

中国数据智能管理峰会

DATA & AI MANAGEMENT SUMMIT

爱奇艺大数据分析平台的演进

演讲人: 邹兴标

02 | 自助查询平台 - 魔镜

03 | 用户分析平台 - 北斗

爱奇艺数据现状

▲ 日均上亿独立设备数

🥃 离线: 日增 500TB

实时: 日处理万亿级消息

10+ Apps

爱奇艺数据平台发展史

爱奇艺数据平台架构

数据平台目标: 链接数据与业务, 提供高效, 快捷的分析平台

应用层	自助查询平台		精细化	精细化运营平台		内容分析平台		Bi报表系统	
	调度平台	Gear			数据	居集市	用户集市内容集市		计报表
计算层		Impala Spark Hive		数据层			MID (汇总数据层)		
	计算引擎				统一数仓	一数仓	DWD (数据明细层)		
		MR	MR				ODS (原始数据层)		
采集	Babe	x 数据集成工具		Venu	ıs 日志۶	F集平台		MySQL I	0
数据源	行为数据	服务日志	MySQL	CouchB	ase	Redis	HiKV	MongoDB	ClickHouse

02 | 自助查询平台

03 | 用户分析平台

自助查询平台-诞生背景

- ? 遇到的问题
 - 运营及老板有越来越多的数据需求
 - 固定的报表开发难以满足各方数据需求
 - 数据开发工程师逐渐成为获取数据的瓶颈

破局的思路

• 需要赋能运营及分析师自助获取数据的能力

自助查询平台1.0

自助查询平台1.0

缺陷

- 功能单一: 支持单表计算, 支持计算模板类型少
- •数据源单一:数据来源为原始日志,没有数仓数据
- •引擎单薄:使用hive client作为单一执行引擎,稳定性不强

自助查询平台2.0

改进

• 丰富功能: 支持了关联, 留存, 漏斗等计算类型

• 扩展数据源: 支持用户自定义注册数仓表

• 健壮调度:集成基于Apache Oozie的Gear工作流调度系

统, 去除单点入口机依赖

效果

• 任务失败率从5%降低至2%(非语法类)

自助查询平台2.0-表一键替换

问题

数据开发提供了注册的数仓表,但是由于用户的习惯,不愿意进行计算的切换, 导致高效的表难以推广

解决方案

• 对最核心的用户行为数据进行数仓建模,进行常用维度聚合,平台提供一键切换功能,杜绝使用原始表

效果

- 释放了50台服务器资源
- · 单任务平均时长40分钟→20分钟

自助查询平2.0

缺陷

执行效率:使用Hive作为计算引擎,在日益增长的数据现状下, 难以满足数据即时提取需求

新的问题

数据量的增加及基础设施的限制,公司开始多机房建设,数据可能分布到多个大数据集群。面临着为每一次查询找到正确的集群的问题。

自助查询平台-魔镜3.0

改进及效果

- 自研智能SQL路由引擎Pilot, 实现基于机器学习的智能SQL路由、失败降级、审计、错误诊断等功能
- 查询性能从平均**20分钟→16分钟**, 提升25%
- 查询失败率降低至从2%降低至0.3%

Pilot-查询路由

性能提升: 80%

□ | 爰奇艺数据现状

02 | 自助查询平台 - 魔镜

03 | 用户分析平台 - 北斗

用户分析平台-诞生背景

看过隐没的角落的人群数据分析、提取

א אני און פלחונאל

Q1

策略上线

2周

2周

效果计算 申请分析师资源进行时间片对比分析

1周

死循环局面:

深入实践

- 策略细分靠临时开发
- 跨APP、甚至APP内跨场景数据不统
 - 一,无法规模化复用

底层、工具、应用层同时升级

- 人群圈选→行为分析→定向运营
- 数据可快速可分析→可决策→可行动
- 不但提供表的服务,进一步提供解决方案 服务

用户分析平台-产品架构

用户分析平台-技术架构

数据层:

将数据通过统一的Hash算法切片为100份存储,基于用户行为库定制的用户事件,属性模型。

引擎层:

基于动态抽样(根据样本数量决定 Hash分片数)+ Impala查询引擎,提升单次分析效率从平均70s提升至9s以内

产品模块:

人群结果通过文件及接口方式分发至 公司90%的触达用户平台

用户分析平台-技术选型

Apache Kylin™

	Kylin	Spark	Impala
单表查询(10亿)	好(命中Cube)	差	中
关联查询	差	中	好
并发控制	中	好	差

用户分析平台-抽样实现

背景

需要从900亿数据中圈选出入左图条件人群

解决方案

对数据进行抽样,保证于分之五以下的误差

性能提升

性能从70S→9S 全量和抽样的误差干分之一

用户分析平台-抽样实现

用户分析平台-结构数据使用

背景

每个用户基本都有多个剧集偏好,需要计算用户对于 剧集每个用户基本都有多个剧集偏好

数据存储:

每个用户存多条记录 存储成本高, scan hdfs 耗时

用户ID	偏好
AAAA	言情
AAAA	家庭
AAAA	喜剧
BBBB	惊悚
BBBB	喜剧

优化提升

修改数据存储类型,一个用户存一条特征

array<struct<
entity_id:string,
entity_name:string,
entity_uv:bigint,
base_uv:bigint,
entity_uv_rate:double
entity_weight:double
entity_uv_high:bigin
entity_uv_mid:bigint
base_uv_high:bigint,
c1:string,
c1_name:string

性能提升

性能从8.66S→2.89S

用户分析平台-结构数据使用

未来规划

Q&A

中国数据智能管理峰会

THANK YOU!