

- E-mail: bkurkcu@cs.hacettepe.edu.tr
- Office: Comp. Engineering Building Room Z08
- Office hour: No prescheduled office hours, but feel free to set an an appointment
- Attendence (%70): will be taken via zoom.

Grading:

Project+Homeworks	60%
Final exam	40%

• Ref Book:

Veysel Gazi, Kevin Passino, Swarm Stability and Optimization, Springer, 1st Ed., 2012, ISBN: 978-3-642-18040-8.

Schedule (Tentative)

Week	Topic
1	Course Introduction and Mathematical Groundwork
2	Mathematical Groundwork (Continued)
3	Mathematical Groundwork (Continued)
4	Continuous time swarm coordination and control algorithms
5	Swarms of single integrator agents
6	Aggregation, formation control and tracking
7	Fully actuated agents and model uncertainty
8	Formation control with potential functions
9	Path Planning Algoritms
10	Path Planning Algoritms (Continued)
11	Swarm based optimization methods
12	Particle swarm optimization (PSO)
13	Ant Colony Optimization (ACO)
14	Genetic Algorithm (GA)

Swarm Systems

- Definition: A set of agents possessing independent individual dynamics but exhibit intimately coupled behaviours and collectively performing some tasks.
 - Biological swarms
 - Ants
 - Bees
 - Pack of wolfs
 - Engineering
 - Dancing Quadrotors
 - Collective missile strikes
 - Satallites
 - UGV,UAV,AUV(UUV) group

Biological Swarms

Food searcing

Path finding

Attack/Defence Mech.

Carrying an object

Communications:

Chemical, via environment, signals (waggle dance of a bee)

Engineering Swarms

Monitoring

Searching

Cleaning mines

Mapping

Cultivating

Swarm Components

Generic Swarm Perspective

- Define agents
 - UAV,UGV,UUV or a collection of those, Software agents, Missiles, Satallites
 - Motion Dynamics (fast, slow) with limits
- Define sensory capabilities
 - Cameras, IMU as Position, velocity, acceleration, bandwith, noise etc.
- Define processing ability
 - DSP, FPGA etc
- Define communication
 - Direct communication or via environment (by manipulating)
 - Ad-hoc wireless network
- Define actuator/sensor limitations

Some Remarks

- One can see a dynamic swarm system as a set of communicating agents which work collectively to solve a task
- Centrol control becomes ineffective as the number of elements of the swarm increases
 - Robustness issue
 - Computation capacity
- Advantages of Swarm with respect to single robot
 - More-Flexible: re-adjustable, reorganizable
 - Parallel operation
 - Fault tolerant

Goal

- Need to have stable agents
 - Lyapunov, small gain, hurwithz
- Modelling and analysis of a swarm system
 - Individual based (Lagrangian)
 - Continuum (Euler)
- Coordination and control of a swarm system