04-18-00 Flease type a plus (+) inside this box →

PTO/SB/29 (12/97) Approved for use through 09/30/00. OMB 0651-0032 Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Total Pages

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

# UTILITY

COUNTRY

Attorney Docket No. 7683-165 First Named Inventor or Application Identifier AXEL ULLRICH Express Mail Label No. FL394 218 299US 0

'n PATENT APPLICATION TRANSMITTAL (Only for new nonprovisional applications under 37 CFR 1.53(b)) Assistant Commission 歪 his APPLICATION ELEMENTS ADDRESS TO: Box Patent Application Washington, DC 2023 See MPEP chapter 600 concerning utility patent application contents. <u>≡</u>4 M Fee Transmittal Form ☐ Microfiche Computer Program (Appendix). Submit an original, and a duplicate for fee processing) [Total Pages 61 2. X Specification 7. Mucleotide and/or Amino Acid Sequence Submission + Abstract (if applicable, all necessary) (preferred arrangement set forth below) -Descriptive title of the Invention a. 

Computer Readable Copy -Cross Reference to Related Applications b. B Paper Copy (identical to computer copy) -Statement Regarding Fed sponsored R&D -Reference to Microfiche Appendix c. 

Statement verifying identity of above copies -Background of the Invention ACCOMPANYING APPLICATION PARTS -Brief Summary of the Invention -Brief Description of the Drawings (if filed) 8. X Assignment Papers -Detailed Description of the Invention (including drawings, if filed) (copy from prior application) -Claim(s) 9. 

37 CFR 3.73(b) Statement 
Power of Attorney -Abstract of the Disclosure (when there is an assignee) 10. 

English Translation Document (if applicable) Drawing(s) (35 USC 113) [Total Sheets 30] 11. 

Information Disclosure □ Conies of IDS [Total Sheets 02] Oath or Declaration Statement (IDS)/PTO-1449 Citations 12. 

Preliminary Amendment a. Dewly executed (original or copy) b. 
Copy from a prior application (37 CFR 1.63(d)) 13. 

■ Return Receipt Postcard (MPEP 503) (Should be specifically itemized) (for divisional with Box 17 completed) 14. 
Small Entity 
Statement filed in prior application, Statement(s) Status still proper and desired [Note Box 5 below] i. DELETION OF INVENTORS(S) □ Certified Copy of Priority Document(s) Signed statement attached deleting inventor(s) named in the prior (if foreign priority is claimed) application, see 37 CFR 1.63(d)(2) and 1.33 (b). 16 C Other: 5. Incorporation By Reference (useable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: of prior application No: 08/153,397, filed November 16, 1993. X Divisional □Continuation-in-part (CIP) □Continuation 18. CORRESPONDENCE ADDRESS 20583 or Correspondence address below XI Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here) NAME **ADDRESS** ZIP CODE STATE CITY

TELEPHONE Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary despending upon the needed of the Individual case. Any comments or the amount of time you are required to complete this form synchrolibe sent to be Chell Indomation Officer. Petent and Trademan, Washington, DC 20231. DO NOT SEND FEED COMPLETE FOR ONLY TO THIS ADDRESS. SEND TO: Assessment Commissional for Patents, Box Patent Application, Washington, DC 20231.

FAX

### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

| Prior application:                                               | Examiner                               | Ulm, J.                             |                                             |                                           |                        |
|------------------------------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------------------|------------------------|
|                                                                  | Art Unit                               | 1646                                |                                             |                                           |                        |
| Assistant Commission<br>Box PATENT APPLI<br>Washington, D.C. 202 | CATION                                 |                                     |                                             |                                           |                        |
| Sir:                                                             |                                        |                                     |                                             |                                           |                        |
| This i<br>pending prior applicat                                 | s a request for fi<br>ion no. 08/153,3 | iling a □contin<br>397, filed on No | uation ⊠divisional<br>ovember 16, 1993.     | application under 37 C                    | CFR § 1.53(b), of      |
| of AXEL ULLRICH                                                  | and FRANK A                            | LVES<br>(inventor(s) currer         | itly of record in prior app                 | dication)                                 |                        |
| 14.5                                                             |                                        |                                     | PTOR TYROSINE                               |                                           |                        |
| 10 1.                                                            |                                        | to calculating t                    | the fee below, cance<br>131-74 of the prior | l in this application ori<br>application: | ginal claims 1-16, 18- |
| 6<br>12                                                          |                                        | PATENT APP                          | LICATION FEE V                              | ALUE                                      |                        |
| TYPE                                                             | NO. FILED                              | LESS                                | EXTRA                                       | EXTRA RATE                                | FEE                    |
| Total Claims                                                     | 4                                      | -20                                 | 0                                           | \$18.00 each                              | 0.00                   |
| Independent                                                      | 4                                      | -3                                  | 11                                          | \$78.00 each                              | 78.00                  |
|                                                                  |                                        |                                     | Basic Fee                                   |                                           | 690.00                 |
|                                                                  |                                        |                                     | Multiple Depende<br>If Applicable (\$27     |                                           |                        |
|                                                                  |                                        |                                     | Total                                       |                                           | 0.00                   |
|                                                                  |                                        |                                     | on for Independent<br>ganization or Small   |                                           | -                      |
|                                                                  |                                        |                                     | <b>Total Filing Fee</b>                     |                                           | \$ 768.00              |
| 2.                                                               |                                        |                                     | uired fee to Pennie &                       | È Edmonds LLP Deposit<br>osed.            | Account                |

Amend the specification by inserting before the first line the following

incorporated herein by reference in its entirety.

sentence: This is a  $\square$  continuation,  $\square$  division of application Serial No. 08/153,397, filed November 16, 1993, the entire contents of which is

3.

|       |                   | PENNIE & EDMONDS LLP DOCKET NO. 7683-165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 4a.   |                   | Transfer the drawings from the prior application to this application and abandon the prior application as of the filing date accorded this application. A duplicate copy of this sheet is enclosed for filing in the prior application file.                                                                                                                                                                                                                                                                                                      |  |  |
| 4b.   |                   | New formal drawings are enclosed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 4c.   | $\boxtimes$       | Informal drawings are enclosed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 5a.   |                   | Priority of application no. filed on in is claimed under 35 U.S.C. §119.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 5b.   |                   | The certified copy has been filed in prior application no. , $$ filed .                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 6.    | X                 | The prior application is assigned of record to Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften. A copy of the recorded Assignment is being submitted herewith.                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 7a.   | X                 | The Power of Attorney appears in the original papers in the prior application no. 08/153,397, filed November 16, 1993. A copy of the executed Power of Attorney is being submitted herewith.                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 7b.   |                   | Since the Power of Attorney does not appear in the original papers, a copy of the Power in prior application no. , filed is enclosed.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 8.    | X                 | This application contains nucleic acid and/or amino acid sequences required to be disclosed in a Sequence Listing under 37 CFR §§1.821-1.825. It is requested that the Sequence Listing in computer readable form from prior application no. 08/153,397, filed November 16, 1993 on be made a part of the present application as provided for by 37 C.F.R. §1.821(e). The sequences disclosed therein are the same as the sequences disclosed this application. A copy of the paper Sequence Listing from application no. 08/153,397 is enclosed. |  |  |
| 9.    | X                 | The undersigned states, under 37 C.F.R. §1.821(f), that the content of the enclosed paper Sequence Listing from application no. 08/153,397 is the same as the content of the computer readable form submitted in application no. 08/153,397.                                                                                                                                                                                                                                                                                                      |  |  |
| 10.   |                   | Additional enclosures or instructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|       |                   | Respectfully submitted,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| April | 17, 2000          | Jama a. Com. 30.742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|       | 17, 2000<br>date) | (signature) (Reg No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

(signature)
(signature)
(Reg No.)

Laura A. Coruzzi, Esq.
PENNIE & EDMONDS LIF
1155 Avenue of the Americas
New York, NY 10036
Tel. No. (212) 790-9090

Minters C. Juye

My . No. 39,001

#### MCK-10, A NOVEL RECEPTOR TYROSINE KINASE

| 5  |    | TABLE OF CONTENTS                      |             |
|----|----|----------------------------------------|-------------|
|    |    |                                        | <u>Page</u> |
|    | 1. | INTRODUCTION                           | . 1         |
|    | 2. | BACKGROUND                             | . 1         |
| 10 | з. | SUMMARY OF THE INVENTION               | . 3         |
|    | 4. | BRIEF DESCRIPTION OF THE FIGURES       | . 4         |
|    | 5. | DETAILED DESCRIPTION                   | 7           |
|    |    | 5.1. THE MCK-10 CODING SEQUENCE        | . 8         |
|    |    | 5.2. THE CCK-2 CODING SEQUENCE         | 15          |
| 15 |    | 5.3. EXPRESSION OF MCK-10 RECEPTOR     |             |
|    |    | AND GENERATION OF CELL LINES           |             |
|    |    | THAT EXPRESS MCK-10                    | . 16        |
|    |    | 5.3.1. EXPRESSION SYSTEMS              | . 19        |
|    |    | 5.3.2. IDENTIFICATION OF TRANSFECTANTS |             |
| 20 |    | OR TRANSFORMANTS THAT EXPRESS          |             |
|    |    | THE MCK-10                             | . 26        |
|    |    | 5.4. USES OF THE MCK-10 RECEPTOR       |             |
|    |    | AND ENGINEERED CELL LINES              | . 28        |
|    |    | 5.4.1. SCREENING OF PEPTIDE LIBRARY    |             |
| 25 |    | WITH MCK-10 PROTEIN OR ENGINEER        | RED         |
|    |    | CELL LINES                             | . 29        |
|    |    | 5.4.2. ANTIBODY PRODUCTION AND         |             |
|    |    | SCREENING                              | . 31        |
|    |    | 5.5. USES OF MCK-10 CODING SEQUENCE    | . 33        |
| 30 |    | 5.5.1. USE OF MCK-10 CODING SEQUENCE   |             |
|    |    | IN DIAGNOSTICS AND                     |             |
|    |    | THERAPEUTICS                           | . 34        |
|    |    | 5.5.2. USE OF DOMINANT NEGATIVE        |             |
|    |    | MCK-10 MUTANTS IN GENE                 |             |
| 35 |    | THERAPY                                | . 36        |

|    |    |                                          | Page |
|----|----|------------------------------------------|------|
|    | 6. | EXAMPLES: CLONING AND CHARACTERIZATION   |      |
|    |    | OF MCK-10                                | . 37 |
|    |    | 6.1. MATERIALS AND METHODS               | . 37 |
| 5  |    | 6.1.1. cDNA CLONING AND CHARACTERIZATI   | ON   |
|    |    | OF MCK-10                                | . 37 |
|    |    | 6.1.2. FULL-LENGTH cDNA CLONING          | . 38 |
|    |    | 6.1.3 NORTHERN BLOT ANALYSIS             |      |
|    |    | OF MCK-10                                | . 39 |
| 10 |    | 6.1.4. GENERATION OF MCK-10 SPECIFIC     |      |
|    |    | ANTIBODIES                               | . 40 |
|    |    | 6.1.5. IN SITU HYBRIDIZATION             | . 41 |
|    |    | 6.2. RESULTS                             |      |
|    |    | 6.2.1. CHARACTERIZATION OF               |      |
| 15 |    | MCK-10 CLONE                             | . 42 |
|    |    | 6.2.2. NORTHERN BLOT ANALYSIS:           |      |
|    |    | EXPRESSION OF MCK-10 IN VARIOUS          |      |
|    |    | HUMAN TISSUES AND CELL LINES .           | . 45 |
|    |    | 6.2.3. IN SITU HYBRIDIZATION             | . 46 |
| 20 |    | 6.2.4. TRANSIENT OVEREXPRESSION          |      |
|    |    | OF MCK-10 IN 293 CELLS                   | . 47 |
|    | 7. | EXAMPLES: CLONING AND CHARACTERIZATION   |      |
|    |    | OF CCK-2                                 | . 48 |
|    |    | 7.1. MATERIALS AND METHODS               |      |
| 25 |    | 7.1.1. cDNA CLONING AND CHARACTERIZATION |      |
|    |    | OF CCK-2                                 |      |
|    |    | 7.2. RESULTS                             | . 50 |
|    |    | 7.2.1. CLONING AND CHARACTERIZATION      |      |
|    |    | OF CCK-2                                 | . 50 |
| 30 | 8. | DEPOSIT OF MICROPRGANISMS                | 50   |

#### MCK-10, A NOVEL RECEPTOR TYROSINE KINASE

#### 1. INTRODUCTION

The present invention relates to the novel family of receptor tyrosine kinases, herein referred to as MCK-10, to nucleotide sequences and expression vectors encoding MCK-10, and to methods of inhibiting MCK-10 activity. The invention relates to differentially spliced isoforms of MCK-10 and to other members of the

MCK-10 receptor tyrosine kinase family. Genetically engineered host cells that express MCK-10 may be used to evaluate and screen drugs involved in MCK-10 activation and regulation. The invention relates to the use of such drugs, in the treatment of disorders,

15 including cancer, by modulating the activity of MCK-10.

#### 2. BACKGROUND

- Receptor tyrosine kinases comprise a large family
  of transmembrane receptors which are comprised of an
  extracellular ligand-binding domain and an
  intracellular tyrosine-kinase domain responsible for
  mediating receptor activity. The receptor tyrosine
  kinases are involved in a variety of normal cellular
- 25 responses which include proliferation, alterations in gene expression, and changes in cell shape.

The binding of ligand to its cognate receptor induces the formation of receptor dimers leading to activation of receptor kinase activity. The

30 activation of kinase activity results in phosphorylation of multiple cellular substrates involved in the cascade of events leading to cellular responses such as cell proliferation.

Genetic alterations in growth factor mediated

35 signalling pathways have been linked to a number of

25

30

different diseases, including human cancer. example, the normal homologs of many oncogenes have been found to encode growth factors or growth factor receptors. This is illustrated by the discovery that the B chain of human PDGF is homologous to the

- 5 transforming protein of simian sarcoma virus (SSV), the EGF (epidermal growth factor) receptor to erb B; the CSF (colony stimulating factor) receptor to fms: and the NGF (nerve growth factor) receptor to trk. addition, growth factor receptors are often found
- amplified and/or overexpressed in cancer cells as exemplified by the observation that the EGF receptor is often found amplified or overexpressed in squamous cell carcinomas and glioblastomas. Similarly, amplification and overexpression of the met gene, encoding the HGF receptor, has been detected in
- stomach carcinomas.

Recently, a number of cDNAs have been identified that encode receptor tyrosine kinases. One such clone, referred to as DDR (discoidin domain receptor), was isolated from a breast carcinoma cDNA library (Johnson et al., 1993, Proc. Natl. Acad. Sci. USA, 90, 5677-57681) and is homologous to MCK-10. In addition, a mouse homologue of MCK-10 has recently been cloned and characterized (Yerlin, M. et al., 1993, Oncongene, 8:2731-2739).

The discovery of novel receptor tyrosine kinase receptors, whose expression is associated with proliferative diseases such as cancer, will provide opportunities for development of novel diagnostic reagents. In addition, the identification of aberrantly expressed receptor tyrosine kinases will lead to the development of therapeutic applications designed to inhibit the activity of that receptor, which may be useful for treatment of proliferative

35 diseases such as cancer.

#### 3. SUMMARY OF THE INVENTION

The present invention relates to a novel family of receptor tyrosine kinases, herein referred to as MCK-10 (mammary carcinoma kinase 10), to nucleotide sequences and expression vectors encoding MCK-10, and

5 to methods of inhibiting MCK-10 activity. The invention is based on the isolation of cDNA clones from a human mammary carcinoma cDNA library encoding the MCK-10 receptor tyrosine kinase.

The invention also relates to differentially

spliced isoforms of MCK-10 and to other members of the
MCK-10 family of receptor tyrosine kinases. More
specifically, the invention relates to members of the
MCK-10 family of receptors tyrosine kinases that are
defined, herein, as those receptors demonstrating 80%

homology at the amino acid level in substantial stretches of DNA sequences with MCK-10. In addition, members of the MCK-10 family of tyrosine kinase receptors are defined as those receptors containing an intracellular tyrosine kinase domain and consensus

sequences near the extracellular N-terminus of the protein for the discoidin I like family of proteins.

The invention as it relates to the members of the MCK10 family of receptor tyrosine kinases, is based on the isolation and characterization of a cDNA, herein

25 referred to as CCK-2, encoding a member of the MCK-10 family of receptor tyrosine kinases.

Northern blot analysis and in situ hybridization indicates that MCK-10 is expressed in a wide variety of cancer cell lines and tumor tissue. The MCK-10 or CCK-2 coding sequence may be used for diagnostic purposes for detection of aberrant expression of these genes. For example the MCK-10 or CCK-2 DNA sequence may be used in hybridization assays of biopsied tissue to diagnose abnormalities in gene expression.

35

The present invention also relates to inhibitors of MCK-10 or CCK-2 receptor activity which may have therapeutic value in the treatment of proliferative diseases such as cancer. Such inhibitors include antibodies to epitopes of recombinantly expressed

- MCK-10 or CCK-2 receptor that neutralize the activity of the receptor. In another embodiment of the invention, MCK-10 or CCK-2 anti-sense oligonucleotides may be designed to inhibit synthesis of the encoded proteins through inhibition of translation. In
- addition, random peptide libraries may be screened using recombinantly produced MCK-10 or CCK-2 protein to identify peptides that inhibit the biological activity of the receptor through binding to the ligand binding sites or other functional domains of the MCK-
- 15 10 or CCK-2 receptor. In a further embodiment of the invention, mutated forms of MCK-10 and CCK-2, having a dominant negative effect, may be expressed in targeted cell populations to inhibit the activity of the endogenously expressed receptors.

