By Toni Susín (2015)

- Vectors of particles (big numParticles)
- Initialization:
 - Fountain:
 - Position: (0, 0, 0)
 - Velocity: ((rand01()-0.5), 10, (rand01()-0.5))

- Vectors of particles (big numParticles)
- Initialization:
 - Fountain:
 - Position: (0, 0, 0)
 - Velocity: ((rand01()-0.5), 10, (rand01()-0.5))
 - Waterfall:
 - Position: (0, 10, 0)
 - Velocity: ((rand01()-0.5), 0, (rand01()-0.5))

- Vectors of particles (big numParticles)
- Initialization:
 - Fountain:
 - Position: (0, 0, 0)
 - Velocity: ((rand01()-0.5), 10, (rand01()-0.5))
 - Waterfall:
 - Position: (0, 10, 0)
 - Velocity: ((rand01()-0.5), 10, (rand01()-0.5))
 - Semi-Sphere:
 - Azimut, $\alpha = 360*(rand01()-0.5)$
 - Altitude, $\beta = 90*$ rand01()
 - Position: $(\cos(\alpha) \cdot \cos(\beta), \sin(\beta), \sin(\alpha) \cdot \cos(\beta))$
 - Velocity: speed*(position.x, position.y, position.z)

- Vectors of particles (big numParticles)
- Initialization:
 - Explosion:
 - Azimut, $\alpha = 360*(rand01()-0.5)$
 - Altitude, $\beta = 180*(rand01()-0.5)$
 - Position: $0.01 \cdot (\cos(\alpha) \cdot \cos(\beta), \sin(\beta), \sin(\alpha) \cdot \cos(\beta))$
 - Velocity: speed*(position.x, position.y, position.z)

Interaction between Particles

Initial Particles

Interaction between Particles

Initial Particle interaction: add springs

Exemple: 1D Mesh-Springs (Ropes)

- Spring Forces between neigbourgs:
 - Num particles= Num Springs + 1
 - Spring parameters: Elasticity and damping

Exemple: 1D Mesh-Springs (Ropes)

Particle 1

$$F_1^{m_1}(P_1, P_2) = \left(k_e \cdot \left(\left||P_2 - P_1|\right| - L_{12}\right) + k_d \cdot (v_2 - v_1) \cdot \frac{P_2 - P_1}{\left||P_2 - P_1|\right|}\right) \cdot \frac{P_2 - P_1}{\left||P_2 - P_1|\right|}$$

$$F_2^{m_1}(P_1, P_2) = -F_1^{m_1}$$

Exemple: 1D Mesh-Springs (Ropes)

Particle 1

$$F_{1}^{m_{1}}(P_{1}, P_{2}) = \left(k_{e} \cdot \left(\left||P_{2} - P_{1}|\right| - L_{12}\right) + k_{d} \cdot (v_{2} - v_{1}) \cdot \frac{P_{2} - P_{1}}{\left||P_{2} - P_{1}|\right|}\right) \cdot \frac{P_{2} - P_{1}}{\left||P_{2} - P_{1}|\right|}$$

$$F_{2}^{m_{1}}(P_{1}, P_{2}) = -F_{1}^{m_{1}}$$

$$F_{1}^{total} = F_{1}^{m_{1}}$$

Particle 2

$$F_1^{m_2}(P_2, P_3) = \left(k_e \cdot \left(\left||P_3 - P_2|\right| - L_{23}\right) + k_d \cdot (v_3 - v_2) \cdot \frac{P_3 - P_2}{\left||P_3 - P_2|\right|}\right) \cdot \frac{P_3 - P_2}{\left||P_3 - P_2|\right|}$$

$$F_2^{m_2}(P_2, P_3) = -F_1^{m_2}$$

$$F_2^{total} = F_2^{m_1} + F_1^{m_2}$$

Exemple: 1D Mesh-Springs (Ropes)

Mass-Spring

Algorithm:

