Termodinamica

Luca Vettore

November 2023

1 Introduzione

Lo scopo di questo documento è quello di fornire un percorso alternativo per lo studio della termodinamica. Le varie sezioni affrontano in modo approfondito un macro-argomento, combinando informazioni prese da libri e internet, rielaborate e presentate in un modo ritenuto più logico dall'autore. Questo documento è inteso come uno strumento aggiuntivo per lo studio della materia, ma richiede già una conoscenza pregressa degli argomenti trattati. L'ordine delle sezioni è abbastanza casuale ed è possibile vi siano ripetizioni o vengano usati concetti definiti in una sezione successiva.

2 La temperatura

Un sistema è detto chiuso quando è in grado di scambiare energia, ma non materia con l'ambiente esterno. Mettendo a contatto due sistemi chiusi, questi potranno solamente scambiare energia sotto forma di lavoro o calore.

Consideriamo due sistemi chiusi che non possono scambiare lavoro (ad esempio contenitori diatermani con pareti rigide). Mettendo a contatto i due sistemi, si osservano comunque trasformazioni fisiche (cambiamenti nelle grandezze che li descrivono, ad es volume o pressione). Se non avvengono trasformazioni, allora i due sistemi sono detti in equilibrio termico.

Introduciamo ora il principio 0 della termodinamica:

Dati tre sistemi A,B,C, se A è in equilibrio termico con B e B è in equilibrio termico con C, allora A è in equilibrio termico con C.

Deve quindi esistere una proprietà comune tra i 3 sistemi che ne descrive l'equilibrio termico. Questa proprietà è la temperatura ed è una grandezza intensiva (non è additiva rispetto ai sistemi).

Come possiamo quantificare la temperatura? Prendiamo due sistemi A e B, descritti da due coordinate termodinamiche (X_i^j, Y_i^j) . Per prima cosa prepariamo il sistema A negli stati A_j e li mettiamo a contatto con B fino al raggiungimento dell'equilibrio termico. Possiamo quindi misurare le coordinate (X_a^j, Y_a^j) e rappresentarle su un piano cartesiano. Ripetiamo il procedimento con gli stati B_j mettendoli a contatto con A. Otterremo due curve, dette isoterme, dove ogni stato è in equilibrio termico con tutti gli altri (\Leftarrow principio 0).

Con un procedimento analogo possiamo tracciare alcune isoterme per uno dei due sistemi. Fissiamo $Y=y_0$, i punti corrispondenti sulle varie isoterme permettono di associare X^j a varie temperature t^j . Scegliamo due di queste isoterme come riferimento, troviamo X_1, X_2 intersezioni delle isoterme con $Y=y_0$ e dividiamo questo intervallo in un certo numero di gradi. La temperatura sarà quindi una funzione $t=\tau(x)$, di solito scelta lineare per comodità. La temperatura così definita è quindi indice dello stato termico di un sistema.

2.1 Esempi di scale termometriche

2.1.1 Termometri analogici e Celsius (${}^{o}C$)

Nella pratica risulta comodo prendere come riferimento due sistemi in cui vi è equilibrio tra varie fasi (ad es solido e liquido). Durante una transizione di fase, un sistema tende a mantenere la stessa temperatura e il calore che gli viene fornito è utilizzato per rompere i legami chimici tra la molecole (calore latente).

La scala Celsius prende come riferimento il punto di fusione dell'acqua e il suo punto di ebollizione. Una scelta pratica per la grandezza termometrica da utilizzare può essere fatta prendendo in considerazione la dilatazione termica. Un corpo con una dimensione molto maggiore delle altre, tenderà ad espandersi all'aumentare della temperatura secondo la legge:

$$l(t) \simeq l_0(1 + \alpha \Delta t)$$

Misurando l'oggetto in equilibrio termico con i due punti di riferimento, è possibile ottenere una scala di temperature in cui a una temperatura in gradi ${}^{o}C$ corrisponde ad una certa lunghezza. Questo è il principio di funzionamento dei termometri analogici.

2.1.2 Termometri a gas e Kelvin (K)

Possiamo definire una scala termometrica assoluta usando un gas e la legge di Gay-Lussac. Un gas mantenuto a volume costante segue la legge:

$$\frac{P_0}{T_0} = \frac{P_1}{P_0} \Rightarrow P(T) \propto T$$

Possiamo usare lo stesso riferimento di prima e ottenere una scala termometrica assoluta (perchè legata al comportamento dei gas). Dividendo nuovamente l'intervallo in 100 gradi e aggiungendo la condizione $0^{\circ}C=273,16K$ otteniamo una facile corrispondenza tra Celsius e Kelvin.

