

객체 검출

미디어기술콘텐츠학과 강호철

Computer Vision Task

Classification

CAT

No spatial extent

Semantic Segmentation

TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

This image is CC0 public doma

Object Detection

Instance Object Detection DOG, DOG, CAT Multiple Object

Object Detection

■개념

입력 영상에서 사용자가 원하는 객체를 찾고 객체의 위치
 와 바운딩 박스를 구하는 것

■ 방법

- 템플릿 매칭
- 특징점과 디스크립터를 이용한 매칭
- 캐스케이드 분류기를 이용한 검출
- 머신러닝
 - R-CNN 계열
 - YOLO, SSD. . . .
 - Tensorflow Object Detection API

Object Detection

DOG, DOG, CAT

차선 검출

- 차선 유지 보조 시스템
 - 자동차가 주행중인 차로를 벗어났을 때 운전자에서 경고하고 주 행 차로로 복귀하는 제어 장치
 - 초기의 차선 유지 보조 시스템은 차선이탈 경고 장치 기능 위주
 였고 최근 차선 이탈 복귀 장치 기능으로 확대됨
 - 영상 처리 및 컴퓨터 비전 알고리즘을 이용한 차선 검출 구현
- 적용 기술
 - 에지 검출
 - Canny edge detector
 - 직선 검출
 - Hough transform

출처: https://wjddyd66.github.io/opencv/OpenCV(10)/#%ED%95%84%EC%9A%94%ED%95%9C-%EB%9D%BC%EC%9D%B4%EB%B8%8C%EB%9F%AC%EB%A6%AC-%EC%9E%84%ED%8F%AC%ED%8A%B8

- 미분과 경사도
 - 함수 또는 데이터의 변화율
 - 함수의 순간 변화율

$$f' = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- 앞 수식에서 △x는 x의 변화량을 의미함
- x 의 변화량이 무한히 0에 가까워질 때의 함수 값 변화량을 미분이라고 함
- 함수 값이 증가하는 위치에서는 함수의 미분 값이 0보다 큰 양수로 나타남
- 함수 값이 감소하는 위치에서는 함수의 미분 값이 0보다 작은 음수를 갖게 됨
- 함수 값이 일정한 구간에서는 함수의 미분이 0에 가까운 값을 가짐

■ 영상 I차 미분

- 전진 차분(forward difference): $\frac{dI}{dx} \cong \frac{I(x+h) I(x)}{h}$
- 후진 차분(backward difference): $\frac{dI}{dx} \cong \frac{I(x) I(x h)}{h}$
- 중앙 차분(centered difference): $\frac{dI}{dx} \cong \frac{I(x+h) I(x-h)}{2h}$

Sobel

$$\begin{split} g_x &= \frac{\partial f(x,y)}{\partial \, x} = [f(x+1,y-1) + 2f(x+1,y) + f(x+1,y+1)] \\ &- [f(x-1,y-1) + 2f(x-1,y) + f(x-1,y+1)] \\ g_y &= \frac{\partial f(x,y)}{\partial \, y} = [f(x-1,y+1) + 2f(x,y+1) + f(x+1,y+1)] \\ &- [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)] \end{split}$$

-1	0	1
-2	0	2
-1	0	1
	(a)	

-1	-2	-1
0	0	0
1	2	1
	(b)	

- 캐니 에지 검출기
 - I986년 캐니(J. Canny)는 에지 검출을 최적화 문제 관점으로 접근함으로써 소벨 에지 검출 방법의 단점을 해결할 수 있는 방법을 제시[Canny86]
 - 캐니는 자신의 논문에서 다음 세가지 항목을 좋은 에지 검 출기의 조건으로 제시
 - 1. 정확한 검출(good detection): 에지를 검출하지 못하거나 또는 에지가 아닌데 에지로 검출하는 확률을 최소화해야 합니다.
 - 2. 정확한 위치(good localization): 실제 에지의 중심을 찾아야 합니다.
 - 3. 단일 에지(single edge): 하나의 에지는 하나의 점으로 표현되어야 합니다.

