ECEn/CS 224 Chapter 3 Homework Solutions

3.1 Draw the truth table for a 3-variable function whose output is TRUE any time an odd number of its nputs is TRUE.

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

3.2 Draw the truth table for a 4-variable function whose output is TRUE any time an even number of its inputs is TRUE.

A	В	C	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Last updated: 9/23/2006

3.3 Draw the truth table for a 4-variable function whose output is TRUE any time its inputs, when interpreted as the bits of a 4-bit unsigned binary number, is a multiple of 3 (consider 0 to be a multiple of 3).

A	В	C	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

3.4 For each of the problems above, write the boolean equation for the function by reading it off the truth table.

$$(3.1) A'B'C + A'BC' + AB'C' + ABC$$

$$(3.2)\ A'B'C'D' + A'B'CD + A'BC'D + A'BCD' + A\ B'C'D + AB'CD' + ABC'D' + ABCD$$

$$(3.2) A'B'C'D' + A'B'CD + A'BCD' + AB'C'D + ABC'D' + ABCD$$

Last updated: 9/23/2006

Prove that the following identity is TRUE using a truth table: AC + A'B + BC = AC + A'B. This theorem has a name. What is its name?

A	В	C	AC	A'B	BC	AC+A'B+BC	AC+A'B
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	1	1
0	1	1	0	1	1	1	1
1	0	0	0	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	0	0	0	0	0
1	1	1	1	0	1	1	1

Since the last two columns are the same, the two expressions are equivalent. This is called the "consensus theorem".

3.6 Prove that the following is TRUE by *multiplying it out* and then simplifying:

$$(A+BC)(A+DE) = AA + ADE + ABC + BCDE$$

= $A(1 + DE + BC) + BCDE$
= $A + BCDE$

3.7 Write the dual for the equality in the previous problem.

$$A(B+C) + A(D+E) = A(B+C+D+E)$$

Last updated: 9/23/2006