

AD-A101 581 HARRY DIAMOND LABS ADELPHI MD F/G 9/1
BIPOLAR TRANSISTOR AND DIODE FAILURE TO ELECTRICAL TRANSIENTS----ETC(U)
JUN 81 M J VRABEL

UNCLASSIFIED HDL-TM-81-13 NL

1 uF
AD A
CH 81

END
DATE
FILED
8-81
DTIC

AD A101581

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER HDL-TM-81-13	2. GOVT ACCESSION NO. AD-A101581	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Bipolar Transistor and Diode Failure to Electrical Transients--Predictive Failure Modeling versus Experimental Damage Testing, 2 ^o AFWL Transistor and Diode Failure Model.	5. TYPE OF REPORT & PERIOD COVERED Technical Memorandum	
6. PERFORMING ORG. REPORT NUMBER	7. AUTHOR(S) Michael J. Vrabel	
8. CONTRACT OR GRANT NUMBER(s)	9. PERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783	
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Ele: 6.21.20.A	11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Materiel Research and Development Command Alexandria, VA 22333	
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. REPORT DATE June 1981	
14. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15. NUMBER OF PAGES 36	
16. SECURITY CLASS. (of this report) UNCLASSIFIED	17. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
19. SUPPLEMENTARY NOTES DRCMS Code: 612120.H.250011 DA Project: 1L162120AH25 HDL Project: X750E2		
20. KEY WORDS (Continue on reverse side if necessary and identify by block number) Semiconductor damage Component failure Junction capacitance damage model Failure modeling		
21. ABSTRACT (Continue on reverse side if necessary and identify by block number) An investigation of the predictive capability of a new Air Force Weapons Laboratory model for transistor and diode failure under reverse bias was initiated. A comparison with the junction capacitance damage model shows a doubled improvement at high confidence levels based on an Army-generated population of experimental damage data.		

CONTENTS

	<u>Page</u>
1. INTRODUCTION	5
2. EXAMINATION	5
3. RESULTS	9
4. CONCLUSION AND DISCUSSION	11
DISTRIBUTION	31
APPENDIX A.--AIR FORCE WEAPONS LABORATORY MODEL CODE, INPUT DATA, AND RESULTS OF PREDICTING BIPOLEAR TRANSISTOR AND DIODE FAILURE FOR REVERSE JUNCTION BIAS	13

FIGURES

1 Percentage confidence level versus scatter in data for AFWL model	10
2 Percentage confidence level versus scatter in data for junction capacitance damage model, limits of AFWL damage model, and experimental data	11
3 Histogram of ratio of experimental power to damage	12

Accession For	
NTIS GRAFILE	<input checked="" type="checkbox"/>
DTIC FILE	<input type="checkbox"/>
UNCLASSIFIED	<input type="checkbox"/>
JULY 1977	<input type="checkbox"/>
BY	<input type="checkbox"/>
DATA	<input type="checkbox"/>
7	<input type="checkbox"/>
DATA	<input type="checkbox"/>
A	

1. INTRODUCTION

A recent Air Force Weapons Laboratory (AFWL) document, Electronic Component Modeling and Testing Program, AFWL-TR-78-62 Pt.1 (March 1980), contains a new model for predicting bipolar transistor and diode failure for reverse junction bias. This paper examines the capability of this model using as a baseline a library of experimental damage data for devices from the front ends of an array of Army tactical multichannel radios.

2. EXAMINATION

The new model is implemented as follows:

- (1) Calculate doping concentration from room temperature breakdown voltage:

$$N_D = 4.49 \times 10^{18} V_{BD}^{-1.5}$$

where

N_D = doping concentration on lightly doped side of junction
(inverse cubic centimeters),

V_{BD} = room temperature breakdown voltage (volts).

- (2) Calculate breakdown voltage at critical failure temperature:

$$V_{BDC} = 4.07 \times 10^{12} N_D^{-0.67}$$

where

V_{BDC} = breakdown voltage at critical failure temperature
(volts).

- (3) Calculate space charge resistivity:

$$\rho_{SC} = 2.48 \times 10^{25} N_D^{-1.8}$$

where

ρ_{SC} = space charge resistivity (ohm-square centimeters).

(4) Calculate bulk resistivity:

$$\rho_{BLK} = 3.61 \times 10^{10} N_D^{-0.81},$$

where

ρ_{BLK} = bulk resistivity (ohm-square centimeters).

(5) Calculate failure current density at 100 ns:

Emitter-to-base junction:

$$J_F = 3.84 \times 10^{-11} N_D^{0.88},$$

where

J_F = failure current density at 100 ns (amperes/square centimeter).

Collector-to-base or diode junction:

$$J_F = 8.25 \times 10^{-11} N_D^{0.88}.$$

(6) Calculate junction area:

Emitter-to-base junction:

Priority 1

$$\text{Area} = 1.47 \left(2.3 \times 10^{-6} C_{O_{EB}} V_{BD}^{0.67} \right)^{1.05},$$

where

$C_{O_{EB}} = C_{RE RF}^{0.5}$ = corrected emitter-to-base capacitance (picofarads),

C_{RE} = emitter-to-base capacitance at rated voltage
(picofarads),

V_{RF} = rated voltage (volts),

V_{BD} = rated emitter-to-base breakdown voltage (volts).

Priority 2

$$\text{Area} = 6.34 \times 10^{-4} I_{MAX}^{0.82},$$

where

I_{MAX} = maximum rated transistor collector current (amperes).

Priority 3

$$\text{Area} = 8.75 \times 10^{-3} \left(2 \times 10^{-6} C_{OCB} V_{BD_{CB}}^{0.83} \right)^{0.58},$$

where

$C_{OCB} = C_{RC} V_{RC}^{0.333}$ = corrected collector-to-base capacitance
(picofarads),

C_{RC} = collector-to-base capacitance at rated voltage
(picofarads),

V_{RC} = rated voltage for collector-to-base capacitance (volts),

$V_{BD_{CB}}$ = collector-to-base breakdown voltage (volts).

Priority 4

$$\text{Area} = 1.19 \times 10^{-2} \theta_{JC}^{-0.94},$$

where

θ_{JC} = junction-to-case thermal resistance (degrees Celsius/watt).

Priority 5

$$\text{Area} = 2.79 \theta_{JA}^{-1.70},$$

where

θ_{JA} = junction-to-ambient thermal resistance (degrees Celsius/watt).

Collector-to-base junction:

Priority 1

$$\text{Area} = 0.0470 \frac{1}{\theta_{JC}}^{0.89} .$$

Priority 2

$$\text{Area} = 2.72 \times 10^{-3} I_{MAX}^{0.62} .$$

Priority 3

$$\text{Area} = 3.630 \frac{1}{\theta_{JA}}^{1.47} .$$

Priority 4

$$\text{Area} = 1.13 \times 10^{-2} \left(2 \times 10^{-6} C_{O_{CB}} V_{BD}^{0.83} \right)^{0.39} .$$

Diode junction:

Priority 1

$$\text{Area} = 8.1 \times 10^{-3} I_{MAX}^{1.16} .$$

where

I_{MAX} = maximum rated diode currents (amperes) for Zener diodes
 $= I_{ZM} V_Z$,

I_{ZM} = maximum rated Zener current (amperes),

V_Z = rated Zener voltage (volts).

Priority 2

$$\text{Area} = 0.458 \left(2 \times 10^{-6} C_{O_D} V_{BD}^{0.83} \right)^{0.83} ,$$

where

$$C_{O_D} = C_{RD} V_{RD}^{0.333} ,$$

C_{RD} = diode junction capacitance at rated voltage (picofarads),

V_{RD} = rated voltage (volts).

Priority 3

$$\text{Area} = 0.4890 \frac{-1.21}{\text{JL}} ,$$

where

θ_{JL} = junction-to-lead thermal resistance (degrees Celsius/watt).

Priority 4

$$\text{Area} = 1.9630 \frac{-1.32}{\text{JA}} .$$

(7) Calculate bulk resistance, space charge resistance, and failure current at 100 ns:

$$R_{\text{BLK}} = \rho_{\text{BLK}} / \text{area} ,$$

$$R_{\text{SC}} = \rho_{\text{SC}} / \text{area} ,$$

$$I_F \text{ 100 ns} = J_F X \text{ area} .$$

(8) Calculate power to damage for pulse duration t :

$$P_D = \left[V_{\text{BDC}} \frac{I_F \text{ 100 ns}}{3.162} + \frac{I_F^2 \text{ 100 ns}}{10} (R_{\text{SC}} + R_{\text{BLK}}) \right] / 1000 t^{0.5} .$$

3. RESULTS

Appendix A lists a program used to implement the AFWL model, along with the input and resultant data. The model predictions are presented in figure 1 as

$$P_X / P , \text{ for } P_X \geq P ,$$

$$P / P_X , \text{ for } P > P_X ,$$

where

P_X = experimental power to damage,

P = corresponding predicted value,

as a function of the percentage confidence level. The percentage confidence level is defined as the percentage of data points with a ratio less than or equal to the given value. The envelope defined by the five priority models is plotted in figure 2 along with the predictions of the junction capacitance damage model for comparison and a plot of the scatter in the experimental data. The scatter in the experimental data is the ratio of the power to damage for the individual devices and the experimentally defined damage curve presented in the mode previously indicated for the AFWL model predictions. The experimental data base used for this projection includes but is larger than that indicated in appendix A. The total base of 822 devices comprised a test population of 82 P-N junction types. This population includes both germanium devices and specialty devices for which AFWL model data are unavailable.

Figure 1. Percentage confidence level versus scatter in data for AFWL model: 0 = priority 1, □ = priority 2, ▽ = priority 3, | = priority 4, and - = priority 5.

Figure 2. Percentage confidence level versus scatter in data for junction capacitance damage model (solid circles), limits of AFWL damage model (dashed curve), and experimental data (solid curve).

4. CONCLUSION AND DISCUSSION

At high confidence levels, the AFWL model represents approximately a doubled improvement over the junction capacitance damage model based on the device population employed in this study. One note of caution: The AFWL model, like all previous damage models, is for junction reverse bias only. To project from reverse bias failure to failure under forward bias is fraught with great difficulties. Figure 3 is a histogram of the experimental ratio of power to failure for forward and for reverse bias. (All measurements were made at 0.1-, 1-, and 10- μ s pulse durations.) Previous studies have shown that, despite the generally higher power to failure for forward bias, damage is as likely

to occur under forward as under reverse conditions for circuits driven to the failure level.^{1,2} The uncertainty indicated in figure 3 must be included in the uncertainty of the damage model predictions in projecting damage characteristics to forward bias.

Figure 3. Histogram of ratio of experimental power to damage for forward and reverse junction bias for pulse durations in 0.1- to 10- μ s range for 78 percent of P-N junction types included in appendix A.

