Lecture 7: High-Dimensional Linear Regression

Francis J. DiTraglia

April 6, 2014

1 Review of Matrix Decompositions

1.1 The QR Decomposition

Any $n \times k$ matrix A with full column rank can be decomposed as A = QR, where R is an $k \times k$ upper triangular matrix and Q is an $n \times k$ matrix with orthonormal columns. The columns of A are orthogonalized in Q via the Gram-Schmidt process. Since Q has orthogonal columns, we have $Q'Q = I_k$. It is not in general true that QQ' = I, however. In the special case where A is square, $Q^{-1} = Q'$.

Note: The way we have defined things here is here is sometimes called the "thin" or "economical" form of the QR decomposition, e.g. qr_econ in Armadillo. In our "thin" version, Q is an $n \times k$ matrix with orthogonal columns. In the "thick" version, Q is an $n \times n$ orthogonal matrix. Let A = QR be the "thick" version and $A = Q_1R_1$ be the "thin" version. The connection between the two is as follows:

$$A = QR = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1R_1$$

Least-Squares via the QR Decomposition We can calculate the least squares estimator of β as follows

$$\widehat{\beta} = (X'X)^{-1}X'y = [(QR)'(QR)]^{-1} (QR)'y$$

$$= [R'Q'QR]^{-1} R'Q'y = (R'R)^{-1}R'Qy$$

$$= R^{-1}(R')^{-1}R'Qy = R^{-1}Qy$$

In other words, $\widehat{\beta}$ is the solution to $R\beta=Qy$. While it may not be immediately apparent, this is a much easier system to solve that the normal equations $(X'X)\beta=X'y$. Because R is upper triangular we can solve $R\beta=Qy$ extremely quickly. The product Qy is simply a vector, call it v, so the system is simply

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1,n-1} & r_{1k} \\ 0 & r_{22} & r_{23} & \cdots & r_{2,n-1} & r_{2k} \\ 0 & 0 & r_{33} & \cdots & r_{3,n-1} & r_{3k} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & r_{k-1,k-1} & r_{k-1,k} \\ 0 & 0 & \cdots & 0 & 0 & r_k \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_{k-1} \\ \beta_k \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{k-1} \\ v_k \end{bmatrix}$$

Hence, $\beta_k = v_k/r_k$ which we can substitute into $\beta_{k-1}r_{k-1,k-1} + \beta_k r_{k-1,k} = v_{k-1}$ to solve for β_{k-1} , and so on. This is called **back substitution**. We can use the same idea when a matrix is *lower triangular* only in reverse: this is called **forward substitution**.

To calculate the variance matrix $\sigma^2(X'X)^{-1}$ for the least-squares estimator, simply note from the derivation above that $(X'X)^{-1} = R^{-1}(R^{-1})'$. Inverting R, however, is easy: we simply apply back-substitution repeatedly. Let A be the inverse of R, \mathbf{a}_j be the jth column of A, and \mathbf{e}_j be the jth element of the $k \times k$ identity matrix, i.e. the jth standard basis vector. Inverting R is equivalent to solving $R\mathbf{a}_1 = \mathbf{e}_1$, followed by $R\mathbf{a}_2 = \mathbf{e}_2$, and so on all the way up to $R\mathbf{a}_k = \mathbf{e}_k$. In Armadillo, if you enclose a matrix in trimatu() or

trimatl(), and then request the inverse, the library will carry out backward or forward substitution, respectively.

Othogonal Projection Matrices and the QR Decomposition Consider a projection matrix $P_X = X(X'X)^{-1}X'$. Provided that X has full column rank, we have begin

$$P_X = QR(R'R)^{-1}R'Q' = QRR^{-1}(R')^{-1}R'Q' = QQ'$$

Recall that, in general, it is *not* true that QQ' = I even though Q'Q = I. It's important to keep this in mind when using the QR decomposition for more complicated matrix calculations, such as linear GMM.

1.2 The Singular Value Decomposition

The Singular Value Decomposition (SVD) is probably the most elegant result in linear algebra. It's also an invaluable computational and theoretical tool in statistics and econometrics. I can only give a brief overview here, but I'd encourage you to learn more when you have time. Some excellent references are Strang (1993) and Kalman (2002).

2 Gauss-Markov, meet James-Stein

Consider the linear regression model $\mathbf{y} = X\beta + \boldsymbol{\epsilon}$ In Econ 705 you learned that ordinary least squares (OLS) is the minimum variance unbiased linear estimator of β under the assumptions $E[\epsilon|X] = \mathbf{0}$ and $Var(\epsilon|X) = \sigma^2 I$. When the second assumption fails, you learned that generalized least squares (GLS) provides a lower variance estimator than OLS. All of this is fine, as far as it goes, but there's an obvious objection: why are we restricting ourselves to unbiased estimators? Generically, we know that there is a bias-variance tradeoff. So what happens if we allow ourselves to consider biased estimators? Does some form of the Gauss-Markov Theorem still hold?

A Fundamental Decomposition