1

Digital Signal Processing

Faizan Rasool Qureshi

(٦,	`	רד	LE.	NΤΠ	гс

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT and FFT	6
7	FFT	8
8	Exercises	11

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://raw.githubusercontent.com/ gadepall/ EE1310/master/filter/codes/Sound Noise.wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in the manuscript is released under GNU GPL. Free to use for anything.

Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? **Solution:** There are a lot of yellow lines be-

tween 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.

2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

import soundfile as sf from scipy import signal #read .wav file input signal,fs = sf.read('Sound Noise.way ') #sampling frequency of Input signal sampl freq=fs #order of the filter order=4 #cutoff frquency 4kHz cutoff freq=4000.0 #digital frequency Wn=2*cutoff freq/sampl freq # b and a are numerator and denominator polynomials respectively b, a = signal.butter(order, Wn, 'low') #filter the input signal with butterworth filter output signal = signal.filtfilt(b, a, input signal) #output signal = signal.lfilter(b, a, input signal) #write the output signal into .wav file sf.write('Sound With ReducedNoise.wav', output signal, fs)

2.4 The output of the python script

in Problem 2.3 is the audio file Sound_With_ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 Difference Equation

3.1 Let

$$x(n) = \left\{ \frac{1}{1}, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/gadepall/EE1310/raw/master/filter/codes/xnyn.py

Fig. 3.2

3.3 Repeat the above exercise using a C code.

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)
$$(4.5)$$

$$\mathcal{Z}\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.6)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.8}$$

4.2 Obtain X(z) for x(n) defined in problem 3.1. **Solution:**

$$Z(x(n)) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$= x(0)z^{0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} +$$

$$(4.10)$$

$$x(4)z^{-4} + x(5)z^{-5}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$

$$(4.11)$$

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.12}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.8) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.13)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.14}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.15)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.16)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.17}$$

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.18}$$

and from (4.16),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.19)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.20}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.21}$$

Solution:

$$\mathcal{Z}\lbrace a^{n}u(n)\rbrace = \sum_{n=-\infty}^{\infty} a^{n}u(n)z^{-n}$$
 (4.22)

$$= \sum_{n=-\infty}^{\infty} u(n) (az^{-1})^n$$
 (4.23)

$$= \sum_{n=0}^{\infty} (az^{-1})^n, \quad |az^{-1}| < 1 \quad (4.24)$$

(4.25)

$$= \frac{1}{1 - az^{-1}}, \quad |a| < |z| \tag{4.26}$$

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.27)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: The graph is symmetric and periodic it is attending high of value 4 and minimum between (0 - 0.5). It is bounded between (0, 4) and periodic with period (2π) because in

the below equation $cos(\omega)$ is periodic function having period 2π

$$H\left(e^{j\omega}\right) = \frac{1 + e^{-2j\omega}}{1 + \frac{e^{-j\omega}}{2}}\tag{4.28}$$

$$\implies \left| H\left(e^{j\omega}\right) \right| = \frac{\left| 1 + e^{-2j\omega} \right|}{\left| 1 + \frac{e^{-j\omega}}{2} \right|} \tag{4.29}$$

$$= \frac{\left|1 + e^{2j\omega}\right|}{\left|e^{2j\omega} + \frac{e^{j\omega}}{2}\right|}$$

$$= \frac{\left|1 + \cos 2\omega + j\sin 2\omega\right|}{\left|e^{j\omega} + \frac{1}{2}\right|}$$
(4.31)

$$= \frac{\left| 4\cos^2(\omega) + 4j\sin(\omega)\cos(\omega) \right|}{|2e^{j\omega} + 1|}$$
(4.32)

$$= \frac{|4\cos(\omega)||\cos(\omega) + j\sin(\omega)|}{|2\cos(\omega) + 1 + 2j\sin(\omega)|}$$
(4.33)

$$\therefore \left| H\left(e^{j\omega}\right) \right| = \frac{|4\cos\left(\omega\right)|}{\sqrt{5 + 4\cos\left(\omega\right)}} \tag{4.34}$$

The following code plots Fig. 4.6.

w get https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/dtft. py

Fig. 4.6: $|H(e^{j\omega})|$

4.7 Express h(n) in terms of $H(e^{j\omega})$. Solution:

$$\int_{-\pi}^{\pi} e^{j\omega(n-k)} d\omega = \begin{cases} 2\pi & n=k\\ 0 & \text{otherwise} \end{cases}$$
 (4.35)

