Introduction to Bayesian Statistics

Helga Wagner

IFAS, JKU Linz

Summerschool Ligist 2019

Part 1: Introduction to Bayesian Statistics

- Why Bayes?
- Statistical Inference
- The Bayesian Approach to Statistical Inference
- Conjugate Bayesian Analysis
 - Probability of a rare disease
 - The Normal model

Why Bayes?

Why Bayes?

Reverend Thomas Bayes

(*1702 in London, †1761)

In 1763 Richard Price read An Essay Towards solving a Problem in the Doctrine of Chances where Bayes solves the problem of "inverse" probabilities

⇒ Bayes rule and Bayesian inference has its birth

Bayes rule

Theorem

For two events A and B with P(B) > 0 the probability of A conditioning on B is given as

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)}$$

Example: Screening-Test

Available information

- prevalence of the disease in the population P(A)
- properties of the screening test
 - ▶ sensitivity: P(T + |A)
 - specificity: $P(T |A^C)$

What is the probability to have the disease given a positive test result?

 \Longrightarrow positive predictive value P(A|T+)?

Example: Screening-Test

- prevalence P(A) = 0.002
- sensitivity: 0.98; specifity: 0.935

	<i>P</i> (∼ <i>A</i>)	$P(\sim A^C)$	
\overline{T} +	0.980	0.065	
T-	0.020	0.935	\longrightarrow
Σ	1.000	1.000	-

	$P(A \sim)$	$P(A^C \sim)$	Σ
\overline{T} +	0.02933	0.97067	1.000
T-	0.00004	0.99996	1.000
Σ	0.002	0.998	

$$P(A|T+) = 0.02933 \approx 15P(A)$$
 $P(A|T-) = 0.00004 \approx \frac{1}{50}P(A)$

⇒ Bayesian learning, i.e. updating prior beliefs

Topics

goals: you

- will be familiar with the Bayesian approach to statistical learning
- know basic concepts of Bayesian statistcs
- can perform a conjugate Bayesian analysis
- know how to perfom Bayesian inference using Monte Carlo methods

Literature:

Hoff, Peter D. (2009). A first Course in Bayesian Statistics. Springer Material: https://pdhoff.github.io/book/

Statistical Inference

Statistical Inference

- statistical induction use a data sample to infer population characteristics
 - observed data y quantify the outcome of a survey or experiment
 - **parameter** θ quantifies unknown population characteristic
- information (uncertainty)
 - pre-experimentally (before the experiment) $\bf y$ and θ are unknown
 - ightharpoonup post-experimentally (after the experiment) $m {\it y}$ is known; $m {\it heta}$ is unknown
- goal: inference on the parameter θ after observing \mathbf{y}

Example: Probability of a Rare Disease

- ullet interest is in prevalence heta of an infectious disease in a population
 - ightharpoonup a random sample of n = 20 persons is checked for infection
 - y is the number of infected persons in the sample

what is the information on θ ?

- statistical model
 - ▶ parameter space $\Theta = [0, 1]$
 - ▶ sample space y = {0,1,...,20}

For a large population a reasonable sampling model for Y is

$$Y|\theta \sim \text{BiNom}(20,\theta)$$

Binomial distributon

$$Y \sim \text{BiNom}(n, \theta) \Longrightarrow \quad p(Y = k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

Probability of a Rare Disease: Statistical Analysis

- sampling model: $y \sim \text{BiNom}(20, \theta)$
- data: n = 20, y = 0

Statistical Tasks:

- point estimation: $\hat{\theta}$
- interval estimation: determine $[\theta_I = I(Y), \theta_u = u(Y)]$ such that $P(I(Y) < \theta < u(Y)) = 1 \alpha$
- hypothesis tests: e.g. $\mathbf{H}_0: \theta \geq 0.1$ vs. $\mathbf{H}_1: \theta < 0.1$
- prediction: number of infected \tilde{Y} in a new sample of size \tilde{n}

Probability of a Rare Disease: Frequentist Analysis

- point estimation: ML- estimation
 - ▶ ML-estimate $\hat{\theta}$ is the value of θ maximizing the probability to observe y in Binomial sampling of size n
 - ▶ likelihood: $P(Y = 0|\theta) = (1 \theta)^n$
 - MLE for θ

$$\hat{\theta} = \overline{y} = \frac{y}{n} = 0$$

- interval estimation:
 - approximative: Wald confidence interval

$$\hat{\theta} \pm z_{1-\alpha/2} \sqrt{\hat{\theta} (1-\hat{\theta})/n}$$

has length 0 if $\hat{\theta}=0$ for any significance level (frequentist coverage is asymptotically correct but not for small n)

Probability of a Rare Event: Frequentist Analysis

 hypothesis testing: the p-value is supremum of the probability to observe y (or an even more extreme value) under H₀

$$p = \sup_{\theta \ge 0.1} P(Y \le 0 | \theta)$$

distribution of Y for $\theta = 0.1$

therefore $p = P(Y = 0 | \theta = 0.1) = 0.1215$

Probability of a Rare Event: Frequentist Analysis

• prediction: conditional on $\hat{\theta}$

$$ilde{Y}|\hat{ heta}\sim \mathbf{B}_{ ilde{n}.\hat{ heta}}$$

$$\Longrightarrow P(\tilde{Y}=0|\hat{\theta}=0)=1 \text{ for any } \tilde{n}$$

The Bayesian Approach to Statistical Inference

Bayesian Approach

- quantify beliefs (information) on unknown quantities/events
 beliefs can be expressed via probability distributions
- update beliefs in light of new information
 information update (inductive learning) via Bayes rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)}$$

Information Update

Bayes rule allows information update

A and B are independent

$$P(A \cap B) = P(A)P(B) \implies P(A|B) = P(A)$$

Information that B has occurred provides no information on the probability of A

A and B are dependent

$$P(A \cap B) > P(A)P(B) \implies P(A|B) > P(A)$$

or

$$P(A \cap B) < P(A)P(B) \implies P(A|B) < P(A)$$

Information that B has occurred provides information on the probability of A.

Bayes Approach: Basics Summary

- (subjective) uncertainty or prior knowledge is quantified through probability distributions
- before data are collected there is uncertainty on
 - the observables (data) y
 - the unobservables, i.e. the unknown parameter (vector) θ

 \implies specification of a joint stochastic model for (\mathbf{y}, θ)

Bayesian analysis

- parameter and sample space
 - the parameter space Θ is the set of all possible values for θ
 - the sample space \mathcal{Y} is the set of all possible data sets
- Bayesian modelling (quantification of information)
 - ▶ prior distribution $p(\theta)$ quantifies the belief that θ is the value of the population parameter for all $\theta \in \Theta$ before observing the data
 - ▶ sample model $p(\mathbf{y}|\theta)$ quantifies the belief that \mathbf{y} will be observed for all $\theta \in \Theta$ and $\mathbf{y} \in \mathcal{Y}$
- Bayesian inference
 - ▶ based only on posterior distribution $p(\theta|\mathbf{y})$
 - the posterior distribution combines information on θ from prior and data

Bayes Theorem

Bayes Theorem (normalized)

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

where $p(\sim)$ denotes

- the probability density for continuous random variables
- probability function for discrete random variables

Bayes theorem

- describes how uncertainty on the parameter is changed by the information in the data
- ullet holds for discrete and continuous random variables ullet, $oldsymbol{ heta}$

Bayes Theorem

Bayes Theorem (non-normalized)

$$p(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)p(\theta)$$

posterior ∝ likelihood × prior

The normalizing constant is given as

$$p(\mathbf{y}) = \sum_{\theta \in \Theta} p(\mathbf{y}|\theta)p(\theta) \quad \theta \dots \text{discrete}$$
 (1)

$$p(\mathbf{y}) = \int_{\Theta} p(\mathbf{y}|\theta)p(\theta)d\theta \quad \theta \dots \text{continuous}$$
 (2)

Conjugate Bayesian Analysis Probability of a rare disease

Probability of a Rare Disease: Bayesian Analysis

- data: n = 20, y = 0
- sampling model: $y \sim \text{BiNom}(20, \theta)$ likelihood: $P(Y = 0|\theta) = (1 \theta)^n$
- of interest: $P(\theta|Y=0)$
- a reasonable prior distribution for $\theta \in \mathcal{Y} = [0, 1]$ is a Beta-distribution distribution $\mathcal{B}(a, b)$

