Forelesning DiffTop

Preben Hast Sørli

May 10, 2020

1 14.jan

How can we tell when two spaces are not equivalent? (X,Y are topologically equivalent or homeomorphic if there is a homeomorphism

$$f: X \to Y$$

f is continuous, bijective, and f^{-1} is continuous too.) Can I prove that S^1 is not equivalent to [0,1]? One idea: How many "connected pieces" is the space made of.

Definition 1.1. Let $X \subseteq \mathbb{R}^n$ be a subspace. X is disconnected if there exist open sets $E \subseteq X, F \subseteq X$ such that

- 1. $F \cup E = X$
- 2. $E \cap F = \emptyset$
- 3. $E \neq \emptyset, F \neq \emptyset$

We say (E, F) is a separation of X.

Definition 1.2. X is connected iff X is not disconnected.

That is, if whenever $E, F \subseteq X$ open, $E \cup F = X$ and $E \cap F = \emptyset$ then either E or F is empty.

Theorem 1.1. Connectedness is a topological property.

if $f: X \to Y$ is a homeomorphism, then X is connected iff Y is connected. Equivalently X is disconnected iff Y is disconnected.

Proof. $f: X \to Y$ is a bijection and its continuous. So if Y is disconnected, so we have $E \subseteq Y, F \subseteq Y$. E and F are open relative to Y. $f^{-1}(E), f^{-1}(F)$ are open relative to X and as f is a bijection:

$$f^{-1}(E) \cup f^{-1}(F) = X$$

$$f^{-1}(E) \cap f^{-1}(F) = \emptyset$$

$$f^{-1}(E) \neq \emptyset, f^{-1}(F) \neq \emptyset$$

So X is disconnected. f^{-1} is bijective and continuous.

Theorem 1.2. Any interval in \mathbb{R} is connected.

$$(a,b), [a,b], [a,b), (a,b], \text{ where } -\infty \leq a \leq b \leq \infty$$

Furthermore, these are all of the connected subsets of \mathbb{R} .

Example 1.1. X = (0,1) and $Y = (0,1/2) \cup (1/2,1)$ are not homeomorphic.

Lemma 1.3. If $X \subseteq \mathbb{R}^n$ is a subspace, if X is the union of connected subspaces $X_{\alpha}, (\alpha \in \mathcal{A})$

$$(X = \cup_{\alpha \in \mathcal{A}} X_{\alpha})$$

and there is a point $x_0 \in X_\alpha$ for all $\alpha \in \mathcal{A}$, then X is connected.

Proof. Suppose $E, F \subseteq X$ open, and suppose

$$E \cup F = X$$

$$E \cap F = \emptyset$$

We will show $E = \emptyset$ or $F = \emptyset$. For any $\beta \in \mathcal{A}$, X_{β} is connected. $E \cap X_{\beta}$ and $F \cap X_{\beta}$ open relative to X_{β} .

$$\Rightarrow (E \cap X_{\beta}) \cup (F \cap X_{\beta}) = X_{\beta}$$
$$\Rightarrow (E \cap X_{\beta}) \cap (F \cap X_{\beta}) = \emptyset$$
$$\Rightarrow E \cap X_{\beta} = \emptyset \text{ or } F \cap X_{\beta} = \emptyset$$

Let's say $E \cap X_{\beta} = \emptyset$, so $F \cap X_{\beta} = X_{\beta}$ containing x_0 so $x_0 \in F$, but now for any $\alpha \in \mathcal{A}$, $(E \cap X_{\alpha}, F_{\alpha})$ is also a separation of X_{α} . $x_0 \in F \cap X_{\alpha} = X_{\alpha}$ and $E \cap X_{\alpha} = \emptyset$. Hence $\forall \alpha \in \mathcal{A}, X_{\alpha} \in F$

$$\Rightarrow F = \bigcup X_{\alpha} = X, E = \emptyset.$$

Example 1.2. $X = B^n(0; 1), \mathbf{v} \in S^{n-1}$

$$X_{\mathbf{v}} = \{t \cdot \mathbf{v} | t \in (-1, 1)\}$$

 $X_{\mathbf{v}}$ is homeomorphic to (-1,1).

$$f: (-1,1) \to X$$

$$t\mapsto t\mathbf{v}$$

and $\forall \mathbf{v} \in S^{n-1}$, $(0,0) \in X_{\mathbf{v}}$. So lemma proves $B^n(0;1)$ is connected.

Example 1.3. $S^n \subseteq \mathbb{R}^{n+1}$ is connected.

Proposition 1.4. "The continuous image of a connected space is connected" $f: X \to Y$ continuous, and X is connected, then the image

$$f(X) = im(f) = \{f(x) \in Y | x \in X\} \subseteq Y$$

is connected.

Proof. Suppose f(X) is disconnected. So say $f(X) = E \cup F$

$$E \cap F = \emptyset$$

$$E \neq \emptyset, F \neq \emptyset$$

and E and F are open relative to f(X). E and F may not be open relative to Y! There are open sets $\tilde{E} \subseteq Y, \tilde{F} \subseteq Y$ with

$$\tilde{E} \cap f(X) = E, \tilde{F} \cap f(X) = F.$$

We will then have

$$f^{-1}(E) = f^{-1}(\tilde{E})$$
 is open

$$f^{-1}(F) = f^{-1}(\tilde{F})$$
 is open

these are nonempty, disjoint, union is X. This is a separation of X, so X is disconnected.

Lemma 1.5. X is disconnected iff X admits a continuous surjection

$$f: X \to \{0, 1\}, \qquad \{0, 1\} \subseteq \mathbb{R}$$

Proof. If X is disconnected, we have a separation of X.

$$X = E \cup F, E \cap F = \emptyset, E \neq \emptyset, F \neq \emptyset$$

$$f: X \to \{0, 1\}, f(E) = 0, f(F) = 1.$$

Conversely, we have

$$f: X \to \{0, 1\}$$

continuous surjection

$$f^{-1}(\{0\}) = E$$

$$f^{-1}(\{1\}) = F$$

are open. Surjective implies nonempty, $E \cup F = X$, X is disconnected.

Connected Components

how many pieces is a space made of?

Definition 1.3. Define an equivalence relation on X. for $a, b \in X$, we write $a \sim b$ if there is a connected subset $U \subseteq X$ with $a, b \in U$.

Check that this is an equivalence relation:

- (1) $a \sim a$ use $U = \{a\}$
- (2) if $a \sim b$ then $b \sim a$.

$$a, b \in U, b, a \in U$$

(3) Transitivity. $a \sim b, b \sim c$, show $a \sim c$. We have $a, b \in U_1$ connected, $b, c \in U_2$ connected. $a, b, c \in U_1 \cup U_2$ connected by Lemma.

The equivalence classes of \sim give the connected components of X.

$$X/\sim=\{[x]|x\in X\}$$

$$[x] = \{ y \in X | x \sim y \}$$

Lemma 1.6. If X and Y homemorphic, then f gives a bijection of sets of connected components.

$$[f]: X/\sim \to Y/\sim$$

$$[x] \mapsto [f(x)]$$

Takeaway: If X and Y are homeomorphic, they have the same number of connected components.

Proposition 1.7. (1) $U \subseteq X$ is a connected component (U = [x]) iff U is connected, nonempty and for any subset $A \subseteq X$ connected with $A \cap U \neq \emptyset$ then $A \subseteq U$.

(2) The connected components partition in space X.

$$[x] \cap [y] = \emptyset$$
 or $[x] = [y]$

and $X = \cup [x]$.

(3) [x] is both open and closed.

Goal: Distinguish

[0,1] from S^1 .

Definition 1.4. A point $x \in X$ is a *cut point* if $X \setminus \{x\}$ is disconnected.

cut points of [0,1] is (0,1) (all interior points.)

cut points of S^1 : \emptyset .

Conclude: There is no homeomorphism

$$f:[0,1]\to S^1$$

because of the different cut sets.

$$Cut(X) = \{x \in X | x \text{ is a cut point}\}\$$

Theorem 1.8. if $f: X \to Y$ is a homeomorphism then if $x \in Cut(X)$ then $f(x) \in Cut(Y)$ and further

$$f_{|_{Cut(X)}}: Cut(X) \to Cut(Y)$$

is a homeomorphism.

Proof. $x \in Cut(X)$. Then $X \setminus \{x\} = E \cup F$.

$$E\cap F=\emptyset, E\neq\emptyset, F\neq\emptyset$$

 $(f-1)^{-1}(E), (f^{-1})^{-1}(F) \subseteq Y$

$$(f-1)^{-1}(E) \cup (f^{-1})^{-1}(F) = f(X) \setminus f(x) = Y \setminus f(x).$$

So f(x) is a cut point of Y. So $f(x) \in Cut(Y)$. if $y \in Cut(Y)$, then $f^{-1}(y)$ is a cut point of X.

$$Cut(X) \to (f)Cut(Y)$$

 $Cut(Y) \to (f^{-1})Cut(X)$

f is a bijection between Cut(X) and Cut(Y). In fact both $f:Cut(X)\to Cut(Y)$ and $f^{-1}:Cut(Y)\to Cut(X)$ continuous too. Let $U\subseteq Cut(Y)$ be open relative to Cut(Y). Then

$$U = \tilde{U} \cap Cut(Y), \tilde{U} \subseteq Y$$
 open.

$$f^{-1}(U) = f^{-1}(\tilde{U}) \cap Cut(X)$$

 $f^{-1}(\tilde{U})$ open in X as f is continuous \Rightarrow open relative to Cut(X).

2 16. Jan

Definition 2.1. Let $X \subseteq \mathbb{R}$ be a subspace, and suppose $x \in X$ is a cut point. We say x is an n-fold cut point if $X \setminus \{x\}$ consists of n connected components.

Proposition 2.1. If $f: X \to Y$ is a homeomorphism, then X has an n-fold cut point iff Y has an n-fold cut point.

Proof. Since $f: X \to Y$ is a homeo

$$x \leftrightarrow f(x)$$

We restrict f to $X \setminus \{x\}$.

$$f_{|X\setminus\{x\}}:X\setminus\{x\}\to Y\setminus\{f(x)\}$$

if x is an n-fold cut point, $X \setminus \{x\}$ consists of n connected components. So $Y \setminus \{f(x)\}$ consists of n components too.

All cut points of the latin letter P are 2-fold. "Connectedness proof" Start sith X a connected space. Say we want to prove $(\forall x \in X) (P(x))$.

(1)
$$E = \{x \in X | P(x)\}$$

$$F = \{x \in X | P(x)\}$$

$$E \cup F = X$$

$$E \cap F = \emptyset$$

- (2) Prove that there exists one $x_0 \in X$ with $x_0 \in E$, i.e., $P(x_0)$ is true.
- (3) Prove that both E and F are open sets.
- (4) Draw the conclusion that $F = \emptyset$. (if $F \neq \emptyset$, then (E, F) is a separation of X, showing X is disconnected).

Compactness

Example 2.1. The closed interval $[\cdot, \cdot]$, $S1, S^n$ are all compact. $(\cdot, \cdot), (\cdot, \cdot], B^n(0; 1), \mathbb{R}^n$ are not compact.

Definition 2.2. Sequential compactness

 $X \subseteq \mathbb{R}^n$ is sequentially compact if for any sequence $x_n \in X$, there exists a convergent subsequence x_n, x_{n_k} so that

$$\lim_{k\to\infty}\bar{x}\in X$$

Example 2.2. $x_n = \frac{1}{n}$ for $n \ge 2$

$$\in (0,1)$$

$$\lim_{n \to \infty} x_n = 0$$

Every subsequence of $\frac{1}{n}$ converges to 0 too. So (0,1) is not compact. Maybe [0,1) would be sequentially compact? No:

$$a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ even} \\ 1 - \frac{1}{n} & \text{if } n \text{ odd} \end{cases}$$

 a_n is not a convergent sequence. But there are convergent subsequences.

$$a_{2n} = \frac{1}{2n} \to 0; \quad a_{2n+1} = 1 - \frac{1}{2n+1} \to 1$$

Theorem 2.2. Heine-Borel

 $x \subseteq \mathbb{R}^n$ a subspace is sequentially compact iff X is both closed as a subset of \mathbb{R}^n and bounded. i.e., $\exists N > 0$ so that $X \subseteq B^n(0; N)$.

 S^2 is closed:

$$\mathbb{R}^3 \setminus S^2 = (B^3(0;1)) \cup (\mathbb{R}^3 \setminus D^3(0;1))$$

these are both open so $\mathbb{R}^3 \setminus S^2$ must be open and hence S^2 is closed.

Proposition 2.3. Let $f: X \to Y$ be a continuous map and suppose X is sequentially compact. Then f(X) is also sequentially compact.

Proof. Consider a sequence $y_n \in f(x)$. Pick $x_n \in X$ so that $f(x_n) = y_n$. So we have $x_n \in X$.

Sequentially compact implies x_n has a convergent subsequence

$$\lim_{k \to \infty} x_{n_k} = \bar{x} \in X$$

but f is continuous, so

$$\lim_{k \to \infty} f(x_{n_k}) = f(\lim_{k \to \infty} x_{n_k}) = f(\bar{x}) \in f(X) = \lim y_{n_k}$$

Conclusion: y_{n_k} is a subsequence converging to $f(\bar{x}) \in f(X)$.

Consequence: if $X\subseteq\mathbb{R}^n,Y\subseteq\mathbb{R}^m,$ $f:X\to Y$ continuous, X seq. comp., then $f(X)\subseteq\mathbb{R}^m$ is closed and bounded.

Definition 2.3. $X \subseteq \mathbb{R}^n$ a subspace is compact iff for any open cover $\mathcal{V} = \{U_{alpha} \subseteq X | \alpha \in \Lambda\}$ such that $X = \cup_{\alpha} \in \Lambda U_{\alpha}$ there exists a finite subcover of \mathcal{V} . That is, there are:

$$U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_k} \in \mathcal{V}$$

and $X = U_{\alpha_1} \cup U_{\alpha_2} \cup \cdots \cup U_{\alpha_n}$

Example 2.3. (0,1) is not compact.

