MATHEMATICS METHODS

MAWA Semester 2 (Units 3 and 4) Examination 2017

Calculator-Assumed

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is the end of week 1 of term 4, 2017

Page **1** © MAWA 2017

 $solve(e^{-157 \cdot a} = 0.5, a)$

 ${a=4.414950195e-3}$

Section Two: Calculator-assumed

(99 Marks)

Question 10(a)

Solution

Isotope A decays faster.

Reason: Its half-life is less than the half-life of isotope B, i.e. it loses half of its mass faster than isotope B loses half of its mass.

Marking key/mathematical behaviours		Marks
	answers correctly	1
	uses the concept of half-life correctly	1

Question 10(b)

Solution

May assume that $A(t) = e^{-at}$ and $B(t) = e^{-bt}$ where A(t) and B(t) are the amounts of isotopes A and B respectively, t years from now.

Using the half-lives:
$$e^{-157a} = \frac{1}{2}$$
 and $e^{-359b} = \frac{1}{2}$.

So
$$a = \frac{\ln 2}{157} \approx 4.4150 \times 10^{-3}$$
 and

$$b = \frac{\ln 2}{359} \approx 1.9308 \times 10^{-3}$$

When
$$\frac{B(t)}{A(t)} = 100$$
, $\frac{e^{-0.0019308t}}{e^{-0.0044150t}} = 100$ (#)

i.e.
$$e^{0.0024842t} = 100$$
 , i.e. $t \approx 1853.8$

So it takes 1854 years before the ratio of the concentrations become 100 to 1.

Marking key/mathematical behaviours	
$ullet$ uses exponential models for the amounts of isotopes at time $\ ^t$	1
$ullet$ uses half-lives to solve for the constants a and b correctly	1
uses equation (#)	1
 solves for the time, correct to the nearest year. 	1

Question 11(a)

Solution

Population would be all the people eligible to vote in the election Sample is the 100 voters asked

Marking key/mathematical behaviours		
Identifies population correctly	1	
Identifies sample correctly	1	

Page 2 © MAWA 2017

Question 11(b)

Solution	
Use a method to randomly choose 100 people from the electoral role	
Marking key/mathematical behaviours	Marks
states a suitable method	1

Question 11(c)

Page **3** © MAWA 2017

Question 12(b)

Solution					
С	0	1	2		
Pr(C = c)	0.16	0.48	0.36		
					1
Marking key/mathematical behaviours					Marks
calculates correct probabilities (if only two correct, allow 1 mark)				2	

Question 12(c)

Solution

$$n = 5$$
 $p = 0.84$, $\mu = np$
= 5(0.84)
= 4.2

... The Bernesse family may expect to stop at least once, five times over the five days.

Marking key/mathematical behaviours		Marks
•	recognises the binomial distribution and correctly calculates the expected value	1+1

Page **4** © MAWA 2017

Question 13(a)

Solution	
Pr (train is late 4 times out of 15)	
$= {}^{15}\mathbf{C}_4(0.7)^{11}(0.3)^4$	
= 0.219	
Marking key/mathematical behaviours	Marks
recognises the binomial distribution and correctly calculates the expected value	1+1

Question 13(b)

_				
So		tı	\sim	n
.)()	ш	11	w	

Pr (train is late 4 times for at least 2 of the next 8 days):

late 4 times per day = 0.219 from part (a)

Pr that train is not late over the 8 days $= {}^{8}\mathbf{C}_{0}(0.219)^{0}(0.781)^{8}$

= 0.138

Pr train is late once over the 8 days $= {}^{8}\mathbf{C}_{1}(0.219)^{1}(0.781)^{7}$

= 0.311

∴ Pr train is late 4 times over the 8 days = 1 - 0.138 - 0.311

= 0.551

Marking key/mathematical behaviours	Marks
calculation of probability of train not being late (using result from (a)	1
calculates probability for train late once	1
subtracts the two probabilities from one to achieve end result	1 1
	1 - 1

Question 13(c)

Solution	
(0.7)(0.7)(0.7)(0.3)	
= 0.103	
Marking key/mathematical behaviours	Marks
recognizes ordered probability and uses appropriate calculation	1

Page **5** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 14(a)

Solution

Since $N \propto \log_{10}\left(\frac{P}{P_0}\right)$, where N is the noise level in decibels and P is the power and P_0 is a reference power level, and since N increases by 10 if the power increases by a factor of 10, $N = 10(\log_{10}P - \log_{10}P_0)$, (#)

So if P increases by a factor of 40, N increases by $10\log_{10}40 \approx 16\cdot02\,dB$

Marking key/mathematical behaviours	
obtains equation (#) or equivalent	1
obtains correct answer	1

Question 14(b)(i)

