Министерство науки и образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Московский институт электронной техники" (МИЭТ)

Отчет по лабораторной работе № 1

"Представление данных в ЭВМ"

Выполнили: студенты ПМ - 31

Алтухова Анна Валерьевна Мартынова Мария Олеговна

Задание:

При помощи оператора sizeof языка C/C++ выясните, сколько байтов занимают переменные следующих типов языка C/C++:

char, signed char, unsigned char, char*, wchar_t, wchar_t*, short, short*, int, int*, long, long*, long long, long long*, float, float*, double, double*, long double, long double* на платформах, доступных на ВЦ (штраф –2 балла за платформу, если в аудитории она доступна, а данных по ней нет; если платформа недоступна в лабораторной аудитории либо её убрали с ВЦ вообще, штраф не начисляется):

OC	Компилятор	Разрядность сборки
GNU/Linux 64	GCC	64
MS Windows 64	GCC (MinGW)	64
MS Windows 64	GCC (MinGW)	32
MS Windows 64	Microsoft	64
MS Windows 64	Microsoft	32

Результаты оформите в отчёте в виде таблицы

Листинг:

```
template<typename T>//шаблонная функция для пачти информации о размера определенного типа данных
 void print_size(string type_name)
     cout << type name <<": " << (sizeof(T)) << endl;</pre>
 int main()
□{
     cout<<"----"<<end1;
     cout<<"Сведения о размере памяти, занимаемой различными типами данных:"<<end1;
     print size<char>("char");
     print_size<signed char>("signed char");
     print size < unsigned char > ("unsigned char");
     print size < char* > ("char*");
     print size < wchar t > ("wchar t");
     print_size<wchar_t*>("wchar_t*");
print_size<short>("short");
     print size<short*>("short*");
     print_size<int>("int");
print_size<int*>("int*");
     print size < long > ("long");
     print_size<long*>("long*");
     print_size<long long>("long long");
     print_size<long long*>("long long*");
     print_size<float>("float");
     print size<float*>("float*");
     print size < double > ("double");
     print size < double *> ("double *");
     print_size<long double>("long double");
     print size<long double*>("long double*");
```

Пример вывода (для clang++-7, Linux x64 (Repl.it)):

lab1.1:

-----Задание 1-----

Сведения о размере памяти, занимаемой различными типами данных:

char: 1

signed char: 1
unsigned char: 1

char*: 8
wchar_t: 4
wchar_t*: 8
short: 2
short*: 8
int: 4
int*: 8
long: 8
long*: 8
long long: 8

long long*: 8
float: 4
float*: 8
double: 8
double*: 8

long double: 16
long double*: 8

Тип данных	Размер (Ubuntu x64, clang++-7), байт
char	1
signed char	1
unsigned char	1
char*	8
wchar_t	4
wchar_t*	8
short	2
short*	8
int	4
int*	8
long	8
long*	8
long long	8
long long*	8
float	4
float*	8
double	8
double*	8
long double	16
long double*	8

Задание:

Изучите, как интерпретируется одна и та же область памяти, если она рассматривается как знаковое или беззнаковое целое число, а также — как одно и то же число записывается в различных системах счисления. Для этого на языке C/C++ разработайте функцию void print16(void* p), которая печатает для 16-битной области памяти по заданному адресу p:

- а) целочисленную беззнаковую интерпретацию в шестнадцатеричном (и опционально двоичном) представлении;
- б) целочисленную беззнаковую интерпретацию в десятичном представлении;
- в) целочисленную знаковую интерпретацию в шестнадцатеричном (и опционально двоичном) представлении;
- г) целочисленную знаковую интерпретацию в десятичном представлении.

Проверьте работу функции print16() на 16-битных целочисленных переменных,

принимающих следующие значения:

- минимальное целое 16-битное значение без знака;
- максимальное целое 16-битное значение без знака;
- минимальное целое 16-битное значение со знаком;
- максимальное целое 16-битное значение со знаком;
- значение y, соответствующее варианту (таблица $\Pi 1.1$);
- значение z, соответствующее варианту (таблица $\Pi 1.1$);

(запишите каждое из значений в 16-битную целочисленную переменную и передайте

её адрес функции).

Убедитесь, что (a) и (в) — одно и то же представление.