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n) e^{-j\omega n}$$
(4.36)

$$\int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega k} d\omega = \sum_{n=-\infty}^{\infty} h(n) \int_{-\pi}^{\pi} e^{-j\omega n} e^{j\omega k} d\omega$$
(4.37)

$$\int_{-\pi}^{\pi} H\left(e^{j\omega}\right) e^{j\omega k} d\omega = \sum_{n=-\infty}^{\infty} h(n) 2\pi \quad (4.38)$$

$$\int_{-\pi}^{\pi} H\left(e^{j\omega}\right) e^{j\omega k} d\omega = 2\pi h\left(n\right) \tag{4.39}$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H\left(e^{j\omega}\right) e^{j\omega k} d\omega = h(n) \tag{4.40}$$

5 IMPULSE RESPONSE

5.1 Using long division, find

$$h(n), \quad n < 5$$
 (5.1)

for H(z) in (4.14).

Solution:

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

Let $z^{-1} = x$, then, by polynomial long division we get 2x - 4

$$\frac{\frac{1}{2}x+1}{x^2+1} - \frac{x^2-2x}{-2x+1} - \frac{2x+4}{5}$$

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.3}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.14),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.4)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \tag{5.5}$$

using (4.21) and (4.8).

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution: The following code plots Fig. 5.3.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/hn.py

Fig. 5.3: h(n) as the inverse of H(z)

5.4 Convergent? Justify using the ratio test.

Solution: we see that h(n) is bounded. For large n, we see that

$$h(n) = \left(-\frac{1}{2}\right)^n + \left(-\frac{1}{2}\right)^{n-2} \tag{5.6}$$

$$= \left(-\frac{1}{2}\right)^n (4+1) = 5\left(-\frac{1}{2}\right)^n \tag{5.7}$$

$$\implies \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} \tag{5.8}$$

and therefore, $\lim_{n\to\infty} \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} < 1$. Hence, we see that h(n) converges.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.9}$$

Is the system defined by (3.2) stable for the impulse response in (5.3)?

Solution: By using h(n) from 5.3

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
 (5.10)
$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
 (5.11)

$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.12)

$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^n + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^{n-2}$$
 (5.13)

(5.14)

$$=\frac{2}{3} + \frac{2}{3} < \infty \tag{5.15}$$

5.6 Verify the above result using a python code.

Solution:

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-5/5_6.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (5.16)

Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.17)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 5.3.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/hndef. py

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k)$$
 (5.18)

Comment. The operation in (5.18) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/ ynconv.py

Fig. 5.7: h(n) from the definition

Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Teoplitz matrix.

Solution:

We know that from, (5.18),

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.19)

This can also be writen as a matrix-vector multiplication given by the expression,

$$y = T(h) * x \tag{5.20}$$

In the equation (5.20), T(h) is a Teoplitz matrix.

The equation (5.20) can be expanded as,

$$\mathbf{y} = \mathbf{x} \circledast \mathbf{h}$$

$$\mathbf{y} = \begin{pmatrix} h_1 & 0 & . & . & . & 0 \\ h_2 & h_1 & . & . & . & 0 \\ h_3 & h_2 & h_1 & . & . & 0 \\ . & . & . & . & . & . & . \\ h_{n-1} & h_{n-2} & h_{n-3} & . & . & 0 \\ h_n & h_{n-1} & h_{n-2} & . & . & h_1 \\ 0 & h_n & h_{n-1} & h_{n-2} & . & h_2 \\ . & . & . & . & . & . & . \\ 0 & . & . & . & 0 & h_{n-1} \\ 0 & . & . & . & 0 & h_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ . \\ . \\ x_n \end{pmatrix}$$

$$(5.21)$$

5.10 Show that

$$y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k)$$
 (5.23)

Solution: From (5.18), we substitute k := n - k to get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.24)

$$= \sum_{\substack{n-k=-\infty\\\infty}}^{\infty} x(n-k)h(k)$$
 (5.25)

$$=\sum_{k=-\infty}^{\infty}x(n-k)h(k)$$
 (5.26)

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. (6.3) and computes X(k) and Y(k). Note that this is the same as y(n) in Fig. (3.2). Download the code using

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/6_3.py

and execute it using

\$ python3 6_3.py

Fig. 6.3: y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Download the code from

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/6 4.py

and execute it using

\$ python3 6_4.py

The values of y(n) using all the three methods have been plotted on one stem plot for convenience. Note that there is very little difference in the values of y(n).

