Math 341 - Linear Algebra §1.7 - 1.9

Fall 2019

There is no royal road to geometry.

- Euclid to Ptolemy

DEFINITION (LINEAR INDEPENDENCE)

DEFINITION (LINEAR INDEPENDENCE)

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

DEFINITION (LINEAR INDEPENDENCE)

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights c_1, \dots, c_p , not all zero such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

DEFINITION (LINEAR INDEPENDENCE)

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights c_1, \dots, c_p , not all zero such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

In this case equation (1) is called a **dependence relation**.

Example: Determine if the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$

are linearly independent.

Example: Determine if the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$

are linearly independent.

Example: Determine if

$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \text{and} \quad \mathbf{w}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

are linearly independent.

Saying that the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution $x_1 = \cdots = x_p = 0$

Saying that the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution $x_1 = \cdots = x_p = 0$ is the same as saying that

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

has only the trivial solution $\mathbf{x} = \mathbf{0}$.

Saying that the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \ldots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution $x_1 = \cdots = x_p = 0$ is the same as saying that

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

has only the trivial solution $\mathbf{x} = \mathbf{0}$.

FACT

The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

§1.7 LINEAR INDEPENDENCE

FACT

FACT

1. A set $\{v\}$ containing a single vector is linearly independent if and only if $v \neq 0$.

FACT

- 1. A set $\{v\}$ containing a single vector is linearly independent if and only if $v \neq 0$.
- 2. A set $\{\mathbf{v}, \mathbf{w}\}$ is linearly independent if and only if neither of \mathbf{v} not \mathbf{w} is a scalar multiple of the other.

FACT

- 1. A set $\{v\}$ containing a single vector is linearly independent if and only if $v \neq 0$.
- 2. A set $\{\mathbf{v}, \mathbf{w}\}$ is linearly independent if and only if neither of \mathbf{v} not \mathbf{w} is a scalar multiple of the other.

Warning! A set of 3 or more vectors may be linearly dependent even though none of them is a scalar multiple of another vector in the set.

Example: Determine if

$$\mathbf{w}_1 = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \quad \text{and} \quad \mathbf{w}_2 = \begin{bmatrix} 16\\8\\-7 \end{bmatrix}$$

are linearly independent.

§1.7 LINEAR INDEPENDENCE

THEOREM

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

THEOREM

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

THEOREM

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Warning! This theorem does not say that *every* vector of a linearly dependent set can be written as a linear combination of the other vectors,

THEOREM

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Warning! This theorem does not say that *every* vector of a linearly dependent set can be written as a linear combination of the other vectors, just that *some* vector can.

Example: Consider
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. What is

Span $\{\mathbf{u}, \mathbf{v}\}$?

Example: Consider
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. What is Span $\{\mathbf{u}, \mathbf{v}\}$?

If **w** is another vector in \mathbb{R}^3 , where will **w** lie if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent?

Example: Consider
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. What is Span $\{\mathbf{u}, \mathbf{v}\}$?

If **w** is another vector in \mathbb{R}^3 , where will **w** lie if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent? Where will it lie if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent?

THEOREM

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p>n.

THEOREM

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p>n.

THEOREM

If a set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

Example: Which of the following sets of vectors is linearly independent?

1.
$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix}.$$

Example: Which of the following sets of vectors is linearly independent?

1.
$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix}.$$

$$2. \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 3 \\ -2 \end{bmatrix}.$$

Example: Which of the following sets of vectors is linearly independent?

1.
$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 3 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix}$.

$$2. \quad \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\3\\-2 \end{bmatrix}.$$

3.
$$\begin{bmatrix} 2 \\ 2 \\ 8 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -3 \\ -12 \\ -6 \end{bmatrix}$

Given an $m \times n$ matrix A and a vector $\mathbf{x} \in \mathbb{R}^n$, we can multiply A and \mathbf{x} to give a vector in \mathbb{R}^m .

Given an $m \times n$ matrix A and a vector $\mathbf{x} \in \mathbb{R}^n$, we can multiply A and \mathbf{x} to give a vector in \mathbb{R}^m .

Given an $m \times n$ matrix A and a vector $\mathbf{x} \in \mathbb{R}^n$, we can multiply A and \mathbf{x} to give a vector in \mathbb{R}^m .

We can think of an $m \times n$ matrix as taking vectors in \mathbb{R}^n and transforming them to vectors in \mathbb{R}^m .

Example: If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 7 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix} \in \mathbb{R}^3$. Then

 $A\mathbf{x}$

Given an $m \times n$ matrix A and a vector $\mathbf{x} \in \mathbb{R}^n$, we can multiply A and \mathbf{x} to give a vector in \mathbb{R}^m .

Example: If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 7 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix} \in \mathbb{R}^3$. Then

$$A\mathbf{x} = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix}$$

Given an $m \times n$ matrix A and a vector $\mathbf{x} \in \mathbb{R}^n$, we can multiply A and \mathbf{x} to give a vector in \mathbb{R}^m .

