Τύποι που μπορούν να φανούν χρήσιμοι

Ηλεκτροστατική:

$$\vec{F}_{12} = \frac{q_1q_2}{4\pi\varepsilon_0r^2}\hat{r} \qquad \vec{E} = \frac{\vec{F}}{q_0} \qquad V = \frac{U}{q_0} \qquad \text{σημειακό φορτίο: } \vec{E} = \frac{q}{4\pi\varepsilon_0r^2}\hat{r}, \quad V = \frac{q}{4\pi\varepsilon_0r^2}\hat{r}$$

διπολική ροπή: $\vec{p}=q\vec{L}$ ροπή σε δίπολο: $\vec{\tau}=\vec{p}\times\vec{E}$ δυν. ενέργεια: $U=-\vec{p}\cdot\vec{E}+U_0$

$$U_{12} = \frac{q_1q_2}{4\pi\varepsilon_0r} \qquad W_E = -\Delta U = -W_{\varepsilon\xi}. \qquad \text{συνεχής κατανομή: } E = \int \frac{dq}{4\pi\varepsilon_0r^2} \hat{r}$$

$$\phi = \int_{S} \; \vec{E} \cdot \hat{n} dA \quad \ \phi_{tot} = \oint_{S} \; \vec{E} \cdot \hat{n} dA = \oint_{S} \; \vec{E} \cdot \hat{n} dA = \frac{Q_{\varepsilon\sigma.}}{\varepsilon_{0}} \quad \text{asunéces:} \; E_{n^{+}} - E_{n^{-}} = \frac{\sigma}{\varepsilon_{0}}$$

Πεδίο άπειρης γραμμικής κατανομής: $E_R = \frac{2k\lambda}{R} = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{R}$

Πεδίο στον άξονα φορτισμένου δακτυλίου: $E_z = \frac{kQz}{(z^2 + a^2)^{3/2}}$

Πεδίο στον άξονα φορτισμένου δίσκου: $E_z=sign(z)~rac{\sigma}{2arepsilon_0} \left[1-\left(1+rac{R^2}{z^2}
ight)^{1/2}
ight]$

Πεδίο επιπέδου άπειρων διαστάσεων: $E_z = sign(z) \; \frac{\sigma}{2\varepsilon_0}$

Πεδίο λεπτού σφαιρικού κελύφους: $E_r = \frac{1}{4\pi \varepsilon_0} \; \frac{Q}{r^2} \quad r > R$ $E_r = 0 \qquad \qquad r < R$

Χωρητικότητα:

$$C=rac{Q}{V}$$
 Επίπεδος Πυκνωτής: $C=rac{arepsilon_0 A}{d}$, $V=Ed$ $U_C=rac{1}{2}QV=rac{1}{2}CV^2=rac{1}{2}rac{Q^2}{C}$

Συνδεσμολογία: παράλληλη: $C_P = C_1 + C_2 + \cdots$ Σε σειρά: $\frac{1}{C_{\Sigma}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$

Χωρητικότητα σφαιρικού αγωγού: $C=4\pi\varepsilon_0R$ κυλινδρικού: $C=\frac{2\pi\varepsilon_0L}{\ln(R_2/R_1)}$

Διηλεκτρικά: $C_k = kC_0$ διαπερατότητα: $\varepsilon = k\varepsilon_0$ ηλεκτρικό πεδίο: $E = \frac{E_0}{k}$

Αντίσταση:

$$R = \frac{V}{I}$$
 $I = \frac{\Delta q}{\Delta t}$ $R = \frac{\rho L}{A}$ $I = \frac{\Delta Q}{\Delta t} = qnAv_d$ $\vec{J} = qn\vec{v}_d$
 $P = IV = I^2R = \frac{V^2}{R}$

Συνδεσμολογία: παράλληλη: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ σειρά: $R = R_1 + R_2 + \cdots$

