通过时间、地点信息预测三藩市犯罪类型

高思达 计 35 班 2013011413 魏鑫鼎 计 32 班 2013011316 张浩天 计 35 班 2013011416

gsd13@mails.tsinghua.edu.cn

weixinding@gmail.com

zhang-ht13@mails.tsinghua.edu.cn

摘要—[** 成文后需要修改!**]

这篇文章是清华大学 2016 年数据挖掘课程的大作业报告。我们小组选择参加 Kaggle 竞赛: 三藩市犯罪分类(San Francisco Crime Classification) 作为本次大作业的项目。在该项目中,我们通过学习部分标记了犯罪类型的时间、地点数据,对另一部分未标记的时间、地点数据预测犯罪类型。我们利用已有的数据构造了一些更高层次的特征,并使用多种模型进行预测和评价。我们发现,我们构造的特征几乎都出现了对于训练集数据过拟合的问题,导致对于测试集的预测产生了严重的负面效果。最终,预测效果最好的方法为,使用原始特征训练 Xgboost 模型进行预测,该结果在排行榜上的排名为 81 名(共 2335 支队伍,约前 4%)。

I. 引言

三藩市(San Francisco)是一座在美国加州的淘金热潮中繁荣起来的城市。然而在城市快速扩张、人口迅速增加的同时,红灯区等诸多社会问题逐渐涌现出来,这些问题直接表现为犯罪率的上升。时至今日,三藩市早已不再是当年的矿镇,而已经成为了世界的一大科技中心。但是,常年高企的犯罪率却仍然没有好转。

作为科技重镇,三藩市公开了 2003 年至 2015 年的犯罪记录供数据科学家研究之用。通过挖掘这些数据,可以使得警察局能够更好地了解不同类型犯罪的趋势。通过根据时间和地点信息预测犯罪类型,警察局能够提前了解犯罪可能性更高的地区和时段,并针对性地采取措施以降低犯罪率。这个犯罪记录数据集在公开后,也成为了 Kaggle 网站的一个比赛。

[** 本篇文章中, 第 II节对问题和数据集进行描述; 第 III节对数据进行可视化探索分析; 第 IV节介绍特征的提取方法; 第 V节介绍使用的分类模型, 并比较实验结果; 最后, 第 VI节进行总结。**]

II. 问题描述

A. 数据集

本次 Kaggle 比赛使用的数据集来自三藩市警察局的犯罪事件数据库,包括了 2003 年 1 月 1 日至 2015 年 5 月 13 日的 878049 条犯罪记录 (共 4510 天,每天平均发生约

195 起犯罪)。训练集和测试集使用隔周的方式划分,即从 第一周开始,奇数周作为训练集,偶数周作为测试集。

在数据中,犯罪细节描述(Description)和犯罪解决方式(Resolution)两个字段只有训练集才有,因此我们无法利用这些信息。除此之外,我们可以利用的字段如下:

- Date: 犯罪案件的时间戳,包括年、月、日、时、分、
 秒。
- DayofWeek: 犯罪案件发生在星期几。
- PdDistrict: 犯罪案件发生在哪个警局的管辖地区。
- Address: 犯罪案件发生的街道地址。
- X: 犯罪案件发生地点的经度。
- Y: 犯罪案件发生地点的纬度。

B. 预测和评价

在训练集中,额外给出了一个字段:

• Category: 犯罪类型。

该字段是预测的目标。数据集中,一共有 39 种犯罪类型。在测试集上的预测结果并不是直接给出某一种确定的犯罪类型,而是需要给出该事件、地点 39 种犯罪类型的概率分布。竞赛进行评测的方法是,计算多分类的对数损失(multi-class logarithmic loss),即

$$logloss = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} log(p_{ij})$$

其中, N 是测试集样本总数; M 是类型总数 (本问题中 M=39); y_{ij} 为一个标志量, 当样本 i 属于类型 j 时为 1, 否则为 0; p_{ij} 是模型对样本 i 属于类型 j 预测的概率。可见,当预测完全准确,即 $p_{ij}=1$ 时,对损失的贡献为 0; 预测概率 p_{ij} 越小,对损失的贡献越大。因此,这是一个合理的对于多分类问题的评价标准。

在实验过程中,由于比赛每天限制 5 次提交,因此我们需要在训练集通过交叉验证来评价预测方法(特征和模型)。在交叉验证中,我们同样使用 *logloss* 来评价结果。实验中,我们直接调用了 Python 的 sklearn 包中的实现。

图 1. 月份对犯罪总量的影响

图 2. 星期对犯罪总量的影响

III. 数据观察

由于我们参加比赛的时候,比赛已经进行了大约 8 个月,Kaggle 上已经有了较多公开的脚本。在这一节的分析中,一些可视化结果是参考了公开发布的脚本做出来的。值得说明的是,除了本节之外,第 IV节中提到的所有数据处理和第 V节中使用的模型都是我们独立实现的脚本,没有参考其他任何来源的资料。

