QUANTUM MATRIX BALL: THE WEIGHTED BERGMAN KERNELS

D. Shklyarov

S. Sinel'shchikov

L. Vaksman

Institute for Low Temperature Physics & Engineering National Academy of Sciences of Ukraine

The Cartan domains are among the important subjects in many problems of representation theory and mathematical physics [1, 4]. The methods of quantum groups theory [2] were used in [7] to produce q-analogues of Cartan domains, in particular, q-analogues of balls in the spaces of complex matrices.

The point of this work is to consider those quantum matrix balls and the associated Hilbert spaces of 'functions'. As a main result, we present an explicit formula for the weighted Bergman kernel.

It is implicit everywhere in the sequel that $q \in (0,1), m, n \in \mathbb{N}$, and $m \leq n$.

We need q-analogues for *-algebras $\operatorname{Pol}(\operatorname{Mat}_{mn})$ of polynomials on the space Mat_{mn} of complex matrices and a *-algebra $D(\mathbb{U})$ of smooth finite functions in the matrix ball $\mathbb{U} = \{A \in \operatorname{Mat}_{mn} | \|A\| < 1\}$. We start with forming a q-analogue for the algebra $\operatorname{Fun}(\mathbb{U}) = \operatorname{Pol}(\operatorname{Mat}_{mn}) + D(\mathbb{U})$.

The *-algebra Fun(\mathbb{U})_q is given by its generators $f_0, z_a^{\alpha}, a = 1, 2, \ldots, n, \alpha = 1, 2, \ldots, m$, and the relations

$$\begin{cases} z_a^{\alpha} z_b^{\beta} = q z_b^{\beta} z_a^{\alpha} &, \quad a = b & \& & \alpha < \beta & \text{ or } & a < b & \& & \alpha = \beta \\ z_a^{\alpha} z_b^{\beta} = z_b^{\beta} z_a^{\alpha} &, \quad \alpha < \beta & \& & a > b \\ z_a^{\alpha} z_b^{\beta} - z_b^{\beta} z_a^{\alpha} = (q - q^{-1}) z_a^{\beta} z_b^{\alpha} &, \quad \alpha < \beta & \& & a < b \end{cases}$$
 (1)

$$\left(z_b^{\beta}\right)^* \cdot z_a^{\alpha} = q^2 \sum_{a',b'=1}^n \sum_{\alpha',\beta'=1}^m R(b,a,b',a') R(\beta,\alpha,\beta',\alpha') \cdot z_{a'}^{\alpha'} \cdot \left(z_{b'}^{\beta'}\right)^* + (1-q^2) \delta_{ab} \delta^{\alpha\beta}, \quad (2)$$

$$(z_a^{\alpha})^* f_0 = f_0 z_a^{\alpha} = 0,$$

$$f_0 = f_0^* = f_0^2.$$
(3)

Here $a, b = 1, 2, ..., n, \alpha, \beta = 1, 2, ..., m,$

$$R(i,j,i',j') = \begin{cases} q^{-1} & , & i \neq j & \& & i = i' & \& & j = j' \\ 1 & , & i = j = i' = j' \\ -(q^{-2} - 1) & , & i = j & \& & i' = j' & \& & j' > j \\ 0 & , & otherwise \end{cases}.$$

In this setting, the *-subalgebra $\operatorname{Pol}(\operatorname{Mat}_{mn})_q \subset \operatorname{Fun}(\mathbb{U})_q$ generated by z_a^{α} , $a = 1, 2, \ldots, n$, $\alpha = 1, 2, \ldots, m$ is a q-analogue of the *-algebra $\operatorname{Pol}(\operatorname{Mat}_{mn})$, and the bilateral ideal $D(\mathbb{U})_q = 1, 2, \ldots, m$

 $\operatorname{Pol}(\operatorname{Mat}_{mn})_q f_0 \operatorname{Pol}(\operatorname{Mat}_{mn})_q$ is a q-analogue of the *-algebra $D(\mathbb{U})$. (The element f_0 works here as a delta-function, as one can see from (3)).

To motivate our subsequent constructions, observe that (see [6]) the *-algebra $D(\mathbb{U})_q$ is a $U_q\mathfrak{su}_{nm}$ -module algebra [2]. Remind the explicit formula for invariant integral from [6].