- 캐니 에지 검출기
 - 총 4단계로 수행

- 캐니 에지 검출기
 - 히스테리시스 에지 트래킹

Review) 직선 검출

(a)

- 허프 변환 직선 검출
 - 직선 성분을 찾기 위해 에지를 찾아내고, 에지 픽셀들이 일직선상에 배열되어 있는
 지를 확인해야 함
 - 영상에서 직선을 찾기 위한 용도로 허프 변환(Hough transform) 기법이 널리 사용됨
 - 허프 변환은 2차원 xy 좌표에서 직선의 방정식을 파라미터(parameter) 공간으로 변환하여 직선을 찾는 알고리즘임

(b)

$$y = ax + b$$

$$b = -xa + y$$

$$(x_0, y_0)$$

$$(x_1, y_1)$$

$$y = a_0x + b_0$$

$$b = -x_1a + y_1$$

$$b = -x_1a + y_1$$

Review) 직선 검출

- 허프 변환 직선 검출
 - y = ax + b 직선의 방정식을 사용할 경우 모든 형태의 직선을 표현하기 어려움
 - y축과 평행한 수직선을 표현할 수 없음
 - 수직선을 표현하려면 기울기 a 값이 무한대가 되어야 하기 때문임
 - 허프 변환 구현 시 다음과 같이 극좌표계 형식의 직선의 방정식 사용 $x\cos\theta + y\sin\theta = \rho$
 - ρ는 원점에서 직선까지의 수직 거리를 나타냄
 - 0 는 원점에서 직선에 수직선을 내렸을 때 x축과 이루는 각도를 의미함

- 캐스케이드 분류기를 이용한 얼굴 검출
 - OpenCV에서 제공하는 얼굴 검출 기능은 2001년에 비올라(P.Viola) 와 존스(M. Jones)가 발표한 부스팅(boosting) 기반의 캐스케이드 분류기(cascade classifier) 알고리즘을 기반으로 만듦 [Viola01]
 - 비올라와 존스가 개발한 객체 검출 알고리즘은 기본적으로 다양한 객체를 검출할 수 있지만,특히 얼굴 검출에 적용되어 속도와 정확도를 인정받은 기술
 - 비올라-존스 얼굴 검출 알고리즘은 기본적으로 영상을 24×24 크 기로 정규화
 - 유사-하르 필터(Haar-like filter) 집합으로부터 특징 정보를 추출하 여 얼굴 여부 판별

- 유사-하르 필터
 - 흑백 사각형이 서로 붙어 있는 형태로 구성된 필터
 - 유사-하르 필터 형태에서 흰색 영역 픽셀 값은 모두 더함
 - 검은색 영역 픽셀 값은 모두 빼서 하나의 특징 값을 얻을 수 있음
 - 사람의 정면 얼굴 형태가 전형적으로 밝은 영역(이마, 미간, 볼 등)
 과 어두운 영역(눈썹, 입술 등)이 정해져 있음
 - 유사-하르 필터로 구한 특징 값은 얼굴을 판별하는 용도로 사용 할 수 있음

- 유사-하르 필터
 - 24×24 크기에서 다양한 크기의 유사-하르 필터를 대략 I8만 개 생성할 수 있음
 - 픽셀 값의 합과 차를 계산하는 것이 복잡하지는 않지만 시간이
 오래 걸린다는 점이 문제 됨
 - 비올라와 존스는 에이다부스트(adaboost) 알고리즘과 적분 영상 (integral image)을 이용하여 이 문제를 해결함
 - 에이다부스트 알고리즘은 수많은 유사-하르 필터 중에서 얼굴 검 출에 효과적인 필터를 선별하는 역할을 수행함
 - 실제 논문에서는 약 6000개의 유사-하르 필터를 선별함

Review) 적분 영상

Illustration of the integral image and Haar-like rectangle features (a-f).

