§ 3.4 随机变量的独立性

一、两个随机变量的独立性

设X,Y是两个r.v,若对任意的x,y,有

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

则称X,Y相互独立.

两事件A,B独立的定义是: 若P(AB)=P(A)P(B)则称事件A,B独立.

1. 定义

设 F(x,y) 及 $F_X(x)$, $F_Y(y)$ 分别是二维随机变 量 (X,Y) 的分布函数及边缘分布 函数. 若对于所有 x,y 有 $P\{X \le x,Y \le y\} = P\{X \le x\}P\{Y \le y\}$, 即 $F(x,y) = F_X(x)F_Y(y)$,

则称随机变量 X 和 Y 是相互独立的.

这表明,两个r.v相互独立的充要条件是联合分布函数等于两个边缘分布函数的乘积。

例1. 讨论本章第1节例1中X与Y的独立性。

解: (X, Y)的分布函数为

$$F(x,y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan x \right) \left(\frac{\pi}{2} + \arctan y \right)$$

边缘分布函数分别为

$$F_x(x) = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan x \right), F_y(y) = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan y \right)$$

容易看出,对于任意实数x,y都有

$$F(x, y)=F_X(x)F_Y(y),$$

所以X与Y是相互独立的.

2.说明

(1) 若离散型随机变量 (X, Y) 的分布律为

$$P\{X=i, Y=j\}=p_{ij}, i, j=1, 2, \cdots$$

X和Y相互独立

$$P\{X = x_i, Y = y_i\} = P\{X = x_i\}P\{Y = y_i\},$$

即
$$p_{ij}=p_{i\bullet}\cdot p_{\bullet j}$$
.

亦即两个离散型r.v相互独立的充要条件是联合概率函数等于两个边缘概率函数的乘积。

(2) 设连续型随机变量 (X,Y)的概率密度为 f(x,y), 边缘概率密度分别为 $f_X(x)$, $f_Y(y)$,则有

X和 Y相互独立 $\Leftrightarrow f(x,y) = f_X(x)f_Y(y)$. 在f(x,y), $f_X(x)$, $f_Y(y)$ 的 \ 切连续点(x,y)处

(3) X 和 Y 相互独立,则

对任意 $x_1 < x_2, y_1 < y_2$, 事件 $\{x_1 < X \le x_2\}$ 与 $\{y_1 < Y \le y_2\}$ 也,在平面上除去面

有的书上称为 "几乎处处成 立",含义是: 在平面上除去面 积为0的集合外, 处处成立.

例2: 讨论X与Y的独立性:

X	-1	0	4	$P\{X=x_i\}=p_{i_{\bullet}}$
1	0.17	0.05	0.21	0.43
3	0.04	0.28	0.25	0.57
$P\{Y=y_j\}=p_{,j}$	0.21	0.33	0.46	1

解:由计算知 $P{X=1}=0.43$, $P{Y=-1}=0.21$,

且 $P{X=1, Y=-1}=0.17$,

容易看出 $P{X=1, Y=-1}\neq P{X=1}P{Y=-1}$

因此X与Y不独立。

(*) 例 已知 (X,Y) 的分布律为

(X,Y)	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)
n	1	1	1	1_	04	ρ
$oldsymbol{P}_{ij}$	6	9	18	3	α	p

- (1) 求 α 与 β 应满足的条件;
- (2) 若 X 与 Y 相互独立,求 α 与 β 的值.

解 将(X,Y)的分布律改写为

X	1	2	3	$p_{i\bullet} = P\{X = x_i\}$
1	1	1	1	1
1	6	9	18	$\overline{3}$
2	$\frac{1}{3}$	α	β	$\frac{1}{3} + \alpha + \beta$
$p_{\bullet j} = P\{Y = y_j\}$	$\frac{1}{2}$	$\frac{1}{9} + \alpha$	$\frac{1}{18} + \beta$	$\frac{2}{3}+\alpha+\beta$

(1) 由分布律的性质知
$$\alpha \ge 0$$
, $\beta \ge 0$, $\frac{2}{3} + \alpha + \beta = 1$,

故 α 与 β 应满足的条件是: $\alpha \geq 0$, $\beta \geq 0$ 且 $\alpha + \beta = \frac{1}{3}$.

