Statistics 2

Multiple regression: Interaction effects

Casper Albers & Jorge Tendeiro Lecture 5, 2019 – 2020

Overview

Statistical interaction

Definition

Interpreting regression coefficients

Simple regression equations. Simple slopes

Post hoc probing of interactions

Comparing regression models

Literature for this lecture

Read:

Agresti, Section 11.4 - 11.5

- ▶ There is interaction between x_1 and x_2 if the effect of x_1 on y changes according to the level of x_2 .
- ▶ In other words: x_2 moderates the effect of x_1 on y.

Example:

- $\mathbf{y} = \text{annual income}$
- $ightharpoonup x_1 = number of years of education$
- $ightharpoonup x_2 = ext{years of working experience}$

It has been verified that the effect of education (x_1) on income (y) varies with the years of working experience (x_2) : The annual income as a function of education increases with years of working experience.

Thus, education (x_1) and years of working experience (x_2) interact.

 x_1, x_2 : Predictors.

y: Response variable.

With no interaction

The combined impact of x_1 and x_2 on y equals the sum of their separated effects (usual multiple regression):

$$E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2.$$

With interaction

The combined impact of x_1 and x_2 on y is larger/smaller than the sum of their separated effects:

$$E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 \underbrace{x_1 x_2}_{x_2}, \quad \text{for } \beta_3 \neq 0.$$

The new predictor $x_3 = x_1x_2$ is called the cross-product of x_1 and x_2 .

So, what changes?

$$E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2$$

- \triangleright β_1 , the regression of y on x_1 , is constant over all values of x_2 .
- \triangleright β_2 , the regression of y on x_2 , is constant over all values of x_1 .

Example: $\hat{y} = 2 + .2x_1 + .6x_2$

- $\beta_1 = .2$: Amount by which \hat{y} changes when x_1 increases 1 unit and x_2 is kept fixed.
- $\beta_2 = .6$: Amount by which \hat{y} changes when x_2 increases 1 unit and x_1 is kept fixed.

With no interactions...

" β_1 is constant over all values of x_2 "

All blue lines are parallel, i.e, have the same slope β_1 :

$$\hat{y} = .2x_1 + (.6x_2 + 2).$$

 β_2 is constant over all values of x_1 "

All purple lines are parallel, i.e, have the same slope β_2 :

$$\hat{y} = .6x_2 + (.2x_1 + 2).$$

Statistics 2 (2019-20) Lecture 5 6/28

$$E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$
 for $\beta_3 \neq 0$

- ▶ The regression of y on x_1 is conditional on, or moderated by, the value of x_2 .
- ▶ The regression of y on x_2 is conditional on, or moderated by, the value of x_1 .

Example: $\hat{y} = 2 + .2x_1 + .6x_2 + .4x_1x_2$

- ho $\beta_1 = .2$: Amount by which \hat{y} changes when x_1 increases 1 unit and $x_2 = 0$.
- $\beta_2 = .6$: Amount by which \hat{y} changes when x_2 increases 1 unit and $x_1 = 0$.
- \triangleright $\beta_3 = .4$: Tougher!...

Statistics 2 (2019-20) Lecture 5 7/28

With interactions...

"The regression of y on x_1 is conditional on the value of x_2 "

The blue lines are not parallel, i.e, their slope varies with x_2 :

$$\hat{y} = (.2+.4x_2)x_1 + .6x_2 + 2.$$

The regression of y on x_2 is conditional on the value of x_1 .

The purple lines are not parallel, i.e, their slope varies with x_1 :

$$\hat{y} = (.6 + .4x_1)x_2 + .2x_1 + 2.$$

Interpreting regression coefficients

Therefore:

Interpretation of the regression coefficients changes when interactions are added to the model.

Once more, for $\hat{y} = a + b_1x_1 + b_2x_2 + b_3x_1x_2$:

- b_1 is amount by which y changes when x_1 increases 1 unit and $x_2 = 0$.
- b_2 is amount by which y changes when x_2 increases 1 unit and $x_1 = 0$.

Problems

- 1. How to interpret b_1, b_2 when x_1 and/or x_2 have no meaningful zero?
- 2. How to interpret b_3 ?

