

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

13

(11)

EP 0 383 619 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
23.04.1997 Bulletin 1997/17

(51) Int Cl. 6: **G01N 33/543, G01N 33/76**
// **G01N33/558, G01N33/58,**
G01N33/52

(21) Application number: **90301697.0**

(22) Date of filing: **16.02.1990**

(54) **Solid-phase analytical device**

Festphase-analytische Vorrichtung

Dispositif analytique en phase solide

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI NL SE

(30) Priority: **17.02.1989 GB 8903627**

(43) Date of publication of application:
22.08.1990 Bulletin 1990/34

(60) Divisional application: **95110703.6**

(73) Proprietors:

• **UNILEVER PLC**

London EC4P 4BQ (GB)

Designated Contracting States:

GB

• **UNILEVER N.V.**

3013 AL Rotterdam (NL)

Designated Contracting States:

BE CH DE DK ES FR GR IT LI NL SE AT

(72) Inventors:

- **Davis, James Paul**
Bedfordshire MK43 7EX (GB)
- **Prior, Michael Evans**
Rushden, Northamptonshire NN10 1SY (GB)
- **May, Keith**
Bromham, Bedfordshire (GB)

(74) Representative: **Butler, David John et al**

Unilever PLC

Patent Division

Colworth House

Sharnbrook

Bedford MK44 1LQ (GB)

(56) References cited:

- | | |
|------------------------|------------------------|
| EP-A- 0 238 012 | EP-A- 0 277 723 |
| EP-A- 0 279 097 | EP-A- 0 284 232 |
| EP-A- 0 291 194 | EP-A- 0 299 359 |
| EP-A- 0 323 605 | WO-A-86/04683 |
| WO-A-89/06799 | DE-A- 3 445 816 |

EP 0 383 619 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

The present invention relates to solid-phase analytical devices which are suitable for use in the home, clinic or doctor's surgery and which are intended to give an analytical result rapidly and which require the minimum degree of skill and involvement from the user. The use of test devices in the home to test for pregnancy and fertile period (ovulation) is now commonplace.

In the specification of UK patent application GB 2204398A we describe test devices which are readily usable even by an unskilled person and which typically merely require that some portion of the device is contacted with a sample (e.g. urine in the case of a pregnancy or ovulation test) and thereafter no further actions are required by the user before an analytical result can be observed. The analytical result can be observable within a matter of minutes following sample application, e.g. ten minutes or less.

The use of reagent-impregnated test strip in specific binding assays, such as immunoassays, has previously been proposed. In such procedures a sample is applied to one portion of the test strip and is allowed to permeate through the strip material, usually with the aid of an eluting solvent such as water. In so doing, the sample progresses into or through a detection zone in the test strip wherein a specific binding reagent is immobilised. Analyte present in the sample can participate in a sandwich or a competition reaction within the detection zone, with a labelled reagent which can also be incorporated in the test strip or applied thereto. Examples of prior proposals utilising these principles are given in Thyroid Diagnostics Inc GB 1589234, Boots-Celltech Diagnostics Limited EP 0225054, Syntex (USA) Inc EP 0183442, and Behringwerke AG EP 0186799.

Other examples of analytical devices, comprising multiple zones or layers of porous membranes or matrices arranged in series, through which reagents can migrate, are described in EP-A2-299359, WO 86/04683 and WO 89/06799. These devices are especially suited to the use of enzyme labels. The use of insoluble particulate labels is not contemplated, whereas such particulate labels are preferred in the devices described in GB-A-2204398 mentioned above.

EP-A-323605, citable under Article 54(3) EPC, discloses assay devices having an application pad containing a labelled reagent. The label can be particulate, for example a selenium colloid, and the application pad can be made from porous polyethylene frit, i.e. a macroporous body comprising plastics material.

The present invention provides an analytical test device incorporating a dry porous carrier to which device a liquid sample suspected of containing an analyte can be applied, the device also incorporating a specific binding reagent attached to a particulate label which labelled specific binding reagent is freely mobile in the porous carrier when in the moist state, and an unlabelled specific binding reagent which is permanently immobilised

in a detection zone on the carrier material, the labelled and unlabelled specific binding reagents being capable of participating in either a sandwich reaction or a competition reaction in the presence of the analyte, characterised in that prior to the application to the device of the liquid sample, the particle-labelled specific binding reagent is retained within the device in the dry state in a separate macroporous body comprising plastics material having a pore size not less than 10 times greater

- 5 than the maximum particle size of the particulate label, through which macroporous body the applied liquid sample must pass en route to the porous carrier, thus facilitating uptake of the particle-labelled specific binding reagent by the applied liquid sample, and in that the porous carrier is linked via the macroporous body to a porous receiving member to which the liquid sample can be applied and from which the sample can permeate into the porous carrier.
- 10
- 15

Preferably, the dry porous carrier material comprises a chromatographic strip, such as a strip of nitrocellulose. If desired, the nitrocellulose can be backed with moisture impermeable material, such as polyester sheet. Using nitrocellulose as the porous carrier material has considerable advantage over more conventional strip materials, such as paper, because nitrocellulose has a natural ability to bind proteins without requiring prior sensitisation. Specific binding reagents, such as immunoglobulins, can be applied directly to nitrocellulose and immobilised thereon. No chemical treatment is required which might interfere with the essential specific binding activity of the reagent. Unused binding sites on the nitrocellulose can thereafter be blocked using simple materials, such as polyvinylalcohol. Moreover, nitrocellulose is readily available in a range of pore sizes and this facilitates the selection of a carrier material to suit particularly requirements such as sample flow rate. Preferably the nitrocellulose has a pore size of at least one μm . Preferably the nitrocellulose has a pore size not greater than about 20 μm .

- 20
 - 25
 - 30
 - 35
 - 40
 - 45
 - 50
 - 55
- The labelled specific binding reagent comprises a specific binding reagent attached to a particulate label. Such "direct labels", e.g. coloured latex particles, gold sols, non-metallic colloids, and dye sols, are already known *per se*. They can be used to produce an instant analytical result without the need to add further reagents in order to develop a detectable signal. They are robust and stable and can therefore be used readily in an analytical device which is stored in the dry state. Their release on contact with an aqueous sample can be modulated, for example by the use of soluble glazes. Preferably, the particulate label is a latex particle, such as a coloured latex particle which can be readily visible to the eye if it becomes bound in the detection zone. If desired, the assay result can be read instrumentally, e.g. by colour reflectance. Alternatively, the latex particle can incorporate a fluorescent compound which can respond to applied electromagnetic energy such as ultraviolet light or visible light, to provide an emitted signal that can

be measured instrumentally. In a particularly preferred embodiment, the direct label is a coloured latex particle of spherical or near-spherical shape and having a maximum diameter of not greater than about 0.5 µm. An ideal size range for such particles is from about 0.05 to about 0.5 µm.