(2) 因为 X与 Y相互独立,所以有

$$p_{ij} = p_{i\bullet} \cdot p_{\bullet j}, \quad (i = 1, 2; j = 1, 2, 3)$$

特别有

$$p_{12} = p_{1 \cdot} \cdot p_{\cdot 2} \Rightarrow \frac{1}{9} = \frac{1}{3} \left(\frac{1}{9} + \alpha \right)$$
$$\Rightarrow \alpha = \frac{2}{9},$$

$$\nabla \alpha + \beta = \frac{1}{3}$$

$$\beta = \frac{1}{9}.$$

练 已知随机变量X,Y相互独立,请完成下列概率 分布表:

X	x_{I}	x_2	x_3	$P(Y=y_j)$
${\mathcal Y}_I$	1/24	1/8	1/12	1/4
\mathcal{Y}_2	1/8	3/8	1/4	3/4
$P(X=x_j)$	1/6	1/2	1/3	1

练 设(X,Y)的概率 密度 为

$$f(x,y) = \begin{cases} xe^{-(x+x)} \\ \end{cases}$$

 $f(x,y) = \begin{cases} xe^{-(x+)} & \forall x,y,y \in S_1 : \\ f(x,y) = f_X(x)f_Y(y) \\ \forall x,y \in S_2 \end{cases}$

问X和Y是否独立

解:
$$f_X(x) = \int_0^\infty xe^{-(x+y)} dy = xe^{-x}, \quad x>0$$

$$f_Y(y) = \int_0^\infty xe^{-(x+y)} dx = e^{-y}, \quad y>0$$

即:
$$f_X(x) = \begin{cases} xe^{-x}, & x > 0 \\ 0, & 其它 \end{cases} \qquad f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & 其它 \end{cases}$$

若(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 2, & 0 < x < y, 0 < y < 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

情况怎样?

解:
$$f_X(x) = \int_x^1 2dy = 2(1-x)$$
, $0 < x < 1$
 $f_Y(y) = \int_0^y 2dx = 2y$, $0 < y < 1$

由于在区域(0,1)×(0,1)上,

$$f(x,y) \neq f_X(x)f_Y(y)$$

故X与Y不独立.

例3 一负责人到达办公室的时间均匀分布在8-12时,他的秘书到达办公室的时间均匀分布在7-9时,设他们两人到达的时间相互独立,求他们到达办公室的时间相差不超过 5 分钟的概率.

解 设X和Y分别是负责人和他的秘书到达办公室的时间,由假设X和Y的概率密度分别为

$$f_X(x) = \begin{cases} 1/4, & 8 < x < 12, \\ 0, & \sharp \text{ th.} \end{cases}$$
 $f_Y(y) = \begin{cases} 1/2, & 7 < y < 9, \\ 0, & \sharp \text{ th.} \end{cases}$

由于 X,Y 相互独立, 得 (X,Y) 的概率密度为

$$f(x,y) = f_X(x)f_Y(y)$$

$$= \begin{cases} 1/8, & 8 < x < 12, 7 < y < 9, \\ 0, & \text{ 其他.} \end{cases}$$

$$P\{|X - Y| \le 1/12\}$$

$$= \iint_G f(x, y) dx dy$$

$$= \frac{1}{8} \times (G \text{ 的面积}).$$

而 G的面积 = ΔABC 的面积 - $\Delta AB'C'$ 的面积

$$=\frac{1}{2}\left(\frac{13}{12}\right)^2-\frac{1}{2}\left(\frac{11}{12}\right)^2=\frac{1}{6}.$$

于是 $P\{|X-Y| \leq 1/12\}$

$$=\frac{1}{8}\times(G$$
的面积) $=\frac{1}{48}$.

因此负责人和他的秘书 到达办公室的时间相差 不超过 5分钟的概率为 $\frac{1}{40}$.

例4: 设(X,Y)~N(μ_1 , μ_2 , σ_1^2 , σ_2^2 , ρ), 证明X与Y相互 独立的充要条件为 ρ =0。

证明: (X,Y)的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2}\right] - 2\rho \frac{(x-\mu_1)(x-\mu_2)}{\sigma_1\sigma_2} + \frac{(x-\mu_2)^2}{\sigma_2^2} \right]\}$$

关于X和Y的边缘密度分别为

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}$$

- (1) 充分性:显然,如果 ρ =0,则对所有x,y有 $f(x,y) = f_X(x)f_Y(y)$,即X与Y相互独立。
- (2) 必要性:如果X与Y相互独立,由于f(x,y), $f_X(x)$, $f_Y(y)$ 都是连续函数,故对所有x, y都有f(x,y) = $f_X(x)f_Y(y)$,特别地,取x= μ_1 ,y= μ_2 可得 1

$$2\pi\sigma_1\sigma_2\sqrt{1-\rho^2} \qquad 2\pi\sigma_1\sigma_2$$

从而ρ=0.

