Closure properties of regular languages

Let L and M be regular languages over Σ . Then the following languages are all regular

- Union: $L \cup M$
- Intersection: L ∩ M
- Complement: $\overline{L} = \Sigma^* \setminus L$
- Difference: $L \setminus M$
- Reversal: $L^R = \{ w^R \mid w \in L \}$
- Kleene closure: L*
- Concatenation: L.M
- Homomorphism: $h(L) = \{h(w) \mid w \in L\}$
- Inverse homomorphism: $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

Closure under union

Theorem For any regular languages $L \in M$, $L \cup M$ is regular

Proof Let E and F be regular expressions such that L = L(E) and M = L(F). Then $L \cup M$ is generated by E + F, and is regular by definition

Closure under concatenation and Kleene

The proof of closure under union is rather **immediate**, since regular expressions use the union operator

Similarly, we can immediately prove the closure under

- concatenation
- Kleene operator

Closure under complement

Theorem If L is a regular language over Σ , then so is $\overline{L} = \Sigma^* \setminus L$

Proof Let L be recognized by a DFA

$$A = (Q, \Sigma, \delta, q_0, F).$$

Let
$$B = (Q, \Sigma, \delta, q_0, Q \setminus F)$$
. Now $L(B) = \overline{L}$

Example

Let L be recognized by the DFA

Then \overline{L} is recognized by the DFA

Closure under intersection

Theorem If L and M are regular, then so is $L \cap M$

Proof By De Morgan's law,
$$L \cap M = \overline{\overline{L} \cup \overline{M}}$$

We already know that regular languages are closed under complement and union

Intersection automaton

Proof (alternative) Let $L = L(A_L)$ and $M = L(A_M)$ for automata A_L and A_M with

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

Without any loss of generality, we assume that both automata are deterministic

We shall construct an automaton that simulates A_L and A_M in parallel, and accepts if and only if both A_L and A_M accept

Intersection automaton

Idea: If A_L goes from state p to state s upon reading a, and A_M goes from state q to state t upon reading a, then $A_{L \cap M}$ will go from state (p,q) to state (s,t) upon reading a

Intersection automaton

Formally

$$A_{L\cap M} = (Q_L \times Q_M, \Sigma, \delta_{L\cap M}, (q_{L,0}, q_{M,0}), F_L \times F_M),$$

where

$$\delta_{L\cap M}((p,q),a) = (\delta_L(p,a),\delta_M(q,a))$$

We can show by induction on |w| that

$$\hat{\delta}_{L\cap M}((q_{L,0},q_{M,0}),w) = \left(\hat{\delta}_L(q_{L,0},w),\hat{\delta}_M(q_{M,0},w)\right)$$

Then $A_{L \cap M}$ accepts if and only if A_L and A_M accept

Exercise

Build an automaton that accepts strings with at least one 0 and at least one 1. Let's build **simpler** automata and take the intersection

Closure under set difference

Theorem If L and M are regular languages, so is $L \setminus M$

Proof Observe that $L \setminus M = L \cap \overline{M}$

We already know that regular languages are closed under complement and intersection

Closure under reverse operator

Theorem If L is regular, so is L^R

Proof Let L be recognized by FA A. Turn A into an FA for L^R by

- reversing all arcs
- make the old start state the new sole accepting state
- create a new start state p_0 such that $\delta(p_0, \epsilon) = F$, F the set of accepting states of old A

Closure under reverse operator

Proof (alternative) Let E be a regular expression. We shall construct a regular expression E^R such that $L(E^R) = (L(E))^R$

We proceed by structural induction on E

Base If E is ϵ , \emptyset , or \boldsymbol{a} , then $E^R = E$ (easy to verify)

Closure under reverse operator

Induction

- E = F + G: We need to reverse the two languages. Then $E^R = F^R + G^R$
- E = F.G: We need to reverse the two languages and also reverse the order of their concatenation. Then $E^R = G^R.F^R$
- $E = F^*$: $w \in L(F^*)$ means $\exists k : w = w_1w_2 \cdots w_k$, $w_i \in L(F)$ then $w^R = w_k^R w_{k-1}^R \cdots w_1^R$, $w_i^R \in L(F^R)$ then $w^R \in L(F^R)^*$ Same reasoning for the inverse direction. Then $E^R = (F^R)^*$

Thus
$$L(E^R) = (L(E))^R$$