Aprendizaje estadístico

Formulario · Primavera 2021

Carlos Lezama

 $\begin{array}{c} \text{EST} \cdot 25134 \\ \text{ITAM} \end{array}$

Introducción

¿Cuándo necesitamos aprendizaje de máquina?

Dos aspectos de un problema dado pueden requerir el uso de programas que aprendan y mejoren sobre la base de su "experiencia": la **complejidad** del problema y la necesidad de **adaptabilidad**.

Complejidad

- · Tareas realizadas por animales o humanos.
- · Tareas más allá de las capacidades humanas.

Adaptabilidad

Una característica limitante de las herramientas programadas es su rigidez: una vez que el programa se ha escrito e instalado, permanece sin cambios. Sin embargo, muchas tareas cambian con el tiempo, o de un usuario a otro. Las herramientas de aprendizaje de máquina (programas cuyo comportamiento se adapta a sus datos de entrada) ofrecen una solución a estos problemas; estos son, por naturaleza, adaptables a los cambios en el entorno con el que interactúan.

Tipos de aprendizaje

- · Supervisado o no supervisado.
- · Por refuerzo.
- · Agentes pasivos o activos.
- · Maestro.
- · Protocolo por bloques o continuo.

1. Marco formal de aprendizaje

Conjunto de dominio (\mathcal{X})

 $\mathcal{X} \subseteq \mathbb{R}^d$ tal que $d < \infty$.

Conjunto de etiquetas (\mathcal{Y})

En el caso de etiquetado binario,

$$\mathcal{Y} = \{0, 1\}$$
 ó $\mathcal{Y} = \{-1, +1\}$.

Conjunto de entrenamiento (S)

Una sucesión $S = \{(x_i, y_i)\}_{i=1}^m$ tal que $m < \infty$ y $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$.

Reglas de predicción (h)

$$h: \mathcal{X} \to \mathcal{Y}$$
,

también llamado predictor, hipótesis o clasificador.

Algoritmo de aprendizaje (A)

Denotamos A(S) a la hipótesis que el algoritmo de aprendizaje A genera al observar el conjunto de entrenamiento S. Asimismo, asumimos que $\mathcal X$ tiene una medida de probabilidad desconocida $\mathcal D$ y que existe una función desconocida f que etiqueta los datos de manera correcta, es decir:

$$\exists f: \mathcal{X} \to \mathcal{Y} \quad \text{tal que} \quad f(x_i) = y_i, \ \forall i.$$

Métricas de éxito

Definición 1.1 (Error de un clasificador). Dado un subconjunto de dominio $A \subseteq \mathcal{X}$ y su probabilidad de observarlo $\mathcal{D}(A)$. En muchos casos, nos referimos a A como un evento y lo expresamos usando una función $\pi: \mathcal{X} \to \{0,1\}$ tal que $A = \{x \in \mathcal{X} : \pi(x) = 1\}$. Así pues, definimos el error del clasificador $h: \mathcal{X} \to \mathcal{Y}$ como sigue:

$$L_{\mathcal{D},f}(h) \stackrel{\text{def}}{=} \underset{x \sim \mathcal{D}}{\mathbb{P}} [h(x) \neq f(x)] \stackrel{\text{def}}{=} \mathcal{D} (\{x : h(x) \neq f(x)\}).$$

También se le conoce como error de generalización o riesgo de h.

1.1. Minimización de riesgo empírico

El objetivo de nuestro algoritmo es encontrar $h_S: \mathcal{X} \to \mathcal{Y}$ que minimice el error con respecto a las desconocidas \mathcal{D} y f.

Definición 1.2 (Error de entrenamiento). El error en el que incurre el clasificador sobre el conjunto de entrenamiento está dado por:

$$L_S(h) \stackrel{\text{def}}{=} \frac{|i \in [m] : h(x_i) \neq y_i|}{m},$$

donde

$$[m] = \{1, \dots, m\}.$$

A este error de entrenamiento también se le conoce como error empírico o riesgo empírico.

Definición 1.3 (Minimización de riesgo empírico). Al predictor h que minimiza $L_S(h)$ se le conoce como minimizador de riesgo empírico o ERM, por sus siglas en inglés.

Definición 1.4 (Sobreajuste). Cuando un sistema se sobreentrena, o se entrena con datos extraños, el algoritmo de aprendizaje puede quedar ajustado a unas características muy específicas de los datos de entrenamiento que no tienen relación causal con la función objetivo. A este fenómeno le decimos sobreajuste.

