Локальные модели в анализе сигналов головного мозга

Валерий Маркин

21 марта, 2019.

## Общее описание исследования

### Задача

По записям электрических импульсов головного мозга восстановить траекторию движения руки.

### Проблема

Исходное признаковое пространство избыточно, признаки сильно коррелированы.

#### Предлагаемое решение

Построить локальную модель, учитывающую пространственную структуру сигнала. Использовать параметры модели как новое призаковое описание.

# Литература

- Anastasia Motrenko and Vadim Strijov. Multi-way feature selection for ecog-based brain-computer84interface. Expert Systems with Applications, 114, 07 2018.
- Chao ZC, Nagasaka Y, Fujii N (2010). "Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys." Frontiers in Neuroengineering 3:3.
- Andrey Eliseyev and Tetiana Aksenova. Penalized multi-way partial least squares for smooth72trajectory decoding from electrocorticographic (ECoG) recording.PLOS ONE, 11(5):e0154878,73may 2016.

## Формальная постановка задачи

#### Данные

Сигналы представлены в виде многомерного временного ряда

$$\mathbf{S} = \left\{ \mathbf{s}_i(t_j) \in \mathbb{R}^{N_{ch}}, i \in \{1, \dots M\}, j \in \{1, \dots T\} \right\} \subset \mathbb{R}^{M \times N_{ch} \times T}$$

где  $N_{ch}$  - число каналов (электродов), M - число сигналов. Требуется предсказать координату кисти  $\mathbf{y}_i \in \mathbb{R}^{3 \times T}$ .

#### Модель

Модель строится как композиция двух моделей  $f = g \circ h$ 

- ullet  $g:\mathbb{R}^{N_{ch}}\longrightarrow\mathbb{R}^{T}$  локальная модель, порождающая новые признаки
- $h: \mathbb{R}^{N_f} \longrightarrow \mathbb{R}^3$  регрессионная модель, прогнозирующая целевую переменную

### Формальная постановка задачи

### Локальная модель

 $ilde{\mathbf{s}}_i = g(\mathbf{s}_i, heta_i)$  - локальная аппроксимация сигнала.  $heta_i$  - вектор параметров модели. Вектор параметров  $heta_i$  для каждого объекта находится решением оптимизационной задачи

$$\theta_i = \underset{\theta}{\operatorname{argmin}} \ Q(g(\mathbf{s}_i, \theta), \mathbf{s}_i) \tag{1}$$



Рис.: Пространственное расположение электродов

## **PLS**

- Алгоритм PLS находит матрицы  $T, U \in \mathbb{R}^{m \times l}$ , которые лучше всего описывают исходные матрицы X, Y.
- ullet PLS максимизиует связь (линейную зависимость) матриц T,U.



## Эксперимент

### Предобработка данных

Фильтрация, построение частотных характеристик



Рис.: Зависимость предсказанной и истинной траекторий от времени

r2-score: train -0.68, test -0.30

# Дальнейшие исследования

- Построение предсказаний на оснонве локальных моделей
- Работа с целевой переменной (переход от координат к углам)
- Проведение сравнения с существующими методами