BÀI TẬP TOÁN RỜI RẠC 2

Câu 1. Hãy điền vào chỗ còn thiếu dưới đây:

... n đỉnh, ký hiệu là C_n $(n \geq 3)$, là đơn đồ thị vô hướng gồm các cạnh $(1,2),(2,3),\ldots,(n-1)$ (1, n), (n, 1).

- A. Đồ thị bánh xe.
- B. Đồ thị đầy đủ.
- C. Đồ thị vòng.

D. Đồ thị hai phía.

E. Tất cả phương án đều sai.

Lời giải.

Đáp án đúng: Đồ thị vòng

Chọn đáp án (C)

Câu 2. Cho đồ thi vô hướng dưới đây. Hãy liệt kê các đỉnh treo của đồ thi?

- **A**. {4}. **D**. $\{1, 3, 5\}$.
- **B**. {1, 2, 6}.
- \mathbf{C} . $\{2, 3, 4, 5\}$.
- E. Tất cả phương án đều sai.

Lời giải.

Đáp án đúng: $\{1, 2, 6\}$

Chọn đáp án (B)

Câu 3. Cho biết những đồ thị dưới đây là loại đồ thị nào?

- **B**. Đồ thị vòng.
- В D

- A. Đồ thị bánh xe.
- **D**. Đồ thị đầy đủ.

 \mathbf{E}

- C. Đơn đồ thị có hướng.
- E. Tất cả phương án đều sai.

Lời giải.

Đáp án đúng: Đồ thị bánh xe Chọn đáp án $\stackrel{\frown}{(A)}$

Câu 4. Cho đồ thị có hướng. Khẳng định nào dưới đây là đúng?

- **A**. $deg^+(2) + deg^-(5) + deg^-(6) = 6$.
- **B**. $deg^+(2) + deg^-(5) + deg^-(6) = 5$.
- C. $deg^+(2) + deg^-(5) + deg^-(6) = 7$.
- **D**. $deg^+(2) + deg^-(5) + deg^-(6) = 8$.
- E. Tất cả phương án đều sai.

Lời giải.

Đáp án đúng: $deg^+(2) + deg^-(5) + deg^-(6) = 7$ Chon đáp án \bigcirc

Câu 5. Cho đồ thị có hướng có trọng số G gồm 4 đỉnh dưới dạng sách cạnh với trọng số. Nếu biểu diễn G dưới dạng ma trận trọng số A thì:

Đỉnh	Đỉnh kề	Trọng số
1	2	7
1	3	7
2	1	4
2	3	5
3	1	5
3	2	3
4	1	4
4	3	5

- **A**. Ma trận A gồm 4 hàng, 4 cột và có hàng 2 là (4,0,1,2).
- \mathbf{B} . Ma trận A gồm 4 hàng, 4 cột và có cột 2 là (4,0,1,2).
- \mathbf{C} . Ma trận A gồm 4 hàng, 4 cột và có hàng 3 là (0,1,0,5).
- **D**. Ma trận A gồm 4 hàng, 4 cột và có hàng 4 là (4,0,5,0).

E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án D

Câu 6. Trong các mô tả dưới, đâu là tính chất danh sách cạnh của đồ thị có hướng?

- A. Đỉnh cuối lớn hơn đỉnh đầu mỗi cạnh.
- B. Đỉnh cuối không nhất thiết phải lớn hơn đỉnh đầu mỗi cạnh.
- C. Đỉnh cuối nhỏ hơn đỉnh đầu mỗi cạnh.
- D. Đỉnh cuối không nhất thiết phải nhỏ hơn đỉnh đầu mỗi cạnh.
- E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án (B)

Câu 7. Cho đơn đồ thị vô hướng có trọng số G dưới dạng ma trận có trọng số. Đồ thị có bao nhiều cạnh ?

$$\begin{bmatrix} \infty & 7 & \infty & 5 & \infty & \infty \\ 7 & \infty & \infty & 5 & \infty & 6 \\ \infty & \infty & \infty & 5 & 8 & \infty \\ 5 & 5 & 5 & \infty & 4 & 4 \\ \infty & \infty & 8 & 4 & \infty & 2 \\ \infty & 6 & \infty & 4 & 2 & \infty \end{bmatrix}$$

- **A**. 8.
- **D**. 20.

