Package 'tidyHeatmap'

September 11, 2020

```
Title A Tidy Implementation of Heatmap
Version 1.1.5
Maintainer Stefano Mangiola <mangiolastefano@gmail.com>
Description This is a tidy implementation for heatmap. At the
      moment it is based on the (great) package 'ComplexHeatmap'. The goal
      of this package is to interface a tidy data frame with this powerful
      tool. Some of the advantages are: Row and/or columns colour
      annotations are easy to integrate just specifying one parameter
      (column names). Custom grouping of rows is easy to specify providing
      a grouped tbl. For example: df %>% group by(...). Labels size
      adjusted by row and column total number. Default use of Brewer and
      Viridis palettes.
License GPL-3
URL https://www.r-project.org,
      https://github.com/stemangiola/tidyHeatmap
BugReports https://github.com/stemangiola/tidyHeatmap
Depends R (>= 3.6)
Imports methods,
      stats,
      utils,
      dplyr (>= 0.8.5),
      magrittr (>= 1.5),
      tidyr (>= 1.0.3),
      rlang (>= 0.4.5),
      purrr (>= 0.3.3),
      ComplexHeatmap (\geq 2.2.0),
      viridis (>= 0.5.1),
      circlize (>= 0.4.8),
      RColorBrewer (>= 1.1),
      grid,
      grDevices,
      lifecycle (>= 0.2.0)
Suggests spelling,
      testthat,
      vdiffr,
```

Type Package

2 R topics documented:

BiocManager,
knitr,
rmarkdown,
qpdf,
covr,
roxygen2
VignetteBuilder knitr
RdMacros lifecycle
Biarch true
biocViews AssayDomain, Infrastructure
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Language en-US

R topics documented:

add_annotation
add_attr
add_bar
add_bar,InputHeatmap-method
add_class
add_line
add_line,InputHeatmap-method
add_point
add_tile
annot_to_list
as_matrix
check_if_counts_is_na
check_if_duplicated_genes
check_if_wrong_input
drop_class
error_if_log_transformed
get_abundance_norm_if_exists
get_elements
get_elements_features
get_elements_features_abundance
get_sample_counts
get_sample_transcript
get_sample_transcript_counts
get_x_y_annotation_columns
heatmap
ifelse2_pipe
ifelse_pipe
input_heatmap
N52
parse_formula
pasilla
prepard

add_annotation 3

	save_pdf	
	save_pdf,InputHeatmap-method	26
	scale_design	26
	scale_robust	27
	select_closest_pairs	27
Index		28

Description

add_annotation() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

Usage

```
add_annotation(
  my_input_heatmap,
  annotation,
  type = rep("tile", length(quo_names(annotation))),
  palette_discrete = list(),
  palette_continuous = list()
)
```

Arguments

my_input_heatmap

A 'InputHeatmap' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |

annotation Vector of quotes

type A character vector of the set c(\"tile\", \"point\", \"bar\", \"line\")

palette_discrete

A list of character vectors. This is the list of palettes that will be used for horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and factor).

palette_continuous

A list of character vectors. This is the list of palettes that will be used for horizontal and vertical continuous annotations. The continuous classification of annotations depends on the column type of your input tibble (e.g., integer, numerical, double).

Details

To be added.

Value

A 'ComplexHeatmap' object

4 add_bar

add_attr

Add attribute to abject

Description

Add attribute to abject

Usage

```
add_attr(var, attribute, name)
```

Arguments

var A tibble attribute An object

name A character name of the attribute

Value

A tibble with an additional attribute

add_bar

Adds a bar annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_bar() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
add_bar(.data, .column, palette = NULL)
```

Arguments

. data $\hspace{1cm} \text{A 'tbl_df' formatted as } | < \text{ELEMENT} > | < \text{FEATURE} > | < \text{VALUE} > | < \ldots > |$

.column Vector of quotes

palette A character vector of colors This is the list of palettes that will be used for

horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Details

Maturing

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
   tidyHeatmap::N52 %>%
   tidyHeatmap::heatmap(
     .row = symbol_ct,
     .column = UBR,
     .value = `read count normalised log`
)
hm %>% add_bar()
```

```
{\it add\_bar}, {\tt InputHeatmap-method} \\ {\it add\_bar}
```

Description

add_bar

Usage

```
## S4 method for signature 'InputHeatmap'
add_bar(.data, .column, palette = NULL)
```

Arguments

.data A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> |
.column Vector of quotes

A character vector of colors This is the list of palettes that will be used for

horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Value

A 'add_bar' object

6 add_line

add_class

Add class to abject

Description

Add class to abject

Usage

```
add_class(var, name)
```

Arguments

var A tibble

name A character name of the attribute

Value

A tibble with an additional attribute

add_line

Adds a line annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_line() from a 'InputHeatmap' object, adds a line annotation layer.

