Xestión de bases de datos en robótica Prácticas 1, 2 y 3

Adrián Losada Álvarez, Simón Suárez Rosende

May 10, 2024

Índice

Práctica 1: MySQL - Bases de Datos Relacionales

Práctica 2: MongoDB

Práctica 3: HStreamDB

Conclusión

Práctica 1: MySQL - Bases de Datos Relacionales

- ► Temática: Agencia de viajes "Willy Fog"
- Creación del modelo conceptual usando el Modelo Entidad-Relación Extendido
- ► Transformación del MERE al Modelo Relacional (MR)
- Implementación en MySQL
- Entidades principales: Cliente, Seguro de Viaje, Viaje, Destino, Paquete Vacacional, Actividad, Guía

Modelo Entidad-Relación Extendido (MERE) I

- Modelo gráfico que representa las entidades, relaciones y atributos
- ► Ejemplo de entidades:
 - Cliente: ID, Nombre, Edad, Género, ID de Seguro, ID de Viaje, Fecha de Reserva
 - Seguro de Viaje: ID, Fecha de Caducidad, Precio, Cancelación, Tipo
 - ▶ Viaje: ID, Precio, Duración, Transporte

Modelo Entidad-Relación Extendido (MERE) II

Modelo Entidad-Relación Extendido (MERE) III

Modelo Entidad-Relación Extendido (MERE) IV

Modelo Entidad-Relación Extendido (MERE) V

Modelo Entidad-Relación Extendido (MERE) VI

Transformación del MERE al Modelo Relacional (MR) I

Relación recursiva

<u>Caso 2 - Relación N:M:</u> Crear una tabla para la entidad y otro para la relación. La tabla de la relación tendrá como clave compuesta los atributos de los roles que a su vez serán clave

Transformación del MERE al Modelo Relacional (MR) II

		SEGURO_VIAJI	=	
id	caducidad	precio	cancelación	tipo
PK				

Relacion 1:N (entidades fuertes)

Se genera una tabla por cada entidad y se traslada la clave principal la tabla del lado 1 al lado N
en el que se convierte en clave foránea. Si la relación tiene atributos se envían a la tabla del
ladin N.

Transformación del MERE al Modelo Relacional (MR) III

Relación Generalización/Especialización

Recomendado cuando:

Inconvenientes:

Método 3: crear un esquema que contenga los atributos de la clase padre y todas las clases hilas.

Los subtipos se diferencian en muy pocos atributos (o ninguno).
 Compatible con relaciones de participación total o parcial.

Transformación del MERE al Modelo Relacional (MR) IV

	VI	AJE	
id	precio	duración	transporte
PK			

Relación 1:1 (entidades fuertes)

 Se genera una tabla por cada entidad y se coloca la clave principal de una tabla en la otra tabla sólo como clave foránea (FK). Se recomienda llevar la PK a la tabla de la relación O (si la hay)

Transformación del MERE al Modelo Relacional (MR) V

NACIONAL				
idViaje	dni			
PK				
FK.VIAJE				

	INTERNACIONAL					
idViaje	pasaporte	visado				
PK						
FK.VIAJE						

Relación Generalización/Especialización · Método 1: crear un esquema por cada entidad Recomendado cuando: Existen muchos atributos distintos entre los subtipos ■ Se quiere mantener de todas maneras los atributos comunes a todos en una relación Es solapada parcial Inconvenientes:

■ La obtención de información requiere el acceso a dos relaciones Baio nivel (subclases) Alto nivel (superclase) La opción más común.

ENTID	AD1	ENTI	DAD 2	ENT	DAD 3
ID1	Atributo1	ID1	Atributo2	ID1	Atributo3
				Ш.	
	FK		FK		

Transformación del MERE al Modelo Relacional (MR) VI

Relación Agregación

 Se trata la relación dentro de la categorización como si fuera una entidad (E). Las entidades que se relacionan con la categorización estarán relacionadas con E.

Transformación del MERE al Modelo Relacional (MR) VII

	VI	AJE	
id	precio	duración	transporte
PK			

ACTIVIDAD			
idActividad	duración	precio	idViaje
PK			
			FK.VIAJE

Relacion 1:N (entidades débiles)

 <u>Caso 1 - entidad débil con clave primaria</u>; se genera una tabla por cada entidad y se traslada la clave principal la tabla del lado n'a lado n'en el que se convierte en clave foránea. Si la relación tiene atributos se envían a la tabla del lado N.

Transformación del MERE al Modelo Relacional (MR) VIII

ACTIVIDAD				
idActividad	duración	precio	idViaje	
PK				
			FK.VIAJE	

	GL	lÍΑ	
idActividad	género	edad	nombre
PK			

Relación 1:1 (entidad débil)

 Caso 2 - entidad débil sin clave primaria; se genera una tabla por cada entidad y se coloca la clave principal de la entidad fuerte en la de la entidad débil como clave primaria y foránea.

