTT CCA CGA ATA AAT GCT ATG GCC ACA AAA CTT Ser Gly Thr Phe Ser Val Pro Arg Ile Asn Ala Met Ala Thr Lys Leu 40 45 201 CAA TAT CCA AGG ATG AGG GGA GAG GTG GTT GTA AAC TTG AAT CAC CTT 40 Gln Tyr Pro Arg Met Arg Gly Glu Val Val Val Asn Leu Asn His Leu 55 60 TTA GGA TAC AAG CCA CAG CAA ATT GAT TTG TCA AAT GCT CGA GCC ACA 249 Leu Gly Tyr Lys Pro Gln Gln Ile Asp Leu Ser Asn Ala Arg Ala Thr 45 CAT GAG CAG TIT GCC GCG TGG CAT CAG GCA GTG ATG ACA GCC TAT GGA 297 His Glu Gln Phe Ala Ala Trp His Gln Ala Val Met Thr Ala Tyr Gly 50 GTG AAT GAA GAG CAA ATG AAA ATA TTG CTA AAT GGA TTT ATG GTG TGG 345 Val Asn Glu Glu Gln Met Lys Ile Leu Leu Asn Gly Phe Met Val Trp 105 110 393 TGC ATA GAA AAT GGG ACT TCC CCA AAT TTG AAC GGA ACT TGG GTT ATG Cys Ile Glu Asn Gly Thr Ser Pro Asn Leu Asn Gly Thr Trp Val Met

125

VO 93/17098 - 42 -

	ATG Met	GAT Asp	GGT Gly	GAG Glu 135	GAT Asp	CAA Gln	GTT Val	TCA Ser	TAC Tyr 140	CCG Pro	CTG Leu	AAA Lys	CCA Pro	ATG Met 145	GTT Val	GAA Glu	441
5	AAC Asn	GCG Ala	CAG Gln 150	CCA Pro	ACA Thr	CTG Leu	AGG Arg	CAA Gln 155	ATT Ile	ATG Met	ACA Thr	CAC His	TTC Phe 160	AGT Ser	gac Gac	CTG Leu	489
10	GCT Ala	GAA Glu 165	GCG Ala	TAT Tyr	ATT Ile	GAG Glu	ATG Met 170	AGG Arg	AAT Asn	AGG Arg	GAG Glu	CGA Arg 175	CCA Pro	TAC Tyr	ATG Met	CCT Pro	537
15	AGG Arg 180	TAT Tyr	GGT Gly	CTA Leu	CAG Gln	AGA Arg 185	AAC Asn	ATT Ile	ACA Thr	GAC Asp	ATG Met 190	AGT Ser	TTG Leu	TCA Ser	CGC Arg	TAT Tyr 195	585
20	GCG Ala	TTC Phe	GAC Asp	TTC Phe	TAT Tyr 200	GAG Glu	CTA Leu	ACT Thr	TCA Ser	AAA Lys 205	ACA Thr	CCT Pro	GTT Val	AGA Arg	GCG Ala 210	AGG Arg	633
20	GAG Glu	GCG Ala	CAT His	ATG Met 215	CAA Gln	ATG Met	AAA Lys	GCT Ala	GCT Ala 220	GCA Ala	GTA Val	CGA Arg	AAC Asn	AGT Ser 225	GGA Gly	ACT Thr	681
25	AGG Arg	TTA Leu	TTT Phe 230	GGT Gly	CTT Leu	GAT Asp	GGC Gly	AAC Asn 235	GTG Val	GGT Gly	ACT Thr	GCA Ala	GAG Glu 240	GAA Glu	GAC	ACT Thr	729
30	GAA Glu	CGG Arg 245	CAC His	ACA Thr	GCG Ala	CAC His	GAT Asp 250	GTG Val	AAC Asn	CGT Arg	AAC Asn	ATG Met 255	CAC His	ACA Thr	CTA Leu	TTA Leu	777
35			CGC														792
				(4)	TN	FODM	የልጥፕ	OM .	FOR	SEQ	TD	NO:	: 3	:			
	(i)		'							STI		1,0,					
40	. ,				-	(A)		NGT:		793							
						(B)	TY	PE:	Νι	ıcle	ic	Aci	i				
						(C)	ST	RAN	DEDI	vess	:	Doul	ole				
						(D)	TO	POL	OGY:	: C	irc	ula	r				
	(ii	-)		MC	LEC	ULE	TYP	E:	cDi	NA t	.o g	enoi	mic	RNA			
45	(ii	i)		HY	POT	HET	CAL	:	No								
	•	•															
									N/A	A							
	(vi	L)		OF	RIGI					_			5 4.	.L T7		_	
										: T							
50										AL I					.11311.	itted	
	(375	Li)		TX	MED	• •				יייי דיני	.501	EVT T	• •	• , • •			
	(∨)	/		TI	لانديد					No	•						
						•				pTC:							
55	(v:	iii))	PC	SIT	• •				: 1							

	(ix)	FEATURE:	
		(A)	NAME/KEY: Mutation of AGT-GGC (Ser-Gly) to ATG-GCC (Met-Ser)
5	·	(B)	LOCATION: Nucleotides 1-6 of SEQ ID NO. 3 (corresponding to nucleotides 8518-8523 of SEQ ID NO. 1)
•		(A)	NAME/KEY: Frameshift mutation (insertion of T) producing stop codon
10		(B)	LOCATION: Nucleotide 13 of SEQ ID No. 3 (corresponding to position between nucleotides 8529 and 8530 of SEQ. ID No. 1)
15		(D)	OTHER INFORMATION: SEQ ID No: 3 is the modified Tobacco Etch Virus coat protein gene present in pTC:RC.
	(x)	PUBLICATI	ON INFORMATION:
		(A)	AUTHORS: J. A. Lindbo and W. G. Dougherty
20		(B)	TITLE: Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence
25		(C)	JOURNAL: Molecular Plant-Microbe Interactions
		(D)	VOLUME: 5
		(E)	ISSUE: 2
30		(F)	PAGES: 144-153
		(A)	AUTHORS: J. A. Lindbo and W. G. Dougherty
35		(B)	TITLE: Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence Can Interfere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts
		(C)	JOURNAL: Virology
		(D)	VOLUME: 189
40		(E)	ISSUE:
		(F)	PAGES: 725-733
	(xi)	SEQUENCE	DESCRIPTION: SEQ ID NO: 3:
45			ATG GCC ACT Met Ser Thr
45	GTG TGA TGA	TGGTGCTAGC	GCTGGTAAGA AGAAAGATCA AAAGGATGAT 58