Beta-distribution

- parameters: a, b > 0
- probability density function (pdf)

$$p(x|\mathcal{B}(a,b)) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}x^{a-1}(1-x)^{b-1}$$
 for $x \in [0,1]$

moments

$$\mathsf{E}(X) = \frac{a}{a+b}$$

$$Var(X) = \frac{ab}{(a+b)^2(a+b+1)^2}$$

Probability of a Rare Disease: Prior Distribution

- infection rates from 0.05 to 0.2, average prevalence of 0.1
 ⇒ assign substantial probability to [0.05, 0.2]
- specify $p(\theta)$ as a Beta-distribution $\mathcal{B}(a,b)$,

$$heta \sim \mathcal{B} \, (\mathbf{2}, \mathbf{20})$$

$$E(\theta) = 0.09$$
 $mode(\theta) = 0.05$ $P(\theta < 0.1) = 0.64$ $P(0.05 < \theta < 0.2) = 0.66$

Probability of a Rare Disease: Derivation of the Posterior Distribution

- data: y of the n tested persons were infected
- the posterior $p(\theta|y)$ is derived by Bayes theorem

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

$$= \frac{1}{p(y)} \binom{n}{y} \frac{\theta^{y} (1-\theta)^{n-y} \cdot \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \theta^{a-1} (1-\theta)^{b-1}}{\theta^{a-1} (1-\theta)^{b-1}}$$

$$= c(n, y, a, b) \cdot \theta^{a+y-1} (1-\theta)^{b+n-y-1}$$

• this is the kernel of the $\mathcal{B}(a+y,b+n-y)$ distribution

$$\theta | y \sim \mathcal{B}(a + y, b + n - y)$$

Conjugacy

- the binomial sampling model
- combined with Beta prior for θ

yields a Beta posterior

Definition (Conjugacy)

A class of prior distributions $\mathcal P$ for a parameter θ is called conjugate for the sampling model $p(y|\theta)$ if

$$p(\theta) \in \mathcal{P} \Longrightarrow p(\theta|y) \in \mathcal{P}$$

⇒ the class of Beta prior distributions is conjugate for the Binomial sampling model

Probability of a Rare Disease: Posterior Distribution

for
$$n=20, y=0, a=2$$
 and $b=20$ we get $\theta|y\sim\mathcal{B}(2,40)$

Probability of a Rare Disease: Sensitivity Analysis

Effect of the prior distribution: for $\theta \sim \mathcal{B}(a, b)$ the posterior is

$$\theta | y \sim \mathcal{B}(a + y, b + n - y)$$

Probability of a Rare Event: Sensitivity Analysis

With the posterior

$$\theta | y \sim \mathcal{B}(a+y, b+n-y)$$

the posterior expectation is

$$E(\theta|y) = \frac{a+y}{a+b+n} = \frac{a}{a+b+n} + \frac{y}{a+b+n} =$$

$$= \frac{a+b}{a+b+n} \cdot \frac{a}{a+b} + \frac{n}{a+b+n} \cdot \frac{y}{n} =$$

$$= \frac{a+b}{a+b+n} \cdot E(\theta) + \frac{n}{a+b+n} \cdot \overline{y} =$$

$$= w \cdot \overline{y} + (1-w) \cdot E(\theta)$$

Impact of the Prior Distribution

the posterior expectation is a weighted average of prior expectation and data mean

$$E(\theta|y) = \frac{a+b}{a+b+n} \cdot E(\theta) + \frac{n}{a+b+n} \cdot \overline{y}$$

- the weight
 - of the data mean w is proportional to n
 - of the prior expectation 1 w is proportional to a + b
- for fixed
 - n: the weight of the prior mean increases with a + b
 - ▶ a + b: the weight of the sample mean converges to 1 for $n \to \infty$

Parameter Estimation

Point estimation of θ by location parameters of the posterior distribution, e.g. posterior mode, posterior median or posterior mean.

Each of these estimators is the optimal estimator with respect to certain loss function:

- Let $\mathcal{R}(\hat{\theta}(\mathbf{y}), \boldsymbol{\theta})$ be a function quantifying the loss made when estimating a parameter $\boldsymbol{\theta}$ by the point estimate $\hat{\theta}(\mathbf{y})$.
- Select the estimator $\hat{\theta}(\mathbf{y})$ that minimizes the expected loss with respect to the posterior distribution:

$$E\{\mathcal{R}(\hat{\theta}(\mathbf{y}), \boldsymbol{\theta})|\mathbf{y}\} = \int \mathcal{R}(\hat{\theta}(\mathbf{y}), \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}$$

Parameter Estimation

- The posterior expectation $E\{\theta|\mathbf{y}\}$ is optimal with respect to the quadratic loss function $\mathcal{R}(\hat{\theta}(\mathbf{y}), \theta) = (\hat{\theta}(\mathbf{y}) \theta)^T (\hat{\theta}(\mathbf{y}) \theta)$.
- The posterior mode is the optimal with respect to the 0/1 loss function:

$$\mathcal{R}(\hat{\theta}(\mathbf{y}), \boldsymbol{\theta}) = \left\{ \begin{array}{ll} 0, & \hat{\theta}(\mathbf{y}) = \boldsymbol{\theta}, \\ 1, & \hat{\theta}(\mathbf{y}) \neq \boldsymbol{\theta}. \end{array} \right.$$

• In a single parameter problem, the posterior median is optimal under the absolute deviation $\mathcal{R}(\hat{\theta}(\mathbf{y}, \boldsymbol{\theta}) = |\hat{\theta}(\mathbf{y}) - \boldsymbol{\theta}|$

Bayesian Interval Estimation

uncertainty on the parameter can be expressed by an interval/region or a dispersion parameter of the posterior

Definition (Credibility interval)

Let $\Theta \subset \mathbb{R}$ (i.e. θ is univariate).

An interval

$$[I(\mathbf{y}), u(\mathbf{y})]$$

has $100(1 - \alpha)\%$ Bayesian coverage if

$$P(I(\mathbf{y}) < \theta < u(\mathbf{y})|Y = y) = 1 - \alpha$$

• An interval with $100(1 - \alpha)\%$ Bayesian coverage is a $100 \cdot (1 - \alpha)\%$ credibility interval.

Interpretation: a credibility interval has post-experimental coverage of $100(1-\alpha)\%$

Credibility Regions

quantile based (equal tailed) interval

$$\left[\theta_{\alpha/2},\theta_{1-\alpha/2}\right]$$

where θ_{α} is the α -quantile of the posterior distribution $p(\theta|y)$

• goal: shortest region with $100(1 - \alpha)\%$ coverage

Definition (HPD region = highest posterior density region)

A 100(1 $-\alpha$)% HPD region consists of a subset of the parameter space $s(\mathbf{y}) \subset \Theta$ such that

- $P(\theta \in s(y)|Y) = 1 \alpha$
- if $\theta_1 \in s(y)$ and $\theta_2 \notin s(y)$, then $p(\theta_1|Y=y) > p(\theta_2|Y=y)$

Note: a HPD region is not necessarily an interval

Probability of a Rare Event: Credibility Regions

Example: 95% credibility regions for θ

- $(\theta_{0.025}, \theta_{0.975}) = (0.00596, 0.12855)$; length = 0.1225
- HPD region (0.0011, 0.1111); length = 0.1100

Bayesian and Frequentist Coverage

Definition (Frequentist coverage)

A random interval [I(Y), u(Y)] has $100(1 - \alpha)\%$ frequentist coverage if

$$P(I(Y) < \theta < u(Y)) = 1 - \alpha$$

- confidence limits I(Y) and u(Y) are random variables
- frequentist coverage
 - refers to repeated experiments: 95 % of the confidence intervals will contain the true parameter
 - is pre-experimental: after the data are collected the confidence interval either contains the parameter or not
- intervals with $100(1 \alpha)\%$ Bayesian coverage usually have approximate $100(1 \alpha)\%$ frequentist coverage

Probability of a Rare Event: Prediction

goal: prediction of the disease status for a person not yet observed

- let $\tilde{Y} \in [0, 1]$ denote the disease status of this person
- predictive distribution of \tilde{Y} given y

$$P(\tilde{Y} = 1|y) = \int_0^1 P(\tilde{Y} = 1, \theta|y) d\theta =$$

$$= \int_0^1 P(\tilde{Y} = 1|\theta, y) P(\theta|y) d\theta =$$

$$= \int_0^1 \theta P(\theta|y) d\theta = E(\theta|y) = \frac{a+y}{a+b+n}$$

$$P(\tilde{Y} = 0) = 1 - E(\theta|y) = \frac{b+n-y}{a+b+n}$$

Further examples of conjugacy

Conjugate priors exist for the natural parameter of distributions from the exponential family.

likelihood	conjugate prior family
$Bino(n, \theta)$	$ heta \sim Beta(a_0,b_0)$
$Poisson(\lambda)$	$\lambda \sim Gamma(a_0,b_0)$
$N(\mu, \sigma^2)$	$\mu \sim \textit{N}(\textit{m}_{0},\textit{M}_{0})$
$N(\mu, \sigma^2)$	$\sigma^2 \sim \text{InvGamma}(s_0, S_0)$

Conjugate Bayesian Analysis The Normal Model

The Normal Model

Example: Midge wing data (Grogan and Wirth, 1981)

Data: n = 9 measurements of wing length (in mm) of a species of midge

$$\mathbf{y} = (1.64, 1.70, 1.72, 1.74, 1.82, 1.82, 1.82, 1.90, 2.08)$$

Model: $y_1, \dots y_n$ independent

$$y_i = \mu + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}\left(\mu, \sigma^2\right), i = 1, \dots, n$$

with $\sigma^2 = 0.13^2$.

