

MultiAlign Tutorial 04 – Reviewing An Analysis

BRIAN LAMARCHE

About this tutorial

- This tutorial will describe the graphical user interface (GUI) after an analysis has been performed in great detail
- You will learn
 - Shortcuts for drilling through the data
 - How to interact with plots
 - Details about every view

Analysis overview

THIS SECTION PROVIDES A SET OF BACKGROUND INFORMATION TO HELP GUIDE YOU THROUGH THE REST OF THE TUTORIAL

Previous tutorials covered this material

Proudly Operated by Baffelle Since 1965

Wizard

1. Home Screen

2. Select Data

3. Set Parameters

4. Select Baseline and Mass Tag
Database

5. Set Analysis
Path and Name

Running Analysis

7. Analysis View Window

GUI Basics

UNDERSTANDING HOW TO INTERACT WITH PLOTS

Interacting with Plots

- This section describes how to interact with each plot.
- ► It is intended to provide basic to advanced functionality of the user interface

Pacific Northwest

5500

Context Menu (1)

- Right Click on the plot
- A context menu will appear
- Show All Data
 - Auto-zooms the plot to show all data points
- Copy All Data
 - Copies data from the plot to system clipboard for pasting into other software applications, e.g. Excel
- View Port
 - Allows you to step back to a previous zoom range

Pacific Northwest

Context Menu (2)

- Copy
 - Saves a WMF version of the plot, with the plot data still in raster form
- Copy Image
 - Will copy a rasterize image to the system clipboard
- Save Image
 - Saves the plot as an image to file
- Select All Series
 - Selects all series of points
- Selected Series
 - Details what series of points are selected

Measuring Distances

- Some plots will allow you to measure the distance between points
 - e.g. ppm and NET differences
- ▶ To Measure:
 - Hold Shift
 - Left Click
 - Drag
 - Release left mouse button
- ► The distance in the left window shows:
 - 1.86 ppm mass difference
 - .04 NET difference

Reviewing An Analysis

GLOBAL VIEW OF ANALYSIS

Open the analysis

Review of output

 Alignment related plots must exist in the Plots subfolder.

The analysis database file should also exist.

This is important later on because MultiAlign will search for these plots to create visualization elements in the GUI

- This is the main window that should appear
- If it does not, click on the analysis button at the bottom of the screen.

Analysis View – Major Views

If a mass tag database is used in the analysis, this tab allows investigation of each mass tag

Investigating clusters

THE CLUSTER TAB AND SELECTED CLUSTER VIEWS

- The clusters scatter plot window displays all of the clusters found in the analysis.
- Each blue dot represents a feature found across multiple datasets.
- This plot is interactive

- The clusters data grid shows all detailed information about each cluster.
- The columns are sort-able by clicking on the column header
- You can also reorder the column orders by clicking on a column header and dragging to its new location
- Left clicking on a row in the cluster data grid will display the details about the cluster below

Selected Cluster View Basics

Proudly Operated by Baffelle Since 1965

Tags and Clusters (1)

Tags and Clusters (3) – Shapes and Colors – Cluster Charts

Proudly Operated by Baffelle Since 1965

Shape Charge

+1

+2

+3

+4

X +5

Color Based on Type of Feature

LC-MS Features from selected cluster

LC-MS Features from nearby cluster (hollow)

Selected Cluster Centroid

Nearby Cluster Centroid

Features and Cluster Centroids

Matched mass tag

Unmatched mass tag nearby

Matched Mass Tag

LC-MS Features from nearby cluster (hollow diamond) – nearby mass tag unmatched

Mass Tags

Detailed information about each feature in cluster (consensus feature)

Number of MS
Features (i.e. number of parent scans)
feature appeared in

Number of MS/MS spectra associated with feature

LC-chromatogram of each charge state (depicted by color) for the selected feature

Features (2) - MS/MS

Abundance Profile

This slide currently shows the abundance (raw) from each dataset. Each dot represents the abundance for a feature from the dataset id below.

This plot is interactive

Future feature: organize each dataset by factor (e.g. age or time point)

MS/MS Spectra

Investigating mass tag matches

USING A MASS TAG CENTRIC APPROACH, FINDING HOW MANY CLUSTERS MATCH

Mass Tag View (1)

- The mass tag plot shows all mass tags present in the AMT Tag database used for alignment and/or peptide identification via STAC.
- Mass Tags are represented by orange diamonds.
- ► This plot is interactive

Mass Tag View (2)

- ► The mass tag histogram shows how many features (e.g. a peptide from an individual dataset) to the mass tag.
- ▶ This plot is interactive

Mass Tag View (3)

- ► The mass tag data grid shows detailed information about each mass tag.
- Left clicking on a row in the mass tag data grid displaysdetailed information about the
 - mass tag

Pacific Northwest

Mass Tag Synopsis

Mass Tag - Tags and Clusters (1)

Proudly Operated by Battelle Since 1965

Clusters that match to this mass tag

And on other tab, nearby mass tags

Scatter plot that shows all matching clusters (red) and their features that comprise the cluster (blue)

Selected mass tag is displayed as orange diamonds. Nearby mass tags are displayed as hollow diamonds

NOTE: Feature and Cluster shapes are based on charge

Mass Tag - Tags and Clusters (2)

Proudly Operated by Baffelle Since 1965

Shape Charge

+1

+2

+3

+4

X +5

Color Based on Type of Feature

LC-MS Features of matched clusters

LC-MS Features from nearby cluster (hollow)

Matched Cluster Centroid

Nearby Unmatched Cluster Centroid

Features and Cluster Centroids

Selected mass tag

Nearby mass tags

Selected Mass Tag

LC-MS Features from nearby cluster (hollow diamond) – nearby mass tag unmatched Mass Tags

Mass Tag – Matched Proteins

Details about the proteins that this mass tag rolls into. Shown here is multiple mass tags because the mass tag (peptide in this case) selected has multiple conformations.

Proudly Operated by Baffelle Since 1965

Global Statistics Plots

UNDERSTANDING THE GLOBAL STATISTICS

Global Statistics Plots (no AMT tag database)

Proudly Operated by Baffelle Since 1965

Histogram of the number of datasets represented by each cluster

Histogram of the cluster sizes (number of features per cluster)

Histogram of charge states

Global Statistics Plots (no AMT tag database)

Proudly Operated by Battelle Since 1965

Histogram of the number of datasets represented by each cluster

Histogram of the cluster sizes (number of features per cluster)

Histogram of charge states

Histogram of mass tags that match to individual features (sum of cluster sizes for clusters that match to a mass tag)

Proudly Operated by Baffelle Since 1965

Datasets Plot

DATASET INFORMATION

Proudly Operated by Baffelle Since 1965

Allows the user to toggle between dataset plot view and data grid mode

MultiAlign

Dataset Plot View

Proudly Operated by Battelle Since 1965

These plots are created from the high resolution images stored in the Plots directory where the database was created.

Future feature will be to make these plots interactive

Dataset Plot View

Proudly Operated by **Battelle** Since 1965

Advanced Tab

APPLICATION CONFIGURATION

Advanced View

- This view allows you to customize the application and visualization defaults.
- This view currently has a minimal set of features displayed.

For more information see the MultiAlign website:

http://omics.pnl.gov/software/MultiAlign.php