

O que é preciso para criar um app que envolva áudio?

Spotify

Tocador de músicas

Cross DJ

Mixagem de áudio

Kovver App

Backing track e play-along

Soluções triviais • Híbrido Expo-AV **Android** Audio HAL iOS AVAudioEngine

Soluções problemáticas

Uma boa solução

Tocadores de músicas

Mas nem tanto

Mixagem de áudio, backing track e play-along

Rápido, mas não instantâneo

20 a 30 ms

"Latência de áudio é o atraso de tempo conforme um sinal de áudio passa por um sistema."

-LAGO, 2004

 Utilizar uma linguagem de mais baixo nível como o C++ no lugar de Kotlin e Swift

Diminuição da latência em códigos mais velozes e otimizados

 Baixa velocidade de desenvolvimento e alto risco de bugs

Hoje, é inviável que programadores com pouca experiência e enfoque em linguagens de alto nível como Java e Swift implementem sistemas voltados ao meio musical

Justificativa

O presente projeto
busca democratizar o
desenvolvimento de aplicativos
que dependam de latências
curtas para atingir o objetivo
do usuário como tocadores de
múltiplas faixas, efeitos
eletrônicos em guitarras e
simuladores de instrumentos
musicais.

Objetivo geral

Desenvolver uma biblioteca que permita a utilização de áudio de baixa latência implementado em linguagem de programação de baixo nível, como C++ e Objective-C, com interface única para dispositivos móveis com os sistemas operacionais Android e iOS em mais alto nível, como a linguagem de programação TypeScript com o framework React Native.

Objetivos específicos

Identificar soluções para áudio de baixa latência

Desenvolver uma interface em alto nível para o áudio de <u>b</u>aixa latência

Implementar uma das soluções em uma linguagem de baixo nível

Avaliar o ganho de velocidade no desenvolvimento

Conectar essa implementação aos sistemas operacionais Android e iOS

Verificar a latência do áudio pela interface criada

O que é JUCE? É de beber?

JUCE é um framework de aplicativo C++
cross-platform, parcialmente de código
aberto, usada para o desenvolvimento de
aplicativos desktop e móveis. É usado em
particular para GUI e bibliotecas de
plug-ins

Vantagens

Grátis

Open source e livre para uso comercial*

Flexível

Disponibilidade de soluções para diversos casos de uso

Extensível

Possibilidade de trabalhar com efeitos não nativos

Comunidade

Fórum ativo e tutoriais desde o básico

Desvantagens

"Grátis"

Licença para produtos com receita maiores que 50 mil/ano

Grande demais

Por ser de uso geral, carrega código desnecessário

Áudio não é o foco

Outro problema por ser de uso geral

Verboso

Qualquer programa requer muito código

Superpowered Audio SDK é uma biblioteca de áudio C ++ com baixo consumo de energia, latência em tempo real e reprodutores de áudio *cross-platform*, decodificadores de áudio, Fx (efeitos), E / S de áudio, streaming, análise de música, espacialização e mixagem

Desvantagens

Comercial

Precisa de licença mesmo em produtos sem renda

Inflexível

Código fechado e não extensível

Corporativo

Comunidade quase inexistente

Suporte precário

Além de pago, o suporte é realizado apenas pelo CEO

Vantagens

Otimizado

Baixo consumo de memória, processamento e bateria

Leve

Biblioteca muito bem otimizada em tamanho

Foco em áudio

Diversas funcionalidades focada em uso de áudio

Reconhecido

Utilizado por Spotify, Microsoft e Voloco

O que é React Native?

React Native é um framework de aplicativos móveis de código aberto criado pelo Facebook. É usado para desenvolver aplicativos para Android, Android TV, iOS, macOS, tvOS, Web, Windows e UWP, permitindo que os desenvolvedores usem a estrutura do React junto com as capacidades da plataforma nativa (EISENMAN, 2015)

Com React-Native podemos desenvolver usando JavaScript, mas não precisamos ficar presos a apenas isso!

O sistema de módulos nativos expõe instâncias de classes nativas para JavaScript como objetos JS, permitindo assim que você execute código nativo arbitrário de dentro de JS.

React native builder bob

Conjunto simples de comandos para geração automática de código na construção de bibliotecas React Native.

Implementação

Repositório git

Criação do repositório de código aberto no GitHub

React-native builder-bob

Geração automática do código para a biblioteca

Configuração Superporwered

Instalação e configuração da Superpowered na biblioteca

Testes

Instalação e testes da biblioteca em projeto exemplo

UML das classes desenvolvidas

MultiTracksPlayer

- -_audioIO: Superpowered::SuperpoweredAudioIO
- _stereoMixer: Superpowered::StereoMixer
- _tracks: Track[]

MultiTracksPlayer(samplerate: int, buffersize: int): MultiTracksPlayer

- + setTracks(paths: string[], amount: int): void
- + setRate(rate: float): void
- + setPitchShiftCents(pitchShiftCents: int): void
- + play(): void
- + pause(): void
- + setPosition(ms: double, andStop: bool): void
- + getDisplayPositionMs(): double
- + getTrackBufferedPercent(index: int): float
- + getBufferedPercent(): float

Track

- + samplerate: int
- + leftVolume: float
- + rightVolume: float

Track(path: string): Track

- + getDurationMs(path: string): int
- + processLeft(buffer: float, mix: bool, numberOfFrames: int): bool
- + processRight(buffer: float, mix: bool, numberOfFrames: int): bool
- + processStereo(buffer: float, mix: bool, numberOfFrames: int): boo
- + setVolume(left: float, right: float): void

Superpowered::AdvancedAudioPlayer

Classe de código aberto da Superpowered Audio SDK

Aplicativo exemplo

Perguntas?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Maykon Michel Palma

