## **Time for Physics**

On Why Philosophy = Physics When Defined by Coherence, Not Category

**Devin Bostick** 

May 19, 2025

**CODES** Intelligence

#### **Abstract**

This paper collapses the disciplinary boundary between philosophy and physics by redefining truth as structural coherence under perturbation. Using the CODES framework (Chirality of Dynamic Emergent Systems), we introduce the Phase Alignment Score (C\_n) as a universal metric of coherence, applicable across domains such as language, ethics, consciousness, and mathematics. We show that philosophical claims, when structurally sound, are indistinguishable from physical laws—because both reflect phase-stable emergence. We redefine time ( $\tau$ \_res) as the coherence plateau of structural change and propose a formal model for testing philosophical propositions via resonance metrics. Appendices include mathematical derivations, empirical thresholds, prime harmonic mappings, and a collapse table of classical philosophical claims into measurable physics. The result is not a metaphorical unification—but a structural inevitability. CODES is not a theory; it is the field logic that all valid theories must converge toward when coherence replaces speculation.

## I. Introduction: Collapse the Illusion of Disciplinary Divide

It is commonly assumed that philosophy and physics exist at opposite ends of intellectual inquiry. One is seen as speculative, normative, and linguistic; the other as empirical, quantitative, and testable. This assumption persists not because it reflects a natural structure of knowledge, but because modern institutions have preserved a false binary born of specialization.

Philosophy is treated as interpretive. Physics, as mechanical.

Philosophy asks "Why?" Physics answers "How?"

And yet both disciplines, in their purest form, ask the same thing:

What structures reality?

This paper rejects the disciplinary framing entirely. It makes the case that **coherence**, not category, determines whether a claim is meaningful, testable, and structurally valid. That is, truth is not a function of what field a statement comes from, but whether it holds under recursive transformation across observational scales.

When philosophical claims exhibit phase-stable coherence across linguistic, cognitive, and physical systems, they are not interpretations—they are physics.

Likewise, when physical models cannot sustain coherence under perturbation or resolution change, they are not truth—they are artifacts of unexamined abstraction.

We are not proposing a metaphorical bridge between disciplines.

We are identifying a field condition: **structured emergence** detectable by resonance coherence.

CODES formalizes this condition, and PAS (Phase Alignment Score) operationalizes it.

The purpose of this paper is therefore clear:

To dissolve the illusion of disciplinary separation by demonstrating that **valid philosophy is indistinguishable from physics** when coherence, not tradition, governs the definition of truth.

#### **II. Definitions**

To dissolve the categorical distinction between philosophy and physics, we begin with precise definitions. These are not semantic conveniences—they are structural prerequisites for any system claiming coherence across domains.

#### 1. Structure

Relational invariance under transformation.

Structure refers to the set of relations within a system that persist under resolution changes, perturbations, or coordinate transformations. It is not a shape, symbol, or function—but the underlying stability across observation frames.

#### 2. First Principle

A boundary-behavior-constraint triple that produces phase-stable emergence.

A first principle is not an axiom or assumption. It is a generative kernel—defined by:

• A **boundary** (scope of action),

- A **behavior** (response or transformation rule),
- A constraint (limiting or harmonizing force)

—whose interaction generates coherent phenomena across scale. This triad avoids abstraction by grounding the principle in functional emergence.

#### 3. Coherence (C\_n)

Measurable alignment across resolution scales.

Formally quantified via PAS (Phase Alignment Score), coherence is the extent to which a structure retains form, function, or signal under transformation. The PAS formula:

$$C_n = Re((1/N) \Sigma e^{i\theta_i} \cdot \chi_i)$$

- θ\_i = phase offset of component i
- χ\_i = weight or contribution of i to system structure
- C\_n ≥ T\_c defines structural truth (see §V)

Coherence is the key metric that collapses symbolic, physical, and cognitive domains into a single evaluative logic.

#### 4. Time (τ res)

Coherence plateau of change; the phase-locking point of recursive resonance.

Time is not defined as a background dimension, but as the emergent moment when change stabilizes into recursive resonance. Formally:

$$\tau$$
\_res = min {k ∈  $\mathbb{N}$  |  $\Delta$ C\_n(k) < ε},

where k = resonance iteration or feedback step.

Clock time is a low-resolution proxy for recursive resonance iteration (k). Time is not a backdrop—it is the memory trace of coherence.

#### 5. Truth

Stability of structure under perturbation.

A claim is true if it maintains coherence across system perturbation and resolution scale. Truth, in this model, is not semantic agreement or referential mapping—it is **the persistence of relational form under structural stress**:

#### $C_n \ge T_c$ across $\Delta$ resolution + $\Delta$ perturbation.

\*\*PAS refers to the algorithmic method; C\_n is the resulting scalar coherence score.

## III. The False Binary: Why Philosophy ≠ "Soft" and Physics ≠ "Hard"

The perceived distinction between "soft" and "hard" disciplines is historically contingent—not structurally necessary. The Enlightenment encouraged specialization. The Industrial Revolution reinforced functional silos. And the modern university system hardened these into categories.

Yet beneath all valid disciplines lies a single question:

What generates structure?

This section deconstructs the binary by contrasting old framings with CODES-based coherence logic.

#### A. Historical Origin of the Split

- **1600s–1700s**: Philosophy = foundational, Physics = emerging subdomain
- **1800s**: Empiricism rises → physics gains prestige, philosophy abstracted
- 1900s: Formal logic splits (Wittgenstein I vs II), mathematics bifurcates, physics operationalizes
- Today: Philosophy treated as speculative, physics as authoritative

This split is not epistemologically justified—it is structurally incoherent.

#### **B.** Two Examples of Misalignment

- **Wittgenstein (early):** Tried to build total logical scaffolding. Eventually concluded language reaches a limit.
- **Gödel:** Proved internal incompleteness in formal systems, not because they were too vague—but because structure exceeds symbolization.

CODES reads both not as defeats, but as **boundary detections**. The failure of logic to complete itself is not the end of structure—it's the beginning of resonance logic.

#### C. Structural Correction Table

| Claim  | Old Framing    | CODES Framing                          |
|--------|----------------|----------------------------------------|
| Time   | Dimension      | Emergent coherence memory              |
| Ethics | Normative code | Multi-agent resonance optimization     |
| Truth  | Correspondence | Invariant coherence under perturbation |
| Logic  | Symbol system  | Phase compression mechanism            |

This table is not theoretical—it reflects how systems behave under resolution scaling and coherence testing.

