

BMS Communication Protocol Specification

Version 0.6 **Status** draft

Date 24-Feb-2022

Confidentiality Notice
Copyright (c) 2022 eInfochips. - All rights reserved
This document is authored by eInfochips and is eInfochips intellectual property, including the copyrights in all countries in the world. This document is provided under a license to use only with all other rights, including ownership rights, being retained by elnfochips. This file may not be distributed, copied, or reproduced in any manner, electronic or otherwise, without the express written consent of elnfochips.

TABLE OF CONTENTS

1.	Doc	umen	t Details	3
2	1.1.	Revi	sion & Approval History	3
2	1.2.	Defi	nition, Acronyms and Abbreviations	4
2	1.3.	Refe	rences	4
2.	Intro	oduct	ion	4
2	2.1.	Purp	ose of the Document	4
2	2.2.	Inter	nded Audience	5
3.	Prot	ocol l	Description	6
3	3.1.	Gen	eral Principles	6
3	3.2.	Com	munication Principles	6
3	3.3.	Phys	sical Layer	6
3	3.4.	Tran	sport Layer	7
	3.4.	1.	General7	
	3.4.2	2.	Transport Layer Packet Structure	
3	3.5.	Appl	lication Layer	8
	3.5.	1.	General8	
	3.5.2	2.	Application Layer Packet Structure8	
3	3.6.	Com	munication Flow	1
	3.6.	1.	One Shot Communication	
	3.6.2	2.	Continuous Communication	
	3.6.3	3.	Faulty Communication	
3	3.7.	List	of Messages1	3
	3.7.	1.	General13	
	3.7.2	2.	Connect/Disconnect Message	
	3.7.3	3.	Configuration Message	
	3.7.	4.	Fault Detection Message	
	3.7.	5.	GUI Start Message20	
	3.7.6	6.	Read Message	

	3.7.	Write Message23	
	3.8.	ist of Slave (BMS) to Master (GUI) Response code	24
4	. Арр	ndix	25
	4.1.	Nrite Message Example	25
	4.2.	Read Message Example	26
	4.3.	Checksum Calculation Method	27

1. Document Details

1.1. Revision & Approval History

	,	Author	Reviewer		Ap	prover
Version	Name	Date (DD-MM-YYYY)	Name	Date (DD-MMM- YYYY)	Name	Date (DD-MM-YYYY)
Draft 0.1	Ashvin Ramani	18-Nov-2021	Tejendra Joshi			
Draft 0.2	Srikanth Reddy Ramidi	23-Nov-2021	Tejendra Joshi			
Draft 0.3	Srikanth Reddy Ramidi	21-Dec-2021	Tejendra Joshi			
Draft 0.4	Srikanth Reddy Ramidi	19-Jan-2022	Tejendra Joshi			
Draft 0.5	Srikanth Reddy Ramidi	28-Jan-2022	Tejendra Joshi			
Draft 0.6	Ashvin Ramani	24-Feb-2022	Tejendra Joshi			

Version	Description of Change
Draft 0.1	Newly Created

Version	Description of Change
Draft 0.2	Changes made as per internal review comments
Draft 0.3	Fault detection command and GUI start commands are added
Draft 0.4	Updated with all the board level as well as System level faults in Fault detection message
Draft 0.5	Updated document with connect and disconnect messages.
Draft 0.6	Updated all commands to support maximum number of slaves up to 128 and rearranged Opcode for all commands in sequential manner.

1.2. Definition, Acronyms and Abbreviations

Definition/Acronym/Abbreviation	Description
BMS	Battery Management System
GUI	Graphical User Interface
MCU	Microcontroller
UART	Universal Asynchronous Receiver-Transmitter
SPI	Serial Peripheral Interface
USB	Universal Serial Bus
PC	Personal Computer

1.3. References

No.	Document	Version	Remarks
1	BMS GUIs.pptx	1.0	Presentation shared by ADI team
2	adi_adbms-r_gui-rel2.4.exe	2.4	Referred by ADI

2. Introduction

2.1. Purpose of the Document

The purpose of the document is to describe the Communication Protocol intended to be used in development of BMS Master board and GUI.

