

Outline

- Definition of Set
- Characteristics of Set
- Declare the Set's Elements
- Sets of Sets
- Himpunan Kosong (Empty Set)
- Kesamaan Himpunan (Set Equality)
- Subsets and Proper Subsets
- Set cardinality
- Power sets
- Tuples
- Cartesian products

INSTITUT TEKNOLOGI SEPULUH NOPEMBER, Surabaya - Indonesia

Definition of Set

- A set is a collection of different objects.
- Object in a set are called element or member.
- Example:
 - People in a class: { Alice, Bob, Chris }
 - Colors of a rainbow: { red, orange, yellow, green, blue, purple }
 - States of matter { solid, liquid, gas, plasma }
 - States in the US: { Alabama, Alaska, Virginia, ... }
 - Sets can contain non-related elements: { 3, a, red, Virginia }

Characteristicsof Set

- Order does not matter
 - We often write them in order because it is easier for humans to understand it that way
 - {1, 2, 3, 4, 5} is equivalent to {3, 5, 2, 4, 1}
- Sets are notated with curly brackets { }
- Sets do not have duplicate elements
 - Consider the set of vowels in the alphabet.
 - It makes no sense to list them as {a, a, a, e, i, o, o, o, o, o, u}
 - What we really want is just {a, e, i, o, u}
 - Consider the list of students in this class
 - Again, it does not make sense to list somebody twice
- Note that a list is like a set, but order does matter, and duplicate elements are allowed
 - We won't be studying lists much in this class

1. Enumeration

Each member of the set is listed in detail.

Example:

- The set of the first four natural numbers: $A = \{1, 2, 3, 4\}$.
- The set of the first five positive even numbers: $B = \{2, 4, 6, 8, 10\}$.
- $R = \{a, b, \{a, b, c\}, \{a, c\}\}$
- $C = \{a, \{a\}, \{\{a\}\}\}\}$
- $K = \{\{\}\}$

2. Ellipsis

Members of a set can be written with an ellipsis (...) if the element pattern is already known.

For example, $B = \{0, 1, 2, 3, ...\}$

But this can be ambiguous or confusing.

- For example, the set C = {3, 5, 7, ...} what number comes next?
- If the set is an odd integer greater than 2 then the next is 9
- If the set is a prime number greater than 2 then the next is 11

3. Standard Symbols

```
P = the set of positive integers = \{1, 2, 3, ...\}
```

N = the set of natural numbers =
$$\{1, 2, ...\}$$

Z = the set of integers =
$$\{..., -2, -1, 0, 1, 2, ...\}$$

- **Q** = the set of rational numbers
- **R** = the set of real numbers
- **c** = the set of complex numbers
- U = universal set

For example, $U = \{1, 2, 3, 4, 5\}$ and A is a subset of U, with $A = \{1, 3, 5\}$.

4. Set Builder Notation

Notation: $\{x \mid \text{ conditions that must be met by } x \}$

Example

i. A is the set of positive integers smaller than 5 $A = \{ x \mid x \text{ is a positive integer smaller than 5} \}$ or $A = \{ x \mid x \in P, x < 5 \}$ that equivalent with $A = \{1, 2, 3, 4\}$

ii. $M = \{x \mid x \text{ is a DSI student that takes LSD course}\}$

5. Venn Diagram

Example

Let
$$U = \{1, 2, ..., 7, 8\},$$

 $A = \{1, 2, 3, 5\} \text{ and } B = \{2, 5, 6, 8\}.$

The Venn Diagram:

Sets of sets

- A member of a set can be another set.
 - S = { {1}, {2}, {3} }
 - $T = \{ \{1\}, \{\{2\}\}, \{\{\{3\}\}\} \} \}$
 - V = { {{1}, {{2}}}, {{{1}}, {{1}}, {{2}}}}, {{{1}}, {{2}}}} }
 - V only have 3 elements!
- Note that 1 ≠ {1} ≠ {{1}}} ≠ {{{1}}}}
 - Each is a different element.

