Research Notes

Mohsin Dalvi – DT17MEC050

August 27, 2021

hol2008:

Jeroen Hol. *Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors*. PhD thesis, Linköping University, Sweden, 2008.:

Jeroen Hol. Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors. *PhD thesis, Linköping University, Sweden, 2008.*:

Jeroen Hol. *Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors*. PhD thesis, Linköping University, Sweden, 2008.:

Linkoping University, Sweden, 2008.:

Jeroen Hol. Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors. PhD thesis, Linköping University, Sw

Hello World! [1]

1 Reviews

ID, Title, Author, Journal	Research areas, Tools	Objectives, Methodology, Discussion	Conclusions, My inference, Gaps
authyearpaper title	keyword1keyword2	objecmethod	• concl • gap
firstname1 surname1 and firstname2 surname2journal		• disc	

ID, Title, Author, Journal	Research areas, Tools	Objectives, Methodology, Discussion	Conclusions, My inference, Gaps
 aydin2006 Quaternion Based Inverse Kinematics for Industrial Robot Manipulators with Euler Wrist Yavuz Aydın and Serdar Kucuk IEEE 3rd International Conference on Mechatronics (ICM 2006) 	 wrist IK quaternion-vector pair for 6-dof pose 	 Double quaternion instead of dual quaternion Approximate translation magnitue d as rotation by angle ψ = d/R about normalised vector d. 	Results obtained by using double quaternions are coordinate frame invariant.
 authyear paper title firstname1 surname1 and firstname2 surname2 journal 	keyword1keyword2	objecmethoddisc	• concl • gap
 ge1998 Double quaternions for motion interpolation Ge, Q J and Varshney, Amitabh and Menon, Jai P and Chang, Chu-Fei — 	• dual quaternions	 Double quaternion instead of dual quaternion Approximate translation magnitue d as rotation by angle ψ = d/R about normalised vector d. 	Results obtained by using double quaternions are coordinate frame invariant.

ID, Title, Author, Journal	Research areas, Tools	Objectives, Methodology, Discussion	Conclusions, My inference, Gaps
 laviola2003 [2] A Comparison of Unscented and Extended Kalrnan Filtering for Estimating Quaternion Motion Joseph J. LaViola Jr. Proceedings of the American Control Conference Denver, Colorado June 4-6,2003 	QuaternionEKFUKF	 objec method sampling rates 25, 80, 215 Hz Ground truth obtained by passing data through zero phase shift filter to remove high-frequency noise. Avg over Monte Carlo runs taken and RMS error of rotation parameter θ is calculated as √(1/2) ∑_{i=0}ⁿ⁻¹ e_i² where e_i = (2(180))/π arccos(Sc(q_i(q̂_i)⁻¹)) disc 	• concl • gap
 lee2012a [3] Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions Jung Keun Lee and Edward J. Park and Stephen N. Robinovitch IEEE Transactions on Instrumentation and Measurement 	 IMU attitude estimation Kalman filter 	objecmethoddisc	• concl • gap
 authyear paper title firstname1 surname1 and firstname2 surname2 journal 	keyword1keyword2	objecmethoddisc	• concl • gap

ID, Title, Author, Journal	Research areas, Tools	Objectives, Methodology, Discussion	Conclusions, My inference, Gaps
 oland2018 [4] Quaternion-based Control of Fixed-Wing UAVs Using Logarithmic Mapping Espen Oland 9th International Conference on Mechanical and Aerospace Engineering, IEEE 	 DQ log map UAV stability analysis 	objecmethoddisc	• concl • gap
 oliveira2015 [5] A new method of applying differential kinematics through dual quaternions Andre Schneider de Oliveira and Edson Roberto De Pieri and Ubirajara Franco Moreno Robotica, Cambridge 	DQ diff. kinematics, DQ Jacobian	objecmethoddisc	• concl • gap
 authyear paper title firstname1 surname1 and firstname2 surname2 journal 	keyword1keyword2	objecmethoddisc	• concl • gap
 thomas Approaching Dual Quaternions from Matrix Algebra Frederico Thomas — 	• double quaternion derivation	objecmethoddisc	• concl • gap

 Wang2012a[6] The geometric structure of unit quaternion with application in kinematic control Xiangke Wang and Dapeng Han and Changbin Yu and Zhiqiang Zheng Journal of Mathematical Analysis and Applications, Elsevier 	Research areas, Tools • DQ geom. struc., DQ log mapping, kinematic control	Objectives, Discussion objec method disc	Methodology,	Conclusions, inference, Gapsconclgap	My
 authyear paper title firstname1 surname1 and firstname2 surname2 journal 	keyword1keyword2	objecmethoddisc End of Notes		• concl • gap	

References

- [1] Ramkumar Gandhinathan and Lentin Joseph. *ROS Robotics Projects: Build and control robots powered by the Robot Operating System, machine learning, and virtual reality.* Packt Publishing, 2 edition, 2019.
- [2] Joseph J. LaViola, Jr. A comparison of unscented and extended kalrnan filtering for estimating quaternion motion. In *Proceedings of the 2003 American Control Conference*, pages 2435–2440, 2003.
- [3] Jung Keun Lee, Edward J. Park, and Stephen N. Robinovitch. Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions. *IEEE Transactions on Instrumentation and Measurement*, 61(8):2262–2273, 2012.
- [4] Espen Oland. Quaternion-based control of fixed-wing uavs using logarithmic mapping. In 9th International Conference on Mechanical and Aerospace Engineering, 2018.
- [5] Andre Schneider de Oliveira, Edson Roberto De Pieri, and Ubirajara Franco Moreno. A new method of applying dfferential kinematics through dual quaternions. *Robotica*, 35:907–921, 2015.
- [6] Xiangke Wang, Dapeng Han, Changbin Yu, and Zhiqiang Zheng. The geometric structure of unit dual quaternion with application in kinematic control. *Journal of Mathematical Analysis and Applications*, 389(2):1352 1364, 2012.