,

Implementación en MySQL: Crear tablas

```
CREATE TABLE Cliente ( ID INT PRIMARY KEY, Nombre VARCHAR(50), Edad INT, Genero ENUM('Masculino', 'Femenino'), ... );
CREATE TABLE SeguroViaje ( ID INT PRIMARY KEY, FechaCaducidad DATE, Precio DECIMAL(10, 2), Cancelacion BOOLEAN, Tipo ENUM('Basico', 'TodoRiesgo') );
CREATE TABLE Viaje ( ID INT PRIMARY KEY, Precio DECIMAL(10, 2), Duracion DATE, Transporte VARCHAR(50) );
```

Listing: Transformación de tablas

Implementación en MySQL: Insertar datos

```
INSERT INTO Cliente (ID, Nombre, Edad, Genero) VALUES (1, 'Juan', 30, 'Masculino');
INSERT INTO SeguroViaje (ID, FechaCaducidad, Precio, Cancelacion, Tipo) VALUES (1, '2024-12-31', 100.00, TRUE, 'Basico');
INSERT INTO Viaje (ID, Precio, Duracion, Transporte)
VALUES (1, 500.00, '2024-06-15', 'Avion');
```

Listing: Inserción de datos en MySQL

Práctica 2: MongoDB

- ► Introducción a MongoDB
- Estructura de la base de datos agencia_viajes
- Colecciones: Cliente, Viaje, Actividad

Introducción a MongoDB

- Base de datos NoSQL basada en un modelo documental (JSON).
- Esquemas dinámicos: permite que documentos en una misma colección tengan atributos diferentes.
- ▶ No hay joins: no escala bien.
- Operaciones atómicas: permite actualizar documentos completos de forma atómica.

Diagrama en Árbol: Distribución de Colecciones (1/4)

Diagrama en Árbol: Distribución de Colecciones (2/4)

Diagrama en Árbol: Distribución de Colecciones (3/4)

Diagrama en Árbol: Distribución de Colecciones (4/4)

Estructura de Colecciones en MongoDB

```
use agencia_viajes;
```

Listing: Creación e Inserción en MongoDB

```
db.createCollection("cliente"); db.cliente.insertOne( _id:
1, nombre: "Juan", edad: 30, genero: "Masculino",
seguro_viaje: _id: 1, caducidad:
ISODate("2024-12-31"), precio: 100.00,
cancelacion: true, tipo: "Basico" );
```

Listing: Creación e Inserción en MongoDB

```
db.createCollection("viaje"); db.viaje.insertOne(_id: 1, precio: 500.00, duracion: ISODate("2024-06-15T10:00:00Z"), transporte: "Avin", nacional: dni: "12345678A");
```

Listing: Creación e Inserción en MongoDB

Aplicaciones Reales para la Agencia de Viajes

- Segmentación de Clientes:
 - Identificación de clientes propensos a comprar un seguro de viaje completo.
 - Campañas de marketing personalizadas.
- Optimización de Ofertas de Viajes:
 - ldentificar destinos populares mediante análisis de datos.
 - Ofrecer descuentos para temporadas específicas.
- Análisis de Actividades Preferidas:
 - Recomendar actividades adicionales basadas en las preferencias históricas de los clientes.

Práctica 3: HStreamDB

- Introducción a HStreamDB
- Modelo de datos basado en streams
- ► Aplicaciones: procesamiento de datos en tiempo real

Modelo de Datos en HStreamDB

- ► Streams y Shards
- Clustering
- ► Tolerancia a fallos y replicación

Implementación de Streams

```
hstream> CREATE STREAM viajes;
hstream> INSERT INTO viajes VALUES (1, "Juan",
"2024-06-15T10:00:00Z", 500.00);
```

Listing: Ejemplo de creación e inserción en Streams

Nuestra implementación

```
(base) simon@simon-Legion-Slim-5-16APH8:~/Documentos/Tercero/Bases de datos/Gestilololon_Dionitolonion_Dioliolonion_iolililololon_Datos
 acticas/P3/hstreamdb-py-examples/hstreamdb-py-examples/PR3 CODIGO$ bash probar.bash:
CLIENTES APPEND
Añadiendo: [
        " id": "0001",
        "nombre": "Juan".
        "edad": 30,
        "genero": "Masculino".
        "seguro_viaje": {
            "_id": "0001",
            "caducidad": "ISODate(\"2024-12-31\")".
            "precio": 100,
            "cancelacion": true,
            "tipo": "Básico"
        "_id": "0002",
        "nombre": "Maria",
        "edad": 24,
        "genero": "Femenino",
        "seguro viaie": {
            " id": "0002",
            "caducidad": "ISODate(\"2024-12-31\")".
            "precio": 200.
            "cancelacion": false,
            "tipo": "A todo riesgo"
CLIENTES READ
[0] payload: {'edad': 30.0, 'nombre': 'Juan', 'genero': 'Masculino', 'seguro_viaje': {'tipo': 'Básico', 'precio': 100.0, 'caducidad': 'ISO
Date("2024-12-31")', '_id': '0001', 'cancelacion': True}, '_id': '0001'}
[1] payload: {'edad': 24.0, 'nombre': 'Maria', 'genero': 'Femenino', 'seguro viaje': {'tipo': 'A todo riesgo', 'precio': 200.0, 'caducidad
   'ISODate("2024-12-31")', 'id': '0002', 'cancelacion': False}, 'id': '0002'}
```

Aplicaciones

- Procesamiento de datos en tiempo real
- Integración con sistemas distribuidos
- Análisis de flujo de eventos

Conclusión

- Comparativa entre bases de datos relacionales y NoSQL
- ► Pros y contras de cada enfoque
- Aplicaciones prácticas para cada tipo de base de datos