DIC PROJECT – Spring 2023 PHASE-1

Thilak Reddy Dharam - thilakre - 50469154 Harsha Vardhan Bitra - hbirta - 50468952

Prediction of Songs Popularity on Spotify Data

Problem Statement:

The main aim of this project is to predict the popularity of the song when a new song is inserted into the dataset. The dataset we are using to solve the above is Spotify data: "SpotifyFeatures.csv" containing features such as "acousticness", "danceability", "instrumentalness", "liveness", "loudness", etc.

Background of the Problem:

In the music business, popularity is a key element that may impact a song's success, audience, and financial results. Making educated choices regarding marketing, distribution, and promotion tactics may aid musicians, music firms, and record labels. One of the most widely used music streaming services, Spotify, contains a wealth of information about different songs and their attributes. Variables like "acousticness," "danceability," "instrumentalness," "liveness," "loudness," and others included in the Spotify dataset "SpotifyFeatures.csv" may be utilized to train a machine learning model that can reliably predict a song's popularity. As a new song is added to the dataset, the project seeks to use this dataset and machine learning techniques to create a model that can reliably predict a song's popularity.

Significance of the Problem:

- 1) Better Recommendation of songs.
- 2) Marketing and Promotion.
- 3) Understanding the modern trends.
- 4) Revenue Generation for the song Industry.

Dataset Description:

The dataset used in this project consists of songs from different artists on most popular music platform "Spotify" which has 232725 records and 18 columns.

Dataset Name: SpotifyFeatures.csv Data Source: Spotify Features

Attributes Description:

genre: Different genres of songs such as classical, jazz, hiphop, etc.

artist_name: Name of the artist who has composed the song.

track_name: Title of the song.

track id: Unique ID generated for song by Spotify.

popularity: Popularity of song consisting of values between [0-100].

acousticness: Measures the acoustic of song, values consists between [0-1].

danceability: Describes if the song can be used to dance.

duration_ms: Duration of the song in milliseconds. **energy**: Represents intensity and activity of the song. **instrumentalness**: Represents the vocals of the song.

key: Overall key of the song, using standard pitch class notation. Ex-> 0-C, 1-C#, 2-D.

liveness: Represents the presence of audience in the song.

loudness: Overall loudness of the song in decibels.

mode: Indicates the modality of the song, representing "Major" for 1 and "Minor" for 0.

speechiness: Describes the measure and perfectness of spoken words in the song.

tempo: Beats for minute of the song.

time signature: Tells the number of beats in each measure of the song.

valence: Musical positiveness delivered by the song.

Data Cleaning/Processing:

Preprocessing:

1) Checking if any attributes contain null values:

```
1 spotifyData.isnull().sum()
[→ genre
                        0
   artist_name
                        0
   track_name
                        0
   track id
                        0
   popularity
                        0
   acousticness
                        0
   danceability
                       0
   duration_ms
                        0
   energy
   instrumentalness
   liveness
                        0
   loudness
                        0
   speechiness
                        0
   tempo
   time_signature
                        0
   valence
                        0
    dtype: int64
```

Checked which attributes contains null values and observed that there are no null values in the dataset.

2) Capitalizing the Genres:

Normalizing the text data to make it consistent.

```
1 #Making Genre texts capital
    2 print(spotifyData["genre"])
    3 spotifyData["genre"]=spotifyData["genre"].apply(lambda x: x.upper())
    4 print(spotifyData["genre"])
           Movie
C→ 0
           Movie
            Movie
            Movie
           Soul
   232720
   232721
           Soul
   232722
            Soul
           Soul
   232723
   232724
            Soul
   Name: genre, Length: 232725, dtype: object
         MOVIE
          MOVIE
          MOVIE
           MOVIE
           MOVIE
          SOUL
   232720
   232721 SOUL
   232722
           SOUL
           SOUL
   232723
   232724
            SOUL
   Name: genre, Length: 232725, dtype: object
```

3) Removing columns that are unnecessary for our requirement.

Removing the columns that makes no sense for our problem statement that doesn't add value.

