Metric learning for multivariate linear models

Charles Zheng and Yuval Benjamini

October 25, 2015

1 Introduction

Let $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} \subset \mathbb{R}^q$ be random vectors with a joint distribution, and let $d_F(\cdot, \cdot)$ be a distance on probability measures.

Let F_x denote the conditional distribution of Y given X = x (and assume that such conditional distributions can be constructed.) Define the *induced* metric on \mathcal{X} by

$$d_{\mathcal{X}}(x_1, x_2) = d_F(F_{x_1}, F_{x_2})$$

We are interested in the problem of estimating the induced metric $d_{\mathcal{X}}$ based on iid observations $(x_1, y_1), \ldots, (x_n, y_n)$ drawn from the joint distribution of (X, Y). We define the loss function for estimation as follows. Let \hat{d} (suppressing the subscript) denote the estimate of $d_{\mathcal{X}}$, and let G denote the marginal distribution of X. Then the loss is defined as

$$\mathcal{L}(d_{\mathcal{X}}, \hat{d}) = 1 - \operatorname{Cor}_{X, X' \sim G}[d_{\mathcal{X}}(X, X'), \hat{d}(X, X')]$$

where the correlation is taken over independent random pairs (X, X') drawn from $G \times G$.

Now we make the following additional assumptions. Let us assume that $X \sim N(0, \Sigma_X)$ and that the conditional distribution of Y|X = x is given by

$$F_x = N(B^T x + \eta, \Sigma_{\epsilon})$$

for some $p \times q$ coefficient matrix B, $p \times p$ covariance matrix Σ_X , $q \times q$ covariance matrix Σ_{ϵ} , and $q \times 1$ vector η .

In the special case that both arguments of the KL divergence are are multivariate gaussian distributions with the same covariance matrix, the KL

divergence reduces to a multiple of the Mahalanobis distance. Hence given our assumptions it is natural to adopt a multiple of the KL divergence as the error metric d_F :

$$d_F(\mu_1, \mu_2) = (\mu_1 - \mu_2) \Sigma_{\epsilon}^{-1} (\mu_1 - \mu_2)$$

Therefore, we obtain the following induced metric:

$$d_{\mathcal{X}}(x_1, x_2) = (x_1 - x_2)^T B \Sigma_{\epsilon}^{-1} B^T (x_1 - x_2)$$

This is a function only of $\delta = x_1 - x_2$. So defining the positive-semidefinite matrix norm

$$||x||_A = \sqrt{x^T A x}$$

we have

$$d_{\mathcal{X}}(x_1, x_2) = ||x_1 - x_2||^2_{B\Sigma_{\epsilon}^{-1}B^T}$$

2 Estimation

Since $d_{\mathcal{X}}$ is completely specified by B and Σ_{ϵ} , the problem of metric learning for a multivariate linear models (MLMLM) reduces to the problem of jointly estimating B and Σ_{ϵ} , under a loss function \tilde{L} defined by

$$\tilde{\mathcal{L}}(B, \Sigma_{\epsilon}; \hat{B}, \hat{\Sigma}_{\epsilon}) = 1 - \operatorname{Cor}_{\delta \sim N(0, \Sigma_X)}(||\delta||_{B\Sigma_{\epsilon}^{-1}B^T}^2, ||\delta||_{\hat{B}\hat{\Sigma}_{\epsilon}^{-1}\hat{B}^T}^2)$$

One can verify that

$$\tilde{\mathcal{L}}(B, \Sigma_{\epsilon}; \hat{B}, \hat{\Sigma}_{\epsilon}) = \mathcal{L}(d_{\mathcal{X}}, \hat{d})$$

where

$$\hat{d}(x_1, x_2) = (x_1 - x_2)^T \hat{B} \hat{\Sigma}_{\epsilon}^{-1} \hat{B}^T (x_1 - x_2).$$

The loss function \tilde{L} looks complicated at first, but perhaps we can find a simplified approximation.

2.1 Approximating \tilde{L}

Let δ be multivariate normal $N(0, \Sigma_X)$. Then $X = \Sigma^{-1/2}\delta$ has distribution $N(0, I_p)$ and

$$||\delta||_{B\Sigma_{\epsilon}^{-1}B^T}^2 = \delta^T B \Sigma_{\epsilon}^{-1} B^T \delta = X^T \Sigma_X^{1/2} B \Sigma_{\epsilon}^{-1} B^T \Sigma_X^{1/2} X = ||X||_{\Sigma_X^{1/2}B\Sigma_{\epsilon}^{-1}B^T \Sigma_X^{1/2}}^2$$

Defining the $p \times p$ matrices Γ and $\hat{\Gamma}$ by

$$\Gamma = \Sigma_X^{1/2} B \Sigma_\epsilon^{-1} B^T \Sigma_X^{1/2}$$

$$\hat{\Gamma} = \Sigma_X^{1/2} \hat{B} \hat{\Sigma}_{\epsilon}^{-1} \hat{B}^T \Sigma_X^{1/2},$$

we have

$$\tilde{L} = 1 - \text{Cor}_{z \sim N(0,I)}(||Z||_{\Gamma}^2, ||Z||_{\hat{\Gamma}}^2)$$