

MINISTÉRIO DA EDUCAÇÃO UTFPR – UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPO MOURÃO

Lab. 02 - Verilog

Números e Displays

Projetos de Sistemas Integrados Prof. Roberto Ribeiro Neli

Neste laboratório, vamos exercitar logicas de circuitos combinacionais que executam a conversão de números binários para decimais.

Parte I

Faça um algoritmo em Verilog que escreva os números colocados nas chaves SW $_{15-0}$, nos displays HEX3 a HEX0. O KIT deve mostrar os valores de SW $_{15-12}$, SW $_{11-8}$, SW $_{7-4}$ e SW $_{3-0}$ nos displays HEX3, HEX2, HEX1 e HEX0, respectivamente. Seu circuito deve ser capaz de mostrar dígitos de 0 a 9, e deve tratar os valores 1010 a 1111 como proibidos (don't-cares).

Parte II

Nesta etapa você deve elaborar um algoritmo em Verilog que converta 4 bits binários para dois bits decimais, conforme mostrado na tabela 1.

Dígitos d	lecimais
0	0
0	1
0	2
0	9
1	0
1	1
1	2
1	3
1	4
1	5
	0 0 0 1

Tabela 1. Conversor binário-decimal

Figura 1. Projeto parcial do conversor binário-Decimal.

Parte III

A figura 2a ilustra um circuito somador completo (a + b + ci) e a Figura 2b ilustra o símbolo deste circuito, onde tem-se as entradas a, b, e ci e as saídas s e co.

a) Circuito somador completo

b) Símbolo somador completo

c) Tabela Verdade circuito somador

d) Circuito somador de 4 bits

Figura 2. Circuito somador.

- 1. Crie um algoritmo em Verilog que represente um módulo somador completo e depois escreva um algoritmo *top-level* em Verilog que contenha 4 módulos do somador completo, conforme a figura 2 ilustra.
- 2. Use as chaves SW_{7-4} e SW_{3-0} para representar as entradas A e B, respectivamente. Use SW_8 para o *carry-in* \mathbf{c}_{in} do somador. Conecte as chaves SW nos seus LEDR correspondentes. Conecte as saídas do somador, \mathbf{c}_{out} e \mathbf{S} , nos LEDG.

Parte IV

Projete agora um circuito em Verilog que some dois dígitos BCD. As entradas devem ser $\bf A$, $\bf B$ e carry-in, $\bf c_{\rm in}$.

O valor máximo deste circuito é 19 (9+9+1). Utilize as chaves SW_{7-4} e SW_{3-0} para as entradas A e B, respectivamente, e use SW_8 para o *carry-in*. Conecte as chaves SW aos LEDs LEDR correspondentes. Conecte os bits da operação A+B nos LEDG (4 bits da soma + *carry-out*).

Parte V

Desenvolva em Verilog um circuito que some 2 números BCD de 2 dígitos, A_1 A_0 e B_1 B_0 resultando em uma saída BCD de 3 dígitos S_2 S_1 S_0 . Use duas instâncias do circuito da parte IV para projetar este circuito.

Use SW_{15-8} e SW_{7-0} para informar os números A_1 A_0 e B_1 B_0 , respectivamente.

O valor de A_1 A_0 devem ser mostrados em HEX7 e HEX6, enquanto B_1 B_0 mostrados em HEX5 e HEX4. A soma S_2 S_1 S_0 , nos displays HEX2, HEX1 e HEX0.

Part VI

Neste tópico você verá uma abordagem diferente, onde um somador de 2 dígitos é representador pelo pseudocódigo a seguir:

 $1 \quad T_0 = A_0 + B_0$ 2 if $(T_0 > 9)$ then $3 Z_0 = 10;$ $4 c_1 = 1;$ 5 else 6 $Z_0 = 0$; 7 $c_1 = 0$; 8 end if 9 $S_0 = T_0 - Z_0$ $10 \quad T_1 = A_1 + B_1 + c_1$ 11 if $(T_1 > 9)$ then 12 $Z_1 = 10$; 13 $c_2 = 1$; 14 else 15 $Z_1 = 0;$ 16 $c_2 = 0;$ 17 end if 18 $S_1 = T_1 - Z_1$ $19 S_2 = c_2$

Você pode notar neste pseudocódigo que: as linhas 1, 9, 10, e 18 representam somadores, as linhas 2-8 e 11-17 representam multiplexadores, e as condicionais T0>9 e T1>9, representam comparadores. Escreva um código em Verilog que represente este pseudocódigo.

Parte VII

Projete um circuito combinacional que coverta um número binário de 6 bits em um número decimal de 2 dígitos. Utilize as chaves SW_{5-0} para informar o número binário e os displays HEX1 e HEX0 para mostrar o número decimal. Implemente seu circuito no KIT DE2-115 e demonstre a funcionalidade.

Adaptado dos exemplos que acompanham o KIT DE2-115.