¹Michael J. Vrabel, *EMP Assessment for Army Tactical Communications Systems: Transmission Systems Series No. 3 Radio Terminal Sets AN/TRC-112 and AN/TRC-121 (U)*, Harry Diamond Laboratories HDL-TR-1807 (May 1977). (*SECRET-RESTRICTED DATA*)

²George Gornak et al, *EMP Assessment for Army Tactical Communications Systems: Transmission Systems Series No. 1 Radio Terminal Set AN/TRC-145 (U)*, Harry Diamond Laboratories HDL-TR-1746 (February 1976). (*SECRET-RESTRICTED DATA*)

APPENDIX A.--AIR FORCE WEAPONS LABORATORY MODEL CODE, INPUT DATA, AND
RESULTS OF PREDICTING BIPOLAR TRANSISTOR AND DIODE FAILURE
FOR REVERSE JUNCTION BIAS

APPENDIX A

```

C DAT(1,N)=-1= DIODE JUNCTION, 0= C-B JUNCTION, 1= E-B JUNCTION
C DAT(2,N)=BREAKDOWN VOLTAGE (V)
C DAT(3,N)= DIODE CAPACITANCE (PF), DEFAULT VALUE=0
C DAT(4,N)=C-B CAPACITANCE, DEFAULT VALUE=0
C DAT(5,N)= E-B CAPACITANCE (PF), DEFAULT VALUE=0
C DAT(6,N)=MAXIMUM RATED COLLECTOR OR DIODE CURRENT(A)
C DAT(7,N)=JUNCTION-TO -CASE THERMAL RESISTANCE(THETA JC) (C/W)
C DAT(8,N)=JUNCTION-TO-AMBIENT THERMAL RESISTANCE(THETA JA) (C/W)
C DAT(9,N)=BREAKDOWN VOLTAGE FOR C-B FOR EMITTER DATA
C DAT(10,N)=EXPERIMENTAL POWER TO DAMAGE AT 0.1US
C DAT(11,N)=EXPERIMENTAL POWER TO DAMAGE AT 1 US
C DAT(12,N)=EXPERIMENTAL POWER TO DAMAGE AT 10 US
    DIMENSION DAT(12,68), DOPE(68), BV(68), RHOSC(68), RHUBLK(68)
    DIMENSION FAILI(68), AREA(5,68), RBLK(5,68), RSC(5,68), CUR(5,68)
    DIMENSION D(5,68), RATIO(5,3,68), BIG(5), MZ(5), NZ(5), SET(5)
    DIMENSION B(5,150), C(5,150), MV(5), RSULT(5,300)
    DIMENSION DEVICE(272), RAT(5,3,68)
    DIMENSION AVG(3,68), BB(200), CC(200), RSLT(400)
    NAMELIST/LISTA/DAT,DEVICE
    READ(5,LISTA)
    WRITE(6,1)
1   FORMAT(20X,10HBREAKDOWN ,10H DIODE ,10H C-B ,
        &10H E-B ,10HCOLL. CURR,10H THETA JC ,10H THETA JA ,
        &10H BV C-B ,10HDAMAGE ,10HDAMAGE ,10HDAMAGE )
    WRITE(6,2)
2   FORMAT(20X,10H VOLTAGE ,10H CAP. ,10H CAP. ,
        &10H CAP. ,10H MAX. ,30X,10H (0.1US) .
        &10H (1.0US) ,10H (10.US) )
    WRITE(6,3)
3   FORMAT(20X,10H (VOLTS) ,10H (PF) ,10H (PF) ,
        &10H (AMP) ,10H (C/WATT) ,10H (C/WATT) ,
        &10H (WATTS) ,10H (WATTS) ,10H (WATTS) ,10H (WATTS) )
    WRITE(6,4)
4   FORMAT(2X)
    DO 201 N=1,65
    M=4*(N-1)+1
    MM=M+1
    MMM=MM+1
    MMMM=MM+1
    WRITE(6,200)DEVICE(M),DEVICE(MM),DEVICE(MMM),DEVICE(MMM)
    &DAT(M,N),M=2,121
200  FORMAT(2X,4A4,8F10.3,3F10.2)
201  CONTINUE
    DO 100 N=1,68
    IF(DAT(2,N).EQ.0.) GO TO 100
    DOPE(N)=(4.49E+18)*DAT(2,N)**(-1.5)
100   CONTINUE
    DO 101 N=1,68
    IF(DOPE(N).EQ.0.) GO TO 101
    BV(N)=(4.07E+12)*(DOPE(N))**(-0.67)
101   CONTINUE
    DO 102 N=1,68
    IF(DOPE(N).EQ.0.) GO TO 102
    RHOSC(N)=(2.48E+25)*(DOPE(N))**(-1.8)
102   CONTINUE
    DO 103 N=1,68
    IF(DOPE(N).EQ.0.) GO TO 103

```

APPENDIX A

```

RHOBLK(N)={3.61E+10)*(DOPE(N))**(-0.81)
103 CONTINUE
DO 104 N=1,68
IF(DAT(1,N))105,105,106
105 FAILI(N)={8.26E-11)*(DOPE(N))**(0.88)
GO TO 104
106 FAILI(N)={3.84E-11)*(DOPE(N))**(0.88)
104 CONTINUE
DO 107 N=1,68
IF(DAT(1,N))110,109,108
108 AREA(1,N)=1.47*((2.3E-06)*DAT(5,N)*DAT(2,N)**0.67)**1.05
AREA(2,N)={6.34E-04)*(DAT(6,N))**0.82
AREA(3,N)={8.75E-03)*(2.E-06*DAT(4,N)*(DAT(9,N))**0.83)**0.58
IF(DAT(7,N).EQ.0.) GO TO 150
AREA(4,N)={1.19E-2)*(DAT(7,N))**(-0.94)
150 IF(DAT(8,N).EQ.0.) GO TO 107
AREA(5,N)=2.79*DAT(8,N)**(-1.7)
GO TO 107
109 IF(DAT(7,N).EQ.0.) GO TO 151
AREA(1,N)=0.047*(DAT(7,N))**(-0.89)
151 AREA(2,N)={2.72E-03)*(DAT(6,N))**(-0.62)
IF(DAT(8,N).EQ.0.) GO TO 152
AREA(3,N)=3.63*(DAT(8,N))**(-1.47)
152 AREA(4,N)={1.13E-02)*(2.E-06*DAT(4,N)*DAT(2,N)**0.83)**0.39
GO TO 107
110 AREA(1,N)={8.1E-03)*DAT(6,N)**1.16
AREA(2,N)=0.458*(2.E-06*DAT(3,N)*DAT(2,N)**0.83)**0.83
IF(DAT(7,N).EQ.0.) GO TO 153
AREA(3,N)=0.489*DAT(7,N)**(-1.21)
153 IF(DAT(8,N).EQ.0.) GO TO 107
AREA(4,N)=1.963*DAT(8,N)**(-1.32)
107 CONTINUE
DO 111 N=1,68
DO 112 M=1,5
IF(AREA(M,N).EQ.0.) GO TO 112
RBLK(M,N)=RHOBLK(N)/AREA(M,N)
RSC(M,N)=RHOSC(N)/AREA(M,N)
CUR(M,N)=FAILI(N)*AREA(M,N)
112 CONTINUE
111 CONTINUE
DO 116 N=1,68
DO 113 M=1,5
D(M,N)={(BVIN)*(CUR(M,N)/3.162)+(CUR(M,N)**2)/10.)*
E(RSC(M,N)+RBLK(M,N)))/1000.
113 CONTINUE
116 CONTINUE
DO 117 N=1,68
DO 118 M=1,3
DO 114 K=1,5
MM=9+M
AM=M-1
IF(D(K,N).EQ.0.) GO TO 114
RATIO(K,M,N)=DAT(MM,N)/(D(K,N)*3162.*{(10.)*(-0.5*AM)})
RATE(K,M,N)=RATIO(K,M,N)
IF(RATIO(K,M,N).EQ.0.) GO TO 114
IF(RATIO(K,M,N).GE.1.) GO TO 114
RATIO(K,M,N)=1./RATIO(K,M,N)
114 CONTINUE
118 CONTINUE
117 CONTINUE

```

APPENDIX A

```

15  WRITE(6,15)
FORMAT(2X//++)
WRITE(6,5)
5   FORMAT(2X,12H RATIO OF EXPERIMENTAL POWER TO DAMAGE TO PREDICTED V
      VALUE FOR 0.1, 1.0, AND 10 USEC PULSE DURATIONS FOR FIVE PRIORITY M
      CODELS//)
WRITE(6,6)
6   FORMAT(26X,12H    PRTY 1    ,12H    PRTY 2    ,12H    PRTY 3    ,
          12H    PRTY 4    ,12H    PRTY 5    /)
DO 312 L=1,3
DO 311 N=1,65
M=4*(N-1)+1
MM=M+1
MMM=MM+1
MMMM=MM+1
WRITE(6,310)DEVICE(M),DEVICE(MM),DEVICE(MMM),DEVICE(MMM),
& (RAT(K,L,N),K=1,5)
310 FORMAT(10X,4A4,5F12.4)
311 CONTINUE
WRITE(6,313)
313 FORMAT(2X//)
312 CONTINUE
DO 800 N=1,68
DO 801 M=1,3
AJ=0.
DO 802 K=1,5
AVG(M,N)=RATIO(K,M,N)+AVG(M,N)
IF(RATIO(K,M,N).EQ.0.) GO TO 802
AJ=1.+AJ
802 CONTINUE
IF(AVG(M,N).EQ.0.) GO TO 801
AVG(M,N)=AVG(M,N)/AJ
801 CONTINUE
800 CONTINUE
DO 803 LL=1,200
DO 804 N=1,68
DO 805 M=1,3
IF(AVG(M,N).EQ.0.) GO TO 805
IF(AVG(M,N).LE.BIGG) GO TO 805
BIGG=AVG(M,N)
MAVG=M
NAVG=N
805 CONTINUE
804 CONTINUE
NZAA=1+NZAA
IF(SETT.EQ.1.) GO TO 806
IF(BIGG.NE.0.) GO TO 806
SETT=1.
MVV=NZAA-1
MAV=MVV
806 CONTINUE
BB(NZAA)=BIGG
BIGG=0.
AVG(MAVG,NAVG)=0.
803 CONTINUE
DO 808 N=1,200
BN=N-1
AMV=MVV
CC(N)=100.-BN*(100./AMV)
808 CONTINUE

```

APPENDIX A

```

MM=0
DO 880 N=1,MVV
AVERAG=BB(N)+AVERAG
880 CONTINUE
AVERAG=AVERAG/AMV
DO 809 N=1,MVV
MM=1+MM
RSLT(MM)=BB(N)
MM=1+MM
RSLT(MM)=CC(N)
809 CONTINUE
DO 130 LL=1,150
DO 123 N=1,68
DO 124 M=1,3
DO 120 K=1,5
IF(RATIO(K,M,N).EQ.0.) GO TO 120
IF(RATIO(K,M,N).LE.BIG(K)) GO TO 120
BIG(K)=RATIO(K,M,N)
MZ(K)=M
NZ(K)=N
120 CONTINUE
124 CONTINUE
123 CONTINUE
NZA=1+NZA
DO 131 KK=1,5
IF(SET(KK).EQ.1.) GO TO 131
IF(BIG(KK).NE.0.) GO TO 131
SET(KK)=1.
MV(KK)=NZA-1
131 CONTINUE
DO 132 KK=1,5
B(KK,NZA)=BIG(KK)
BIG(KK)=0.
132 CONTINUE
DO 133 KK=1,5
MZZ=MZ(KK)
NZZ=NZ(KK)
RATIO(KK,MZZ,NZZ)=0.
133 CONTINUE
130 CONTINUE
DO 140 N=1,150
DO 135 K=1,5
BN=N-1
AMV=MV(K)
C(K,N)=100.-BN*(100./(AMV+.0000001))
135 CONTINUE
140 CONTINUE
DO 142 K=1,5
MVV=MV(K)
MM=0
DO 141 N=1,MVV
MM=1+MM
RSULT(K,MM)=B(K,N)
MM=1+MM
RSULT(K,MM)=C(K,N)
141 CONTINUE
142 CONTINUE
WRITE(6,11)
11 FORMAT(2X///)
WRITE(6,10)