6.5 Wherever possible, express all the above equations as matrix equations.

Solution: We use the DFT Matrix, where $\omega = e^{-\frac{j2k\pi}{N}}$, which is given by

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(6.4)

Fig. 6.4: y(n) using FFT and IFFT

i.e. $W_{jk} = \omega^{jk}$, $0 \le j, k < N$. Hence, we can write any DFT equation as

$$\mathbf{X} = \mathbf{W}\mathbf{x} = \mathbf{x}\mathbf{W} \tag{6.5}$$

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (6.6)

Using (6.3), the inverse Fourier Transform is given by

$$\mathbf{X} = \mathcal{F}^{-1}(\mathbf{X}) = \mathbf{W}^{-1}\mathbf{X} = \frac{1}{N}\mathbf{W}^{\mathbf{H}}\mathbf{X} = \frac{1}{N}\mathbf{X}\mathbf{W}^{\mathbf{H}}$$
(6.7)

$$\implies \mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^{\mathbf{H}} \tag{6.8}$$

where H denotes hermitian operator. We can rewrite (6.2) using the element-wise multiplication operator as

$$\mathbf{Y} = \mathbf{H} \cdot \mathbf{X} = (\mathbf{W}\mathbf{h}) \cdot (\mathbf{W}\mathbf{x}) \tag{6.9}$$

The plot of y(n) using the DFT matrix in Fig. (6.5) is the same as y(n) in Fig. (3.2).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/6_5.py

and run it using

Fig. 6.5: y(n) using the DFT matrix

Fig. 6.6: y(n) using own implementation of FFT and IFFT

6.6 Implement your own FFT and IFFT routines and verify your routine by plotting y(n).

Solution: The code can be downloaded using

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/6_6.py

and can be run using

The plot is shown in Fig. (6.6)

6.7 Find the time complexities of computing y(n) using FFT/IFFT and convolution.

Solution: The C code for finding the running times of these three algorithms can be downloaded from

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/6 7.c

The C code is compiled and run using

This code generates three text files that are used to plot the runtimes of the algorithms in the following Python codes

- \$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/6_7_1.py
- \$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/6 7 2.py

Figs. (6.7) and (6.7) are generated by executing the codes.

Fig. 6.7: The worst-case complexity of FFT/IFFT is $O(n \log n)$

7 FFT

7.1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

Fig. 6.7: The worst case complexity of convolution is $O(n^2)$

7.2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the N-point DFT matrix is defined as

$$\mathbf{F}_N = [W_N^{mn}], \quad 0 \le m, n \le N - 1$$
 (7.3)

where W_N^{mn} are the elements of \mathbf{F}_N .

7.3. Let

$$\mathbf{I}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^2 & \mathbf{e}_4^3 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.4}$$

be the 4×4 identity matrix. Then the 4 point *DFT permutation matrix* is defined as

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.5}$$

7.4. The 4 point DFT diagonal matrix is defined as

$$\mathbf{D}_4 = diag \left(W_8^0 \quad W_8^1 \quad W_8^2 \quad W_8^3 \right) \tag{7.6}$$

7.5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution: We write

$$W_N^2 = \left(e^{-\frac{j2\pi}{N}}\right)^2 = e^{-\frac{j2\pi}{N/2}} = W_{N/2}$$
 (7.8)

7.6. Show that

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.9}$$

Solution: Observe that for $n \in \mathbb{N}$, $W_4^{4n} = 1$ and

$$W_4^{4n+2} = -1$$
. Using (7.7),

$$\mathbf{D}_{2}\mathbf{F}_{2} = \begin{bmatrix} W_{4}^{0} & 0 \\ 0 & W_{4}^{1} \end{bmatrix} \begin{bmatrix} W_{2}^{0} & W_{2}^{0} \\ W_{2}^{0} & W_{2}^{1} \end{bmatrix}$$
 (7.10)
$$= \begin{bmatrix} W_{4}^{0} & 0 \\ 0 & W_{4}^{1} \end{bmatrix} \begin{bmatrix} W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{2} \end{bmatrix}$$
 (7.11)
$$= \begin{bmatrix} W_{4}^{0} & W_{4}^{0} \\ W_{1}^{1} & W_{3}^{2} \end{bmatrix}$$
 (7.12)

