DIOPTRE PLAN

ASSOCIATIONS

FIBRE OPTIQUE

FIBRE OPTIQUE STRUCTURE

° Fibre nue → Composée de deux parme concentriques distinctes

FIBRE OPTIQUE STRUCTURE

O Une partie optique qui canalise et propage la lumière

FIBRE OPTIQUE STRUCTURE

• Une couche de protection mécanique appelée revêtement primaire (coating) sans fonction de propagation

FIBRE OPTIQUE STRUCTURE / COUPE LONGITUDINALE DE LA PARTIE OPTIQUE

Cœur d'indice n_{coeur}

- Cœur optique (**Core**) → Composé de silice dans lequel se propagent les ondes optiques.
- Gaine optique (Cladding) → Composée en général du même matériau que le cœur mais dopée différemment.
- Elle <u>confine</u> les ondes optiques dans le cœur.

FIBRE OPTIQUE CARACTERISTIQUES FONDAMENTALES

Guide d'onde basé → Principe de réflexion totale & Progressive tout le long de la longueur

Différence d'indice des différentes couches de matériaux diélectriques homogènes la constituant permet le confinement de la lumière dans le guide

FIBRE OPTIQUE APPROCHE OPTIQUE GÉOMÉTRIQUE

Lumière <u>confinée dans le cœur</u> de la fibre et <u>guidée grâce à</u> <u>la gaine</u>, indice plus petit;

Indice cœur-gaine différents mais Δn faible \rightarrow **D**opage

FIBRE OPTIQUE CONDITION DE GUIDAGE DU RAYON DANS LA FIBRE

Pour qu'un rayon soit effectivement <u>guidé</u> dans le cœur de la fibre → Direction du rayon se situe dans le <u>cône d'acceptance</u>,

FIBRE OPTIQUE CONDITION DE GUIDAGE DU RAYON DANS LA

Direction du ration se situe dans le cône d'acceptance \rightarrow Contient tous les angles qui permettent d'obtenir un <u>angle α </u> (interface cœur-gaine) qui permettent d'avoir une <u>réflexion totale</u>

FIGURE 20.20 Total internal reflection in a light pipe.

FIBRE OPTIQUE CONDITION DE GUIDAGE DU RAYON DANS LA

Un rayon guidé va subir automatiquement une réflexion totale à chaque fois qu'il va rencontrer l'interface cœur-gaine

FIBRE OPTIQUE CONDITION DE GUIDAGE DU RAYON DANS LA FIBRE RÉSOLUTION OPTIQUE

• Méthode :

- Entrée de la fibre → C.Stigmatisme, rayons paraxiaux
- Équation (Snell-Descartes) → Entrée fibre pour éliminer toute réfraction → perte d'information
- Équation (Snell-Descartes) entre le cœur & la gaine
 permettant d'avoir une réflexion totale → condition limite

Exploiter une fibre → Converger la lumière à l'entrée (cône d'acceptance) ➡ Faisabilité avec une source Laser ou Led

- Rayon hors du cône d'acceptance :
 - Subit une <u>réfraction</u> à l'entrée dans la fibre ensuite à l'interface des deux couches, il passera dans la gaine et sera perdu
 - Angle d'acceptance définie l'ouverture numérique de la fibre :

$$ON = \sin \theta_0 = \sqrt{n_c^2 - n_g^2} \cong \sqrt{2 n_g \Delta n}$$

FIBRE OPTIQUE DIFFÉRENTS TYPES DE FIBRES

- Deux types de fibres → monomode & multimode
 - Fibre multimode

- fibre est « multimode» → lumière se propage suivant plusieurs « modes », autrement dit elle peut suivre plusieurs trajets à l'intérieur du cœur.
- Réservée aux transmissions courtes distances

FIBRE OP' DIFFÉRENT

- O Deux types de fi
 - Fibre mu

La fibre multimode

50 / 125 ou 62,5 / 125

..... diamètre de la gaine en microns (µm)

diamètre du coeur en microns (µm)

- fibre est « multimode» → lumière se propage suivant plusieurs « modes », autrement dit elle peut suivre plusieurs trajets à l'intérieur du cœur.
- Réservée aux transmissions courtes distances

FIBRE OPTIQUE DIFFÉRENTS TYPES DE FIBRES

- Fibre multimode (MMF) \rightarrow à saut ou gradient (d'indice)
 - À saut d'indice

Indice de réfraction dans le cœur n₁ constant

FIBRE OPTIQUE DIFFÉRENTS TYPES DE FIBRES

- Fibre multimode (MMF) \rightarrow à saut ou gradient (d'indice)
 - À gradient d'indice

- Ø cœur = 50, 62.5 ou 85 µm
- 1. Indice du cœur diminue suivant une loi parabolique depuis l'axe jusqu'à l'interface cœur-gaine.
- 2. Diminution de l'indice fait que la lumière se propage plus vite, ce qui réduit la dispersion intermodale

FIBRE OPT DIFFÉRENT

- O Deux types de fibr
 - Fibre mon

La fibre monomode

9 / 125

diamètre de la gaine en microns (µm)

diamètre du coeur en microns (µm)

- fibre est « monomode» $(SMF) \rightarrow$ en raison de la très petite taille du cœur $(9\mu m) \rightarrow$ propagation d'un seul mode.
- Solution universelle des systèmes de télécommunications

FIBRE OPTIQUE FIBRES À SAUT D'INDICE & GRADIENT D'INDICE

http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/optiqueGeo/diop tres/fibre_optique.html

