Ejercicio 9. Demuestra que, para todo número entero k, los números 6k - 1, 6k + 1, 6k + 2, 6k + 3, 6k + 5 son primos entre sí dos a dos; es decir, que para $a, b \in \{6k-1, 6k+1, 6k+2, 6k+3, 6k+5\}, a \neq b$, es mcd(a, b) = 1.

Solución 9. Sea k un entero, supongamos que mcd(6k + m, 6k + n) = d, para $m, n \in \{-1, 1, 2, 3, 5\}$ y $m \neq n$. Entonces por propiedades de la divisibilidad tenemos d|(6k + n) - (6k + m) = n - m.

Asumiendo ahora que n > m, obtenemos que $n - m \in \{1, 2, 3, 4, 6\}$. Luego, deducimos que $d \in \{1, 2, 3, 4, 6\}$.

Veamos pues que $2 \nmid d, 3 \nmid d$, y por consiguiente $4 \nmid d, 6 \nmid d$ y d = 1.

Si d fuera divisible por 2, entonces 2|m y 2|n, pero no hay m, n $\in \{-1,1,2,3,5\}$ tales que satisfagan esta condición, es decir, cuya diferencia es múltiplo de 2 y además uno de ellos también lo es; esto se debe a que solo hay un número par en el conjunto $\{-1,1,2,3,5\}$, y las únicas combinaciones posibles para que 2|d son del tipo $5-1,5+1,1+1,\ldots$, esto es, diferencia de impares, que obviamente no son divisibles por 2. Análogamente, si 3|d, entonces 3|m y 3|n, pero no hay parejas m y n que cumplan simultáneamente esa condición. Como $2\nmid d, 3\nmid d$, entonces $4\nmid d, 6\nmid d$ y solo nos queda la posibilidad d = 1.

Por tanto, mcd(a, b) = 1 para $a, b \in \{6k - 1, 6k + 1, 6k + 2, 6k + 3, 6k + 5\}, a \neq b$.