Find an open cover \mathcal{V} of (0,1) that has no open subcover.

$$\mathcal{V} = \{(\frac{1}{n}) | n \ge 2, n \in \mathbb{N}\}$$

First, \mathcal{V} is an open cover of (0,1).

$$(0,1) = \cup_{n \ge 2} (\frac{1}{n}, 1)$$

For any x, 0 < x < 1, $\exists N \in \mathbb{N}$ so $\frac{1}{N} < x$, in that case, $x \in (\frac{1}{N}, 1)$. But no finite subcollection of \mathcal{V} will still cover (0, 1).

$$(\frac{1}{n},1),(\frac{1}{n_2},1),\ldots,(\frac{1}{n_k},1)$$

Well there is a largest value of n_1, \ldots, n_k , call it n_i . And we then have

$$\bigcup_{i=1}^{k} (\frac{1}{n_i}, 1) \subseteq (\frac{1}{n_i}, 1) \neq (0, 1)$$

Theorem 2.4. [0,1] is compact.

Proof. We'll use the fact that [0,1] is connected. Consider

$$\mathcal{U} = \{ U_{\alpha} \subseteq [0, 1] | \alpha \in \mathcal{A} \}$$

open cover of [0,1].

$$E = \{x \in [0,1] | [0,x] \text{ admits a finite cover by } \mathcal{U}\}$$

i.e. there are $U_{alpha_1}, \ldots, U_{alpha_k} \in \mathcal{U}$ where $[0, x] \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_k}$. Want to show $x = 1 \in E$.

- (1) Observe $0 \in E$. Because $[0,0] = \{0\}$ and $0 \in U_{\beta}$ for some β as $\bigcup_{\alpha \in \mathcal{A}} = [0,1]$. So $[0,0] \subseteq U_{\beta}$.
- (2) Show E and $[0,1] \setminus E$ are open. Suppose $x \in E$. So there are sets $U_{\alpha_1}, \ldots, U_{\alpha_k}$

$$[0,1] \subseteq U_{\alpha_1},\ldots,U_{\alpha_k}.$$

 $x \in U_{\alpha_i}$ for some i, and $U_{\alpha_i} \subseteq [0,1]$ is open. So we can find $\epsilon > 0$ so that

$$(x - \epsilon, x + \epsilon) \cap [0, 1] \subseteq U_{\alpha_i}$$

So now, consider any $y \in ((x - \epsilon, x + \epsilon) \cap [0, 1])$. We observe

$$[0,y]\subseteq U_{\alpha_1}\cup\cdots\cup U_{\alpha_k}$$

$$[0,y] \subseteq [0,x] \cup ((x-\epsilon,x+\epsilon) \cap [0,1]))$$

so then $(x - \epsilon, x + \epsilon) \cap [0, 1]) \subseteq E$. which is open in [0, 1]. A similar argument will show $[0, 1] \setminus E$ is open.

(3) Connectedness of [0,1] implies E=[0,1]. $1 \in E$, hence [0,1] is covered by $U_{\alpha_1} \cup \cdots \cup U_{\alpha_k}$.

Theorem 2.5.

$$X \subseteq \mathbb{R}^n$$

X is compact iff X is sequentially compact iff X is closed in \mathbb{R}^n and bounded.

Proposition 2.6. $f: X \to Y$ is a homeomorphism, then X is compact iff Y is compact.

Proof. If X is compact, f(X) = Y is compact. Conversely if Y is compact, f^{-1} is continuous

 $X = f^{-1}(Y)$ is compact.

Theorem 2.7. Borsuk-Ulam

 $f: S^1 \to \mathbb{R}$ continuous. There is some $p \in S^1$ such that f(p) = f(-p).

Proof. Define $D: S^1 \to \mathbb{R}$ by D(p) = f(p) - f(-p), if there is $p \in \S^1$ with D(P) = 0 = f(p) - f(-p), then f(p) = f(-p). Since S^1 is connected and compact $D(S^1) = [a, b]$ where $a \leq b$.

I claim
$$0 \le b$$
 and $a \le 0$. Let's say $D(p) = f(p) - f(-p) \le 0$ then $D(-p) = f(-p) - f(p) = -D(p) \ge 0$. So $0 \in D(S^1)$.

Lecture week 3 Difftop

3 21. jan

Definition 3.1. (Topological manifold)

A subspace $X \subseteq \mathbb{R}^n$ is a topological manifold if at any $x \in X$ there exists an open set $U \subseteq X$ and an open set $V \subseteq \mathbb{R}^k$ and a homeomorphism $\varphi : V \to U$.

Continuous maps can behave poorly. Instead of using continuity alone, we'll use differentiability.

Definition 3.2. $U \subseteq \mathbb{R}^n, f: U \to \subseteq \mathbb{R}^m$, we can write it as

$$f(x_1, \dots, x_n) = f\left(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}\right) = \begin{bmatrix} f_1(x_1) \\ \vdots \\ f_n(x_n) \end{bmatrix} \in \subseteq \mathbb{R}^m$$

f is smooth if $\forall a \in U$, the partial derivatives of f exists at all $a \in U$. $\frac{\partial f_i^n}{\partial x_{j_i} \cdots \partial x_{j_n}}(a)$ all exist.

$$\frac{\partial f_i}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t}.$$

Ultimately we want to replace "homeomorphism" with "diffeomorphism" in definition of manifold.

Definition 3.3. Let $X \subseteq \mathbb{R}^n$ any subspace and consider a function

$$f: X \to \mathbb{R}^m$$

We say that f is smooth if $\forall x \in X$, there is an open set $U \subseteq X$ (rel. X), an open set $\tilde{U} \subseteq \mathbb{R}^n$ and a smooth function $\tilde{f} : \tilde{U} \to \mathbb{R}^m$.

$$U = \tilde{U} \cap X$$

so that $\forall a \in U, \ \tilde{f}(a) = f(a)$.

 \tilde{f} smooth, then we say $f_{|u}$ smooth.

Example 3.1. $f: S^1 \to \mathbb{R}^1, f(x,y) = x \text{ when } x^2 + y^2 = 1.$

How can we see that f is smooth?

Observe that we can extend f to all of \mathbb{R}^2 :

$$\tilde{f}: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x$$

 \tilde{f} is clearly smooth and $\tilde{f}_{|s^1} = f$, we conclude f is smooth.

Example 3.2. $X = S^1 \cap \{(x,y)|y>0\}$

$$L = \{(x, 1) | x \in \}$$

 $Y = \mathbb{R}^2$. Define f(x, y) to be the unique point common with L and $\{t(x, y) | t \in \mathbb{R}\}$.

f is smooth because we observe

$$f(x,y) =$$

Find t

$$t(x,y) \in \{(x,1)|x \in \mathbb{R}\}$$

We need ty=1, so $t=\frac{1}{y}$ if $y\neq 0$. Hence $f(x,y)=(\frac{x}{y},1)$. This description of f can clearly be extended to $\tilde{U}=\{(x,y)\in\mathbb{R}^2|y>0\}$

$$\tilde{f}: \tilde{U} \to \mathbb{R}$$

$$(x,y)\mapsto (\frac{x}{y},1)$$

Clearly smooth, so hence f is also smooth.

Definition 3.4. If $X\subseteq \mathbb{R}^n$ and $Y\subseteq \mathbb{R}^m$ are subspaces then a function $f:X\to Y$ is smooth iff

$$X \xrightarrow{f} Y \xrightarrow{\subseteq} \mathbb{R}^m$$

is smooth.

Definition 3.5. $f: X \to Y$ is a diffeomorphism if f is smooth, f is bijective and f^{-1} is smooth.

Remark. If $f:X\to Y$ is a diffeomorphism, then $f:X\to Y$ is a homeomorphism.

BUT the converse need not be true. In fact there does not need exist any diffeomorphism at all. (not only f)

Example 3.3. There are uncountably many spaces X_{α} , and each is homeomorphic to \mathbb{R}^4 .

$$f_{\alpha}: X_{\alpha} \to \mathbb{R}^4$$

but no two X_{α} and X_{β} are diffeomorphic.

Definition 3.6. $X \subseteq \mathbb{R}^n$ is a *smooth manifold* if $\forall x \in X$ there exists an open set $x \in U \subseteq X$ and an open set $V \in \mathbb{R}^k$, and a diffeomorphism

$$\varphi: V \to U$$

Example 3.4. S^1 is a smooth manifold. Use the $exp : \mathbb{R} \to S^1, \theta \mapsto (\cos(\theta), \sin(\theta))$. Use two "local parametrizations" of S^1

$$exp:(0,2\pi)\xrightarrow{diffeo}S^1\setminus\{(1,0)\}$$

$$exp: (\pi, 3\pi) \xrightarrow{diffeo} S^1 \setminus \{(-1, 0)\}$$

all that is left is to prove

$$exp:(0,2\pi)\xrightarrow{diffeo}S^1\setminus\{(1,0)\}$$

is a diffeo.

•

$$exp(\theta) = (\cos(\theta), \sin(\theta))$$

so exp is smooth.

- basic trig says exp is bijective.
- Show $exp^{-1}: S \setminus \{(1,0)\} \to (0,2\pi)$ is smooth.

 $\arccos(x): S^1 \cap \{(x,y)|y>0\} \to (0,\pi)$, to see it is smooth, Let's take

$$g: \mathbb{R}^2 \cap \{(x,y)|y>0\} \to (0,\pi)$$

$$(x,y) \mapsto \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$

defined on open subset of \mathbb{R}^2 .

$$g = exp^{-1}$$
 on $S^1 \cap \{(x, y) | y > 0\}$

for $S^1 \cap \{(x,y)|y < 0\}$, use

$$exp^{-1}((x,y)) = 2\pi - \arccos(x)$$

extends to

$$g(x,y) = 2\pi - \arccos\left(\frac{x}{\sqrt{x^2 - y^2}}\right)$$

Directional derivatives

Let f: U open in $\mathbb{R}^n \to \mathbb{R}^m$ be smooth has directional derivatives $a \in U$ in the direction $v \in \mathbb{R}^n$ if

$$df_a(v) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}$$

exists.

 $df_a(v)$ always exists when f is smooth

 $df_a(v): \mathbb{R}^n \to \mathbb{R}^m$ is in a fact linear map.

$$df_a(av + w) = cdf_a(v) + df_a(w)$$

 df_a is represented by a matrix, use standard basis $\{e_1, \ldots, e_n\}$ and $\{e_1, \ldots, e_m\}$. Then

$$df_a = \begin{bmatrix} \frac{\partial f_1}{x_1}(a) & \cdots & \frac{\partial f_1}{x_n}(a) \\ \vdots & \cdots & \vdots \\ \frac{\partial f_m}{x_1}(a) & \cdots & \frac{\partial f_m}{x_n}(a) \end{bmatrix}$$

and

$$df_a(v) = \begin{bmatrix} \frac{\partial f_1}{x_1}(a) & \cdots & \frac{\partial f_1}{x_n}(a) \\ \vdots & \cdots & \vdots \\ \frac{\partial f_m}{x_1}(a) & \cdots & \frac{\partial f_m}{x_n}(a) \end{bmatrix}(v)$$

Theorem 3.1. (Chain rule)

$$U \xrightarrow{f} V \xrightarrow{g} \mathbb{R}^p$$

U open in \mathbb{R}^n , V open in \mathbb{R}^m , f and g smooth. Then $g \circ f$ is smooth and

$$d(g \circ f)_a = (dg)_{f(a)} \circ (df)_a$$

(composition of linear functions or simply matrix multiplication).

Theorem 3.2. Let $U \subseteq \mathbb{R}^n$ open and $V \subseteq \mathbb{R}^m$ be open. Suppose $f: U \to V$ is a diffeo. Then n = m. (no Peano space filling curve can give a diffeomorphism!)

Proof.

$$U \xrightarrow{f} V \xrightarrow{f^{-1}} U$$
$$f^{-1} \circ f = Id_{\mathcal{U}}$$

So take the directional derivatives at $a \in U$.

$$\mathbb{R}^n \xrightarrow{df_a} \mathbb{R}^m \xrightarrow{df_a^{-1}} \mathbb{R}^m$$

$$d(Id)_a$$

$$Id_u(x_1,\ldots,x_n)=(x_1,\ldots,x_n)$$

$$(dId_u)_a = \begin{bmatrix} 1 & 0 & \cdots \\ 0 & 1 & \cdots \\ 0 & 0 & \cdots \\ 0 & \cdots & 1 \end{bmatrix}$$

Chain rule
$$(df^{-1})_{f(a)} \circ df_a = Id_{n \times n}$$
. Similarly

$$V \xrightarrow{f^{-1}} U \xrightarrow{f} V$$

shows

$$df_{f^{-1}(b)} \circ df_b^{-1} = Id_{m \times m}$$

i.e., $df_a \circ df_{f(a)}^{-1} = Id_{m \times n}$. Since df_a is both $n \times n$ and $m \times m$ invertible matrix, must be that n = m. \square

Tangent spaces:

The vectors $v \in \mathbb{R}^n$ used in directional derivative, all directions we could move in at a point.

Definition 3.7. Let $U \subseteq \mathbb{R}^n$ be an open subset. We define the tangent space to U at $a \in U$ by

$$T_a U = \{(a, v) | v \in \mathbb{R}^n \}$$

Eig: at $(1,1) \in \mathbb{R}^2$ a tangent vector looks like $((1,1),(v_1,v_2))$. T_aU is a vector space

$$(a, v) + (a, w) = (a, v + w)$$

(a, (0, 0)) is the additive identity.

