

Computer Simulation

Dr. Bardia Safaei

Chapter Four: Markov Chains

Outline

- Stochastic process
- Discrete Markov Chains (DMC)
- Continuous Markov Chains (CMC)

Stochastic Process (1)

- Consider a group of random variables X(t)
 - □ They are dependent on a real parameter (time)
 - They are indexed by t, indicating that they can change through the time
 - Defined on the same sample space S
- Example:
 - □ The white noise could be considered as a stochastic process
 - Noise does not have a deterministic pattern
 - Not for amplitude
 - Not for frequency
 - Not for phase

It is completely random with unpredictable behavior

Stochastic Process (2)

- Why the noise wave is a stochastic process?
 - Now let's consider if I ask you to sketch your own white noise wave pattern
 - Everyone of you would probably draw a graph, which:
 - □ Is not 100% a noise, or not
 - It may/could be a white noise
 - □ Is not 100% identical to your friend's
 - In every graph, strength of the signal X could only get values in the amplitude space
 - Strength can change as time passes X(t)
 - □ Therefore, $\{X(t)|t \in T\}$ would be a stochastic process
- In the definition of stochastic process, T represents the time interval, where our process is under observation
 - □ Based on T, we have **discrete** and **continuous**-time random processes

Stochastic Process (3)

- Recall: The sample space S is the set of values acceptable for our random variable
- Since X(t) could range both in $t \in T$, and S, the variables in stochastic process could be represented as:

$${X(t,s)|s \in S, t \in T}$$

- Therefore, the family of variables could be denoted as a family of functions
- For a fixed $t = t_1$, $X(t_1, s) = X_{t_1}(s)$ is a **random variable** (denoted by X (t)) as s varies over the sample space S
- For a fixed sample points, $s_1 \in S$, the expression $X(t, s_1) = X_{s_1}(t)$ is a single function of time t, called a **sample** function or a **realization** of the process

Stochastic Process (4)

- Based on T, and S, stochastic processes have four different variations:
 - □ Discrete-state/Discrete-time process
 - Example: A Bernoulli process for tossing a coin $\rightarrow S \in \{0,1\}$, and T=experiment iteration number (as time)
 - □ Discrete-state/Continuous-time process
 - Example: Used in specifying connections or disconnections in telecommunications during a time interval
 - □ Continuous-state/Discrete-time process
 - Example: Measuring UV radiation every hour
 - Continuous-state/Continuous-time process
 - Example: Temperature alterations during a day

Stochastic Process (5)

- If the sample space of a stochastic process is discrete, then it is called a discrete-state process
 - Often referred to as a chain
 - □ Alternatively, if the state space is continuous, then we have a continuous-state process
- If the index set T is discrete, then we have a discretetime process
 - □ It is denoted with $\{X_n | n \in T\}$, where **observations** are managed in **discrete-time steps**
 - If the index set T is continuous, we have a continuous-time process

Stochastic Process (6)

- Recall: If time is fixed $(t = t_1)$, $X(t_1)$ is a simple random variable that describes the **state of the process**
 - \square In other words, $X(t_1)$ specifies the state of the systems @ t_1
- For a known fixed number x_1 , the probability that $X(t_1) \le x_1$ is given by the CDF of the random variable $X(t_1)$, denoted by:

$$F(x_1; t_1) = F_{X(t_1)}(x_1) = P[X(t_1) \le x_1]$$

- \square This gives us the probability @ t_1
- $F(x_1; t_1)$ is known as the **first-order distribution** of the process $\{X(t)|t \ge 0\}$

Stochastic Process (7)

- Given two time instants t_1 , and t_2 , $X(t_1)$, and $X(t_2)$ are two random variables on the same probability space
 - □ Recall: just consider the noise graph
 - $X(t_1)$ indicates the voltage of the noise at t_1 , and $X(t_2)$ indicates the voltage at t_2
 - Both values are assigned from the amplitude sample space
- Their joint distribution is known as the second-order distribution of the process and is given by:

$$F_X(x_1, x_2; t_1, t_2) = P[X(t_1) \le x_1, X(t_2) \le x_2]$$

The 1st order talks about one variable, while the 2nd order takes two variables into account

Stochastic Process (8)

■ In general, we define the **nth-order joint distribution** of the stochastic process X(t), $t \in T$:

$$F_X(x_1, x_2, ..., x_N; t_1, t_2, ..., t_N) = P[X(t_1) \le x_1, X(t_2) \le x_2, ..., X(t_N) \le x_N]$$

- The mentioned distributions are indicating the CDF
 - In order to obtain PDF, we use the derivation:

$$f_X(x_1;t_1) = \frac{\sigma}{\sigma_{x_1}} F_X(x_1;t_1) \quad \text{density} \\ f_X(x_1,x_2;t_1,t_2) = \frac{\sigma^2}{\sigma_{x_1}\sigma_{x_2}} F_X(x_1,x_2;t_1,t_2) \quad \cdot \quad \text{Nth order} \\ f_X(x_1,x_2,\dots,x_N;t_1,t_2,\dots,t_N) = \frac{\sigma^N}{\sigma_{x_1}\sigma_{x_2}\dots\sigma_{x_N}} F_X(x_1,x_2,\dots,x_N;t_1,t_2,\dots,t_N)$$

Stationary Stochastic Process (1)