#### 4. BRIEF DESCRIPTION OF THE FIGURES

Figures 1A, 1B and 1C. Human MCK-10 nucleotide sequence and deduced amino acid sequence. Regions of interest include the signal sequence (amino acids (aa) 1-18); the Discoidin I-like domain (aa 31-185); the putative precursor cleavage site (aa 304-307); the transmembrane region (aa 417-439); the alternatively spliced sequence I (aa 505-541); the alternatively spliced sequence II (aa 666-671); and the peptide antibody recognition sequences: NTα:aa 25-42, NTβ:aa 309-321, CTβ:aa 902-919.

Figure 2. MCK-10 splice variants.

Figures 3A, 3B, 3C and 3D. Human CCK-2 nucleotide sequence and deduced amino acid sequence.

35

20

25

Figure 4A. Shared sequence homology between MCK- 10 and CCK-2.

Figure 4B. Shared regions of homology between MCK-10 and CCK-2.

- Figure 5A. Northern blot analysis of MCK-10 mRNA
  in different human tissues. Three micrograms of poly
  (A) \* RNA are loaded per lane. The blot is hybridized
  with a cDNA restriction fragment corresponding to
  nucleotide 278 to 1983 of MCK-10 (Figures 1A, 1B and
  1C) (excluding the 111 bp insertion). As a control,
  the blot was rehybridized with a glyceraldehyde
  phosphate dehydrogenase (GAPDH) cDNA probe (lower
  panel).
- Figure 5B. Northern blot analysis of MCK-10 gene in various human breast cancer cell lines. Samples containing three micrograms of poly (A)\* RNA isolated from different human breast cancer cell lines were analyzed. The position of 28S and 18S ribosomal RNAs is indicated, the lower panel shows the rehybridization with a GAPDH cDNA probe.

Figure 5C. Northern blot analysis of MCK-10 mRNA in different human tissues and cell lines of tumor origin. Size markers are indicating 28S and 18S ribosomal RNAs (upper panel). Rehybridization is performed with a GAPDH cDNA probe (lower panel).

- Figure 6A. Tyrosine phosphorylation of overexpressed MCK-10. The coding cDNAs of MCK-10-1 and MCK-10-2 were cloned into an expression vector and transiently overexpressed in the 293 cell line (human embryonic kidney fibroblasts, ATCC CRL 1573).
- Portions of cell lysate from either MCK-10-1 or -2 transfected cells or control plasmid transfected cells (mock) were separated on a 7-12% gradient polyacrylamide gel and transferred to nitrocellulose and probed with anti-phosphotyrosine antibodies (αPY).
- 35 The incubation of cells with 1mM sodium ortho-vanadate

90 min. prior to lysis is indicated by -/+; (left panel). After removal of the  $\alpha$ PY antibody the blot was reprobed with an affinity purified polyclonal antiserum raised against the C-terminal octapeptide of MCK-10 ( $\alpha$  MCK-10-C); (right panel). Molecular size markers are indicated in kD.

Figure 6B. Distinct glycosylation of overexpressed MCK-10 splice variants. 293 cells were transfected with MCK-10-1 and -2 as before, metabolically labeled with  $[^{35}{\rm S}]-{\rm L-methionine}$  and treated with  $10\mu{\rm g/ml}$  tunicamycin overnight as indicated (+), lysed and immunoprecipitated with antisera generated against the N-terminal and C-terminal peptides of MCK-10 ( $\alpha$  MCK-10-N and  $\alpha$  MCK-10-C). The autoradiograph of the SDS-PAGE analysis is

15 shown. Molecular size markers are indicated in kD.

Figure 7. In situ hybridization showing specific expression of MCK-10 in epithelial cells of the distal tubuli of the kidney.

Figure 8. In situ hybridization showing

expression of MCK-10 only in epithelial cells of the distal tubular cells of the kidney.

Figure 9. In situ hybridization showing specific expression of MCK-10 in tumor cells of a renal cell carcinoma.

25 Figure 10. In situ hybridization of MCK-10 in the ductal epithelial cells of normal breast tissue.

Figure 11. In situ hybridization showing MCK-10 expression in infiltrating tumor cells of a breast carcinoma. The tumor infiltrates the surrounding fat tissue, which is negative for MCK-10 expression.

Figure 12. In situ hybridization showing MCK-10 expression in infiltrating tumor cells of a breast carcinoma. The tumor infiltrates the surrounding fat tissue, which is negative for MCK-10 expression.

35

20

Figure 13. In situ hybridization showing expression of MCK-10 expression in the islet cells of the pancreas.

Figure 14. In situ hybridization showing expression of MCK-10 expression in the islet cells of the pancreas.

Figure 15. In situ hybridization showing selective expression of MCK-10 in the surface epithelium of the colon in contrast to connective tissue.

Figure 16. In situ hybridization showing expression of MCK-10 in the tumor cells of an adenocarcinoma of the colon.

Figure 17. In situ hybridization showing expression of MCK-10 in the tumor cells of an adenocarcinoma of the colon.

Figure 18. In situ hybridization showing expression of MCK-10 in meningiothelial tumor cells.

Figure 19. In situ hybridization showing expression of MCK-10 in cells of a glioblastoma (glioma), a tumor of the neuroepithelial tissue.

Figure 20. In situ hybridization showing expression of MCK-10 in cells of a medulloblastoma with hyperchromatic atypical nuclei. Expression of MCK-10 is predominantly in cells with well developed cytoplasm.

Figure 21. In situ hybridization showing the expression of MCK-10 in cells of a medulloblastoma with hyperchromatic atypical nuclei. Expression of MCK-10 is predominantly in cells with well developed cytoplasm.

#### 5. DETAILED DESCRIPTION

The present invention relates to a novel family of receptor tyrosine kinases referred to herein as MCK-10. The invention relates to differentially

spliced isoforms of MCK-10 and to additional members of the MCK-10 family of receptor tyrosine kinases such as the CCK-gene described herein. The invention is based, in part, on the isolation of a cDNA clone encoding the MCK-10 receptor tyrosine kinase and the discovery of differentially spliced isoforms of MCK-10. The invention also relates to the isolation of a cDNA encoding on additional member of MCK-10 receptor tyrosine kinase family, herein referred to as CCK-2.

Results from Northern Blot analysis and in situ

hybridization indicates that MCK-10 is expressed in
epithelial cells. In addition, MCK-10 expression can
be detected in a wide variety of cancer cells lines
and in all tested tumors. The invention relates to,
expression and production of MCK-10 protein, as well

15 as to inhibitors of MCK-10 receptor activity which may
have therapeutic value in the treatment of diseases
such as cancer.

For clarity of discussion, the invention is described in the subsections below by way of example for the MCK-10 gene depicted in Figures 1A, 1B and 1C and the CCK-2 gene depicted in Figures 3A, 3B, 3C and 3D. However, the principles may be analogously applied to differentially spliced isoforms of MCK-10 and to other members of the MCK-10 family of receptors.

#### 5.1. THE MCK-10 CODING SEQUENCE

The nucleotide coding sequence and deduced amino acid sequence of the human MCK-10 gene is depicted in Figures 1A, 1B and 1C (SEQ. ID NO. 1). In accordance with the invention, any nucleotide sequence which encodes the amino acid sequence of the MCK-10 gene product can be used to generate recombinant molecules which direct the expression of MCK-10. In additional embodiments of the invention, nucleotide sequences

35

which selectively hybridize to the MCK-10 nucleotide sequence shown in FIG. 1A, 1B and 1C (SEQ ID NO: 1) may also be used to express gene products with MCK-10 activity. Hereinafter all such variants of the MCK-10 nucleotide sequence will be referred to as the MCK-10 DNA sequence.

In a specific embodiment described herein, the human MCK-10 gene was isolated by performing a polymerase chain reaction (PCR) in combination with two degenerate oligonucleotide primer pools that were designed on the basis of highly conserved sequences within the kinase domain of receptor tyrosine kinases corresponding to the amino acid sequence HRDLAA (sense primer) and SDVWS/FY (antisense primer) (Hanks et al., 1988). As a template cDNA synthesized by reverse 15 transcription of poly-A RNA from the human mammary carcinoma cell line MCF7, was used. A novel RTK. designated MCK-10 (mammary carcinoma kinase 10) was identified that within the tyrosine kinase domain exhibited extensive sequence similarity to the insulin 20 receptor family. The PCR fragment was used to screen a lambda gt11 library of human fetal brain cDNA (Clontech). Several overlapping clones were identified. The composite of these cDNA clones is depicted in Figures 1A, 1B and 1C. Furthermore, screening of a human placental library yielded two cDNA clones, MCK-10-1 and MCK-10-2, which encoded the entire MCK-10 protein but contained a shorter 5' untranslated region starting at position 278 of the MCK-10 sequence (Figures 1A, 1B and 1C). Sequences 30 analysis of the two clones revealed complete identity with the exception of 111 additional nucleotides within the juxtamembrane domain, between nucleotides 1832 and 1943. One of the clones isolated from the human fetal brain library contained an additional 18 nucleotides in the tyrosine kinase domain. These

sequences were in-frame with the MCK-10 open reading frame and did not contain any stop codons. The MCK-10 splice isoforms have been designated MCK-10-1 (with the additional 111 bp), MCK-10-2 (without any insertions), MCK-10-3 (with the additional 111 bp and 18 bp), and MCK-10-4 (with the additional 18 bp) (FIG. 2).

As shown in Figures 1A, 1B, and 1C and Figures 3A, 3B, 3C and 3D, MCK-10 have all of the characteristics of a receptor PTK: the initiation codon is followed by a stretch of essentially hydrophobic amino acids, which may serve as a signal peptide. Amino acids 417-439 are also hydrophobic in nature, with the characteristics of a transmembrane region. The extracellular domain encompasses 4 consensus N-glycosylation sites (AsnXSer/Thr) and 7 cysteine residues. The extracellular region is

- consensus N-glycosylation sites (AsnXSer/Thr) and 7 cysteine residues. The extracellular region is shorter than that of the insulin receptor family and shows no homology to other receptor tyrosine kinases, but contains near the N-terminus the consensus sequences for the discoidin I like family (Poole et
- al. 1981, J. Mol. Biol. 153: 273-289), which are located as tandem repeats in MGP and BA46, two milk fat globule membrane proteins (Stubbs et al. 1990, Proc. Natl. Acad. Sci. USA, 87, 8417-8421, Larocca et al. 1991, Cancer Res. 51: 4994-4998), in the light
- chains of factor V (Kane et al. 1986, Proc. Natl. Acad. Sci. USA, 83: 6800-6804) and VIII (Toole et al. 1984, Nature 312: 342-347), and in the A5 protein (Takagi et al. 1987, Dev. Biol., 122: 90-100)
- The protein backbone of MCK-10-1 and MCK-10-2 proreceptors, with predicted molecular weights of 101.13 and 97.17 kD, respectively, can thus be subdivided into a 34.31 kD  $\alpha$  subunit and 66.84 or 62.88 kD  $\beta$ -subunits that contain the tyrosine kinase
- 35 homology and alternative splice sites.

The consensus sequence for the ATP-binding motif is located at positions 617-627. When compared with other kinases, the ATP binding domain is with 176 amino acids (including the additional 37 amino acids) further from the transmembrane domain than any other tyrosine kinase. The additional 37 amino acids are located in the long and proline/glycine-rich juxtamembrane region and contain an NPAY sequence (where A can be exchanged for any amino acid), which is found in cytoplasmic domains of several cell

- surface proteins, including RTKs of the EGF and
  insulin receptor families (Chen et al. 1990, J. Biol:
  Chem., 265: 3116-3123). This consensus motif is
  followed by the sequence TYAXPXXXPG, which is repeated
  downstream in MCK-10 in the juxtamembrane domain at
  positions 585-595. Recently it has been shown that
  this motif is deleted in the cytoplasmic juxtamembrane
  region of the activin receptor, serine/threonine
  kinase, resulting in reduced ligand binding affinity
  (Attisano et al. 1992, Cell, 68: 97-108).
- In comparison with other RTKs, the catalytic domain shows the highest homology to the TrkA receptor. The YY- motifs (position 802/803) and the tyrosine at position 798, representing putative autophosphorylation sites, characterize MCK-10 as a member of the insulin receptor family. Finally, MCK-10 shares homology with the Trk kinases with their characteristic short carboxyl-terminal tail of 9 amino acids.

To determine whether the additional 111

30 nucleotides present in MCK-10-1 and -3 were ubiquitously expressed or expressed only in specific human tissues, a PCR analysis on different human cDNAs using oligonucleotide primers corresponding to sequences flanking the insertion site was carried out.

35 Parallel PCR amplifications were performed on plasmid

DNAs of MCK-10-1/MCK-10-2 as controls. Expression of both isoforms were identified in brain, pancreas, placenta, colon, and kidney, and in the cell lines Caki 2 (kidney ca), SW 48 (colon ca), and HBL100 and T47D (breast ca). The PCR products were subcloned into the Bluescript vector to confirm the nucleotide sequence.

Using a hybridization probe comprising the 5' 1694 bp cDNA fragment of MCK-10 (excluding the 111 bp insert), which encompasses the extracellular,

- transmembrane, and juxtamembrane domains, the MCK-10 gene revealed the existence of multiple transcript sizes with a major form of 4.2 kb. The highest expression of MCK-10 mRNA was detected in lung, intermediate levels were found in kidney, colon, stomach, placenta and brain, low levels in pancreas,
  - and no MCK-10 mRNA was detected in liver (FIG. 5A).
    Figures 5B illustrates the levels of expression of
    MCK-10 in a variety of breast cancer cell lines and
    Figures 5C presents the levels of MCK-10 expression in
- 20 different tumor cell lines. A summary of the expression patterns of MCK-10 in different cell lines is presented in TABLE 1.

| T | Δ | B. | T.P | 1 |
|---|---|----|-----|---|

|             | TADDS 1                         |     |
|-------------|---------------------------------|-----|
| MCK-10      | EXPRESSION IN DIFFERENT CELL LI | NES |
| BREAST CANC | ER CELL LINES                   |     |
| BT-474      | +                               |     |
| T-47D       | +                               | +++ |
| BT-20       | +                               | ++  |
| MDA-MB-453  | +                               | +   |
| MDA-MB-468  | +                               | +   |
| MDA-MB-435  | +                               | +   |
| MDA-MB-175  | +                               | +++ |

|    | MDA-MB-231                  | ++  |
|----|-----------------------------|-----|
|    | HBL 100                     | +   |
|    | SK-BR-3                     | +   |
|    | MCF-7                       | ++  |
| 5  | LUNG CANCER CELL LINES      |     |
|    | WI-38                       | +   |
|    | WI-26                       | +   |
| 10 | MELANOMA CELL LINES         |     |
|    | SK-Mel-3                    | +   |
|    | Wm 266-4                    | +   |
|    | HS 294T                     | ++  |
| 15 | COLON CANCER CELL LINES     |     |
|    | Caco-2                      | +++ |
|    | -SNU-C2B                    | +++ |
|    | SW48                        | ++  |
| 20 | KIDNEY CANCER CELL LINE     |     |
|    | CAKI-2                      | +++ |
|    | EPIDERMOID CANCER CELL LINE |     |
|    | A431                        | ++  |
| 25 | OTHER CANCERS               |     |
|    | rhabdomyosarcoma            | ++  |
|    | Ewing sarcoma               | ++  |
| 30 | glioblastoma                | ++  |
| 30 | neuroblastoma               | -   |
|    | hepatoblastoma              | +   |
|    | HEMAPOIETIC CELL LINES      |     |
| 35 | EB3                         | -   |
| 33 | CEM                         | -   |
|    |                             |     |

| MOLT4 | - |
|-------|---|
| DAUDI | _ |
| RAJI  | _ |
| MEG01 |   |
| KG1   | _ |
| K562  | _ |

In situ hybridization analysis with the 5' 1865

bp of MCK-10-2 indicated that MCK-10 was expressed

specifically in epithelial cells of various tissues including:

- cuboidal epithelial cells lining the distal kidney tubulus (FIG. 7)
- 15 columnar epithelial cells lining the large bowel tract
  - deep layer of epithelial cells lining the stomach
  - epithelial cells lining the mammary ducts
  - islet cells of the pancreas (FIG. 13 and FIG. 14)
- epithelial cells of the thyroid gland, which produces thyroid hormones

No detectable MCK-10 expression was observed in connective tissues, endothelial cells, adipocytes, muscle cells, or hemopoietic cells.

- 25 MCK-10 expression was also detected in all tumors investigated which included:
  - adenocarcinoma of the colon (FIG. 16 and FIG. 17)
  - adenocarcinoma of the stomach
- 30 adenocarcinoma of the lung
  - infiltrating ductal carcinoma of the breast
    - cystadenoma of the ovary
    - multi endocrine tumor of the pancreas
    - carcinoid tumor of the pancreas
- 35 tubular cells of renal cell carcinoma

35

- transitional cell carcinoma (a malignant epithelial tumor of the bladder)
- meningiothelial tumor (FIG. 18)
- medulloblastoma with hyperchromatic atypical nuclei and spare cytoplasm (MCK-10 expression is only seen in cells with well developed cytoplasm) (FIG. 20 and FIG. 20)
  - glioblastoma (a tumor of the neuroepithelial tissue) (FIG. 19)
- The in situ hybridization experiments revealed the highest expression of MCK-10 in malignant cells of the ductal breast carcinoma, in the tumor cells of a multi-endocrine tumor, and in the tumor cells of a transitional cell carcinoma of the bladder.

