M2 CyberSecurity Threat and Risk Analysis, IT Security Audit and Norms

Security Assessment of Information System Standards, Methods and Tools

Florent Autréau - florent.autreau@imag.fr 2016 /2017

Objectives

- Introduction to Standards, Methods and Tools used to assess Security of Information System
 - Network or System Administrator
 - Developer
 - IT Security Professional
 - Consultant
 - Auditor
 - Security Analyst
 - CISO Chief Information Security Officer

This Course is NOT

- Not a complete course on IT Security
- Not a complete course on IT Security Standards
- Not a complete course on IT Security Audit

Neither ...

Réunion de rentrée : 29/09 – 17h30 amphi de présentation - Ensimag

Challenges divers : reverse, crypto, exploit, forensic, ...

Plus d'infos sur https://securimag.org

Meet you in Grenoble on Nov 18th

Lectures

- Introduction
- Concepts
- Risks and Threats
- Methods and standards
 - ISO2700x, OCTAVE, EBIOS, Mehari,
- Tools
 - Nessus/OpenVAS, nmap, wireshark, ntop, metasploit...
- Hand-on Labs

Tutoring / Exercices

- Availibility Model
- Security Mindset: Think as an attacker
- Risk Analysis (various scenarios)
- Attack Presentation: technical description and root cause analysis
- Attack Tree
- Inventory of Security Tools (Group work)

Practical Works

- TP1 Auditing and securing your own environment
- TP2 Software Vulnerability Patterns
- TP3 Advanced BOF (and ROP)
- TP4 Web exploitation
- TP5 Attack/Defense Game

Evaluation

- Evaluation for this class will be based on:
 - 20% the exercices of the tutoring sessions, all of them submitted in a final report (M2CySecAudit-Exercices-<name>.pdf)
 - 30% Individual reports from the Hand-on Labs (M2CySecAudit-TP<num>-<name>.pdf)
 - 50% Final Exam

As well as your **attendance** to the Industrial Talks. (CC)

Books - recommended readings

- Bruce Schneier's blog http://schneier.com/blog
- 'Security Engineering, 2nd ed', Ross Anderson http://www.cl.cam.ac.uk/~rja14/book.html
- 'Thinking Security', Steven Bellovin http://schneier.com/blog

Contact information

- florent.autreau@imag.fr
- Available on appointment
 - UFRIM²AG F314
- Lecture material available on forge (after each lecture ... and when access will be granted to students and teacher!)

Agenda – Day 1 – Sep 26th

- Introduction
- Concepts
- Risks and Threats
- Methods and standards
 - ISO2700x, OCTAVE, Ebios, Mehari,
- Tools
 - Nessus, nmap, wireshark, ntop, metasploit...
- Hand-on Labs

Outline

- Introduction
- Concepts
- Risks and Threats
- Methods and standards
 - ISO2700x, OCTAVE, Ebios, Mehari,
- Tools
 - Nessus, nmap, wireshark, ntop, ...
- Hand-on Labs

Information Security

- A set of properties for information
 - Confidentiality,
 - Integrity,
 - Availability.
 - The classical CIA triangle
- Goal : insure that Information is always Available ONLY to Authorized People

Information Security (cont)

- A different set of properties for information
 - Confidentiality,
 - Control,
 - Integrity,
 - Authenticity,
 - Utility,
 - Availability.

Information Security (cont)

- Other properties of Information System to be considered :
 - Accessibility,
 - Performance,
 - Usability,
 - Manageability,
 - Last and not least Reliability.

Information System

- Conventional Support for Information
 - Desktop,
 - Server,
 - Network Equipment (switches, routers, ...)
 - Printer,
 - Laptop,
 - **–** ...

Information System(2)

Also:

- Professional and personal Mobile Phone,
- Phone System (including PABX or VoIP gears),
- Assistant (PDA),
- Connexion Card, Access Token,
- USB Keys,
- MP3 reader, Game System,
- Credit Card, ...

Business Assets

Availability

Make sure that IT services and resources are available for accredited users (employees, customers, partners, contractors).

Integrity

Make sure that information as well as information processing is exact, reliable, trusted and eventually provable.

Business Assets (cont.)

Confidentiality

Make sure that IT services and resources are ONLY available to accredited users.

- Authenticity (authentication and integrity)
- Traceability, Auditability, Nonrepudiation
- Reputation / Branding
- Liability

Employee's Assets

- Employee's Liability
- Personal Information
 - Political Opinion
 - Member of Work Union
 - Job Search
- Reputation / Fame

Citizen's Assets

- Privacy
 - Political opinion,
 - Religion,
 - Health, Medical Data,
 - Confidentiality (ex: Taxes),
 - Reputation (rumors), Honor
- Yours (Family, Relatives, Significant Others)
 - Personal information on forum

Citizen's Assets (cont.)