Usage

```
add_line(.data, .column, palette = NULL)
```

Arguments

.data A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> |

.column Vector of quotes

palette A character vector of colors This is the list of palettes that will be used for

horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Details

Maturing

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% add_line()
```

```
add_line,InputHeatmap-method
                       add_line
```

Description

add_line

Usage

```
## S4 method for signature 'InputHeatmap'
add_line(.data, .column, palette = NULL)
```

Arguments

.data A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> | .column Vector of quotes palette A character vector of colors This is the list of palettes that will be used for

> horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Value

A 'add_line' object

8 add_point

add_point Adds a point annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'	n
--	---

Description

add_point() from a 'InputHeatmap' object, adds a point annotation layer.

Usage

```
add_point(.data, .column, palette = NULL)
## S4 method for signature 'InputHeatmap'
add_point(.data, .column, palette = NULL)
```

Arguments

.data A 'tbl_df' formatted as | < ELEMENT > | < FEATURE > | < VALUE > | < ... > |

.column Vector of quotes

palette A character vector of colors This is the list of palettes that will be used for

horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Details

Maturing

It uses 'ComplexHeatmap' as visualisation tool.

Value

```
A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap' A 'add_point' object
```

Examples

```
library(dplyr)
hm =
   tidyHeatmap::N52 %>%
   tidyHeatmap::heatmap(
     .row = symbol_ct,
     .column = UBR,
     .value = `read count normalised log`
)
hm %>% add_point()
```

add_tile 9

add_tile	Adds a tile annotation layer to a 'InputHeatmap', that on evaluation
	creates a 'ComplexHeatmap'

Description

add_tile() from a 'InputHeatmap' object, adds a tile annotation layer.

Usage

```
add_tile(.data, .column, palette = NULL)
## S4 method for signature 'InputHeatmap'
add_tile(.data, .column, palette = NULL)
```

Arguments

.data $\hspace{1cm} \hbox{$A$ `tbl_df' formatted as } | <\! ELEMENT> | <\! FEATURE> | <\! VALUE> | < ...> |$

. column Vector of quotes

palette A character vector of colors This is the list of palettes that will be used for

horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Details

Maturing

It uses 'ComplexHeatmap' as visualisation tool.

Value

```
A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap' A 'add_tile' object
```

Examples

```
library(dplyr)
hm =
   tidyHeatmap::N52 %>%
   tidyHeatmap::heatmap(
     .row = symbol_ct,
     .column = UBR,
     .value = `read count normalised log`
)
hm %>% add_tile(CAPRA_TOTAL)
```

10 as_matrix

 $annot_to_list$

 $annot_to_list$

Description

annot_to_list

Usage

```
annot_to_list(.data)
```

Arguments

.data

A data frame

Value

A list

as_matrix

 $Get\ matrix\ from\ tibble$

Description

Get matrix from tibble

Usage

```
as_matrix(tbl, rownames = NULL, do_check = TRUE)
```

Arguments

tbl A tibble

rownames A character string of the rownames

do_check A boolean

Value

A matrix

check_if_counts_is_na

check_if_counts_is_na Check whether there are NA counts

Description

Check whether there are NA counts

Usage

```
check_if_counts_is_na(.data, .abundance)
```

Arguments

.data A tibble of read counts

. abundance A character name of the read count column

Value

A tbl

check_if_duplicated_genes

Check whether there are duplicated genes/transcripts

Description

Check whether there are duplicated genes/transcripts

Usage

```
check_if_duplicated_genes(.data, .sample, .transcript, .abundance)
```

Arguments

.data A tibble of read counts

. sample A character name of the sample column

. transcript A character name of the transcript/gene column
. abundance A character name of the read count column

Value

A tbl

drop_class

check_if_wrong_input Check whether there are NA counts

Description

Check whether there are NA counts

Usage

```
check_if_wrong_input(.data, list_input, expected_type)
```

Arguments

.data A tibble of read counts

list_input A list

expected_type A character string

Value

A tbl

drop_class

Remove class to abject

Description

Remove class to abject

Usage

```
drop_class(var, name)
```

Arguments

var A tibble

name A character name of the class

Value

A tibble with an additional attribute

error_if_log_transformed

Check whether a numeric vector has been log transformed

Description

Check whether a numeric vector has been log transformed

Usage