```

APPENDIX A

```

10  FORMAT(12X,128HRATIO EXPERIMENTAL AND PREDICTED POWER TO DAMAGE VS
    PERCENTAGE CONFIDENCE LEVEL FOR ALL PULSE DURATIONS FOR FIVE PRIORITY
    CITY MODELS//)
DO 145 K=1,5
MJV=(MV(K)+1)*2
WRITE(6,146)(RESULT(K,M),M=1,MJV)
146 FORMAT(5X,2F9.2,3X,2F9.2,3X,2F9.2,3X,2F9.2,2X,2F9.2)
WRITE(6,12)
12  FORMAT(12X//)
145 CONTINUE
WRITE(6,810)
810 FORMAT(12X///)
WRITE(6,811)
811 FORMAT(12X,124HRATIO OF EXPERIMENTAL AND PREDICTED POWER TO DAMAGE
    VS PERCENTAGE CONFIDENCE LEVEL FOR AVERAGE VALUE OF FIVE PRIORITY
    EMODELS//)
MJV=(MAV+1)*2
WRITE(6,146)(RSLT(M),M=1,MJV)
WRITE(6,810)
WRITE(6,881) AVERAG
881 FORMAT(15X,31HARITHMETIC MEAN OF ABOVE DATA =,F9.2)
STOP
END
/*
//GD.SYSIN DD *
ELISTA DAT=0,120,0,11,0,.05,0,357,120,140,52,20,
1,33,0,0,9,.05,0,357,120,30,16,9,
0,250,0,16,0,.025,0,0,250,300,80,20,
1,27,0,0,9,.025,0,0,250,100,44,20,
0,54,0,17,0,0,0,1000,54,160,70,30,
1,7,0,0,22,0,0,1000,54,625,112,70,
0,200,0,4,3,0,.05,0,500,200,50,46,42,
1,10,2,0,0,5,3,.05,0,500,200,160,48,15,
0,107,0,142,0,1,5,0,345,107,115,72,44,
1,7,8,0,0,53,1,5,0,345,107,590,255,110,
0,45,0,8,0,.03,0,500,45,180,74,30,
1,5,0,0,0,.03,0,500,45,230,60,16,
0,108,0,57,0,0,0,476,108,10,10,10,
1,7,4,0,0,8,0,0,476,108,53,30,18,
0,93,0,18,0,.6,0,434,93,135,33,20,
1,8,5,0,0,23,.6,0,434,93,110,78,53,
0,107,0,15,0,.8,0,303,107,220,85,32,
1,7,3,0,0,31,.8,0,303,107,400,135,40,
-1,0,0,0,0,1,0,0,0,2800,2300,2100,
-1,0,0,0,0,0,0,0,4100,2700,1600,
-1,.64,0,0,0,0,0,0,0,6400,2700,1400,
-1,2,5,0,0,0,0,0,0,3,4,2,1,1,
-1,115,5,7,0,0,.075,0,0,0,420,80,15,
-1,5,7,40,0,0,0,0,0,0,2300,340,83,
-1,154,0,0,0,0,0,0,0,3300,1350,510,
-1,18,2320,0,0,0,0,0,0,170000,53720,17000,
-1,0,0,0,0,2,0,0,0,3000,3000,3000,
-1,4,7,0,0,0,0,0,0,262446,83000,26244,
-1,6,8,0,0,0,0,0,0,130000,41079,13000,
-1,0,0,0,0,3,0,0,0,80000,25280,8000,
-1,0,0,0,0,1,0,132,0,6700,2117,670,
0,40,0,1,0,.04,0,909,40,120,16,12,4,
1,5,4,0,0,0,.04,0,909,40,8,2,2,6,-84,
0,87,0,0,0,1,5,15,0,87,1800,1000,500,
1,6,0,0,0,1,5,15,0,87,1300,440,230,

```

APPENDIX A

```

0.120,0,0,0,6,2.4,0,120,7000,2300,700,
1,14,0,0,0,6,2.4,0,120,13000,3800,1300,
0,315,0,0,0,5,5,0,315,1200,370,120,
1,9,1,0,0,0,5,5,0,315,10000,2150,490,
0,36,0,6,0,..2,0,500,36,170,50,14,
1,6,4,0,0,0,..2,0,500,36,30,19,12,
0,30,0,..8,0,..03,0,909,30,47,17,6,
1,3,0,0,0,..03,0,909,30,22,10,4,3,
0,40,0,5,0,..2,0,500,40,100,21,4,3,
1,5,0,0,0,..2,0,500,40,52,31,5,20,
0,53,0,..58,0,..05,0,200,53,64,20,5,8,
1,7,1,0,0,..6,..05,0,200,53,22,10,4,
0,123,0,25,0,..5,0,222,123,3200,2100,1400,
1,8,8,0,0,0,..5,0,222,123,750,340,160,
0,205,0,0,0,3,7,0,205,1700,1100,700,
1,18,0,0,0,3,7,0,205,290000,30000,3100,
0,575,0,0,0,1,36,0,575,78,27,10,
1,9,4,0,0,0,1,36,0,575,2200,620,180,
0,25,0,6,0,0,0,500,25,93,17,2,8,
1,5,0,0,0,0,0,500,25,50,18,6,8,
-1,536,0,0,0,12,0,0,0,170000,53720,17000,
-1,5,1,265,0,0,0,0,0,0,25500,2500,240,
-1,270,6,0,0,..2,0,0,0,2000,435,100,
-1,36,730,0,0,0,0,0,0,100000,31600,10000,
-1,16,310,0,0,0,0,0,0,140000,14000,1400,
-1,505,85,0,0,0,0,0,0,0,44,33,5,25,
-1,3,3,350,0,0,0,0,0,0,153800,20000,2600,
-1,725,17,0,0,..4,0,0,0,1625,580,500,
-1,514,0,0,0,12,0,0,0,9000,1000,100,
-1,1580,0,0,0,..35,0,0,0,5700,2000,800,
DEVICE(I)=4H2N32,4H8A(C,4H-B),4H
4H2N32,4H8A(E,4H-B),4H
4H2N33,4H5(C,-4HB),4H
4H2N33,4H5(E,-4HB),4H
4H2N33,4H6:JA,4HN(C,-4HB),4H
4H2N33,4H6:JA,4HN(E,-4HB),4H
4H2N24,4H84(C,4H-B),4H
4H2N24,4H84(E,4H-B),4H
4H2N37,4H36(C,4H-B),4H
4H2N37,4H36(E,4H-B),4H
4H2N93,4H0(C,-4HB),4H
4H2N93,4H0(E,-4HB),4H
4H2N24,4H81(C,4H-B),4H
4H2N24,4H81(E,4H-B),4H
4H2N29,4H07A(,4HC-B),4H
4H2N29,4H07A(,4HE-B),4H
4H2N22,4H22A(,4HC-B),4H
4H2N22,4H22A(,4HE-B),4H
4H1N43,4H84,4H
4HF591,4H1-34,4H65,4H
4H1N81,4H6,4H
4H1N21,4HME,4H
4H1N91,4H4A,4H
4H1N75,4H2A,4H
4HPC11,4H5,4H
4H1N30,4H26B:,4HJAN,4H
4H1N36,4H11,4H
4H1N39,4H95A,4H
4H1N30,4H16B,4H
4H1N41,4H41,4H

```

APPENDIX A

4H1002,4H ,4H ,4H *
4H2N28,4H57(C,4H-B) ,4H *
4H2N28,4H57(E,4H-B) ,4H *
4H2N33,4H75(C,4H-B) ,4H *
4H2N33,4H75(E,4H-B) ,4H *
4H2N14,4H90:J,4HAN(C,4H-B) *
4H2N14,4H90:J,4HAN(E,4H-B) *
4H2N35,4H84(C,4H-B) ,4H *
4H2N35,4H84(E,4H-B) ,4H *
4H2N28,4H94(C,4H-B) ,4H *
4H2N28,4H94(E,4H-B) ,4H *
4H2N58,4H29(C,4H-B) ,4H *
4H2N58,4H29(E,4H-B) ,4H *
4H2N30,4H13:J,4HAN(C,4H-B) *
4H2N30,4H13:J,4HAN(E,4H-B) *
4HCA30,4H18(C,4H-B) ,4H *
4HCA30,4H18(E,4H-B) ,4H *
4H2N16,4H13:J,4HAN(C,4H-B) *
4H2N16,4H13:J,4HAN(E,4H-B) *
4H2N14,4H85:J,4HAN(C,4H-B) *
4H2N14,4H85:J,4HAN(E,4H-B) *
4H2N34,4H39(C,4H-B) ,4H *
4H2N34,4H39(E,4H-B) ,4H *
4H2N70,4H6:JA,4HN(C-,4HB) *
4H2N70,4H6:JA,4HN(E-,4HB) *
4H1N25,4H80 ,4H ,4H *
4H1N75,4H1A:J,4HAN ,4H *
4H1N48,4H5B:J,4HAN ,4H *
4H1N29,4H91B: 4HJAN ,4H *
4H1N30,4H25E: ,4HJAN ,4H *
4HM010,4H54 ,4H ,4H *
4H1N74,4H6A:J,4HAN ,4H *
4H1N64,4H5:JA,4HN ,4H *
4H1N12,4H02RA,4H:JAN,4H *
4H1N17,4H31A: ,4HJAN ,4H *
EEND.
/*
//

APPENDIX A

BREAKDOWN VOLTAGE (VOLTS)	DIODE CAP. (PF)	C-B CAP. (PF)	F-B CAP. (PF)	COLL. CURR. MAX. (AMPS)	THETA JC (C/WATT)	THETA JA (C/WATT)	BV C-E (0.1USS) (WATTS)	DAMAGE (0.1USS) (WATTS)	DAMAGE (10.USS) (WATTS)
2N320A(C-B)	120.000	0.0	11.000	0.0	-0.050	0.0	357.000	120.000	140.00
2N320A(E-B)	33.000	0.0	9.000	0.0	0.050	0.0	357.000	120.000	16.00
2N335(C-B)	250.000	0.0	16.000	0.0	0.025	0.0	250.000	300.000	80.00
2N335(E-B)	27.000	0.0	0.0	9.000	0.025	0.0	250.000	100.000	44.00
2N336:JAN(C-B)	54.000	0.0	17.000	0.0	0.0	0.0	1000.000	54.000	160.00
2N336:JAN(E-B)	7.000	0.0	0.0	22.000	0.0	0.0	1000.000	54.000	70.00
2N2084(C-B)	200.000	0.0	4.300	0.0	0.050	0.0	500.000	200.000	50.00
2N2084(E-B)	10.200	0.0	0.0	5.300	0.050	0.0	500.000	200.000	48.00
2N2074(C-B)	107.000	0.0	142.000	0.0	1.500	0.0	345.000	107.000	115.00
2N2074(E-B)	7.800	0.0	0.0	53.000	1.500	0.0	345.000	107.000	72.00
2N301(C-B)	45.000	0.0	8.000	0.0	0.030	0.0	45.000	180.00	255.00
2N301(E-B)	7.000	0.0	0.0	0.0	0.030	0.0	500.000	45.000	110.00
2N2481(C-B)	108.000	0.0	57.000	0.0	0.0	0.0	476.000	108.000	110.00
2N2481(E-B)	7.400	0.0	0.0	8.000	0.0	0.0	476.000	108.000	15.00
2N2907A(C-B)	93.000	0.0	18.000	0.0	0.600	0.0	434.000	93.000	53.00
2N2907A(E-B)	6.500	0.0	0.0	23.000	0.600	0.0	434.000	93.000	20.00
2N2222A(C-B)	107.000	0.0	15.000	0.0	0.800	0.0	303.000	107.000	78.00
2N2222A(E-B)	7.300	0.0	0.0	31.000	0.800	0.0	303.000	107.000	53.00
1N6384	0.0	0.0	0.0	0.0	1.000	0.0	0.0	0.0	30.00
F5911-34665	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.00
1N816	0.640	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00
1N21UE	2.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N916A	115.000	0.0	5.700	0.0	0.075	0.0	203.000	107.000	220.00
1N752A	15.700	40.000	0.0	0.0	0.0	0.0	0.0	0.0	32.00
PC115	154.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.00
1N3026B:JAN	18.000	2320.000	0.0	0.0	0.0	0.0	0.0	0.0	210.00
1N3611	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1600.00
1N3995A	4.700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1400.00
1N3016B	6.800	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.10
1N6141	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2571(C-B)	40.000	0.0	1.000	0.0	0.040	0.0	132.000	40.000	17000.00
2N2571(E-B)	5.400	0.0	0.0	0.0	0.040	0.0	909.000	909.000	17000.00
2N3375(C-B)	87.000	0.0	0.0	0.0	0.0	0.0	3000.00	3000.00	3000.00
2N3375(E-B)	6.000	0.0	0.0	0.0	0.0	0.0	3000.00	3000.00	6224.00
2N1490:JAN(C-B)	120.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13000.00
2N1490:JAN(E-B)	14.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13000.00
2N3584(C-B)	315.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	315.000
2N3584(E-B)	9.100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10000.00
2N2694(C-B)	36.000	0.0	6.000	0.0	0.200	0.0	500.000	170.000	2150.00
2N2694(E-B)	6.400	0.0	0.0	0.0	0.0	0.0	0.0	0.0	150.00
CA3018(C-B)	7.100	0.0	0.0	0.0	0.600	0.050	0.0	200.000	53.000
CA3018(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.00
2N5229(C-B)	30.000	0.0	0.800	0.0	0.030	0.0	909.000	30.000	47.00
2N5229(E-B)	3.000	0.0	0.0	0.0	0.030	0.0	909.000	30.000	22.00
2N3013:JAN(C-B)	40.000	0.0	5.000	0.0	0.200	0.0	500.000	40.000	100.00
2N3013:JAN(E-B)	5.000	0.0	0.0	0.0	0.200	0.0	500.000	40.000	21.00
CA3018(C-B)	53.000	0.0	0.0	0.0	0.580	0.050	0.0	200.000	53.000
CA3018(E-B)	7.100	0.0	0.0	0.0	0.600	0.050	0.0	200.000	53.000
2N1613:JAN(C-B)	123.000	0.0	25.000	0.0	0.500	0.0	222.000	123.000	2100.00
2N1613:JAN(E-B)	8.800	0.0	0.0	0.0	0.500	0.0	222.000	123.000	160.00
2N1685:JAN(C-B)	205.000	0.0	0.0	0.0	3.000	0.0	0.0	205.000	1700.00
2N1685:JAN(E-B)	16.000	0.0	0.0	0.0	3.000	0.0	0.0	205.000	1100.00
2N339(C-B)	575.000	0.0	0.0	0.0	1.000	0.0	0.0	29000.00	30000.00
2N339(E-B)	9.400	0.0	0.0	0.0	1.000	0.0	0.0	2200.00	78.00
2N706:JAN(C-B)	25.000	0.0	0.0	0.0	0.0	0.0	0.0	25.000	17.00
2N706:JAN(E-B)	5.000	0.0	0.0	0.0	0.0	0.0	0.0	25.000	6.80

