Paralelní a distribuované algoritmy Mesh Multiplication

Autor: Dominik Švač (xsvacd00)

1. Popis algoritmu

Mesh Multiplication je paralelný algoritmus na násobenie matíc. Využíva sa $n \times m$ procesorov, pričom n sú riadky výslednej matice a m sú stĺpce výslednej matice. Každý proces sa stará o jednu hodnotu výsledku. Procesory sú mriežkovito poprepájané, ako je to znázornené na nasledujúcom obrázku 1. Prvky prvej matice A vchádzajú do mriežky z ľava do prava. Prvky druhej matice B vchádzajú do mriežky z hora dole. Prvky niesú privádzané súčastne, ale sú vždy o jedno miesto posunuté. Každý procesor obashuje jeden register C, ktorý na začiatku má hodnotu 0. Ak procesor obdrží obe hodnoty (z matice A aj B) tak ich vynásobí a výsledok pripočíta z registru C. Hodnotu z matice A pošle procesoru, ktorý je na pravo od neho a hodnotu z matice B pošle procesoru, ktorý je na dol od neho.

2. Rozbor a analýza algoritmu

Počet procesorov potrebných na výpočet tohto algoritmu závisí od výslednej matice. Priestorová zložitosť p(n) je:

$$p(n)=O\!\left(n^2\right)$$

Prvky a_{m1} a b_{1k} potrebujú m+k+n-2 krokov, aby sa dostali k poslednému procesoru p(m,k) Časová zložitosť t(n) algoritmu je lineárna.

$$t(n) = O(n)$$

Výsledná cena c(n) je tak daná:

$$c(n) = t(n) \times p(n) = O(n^3)$$

3. Implementácia

Algoritmus bol implementovaný v jazyku C++ s knižnicou *Open MPI*. Program načítava dva súbory, *mat1*, ktorý obsahuje hodnoty prvej matice a *mat2* s hodnotami druhej matice. Na začiatku si každý procesor vypočíta veľkosť matíc a následne z toho svoj index i a j vo výslednej matici. Procesory, ktoré majú index i rovný nule, načítajú z prvej matice postupne riadok i. Následne čakajú na správu od procesu p(i,j-1). Procesory, ktoré majú index j rovný nule, načítajú z prvej matice postupne stĺpec j. Následne čakajú na správu od procesu p(i-1,j). Ostatné procesory p(i,j) čakajú na obe správy, od procesorov p(i,j-1) a p(i-1,j). Každý procesor po obdržaní oboch hodnôt pripočíta k svojej premennej *registerC* hodnotu *(a*b)*, pričom *a* je hodnota od p(i,j-1) a *b* je hodnota od p(i-1,j). Hodnoty, ktoré procesor obdŕžal pošle ďalej procesorom, hodnotu *a* pošle procesoru p(i,j+1) a hodnotu *b* pošle procesoru p(i+1,j). Po poslaní všetkých hodnôt má každý procesor v svojej premennej *registerC* výslednú hodnotu matice. Následne každý procesor pošle prvému procesoru svoju vypočítanú hodnotu, aby mohol prvý proces všetky výsledky vypísať.

4. Komunikačný protokol

Procesory v tomto algoritme komunikujú pomocou správ. Posielajú si tak hodnoty matíc. Každý procesor p(i,j) posiela hodnoty matíc procesorom p(i+1,j) a p(i,j+). Detailnejšie je komunikácia popísaná v nasledujúcom sekvenčnom diagrame.

5. Experimenty

Nasledujúca tabuľka zobrazuje jednotlivé merania, z ktorých sa následne vytvoril graf. Nasledujúce hodnoty sú v mikrosekundách (μs).

Počet procesorov	4	6	9	12	16
Meranie číslo 1	1744,46	2118,02	2007,33	1859,62	3694,42
Meranie číslo 2	1483,92	1595,3	2162,86	2186,04	2875,91
Meranie číslo 3	1455,68	1724,06	2465,57	1970,2	3958,23
Meranie číslo 4	1307,04	2182,55	1879,02	2112,35	4132,82
Meranie číslo 5	1432,37	1714,2	2169,89	2479,49	3492,58
Meranie číslo 6	1352,66	1884,65	1629,62	2393,7	3468,58
Meranie číslo 7	1327	1717,02	2111,35	2521	2728,64
Meranie číslo 8	1541,48	1697,18	2298,27	2130,78	3273,73
Meranie číslo 9	1303,86	1898,4	2416,7	2326,69	3469,22
Meranie číslo 10	1279,14	1898,73	2098,53	2384,89	3129,19
Meranie číslo 11	1561,58	2286,76	2136,35	2810,14	2856,68
Meranie číslo 12	1387,87	1866,88	2189,01	1832,91	3305,13
Meranie číslo 13	1243,36	1938,9	1923,12	2515,48	3016,97
Meranie číslo 14	1434,39	2389,94	1667,6	2380,46	2458,34
Meranie číslo 15	1362,42	2218,8	2107,02	2000,56	3232,29
Priemer	1414,482	1942,093	2084,149	2260,287	3272,849

6. Záver

Graf sa mierne líši od skutočnosti. Teoretická časová zložitosť by mala byť lieárna. Algoritmus bol testovaný na školskom servery merlin.

7. Referencie

[1] Two matrices multiplication using Mesh Algorithm | Download Scientific Diagram. ResearchGate | Find and share research [online]. Copyright © 2008 [cit. 19.04.2021]. Dostupné z: https://www.researchgate.net/figure/Two-matrices-multiplication-using-Mesh-Algorithm fig2 321257451