Interpreting b_1, b_2

Q: How to interpret b_1 , b_2 when x_1 and/or x_2 have no meaningful zero? A: Use centered predictors: Replace x_1 , x_2 , x_1x_2 by x_1^c , x_2^c , x_1^c , x_2^c , where

$$x_1^c = (x_1 - \overline{x}_1) \text{ and } x_2^c = (x_2 - \overline{x}_2).$$

So, for
$$\hat{Y} = a + b_1 x_1^c + b_2 x_2^c + b_3 x_1^c x_2^c$$
:

- **b**₁ is amount by which y changes when x_1 (or x_1^c) increases 1 unit **and** $x_2 = \overline{x}_2$.
- **b**₂ is amount by which y changes when x_2 (or x_2^c) increases 1 unit **and** $x_1 = \overline{x}_1$.

Note: Interpretation of b_1 , b_2 remains conditional on a specific value of the other predictor, but now such a value exists always (namely \overline{x}_2 , \overline{x}_1 resp.).

Centering – example

<i>X</i> ₁	<i>X</i> ₂	x_1x_2
12	6	72
16	10	160
17	9	153
20	6	120
24	11	264
19	6	114
$\overline{x}_1 = 18$	$\overline{x}_2 = 8$	

x_2^c	$x_1^c x_2^c$
$=(x_2-\overline{x}_2)$	
-2	12
2	-4
1	-1
-2	-4
3	18
-2	-2

How do the values of b_1 , b_2 change before/after centering x_1 , x_2 ?

When no interaction is present: b₁, b₂ remain the same. (Revisit the 3D plot – parallel lines)

$$\widehat{y}=a+b_1x_1+b_2x_2$$

$$\widehat{y} = \widetilde{a} + b_1 x_1^c + b_2 x_2^c$$

(the intercept does change, though)

► When interaction is present: b₁, b₂ change. (Revisit the 3D plot – nonparallel lines)

Interpreting b₃

Q: How to interpret b_3 , the regression coefficient of $x_1x_2/x_1^cx_2^c$?

A: b_3 reflects the part of $x_1x_2/x_1^cx_2^c$ from which x_1 and x_2 have been controlled (i.e., partialled out).

To see this, notice how you can *conceptually* estimate b_3 :

- Partial x_1, x_2 from x_1x_2 : $x_1x_2 = u + u_1x_1 + u_2x_2 + res$.
- Regress y on res: $\hat{y} = v + b_3 \text{res}$.

Example:
$$\hat{y} = 2 + .2x_1 + .6x_2 + .4x_1x_2 \rightarrow y$$
 increases $b_3 = .4$ units when the part of x_1x_2 that is independent of x_1 and x_2 increases 1 unit.

Note: This interpretation of b_3 :

- **Proof** Requires that x_1 and x_2 are both entered as predictors.
- Is insensitive to using centered predictors (unlike b_1 , b_2 , see previous slide), so $b_{3,x_1x_2} = b_{3,x_1^cx_2^c}$.

Simple regression equations. Simple slopes

Consider the following regression model with centered predictors (we dropped the 'C' superscript for convenience):

$$\left(\widehat{y} = 2.2x_1 + 2.6x_2 + .4x_1x_2 + 16.\right)$$

The regression of y on x_1 when $x_2 = x_2^*$ is

$$\widehat{y} = (2.2 + .4x_2^*)x_1 + 2.6x_2^* + 16.$$
 (1)

The regression of y on x_2 when $x_1 = x_1^*$ is

$$\hat{y} = (2.6 + .4x_1^*)x_2 + 2.2x_1^* + 16.$$
 (2)

- ▶ (1) and (2): Simple regression equations.
- \triangleright (2.2 + .4 x_2^*) and (2.6 + .4 x_1^*): Simple slopes.

- You can plot simple regression lines to assess interactions graphically.
- Do so for several values of the moderator (i.e, the conditioning predictor x_1^*/x_2^*) (often $\{-1sd, 0, 1sd\}$).
- ▶ Plot only in the meaningful range of the predictors.

Example:
$$\hat{y} = (2.6 + .4x_1^*)x_2 + 2.2x_1^* + 16$$
, for $x_1^* = -3, 0, 3$.

x_1^*	simple regression equation
-3	$\widehat{y}=1.4x_2+9.4$
0	$\widehat{y}=2.6x_2+16$
3	$\widehat{y}=3.8x_2+22.6$

Simple regression equations. Simple slopes

Two types of plots of simple regression equations:

- Lines in plot are not parallel.
 - \rightarrow Simple slopes change for different values of the moderator.
 - → Interaction.
- Lines in plot are parallel.
 - ightarrow Simple slopes are constant for different values of the moderator.
 - \rightarrow No interaction.

Centering does not change the values of simple slopes for corresponding values of the conditioning predictor.