Himpunan Kosong (empty set)

- A set whose members have 0 members (has no members) is called an empty or null set
 - Expressed with symbol ∅
 - Therefore, ∅ = {} ← IMPORTANT
 - If you're confused, try replacing ∅ with { }
- Since the empty set is a set, the empty set can also be a member of another set.
 - $\{\emptyset, 1, 2, 3, x\}$ is a valid set
- Note that ∅ ≠ { ∅ }
 - The first set is a set with 0 element
 - The second set is a set with 1 element (which is empty set)
- Try replacing Ø with { }, therefore: { } ≠ { { } } }
 - It can be seen that the two are not equivalent

Kesamaan Himpunan (Set Equality)

- $\{1, 2, 3, 4, 5\} = \{5, 4, 3, 2, 1\}$
 - Remember that the element's order can be reversed!
- $\{1, 2, 3, 2, 4, 3, 2, 1\} = \{4, 3, 2, 1\}$
 - Because a set cannot have duplicate elements!
- Two sets are not equivalent if their members are different:
 - $\{1, 2, 3, 4, 5\} \neq \{1, 2, 3, 4\}$

Himpunan Bagian (Subsets)

- If all the elements of set S are also elements of set T, then S is a subset of T
 - For example, if S = {2, 4, 6} and T = {1, 2, 3, 4, 5, 6, 7}, then S is a subset of T
 - Expressed with the symbol $S \subseteq T$
 - or $\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6, 7\}$
- If S is not a subset of T, it is expressed with: S⊈T
 - For example, $\{1, 2, 8\} \nsubseteq \{1, 2, 3, 4, 5, 6, 7\}$
- Note that each set is a subset of itself!
 - S = {2, 4, 6}, since all elements of S are elements of S, S is a subset of itself
 - This is like saying that 5 is less than or equal to 5
 - Therefore, for every set S, $S \subseteq S$

Himpunan Bagian (Subsets)

- The empty set is a subset of all sets (including itself!)
 - Remember that all sets are subsets of themselves.
- All sets are subsets of its universal set.
- A horrible way to define a subset:
 - $\forall x (x \in A \rightarrow x \in B)$
 - **English translation**: for all possible values of x, (meaning for all possible elements of a set), if x is an element of A, then x is an element of B

Proper Subsets

If S is a subset of T, and $S \neq T$, then S is a **proper subset** of T.

- Let $T = \{0, 1, 2, 3, 4, 5\}$
- If $S = \{1, 2, 3\}, S \neq T$, and S is a subset of T
- Notation to express that S is a proper subset of T is S

 T
- For example, R = {0, 1, 2, 3, 4, 5}. R = T, so that R is a subset (but not a proper subset) of T
 - Can be written as: $R \subseteq T$ and $R \not\subset T$
- Let Q = {4, 5, 6}. Q is neither a *subset* or *proper subset* of T
- The difference of "subset" and "proper subset" is like the difference between "less than or equal to (≤)" and "less than (<)".
- The empty set is a proper subset of all sets other than the empty set (because it is the same as the empty set itself).

Venn Diagram for Proper Subset

Kardinalitas Himpunan (Set Cardinality)

- The cardinality of a set is the number of elements in a set.
 - The notation for the cardinality of set A is |A|
- For example:
 - If $R = \{1, 2, 3, 4, 5\}$. Then |R| = 5
 - |∅| = 0
 - If $S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then |S| = 4
- The notation for the cardinality of sets is the same as the notation for the length of geometric vectors.

