电子技术实验

实验报告

(2020 - 2021 学年度 春季学期)

实验名称 _____实验一:单管放大电路

姓名刘祖炎学号2019010485院系自动化系教师叶朝辉时间2021 年 3 月 19 日

目录

1	实验	目的		1
2	预习		1	
	2.1	测量 2	N2222A 的输出特性曲线以及 eta 值	1
2.2 估算单管共射放大电路的 $\dot{A_u}$ 、 R_I 、 R_O		4 管共射放大电路的 $\dot{A_u}$ 、 R_I 、 R_O	1	
		2.2.1	静态参数	2
		2.2.2	动态参数	2
		2.2.3	动态参数 (选做)	2
	2.3	Multis	sim 电路仿真	3
		2.3.1	测量静态工作点	3
		2.3.2	测量幅频特性	3
		2.3.3	测量电压放大倍数	5
		2.3.4	测量输入、输出电阻	6
	2.4	守验数	7 捉妻枚	ç

1. 实验目的

- 掌握放大电路静态工作点的调整与测量方法; 掌握放大电路主要性能指标的测量方法。
- 理解静态工作点对放大电路动态性能的影响,测量与分析各电阻参数对放大电路静态工作点和动态特性的影响。
- 掌握晶体管输出特性、放大电路静态工作点和动态参数的仿真测量方法。

2. 预习报告

2.1 测量 2N2222A 的输出特性曲线以及 β 值

测量结果如图1所示,根据测得数据,计算得:

$$\beta = \frac{\Delta i_C}{\Delta i_B} = \frac{1.200 mA}{5 \times 10^{-6}} = 240.0$$

图 1: 2N2222A 输出特性曲线

2.2 估算单管共射放大电路的 A_u 、 R_I 、 R_O

图 2: 单管放大电路图

2.2.1 静态参数

电路图如图2所示。取 $\beta=240$,通过理论计算相关参数: 根据讲义,取 $r_{bb'}=800\Omega$,计算 $r_{be}=r_{bb'}+\beta\frac{U_T}{I_{CQ}}=800+240\times\frac{26}{3}=2880.0\Omega$ 。 根据公式:

$$\begin{cases}
I_{BQ} = \frac{V_{CC} - U_{BEQ}}{R_{b1} + (1+\beta)(R_{e1} + R_{e2})} \\
I_{C} = \beta I_{B} \\
U_{CEQ} = V_{CC} - I_{CQ}R_{C} - \frac{\beta+1}{\beta}I_{CQ}(R_{e1} + R_{e2})
\end{cases} \tag{1}$$

求得: $I_{CQ} = 3mA$, $I_{BQ} = \frac{1}{\beta}I_{CQ} = 12.50\mu A$, $U_{CEQ} = 4.52V$, $U_{CQ} = 6V$, $U_{EQ} = 1.48V$, $R_{b1} = 785.9k\Omega$.

2.2.2 动态参数

$$\begin{cases}
A = -\frac{\beta(R_C//R_L)}{r_{be}} \\
R_i = R_{b1}//r_{be} \\
R_O = R_C
\end{cases}$$
(2)

代入数据计算得:

$$\begin{cases}
A = -138.89 \\
R_i = 2869\Omega \\
R_O = 2k\Omega
\end{cases}$$
(3)

将上述计算数据填入表1中

同理, 计算 $I_{CQ} = 3.5mA$ 的相关数据, 填入表2中。

2.2.3 动态参数 (选做)

改接电容 C_e 后,直流通路与静态工作点不变,而交流信号下发射极电阻变为 $R_e=R_{e_1}=100\Omega$,根据公式:

$$\begin{cases}
A = -\frac{\beta(R_C//R_L)}{r_{be} + (1+\beta)R_{e_1}} \\
R_i = R_{b1}//(r_{be} + (1+\beta)R_{e_1}) \\
R_O = R_C
\end{cases} \tag{4}$$

计算得:

$$\begin{cases}
A = -14.83 \\
R_i = 26.08k\Omega \\
R_O = 2k\Omega
\end{cases}$$
(5)

将理论计算结果填入表3中。

2.3 Multisim 电路仿真

2.3.1 测量静态工作点

如图所示,搭建电路并进行仿真,调节 R_W 的阻值,使电流 i_C 分别等于 3mA、3.5mA(通过读取图中万用表 XMM4 的示数),仿真结果如图3、4所示,记录此时 R_{b1} 的阻值,将结果填入表1、2中。

