PLP inference for data generated from a JPLP process

Miao Cai

2020-05-25

Contents

1 Generate data 1

2 Estimating using Stan

1

This vignette considers the scenario where the data is generated from a JPLP process, but statistical inference is made assuming a PLP.

1 Generate data

```
pacman::p_load(rstan, dplyr, data.table)
source("functions/NHPP_functions.R")
source("functions/JPLP_functions.R")

df = sim_hier_JPLP(D = 10, beta = 1.2)
str(df$stan_jplp_dt_for_plp)

## List of 9
```

```
$ N
##
                  : int 517
                  : num 3
##
   $ K
##
   $ S
                  : int 106
   $ D
                  : num 10
##
   $ id
                  : int [1:106] 1 1 1 1 1 1 1 1 1 1 ...
                  : num [1:106] 11.08 10.28 9.78 8.61 9.39 ...
##
   $ event_time : num [1:517] 5.96 7.63 6.89 2.44 3.57 ...
   $ group_size : int [1:106] 0 2 1 1 2 0 0 0 5 0 ...
##
   $ X_predictors:'data.frame':
                                    106 obs. of 3 variables:
##
     ..$ x1: num [1:106] -0.269 1.084 0.916 1.395 2.197 ...
     ..$ x2: num [1:106] 0.351 1.983 1.173 0.651 0.435 ...
##
     ..$ x3: int [1:106] 7 0 6 2 2 3 1 1 3 3 ...
```

2 Estimating using Stan

pull_use(var = "beta|kappa|mu0_true|sigma0|R1_K", fit0)

##	#	A tibble:	6 x 3	
##		term	${\tt estimate}$	std.error
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	sigma0	0.820	0.215
##	2	beta	1.12	0.0478
##	3	R1_K[1]	1.14	0.0784
##	4	R1_K[2]	0.270	0.0804
##	5	R1_K[3]	0.223	0.0328
##	6	mu0_true	-0.0481	0.305