

编译原理 第四章 语法分析



哈尔滨工业大学 陈鄞

# 第6讲(语法分析\_3)要点

|      | top_down | bottom_up |
|------|----------|-----------|
| 通用框架 | 递归下降分析   | 移入-归约分析   |
|      |          |           |
|      |          |           |

#### 移入-归约分析器的格局

栈 输入带 
$$\$X_1...X_m$$
  $a_ia_{i+1}...a_n$  \\$

不断向栈中移入输入符号, 一旦栈顶符号串可以归约, 就进行归约

# 第6讲(语法分析\_3)要点

|      | top_down | bottom_up  |
|------|----------|------------|
| 通用框架 | 递归下降分析   | 移入-归约分析    |
| 主要问题 | 候选式冲突    | 冲突 [ 归约-归约 |
|      |          |            |

#### 例:归约-归约冲突

$$(1) < S > \rightarrow var < IDS > : < T >$$

$$(2) < IDS > \rightarrow i$$

$$(3) < IDS > \rightarrow < IDS >$$
, i

$$(4) < T > \rightarrow real \mid int$$

| 栈                      | 剩余输入                                          | 动作 |  |
|------------------------|-----------------------------------------------|----|--|
| \$                     | var i <sub>A</sub> , i <sub>B</sub> : real \$ |    |  |
| \$ var                 | $i_A, i_B$ : real \$                          | 移入 |  |
| $\$$ var $i_A$         | , i <sub>B</sub> : real \$                    | 移入 |  |
| \$ var < <i>IDS</i> >  | , <b>i</b> <sub>B</sub> : real \$             | 归约 |  |
| var <i>IDS</i> $ > $ , | i <sub>B</sub> : real \$                      | 移入 |  |
| \$ var                 | : real \$                                     | 移入 |  |

$$\langle IDS \rangle \langle IDS \rangle \langle T \rangle$$
  
var  $\mathbf{i}_A$ ,  $\mathbf{i}_B$ : real

#### 例:移入-归约冲突

#### 文法:

- (1)  $E \rightarrow E + T$
- (2)  $E \rightarrow T$
- $(3) T \rightarrow T^*F$
- $(4) T \rightarrow F$
- (5)  $F \rightarrow (E)$
- (6)  $F \rightarrow id$

#### 栈 剩余输入

 $d_A * id_B$ 

 $id_A * id_B$ 

 $T * id_B$ 

动作

移入

归约

归约



## 第6讲(语法分析\_3)要点

|      | top_down  | bottom_up            |
|------|-----------|----------------------|
| 通用框架 | 递归下降分析    | 移入-归约分析              |
| 主要问题 | 候选式冲突     | 冲突 [ 归约-归约           |
| 关键问题 | 如何正确选择候选式 | 如何正确识别句柄(每次应该归约的符号串) |

【归约-归约:哪个是句柄归约哪个
【移入-归约:是句柄就归约;不是就移入

### 如何正确地识别句柄?——LR 分析法

- >基本原理
  - ▶句柄是逐步形成的,用"状态"表示句柄识别的进展程度

 $\triangleright$ 例:  $S \rightarrow bBB$ 

$$> S \rightarrow b \cdot BB$$

$$\gt{S} \rightarrow bB \cdot B$$
 一待约项目

项目描述了句柄识别的状态

LR分析器基于这样一些状态来构造自动机进行句柄的识别

#### 等价项目

以等价项目集作为状态构造自动机

#### LR 分析器(自动机)的总体结构

输入缓冲区



### LR 分析表的结构

〉例

文文法

① 
$$S \rightarrow BB$$

$$\bigcirc B \rightarrow aB$$

$$\textcircled{3}$$
  $\boldsymbol{B} \rightarrow \boldsymbol{b}$ 

sn:将符号a、状态n压入栈

rn:用第n个产生式进行归约

| 状态 | ACTION     |           | GOTO |   |   |
|----|------------|-----------|------|---|---|
|    | a          | b         | \$   | S | B |
| 0  | <b>s</b> 3 | <b>s4</b> |      | 1 | 2 |
| 1  |            |           | acc  |   |   |
| 2  | <b>s</b> 3 | <b>s4</b> |      |   | 5 |
| 3  | <b>s</b> 3 | <b>s4</b> |      |   | 6 |
| 4  | r3         | r3        | r3   |   |   |
| 5  | r1         | r1        | r1   |   |   |
| 6  | r2         | r2        | r2   |   |   |

$$S_i \xrightarrow{A (194)} S_j$$

### 如何构造给定文法的LR分析表?

- ► LR(0)分析
- >SLR分析
- ► LR(1)分析
- ►LALR分析

## ① LR(0) 分析

▶右部某位置标有圆点的产生式称为相应文法的一个LR(0) 项目(简称为项目)

$$A \rightarrow \alpha_1 \cdot \alpha_2$$

例:  $S \rightarrow bBB$ 

$$> S \rightarrow b \cdot BB$$

$$\triangleright S \rightarrow bBB$$
· ——归约项目

项目描述了句柄识别的状态

### 例:LR(0)自动机



#### LR(0)分析表

| 状  | ACTION     |           |     | GOTO |   |
|----|------------|-----------|-----|------|---|
| 状态 | a          | b         | \$  | S    | В |
| 0  | <b>s</b> 3 | <b>s4</b> |     | 1    | 2 |
| 1  |            |           | acc |      |   |
| 2  | <b>s</b> 3 | <b>s4</b> |     |      | 5 |
| 3  | <b>s</b> 3 | <b>s4</b> |     |      | 6 |
| 4  | r3         | r3        | r3  |      |   |
| 5  | r1         | r1        | r1  |      |   |
| 6  | r2         | r2        | r2  |      |   |

#### LR(0)自动机(分析表)构造方法

- $\succ$  CLOSURE ({[ $S' \rightarrow \cdot S]$ }) $\rightarrow C$
- C: 自动机状态集合

- $\triangleright$  for each  $I_i \in C$ 
  - $\triangleright if A \rightarrow \alpha \cdot a\beta \in I_i : \diamondsuit I_j = GOTO(I_i, a); \text{ if } (I_j \notin C) \text{ then add } I_j \text{ to } C; ACTION[i, a] = s_j$
  - $\triangleright$  if  $A \rightarrow \alpha \cdot B\beta \in I_i : \diamondsuit I_j = GOTO(I_i, B)$ ; if  $(I_j \notin C)$  then add  $I_j$  to C; GOTO[i, B] = j

