ABE 460 Review Session Exam #1

Wilfong

ABE 460 Exam #1 Overview

- Wednesday October 17th, in class
- Closed Book and Notes; you may have a calculator
- 50 minutes
- Will provide difficult equations from the chapters, and any required charts/tables.
 - Laplace Transforms
 - Except basic differential equations to transfer function conversions
 - Second order step response
 - Time
 - Table of physical system equations

Chapter 1: Introduction

- Basic Control System Blocks
 - Review the general layout of a feedback control system and the common blocks.
- Common Types of Controllers
 - Microcontroller
 - PLC
 - Application Specific

Chapter 1: Introduction

- Basic Control System Blocks
 - Review the general layout of a feedback control system and the common blocks.

Chapter 2: Modeling Dynamic Systems

- Write the equations of motion for common physical systems (Differential equations)
 - Mechanical (Translational and Rotational)
 - Electrical
 - Hydraulic
 - Liquid Level
- Block Diagram Reduction
- Linearization

Chapter 3: Analysis Methods for Dynamic Systems

- Differential Equations
 - 1st and 2nd order step input responses
 - Generalized characteristics
- Laplace Transforms
 - Transfer functions
 - Characteristic Equation and Response Types
- Frequency Response Plots (Bode Plots)
 - Construction and Deconstruction
 - General Characteristics

Chapter 4: Analog Control System Performance

- Open loop versus Closed loop
 - Command and Disturbance Inputs
 - Steady State Errors from both
 - Transient response (stability)

For this exam you should be able to:

- Describe the basic components of a control system
- Organize and simplify control systems using block diagrams
- Model simple dynamic systems and processes (i.e. differential equations)
- Linearize non-linear systems and designate a valid linear region
- Develop transfer functions from the differential equations using Laplace transforms
- Describe and analyze step responses to first and second order systems
- Describe the system response in terms of the system poles (roots of the characteristic equation—denominator of the system transfer function)
- Identify the basic "factors" used in constructing/deconstructing Bode (frequency response) plots.
- Construct a Bode (frequency response) plot from a transfer function.
- Construct a transfer function from a Bode (frequency response) plot.
- Find the steady state errors resulting from command and/or disturbance inputs.