1.2. Minimización de riesgo empírico con sesgo inductivo

Definición 1.5 (Familia de hipótesis). Sea Ω el espacio de todos los clasificadores, definimos una **familia** (o clase) **de hipótesis** como el conjunto $\mathcal{H} \subset \Omega$ que el agente elige de antemano como un espacio de búsqueda restringido.

Dada una clase \mathcal{H} y un conjunto de entrenamiento S, el agente $\mathrm{ERM}_{\mathcal{H}}$ usa la regla de *minimización de riesgo empírico* para escoger un predictor $h \in \mathcal{H}$ con el menor error posible sobre S.

i.e.
$$\text{ERM}_{\mathcal{H}}(S) \in \underset{h \in \mathcal{H}}{\text{arg min}} L_S(h)$$
.

Así pues, a tales restricciones se les conoce como sesgo inductivo.

1.3. Familia de hipótesis finita

Observación 1.1

Denotamos por h_S al resultado generado de aplicar $\mathrm{ERM}_{\mathcal{H}}$ al conjunto de entrenamiento S.

i.e.
$$h_S \in \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} L_S(h)$$
.

Definición 1.6 (Hipótesis de realizabilidad). Existe $h^* \in \mathcal{H}$ tal que $L_{\mathcal{D},f}(h^*) = 0$. Asimismo, podemos decir que $L_S(h^*) = 0$ con probabilidad 1 sobre S cuando las muestras de S se distribuyen \mathcal{D} y se etiquetan f

Definición 1.7 (Hipótesis de independencia y distribución idéntica). Asumimos que cada $x_i \in S$ se distribuye \mathcal{D} , es decir:

$$S \sim \mathcal{D}^m$$
.

donde m = |S|.

Observación 1.2: Parámetro de confianza

Denotamos por δ la probabilidad de obtener una muestra poco representativa de \mathcal{D} . Así pues, podemos ver a $(1-\delta)$ como nuestro **parámetro de confianza**.

Observación 1.3: Parámetro de precisión

Denotamos por ε a la probabilidad de encontrar errores de etiquetado. Es decir, interpretamos $L_{\mathcal{D},f}(h_S)>\varepsilon$ como un fracaso para el agente y $L_{\mathcal{D},f}(h_S)\leq\varepsilon$ como un clasificador aproximadamente correcto.

Lema 1.1

Para dos conjuntos cualesquiera A y B, y una distribución \mathcal{D} , tenemos:

$$\mathcal{D}(A \cup B) \le \mathcal{D}(A) + \mathcal{D}(B).$$

Corolario 1.1

Sean $\mathcal H$ una familia de hipótesis finita, $\delta\in(0,1), \varepsilon>0$ y m un entero, se cumple:

$$m \ge \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon}.$$

Entonces, para toda función de etiquetado f y toda distribución \mathcal{D} , para las cuales se cumple la *hipótesis de realizabilidad*, tenemos — con probabilidad de al menos $(1-\delta)$ sobre nuestra muestra independiente e idénticamente distribuida S de tamaño m — que toda solución del minimizador de riesgo empírico h_S satisface:

$$L_{\mathcal{D},f}(h_S) \leq \varepsilon.$$

2. Un modelo formal de aprendizaje

2.1. Aprendizaje PAC

Definición 2.1 (Aprendizaje PAC). Una familia de hipótesis \mathcal{H} es PAC^{\dagger} aprendible si existe una función $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ y un algoritmo de aprendizaje con la siguiente propiedad: para toda $\varepsilon, \delta \in (0,1)$, toda distribución \mathcal{D} sobre \mathcal{X} y toda función de etiquetado $f: \mathcal{X} \to \{0,1\}$, si se satisface la hipótesis de realizabilidad con respecto a \mathcal{H} , \mathcal{D} y f, al ejecutar el algoritmo de aprendizaje con $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ elementos independientes e idénticamente distribuidos por \mathcal{D} y etiquetados por f, el algoritmo genera una hipótesis h tal que, con probabilidad de al menos $(1-\delta)$ sobre la elección de elementos, $L_{\mathcal{D},f}(h) \leq \varepsilon$.

Definición 2.2 (Complejidad muestral). La complejidad muestral de un algoritmo de aprendizaje representa la cantidad de muestras de entrenamiento que necesita para aprender con éxito una función objetivo.

