**LECTURER: Nghia Duong-Trung** 

# **ARTIFICIAL INTELLIGENCE**

| History of Artificial Intelligence       | 1 |
|------------------------------------------|---|
| Early Systems in Artificial Intelligence | 2 |
| Neuroscience and Cognitive Science       | 3 |
| Modern Artificial Intelligence Systems   | 4 |
| Applications of Artificial Intelligence  | 5 |

# **EARLY SYSTEMS IN ARTIFICIAL INTELLIGENCE**

#### **STUDY GOALS**

On completion of this unit, you will have learned ...

- about important approaches that have defined the field of artificial intelligence in the past and that continue to influence it today.
- ... why expert systems are important and how they have contributed to artificial intelligence and computer science.
- ... about advances brought about in the Prolog programming language.
- ... the definition of machine learning and how it contributes to artificial intelligence.

#### **EXPLAIN SIMPLY**

- 1. List the three types of machine learning and explain them using your own words.
- 2. What are the main components of expert systems?
- 3. Explain the declarative programming paradigm.

### **Expert systems**

## **Knowledge representation**



### Inference engine

### **Case-based systems**

storage of problems and successful solutions

### **Rule-based systems**

description of relations between facts

### **Decision tree**

representation in form of decisions

### Inference engine

 implements rules of logical reasoning to derive new facts

# VisiRule – decision-support system

Access loan decision

https://visiruleexamples.com/vregs.html



# New use cases require a larger knowledge base

- Increased computational complexity during inference
- Challenge of consistency without contradictions
- → Lead to development of logical programming to formulate rules and reasoning processes

# **Declarative programming**

- programming style with specified properties of the sought solution but not the algorithm
- → sequence of operations that lead to a solution (= logic)

#### PROGRAMMING IN LOGIC (PROLOG):

- Prolog is based on a declarative programming paradigm
  - The sequence of operations that lead to a solution
  - A Prolog program consists of a collection of facts and rules that relate the facts to one another
  - Program execution is then initiated by formulating a query using the aforementioned knowledge base.

#### **INTRODUCTION TO PROLOG**

# **Prolog** consists of predicates and clauses

| Example of the Prolog Language |                                                                   |                                                                                                           |
|--------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Prolog language construct      | Prolog syntax                                                     | Meaning and output                                                                                        |
| Fact                           | lectures (Smith, DLMAIAI01)                                       | Establishes the fact that Dr. Smith teaches the course DLMAIAI01. It is an exmple of a Prolog clause.     |
| Predicate                      | professor/1 professor(Smith). professor(Jones). professor(Meyer). | Defines the one argument predicate professor by three facts. Drs. Smith, Jones, and Meyer are professors. |
| Rule                           | technicalCourse(X) :-<br>engineeringCourse(X)                     | All engineering courses are technical courses. Note the use of variable X!                                |
| Query                          | ? – lectures(Smith, DLMAIAI01)                                    | Does Dr. Smith teach DLMAIAI01?                                                                           |
| Goal                           | ? – lectures(Smith, X)                                            | What courses does Dr. Smith teach?<br>Note the use of the variable X!                                     |

#### **TYPES OF MACHINE LEARNING**

Supervised learning (predict a target variable)



**House Price Prediction** 

Machine learning

Unsupervised learning (discover hidden patterns)



**Customer Segmentation** 

Reinforcement learning (agent learns how to act)







Gaming agent for chess

Healthcare: wearables



Automobile: autonomous driving



Banking: fraud detection



Retail: personalized product recommendations



#### **REVIEW STUDY GOALS**

### You have learned ...

- ... about important approaches that have defined the field of artificial intelligence in the past and that continue to influence it today.
- ... why expert systems are important and how they have contributed to artificial intelligence and computer science.
- ... about advances brought about in the Prolog programming language.
- the definition of machine learning and how it contributes to artificial intelligence.

### SESSION 2

# **TRANSFER TASK**

#### **TRANSFER TASK**

# Use Prolog to develop rules for the following family relations:



# Write the following queries:

- Does Annie have an uncle? Who?
- Who are the grandparents of Thomas?
- → Use this virtual environment: <u>SWI Prolog</u>

Tutorial: <a href="http://www.macs.hw.ac.uk/~rpp6/teaching/F29AI/prolog/">http://www.macs.hw.ac.uk/~rpp6/teaching/F29AI/prolog/</a>

Please present your results.

The results will be discussed in plenary.



#### TRANSFER TASK SAMPLE SOLUTION

```
father_of(X,Y):- male(X),
female(annie).
female(theresa).
                                                                                 parent_of(X,Y).
female(alice).
                                                                        mother_of(X,Y) :- female(X),
female(emily).
                                                                                 parent_of(X,Y).
male(thomas).
                                                                        grandfather_of(X,Y):- father_of(X,Z),
male(jerry).
                                                                                   parent_of(Z,Y).
male(william).
                                                                        grandmother_of(X,Y) := mother_of(X,Z),
male(paul).
                                                                                   parent_of(Z,Y).
parent_of(paul,alice).
                                                                        sister_of(X,Y) :- female(X),
parent_of(emily,alice).
                                                                                 parent_of(Z,X),
parent_of(paul,jerry).
                                                                                 parent_of(Z,Y).
                                                                        brother_of(X,Y) :- male(X),
parent_of(emily,jerry).
parent_of(alice,annie).
                                                                                 parent_of(Z,X),
parent_of(william,annie).
                                                                                 parent_of(Z,Y).
parent_of(jerry,thomas).
parent_of(theresa,thomas).
                                                                        aunt_of(X,Y) :- sister_of(X,Z),
                                                                                parent_of(Z,Y).
                                                                        uncle_of(X,Y):-brother_of(X,Z),
                                                                                parent_of(Z,Y).
```

# Does Annie have an uncle?

➤ uncle\_of(\_,annie).

### Who?

➤ uncle\_of(X,annie).

# Who are the grandparents of Thomas?

- grandmother\_of(X,thomas).
- $\triangleright$  grandfather\_of(X,thomas).

### **LEARNING CONTROL QUESTIONS**

- 1. In Prolog, the sequence of concrete steps to arrive at a desired program outcome is:
  - a) specified by the program user.
  - b) generated by the Prolog system.
  - c) specified by the programmer.
  - d) not determined at all



- 2. Supervised learning, unsupervised learning, and reinforcement learning
  - a) define the full range of the field of artificial intelligence.
  - b) are concepts still being tested in laboratories. They are not yet being applied.
  - c) have no relation to machine learning or artificial intelligence.
  - d) are subfields of machine learning.

- 3. The main lasting contribution of expert systems to artificial intelligence and/or computer science were
  - a) explicit formal representation of knowledge, declarative programming style, and rapid prototyping.
  - b) the popularization of imperative programming and probabilistic reasoning.
  - c) list processing and procedural programming.
  - d) object-oriented programming and the implementation of systems without prototyping.

