

VLSI-EDA

Fakultät Informatik, Institut für Technische Informatik, Professur VLSI-Entwurfssysteme, Diagnostik und Architektur

Einführung in die Technische Informatik VLSI-Systementwurf

Grundlagen des Schaltkreisentwurfs

Rainer G. Spallek Martin Zabel

TU Dresden, 07.08.2013

Gliederung

- 1 Abstraktionsebenen und Sichten
- 2 Entwurfsablauf
- 3 Entwurfsstile
- 4 Entwurfswerkzeuge
- 5 Zusammenfassung

1 Abstraktionsebenen und Sichten

Ebenen des Entwurfs:

- Charakterisierung des jeweiligen Detailliertheitsgrades der Beschreibung des Entwurfsgegenstandes.
- Abstraktionsgrad von der eigentlichen physikalischen Realisierung.
- Abstraktionsniveaus, Hierarchien.

Sichten des Entwurfs:

- Betrachtung des Entwurfsgegenstandes aus versch. Richtungen.
- Sicht = Eigenschaften die den Entwurfsgegenstand charakterisieren.
- Alle Sichten auf jeder Entwurfsebene → Y-Diagramm / X-Diagramm.

Abstraktionsebenen

Systemebene:

Systemkonzept des Entwurfsgegenstandes

Algorithmische Ebene:

Algorithmische Beschreibung des Entwurfsgegenstandes

Register-Transfer-Ebene:

Datentransfer und –verarbeitung zwischen Registern

Logikebene:

Beschreibung auf Gatterniveau

Schaltkreisebene:

Transistorebene im weiteren Sinne, umfasst:

- Schalterebene
- Schaltungsebene
- Bauelementebene
- Technologieebene

MUX

Schalter, Widerstand

Inverter

Transistoren, ...

MOSFET

Stromquelle, ...

CMOS-Technologie

Sichten

Verhaltenssicht:

Beschreibung des zeitlichen Verhaltens durch "charakterisierende Variablen" und deren Werteverläufe über die Zeit.

$$\vec{y}(t) = f(\vec{x}(t))$$

Struktursicht:

Spezifizierung eines Objektes durch Subobjekte und deren Verbindungsstrukturen.

Geometriesicht:

Räumliche Anordnung und Ausdehnung der Subobjekte.

Testsicht:

- Existenz oder Nichtexistenz angenommener strukturelle oder funktioneller Defekte.
- F. J. Rammig, Systematischer Entwurf digitaler Systeme,
 B. G. Teubner Stuttgart, 1989

Y-Diagramm nach Gajski

- Stellt Ebenen und Sichten in Form eines Y-Diagramms dar.
- Ursprünglich nur 3 "Ebenen".
- Heute: Erweiterung auf 5 Ebenen:
 - Systemebene,
 - Algorithmische Ebene,
 - Register-Transfer-Ebene,
 - Logikebene,
 - Schaltkreisebene.

2 Entwurfsablauf

Allgemein: Transformation einer Aufgabenstellung (Pflichtenheft) in einen fertigen Schaltkreis.

Top-Down-Strategie:

- Systemebene → Schaltkreisebene.
- Vorteil: Parallele Entwicklung auf unteren Ebenen.
- Nachteil: Systemspezifikation zu Projektbeginn oft zu ungenau.

Bottom-Up-Strategie:

- Analyse vorhandener Komponenten.
- Zusammensetzen von neuen Komponenten auf h\u00f6herer Ebene im Sinne der Aufgabenstellung.
- Nachteil: Globales Ziel wird nicht immer erreicht.

Meet-in-the-Middle

Entwurfsschritt:

- Generierende Aktivität.
- Überprüfende Aktivität.

Syntheseschritt:

- Abbildung eines Entwurfsschrittes in Richtung auf das Entwurfsziel.
- Abstraktionsgrad sinkt, Detailliertheitsgrad steigt.
- Einbringung neuer Informationen.

Analyseschritt:

- Abbildung eines Entwurfsschrittes in umgekehrter Richtung zum Syntheseschritt.
- Gewinnung abstrakter Informationen durch Zusammenfassen und Generalisieren von Details (Extraktionsprozess).
- Beispiel: Validierung eines Syntheseschrittes.

3 Entwurfsstile

Gegenüberstellung Entwurfsalternativen

3.1 Full-Custom-Entwurf

Full-Custom-Entwurf

Merkmale:

- Platzierung und Verdrahtung selbst entworfener Transistoren & Gatter.
- Auch Mischung von Analog- und Digitaltechnik,
 z.B. für spezielle I/O-Signaltreiber.
- Erfüllung spezieller Anforderungen,
 z.B. gehärtet gegen Strahlung.
- Häufig nur auf kleine Teilschaltungen angewendet.
- Hoch qualifizierte Entwurfsingenieure mit Detailkenntnissen zu den Prozessen erforderlich.

