Problem 1-1.
$$T(n) = 3T(n/2) + n^2$$

 $T(n) = \Theta(n^2)$ (case 3).

Problem 1-2.
$$T(n) = 7T(n/2) + n^2$$

 $T(n) = \Theta(n^{\lg 7})$ (case 1).

Problem 1-3.
$$T(n) = 4T(n/2) + n^2$$

 $T(n) = \Theta(n^2 \lg n)$ (case 2).

Problem 1-4.
$$T(n) = 3T(n/4) + n \lg n$$
 $T(n) = \Theta(n \lg n)$ (case 3).

Problem 1-5.
$$T(n) = 4T(n/2) + \lg n$$
 $T(n) = \Theta(n^2)$ (case 1).

Problem 1-6.
$$T(n) = T(n-1) + n$$

M.T. doesn't apply. Iteration gives $T(n) = \Theta(n^2)$.

Problem 1-7.
$$T(n) = 4T(n/2) + n^2 \lg n$$
 $T(n) = \Theta(n^2 \lg^2 n)$ (extended case 2).

Problem 1-8.
$$T(n) = 5T(n/2) + n^2 \lg n$$

 $T(n) = \Theta(n^{\lg 5})$ (case 1).

Problem 1-9. $T(n) = 3T(n/3) + n/\lg n$ M.T. case 1 doesn't apply since $f(n) = n/\lg n$ is not polynomially smaller than $n^{\log_3 3 - \varepsilon}$ for

M.T. case 1 doesn't apply since $f(n) = n/\lg n$ is not polynomially smaller than $n^{\log_3 3 - \varepsilon}$ for any $\varepsilon > 0$.

Problem 1-10.
$$T(n) = 2T(n/4) + c$$

 $T(n) = \Theta(n^{1/2})$ (case 1).

Problem 1-11.
$$T(n) = T(n/4) + \lg n$$

 $T(n) = \Theta(\lg^2 n)$ (extended case 2).

Problem 1-12. $T(n) = T(n/2) + T(n/4) + n^2$ M.T. doesn't apply. Recursion tree gives guess $T(n) = \Theta(n^2)$.

Problem 1-13.
$$T(n) = 2T(n/4) + \lg n$$

 $T(n) = \Theta(n^{1/2})$ (case 1).

Problem 1-14.
$$T(n) = 3T(n/3) + n \lg n$$

 $T(n) = \Theta(n \lg^2 n)$ (extended case 2).

Problem 1-15. $T(n) = 8T((n-\sqrt{n})/4) + n^2$ M.T. doesn't apply. Using Akra-Bazzi can ignore $\sqrt{n}/4$, which gives $\Theta(n^2)$. Could also use M.T. to get an upper bound of $O(n^2)$ by removing the $\sqrt{n}/4$ term and a lower bound of $\Omega(n^2)$ by replacing the $(n-\sqrt{n})/4$ term by 0.24n.

Problem 1-16.
$$T(n) = 2T(n/4) + \sqrt{n}$$

 $T(n) = \Theta(n^{1/2} \lg n)$ (case 2).

Problem 1-17.
$$T(n) = 2T(n/4) + n^{0.51}$$

 $T(n) = \Theta(n^{0.51})$ (case 3).

Problem 1-18.
$$T(n) = 16T(n/4) + n!$$

 $T(n) = \Theta(n!)$ (case 3).

Problem 1-19.
$$T(n) = 3T(n/2) + n$$

 $T(n) = \Theta(n^{\lg 3})$ (case 1).

Problem 1-20.
$$T(n) = 4T(n/2) + cn$$

 $T(n) = \Theta(n^2)$ (case 1).

Problem 1-21.
$$T(n) = 3T(n/3) + n/2$$

 $T(n) = \Theta(n \lg n)$ (case 2).

Problem 1-22.
$$T(n) = 4T(n/2) + n/\lg n$$
 $T(n) = \Theta(n^2)$ (case 1).

Problem 1-23.
$$T(n) = 7T(n/3) + n^2$$

 $T(n) = \Theta(n^2)$ (case 3).

Problem 1-24.
$$T(n) = 8T(n/3) + 2^n$$

 $T(n) = \Theta(2^n)$ (case 3).

Problem 1-25.
$$T(n) = 16T(n/4) + n$$

 $T(n) = \Theta(n^2)$ (case 1).