

AUTUMN MID SEMESTER EXAMINATION-2018 School of Computer Engineering

KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY DEEMED TO BE UNIVERSITY, BHUBANESWAR-24

DATA WAREHOUSING AND DATA MINING [CS-6301]

Time: 11/2 Hours

Full Mark: 20

Answer any four questions including question No.1 which is compulsory.

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable and all parts of a question should be answered at one place only.

Q.1.				[5x1]
(a) What are the steps involved in KDD prod	cess?			
(b) What condition makes association rules a	are inte	resting?		
(c) Define anti-monotone property.				
(d) What is Attribute Selection Measure in D	Decision	Tree?		
(e) What condition two item sets A and B will			n them"?	
Q.2.				
(a) What is Interquartile range (IQR)? Draw	an IQR	with an odd sample siz	te as 70, 64,77, 63, 81, 72, 76, 64, 81.	[2.5]
				_
(b) Calculate both Eigen vectors & Eigen va	lues for	$A = \begin{bmatrix} -2 & -3 \end{bmatrix}$		[2.5]
Q.3.		2 3		
(a) What are the rule strength measures used	d in any	association rule model	? Discuss with their probability	[2.5]
formula.				
(b) What is the Apriori property? Using Apr	riori Al	gorithm find the final ite	em set for the following dataset S.	[2.5]
(Where minimum support is 0.5)	TID	Items		_
	101	Milk Bread Butter		

Q.4.

(a) Measure your dependent/correlated events LIFT computation for the following contingency table, play basketball⇒eat cereal [40%, 66.7%], play basketball⇒not eat cereal [20%, 33.3%] [2.5]

103

Jam, Bread, Egg

Milk, Jam, Bread, Egg

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

(b) What are the information gains of a_1 and a_2 relative to these training examples? [Entropy of the training set [2.5] is 0.9911].

TID	a_1	a_2	CLASS
1	T	T	YES
2	T	T	YES
3	T	F	NO
4	F	F	YES
5	F	T	NO
6	F	T	NO
7	F	F	NO
8	T	F	YES
9	F	T	NO

Q.5.

- (a) What is Bessel's correction? Calculate and Draw a box plot for the data set 3, 3, 7, 8, 7, 4, 4, 10, 1, [2.5] 5, 1, 7, 2, 7, 9.
- (b) What is Posterior Probability? Use Bayes Theorem to find out "If a patient has fever, what's the probability he/she has Typhoid?" (i). Normally, Typhoid causes high fever 60% of the time. (ii). Prior probability of any patient having Typhoid is 5/10000, (iii). Prior probability of any patient having fever is 1/50