$$\implies -\mathbf{D}_2\mathbf{F}_2 = \begin{bmatrix} W_4^2 & W_4^6 \\ W_3^3 & W_2^6 \end{bmatrix} \tag{7.13}$$

and

$$\mathbf{F}_2 = \begin{pmatrix} W_2^0 & W_2^0 \\ W_2^0 & W_2^1 \end{pmatrix} \tag{7.14}$$

$$= \begin{pmatrix} W_4^0 & W_4^0 \\ W_4^0 & W_4^2 \end{pmatrix} \tag{7.15}$$

Hence,

$$\mathbf{W}_{4} = \begin{pmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{1} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{4} & W_{4}^{2} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{6} & W_{4}^{3} & W_{4}^{9} \end{pmatrix}$$
(7.16)

$$= \begin{bmatrix} \mathbf{I}_2 \mathbf{F}_2 & \mathbf{D}_2 F_2 \\ \mathbf{I}_2 \mathbf{F}_2 & -\mathbf{D}_2 F_2 \end{bmatrix}$$
 (7.17)

$$= \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & \mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix}$$
 (7.18)

Multiplying (7.18) by \mathbf{P}_4 on both sides, and noting that $\mathbf{W}_4\mathbf{P}_4 = \mathbf{F}_4$ gives us (7.9).

7.7. Show that

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.19)$$

Solution: Observe that for even N and letting \mathbf{f}_N^i denote the i^{th} column of \mathbf{F}_N , from (7.12) and (7.13),

$$\begin{pmatrix} \mathbf{D}_{N/2} \mathbf{F}_{N/2} \\ -\mathbf{D}_{N/2} \mathbf{F}_{N/2} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{N}^{2} & \mathbf{f}_{N}^{4} & \dots & \mathbf{f}_{N}^{N} \end{pmatrix}$$
(7.20)

and

$$\begin{pmatrix} \mathbf{I}_{N/2} \mathbf{F}_{N/2} \\ \mathbf{I}_{N/2} \mathbf{F}_{N/2} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{N}^{1} & \mathbf{f}_{N}^{3} & \dots & \mathbf{f}_{N}^{N-1} \end{pmatrix}$$
(7.21)

Thus,

$$\begin{bmatrix} \mathbf{I}_{2}\mathbf{F}_{2} & \mathbf{D}_{2}\mathbf{F}_{2} \\ \mathbf{I}_{2}\mathbf{F}_{2} & -\mathbf{D}_{2}\mathbf{F}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix}$$
$$= \begin{pmatrix} \mathbf{f}_{N}^{1} & \dots & \mathbf{f}_{N}^{N-1} & \mathbf{f}_{N}^{2} & \dots & \mathbf{f}_{N}^{N} \end{pmatrix}$$
(7.22)

and so,

$$\begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N}$$
$$= \begin{pmatrix} \mathbf{f}_{N}^{1} & \mathbf{f}_{N}^{2} & \dots & \mathbf{f}_{N}^{N} \end{pmatrix} = \mathbf{F}_{N}$$
(7.23)

7.8. Find

$$\mathbf{P}_4\mathbf{x} \tag{7.24}$$

Solution: We have,

$$\mathbf{P}_{4}\mathbf{x} = \begin{pmatrix} \mathbf{e}_{4}^{1} & \mathbf{e}_{4}^{3} & \mathbf{e}_{4}^{2} & \mathbf{e}_{4}^{4} \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{pmatrix} = \begin{pmatrix} x(0) \\ x(2) \\ x(1) \\ x(3) \end{pmatrix}$$
(7.25)

7.9. Show that

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.26}$$

where \mathbf{x}, \mathbf{X} are the vector representations of x(n), X(k) respectively.

