Package 'CompClassMetrics'

September 3, 2025

Version 0.1.0

Description Accuracy metrics are commonly used to assess the discriminating ability of diagnostic tests or biomarkers. Among them, metrics based on the ROC framework are particularly popular. When classification involves subclasses, the package 'CompClassMetrics' includes functions that can provide the point estimate, confidence interval as well as true values if a parametric setting is known. For more de-

tails see Nan and Tian (2025) <doi:10.1177/09622802251343600> and Nan and Tian (2023) <doi:10.1002/sim.9908> and F

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports plot3D, pracma, cubature, stats

NeedsCompilation no

Author Nan Nan [aut, cre]

Maintainer Nan Nan <nannan@buffalo.edu>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2025-09-03 21:00:20 UTC

Contents

adni2
AUCofunc
CI.func
CVUS.calc.func
F_min_given_max_partial_gamma_upper
F_min_given_max_partial_normal_upper
F_min_max_partial_gamma
F_min_max_partial_normal
f_order_max_gamma
f_order_max_normal
f_order_min_gamma

2 adni2

	f_order_min_normal	8
	F_order_r_gamma	9
	F_order_r_normal	9
	get_max_min_permutations	10
	hum.dynamic	10
	HUMC_fourclass	11
	HUMC_NPCI	12
	HUM_min	12
	HUM_standard	13
	PLCO	13
	ROCC_curve	14
	ROCC_Surface	14
Index		16
adni2	2 adni2	

Description

Description of adni2.

Format

A data frame with 317 rows and 7 columns:

RID Participant ID

DX.bl The disease class label

FDG Numeric, value of FDG

AV45 Numeric, value of AV45

ABETA Numeric, value of ABETA

TAU.x Numeric, value of TAU from CSF

PTAU Numeric, value of PTAU from CSF

Source

This is a subset of ADNI2 dataset, available at https://adni.loni.usc.edu

AUCofunc 3

AUCofunc R function that calculates the true values of AUCo when distribution is known	AUCofunc	v
--	----------	---

Description

R function that calculates the true values of AUCo when distribution is known

Usage

```
AUCofunc(k1, k2, distribution, arg1, arg2)
```

Arguments

k1	number of subclasses in main class-1
k2	number of subclasses in main class-2
distribution	the distribution of marker value follows Normal or Gamma
arg1	if distribution is normal input mean parameters of all subclasses in a vector, if gamma input shape parameters
arg2	if distribution is gamma input variance parameter, if gamma input rate parameters

The true value of AUCo under given distribution and parameters

CI.func	R function that calculates percentile confidence interval given an array of estimates

Description

This function provides percentile confidence interval

Usage

Value

```
CI.func(x)
```

Arguments

x an array of calculated estimates

Value

The percentile confidence interval of given values

CVUS.calc.func R function that calculates the true values of VUSC when distribution is known		CVUS.calc.func		
--	--	----------------	--	--

Description

R function that calculates the true values of VUSC when distribution is known

Usage

```
CVUS.calc.func(k1, k2, k3, distribution, arg1, arg2)
```

Arguments

k1	number of subclasses in main class-1
k2	number of subclasses in main class-2
k3	number of subclasses in main class-3
distribution	the distribution of marker value follows Normal or Gamma
arg1	if distribution is normal input mean parameters of all subclasses in a vector, if gamma input shape parameters
arg2	if distribution is gamma input variance parameter, if gamma input rate parame-

ters

Value

The true value of VUSc under given distribution and parameters

```
F_min_given_max_partial_gamma_upper
```

R function that calculates the conditional probability of minimum greater than y_min given maximum equals to y_max of gamma random variables (upper tail of conditional probability of minimum given maximum)

Description

R function that calculates the conditional probability of minimum greater than y_min given maximum equals to y_max of gamma random variables (upper tail of conditional probability of minimum given maximum)

Usage

```
F_min_given_max_partial_gamma_upper(y_min, y_max, shape, rate)
```

Arguments

y_min	the value of y_min
y_max	the value of y_max
shape	the vector of shape parameters of gamma random variables
rate	the vector of rate parameters of gamma random variables

