

TECHNICAL DATA

PNP DARLINGTON HIGH POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/623

Devices Qualified Level

2N7371

JAN, JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	Value	Units
Collector-Emitter Voltage	V_{CEO}	100	Vdc
Collector-Base Voltage	V_{CBO}	100	Vdc
Emitter-Base Voltage	V_{EBO}	5.0	Vdc
Base Current	I_{B}	0.2	Adc
Collector Current	I_{C}	12	Adc
Total Power Dissipation @ $T_C = +25^0 C^{(1)}$	P_{T}	100	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	0 C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.5	⁰ C/W

¹⁾ Derate linearly $0.667 \text{ W/}^{\circ}\text{C}$ above $T_{\text{C}} > +25^{\circ}\text{C}$

*See Appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}$ C unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage				
$I_C = 100 \text{ mAdc}$	V _{CEO(sus)}	100		Vdc
Collector-Emitter Cutoff Current				
$V_{CE} = 50 \text{ Vdc}$	I_{CEO}		1.0	mAdc
Collector-Emitter Cutoff Current				
$V_{CE} = 100 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	I_{CEX}		0.5	mAdc
Emitter-Base Cutoff Current				
$V_{EB} = 5.0 \text{ Vdc}$	I_{EBO}		2.0	mAdc

2N7371 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
Forward-Current Transfer Ratio				
$I_C = 6.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$	$h_{ m FE}$	1,000	18,000	
$I_C = 12 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}$		150		
Collector-Emitter Saturation Voltage				
$I_C = 12 \text{ Adc}, I_B = 120 \text{ mAdc}$	V _{CE(sat)}		3.0	Vdc
Base-Emitter Saturation Voltage				
$I_C = 12 \text{ Adc}, I_B = 120 \text{ mAdc}$	$V_{BE(sat)}$		4.0	Vdc
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio				
$I_C = 5.0 \text{ Adc}, \ V_{CE} = 3.0 \text{ Vdc}, \ f = 1.0 \text{ MHz}$	$ h_{\mathrm{fe}} $	10	250	
SWITCHING CHARACTERISTICS				
Turn-On Time				
$V_{CC} = 30 \text{ Vdc}; I_C = 12 \text{ Adc}; I_{B1} = 120 \text{ mAdc}$	ton		2.0	μs
Turn-Off Time				
$V_{CC} = 30 \text{ Vdc}; I_C = 12 \text{ Adc}; I_{B1} = I_{B2} = 120 \text{ mAdc}$	^t off		10	μs
SAFE OPERATING AREA		·	·	

SAFE OPERATING AREA

DC Tests

 $T_C = +25^{\circ}C$, 1 Cycle, $t \ge 1.0 \text{ s}$

Test 1

 $V_{CE} = 8.3 \text{ Vdc}, I_C = 12 \text{ Adc}$

Test 2

 $V_{CE} = 30 \text{ Vdc}, I_C = 3.3 \text{ Adc}$

Test 3

 $V_{CE} = 90 \text{ Vdc}, I_C = 150 \text{ mAdc}$

(2) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803