[244]	2 column_ 3 req_col 4 spotify	to_remove=["mo umn=[col for c	ch doesn't add much value t de"] ol in spotifyData.columns i ta[req_column]		remove]												
	genre	artist_name	track_name	track_id	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	speechiness	tempo	time_signature	valence
	0 MOVIE	Henri Salvador	C'est beau de faire un Show	0BRj06ga9RKCKjfDqeFgWV		0.611	0.389	99373	0.910	0.000	C#	0.3460	-1.828	0.0525	166.969	4/4	0.814
	1 MOVIE	Martin & les fées	Perdu d'avance (par Gad Elmaleh)	0BjC1NfoEOOusryehmNudP		0.246	0.590	137373	0.737	0.000	F#	0.1510	-5.559	0.0868	174.003	4/4	0.816
	2 MOVIE	Joseph Williams	Don't Let Me Be Lonely Tonight	0CoSDzoNiKCRs124s9uTVy		0.952	0.663	170267	0.131	0.000		0.1030	-13.879	0.0362	99.488	5/4	0.368
	3 MOVIE	Henri Salvador	Dis-moi Monsieur Gordon Cooper	0Gc6TVm52BwZD07Ki6tlvf		0.703	0.240	152427	0.326	0.000	C#	0.0985	-12.178	0.0395	171.758	4/4	0.227
	4 MOVIE	Fabien Nataf	Ouverture	0lusiXpMROHdEPvSl1fTQK		0.950	0.331	82625	0.225	0.123		0.2020	-21.150	0.0456	140.576	4/4	0.390

4)	Converting datatypes of key and time_signature from object to category

_	#07.W0	object.
C→	genre	object
	artist_name	object
	track_name	object
	track_id	object
	popularity	int64
	acousticness	float64
	danceability	float64
	duration_ms	int64
	energy	float64
	instrumentalness	float64
	key	object
	liveness	float64
	loudness	float64
	speechiness	float64
	tempo	float64
	time_signature	object
	valence	float64
	dtype: object	
	genre	object
	artist_name	object
	track_name	object
	track_id	object
	popularity	int64
	acousticness	float64
	danceability	float64
	duration_ms	int64
	energy	float64
	instrumentalness	float64
	key	category
	liveness	float64
	loudness	float64
	speechiness	float64
	tempo	float64
	time_signature	category
	valence	float64
	dtype: object	
	aorpo. objece	

5) Text Filtering: removing duplication because of punctuation.

To show the relevant data and to show the consistency between attribute names, we have removed duplicate attributes.

6) Some tracks have multiple genres, so adding columns as genres as list.

Since a single song has multiple genres, adding all the genres to the specific list.

248] 1#Single track has multiple genre so we combine it into a list 2 df_grouped=(spotifyData.groupby("track_id")["genre"].apply(list)).to_frame().reset_index() 3 spotifyData-pd.merge(spotifyData,df_grouped, left_on='track_id', right_on='track_id', how='left') 4 spotifyData.head()																		
	genre	_x artist_nam	e track_name	track_id	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	speechiness	tетро	time_signature	valence	genre_y
0) MO\	IE Henri Salvad	or C'est beau de faire un Show	0BRjO6ga9RKCKjfDqeFgWV		0.611	0.389	99373	0.910	0.000	C#	0.3460	-1.828	0.0525	166.969	4/4	0.814	[MOVIE]
1	I MO\	IE Martin & l		0BjC1NfoEOOusryehmNudP		0.246	0.590	137373	0.737	0.000	F#	0.1510	-5.559	0.0868	174.003	4/4	0.816	[MOVIE]
2	2 MO\	IE Josep Willian		0CoSDzoNIKCRs124s9uTVy		0.952	0.663	170267	0.131	0.000		0.1030	-13.879	0.0362	99.488	5/4	0.368	[MOVIE]
3	B MO\	IE Henri Salvad	Dis-moi Monsieur Gordon Cooper	0Gc6TVm52BwZD07Ki6tlvf		0.703	0.240	152427	0.326	0.000	C#	0.0985	-12.178	0.0395	171.758	4/4	0.227	[MOVIE]
4	# MO\	IE Fabien Nat	af Ouverture	0luslXpMROHdEPvSl1fTQK		0.950	0.331	82625	0.225	0.123		0.2020	-21.150	0.0456	140.576	4/4	0.390	[MOVIE]

7) Removing duplicates from "track_id" column.

```
[249] 1 spotifyData.drop_duplicates(subset="track_id",keep=False, inplace=True)
```

8) Removing invalid columns.

Removing the two invalid attributes "genre_x" and "genre_y" generated in the above step.

```
[250] 1 spotifyData["genre_list"]=spotifyData["genre_y"]
2 spotifyData.drop(["genre_x","genre_y"],axis=1,inplace=True)
```

9) Renaming duration_ms attribute to duration_in_milliseconds.

```
[251] 1 spotifyData.rename(columns = {"duration_ms" : "duration_in_milliseconds"}, inplace = True)
```

10.Checking for outliers:

checking the outlier values of all the attributes whether the data is logical and deviating or not.

11. Trimming the data:

trying to trim the top 10% and bottom 10% of data from the specified columns and filter the records containing missing values.

12. Clipping the data:

Trying to clip the top 1% and bottom 1% of data from the specified columns, which doesn't allows values to go outside of range.

