CSER: Communication-efficient SGD with Error Reset

Cong Xie, Shuai Zheng, Oluwasanmi Koyejo, Indranil Gupta, Mu Li, Haibin Lin Presenter: Cong Xie November 16, 2020

Outline

- 1 Motivations
- 2 Preliminaries
- 3 CSER
- 4 Evaluation
- 5 Takeaways

Motivations

Motivations

• Reduce communication for distributed SGD

Motivations

- Reduce communication for distributed SGD
- Good convergence when communication is very low

Outline

- 1 Motivations
- 2 Preliminaries
- 3 CSER
- 4 Evaluation
- 5 Takeaways

Distributed SGD

Algorithm 1 Distributed SGD

```
1: Initialize x_{i,0} = \hat{x}_0 \in \mathbb{R}^d, \forall i \in [n]
2: for all iteration t \in [T] do
3: for all Workers i \in [n] in parallel do
4: p_{i,t} \leftarrow -\eta \nabla f(x_{i,t-1}; z_{i,t})
5: \bar{p}_t \leftarrow \frac{1}{n} \sum_{i \in [n]} p_{i,t}
6: x_{i,t} \leftarrow x_{i,t-1}^{\uparrow} + \bar{p}_t
7: end for
8: end for
```

average, communication

Distributed EF-SGD

Algorithm 2 EF-SGD

```
1: Input: \mathcal{C}_1 - compressor

2: Initialize x_{i,0} = \hat{x}_0 \in \mathbb{R}^d, e_{i,t} = \mathbf{0}, \forall i \in [n]

3: for all iteration t \in [T] do

4: for all Workers i \in [n] in parallel do

5: EF: p_{i,t} \leftarrow e_{i,t-1} - \eta \nabla f(x_{i,t-1}; z_{i,t}), \quad p'_{i,t} \leftarrow \mathcal{C}_1(p_{i,t}), \quad e_{i,t} \leftarrow p_{i,t} - p'_{i,t}

6: \bar{p}'_t \leftarrow \frac{1}{n} \sum_{i \in [n]} p'_{i,t}

7: x_{i,t} \leftarrow x_{i,t-1} + \bar{p}'_t

8: end for

9: end for
```

QSparse-local-SGD

Algorithm 3 Qsparse-local-SGD

- 1: **Input**: C_1 compressor, H > 0 synchronization interval
- 2: Initialize $x_{i,0} = \hat{x}_0 = \mathbf{0}, \forall i \in [n], e_{i,0} = \mathbf{0}, \forall i \in [n]$
- 3: **for all** iteration $t \in [T]$ **do**
- for all Workers $i \in [n]$ in parallel do 4.
- $x_{i,t-\frac{1}{2}} \leftarrow x_{i,t-1} \eta \nabla f(x_{i,t-1}; z_{i,t})$ 5:
- if $mod(t, H) \neq 0$ then 6:

- Local update: $x_{i,t} \leftarrow x_{i,t-\frac{1}{2}}$, $\hat{x}_t \leftarrow \hat{x}_{t-1}$, $e_{i,t} \leftarrow e_{i,t-1}$ 7:
- else 8.
- EF: $p_{i,t} \leftarrow e_{i,t-1} + x_{i,t-\frac{1}{2}} \hat{x}_{t-1}$, $p'_{i,t} \leftarrow \mathcal{C}_1(p_{i,t})$, $e_{i,t} \leftarrow p_{i,t} p'_{i,t}$ 9:
- $\bar{p}'_t \leftarrow \frac{1}{n} \sum_{i \in [n]} p'_{i,t}, \quad x_{i,t} \leftarrow \hat{x}_{t-1} + \bar{p}'_t, \quad \hat{x}_t \leftarrow \hat{x}_{t-1} + \bar{p}'_t$ 10: end if 11:
- end for
- 12: 13: end for

Outline

- 1 Motivations
- 2 Preliminaries
- 3 CSER
- 4 Evaluation
- 5 Takeaways

Observations:

Observations:

• With single worker, EF-SGD isn't reduced to vanilla SGD

Observations:

