CN7028 – Database Systems

Lecture #9

Database Security and Administration

Module leader
Dr Hisham AbouGrad

Agenda

- Distinguish between Security and Integrity
- Provide examples of accidental and deliberate threats to databases
- Describe methods of providing security
- Describe how views provide security and how they are updated
- Describe what and how integrity constraints could be expressed and enforced
- How to protect a computer system using computer-based controls.
- Recognise the approaches for securing a DBMS on the Web.

Learning Outcomes

After this session, you should be able to:

- \square Recognise the scope of database security.
- \blacksquare Understand why database security is a serious concern for organizations.
- Identify the types of threat that can affect a database system.
- ☐ Learn how to protect a computer system using computer-based controls.
- \Box Know the different approaches for securing a DBMS.
- ☐ Distinction between data administration and database administration.
- lacktriangle Understand the purpose and tasks associated with data administration and database administration.

Integrity refers to the correctness of the data

- **Referential Integrity** Concerned with relationships between tables eg, Does a foreign key value actually have a corresponding primary key in another table?
- Entity Integrity Each row of a table has a unique and non-null primary key value

Integrity Enhancement Feature – IEF

- Consider five types of integrity constraints:
 - required data
 - domain constraints
 - entity integrity
 - referential integrity
 - general constraints.
- searchCondition can involve a table lookup:

CREATE DOMAIN BranchNo AS CHAR(4)
CHECK (VALUE IN (SELECT branchNo
FROM Branch));

Domains can be removed using DROP DOMAIN:

DROP DOMAIN DomainName
[RESTRICT | CASCADE]

Required Data

position VARCHAR(10) NOT NULL

Domain Constraints

(a) CHECK

sex CHAR NOT NULL

CHECK (sex IN ('M', 'F'))

(b) CREATE DOMAIN

CREATE DOMAIN DomainName [AS] dataType [DEFAULT defaultOption] [CHECK (searchCondition)]

For example:

CREATE DOMAIN SexType AS CHAR
CHECK (VALUE IN ('M', 'F'));
sex
SexType NOT NULL

IEF: Referential Integrity

- FK is column or set of columns that links each row in child table containing foreign FK to row of parent table containing matching PK.
- **№** Referential integrity means that, if FK contains a value, that value must refer to existing row in parent table.
- ISO standard supports definition of FKs with FOREIGN KEY clause in CREATE and ALTER TABLE: FOREIGN KEY(branchNo) REFERENCES Branch
- Any INSERT/UPDATE attempting to create FK value in child table without matching CK value in parent is rejected.
- Action taken attempting to update/delete a CK value in parent table with matching rows in child is dependent on referential action specified using ON UPDATE and ON DELETE subclauses:
 - CASCADE

- SET NULL

SET DEFAULT

- NO ACTION

IEF: Referential Integrity

Referential Integrity Actions

<u>CASCADE</u>: Delete row from parent and delete matching rows in child, and so on in cascading manner.

<u>SET NULL</u>: Delete row from parent and set FK column(s) in child to NULL. Only valid if FK columns are NOT NULL.

<u>SET DEFAULT</u>: Delete row from parent and set each component of FK in child to specified default. Only valid if DEFAULT specified for FK columns.

NO ACTION: Reject delete from parent. Default.

FOREIGN KEY (staffNo) REFERENCES Staff
ON DELETE SET NULL

FOREIGN KEY (ownerNo) REFERENCES Owner ON UPDATE CASCADE

IEF: Referential Integrity

Schema for four relations (Pine Valley Furniture Company)

IEF: Entity Integrity

- Primary key of a table must contain a unique, non-null value for each row.
- **ISO standard supports FOREIGN KEY clause in CREATE and ALTER TABLE statements:**

PRIMARY KEY(staffNo)
PRIMARY KEY(clientNo, propertyNo)

Can only have one PRIMARY KEY clause per table. Can still ensure uniqueness for alternate keys using UNIQUE:

UNIQUE(telNo)

Integrity Constraints

Domain Constraints

Entity Integrity

Allowable values for an attribute. See Table 5-1 No primary key attribute may be null. All primary key fields **MUST** have data

