Apresentação ME623 Delineamento e Otimização de Helicópteros de Papel

Universidade Estadual de Campinas

Autores: Leonardo Uchoa Hugo Calegari Lara Acrani

Sumário

Introdução

Objetivo

Metodologia Fatores Níveis Hipóteses

Modelos

Introdução

Pesquisa sobre otimização de tempo de queda para helicópteros feitos com papel no intuito de, futuramente, ter um modelo base relevante -ou seja, utilizando princípios bem fundamentados de sólida estrutura matemática- para replicação em massa.

Objetivo

O objetivo desta pesquisa é encontrar as especificações ótimas de maneira que, dentro um padrão, façam com que um Helicóptero de Papel, tenha o maior tempo de vôo possível em relação as demais características.

Metodologia

- As técnicas empregadas aqui seguem a metodologia estatística de Delineamento de Experimentos. Tal escolha é motivada pela sua capacidade de direcionar/apontar quais são os níves ótimos para cada combinação de fatores, o que é utilizado como "guia exploratório" desta pesquisa.
- Para cada um dos seis fatores, serão considerados dois níveis, o que configura um experimento fatorial com um total de 2⁶ possíveis combinações.

Metodologia Fatores

Os fatores a serem analisados serão :

- 1. Formato da asa;
- 2. Comprimento da asa;
- 3. Largura da asa;
- Material do helicóptero;
- 5. Peso do helicóptero;
- 6. Largura da banda.

Metodologia Níveis

Já os níveis, respectivos aos fatores, serão

- Com dobra e sem dobra;
- 14 centímetros e 20 centímetros;
- 4 centímetros e 6 centímetros;
- Papel Sulfite e "Cartolina";
- Clips tipo I e Clips tipo II;
- 1 centímetro e 2 centímetros.

A hipótese aqui assumida seguirá a equação

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij} \tag{1}$$

ŏ ●00

de forma que ϵ_{ij} segue uma distribuição normal com média 0 e variância σ , μ é um valor comum a todos os os efeitos, τ_i é um efeito comum entre fatores e β_j , um efeito relativo entre níveis.

0

Metodologia Hipóteses

• Para tal equação teremos, como proposto, um total de ϕ^k combinações entre características e tratamentos, onde ϕ é o número de níveis e k, a quantidade de fatores. Neste experimento, k e ϕ assumem, respectivamente os valores 6 e 2.

 Quanto à aleatorização, a ordem com que os helicóteros serão soltos será completamente aleatória, com o intuito de reduzir efeitos como, por exemplo, treinamento/condicionamento do operador que irá soltar o helicóptero.

000

Metodologia Hipóteses

- A maneira para determinar a ordem de descida dos protótipos será realizando uma permutação randômica de todos os 2⁶ protótipos no software R.
- Também ocorrerá aleatorização entre os operadores que irão soltar o helicóptero para, novamente, tentar amenizar o efeito de condicionamento do operador. Já a escolha se dará ao utilizarmos um simulador de distribuição multinomial com três eventos equiprováveis, ou seja, 1/3 de probabilidade para cada operador.

Metodologia Modelos

Figure: Modelo tipo I

Metodologia Modelos

Figure: Modelo tipo II

Metodologia Modelos