Thermal Signature of a Resistor

And Problems Encountered Along the Way

Jack Shue, Jay Brusse, Lyudmyla Panashchenko

FLIR SC8300HD High Resolution Infrared Camera + 4X Lens

Surprise!!

With This Particular Camera/Lens Configuration
We Could See THROUGH THESE SPECIFIC External Coatings and
Image the Resistor Pattern Even When Device is NOT POWERED

Resistor

Bonding

Adhesive

Alumina Substrate

This is what we could "See Through" Cross Section of Resistor

An EDS map of a cross-sectioned resistive element resting on a carbon-sulphur compound on the alumina substrate of the device. The resistive element is coated with a hydrocarbon layer. The protective cover consists of aluminum and titanium oxide particles embedded in a polymer matrix.

IR Camera Investigations of Foil Resistors

Infrared Image of a 2kOhm Size 1206 Foil Resistor Receiving Power

Why We Worry about a Resistor.

- Spacecraft are expensive to build and are usually one of a kind
- We want our spacecraft to last a long time
- Sometimes...Parts fail!!!
- Fixing a spacecraft once in orbit is almost always NOT POSSIBLE!
- Because of the above, ideally, we strive to employ effective screening tests to reduce inflight failure rates by finding weak parts BEFORE they are used.

Why We Worry about a Resistor.

 Experience tells us that the resistor in question has some known failure modes DESPITE the use of several different screening tests. These screening tests are LEAKY and may allow a few weak parts through!!!

Can we find a better screening process to find weak parts?

Goal of this Paper

While working on a new screening process for precision foil resistors, there were issues between the IR camera and the test article that all came together in textbook fashion. This paper talks about some of those issues.

In this paper

- What is a foil resistor?
- Unavoidable problems
- Why Thermal Imaging
- The need for a microscope and the problems it represents
- Problems encountered
 - Size and wavelength limitations
 - Moiré patterns
 - Pixel size limitations
 - Emissivity and reflections

There is nothing new or unusual about these problems but they come together when working on the resistor.

What is Resistance

The electrical resistance of an electrical conductor is the opposition to the passage of an electric current through that conductor.

$$R_{\Omega} = \rho_{\Omega m} - \frac{L_{m}}{A_{m}^{2}}$$

Where

R = resistance (ohms)

 ρ = resistivity of the material (ohms \cdot meters)

L = length of the material (meters)

A = cross sectional area of the material (meters²)

```
A
```

```
for Copper = 0.000,000,016,78 \Omega m = 16.78e-9 \Omega m
for Silver = 0.000,000,015,87 \Omega m = 15.87e-9 \Omega m
```

How to Build a $2000~\Omega$ Resistor

Starting with a block of Silver that is 1 meter wide by 1 meter thick (i.e., 1 m² Cross Sectional Area), How LONG would the block have to be to make a 2000Ω Resistor?

<u>Improvements in the Size – Part I</u>

Choose a Different Material with a different RESISTIVITY!!!

Nichrome (Nickel Chromium Alloy) alloys are commonly used to make resistors.

A factor of approximately 100 better!

But that is still 4.3 times the distance from the earth to the moon!

Improvements in the Size - Part II

Reduce the Cross Sectional AREA of the Conductor and it will NOT have to be So Long!!!

$$R_{\Omega} = \rho_{\Omega m} \cdot \frac{L_{m}}{A_{m}^{2}}$$

For this Resistor Technology the Nichrome can be reduced in width and thickness from 1 meter² down to ~0.000002 meter x 0.000002 meter, which means the length needed for 2000 ohms becomes ~ 1 cm long.

This is a reduction in area of **12 orders of magnitude**!

Now THAT'S Much More Practical!

Resistor to Scale

Resistor Part of Interest

Scanning Electron Microscope (SEM) Image of Resistor Without Blue Coat

What Happens to Thin Metals

Household Aluminum Foil 0.000,016 meters thick

A foil 0.000,001 meters thick

http://b2bimg.bridgat.com/files/Porous_aluminum_An_Alternative_to_Sintered_Metals.jpg

Metallurgists describe this as a metal becoming **porous**

Nichrome Foil Resistor with a "RAT BITE" (May Be Caused by Working with a "Porous" Foil)

What do "Defects" do to Resistance?

No Effect Defect Resistor Trace

Open Circuit No Resistor

? See next slide

Change in Resistance

A rat bite at one location where 90% of a trace is missing before it can be

electrically detected (Maybe*).

* In the case of a "Trimmed Part" the change in resistance is accounted for and the change becomes part of the final value.

A "Rat Bite" Has a Higher Resistance Due to the Smaller Cross Sectional Area

Example:

For a given Length (L) segment of resistor a 90% reduction in the Cross Sectional Area, Produces a 10x INCREASE in the resistance of the normal segment

The Same Electrical Current (I) in Amperes Flows Through ALL Segments of this Resistor

But the POWER Dissipated in the "RAT BITE" is Higher Because its Resistance is Larger

$$P = I^2 * R$$

"Rat Bites" Get Hot Because

they
Dissipate MORE Power than Other Parts
of the Resistor

How hot does it get, how fast does it get hot and could it induce a failure?

