基学喷泉码的分粉加密算法

陈博 胡鸣

2016. 5. 20

背景

hello, gerbil

云服务大量出现,云存储,云播放, 云查看等。非对称加密没法满足快速, 大量文件加密要求。

- 常见的对称加密算法不够灵活:
 - -密钥长度局限,可选的种类少
 - -数据需要手动填充

基于喷泉码的对称加密算法

算法特性

hello, gerbil

- 密钥多样化
 - -密钥长度为8的倍数8n(1, 2, 3, 4 •••)
 - -最短8位,没有上限
 - -16进制字符串
 - PKCS #7块自动填充
 - 喷泉码混淆与扩散
 - -XOR, 链式压缩, 混乱信息熵
 - -块内行换位,扩散明文信息

加部 hello, gerbil

message = B7B6B5B4B3B2B1B0

key = b7b6b5 ∧ mask

B'[0] = B[key++]

 $B'[1] = B[key++ \% bsize] \land B'[0]$

 $B'[2] = B[key++ \% bsize] \land B'[1]$

 $B'[3] = B[key++ \% bsize] \land B'[2]$

..

 $B'[7] = B[key++ \% bsize] \land B'[6]$

解密

hello, gerbil

b7	b6	b5	b4	ьз	b2	b1	bo
----	----	----	----	----	----	----	----

cliper = B7B6B5B4B3B2B1B0

key = b0b7b6 ∧ mask

B'[key++] = B[0]

 $B'[key++ \% bsize] = B[1] \land B[0]$

 $B'[key++ \% bsize] = B[2] \land B[1]$

...

 $B'[key++ \% bsize] = B[7] \land B[6]$

算法测试

hello, gerbil

- 1、密钥长度测试
- 2、明文长度测试
- 3、二进制文件测试
- 4、压缩测试
- 5、明文与密文相似度测试
- 6、雪崩效应测试

DEMO

hello, gerbilter gerbilte

密文压缩测试

算法	测试结果	压缩比率
SEF	success	99. 9445832361
DES	success	100. 019329338
DES3	success	100. 023680687
AES	success	100. 022062417

表 5-10 密钥雪崩效应测试

雪崩效应测试

密钥 (原密钥)	密钥(改变后)	密文变化比率
6477710ee4154d39	6477710ae4154d39	9.884 %
d5a47bef2844be4l	d5a47baf2844be4b	9.855 %
abf096587a897b4	abf096187a897b4c	9.893 %

时间复杂度与密钥长度关系

fppt.com