Table 5-1 Domain Definitions for INVOICE Attributes

Attribute	Domain Name	Description	Domain
Customer_ID	Customer_IDs	Set of all possible customer IDs	character: size 5
Customer_Name	Customer_Names	Set of all possible customer names	character: size 25
Customer_Address	Customer_Addresses	Set of all possible customer addresses	character: size 30
City	Cities	Set of all possible cities	character: size 20
State	States	Set of all possible states	character: size 2
Postal_Code	Postal_Codes	Set of all possible postal zip codes	character: size 10
Order_ID	Order_IDs	Set of all possible order IDs	character: size 5
Order_Date	Order_Dates	Set of all possible order dates	date format mm/dd/yy
Product_ID	Product_IDs	Set of all possible product IDs	character: size 5
Product_Description	Product_Descriptions	Set of all possible product descriptions	character size 25
Product_Finish	Product_Finishes	Set of all possible product finishes	character: size 15
Standard_Price	Unit_Prices	Set of all possible unit prices	monetary: 6 digits
Product_Line_ID	Product_Line_IDs	Set of all possible product line IDs	integer: 3 digits
Ordered_Quantity	Quantities	Set of all possible ordered quantities	integer: 3 digits

Integrity Constraints

- Referential Integrity-rule states that any foreign key value
 - MUST match a primary key value in the relation
 - Or the foreign key can be null

Referential integrity constraints (Pine Valley Furniture)

Database Security

What is Database Security?

- Protecting the DB from unauthorised access: Data is a valuable resource that must be strictly controlled and managed, as with any corporate resource.
- Have to protect the privacy of individuals: Part or all of the corporate data may have strategic importance and therefore needs to be kept secure and confidential.
- Mechanisms that protect the database against intentional or accidental threats.
- Security considerations do not only apply to the data held in a database. Breaches of security may affect other parts of the system, which may in turn affect the database.
- Involves measures to avoid:
 - Theft and fraud
 - Loss of confidentiality (secrecy)
 - Loss of privacy
 - Loss of integrity
 - Loss of availability

Privacy

- Privacy is the right of individuals to have control over stored information about them
- Organisations are legally bound to adopt security policies
- A Database should only hold data that is required by the organization

Threat

Any situation or event, whether intentional or unintentional, that will adversely affect a system and consequently an organization.

Accidental Threats

- User unintentionally requests an operation and is granted it due to an oversight of operation
- A person is accidentally sent a message destined for someone else
- Communication system error results in connecting a user to another's session
- System fails to perform actions as it should

Deliberate/intentional Threats

- Reading Display screens
- Impersonating an authorised user
 - Using another person's id
- Writing programs to access the DB
 - Illegal entry by a hacker
 - Program alteration
- Removing hardware
- Bribing, Blackmailing

Inadequate Staff training

Illegal entry by hacker

Introduction of viruses

Blackmail

Summary of Threats To Computer Systems

Inadequate security policies and

Staff shortages or strikes

procedures

- Aspects of Security Problems
 - Legal/social
 - Levels of Security
 - Authentication Methods
 - Physical controls
 - Operational problems (how are the passwords protected)
 - Operating system Security (does the o/s protect/erase files when finished with?)

Typical Multi-user Computer Environment

- Concerned with physical controls to administrative procedures and includes:
 - Authorization
 - Access controls
 - Views
 - Backup and recovery (Log files)
 - Integrity
 - Encryption

Authorization

- The granting of a right or privilege, which enables a subject to legitimately have access to a system or a system's object.
- Authorization is a mechanism that determines whether a user is, who he or she claims to be.
- A given user will have authorisation to access different database objects and or individual data items
 - Records/rows
 - Files/tables
 - Database
- A given user will also have different modes/levels of access to different objects.
 - SELECT
 - SELECT and UPDATE
 - READ or WRITE

Access control

- Based on the granting and revoking of privileges.
- A privilege allows a user to create or access (that is read, write, or modify) some database object (such as a relation, view, and index) or to run certain DBMS utilities.
- Privileges are granted to users to accomplish the tasks required for their jobs.
- Most DBMS provide an approach called Discretionary Access Control (DAC).
- SQL standard supports DAC through the GRANT and REVOKE commands.
- The GRANT command gives privileges to users, and the REVOKE command takes away privileges.
- A privilege allows a user to create or access (that is read, write, or modify) some database object (such as a table, view, etc) or to run certain DBMS utilities.
- Privileges are granted to users to accomplish the tasks required for their jobs.