We have found that use of a macroporous body as the portion of the device wherein the applied liquid sample encounters the particulate label considerably facilitates the ease with which the particulate label is taken up by the liquid sample, compared to the situation that usually prevails if the particulate label is incorporated as a pre-dosed reagent on the dry porous carrier strip. To enable the particulate label to migrate freely out of the macroporous body with the liquid sample, the macroporous body has a pore size at least 10 times greater than the maximum particle size of the particulate label. The macroporous body comprises plastics material having an average pore size of not less than 10 µm, and ideally about 100 µm, because such larger pore sizes give better release of the labelled reagent. The plastics material should not be protein-binding, or should be easily blockable by means of reagents such as BSA or PVA, to minimise non-specific binding and to facilitate free movement of the labelled reagent after the macroporous body has become moistened with the liquid sample. The plastics material can be pre-treated with surface active agent or solvent, if necessary, to render it more hydrophilic and to promote rapid uptake of the liquid sample. Alternatively, if desired, a surface active agent can be incorporated in the solution containing the labelled reagent when this is applied to the macroporous material during manufacture of the device.

The labelled reagent is preferably incorporated in the macroporous material in bulk, e.g. large sheet, form before it is subdivided into individual bodies for use in a testing device of the invention.

After a solution containing the labelled reagent has been allowed to saturate the macroporous material, the macroporous material should be dried, e.g. by vacuum or air drying, or preferably by freeze-drying. Optionally, the solution can also contain a surface active agent, such as a detergent, and/or a glazing material, such as a sugar, e.g. sucrose. The presence of the glazing material appears to enhance release of the labelled reagent and promotes stability of delicate specific binding reagents such as antibodies.

By incorporating the labelled reagent in a separate macroporous body, rather than pre-dosed onto the carrier material that also incorporates the detection zone, the following advantages can be obtained:

Enhanced sensitivity of the test, because a substantial quantity of the liquid sample is able to take up the labelled reagent before migrating through the carrier material to the detection zone, enhancing potential reaction time without significantly increasing overall test time. Also, the liquid which permeates the carrier is of a more uniform and consistent composition. Whereas the

test devices as described in our earlier patent application GB 2204398A are primarily, although not exclusively, suited to qualitative assays, those of the present invention are especially suitable for quantitative assays as well as for qualitative assays.

Enhanced perceived performance of the test. For example, when the device incorporates a carrier strip and the detection zone comprises a line of immobilised reagent, and the label is a visible direct label, a positive result shows up more clearly, with much reduced temporary background caused by the visible labelled reagent being progressively conveyed past the detection zone.

Ease of manufacture, because the incorporation of the labelled reagent in the separate macroporous body avoids the need to apply the labelled reagent in a special zone in the carrier, which may need careful pre-treatment, as described in our GB 2204398A.

If the assay device is intended to identify more than one analyte in a single sample, the macroporous body can incorporate several labelled specific binding reagents each carrying a different label, e.g. having different colours or fluorescent properties. This will facilitate the manufacture of a multiple analyte testing device.

Ideally, the macroporous body is in direct moisture-conductive contact with the porous material, and the detection zone on the porous carrier material is spaced away from the region of contact between the porous carrier material and the macroporous body. In such an embodiment, the quantity of liquid sample required to saturate the macroporous body is preferably not less than the quantity of liquid sample capable of being absorbed by the mass of porous carrier material linking the macroporous body and the detection zone. In other words, the liquid capacity of the macroporous body is at least equal to the liquid capacity of the working portion of the porous carrier.

The invention also provides an analytical method in which a device as set forth above is contacted with an aqueous liquid sample suspected of containing the analyte, such that the sample permeates by capillary action via the macroporous body through the porous solid carrier into the detection zone and the labelled reagent migrates therewith to the detection zone, the presence of analyte in the sample being determined by observing the extent (if any) to which the labelled reagent becomes bound in the detection zone.

In one embodiment of the invention, the labelled reagent is a specific binding partner for the analyte. The labelled reagent, the analyte (if present) and the immobilised unlabelled specific binding reagent cooperate together in a "sandwich" reaction. This results in the labelled reagent being bound in the detection zone if analyte is present in the sample. The two binding reagents must have specificities for different epitopes on the analyte.

In another embodiment of the invention, the labelled reagent is either the analyte itself which has been con-

jugated with a label, or is an analyte analogue, ie a chemical entity having the identical specific binding characteristics as the analyte, and which similarly has been conjugated with a label. In the latter case, it is preferable that the properties of the analyte analogue which influence its solubility or dispersibility in an aqueous liquid sample and its ability to migrate through the moist porous solid phase material should be identical to those of the analyte itself, or at least very closely similar. In this second embodiment, the labelled analyte or analyte analogue will migrate through the porous carrier into the detection zone and bind with the immobilised reagent. Any analyte present in the sample will compete with the labelled reagent in this binding reaction. Such competition will result in a reduction in the amount of labelled reagent binding in the detection zone, and a consequent decrease in the intensity of the signal observed in the detection zone in comparison with the signal that is observed in the absence of analyte in the sample.

In a further alternative embodiment, an analyte or analyte analogue is immobilised in the detection zone, and the labelled reagent is specific for the analyte. If an analyte-containing sample is applied to the device, competition between the immobilised and free analyte reduced the extent to which the labelled reagent may become bound in the detection zone.

In a further embodiment of the present invention, the porous carrier is linked via the macro-porous body to a porous receiving member to which the liquid sample can be applied and from which the sample can permeate into the porous carrier. Preferably, the porous carrier and the macroporous body are contained within a moisture-impermeable casing or housing and the porous receiving member extends out of the housing and can act as a means for permitting a liquid sample to enter the housing and reach the porous carrier. The housing should be provided with means, e.g. appropriately placed apertures, which enable the detection zone of the porous solid phase carrier material (carrying the immobilised unlabelled specific binding reagent) to be observable from outside the housing so that the result of the assay can be observed. If desired, the housing may also be provided with further means which enable a further zone of the porous solid phase carrier material to be observed from outside the housing and which further zone incorporates one or more control reagents which enable an indication to be given as to whether the assay procedure has been completed. Preferably the housing is provided with a removable cap or shroud which can protect the protruding porous receiving member during storage before use. If desired, the cap or shroud can be replaced over the protruding porous receiving member, after sample application, while the assay procedure is being performed.

