What is viscosity?

Inviscid vs. Viscous liquid

Viscosity and Newton

$$\tau_{xy} = \eta \dot{\gamma} = \eta \frac{\partial u_x}{\partial y}$$

Viscosity from kinetic theory

 λ : Mean free path of the molecules

Mean speed of a monoatomic gas:

$$\bar{c} = \sqrt{8k_BT/(\pi m)}$$

Molecules at height y have average x-velocity $u_x(y)$. But they only came to height y after traveling a distance $\sim \lambda$ through the fluid. So the x-momentum they carry reflects the conditions they saw $\sim \lambda$ away. That's where the gradient matters.

How many molecules cross a plane per unit area per unit time?

A molecule crossing the plane upward was last hit $\sim \lambda$ below, so it carries the mean x-momentum from around $y-\lambda$. A molecule crossing downward carries momentum from around $y+\lambda$.

$$\Phi_x^{\text{down}} \approx \frac{n\bar{c}}{4} \cdot m \cdot u_x(y+\lambda)$$

$$\Phi_x^{\text{up}} \approx \frac{n\bar{c}}{4} \cdot m \cdot u_x(y-\lambda)$$

Net downward momentum flux

$$\tau_{xy} = -\Phi_x^{\text{net}} = -\frac{1}{2}\rho\bar{c}\lambda\frac{\partial u_x}{\partial y}$$

$$| \eta \sim C \rho \bar{c} \lambda$$
, where $C = \mathcal{O}(1)$

Viscosity is an emergent property

$$\frac{\eta}{\rho} \sim \bar{c} \lambda$$