Linear Regression Models P8111

3/8 5:00

Lecture 13

Hammer LL 109

Jeff Goldsmith March 3, 2016

Today's Lecture

- Model selection vs. model checking
- Continue with model checking (regression diagnostics)

Model selection vs. model checking

In a model of the form

$$y|x = f(x) + \epsilon \qquad \epsilon \sim (0, \sigma^* I)$$

model selection focuses on how you construct $f(\cdot)$; model checking asks whether the ϵ match the assumed form.

Model checking

Two major areas of concern:

- Global lack of fit, or general breakdown of model Linearity" ×p is 'Right" assumptions

▶ Unbiased, uncorrelated errors
$$E(\epsilon|x) = E(\epsilon) = 0$$
▶ Constant variance $Var(y|x) = Var(\epsilon|x) = \sigma^2$
▶ Independent errors
▶ Normality of errors

Effect of influential points and outliers

Model checking

- Global lack of fit, or general breakdown of model assumptions
 - Residual analysis QQ plots, residual plots against fitted values and predictors Adjusted variable plots
- Effect of influential points and outliers
 - ► Measure of leverage, influence, outlying-ness

Some data plots

Some residual plots

Checking Normality assumption

Non-constant variance

$$\mathcal{E} \sim \mathcal{N}(0, \mathcal{E})$$
 What to do ...
$$\mathcal{I} \sim \mathcal{N}(x\beta, \mathcal{E})$$

- Nothing; just use least squares and bootstrap
- Use weighted LS, GLS (later)
- Use a variance stabilizing transformation

Variance-stabilizing transformation

Suppose y is strictly positive, $\mu = E(y|x)$, $Var(y|x) = \sigma^2 g(\mu)$

- Replace y with $y^* = T(y)$ such that $Var(y^*|x)$ is approximately constant
- Delta method says $Var(T(y)) = (T'(\mu))^2 \sigma^2 g(\mu)$

Variance-stabilizing transformation

To get constant variance, we want

So the transformation necessary to stabilize the variance really depends on the variance function itself, e.g. $g(\cdot)$

Variance-stabilizing transformation examples

■ Example 1: If $Var(y|x) = \sigma^2 \mu^2$, i.e. if $g(y) = y^2$, T(y) = ?

$$T(y) = \int \frac{dy}{\sqrt{g(y)}} dy = \int \frac{dy}{\sqrt{y}} dy = ln(y)$$

■ Example 2: If $Var(y|x) = \sigma^2 \underline{\mu}$, i.e. if g(y) = y, T(y) = ?

Isolated points

Points can be isolated in three ways

- Leverage point outlier in *x*
- Outlier outlier in y|x
- Influential point a point that largely affects *β*
 - Deletion influence; $|\hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}_{(-i)}|$
 - ► Basically, a high-leverage outlier

Leverage is measured by the hat matrix, outlying-ness by the residual

Quantifying leverage

We measure leverage (the "distance" of x_i from the distribution of x) using

$$h_{ii} = \mathbf{x}_i^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i$$

 $h_{ii} = x_i^T (X^T X)^{-1} x_i$ where h_{ii} is the $(i, i)^{th}$ entry of the hat matrix.

$$\begin{array}{c} \times (x^{T}x)^{-1}x^{T} \\ \hline \\ \left(x^{T}x^{T}\right) \\ \end{array}$$

Leverage

Some notes about the hat matrix

$$\sum_{i} h_{ii} \stackrel{\text{def}}{=} tr(\mathbf{H}) = (p+1)$$

$$tr(\underbrace{x(x^{T}x)^{T}(x^{T})}_{x}) = tr(\underbrace{x(x^{T}x)^{T}}_{x})$$

(Note – the trace of the hat matrix generalizes to non-parametric methods, where you don't have a specific number of parameters to count. This is a useful measure of "model size" or "effective degrees of freedom" in these cases.)

$$5y = 3$$

Leverage

Some notes about the hat matrix

$$\hat{y}_i = \sum_j \underline{h}_{ij} y_j$$

$$\hat{y}_i = \hat{h}_{ij} y_j$$

$$\sum_{i} h_{ij} = \sum_{j} h_{ij} = 1$$

$$\underbrace{h_{ii}}_{ii} \approx ($$

$$h_{ij} \approx 0$$

These mean that h_{ii} is the weight given to y_i in determining \hat{y}_i

Leverage

What counts as "big" leverage?

- Average leverage is (p+1)/n
- Typical rules of thumb are 2(p+1)/n or 3(p+1)/n
- Leverage plots can be useful as well

Outliers

- When we refer to "outliers" we typically mean "points that don't have the same mean structure as the rest of the data"
 - Residuals give an idea of "outlying-ness", but we need to standardize somehow
- Remember (from last lecture) $Var(\hat{\epsilon}_i) = \sigma^2(1 h_{ii}) \dots$

Outliers

The standardized residual is given by

$$\hat{\epsilon}_i^* = \frac{\underline{\hat{\epsilon}_i}}{\sqrt{Var(\hat{\epsilon}_i)}} = \frac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{(1 - h_{ii})}}$$

The Studentized residual is given by

$$t_{i} = \frac{\hat{\epsilon}_{i}}{\hat{\sigma}_{(-i)}\sqrt{(1-h_{ii})}} = \hat{\epsilon}_{i}^{*} \left(\frac{n-(p+1)}{n-(p+1)-\hat{\epsilon}_{i}^{*2}}\right)^{1/2}$$

Studentized residuals follow a $t_{n-(p+1)-1}$ distribution.

Influence

Specifically, deletion influence

$$|\hat{\beta} - \hat{\beta}_{(-i)}| = (\hat{\beta} - \hat{\beta}_{(-i)})^{\mathsf{T}} (\hat{\beta} - \hat{\beta}_{(-i)})^{\mathsf{T}}$$

Cook's distance is

$$D_{i} = \frac{(\hat{\beta} - \hat{\beta}_{(-i)})^{T} (X^{T}X)(\hat{\beta} - \hat{\beta}_{(-i)})}{(p+1)\hat{\sigma}^{2}}$$

$$= \frac{(\hat{y} - \hat{y}_{(-i)})^{T} (\hat{y} - \hat{y}_{(-i)})}{(p+1)\hat{\sigma}^{2}}$$

$$= \frac{1}{p+1} \hat{\epsilon}_{i}^{2} \frac{h_{ii}}{1 - h_{ii}}$$

Cook's distance plot

Cook's distance plot

Handy R functions

Suppose you fit a linear model in R;

- hatvalues gives the diagonal elements of the hat matrix h_{ii} (leverages)
- rstandard gives the standardized residuals
- rstudent gives the studentized residuals
- cooks.distance gives the Cook's distances

Today's big ideas

■ Model checking

■ Suggested reading: Faraway Ch 7