V	O 93/17098	- 44 -	S93/01:
	AAAGTCGCTG	AGCAGGCTTC AAAGGATAGG GATGTTAATG CTGGAACTTC	108
	AGGAACATTC	TCAGTTCCAC GAATAAATGC TATGGCCACA AAACTTCAAT	158
5	ATCCAAGGAT	GAGGGGAGAG GTGGTTGTAA ACTTGAATCA CCTTTTAGGA	208
	TACAAGCCAC	AGCAAATTGA TTTGTCAAAT GCTCGAGCCA CACATGAGCA	258
	GTTTGCCGCG	TGGCATCAGG CAGTGATGAC AGCCTATGGA GTGAATGAAG	308
.0	AGCAAATGAA	AATATTGCTA AATGGATTTA TGGTGTGGTG CATAGAAAAT	358
	GGGACTTCCC	CAAATTTGAA CGGAACTTGG GTTATGATGG ATGGTGAGGA	408
L 5	TCAAGTTTCA	TACCCGCTGA AACCAATGGT TGAAAACGCG CAGCCAACAC	458
	TGAGGCAAAT	TATGACACAC TTCAGTGACC TGGCTGAAGC GTATATTGAG	508
	ATGAGGAATA	GGGAGCGACC ATACATGCCT AGGTATGGTC TACAGAGAAA	558
20	CATTACAGAC	ATGAGTTTGT CACGCTATGC GTTCGACTTC TATGAGCTAA	608
	CTTCAAAAAC	ACCTGTTAGA GCGAGGGAGG CGCATATGCA AATGAAAGCT	658
25	GCTGCAGTAC	GAAACAGTGG AACTAGGTTA TTTGGTCTTG ATGGCAACGT	708
	GGGTACTGCA	GAGGAAGACA CTGAACGGCA CACAGCGCAC GATGTGAACC	758
30	GTAACATGCA	CACACTATTA GGGGTCCGCC AGTGA	793
		(5) INFORMATION FOR SEQ ID NO: 4	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 792	
35		(B) TYPE: Nucleic acid	
		(C) STRANDEDNESS: Double	
		(D) TOPOLOGY: Circular	
	•	MOLECULE TYPE: cDNA to genomic RNA	
	(iii)	HYPOTHETICAL: No	
40	(iv)	ANTI-SENSE: Yes	
	(v) (vi)	FRAGMENT TYPE: N/A ORIGINAL SOURCE:	
	(\ \ 1)	(A) ORGANISM: Tobacco Etch Virus	
		(B) STRAIN: Highly Aphid Transmitted	i
45		(C) INDIVIDUAL ISOLATE: N/A	
	(vii)	IMMEDIATE SOURCE:	
		(A) LIBRARY: No	
		(B) CLONE: pTC:AS	
	(viii)	POSITION IN GENOME: N/A	
50	(ix)	FEATURE:	
		(A) NAME/KEY:	

(B)

(C)

LOCATION: --

IDENTIFICATION METHOD: --

(D) OTHER INFORMATION: SEQ ID No. 4 is the modified Tobacco Etch Virus Coat protein gene present in pTC:AS. It is the inverse complement of SEQ ID No. 2.

5 (x) PUBLICATION INFORMATION:

10

15

20

25

- (A) AUTHORS: J. A. Lindbo and W. G. Dougherty
- (B) TITLE: Untranslatable Transcripts of the Tobacco Etch Virus Coat Protein Gene Sequence Can Interfere with Tobacco Etch Virus Replication in Transgenic Plants and Protoplasts
 - (C) JOURNAL: Virology
 - (D) VOLUME: 189
 - (E) ISSUE: --
 - (F) PAGES: 725-733
 - (A) AUTHORS: J. A. Lindbo and W. G. Dougherty
 - (B) TITLE: Pathogen-Derived Resistance to a Potyvirus: Immune and Resistant Phenotypes in Transgenic Tobacco Expressing Altered Forms of a Potyvirus Coat Protein Nucleotide Sequence
 - (C) JOURNAL: Molecular Plant-Microbe Interactions
 - (D) VOLUME: 5
 - (E) ISSUE: 2
 - (F) PAGES: 144-153
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	TCACTGGCGG	ACCCCTAATA	GTGTGTGCAT	GTTACGGTTC	ACATCGTGCG	CTGTGTGCCG	60
	TTCAGTGTCT	TCCTCTGCAG	TACCCACGTT	GCCATCAAGA	CCAAATAACC	TAGTTCCACT	120
	GTTTCGTACT	GCAGCAGCTT	TCATTTGCAT	ATGCGCCTCC	CTCGCTCTAA	CAGGTGTTTT	180
	TGAAGTTAGC	TCATAGAAGT	CGAACGCATA	GCGTGACAAA	CTCATGTCTG	TAATGTTTCT	240
35	CTGTAGACCA	TACCTAGGCA	TGTATGGTCG	CTCCCTATTC	CTCATCTCAA	TATACGCTTC	300
	AGCCAGGTCA	CTGAAGTGTG	TCATAATTTG	CCTCAGTGTT	GGCTGCGCGT	TTTCAACCAT	360
	TGGTTTCAGC	GGGTATGAAA	CTTGATCCTC	ACCATCCATC	ATAACCCAAG	TTCCGTTCAA	420
	ATTTGGGGAA	GTCCCATTTT	CTATGCACCA	CACCATAAAT	CCATTTAGCA	ATATTTTCAT	480
	TTGCTCTTCA	TTCACTCCAT	AGGCTGTCAT	CACTGCCTGA	TGCCACGCGG	CAAACTGCTC	540
40	ATGTGTGGCT	CGAGCATTTG	ACAAATCAAT	TTGCTGTGGC	TTGTATCCTA	AAAGGTGATT	600
	CAAGTTTACA	ACCACCTCTC	CCCTCATCCT	TGGATATTGA	AGTTTTGTGG	CCATAGCATT	6 60
	TATTCGTGGA	ACTGAGAATG	TTCCTGAAGT	TCCAGCATTA	ACATCCCTAT	CCTTTGAAGC	720
	CTGCTCAGCG	ACTITATOAT	COTTTTGATC	TTTCTTCTTA	CCAGCGTCAG	CACCAGCATC	780
	CACAGTGCCC	37					792

CLAIMS

- A plant-transformation vector comprising a DNA molecule that includes a gene derived, in part, from a plant virus RNA molecule, wherein the gene is mutated to encode an untranslatable plus sense RNA molecule.
- The vector of claim 1 wherein the gene is derived, in part, from potyvirus RNA.
- The vector of claim 2 wherein the potyvirus is Tobacco Etch Virus.
- The vector of claim 2 wherein the gene is 4 . derived, in part, from a coat protein gene of a potyvirus.