Power Set

- Let S = {0, 1}. How many possible subsets of S are there?
 - The possibilities are: Ø (because it is a subset of all sets), {0}, {1}, and {0, 1}
 - Power set of S (expressed as P(S)) is the number of all possible subsets of S
 - $P(S) = {\emptyset, \{0\}, \{1\}, \{0,1\}}$
 - Note that |S| = 2 and |P(S)| = 4
- Let T = $\{0, 1, 2\}$. Then P(T) = $\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$
 - Note that |T| = 3 and |P(T)| = 8
- $P(\emptyset) = \{\emptyset\}$
 - Note that $|\emptyset| = 0$ and $|P(\emptyset)| = 1$
- If a set has n elements, its power set will have 2ⁿ elements.

Tuples

- In 2-dimensional space, tuples are expressed as pairs of coordinate points (x, y) to represent a location.
- In 3-dimensional space, the coordinate pair (1,2,3) is not the same as (3,2,1), which represents the coordinate pair of 3 numbers (x, y, z).
- In *n*-dimensional space, it is an *n*-tuple of corresponding number coordinates.
- Note that tuples are expressed sequentially (ordered), unlike sets.
 - The x value is always written first.

Cartesian Product

- Cartesian product is a set of all n-tuples where each "part" is taken from a certain set.
 - Expressed with A x B, and use parentheses (not curly brackets)
 - For example, 2-D Cartesian coordinates are the set of all ordered pairs Z x Z
 - Note that Z is a set of all integers
 - Shows all coordinates that exist in 2-D space
 - For example: Let A = { a, b } and B = { 0, 1 }, determine its Cartesian product.
 - $C = A \times B = \{ (a,0), (a,1), (b,0), (b,1) \}$
- The definition of Cartesian product can be written as follows:
 - A x B = $\{(a,b) \mid a \in A \text{ and } b \in B\}$

Cartesian Product

- All possible grades in a class are the Cartesian product of the set S which consists of all the students in the class and the set G which consists of all the possible grades obtained.
 - Let S = { Ali, Bobi, Cici } and G = { A, B, C }
 - D = { (Ali, A), (Ali, B), (Ali, C), (Bobi, A), (Bobi, B), (Bobi, C), (Cici, A), (Cici, B),
 (Cici, C) }
 - The final grade obtained is a subset of D: { (Ali, C), (Bobi, B), (Cici, A) }
 - Subsets of a Cartesian product are called relations (explained in the next chapter)
- Cartesian product can also be performed on more than two sets.
- 3-D coordinates are elements of the Cartesian product Z x Z x Z

SET OPERATIONS

Logic and Discrete Structure

Dr. Rarasmaya Indraswari, S.Kom.

Outline

- Gabungan (*Union*)
- Irisan (Intersection)
- Himpunan Saling Lepas (Disjoint)
- Selisih (Difference)
- Symmetric Difference
- Complement
- Set Identities
- How to Proof Set Identities

Color Set

www.its.ac.id

The triangle in the following image shows a combination of color ranges (gamut) – which is a collection of various colors.

Gabungan (*Union*)

- A union of the sets contains all the elements in EITHER set.
- Symbol for *union* is ∪
- For example:
 - $C = M \cup P$

Gabungan (Union)

The formal definition for the union of two sets is:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

- For example:
 - {New York, Washington} \cup {3, 4} = {New York, Washington, 3, 4}
 - $\{1, 2\} \cup \emptyset = \{1, 2\}$
 - $\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$

myits Characteristics of Union Operations

$$\cdot A \cup \emptyset = A$$

$$\cdot A \cup U = U$$

$$\cdot A \cup A = A$$

$$\cdot A \cup B = B \cup A$$

$$\cdot \ \mathsf{A} \cup (\mathsf{B} \cup \mathsf{C}) = (\mathsf{A} \cup \mathsf{B}) \cup \mathsf{C}$$

Identity law

Domination law

Idempotent law

Commutative law

Associative law

Irisan (Intersection)

- An intersection of the sets contains all the elements in **BOTH** sets.
- Symbol of intersection is
- For example:

$$C = M \cap P$$

Irisan (Intersection)

The formal definition for the intersection of two sets is:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

- For example:
 - $\{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}$
 - {New York, Washington} \cap {3, 4} = \emptyset
 - Do not have the same elements.
 - $\{1,2\} \cap \emptyset = \emptyset$
 - The intersection of a set with an empty set is an empty set.