// initialization

- forall particles i
- initialize x_i, v_i and m_i
- (3) endfor

// simulation loop

- (4) **loop**
- (5) **forall** particles i

(6)
$$\mathbf{f}_i \leftarrow \mathbf{f}^g + \mathbf{f}_i^{\text{coll}} + \sum_{j,(i,j) \in S} \mathbf{f}(\mathbf{x}_i, \mathbf{v}_i, \mathbf{x}_j, \mathbf{v}_j)$$

- (7) **endfor**
- (8) **forall** particles i
- (9) $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t \; \mathbf{f}_i / m_i$
- $\mathbf{x}_i \leftarrow \mathbf{x}_i + \Delta t \ \mathbf{v}_i$
- (11) endfor
- (12) display the system every n^{th} time
- (13) endloop

Spring Force:

$$\mathbf{f}(\mathbf{x}_i, \mathbf{v}_i, \ \mathbf{x}_j, \mathbf{v}_j) = \mathbf{f}^s(\mathbf{x}_i, \mathbf{x}_j) + \mathbf{f}^d(\mathbf{x}_i, \mathbf{v}_i, \ \mathbf{x}_j, \mathbf{v}_j)$$

Elastic:

$$\mathbf{f}_i = \mathbf{f}^s(\mathbf{x}_i, \mathbf{x}_j) = k_s \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{x}_j - \mathbf{x}_i|} (|\mathbf{x}_j - \mathbf{x}_i| - l_0)$$

$$\mathbf{f}_j = \mathbf{f}^s(\mathbf{x}_j, \mathbf{x}_i) = -\mathbf{f}^s(\mathbf{x}_i, \mathbf{x}_j) = -\mathbf{f}_i$$

Damping:

$$\mathbf{f}_{i} = \mathbf{f}^{d}(\mathbf{x}_{i}, \mathbf{v}_{i}, \mathbf{x}_{j}, \mathbf{v}_{j}) = \underbrace{k_{d}(\mathbf{v}_{j} - \mathbf{v}_{i}) \cdot \frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{|\mathbf{x}_{j} - \mathbf{x}_{i}|}}_{\mathbf{f}_{j} = \mathbf{f}^{d}(\mathbf{x}_{j}, \mathbf{v}_{j}, \mathbf{x}_{i}, \mathbf{v}_{i}) = -\mathbf{f}_{i}$$

Direction missing!!

$$\frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{x}_j - \mathbf{x}_i|}$$

Verlet Solver

Taylor:

$$\mathbf{x}(t+\Delta t) = \mathbf{x}(t) + \dot{\mathbf{x}}(t)\Delta t + \frac{1}{2}\ddot{\mathbf{x}}(t)\Delta t^2 + \frac{1}{6}\ddot{\mathbf{x}}(t)\Delta t^3 + O(\Delta t^4)$$
$$\mathbf{x}(t-\Delta t) = \mathbf{x}(t) - \dot{\mathbf{x}}(t)\Delta t + \frac{1}{2}\ddot{\mathbf{x}}(t)\Delta t^2 - \frac{1}{6}\ddot{\mathbf{x}}(t)\Delta t^3 + O(\Delta t^4)$$

Verlet Solver

Taylor:

$$\mathbf{x}(t+\Delta t) = \mathbf{x}(t) + \dot{\mathbf{x}}(t)\Delta t + \frac{1}{2}\ddot{\mathbf{x}}(t)\Delta t^2 + \frac{1}{6}\ddot{\mathbf{x}}(t)\Delta t^3 + O(\Delta t^4)$$
$$\mathbf{x}(t-\Delta t) = \mathbf{x}(t) - \dot{\mathbf{x}}(t)\Delta t + \frac{1}{2}\ddot{\mathbf{x}}(t)\Delta t^2 - \frac{1}{6}\ddot{\mathbf{x}}(t)\Delta t^3 + O(\Delta t^4)$$

Adding:

$$\mathbf{x}(t + \Delta t) = 2\mathbf{x}(t) - \mathbf{x}(t - \Delta t) + \ddot{\mathbf{x}}(t)\Delta t^2 + O(\Delta t^4)$$
$$= \mathbf{x}(t) + [\mathbf{x}(t) - \mathbf{x}(t - \Delta t)] + \mathbf{f}(t)\Delta t^2 / m + O(\Delta t^4)$$