Likelihood:

$$p(\mathbf{y}|\mu,\sigma^2) \propto \sigma^{-n/2} \exp\Big(-rac{1}{2}\sum_{i=1}^n rac{(y_i-\mu)^2}{\sigma^2}\Big)$$

Bayesian analysis

Prior: Conjugate prior

$$\mu |\sigma^2 \sim \mathcal{N}(m_0, M_0)$$

Posterior: Normal distribution

$${\color{red}\mu}|\sigma^2, {\color{red}y} \sim \mathcal{N}\left(m_n, M_n
ight)$$

with

$$M_n^{-1} = \frac{1}{M_0} + \frac{n}{\sigma^2}$$
 $m_n = M_n \left(\frac{m_0}{M_0} + \frac{n}{\sigma^2} \bar{y}\right)$

Midge data: posterior distribution

$$\mu |\sigma^2, \mathbf{y} \sim \mathcal{N}\left(m_n, M_n\right)$$

Joint inference on mean and variance

What if also σ^2 is unknown?

Model: $y_1, \dots y_n$ independent

$$y_i = \mu + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}\left(\mu, \sigma^2\right),$$

 \Longrightarrow joint prior for μ and σ^2 required

Likelihood of the normal model

$$p(\mathbf{y}|\mu, \sigma^2) \propto (\sigma^2)^{-n/2} \exp \left(-\frac{1}{2} \sum_{i=1}^n \frac{(y_i - \mu)^2}{\sigma^2}\right)$$

Prior: Conjugate prior

$$\mu | \sigma^2 \sim \mathcal{N}\left(m_0, M_0 \sigma^2\right) \qquad \sigma^2 \sim \mathcal{G}^{-1}\left(s_0, S_0\right)$$

The inverse Gamma distribution

- parameters: a, b > 0
- probability density function (pdf)

$$p(x|\mathcal{G}^{-1}(a,b)) = \frac{b^a}{\Gamma(a)} \frac{1}{x^{a+1}} \exp(-b/x)$$
 for $x > 0$

- If $X \sim \mathcal{G}(a, b)$ then $1/X \sim \mathcal{G}^{-1}(a, b)$
- moments

$$\mathsf{E}(X) = rac{b}{a-1} \quad ext{for } a>1$$
 $\mathsf{mode}(X) = rac{b}{a+1}$ $\mathsf{Var}(X) = rac{b^2}{(a-1)^2(a-2)} \quad ext{for } a>2$

Pdf of the inverse Gamma distribution

Pdf of the inverse Gamma distribution (different shape a and b=1)

Specification of the prior distribution

- prior knowledge suggests that μ and σ are not too far from 1.9 mm and (0.1 mm)²
- Reparameterization:

$$\begin{split} \mu | \sigma^2 &\sim \mathcal{N}\left(m_0, M_0 \, \sigma^2\right) \\ \sigma^2 &\sim \mathcal{G}^{-1}\left(\nu_0/2, \nu_0/2 \, \sigma_0^2\right) \end{split}$$

• Prior moments of σ^2

$$\mathsf{E}(\sigma^2) = rac{b}{a-1} = \sigma_0^2 rac{
u_0/2}{
u_0/2 - 1} ext{ for }
u_0 > 2$$
 $\mathsf{Var}(\sigma^2) = \left(\mathsf{E}(\sigma^2)
ight)^2 rac{1}{
u_0/2 - 2} ext{ for }
u_0 > 4$

Joint prior for mean and variance

prior parameters: $m_0 = 1.9, M_0 = 1$; $\nu_0 = 1, \sigma_0^2 = 0.01$

Joint posterior distribution

$$\begin{split} & \boldsymbol{\sigma^2} | \boldsymbol{y} \sim \mathcal{G}^{-1} \left(\nu_n / 2, \nu_n / 2 \, \sigma_n^2 \right) \\ & \mu | \boldsymbol{\sigma^2}, \boldsymbol{y} \sim \mathcal{N} \left(m_n, M_n \, \sigma^2 \right) \end{split}$$

with

$$M_n^{-1} = 1/M_0 + n$$
 $m_n = M_n(\frac{\mu_0}{M_0} + n\bar{y})$

and

$$\nu_n = \nu_0 + n$$

$$\sigma_n^2 = \frac{1}{\nu_n} \left(\nu_0 \sigma_0^2 + \sum_{i=1}^n (y_i - \bar{y})^2 + \frac{1}{M_0 + 1/n} (\bar{y} - m_0)^2 \right)$$

Joint Posterior for mean and variance

prior parameters: $m_0=1.9,\,M_0=1$; $\nu_0=1,\,\sigma_0^2=0.01$

Part 2: Methods for posterior inference

- Posterior inference for regression models
- Posterior simulation
- MCMC methods
 - Gibbs sampling: linear regression with semi-conjugate prior
 - Data Augmentation: probit model
 - Metropolis Hastings Algorithm: logistic regression
 - Posterior inference based on MCMC samples

Posterior inference for regression models

Bayesian linear regression model

Data: $(y_i, \mathbf{x}_i), i = 1, ..., n$

Model: $y_1, \dots y_n$ independent

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}\left(0, \sigma^2\right),$$

where $\boldsymbol{\beta} = (\beta_1, \dots, \beta_d)$ is the vector of regression coefficients. Deep learning linear regression: $y_i = \mathbf{W}' \mathbf{x}_i + \varepsilon_i$, i.e. $\boldsymbol{\beta} = \mathbf{W}'$

Conjugate priors:

$$|\boldsymbol{\beta}|\sigma^2 \sim N_d(\mathbf{b}_0, \sigma^2\mathbf{B}_0), \qquad \sigma^2 \sim \mathcal{G}^{-1}(s_0, S_0)$$

Bayesian inference for the linear regression model

Likelihood in matrix form: Define $\mathbf{X} \in \mathbb{R}^{N \times d}$ as the design matrix with rows \mathbf{x}'_i :

$$p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

Posterior distribution

$$\begin{split} \rho(\pmb{\beta}, \sigma^2 | \mathbf{y}) &\propto \rho(\mathbf{y} | \pmb{\beta}, \sigma^2) \rho(\pmb{\beta}, \sigma^2) \\ &\propto (\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X} \pmb{\beta})^T (\mathbf{y} - \mathbf{X} \pmb{\beta})\right) \cdot \\ & (\sigma^2)^{-d/2} \exp\left(-\frac{1}{2\sigma^2} (\pmb{\beta} - \mathbf{b}_0)^T \mathbf{B}_0^{-1} (\pmb{\beta} - \mathbf{b}_0)\right) \cdot \\ & (\sigma^2)^{-(s_0+1)} \exp(-S_0/\sigma^2) \end{split}$$

$$\Longrightarrow p(\boldsymbol{\beta}, \sigma^2|\mathbf{y}) = p(\boldsymbol{\beta}|\sigma^2, \mathbf{y})p(\sigma^2|\mathbf{y})$$