Solution

Since
$$2 \times 7^2 = 98 \approx 100 = 10^2$$

it follows that $\log_{10} 2 + 2 \log_{10} 7 \approx 2$ (#)

$$\log_{10} 7 \approx 1 - \frac{\log_{10} 2}{2} \approx 1 - \frac{0.30}{2} = 0.85$$

Marking key/mathematical behaviours		Marks	ì
•	obtains approximation (#)	1	l
•	obtains correct answer	1	ı

Question 14(b)(ii)

Solution

Since
$$2^{12} \times 3^5 = 995328$$

and
$$995328 \approx 1000000 = 10^6$$

it follows that $12 \log_{10} 2 + 5 \log_{10} 3 \approx 6$ (#)

$$\log_{10} 3 \approx \frac{6 - 12 \log_{10} 2}{5} \approx \frac{6 - 12 \times 0.30}{5} = 0.48$$

Marking key/mathematical behaviours		
	evaluates	$2^{12} \times 3^5$ correctly

obtains approximation (#)
 obtains correct answer

Marks

1

Page **6** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 15(a)

CALCULATOR-ASSUMED MARKING KEY

Solution	
$y_{max} = a + b = 14.5$ and $y_{min} = a - b = 9.5$ (#)	
and so $a = 12$ and $b = 2.5$	
Since the period is 1 year, i.e. 365 days, $c = 365$	
Marking key/mathematical behaviours	Marks
obtains equations (#)	1
• solves for a and b correctly	1
• obtains correct value for C	1

Question 15(b)

Solution	
$2\pi(t+9)$	
When $y(t) = y_{max}$ we have $\frac{2\pi(t+9)}{365} = 2\pi$ (#)	
i.e. $t + 9 = 365$ i.e. $t = 356$	
So the 356 th day, (December 22 nd) will be the longest day.	
Marking key/mathematical behaviours	Marks
obtains equation (#)	1
obtains correct answer	1

Question 15(c)

Question 15(c)		
Solution		
$y'(t) = -\frac{2\pi b}{365} \sin \frac{2\pi (t+9)}{365} = -\frac{5\pi}{365} \sin \frac{2\pi (t+9)}{365}$		
$2\pi(t+9)$ π		
So $y'(t) = y'_{min}$ when $\frac{2\pi(t+9)}{365} = \frac{\pi}{2}$ (#)		
$t + 0 = \frac{365}{}$		
i.e. when $t+9=\frac{365}{4}$ i.e. $t=82.25$		
So the number of daylight hours will be decreasing fastest on the 82 nd day, i.e. on March 23 rd		
Marking key/mathematical behaviours	Marks	
differentiates correctly	1	
obtains equation (#)	1	
obtains correct answer	1	
 differentiates correctly obtains equation (#) 	1 1	

Page **7** © MAWA 2017

Question 15(d)

Solution

$$y'_{min} = -\frac{5\pi}{365} \approx -0.0430$$

By the increments formula $\delta y \approx y' \times \delta t$ and so if $\delta t = 1$ $\delta y \approx y' \approx -0.0430$

So the largest difference in the number of daylight hours in successive days is 0.043 hours, i.e. 2.6 minutes.

Marking key/mathematical behaviours	Marks
• correctly calculates y'_{min}	1
uses increments formula correctly	1

Question 16(a)

$$X^{\sim}N$$
 (3.5, 0.2²)

(i)
$$P(X = 3.5) = 0$$

$$X^{\sim}N(3.5, 0.2^2)$$

(ii)
$$P(X > 3.2) = 0.93$$

(iii)

$$P(X < 3.5 | X > 3.2) = \frac{P(3.2 < X < 3.5)}{P(X > 3.2)}$$
$$= \frac{0.4332}{0.9332}$$
$$= 0.4642$$

Marking key/mathematical behaviours	Marks
recognises exact probabilities are equal to zero	1
calculates correct probability	1
 applies the appropriate formula and associated probabilities leading to the correct answer and correct diagram 	1+1+1

Question 16(b)

Page **8** © MAWA 2017

Question 16(c)

Solution
$X^{\sim}N(3.5, \sigma^2)$
P(X > 3.7) = 0.1
$P\left(Z > \frac{3.7 - 3.5}{\sigma}\right) = 0.1$
$\frac{3.7-3.5}{\sigma} = 1.28$
$\sigma = 0.156$

Marking key/mathematical behaviours	
uses the correct formula and substitutes values	1
calculation the standard score	1
states the correct answer	1

Question 17(a)

Solution

$$v = \int 3\sin(2t)dt$$

$$i-\frac{3}{2}\cos(2t)+c$$

$$\frac{3}{2}\cos(2t) + c$$

$$t = 0 \rightarrow -\frac{3}{2} + c = 4$$

$$c = 5.5$$

= 16 centimetres

$$\therefore v = \frac{-3}{2}\cos(2t) + 5.5$$

Marking key/mathematical behaviours	
 correctly integrates to find equation for v involving c 	1
ullet correctly evaluates c	1
 writes an expression for v 	1

© MAWA 2017 Page 9

Question 17(b)

Question 18(a)

Question 18(b)

Page **10** © MAWA 2017

Question 18(c)

So	IUL	IVII

The *x*-value of 6 is 2.4 standard deviations away from the mean.

