Fourier Synthese

Durchführung: 22.10.2019 Abgabe: 29.10.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3	
2	Fourier-Zerlegung der Funktion sin(x)		
	2.1 Berechnung der Integrale	. 3	
	2.2 Wertetabelle für die Koeffizienten	. 4	
	2.3 Plot	. 5	
3	Fourier-Zerlegung der Funktion f(x)=x	5	
	3.1 Berechnung der Integrale		
	3.2 Wertetabelle für die Koeffizienten	. 6	
	3.3 Plot	. 7	

1 Theorie

Jede periodische Funktion läßt sich in eine Reihe aus sin- und cos-Termen entwickeln (Fourierreihe)

$$f(t) = \sum_{i=0}^{\infty} (A_k \cdot cos(\omega_k t) + B_k \cdot sin(\omega_k t)) \tag{1}$$

mit

$$\omega_k = \frac{2\pi k}{T} \tag{2}$$

2 Fourier-Zerlegung der Funktion |sin(x)|

2.1 Berechnung der Integrale

Im folgenden soll die Funktion f(x) = |sin(x)| mit einer Fourierreihe angenähert werden. Die Koeffizienten sind definiert als

$$A_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{3}$$

$$B_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cdot \sin(\omega_k \cdot t) \, \mathrm{d}t \tag{4}$$

Die Funktion |sin(x)| erfüllt die Eigenschaft f(-x) = f(x) und ist somit eine gerade Funktion. Somit ist unser $B_k = 0$. Zunächst wählen wir $T = 2\pi$. Daraus folgt für A_k

$$A_k = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin(t)| \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{5}$$

Die Funktion |sin(x)| ist π -periodisch und hat bei x=0 eine Nullstelle. Wir integrieren nun über eine, statt wie zuvor über zwei Perioden. Es gilt $\int_{-\pi}^0 f(x) \, \mathrm{d}x = \int_0^\pi f(x) \, \mathrm{d}x$ erhalten wir zusätlich einen Faktor 2

$$A_k = \frac{2}{\pi} \int_0^{\pi} |\sin(t)| \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{6}$$

Es gilt |sin(x)| = sin(x) im Intervall $I = [0, \pi]$, so können wir unser Integral vereinfachen

$$A_k = \frac{2}{\pi} \int_0^{\pi} \sin(t) \cdot \cos(\omega_k \cdot t) \, \mathrm{d}t \tag{7}$$

$$\Rightarrow A_k = \frac{2}{\pi} \left[\frac{\cos((\omega_k - 1)t)}{2(w - 1)} - \frac{\cos((\omega_k + 1)t)}{2(\omega_k^2 + 1)} \right]_0^{\pi} \tag{8}$$

mit $\omega_k = k$ (2) und Grenzen eingesetzt erhalten wir

$$A_k = \frac{2}{\pi} \left(\frac{\cos(2k\pi - \pi)}{4k - 2} - \frac{\cos(2k\pi + \pi)}{4k + 2} - \frac{\cos(0)}{4k - 2} + \frac{\cos(0)}{4k + 2} \right) \tag{9}$$

$$\Leftrightarrow A_k = \frac{2}{\pi} \left(\frac{-1}{4k-2} + \frac{1}{4k+2} - \frac{1}{4k-2} + \frac{1}{4k+2} \right) \tag{10}$$

$$\Leftrightarrow A_k = \frac{2}{\pi} \left(\frac{-8}{(4k-2)(4k+2)} \right) \tag{11}$$

$$\Leftrightarrow A_k = \frac{4}{-4k^2\pi + \pi} \tag{12}$$

2.2 Wertetabelle für die Koeffizienten

Für das online-Experiment werden 17 Koeffizienten benötigt um die Regler einzustellen

\overline{k}	A_k
0	1.27323954e+00
1	-4.24413182e-01
2	-8.48826363e -02
3	-3.63782727e-02
4	-2.02101515e-02
5	-1.28610055e-02
6	-8.90377304e-03
7	-6.52943356e-03
8	-4.99309625e-03
9	-3.94191810e-03
10	-3.19107655e-03
11	-2.63610672e-03
12	-2.21432964e-03
13	-1.88628081e-03
14	-1.62610414e-03
15	-1.41628425e -03
16	-1.24461344e-03
17	-1.10237190e-03

2.3 Plot

Wir erhalten folgenden Plot

Abbildung 1: Fouriersynthese von |sin(x)|. (Quelle: www.j-berkemeier.de)

3 Fourier-Zerlegung der Funktion f(x)=x

3.1 Berechnung der Integrale

Im folgenden soll die Funktion f(x)=|x| für $-\pi < x < \pi$ mit einer Fourierreihe angenähert werden. Die Koeffizienten sind definiert als

$$A_{k} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(\omega_{k} t) dt$$
 (13)

$$B_{k} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(\omega_{k} t) dt$$
 (14)

Zunächst wird der Koeffizient A_k berechnet, dafür $t - \pi < t < \pi$ gilt, ist $T = 2\pi$

$$A_k = \frac{1}{\pi} \int_{-\pi}^{\pi} t \cos(\omega_k t) dt \tag{15}$$

Durch eine partielle Integration ergibt sich für A_k

$$A_k = \frac{1}{\pi} \left[\frac{\sin(\omega_k t)}{\omega_k} + \frac{\cos(\omega_k t)}{\omega_k^2} \right]_{-\pi}^{\pi}$$
 (16)

Nach einsetzten der Grenzen ergibt sich für ${\cal A}_k$

$$A_k = \frac{2\sin(\pi k)}{\omega_k} = 0 \tag{17}$$

Nun zu ${\cal B}_k$

$$B_k = \frac{1}{\pi} \int_{-\pi}^{\pi} t \sin(\omega_k t) dt \tag{18}$$

Durch eine partielle Integration ergibt sich für ${\cal B}_k$

$$B_k = \frac{1}{\pi} \left[\frac{-t\cos(\omega_k t)}{\omega} + \frac{\sin(\omega_k t)}{\omega_k^2} \right]_{-\pi}^{\pi}$$
(19)

Nach einsetzten der Grenzen fällt die sinus Funktion und für ${\cal B}_k$ ergibt sich

$$B_k = \frac{-2(-1)^k}{k} \tag{20}$$

3.2 Wertetabelle für die Koeffizienten

Damit ergeben sich folgende Werte für den Koeffizien
t ${\cal B}_k$

k	A_k
0	0
1	-1.0
2	0.6666666666666666
3	-0.5
4	0.4
5	-0.33333333333333333
6	0.2857142857142857
7	-0.25
8	0.2222222222222222
9	-0.2
10	0.18181818181818182
11	-0.1666666666666666
12	0.15384615384615385
13	-0.14285714285714285
14	0.1333333333333333333333333333333333333
15	-0.125
16	0.11764705882352941
17	0.11111111111111111

3.3 Plot

Abbildung 2: Die Funktion mit eingesetzten Koeffizienten auf der Website