

TESTBENCH PARA FPGA

AGENDA

- Introducción sobre microelectrónica
- Niveles de abstracción
- Flujo de diseño
- Síntesis
- Simulación
- VHDL Testbench
- FPGA
- Uso de ISE

CIRCUITOS INTEGRADOS

CIRCUITOS INTEGRADOS

Figure 2.11. The composite layout and the resulting cross-sectional view of the chip, showing one nMOS and one pMOS transistor (in the n-well), and the polysilicon and metal interconnections. The final step is to deposit the passivation layer (for protection) over the chip, except over wire-bonding pad areas. After Atlas of IC Technologies, by W. Maly [1].

CIRCUITOS INTEGRADOS

Powered by DITradescom

NIVELES DE ABSTRACCIÓN

BARRERA DE ABSTRACCIÓN

NIVELES DE ABSTRACCIÓN

Diseño HDL

BARRERA DE ABSTRACCIÓN

IBM 65nm

UMC 130nm

45nm

FLUJO DE DISEÑO

NIVELES DE ABSTRACCIÓN

NIVELES DE ABSTRACCIÓN

Behavioral

RTL

Structural

SÍNTESIS

Basada en circuito esquemático

Basada en HDL

Testbench simple

Testbench sofisticado

Únicamente envia datos en forma de estímulos al circuito bajo prueba, no existe interacción

Modela el entorno que lo rodea conversando contínuamente con el circuito bajo prueba.

Posibilidad de autochekeo

Feature List

Test List

VHDL TESTBENCH

Sentencia 'AFTER': Inserta un retardo de tiempo finito a la sentencia anterior

```
-- Please ensure that the constant SIM_TIME is defined prior to the
-- begin statement in the architecture. Refer to the SIM_TIME Constant Template
-- for more info.

<signal_name> <= <signal_value> after SIM_TIME;
```

En este caso la asignación de signal_value a signal_name se llevará a cabo luego que pase el tiempo SIM_TIME

VHDL TESTBENCH

Sentencia 'WAIT': Espera a que ocurra un evento determinado, luego que este evento ocurre la ejecución del testbench continúa con la siguiente sentencia.

```
wait on <signal_name>;

wait until <signal_name> = <value>;

wait for SIM TIME;
```

En este caso el primer wait esperará a que ocurra cualquier evento, es decir cualquier cambio de valor de la señal signal_name, luego que ocurra este evento el testbench puede proseguir con la siguiente sentencia.

El segundo wait opera de la misma manera pero en este caso esperará a que signal_name tenga el valor value.

El tercer wait simplemente espera la cantidad de tiempo indicada antes de seguir con la siguiente sentencia.

VHDL TESTBENCH

Generación de señal de clock: Existen varias formas de generar señales de clock. Aquí se muestran dos de ellas, la primera es concurrente y la segunda es secuencial.

```
1    CLK <= not(CLK) after PERIOD/2;
2
3    CLK <= '0';
4    wait for PERIOD/2;
5    CLK <= '1';
6    wait for PERIOD/2;</pre>
```


Interconección entre celdas lógicas

Interconección entre celdas lógicas en el Spartan 6 de Xilinx

CLB: Configurable Logic Block del Spartan 6 de Xilinx

Feature	SLICEX	SLICEL	SLICEM	
6-Input LUTs	√	V	√	
8 Flip-flops	√	V	√	
Wide Multiplexers		V	√	
Carry Logic		√	√	
Distributed RAM			√	
Shift Registers			√	

3 tipos de Slices en el Spartan 6 de Xilinx

Slice del tipo SLICEX del Spartan 6 de Xilinx

CPLD vs FPGA

FPGA Comparison Table

	Spartan-6	Artix-7	Kintex-7	Virtex-7	Kintex UltraScale	Virtex UltraScale
Logic Cells	147,443	215,360	477,760	1,954,560	1,160,880	4,432,680
BlockRAM	4.8Mb	13Mb	34Mb	68Mb	76Mb	132.9Mb
DSP Slices	180	740	1,920	3,600	5,520	2,880
DSP Performance (symmetric FIR)	140GMACs	930GMACs	2,845GMACs	5,335GMACs	8,180 GMACs	4,268 GMACs
Transceiver Count	8	16	32	96	64	120
Transceiver Speed	3.2 Gb/s	6.6 Gb/s	12.5 Gb/s	28.05 Gb/s	16.3 Gb/s	32.75 Gb/s
Total Transceiver Bandwidth (full duplex)	50 Gb/s	211 Gb/s	800 Gb/s	2,784 Gb/s	2,086 Gb/s	5,886 Gb/s
Memory Interface (DDR3)	800	1,066	1,866	1,866	2,400	2,400
PCI Express® Interface	x1 Gen1	x4 Gen2	x8 Gen2	x8 Gen3	x8 Gen3	x8 Gen3
Analog Mixed Signal (AMS)/XADC	-	XADC	XADC	XADC	System Monitor	System Monitor
Configuration AES	Yes	Yes	Yes	Yes	Yes	Yes
VO Pins	576	500	500	1,200	832	1,456
I/O Voltage	1.2V - 3.3V	1.2V – 3.3V	1.2V – 3.3V	1.2V – 3.3V	1.0 – 3.3V	1.0 – 3.3V

Please refer to the device data sheets for the latest product information.

[計畫] 海拔指 一 引作场 由于通过接往 美国海洋 经进行 经证明

