Développement. Le théorème de Riesz-Fischer

Soient (E, \mathscr{A}, μ) un espace mesuré et **K** le corps **R** ou **C**. Pour tout réel $p \in]0, +\infty[$, on considère l'ensemble $L^p(E)$ des fonctions mesurables $f: E \longrightarrow \mathbf{K}$ telles que

$$\int_{E} |f|^p \, \mathrm{d}\mu < +\infty$$

et l'ensemble $L^{\infty}(E)$ des fonctions mesurables $f \colon E \longrightarrow \mathbf{K}$ bornées μ -presque partout. On note $\| \cdot \|_{\mathcal{D}}$ et $\| \cdot \|_{\infty}$ leurs normes usuelles associées.

Théorème 1. Soit $p \in [1, \infty]$. Alors l'espace $L^p(E)$ est complet.

Preuve On suppose que $p < \infty$. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de Cauchy de $L^p(E)$. Par une récurrence, comme la suite est de Cauchy, on peut construire une extraction $\varphi \colon \mathbb{N} \longrightarrow \mathbb{N}$ telle que

$$\forall n \in \mathbf{N}, \quad \|f_{\varphi(n+1)} - f_{\varphi(n)}\| \leqslant 1/2^n.$$

Grâce à l'inégalité de Minkowski généralisé, on obtient alors

$$\left\| \sum_{n=0}^{+\infty} |f_{\varphi(n+1)} - f_{\varphi(n)}| \right\|_{p} \leqslant \sum_{n=0}^{+\infty} \|f_{\varphi(n+1)} - f_{\varphi(n)}\|_{\infty} \leqslant \sum_{n=0}^{+\infty} \frac{1}{2^{n}} < +\infty.$$

Ceci montre que

$$\int_{E} \left(\sum_{n=0}^{+\infty} |f_{\varphi(n+1)} - f_{\varphi(n)}| \right)^{p} d\mu < +\infty \quad \text{et} \quad \sum_{n=0}^{+\infty} |f_{\varphi(n+1)} - f_{\varphi(n)}| < +\infty.$$

On peut ainsi considérer la fonction définie μ -presque partout

$$f := \sum_{n=0}^{+\infty} (f_{\varphi(n+1)} - f_{\varphi(n)}) + f_{\varphi(0)} \in L^p(E).$$

La suite $(f_{\varphi(n)})_{n\in\mathbb{N}}$ converge μ -presque partout vers la fonction f et elle tend vers cette dernière pour la norme $\| \|_p$ puisque, pour tout entier $n \in \mathbb{N}$, on a

$$||f - f_{\varphi(n)}||_{p} = \left\| \sum_{k=n}^{+\infty} (f_{\varphi(k+1)} - f_{\varphi(k)}) \right\|_{p}$$

$$\leq \sum_{k=n}^{+\infty} ||f_{\varphi(k+1)} - f_{\varphi(k)}||_{p} \leq \sum_{k=n}^{+\infty} \frac{1}{2^{k}} \longrightarrow 0.$$

En conclusion, la suite $(f_n)_{n \in \mathbb{N}}$ est de Cauchy et elle admet une sous-suite convergente dans $L^p(E)$, donc elle converge dans $L^p(E)$.

On suppose que $p = \infty$. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de Cauchy de $L^{\infty}(E)$. Considérons l'ensemble mesurable

$$A := \bigcap_{n \in \mathbf{N}} \{ |f_n| \leqslant ||f_n||_{\infty} \} \cap \bigcap_{n \in \mathbf{N}} \{ |f_n - f_m| \leqslant ||f_n - f_m||_{\infty} \} \in \mathscr{A}$$

qui est clairement de mesure pleine, c'est-à-dire que $\mu(A^c) = 0$. La suite $(f_n \mathbf{1}_A)_{n \in \mathbf{N}}$ est une suite de Cauchy de fonctions bornées de E dans K. Mais l'espace des fonctions

bornées de E dans \mathbf{K} étant complet, on en déduit que cette dernière suite converge vers une fonction bornée $f: E \longrightarrow \mathbf{K}$. Finalement, on obtient

$$||f_n - f||_{\infty} = ||f_n \mathbf{1}_A - f||_{\infty} \longrightarrow 0$$

ce qui conclut.

Précisions

On redonne l'inégalité de Minkowski généralisée.

Proposition 2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R}_+ . Alors

$$\left\| \sum_{k=0}^{+\infty} f_n \right\|_p \leqslant \sum_{n=0}^{+\infty} \|f_n\|_p.$$

Preuve Pour tout entier $n \in \mathbb{N}$, les fonctions f_k avec $k \in [0, n]$ étant positives et mesurables, l'inégalité de Minkowski donne

$$\left\| \sum_{k=0}^{n} f_{k} \right\|_{p} \leqslant \sum_{k=0}^{n} \|f_{k}\|_{p} \longrightarrow \sum_{k=0}^{+\infty} \|f_{k}\|_{p}.$$

Par ailleurs, comme la suite $(f_0 + \cdots + f_n)_{n \in \mathbb{N}}$ est une suite croissante de fonctions mesurables positives, le théorème de Beppo Levi assure

$$\left\| \sum_{k=0}^{n} f_k \right\|_p \longrightarrow \left\| \sum_{k=0}^{+\infty} f_k \right\|_p.$$

En combinant ces deux limites, on en déduit la proposition.

◁