```
error_if_log_transformed(x, .abundance)
```

Arguments

x A numeric vector

. abundance A character name of the transcript/gene abundance column

Value

NA

```
get_abundance_norm_if_exists
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_abundance_norm_if_exists(.data, .abundance)
```

Arguments

.data A tibble

. abundance A character name of the abundance column

Value

get_elements

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements(.data, .element, of_samples = TRUE)
```

Arguments

.data A tibble

. element A character name of the sample column

of_samples A boolean

Value

A list of column enquo or error

```
get_elements_features Get column names either from user or from attributes
```

Description

Get column names either from user or from attributes

Usage

```
get_elements_features(.data, .element, .feature, of_samples = TRUE)
```

Arguments

.data A tibble

. element A character name of the sample column

. feature A character name of the transcript/gene column

of_samples A boolean

Value

```
get_elements_features_abundance
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements_features_abundance(
   .data,
   .element,
   .feature,
   .abundance,
   of_samples = TRUE
)
```

Arguments

.data A tibble

.element A character name of the sample column

. feature A character name of the transcript/gene column . abundance A character name of the read count column

of_samples A boolean

Value

A list of column enquo or error

get_sample_counts

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_sample_counts(.data, .sample, .abundance)
```

Arguments

.data A tibble

. sample A character name of the sample column. abundance A character name of the read count column

Value

 $\verb"get_sample_transcript" \textit{ Get column names either from user or from attributes}$

Description

Get column names either from user or from attributes

Usage

```
get_sample_transcript(.data, .sample, .transcript)
```

Arguments

.data A tibble

 $.\, \mathsf{sample} \qquad \qquad A\,\, \mathsf{character} \,\, \mathsf{name} \,\, \mathsf{of} \,\, \mathsf{the} \,\, \mathsf{sample} \,\, \mathsf{column}$

. transcript A character name of the transcript/gene column

Value

A list of column enquo or error

```
get_sample_transcript_counts
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_sample_transcript_counts(.data, .sample, .transcript, .abundance)
```

Arguments

.data A tibble

. sample A character name of the sample column

.transcript A character name of the transcript/gene column
.abundance A character name of the read count column

Value

```
\label{eq:get_xy_annotation_columns} get\_x\_y\_annotation\_columns
```

Description

```
get_x_y_annotation_columns
```

Usage

```
get_x_y_annotation_columns(.data, .column, .row, .abundance)
```

Arguments

.data	A 'tbl' formatted as <sample> <transcript> <count> <> </count></transcript></sample>
.column	The name of the column horizontally presented in the heatmap
.row	The name of the column vertically presented in the heatmap
. abundance	The name of the transcript/gene abundance column

Value

A list

heatmap $Creates\ a\ 'InputHeatmap'\ object\ from\ 'tbl_df'\ on\ evaluation\ creates\ a\ 'ComplexHeatmap'$

Description

heatmap() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

```
heatmap(
   .data,
   .row,
   .column,
   .value,
   transform = NULL,
   .scale = "row",
   palette_value = c("#440154FF", "#21908CFF", "#fefada"),
   palette_grouping = list(),
   annotation = NULL,
   type = rep("tile", length(quo_names(annotation))),
   palette_discrete = list(),
   palette_continuous = list(),
   ...
)
```

18 heatmap

```
heatmap_(
  .data,
  .row,
  .column,
  .value,
  transform = NULL,
  .scale = "row",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
  palette_grouping = list(),
  annotation = NULL,
  type = rep("tile", length(quo_names(annotation))),
  palette_discrete = list(),
  palette_continuous = list(),
)
## S4 method for signature 'tbl'
heatmap(
  .data,
  .row,
  .column,
  .value,
  transform = NULL,
  .scale = "row",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
  palette_grouping = list(),
  annotation = NULL,
  type = rep("tile", length(quo_names(annotation))),
  palette_discrete = list(),
  palette_continuous = list(),
  . . .
)
## S4 method for signature 'tbl_df'
heatmap(
  .data,
  .row,
  .column,
  .value,
  transform = NULL,
  .scale = "row",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
  palette_grouping = list(),
  annotation = NULL,
  type = rep("tile", length(quo_names(annotation))),
  palette_discrete = list(),
  palette_continuous = list(),
)
## S4 method for signature 'tidybulk'
```

heatmap 19