2.1.3 Macchine termiche e scala termodinamica

Il primo teorema di Carnot prevede che le quantità di calore scambiate durante un ciclo di Carnot dipenda esclusivamente dalle temperature delle due isoterme. Possiamo definire un'ulteriore scala termometrica, nota come scala termodinamica, partendo da questo risultato.

Consideriamo tre macchine termiche M_i . La prima opera tra le temperature t_1, t_2 , quindi applicando il teorema di Carnot:

$$\left| \frac{Q_1}{Q_2} \right| = f(t1, t2)$$

La seconda opera tra t_1, t_3 , da cui:

$$\left| \frac{Q_1}{Q_3} \right| = f(t1, t3)$$

e la terza tra t_2, t_3 :

$$\left| \frac{Q_2}{Q_3} \right| = f(t2, t3)$$

con dei semplici passaggi algebrici:

$$\left| \frac{Q_1}{Q_2} \right| = \left| \frac{Q_1}{Q_3} \right| \cdot \left| \frac{Q_3}{Q_2} \right| = \frac{f(t_1, t_3)}{f(t_2, t_3)} = \frac{\theta(t_1)}{\theta(t_2)} = \frac{T_1}{T_2} \text{ (dal T di Carnot)}$$

quindi:

$$T = T_0 \left| \frac{Q}{Q_0} \right|$$

con un'appropriata scelta di parametri, questa scala può essere fatta coincidere con quella assoluta.

3 I gas

3.1 I gas perfetti

Il primo modello di gas che studiamo è quello di gas ideale o perfetto. Questo modello si basa su alcune ipotesi:

- il gas è formato da molecole puntiformi non interagenti
- gli urti tra le particelle sono elastici e tra due urti una particella si muove di moto rettilineo uniforme
- la distribuzione delle particelle è isotropa
- non vi sono attriti interni o con le pareti del contenitore. Equivalentemente, l'energia si conserva

Un gas reale è ben approssimato da questo modello a basse pressioni e alte temperature. Un gas perfetto è descritto dalla terna di coordinate termodinamiche (P, V, T).

3.1.1 Osservazioni sperimentali ed equazione di stato

Partiamo da una serie di osservazioni e leggi sperimentali, da cui poi ricaveremo un risultato più generale.

• Legge di Boyle-Mariotte: durante una trasformazione a temperatura costante vale:

$$PV = const$$
 (t costante)

• Legge di Charles: in una trasformazione a pressione costante vale:

$$V = V_0(1 + \alpha \Delta t)$$
 (P costante)

• Legge di Gay-Lussac: durante una trasformazione a volume costante vale:

$$P = P_0(1 + \alpha \Delta t)$$
 V costante

Dove α è una costante universale (indipendente dal gas) e vale $\alpha = \frac{1}{273 \cdot 16}$.

Introducendo la scala termometrica assoluta e la conversione $T = t \frac{K}{\circ C} + T_0$ con $T_0 = 273, 16K$, possiamo riscrivere le ultime due leggi:

• Legge di Charles:

$$V = V_0(1 + \frac{T - T_0}{T_0}) = V_0 \frac{T}{T_0} \Rightarrow \frac{V}{T} = \frac{V_0}{T_0}$$
 P costante

• Legge di Gay-Lussac:

$$P = P_0(1 + \frac{T - T_0}{T_0}) = P_0 \frac{T}{T_0} \Rightarrow \frac{P}{T} = \frac{P_0}{T_0} \quad \text{V costante}$$

Combinando le leggi di Boyle-Mariotte, Charles e Gay-Lussac, possiamo derivare l'equazione di stato dei gas perfetti. Iniziamo con una trasformazione isobara (a pressione costante) e successivamente applichiamo una trasformazione isoterma (a temperatura costante). Durante la trasformazione isobara, secondo la legge di Charles, il volume di un gas è direttamente proporzionale alla sua temperatura assoluta, ovvero $V \propto T$. Successivamente, applicando la trasformazione isoterma, secondo la legge di Boyle-Mariotte, il prodotto di pressione e volume è costante, ovvero PV = costante.

Combinando queste relazioni, otteniamo che $PV \propto T$. Ulteriori osservazioni sperimentali ci portano a esprimere tale risultato come:

$$PV = nRT$$

dove n rappresenta il numero di moli e R è la costante dei gas perfetti. Questa relazione è nota come legge di stato dei gas perfetti.