- Sensitive and/or Confidential Information
 - Codes
 - Documents related to Associations, Union
 - Accounting and Banking information
 - Passwords, Account information
- Liability
- Fame, Reputation

About Availability

Terminology

- <u>Fault</u> Defect, imperfection or fault that occurs in hardware or software.
- **Error** Occurrence of an incorrect value in some unit of information within a system.

 Manifestation of a fault.
- <u>Failure</u> Deviation in the expected performance of a system.

Terminology (cont.)

- <u>Detection</u> Recognising that a fault/error has occurred.
- <u>Containment/Isolation</u> Isolating a fault and preventing its propagation throughout a system.
- <u>Recovery</u> Restoring the system to a stable (operational) state.
- **Repair** Repairing a faulty FRU

Reliability & Availability?

• **Reliability** - Ability to function correctly over a specified period of time.

$$R(t) = 1- F(t) = P(X > t)$$
, X: Time to failure

• **Availability** - Probability that a system is performing at the instant t, regardless the number of times it has been repaired.

Typical Failure Rate - BathTub

What is Availability?

- Availability is the measure of time the system is available and operating
 - Inherent availability = MTTF / (MTTF + MTTR)
 - Operational availability = Uptime / (Uptime + Downtime)
- MTTF = Mean Time To Failure
- MTTR = Mean Time To Repair

What is Availability? (cont.)

As an example, the average lifetime for a given component is 10000 hours and the average time to repair is 4 hours.

The availability of this single repairable system is:

Availability = 10000 / (10000 + 4) = 0.9996

Measuring Availability

% Uptime	%Downtime	Downtime/year	Downtime/week
99 %	1 %	3.65 days	1 h 41 min
99.9 %	0.1 %	8 h 45 min	10 min 5s
99.99 %	0.01 %	52.5 min	1 min
99.999 %	0.001 %	5.25 min	6 s
"six nines"	0.0001 %	31.5 s	0.6 s

What is Unavailability?

Unplanned causes of downtime:

- Extended Planned Downtime
- Human Error
- Software (OS, Application, Database, Middleware) Failure
- Network Failure
- Disk / Hardware Failure
- Disasters (fire, tornado, earthquake, ...)

What is Unavailability? (cont.)

Planned causes of downtime:

- Backup
- Software Maintenance
- Hardware Maintenance
- Application / Database Upgrade
- Operating System Upgrade
- Hardware Upgrade

What is Unavailability? (cont.)

Percent of Telephone Outages

What is Unavailability? (cont.)

Percent of Customer Minutes Loss

Software

Availability Objectives

- Requirement as Platform supplier:
 - 40 sec/year (99.999873 %)
 - 20 sec/year (99.999937 %)
- Mechanisms for
 - Preservation of States
 - Detect and Recover failure in given budget.
- Number of Scheduled Outages
 - ex: 4 Software/Hardware Updates per year

Markov Model Diagram

- Diagram of boxes, lines and text to visually and automatically portray possible system states.
- It is a convenient representation of failure/repair situations
- Boxes represent States.
- Transitions are indicated with Rate between States
 - λ = failure rate
 - μ = repair rate

Markov Model Diagram (cont.)

Markov Model Diagram (cont.)

Purpose of Availability Model

- Availability can be improved in several ways :
 - Increase the MTTF
 - Decrease MTTR
 - Introduce Redundancy
 - Reduce Detection time
 - ...
- Modeling allows to easily assert availability by validation of various design.

 Availability Modeling – an Hybrid approach

Availability in PLC - Example

Availability Modeling?

Prediction is fine as long as it is not about the future.

Measures to be Evaluated

- Reliability-based :
 - Reliability: R(t), System MTTF
 - Availability

"Does it works, and for how long?"

- Performance
 - Throughput, Response Time, Blocking Probability, Workload

"If it works, how well does it work?"

Combination

Reference – More readings

- 'Blueprints for High Availability', Marcus/Stern
- 'Applied Reliability', Tobias/Trindade

Exercise 1

- Model Service Availability for the following system :
 - Web server with warm replication (primary and secondary)
 - Enumerate and describe the different states;
 - Idem with the transitions;
 - Idem with recovery/restore strategies;
 - Present a simple Markov Model.
- Investigate how software replication / load balancing mechanisms can improve availability for apache web server (failover and session support)

Correction Exercise 1

2 node systems parameters are:

- Mean Time between Failures (MTBF)
- Probability of successful reconfiguration (p)
- Recovery_Time—time taken for reconfiguration to complete
- Mean Time To Repair a node (MTTR_1)
- Node_Rejoin_Time—time for a node to join cluster.
- Percent increase in failure rate due to increased load

 (a)
- Mean Time To Repair two nodes (MTTR_2)

Correction Exercise 1 (cont.)

