5. Analyse de cause et corrélation des données des jobs

Les données disponibles sont :

- Le volume de transactions (KPI) sommé par minutes
- Logs applicatifs (messages textuels semi-structurés) du moteur de traitement des transactions
- Mesures de performance d'utilisation du réseau

5.1 Importer les données

```
KPI:
Créer l'index avec le bon mapping
PUT /it_ops_kpi
{
    "settings" : {
        "number_of_shards" : 1,
        "number_of_replicas" : 1
    },
    "mappings": {
        "doc" : {
        "properties" : {
            "type" : "date",
            "format": "epoch_millis"
        }
}    } }
}
```

Puis importer les données:

```
curl -X POST -H "Content-Type: application/json"
http://localhost:9200/it ops kpi/ bulk --data-binary "@it ops app logs.json"
```

Traces du moteur

```
"format": "epoch millis"
         }
} } }
Importer les données avec :
curl -X POST -H "Content-Type: application/json"
http://localhost:9200/it ops app/ bulk --data-binary "@it ops app logs.json"
Réseau
Créer l'index pour les données réseau :
PUT /it ops network
{
  "settings" : {
    "number of shards" : 1,
    "number of replicas" : 1
  },
  "mappings": {
      "doc" : {
       "properties" : {
         "@timestamp" : {
           "type" : "date",
           "format": "epoch millis"
} } }
Puis:
curl -X POST -H "Content-Type: application/json"
http://localhost:9200/it ops app/ bulk --data-binary "@it ops app logs.json"
```

5.2 Jobs ML

Créer 3 jobs :

- Détection d'anomalie sur des nombre de transactions faibles
- Anomalie sur le décompte des messages de traces catégorisés
- Anomalies sur les performances réseau (moyennes sur les métriques)

Utiliser un bucket span de 15m et des influenceurs partagés (hostname, physical host)

5.3 Corrélation des analyses

Identifier la compagnie aérienne responsable de l'anomalie