

A criterion-based PLS approach to SEM

Michel Tenenhaus (HEC Paris) Arthur Tenenhaus (SUPELEC)

TRICAP 2009

ThRee-way methods in Chemistry And Psychology

Economic inequality and political instability Data from Russett (1964), in GIFI

Economic inequality

Agricultural inequality

GINI: Inequality of land

distributions

FARM: % farmers that own half

of the land (> 50)

RENT: % farmers that rent all

their land

Industrial development

GNPR: Gross national product per capita (\$ 1955)

LABO: % of labor force

employed in agriculture

Political instability

INST: Instability of executive

(45-61)

ECKS: Nb of violent internal

war incidents (46-61)

DEAT: Nb of people killed as a

result of civic group violence (50-62)

D-STAB: Stable democracy

D-UNST: Unstable democracy

DICT: Dictatorship

Economic inequality and political instability (Data from Russett, 1964)

	Gini	Farm	Rent	Gnpr	Labo	Inst	Ecks	Deat	Demo
Argentine	86.3	98.2	32.9	374	25	13.6	57	217	2
Australie	92.9	99.6	*	1215	14	11.3	0	0	1
Autriche	74.0	97.4	10.7	532	32	12.8	4	0	2
:									
France	58.3	86.1	26.0	1046	26	16.3	46	1	2
:									
Yougoslavie	43.7	79.8	0.0	297	67	0.0	9	0	3

- 1 = Stable democracy
- 2 =Unstable democracy
- 3 = Dictatorship

A SEM model

Agricultural inequality (X_1)

Latent Variable outer estimation

$$Y_1 = X_1 w_1 = w_{11}GINI + w_{12}FARM + w_{13}RENT$$

$$Y_2 = X_2 w_2 = w_{21}GNPR + w_{22}LABO$$

$$Y_3 = X_3 w_3 = w_{31}INST + w_{32}ECKS + w_{33}DEATH$$

 $+ w_{34}D-STB + w_{35}D-UNST$
 $+ w_{36}DICT$

Some modified multi-block methods for SEM

 $c_{jk} = 1$ if blocks are linked, 0 otherwise and $c_{jj} = 0$

SUMCOR (Horst, 1961)	$Max \sum_{j,k} c_{jk} Cor(X_j w_j, X_k w_k)$			
GENERALIZED CANONICAL CORRELATION ANALYSIS				
	j,k			
SABSCOR (Mathes, 1993, Hanafi, 2004)	$Max\sum_{j,k}c_{jk} Cor(X_jw_j, X_kw_k) $			
MAXDIFF (Van de Geer, 1984) [SUMCOV]	$\max_{\text{All } \ w_j\ =1} \sum_{j,k} c_{jk} Cov(X_j w_j, X_k w_k)$			
MAXDIFF B (F GENERALIZED PLS				
[SSQCOV]	$AII \ w_j\ =1 \qquad j,k$			
SABSCOV (Krämer, 2007)				

Covariance-based criteria for SEM

 $c_{jk} = 1$ if blocks are linked, 0 otherwise and $c_{jj} = 0$

SUMCOR-PLSPM	$ \operatorname{All} \operatorname{Var}(X_{j}w_{j}) = 1 \sum_{j,k} c_{jk} \operatorname{Cov}(X_{j}w_{j}, X_{k}w_{k}) $
SSQCOR-PLSPM	$\underset{\text{All } Var(X_j w_j)=1}{\text{Max}} \sum_{j,k} c_{jk} Cov^2(X_j w_j, X_k w_k)$
SABSCOR-PLSPM	$\operatorname{All} \operatorname{Var}(X_{j}w_{j}) = 1 \sum_{j,k} c_{jk} \operatorname{Cov}(X_{j}w_{j}, X_{k}w_{k}) $
SUMCOV-PLSPM	
SSQCOV-PLSPM	
SABSCOV-PLSPM	