Fast, stable, low precision

$$x_{t+dt} = x_t + k_d(x_t - x_{t-dt}) + \Delta t^2 \frac{f(t)}{m}$$

14

Euler Method

$$\mathbf{v}^{t+1} = \mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^t, \mathbf{v}^t) / m$$
$$\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \mathbf{v}^t.$$

Implicit Euler Method

$$\mathbf{v}^{t+1} = \mathbf{v}^t + \Delta t \underbrace{\mathbf{f}(\mathbf{x}^{t+1})} m$$
$$\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \mathbf{v}^{t+1}.$$

$$\mathbf{x} = [\mathbf{x}_1^T, \dots, \mathbf{x}_n^T]^T$$

$$\mathbf{v} = [\mathbf{v}_1^T, \dots, \mathbf{v}_n^T]^T$$

$$\mathbf{f}(\mathbf{x}) = [\mathbf{f}_1(\mathbf{x}_1, \dots, \mathbf{x}_n)^T, \dots \mathbf{f}_n(\mathbf{x}_1, \dots, \mathbf{x}_n)^T]^T$$

$$\mathbf{M} \in \mathbb{R}^{3n \times 3n} \ m_1, m_1, m_1, m_2, m_2, m_2, \dots, m_n, m_n, m_n$$

$$\mathbf{M}\mathbf{v}^{t+1} = \mathbf{M}\mathbf{v}^t + \Delta t\mathbf{f}(\mathbf{x}^{t+1})$$
$$\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta \mathbf{v}^{t+1}$$

$$\mathbf{M}\mathbf{v}^{t+1} = \mathbf{M}\mathbf{v}^t + \Delta t\mathbf{f}(\mathbf{x}^t + \Delta t\mathbf{v}^{t+1})$$

$$\mathbf{M}\mathbf{v}^{t+1} = \mathbf{M}\mathbf{v}^{t} + \Delta t \left[\mathbf{f}(\mathbf{x}^{t}) + \frac{\partial}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}^{t}) \cdot (\Delta t \, \mathbf{v}^{t+1}) \right]$$
$$= \mathbf{M}\mathbf{v}^{t} + \Delta t \mathbf{f}(\mathbf{x}^{t}) + \Delta t^{2} \mathbf{K} \mathbf{v}^{t+1},$$

 $\mathbf{K} \in \mathbb{R}^{3n \times 3n}$ is the Jacobian of \mathbf{f} .

Tangent Stiffness Matrix

$$\begin{split} \left[\mathbf{M} - \Delta t^2 \mathbf{K}\right] \mathbf{v}^{t+1} &= \mathbf{M} \mathbf{v}^t + \Delta t \mathbf{f}(\mathbf{x}^t) \\ \mathbf{A} \mathbf{v}^{t+1} &= \mathbf{b}, \end{split}$$
 Linear System

Now let us have a look at **K**. A spring force between particles i and j adds the four 3×3 sub-matrices $\mathbf{K}_{i,i}$, $\mathbf{K}_{i,j}$, $\mathbf{K}_{j,i}$ and $\mathbf{K}_{j,j}$ to the global matrix **K** at positions (3i,3i), (3i,3j), (3j,3i) and (3j,3j) respectively. In order to evaluate these sub-matrices, we need to deduce

$$\mathbf{K}_{i,i} = \frac{\partial}{\partial \mathbf{x}_i} \mathbf{f}^s(\mathbf{x}_i, \mathbf{x}_j)$$

$$= k_s \frac{\partial}{\partial \mathbf{x}_i} \left((\mathbf{x}_j - \mathbf{x}_i) - l_0 \frac{\mathbf{x}_j - \mathbf{x}_i}{|\mathbf{x}_j - \mathbf{x}_i|} \right)$$

$$= k_s \left(-\mathbf{I} + \frac{l_0}{l} \left[\mathbf{I} - \frac{(\mathbf{x}_j - \mathbf{x}_i)(\mathbf{x}_j - \mathbf{x}_i)^T}{l^2} \right] \right)$$

$$= -\mathbf{K}_{i,j} = \mathbf{K}_{j,j} = -\mathbf{K}_{j,i}$$

• Research:

