Objective 1 - Limit Notation

Interpret the notation for limits.

Link to section in online textbook.

Intro video for limit notation

Our College Algebra textbook gives a light introduction to "arrow notation" when talking about limits. This is a great starting point to understand what exactly a limit is.

Symbol	Meaning
$x \to a^-$	x approaches a from the left
$x \to a^+$	x approaches a from the right
$x \to \infty$	x approaches infinity
$x \to -\infty$	x approaches negative infinity

This notation works for the output of a function as well! So if we say $f(x) \to \infty$, we mean that the output of the function approaches infinity. We've already seen this with end behavior of polynomials. For example, if we wanted to describe the end behavior of $f(x) = x^2$, we would say " $f(x) \to \infty$ as $x \to \infty$ and as $x \to -\infty$. The limit notation condenses this phrase.

Definition 1.
$$\lim_{x\to a}(f(x))=L$$
 means "as $x\to a,\ f(x)\to L$ ".

Let's practice. Use this Desmos link to answer the following questions about $f(x) = \frac{1}{x}$.

Question 1 As x approaches infinity, what happens to the y value of $\frac{1}{x}$?

$$\lim_{x\to\infty}\left(\frac{1}{x}\right)=\boxed{0}$$

As x approaches negative infinity, what happens to the y value of $\frac{1}{x}$?

$$\lim_{x \to -\infty} \left(\frac{1}{x} \right) = \boxed{0}$$

Looking at the graph, you are probably wondering what we would say about the limit as x approaches 0 of $f(x) = \frac{1}{x}$. We will deal with that in the next

objective. For the rest of this objective, we'll practice interpreting the limit notation.

Question 2 Translate the phrase " $\frac{x+3}{x^2-9}$ approaches $-\frac{1}{6}$ as x approaches -3" into limit notation.

$$\lim_{x \to -3} \left(\boxed{\frac{x+3}{x^2-9}} \right) = \boxed{-\frac{1}{6}}$$

Question 3 Translate the phrase "as x approaches infinity, $-(x+2)^3(x-3)^2$ approaches negative infinity" into limit notation.

$$\lim_{x \to +\infty} \left(\left[-(x+2)^3 (x-3)^2 \right] \right) = \left[-\infty \right]$$

Question 4 Translate the phrase "as x approaches 3, $\frac{1}{(x-3)^2}$ approaches infinity" into limit notation.

$$\lim_{x \to 3} \left(\boxed{\frac{1}{(x-3)^2}} \right) = \boxed{+\infty}$$