Replacement Sheet 1/2

Fig. 7

1				5	50	
Clytin						
mtClytin	GACAGATAAA	AAATTCACTC	CTTAGATTAT	TTAGTGAATA	AGAGAAAAA	
	51				100	
Clytin						
mtClytin	AGGATAAGAA	ATCAAGATGC	AAAGGTTTAC	AAATCGTCTI	CTTTCCATGT	
	101				150	
Clytin		ATCA	ACTTTTGCAA	CTCAAAGCAA	ATTTCAAAAC	
mtClytin	CGGCTTTACG	TGCAAGATCA	AGATT.GCAA	CGCACGGCAA	ATTTTCACAC	
	151				200	
Clytin	TTCAACATGG	CTGAC.ACTG	CATCAAAATA	CGCCGTCAAA	CTCAGACCCA	
mtClytin	CAGCATACTC	TTGGCTACAG	ATTCAAAATA	CGCGGTCAAA	CTCGATCCTG	
	201				250	
Clytin	ACTTCGACAA	CCCAAAATGG	GTCAACAGAC	ACAAATTTAT	GTTCAACTTT	
mtClytin	ATTTTGCAAA	TCCAAAATGG	ATCAACAGAC	ACAAATTTAT	GTTCAACTTT	
	251				300	
Clytin	TTGGACATTA	ACGCCGACGG	AAAAATCACT	TTGGATGAAA	TCGTCTCCAA	
mtClytin	TTGGACATAA	ACGGTAAGGG	GAAAATCACA	TTAGATGAAA	TCGTCTCCAA	
	301				350	
Clytin	AGCTTCGGAT	GACATTTGCG	CCAAACTTGG	AGCAACACCA	GAACAGACCA	
mtClytin	AGCTTCAGAC	GACATTTGTG	CTAAACTGGA	TGCAACACCA	GAACAGACCA	
	351				400	
Clytin	AACGTCACCA	GGATGCTGTC	GAAGCTTTCT	TCAAAAAGAT	TGGTATGGAT	
mtClytin	AACGTCACCA	GGATGCTGTT	GAAGCCTTTT	TCAAGAAAAT	GGGCATGGAT	
	401				450	
Clytin	TATGGTAAAG	AAGTCGAATT	CCCAGCTTTT	GTTGATGGAT	GGAAAGAACT	
mtClytin	TATGGTAAAG	AAGTTGCATT	CCCAGAATTT	ATTAAGGGAT	GGGAAGAGTT	
	451				500	
Clytin	GGCCAATTAT	${\tt GACTTGAAAC}$	${\bf TTTGGTCTCA}$	AAACAAGAAA	TCTTTGATCC	
mtClytin	GGCCGAACAC	GACTTGGAAC	TCTGGTCTCA	AAACAAAAGT	ACATTGATCC	
	501				550	
Clytin	GCGACTGGGG	AGAAGCTGTT	TTCGACATTT	TTGACAAAGA	CGGAAGTGGC	
mtClvtin	GTGAATGGGG	AGATGCTGTT	TTCGACATTT	TCGACAAAGA	CGCAAGTGGC	

Replacement Sheet 2/2

Fig. 7 continued

	551				600
Clytin	TCAATCAGTT	TGGACGAATG	GAAGGCTTAT	GGACGAATCT	CTGGAATCTG
mtClytin	TCAATCAGTT	TAGACGAATG	GAAGGCTTAC	GGACGAATCT	CTGGAATCTG
	601				650
Clytin	CTCATCAGAC	GAAGACGCCG	AAAAGACCTT	CAAACATTGC	GATTTGGACA
mtClytin	TCCATCAGAC	GAAGACGCTG	AGAAGACGTT	CAAACATTGT	GATTTGGACA
	651				700
Clytin	ACAGTGGCAA	ACTTGATGTT	GATGAGATGA	CCAGACAACA	TTTGGGATTC
mtClytin	ACAGTGGCAA	ACTTGATGTT	GATGAGATGA	CCAGGCAACA	TTTAGGCTTC
	701				750
Clytin	TGGTACACCT	TGGACCCCAA	CGCTGATGGT	CTTTACGGCA	ATTTTGTTCC
mtClytin	TGGTACACAT	TGGATCCAAC	TTCTGATGGT	CTTTATGGCA	ATTTTGTTCC
	751				800
Clytin		AAACAAA	AGCCCAAAAG	AAGTTTTGGA	AGAATTATTT
mtClytin	CTAAGAAGCG	TTCAGTTAAA	AACGCTAAAC	ATTGTTCAGT	TGTAAAATTA
	801				850
Clytin				TCGTAACATG	
mtClytin	TATTCATTTT	CATTTCGTAA	AATTAGTATT	TATAAATTTG	TATCATAAAT
	851				900
Clytin		CTATATT.TA		• • • • • • • • • •	
mtClytin	TGTATCCATG	TTGTAGACTA	AATAAGACTC	GGCAAAAAA	AAAAAAAA
	0.01	012			
Clytin	901	913			
_	*********				
ntClytin	AAAAAAAAA	AAA			