Definition 3.8. Total tangent space

$$TU = \{(a, v) | a \in U, (a, v) \in T_aU\}$$

Extend to manifolds

Let $X \subseteq \mathbb{R}^n$ be a smooth manifold, $a \in X$. There exists open $a \in U \subseteq X$ and exists $\stackrel{\frown}{V} \subseteq \mathbb{R}^k$ open and $\varphi: V \to U$ diffeomorphism.

$$\varphi(y) = a$$

Define

$$T_a X = \{(a, d\varphi_y(v)) | v \in \mathbb{R}^k \}$$

Note that $d\varphi_y(a): \mathbb{R}^k \to \mathbb{R}^n$ is linear and its images k-dimensional.

23. jan 4

- Coordinate systems
- Tangent spaces
- Derivatives

Definition 4.1. Let $X \subseteq \mathbb{R}^n$ be a smooth manifold, we define T_xX for $x \in X$ by finding a local parametrization

$$\varphi: \tilde{u} \to u: x \in u \subseteq X, \tilde{U} \subseteq \mathbb{R}^n$$

$$\varphi(y) = x, \varphi$$
 diffeo

Define $T_xX = \{(x, d\varphi_y(v)) | v \subseteq \mathbb{R}^k\}$. Related to image $(d\varphi_y : \mathbb{R}^k \to \mathbb{R}^n)$, This is a linear subspace of \mathbb{R}^n , so it is a vector space. Hence T_xX is a vector space too.

$$(x, u) + (x, v) = (x, u + v)$$

Terminology

If $X \subseteq \mathbb{R}^n$ is a smooth manifold, $x \in X$ we know there exists $\varphi : \tilde{u} \to u$ with $x \in u, \tilde{u} \text{ open } \subseteq \mathbb{R}^k.$

We call φ a "local parametrization of X at $x \in X$ ". But this is equivalent of giving a diffeo

$$\varphi^{-1}u \to \tilde{u} \subseteq \mathbb{R}^k$$

 φ^{-1} is called a coordinate chart for X at $x \in X$.

We call thi generally a "local coordinate system at x".

Pick $1 \le i \le k$, and some $z \in \mathbb{Z}^k$, $z = (z_1, z_2, \dots, z_k)$, and consider the lines

$$L_{i,z} = \{z + te_i | t \in \mathbb{R}\} \subseteq \mathbb{R}^k$$

Study the images $\varphi(L_{i,z} \cap \tilde{U}) \subseteq X$. So φ^{-1} gives us coordinates to points on u. We often write

$$\varphi^{-1}(p) = (x_1(p), x_2(p), \dots, x_k(p))$$

 x_i is the i^{th} coordinate function of φ^{-1} . If we are really sloppy we will say

$$p = (x_1, x_2, \dots, x_k)$$

Example 4.1. Polar coordinates

A system of local coordinates for \mathbb{R}^2 given by the diffeomorphism

$$\psi(-\pi, \pi) \times (0, \infty) \to \mathbb{R}^2 \setminus \{(x, 0) | x \ge 0\}$$
$$(\theta, r) \to (r\cos(\theta), r\sin(\theta))$$

Lemma 4.1. Let $X \subseteq \mathbb{R}^n$ smooth manifold. $\forall x \in X$ there always exists a local coordinate system at x,

 $\varphi: \tilde{u} \to u \text{ with } u \subseteq X, \tilde{u} \text{ open } \subseteq \mathbb{R}^k \text{ satisfying } \varphi(0) = x.$

Proof. We know there exists *some* coordinate system at x. Call it $\mathbb{R}^k \supseteq \psi$: $V \to V \subseteq X$.

Write $y = \psi^{-1}(x) \in \tilde{V} \subseteq \mathbb{R}^k$. Translation is a diffeomorphism! Consider

$$t_y: \mathbb{R}^k \to \mathbb{R}^k$$

$$v \mapsto v + y$$

is a diffeomorphism!

We take $\tilde{u} = t_y^{-1}(\tilde{V}) = \{z - y | z \in \tilde{V}\}.$ We take u = V and finally

$$\varphi = \psi \circ t_{y_{|_{\tilde{u}}}} : \tilde{u} \to u$$

$$\tilde{u} \xrightarrow{t_y} \tilde{V} \xrightarrow{\psi} u = V$$

and this entire thing is a diffeo.

Lemma 4.2. Let $X \subseteq \mathbb{R}^n$ be a smooth manifold. For any $x \in X$ there is a coordinate system

$$\varphi: B^k(0;\varepsilon) \to u$$

at x.

Proof. Homework problem.

We know there is a coordinate system $\varphi: \tilde{u} \to u, 0 \in \tilde{u} \mapsto x \in u$. \tilde{u} is open, so $\exists \varepsilon > 0$ with $B^k(0; \varepsilon) \subseteq \tilde{u}$. Restrict φ to $B^k(0; \varepsilon)$.

$$\varphi|_{B^k(0;\varepsilon)}: B^k(0;\varepsilon) \to \varphi\left(B^k(0;\varepsilon)\right) \subseteq X.$$

Lemma 4.3. Let $X \subseteq \mathbb{R}^n$ be a smooth manifold and $x \in X$, let

$$\varphi: \tilde{u} \to u$$
 and $\psi: \tilde{v} \to v$

be coordinate systems at $x \in X$.

 $\varphi^{-1}(u \cap v)$ is diffeomorphic to $\psi^{-1}(u \cap v)$ with diffeomorphism given by $\psi^{-1} \circ \varphi$ with restriction $(\varphi|_{\varphi^{-1}(u \cap v)})$ or $\varphi^{-1} \circ \psi$ with restriction $(\psi|_{\psi^{-1}(u \cap v)})$.

Proof. $\psi^{-1} \circ \varphi|_{\varphi^{-1}(u \cap v)}$ is inverse to $\varphi^{-1} \circ \psi|_{\psi^{-1}(u \cap v)}$.

$$(\varphi^{-1} \circ \psi) \circ (\psi^{-1} \circ \varphi) (z)$$
$$= \varphi^{-1} (\psi (\psi^{-1} (\varphi(z))))$$
$$= \varphi^{-1} (\varphi(z)) = z$$

To see $\varphi^{-1} \circ \psi$ is diffeo check they are smooth.

Proposition 4.4. Let $X \subseteq \mathbb{R}^n$ be a smooth manifold and $x \in X$. Then T_xX is well defined: independent of the choice of coordinate chart.

We can assume $\varphi(0) = \psi(0) = x$. We then have two definitions for T_xX :

$$\{(x, d\varphi_0(v)) | v \in \mathbb{R}^k \}$$

or

$$\{(x, d\psi_0(v)|v \in \mathbb{R}^k)\}$$

i.e., is

$$im\left(d\varphi_0:\mathbb{R}^k\to\mathbb{R}^n\right)$$

equal to

$$im (d\psi_0 : \mathbb{R}^k \to \mathbb{R}^n)?$$

We can use the diffeo's $\psi^{-1} \circ \varphi$ and $\varphi^{-1} \circ \psi$ as follows. Let's say we have $d\varphi_0(v) \in im(d\varphi_0(v))$.

$$d\varphi_0(v) = d\left(\psi \circ \psi^{-1} \circ \varphi\right)_0(v)$$
$$= d(\psi)_0 \cdot d\left(\psi^{-1} \circ \varphi\right)(v).$$

To finish, suppose

$$d\psi_0(w) = d\left(\varphi \circ \varphi^{-1}\psi\right)_0(w)$$
$$= d\varphi_0\left(d(\varphi^{-1} \circ \psi)_0(w)\right).$$
$$\in im\left(d\varphi_0\right)$$

Example 4.2. Tangent Spaces to S^1

Pick coordinates

$$exp: (0,2\pi) :\to S^1 \setminus \{(1,0)\}$$
$$exp: (-\pi,\pi) \to S^1 \setminus \{(-1,0)\}$$

Consider $(x, y) \in S^1$. What is $T_{(x,y)}S^1$?

$$(dexp) = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

if $exp(\theta) = (x, y)$, then

$$T_{(x,y)}S^{1} = \{(x,y), (dexp_{\theta})(v)|v \in \mathbb{R}\}$$
$$im(dexp_{\theta}) = Span_{\mathbb{R}}\{\begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}\}$$

Example 4.3. S^4 , x = (1, 0, 0, 0, 0). What is $T_x S^4$?

• Find local coord. system of S^4 at x

$$\varphi: B^4(0;1) \longrightarrow u \subseteq S^4$$

$$(x_1, x_2, x_3, x_4) \longmapsto \left(\sqrt{1 - x_1^2 - x_2^2 - x_3^2 - x_4^2}, x_1, x_2, x_3, x_4\right)$$

Observe that $x_1^2 + x_2^2 + x_3^2 + x_4^2 < 1$, so $\sqrt{1 - x_1^2 - x_2^2 - x_3^2 - x_4^2}$. observe φ is the graph og

$$f: B^4(0;1) \to \mathbb{R}$$

 $(x_1, x_2, x_3, x_4) \mapsto \sqrt{1 - x_1^2 - x_2^2 - x_3^2 - x_4^2}.$

Calculate $d\varphi_0$ as $\varphi(0,0,0,0) = x$.

$$d\varphi_{(0,0,0,0)}$$

$$=\begin{bmatrix} \frac{-x_1}{\sqrt{1-x_1^2-x_2^2-x_3^2-x_4^2}} \to 0 & \frac{-x_2}{\sqrt{1-x_1^2-x_2^2-x_3^2-x_4^2}} \to 0 & \frac{-x_3}{\sqrt{1-x_1^2-x_2^2-x_3^2-x_4^2}} \to 0 & \frac{-x_4}{\sqrt{1-x_1^2-x_2^2-x_3^2-x_4^2}} \to 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So

$$Im(d\varphi_0) = span \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

$$T_x S^4 = \{x\} x im(d\varphi_0)$$

$$T_x S^n = \{(x, v) | v \in \mathbb{R}^{n+1} \text{ s.t. } v \cdot x = 0\}$$

Let $f:X\to Y$ be a smooth map where $X\subseteq\mathbb{R}^n,Y\subseteq\mathbb{R}^n$ are smooth manifolds. How to define the derivative of f? What we want:

(1) $\forall x \in X$ we get a linear map

$$Df_x: T_xX \to T_{f(x)}Y$$
.

(2) if $f: u \to v, u \subseteq \mathbb{R}^n$ open, $V \subseteq \mathbb{R}^n$ open, f smooth, then expect

$$Df_x: T_x u \to T_{f(x)} V$$

 $(x, v) \mapsto (f(x), df_x(v))$

(3) D should satisfy the chain rule

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$T_{x}X \xrightarrow{Df_{x}} T_{f(x)}Y \xrightarrow{Dg_{f(x)}} T_{g(f(x))}Z$$

$$D(g \circ f)_{x}$$

$$D(g \circ f)_{x} = (Dg)_{f(x)} \circ Df_{x}$$

(4) if $\varphi: \tilde{u} \to u \subseteq X$ is a local coordinate system for X

$$D\varphi_x T_x \tilde{u} \to T_x X \subseteq T_x \mathbb{R}^n$$

Lecture Week 04 Differential Topology

5 28. jan

Derivative of a smooth map

$$f: X \to Y$$

 $X \subseteq \mathbb{R}^n$ smooth manifold

 $Y \subseteq \mathbb{R}^m$ smooth manifold

define $Df_x: T_xX \to T_{f(x)}Y$ by selecting cord. systems. Diagram1

 $f(u) \subseteq V$, $(\varphi(0) = x, \psi(0) = y)$ Define Df_x to be

$$Df_x = (D\psi)_0 \circ (Dh_0) \circ (D\varphi_0)^{-1}$$

Diagram 2

Main properties of Df.

(1) If $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$ both open subsets,

$$f: u \to V \text{ smooth,}$$

then
$$Df_x(x,v) = (x, df_x(v))$$

(2) Chain rule:

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$X \subseteq \mathbb{R}^n, Y \subseteq \mathbb{R}^m, Z \subseteq \mathbb{R}^l$$

X, Y, Z all smooth manifolds. Check that

$$D(g \circ f)_x = D_{g_{f(x)}} \circ Df_x$$

We can take

$$x \in X, y = f(x), z = g(y)$$

We can find cord. systems

Diagram 3

Diagram 4

$$D(g \circ f)_x = D\chi_0 \circ Dp_0 \circ (D\varphi_0)^{-1}$$

$$= D\chi_0 \circ D(k \circ h)_0 \circ (D\varphi_0)^{-1}$$

$$= D\chi_0 \circ Dk_0 \circ Dh_0 (D\varphi_0)^{-1}$$

$$= (D\chi_0 \circ Dk_0 \circ D\psi_0^{-1} \circ) (D\psi_0 \circ Dh_0 (D\varphi_0)^{-1})$$

$$Dg_y \circ Df_x$$
.

Step three follows from the fact that the chain rule holds for open euclidean subsets.

Example 5.1.

$$f: S^1 \to S^1$$

$$f(x,y) = (x^2 - y^2, 2xy)$$

where $x^2 + y^2 = 1$. Have to check that

$$||f(x,y)|| = 1$$

What is $Df_{(x,y)}$?

$$Df_{(x,y)} = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}$$
$$Df_{(x,y)} : T_{(x,y)}S^{1}(1 - dim) \to T_{(x,y)}S^{1}(1 - dim)$$

Why do we describe a 1-dimensional thing with a 2 by 2 matrix, so that is wrong.

We observe that $f: S^1 \to S^1$ can be extended to

$$\tilde{f}: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\tilde{f}(x,y) = (x^2 - y^2, 2xy)$$

$$D\tilde{f}_{(x,y)} = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}$$

is correct though.

