JetCAP: Jet Engine Cycle Analysis and Performance tool

Department of Mechanical Engineering, IIT Gandhinagar Abhijit Venkat P (IIT Gandhinagar), Aditya Prasad (IIT Gandhinagar), Gauresh Rangaiyan (Texas A&M University)

Introduction

There is a need for user-friendly software in the domain of Aircraft Engine Design and Analysis for the Aerospace Engineering community.

JetCAP has been developed to provide a userfriendly, freely accessible software solution for designing and analyzing aircraft engines across various cycles, filling the gap left by alternatives.

Objectives

The objective was to develop a software that does the following:

- 1. Perform Single-point and Multi-point Parametric Cycle Analysis (PCA), along with the option to plot the results.
- Perform Engine performance analysis (EPA) according to different flight conditions and Throttle settings.

Overview of the software

- PCA inputs: Altitude, ambient Temperature, Pressure (h, T_0, P_0) , Component efficiencies (η, e) , necessary pressure ratios (π) , temperature limits (T_{t4}, T_{t7}) , and fuel and air properties need to be entered.
- Single and Multiple variable iteration can also be performed.
- PCA outputs: ST (Specific Thrust), TSFC (Thrust-Specific Fuel Consumption), (Fuel-air ratio), $\eta_t \& \eta_p$ (Thermal and Propulsive respectively), efficiencies station-wise and properties.
- **EPA inputs:** Off-design point flight conditions (T_0, P_0, M_0, alt) , Throttle setting (T_{t4}) , and inlet mass flow rate (\dot{m}_0) in order to size the engine.
- PCA off-design outputs: results, Compressor pressure ratio, off-design bypass ratio, off-design mass flow rate, and Thrust in the test conditions.

Performance equations

Total Properties:

$$P=P_tigg(1+rac{1}{2}(\gamma-1)M^2igg)^{-rac{\gamma}{\gamma-1}} \ T=T_tigg(1+rac{1}{2}(\gamma-1)M^2igg)^{-1}$$

$$T=T_tigg(1+rac{1}{2}(\gamma-1)M^2igg)^{-1}$$

Fuel-Air ratio:

$$f_0 = rac{h_{t4} - h_{t3}}{\eta_b \cdot H_{pr} - h_{t3}} rac{1}{1 + lpha}$$

Core flow Specific Thrust:

$$rac{T_c}{\dot{m}_c} = a_0 \left(M_9 \sqrt{rac{T_{tR}}{T_9}} rac{C_R}{C_{T_0}} - M_0 + \sqrt{rac{T_{tR}}{T_9}} rac{C_R}{C_{T_0}} igg(1 - rac{P_0}{P_{9t}} M_9 igg)
ight)$$

Bypass flow Specific Thrust:

$$rac{T_b}{\dot{m}_b} = a_0 \left(M_{19} rac{T_{19}}{T_0} - M_0
ight) + a_{19} \left(1 - rac{P_0}{P_{19}}
ight) c M_{19}$$

Overall Specific Thrust:

$$ST = rac{lpha}{1+lpha} \cdot rac{T_b}{\dot{m}_b} + rac{1}{1+lpha} \cdot rac{T_c}{\dot{m}_c}$$

Thrust-Specific Fuel Consumption:

$$TSFC = rac{f}{ST}$$

Methodology

- We used Python to build the software. Each component of the engine was built as a Python Class with necessary parameters and functions.
- Components of Gas turbine Engines:
 - Diffuser
 - Fan
 - Compressor
 - Combustor
 - Turbine
 - Nozzle

Turbofan

compressor, combustor

Outputs: τ_t , π_t , P_{t5} , T_{t5}

Inputs: All the above Classes

Outputs: Performance Parameters such as ST (Specific Thrust), TSFC (Thrust-Specific Fuel Consumption), f (Fuel-Air ratio), $\eta_t \& \eta_p$ (Thermal and Propulsive efficiencies respectively).

Schematic of Turbofan Engine with Station numbering

Results

Input window for single-point calculation

Output window for single-point calculation

Output window for multi-point calculation

Carpet plot (TSFC v/s ST) with varying $T_{t4} \& \pi_c$

Future Scope

The future versions of this software can be developed to automate the process of designing the most optimum engine for a specific mission profile.

References

[1] J. D. Mattingly, *Elements of Propulsion: Gas* Turbines and Rockets. AIAA Education Series, 2006. [2] PARA, Available: URL

https://arc.aiaa.org/doi/suppl/10.2514/4.103711/s uppl_file

Acknowledgement

We would like to express our sincere gratitude to Prof. Dilip Srinivas Sundaram and Mr. Ganeshkumar V for their invaluable guidance and support.