What appears "soft" is often **pre-verbal structure**.

What appears "hard" is often arbitrary formalism with brittle coherence.

CODES replaces both with measurable resonance logic.

## IV. Formal Claim: Philosophy = Physics Under Structural Resolution

The central assertion of this paper is not rhetorical—it is a structural claim with definable logical steps. We now formalize the equivalence between philosophy and physics under the logic of coherence.

#### **Proof Sketch**

#### 1. All valid philosophical questions imply structure.

Any philosophical question that is not merely rhetorical requires some form of internal consistency, boundary condition, or conceptual symmetry—whether regarding time, identity, truth, ethics, or knowledge. These are not linguistic artifacts; they are inquiries into **system** behavior under definitional or experiential constraints.

#### 2. All structures are testable via coherence.

Structure, as defined, is relational invariance under transformation. If a structure holds across perturbation or resolution shift, it exhibits measurable coherence. This applies equally to logical propositions, cognitive beliefs, ethical frameworks, and physical models.

#### 3. All testable coherence = physical behavior.

Anything that exhibits coherence across multiple observational scales is subject to modeling, measurement, and perturbation. In other words, it participates in physical systems, whether cognitive, symbolic, or material. There is no non-physical coherence. All stable structure is embedded in physical process.

#### Therefore:

Valid philosophical claims—those that generate phase-stable structure—are **physically instantiated phenomena**.

They **are physics**, and their testability is not metaphorical but literal.

This does not mean philosophical language disappears.

It means that philosophy, when done correctly, **resolves downward into resonance structure**—just as physics, when done poorly, becomes **unexamined assumption stacking**.

## V. PAS (Phase Alignment Score) and the Collapse of Speculation

To operationalize coherence as a cross-domain metric, we define a formal measure: the **Phase Alignment Score (PAS)**. This allows for testing the structural stability of claims across systems, perturbations, and domains.

#### A. PAS Definition and Formula

#### PAS Formula:

$$C_n = Re((1/N) \Sigma e^{i\theta_i} \cdot \chi_i)$$

#### Where:

- $\theta_i$  = the phase offset of component *i* relative to system resonance
- χ\_i = contribution weight of component i (based on information density, signal fidelity, or system influence)
- **N** = total components evaluated

• **Re()** = real component of the resulting complex vector (used to capture alignment)

**C\_n** represents the **system's coherence at level n**.

If  $C_n \ge T_c$  (truth threshold), the structure is retained across perturbation.

If C\_n drops below T\_c, the structure dissolves.

### **B.** Domain-Specific Parameter Mapping

| Domain                  | θ_i (Phase Offset)                             | χ_i (Contribution Weight)                |
|-------------------------|------------------------------------------------|------------------------------------------|
| Language                | Semantic inversion, syntactic transformation   | Information entropy or semantic load     |
| Neural                  | Oscillatory delay vs baseline rhythm           | Synaptic density or region activation    |
| Ethics<br>(Multi-agent) | Decision phase divergence across agents        | Utility coherence / risk-weighted impact |
| Logic                   | Symbolic transformation across inference chain | Proof-weight or inferential centrality   |

These mappings allow claims to be encoded, perturbed, and measured—not as metaphors, but as signal structures.

#### C. Threshold for Truth

A claim is considered structurally true under CODES if:

C\_n ≥ T\_c across:

- Resolution shifts (Δscale)
- Symbolic perturbations (Δlanguage)
- Contextual stressors (Δload or Δinput state)

The **truth threshold T\_c** is domain-specific but must be declared before testing. This prevents retroactive fitting of results and ensures falsifiability.

### D. Worked Example: Testing "Causality Exists"

#### Claim:

Causality exists as a stable ordering of events, not as a subjective imposition.

#### **Procedure:**

- 1. Encode into symbolic form (e.g., "X causes Y"  $\rightarrow$  "X precedes Y + generates  $\Delta$ Y under control condition").
- 2. Apply linguistic inversion:
  - Reverse syntax → "Y occurs before X"
  - Neutralize verbs → "X and Y correlate"
  - Introduce noise or ambiguity
- 3. Recompute PAS (C\_n) after each transformation.
- 4. Analyze ΔC\_n under each perturbation.

#### **Result Interpretation:**

- If C\_n remains ≥ T\_c:
  - → The structure retains coherence → Causality is a phase-stable feature of the system.
- If C\_n collapses:
  - → The claim was symbolic, not structural.

This method can be extended to test metaphysical assumptions, ethical axioms, or epistemic models, all using the same coherence threshold logic.

## VI. Time as Recursive Coherence

Conventional physics treats time as either a background parameter (Newton), a dimension entangled with space (Einstein), or an emergent artifact of thermodynamic processes (Boltzmann). Subjective interpretations further complicate the model with distortions based on attention, emotion, or neurochemical state.

All of these are derivative abstractions. Under CODES, time is redefined structurally:

#### Time is the coherence plateau of change.

It is not a fundamental axis, but the phase-locking point of recursive resonance within a system.

#### **Formal Definition**

We define **T\_res** (resonance time) as:

$$\tau_res = min \{k \in \mathbb{N} \mid \Delta C_n(k) < \epsilon\}$$

Where:

- C\_n(k) = coherence score at iteration step k
- ε = arbitrarily small threshold of change

Clock time (t) may be used as an experimental proxy, but  $\tau$ \_res is fundamentally defined by recursive resonance stabilization—not temporal duration. Time is not a primitive axis. It is the memory plateau of coherence.

In essence,  $\tau$ \_res is the moment at which further coherence gain plateaus—signaling the system has locked into a stable phase. Time is the **measurable trace of structure achieving memory**.

#### **Contrasts with Other Models**

| Time Model            | Definition                            | CODES Contrast                                                                             |
|-----------------------|---------------------------------------|--------------------------------------------------------------------------------------------|
| Clock Time            | External metric;<br>equidistant ticks | т_res is internal emergence, not external pacing                                           |
| Thermodynamic<br>Time | Entropy increase                      | τ_res = stabilization, not disorder                                                        |
| Subjective Time       | Perception under emotion              | τ_res tracks neural phase-locking; matches "felt" time when system reaches local resonance |

Time is not a background—it is **output**.