#### 5.2 THE CCK-2 CODING SEQUENCE

The present invention also relates to other members of the MCK-10 family of receptor kinases. Members of the MCK-10 family are defined herein as 20 those DNA sequences capable of hybridizing to MCK-10 DNA sequences as presented in Figures 1A, 1B and 1C. Such receptors may demonstrate 80% homology at the amino acid level in substantial stretches of DNA sequences. In addition, such receptors can be defined 25 as those receptors containing an intracellular tyrosine kinase domain and a discoidin I sequence located near the amino-terminal end of the protein. The discoidin I domain is defined as that region of MCK-10 located between amino acid 31-185 as presented 30 in Figure 1.

In a specific embodiment of the invention described herein, an additional member of the MCK-10 family of receptor tyrosine kinases was cloned and characterized. The nucleotide coding sequence and deduced amino acid sequence of the novel receptor

PENY-202603.1

tyrosine kinase, herein referred to as CCK-2, is presented in Figures 3A, 3B, 3C and 3D. In accordance with the invention, any nucleotide sequence which encodes the amino acid sequence of the CCK-2 gene product can be used to generate recombinant molecules which direct the expression of CCK-2. In additional, embodiments of the invention, nucleotide sequences which selectively hybridize to the CCK-2 nucleotide sequence as shown in Figures 3A, 3B, 3C and 3D (SEQ. ID NO: 2) may also be used to express gene products with CCK-2 activity.

Analysis of the CCK-2 sequence revealed significant homology to the extracellular, transmembrane and intracellular region of the MCK-10 receptor indicating that it was a member of the MCK-10 family of receptors. The shared homology between CCK-2 and MCK-10 is depicted in Figure 4A and 4B.

#### 5.3. EXPRESSION OF MCK-10 RECEPTOR AND GENERATION OF CELL LINES THAT EXPRESS MCK-10

For clarity of discussion the expression of receptors and generation of cell lines expressing receptors are described by way of example for the MCK-10 gene. However, the principles may be analogously applied to expression and generation of cell lines expressing spliced isoforms of MCK-10 or to other members of the MCK-10 family of receptors, such as CCK-2.

In accordance with the invention, MCK-10
nucleotide sequences which encode MCK-10, peptide
fragments of MCK-10, MCK-10 fusion proteins or
functional equivalents thereof may be used to generate
recombinant DNA molecules that direct the expression
of MCK-10 protein or a functionally equivalent
thereof, in appropriate host cells. Alternatively,

nucleotide sequences which hybridize to portions of the MCK-10 sequence may also be used in nucleic acid hybridization assays, Southern and Northern blot analyses, etc.

Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence, may be used in the practice of the invention for the cloning and expression of the MCK-10 protein. Such DNA sequences include those which are capable of 10 hybridizing to the human MCK-10 sequence under

stringent conditions.

Altered DNA sequences which may be used in accordance with the invention include deletions, additions or substitutions of different nucleotide residues 15 resulting in a sequence that encodes the same or a functionally equivalent gene product. alterations would in all likelihood be in regions of MCK-10 that do not constitute functionally conserved regions such as the discordin I domain or the tyrosine 20 kinase domain. In contrast, alterations, such as deletions, additions or substitutions of nucleotide residues in functionally conserved MCK-10 regions would possibly result in a nonfunctional MCK-10 receptor. The gene product itself may contain 25 deletions, additions or substitutions of amino acid residues within the MCK-10 sequence, which result in a silent change thus producing a functionally equivalent MCK-10. Such amino acid substitutions may be made on the basis of similarity in polarity, charge, 30 solubility, hydrophobicity, hydrophilicity, and/or the amphipatic nature of the residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids 35 with uncharged polar head groups having similar

25

hydrophilicity values include the following: leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine; phenylalanine, tyrosine.

The DNA sequences of the invention may be engineered in order to alter the MCK-10 coding sequence for a variety of ends including but not limited to alterations which modify processing and expression of the gene product. For example, mutations may be introduced using techniques which are well known in the art, e.g. site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, phosphorylation, etc. For example, in certain expression systems such as yeast, host cells may over glycosylate the gene product. When using such expression systems it may be preferable to alter the MCK-10 coding sequence to eliminate any N-linked glycosylation site.

In another embodiment of the invention, the MCK-10 or a modified MCK-10 sequence may be ligated to a heterologous sequence to encode a fusion protein. For example, for screening of peptide libraries it may be useful to encode a chimeric MCK-10 protein expressing a heterologous epitope that is recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the MCK-10 sequence and the heterologous protein sequence, so that the MCK-10 may be cleaved away from the heterologous moiety.

In an alternate embodiment of the invention, the coding sequence of MCK-10 could be synthesized in whole or in part, using chemical methods well known in the art. See, for example, Caruthers, et al., 1980, Nuc. Acids Res. Symp. Ser. 7:215-233; Crea and Horn, 180, Nuc. Acids Res. 9(10):2331; Matteucci and Caruthers, 1980, Tetrahedron Letters 21:719; and Chow and Kempe, 1981, Nuc. Acids Res. 9(12):2807-2817.

Alternatively, the protein itself could be produced using chemical methods to synthesize the MCK-10 amino acid sequence in whole or in part. For example, peptides can be synthesized by solid phase techniques, cleaved from the resin, and purified by preparative

- high performance liquid chromatography. (E.g., see Creighton, 1983, Proteins Structures And Molecular Principles, W.H. Freeman and Co., N.Y. pp. 50-60). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g.,
- the Edman degradation procedure; see Creighton, 1983, Proteins, Structures and Molecular Principles, W.H. Freeman and Co., N.Y., pp. 34-49.

In order to express a biologically active MCK-10, the nucleotide sequence coding for MCK-10, or a func
15 tional equivalent, is inserted into an appropriate expression vector, <u>i.e.</u>, a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. The MCK-10 gene products as well as host cells or cell lines transfected or transformed with recombinant MCK-10 expression vectors can be used for a variety of purposes. These include but are not limited to generating antibodies (<u>i.e.</u>, monoclonal or polyclonal)

that bind to the receptor, including those that

25 competitively inhibit binding of MCK-10 ligand and
 "neutralize" activity of MCK-10 and the screening and
 selection of drugs that act via the MCK-10 receptor;
 etc.

30

35

#### 5.3.1. EXPRESSION SYSTEMS

Methods which are well known to those skilled in the art can be used to construct expression vectors containing the MCK-10 coding sequence and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques,

synthetic techniques and in <u>vivo</u> recombination/genetic recombination. See, for example, the techniques described in Maniatis et al., 1989, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. and Ausubel et al., 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y.

A variety of host-expression vector systems may be utilized to express the MCK-10 coding sequence. These include but are not limited to microorganisms

- such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the MCK-10 coding sequence; yeast transformed with recombinant yeast expression vectors containing the MCK-10 coding sequence; insect
- cell systems infected with recombinant virus expression vectors (<u>e.g.</u>, baculovirus) containing the MCK-10 coding sequence; plant cell systems infected with recombinant virus expression vectors (<u>e.g.</u>,
- cauliflower mosaic virus, CaMV; tobacco mosaic virus,

  TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the MCK-10 coding sequence; or animal cell systems

  The expression elements of these systems vary in their strength and specificities. Depending on the
- host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial systems, inducible promoters such
- 30 as pL of bacteriophage λ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from
- 35 the genome of plant cells (e.g., heat shock promoters;

the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 355 RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia

metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the MCK-10 DNA, SV40-, BPV- and EBV-based vectors may be used with an

SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

In bacterial systems a number of expression vectors may be advantageously selected depending upon the use intended for the MCK-10 expressed. For example, when large quantities of MCK-10 are to be produced for the generation of antibodies or to screen peptide libraries, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors

include but are not limited to the <u>E. coli</u> expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which the MCK-10 coding sequence may be ligated into the vector in frame with the lac Z coding region so that a hybrid AS-lac Z protein is produced; pIN

vectors (Inouye & Inouye, 1985, Nucleic acids Res.
13:3101-3109; Van Heeke & Schuster, 1989, J. Biol.
Chem. 264:5503-5509); and the like. pGEX vectors may
also be used to express foreign polypeptides as fusion
proteins with glutathione S-transferase (GST). In

general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease

35

cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety.

In yeast, a number of vectors containing constitutive or inducible promoters may be used. For a review see, Current Protocols in Molecular Biology, Vol. 2, 1988, Ed. Ausubel et al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13; Grant et al., 1987, Expression and Secretion Vectors for Yeast, in Methods in Enzymology, Eds. Wu & Grossman, 1987, Acad. Press, N.Y., Vol. 153, pp. 516-544; Glover, 1986, DNA

- 10 Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3; and Bitter, 1987, Heterologous Gene Expression in Yeast, Methods in Enzymology, Eds. Berger & Kimmel, Acad. Press, N.Y., Vol. 152, pp. 673-684; and The Molecular Biology of the Yeast Saccharomyces, 1982, Eds.
- 15 Strathern et al., Cold Spring Harbor Press, Vols. I and II.

In cases where plant expression vectors are used, the expression of the MCK-10 coding sequence may be driven by any of a number of promoters. For example, viral promoters such as the 35S RNA and 19S RNA

- promoters of CaMV (Brisson et al., 1984, Nature 310:511-514), or the coat protein promoter of TMV (Takamatsu et al., 1987, EMBO J. 6:307-311) may be used; alternatively, plant promoters such as the small
  - subunit of RUBISCO (Coruzzi et al., 1984, EMBO J. 3:1671-1680; Broglie et al., 1984, Science 224:838-843); or heat shock promoters, e.g., soybean hsp17.5-E or hsp17.3-B (Gurley et al., 1986, Mol. Cell. Biol. 6:559-565) may be used. These constructs can be
- introduced into plant cells using Ti plasmids, Ri plasmids, plant virus vectors, direct DNA transformation, microinjection, electroporation, etc. For reviews of such techniques see, for example, Weissbach & Weissbach, 1988, Methods for Plant Molecular
- 35 Biology, Academic Press, NY, Section VIII, pp. 421-

463; and Grierson & Corey, 1988, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9.

An alternative expression system which could be used to express MCK-10 is an insect system. In one such system, <u>Autographa californica</u> nuclear

- polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in <u>Spodoptera</u> <u>frugiperda</u> cells. The MCK-10 coding sequence may be cloned into non-essential regions (for example the polyhedrin gene) of the virus and placed under control
- of an ACNPV promoter (for example the polyhedrin promoter). Successful insertion of the MCK-10 coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in

are then used to infect <u>Spodoptera frugiperda</u> cells i which the inserted gene is expressed. (<u>E.g.</u>, see Smith et al., 1983, J. Viol. 46:584; Smith, U.S. Patent No. 4,215,051).

20 In mammalian host

In mammalian host cells, a number of viral based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the MCK-10 coding sequence may be ligated to an adenovirus transcription/translation control complex, e.g., the

25 late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant

- 30 virus that is viable and capable of expressing MCK-10 in infected hosts. (E.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. (USA) 81:3655-3659). Alternatively, the vaccinia 7.5K promoter may be used. (See, e.g., Mackett et al., 1982, Proc. Natl. Acad. Sci.
- 35 (USA) 79:7415-7419; Mackett et al., 1984, J. Virol.

49:857-864; Panicali et al., 1982, Proc. Natl. Acad. Sci. 79:4927-4931).

Specific initiation signals may also be required for efficient translation of inserted MCK-10 coding sequences. These signals include the ATG initiation <sup>5</sup> codon and adjacent sequences. In cases where the entire MCK-10 gene, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of the MCK-10 coding sequence is inserted, exogenous translational control signals, including the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the MCK-10 coding sequence 15 to ensure translation of the entire insert. exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription 20 enhancer elements, transcription terminators, etc.

(see Bittner et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen which modulates the expression of the inserted

25 sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. The presence of four consensus N-

- 30 glycosylation sites in the MCK-10 extracellular domain support that proper modification may be important for MCK-10 function. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins.
- 35 Appropriate cells lines or host systems can be chosen

15

20

25

to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, WI38, etc.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. example, cell lines which stably express the MCK-10 may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with the MCK-10 DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the MCK-10 on the cell surface. Such engineered cell lines are particularly useful in screening for drugs that affect MCK-10.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase

PENY-202603.1

(Lowy, et al., 1980, Cell 22:817) genes can be employed in tk', hgprt' or aprt' cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981), Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-

- 10 Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.
  Recently, additional selectable genes have been described, namely trpB, which allows cells to utilize
- indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, 1988, Proc. Natl. Acad. Sci. USA 85:8047); and ODC (ornithine decarboxylase) which confers resistance to the ornithine decarboxylase
- inhibitor, 2-(difluoromethyl)-DL-ornithine, DFMO
  (McConlogue L., 1987, In: Current Communications in
  Molecular Biology, Cold Spring Harbor Laboratory ed.).

#### 5.3.2. IDENTIFICATION OF TRANSFECTANTS OR TRANSFORMANTS THAT EXPRESS THE MCK-10

The host cells which contain the coding sequence and which express the biologically active gene product may be identified by at least four general approaches;

30 (a) DNA-DNA or DNA-RNA hybridization; (b) the presence or absence of "marker" gene functions; (c) assessing the level of transcription as measured by the expression of MCK-10 mRNA transcripts in the host cell; and (d) detection of the gene product as measured by immunoassay or by its biological activity.

In the first approach, the presence of the MCK-10 coding sequence inserted in the expression vector can be detected by DNA-DNA or DNA-RNA hybridization using probes comprising nucleotide sequences that are homologous to the MCK-10 coding sequence,

5 respectively, or portions or derivatives thereof.

In the second approach, the recombinant expression vector/host system can be identified and selected based upon the presence or absence of certain "marker" gene functions (e.g., thymidine kinase activity,

- resistance to antibiotics, resistance to methotrexate, transformation phenotype, occlusion body formation in baculovirus, etc.). For example, if the MCK-10 coding sequence is inserted within a marker gene sequence of the vector, recombinants containing the MCK-10 coding
- sequence can be identified by the absence of the marker gene function. Alternatively, a marker gene can be placed in tandem with the MCK-10 sequence under the control of the same or different promoter used to control the expression of the MCK-10 coding sequence.
- Expression of the marker in response to induction or selection indicates expression of the MCK-10 coding sequence.

In the third approach, transcriptional activity for the MCK-10 coding region can be assessed by hybridization assays. For example, RNA can be isolated and analyzed by Northern blot using a probe homologous to the MCK-10 coding sequence or particular portions thereof. Alternatively, total nucleic acids of the host cell may be extracted and assayed for

In the fourth approach, the expression of the MCK-10 protein product can be assessed immunologically, for example by Western blots, immunoassays such as radioimmuno-precipitation,

35 enzyme-linked immunoassays and the like.

hybridization to such probes.

## 5.4. USES OF THE MCK-10 RECEPTOR AND ENGINEERED CELL LINES

For clarity of discussion the uses of the expressed receptors and engineered cell lines expressing the receptors is described by way of example for MCK-10. The described uses may be equally applied to expression of MCK-10 spliced isoforms or additional members of the MCK-10 gene family such as CCK-2.

- In an embodiment of the invention the MCK-10

  receptor and/or cell lines that express the MCK-10
  receptor may be used to screen for antibodies,
  peptides, or other ligands that act as agonists or
  antagonists of the MCK-10 receptor. For example,
  anti-MCK-10 antibodies may be used to inhibit MCK-10
- function. Alternatively, screening of peptide libraries with recombinantly expressed soluble MCK-10 protein or cell lines expressing MCK-10 protein may be useful for identification of therapeutic molecules that function by inhibiting the biological activity of
- MCK-10. The uses of the MCK-10 receptor and engineered cell lines, described in the subsections below, may be employed equally well for MCK-10 family of receptor tyrosine kinases.
- In an embodiment of the invention, engineered

  cell lines which express the entire MCK-10 coding
  region or its ligand binding domain may be utilized to
  screen and identify ligand antagonists as well as
  agonists. Synthetic compounds, natural products, and
  other sources of potentially biologically active
- 30 materials can be screened in a number of ways.

## 5.4.1. SCREENING OF PEPTIDE LIBRARY WITH MCK-10 PROTEIN OR ENGINEERED CELL LINES

Random peptide libraries consisting of all possible combinations of amino acids attached to a solid phase support may be used to identify peptides that are able to bind to the ligand binding site of a given receptor or other functional domains of a receptor such as kinase domains (Lam, K.S. et al., 1991, Nature 354: 82-84). The screening of peptide libraries may have therapeutic value in the discovery of pharmaceutical agents that act to inhibit the biological activity of receptors through their interactions with the given receptor.

Identification of molecules that are able to bind
to the MCK-10 may be accomplished by screening a
peptide library with recombinant soluble MCK-10
protein. Methods for expression and purification of
MCK-10 are described in Section 5.2.1 and may be used
to express recombinant full length MCK-10 or fragments
of MCK-10 depending on the functional domains of
interest. For example, the kinase and extracellular
ligand binding domains of MCK-10 may be separately
expressed and used to screen peptide libraries.