Corolario 2.1

Toda familia finita de hipótesis es PAC aprendible con complejidad muestral:

$$m_{\mathcal{H}}(\varepsilon, \delta) \le \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon} \right\rceil.$$

2.2. Aprendizaje PAC agnóstico

Definición 2.3 (Error verdadero de un clasificador). Para alguna distribución de probabilidad \mathcal{D} sobre $\mathcal{X} \times \mathcal{Y}$ se puede medir la probabilidad de que h cometa un error cuando los puntos etiquetados se extraen aleatoriamente con respecto a \mathcal{D} . Así pues, definimos el error (o riesgo) verdadero del clasificador h, como sigue:

$$L_{\mathcal{D}}(h) \stackrel{\mathrm{def}}{=} \underset{(x,y) \sim \mathcal{D}}{\mathbb{P}} [h(x) \neq y] \stackrel{\mathrm{def}}{=} \mathcal{D} \left(\left\{ (x,y) : h(x) \neq y \right\} \right).$$

Nota: la definición de error de entrenamiento no se modifica.

Definición 2.4 (Clasificador bayesiano óptimo). *Dada una distribución de probabilidad* \mathcal{D} *sobre* $\mathcal{X} \times \{0,1\}$, *el mejor clasificador es:*

$$f_{\mathcal{D}}(x) = \begin{cases} 1, & \text{si } \mathbb{P}[y=1 \mid x] \ge 1/2 \\ 0, & \text{en otros casos} \end{cases}.$$

Observación 2.1

El clasificador bayesiano es óptimo porque cualquier otro clasificador $g:\mathcal{X}\to\{0,1\}$ tiene un error mayor.

i.e.
$$L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g), \ \forall g.$$

Definición 2.5 (Aprendizaje PAC agnóstico). Una familia de hipótesis \mathcal{H} es PAC aprendible en un sentido agnóstico si existe una función $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ y un algoritmo de aprendizaje con la siguiente propiedad: para toda $\varepsilon, \delta \in (0,1)$ y toda distribución \mathcal{D} sobre $\mathcal{X} \times \mathcal{Y}$, al ejecutar el algoritmo de aprendizaje con $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ elementos independientes e idénticamente distribuidos por \mathcal{D} , el algoritmo genera una hipótesis h tal que, con probabilidad de al menos $(1-\delta)$ sobre la elección de m elementos de entrenamiento, $L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \varepsilon$.

2.3. El alcance de los problemas de aprendizaje modelados

Observación 2.2: Error cuadrático medio

Podemos evaluar la calidad de un clasificador $h: \mathcal{X} \to \mathcal{Y}$ por el **error** cuadrático medio entre el etiquetado correcto y los valores predichos.

i.e.
$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} (h(x) - y)^2$$
.

Definición 2.6 (Función de pérdida generalizada). Dado cualquier conjunto \mathcal{H} y algún dominio Z. ℓ es cualquier función de $\mathcal{H} \times Z$ a los reales no negativos; i.e. $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$. A dichas funciones las llamamos funciones de pérdida.

Nótese que, para los problemas de predicción, \mathcal{H} es nuestra familia de hipótesis y $Z = \mathcal{X} \times \mathcal{Y}$.

Definición 2.7 (Función de riesgo). Definimos la función de riesgo como la pérdida esperada de un clasificador $h \in \mathcal{H}$ con respecto a una distribución de probabilidad \mathcal{D} sobre Z. Es decir:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \underset{z \sim \mathcal{D}}{\mathbb{E}} \left[\ell(h, z) \right].$$

Definición 2.8 (Riesgo empírico). Definimos el **riesgo empírico** como la pérdida esperada sobre una muestra $S = (z_1, \ldots, z_m) \in \mathbb{Z}^m$. Es decir:

$$L_S(h) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{i=1}^m \ell(h, z_i).$$

Proposición 2.1

El riesgo empírico $L_S(h)$ es un estimador insesgado.

Definición 2.9 (Pérdida 0-1).

$$\ell_{0-1}(h,(x,y)) \stackrel{\text{def}}{=} \begin{cases} 0, & \text{si } h(x) = y \\ 1, & \text{si } h(x) \neq y \end{cases}.$$

Definición 2.10 (Pérdida cuadrática).

$$\ell_{\text{sq}}(h,(x,y)) \stackrel{\text{def}}{=} (h(x) - y)^2$$
.

