IMPLEMENTATION OF LATTICE TRAPDOORS ON MODULES AND APPLICATIONS

Pauline Bert, Gautier Eberhart, <u>Lucas Prabel</u>, Adeline Roux-Langlois, and Mohamed Sabt July 9, 2021

Univ Rennes, CNRS, IRISA

CONTRIBUTIONS OF THE PAPER

- $\cdot \ \ \text{Development of efficient ${\tt Gaussian}$ preimage sampling $\tt techniques on ${\tt module}$ lattices}.$
- Applications to signatures and **identity-based encryption**.
- A **public and open-source implementation** without any external library dependencies.

GAUSSIAN PREIMAGE SAMPLING ON
MODULE LATTICES

USING TRAPDOORS TO BUILD SIGNATURE SCHEMES ([GPV08])

Idea

Public key Matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ defining $\Lambda_q^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q \}.$

Secret key Short basis $T \in \mathbb{Z}^{m \times m}$ of this lattice (T is the trapdoor for A).

 \longrightarrow Signature :

Gaussian Preimage
sampling

- → Verification :
 - Accept if $Ax = u \mod q$ and $x \mod x$
 - · Reject otherwise.

MODULE GADGET TRAPDOOR OF [MP12]

Rings $\mathcal{R} = \mathbb{Z}[X]/\langle X^n + 1 \rangle$ and $\mathcal{R}_q = \mathbb{Z}_q[X]/\langle X^n + 1 \rangle$.

TRAPGEN algorithm outputs 2 matrices

$$\mathbf{A} = [\mathbf{A}' \mid \mathbf{HG} - \mathbf{A}'T] \in \mathcal{R}^{d \times m}$$
 and $\mathbf{T} \in \mathcal{R}^{2d \times dk}$

such that

$$A\left[\frac{T}{I_{dk}}\right] = HG.$$

•
$$G = I_d \otimes g^T \in \mathcal{R}^{d \times dk}$$
 where $g^T = \begin{bmatrix} 1 & b & b^2 & \cdots & b^{k-1} \end{bmatrix}$ with $k = \lceil \log_b q \rceil$.

•
$$H \in \mathcal{R}_a^{d \times d}$$
 an invertible matrix, called the tag.

•
$$T \leftarrow D_{\mathcal{R}^{2d} \times dk} \sigma$$
.

$$\cdot$$
 A' \leftarrow [I_d | \hat{A}] where $\hat{A} \leftarrow \mathcal{U}(\mathcal{R}_q^{d \times d})$.

SAMPLING GAUSSIAN PREIMAGES

 \longrightarrow Computing a small Gaussian vector $\mathbf{x} \in \mathcal{R}^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{u} \mod q$ for a given $\mathbf{u} \in \mathcal{R}^d$.

First step: Module G-Sampling

- · Sample $\mathbf{z} \leftarrow D_{\Lambda_{\sigma}^{\mathbf{v}}(G),\alpha}$ by ndk calls to the scalar sampler of [GM18] with $\mathbf{v} = \mathbf{H}^{-1}\mathbf{u}$.
- z verifies $Gz = v \mod q$.
- Compute $\mathbf{x} = \begin{bmatrix} \mathbf{r} \\ \mathbf{l} \end{bmatrix} \mathbf{z}$.
- \longrightarrow We have $Ax = A\begin{bmatrix} T \\ I \end{bmatrix}z = HGz = Hv = u \mod q$.

Problem

The distribution of x leaks information about the trapdoor T:

$$\mathbf{\Sigma}_{\mathbf{X}} = \alpha^2 \begin{bmatrix} \mathbf{T} \\ \mathbf{I} \end{bmatrix} [\mathbf{T}^{\mathsf{T}} \mathbf{I}].$$

SAMPLING GAUSSIAN PREIMAGES

 \longrightarrow Computing a small Gaussian vector $\mathbf{x} \in \mathcal{R}^m$ such that $A\mathbf{x} = \mathbf{u} \mod q$ for a given $\mathbf{u} \in \mathcal{R}^d$.

Second step: Perturbation Sampling

- · Sample $p \leftarrow D_{\mathcal{R}^m, \sqrt{\Sigma_p}}$.
- **p** has convariance matix $\Sigma_p = \zeta^2 I \alpha^2 \begin{bmatrix} T \\ I \end{bmatrix} \begin{bmatrix} T^T I \end{bmatrix}$.

