

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT27 Triple 3-input NOR gate

Product specification
File under Integrated Circuits, IC06

December 1990

Triple 3-input NOR gate

74HC/HCT27

FEATURES

- Output capability: standard
- I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT27 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT27 provide the 3-input NOR function.

QUICK REFERENCE DATA

$GND = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t_{PHL}/t_{PLH}	propagation delay nA, nB, nC to nY	$C_L = 15 \text{ pF}$; $V_{CC} = 5 \text{ V}$	8	10	ns
C_I	input capacitance		3.5	3.5	pF
C_{PD}	power dissipation capacitance per gate	notes 1 and 2	24	30	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

f_i = input frequency in MHz

f_o = output frequency in MHz

$\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "[74HC/HCT/HCU/HCMOS Logic Package Information](#)".

Triple 3-input NOR gate

74HC/HCT27

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 3, 9	1A to 3A	data inputs
2, 4, 10	1B to 3B	data inputs
13, 5, 11	1C to 3C	data inputs
7	GND	ground (0 V)
12, 6, 8	1Y to 3Y	data outputs
14	V _{CC}	positive supply voltage

Fig.1 Pin configuration.

Fig.2 Logic symbol.

Fig.3 IEC logic symbol.

Fig.4 Functional diagram.

Fig.5 Logic diagram (one gate).

FUNCTION TABLE

INPUTS			OUTPUT
nA	nB	nC	nY
L	L	L	H
X	X	H	L
X	H	X	L
H	X	X	L

Notes

1. H = HIGH voltage level
- L = LOW voltage level
- X = don't care

Triple 3-input NOR gate

74HC/HCT27

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

I_{CC} category: SSI

AC CHARACTERISTICS FOR 74HC

$GND = 0 \text{ V}$; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	$T_{amb} (\text{ }^{\circ}\text{C})$						UNIT	TEST CONDITIONS			
		74HC							V _{CC} (V)	WAVEFORMS		
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t_{PHL} / t_{PLH}	propagation delay nA, nB, nC to nY		28 10 8	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.6	
t_{THL} / t_{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	

Triple 3-input NOR gate

74HC/HCT27

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

 I_{CC} category: SSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, nB, nC	1.50

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS				
		74HCT								V _{CC} (V)	WAVEFORMS			
		+25			−40 to +85		−40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
t _{PHL} / t _{PLH}	propagation delay nA, nB, nC to nY		12	21		26		32	ns	4.5	Fig.6			
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6			

AC WAVEFORMS

Fig.6 Waveforms showing the input (nA, nB, nC) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "[74HC/HCT/HCU/HCMOS Logic Package Outlines](#)".