VCore

Un procesador de 16 bits de propósito didáctico.

- Modelo estructural de la computadora y del procesador.
- Modelo funcional. Direccionamiento. Operandos y registros.
- Repertorio de instrucciones del procesador.
- Indicadores de la ALU. Ejemplos de procesamiento.
- Notación en ensamblador para VCore.
- Ejemplos de programas: suma en triple precisión.

Modelo estructural de la computadora

Tema 6 – VCore

Modelo estructural del procesador VCore

Tema 6 – VCore

Modelo funcional del procesador VCore

Formato de instrucción y modos de direccionamiento

CO: código de operación M: modo de operación S: tamaño de operandos ABCD: direccionamiento REG1,REG2: registros VA, VB: valor numérico

ABCD	Direccionamiento
0000	Registro
0001	Inmediato corto VA
0010	Inmediato largo VA:VB
0011	$DE \leftarrow (VA)$
0100	$DE \leftarrow (VA:VB)$
0101	$DE \leftarrow (MP[(VA:VB)])$
0110	$DE \leftarrow (.REG2)$
0111	$DE \leftarrow (.REG2)$; $REG2 += S$

ABCD Direccionamiento

	-
1000	$DE \leftarrow (MP[(.REG2)])$
1001	$DE \leftarrow (MP[(.REG2)]) ; REG2 += S$
1010	$DE \leftarrow (VA) + (.REG2)$
1011	$DE \leftarrow (VA:VB) + (.REG2)$
1100	$DE \leftarrow (VA) + (.REG2)$; $REG2 += S$
1101	$DE \leftarrow (VA:VB) + (.REG2)$; $REG2 += S$
1110	$DE \leftarrow (MP[(VA) + (.REG2)]); REG2 += S$
1111	$DE \leftarrow (MP[(VA:VB) + (.REG2)]); REG2 += S$

Repertorio de instrucciones

Aritméticas (8 y 16 bits)

ADD,ADC Suma normal y con acarreo
SUB,SBC Resta normal y con acarreo
CMP Comparación
NEG Negación aritmética
INC,DEC Incremento y decremento

Lógicas (8 y 16 bits)

AND Operación lógica Y
OR Operación lógica O
XOR Operación lógica O exclusivo
NOT Negación logica

Corrimiento de bits

LSR,LSL Corrimientos lógicos (ASL)

ROR,ROL Corrimientos circulares

ASR Corrimiento aritmético

Control de flujo

Saltos condicionales (cortos):

BC,BNC : C BV,BNV : V

BN,BNN : N BZ,BNZ : Z

BLT,BLE,BGT,BGE,BLS,BHI

Saltos incondicionales:

BR,JMP saltos cortos y largos
CALL, RET llamadas a subrutinas
RETI retorno de interrupción

Operaciones con la pila (reg 7)

PUSH,PUSHSR meter datos en pila POP,POPSR sacar datos de pila

Otras operaciones

IN, OUT E/S puertos de periféricos CLC, CLV, CLI, STI, BRK, LD, ST...

Indicadores de unidad aritmética y lógica (ALU)

Indicadores en instrucciones aritméticas

$$\mathbf{V} \leftarrow \mathbf{A}_{15} \& \mathbf{B}_{15} \& \overline{\mathbf{R}_{15}} \mid \overline{\mathbf{A}_{15}} \& \overline{\mathbf{B}_{15}} \& \mathbf{R}_{15}$$

$$\mathbf{N} \leftarrow \mathbf{R}_{15}$$

$$\mathbf{z} \leftarrow \overline{R_{15}} \& \overline{R_{14}} \& \overline{R_{13}} \& \overline{R_{12}} \& \dots \& \overline{R_{1}} \& \overline{R_{0}}$$

$$C \leftarrow A_{15}\&B_{15} \mid B_{15}\&\overline{R_{15}} \mid \overline{R_{15}}\&A_{15}$$

Indicadores en instrucciones lógicas

Ejemplo: operacion AND A, B

$$\mathbf{N} \leftarrow \mathbf{R}_{15}$$

$$\mathbf{N} \leftarrow \mathbf{R}_{15} \qquad \mathbf{Z} \leftarrow \overline{\mathbf{R}}_{15} \& \dots \& \overline{\mathbf{R}}_{0}$$

Indicadores en corrimientos de bits

Ejemplo: operacion ASL A

$$\mathbf{v} \leftarrow \mathbf{R}_{15} \oplus \mathbf{A}_{15}$$

$$\mathbf{v} \leftarrow \mathbf{R}_{15} \oplus \mathbf{A}_{15} \quad \mathbf{z} \leftarrow \overline{\mathbf{R}_{15}} \& \dots \& \overline{\mathbf{R}_{0}}$$

$$N \leftarrow R_{15}$$

$$\mathbf{N} \leftarrow \mathbf{R}_{15}$$
 $\mathbf{C} \leftarrow \mathbf{R}_{15}$

Notación de programas en ensamblador VCore

ORG: indica el origen de la compilación de código

Etiquetas: señalan posiciones de memoria con un nombre

Valores: pueden tener notación binaria, octal, decimal o hexadecimal

END: debe colocarse siempre al final de un fichero fuente.

Existen otras directivas del ensamblador:

INCLUDE: para incluir otros archivos en el ensamblaje.

DB y DW: para reservar y declarar valores en zonas de memoria.

EQU: para crear cadenas que luego serán sustituidas por un valor textual.

```
ejemplo.asm
; Programa de ejemplo
             ORG
                    H'100
Inicio:
             LD
                    .1,#100
                 .2, #D'200
             LD
BucleSinFin: ADD .1,.2; hacer algo
                    #BucleSinFin
             BR
                         ; Final código
             END
                         ; Ignorado!
             NEG
                    . 1
```


Ejemplo programa VCore: suma en triple precisión

```
sumadp.asm
; Suma de doble precisión
                     H'100
              ORG
Inicio:
                     .1, #PrimerSum
              LD
                     .2, #SegundoSum
              LD
                     .3, #Resultado
              LD
                     .6,/4[.1]
              LD
                     .5,/2[.1]
              _{
m LD}
                   .4,[.1]
              LD
              ADD
                   .6,/4[.2]
                   .5,/2[.2]
              ADC
                    .4,[.2]
              ADC
                     .4,[.3++]
              ST
              ST
                     .5, [.3++]
              ST
                     .6, [.3++]
              HALT
PrimerSum:
              DW
                     H'1B73,H'F435,H'89BC
SegundoSum:
              DW
                     H'43C2,H'3121,H'9A4F
Resultado:
              DW
                     ?,?,?
              END
```

H'5F36 2557 240B