B. 9.

- **C**. 18.
- E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án (B)

Câu 8. Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 6 đỉnh được biểu diễn dưới dạng danh sách cạnh như dưới đây. Nếu biểu diễn G dưới dạng ma trận kề A thì:

Đỉnh	Đỉnh kề
1	2
1	4
1	5
1	6
2	3
2	4
2	6
3	6
4	5
4	6

- \mathbf{A} . Ma trận \mathbf{A} gồm $\mathbf{6}$ hàng, $\mathbf{6}$ cột và có hàng $\mathbf{2}$ là (1,0,1,1,0,1).
- **B**. Ma trận A gồm 6 hàng, 6 cột và có cột 3 là (0,0,1,1,0,1).
- \mathbf{C} . Ma trận A gồm 6 hàng, 6 cột và có hàng 4 là (0,0,0,0,0,1).
- **D**. Ma trận A gồm 6 hàng, 6 cột và có hàng 5 là (0,0,0,0,0,1).
- E. Các phương án khác đều sai.

Biên soạn: TS. Nguyễn Kiều Linh

Lời giải.

Chọn đáp án A

Câu 9. Cho đơn đồ thị có hướng G gồm 4 đỉnh dưới dạng ma trận kề, nếu M là ma trận liên thuộc của G với các cạnh theo thứ tự từ điển thì:

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

- **A**. M gồm 5 hàng và 4 cột M[3][4] = 1 và M[4][4] = -1.
- **B**. M gồm 4 hàng và 5 cột với M[1][5] = -1 và M[4][5] = 1.
- C. M gồm 4 hàng và 5 cột với M[2][2] = 1 và M[2][4] = -1.
- **D**. M gồm 5 hàng và 4 cột với M[1][1] = 1 và M[2][1] = -1.
- E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án C

Câu 10. Cho đơn đồ thị vô hướng G gồm 5 đỉnh, được biểu diễn dưới dạng danh sách kề như sau. Hãy chọn phương án đúng:

Đỉnh	Danh sách kề
1	2, 3, 5
2	4
3	5
4	5

- A. G không phải là đồ thị Euler nhưng là nửa Euler.
- **B**. G là đồ thị Euler.
- C. G không phải là đồ thị Euler.
- **D**. G không phải là đồ thị nửa Euler.
- E. Các phương án khác đều sai.

Lời giải.

Đáp án đúng: G không phải là đồ thị Euler nhưng là nửa Euler Chọn đáp án $\stackrel{\frown}{{\rm A}}$

Câu 11. Cho đồ thị có hướng G gồm 5 đỉnh có ma trận kề như sau:

0	1	1	1	0
1	0	1	1	1
0	0	0	1	0
0	1	0	0	1
1	0	0	0	0

Sử dụng thuật toán liệt kê tất cả các chu trình Hamilton H của G bắt đầu tại đỉnh s=5. Các đỉnh xuất hiện theo thứ tự khi thực hiện thuật toán trong H đầu tiên được liêt kê là:

- **A**. $\{5, 1, 2, 3, 4, 5\}$.
- **B**. {5, 4, 2, 3, 1, 5}.
- **C**. $\{5, 2, 3, 4, 1, 5\}$.

D. $\{5, 2, 4, 3, 1, 5\}$.

E. Tất cả các đáp án trên đều sai.

Lời giải.

Đáp án đúng là: $\{5, 1, 2, 3, 4, 5\}$

Chọn đáp án (A)

Câu 12. Cho đồ thị có hướng G gồm 5 đỉnh dưới dạng ma trận kề:

0	1	1	0	0
0	0	1	1	1
1	0	0	0	1
0	1	0	0	0
1	1	0	0	0

Sử dụng thuật toán tìm chu trình Euler E của G. Các đỉnh xuất hiện trong E theo thứ tự là:

- **A**. {2, 3, 5, 1, 3, 2, 4, 2, 5, 1, 1}.
- **B**. {1, 2, 3, 1, 3, 5, 2, 4, 2, 5, 1}.
- \mathbf{C} . $\{1, 2, 4, 1, 1, 3, 2, 5, 5, 2, 3\}$.
- **D**. {1, 5, 3, 5, 1, 2, 2, 1, 4, 3, 2}.
- E. Tất cả các đáp án trên đều sai.

Lời giải.

