The Representation Technique Cryptanalysis for Dlog, SubsetSum, Decoding

Alexander May

Ruhr-University Bochum

Summer School Kaliningrad, July 2019

Discrete Logarithms

DLP: Discrete Logarithm Problem

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$, $\beta = g^x$

Find: $x = \mathrm{dlog}_{\mathbf{g}} \beta \in \mathbb{Z}_{|G|}$

Examples:

- $G = (\mathbb{Z}, +) = \langle 1 \rangle$, $x = \text{dlog}_1 \beta = \beta$
- $G=(E(\mathbb{F}_p),+)$, best algorithm $\tilde{\mathcal{O}}(\sqrt{|G|})=\tilde{\mathcal{O}}(2^{\frac{n}{2}}).$
- $G = (\mathbb{Z}_p^*, \cdot)$, best algorithm sub-exponential
- G generic: $\Omega(\sqrt{|G|})$

Variants: small x, small Hamming weight x, faulty x, many x

DLP Enumeration

Algorithm Brute-Force DLP

Input: g, β

- **2** While $(g^x \neq \beta)$ do x = x + 1;

Output: $x = dlog_g \beta$

Runtime:

- Need *x* iterations of while-loop, each costs one group operation.
- $\mathcal{O}(x) = \mathcal{O}(|G|) = \mathcal{O}(2^n)$ group operations.
- Each group operation usually costs $\mathcal{O}(\log^c n)$ bit operations.
- **Notice:** Brute-Force not so bad for small x.

Reaching Square Root Complexity

Idea:

- Write $x = x_1 + x_2 2^{n/2}$ with $0 \le x_1, x_2 < 2^{n/2}$.
- Use identity $g^{x_1} = \beta \cdot (g^{-2^{\frac{n}{2}}})^{x_2}$.

Algorithm Meet-in-the-Middle DLP

Input: g, β

- **①** For $0 \le i < 2^{n/2}$ do store (i, g^i) in list L.
- 2 Sort list L according to second entry.
- **§** For $0 \le j < 2^{n/2}$ do if $\exists (i, \beta \cdot (g^{-2^{\frac{n}{2}}})^j) \in L$, output $x = i + j2^{n/2}$.

Output: $x = d\log_{\alpha}\beta$

Correctness: MitM terminates iff $(i, j) = (x_1, x_2)$.

Run time: $\tilde{\mathcal{O}}(2^{\frac{n}{2}}) = \tilde{\mathcal{O}}(\sqrt{|G|})$. But also memory $\tilde{\Theta}(\sqrt{|G|})$.

Exercise: Modify MitM such that it has runtime $\tilde{\mathcal{O}}(\sqrt{x})$.

Multiple Discrete Logarithms

Multiple DLP

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$,

 $\beta_1 = g^{x_1}, \dots, \beta_k = g^{x_k}$

Find: x_1, \ldots, x_k

Easy: $\tilde{\mathcal{O}}(k \cdot \sqrt{|G|})$.

Exercise: Show that Multiple DLP can be solved in $\tilde{\mathcal{O}}(\sqrt{k \cdot |G|})$.

Small Weight Discrete Logarithms

Small weight DLP

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$,

 $\beta = g^x$ with known Hamming weight $\operatorname{wt}(x) = \alpha n$, $\alpha \in [0, 1]$

Find: x

Algorithm Brute-Force Small weight DLP

Input: g, β, α

1 For all x with $\operatorname{wt}(x) = \alpha n$ do if $(g^x = \beta)$ output x;

Output: $x = dlog_g \beta$

Run time: $\tilde{\mathcal{O}}(\binom{n}{\alpha n})$. How good is that?

Bounding Binomial Coefficients

Theorem Binomials

We have
$$\binom{n}{\alpha n} = \tilde{\Theta}(2^{H(\alpha)n})$$
 with $H(\alpha) = -\alpha \log(\alpha) - (1-\alpha) \log(1-\alpha)$.

