The Problem

How do we predict the price of a home in Ames, Iowa?

The Issue in Context

- Don't want to pay rent every month for the rest of your life? Buy your own home!
- Tired of living in a small town? Sell your home!
- But...how do you put a price tag on it?

The Approach

- Explore large set of data on over 2000 homes in Ames, IA
- Construct predictive linear regression model
- Evaluate model on unseen data

Examining the Distribution of Target Variable - SalePrice

SalePrice Distribution

Examining the Distribution of Target Variable - SalePrice

Examining the Distribution of Target Variable – log(SalePrice)

log(SalePrice) Distribution

Some multicollinearity in features, but focus on correl. vs SalePrice

Methodology: Data Cleaning & Feature Engineering

Handling Features by Data Type

Mapping: Rating/Ranking System

Methodology: Feature Engineering

Distributions Some of Noteworthy Numeric Features

There are also features that are "almost normal" but skewed in the same way that <code>SalePrice</code> is!

Our threshold: a feature is moderately skewed if Skew(X) > 0.5

Not convinced? See next slide for evidence to support replacing such features with their logs.

Methodology: Feature Engineering & Modeling

Benefits of the Log Transform

Modeling: Results

OLS useless with 516 regressors, but Ridge and Lasso came through

Ridge picked 490 features and ignored the other 26 features.

Lasso picked 14 features and zero-ed out the other 502 features.

Modeling: Evaluation

Scenario Analysis of Models

- Log-Log Ridge Regression outperformed other scenarios in terms of both CV Score and Training Set R2.
- Dropping log(ordinals) typically did better than keeping them in all scenarios.

Wrapping-Up

Verdict on our Log-Log Ridge Regression model

- Able to handle unseen data decently well
 - > R² Test score, Kaggle RMSE score
- Suffers from slight overfitting (5% diff in R² Train vs. Test),
- Still performs well on a consistent basis judging by 5-Fold Cross Validation Score
- Overall, model can be used to predict prices of homes in Ames, IA within a ballpark of true value.

Further Enquiry

- Manually select interaction terms to include in the model and examine if RMSE falls further
- Introduce polynomial versions of the top 10 highly correlated features with SalePrice into the model to see if it improves model predictability
- Implement Gradient Boosting and Random Forests to improve model predictability
- Using the surviving features from Lasso, how well would OLS perform? What ends up being the threshold at which OLS fails?