A continuum approach

$$Maximize \sum_{j < k} c_{jk} g(\text{cov}(X_j w_j, X_k w_k))$$

subject to the constraints:

$$|\tau_i||w_i||^2 + (1-\tau_i)Var(X_iw_i) = 1$$
, with $0 \le \tau_i \le 1, i = 1,...,J$

where

$$g(x) = \begin{cases} x & \text{(Horst scheme)} \\ x^2 & \text{(Factorial scheme)} \\ |x| & \text{(Centroid scheme)} \end{cases}$$

A general procedure to obtain critical points of the criteria

- Construct the Lagrangian function related to the optimization problem.
- Cancel the derivative of the Lagrangian function with respect to each w_i.
- Use the Wold's procedure to solve the stationary equations (≠ Lohmöller's procedure).
- This procedure converges to a critical point of the criterion.
- The criterion increases at each step of the algorithm.

The general algorithm

 $c_{ih} = 1$ if blocks are linked, 0 otherwise and $c_{ii} = 0$

Specific cases

$$Maximize \sum_{j < k} c_{jk} g(\text{cov}(X_j w_j, X_k w_k))$$

subject to the constraints:

$$\tau_i \|w_i\|^2 + (1 - \tau_i) Var(X_i w_i) = 1$$
, with $0 \le \tau_i \le 1, i = 1, ..., J$

Criterion	SUMCOR	SSQCOR	SABSCOR
Scheme	Horst	Factorial	Centroid
Scheme	(g(x) = x)	$(g(x) = x^2)$	(g(x) = x)
Value of τ_i	0	0	0

PLS Mode B

With usual PLS-PM constraints: $Var(X_i w_i) = 1$

$$Var(X_i w_i) = 1$$

Specific cases

$$Maximize \sum_{j < k} c_{jk} g(\text{cov}(X_j w_j, X_k w_k))$$

subject to the constraints:

$$\tau_i \|w_i\|^2 + (1 - \tau_i) Var(X_i w_i) = 1$$
, with $0 \le \tau_i \le 1, i = 1, ..., J$

Criterion	SUMCOV	SSQCOV	SABSCOV
Scheme	Horst	Factorial	Centroid
Scheme	(g(x) = x)	$(g(x) = x^2)$	(g(x) = x)
Value of τ_i	1	1	1

PLS New Mode A With usual *PLS regression* constraint:

$$\|w_i\| = 1$$

I. PLS approach: 2 blocks

Mode for weight calculation

$Y_1 = X_1 w_1$	$Y_2 = X_2 w_2$	Method	Deflation (*)
A	A	PLS regression of X ₂ on X ₁	On X ₁ only
В	A	Redundancy analysis of X_2 with respect to X_1	On X ₁ only
A	A	Tucker Inter-Battery Factor Analysis	On X_1 and X_2
В	В	Canonical correlation Analysis	On X ₁ and X ₂

(*) Deflation: Working on residuals of the regression of X on the previous LV's in order to obtain orthogonal LV's.

PLS regression (2 components)

PLS Regression in SIMCA-P: PLS Scores

Correlation loadings

Redundancy analysis of X on Y

(2 components)

Inter-battery factor analysis (2 components)

- Mode A for Y
- Deflate both

X and Y

 $\underset{\|a\|=\|b\|=1}{Max} Cor(Xa, Yb) * \sqrt{Var(Xa)} * \sqrt{Var(Yb)}$

Canonical correlation analysis (2 components)

Barker & Rayens PLS DA

- Mode A for X
- Mode B for Y
- Deflate only on X

1

Redundancy analysis of *X* with respect to *Y*

Barker & Rayens PLS DA Economic inequality vs Political regime

Regime
Stable democracy
Unstable democracy
Dictatorship

Separation between political regimes is improved compared to PLS-DA.