Consider the representation T of Fun(\mathbb{U})_q in the space $\mathcal{H} = \operatorname{Fun}(\mathbb{U})_q f_0 = \operatorname{Pol}(\operatorname{Mat}_{mn})_q f_0$:

$$T(f)\psi = f\psi, \qquad f \in \operatorname{Fun}(\mathbb{U})_q, \quad \psi \in \mathcal{H}.$$

There exists a unique positive scalar product in \mathcal{H} such that $(f_0, f_0) = 1$, and

$$(T(f)\psi_1, \psi_2) = (\psi_1, T(f^*)\psi_2), \qquad f \in \operatorname{Fun}(\mathbb{U})_q, \quad \psi_1, \psi_2 \in \mathcal{H}.$$

One can prove that the *-algebra $\operatorname{Pol}(\operatorname{Mat}_{mn})_q$ admits a unique up to unitary equivalence faithful irreducible *-representation by bounded operators in a Hilbert space. This *-representation can be produced via extending the operators T(f), $f \in \operatorname{Pol}(\operatorname{Mat}_{mn})_q$, onto the completion of the pre-Hilbert space \mathcal{H} .

The invariant integral is of the form (see [6]):

$$\int_{\mathbb{U}_q} f d\nu = \operatorname{tr}(T(f)q^{-2\Gamma(\check{\rho})}), \qquad f \in D(\mathbb{U})_q, \tag{4}$$

with $\Gamma: \mathfrak{h} \to \operatorname{End}(\mathcal{H})$ being a subrepresentation of the natural representation of the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{sl}_N$ in $\operatorname{Fun}(\mathbb{U})_q$, and $\check{\rho} \in \mathfrak{h}$ the element of this Cartan subalgebra determined by the half sum of positive roots ρ under the standard pairing of \mathfrak{h} and \mathfrak{h}^* . (To see that this integral is well defined, observe that the operators T(f), $f \in D(\mathbb{U})_q$, are finite dimensional, and \mathcal{H} is decomposable into a sum of weight subspaces associated to non-negative weights.)

Our immediate intention is to produce q-analogues of weighted Bergman spaces. In the case q=1 one has

$$\det(1 - \mathbf{z}\mathbf{z}^*) = 1 + \sum_{k=1}^{m} (-1)^k \mathbf{z}^{\wedge k} \mathbf{z}^{* \wedge k}, \tag{5}$$

with $\mathbf{z}^{\wedge k}$, $\mathbf{z}^{* \wedge k}$ being the "exterior powers" of the matrices \mathbf{z} , \mathbf{z}^* , that is, matrices formed by the minors of order k. The operators $(1-q^2)^{-1/2}T(z_a^\alpha)$, $(1-q^2)^{-1/2}T((z_a^\alpha)^*)$, $a=1,2,\ldots,n$, $\alpha=1,2,\ldots,m$, are respectively the q-analogues of creation and annihilation operators. The "creation operators" are placed in the right hand side of (5) to the left of the "annihilation operators". This allows one to produce a q-analogue of the polynomial $\det(1-\mathbf{z}\mathbf{z}^*)$ in a standard way as follows.

Let $1 \le \alpha_1 < \alpha_2 < \ldots < \alpha_k \le m$, $1 \le a_1 < a_2 < \ldots < a_k \le n$. Introduce q-analogues of minors for the matrix \mathbf{z} :

$$\mathbf{z}^{\wedge k} \left\{ \substack{\{\alpha_1, \alpha_2, \dots, \alpha_k\} \\ \{a_1, a_2, \dots, a_k\}} \right\} = \sum_{s \in S_L} (-q)^{l(s)} z_{a_1}^{\alpha_{s(1)}} z_{a_2}^{\alpha_{s(2)}} \dots z_{a_k}^{\alpha_{s(k)}},$$

with $l(s) = \operatorname{card}\{(i, j) | i < j \& s(i) > s(j)\}$ being the length of the permutation s. The q-analogue $y \in \operatorname{Pol}(\operatorname{Mat}_{mn})_q$ for the polynomial $\det(1 - \mathbf{zz}^*)$ is defined by

$$y = 1 + \sum_{k=1}^{m} (-1)^k \sum_{\{J' \mid \operatorname{card}(J') = k\}} \sum_{\{J'' \mid \operatorname{card}(J'') = k\}} \mathbf{z}^{\wedge k} \frac{J'}{J''} \cdot \left(\mathbf{z}^{\wedge k} \frac{J'}{J''}\right)^*.$$

Let $\lambda > m+n-1$. Now (4) allows one to define the integral with weight y^{λ} as follows:

$$\int_{\mathbb{U}_q} f d\nu_{\lambda} \stackrel{\text{def}}{=} C(\lambda) \operatorname{tr}(T(f)T(y)^{\lambda} q^{-2\Gamma(\check{\rho})}), \qquad f \in D(\mathbb{U})_q,$$

with $C(\lambda)=\prod_{j=0}^{n-1}\prod_{k=0}^{m-1}(1-q^{2(\lambda+1-N)}q^{2(j+k)})$ being a normalizing multiple that provides $\int\limits_{\mathbb{U}_q}1d\nu_\lambda=1.$