Полученные результаты внесите в отчёт в таблицу, каждая строка которой соответствует значению, столбец — представлениям (а), (б), (г).

Листинг:

```
template<class T>
  void __print(string type, T value)
   cout << type << "16-ичное представление: " << hex << value << endl;
   cout << type << "10-ичное представлении: " << dec << value << endl;
  void print16(void *p)
    _print("<u>||e_novuc_nemmas Gessmakobas umrepnperalua</u>,"<mark>,*(reinterpret_cast<unsigned short*>(p)));</mark>
   _print("Целочисленная знаковая интерпретация,", *(reinterpret_cast<short*>(p)));
    cout << endl:
 int main()
∃{
     setlocale(0,"");
     cout<<"----"<<end1;
     unsigned int max unsigned 16bit=0b1111111111111111;
     int max signed 16bit=0b0111111111111111;
     int y=3;
     int z=-8;
     cout<<"Представления числа 0b0000000000000000"<<end1;
     print16(&min unsigned 16bit);
     cout<<"Представления числа 0b1111111111111111"<<end1;
     print16(&max unsigned 16bit);
     cout<<"Представления числа 0b1000000000000000"<<end1;
     print16(&min signed 16bit);
     cout<<"Представления числа 0b01111111111111111"<<end1;
     print16(&max signed 16bit);
     cout<<"Представления числа "<<y<<endl;
     print16(&y);
     cout<<"Представления числа "<<z<<endl;
     print16(&z);
     cout<<"----"<<end1;
Пример вывода:
-----Задание 2-----
Представления числа 0b0000000000000000
Целочисленная беззнаковая интерпретация,16-ичное представление: 0
Целочисленная беззнаковая интерпретация, 10-ичное представлении: 0
Целочисленная знаковая интерпретация, 16-ичное представление: 0
Целочисленная знаковая интерпретация, 10-ичное представлении: 0
Представления числа 0b1111111111111111
Целочисленная беззнаковая интерпретация,16-ичное представление: ffff
Целочисленная беззнаковая интерпретация, 10-ичное представлении: 65535
```

Целочисленная знаковая интерпретация, 16-ичное представление: ffff Целочисленная знаковая интерпретация, 10-ичное представлении: -1

Представления числа 0b1000000000000000

Целочисленная беззнаковая интерпретация, 16-ичное представление: 8000 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 32768 Целочисленная знаковая интерпретация, 16-ичное представление: 8000 Целочисленная знаковая интерпретация, 10-ичное представлении: -32768

Представления числа 0b0111111111111111

Целочисленная беззнаковая интерпретация, 16-ичное представление: 7fff Целочисленная беззнаковая интерпретация, 10-ичное представлении: 32767 Целочисленная знаковая интерпретация, 16-ичное представление: 7fff Целочисленная знаковая интерпретация, 10-ичное представлении: 32767

Представления числа 3

Целочисленная беззнаковая интерпретация, 16-ичное представление: 3 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 3 Целочисленная знаковая интерпретация, 16-ичное представление: 3 Целочисленная знаковая интерпретация, 10-ичное представлении: 3

Представления числа -8

Целочисленная беззнаковая интерпретация, 16-ичное представление: fff8 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 65528 Целочисленная знаковая интерпретация, 16-ичное представление: fff8 Целочисленная знаковая интерпретация, 10-ичное представлении: -8

bin	usigned	usigned	signed	signed
	hex	dec	hex	dec
00000000000000000	0	0	0	0
11111111111111111	ffff	65535	ffff	-1
10000000000000000	8000	32768	8000	-32768
0111111111111111	7fff	32767	7fff	32767
00000000000000011	3	3	3	3
1111111111111000	fff8	65528	fff8	-8

Задание:

Разработайте на языке C/C++ функции print32() и print64(), аналогичные print16() для размеров 32 и 64 бита, и дополните их интерпретацией памяти как числа с плавающей запятой соответствующего размера:

- -print32() печатает для 32-битной области памяти по заданному адресу p целочисленные представления (а)–(г) и 32-битное представление с плавающей запятой (с одинарной точностью) д).
- print64() печатает для 64-битной области памяти по заданному адресу p целочисленные представления (а)—(г) и 64-битное представление с плавающей запятой (с двойной точностью) д).

