МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и кибербезопасности Направление: 02.03.01 Математика и компьютерные науки

Основы архитектуры ЦВМ Отчет о выполнении лабороторной работы №1

Анализ и синтез комбинированных узлов ЭВМ. Дешифратор

Студент, группы 5130201/30002		Филиппов Г. М.
Руководитель, Преподаватель		Вербова Н.М.
	« »	20 г.

1 Цель работы

Изучить принципы работы и функционирования дешифратора.

2 Синтез схемы дешифратора с использованием базовых компонентов

На основе переключательной функции привиденной в (Таблица 1), было составлено 8 уравнений в совершенной дизъюнктивной нормальной форме - $(CДН\Phi)$, представленных на (Рисунок 1), которые работают только с помощью «AND gate» и «NOT gate». По аналогии с предствленной на (Рисунок 1) схемой для y_0 , необходимо построить схемы для отсальных 7-ми переключателей.

No	x_2	x_1	x_0	Уo	<i>y</i> 1	<i>y</i> ₂	<i>у</i> з	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇
0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
2	0	1	0	0	0	1	0	0	0	0	0
3	0	1	1	0	0	0	1	0	0	0	0
4	1	0	0	0	0	0	0	1	0	0	0
5	1	0	1	0	0	0	0	0	1	0	0
6	1	1	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	1

Таблица 1. Переключательная функция для 3-ёх разрядного дешифратора

Рисунок 1. Функциональная схема дешифратора

Схема готового дешифратора 3 на 8, изготовленная в NI Multisim, представлена на (Рисунок 2). Дешифратор работает для всех 8-ми возможных ком-

бинаций замкнутых и разомкнутых ключей, показывая корректное значение в дестичной системы счисления.

Рисунок 2. Дешифратор 3 на 8, использующий базовые компоненты

3 Синтез схемы дешифратора с использованием схемы K155ИД4

Во второй части лабораторной работы был изучен принцип действия схемы K155ИД4 (74155N), принцип работы которой представлен на (Рисунок 3).

Токоограничие а во Биово щий резистор переключегелей A1 DA A2 HL K155 ида ΕA SAS **B**0 $_{\rm Bl}$ B220 HL SA4 A3 2 HL HL DB HL EB **A**6 HL HL Впокенидриомири:

Схема для исследования ИС К155ИД4

Рисунок 3. Схема работы K155ИД4 (74155N)

Сначала был разобран принцип работы схемы на примере дешифратора 2 на 4, схема которого представлена на (Рисунок 4). В зависимости от переключателей «RunAscheme» и «RunBscheme» можно включать как верхний дешифратор, так и нижний.

После чего с помощью схемы K155ИД4 (74155N) был построен дешифратор 3 на 8, схема работы которого представлена на (Рисунок 5).

Рисунок 4. Дешифратор К155ИД4 (74155N) в режиме 2 на 4.

Рисунок 5. Дешифратор К155ИД4 (74155N) в режиме 3 на 8.

4 Выводы

В ходе работы были изучены принципы построения и функционирования дешифраторов 2 на 4 и 3 на 8. Была построена функциональная схема дешифратора а затем и реальная схема в Mutlisim, использующая только базовые компоненты. Были построены дешифраторы 2 на 4 и 3 на 8, используя схему К155ИД4 (74155N), принцип работы которой так же был изучен.