Đáp án đúng: $\{1, 2, 3, 1, 3, 5, 2, 4, 2, 5, 1\}$

Chọn đáp án (B)

Câu 13. Cho đơn đồ thi vô hướng G gồm 5 đỉnh được biểu diễn như sau:

Đỉnh đầu	Đỉnh cuối
1	4
1	5
2	3
2	5
3	4
3	5

Sử dụng thuật toán tìm đường đi Euler E của G bắt đầu tại đỉnh bậc lẻ với số thứ tự nhỏ nhất. Các đỉnh xuất hiện trong E theo thứ tự khi thực hiện thuật toán là:

- **A**. {3, 2, 5, 1, 4, 3, 5}.
- **B**. {2, 4, 3, 5, 1, 3, 5}.
- C. $\{2,3,5,3,4,1,5\}$.

D. {3, 4, 1, 3, 2, 5, 5}.

E. Tất cả các đáp án trên đều sai.

Lời giải.

Đáp án đúng: $\{3, 2, 5, 1, 4, 3, 5\}$

Chọn đáp án (A)

Câu 14. Cho đơn đồ thị T=(V,E) gồm n đỉnh và m cạnh là một cây. Hãy chọn phương án đúng nhất trong các phương án sau:

- A. T là đồ thị liên thông yếu và không chứa chu trình.
- **B**. T là đồ thị vô hướng không chứa chu trình và có m = n-1 cạnh.
- C. T là đồ thị vô hướng không chứa chu trình và tất cả các đinh đều có bậc lẻ.
- **D**. T là đồ thị vô hướng liên thông và tất cả các đinh đều có bậc chẵn.
- E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án (B)

Câu 15. Cho đơn đồ thị vô hướng T gồm 4 đỉnh dưới dạng ma trận kề:

0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0

Chọn phương án đúng trong các phương án dưới đây:

- **A**. T không phải là cây vì có cạnh (1,2) không phải là cạnh cầu.
- **B**. T là cây vì T liên thông.
- C. T không phải là cây vì có hai đỉnh 2 và 4 có bậc lẻ.
- D. T không phải là cây vì có hai đỉnh 1 và 3 có bậc chẵn.
- E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án (A)

Câu 16. Cho đơn đồ thị vô hướng G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
4	2	4	3
2	1	2	5
3	2	1	5

Sử dụng thuật toán BFS tìm cây khung T của G bắt đầu tại đỉnh s=4. Các cạnh của cây khung T theo thứ tự tìm kiếm của BFS là:

- **A**. $T = \{(4,2),(4,3),(2,1),(2,5)\}.$
- **B**. $T = \{(4,2),(2,1),(2,5),(4,3)\}.$
- C. $T = \{(4,2),(2,1),(2,3),(2,5)\}.$
- **D**. $T = \{(4,2),(2,1),(1,5),(2,3)\}.$
- E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án (A)

Câu 17. Cho đơn đồ thi vô hướng có trong số G gồm 4 đỉnh dang ma trân trong số:

0	7	8	2
7	0	-3	2
8	-3	0	1
2	2	1	0

Sử dung thuật toán Prim tìm cây khung nhỏ nhất T của G bắt đầu tai đỉnh s=1. Các cạnh của cây khung nhỏ nhất theo thứ tự tìm kiếm của thuật toán với WT là:

A.
$$T = \{(1,4),(3,2),(3,4)\}$$
 và $WT = 0$.

B.
$$T = \{(1,4),(4,3),(3,2)\}$$
 và $WT = 0$.

C.
$$T = \{(1,4),(3,2),(1,3)\}$$
 và $WT = 7$.

D.
$$T = \{(1,4),(4,3),(2,4)\}$$
 và $WT = 5$.

E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án B

Câu 18. Cho đơn đồ thị vô hướng T gồm 5 đỉnh dưới dạng danh sách kề:

$$\text{Ke}(1) = \{4, 5\} \mid \text{Ke}(2) = \{3\} \mid \text{Ke}(3) = \{2, 4\} \mid \text{Ke}(4) = \{1, 3, 5\} \mid \text{Ke}(5) = \{1, 4\}$$

Chọn phương án đúng trong các phương án dưới đây:

- **A**. T là cây vì có đúng 4 cạnh (1,4), (1,5), (2,3), (4,5).
- B. T không phải là cây vì không chứa đỉnh trụ.
- C. T là cây vì có đúng 2 đỉnh bậc lẻ 2 và 3.
- \mathbf{D} . T không phải là cây vì T có chứa chu trình.
- E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án D

Câu 19. Đoạn giả mã của thuật toán Breadth First Search được mô tả dưới đây.