2.2. Intended Audience

This document is intended for

- Developers
- Project team members Testers

3. Protocol Description

3.1. General Principles

The protocol is designed to serve as a point-to-point single master, single slave communication channel between GUI and BMS, where master is GUI and slave is BMS.

The Master/Slave relationship implies that it is the Master that is responsible for initiating data transfers between the subsystems. The Slave can't initiate the transfer by itself.

The protocol doesn't support multi-master, master-master, slave-slave, or multi-slave relationship; there should always be a single master and single slave.

Note: The data transfer between slave (BMS) and master (GUI) is in big endian manner i.e.., MSB is sent/received first and LSB will be sent/received last.

3.2. Communication Principles

The Communication Protocol consists of the following three layers:

- Physical
- Transport
- Application

The Physical Layer consisting of electrical wiring, which are designed to support electrical signalling as per common UART protocol. This layer is context-agnostic.

The Transport layer is designed to ensure that GUI-BMS handshaking and package deliveries are done in correct manner so that the data corruption can be easily detected. This layer is context-agnostic.

The Application Layer is designed to ensure error-free messaging between GUI and BMS applications. This layer is context aware.

As this protocol is point-to-point one, there are no broadcasts or multipoint messages. The relationship between nodes is strictly Master-Slave one. The role reversal is not allowed. This means that the Slave node will only talk when requested to do so by Master node.

The master can request to the slave to continuous reading of the data, where slave will periodically transfer requested data to the master.

The slave can accept single command at a time, and it will reject any command from master if they are processing previously received command.

3.3. Physical Layer

The physical layer is implemented in hardware (UART/USB) and not subject for software implementation.

The settings for the physical layer shall be:

1. Speed: 115200 baud rate (UART) / 9600, 115200 baud rates (USB)

2. No parity

3. Data bits: 8

4. Stop bits: 1

5. Optional hardware flow control (may be disabled in software)

3.4. Transport Layer

3.4.1. General

The Transport Layer is responsible for low-level communication handshaking and link provision. At this layer the packets are analysed for correctness.

Note: The Transport Layer doesn't do any payload inspection; this is the function of Application Layer.

The Transport Layer processing software shall check the validity of the packet and respond with status whenever error occurs, this giving to Sender a clear reason why the packet will not be passed onto Application Layer of the receiver.

3.4.2. Transport Layer Packet Structure

The Transport Layer packet consists of the following fields:

Field Name	Description	Length	Typical Value
SOF	Start of Frame. Uses unique pattern in Hex: Ascii Value of "BMS"	3 bytes	0x42, 0x4D, 0x53
ML	Message Length (Excluding SOF)	2 bytes	0x0000 – 0xFFFF
MT	Message Types	1 byte	0x00 – Reserved 0x01 – Command 0x02 - Response 0x03 - 0xFF - Reserved
МР	Message Payload This field is extracted from the message and passed to Application Layer. It includes the command or response payload based on MT. The Transport Layer does not inspect the contents of Payload	Defined by CL or RL based on MT field	0x00 – 0xFF per byte

	Checksum		
Ch a alvayer	The checksum is used to ensure the correctness of the Transport Layer Packet	2 hutaa	0.0000 0.5555
Checksum	The algorithm is 16-bit 2's complement calculated	2 bytes	0x0000 – 0xFFFF
	on whole message Refer section 4.3		

3.5. Application Layer

3.5.1. General

The Application Layer is responsible for parsing the Payload packet and pass it to Application. Once Application decided to respond to the packet, the Application Layer shall prepare the response packet and pass it onto Transport Layer.

