Задание 2.

Численное решение задачи Дирихле. Метод SOR.

эффективности.

Разработка параллельной МРІ-программы и исследование ее

Постановка задачи.

Дана параллельная программа, реализующая метод Якоби решения 2-мерной задачи Дирихле (файл **jacoby.c**).

Требуется разработать параллельную программу с использованием технологии MPI, реализующую решение той же задачи методом SOR. Провести исследование разработанной программы эффективности на системах Regatta, Blue Gene/P и «Ломоносов».

Провести визуализацию полученного решения. Для этого требуется организовать в параллельной программе вывод решения в файл, формат которого будет соответствовать используемой системе визуализации.

Описание метода SOR представлено в материалах лекций.

Параметры, передаваемые в командной строке

Первый параметр: m – число точек по одному измерению для задания двумерной сетки. По умолчанию – 512.

Второй параметр – точность. По умолчанию – 0.01.

Цель.

Получить навыки разработки и исследования параллельных программ с использованием технологии MPI.

Распараллеливание осуществляется на основе имеющегося примера реализации метода Якоби для той же задачи.

Требуется.

- 1. Разработать параллельную версию программы с использованием технологии МРІ.
- 2. Исследовать время выполнения разработанной программы в зависимости от задаваемой точности, размера сетки и количества используемых процессов на вычислительных системах IBM Regatta, Blue Gene/P и «Ломоносов».
- 3. Для каждой из платформ для заданных значений точности метода (0.01, 0.001) Построить таблицу:

Для вычислительной системы IBM Regatta:

			r -			-		-					
		Параллельный алгоритм											
Размер	Точн	1 процессор			2 процессора			4 процессора			8 процессоров		
сетки		Время	Ускор ение	Число итераций	Время	Ускор ение	Число итера ций	Время	Уск орен ие	Число итера ций	Время	Ускор ение	Число итераций
512x512													
1024x													
1024													

Для вычислительной системы Blue Gene/P:

Размер	Точн	Параллельный алгоритм									
сетки	ость										
		32	64	128	256	512 процессоров	512 процессоров				
•		процессора	процессора	процессо	процессо	станд. мэппинг	Произв. мэппинг				

				ров		ров					
	Время	Ускор ение	Число итераций	Время	Ускор ение	Число итера ций	Время	Число итера ций	Время	Ускор ение	Число итераций
512x512											
1024x 1024											

В случае исследования эффективности параллельной программы на Blue Gene/Р для 512 процессоров рассмотреть два варианта мэппинга – стандартный, принятый по умолчанию и произвольный. Для произвольного мэппинга предусмотреть генерацию строк файла для задания случайного значения XYZT (см. материалы лекций).

Для вычислительной системы «Ломоносов»:

		32			64	128		2	256	
Размер	Точн	процессо			оцессора	процессо		про	цессо	
сетки	ость	процессо	процессора				ров		ров	
	0012	Время	Усь ен	•	Число итераций	Время		скор ние	Число итера ций	
512x512										
1024x										
1024										

 Γ рафическую иллюстрацию полученного решения - линии уровня функции u(i,j) провести, используя систему визуализации по собственному выбору.

Ускорение (*speedup*), получаемое при использовании параллельного алгоритма для p процессоров, определяется величиной:

Speedup(n) = $T_1(n)/T_p(n)$,

где $T_1(n)$ - время выполнения задачи на одном процессоре.

Tp(n)- время параллельного выполнения задачи при использовании p процессоров.

- 4. Построить графики для каждого из заданных значений точности (0.01, 0.001) зависимость ускорения от количества процессоров для разных размеров сетки (512x512, 1024x1024).
- 5. Подготовить отчет о выполнении задания, включающий таблицы с временами, графики, визуализацию полученного решения (линии уровня решения), текст программы. Сделать выводы по полученным результатам (объяснить убывание или возрастание производительности параллельной программы при увеличении числа используемых процессоров, сравнить поведение параллельной программы в зависимости от размера сетки).

1. Литература.

- Материалы лекций «Суперкомпьютерные вычислительные технологии. Параллельные алгоритмы численного решения задачи Дирихле». Лекции 4-7. http://angel.cs.msu.su/~popova/SuperComp_2013/
- Материалы сайта http://hpc.cs.msu.su
- Инструкция по использованию вычислительного комплекса IBM Regatta http://www.regatta.cmc.msu.ru/instr.htm