An important embodiment of the invention is a pregnancy testing device comprising a hollow elongated casing containing a dry porous nitrocellulose carrier which communicates indirectly with the exterior of the

- casing via a bibulous urine receiving member which protrudes from the casing, the porous nitrocellulose carrier and the urine receiving member being linked via a separate macroporous body such that any urine reaching the porous carrier must first pass through the macroporous body, the urine receiving member and the macroporous body together acting as a reservoir from which urine is released into the porous carrier, the macroporous body containing in the dry state a highly-specific anti-hCG antibody bearing a coloured particulate direct label and the macroporous body comprising plastics material having a pore size not less than 10 times greater than the maximum particle size of the particulate label, the labelled antibody being freely mobile within the macroporous body and the porous carrier when in the moist state, and in a detection zone on the carrier spatially distant from the macroporous body a highly-specific unlabelled anti-hCG antibody which is permanently immobilised on the carrier material and is therefore not mobile in the moist state, the labelled and unlabelled antibodies having specifications for different hCG epitopes, the casing being constructed of opaque or translucent material incorporating at least one aperture through which the analytical result may be observed, together with a removable and replaceable cover for the protruding bibulous urine receiving member. A fertile period prediction device, essentially as just defined except that the analyte is LH, is an important alternative.
- Such devices can be provided as kits suitable for home use, comprising a plurality (e.g. two) of devices individually wrapped in moisture impervious wrapping and packaged together with appropriate instructions to the user.
- The porous sample receiving member can be made from any bibulous, porous or fibrous material capable of absorbing liquid rapidly. The porosity of the material can be unidirectional (ie with pores or fibres running wholly or predominantly parallel to an axis of the member) or multidirectional (omnidirectional, so that the member has an amorphous sponge-like structure). Porous plastics material, such as polypropylene, polyethylene (preferably of very high molecular weight), polyvinylidene fluoride, ethylene vinylacetate, acrylonitrile and polytetrafluoro-ethylene can be used. It can be advantageous to pre-treat the member with a surface-active agent during manufacture, as this can reduce any inherent hydrophobicity in the member and therefore enhance its ability to take up and deliver a moist sample rapidly and efficiently. Porous sample receiving members can also be made from paper or other cellulosic materials, such as nitro-cellulose. Materials that are now used in the nibs of so-called fibre tipped pens are particularly suitable and such materials can be shaped or extruded in a variety of lengths and cross-sections appropriate in the context of the invention. Preferably the material comprising the porous receiving member should be chosen such that the porous member can be saturated with aqueous liquid within a matter of sec-

onds. Preferably the material remains robust when moist, and for this reason paper and similar materials are less preferred in any embodiment wherein the porous receiving member protrudes from a housing. The liquid must thereafter permeate freely from the porous sample receiving member into the macroporous body.

If present, the "control" zone can be designed merely to convey an unrelated signal to the user that the device has worked. For example, the control zone can be loaded with an antibody that will bind to the labelled reagent, e.g. an "anti-mouse" antibody if the labelled reagent is an antibody that has been derived using a murine hybridoma, to confirm that the sample has permeated the test strip. Alternatively, the control zone can contain an anhydrous reagent that, when moistened, produces a colour change or colour formation, e.g. anhydrous copper sulphate which will turn blue when moistened by an aqueous sample. As a further alternative, a control zone could contain immobilised analyte which will react with excess labelled reagent from the first zone. As the purpose of the control zone is to indicate to the user that the test has been completed, the control zone should be located downstream from the detection zone in which the desired test result is recorded. A positive control indicator therefore tells the user that the sample has permeated the required distance through the test device.

The particulate label is a direct label, i.e. an entity which, in its natural state, is readily visible either to the naked eye, or with the aid of an optical filter and/or applied stimulation, e.g. UV light to promote fluorescence. For example, minute coloured particles, such as dye sols, metallic sols (e.g. gold), and coloured latex particles, are very suitable. Of these options, coloured latex particles are most preferred. Concentration of the label into a small zone or volume should give rise to a readily detectable signal, e.g. a strongly-coloured area. This can be evaluated by eye, or by instruments if desired.

Coupling of the label to the specific binding reagent can be by covalent bonding, if desired, or by hydrophobic bonding. Such techniques are commonplace in the art, and form no part of the present invention. For a direct label such as a coloured latex particle, hydrophobic bonding is preferred.

In all embodiments of the invention, it is essential that the labelled reagent migrates with the liquid sample as this progresses to the detection zone. Preferably, the flow of sample continues beyond the detection zone and sufficient sample is applied to the porous carrier material in order that this may occur and that any excess labelled reagent which does not participate in any binding reaction in the detection zone is flushed away from the detection zone by this continuing flow. If desired, an absorbant "sink" can be provided at the distal end of the carrier material. The absorbent sink may comprise, for example, Whatman 3MM chromatography paper, and should provide sufficient absorptive capacity to allow any unbound conjugate to wash out of the detection zone. As an alternative to such a sink it can be sufficient

to have a length of porous solid phase material which extends beyond the detection zone.

The presence or intensity of the signal from the label which becomes bound in the detection zone can provide a qualitative or quantitative measurement of analyte in the sample. A plurality of detection zones arranged in series on the porous solid phase material, through which the aqueous liquid sample can pass progressively, can also be used to provide a quantitative measurement of the analyte, or can be loaded individually with different specific binding agents to provide a multi-analyte test.

The immobilised reagent in the detection zone is preferably a highly specific antibody, and more preferably a monoclonal antibody. In the embodiment of the invention involving the sandwich reaction, the labelled reagent is also preferably a highly specific antibody, and more preferably a monoclonal antibody.

Preferably the porous carrier material is in the form of a strip or sheet to which during manufacture of the device, one or more reagents can be applied in spatially distinct zones. During use, the liquid sample is allowed to permeate through the sheet or strip from one side or end to another.

If desired, a device according to the invention can incorporate two or more discrete bodies of porous solid phase carrier material, e.g. separate strips or sheets, each carrying immobilised reagents. These discrete bodies can be arranged in parallel, for example, such that a single application of liquid sample to the device initiates sample flow in the discrete bodies simultaneously. The separate analytical results that can be determined in this way can be used as control results, or if different reagents are used on the different carriers, the simultaneous determination of a plurality of analytes in a single sample can be made. Alternatively, multiple samples can be applied individually to an array of carriers and analysed simultaneously.

The material comprising the porous solid phase is preferably nitrocellulose. This has the advantage that proteinaceous reagents, such as an antibody, in the detection zone can be immobilised firmly without prior chemical treatment. If the porous solid phase material comprises paper, for example, the immobilisation of an antibody in the second zone needs to be performed by chemical coupling using, for example, CNBr, carbonyldiimidazole, or tresyl chloride.

Following the application of the specific binding reagent to the detection zone, the remainder of the porous solid phase material should be treated to block any remaining binding sites elsewhere. Blocking can be achieved by treatment with protein (e.g. bovine serum albumin or milk protein), or with polyvinylalcohol or ethanolamine, or any combination of these agents, for example. Between these process steps the porous solid phase carrier material should be dried.