Value

The conditional probability of minimum given maximum of gamma random variables

```
F_min_given_max_partial_normal_upper
```

R function that calculates the conditional probability of minimum greater than y_min given maximum equals to y_max of normal random variables (upper tail probability of minimum given maximum)

Description

R function that calculates the conditional probability of minimum greater than y_min given maximum equals to y_max of normal random variables (upper tail probability of minimum given maximum)

Usage

```
F_min_given_max_partial_normal_upper(y_min, y_max, mu, sd)
```

Arguments

y_min	the value of y_min
y_max	the value of y_max
mu	the vector of mean parameters of normal random variables
sd	the vector of variance parameters of normal random variables

Value

The conditional probability of minimum given maximum of normal random variables

F_min_max_partial_gamma

R function that calculates the partial of joint probability of min and max over max of NIND gamma random variables

Description

R function that calculates the partial of joint probability of min and max over max of NIND gamma random variables

Usage

```
F_min_max_partial_gamma(y_min, y_max, shape, rate)
```

Arguments

y_min	the value of y_min
y_max	the value of y_max
shape	the vector of shape parameters of gamma random variables
rate	the vector of rate parameters of gamma random variables

Value

The partial of joint probablity of min and max over max

```
F_min_max_partial_normal
```

R function that calculates the partial of joint probability of min and max over max of NIND normal random variables

Description

R function that calculates the partial of joint probability of min and max over max of NIND normal random variables

Usage

```
F_min_max_partial_normal(y_min, y_max, mu, sd)
```

Arguments

y_min	the value of y_min
y_max	the value of y_max

mu the vector of mean parameters of normal random variables sd the vector of variance parameters of normal random variables

f_order_max_gamma 7

Value

The partial of joint probablity of min and max over max

f_order_max_gamma R function that calculates the probability density of maximum of gamma random variables (PDF)

Description

R function that calculates the probability density of maximum of gamma random variables (PDF)

Usage

```
f_order_max_gamma(y_max, shape, rate)
```

Arguments

y_max the value of y_max

shape the vector of shape parameters of gamma random variables rate the vector of rate parameters of gamma random variables

Value

The probability density of maximum of gamma random variables

f_order_max_normal R function that calculates the probability density of maximum of NIND normal random variables (PDF)

Description

R function that calculates the probability density of maximum of NIND normal random variables (PDF)

Usage

```
f_order_max_normal(y_max, mu, sd)
```

Arguments

y_max the value of y_max

mu the vector of mean parameters of normal random variables sd the vector of variance parameters of normal random variables

Value

The probability density of maximum of normal random variables

f_order_min_normal

f_order_min_gamma	R function that calculates the probability density of minimum of gamma random variables (PDF)
	, ,

Description

R function that calculates the probability density of minimum of gamma random variables (PDF)

Usage

```
f_order_min_gamma(y_min, shape, rate)
```

Arguments

y_min	the value of v	min

shape the vector of shape parameters of gamma random variables rate the vector of rate parameters of gamma random variables

Value

The probability density of minimum of gamma random variables

f_order_min_normal	R function that calculates the probability density of minimum of NIND normal random variables (PDF)

Description

R function that calculates the probability density of minimum of NIND normal random variables (PDF)

Usage

```
f_order_min_normal(y_min, mu, sd)
```

Arguments

		.1 1	c		
V	mın	the valu	e of v	mın	

mu the vector of mean parameters of normal random variables sd the vector of variance parameters of normal random variables

Value

The probability density of minimum of normal random variables

F_order_r_gamma 9

F_order_r_gamma R function that calculates the probability of r-th order statistics gamma random variables (CDF of r-th order statistics)	of
---	----

Description

R function that calculates the probability of r-th order statistics of gamma random variables (CDF of r-th order statistics)