Begin	7. if (chuaxet[t]) then
(Khởi tạo):	8. $Push(Queue, t)$; $chuaxet[t] := FALSE$;
1. Queue = \emptyset ;	EndIf;
2. Push(Queue, u);	EndIf;
3. chuaxet[u] = True;	EndFor;
(Lặp):	EndWhile;
4. while (Queue $\neq \emptyset$) do	(Trả kết quả):
5. s = Push(Queue);	Return(<tập duyệt="" được="" đỉnh="">);</tập>
6. for each $t \notin Ke(s)$ do	

Cần sửa lại dòng mã nào để thu được giả mã chính xác?

$$\mathbf{C}. \ \ 2, 4, 5.$$

D. 2, 4, 6.

E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án C

Câu 20. Đồ thị vô hướng G = (V, E) gồm 6 đỉnh biểu diễn dưới dạng ma trận kề như bên dưới. Sử dụng thuật toán BFS để tìm kiếm đường đi từ đỉnh 5 đến đỉnh 6?

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- **A**. {5, 3, 1, 4, 6}.
- **B**. {5, 1, 6}.
- \mathbf{C} . $\{5, 1, 4, 3, 6\}$.

D. {5, 2, 3, 6}.

E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án B

Câu 21. Cho đơn đồ thị vô hướng G = (V, E) gồm 6 đỉnh được biểu diễn dưới dạng ma trận kề như dưới. Cạnh nào dưới đây là cạnh cầu?

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- **A**. Cạnh (5,6).
- **B**. Cạnh (2,6).
- **C**. Cạnh (1, 2).

D. Cạnh (1,6).

E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án D

Câu 22. Cho đơn đồ thị G = (V, E) gồm 7 đỉnh được biểu diễn dưới dạng danh sách kề như dưới

$Ke(1) = \{3, 4, 5, 6\}$
$Ke(2) = \{1, 3, 6\}$
$Ke(3) = \{\}$
$Ke(4) = \{1, 2, 6\}$
$Ke(5) = \{4, 6\}$
$Ke(6) = \{1, 2, 3, 4, 5, 7\}$
$Ke(7) = \{1, 2, 6\}$

Đồ thị có thể chia làm mấy thành phần liên thông mạnh?

A. 2.

B. 6.

C. 4.

D. 3.

E. Các phương án khác đều sai.

Lời giải.

Chọn đáp án (A)

Câu 23. Xét một cách mô tả thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh s đến các đỉnh còn lại của đơn đồ thị có trọng số G biểu diễn dưới dạng ma trận trọng số a[||]:

(1) Khởi tạo:

$$(1.1)$$
 for $v \in G$ do {

(1.2)
$$d[v] = a[s][v]; e[s] = v; vs[v] = 0;$$

- (2) Bắt đầu tìm kiếm từ s: d[s] = 0; e[s] = 0; vs[s] = 1;
- (3) Tìm đỉnh u sao cho $d[u] = \min\{d[v] \mid vs[v] = 0\}$:
 - (3.1) Nếu không tìm được u thì chuyển bước (7);
 - (3.2) Nếu tìm được u thì chuyển bước (4).
- (4) Cập nhật vs[u] = 1;
- (5) for $v \in G$ do

(5.1) if
$$(vs[v] = 0)\&(d[v] > d[u] + a[u][v])$$
 {

(5.2)
$$e[v] = u; \quad d[v] = d[u] + a[u][v];$$

- (6) Quay lại (3);
- (7) Đưa ra d[v] và đường đi từ s đến v với mọi $v \in G$, $v \neq s$.

Chọn phương án đúng trong các phương án dưới đây:

- \mathbf{A} . Bước (3.1) bị sai.
- **B**. Bước (7) bị sai.
- **C**. Bước (1.2) bị sai.

D. Bước (6) bi sai.

E. Các đáp án đều sai.

Lời giải.