10

15

20

30

35

- The vector of claim 4 wherein the gene is derived, in part, from the coat protein gene of Tobacco Etch Virus.
- A bacterial cell containing the vector of claim 1.
- The bacterial cell of claim 8 wherein the bacterial cell is an Agrobacterium tumefaciens cell.
- 8. A transformed plant cell comprising a heterologous DNA chromosomal insert that includes a gene derived from a plant virus RNA molecule, wherein the gene is mutated to encode an untranslatable plus sense RNA molecule.
- 9. The plant cell of claim 8 wherein the gene 25 is derived from potyvirus RNA.
 - The plant cell of claim 9 wherein the potyvirus is Tobacco Etch Virus.
 - The plant cell of claim 10 wherein the gene is derived from a coat protein gene of a potyvirus.
 - The plant cell of claim 10 wherein the gene is derived from the coat protein gene of Tobacco Etch Virus and the plant cell is a tobacco plant cell.
 - 13. A differentiated plant comprising transformed plant cells of claim 8.
 - 14. A differentiated plant comprising transformed plant cells of claim 9.

15	. Ad	iffere	ntiate	ed pl	ant	comprising
transformed	plant	cells	of cl	aim	10.	

- 16. A differentiated plant comprising transformed plant cells of claim 11.
- 17. A differentiated plant comprising transformed plant cells of claim 12.
- 18. A recombinant gene comprising: control regions which regulate transcription of the gene; and
- a region, derived from a plant virus, mutated so as to render the RNA transcribed from the gene untranslatable.
 - 19. The recombinant gene of claim 18 wherein the plant virus is a potyvirus.
- 20. The recombinant gene of claim 19 wherein the virus-derived region is derived from the region of the viral genome encoding a coat protein.
 - 21. The recombinant gene of claim 20 wherein the potyvirus is Tobacco Etch Virus.
- 22. A method of producing plants with a reduced susceptibility to viral infection, comprising:

 forming a recombinant gene derived, in part, from viral RNA wherein the gene is mutated to encode an untranslatable plus sense RNA molecule; and

25

30

35

transforming plants with the recombinant gene.

- 23. The method of claim 22 wherein the method of producing plants comprises:
- constructing a recombinant gene comprising a region of a viral genome capable of being transcribed in a plant;

mutating the recombinant gene to encode an untranslatable plus sense RNA molecule;

cloning the recombinant untranslatable gene into a plant transformation vector;

transforming plant cells with the transformation vector; and

-48-

5

culturing transformed cells under conditions suitable for regeneration of transformed plants.

- 24. The method of claim 23 wherein the viral genome is a potyvirus genome.
- 25. The method of claim 24 wherein the region of the viral genome encodes a coat protein.
- 26. The method of claim 25 wherein the viral genome is the Tobacco Etch Virus genome.
- 27. The method of claim 26 wherein the plants are tobacco plants.

NAAA	TAAC	:AA	ATCTO	CAACA	C AA	CATA	ATACA	AAA A	CAA	ACGA	ATC	TCAA	GCA .	ATCA	AGCA	TT	60
CTAC	TTCI	TAT.	TGCAG	CAAT	T TA	AATO	CATTI	CTI	ATT	AAGC	AAA	AGCA	ATT	TTCT	GAAA	TA	120
TTTC	ACCA	TT	TACGA	ACGA	T AC	CA A	ATG G Met A	CA (CTG :	ATC 1	rrr (Phe (GGC 7	ACA Thr	GTC :	AAC Asn	GCT Ala 10	174
AAC Asn	ATC Ile	CTG Leu	AAG Lys	GAA Glu 15	GTG Val	TTC Phe	GGT Gly	GGA Gly	GCT Ala 20	CGT Arg	ATG Met	GCT Ala	TGC Cys	GTT Val 25	ACC Thr	:	222
AGC Ser	GCA Ala	CAT His	ATG Met 30	GCT Ala	GGA Gly	GCG Ala	TAA Asn	GGA Gly 35	AGC Ser	ATT Ile	TTG Leu	AAG Lys	AAG Lys 40	Ala	GAA Glu	A 1	270
GAG Glu	ACC Thr	TCT Ser 45	CGT Arg	GCA Ala	ATC Ile	ATG Met	CAC His 50	AAA Lys	CCA Pro	GTG Val	ATC Ile	TTC Phe 55	GGA Gly	GAA Glu	GAC Asp	5	318
TAC Tyr	ATT Ile 60	ACC	GAG Glu	GCA Ala	GAC Asp	TTG Leu 65	CCT Pro	TAC Tyr	ACA Thr	CCA Pro	CTC Leu 70	His	TTA Leu	GAG Glu	GT(2	366
GAT Asp 75	GCT Ala	GAA Glu	ATG Met	GAG Glu	CGG Arg 80	ATG Met	TAT Tyr	TAT Tyr	CTT Leu	GGT Gly 85	CGT Arg	CGC Arg	GCG Ala	CTC Leu	ACC Thi	:	414
CAT His	GGC Gly	AAG Lys	AGA Arg	CGC Arg 95	AAA Lys	GTT Val	TCT Ser	GTG Val	AAT Asn 100	Asn	AAG Lys	AGG Arg	AAC Asn	AGG Arg 105	Arg	A B	462
AGG Arg	AAA Lys	GTC Val	GCC Ala 110	AAA Lys	ACG Thr	TAC Tyr	GTG Val	GGG Gly 115	CGT Arg	GAT Asp	TCC	ATT	GTT Val 120	. Glu	AA(3	510
ATT Ile	GTA Val	GT0 Val 125	CCC Pro	CAC His	ACC Thr	GAG Glu	AGA Arg 130	AAG Lys	GTT Val	GAT Asp	ACC Thr	ACA Thr 135	Ala	GCA Ala	GT(3	558
GAA Glu	GAC Asp 140	ATT	TGC Cys	AAT Asn	GAA Glu	GCT Ala 145	ACC Thr	ACT Thr	CAA Gln	CTT Leu	GTG Val 150	His	AAT Asn	AGT Ser	Me	G t	606
CCA Pro 155	AAG Lys	CGT	r AAG J Lys	AAG Lys	CAG Gln 160	Lys	AAC Asn	TTC Phe	TTG Leu	CCC Pro 165	Ala	ACT Thr	TCA Ser	A CTA	AG' Se:	r	654
AAC Asn	GTG Val	TAT	r GCC Ala	CAA Gln 175	ACT Thr	TGG Trp	AGC Ser	ATA Ile	GTG Val 180	Arg	AAA Lys	CGC Arg	CAT His	T ATG Met 185	G1:	G n	702
GTG Val	GAG Glu	ATC Ile	C ATT e Ile 190	AGC Ser	AAG Lys	AAG Lys	AGC Ser	GTC Val 195	Arg	GCG	AGG Arg	GTC Val	Lys 200	Arg	TT'	T e	750
GAG Glu	GGC Gly	TCC Ser 205	G GTG Val	CAA Gln	TTG Leu	TTC Phe	GCA Ala 210	Ser	GTC Val	CGI Arç	CAC His	ATG Met 215	: Туг	r GGC c Gly	GA Gl	G u	798
AGG Arg	AAA Lys 220	Ar	G GTG g Val	GAC Asp	TTA Leu	CGT Arg 225	Ile	GAC Asp	AAC Asr	TGC Trp	G CAC Glr 230	ı Glr	GAC Glu	ACA u Thr	A CT	T u	846