■ A stochastic process $\{X(t)|t \in T\}$ is said to be **stationary**, if its 1st order distribution satisfies the following condition:

$$f_X(x_1; t_1) = f_X(x_1; t_1 + \tau)$$

- □ Note: Do not confuse the concept of stationary stochastic process with the stationary concept in Poisson process
- Based on the above definition, if X(t) is a 1st order stationary stochastic process, it could be proved that the CDF has also a similar equation:

$$F_X(x_1; t_1) = F_X(x_1; t_1 + \tau)$$

Stationary Stochastic Process (2)

A stochastic process is called to be **Nth-order stationary** if the following is valid for $x \in \mathbb{R}^n$, $t \in T^n$:

$$F_X(x_1, ..., x_N; t_1, ..., t_N) = F_X(x_1, ..., x_N; t_1 + \tau, ..., t_N + \tau)$$

- What does it say?
 - \square Consider that we have sampled n instances in $t_1, t_1, ..., t_N$
 - Probability of $X(t_1) \le x_1$, and $X(t_2) \le x_2$, and ... $X(t_N) \le x_N$ is P
 - If t is shifted with τ (+, or -), and the probability remains the same
- If this equation is valid for all $N \ge 1$, the stochastic process is said to be **strictly stationary**

Independent Processes

A stochastic process {X(t)|t ∈ T} is said to be an independent process if its nth-order joint distribution satisfies the following condition:

$$F_X(x_1, ..., x_N; t_1, ..., t_N) = \prod_{i=1}^n F_X(x_i; t_i) = \prod_{i=1}^n P[X(t_i) \le x_i]$$

- This indicates that the value of an independent nth-order joint $F_X(x;t)$ is equal to the multiplication of all the inequalities of each random variable, member of the process
- Note: do not confuse this with independent processes
 - ☐ Two stochastic processes are called to be independent if

$$F_{XY}(x_1, ..., x_N, y_1, ..., y_N; t_1, ..., t_N, t_1', ..., t_N') = F_X(x_1, ..., x_N; t_1, ..., t_N) \times F_Y(y_1, ..., y_N; t_1', ..., t_N')$$

Renewal Process

- A renewal process is defined as a **discrete-time** independent process denoted with $\{X_n | n = 1,2,...\}$, if $X_1, X_2, ...$ are independent, and identically distributed (i.i.d), nonnegative random variables
- What does i.i.d mean?
 - \square Consider X_t ($t \in T$) as an i.i.d random variable
 - □ If in two instances of time i, and j, $(i, j \in T)$ the value of X_i does not have any effect on the value X_j
 - \square And, probability of X_i is the same as probability of having X_i

Markov Dependency (1)

- Though the assumption of an independent process considerably simplifies analysis, such an assumption is often unwarranted
 - So, we are forced to consider some sort of dependency among these random variables
- The simplest and the most important type of dependency is the first-order dependency or Markov dependency
 - □ A stochastic process $\{X(t)|t \in T\}$ is called a Markov process, if for any instance of time $t_0 < t_1 < \cdots < t_{n-1} < t_n$, the probability distribution of random variable $X(t_n)$ only depends on $X(t_{n-1})$:

$$P[X(t_n) = x_n | X(t_{n-1}) = x_{n-1}, X(t_{n-2}) = x_{n-2}, ..., X(t_0) = x_0]$$

= $P[X(t_n) = x_n | X(t_{n-1}) = x_{n-1}]$

■ Probability of having $X(t_n)$ in t_n , only depends on **one instance earlier**, not the sequence of events happened before (during t_0 to t_{n-2})

Markov Dependency (2)

- Consider a system that we have determined its different states of operation
 - □ Assume every state as an event, which our random variable X(t) could be assigned to, during time $\in [0, t]$
 - □ If the probability of being in state $X(t_n)$ at t_n (occurrence of $X(t_n)$) is only dependent on being in state $X(t_{n-1})$ (occurrence of $X(t_{n-1})$) at t_{n-1}
 - The dependency between the states (or our random variables) is called to be Markov
 - This dependency is first-order
- $X(t_n)$ could be considered as our **next state**, and $X(t_{n-1})$ could be considered as the **present state**
 - An important concept in reinforcement learning

Markov Dependency (3)

- Recall: The stochastic processes with a discrete sample space are called chain
 - Since Markov processes are categorized in such processes, they are called Markov chains
- Based on what we discussed earlier, in Markov chains we have:

$$P[X(t_n) = x_n | X(t_{n-1}) = x_{n-1}, X(t_{n-2}) = x_{n-2}, \dots, X(t_0) = x_0]$$

$$= P[X(t_n) = x_n | X(t_{n-1}) = x_{n-1}]$$
A
B

- Assume that A indicates that in t_n , the system resides in state j, and B indicates that system resides in state i at t_{n-1}
 - □ Therefore, the equation could be represented as $P[X_n = j | X_{n-1} = i]$

Homogeneous Markov Chains

A Markov chain is said to be (time-) homogeneous if:

$$P[X_n = j | X_{n-1} = i] = P[X_1 = j | X_0 = i]$$

- For a homogeneous Markov chain, the past history of the process is completely summarized in the current state
 - □ Therefore, the distribution for the time Y, the process spends in a given state must be memory less
 - What does this really mean?
 - The probability of making a transition from one state to another does not depend on time
 - □ If at t_n , the transition probability from $X_{n-1} = i$ to $X_n = j$ is said to be $P_{i,j}(t_n)$, all transitions from i to j at any instances of time is also $P_{i,j}(t_n)$
 - Remove the time index $\rightarrow P_{i,j}$ suffices for showing the transition probability