Usage

```
F_order_r_gamma(x, shape, rate, r)
```

Arguments

x	the	value	of x

shape the vector of shape parameters of gamma random variables rate the vector of rate parameters of gamma random variables

r r-th order statistics

Value

The probability of r-th order statistics of gamma random variables smaller or equal to x

F_order_r_normal	R function that calculates the probability of r-th order statistics of nor-
	mal random variables (CDF of r-th order statistics)

Description

R function that calculates the probability of r-th order statistics of normal random variables (CDF of r-th order statistics)

Usage

```
F_order_r_normal(x, mu, sd, r)
```

Arguments

X	the value of x
mu	the vector of mean parameters of normal random variables
sd	the vector of variance parameters of normal random variables
r	r-th order statistics

Value

The probability of r-th order statistics of normal random variables smaller or equal to x

10 hum.dynamic

```
get_max_min_permutations
```

R function for obtaining all combinations of maximum and minimum of a given dataset

Description

R function for obtaining all combinations of maximum and minimum of a given dataset

Usage

```
get_max_min_permutations(df)
```

Arguments

df

Given dataset, in list form

Value

A list of all combinations of maximum and minimum of df

hum.dynamic

R function that calculates empirical estimates of HUMcm

Description

This function provides empirical estimates of HUMcm

Usage

```
hum.dynamic(dat, num_sub)
```

Arguments

dat test values in list, each element represents biomarker values for a disease group

num_sub a vector of number of subclasses in each subclass

Value

The empirical estimate of HUMcm based on given data and num_sub

HUMC_fourclass 11

Examples

```
# Create a list of example data Y1 <- c(0.9316, 0.9670, 1.3856, 1.3505, 1.0316, 1.1764, 0.7435, 0.5813, 0.4695, 0.3249) Y2 <- c(1.63950, 1.36535, 1.79859, 0.47961, 1.50978, 1.36525, 0.13515, 2.11275, 0.45659) Y3 <- c(1.89856, 1.30920, 2.38615, 2.34785, 2.92493, 2.71615, 2.75243, 0.95060, 0.38964) Y4 <- c(2.580, 2.570, 2.143, 3.079, 1.765, 3.081, 2.175, 2.306, 2.918, 2.507, 4.261, 3.033, 1.836, 2.321) Y5 <- c(3.969, 3.044, 3.318, 2.862, 3.655, 1.523, 3.722, 4.074, 3.662, 3.571, 5.177, 6.321, 4.932, 4.129) Y.dat <- list(Y1,Y2,Y3,Y4,Y5) num_sub <- c(1,3,1) # calculate HUMcm of Y.dat and num_sub hum.dynamic(Y.dat,num_sub)
```

 ${\sf HUMC_fourclass}$ ${\it R function that calculates the true values of HUMcm when distribution}$ ${\it is known}$

Description

R function that calculates the true values of HUMcm when distribution is known

Usage

```
HUMC_fourclass(distribution, arg1, arg2, num_sub)
```

Arguments

distribution	the distribution of marker value follows Normal or Gamma
arg1	if distribution is normal input mean parameters of all subclasses in a vector, if gamma input shape parameters
arg2	if distribution is gamma input variance parameter, if gamma input rate parameters
num_sub	the vector of number of subclasses in each main class

Value

The true value of HUMcm under given distribution and parameters

12 HUM_min

HUMC_NPCI	R function that calculates non-parametric bootstrap percentile confidence interval

Description

This function provides non-parametric bootstrap percentile confidence interval of HUMcm

Usage

```
HUMC_NPCI(dat, num_sub, B)
```

Arguments

dat test values in list, each element represents biomarker values for a disease group num_sub a vector of number of subclasses in each subclass

