3.2 Calcul de Probabilités en situation d'équiprobabilité

Proposition 1. Dans une expérience aléatoire d'univers Ω en situation d'équiprobabilité, la probabilité de A est donnée par

$$P(A) = \frac{\textit{Nombre d'issues dans } A}{\textit{Nombre d'issues dans } \Omega}$$

Exemple. a) On lance un dé équilibré. Quelle est la probabilité d'obtenir un multiple de 3?

- b) On lance deux dé équilibrés, un rouge et un bleu. Quelle est la probabilité que le dé rouge soit pair, et le dé bleu impair?
- c) On met dans un sac trois boules rouges, une boule bleue et une boule verte. Quelle est la probabilité de tirer une boule rouge?
- d) On tire une carte au hasard dans un jeu de 52 cartes mélangé. Quelle est la probabilité de tirer une « tête » (Valet, Dame, Roi)?

Ъ	1/2	. 1 1 1117 11	1	, 1	(11	. 1	1	,

Dans une situation d'équiprobabilité, il faut donc énumérer les cas favorables, puis diviser par le nombre de cas au total.

Exemple. On tire au sort une personne dans un lycée de 1000 personnes. Sachant qu'il y a 242 secondes, 534 premières, 632 filles dont 320 en terminale et 76 en première, compléter le tableau suivant et donner la probabilité de tomber sur un garçon en seconde.

	Secondes	Premières	Terminale	Total
Filles		76	320	632
Garçons				
Total	242	534		1000

Exemple. Dans un sac opaque contenant trois pièces d'or $(O_1, O_2$ et $O_3)$ et une pièce d'argent (A_1) , on tire deux pièces successivement et avec remise. En repassant sur les branches favorables, calculer la probabilité d'obtenir deux pièces d'or suite aux deux tirages.

3.3 Calcul de probabilités de combinaisons d'événements

Proposition 2. Soit une expérience aléatoire d'univers fini Ω , et deux événements A et B. Alors,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Remarque. La figure suivante permet d'illustrer une idée de la démonstration de cette formule.

Définition 9. Soit une expérience aléatoire d'univers fini Ω , et deux événements A et B. Ces deux événements sont dits incompatibles si et seulement s'ils n'ont pas d'issues en commun. Autrement dit, si et seulement si $A \cap B = \emptyset$.

Proposition 3. Avec deux événements incompatibles A et B, la formule précédente devient

$$P(A \cup B) = P(A) + P(B).$$

Exemple. Dans une classe de seconde de 30 élèves, 20 ont un prénom qui commence par « A », et 7 font du Basket. Dans cette même classe, 5 élèves dont le prénom commence par A font aussi du basket. On tire au sort un des élèves.

- a) On note A l'événement « Le prénom de l'élève choisi commence par A ». Calculer P(A).
- b) On note B l'événement « L'élève choisi fait du Basket ». Calculer P(B).
- c) Décrire en français l'événement $A \cup B$, puis calculer $P(A \cup B)$.

Proposition 4. Soit une expérience aléatoire d'univers fini Ω , et A un événement. Alors,

$$P(\overline{A}) = 1 - P(A).$$

Exemple. En reprenant l'expérience aléatoire précédente, combien d'élèves de cette classe ne font pas de basket? En déduire la probabilité $P(\overline{B})$.