Решение простого уравнения Пуассона в прямоугольнике

1 Уравнение

Для примера я решил взять простое уравнение определенное на прямоугольнике $[0,1] \times [0,1]$, которое имеет аналитическое решение.

$$\begin{cases} \Delta u = -2\pi^2 \sin \pi x \sin \pi y \\ u(\text{border}) = 0 \end{cases}$$
 (1)

Аналитическое решение имеет следующий вид:

$$u = \sin(\pi x)\sin(\pi y) \tag{2}$$

Рис. 1: Аналитическое решение

2 Выбор архитектуры

Уравнение самое простое с простой границей, нет разрывов. Поэтому я решил выбрать самую простую модель — PINN. Этого достаточно для получения хорошей аппроксимации. В качестве функции активации используется Tanh(), так как она гладкая.

3 Выбор данных

Есть два вида точек: точки внутри прямоугольника и точки на его границе. Точки внутри прямоугольника выбираются произвольно с помощью **torch.rand**. Стоит отметить, что здесь как раз проявляется преимущество PINN — сетка не нужна. Точки на границе особого выбора тоже не требуют.

4 Обучение

Обучение происходит в два этапа. Сначала обучение происходит с помощью оптимизатора первого порядка Adam, а затем используется оптимизатор второго порядка L-BFGS 1 . Обучение проходит на CPU. Необходимости подбирать параметры оптимизаторов нет.

5 Результат

Итоговый loss	L2RE
$2.2 \cdot 10^{-5}$	$1.5 \cdot 10^{-4}$

Рис. 2: Решение полученное с помощью PINN

 $^{^{1}\}mathrm{https://arxiv.org/abs/2402.01868}$