Problem statement

Understanding the relation between the various factor like bmi, number of children or smoker affecting the Hosiptalization charges. Predicting the hospitalization by understanding patterns from other parameters.

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from scipy.stats import levene
```

In [3]:

```
data = pd.read_csv('insurance.csv')
```

In [4]:

```
data.head()
```

Out[4]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [6]:

```
data.shape
```

Out[6]:

(1338, 7)

In [7]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
#
    Column
              Non-Null Count Dtype
              -----
0
              1338 non-null
                              int64
    age
1
     sex
              1338 non-null
                              object
              1338 non-null
                              float64
2
    bmi
    children 1338 non-null
3
                              int64
    smoker
              1338 non-null
                              object
5
    region
              1338 non-null
                              object
6
    charges
              1338 non-null
                              float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [8]:

```
data.describe(include='all').T
```

Out[8]:

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
age	1338.0	NaN	NaN	NaN	39.207025	14.04996	18.0	27.0	39.0	51.0	_
sex	1338	2	male	676	NaN	NaN	NaN	NaN	NaN	NaN	
bmi	1338.0	NaN	NaN	NaN	30.663397	6.098187	15.96	26.29625	30.4	34.69375	
children	1338.0	NaN	NaN	NaN	1.094918	1.205493	0.0	0.0	1.0	2.0	
smoker	1338	2	no	1064	NaN	NaN	NaN	NaN	NaN	NaN	
region	1338	4	southeast	364	NaN	NaN	NaN	NaN	NaN	NaN	
charges	1338.0	NaN	NaN	NaN	13270.422265	12110.011237	1121.8739	4740.28715	9382.033	16639.912515	6377

From the above table, we can say -

- Mean age is around 39
- Mean BMI is 30.66
- Max number of childerns is 5
- Mean charges is 12k but the 50% is 9K so there is a hint of outlier

Non Graphical Analysis

In [10]:

```
data['age'].value_counts().sort_values(ascending=False)[:10]
```

Out[10]:

18 69

19 68

50 29

51 29

47 29

46 29

45 29

20294829

52 29

Name: age, dtype: int64

Most common ages that we can see is 18-20 and 45-52.

In [12]:

```
data['sex'].value_counts()
```

Out[12]:

male 676 female 662

Name: sex, dtype: int64

```
In [13]:
data['smoker'].value_counts()
Out[13]:
no
       1064
        274
yes
Name: smoker, dtype: int64
In [14]:
data['region'].value_counts()
Out[14]:
southeast
             364
southwest
             325
northwest
             325
northeast
             324
Name: region, dtype: int64
In [15]:
sex = data.groupby(['sex']).agg({'age':['mean']})
sex.reset_index()
# Mean age of both sexes are almost same.
Out[15]:
   sex
         age
         mean
   female 39.503021
    male 38.917160
In [16]:
smoker = data.groupby(['smoker']).agg({'age':['mean']})
smoker.reset_index()
Out[16]:
   smoker age
          mean
0
       no 39.385338
      yes 38.514599
1
In [18]:
smoker = data.groupby(['region']).agg({'age':['mean']})
smoker.reset_index()
# Mean age across regions is almsot same
Out[18]:
   region
            age
            mean
  northeast 39.268519
1 northwest 39.196923
2 southeast 38.939560
3 southwest 39.455385
```

Univariate Analysis

```
In [20]:
```

```
plt.figure(figsize=(10,6))
sns.histplot(data['age'],kde=True,bins=10)
plt.title('Age')
plt.show()

# Age distribution is almost normal. People with age
# under 23 is more than rest ages.
```


In [22]:

```
plt.figure(figsize=(10,6))
ax = sns.countplot(data=data, x='smoker')
for i in ax.containers:
    ax.bar_label(i)
plt.title('Smoker v/s Non Smokers')
plt.show()
```



```
In [24]:
```

```
sns.set(style='darkgrid')
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True,gridspec_kw={'height_ratios': (.15, .85)})
sns.boxplot(data=data, x='bmi', ax=ax_box)
sns.histplot(data=data, x= 'bmi', ax=ax_hist, kde=True)
ax_box.set(xlabel='')
plt.show()

# Both sex have almost equal number of data
```


Treating Outliers

```
In [25]:
```

```
Q3 = data['bmi'].quantile(0.75)
Q1 = data['bmi'].quantile(0.25)
IQR = Q3-Q1
upper = Q3+(1.5*IQR)
lower = Q1-(1.5*IQR)
```

