Basic Columns and Basic Solutions

Observation 3.37.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

- \triangleright $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;
- \triangleright x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.

Example: m = 2

- $ightharpoonup A_1, A_3$ or A_2, A_3 form bases with corresp. basic feasible solutions.
- \triangleright A_1, A_4 do not form a basis.
- ▶ A_1 , A_2 and A_2 , A_4 and A_3 , A_4 form bases with infeasible basic solution.

M. Skutella ADM I (winter 2019/20) 78

Bases and Basic Solutions

Corollary 3.38.

- ▶ Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- ► Thus, different basic solutions correspond to different bases.
- ▶ But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.

Adjacent Bases

Definition 3.39.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B'(1)}, \ldots, A_{B'(m)}$ are adjacent if they share all but one column.

Observation 3.40.

- Two adjacent basic solutions can always be obtained from two adjacent bases.
- If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.

M. Skutella ADM I (winter 2019/20) 80

Degeneracy

Definition 3.41.

A basic solution x of a polyhedron P is degenerate if more than n constraints are active at x.

Observation 3.42.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, \ x \ge 0\}$ be a polyhedron in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and $b \in \mathbb{R}^m$.

- A basic solution $x \in P$ is degenerate if and only if more than n m components of x are zero.
- **b** For a non-degenerate basic solution $x \in P$, there is a unique basis.

Three Different Reasons for Degeneracy

redundant variables

Example:
$$x_1 + x_2 = 1 \\ x_3 = 0 \longleftrightarrow A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_1, x_2, x_3 \ge 0$$

ii redundant constraints

Example:
$$x_1 + 2x_2 \le 3$$

 $2x_1 + x_2 \le 3$
 $x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$

geometric reasons (non-simple polyhedra)

Example: Octahedron

Observation 3.43.

Perturbing the right hand side vector b may remove degeneracy.

M. Skutella ADM I (winter 2019/20) 82

Chapter 4: The Simplex Method

(cp. Bertsimas & Tsitsiklis, Chapters 3.1, 3.2)

Linear Program in Standard Form

Throughout this chapter, we consider the following standard form problem:

minimize
$$c^T \cdot x$$

subject to $A \cdot x = b$
 $x \ge 0$

with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

M. Skutella

ADM I (winter 2019/20

0 /

Basic Directions

Observation 4.1.

Let $B = (A_{B(1)}, \dots, A_{B(m)})$ be a basis matrix. The values of the basic variables $x_{B(1)}, \dots, x_{B(m)}$ in the system $A \cdot x = b$ are uniquely determined by the values of the non-basic variables.

Proof:
$$A \cdot x = b \iff B \cdot x_B + \sum_{j \neq B(1), \dots, B(m)} A_j \cdot x_j = b$$

$$\iff x_B = B^{-1} \cdot b - \sum_{j \neq B(1), \dots, B(m)} B^{-1} \cdot A_j \cdot x_j$$

Definition 4.2.

For fixed $j \neq B(1), \ldots, B(m)$, let $d \in \mathbb{R}^n$ be given by

$$d_j := 1, \quad d_B := -B^{-1} \cdot A_j, \quad \text{and} \quad d_{j'} := 0 \quad \text{for } j' \neq j, B(1), \dots, B(m).$$

Then $A \cdot (x + \theta \cdot d) = b$, for all $\theta \in \mathbb{R}$, and d is the jth basic direction.