Discrete-Time Markov Chain (DTMC) (1)

- In DTMC, we decide to observe the states of a system at a discrete set of time-steps
- Consider our successive observations from the system states are defined as random variables $X_1, X_2, ..., X_n$ at time steps 0, 1, 2, ..., n, respectively
 - \square Recall: If $X_n = j$, then the state of the system at time-step n is s_j
 - \square s_0 is the initial state of the system, where it has started operating
- A Markov property for DTMC can then be stated as:

$$P[X_n = s_n | X_{n-1} = s_{n-1}, X_{n-2} = s_{n-2}, ..., X_0 = s_0]$$

= $P[X_n = s_n | X_{n-1} = s_{n-1}]$

□ The state of the system in the future (s_n) only depends on the state of the system right now (s_{n-1})

Discrete-Time Markov Chain (DTMC) (2)

- The probability of being in state s_j at time-step n is denoted with $P(X_n = s_j) = P_j(n)$
 - \square This is the PMF of state s_i
- Since we are interested in homogeneous Markov chains, the time has no impact on the probability of transitions
 - □ The time-step index could be again removed
 - □ But, the **number of steps index** could be replaced for the probability of having a transition from s_i to s_j in **n-steps**:

$$P_{i,j}(n) = P(X_{m+n} = s_j | X_m = s_i)$$
 n-step transition probability

- Where m is indicating an arbitrary time-step index
- One-step transition is of high importance, which is denoted with $P(X_n = S_j | X_{n-1} = S_i) = P_{i,j}(1) = P_{i,j}$

Discrete-Time Markov Chain (DTMC) (3)

- When the system starts operating, every state has a PMF,
 which indicates the probability of beginning from that state
 - □ These probabilities are indicated with a random variable X_0 , often called the **initial probability vector**, and is specified as:

$$p(0) = [p_0(0), p_1(0), p_2(0), ..., p_n(0)]$$

- $P_i(0)$ denotes the probability of starting from s_i
- n indicates the maximum index of states in the system model
- □ Example: A system with 2 states s_0 , and s_1 : $p(0) = [p_0(0)]$ = $p, p_1(0) = 1 - p$
- The one-step transition probabilities are compactly specified in the form of a transition probability matrix
 - □ It specifies the probability of having a transition from one state to another in only one step move

Transition Probability Matrix

The matrix for n-state system is as follows:

Example:
A 5-state Markov chain has 25-elemnt transition matrix
$$P = \begin{bmatrix} P_{0,0} & \cdots & P_{0,n} \\ P_{1,0} & \cdots & P_{1,n} \\ \vdots & \ddots & \vdots \\ P_{n,0} & \cdots & P_{n,n} \end{bmatrix}$$

- Recall: Since we are talking about chains (stochastic process with discrete-sample space), we are allowed to use number of states
- The entries of the matrix P satisfy the following two properties:
 - $0 \le P_{i,j} \le 1$, $i,j \in I$ (I indicates the size of the sample space)
 - $\square \sum_{i \in I} P_{i,j} = 1$, $i \in I$

State Transition Diagram

- An equivalent description of the one-step transition probabilities can be given by a directed graph called the state transition diagram of the Markov chain
 - ☐ State diagram for short
 - □ It depicts the states of the system and probabilities of transitions between them with a directed edge (branch)
- A node labeled i of the state diagram represents state i of the Markov chain
 - □ State 0 typically represents the initial state
- The branches labeled $P_{i,j}$, from node i to j implies that the conditional probability is: $P[X_n = j | X_{n-1} = i] = P_{i,j}$
 - \square Not forget that it is directional: $P_{i,j}$ is not necessarily $P_{j,i}$

Example (1)

- A person could be in either 2 states: 1) Healthy, 2) Sick
- Consider a random variable X(n), where $n \in \{0,1,2,...\}$
 - □ N indicates the day of observation
 - According to our system, X(n) could get two values, 0 or 1
 - States of the system

$$X(n) = \begin{cases} 1, & if \ healthy \\ 0, & if \ sick \end{cases}$$

- □ Assume if the person is healthy, he stays healthy in the next step time-step with α : $P\{X_n = 1 | X_{n-1} = 1\} = P_{1,1} = \alpha$
- □ Assume if the person is sick, he stays sick in the next step timestep with β : $P\{X_n = 0 | X_{n-1} = 0\} = P_{0,0} = \beta$

Example (2)

State diagram of the system is illustrated as:

- What could we get from this figure?
 - \square If we reside in 1, with probability α we stay in state 1
 - □ If we reside in 1, with probability 1α , we move to 0
 - \square If we reside in 0, with probability β we stay in state 0
 - □ If we reside in 0, with probability 1β , we move to 1
- How did we obtain other values on the branches?

n-step Transition (1)

- In the previous example, we determined the transition probability matrix in one-step movement
- We are interested in obtaining an expression for evaluating the n-step transition probability based on the one-step probabilities
 - □ In other words, if system is residing in state i, with what probability, the system will reside in state j after n steps?
- Let P(n) be the matrix of n-step transition probabilities, whose (i, j) entry is $P_{i,j}(n)$, then we can write:

$$P(n) = P \times P(n-1) = P \times P \times P(n-2) = P^n$$

□ Why we could use this equation?

n-step Transition (2)