Κυκλώματα:

$$\sum \Delta V = 0 \qquad \sum I_{\varepsilon \iota \sigma.} = \sum I_{\varepsilon \xi.}$$

$$q(t) = q_{\infty} (1 - e^{-t/\tau}) \qquad q(t) = q_0 e^{-t/\tau} \qquad I(t) = I_0 e^{-t/\tau} \qquad \tau = RC$$

Μαγνητισμός

Μαγνητική δύναμη: σε φορτίο: $\vec{F}=q\vec{v}\times\vec{B}$ σε στοιχείο ρεύματος: $\vec{F}=Id\vec{l}\times\vec{B}$

Μαγνητική διπολική ροπή βρόχου: $\vec{\mu} = NIA\hat{n}$, ροπή: $\vec{\tau} = \vec{\mu} \times \vec{B}$

Δυναμική ενέργεια μαγνητικού διπόλου: $U=-\vec{\mu}\cdot\vec{B}$

Μαγνητικό πεδίο φορτίου: $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$ Νόμος Biot-Savart: $d\vec{B} = \frac{\mu_0}{4\pi} I \frac{d\vec{l} \times \hat{r}}{r^2}$

Μαγνητικό πεδίο στον άξονα βρόχου ρεύματος: $B_z = \frac{\mu_0}{4\pi} \frac{2\pi R^2 I}{(z^2 + R^2)^{3/2}}$

Μαγνητικό πεδίο ευθύγραμμου αγωγού: $B_z = \frac{\mu_0}{4\pi} \frac{I}{R} (sin\theta_1 - sin\theta_2)$

Μαγνητικό πεδίο τοροειδούς: $B = \frac{\mu_0}{2\pi} \frac{NI}{r}$

Νόμος Gauss στον μαγνητισμό: $\Phi_m = \oint_S \vec{B} \cdot \hat{n} dA = \oint_S B_n dA = 0$

Νόμος του Ampere: $\oint_{\mathcal{C}} \vec{B} \cdot d\vec{l} = \oint_{\mathcal{C}} B_t dl = \mu_0 I_{encl}$.

Μαγνητική ροή: $\Phi_m = \int_{\mathcal{S}} \; \vec{B} \cdot \hat{n} dA$

Μαγνητική ροή από ρεύμα σε κύκλωμα: $\Phi_m = LI$

Μαγνητική ροή από δύο ρεύματα σε κύκλωμα: $\Phi_{m_1} = L_1 I_1 + M I_2$ και $\Phi_{m_2} = L_2 I_2 + M I_1$

Νόμος του Faraday: $\mathcal{E} = -\frac{d\Phi_m}{dt}$ και $\mathcal{E} = \oint_{\mathcal{C}} \vec{E} \cdot d\vec{l}$ ράβδος: $|\mathcal{E}| = Bvl$

Αυτεπαγωγή: $\mathcal{E}=-L\frac{dI}{dt}$ συντελεστής αυτεπαγωγής: $L=\frac{\phi_m}{I}$ πηνίου: $\mu_0 n^2 A l$

Αμοιβαία επαγωγή: $M = \frac{\phi_{m21}}{I_1} = \frac{\phi_{m12}}{I_2}$

Μαγνητική ενέργεια σε πηνίο: $U_L=rac{1}{2}LI^2$ και πυκνότητα ενέργειας : $u_m=rac{B^2}{2\mu_0}$

Σταθερές και μετατροπές μονάδων:

$$\begin{split} \varepsilon_0 &= 8.85 \times 10^{-12} \, \text{C}^2 / N m^2 & K_e = \frac{1}{4 \pi \varepsilon_0} = 8.99 \times 10^9 \, \text{C} / N m^2 \\ e &= 1.60 \times 10^{-19} \, \text{C} & \mu_0 = 4 \pi \times 10^{-7} \, \text{T} \cdot \text{m} / \text{A} = 4 \pi \times 10^{-7} \, \text{N} / \text{A}^2 \end{split}$$