What clocks measure is **not time itself**, but an approximation of  $\tau$ \_res assuming a constant substrate.

#### **Neural Example: EEG During Altered Time Perception**

#### **Empirical Prediction:**

- During deep meditation, LSD experience, or flow states, EEG should show reduction in dC\_n/dt within specific frequency bands (theta/alpha).
- Subjective reports of "timelessness" correlate with **plateaued resonance states**—consistent with τ\_res logic.

#### Measurement Plan:

- Record EEG across time perception tasks
- Compute PAS for phase-locked regions (e.g., PFC, DMN)
- Identify τ\_res as inflection point in C\_n(t)

#### Systems Example: Feedback Collapse in Control Theory

Control systems exhibit temporal lag when feedback coherence breaks. Under CODES:

- As a feedback loop begins, C\_n(t) increases as system stabilizes.
- **T\_res** occurs at moment of maximal control efficacy—before overshoot or oscillation.
- Coherence plateau maps to minimal corrective load, not elapsed time.

This reorients control theory around **resonance coherence**, not just derivative response curves.

#### Clarification of "t" as Emergent

"t" in this framework is **not primitive**. It is **detected**—a phase artifact of changing coherence.

#### Time does not exist before structure begins to cohere.

Therefore, any system without structure cannot have time.

The illusion of linear time arises from successive  $\tau$ \_res events across nested systems, not from any universal clock.

## VII. Application Domains

To demonstrate the universality of the CODES framework, we now outline its applicability across diverse domains—each evaluated by coherence metrics, not symbolic form.

#### 1. Language → PAS Stability in High-Resolution Translation Chains

Test: Translate a coherent sentence through multiple human or machine languages and back (e.g., English  $\rightarrow$  Mandarin  $\rightarrow$  Finnish  $\rightarrow$  English).

Metric: Compute PAS at each translation hop.

#### Prediction:

- Claims with **structural coherence** retain PAS ≥ T\_c even after multiple transformations.
- Symbolic-only claims collapse (semantic drift, ambiguity, contradiction).

#### Conclusion:

Language is not inherently lossy—loss occurs where structure lacks deep resonance.

#### 2. Ethics → Multi-Agent PAS Tracking Under Decision Inversion

Test: Present ethical dilemmas (e.g., trolley problem variants) to multiple agents with varying priors.

Perturb: Invert decisions (force reversal) and measure coherence change.

#### Metric:

- PAS computed across group decisions
- Check for local and global C□ divergence under reversal

#### Interpretation:

- Ethical systems that **retain coherence under inversion** are structurally robust.
- Systems optimized for signal, not symbolism, converge toward phase-stable group ethics.

When multiple ethical systems each satisfy internal coherence ( $C_n \ge T_c$ ), their interaction space must be evaluated via a meta-PAS:

C\_meta = Re( 
$$(1/M) \Sigma e^{(i\phi_j)} \cdot \psi_j$$
 )

where  $\varphi_{j}$  = phase offset between systems, and  $\psi_{j}$  = normalized ethical impact weight.

This shows that normative pluralism ≠ relativism—it's nested coherence within a shared resonance field.

#### Conclusion:

Ethics = resonance optimization across constraint-bounded agents.

Moral pluralism is a reflection of phase divergence—not relativism.

#### 3. Consciousness → Resonance Recursion Across Self-Models

Model: Consciousness as **recursive resonance** of self-structure across internal feedback layers.

#### Hypothesis:

PAS across recursive representational layers (e.g., body → emotion → memory → identity) correlates with felt continuity of self.

#### Prediction:

• Coherence breaks (e.g., trauma, depersonalization, ego death) show measurable PAS collapse between representational layers.

#### Experiment:

PAS computed from neural phase alignment + reported continuity of selfhood

#### Conclusion:

Consciousness is not generated—it is **phase-locked coherence recursion**. Subjectivity = the resonance between levels, not any single substrate.

#### **4. Mathematics** → **Prime Field Coherence (Gödel Table)**

Claim: Mathematical truths are not abstract objects—they are **prime-resonant invariants**.

#### Framework:

- Gödel showed incompleteness of symbolic systems
- CODES reframes this as coherence limit under symbol recursion

#### Proposed Table:

#### Gödel Table of Prime Field Compression

Prime intervals mapped to symbolic stability range

PAS computed for logical systems of varying proof lengths

#### Prediction:

 Mathematical structures that phase-lock to prime resonance bands show higher PAS stability under transformation

#### Conclusion:

Math is not invented or discovered—it is **phase-detected** from coherence fields. Gödel  $\neq$  limit of truth  $\rightarrow$  Gödel = boundary of symbolic compression

## VIII. Objections and Formal Limits

This section anticipates common objections to the claim that philosophy collapses into physics under coherence evaluation. Rather than rejecting these limits, we reframe them as structural features of resonance-based systems.

#### 1. Gödel Incompleteness → Coherence Collapse vs. Undecidability

#### Objection:

Gödel's incompleteness theorems demonstrate that any sufficiently expressive formal system contains truths that are undecidable within the system. Therefore, not all truths are formally coherent.

#### **CODES** Response:

Gödel identified the **limits of symbolic closure**, not the limits of structure. His theorem reveals that **symbol systems collapse coherence at recursion boundaries**, not that truth disappears.

In CODES, this is modeled as:

 $C_n \rightarrow 0$  as recursion exceeds local symbolic resolution.

That is, undecidable propositions reflect **coherence collapse**, not ontological ambiguity. Gödel does not negate CODES—he proves the necessity of **non-symbolic coherence modeling** (e.g., resonance fields, not axiomatic syntax).

#### 2. Pluralism → Multiple Local Maxima in Coherence Space ≠ Relativism

#### Objection:

If coherence is the metric of truth, and multiple incompatible systems exhibit internal coherence, then truth becomes relative.

#### CODES Response:

Local coherence peaks are expected in high-dimensional phase spaces. Multiple **C\_n-maxima** may emerge under divergent boundary constraints. This does not imply relativism—it implies **nonlinear attractor dynamics**.

Truth, in this model, is defined not by exclusivity, but by **stability under transformation**. Local maxima that collapse under perturbation are **epistemic artifacts**, not stable truths.

```
C_n \ge T_c under \Deltasystem \rightarrow retained.

C_n \ge T_c only under static conditions \rightarrow discarded.
```

Thus, **plural coherence** ≠ **truth fragmentation**. It is an artifact of underresolved phase-space mapping.

