17기 정규세션
ToBig's 16기 김윤혜

CNN 기초 Convolutional Neural Network

nte nts

Unit	01		Vision
Unit	02		Convolution
Unit	03		Convolutional Neural Network
Unit	04		Number of Parameters

Vision

Fully Connected Network로 이미지를 다루면 픽셀 하나하나가 입력

컬러 이미지의 경우, 각 픽셀마다 RGB(red,green,blue)에 해당하는 값을 3개씩 가진다.

컬러 이미지의 경우, 각 픽셀마다 RGB(red,green,blue)에 해당하는 값을 3개씩 가진다.

1. Topographical Mapping

대뇌피질에서 서로 가까이 있는 뉴런들은 서로 가까이 있는 물체를 인식하는 특징. 즉 spatial information을 유지.

2. Featural Hierarchy

Feature를 abstract하여 계층적으로 처리하는 특징

Convolution

Convolution 연산

Convolution 연산은 signal을 kernel을 이용해 국소적으로 증폭 또는 감소시켜 정보를 추출 또는 필터링하는 것을 의미.

continuous
$$[f*g](x) = \int_{\mathbb{R}^d} f(z)g(x-z)dz = \int_{\mathbb{R}^d} f(x-z)g(z)dz = [g*f](x)$$

discrete
$$[f*g](i) = \sum_{a \in \mathbb{Z}^d} f(a)g(i-a) = \sum_{a \in \mathbb{Z}^d} f(i-a)g(a) = [g*f](i)$$

Convolution 연산

Convolution은 해당하는 요소끼리 곱하고 결과를 모두 더하는 선형 연산.

CNN에서 사용하는 연산은 cross-correlation을 사용하지만 관용적으로 convolution으로 부른다.

continuous
$$[f*g](x) = \int_{\mathbb{R}^d} f(z)g(x+z)\mathrm{d}z = \int_{\mathbb{R}^d} f(x+z)g(z)\mathrm{d}z = [g*f](x)$$

discrete
$$[f*g](i) = \sum_{a \in \mathbb{Z}^d} f(a)g(i+a) = \sum_{a \in \mathbb{Z}^d} f(i+a)g(a) = [g*f](i)$$

■ 다양한 차원의 Convolution

$$[f * g](i) = \sum_{p=1}^{d} f(p)g(i+p)$$

$$[f * g](i,j) = \sum_{p,q} f(p,q)g(i+p,j+q)$$

$$[f * g](i,j,k) = \sum_{p,q,r} f(p,q,r)g(i+p,j+q,k+r)$$

$$= \sum_{p,q,r} f(p,q,r)g(i+p,j+q,k+r)$$

$$\Rightarrow 3D-conv$$

데이터에 따라 사용하는 커널이 달라진다.

좌표계 (i, j, k)가 바뀌어도 커널 f의 값은 바뀌지 않는다.

2D-Convolution

고정된 커널(kernel)을 입력벡터 상에서 이동해가며 선형모델과 합성함수를 적용

$$[f * g](i,j) = \sum_{p,q} f(p,q)g(i+p,j+q)$$

0	1
2	3

*

4	3	2	1
2	0	3	5
6	0	4	2
2	1	0	8

0x4 + 1x3 + 2x2 + 3x0 = 7	
---------------------------	--

7	

2D-Convolution

입력만 바뀌고 커널은 바뀌지 않는다.

$$[f * g](i,j) = \sum_{p,q} f(p,q)g(i+p,j+q)$$

0	1
2	3

*	2	0	3	5
~	6	0	4	2
	0			

7	11

2D-Convolution

입력의 크기와 커널의 크기를 통해 출력의 크기를 계산할 수 있다.

$$O_H = H - K_H + 1$$

$$O_W = H - K_W + 1$$

입력 사이즈: (H, W), 커널 사이즈: (K_H, K_W) , 출력 사이즈: (O_H, O_W)

Ex) 입력 사이즈: 28x28, 커널 사이즈: (3x3) => 출력 사이즈: (26x26)

■ 채널이 여러 개인 2차원 입력

채널 개수만큼 2차원 convolution을 적용하고, 생성된 채널 별 feature map을 element wise sum하여 output의 feature map을 구한다.

=> output의 채널은 1

■ 채널이 여러 개인 2차원 입력

채널이 여러 개인 2차원 입력 tensor를 블록으로 표현 입력의 채널 = 커널의 채널 = C_i

lh : 입력의 높이

lw : 입력의 너비

Ci: 입력 데이터의 채널

Kh : 커널의 높이

Kw : 커널의 너비

Ci: 입력 데이터의 채널

Oh : 특성 맵의 높이

Ow : 특성 맵의 너비

■ 채널이 여러 개인 2차원 입력

커널의 개수 = output의 depth = C_0 커널을 여러 개 사용하면 출력도 tensor가 된다.

