10.2 表面电场效应。

10.2.4 半导体表面层的五种基本状态

4° 反型状态

耗尽状态
$$Q_s = -\frac{2\varepsilon_s kT}{qL_D} \left(\frac{qV_s}{kT}\right)^{1/2}$$

弱反型 V_B<Vs<2V_B

 $V_s \uparrow d \uparrow Q_s$ 对表面势依赖: 从 $V_s^{1/2}$ 到 $\exp(qV_s/2kT)$

"耗尽层近似" 依然适用

强反型一表面处少子浓度开始超过体内多子浓度 $\leftarrow V_s \ge 2V_B$

17/35

10.2 表面电场效应10

10.2.4 半导体表面层的五种基本状态

5° 深耗尽状态 V_s > 2V_B

 V_s \uparrow $d > d_{max}$ 非平衡状态,空间电荷层的载流子跟不上外加电压变化

从深耗尽到热平衡反型层态所需的热驰豫时间τ_{th}为10°~10²s! 反型层的建立不是一个很快的过程!

10.2 表面电场效应11

绝缘层

10.2.4 半导体表面层的五种基本状态

第十章 半导体表面与MIS结构

- 10.1 表面态概念
- 10.2 表面电场效应
- 10.3 Si-SiO₂系统的性质
- 10.4 MIS结构的C-V特性
- 10.5 表面电导及迁移率

10.3 Si-SiO₂系统的性质₁

10.3.1 Si-SiO₂系统中的电荷状态

1.界面陷阱电荷(快界面态) Q_{it} 界面态密度 D_{it}

10.3 Si-SiO₂系统的性质2

10.3.1 Si-SiO₂系统中的电荷状态

- 2. 氧化层中固定电荷 Q_f
 - 1°在外加电场下,不可移动
 - 2° 局限于界面20nm范围以内
 - 3° [111] > [110] > [100]
 - 4°不依赖于V_s,不和体Si交换电荷,即不能充放电
 - 5°不依赖于Si掺杂和氧化层厚度
 - 6° Si-SiO。界面附近的过剩Si4+导致Qf
 - 7°与热处理有关
- **3.** 氧化层中可动电荷 *Q_m* (Na⁺, K⁺) B-T实验
- 4. 氧化层中陷阱电荷 Qot

辐射,热载流子注入等