PMIC Project1_report

110511277 蔡東宏

1.Pre-layout simulation specifications

Parameters	SPEC.	Design	Unit
Input Voltage (V _{IN})	1.8	1-8	V
Output Voltage (V _{OUT})	1.2 (1.19~1.21)	1,202, 1,206,1,206	V
Load Current (I _{LOAD})	10, 90, 180	(0, 90, 180	mA
Inverter Chain	>5	9	stage
Output Capacitance	10	(0	uF
Output Ripple	< 20 (10mA, 90mA, 180mA)	8.385	mV
Power Conversion Efficiency (post-layout)	>92 (10mA, 90mA, 180mA)	9 4 .96 , 96.31 , 93.52	%

2.post-layout simulation specifications

Parameters	SPEC.	Design	Unit
Input Voltage (V _{IN})	1.8	1.8	V
Output Voltage (V _{OUT})	1.2 (1.19~1.21)	.20] , 1.2 , 1.195	V
Load Current (I _{LOAD})	10, 90, 180	(0,90,180	mA
Inverter Chain	>5	9	stage
Output Capacitance	10	(0	uF
Output Ripple	< 20 (10mA, 90mA, 180mA)	1.241, 6.518, 9.027	mV
Power Conversion Efficiency (post-layout)	>92 (10mA, 90mA, 180mA)	94.03, 95.13, 92.6	%

3.TABLE1 Estimated percentage of total losses from pre-layout simulation data (V_{IN} =1.8V, V_{out} =1.2V)

Source of Losses	I _{load} = 10mA (CCM)	I _{load} = 90 mA (CCM)	I _{load} = 180mA (CCM)
Inductor series resistance	26 M (4.08%)	2.106 m (50.58%)	8.424 m (55.91%)
nFET gate driver	145.3/ (22.18%)	134.7 / (3.23%)	124. (0.82%)
nFET channel resistance	68.04 M (10.67%)) 270.5 M (6.5%)	961.2/4 (6.39%)
pFET gate driver	268.6 M (42.11%)) 275.2 (6.61%)	275.5 (1.83%)
pFET channel resistance	127.8M (20,03%) 1,386 m (33,2 <mark>9%</mark>) 5,286m (35,12%)
L _X node capacitance	17.06/h (12.08%)	19.86 M (1.92%)) 82.33/M (0.55%)
Others?	-74.9 M (-11.74%) -88.16 M (-2.12%) -103.13/ (-0.69%
total loss	632 ባል (መ%) *Efficiency sho	4,164 m (100%) ould be optimized	15.05 m (100%) at each condition

*Conduction loss (%) should increase as output load increases.