Systematic characterization of generative models for de novo design of regulatory DNA

Nic Fishman, Avanti Shrikumar, Georgi Marinov, Anshul Kundaje Stanford University

expression, chromatin accessibility, etc.)

on some property of interest (gene

sequence generation: generate sequences which score highly

This talk

- Introducing a taxonomy
- Develop an evaluation tool: 1NN accuracy
- 3. The apparent tradeoff between (1) biological realisticness and (2) maximizing the property of interest

Methods for sequence generation

The Taxonomy

- VAE
- GAN
- supVAE
- FBGAN
- CEMPI
- RWR
- DbAS
- CbAS
- Differentiable Gradient Descent
- GPs and linear approximation
- Top percentile random sampling

Transducer (→ Tuner) → Sampler

transducers: maps random samples in a latent space Z to a generated regulatory sequence

Transducer Tuners: tweak a transducer to generate high-expression regulatory sequences

Sample Optimizers: keep the transducer as-is and SEARCH the latent space for points that give high expression sequences.

Transducers	Tuners	Samplers
VAEGANsupVAEsupGAN	FBGANCEMPIRWRDbASCbAS	 Differentiable Gradient Descent GPs and linear approximation Top percentile random sampling

Unified codebase: https://github.com/kundajelab/seq_gen

Quantifying biological realisticness

Xu et al:

Embed generated & real sequences → 1-NN classification

High 1-NN accuracy (Real sequences separated from generated sequences)

Low 1-NN accuracy (Real sequences similar to generated sequences)

For embedding:

Activations of intermediate layer in DeepSEA model (Zhou & Troyanskaya, 2015)

Takeaway 1: GANs generate greater diversity than VAEs

Takeaway 2: trade-off between realism & maximization

Less realistic sequences

Takeaway 3: Too much tuning produces adversarial sequences

Reasonable generated sequence

GGGGAC...CAATCA

Mean predicted expression, but biologically realistic

Adversarial sequence

TTTTTT...TTTTCA

High predicted expression, not biologically realistic

Less realistic sequences

Takeaway 4: random sampling beats gradient descent

Less realistic sequences

Takeaways

- 1. Transducer → Tuner → Sampler
- 2. 1NN accuracy as an evaluation tool
- 3. Takeaways:
 - a. GANs > VAEs
 - b. The apparent tradeoff between (1) biological realisticness and (2) maximizing the property of interest
 - c. Adversarial examples with continued tuning
 - d. Random sampling with a high threshold beats gradient descent in the latentspace

Visualizing GAN/VAE quality. A common 2D projection for the sequences was created as follows: all generated and real sequences were scanned with the first five convolutional layers of the DeepSEA network, and the output of the last convolutional layer was flattened to derive a sequence embedding. This embedding was projected into 2D space using UMAP. The two panels here are the real sequences.

Visualizing GAN/VAE quality. A common 2D projection for the sequences was created as follows: all generated and real sequences were scanned with the first five convolutional layers of the DeepSEA network, and the output of the last convolutional layer was flattened to derive a sequence embedding. This embedding was projected into 2D space using UMAP. The first two panels are the real sequences, the last is generated sequences from the GAN.

Visualizing GAN/VAE quality. A common 2D projection for the sequences was created as follows: all generated and real sequences were scanned with the first five convolutional layers of the DeepSEA network, and the output of the last convolutional layer was flattened to derive a sequence embedding. This embedding was projected into 2D space using UMAP. The first two panels are the real sequences, the last is generated sequences from the supGAN.

Visualizing GAN/VAE quality. A common 2D projection for the sequences was created as follows: all generated and real sequences were scanned with the first five convolutional layers of the DeepSEA network, and the output of the last convolutional layer was flattened to derive a sequence embedding. This embedding was projected into 2D space using UMAP. The first two panels are the real sequences, the last is generated sequences from the VAE.

Visualizing GAN/VAE quality. A common 2D projection for the sequences was created as follows: all generated and real sequences were scanned with the first five convolutional layers of the DeepSEA network, and the output of the last convolutional layer was flattened to derive a sequence embedding. This embedding was projected into 2D space using UMAP. The first two panels are the real sequences, the last is generated sequences from the supVAE.