FIG. 1

PCT/US93/01544 WO 93/17098 2/16

													CAA Gln			894
													TCG Ser			942
													GGT Gly 280			990
													GCT Ala			1038
													GCA Ala			1086
													GGA Gly			1134
													GAG Glu			1182
													ACA Thr 360			1230
													TCG Ser			1278
													GAA Glu			1326
													TTG Leu			1374
													GTC Val			1422
													CTG Leu 440			1470
													GAT Asp			1518
													AAC Asn			1566
ACT Thr 475	GAA Glu	AAT Asn	ATG Met	cgc Arg	ATT Ile 480	GGC Gly	CAC His	CTT Leu	GGT Gly	TCT Ser 485	Phe	AGA Arg	AAT Asn	AAA Lys	ATC Ile 490	1614

FIG. 1

								GCA Ala								1662
								GGA Gly 515								1710
								GAG Glu								1758
								ATC Ile								1806
								GAC Asp								1854
								AAA Lys								1902
								TAC Tyr 595								1950
								GAT Asp								1998
								GAT Asp								2046
								ATA Ile								2094
								GTG Val								2142
								GAC Asp 675								2190
								GCA Ala								2238
								GCT Ala								2286
								GTT Val								2334
ACG Thr	ACA Thr	GGA Gly	TAC Tyr	CAC His 735	ATG Met	TTG Leu	AAA Lys	ATG Met	AAC Asn 740	ACA Thr	ACA Thr	TCC Ser	CAG Gln	CTA Leu 745	ATT Ile	2382

FIG. 1

							AAT Asn		2430
							ATG Met		2478
							GAG Glu		2526
							TTA Leu		2574
							TGG Trp 825		2622
							GCC Ala		2670
							AAT Asn		2718
							GGT Gly		2766
							ATT Ile		2814
							TAT Tyr 905		2862
							GTA Val		2910
							TTC Phe		2958
							CCT Pro		3006
							TCT Ser		3054
							ATC Ile 985		3102
							AAT Asn O		3150

FIG. 1

ATG ACA AAA GGG GTT Met Thr Lys Gly Val 1005			
TAC AAG TTT ATC ACA Tyr Lys Phe Ile Thr 1020		Leu Leu Thr	
TTA TTT CAA ATT GAC Leu Phe Gln Ile Asp 1035		Glu Ala Lys	
GCT GCA CAG TTG CAG Ala Ala Gln Leu Glr 105	Lys Glu Ser Gl		
ACT TTC CAG TAT TCT Thr Phe Gln Tyr Ser 1070	Lys Leu Glu As		
GCG GAG GAA AGA CTC Ala Glu Glu Arg Leu 1085			
AAG TTT TGC ATT GGA Lys Phe Cys Ile Gly 1100		Ala Lys Gln	
GAG ATA GCA TAC TTT Glu Ile Ala Tyr Phe 1115		Thr Leu Val	
ATG GCT TTT GAC GCT Met Ala Phe Asp Ala 113	Glu Arg Ser As		
AAG TTC AAA GGA ATA Lys Phe Lys Gly Ile 1150	Leu Ser Ser Th		
CAG AGT TTG GAT GAT Gln Ser Leu Asp Asp 1165			
AAC CTC GAG TTG AAT Asn Leu Glu Leu Asn 1180		Ser Leu Pro	
GTC ACT TTT AAG CAP Val Thr Phe Lys Glr 1195		Arg Gly Asn	
AAG CCA CAT TAT AGA Lys Pro His Tyr Arc	Thr Glu Gly Hi		
ACT GCG GCA TCG GTT Thr Ala Ala Ser Val 1230	Ala Ser Glu II		
	12		

FIG. 1

TAC CAT TTA Tyr His Leu 1260					
CCA CTC ACA Pro Leu Thr 1275		: His Lys	Gln Leu A		
TGC TTC CCA Cya Phe Pro					Ser
CCG ATC ACA Pro Ile Thr		e Ser Gly			
AAC ATA GCT Asn Ile Ala 1325	Glu Val Ly		Asp Phe V	Asp Glu	
CAT GTG AAT His Val Asn 1340					
CAT GAA TTT His Glu Phe 1355		Val Leu	Lys Val S		
AGA GAA GTT Arg Glu Val					Glu
GAG GCT CTT Glu Ala Leu		Glu Phe			
AAC GCC GAT Asn Ala Asp 1405	Val Ile Se		Asp Asn I	Tyr Val	
AGC TAC AAT Ser Tyr Asn 1420					
TAC AAA GTG Tyr Lys Val 1435		Asp Gly	Arg Thr M		
GAA ATA ATC Glu Ile Ile					Ala
ACT AAC ATT Thr Asn Ile		Gly Val			
GAT TTT GGG Asp Phe Gly 1481	Thr Lys Va		Val Leu A	Asn Arg	

FIG. 1

		GAA GGA GTA GCA Glu Gly Val Ala 1525	CTT CGA ATT GGC 4734 Leu Arg Ile Gly 1530
		ATT CCA GAA ATG Ile Pro Glu Met 1540	GTT GCC ACT GAA 4782 Val Ala Thr Glu 1545
	Cys Phe Met Tyr	AAT TTG CCA GTG Asn Leu Pro Val 1555	
		GCC ACA TTA TTA Ala Thr Leu Leu O	
		TTT TAC ACA ATT Phe Tyr Thr Ile 159	_
		ATA CAT GAC AAG Ile His Asp Lys 1605	CTG AAG CGC TTT 4974 Leu Lys Arg Phe 1610
		CTC AAT AAG TTG Leu Asn Lys Leu 1620	
	Ser Trp Leu Thr	AGT GGA GAG TAT Ser Gly Glu Tyr 1635	· ·
		Arg Ile Pro Phe	GTG TGC AAA GAA 5118 Val Cys Lys Glu 1655
		ATT TGG CAC ATT Ile Trp His Ile 167	Val Val Ala His
		CTC ACT AGC GTA Leu Thr Ser Val 1685	
Val Val Tyr Thr		Val His Ser Ile	GCG AGG ACT CTA 5262 Ala Arg Thr Leu 1705
	Arg Arg Ile Ala	GAT GAA CAA ATG Asp Glu Gln Met 1715	AAG CAG AGT CAT 5310 Lys Gln Ser His 1720
		Phe Ser Phe Thr	AAT TAC TCA ATA 5358 Asn Tyr Ser Ile 1735
			ACA AAG CAT ACG 5406 Thr Lys His Thr O
		CAG GCA AAA GAT Gln Ala Lys Asp 1765	CAA TTG CTA GAG 5454 Gln Leu Leu Glu 1770