By Stirling's formula $n! \sim \sqrt{2\pi n} \cdot (\frac{n}{e})^n$ we have

$$\begin{pmatrix} n \\ \alpha n \end{pmatrix} = \frac{n!}{(\alpha n)!((1-\alpha)n)!} = \tilde{\Theta}\left(\frac{(\frac{n}{e})^n}{(\frac{\alpha n}{e})^{\alpha n}(\frac{(1-\alpha)n}{e})^{(1-\alpha)n}}\right)$$

$$= \tilde{\Theta}\left(2^{(-\alpha\log\alpha - (1-\alpha)\log(1-\alpha))n}\right) = \tilde{\Theta}(2^{H(\alpha)n})$$

Corollary

For
$$0 \le \alpha \le \beta \le 1$$
: $\binom{\beta n}{\alpha n} = \binom{\beta n}{\alpha \frac{1}{\beta} \beta n} = \tilde{\Theta}(2^{H(\frac{\alpha}{\beta}) \cdot \beta n})$.

Small weight Discrete Logarithms

Brute-Force Small Weight DLP: $\tilde{\mathcal{O}}(\binom{n}{\alpha n}) = \tilde{\mathcal{O}}(2^{H(\alpha)n}), \ \alpha = \frac{1}{2} : \tilde{\mathcal{O}}(2^n).$

Exercise 1: Assume that we get the promise $x = x_1 + x_2 2^{n/2}$ with

$$0 \le x_1, x_2 < 2^{n/2} \text{ and } \operatorname{wt}(x_1) = \operatorname{wt}(x_2) = \alpha \cdot \frac{n}{2}.$$

Devise a MitM algorithm with run time $\tilde{\mathcal{O}}(2^{\frac{H(\alpha)}{2}n})$.

Exercise 2: Do Exercise 1 without promise.

Faulty Discrete Logarithms

Faulty DLP

Given: Generator g for $G = \langle g \rangle$ with $2^{n-1} \leq |G| < 2^n$,

 $\beta = g^x$, faulty \tilde{x} with αn , $\alpha \in [0,1]$ many $1 \to 0$ -flips of x

Find: x

Mini Exercise: Show how Faulty DLP relates to Small weight DLP.

Finding a function collision

Collision finding

Given: function $f: \{0,1\}^n \to \{0,1\}^n$ (with random properties)

Find: $x_1 \neq x_2$ with $f(x_1) = f(x_2)$

- $\Pr_{x_1 \neq x_2}(f(x_1) = f(x_2)) = \frac{1}{2^n}$
- Brute Force: Sample 2^n many pairs (x_1, x_2) .

Birthday Paradox – Meet in the Middle

Algorithm List Collision Finding

Input: $f: \{0,1\}^n \to \{0,1\}^n$

- **①** Compute list *L* with entries $(x_i, f(x_i))$ for $i = 1, ..., 2^{n/2} + 1$.
- ② Search for $(x_i, y), (x_j, y) \in L$ with $i \neq j$.

Output: Collision or \bot

Run time & Success probabilty:

- Run time $\tilde{\mathcal{O}}(2^{\frac{n}{2}})$ (but also the same memory).
- L does not contain a collision with probability

$$\prod_{i=0}^{2^{n/2}} \left(1 - \frac{i}{2^n} \right) \le \prod_{i=1}^{2^{n/2}} e^{-\frac{i}{2^n}} = e^{-\sum_{i=1}^{2^{n/2}} \frac{i}{2^n}} = e^{-\frac{2^{n/2}(2^{n/2}+1)}{2 \cdot 2^n}} \le e^{-\frac{1}{2}} \approx 0.6.$$

• Thus, we succeed with probability \approx 0.4.

Iterating a function

- Consider sequence: $x, f(x), f(f(x)), f(f(f(x))), \ldots$
- Let us use notation $f^i(x)$ for i applications.
- Let $\gamma, \lambda > 0$ be minimal with $f^{\gamma}(x) = f^{\gamma+\lambda}(x)$. Then

$$f^{\gamma+1}(x) = f^{\gamma+\lambda+1}(x), f^{\gamma+2}(x) = f^{\gamma+\lambda+2}(x), \dots$$

• By the argumentation before we expect that $\gamma + \lambda \approx 2^{\frac{n}{2}}$.

