Test 2 Formulas

• Bernoulli Distribution with the probability of success p:

- The pmf is

$$P(x) = \begin{cases} p, & x = 1\\ 1 - p, & x = 0 \end{cases}$$

- The expectation is

$$\mu = \mathbf{E}(X) = p.$$

The variance is

$$\sigma^2 = \operatorname{Var}(X) = p(1-p) = pq.$$

• Binomial Distribution with n trials and probability of success p:

- The pmf is:

$$P(x) = \mathbf{P}{X = x} = \binom{n}{x} p^x q^{n-x}, \text{ for } x = 0, 1, 2, ..., n.$$

- The expectation is:

$$\mu = \mathbf{E}(X) = np.$$

- The variance is:

$$\sigma^2 = \operatorname{Var}(X) = npq.$$

• **Geometric Distribution** with the probability of success *p*:

- The pmf is:

$$P(x) = \mathbf{P}{X = x} = (1 - p)^{x-1}p$$
, for $x = 1, 2, ...$

– The expectation is:

$$\mu = \mathbf{E}(X) = \frac{1}{p}$$

- The variance is:

$$\sigma^2 = \operatorname{Var}(X) = \frac{1 - p}{p^2}$$

• **Poisson Distribution** with the frequency λ :

- The pmf is:

$$P(x) = \mathbf{P}\{X = x\} = e^{-\lambda} \cdot \frac{\lambda^x}{x!}, \text{ for } x = 0, 1, 2, ...$$

– The expectation is:

$$\mu = \mathbf{E}(X) = \lambda$$

- The variance is:

$$\sigma^2 = \operatorname{Var}(X) = \lambda$$

• Uniform Distribution on an interval (a, b):

$$f(x) = \frac{1}{b-a} \quad \text{ for } a < x < b$$

(and f(x) = 0 otherwise).

- The expectation is:

$$\mu = \mathbf{E}(X) = \frac{a+b}{2}$$

- The variance is:

$$\sigma^2 = \operatorname{Var}(X) = \frac{(b-a)^2}{12}$$

• Exponential Distribution with frequency λ :

$$f(x) = \lambda e^{-\lambda x}$$
 for $x > 0$

(and f(x) = 0 otherwise).

- The cdf is

$$F(x) = 1 - e^{-\lambda x}$$
 for $x > 0$

(and F(x) = 0 otherwise).

- The expectation is:

$$\mu = \mathbf{E}(X) = \frac{1}{\lambda}$$

- The variance is:

$$\sigma^2 = \operatorname{Var}(X) = \frac{1}{\lambda^2}$$

• Normal Distribution with the mean μ and standard deviation σ :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- The cdf is

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left[-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^{2}\right] dt$$

- The expectation is:

$$\mathbf{E}(X) = \mu$$

- The variance is:

$$Var(X) = \sigma^2$$

* To solve the probability of Standard Normal Distribution (i.e., $Z \sim N(0,1)$) using R:

*
$$\mathbf{P}{Z \le z} = \mathbf{P}{Z < z} = \text{pnorm}(z)$$

*
$$\mathbf{P}{Z \ge z} = \mathbf{P}{Z > z} = 1 - \text{pnorm}(z)$$

*
$$\mathbf{P}{Z \le z} = \mathbf{P}{Z < z} = \text{pnorm}(z)$$

* $\mathbf{P}{Z \ge z} = \mathbf{P}{Z > z} = 1 - \text{pnorm}(z)$
* $\mathbf{P}{z_1 \le Z \le z_2} = \text{pnorm}(z_2) - \text{pnorm}(z_1)$
* if $\mathbf{P}{Z \le z} = a$, then $z = \text{qnorm}(a)$

* if
$$\mathbf{P}\{Z \leq z\} = a$$
, then $z = \text{qnorm}(a)$

• Central Limit Theorem (informally)

Let $X_1, X_2, X_3, ...$ be independent random variables with the same expectation $\mu = \mathbf{E}(X_i)$ for all i and with the same standard deviation $\sigma = \text{Std}(X_i)$ for all i, and let

$$S_n = \sum_{i=1}^n X_i = X_1 + X_2 + X_3 + \dots + X_n$$

As $n \to \infty$, the sum S_n follows a Normal Distribution:

$$S_n \sim \text{Normal}(n\mu, \sigma\sqrt{n})$$

• Summary of Discrete distributions and Continuous distributions:

Distribution:	Discrete	Continuous
Defined by:	$P(x) = \mathbf{P}\{X = x\} \text{ (pmf)}$	f(x) = F'(x) (pdf)
Calculating probabilities:	$\mathbf{P}\{a < X \leqslant b\} = \sum_{a < x_j \leqslant b} P(x_j)$	$\mathbf{P}(a < X \leqslant b) = \int_{a}^{b} f(x) \mathrm{d}x$
Cumulative distribution function (cdf):	$F(x) = \sum_{x_j \leqslant x} P(x_j)$	$F(x) = \int_{-\infty}^{x} f(t) \mathrm{d}t$
Total probability:	$\sum_{x_j} P(x_j) = 1$	$\int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1$
Expectation:	$\mu = \mathbf{E}(X) = \sum_{x_j} x_j P(x_j)$	$\mu = \mathbf{E}(X) = \int_{-\infty}^{+\infty} x f(x) \mathrm{d}x$
Variance:	$\sigma^2 = \operatorname{Var}(X) = \sum_{x_j} (x_j - \mu)^2 P(x_j)$	$\sigma^2 = \operatorname{Var}(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) \mathrm{d}x =$ $\mathbf{E}(X^2) - \mu^2$