# FINAL PRESENTATION BIRD SONG IDENTIFICATION

Thanyaporn Phinthuphan 8 May 2019

## **Outline**

- introduction
- methodology
- results
- discussion
- deployment & demo

## INTRODUCTION



**MOTIVATION** 



PREVIOUS STUDIES



**OBJECTIVE** 



**BENEFITS** 

Motivation





#### Motivation

- large number of different species
- background noise
- multiple birds singing at the same time
- intra/inter-species variance



#### Previous studies

- NIPS4B 2013 → France
- ICML 2013  $\rightarrow$  France
- MLSP 2013 → USA
- BirdCLEF 2014-2019 → USA





Bird Song Id Automatic Recognition & Reference - Birds of the British Isles 44

Mullen & Pohland GbR

#52 in Reference ★★★★ 4.3, 425 Ratings

£3.99



Warblr: Identify UK bird songs

Warblr

#57 in Reference

★★☆☆ 2.0, 26 Ratings

£4.99



ChirpOMatic USA

Automatic Bird Song ID

Spiny Software Ltd

£3.99

What about Thai birds?

#### Objective

- to develop the program for identifying bird species from their sounds
- including only 40 common birds in Thailand























#### Benefits

- bird learning
- look-alike bird identification
- population/migration monitoring









## **METHODOLOGY**



**DATASET** 



**REFERENCES** 



FEATURE GENERATION



NETWORK ARCHITECTURE

#### Dataset

bird song dataset - <a href="https://www.xeno-canto.org/">https://www.xeno-canto.org/</a>





#### Dataset

- query by science name as of March 2019
- select only class that have more than 10 files
  - $\rightarrow$  80 class / 8,746 files
- length 1 sec 10 min
- training data quality A/B/C with not more than 100 files/class
  - → 80 class / 5,507 files (63%)
- sampling data  $\rightarrow$  11 class / 1,847 files

#### References

- paper winning solution for NIPS4B 2013; Mario Lasseck
  - winning solution for BirdCLEF 2016; Elias Sprengel & teams

- model Multi-label classification with random forest
  - Multi-class classification with CNN
  - Multi-label classification with CNN

#### References

- 1: Multi-label classification with random forest
- referred from Lasseck (2013)
- preprocess: wav  $\rightarrow$  STFT  $\rightarrow$  median clipping  $\rightarrow$  segment
- feature: segment correlation
- classifier: 87 random forest





#### Feature generation

- preprocessing
- STFT using hanning window → normalized
- reducing background noise with median clipping
- closing & dilation → segmentation (size/position)





#### References

- 2 : Multi-class classification with CNN
- referred from Sprengel et al. (2016)
- preprocess: wav → STFT → median clipping
- signal/noise separation
- dividing the spectrograms into chunks
- classifier: 5 CNN + 1 dense + soft-max





#### Feature generation

- signal / noise separation
- STFT  $\rightarrow$  normalize  $\rightarrow$  smooth  $\rightarrow$  median clipping
- mask vector for separate audio files





# Methodology Feature generation

- dividing the spectrograms into chunks
- fixed size input of 512 pixel ( $\sim 3$  sec)
- each chunk is unique sample (because separated signal / noise)
- multiple prediction per file  $\rightarrow$  average to final result

#### Network architecture

- 5 CNN and 1 dense with max pooling and ReLU activation function
- soft-max layer → multi-class classification
- batches of 8 examples
- train: test = 90:10



#### References

- 3 : Multi-label classification with CNN
- improved from model 1 and 2
- preprocess: wav → STFT → median clipping
- signal/noise separation
- dividing the spectrograms into chunks
- classifier: 5 CNN + 1 dense + sigmoid laye





#### Network architecture

- sigmoid layer → multi-label classification
- loss function → binary cross entropy