The Hilbert space $L^2(d\nu_\lambda)_q$ is defined as a completion of the space $D(\mathbb{U})_q$ of finite functions

with respect to the norm
$$||f||_{\lambda} = \left(\int_{\mathbb{U}_q} f^* f d\nu_{\lambda}\right)^{1/2}$$
. The closure $L_a^2(d\nu_{\lambda})_q$ in $L^2(d\nu_{\lambda})_q$ of the

unital subalgebra $\mathbb{C}[\mathrm{Mat}_{mn}]_q \subset \mathrm{Pol}(\mathrm{Mat}_{mn})_q$ generated by z_a^{α} , $a = 1, 2, \ldots, n$, $\alpha = 1, 2, \ldots, m$, will be called a weighted Bergman space.

Note that the relations (1) and the algebra $\mathbb{C}[\mathrm{Mat}_{mn}]_q$ were considered in many works on quantum groups (see [2]). The *-algebra $\mathrm{Pol}(\mathrm{Mat}_{mn})_q$ determined by the relations (1) and (2), is a q-analogue of the Weyl algebra. This becomes plausible after one performs the 'change of variables' as follows:

$$z_a^{\alpha} \mapsto (1-q^2)^{-1/2} z_a^{\alpha}; \qquad (z_a^{\alpha})^* \mapsto (1-q^2)^{-1/2} (z_a^{\alpha})^*.$$

Consider the orthogonal projection P_{λ} in $L^{2}(d\nu_{\lambda})_{q}$ onto the weighted Bergman space $L^{2}_{a}(d\nu_{\lambda})_{q}$. It is possible to show that P_{λ} could be written as an integral operator (see [8])

$$P_{\lambda}f = \int_{\mathbb{U}_q} K_{\lambda}(\mathbf{z}, \boldsymbol{\zeta}^*) f(\boldsymbol{\zeta}) d\nu_{\lambda}(\boldsymbol{\zeta}), \qquad f \in D(\mathbb{U})_q.$$
 (6)

Our intention is to introduce the algebra $\mathbb{C}[[\mathrm{Mat}_{mn} \times \overline{\mathrm{Mat}}_{mn}]]_q$ of kernels of integral operators and to determine an explicit form of the weighted Bergman kernel $K_{\lambda} \in \mathbb{C}[[\mathrm{Mat}_{mn} \times \overline{\mathrm{Mat}}_{mn}]]_q$ involved in (6).

Introduce the notation

$$\mathbb{k}_{i} = \sum_{\substack{J' \subset \{1, 2, \dots, m\} \\ \text{card}(J') = i \\ \text{card}(J'') =$$

Let $\mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_q \subset \mathrm{Pol}(\mathrm{Mat}_{mn})_q$ be the unital subalgebra generated by $(z_a^{\alpha})^*$, $a=1,2,\ldots,n,\ \alpha=1,2,\ldots,m$, and $\mathbb{C}[\mathrm{Mat}_{mn}]_q^{\mathrm{op}}$ the algebra which differs from $\mathbb{C}[\mathrm{Mat}_{mn}]_q$ by a replacement of its multiplication law to the opposite one (this replacement is motivated in [8]). The tensor product algebra $\mathbb{C}[\mathrm{Mat}_{mn}]_q^{\mathrm{op}} \otimes \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_q$ will be called an algebra of polynomial kernels. It is possible to show that in this algebra $\mathbb{k}_i \mathbb{k}_i = \mathbb{k}_i \mathbb{k}_i$ for all $i, j = 1, 2, \ldots, m$.

We follow [7, 6] in equipping $\operatorname{Pol}(\operatorname{Mat}_{mn})_q$ with a \mathbb{Z} -grading: $\deg(z_a^{\alpha}) = 1$, $\deg((z_a^{\alpha})^*) = -1$, $a = 1, 2, \ldots, n$, $\alpha = 1, 2, \ldots, m$. In this context one has:

$$\mathbb{C}[\mathrm{Mat}_{mn}]_q^{\mathrm{op}} = \bigoplus_{i=0}^{\infty} \mathbb{C}[\mathrm{Mat}_{mn}]_{q,i}^{\mathrm{op}}, \qquad \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_q = \bigoplus_{j=0}^{\infty} \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_{q,-j}$$

$$\mathbb{C}[\mathrm{Mat}_{mn}]_{q}^{\mathrm{op}} \otimes \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_{q} = \bigoplus_{i,j=0}^{\infty} \mathbb{C}[\mathrm{Mat}_{mn}]_{q,i}^{\mathrm{op}} \otimes \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_{q,-j}$$
(8)