3.5.2. Application Layer Packet Structure

The Application Layer consists of the following command or response packet fields:

3.5.2.1. Command Packet Fields

Field Name	Description	Length	Typical Value
CL	Command length	2 bytes	0x0000 – 0xFFFF
			0x00 – Reserved
			0x01 – Connect
			0x02 – Disconnect
	Operation code		0x03 – Configuration
Opcode	This code can be used to directly map the	1 byte	0x04 – Fault detection
Opcode	Application processing functions to a requested operation	1 byte	0x05 – Start Measurement
			0x06 – 0x0A – Reserved
			0x0B – Read
			0x0C – Write
			0x0D – 0xFF – Reserved
	IC Count		
			0x00 – Reserved
ICC	Note: This field is applicable for All Opcodes	1 byte	0x01 - 0x78
	except connect and disconnect (0x01 and		0x79 – 0xFF – Reserved
	0x02)		
ICN	IC number	16 bytes	0x00 – 0xFF per byte

	The size of this field is 16 bytes array, where each byte can hold up to 8 ICs request, where each bit represents requested operation need to perform or not on the respective IC in the accordance to IC Count		
	eg: 1)0x00000000000000000000000000000000000		
	2)0x00000000000000000000000000000000000		
	- Requested operation on IC number 1 & 2		
	2)0x00000000000000000000000000000000000		
	-Requested operation on IC number 1 to 8 and 11		
	Note: This field is applicable for All Opcodes except connect and disconnect (0x01 and 0x02)		
	IC types		De de la
	The size of this field is 128 bytes array,		Per byte:
ICT	where each byte is representing IC types according to IC number	128 bytes	0x00 – Reserved 0x01 – ADBMS1818
	according to to name.	120 bytes	0x02 – ADBMS1816
	Note: This field is only applicable for Opcode 0x03 (Configuration command)		0x03 – 0xFF – Reserved
			0x00 – Reserved
			0x01 – One-Shot
Optypes	Operation types	1 byte	0x02 – Continuous
			0x03 – Stop
			0x04 – 0xFF – Reserved
DL	Data length	1 byte	0x00 – 0xFF
Data	Data passed to Application Firmware by GUI. NOTE: All the ADBMS commands are handled through read/write (Opcode) command only	Variable, see DL	0x00 – 0xFF per byte

3.5.2.2. Response Packet Fields

Field Name	Description	Length	Typical Value
RL	Response length	2 bytes	0x0000 – 0xFFFF
			0x00 – Reserved
			0x01 – Connect
			0x02 – Disconnect
	On anation and		0x03 – Configuration
Opcode	Operation code	1 byte	0x04 – Fault detection
Орсоце	This field must be same as command`s Opcode	1 byte	0x05 – Start Measurement
			0x06 – 0x0A – Reserved
			0x0B – Read
			0x0C – Write
			0x0D – 0xFF – Reserved
ICN	IC number Each bit represents the response of which ICs Note: At a time only one IC`s response can be received for Opcode: 0x05(GUI Start), 0x0B (Read) & 0x0C (Write). eg: 1)0x0000000000000000000000000000000000	16 bytes	0x01 – 0x80 per byte
Status	Response status.	1 byte	See section 3.8
DL	Data length	1 byte	0x00 – 0xFF
Data	Data passed to GUI by Application Firmware	Variable, see DL	0x00-0xFF per byte

3.6. Communication Flow

The protocol is based on Request - Response relationship. This means that all packets sent over Transport Layer shall be responded with the response packet.

3.6.1. One Shot Communication

Below is the example of successful transaction, in which Master issues a command to Slave, then Slave responds with an answer.

3.6.2. Continuous Communication

In the example below, Master issues a single command to take multiple reading and then Slave responds with an answer with multiple response packets periodically based on predefined interval. To stop this, Master will again issue a stop command.

3.6.3. Faulty Communication

In the example below, the Slave's Transport Layer rejected the packet with appropriate response code because of having some invalids contain inside the packet.

If a packet is rejected by Transport Layer, the Application Layer won't be aware of it.

3.7. List of Messages

3.7.1. General

Below is the complete list of Messages:

Opcode	Message Description	Section
0x00	Reserved	N/A
0x01	Connect	3.7.2
0x02	Disconnect	3.7.2
0x03	Configuration	3.7.3
0x04	Fault Detection	3.7.4
0x05	Start Measurement	3.7.5
0x06 – 0x0A	Reserved for Special Command	N/A
0x0B	Read (RAW Command)	3.7.6
0x0C	Write (RAW Command)	3.7.7
0x0D – 0xFF	Reserved	N/A

3.7.2. Connect/Disconnect Message

3.7.2.1. General

The Connect/Disconnect message shall be used by GUI to BMS. This command must be issued before any other commands.