- Recall: For 2 independent events, their joint probability could be obtained by their individual multiplication
 - ☐ If there are **more than one path towards a specific state**, the multiplications of event probabilities must be added for different paths
- Let's assume the following state diagram:
 - ☐ First, indicate the 1-step transition matrix
- Now, what is the probability of having a transition from state 0 to itself with 2 steps (based on the diagram)?
 - \square Specify all paths from s_0 to s_0 with only 2 steps
 - Path refers to a sequence of states starting from s_i, ending at s_i
 - Calculate the probability in every path and add them together

n-step Transition (3)

With utilizing the n-step transition matrix, and the initial probability vector, we can obtain the PMF for every state of the system after n steps:

$$p(n) = p(0)P(n) = p(0)P^n$$

- □ Elements of matrix p(n) gives the probability of being in every state of the system after n steps
- \square Why we should multiply p(0)?
 - Because, the probability will be altered when the system starts from a different state
 - □ Calculate $p_3(2)$ starting from s_0 , or s_1

Stock Exchange Example (1)

 Following diagram indicates the status of the market price for a specific share

- □ State 0 → price rising
- ☐ State 1 → price falling
- ☐ State 2 → ranging
- What does it say?
- Should we always have a full graph?
 - No, we may have diagrams with few edges departing from a state to only a number of other states in the system
- Note: Sum of outsiding edges from every state equals to 1

0.3

Stock Exchange Example (2)

- Determining the transition matrix
 - □ Recall: Indicate the title of the rows and columns for making it more convenient task to derive the matrix

$$P = \begin{bmatrix} 0 & 1 & 2 \\ 0.3 & 0.2 & 0.5 \\ 0.4 & 0.3 & 0.3 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$$

- In this example, we assume that the system starts from state 0 (rising)
 - □ The initial probability vector would be $p(0) = [1 \ 0 \ 0]$
 - □ Worthy to mention that we could have started from any other states, either falling or ranging
 - Only one state!

Stock Exchange Example (3)

- To calculate the n-step probability values:
 - □ After 1 step:

$$p(1) = p(0) \times P^{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.4 & 0.3 & 0.3 \\ 0.3 & 0.4 & 0.3 \end{bmatrix} = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.4 & 0.3 & 0.3 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$$

- ☐ If we start from the rising state:
 - With 30% chance, the price of the share will continue to rise after one unit of observation (day, month, ...)
 - With 20% chance, the price of the share would tend to fall
 - With 50% chance, if we start from the rising state, the price of the share would tend to maintain its value
- □ After 2 steps:

$$p(2) = p(0) \times P^{2} = p(0) \times P^{1} \times P^{1} = p(1) \times P^{1} =$$

$$[0.3 \ 0.2 \ 0.5] \times \begin{bmatrix} 0.3 \ 0.2 \ 0.5 \\ 0.4 \ 0.3 \ 0.3 \\ 0.3 \ 0.4 \ 0.3 \end{bmatrix} = [0.32 \ 0.32 \ 0.36]$$

Stock Exchange Example (4)

This could be iterated for achieving any n-step probability vector:

$$p(3) = [0.332 \quad 0.304 \quad 0.364]$$
 $p(4) = [0.3304 \quad 0.303 \quad 0.3664]$
 \vdots
 $p(10) = [0.330357 \quad 0.303571 \quad 0.366072]$

- Assume that we want to find the probabilities after $n \to \infty$ steps, what would be the probability vector for our states?
 - □ Calculate it for $p(0) = [0 \ 1 \ 0]$, and $p(0) = [0 \ 0 \ 1]$
 - Compare and analyze the outcomes for these three vectors

Transient and Recurrent States

- A state i is said to be transient, if there is a positive probability that the process will not return to this state if it is left by the process
 - ☐ The process cannot return even if it wants to
- A state i is said to be recurrent if starting from i, the process can eventually return to it with probability one
 - ☐ This return can happen in 1, or 2, or 3, ..., n steps
 - The important thing is it could be returned independent from the time

b

Period of States

- For a recurrent state i, $p_{ii}(n) > 0$, $n \ge 1$, the period is denoted by d_{ii} , and is defined as the greatest common divisor (gcd) of the **set of positive integers n** such that $p_{ii}(n) > 0$
 - □ We may be able to return to i after different time-step (n) values
 - □ This depends on the complexity of the state diagram and the paths starting from state i, and ending to itself
- Formally, the period of a state is defined as:

$$d_{ii} = \gcd\{n | P(X_{m+n} = i | X_m = i) > 0\}$$

If state i has period d_{ii} , any return to state i could occur in integer multiplications of d_{ii} time-steps

Aperiodic and Periodic States

- A recurrent state i is said to be **aperiodic** if its period is d_{ii}
 - = 1, and its called periodic if $d_{ii} > 1$
 - \square In the following state diagram, state 1 is a periodic state with $d_{ii}=2$
 - Because, we can return to state 1 with 2 steps, or 2K steps

- How could we alter this Markov chain to make state 1 an aperiodic state?
 - □ Adding an edge from state 1 to itself
 - \square Update the transition probability values (to make sure $\Sigma = 1$)
- A state i is said to be an absorbing state if $P_{i,i} = 1$

More Definitions

- Two states i and j are in communication if a path exists from i to j and vice-versa in the state diagram
 - □ In other words, in the transition matrix, both $P_{i,j}$, and $P_{j,i}$ have values greater than 0
- A Markov chain is said to be irreducible if every recurrent state can be reached from every other state in a finite number of steps