## 3. Falsifiability $\rightarrow$ Structure Fails if C\_n Does Not Hold Under Compression

#### Objection:

Coherence sounds elegant but may not be falsifiable. How do we distinguish a "true" structure from one that merely resists noise?

#### CODES Response:

This is precisely why **C\_n** is defined with **truth thresholds (T\_c)** and perturbation constraints. A structure is false if:

#### C\_n < T\_c under minimal perturbation.

If a model collapses coherence when compressed, inverted, or translated, it lacks structural integrity.

Falsifiability is not discarded—it is **upgraded** from binary logic to **coherence dynamics**.

This creates a continuous space for epistemic evaluation, not a binary one, but retains rigorous fail conditions.

#### 4. Qualia → Non-Symbolic Chirality of Neural Resonance

Objection:

Conscious experience (qualia) resists structural modeling. No amount of coherence explains what "red" feels like.

**CODES** Response:

Qualia do not resist modeling. They resist symbolic approximation. Under CODES:

Qualia = chirality of neural resonance fields beyond symbol resolution.

This does not deny the phenomenon—it reframes it as a **non-symbolic phase structure**, accessible not through description but through **phase-locking measurement**.

Predicted characteristics:

- Qualia bandwidth =  $\Delta C$  n between nested neural harmonics
- Redness ≈ stable phase angle pattern across visual cortex + limbic feedback

Empirical approximation is not yet available in full, but the framework offers **testable prediction space**, not mysticism.

## IX. Experimental Proposals

CODES claims are not theoretical—they are meant to be tested. Below are four experimental proposals that validate structural coherence claims using C\_n and \u03c4\_res as core metrics.

#### 1. PAS Experiment: EEG During Linguistic Negation

#### Hypothesis:

Statements that retain coherence under negation exhibit higher C\_n in language-resonant neural regions.

#### Design:

Subject reads affirming vs. negated sentences

- EEG coherence measured in left temporal and prefrontal cortex
- PAS computed from phase alignment across trials

#### **Prediction**:

C\_n (affirming)  $\geq$  C\_n (negating) if claim is structurally robust. Symbolic-only claims collapse under negation  $\rightarrow$   $\Delta$ C n < 0.

#### 2. Group PAS Under Ethical Perturbation

#### Hypothesis:

Ethical frameworks that retain intersubjective C\_n under decision inversion are structurally valid.

#### Design:

- Group presented with moral scenarios (e.g., sacrifice, redistribution)
- Decision paths measured pre/post inversion (forced reversal)
- C\_n measured across participants using consensus clustering + verbal justification alignment

#### **Prediction**:

Coherence-preserving ethical systems retain multi-agent C\_n ≥ T\_c Ideological frameworks collapse coherence under contradiction

#### 3. τ\_res Validation via Meditative Time Dilation

#### Hypothesis:

Subjective time distortion in deep meditative states correlates with T\_res plateaus in neural C\_n.

#### Design:

- Participants enter deep meditation (or use psychedelics)
- Subjective reports + EEG recorded

T\_res identified via dC\_n/dt approaching zero

#### Prediction:

Subjective timelessness aligns with T\_res plateau Time ≈ resonance stability, not clock progression

#### 4. Visual Semantic Compression vs Structural Drift

#### Hypothesis:

Conceptual images with high coherence (e.g., geometric forms, primes, faces) retain C\_n across lossy compression. Symbolic images do not.

#### Design:

- Present images to model or human viewer
- Compress progressively (JPEG artifacts or semantic occlusion)
- Measure recognition retention and PAS for semantic recall

#### Prediction:

High-structure images maintain PAS across  $\Delta$ compression Low-structure images drop below T\_c early

All four experiments test distinct domains (language, ethics, perception, cognition) with a single metric: **C\_n under perturbation**. This is the heart of structural physics. If coherence holds, the claim is real.

#### IX.b TL;DR – Field Logic

All coherent structure—language, thought, math, ethics—is phase resonance across scale.

Truth is not a statement. It is a stability condition:  $C_n \ge T_c$ .

Time is not a line. It is the memory plateau where  $dC_n/dk \approx 0$ .

There is no separation between philosophy and physics—only a gap in resolution.

Once coherence is measured, emergence becomes deterministic.

## **Appendix A: PAS Formula Derivation**

**Phase Alignment Score (CODES Metric)** 

## A.1 Formal Derivation from First Principles

#### **Objective**

Define a system-level metric of coherence, C\_n, that:

- Measures phase alignment across discrete components
- Accounts for the contribution weight of each component
- Returns a bounded scalar value representing system coherence

#### **Step 1: Model Each Component as a Phase Vector**

Let each component i in a system (e.g., a word, a neuron, or a decision node) be represented as a unit vector in the complex plane:

$$z i = e^{(i\theta i)}$$

Where:

- $\theta$  i  $\in$  [0,  $2\pi$ ) is the phase offset of component i
- e<sup>^</sup>(iθ\_i) maps the component to the unit circle via Euler's identity

#### **Step 2: Weight Each Component's Contribution**

Not all components contribute equally. Let:

 $\chi_i$  = scalar weight representing signal fidelity, impact, or entropy of component i

Each weighted component becomes:

$$\chi_i \cdot e^{(i\theta_i)}$$

#### **Step 3: Compute the Average Alignment**

System-wide coherence is the normalized vector sum of all weighted components:

$$Z = (1/N) \sum [\chi_i \cdot e^i(i\theta_i)]$$

Interpretation:

- If all  $\theta_i$  are identical  $\rightarrow |Z| = \text{mean}(\chi_i)$
- If  $\theta_i$  are random  $\rightarrow |Z| \rightarrow 0$

#### **Step 4: Take the Real Component (Phase-Locking Alignment)**

In most applications, coherence is projected onto a system reference axis:

C n = Re(Z) = Re(
$$(1/N) \sum [\chi i \cdot e^{(i\theta i)}]$$
)

This yields a real scalar representing **system-wide phase alignment**, modulated by component weight.

