Mechanical interpretation of the KKT conditions

Note the different notation used in these slides compared to the Lecture notes:

	Lecture notes	These slides
Optimization variables	Х	W
Objective function	f(x)	$\Phi(w)$
Inequality constraint function	g(x)	h(w)
Equality constraint function	h(x)	g(w)

 $\min_{\mathbf{w}} \; \Phi(\mathbf{x})$

s.t. $\mathbf{h}(\mathbf{w}) \leq \mathbf{0}$

Mechanical analogy

 $\min_{\mathbf{w}} \; \Phi(\mathbf{x})$

s.t. $\mathbf{h}(\mathbf{w}) \leq \mathbf{0}$

Mechanical analogy

 $\min_{\mathbf{w}} \Phi(\mathbf{x})$

s.t. $\mathbf{h}(\mathbf{w}) \leq \mathbf{0}$

Mechanical analogy

 $\min_{\mathbf{w}} \; \Phi(\mathbf{x})$

s.t. $\mathbf{h}(\mathbf{w}) \leq \mathbf{0}$

Mechanical analogy

 $\min_{\mathbf{w}} \Phi(\mathbf{x})$

s.t. $h(w) \leq 0$

Mechanical analogy

Ball rolling down a valley blocked by a fence

ullet $-\nabla\Phi$ is the gravity

 $\min_{\mathbf{w}} \Phi(\mathbf{x})$

s.t. $h(w) \leq 0$

Mechanical analogy

- ullet $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- ullet $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- ullet $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- \bullet $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- ullet $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- $-\nabla\Phi$ is the gravity
- $\bullet \quad -\mu \nabla \mathbf{h} \text{ is the force of the fence. Sign} \\ \mu \geq 0 \text{ means the fence can only} \\ \text{"push" the ball.}$
- Weakly active constraint:

$$h(\mathbf{w}) = 0, \quad \mu = 0$$

the ball touches the fence but no force is needed.

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- \bullet $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.
- Weakly active constraint:

$$h(\mathbf{w}) = 0, \quad \mu = 0$$

the ball touches the fence but no force is needed

Inactive constraint:

$$h(\mathbf{w}) < 0, \quad \mu = 0$$

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{x})$$

s.t.
$$h(w) \leq 0$$

Mechanical analogy

Ball rolling down a valley blocked by a fence

- \bullet $-\nabla\Phi$ is the gravity
- $-\mu\nabla\mathbf{h}$ is the force of the fence. Sign $\mu\geq 0$ means the fence can only "push" the ball.
- Weakly active constraint:

$$h(\mathbf{w}) = 0, \quad \mu = 0$$

the ball touches the fence but no force is needed

Inactive constraint:

$$h(\mathbf{w}) < 0, \quad \mu = 0$$

$$\nabla \mathcal{L} = \nabla \Phi (\mathbf{w}) + \mu \nabla h (\mathbf{w}) = 0$$