- □ In other words, for all $i, j \in I$, there is an integer $n \ge 1$ such that $P_{i,j}(n) > 0$
- □ In these chains, all of the states are recurrent

Continuous-Time Markov Chains (CTMC)

- Similar to DTMCs, in CTMC we confine our attention to discrete-state processes
 - \square This implies that, although the parameter t has a continuous range of values, the set of our random variables X(t) (states) is discrete
- Recall: As we stated in the class, the main condition for a stochastic process to be Markov is the memoryless property
 - □ Probability of being in a future state only depends on the probability of being in the present state (not the history of other states)
 - □ Hence, in order to know where we are headed in the next move, we should know where we reside right now

$$P[X(t_n) = x_n | X(t_{n-1}) = x_{n-1}, X(t_{n-2}) = x_{n-2}, \dots, X(t_0) = x_0] = P[X(t_n) = x_n | X(t_{n-1}) = x_{n-1}]$$

CTMC Behavior Analysis (1)

- The behavior of the process is characterized by two elements:
 - □ The initial state probability given by the PMF of $X(t_0)$, $P(X(t_0) = s_k)$, $k \in \{0, 1, 2, ..., n\}$
 - □ The transition probabilities: $P_{i,j}(v,t) = P(X(t) = s_i | X(v) = s_i)$
- For analyzing the CTMC, we have two options:
 - Transient (time-dependent) analysis
 - ☐ Steady-state analysis
- In Markov chains, in any instance of time, system resides in a specific state
 - □ Unlike the steady-state, in transient analysis, we freeze the system at time t, and take a snapshot
 - So, the system operation will be halted in a specific state

CTMC Behavior Analysis (2)

Let denote the PMF of X(t) (or the state probabilities at time t) by:

$$\pi_j(t) = P(X(t) = s_j), j \in \{0, 1, 2, ..., n\}, t \ge 0$$

- \square This indicates the probability of being in s_i at time t
- Based on the principles, if we sum up all of the probabilities at time t, we have:

$$\sum_{j \in \{0,1,2,\dots,n\}} \pi_j = 1$$

- ✓ This is also applicable in DTMCs
- ✓ Independent from having time or timesteps, adding the probability values in any instance gives 1
- What are we seeking in transient analysis?
 - ☐ Finding the probability value of a specific state at **time t**

CTMC Transient Behavior Analysis (1)

- A specific state could be reached via different paths in the state diagram
 - □ So, based on the theorem of **total probability**, for a given t > v, we can express the PMF of X(t) in terms of the transition probabilities $P_{i,j}(v,t)$, and the PMF of X(v)

$$\pi_j(t) = P(X(t) = s_j) = ?$$

$$\pi_j(t) = \sum_{i \in \{0,1,2,\dots,n\}} P(X(t) = s_j | X(v) = s_i) \times P(X(v) = s_i)$$

CTMC Transient Behavior Analysis (2)

- Now assume we start observing the system at t = 0, and move towards state j at time t
 - □ Then we have: $\pi_j(t) = \sum_{i \in \{0,1,2,...,n\}} P_{i,j}(0,t) \pi_i(0)$
 - □ Where $P_{i,j}$ indicates the transition probabilities, and $\pi_i(0)$ denotes the probabilities at t=0
- Example: To better understand the difference between v = 0, and $v \neq 0$ in our analysis, let's calculate $\pi_4(t)$
 - ☐ Since we are focusing on **1-step** transition
 - If v = 0
 - □ Only $\pi_i(0)$ s, which are directly connected to s_4 are important
 - If $v \neq 0$
 - Roll back hop-by-hop until we reach the first state

CTMC Transient Behavior Analysis (3)

If we denote the probability of states in time t as a vector $\pi(t) = [\pi_0(t), \pi_1(t), ..., \pi_n(t)]$, there exists a matrix, which establishes the following equation:

$$\frac{d\pi(t)}{dt} = \pi'(t) = \pi(t)Q$$

- \square Where Q is the **Infinitesimal Generator matrix** composed of $q_{i,j}$
 - $q_{i,j}$ indicates the **transition rate** from state i to state j, where $i \neq j$, and $q_{i,j} \geq 0$
- □ The diameter of Q is defined as follows:

$$q_{i,i} = -\sum_{j,j\neq i} q_{i,j} \rightarrow -\infty < q_{i,i} \le 0$$

Sum of the transition rates departing state i must be equal to zero

Steady-State Analysis

- For a given CTMC, the steady-state probabilities are independent of time
 - □ Therefore, we could say $\lim_{t\to +\infty} \frac{d\pi(t)}{dt} = 0$
 - □ Based on what we discussed in the previous slide $(\pi'(t) = \pi(t)Q)$, and the above equation, we have:

$$\sum_{i \in S} q_{i,j} \pi_i = 0, \qquad \forall j \in S$$

Finally, in order to determine the steady-state unconditional probabilities, we can use the following matrix form:

$$\pi Q = 0$$

- □ This gives us n-1 independent linear equations (n is the # states)
 - One more is required → Sum of probabilities is 1

Steady-State Analysis Example (1)

- Consider the following CTMC
 - □ We want to calculate the steady-state probabilities
- Some explanations about λ, and μ notations in Markov diagrams
 - According to the intended system, we may have failure or repair in the device