La costante dei gas perfetti R può essere espressa in diverse unità. In termini di energia, quando si utilizza il Joule come unità di energia, il valore di R è approssimativamente $8.314\,\mathrm{J/(mol\cdot K)}$. Se invece si utilizza la Caloria il valore di R è circa $1.987\,\mathrm{cal/(mol\cdot K)}$. Questi valori riflettono le diverse scale energetiche e sono utili a seconda del contesto dell'analisi termodinamica.

3

3.1.2 Teoria cinetica

Possiamo studiare il comportamento di un gas ideale analiticamente, partendo dalla sua struttura microscopica e ricavandone importanti relazioni sulle grandezze macroscopiche.

Consideriamo la singola particella del gas in esame, essa sarà caratterizzata da una velocità $v_i = \begin{bmatrix} v_i^x \\ v_i^y \end{bmatrix}$ e avrà una quantità di moto $q_i = m \cdot v_i$.

Durante un urto con la parete del contenitore (per semplicità consideriamo un contenitore cubico di lato l, ma un analisi più dettagliata permette di estendere questi risultati a contenitori di forma arbitraria), la particella scambia una quantità di moto pari a $\Delta q_i^j = 2m \cdot v_i^j$.

Il tempo tra due urti successivi con le pareti (ignorando gli urti interni, ma anche qua un'analisi più dettagliata permette di generalizzare il risultato) è dato da $\Delta \tau_i^j = \frac{2l}{r^j}$.

Combinando i due risultati precedenti possiamo calcolare la forza media e di conseguenza la pressione applicata sulla parete j come:

$$P_i^j = \frac{F_i^j}{I^2} = \frac{m(v_i^j)^2}{I^3}$$

Introducendo la densità del gas: $\rho = \frac{Nm}{l^3}$ (dove N è il numero di particelle) e la velocità quadratica media: $\langle v_j^2 \rangle = \frac{\sum_i (v_j^i)^2}{N}$ possiamo riscrivere la pressione come:

$$P^j = \rho < v_i^2 >$$

Imponendo l'isotropia del gas e definendo $v_{qm} = \sqrt{\sum_j < v_j^2 >}$ si ottiene:

$$P_j = P_k \Rightarrow \langle v_j^2 \rangle = \frac{1}{3} v_{qm}^2$$

$$\Rightarrow P = P_j = \frac{1}{3}\rho v_{qm}^2$$

Assumendo che le particelle siano identiche e che l'energia delle particelle sia esclusivamente cinetica, l'energia interna del gas vale:

$$U = \frac{Nm}{2} \frac{\sum_{i} v_{qm}^2}{N}$$

Usando la relazione appena trovata per la pressione, si può ricavare $v_{qm}^2 = \frac{3P}{\rho}$, imponendo la legge di stato del gas ideale PV = nRT è possibile riscrivere l'energia interna come:

$$U = \frac{3}{2}nRT$$

Dall'equazione di stato e dalla definizione trovata per la pressione, si può ricavare la definizione cinetica di temperatura:

$$T = \frac{\mathcal{M}v_{qm}^2}{3R}$$

dove \mathcal{M} è la massa molare del gas.

3.1.3 Distribuzione delle velocità

Studiamo ora la distribuzione delle velocità all'interno del gas. Questo studio ci permetterà poi di dimostrare il teorema dell'equipartizione dell'energia ed estendere i risultati della sezione precedente a gas pluriatomici.

Consideriamo un contenitore cilindrico di gas (come di consueto, la scelta è fatta per semplificare i conti, ma i risultati hanno validità generale). Per un volume infinitesimo di gas compreso tra la quota z e z + dz la condizione di equilibrio meccanico risulta:

$$\begin{split} PA &= (p+dp)A + dm \; g = (P+dp)\rho A dzg \\ \Rightarrow Pa - Pa &= A dp + \rho A dzg \\ \Rightarrow dp &= -\rho dzg \end{split}$$

La densità vale $\rho = \frac{n\mathcal{M}}{nRT}$, quindi:

$$\frac{dp}{P} = -\frac{\mathcal{M}}{RT}gdz$$

$$\Rightarrow \int_{P_0}^{P} \frac{dp}{P} = -\int_{0}^{z} \frac{\mathcal{M}}{RT}gdz$$

$$\Rightarrow \log\left(\frac{P}{P_0}\right) = -\frac{\mathcal{M}gz}{RT}$$

da cui si ricava l'equazione barometrica:

$$P(z) = P_0 \exp\left(-\frac{\mathcal{M}gz}{RT}\right) = P_0 \exp\left(-\frac{mgdz}{k_bT}\right)$$

