DOF 02/2/17

Compiler Design/ CS3002/CSE&IT/6th/2017

Mid-Semester Examination, Spring, 2017

School of Computer Engineering KIIT University, Bhubaneswar-24

Time: 2hrs

(Answer Any five Questions including Q.No.1)

Full Mark: 25

Q1)Answer all questions.

- $[1 \times 5]$
- (a)Define a Compiler. Contrast its features with an interpreter.
- (b)Count the number of tokens in the followings:
 - (i) printf("i = %d, &i = %x", i, &i);
 - (ii) void main()
 {
 printf ("Whats up %d",++&&***a);/* abc*/
 }
- (c)Given the following expression grammar:

$$E \rightarrow E * F \mid F+E \mid F$$

 $F \rightarrow id-F \mid id$

What is the precedence and associativity of the operators *, + and -?

- (d)Draw a transition diagram to recognize an e-mail address.
- (e) Left factor the following grammar.

```
rexpr \rightarrow rexpr + rterm \mid rterm

rterm \rightarrow rterm \ rfactor \mid rfactor

rfactor \rightarrow rfactor^* \mid rprimary

rprimary \rightarrow a \mid b
```

Q2)(a) Explain each phase of compiler for the expression a:=b+c*50.

[2]

(b) Consider the following Grammar with start symbol A.

 $[1.5 \times 2]$

$$A \rightarrow (C) \mid O$$

 $C \rightarrow C, A \mid A$

- (i)Construct a parse tree for (o,o) and (o,(o,o)).
- (ii)Construct a leftmost and rightmost derivation for the string (o,(o,o)).
- Q3)(a)Justify the followings.

[1×2]

- (i)Lexical Analysis should be separated from syntax analysis
- (ii)Various phases of compiler are grouped into passes as backend and front end.

[page-1/2]

- (b) What are regular definitions? Write regular definitions for the followings: [1+1+1]
- (i) All identifiers with _ as the first symbol.
- (ii)All real numbers with optional fractional part
- Q4)(a) Why input buffering is required in lexical analysis? How a sentinel is handled in processing lexemes during lexical analysis? [2]
- (b) Convert the following regular expression $(a^*|b^*)^*$ into deterministic finite automata.

[3]

- Q5) (a) Construct a DFA for the relational operators in C language by clearly mentioning the return functions at the final states of the DFA. [2]
- (b)Consider the following grammar

[3]

 $A \rightarrow aBe \mid cBd \mid C$

 $B \rightarrow bB \mid \epsilon$

 $C \rightarrow f$

Write down the procedures for the non terminals of the grammar to make a recursive descent parser.

Q6. Given the grammar

[1.5+1.5+2]

$$E \rightarrow E + E \mid E - E \mid E \times E \mid E \uparrow E \mid E \mid E \mid (E) \mid d$$

- (a)Convert above grammar to unambiguous grammar.
- (b) If result of 6(a) is left recursive, make it non left recursive.
- (c) Find the first and follow sets of the result of 6(b).

(Here the operators *, -, +, and / have their usual meanings and $2\uparrow 3=8$ and has highest precedence and is right associative)

- Q7.(a) Write a LEX Program to count the number of *if* and *printf* statements from a code written in a file.
- (b) Find FIRST and FOLLOW Set for the following Grammar.

[1.5×2]

(i) $S \rightarrow T; S \mid \epsilon$

 $T \rightarrow UR$

 $R \rightarrow .T \mid \epsilon$

 $U \rightarrow x \mid y \mid [S]$

 $(ii)S \rightarrow aAbB|bAaB|cAbC|\epsilon$

 $A \rightarrow S$

 $B \rightarrow S$

 $C \rightarrow S$