Einfürung in die Algebra Hausaufgaben Blatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 23, 2023)

- **Problem 1.** (a) Begründen Sie, dass die Permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 8 & 3 & 9 & 1 & 6 & 4 & 2 \end{pmatrix} \in S_9$ in der alternierenden Gruppe A_9 liegt.
 - (b) Finden Sie i und k, so dass die Permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 7 & 4 & i & 5 & 6 & k & 9 \end{pmatrix} \in S_9$ gerade ist.

Proof. (a) Wir schreiben zuerst σ als Zyklus

$$\sigma = (176)(259)(384).$$

Dann stellen wir die Zyklus als Produkte von Transpositionen dar, wie im Beweis von 2.44

$$\sigma = (17)(76)(25)(59)(38)(84).$$

Es gibt 6 Transpositionen, also σ ist gerade, und $\sigma \in A_9$.

(b) Weil jede Zahl nur einmal vorkommen darf, gibt es nur zwei Möglichkeiten

$$i=3$$
 $j=8$,

$$i = 8$$
 $j = 3$.

Wir betrachten die zwei Fälle:

(i)
$$i = 3, j = 8$$
:

Wir schreiben es als Zyklus, und dann von Transpositionen

$$(3765) = (37)(76)(65),$$

also es ist gerade.

 $^{\ ^*} jun-wei.tan @stud-mail.uni-wuerzburg.de \\$

(ii) i = 8, j = 3 wir machen ähnlich

$$(37658) = (37)(76)(65)(58),$$

also es ist in diesem Fall nicht gerade.

Problem 2. Es sei $n \in \mathbb{N}^*$. Die Permutationen $\sigma, \tau \in S_n$ seien disjunkt.

- (a) Beweisen Sie Lemma 2.41: Es gilt $\sigma \tau = \tau \sigma$.
- (b) Folgern Sie: Es ist $ord(\sigma\tau) = kgV(ord(\sigma), ord(\tau))$.

Proof. (a) Kurze Erinnerung am Definition von disjunkter Permutationen:

Definition 1. Zwei Permutationen $\sigma, \tau \in S_n$ heißen disjunkt, falls gilt

$$\sigma(i) \neq i \implies \tau(i) = i$$
, und

$$\tau(i) \neq i \implies \sigma(i) = i$$

Wir brauchen außerdem eine Ergebnis

Lemma 2. Sei $\sigma(i) = j \neq i$. Es gilt dann $\sigma(j) \neq j$.

Proof. Sonst wäre es ein Widerspruch zu die Definition, dass S_n die Gruppe alle bijektive funktionen $\{1,\ldots,n\}\to\{1,\ldots,n\}$ ist. Die Permutation wäre dann nicht injektiv, weil $\sigma(i)=\sigma(j)$, aber per Annahme $i\neq j$ gilt.

Corollary 3. Sei $\sigma, \tau \in S_n$ disjunkter Permutation. Falls $\sigma(i) \neq i$ gilt $\tau \sigma(i) = \sigma(i)$.

Remark 4. Alle Aussagen here gelten natürlich noch, wenn man die Rollen von σ und τ vertauschen.

Die Ergebnis folgt jetzt fast sofort. Wir betrachten drei Fälle:

(i) $\sigma(i) \neq i$, also $\tau(i) = i$.

Es gilt dann

$$\sigma \tau(i) \stackrel{1}{=} \sigma(i) \stackrel{3}{=} \tau \sigma(i).$$

(ii) $\tau(i) \neq i$, also $\sigma(i) = i$.

$$\tau \sigma(i) \stackrel{1}{=} \tau(i) \stackrel{3}{=} \sigma \tau(i).$$

(iii) $\tau(i) = i$ und $\sigma(i) = i$.

$$\tau \sigma(i) = i = \sigma \tau(i)$$
.

Insgesamt gilt $\tau \sigma = \sigma \tau$.

(b) Es gilt

$$(\sigma \tau)^n = \sigma^n \tau^n$$

wegen (a), weil σ und τ kommutiert, und wir können die Reihenfolge im Produkt

$$\underbrace{\sigma\tau\sigma\tau\dots\sigma\tau}_{n \text{ Mal}}$$

verändern, sodass die σ alle an einer Seite liegen, und die τ an der anderen Seite. Sei $N \ni p \le \text{kgV}(\text{ord}(\sigma), \text{ord}(\tau))$. Sei $p = n_1 \text{ord}(\sigma) + a = n_2 \text{ord}(\tau) + b$, $a, b, n_1, n_2 \in \mathbb{N}, 0 \le a < \text{ord}(\sigma)$ und $0 \le b < \text{ord}(\tau)$.

$$(\sigma\tau)^{p} = \sigma^{p}\tau^{p}$$

$$= \sigma^{n_{1}\operatorname{ord}(\sigma) + a}\tau^{n_{2}\operatorname{ord}(\tau) + b}$$

$$= \sigma^{n_{1}\operatorname{ord}(\sigma) + a}\tau^{n_{2}\operatorname{ord}(\tau) + b}$$

$$= \sigma^{n_{1}\operatorname{ord}(\sigma)}\sigma^{a}\tau^{n_{2}\operatorname{ord}(\tau)}\tau^{b}$$

$$= \sigma^{a}\tau^{b}$$

Per Definition, wenn $p = \text{kgV}(\text{ord}(\sigma), \text{ord}(\tau))$, ist a = b = 0 und

$$(\sigma \tau)^{\text{kgV}(\text{ord}(\sigma),\text{ord}(\tau))} = \sigma^0 \tau^0 = 1.$$