출처: $https://www.researchgate.net/figure/Illustration-of-the-integral-image-and-Haar-like-rectangle-features-a-f_fig2_235616690$

■ 얼굴 검출에 유용한 유사-하르 필터

- 캐스케이드 분류기를 이용한 얼굴 검출
 - 에이다부스트 알고리즘에 의해 24×24 부분 영상에서 검사할 특징 개수가 약 6000개로 감소함
 - 입력 영상 전체에서 부분 영상을 추출하여 검사해야 하기 때문에 여전히 연산량이 부담될 수 있음
 - 나타날 수 있는 얼굴 크기가 다양하기 때문에 보통 입력 영상의 크기를 줄여 가면서 전체 영역에 대한 검사를 다시 수행해야 함
 - 비올라와 존스는 대부분의 영상에 얼굴이 한두 개 있을 뿐이고 나머지 대부분의 영역은 얼굴이 아니라는 점에 주목함
 - 비올라-존스 알고리즘에서는 캐스케이드(cascade) 구조라는 새로 운 방식을 도입하여 얼굴이 아닌 영역을 빠르게 걸러 내는 방식 을 사용함

- 캐스케이드 분류기를 이용한 얼굴 검출
 - 캐스케이드 분류기

- I단계에서는 얼굴 검출에 가장 유용한 유사-하르 필터 하나를 사용하여, 얼굴 이 아니라고 판단되면 이후의 유사-하르 필터 계산은 수행하지 않음
- I단계를 통과하면 2단계에서 유사-하르 필터 다섯 개를 사용하여 얼굴이 아닌 지를 검사하고 얼굴이 아니라고 판단되면 이후 단계의 검사는 수행하지 않음
- 얼굴이 아닌 영역을 빠르게 제거함으로써 비올라-존스 얼굴 검출
- 알고리즘은 동시대의 다른 얼굴 검출 방식보다 약 15배 빠르게 동작하는 성능을 보여줌

- 캐스케이드 분류기를 이용한 얼굴 검출
 - OpenCV에서 제공하는 하르 기반 분류기 XML파일

XML 파일 이름	검출 대상
haarcascade_frontalface_default,xml haarcascade_frontalface_alt,xml haarcascade_frontalface_alt2,xml haarcascade_frontalface_alt_tree,xml	정면 얼굴 검출
haarcascade_profileface,xml	측면 얼굴 검출
haarcascade_smile,xml	웃음 검출

- 캐스케이드 분류기를 이용한 얼굴 검출
 - OpenCV에서 제공하는 하르 기반 분류기 XML파일

XML 파일 이름	검출 대상
haarcascade_eye,xml	눈 검출
haarcascade_eye_tree_eyeglasses,xml	
haarcascade_lefteye_2splits,xml	
haarcascade_righteye_2splits,xml	
haarcascade_frontalcatface,xml	고양이 얼굴 검출
haarcascade_frontalcatface_extended,xml	
haarcascade_fullbody,xml	사람의 전신 검출
haarcascade_upperbody,xml	사람의 상반신 검출
haarcascade_lowerbody,xml	사람의 하반신 검출
haarcascade_russian_plate_number,xml	러시아 자동차 번호판 검출
haarcascade_licence_plate_rus_16stages,xml	

QR 코드 검출

- QR 코드 검출
 - QR 코드는 흑백 격자 무늬 모양의 2차원 바코드 일종으로 숫자, 영문자, 8 비트 문자, 한자 등의 정보를 저장할 수 있음
 - 최근에는 명함이나 광고 전단 등에 웹 사이트 URL 문자열을 포함한QR 코드를 프린트하여 사용자가 스마트폰의 QR 코드 앱을 통해 해당 웹 사이트에 쉽게 접속할 수 있도록 하는 서비스가 늘어나고 있음

QR 코드 검출

- QR 코드 검출
 - 입력 영상에서 QR 코드를 인식하려면 먼저 QR 코드 세 모서 리에 포함된 흑백 정사각형 패턴을 찾아 QR 코드 전체 영역 위 치를 알아내야 함
 - 검출된 QR 코드를 정사각형 형태로 투시 변환함
 - QR 코드 내부에 포함된 흑백 격자 무늬를 해석하여 문자열을 추출해야 함
 - 일련의 연산은 매우 복잡하고 정교한 영상 처리를 필요로 함
 - 다행히 OpenCV는 4.0.0 버전부터 QR 코드를 검출하고 QR 코드에 포함된 문자열을 해석하는 기능을 제공함

영상처리 프로그래밍 기초

- OpenCV4로 배우는 컴퓨터 비전과 머신러닝
 - 황선규 지음
 - 길벗출판사, 2019
- Python으로 배우는 OpenCV 프로그래밍
 - 김동근 지음
 - 가메출판사, 2018

