Predictive Analytics – Session 5

Predicting Classifications

Associate Professor Ole Maneesoonthorn

Associate Professor in Econometrics and Statistics

Melbourne Business School

O.Maneesoonthorn@mbs.edu

What is "classification"?

What are the challenges in modelling/predicting them?

What is classification?

- Qualitative data: e.g.
 - Yes/No responses
 - Agree/Neutral/Disagree responses
 - Product choices (brands)

... basically output variables that are non-numeric

How do we model & predict classifications?

- What you might see:
 - Convert the labels to numbers
 - Apply the linear regression techniques
- NOT APPROPRIATE! Why?
 - It assumes an inherent ranking in the labels
 - It assumes that shifting from label A to label B is the same as shifting from label B to label C

How do we model & predict classifications?

- What you should do:
 - Model and predict the likelihood of belonging to a certain label
 - That is, look at probability!
 - Input variables then explain how these probabilities may vary
- Prediction?
 - Label with highest probability wins!
 - Or introduce a threshold of probability according to your context

- The predictive assessment process remains the same as numerical data
 - Split data into training and test set
 - Train the model using training data set
 - Evaluate predictive accuracy using the test set
- Metrics have to reflect the data type
 - Accurate prediction: actual = predicted
 - Inaccurate prediction: actual ≠ predicted

- Focus on two labels classification
- Two-label classification typically done using 0/1 coding
- But concepts generalizable to multiple labels

•	Hit/miss table (c	confusion table)		Actual Ob	servation
			Yes	No	
			Yes	True Positive	False Positive
		Predicted Outcome	No	False Negative	True Negative

$$Overall\ Accuracy = \frac{True\ Positive + True\ Negative}{Total}$$

Assessing predictive accuracy

Hit/miss table (confusion table)

onfusion table)		Actual Observation	
		Yes	No
Dradistad Outsoms	Yes	True Positive	False Positive
Predicted Outcome	No	False Negative	True Negative

$$Precision = \frac{True\ Positive}{Predicted\ Positive}$$

Assessing predictive accuracy

Hit/miss table (confusion table)

onfusion table)		Actual Observation	
,		Yes	No
Dradistad Outsoms	Yes	True Positive	False Positive
Predicted Outcome	No	False Negative	True Negative

$$Recall = \frac{True\ Positive}{Actual\ Positive}$$

Also known as "Sensitivity"

Assessing predictive accuracy

Hit/miss table (confusion table)

onfusion table)		Actual Observation	
		Yes	No
Duadistad Outsons	Yes	True Positive	False Positive
Predicted Outcome	No	False Negative	True Negative

$$Specificity = \frac{True\ Negative}{Actual\ Negative}$$

False Positive Rate is 1 - Specificity

Assessing predictive accuracy

Receiver Operating Characteristics (ROC) curve

Plots Recall vs False
Positive Rates at different
thresholds

Goal: for the curve to be as close to the top left corner as possible

→ Maximize the Area Under Curve (AUC)

False Positive Rate

- Metrics associated with ROC curve:
 - Area Under Curve (AUC) area under the ROC curve, high is good
 - Maximum achievable is 1
 - AUC = $0.5 \rightarrow$ model is as good as a random guess
 - Look for AUC > 0.5

- Metrics associated with ROC curve:
 - Gini index another interpretation of AUC
 - Recalculation of the AUC so that zero is a benchmark

$$Gini = (2 \times AUC) - 1$$

- Gini = $0 \rightarrow$ model predicts as good as a random guess
- Negative Gini → model predicts worse than random guess
- Look for positive Gini → model predicts better than random guess

- Incorporating context loss focus on minimizing impacts of errors
- What are the costs if we get it wrong?
- To your business?

i busiliess:		Actual Observation	
		Yes	No
Duadiated Outcome	Yes	True Positive	False Positive
Predicted Outcome	No	False Negative	True Negative

Assessing predictive accuracy

- Let us take the example of credit risk modelling
- Model determines which loan application is credit worthy

Approved

Rejected

- Good credit = loan approved
- Bad credit = loan rejected

Predicted Outcome

Actual Observation		
Good Ioan	Bad loan	
True Positive	False Positive	
False Negative	True Negative	

Assessing predictive accuracy

- Let us take the example of credit risk modelling
- Consequence of False Negative? → Loss of income opportunity cost
- Consequence of False Positive? → Loss of loan amount real cost

•	Loss of future income (for duration of agreed loan)

How much of the loan can be recovered?

• Is there collateral on loan?

Very context specific!