3.7.2.2. Master (GUI) to Slave (BMS) Command packet

Byte	Field	Value	
0 - 1	CL (Excluding this field)	0x0003	
2	Opcode	0x01 – Connect	
2	Opcode	0x02 – Disconnect	
3	Optypes	0x01 – One-Shot	
4	DL	0x00	

3.7.2.3. Slave (BMS) to Master (GUI) Response packet

Byte	Field	Value	
0 - 1	RL (Excluding this field)	0x0003	
2	Opcode	0x01 – Connect	
2	Operation	0x02 – Disconnect	
3	Response Status	Response Code	
4	DL	0x00	

3.7.3. Configuration Message

3.7.3.1. General

The Configuration message shall be used by GUI to Configure the important settings on BMS. This command must be issued before any other commands.

3.7.3.2. Master (GUI) to Slave (BMS) Command packet

Byte	Field	Value
0 - 1	CL (Excluding this field)	0х009В
2	Opcode	0x03 – Configuration
3	IC Count Total Number of ICs Connected with BMS	0x01 - 0x80

4 – 19	IC number The size of this field is 16 bytes array, where each byte can hold up to 8 ICs request, where each bit represents requested operation need to perform or not on the respective IC in the accordance to IC Count	0x000000000000000000000000000000000000		
20 – 147	IC types The size of this field is 128 bytes array, where each byte is representing IC types according to IC number	Per byte: 0x01 – ADBMS1818 0x02 – ADBMS1816		
148	Optypes	0x01 – One-Shot		
149	DL	0x07		
150-156	Data (7 bytes) Byte-0,1: Time interval for sending voltage reading response to GUI. → Time interval is in MS: Ex: 10 ms -> 0x000A, 1 sec -> 0x03EB Byte-2,3: Cell Under Voltage Threshold. Byte-4,5: Cell Over Voltage Threshold. → Voltage Threshold should be like value multiplied by 10000: Ex: 3.1V -> 31000 -> 0x7918, 5V -> 50000 -> 0xC350 Byte-6: Fault Group (Default: 0x1F) → Each bit represents respective fault group is enable or disable as per following: BIT 0: Cell UV/OV, BIT 1: GPIO UV/OV,	0x00-0xFF per byte		

BIT 2: Other UV/OV,	
BIT 3: Cell OW,	
BIT 4: System Fault,	
BIT 5 – BIT 7: Reserved	
Where, 0: Disabled, 1: Enabled	

3.7.3.3. Slave (BMS) to Master (GUI) Response packet

Byte	Field	Value	
0 - 1	RL (Excluding this field)	0x0013	
2	Opcode	0x03 – Configuration	
3 – 18	IC number	Same value IC number	
3 10	Te Humber	will be return from command	
19	Response Status	Response Code	
20	DL	0x00	

3.7.4. Fault Detection Message

3.7.4.1. General

The Fault Detection message shall be used by GUI to get the faults of any board that are connected to BMS.

3.7.4.2. Master (GUI) to Slave (BMS) Command packet

Byte	Field	Value	
0 - 1	CL	0x0016	
2	Opcode	0x04 - Fault Detection	
3	IC Count Total Number of ICs want to write	0x01 - 0x80	
4 – 19	IC number The size of this field is 16 bytes array, where each byte can hold up to 8 ICs request, where each bit represents requested operation need to perform or not on the respective IC in the	0x000000000000000000000000000000000000	

	accordance to IC Count	
		0x01 – One-Shot
20	Optypes	0x02 – Continuous
		0x03 – Stop
21	DL	0x02
22 – 23	DATA Byte-0,1: Time interval (in MS) for sending Fault detection response to GUI.	0x00-0xFF per byte