Example: If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 7 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix} \in \mathbb{R}^3$. Then

$$A\mathbf{x} = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix} = \begin{bmatrix} 21 \\ 35 \end{bmatrix}$$

Given an $m \times n$ matrix A and a vector $\mathbf{x} \in \mathbb{R}^n$, we can multiply A and \mathbf{x} to give a vector in \mathbb{R}^m .

Example: If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 7 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix} \in \mathbb{R}^3$. Then

$$A\mathbf{x} = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 1 & 7 \end{bmatrix} \begin{vmatrix} 2 \\ -2 \\ 5 \end{vmatrix} = \begin{bmatrix} 21 \\ 35 \end{bmatrix} \in \mathbb{R}^2.$$

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the **domain** of T, and the set \mathbb{R}^m is called the **codomain** of T.

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the **domain** of T, and the set \mathbb{R}^m is called the **codomain** of T.

Notation:

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the **domain** of T, and the set \mathbb{R}^m is called the **codomain** of T.

Notation:

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the **domain** of T, and the set \mathbb{R}^m is called the **codomain** of T.

Notation:

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{x} \mapsto T(\mathbf{x})$$

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the **domain** of T, and the set \mathbb{R}^m is called the **codomain** of T.

Notation:

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{x} \mapsto T(\mathbf{x})$$

For a vector $\mathbf{x} \in \mathbb{R}^n$, the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of \mathbf{x} ,

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the **domain** of T, and the set \mathbb{R}^m is called the **codomain** of T.

Notation:

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{x} \mapsto T(\mathbf{x})$$

For a vector $\mathbf{x} \in \mathbb{R}^n$, the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of \mathbf{x} , and the set of all images $T(\mathbf{x})$ is called the **range** of T.

Example: Let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$, where

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 1 & 1 & 7 \end{array} \right].$$

Example: Let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$, where

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 1 & 1 & 7 \end{array} \right].$$

What is the domain and codomain of T?

Example: Let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$, where

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 1 & 1 & 7 \end{array} \right].$$

What is the domain and codomain of T? Let

$$\mathbf{b} = \begin{bmatrix} -4 \\ -5 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} \quad \text{and} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 7 \\ -4 \end{bmatrix}.$$

Example: Let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$, where

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 1 & 1 & 7 \end{array} \right].$$

What is the domain and codomain of T? Let

$$\mathbf{b} = \begin{bmatrix} -4 \\ -5 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} \quad \text{and} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 7 \\ -4 \end{bmatrix}.$$

Compute $T(\mathbf{u})$.

Example: Let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$, where

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 1 & 1 & 7 \end{array} \right].$$

What is the domain and codomain of T? Let

$$\mathbf{b} = \begin{bmatrix} -4 \\ -5 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} \quad \text{and} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 7 \\ -4 \end{bmatrix}.$$

Compute $T(\mathbf{u})$. Are **b** and **c** in the range of T?

Example: Let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$, where

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 1 & 1 & 7 \end{array} \right].$$

What is the domain and codomain of T? Let

$$\mathbf{b} = \begin{bmatrix} -4 \\ -5 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} \quad \text{and} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 7 \\ -4 \end{bmatrix}.$$

Compute $T(\mathbf{u})$. Are **b** and **c** in the range of T? If so, find vectors **x** and **v** with $T(\mathbf{x}) = \mathbf{b}$ and $T(\mathbf{v}) = \mathbf{c}$.

Example: Let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$, where

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 1 & 1 & 7 \end{array} \right].$$

What is the domain and codomain of T? Let

$$\mathbf{b} = \begin{bmatrix} -4 \\ -5 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} \quad \text{and} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 7 \\ -4 \end{bmatrix}.$$

Compute $T(\mathbf{u})$. Are **b** and **c** in the range of T? If so, find vectors **x** and **v** with $T(\mathbf{x}) = \mathbf{b}$ and $T(\mathbf{v}) = \mathbf{c}$.

What is the range of T?

DEFINITION

A transformation T is **linear** if for all \mathbf{u}, \mathbf{v} in the domain of T and all scalars $c \in \mathbb{R}$

DEFINITION

A transformation T is **linear** if for all \mathbf{u}, \mathbf{v} in the domain of T and all scalars $c \in \mathbb{R}$

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

DEFINITION

A transformation T is **linear** if for all \mathbf{u}, \mathbf{v} in the domain of T and all scalars $c \in \mathbb{R}$

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$.

DEFINITION

A transformation T is **linear** if for all \mathbf{u}, \mathbf{v} in the domain of T and all scalars $c \in \mathbb{R}$

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$.