Проверьте работу функций на целочисленных переменных соответствующего размера, принимающих значения:

- минимальное целое значение без знака соответствующего размера;
- максимальное целое значение без знака соответствующего размера;
- минимальное целое значение со знаком соответствующего размера;
- максимальное целое значение со знаком соответствующего размера;
- значение x, соответствующее варианту;
- значение у, соответствующее варианту;
- значение z, соответствующее варианту;

и переменных с плавающей запятой соответствующего размера, принимающих

значения:

- значение x, соответствующее варианту;
- значение у, соответствующее варианту;
- значение z, соответствующее варианту;

(x, y, z) смотрите в таблице Л1.1).

Выпишите в отчёт полученные результаты (дополните таблицу задания Л1.№2

столбцом д).

Листинг:

```
template<class T>
void __print(string type, T value)

{
    cout << type << "16-ичное представление: " << hex << value << endl;
    cout << type << "10-ичное представлении: " << dec << value << endl;
}
```

```
void print32 (void* p)
  __print("Целочисленная беззнаковая интерпретация,",*(reinterpret_cast<unsigned int*>(p)));
_print("Целочисленная знаковая интерпретация,", *(reinterpret_cast<int*>(p)));
cout<<"Интерпретация в качестве числа с плавающей запятой:"<<*(reinterpret_cast<float*>(p))<<endl<<endl;
void print64 (void* p)
  __print("Целочисленная беззнаковая интерпретация,",*(reinterpret_cast<unsigned long long*>(p)));
_print("Целочисленная знаковая интерпретация,", *(reinterpret_cast<long long*>(p)));
cout<<"Интерпретация в качестве числа с плавающей запатой:"<<*(reinterpret_cast<double*>(p))<<endl<<endl;
int main()
- {
   setlocale(0,"");
   cout<<"----"<<end1;
   print32(&min unsigned 32bit);
   print32(&max unsigned 32bit);
   print32(&min signed 32bit);
   cout<<"Представления числа 0b0111111111111111111111111111111111"<<end1;
   print32(&max signed 32bit);
   int ix = 0xA1B2C3D4;
   int iy = 3;
   int iz = -8;
   cout <<"Ippegctabgehue uucga 0xA1B2C3D4 kak целочисленного:" <<end1;
   print32(&ix):
   cout <<"Представление числа 3 как целочисленного:"<< endl;
   print32(&iy);
   cout <<"Представление числа -8 как целочисленного:"<< endl;
   print32(&iz);
   cout << endl;
   float fx = 0xA1B2C3D4;
   float fy = 3;
   float fz = -8;
   cout << "Представление числа 0xA1B2C3D4 с плавающей запятой: " <<end1;
  print32(&fx):
  cout <<"Представление числа 3 с плавающей запятой:"<< endl;
  print32(&fy);
  cout <<"Представление числа -8 с плавающей запятой:" <<endl;
  print32(&fz):
  cout << endl;
  print64 (&min unsigned 64bit);
  print64 (&max unsigned 64bit);
  print64(&min signed 64bit);
  print64 (&max signed 64bit);
```

```
long long lx = 0xA1B2C3D4;
    long long ly = 3;
    long long lz = -8;
    cout <<"Представление числа 0xA1B2C3D4 как целочисленного:" <<end1;</pre>
    print64(&lx);
    cout <<"Представление числа 3 как целочисленного: "<< endl;
    print64(&ly);
    cout <<"Представление числа -8 как целочисленного:"<< endl;
    print64(&lz);
    cout << endl;
    double dx = 0xA1B2C3D4;
    double dy = 3;
    double dz = -8;
    cout << "Представление числа 0xA1B2C3D4 с плавающей запятой: " <<end1;
   print64(&dx);
    cout <<"Представление числа 3 с плавающей запятой:"<< endl;
   print64(&dy);
    cout <<"Представление числа -8 с плавающей запятой:" <<endl;
   print64(&dz);
   cout << endl;
}
```

Пример вывода:

```
-----Задание 3-----
```


Целочисленная беззнаковая интерпретация,16-ичное представление: 0 Целочисленная беззнаковая интерпретация,10-ичное представлении: 0 Целочисленная знаковая интерпретация,16-ичное представление: 0 Целочисленная знаковая интерпретация,10-ичное представлении: 0 Интерпретация в качестве числа с плавающей запятой:0