TTT TCG AAC Phe Ser Asn	CTA GCA Leu Ala 1775	Lys Asp	CAA GAT Gln Asp	GTC ACG Val Thr 1780	GGT ATC Gly Ile	ATC CAL Ile Gl: 17	n_Asp	5502
TTC AAT CAC Phe Asn His	CTG GAA Leu Glu 1790	ACT ATC Thr Ile	TAT CTC Tyr Leu 1795	Gln Ser	GAT AGC Asp Ser	GAA GT Glu Va 1800	G GCT l Ala	5550
AAG CAT CTG Lys His Leu 180	Lys Leu	AAA AGT Lys Ser	CAC TGG His Trp 1810	AAT AAA Asn Lys	AGC CAA Ser Gln 1815	Ile Th	T AGG r Arg	5598
GAC ATC ATA Asp Ile Ile 1820	ATA GCT Ile Ala	TTG TCT Leu Ser 1829	Val Leu	ATT GGT Ile Gly	GGT GGA Gly Gly 1830	TGG AT	G CTT t Leu	5646
GCA ACG TAC Ala Thr Tyr 1835	TTC AAG Phe Lys	GAC AAG Asp Lys 1840	TTC AAT Phe Asn	GAA CCA Glu Pro 1849	Val Tyr	TTC CA Phe Gl	A GGG n Gly 1850	5694
AAG AAG AAT Lys Lys Asn	CAG AAG Gln Lys 1855	His Lys	CTT AAG Leu Lys	ATG AGA Met Arg 1860	GAG GCG Glu Ala	Arg Gl	G GCT y Ala 65	5742
AGA GGG CAA Arg Gly Glr	TAT GAG Tyr Glu 1870	GTT GCA Val Ala	GCG GAG Ala Glu 187	Pro Glu	GCG CTA Ala Leu	GAA CA Glu Hi 1880	T TAC s Tyr	5790
TTT GGA AGO Phe Gly Ser 188	Ala Tyr	AAT AAC Asn Asn	AAA GGA Lys Gly 1890	AAG CGC Lys Arg	AAG GGC Lys Gly 1895	Thr Th	G AGA r Arg	5838
GGA ATG GGT Gly Met Gly 1900	GCA AAG Ala Lys	TCT CGG Ser Arg 190	Lys Phe	ATA AAC Ile Asn	ATG TAT Met Tyr 1910	GGG TT Gly Ph	T GAT e Asp	5886
CCA ACT GAT Pro Thr Asp 1915	TTT TCA Phe Ser	TAC ATT Tyr Ile 1920	AGG TTT Arg Phe	Val Asp	Pro Leu	ACA GG	y His	5934
ACT ATT GAT				192	5		1930	
Thr Ile Asp	GAG TCC Glu Ser 193	Thr Asn	GCA CCT Ala Pro	ATT GAT	TTA GTG	Gln Hi	T GAG	5982
Thr Ile Asp TTT GGA AAC Phe Gly Lys	Glu Ser 193 GTT AGA	Thr Asn 5 ACA CGC	Ala Pro	ATT GAT Ile Asp 1940 ATT GAC Ile Asp	TTA GTG Leu Val	Gln Hi 19 ATA GA	T GAG s Glu 45	5982 6030
TTT GGA AAG	GGTT AGA Val Arg 1950 AGC ACC	Thr Asn 5 ACA CGC Thr Arg CAC ACC	Ala Pro ATG TTA Met Leu 195 ACA ATC	ATT GAT Ile Asp 1940 ATT GAC Ile Asp 5	TTA GTG Leu Val GAT GAG Asp Glu TAT TTG	Gln Hi 19 ATA GA Ile Gl 1960 GTG AA Val As	T GAG S Glu 45 G CCT U Pro	
TTT GGA AAC Phe Gly Lys CAA AGT CTT Gln Ser Let	GGTT AGA Val Arg 1950 AGC ACC Ser Thr GG AAA GTT	Thr Asn 5 ACA CGC Thr Arg CAC ACC His Thr	Ala Pro ATG TTA Met Leu 195 ACA ATC Thr Ile 1970 GTT GAT Val Asp	ATT GAT Ile Asp 1940 ATT GAC Ile Asp 5 CAT GCT His Ala	TTA GTG Leu Val GAT GAG Asp Glu TAT TTG Tyr Leu 197 CCA CAC	Gln Hi 19 ATA GA Ile Gl 1960 GTG AA Val As 5	T GAG S Glu 45 G CCT U Pro AT AGT S S S CTA	6030
TTT GGA AAC Phe Gly Lys CAA AGT CTT Gln Ser Let 196 GGC ACG AAC Gly Thr Lys	GGTT AGA Val Arg 1950 AGC ACC Ser Thr S AAA GTT Lys Val	Thr Asn ACA CGC Thr Arg CAC ACC His Thr CTT AAG Leu Lys 198 TCA ACA	Ala Pro ATG TTA Met Leu 195 ACA ATC Thr Ile 1970 GTT GAT Val Asp 5	ATT GAT Ile Asp 1940 ATT GAC Ile Asp 5 CAT GCT His Ala TTA ACA Leu Thr	TTA GTG Leu Val GAT GAG Asp Glu TAT TTG Tyr Leu 197 CCA CAC Pro His 1990 TTT CCT Phe Pro	GIN HI 19 ATA GA Ile GI 1960 GTG AA Val As 5 TCG TC Ser Se	T GAG S Glu 45 G CCT U Pro T AGT S SET CG CTA Er Leu GG GAG	6030