A. 犯罪总量分析

在这一小节,我们对数据集进行粗粒度的分析。即,只变化数据点的某一个字段,而对其他字段的全体可能取值统计总数,观察每个字段的取值对于犯罪总体情况的影响。所谓犯罪总体情况,就是忽略犯罪类型,关注犯罪案件的总数。这部分分析看似并不能帮助我们进行分类,但是可以先帮我们从一个比较宏观的角度看时间和地点是如何影响犯罪的。站在实际应用角度,从时间、地点等侧面统计总体犯罪情况,可以作为当地警察局部署警力的有益参考。

图 1、图 2和图 3分别展示了月份、星期和小时对犯罪总量的影响。可见,月份变化时,犯罪总量会发生比较明显

图 3. 小时对犯罪总量的影响

图 4. 各警察局片区的犯罪总量影响

的起伏波动,但相比之下,每周的每一天的犯罪总量的变化则不那么明显。符合预期的是,小时对于犯罪的影响是最显著的:中午、傍晚和午夜有三个比较明显的犯罪高峰,而凌晨的犯罪则比较少,这一分布情况用生活经验很容易理解。

图 5. 犯罪总量的热度图

图 6. 不同犯罪类型的总量

下面观察不同地点对犯罪总量的影响。首先,由图 4可以看出,不同警察局区域的犯罪量的差异是巨大的。由此可以推断出城市不同区域的犯罪率有巨大的不同。作为验证,我们参考 Kaggle 上公开的一份代码¹,对全部类型的犯罪总量做密度图,即图 5。从中可以看出,城市东北角的犯罪率要显著高于其他部分。

B. 犯罪类型分布的分析

首先,我们先不区分时间和地点,考察总体上各种犯罪类型的分布。图 6中可见,不同类型的犯罪总量是一个长尾分布,即频数最高的几个犯罪类型的总量占到了总体犯罪总数的大部分(最多的 5 种犯罪占整体犯罪总数的 66%)。由此可以推知,有些犯罪类型的概率总是很高的,即便一些长尾类型在某个地点集中,它的概率可能仍然没有常见类型的概率大。这种情形将会对我们的预测带来一些困难。下面,带着对犯罪类型分布的总体认识,我们进一步进行一些细粒度的分析。

1) 细粒度分析方法: 本部分对犯罪分布进行较细粒度的分析,即不仅仅考虑犯罪的总量,也要深入下去对每种不同的犯罪进行考虑。我们既关心不同犯罪类型在时间、空间上的分布是否不同,也关心不同的时间、地点下犯罪类型的分布(即一个 M=38 项的多项分布)是否不同。因此,我们不能仅仅考虑在全部时间段上的计数,而需要对考虑的时间做出一些限制。

这种细粒度的分析方式如果使用一个数据仓库是比较方便进行的,但数据仓库的实现十分复杂。在 Kaggle 论坛上,有参赛者公开了一个十分方便的交互式可视化分析工具²,可以起到数据仓库的作用。在这个工具中,我们可以对时间进行多种限制:指定日期区间、年份区间,指定某

几个星期几和某几个小时。在此基础上,我们可以选定几个犯罪类别。该工具的输出是指定的犯罪类型,在指定的时间限制下,在地图上的聚类结果。同时,在每个聚类中心还会展示这个聚类中每类犯罪的分布情况。这个工具对于我们的探索分析是十分理想的,下面的很多结果都来自这个工具。

IV. 特征工程

A. 对原数据集进行数值化

由于原始的数据集中的字段除了经纬度之外都是使用字符串形式给出的,为了方便后面的处理,我们先对各个字符串字段进行数值化。每个字段的数值化方法不只一种,除了直接对应为一个整数之外,也有更合理的方式进行数值化。

Date 对于时间戳字符串,我们直接把它进行分割,拆成 6 个字段,即年、月、日、时、分、秒。每个字段都是一个整数。每一个字段的大小关系都是有含义的(时间的先后顺序、接近程度),因此使用整数是比较合理的。除了直接对应外,也可以进行离散化,比如对一天中的时间进行分段。[** 但是在实验中,我们并没有进行这种尝试 **]

DayofWeek 对于星期几这个字段,我们直接把星期一到星期天编码为整数 1 到 7。这个字段使用整数编码是有意义的,整数的大小关系可以表示星期的先后。但是,由于星期是来回轮转的,因此使用一个 7 维二进制向量对星期进行编码也是合理的: 比如,[1 0 0 0 0 0]表示星期一,[0 1 0 0 0 0 0]表示星期二。