II. Hierarchical model: J blocs

	Scheme for computation of the inner components $\mathbf{Z}_{\mathbf{j}}$				
Computation of outer weights w _j	Horst	Centroid	Factorial		
Mode A	SUMCOV	SABSCOV	SSQCOV		
Mode B	SUMCOR	SUMCOR	SSQCOR (Carroll GCCA)		

Generalized PLS regression

Generalized CCA

Deflation: On original blocks and/or the super-block

III. Multi-block data analysis

SABSCOR: PLS Mode B + Centroid scheme

$$Max \Big[\Big| Cor(X_1w_1, X_2w_2) \Big| + \Big| Cor(X_1w_1, X_3w_3) \Big| + \Big| Cor(X_2w_2, X_3w_3) \Big| \Big]$$

= .504 + .640 + .739 = 1.883

Multiblock data analysis

SSQCOR: PLS Mode B + Factorial scheme

$$Max \left[Cor^{2}(X_{1}w_{1}, X_{2}w_{2}) + Cor^{2}(X_{1}w_{1}, X_{3}w_{3}) + Cor^{2}(X_{2}w_{2}, X_{3}w_{3}) \right]$$

$$= .500^{2} + .628^{2} + .753^{2} = 1.211$$

Practice supports "theory"

			Mode B +	Mode B +
			Centroid	Factorial
Agricultural inequality	<>	Industrial development	-0.504	-0.500
Agricultural inequality	<>	Political Instability	0.640	0.628
Industrial development	<>	Political Instability	-0.739	-0.753
		SABSCOR	1.883 *	1.881
		SSQCOR	1.2097	1.211 *

* Criterion optimized by the method (checked on 50 000 random initial weights)

IV. Structural Equation Modeling

Agricultural inequality (X_1)

 C_{ij} = 1 if ξ_i and ξ_j are connected = otherwise

SABSCOR-PLSPM Mode B + Centroid scheme

$$Max[|Cor(X_1w_1, X_3w_3)| + |Cor(X_2w_2, X_3w_3)|] = .640 + .746 = 1.386$$

SSQCOR-PLSPM Mode B + Factorial scheme

$$Max \left[Cor^2(X_1w_1, X_3w_3) + Cor^2(X_2w_2, X_3w_3) \right] = .627^2 + .757^2 = .966178$$

Comparison between methods

	Mode B + Centroid scheme	Mode B + Factorial scheme
$ Cor(Y_1, Y_3) + Cor(Y_2, Y_3) $	1.386 ★	1.384
$Cor^{2}(Y_{1}, Y_{3}) + Cor^{2}(Y_{2}, Y_{3})$.966116	.966178

Criterion optimized by the method (checked on 50 000 random initial weights)

Practice supports "theory"

Mode A + Centroid scheme

The criterion optimized by the algorithm, if any, is unknown.

SABSCOV-PLSPM New Mode A + Centroid scheme

→ One-step hierarchical PLS Regression

SABSCOV-PLSPM New Mode A + Factorial scheme

$$Max[Cov^{2}(X_{1}w_{1}, X_{3}w_{3}) + Cov^{2}(X_{2}w_{2}, X_{3}w_{3})] = 3.86$$

→ One-step hierarchical PLS Regression

Generalized Barker & Rayens PLS-DA SSQCOV-PLSPM

New Mode A for X₁ and X₂ and Mode B for Y

$$Max[Cor^{2}(X_{1}w_{1}, X_{3}w_{3})*Var(X_{1}w_{1}) + Cor^{2}(X_{2}w_{2}, X_{3}w_{3})*Var(X_{2}w_{2})] = 1.39$$

→ One-step hierarchical B&R PLS-DA

Generalized Barker & Rayens PLS-DA

Conclusion

 In the PLS approach of Herman Wold, the constraint is:

$$Var(X_j w_j) = 1$$

 In the PLS regression of Svante Wold, the constraint is:

$$\|w_j\| = 1$$

This presentation unifies both approaches.