DIMENSIONAL VARIABLES

i=layer index

N=number of layers

Interior Model(i).R0= R(i)

Interior Model(i).rho0= $\rho_0(i)$

Interior_Model(i).mu0= $\mu_0(i)$

Interior Model(i).eta0= $\eta_0(i)$

Interior Model(i).Ks0= $\kappa_0(i)$

Interior Model(i).ocean=0/1(no/ocean)

TIDAL FORCING

Forcing.n= n_T

Forcing.m= m_T

Forcing.F= $\phi_{n-}^{(T)m_T,+}$

Forcing.T= $\frac{2\pi}{}$

$$\Phi^T = \Phi^{(T)}_{n}^{m_T,+} Y_{n_T}^{m_T} e^{i\omega t} -$$

NON-DIMENSIONAL VARIABLES

1D Profile

Interior Model(i).R=R(i)/R(N)Interior Model(i).rho= $\rho_0(i)/\rho_0(N)$ Interior_Model(i).mu= $\mu_0(i)/\mu_0(N)$ Interior_Model(i).Ks= $\kappa_0(i)/\mu_0(N)$ Interior_Model(i).eta= $\eta_0(i)/\mu_0(N)T$ Interior_Model(i).MaxTime= $\omega \eta_0(i)/\mu_0(N)$

Interior_Model.Gg= $G\rho^2(N)R^2(N)/\mu_0(N)$

$$\hat{\mu}(i) = \frac{\mu(i)}{1 - i \frac{\mu(i)}{\omega \eta(i)}}$$

Interior Model(i).muC= $\hat{\mu}_0(i)/\mu_0(N)$

3D Variations

$$(\mu, \kappa, \eta)(i) = (\mu_0, \kappa_0, \eta_0)(i) + \sum_{n \neq 0, m} (\mu_0 \mu_n^m, \kappa_0 \kappa_n^m, \eta_0 \eta_n^m)(i) Y_n^m$$

Computed in get rheology

Minimum required inputs

Option 1: complex spherical harmonics

Interior Model(i).mu variable(:,1)=n Interior Model(i).mu variable(:,2)=m Interior Model(i).mu variable(:,3)= μ_n^m

Interior_Model(i).eta_variable(:,1)=n

Interior_Model(i).eta_variable(:,2)=*m*

Interior Model(i).eta variable(:,3)= η_n^m

Interior Model(i).K variable(:,1)=n

Interior Model(i).K variable(:,2)=m

Interior_Model(i).K_variable(:,3)= κ_n^m

Option 2: peak to peak wrt the mean value (in %)

Interior Model(i).mu variable p2p(:,1)=n

Interior Model(i).mu variable p2p(:,2)=m

Interior Model(i).mu variable $p2p(:,3) = \mu_n^m[\%]$

Interior_Model(i).eta_variable _p2p(:,1)=n

Interior_Model(i).eta_variable _p2p(:,2)=m

Interior_Model(i).eta_variable _p2p(:,3)= η_n^m [%]

Interior Model(i).K variable p2p(:,1)=n

Interior Model(i).K variable p2p(:,2)=m

Interior_Model(i).K_variable _p2p(:,3)= κ_n^m [%]

Option 3: map

Interior Model(i).mu latlon= $\mu(i, \theta, \varphi)/\mu_0(i)$

Interior Model(i).eta latlon = $\eta(i, \theta, \varphi)/\eta_0(i)$

Interior Model(i).K latlon = $\kappa (i, \theta, \varphi) / \kappa_0(i)$

Interior Model(i).rheology variable(1,:)=n

Interior_Model(i).rheology_variable(2,:)=m

Interior_Model(i).rheology_variable(4,:)= $\mu_0(i)$ $\hat{\mu}_n^m(i)/\mu_0(N)$

$$\hat{\mu}(i) = \hat{\mu}_0(i) + \mu_0(i) \sum_{n \neq 0, m} \hat{\mu}_n^m(i) Y_n^m$$