Preferably the porous solid phase material is nitrocellulose sheet having a pore size of at least about 1 μm , even more preferably of greater than about 5 μm ,

and yet more preferably about 8-12 µm. Very suitable nitrocellulose sheet having a nominal pore size of up to approximately 12 µm, is available commercially from Schleicher and Schuell GmbH.

Preferably, the nitrocellulose sheet is "backed", e.g. with plastics sheet, to increase its handling strength. This can be manufactured easily by forming a thin layer of nitrocellulose on a sheet of backing material. The actual pore size of the nitrocellulose when backed in this manner will tend to be, lower than that of the corresponding unbacked material.

Alternatively, a pre-formed sheet of nitrocellulose can be tightly sandwiched between two supporting sheets of solid material, e.g. plastics sheets.

It is preferable that the flow rate of an aqueous sample through the porous solid phase material should be such that in the untreated material, aqueous liquid migrates at a rate of 1cm in not more than 2 minutes, but slower flow rates can be used if desired.

The spatial separation between the macroporous body and the detection zone, and the flow rate characteristics of the porous carrier material, can be selected to allow adequate reaction times during which the necessary specific binding can occur. Further control over these parameters can be achieved by the incorporation of viscosity modifiers (e.g. sugars and modified celluloses) in the sample to slow down the reagent migration.

Preferably, the immobilised reagent in the detection zone is impregnated throughout the thickness of the carrier in the detection zone (e.g. throughout the thickness of the sheet or strip if the carrier is in this form). Such impregnation can enhance the extent to which the immobilised reagent can capture any analyte or labelled reagent, present in the migrating sample.

Reagents can be applied to the porous carrier material in a variety of ways. Various "printing" techniques have previously been proposed for application of liquid reagents to carriers, e.g. micro-syringes, pens using metered pumps, direct printing and ink-jet printing, and any of these techniques can be used in the present context. To facilitate manufacture, the carrier (e.g. sheet) can be treated with the reagents and then subdivided into smaller portions (e.g. small narrow strips each embodying the required reagent-containing zones) to provide a plurality of identical carrier units.

An assay based on the above principles can be used to determine a wide variety of analytes by choice of appropriate specific binding reagents. The analytes can be, for example, proteins, haptens, immunoglobulins, hormones, polynucleotides, steroids, drugs, infectious disease agents (e.g. of bacterial or viral origin) such as Streptococcus, Neisseria and Chlamydia. Sandwich assays, for example, may be performed for analytes such as hCG, LH, and infectious disease agents, whereas competition assays, for example, may be carried out for analytes such as E-3-G and P-3-G.

The determination of the presence (if any) of more than one analyte in sample can have significant clinical

utility. For example, the ratio of the levels of apolipoproteins A₁ and B can be indicative of susceptibility to coronary heart disease. Similarly, the ratio of the levels of glycated haemoglobin (HbA) to unglycated (HbAo) or total (Hb) haemoglobin can aid in the management of diabetes. Additionally it is possible to configure tests to measure two steroids simultaneously, e.g E-3-G and P-3-G.

The determination of the presence of more than two

- 10 (ie multiple) analytes in any sample may have significant clinical utility. For example, the detection of the presence of various different serotypes of one bacterium, or the detection of the presence of soluble serological markers in humans may be useful. By way of example, a multiple analyte test for the detection of the presence of different serotypes of Streptococcus can be prepared for groups A, B, C and D. A cocktail of monoclonal antibodies, each specific for various pathologically important group serotypes, or a polyclonal antiserum raised against a particular Streptococcal group, can be dispensed onto a porous carrier strip as a line extending the width of the strip of approximately 1mm zone length. Multiple lines be dispensed in spatially discrete zones, each zone containing immunochemically reactive component(s) capable of binding the analyte of interest. Following the application of the multiple zones, via a suitable application procedure (eg ink-jet printing, metered pump and pen, airbrush), the remainder of the porous material should be treated with a reagent (eg bovine serum albumin, polyvinylalcohol, ethanolamine) to block any remaining binding sites elsewhere.

By way of example only, some preferred embodiments of the invention will now be described in detail with reference to the accompanying drawings.

35

Embodiment 1

- 40 Figure 1 of the accompanying drawings represents an isometric view of an assay device in accordance with the invention, and Figure 2 represents a cross-sectional side elevation of the device shown in Figure 1.

Referring to Figure 1, the device comprises a housing or casing 100 of elongate rectangular form having at one end 101 a portion 102 of reduced cross-sectional area. A cap 103 can be fitted onto portion 102 and can abut against the shoulder 104 at end 101 of the housing. Cap 103 is shown separated from housing 100. Extending beyond end 105 of portion 102 is a porous sample collector 106. When cap 103 is fitted onto portion 102 of the housing, it covers porous sample collector 106. Upper face 107 of housing 100 incorporates two apertures 108 and 109. The housing is constructed of an upper half 110 and a lower half 111.

Referring to Figure 2, it can be seen that housing 100 is of hollow construction. Porous sample collector 106 extends into housing 100. The inner end 112 of sample collector 106 is recessed to accommodate a macroporous body 113 of plastics material. Aqueous liquid

sample applied to collector 106 can pass freely into macroporous body 113, rapidly saturating it. In turn, macroporous body 113 is in liquid permeable contact with a strip of porous carrier material 114. The housing is constructed of an upper half 110 and a lower half 111 and strip 114 overlap to ensure that there is adequate contact between these two components and that a liquid sample applied to sample collector 106 can permeate via macroporous body 113 and into strip 114. Strip 114 extends further into housing 100. To help ensure that no liquid sample reaches Strip 114 without first passing through macroporous body 113, a gap 115 can be left in the housing 100 by arranging for the strip 114 to overlap macroporous body 113 only partially. Strip 114 is "backed" by a supporting strip 116 formed of transparent moisture-impermeable plastics material. Strip 114 extends beyond apertures 108 and 109. Means are provided within housing 100 by webbs 117 and 118 to hold strip 114 firmly in place. In this respect, the internal constructional details of the housing are not a significant aspect of the invention as long as the strip is held firmly in place within the housing, sample collector 106 is firmly retained in the housing, and adequate fluid permeable contact is maintained between sample collector 106, macroporous body 113 and strip 114. The transparent backing strip 116 lies between strip 114 and apertures 108 and 109 and can act as a seal against ingress of moisture from outside the housing 100 via these apertures. If desired, the residual space 119 within the housing can contain moisture-absorbant material, such as silica gel, to help maintain the strip 114 in the dry state during storage. The reagent-containing detection zone in strip 114 is not depicted in Figure 2, but the zone containing the immobilised unlabelled reagent will lie in the region exposed through aperture 108 in order that when the device has been used in an assay, the result can be observed through aperture 108. Aperture 109 provides means through which a control zone containing further reagents which may enable the adequate permeation of sample through the strip to be observed.