```
In [26]:
```

```
data = data[(data['bmi']>lower) & (data['bmi']<upper)]</pre>
```

In [27]:

data

Out[27]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1329 rows × 7 columns

In [30]:

```
sns.set(style='darkgrid')
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={'height_ratios': (.15, .85)})
sns.boxplot(data=data, x='bmi', ax=ax_box)
sns.histplot(data=data, x='bmi', ax=ax_hist, kde=True)
ax_box.set(xlabel='')
plt.show()
```


From the above graph, we can say -

- Avg BMI is around 30
- 75% of BMI is unde 33
- 25% of BMI is less then 26

In [32]:

```
plt.figure(figsize=(10,6))
ax = sns.countplot(data = data, x='children')
for i in ax.containers:
    ax.bar_label(i)
plt.title('Number of children')
plt.show()
```


In [33]:

```
type_value_count = data['region'].value_counts(normalize=True)*100
plt.figure(figsize=(10,6))
plt.pie(type_value_count, labels=['South East','North West','south West','North East'],autopct='%1.2f%%')
plt.title('Regions')
plt.show()
```

Regions

In [34]:

```
sns.set(style='darkgrid')
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={'height_ratios': (.15, .85)})
sns.boxplot(data=data, x='charges', ax=ax_box)
sns.histplot(data=data, x='charges', ax=ax_hist, kde=True)
ax_box.set(xlabel='')
plt.show()

# Data is higly right skewed. we transform data to make it normal.
```


In [35]:

```
plt.figure(figsize=(10,6))
sns.histplot(np.log(data['charges']),kde=True, bins=10)
plt.title('Charges')
plt.show()

# Performing Log transformation we get almost normal.
```


In [36]:

```
# Checking Normality using Q-Q Plot.
plt.figure(figsize=(10,6))
stats.probplot(data['charges'].apply(np.log),plot=plt, dist='norm')
plt.title('Q-Q plot for charges')
plt.show()
# As seen from the Q-Q plot the data is almost normal. Will perform Shapiro Wilk test once to confirm hypothesis
```


Performing lot transformation

In [38]:

```
sns.set(style='darkgrid')
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={'height_ratios': (.15, .85)})
sns.boxplot(data= data, x='charges', ax=ax_box)
sns.histplot(data=data, x='charges', ax=ax_hist, kde=True)
ax_box.set(xlabel='')
plt.show()
```


From the above graph, we can say-

- Avg charges is around 18k
- 75% of charges are less than 35k
- 25% of cahrges are less than 15k

Bivariate Analysis

In [39]:

```
plt.figure(figsize=(10,6))
sns.lineplot(x='age', y='bmi', data=data, hue='sex')
plt.title('bmi across ages')
plt.show()
```


From the above graph, we can say-

- Male with age between 26 and 32 have significantly more BMI than Females in same age range
- More or less both the age group shares same trend in BMI throughtout various agres.

In [41]:

```
plt.figure(figsize=(10,6))
sns.scatterplot(y = 'bmi', x='charges', data=data)
plt.title('Charges v/s BMI')
plt.show()
```


From the above graph we can say -

- Charges is almost uniformly distributed
- Higher BMI have only high charge

In [42]:

```
plt.figure(figsize=(10,6))
sns.boxplot(x='sex', y='bmi', data=data)
plt.title('Gender v/s BMI')
plt.show()

# Almost both the sexes have sme BMI with males having a slightly higher average BMI.
```


In [43]:

```
plt.figure(figsize=(10,6))
sns.boxplot(x='sex', y='age', data=data)
plt.title('Gender v/s Age')
plt.show()

# Females mean age is more than male, but the age group spread is more on males.
```


In [44]:

```
plt.figure(figsize=(10,6))
sns.boxplot(x='smoker', y='bmi', data=data)
plt.title('Smoker v/s BMI')
plt.show()

# Avereage BMI is slightly more for smokers than non-smokers
```


In [47]:

```
plt.figure(figsize=(10,6))
sns.boxplot(x='children', y='charges', data=data)
plt.show()
```


From the above graph, we can say

- · Almost all the number of childeren have same average of charge.
- Number of children 0,1,2 may be low but the charges are still high.

In [48]:

```
plt.figure(figsize=(10,6))
(data
.groupby(['smoker'])['children']
.value_counts(normalize=True)
.mul(100)
.rename('Percent')
.reset_index()
.pipe((sns.barplot, 'data'), x='smoker', y='Percent', hue='children')
)
plt.title('Number of children for Smokers')
plt.show()

# The Number of children across smoker and non smoker are almost same.
```


In [49]:

```
plt.figure(figsize=(10,6))
(data
.groupby(['region'])['children']
.value_counts(normalize=True)
.mul(100)
.rename('Percent')
.reset_index()
.pipe((sns.barplot, 'data'), x='region', y='Percent', hue='children')
)
plt.title('Number of children per Region')
plt.show()

# All the regions seems to have same share of seveity levels.
```


In [50]:

```
sns.heatmap(data.corr(), annot=True)
plt.show()
# We can see good co-relation between the age and charges.
```

C:\Users\Hp\AppData\Local\Temp\ipykernel_1192\104075714.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning. sns.heatmap(data.corr(), annot=True)

In [51]:

```
sns.pairplot(data, hue='smoker', y_vars=['charges'])
plt.show()
   60000
charges 20000
                                                                                                                    smoker
                                                                                                                        yes
                                                                                                                        no
       0
                              60
                                      20
                                                             0
                                                                                                   50000
                                                                                                           75000
           20
                     40
                                             30
                                                     40
                                                                                             25000
                    age
                                              bmi
                                                                      children
                                                                                               charges
```

Hypothesis Testing

Setting up a function to return result on the basis of the significant value (0.05)

In [52]:

```
def htResult(p_value):
    significance_level = 0.05
    if p_value <= significance_level:
        print('Reject NULL HYPOTHESIS')
    else:
        print('Fail to Reject NULL HYPOTHESIS')</pre>
```

Question 1 -

To prove charges of people who do smoking are greater than those who don't.

Performing Right Tailed T-test

Null Hypothesis (H0) - Charges are same for Smokers and Non-Smokers

ALternater Hypothesis (HA) - Charges are greater for smokers.

First Step-

Checking for basic assumpitions for the hypothesis

Second step-

Performing Right tailed t-test

Third step-

Checking for hypothesis result

Checking for basic assumptions

- · Normality check
- Homegeneity of Variances

In [53]:

```
# For normality check, using Q-Q Plot

plt.figure(figsize=(10,6))
stats.probplot(data['charges'], plot=plt, dist='norm')
plt.title('Q-Q plot for charges')
plt.show()
```


From the above graph we can say, the data points roughly fall along a straight diagonal line in a Q-Q plot, then the dataset likely follows a normal distribution.

Homogeneity of Variances using Lavene's test

Null Hypothesis(H0) - Homogenous Variance

Alternate Hypothesis(HA) - Non Homogenous variance

```
In [54]:
```

```
smokers = data[data['smoker']=='yes']['charges']
non_smokers = data[data['smoker']=='no']['charges']
stat,p = levene(smokers, non_smokers)
```

```
In [55]:
```

```
print('P-value :',p)
```

P-value: 4.52298468772991e-65

In [56]:

```
htResult(p)
```

Reject NULL HYPOTHESIS

We reject null hypothesis, which means variance is not equal

Performing Right tailed t-test

```
In [57]:
```

```
st, p = stats.ttest_ind(smokers, non_smokers)
print('P-value :', (p/2))
```

P-value: 1.2616528052742333e-279

In [58]:

htResult(p/2)

Reject NULL HYPOTHESIS

Answer

We reject null hypothesis, which means the hospitalization chrage for smokers is more than non-smoker.

Question 2 -

To prove the BMI of females is different from that of males .

Performing Two Tailed T-test

Null Hypothesis (H0) - BMI for male and females are same.

Alternate Hypothesis (HA) - BMI for males and females are different.

First Step -

Checking for basic assumpitons for the hypothesis

Second step-

Performing Two tailed t-test

Third step -

Checking for hypothesis result

Checking for basic assumptions

- · Normality check
- · Homogeneity of Variances

For normality check, using Q-Q Plot

