Page 84

Problem 4-1: Let eis..., en be the usual basis of 1R" and let q1,..., qn be the dual basis.

a) Show that $q_{i,1} \cdots 1 q_{in} (e_{i,1}, e_{i}) = 1$. What would the right side be if we forget the coefficient $\frac{(k+e)!}{k! \, \ell!}$ did not appear in the definition of 1?

By theorem 4-4 part w, Qi, A Qi, A Qi, A Qi, (ei, ..., ein) = k! Alt (qi, 0 - - 0 Qin) (ei, ..., ein)

=
$$k! \cdot \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{san}_{\sigma} \cdot (q_{i_1} \otimes \cdots \otimes q_{i_k}) (e_{\sigma(i_i)}, \dots, e_{\sigma(i_k)}) = \sum_{\sigma \in S_k} q_{i_i}(e_{\sigma(i_i)}) \cdots (q_{i_k}(e_{\sigma(i_k)}) = 1$$

If (k+e)! did not appear in the definition of the wedge product, then we would get k!

b) Show that $\varphi_i, 1 \cdots 1 \varphi_{i_k}(v_1, \dots, v_k)$ is the determinant of the kxk minor of $\begin{pmatrix} v_i \\ \vdots \\ v_k \end{pmatrix}$ obtained by selecting columns i_1, \dots, i_k

· Since {ei3 is a basis we can write $v_i = \sum_{j=1}^{n} a_{ij} e_j$. We have

$$\varphi_{i_1}\lambda \cdots \lambda \varphi_{i_k}(v_1, \dots, v_k) = \varphi_{i_1}\lambda \cdots \lambda \varphi_{i_k}(\sum_{j=1}^k a_{i_j}e_{i_j}, \dots, \sum_{j=1}^k a_{k_j}e_{i_j}) = \varphi_{i_1}\lambda \cdots \lambda \varphi_{i_k}(\sum_{j=1}^k a_{i_j}e_{i_j}, \dots, \sum_{j=1}^k a_{k_j}e_{i_j})$$

Problem 2: If $f:V \longrightarrow V$ is a linear transformation and $\dim V = n$, then $f^*: \Lambda^n(V) \longrightarrow \Lambda^n(V)$ must be multiplication by some constant c. Show that $c = \det f$.

Recall that dim $\Lambda^n(V) = 1$ & it's a vector space. This is why f^* is multiplication by a constant c. Let $E = \{e_i\}$ be a basis for $V \neq E^* = \{e_i\}$ the dual basis. We just calculate:

 $f^*(q_1, \dots, q_n)(e_1, \dots, e_n) = q_1, \dots, q_n(f(e_i), \dots, f(e_n)) = det(f)(q_1, \dots, q_n)(e_1, \dots, e_n)$ The fact that forms are multilinear >> this is true for any $(x_1, \dots, x_n) \in V^n$.

Problem 3: If $\omega \in \Lambda^n(V)$ is the volume element determined by the inner product T + the measure μ , and $\omega_1, \ldots, \omega_n \in V$, show that $|\omega(\omega_1, \ldots, \omega_n)| = \sqrt{\det(q_{ij})^2}$ where $q_{ij} = T(\omega_i, \omega_j)$. Hint: If V_1, \ldots, V_n is an orthonormal basis and $\omega_i = \sum_{j=1}^n a_{ij} V_j$ show that $q_{ij} = \sum_{k=1}^n a_{ik} a_{kj}$

Following the hint let $V = \{v_i\}$ be an orthonormal basis and $\omega_i = \{v_i\}$ aij v_j

Theorem 4-6 => w(w1,...,wn) = det (aix) · w(v1,...,vn) = det (aix)

· Let G be the matrix qij = T(wi, wij) + A the matrix aij

Then $AAT = G \implies det(G) = det(A)^2 \implies done.$

Problem 5: If $c:[0,1] \longrightarrow (\mathbb{R}^n)^n$ is continuous and each $(c'(\ell), \ldots, c^{n(\ell)})$ is a basis for \mathbb{R}^n , show that $[c'(0), \ldots, c^n(0)] = [c'(1), \ldots, c^n(1)]$.

