Software Engineering - Wartung und Qualitätssicherung

Not a Java Warrior with his favourite engineering tool!

Prof. Dr. Andy Schürr Fachgebiet Echzeitsysteme FB ETiT (Informatik)

Technische Universität Darmstadt, Magdalenenstraße 4, 64289 Darmstadt

Andy.Schuerr@es.tu-darmstadt.de

Tel.: 06151 / 16-22350 Raum: S1|08|205

WWW-Seite der Vorlesung:

http://www.es.tu-darmstadt.de/lehre/vl-se-ii/

Bildquelle:

Jules Verne: The Great Explorers of the XIXth Century,

New York: Charles Scribner's Sons (1912)

WWW-Seite der Vorlesung:

http://www.es.tu-darmstadt.de/lehre/vl-se-ii/

- \Box ETiT / DT, ...
- ☐ (Wirtschafts-)Informatik
- ☐ Informationssystemtechnik, Mechatronik, ...

Termine der Lehrveranstaltung:

□ Vorlesung:

Montag 10:00 (s.t.) bis 11:30 Uhr in S3|06|051 (ab 14.10.2019) Donnerstag 8:00 (s.t.) bis 8:45 in S3|06|051 (ab 17.10.2019)

- ☐ Übung: Donnerstag 8:45 bis 9:30 in S3|06|053 (ca. ab 07.11.2019)
- ☐ Klausur (laut TUCaN): Montag, 24.02.2018, 15:00 bis 17:00 (ohne Gewähr)

Wissensgebiete der Software-Technik:

Der IEEE Computer Society "Guide to the Software Engineering Body of Knowledge" (SWEBOK V3.0, http://www.swebok.org) zählt folgende Wissensgebiete auf:

1. Software Requirements:

es wird festgelegt, "was" ein Software-System leisten soll (und warum)

2. Software Design:

das "Wie" steht nun im Vordergrund, der Bauplan (Architektur)

3. Software Construction:

gemäß Bauplan wird das Software-System realisiert

4. Software Testing:

Fehler werden systematisch gesucht und eliminiert

5. Software Maintenance:

die Pflege und Weiterentwicklung der Software nach Auslieferung

6. Software Configuration Management:

die Verwaltung von Software-Versionen und -Konfigurationen

7. Software Engineering Management:

(Projekt-)Management von Personen, Organisationen, Zeitplänen, ...

8. Software Engineering Process:

Definition und Verbesserung von Software-Entwicklungsprozessen

9. Software Engineering Tools Models and Methods:

Modelle und Methoden für die Software-Entwicklung

10. Software Quality:

Messen und Verbessern der Software-Qualität

Aufteilung auf Lehrveranstaltungen

- **□** Software-Engineering Einführung
 - ⇒ Software Requirements
 - ⇒ Software Design
 - ⇒ Software Construction
 - ⇒ Software Engineering Models and Methods
- **□** Software-Engineering Wartung und Qualitätssicherung
 - **⇒** Software Testing
 - ⇒ Software Maintenance
 - ⇒ Software Configuration Management
 - ⇒ Software Engineering Management
 - **⇒** Software Engineering Process
 - ⇒ Software Engineering Models and Methods
 - ⇒ Software Quality

Zielsetzungen der Vorlesung:

- © Zuhörer für die Realität der Software-Entwicklung fit machen
- © Techniken und Werkzeuge zum Umgang mit bestehender Software vermitteln
- Überblick über systematische Software-Analyse- und Testverfahren geben

Zielsetzungen der Übung:

- praktische Vertiefung der Lehrinhalte an einem realen Beispiel
- © Konfrontation mit kommerziellen und "Open Source"-Werkzeugen

