Scheduling: Models and Algorithms

Natasha Shakhlevich

Consultation hour Friday 3-4 pm School of Computing 9.10o

(1)	Introduction
(1)	Classification of scheduling models
(2)	Basic scheduling algorithms for single machine problems
(2)	Basic scheduling algorithms for single machine problems
(3)	Computational complexity
(3)	Computational complexity
(4)	Exercises
(4)	Single machine problems: complexity and approximation
(5)	Parallel machine models
(5)	Flow shop
(6)	Flow shop
(6)	Open shop
(7)	-
(7)	Job shop
(8)	Scheduling techniques: dispatching rules, composite rules
(8)	Scheduling techniques: branch and bound algorithms, beam search
(9)	Scheduling techniques: the shifted bottleneck heuristic
(9)	Local search methods
(10)	Local search methods
(10)	Genetic Algorithms
(11)	Revision
(11)	Revision

Introduction

Combinatorial Optimisation

Scheduling Theory

Problems of optimal arrangement, sequencing and timetabling

Introduction

Combinatorial Optimisation

Scheduling Theory

efficient allocation of one or more <u>resources</u> to <u>activities</u> over time

Introduction

Resources (machines):

- machines at a workshop,
- runways at an airport,
- crews at a construction site,
- processing units in a computing environment.

Tasks (jobs):

- operations in a workshop,
- takeoffs and landings,
- stages at a construction project,
- computer programs.

Scheduling Theory

efficient allocation of one or more <u>resources</u> to <u>activities</u> over time

"machines process jobs"

Publishing industry: typesetting, actual printing, binding, packaging.	
Clothing industry: cutting, sewing, pressing, packing.	
Steel mills: different rods or girders pass through the set of rollers in their own orders with their own temperatures and pressure settings.	
Repair of cars in a garage	
Production planning for FMS	
Scheduling different programs on the computer	
University timetable	

Gantt charts

Henry Laurence Gantt (1861-1919)

Gantt chart is the horizontal bar chart, with the x-axis representing the time and the y-axis representing machines. A colour and/or pattern code may be used to indicate operations of the same job.

Single machine **Processing** Job 1 Job 2 Job n

Single machine **Processing** Job j: p_i - processing time Job 1 r_i - release time **d**_i - due date Job 2 w_i - weight Job n

Single stage systems:

- If there is a single machine (*m*=1), each job should be processed by that machine exactly once.
- If there are several parallel machines, each job can be processed by any machine from the set $\{M_1, M_2, \dots, M_m\}$.

Multistage systems:

- Each job should be processed on each machine from the set $\{M_1, M_2, ..., M_m\}$.
- Each machine can process no more than one job at a time, each job can be processed by no more than one machine at a time.

Single stage systems

$$\alpha = \begin{cases} 1 & - \text{ single (dedicated) machine:} \\ & p_j \text{ - processing time of job } j \end{cases}$$

$$P - \text{ identical parallel machines:}$$

$$p_{ij} = p_j \text{ - processing time of job } j \text{ on machine } i$$

Multistage systems

$$\alpha = \begin{cases} F & - & \text{flow shop:} \\ & \text{job } j \text{ is processed first on machine 1, then on machine 2, ..., and finally on machine } m. \\ \alpha = \begin{cases} J & - & \text{job shop:} \text{ each job has its own route to follow} \end{cases}$$

$$O & - & \text{open shop:} \\ & \text{each job can be processed by the machines in an arbitrary order} \end{cases}$$

Job characteristics

```
There are n jobs N={1, ..., n}
```

Job *j:*

 p_{ij} - processing time of job j on machine i

 r_i - release time

d_i - due date

w_i - weight

pmtn - preemption implies the processing of any job can be interrupted and resumed later.

 C_j - completion time of job j, i.e., the completion time of the last operation of job j

Makespan	$C_{\text{max}} = \max \{C_j \mid j=1,,n\}$
Total completion time	$\sum C_j = \sum_{j=1}^n C_j$
Total weighted completion time	$\sum_{j=1}^{n} \mathbf{w}_{j} \mathbf{C}_{j} = \sum_{j=1}^{n} \mathbf{w}_{j} \mathbf{C}_{j}$

 C_j - completion time of job j, i.e., the completion time of the last operation of job j

$$L_i = C_i - d_i$$
 lateness

$$T_j = \max\{0, C_j - d_j\}$$
 tardiness

$$U_{j} = \begin{cases} 0 & \text{if } C_{j} \leq d_{j} \\ 1 & \text{otherwise} \end{cases} \quad \text{unit penalty}$$

Maximum lateness	$L_{\text{max}} = \max \{L_j \mid j=1,,n\}$	
Total tardiness	$\sum T_j = \sum_{j=1}^n T_j$	
Total weighted tardiness	$\sum_{j=1}^{n} \mathbf{w}_{j} \mathbf{T}_{j} = \sum_{j=1}^{n} \mathbf{w}_{j} \mathbf{T}_{j}$	
Total number of late jobs	$\sum U_j = \sum_{j=1}^n U_j$	
Total weighted number of late jobs	$\sum \mathbf{w}_j \mathbf{U}_j = \sum_{j=1}^n \mathbf{w}_j \mathbf{U}_j$	

$$1|r_j|L_{\max}$$

$$1|r_j$$
, Pmtn $|L_{max}|$

$$P \mid p_j = 1 \mid C_{\text{max}}$$

$$J3|p_{ij}=1|C_{max}$$

<u>In-class exercise 1:</u> Consider a scheduling problem with *n* readers and two books. Classify the following scheduling models:

Machines	Jobs	Objective	$\alpha \beta \gamma$
Two volumes of one book	Readers	Finish reading a.s.a.p.	?
Two volumes of one book	Readers	Minimise the cost of late book return	
Two different (independent) books	Readers	Finish reading a.s.a.p.	
Two different (independent) books	Readers (each reader has his own "reading sequence")	Finish reading a.s.a.p.	

Publishing industry: typesetting, actual printing, binding, packaging.		
Clothing industry: cutting, sewing, pressing, packing.		
Steel mills: different rods or girders pass through the set of rollers in their own orders with their own temperatures and pressure settings.		
Repair of cars in a garage: replace tires, repair gear box, check brakes, repair headlights, etc.		
Completing several pieces of CW so that the maximum lateness is minimised. CW j is released at time r_j , requires p_j days for completion and has a due date d_j .		
Revision schedule : starting on 13/12/2004, revise the material of 5 modules by their exam dates. Revision time for module j is p_j .		
Literature review for FYP should be based on n library books. Book j can be read in p_j days and it should be returned by its due date d_j . The library charges 30p per day on each overdue book. The objective is to minimise the total fine.		

Complexity Hierarchy

