Optimization algorithms

Quiz, 10 questions

10/10 points (100%)

Con	gratulations! You passed!	ext It
~	1/1 points	
	th notation would you use to denote the 3rd layer's activations when the the 5th example from the 8th minibatch?	e
0	$a^{[3]\{8\}(7)}$	
Co	rrect	
	$a^{[8]\{3\}(7)}$	
	$a^{[3]\{7\}(8)}$	
	$a^{[8]\{7\}(3)}$	
~	1 / 1 points	
2. Whic	th of these statements about mini-batch gradient descent do you agree	2
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	9
Co	rrect	

You should implement mini-batch gradient descent without an

explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time

(vectorization).

Optimization algorithms one epoch (one pass through the training set) using mini-Quiz, 10 questions algorithms batch gradient descent is faster than training one epoch using batch 10/10 points (100%) gradient descent.

~	1/1 points			
3. Why is n-betv	the best mini-batch size usually not 1 and not m, but instead something veen?			
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.			
Corre	ect			
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.			
Un-selected is correct				
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.			
Un-selected is correct				
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.			
Correct				
1 .	1 / 1 points			
••				

Suppose your learning algorithm's cost J, plotted as a function of the number $Optimization_{ealgor,ithms}$ this:

Quiz, 10 questions

10/10 points (100%)

Which of the following do you agree with?

	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.				
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.				
O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.				
Correct					
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.				

points

5.

Suppose the temperature in Casablanca over the first three days of January are

Optimization algorithms

Quiz, 10 questions

10/10 points (100%)

Jan 1st:
$$\theta_1 = 10^{\circ} C$$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

$$igcup v_2=10$$
, $v_2^{corrected}=10$

$$igcup v_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\bigcap \quad \alpha = e^t \alpha_0$$

Correct

$$\bigcap \quad \alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$\bigcirc \quad \alpha = \frac{1}{1+2*t} \alpha_0$$

$$lpha = 0.95^t lpha_0$$

Optimization algorithms Quiz, 10 questions

10/10 points (100%)

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

igcap Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line. Optimization algorithms

Quiz, 10 questions

Un-selected is correct

10/10 points (100%)

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

0

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

points

9.

Suppose batch gradient descent in a deep network is taking excessively long to $\begin{array}{c} \text{Optimization algorithms} \\ \text{and positions} \end{array}$ and the parameters that achieves a small value for the cost function points (100%) $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]}). \end{array}$ Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Corre	Try mini-batch gradient descent				
Corre					
	Try using Adam				
Correct					
Corre	Try tuning the learning rate $lpha$				
COITE					
	Try initializing all the weights to zero				
Un-se	elected is correct				
	Try better random initialization for the weights				
Corre	ect				
~	1 / 1 points				
10.					
Which	of the following statements about Adam is False?				
	Adam combines the advantages of RMSProp and momentum				
0	Adam should be used with batch gradient computations, not with mini-batches.				
Correct					

Optimization a	The learning rate hyperparameter $lpha$ in Adam usually needs to be algorithms	10/10 points
	We usually use "default" values for the hyperparameters eta_1,eta_2 and in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)	d $arepsilon$

(100%)