4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 2

1. Berechne (* freiwillig)

a)
$$\int \frac{2x+1}{x^2+x+3} dx =$$
 b) $\int \frac{x+1}{x^2+2x} dx =$

b)
$$\int \frac{x+1}{x^2+2x} dx =$$

c)
$$\int \frac{x^2 + 2x - 3}{x - 2} dx =$$
 d) $\int \frac{x + 1}{x^2 + 1} dx =$

$$\mathrm{d} \int \frac{x+1}{x^2+1} \, \mathrm{d} x =$$

$$e) \int \frac{\mathrm{d}x}{4x^2 + 9} =$$

e)
$$\int \frac{dx}{4x^2 + 9} =$$
 f) $\int \frac{dx}{x^2 - 2x + 2} =$

g)
$$\int \frac{3 \, dx}{4x^2 + 4x + 10}$$

g)
$$\int \frac{3 dx}{4x^2 + 4x + 10} =$$
 h)* $\int \frac{dx}{(x-1)(x+3)} = (\text{Ansatz: } \frac{A}{x-1} + \frac{B}{x+3})$

2. Lösungen in zufälliger Reihenfolge ©

- I) $\arctan(x-1)+k$
- II) $\ln |x^2 + x + 3| + k$
- III) $\frac{1}{2} \ln |x^2 + 1| + \arctan x + k$
- IV) $\frac{1}{2} \ln |x^2 + 2x| + k$
- V) $\frac{1}{2}\arctan(\frac{2}{3}x+\frac{1}{2})$
- VI) $\frac{x^2}{2} + 4x + 3 \ln|x 2| + k$
- VII) $\frac{1}{6} \arctan \frac{2x}{2} + k$
- h) $\frac{1}{4} \ln \left| \frac{x-1}{x+3} \right|$

4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 2

1. Berechne (* freiwillig)

a)
$$\int \frac{2x+1}{x^2+x+3} dx =$$
 b) $\int \frac{x+1}{x^2+2x} dx =$

$$b) \int \frac{x+1}{x^2+2x} \, \mathrm{d}x =$$

c)
$$\int \frac{x^2 + 2x - 3}{x - 2} dx =$$
 d) $\int \frac{x + 1}{x^2 + 1} dx =$

$$\mathrm{d} \int \frac{x+1}{x^2+1} \, \mathrm{d} x =$$

$$e) \int \frac{\mathrm{d}x}{4x^2 + 9} =$$

e)
$$\int \frac{dx}{4x^2 + 9} =$$
 f) $\int \frac{dx}{x^2 - 2x + 2} =$

g)
$$\int \frac{3 \, dx}{4x^2 + 4x + 10}$$

g)
$$\int \frac{3 dx}{4x^2 + 4x + 10} =$$
 h)* $\int \frac{dx}{(x-1)(x+3)} = (Ansatz: \frac{A}{x-1} + \frac{B}{x+3})$

2. Lösungen in zufälliger Reihenfolge ©

- I) $\arctan(x-1)+k$
- II) $\ln |x^2 + x + 3| + k$
- III) $\frac{1}{2} \ln |x^2 + 1| + \arctan x + k$
- IV) $\frac{1}{2} \ln |x^2 + 2x| + k$
- V) $\frac{1}{2}\arctan(\frac{2}{3}x+\frac{1}{2})$
- VI) $\frac{x^2}{2} + 4x + 3 \ln|x 2| + k$
- VII) $\frac{1}{6} \arctan \frac{2x}{2} + k$
- h) $\frac{1}{4} \ln \left| \frac{x-1}{x+3} \right|$