In operation, the protective cap 103 is removed from the holder and sample collector 106 is exposed to a liquid sample e.g. by being placed in a urine stream in the case of a pregnancy test. After exposing sample collector 106 to the liquid sample for a time sufficient to ensure that the collector 106 is saturated with the sample, the cap 103 can be replaced and the device placed aside by the user for an appropriate period time (e.g. two or three minutes) while the sample permeates test strip 114 to provide the analytical result. After the appropriate time, the user can observe the test strip through apertures 108 and 109 and can ascertain whether the assay has been completed by observing the control zone through aperture 109, and can ascertain the result of the assay by observing the second zone through aperture 108.

During manufacture, the device can be readily assembled from, for example, plastics material with the

housing 100 being moulded in two parts (e.g. upper and lower halves 110 and 111) which can be securely fastened together (e.g. by ultrasonic welding) after the sample collector, macroporous body and test strip have been placed within one of the halves and then sandwiched between the two halves. The act of forming this sandwich construction can be used to "crimp" the sample collector macroporous body and test strip together to ensure adequate contact between them. Cap 103 can be moulded as a separate complete item. If desired, apertures 108 and 109 can be provided with transparent inserts which may insure greater security against ingress of extraneous moisture from outside the housing. By providing a tight fit between the end 105 of housing 100 and the protruding sample collector 106, the application of sample to the protruding member will not result in sample entering the device directly and by-passing collector 106. Collector 106 therefore provides the sole route of access for the sample to the strip within the housing, and can deliver sample to the strip in a controlled manner. The device as a whole therefore combines the functions of sampler and analyser.

By using the test strip materials and reagents as herein described, a device in accordance with Figures 1 and 2 can be produced which is eminently suitable for use as a pregnancy test kit or fertile period test kit for use in the home or clinic. The user merely needs to apply a urine sample to the exposed porous member and then (after optionally replacing the cap) can observe the test result through aperture 108 within a matter of a few minutes.

Although described with particular reference to pregnancy tests and fertile period tests, it will be appreciated that the device, as just described, can be used to determine the presence of a very wide variety of analytes if appropriate reagents are incorporated in the test strip. It will be further appreciated that aperture 109 is redundant and may be omitted if the test strip does not contain any control means. Further, the general shape of the housing and cap, both in terms of their length, cross-section and other physical features, can be the subject of considerable variation without departing from the spirit of the invention.

Figure 3 of the accompanying drawings shows an enlarged view of the sample collector, macroporous body and test strip in the device illustrated in Figures 1 and 2.

The bibulous sample collector 106 is linked to the macroporous body 113 and test strip 114, backed by the transparent plastics sheet 116, such that liquid can flow in the direction shown by the arrows from the sample collector through the macroporous body and into the porous strip. Test zone 120 incorporates the immobilised specific binding reagent, and control zone 121 contains a reagent to indicate that the sample has permeated a sufficient distance along the test strip.

An aqueous sample deposited in collector 106 can flow into macroporous body 113 and take up labelled

reagent therein. The sample can permeate from macroporous body 113 along the length of strip 114 and in so doing will carry the labelled reagent along the strip and through zone 120.

If the desired, eg. for ease of manufacture, the collector 106 need not be recessed to accommodate the macroporous body 113. Instead, these components can simply be placed in an overlapping arrangement, together with the porous strip 114, and pressed together during assembly of the complete device. This will in practice provide a physical arrangement in which the liquid path will be essentially as depicted in Figure 3.

Embodiment 2

Figures 4 and 5 illustrate another embodiment of the invention, which is seen in plan view in Figure 4 and in cross-section in Figure 5, the cross-section being an elevation on the line A seen in Figure 4.

Referring to Figure 4, the test device comprises a flat rectangular casing 400 incorporating a centrally disposed rectangular aperture 401, adjacent the left hand end 402, and two further apertures 403 and 404 near the mid point of the device and arranged such that apertures 401, 403 and 404 lie on the central longitudinal axis of the device corresponding to line A. Although all three apertures are illustrated as being rectangular, their actual shape is not critical.

Referring to the cross-section seen in Figure 5, the device is hollow and incorporates within it a macroporous sample receiving member 405 adjacent end 402 of casing 400 and lying directly beneath aperture 401. Sample receiving member 405 is in liquid-conductive contact with one end of a test strip 406 backed by a transparent plastics sheet 407 also contained within casing 400, and which extends to the extreme other end of the casing. The transparent backing sheet 407 is in firm contact with the upper inner surface 408 of casing 400, and provides a seal against apertures 403 and 404 to prevent ingress of moisture or sample into the casing. Although not shown in the drawings, the porous test strip 406 incorporates a test zone and a control zone placed appropriately in relation to apertures 403 and 404, in a manner analogous to that described in Embodiment 1. The macroporous sample receiving member incorporates a labelled reagent which is readily soluble or dispensable in an applied liquid sample.

In operation, an aqueous sample can be applied through aperture 401, e.g. by means of a syringe, to saturate porous receiving member 405 which contains labelled reagent which can be taken up by the sample. Thereafter, the aqueous sample can permeate the test strip and, after an appropriate time, the test result can be observed through apertures 403 and 404.

Example

A sheet (1.4mm thick) of commercially-available,

detergent pre-treated, macroporous polyethylene having a pore size of about 100 microns was saturated with an aqueous suspension of blue-coloured latex particles (prepared as described in GB 2204398A) of particle size about 0.4 µm. The latex particles carried an anti-beta LH monoclonal antibody. The solution also contained 3% BSA and 4% sugar. The sheet was then freeze-dried and cut into portions each 6 x 12 mm, having a liquid capacity of about 50µL. These were incorporated in test devices as described above under embodiment 1, with the test strip comprising backed nitrocellulose with an anti-alpha LH monoclonal antibody immobilised in the test zone. The liquid capacity of the "working length" of the test strip between the macroporous body and the

5 detection zone was about 40µL.

10 When a LH-containing urine sample was applied to the device, a positive result showed up as a very clear blue line, with negligible background blue colour being visible in the detection window while the assay was being run.