Post hoc probing of interactions

- ► Goal: Create Cls/significance tests for simple slopes.
- ▶ Use *t*-tests with df = n p 1 (p = number of predictors).
- > SE's are given (by software): No need to compute them manually.

Regression of y on
$$x_1$$
 at $x_2 = x_2^*$

$$\widehat{y} = \underbrace{(b_1 + b_3 x_2^*)}_{b \text{ at } x_2^*} x_1 + b_2 x_2^* + a$$

$$t = \frac{b_1 + b_3 x_2^*}{SE_b \text{ at } x_2^*} \sim t(n - p - 1) df$$

Regression of
$$y$$
 on x_2 at $x_1 = x_1^*$

$$\widehat{y} = \underbrace{\left(b_2 + b_3 x_1^*\right)}_{b \text{ at } x_1^*} x_2 + b_1 x_1^* + a$$

$$t = \underbrace{\frac{b_2 + b_3 x_1^*}{SE_b \text{ at } x_1^*}}_{c} \sim t(n - p - 1)df$$

Example: Physical endurance

Example from the textboob by Cohen, Cohen, West, and Aiken (2003)¹.

- y = ENDUR = physical endurance (in nr. of minutes jogging)
- $ightharpoonup x_1 = AGE = age (in years)$
- $x_2 = EXER = exercise$ (in nr. of years of vigorous physical exercise)

Sample size: n = 245.

Fit the regression model with interaction for centered x_1^c, x_2^c :

- 1. Compute x_1^c , x_2^c (i.e., center the predictors). (*Note*: $\overline{AGE} = 49.18$, $\overline{EXER} = 10.67$.)
- 2. Compute $x_1^c x_2^c$ (i.e., multiply x_1^c and x_2^c).
- 3. Estimate the model:

$$\widehat{\mathsf{ENDUR}} = \mathsf{a} + \mathsf{b}_1 \, \mathsf{AGE^c} + \mathsf{b}_2 \, \mathsf{EXER^c} + \mathsf{b}_3 \, \mathsf{AGE^c} imes \mathsf{EXER^c}$$

¹Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). *Applied Multiple Regression/*Correlation Analysis for the Behavioral Sciences (3rd ed.). Mahwah: N.J.

Model Summary

Model	R	R^2	Adjusted R ²	RMSE
1	0.454	0.206	0.196	9.700

20.6% of the variance of 'ENDUR' is accounted for by all predictors jointly.

ANOVA

Model		Sum of Squares	df	Mean Square	F	р
1	Regression	5887	3	1962.41	20.86	< .001
	Residual	22674	241	94.08		
	Total	28561	244			

 $\mathcal{H}_0: R^2=0,$

or equivalently,

 $\mathcal{H}_0: \beta_{\mathsf{AGE}} = \beta_{\mathsf{EXER}} = 0$,

is rejected at $\alpha = 5\%$ (F(3, 241) = 20.86, p < .001).

Coe		

						95%	6 CI
	Unstandardized	Standard Error	Standardized	t	р	Lower	Upper
(Intercept)	25.889	0.647		40.037	< .001	24.615	27.162
AGE	-0.262	0.064	-0.244	-4.085	< .001	-0.388	-0.135
EXER	0.973	0.137	0.429	7.124	< .001	0.704	1.242
AGE_EXER	0.047	0.014	0.201	3.476	< .001	0.020	0.074

Estimated regression model

$$\widehat{\mathsf{ENDUR}} = 25.889 - 0.262\,\mathsf{AGE}^c + 0.973\,\mathsf{EXER}^c + 0.047\,\mathsf{AGE}^c \times \mathsf{EXER}^c$$

Interpretation

- ▶ $b_{AGE} = -0.262$: Endurance decreases .262 minutes per increase of 1 year of age, at the mean of 'EXER' (10.67 years of exercise).
- ▶ b_{EXER} = 0.973: Endurance increases .973 minutes per increase of 1 year of age, at the mean of 'AGE' (49.18 years).

Simple regression equation (SRE) of ENDUR on AGE, for fixed EXER:

$$\widehat{\mathsf{ENDUR}} = (-.262 + .047\mathsf{EXER}^{C*})\mathsf{AGE} + .973\mathsf{EXER}^{C*} + 25.889$$

▶ SRE of ENDUR on AGE, for EXER^{C*} = -1sd, 0, 1sd ($sd_{EXER} = 4.78$):

Endurance decreases less and less with age as exercise increases.

Comparing regression models

Multiple regression is particularly complex when p is large.

- Partial regression effects can vary a lot according to what other predictors are in the model.
- Previously useful predictors can be redundant once more predictors are added to the model.
- Interaction effects complicate things further.