- □ In reliability analysis, it is important to know the ability of having a transition to a repairable or unrepairable state
- While failures are denoted with rate λ, repairs are denoted with μ
 - Multiplications of λ , and μ are also possible according to the structure of the system

$$\pi Q = 0 \to [\pi_1 \ \pi_2 \ \pi_3] \begin{bmatrix} -\lambda & \lambda & 0 \\ \mu & -(\mu + \lambda) & \lambda \\ 0 & \mu & -\mu \end{bmatrix} = [0 \ 0 \ 0] \quad (1)$$

Steady-State Analysis Example (2)

In any instance of time (including in steady-state t → ∞), sum of probabilities is 1:

$$\pi_1 + \pi_2 + \pi_3 = 1$$
 (2)

- □ This is the other equation needed
- Based on 1, and 2, it could be concluded that:

$$\pi_1 = \frac{1}{\rho^2 + \rho + 1}, \quad \pi_2 = \frac{\rho}{\rho^2 + \rho + 1}, \quad \pi_3 = \frac{\rho^2}{\rho^2 + \rho + 1}$$

- □ For the simplicity of representing the π_i values, we have considered $\rho = \lambda/\mu$
- As you can see, the sum of probabilities are 1
 - ☐ This is a test for making sure you have calculated the right values

Step-by-Step Procedure for Transient Analysis

- Transient analysis is more complicated than steady-state
- Let's discuss this on a simple 2-state example:
 - \square Obtain the transient probabilities $\pi_i(t)$ for the following CTMC
 - ☐ It has been assumed that the failure, and repair rates support exponential distribution

•
$$f_1(t) = e^{-\lambda t}$$
, and $f_2(t) = e^{-\mu t}$

In transient analysis, we use $\pi'(t) = \pi(t)Q$

$$\begin{bmatrix} \pi_1'(t) & \pi_2'(t) \end{bmatrix} = \begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix} \begin{bmatrix} \pi_1(t) & \pi_2(t) \end{bmatrix}$$

$$\begin{cases} \pi_1'(t) = -\lambda \pi_1(t) + \mu \pi_2(t) \\ \pi_2'(t) = \lambda \pi_1(t) - \mu \pi_2(t) \end{cases}$$

How to solve this type of differential equations?

Laplace Transform (1)

- Various approaches for solving differential equations
- One of the strongest methods is the Laplace Transform
 - It transforms a differential equation into a simple algebraic equation
 - \square The variation range is transformed from t to a new parameter S
- The Laplace transform for function f(t) is denoted as:

$$L\{f(t)\} = F(S)$$

■ To obtain the transformed version of f(t) we use:

$$F(S) = \int_0^\infty e^{-St} f(t) dt$$

Laplace Transform (2)

- One of the useful transforms in the Laplace domain, is the transformation of nth-order derivation of f(t)
 - \square For instance, what is the Laplace transform of $\pi'(t)$?

We know:
$$\pi(S) = L\{\pi(t)\} = \int_0^\infty e^{-St} \pi(t) dt \rightarrow L\{\pi'(t)\} = \int_0^\infty e^{-St} \pi'(t) dt = e^{-St} \pi(t) [0, +\infty] - \int_0^\infty (-S) e^{-St} \pi(t) dt = 0 - \pi(0) - (-S) \int_0^\infty e^{-St} \pi(t) dt = S\pi(S) - \pi(0)$$

$$L\{\pi'(t)\} = \mathbf{S}\pi(\mathbf{S}) - \pi(\mathbf{0})$$

Laplace transform for the 1st order deviation

Laplace Transform (3)

- This process could be repeated to obtain higher order derivations
 - □ Example: What is the Laplace transform for the 2^{nd} order derivation of function f(t) (f''(t))?
 - Assume $g(t) = f'(t) \rightarrow L\{f''(t)\} = L\{g'(t)\}$
 - According to what we discussed in previous slide:

$$L\{f''(t)\} = SL\{g(t)\} - g(0) = SL\{f'(t)\} - f'(0) =$$

$$S[SF(S) - f(0)] - f'(0) = S^2F(S) - Sf(0) - f'(0)$$

Accordingly, the initial values (f(0), f'(0), f''(0), ...) must be provided

Simple 2-state Example (1)

- Now, we continue our previous example
- We must first transform the obtained differential equations into Laplace form:

$$\begin{cases} \pi_1'(t) = -\lambda \pi_1(t) + \mu \pi_2(t) \\ \pi_2'(t) = \lambda \pi_1(t) - \mu \pi_2(t) \end{cases} \begin{cases} S\pi_1(S) - \pi_1(0) = -\lambda \pi_1(s) + \mu \pi_2(S) \\ S\pi_2(S) - \pi_2(0) = \lambda \pi_1(S) - \mu \pi_2(S) \end{cases}$$

It could be derived that:

$$\pi_1(S) = \frac{\mu}{S+\lambda} \pi_2(S) + \frac{1}{S+\lambda} \pi_1(0) \quad (1) \quad \pi_2(S) = \frac{\lambda}{S+\mu} \pi_1(S) + \frac{1}{S+\mu} \pi_2(0) \quad (2)$$

- We assume that the initial probability vector is $\pi(0) = [1 \ 0]$
 - □ So, $\pi_1(0) = 1$, and $\pi_2(0) = 0$
 - □ Replace these values in the obtained equations

Simple 2-state Example (2)

- In this point, you achieve $\pi_1(S) = \frac{S+\mu}{S(S+\mu+\lambda)}$
- Now what?
 - One of the challenges in any Laplace transform procedure is the inverse transform to obtain t-based function based on the S-domain function
 - One approach is to use Mellin's inverse formula

$$f(t) = L^{-1}\{F(S)\}(t) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{\gamma - iT}^{\gamma + iT} e^{st} F(S) ds$$

