This file was provided by: Muath Alghamdi

Test-3, March 19 Level 3

Problem 1. Find the smallest positive integer n with the following property: After painting black exactly n cells of a 7×7 board there always exists a 2×2 square with at least three black cells.

Problem 2. Sequence x_1, x_2, x_3, \ldots of real numbers is given by $x_1 = 1$ and $x_{n+1} = x_n^2 + x_n$ for $n \ge 1$. Prove that for all $n \ge 1$ holds

$$\sum_{i=1}^{n} \frac{1}{1+x_i} + \prod_{i=1}^{n} \frac{1}{1+x_i} = 1.$$

Problem 3. Let n be a positive integer and p > n + 1 a prime. Prove that p divides the following sum

$$S = 1^n + 2^n + \ldots + (p-1)^n$$
.

Problem 4. Let ABC be a triangle, let D be the touchpoint of the side BC and the incircle of the triangle ABC, and let J_b and J_c be the incentres of the triangles ABD and ACD, respectively. Prove that the circumcentre of the triangle AJ_bJ_c lies on the bisector of the angle BAC.

أوجد أصغر عدد صحيح موجب n يحقق الحاصية التالية: بعد تظليل n خلية بالضبط باللون الأسود من لوح قياسه 7×7 ، هناك دامًا مربع من القياس 2×2 فيه ثلاث خلايا سوداء على الأقل.

السؤال الثاني

 x_1, x_2, x_3, \cdots المتتابعة x_1, x_2, x_3, \cdots من الأعداد الحقيقية معطاة بحيث $x_1 = 1$ و x_1, x_2, x_3, \cdots لكل x_1, x_2, x_3, \cdots اثبت أنه لكل x_1, x_2, x_3, \cdots الدينا:

$$\sum_{i=1}^{n} \frac{1}{1+x_i} + \prod_{i=1}^{n} \frac{1}{1+x_i} = 1$$

السؤال الثالث

ليكن n عددًا صحيحًا موجبا و n+1 عددًا أوّليًا. أثبت أن p يقسم المجموع التالي:

$$S = 1^n + 2^n + \dots + (p-1)^n$$

السؤال الرابع

ليكن ABC مثلقًا، ولتكن D نقطة تماس الضلع BC مع الدائرة الداخلية للمثلث ABC ، وليكن D و مركزا الدائرتين الداخليتين للمثلثين ABD و ACD ، على الترتيب. أثبت أن مركز الدائرة المحيطة بالمثلث ABD يقع على منصف الزاوية BAC.