Целочисленная беззнаковая интерпретация,16-ичное представление: ffffffff Целочисленная беззнаковая интерпретация,10-ичное представлении: 4294967295 Целочисленная знаковая интерпретация,16-ичное представление: ffffffff Целочисленная знаковая интерпретация,10-ичное представлении: -1 Интерпретация в качестве числа с плавающей запятой:nan

Целочисленная беззнаковая интерпретация,16-ичное представление: 80000000 Целочисленная беззнаковая интерпретация,10-ичное представлении: 2147483648 Целочисленная знаковая интерпретация,16-ичное представление: 80000000 Целочисленная знаковая интерпретация,10-ичное представлении: -2147483648 Интерпретация в качестве числа с плавающей запятой:-0

Целочисленная беззнаковая интерпретация,16-ичное представление: 7fffffff Целочисленная беззнаковая интерпретация,10-ичное представлении: 2147483647 Целочисленная знаковая интерпретация,16-ичное представление: 7fffffff Целочисленная знаковая интерпретация,10-ичное представлении: 2147483647 Интерпретация в качестве числа с плавающей запятой:nan

Представление числа 0xA1B2C3D4 как целочисленного:

Целочисленная беззнаковая интерпретация,16-ичное представление: a1b2c3d4 Целочисленная беззнаковая интерпретация,10-ичное представлении: 2712847316 Целочисленная знаковая интерпретация,16-ичное представление: a1b2c3d4 Целочисленная знаковая интерпретация,10-ичное представлении: -1582119980 Интерпретация в качестве числа с плавающей запятой:-1.21136e-18

Представление числа 3 как целочисленного:

Целочисленная беззнаковая интерпретация, 16-ичное представление: 3 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 3 Целочисленная знаковая интерпретация, 16-ичное представление: 3 Целочисленная знаковая интерпретация, 10-ичное представлении: 3 Интерпретация в качестве числа с плавающей запятой: 4.2039e-45

Представление числа -8 как целочисленного:

Целочисленная беззнаковая интерпретация,16-ичное представление: fffffff8
Целочисленная беззнаковая интерпретация,10-ичное представлении: 4294967288
Целочисленная знаковая интерпретация,16-ичное представление: fffffff8
Целочисленная знаковая интерпретация,10-ичное представлении: -8

Представление числа 0xA1B2C3D4 с плавающей запятой:

Интерпретация в качестве числа с плавающей запятой:nan

Целочисленная беззнаковая интерпретация,16-ичное представление: 4f21b2c4 Целочисленная беззнаковая интерпретация,10-ичное представлении: 1327608516 Целочисленная знаковая интерпретация,16-ичное представление: 4f21b2c4 Целочисленная знаковая интерпретация,10-ичное представлении: 1327608516 Интерпретация в качестве числа с плавающей запятой:2.71285e+09

Представление числа 3 с плавающей запятой:

Целочисленная беззнаковая интерпретация,16-ичное представление: 4040000 Целочисленная беззнаковая интерпретация,10-ичное представлении: 1077936128 Целочисленная знаковая интерпретация,16-ичное представление: 4040000 Целочисленная знаковая интерпретация,10-ичное представлении: 1077936128 Интерпретация в качестве числа с плавающей запятой:3

Представление числа -8 с плавающей запятой:

Целочисленная беззнаковая интерпретация, 16-ичное представление: c1000000 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 3238002688 Целочисленная знаковая интерпретация, 16-ичное представление: c1000000 Целочисленная знаковая интерпретация, 10-ичное представлении: -1056964608 Интерпретация в качестве числа с плавающей запятой:-8

Представления числа

Целочисленная беззнаковая интерпретация, 16-ичное представление: 0 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 0 Целочисленная знаковая интерпретация, 16-ичное представление: 0 Целочисленная знаковая интерпретация, 10-ичное представлении: 0 Интерпретация в качестве числа с плавающей запятой: 0

Представления числа

Целочисленная беззнаковая интерпретация,16-ичное представление: fffffffffffff

Целочисленная беззнаковая интерпретация, 10-ичное представлении: 18446744073709551615