To identify and isolate the peptide/solid phase

25 support that interacts and forms a complex with MCK10, it is necessary to label or "tag" the MCK-10
molecule. The MCK-10 protein may be conjugated to
enzymes such as alkaline phosphatase or horseradish
peroxidase or to other reagents such as fluorescent

1abels which may include fluorescein isothylocynate
(FITC), phycoerythrin (PE) or rhodamine. Conjugation
of any given label, to MCK-10, may be performed using
techniques that are routine in the art.
Alternatively, MCK-10 expression vectors may be
engineered to express a chimeric MCK-10 protein

containing an epitope for which a commercially available antibody exist. The epitope specific antibody may be tagged using methods well known in the art including labeling with enzymes, fluorescent dyes or colored or magnetic beads.

The "tagged" MCK-10 conjugate is incubated with the random peptide library for 30 minutes to one hour at 22°C to allow complex formation between MCK-10 and peptide species within the library. The library is then washed to remove any unbound MCK-10 protein. If MCK-10 has been conjugated to alkaline phosphatase or horseradish peroxidase the whole library is poured.

- MCK-10 has been conjugated to alkaline phosphatase or horseradish peroxidase the whole library is poured into a petri dish containing substrates for either alkaline phosphatase or peroxidase, for example, 5bromo-4-chloro-3-indoyl phosphate (BCIP) or
  15
  3.3.4.4.\*\*adjampoknogidine (DND)
- 3,3',4,4"-diamnobenzidine (DAB), respectively. After incubating for several minutes, the peptide/solid phase-MCK-10 complex changes color, and can be easily identified and isolated physically under a dissecting microscope with a micromanipulator. If a fluorescent
  - tagged MCK-10 molecule has been used, complexes may be isolated by fluorescent activated sorting. If a chimeric MCK-10 protein expressing a heterologous epitope has been used, detection of the peptide/MCK-10 complex may be accomplished by using a labeled
- epitope specific antibody. Once isolated, the identity of the peptide attached to the solid phase support may be determined by peptide sequencing.

In addition to using soluble MCK-10 molecules, in another embodiment, it is possible to detect peptides that bind to cell surface receptors using intact cells. The use of intact cells is preferred for use with receptors that are multi-subunits or labile or with receptors that require the lipid domain of the cell membrane to be functional. Methods for

35 generating cell lines expressing MCK-10 are described

15

20

25

30

35

in Sections 5.2.1. and 5.2.2. The cells used in this technique may be either live or fixed cells. The cells will be incubated with the random peptide library and will bind to certain peptides in the library to form a "rosette" between the target cells and the relevant solid phase support/peptide. The rosette can thereafter be isolated by differential centrifugation or removed physically under a dissecting microscope.

As an alternative to whole cell assays for

membrane bound receptors or receptors that require the
lipid domain of the cell membrane to be functional,
the receptor molecules can be reconstituted into
liposomes where label or "tag" can be attached.

#### 5.4.2. ANTIBODY PRODUCTION AND SCREENING

Various procedures known in the art may be used for the production of antibodies to epitopes of the recombinantly produced MCK-10 receptor. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by an Fab expression library. Neutralizing antibodies i.e., those which compete for the ligand binding site of the receptor are especially preferred for diagnostics and therapeutics.

Monoclonal antibodies that bind MCK-10 may be radioactively labeled allowing one to follow their location and distribution in the body after injection. Radioactivity tagged antibodies may be used as a non-invasive diagnostic tool for imaging *de novo* cells of tumors and metastases.

Immunotoxins may also be designed which target cytotoxic agents to specific sites in the body. For example, high affinity MCK-10 specific monoclonal antibodies may be covalently complexed to bacterial or plant toxins, such as diphtheria toxin, abrin or

PENY-202603.1

ricin. A general method of preparation of antibody/hybrid molecules may involve use of thiol-crosslinking reagents such as SPDP, which attack the primary amino groups on the antibody and by disulfide exchange, attach the toxin to the antibody. The hybrid antibodies may be used to specifically eliminate MCK-10 expressing tumor cells.

For the production of antibodies, various host animals may be immunized by injection with the MCK-10 protein including but not limited to rabbits, mice, rats, etc. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacilli Calmette-Guerin) and

Corynebacterium parvum.

20 Monoclonal antibodies to MCK-10 may be prepared by using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include but are not limited to the hybridoma technique originally described by 25 Kohler and Milstein, (Nature, 1975, 256:495-497), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today, 4:72; Cote et al., 1983, Proc. Natl. Acad. Sci., 80:2026-2030) and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, 35 Nature, 314:452-454) by splicing the genes from a

mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce MCK-10-specific single chain antibodies.

Antibody fragments which contain specific binding sites of MCK-10 may be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')<sub>2</sub> fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')<sub>2</sub> fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity to MCK-10.

### 5.5. USES OF MCK-10 CODING SEQUENCE

20 The MCK-10 coding sequence may be used for diagnostic purposes for detection of MCK-10 expression. Included in the scope of the invention are oligoribonucleotide sequences, that include antisense RNA and DNA molecules and ribozymes that 25 function to inhibit translation of MCK-10. addition, mutated forms of MCK-10, having a dominant negative effect, may be expressed in targeted cell populations to inhibit the activity of endogenously expressed MCK-10. The uses described below may be 30 equally well adapted for MCK-10 spliced isoform coding sequences and sequences encoding additional members of the MCK-10 family of receptors, such as CCK-2.

10

25

## 5.5.1. USE OF MCK-10 CODING SEQUENCE IN DIAGNOSTICS AND THERAPEUTICS

The MCK-10 DNA may have a number of uses for the diagnosis of diseases resulting from aberrant expression of MCK-10. For example, the MCK-10 DNA sequence may be used in hybridization assays of biopsies or autopsies to diagnose abnormalities of MCK-10 expression; e.g., Southern or Northern analysis, including in situ hybridization assays.

Also within the scope of the invention are oligoribonucleotide sequences, that include anti-sense RNA
and DNA molecules and ribozymes that function to
inhibit the translation of MCK-10 mRNA. Anti-sense
RNA and DNA molecules act to directly block the
translation of mRNA by binding to targeted mRNA and
preventing protein translation. In regard to
antisense DNA, oligodeoxyribonucleotides derived from
the translation initiation site, e.g., between -10 and
+10 regions of the MCK-10 nucleotide sequence, are
preferred.

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by a endonucleolytic cleavage. Within the scope of the invention are engineered hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of MCK-10 RNA sequences.

Specific ribozyme cleavage sites within any
potential RNA target are initially identified by
scanning the target molecule for ribozyme cleavage
sites which include the following sequences, GUA, GUU
and GUC. Once identified, short RNA sequences of
between 15 and 20 ribonucleotides corresponding to the
region of the target gene containing the cleavage site

may be evaluated for predicted structural features such as secondary structure that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.

Both anti-sense RNA and DNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo 15 transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense 20 cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Various modifications to the DNA molecules may be introduced as a means of increasing intracellular

25 stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribo- or deoxy- nucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

20

## 5.5.2. USE OF DOMINANT NEGATIVE MCK-10 MUTANTS IN GENE THERAPY

Receptor dimerization induced by ligands, is thought to provide an allosteric regulatory signal that functions to couple ligand binding to stimulation of kinase activity. Defective receptors can function as dominant negative mutations by suppressing the activation and response of normal receptors by formation of unproductive heterodimers. Therefore, defective receptors can be engineered into recombinant viral vectors and used in gene therapy in individuals that inappropriately express MCK-10.

In an embodiment of the invention, mutant forms of the MCK-10 molecule having a dominant negative effect may be identified by expression in selected cells. Deletion or missense mutants of MCK-10 that retain the ability to form dimers with wild type MCK-10 protein but cannot function in signal transduction may be used to inhibit the biological activity of the endogenous wild type MCK-10. For example, the cytoplasmic kinase domain of MCK-10 may be deleted resulting in a truncated MCK-10 molecule that is still able to undergo dimerization with endogenous wild type receptors but unable to transduce a signal.

Recombinant viruses may be engineered to express
dominant negative forms of MCK-10 which may be used to
inhibit the activity of the wild type endogenous MCK10. These viruses may be used therapeutically for
treatment of diseases resulting from aberrant
expression or activity of MCK-10, such as cancers.

Expression vectors derived from viruses such as retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, or bovine papilloma virus, may be used for delivery of recombinant MCK-10 into the targeted cell population. Methods which are well known to those skilled in the art can be used to construct

15

20

those recombinant viral vectors containing MCK-10 coding sequence. See, for example, the techniques described in Maniatis et al., 1989, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. and Ausubel et al., 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y. Alternatively, recombinant MCK-10 molecules can be reconstituted into liposomes for delivery to target cells.

### 6. EXAMPLES: CLONING AND CHARACTERIZATION OF MCK-10

The subsection below describes the isolation and characterization of a cDNA clones encoding the novel receptor tyrosine kinase designated MCK-10 and differentially spliced isoforms of MCK-10.

#### 6.1. MATERIALS AND METHODS

### 6.1.1. cDNA CLONING AND CHARACTERIZATION OF MCK-10

Confluent plates of the human breast cancer cell line MCF7 (American Type Culture Collection HTB22) were lysed by treatment with guanidinium-thiocyanate according to Chirgwin et al. (1979, Biochemistry

- 25 18:5294-5299). Total RNA was isolated by CsCl-gradient centrifugation. First-strand cDNA was synthesized from 20 μg total RNA with avian myeloblastosis virus (AMV) reverse transcriptase (Boehringer Mannheim).
- cDNA was used in a polymerase chain reaction under standard conditions (PCR Technology-Principles and Applications for DNA Amplifications, H.E. Erlich, ed., Stockton Press, New York 1989). The following pool of primers were used for the amplification:

#### Sense Primer

corresponding to the amino acid sequence  $\mbox{HRDLAA}$   $\mbox{EcoRI}$ 

5' GGAATTCC CAC AGN GAC TTN GCN GCN AG 3'

5

### Antisense Primer

corresponding to the amino acid sequence SDVWS F/Y

#### ECORT

10

30

3' TCN GAC GTN TGG ACN TTC CCTTAAGG 5'
G G TG CAT

Thirty-five PCR cycles were carried out using
8 μg (0.8 μg) of the pooled primers. (Annealing 55°C,
1 min; Extension 72°C, 2 min; Denaturation 94°C, 1
min). The reaction product was subjected to
polyacrylamide gel electrophoresis. Fragments of the
expected size (~210 bp) were isolated, digested with
the restriction enzyme EcoRI, and subcloned into the
pBluescript vector (Stratagene) using standard
techniques (Current Protocols in Molecular Biology,
eds. F.M. Ausubel et al., John Wiley & Sons, New York,
1988).

The recombinant plasmids were transformed into the competent E. coli strain designated 298.

The subcloned PCR products were sequenced by the method of Sanger et al. (Proc. Natl. Acad. Sci. USA 74, 5463-5467) using Sequenase (United States Biochemical, Cleveland, Ohio 44111 USA). One clone, designated MCK-10 was identified as novel RTK.

### 6.1.2. FULL-LENGTH CDNA CLONING

The partial cDNA sequence of the new MCK-10 RTK, which was identified by PCR, was used to screen a \$\daggerap\$ \daggerap\$ \daggerap\$ \daggerap\$ (Clontech)

(complexity of 1x10<sup>10</sup> recombinant phages). One million independent phage clones were plated and transferred to nitrocellulose filters following standard procedures (Sambrook, H.J., Molecular Cloning, Cold Spring Harbor Laboratory Press, USA, 1989). The

- filters were hybridized to the EcoRI/EcoRI fragment of clone MCK-10, which had been radioactively labeled using 50μCi [α<sup>32</sup>P]ATP and the random-primed DNA labeling kit (Boehringer Mannheim). The longest cDNA insert (8) of ~3500 bp was digested with the
- restriction enzymes EcoRI/SacI to obtain a 5' end probe of 250 bp. This probe was used to rescreen the human fetal brain library and several overlapping clones were isolated. The composite of the cDNA clones are shown in Figures 1A, 1B and 1C. Some of the clones had a deletion of 6 amino acids at position 2315 in the MCK-10 segmence.

The 1.75 million independent phage clones of a human placenta library, \(\lambda ZAP\) were plated and screened with the 5' end probe (EcoRI/SacI) of clone 8. Two clones were full-length with a shorter 5' end starting at position 278 of the nucleotide sequence shown in Figures 1A, 1B and 1C. Subcloning of positive bacteriophages clones into pBluescript vector was done by the in vivo excision protocol (Stratagene).

The composite cDNA sequence and the predicted amino acid sequence of MCK-10 are shown in Figures 1A, 1B, and 1C. Different cDNA sequence variations of MCK-10 is presented in Figure 2.

30
6.1.3. NORTHERN BLOT ANALYSIS OF MCK-10
Total RNA was isolated from the following human
tissues: lung, pancreas, stomach, kidney, spleen,
liver, colon and placenta. RNA was also isolated from
various breast cancer cell lines and cell lines of
tumor origin.

20

PolyA<sup>+</sup> RNA was isolated on an oligo (dT) column (Aviv and Leder, 1972, Proc. Natl. Acad. Sci. USA 69, 1408-1412). The RNA was separated on an agarose gel containing 2.2M formaldehyde and blotted on a nitrocellulose filter (Schleicher and Schuell). 3µg of poly A<sup>+</sup> RNA was loaded per lane. The filter was hybridized with a <sup>32</sup>P-labeled EcoRI/EcoRI DNA fragment obtained by PCR. Subsequently, the filter was exposed to x-ray film at -70°C with an intensifying screen. The results are depicted in Figures 5A, 5B and 5C.

### 6.1.4. GENERATION OF MCK-10 SPECIFIC ANTIBODIES

Antisera was generated against synthetic peptides corresponding to the amino acid sequence of MCK-10.

amcK-10-N antisera was generated against the following N-terminal peptide located between amino acids 26-42:

H-F-D-P-A-K-D-C-R-Y-A-L-G-M-O-D-R-T-I.

 $\alpha MCK{-}10\text{-}c$  antisera was generated against the following C-terminal peptide located between amino acids 902-919

R-P-P-F-S-Q-L-H-R-F-L-A-E-D-A-L-N-T-V.  $\alpha$ MCK-10- $\beta$  antisera was generated against the following peptide near the processing site of  $\beta$ -subunit of MCK-10 located between amino acids 309-322:

P-A-M-A-W-E-G-E-P-M-R-H-N-L.

25 αMCK-10-C2 antisera was generated against the C-terminal peptide located between amino acids 893-909:

C-W-S-R-E-S-E-Q-R-P-P-F-S-Q-L-H-R.

Peptides were coupled to keyhole limpet

hemocyanin and injected with Freunds adjuvant into
Chinchilla rabbits. After the second boost, the
rabbits were bled and the antisera were tested in
immunoprecipitations using lysates of 293 cells
transiently overexpressing MCK-10-1 and MCK-10-2.

The samples were loaded on a 7.5% polyacrylamide gel and after electrophoresis transferred onto a nitrocellulose filter (Schleicher and Schuell). The blot was probed with the different antibodies as above and developed using the ECL Western blotting detection system according the manufacturer's instructions (Cat no. RPN 2108 Amersham International, UK).

### 6.1.5. IN SITU HYBRIDIZATION

- The 5' located cDNA fragment corresponding to
  nucleotides 278-1983 of clone MCK-10, excluding the
  111 base pair insert, were subcloned in the bluescript
  SK+ (Stratagene). For in situ hybridization, a
  single-strand antisense DNA probe was prepared as
  described by Schnürch and Risau (Development 1991,
  15 111, 1143-1154). The plasmid was linearized at the
- 111, 1143-1154). The plasmid was linearized at the 3'end of the cDNA and a sense transcript was synthesized using SP6 RNA polymerase (Boehringer). The DNA was degraded using DNase (RNase-free preparation, Boehringer Mannheim). With the
- transcript, a random-primed cDNA synthesis with  $\alpha^{-35} S$  ATP (Amersham) was performed by reverse transcription with MMLV reverse transcriptase (BRL). To obtain small cDNA fragments of about 100 bp in average, suitable for in situ hybridization, a high excess of
- primer was used. Subsequently, the RNA transcript was partially hydrolyzed in 100 nM NaOH for 20 min at 70°C, and the probe was neutralized with the same amount of HCL and purified with a Sephadex-G50 column. After ethanol precipitation the probe was dissolved at
- 30 a final specific activity of 5x10<sup>5</sup> cpm. For control hybridization, a sense probe was prepared using the same method.

Sectioning, postfixation was essentially performed according to Hogan et al. (1986, Manipulating the Mouse Embryo: A Laboratory Manual,

New York: Cold Spring Harbor Laboratory Press). um thick sections were cut at -18°C on a Leitz cryostat. For hybridization treatment, no incubation with 0.2M HCL for removing the basic proteins was Sections were incubated with the 35S-cDNA probe (5x104cpm/µl) at 52°C in a buffer containing 50% formamide, 300mM NaCl, 10 mM Tris-HCL, 10mM NaPO4 (pH 6.8), 5mM EDTA, 2% Ficoll 400, 0.2% polyvinylpyrrolidone, 0.02% BSA, 10 mg/ml yeast RNA, 10% dextran sulfate, and 10mM DTT. Posthybridization 10 washing was performed at high stringency (50% formamide, 300mM NaCl, 10mM Tris-HCL, 10 mM NaPO, (pH6.8), 5mM EDTA, 10 mMDTT at 52°C). autoradiography, slides were created with Kodak NTB2 film emulsion and exposed for eight days. After 15 developing, the sections were counterstained with toluidine blue.