Characteristics of Intersection Operations

- $\cdot A \cap U = A$
- $\cdot A \cap \emptyset = \emptyset$
- $\cdot A \cap A = A$
- $\cdot A \cap B = B \cap A$
- $\cdot A \cap (B \cap C) = (A \cap B) \cap C$

Identity law

Domination law

Idempotent law

Commutative law

Associative law

Himpunan Saling Lepas (*Disjoint*)

- Two sets are said to be disjoint (mutually exclusive) if they do not have the same elements.
- Formally, two sets are said to be disjoint if their intersection is an empty set.
- Example: set of even numbers and odd numbers.

Himpunan Saling Lepas (Disjoint)

- Formal definition of disjoint: Two sets are said to be disjoint (mutually exclusive) if they do not have the same elements.
- For example:
 - {1, 2, 3} and {3, 4, 5} is not a *disjoint*
 - {New York, Washington} and {3, 4} is a *disjoint*
 - $\{1, 2\}$ and \emptyset is a *disjoint*
 - Their intersection is an empty set.
 - \varnothing and \varnothing is a *disjoint*!
 - Their intersection is an empty set.

Selisih (Difference)

- A difference of two sets is the elements in one set that are NOT in the other.
- Symbol for difference is a minus sign.
- For example:

•
$$C = M - P$$

- And vice versa:
 - \bullet C = P M

Selisih (Difference)

B-A

Selisih (Difference)

Formal definition for the difference of two sets:

$$A - B = \{x \mid x \in A \text{ and } x \notin B\}$$

 $A - B = A \cap \overline{B} \leftarrow Important!$

- For example:
 - $\{1, 2, 3\}$ $\{3, 4, 5\}$ = $\{1, 2\}$
 - {New York, Washington} {3, 4} = {New York, Washington}
 - $\{1, 2\}$ \emptyset = $\{1, 2\}$
 - The difference between any set S and an empty set is the set S itself.

Symmetric Difference

- A symmetric difference of the sets contains all the elements in either set but NOT both.
- Symbol for symmetric difference is
- For example:

$$C = M \oplus P$$

Symmetric Difference

Formal definition for the symmetric difference of two sets:

$$A \oplus B = \{x \mid (x \in A \text{ or } x \in B) \text{ and } x \notin A \cap B\}$$

 $A \oplus B = (A \cup B) - (A \cap B) \leftarrow Important!$

- For example:
 - $\{1, 2, 3\} \oplus \{3, 4, 5\} = \{1, 2, 4, 5\}$
 - {New York, Washington} \oplus {3, 4} = {New York, Washington, 3, 4}
 - $\{1, 2\} \oplus \emptyset = \{1, 2\}$
 - The symmetric difference between any set S and an empty set is the set S itself.

Complement

- A complement of a set is all the elements that are NOT in the set.
- The symbol for complement is a line above the set name
- \overline{P} or \overline{M}
- Alternate symbol:
 - P^C or M^C

Complement

Complement

- Formal definition for the complement of a set: $\overline{A} = \{x \mid x \notin A\} = A^c$
 - or *U* A, with *U* is the universal set
- For <u>example</u> (assuming that **U** = **Z**)
 - $\{1, 2, 3\} = \{..., -2, -1, 0, 4, 5, 6, ...\}$
- Characteristics of complement operations:

Complementation law

•
$$A \cup \underline{A} = U$$

Complement law

•
$$A \cap A = \emptyset$$

Complement law

Kesamaan Himpunan (Set Identities)