IN2580	536.000	0.0	0.0	0.0	12.000	0.0	0.0	0.0	170000.00	53720.00	17000.00
IN151A:JAN	5.100	265.000	0.0	0.0	0.0	0.0	0.0	0.0	25500.00	2500.00	240.00
IN6580:JAN	270.000	6.000	0.0	0.0	0.200	0.0	0.0	0.0	2000.00	435.00	100.00
IN2991B:JAN	36.000	730.000	0.0	0.0	0.0	0.0	0.0	0.0	100000.00	31600.00	10000.00
IN4025B:JAN	16.000	310.000	0.0	0.0	0.0	0.0	0.0	0.0	14000.00	14000.00	1400.00
NO1054	505.000	85.000	0.0	0.0	0.0	0.0	0.0	0.0	40.00	33.50	25.00
IN746A:JAN	3.200	350.000	0.0	0.0	0.0	0.0	0.0	0.0	153800.00	20000.00	2600.00
IN6452:JAN	725.000	17.000	0.0	0.0	0.400	0.0	0.0	0.0	1625.00	580.00	500.00
IN1202R:JAN	514.000	0.0	0.0	0.0	12.000	0.0	0.0	0.0	9000.00	1000.00	100.00
IN1731A:JAN	1580.000	0.0	0.0	0.0	0.350	0.0	0.0	0.0	5700.00	2000.00	800.00

RATIO OF EXPERIMENTAL POWER TO DAMAGE TO PREDICTED VALUE FOR 0.1, 1.0, AND 10 USEC PULSE DURATIONS FOR FIVE PRIORITY MODELS

	PRTY 1	PRTY 2	PRTY 3	PRTY 4	PRTY 5
2N3280:(C-B)	0.0	0.4908	0.3246	0.2566	0.0
2N3281:(E-B)	0.2935	1.1214	0.0	0.0	0.6775
2N3285:(C-B)	0.0	2.1016	0.0	0.4670	0.0
2N335(E-B)	1.0246	6.0125	0.0	0.0	0.0
2N336:JAN(C-B)	0.0	0.0	1.2035	0.2287	0.0
2N336:JAN(E-B)	2.7970	0.0	0.0	0.0	22.5051
2N2480:(C-B)	0.0	0.2111	0.2291	0.1349	0.0
2N2680:(E-B)	3.2438	3.1116	0.0	0.0	2.3489
2N3730:(C-B)	0.0	0.0688	0.2426	0.0772	0.0
2N3736:(E-B)	1.0583	0.5799	0.0	0.0	3.7889
2N930:(C-B)	0.0	0.5655	0.4471	0.3349	0.0
2N930:(E-B)	0.0	3.4508	0.0	0.0	1.9122
2N2240:(C-B)	0.0	0.0	0.0340	0.0096	0.0
2N2481:(E-B)	0.68%	0.0	0.0	0.0	0.5647
2N2901A:(C-B)	0.0	0.0117	0.3774	0.2006	0.0
2N2901A:(E-B)	0.4763	0.2466	0.0	0.0	1.1137
2N222A:(C-B)	0.0	0.1323	0.3834	0.3547	0.0
2N222A:(E-B)	1.2536	0.4251	0.0	0.0	1.9563
1N4386	0.0	0.0	0.0	0.0	0.0
F5911-3465	0.0	0.0	0.0	0.0	0.0
1N816	0.0	0.0	0.0	0.0	0.0
1N214C	0.0	0.0	0.0	0.0	0.0
1N914A	1.5322	0.6474	0.0	0.0	0.0
1N752A	0.0	0.7561	0.0	0.0	0.0
PC115	0.0	0.0	0.0	0.0	0.0
1N3020B:JAN	0.0	2.4439	0.0	0.0	0.0
1N3461	0.0	0.0	0.0	0.0	0.0
1N214C	0.0	0.0	0.0	0.0	0.0
N3995A	0.0	0.0	0.0	0.0	0.0
1N3016B	0.0	0.0	0.0	0.0	0.0
1N4141	0.0	0.0	0.0	0.0	0.0
1D2	0.0	0.0	0.0	0.0	0.0
2N2657:(C-B)	0.0	0.2968	0.46753	0.4912	0.0
2N2657:(E-B)	0.0	0.1162	0.0	0.0	0.2018
2N3375:(C-B)	0.0	0.5569	0.0	0.0	0.0
2N3375:(E-B)	0.0	0.6765	0.0	0.0	0.0
2N1493:JAN(C-B)	0.0	1.0331	0.0	0.0	0.0
2N1493:JAN(E-B)	0.0	1.2612	0.0	0.0	0.0
2N3586:(C-B)	0.0	6.1278	0.0	3.2309	0.0
2N3586:(E-B)	0.0	3.301	0.0	0.0	0.0
2N2094:(C-B)	0.0	4.0991	0.0	3.7194	0.0
	0.0	0.1465	0.3755	0.3383	0.0

APPENDIX A

2N2094 (E-B)	0.0	0.1313	0.0	0.3090
2N5821 (E-B)	0.0	0.184	0.0	0.1963
2N5821 (E-B)	0.0	0.2229	0.0	0.2253
2N3013:JAN (C-B)	0.0	0.0912	0.0	0.0
2N3013:JAN (C-B)	0.0	0.2337	0.0	0.3058
LA3010 (C-B)	0.0	0.1037	0.0	0.2185
CA3010 (E-B)	0.0	0.1587	0.0	0.0
CA3010 (E-B)	4.3243	0.3267	0.0	0.4323
2N1613:JAN (C-B)	0.0	0.7164	3.7253	0.0
2N1613:JAN (C-B)	0.0	1.9810	0.0	0.0
2N1448:JAN (C-B)	0.0	0.5718	0.0	0.0
2N1448:JAN (C-B)	0.0	2.79	2.683	0.0
2N3439 (C-B)	0.0	0.0728	0.0	0.0
2N3439 (E-B)	0.0	3.4632	0.0	0.0
2N706:JAN (C-B)	0.0	0.0	0.1657	0.0
2N706:JAN (C-B)	0.0	0.0	0.1679	0.0
LN2580	2.9173	0.0	0.0	0.4157
LN751:JAN	0.0	1.6703	0.0	0.0
LN685:JAN	3.1721	0.0	0.0	0.0
LN2998:JAN	0.0	2.2558	0.0	0.0
LN3028:JAN	0.0	3.6068	0.0	0.0
LN3028:JAN	0.0	10.6319	0.0	0.0
401056	0.0	0.0043	0.0	0.0
LN7464:JAN	0.0	6.5441	0.0	0.0
LN645:JAN	1.5848	0.5301	0.0	0.0
LN1202:JA:JAN	0.1526	0.0	0.0	0.0
LN1731:JA:JAN	8.2311	0.0	0.0	0.0
2N328A (C-B)	0.0	0.5765	0.3813	0.0
2N328A (E-B)	0.4950	1.8913	0.0	0.0
2N335 (C-B)	0.0	1.7722	0.0	0.0
2N335 (E-B)	1.4284	8.3658	0.0	0.0
2N336:JAN (C-B)	0.0	0.0	1.6650	0.0
2N336:JAN (E-B)	1.5850	0.0	0.0	0.0
2N2486 (C-B)	0.0	0.6141	0.6664	0.0
2N2486 (E-B)	3.0773	2.9519	0.0	0.0
2N373:J (C-B)	0.0	0.027	0.4803	0.0
2N373:J (E-B)	1.4465	0.7226	0.0	0.0
2N930 (C-B)	0.0	0.7351	0.2812	0.0
2N930 (E-B)	0.0	3.1767	0.0	0.0
2N2481 (C-B)	0.0	0.0	1.075	0.0
2N2481 (E-B)	1.2343	0.0	0.0	0.0
2N2907 (C-B)	0.0	0.1139	0.4685	0.0
2N2907 (E-B)	1.0679	0.5485	0.0	0.0
2N2224 (C-B)	0.0	0.1616	0.4685	0.0
2N2224 (E-B)	1.3380	0.6612	0.0	0.0
LN6386	0.0	0.0	0.0	0.0
F5911-3465	0.0	0.0	0.0	0.0
LN816	0.0	0.0	0.0	0.0
LN214E	0.0	0.0	0.0	0.0
LN914A	0.9229	0.3699	0.0	0.0
LN752A	0.0	0.3535	0.0	0.0
PC115	0.0	0.0	0.0	0.0
LN3028:JAN	0.0	2.4421	0.0	0.0
LN3611	0.0	0.0	0.0	0.0
LN3995A	0.0	0.0	0.0	0.0
LN30168	0.0	0.0	0.0	0.0
LN6161	0.0	0.0	0.0	0.0
10D2	0.0	0.0	0.0	0.0
2N2857 (C-B)	0.0	0.1251	0.2847	0.0