Cycle Finding

Algorithm Cycle Finding

Input: $f: \{0,1\}^n \to \{0,1\}^n$

- **1 Repeat** Choose start point $x \in \{0,1\}$ **until** $x \neq f(x)$.
- ② Set i = 1, $k_i = f(x)$, $k_{2i} = f(f(x))$.
- **3** While $k_i \neq k_{2i}$ do
 - \bullet $k_{i+1} = f(k_i), k_{2(i+1)} = f(f(k_{2i})).$ Set i = i + 1.
- **9** Set $\ell = 0$, $k_{\ell} = x$.
- **5** While $f(k_{\ell}) \neq f(k_{\ell+i})$ do $k_{\ell+1} = f(k_{\ell}), k_{\ell+i+1} = f(k_{\ell+i}), \ell = \ell+1.$

Output: $x_1 = k_{\ell}, x_2 = k_{\ell+i}$ with $f(x_1) = f(x_2)$ and $x_1 \neq x_2$

Cycle Finding

Correctness

- After the first while-loop we have $k_i = k_{2i}$.
- We already know that $k_j = k_{j+c\lambda}$, $c \in \mathbb{N}$ for all $j \geq \gamma$.
- We conclude that $i = k\lambda$.
- \bullet In the second loop we find the minimum γ for which

$$k_{\gamma}=k_{\gamma+k\lambda}.$$

• At termination we have $f(k_{\gamma-1}) = f(k_{\gamma+k\lambda-1})$ which implies

$$f(x_1) = f(k_{\gamma-1}) = k_{\gamma} = k_{\gamma+k\lambda} = f(k_{\gamma+k\lambda-1}) = f(x_2).$$

• Furthermore, $x_1 \neq x_2$ by minimality of γ .

Complexity

- Memory consumption $\tilde{\mathcal{O}}(1)$.
- After $\gamma + \lambda \approx 2^{\frac{n}{2}}$ we cycle. The cycle length is λ . (While-loop in 3)
- In total, we need $2(\gamma + \lambda) \approx 2^{\frac{n}{2}+1}$ iterations until termination.

Lecture 2 Small Memory Attacks 14 / 44

Two functions

Theorem Rho Method

In a function $f:\{0,1\}^n \to \{0,1\}^n$ we find a collision in time $\tilde{\mathcal{O}}(2^{\frac{n}{2}})$ with space $\tilde{\mathcal{O}}(1)$.

Two function collision finding

Given: functions $f_1: \{0,1\}^n \to \{0,1\}^n$, $f_2: \{0,1\}^n \to \{0,1\}^n$

(with random properties)

Find: x_1, x_2 with $f_1(x_1) = f_2(x_2)$

Theorem Rho Method

In two functions $f_1, f_2 : \{0,1\}^n \to \{0,1\}^n$ we find a collision in time $\tilde{\mathcal{O}}(2^{\frac{n}{2}})$ with space $\tilde{\mathcal{O}}(1)$.

Exercise: Adapt the previous method for two functions.

Rho Method for DLP

Representation of DLP: Define

$$f_1: \mathbb{Z}_{|G|} \to G, x \mapsto g^{x_1} \text{ and } f_2: \mathbb{Z}_{|G|} \to G, x_2 \mapsto \beta \cdot g^{-x_2}.$$

- Any collision (x_1, x_2) satisfies $g^{x_1} = \beta \cdot g^{-x_2}$.
- Thus, $x = x_1 + x_2 \mod \mathbb{Z}_{|G|}$ solves DLP.
- \bullet There exist $\mathbb{Z}_{|G|}$ many representations, respectively collisions.
- For solving DLP it suffices to find a *single* representation (x_1, x_2) .

Definition Representation

Let $x = x_1 + x_2$. Then (x_1, x_2) is called a *representation* of x.

Theorem Rho Method for DLP

DLP can be solved in any group G in time $\tilde{\mathcal{O}}(\sqrt{|G|})$ and memory $\tilde{\mathcal{O}}(1)$.