FIG. 1

TTG Leu	CCA Pro	CCA Pro	AAG Lys 2030	Asn	GAG Glu	GAC Asp	TTG Leu	ACG Thr 2035	Phe	GAA Glu	GGA Gly	GAA Glu	AGC Ser 2040	Leu	TTT Phe	6270
AAG Lys	GGA Gly	CCA Pro 2045	Arg	GAT Asp	TAC Tyr	AAC Asn	CCG Pro 2050	Ile	TCG Ser	AGC Ser	ACC Thr	ATT Ile 2055	Cys	CAT His	TTG Leu	6318
ACG Thr	AAT Asn 2060	Glu	TCT Ser	GAT Asp	GGG Gly	CAC His 2065	Thr	ACA Thr	TCG Ser	TTG Leu	TAT Tyr 2070	Gly	ATT Ile	GGA Gly	TTT Phe	6366
GGT Gly 2075	Pro	TTC Phe	ATC Ile	ATT Ile	ACA Thr 2080	Asn	AAG Lys	CAC His	TTG Leu	TTT Phe 208	Arg	AGA Arg	AAT Asn	AAT Asn	GGA Gly 2090	6414
ACA Thr	CTG Leu	TTG Leu	GTC Val	CAA Gln 2099	TCA Ser	CTA Leu	CAT His	GGT Gly	GTA Val 2100	Phe	AAG Lys	GTC Val	AAG Lys	AAC Asn 2109	Thr	6462
ACG Thr	ACT Thr	TTG Leu	CAA Gln 2110	Gln	CAC His	CTC Leu	ATT Ile	GAT Asp 211	Gly	AGG Arg	GAC Asp	ATG Met	ATA Ile 2120	Ile	ATT Ile	6510
CGC Arg	ATG Met	CCT Pro 212	Lys	GAT Asp	TTC Phe	CCA Pro	CCA Pro 2130	Phe	CCT Pro	CAA Gln	AAG Lys	CTG Leu 213	Lys	TTT Phe	AGA Arg	6558
GAG Glu	CCA Pro 2140	Gln	AGG Arg	GAA Glu	GAG Glu	CGC Arg 214	Ile	TGT Cys	CTT Leu	GTG Val	ACA Thr 215	Thr	AAC Asn	TTC Phe	CAA Gln	6606
ACT Thr 215	Lys	AGC Ser	ATG Met	TCT Ser	AGC Ser 2160	Met	GTG Val	TCA Ser	GAC Asp	ACT Thr 216	Ser	TGC Cys	ACA Thr	TTC Phe	CCT Pro 2170	6654
TCA Ser	TCT Ser	GAT Asp	GGC Gly	ATA Ile 217	TTC Phe	TGG Trp	AAG Lys	CAT His	TGG Trp 218	Ile	CAA Gln	ACC Thr	AAG Lys	GAT Asp 218	Gly	6702
CAG Gln	TGT Cys	GGC Gly	AGT Ser 219	Pro	TTA Leu	GTA Val	TCA Ser	ACT Thr 219	Arg	GAT Asp	GGG Gly	TTC Phe	ATT Ile 220	Val	GGT Gly	6750
ATA Ile	CAC His	TCA Ser 220	Ala	TCG Ser	AAT Asn	Phe	Thr	Asn	Thr	Asn	Asn	TAT Tyr 221	Phe	ACA Thr	AGC Ser	6798
GTG Val	CCG Pro 222	Lys	AAC Asn	TTC Phe	ATG Met	GAA Glu 222	Leu	TTG Leu	ACA Thr	AAT Asn	CAG Gln 223	Glu	GCG Ala	CAG Gln	CAG Gln	6846
TGG Trp 223	Val	AGT Ser	GGT Gly	TGG Trp	CGA Arg 224	Leu	AAT Asn	GCT Ala	GAC Asp	TCA Ser 224	Val	TTG Leu	TGG Trp	GGG Gly	GGC Gly 2250	6894
CAT His	AAA Lys	GTT Val	TTC Phe	ATG Met 225	AGC Ser 5	AAA Lys	CCT Pro	GAA Glu	GAG Glu 226	Pro	TTT Phe	CAG Gln	CCA Pro	GTT Val 226	Lys	6942
GAA Glu	GCG Ala	ACT Thr	CAA Gln 227	Leu	ATG Met	AAT Asn	GAA Glu	TTG Leu 227	Val	TAC	TCG	CAA Gln	GGG Gly 228	Glu	AAG Lys	6990

FIG. 1

			Val					Ser					Pro	GTG Val		7038
		Pro					Thr					Lys		AAG Lys		7086
	Leu					Leu					Glu			GCA Ala		7134
					Gly					Ser				AGA Arg 2345	Glu	7182
				Asp					Ala					ATT Ile		7230
			Cys					Leu					Leu	GTC Val		7278
		Lys					Pro					Ile		GAC Asp		7326
	Glu					Leu					Ala			GCA Ala		7374
					Lys					Glu				GAT Asp 2425	Glu	7422
				Leu					Leu					GGA Gly O		7470
			Trp					Lys					Pro	ATT Ile		7518
	Val	Glu	Asn	Asn	Lys	Thr	Arg	Thr	Phe	Thr		Ala		ATA Ile		7566
	Leu					Val					Phe			CAA Gln		7614
					Lys					Val				AAG Lys 250	Phe	7662
				Asn					Ala					TGG Trp 0		7710
			Ala					Phe					Thr	CCA Pro		7758