二、多个随机变量的独立性

1、定义:设n维随机变量(X_1 , X_2 ,..., X_n)的分布函数为 $F(x_1,x_2,...x_n)$, X_k 的边缘分布函数为 $F_{X_k}(x_k)$, k=1,2,...,n,若对于任意实数 $x_1,x_2,...,x_n$,都有

$$F(x_1,...x_n) = F_{X_1}(x_1)F_{X_2}(x_2)....F_{X_n}(x_n)$$

则称 $X_1, X_2, ... X_n$ 相互独立。

2、说明:

(i)对于离散型随机变量的情形. 若对任意整数 i_l ,

 i_2 , ..., i_n 及任意实数 $X_{i_1}, X_{i_2}, ..., X_{i_n}$, 恒有

$$P\{X_{i_1} = x_{i_1},...,X_{i_n} = x_{i_n}\} = P\{X_{i_1} = x_{i_1}\}...P\{X_{i_n} = x_{i_n}\}$$

则称离散型随机变量 $X_1, X_2, ..., X_n$ 相互独立。

(ii) 设 X_1 , X_2 , ..., X_n 为n 个连续型随机变量. 若对任意的(x_1 , x_2 , ..., x_n) $\in \mathbb{R}^n$,

$$f(x_1, x_2, ..., x_n) = f_{X_1}(x_1) f_{X_2}(x_2) ... f_{X_n}(x_n)$$

几乎处处成立,则称 X_1 , X_2 , ..., X_n 相互独立。

三、多维随机变量的独立性

1、定义:设n维随机变量 $(X_1,X_2,...X_n)$ 的分布函数为 $F_X(x_1,x_2,...x_n)$; m维随机变量 $(Y_1,Y_2,...Y_m)$ 的分布函数为 $F_Y(y_1,y_2,...y_m)$; $X_1,X_2,...X_n$, $Y_1,Y_2,...Y_m$ 组成的n+m维随机变量 $(X_1,X_2,...X_n$, $Y_1,Y_2,...Y_m$)的分布函数为 $F(x_1,x_2,...x_n,y_1,y_2,...y_m)$.

若 $F(x_1,x_2,...x_n,y_1,y_2,...y_m)$

$$= F_X(x_1, x_2, ..., x_n) \cdot F_Y(y_1, y_2, ..., y_m)$$

对于任意实数 $x_1,x_2,...x_n,y_1,y_2,...y_m$ 恒成立,则称n维随机变量 $(X_1,X_2,...X_n)$ 与m维随机变量 $(Y_1,Y_2,...Y_m)$ 独立。

2、独立性的有关定理

定理1.

如果随机变量 $X_1, X_2, ..., X_n$ 相互独立, $I_1, I_2, ..., I_n$ 为数轴上任意n个区间,则事件 $\{X_1 \in I_1\}, \{X_2 \in I_2\}, ..., \{X_n \in I_n\}$ 相互独立。

- 定理2. 若 $X_1, X_2, ..., X_n$ 相互独立,则
 - (1) 其中任意k个随机变量也相互独立。
 - (2) $Y_1=g_1(X_1), Y_2=g_2(X_2),..., Y_n=g_n(X_n)$ 也相 互独立, $g_i(x)(i=1,2,...,n)$ 为n个连续函数。

- 定理3. 若 $(X_1, X_2, ..., X_n)$ 和 $(Y_1, Y_2, ..., Y_m)$ 相互独立,则
 - (1) $(X_1, X_2, ..., X_n)$ 中任意k个随机变量构成的随机向量与 $(Y_1, Y_2, ..., Y_m)$ 中任意l个随机变量构成的随机向量也相互独立。
 - (2) $g_1(X_1, X_2, ..., X_n)$ 与 $g_2(Y_1, Y_2, ..., Y_m)$ 也相互独立,其中 g_1 , g_2 为连续函数。