Pract 8.7 General RC Circuit (PP 282 8th Ed HRD)

Determine
$$U_c(t)$$
 for $t > 0$ if $U_c(0) = 11 \text{ volts}$.

 $U_c(0) = 11 \text{ volts}$.

 $U_c(0) = 11 \text{ volts}$.

 $U_c(0) = 11 \text{ volts}$.

Solution: The crimit is identified as a source-free RC cicit.

where
$$\gamma = \text{Reg Ceg}$$

_ To calculate Req?

_ writing KCL at node VT:

Also
$$V_1 = (1 - 1.50_1) \times 2$$
 (kCL at top node)

 $U_1 = 2 - 3U_1$
 $U_1 = 2$
 $U_1 = 0.5$

Putting in (1)

 $V_7 + 0.5 \times 0.5 = 1$
 $V_7 = 0.75$

Here $V_7 = 0.75 = 0.75 = 0.75 = 0.75$
 $V_7 = 0.75 = 0.75 = 0.75 = 0.75 = 0.75 = 0.75$

Thus $V_7 = 0.75 = 0$

Note: NOW voltage across 2.0 and 1.0 can be found by voltage division rule.

So $V_1(t) = \frac{2}{3} \times 11e^{-\frac{2}{3}} \times 10^3 t$ and $V_2(t) = \frac{1}{3} \times 11e^{-\frac{2}{3}} \times 10^3 t$