2N28571(E-8)	0.0	0.1165	0.0	0.0
2N33751(C-8)	-0.9819	1.1850	0.0	0.0
2N33751(E-8)	0.0	1.1057	0.0	0.0
2N14905:JAN(C-8)	0.5020	1.3104	0.0	1.0474
2N14905:JAN(E-8)	0.0	5.6643	0.0	0.0
2N35861(C-8)	0.2160	0.3316	0.0	0.0
2N35861(E-8)	0.0	2.7937	0.0	2.5288
2N28941(C-8)	0.0	0.1362	0.0	0.0
2N28941(E-8)	0.0	0.2631	0.0	0.0
2N58291(C-8)	0.0	0.1354	0.0	0.0
2N58291(E-8)	0.0	0.2577	0.0	0.0
2N30132:JAN(C-8)	0.0	0.3205	0.0	0.0
2N30132:JAN(E-8)	0.0	0.0606	0.0	0.0
CA30161(C-8)	0.0	0.3220	0.0	0.0
CA30161(E-8)	6.2216	0.1568	0.0	0.0
2N16132:JAN(C-8)	0.0	0.1568	0.0	0.0
2N16132:JAN(E-8)	0.0	0.4696	0.0	0.0
2N14652:JAN(C-8)	0.0	5.6772	0.0	0.0
2N14652:JAN(E-8)	0.0	7.7308	0.0	0.0
2N34391(C-8)	0.0	2.8485	0.0	0.0
2N34391(E-8)	0.0	1.1699	0.0	0.0
2N34391(C-8)	0.0	91.5512	0.0	74.6255
2N34391(E-8)	0.0	0.0797	0.0	0.0
2N7062:JAN(C-8)	0.0	3.0664	0.0	0.0
2N7062:JAN(E-8)	0.0	0.0	0.0	0.0
IN2580	0.0	0.0	0.0	0.0
IN751A:JAN	0.0	0.5178	0.0	0.0
IN685R:JAN	2.1818	1.5309	0.0	0.0
IN2991B:JAN	0.0	3.6042	0.0	0.0
IN30258:JAN	0.0	3.3621	0.0	0.0
MO1056	0.0	0.0104	0.0	0.0
1N7461:JAN	0.0	2.6111	0.0	0.0
IN643:JAN	1.7887	0.5983	0.0	0.0
1N1202RA:JAN	0.0535	0.0	0.0	0.0
IN1731A:JAN	9.1350	0.0	0.0	0.0
2N3261(C-8)	0.0	0.7011	0.0	0.0
2N32841(E-8)	0.6806	3.3641	0.0	0.0
2N3351(C-8)	1.4651	0.011	0.0	0.0
2N3351(E-8)	2.0532	12.0251	0.0	0.0
2N3361:JAN(C-8)	0.0	0.0	2.2565	0.0
2N3361:JAN(E-8)	0.0	0.0	0.0	0.0
2N24661(C-8)	0.0	1.7731	1.9242	25.2057
2N24661(E-8)	3.0411	2.9171	0.0	0.0
2N37261(C-8)	0.0	1.791	0.9281	2.2021
2N37261(E-8)	1.9731	1.0811	0.0	0.0
2N9301(C-8)	0.0	0.3424	0.7451	2.0440
2N9301(E-8)	0.0	2.6768	0.0	0.0
2N24611(C-8)	0.0	0.0	0.3398	1.3302
2N24611(E-8)	2.3439	0.0	0.0	0.0
2N2907A1(C-8)	0.0	0.1359	0.5591	1.9177
2N2907A1(E-8)	2.2947	1.1785	0.0	0.0
2N2222A1(C-8)	0.0	0.1924	0.5577	5.3658
2N2222A1(E-8)	1.2536	0.6251	0.0	0.0
1N4364	0.0	0.0	0.0	0.0
F5911-3465	0.0	0.0	0.0	0.0
1N616	0.0	0.0	0.0	0.0
1N21BF	0.0	0.0	0.0	0.0
1N916A	0.5432	0.2312	0.0	0.0
1N7524	0.0	0.2729	0.0	0.0
0.02023	0.0	0.0	0.0	0.0

APPENDIX A

PC115	0.0	0.0	0.0	0.0
1N3026E:JAN	0.0	2.4439	0.0	0.0
1N3611	0.0	0.0	0.0	0.0
1N3995A	0.0	0.0	0.0	0.0
1N3016B	0.0	0.0	0.0	0.0
1N4141	0.0	0.0	0.0	0.0
1002	0.0	0.0	0.0	0.0
2N2857(C-B)	0.0	0.3067	0.6978	0.5076
2N2857(E-B)	0.0	0.3067	0.6978	0.5076
2N3375(C-B)	1.5526	0.0	0.0	0.0
2N3375(E-B)	0.0	0.1190	0.0	0.0
2N1490:JAN(C-B)	0.0	1.8736	0.0	0.0
2N1490:JAN(E-B)	0.0	1.8278	0.0	0.0
2N3584(C-B)	0.2236	0.0	0.0	0.0
2N3584(E-B)	0.0	0.3401	0.0	0.0
2N2894(C-B)	0.0	2.0135	0.0	0.0
2N2894(E-B)	0.0	0.1206	0.0	0.0
2N2894(C-B)	0.0	0.5254	0.0	0.0
2N5829(C-B)	0.0	0.1511	0.2877	0.2505
2N5829(E-B)	0.0	0.4358	0.0	0.0
2N3013:JAN(C-B)	0.0	0.392	0.0	0.0
2N3013:JAN(E-B)	0.0	0.7067	0.0	0.0
CA3018(C-B)	0.0	0.1438	0.0	0.0
CA3018(E-B)	7.8696	0.0	0.0	0.0
2N1613:JAN(C-B)	0.0	11.8843	16.2980	18.6519
2N1613:JAN(E-B)	0.0	4.2389	0.0	0.0
2N1485:JAN(C-B)	1.5216	2.3543	0.0	0.0
2N1485:JAN(E-B)	0.0	29.8507	0.0	0.0
2N3439(C-B)	0.1311	0.0	0.0	0.0
2N3439(E-B)	0.0	0.0933	0.0	0.0
2N706:JAN(C-B)	0.0	2.8335	0.0	4.3832
2N706:JAN(E-B)	0.0	0.0	0.0	0.0
1N2580	2.9173	0.0	0.0	0.0
1N751A:JAN	0.0	0.0	0.0	0.0
1N6850:JAN	1.5861	0.0	0.0	0.0
1N2991:JAN	0.0	3.6068	0.0	0.0
1N3025:JAN	0.0	1.0632	0.0	0.0
M01056	0.0	0.0266	0.0	0.0
1N746A:JAN	0.0	1.4103	0.0	0.0
1N645:JAN	4.8762	1.6311	0.0	0.0
1N1202A:JAN	0.0	0.0	0.0	0.0
1N1731:JAN	11.5525	0.0	0.0	0.0

1.59	33.33	1.58	31.67	1.58	30.00	1.55	28.33	1.53	26.67
1.52	25.00	1.45	23.33	1.45	21.67	1.43	20.00	1.34	16.33
1.32	16.67	1.25	15.00	1.25	13.33	1.23	11.67	1.14	10.00
1.08	8.33	1.07	6.67	1.06	5.00	1.03	3.33	1.02	1.67
0.0	0.0								
279.25	100.00	231.36	99.28	96.10	98.55	91.35	97.83	40.72	97.10
29.85	96.38	25.50	95.65	21.36	94.93	16.51	94.20	13.74	93.48
12.55	92.15	12.03	92.03	11.88	91.50	10.97	90.58	10.90	89.86
10.79	89.13	10.72	88.61	10.63	87.68	8.78	86.96	8.61	86.23
8.59	85.51	8.45	84.78	8.40	84.06	8.37	83.33	8.29	82.61
7.99	81.88	7.61	81.16	7.56	80.43	7.39	79.71	7.36	78.99
7.34	78.26	6.95	77.54	6.83	76.81	6.62	76.09	6.54	75.36
6.38	74.64	6.36	73.91	6.30	73.19	6.19	72.46	6.13	71.74
6.13	71.01	6.01	70.29	5.66	69.57	5.64	68.84	5.58	68.12
5.44	67.39	5.20	66.67	4.74	65.94	4.49	65.22	4.33	64.49
4.24	63.77	4.11	63.04	4.09	62.42	3.85	61.59	3.80	60.87
3.66	60.14	3.61	59.42	3.61	58.70	3.60	57.97	3.46	57.25
3.37	56.52	3.34	55.80	3.36	55.07	3.26	54.35	3.18	53.62
3.12	52.90	3.11	52.17	3.09	51.15	3.06	50.42	3.02	50.00
2.95	49.28	2.94	48.55	2.94	47.83	2.92	47.10	2.85	46.38
2.84	45.65	2.83	44.93	2.83	44.20	2.79	43.48	2.72	42.75
2.69	42.03	2.66	41.40	2.56	40.58	2.44	39.86	2.44	39.13
2.44	38.41	2.35	37.68	2.29	36.96	2.23	36.23	2.13	35.51
2.10	34.78	2.04	34.06	2.01	33.33	1.99	32.61	1.93	31.88
1.90	31.16	1.89	30.43	1.89	29.71	1.87	28.99	1.83	28.26
1.82	27.54	1.77	26.81	1.77	26.09	1.77	25.36	1.75	24.64
1.73	23.91	1.72	23.19	1.68	22.46	1.67	21.74	1.67	21.01
1.63	20.29	1.63	19.57	1.60	18.84	1.60	18.12	1.54	17.39
1.53	16.67	1.50	15.94	1.48	15.22	1.43	14.49	1.41	13.77
1.40	13.04	1.36	12.32	1.32	11.59	1.31	10.77	1.26	10.14
1.26	9.42	1.26	8.70	1.18	7.97	1.18	7.25	1.17	6.52
1.12	5.80	1.11	5.07	1.11	4.35	1.11	3.62	1.08	2.90
1.06	2.17	1.06	1.43	1.03	0.72	0.72	0.0	0.0	0.0
29.63	100.00	24.64	97.78	22.59	95.56	22.33	93.33	20.05	91.11
16.30	88.89	10.44	86.67	9.95	84.44	9.31	82.12	7.73	80.00
6.44	77.78	6.04	75.56	4.44	73.33	4.37	71.11	4.28	68.89
4.12	66.67	3.86	64.44	3.73	62.22	3.51	60.00	3.48	57.78
3.23	55.56	3.08	53.33	2.94	51.11	2.86	48.9	2.66	46.67
2.65	44.44	2.62	42.22	2.61	40.00	2.26	37.78	2.24	35.56
2.16	33.33	2.13	31.11	2.13	28.89	2.08	26.67	1.92	24.44
1.79	22.22	1.79	20.00	1.72	17.78	1.67	15.56	1.50	13.33
1.48	11.11	1.43	8.89	1.34	6.67	1.20	4.44	1.08	2.22
0.0	0.0								
228.12	130.00	104.34	98.41	74.63	96.83	32.99	95.24	24.39	93.65
19.78	92.06	18.65	90.48	12.96	88.69	10.66	87.30	10.43	85.71
10.30	84.13	8.85	82.54	7.41	80.95	6.89	79.37	6.55	77.78
5.95	76.19	5.36	74.60	5.10	73.02	4.98	71.43	4.83	69.44
4.77	68.25	4.58	66.67	4.45	65.08	4.38	63.49	4.37	61.90
4.26	60.32	4.02	58.73	3.99	57.14	3.90	55.56	3.72	53.97
3.59	52.38	3.39	50.79	3.36	49.21	3.32	47.62	3.24	46.13
3.23	44.44	3.23	42.86	3.18	41.27	3.16	39.68	3.08	38.10

APPENDIX A

2.99	36.51	2.99	34.92	2.97	33.33	2.96	31.75	2.94	30.16
2.82	28.57	2.73	26.98	2.55	25.40	2.53	23.81	2.43	22.22
2.33	20.63	2.31	19.05	2.30	17.46	2.05	15.87	2.04	14.79
1.97	12.70	1.94	11.11	1.82	9.52	1.79	7.94	1.73	6.35
1.13	4.76	1.05	3.17	1.02	1.59	0.0	0.0	0.0	0.0
0.0	0.0								

RATIO OF EXPERIMENTAL AND PREDICTED POWER TO DAMAGE VS PERCENTAGE CONFIDENCE LEVEL FOR AVERAGE VALUE OF FIVE PRIORITY MODELS

253.68	100.00	231.38	99.39	96.10	98.79	82.99	98.18	66.88	97.58
59.05	96.97	40.72	96.36	27.12	95.76	21.15	95.15	19.91	94.55
18.67	93.94	15.61	93.33	15.37	92.13	14.17	92.12	12.81	91.52
12.65	90.91	11.76	90.30	11.61	89.70	11.55	89.09	10.74	88.48
10.65	87.88	10.63	87.27	10.52	86.47	10.37	86.06	9.95	85.45
9.17	84.85	9.13	84.24	8.88	83.64	8.23	83.03	7.41	82.42
7.25	81.82	7.17	81.21	7.04	80.41	6.78	80.00	6.76	79.39
6.71	78.79	6.69	78.18	6.62	77.58	6.61	76.97	6.56	76.36
6.54	75.76	6.47	75.15	6.36	74.55	6.18	73.94	6.00	73.33
5.99	72.73	5.51	72.12	5.44	71.52	5.42	70.91	5.24	70.30
5.04	69.70	4.98	69.09	4.90	68.48	4.78	67.86	4.70	67.27
4.68	66.67	4.68	66.06	4.46	65.45	4.41	64.85	4.33	64.24
4.33	63.64	4.17	63.03	4.15	62.42	4.12	61.82	4.11	61.21
3.88	60.61	3.88	60.00	3.80	59.39	3.71	58.79	3.71	58.18
3.66	57.58	3.61	56.97	3.61	56.36	3.61	55.76	3.60	55.15
3.57	54.55	3.54	53.94	3.52	53.33	3.37	52.73	3.36	52.12
3.35	51.52	3.25	50.91	3.21	50.30	3.08	49.70	3.01	49.09
2.98	48.48	2.95	47.88	2.92	47.27	2.92	46.67	2.92	46.06
2.90	45.45	2.88	44.85	2.83	44.24	2.79	43.64	2.75	43.03
2.72	42.42	2.71	41.82	2.70	41.21	2.70	40.61	2.69	40.00
2.66	39.39	2.63	38.79	2.56	38.18	2.44	37.58	2.44	36.97
2.44	36.36	2.43	35.76	2.41	35.15	2.41	34.55	2.38	33.94
2.33	33.33	2.30	32.73	2.29	32.12	2.24	31.52	2.24	30.91
2.23	30.30	2.22	29.70	2.21	29.19	2.19	28.58	2.13	27.88
2.11	27.27	2.10	26.67	2.10	26.06	2.08	25.45	2.02	24.85
2.00	24.24	1.98	23.64	1.98	23.03	1.94	22.42	1.93	21.82
1.92	21.21	1.89	20.61	1.86	20.00	1.82	19.39	1.80	18.79
1.79	18.18	1.78	17.58	1.77	16.97	1.74	16.36	1.73	15.76
1.72	15.15	1.71	14.55	1.67	13.94	1.67	13.33	1.67	12.73
1.65	12.12	1.64	11.52	1.64	10.91	1.61	10.30	1.61	9.70
1.60	9.09	1.60	8.48	1.57	7.86	1.54	7.27	1.54	6.67