- Set identities are the basic laws of how set operations work.
 - Some laws have been explained on the previous slide.
- Same as in common logic, just need to replace:
 - \cup with \vee
 - ∩ with ∧
 - Ø with F
 - *U* with T

Summary of Set Identities

$A \cup \emptyset = A$ $A \cap U = A$	Identity Law	$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination law
$A \cup A = A$ $A \cap A = A$	Idempotent Law	$(A^c)^c = A$	Complement Law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Law	$(A \cup B)^{c} = A^{c} \cap B^{c}$ $(A \cap B)^{c} = A^{c} \cup B^{c}$	De Morgan's Law
$A \cup (B \cup C)$ $= (A \cup B) \cup C$ $A \cap (B \cap C)$ $= (A \cap B) \cap C$	Associative Law	$A \cap (B \cup C) =$ $(A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) =$ $(A \cup B) \cap (A \cup C)$	Distributive Law
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Law	$A \cup A^{c} = U$ $A \cap A^{c} = \emptyset$	Complement Law

Proving the Equivalence of Sets

$$A \cap B = B - (B - A)$$

- There are 4 prove methods:
 - Using membership tables
 - Using the laws of set identities
 - Using the set builder notation and logical equivalences
 - Proving that one set is a subset of another set
 - Such as proving that 2 numbers are equivalent by showing that one number is less than or equal to the other number.

What we are going to prove?

$$A \cap B = B - (B - A)$$

- Membership tables show all the combinations of sets an element can belong to
 - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

Α	В	AUB	$A \cap B$	A - B
1	1	1	1	0
1	0	1	0	1
0	1	1	0	0
0	0	0	0	0

- The top row is all elements that belong to both sets A and B
 - Thus, these elements are in the union and intersection, but not the difference

- Membership tables show all the combinations of sets an element can belong to
 - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

Α	В	AUB	$A \cap B$	A - B
1	1	1	1	0
1	0	1	0	1
0	1	1	0	0
0	0	0	0	0

- The second row is all elements that belong to set A but not set B
 - Thus, these elements are in the union and difference, but not the intersection

- Membership tables show all the combinations of sets an element can belong to
 - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

Α	В	AUB	$A \cap B$	A - B
1	1	1	1	0
1	0	1	0	1
0	1	1	0	0
0	0	0	0	0

- The third row is all elements that belong to set B but not set A
 - Thus, these elements are in the union, but not the intersection or difference

- Membership tables show all the combinations of sets an element can belong to
 - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

Α	В	AUB	$A \cap B$	A - B
1	1	1	1	0
1	0	1	0	1
0	1	1	0	0
0	0	0	0	0

- The bottom row is all elements that belong to neither set A or set B
 - Thus, these elements are neither the union, the intersection, nor difference

Proof by membership tables

• The following membership table shows that $A \cap B = B - (B - A)$

Α	В	$A \cap B$	B-A	B-(B-A)
1	1	1	0	1
1	0	0	0	0
0	1	0	1	0
0	0	0	0	0

- Because the two indicated columns have the same values, the two expressions are identical
- This is similar to Propositional logic!

Using Laws of Set Identities

$$B - (B - A) = B - (B \cap \overline{A})$$

Definition of difference

$$=B\cap\overline{(B\cap\overline{A})}$$

Definition of difference

$$=B\cap(\overline{B}\cup\overline{\overline{A}})$$

DeMorgan's law

$$=B\cap (\overline{B}\bigcup A)$$

Complementation law

$$=(B\cap \overline{B})\cup (B\cap A)$$

Distributive law

$$=\emptyset \bigcup (B \cap A)$$

Complement law

$$=(B\cap A)$$

Identity law

$$=A \cap B$$

Commutative law

Prove that A ∩ B = B - (B - A)

Proof by set builder notation and logical equivalences

- First, translate both sides of the set identity into set builder notation
- Then modify one side to make it identical to the other
 - Do this using logical equivalences