Lemma (simplified)

Let $\Sigma = \begin{bmatrix} A & B \\ B^T & D \end{bmatrix} \in \mathbb{R}^{(r+s)\times(r+s)}$ and :

- $\mathbf{X}_1 \leftarrow D_{\pi s} \sqrt{p} c_s$;
- $\mathbf{X}_0 \leftarrow D_{\mathbb{Z}^r, \sqrt{\mathbf{\Sigma}/D}, c_0 + BD^{-1}(\mathbf{x}_1 c_1)}$.

This process outputs a vector $\mathbf{x} = (\mathbf{x}_0, \mathbf{x}_1) \in \mathbb{Z}^{r+s}$

whose distribution is statistically indistinguishable from $D_{\mathbb{Z}^{r+s}} \sqrt{\Sigma} c$.

$$\longrightarrow$$
 Particular structure of $\Sigma_p = \begin{vmatrix} A & -\alpha^2 T \\ -\alpha^2 T^T & (\zeta^2 - \alpha^2)I \end{vmatrix}$ + using the Lemma iteratively.

SAMPLING GAUSSIAN PREIMAGES

 \longrightarrow Computing a small Gaussian vector $\mathbf{x} \in \mathcal{R}^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{u} \mod q$ for a given $\mathbf{u} \in \mathcal{R}^d$.

Preimage Sampling Algorithm

- 1. Sample $p \leftarrow D_{\mathcal{R}^m, \sqrt{\Sigma_p}}$ (Perturbation Sampling).
- 2. Compute $\mathbf{v} = \mathbf{H}^{-1}(\mathbf{u} \mathbf{A}\mathbf{p})$.
- 3. Sample $z \leftarrow D_{\Lambda_{\sigma}^{\mathsf{v}}(\mathsf{G}),\alpha}$ (G-Sampling).
- 4. Return $\mathbf{x} = \mathbf{p} + \begin{bmatrix} \mathsf{T} \\ \mathsf{L} \end{bmatrix} \mathbf{z}$.
- · x lies in the desired coset.
- The covariance matrix of \mathbf{x} is $\mathbf{\Sigma} = \underbrace{\mathbf{\Sigma}_p}_{\text{perturbation covariance matrix}} + \underbrace{\alpha^2 \begin{bmatrix} \intercal \end{bmatrix} \begin{bmatrix} \tau^\intercal \iota \end{bmatrix}}_{\text{covariance matrix of } \mathbf{\Gamma} \end{bmatrix} \mathbf{z}}_{\text{covariance matrix of } \mathbf{\Gamma} \end{bmatrix} \mathbf{z}$

DUAL-REGEV ENCRYPTION SCHEME [GPV08]

- · SETUP(1ⁿ) \longrightarrow (mpk, msk).
- EXTRACT(1ⁿ, mpk, msk, id) \longrightarrow sk_{id}.
- ENCRYPT(1^n , mpk, id, M) \longrightarrow C.
- DECRYPT(1ⁿ, sk_{id} , C) \longrightarrow (M, Error).

- SETUP $(1^n) \longrightarrow (mpk, msk)$.
- EXTRACT(1ⁿ, mpk, msk, id) \longrightarrow sk_{id}.
- ENCRYPT(1^n , mpk, id, M) $\longrightarrow C$.
- DECRYPT(1ⁿ, sk_{id} , C) \longrightarrow (M, Error).

- · SETUP(1^n) \longrightarrow (mpk, msk).
- EXTRACT (1ⁿ, mpk, msk, id) \longrightarrow sk_{id}.
- ENCRYPT(1^n , mpk, id, M) \longrightarrow C.
- DECRYPT($1^n, sk_{id}, C$) \longrightarrow (M, Error).

- · SETUP(1ⁿ) \longrightarrow (mpk, msk).
- EXTRACT(1ⁿ, mpk, msk, id) \longrightarrow sk_{id}.
- ENCRYPT $(1^n, mpk, id, M) \longrightarrow C$.
- DECRYPT(1ⁿ, sk_{id} , C) \longrightarrow (M, Error).

- SETUP(1ⁿ) \longrightarrow (mpk, msk).
- EXTRACT(1ⁿ, mpk, msk, id) \longrightarrow sk_{id}.
- ENCRYPT(1^n , mpk, id, M) $\longrightarrow C$.
- DECRYPT $(1^n, sk_{id}, C) \longrightarrow (M, Error)$.