1.40	6.06	1.35	5.45	1.32	4.85	1.25	4.24	1.12	3.64
1.11	3.03	1.10	2.62	1.08	1.82	1.06	1.21	1.03	0.61
0.0	0.0								

ARITHMETIC MEAN OF ABOVE DATA = 9.44

DISTRIBUTION

ADMINISTRATOR DEFENSE TECHNICAL INFORMATION CENTER ATTN DTIC-DDA (12 COPIES) CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314	DIRECTOR DEFENSE ADVANCED RSCH PROJ AGENCY ATTN TIO ARCHITECT BUILDING 1400 WILSON BLVD. ARLINGTON, VA 22209	CHIEF LIVERMORE DIVISION, FIELD COMMAND DNA DEPARTMENT OF DEFENSE LAWRENCE LIVERMORE LABORATORY ATTN FCPRL P.O. BOX 808 LIVERMORE, CA 94550
COMMANDER US ARMY RSCH & STD GP (EUR) ATTN CHIEF, PHYSICS & MATH BRANCH FPO NEW YORK 09510	FEDERAL EMERGENCY MANAGEMENT AGENCY ATTN JAMES W. KERR, MITIGATION & RESEARCH WASHINGTON, DC 20472	NATIONAL COMMUNICATIONS SYSTEM OFFICE OF THE MANAGER ATTN NCS-TS, CHARLES D. BODSON DEPARTMENT OF DEFENSE WASHINGTON, DC 20305
COMMANDER US ARMY ARMAMENT MATERIEL READINESS COMMAND ATTN DRSAR-LEP-L, TECHNICAL LIBRARY ROCK ISLAND, IL 61299	DEFENSE COMMUNICATIONS ENGINEERING CENTER ATTN CODE R720, C. STANSBERRY ATTN CODE R123, TECH LIB ATTN CODE R400 1860 WIEHLE AVENUE RESTON, VA 22090	DIRECTOR NATIONAL SECURITY AGENCY ATTN R-52, O. VAN GUNTEN ATTN S232, D. VINCENT DEPARTMENT OF DEFENSE FT. GEORGE G. MEADE, MD 20755
COMMANDER US ARMY MISSILE & MUNITIONS CENTER & SCHOOL ATTN ATSK-CTD-F REDSTONE ARSENAL, AL 35809	DIRECTOR DEFENSE COMMUNICATIONS AGENCY ATTN CCTC C312 ATTN CODE C313 WASHINGTON, DC 20305	UNDER SECY OF DEF FOR RSCH & ENGRG ATTN G. BARSE ATTN S&SS (OS) DEPARTMENT OF DEFENSE WASHINGTON, DC 20301
DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY ATTN DRASY-MP ATTN DRASY-PO ABERDEEN PROVING GROUND, MD 21005	DIRECTOR DEFENSE INTELLIGENCE AGENCY ATTN RDS-3A ATTN RDS-3A4, POMONIO PLAZA WASHINGTON, DC 20301	COMMANDER BMD SYSTEM COMMAND DEPARTMENT OF THE ARMY ATTN BMDS-C-AOLB P.O. BOX 1500 HUNTSVILLE, AL 35807
DIRECTOR US ARMY BALLISTIC RESEARCH LABORATORY ATTN ORDRAR-TSB-S (STINFO) ATTN DRXBR-AM, W. VANANTWERP ATTN DRSTE-EL ATTN ORDAR-BLE ABERDEEN PROVING GROUND, MD 21005	DIRECTOR DEFENSE NUCLEAR AGENCY ATTN DDST, DEP DIR, SCI & TECHNOLOGY ATTN RAEV, ELECTRONIC VULNERABILITY DIV ATTN TITL, TECH LIB DIV ATTN RAEF, EMP EFFECTS DIV WASHINGTON, DC 20305	COMMANDER ERADCOM TECHNICAL SUPPORT ACTIVITY DEPARTMENT OF THE ARMY ATTN DRDCO-COM-ME, G. GAULE ATTN DELSD-L ATTN DELCS-K, A. COHEN ATTN DELET-IR, E. HUNTER PORT MONMOUTH, NJ 07703
HQ USAF/SAMI WASHINGTON, DC 20330	COMMANDER FIELD COMMAND DEFENSE NUCLEAR AGENCY ATTN FCPR ATTN FCSPM, J. SMITH ATTN FCLMC KIRTLAND AFB, NM 87115	COMMANDER US ARMY ARMOR CENTER ATTN TECHNICAL LIBRARY FORT KNOX, KY 40121
TELEDYNE BROWN ENGINEERING CUMMINGS RESEARCH PARK ATTN DR. MELVIN L. PRICE, MS-44 HUNTSVILLE, AL 35807	DIRECTOR INTERSERVICE NUCLEAR WEAPONS SCHOOL ATTN TTIV KIRTLAND AFB, NM 87115	COMMANDER US ARMY COMM-ELEC ENGRG INSTAL AGENCY ATTN CCC-PRSO-S ATTN CCC-CED-SES FT. HUACHUCA, AZ 85613
US ARMY ELECTRONICS TECHNOLOGY & DEVICES LABORATORY ATTN DELET-DD FORT MONMOUTH, NJ 07703	JT CHIEFS OF STAFF ATTN J-3 WASHINGTON, DC 20301	COMMANDER US ARMY COMMUNICATIONS COMMAND COMBAT DEVELOPMENT DIVISION ATTN ATSI-CD-MD FT. HUACHUCA, AZ 85613
DIRECTOR ARMED FORCES RADIobiology RESEARCH INSTITUTE DEFENSE NUCLEAR AGENCY ATTN RESEARCH PROGRAM COORDINATING OFFICER NATIONAL NAVAL MEDICAL CENTER BETHESDA, MD 20014	DIRECTOR JOINT STRATEGIC TARGET PLANNING STAFF, JCS ATTN JSAS ATTN JPST ATTN NRI-STINFO LIBRARY OFFUTT AFB OMAHA, NE 68113	CHIEF US ARMY COMMUNICATIONS SYS AGENCY ATTN COM-RD-T COM-AD-SV FORT MONMOUTH, NJ 07703
ASSISTANT TO THE SECRETARY OF DEFENSE ATOMIC ENERGY ATTN EXECUTIVE ASSISTANT WASHINGTON, DC 20301		

DISTRIBUTION (Cont'd)

OPM SINGARS DEPARTMENT OF THE ARMY ATTN DRCPM-GARS-TM HQ US ARMY COMMUNICATIONS & ELECTRONICS MATERIEL READINESS COMMAND FORT MONMOUTH, NJ 07703	COMMANDER NAVAL ELECTRONIC SYSTEMS COMMAND ATTN PME 117-215 WASHINGTON, DC 20360	COMMANDER AERONAUTICAL SYSTEMS DIVISION, AFSC ATTN ASD-YH-EX ATTN ENPTV WRIGHT-PATTERSON AFB, OH 45333
PROJECT OFFICER US ARMY COMMUNICATIONS RES & DEV COMMAND ATTN DRCPM-ATC ATTN DRCPM-TDS-BSI FORT MONMOUTH, NJ 07703	COMMANDER NAVAL OCEAN SYSTEMS CENTER ATTN CODE 015, C. FLETCHER ATTN RESEARCH LIBRARY ATTN CODE 7240, S. W. LICHTMAN SAN DIEGO, CA 92152	AIR FORCE TECHNICAL APPLICATIONS CENTER ATTN TFS, M. SCHNEIDER PATRICK AFB, FL 32925
DIVISION ENGINEER US ARMY ENGINEER DIV, HUNTSVILLE ATTN HNDED-SR ATTN A. T. BOLT P.O. BOX 1600, WEST STATION HUNTSVILLE, AL 35807	COMMANDING OFFICER NAVAL ORDNANCE STATION ATTN STANDARDIZATION DIV INDIAN HEAD, MD 20640	AF WEAPONS LABORATORY, AFSC ATTN NTN ATTN NT ATTN EL, CARL E. BAUM ATTN ELXT ATTN SUL ATTN CA ATTN ELA, J. P. CASTILLO ATTN ELP ATTN ELT, W. PAGE ATTN NKS KIRTLAND AFB, NM 87117
US ARMY INTEL THREAT ANALYSIS DETACHMENT ROOM 2201, BLDG A ATTN RM 2200, BLDG A ARLINGTTON HALL STATION ARLINGTON, VA 22212	SUPERINTENDENT (CODE 1424) NAVAL POSTGRADUATE SCHOOL ATTN CODE 1424 MONTEREY, CA 93940	DIRECTOR AIR UNIVERSITY LIBRARY ATTN AUL-LSE-70-250 DEPARTMENT OF THE AIR FORCE MAXWELL AFB, AL 36112
COMMANDER US ARMY INTELLIGENCE & SEC CMD ATTN TECH INFO FAC ARLINGTON HALL STATION 4000 ARLINGTON BLVD ARLINGTON, VA 22212	DIRECTOR NAVAL RESEARCH LABORATORY ATTN CODE 4104, EMANUEL L. BRANCATO ATTN CODE 2627, DORIS R. FOLEN ATTN CODE 6623, RICHARD L. STATLER ATTN CODE 6624 WASHINGTON, DC 20375	HEADQUARTERS ELECTRONIC SYSTEMS DIVISION/YSEA ATTN YSEA DEPARTMENT OF THE AIR FORCE HANSOM AFB, MA 01731
COMMANDER US ARMY MISSILE COMMAND ATTN DRCPM-PE-EA, WALLACE O. WAGNER ATTN DRCPM-PE-EG, WILLIAM B. JOHNSON ATTN DRMI-TBD ATTN DRMI-EAA REDSTONE ARSENAL, AL 35809	COMMANDER NAVAL SHIP ENGINEERING CENTER DEPARTMENT OF THE NAVY ATTN CODE 6174D2, EDWARD F. DUFFY WASHINGTON, DC 20362	COMMANDER FOREIGN TECHNOLOGY DIVISION, AFSC ATTN NICD LIBRARY ATTN ETDP, B. L. BALLARD WRIGHT-PATTERSON AFB, OH 45433
COMMANDER US ARMY TEST AND EVALUATION COMMAND ATTN DRSTE-FA ABERDEEN PROVING GROUND, MD 21005	COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN CODE F32, EDWIN R. RATHBURN ATTN L. LIBELLO, CODE WR43 ATTN CODE WA51RH, RM 130-108 WHITE OAK, SILVER SPRING, MD 20910	COMMANDER OGDEN ALC/MMEDDE ATTN OO-ALC/MMETH, P. W. BERTHEL ATTN MMEDO, LEO KIDMAN ATTN MAJ R. BLACKBURN DEPARTMENT OF THE AIR FORCE HILL AFB, UT 84406
COMMANDER US ARMY TRAINING AND DOCTRINE COMMAND ATTN ATORI-OP-SW FORT MONROE, VA 23651	COMMANDER NAVAL WEAPONS CENTER ATTN CODE 533, TECH LIB CHINA LAKE, CA 93555	COMMANDER ROME AIR DEVELOPMENT CENTER, AFSC ATTN TSLD GRIFFISS AFB, NY 13441
COMMANDER WHITE SANDS MISSILE RANGE ATTN STEWS-TR-AN, J. OKUMA DEPARTMENT OF THE ARMY WHITE SANDS MISSILE RANGE, NM 88002	COMMANDING OFFICER NAVAL WEAPONS EVALUATION FACILITY ATTN CODE AT-6 FORTLAND AIR FORCE BASE ALBUQUERQUE, NM 87117	COMMANDER SACRAMENTO AIR LOGISTICS CENTER ATTN MMCRS, H. A. PEMASTRO ATTN MMIRA, J. W. DEMES ATTN MMSREM, F. R. SPEAR DEPARTMENT OF THE AIR FORCE MCCLELLAN AFB, CA 95652
OFFICER-IN-CHARGE CIVIL ENGINEERING LABORATORY ATTN CODE LO8A (LIBRARY) ATTN CODE LO8A NAVAL CONSTRUCTION BATTALION CENTER PORT HUENEME, CA 93041	OFFICE OF NAVAL RESEARCH ATTN CODE 427 ARLINGTON, VA 22217	SAMSO/IN AIR FORCE SYSTEMS COMMAND P.O. BOX 92960 ATTN IND WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (INTELLIGENCE)
COMMANDER NAVAL AIR SYSTEMS COMMAND ATTN AIR-350F WASHINGTON, DC 21360	DIRECTOR STRATEGIC SYSTEMS PROJECT OFFICE NAVY DEPARTMENT ATTN NSP-2701, JOHN W. PITSENBERGER ATTN NSP-2342, RICHARD L. COLEMAN ATTN NSP-43, TECH LIB ATTN NSP-27334 ATTN NSP-230, D. GOLD WASHINGTON, DC 20376	