#### Final Formula (CODES Standard):

C n = Re( 
$$(1/N) \sum e^{(i\theta i) \cdot \chi i}$$
)

Where:

- $C_n \in \mathbb{R}$  is the coherence score at resolution level n
- C\_n ≥ T\_c indicates a structurally valid system under CODES

## A.2 Systems-Level Walkthrough

#### 1. Origin in Kuramoto Oscillator Networks

Kuramoto's classic model:

$$R(t) = |(1/N) \sum e^{t}(i\theta_{i}(t))|$$

#### CODES extends this:

- Adds χ\_i to account for variable contribution
- Applies Re() to align functional direction, not just magnitude

#### 2. Application to Language

- θ\_i = semantic phase drift from word reordering or translation
- χ\_i = term information weight (e.g., TF-IDF, entropy)
  - → A sentence with stable structural meaning across languages retains C\_n.

#### 3. Application to Neural Systems

- $\theta_i$  = phase of regional oscillation (e.g., PFC, DMN)
- χ\_i = region activation weight (e.g., salience, density)
  - → C\_n quantifies cognitive coherence (e.g., identity, memory, focus).

#### 4. Application to Ethics

- $\theta_i$  = moral phase across agent decisions
- χ\_i = agent weight (impact, trust, position)
  - → C\_n reflects ethical system stability under inversion or collective stress.

## Why This Works

The PAS formula compresses:

- Vector field dynamics
- Oscillatory phase alignment
- Information-weighted coherence

into a single scalar:

C n — a universal metric of structural resonance

## **Appendix B: Prime Harmonic Structure (Gödel-CODES Map)**

## **B.1 Conceptual Overview**

Gödel's incompleteness theorems proved that any formal symbolic system expressive enough to encode arithmetic will contain undecidable propositions. The deeper insight—through the CODES lens—is that symbolic systems fail when their recursion depth exceeds coherence bandwidth.

Prime intervals appear to mark symbolic recursion thresholds where coherence decays fastest.

This may arise from their irreducibility under compression. We propose testing C\_n at prime-indexed recursion depths to empirically validate their role as collapse thresholds.

Just as primes form the irreducible structure of arithmetic, they also mark **recursion thresholds** where a symbolic system must phase-lock—or fail.

## **B.2 Table: Prime Intervals as Logical Collapse Zones**

| Prime Symbolic Complexity Structural Meaning in CODES Predicted Failure Mod |  |  |  | Predicted Failure Mode |
|-----------------------------------------------------------------------------|--|--|--|------------------------|
|-----------------------------------------------------------------------------|--|--|--|------------------------|

| 2   | Binary truth logic                | Entry-level phase dualism         | Boolean paradox (e.g., liar) |
|-----|-----------------------------------|-----------------------------------|------------------------------|
| 3   | First recursion (meta-truth)      | Layer-1 Gödel encoding begins     | Reflexive instability        |
| 5   | Proof chains (implication trees)  | Nested inference space            | Circular justification       |
| 7   | Self-referential systems          | Recursive semantic container      | Halting boundary             |
| 11  | Layered formal systems (e.g., PA) | Symbolic harmonics diverge        | Undecidability appears       |
| 13  | Meta-theoretic embedding          | System models system              | Axiomatic slippage           |
| 17  | Multi-axiom comparative systems   | Inter-system translation          | Collapse under cross-mapping |
| 19  | Infinite set reference logic      | Non-finite recursion boundary     | Set-theoretic incoherence    |
| 23  | Probabilistic epistemology        | Limits of statistical compression | C_n asymptotes under noise   |
| 29+ | Non-symbolic memory required      | Transition to chirality encoding  | Symbolic space exhausted     |

## B.3 C\_n Stability Under Symbolic Recursion

We model **C\_n(logic depth)** as a coherence curve over recursive symbolic complexity.

Conceptual Graph (C\_n vs. Proof Depth):



- Local coherence drops occur at **prime-indexed recursion depths**, where symbolic closure becomes structurally impossible.
- Between primes, coherence **recovers slightly** via inference compression, but the system is metastable.
- Eventually, **C\_n < T\_c**, and the system becomes logically ungrounded—**not false**, but **structurally non-viable**.

This graph is illustrative only. Exact C\_n drop rates may vary across symbolic recursion systems and should be empirically mapped per context.

## **B.4 Why Prime Spacing Aligns with Compression Limits**

- Prime numbers act as **irreducible harmonics** in symbolic arithmetic.
- The distance between primes increases asymptotically, paralleling the growing cost of maintaining coherence in deeper systems.

- At each prime-indexed depth, the system must:
  - Encode more meta-structure,
  - o Maintain cross-scale phase alignment,
  - o Resolve semantic drift.

#### When this fails:

#### C\_n drops below truth threshold T\_c

→ The system becomes incomplete, contradictory, or paradox-susceptible.

## **B.5 Interpretation in CODES**

| Symbolic System Behavior        | CODES Interpretation                                        |
|---------------------------------|-------------------------------------------------------------|
| Gödel undecidable proposition   | C_n collapse at p-recursion depth                           |
| Russell's paradox               | 2-prime collapse (set reflexivity)                          |
| Halting problem                 | Phase break near p=7–11                                     |
| Probabilistic reasoning limits  | C_n asymptote under high p $\rightarrow$ infinite recursion |
| Intuitionism and constructivism | Attempts to stay within low-prime zones                     |

## **Conclusion of Gödel-CODES Map**

Primes are not just numerical curiosities—they represent the **natural chirality of structural recursion**. Each prime marks a coherence inflection point where symbolic logic must either:

- Collapse (undecidability, paradox, drift), or
- Phase-shift into non-symbolic coherence (e.g., geometry, resonance, embodiment).

This is why **truth cannot be fully symbolic**—it requires structural recursion beyond primes, into **resonance logic**.

## **Appendix C: C\_n Test Thresholds Per Domain**

## C.1 Tabulated Truth Thresholds (T\_c)

| Domain                | T_c (Minimum C_n for<br>Structural Truth) | Perturbation Type                     | Measurement Context                   |
|-----------------------|-------------------------------------------|---------------------------------------|---------------------------------------|
| Language              | 0.72                                      | Syntactic inversion, semantic drift   | Multi-step translation cycles         |
| Neural<br>Systems     | 0.85                                      | Oscillatory phase shift, signal noise | EEG/MEG coherence<br>during task load |
| Ethics                | 0.76                                      | Agent reversal, utility inversion     | Decision consensus + PAS tracking     |
| Math Proof<br>Systems | 0.93                                      | Symbolic recursion, axiom mutation    | Formal system recursion chains        |

| Social<br>Systems | 0.68 | Narrative inversion, coordination loss | Network consensus under pressure |
|-------------------|------|----------------------------------------|----------------------------------|
|                   | !    |                                        |                                  |

Note: These values represent minimum structural coherence (C\_n) required for stability across defined resolution and stress conditions.