We can compare pairs of nested regression models, such that one model is a special case of the other.

- ► Complete model: More general model.
- Reduced model: Special case of the complete model.

Example 1

- Complete model: $E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
- ▶ Reduced model: $E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2$
- ► Test: \mathcal{H}_0 : $\beta_3 = \beta_4 = 0$ versus \mathcal{H}_1 : Not all β_i are 0

Example 2

- ► Complete model: $E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$
- Reduced model: $E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2$
- ► Test: $\mathcal{H}_0: \beta_3 = 0$ versus $\mathcal{H}_1: \beta_3 \neq 0$

Example 3

- ► Complete model: $E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_3$
- Reduced model: $E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$
- ► Test: \mathcal{H}_0 : $\beta_4 = 0$ versus \mathcal{H}_1 : $\beta_4 \neq 0$

Nested regression models

Compare the reduced and complete nested models.

- ▶ Compare the complete model's R^2 (R_c^2) with the reduced model's R^2 (R_r^2).
- Necessarily, $R_r^2 \leq R_c^2$.
- ▶ The question is whether R_c^2 is large enough in comparison to R_r^2 .

Test statistic

$$F = \frac{(SSE_r - SSE_c)/df_1}{SSE_c/df_2} = \frac{(R_c^2 - R_r^2)/df_1}{(1 - R_c^2)/df_2} \underset{\mathcal{H}_0}{\sim} F(df_1, df_2)$$

- $ightharpoonup df_1 =$ difference of the number of regression effects between the complete and reduced models.
- $ightharpoonup df_2 = residual df for the complete model.$

Complete model:

$$\widehat{\mathsf{ENDUR}} = \mathsf{a} + \mathsf{b}_1 \, \mathsf{AGE}^\mathsf{c} + \mathsf{b}_2 \, \mathsf{EXER}^\mathsf{c} + \mathsf{b}_3 \, \mathsf{AGE}^\mathsf{c} \times \mathsf{EXER}^\mathsf{c}$$

Reduced model:

$$\widehat{\mathsf{ENDUR}} = a + b_1 \, \mathsf{AGE}^c + b_2 \, \mathsf{EXER}^c$$

Test

- $ightharpoonup {\cal H}_0: \beta_3 = 0$
- $\qquad \mathcal{H}_1:\beta_3\neq 0$

Model	Summary
-------	---------

Model	R	R^2	Adjusted R ²	RMSE	R ² Change	F Change	df1	df2	p
0	0.408	0.166	0.159	9.919	0.166	24.14	2	242	< .001
_1	0.454	0.206	0.196	9.700	0.040	12.08	1	241	< .001

Note. Null model includes AGE. EXER

ANOVA

Model		Sum of Squares	df	Mean Square	F	р
0	Regression	4751	2	2375.34	24.14	< .001
	Residual	23810	242	98.39		
	Total	28561	244			
1	Regression	5887	3	1962.41	20.86	< .001
	Residual	22674	241	94.08		
	Total	28561	244			

$$df_1 = 3 - 2 = 1.$$

$$\rightarrow$$
 $df_2 = 241.$

$$F = \frac{(SSE_r - SSE_c)/df_1}{SSE_c/df_2} = \frac{(23810 - 22674)/1}{22674/241} = 12.08,$$

or, equivalently,
$$F = \frac{(R_c^2 - R_r^2)/df_1}{(1 - R_c^2)/df_2} = \frac{(.206 - .166)/1}{(1 - .206)/241} = 12.08.$$

Example: Physical endurance

Also note that, when (and only when) $df_1 = 1$, we have that

$$F_{1,df_2} = t_{df_2}^2,$$

where

- F = test statistic used for model comparison.
- t = test statistic of the extra effect in the complete model.

			Coefficients			
Model		Unstandardized	Standard Error	Standardized	t	р
0	(Intercept)	26.531	0.634		41.865	< .001
	AGE	-0.257	0.066	-0.240	-3.925	< .001
	EXER	0.916	0.139	0.404	6.610	< .001
1	(Intercept)	25.889	0.647		40.037	< .001
	AGE	-0.262	0.064	-0.244	-4.085	< .001
	EXER	0.973	0.137	0.429	7.124	< .001
	AGE_EXER	0.047	0.014	0.201	3.476	< .001

$$t^2 = 3.476^2 = 12.08$$

Conclusion

Reject \mathcal{H}_0 : $\beta_3 = 0$ and retain the complete model.

Agresti, Sections 11.6 - 11.7