FACT

If T is a linear transformation, then for all vectors \mathbf{u}, \mathbf{v} in the domain of T, and all scalars c, d

DEFINITION

A transformation T is **linear** if for all \mathbf{u}, \mathbf{v} in the domain of T and all scalars $c \in \mathbb{R}$

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$.

FACT

If T is a linear transformation, then for all vectors \mathbf{u}, \mathbf{v} in the domain of T, and all scalars c, d

$$T(\mathbf{0}) = \mathbf{0},$$

DEFINITION

A transformation T is **linear** if for all \mathbf{u}, \mathbf{v} in the domain of T and all scalars $c \in \mathbb{R}$

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$.

FACT

If T is a linear transformation, then for all vectors \mathbf{u}, \mathbf{v} in the domain of T, and all scalars c, d

$$T(0) = 0$$
, and

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v}).$$

Example: Let

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right], \qquad B = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right],$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

$$E = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
, and $F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Example: Let

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

$$E = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
, and $F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Described the linear transformations defined by these matrices.

Example: Let

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right], \qquad B = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right],$$

$$C = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \qquad D = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right],$$

$$E = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}, \quad \text{and} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Described the linear transformations defined by these matrices. $\,$

The matrix I above is called the **identity matrix**.

Recall that for any n, we can define the following vectors in \mathbb{R}^n :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

THEOREM

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n .

THEOREM

Let $T:\mathbb{R}^n\to\mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n .

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$ where \mathbf{e}_j is the jth column of the identity matrix I_n in \mathbb{R}^n :

$$A = [T(\mathbf{e}_1) \dots T(\mathbf{e}_n)].$$

THEOREM

Let $T:\mathbb{R}^n\to\mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n .

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$ where \mathbf{e}_j is the jth column of the identity matrix I_n in \mathbb{R}^n :

$$A = [T(\mathbf{e}_1) \dots T(\mathbf{e}_n)].$$

The matrix given above is called the standard matrix for the linear transformation T.

Example: Find the standard matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which reflects vectors in the line y = -x.

Example: Find the standard matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which reflects vectors in the line y = -x.

Example: Find the standard matrix of the transformation $S : \mathbb{R}^3 \to \mathbb{R}^3$ which reflects every vector through the *xy*-plane, and then projects to the *xz*-plane.

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **onto** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one vector in \mathbb{R}^n .

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **onto** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one vector in \mathbb{R}^n .

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **onto** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one vector in \mathbb{R}^n .

T is not onto.

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **onto** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one vector in \mathbb{R}^n .

T is not onto.

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **onto** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one vector in \mathbb{R}^n .

T is not onto.

S is onto.

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **one-to-one** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one vector in \mathbb{R}^n .

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **one-to-one** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one vector in \mathbb{R}^n .

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **one-to-one** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one vector in \mathbb{R}^n .

T is not one-to-one.

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **one-to-one** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one vector in \mathbb{R}^n .

T is not one-to-one.

DEFINITION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **one-to-one** if every vector $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one vector in \mathbb{R}^n .

T is *not* one-to-one.

S is one-to-one.

Example: Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation with standard matrix

$$A = \left[\begin{array}{cccc} 2 & 1 & 8 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{array} \right].$$

Example: Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation with standard matrix

$$A = \left[\begin{array}{cccc} 2 & 1 & 8 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{array} \right].$$

Is T one-to-one?

Example: Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation with standard matrix

$$A = \left[\begin{array}{cccc} 2 & 1 & 8 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{array} \right].$$

Is T one-to-one? Is T onto?

THEOREM

THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with standard matrix A (i.e. $T(\mathbf{x}) = A\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$). Then the following are equivalent:

1. T is onto,

THEOREM

- 1. T is onto,
- 2. the columns of A span \mathbb{R}^m ,

THEOREM

- 1. T is onto,
- 2. the columns of A span \mathbb{R}^m ,
- 3. A has a pivot in every row.

THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with standard matrix A (i.e. $T(\mathbf{x}) = A\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$). Then the following are equivalent:

- 1. T is onto,
- 2. the columns of A span \mathbb{R}^m ,
- 3. A has a pivot in every row.

PROOF.

This is essentially Theorem 4 in §1.4.

THEOREM

THEOREM

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with standard matrix A (i.e. $T(\mathbf{x}) = A\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$). Then the following are equivalent:

1. T is one-to-one,

THEOREM

- 1. T is one-to-one,
- 2. $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$,

THEOREM

- 1. T is one-to-one,
- 2. $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$,
- 3. the columns of A are linearly independent,

THEOREM

- 1. T is one-to-one,
- 2. $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$,
- 3. the columns of A are linearly independent,
- 4. A has a pivot in every column.

THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, with standard matrix A (i.e. $T(\mathbf{x}) = A\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$). Then the following are equivalent:

- 1. T is one-to-one,
- 2. $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$,
- 3. the columns of A are linearly independent,
- 4. A has a pivot in every column.

PROOF.

We prove $1 \Rightarrow 4 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.