Homework12

Qi'ao Chen 21210160025

December 22, 2021

Exercise 1. Show that if $p \in S_n(T)$ then $S_n(T) \setminus \{p\}$ is open

Proof.
$$S_n(T) \setminus \{p\} = \bigcup_{\varphi \in p} [\neg \varphi]$$

Exercise 2. Suppose $X\subseteq S_n(T)$ is open and the complement $S_n(T)\setminus X$ is also open. Show that X is clopen

Proof. Since X and $S_n(T) \setminus X$ are open, $X = \bigcup_{\varphi \in E} [\varphi]$ and $S_n(T) \setminus X = \bigcup_{\psi \in D} [\psi]$ for some sets E, D of formulas. If one of E or D is finite, then X is clopen. Now suppose E and D are infinite, then since $S_n(T) = \bigcup_{\varphi \in E} [\varphi] \cup \bigcup_{\psi \in D} [\psi]$, by Lemma 5, there are finite subsets $E' \subseteq E$ and $D' \subseteq D$ s.t. $S_n(T) = \bigcup_{\varphi \in E'} [\varphi'] \cup \bigcup_{\psi \in D'} [\psi']$. Thus $X = \bigcup_{\varphi \in E'} [\varphi'] = [\bigvee_{\varphi \in E'} \varphi']$ and hence it is clopen. \square

Exercise 3. Suppose I is a set and $U_i\subseteq S_n(T)$ is open for each $i\in I$. Suppose $\bigcup_{i\in I}U_i=S_n(T)$. Show that there is a finite set $I_0\subseteq I$ s.t. $\bigcup_{i\in I_0}U_i=S_n(T)$

Proof. For each $i\in I$, since U_i is open, it is a union of clopen sets, that is, $U_i=\bigcup_{\varphi_i\in E_i}[\varphi_i]$ for some E_i . Hence $S_n(T)=\bigcup_{i\in I}U_i=\bigcup_{i\in I}\bigcup_{\varphi_i\in E_i}[\varphi_i]$. Thus by Lemma 5, there is a finite subset E of $\bigcup_{i\in I}E_i$ s.t. $S_n(T)=\bigcup_{\varphi\in E}[\varphi]$. Since for each $\varphi\in E$, $[\varphi]\subseteq U_i$ for some $i\in I$, there is a finite set $I_0\subseteq I$ s.t. $\bigcup_{i\in I_0}U_i=S_n(T)$

Exercise 4. Let $S_3(DLO)$ be the space of 3-types in DLO. What is the cardinality of $S_3(DLO)$?

Proof. Since DLO has quantifier elimination and has no constant, for variables x, y, z, the basic formulas are of the form

$$o = o$$
, $o < o'$

where o and o' is one of x, y, z. Thus there is 13 kinds of relation between x, y and z:

$$x = y = z$$
 $x = y < z$ $x < y < z$ $z < x = y$ $x < z < y$ $y < x = z$ $y < x < z$ $x = z < y$ $y < z < x$ $x = z < y$ $y < z < x$ $x < y = z$ $z < x < y$ $y = z < x$ $z < y < x$

And thus $|(S_3(DLO))| = 13$

Exercise 5. Let K be an infinite field and $t \in K$ be a non-zero element. Suppose the type-space $S_1(\{t\})$ is finite. Show that there is a positive integer n s.t. $t^n = 1$

Proof. If there is no such n, then for each different $i, j \in \mathbb{N}^+$, $t^i \neq t^j$. Thus for each $i \in \mathbb{N}^+$, $x = t^i$ determines a unique type in $S_1(\{t\})$ and hence $S_1(\{t\})$ is infinite, a contradiction

Exercise 6. Let T be a complete theory of infinite fields. Show that T is not ω -categorical

Proof. Suppose $M \vDash T$ and T is ω -categorical, then by Ryll-Nardzewski theorem $S_2(T)$ is finite. Then for each $a \in M$, $|S_1(\{a\})| \le |S_2(T)|$ and hence there is a least positive n_a s.t. $a^{n_a} = 1$.

Let $d = \sup\{n_a : a \in M\}$. If $d = \omega$, then consider

$$\Gamma(x)=\{x^n\neq 1:n\in\omega\}$$

is finitely satisfiable and hence there is a countable model $N \vDash T$ and a element $t \in N$ s.t. $S_1(\{t\})$ is infinite, a contradiction. Thus $d < \omega$.

But $x^d-1=0$ has only finitely many solutions, contradicting to the infinity of M