Correction du TP

% Capacités exigibles

- Décalage temporel/Déphasage à l'aide d'un oscilloscope numérique.
- Reconnaître une avance ou un retard.
- Passer d'un décalage temporel à un déphasage et inversement.
- Mettre en œuvre un dispositif expérimental illustrant l'utilité des fonctions de transfert pour un système linéaire à un ou plusieurs étages.
- Agir sur un signal électrique à l'aide des fonctions simples suivantes : filtrage

${f I} \mid {f Objectifs}$

- ♦ Apprendre à utiliser un dBmètre.
- ♦ Apprendre à déterminer rapidement une fréquence de coupure.
- ♦ Apprendre à mesurer un déphasage à l'oscilloscope.
- ♦ Apprendre à tracer un diagramme de Bode sur papier semi-log et papier millimétré.

${f II}\ |\ {f S'approprier}$

Méthode pour mesurer un déphasage – rappel de cours

Rappel mesure de déphasage

Supposons $e(t) = E_m \cos(\omega t)$ sur la voie Y_1 et $s(t) = S_m \cos(\omega t + \varphi)$ sur la voie Y_2 de l'oscillogramme ci-contre. Le déphasage φ entre deux signaux est un nombre appartenant à l'intervalle $[-\pi; \pi]$. Il se mesure grâce à l'oscilloscope.

- 1) **Déterminer** $|\Delta \varphi_{s/e}|$: pour cela, il faut placer les curseurs verticaux de manière à déterminer le décalage temporel Δt , puis $|\Delta \varphi_{s/e}| = \omega |\Delta t|$ (en rad).
- 2) **Déterminer le signe de** $\Delta \varphi_{s/e}$: pour cela, on cherche quelle courbe est en avance sur l'autre. Sur l'oscillogramme ci-contre, s est en retard sur e puis-qu'il s'annule après e: on en déduit $\Delta \varphi_{s/e} < 0$.

FIGURE TP13.1 – Déphasage

II/B Méthode pour mesurer un gain en dB

Le gain se mesure grâce à un multimètre.

Expérience TP13.1 : Mesure de gain

- 1) Appuyez sur la fonction Volt alternatif (symbole $\boxed{V}\sim$), **puis** dBmètre (bouton \boxed{dB}) pour activer la fonction dBmètre;
- 2) Brancher le multimètre sur l'entrée e(t) du montage;
- 3) Appuyer sur $\boxed{\mathtt{rel}}$ une ou deux fois jusqu'à ce que le multimètre affiche 0 : on indique alors au multimètre que c'est cette tension e(t) qui sert de référence.
- 4) Brancher ensuite le multimètre sur la sortie s(t). Il affiche directement le gain en dB.

Attention TP13.1 : Attention

Il faut refaire le zéro relatif pour chaque fréquence.

II/C Méthode pour tracer un diagramme de Bode

Outils TP13.1 : Tracer un diagramme de Bode

Pour tracer le diagramme de Bode, il est nécessaire pour chaque fréquence de déterminer :

- 1) le déphasage $\Delta \varphi_{s/e}$ de s(t) par rapport à e(t);
- 2) Le gain en dB.

III Analyser

Le montage étudié, schématisé ci-contre, est un circuit RC série alimenté par la tension $e(t) = E_m \cos(\omega t)$. On pose e(t) $s(t) = S_m \cos(\omega t + \varphi)$ la tension aux bornes du condensateur.

1 Établir l'expression de la fonction de transfert.

- Réponse \cdot

2/7

Pont diviseur:

$$\underline{S} = \frac{1/jC\omega}{R + 1/jC\omega} \underline{E}$$

$$\Leftrightarrow \underline{S} = \frac{1}{1 + jRC\omega} \underline{E}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + jRC\omega}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + j\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + j\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + jx}$$

$$x = \frac{\omega}{\omega_c}$$

III. Analyser 3

(2) Déterminer le comportement asymptotique du filtre pour le gain et le déphasage.