Bayesian inference for the linear regression model

• Conditional posterior of $\beta | \sigma^2, \mathbf{y}$:

$$\rho(\boldsymbol{\beta}|\sigma^2, \boldsymbol{y}) \propto \exp\left(-\frac{1}{2\sigma^2}(\boldsymbol{\beta}^T(\boldsymbol{X}'\boldsymbol{X} + \boldsymbol{B}_0^{-1})\boldsymbol{\beta} - 2\boldsymbol{\beta}^T(\boldsymbol{X}^T\boldsymbol{y} + \boldsymbol{B}_0^{-1}\boldsymbol{b}_0))\right)$$

and therefore

$$|\boldsymbol{\beta}|\sigma^2, \mathbf{y} \sim N_d(\mathbf{b}_n, \sigma^2 \mathbf{B}_n)$$

with parameters

$$\mathbf{B}_n^{-1} = \mathbf{B}_0^{-1} + \mathbf{X}^T \mathbf{X}, \qquad \mathbf{b}_n = \mathbf{B}_n (\mathbf{B}_0^{-1} \mathbf{b}_0 + \mathbf{X}^T \mathbf{y})$$

Bayesian inference for the linear regression model

• Marginal posterior of $\sigma^2 | \mathbf{y}$:

$$p(\sigma^2|\mathbf{y}) \propto (\sigma^2)^{-(s_0+n/2+1)} \exp\left(-rac{1}{\sigma^2}(S_0+S_\mathbf{y}/2)
ight)$$

where

$$\mathcal{S}_{\boldsymbol{y}} = \boldsymbol{y}'\boldsymbol{y} + \boldsymbol{b}_0'\boldsymbol{B}_0^{-1}\boldsymbol{b}_0 - \boldsymbol{b}_n'\boldsymbol{B}_n^{-1}\boldsymbol{b}_n$$

and therefore

$${\color{red}\sigma^{2}}|\boldsymbol{y}\sim\mathcal{G}^{-1}\left(\boldsymbol{s}_{n},\boldsymbol{S}_{n}\right)$$

with parameters

$$s_n = s_0 + n/2, \quad S_n = S_0 + S_V/2$$

Bayesian Logit Model

- Data: $(y_i, \mathbf{x}_i), i = 1, ..., n$
- Model
 - \triangleright $y_1, \dots y_n$ independent with

$$\rho\left(y_i = 1 | \boldsymbol{\beta}\right) = \frac{\exp\left(\boldsymbol{x}_i' \boldsymbol{\beta}\right)}{1 + \exp\left(\boldsymbol{x}_i' \boldsymbol{\beta}\right)} \qquad \rho\left(y_i = 0 | \boldsymbol{\beta}\right) = \frac{1}{1 + \exp\left(\boldsymbol{x}_i' \boldsymbol{\beta}\right)}$$

Deep learning logit model:

$$p(y_i = 1|\boldsymbol{\beta}) = \frac{1}{1 + \exp(-\mathbf{x}_i'\boldsymbol{\beta})} = \frac{\exp(\mathbf{x}_i'\boldsymbol{\beta})}{\exp(\mathbf{x}_i'\boldsymbol{\beta})(1 + \exp(-\mathbf{x}_i'\boldsymbol{\beta}))} = \frac{\exp(\mathbf{x}_i'\boldsymbol{\beta})}{1 + \exp(\mathbf{x}_i'\boldsymbol{\beta})}$$

Bayesian Logit Model

- Model
 - Likelihood:

$$p(\mathbf{y}|\boldsymbol{\beta}) = \prod_{i=1}^{n} p(y_i|\boldsymbol{\beta})$$

Prior distribution

$${\color{red} oldsymbol{eta}} \sim \mathcal{N}\left({\color{red} oldsymbol{b}}_0, {\color{red} oldsymbol{B}}_0
ight)$$

Posterior distribution

$$p(\boldsymbol{\beta}|\mathbf{y}) \propto p(\mathbf{y}|\boldsymbol{\beta}) \exp\left(-\frac{1}{2} \left(\boldsymbol{\beta} - \mathbf{b}_0\right)' \mathbf{B}_0^{-1} \left(\boldsymbol{\beta} - \mathbf{b}_0\right)\right)$$

has no closed form

Posterior simulation

Bayesian Inference for Complex Models

- the posterior is available in closed form only in special cases (conjugate analysis)
- usually approximation of the posterior is required
- the posterior is a distribution
 ⇒ simulation based approximation feasible
 - simulate $\theta^{(1)}, \dots \theta^{(M)}$ from the posterior $p(\theta|\mathbf{y})$
 - summarize samples from the posterior by descriptive methods
 - approximate characteristics from the posterior by sample statistics e.g. posterior expectation can be approximated by the sample mean

Note: The posterior is completely determined by likelihood and prior!

Posterior Simulation

algorithms for sampling from complex distributions

- importance sampling
- MCMC methods
 - Gibbs sampling
 - data augmentation
 - Metropolis Hastings algorithm
- ABC (approximate Bayesian computation)
- VB (Variational Bayes)

Marginal posterior of the mean in the Normal model

Model:

$$y_i = \mu + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}\left(\mu, \sigma^2\right),$$

two options if interest is only in μ

• integrate over σ^2

$$p(\mu|\mathbf{y}) = \int p(\mu, \sigma^2|\mathbf{y}) d\sigma^2$$

⇒ scaled t-distribution

- sample from the posterior for m=1,..., M
 - sample $(\sigma^2)^{(m)}$ from $p(\sigma^2|\mathbf{y})$
 - sample $(\mu)^{(m)}$ from $p(\mu|(\sigma^2)^{(m)}, \mathbf{y})$

use $(\mu)^{(1)}, \dots, (\mu)^M$ to approximate the posterior/interesting quantity from the posterior

Midge data: Marginal posterior of the mean

posterior expectation: exact: 1.814, approximated: 1.8138

MCMC methods

Concept of MCMC methods

- a Markov chain converges to its stationary distribution if it is irreducible, positive recurrent and aperiodic
- this result can be used to to sample from a distribution p
 - ▶ generate a Markov chain $Y = \{Y_n, n \ge 0\}$ with p as its stationary distribution
 - after a burn-in period the realizations Y_n of this Markov chain are dependent draws from p
 - ▶ use these draws to approximate the distribution p or interesting quantities of p (e.g. the mean)
- MCMC methods
 - Gibbs sampling
 - Data augmentation
 - Metropolis Hastings algorithm

Semiconjugate prior distribution

In the Normal model

$$y_i = \mu + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}\left(\mu, \sigma^2\right),$$

the parameters can be assumed to be a priori independent

$$p(\mu, \sigma^2) = p(\mu)p(\sigma^2)$$

with

$$\mu \sim \mathcal{N}\left(m_0, M_0\right)$$
 and $\sigma^2 \sim \mathcal{G}^{-1}\left(s_0, S_0\right)$

But: the posterior is not of closed form

⇒ use Gibbs sampling

MCMC methods: Gibbs Sampling

Gibbs Sampling

- Gibbs sampling
 - ▶ is a method to sample from a *p*-variate distribution

$$p(\mathbf{y})=p(y_1,\ldots,y_p)$$

 in one sweep of the sampler components of y are updated drawing from the full conditionals

$$p(y_j|y_{\setminus j})$$

where each component of $y_{\setminus j} = (y_1, \dots, y_{j-1}, y_{j+1}, \dots, y_p)$ is fixed at the most recent draw

• for Bayesian inference sampling from the joint posterior of a multivariate parameter $p(\theta|\mathbf{y})$ is required

Gibbs Sampling from the posterior

Interest in the *p*-variate posterior $p(\theta|\mathbf{y})$

Algorithm

Choose starting values for $\theta_2^{(0)}, \dots, \theta_p^{(0)}$ and repeat for $m = 1, \dots, M$:

- Draw $\theta_1^{(m)}$ from $p(\theta_1|\theta_2^{(m-1)},\ldots,\theta_p^{(m-1)},\mathbf{y})$,
- Draw $\theta_2^{(m)}$ from $p(\theta_2|\theta_1^{(m)},\theta_3^{(m-1)},\ldots,\theta_p^{(m-1)},\mathbf{y})$ \vdots
- Draw $\theta_p^{(m)}$ from $p(\theta_p|\theta_1^{(m)},\ldots,\theta_{p-1}^{(m)},\mathbf{y})$.