- ☐ This could be terrifying ③
- A table has been introduced, which denotes the inverse of well-known functions to simplify the transform from S to t

Laplace Inverse Transform

- It is recommended to make your F(S) similar to the second column of this table
 - \square In order to simply detect f(t)
- Question: $\pi_1(S) = \frac{S+\mu}{S(S+\mu+\lambda)}$ is not similar to any of the indicated transforms
 - □ What should we do?
 - □ Use the Separation of fractions
 - To use:

$$f(t) = e^{at} \leftrightarrow F(S) = \frac{1}{S - a}$$

$$\frac{1}{s}$$
 (1)

$$e^{at}f(t)$$
 $F(s-a)$ (2)

$$U(t-a) \qquad \frac{e^{-as}}{} \tag{3}$$

$$f(t-a)\mathcal{U}(t-a) \qquad e^{-as}F(s) \tag{4}$$

$$\delta(t)$$
 1 (5)

$$\delta(t - t_0) \qquad e^{-st_0} \tag{6}$$

$$t^n f(t) \qquad (-1)^n \frac{d^n F(s)}{ds^n} \tag{7}$$

$$f'(t)$$
 $sF(s) - f(0)$ (8)

$$f^n(t)$$
 $s^n F(s) - s^{(n-1)} f(0) -$

$$\cdots - f^{(n-1)}(0) \tag{9}$$

$$\int_{0}^{t} f(x)g(t-x)dx \qquad F(s)G(s) \tag{10}$$

$$t^n \ (n = 0, 1, 2, \dots) \frac{n!}{n!}$$
 (11)

$$t^{x} (x \ge -1 \in \mathbb{R}) \qquad \frac{\Gamma(x+1)}{e^{x+1}} \tag{12}$$

$$\sin kt$$
 $\frac{k}{2k+2}$ (13)

$$\cos kt \qquad \frac{s}{s^2 + k^2} \tag{14}$$

$$e^{at}$$
 $\frac{1}{s-a}$ (15)

$$\sinh kt$$
 $\frac{k}{a^2-k^2}$ (16)

$$\sinh kt \qquad \frac{s}{s^2 - k^2} \tag{17}$$

$$\frac{e^{at} - e^{bt}}{a - b} \qquad \frac{1}{(s - a)(s - b)} \tag{18}$$

$$f(t)$$
 $\mathcal{L}[f(t)] = F(s)$

$$\frac{e^{at} - be^{bt}}{a - b} \qquad \frac{s}{(s - a)(s - b)} \tag{19}$$

$$te^{at}$$
 $\frac{1}{(s-a)^2}$ (20)

$$t^n e^{at}$$
 $\frac{n!}{(a-a)^{n+1}}$ (21)

$$e^{at}\sin kt$$
 $\frac{k}{(22)}$

$$e^{at}\cos kt$$
 $\frac{s-a}{(23)}$

$$e^{at} \sinh kt$$
 $\frac{k}{(s-a)^2-k^2}$ (24)

$$\frac{s-a}{(s-a)^2-b^2}$$
 (25)

$$\frac{2ks}{(s^2 + k^2)^2} \tag{26}$$

$$t\cos kt$$

$$\frac{s^2 - k^2}{(s^2 + k^2)^2}$$
 (27)

 $t \sin kt$

$$t \sinh kt$$

$$\frac{2ks}{(s^2 - k^2)^2}$$
 (28)

$$t \cosh kt \qquad \frac{s^2 - k^2}{(s^2 - k^2)^2} \qquad (29)$$

$$(s^2 - \kappa^2)^2$$

$$\frac{at}{4} \qquad \arctan \frac{a}{2} \qquad (30)$$

$$\frac{1}{\sqrt{\pi t}}e^{-a^2/4t} \qquad \frac{e^{-a\sqrt{s}}}{\sqrt{s}} \tag{31}$$

$$\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$$
 $e^{-a\sqrt{s}}$ (32)

$$\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right) \qquad \frac{e^{-a\sqrt{s}}}{s} \tag{33}$$

Separation of Fractions

In order to transform $\pi_1(S) = \frac{S+\mu}{S(S+\mu+\lambda)}$ to factors of $\frac{1}{S-a}$

$$\frac{S+\mu}{S(S+\mu+\lambda)} = \frac{1}{(S+\mu+\lambda)} + \frac{\mu}{S(S+\mu+\lambda)} = \frac{1}{(S+\mu+\lambda)} + \left[\frac{A_1}{S} + \frac{A_2}{(S+\mu+\lambda)}\right]$$

- Use simultaneous equations to find A_1 , and A_2
- How to quickly find A₁, and A₂
 - □ Multiply the red sides by the denominator $S(S + \mu + \lambda)$
 - □ Now consider obtained equation $\mu = A_1(S + \mu + \lambda) + A_2S$
 - To find A1: Use root of the fist fraction denominator (S = 0)

$$\square \mu = A_1(\mu + \lambda) \to A_1 = \frac{\mu}{\mu + \lambda}$$

■ To find A2: Use root of the second fraction denominator $(S = -\mu - \lambda)$

$$\square \mu = A_2(-\mu - \lambda) \to A_2 = \frac{-\mu}{\mu + \lambda}$$

Final Results of Our Simple 2-state Example

■ Finally
$$\pi_1(S) = \frac{1}{(S+\mu+\lambda)} + \frac{\mu/\mu+\lambda}{S} - \frac{\mu/\mu+\lambda}{(S+\mu+\lambda)}$$

