

Data Analyst

Presentasi Final Project Kelompok 2: Agrifood

Swipe

Profile Team

Jauhari lan Novian

Team Leader

Universitas Saintek Muhammadiyah

Erna Endang Lestari

Data Analyst

Universitas Mahaputra Muhammad Yamin

Dwi Wulandari

Data Visualization

Universitas Negeri Semarang

Miftakhul Ma'firoh

Data Analyst

Universitas Muhammadiyah Malang

Siti Magfiroh

Data Visualizatin

Universitas Sultan Ageng Tirtayasa

Visi

Menjadi kelompok riset yang unggul di bidang analisis data yang berbasis teknologi hijau dan berkelanjutan secara terpadu.

Misi

Melakukan analisis dan visualisasi tehadap data emisi karbon di lahan pertanian guna mewujudkan lahan pertanian yang minim dalam menyumbang emisi karbon dengan berbasis pada teknologi

Swipe

Business Understanding

Data ini menggambarkan emisi karbondioksida yang terkait dengan pertanian pangan, yang berjumlah sekitar 62% dari emisi tahunan global. Dengan memanfaatkan teknik pembelajaran mesin, dataset ini memungkinkan peramalan emisi di masa depan, sehingga para pembuat kebijakan dan peneliti dapat mengembangkan strategi dan intervensi yang ditargetkan untuk praktik pertanian yang berkelanjutan. Tools yang digunakan untuk pengolahan data adalah Google Collab, Bahsa Pemrograman Python dan Google Looker Studio.

Website

Memahami Bisnis Yang Menjadi Sumber Data

- Dataset ini di dapatkan dari <u>https://www.kaggle.com/datasets/alessandrolobello/agri-food-co2-emission-dataset-forecasting-ml</u>
- Dataset ini digabungkan dari dataset milik FAO dan IPCC
- Dataset tersebut, seperti yang ditunjukkan dalam buku catatan, menggambarkan emisi CO2 yang terkait dengan agrikultur, yang berjumlah sekitar 62% dari emisi tahunan global.

Tools dan Teknik

Pemodelan yang digunakan yaitu supervised learning. Metode yang digunakan untuk membuat prediksi atau peramalan dari tren emisi karbon dioksida yaitu metode regresi.

Tools yang digunakan diantaranya:

- 1. Bahasa Pemprograman Python
- 2. Google Collab
- 3. Google Data Studio

Algoritma yang digunakan pada peramalan diantaranya K-Nearest Neighbors (KNN), Decition tree, Random Forest dan XGBoost

Tujuan

Mengetahui prediksi emisi karbondioksida di masa depan khususnya di bidang industri pertanian. Hasil analisis data ini nantinya adalah memberikan pengetahuan yang bisa digunakan untuk memperbaiki cara pengelolaan industri pertanian pangan yang minim menyumbang Emisi Karbon dioksida Sehingga industri pertanian pangan tersebut lebih ramah lingkungan.

Manfaat

Mengembangkan strategi dan intervensi yang ditargetkan untuk praktik pertanian yang berkelanjutan bagi para pembuat kebijakan

Data Understanding

Menggunakan dataset *Agrofood_co2_emission*Data berisi emisi karbondioksida yang terkait
dengan pertanian pangan, yang berjumlah sekitar
62% dari emisi tahunan global. Data ini bersumber
dari Organisasi Pangan dan Pertanian (FAO) dan
data dari IPCC. Dataset ini awalanya mempunyai
6965 baris dan 29 kolom.

Mendapatkan Sumber Data

- Sumber data di dapatkan dari Kaggle
- https://www.kaggle.com/datasets/alessandrolobello/agri-food-co2-emission-dataset-forecasting-ml
- Sumber data berdasarkan dari FAO & IPCC
- Dengan tujuan : Emisi dari sektor agrikultur sangat penting dalam mempelajari perubahan iklim

No	Nama Kolom	Deskripsi	Tipe Data
1	Savanna fires	Emisi dari kebakaran di ekosistem sabana	Object
2	Forest fires	Emisi dari kebakaran di kawasan hutan	Object
3	Crop Residues	Emisi dari pembakaran atau pembusukan sisa bahan tanaman setelah panen	Object
4	Rice Cultivation	Emisi dari metana dilepaskan selama budidaya padi	Float64
5	Drained organic soils (CO2)	Emisi dari karbon dioksida dilepaskan ketika menguras tanah organik	Float64
6	Pesticides Manufacturing	Emisi dari produksi pestisida.	Float64
7	Food Transport	Emisi dari pengangkutan produk makanan.	Float64
8	Forestland	Tanah yang tertutup oleh hutan.	Object
9	Net Forest conversion	Perubahan kawasan hutan akibat penggundulan hutan dan penghijauan.	Object
10	Food Household Consumption	Emisi dari konsumsi makanan di tingkat rumah tangga.	Object