3.7.4.3. Slave (BMS) to Master (GUI) Response packet

Byte	Field	Value
0 - 1	RL	0x003B
2	Opcode	0x04 – Fault Detection
3 – 18	IC number Each bit represents the response of which ICs Note: At a time only one IC`s response can be received	0x000000000000000000000000000000000000
19	Status	Response Code
20	DL	0x28
21 – 60	DATA: Data structure will be as shown in section 3.7.4.4	0x00-0xFF per byte

3.7.4.4. Fault detection response's data structure

	Cell OV/UV Fault							
BYTE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	C ₄ OV	C ₄ UV	C₃OV	C₃UV	C ₂ OV	C₂UV	C ₁ OV	C₁UV
1	C ₈ OV	C ₈ UV	C ₇ OV	C ₇ UV	C ₆ OV	C ₆ UV	C₅OV	C₅UV
2	C ₁₂ OV	C ₁₂ UV	C ₁₁ OV	C ₁₁ UV	C ₁₀ OV	C ₁₀ UV	C ₉ OV	C ₉ UV

3	C ₁₆ OV	C ₁₆ UV	C ₁₅ OV	C ₁₅ UV	C ₁₄ OV	C ₁₄ UV	C ₁₃ OV	C ₁₃ UV
4	Х	Х	Х	Х	C ₁₈ UV	C ₁₈ OV	C ₁₇ UV	C ₁₇ OV
5	X	Х	Х	Х	Х	Х	Х	Х
6	Х	Х	Х	Х	Х	Х	Х	Х
7	Х	Х	Х	Х	Х	Х	Х	Х

	GPIO OV/UV Fault							
BYTE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
8	G ₄ OV	G₄UV	G₃OV	G₃UV	G ₂ OV	G₂UV	G₁OV	G₁UV
9	G ₈ OV	G ₈ UV	G ₇ OV	G ₇ UV	G ₆ OV	G ₆ UV	G₅OV	G₅UV
10	Х	Х	Х	Х	Х	Х	G ₉ OV	G ₉ UV
11	Х	Х	Х	Х	Х	Х	Х	Х
12	Х	Х	Х	Х	Х	Х	Х	Х
13	Х	Х	Х	Х	Х	Х	Х	Х
14	Χ	Х	Х	Х	Х	Х	Х	Х
15	Х	Х	Х	Х	Х	Х	Х	Х

	Other OV/UV Fault							
BYTE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
16	DIE UT	DIE OT	STK OV	STK UV	V _D OV	V _D UV	V _A OV	V _A UV
17	Х	Х	Х	Х	Х	Х	Х	Х
18	Х	Х	Х	Х	Х	Х	Х	Х
19	Х	Х	Х	Х	Х	Х	Х	Х
20	Х	Х	Х	Х	Х	Х	Х	Х
21	Х	Х	Х	Х	Х	Х	Х	Х
22	Х	Х	Х	Х	Χ	Х	Х	Х
23	Х	Х	Х	Х	Х	Х	Х	Х

Cell OW Fault								
BYTE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

24	C ₈ OW	C ₇ OW	C ₆ OW	C ₅ OW	C ₄ OW	C₃OW	C ₂ OW	C ₁ OW
25	C ₁₆ OW	C ₁₅ OW	C ₁₄ OW	C ₁₃ OW	C ₁₂ OW	C ₁₁ OW	C ₁₀ OW	C ₉ OW
26	Х	Х	Х	Х	Х	Х	C ₁₈ OW	C ₁₇ OW
27	Х	Х	Х	Х	Х	Х	Х	Х
28	Х	Х	Х	Х	Х	Х	Х	Х
29	Х	Х	Х	Х	Х	Х	Х	Х
30	Х	Х	Х	Х	Х	Х	Х	Х
31	Х	Х	Х	Х	Х	Х	Х	Х

	System Faults							
BYTE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
32	Х	Х	Х	Х	Х	Х	AFE	SPI fail
							СОМ	
33	Х	Х	Х	Х	Х	Х	Х	Х
34	Х	Х	Х	Х	Х	Х	Х	Х
35	Х	Х	Х	Х	Х	Х	Х	Х
36	Х	Х	Х	Х	Х	Х	Х	Х
37	Х	Х	Х	Х	Х	Х	Х	Х
38	Х	Х	Х	Х	Х	Х	Х	Х
39	Х	Х	Х	Х	Х	Х	Х	Х