## RESULTS



MODEL EVALUATION METHODS



ACCURACY & CONFUSION MATRIX



FINAL MODEL PERFORMANCE



**ERROR ANALYSIS** 

#### Model evaluation methods

- accuracy on chunks
- accuracy on files
  - average mode with confidential values
  - only one true
- confusion matrix
- other metrics
  - average precision, AUC
  - f1, precision, recall, hamming loss
  - coverage, ranking AP, ranking loss

#### Accuracy

- model testing with 11 bird class
- model selection with 80 bird class

#### Accuracy

#### Accuracy on 11 class



Accuracy

Accuracy on 11 vs 80 class



#### Confusion matrix





Model 2 Model 3

Final model performance

average precision, f1-score, precision, recall

80 class  $\rightarrow$  40 class with model 3

# Results Final model performance





## Final model performance

| metric            | values |
|-------------------|--------|
| macro-AUC         | 0.9399 |
| micro-AUC         | 0.9402 |
| average precision | 0.7242 |
| coverage          | 3.4924 |
| ranking AP        | 0.7770 |
| ranking loss      | 0.0656 |

| metric       | values |
|--------------|--------|
| hamming loss | 0.3142 |
| f1           | 0.6565 |
| precision    | 0.6865 |
| recall       | 0.6652 |
| accuracy     | 0.6858 |

#### Final model performance

- if show all class that has confidential value > 5%
  - $\rightarrow$  show ~4 class on average
  - → accuracy 87%

#### Error analysis

for 40 class, only 1 class นกแอ่นบ้าน has f1-score = 0
 (only 33 wav file in dataset)

#### some common mistake

- นกตีทอง > นกกะรางหัวขวาน
- 📱 นกกระจอกบ้าน 🛨 นกกระจอกใหญ่, นกนางแอ่นบ้าน
- 📱 นกปรอดเหลืองหน้านวล → นกปรอดเหลืองหัวจุก
- นกกินปลีอกเหลือง > นกกินปลีดำม่วง



#### Error analysis

• the low-performance class e.g. นกเอี้ยงสาริกา, นกกินปลีอกเหลือง









# Results Error analysis

- Multi-label classification with random forest
  - feature generation take long time and not scalable

- Multi-label classification with CNN
  - sensitive to class imbalance
    - $\rightarrow$  only 8/80 class after 1000 epoch (acc. 24%)
  - longer time training

## DISCUSSION



LIMITATIONS



FUTURE WORK SUGGESTIONS

### Discussion

#### Limitations

- restricted species due to conservation concerns
- time and resource constraints
- microphone quality & noise handling















#### Discussion

#### Future work suggestions

- data augmentation → noise handling + class imbalance
- subclass/call-song for some species
- add other similar sounds e.g. squirrel frog cricket
- recording noise handling
- bird song detection



### DEPLOYMENT & DEMO



DEPLOYMENT DIAGRAM



DEPLOYMENT TOOLS



**SAMPLE UI** 



LIVE DEMO

# Deployment

Diagram



# Deployment

#### Tools

- recordRTC
- react.js
- flask
- localforage cache
- google cloud platform

# Deployment Sample UI







#### Demo

- <a href="https://www.youtube.com/watch?v=vwPgfybdAHY">https://www.youtube.com/watch?v=vwPgfybdAHY</a> นกอีวาบตั๊กแตน
- https://www.youtube.com/watch?v=ZAsUX0IN6n4 อีกา
- <u>https://www.youtube.com/watch?v=Hfu6b29FhtA</u> นกตีทอง
- https://www.youtube.com/watch?v=UoWQGzJUXJ4 นกเขาใหญ่
- <a href="https://www.youtube.com/watch?v=pM5II1VLceo">https://www.youtube.com/watch?v=pM5II1VLceo</a> นกเขาชวา
- https://www.youtube.com/watch?v=Qpjz2oE Awg นกกระจิ๊ดธรรมดา
- <a href="https://www.youtube.com/watch?v=9BMb4NseG4A">https://www.youtube.com/watch?v=9BMb4NseG4A</a> นกเอี้ยงสาริกา
- https://www.youtube.com/watch?v=qsBtyLAlx w นกกินปลีอกเหลือง