FIG. 1

11/16

CTC Leu	ATT Ile 2540	Asn	GCT Ala	GTA Val	TTG Leu	AAA Lys 2545	Val	CGA Arg	CTT Leu	GCC Ala	TTC Phe 2550	Met	GAG Glu	GAA Glu	TGG Trp	7806
	Ile					Leu		AAT Asn			Thr					7854
ACA Thr	CCA Pro	ATC Ile	CTC Leu	ACA Thr 2575	Pro	GAT Asp	GGT Gly	ACT Thr	ATC 11e 2580	Ile	AAG Lys	AAG Lys	CAT His	AAA Lys 2589	Gly	7902
AAC Asn	AAT Asn	AGC Ser	GGG Gly 2590	Gln	CCT Pro	TCA Ser	ACA Thr	GTG Val 2599	Val	GAC Asp	AAC Asn	ACA Thr	CTC Leu 2600	Met	GTC Val	7950
ATT Ile	ATT Ile	GCA Ala 260	Met	TTA Leu	TAC Tyr	ACA Thr	TGT Cys 2610	GAG Glu	AAG Lys	TGT Cys	GGA Gly	ATC Ile 261	Asn	AAG Lys	GAA Glu	7998
GAG Glu	ATT Ile 2620	Val	TAT Tyr	TAC Tyr	GTC Val	AAT Asn 2625	Gly	GAT Asp	GAC Asp	CTA Leu	TTG Leu 2630	Ile	GCC Ala	ATT Ile	CAC His	8046
	Asp					Leu		AGA Arg			Glu					8094
TTG Leu	GGC Gly	CTG Leu	AAA Lys	TAT Tyr 265	Glu	TTT Phe	GAC Asp	TGT Cys	ACC Thr 2660	Thr	AGG Arg	GAC Asp	AAG Lys	ACA Thr 266	Gln	8142
				Ser				TTG Leu 267	Glu					Tyr		8190
Leu	Trp	Phe	Met 2670 GAA Glu	Ser O GAA	His GAA	Arg AGG	Ala	Leu 2679 GTT Val	Glu 5 TCT	Arg	Asp	Gly GAA	Met 2680 TGG Trp	Tyr GAC	Ile AGA	8190 8238
CCA Pro	Trp AAG Lys AAA	CTA Leu 2689 GAG Glu	Met 2670 GAA Glu 5	Ser O GAA Glu TCA	GAA Glu CAT	Arg AGG Arg	ATT Ile 2690 CTT Leu	Leu 2679 GTT Val	Glu TCT Ser	ATT Ile	TTG Leu TGT	GAA Glu 269! GCA Ala	Met 2680 TGG Trp 5	Tyr GAC Asp	Ile AGA Arg ATT	
CCA Pro TCC Ser	AAA Lys 2700 GCA Ala	Phe CTA Leu 2689 GAG Glu	Met 2670 GAA Glu 5 CCG Pro	Ser CAA Glu TCA Ser	GAA Glu CAT His	AGG Arg AGG Arg 2705 AAG Lys	Ala ATT Ile 2690 CTT Leu CTG	Leu 267! GTT Val O	Glu TCT Ser GCC Ala	ATT Ile ATC Ile	TTG Leu TGT Cys 2710 ATC Ile	GAA Glu 2699 GCA Ala	Met 2680 TGG Trp 5 TCA Ser	Tyr GAC Asp ATG Met	AGA Arg ATT Ile	8238
CCA Pro TCC Ser GAA Glu 2711	AAA Lys 2700 GCA Ala	CTA Leu 2689 GAG Glu TGG Trp	Met 2670 GAA Glu 5 CCG Pro GGT Gly	GAA Glu TCA Ser TAT Tyr	GAA Glu CAT His GAC Asp 2720 CAA Gln	AGG Arg AGG Arg 270: AAG Lys	Ala ATT Ile 2690 CTT Leu CTG Leu	Leu 267! GTT Val C GAA Glu GTT Val	Glu TCT Ser GCC Ala GAA Glu	ATT Ile ATC Ile GAA Glu 2725 CAG Gln	TTG Leu TGT Cys 2710 ATC Ile	GAA Glu 2699 GCA Ala CGC Arg	Met 2680 TGG Trp 5 TCA Ser AAT Asn	GAC Asp ATG Met TTC Phe	AGA Arg ATT Ile TAT Tyr 2730 GGA Gly	8238 8286
CCA Pro TCC Ser GAA Glu 271: GCA Ala	AAA Lys 2700 GCA Ala TGG Trp	Phe CTA Leu 2689 GAG GJu TGG Trp GTT Val	Met 2670 GAA Glu 5 CCG Pro GGT Gly TTG Leu	GAA Glu TCA Ser TAT Tyr GAA Glu 2733	GAA Glu CAT His GAC Asp 2720 CAA Gln GCT	Arg AGG Arg AGG 2709 AAG Lys GCG Ala	Ala ATT Ile 2690 CTT Leu CTG Leu CCG Pro	Leu 2679 GTT Val GAA Glu GTT Val	Glu TCT Ser GCC Ala GAA Glu TCA Ser 2740 CTT Leu	ATT Ile ATC Ile GAA Glu 272: CAG Gln	TTG Leu TGT Cys 2710 ATC lle CTT Leu TTT	Gly GAA Glu 2699 GCA Ala CGC Arg GCA Ala TTG	Met 2680 TGG Trp 5 TCA Ser AAT Asn GAA Glu	Tyr GAC Asp ATG Met TTC Phe GAA Glu 274:	AGA Arg ATT Ile TAT Tyr 2730 GGA Gly 5	8238 8286 8334
CCA Pro TCC Ser GAA Glu 2715 GCA Ala AAG Lys	AAA Lys 2700 GCA Ala TGG Trp GCG Ala CAC	CTA Leu 2689 GAG Glu TGG Trp GTT Val CCA Pro	Met 2670 GAA Glu 5 CCG Pro GGT Gly TTG Leu TAT Tyr 2750 ACA Thr	GAA Glu TCA Ser TAT Tyr GAA Glu 273: CTG Leu	GAA Glu CAT His GAC Asp 2720 CAA Gln GCT Ala	Arg AGG Arg 2705 AAG Lys GCG Ala GAG Glu GAG	Ala ATT Ile 2690 CTT Leu CTG Leu CCG Pro ACT Thr	GAA Glu GTT Val TAT Tyr GCG Ala 275	Glu TCT Ser GCC Ala GAA Glu TCA Ser 2740 CTT Leu GAG	Arg ATT Ile ATC Ile GAA Glu 2725 CAG Gln O AAG Lys	TTG Leu TGT Cys 2710 ATC Ile CTT Leu TTT Phe	Gly GAA Glu 2699 GCA Ala CGC Arg GCA Ala TTG Leu AAA	Met 2686 Trp 5 TCA Ser AAT Asn GAA Glu TAC Tyr 276 GTG Val	Tyr GAC Asp ATG Met TTC Phe GAA Glu 274: ACA Thr	AGA Arg ATT Ile TAT Tyr 2730 GGA Gly TCT Ser TAT	8238 8286 8334 8382

FIG. 1

GTG Val 279	Asp	GCT Ala	GGT Gly	GCT Ala	GAC Asp 280	Ala	GGT Gly	AAG Lys	AAG Lys	AAA Lys 280	Asp	CAA	AAG Lys	GAT Asp	GAT Asp 2810	8574
AAA Lys	GTC Val	GCT Ala	GAG Glu	CAG Gln 281	Ala	TCA Ser	AAG Lys	GAT Asp	AGG Arg 282	Asp	GTT Val	AAT Asn	GCT Ala	GGA Gly 282	Thr	8622
TCA Ser	GGA Gly	ACA Thr	TTC Phe 283	Ser	GTT Val	CCA Pro	CGA Arg	ATA Ile 283	Asn	GCT Ala	ATG Met	GCC Ala	ACA Thr 284	Lys	CTT Leu	8670
CAA Gln	TAT Tyr	CCA Pro 284	AGG Arg 5	ATG Met	AGG Arg	GGA Gly	GAG Glu 2850	Val	GTT Val	GTA Val	AAC Asn	TTG Leu 285	Asn	CAC His	CTT Leu	8718
TTA Leu	GGA Gly 2860	Tyr	AAG Lys	CCA Pro	CAG Gln	CAA Gln 2869	Ile	GAT Asp	TTG Leu	TCA Ser	AAT Asn 2870	Ala	CGA Arg	GCC Ala	ACA Thr	87.66
CAT His 287	Glu	CAG Gln	TTT Phe	GCC Ala	GCG Ala 2880	Trp	CAT His	CAG Gln	GCA Ala	GTG Val 288	Met	ACA Thr	GCC Ala	TAT Tyr	GGA Gly 2890	8814
GTG Val	AAT Asn	GAA Glu	GAG Glu	CAA Gln 289	Met	AAA Lys	ATA Ile	TTG Leu	CTA Leu 2900	Asn	GGA Gly	TTT Phe	ATG Met	GTG Val 290	Trp	8862
TGC	ATA Ile	GAA Glu	AAT Asn 2910	Gly	ACT Thr	TCC Ser	CCA Pro	AAT Asn 2915	Leu	AAC Asn	GGA Gly	ACT Thr	TGG Trp 2920	Val	ATG Met	8910
ATG Met	GAT Asp	GGT Gly 292	GAG Glu 5	GAT Asp	CAA Gln	GTT Val	TCA Ser 2930	Tyr	CCG Pro	CTG Leu	AAA Lys	CCA Pro 293	Met	GTT Val	GAA Glu	8958
AAC Asn	GCG Ala 2940	Gln	CCA Pro	ACA Thr	CTG Leu	AGG Arg 2945	Gln	ATT Ile	ATG Met	ACA Thṛ	CAC His 2950	Phe	AGT Ser	GAC Asp	CTG Leu	9006
GCT Ala 295	Glu	GCG Ala	TAT Tyr	ATT Ile	GAG Glu 2960	Met	AGG Arg	AAT Asn	AGG Arg	GAG Glu 2965	Arg	CCA Pro	TAC Tyr	ATG Met	CCT Pro 2970	9054
AGG Arg	TAT Tyr	GGT Gly	CTA Leu	CAG Gln 2975	Arg	AAC Asn	ATT Ile	ACA Thr	GAC Asp 2980	Met	AGT Ser	TTG Leu	TCA Ser	CGC Arg 2985	Tyr	9102
GCG Ala	TTC Phe	GAC Asp	TTC Phe 2990	Tyr	GAG Glu	CTA Leu	ACT Thr	TCA Ser 2995	Lys	ACA Thr	CCT Pro	GTT Val	AGA Arg 3000	Ala	AGG Arg	9150
GAG Glu	GCG Ala	CAT His 3005	ATG Met	CAA Gln	ATG Met	AAA Lys	GCT Ala 3010	Ala	GCA Ala	GTA Val	CGA Arg	AAC Asn 3015	Ser	GGA Gly	ACT Thr	9198
AGG Arg	TTA Leu 3020	Phe	GGT Gly	CTT Leu	GAT Asp	GGC Gly 3025	Asn	GTG Val	GGT Gly	ACT Thr	GCA Ala 3030	Glu	GAA Glu	GAC Asp	ACT Thr	9246
	Arg		ACA Thr			Asp					Met					9294

