编译原理作业(4)

姓名: 陈彦泽 学号: <u>181250015</u>

评分: _____ 评阅: ____

2020年12月03日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

1 作业(必做部分)

题目 1 ([10 = 1 + 2 + 2 + 3 + 2分]) 给定下述文法 G,

$$L \to LP$$
 (1)

$$L \to P$$
 (2)

$$P \to (P) \tag{3}$$

$$P \to ()$$
 (4)

- (1) 简述 G 所对应的语言;
- (2) 为 G 构造 LR(0) 自动机;

注意: 为了尽量统一状态编号, 便于批改, 当计算 CLOSURE 时, 请按照文法编号 大小顺序加入新项。当计算 $\mathrm{GOTO}(I,X)$ 时, 请按照 I 中项的出现顺序依次考虑 可能的转移符号 X。

要求: 给出初始状态 I_0 的计算方法以及 $GOTO(I_0,()$ 的计算方法。

- (3) 为该文法设计 LR(0) 分析表; 该文法是 LR(0) 文法吗? 请说明理由。
- (4) 为该文法设计 SLR(1) 分析表; 该文法是 SLR(1) 文法吗?请说明理由。要求:请说明归约的设置条件。
- (5) 如果该文法是 SLR(1) 文法,请给出识别输入串 (())() 时自动机所经历的状态 (编号)。

解答:

- (1) 一组或多组成对括号,一组成对括号的形式为 (),(()),(((...))),但不包括一对括号内包含多个成对括号的情况,如 (()())
- (2) $I_0 = \text{CLOSURE}(\{L' \rightarrow \cdot L\})$ $= \text{CLOSURE}(\{L' \rightarrow \cdot L, L \rightarrow \cdot LP, L \rightarrow \cdot P\})$ $= \{L' \rightarrow \cdot L, L \rightarrow \cdot LP, L \rightarrow \cdot P, P \rightarrow \cdot (P), P \rightarrow \cdot ()\}$

GOTO(
$$I_0$$
, () = CLOSURE($\{P \rightarrow (\cdot P), P \rightarrow (\cdot)\}$)
= $\{P \rightarrow (\cdot P), P \rightarrow (\cdot), P \rightarrow (P), P \rightarrow ()\}$

如图所示:

(3) 该文法是 LR(0) 文法, 因为 LR(0) 分析表没有冲突

状态	ACTION			GOTO	
	()	\$	L	Р
0	s_3			g_1	g_2
1	s_3		acc		g_4
2	r_2	r_2	r_2		
3	s_3	s_6			g_5
4	r_1	r_1	r_1		
5		s_7			
6	r_4	r_4	r_4		
7	r_3	r_3	r_3		

状态	ACTION			GOTO	
	()	\$	L	Р
0	s_3			g_1	g_2
1	s_3		acc		g_4
2	r_2		r_2		
3	s_3	s_6			g_5
4	r_1		r_1		
5		s_7			
6	r_4	r_4	r_4		
7	r_3	r_3	r_3		

$(5) \ 0\ 3\ 3\ 6\ 5\ 7\ 2\ 1\ 3\ 6\ 4\ 1$

 I_0 : next-token (s_3 to I_3 stack:(3

 I_3 : next-token (s_3 to I_3 stack:($_3$ ($_3$

 I_3 : next-token) s_6 to I_6 stack: $(3(3)_6)$

 I_6 : next-token) r_4 , g_5 to I_5 stack:($_3P_5$

 I_5 : next-token) s_7 to I_7 stack: $({}_3P_5)_7$

 $I_7{:}$ next-token ($r_3\,,\ g_2$ to I_2 stack: P_2

 I_2 : next-token (r_2 , g_1 to I_1 stack: L_1

 I_1 : next-token (s_3 to I_3 stack: $L_1(_3$

 I_3 : next-token) s_6 to I_6 stack: $L_1(_3)_6$

 I_6 : next-token \$ r_4 , g_4 to I_4 stack: L_1P_4

 I_4 : next-token \$ r_1 , g_1 to I_1 stack: L_1

 I_1 : next-token \$ acc