Access control

In planning the access, the DBA often uses an access control matrix.

Subject	Table 1	Table 2	Table 4	Table 5	Table 6
User 1001	Read	Read	All	All	All
User 1002	Update	Update	Read	Read	Read
User 1003	Read	Read	Write	Update	Read

- Grant command
 - A user may allow others access to data only if they themselves are allowed to access the data and give out the privileges
- Anyone who is an authoriser can revoke the privileges that they have granted
 - Revoke update on student from 'mary';

grant all
on student
to 'mary', 'george';

Grant select, update, insert on student to 'george';

Data Control Language - Grant & Revoke

GRANT privilege TO the public or user

(Allowing users to: select and update data from the **Student** table)

REVOKE privilege TO user

GRANT SELECT, UPDATE ON STUDENT TO PUBLIC; Or **GRANT SELECT, INSERT ON STUDENT TO** JULIETTE; **REVOKE INSERT ON STUDENT FROM JULIETTE**;

What PUBLIC means?

All Users

- View (As covered in last topic)
 - Is the dynamic result of one or more relational operations operating on the base relations to produce another relation
 - A view is a virtual relation that does not actually exist in the database, but is produced upon request by a particular user, at the time of request
- Backup & Recovery
 - Process of periodically taking a copy of the database and log file (and possibly programs) to offline storage media.
- Journaling (log file)
 - Process of keeping and maintaining a log file (or journal) of all changes made to database to enable effective recovery in event of failure.

- Integrity
 - Prevents data from becoming invalid, and hence giving misleading or incorrect results.
- Encryption
 - The encoding of the data by a special algorithm that renders the data unreadable by any program without the decryption key.
- Security Tools
 - Security log
 - Records attempted security violations
 - Keep an audit trail
 - Records all access to the database
 - Operations
 - Terminal used
 - User details
 - Encrypt the data so that only the DBMS can access the information

DBMSs and Web Security

- Internet communication relies on TCP/IP as the underlying protocol. However, TCP/IP and HTTP were not designed with security in mind. Without special software, all Internet traffic travels 'in the clear' and anyone who monitors traffic can read it.
- Must ensure while transmitting information over the Internet that:
 - inaccessible to anyone but sender and receiver (privacy);
 - not changed during transmission (integrity);
 - receiver can be sure it came from sender (authenticity);
 - sender can be sure receiver is genuine (non-fabrication);
 - sender cannot deny he or she sent it (non-repudiation).

DBMSs and Web Security

- Web Security Measures include:
 - Proxy servers
 - Firewalls
 - Message digest algorithms and digital signatures
 - Digital certificates
 - Kerberos
 - Secure sockets layer (SSL) and Secure HTTP (S-HTTP)
 - Secure Electronic Transactions (SET) and Secure Transaction Technology (SST)
 - Java security
 - ActiveX security

DBMSs and Web Security

How Secure Electronic Transactions (SET) Works

Summary

- Security Vs. Integrity
 - Security: ensuring that users only do what they are allowed to do
 - Integrity: ensuring that the users perform the correct actions
- Security is an important aspect of DB design
- Privacy of users is crucial for trust
- SQL uses Data Control Language to Grant & Revoke user's access to different levels of data
- Standard security protocols should be in place for achieving better security of the resultant application

Independent Study

Database Systems
A Practical Approach to Design,
Implementation, and Management

Sixth Edition, Global Edition

Chapter 20

Any Questions?

CN7028 - Database Systems

Lecture #9

Database Security and Administration

Thank you for attending and participating

Module leader
Dr Hisham AbouGrad