FIG. 1

13/16

Gly Val Arg		GIIICIGC GI	GICILIGE 1.	riccgciii ii	MGCITATI	7347
GTAATATATA	TGAATAGCTA	TTCACAGTGG	GACTTGGTCT	TGTGTTGAAT	AGTATCTTAT	9409
ATATTTTAAT A	ATGTCTTATT	AGTCTCATTA	CTTAGGCGAA	CGACAAAGTG	AGGTCACCTC	9469
GGTCTAATTC	TCCTATGTAG	TGCGAG				9495

FIG. 1

GENERATE BamHI SITE

1. AT A(nt 9312-9317)

2. GENERATE Ncol SITE
AT B (nt 8516-8521)

3 GENERATE BamHI SITE (nt 133-138)
Ncol SITE (nt 143-148) AND
DEOXYADENYLATERESIDUE (at nt 142) at C.

DIGEST WITH Nool

REMOVE TEV NUCLEOTIDES 143-200/8462-8516 (FLANKED BY SITES B AND C)AND RELIGATE.

FIG. 2

SUBSTITUTE SHEET

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US93/01544

A CLA	SSIFICATION OF SUBJECT MATTER			
IPC(5) :C12N 1/21, 5/10, 15/33, 15/82; C07H 21/04; A01H 5/00				
, , ,	:435/172.3, 240.4, 252.3, 320.1; 536/23.72; 800/20			
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols)				
U.S. :	435/172.3, 240.4, 252.3, 320.1; 536/23.72; 800/205	i		
0.00. 1. 1.00.1.1.2.1.0, 2.2.1.1, 2.2.1.2, 0.00.2.2.				
Documental	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
Electronic d	lata base consulted during the international search (na	ame of data base and, where practicable	, search terms used)	
APS, DLA	LOG,			
search ter	ms: virus or viral, untranslat?, resistan?			
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ag	ppropriate, of the relevant passages	Relevant to claim No.	
X,P	Molecular Plant-Microbe Interactions	Volume 5 No 2 issued	1-27	
,-	March 1992, Lindbo et al, "Patho			
	potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide			
	sequence", pages 144-153, see entire			
	production of progen 17. 100, 100 online			
X,P	Virology, Volume 189, No. 2, issued	August 1992 Lindho et al	1-27	
,-	"Untranslatable transcripts of the tob	· · ·		
	gene sequence can interfere with toba	= ;		
	transgenic plants and protoplasts",	-		
	document.	pages 123-133, see chare		
	document.			
	•	·		
X Further documents are listed in the continuation of Box C. See patent family annex.				
-	ecial entegories of cited documents:	"T" later document published after the inte date and not in conflict with the applica	tion but cited to understand the	
	cument defining the general state of the art which is not considered be part of particular relevance	principle or theory underlying the inv	ention	
"E. can	lier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.		
	cument which may throw doubts on priority claim(s) or which is ad to establish the publication date of another citation or other	when the document is taken alone		
	cial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive		
	nument referring to an oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in the	documents, such combination	
P doc	cument published prior to the international filing date but later than priority date claimed	'&' document member of the same patent		
Date of the actual completion of the international search Date of mailing of the international search				
26 MAY 193/3/				
03 May 1993				
Name and mailing address of the ISA/US Authorized officer			1.	
	ner of Patents and Trademarks	/IM Amel		
Washington, D.C. 20231 P. MOODY P. MOODY				
Facsimile No. NOT APPLICABLE		Telephone No. (703) 308-0196	jv-	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/01544

0.45	101/03/3	
C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
<u>X</u> Y	Molecular Plant-Microbe Interactions, Volume 4, No. 3, issued May 1991, Kawchuk et al, "Sense and antisense RNA-mediated resistance to potato leafroll virus in russet burbank potato plants pages 247-253, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
X Y	Plant Molecular Biology, Volume 17, issued 1991, van der Wilk et al, "Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits viral infection", pages 431-439, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
Y	Journal of General Virology, Volume 72, issued August 1991, Marsh et al, "Artificial defective interfering RNAs derived from brome mosaic virus", pages 1787-1792, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
Y	Proceedings of the National Academy of Sciences USA, Volume 88, issued August 1991, Day et al, "Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus", pages 6721-6725, see entire document.	1, 6-8, 13, 18, 22-23 2-5, 9-12, 14-17, 19-21, 24-27
	Virology, Volume 175, issued 1990, Powell et al, "Protection against tobacco mosaic virus infection in transgenic plants require accumulation of coat protein rather than coat protein RNA sequences", pages 124-130, see entire document.	1, 6-8, 13, 18, 22-23
	Virology, Volume 154, issued 1986, Allison et al, "The nucleotic sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein", pages 920, see entire document.	19-21, 24-27
[3	Trends in Genetics, Volume 5, No. 2, issued February 1989, Baulcombe, "Strategies for virus resistance in plants", pages 56-60, see entire document.	2-5, 9-12, 14-17, 19-21, 24-27
	/210 (continuation of record cheavy)	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LÍNES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.