Definición 2.11 (Aprendizaje PAC agnóstico para funciones de pérdida generalizada). Una familia de hipótesis \mathcal{H} es PAC aprendible en un sentido agnóstico con respecto a Z y $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$ (una función de pérdida) si existe una función $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ y un algoritmo de aprendizaje con la siguiente propiedad: para toda $\varepsilon, \delta \in (0,1)$ y toda distribución \mathcal{D} sobre Z, al ejecutar el algoritmo de aprendizaje con $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ elementos independientes e idénticamente distribuidos por \mathcal{D} , el algoritmo genera una hipótesis $h \in \mathcal{H}$ tal que, con probabilidad de al menos $(1-\delta)$ sobre la elección de m elementos de entrenamiento, $L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \varepsilon$, donde $L_{\mathcal{D}}(h) = \mathbb{E}$ $[\ell(h,z)]$

Observación 2.3

En aprendizaje PAC agnóstico para funciones de pérdida generalizada, necesitamos que la función $\ell(h,\cdot)$ sea $\mathit{medible}$. Es decir, al asumir un σ -álgebra de subconjuntos de Z sobre el cuál la probabilidad $\mathcal D$ está definida, y que la preimagen de cada segmento inicial en $\mathbb R_+$ está en este σ -álgebra. En el caso específico de clasificación binaria con pérdida 0-1, la σ -álgebra está sobre $\mathcal X \times \{0,1\}$ y nuestra suposición en ℓ es equivalente a asumir que sobre toda h, el conjunto $\{(x,h(x)): x \in \mathcal X\}$ está en el σ -álgebra.

Observación 2.4: Aprendizaje adecuado o independiente de la representación

En algunos casos, \mathcal{H} es un subconjunto de algún conjunto \mathcal{H}' y la función de pérdida puede extenderse a ser una función de $\mathcal{H}' \times Z$ a los reales. En este caso, podemos permitir que el algoritmo genere una hipótesis $h' \in \mathcal{H}'$ siempre y cuando cumpla con $L_{\mathcal{D}}(h') \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \varepsilon$. Al permitir que el algoritmo genere una hipótesis de \mathcal{H}' , se dice que dicho aprendizaje es de representación independiente o inadecuado; mientras que, en aprendizaje adecuado, el algoritmo debe producir una hipótesis de \mathcal{H} .

[†] Probablemente aproximadamente correcto, del inglés: *Probably Approximately Correct*.

3. Convergencia uniforme

Definición 3.1 (Muestra ε -representativa). Un conjunto de entrenamiento S es ε -representativo respecto al dominio Z, la familia de hipótesis \mathcal{H} , la función de pérdida ℓ y la distribución \mathcal{D} si:

$$\forall h \in \mathcal{H}, \quad |L_S(h) - L_D(h)| \leq \varepsilon.$$

Lema 3.1

Al asumir S un conjunto de entrenamiento ε /2-representativo, cualquier $h_S\in \arg\min_{h\in\mathcal{H}}L_S(h)$ satisface:

$$L_{\mathcal{D}}(h_S) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \varepsilon.$$

Definición 3.2 (Convergencia uniforme). Decimos que una familia de hipótesis \mathcal{H} tiene la propiedad de **convergencia uniforme** con respecto al dominio Z y la función de pérdida ℓ si existe una función $m_{\mathcal{H}}^{\mathrm{UC}}:(0,1)^2\to\mathbb{N}$ tal que, para toda $\varepsilon,\delta\in(0,1)$ y toda distribución de probabilidad \mathcal{D} sobre Z, si S es una muestra de $m\geq m_{\mathcal{H}}^{\mathrm{UC}}$ elementos independientes e idénticamente distribuidos por \mathcal{D} , entonces, con probabilidad de al menos $(1-\delta)$, Ses ε -representativa.

Corolario 3.1

Si una familia de hipótesis \mathcal{H} tiene convergencia uniforme con una función $m_{\mathcal{H}}^{\mathrm{UC}}$, entonces la familia es PAC aprendible en sentido agnóstico con una complejidad muestral $m_{\mathcal{H}}(\varepsilon, \delta) \leq m_{\mathcal{H}}^{\mathrm{UC}}(\varepsilon/2, \delta)$.

Lema 3.2: Desigualdad de Hoeffding

Sea θ_1,\ldots,θ_m una sucesión de variables aleatorias independientes e idénticamente distribuidas. Al asumir que, para toda i, $\mathbb{E}[\theta_i]=\mu$ y $\mathbb{P}[a\leq\theta_i\leq b]=1$; para toda $\varepsilon>0$:

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\varepsilon\right]\leq2\exp\left(\frac{-2m\varepsilon^{2}}{(b-a)^{2}}\right).$$

Corolario 3.2

Sean \mathcal{H} un clase de hipótesis finita, Z el dominio y $\ell: \mathcal{H} \times Z \to [0,1]$ una función de pérdida. Entonces, \mathcal{H} posee la propiedad de convergencia uniforme con complejidad muestral:

$$m_{\mathcal{H}}^{\mathrm{UC}}(arepsilon, \delta) \leq \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2arepsilon^2} \right\rceil.$$