Целочисленная знаковая интерпретация, 10-ичное представлении: -1

Интерпретация в качестве числа с плавающей запятой:nan

Представления числа

Целочисленная беззнаковая интерпретация,16-ичное представление: 8000000000000000

Целочисленная беззнаковая интерпретация, 10-ичное представлении: 9223372036854775808

Целочисленная знаковая интерпретация, 16-ичное представление: 80000000000000000

Целочисленная знаковая интерпретация, 10-ичное представлении: -

9223372036854775808

Интерпретация в качестве числа с плавающей запятой:-0

Представления числа

Целочисленная беззнаковая интерпретация,16-ичное представление: 7fffffffffffff

Целочисленная беззнаковая интерпретация, 10-ичное представлении: 9223372036854775807

Целочисленная знаковая интерпретация, 10-ичное представлении:

9223372036854775807

Интерпретация в качестве числа с плавающей запятой:nan

Представление числа 0хA1B2C3D4 как целочисленного:

Целочисленная беззнаковая интерпретация,16-ичное представление: a1b2c3d4 Целочисленная беззнаковая интерпретация,10-ичное представлении: 2712847316 Целочисленная знаковая интерпретация,16-ичное представление: a1b2c3d4 Целочисленная знаковая интерпретация,10-ичное представлении: 2712847316 Интерпретация в качестве числа с плавающей запятой:1.34032e-314

Представление числа 3 как целочисленного:

Целочисленная беззнаковая интерпретация, 16-ичное представление: 3 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 3 Целочисленная знаковая интерпретация, 16-ичное представление: 3 Целочисленная знаковая интерпретация, 10-ичное представлении: 3 Интерпретация в качестве числа с плавающей запятой: 1.4822e-323

Представление числа -8 как целочисленного:

Целочисленная беззнаковая интерпретация,16-ичное представление: ffffffffffff8

Целочисленная беззнаковая интерпретация, 10-ичное представлении: 18446744073709551608

Целочисленная знаковая интерпретация, 16-ичное представление: ffffffffffffffff

Целочисленная знаковая интерпретация, 10-ичное представлении: -8

Интерпретация в качестве числа с плавающей запятой:nan

Представление числа 0xA1B2C3D4 с плавающей запятой:

Целочисленная беззнаковая интерпретация, 16-ичное представление:

41e436587a800000

Целочисленная беззнаковая интерпретация, 10-ичное представлении:

4747979660795576320

Целочисленная знаковая интерпретация, 16-ичное представление: 41e436587a800000

Целочисленная знаковая интерпретация, 10-ичное представлении:

4747979660795576320

Интерпретация в качестве числа с плавающей запятой:2.71285e+09

Представление числа 3 с плавающей запятой:

Целочисленная беззнаковая интерпретация,16-ичное представление: 4008000000000000

Целочисленная беззнаковая интерпретация, 10-ичное представлении:

4613937818241073152

Целочисленная знаковая интерпретация, 16-ичное представление: 4008000000000000

Целочисленная знаковая интерпретация, 10-ичное представлении:

4613937818241073152

Интерпретация в качестве числа с плавающей запятой:3

Представление числа -8 с плавающей запятой:

Целочисленная беззнаковая интерпретация, 16-ичное представление: c02000000000000

Целочисленная беззнаковая интерпретация, 10-ичное представлении:

13844065254536904704

Целочисленная знаковая интерпретация, 16-ичное представление: с020000000000000

Целочисленная знаковая интерпретация, 10-ичное представлении: -

4602678819172646912

Интерпретация в качестве числа с плавающей запятой:-8

bin	unsigned hex	unsigned dec	signed hex	signed dec	float	
000000000000000000000000000000000000000	0	0	0	0	0	
111111111111111111111111111111111111111	ffffffff	4294967295	ffffffff	-1	-nan	
100000000000000000000000000000000000000	8000000	2147483648	80000000	-2147483648	-0	
01111111111111111111111111111111111111	7fffffff	2147483647	7fffffff	2147483647	nan	
10100001101100101100001111010	a1b2c3d4	2712847316	a1b2c3d4	-1582119980	-1.21136e-18	

