Curso: Procesamiento Electrónico de Potencia FUNDAMENTOS DE MAGNETISMO

Ing. Sergio A. Morales Hernández

Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Semestre 2021

1 RELACIONES BÁSICAS

- 1 RELACIONES BÁSICAS
- 2 LEY DE FARADAY

- **1** RELACIONES BÁSICAS
- 2 LEY DE FARADAY
- 3 LEY DE BIOT-SAVART

- **1** RELACIONES BÁSICAS
- 2 LEY DE FARADAY
- 3 LEY DE BIOT-SAVART
- 4 LEY DE LENZ

- **1** RELACIONES BÁSICAS
- 2 LEY DE FARADAY
- **3** LEY DE BIOT-SAVART
- 4 LEY DE LENZ
- **5** LEY DE AMPÈRE

- **1** RELACIONES BÁSICAS
- 2 LEY DE FARADAY
- 3 LEY DE BIOT-SAVART
- 4 LEY DE LENZ
- **5** LEY DE AMPÈRE
- 6 ANALOGÍAS C.E. C.M.

ALGUNAS RELACIONES BÁSICAS, continuación Campo Magnético Н

Ley de Faraday

$$v(t) = \frac{\mathrm{d}\Phi(t)}{\mathrm{d}t} \Rightarrow v(t) = A\frac{\mathrm{d}B(t)}{\mathrm{d}t}$$
, para un campo uniforme

• Se tiene un conductor por el que circula una corriente I, $\Rightarrow \exists \vec{B}$.

- Se tiene un conductor por el que circula una corriente I, $\Rightarrow \exists \vec{B}$.
- $|\vec{B}| \propto I$ que lo produjo.

- Se tiene un conductor por el que circula una corriente I, $\Rightarrow \exists \vec{B}$.
- $|\vec{B}| \propto I$ que lo produjo.
- Adicionalmente, $\vec{B} \propto \mu$, $(permeabilidad), <math>\vec{B} \propto \frac{1}{\vec{R}}$.

- Se tiene un conductor por el que circula una corriente I, $\Rightarrow \exists \vec{B}$.
- $|\vec{B}| \propto I$ que lo produjo.
- Adicionalmente, $\vec{B} \propto \mu$, (permeabilidad), $\vec{B} \propto \frac{1}{\vec{R}}$.
- Por lo tanto, tenemos que:

- Se tiene un conductor por el que circula una corriente I, $\Rightarrow \exists \vec{B}$.
- $|\vec{B}| \propto I$ que lo produjo.
- Adicionalmente, $\vec{B} \propto \mu$, (permeabilidad), $\vec{B} \propto \frac{1}{\vec{R}}$.
- Por lo tanto, tenemos que:

- Se tiene un conductor por el que circula una corriente I, $\Rightarrow \exists \vec{B}$.
- $|\vec{B}| \propto I$ que lo produjo.
- Adicionalmente, $\vec{B} \propto \mu$, $(permeabilidad), <math>\vec{B} \propto \frac{1}{\vec{R}}$.
- Por lo tanto, tenemos que:

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{\ell} x \hat{r}}{R^2}$$

 Una aplicación de la Ley de Biot-Savart es la norma técnica denominada "regla de la mano derecha".

- Una aplicación de la Ley de Biot-Savart es la norma técnica denominada "regla de la mano derecha".
- Si por un conductor "sale" una corriente I, viendo el área transversal del mismo tendremos líneas de flujo en dirección antihorario.

- Una aplicación de la Ley de Biot-Savart es la norma técnica denominada "regla de la mano derecha".
- Si por un conductor "sale" una corriente I, viendo el área transversal del mismo tendremos líneas de flujo en dirección antihorario.
- Y si doblamos el conductor, formando una espira, el efecto será:

- Una aplicación de la Ley de Biot-Savart es la norma técnica denominada "regla de la mano derecha".
- Si por un conductor "sale" una corriente I, viendo el área transversal del mismo tendremos líneas de flujo en dirección antihorario.
- Y si doblamos el conductor, formando una espira, el efecto será:

- Una aplicación de la Ley de Biot-Savart es la norma técnica denominada "regla de la mano derecha".
- Si por un conductor "sale" una corriente I, viendo el área transversal del mismo tendremos líneas de flujo en dirección antihorario.
- Y si doblamos el conductor, formando una espira, el efecto será:

• Un flujo variante en el tiempo $\varPhi(t)$ produce un voltaje inducido en un conductor.

- Un flujo variante en el tiempo $\Phi(t)$ produce un voltaje inducido en un conductor.
- En este a su vez, se induce una corriente i(t), la cual es variante en el tiempo.

- Un flujo variante en el tiempo $\Phi(t)$ produce un voltaje inducido en un conductor.
- En este a su vez, se induce una corriente i(t), la cual es variante en el tiempo.
- Luego, esta corriente induce en el medio un nuevo campo Φ' , opuesto al original que produjo a la corriente.

Ley de Ampère i(t)

Ley de Ampère

 $\oint H d\ell = \text{corriente total a través del conductor}$

Ley de Ampère

 $\oint H d\ell = \text{corriente total a través del conductor}$

Para un campo uniforme H(t), se tiene que:

$$\mathscr{F}(t) = H(t)\ell_m = i(t)$$

Ley de Ampère, continuación

Ley de Ampère, continuación

Si tenemos un conductor y le damos n vueltas, tendremos el efecto multiplicado de la corriente i(t) a través del conductor, lo que produciría, de acuerdo a la Ley de Ampère:

Ley de Ampère, continuación

Si tenemos un conductor y le damos n vueltas, tendremos el efecto multiplicado de la corriente i(t) a través del conductor, lo que produciría, de acuerdo a la Ley de Ampère:

$$\mathscr{F}(t) = H(t)\ell_m = ni(t)$$

Analogías C.E. - C.M.

Campo eléctrico	Campo magnético
Fuerza electromotriz V	Fuerza magnetomotriz ${\mathscr F}$
Corriente <i>I</i>	Flujo $arPhi$
Conductividad σ	Permeabilidad μ