Full conditionals in the Bayesian Normal model

• full conditional for μ

$$p(\mu|\sigma^2,\mathbf{y})\propto \exp\left(-rac{1}{2\sigma^2}\sum(y_i-\mu)^2-rac{1}{2M_0}(\mu-m_0)^2
ight)$$

i.e.

$$\mu | \sigma^2, \mathbf{y} \sim \mathcal{N} \left(\left(\frac{n}{\sigma^2} + \frac{1}{M_0} \right)^{-1} \left(\sum y_i / \sigma^2 + m_0 / M_0 \right), \left(\frac{n}{\sigma^2} + \frac{1}{M_0} \right)^{-1} \right)$$

• full conditional for σ^2

$$p(\sigma^2|\mu, \mathbf{y}) \propto \left(\frac{1}{\sigma^2}\right)^{s_0 + n/2 + 1} \exp\left(-\frac{S_0 + \sum (y_i - \mu)^2/2}{\sigma^2}\right),$$

i.e.

$$\sigma^2 | \mu, \mathbf{y} \sim \mathcal{G}^{-1} \left(s_0 + n/2, S_0 + (\sum (y_i - \mu)^2)/2 \right)$$

Gibbs Sampling Steps

Gibbs-Sampling Scheme:

Initialization: Choose a starting value for $\sigma^{2,(0)}$

Repeat for $m = 1, \dots, M$

1. Draw $\mu^{(m)}$ from $\mathcal{N}(m_n, M_n)$ where

$$M_n = (n/(\sigma^2)^{(m-1)} + 1/M_0)^{-1}$$

$$m_n = M_n(\sum y_i/(\sigma^2)^{(m-1)} + m_0/M_0)$$

2. Draw $(\sigma^2)^{(m)}$ from $\mathcal{G}^{-1}(s_n, S_n)$ where

$$s_n = s_0 + n/2$$

 $S_n = S_0 + (\sum (y_i - \mu^{(m)})^2)/2$

Blocked Gibbs-Sampling

- components can be blocked, i.e. sampled jointly
- Example: Normal regression model
 Semi-conjugate prior

$$eta \sim N_d(\mathbf{b}_0, \mathbf{B}_0), \qquad \sigma^2 \sim \mathcal{G}^{-1}(s_0, S_0)$$

Initialization: Chose a starting value for $(\sigma^2)^{(0)}$ Repeat for m = 1, ..., M:

1. Sample $\boldsymbol{\beta}^{(m)}$ from $\mathcal{N}(\mathbf{b}_n, \mathbf{B}_n)$ where

$$\mathbf{B}_n = (\mathbf{X}'\mathbf{X}/(\sigma^2)^{(m-1)} + \mathbf{B}_0^{-1})^{-1}$$

$$\mathbf{b}_n = \mathbf{B}_n(\mathbf{X}'\mathbf{y}/(\sigma^2)^{(m-1)} + \mathbf{B}_0^{-1}\mathbf{b}_0)$$

2. Sample $(\sigma^2)^{(m)}$ from $\mathcal{G}^{-1}(s_n, S_n)$ where

$$s_n = s_0 + n/2$$
 and $S_n = S_0 + (\mathbf{y} - \mathbf{X}\beta^{(m)})'(\mathbf{y} - \mathbf{X}\beta^{(m)})/2$

Example: Oxygene uptake

- randomized study to compare effects of two different exercise regimens
 - six men assigned to a 12-week flat-terrain running program
 - six men assigned to a 12-week step aerobics
- outcome Y maximum oxygen uptake of each subject (measured in liters per minute) in training during and after the program
- interest in effect of training program
- age might be a confounding factor

Oxygene uptake: Data

Oxygene uptake: Regression modelling

regression modelling

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \varepsilon_i$$
 $\varepsilon_i \sim \mathcal{N}\left(0, \sigma^2\right)$

with

- $x_{i1} = 1 \Longrightarrow \beta_0$ is the intercept
- $x_{i2} = 1$ if *i* is assigned to the aerobic program (0 if running program)
- x_{i3}: age of the subject
- $x_{i4} = x_{i2}x_{i3}$: interaction of age and program type
- implications of the model

$$\mathsf{E}(y_i|\mathbf{x}) = eta_1 + eta_3 \cdot \mathsf{age} \qquad \mathsf{if} \ x_{i2} = \mathsf{0} \ \mathsf{(running)}$$

$$E(y_i|\mathbf{x}) = (\beta_1 + \beta_2) + (\beta_3 + \beta_4) \cdot \text{age}$$
 if $x_{i2} = 1$ (aerobic)

Oxygene uptake: Priors

• uninformative prior for β

$$\boldsymbol{\beta} \sim \mathcal{N}\left(\boldsymbol{0}, 1000^2 \boldsymbol{I}\right)$$

• prior for σ^2 with mode at 6

$$\sigma^2 \sim \mathcal{G}^{-1} \left(1, 12 \right)$$

Starting value for σ^2 : variance of the residuals in linear regression

$$(\sigma^2)^{(0)} = \frac{1}{n-1} \sum_{i=1}^n (y_i - \mathbf{X}_i \hat{\boldsymbol{\beta}})^2$$

Oxygene uptake: Samples from the posterior

MCMC diagnostics

- optimal method for sampling from the posterior should
 - explore the whole posterior distribution and move around quickly (i.e. mix fast)
 - yield independent draws from the posterior
- MCMC methods produce
 - samples from the posterior after convergence
 inspect trace plots and discard samples from burnin
 - correlated draws from the posterior
 inspect ACF (autocorrelation function)
 - compute effective sample size (ESS): corresponding number of independent draws
- (almost) uncorrelated draws can be obtained by thinning of the MCMC output - i.e. keep only every k-th draw

Oxygene uptake: MCMC diagnostics

burnin of 1000 draws discarded \Longrightarrow 5000 MCMC draws effective Sample Size: almost 5000 for $\beta_1, \dots \beta_4$; around 2500 for σ^2

Oxygene uptake: Effect of aerobic vs. running

 β_2 : additional effect of aerobic (vs. running) \Longrightarrow positive effect of aerobic

 β_4 : modification of age effect for aerobic \Longrightarrow positive effect of aerobic decreases slightly with age

MCMC methods: Data Augmentation

Pima Indian data

Pima Indian Data on Diabetes: Pima.tr (R-package MASS)

• **Data**: for n = 200 women

npreg: number of pregnancies

glu: plasma glucose concentration in an oral glucose tolerance test

bp: diastolic blood pressure (mm Hg)

skin: triceps skin fold thickness (mm)

bmi: body mass index (weight in kg/(height in m^2))

ped: diabetes pedigree function

age: age in years

type: Yes or No, for diabetic according to WHO criteria

- response variable: Y = 1 (type= Yes) or Y = 0 (type= No)
- Goal: model P(Y = 1) conditional on covariates x_1 (npreg), ..., x_7 (age)

Probit Model

- data: (y_i, \mathbf{x}_i) , i = 1, ..., n with $y_i \in \{0, 1\}$
- model

linear regression model not appropriate for a binary response \Longrightarrow probit model

• y_1, \ldots, y_n independent with $P(y_i = 1) = \Phi(\mathbf{x}_i' \boldsymbol{\beta})$ \Longrightarrow likelihood:

$$p(y_1,\ldots,y_n|\boldsymbol{\beta}) = \prod (\Phi(\mathbf{x}_i'\boldsymbol{\beta}))^{y_i} (1-\Phi(\mathbf{x}_i'\boldsymbol{\beta}))^{1-y_i}$$

- ▶ prior: $\beta \sim \mathcal{N}(\mathbf{b}_0, \mathbf{B}_0)$
- posterior is not of closed form, as

$$p(\boldsymbol{\beta}|\mathbf{y}) \propto \prod_{i=1}^{n} \left(\Phi(\mathbf{x}_{i}'\boldsymbol{\beta})\right)^{y_{i}} \left(1 - \Phi(\mathbf{x}_{i}'\boldsymbol{\beta})\right)^{1-y_{i}} \exp\left(-\frac{1}{2}(\boldsymbol{\beta} - \mathbf{b}_{0})'\mathbf{B}_{0}^{-1}(\boldsymbol{\beta} - \mathbf{b}_{0})\right)$$

Data Augmentation

Problem: posterior of θ not of closed form

- Idea: Introduce auxiliary variables **z** such that the posterior $p(\theta|\mathbf{y})$ of interest is the marginal density of the joint posterior $p(\theta, \mathbf{z}|\mathbf{y})$
- Implementation
 - ▶ sample θ |**z**, **y**
 - add a further step to sample $\mathbf{z}|\boldsymbol{\theta},\mathbf{y}$
- data augmentation is useful if
 - the full conditional distribution $p(\mathbf{z}|\boldsymbol{\theta},\mathbf{y})$
 - ▶ and the full conditional(s) $p(\theta|\mathbf{z},\mathbf{y})$

are of closed form and/or easy to sample

Data Augmentation: Algorithm

Interest in the *p*-variate posterior $p(\theta|\mathbf{y})$

Algorithm

Initialization: Choose a starting values $\theta^{(0)}$ and repeat for m=1,..., M