Solution: Writing the terms of X,

$$X(0) = x(0) + x(1) + \dots + x(N-1)$$
(7.27)

$$X(1) = x(0) + x(1)e^{-\frac{12N}{N}} + \dots + x(N-1)e^{-\frac{12(N-1)\pi}{N}}$$
 (7.28)

:

$$X(N-1) = x(0) + x(1)e^{-\frac{12(N-1)\pi}{N}} + \dots + x(N-1)e^{-\frac{12(N-1)(N-1)\pi}{N}}$$
(7.29)

Clearly, the term in the m^{th} row and n^{th} column is given by $(0 \le m \le N - 1 \text{ and } 0 \le n \le N - 1)$

$$T_{mn} = x(n)e^{-\frac{12mn\pi}{N}} (7.30)$$

and so, we can represent each of these terms as a matrix product

$$\mathbf{X} = \mathbf{F}_{N}\mathbf{X} \tag{7.31}$$

where
$$\mathbf{F}_N = \left[e^{-\frac{-j2mn\pi}{N}}\right]_{mn}$$
 for $0 \le m \le N-1$ and $0 \le n \le N-1$.

7.10. Derive the following Step-by-step visualisation

(7.46)

of 8-point FFTs into 4-point FFTs and so on

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} + \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$

$$(7.32)$$

$$\begin{bmatrix} X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} - \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$

$$(7.33)$$

4-point FFTs into 2-point FFTs

$$\begin{bmatrix} X_1(0) \\ X_1(1) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
(7.34)

$$\begin{bmatrix} X_1(2) \\ X_1(3) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.35)

$$\begin{bmatrix} X_2(0) \\ X_2(1) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
(7.36)

$$\begin{bmatrix} X_2(2) \\ X_2(3) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
(7.37)

$$P_{8} \begin{vmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{vmatrix} = \begin{vmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \\ x(1) \\ x(3) \\ x(5) \\ x(7) \end{vmatrix}$$
 (7.38)

$$P_{4} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \end{bmatrix}$$
 (7.39)

$$P_{4} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$
 (7.40)

Therefore,

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.41)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.42)

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.43)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.44)

Solution: We write out the values of performing an 8-point FFT on **x** as follows.

$$X(k) = \sum_{n=0}^{7} x(n)e^{-\frac{12kn\pi}{8}}$$

$$= \sum_{n=0}^{3} \left(x(2n)e^{-\frac{12kn\pi}{4}} + e^{-\frac{12k\pi}{8}}x(2n+1)e^{-\frac{12kn\pi}{4}} \right)$$

$$= X_1(k) + e^{-\frac{12k\pi}{4}} X_2(k) \tag{7.47}$$

where X_1 is the 4-point FFT of the evennumbered terms and X_2 is the 4-point FFT of the odd numbered terms. Noticing that for $k \ge 4$,

$$X_1(k) = X_1(k-4) \tag{7.48}$$

$$e^{-\frac{j2k\pi}{8}} = -e^{-\frac{j2(k-4)\pi}{8}} \tag{7.49}$$

we can now write out X(k) in matrix form as in (7.32) and (7.33). We also need to solve the two 4-point FFT terms so formed.

$$X_{1}(k) = \sum_{n=0}^{3} x_{1}(n)e^{-\frac{12kn\pi}{8}}$$

$$= \sum_{n=0}^{1} \left(x_{1}(2n)e^{-\frac{12kn\pi}{4}} + e^{-\frac{12k\pi}{8}} x_{2}(2n+1)e^{-\frac{12kn\pi}{4}} \right)$$
(7.51)

$$= X_3(k) + e^{-\frac{1^{2k\pi}}{4}} X_4(k) \tag{7.52}$$

using $x_1(n) = x(2n)$ and $x_2(n) = x(2n+1)$. Thus we can write the 2-point FFTs

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.53)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.54)

Using a similar idea for the terms X_2 ,

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.55)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.56)

But observe that from (7.25),

$$\mathbf{P}_8 \mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \tag{7.57}$$

$$\mathbf{P}_4 \mathbf{x}_1 = \begin{pmatrix} \mathbf{x}_3 \\ \mathbf{x}_4 \end{pmatrix} \tag{7.58}$$

$$\mathbf{P}_4 \mathbf{x}_2 = \begin{pmatrix} \mathbf{x}_5 \\ \mathbf{x}_6 \end{pmatrix} \tag{7.59}$$

where we define $x_3(k) = x(4k)$, $x_4(k) = x(4k + 2)$, $x_5(k) = x(4k + 1)$, and $x_6(k) = x(4k + 3)$ for k = 0, 1.

7.11. For

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix} \tag{7.60}$$

compte the DFT using (7.26)

Solution: Download the Python code from

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/7_11.py

and run it using

- 7.12. Repeat the above exercise using the FFT after zero padding **x**.
- 7.13. Write a C program to compute the 8-point FFT. **Solution:** The C code for the above two problems can be downloaded from
 - \$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/7_13.c

Compile and run the code using

8 Exercises

Answer the following questions by looking at the python code in Problem 2.3.