Chọn đáp án C

Câu 24. Cần bổ sung nội dung thực hiện của bước (5) trong mô tả thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh s đến các đỉnh còn lại của đơn đồ thị có trọng số G biểu diễn dưới dạng ma trận trọng số a[][] với các trọng số không âm:

(1) Khởi tạo:

$$(1.1)$$
 for $v \in G$ do {

(1.2)
$$d[v] = a[s][v]; e[v] = s; vs[v] = 0;$$

- (2) Bắt đầu tìm kiếm từ s: d[s] = 0; e[s] = 0; vs[s] = 1;
- (3) Tìm đỉnh u sao cho $d[u] = \min\{d[v] \mid vs[v] = 0\}$:
 - (3.1) Nếu không tìm được u thì chuyển bước (7);
 - (3.2) Nếu tìm được u thì chuyển bước (4).
- (4) Cập nhật vs[u] = 1;
- (5) for $v \in G$ do
 - _
- (6) Quay lại (3);
- (7) Đưa ra d[v] và đường đi từ s đến v với mọi $v \in G$, $v \neq s$.

Chọn phương án đúng trong các phương án dưới đây:

A. if
$$(vs[v] = 0)\&(d[v] > d[u] - a[u][v])$$
 { $e[v] = u; d[v] = d[u] + a[u][v];$ }.

B. if
$$(vs[v] = 0)&(d[v] > d[u] + a[u][v])$$
 { $e[v] = u; d[v] = d[u] + a[u][v];$ }.

C. if
$$(vs[v] = 0)&(d[u] > d[v] + a[u][v])$$
 { $e[v] = u; d[u] = d[v] + a[u][v];$ }.

D. if
$$(vs[v] = 0)&(d[v] < d[u] + a[u][v])$$
 { $e[v] = u; d[v] = d[u] + a[u][v];$ }.

E. Các đáp án đều sai.

Lời giải.

Chọn đáp án (B)

Câu 25. Cho đơn đồ thị có hướng có trọng số G gồm 4 đỉnh dạng ma trận trọng số:

0	3	6	2
5	0	3	0
0	∞	0	5
∞	5	4	0

Sử dụng thuật toán bellman-ford tìm đường đi ngắn nhất từ đỉnh s=4 đến các đỉnh còn lại của G. Chọn phương án đúng trong các phương án dưới đây:

A. Đường đi ngắn nhất từ đỉnh 4 đến đỉnh 1 là : $4 \rightarrow 3 \rightarrow 1$ với độ dài d[1] = 10.

- **B**. Đường đi ngắn nhất từ đỉnh 4 đến đỉnh 1 là: $4 \rightarrow 3 \rightarrow 1$ với độ dài d[1] = 4.
- C. Đường đi ngắn nhất từ đỉnh 4 đến đỉnh 1 là : $4 \to 3 \to 2 \to 1$ với độ dài d[1] = 13.
- **D**. Đường đi ngắn nhất từ đỉnh 4 đến đỉnh 2 là : $4 \to 3 \to 1 \to 2$ với độ dài d[2] = 4.
- E. Các đáp án đều sai.

Lời giải.

Chọn đáp án B

Câu 26. Cho đơn đồ thị có trọng số G gồm 4 đỉnh với các trọng số không âm. Kí hiệu d[i][j] là độ dài đường đi ngắn nhất từ i đến j và e[i][j] là đỉnh trước j trên đường đi ngắn nhất từ i đến j. Sử dụng thuật toán Floyd tìm đường đi ngắn nhất giữa các cặp đỉnh của G nhân được kết quả sau:

$$d[1][2] = 8$$
 $d[1][4] = 11$ $d[3][2] = 2$ $d[2][3] = 1$ $e[1][2] = 1$ $e[1][2] = 2$ $e[1][2] = 1$ $e[1][2] = 2$

Chọn phương án đúng trong các phương án dưới đây:

- **A**. Đường đi ngắn nhất từ đỉnh 3 đến đỉnh 4 là : $3 \rightarrow 2 \rightarrow 1 \rightarrow 4$ với độ dài d[3][4] = 11.
- **B**. Đường đi ngắn nhất từ đỉnh 3 đến đỉnh 4 là: $3 \to 4$ với độ dài d[3][4] = 3.
- C. Đường đi ngắn nhất từ đỉnh 3 đến đỉnh 4 là : $3 \rightarrow 2 \rightarrow 4$ với độ dài d[3][4] = 4.
- **D**. Đường đi ngắn nhất từ đỉnh 3 đến đỉnh 4 là : $3 \rightarrow 4$ với độ dài d[3][4] = 11.
- E. Các đáp án đều sai.