000000000000000000000000000000000000000	3	3	3	3	4.2039e-45	
011						
111111111111111111111111111111111111111	fffffff8	4294967288	fffffff8	-8	-nan	
000						
01001111001000011011001011000	4f21b2c4	1327608516	4f21b2c4	1327608516	2.71285e+09	
100						
01000000100000000000000000000	40400000	1077936128	40400000	1077936128	3	
000						
110000010000000000000000000000000000000	c1000000	3238002688	c1000000	-1056964608	-8	
000						

bin	unsigned hex	unsigned dec	signed hex	signed dec	double
00000000000000000000000000000000000000	0	0	0	0	0
11111111111111111111111111111111111111	f	184467440737 09551615	fffffffffffffffffffffffffffffffffffffff	-1	-nan
10000000000000000000000000000000000000	8000000000000000	922337203685 4775808	800000000000	- 9223372036 854775808	-0
01111111111111111111111111111111111111	7fffffffffffffffffffffffffffffffffffff	922337203685 4775807	7fffffffffff ffff	9223372036 854775807	nan
00000000000000000000000000000000000000	a1b2c3d4	2712847316	a1b2c3d4	2712847316	1.34032e-314
00000000000000000000000000000000000000	3	3	3	3	1.4822e-323
11111111111111111111111111111111111111	8	184467440737 09551608	ffffffffffff fff8	-8	-nan
01000001111001000011011001011 000011110101000000	41e436587a80000 0	474797966079 5576320	41e436587a80 0000	4747979660 795576320	2.71285e+09
0100000000010000000000000000 0000000000	4008000000000000	461393781824 1073152	400800000000 0000	4613937818 241073152	3
1100000001000000000000000000 0000000000	c02000000000000000	138440652545 36904704	c02000000000 0000	- 4602678819 172646912	-8

Задание:

Разработайте программу на языке C++, которая расширяет значение целочисленной переменной из 16 бит до 32 бит, рассматривая числа как:

- знаковые (*signed*);
- беззнаковые (unsigned).

Проверьте её работу на значениях y и z (таблица Л1.1). Исходное значение, а также результаты беззнакового и знакового расширения должны печататься в представлениях (а)—(г) (функциями print16() и print32()). Полученные результаты внесите в отчёт.

Листинг:

```
void CastSignedFrom16To32(short p)
    int signed res32 = static cast<int> (p);
    cout<<"Расширение 2 -входная переменная расматривается знаковой"<<end1;
    print32(&signed res32);
- }
void CastUnsignedFrom16To32(unsigned short p)
    unsigned int unsigned_res32 = static_cast<unsigned int> (p);
   cout<<"Pacumpehne 1 - BXOZHAS DEPEMENHAS PACMATPUBAETCS DESSHAKOBOЙ"<<end1;
   print32(&unsigned res32);
int main()
} E
    setlocale(0,"");
    cout<<"----"<<end1;
    short y__ = 3;
short z__ = -8;
    cout<<"Входное значение:"<<endl;
    print16(&y_);
    CastUnsignedFrom16To32(y);
    CastSignedFrom16To32(y);
    cout<<"Входное значение: "<<endl;
    print16(&z );
    CastUnsignedFrom16To32(z);
    CastSignedFrom16To32(z );
```

Пример вывода:

Целочисленная беззнаковая интерпретация, 10-ичное представлении: 3 Целочисленная знаковая интерпретация, 16-ичное представление: 3 Целочисленная знаковая интерпретация, 10-ичное представлении: 3

Расширение 1 -входная переменная расматривается беззнаковой

Целочисленная беззнаковая интерпретация, 16-ичное представление: 3 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 3 Целочисленная знаковая интерпретация, 16-ичное представление: 3 Целочисленная знаковая интерпретация, 10-ичное представлении: 3 Интерпретация в качестве числа с плавающей запятой: 4.2039e-45

Расширение 2 -входная переменная расматривается знаковой

Целочисленная беззнаковая интерпретация,16-ичное представление: 3 Целочисленная беззнаковая интерпретация,10-ичное представлении: 3 Целочисленная знаковая интерпретация,16-ичное представление: 3 Целочисленная знаковая интерпретация,10-ичное представлении: 3 Интерпретация в качестве числа с плавающей запятой:4.2039e-45

Входное значение:

Целочисленная беззнаковая интерпретация, 16-ичное представление: fff8 Целочисленная беззнаковая интерпретация, 10-ичное представлении: 65528 Целочисленная знаковая интерпретация, 16-ичное представление: fff8 Целочисленная знаковая интерпретация, 10-ичное представлении: -8

Расширение 1 -входная переменная расматривается беззнаковой

Целочисленная беззнаковая интерпретация,16-ичное представление: fff8 Целочисленная беззнаковая интерпретация,10-ичное представлении: 65528 Целочисленная знаковая интерпретация,16-ичное представление: fff8 Целочисленная знаковая интерпретация,10-ичное представлении: 65528 Интерпретация в качестве числа с плавающей запятой:9.18243e-41

Расширение 2 -входная переменная расматривается знаковой

Целочисленная беззнаковая интерпретация,16-ичное представление: fffffff8 Целочисленная беззнаковая интерпретация,10-ичное представлении: 4294967288

Целочисленная знаковая интерпретация,16-ичное представление: fffffff8

Целочисленная знаковая интерпретация, 10-ичное представлении: -8

Интерпретация в качестве числа с плавающей запятой:nan

in	sh	ush	i	ui	he	hex3	bin16	bin32	uhe	uhe	ubin16	ubin32
pu	or	ort	n	nt	x1	2			x16	x32		
t	t		t		6							
3	3	3	3	3	3	3	00000000	00000000000000000	3	3	00000000	00000000000000000
							00000011	00000000000000011			00000011	00000000000000011
-8	-8	655	-	65	ff	ffff	11111111	1111111111111111	fff	fff	11111111	00000000000000000
		28	8	52	f8	fff8	11111000	1111111111111000	8	8	11111000	1111111111111000
				8								

Задача:

Изучите, как располагаются в памяти байты, составляющие число или структуру данных. Для этого на языке C/C++ разработайте функцию

 $void\ printDump(void\ *\ p,\ size_t\ N)$, которая печатает для области памяти по заданному адресу p значения N байтов, начиная с младшего, в шестнадцатеричном

представлении (шестнадцатеричный дамп памяти).

С помощью printDump() определите и выпишите в отчёт, как хранятся в памяти компьютера в программе на C/C++:

- целое число x (типа int; таблица $\Pi 1.1$); по результату исследования определите порядок следования байтов в словах для вашего процессора:
- а) прямой (младший байт по младшему адресу, порядок Intel, Little-Endian, от младшего к старшему);
- б) обратный (младший байт по старшему адресу, порядок Motorola, BigEndian, от старшего к младшему);
- массив из трёх целых чисел (статический или динамический, но не высокоуровневый контейнер) с элементами x, y, z;
- число с плавающей запятой у (типа double; таблица Л1.1);
- строки "bcdxy" и "ёжзий" (массив из *char*; при выборе N учитывайте всю длину строки, а не только видимые буквы);
- «широкие» строки L"bcdxy" и L"ёжзий" (массив из $wchar_t$; при выборе N учитывайте всю длину строки).

Листинг:

```
void printDump(void* p, size_t N)

{
   cout << hex;
   auto pb = (uint8_t*)p;
   for(size_t i = 0; i < N; ++i)
   {
      cout << (int)pb[i] << " ";
   }
   cout << endl << dec;
}
int main()
{</pre>
```

```
cout<<"----"<<end1;
    int x = 0xA1B2C3D4;
   cout <<"Целое число" <<x<< endl;
   printDump(&x, sizeof(int));
   auto arr = new int[3]{(int)0xA1B2C3D4, 3, -8};
    cout << "Maccub" << endl;
   printDump(arr, sizeof(int) * 3);
    delete[] arr;
   double _y = 3;
cout <<"\u00e4ncno c nnababmen sanston" << endl;
   printDump(&_y, sizeof(double));
   cout <<"Строки" << endl;
   char str1[] = "bcdxy";
   printDump(&strl, sizeof(char) * 6); // 5 chars + 0
   char str2[] = "ëxsuŭ";
   printDump(&str2, sizeof(char) * 11);
    cout <<"Широкие строки" << endl;
   wchar_t wstr1[] = L"bcdxy";
   printDump(&wstr1, sizeof(wchar t) * 6);
   wchar_t wstr2[] = L"exaum";
   printDump(&wstr2, sizeof(wchar_t) * 6);
}
```

Пример вывода: