Image Processing – HW3 (05/28/2020)

Instructions – Follow these carefully:

- 1. Please upload your work as a zip file attachment to Moodle. In the zip file, it must have the source code and a PDF report where you explain and display the outputs for each problem.
- 2. You can use either Python or Matlab to do the work.
- 3. Please feel free to read related materials available in the official Matlab/Python documentation.
- 4. The due date is 6/9 before 11:55pm. No late submission is allowed.

Assignment:

1. Smooth filter

- a. (20%) Write a routine that performs two-dimensional 5x5 median filtering to try to clean up the noise of 'bab_noise.bmp' and 'peppers_noise.' Please exclude the noise pixels before applying median filtering.
- b. (30%) Following the previous question, use two-dimensional 5x5 Gaussian filtering with its kernel as below:

0.0232	0.0338	0.0383	0.0338	0.0232
0.0338	0.0492	0.0558	0.0492	0.0338
0.0383	0.0558	0.0632	0.0558	0.0383
0.0338	0.0492	0.0558	0.0492	0.0338
0.0232	0.0338	0.0383	0.0338	0.0232

2. Edge Detection

- a. (25%) Write a routine that performs Sobel filtering to find the edge map for 'pepper.bmp.' The result should look like
 https://www.mathworks.com/discovery/edge-detection.html (please implement the Sobel filter by yourself)
- b. (25%) Following the previous question, please use 5x5 Marr-Hildreth operator (shown below) to find the edge map.

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0