13. Rearranging columns for better readability.

[255]	5] lorderList = [2,1,0,3,4,5,6,7,8,9,10,11,12,13,14,15,16] 2 spotifyData = spotifyData[[spotifyData.columns[i] for i in orderList]] 3 spotifyData.head()																
	track_id	track_name	artist_name	popularity	acousticness	danceability	duration_in_milliseconds	energy	instrumentalness	key	liveness	loudness	speechiness	tempo	time_signature	valence	genre_list
	0 0CoSDzoNiKCRs124s9uTVy	Don't Let Me Be Lonely Tonight	Joseph Williams		0.95200	0.663	170267	0.1310	0.00000		0.1030	-13.879	0.0362	99.488	5/4	0.368	[MOVIE]
3	1 0Mf1jKa8eNAf1a4PwTbizj	Le petit souper aux chandelles	Henri Salvador		0.74900	0.578	160627	0.0948	0.00000	C#	0.1070	-14.970	0.1430	87.479	4/4	0.358	[MOVIE]
	2 0NUiKYRd6jt1LKMYGkUdnZ	Premières recherches (par Paul Ventimila, Lori	Martin & les fées		0.34400	0.703	212293	0.2700	0.00000		0.1050	-12.675	0.9530	82.873	4/4	0.533	[MOVIE]
	3 0PblF9YVD505GutwotpB5C	Let Me Let Go	Laura Mayne		0.93900	0.416	240067	0.2690	0.00000	F#	0.1130	-8.949	0.0286	96.827	4/4	0.274	[MOVIE]
	4 0ST6uPfvaPpJLtQwhE6KfC	Helka	Chorus	0	0.00104	0.734	226200	0.4810	0.00086	С	0.0769	-7.725	0.0460	125.080	4/4	0.765	[MOVIE]

EDA (Exploratory Data Analysis):

1) Histogram of Each Columns:

2) Histograms of Genre using original Data:

3) Histogram for Category Columns – "Key":

Histogram for Category Columns – "time_signature":

4) Cross-Correlation Matrix:

We have used heatmap to check the correlation between the song features.

```
1 corr_matrix = spotifyData.corr()
2 plt.figure(figsize = (8,8))
3 sns.heatmap(corr matrix, annot=True)
4 plt.show()
                                                                                                         1.0
                                       0.15 0.035 0.21 -0.075-0.085 0.29 -0.11 0.058 -0.029
              popularity
                            1
                                                                                                         0.8
                                       -0.23 -0.047 -0.73 0.059 -0.057 -0.64 0.087 -0.14 -0.19
           acousticness
                          -0.28
                                  1
                                             -0.11 0.17 -0.11 -0.051 0.22 0.18 -0.038 0.46
            danceability
                          0.15 -0.23
                                                                                                         0.6
duration in milliseconds
                         0.035 -0.047 -0.11
                                               1
                                                   0.034 0.084 0.00450.0039 0.032 0.024 -0.12
                                                                                                         0.4
                                       0.17 0.034
                                                     1
                                                         -0.075 0.19
                                                                       0.78 0.066 0.11 0.31
                          0.21 -0.73
                 energy
                                                                                                         0.2
       instrumentalness -0.075 0.059 -0.11 0.084 -0.075
                                                           1
                                                               -0.055 -0.23 -0.11-0.00064-0.12
                                                                                                         0.0
                         -0.085 -0.057 -0.051 0.0045 0.19 -0.055
                                                                  1
                                                                       0.06 0.25 -0.023 0.088
                                 -0.64 0.22 -0.0039 0.78 -0.23 0.06
               loudness
                                                                            -0.069 0.11 0.22
                                                                                                         -0.2
                          -0.11 0.087 0.18 0.032 0.066 -0.11 0.25 -0.069
                                                                                   -0.077 0.083
            speechiness
                                                                                                         -0.4
                         0.058 -0.14 -0.038 0.024 0.11-0.000640.023 0.11 -0.077
                 tempo
                                                                                         -0.034
                                                                                                         -0.6
                         -0.029 -0.19
                                       0.46
                                             -0.12 0.31
                                                         -0.12 0.088 0.22 0.083 -0.034
                                                                                           1
                valence
                                                                                           valence
                                                                 liveness
                                        danceability
                                              duration in milliseconds
                                                     energy
                                                           nstrumentalness
                           popularity
                                  acousticness
                                                                              speechiness
                                                                        loudness
```

5) Analysis of artists with most songs:

6) Analysis of Artist who's mean popularity is highest:

7) Analysis of most popular tracks:

8) Scatter plot of few features with respect to popularity:

9) Bar Graph of 5 most Popular Songs vs Duration in milliseconds:

10) Different types of genres and their percentages:

11) Popularity vs energy boxplot:

we can see that 4 of the top 5 popularity have energy constant.

12) Popularity vs Tempo:

from the mean plot we can see that the mean tempo for top popular artists is either low or high, where as its almost constant for less popular artists.

13) Popular Artists and their Instrumentalness:

we can observe that high popular artists have low instrumentalness.