Exercise: Show an $\tilde{\mathcal{O}}(x^{\frac{3}{2}})$ -algorithm for small x-DLP with memory $\tilde{\mathcal{O}}(1)$.

Small Weight DPL with Low Memory

Promise:
$$x = x_1 + x_2 2^{n/2}$$
 with $0 \le x_i < 2^{n/2}$ and $\operatorname{wt}(x_i) = \alpha \cdot \frac{n}{2}$.

- Search space $S = \{x_i \in \mathbb{Z}_{2^{n/2}} \mid \operatorname{wt}(x_i) = \alpha \cdot \frac{n}{2}\}.$
- Therefore $|\mathcal{S}| = \binom{n/2}{\alpha \cdot n/2} = \tilde{\Theta}(2^{H(\alpha)n/2}).$
- Let $h: G \to \mathcal{S}$. Define $f_i: \mathcal{S} \to \mathcal{S}$ with

$$x_1 \mapsto h(g^{x_1}) \text{ and } x_2 \mapsto h(\beta \cdot g^{-x_2 2^{n/2}}).$$

Algorithm Folklore Low Weight DPL with Low Memory

Input: f_1, f_2, h

- Repeat
 - Find a random collision (x_1, x_2) in f_1, f_2
- **2** Until $g^{x_1} = \beta \cdot g^{-x_2 2^{n/2}}$

Output: $x = x_1 + x_2 2^{n/2}$

0.75 Algorithm

Run Time:

- Every iteration costs $\tilde{\mathcal{O}}(\sqrt{|\mathcal{S}|})$.
- Since $f_i: \mathcal{S} \to \mathcal{S}$, we expect $|\mathcal{S}|$ collisions.
- x has a unique representation as $x = x_1 + x_2 2^{\frac{n}{2}}$.
- Therefore only a single collisions (x_1, x_2) satisfies $g^{x_1} = \beta \cdot g^{-x_2 2^{n/2}}$.
- The probability that an iteration succeeds is thus

$$p = \Pr[(x_1, x_2) \text{ satisfies } g^{x_1} = \beta \cdot g^{-x_2}] = \frac{1}{|S|}.$$

• We obtain expected run time

$$p^{-1} \tilde{\mathcal{O}}(\sqrt{|S|}) = \tilde{\mathcal{O}}(|S|^{\frac{3}{2}}) = \tilde{\mathcal{O}}(2^{\frac{3}{4}H(\alpha)n})$$

• For $\alpha = \frac{1}{2}$ this is time $2^{\frac{3}{4}n}$ as opposed to $2^{\frac{1}{2}n}$ for Rho.

Improving a bit

Idea: Take the representation $x=x_1+x_2$ with $x_1,x_2\in\mathbb{Z}_{|G|}$ as in Rho.

- We choose $\operatorname{wt}(x_1) = \operatorname{wt}(x_2) = \frac{\alpha}{2}n$.
- Search space $S = \{x_i \in \mathbb{Z}_{|G|} \mid \operatorname{wt}(x_i) = \frac{\alpha}{2} \cdot n\}.$
- Therefore $|S| = \binom{n}{\alpha/2 \cdot n} = \tilde{\Theta}(2^{H(\alpha/2)n}).$
- Let $h: G \to \mathcal{S}$. Define $f_i: \mathcal{S} \to \mathcal{S}$ with

$$x_1 \mapsto h(g^{x_1}) \text{ and } x_2 \mapsto h(\beta \cdot g^{-x_2}).$$

Algorithm Improved Low Weight DPL with Low Memory

Input: f_1, f_2, h

- Repeat
 - Find a random collision (x_1, x_2) in f_1, f_2

Output:
$$x = x_1 + x_2 2^{n/2}$$

0.72 Algorithm

Run Time:

- Every iteration cost $\tilde{\mathcal{O}}(\sqrt{|S|})$.
- Since $f_i: \mathcal{S} \to \mathcal{S}$, we expect $|\mathcal{S}|$ collisions.
- x has $\binom{\alpha n}{\frac{\alpha}{2}n} = \tilde{\Theta}(2^{\alpha n})$ many representation as $x = x_1 + x_2$.
- All representations (x_1, x_2) satisfy $g^{x_1} = \beta \cdot g^{-x_2}$.
- The probability that an iteration succeeds is thus

$$p = \Pr[(x_1, x_2) \text{ satisfies } g^{x_1} = \beta \cdot g^{-x_2}] = \frac{\Theta(2^{\alpha n})}{|\mathcal{S}|}.$$

We obtain expected run time

$$p^{-1}\tilde{\mathcal{O}}\left(\sqrt{|S|}\right) = \tilde{\mathcal{O}}\left(\frac{|S|^{\frac{3}{2}}}{2^{\alpha n}}\right) = \tilde{\mathcal{O}}(2^{(\frac{3}{2}H(\alpha/2) - \alpha)n})$$

• For $\alpha = \frac{1}{2}$ this is time $2^{0.72n}$ as opposed to $2^{\frac{1}{2}n}$ for Rho.

Improving a bit more via carries

Idea: Take $\operatorname{wt}(x_1) = \operatorname{wt}(x_2) = \phi n \ge \frac{\alpha}{2} n$ such that $\operatorname{wt}(x_1 + x_2) = \alpha n$.

- Search space $S = \{x_i \in \mathbb{Z}_{|G|} \mid \operatorname{wt}(x_i) = \phi n\}.$
- Therefore $|S| = \binom{n}{\phi n} = \tilde{\Theta}(2^{H(\phi)n})$.
- Analysis: Take each 1-coordinate in x_1, x_2 with probability ϕ .

Analysis

- Define matrix *M* for Markov process.
- Process has a stationary distribution $\pi = (\pi_1, \dots, \pi_8)$ with $\pi = M\pi$.
- We solve the system of linear equations

$$\pi = M\pi, \ \pi_1 + \ldots + \pi_8 = 1, \ \pi_2 + \pi_3 + \pi_5 + \pi_8 = \alpha.$$

- Obtain $\alpha = 4\phi^4 4\phi^3 \phi^2 + 2\phi$. Check: $\phi = \frac{1}{2} \Rightarrow \alpha = \frac{1}{2}$.
- Number of representations (x_1, x_2) : heuristically $\frac{|S|^2}{\binom{n}{n}}$.
- This implies $p = \frac{|S|}{\binom{n}{n}}$ and run time

$$p^{-1}|\mathcal{S}|^{\frac{1}{2}} = \frac{\binom{n}{\alpha n}}{|\mathcal{S}|^{\frac{1}{2}}} = 2^{(H(\alpha) - \frac{1}{2}H(\phi))n}.$$

• $\alpha = \frac{1}{2}$: Complexity $2^{\frac{1}{2}n}$.

Parallel Collision Search

Theorem PCS

Given functions $f_0, \ldots, f_k : \{0,1\}^n \to \{0,1\}^n$. We find a collision between f_0 and all other f_1, \ldots, f_k in time $\tilde{\mathcal{O}}(\sqrt{k}2^{\frac{n}{2}})$ with space $\tilde{\mathcal{O}}(k)$.

Multiple Dlog

• Let $\beta_1=g^{x_1},\ldots,\beta_k=g^{x_k}.$ Define functions $\mathbb{Z}_{|G|} o G$ with

$$f_0: x_0 \mapsto g^{x_0} \text{ and } f_i: x_i \mapsto \beta_i \cdot g^{-x_i} \text{ for } i = 1, \dots, k.$$

- Collision (x_0, x_i) solves i^{th} dlog instance.
- Run time is $\tilde{\mathcal{O}}(\sqrt{k|G|})$ with space only $\tilde{\mathcal{O}}(k)$.

Subset Sum

Problem Subset Sum

Given: $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{Z}_{2^n}^n$, $t \in \mathbb{Z}_{2^n}$

Find: $\mathbf{e} = (e_1, ..., e_n) \in \{0, 1\}^n \text{ with } \sum_{i=1}^n e_i a_i = t \mod 2^n$

Cryptanalysis basics:

• Brute Force: $\tilde{\mathcal{O}}(2^n)$

• Meet-in-the-Middle: $\tilde{\mathcal{O}}(2^{\frac{n}{2}})$

• Questions: Low Memory Algorithms? Faster?