### 6.2. RESULTS

6.2.1. CHARACTERIZATION OF MCK-10 CLONE

To identify novel receptor tyrosine kinases
(RTKs) that are expressed in mammary carcinoma cell
lines, we used the polymerase chain reaction in
combination with two degenerate oligonucleotide primer
pools based on highly conserved sequences within the
kinase domain of RTKs, corresponding to the amino acid
sequence HRDLAA (sense primer) and SDVWs/FY (antisense
primer) (Hanks et al. 1988, Science 241, 42-52), in
conjunction with cDNA synthesized by reverse
transcription of poly A RNA from the human mammary
carcinoma cell line MCF7. We identified a novel RTK,
designated MCK-10 (mammary carcinoma kinase 10), that

carcinoma cell line MCF7. We identified a novel RTK, designated MCK-10 (mammary carcinoma kinase 10), that within the tyrosine kinase domain exhibited extensive sequence similarity to the insulin receptor family. The PCR fragment was used to screen a lambda gt11

35 library of human fetal brain cDNA (Clontech). Several

PENY-202603.1

overlapping clones were identified and their composite sequence is shown in Figures 1A, 1B and 1C.
Furthermore, screening of a human placenta library yielded two cDNA clones which encoded the entire MCK-10 protein but whose 5' nucleotide sequence began at nucleotide 278 in the sequence shown in Figure 1. Sequence analysis of the two clones revealed complete identity with the exception of 111 additional nucleotides within the juxtamembrane domain, between nucleotides 1832 and 1943. One of the clones isolated

- from the human fetal brain library contained an additional 18 nucleotides in the tyrosine kinase domain. These sequences were in-frame with the MCK-10 open reading frame and did not contain any stop codons. We designated these MCK-10 splice isoforms
- MCK-10-1 (with the additional 111 bp, MCK-10-2 (without any insertions), MCK-10-3 (with the additional 111 bp and 18 bp), and MCK-10-4 (with the additional 18 bp). This new receptor tyrosine kinase was recently described by Johnson et al. (1993, Proc.

20 Natl. Acad. Sci. USA, 90 5677-5681) as DDR.

As shown in Figure 1, MCK-10 has all of the characteristics of a receptor PTK: the initiation codon is followed by a stretch of essentially hydrophobic amino acids, which may serve as a signal

- peptide. Amino acids 417-439 are also hydrophobic in nature, with the characteristics of a transmembrane region. The extracellular domain encompasses 4 consensus N-glycosylation sites (AsnXSer/Thr) and 7 cysteine residues. The extracellular region is
- 30 shorter than that of the insulin receptor family and shows no homology to other receptor tyrosine kinases, but contains near the N-terminus the consensus sequences for the discoidin 1 like family (Poole et al. 1981, J. Mol. Biol. 153, 273-289), which are
- 35 located as tandem repeats in MGP and BA46, two milk

20

fat globule membrane proteins (Stubbs et al. 1990, proc. Natl. Acad. Sci. USA, 87, 8417-8421, Larocca et al. 1991, Cancer Res. 51, 4994-4998), in the light chains of factor V (Kane et al. 1986, Proc. Natl. Acad. Sci. USA, 83, 6800-6804) and VIII (Toole et al. 1984, Nature, 312, 342-347), and in the A5 protein (Takagi et al. 1987, Dev. Biol., 122, 90-100).

The protein backbone of MCK-10-1 and MCK-10-2 proreceptors, with predicted molecular weights of 101.13 and 97.17kD, respectively, can thus be subdivided into a 34.31 kD  $\alpha$  subunit and 66.84 kD  $\beta-$  subunits that contain the tyrosine kinase homology and alternative splice sites.

The consensus sequence for the ATP-binding motif is located at positions 617-627. When compared with other kinases, the ATP binding domain is 176 amino acids (including the additional 37 amino acids) further from the transmembrane domain than any other tyrosine kinase. The additional 37 amino acids are located in the long and proline/glycine-rich juxtamembrane region and contain an NPAY sequence (where A can be exchanged for any amino acid), which is found in cytoplasmic domains of several cell

insulin receptor families (Chen et al. 1990, J. Biol.

Chem., 265, 3116-3123). This consensus motif is
followed by the sequence TYAXPXXXPG, which is repeated
downstream in MCK-10 in the juxtamembrane domain at
positions 585-595. Recently it has been shown that
this motif is deleted in the cytoplasmic juxtamembrane

surface proteins, including RTKs of the EGF and

region of the activin receptor, a serine/threonine kinase, resulting in reduced ligand binding affinity (Attisano et al. 1992, Cell, 68, 97-108).

In comparison with other RTKs, the catalytic domain shows the highest homology to the TrkA receptor. The yy- motifs (position 802/803) and the

15

20

tyrosine at position 798, representing putative autophosphorylation sites, characterize MCK-10 as a member of the insulin receptor family. Finally, MCK-10 shares with the Trk kinases their characteristic short caraboxy-terminal tail of 9 amino acids.

To determine whether the additional 111 nucleotides present in MCK-10-1 and -3 were ubiquitously expressed or expressed only in specific human tissues, we performed PCR on different human cDNAs using oligonucleotide primers corresponding to sequences flanking the insertion site. Parallel PCR amplifications were performed on plasmid DNAs of MCK-10-1/MCK-10-2 as controls. Expression of both isoforms was identified in brain, pancreas, placenta, colon, and kidney, and in the cell lines Caki 2 (kidney ca), SW 48 (colon ca), and HBL100 and T47D (breast ca). The PCR products were subcloned into the Bluescript vector to confirm the nucleotide sequence.

#### 6.2.2. NORTHERN BLOT ANALYSIS: EXPRESSION OF MCK-10 IN VARIOUS HUMAN TISSUES AND CELL LINES

Using as a hybridization probe a 5' 1694 bp cDNA fragment of MCK-10 (excluding the 111 base pair insert), which encompasses the extracellular,

- 25 transmembrane, and juxtamembrane domains, the MCK-10 gene revealed the existence of multiple transcript sizes with a major form of 4.2 kb. The highest expression of MCK-10 mRNA was detected in lung, intermediate levels were found in kidney, colon,
- stomach, placenta, and brain, low levels in pancreas, and no MCK-10 mRNA was detected in liver (FIG. 5A). MCK-10 mRNA was also detected in a variety of different tumor cell lines as depicted in Figure 5B and Figure 5C. Northern blot analysis with the GAPDH
- 35 gene was carried out as a control.

### 6.2.3. IN SITU HYBRIDIZATION

To determine which cells in the different human tissues contain MCK-10 transcripts, in situ hybridization of various human tissues and of tissues of different tumors were carried out. Hybridization analyses with the 5' 1694 bp of MCK-10 (excluding the 111 base pair insert) indicated that MCK-10 expression was specifically detected in epithelial cells of various tissues:

- cuboidal epithelial cells lining the distal
   kidney tubulus
  - columnar epithelial cells lining the large bowl tract
  - deep layer of epithelial cells lining the stomach
  - epithelial cells lining the mammary ducts
- islet cells of the pancreas
  - epithelial cells of the thyroid gland, which produces thyroid hormones

No detectable MCK-10 expression was observed in connective tissues, endothelial cells, adipocytes,

20 muscle cells, or hemapoletic cells.

 $\ensuremath{\mathsf{MCK-10}}$  expression was detected in all tumors investigated:

- adenocarcinoma of the colon
- adenocarcinoma of the stomach
- 25 adenocarcinoma of the lung
  - infiltrating ductal carcinoma of the breast
  - cystadenoma of the ovary
  - multi endocrine tumor of the pancreas
  - · carcinoid tumor of the pancreas
- tubular cells of renal cell carcinoma
  - transitional cell carcinoma (a malignant epithelial tumor of the bladder)
  - meninglothelial tumor

- medulloblastoma with hyperchromatic atypical nuclei and spare cytoplasm (MCK-10 expression is only seen in cells with well developed cytoplasm)
- glioblastoma (a tumor of the neuroepithelial tissue)
- These in situ hybridization experiments revealed the highest expression of MCK-10 in malignant cells of the ductal breast carcinoma, in the tumor cells of a multi endocrine tumor, and in the tumor cells of a transitional cell carcinoma of the bladder. The in situ hybridization results are depicted in Figures 7-
- situ hybridization results are depicted in Figures 7-21.

## 6.2.4. TRANSIENT OVEREXPRESSION OF MCK-10 IN 293 CELLS

- To analyze the MCK-10 protein in detail, we used the 293 cell system for transient overexpression. The cDNAs of MCK-10-1 and MCK-10-2 were cloned into an expression vector. Cells were transfected in duplicate with the two splice variants or a control
- plasmid and starved overnight. One part was incubated prior to lysis with 1 mM sodium-orthovanadate for 90 min. This agent is known to be a potent inhibitor of phosphotyrosine phosphatases, thereby enhancing the tyrosine phosphorylation of cellular protein.
- The precursor and the  $\beta$ -subunit of MCK-10 showed strong tyrosine phosphorylation after orthovanadate treatment, (FIG. 4A, left panel). Surprisingly, the MCK-10-1, containing the 37 amino acid insertion, exhibited lower kinase activity than MCK-10-2.
- 30 Reprobing the same blot with a peptide antibody raised against the MCK-10 C-terminus revealed equal amounts of expressed receptor and a slight shift of MCK-10-1 precursor and  $\beta$ -subunit due to the additional 37 amino acids of the insertion (FIG. 4A, right panel).

35

We further analyzed the N-linked glycosylation of the splice variants. Transfected cells were treated overnight with tunicamycin, which inhibits the maturation of proteins by glycosylation. Two affinity purified antibodies raised against peptide sequence of MCK-10 N- and C-terminus, respectively, were used for subsequent immunoprecipitations. Both antibodies precipitated the predicted 101 kD or 97 kD polypeptides from tunicamycin-treated cells (FIG. 4B). Interestingly, the size of the fully glycosylated  ${\bf 10}$   $\,$  forms of MCK-10-1 and MCK-10-2 suggested that the latter was more extensively glycosylated than the putative alternative splice form. This data indicates that the 37 amino acid insertion of MCK-10-1 influences its posttranslational modification which 15 may influence ligand.

## 7. EXAMPLES: CLONING AND CHARACTERIZATION OF CCK-2

The following subsection describes methods for isolation and characterization of the CCK-2 gene, an additional member of the MCK-10 receptor tyrosine kinase gene family.

### 7.1. MATERIALS AND METHODS

25

30

35

## 7.1.1. cDNA CLONING AND CHARACTERIZATION OF CCK-2

cDNA was synthesized using avian myeloblastosis virus reverse transcriptase and 5  $\mu$ g of poly A+ RNA prepared from tissue of a primary colonic adenocarcinoma, sigmoid colon, moderately well differentiated grade II, staging pT3, pN1, removed from a 69 year old white female of blood type O, RH positive. The patient had not received therapy.

The tissue was minced and lysed by treatment with guanidinium-thiocyanate according to Chirgwin, J.M. et

PENY-202603.1

al. (1979, Biochemistry 18:5294-5299). Total RNA was isolated by guanidinium thiocyanate-phenol-chloroform extraction (Chomczyrski et al. 1987, Anal. Biochem. 162:156-159). Poly A<sup>+</sup> RNA was isolated on an oligo-dT column (Aviv and Leder, 1972, Proc. Natl. Acad. Sci. USA 69:1408-1412).

One tenth of the cDNA was subjected to the polymerase chain reaction using standard conditions (PCR Technology- Principles and Applications for DNA Amplifications, H.E. Erlich, ed. Stockton Press, New 10 York, 1989) and the same pool of primers used for amplification of MCK-10 (See, Section 6.1.1., lines 4-16). Thirty-five cycles were carried out (Annealing 55°C, 1 min; Extension 72°C, 2 min: Denaturation 94°C, 1 min.). The reaction products were subjected 15 to polyacrylamide gel electrophoresis. Fragments of the expected size were isolated, digested with the restriction enzyme EcoRI, and subcloned into pBluescript vector (Stratagene) using standard techniques (Current Protocols in Molecules Biology, 20 eds. M. Ausubel et al., John Wiley & Sons, New York, 1988). The subcloned PCR products were sequenced by the method of Sanger et al. (Proc. Natl. Acad. Sci. USA 74, 5463-5467) using T7-Polymerase (Boehringer Mannheim).

The CCK-2 PCR fragment was used to screen a human placenta library in lambda ZAP. The longest cDNA insert ~1300 bp was digested with the restriction enzymes EcoRI/Ncol to obtain a 5' end probe of 200 bp. Rescreening of the human placenta library yielded in a cDNA clone which encoded the entire CCK-2 protein (subcloning of positive bacteriophages clones into pBluescript vector was done by the in vivo excision protocol (Stratagene)). The DNA sequence and the deduced amino acid sequence of CCK-2 is shown in
35 Figure 3.

#### 7.2. RESULTS

### 7.2.1. CLONING AND CHARACTERIZATION OF CCK-2

An additional member of the MCK-10 receptor tyrosine kinase family was identified using a polymerase chain reaction and cDNA prepared from colonic adenocarcinoma RNA. The nucleotide sequence of the novel receptor, designated CCK-2, is presented in Figures 3A and 3B. Analysis of the CCK-2, nucleotide sequence and encoded amino acid sequence indicated significant homology with MCK-10 throughout the extracellular, transmembrane and intracellular region of the MCK-10 receptor. The regions of homology between CCK-2 and MCK-10 extend into the N-terminus consensus sequence for the discoidin I like family of proteins. (Poole et al. 1981, J. Mol. Biol.

### 8. DEPOSIT OF MICROORGANISMS

153, 273-289). The homology between CCK-2 and MCK-10

The following organisms were deposited with the American Type Culture Collection (ATCC), 12301
Parklawn Drive, Rockville, Maryland 20852.

is diagramed in Figure 4A and 4B.

|    | Strain Designation | Containing | Accession No. |  |  |  |  |
|----|--------------------|------------|---------------|--|--|--|--|
| 25 | CCK-2              | pcck-2     | 69468         |  |  |  |  |
|    | MCK-10-1           | pMCK-10-1  | 69464         |  |  |  |  |
|    | MCK-10-2           | pMCK-10-2  | 69465         |  |  |  |  |
|    | MCK-10-3           | pMCK-10-3  | 69466         |  |  |  |  |
|    | MCK-10-4           | pMCK-10-4  | 69467         |  |  |  |  |
| 30 |                    |            |               |  |  |  |  |

The present invention is not to be limited in scope by the exemplified embodiments or deposited organisms which are intended as illustrations of single aspects of the invention, and any clones, DNA or amino acid sequences which are functionally

PENY-202603.1

equivalent are within the scope of the invention.

Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

It is also to be understood that all base pair sizes given for nucleotides are approximate and are used for purposes of description.

15

10

25

20

30

15

20

### WHAT IS CLAIMED IS:

- 1. An isolated nucleotide sequence encoding a MCK- 10 protein.
- A cDNA nucleotide sequence encoding a MCK-10 protein.
- A cDNA nucleotide sequence encoding an alternatively spliced isoform of MCK-10.
  - 4. A cDNA nucleotide sequence encoding a member of the MCK-10 family of proteins in which the nucleotide sequence encodes the amino acid sequence of FIG. 1 (SEQ. ID NO: ), or which is capable of selectively hybridizing to the DNA sequence of FIG. 1 (SEQ. ID NO: ).
- A recombinant DNA vector containing a nucleotide sequence that encodes a MCK-10 protein.
- 6. A recombinant DNA vector containing a nucleotide sequence that encodes a MCK-10 fusion protein.
- 7. The recombinant DNA vector of Claim 5 in which the MCK-10 nucleotide sequence is operatively associated with a regulatory sequence that controls the MCK-10 gene expression in a host.
- 8. The recombinant DNA vector of Claim 6 in which the MCK-10 fusion protein nucleotide sequence is operatively associated with a regulatory sequence that controls the MCK-10 fusion protein gene expression in a host.

- 9. The DNA of Claim 2, 3, 4, 5, 6, 7 or 8 in which the nucleotide sequence is capable of hybridizing under standard conditions, or which would be capable of hybridizing under standard conditions but for the degeneracy of the genetic code to the DNA sequence of 5 FIG. 1.
  - 10. An engineered host cell that contains the recombinant DNA vector of Claims 5, 6, 7 or 8.
- 11. An engineered cell line that contains the recombinant DNA expression vector of Claim 7 and expresses MCK-10.
- 12. An engineered cell line that contains the recombinant DNA expression vector of Claim 8 and expresses MCK-10 fusion protein.
  - 13. The engineered cell line of Claim 11 which expresses the MCK-10 on the surface of the cell.
    - 14. The engineered cell line of Claim 12 that expresses the MCK-10 fusion protein on the surface of the cell.
- 25 15. A method for producing recombinant MCK-10, comprising:
  - (a) culturing a host cell transformed with the recombinant DNA expression vector of Claim 5 or 7 and which expresses the MCK-10; and
- 30 (b) recovering the MCK-10 gene product from the cell culture.
  - 16. A method for producing recombinant MCK-10 fusion protein, comprising:

- (a) culturing a host cell transformed with the recombinant DNA expression vector of Claim 6 or 8 and which expresses the MCK-10 fusion protein; and
- (b) recovering the MCK-10 fusion protein from the cell culture.
- 18. A fusion protein comprising MCK-10 linked to a heterologous protein or peptide sequence.
- An oligonucleotide which encodes an antisense sequence complementary to the MCK-10 nucleotide sequence,
   and which inhibits translation of the MCK-10 gene in a cell.
- 20. The oligonucleotide of Claim 19 which is complementary to a nucleotide sequence encoding the aminoterminal region of the MCK-10.
  - 21. A monoclonal antibody which immunospecifically binds to an epitope of the MCK-10.
- 25 22. The monoclonal antibody of Claim 21 which competitively inhibits the binding of ligand to the MCK-10.
- \$23.\$ The monoclonal antibody of Claim 21 which is  $^{\bf 30}$  linked to a cytotoxic agent.
  - 24. The monoclonal antibody of Claim 21 which is linked to a radioisotope.

