# Query Processing 4: Hash Join

Yufei Tao

https://www.cse.cuhk.edu.hk/~taoyf

This lecture will introduce the **hash join** algorithm for computing a natural join involving two relations.

#### The Binary Join Problem

 $R_1(X,Y)$ : A relation with attributes X and Y.

 $R_2(X, Z)$ : A relation with attributes X and Z.

 $B_1$  = the number of disk blocks that  $R_1$  occupies.

 $B_2$  = the number of disk blocks that  $R_2$  occupies.

M = the number of memory blocks (a.k.a., the buffer blocks).

• We assume that  $M \ge 7$  and M-1 is a multiple of 3.

**Goal:** Compute the join result  $R_1 \bowtie R_2$ .

Recall that the **block-based nested loop** (BNL) algorithm can compute the join result in  $B_1 + \lceil \frac{B_1}{M-1} \rceil B_2$  I/Os. In particular, if  $R_1$  fits in M-1 memory blocks, then the I/O cost of BNL is  $B_1 + B_2$ .



Let  $\mathbb{D}$  be the domain of the "join attribute" X. Set

$$U=(M-1)/3$$

We are given a **hash function** H, which is a function mapping  $\mathbb{D}$  to the set of integers  $\{1, 2, ..., U\}$ .

Given a tuple  $t_1$  of  $R_1$ , we refer to  $H(t_1.X)$  as the **hash value** of  $t_1$ . Given a tuple  $t_2$  of  $R_2$ , we refer to  $H(t_2.X)$  as the **hash value** of  $t_2$ .

We will carry out our discussion under the following assumption:

**Good hashing assumption:** For any  $h \in [1, U]$ , the tuples of  $R_1$  with hash value h can fit in U blocks.

No such requirements are placed on  $R_2$ .



#### Buckets

Given a value  $h \in [1, U]$ , define

$$R_1(h) = \{ \text{tuple } t \in R_1 \mid H(t_1.X) = h \}$$
  
 $R_2(h) = \{ \text{tuple } t \in R_2 \mid H(t_2.X) = h \}$ 

We will refer to  $R_1(h)$  and  $R_2(h)$  as **buckets**. Clearly, each relation has U buckets.

Fact: 
$$R_1 \bowtie R_2 = \bigcup_{h=1}^U R_1(h) \bowtie R_2(h)$$
.

In other words, once we have obtained all buckets, we can focus on joining each  $R_1(h)$  with the **corresponding**  $R_2(h)$ .

## Hash Join

**Step 1:** Create the U buckets of  $R_1$  and  $R_2$ , respectively.

**Step 2:** For each  $h \in [1, U]$ , compute  $R_1(h) \bowtie R_2(h)$ .

We will discuss each step in turn.

We will explain how to create the U buckets of  $R_1$ .

Use one memory block as the **output buffer** for each bucket  $R_1(h)$ , where  $h \in [1, U]$ .

Use one memory block as the **input buffer** for reading  $R_1$ .

For each tuple t read from  $R_1$ , add it to the output buffer of  $R_1(H(t.X))$ .

When an output buffer — say for bucket  $R_1(h)$  of some  $h \in [1, U]$  — is full, append it to the file of  $R_1(h)$  on disk.



The I/O cost is bounded by  $2B_1$  because

- every block of R<sub>1</sub> is read once;
- the number of full blocks flushed to the disk is at most  $B_1$ .



**Remark:** Each bucket can have at most one non-full block, and this block must reside in memory. We do not write those blocks to disk; otherwise, the I/O cost can increase to  $2B_1 + U$  in the worst case (think: why?).

Create the U buckets of  $R_2$  in the same way, while keeping the non-full bucket blocks of  $R_1$  in memory.

The I/O cost is bounded by  $2B_2$ 

At this moment, we have used 2U memory blocks:

- U blocks for  $R_1$  (each may be the non-full block of a bucket);
- U blocks for  $R_2$  (each may be the non-full block of a bucket).

**Step 2:** For each  $h \in [1, U]$ , compute  $R_1(h) \bowtie R_2(h)$ .

Apply BNL to compute  $R_1(h) \bowtie R_2(h)$ . By the good hashing assumption,  $R_1(h)$  can be loaded into U memory blocks. Then, use one memory block to scan  $R_2(h)$ .

• In total, we use at most 3U + 1 = M memory blocks.

The I/O cost is bounded by  $B_1 + B_2$  because every disk-resident block of the 2*U* buckets is read exactly once.

Overall, the hash join algorithm performs  $3(B_1 + B_2)$  I/Os.