Actual	Observation

Good loan	Bad loan

Loss is highly asymmetric!

Predicted Outcome	Approved	True Positive	False Positive
	Rejected	False Negative	True Negative

- Let us take the example of credit risk modelling
- Example with numbers: loans with collateral

		Actual Observation	
		Good Ioan	Bad loan
Duadicted Outcome	Approved	True Positive = 52%	False Positive = 8%
Predicted Outcome	Rejected	False Negative = 2%	True Negative = 38%

Assessing predictive accuracy

- Let us take the example of credit risk modelling
- Example with numbers: loans with collateral

False negative

Avg. opportunity cost of 35% of portfolio value

False positive

- Loss of future income (after default), avg. cost of 30% of portfolio value
- Costs associated with resell/release of collateral, avg. cost of 10% of portfolio value

Assessing predictive accuracy

- Let us take the example of credit risk modelling
- Example with numbers: loans with collateral
- Loss calculation for a \$10m. portfolio:

Expected Loss =
$$2\% \times (35\% \times 10m) + 8\% \times (40\% \times 10m)$$

= $390k$

- Different models will give different error rates
- Choose a model that minimize this loss!

ss!		Good Ioan	Bad loan
Predicted	Approved	True Positive 52%	False Positive 8%
Outcome	Rejected	False Negative 2%	True Negative 38%

Actual Observation

Predictive Models

Classification models produce probabilities

$$Pr(Y = 1|X)$$

Predictive labels:

$$\widehat{Y} = 1$$
 if $\Pr(Y = 1|X) > c$

- where c is the "threshold" probability, typically set at 0.5
- This can be changed based on context
- → Prediction rule set by context!

Predictive Models – regression based models

- Linear regression?
 - Not suitable
 - Probability bounded between 0 and 1, linear regression is unbounded
- Alternative to address boundary issue: LOGISTIC regression

$$Pr(Y|X) = f(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)$$

- What is this function f(.)?
 - Inverse logistic function $f(x) = \frac{e^x}{1 + e^x}$
 - Translate a real number to a boundary between 0 and 1

Predictive Models – regression based models

- This gives the logistic regression
- Relate input variables to probabilities

Predictive Models – algorithm-based models

Tree segmentation

- Now known as "Decision Trees"
- Difference: observation at leaf nodes are used to calculate probabilities for each label
- Predictive process: trace the relevant tree branch using input variables
- Leaf node presents the predicted probability

Predictive Models – algorithm-based models

Neural network

- Trained in the usual way with hidden neurons
- Link function must translate output to probabilities
- Similar to logistic regression but with hidden layer → flexibility

Predictive Models – Unsupervised learning

K-means

- Input variables are used to obtain distinct segments
- Calculate probabilities of each label for each segment these are used for predictions
- Note input variables need to be numeric for this to work well

Predictive Models – Unsupervised learning K-NN

- Input variables are used to train "neighbourhoods"
- Calculate probabilities of each label for each neighbourhood
- Bayes theorem used to obtain prediction of neighbourhood and classification

Predictive Models – algorithm-based models

Ensemble methods

- Bagging and random forest algorithm remains as described in session 4
- With exception that the base learner is the "decision tree"
- Boosting base learner can be a decision tree or logistic regression type model
 - glmboost() uses logistic regression as the base learner
 - Boosting algorithm remains as described in session 4

Predictive Models – algorithm-based models SVM

- Conceptually separation of the data into segments
- Goal: maximize the margin/gap between each segment
- But output variable plays a role in the definition of the objective function
 - As part of the constraint of the optimization problem

Remember:

- Scale your numeric input data for:
 - Neural network
 - K-means & K-NN
- Use the appropriate metrics for classification
 - Summaries of hit/miss table
 - Loss function constructed from user preference
- Each model still suffer from their respective pros & cons!

Multi-class output

- Discussion so far focuses on binary outcomes
- Most methods can be generalized to multi-class outputs
- Logistic regression depends if the outcomes have a sense of ranking
 - If apparent ranking ordered logistic regression (utility based concepts)
 - If no apparent ranking multinomial logistic
- Tree, unsupervised and ensemble methods
 - Multiple categories and multiple probability calculations
 - Basic outline of algorithms remain as before

Multi-class output

- SVM can only handle binary outputs!
- Possible solution:
 - Train SVM multiple times using "One vs ALL", "One vs One" or "One vs Base"
 - Each algorithm designed to predict a particular class of the outputs
 - Predictions may not be consistent.....
- Ongoing research on this front