Proof by set builder notation and logical equivalences

$$B - (B - A)$$

$$= \{x \mid x \in B \land x \notin (B - A)\}$$

$$= \{x \mid x \in B \land \neg (x \in (B - A))\}$$

$$= \{x \mid x \in B \land \neg (x \in B \land x \notin A)\}$$

$$= \{x \mid x \in B \land (x \notin B \lor x \in A)\}$$

$$= \{x \mid (x \in B \land x \notin B) \lor (x \in B \land x \in A)\}$$

$$= \{x \mid (x \in B \land \neg (x \in B)) \lor (x \in B \land x \in A)\}$$

$$= \{x \mid F \lor (x \in B \land x \in A)\}$$

$$= \{x \mid x \in B \land x \in A\}$$

$$= A \cap B$$

Original statement

Definition of difference

Negating "element of"

Definition of difference

DeMorgan's Law

Distributive Law

Negating "element of"

Negation Law

Identity Law

Definition of intersection

Proof by showing each set is a subset of the other

Assume that an element is a member of one of the identities Then show it is a member of the other Repeat for the other identity

We are trying to show:

 $(x \in A \cap B \rightarrow x \in B - (B - A)) \land (x \in B - (B - A) \rightarrow x \in A \cap B)$

This is the biconditional:

 $x \in A \cap B \leftrightarrow x \in B-(B-A)$

Not good for long proofs

Proof by showing each set is a subset of the other

- Assume that $x \in B-(B-A)$
 - By definition of difference, we know that $x \in B$ and $x \notin B-A$
- Consider x ∉ B-A
 - If $x \in B-A$, then (by definition of difference) $x \in B$ and $x \notin A$
 - Since x∉B-A, then only one of the inverses has to be true (DeMorgan's law): x∉B or x∈A
- So we have that $x \in B$ and $(x \notin B \text{ or } x \in A)$
 - It cannot be the case where $x \in B$ and $x \notin B$
 - Thus, $x \in B$ and $x \in A$
 - This is the definition of intersection
- Thus, if $x \in B-(B-A)$ then $x \in A \cap B$

Proof by showing each set is a subset of the other

- Assume that $x \in A \cap B$
 - By definition of intersection, $x \in A$ and $x \in B$
- Thus, we know that x ∉ B-A
 - B-A includes all the elements in B that are also not in A not include any of the elements of A (by definition of difference)
- Consider B-(B-A)
 - We know that x ∉ B-A
 - We also know that if $x \in A \cap B$ then $x \in B$ (by definition of intersection)
 - Thus, if x∈B and x∉B-A, we can restate that (using the definition of difference) as x∈B-(B-A)
- Thus, if $x \in A \cap B$ then $x \in B$ -(B-A)

Example

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Solution:

$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$	by definition of complement
$= \{x \mid \neg(x \in (A \cap B))\}\$	by definition of does not belong symbol
$= \{x \mid \neg(x \in A \land x \in B)\}\$	by definition of intersection
$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}\$	by the first De Morgan law for logical equivalences
$= \{x \mid x \notin A \lor x \notin B\}$	by definition of does not belong symbol
$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$	by definition of complement
$= \{x \mid x \in \overline{A} \cup \overline{B}\}$	by definition of union
$= \overline{A} \cup \overline{B}$	by meaning of set builder notation

- 1. If a set has *n* elements, what is the cardinality of its power set?
- 2. If $A \oplus B = A$, what kind of sets A and B are??
- 3. Using one of the methods for proving the equivalence of sets, show that

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Answers

- 1. 2ⁿ elements
- 2. $B = \emptyset$

3.
$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B} \cap \overline{C})$$
 by the first De Morgan law
$$= \overline{A} \cap (\overline{B} \cup \overline{C})$$
 by the second De Morgan law
$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$
 by the commutative law for intersections
$$= (\overline{C} \cup \overline{B}) \cap \overline{A}$$
 by the commutative law for unions.