- sample $\mathbf{z}^{(m)}$ from $p(\mathbf{z}|\theta_1^{(m-1)},\dots,\theta_p^{(m-1)},\mathbf{y})$,
- sample $\theta_1^{(m)}$ from $p(\theta_1|\theta_2^{(m-1)},\ldots,\theta_p^{(m-1)},\mathbf{z}^{(m)},\mathbf{y}),$
- ...
- sample $\theta_p^{(m)}$ from $p(\theta_p|\theta_1^{(m)},\ldots,\theta_{p-1}^{(m)},\mathbf{z}^{(m)},\mathbf{y})$

Results are draws from $p(\theta, \mathbf{z}|\mathbf{y})$

 \Longrightarrow use $heta^{(1)}\dots, heta^{(M)}$ to approximate $p(heta|\mathbf{y})$

NOTE: The sampler can also start with initialization of z

Data augmentation for the probit model

The model

$$\mathbf{z}_i \sim \mathcal{N}\left(\mathbf{x}_i'\boldsymbol{\beta}, \mathbf{1}\right)$$

 $\mathbf{y}_i = \mathbf{1}_{(0,\infty)}(\mathbf{z}_i),$

where $(z_1, y_1) \dots, (z_n, y_n)$ are independent, has the likelihood

$$p((z_1, y_1), \dots, (z_n, y_n)|\beta) = \prod_{i:y_i=0} f_N(z_i; \mathbf{x}_i'\beta, 1) 1_{(-\infty,0)}(z_i) \cdot \prod_{i:y_i=1} f_N(z_i; \mathbf{x}_i'\beta, 1) 1_{(0,\infty)}(z_i)$$

Data augmentation for the probit model

Marginalizing over z_1, \ldots, z_n yields

$$\rho(y_1,\ldots,y_n|\beta) = \prod_{i:y_i=0}^{0} \int_{-\infty}^{0} f_N(\mathbf{z}_i;\mathbf{x}_i'\beta,1) d\mathbf{z}_i \prod_{i:y_i=1}^{\infty} \int_{0}^{\infty} f_N(\mathbf{z}_i;\mathbf{x}_i'\beta,1) d\mathbf{z}_i =$$

$$= \prod_{i:y_i=0}^{n} \Phi(-\mathbf{x}_i'\beta) \prod_{i:y_i=1}^{n} (1 - \Phi(-\mathbf{x}_i'\beta)) =$$

$$= \prod_{i=1}^{n} (\Phi(\mathbf{x}_i'\beta))^{y_i} (1 - \Phi(\mathbf{x}_i'\beta))^{1-y_i}$$

Data augmentation with latent variables, the latent utilities z_i , i = 1, ..., n yields a marginal probit model

Probit Model: full conditional distribution of the latent utilities

$$p(\mathbf{z}_1, \dots, \mathbf{z}_n | \beta, \mathbf{y}) \propto p(\mathbf{y} | \beta, \mathbf{z}_1, \dots, \mathbf{z}_n) p(\mathbf{z}_1, \dots, \mathbf{z}_n | \beta)$$
$$= \prod_{i=1}^n p(\mathbf{y}_i | \mathbf{z}_i) p(\mathbf{z}_i | \beta)$$

 \Longrightarrow z_1, \ldots, z_n are independent conditional on β and

$$\rho(\mathbf{Z}_i|\boldsymbol{\beta}, \mathbf{y}_i) \propto \begin{cases} \frac{1}{\sqrt{2\pi}} \exp(-(\mathbf{Z}_i - \mathbf{x}_i'\boldsymbol{\beta})^2/2) \cdot \mathbf{1}_{(0,\infty)}(\mathbf{Z}_i) & \text{for } \mathbf{y}_i = 1\\ \frac{1}{\sqrt{2\pi}} \exp(-(\mathbf{Z}_i - \mathbf{x}_i'\boldsymbol{\beta})^2/2) \cdot \mathbf{1}_{(-\infty,0)}(\mathbf{Z}_i) & \text{for } \mathbf{y}_i = 0 \end{cases}$$

Probit Model: full conditionals

• full conditional distribution of $\mathbf{z} = z_1, \dots, z_n$: independent with

$$\mathbf{z}_i | \boldsymbol{\beta}, y_i \sim \mathcal{N}\left(\mathbf{x}_i' \boldsymbol{\beta}, 1\right)$$
 censored to
$$\begin{cases} (-\infty, 0) & \text{if } y_i = 0 \\ (0, \infty) & \text{if } y_i = 1 \end{cases}$$

2 full conditional of β :

$$p(\boldsymbol{\beta}|\mathbf{z},\mathbf{y}) \propto p(\mathbf{z}|\boldsymbol{\beta})p(\boldsymbol{\beta})$$

posterior of β in linear regression model with response vector ${\bf z}$

MCMC sampling for the probit model

Choose a starting value for β and iterate for m = 1, ..., M:

• Sample z_i , i = 1, ..., n as

$$\mathbf{z}_i | \boldsymbol{\beta}, y_i \sim \mathcal{N}\left(\mathbf{x}_i' \boldsymbol{\beta}, 1\right)$$
 censored to
$$\begin{cases} (-\infty, 0) & \text{if } y_i = 0 \\ (0, \infty) & \text{if } y_i = 1 \end{cases}$$

2 Sample β from the posterior of the regression model for **z**

Pima indian data: Modelling the data

probit model

reference values
 npreg (pregnancies) 0
 glu (glucose concentration) 100
 bp (diastolic blood pressure) 80
 skin (skin fold thickness) 23
 bmi 25
 ped (diabetes pedigree) 0.25
 age (in years) 20

Pima indian data: Bayesian Inference

• uninformative prior for β

$$oldsymbol{eta} \sim \mathcal{N}\left(\mathbf{0}, 100^2 \mathbf{I} \right)$$

Starting values for β

$$\beta = 0$$

 MCMC 17000 iterations (tentative burnin: 2000)

Pima indian data: Traceplots, Probit model

burnin of 2000 draws ok. \Longrightarrow 15000 MCMC draws effective sample sizes: minimum 2630 for β_1 , maximum 4814 for β_2 \Longrightarrow thinning: use every 10th draw

Pima indian data: Kernel density estimates, Probit model

based on 1500 samples (from the thinned chain)

Pima indian data: Results

thinned sample: 1500 draws

	Q2.5%	Q50%	Q97.5%	mean	sd
int	-2.90	-2.22	-1.58	-2.22	0.34
npreg	-0.01	0.06	0.13	0.06	0.04
glu100	0.01	0.02	0.03	0.02	0.00
bp80	-0.02	-0.00	0.02	-0.00	0.01
skin23	-0.03	-0.00	0.03	-0.00	0.01
bmi25	0.00	0.05	0.10	0.05	0.02
ped025	0.36	1.09	1.91	1.11	0.38
age20	0.00	0.03	0.05	0.03	0.01

MCMC methods: Metropolis Hastings Algorithm

Pima Indian data: Logit model

- in medical applications for binary responses usually the logit model is preferred
- in the logit model the probability for y = 1 (disease) given covariates \mathbf{x} is specified as

$$P(Y=1|\mathbf{x}) = \frac{\exp(\mathbf{x}'\beta)}{1 + \exp(\mathbf{x}'\beta)}$$

- interpretation of regression effects
 - β_j is the effect of increasing X_j by 1 on the log odds ratio
 - $\exp(\beta_j)$ is the effect of increasing X_j by 1 on the odds ratio
- risk for y=1 is increases with X_j if $\beta_j>0$ and decreases with $\beta_j>0$

The odds of an event A is given as $\frac{P(A)}{1-P(A)}$ the odds ratio of two events A and B is

$$\frac{P(A)/(1 - P(A))}{P(B)/(1 - P(B))}$$

Bayesian inference for the logit model

- ullet with a Normal prior on the regression effects eta the posterior is not of closed form
- the logit model also has a representation as a latent utility model: it results when the latent utility has a logistic distribution with mean $\mathbf{x}'\beta$
- But: also the logistic likelihood combined with a Nomal prior does not yield a closed form posterior
- ⇒ Posterior inference with the Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm

Goal: Generate M draws from a distribution p(y)

- the Metropolis-Hastings algorithm generates a homogenous Markov chain with stationary distribution p(y)
- to move from $y^{(m-1)}$ to $y^{(m)}$ a candidate is generated from a proposal distribution $q(y^*|y^{(m-1)})$
- this value is accepted, i.e. $y^{(m)} = y^*$ with probability

$$\alpha(y^*|y^{(m-1)}) = \min\left(1, \frac{p(y^*) \, q(y^{(m-1)}|y^*)}{p(y^{(m-1)}) \, q(y^*|y^{(m-1)})}\right)$$

otherwise $y^{(m)} = y^{(m-1)}$.