```
heatmap(
   .data,
   .row,
   .column,
   .value,
   transform = NULL,
   .scale = "row",
   palette_value = c("#440154FF", "#21908CFF", "#fefada"),
   palette_grouping = list(),
   annotation = NULL,
   type = rep("tile", length(quo_names(annotation))),
   palette_discrete = list(),
   palette_continuous = list(),
   ...
)
```

Arguments

A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> | .data The name of the column vertically presented in the heatmap .row .column The name of the column horizontally presented in the heatmap .value The name of the column for the value of the element/feature pair A function, used to transform .value row-wise (e.g., transform = log1p) transform A character string. Possible values are c(\"none\", \"row\", \"column\", \"both\") .scale palette_value A character vector This is the palette that will be used as gradient for .value. For example c("red", "white", "blue"). For higher flexibility you can use circlize::colorRamp2\(c\((-\)(- $2, -1, 0, 1, 2\)$, viridis::magma\(5\)\) palette_grouping A list of character vectors. This is the list of palettes that will be used for grouping. For example list(RColorBrewer::brewer.pal(8, "Accent")) or list(c("#B3E2CD", "#FDCDAC", "#CBD5E8")) or list(c("black", "red")) annotation DEPRECATED. please use the annotation functions add_* function \(\\\^*\) one of tile, point, bar, line \). DEPRECATED. please use the annotation functions add_* function \(\\\^*\) one of type tile, point, bar, line \). palette_discrete DEPRECATED. please use the annotation functions add_* function \(\\\\\\\\\\) one of tile, point, bar, line \). palette_continuous DEPRECATED. please use the annotation functions add_* function \(\\^*\) one of tile, point, bar, line \). Further arguments to be passed to ComplexHeatmap::Heatmap

Details

Maturing

This function takes a tbl as an input and creates a 'ComplexHeatmap' plot. The information is stored in a 'InputHeatmap' object that is updated along the pipe statement, for example adding annotation layers.

20 ifelse2_pipe

Value

```
A 'InputHeatmap' objects that gets evaluated to a 'ComplexHeatmap' object
```

A 'InputHeatmap' object

A 'InputHeatmap' object

A 'InputHeatmap' object

A 'InputHeatmap' object

Examples

```
library(dplyr)

tidyHeatmap::N52 %>%
group_by( `Cell type`) %>%
tidyHeatmap::heatmap(
   .row = symbol_ct,
   .column = UBR,
   .value = `read count normalised log`,
}
```

ifelse2_pipe

This is a generalisation of ifelse that accepts an object and return an objects

Description

This is a generalisation of ifelse that accepts an object and return an objects

Usage

```
ifelse2_pipe(.x, .p1, .p2, .f1, .f2, .f3 = NULL)
```

Arguments

A tibble
A boolean
ELSE IF condition
A function
A function
A function

Value

A tibble

ifelse_pipe 21

ifelse_pipe This is a generalisation of ifelse that accepts an object and return an objects

Description

This is a generalisation of ifelse that accepts an object and return an objects

Usage

```
ifelse\_pipe(.x, .p, .f1, .f2 = NULL)
```

Arguments

. x	A tibble
.p	A boolean
.f1	A function
.f2	A function

Value

A tibble

Description

input_heatmap() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

```
input_heatmap(
   .data,
   .horizontal,
   .vertical,
   .abundance,
   transform = NULL,
   .scale = "row",
   palette_value = c("#440154FF", "#21908CFF", "#fefada"),
   palette_grouping = list(),
   ...
)
```

22 N52

Arguments

.data A 'tbl' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |

.horizontal The name of the column horizontally presented in the heatmap

.vertical The name of the column vertically presented in the heatmap

. abundance The name of the transcript/gene abundance column

 $transform \qquad \qquad A \ function, used to \ transform \ .value, for example \ log1p$

. scale A character string. Possible values are c(\"none\", \"row\", \"column\", \"both\")

palette_value A character vector, or a function for higher customisation (colorRamp2). This

is the palette that will be used as gradient for abundance. If palette_value is a vector of hexadecimal colours, it should have 3 values. If you want more customisation, you can pass to palette_value a function, that is derived as for

example 'colorRamp2(c(-2, 0, 2), palette_value)'

palette_grouping

A list of character vectors. This is the list of palettes that will be used for group-

ing

... Further arguments to be passed to ComplexHeatmap::Heatmap

Details

To be added.

Value

A 'ComplexHeatmap' object

N52 Example data set N52

Description

Example data set N52

Usage

N52

Format

An object of class tbl_df (inherits from tbl, data.frame) with 520 rows and 15 columns.

parse_formula 23

parse_formula

.formula parser

Description

.formula parser

Usage