Deskripsi kolom

No	Nama Kolom	Deskripsi	Tipe Data
11	Food Retail	Emisi dari operasi perusahaan ritel yang menjual makanan.	Object
12	On-farm Electricity Use	Konsumsi listrik di peternakan	Object
13	Food Packaging	Emisi dari produksi dan pembuangan bahan kemasan makanan	Float64
14	Agrifood Systems Waste Disposal	Emisi dari pembuangan limbah dalam sistem pertanian.	Float64
15	Food Processing	Emisi dari pengolahan produk makanan	Float64
16	Fertilizers Manufacturing	Emisi dari produksi pupuk	Float64
17	IPPU	Emisi dari proses industri dan penggunaan produk.	Float64
18	Manure applied to Soils	Emisi dari penerapan pupuk kandang hewan ke tanah pertanian.	Object
19	Manure left on Pasture	Emisi dari kotoran hewan di padang rumput atau tanah penggembalaan.	Object
20	Manure Management	Emisi dari pengelolaan dan perawatan kotoran hewan.	Float64

No	Nama Kolom	Deskripsi	Tipe data
21	Fires in organic soils	Emisi dari kebakaran di tanah organik.	Float64
22	Fires in humid tropical forests	Emisi dari kebakaran di hutan tropis yang lembap.	Object
23	On-farm energy use	Konsumsi energi di peternakan.	Object
24	Rural population	Jumlah orang yang tinggal di daerah pedesaan.	Float64
25	Urban population	Jumlah orang yang tinggal di daerah perkotaan.	Float64
26	Total Population - Male	Jumlah total individu laki-laki dalam populasi.	Float64
27	Total Population - Female	Jumlah total individu perempuan dalam populasi.	Float64
28	Total_emission	Total emisi gas rumah kaca dari berbagai sumber.	Float64
29	Average Temperature °C	Peningkatan suhu rata-rata (per tahun) dalam derajat Celcius.	Float64

Korelasi Atribut Yang Berkaitan

Data Preparation

Persiapan data adalah proses mempersiapkan data mentah agar sesuai untuk diproses dan dianalisis lebih lanjut. Langkahlangkah utama meliputi pengumpulan, pembersihan, dan pelabelan data mentah ke dalam bentuk yang sesuai dengan algoritme machine learning (ML), lalu mengeksplorasi dan memvisualisasikan data.

Cleaning Dataset

Dataset Sebelum di Cleaning

Crop Residues	1389	
On-farm energy use	956	
Manure applied to Soils	928	
Manure Management	928	
IPPU	743	
Net Forest conversion	493	
Forestland	493	
ood Household Consumption	473	
ires in humid tropical forests	155	
Forest fires	93	
Savanna fires	31	
Total Population - Male	0	
Jrban population	0	
Total Population - Female	0	
total_emission	0	
Rural population	0	
ires in organic soils	0	
lanure left on Pasture	8	
rea	0	
Agrifood Systems Waste Disposal	0	
ertilizers Manufacturing	0	
ood Processing	9	
'ear	0	
ood Packaging	0	
On-farm Electricity Use	0	
ood Retail	0	
ood Transport	0	
Pesticides Manufacturing	0	
Orained organic soils (CO2)	0	
Rice Cultivation	0	
Average Temperature °C	9	
dtype: int64		

Dataset Sesudah di Cleaning

Area	0
Food Processing	0
total_emission	0
Total Population - Female	0
Total Population - Male	0
Urban population	0
Rural population	0
On-farm energy use	0
Fires in humid tropical forests	0
Fires in organic soils	0
Manure Management	0
Manure left on Pasture	0
Manure applied to Soils	0
IPPU	0
Fertilizers Manufacturing	0
Agrifood Systems Waste Disposal	0
Year	0
Food Packaging	0
On-farm Electricity Use	0
Food Retail	0
Food Household Consumption	0
Net Forest conversion	0
Forestland	0
Food Transport	0
Pesticides Manufacturing	0
Drained organic soils (CO2)	0
Rice Cultivation	0
Crop Residues	0
Forest fires	0
Savanna fires	0
Average Temperature °C	0
dtype: int64	

Outliers Sebelum dilakukan Outliers

OutliersSesudah dilakukan Outliers

Menentukkan Algoritma & Modeling

Modeling

untuk Modelnya menggunakan:

- LGBMRegressor
- KNeighborsRegressor
- RandomForestRegressor
- GradientBoostingRegressor
- BaggingRegressor
- XGBRegressor

Hasil akhir dengan mencari nilai MSE, MAE & Cross Val Score

```
[FIGURESM] [IULO] STALE FLAINING FLOW SCOLE 0.7/II
LGBMRegressor
MAE: 0.2794
MSE: 0.1358
Cross_val_score -0.30112278315855945
KNeighborsRegressor
MAE: 0.4892
MSE: 0.3649
Cross_val_score -0.4689388423528101
RandomForestRegressor
MAE: 0.2874
MSE: 0.1461
Cross val score -0.3019731013223633
GradientBoostingRegressor
MAE: 0.2915
MSE: 0.1508
Cross_val_score -0.3198780141631989
BaggingRegressor
MAE: 0.2941
MSE: 0.1519
Cross val score -0.3168548653082326
XGBRegressor
MAE: 0.2928
MSE: 0.149
Cross_val_score -0.3181970789236416
```


Perubahan Emisi Co2 & Temperatur per-lima tahun

Distribusi suhu rata-rata berdasarkan tahun

Average temperature distribution by years

Perkembangan CO2 & Temperatur berdasarkan benua

Daftar Negara Menghasilkan Emisi CO2 Tertinggi

Emisi CO2 agrifood per kapita

Terima Kasih.