TP Statistique

Manal El Karchouni, Roxane Gall, Jean Haberer

31 Mars 2020

Voici le plan de ce qui sera fait dans le TP.

0. Visualisation de chemins

Lecture du fichier des villes :

```
villes <- read.csv('./DonneesGPSvilles.csv',header=TRUE,dec='.',sep=';',quote="\"")
str(villes)

## 'data.frame': 22 obs. of 5 variables:
## $ EU_circo : Factor w/ 7 levels "ÃŽle-de-France",..: 6 6 4 3 7 4 3 2 3 4 ...
## $ region : Factor w/ 22 levels "Alsace","Aquitaine",..: 22 10 19 11 2 5 9 3 6 17 ...
## $ ville : Factor w/ 22 levels "Ajaccio","Amiens",..: 11 1 2 3 4 5 6 7 8 9 ...
## $ latitude : num 45.7 41.9 49.9 47.2 44.8 ...
## $ longitude: num 4.847 8.733 2.3 6.033 -0.567 ...</pre>
```

Représentation des chemins par plus proches voisins et du chemin optimal :

```
coord <- cbind(villes$longitude,villes$latitude)
dist <- distanceGPS(coord)
voisins <- TSPnearest(dist)

pathOpt <- c(1,8,9,4,21,13,7,10,3,17,16,20,6,19,15,18,11,5,22,14,12,2)

par(mfrow=c(1,2),mar=c(1,1,2,1))
plotTrace(coord[voisins$chemin,], title='Plus proches voisins')
plotTrace(coord[pathOpt,], title='Chemin optimal')</pre>
```


Chemin optimal

Les longueurs des trajets (à vol d'oiseau) valent respectivement, pour la méthode des plus proches voisins :

[1] 4303.568

et pour la méthode optimale :

[1] 3793.06

Ceci illustre bien l'intérêt d'un algorithme de voyageur de commerce. Nous allons dans la suite étudier les performances de cet algorithme.

1. Comparaison d'algorithmes

Nombre de sommets fixes et graphes "identiques".

```
n <- 10
sommets <- data.frame(x = runif(n), y = runif(n))</pre>
  couts <- distance(sommets)</pre>
```

1.1. Longueur des chemins

Comparaison des longueurs de différentes méthodes :

- boxplots
- test entre 'nearest' et 'branch'
- tests 2 à 2

1.2. Temps de calcul

Comparaison des temps à l'aide du package microbenchmark.

Exemple d'application de microbenchmark :

```
microbenchmark(sqrt(x),x^0.5, times=100, setup={x <- runif(1)})
```

```
## Unit: nanoseconds
## expr min lq mean median uq max neval cld
## sqrt(x) 300 402 603.97 501 601.0 4201 100 a
## x^0.5 600 701 931.04 801 901.5 5601 100 b
```

2. Etude e la complexité de l'algorithme Branch and Bound

2.1. Comportement par rapport au nombre de sommets : premier modèle

Récupération du temps sur 10 graphes pour différentes valeurs de n.

Ajustement du modèle linéaire de $\log(temps)^2$ en fonction de n.

Analyse de la validité du modèle :

- pertinence des coefficients et du modèle,
- étude des hypothèses sur les résidus.

2.2. Comportement par rapport au nombre de sommets : étude du comportement moyen

Récupération du temps moyen.

Ajustement du modèle linéaire de $\log(temps.moy)^2$ en fonction de n.

Analyse de la validité du modèle :

- pertinence des coefficients et du modèle,
- étude des hypothèses sur les résidus.

2.3. Comportement par rapport à la structure du graphe

Lecture du fichier 'DonneesTSP.csv'.

Ajustement du modèle linéaire de $\log(temps.moy)^2$ en fonction de toutes les variables présentes. Modèle sans constante.

Mise en œuvre d'une sélection de variables pour ne garder que les variables pertinentes.

Analyse de la validité du modèle :

- pertinence des coefficients et du modèle,
- étude des hypothèses sur les résidus.