```
In [59]:
```

```
plt.figure(figsize=(10,6))
stats.probplot(data['bmi'], plot= plt, dist="norm")
plt.title('Q-Q plot for BMI')
plt.show()
```


From the above graph we can say, the data points roughly fall along a straight diagonal line in a Q-Q plot, then the dataset likely follows a normal distribution.

Homogeneity of Variances using Levene's test

Null Hypothesis(H0) - Homogenous Variance

Alternate Hypothesis(HA) - Non Homogenous variance

```
In [60]:
```

```
males = data[data['sex']=='male']['bmi']
females = data[data['sex']=='female']['bmi']
stat,p = levene(males, females)
```

```
In [61]:
print('P-value :',p)

P-value : 0.7548571190984414

In [62]:
htResult(p)
# We fail to reject null hypothesis, which means the variance is same.
```

Fail to Reject NULL HYPOTHESIS

Performing two tailed t-test

```
In [63]:

st,p = stats.ttest_ind(males,females)
print('P-value :',p)

P-value : 0.14542176311155552

In [64]:
htResult(p)
```

Fail to Reject NULL HYPOTHESIS

Answer

We fail to reject null hypothesis which means the bmi for females is not different from males.

Question 3 -

To check if the proportion of smoking significantly different across different regions.

Performing Chi-Square test

Null Hypothesis (H0) - Proportion of smoking is equal across different regions.

 $\label{lem:alternate} \mbox{Alternate Hypothesis (HA) - Proportion of smoking is different across different regions.}$

First step-

Performing chi-square test

Second step -

Checking for hypothesis result

```
In [65]:
```

```
cont = pd.crosstab(data['smoker'],data['region'])
value = np.array([cont.iloc[0][0:4].values,cont.iloc[1][0:4].values])
```

Performing chi-square test

```
In [67]:
```

```
c, p, dof, expected = stats.chi2_contingency(value)
print('P-value :',p)
```

P-value: 0.05978076201764091

In [68]:

htResult(p)

Fail to Reject NULL HYPOTHESIS

Answer

We fail to reject null hypothesis, which means the proportion of smoking is same across different regions.

Question 4 -

To check if the mean BMI of women with 0 child, 1 child, and 2 children the same.

Performing One-way Anova

Null Hypothesis (H0) - Mean BMI for females of children 0,1,2 is same.

Alternate Hypothesis (HA) - Mean BMI for females of children 0,1,2 is different.

First Step - Checking for basic assumpitons for the hypothesis

Second step-

Performing One-way Anova

Third step -

Checking for hypothesis result

Checking for basic assumptions

- · Normality check
- · Homogeneity of Variances

Normality check for viral load is done and found out to be normal.

Homogeneity of Variances with Levene's test

Null Hypothesis(H0) - Homogenous Variance

Alternate Hypothesis(HA) - Non Homogenous variance

```
In [69]:
```

```
female = data[data['sex']=='female']
fem_ch_0 = female[female['children']==0]['bmi']
fem_ch_1 = female[female['children']==1]['bmi']
fem_ch_2 = female[female['children']==2]['bmi']
fem_ch_3 = female[female['children']==3]['bmi']
fem_ch_4 = female[female['children']==4]['bmi']
fem_ch_5 = female[female['children']==5]['bmi']
```

In [71]:

```
stat,p = levene(fem_ch_0, fem_ch_1,fem_ch_3,fem_ch_4,fem_ch_5)
print('P-value :',p)
```

P-value: 0.3766779177651685

In [72]:

```
htResult(p)
# We fail to reject null hypothesis, which means the variance is same across the groups.
```

Fail to Reject NULL HYPOTHESIS

Performing One-Way Anova

```
In [73]:
```

```
stat, p = stats.f_oneway(fem_ch_0,fem_ch_1,fem_ch_2,fem_ch_3,fem_ch_4,fem_ch_5)
print('P-value :',p)
```

P-value: 0.9465287059938946

In [74]:

```
htResult(p)
```

Fail to Reject NULL HYPOTHESIS

Answer

We fail to reject null hypothesis, which means the mean viral load for females of severity levels 0,1,2 is same

Recommendations -

- As we can observe the smokers in general have a higher charges so we can create awareness around to stop smoking as it is not at all pocket friendly.
- Women with any number of children have almost same BMI as observed by hypothesis testing, basic awareness around family
 planning can be provided to keep them from facing financial issues.
- With increasing age the charges too increase, so we can promote a healthy living in the middle ages to avoid these charges in the later stage of life.

```
In [ ]:
```