transition system
$$T = (S, Act, \longrightarrow, S_0, AP, L)$$

abstraction from actions

state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

Act for modeling interactions/communication and specifying fairness assumptions

AP, L for specifying properties

transition system $T = (S, Act, \longrightarrow, S_0, AP, L)$ abstraction from actions

state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

use standard notations for graphs, e.g.,

$$Post(s) = \{t \in S : s \to t\}$$

$$Pre(s) = \{u \in S : u \to s\}$$

execution fragment: sequence of consecutive transitions $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \qquad \text{infinite} \qquad \text{or}$ $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n \quad \text{finite}$

path fragment: sequence of states arising from the projection of an execution fragment to the states
$$\pi = s_0 s_1 s_2...$$
 infinite or $\pi = s_0 s_1 ... s_n$ finite such that $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in a terminal state

path fragment: sequence of states

$$\pi = s_0 s_1 s_2...$$
 infinite or $\pi = s_0 s_1 ... s_n$ finite s.t. $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in terminal state

path of TS T $\stackrel{\frown}{=}$ initial, maximal path fragment path of state s $\stackrel{\frown}{=}$ maximal path fragment starting in state s

How many paths are there in T?

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

```
Paths(s_1) = set of all maximal paths fragments
starting in s_1
= \{s_1^{\omega}\} where s_1^{\omega} = s_1 s_1 s_1 s_1 ...
```

$$Paths_{fin}(s_1) = \text{set of all finite path fragments}$$

$$starting in s_1$$

$$= \{s_1^n : n \in \mathbb{N}, n \ge 1\}$$

vending machine with

1 coin deposit

select drink after
having paid

vending machine with
2 coin deposits
select drink by inserting
the coin

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

linear time: all observable behaviors are of the form

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$ linear & branching time:

all observable behaviors have the form

Traces LTB2.4-4

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or } \text{finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions
$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^{\omega} \cup (2^{AP})^{\omega}$$

for simplicity: we often assume that the given TS has

perform standard graph algorithms to compute the reachable fragment of the given TS

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state:

• if **s** stands for system fault, e.g., deadlock then correct the design before checking further properties

Let \mathcal{T} be a TS \longleftarrow without terminal states

Traces(
$$\mathcal{T}$$
) $\stackrel{\text{def}}{=}$ $\{trace(\pi) : \pi \in Paths(\mathcal{T})\}$ $\subseteq (2^{AP})^{\omega}$ initial, infinite path fragment

$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$
initial, finite path fragment

Let T be a TS without terminal states.

$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\} \subseteq (2^{AP})^{\omega}$$
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$

TS *T* with a single atomic proposition *a*

$$Traces(T) = \{ \{a\} \varnothing^{\omega}, \varnothing^{\omega} \}$$

$$Traces_{fin}(\mathcal{T}) = \{\{a\}\varnothing^n : n \ge 0\} \cup \{\varnothing^m : m \ge 1\}$$

transition system $T_{\mathcal{P}_1||\mathcal{P}_2}$ arises by unfolding the composite program graph $\mathcal{P}_1||\mathcal{P}_2$

for TS over AP without terminal states

An LT property over AP is a language E of infinite words over the alphabet $\Sigma = 2^{AP}$, i.e., $E \subseteq (2^{AP})^{\omega}$.

```
E.g., for mutual exclusion problems and AP = \{crit_1, crit_2, ...\}
```

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \not\in A_i \text{ or } \text{crit}_2 \not\in A_i
```

$$\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}$$

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \notin A_i \text{ or } \text{crit}_2 \notin A_i
```

$$\varnothing$$
 {wait₁} {crit₁} \varnothing {wait₁} {crit₁} ... \in *MUTEX* \varnothing {wait₁} {crit₁} {crit₁, wait₂} {crit₁, crit₂} ... $\not\in$ *MUTEX* \varnothing \varnothing {wait₁, crit₁, crit₂} ... $\not\in$ *MUTEX*

$$\textit{AP} = \left\{ wait_1, crit_1, wait_2, crit_2 \right\}$$

```
safety: set of all infinite words A_0 A_1 A_2 ...
MUTEX = \text{ over } 2^{AP} \text{ such that for all } i \in \mathbb{N}:
\text{crit}_1 \not\in A_i \text{ or } \text{crit}_2 \not\in A_i
```

liveness (starvation freedom):

set of all infinite words $A_0 A_1 A_2 \dots$ s.t.