——— Réponse -

1)
$$\underline{\underline{H}}(x) \underset{x \to 0}{\sim} \frac{1}{1+0} = 1 \quad \text{et} \quad \underline{\underline{H}}(x) \underset{x \to \infty}{\sim} \frac{1}{jx}$$

2) \diamond Pour le gain :

$$G_{\mathrm{dB}}(x) \xrightarrow[x \to 0]{} 20 \log(1) = 0$$
 et $G_{\mathrm{dB}}(x) \underset{x \to \infty}{\sim} 20 \log \left| \frac{1}{\mathrm{j}x} \right| = -20 \log x$

Ainsi, à hautes fréquences, le gain diminue de $20 \, dB$ par décade : si ω est multiplié par 10, le gain en décibel baisse de $20 \, dB$ (i.e. l'amplitude est divisée par 10).

♦ Pour la phase :

$$\varphi(x) \xrightarrow[x \to 0]{} \arg(1) = 0$$
 et $\varphi(x) \sim x \to \infty \arg\left(\frac{1}{jx}\right) = -\frac{\pi}{2}$

(3) Déterminer l'expression de la fréquence de coupure f_c , puis la calculer pour $R=1.0 \,\mathrm{k}\Omega$ et $C=0.10 \,\mathrm{\mu F}$.

——— Réponse —

On a trouvé

$$\omega_c = \frac{1}{RC} \Leftrightarrow \boxed{f_c = \frac{1}{2\pi RC}} \text{ avec } \begin{cases} R = 1.0 \text{ k}\Omega \\ C = 0.10 \text{ }\mu\text{F} \end{cases}$$

$$A.N. : \underline{f_c} = 1.59 \times 10^{+3} \text{ Hz}$$

FIGURE TP13.2 – Schéma complété.

(5) On souhaite éliminer toute composante continue des signaux observés, doit-on choisir le mode AC ou DC? (vous pourrez faire une recherche sur internet ce que signifie mode AC et DC d'un oscilloscope).

– Réponse —

On choisit le mode AC (courant alternatif).

 \bigcirc Si l'amplitude E_m du signal d'entrée est représentée par 2,8 carreaux, en supposant que la sensibilité verticale est la même sur les 2 voies, montrer que pour $f=f_c$ l'amplitude S_m du signal de sortie correspond alors à 2 carreaux sur l'oscillogramme.

— Réponse –

À la fréquence coupure, on obtient

$$S_m(f_c) = |\underline{H}(f_c)|E_m = \frac{E_m}{\sqrt{2}}$$

L'application numérique donne bien $S_m(f_c) \approx 2$ carreaux.

${ m IV}^{ vert}$ Réaliser

IV/A Étude rapide de comportement

Expérience TP13.2 : Diagramme automatique

- 1) Connecter la carte Sysam à l'ordinateur;
- 2) Ouvrir Oscillo5 (Programmes Physique-chimie \rightarrow Eurosmart \rightarrow Oscillo5);
- 3) Alimenter votre filtre RC avec la sortie analogique SA1 de la carte Sysam.
- 4) Relever la tension e(t) sur le canal EAO et la tension s(t) sur le canal EA1.
- 5) Passer en mode Bode;
- 6) Afficher gain et phase;
- 7) Prendre une échelle log avec une étendue de fréquence cohérente avec la fréquence de coupure que vous avez préalablement déterminée;
- 8) Sélectionner EAO en entrée;
- 9) Effacer acquisitions précédentes. Choisir : toutes;
- 10) Déclencher.
- 11) Les diagrammes sont tracés de manière automatique. Pratique si on veut être rapide!

IV/B Mesures pour le tracé du diagramme de BODE

Il s'agit maintenant de faire un relevé fréquence par fréquence pour apprendre à le faire « à la main ».

Expérience TP13.3 : À la main

- 1) Choisir maintenant le mode BALAYAGE, pour utiliser Oscillo5 comme un oscilloscope;
- 2) Dans le panneau de contrôle (boîte flottante en haut de l'écran), cliquer sur Voir GBF1 et appuyer sur Marche;
- 3) Prendre comme amplitude du signal d'entrée environ $2\,\mathrm{V}$ (soit $4\,\mathrm{Vpp}$). Pour des fréquences entre $100\,\mathrm{Hz}$ et $50\,\mathrm{kHz}$:
- 4) Mesurer le déphasage entre s(t) et e(t) à l'aide d'Oscillo5, comme indiqué dans S'approprier. Pour plus de facilité, utiliser les curseurs (en bas à droite du menu d'Oscillo5) et les calibres horizontaux (à droite) et verticaux (en bas).