How does this relate to $Df_{(x,y)}$? To find $df_{(x,y)}$, we need coordinate systems. E.g.

$$exp: (0, 2\pi) \to S^1 \setminus \{(1, 0)\}$$

 $exp: (-\pi, \pi) \to S^1 \setminus \{(-1, 0)\} = V$

diagram 5

$$f(S^1 \setminus \{(-1,0)\}) = S^1.$$

Pick a good u. Try to take $f^{-1}(V)$. So what maps to (-1,0)?

$$f(x,y) = (x^2 + y^2, 2xy) = (-1,0)$$

with $x^2 + y^2 = 1$, if $x = 0, -y^2 = -1, y^2 = 1, y = \pm 1$. So we take

$$u = S^1 \setminus \{(0,1), (0,-1)\}$$

Illustrasjon 1

using trig identities, we see that

$$\alpha = 2\theta + 2\pi \cdot n$$
 for some $n \in \mathbb{Z}$

So h is the function

$$h(\theta) = \begin{cases} 2\theta \text{ if } \theta \in (-\pi/2, \pi/2) \\ 2\theta - 2\pi \text{ if } \theta \in (\pi/2, 3\pi/2) \end{cases}$$

Finally, to determine $Df_{(x,y)}$ where $(x,y) \in u$, we have that

$$Df_{(x,y)} = Dexp_{h(\theta)} \circ Dh_{\theta} \circ Dexp_{\theta}^{-1}$$
$$\varphi(\theta) = (x,y)$$

if $v \in T_{(x,y)}S^1$ and $(x,y) = (\cos \theta, \sin \theta)$,

$$v = \left((x, y), t \cdot \begin{bmatrix} -\sin\theta\\\cos\theta \end{bmatrix} \right)$$

So $Df_{(x,y)}(v)$ is what?

$$= Dexp_{h(\theta)} \circ Dh_{\theta} \circ Dexp_{\theta}^{-1} \left((x, y), t \cdot \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \right)$$

recall

$$Dexp_{\theta} = \begin{bmatrix} -\sin\theta\\\cos\theta \end{bmatrix}$$

so $Df_{(x,y)}(v) = Dexp_{h(\theta)} \circ Dh_{\theta}(\theta,t)$

$$dh_{\theta} = \begin{cases} 2\theta \text{ if } \theta \in (-\pi/2, \pi/2) \\ 2\theta - 2\pi \text{ if } \theta \in (\pi/2, 3\pi/2) \end{cases}$$

$$\Rightarrow Dexp_{h(\theta)} \cdot (h(\theta), 2t)$$

$$= \left((\cos(2\theta), \sin(2\theta)), 2t \cdot \begin{bmatrix} -\sin\theta\\ \cos\theta \end{bmatrix} \right)$$

$$D_{f(x,y)} : T_{(x,y)}S^1 \to T_{f(x,y)}S^1$$

$$t \cdot \begin{bmatrix} -\sin(\theta)\\ \cos(\theta) \end{bmatrix} \longmapsto 2t \cdot \begin{bmatrix} -\sin(2\theta)\\ \cos(2\theta) \end{bmatrix}$$

So if we pick a basis for

$$T_{(x,y)}S^{1} = Span\left\{ \left((x,y), \begin{bmatrix} -\sin\theta\\ \cos\theta \end{bmatrix} \right) \right\}$$

$$T_{f(x,y)}S^{1} = Span\left\{ \left(f(x,y), \begin{bmatrix} -\sin 2\theta\\ \cos 2\theta \end{bmatrix} \right) \right\}$$

$$Df_{(x,y)} = [2]$$

$$X \subseteq \mathbb{R}^{n}$$

Remark. 1.

$$T_x X \subseteq T_x \mathbb{R}^n$$

$$\left(\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \right) \in T_{\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}} S^1$$

2. Pick a good basis for T_xX . There is a standard basis for T_xX once we pick a coordinate system.

Diagram 6

$$\varphi^{-1}(p) = (x_1(p), x_2(p), \dots, x_k(p))$$

if $\varphi(0) = x$

$$T_0\tilde{u} = \{(0, v) | v \in \mathbb{R}^k\} \simeq \mathbb{R}^k$$

Standard basis.

$$(0, e_1), (0, e_2), \dots, (0, e_k) \in T_0 \tilde{u}$$

So then taking $D\varphi_0$ gives a basis for T_xX .

$$D\varphi_0(0, e_i) = (x, d\varphi_0(e_i)) = \frac{\partial}{\partial x_i}|_{x \in X}$$

If we use coordinates

$$\varphi: \tilde{u} \to u \subseteq X$$

$$\psi: \tilde{v} \to V \subseteq Y$$

$$\varphi^{-1} = (x_1, \dots, x_k)$$

$$\psi^{-1} = (y_1, \dots, y_k)$$

then the matrix for Df_x with respect to $\{\frac{\partial}{\partial x_i}|_x\}$ and $\frac{\partial}{\partial y_i}|_{f(x)}$ is just dh_0 . Diagram 7

$$Df_x = \left(\frac{\partial}{\partial x_i}|_x\right) = \sum_{j=1}^l dh_0(i,j) \frac{\partial}{\partial y_i}|_{f(x)}$$

3.

$$X \xrightarrow{f} Y$$

at $x \in X$, find a smooth extension of f to $x \in u' \subseteq \mathbb{R}^n$ open

Diagram 8

Tegning 2

diagram 9

thus if $v \in T_x X$

$$Df_x(v) = D\tilde{f}_x(v) \in T_{f(x)}Y.$$

Caution! $D\tilde{f}_x$ depends on the choice of extension! We could pick another extension \bar{f} , and maybe $D\tilde{f}_x \neq D\bar{f}_x$. but

$$D\tilde{f}_x|_{T_xX} = D\bar{f}_x|_{TxX}$$

E.g. $\tilde{f}(x,y) = (x^2 - y^2, 2xy)$

$$f: S^1 \to S^1$$

$$D\tilde{f}_{(x,y)} = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}$$

we can only plug in

$$v \in T_{(x,y)}S^1 \Rightarrow \left((x,y), t \begin{bmatrix} -y \\ x \end{bmatrix}\right).$$

Then

$$Df_{(x,y)} = \left((x,y), t \begin{bmatrix} -y \\ x \end{bmatrix} \right) = \left(f(x,y), t \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix} \right)$$
$$\left(f(x,y), t \cdot 2 \begin{bmatrix} -2xy \\ x^2 - y^2 \end{bmatrix} \right)$$
$$= \left(f(x,y), 2t \begin{bmatrix} -f_y(x,y) \\ f_x(x,y) \end{bmatrix} \right)$$

This is indeed in $T_{f(x,y)}S^1$.

$$X = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$$
$$f: X \to X$$
$$(x,0) \mapsto (x^2,0)$$

What is $Df_{(x,0)}$? Extension of f:

$$\tilde{f}(x,y) = (x^2,0)$$

defined on \mathbb{R}^2 . OR.

$$\bar{f}(x,y) = (x^2, y)$$

only require \bar{f} is smooth,

$$\bar{f}(x,0) = f(x,0) = (x^2,0)$$

$$D\tilde{f} = \begin{bmatrix} 2x & 0 \\ 0 & 0 \end{bmatrix}, D\bar{f} = \begin{bmatrix} 2x & 0 \\ 0 & 1 \end{bmatrix}$$

$$Df_{(x,0)} \left(\begin{bmatrix} t \\ 0 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 2x & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} t \\ 0 \end{bmatrix} = \begin{bmatrix} 2xt \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2x & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} t \\ 0 \end{bmatrix} = \begin{bmatrix} 2xt \\ 0 \end{bmatrix}$$

$$Df_{(x,0)} \left((x,0) \begin{bmatrix} t \\ 0 \end{bmatrix} \right) = \left((x^2,0), \begin{bmatrix} 2xt \\ 0 \end{bmatrix} \right).$$

Definition 5.1. Let $X \subseteq \mathbb{R}^n$ be a smooth manifold. The local dimension of X at $x \in X$ is

$$dim_x X = dim_{\mathbb{R}} T_x X.$$

Proposition 5.1. $dim X: X \to \mathbb{Z}$

this function is *locally constant*.

i.e., ofr any $x \in X$, there exists $u \subseteq X$ open, $x \in u$, with $dim_y X = dim_x X$ for all $y \in u$, i.e., $dim X|_u$ is constant.

Consequence: if X is connected, there is $k \in \mathbb{Z}$ with $\forall x \in X$, $dim_x X = k$. When we say dim X = k, we implicitly assume X is connected.

Proof. We show $dimX:X\to\mathbb{Z}$ is continuous. Let $\{k\}\subseteq\mathbb{Z}$. This is an open set, so we need to show

$$\{x \in X | dim_x X = k\}$$

is an open set in X.

To see that this is open, we consider $x \in X$ with $dimT_xX = k$. Ther is a coordinate system

$$\varphi: \tilde{u} \to u \subseteq X$$

with \tilde{u} open $\subseteq \mathbb{R}^k$ and $x \in u$.

That gives

$$(D\varphi)_{\varphi^{-1}(x)}: T_{\varphi^{-1}(x)}\mathbb{R}^k \xrightarrow{\simeq} T_x X$$

but for any other $y \in u$, we get

$$(D\varphi)_{\varphi^{-1}(y)}: T_{\varphi^{-1}(y)}\mathbb{R}^k \xrightarrow{\simeq} T_y X$$

therefore $dim_y X = k$ too.

hence

$$x \in u \subseteq \{x \in X | dim_x X = k\}$$

open, so $dim X^{-1}(\{k\})$ is also open. So our dimension function is continuous.

Example 5.2.

$$X = \{(x, y, 0) | x^2 + y^2 = 1\} \cup S^2 \left((10, 10, 10); 1 \right) \subseteq \mathbb{R}^3$$

6 30. jan

What is the local structure of a smooth map

$$f: X \to Y$$
?

Idea: Use the derivative Df_x as a local approximation of f.

Definition 6.1. A smooth map $f: X \to Y$ is a local diffeomorphism at $x \in X$ if there exist $x \in u$ open $\subseteq X$ and $f(x) \in V$ open subseteq Y so that $f|_u: u \xrightarrow{\simeq} V$.

Example 6.1.

$$can: \mathbb{R}^n \to \mathbb{R}^n$$

= $id: x \mapsto x$

obviously a global so local diffeo at all points.

Example 6.2.

$$\begin{split} \exp: \mathbb{R} &\to S^1 \\ \exp|_{((\theta-\varepsilon,\theta+\varepsilon))}(\theta-\varepsilon,\theta+\varepsilon) &\xrightarrow{\simeq} I(\theta;\varepsilon) \\ \text{and } \varepsilon &< \pi \end{split}$$

A local diffeo at all $\theta \in \mathbb{R}$. Not injective, so not a global diffeomorphism.

Q: Can I use Df_x to see if f is a local diffeo at x?

Theorem 6.1. Inverse Function Theorem

(Calculus version): $u \subseteq \mathbb{R}^n$ open, $V \subseteq \mathbb{R}^m$ open and $f: u \to V$ smooth. Then f is a local diffeo at $x \in u$ iff df_x is an isomorphism, i.e. df_x is square matrix, $det(df_x) \neq 0$.

Theorem 6.2. Inverse Function Theorem

Let $f: X \to Y$ be a smooth map of smooth manifolds, here f is a local diffeomorphism at $x \in X$ iff $Df_x: T_xX \to T_{f(x)Y}$ is an isomorphism.

Proof. At $x \in X$, we can only find local coordinates

Diagram 1

if Df_x is an iso, then $D\psi \circ Dh_0 \circ D\varphi_0^{-1}$ where, $D\varphi_0^{-1}$, $D\psi$ are isomorphisms, so Dh_0 has to be iso too.

Diagram 2

diagram 3 \Box

Example 6.3.

$$Y = \{(x, y) \in \mathbb{R}^2 | y = x^2 \}$$

Drawing of parabola

$$\mathbb{R} \xrightarrow{f} Y$$
$$f(x) = (x^2, x^4)$$

f is local diffeo at $x \neq 0$.

Diagram 4

h is how I think of f in coords.

$$\psi(h(x)) = f(x) = (x^2, x^4)$$

$$(h(x), h(x)^2) \Rightarrow h(x) = x^2$$

Pick better coordinates

Diagram 5

$$\psi(h(x)) = (h(x), h(x)^2) = f(\sqrt{x}) = (x, x^2)$$
$$h(x) = x$$

Identity map is obviously a diffeomorphism.

Reformulation of IFT

 $f: X \to Y$ smooth, Df_x is an isomorphism, there are coordinate systems Diagram 6

so that in cords., f is the identity map.

Diagram 7

Proof. The IFT gives us

Diagram 8

if $f: X \to Y$ is local diffeo at <u>all</u> x, it need not be a global diffeo.

Exercise 6.1. if $f: X \to Y$ is bijective, smooth, local diffeo, then f is a diffeomorphism.

"Nice maps $f: X \to Y$ where dim X = dim Y"

"Nice maps $f: X \to Y$ with $dim X \le dim Y$ " $Df_x: T_x X \to T_{f(x)} Y, \ T_x X = ndim, \ T_{f(x)} Y mdim, \ n \le m.$ if Df_x is injective, what does it tell us about f locally?

If $f: X \to Y$, df_x is injective at $x \in X$, what can we say about f?

Definition 6.2. If $f: X \to Y$ is smooth, we say f is an immersion at $x \subseteq X$ is the derivative Df_x is injective.

Definition 6.3. Canonical immersion:

$$can: \mathbb{R}^k \to \mathbb{R}^{k+l}$$
$$(x_1, x_2, \dots, x_k) \mapsto (x_1, x_2, \dots, x_k, 0, \dots, 0)$$
$$dcan)_x =$$

Matrix 1

so can is immersion.

image of can is just the submanifold of \mathbb{R}^{k+l} given by

$$\{x \in \mathbb{R}^{k+l} | x_{k+1} = x_{k+2} = \dots = x_{k+l} = 0\}$$

Hopes: $f: X \to Y$ is an immersion, is the image a submanifold?

locally does this work? f immersion at x, is f locally diffeo. to image around x? we'll show: f immersion at x, then locally at x, f is just the canonical immersion (in some coords.)