	Bit Field Descriptions				
Bit	Description				
C _N OV	N th cell Over Voltage flag				
C _N UV	N th cell Under Voltage flag				
G _N OV	N th GPIO Over Voltage flag				
G _N UV	N th GPIO Under Voltage flag				
V _A UV	Analog Power supply Under Voltage flag				
V _A OV	Analog Power supply Over Voltage flag				
V _D UV	Digital Power supply Under Voltage flag				
V _D OV	Digital Power supply Over Voltage flag				
STK UV	Stack Under Voltage flag				

STK OV	Stack Over Voltage flag			
DIE UT	Die Under Temperature			
DIE OT	Die Over Temperature			
CxOW	X numbered cell Open Wire flag			
AFE COM	AFE Communication Fault flag			
SPI fail	SPI Communication Failure flag			
Х	Reserved bit			

3.7.5. GUI Start Message

3.7.5.1. General

The GUI Start message shall be used by GUI to get the real time voltage reading(cell/gpio/stat) of any board that are connected to BMS.

3.7.5.2. Master (GUI) to Slave (BMS) Command packet

Byte	Field	Value
0 - 1	CL	0x0014
2	Opcode	0x05 – Start Measurement
3	IC Count Total Number of ICs want to write	0x01 - 0x80
4 – 19	IC number The size of this field is 16 bytes array, where each byte can hold up to 8 ICs request, where each bit represents requested operation need to perform or not on the respective IC in the accordance to IC Count	0x000000000000000000000000000000000000
20	Optypes	0x01 – One Shot
21	DL	0x00

3.7.5.3. Slave (BMS) to Master (GUI) Response packet

The following Response (Voltage reading) will be sent to GUI at a frequency of the time as mentioned in configuration Command, along with this response, Fault Detection response is also sent to GUI w.r.t time interval mentioned in configuration Command.

Byte	Field	Value
0 - 1	RL	0x0079
2	Opcode	0x05 – Start Measurement
3 - 18	IC number Each bit represents the response of which ICs Note: At a time only one IC's response can be received	0x000000000000000000000000000000000000
19	Status	Response Code
20	DL	0x66
21 - 122	DATA: Response data will consist of all the required voltages in the format Byte-1: Data (indicating which voltage) Byte-2: Length of the required voltage data Byte-3-variable: Voltage data. Repeats the same sequence in continuation if multiple types of voltages are requested. Ex: 1. If Data in Command is 0x01 Then response's Data would be 01300 Here 01 indicates cell voltage, 30 indicates size, following0 assume it as cell voltage data. 2. If Data in Command is 0x03 Then response's Data would be 01300 assume it as cell voltage data. 30 indicates size, following0 assume it as cell voltage data, 01 indicates GPIO voltage, 24 indicates it's size, following	Ox00-0xFF per byte

	0 assume it as gpio voltage data.
Note:	
1.	For Cell Voltages, Cell voltage
	register group A – F responses
	from ADBMS are directly sent to
	GUI in Data field.
2.	For GPIO Voltages, Auxiliary
	Register Group A– D responses
	from ADBMS are directly sent to
	GUI in Data field.
3.	For Stat Voltages, Status Register
	Group A– B responses from
	ADBMS are directly sent to GUI in
	Data field.
1	

3.7.6. Read Message

3.7.6.1. General

The Read message shall be used by GUI to read registers of any cell are connected to BMS.

