Principal component analysis

Expression heatmap

Quick intro to RNA-Seq Princess Rodriguez, PhD

MMG232 Spring 2023

Typical RNA-Seq Vignette

 Your lab has introduced a mutation in cells that now causes the cells to behave differently than the normal cells

Typical RNA-Seq Vignette

 Or your lab noticed that the addition of Drug 717 caused the disease cells to grow more slowly while the addition of Drug 917 had no effect

Typical RNA-Seq Vignette

For either case: you, your PI, and committee decide that an aim for your project should be to perform RNA-Seq to uncover a potential mechanism

What is RNA-Seq?

Technique used to explore and/or quantify gene expression within or between conditions of an organism

Normal Cells

Each cell has a bunch of chromosomes

Mutated Cells

So, we can use RNA-Seq to measure gene expression in normal cells ...

... then use it to measure gene expression in mutated cells

Differences apparent for Gene 2 and to a lesser extent Gene 3

Common uses of RNA-Seq

- Expression variation in response to environmental stimuli
- Which genes are expressed in which tissues & how much?
- Discovery/annotation of genes & transcripts
- Gene regulatory networks (co-regulated genes)
- Medical diagnostic

Transcriptomics has led to the identification of new subtypes in ALL

There are 3 Basic Steps in performing RNA-Seq yourself

- 1) Prepare a sequencing library
- 2)Sequence
- 3) Data analysis

RNA-Seq experimental workflow

RNA-Seq processing

What is a FASTQ?

@NS500177:196:HFTTTAFXX:1:11101:10916:1458 2:N:0:CGCGGCTG

ACACGACGATGAGGTGACAGTCACGGAGGATAAGATCAATGCCCTCATTAAAGCAGCCGGTGTAA

×

4

Each sequencing "read" consists of 4 lines of data:

- 1 The first line (which always starts with '@') is a unique ID for the sequence that follows
- 2 The second line contains the bases called for the sequenced fragment
- 3 The third line is always a "+" character

+

4 The fourth line contains the quality scores for each base in the sequenced fragment