HBO-ICT Embedded Software Development

Complexe Operaties

World of Robots:: World

Complexe systemen / operaties

Bij het aansturen van hardware bestaan operaties vaak uit een gecombineerde aansturing van meerdere deelsystemen.

Het gedrag van het totale systeem wordt dan bepaald door

- de combinatie van deelsystemen; en
- interactie tussen de deelsystemen.

In deze les bekijken we de analyse en het ontwerp van dergelijk samengesteld (complex) gedrag.

Container-laadsysteem

- Een container-laadsysteem moet producten in een container plaatsen.
 - Eerst wordt een container voor het product geplaatst.
 - Daarna wordt het product in de container geduwd.
- Veiligheidseis:
 Het moet te allen tijde mogelijk zijn
 het systeem stil te zetten.

Container-laadsysteem

 Een container-laadsysteem moet producten in een container plaatsen.

- Eerst wordt een container voor het product geplaatst.
- Daarna wordt het product in de container geduwd.

Safety Personnel

Veiligheidseis:
 Het moet te allen tijde mogelijk zijn
 het systeem stil te zetten.

Analyse

Vastleggen Functionele- en QoS-eisen.

- Black-box!
- Tekst of
- Use case diagrams

Container-laadsysteem (in subsystemen)

Wat voor eisen zou je aan dit systeem kunnen stellen?

Container-laadsysteem (in subsystemen)

Wat is het effect van de eisen op de deelsystemen?

Analyse

- Opdeling in subsystemen.
- Nadenken over samenwerking tussen components.
- De use-cases van sub-components bieden meer detailinformatie.
- Eerder gestelde eisen hebben effect op de deelsystemen.
 - Propagatie

Effect van eisen en beperkingen

Functionele eisen, (technische) mogelijkheden, QoS.

Effect (propagatie) in twee richtingen.

- Hoog →Laag niveau
 - Gewenste functionaliteit en required QoS
- Laag → Hoog niveau
 - Technische beperkingen en offered QoS.

Gedrag – beschrijven

Hoe beschrijf je in meer detail wat een systeem kan/moet doen?

- Tekst
 - Duidelijk voor opdrachtgever. Niet eenduidig/precies
- Use cases (fully dressed)
 Meer expliciet beschreven.
 'Mooi weer' gedrag
 Fout en noodsituaties

Gedrag – beschrijven

Hoe beschrijf je in meer detail wat een systeem kan/moet doen?

- Tekst
 - Duidelijk voor opdrachtgever.
 - Niet eenduidig/precies
- Use cases (fully dressed)
 Meer expliciet beschreven.
 'Mooi weer' gedrag

 - Fout en noodsituaties
- State diagrams

 - Modeleren van reactief gedrag. Events leiden tot toestandswijziging.
 - Heel precies. Maar niet altijd even duidelijk voor opdrachtgever.
- Activity diagram
 - Modelleren van operaties (algoritme, RTC)
 - Eindigen van acties leiden tot overgang naar volgende actie.

Gedrag – scenario's

Scenario's bieden inzicht is specifieke situaties

- Sequence diagram
 - Tonen sequenties van verzonden/ontvangen berichten.
 - Slechts ten dele geordend
 - Geen gezamenlijke klok deelsystemen
- Timing diagrams
 - Verandering van waarde/toestand over tijd.
 - QoS tijdsaspecten.
 - Volledig geordend, effect op andere onderdelen zichtbaar.

Container-laadsysteem (ontwerp-requirements)

Scenario's:

F1: Main flow

F2: Stuck platform

F3: Emergency stop

Requirements (non use-case):

TR-1: The system shall provide a power-on self-test (POST). This POST test shall test all hardware components for failures.

(Scenario = ALL)

SR-2: The system shall identify a stuck container platform within 500ms (UC ID=UC2/CP3/CP4, Scenario=F2)

TR: Technical requirement SR: Safety requirement

Scenario: Emergency Stop

Complexe operaties – stappen ontwerpproces

Analyse

- Requirement analyse
 - Systeem-niveau use cases en scenario's
- Systeem engineering
 - Subsysteem use cases en scenario's
- Object-analyse
 - Bijgeschaafde scenario's

Ontwerp

- Architectuurontwerp
 - Uitgebreide use cases
 - QoS en Technische eisen
- Detailontwerp

Lesdoelen

- Het kunnen analyseren en ontwerpen van complexe operaties bij samenwerkende deelsystemen.
- Het kunnen vastleggen van communicatie met UML sequence diagrammen.
- Het kunnen vastleggen van de real-time-aspecten van deze operaties met UML timing diagrammen
- Het kunnen redeneren over propagatie van eisen en constraints bij samenwerkende deelsystemen.