DISTRIBUTION (Cont'd)

SAMSO, MN AIR FORCE SYSTEMS COMMAND ATTN MNH, MAJ M. BARAN ATTN MNH, CAPT R. I. LAWRENCE NORTON AFB, CA 92409 (MINUTEMAN)	AEROSPACE CORPORATION ATTN C. B. PEARLSTON ATTN IRVING M. GARFUNKEL ATTN JULIAN REINHEIMER ATTN LIBRARY ATTN CHARLES GREENHOW P.O. BOX 92957 LOS ANGELES, CA 90009	CALSPAN CORPORATION P.O. BOX 400 ATTN TECH LIBRARY BUFFALO, NY 14225
SAMSO/YA AIR FORCE SYSTEMS COMMAND ATTN YAPC P.O. BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009	AGBABIAN ASSOCIATES 250 NORTH NASH STREET ATTN LIBRARY EL SEGUNDO, CA 90245	CHARLES STARK DRAPER LABORATORY INC. 555 TECHNOLOGY SQUARE ATTN KENNETH FERTIG ATTN TIC MS 74 CAMBRIDGE, MA 02139
STRATEGIC AIR COMMAND/XPPFS ATTN NRI-STINFO LIBRARY ATTN DEL ATTN GARNET E. MATZKE ATTN XPPFS, MAJ BRIAN G. STEPHAN OFFUTT AFB, NB 68113	AVCO RESEARCH & SYSTEMS GROUP 201 LOWELL STREET ATTN W. LEPSVEICH WILMINGTON, MA 01887	CINCINNATI ELECTRONICS CORPORATION 2630 GLENDALE-MILFORD ROAD ATTN LOIS HAMMOND ATTN SINCgars-NWE CINCINNATI, OH 45241
DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE ATTN DOC CON FOR TECH LIBRARY ATTN OPERATIONAL SAFETY DIV P.O. BOX 5400 ALBUQUERQUE, NM 87115	BATTELLE MEMORIAL INSTITUTE 505 KING AVENUE ATTN ROBERT H. BLAZEK ATTN EUGENE R. LEACH COLUMBUS, OH 43201	COLLINS TELECOMMUNICATIONS PRODUCTS DIV ELECTRONIC SYSTEMS GROUP ATTN SINCgars-NWE 855 35TH STREET, NE CEDAR RAPIDS, IA 52406
UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN DOC CON FOR TECHNICAL INFORMATION DEPT ATTN DOC CON FOR L-06, T. DONICH ATTN DOC CON FOR L-545, D. MECKER ATTN DOC CON FOR L-156, E. MILLER ATTN DOC CON FOR L-10, H. KRUGER ATTN DOC CON FOR H. S. CABAYAN P.O. BOX 808 LIVERMORE, CA 94550	BDM CORPORATION 7915 JONES BRANCH DRIVE ATTN CORPORATE LIBRARY MCLEAN, VA 22102	COMPUTER SCIENCES CORPORATION 6565 ARLINGTON BLVD ATTN RAMONA BRIGGS FALLS CHURCH, VA 22046
LOS ALAMOS SCIENTIFIC LABORATORY ATTN DOC CON FOR BRUCE W. NOEL ATTN DOC CON FOR CLARENCE BENTON P.O. BOX 1663 LOS ALAMOS, NM 87545	BENDIX CORPORATION, THE RESEARCH LABORATORIES DIVISION ATTN MAX FRANK BENDIX CENTER SOUTHFIELD, MI 48075	COMPUTER SCIENCES CORPORATION 1400 SAN MATEO BLVD, SE ATTN RICHARD H. DICKHAUT ATTN ALVIN SCHIFF ALBUQUERQUE, NM 87108
SANDIA LABORATORIES ATTN DOC CON FOR C. N. VITTITOE ATTN DOC CON FOR R. L. PARKER ATTN DOC CON FOR ELMER F. HARTMAN P.O. BOX 5800 ALBUQUERQUE, NM 87115	BENDIX CORPORATION NAVIGATION AND CONTROL GROUP ATTN DEPT 6401 TEREBORO, NJ 07608	CONTROL DATA CORPORATION P.O. BOX 0 ATTN JACK MEEHAN MINNEAPOLIS, MN 55440
CENTRAL INTELLIGENCE AGENCY ATTN RD/SI, RM 5G48, HQ BLDG FOR OSi/NED/NWB WASHINGTON, DC 20505	BOEING COMPANY P.O. BOX 3707 ATTN HOWARD W. WICKLEIN ATTN D. E. ISBELL ATTN DAVID KEMLE ATTN B. C. HANRAN ATTN KENT TECH LIB SEATTLE, WA 98124	CUTLER-HAMMER, INC. AIL DIVISION ATTN EDWARD KARPEN COMAC ROAD DEER PARK, NY 11729
ADMINISTRATOR DEFENSE ELECTRIC POWER ADMIN DEPARTMENT OF THE INTERIOR ATTN L. O'NEILL INTERIOR SOUTH BLDG, 312 WASHINGTON, DC 20240	BOOZ-ALLEN AND HAMILTON, INC. 106 APPLE STREET ATTN R. J. CHRISNER ATTN TECH LIB TINTON FALLS, NJ 07724	THE DIKEWOOD CORPORATION 1613 UNIVERSITY BLVD, NE ATTN TECH LIB ATTN L. WAYNE DAVID ALBUQUERQUE, NM 87102
DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION ATTN SEC DIV ASE-300 HEADQUARTERS SEC DIV, ASE-300 800 INDEPENDENCE AVENUE, SW WASHINGTON, DC 20591	BROWN ENGINEERING COMPANY, INC. CUMMINGS RESEARCH PARK ATTN FRED LEONARD HUNTSVILLE, AL 35807	THE DIKEWOOD CORPORATION 2716 OCEAN PARK BLVD SUITE 3000 ATTN K. LEE SANTA MONICA, CA 90405
	BURROUGHS CORPORATION FEDERAL AND SPECIAL SYSTEMS GROUP ATTN ANGELO J. MAURIELLO CENTRAL AVE AND ROUTE 252 P.O. BOX 517 PAOLI, PA 19301	E-SYSTEMS, INC. GREENVILLE DIVISION ATTN JOLETA MOORE P.O. BOX 1056 GREENVILLE, TX 75401
		EFFECTS TECHNOLOGY, INC. 5383 HOLLISTER AVENUE ATTN S. CLOW SANTA BARBARA, CA 93111

DISTRIBUTION (Cont'd)

EG&G WASHINGTON ANALYTICAL SERVICES CENTER, INC. P.O. BOX 10218 ATTN C. GILES ALBUQUERQUE, NM 87114	GENERAL ELECTRIC CO.-TEMPO ALEXANDRIA OFFICE HUNTINGTON BUILDING, SUITE 300 ATTN DASIA 2560 HUNTINGTON AVENUE ALEXANDRIA, VA 22303	HONEYWELL MARINE SYSTEMS DIV ATTN DONALD WEISS 1200 E SAN BERNARDINO RD WEST COVINA, CA 91790
ELECTRO MAGNETIC APPLICATIONS, INC. ATTN FREDERICK ERIKSEN ATTN RAY ROSICH 1978 SOUTH GARRISON ST DENVER, CO 80226	GENERAL RESEARCH CORPORATION SANTA BARBARA DIVISION ATTN TECH INFO OFFICE P.O. BOX 6770 SANTA BARBARA, CA 93111	HUGHES AIRCRAFT COMPANY CENTINELA AND TEALE ATTN JOHN B. SINGLETON ATTN CTDC 6/E110 ATTN KENNETH R. WALKER CULVER CITY, CA 90230
EXXON NUCLEAR COMPANY, INC RESEARCH AND TECHNOLOGY CENTER ATTN DR. A. W. TRIVELPIECE 2955 GEORGE WASHINGTON WAY RICHLAND, WA 99352	GEORGIA INSTITUTE OF TECHNOLOGY GEORGIA TECH RESEARCH INSTITUTE ATTN R. CURRY ATLANTA, GA 30332	IIT RESEARCH INSTITUTE ELECTROMAG COMPATABILITY ANAL CTR NORTH SEVERN ATTN ACOAT ANNAPOLIS, MD 21402
FAIRCHILD CAMERA AND INSTRUMENT CORP 464 ELLIS STREET ATTN SEC CON FOR DAVID K. MYERS MOUNTAIN VIEW, CA 94040	GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION ATTN RSCH SECURITY COORDINATOR ATTN RES & SEC COORD FOR HUGH DENNY ATLANTA, GA 30332	IIT RESEARCH INSTITUTE 10 WEST 35TH STREET ATTN IRVING M. MINDEL ATTN JACK E. BRIDGES CHICAGO, IL 60616
FORD AEROSPACE & COMMUNICATIONS CORP 3939 FABIAN WAY ATTN TECHNICAL LIBRARY PALO ALTO, CA 94303	GRUMMAN AEROSPACE CORPORATION SOUTH OYSTER BAY ROAD ATTN L-01 35 BETHPAGE, NY 11714	INSTITUTE FOR DEFENSE ANALYSES 400 ARMY-NAVY DRIVE ATTN TECH INFO SERVICES ARLINGTON, VA 22202
FORD AEROSPACE & COMMUNICATIONS CORPORATION FORD & JAMBOREE ROADS ATTN KEN C. ATTINGER ATTN E. R. PONCELET, JR. NEWPORT BEACH, CA 92663	GTE SYLVANIA, INC. ELECTRONICS SYSTEMS GRP-EASTERN DIV ATTN CHARLES A. THORNHILL, LIBRARIAN ATTN LEONARD L. BLAISDELL 77 A STREET NEEDHAM, MA 02194	INT'L TEL & TELEGRAPH CORPORATION 500 WASHINGTON AVENUE ATTN TECHNICAL LIBRARY ATTN ALEXANDER T. RICHARDSON NUTLEY, NJ 07110
FRANKLIN INSTITUTE, THE 20TH STREET AND PARKWAY ATTN RAMIE H. THOMPSON PHILADELPHIA, PA 19103	GTE SYLVANIA, INC. 189 B. STREET ATTN CHARLES H. RAMSBOTTOM ATTN DAVID D. FLOOD ATTN EMIL P. MOTCHOK ATTN H & V GROUP, MARIO A. NUREFORA ATTN J. WALDRON NEEDHAM HEIGHTS, MA 02194	ITT AEROSPACE/OPTICAL DIVISION 3700 E. PONTIAC STREET ATTN SINCgars-NWE FORT WAYNE, IN 46803
GENERAL DYNAMICS CORP ELECTRONICS DIVISION P.O. BOX 81125 ATTN RSCH LIB SAN DIEGO, CA 92138	HARRIS CORPORATION HARRIS SEMICONDUCTOR DIVISION ATTN V PRES & MGR PROGMS DIV P.O. BOX 883 MELBOURNE, FL 32901	IRT CORPORATION P.O. BOX 81087 ATTN C. B. WILLIAMS ATTN DENNIS SWIFT SAN DIEGO, CA 92138
GENERAL DYNAMICS CORPORATION INTER-DIVISION RESEARCH LIBRARY KEARNY MESA P.O. BOX 80847 ATTN RESEARCH LIBRARY SAN DIEGO, CA 92123	HAZELTINE CORPORATION PULASKI ROAD ATTN TECH INFO CTR, M. WAITE GREENLAWN, NY 11740	JAYCOR SANTA BARBARA FACILITY ATTN W. A. RADASKY P.O. BOX 2008 SANTA BARBARA, CA 93120
GENERAL ELECTRIC CO.-TEMPO CENTER FOR ADVANCED STUDIES 816 STATE STREET (PO DRAWER 2Q) ATTN DASIA ATTN ROYDEN R. RUTHERFORD ATTN WILLIAM McNAMERA SANTA BARBARA, CA 93102	HONEYWELL INCORPORATED AVIONICS DIVISION 2600 RIDGEWAY PARKWAY ATTN S&RC LIB ATTN RONALD R. JOHNSON MINNEAPOLIS, MN 55413	JAYCOR 1401 CAMINO DEL MAR ATTN ERIC P. WENAAS ATTN RALPH H. STAHL DEL MAR, CA 92014
GENERAL ELECTRIC COMPANY AEROSPACE ELECTRONICS SYSTEMS FRENCH ROAD ATTN CHARLES M. HEWISON UTICA, NY 13503	HONEYWELL INCORPORATED AVIONICS DIVISION 13350 U.S. HIGHWAY 19 NORTH ATTN M S 725-5, STACEY H. GRAFF ATTN W. E. STEWART ST. PETERSBURG, FL 33733	JAYCOR 205 S WHITTING STREET, SUITE 500 ATTN LIB ALEXANDRIA, VA 22304
GENERAL ELECTRIC COMPANY P.O. BOX 5000 ATTN TECH LIB BINGHAMTON, NY 13902		