15

Claims

- 20
- 25 1. An analytical test device incorporating a dry porous carrier (114) to which device a liquid sample suspected of containing an analyte can be applied, the device also incorporating a specific binding reagent attached to a particulate label which labelled specific binding reagent is freely mobile in the porous carrier when in the moist state, and an unlabelled specific binding reagent which is permanently immobilised in a detection zone (119) on the porous carrier, the labelled and unlabelled specific binding reagents being capable of participating in either a sandwich reaction or a competition reaction in the presence of the analyte, characterised in that prior to the application to the device of the liquid sample, the particle-labelled specific binding reagent is retained within the device in the dry state in a separate macroporous body (113) comprising plastics material having a pore size not less than 10 times greater than the maximum particle size of the particulate label, through which macroporous body the applied liquid sample must pass en route to the porous carrier, thus facilitating uptake of the particle-labelled specific binding reagent by the applied liquid sample, and in that the porous carrier is linked via the macroporous body to a porous receiving member (106) to which the liquid sample can be applied and from which the sample can permeate into the porous carrier.
 - 30 2. An analytical test device according to claim 1, characterised in that the macroporous body has an average pore size of not less than 10 µm.
 - 35 3. An analytical test device according to claim 1 or

- claim 2, characterised in that the macroporous body has an average pore size of about 100 µm.
4. An analytical device according to any one of the preceding claims, characterised in that the plastics material has been pre-treated to render it more hydrophilic.
5. An analytical device according to any one of the preceding claims, characterised in that the plastics material is polyethylene.
6. An analytical test device according to any one of the preceding claims, characterised in that the particulate label is selected from the group consisting of metallic (e.g. gold) sols, non-metallic sols, dye sols, and latex particles having a maximum diameter of not greater than about 0.5 µm.
7. An analytical test device according to claim 6, characterised in that the particulate label is latex.
8. An analytical test device according to claim 7, characterised in that the latex is coloured.
9. An analytical test device according to claim 7, characterised in that the latex is fluorescent.
10. An analytical test device according to any one of the preceding claims, characterised in that the dry porous carrier material comprises a chromatographic strip.
11. An analytical test device according to any one of the preceding claims, characterised in that the porous carrier material is nitrocellulose.
12. An analytical test device according to claim 11, characterised in that the nitrocellulose has a pore size of at least 1 µm.
13. An analytical test device according to any one of the preceding claims, characterised in that the macroporous body is in direct moisture-conductive contact with the porous carrier material, and the detection zone on the porous carrier material is spaced away from the region of contact of the porous carrier material with the macroporous body.
14. An analytical test device according to claim 13, characterised in that the quantity of liquid sample required to saturate the macroporous body is not less than the quantity of liquid sample capable of being absorbed by the mass of porous carrier material linking the macroporous body and the detection zone.
15. An analytical device according to any one of the preceding claims, characterised in that the porous receiving member (106) is made of material having unidirectional porosity.
16. An analytical test device according to any one of the preceding claims, characterised in that the macroporous body and porous carrier are contained within a casing or housing (400) constructed of moisture-impermeable material and having a sample entry port (401) communicating with the macroporous body, the casing or housing also incorporating means (403) to enable the detection zone to be observable from outside the casing or housing.
17. An analytical device according to any one of the preceding claims, characterised in that the porous carrier and the macroporous body are contained within a casing or housing (101) constructed of moisture-impermeable material and the porous receiving member (106) extends out of the casing or housing and can act as a means for permitting a liquid sample to enter the housing and reach the porous carrier, the casing or housing being provided with means (108) which enable the detection zone of the porous carrier to be observable from outside the casing or housing so that the result of the assay can be observed.
18. An analytical device according to claim 17, provided with a removable cap or shroud (103) which can protect the protruding porous receiving member during storage before use.
19. An analytical device according to any one of claims 16, 17 and 18, characterised in that the casing or housing is provided with means (404, 109) which enable a further zone (120) of the porous carrier to be observed from outside the housing and which further zone incorporates one or more control reagents which enable an indication to be given as to whether the assay procedure has been completed.
20. An analytical device according to any one of the preceding claims, wherein the liquid sample is aqueous.
21. A pregnancy testing device comprising a hollow elongated casing (100) containing a dry porous nitrocellulose carrier (114) which communicates indirectly with the exterior of the casing via a bibulous urine receiving member (106) which protrudes from the casing, the porous nitrocellulose carrier and the urine receiving member being linked via a separate macroporous body (113) such that any urine reaching the porous carrier must first pass through the macroporous body, the urine receiving member and the macroporous body together acting as a reservoir from which urine is released into the porous car-

rier, the macroporous body containing in the dry state a highly-specific anti-hCG antibody bearing a coloured particulate direct label and the macroporous body comprising plastics material having a pore size not less than 10 times greater than the maximum particle size of the particulate label, the labelled antibody being freely mobile within the macroporous body and the porous carrier when in the moist state, and in a detection zone on the carrier spatially distant from the macroporous body a highly-specific unlabelled anti-hCG antibody which is permanently immobilised on the carrier material and is therefore not mobile in the moist state, the labelled and unlabelled antibodies having specificities for different hCG epitopes, the casing being constructed of opaque or translucent material incorporating at least one aperture (108) through which the analytical result may be observed, together with a removable and replaceable cover (103) for the protruding bulbous urine receiving member.

22. A fertile period prediction device, as claimed in claim 21 except that the analyte is LH.

Patentansprüche

1. Analytische Testvorrichtung, die einen trockenen porösen Träger (114) enthält, auf den eine (vermutlich einen Analyten enthaltende) flüssige Probe aufgetragen werden kann, wobei die Vorrichtung außerdem ein an einen teilchenförmigen Markierungsstoff gebundenes spezifisches Bindungsreagenz, welches markierte spezifische Bindungsreagenz im porösen Träger im feuchten Zustand frei beweglich ist, und ein unmarkiertes spezifisches Bindungsreagenz, das in einer Nachweiszone (119) auf dem porösen Träger permanent immobilisiert ist, enthält, wobei das markierte und das unmarkierte spezifische Bindungsreagenz in Gegenwart des Analyten zur Teilnahme an entweder einer Sandwich-Reaktion oder einer kompetitiven Reaktion fähig sind, dadurch gekennzeichnet, daß das teilchen-markierte spezifische Bindungsreagenz vor dem Auftragen der flüssigen Probe auf die Vorrichtung in der Vorrichtung im trockenen Zustand in einem separaten makroporösen Körper (113) aufgehalten wird, der Kunststoffmaterial mit einer Porengröße von nicht weniger als dem zehnfachen der maximalen Teilchengröße des teilchenförmigen Markierungsstoffes umfaßt, wobei die aufgetragene flüssige Probe auf ihrem Weg zum porösen Träger durch den makroporösen Körper hindurchtreten muß, was die Aufnahme des teilchen-markierten spezifischen Bindungsreagenzes durch die aufgetragene flüssige Probe erleichtert, und dadurch, daß der poröse Träger über den makroporösen Körper mit einem porösen Aufnahmeelement (106) ver-

bunden ist, auf das die flüssige Probe aufgetragen werden und aus dem die Probe in den porösen Träger dringen kann.