B the number of iteration

Value

The non-parametric bootstrap percentile confidence interval of HUMcm

Examples

```
# Create a list of example data  Y1 <- c(0.9316,\ 0.9670,\ 1.3856,\ 1.3505,\ 1.0316,\ 1.1764,\ 0.7435,\ 0.5813,\ 0.4695,\ 0.3249)   Y2 <- c(1.63950,\ 1.36535,\ 1.79859,\ 0.47961,\ 1.50978,\ 1.36525,\ 0.13515,\ 2.11275,\ 0.45659)   Y3 <- c(1.89856,\ 1.30920,\ 2.38615,\ 2.34785,\ 2.92493,\ 2.71615,\ 2.75243,\ 0.95060,\ 0.38964)   Y4 <- c(2.580,2.570,2.143,3.079,1.765,3.081,2.175,2.306,2.918,2.507,4.261,3.033,1.836,2.321)   Y5 <- c(3.969,3.044,3.318,2.862,3.655,1.523,3.722,4.074,3.662,3.571,5.177,6.321,4.932,4.129)   Y.dat <- list(Y1,Y2,Y3,Y4,Y5)   num_sub <- c(1,3,1)   \# calculate the non-parametric bootstrap percentile confidence interval   HUMC_NPCI(Y.dat,num_sub,50)
```

HUM_min

R function that calculates the minimum of HUMcm under given structure

Description

R function that calculates the minimum of HUMcm under given structure

Usage

```
HUM_min(num_sub)
```

HUM_standard 13

Arguments

num_sub the vector of number of subclasses in each main class

Value

The minimum of HUMcm

HUM_standard

R function to calculate the standardized HUMcm under given structure

Description

R function to calculate the standardized HUMcm under given structure

Usage

```
HUM_standard(value, num_sub)
```

Arguments

value the value of HUMcm

num_sub the vector of number of subclasses in each main class

Value

The standardized HUMcm

PLCO PLCO

Description

Description of PLCO.

Format

A data frame with 239 rows and 7 columns:

ID Participant ID

Group The disease class label

CA125 Numeric, value of CA125

CA153 Numeric, value of CA153

CA199 Numeric, value of CA199

KLK6 Numeric, value of KLK6

CA724 Numeric, value of CA724

ROCC_Surface

Source

This is a subset of PLCO dataset, available at https://edrn.nci.nih.gov.

ROCC_curve

R function for plotting the overall ROC curve and chance curve

Description

R function for plotting the overall ROC curve and chance curve

Usage

```
ROCC_curve(k1, k2, distribution, arg1, arg2)
```

Arguments

k1 number of subclasses in main class-1k2 number of subclasses in main class-2

distribution the distribution of marker value follows Normal or Gamma

arg1 if distribution is normal input mean parameters of all subclasses in a vector, if

gamma input shape parameters

arg2 if distribution is gamma input variance parameter, if gamma input rate parame-

ters

Value

The overall ROC curve and chance curve

ROCC_Surface

R function for plotting the compound ROC surface and chance surface

Description

R function for plotting the compound ROC surface and chance surface

Usage

```
ROCC_Surface(k1, k2, k3, distribution, arg1, arg2)
```

ROCC_Surface 15

Arguments

k1	number of subclasses in main class-1
k2	number of subclasses in main class-2
k3	number of subclasses in main class-3
distribution	the distribution of marker value follows Normal or Gamma
arg1	if distribution is normal input mean parameters of all subclasses in a vector, if gamma input shape parameters
arg2	if distribution is gamma input variance parameter, if gamma input rate parameters

ters

Value

The compound ROC surface and chance surface

Index

```
adni2, 2
AUCofunc, 3
CI.func, 3
CVUS.calc.func, 4
{\tt F\_min\_given\_max\_partial\_gamma\_upper, 4}
F_min_given_max_partial_normal_upper,
F_min_max_partial_gamma, 6
F_min_max_partial_normal, 6
f_order_max_gamma, 7
f_order_max_normal, 7
f_order_min_gamma, 8
f_order_min_normal, 8
F_order_r_gamma, 9
F_order_r_normal, 9
{\tt get\_max\_min\_permutations}, 10
hum.dynamic, 10
HUM_min, 12
HUM_standard, 13
HUMC_fourclass, 11
HUMC_NPCI, 12
PLC0, 13
ROCC_curve, 14
ROCC_Surface, 14
```