- With single worker, EF-SGD isn't reduced to vanilla SGD
- Aggressive compressors (random sparsifier + high compression ratio) results in bad convergence

Observations:

- With single worker, EF-SGD isn't reduced to vanilla SGD
- Aggressive compressors (random sparsifier + high compression ratio) results in bad convergence
- Worse for QSparse-local-SGD

Error reset:

• Apply residual error to local model

- Apply residual error to local model
- Different workers maintain different local model

- Apply residual error to local model
- Different workers maintain different local model
- Use local models to compute gradients

- Apply residual error to local model
- Different workers maintain different local model
- Use local models to compute gradients
- Periodically reset/flush the error inside local models

Algorithm 5 Partial Synchronization (PSync)

```
1: function PSYNC(v_i \in \mathbb{R}^d, C - com-
   pressor)
   On worker i:
3: v_i' = \mathcal{C}(v_i)
4: r_i = v_i - v_i'
5: Partial synchronization:
6: \bar{v}' = \frac{1}{n} \sum_{i \in [n]} v_i'
7: v'_{i} = \bar{v}' + r_{i}
    return v_i', r_i
8:
9: end function
```

Algorithm 4 Error Reset

- 1: **Input**: \mathcal{C}_1 compressor
- 2: Initialize $x_{i,0} = \hat{x}_0 \in \mathbb{R}^d, e_{i,0} = \mathbf{0}, \forall i \in [n]$
- 3: for all iteration $t \in [T]$ do
- 4: **for all** Workers $i \in [n]$ in parallel **do**
- 5: $p_{i,t} \leftarrow e_{i,t-1} \eta \nabla f(x_{i,t-1}; z_{i,t})$
- 6: $p'_{i,t}, e_{i,t} \leftarrow PSync(p_{i,t}, \mathcal{C}_1)$
- 7: $x_{i,t} \leftarrow x_{i,t-1}$
- 8: end for
- 9: end for

Algorithm 5 Partial Synchronization (PSync)

- 1: **function** PSYNC $(v_i \in \mathbb{R}^d, C \text{compressor})$
- 2: On worker i:
- 3: $v_i' = \mathcal{C}(v_i)$
- 4: $r_i = v_i v_i'$
- 5: Partial synchronization:
- 6: $\bar{v}' = \frac{1}{n} \sum_{i \in [n]} v_i'$
- 7: $v_i' = \bar{v}' + r_i$
- 8: return v_i', r_i
- 9: end function

Algorithm 4 Error Reset

- 1: **Input**: C_1 compressor
- 2: Initialize $x_{i,0} = \hat{x}_0 \in \mathbb{R}^d, e_{i,0} = \mathbf{0}, \forall i \in [n]$
- 3: for all iteration $t \in [T]$ do
- 4: **for all** Workers $i \in [n]$ in parallel
 - do
- 5: $p_{i,t} \leftarrow e_{i,t-1} \eta \nabla f(x_{i,t-1}; z_{i,t})$
- 6: $p'_{i,t}, e_{i,t} \leftarrow PSync(p_{i,t}, \mathcal{C}_1)$
- 7: $x_{i,t} \leftarrow x_{i,t-1} e_{i,t-1}$
- 8: **end for**
- 9: end for

Algorithm 5 Partial Synchronization (PSync)

- 1: **function** PSYNC $(v_i \in \mathbb{R}^d, C \text{compressor})$
- 2: On worker i:
- 3: $v_i' = \mathcal{C}(v_i)$
- 4: $r_i = v_i v_i'$
- 5: Partial synchronization:
- 6: $\bar{v}' = \frac{1}{n} \sum_{i \in [n]} v_i'$
- 7: $v_i' = \bar{v}' + r_i$
- 8: return v_i', r_i
- 9: end function

prev. residual error

```
Algorithm 4 Error Reset
                                                        Algorithm 5 Partial Synchronization
 1: Input: C_1 - compressor
                                                        (PSync)
 2: Initialize x_{i,0} = \hat{x}_0 \in \mathbb{R}^d, e_{i,0} =
                                                         1: function PSYNC(v_i \in \mathbb{R}^d, \mathcal{C} - com-
    \mathbf{0}, \forall i \in [n]
                                                             pressor)
 3: for all iteration t \in [T] do
                                                                 On worker i:
         for all Workers i \in [n] in parallel
                                                         3: v_i' = \mathcal{C}(v_i)
    do
                                                         4: r_i = v_i - v_i'
             p_{i,t} \leftarrow e_{i,t-1} - \eta \nabla f(x_{i,t-1}; z_{i,t})
                                                         5: Partial synchronization:
             p'_{i,t}, e_{i,t} \leftarrow PSync(p_{i,t}, \mathcal{C}_1)
                                                         6:  \bar{v}' = \frac{1}{n} \sum_{i \in [n]} v_i' 
              x_{i,t} \leftarrow x_{i,t-1} - e_{i,t-1} + p'_{i,t}
                                                  7: v_i' = \bar{v}' + r_i
         end for
                                                                  return v_i', r_i
                                 partially synchronized
 9: end for
                                                         9: end function
                          prev. residual error
```

Error feedback	Error reset

	Error feedback	Error reset
Residual error	In $e_{i,t}$	In $e_{i,t}$ and $x_{i,t}$

	Error feedback	Error reset
Residual error	In $e_{i,t}$	In $e_{i,t}$ and $x_{i,t}$
Synchronized variable	$x_{i,t}$	$x_{i,t} - e_{i,t}$

	Error feedback	Error reset
Residual error	In $e_{i,t}$	In $e_{i,t}$ and $x_{i,t}$
Synchronized variable	$x_{i,t}$	$x_{i,t} - e_{i,t}$
Convergence error	$\frac{1}{n}\sum_{i\in[n]}\left\ e_{i,t}\right\ ^2$	$\left\ \frac{1}{n} \sum_{i \in [n]} \ e_{i,t}\ ^2 - \left\ \frac{1}{n} \sum_{i \in [n]} e_{i,t} \right\ ^2 \right\ $

Algorithm 6 CSER

- 1: **Input**: C_1, C_2 compressors, H > 0 error-reset interval
- 2: **for all** iteration $t \in [T]$ **do**
- 3: **for all** Workers $i \in [n]$ in parallel **do**
- 4:
- 5: 6:
- 7: **if** $\mod(t, H) \neq 0$ **then**
- 8:
- 8:
- 9: **else** 10:
- 11:
- 12: end if
- 13: end for

Algorithm 6 CSER

- 1: **Input**: C_1, C_2 compressors, H > 0 error-reset interval
- 2: for all iteration $t \in [T]$ do
- 3: **for all** Workers $i \in [n]$ in parallel **do**
- 4: $g_{i,t} \leftarrow \nabla f(x_{i,t-1};z_{i,t}), \ z_{i,t} \sim \mathcal{D}_i$
- 5:
- 6:
- 7: **if** $\mod(t, H) \neq 0$ **then**
- 8:
- 8:
- 9: **else**
- 11:

10:

- 12: end if
- 13: **end for**

CSFR

Algorithm 6 CSER

- 1: **Input**: C_1, C_2 compressors, H > 0 error-reset interval
- 2: **for all** iteration $t \in [T]$ **do**
- for all Workers $i \in [n]$ in parallel do 3:
- $g_{i,t} \leftarrow \nabla f(x_{i,t-1}; z_{i,t}), z_{i,t} \sim \mathcal{D}_i$ 4:
- 5:
- 6:
- $\mod(t,H) \neq 0$ then 7:
- 8: $x_{i,t} \leftarrow x_{i,t-\frac{1}{2}}, \quad e_{i,t} \leftarrow e_{i,t-\frac{1}{2}}$
- 9: else
- $e'_{i,t-\frac{1}{2}}, e_{i,t} \leftarrow PSync(e_{i,t-\frac{1}{2}}, \mathcal{C}_1)$ 10: $x_{i,t} \leftarrow x_{i,t-\frac{1}{2}} - e_{i,t-\frac{1}{2}} + e'_{i,t-\frac{1}{2}}$ 11:
- end if 12:
- 13: end for 13 / 23

▷ model partial sync.

CSFR

Algorithm 6 CSER

- 1: **Input**: C_1, C_2 compressors, H > 0 error-reset interval
- 2: **for all** iteration $t \in [T]$ **do**
- for all Workers $i \in [n]$ in parallel do 3:
- $g_{i,t} \leftarrow \nabla f(x_{i,t-1}; z_{i,t}), z_{i,t} \sim \mathcal{D}_i$ 4:
- $g'_{i,t}, r_{i,t} \leftarrow PSync(g_{i,t}, \mathcal{C}_2)$ 5 6:
- if $mod(t, H) \neq 0$ then 7:
- 8: $x_{i,t} \leftarrow x_{i,t-\frac{1}{2}}, \quad e_{i,t} \leftarrow e_{i,t-\frac{1}{2}}$
- 9: else
- $e'_{i,t-\frac{1}{2}}, e_{i,t} \leftarrow PSync(e_{i,t-\frac{1}{2}}, \mathcal{C}_1)$ 10:
- $x_{i,t} \leftarrow x_{i,t-\frac{1}{2}} e_{i,t-\frac{1}{2}} + e'_{i,t-\frac{1}{2}}$ 11:
- end if 12:
- 13: end for 13 / 23

▷ gradient partial sync.

▷ model partial sync.

CSFR

Algorithm 6 CSER

- 1: **Input**: C_1, C_2 compressors, H > 0 error-reset interval
- 2: **for all** iteration $t \in [T]$ **do**
- for all Workers $i \in [n]$ in parallel do 3:
- $g_{i,t} \leftarrow \nabla f(x_{i,t-1}; z_{i,t}), z_{i,t} \sim \mathcal{D}_i$ 4:
- $g'_{i,t}, r_{i,t} \leftarrow PSync(g_{i,t}, \mathcal{C}_2)$
- 5: $x_{i.t-\frac{1}{2}} \leftarrow x_{i,t-1} - \eta g'_{i,t}, \quad e_{i,t-\frac{1}{2}} \leftarrow e_{i,t-1} - \eta r_{i,t}$ 6:
- if $\mod(t, H) \neq 0$ then 7:
- 8: $x_{i,t} \leftarrow x_{i,t-\frac{1}{2}}, \quad e_{i,t} \leftarrow e_{i,t-\frac{1}{2}}$
- 9: else
- $e'_{i,t-\frac{1}{2}}, e_{i,t} \leftarrow PSync(e_{i,t-\frac{1}{2}}, \mathcal{C}_1)$ 10: $x_{i,t} \leftarrow x_{i,t-\frac{1}{2}} - e_{i,t-\frac{1}{2}} + e'_{i,t-\frac{1}{2}}$ 11:
- end if 12:
- 13: end for

▷ gradient partial sync.

▷ model partial sync.

CSER:

CSER:

• Use error reset instead of error feedback

CSER:

- Use error reset instead of error feedback
- Add gradient partial sync. between model partial sync.

CSER

CSER:

- Use error reset instead of error feedback
- Add gradient partial sync. between model partial sync.
- Special cases:

CSER

CSER:

- Use error reset instead of error feedback
- Add gradient partial sync. between model partial sync.
- Special cases:

```
\mathcal{C}_2=0: Partial-local-SGD/CSER-PL (replace EF by ER in QSparse-local-SGD)
```

CSER

CSER:

- Use error reset instead of error feedback
- Add gradient partial sync. between model partial sync.
- Special cases:

```
\mathcal{C}_2=0: Partial-local-SGD/CSER-PL (replace EF by ER in QSparse-local-SGD) \mathcal{C}_2=0, H=1: CSEA (replace EF by ER in EF-SGD)
```

CSEA vs. EF-SGD

Algorithm 7 CSEA

- 1: **Input**: C_1 compressor
- 2: Initialize $x_{i,0} = \hat{x}_0 \in \mathbb{R}^d, e_{i,t} = \mathbf{0}, \forall i \in [n]$
- 3: **for all** iteration $t \in [T]$ **do**
- 4: **for all** Workers $i \in [n]$ in parallel **do**
- 5: $p_{i,t} \leftarrow e_{i,t-1} \eta \nabla f(x_{i,t-1}; z_{i,t})$
- 6: $p'_{i,t} \leftarrow \mathcal{C}_1(p_{i,t})$
- 7: $e_{i,t} \leftarrow p_{i,t} p'_{i,t}$
- 8: $\bar{p}'_t \leftarrow \frac{1}{n} \sum_{i \in [n]} p'_{i,t}$
- 9: $x_{i,t} \leftarrow x_{i,t-1} e_{i,t-1} + e_{i,t} + \bar{p}'_t$
- 10: end for
- 11: end for