The kernel algebra $\mathbb{C}[[\mathrm{Mat}_{mn} \times \overline{\mathrm{Mat}}_{mn}]]_q$ will stand for a completion of $\mathbb{C}[\mathrm{Mat}_{mn}]_q^{\mathrm{op}} \otimes \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_q$ in the topology associated to the grading in (8). The kernel algebra is constituted by formal series $\psi = \sum_{i,j=0}^{\infty} \psi_{ij}$, with $\psi_{ij} \in \mathbb{C}[\mathrm{Mat}_{mn}]_{q,i}^{\mathrm{op}} \otimes \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_{q,-j}$.

Our main result is the following formula for the weighted Bergman kernel:

$$K_{\lambda} = \prod_{i=0}^{\infty} \left(1 + \sum_{i=1}^{m} (-q^{2(\lambda+j)})^{i} \mathbb{k}_{i} \right) \cdot \prod_{i=0}^{\infty} \left(1 + \sum_{i=1}^{m} (-q^{2j})^{i} \mathbb{k}_{i} \right)^{-1}$$
(9)

with \mathbb{k}_i being the polynomial kernels (7). (The right hand side of (9) determines an element of $\mathbb{C}[[\mathrm{Mat}_{mn} \times \overline{\mathrm{Mat}}_{mn}]]_q$ since $\mathbb{k}_i \in \mathbb{C}[\mathrm{Mat}_{mn}]_{q,i}^{\mathrm{op}} \otimes \mathbb{C}[\overline{\mathrm{Mat}}_{mn}]_{q,-i}$ for all $i = 1, 2, \ldots, m$).

In the special case m = n = 1 we get a well known result [5]:

$$K_{\lambda} = \prod_{j=0}^{\infty} \left(1 - q^{2(\lambda+j)} z \otimes \zeta^* \right) \cdot \left(\prod_{j=0}^{\infty} (1 - q^{2j} z \otimes \zeta^*) \right)^{-1} =$$

$$= \sum_{i=0}^{\infty} \frac{(1 - q^{2\lambda})(1 - q^{2(\lambda+1)}) \dots (1 - q^{2(\lambda+i-1)})}{(1 - q^2)(1 - q^4) \dots (1 - q^{2i})} z^i \otimes \zeta^{*i}.$$

Now passage to a limit as $q \to 1$ and replacement of \otimes by a dot yields $K_{\lambda} \to (1 - z\zeta^*)^{-\lambda}$.

A q-analogue of an ordinary Bergman kernel for the matrix ball (see [3]) is derivable from (9) by a substitution $\lambda = m + n$:

$$K = \prod_{j=0}^{m+n-1} \left(1 + \sum_{i=1}^{m} (-q^{2j})^i \mathbb{k}_i \right)^{-1} \xrightarrow[q \to 1]{} (\det(1 - \mathbf{z} \cdot \boldsymbol{\zeta}^*))^{-(m+n)}.$$

References

- [1] R. J. Baston, M. G. Eastwood. The Penrose Transform. Its Interaction with Representation Theory. Clarendon Press. Oxford, 1989.
- [2] V. Chari, A. Pressley. A Guide to Quantum Groups, Cambridge Univ. Press, 1995.
- [3] L. K. Hua. Harmonic Analysis of Functions of Several Complex Variables. Transl. of Math. Monog., Vol. 6. Amer. MAth. Soc., 1963.
- [4] N. E. Hurt. Geometric Quantization in Action. D. Reidel Publishing Company, Dorderecht-Boston-London, 1983.
- [5] S. Klimec, A. Lesniewski, A two-parameter quantum deformation of the unit disc, J. Funct. Anal. 115, (1993), 1 23.

- [6] D. Shklyarov, S. Sinel'shchikov, L. Vaksman. Function theory in the quantum matrix ball: an invariant integral. E-print: math.QA/9803110, 5 p.p.
- [7] S. Sinel'shchikov, L. Vaksman. On q-analogues of Bounded Symmetric Domains and Dolbeault Complexes, Mathematical Physics, Analysis and Geometry, 1, (1998), 75 100; E-print: q-alg/9703005.
- [8] L. L. Vaksman, *Intertwining operators and quantum homogeneous spaces*, Math. Phys. Anal. Geom., 1 (1994), No 3/4, 329 409, and E-print: q-alg/9511007.