Topological Pressure

1. Motivation

Topological entropy $h_{\text{top}}(f)$ measures the exponential growth rate of distinguishable orbit segments in a dynamical system. Topological pressure $P(\phi)$ generalizes this concept by introducing a continuous potential function $\phi: X \to \mathbb{R}$, which allows different orbits to be weighted differently—analogous to weighting microstates by energy in statistical mechanics.

2. Definition

Let $f:X\to X$ be a continuous map on a compact metric space X, and $\phi:X\to\mathbb{R}$ be a continuous function. Define the n-step potential sum along an orbit:

$$S_n \phi(x) = \sum_{k=0}^{n-1} \phi(f^k(x)).$$

For given n and $\varepsilon > 0$, let $E \subset X$ be a maximal (n, ε) -separated set, and define the corresponding partition function:

$$Z_n(\phi, \varepsilon) = \sum_{x \in E} \exp(S_n \phi(x)).$$

The topological pressure is then

$$P(\phi) = \lim_{\varepsilon \to 0} \left(\limsup_{n \to \infty} \frac{1}{n} \ln Z_n(\phi, \varepsilon) \right).$$

3. Interpretation

When $\phi = 0$, the weights are unity, $Z_n = N(n, \varepsilon)$, and

$$P(0) = h_{\text{top}}(f),$$

so topological pressure generalizes topological entropy. For nonzero ϕ , orbit segments contribute with different weights $e^{S_n\phi(x)}$, and $P(\phi)$ measures the exponential growth rate of this weighted orbit complexity.

4. Variational Principle

The topological pressure satisfies the variational principle:

$$P(\phi) = \sup_{\mu \in \mathcal{M}_f} \left[h_{\mu}(f) + \int \phi \, d\mu \right],$$

where \mathcal{M}_f is the set of f-invariant probability measures and $h_{\mu}(f)$ is the measure-theoretic (Kolmogorov–Sinai) entropy. The measure μ_{ϕ} that attains the supremum is called the *equilibrium state* for ϕ .

5. Thermodynamic Analogy

The correspondence with thermodynamics is summarized below:

 \leftrightarrow Potential function ϕ ,

Temperature $(T = 1/\beta)$ \leftrightarrow Scaling of ϕ ,

Partition function $Z = \sum e^{-\beta E} \iff Z_n(\phi, \varepsilon) = \sum e^{S_n \phi(x)},$ Free energy $F = -T \ln Z \iff P(\phi) = \lim \frac{1}{n} \ln Z_n,$

 $\leftrightarrow h_{\mu}(f) = P(\phi) - \int \phi \, d\mu.$ Entropy $S = -\partial F/\partial T$

6. Example: Lyapunov Weights

For one-dimensional maps, choosing

$$\phi(x) = -t \ln|f'(x)|$$

leads to the Bowen equation

$$P(\phi_t) = 0,$$

whose solution in t gives the Hausdorff dimension of the corresponding invariant set.

7. Summary

Topological entropy: $h_{\text{top}} = P(0)$,

Topological pressure: $P(\phi)$ = weighted exponential growth rate of orbit complexity,

Variational principle: $P(\phi) = \sup_{\mu} (h_{\mu} + \int \phi \, d\mu).$