$$LIVE = \overset{\infty}{\exists} i \in \mathbb{N}.wait_1 \in A_i \implies \overset{\infty}{\exists} i \in \mathbb{N}.crit_1 \in A_i$$
$$\wedge \overset{\infty}{\exists} i \in \mathbb{N}.wait_2 \in A_i \implies \overset{\infty}{\exists} i \in \mathbb{N}.crit_2 \in A_i$$

Satisfaction relation \models for TS and states:

If T is a TS (without terminal states) over AP and E an LT property over AP then $T \models E \quad \text{iff} \quad Traces(T) \subseteq E$ If s is a state in T then $s \models E \quad \text{iff} \quad Traces(s) \subseteq E$

 \emptyset {wait₁} ({wait₁, wait₂} {crit₁, wait₂} {wait₂}) $^{\omega} \notin LIVE$

for competing processes \mathcal{P}_1 and \mathcal{P}_2 , using three additional shared variables

$$b_1, b_2 \in \{0, 1\}, x \in \{1, 2\}$$

$$T_{Pet} \models MUTEX$$
 and $T_{Pet} \models LIVE$

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

Consequence of these definitions:

If T_1 and T_2 are TS over AP then for all LT properties E over AP:

$$Traces(T_1) \subseteq Traces(T_2) \land T_2 \models E \Longrightarrow T_1 \models E$$

note: $Traces(T_1) \subseteq Traces(T_2) \subseteq E$

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$
- $(1) \Longrightarrow (2)$: \checkmark

If T is a TS over AP then $T \models E$ iff $Traces(T) \subseteq E$.

If T_1 and T_2 are TS over AP then the following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties \boldsymbol{E} over \boldsymbol{AP} : whenever $\boldsymbol{T_2} \models \boldsymbol{E}$ then $\boldsymbol{T_1} \models \boldsymbol{E}$
- $(2) \Longrightarrow (1)$: consider $E = Traces(T_2)$

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions

implementation/refinement relation □: $T_{i+1} \sqsubseteq T_i$ iff " T_{i+1} correctly implements T_i "

resolve the nondeterminism by giving priority to process *P*₁

 $Traces(T'_{Sem}) \subseteq Traces(T_{Sem})$ for any AP

 $Traces(T_{Sem}) \models E$ implies $Traces(T'_{Sem}) \models E$ for any E

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism

whenever T' results from T by a scheduling policy for resolving nondeterministic choices in T then

$$Traces(T') \subseteq Traces(T)$$

• in the context of abstractions

Trace inclusion appears naturally

- as an implementation/refinement relation
- when resolving nondeterminism
- in the context of abstractions

does $\ell_2 \wedge odd(y)$ never hold?

data abstraction w.r.t. the predicates x>0, x=0, $x \equiv_2 y$

let T be the associated TS

abstract transition system T'

does
$$\ell_2 \wedge odd(y)$$
 never hold ?

data abstraction w.r.t. the predicates x>0, x=0, x=2 y program x>0:
graph x:=x-1; y:=y+1 ℓ_0 x:=7 y:=5 ℓ_1 $x\leq 0$

let T be the associated TS

 $Traces(T) \subseteq Traces(T')$

let T be the associated TS

Transition systems T_1 and T_2 over the same set AP of atomic propositions are called trace equivalent iff

$$Traces(T_1) = Traces(T_2)$$

i.e., trace equivalence requires trace inclusion in both directions

Trace equivalent TS satisfy the same LT properties

Let \mathcal{T}_1 and \mathcal{T}_2 be TS over AP.