History

- 1984 IBE concept introduced by Shamir.
- 2001 First IBE constructions by Boneh and Franklin (bilinear maps) and Cocks (quadratic residue assumptions).
- 2008 First lattice based IBE, by Gentry, Peikert, and Vaikuntanathan ([GPV08]).
- 2010 Efficient lattice based IBE secure in the standard model ([ABB10]).
- 2014 Efficient IBE over NTRU lattices ([DLP14]).

MODULE IBE CONSTRUCTION

Modularity of the implementation

· C implementation without any external library dependency.

Modularity of the implementation

- · C implementation without any external library dependency.
- · Blocks can be swapped out.

Modularity of the implementation

- · C implementation without any external library dependency.
- · Blocks can be swapped out.
- Easy to modify the **arithmetic** on \mathcal{R}_q .

IMPLEMENTATION

- Partial NTT to speed up polynomial arithmetic in \mathcal{R}_q .
- $\boldsymbol{\cdot}$ Representation of polynomials by their complex CRT representation.
- Efficient low-degree FRD encoding to map identities to matrices in $\mathcal{R}_q^{d \times d}$.

 Table 1: Suggested parameter sets.

Parameter set	I	П	Ш	IV
nd	1024	1280	1536	2048
n	1024	256	512	2048
k	30	30	30	30
d	1	5	3	1
σ	7.00	5.55	6.15	6.85
α	48.34	54.35	60.50	67.40
ζ	83832	83290	112522	160778
BKZ blocksize <i>b</i> to break LWE	367	478	614	896
Classical security	107	139	179	262
Quantum security	97	126	163	237
BKZ blocksize <i>b</i> to break SIS	364	482	583	792
Classical security	106	140	170	231
Quantum security	96	127	154	210

PERFORMANCE

Table 2: Timings of the different operations of our scheme: Setup, Extract, Encrpt, and Decrypt

Parameter Set	Setup	Extract	Encrypt	Decrypt
I	9.82 ms	16.54 ms	4.87 ms	0.99 ms
II	44.91 ms	18.09 ms	5.48 ms	1.04 ms

Table 3: Timings of the different operations for some IBE schemes.

Scheme	(λ, n)	Setup	Extract	Encrypt	Decrypt
BF-128	(128, –)	-	0.55 ms	7.51 ms	5.05 ms
DLP-14	(80, 512)	4.034 ms	3.8 ms	0.91 ms	0.62 ms

- \longrightarrow Less efficient but secure in the standard model and without the NTRU assumption.
- → Implementation of [BFR⁺18] **obsolete** + **limited security**.

CONCLUSION

Future problems

- Using **approximate sampling** techniques of [CGM19] to make the schemes faster and more compact.
- · Adapting the schemes to achieve adaptive security.
- · Using better Integers Gaussian Samplers to achieve better performance.

Thanks!

REFERENCES

cryptographic constructions. In STOC. ACM, 2008.

Lecture Notes in Computer Science. Springer, 2012.

FUDOCPYPT Lacture Notes in Computer Science, Springer 2010

[ABB10]

[GPV08]

[MP12]

	EUROCRYPI, Lecture Notes in Computer Science. Springer, 2010.
[BFR ⁺ 18]	P. Bert, PA. Fouque, A. Roux-Langlois, and M. Sabt. Practical implementation of
	ring-sis/lwe based signature and IBE. In <i>PQCrypto</i> , Lecture Notes in Computer Science. Springer, 2018.
[CGM19]	Y. Chen, N. Genise, and P. Mukherjee. Approximate trapdoors for lattices and smaller hash-and-sign signatures. In ASIACRYPT (3), Lecture Notes in Computer Science. Springer,
	2019.
[DLP14]	L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based encryption over NTRU lattices. In ASIACRYPT (2), Lecture Notes in Computer Science. Springer, 2014.
[GM18]	N. Genise and D. Micciancio. Faster gaussian sampling for trapdoor lattices with arbitrary

modulus. In EUROCRYPT (1). Lecture Notes in Computer Science, Springer, 2018.

C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new

D. Micciancio and C. Peikert. Trapdoors for lattices: simpler, tighter, faster, smaller, In

S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In