20

25

30

- 25. A method for screening and identifying antagonists of MCK-10, comprising:
  - (a) contacting a cell line that expresses MCK-10 with a test compound; and
  - (b) determining whether the test compound inhibits the bind of MCK-10 ligand and the cellular effects of ligand binding on the cell line,

in which antagonists are identified as those compounds that inhibit both the binding and cellular effects of MCK-10 ligand binding on the cell line.

- 26. The method according to Claim 25 in which the cell line is a genetically engineered cell line.
- 27. The method according to Claim 25 in which the cell line endogenously expresses the MCK-10.
  - 28. A method for screening and identifying antagonists of MCK-10 activity comprising:
    - (a) contacting MCK-10 protein with a random peptide library such that MCK-10 will recognize and bind to one or more peptide species within the library;
    - (b) isolating the MCK-10/peptide combination;
    - (c) determining the sequence of the peptide isolated in step c; and
    - (d) determining whether the test compound inhibits the biological activity of MCK-10.
  - $29.\,\,$  The method according to Claim 28 in which the MCK-10 protein is genetically engineered.
- 30. A method of modulating the endogenous enzymatic activity of the tyrosine kinase MCK-10 receptor in a

mammal comprising administering to the mammal an effective amount of a ligand to the MCK-10 receptor protein to modulate the enzymatic activity.

- 31. The method of Claim 30 in which the enzymatic activity of the receptor protein is decreased.
- 32. A recombinant vector containing a nucleotide sequence that encodes a truncated MCK-10 which has dominant-negative activity which inhibits the biological activity MCK-10.
  - 33. The recombinant vector of claim 32 in which the vector is a retrovirus vector.
- 34. An engineered cell line that contains the recombinant DNA vector of Claim 33 and expresses truncated MCK-10.
- 35. An engineered cell line that contains the recombinant vector of Claim 33 and produces infectious retrovirus particles expressing truncated MCK-10.
- 36. An isolated recombinant truncated MCK-10 receptor protein which has dominant-negative activity
   which inhibits the biological activity of MCK-10.
  - 37. A method of modulating the biological activity of MCK-10 in a mammal comprising administrating to the mammal an effective amount of truncated MCK-10 receptor protein which inhibits the biological activity of MCK-10 activation.

10

- A cDNA nucleotide sequence encoding a CCK-2 protein.
- A cDNA nucleotide sequence encoding an alternatively spliced isoform of CCK-2.
- 41. A cDNA nucleotide sequence encoding a member of the CCK-2 family of proteins in which the nucleotide sequence encodes the amino acid sequence of FIG. 3 (SEQ. ID NO: ), or which is capable of selectively hybridizing to the DNA sequence of FIG. 3 (SEQ. ID NO: ).
- 42. A recombinant DNA vector containing a nucleotide sequence that encodes a CCK-2 protein.
- 43. A recombinant DNA vector containing a nucleotide sequence that encodes a CCK-2 fusion protein.
- 44. The recombinant DNA vector of Claim 42 in which the CCK-2 nucleotide sequence is operatively associated
   with a regulatory sequence that controls the CCK-2 gene expression in a host.
- 45. The recombinant DNA vector of Claim 43 in which the CCK-2 fusion protein nucleotide sequence is operatively associated with a regulatory sequence that controls the CCK-2 fusion protein gene expression in a host.
- 46. The DNA of Claim 39, 40, 41, 42, 43, 44 or 45 in which the nucleotide sequence is capable of hybridizing under standard conditions, or which would be capable of hybridizing under standard conditions but for the degeneracy of the genetic code to the DNA sequence of FIG. 3.

20

25

30

- 47. An engineered host cell that contains the recombinant DNA vector of Claims 42, 43, 44 or 45.
- 48. An engineered cell line that contains the recombinant DNA expression vector of Claim 44 and 5 expresses CCK-2.
  - 49. An engineered cell line that contains the recombinant DNA expression vector of Claim 45 and expresses CCK-2 fusion protein.
  - 50. The engineered cell line of Claim 48 which expresses the CCK-2 on the surface of the cell.
- 51. The engineered cell line of Claim 49 that expresses the CCK-2 fusion protein on the surface of the cell.
  - 52. A method for producing recombinant CCK-2, comprising:
    - (a) culturing a host cell transformed with the recombinant DNA expression vector of Claim 42 or 44 and which expresses the CCK-2; and
    - (b) recovering the CCK-2 gene product from the cell culture.
  - 53. A method for producing recombinant CCK-2 fusion protein, comprising:
    - (a) culturing a host cell transformed with the recombinant DNA expression vector of Claim 43 or 45 and which expresses the CCK-2 fusion protein; and
      - (b) recovering the CCK-2 fusion protein from the cell culture.
- 35 54. An isolated recombinant CCK-2 receptor protein.

PENY-202603.1

- 55. A fusion protein comprising CCK-2 linked to a heterologous protein or peptide sequence.
- 56. An oligonucleotide which encodes an antisense sequence complementary to the CCK-2 nucleotide sequence, and which inhibits translation of the CCK-2 gene in a cell.
- 57. The oligonucleotide of Claim 56 which is complementary to a nucleotide sequence encoding the aminoterminal region of the CCK-2.
  - 58. A monoclonal antibody which immunospecifically binds to an epitope of the CCK-2.
- 15 59. The monoclonal antibody of Claim 58 which competitively inhibits the binding of ligand to the MCK-10.
- $\,$  60. The monoclonal antibody of Claim 58 which is  $^{20}$  linked to a cytotoxic agent.
  - 61. The monoclonal antibody of Claim 58 which is linked to a radioisotope.
- 25 62. A method for screening and identifying antagonists of CCK-2, comprising:
  - (a) contacting a cell line that expresses CCK-2 with a test compound; and
  - (b) determining whether the test compound inhibits the bind of CCK-2 ligand and the cellular effects of ligand binding on the cell line.

in which antagonists are identified as those compounds that inhibit both the binding and cellular effects of CCK-2 ligand binding on the cell line.

PENY-202603.1

- 63. The method according to Claim 62 in which the cell line is a genetically engineered cell line.
- 64. The method according to Claim 62 in which the cell line endogenously expresses the CCK-2.
- 65. A method for screening and identifying antagonists of CCK-2 activity comprising:
  - (a) contacting CCK-2 protein with a random peptide library such that CCK-2 will recognize and bind to one or more peptide species within the library;
  - (b) isolating the CCK-2/peptide combination;
  - (c) determining the sequence of the peptide isolated in step c; and
  - (d) determining whether the test compound inhibits the biological activity of CCK-2.
- 66. The method according to Claim 65 in which the CCK-2 protein is genetically engineered.
- 67. A method of modulating the endogenous enzymatic activity of the tyrosine kinase CCK-2 receptor in a mammal comprising administering to the mammal an effective amount of a ligand to the CCK-2 receptor

  25 protein to modulate the enzymatic activity.
  - 68. The method of Claim 67 in which the enzymatic activity of the receptor protein is decreased.
- 30 69. A recombinant vector containing a nucleotide sequence that encodes a truncated CCK-2 which has dominant-negative activity which inhibits the biological activity CCK-2.

10

15

- 70. The recombinant vector of Claim 69 in which the vector is a retrovirus vector.
- 71. An engineered cell line that contains the recombinant DNA vector of Claim 70 and expresses

  5 truncated CCK-2.
  - 72. An engineered cell line that contains the recombinant vector of Claim 70 and produces infectious retrovirus particles expressing truncated CCK-2.
  - 73. An isolated recombinant truncated CCK-2 receptor protein which has dominant-negative activity which inhibits the biological activity of CCK-2.
- 74. A method of modulating the biological activity of CCK-2 in a mammal comprising administrating to the mammal an effective amount of truncated CCK-2 receptor protein which inhibits the biological activity of CCK-2 activation.

25

20

10

#### ABSTRACT

The present invention relates to the novel family of receptor tyrosine kinases, herein referred to as MCK-10, to nucleotide sequences and expression vectors encoding MCK-10, and to methods of inhibiting MCK-10 activity. The invention relates to differentially spliced isoforms of MCK-10 and to other members of the MCK-10 receptor tyrosine kinase family. Genetically engineered host cells that express MCK-10 may be used to evaluate and screen drugs involved in MCK-10 activation and regulation. The invention relates to the use of such drugs, in the treatment of disorders, including cancer, by modulating the activity of MCK-10.

## FIGURE IA

| 61<br>121<br>181<br>241 | CGGC<br>CTGC<br>CCGC<br>TCAC | TCT<br>CTC | DDO<br>DDO | GAG<br>GCT<br>ACG | 222<br>222<br>222 | CCT<br>TCC<br>GGG | CCC<br>GCC<br>TCT | GAC<br>TCC<br>GCC | ACC<br>CCC<br>GGG | CGA<br>GCC<br>AAG | GCC<br>CCT<br>AGC | CCG<br>CGC<br>GAT | CCG<br>CCC<br>GAG. | GCG<br>GCC<br>AGG | CCT<br>GCC<br>TGT | CCC<br>GAA<br>CTG | GCT<br>GAG<br>AAG | CCC<br>GCC<br>GTG | GGC'<br>GGT. | TC<br>CT<br>AT |
|-------------------------|------------------------------|------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|----------------|
| 301                     | GGCC                         | CCGA       | GGG        | ATC               | AGG               | AGC               | M<br>TAT          | G<br>GGG          | ACC               | E<br>AGA          | A<br>GGC          | L<br>CCT          | S<br>GTC           | S<br>ATC          | TTT               | L<br>ACT          | L<br>GCT          | CT<br>GCT         | CCT          | CT             |
| 15<br>361               | V<br>TGG                     | A<br>IGGC  | S<br>AAG   | G<br>TGG          | D<br>AGA          | A<br>TGÇ          | D<br>TGA          | M<br>CAT          | K<br>GAA          | G<br>GGG          | H<br>ACA          | F<br>TTT          | D<br>TGA           | P<br>TCC          | A<br>TGC          | K<br>CAA          | C<br>GTG          | R<br>CCG          | Y<br>CTA     | TG             |
| 35<br>421               | CCC                          | G<br>GGG   | M<br>CAT   | Q<br>GCA          | D '<br>GGA        | 1R-<br>CCG        | T E               | I<br>CAT          |                   | D<br>AGA          |                   | D<br>TGA          |                    | S<br>CTC          | A<br>TGC          | s<br>TTC          | S<br>CAG          | s<br>CTC          | W<br>CTG     | S              |
| 55<br>483               | D<br>CAG                     | S          | T          | A<br>TGC          | A<br>CGC          | R<br>CCG          | H<br>CCA          | S<br>CAG          | R<br>CAG          | L<br>GTT          | E<br>GGA          | S<br>GAG          | S<br>CAG           | D<br>TGA          | G<br>CGG          | D<br>GGA          | G<br>TGG          | A<br>GGC          | w<br>ctg     | C<br>GT        |
| 75<br>541               | gcco                         | A<br>CCGC  | G<br>AGG   | S<br>GTC          | V<br>GGT          | F<br>GTT          | P<br>TCC          | K                 | E<br>GGA          | E<br>GGA          | E<br>GGA          | Y<br>GTA          | L<br>CTT           | Q<br>GCA          | V<br>.GGT         | D<br>GGA          | L<br>TCT          | Q<br>ACA          | R<br>ACG     | L<br>AC        |
| 95<br>601               | TCC                          | L<br>ACCT  | V          | A<br>GGC          | L<br>TCT          | V<br>GGT          | G<br>GGG          | T<br>CAC          | Q<br>CCA          | G<br>GGG          | R<br>ACG          | H<br>GCA          | A<br>TGC           | G<br>CGG          | G<br>GGG          | L<br>CCI          | G<br>GGG          | K<br>CAA          | E<br>.GGA    | F<br>G1        |
| 115<br>661              | TCT                          | R          | S<br>GAG   | Y<br>CTA          | R<br>CCG          | L<br>GCT          | R<br>GCG          | Y<br>TTA          | S                 | R                 |                   | G<br>TGG          |                    | R                 | W<br>CTG          | M<br>Gat          | GGG               | W<br>CTG          | K<br>GAA     | D<br>GG        |
| 135<br>721              | R<br>ACC                     | w<br>GCTG  | G<br>GGG   | Q<br>TCA          | E<br>GGA          | V<br>GGT          | I<br>GAT          | S                 | G<br>AGG          | N<br>CAA          | E<br>TGA          | D<br>.GGA         | P<br>.CCC          | E<br>TGA          | G<br>GGG          | V<br>AGT          | V<br>GGI          | L<br>GCT          | K<br>Gaa     | GG             |
| 155<br>781              | ·ACC                         | G<br>PTGG  | P          | P                 | M<br>CAT          | V<br>GGT          | A<br>TGC          | R<br>CCG          | L<br>ACI          | v<br>GGI          | R<br>TCG          | F<br>CTI          | Y<br>CTA           | P<br>.CCC         | R<br>CCG          | A<br>GGC          | D<br>TGA          | R<br>.CCG         | V            | M<br>CA        |
| 175<br>841              | TGA                          | V<br>STG1  | CTG        | L<br>TCT          | R                 | v<br>GGT          | E<br>AGA          | L<br>GCT          | Y<br>CTA          | G<br>TGG          | CTG               | L                 | W                  | R<br>GAG          | D<br>GGA          | G<br>TGG          | L                 | L<br>CCT          | S            | Y<br>TI        |
| 195<br>901              | ACA                          |            | P          | V<br>TGT          | GGG               | Q<br>GCA          | T<br>GAC          | M<br>TAA          | Y<br>GTA          | L<br>TTI          | S                 | E<br>TGA          | A<br>.GGC          | v<br>cgi          | Y<br>GTA          |                   | in<br>CAA         | D<br>CGA          | s<br>CTC     | T<br>CA        |
| 215<br>961              | CCT                          |            | G<br>ACGG  | H<br>ACA          |                   | v<br>cgi          | G<br>GGG          | G<br>CGG          | L<br>ACI          | Q<br>GCA          | Y<br>GTA          | G<br>TGG          | G<br>GGG           | L                 | GGG               | CC2               | L<br>GCI          | A<br>GGC          | D<br>AGA     | r              |
| 235<br>1021             | V<br>GTG                     |            | G<br>GGG   | L<br>GCI          | D<br>GGA          | D<br>TGA          | F                 | R<br>TAG          | K<br>GAA          | S<br>GAG          | Q<br>TCA          | E<br>GGA          | L<br>GCI           | R<br>GCG          |                   | w<br>CTC          | P                 | G<br>AGG          | Y<br>CTA     | TO             |
| 255<br>1081             | ACT.                         | V<br>ATG2  | G<br>IGGG  | W                 | S                 | N<br>CAA          | H<br>CCA          | S                 | F                 | S                 | S                 | G                 | Y<br>CTA           | V                 | E<br>GGA          | M<br>GAT          | E<br>GG2          | F                 | E            | .G?            |
| 275<br>1141             | D<br>TTG                     |            | L<br>GGC T | r<br>gag          | A<br>GGC          | F<br>CTI          | Q<br>A            | A<br>GGC          | M<br>TAT          | Q<br>GC#          | V<br>.GG1         | H<br>CC2          | CTG                | n<br>Tat          | N<br>CAA          | M<br>CAT          | H<br>GC#          | T                 | L            | 00             |
| 295<br>1201             | A<br>GAG                     | R          | L<br>STCT  | P<br>2000         | G<br>TGG          | G<br>CGG          |                   | E<br>GGA          | C                 | ·R                | F                 | R                 | R                  | G                 | P                 | A                 | M                 | A<br>GGC          | W            | I<br>IGC       |
| 315<br>1261             | G<br>AGG                     | E<br>GGG2  | P          | M                 | R                 | H<br>CCA          | Ņ<br>CAA          | L                 | G<br>'AGC         | G                 | N<br>CAF          | L                 | G<br>GGG           | D<br>GG2          | P                 | R                 | A<br>SAGO         | R                 | A<br>GGC     | ,<br>TC        |
| 335<br>1321             | S                            |            | P          | L                 | G<br>TGG          | G                 | R                 | V                 | A<br>GGC          | R                 | F                 | Ļ<br>TC7          | Q<br>CC2           | C                 | R                 | F                 | L<br>CC1          | F                 | A<br>PTGC    | GC:            |
| 355<br>1361             | P<br>GGO                     |            | L<br>GGTT  | L                 | F                 | S                 | E<br>CGA          | I<br>FAAJ         | S                 | F                 | CAT               | S                 | D<br>TG#           | V                 | v<br>rgg:         | N<br>IGAJ         | N<br>ACAZ         | S                 | S            | 1              |
|                         |                              |            |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   |                   |                   |                   |              |                |