- 5 2. Analytische Testvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der makroporöse Körper eine durchschnittliche Porengröße von nicht weniger als 10 µm aufweist.
- 10 3. Analytische Testvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der makroporöse Körper eine durchschnittliche Porengröße von etwa 100 µm aufweist.
- 15 4. Analytische Testvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Kunststoffmaterial vorbehandelt worden ist, um es hydrophiler zu machen.
- 20 5. Analytische Testvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Kunststoffmaterial Polyethylen ist.
- 25 6. Analytische Testvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der teilchenförmige Markierungsstoff aus der aus Metallsolen (z.B. Goldsol), nicht-metallischen Solen, Farbstoffsolen und Latexteilchen mit einem maximalen Durchmesser von nicht größer als etwa 0,5 µm ausgewählt ist.
- 30 7. Analytische Testvorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der teilchenförmige Markierungsstoff ein Latex ist.
- 35 8. Analytische Testvorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Latex gefärbt ist.
- 40 9. Analytische Testvorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Latex fluoreszierend ist.
- 45 10. Analytische Testvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das trockene poröse Trägermaterial einen chromatographischen Streifen umfaßt.
- 50 11. Analytische Testvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das poröse Trägermaterial Nitrocellulose ist.
- 55 12. Analytische Testvorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Nitrocellulose eine Porengröße von mindestens 1 µm aufweist.
13. Analytische Testvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß sich der makroporöse Körper in unmittelbarem

feuchtigkeitsleitenden Kontakt mit dem porösen Trägermaterial befindet und sich die Nachweiszone auf dem porösen Trägermaterial in räumlichem Abstand zur Kontaktregion des porösen Trägermaterials mit dem makroporösen Körper befindet.

14. Analytische Testvorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Menge an flüssiger Probe, die zur Sättigung des makroporösen Körpers erforderlich ist, nicht geringer als die Menge an flüssiger Probe ist, die von der den makroporösen Körper und die Nachweiszone verbindenden Masse des porösen Trägermaterials absorbiert werden kann.

15. Analytische Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das poröse Aufnahmeelement (106) aus einem Material mit unidirektonaler Porosität hergestellt ist.

16. Analytische Testvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der makroporöse Körper und der poröse Träger in einer Schutzhülle oder einem Gehäuse (400) enthalten sind, die/das aus feuchtigkeitsundurchlässigem Material hergestellt ist und eine mit dem makroporösen Körper kommunizierende Probeneinlaßöffnung (401) aufweist, wobei die Schutzhülle oder das Gehäuse außerdem ein Mittel (403) beinhaltet, das die Beobachtung der Nachweiszone von außerhalb der Schutzhülle oder des Gehäuses gestattet.

17. Analytische Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der poröse Träger und der makroporöse Körper in einem aus feuchtigkeitsundurchlässigem Material hergestellter Schutzhülle oder einem Gehäuse (101) enthalten sind und sich das poröse Aufnahmeelement (106) aus der Schutzhülle oder dem Gehäuse erstreckt und als Mittel wirken kann, das das Eintreten einer flüssigen Probe in das Gehäuse und das Erreichen des porösen Trägers gestattet, wobei die Schutzhülle oder das Gehäuse mit einem Mittel (108) versehen sind, das die Beobachtung der Nachweiszone des porösen Trägers von außerhalb der Schutzhülle oder des Gehäuses gestattet, so daß das Assayergebnis abgelesen werden kann.

18. Analytische Vorrichtung nach Anspruch 17, ausgestattet mit einer wiederaufsetzbaren Kappe oder Hülle (103), die das vorstehende poröse Aufnahmeelement während der Lagerung vor der Verwendung schützen kann.

19. Analytische Vorrichtung nach einem der Ansprüche 16, 17 und 18, dadurch gekennzeichnet, daß die Schutzhülle oder das Gehäuse mit einem Mittel

(404, 109) versehen ist, das die Beobachtung einer weiteren Zone (120) des porösen Trägers von außerhalb des Gehäuses gestattet, welche weitere Zone ein oder mehrere Kontrollreagenzien beinhaltet, die die Ausgabe einer Anzeige gestatten, ob der Assayablauf abgeschlossen worden ist.

20. Analytische Vorrichtung nach einem der vorstehenden Ansprüche, wobei die flüssige Probe wässrig ist.

21. Schwangerschaftstestvorrichtung, die ein hohles längliches Gehäuse (100) aufweist, enthaltend einen trockenen porösen Nitrocelluloseträger (114), der über ein aus dem Gehäuse hevorstehendes saugfähiges Urinaufnahmeelement (106) indirekt mit dem Äußeren des Gehäuses kommuniziert, wobei der poröse Nitrocelluloseträger und das Urinaufnahmeelement über einen separaten makroporösen Körper (113) dergestalt miteinander verbunden sind, daß Urin, der den porösen Träger erreicht, zuerst durch den makroporösen Körper hindurchtreten muß, wobei das Urinaufnahmeelement und der makroporöse Körper zusammen als Reservoir wirken, aus dem Urin in den porösen Träger freigegeben wird, der makroporöse Körper im trockenen Zustand einen einen gefärbten teilchenförmigen Direktmarkierungsstoff tragenden hochspezifischen anti-hCG-Antikörper enthält und der makroporöse Körper Kunststoffmaterial mit einer Porengröße von nicht weniger als dem zehnfachen der maximalen Teilchengröße des teilchenförmigen Markierungsstoffs umfaßt, wobei der markierte Antikörper im makroporösen Körper und porösen Träger im feuchten Zustand frei beweglich ist, und in einer Nachweiszone auf dem Träger in räumlichem Abstand vom makroporösen Körper einen hochspezifischen unmarkierten anti-hCG-Antikörper, der auf dem Trägermaterial permanent immobilisiert und daher im feuchten Zustand nicht beweglich ist, wobei der markierte und der unmarkierte Antikörper Spezifitäten für verschiedene hCG-Epitope aufweisen, und das Gehäuse aus undurchsichtigem oder durchscheinendem Material hergestellt ist, das mindestens eine Öffnung (108), durch welche das Analysenergebnis abgelesen werden kann, zusammen mit einer abnehmbaren und wiederaufsetzbaren Abdeckung (103) für das vorstehende saugfähige Urinaufnahmeelement beinhaltet.