Lemma 6.3. Say $u \subseteq \mathbb{R}^k$ open, $0 \in u$, and $h: u \to V \subseteq \mathbb{R}^{k+l}$ is an immersion

So dh_0 is injective.

Pick a linear diffeo. $P: \mathbb{R}^{k+l} \to \mathbb{R}^{k+l}$ so that

Diagram 9

and $dh'_0 = \text{Matrix } 1$

Proof. $dh_0: \mathbb{R}^k \to \mathbb{R}^{k+l}$ is injective. So $rank(dh_0) = k$. Do row operations on dh_0 to get:

Matrix 2

this corresponds to constructing $n+l\times n+l$ invertible matrix P so $p\cdot dh_0$ =Matrix 1.

$$V' = P(V)$$

$$h'0 = d(P \circ h)_0 = P \circ dh_0 = \text{ Matrix 1}$$

Theorem 6.4. $f: X \to Y$ local immersion at x.

Diagram 10

 $dh_0 = \text{Matrix } 1$

Now we'll get new coords., so f is can in coords.

Definition 6.4. Define $\tilde{u} \in \mathbb{R}^k$

$$G: \tilde{u} \times \mathbb{R}^l \to \mathbb{R}^{k+l}$$

$$G(x_1, \dots, x_{k+l}) = h(x_1, \dots, x_k) + (0, \dots, 0, x_{k+1}, \dots, x_{k+l})$$

$$dG_0 = \begin{bmatrix} dh_0 & | & 0 \\ 0 & | & I_l \end{bmatrix} = \begin{bmatrix} I_k & | & 0 \\ 0 & | & I_l \end{bmatrix}$$

Hence G is a local diffeo. at 0. So we can pick neighborhoods at 0 so G is a diffeo.

$$G: \supset \mathbb{R}^k u' \times Z(\subseteq \mathbb{R}^l) \to v' \subseteq \tilde{v} \subseteq \mathbb{R}^{k+l}.$$

Observe that: $u' \subseteq \tilde{u}$.

$$u' \xrightarrow{can} u' \times z \xrightarrow{G} v'$$

$$(x_1, ..., x_k) \mapsto (x_1, ..., x_k, 0, ..., 0) \mapsto (h(x_1, ..., x_k))$$

Observe we van take $u' \subseteq \tilde{u}$.

Diagram 11

f in coords. $\varphi: u' \to \hat{u}$ and $\psi \circ G: G: u' \times z \to \hat{V}$.

Corollary. $f: X \to Y$ an immersion at $x \in X \Rightarrow \exists u \subseteq X$ open, $\forall y \in u, Df_y$ injective.

Corollary. f is an immersion at $x \in X$, there is some $u \subseteq X$ where,

$$f|_u: u \to f(u)$$

is a diffeomorphism.

Remark. if $f: X \to Y$ is an immersion, we may not have $f: X \to f(X)$ a diffeo!

What if f is an injection and an immersion? Still $f:X\to f(X)$ not a diffeo. in general.

Illustrasjon 1

Definition 6.5. A map $f: X \to Y$ is called *proper* is for any compact $C \subseteq Y$, $f^{-1}(C)$ is also compact.

Definition 6.6. $f: X \to Y$ is an *embedding* if it is an immersion, injective and proper.

Consequence: if f is an embedding

 $f(X) \subseteq Y$ is a manifold, and $f: X \to f(X)$ is a diffeomorphism.

f immersion at x

Diagram 12

Diagram 13

Proposition 6.5. if f is proper, injective, immersion then for any $u \subseteq X$ open, $f(u) \subseteq f(X)$ is open.

Proof. To show f(u) open, we show $f(X) \setminus f(u)$ is closed.

Consider a sequence $y_i \in f(X) \setminus f(u)$ converging to: $\lim y_i = y \in f(X)$. We need to show $y \in f(X) \setminus f(u)$ or $y \notin f(u)$.

$$\{y_i|i\in\mathbb{N}\}\cup\{y\}$$

is compact.

$$f^{-1}(\{y_i|i\in N\}\cup\{y\})$$
 compact too.

f inj. so we can find $x_i \in X$

$$f(x_i) = y_i$$

$$f(x) = y$$

and $\{x_i|i\in\mathbb{N}\}\cup\{x\}$ is compact. So X_i has a convergent subsequence:

$$\lim x_{n_i} = z \in \{x_i | i \in \mathbb{N}\} \cup \{x\}$$

We check.

$$f(z) = \lim f(x_{n_i}) = \lim y_{n_i} = y = f(x)$$

$$\Rightarrow z = x$$
 by injectivity. $x_i \notin u$ as $y_i \notin f(u)$. So $x_i \in X \setminus u$ is closed, so $z = x_1 X \setminus u$. Hence $y = f(x) \notin f(u)$.

Lecture week 5 DiffTop

7 4. feb

Local properties of smooth maps

$$f: X \to Y$$

 $dim X \ge dim Y$.

Definition 7.1. A map $f: X \to Y$ is a submersion at $x \in X$ if $Df_x: T_xX \to T_{f(x)}Y$ is surjective.

Example 7.1. Canonical submersion is a projection map

$$can: \mathbb{R}^{n+k} \to \mathbb{R}^n$$

$$(x_1, \ldots, x_m, x_{n+1}, \ldots, x_{n+k}) \mapsto (x_1, \ldots, x_n)$$

is a submersion at all points.

$$Dcan_x = [I_n|0]$$

$$n \times (n+k)$$
.

Proposition 7.1. Let $f: X \to Y$ be a submersion at $x \in X$, then there are coordinate systems about $x \in X$ and $f(x) \in Y$ so that the map f appears to be the canonical submersion in coordinates.

Proof. Find some local coordinates

Diagram 1

Assumption that Df_x is surjective implies Dh_0 is surjective.

We can find a matrix Q so that

$$dh_0 \cdot Q = [I_n|0]$$

with Q, we can modify our coordinates about $x \in X$. In the new coordinates, f appears to be $h \circ Q$, and so

$$d(h \circ Q)_0 = dh_0 \cdot Q = [I_n|0]$$

Assume we've done this, redefine our charts so diagram 2

$$dh_0 = [I_n|0]$$

Now define a new map

$$G: \tilde{u} \to \tilde{v} \times \mathbb{R}^k$$

$$\tilde{u} \subseteq \mathbb{R}^{n+k}, \tilde{v} \subseteq \mathbb{R}^{n+k}$$

$$G(x) = (h(x), x_{n+1}, \dots, x_{n+k})$$

$$dG_0 \begin{bmatrix} dh_0 | & 0 \\ 0 | & I_k \end{bmatrix} = \begin{bmatrix} I_n | & 0 \\ 0 | & I_k \end{bmatrix} = I_{n+k}$$

Observe G is a local diffeo at 0 because $dG_0 = I_{n+k}$ by I.F.T. So we can pick $u' \subseteq \tilde{u}$ and $w \subseteq \tilde{v} \times \mathbb{R}^k$ where $G : u' \xrightarrow{\simeq} w$. Use coordinates $\varphi \circ G^{-1}$ about $x \in X$, then f is just canonical submersion in coordinates.

Proposition 7.2. If $f: X \to Y$ is a submersion at $x \in X$, then f is a submersion in an open neighborhood around x.

Proof. Find good coordinate systems:

Diagram 3

for any point $u \in \mathcal{U}$,

$$Df_u = D\psi_{can(\varphi(u))} \circ Dcan_{\varphi(u)} \circ D\varphi_{\varphi(u)}^{-1}$$

isos plus just $[I_n|0]$ so surjective, $\Rightarrow Df_u$ is surjective.

Proposition 7.3. If $f: X \to Y$ is smooth, and f(x) = y, and f is submersion at $x \in X$, then $f^{-1}(y)$ is locally euclidean.

Proof. Pick coords so f is the canonical submersion at $x \in X$.

consider $f^{-1}(y) \cap \mathcal{U}$ open relative to $f^{-1}(y)$. I claim this is diffeo to open subset of \mathbb{R}^k .

$$f^{-1}(y) \cap \mathcal{U} \simeq \varphi^{-1}(f^{-1}(y))$$
$$= can^{-1}(\psi^{-1}(y)) = can^{-1}(0) = \{x \in \tilde{\mathcal{U}} | x_1 = 0, x_2 = 0, \dots, x_n = 0\}$$

first diffeo is diffeo via φ .

picture 1

to get coords for $can^{-1}(0)$, use another projection map.

$$\pi: \mathbb{R}^{n+k} \to \mathbb{R}^k$$
$$(x_1, \dots, x_{n+k}) \mapsto (x_{n+1}, \dots, x_{n+k})$$

if we look at

$$can^{-1}(0) = \{x \in \tilde{\mathcal{U}} | x_1 = 0, x_2 = 0, \dots, x_n = 0\}$$

$$can^{-1}(0) \xrightarrow{\pi} \mathbb{R}^k$$

we get $W = \pi(can^{-1}(0))$ and

$$\{x \in \tilde{\mathcal{U}} | x_1 = 0, x_2 = 0, \dots, x_n = 0\} \simeq W \subseteq \mathbb{R}^k \text{ open.}$$

$$can^{-1}(0) \xrightarrow{\pi, \simeq} W$$

is a diffeo.

Example 7.2.

$$f: \mathbb{R}^{n+1} \to \mathbb{R}$$

$$f(x) = x_1^2 + x_2^2 + \dots + x_{n+1}^2$$

$$f^{-1}(1) = \{x \in \mathbb{R}^{n+1} | \sum x_i^2 = 1\} = S^n.$$

Definition 7.2. Let $f: X \to Y$ be smooth. $y \in Y$ is a regular value of f if:

$$\forall x \in f^{-1}(y), Df_x \text{ is surjective}$$

i.e., f is a submersion at x.

Theorem 7.4. Let $f: X \to Y$ smooth, suppose X, Y connected, dimX = n, dimY = k. If $y \in Y$ is a regular value of f, $f^{-1}(y)$ is a manifold. If $f^{-1}(y) \neq \emptyset$, then $dimf^{-1}(y) = dimX - dimY = n - k$.

Proof.

$$\forall x \in f^{-1}(y)$$

as f is a submersion at x, we know $f^{-1}(y)$ is locally euclidean at x. So $f^{-1}(y)$ is a manifold. And $dimf^{-1}(y)$ is obtained from previous prop too.

Example 7.3. S^1 is a smoth manifold.

$$f: \mathbb{R}^{n+1} \to \mathbb{R}$$

$$f(x) = \sum_{i=1}^{n+1} x_i^2$$

$$df_x = [2x_1, 2x_2, \dots, 2x_{n+1}]$$

is surjective when?

 $x \neq 0$

Hence $f^{-1}(y) \subseteq \mathbb{R}^{n+1}$ is a manifold as long as $0 \notin f^{-1}(y)$, i.e. for all $y \in \mathbb{R} \setminus \{0\}$.

$$S^n = f - 1(1).$$

$$\emptyset = f^{-1}(-1)$$

Regular values of f are $\mathbb{R} \setminus \{0\}$.

Which manifolds can be obtained as the preimage of a regular value? Specifically

(1)

$$f: \mathbb{R}^n \to \mathbb{R}^k$$

When is a manifold $X \subseteq \mathbb{R}^n$ obtained as $X = f^{-1}(0)$ for 0 a regular value of f?

One way to think of this is

$$f = (f_1, \dots, f_k)$$

for $f_i: \mathbb{R}^n \to \mathbb{R}$ is a "smooth condition", then $f_i^{-1}(0) \subseteq \mathbb{R}^n$ are points with 1 less degree of freedom.

So $f^{-1}(0) = f_1^{-1}(0) \cap f_2^{-1}(0) \cap \dots \cap f_k^{-1}(0)$.

(2) One modification, which submanifolds of a manifold X are obtained from $f: X \to \mathbb{R}^k$ $f^{-1}(0)$, 0 a regular value.

If we take k = 0. Consider $f: X \to \mathbb{R}^0$, $\mathbb{R}^0 = \{0\}$, $T_0 \mathbb{R}^0 = \{0\}$.

$$Df_x: T_xX \to T_0\mathbb{R}^0$$

is surjective always, so $f^{-1}(0) = X$.

(3) "Partial answers"

GP Partial converse 1 not interesting.

(4)

Proposition 7.5. Let $Z \subseteq X$ be a submanifold, then there is a smooth function $f: X \to \mathbb{R}^k$ so that Z is locally $f^{-1}(0)$, i.e., for $x \in Z$, we can find $u \subseteq X$ open and $f: X \to \mathbb{R}^k$, so that $f^{-1}(0) \cap u = z \cap u$.

Proof. $Z \xrightarrow{i} X, x \mapsto x$ is an immersion.

We have

Diagram 5

Check that

$$f^{-1}(0) = Z \cap V$$

Example 7.4. $\{(0,0,1)\}\subseteq S^2$, there is no smooth function $f:S^2\to\mathbb{R}^2$ so that $f^{-1}(0)=Z,\,0$ a regular value.

Proof using degree theory.

Proposition 7.6. $f: X \to Y$ smooth, $Z = f^{-1}(y)$, y a regular value, then $T_x Z = ker(Df_x: T_x X \to T_y Y)$.

Example 7.5. $S^n = f^{-1}(1)$

$$T_x S^n = ker(df_x = [2x_1, \dots, 2x_{n+1}]) = \{(x, v) | x \cdot v = 0\}$$

$$\mathbb{C} \simeq \mathbb{R}^2$$
$$x + iy \leftrightarrow (x, y)$$

We can think of S^2 as \mathbb{C} (or \mathbb{R}^2) with "point at infinity". Formula for $\varphi_N(x,y)$

$$l(t) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + t \begin{pmatrix} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$
$$= \begin{bmatrix} tx \\ ty \\ 1 - t \end{bmatrix} = \varphi_N(x, y)$$

when t is such that $\in S^2$.