```
parse_formula(fm)
```

Arguments

fm

a formula

Value

A character vector

pasilla

Example data set Pasilla

Description

Example data set Pasilla

Usage

pasilla

Format

An object of class tbl_df (inherits from tbl, data.frame) with 504 rows and 8 columns.

prepend

From rlang deprecated

Description

From rlang deprecated

```
prepend(x, values, before = 1)
```

24 save_pdf

Arguments

x An arrayvalues An arraybefore A boolean

Value

An array

quo_names

Convert array of quosure (e.g. c(col_a, col_b)) into character vector

Description

Convert array of quosure (e.g. c(col_a, col_b)) into character vector

Usage

```
quo_names(v)
```

Arguments

٧

A array of quosures (e.g. c(col_a, col_b))

Value

A character vector

save_pdf

Save plot on PDF file

Description

save_pdf() takes as input a Heatmap from ComplexHeatmap and save it to PDF file

```
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
)
```

Arguments

```
.heatmap A 'Heatmap'
filename A character string. The name of the output file/path
width A 'double'. Plot width
height A 'double'. Plot height
units A character string. units ("in", "cm", or "mm")
```

Details

Maturing

It simply save an 'Heatmap' to a PDF file use pdf() function in the back end

Value

NA

Examples

```
library(dplyr)
tidyHeatmap::heatmap(
  dplyr::group_by(tidyHeatmap::pasilla,location, type),
  .column = sample,
  .row = symbol,
  .value = `count normalised adjusted`,
) %>%
save_pdf(tempfile())
```

```
{\it save\_pdf}, {\it Heatmap-method} \\ {\it save\_pdf}
```

Description

```
save_pdf
```

```
## S4 method for signature 'Heatmap'
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
```

26 scale_design

Arguments

.heatmap A 'Heatmap'

filename A character string. The name of the output file/path

width A 'double'. Plot width height A 'double'. Plot height

units A character string. units ("in", "cm", or "mm")

```
save\_pdf, \\ Input\\ Heatmap-method \\ save\_pdf
```

Description

```
save_pdf
```

Usage

```
## S4 method for signature 'InputHeatmap'
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
)
```

A 'Heatmap'

Arguments

.heatmap

filename A character string. The name of the output file/path

width A 'double'. Plot width height A 'double'. Plot height

units A character string. units ("in", "cm", or "mm")

scale_design Scale design matrix

Description

Scale design matrix

```
scale_design(df, .formula)
```

27 scale_robust

Arguments

df A tibble .formula a formula

Value

A tibble

scale_robust

Scale counts in a robust way against sd == 0

Description

Scale counts in a robust way against sd == 0

Usage

```
scale_robust(y)
```

Arguments

У

A numerical array

Value

A scaled and centred numerical array

 $select_closest_pairs$ Subfunction of remove_redundancy_elements_though_reduced_dimensions

Description

 $Sub\ function\ of\ remove_redundancy_elements_though_reduced_dimensions$

Usage

```
select_closest_pairs(df)
```

Arguments

df

A tibble

Value

A tibble with pairs to drop

Index

```
* datasets
                                                 input_heatmap, 21
    N52, 22
                                                 N52, 22
    pasilla, 23
                                                 parse_formula, 23
add_annotation, 3
                                                 pasilla, 23
add_attr, 4
                                                 prepend, 23
add_bar, 4
add_bar, InputHeatmap-method, 5
                                                 quo_names, 24
add_class, 6
add_line, 6
                                                 save_pdf, 24
add_line, InputHeatmap-method, 7
                                                 save_pdf, Heatmap-method, 25
add_point, 8
                                                 save_pdf,InputHeatmap-method, 26
\verb"add_point, Input Heatmap-method"
                                                 scale_design, 26
        (add_point), 8
                                                 scale_robust, 27
add_tile, 9
                                                 select_closest_pairs, 27
add_tile,InputHeatmap-method
        (add_tile), 9
annot_to_list, 10
as_matrix, 10
check_if_counts_is_na, 11
check_if_duplicated_genes, 11
check_if_wrong_input, 12
drop_class, 12
error_if_log_transformed, 13
get_abundance_norm_if_exists, 13
get_elements, 14
get_elements_features, 14
get_elements_features_abundance, 15
get_sample_counts, 15
get_sample_transcript, 16
get_sample_transcript_counts, 16
get_x_y_annotation_columns, 17
heatmap, 17
heatmap, tbl-method (heatmap), 17
heatmap, tbl_df-method (heatmap), 17
heatmap, tidybulk-method (heatmap), 17
heatmap_(heatmap), 17
ifelse2_pipe, 20
ifelse_pipe, 21
```