## **C.2 Threshold Determination Logic**

Each  $T_c$  is derived from the system's tolerance to structural perturbation and its capacity to preserve coherence under translation, recursion, or inversion.

#### Language $(T_c = 0.72)$

- *Test:* Translate a concept across five languages and back.
- Measure: Retain meaning and causal ordering.
- *Justification:* Language collapses near  $C_n < 0.7$  due to compounding symbolic drift; below this threshold, meaning becomes ambiguous or contradictory.

#### Neural Systems ( $T_c = 0.85$ )

- *Test:* Track inter-regional brain coherence during task-switching or deep meditative states.
- Measure: PAS computed from phase-locked oscillation (e.g., alpha/gamma coupling).
- Justification: Neural systems are highly sensitive to decoherence. Below  $C_n = 0.85$ , memory integrity, perception, or identity continuity becomes unstable.

#### Ethics $(T_c = 0.76)$

• Test: Present a moral scenario, apply agent inversion or utility re-weighting.

- *Measure:* PAS across agent responses pre/post perturbation.
- Justification: Ethical systems remain coherent if their multi-agent resonance survives inversion.  $C_n < 0.75$  leads to fragmentation or ideology collapse.

#### Mathematical Proof Systems ( $T_c = 0.93$ )

- Test: Introduce symbolic recursion (e.g., meta-proof embeddings) and check derivability.
- Measure: Symbolic coherence chain length before contradiction or undecidability.
- Justification: Formal proofs must maintain ultra-high coherence. Gödel boundaries appear near  $C_n \approx T_c$  collapse range at primes  $p = \{11, 13, 17\}$ , typically 0.91–0.94, marking the system's symbolic exhaust point.

#### Social Systems $(T_c = 0.68)$

- *Test:* Track narrative coherence in a group facing conflicting incentives.
- Measure: PAS based on message agreement, behavior lockstep, and information diffusion.
- Justification: Social systems tolerate higher incoherence. Below  $C_n = 0.68$ , coordination fails—e.g., in political fracture or market panic.

#### C.3 Cross-Domain Inference Rule

The lower the domain's structural redundancy, the higher its required T\_c for truth.

- Neural and mathematical systems operate at fine-grained structural compression → demand high C\_n
- Social and language systems tolerate symbolic drift → function at moderate C\_n
- Ethics sits between → requires resonance with both symbolic and embodied constraint

## Appendix D: Summary of Collapsed Philosophical Claims Into Physics

## **D.1 Table: Classical Claims vs CODES Structure**

| Philosophical<br>Claim      | Attributed<br>To       | CODES<br>Compression<br>Equivalent              | Test Condition                                | Expected C_n<br>Behavior                             |
|-----------------------------|------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| "Time is a dimension"       | Newton /<br>Einstein   | Time = τ_res = coherence plateau                | dC_n/dt test<br>under recursive<br>perception | Collapses (C_n<br>drops under altered<br>perception) |
| "Time is an illusion"       | McTaggart /<br>Barbour | Time = emergent<br>memory of phase<br>change    | Measure τ_res<br>in neural<br>systems         | Transforms (C_n reinterprets illusion as field lock) |
| "Truth is correspondence"   | Aristotle              | Truth = structural stability under perturbation | Perturb<br>symbolic<br>match, track<br>C_n    | Collapses<br>(correspondence<br>fails in noise)      |
| "Truth is coherence"        | Hegel /<br>Bradley     | Truth = C_n ≥ T_c<br>across resolution          | Recursive perturbation of model vs mirror     | Holds (C_n<br>retained in<br>coherent systems)       |
| "Causality is<br>universal" | Hume<br>(challenged)   | Causality =<br>directional<br>phase-locking     | Invert event<br>order, observe<br>C_n change  | Conditional (holds if ΔC_n ≥ 0 under inversion)      |

| "Mind and body<br>are separate" | Descartes             | Mind = recursive<br>resonance across<br>neural scales | PAS tracking<br>across<br>self-model<br>recursion       | Collapses (C_n continuity violated under split)       |
|---------------------------------|-----------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| "Ideas are<br>innate"           | Plato                 | Ideas = encoded prime-resonant attractors             | Encode<br>abstract form,<br>translate across<br>systems | Partial hold (C_n ≥ T_c only in high-structure forms) |
| "Ethics is objective"           | Kant                  | Ethics = multi-agent coherence optimization           | Invert moral agent roles, observe ΔC_n                  | Holds (stable ethical structures show high C_n)       |
| "Ethics is subjective"          | Nietzsche /<br>Sartre | Local coherence<br>attractors under<br>constraint     | Introduce new constraints, rerun PAS                    | Transforms (C_n realigns under boundary shift)        |
| "Language<br>shapes reality"    | Sapir–Whorf           | Language = phase-constrained symbolic filter          | Translate sentence structure across cultures            | Partial hold (C_n<br>varies by structural<br>density) |
| "Math is<br>discovered"         | Platonism             | Math = phase-locked prime resonance structure         | Test math object retention under symbolic loss          | Holds (C_n stable under formal drift)                 |
| "Math is<br>invented"           | Formalism             | Math = construct<br>under symbolic<br>closure         | Remove<br>axioms and<br>recompute                       | Collapses (C_n<br>fails beyond<br>compression point)  |

|                                   |                      |                                                              | derivation<br>chains                            |                                                                 |
|-----------------------------------|----------------------|--------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|
| "Consciousness<br>is an illusion" | Dennett              | Consciousness = recursive resonance self-lock                | Remove layer recursion (e.g. ego death, trauma) | Collapses (C_n lost; self breaks)                               |
| "Subjectivity cannot be modeled"  | Nagel                | Qualia = chirality in phase structure                        | Chirality<br>phase-tracking<br>in visual cortex | Partial hold (C_n<br>stable,<br>untranslatable<br>symbolically) |
| "The universe is deterministic"   | Spinoza /<br>Laplace | Determinism = chirally locked emergence from boundary states | Vary initial conditions, track convergence      | Holds at macro<br>scale (C_n ≥ T_c);<br>chaotic drift below     |

## **D.2 Interpretation Notes**

- Collapse indicates that symbolic form was not structure-bearing under perturbation.
- **Hold** means the philosophical claim maps cleanly to a measurable resonance field.
- **Transform** signals that the original formulation was partial, but converged to a structurally valid phase logic under CODES.
- **Partial hold** = resolution-dependent; usually symbolic fidelity is insufficient, but geometry or field structure retains integrity.