Exercise:

Express DLP as a subset sum problem in (G,\cdot) instead of $(\mathbb{Z}_{2^n},+)$.

Schroeppel-Shamir algorithm (1979)

Idea: Write
$$\sum_{i=1}^{\frac{n}{4}} e_i a_i + \sum_{i=\frac{n}{4}+1}^{\frac{1}{2}n} e_i a_i = t - \sum_{i=\frac{3}{4}n}^{\frac{1}{2}n} e_i a_i - \sum_{i=\frac{3}{4}n+1}^{n} e_i a_i$$
.

Algorithm 4-List algorithm

Input:

- Generate lists L_1, \ldots, L_4 with $L_1 = \{\sum_{i=1}^{\frac{n}{4}} e_i a_i \mid (e_1, \ldots, e_{\frac{n}{4}}) \in \{0, 1\}^{\frac{n}{4}}\}$, etc.
- 2 Repeat
 - $\bullet \quad \mathsf{Choose} \ r \in_R \mathbb{Z}_{2^{\frac{n}{4}}}.$
 - ② Compute $L_{12} = L_1 \bowtie_{\frac{n}{4}} L_2 := \{\sum_{i=1}^{\frac{n}{2}} e_i a_i \mid \sum_{i=1}^{\frac{n}{2}} e_i a_i = r \mod 2^{\frac{n}{4}} \}$ and $L_{34} = L_3 \bowtie_{\frac{n}{4}} L_4 := \{t \sum_{i=\frac{n}{2}+1}^n e_i a_i \mid t \sum_{i=\frac{n}{2}+1}^n e_i a_i = r \mod 2^{\frac{n}{4}} \}.$
 - **3** Compute $L = L_{12} \bowtie_n L_{34} := \{ \sum_{i=1}^n e_i a_i \mid \sum_{i=1}^n e_i a_i = t \mod 2^n \}$
- **3** Until $|L| \neq \emptyset$

Output: e from L

Analysis Shamir-Shroeppel

Correctness (Termination):

- Let **e** be a subset sum solution. Let $r = \sum_{i=1}^{n/2} e_i a_i \mod 2^{n/4}$.
- Assume that we choose r in Step 2.2.
- Then our algorithm terminates with output e.

Run time:

- Each iteration costs on expectation $\tilde{\mathcal{O}}(2^{n/4})$ time/memory.
- On expectation, it takes $2^{n/4}$ iterations for finding r.

Question: Is there a $\tilde{\mathcal{O}}(1)$ memory algorithm faster than brute-force?

Lecture 3 Subset Sum 26 / 44

0.75 Subset Sum

Idea: Use collision finding in $f_1, f_2: \{0,1\}^{\frac{n}{2}} \to \mathbb{Z}_{2^{\frac{n}{2}}}$ with

$$f_1:(e_1,\ldots,e_{n/2})\mapsto \sum_{i=1}^{n/2}e_ia_i \bmod 2^{n/2}$$
 and

$$f_2:(e_{n/2+1},\ldots,e_n)\mapsto t-\sum_{i=n/2+1}^n e_ia_i \bmod 2^{n/2}.$$

Algorithm Subset Sum with Low Memory

Input: f_1, f_2

- Repeat
 - Find a random collision (x_1, x_2) in f_1, f_2
- **2** Until $\sum_{i=1}^{n/2} e_i a_i = t \sum_{i=n/2+1}^n e_i a_i$

Output: e

Analysis

Run time:

- We have $f_i:\{0,1\}^{\frac{n}{2}} o \mathbb{Z}_{2^{\frac{n}{2}}}$ with search space size $|\mathcal{S}|=2^{\frac{n}{2}}.$
- We expect that f_1, f_2 have $|S| = 2^{\frac{n}{2}}$ many collisions.
- Since we uniquely represent e, only a single collision is good.
- Need on expectation $\tilde{\mathcal{O}}(2^{\frac{n}{2}})$ iteration with cost $\tilde{\mathcal{O}}(2^{\frac{n}{4}})$ each.