Fully Connected Layer vs. Convolution Layer

FC layer

각 뉴런들이 선형모델과 활성함수로 모두 연결된 구조 각 성분 hi에 대응하는 가중치 행 Wi 존재

$$h_i = \sigma \left(\sum_{j=1}^p W_{ij} x_j \right)$$

Conv layer

고정된 커널을 입력벡터 상에서 이동해가며 선형모델과 활성함수가 적용되는 구조

$$h_i = \sigma \left(\sum_{j=1}^k V_j x_{i+j-1} \right)$$

Fully Connected Layer vs. Convolution Layer

1. Sparse Connectivity

Parameter의 개수가 많이 줄어드는 효과 하지만 receptive field가 좁아지는 문제

receptive field: 출력 레이어의 뉴런 하나에 영향을 미치는 입력 뉴런들의 공간 크기

- Fully Connected Layer vs. Convolution Layer
 - 1. Sparse Connectivity

Layer를 여러 개 쌓음으로써 문제 해결 (Growing Receptive Fields)

Fully Connected Layer vs. Convolution Layer

2. Parameter Sharing

Convolution shares the same parameters across all spatial locations

 x_3

 x_4

Traditional matrix multiplication does not share any parameters

Fully Connected Layer vs. Convolution Layer

Efficiency of Convolution

Input size: 320 x 280 / Kernel size: 2 x 1 / output size: 319 x 280

	CNN	FCN
Memory (# of params)	2	output 픽셀수 319 x 280 x 320 x 280 ≈ 8 x 10 ⁹
Computation (# of muls & adds)	output 픽셀수 <u>319 x 280</u> x <u>3</u> 곱하기 2 더하기 1 = 267,960	output 픽셀수 Input 픽셀수 319 x 280 x 320 x 280 x <u>2</u> ≈ 16 x 10 ⁹ 곱하기1 더하기 1

Convolutional Neural Network

CNN의 구조

CNN은 크게 Convolution layer, Pooling layer, Fully connected layer로 구성된다.

- Convolution layer, Pooling layer → feature extraction
- Fully connected layer → classification

■ CNN의 구조

■ CNN의 구조

Detector Stage

4×4 ×k input feature map

ReLU(Retified Linear Unit)

activation functions

H	0	0	0	0
H	5	5	5	5
H	0	0	0	0
	0	0	0	9

4×4 ×k output feature map

■ CNN의 구조

Pooling Stage

 2×2 max pooling

4×4×k input

2×2×k output

■ CNN의 특징

Hierarchical Pattern Recognition

Translation Invariance

Max Pooling vs. Average Pooling

Max Pooling

해당 window의 max 값 추출 가장 밝은 픽셀 값이 선택됨

Average Pooling

해당 window의 average 값 추출 Smoothing 효과

→ Most important feature를 뽑는다는 관점에서 일반적으로 Max Pooling을 사용한다.

■ Pooling을 사용하는 이유

1. Down Sampling

- 사이즈를 줄여 불필요한 연산을 줄이고 parameter 수를 줄여 overfitting을 방지한다.
- 선형결합이 아니기 때문에 weight가 없어 학습이 일어나지 않는다.
- 채널 수는 변함 없다.

■ Pooling을 사용하는 이유

2. Translation Invariance

• 작은 이동에 둔감하다. → 이미지 내에서의 위치에 관계없이 동일한 패턴을 동일하게 인식한다.

Stride

- Filter 적용 시 이동 간격을 의미한다.
- Stride를 키우면 차원을 더 급격히 줄일 수 있다.

Stride

- Filter 적용 시 이동 간격을 의미한다.
- Stride를 키우면 차원을 더 급격히 줄일 수 있다.
- Output의 차원이 정수(integer)가 되도록 Stride를 설정한다.

Ν

Ν

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$

stride
$$3 \Rightarrow (7 - 3)/3 + 1 = 2.33$$

doesn't fit!

Padding

- 데이터 가장자리에 fake pixel을 붙여 연산.
- 일반적으로 zero padding을 사용한다.
 - → 크기 손실 방지, 테두리 정보 활용
- Padding 값은 어떻게 결정하나? Padding size = (F 1)/2

Output size =
$$(N - F + 2P)/S - 1$$

0	0	0	0	0	0	0
0	2	4	9	1	4	0
0	2	1	4	4	6	0
0	1	1	2	9	2	0
0	7	3	5	1	3	0
0	2	3	4	8	5	0
0	0	0	0	0	0	0

Image

Feature

21	59	37	-19	2
30	51	66	20	43
-14	31	49	101	-19
59	15	53	-2	21
49	57	64	76	10

The number of parameters on CNN

■ CNN 모델의 parameter 개수 계산

Padding (1), Stride (1), 5 x 5 Kernel

$$(5 \times 5 \times 192 + 1) \times 32 = 153,632$$
Kernel size bias

Assignments

과제 - AlexNet model

과제 1. AlexNet의 파라미터 개수 구하기

week7_CNNbasic_AlexNet_parameters.ipynb의 물음표를 채워주세요.

과제 2. AlexNet model의 코드 구현하기

week7_CNNbasic_AlexNet_modeling.ipynb에 모델 구현 후 summary로 전체 모델 구조 보이고 주석을 통해 간단한 설명을 해주세요.

References

- 14기 이정은님 강의 http://www.datamarket.kr/xe/board_jPWY12/74345
- 15기 황보진경님 강의
- 이정우 교수님 딥러닝의 기초 강의 201029 Chapter7

 https://www.youtube.com/playlist?list=PLKs7xpqpX1bd-UDMAe_vl2vZFQ05bzizQ
- Stanford cs231n 강의 http://cs231n.stanford.edu/syllabus.html
- 김성훈 교수님 PyTorch Lecture 10: Basic CNN
 https://www.youtube.com/watch?v=LgFNRIFxuUo
- http://taewan.kim/post/cnn/
- https://yjjo.tistory.com/8

Q & A

들어주셔서 감사합니다.