Anwendung:

- Sensorik, Mixed-Signal-Schaltungen
- Raumfahrt

Beispiel: Inverter

CEC Huada Electronic Design: ZENI --- Full Custom IC Design Flow Workshop, http://www.zeni-eda.com

3.2 Standardzellenentwurf

Standardzellenentwurf

Merkmale:

- Platzierung und Verdrahtung vorgegebener Gatter- oder Makrozellen.
- Auswahl einer Technologie-Bibliothek nach:
 - Fertigungstechnologie, Strukturbreite und Funktion.
 - High-Speed, Low-Leakage oder Mischung aus beidem.
- Werkzeuggestützte Platzierung und Verdrahtung bei selbst definierter Aufteilung der Chipfläche.
- Makrozellen:
 - Vordefiniert oder per Generator kundenspezifisch erzeugt.
 - Bsp.: RAM, ALU, I/O-Komponenten.

Anwendung:

- Anwendungsspezifische Schaltkreise mit hohen Stückzahlen.
- Starke Optimierung bzgl. Chipfläche, Geschwindigkeit und Verlustleistung.

Konventionelle Architektur

Strukturierte Architektur

Beispiel SHAP: Floorplan

Andrej Olunczek: ASIC-Synthese der SHAP-Mikroarchitektur, Dresden, Technische Universität, Belegarbeit, 2009.

Beispiel SHAP: Power-Floorplan (UDD)

Andrej Olunczek: ASIC-Synthese der SHAP-Mikroarchitektur, Dresden, Technische Universität, Belegarbeit, 2009.

Beispiel SHAP: Finales Layout

Andrej Olunczek: ASIC-Synthese der SHAP-Mikroarchitektur, Dresden, Technische Universität, Belegarbeit, 2009.

3.3 Maskenprogrammierbare Gate Arrays

Maskenprogrammierbare Gate Arrays

Merkmale:

- Festlegung der Funktion mittels Masken bei der Halbleiterfertigung.
- Ausgewählte Masken: teilweise vorgefertigter IC (Master).
- Beispiele:
 - MPGA (Mask-programmable Gate-Array): auch MGA
 - Vorgefertigte universelle Gatter/Makros mit fester Anordnung.
 - Verdrahtung kundenspezifisch.
 - MROM: ROM dessen Inhalt vom Kunden mit Masken festgelegt wird.

Anwendung:

- Anwendungsspezifische Schaltkreise bei mittleren Stückzahlen.
- Kostenoptimiert bei reduziertem Optimierungspotenzial.

MPGA

3.4 Anwenderprogrammierbare IC

Anwenderprogrammierbare IC

Merkmale:

- Field-Programmable ⇔ feldprogrammierbar.
- Vor Ort (im "Feld") vom Anwender programmierbar.
- Hardware ist streng genommen fix. Funktionalität kann aber mittels spezieller Konfiguration "programmiert" werden.

Anwendung:

- Anwendungsspezifische IC bei kleinen und mittleren Stückzahlen.
- Mehrfach neu programmierbar zwecks Optimierung und Fehlerbehebung, auch während des praktischen Einsatzes.
- Einfache Integration eines ganzen Systems auf einem Chip.
- Prototyping, Hardware-/Software-Codesign.

Hardwareprogrammierung

Programmiert (oder auch konfiguriert) werden können:

Verdrahtung / Verbindung

Funktionen

Speicher: PROM, EPROM, EEPROM (Flash)

Klassifikation Anwenderprogrammierbare IC

CPLD

Globale Vernetzung einer kleinen Anzahl von Funktionsblöcken (FB)

CPLD-Funktionsblock

Funktionsblock bestehend aus PLA (Und/Oder-Matrix) und Makrozellen (MC)

UND

Matrix

PLA

Anzahl Produktterme < 2^(Anzahl Eingänge) Direkte Abbildung der Gleichung in DNF.

Makrozelle + I/O-Block (1)

Verschiedene Betriebsspannungen für digitale Logik (Core) und I/O-Pads

Makrozelle + I/O-Block (2)

Konfiguration der Makrozelle:

fO	Summenterm s _k
0	nicht negiert
1	negiert

f1	Ausgang y _k
0	kombinatorisch
1	Register

Steuerung des I/O-Blocks:

Umschaltung des I/O-Pins zwischen Ein- und Ausgang (Tri-State) zur Laufzeit mittels separatem Produktterm möglich.

FPGA-Architektur

Grundlegende Bestandteile: Funktionsblöcke (FB): — angeordnet als Matrix, • Multiplexer- oder LUT-basiert. I/O-Zellen als spezielle FB. Allgemeine lokale Verdrahtung, sowie globale und dedizierte Signalleitungen. Spezielle Hard-Makros. Details in einer späteren VL

4 Entwurfswerkzeuge

Auswahl CAD-Werkzeuge:

- Cadence
- Xilinx ISE
- Altera Quartus
- Synopsys

5 Zusammenfassung

- Sichten und Abstraktionsebenen:
 - 5 Ebenen: System, Algorithmus, RTL, Logik, Schaltkreis
 - 4 Sichten: Verhalten, Struktur, Geometrie, Test
 - Y-Diagramm
- Entwurfsablauf:
 - Strategie: Top-Down, Bottom-Up, Meet-in-the-Middle
 - Entwurfsschritte: Syntheseschritt, Analyseschritt
- Entwurfsstile:
 - Full-Custom-Entwurf
 - Standardzellenentwurf
 - Maskenprogrammierbare Gate Arrays
 - Anwenderprogrammierbare ICs
- Entwurfswerkzeuge