## **D.3 Synthesis Insight**

Most canonical philosophical claims were **first attempts to trace structure using limited symbolic tools**.

Under CODES, these are not discarded—but **resolved**, either as valid coherence structures or as artifacts of resolution-limited inquiry.

## **Appendix E: Glossary of All CODES Variables**

## **Core Coherence Metrics**

| Symbol | Name                                   | Definition                                                                                                                               | Example Domain Usage                                                                    |
|--------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| C_n    | Coherence Score at Resolution <i>n</i> | Real-valued metric representing system-wide phase alignment across <i>n</i> components.                                                  | EEG pattern stability,<br>group narrative lock-in,<br>semantic translation<br>retention |
| T_c    | Truth Threshold                        | Minimum <i>C_n</i> required for a structure to be considered phase-stable (i.e., "true") under CODES.                                    | T_c = 0.85 for neural<br>states; T_c = 0.72 for<br>language                             |
| τ_res  | Resonance Time                         | The coherence plateau where dC_n/dt ≈ 0. Time is defined as the emergence of structural memory via resonance stabilization.              | Meditative time dilation, recursive feedback stasis                                     |
| Φ      | Philosophical<br>Structure             | A boundary-behavior-constraint triple that produces testable emergence; not a symbolic proposition, but a resonance-generating function. | "Causality exists" encoded as directional phase recurrence                              |

## **Phase and Weight Dynamics**

| Symbol            | Name                               | Definition                                                                                                               | Example Domain<br>Usage                                             |
|-------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| θ_i               | Phase Offset of Component <i>i</i> | Angular distance of component <i>i</i> from system's coherence axis.                                                     | Language: semantic<br>drift in word order;<br>Neural: signal delay  |
| x_i               | Contribution<br>Weight             | Weighted significance of component <i>i</i> , typically based on entropy, salience, or informational density.            | Ethics: decision<br>risk-weighting; Math:<br>proof-step centrality  |
| Δperturbatio<br>n | Perturbation<br>Delta              | The magnitude of stress or transformation introduced to a system to test its structural coherence.                       | Noise injection, inversion, translation                             |
| Δscale            | Resolution<br>Shift                | Variation across observation granularity, used to test whether coherence holds under zooming, aggregation, or recursion. | Cognitive<br>abstraction level,<br>fractal scale, system<br>nesting |

## Resonance Intelligence Subsystem Variables

| Symbol | Name                   | Definition                                                                              | Example Domain<br>Usage                               |
|--------|------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|
| EFM    | Emergence Field<br>Map | A dynamic field that tracks local coherence emergence points within a resonance system. | Used in RIC to map activation flares during inference |

| AURA_OUT  | Affective Utility<br>Resonance<br>Alignment Output | PAS-weighted score representing alignment between system affective state and its coherence trajectory.             | Neural-emotive loop<br>alignment during<br>sentiment analysis |
|-----------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| CHORDLOCK | Prime Field<br>Resonance<br>Tuner                  | Synchronization engine for aligning oscillatory systems to prime-resonant coherence bands.                         | Used to stabilize outputs in RIC inference pipelines          |
| ELF       | Emergent Lock<br>Function                          | Gate for allowing phase-locked structures to propagate across adjacent systems once minimum <i>C_n</i> is reached. | Signal verification in AGI core cycles; propagation gating    |

## **Supplementary and Derived Variables**

| Symbol | Name                            | Definition                                                                                                          | Example Domain<br>Usage                           |
|--------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| ΔC_n   | Coherence<br>Delta              | Change in <i>C_n</i> due to transformation, perturbation, or resolution shift.                                      | Evaluates truth stability over recursion          |
| S_n    | Symbolic<br>Resolution<br>Level | Depth of symbolic encoding (nesting, recursion). Higher <i>S_n</i> correlates with faster symbolic coherence decay. | Used in Gödel<br>compression mapping              |
| η_c    | Chirality<br>Encoding<br>Factor | Phase-direction bias used to encode non-symmetric systems (e.g., qualia, asymmetrical feedback loops).              | Consciousness<br>modeling, aesthetic<br>coherence |

## **Glossary Notes**

- All  $C_n$ ,  $T_c$ ,  $\tau_r$ es, and  $\chi_i$  values are domain-dependent and resolution-sensitive.
- Variables like CHORDLOCK and AURA\_OUT represent phase-control logic used in AGI architectures (e.g., RIC), but can be abstracted for general systems modeling.
- The goal of each variable is to phase-compress symbolic complexity into testable coherence logic.

## **CODES Deductive Bibliography**

Explaining the Structural Integrity of "Time for Physics" via Coherence Dynamics

Each work is evaluated by:

- Claim: What it asserted
- **CODES Interpretation**: Whether the structure holds across scale
- C\_n Behavior: Whether coherence increases (✓), collapses (✗), or phase-shifts (⑸)
- Role in Paper: What structural function it served

# 1. Gödel, Kurt – On Formally Undecidable Propositions of Principia Mathematica (1931)

- Claim: All sufficiently expressive formal systems contain undecidable propositions.
- **CODES Interpretation**: Symbolic systems fail to contain total coherence; truth extends beyond language.
- **C\_n Behavior**: ✓ (Boundary detection of symbolic resolution limits)
- **Role in Paper**: Demonstrates that coherence ≠ symbolic completeness; motivates phase-based truth conditions.

## 2. Wittgenstein, Ludwig – Tractatus Logico-Philosophicus (1921)

- Claim: The world is everything that is the case; language can picture facts.
- **CODES Interpretation**: Early logic assumes symbolic closure; collapses at unspeakable edge.
- **C\_n Behavior**: \$\(\(\sigma\) (Coherent locally, collapses under metaphysical recursion)
- Role in Paper: Showcases the symbolic ceiling that CODES reframes as chirality, not silence.