The Metropolis-Hastings algorithm

Algorithm

Choose a starting value $y^{(0)}$ and iterate the following steps for m = 1, ..., M

- draw a candidate y^* from the proposal distribution $q(y^*|y^{(m-1)})$
- compute the acceptance probability $\alpha(y^*|x^{(m-1)})$
- generate $u \sim \mathcal{U}\left([0,1]\right)$
- set $y^{(m)} = y^*$ if $u \le \alpha(y^*|y^{(m-1)})$, otherwise set $y^{(m)} = y^{(m-1)}$

Note: it can be numerically advantageous to compute the acceptance probability on the log-scale

$$\log \alpha(\mathbf{y}^*|\mathbf{y}^{(m-1)}) = \min(0, \\ \log p(\mathbf{y}^*) - \log p(\mathbf{y}^{(m-1)}) + \log q(\mathbf{y}^{(m-1)}|\mathbf{y}^*) - \log q(\mathbf{y}^*|\mathbf{y}^{(m-1)}))$$

Toy Example: Sample from a t_3 -distribution

- standard t_{ν} distribution (Student distribution) is symmetric around zero
- ullet ν (the degrees of freedom) determine heavyness of the tails
- special cases
 - ▶ Cauchy distribution: $\nu = 1$
 - standard Normal distribution $\nu \to \infty$

Toy Example: Normal proposal

M=100.000 draws: ESS=3121, acceptance rate=89.2%

Toy Example: Cauchy proposal

M=100.000 draws: ESS=80 459, acceptance rate=81.1%

Metropolis-Hastings for posterior inference

Goal: sample from the posterior $p(\theta^*|\mathbf{y})$

- generate a candidate θ^* from the proposal $q(\theta^*|\theta^{old})$
- the acceptance probability is then computed as

$$\alpha(\boldsymbol{\theta}^*|\boldsymbol{\theta}^{old}) = \min\left(1, \frac{p(\boldsymbol{\theta}^*|\mathbf{y}) q(\boldsymbol{\theta}^{old}|\boldsymbol{\theta}^*)}{p(\boldsymbol{\theta}^{old}|\mathbf{y}) q(\boldsymbol{\theta}^{*}|\boldsymbol{\theta}^{old})}\right) =$$

$$= \min\left(1, \frac{\frac{p(\mathbf{y}|\boldsymbol{\theta}^*)p(\boldsymbol{\theta}^*)}{p(\mathbf{y})} q(\boldsymbol{\theta}^{old}|\boldsymbol{\theta}^*)}{\frac{p(\mathbf{y}|\boldsymbol{\theta}^{old})p(\boldsymbol{\theta}^{old})}{p(\mathbf{y})} q(\boldsymbol{\theta}^{*}|\boldsymbol{\theta}^{old})}\right)$$

$$= \min\left(1, \frac{p(\mathbf{y}|\boldsymbol{\theta}^*)p(\boldsymbol{\theta}^*) q(\boldsymbol{\theta}^{old}|\boldsymbol{\theta}^*)}{p(\mathbf{y}|\boldsymbol{\theta}^{old})p(\boldsymbol{\theta}^{old}) q(\boldsymbol{\theta}^{*}|\boldsymbol{\theta}^{old})}\right)$$

- the normalizing constant/marginal likelihood p(y)
 - ightharpoonup is usually difficult to compute (requires integration over θ)
 - but cancels out and is not required to determine the acceptance probability

Choice of the proposal density

- goals
 - easy to sample
 - high effective sample size of the draws
 low correlations of the draws
- different algorithms, e.g.
 - independence sampler
 - random walk samper

Independence Sampler

Idea: generate a proposal which does not depend on θ^{old} (as in the MH toy-example to sample from the t_3 distribution)

• the proposal θ^* is generated independent from θ^{old}

$$q(\boldsymbol{\theta}^*|\boldsymbol{\theta}^{old})=q(\boldsymbol{\theta}^*).$$

the acceptance probability is then

$$\alpha(\boldsymbol{\theta}^*|\boldsymbol{\theta}^{old}) = \min\left(1, \frac{p(\mathbf{y}|\boldsymbol{\theta}^*)p(\boldsymbol{\theta}^*) \ q(\boldsymbol{\theta}^{old})}{p(\mathbf{y}|\boldsymbol{\theta}^{old})p(\boldsymbol{\theta}^{old}) \ q(\boldsymbol{\theta}^*)}\right)$$

- the acceptance propability
 - is 1 if the proposal distribution $q(\theta)$ is equal to the posterior $p(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)p(\theta)$
 - is close to 1 if the proposal is close to the posterior
 - ⇒ goal: high acceptance rates

Random Walk Sampler

the proposal is a random walk

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}^{old} + \varepsilon, \quad \varepsilon \sim f(\varepsilon),$$

and hence $q(\theta^*|\theta^{old}) = f(\theta^* - \theta^{old})$.

• the acceptance probability is

$$\alpha(\boldsymbol{\theta}^*|\boldsymbol{\theta}^{old}) = \min\left(1, \frac{p(\mathbf{y}|\boldsymbol{\theta}^*)p(\boldsymbol{\theta}^*)f(\boldsymbol{\theta}^{old} - \boldsymbol{\theta}^*)}{p(\mathbf{y}|\boldsymbol{\theta}^{old})p(\boldsymbol{\theta}^{old})f(\boldsymbol{\theta}^* - \boldsymbol{\theta}^{old})}\right)$$

The random walk sampler is a Metropolis sampler if $f(\varepsilon)$ is symmetric, e.g. Normal.

Normal Random Walk Sampler

normal random walk

$$oldsymbol{ heta}^* \sim \mathcal{N}\left(oldsymbol{ heta}^{ ext{old}}, oldsymbol{C}
ight)$$

- properties depend on the scale of $f(\varepsilon)$:
 - ▶ small variance \Longrightarrow small steps $\theta^* \theta^{old}$ with usually high acceptance rates, but high autocorrelations extreme case $C \to 0 \Longrightarrow \alpha = 1$
 - ▶ large scale \Longrightarrow large steps $\theta^* \theta^{old} \Longrightarrow$ proposals in the tails, low acceptance rates
- tuning of the variance/covariance necessary
- \bullet low / high acceptance rates yield highly correlated draws optimal acceptance rate $\approx 23\%$ for a multi-dimensional parameter

Logistic regression

- data: $y = (y_1, ... y_n)$
- **model**: $y_1, \ldots y_n$ iid with

$$p(y_i = 1) = \frac{\exp(\mathbf{x}_i'\beta)}{1 + \exp(\mathbf{x}_i'\beta)}$$

- Implementation, e.g.
 - tailored proposal
 - random walk proposal
- Alternative: Data augmentation based on the representation of the logit likelihood as a mixture of Normals (Polson et al., 2013)

Pima indian data: MH with tailored proposal

Idea: generate proposals using results from the probit model and the connection between probit and logit model

- logit and probit model result from a latent utility model: the latent utility has a standard Normal distribution in the probit and a standard logistic distribution in the logit model
- the variance is $\pi^2/3$ for the standard logistic distribution and 1 for the standard Normal distribution
- ML estimates for the regression effects in the logit model $\hat{\beta}$ and the probit model $\hat{\beta}$ are related by

$$\tilde{oldsymbol{eta}}pprox\hat{oldsymbol{eta}}rac{\pi}{\sqrt{3}}$$

Tailored proposal: t-distribution centered at the rescaled MLE of the probit model with appropriate covariance matrix

Pima indian data: MH with tailored proposal

M=22000; burnin=2000; ESS \in (5657,6563)

Pima indian data: MH with tailored proposal- results

results (thinning factor 10)

	3					
	Q2.5%	Q50%	Q97.5%	mean	sd	
int	-5.13	-3.78	-2.64	-3.81	0.63	
npreg	-0.02	0.11	0.24	0.11	0.07	
glu100	0.02	0.03	0.05	0.03	0.01	
bp80	-0.04	-0.01	0.03	-0.01	0.02	
skin23	-0.04	-0.00	0.04	-0.00	0.02	
bmi25	-0.00	0.09	0.17	0.09	0.04	
ped025	0.62	1.90	3.29	1.92	0.70	
age20	0.00	0.04	0.09	0.04	0.02	

Metropolis-Hastings within Gibbs

 in a Gibbs sampling scheme each component of the parameter vector is sampled from the full conditionals

Algorithm:

- ▶ Draw $\theta_1^{(m)}$ from $p(\theta_1|\theta_2^{(m-1)},\dots,\theta_p^{(m-1)},\mathbf{y})$
- Praw $\theta_p^{(m)}$ from $p(\theta_p|\theta_1^{(m)},\ldots,\theta_{p-1}^{(m)},\mathbf{y})$.
- any method that produces a draw from the full conditional can be used in each Gibbs sampling step, e.g. direct sampling, accept-reject sampling, MH-algorithm, . . .

