

Label Hierarchy Inference in Property Graph Databases

Fabian Klopfer

Databases and Information Systems Chair University of Konstanz, 28. November 2019

Running Example

Simple example, with no overlapping labels and a perfect hierarchy:

Node.name	Node.labels
Fernando's	restaurant, italian
Arche	restaurant, vietnamese
Bangkok	restaurant, thai
CampusCafe	cafe, wifi
Endlicht	cafe, latenight
Pano	cafe, breakfast
Lago	shopping, mall
Seerhein Center	shopping, cheap
Seepark	Shopping, expensive

1.1 Motivation

- Implicit hierarchical structure in many data sets
- implicit in property graph
- no explicit representation in Neo4J or the property graph model

In practice it may help:

- Missing labels & other data impurities can be fixed
- Neo4J cardinality estimation can be improved
- and many others

However that's not what is dealt with here

1.2 Problem Definition

Given: Set of labels $\{l_i, l_j, l_k, \dots\}$

Wanted: Taxonomy/Hierarchy of labels

Node.name	Node.labels
Fernando's	restaurant, italian
Arche	restaurant, vietnamese
Bangkok	restaurant, thai
CampusCafe	cafe, wifi
Endlicht	cafe, latenight
Pano	cafe, breakfast
Lago	shopping, mall
Seerhein Center	shopping, cheap
Seepark	Shopping, expensive

2 Solutions: Hierarchical Clustering

Label Hierarchy Inference in Property Graph Databases

2.1 Approaches

3 different approaches were considered:

- Agglomerative clustering
- Two-step clustering
- Conceptual clustering

Common for 1 & 2

- Each data instance is set of labels
- distance measure is set similarity e.g. jaccard or I1 on vectorized representation
- Dendrograms got flattened

Node.name	Node.labels
Fernando's	restaurant, italian
Arche	restaurant, vietnamese
Bangkok	restaurant, thai
CampusCafe	cafe, wifi
Endlicht	cafe, latenight
Pano	cafe, breakfast
Lago	shopping, mall
Seerhein Center	shopping, cheap
Seepark	Shopping, expensive

Single Linkage Clustering

Merge the two clusters with the smallest distance per cluster/set of labels Implementation of SciPy [1]

In the following: Enhanced plots and result trees: non-standard single linkage!

Two-step clustering

Idea: reduce number of observations by other clustering and then do hierarchical clustering.

Implementations as before, plus Scikit-Learn [2] and PyClustering [3].

Conceptual clustering

Idea: Build a hierarchy of label sets/concepts with descriptions and integrate instances iteratively, splitting when too distinct

Comparable to decision trees, form of divisive clustering. Implementation of MacLellan et al. [4]

Figure 12. COBWEB hierarchy after the sixth instance of a ball.

3.1 Setup

noise \equiv take a node and remove \vee rename a label

```
"id":24," labels ":" l2, l22",
"id":25," labels ":" l22",
"id":26," labels ":" l1"
```

Run the algorithm on each of the variations:

- 1. no noise
- 2. 10% noise
- **3**. 33% noise
- 4. 50% noise

Convert the output into a bracket tree

Metric for how much resulting hierarchy deviates from perfect: Tree Edit Distance [5] [6]

3.2 Results

3 Evaluation - 3.2 Results

Agglomerative Clustering: Single Linkage

Two-Step Clustering: OPTICS

Two-Step Clustering: TTSAS

Two-Step Clustering: SOM

16 / 21

Conceptual Clustering: Trestle

Approaches I & II

- P1: One merge per level \Rightarrow not a proper tree with levels
- P2: Merges are always between two clusters ⇒ Flattening
- P3: Breaks down immediately when introducing noise
- P4: First step clustering algorithms are highly dependent on hyper-parameter tuning:

Label Hierarchy Inference in Property Graph Databases

⇒ Randomized parameter search

Conceptual Clustering

- Outlier detection
- Preprocessing e.g. list flattening
- weighting of attributes (reliable vs. noisy)

What to achieve with thesis

Improve/extend the conceptual clustering framework:

- leverage graph edges/relationships to make algorithm more robust:
 - neighbourhood
 - ego net
 - recursive feature extraction
- deal with outliers
- cut the hierarchy tree in robust only sub-trees

6 References

References

E. Jones, T. Oliphant, P. Peterson u. a., SciPy: Open source scientific tools for Python, [Online; accessed <today>], 2001. Addresse: http://www.scipy.org/.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirrion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot und E. Duchesnay, "Scikit-learn: Machine Learning in Python", Journal of Machine Learning Research, Jg. 12, S. 2825–2830, 2011.

A. Novikov, "PvClustering: Data Mining Library", Journal of Open Source Software, Jq. 4, Nr. 36, S. 1230, 2019. DOI: 10.21105/joss.01230. Adresse: https://doi.org/10.21105/joss.01230.

C. MacLellan, E. Harpstead, V. Aleven und K. Koedinger, "TRESTLE: A Model of Concept Formation in Structured Domains", Advances in Cognitive Systems, Jg. 4, 2016.

M. Pawlik und N. Augsten, "RTED: a robust algorithm for the tree edit distance", Proceedings of the VLDB Endowment, Jq. 5, Nr. 4, S. 334–345, 2011.

---...Tree edit distance: Robust and memory-efficient", Information Systems, Jg. 56, S. 157–173, 2016,

R. J. Campello, D. Moulavi und J. Sander, "Density-based clustering based on hierarchical density estimates", in Pacific-Asia conference on knowledge discovery and data mining, Springer, 2013, S. 160–172.

L. McInnes, J. Healy und S. Astels, "hdbscan: Hierarchical density based clustering.", J. Open Source Software, Jg. 2, Nr. 11, S. 205, 2017.

K. McKusick und K. Thompson, "Cobweb/3: A portable implementation", . 1990.

21/21

J. H. Gennari, P. Langley und D. Fisher, "Models of incremental concept formation", Artificial intelligence, Jg. 40, Nr. 1-3, S. 11-61, 1989.