

Indefinite Integrals Ex 19.16 Q6

Let
$$I = \int \frac{dx}{e^x + e^{-x}}$$

$$= \int \frac{dx}{e^x + \frac{1}{e^x}}$$

$$= \int \frac{e^x dx}{\left(e^x\right)^2 + 1}$$
Let $e^x = t$

$$\Rightarrow e^x dx = dt$$

$$I = \int \frac{dt}{t^2 + 1}$$

$$I = \tan^{-1} t + c \qquad \left[\text{Since } \int \frac{1}{1 + x^2} dx = \tan^{-1} x + c\right]$$

$$I = \tan^{-1} \left(e^x\right) + c$$

Indefinite Integrals Ex 19.16 Q7

Let
$$I = \int \frac{x}{x^4 + 2x^2 + 3} dx$$

Let $x^2 = t$
 $\Rightarrow 2x dx = dt$
 $\Rightarrow x dx = \frac{dt}{2}$
 $I = \frac{1}{2} \int \frac{dt}{t^2 + 2t + 3}$
 $= \frac{1}{2} \int \frac{dt}{(t+1)^2 + 2}$
put $t+1 = u$
 $\Rightarrow dt = du$
 $I = \frac{1}{2} \int \frac{du}{u^2 + (\sqrt{2})^2}$
 $= \frac{1}{2} \times \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{u}{\sqrt{2}}\right) + c$ [Since $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$]
 $I = \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{t+1}{\sqrt{2}}\right) + c$
 $I = \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x^2 + 1}{\sqrt{2}}\right) + c$

Indefinite Integrals Ex 19.16 Q8

Let
$$I = \int \frac{3x^5}{1+x^{12}} dx$$

$$= \int \frac{3x^5}{1+\left(x^6\right)^2} dx$$
Let $x^6 = t$

$$\Rightarrow 6x^5 dx = dt$$

$$\Rightarrow x^5 dx = \frac{dt}{6}$$

$$I = \frac{3}{6} \int \frac{dt}{1+t^2}$$

$$= \frac{1}{2} \tan^{-1} \left(t\right) + c$$

$$\left[\text{Since } \int \frac{1}{x^2+1} dx = \tan^{-1} x + c \right]$$

$$I = \frac{1}{2} \tan^{-1} \left(x^6\right) + c$$

Indefinite Integrals Ex 19.16 Q9

Let
$$I = \int \frac{x^2}{x^6 - a^6} dx$$

$$= \int \frac{x^2}{\left(x^3\right)^2 - \left(a^3\right)^2} dx$$
Let $x^3 = t$

$$\Rightarrow 3x^2 dx = dt$$

$$\Rightarrow x^2 dx = \frac{dt}{3}$$
so, $I = \frac{1}{3} \int \frac{dt}{t^2 - \left(a^3\right)^2}$

$$= \frac{1}{3} \times \frac{1}{2a^3} \log \left| \frac{t - a^3}{t + a^3} \right|$$

$$\left[\text{Since } \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c \right]$$

$$I = \frac{1}{6a^3} \log \left| \frac{x^3 - a^3}{x^3 + a^3} \right| + c$$

Indefinite Integrals Ex 19.16 Q10

Let
$$I = \int \frac{x^2}{x^6 + (a^3)^2} dx$$

$$= \int \frac{x^2}{(x^3)^2 + (a^3)^2} dx$$
Let $x^3 = t$

$$\Rightarrow 3x^2 dx = dt$$

$$\Rightarrow x^2 dx = \frac{dt}{3}$$
so, $I = \frac{1}{3} \int \frac{dt}{t^2 + (a^3)^2}$

$$= \frac{1}{3} \times \frac{1}{(a^3)} \tan^{-1} \left(\frac{t}{a^3}\right) + c \qquad \left[\text{Since } \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c \right]$$

$$I = \frac{1}{3a^3} \tan^{-1} \left(\frac{x^3}{a^3}\right) + c$$

********* END *******