MEMORIA DE CÁLCULO TOLVA ROMANA

Estudiante	Steve Mena Navarro	Steve Mena Navarro							
Control de cambios									
	18/10/2018	Se realizaron los cálculos para el dis	e realizaron los cálculos para el diseño de la tolva						
Notas:	El diseño fue verificado mediante simulaciones								
	Se tomó la menor der	Se tomó la menor densidad de las densidades proporcionadas por dos pinos.							
	Se tomó la menor densidad de las proporcionadas por el Ing. Evelio								

specificaciones de diseño	
. La tolva tiene que sostener hasta 15 kg.	
. Debe alojar 4 celdas de carga	
3. Debe minimizar la cantidad de material necesario.	
l. El ángulo de reposo del material debe ser de 60° con las pare	les
i. El actuador debe estar a 90°	
5. Debe ser simétrico.	
. La apertura debe ser de 10 cm. Para entrar en un tubo de 5 in	
anitario.	
B. El factor de seguridad es de 1,5	

Proceso de cálculo

Paso 1		
Determinar el volumen m	áximo y la masa de cada	uno de los
alimentos		

Parámetros			
Relación (con./adic.)	3		
Ángulo vertical (°)	30		
Ángulo vertical (rad)	0,523598776		
Aligulo vertical (rau)	Masa (g)	Densidad	Volumen
Volúmenes requeridos	(8)	(g/cm3)	(cm3)
Conc.	11250,01	0,44	25555,42
Adic.	3750,00	0,30	12711,87
Total	15000,01	0,40	38267,29
Volumen de diseño	22500,01		57400,93
F.S.	1,5	l	

Parámetros a encontrar

Parámetros a	encontrar					
a (cm)	b (cm)	c (cm)	d (cm)	h (cm)	Área Menor (d	Área mayor (cm2
58,79223439	10	7,876808222	5	42,25531449	100	3456,526825
Minimización	de material (ecua	ción objetivo)	(cm2)			
8765,43427						
Volumen requ	erido (cm3)		•			
0,000182651]		