Abbiamo già dimostrato che vale $\rho \propto P$, quindi:

$$\rho(z) = \rho_0 \exp\left(-\frac{mgdz}{k_b T}\right)$$

Le particelle alla quota z saranno quelle che inizialmente avevano energia cinetica pari al potenziale gravitazionale a tale quota: $T = \frac{m}{2}v_z^2 = mgz$. Sostituendo questa relazione nell'equazione barometrica otteniamo:

$$\rho(v_z) = \rho_0 \exp\left(-\frac{mv_z^2}{2k_b T}\right)$$

Definiamo una funzione f che rappresenta la probabilità di una particella di trovarsi alla quota z:

$$f(z)dz = \frac{dN(z)}{N_{tot}} \propto \rho(z)dz$$
$$\Rightarrow f(v_z)dv_z \propto \rho(v_z)dv_z$$
$$\Rightarrow f(v_z) = f_0 \exp\left(-\frac{mv_z^2}{2k_bT}\right)$$

per un certo f_0 .

Il valore di f_0 può essere trovato imponendo la condizione di normalizzazione della distribuzione di probabilità:

$$\int_{\mathbb{R}} f(v_z) dv_z = 1 \Rightarrow f_0 = \sqrt{\frac{m}{2\pi k_b T}}$$

Le distribuzioni di probabilità per le componenti della velocità devono essere indipendenti. Inoltre, il gas è isotropo per ipotesi. Combinando queste due condizioni, possiamo trovare la distribuzione della velocità (come vettore). Osserviamo che questa deve dipendere solamente dal modulo, quindi possiamo scrivere:

$$f(v) = \left(\frac{m}{2\pi k_b T}\right)^{\frac{3}{2}} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_b T}\right)$$

che è una gaussiana centrata in $v_p = \sqrt{\frac{2RT}{\mathcal{M}}}$.

Un procedimento simile può essere seguito per ricavare la distribuzione delle energie cinetiche, da cui segue che:

$$\bar{E}_i = \frac{1}{2}k_bT$$

Questo ci permette di generalizzare il risultato trovato per l'energia interna di un gas monoatomico, a un gas formato da particelle con f gradi di libertà:

$$U = \frac{f}{2}nRT$$

Per un gas monoatomico f = 3, per un gas biatomico f = 5, per gas formati da più di due atomi f = 6.

3.2 Equilibrio

Un sistema è detto in equilibrio termodinamico se rispetta 3 condizioni:

- Equilibrio meccanico: tutte le forze che agiscono sul sistema si equilibrano
- Equilibrio termico: la temperatura del sistema è uniforme
- Equilibrio chimico: la composizione del sistema rimane costante

Un sistema in equilibrio termodinamico può essere descritto da una funzione di stato:

$$f(X_1,...,X_n)=0$$

nel caso di un gas perfetto questa è data dall'equazione di Clapeyron in forma implicita:

$$PV - nRT = 0$$

3.3 Trasformazioni

Quando un sistema passa dallo stato A allo stato B si dice che subisce una trasformazione, indicata come $A \to B$. Questa trasformazione può essere classificata in diversi modi in base alle sue caratteristiche:

- Trasformazione quasi-statica: una trasformazione in cui il sistema passa esclusivamente per stati di equilibrio. Se la trasformazione viene fermata prima di essere completata, il sistema rimane nello stato che ha raggiunto.
- Trasformazione reversibile: una trasformazione quasi-statica la cui inversa è quasi-statica. Questa trasformazione non provoca modificazioni nell'ambiente esterno al sistema.
- Trasformazione spontanea: una trasformazione che avviene su un sistema isolato in assenza di interventi esterni. Un esempio è il passaggio di calore tra un corpo più caldo e uno più freddo.
- Trasformazione irreversibile: una trasformazione che porta un sistema tra due stati di equilibrio, ma non passa per ulteriori stati di equilibrio.
- Trasformazione lontana dall'equilibrio: una trasformazione che avviene in un sistema non isolato e non chiuso.

Indice

1	1 Introduzione		
2	2 La temperatura		
	2.1 Esempi di scale ter	mometriche	
	2.1.1 Termometri	analogici e Celsius (${}^{o}C$)	
	2.1.2 Termometri	a gas e Kelvin (K)	
	2.1.3 Macchine to	rmiche e scala termodinamica	
3	3 I gas		
	3.1 I gas perfetti	3.1.1 Osservazioni sperimentali ed equazione di stato	
	3.1.1 Osservazion	i sperimentali ed equazione di stato.	
	3.1.2 Teoria cinet	ica	