Need that

$$(tx)^{2} + (ty)^{2} + (1-t)^{2} = 1$$
$$t^{2}(x^{2} + y^{2}) + 1 - 2t + t^{2} = 1$$
$$t(t(x^{2} + y^{2} + 1) - 2) = 0$$

need $t(x^2 + y^2 + 1) = 2$

$$t = \frac{2}{x^2 + y^2 - 1}$$

$$\varphi_N(x, y) = \frac{1}{x^2 + y^2 + 1} \cdot \begin{bmatrix} 2x \\ 2y \\ x^2 + y^2 - 1 \end{bmatrix}$$

$$\varphi_N^{-1} \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \frac{1}{1 - z} \begin{bmatrix} x \\ y \end{bmatrix}.$$

$$\varphi_S, \varphi_S^{-1}$$

$$\varphi_S^{-1} \circ \varphi_N, \varphi_N^{-1} \circ \varphi_S$$

8 6. feb

Cauchy-Riemann says

$$P(x+iy) = u(x,y) + iv(x,y)$$

is holomorphic implies

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

and

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

Example 8.1. Check this works for $P(z) = z^{2} = (x^{2} - y^{2}) + i(2xy)$

$$DP_{(x,y)} = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}$$

Outline of proof

Remark. $P(z) = \sum_{j=0}^{n} a_j z^j$ of degree n, so $a_n \neq 0$, there are at most n roots of P. If w_0 a root of P, can factor P.

$$P(z) = P_1(z)(z - w_0)$$

$$degP_n < n$$
 use I.H.

(1) We define from $P(z) = \sum_{j=0}^{n} a_{j} z^{j}$ a smooth map

$$F: S^2 \to S^2$$

Diagram 1

if $a \in S^2$, $a \neq ((0,0,1) = N)$ then $a = \varphi_N(x,y) = \varphi_N(x+iy)$

define $F(a) = \varphi_N(P(x+iy))$. for $N = (0,0,1) \in S^2$, define

$$F(N) = \begin{cases} N & \text{if } P \text{ is not constant} \\ a_0 & \text{if } P(z) = a_0 \end{cases}$$

- (1) Construct $F: S^2 \to S^2$
- (2) At any regular value

$$y \in S^2$$
, $(\forall x \in f^{-1}(y), DF_x \text{ is surjective.})$

we know $F^{-1}(y) \subseteq S^2$ is a manifold of dimension 0.

A 0-manifold is a discrete subset of S^2 . i.e. $\{x\} \subseteq f^{-1}(y)$ is open for all $x \in f^{-1}(y)$.

 $x\in f^{-1}(y)$. $f^{-1}(y)$ is closed set, $\{y\}\subseteq S^2$ is closed, $f^{-1}(y)\subseteq S^2$ is thus compact. So $f^{-1}(y)$ is a finite set.

$${x}|x \in f^{-1}(y)$$

open cover imp finite set.

- (1) Construct $F: S^2 \to S^2$
- (2) At any regular value $y \in S^2$, har $F^{-1}(y) = \{x_1, \dots, x_N\}$ a finite set.
- (3) What are critical points of F? i.e. DF_P not surjective? Possibly ∞ , otherwise, it is the points where

$$P'(z) = 0 \leftrightarrow DF_{\varphi_N(z)} = 0$$

at most n-1 points

$$z_1,\ldots,z_{n-1}$$

So regular values of F are at least

$$S^2 \setminus \{F(\infty), F(\varphi_N(z_1)), \dots, F(\varphi_N(z_{n-1}))\}$$

(1) Construct $F: S^2 \to S^2$

- (2) At any regular value $y \in S^2$, har $F^{-1}(y) = \{x_1, \dots, x_N\}$ a finite set.
- (3) What are critical points of F?

$$S^2 \setminus \{F(\infty), F(\varphi_N(z_1)), \dots, F(\varphi_N(z_{n-1}))\}$$

(4) Define a function

$$C: S^2 \setminus \{F(\infty), F(\varphi_N(z_1)), \dots, F(\varphi_N(z_{n-1}))\} \to \mathbb{N}$$

$$C(y) = \#F^{-1}(y)$$

- (5) Technical Theorem (Stack of Records Thm.) Says C is continuous/locally constant.
- (6) $S^2 \setminus \{F(\infty), F(\varphi_N(z_1)), \dots, F(\varphi_N(z_{n-1}))\}$

is connected so C is globally constant

$$\forall y, C(y) = c \in \mathbb{N}$$

(7a)se (1) C(y) = 0For almost all $y \in S^2$, $F^{-1}(y) = \emptyset$. So image of S^2 is not a regular value.

$$F(S^2) \subseteq \{\infty, F(\varphi_N(z_1)) \dots F(\varphi_N(z_{n-1}))\}$$

So $F(S^2) = \{\varphi_N(a_0)\}\$ is a constant function.

Cbse (2) Say C(y) > 0. Note that $\varphi_N(0) = (0, 0, -1) = S$. Either $S \in \{F(\varphi_N(z_1)) \dots F(\varphi_N(z_{n-1}))\}$ in which case $S = F(\varphi_N(z_i)) \Rightarrow 0 = P(z_i)$.

Ccse (3) C(y) > 0 but now S is a regular value. So $F^{-1}(S)$ has C(y) > 0 elements. So there is some point $p \in S^2$, with $F(p) = S, p \neq N$ so

$$P(\varphi_N^{-1}(p)) = 0$$

Lemma 8.1. If X is discrete and compact, X is finite.

Proof. Cover X with

$$u = \{\{x\} | x \in X\}$$

only subcover is u itself.

Theorem 8.2. Stack of records theorem

 $f: X \to Y$ smooth,

dim X = dim Y

f is a submersion at all points. X is compact. Then for any $y \in Y$, $f^{-1}(y)$ is a finite set, $f^{-1}(y) = \{x_1, \ldots, x_N\}$ and there exists open sets

$$x_i \in u_i \subseteq X, 1 \le i \le N$$

$$y \in V \subseteq Y$$

Drawing

- (1) $f|_{u_i}: u_i \to V$ is a diffeo
- (2) $u_i \cap u_j = \emptyset$ if $i \neq j$
- (3) $f^{-1}(V) = \bigcup_{i=1}^{N} u_i$

$$f^{-1}(y) = x_1, \dots, x_N$$

$$\forall z \in V, f^{-1}(z) = \{ f^{-1}|_{u_1}(z), f^{-1}|_{u_2}(z), \dots, f^{-1}|_{u_N}(z) \}$$

Proof. $f^{-1}(y)$ is a 0-manifold, as y is a regular valure for f, dimX = dimY. Compactness of $X \Rightarrow f^{-1}(y)$ is compact, so it's finite, $f^{-1}(y) = \{x_1, \dots, x_N\}$. First off, $Df_{x_i}: T_{x_i}X \to T_yY$ is surjective $\Rightarrow Df_{x_i}$ is isomorphism

$$\Rightarrow f$$
 is a local diffeo at x_i

So we find $x_i \in u_i \subseteq X$ open, $y \in v_i \subseteq Y$ open

$$f|_{u_i}:u_i\to v_i$$
 diffeo.

Take $V = \bigcap_{i=1}^{N} v_i$. Redefine $u_i = f|_{u_i}^{-1}(V)$. How to ensure $u_i \cap u_j = \emptyset$ when $i \neq j$? There are open balls $B^n(x_i; \varepsilon)$, so that

$$B^n(x_i;\varepsilon) \cap B^n(x_i;\varepsilon) = \emptyset$$
 when $i \neq j$

X is compact, $X \setminus (\bigcup_{i=1}^{N} u_i)$ closed, so compact.

$$f(X \setminus (\bigcup_{i=1}^{N} u_i))$$
 is compact,

$$Y \setminus f(X \setminus (\bigcup_{i=1}^N u_i))$$
 open.

Redefine
$$V = V \cap (Y \setminus f(X \setminus (\cup_{i=1}^N u_i)))$$

Redefine $u_i = f^{-1}|_{u_i}(V)$.

Lecture week 6

9 11. feb

Transversatility

Machine for making manifolds.

Take a smooth map $f: X \to Y (f: \mathbb{R}^n \to \mathbb{R}^m)$.

Find a regular value $y \in Y$. Then $f^{-1}(y) \subseteq X$ is a manifold.

Question:

If $p: \mathbb{R}^2 \to \mathbb{R}$ a polynomial p(x,y) and $a \in \mathbb{R}$ a regular value of p. Then $p^{-1}(a) \subseteq \mathbb{R}^n$ is a manifold. Which one?

How to describe a 1-manifold?

Connected 1-manifold: diffeo to \mathbb{R} or S^1 (these are the only possibilities) In general a 1-manifold is a disjoint union of \mathbb{R} 's and S^1 's.

Hornack's inequality

: If $p:\mathbb{R}^2\to\mathbb{R}$ polynomial, $deg(p)=m, a\in R$ a regular value of p, then $p^{-1}(a) = \{(x,y) \in \mathbb{R}^2 | p(x,y) = a \}$ has at most

$$\frac{(m-1)(m-2)}{2}+1$$

connected components.

Transversatility

Let $f: X \to Y$ be a smooth map and $Z \subseteq Y$ a smooth manifold, when is $f^{-1}(Z) \subseteq X$ a smooth manifold?

We first study one point at the time. Consider $x \in f^{-1}(Z)$. We'll see how we can find an open set about $x \in f^{-1}(Z)$ that's "euclidean".

Consider $x \in f^{-1}(Z)$, say $y \in f(x)$. Find $g: V \to \mathbb{R}^2$ so that $g^{-1}(0) = V \cap Z$, 0 a regular value of g. Observe taht $f^{-1}(V) = u \subseteq X$ open so $u \cap f^{-1}(Z)$ open rel. $f^{-1}(Z)$. Now we can compose

$$g \circ f : u \to \mathbb{R}^2, f^{-1}(Z \cap V) = f^{-1}(g^{-1}(0)) = (g \circ f)^{-1}(0)$$

Question, is 0 a regular value of $g \circ f$? If so $\Rightarrow u \cap f^{-1}(Z)$ is a manifold? When is 0 a regular value of $g \circ f$? At the very least when is $D(g \circ f)x$ surjective? Which will give $f^{-1}(Z) \cap u$ locally euclidean at x.

So 0 is a regular value of g, so D_{qy} is surjective.

 $D(g \circ f)_x$ surjective if Df_x is surjective. This is however overkill.

Necessary and sufficient condition is that

$$Image(Df_x) + Ker(Dg_y) = T_yY$$

 $q: u \to \mathbb{R}^l, g^{-1}(0) = z \cap u$ submanifold and 0 regular value

$$\Rightarrow T_{yg}^{-1}(0) = Ker(Dg_y)$$

Then $f^{-1}(Z)$ will be a manifold at x if $Image(Df_x) + T_yZ = T_yY$. (entirely dependent on f and Z).

Definition 9.1. We say a map $f: X \to Y$ is transverse to $Z \subseteq Y$ (a submanifold) if at all f(x) = y, $x \in f^{-1}(Z) \Rightarrow Image(Df_x) + T_yZ = T_yY$.

Theorem 9.1. If $f: X \to Y$ is transverse to $Z \subseteq Y$, then $f^{-1}(Z)$ is a manifold.

Proof. Basically the argument before the definition.

Remark. $Codim_Y Z = dimY - dimZ$

Corollary.

$$codim_x f^{-1}(Z) = codim_Y Z.$$

Proof. dim Z = dim Y - l, $dim f^{-1}(Z) = dim((q \circ f)^{-1}(0)) = dim X - l$

$$\Rightarrow l = codim_Y Z, l = codim_X f^{-1}(Z)$$

Definition 9.2. Notation:

$$f \bar{\sqcap} Z = f$$
 is transverse to Z.

Example 9.1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^n, df = [nx^{n-1}]$ is $f \to \{0\}$? We know $T_0\{0\} = \{0\}$ which is equivalent to $\pi \Leftrightarrow df_0$ surjective. This only happens when n = 1. When $Z = \{y\}, \pi \Leftrightarrow y$ a regular value.

Example 9.2.

$$\Gamma(f)(x) = (x, x^n)$$

$$z = \{(x, 0) | x \in \mathbb{R}\} = \mathbb{R} \times \{0\}$$

$$\Gamma(f)^{-1}(Z) \Leftrightarrow \{x \in \mathbb{R} | f(x) = 0\}$$

This is an intersection problem. $\Gamma(f)$ not transverse to Z.

$$\Gamma(f)^{-1}(Z) = \{x | x^n = 0\} \Leftrightarrow \{(x, x^n) | x \in \mathbb{R}\} \cap \{(x, 0) | x \in \mathbb{R}\}$$
$$\Gamma(f) \cap z_0 = \emptyset$$
$$\Gamma(f) \cap z_1 \neq \emptyset$$
$$\Gamma(f) \cap z_2 \neq 0$$

10 13. feb.

- Homotopy and stability
- Don't use the entire week on the midterm

Definition 10.1. Let $f_0: X \to Y$ and $f_1: X \to Y$ be two smooth functions. We say $f_0 \sim f_1$, in words, f_0 is homotopic to f_1 , if there exists smooth $F: X \times [0,1] \to Y$ with $F(x,0) = f_0(x)$ and $F(x,1) = f_1(x)$. We'll use $f_t: X \to Y$, $f_t(x) = F(x,t)$. We'll think of F as a family of maps $f_t: X \to Y$ deforms f_0 into f_1 .

Example 10.1. $X = \mathbb{R}^0$ and $Y = \mathbb{R}^2$, $f : \mathbb{R}^0 \to \mathbb{R}^2$, picks at $x_0 = f(0), g : \mathbb{R}^0 \to \mathbb{R}^2, x_1 = g(0)$

 $\Rightarrow f \sim g$, if there is $F: \{0\} \times [0,1] \rightarrow \mathbb{R}^2$.

