

- * **Introduction:** Importance and relevance of numerical methods
- * **Key Concepts:** Definition, types, and applications of numerical methods
- * **Real-World Applications:** Case study of using numerical methods in engineering, science, and finance
- * **Interactive Elements:** Simulation of numerical methods using online tools
- **Module 2: Root Finding and Nonlinear Equations**
- * **Introduction:** Overview of root finding methods
- * **Key Concepts:** Bisection, secant, and Newton-Raphson methods
- * **Real-World Applications:** Numerical solution of polynomial equations and optimization problems
- * **Interactive Elements:** Graphical representation of root finding algorithms
- **Module 3: Linear Systems and Matrix Operations**
- * **Introduction:** Types and properties of linear systems
- * **Key Concepts:** Gauss-Jordan elimination, Cramer's rule, and matrix inversion
- * **Real-World Applications:** Solving simultaneous equations in various fields
- * **Interactive Elements:** Online matrix calculator for practice
- **Module 4: Numerical Integration**
- * **Introduction:** Concepts of definite and indefinite integrals
- * **Key Concepts:** Trapezoidal, Simpson's, and Gaussian quadrature rules

- * **Real-World Applications:** Calculating areas, volumes, and other geometric quantities
- * **Interactive Elements:** Simulation of integration algorithms
- **Module 5: Numerical Differentiation**
- * **Introduction:** Derivatives and their numerical approximation
- * **Key Concepts:** Forward, backward, and central difference methods
- * **Real-World Applications:** Interpolation, curve fitting, and data analysis
- * **Interactive Elements:** Visual representation of differentiation algorithms
- **Module 6: Differential Equations**
- * **Introduction:** Types and characteristics of differential equations
- * **Key Concepts:** Euler's method, Runge-Kutta methods, and finite difference methods
- * **Real-World Applications:** Modeling real-life phenomena in science, engineering, and finance
- * **Interactive Elements:** Simulation of differential equation solvers
- **Module 7: Interpolation and Curve Fitting**
- * **Introduction:** Need for interpolation and curve fitting
- * **Key Concepts:** Polynomial, spline, and least squares methods
- * **Real-World Applications:** Smoothing data, predicting trends, and approximating functions
- * **Interactive Elements:** Curve fitting tool for hands-on practice

Module 8: Optimization

* **Introduction:** Concepts of unconstrained and constrained optimization

* **Key Concepts:** Gradient descent, Nelder-Mead, and Lagrange multipliers

* **Real-World Applications:** Finding optimal solutions in various domains

* **Interactive Elements:** Optimization solver with visual feedback