Inhaltsverzeichnis der Vorlesung - 1

1.	Software-Entwicklung, -Wartung und (Re-)Engineering		14
	1.1 Einleit	ung	
	1.2 Softwa	are-Qualität	
	1.3 Iterativ	ve Softwareentwicklung	
	1.4 Forwa	rd-, Reverse- und Reengineering	
	1.5 Zusam	nmenfassung	
2.	. Konfigurationsmanagement		
	2.1 Einleit	ung	
	2.2 Versio	nsmanagement (plus Industrievortrag)	
	2.3 Varian	tenmanagement	
	2.4 Releas	semanagement	
	2.5 Buildm	nanagement	
	2.6 Änder	ungsmanagement	
	2.7 Zusam	nmenfassung	

Inhaltsverzeichnis der Vorlesung - 2

3.	Statische Programmanalysen und Metriken 1		
	3.1 Einleitung		
	3.2 Softwarearchitekturen und -visualisierung		
	3.3 Strukturierte Gruppenprüfungen (Reviews)		
	3.4 Kontroll- und datenflussorientierte Analysen		
	3.5 Softwaremetriken		
	3.6 Zusammenfassung		
4.	. Dynamische Programmanalysen und Testen		
	4.1 Einleitung		
	4.2 Laufzeit- und Speicherplatzverbrauchsmessungen		
	4.3 Funktionsorientierte Testverfahren (Blackbox)		
	4.4 Kontrollflussbasierte Testverfahren (Whitebox)		
	4.5 Datenflussbasierte Testverfahren		
	4.6. Testen objektorientierter Programme (plus Exkurs zu modellbasiertem Testen)		
	4.7. Testmanagement und Testwerkzeuge (plus Industrievorträge)		
	4.8 Zusammenfassung		

Software-Engineering - Wartung und Qualitätssicherung

Inhaltsverzeichnis der Vorlesung - 3

5.	Management der Software-Entwicklung	
	5.1 "Neuere" Vorgehensmodelle	

- 5.2 Rational Unified Process für UML
- 5.3 Leichtgewichtige Prozessmodelle (plus Industrievortrag in SE-Einführung)
- 5.4 Verbesserung der Prozessqualität
- 5.5 Projektpläne und Projektorganisation
- 5.6 Weitere Literatur

Übungen zur Vorlesung:

- ☐ es gibt meist klausurähnliche Hausaufgaben (mit Korrekturservice)
- ☐ Lösungen können/sollten gruppenweise abgegeben werden
- ☐ in Präsenzübungen werden Musterlösungen für Übungsaufgaben vorgestellt
- ☐ Einsatz verschiedener CASE-Tools für ("Open Source"-)Softwareentwicklung
- ☐ kein Bonussystem (für Klausurnote)
- ☐ zusätzliche Sprechstunde bei Bedarf

Betreuer:

Sebastian Ruland (sebastian.ruland@es.tu-darmstadt.de)

Zertifizierung zum Software-Tester:

- □ ASQF = Arbeitskreis Software-Qualität Franken bietet in Zusammenarbeit mit dem iSQI = international Software Quality Institute "standardisierte" Ausbildung (Foundation/Advanced/Diploma Level) zum Certified Tester an (mit Unterstützung durch Gesellschaft für Informatik)
- ☐ in Deutschland waren 2003 fünf Kursanbieter akkreditiert und es gab etwa 550 zertifizierte Tester (auf Foundation Level); inzwischen gibt es mindestens 18 sogenannte "Premiumanbieter" solcher Kurse
- wir werden auch dieses Jahr wieder Studierenden der TU Darmstadt die Möglichkeit bieten, am Ende der Vorlesungszeit gegen ermäßigte Prüfungsgebühr hier die Prüfung zum "Certified Tester" abzulegen
- ☐ Achtung: Vorbereitung in Übung durch Schulungsleiter aus der Industrie!
- ☐ empfohlene Lehrmaterialien und weitere Links sind (am
 - ⇒ Lehrbuch hierzu [SL19] und http://www.dpunkt.de/certified-tester (am Fachgebiet ausleihbar und im Kittler-Student-Center einsehbar)
 - ⇒ weitere Informationen unter http://www.certified-tester.de/

