on W and 1 on x.¹ Therefore, f is injective, and since we already know that it is surjective, it is bijective. This means that the canonical map $f: E/V \to E/V_1$ with $V \subseteq V_1$ is an isomorphism, which implies that $V = V_1 = V^{00}$ (otherwise, if $v \in V_1 - V$, then $p_1(v) = 0$, so $f(p(v)) = p_1(v) = 0$, but $p(v) \neq 0$ since $v \notin V$, and f is not injective).

The following proposition shows the relationship between orthogonality and transposition.

Proposition 11.11. Given a linear map $f: E \to F$, for any subspace V of E, we have

$$f(V)^0 = (f^\top)^{-1}(V^0) = \{w^* \in F^* \mid f^\top(w^*) \in V^0\}.$$

As a consequence,

$$\operatorname{Ker} f^{\top} = (\operatorname{Im} f)^{0}.$$

We also have

$$\operatorname{Ker} f = (\operatorname{Im} f^{\top})^{0}.$$

Proof. We have

$$\langle w^*, f(v) \rangle = \langle f^{\top}(w^*), v \rangle,$$

for all $v \in E$ and all $w^* \in F^*$, and thus, we have $\langle w^*, f(v) \rangle = 0$ for every $v \in V$, i.e. $w^* \in f(V)^0$ iff $\langle f^\top(w^*), v \rangle = 0$ for every $v \in V$ iff $f^\top(w^*) \in V^0$, i.e. $w^* \in (f^\top)^{-1}(V^0)$, proving that

$$f(V)^0 = (f^\top)^{-1}(V^0).$$

Since we already observed that $E^0 = (0)$, letting V = E in the above identity we obtain that

$$\operatorname{Ker} f^{\top} = (\operatorname{Im} f)^{0}.$$

From the equation

$$\langle w^*, f(v) \rangle = \langle f^{\top}(w^*), v \rangle,$$

we deduce that $v \in (\operatorname{Im} f^{\top})^0$ iff $\langle f^{\top}(w^*), v \rangle = 0$ for all $w^* \in F^*$ iff $\langle w^*, f(v) \rangle = 0$ for all $w^* \in F^*$. Assume that $v \in (\operatorname{Im} f^{\top})^0$. If we pick a basis $(w_i)_{i \in I}$ of F, then we have the linear forms $w_i^* \colon F \to K$ such that $w_i^*(w_j) = \delta_{ij}$, and since we must have $\langle w_i^*, f(v) \rangle = 0$ for all $i \in I$ and $(w_i)_{i \in I}$ is a basis of F, we conclude that f(v) = 0, and thus $v \in \operatorname{Ker} f$ (this is because $\langle w_i^*, f(v) \rangle$ is the coefficient of f(v) associated with the basis vector w_i). Conversely, if $v \in \operatorname{Ker} f$, then $\langle w^*, f(v) \rangle = 0$ for all $w^* \in F^*$, so we conclude that $v \in (\operatorname{Im} f^{\top})^0$. Therefore, $v \in (\operatorname{Im} f^{\top})^0$ iff $v \in \operatorname{Ker} f$; that is,

$$\operatorname{Ker} f = (\operatorname{Im} f^{\top})^{0},$$

as claimed. \Box

¹Using Zorn's lemma, we pick W maximal among all subspaces of E/V such that $Kx \cap W = (0)$; then, $E/V = Kx \oplus W$.