The following statements are equivalent:

- (1) $Traces(T_1) \subseteq Traces(T_2)$
- (2) for all LT-properties $E: \mathcal{T}_2 \models E \Longrightarrow \mathcal{T}_1 \models E$

The following statements are equivalent:

- (1) $Traces(T_1) = Traces(T_2)$
- (2) for all LT-properties $E: T_1 \models E$ iff $T_2 \models E$


```
set of atomic propositions AP = \{pay, coke, sprite\}
Traces(T_1) = Traces(T_2) = \text{ set of all infinite words}
\{pay\} \varnothing \{drink_1\} \{pay\} \varnothing \{drink_2\} \dots
where drink_1, drink_2, \dots \in \{coke, sprite\}
```


set of atomic propositions
$$AP = \{pay, coke, sprite\}$$

$$Traces(T_1) = Traces(T_2) = \text{ set of all infinite words}$$

$$\{pay\} \varnothing \{drink_1\} \{pay\} \varnothing \{drink_2\} \dots$$

 T_1 and T_2 satisfy the same LT-properties over AP

safety properties "nothing bad will happen" examples:

- mutual exclusion \ special case: invariants
- deadlock freedom \ "no bad state will be reached"
- "every red phase is preceded by a yellow phase"

liveness properties "something good will happen" examples:

- "each waiting process will eventually enter its critical section"
- "each philosopher will eat infinitely often"

$$\Phi ::= true \begin{vmatrix} a & \Phi_1 \land \Phi_2 & \neg \Phi & \Phi_1 \lor \Phi_2 & \Phi_1 \to \Phi_2 \\ \hline atomic proposition, i.e., a \in AP \end{vmatrix} \cdots$$

semantics: Let $A \subseteq AP$

$$A \models true$$
 $A \models a$ iff $a \in A$
 $A \models \Phi_1 \land \Phi_2$ iff $A \models \Phi_1$ and $A \models \Phi_2$
 $A \models \neg \Phi$ iff $A \not\models \Phi$

for state **s** of a TS over **AP**: $\mathbf{s} \models \Phi$ iff $L(\mathbf{s}) \models \Phi$

Let \boldsymbol{E} be an LT property over \boldsymbol{AP} .

E is called an invariant if there exists a propositional formula Φ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

 Φ is called the invariant condition of E.

mutual exclusion (safety):

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N}. \text{ } \operatorname{crit}_1 \notin A_i \text{ or } \operatorname{crit}_2 \notin A_i \end{cases}$$

invariant condition: $\phi = \neg crit_1 \lor \neg crit_2$

deadlock freedom for 5 dining philosophers:

$$DF = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N} \exists j \in \{0, 1, 2, 3, 4\}. \text{ wait}_j \notin A_i \end{cases}$$

invariant condition:

$$\Phi = \neg wait_0 \lor \neg wait_1 \lor \neg wait_2 \lor \neg wait_3 \lor \neg wait_4$$

here:
$$AP = \{ wait_j : 0 \le j \le 4 \} \cup \{ \ldots \}$$

Let E be an LT property over AP. E is called an invariant if there exists a propositional formula Φ s.t.

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let T be a TS over AP without terminal states. Then:

$$T \models E$$
 iff $trace(\pi) \in E$ for all $\pi \in Paths(T)$
iff $s \models \Phi$ for all states s on a path of T
iff $s \models \Phi$ for all states $s \in Reach(T)$

i.e., Φ holds in all initial states and is invariant under all transitions

perform a graph analysis (**DFS** or **BFS**) to check whether $s \models \Phi$ for all $s \in Reach(T)$

such that $s_i \models \Phi$ for $0 \le i < n$ and $s_n \not\models \Phi$

input: finite transition system T, invariant condition Φ

$$U := \varnothing \longleftarrow$$
 stores the "processed" states

 $\pi := \varnothing \longleftarrow$ stack for error indication

FOR ALL $s_0 \in S_0$ DO

IF $DFS(s_0, \Phi)$ THEN

return "no" and $reverse(\pi)$

FI

OD

return "yes"

 $s_n = t$
 $s_n = t$
 $s_n = t$

 $DFS(s_0, \Phi)$ returns "true" iff depth-first search from state s_0 leads to some state t with $t \not\models \Phi$

"searches" for a path fragment $s \dots s' \dots t$ with $t \not\models \Phi$

```
Push(\pi, s);
IF s \notin U THEN
     IF s \not\models \Phi THEN return "true" FI
     IF s \models \Phi THEN
            insert s in U;
            FOR ALL s' \in Post(s) DO
                  IF |DFS(s', \Phi)| THEN
                       return "true" FI
            OD
                                                 initial
     FΙ
                                                 state
Pop(\pi); return "false"
```

Example: invariant checking

invariant condition a

$$s_0, s_1, s_2 \models a$$

 $t \not\models a$

stack π

