CS 205 Lecture 16 17/02/2021

Example of R, and ML

Recall: xR_Ly iff $xz \in L \iff yz \in L$ for all $z \in \Sigma^x$ Let $L = O^x I O^x$ Then xR_Ly iff $S^x = S^x =$

Fact: If L is regular than the DFA ML is a minimum state DFA that accepts L.

Thuy? Because R_M refines R_L .

States of DFA $M \leftrightarrow Equiv$ classes of R_M " " $R_L \leftrightarrow R_M \leftrightarrow R_M$ " " R_L

Thus The minimum state DFA accepting a sub L is unique up to an isomorphism and is given by M_L in the proof of the Mytall Neralle theorem.

Proof: Since R_M refines R_L for any DFA $M = (R, \Sigma, S, \Sigma_F)$ broke accepts L, the no. of states of M is greater than or equal to the no. of states of M_L .

If equality holds, consider the function $f: O \to O_L$.

Let g be a state in M. Then g must be reachable by a ctring x, i.e., $S(q_0, x) = g$.

Define $f(g) = S(g_0, x) = g$.

Now if $S(g_0, x) = S(g_0, y)$ g.

Thun $S_L(g_0, x) = S_L(g_0, y)$ g.

Why? Since R_M refines R_L .

Hence f is well defined.

Also, f is injective and surjective. (Easy)

(i) $f(q_0) = [E] = q_0 L$ since $\delta(q_0, \epsilon) = q_0$. (ii) $f(\delta(q_1 \alpha)) = f(\delta(\delta(q_0, x_0), \alpha))$ by assurp. $= f(\delta(q_0, x_0))$ property of δ $= \delta_L(q_0, x_0)$ by defin. of f $= \delta_L(\delta_L(q_{N-1}x), \alpha)$ prop. $= \delta_L(\delta_L(q_{N-1}x), \alpha)$

DFA Minimigation: Find the minimum state DFA $\frac{M'}{M} = (0, \Sigma, S, g_0, F)$

Define the expulsable relation $\Xi\subseteq Q \land Q$ as $\beta\equiv q$ iff for each $\alpha\in \Sigma^{a}$, $\delta(q,\alpha)\in F$ iff $\delta(q,\alpha)\in F$

Note . Three is an isomorphism between

(1) Equivalence classes of 5 that contain a State reachable from go by some imput string, and

(2) QL, the states of the minimum state DFA ML

Def Say that

(1) \$ is equivalent to q if \$=q

(2) p is distinguishable from q if there ends on x

1.t. S(p,x) E F and S(q,x) & F

Or

S(p,x) &F and S(B,x) EF.

Algorathm for computing the equivalence classes of =