Exercise: Generalize to solutions **e** with $wt(e) = \alpha$.

0.72 Algorithm (Becker, Coron, Joux 2011)

Idea:

- Represent $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_2$ with $\mathbf{e}_1, \mathbf{e}_2 \in \{0, 1\}^n$, $\operatorname{wt}(\mathbf{e}_i) = \frac{n}{4}$.
- Let $S := \{ \mathbf{e}' \in \{0,1\}^n \mid \text{wt}(\mathbf{e}') = \frac{n}{4} \}$ with $|S| = \binom{n}{n/4} \approx 2^{0.811n}$.
- ullet Use collision finding in $f_1,f_2:\mathcal{S} o\mathbb{Z}_{|\mathcal{S}|}$ with

$$f_1: (e_1, \ldots, e_n) \mapsto \sum_{i=1}^n e_i a_i \bmod 2^{0.811n} \text{ and }$$

$$f_2:(e_1,\ldots,e_n)\mapsto t-\sum_{i=1}^n e_ia_i \bmod 2^{0.811n}.$$

Algorithm Subset Sum with Low Memory

Input: f_1, f_2

- Repeat
 - Find a random collision (x_1, x_2) in f_1, f_2
- **2 Until** $\sum_{i=1}^{n/2} e_i a_i = t \sum_{i=n/2+1}^n e_i a_i \mod 2^{0.811n}$

Output: e

Analysis

Run Time:

- \bullet There are $\binom{n/2}{n/4} = \tilde{\Theta}(2^{\frac{n}{2}})$ representations $\boldsymbol{e}.$
- Overall run time is

$$\tilde{\mathcal{O}}(|\mathcal{S}|) \cdot \frac{\binom{n/2}{n/4}}{|\mathcal{S}|} = \frac{|\mathcal{S}|^{\frac{3}{2}}}{\binom{n/2}{n/4}} = \tilde{\mathcal{O}}(2^{0.72n}).$$

Remarks:

Hash function h from DLP is now simply the ring homomorphism

$$\mathbb{Z}_{2^n} \to \mathbb{Z}_{2^{0.811n}}, \ x \bmod 2^n \mapsto x \bmod 2^{0.811.n}.$$

- Hence subset sum allows more (subgroup) structure than DLP.
- ullet Especially we can do a nested collision finding on the whole \mathbb{Z}_{2^n} .

Theorem Esser, May (2019)

Subset Sum can be solved in time $2^{0.65n}$ and space $\tilde{\mathcal{O}}(1)$.

Lecture 3 Subset Sum 30 / 44

Howgrave-Graham Joux (2010)

Idea:

- Represent $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_2$ with $\mathbf{e}_1, \mathbf{e}_2 \in \{0, 1\}^n$, $\operatorname{wt}(\mathbf{e}_i) = \frac{n}{4}$.
- Let $\mathcal{S}_1:=\{\mathbf{e}'\in\{0,1\}^n\mid \mathrm{wt}(\mathbf{e}')=\frac{n}{4}\}$ with $|\mathcal{S}|=\binom{n}{n/4}\approx 2^{0.811n}$.
- We have $R_1 = \binom{n/2}{n/4}$ representations of **e**. Then $\log R_1 \approx \frac{n}{2}$. Define

$$L_{1} = \left\{ \sum_{i=1}^{n} e_{i} a_{i} \mid \mathbf{e} \in \mathcal{S}, \sum_{i=1}^{n} e_{i} a_{i} = 0 \mod 2^{\frac{n}{2}} \right\},$$

$$L_{2} = \left\{ t - \sum_{i=1}^{n} e_{i} a_{i} \mid \mathbf{e} \in \mathcal{S}, \sum_{i=1}^{n} t - e_{i} a_{i} = 0 \mod 2^{\frac{n}{2}} \right\}.$$

- Then (on expectation) there exists a representation in $L_1 \times L_2$.
- We have $|L_1| = |L_2| = 2^{0.311n}$. Thus, we require at least time $2^{0.311n}$.
- **Observe:** Constructing L_1, L_2 is again a subset sum problem.