 $F(0,t) \in \mathbb{R}^2$, $F(0,0) = x_0$ and $F(0,1) = x_1$. Alternate name for this case: x_0 and x_1 are in the same path component of X if $x_0 \sim x_1$.

Exercise 10.1. X a manifold, X is connected, $if f \forall x_0, x_1 \in X, x_0 \sim x_1$.

In \mathbb{R}^2 , any teo points $x_0, x_1 \in \mathbb{R}^2$ are connected by $F(t) = x_0 + t(x_1 - x_0), t \in \mathbb{R}$, $F(0) = x_0, F(1) = x_1$.

Proposition 10.1. Let $f: X \to \mathbb{R}^n$ be any smooth map. Then f is homotopic to $0: X \to \mathbb{R}^n$; $x \mapsto 0$.

Proof. $F(x,t) = (1-t)f(x), F: X \times \mathbb{R} \to \mathbb{R}^n, F(x,0) = f(x), F(x,1) = 0.$

Example 10.2. $f: S^1 \to \mathbb{R}^2 \setminus \{0\} : (x,y) \mapsto (x,y)$. f is not homotopic to any constant map.

Definition 10.2. Two manifolds, X, Y are (smoothly) homotopy equivalent if we can find $f: X \to Y, g: Y \to X$ so that $g \circ f \sim id_X$ and $f \sim g = id_Y$. We say g is the homotopy inverse of f.

Definition 10.3. A manifold X is contractable if X is homotopy equivalent to a point (\mathbb{R}^0) .

X is contractable if we have

$$|R^{\circ} \xrightarrow{\text{f}} \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times f \circ 0 \sim id \times |R^{\circ} \xrightarrow{\text{f}} \times$$

 $f \circ 0(x) = f(0) = x_0 \in X$, we need a homotopy $F: X \times [0,1] \to X$, F(x,0) = x and $F(x,1) = x_0$

Proposition 10.2. \mathbb{R}^n is contractable

Proof. $id: \mathbb{R}^n \to \mathbb{R}^n$ is homotopic to $0: \mathbb{R}^n \to \mathbb{R}^n$. "Straight line homotopy" F(x,t) = (1-t)x.

$$\mathbb{R}^n \sim \mathbb{R}^0, \forall n$$

Notation 10.1. $C^{\infty}(X,Y)$ is the set of all smooth maps $f:X\to Y$.

Remark. Homotopy is an equivalence relation on $C^{\infty}(X,Y)$.

Definition 10.4. A class of maps $\mathcal{T} \subseteq C^{\infty}(X,Y)$ is *stable* if for any homotopy $F: X \times I \to Y$ with $f_0 \in \mathcal{T}$ there exists $\varepsilon > 0$ so $f_t \in \mathcal{T} \forall t < \varepsilon$.

Example 10.3. $\mathcal{T} = \{f : \mathbb{R}^1 \to \mathbb{R}^2 | f(\mathbb{R}^1) \cap \{(x,0) | x \in \mathbb{R}\} \neq \emptyset\}$ Stable family?

Example 10.4. f(x) = (x, 0)

 $f \in \mathcal{T}$ but F(x,t) = (x,t) wich is smooth. Then if $t \neq 0$, $f_t(\mathbb{R}^1) = \{(x,t) | x \in \mathbb{R}\}$ is disjoint from x-axis.

Example 10.5. $\mathcal{T} = \{S^1 \to \mathbb{R}^n | f \ \overline{\cap} \ \{(x,0) | x \in \mathbb{R}^2\} \}$ is stable.

Theorem 10.3. Stability theorem

Let X be compact, and a $Z \subseteq Y$ closed submanifold. The following classes of maps are stable:

- (1) Immersion $X \to Y$
- (2) Local diffeomorphisms $X \to Y$
- (3) Submersions $X \to Y$
- (4) $f \bar{\sqcap} Z, f: X \to Y$
- (5) $f: X \to Y$ an embedding (this is amazing!)
- (6) $f: X \to Y$ diffeomorphisms

Proof. $(1) \Rightarrow (2)$ by def.

Consider $f: X \to Y$ an immersion and $F: X \times [0,1] \to Y$ a homotopy with $f_0 = f$. Must find $\varepsilon > 0$ so $\forall t < \varepsilon, f_t : X \to Y$ immersion.

The idea is $(Df_t)_x: T_xX \to Tf_t(x)Y$

We know that in some coords around $(x,0) \in X \times [0,1]$, (basically looks like $u \times [0,\varepsilon), x \in u \subseteq X$ open).

, get coords around $f(x) \in Y, V \subseteq Y$.).

So $(Df_t)_x$ is expressible as a matrix in this open set $(Df_0)_x$ is injective if f_0 is an immerison. So we can capture this as there is a $k \times k$ -submatrix of $(Df_0)_x$ that has nonzero determinant.

E.g.
$$(Df_0)_x = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
, take submatrix $\begin{bmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{bmatrix}$.

So write A(x,t) for this submatrix of $(Df_t)_x$. If $det(A(x,t)) \neq 0 \Rightarrow \text{rank}$ of $(Df_t)_x$ is k, and so Df_x is injective.

So $det(A(x,t)): u \times [0,\varepsilon) \to \mathbb{R}$ is a smooth function. And at our particular point $(x,0), det(A(x,0)) = b \neq 0$. Then $det(A(x,0))^{-1} ((b-\varepsilon,b+\varepsilon))$ which is open, at these points $(Df_t)_x$ is injective. For all x, we get open set $u_x \subseteq X \times [0,1]$ where $(Df_t)_x$ is injective. We then know $X \times \{0\} \subseteq \bigcup_{c \in X} u_x$. Since $X \times \{0\}$ is compact a finite subcover exists, $X \times \{0\} \subseteq \bigcup_{i=1}^n u_i$.

Modification: $V_x \times [0, \varepsilon_x) \subseteq u_x$, so $V_x \subseteq X$ open.

 $X \times \{0\} \subseteq \bigcup_{x \in X} V_x \times [0, \varepsilon_x)$, so $X \times \{0\} \subseteq \bigcup_{i=1}^n V_i \times [0, \varepsilon_i)$. Conclusion $\varepsilon = \min\{\varepsilon_i | 1 \le i \le n\}$ then for all $t < \varepsilon Df_t$ is injective.

11 14. feb.

Recall. $\mathcal{T} \subseteq C^{\infty}(X,Y)$, \mathcal{T} stable if $\forall F: X \times [0,1] \to Y$ with $f_0 \in \mathcal{T} \Rightarrow \exists \varepsilon > 0 \forall t < \varepsilon, f_{\varepsilon} \in \mathcal{T}$.

 $\{f: X \to Y | f \text{ a submersion } \}$ is stable when X compact.

Proof. $\forall a \in X, \exists u_a \subseteq X \text{ open neighborhood and } \varepsilon_a > 0, \text{ s.t. } (a,0) \in u_a \times [0,\varepsilon_a)$ that gives local coordinates, $f_0(a) \in V \subseteq Y, \text{ s.t. } (Df_t)x$ at all $(x,t) \in u_a \times [0,\varepsilon_a)$ is represented as a matrix.

We can find an $n \times n$ -submatrix of $(Df_t)x$, where det(A(a,0)). Now A is smooth so det A is smooth $\Rightarrow \exists u_a \times [0, \varepsilon_a)$ on which $det(A(x,t)) \neq 0$.

$$X \times \{0\} \subseteq \bigcup_{a \in X} u'_a \times [0, \varepsilon'_a) \subseteq_{compact} \bigcup_{i=1}^l u_i \times [0, \varepsilon_i),$$

and take $\varepsilon = min\{e_1, \ldots, e_l\}.$

Lecture week 7

12 25. feb.

Theorem 12.1. Sard's theorem

Let $f: X \to Y$ be a smooth function, then the set of eigenvalues of f has measure 0 in Y. $f^{-1}(y)$ is a manifold for almost all $y \in Y$.

Morse functions

A function $f: \mathbb{R}^k \to \mathbb{R}$ is *Morse*, if at every critical point $p \in \mathbb{R}^k$. $(i.e.df_p = 0)$ the hessian matrix of f at p is invertible

$$H(p) = \left[\frac{\partial^2}{\partial x_i \partial x_j}(p)\right]$$

We say p is a nondegenerate critical point when H(p) is invertible.

Definition 12.1. Let X be a smooth manifold and let $f: X \to \mathbb{R}$ be smooth, we say f is Morse if at any critical point $p \in X$ we can find a coordinate system so that $h = f \circ \varphi : \tilde{u} \to \mathbb{R}$ is Morse, i.e., need Hessian

$$\left[\frac{\partial^2}{\partial x_i \partial x_j}(0)\right]$$

to be invertible.

Proposition 12.2. The critical points of a Morse function are *isolated* from one another. In other words, the set of critical points is a discrete subspace of X.

Proof. Say $p \in X$ is a critical point. Find coords around p: coords

and look at $h = f \circ \varphi : \tilde{u} \to \mathbb{R}$. Define

$$g: \tilde{u} \to \mathbb{R}^k x \mapsto \begin{bmatrix} \frac{\partial h}{\partial x_1}(x) \\ \vdots \\ \frac{\partial h}{\partial x_k}(x) \end{bmatrix}$$

$$dg_x = \left[\frac{\partial^2}{\partial x_i \partial x_j}(0)\right]$$

is the Hessian of h. So we have

$$g(0) = 0(0 \text{ is a critical value of } h)$$

 dg_0 is an invertible linear map. Inverse function theorem $\Rightarrow g$ is a local different $0 \in \tilde{u}$. So in a negiborhood $0 \in \tilde{V} \subseteq \tilde{u}$ where $g: \tilde{V} \to \mathbb{R}^k$ different its image. Key: g(x) = 0 if f(x) = 0, f(x) = 0. This means f(x) = 0 is the only critical value of f(x) = 0 in f(x) = 0 is an open set, only critical point f(x) = 0.

Proposition 12.3. On a compact space X, the critical points of a Morse function $f: X \to \mathbb{R}$ is a finite set.

Idea of Morse theory

 $X \subseteq \mathbb{R}^n$ compact manifold. $f: X \to \mathbb{R}$ Morse function. (usually think of f as $f(x_1, \ldots, x_N) = x_N$). (f is a height function).

$$T^2 \subseteq \mathbb{R}^3$$

 $x \in X$ is critical when $T_xX|z$ -axis. critical points \leftrightarrow local extrema of f on X.

from calculus, you can determine if f has a local min, max, saddle at a critical point by looking at Hessian of f at x.

For the torus:

Hessian at x_1 :

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 \leftrightarrow manifold is locally the graph of $x^2 + y^2$.

Hessian at x_2 :

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \leftrightarrow x^2 - y^2$$

Fact of Morse theory: If $s,t \in (a,c_1)$ or (c_1,c_2) or c_2,b then the manifolds $f^{-1}((-\infty,s))$ and $f^{-1}((-\infty,t))$ are homotopy equivalent. When we cross c_1 , the critical point has Hessian

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \leftrightarrow x^2 - y^2$$

Says we attach a saddle to $f^{-1}((-\infty,t))$, at next critical value c_3 , we have to attach anothe saddle, at c_4 glue on a disc.

Lemma 12.4. Morse Lemma Let $f: X \to \mathbb{R}$ be a Morse function, $p \in X$ a critical point. In coords $\varphi: \tilde{u} \to X, 0 \mapsto p$ you have $h = f \circ \varphi$, Hessian $H(0) = \left[\frac{\partial^2 h}{\partial x_i \partial x_j}(0)\right] = \left[h_{ij}\right]$. Morse lemma says there is some coord. system

$$\psi: \tilde{V} \to X, 0 \mapsto p$$

so that $f \circ \psi(x) = f(p) + \sum h_{ij} x_i x_j$.

Compare $f: X \to \mathbb{R}, p \in X$ a regular point, Df_p surjective. Local submersion theorem says there are coords $\varphi: \tilde{u} \to X, o \mapsto p$ where $f \circ \varphi(x) = f(p) + x_k$.

Example 12.1.

$$S^2 \subseteq \mathbb{R}^3 \xrightarrow{h} \mathbb{R}$$

 $(x, y, z) \mapsto z$

Is it Morse?

$$\varphi_N(x,y) = \frac{1}{1+x^2+y^2} \left(2x, 2y, x^2+y^2-1\right)$$

$$\varphi_S(x,y) = \frac{1}{1+x^2+y^2} \left(2x, 2y, 1-x^2-y^2\right)$$

$$h_N = h \circ \varphi_N$$

$$h_N(x,y) = \frac{x^2+y^2-1}{1+x^2+y^2}$$

$$h_s(x,y) = \frac{-(x^2+y^2-1)}{1+x^2+y^2}$$

$$dh_N(x,y) = \frac{1}{(1+x^2+y^2)^2} [4x \quad 4y]$$

$$dh_s(x,y) = \frac{-1}{(1+x^2+y^2)}[4x \quad 4y]$$

Only critical points are

$$(0,0)in\varphi_N \leftrightarrow S \in S^2$$

$$(0,0)in\varphi_s \leftrightarrow N \in S^2$$

$$H_N(0,0) = \begin{bmatrix} 4 & 0\\ 0 & 4 \end{bmatrix}$$

$$H_S(0,0) = \begin{bmatrix} -4 & 0\\ 0 & -4 \end{bmatrix}$$

Imagine $f: X \to \mathbb{R}$ with 2 critical points. X compact.

Theorem 12.5. Reeb's theorem If X is compact n-manifold with a Morse function $f: X \to \mathbb{R}$ that has exactly 2 critical points, then X is homeomorphic to S^n .

Exotic spheres: There are manifolds X that are homeomorphic to S^7 but are not diffeomorphic to S^7 .

Lemma 12.6. $u \subseteq \mathbb{R}^k$ open, $f: u \to \mathbb{R}$ smooth. For almost every $a \in \mathbb{R}^k$

$$f_a(x) = f(x) + a_1 x_1 + \dots + a_k x_k$$

is Morse.