PdDistrict 警察局字段一共有 10 个不同的取值。我们可以直接地映射到 1 到 10 十个整数,但是这种编码是不合理的,因为这会在警察局之间引入大小关系(线性关系),而这种关系实际是不存在的(即,人为加入了干扰信息)。所以,更合理的方式是,使用 10 维的二进制向量进行编码。

Address 地址信息的处理比较棘手。地址字段有三种形式:一个街道名;两个街道名;或者一个街道名和一个街区号。在训练集和测试集中,一共出现了 2128 种街道名称,我们首先按照字典序对街道进行整数编码(1 到 2128)。然后使用如下方式,用两个整数表示地址:

- 两条街道名的地址:使用两街道的编号,小编号在前、 大编号在后:
- 街道和街区号的地址:首先是街区号的相反数(小于等于0),然后是街道编号。
- 单一街道名: 首先是街道编号, 然后是-1。

这是从字符地址到整数的一种直接翻译,这些整数之间的大小关系、线性关系都是没有实际意义的。显然这不是一种很好的编码方法。但是,由于 Kaggle 比赛要求不能引入外界信息,我们无法使用街道的朝向和相互之间的位

¹https://www.kaggle.com/codechamp/sf-crime/crime-density-by-location/code, 作者 codechamp

²https://www.kaggle.com/tyz910/sf-crime/yet-another-map/notebook,作者 Evgeny Ivanov。

置关系对街道进行编码,只能使用字典序这种办法进行编码。在实验中,我们只利用了地址中的街道信息。

至此,我们得到了数据集直接数值化后的特征。经过这一处理的特征,虽然数值化的方法仍有不合理之处,但我们已经可以用这个特征来训练模型了。

[** 估计街道位置,对街道进行编码 **]

B. 对于街道进行犯罪概率统计

由于我们对于街道的编码方式不合理,我们希望构造新的特征来更好地刻画街道的特性。一个直观的想法是,统计各个街道上的犯罪概率分布。首先,统计各个街道上 39 种犯罪的总数。对于每一个地址,使用如下步骤构造特征:

- 1) 如果地址中出现了两条街道,则对两个街道的犯罪 计数求和。否则就直接取所在街道的犯罪频数。
- 2) 进行 Laplace 平滑处理,即对每一类的频数加 1。
- 3) 计算每种犯罪类型在该街道上的频率 $p_j = \frac{f_j}{\sum_{k=1}^{M} f_k}$, 其中, f_j 是类别 j 的频数, M 为总类型数 39。
- 4) 把每个频率 p 替换成 $logodds(p) = log \frac{p}{1-p}$ 。这一处 理可以更好地刻画频率之间的大小差距。

至此,我们使用 39 个浮点数刻画了犯罪地点所在街道的犯罪类型特征。注意到,上面对每类犯罪频率的计算是考虑了整个训练集的,即在时间上的粒度是很粗糙的。但是,如果每个街道上实际存在一个犯罪分布,那么在更长的时间段中计数应该能更准确地计算这个分布,所以这样对全局计数是合理的。

C. 利用时空数据点的 K-最近邻信息

利用经纬度坐标信息,我们可以计算两个数据点之间的距离,由此可以采用 K-最近邻方法来进行预测。除了直接进行预测外,也可以根据 K-最近邻的结果构造特征。此外,考虑到除了接近的地点可能有类似的犯罪类型分布之外,接近的时间也可能有类似的犯罪类型分布。[** 根据第 III节中的结果,**]在时间的分布上,月份(直接与季节、节日相关)和小时(白天和半夜的犯罪情况差别很大)应该对于犯罪有很大的影响。于是,我们构造了四维数据点(X, Y, Month, Hour)进行 K-最近邻分析。

注意到,通过欧式距离计算最近邻的时候,需要对各个维度进行标准化。特别是对于本数据集构造的这种四维数据点。其中,X 的 25% 分位数和 75% 分位数的差只有 122.43-122.40=0.03,同时 Y 的 25% 分位数和 75% 分位数的差也为 37.78-37.75=0.03。而刻画时间的两个维度都是整数,差至少为 1,远远大于经纬度之间的差。如果不做标准化处理,则时间的差别会掩盖掉经纬度的差别,这样进行最近邻分析就没有意义了。因此,对于 4 位数据点的每一个维度,使用下面的方法进行标准化:

$$X' = \frac{X - \bar{X}}{s}$$

其中, \bar{X} 为该维坐标的平均值, s 是该维全体坐标的标准差。

D. 利用聚类结果构造特征

V. 模型实验

- A. 实验框架的实现
- B. 逻辑斯蒂回归
- C. 朴素贝叶斯
- D. 随机森林
- E. Xqboost

VI. 结论