(Fedkiw et al.-Stanford)

• Realism:

Nadia M.Thalman (MiRALAB-Geneve)

- Geometric Structure
- Dynamic Model
- Simulation on the GPU

Exemple: 2D Mesh-Springs (Cloth)

Triangular Mesh

Regular Mesh

Force Types

$$F_i = \sum (F_{int} + F_{ext} + F_r), \qquad i = 1,...n$$

 F_{int} : Internal Cloth Forces

 F_{ext} : External Forces

 F_r : Restriction Forces

Internal Force Computation: Provot

Provot's Spring Model (95)

Particles are connected by Stretch Springs, Shear Springs and Bend Springs.

Internal Elastic Forces

• 2D Deformation:

Internal Force Computation: Mass-Spring

Provot's Spring Model (95)
 (regular meshes)

Streach

- Shear
- Bend

Internal Force Computation: Mass-Spring

Provot's Spring Model (95)

(regular meshes)

Streach

Shear

Bend

Inverse Kinematics

Excessive elongation that must be corrected

Inverse Kinematics

Excessive elongation correction

Loop for all springs (relaxation) until all distances are near de initial resting one.

Internal Force Computation: B-W

General Triangular Meshes:

Constrain model (Baraff-Witkin 98):

Internal Force Computation: Plane Deformation

Set w(u,v) the map from local to world coordinates

$$(\mathbf{w}_u \quad \mathbf{w}_v) = (\Delta \mathbf{x}_1 \quad \Delta \mathbf{x}_2) \begin{pmatrix} \Delta u_1 & \Delta u_2 \\ \Delta v_1 & \Delta v_2 \end{pmatrix}^{-1}$$

Internal Force Computation: Plane Deformation

• Funció w(u,v) de canvi de coordenades

$$\varepsilon = \begin{pmatrix} \|\mathbf{w}_{\mathbf{u}}\| - \mathbf{b}_{\mathbf{u}} & \mathbf{w}_{\mathbf{u}}^{\mathsf{T}} \cdot \mathbf{w}_{\mathbf{v}} \\ \mathbf{w}_{\mathbf{u}}^{\mathsf{T}} \cdot \mathbf{w}_{\mathbf{v}} & \|\mathbf{w}_{\mathbf{v}}\| - \mathbf{b}_{\mathbf{v}} \end{pmatrix}$$

 $b_u, b_v \cong 1$

34

Internal Force Computation: B-W

 The internal forces are associated to the internal Energy

$$F_{int} = -\frac{\partial E}{\partial x}$$

This Energy comes from the restriction conditions
 C(x) that controls the mesh deformation

$$E_{c} = \frac{k_{s}}{2} \cdot C^{T} \cdot C$$

Internal Force Computation: STREACH

 Streach forces takes care of the variation on triangle edges.

$$\mathbf{C}(\mathbf{x}) = a \begin{pmatrix} \|\mathbf{w}_u(\mathbf{x})\| - b_u \\ \|\mathbf{w}_v(\mathbf{x})\| - b_v \end{pmatrix}$$

a =Triangle area

Internal Force Computation: SHEAR

Shear forces maintain the internal angles

$$C(\mathbf{x}) = a\mathbf{w}_u(\mathbf{x})^T \mathbf{w}_v(\mathbf{x})$$

Internal Force Computation: Bend

Forces against cloth bending

$$C(x) = \theta$$

Numerical Solver: Implicit Euler

Implicit Euler Method

$$(M - h \frac{\partial f}{\partial v} - h^2 \frac{\partial f}{\partial x}) \Delta v = h(f_o + h \frac{\partial f}{\partial x} v_o)$$

$$K_{ij} = \frac{\partial f_i}{\partial x_j} = -k \left(\frac{\partial C(x)}{\partial x_i} \frac{\partial C(x)}{\partial x_j}^T + \frac{\partial^2 C(x)}{\partial x_i \partial x_j} C \right)$$

K block matrix 3nx3n dimensional solved using **Conjugate Gradient** method

B-W Cloth Model: Images

B-W Cloth Model: Forces

B-W Cloth Model: Forces

3D Geometry: Jelly objects