3.7.6.2. Master (GUI) to Slave (BMS) Command packet

Byte	Field	Value
0 - 1	CL (Excluding this field)	Variable
2	Opcode	0x0B – Read
3	IC Count Total Number of ICs want to read	0x01 - 0x80
4 – 19	IC number The size of this field is 16 bytes array, where each byte can hold up to 8 ICs request, where each bit represents requested operation need to perform or not on the respective IC in the accordance to IC Count	0x000000000000000000000000000000000000
20	Optypes	0x01 – One-Shot 0x02 – Continuous 0x03 – Stop
21	DL	Variable

22 - Variable	DATA	Variable depends on DL

3.7.6.3. Slave (BMS) to Master (GUI) Response packet

Byte	Field	Value
0 - 1	RL	Variable
2	Opcode	0x0B – Read
3 – 18	IC number Each bit represents the response of which ICs Note: At a time only one IC`s response can be received	0x000000000000000000000000000000000000
19	Status	Response Code
20	DL	Variable
21 - Variable	DATA	Variable depends on DL

3.7.7. Write Message

3.7.7.1. General

The Write message shall be used by GUI to write registers of any cell are connected to BMS.

3.7.7.2. Master (GUI) to Slave (BMS) Command packet

Byte	Field	Value
0 - 1	CL	Variable
2	Opcode	0x0C - Write
3	IC Count Total Number of ICs want to write	0x01 - 0x80
4 – 19	IC number The size of this field is 16 bytes array, where each byte can hold up to 8 ICs request, where each bit represents requested operation need to perform or not on the respective IC in the accordance to IC Count	0x000000000000000000000000000000000000
20	Optypes	0x01 – One-Shot

		0x02 – Continuous
		0x03 – Stop
21	DL	Variable
22 - Variable	DATA	Variable depends on DL

3.7.7.3. Slave (BMS) to Master (GUI) Response packet

Byte	Field	Value
0 - 1	RL	Variable
2	Opcode	0x0C - Write
3 – 18	IC number Each bit represents the response of which ICs Note: At a time only one IC`s response can be received	0x000000000000000000000000000000000000
19	Status	Response Code
20	DL	Variable
21 - Variable	DATA	Variable depends on DL

3.8. List of Slave (BMS) to Master (GUI) Response code

The BMS shall reply with one of the following response codes:

Response Code	Meaning
0x00	Reserved
0x01	Command Accepted
0x02	Unrecognised SOF
0x03	Invalid message length
0x04	Invalid message type
0x05	Invalid command length
0x06	Unrecognised Opcode
0x07	Invalid command type
0x08	Invalid Number of ICs

0x09	Invalid or Mismatched IC number with IC Count
0x0A	Invalid or Mismatched IC type with IC Count
ОхОВ	Invalid operation type
0x0C	Invalid command data length
0x0D	Requested IC Count not detected
0x0E	Configuration not yet done
0x0F	Previous command in progress
0x10	Checksum mismatched
0x11	ADBMS1818 CRC mismatched
0x12	SPI/IsoSPI Communication error
0x13	GUI not yet connected
0x14 - 0xFF	Reserved

4. Appendix

4.1. Write Message Example

The following is the message to write CFGRA (Configuration register group A) on ADBMS:

Here, IC count is 0x01

Read Message:

Message Parsing:

SOF - 424D53
ML - 0025
MT - 01
CL - 0020
Opcode - 0C
ICC - 01

 Optypes - 01 DL - 0C

Data - 00013D6E E0 52 27 A0 00 50 B628

Checksum - FAEA

Response Message: 424D5300180200130C00000000000000000000000000000010100FEE3 Message Parsing:

SOF - 424D53 ML - 0018 MT - 02 CL - 0013 Opcode - 0C

Status - 01 DL - 00 Checksum - FEE3

4.2. Read Message Example

The following is the message to read CFGRA (Configuration register group A) from ADBMS:

Here, IC count is 0x01

Message Parsing:

SOF - 424D53
ML - 001D
MT - 01
CL - 0018
Opcode - 0B
ICC - 01

Optypes - 01 DL - 04

Data - 00022B0A Checksum – FE9F

Response Message:

SOF - 424D53
ML - 0020
MT - 02
CL - 001B
Opcode - 0B

Status - 01 DL - 08

Data - DA 52 27 A0 00 40 035A

Checksum – FC3C

4.3. Checksum Calculation Method

The 16-bit 2's complement algorithm will be used to calculate the checksum on whole message.

CheckSum16 2's Complement: 0x10000 - Sum of Bytes