

Final Project

by

Priya Subramanian

Topic : Statistik mit R

Lecturer : Julianne Wawerda

Project Period: 28.07.2021 – 30.07.2021

Project Partners : Ghazaleh Erfanianfar

Dan-Ovidiu Melinte

Serkan Tezgel

Srilakshmi Velusamy

Table of Contents

ask 1: Basics	
ask 2: Multiple Choice	

Task 1: Basics

SAP before	2	5	2	7	5	6	1	3	7	3
SAP after	10	10	8	6	4	9	4	8	7	5

1) Calculate the Means, Mode/Modes and Median (SAP_before und SAP_after) Mode:

SAP_before:

2, 5, 2, 7, 5, 6, 1, 3, 7, 3

Value	Frequency
1	1
2	2
3	2
5	2
6	1
7	2

(Has **4 Modes**) Modes: **2,3,5,7**

Type: Multimodal

SAP_after:

10, 10, 8, 6, 4, 9, 4, 8, 7, 5

Value	Frequency
4	2
5	1
6	1
7	1
8	2
9	1
10	2

(Has 3 Modes)

Modes: 4,8,10

Type: **Trimodal**

Mean:

Symbol: \bar{X}

SAP_before:

 $\sum (2+5+2+7+5+6+1+3+7+3) / 10 = \bar{x} (4.1)$

Mean = 4.1

Median:

SAP_before:

2, 5, 2, 7, 5, 6, 1, 3, 7, 3 Sorted: 1, 2, 2, 3, 3, 5, 5, 6, 7, 7

Median = 4

SAP_after:

 $\sum (10+10+8+6+4+9+4+8+7+5) / 10 = \bar{x} (7.1)$

Mean = 7.1

SAP_after:

10, 10, 8, 6, 4, 9, 4, 8, 7, 5 Sorted: 4, 4, 5, 6, 7, 8, 8, 9, 10,10

Median = 7.5

2) Calculate the variances and Standard Deviations (SAP_before and SAP_after)

Variance:

Formula:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

SAP_before:

Variance = 4.76

SAP_after:

Variance = 5.21

Standard Deviation:

Formula:

$$SD = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

SAP_before:

Standard deviation = 2.18

SAP_after:

Standard deviation = 2.28

3) Is the Graph right-skewed, left-skewed, or symmetrical?

Right-skew scaled

Left-skew scaled

Symmetrical scaled

4) Assign the scale level to the following data: (Nominal, Ordinal, Interval, Ratio, Absolut), and which operation is allowed.

Variable type	Scale Level	Operation
Military Rank	Ordinal	= / ≠
Age	Ratio	= / ≠
		+ / - ÷ / *
Traffic density	Ratio	= / ≠
		+ / - ÷ / *
Gender	Nominal (Dichotomous)	= / ≠
Fares	Ratio	= / ≠
		+ / - ÷ / *
Nationality	Nominal	= / ≠
School Education	Ordinal	= / ≠
Intelligence	Interval	= / ≠
Quotient		
		+/-
Subject	Nominal	= / ≠
Semester number	Absolut	= / ≠

		+/- ÷/*
Exam Points	Ratio	= / ≠ < / > + / - ÷ / *
Rate classes for Motor Vehicle liability	Ordinal	/ / = / ≠ < / >

5) Assign the following variables to their variable level (continuous vs. discrete).

Nin	Mort	Variable			
Nr.	Wert	discrete	continuous		
1	Tax class	©	С		
2	Gender	©	C		
3	Social Class	©	C		
4	Income Tax	C	⊙		
5	Temperatur in Kelvin	C	⊙		
6	Windforce in Meter/Sekunde	C	⊙		
7	Body weight	C	⊙		

8	School grade (1-6)	©	C
9	Exam points	C	⊙
10	Population	©	C
11	Semester number	©	C
12	Commercial class (Fruit)	©	C

6) Describe in sentences what is the difference and similarities between standard normal distribution and normal distribution. Use the formulas.

Similarity:

* The basic properties for the both are same. Such as , Bell-shaped, Symmetrical is similar to Empirical Rule

Difference:

Standard Normal Distribution

- * It is a special case of the normal distribution
- * Mean is equal to 0 and the standard deviation is equal to 1

Normal Distribution

- * It is the most commonly used probability distribution in statistics.
- * Mean and median are equal; both located at the center of the distribution
- * The mean of the normal distribution determines its location
- * The standard deviation determines its spread.

Formula:

$$egin{align} f(x) &= rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2} \ &= rac{1}{1 imes\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-0}{\sigma}
ight)^2} \ &= rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2} \end{aligned}$$

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Task 2: Multiple Choice

The special point is valid only within this task. Maximum you can reach is 10 points.

coefficient of 0.85 indicates a weak				
 A Bravais-Pearson correlation coefficient of 0.85 indicates a weak linear correlation. 				
Falsch				
is twice the distance between median				
Falsch				
mined if there is a unimodal				
Falsch				
4) Nominal scaled data can be put in a natural order.				
Falsch				
5) Outliers have a particularly strong effect on the results of non-				
robust analysis methods.				
Falsch				
6) The standard deviation is not calculated as a positive square root of				
the variance.				
Falsch				
7) The kurtosis is a measure of the curvature of a distribution.				
Falsch				
8) The calculation of the variance requires at least metrically scaled				
data.				
Falsch				

9) The range is the absolute distance between the smallest and the				
largest value.				
Richtig	Falsch			
10) The Bravais-Pearson correlation coefficient can only take				
values between 0 and 1.				
Richtig Falsch				
11) The statistical replacement of missing values requires at least				
metrically scaled data.				
Richtig Falsch				