Fibre à saut d'indice:

- 1. Tous les trajets se font à la même vitesse
- 2. Les temps de propagation sont directement proportionnels
 aux distances parcourues → Donc ils dépendent de l'angle d'incidence à l'entrée de la fibre
- 3. Pour augmenter le débit → <u>il faut n'accepter que des</u>

 <u>rayons d'incidence normale</u>
- 4. Le meilleur moyen <u>est de réduire le diamètre du</u> <u>coeur</u>, mais alors <u>la puissance transmise dans le cœur est faible</u>

Fibre à gradient d'indice constant

- 1. Profil d'indice <u>est linéaire</u> (le gradient traduit la variation de l'indice en fonction de la distance à l'axe)
- 2. Indice diminue à mesure que l'on s'éloigne de l'axe → Ce qui veut dire que la célérité augmente → un trajet <u>plus</u>
 long est parcouru <u>plus rapidement</u> → cela permet de réduire la dispersion modale

....

Fibre à gradient d'indice linéaire

- 1. Profil d'indice parabolique (relation du second degré avec la distance à l'axe).
- 2. Configuration permettant d'obtenir en très bonne approximation chemin optique constant, et donc de <u>réaliser un débit très grand</u>.

http://www.sciences.univ-

nantes.fr/sites/genevieve_tulloue/optiqueGeo/dioptres/fibre_optique.php

FIBRE OPTIQUE CARACTÉRISTIQUES ET PERFORMANCES ATTÉNUATION DANS LA FIBRE

• Atténuation & fenêtres d'utilisation

Fenêtre $(0.8 - 0.9 \mu m)$:

- -Atténuation élevée (~ 3 dB/km)
- Composants très bon marché (Diodes LED)
- Utilisation en multimode

Fenêtre (1.28 - 1.33 µm):

- Lasers disponibles depuis longtemps & peu chers
- Atténuation raisonnable (0,33 dB/km)
- Dispersion chromatique nulle
- ⇒est encore largement utilisée

Fenêtre $(1.525-1.625 \mu m)$:

- Atténuation minimale (0,2 dB/km)
- Lasers & amplificateurs performants (assez chers)
- Existence de systèmes très performants (DWDM)
- Fenêtre de choix pour quasiment toutes les applications modernes.

FIBRE OPTIQUE

ATTÉNUATION & DISPERSION CHROMATIQUE

 <u>Atténuation</u> → explique qu'une partie du signal, sous forme de lumière, est perdue

Le signal qui se propage s'affaiblit

• Puissance au cours de la propagation de la lumière le long de la fibre

$$P(z) = P_{in} e^{-\alpha z}$$

α → Coefficient d'atténuation (Neper/m)

• Atténuation en dB/km

$$A = \frac{1}{L} 10 * \log_{10} \left(\frac{P_{\text{in}}}{P_{\text{out}}} \right)$$

FIBRE OPTIQUE

ATTÉNUATION & DISPERSION CHROMATIQUE

 ○ <u>Dispersion chromatique</u> → explique la dégradation du signal reçu par rapport au signal

• Dispersion se manifeste par un élargissement des impulsions au cours de leur propagation

DISPERSION CHROMATIQUE

30

DANS LA FIBRE OPTIQUE

DISPERSION CHROMATIQUE

Dispersion chromatique → Si on injecte en entrée d'une fibre optique une impulsion lumineuse de couleur blanche, son spectre contient toutes les lumières Allant De L'infrarouge À L'ultraviolet

•

ÉLARGISSEMENT DE L'IMPULSION

DISPERSION

CHROMATIQUE -EXEMPLE-

- Dans un milieu *non linéaire*, l'indice optique du cœur $n_1 \, varie$ en fonction de la *longueur d'onde*:
- ° n₁ 7 lorsque λ ⊿ . → Rouge (650nm) : grande longueur d'onde devant bleu (470nm) → soit n₁ petit

DISPERSION

CHROMATIQUE -

En sortie, on constate que l'impulsion s'étale, c'est le *Phénomène De Dispersion*<u>Chromatique</u>

n1 rayon bleu

- Dans un milieu *non linéaire*, l'indice optique du cœur $n_1 \, varie$ en fonction de la *longueur d'onde*:
- o n_1 → Rouge (650nm): grande longueur d'onde devant bleu (470nm) → soit n_1 petit

DISPERSION

CHROMATIQUE – PARAMÈTRES-

• Expression de la dispersion chromatique

$$\Delta t = K_{mat} \cdot \Delta \lambda \cdot L$$

- $\Delta t \rightarrow en \ picosecondes \ (Ps)$
- Kmat → coefficient dépendant du matériau (Ps.nm⁻¹.km⁻¹)
- $\Delta \lambda \rightarrow$ largeur spectrale de la source (nm)
- L \rightarrow longueur de la fibre (km)

DOCUMENTS & LIVRE

- Livres bibliothèque
 - Les fibres optiques _Notions fondamentales (câbles, connectique, composants, protocoles, réseaux), Jean-Michel MUR [TERE0243.4]
- O Documents web et partie de livres
 - CÂBLAGE FIBRE OPTIQUE POUR RÉSEAUX LOCAUX notionsinformatique.free.fr/reseaux/cablagefibre %20optique.pdf
 - LES RÉSEAUX _GUY PUJOLLE (chap4)

https://www.eyrolles.com/Chapitres/9782212119879/Chap4_Pujolle.pdf

Optical Fiber Communication_Gerd Keiser

FIN