V. Valider et conclure

- 5) Mesurer le gain en dB à l'aide du dBmètre, comme indiqué dans S'approprier.
- 6) Une échelle logarithmique de variation de la fréquence est pertinente et vous pourrez faire plus de mesures autour de la fréquence de coupure f_c précédemment établie.

1 Regrouper les valeurs dans un tableau :

TABLEAU TP13.1 – Mesures pour diagramme de Bode.

f (Hz)	G_{dB} (dB)	$ \Delta t $ (s)	$ \Delta \varphi_{s/e} $ (rad)	$\Delta \varphi_{s/e} \text{ (rad)}$
:	:	÷	Ė	÷
:	:	:	÷ :	÷ :

— Réponse –

Tableau TP13.2 – Mesures pour diagramme de Bode.

f (Hz)	G_{dB} (dB)	$ \Delta t $ (s)	$ \Delta \varphi_{s/e} $ (rad)	$\Delta \varphi_{s/e} \text{ (rad)}$
100	-0.02	$-9,99 \times 10^{-5}$	0,06	-0.06
300	-0.15	$-9,88 \times 10^{-5}$	0,19	-0.19
600	-0.58	$-9,56 \times 10^{-5}$	0,36	-0.36
1000	-1,44	$-8,93 \times 10^{-5}$	$0,\!56$	-0.56
1200	-1,95	$-8,57 \times 10^{-5}$	0,65	-0,65
1600	-3,03	-7.84×10^{-5}	0,79	-0.79
2000	-4,11	$-7,15 \times 10^{-5}$	0,90	-0.90
3000	-6,58	$-5,75 \times 10^{-5}$	1,08	-1,08
5000	$-10,\!36$	$-4,02 \times 10^{-5}$	1,26	-1,26
7000	-13,08	$-3,06 \times 10^{-5}$	1,35	-1,35
10000	-16,07	$-2,25 \times 10^{-5}$	1,41	-1,41
20000	-22,01	$-1,19 \times 10^{-5}$	1,49	-1,49
30000	$-25,\!52$	$-8,05 \times 10^{-6}$	1,52	-1,52
40000	-28,01	$-6,09 \times 10^{-6}$	1,53	-1,53
50000	-29,95	$-4,90 \times 10^{-6}$	1,54	-1,54

\mathbf{V}

Valider et conclure

2	Tracer le diagramme de Bode expérimental sur papier semi-log (fourni en fin de sujet) en mettant
	la fréquence en abscisse (les 2 courbes sur une même feuille en prenant l'échelle du gain en haut et
	l'échelle du déphasage en bas).
	Réponse
	Voir fin du sujet.

Ajouter sur le diagramme, les asymptotes obtenues grâce à l'étude théorique de l'analyse.

Réponse

Idem.

Lycée Pothier 5/7 MPSI3 – 2024/2025

4 En déduire :

a – La fréquence de coupure expérimentale $f_{c,\text{exp}}$ en considérant $G_{\text{dB}}(f_{c,\text{exp}}) = G_{\text{dB},max} - 3 \,\text{dB}$. La comparer à la valeur théorique en calculant l'écart **normalisé**.

On trouve $f_{c, \exp} = (1.57 \pm 0.02) \, \mathrm{kHz}$, d'où l'écart normalisé

$$\boxed{E_n = \frac{|f_{c, \text{exp}} - f_{c, \text{theo}}|}{u_{f_{c, \text{exp}}}}} \Rightarrow \underline{E_n = 1} < 2 \quad \text{donc compatibles}.$$

b – Le déphasage expérimental $\varphi_{c,\text{exp}}$ pour $f=f_{c,\text{exp}}$. Le comparer à la valeur théorique en calculant l'écart **normalisé**.

– Réponse —

Calcul similaire.

c – La nature du filtre.

—— Réponse ————

C'est un passe-bas.