# 7683 331 ( Sheet 2 = \$ 30)

## FIGURE 1B

| 1441           |            | CAC,      | rcc       | GAGG      | CAC       | cT:       | CCC<br>P  | GCC       | AGC       | CCC       | CTG           | W<br>GTG  | P<br>GCC  | P<br>GCC  | G<br>TGC  | P        | P                 | P         | T         | N<br>CA  |
|----------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|----------|-------------------|-----------|-----------|----------|
| 395<br>1501    | F<br>ACT   | S<br>TCA  | SCAC      | L<br>SCTI | E<br>rgga | L         | E<br>NGGA | P         | R<br>CAG  | G<br>AGG  | Q<br>SCC2     | Q<br>IGC# | P         | V<br>CG7  | A<br>rggc | K        | A<br>IGGC         | E<br>CG#  | G<br>GGG  | S<br>GA  |
| 415<br>1561    | GCC<br>GCC | T<br>CGA  | A<br>CCGC |           | L<br>L    |           | G<br>G    |           | L<br>CC1  | V<br>GGI  | GGC           | CAT       | CAT       | L<br>CC1  | L<br>GC1  | CC1      | L<br>GC1          | L<br>GC1  | I<br>CAT  | I<br>CA  |
| 435<br>1621    | TTG        | CCC       | M<br>CAT  | L<br>IGCI | W<br>CTG  | R<br>GCG  | L<br>GCT  | H<br>GCA  | W<br>CTG  | R<br>GCG  | R<br>CAG      | L<br>GCT  | CCI       | S         | K<br>KAA  | A<br>GGC | E<br>TGA          | R<br>ACG  | A<br>GAG  | v<br>igg |
| 455<br>1681    | TGT        | E<br>TGG  | E<br>AAGA | E<br>LGGA | L<br>GCT  | T<br>GAC  | v<br>GGT  | H<br>TCA  | L<br>CCT  | S         | v<br>TGT      | P         | G<br>TGG  | D<br>GGA  | T         | I<br>TAT | L<br>CC1          | CAT       | N<br>CAA  | N<br>CA  |
| 0 475<br>01741 | ACC        | P<br>GCCC | G<br>CAGC | P         | R<br>TAG  | E<br>AGA  | P<br>GCC  | P<br>ACC  | CCC       | y<br>GTA  | Q<br>.CCA     | E<br>.GGA | P<br>GCC  | R         | P         | R<br>TCG | G<br>TGG          | N<br>GA2  | P         | P<br>GC  |
| 1801           | CCC        | S<br>ACTO | A<br>CCGC | P         | C<br>CTG  | V<br>TGT  | P         | N<br>CAA  | G<br>TGG  | S<br>CTC  | A<br>TGC      | L<br>GTI  | L<br>GCI  | GCI       | S         | N<br>CAA | P                 | A<br>AGC  | Y<br>CTA  | R<br>CC  |
| 515<br>1861    | GCC        | L<br>ICC1 |           | A<br>GGC  |           | Y<br>TTA  | A<br>CGC  | R<br>CCG  | LCC       | CCC       | TCG           | AGG       | CCC       | GGG       | P         | P        | T                 | P         | A<br>CGC  | W<br>CT  |
| 535<br>1921    | A<br>GGG   | K<br>CCA  | P         | T         | N<br>CAA  | T         | Q<br>CCA  | A<br>GGC  | CTA       | CAG       | I<br>G<br>TGG | D<br>GGA  | Y<br>CTA  | M<br>TAT  | E<br>GGA  | P<br>GCC | E<br>TGA          | K<br>Gaa  | P<br>GCC  | G<br>AG  |
| 555<br>1981    | GCG        | P         | L<br>GCI  | L<br>TCT  | GCC       | CCC       | P<br>ACC  | P<br>TCO  | Q<br>CCA  | N<br>GAA  | s<br>CAG      | V<br>CGT  | CCC       | H<br>CCA  | Y<br>TTA  | A<br>TGC | ECGA              | A<br>.GGC | D<br>TGA  | .CA      |
| 575<br>2041    | TTG:       | T<br>TAC  | L         | Q<br>GCA  | G<br>GGG  | V<br>CGT  | T<br>CAC  | G<br>CGG  | G<br>GGG  | N<br>CAA  | T<br>CAC      | Y<br>CTA  | A<br>TGC  | V<br>TGT  | P<br>GCC  | A<br>TGC | L<br>ACT          | P<br>GCC  | P         | G<br>AG  |
| 595<br>2101    | A<br>GGG   | V         | G<br>CGG  | D<br>GGA  | G<br>TGG  | P<br>GCC  | P         | R<br>CAG  | V<br>AGT  | D<br>GGA  | F<br>TTT      | CCC       | R<br>TCG  | S<br>ATC  | R<br>TCG  | L<br>ACT | R<br>CCG          | F<br>CTI  | K<br>CAA  | E<br>GG  |
| 615<br>2161    | K<br>AGA   | • L       | G<br>TGG  | ECGA      |           |           |           |           | E<br>GGA  |           |               |           | C<br>GTG  |           | V<br>GGT  | D<br>CGA | S<br>C <b>A</b> G | P         | Q<br>TČA  | D<br>AG  |
| 635<br>2221    | ATC        | V<br>rgg1 | S         | L<br>TCT  | D<br>TGA  | F<br>TTT  | P         | L<br>CCT  | N<br>TAA  | V<br>TGT  | R<br>GCG      | K<br>TAA  | G<br>GGG  | H<br>ACA  | P         | L<br>TTT | L<br>GCT          | V<br>GGI  | A<br>AGC  | V<br>TG  |
| 655<br>2281    | TCA        | I<br>FADA | CTI       | R<br>ACG  | P<br>GCC  | AGA       | A<br>TGC  | T         | K<br>Caa  | N<br>GAA  | A<br>TGC      | S<br>CAG  | F         | s<br>cro  | L<br>CTT  | F<br>GTT | s<br>CTC          | R<br>CAG  | N<br>GAA  | D<br>TG  |
| 675<br>2341    | F<br>ATT   | L<br>CCI  | K<br>GAA  | E<br>AGA  | V<br>GGTV | K<br>Gaa  | I<br>GATY | M<br>CATY | S<br>STC  | R<br>Bag  | L             | K<br>CAA  | D<br>GGA  | P         | N<br>CAA  | I<br>CAT | I<br>CAT          | R<br>TCG  | L<br>GCT  | GC<br>L  |
| 695<br>2401    | TGGC       | V<br>SCGI | C<br>GTG  | V<br>TGT  | Q<br>GCA  | D<br>GGA  | D<br>CGA  | P         | L         | C<br>TG   | M<br>YEAC     | I<br>GAT  | T<br>TAC  | D<br>TGA  | Y<br>CTA  | M<br>CAT | E<br>GGA          | N<br>GAA  | G<br>CGG  | D<br>CG  |
| 715<br>2461    | ACC?       |           | CCA       |           |           | S<br>CAG  |           | H<br>CCA  | Q<br>CCA  | L<br>SCT  | E<br>GGA      | D<br>GGA  | K<br>CAA  | A<br>GGC. | A<br>AGC  | E<br>CGA | G<br>GGG          | A<br>GGC  | P<br>CCC  | G<br>TG  |
| 735<br>2521    | GGG        | G         | Q<br>GCA  | A<br>GGC  | A<br>TGC  | Q<br>GCA  | G<br>GGG  | P<br>GCC  | T         | I<br>YTAC | S             | Y<br>CTA  | P<br>CCC. | M         | CT        | L<br>GCT | H<br>GCA          | V<br>TGT  | A<br>GGC. | A<br>AG  |
| 755<br>2581    | CCC2       | I<br>GAT  | CGC       | S         | G<br>CGG( | M<br>CATY | R<br>SCGG | Y<br>TAT  | L<br>ICT  | A<br>GGC  | T<br>CAC      | L<br>ACT  | N<br>CAA  | F<br>CTT  | V<br>TGT: | H<br>ACA | R<br>TCG          | D<br>GGA  | L<br>CCT  | A<br>GG  |
| 775<br>2641    | CCAC       | R<br>GCG  | n<br>Gaa  | C<br>CTG  | L<br>CCT/ | V<br>AGT  | G<br>IGG( | E<br>GAA  | N<br>AAA: | F<br>TTY  | T             | I<br>CAT  | K<br>CAA  | I<br>VTAA | A<br>CGC. | D<br>AGA | F<br>CTT          | G<br>TGG  | M<br>CAT  | S<br>GA  |
|                |            |           |           |           |           |           |           |           |           |           |               |           |           |           |           |          |                   |           |           |          |

9683-031 (Shee+30530)

### FIGURE IC

| 2701                  | GCCGGAACCTCTATGCTGGGGACTATTACCGTGTGCAGGGCCGGGCAGTGCTGCCCAT                                                               | cc       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|----------|
| 815<br>2761           |                                                                                                                          | A<br>GG  |
| 0 835<br>1 2821       | CCTTTGGTGTGACCCTGTGGGAGGTGCTGATGCTCTGTAGGGCCCAGCCCTTTGGGCA                                                               | L<br>GC  |
| 00 855<br>1±2881      | T D E Q V I E N A G E F F R D Q G R Q TCACCGACGACCAGGTCATCGAGAACGCGGGGGAGTTCTTCCGGGACCAGGGCCGGCA                         | V<br>IGG |
| 875<br>(02941         | Y L S R P P A C P Q G L Y E L M L R C TGTACCTGTCCGGCCGCCTGCCCGCAGGGCCTATATGAGCTGATGCTTCGGTG                              | W        |
| 895<br>3001           | S R E S E Q R P P F S Q L H R F L * A E GAGCCGGGAGTCTGAGCAGCGACCACCCTTTTCCCAGCTGCATCGGTTCCTGGCAGA                        | D<br>AGG |
| 915                   |                                                                                                                          | AG       |
| 3121<br>3181<br>3241  | CAGCCCATCACCTCTAATAGAGGCAGTGAGACTGCAGGTGGGCTGGGCCCACCCA                                                                  | AG       |
| 3301<br>3361<br>3421  | TAGAAGCCCCTGTCGCCCACCCAGCTGGTCCTGTGGATGGGATCCTCTCCACCCTCCT AGCCATCCCTTGGGGAAGGGTGGGGAGAATATAGGATAGACACTGGACATGGCCCAT     | CT       |
| 3481<br>3541          | TCTCTCCCTGTCACACACTGGACCCCACTGGCTGAGAATCTGGGGGTGAGGAGGACAA<br>AGGAGAGGAAAATGTTTCCTTGTGCCTGCTCCTGTACTTGTCCTCAGCTTGGGCTTCT | MIC      |
| 3601<br>3661<br>3721  | CCACTTCCCAC+TGCAGTCTTGTAGCTAGAACTTCTCTAAGCCTATACGTTTCTGTGG TAAATATTGGGATTGGGGGAAAGAGGGAGCAACGGCCCATAGCCTTGGGGTTGGACA     | AG       |
| 3781°<br>3841<br>3901 | GGAGAGACACAGATTTTTACACTAATATATGGACCTAGCTTGAGGCAATTTTAATCCC<br>GCACTAGGCAGGTAATAATAAAGGTTGAGTTTTCCACAAAAAAAA              | CT       |
| 3961                  | TC:                                                                                                                      |          |

### FIGURE 2

### MCK-10 Splice Variants





| 2   | gcacgagcggcacgagtccatgatctctttccatcctccctttcctgrttgctcacttct            | 61         |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------|------------|--|--|--|--|--|--|--|--|--|
|     | cgtgctcgccgtgctcaggtactagagaaaggtaggagggaaaggactttcgagtgaaga            | 01         |  |  |  |  |  |  |  |  |  |
|     |                                                                         | -          |  |  |  |  |  |  |  |  |  |
|     | tttcttgctcatcttggagactgtgcaatcccagattaactacaaacagagaagagctgg            |            |  |  |  |  |  |  |  |  |  |
| 62  | **************************************                                  | 121        |  |  |  |  |  |  |  |  |  |
|     | unagnacynytagnaccectyscotycenygetengertyntyttegetetetetengace           |            |  |  |  |  |  |  |  |  |  |
|     |                                                                         |            |  |  |  |  |  |  |  |  |  |
| 122 | Igatagetecagageteagagaaaggaggtetetttacaagagagtetggeteteaaagee           | 181        |  |  |  |  |  |  |  |  |  |
|     | actate gagg tetergag tetett teet ceagagaa at gttctte agace gagagttte gg |            |  |  |  |  |  |  |  |  |  |
|     |                                                                         | -          |  |  |  |  |  |  |  |  |  |
|     | $tccatcas {\tt gggagacctacaagttgcctggggttcagtgctctagaaagttccaaggttt}$   |            |  |  |  |  |  |  |  |  |  |
| 182 | aggtagttccctctggatgttcaacggacccaagtcacgagatctttcaaggttccaaa             | <b>Z41</b> |  |  |  |  |  |  |  |  |  |
|     |                                                                         |            |  |  |  |  |  |  |  |  |  |
|     |                                                                         |            |  |  |  |  |  |  |  |  |  |
| 242 |                                                                         | 301        |  |  |  |  |  |  |  |  |  |
|     | <pre>caccgaacttaataagatttcttcgactttattaacttctcttcgtctccggtcgacaaa</pre> |            |  |  |  |  |  |  |  |  |  |
|     |                                                                         | -          |  |  |  |  |  |  |  |  |  |
| 302 | ttgaggatcctgctccacagagaatgctctgcacccgttgatactccagttccaacacca            | 361        |  |  |  |  |  |  |  |  |  |
| Juc | ${\tt aactcctaggacgaggtgtctcttacgagacgtgggcaactatgaggtcaaggttgtggt}$    |            |  |  |  |  |  |  |  |  |  |
|     |                                                                         | -          |  |  |  |  |  |  |  |  |  |
|     | ${\tt tcttctgagatgatcctgattcccagaatgctcttggtgctgttcctgctgctgcctatc}$    |            |  |  |  |  |  |  |  |  |  |
| 362 | agaagactctactaggactaagggtcttacgagaaccacgacaaggacgacgacggatag            | 421        |  |  |  |  |  |  |  |  |  |
|     | HILIPRHLLVLFLLLPI                                                       | _          |  |  |  |  |  |  |  |  |  |
|     | rtgagttetgeaaaageteaggttaateeagetatatgeegetateetetgggeatgtea            |            |  |  |  |  |  |  |  |  |  |
| 422 | aactcaagacgttttcgagtccaattaggtcgatatacggcgataggagacccgtacagt            |            |  |  |  |  |  |  |  |  |  |
|     |                                                                         |            |  |  |  |  |  |  |  |  |  |
|     | LSSAKAQVNPAICRYPLGKS                                                    | -          |  |  |  |  |  |  |  |  |  |
| 482 |                                                                         |            |  |  |  |  |  |  |  |  |  |
|     | cctccggtctaaggtctactcctgtagtgtcgaaggtcagtca                             |            |  |  |  |  |  |  |  |  |  |
|     | A T 2 3 2 W 9 2 2 A T 1 0 3 0 9 1 9 9 0                                 | -          |  |  |  |  |  |  |  |  |  |
|     | $\tt gccaaatatggaaggctggactcagaagaaggggatggagcctggtgccctgagattcca$      |            |  |  |  |  |  |  |  |  |  |
| 542 | cggtttataccttccgacctgagtcttcttcccctacctcggaccacgggactctaaggt            | 601        |  |  |  |  |  |  |  |  |  |
|     | AKYGRLDSEEGDGAKCPEIP                                                    | _          |  |  |  |  |  |  |  |  |  |
|     | gtggaacctgatgacctgaaggagtttctgcagattgacttgcacaccctccattttatc            |            |  |  |  |  |  |  |  |  |  |
| 602 | caccttggactactggacttcctcaaagacgtctaactgaacgtgtgggaggtaaaatag            | 661        |  |  |  |  |  |  |  |  |  |
|     | · · · · · · · · · · · · · · · · · · ·                                   |            |  |  |  |  |  |  |  |  |  |
|     | VEPDDLKEFLQIOLHTLHFI                                                    | -          |  |  |  |  |  |  |  |  |  |
| 662 | actctggtggggacccagggggcgccgagcaggaggtcatggcatcgagtttgcccccatg           | 721        |  |  |  |  |  |  |  |  |  |
|     | tgagacca cccctgggtccccgcggctcgtcctccagtaccgtagctcaaacgggggtac           |            |  |  |  |  |  |  |  |  |  |
|     | TLVGTQGRRAGGIEFAPH                                                      | -          |  |  |  |  |  |  |  |  |  |
| 722 | ${\tt tocoagatcoattacagtcgggatggcactcgctggatctcttggcggaaccgtcatggg}$    | 781        |  |  |  |  |  |  |  |  |  |
|     | atgitetagitaatgteagecetaccgigagegacetagagaaccgcetiggcagtacee            |            |  |  |  |  |  |  |  |  |  |
|     | YKINYSROGTRWISHRNRHG                                                    | _          |  |  |  |  |  |  |  |  |  |
|     | aaacaggtgctggatggaaatagtaacccctatgacattttcctaaaggacttggagccg            |            |  |  |  |  |  |  |  |  |  |
| 762 | titecesegacctacctttateattgggqatactgtaaaaggatttcctgaacctgqc              |            |  |  |  |  |  |  |  |  |  |
|     |                                                                         |            |  |  |  |  |  |  |  |  |  |