• Let
$$c^{i}(0) = \sum_{j=1}^{n} a_{ij}(t) e^{ij}(t)$$
 (0\(\delta\) \\
• Let $A(t) = a_{ij}(t)$

=> take determinants of both sides. Note that det(ACAS) is continuous + doesn't change signs => done

Problem 10: If w,,...,wn-1 & Rn show that |w,x...xwn-1| = Jdet(qij) where qij = (wi, wi)

- · (w, = = \(\varphi(\varphi), ..., \varphi_{n-1, \omega}\)^T
- · Let z=ω, x ... x ωn * = 3/181. Then define Q∈Λⁿ⁻¹(V) by φ(x,,..., xn-1,) = det (x,,..., xn-1, ,) so that φ(ω,,..., ωn-1) = 181
- Let $V = \text{Span}(\omega_1, \dots, \omega_{n-1})$. Let (v_1, \dots, v_{n-1}) be an orthonormal basis for V so that $(v_1, \dots, v_{n-1}, \hat{g})$ is an orthonormal basis for $\mathbb{R}^n = (v_1, \dots, v_{n-1}) = \pm 1 = (v_1, \dots, v_{n-1}) = v_n + (v_1, \dots,$

Page 96

Problem 13:

- a) If $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^n$, show that $(g \circ f)_* = g_* \circ f_*$ and $(g \circ f)^* = f^* \circ g^*$ $(g \circ f)_*(v|_p) = (D(g \circ f)(p)(v))_{g \circ f(p)} = (Dg(f(p)) \circ Df(p)(v))_{g \circ f(p)} = g_*[(Df(p)(v))_{f(p)}] = g_* \circ f_*(v|_p)$
- (b) If fig: R"→R show that d(fig) = fidg + gidf.

This is a direct consequence of Leibniz rule

Problem 17: If $f:\mathbb{R}^n \longrightarrow \mathbb{R}^n$ define a vector field \overline{f} by $\overline{f}(p) = f(p)_p \in \mathbb{R}^n_p$ (a) Show that every vector field \overline{f} on \mathbb{R}^n is of the form \overline{f} for some f.

• Let $f = (f', ..., f^n)$. Then $f(p) = f(p) = (f'(p), ..., f^n(p))_p = f'(p)(e_i)_p + ... + f^2(p)(e_n)_p = f(p)_p$ (b) Show that div f = trace f'

· div f = 2 Difi where fi are the components of => done

Problem 20: Let $f: U \longrightarrow \mathbb{R}^n$ be a differentiable function with a differentiable inverse $f^{-1}: f(U) \longrightarrow \mathbb{R}^n$. If every closed form on U is exact, show that the same is true for f(U).

· Let a be a closed form on f(u). Set B = f*a. Then dB = df*a = f*(da) = f*(o) = 0

=> B is closed => by assumption B is exact => 3 g & Car(u) such that B = dg.

=> $d((f^{-1})^*g) = (f^{-1})^*(dg) = (f^{-1})^*\beta = (f^{-1})^*(f^*\alpha) = (f \circ f^{-1})^*\alpha = \alpha$ => $\alpha = d((f^{-1})^*g)$ is exact.

Problem 21: Prove that, on the set cohere θ is defined, we have $d\theta = \frac{-\frac{1}{4}}{\chi^2 + y^2} dx + \frac{\chi}{\chi^2 + y^2} dy$

* B is defined in problem 3-41 as

This is a staightforward application of the definitions & only involves computing $\frac{\partial}{\partial x}$ atom (%/%) and $\frac{\partial}{\partial y}$ atom (%/%).

which is easy

Page 100

Problem 23: For R>0 and n an integer, define the singular 1-cube $C_{R,n}: [0,1] \longrightarrow \mathbb{R}^2-0$ by $C_{R,n}(+)=(R\cos 2\pi nt, R\sin 2\pi nt)$. Show that there is a singular 2-cube $C:[0,1]^2\longrightarrow \mathbb{R}^2-0$ such that $C_{R_1,n}-C_{R_2,m}=\partial C$

Define c: [0,1]² → R²- {0} by c(x,4) = x c_{R1},n - (1-4)c_{R2},n

Then $\partial C = \{-1\} c(0,y) + \{-1\}^2 c(1,y) + \{-1\}^2 c(x,0) + \{-1\}^3 c(x,1) = C_{R_1}, n - C_{R_2}, n \}$