Proof. Define

$$g(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_k}(x) \end{bmatrix}, g: u \to \mathbb{R}^k$$

Recall dg_x is the Hessian of f at x.

$$(df_a)_x = g(x) + a.$$

$$g_a(x) = \begin{bmatrix} \frac{\partial f_a}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f_a}{\partial x_k}(a) \end{bmatrix}, (dg_a)_x = (dg)_x$$

A point $p \in u$ is critical point of f_a iff $(df_a)_p = 0 = g(p) + a$ iff g(p) = -a. Sard's theorem says there exists $-a \in \mathbb{R}^k$ that is a reg. value for g. So for any crit. point p of f_a , i.e., g(p) = -a, we have $(dg)_p$ invertible, Hessian of f_a is invertible.

Theorem 12.7. Say $X \subseteq \mathbb{R}^n$ is a manifold and $f: X \to \mathbb{R}$ smooth. Then for almost every $a \in \mathbb{R}^n$, $f_a(x) = f(x) + \sum_{i=1}^n a_i x_i$ is Morse.

Lemma 12.8. Let $X \subseteq \mathbb{R}^n$ be a k-manifold. Then at $p \in X$, there are coords x_{i_1}, \ldots, x_{i_k} taken from the standard coords on \mathbb{R}^n , that give coords on X.

Proof. $T_xX = Span\{v_1, \ldots, v_k\}, v_i \in \mathbb{R}^n$. Look at $[v_1, \ldots, v_k]$ k-coords are lin.indep.. So can find k rows where the corresponding $k \times k$ submatrix is invertible. Say it is rows i_1, i_2, \ldots, i_k . Then look at $\pi : \mathbb{R}^n \to \mathbb{R}^k, x \mapsto (x_{i_1}, \ldots, x_{i_k})$.

$$D\pi|_x: T_xX \xrightarrow{\simeq} T_{\pi(x)}\mathbb{R}^k$$

 $[v_1,\ldots,v_k]\mapsto k\times k$ submatrix that is invertible, in other words, $\{D\pi x_1,\ldots D\pi x_k\}$ is a a basis for $T_{\pi(x)}\mathbb{R}^k$. IFT says π is local diffeo. On $u\subseteq X$ with coords $x_1,\ldots x_k$ look at functions

$$f_{(a,c)}(x) = f(x) + \sum_{i=1}^{k} a_i x_i + \sum_{i=k+1}^{N} c_i x_i$$

 $f_{(0,c)}(x)$ on u, almost all $a \in \mathbb{R}^k$ give a Morse function $f_{(a,c)}(x)$ on u.

13 27. feb.

Remark. The 2-torus.

$$T^2 = S^1 \times S^1 \subset \mathbb{R}^4$$

But we think of T^2 as Image of torus $\subseteq \mathbb{R}^3$ a surface of revolution.

What is the underlying structure of the torus shared by all of its representations?

For a manifold X, what kind of embeddings $X \to \mathbb{R}^n$ are possible?

Theorem 13.1. Whitney embedding theorem

If $X \subseteq \mathbb{R}^n$ a k-manifold, then there exists an embedding

$$X \xrightarrow{f} \mathbb{R}^{2k+1}$$
.

Improvement:

Possible to embed X into $X \xrightarrow{f}^{2k}$. $S^2 \subseteq \mathbb{R}^3$ Whitney says

$$S^2 \xrightarrow{f} \mathbb{R}^5$$

Klein bottle

Insert picture of Klein bottle with rep dia.

We'll show Whitney Embedding for X compact.

$$f: X \to \mathbb{R}^{2k+1}$$
 embedding.

Properness is free.

Worry about: injectivity and immersion

Introduce the Tangent Bundle to a manifold X.

Definition 13.1. $X \subseteq \mathbb{R}^n$ a smooth manifold.

$$TX = \bigcup_{x \in X} T_x X \subseteq \mathbb{R}^n \times \mathbb{R}^n$$
$$= \{ (x, v) \in \mathbb{R}^n \times \mathbb{R}^n | (x, v) \in T_x X \}$$

TX is a smooth manifold.

Definition 13.2. if $f: X \to Y$ smooth, then we get smooth map

$$Df:TX\to TY$$

$$(x,v) \mapsto Df_x(x,v)$$

Notation 13.1.

$$Df_x(x,v) = (f(x), df_x(x,v))$$

find extension \tilde{f} of f at x

$$\left(f(x), d\tilde{f}_x(x, v)\right) = Df_x(v) = (f(x), df_x(x, b))$$

Properties:

(1) (Functionality / Chain rule)

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$X \xrightarrow{g \circ f} Z$$

commute.

$$TX \xrightarrow{Df} TY \xrightarrow{Dg} TZ$$

$$TX \xrightarrow{D(g \circ f)} TZ$$

commute.

Proof.

$$\begin{split} D(g \circ f)(x, v)? &= D(g) \left(D(f)(x, v) \right) \\ &= (g(f(x)), d(g \circ f)_x(v)) \\ &= \left(g(f(x)), dg_{f(x)}(df_x(v)) \right) \\ &= Dg \left(f(x), df_x(v) \right) \\ &= Dg \circ Df \left(x, v \right). \end{split}$$

(2) (Functionality / Chain rule and Identity)

$$X \xrightarrow{id} X$$

$$TX \xrightarrow{Did} TX$$

$$(x,v)\mapsto (x,d(id)_x(v))$$

$$D(id_x) = id_{TX}$$

44

Consequence

if $X \xrightarrow{f} Y$ is a diffeo, then

$$TX \xrightarrow{Df} TY$$

is a diffeo.

$$X \xrightarrow{f} Y \xrightarrow{f^{-1}} X$$
$$X \xrightarrow{id_x} X$$

commute.

$$TX \xrightarrow{Df} TY \xrightarrow{Df^{-1}} TX$$
$$X \xrightarrow{id_{TX}} TX$$

commute.

(3) If $f: X \to Y$ is smooth, then

$$Df: TX \to TY$$
 is smooth.

Need to find a smooth extension around $(x, v) \in TX$. Since $f: X \to Y$ is smooth at x, there is $\tilde{u} \subseteq \mathbb{R}^n$ open, Diagram

$$T(\tilde{u} \cap X) = TX \cap (\tilde{u} \times \mathbb{R}^n).$$

What is $D\tilde{f}$?

$$\tilde{f}(x_1, \dots, x_n) = \begin{bmatrix} \tilde{f}_1(x) \\ \vdots \tilde{f}_m(x) \end{bmatrix}$$

$$D\tilde{f}(x_1, \dots, x_n, v_1, \dots, v_n) = \begin{bmatrix} \tilde{f}_1(x) \\ \vdots \tilde{f}_m(x) \\ \sum \frac{\partial \tilde{f}_1}{\partial x_j}(x) \cdot v_j \\ \vdots \\ \sum \frac{\partial \tilde{f}_m}{\partial x_j}(x) \cdot v_j \end{bmatrix}$$

this is indeed smooth.

Lecture week 10

14 10. March

Came a little late to class. Get notes for the first 15 minutes. Realize $\mathbb{R}P^2$ as a quotient of S^2 . $S^2 \subseteq \mathbb{R}^3 \setminus \{0\}$ has an induced equivalence relation from \sim on $\mathbb{R}^3 \setminus \{0\}$.

$$(x, y, z) \sim (\lambda x, \lambda y, \lambda z) \lambda \in \mathbb{R} \setminus \{0\}$$

but if (x, y, z), $(\lambda x, \lambda y, \lambda z) \in S^2$, $\lambda = \pm 1$. diag 1

To see $\bar{\pi}$ is a homeo

diag 2
$$(x, y, z) \sim (\lambda x, \lambda y, \lambda z)$$

$$\pi \circ f(x, y, z) = \pi \circ f(\lambda x, \lambda y, \lambda z)$$

$$u_0 = \{ [x_0, x_1, x_2] | x_0 \neq 0 \}$$

$$u_1 \subseteq S^2 / \sim$$

$$[x_0, x_1, x_2], x_1 \neq 0$$

$$\left(\frac{x_0}{x_1}, \frac{x_2}{x_1}\right) \in \mathbb{R}^2$$

Theorem 14.1. $\mathbb{R}P^n$ is a compact connected abstract smooth manifold

Proof. We have a continuous surjection $\pi: S^n \to \mathbb{R}P^n, (x_0, \dots, x_n) \mapsto [x_0, x_1, \dots, x_n]$. Since S^n is connected and compact, $\pi(S^n) = \mathbb{R}P^n$ is also connected and compact.

Better pictures?

 $H = \{(x, y, z) \in S^2 | z \ge 0\}, \sim \text{ on } H, (x, y, 0) \sim (\lambda x, \lambda y, 0), \lambda = \pm 1, (x, y, z) \sim (x, y, z).$

 $\mathbb{R}P^2$ doesn't appear to have an embedding into \mathbb{R}^3 . But it can be embedded in \mathbb{R}^4

Goal: Embed a compact abstract smooth manifold into \mathbb{R}^N , for N >> 0.

Definition 14.1. $f: X \to \mathbb{R}$ smooth. *suppoert* of f is

$$supp(f) = \{x \in X | \bar{f}(x) \neq 0\}$$

Example 14.1.
$$f(x) = \begin{cases} e^{-lx} & x > 0 \\ 0 & \leq 0 \end{cases}$$
 $supp(f) = [0, \infty).$

Definition 14.2. X an abstract manifold, $\{u_{\alpha}\}$ an open cover of X. Type 1: Partition of unity subordinate to $\{u_{\alpha}\}$ a collection of cuntions $p_{\alpha}: X \to \mathbb{R}$.

- (1) $(\forall \alpha)(\forall x)0 \leq p_{\alpha}(x) \leq 1$
- (2) $\forall x \in X \ \exists u \ \text{open}, \ x \in u \ \text{and only finitely many} \ p_{\alpha} \ \text{are nonzero on} \ u$
- (3) $(\forall x) \sum_{\alpha \in A} p_{\alpha}(x) = 1$
- (4) $supp(p_{\alpha}) \subseteq u_{\alpha}$

Type 2: Partition of unity with compact supports subordinate of $\{u\alpha\}$. $p_i: X \to \mathbb{R}, i \in \mathbb{N}$.

- (1), (2), (3)
 - (4) $supp(p_i) \subseteq u_{\alpha}$ for some α and $supp(p_i)$ is compact.

Remark. P, O, U of either type always exist on an abstract manifold.

Theorem 14.2. Let X be a compact abstract smooth manifold, then there is an embedding $X \to \mathbb{R}^N$ for N >> 0.

Proof. let

$$\varphi_{\alpha}: \mathbb{R}^n \supset \tilde{u}_{\alpha} \to u_{\alpha} \subseteq X$$

be a collection of coordinate charts that cover X. By compactness, we only need finitely many of these to cover X.

$$X = \bigcup u_{\alpha}$$

So we have $\varphi_i : \tilde{u}_i \to u_i$ coordinates. Assume $\tilde{u}_i \subseteq \mathbb{R}^n$ open. There is a partition of unity subordinate to $\{u_1, u_2, \dots, u_k\}$ we get $\rho_i : X \to \mathbb{R}, supp(\rho_i) \subseteq u_i$.

$$\varphi_i^{-1}: u_i \xrightarrow{\simeq} \tilde{u_i} \subseteq \mathbb{R}^n$$

locally embedding X into \mathbb{R}^n . Use P.O.U. to extend φ^{-1} to all of X:

$$g_i(x) = \begin{cases} \rho_i(x)\varphi^{-1}(x) \text{ if } x \in u_i\\ 0 \text{ if } x \neq u_i \end{cases}$$

 $g_i: X \to \mathbb{R}^n$ is smooth. Define $G: X \to \mathbb{R}^k \times \mathbb{R}^{n \cdot k}$

$$G(x) = (\rho_1(x), \dots \rho(x), g_1(x), \dots, g_k(x))$$

I claim G is an embedding.

G is smooth, since all component functions are smooth.

Injectivity: if $G(x) = G(y), x, y \in X$ then $\rho_i(x) = \rho_i(y) \le i \le k$. So if $\rho_i(x) \neq 0$, then $\rho_i(y) \neq 0$ and $x, y \in supp(\rho_i) \subseteq u_i$. But $g_i(x) = g_i(y)$ so $\rho_i(x)\varphi_i^{-1}(x) = \rho_i(y)\varphi_i^{-1}(y)$. So $x, y \in u_i \xrightarrow{\sim, \varphi_i^{-1}} \tilde{u}_i \varphi_i^{-1}(x) = \varphi_i^{-1}(y)$

$$\Rightarrow x = y \text{ as } \varphi_i^{-1} \text{ is a bijection.}$$

G is an immersion. $x \in X$, there is some i with $\rho_i(x) \neq 0$. $x \in supp(\rho_i) \subseteq u_i$. There is an open set $x \in u \in supp(\rho_i)$ where $\forall y \in u, \rho_i(y) \neq 0$.

$$u \xrightarrow{G} \mathbb{R}^k \times \mathbb{R}^{n \cdot k} \xrightarrow{H_i} \mathbb{R}^n$$

$$(x_1,\ldots,x_k,w_1,\ldots,w_k)\mapsto \frac{w_i}{x_i}$$

Note $\rho_i(y) \neq 0 \forall y \in u$, so $H_i(G(y))$ well-defined. On u, $H_i \circ G(y) = \frac{g_i(y)}{\rho_i(y)}$

$$= \frac{\rho_i(y) \cdot \varphi_i^{-1}(y)}{\rho_i(y)}$$

$$=\varphi_i^{-1}(y).$$

Hence $D(H_i \circ G)_y = D(\varphi_i^{-1})_y$ is an isomorphism. Finally use chain rule

$$D(H_i)_{G(y)} \circ DG_y = (D\varphi_i^{-1})_y$$