Survey of small object detection

汇报人: 王浩宇

传统目标检测pipline

Main Challenges

模型问题:

CNN经过多次下采样丢失很多细 粒度信息

数据问题:

实例尺寸过小,特征少,容易被 噪音影响,容易被遮挡;样本数 量不均衡(现有数据集都是偏少)

定位信息要求高:

数据增强方法

数据数量:

复制增强:单纯复制小目标实例;自适应采样 (AdaResampling:基于实例分割预训练模型,比单纯复制强在结合语义和上下文信息,减少新实例放在错误位置的概率)

尺度变化: Scale match 参考预训练模型中小目标的目标大小的概率分布,调整待检测数据集中目标大小,使两者目标大小概率分布尽可能一致; Mosica数据增强, 四张图片缩放拼接为一张图片,可以一定程度上增加小目标的数量。自学习数据增强: 通过强化学习选择最佳数据增强策略

数据质量:

提升图像分辨率(大体类似超分辨率的思路):插值算法;转置卷积进行上采样;基于GAN的超分辨率算法等

多尺度信息-特征融合方法

经典思想: FPN (特征金字塔) 后续工作主要基于FPN进行改进,有一些 精细化的融合方法

多尺度信息-尺度匹配方法

TridentNet:对于不同尺寸的物体,通过与其适配的感受野进行特征提取,得到尽可能一致的特征。(不同stride的空洞卷积,参数共享使模型特征更为统一

AutoFcous:

多尺度信息-尺度匹配方法

QueryDet: 使用级联稀疏query加速高分辨率下的小目标检测 (CVPR2022)

多尺度信息-尺度匹配方法

QueryDet: 使用级联稀疏query加速高分辨率下的小目标检测 (CVPR2022)

多尺度信息-上下文方法

R-CNN for Small Object Detection:

Inside-Outside Net (ION)

评估指标

正常的输出: 种类, 置信度, 预测框(预测框与标签计算出交并比(IOU))

True Postive (TP)

预测种类正确,IOU大于设定好的阈值 False Postive (FP)

预测种类正确,IOU小于设定好的阈值 Falese Negative (FN)

未在实例上产生预测框

Precision:

TP/ (TP+FP) 所有预测结果中,预测正确的比例

Recall:

所有真实目标中,预测正确的比例

AP:

P-R曲线面积: recall逐渐升高的同时, precision越高越好

数据集

Dataset name	Task field	Publication	#Images	#Instances	Descriptions and Characteristics
COCO [6]	ODNI	ECCV 2014	123K	886K	One of the most popular datasets for generic object detection
SOD [28]	ODNI	ACCV 2016	4925	8393	A small-scale dataset for small object detection
WiderFace [8]	Face detection	CVPR 2016	32K	393K	A large-scale benchmark with rich annotations for face detection
EuroCity Persons [113]	Pedestrian detection	TPAMI 2019	47K	219K	The largest dataset for pedestrian detection captured from dozens of Europe cities
WiderPerson [114]	Pedestrian detection	TMM 2020	13K	39K	Pedestrian detection benchmark in traffic scenarios
TinyPerson [7]	Pedestrian detection	WACV 2020	1610	72K	The first dataset dedicated to tiny-scale pedestrian detection
TT100K [115]	Traffic sign detection	CVPR 2016	100K	30K	A realistic and large-scale benchmark for traffic sign detection
DIOR [20]	ODAI	IPRS 2020	23K	192K	One of the most frequently used benchmarks for object detection in aerial images
DOTA [30]	ODAI	TPAMI 2021	11K	1.79M	The largest remote sensing detection dataset including considerable small objects
AI-TOD [116]	ODAI	ICPR 2021	28K	700K	A tiny object detection dataset based on previous available datasets
NWPU-Crowd [117]	Crowd counting	TPAMI 2021	5109	2.13M	The largest dataset for crowd counting and localization to date

SOTA

Rank	Model	box AP	AP50	AP75	APS 🕈	APM	APL	Params (M)	Extra Training Data	Paper	Code	Result	Year	Tags 🗷
1	EVA CLIP based	64.7	81.9	71.7	48.5	67.7	77.9		~	EVA: Exploring the Limits of Masked Visual Representation Learning at Scale	0	Ð	2022	
2	Group DETR v2 DETR based	64.5	81.8	71.1	48.4	67.2	77.1		×	Group DETR v2: Strong Object Detector with Encoder-Decoder Pretraining		Ð	2022	Group DETR DINO ViT-Huge
3	GLIP (Swin-L, multi-scale) CLIP based	61.5	79.5	67.7	45.3	64.9	75.0		×	Grounded Language-Image Pre-training	0	Ð	2021	multiscale Vision Language Dynamic Head BERT-Base
4	PyCenterNet (Swin-L, multi-scale)	57.1	73.7	62.4	38.7	59.2	71.3		×	CenterNet++ for Object Detection	0	Ð	2022	End-to-End Swin-Transformer multiscale

CLIP

GLIP

Two syringes and a small vial of vaccine.

playa esmeralda in holguin, cuba. the view from the top of the beach. beautiful caribbean sea turquoise

Model	Backbone	Deep Fusion	Pre-Train Data			
Model	Dackbone	Deep Fusion	Detection	Grounding	Caption	
GLIP-T (A)	Swin-T	×	Objects365	-	-	
GLIP-T (B)	Swin-T	✓	Objects365	-	-	
GLIP-T (C)	Swin-T	✓	Objects365	GoldG	-	
GLIP-T	Swin-T	/	Objects365	GoldG	Cap4M	
GLIP-L	Swin-L	/	FourODs	GoldG	Cap24M	

Table 1. A detailed list of GLIP model variants.

Model	Backbone	Pre-Train Data	Zero-Shot 2017val	Fine-Tune 2017val / test-dev	
Faster RCNN	RN50-FPN	-	-	40.2 / -	
Faster RCNN	RN101-FPN	-	-	42.0 / -	
DyHead-T [9]	Swin-T	-	-	49.7 / -	
DyHead-L [9]	Swin-L	-	-	58.4 / 58.7	
DyHead-L [9]	Swin-L	O365,ImageNet21K	-	60.3 / 60.6	
SoftTeacher [58]	Swin-L	O365,SS-COCO	-	60.7 / 61.3	
DyHead-T	Swin-T	O365	43.6	53.3 / -	
GLIP-T (A)	Swin-T	O365	42.9	52.9 / -	
GLIP-T (B)	Swin-T	O365	44.9	53.8 / -	
GLIP-T (C)	Swin-T	O365,GoldG	46.7	55.1 / -	
GLIP-T	Swin-T	O365,GoldG,Cap4M	46.3	54.9 / -	
GLIP-T	Swin-T	O365,GoldG,CC3M,SBU	46.6	55.2 / -	
GLIP-L	Swin-L	FourODs,GoldG,Cap24M	49.8	60.8 / 61.0	
GLIP-L	Swin-L	FourODs,GoldG+,COCO	-	- / 61.5	

DETR

需要点亮的技能树

Thank you!