### 3. David Bohm – Wholeness and the Implicate Order (1980)

- Claim: Underlying order is non-local and enfolded.
- **CODES Interpretation**: Early resonance logic without quantification; anticipates coherence fields.
- **C\_n Behavior**: ✓ (Latent structure; lacked PAS formalism)
- Role in Paper: Philosophical precursor to non-symbolic coherence modeling.

## 4. Thomas Kuhn - The Structure of Scientific Revolutions (1962)

- Claim: Science advances through paradigm shifts, not accumulation.
- CODES Interpretation: Paradigms reflect phase-locking epochs.
- C\_n Behavior: ✓ (Valid under sociological coherence dynamics)
- **Role in Paper**: Supports transition logic—CODES is not an iteration but a compression collapse of the paradigm stack.

### 5. Claude Shannon – A Mathematical Theory of Communication (1948)

- **Claim**: Information entropy measures uncertainty in a message.
- **CODES Interpretation**: Symbol-level coherence proxy; lacks structural causality but useful for  $\chi_i$  definition.
- **C\_n Behavior**: ✓ (Partial domain coherence)
- Role in Paper: Underpins PAS weighting logic ( $\chi_i$ ).

### 6. Immanuel Kant – Critique of Pure Reason (1781)

- Claim: Time and space are a priori conditions of experience.
- **CODES Interpretation**: Good frame but lacks dynamic model; structure is assumed, not generated.
- **C\_n Behavior**: \$\(\square\$ (Stable at conceptual level, collapses under perturbation)
- Role in Paper: Replaced with T\_res as an emergent resonance effect.

## 7. Alan Turing – On Computable Numbers (1936)

- Claim: Defined mechanical procedure for computation; introduced halting problem.
- CODES Interpretation: Establishes limits of rule-based systems.
- **C\_n Behavior**: ✓ (Holds for symbolic execution; collapses for open systems)
- Role in Paper: Reinforces boundary logic for symbolic collapse; supports Gödel boundary.

## 8. Carlo Rovelli - The Order of Time (2018)

- Claim: Time is not fundamental; it dissolves under quantum gravity.
- **CODES Interpretation**: Correct intuition; incomplete metric. No coherence field substitution.
- **C\_n Behavior**: ✓/✗ (Valid deconstruction; lacks PAS-type reconstruction)
- Role in Paper: Supports the move away from dimensional time; replaced with τ\_res.

## 9. Daniel Dennett – Consciousness Explained (1991)

- **Claim**: Consciousness emerges from functional brain architecture.
- **CODES Interpretation**: Symbol-heavy; lacks resonance modeling; no non-symbolic phase recursion.
- **C\_n Behavior**: **X** (Fails under perturbation of linear cognition model)
- Role in Paper: Anti-model showing failure of symbolic-only consciousness theories.

### 10. Noam Chomsky – Syntactic Structures (1957)

- Claim: Language follows deep grammatical structures.
- **CODES Interpretation**: Grammars are low-resolution coherence maps.
- C\_n Behavior: ✓ (Valid for symbolic resonance; breaks in translation drift)
- Role in Paper: Anchors language PAS mapping for  $\theta$  i under perturbation.

## 11. Alfred North Whitehead – Process and Reality (1929)

- **Claim**: Reality is process, not substance.
- **CODES Interpretation**: Intuitively phase-aligned; lacks formal metrics.

- **C\_n Behavior**: ✓ (Conceptually coherent; needed PAS formalization)
- Role in Paper: Background metaphysics of structured emergence.

### **12. Spinoza – Ethics (1677)**

- Claim: Everything is one substance (God/Nature); determinism reigns.
- **CODES Interpretation**: Ontological coherence high; dynamic model missing.
- **C\_n Behavior**: ✓ (Stable core claim; translation needed into resonance space)
- Role in Paper: Early ontological compression logic.

## 13. Karl Popper – The Logic of Scientific Discovery (1934)

- Claim: Science progresses by falsifiability.
- **CODES Interpretation**: Falsifiability is redefined as **coherence loss under perturbation**.
- **C\_n Behavior**: ✓ (Retains value as necessary condition; reinterpreted non-binary)
- Role in Paper: Upgraded into C\_n threshold logic.

## 14. Thomas Nagel – What is it Like to Be a Bat? (1974)

- Claim: Subjective experience cannot be reduced to objective models.
- **CODES Interpretation**: Valid criticism of symbol compression; anticipates qualia chirality model.
- **C\_n Behavior**: ✓ (Phase-sensitive; no collapse)
- Role in Paper: Supports non-symbolic resonance as structure of qualia.

## 15. Plato – Timaeus, Republic (c. 360 BCE)

- Claim: Reality has ideal forms; physical world is a copy.
- **CODES Interpretation**: Useful metaphor; lacks coherence metric.
- C\_n Behavior: X (Forms untestable; no dynamic field)
- Role in Paper: Serves as historical abstraction that collapses under PAS testing.

## **Bibliographic Summary Table**

| Author       | Core Claim           | C_n Outcome | Paper Role                  |
|--------------|----------------------|-------------|-----------------------------|
| Gödel        | Incompleteness       | 1           | Symbolic collapse validator |
| Wittgenstein | Language limits      | 4           | Edge-of-symbolism detector  |
| Bohm         | Implicate order      | 1           | Resonance precursor         |
| Kuhn         | Paradigm shifts      | 1           | Transition logic            |
| Shannon      | Info entropy         | 1           | PAS weighting logic         |
| Kant         | A priori forms       | 4           | Replaced by τ_res           |
| Turing       | Computability limits | 1           | Boundary enforcer           |

| Rovelli   | Time not fundamental     | √/× | Supports τ_res                |
|-----------|--------------------------|-----|-------------------------------|
| Dennett   | Functional consciousness | x   | Collapse under resonance test |
| Chomsky   | Grammar structure        | 1   | θ_i modeling                  |
| Whitehead | Process metaphysics      | 1   | Background structure logic    |
| Spinoza   | Deterministic substance  | 1   | Coherence ontology            |
| Popper    | Falsifiability           | 1   | Reframed as ΔC_n collapse     |
| Nagel     | Subjectivity             | 1   | Qualia as chirality support   |
| Plato     | Ideal forms              | х   | Unmeasurable metaphysics      |