Marking key/mathematical behaviours	Marks
provided an acceptable explanation	1

Question 18(d)

$$F(x) = \int_{0}^{x} 3x^{2} dx = \left[x^{3}\right]_{0}^{x} = x^{3} \quad (0 < x < 1)$$

$$\therefore F(x) = \begin{cases} 0 & x \le 0 \\ x^{3} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

Solution

Marking key/mathematical behaviours	
evaluates the correct integral	1
• defines $F(x)$	1
• states the three domains correctly for $F(x)$	1

Question 19

Solution

Check sample size is large enough for normal approximation np > 10 and n(1-p) > 10.

In this case, $1000 \times 0.48 = 480 > 10$ $1000 \times 0.52 = 520 > 10$

Therefore, normal approximation can be applied.

$$CI = 0.48 \pm 1.96 \sqrt{\frac{0.48 \times 0.52}{1000}}$$

 $= 0.48 \pm 0.03097$

= (0.45, 0.51)

(0.45, 0.51) is a 95% Confidence Interval for the true proportion of students excited by the upcoming concert.

by the apcoming concert.	
Marking key/mathematical behaviours	Marks
Checks the sample size for normal approximation	1+1
Sets up CI and evaluates correctly	1+1
correctly interprets result	1

Page **11** © MAWA 2017

Question 20(a)

(i)

$$\sum_{i} f(x_{i}) \delta x_{i} = f(2.5) \times (1) + f(3.5) \times (1) + f(4.5) \times (1) + f(5.5) \times (1)$$

$$= 2.8 + 5.8 + 5.9 + 5.4$$

$$= 19.9$$

The area is approximately 20 square units.

(ii) The area represents the distance travelled by the projectile between t=2 and t=6

Marking key/mathematical behaviours	Marks
• estimates the function at the values suggested (allow ± 0.2)	2
applies the summation correctly	1
states the required area	1
correctly interprets the meaning of the area as the distance travelled	1

Page **12** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 20(b)

Solution

The area of the triangle formed by g(x) and the x- axis (between x = 0 and x = 2) = 1 square unit.

Hence,

(i) region A =
$$\left| \int_{0}^{z} f(x) dx \right| - 1 = 5.1 - 1 = 4.1$$

(ii)
Region B =
$$\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$

= $\int_{a}^{b} f(x)dx - \int_{a}^{c} f(x) - \int_{a}^{b} g(x)dx$
= -2.18 - (-5.1) - 1
=1.92

Marking key/mathematical behaviours	Marks
Calculates the area of the triangle	1
Calculates the area of region A	1
• Defines region B in terms of integrals of $f(x)$ and $g(x)$	1
 Re-arranges the integrals using the integral properties so as to be able to use the information given 	2
Shows the required result.	1

Question 21(a)

Solution $\int_{0}^{1} \frac{dx}{x+1} = \left[\ln(x+1)\right]_{0}^{1} = \ln 2 - \ln 1 = \ln 2$	$\int_0^1 \frac{1}{x+1} dx$	
		ln(2)
Marking key/mathematical behaviours		Marks
 obtains ln(x + 1) as the antiderivative evaluates at limits correctly 		1 1

Page **13** © MAWA 2017

Question 21(c)(i)

Page **14** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 21(c)(ii)

The heat loss is ~293 kilojoules.

Marking key/mathematical behaviours	Marks
dH	
• indicates that the heat loss in the integral from 0 to 120 of \overline{dt}	1
states the correct result	1
	1
states the correct units	

Question 21(c)(iii)

 $a \approx 1.16$

Marking key/mathematical behaviours	Marks
• indicates solving the integral of from 0 to 120 of $\frac{dH}{dt}$ = 300	1
 states the correct result 	1

Page **15** © MAWA 2017

Question 22(b)

Solution

Using the CAS calculator to solve for *a*:

solve
$$(\int_{a}^{\frac{\pi}{2}} 3 \times e^{-x} \times \sin(2x) dx = 0, a)$$

{a=-14.69074126, a=-13.11994516,

From the graph in part (a) it is obvious that $-\frac{1}{2} < a < 0$ so, need to select $a \approx -0.6$

Marking key/mathematical behaviours	Marks
• Solves correctly (if provides additional values for a – subtract one mark)	2

Page **16** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION

CALCULATOR-ASSUMED MARKING KEY

Page **17** © MAWA 2017