8.1. The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (8.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify. **Solution:** Download the source code by typing the next command

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/8 1.py

and run it using

8.2. Repeat all the exercises in the previous sections for the above *a* and *b*.

Solution: For the given values, the difference equation is

$$y(n) - (2.52) y(n-1) + (2.56) y(n-2)$$

$$- (1.21) y(n-3) + (0.22) y(n-4)$$

$$= (3.45 \times 10^{-3}) x(n) + (1.38 \times 10^{-2}) x(n-1)$$

$$+ (2.07 \times 10^{-2}) x(n-2) + (1.38 \times 10^{-2}) x(n-3)$$

$$+ (3.45 \times 10^{-3}) x(n-4)$$
(8.2)

From (8.1), we see that the transfer function can be written as follows

$$H(z) = \frac{\sum_{k=0}^{N} b(k)z^{-k}}{\sum_{k=0}^{M} a(k)z^{-k}}$$

$$= \sum_{i} \frac{r(i)}{1 - p(i)z^{-1}} + \sum_{j} k(j)z^{-j}$$
 (8.4)

where r(i), p(i), are called residues and poles respectively of the partial fraction expansion of H(z). k(i) are the coefficients of the direct polynomial terms that might be left over. We can now take the inverse z-transform of (8.4) and get using (4.21),

$$h(n) = \sum_{i} r(i)[p(i)]^{n} u(n) + \sum_{j} k(j)\delta(n-j)$$
(8.5)

Substituting the values,

$$h(n) = [(-0.24 - 0.71_{J}) (0.56 + 0.14_{J})^{n} + (-0.24 + 0.71_{J}) (0.56 - 0.14_{J})^{n} + (-0.25 + 0.12_{J}) (0.70 + 0.41_{J})^{n} + (-0.25 - 0.12_{J}) (0.70 - 0.41_{J})^{n}]u(n) + (1.6 \times 10^{-2}) \delta(n) \qquad (8.6) \Rightarrow h(n) = (1.5) (0.58)^{n} \cos (n\alpha_{1} + \beta_{1}) + (0.55) (0.81)^{n} \cos (n\alpha_{2} + \beta_{2}) + (1.6 \times 10^{-2}) \delta(n) \qquad (8.7)$$

where

$$\tan \alpha_1 = 0.25$$
 (8.8)

$$\tan \beta_1 = 2.96$$
 (8.9)

$$\tan \alpha_2 = 0.59$$
 (8.10)

$$\tan \beta_2 = -0.48 \tag{8.11}$$

The values r(i), p(i), k(i) and thus the impulse response function are computed and plotted at

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/8_2_1.py

The filter frequency response is plotted at

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/8 2 2.py

Observe that for a series $t_n = r^n$, $\frac{t_{n+1}}{t_n} = r$. By the ratio test, t_n converges if |r| < 1. We observe that for all i, |p(i)| < 1 and so, as h(n) is the sum of many convergent series, we see that h(n) converges and is bounded. From (4.1),

$$\sum_{n=0}^{\infty} h(n) = H(1) = \frac{\sum_{k=0}^{N} b(k)}{\sum_{k=0}^{M} a(k)} = 1 < \infty \quad (8.12)$$

Therefore, the system is stable. From Fig. (8.2), h(n) is negligible after $n \ge 64$, and we can apply a 64-bit FFT to get y(n). The following code uses the DFT matrix to generate y(n) in Fig. (8.2).

\$ wget https://raw.githubusercontent.com/ goats-9/ee3900-assignments/main/filter/ codes/8_2_3.py

The codes can be run all at once by typing a small shell script

\$ for file in 8_2_*.py; do python \${file}; done

Fig. 8.2: Plot of h(n)

Fig. 8.2: Filter frequency response

8.3. What is the sampling frequency of the input signal?

Solution: Sampling frequency $f_s = 44.1$ kHZ.

8.4. What is type, order and cutoff frequency of the above Butterworth filter?

Solution: The given Butterworth filter is low pass with order 4 and cutoff frequency 4 kHz.

8.5. Modify the code with different input parameters and get the best possible output.

Solution: A better filtering was found on setting the order of the filter to be 7.

Fig. 8.2: Plot of y(n)