- In slide 50, similar to what we did for $\pi_1(S)$, we could right down $\pi_2(S)$, based on $\pi_1(S)$
 - $\Box \text{ Accordingly, } \pi_2(S) = \frac{\lambda}{S+\lambda} \pi_1(S) = \frac{\lambda}{S+\mu} \times \frac{S+\mu}{S(S+\mu+\lambda)} = \frac{\lambda}{S(S+\mu+\lambda)}$
- By employing the separation of fractions technique, you will be able to obtain $\pi_2(S)$ as follows:

$$\pi_2(S) = \frac{\lambda/\mu + \lambda}{S} - \frac{\lambda/\mu + \lambda}{(S + \mu + \lambda)}$$

Based on the table we have:

$$\pi_1(t) = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} e^{-(\mu + \lambda)t} \qquad \qquad \pi_2(t) = \frac{\lambda}{\mu + \lambda} - \frac{\lambda}{\mu + \lambda} e^{-(\mu + \lambda)t}$$

Using Various Notations for Results (1)

- Consider the previous 2-state CTMC with following assumptions:
 - State 0 corresponds to the correct, and state 1 corresponds to the failed states
 - The device may fail with an exponential distribution with rate λ
 - This rate would not alter during the simulation
 - It could be repaired with an exponential distribution with rate μ
- Recall: The mean value for an exponentially distributed variable is obtained by reversing the rate value $(\frac{1}{\lambda})$
 - □ The MTTF (or MTTR) for this device follows the same role

$$MTTF = 1/\lambda$$
 $MTTR = 1/\mu$

Using Various Notations for Results (2)

- If it is desired to obtain the steady-state probabilities for this example, what is the solution:
 - \square Using the $\pi Q = 0$, and doing the math from scratch
 - \square Use $\lim_{t\to\infty}\pi_i(t)$ for the intended states
- If we follow the second approach:

$$\pi_1 = \lim_{t \to \infty} \pi_1(t) = \lim_{t \to \infty} \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} e^{-(\mu + \lambda)t} = \frac{\frac{1}{MTTR}}{\frac{1}{MTTR} + \frac{1}{MTTF}} = \frac{MTTF}{MTTF}$$

$$\pi_2 = \lim_{t \to \infty} \pi_2(t) = \lim_{t \to \infty} \frac{\lambda}{\mu + \lambda} - \frac{\lambda}{\mu + \lambda} e^{-(\mu + \lambda)t} = \frac{\frac{1}{MTTF}}{\frac{1}{MTTR} + \frac{1}{MTTF}} = \frac{MTTR}{MTTF}$$

- We could use another notation: $\rho = \lambda/\mu$
 - \square $\pi_1 = \frac{1}{1+\rho}$, and $\pi_2 = \frac{\rho}{\rho+1}$

Repairing with Fault Detection and Correction (1)

- Let's modify our example a little bit
- Assume that the failure process is identical to what we had
- But, the repair is conducted in two phases:
 - ☐ First the system detects and locates the fault
 - □ Then it tries to repair the failed part
- The required time for both of these stages follow exponential distribution with rates μ_1 , and μ_2
 - \square The mean time for theses phases: $1/\mu_1$, and $1/\mu_2$
- Depict the state diagram for this system?

Repairing with Fault Detection and Correction (2)

 μ_1

- We have three states:
 - Correct state
 - Fault detected and located Repair
- Specifying the rates on the edges
- Determining the infinitesimal generator matrix for future transient, and steady-state analysis

$$Q = \begin{bmatrix} -\lambda & \lambda & 0 \\ 0 & -\mu_1 & \mu_1 \\ \mu_2 & 0 & -\mu_2 \end{bmatrix} \text{ If transient response is required } \begin{array}{c} \pi Q = 0 \\ \text{If steady-state response is required } \end{array}$$

Multi-Component Systems

- Consider a two-component system, each component with failure rate λ
- Suppose there is only a single repair facility in the system, which services a failed component
- The system is unavailable to users if both components fail
 - □ Depict the state diagram for this system, and find the transition matrix

Fault Locating Delay

- We now introduce **detection delay** that is exponentially distributed with mean $1/\delta$
 - \square Suppose that it takes $1/\delta$ time units in average to detect a fault occurred in a component
 - \square The rate of fault detection is δ
- The state diagram for a system composed of fault detection mechanism is depicted below
- This systems has two devices
 - Before declaring a failure, system tries to find its source (faults and defects) in the devices
 - A state must be considered to show the **delay** for this effort

Failure Coverage

- The probability of some type of fault that can be detected during the test of any engineered system
 - ☐ High fault coverage is particularly valuable during manufacturing test
 - Techniques such as Design For Test and automatic test pattern generation are used to increase it
- Consider another variation of twocomponent system in which the failure is detected and handled with probability c and is not detected with probability (1 − c)
 - □ If the system is not able to detect the failure, the whole system is rebooted

System is rebooted

Class Workshop

- Find the transient, and steady-state responses for all of the existing states in the following CTMC
- Assumptions:

$$\alpha = 0.04$$

$$\square$$
 $\beta = 0.09$

$$\square$$
 $\lambda_1 = 0.3$

$$\square \mu_1 = 2.5$$

□ The initial probability vector is [0 1 0]