Für $p < \text{kgV}(\text{ord}(\sigma), \text{ord}(\tau))$ kann die beide nicht gleichzeitig gelten. Wir betrachten dann $\sigma^a \tau^b$. Per Definition können a und b nicht gleichzeitig 0 sein. Sei zum Beispiel $a \neq 0$. Dann haben wir nie das neutrale Element (es ist egal, was b ist). Sei i_k von σ bewegt (hier nehmen wir an, dass $\sigma \neq 1$). Dann ist i_k nicht von τ bewegt, weil σ und τ disjunkt sind.

$$\sigma^a \tau^b i_k = \sigma^a i_k.$$

Per Definition ist $\sigma^a i_k \neq i_k$ für alle mögliche i_k , sonst wäre $\operatorname{ord}(\sigma) = i_k$. Dann ist $(\sigma \tau)^p \neq 1$ für alle $p < \operatorname{kgV}(\operatorname{ord}(\sigma), \operatorname{ord}(\tau))$. Schluss:

$$\operatorname{ord}(\sigma\tau) = \operatorname{kgV}(\operatorname{ord}(\sigma), \operatorname{ord}(\tau)).$$

Problem 3. (a) Zeigen Sie: Für jeden m-Zykel σ gilt ord $(\sigma) = m$.

(b) Bestimmen Sie das kleinste $n \in \mathbb{N}$, so dass S_n ein Element der Ordnung 20 enthält.

Proof. (a) Sei $\sigma=(i_1i_2\dots i_m)$, mit die i_j paarweise unterschiedlich. Es gilt, für $\mathbb{N}\ni x\leq m$

$$\sigma^{x}i_{k}=i_{p}$$
,

wobei $1 \le p \le m$ und $p \equiv k + x \pmod{n}$. $\sigma^x = 1$ genau dann, wenn $\sigma^x i_k = i_k$ für alle k, also p = k. Für x = m ist es dann klar, p = k, also $\sigma^x = 1$.

Für x < m kann das nicht sein. Das Kongruenz gilt genau dann, wenn

$$k + x - rx = k$$
, $r \in \mathbb{Z}$.

Aber per Definition, wenn r = 1 ist k + x - rx < k. Wenn r = 0 ist $k + x \ne k$, weil $x \ge 1 > 0$. Also $\sigma^x \ne 1$ für alle 1 < x < m.

(b) Mit Hilfe von 2 können wir einfach eine solche S_n konstruieren. Sei n=9. Dann haben wir 2 disjunkter Zyklus

mit Ordnung 4 und 5 (a). Dann hat das Produkt (12345)(6789) der Ordnung 20, weil 4 und 5 Teilerfremd sind, und daher $kgV(4,5) = 4 \times 5 = 20$.

Jetzt betrachten wir die Aufgabe im Allgemein. Sei $n \in \mathbb{N}$ beliebig und σ ein Element von S_n mit der Ordnung 20. Wir können σ als Produkt von k disjunkter Zykel. Die Zykel haben länge l_i , $2 \le l_i \le k \ \forall l_i$ und

$$l_1 + l_2 + \cdots + l_k \le n.$$

Der Ordnung von σ ist

$$\operatorname{ord}(\sigma) = l_1 l_2 \dots l_n = 20 = 2^2 \times 5.$$

Weil 5 ein Primzahl ist, muss mindestens ein l_1 5 sein. Also oBdA können wir für beliebiges n so versuchen, ein solches Element so konstruieren: Wir nehmen 5 Elemente raus, und versuchen weiter, ein disjunkter Zyklus mit Länge 4 oder 2 disjunkte Zykel mit Länge 2 zu finden. Dann für n =

- (1) Nachdem wir 5 Elemente rausgenommen haben, gibt es keine Elemente mehr. Wir können dann keine anderen disjunkten Zyklel finden.
- (2) Ahnlich, es gibt danach nur ein Element.
- (3) Wir können jetzt nur ein Zykel der Länge 2 schreiben, was nicht ausreichend ist.
- (4) Nachdem wir 3 Elemente rausgenommen haben, haben wir nur 3 Elemente. Dann kann man nur Zykel mit Länge 2 oder 3 schreiben. Man kann nicht ein Zyklus der Länge 4 oder zwei Zykel der Länge 2 finden.

Dann gibt es kein Element der Ordnung 20 und S_n für $\mathbb{N} \ni n < 9$, also die gewünschte n ist 9.

Problem 4. (a) Zeigen Sie, dass die Menge

$$V_4 := \{ \sigma \in A_4 | \operatorname{ord}(\sigma) \le 2 \}$$

eine Untergruppe der Ordnung 4 von A_4 (und daher auch S_4) ist.

(b) Zeigen Sie, dass V_4 ein Normalteiler von S_4 (und daher auch A_4) ist. Hinweis: V_4 heißt auch Kleinsche Vierergruppe.