Getting below $2^{\frac{n}{2}}$.

Algorithm Subset Sum 1

Input: $a_1, ..., a_n, t$

- Construct L_1, L_2 with Schroeppel-Shamir.
- ② Construct $L = (L_1 \times L_2) \cap \{\mathbf{e}' = \mathbf{e}_1 + \mathbf{e}_2 \mid \mathbf{e}_i \in \mathcal{S}, \sum_{i=1}^n e_i a_i = t \mod 2^n\}.$

Output: $L \cap \{0,1\}^n$

Run Time:

- Step 1 runs in time $2^{0.406n}$.
- We expect

$$|L| = \frac{|L_1| \cdot |L_2|}{2^{\frac{n}{2}}} = 2^{0.122n}.$$

- We can construct L in time $\tilde{\mathcal{O}}(\max\{|L_1|,|L_2|,|L|\})=2^{0.311n}$.
- Therefore, we obtain total run time $2^{0.406n}$.

Idea: Construct L_1, L_2 recursively with algorithm Subset Sum 1.

One more iteration

- We show how to construct L_1 , L_2 is analogous. Recall that $L_1 = \left\{ \sum_{i=1}^n e_i a_i \mid \mathbf{e} \in \{0,1\}^n, \operatorname{wt}(\mathbf{e}) = \frac{n}{4}, \sum_{i=1}^n e_i a_i = 0 \bmod 2^{\frac{n}{2}} \right\}$.
- Represent $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_2$ with $\mathbf{e}_1, \mathbf{e}_2 \in \{0,1\}^n$, $\operatorname{wt}(\mathbf{e}_i) = \frac{n}{8}$.
- Let $\mathcal{S}_2:=\{\mathbf{e}'\in\{0,1\}^n\mid \mathrm{wt}(\mathbf{e}')=\frac{n}{8}\}$ with $|\mathcal{S}|=\binom{n}{n/8}\approx 2^{0.5435n}$.
- We have $R_2 = \binom{n/4}{n/8}$ representations of **e**. Then $\log_2 R \approx \frac{n}{4}$. Define

$$L_{11} = \left\{ \sum_{i=1}^n e_i a_i \mid \mathbf{e} \in \mathcal{S}_2, \sum_{i=1}^n e_i a_i = 0 \text{ mod } 2^{\frac{n}{4}} \right\}.$$

- Then (on expectation) there exists a representation in $L_{11} \times L_{11}$.
- We expect that $|L_{11}| = 2^{0.2935n}$.

Getting to $2^{0.337n}$

Algorithm Howgrave-Graham Joux (2010)

Input: a_1, \ldots, a_n, t

- Construct L_1, L_2 with Algorithm Subset Sum 1.
- 2 Construct

$$L = (L_1 \times L_2) \cap \{\mathbf{e}' = \mathbf{e}_1 + \mathbf{e}_2 \mid \mathbf{e}_i \in \mathcal{S}, \sum_{i=1}^n e_i a_i = t \bmod 2^n\}.$$

Output: $L \cap \{0,1\}^n$

Run Time:

• We expect
$$|L_1| = \frac{|L_{11}| \cdot |L_{11}|}{2^{\frac{n}{4}}} = 2^{2 \cdot 0.2935n - 0.25n} = 2^{0.337n}$$
.

Theorem Run Time of HGJ algorithm

HGJ solves subset sum instances in $2^{0.337n}$.

The Becker-Coron-Joux algorithm (2011)

Idea of the BCJ algorithm:

- Represent $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_2$ with $\mathbf{e}_i \in \{-1, 0, 1\}^n$.
- Advantage: Many more representations as in HGJ.
- Disadvantage: Also more sums that do not end up in $\{0,1\}^n$.

Theorem Becker-Coron-Joux (2011)

BCJ solves subset sum in $2^{0.291n}$.

Theorem Esser, May (2019)

Subset Sum can be solved in $2^{0.255n}$.

- See https://arxiv.org/abs/1907.04295.
- Technique: Sampling instead of enumeration.