Software-Engineering - Wartung und Qualitätssicherung

Wichtige Literaturquellen:

- [Ba00] H. Balzert: Lehrbuch der Software-Technik (Band 1): Software-Entwicklung, Spektrum Akademischer Verlag (2000), 2-te Auflage, 1136 Seiten
 Sehr umfangreiches und gut lesbares Nachschlagewerk mit CD. Auf der CD findet man Werkzeuge, Videos, Übungsaufgaben mit Lösungen (aber nicht unsere), ...
- [Ba98] H. Balzert: Lehrbuch der Software-Technik (Band 2): Software-Management, Software-Qualitätssicherung, Unternehmensmodellierung, Spektrum Akademischer Verlag (1998), 769 Seiten Hier findet man fast alles über das Gebiet Software-Technik, was nicht bereits in [Ba00] abgehandelt wurde. Wieder ist eine CD mit den entsprechenden Werkzeugen, ... beigelegt.
- [Be00] R.V. Beizer: Testing Object-Oriented Systems Models, Patterns, Tools, Addison-Wesley (2000), 1191
 Seiten
 Umfassende Quelle zum angesprochenen Thema. Gut geschrieben und umbedingt empfehlenswert, falls man die Thematik "Testen" vertiefen will.
- [CFP06] B. Collins-Sussman, B.W. Fitzpatrick, C.M. Pilato: *Versionskontrolle mit Subversion*, O'Reilly (2006) Subversion (SVN) ist der moderne Nachfolger von CVS.
- [Ka98] K. Fogel, M. Bar: Open Source-Projekte mit CVS, mitp-Verlag (2002), 2-te überarbeitete Auflage,
 428 Seiten
 Dieses Buch liefert gut lesbar das notwendige Know-how für die Verwendung und Administration von CVS sowie eine Einführung in die Prinzipien des Managements von "Open Source"-Projekten

Software-Engineering - Wartung und Qualitätssicherung

- [He03] H. Herold: make das Profitool zur automatischen Generierung von Programmen, Addison Wesley (2003), 230 Seiten
 Akzeptable Einführung in make, das "Open Source"-Werkzeug zur Automatisierung von Übersetzungsund Programmgenerierungsprozessen.
- [Li02] P. Liggesmeyer: *Software-Qualität: Testen, Analysieren und Verifizieren von Software*, Spektrum Akademischer Verlag (2002), 523 Seiten
 Ein Standardwerk zum Thema Software-Qualitätssicherung. Kapitel 3 und 4 der Vorlesung stützen sich vor allem darauf ab (es gibt eine neue Auflage von 2009).
- [PBL05] K. Pohl, G. Böckle, F. van der Linden: Software Product Line Engineering Foundations, Principles, and Techniques, Springer Verlag 2005, 467 Seiten
 Ein (Lehr-)Buch zum "Software-Produkt-Familien" (Management von Software-Varianten).
- [So07] I. Sommerville: *Software Engineering*, Addison-Wesley Pearson Studium, 8. Auflage (2007), 875 Seiten Ins Deutsch übersetztes Lehrbuch, das sehr umfassend alle wichtigen Themen der Software-Technik knapp behandelt. Empfehlenswert (es gibt eine neue restrukturierte 10. Auflage von 2018)!
- [SL19] A. Spillner, T. Linz: *Basiswissen Softwaretest*, dpunkt.verlag (2019; 6. Auflage), 351 Seiten Passend zum Lehrplan "Grundlagen des Testens" für den ASQF Certified Tester, Foundation Level.
- [Wh00] B.A. White: Software Configuration Management Strategies and Rational ClearCase, Addison Wesley (2000), 305 Seiten
 Clearcase war lange Zeit "das" kommerzielle Pendant zu CVS; es besitzt wesentlich mehr Features, die Administration erfordert allerdings auch mehr Aufwand.