Pima indian data: componentwise random walk MH

M=22000; burnin=2000; ESS \in (234, 1085)

Posterior inference based on MCMC samples

Diagnosing convergence

Convergence cannot be proved from a finite sample but slow convergence is indicated by results of the MCMC sampler

- empirical autocorrelations of the MCMC draws
 - low autocorrelations indicate that the sampler explores the posterior well (mixes well)
 - high autocorrelations indicate stickiness of the algorithm
- start several chains from different starting points and check their convergence
- convergence diagnostic statistics use one or more chains (e.g. Heidelberger-Welch, Gelman-Rubin, Geweke statistic)

Approximation the posterior mean

- burnin =MCMC draws before convergence to the posterior (stationary distribution)
 the burnin sample is not used for inference but discarded
- the posterior mean

$$\mathsf{E}\left(g(heta)|\mathbf{y}
ight) = \int g(heta)p(heta|\mathbf{y})d heta$$

can be approximated by the mean of *M* MCMC draws (after burnin) as

$$\hat{g}(\theta) = \frac{1}{M} \sum_{m=1}^{M} g(\theta^{(m)})$$

Approximation the posterior mean

• For independent draws from the posterior the sampling variance of $\hat{g}(\theta)$ is given as

$$\mathsf{Var}\left(\hat{g}(heta)
ight)_{\mathit{iid}} = \mathsf{Var}\left(g(heta)
ight)/M$$

For the mean of M MCMC draws the sampling variance will be larger due to their (usually) positive autocorrelation.

For dependent draws

$$\mathsf{Var}\left(\hat{g}(heta)
ight)_{MCMC} = \mathsf{Var}\left(g(heta)
ight)rac{ au}{M}$$

with the inefficiency factor (integrated autocorrelation time) $\boldsymbol{\tau}$ given as

$$\tau = 1 + 2\sum_{s=1}^{\infty} \rho_s.$$

 ho_s is the autocorrelation of the draws $g(heta^{(m)})$ at lag s.

120/131

Effective sample size

- au is the number of MCMC draws which are equivalent to one iid draw. Usually au>1.
- The effective sample size M/τ is the number of independent draws which is equivalent to M MCMC draws.
- Thinning
 - keep only each k-th draw for inference
 - these draws are (nearly) independent

Software for Bayesian Inference

- R functions, e.g.
 - bayesm
 - ▶ MCMCPack
 - ▶ BAMLSS
 - ▶ bayesSurv

see CRAN Task View: Bayesian Inference

- BayesX
 - http://www.stat.uni-muenchen.de/~bayesx
 - R-interface R2BayesX
- JAGS
 - BUGS and JAGS
 - R-interface rjags
- STAN
 - http://www.mc-stan.org/
 - ▶ R-interface rstan

JAGS: Just another Gibbs Sampler

- JAGS
 - source code and binaries for Windows and Mac https://sourceforge.net/projects/mcmc-jags/files/
 - Current version: 4.3.0
- R package rjags
 - Bayesian graphical models using MCMC with the JAGS library
 - ▶ compatible version to JAGS 4.0.0
 - ▶ install.packages("rjags")
- R package coda (Convergence Diagnosis and Output Analysis)
 - output analysis and diagnostics for MCMC
 - install.packages("coda")

Bayesian Analysis with JAGS

- model definition in BUGS language in a seperate file
- read the model with jags.model
- update the model with update for jags objects
- extract samples from the posterior with coda.samples
- summarize posterior distribution

for more details see Exercise 8

Pima Indian data: rjags-results

M = 100,000 iteration, thinning factor 100

	Q2.5%	Q50%	Q97.5%	mean	sd
int	-5.03	-3.77	-2.69	-3.80	0.61
npreg	-0.03	0.11	0.23	0.11	0.07
glu100	0.02	0.03	0.05	0.03	0.01
bp80	-0.04	-0.01	0.03	-0.01	0.02
skin23	-0.04	-0.00	0.05	-0.00	0.02
bmi25	0.01	0.09	0.17	0.09	0.04
ped025	0.51	1.88	3.40	1.90	0.71
age20	-0.00	0.04	0.09	0.04	0.02

essentially the same results as for MH with tailored proposal

Bayesian Hierarchical Modelling

- the prior allows for structural modelling of parameters
- hierarchical modelling
 - data model: $p(\mathbf{y}|\theta)$
 - prior for θ : $p(\theta|\psi)$ depends on hyperparameters ψ
 - hyper-prior for ψ : $p(\psi|\xi)$
- \bullet MCMC estimation via Gibbs sampling requires one further step to sample ψ
 - sample θ from $p(\theta|\psi,\mathbf{y})$
 - sample ψ from $p(\psi|\theta,\mathbf{y})$

Bayesian Hierarchical Modelling: Example

- data: $y_1, ..., y_n$
- simple Bayesian model
 - ▶ likelihood: y_i iid. with

$$y_i = \mu + \epsilon_i$$
 $\epsilon_i \sim \mathcal{N}\left(0, \sigma^2\right)$

prior:

$$\mu \sim \mathcal{N}\left(\textit{m}_{0},\textit{M}_{0}\right)$$

restrictive: same mean for all observations

flexible model

$$y_i = \mu_i + \epsilon_i$$
 $\epsilon_i \sim \mathcal{N}\left(0, \sigma^2\right)$

prior for μ_i ?

Modelling the specific means

Random intercept model

i = 1, ..., n subjects: μ_i is the subject specific level (intercept)

$$\mu_i \sim \mathcal{N}\left(\mu, \tau^2\right)$$

with hyperprior for τ^2

• Two component mixture model i = 1, ..., n subjects: μ_i is the subject specific level (intercept)

$$\mu_{i} = \begin{cases} \mu_{1} & \text{with probability } \pi \\ \mu_{2} & \text{with probability } 1 - \pi \end{cases}$$

• Local level model i = 1, ..., n time-points: μ_i is the level at time point i

$$\mu_i = \mu_{i-1} + \eta_i$$
 $\eta_i \sim \mathcal{N}\left(0, \tau^2\right)$

and hyperprior on τ^2

Further Topics

- Bayesian modelling
 - mixture models for model based clustering
 - dynamic models
- model selection and model averaging, variable selection
- model checking
- priors (objective priors, Jeffreys prior)

Conclusion

Bayesian approach to statistics

- relies on specification of data model and prior distribution
 - allows to incorporate prior information/regularization
 - requires specification of prior distributions for all parameters
- inference is based on the posterior distribution
 - conjugate analysis only in special cases
 - more general: via sampling from the posterior distribution .e.g. by MCMC methods
- is useful for complex, particularly hierarchical models

Literature

- Albert J. (2009). Bayesian computation with R.
- Gelman A., Carlin J.B., Stern H.S., Dunson D. B., Vehtari A. and Rubin, D.R. (2004). Bayesian Data Analysis. Chapman and Hall
- Held, Leonhard (2008). Methoden der statistischen Inferenz. Likelihood und Bayes. Spektrum Verlag
- Hoff, Peter D. (2009). A First Course in Bayesian Statistical Methods
- Marin, Jean-Michel and Robert Christian P. (2013). Bayesian Essentials with R, Springer
- Bertsch McGrayne (2012). The theory that would not die. Yale University Press.

International Society for Bayesian Analysis (ISBA):

http:www.bayesian.org