DISTRIBUTION (Cont'd)

KAMAN SCIENCES CORPORATION P.O. BOX 7463 ATTN ALBERT P. BRIDGES ATTN W. FOSTER RICH ATTN WALTER E. WARE ATTN FRANK H. SHELTON ATTN JERRY I. LUBELL ATTN PHIL TRACY ATTN WERNER STARK COLORADO SPRINGS, CO 80933	MISSION RESEARCH CORPORATION EM SYSTEM APPLICATIONS DIVISION 1400 SAN MATEO BLVD, SE, SUITE A ATTN DAVID E. MEREWETHER ALBUQUERQUE, NM 87108	RCA CORPORATION DAVID SARNOFF RES CENTER ATTN GEORGE J. BRUCKER P.O. BOX 432 PRINCETON, NJ 08540
LITTON SYSTEMS, INC. DATA SYSTEMS DIVISION 8000 WOODLEY AVENUE ATTN EMC GP ATTN MB48-61 VAN NUYS, CA 91409	MISSION RESEARCH CORPORATION-SAN DIEGO P.O. BOX 1209 ATTN V. A. J. VAN LINT LA JOLLA, CA 92038	RCA CORPORATION DAVID SARNOFF RESEARCH CENTER ATTN SECURITY DEPT, L. MINICH P.O. BOX 432 PRINCETON, NJ 08540
LITTON SYSTEMS, INC. AMECOM DIVISION 5115 CALVERT ROAD ATTN J. SKAGGS COLLEGE PARK, MD 20740	MITRE CORPORATION, THE P.O. BOX 208 ATTN M. F. FITZGERALD BEDFORD, MA 01730	RCA CORPORATION CAMDEN COMPLEX FRONT & COOPER STREETS ATTN OLIVE WHITEHEAD ATTN R. W. ROSTROM CAMDEN, NJ 08012
LOCKHEED MISSILES AND SPACE COMPANY, INC. P.O. BOX 504 ATTN L. ROSSI ATTN SAMUEL I. TAIMUTY ATTN H. E. THAYN ATTN GEORGE F. HEATH ATTN BENJAMIN T. KIMURA SUNNYVALE, CA 94086	NORDEN SYSTEMS, INC. HELEN STREET ATTN TECHNICAL LIBRARY NORWALK, CT 06856	ROCKWELL INTERNATIONAL CORPORATION P.O. BOX 3105 ATTN N. J. RUDIE ATTN J. L. MONROE ATTN V. J. MICHEL ATTN D/243-068, 031-CA31 ANAHEIM, CA 92803
LOCKHEED MISSILES AND SPACE COMPANY, INC. 3251 HANOVER STREET ATTN TECH INFO CTR D/COLL PALO ALTO, CA 94304	NORTHROP RESEARCH TECHNOLOGY CENTER ONE RESEARCH PARK ATTN LIBRARY PALOS VERDES PENN, CA 90274	ROCKWELL INTERNATIONAL CORPORATION SPACE DIVISION ATTN B. E. WHITE 12214 SOUTH LAKWOOD BOULEVARD DOWNEY, CA 90241
M.I.T. LINCOLN LABORATORY P.O. BOX 73 ATTN LEONA LOUGHLIN LEXINGTON, MA 02173	NORTHROP CORPORATION ELECTRONIC DIVISION 2301 WEST 120TH STREET ATTN LEW SMITH ATTN RAD EFFECTS GRP HAWTHORNE, CA 90250	ROCKWELL INTERNATIONAL CORPORATION 815 LAPHAM STREET ATTN B-1, DIV TIC (BAOB) EL SEGUNDO, CA 90245
MARTIN MARIETTA CORPORATION ORLANDO DIVISION P.O. BOX 5837 ATTN MONA C. GRIFFITH ORLANDO, FL 32805	PHYSICS INTERNATIONAL COMPANY 2700 MERCED STREET ATTN DOC CON SAN LEANDRO, CA 94577	ROCKWELL INTERNATIONAL CORPORATION P.O. BOX 369 ATTN F. A. SHAW CLEARFIELD, UT 84015
MCDONNELL DOUGLAS CORPORATION P.O. BOX 516 ATTN TOM ENDER ST. LOUIS, MO 63166	R&D ASSOCIATES P.O. BOX 9695 ATTN S. CLAY ROGERS ATTN CHARLES MO ATTN RICHARD R. SCHAEFER ATTN DOC CON ATTN M. GROVER ATTN C. MACDONALD ATTN J. BOMBARDT MARINA DEL REY, CA 90291	SANDERS ASSOCIATES, INC. 95 CANAL STREET ATTN I-6270, R. G. DESPATCHY, SR P/E NASHUA, NH 03060
MCDONNELL DOUGLAS CORPORATION 5301 BOLSA AVENUE ATTN STANLEY SCHNEIDER ATTN TECH LIBRARY SERVICES HUNTINGTON BEACH, CA 92647	R&D ASSOCIATED 1401 WILSON BLVD SUITE 500 ATTN J. BOMBARDT ARLINGTON, VA 22209	SCIENCE APPLICATIONS, INC. P.O. BOX 277 ATTN FREDERICK M. TESCHE BERKELEY, CA 94701
MISSION RESEARCH CORPORATION P.O. DRAWER 719 ATTN EMP GROUP ATTN WILLIAM C. HART ATTN C. LONGMIRE SANTA BARBARA, CA 93102	RAND CORPORATION 1700 MAIN STREET ATTN LIB-D ATTN W. SOLLFREY SANTA MONICA, CA 90406	SCIENCE APPLICATIONS, INC. P.O. BOX 2351 ATTN R. PARKINSON LA JOLLA, CA 92038
	RAYTHEON COMPANY HARTWELL ROAD ATTN GAJANAN H. JOSHI BEDFORD, MA 01730	SCIENCE APPLICATIONS, INC. HUNTSVILLE DIVISION 2109 W. CLINTON AVENUE SUITE 700 ATTN NOEL R. BYRN HUNTSVILLE, AL 35805
	RAYTHEON COMPANY 528 BOSTON POST ROAD ATTN HAROLD L. FLESCHER SUDSBURY, MA 01776	SCIENCE APPLICATIONS, INC. 8400 WESTPARK DRIVE ATTN WILLIAM L. CHADSEY MCLEAN, VA 22101

DISTRIBUTION (Cont'd)

SINGER COMPANY
1150 MC BRIDE AVENUE
ATTN TECH INFO CTR
LITTLE FALLS, NJ 07424

SPERRY RAND CORPORATION
SPERRY MICROWAVE ELECTRONICS
P.O. BOX 4648
ATTN MARGARET CORT
CLEARWATER, FL 33518

SPERRY RAND CORPORATION
SPERRY DIVISION
MARCUS AVENUE
ATTN TECH LIB
GREAT NECK, NY 11020

SPERRY RAND CORPORATION
SPERRY FLIGHT SYSTEMS
P.O. BOX 21111
ATTN D. ANDREW SCHOW
PHOENIX, AZ 85036

SPIRE CORPORATION
P.O. BOX 0
ATTN JOHN K. UGLUM
ATTN ROGER G. LITTLE
BEDFORD, MA 01730

SIR INTERNATIONAL
333 RAVENSWOOD AVENUE
ATTN ARTHUR LEE WHITSON
MENLO PARK, CA 94025

SYSTEMS, SCIENCE AND SOFTWARE, INC.
P.O. BOX 1620
ATTN ANDREW R. WILSON
LA JOLLA, CA 92033

TEXAS INSTRUMENTS, INC.
P.O. BOX 226015
ATTN TECH LIB
ATTN DONALD J. MANUS
ATTN FRANK POBLENZ
DALLAS, TX 75266

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
ATTN O. E. ADAMS
ATTN R. K. PLEBACH
ATTN L. R. MAGNOLIA
ATTN H. H. HOLLOWAY
ATTN W. GARGARO
REDONDO BEACH, CA 90278

TEXAS TECH UNIVERSITY
P.O. BOX 5404 NORTH COLLEGE STATION
ATTN TRAVIS L. SIMPSON
LUBBOCK, TX 79417

UNITED TECHNOLOGIES CORP
HAMILTON STANDARD DIVISION
ATTN CHIEF ELEC DESIGN
BRADLEY INTERNATIONAL AIRPORT
WINDSOR LOCKS, CT 06069

WESTINGHOUSE ELECTRIC CORPORATION
ADVANCED ENERGY SYSTEMS DIV
ATTN TECH LIB
P.O. BOX 10864
PITTSBURGH, PA 15236

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN TECHNICAL DIRECTOR, DRDEL-CT
ATTN LEGAL OFFICE

HARRY DIAMOND LABORATORIES
ATTN CO/TD/TSO/DIVISION DIRECTORS
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, 81100 (3 COPIES)
ATTN HDL LIBRARY, 81100 (WOODBRIDGE)
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN CHIEF, 22000
ATTN CHIEF, 22100 (3 COPIES)
ATTN CHIEF, 22300
ATTN CHIEF, 22800
ATTN CHIEF, 22900
ATTN CHIEF, 13300
ATTN CHIEF, 21000
ATTN CHIEF, 21100 (3 COPIES)
ATTN CHIEF, 21200
ATTN CHIEF, 21300 (5 COPIES)
ATTN CHIEF, 21400 (3 COPIES)
ATTN CHIEF, 21500
ATTN CHIEF, 20240
ATTN TRIMMER, P., 22100
ATTN VALLIN, J., 22100
ATTN VRABEL, M. J. (20 COPIES)