Lời giải.

Chọn đáp án (B)

Câu 27. Cho mạng G gồm 7 đỉnh dưới dạng ma trận trọng số:

0	8	9	0	0	0
0	0	0	6	8	0
0	0	0	13	5	0
0	0	0	0	0	11
0	0	0	0	0	13
0	0	0	0	0	0

Chon phương án đúng trong các phương án dưới đây:

- **A**. Luồng f trên G với f(1,2) = 13, f(1,3) = 13, f(2,5) = 13, f(3,4) = 13, f(4,6) = 13, f(5,6) = 13.
- **B**. Luồng f trên G với f(1,2) = 8, f(1,3) = 9, f(2,5) = 8, f(3,4) = 13, f(4,6) = 11, f(5,6) = 13.
- C. Luồng f trên G với f(1,2) = 5, f(1,3) = 13, f(2,5) = 8, f(3,4) = 13, f(4,6) = 11, f(5,6) = 13.
- **D**. Luồng f trên G với f(1,2) = 5, f(1,3) = 5, f(2,5) = 5, f(3,4) = 5, f(4,6) = 5, f(5,6) = 5.

Số điện thoai 0985059646

E. Tất cả phương án đều sai.

Lời giải.

Đáp án đúng: D. Luồng f
 trên G với f(1,2)=5, f(1,3)=5, f(2,5)=5, f(3,4)=5, f(4,6)=5, f(5,6)=5

Chọn đáp án \bigcirc

Câu 28. Cho mạng G=(V,E) và luồng f
 trên G. Cung thuận trong đồ thị tăng luồng $G_t=(V,E_r)$ là cung:

- **A**. (v, u) thuộc G_f nếu c(u, v) = 0.
- **B**. (u, v) là cung thuận nếu f(u, v) > 0.
- C. (u, v) nằm trên đường đi từ s đến t trong G hoặc G_f .
- **D**. (u, v) đồng thời là cung của G và G_f .
- E. Các phương án khác đều sai.

Lời giải.

Đáp án đúng: D. (u, v) đồng thời là cung của G và G_f

Chọn đáp án D

Câu 29. Cho mạng G = (V,E) và luồng f trên G. Giá trị tăng luồng d là:

- \mathbf{A} . Số lượng cạnh trên đường đi từ s đến t trong G_f .
- B. Trọng số trung bình của các cung trên đường đi từ s đến t trong G_f .
- ${\bf C}.$ Giá trị lớn nhất trong các trọng số của các cung thuộc đường đi từ s
 đến t trên ${\bf G_f}.$
- **D**. Giá trị nhỏ nhất trong các trọng số của các cung thuộc đường đi từ s
 đến t trên $G_{\rm f}$.
- E. Các phương án khác đều sai.

Lời giải.

Đáp án đúng: D. Giá trị nhỏ nhất trong các trọng số của các cung thuộc đường đi từ s
 đến t $trên\ G_f$

Chon đáp án (D)

Câu 30. Cho đơn đồ thị có hướng có trọng số G gồm 5 đỉnh và 6 cạnh dưới dạng danh sách cạnh với trọng số:

0	0	0	4	0
0	0	0	3	7
0	0	0	7	10
0	0	0	0	7
0	0	0	0	0

Chọn phương án đúng trong các phương án dưới đây:

- **A**. Lát cắt (X,X^*) với $X = \{1,5\}$ có khả năng thông qua là $C(X,X^*) = 10$.
- **B**. Lát cắt (X,X^*) với $X = \{4,5\}$ có khả năng thông qua là $C(X,X^*) = 9$.
- C. Lát cắt (X,X^*) với $X = \{1,2\}$ có khả năng thông qua là $C(X,X^*) = 8$.
- **D**. Lát cắt (X,X^*) với $X = \{3,5\}$ có khả năng thông qua là $C(X,X^*) = 7$.
- E. Tất cả phương án đều sai.

Lời giải.

Đáp án đúng: D. Lát cắt (X,X^*) với $X=\{3,5\}$ có khả năng thông qua là $C(X,X^*)=7$ Chọn đáp án \bigcirc