22. Vorrichtung zur Vorhersage des empfängnisbereiten Zeitraums nach Anspruch 21, außer daß der Analyt LH ist.

55

Revendications

1. Dispositif de test analytique incorporant un support

poreux sec (114) auquel il est possible d'appliquer un échantillon liquide soupçonné de contenir un analyte, le dispositif incorporant aussi un réactif de fixation spécifique lié à un produit de marquage particulière, lequel réactif de fixation spécifique marqué est librement mobile dans le support poreux lorsque ce dernier est à l'état humide, et un réactif de fixation spécifique non marqué qui est immobilisé définitivement dans une zone de détection (119) sur le support poreux, les réactifs de fixation spécifique marqué et non marqué étant aptes à participer soit à une réaction en sandwich, soit à une réaction de compétition en présence de l'analyte, caractérisé en ce qu'avant l'application de l'échantillon liquide au dispositif, le réactif de fixation spécifique marqué par des particules est retenu à l'intérieur du dispositif à l'état sec dans une substance macroporeuse distincte (113) constituée par une matière plastique dont les pores ont une dimension au moins 10 fois supérieure à la dimension maximale des particules du produit de marquage particulière, à travers laquelle substance macroporeuse l'échantillon liquide appliqué doit passer en direction du support poreux, en facilitant ainsi l'absorption par l'échantillon liquide appliqué du réactif de fixation spécifique marqué aux particules, et en ce que le support poreux est relié par l'intermédiaire de la substance macroporeuse à un élément poreux de réception (106) auquel l'échantillon liquide peut être appliqué et à partir duquel l'échantillon peut pénétrer dans le support poreux.

2. Dispositif de test analytique selon la revendication 1, caractérisé en ce que la substance macroporeuse a une dimension moyenne de ses pores qui n'est pas inférieure à 10 µm.

3. Dispositif de test analytique selon la revendication 1 ou 2, caractérisé en ce que la substance macroporeuse a une dimension moyenne de ses pores qui est d'environ 100 µm.

4. Dispositif analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière plastique a subi un prétraitement qui l'a rendue plus hydrophile.

5. Dispositif analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière plastique est du polyéthylène.

6. Dispositif de test analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que le produit de marquage particulière est choisi dans le groupe comprenant les colloïdes métalliques (par exemple d'or), les colloïdes non métalliques, les colloïdes de pigment et les particules de latex ayant un diamètre maximal qui ne dépasse

- pas environ 0,5 µm.
7. Dispositif de test analytique selon la revendication 6, caractérisé en ce que le produit de marquage particulière est du latex.
8. Dispositif de test analytique selon la revendication 7, caractérisé en ce que le latex est coloré.
9. Dispositif de test analytique selon la revendication 7, caractérisé en ce que le latex est fluorescent.
10. Dispositif de test analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau support poreux sec constitue une bande chromatographique.
11. Dispositif de test analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau support poreux est en nitrocellulose.
12. Dispositif de test analytique selon la revendication 11, caractérisé en ce que la nitrocellulose a des pores dont la dimension mesure au moins 1 µm.
13. Dispositif de test analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que la substance macroporeuse est en contact direct de conduction d'humidité avec le matériau support poreux, et la zone de détection sur le matériau support poreux est éloignée de la région de contact du matériau support poreux avec la substance macroporeuse.
14. Dispositif de test analytique selon la revendication 13, caractérisé en ce que la quantité nécessaire d'échantillon liquide pour saturer la substance macroporeuse n'est pas inférieure à la quantité d'échantillon liquide pouvant être absorbée par la masse du matériau support poreux reliant la substance macroporeuse à la zone de détection.
15. Dispositif de test analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément de réception poreux (106) est fabriqué en un matériau à porosité unidirectionnelle.
16. Dispositif de test analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que la substance macroporeuse et le support poreux sont contenus à l'intérieur d'un boîtier ou enveloppe (400) fabriqué en un matériau imperméable à l'humidité et comportant une ouverture d'introduction d'échantillon (401) en communication avec la substance macroporeuse, le boîtier ou enveloppe incorporant aussi un moyen (403) pour permettre d'observer la zone de détection de l'extérieur du

- boîtier ou enveloppe.
17. Dispositif de test analytique selon l'une quelconque des revendications précédentes, caractérisé en ce que le support poreux et la substance macroporeuse sont contenus à l'intérieur d'un boîtier ou enveloppe (101) fabriqué en un matériau imperméable à l'humidité et en ce que l'élément de réception poreux (106) s'étend en dehors du boîtier ou enveloppe et peut servir de moyen permettant d'introduire un échantillon liquide dans le boîtier et d'atteindre le support poreux, le boîtier ou enveloppe étant doté de moyens (108) permettant à la zone de détection du support poreux d'être observée de l'extérieur du boîtier ou enveloppe de manière que le résultat de l'analyse puisse être observé.
18. Dispositif analytique selon la revendication 17, doté d'une capsule ou enveloppe amovible (103) qui peut protéger l'élément de réception poreux en saillie pendant le stockage avant usage.
19. Dispositif analytique selon l'une quelconque des revendications 16, 17 et 18, caractérisé en ce que le boîtier ou enveloppe est doté de moyens (404, 109) qui permettent d'observer une autre zone (120) du support poreux depuis l'extérieur du boîtier, laquelle autre zone incorpore un ou plusieurs réactifs de contrôle capables d'indiquer si la procédure d'analyse est terminée.
20. Dispositif analytique selon l'une quelconque des revendications précédentes, dans lequel l'échantillon liquide est aqueux.
21. Dispositif de test de grossesse comprenant un boîtier allongé creux (100) contenant un support poreux sec en nitrocellulose (114), lequel communique indirectement avec l'extérieur du boîtier par un élément de réception d'urine absorbant (106) qui dépasse du boîtier, le support poreux en nitrocellulose et l'élément de réception d'urine étant liés par l'intermédiaire d'une substance macroporeuse distincte (113) telle que toute urine atteignant le support poreux doive d'abord traverser la substance macroporeuse, l'élément de réception d'urine et la substance macroporeuse servant ensemble de réservoir à partir duquel l'urine est libérée vers le support poreux, la substance macroporeuse contenant à l'état sec un anticorps anti-hCG très spécifique portant un produit de marquage particulaire direct coloré et la substance macroporeuse étant constituée par une matière plastique dont la taille des pores ne mesure pas moins de 10 fois la dimension maximale des particules du produit de marquage particulaire, l'anticorps marqué étant librement mobile dans la substance macroporeuse et le support poreux à l'état humide, et dans une zone de détec-
- tion du support distante de la substance macroporeuse, un anticorps anti-hCG non marqué très spécifique qui est immobilisé définitivement sur le matériau support et par conséquent qui n'est pas mobile à l'état humide, les anticorps marqué et non marqué ayant des spécificités pour des épitopes de hCG différents, le boîtier étant constitué de matériau opaque ou translucide et comportant au moins une ouverture (108) à travers laquelle le résultat analytique peut être observé, en même temps qu'une capsule amovible et susceptible d'être remise en place (103) pour protéger l'élément de réception d'urine absorbant en saillie.
22. Dispositif de prévision de la période de fertilité selon la revendication 21, sauf que l'analyte est LH.

Fig. 1.

Fig. 2.

*Fig. 3.**Fig. 4.**Fig. 5.*