[13 P]

1. Klausur Analysis 1 für Ing & Inf

31.07.2019

Es gibt insgesamt 75 Punkte. Hinreichend zum Bestehen sind 34 Punkte.

- 1. (a) Definieren Sie den Begriff Häufungswert einer Folge. [1 P]
 - (b) Geben Sie eine Folge mit den Häufungswerten 0, -2, 3 und π an. [4 P]
- 2. Bestimmen Sie den Wert der Reihe $\sum_{k=0}^{\infty} \frac{2 + \frac{(-\sqrt{2})^k}{5^2}}{5^k}.$ [5 P]
- 3. (a) Bestimmen Sie den Konvergenzradius der Reihe $\sum_{k=0}^{\infty} \frac{1}{3^k} (x-4)^{3k+2}$ [5 P]
 - (b) und geben Sie das daraus folgende offene Konvergenzintervall der Reihe an. [1 P]
- 4. Wir betrachten die hyperbolischen Funktionen cosh : $\mathbb{R} \to [1, +\infty)$, $\cosh x = \frac{e^x + e^{-x}}{2}$, und $\sinh : \mathbb{R} \to \mathbb{R}$, $\sinh x = \frac{e^x e^{-x}}{2}$.
 - (a) Zeigen Sie $\forall x \in \mathbb{R} : \cosh^2 x \sinh^2 x = 1.$ [2 P]
 - (b) Zeigen Sie, dass sinh bijektiv ist und bestimmen Sie die Umkehrfunktion Arsinh.[9 P] Hinweis: Formen Sie die Gleichung $y = \sinh x$ zu einer in e^x quadratischen Gleichung um und stellen Sie x dann als Funktion von y dar.
 - (c) Bestimmen Sie die Ableitung der Umkehrfunktion Arsinh. [3 P] *Hinweis:* Sie müssen dafür nicht Aufgabe 4b gelöst haben.
- 5. Zeigen Sie mit Hilfe des ersten Mittelwertsatzes für alle x > y > 0 die Ungleichung [6 P]

$$\frac{x-y}{x} < \ln \frac{x}{y} < \frac{x-y}{y}.$$

6. Lösen Sie das folgende Anfangswertproblem:

$$y' = \frac{y^2 - 3y + 2}{\sqrt{1 - x^2}}, \ y(0) = \frac{3}{2}.$$

Hinweis: Schränken Sie ggf. die möglichen Werte von y ein, um die resultierende Gleichung nach der Integration nach y auflösen zu können.

7. Zeigen Sie, dass für $a \in \mathbb{R}$ und $a^3 > x^3$ gilt [6 P]

$$\int \frac{dx}{x(a^3 - x^3)^2} = \frac{1}{3a^3(a^3 - x^3)} + \frac{1}{3a^6} \ln \frac{x^3}{a^3 - x^3}.$$

Bitte wenden!

8. Zeigen Sie, dass die Reihe $\sum_{k=2}^{\infty} \frac{1}{k (\ln k)^{\alpha}}$ für $\alpha > 1$ konvergiert und für $\alpha \leq 1$ divergiert.

[8 P]

9. Im Folgenden sind jeweils vier Aussagen zu einer Grundvoraussetzung angegeben. Kreuzen Sie auf der Rückseite des Klausurdeckblattes bei jeder Aussage an, ob sie im Allgemeinen wahr oder falsch ist. [12 P]

Pro richtigem Kreuz gibt es 1 Punkt, pro falschem -1 Punkt. Minimal sind 0 Punkte pro Teilaufgabe möglich.

- (a) Es sei $f:[a,b]\to\mathbb{R}$.
 - i. Wenn f stetig ist, dann ist f differenzierbar.
 - ii. Wenn f stetig ist, dann ist f beschränkt.
 - iii. Wenn f monoton ist, wird jeder Wert zwischen f(a) und f(b) angenommen.
 - iv. Wenn f streng monoton ist, ist f'(x) > 0 für alle $x \in [a, b]$.
- (b) Es sei $f:(a,b)\to\mathbb{R}$ une ndlich oft differenzierbar.
 - i. Zu jedem $x_0 \in (a, b)$ existiert eine Umgebung $U_R(x_0)$, so dass f in dieser Umgebung mit der Taylorreihe von f mit Entwicklungspunkt x_0 übereinstimmt.
 - ii. f ist unendlich oft stetig differenzierbar.
 - iii. f kann kein Polynom sein.
 - iv. f ist periodisch oder nicht beschränkt.
- (c) Es sei $\emptyset \neq M \subset \mathbb{R}$.
 - i. Ist $(x_k)_{k\in\mathbb{N}}\subset M$ mit $x_k\to x_0$ für $k\to\infty,$ so gilt $x_0\in M.$
 - ii. Es gibt eine Folge $(x_k)_{k\in\mathbb{N}}\subset M$ mit $\limsup_{k\to\infty}x_k=\sup M$ und $\liminf_{k\to\infty}x_k=\inf M$.
 - iii. Existiert $\max M,$ so auch $\min(-M) = \min \, \{ \, -x \mid x \in M \, \}.$
 - iv. Wenn $x_1, x_2 \in M \cap \mathbb{Q}$ und $x_1 < x_2$ gilt, so existiert ein $\xi \in M$ mit $x_1 < \xi < x_2$ und $\xi \in \mathbb{R} \setminus \mathbb{Q}$.