Asimismo, la clase es PAC aprendible en un sentido agnóstico al utilizar el algoritmo ERM con complejidad muestral:

$$m_{\mathcal{H}}(\varepsilon, \delta) \le m_{\mathcal{H}}^{\mathrm{UC}}(\varepsilon/2, \delta) \le \left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\varepsilon^2} \right\rceil.$$

4. Predictores lineales

Definición 4.1 (Clase de transformaciones afines). Definimos la clase de transformaciones afines como:

$$L_d = \{ h_{\mathbf{w},b} : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R} \},\$$

donde

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \left(\sum_{i=1}^{d} w_i x_i\right) + b.$$

Asimismo, es conveniente usar la siguiente notación:

$$L_d = \{ \mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle + b : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R} \}.$$

Observación 4.1

En algunos casos, resulta conveniente incorporar el sesgo b en w como una coordenada y agregar una coordenada extra con valor de 1 a todas las $x \in \mathcal{X}$. Es decir, sean $w' = (b, w_1, w_2, \ldots, w_d) \in \mathbb{R}^{d+1}$ y $x' = (1, x_1, x_2, \ldots, x_d) \in \mathbb{R}^{d+1}$. Por lo tanto:

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \langle \mathbf{w}', \mathbf{x}' \rangle.$$

4.1. Semiespacios

Definición 4.2 (Clase de semiespacios). La clase de semiespacios, diseñada para problemas de clasificación binaria con $\mathcal{X} = \mathbb{R}^d$ y $\mathcal{Y} = \{-1, +1\}$, la definimos como:

$$HS_d = \operatorname{sgn} \circ L_d = \{ \mathbf{x} \mapsto \operatorname{sgn}(h_{\mathbf{w},b}(\mathbf{x})) : h_{\mathbf{w},b} \in L_d \}.$$

Podemos considerar las siguientes tres situaciones:

- 1. Casos separables, al asumir que se cumple la hipótesis de realizabilidad.
- 2. Casos no separables en un sentido agnóstico.
- 3. Cuando una función lineal no es suficiente y necesitamos una transformación no lineal.

4.1.1. Programación lineal

Definición 4.3 (Programas lineales). Los programas lineales son problemas que pueden expresarse como la maximización de una función lineal sujeta a restricciones lineales. Es decir:

$$\begin{array}{ll}
\max_{\mathbf{w} \in \mathbb{R}^d} & \langle \mathbf{u}, \mathbf{w} \rangle \\
\text{sujeto a} & A\mathbf{w} > \mathbf{v},
\end{array}$$

donde w es el vector de variables que deseamos determinar, A es una matriz $m \times d$ y v $\in \mathbb{R}^m$, u $\in \mathbb{R}^d$ son vectores.

Proposición 4.1

Sea $S=\{(\mathbf{x}_i,y_i)\}_{i=1}^m$ un conjunto de entrenamiento de tamaño m. Al asumir casos separables, existe $\mathbf{w}\in\mathbb{R}^d$ tal que:

$$y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1, \quad \forall i = 1, \dots, m,$$

o bien.

$$Aw \ge v$$
,

donde $A \in \mathbb{R}^{m \times d}$, $A_{i,j} = y_i \, x_{i,j} \,$ y v = $(1,\dots,1) \in \mathbb{R}^m$; y w es un predictor ERM.

4.1.2. Algoritmo de perceptrones

```
Input: Un conjunto de entrenamiento S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m \mathbf{w}^{(1)} = (0, \dots, 0) 2 for t = 1, 2, \dots do 3 | if \exists i \ tal \ que \ y_i \ \left<\mathbf{w}^{(t)}, \mathbf{x}_i\right> \leq 0 \ \text{then} 4 | \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i else | Output: \mathbf{w}^{(t)} end 7 end
```

Algoritmo 1: Perceptrón por bloques

Teorema 4.1

Al asumir $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ separables, y sean:

$$B = \min \{ \|\mathbf{w}\| : y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1 \},\,$$

У

$$R = \max_{i} \left\{ \|\mathbf{x}_{i}\| \right\}.$$

Entonces, el algortimo de perceptrones se detiene a lo más $(RB)^2$ iteraciones después y devuelve $\mathbf{w}^{(t)}$ tal que $y_i\langle\mathbf{w}^{(t)},\mathbf{x}_i\rangle>0$.