Algorithm 8 EF-SGD

- 1: **Input**: C_1 compressor
- 2: Initialize $x_{i,0} = \hat{x}_0 \in \mathbb{R}^d, e_{i,t} = \mathbf{0}, \forall i \in [n]$
- 3: **for all** iteration $t \in [T]$ **do**
- 4: **for all** Workers $i \in [n]$ in parallel **do**
- 5: $p_{i,t} \leftarrow e_{i,t-1} \eta \nabla f(x_{i,t-1}; z_{i,t})$
- 6: $p'_{i,t} \leftarrow \mathcal{C}_1(p_{i,t})$
- 7: $e_{i,t} \leftarrow p_{i,t} p'_{i,t}$
- 8: $\bar{p}'_t \leftarrow \frac{1}{n} \sum_{i \in [n]} p'_{i,t}$
- 9: $x_{i,t} \leftarrow x_{i,t-1} + \bar{p}'_t$
- 10: end for
- 11: end for

Outline

- 1 Motivations
- 2 Preliminaries
- 3 CSER
- 4 Evaluation
- 5 Takeaways

Evaluation

Experiments:

- Baseline: SGD, EF-SGD, QSparse-local-SGD
- Datasets (model): CIFAR-100 (WideResNet-40-8), ImageNet (ResNet-50)
- Compressor: random sparsifier
- 8 P3.2xlarge instances: V100 GPU, 10Gbps bandwidth
- AllReduce for average

Evaluation

Testing accuracy (%) on CIFAR-100 with different overall compression ratios $(R_{\mathcal{C}})$.

	Baseline			Proposed algorithm		
Optimizer/	SGD	EF-SGD	QSparse-local	CSEA	CSER	CSER-PL
$R_{\mathcal{C}}$			-SGD			
1	87.01 \pm 0.11	None	None	None	None	None
2	None	87.20 ± 0.10	87.16 ± 0.03	87.17 ± 0.21	87.47±0.03	None
4	None	86.97 ± 0.08	87.08±0.22	87.25 ± 0.23	87.22±0.03	87.33±0.05
8	None	86.61 ± 0.23	87.15±0.10	87.14 ± 0.05	87.09±0.05	87.27±0.04
16	None	85.69 ± 0.31	87.02±0.13	87.15 ± 0.09	87.28±0.04	86.72±0.05
32	None	85.17 ± 0.12	86.70±0.04	86.83 ± 0.20	86.90 ± 0.15	86.92±0.26
64	None	84.65 ± 0.07	80.64±0.47	86.63 ± 0.16	86.78 ± 0.11	86.91 ± 0.15
128	None	83.50 ± 0.87	70.27±2.37	86.30 ± 0.15	86.81 ± 0.17	86.36±0.21
256	None	83.92 ± 0.55	diverge	86.34 ± 0.20	86.68±0.07	86.27±0.02
512	None	76.05 ± 0.56	diverge	85.75 ± 0.34	86.20±0.09	85.68±0.12
1024	None	diverge	diverge	85.13±0.13	85.66±0.07	84.94±0.37

8 / 23

Evaluation

Figure 2: Testing accuracy with different algorithms, for ResNet-50 on ImageNet.

Acceleration

$256\times$ compression ratio:

- $10 \times$ for CIFAR-100
- $4.5 \times$ for ImageNet

Outline

- 1 Motivations
- 2 Preliminaries
- 3 CSER
- 4 Evaluation
- 5 Takeaways

Takeaways

- Error reset improves convergence for aggressive compressors
- A better alternative of error feedback
- Combination of gradient and model compression with tuned hyperparameters improves convergence

Q & A