Original Test Setup

First Test Run

Items of Interest

Accomplishments of First Run

- Overall we could see the resistor was getting hot.
- Temperature rise at one spot was MAYBE
 2C had expected a 60C rise.
- Expected to see 2 hot spots and saw maybe only 1.
- Saw "diagonal" stripes that were unexpected.

Disappointed, but What Went Right?

Disappointed, but What Went Right?

- Overall we could see the resistor was getting hot.
- With a quick calculation the expected temperature of the one pixel was about right.
 - This is hand waving at its finest
- Expected to see 2 hot spots and saw maybe only 1.
 - To be expected as the second hot spot was physically even smaller than the one we saw
- Saw diagonal stripes that were unexpected.
 - More on this later

A Conclusion

New Test Setup

First Light

Was

Items of Interest from First Light

Moiré Pattern (11° Angle Fine Line)

Camera Pixel Pattern

Moiré Pattern (Parallel Fine Line)

Camera Pixel Pattern

Resistor Trace Pattern

Narcissus Effect on Emissivity Measurement

Room Temp with One Emissivity

21.4	19.3	14.5	10.8	10.2	14.0	19.0	21.3	21.5	20.1 15.8
21.4	19.7	15.6	11.2	10.0	13.0	18.4	21.1	21.5	Actual
21.4	20.1	16.3	11.7	10.0	12.4	17.7	20.9	21.6	Temp's
21.5	20.4	16.9	12.2	10.2	11.7	16.9	20.6	21.6	23C
21.5	20.7	17.6	12.8	10.4	11.3	16.1	20.1	21.5	Z1.1 10.0
21.5	20.9	18.1	13.5	10.4	11.0	15.3	19.7	21.5	21.3 19.1
21.5	21.1	18.8	14.2	11.0	10.6	14.6	19.3	21.2	21.4 19.5
21.3	21.2	19.2	15.0	11.3	10.5	13.7	18.7	21.1	21.4 19.9 10.5C
21.2	21.3	19.7	15.7	11.	10.6	13.1	18.1	20.9	21.5 20.4
21.0	21.4	20.0	16.4	12.3	10.5	12.7	17.5	20.7	21.5 20.6
20.8	21.4	20.4	17.1	12.8	10.7	12.2	16.9	20.5	21.5 20.8
20.5	21.4	20.6	17.7	13.3	10.9	11.8	16.2	20.2	21.5 21.1
20.1	21.3	20.9	18.4	13.9	11.2	11.4	15.4	19.8	21.3 21.3
19.8	21.2	21.1	19.0	14.8	11.5	11.2	14.9	19.5	21.3 21.4
19.1	21.2	21.3	19.5	15.5	12.1	11.6	14.8	19.3	21.2 21.4
18.7	21.0	21.3	20.0	16.6	13.4	13.0	15.5	19.5	21.4 21.5
18.2	20.8	21.4	20.6	18.4	16.7	16.3	17.6	20.2	21.7 21.7C
17.4	20.4	21.5	21.4	20.8	20.3	20.0	20.2	21.2	22.0 21.9
16.8	20.3	21.6	22.0	22.0	22.0	21.8	21.8	22.0	22.2 21.9

Emissivity Map

Rat Bite at One Emissivity

Hot Spot Adjusted Emissivity

Rat Bite at One Emissivity

Hot Spot Adjusted Emissivity

Cold Spot 86C Hot Spot 125C Average 94C

Reference Line

Lesson Learned

Because of the very small size of the part the trace internal to the resistor heats up quickly and cools off quickly.

Thermal cycling is quick, and testing with many cycles is beneficial

44

Pulse Test

Resolution (r)

$$\mathbf{r} = \frac{1.22\lambda}{2n \sin \theta}$$

Wavelength vs Angle

Newtonian Physics

Looks at the analysis between Time and Space of a periodic function

Use of Fourier Transform as a

Resolution of Periodic Signal (Lines)

Fourier Transform of 12µm

Fourier Remove of Frequencies

Fourier Remove of Frequencies

Simulation of Resolution of different Wavelengths

Defects do cause hot spots

There are test setup issues with using a

Thermal Microscope.

- Moiré Patterns

- Defects do cause hot spots
- There are test setup issues with using a Thermal Microscope.
 - Moiré Patterns
 - Narcissus effects

Defects do cause hot spots

There are test setup issues with using a

Thermal Microscope.

- Moiré Patterns
- Narcissus effects
- Emissivity

- Defects do cause hot spots
- There are test setup issues with using a Thermal Microscope.
 - Moiré Patterns
 - Narcissus effects
 - Emissivity
 - Limits on Resolution in the IR