图 3: $i_C = 3mA$

图 4: $i_C = 3.5mA$

2.3.2 测量幅频特性

如图5所示,正确连接波特仪,运行仿真,读取波特仪的波形,读取放大倍数 $A=\frac{\sqrt{2}}{2}|A_m|$ (此时, $\Delta I=-3.010dB$) 时的信号频率,结果如图6、7、8、9所示,将测量结果填入表1、2中。

图 5: 测量幅频特性的电路图

图 6: $f_L, i_C = 3mA$

图 7: $f_H, i_C = 3mA$

图 8: $f_L, i_C = 3.5mA$

图 9: $f_H, i_C = 3.5mA$

2.3.3 测量电压放大倍数

如图10所示连接电路,运行仿真,调节 i_C 的值,并相应改变电路,示波器波形如图11、12、13所示。

图 10: 测量放大倍数的电路图

图 11: $i_C = 3mA$

图 12: $i_C = 3.5mA$

图 13: $i_C = 3.5mA$,改接电容

计算得:

$$A_{u_1} = -185.65$$

$$A_{u_2} = -213.06$$

$$A_{u_3} = -15.33$$

2.3.4 测量输入、输出电阻

测量输入电阻电路图如图14所示。

图 14: 测量输入电阻的电路图

图 15: $i_C = 3mA$ 时示波器所示波形

以 $i_C=3mA$ 为例,接入 $R_1=2k\Omega$,示波器显示波形如图15所示。则 $R_I=\frac{U_I}{U_I'-U_I}R_I$ 。类似地,测量其他两种情况下的输入电阻 (注意接入电阻应当与估算值接近),将结果填入表1、2、3中。

$$R_{I_1} = 2k \times \left(\frac{3.524}{7.039 - 3.524}\right) = 2.01k\Omega$$

$$R_{I_2} = 2k \times \left(\frac{3.243}{7.041 - 3.243}\right) = 1.71k\Omega$$

$$R_{I_3} = 20k \times (\frac{7.036}{7.036 - 3.744}) = 22.75k\Omega$$

测量输出电阻电路图如图16所示。

图 16: 测量输出电阻的电路图

以 $i_C=3mA$ 为例,分别测量 $R_L=10k\Omega$ 、 R_L 开路时万用表 XMM2 显示的 U_O 、 U_O' ,则 $R_O=R_L(\frac{U_{O'}}{U_O}-1)$,类似地,测量其他两种情况下的输出电阻,将结果填入表1、2、3中。。 计算得:

$$R_{O_1} = 10k \times (\frac{1.054}{0.886} - 1) = 1.90k\Omega$$

$$R_{O_2} = 10k \times (\frac{1.212}{1.019} - 1) = 1.89k\Omega$$

$$R_{O_3} = 10k \times (\frac{92.03}{76.75} - 1) = 1.99k\Omega$$

2.4 实验数据表格

表 1: $\beta=240.0, I_{CQ}=3mA$

参数	理论值	仿真结果	实测值
U_{EQ}/V	1.48	1.477	1. 472
U_{CQ}/V	6.00	6.000	6.00
$R_{b1}/k\Omega$	785.9	750	786
A_u	-138.89	-185.65	-164. 72
$R_I/k\Omega$	2.87	2.01	2. 32
$R_O/k\Omega$	2	1.90	1. 90
f_H/Hz		439.77	519. 51
f_L/MHz		22.24	1. 754

表 2: $\beta = 240.0, I_{CQ} = 3.5mA$

参数	理论值	仿真结果	实测值
U_{EQ}/V	1.72	1.723	1. 718
U_{CQ}/V	5.00	4.997	5.00
$R_{b1}/k\Omega$	656.9	619	660
A_u	-155.51	-213.06	-188.64
$R_I/k\Omega$	2.57	1.71	2. 05
$R_O/k\Omega$	2	1.89	1.80
f_H/Hz		507.13	688. 33
f_L/MHz		19.28	1. 534

表 3: $\beta=240.0, I_{CQ}=3.5mA$

参数	理论值	仿真结果	实测值
A_u	-14.83	-15.33	-15.03
$R_I/k\Omega$	26.08	22.75	23. 97
$R_O/k\Omega$	2	1.99	1.87