# FIGURE 3B

| D |      | K   | G   | v    | ι        | 0    | G    | к    | s    | н    | e        | ۲        | D    | I   | F        | ι    | ĸ   | o   | Ĺ   | ε        | ₽         | _          |
|---|------|-----|-----|------|----------|------|------|------|------|------|----------|----------|------|-----|----------|------|-----|-----|-----|----------|-----------|------------|
|   |      | . < | cca | ttg  | tag      | cca  | gat  | ttg  | tcc  | ggt  | (ca      | ttc      | cage | cac | cge      | icca | cto | car | gas | itg      | tgtg      | t          |
|   | 84   |     | ggt | aac  | atc      | ggt  | cta  | aac  | egg  | cca  | igti     | agg      | ntce | gtç | gct      | ggt  | gsg | gte | CET | aca      | cac       | 901        |
| ь |      | £   | I   | · v  | A        | R    | F    | ٧    | R    | F    | I        | P        | ٧    | τ   | D        | к    | s   | Ħ   | Ħ   | v        | c         | -          |
|   | 90   | , a | tga | gag  | tgg      | agc  | ttt  | acg  | 2CT  | TG   | rcro     | GCT      | AGA  | TGG | ст       | GGT  | GTC | 177 | CA  | TGO      | TCC       | ١          |
|   | ,,,  |     | act | ctc  | acc      | tcg  | āāa  | tgc  | GA   | CACA | GAC      | CGA      | TCT  | ACC | GAA      | CCA  | CAG | AAT | GTI | ACC      | AGGT      | - 961<br>T |
| ь |      | Ħ   | R   | ٧    | €        | Ĺ    | Y    | G    | c    | ٧    | ĸ        | Ĺ        | 0    | G   | Ĺ        | ٧    | s   | ۲   | H   | A        | P         | ~          |
|   | 96   | G   | CTG | GGC  | AGC.     | AGT  | ΠG   | TAC  | rcco | TGC  | AGC      | iπ       | CAT  | CAT | TTA      | TCT  | GAA | TGA | π   | TGI      | CTAT      | Г          |
|   | 90   |     | GAC | cce. | rcg      | TCA  | AAC  | ATG/ | GGG  | ACC  | TCC      | AAC      | GTA  | GTA | AAT      | AGA  | ctt | ACT | AAG | ACA      | GATA      | 1021       |
| ь |      | Α   | G   | Q    | Q        | F    | ٧    | Ł    | P    | G    | G        | s        | 1    | 1   | ۲        | ٤    | н   | Đ   | s   | ٧        | Y         | -          |
|   |      | G   | ٩ŦG | GAG( | TG       | TTG  | GATA | ACA( | CA3  | GAC  | AGA      | AGG      | GCT  | AGG | CCA      | ATT  | GAO | CGA | TGG | TGT      | GTCT      |            |
|   | 192  |     | TAC | CTC  | AC       | AAC  | CTAT | TGTC | GTA  | cre  | τcτ      | Τα       | CGA  | TCC | GGT      | TAA  | cte | GCT | ACC | ACA      | CAGA      | 1081       |
| b |      | Đ   | G   | A    | v        | G    | Y    | s    | н    | т    | ε        | G        | Ł    | 6   | Q        | ٤    | τ   | D   | e   | v        | s         | _          |
|   |      | G   | cc  | rggø | CGA      | m    | TCA( | cce  | GAC  | CCA  | TGA      | ATA      | CCA  | CGT | GTG      | GCCI | cgg | CTA | TGA | CTA      | TGTG      | i          |
|   | 108  |     |     |      |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | ACAC      |            |
| b |      | G   | ٤   | 0    | D        | F    | Ŧ    | Q    | T    | н    | ε        | Y        | H    | ٧   | H        | P    | G   | Y   | 0   | Y        | v         | _          |
|   |      | G   |     |      |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | cccc      |            |
|   | 1142 |     |     |      | +        |      |      | -+-  |      |      |          |          |      |     | <b>.</b> |      |     | _   |     |          | GGCG      | 1201       |
| ь |      | 6   |     | R    |          |      |      | A    |      |      |          | Y        |      |     |          |      |     |     |     |          | R         | _          |
|   |      | ΑT  | CAG | GAA  | m        | CAC  | TAC  | CAT  |      |      |          |          |      |     |          |      |     |     |     |          | GAAG      |            |
|   | 1202 |     |     |      | <b>+</b> |      |      | -4-  |      |      |          |          |      | -   |          |      |     |     |     |          | cric      | 1001       |
| b |      | 1   |     | н    |          |      |      | н    |      |      |          |          |      |     |          |      |     |     |     |          |           |            |
|   |      | ΤA  | стт | TAA  |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | TGCC      | _          |
|   | 1262 |     |     |      |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | ACGG      | 1321       |
| ь |      |     |     | ĸ    |          |      |      | c    |      |      |          |          |      |     |          |      |     |     |     |          | A         | _          |
|   |      | ΑT  | πο  | стт  |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | r<br>ject |            |
|   | 1322 |     |     |      |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | gga       | 1381       |
| ь |      | I   |     | F    |          |      |      | Ĺ    |      |      |          | #        |      |     | A        |      |     |     |     |          |           | _          |
|   |      | ct  | cca | ccac | cg       | aat  | ggc  | cao  | ace  | ato  |          |          |      |     |          |      |     |     |     |          | ,<br>jatg | _          |
|   | 138Z |     |     |      |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | tac       | 1441       |
| ь |      |     |     |      |          |      | A    |      |      |      |          | c        |      |     |          |      |     |     |     |          | H         | _          |
|   |      | at  | gtt | cagi | gag      | gato | caco |      |      |      |          |          |      |     |          |      |     |     |     | occ      | <br>ctg   |            |
|   | 1442 |     |     |      |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          | gac       | 1501       |
| ь |      |     | F   |      |          |      |      | F    |      |      |          |          |      |     |          |      | N : |     |     |          | 1         | _          |
|   |      | ccc | ace | tct  |          |      |      | ccc  |      |      |          |          |      |     |          | 888  | att |     |     |          | aar       |            |
|   | 1502 |     |     |      |          |      |      | 999  |      |      |          |          |      |     |          |      |     |     |     |          |           | 1561       |
| ò |      | P   |     |      |          |      | Α.   |      | T    |      |          | B        |      | н : |          |      |     |     |     |          | K         |            |
|   |      | act | cox | rato | cto      | att  | taac | tgc  | tta  |      |          | -<br>atc |      |     |          |      |     |     | -   |          |           | -          |
|   | 1562 |     |     |      |          |      |      | +    |      |      |          |          |      |     |          |      |     |     |     |          |           | 1621       |
|   |      |     | R   |      |          |      |      |      |      |      | -23<br>A |          |      | F : |          |      |     |     |     | Laa<br>I | u<br>U    |            |
|   |      | ato | etc |      |          | ago  |      | ttc  |      |      |          |          |      |     |          |      |     |     | -   | -        | ·<br>·    | -          |
|   | 1622 |     |     |      |          |      |      | aag  |      |      |          |          |      |     |          |      |     |     |     |          |           | 1681       |
| , |      | I   |     |      |          |      |      | F    |      |      |          | N I      |      |     |          | tya. |     |     |     |          | gac<br>L  |            |
|   |      |     |     |      |          |      |      |      |      |      |          |          |      |     |          |      |     |     |     |          |           |            |
|   |      | gat | oat | gaa  | ato      | aca  | otc  | age  | ctt  |      |          |          |      |     |          |      |     |     |     |          |           | -          |

# 1683-031 (2166+ + 0730)

# FIGURE 3C

|   | 1682 | ct. | act: | ect: | ttac | tgt  | cag  | tcg | gas  | agg | gac | ggt | tca | cta | aga        | cg   | tac | aag | ttg  | tta  | ttg  | 1741 |
|---|------|-----|------|------|------|------|------|-----|------|-----|-----|-----|-----|-----|------------|------|-----|-----|------|------|------|------|
| ь |      | 0   | O    | E    | н    | τ    | ٧    | S   | L    | s   | ٤   | ь   | s   | 0   | s :        | 5 .  | H   | F   | ĸ    | N    | N    | -    |
|   | 1742 | cg  | ctc  | tc   | atca | ecct | tagt | gza | cas  | 992 | tcc | aac | tcg | act | tac        | ga ( | cgc | atc | ttt  | ccc  | ctt  | 1801 |
|   |      | gc  | gage | gag  | tagt | gga  | stca | ctt | gtt  | ccc | agg | ttg | agc | tga | atg        | cta  | gcg | tag | aaa  | ggg  | gaa  |      |
| b |      | R   | S    | S    | S    | Ρ    | S    | E   | Q    | G   | S   | N   | s   | ٢   | Υ 1        | )    | R   | 1   | F    | P    | L    | -    |
|   | 1802 | cg  | ccc  | tga  | ctac | CAC  | GAC  | CCA | TCC  | AGG | cte | ATA | CGA | AM  | CTC        | CCA  | GAA | П   | GET  | CCA  | GGG  | 1861 |
|   | 1002 | gc  | 999  | act  | gato | GTC  | СТС  | GGT | AGG  | TCC | GAC | TAT | GCT | 111 | CAG        | GGT  | CTT | AAA | CGA  | GGT  | ccc  | 1001 |
| b |      | R   | P    | Ð    | Y    | Q    | ٤    | ₽   | S    | R   | L   | I   | R   | K   | L          | Ρ.   | Ε   | F   | A    | ₽    | G    | -    |
|   | 1862 | GΑ  | GGA  | GGA  | STCA | \GC( | TGC  | ACC | GGT  | GTT | GTG | AAG | CCA | erc | CAG        | ccc  | AGT | ecc | CCI  | GAG  |      | 1921 |
|   | 1007 | ĊŢ  | CCT  | CT   | Tax: | CCC  | ACC  | TCG | CCA  | CAA | CAC | TTC | GGT | CAG | GTC        | GG   | TCA | ccc | CC   | CTC  |      | 1321 |
| b |      | E   | Ε    | ε    | s    | G    | C    | 2   | G    | v   | ٧   | K   | P   | ٧   | Q          |      | s   | G   | ٩    | E    | G    | -    |
|   | 1922 | GT  | GCCI | CA   | TAT  | rGC# | VGA( | GCT | GAC  | ATA | GTG | AAC | стс | CAF | GGA        | aTG. | ACA | GGA | GGC  | AAC  | AÇA  | 1981 |
|   |      | CA  | CGG  | GTI  | ATA  | CGT  | cro  | CGA | CTG  | TAT | CAC | TTG | GAG | GTI | ССТ        | CAC  | TGT | cct | ccc  | TTG  |      | 1301 |
| b |      | ٧   | P    | К    | Y    | A    | Ε    | A   | D    | 1   | ٧   | К   | L   | Q   | <b>G</b> 1 | ٠    | T   | G   | e    | R    | T    | -    |
|   | 1982 | TA  | CTC  | (GT) | 3001 | racc | GTC  | ACC | ATG  | GAC | CTG | crc | TCA | GGA | MAA        | SAT  | GTG | GCT | GTC  | CAG  | GAG  | 2041 |
|   | 1982 | ĀŢ  | GAG  | CA   | GGA  | +CCC | CAG  | TGG | TAC  | CTG | GAC | GAG | AGT | cci | m          | CTA  | CAC | ÇGA | CAC  | стс  |      | 2041 |
| b |      | ۲   | s    | ٧    | ρ    | A    | ٧    | T   | н    | 0   | Ĺ   | L   | s   | G   | K          | D .  | ٧.  | A   | v    | E    | Ε    | -    |
|   | 2042 | π   | ccc  | CAG  | AA   | СТС  | CTA  | ACT | πc   | AAA | GAG | AAG | CTG | GGA | GAA        | GGA  | CAG | ш   | GGG  | GAG  |      | 2101 |
|   | 2042 | AA  | GGG  | TC   | m    | GAG  | GAT  | TGA | AAG  | ш   | стс | πο  | GAC | cci | cm         | ατ   | GTC | AAA | œ    | стс  |      | 2101 |
| b |      | F   | P    | R    | ĸ    | Ł    | L    | τ   | F    | K   | ε   | ĸ   | L   | G   | ٤          | G    | Q   | £   | Ç    | ε    | ٧    | -    |
|   | 2102 | CA  | тсто | TG   | [GA/ | CTC  | GAG  | GGA | ATG  | GAA | AAA | m   | AAA | GAG | AAA        | GAT  | Ш   | ecc | CTA  | GAT  | GTC  | 2161 |
|   | 2102 | GT. | AGA  | AC   | cm   | CAC  | CTC  | CCT | TAC  | cm  | m   | AAG | πī  | CTC | m          | CTA  | AAA | CGG | GAT  | CTF  | CAG  | 2101 |
| ь |      | в   | L    | c    | £    | ٧    | ε    | G   | H    | E   | K   | F   | K   | 0   | K          | D    | F.  | Á   | L    | Đ    | v    | -    |
|   | 2162 | AG  | TGC  | CAA  | CAG  | CCT  | CTC  | cτσ | GTG  | GCT | GTG | AAA | ATG | cto | CGA        | GCA  | GAT | ecc | AAC  | AAG  | TAAL | 2221 |
|   | 2102 | TC  | ACG  | 317  | GTC  | GG   | CAG  | GAC | CAC  | CGA | CAC | TTC | TAC | GAG | GCT        | CGT  | CTA | CGG | π    | 1110 | ATT  | 2221 |
| b |      | 2   | A    | ĸ    | Q    | P    | V    | £   | V    | A   | ٧   | K   | H   | L   | R          | A    | D   | A   | Ħ    | K    | Ħ    | -    |
|   | 2222 | 60  | CAG  | GAA: | TGAT | m    | CTI  | AAC | GAG  | ATA | AAG | ATC | ATG | TC  | rcgg       | CTÇ  | AAG | GAC | CCA  | MAC  | ATC  | 2281 |
|   | 2222 | ÇG  | GTCI | TT   | CTA  | w    | (GA  | in  | cto  | TAT | 110 | TAG | TAC | AGA | GCC        | GAG  | πο  | cto | GG   | П    | TAG  | 2201 |
| b |      | A   | R    | ĸ    | 0    | F    | Ĺ    | K   | Ε    | 1   | K   | 1   | Ħ   | s   | R          | L    | K   | D   | P    | ĸ    | I    | -    |
|   | 2282 | ΑT  | CCAT | стл  | ATT/ | (GCT | rcto | TGT | ATC  | ACT | GAT | GAC | сст | CTC | TGT.       | ATG  | ATC | ACT | GA   | TAC  | ATG  | 2341 |
|   | 2202 | TA  | GGT  | (GA  | TAAT | rcG/ | CAC  | ACA | TAG  | TGA | CTA | CTG | GGA | GAC | ACA        | TAC  | TAG | TC  | ст   | ATC  | TAC  | 2341 |
| ь |      | 1   | н    | £    | L    | A    | ٧    | C   | I    | τ   | D   | ٥   | P   | £   | C          | н    | I   | τ   | Ε    | ۲    | Ħ    | -    |
|   | 2342 | GA  | GAA. | rgg. | 4GAT | rcto | :AA? | CAG | m    | ст  | TCC | cec | CAC | GAG | ccc        | CcT  | AAT | TCT | TCC  | τcc  | AGC  | 2401 |
|   | 2572 | CT  | CTT  | ACC. | TCTA | 4GA( | 117/ | GTC | ***  | GAA | AGG | GCC | GTG | CTC | CGGG       | Gg/  | TTA | VEY | VAGO | AGC  | TCG  | CTUI |
| ь |      | ε   | ĸ    | G    | 0    | L    | Ħ    | Q   | F    | L   | S   | R   | H   | £   | P          | P    | ĸ   | S   | s    | s    | S    | -    |
|   | 2402 | GA  | TGT  | ACG  | CACT | rgto | CAGT | TAC | ACC  | TAA | cto | AAG | m   | ATO | GCT        | ACC  | CAA | ATI | GCC  | TCI  | rGGC | 2461 |
|   | 2402 | ct. | ACA: | rgc  | GTG/ | ACA( | TCA  | ATC | TGC  | 117 | GAC | TTC | AAA | TAC | CGA        | TGG  | GTT | TA  | CG   | GAG  | ccc  | 2401 |
| b |      | 0   | ٧    | R    | τ    | ٧    | S    | Y   | T    | Ħ   | Ļ   | K   | F   | H   | A          | T    | Q   | I   | A    | s    | G    | -    |
|   | 2462 | ΑŢ  | GAA  | ATE  | ccm  | rrcc | CTCT | cn  | FAAT | m   | GII | CAC | CGA | GA  | TCTG       | GCC  | ACA | CC  | AA   | TG   | TTA  | 2521 |
|   | 2402 | TA  | CTT  | CAT  | GGA  | MGC  | GAGA | GAA | 177  | w   | CAT | GTE | GCI | CT  | AGAC       | CGG  | TGI | GCT | m    | SAC  | TAAL | 2521 |
| ь |      | Ħ   | ĸ    | ۲    | Ĺ    | s    | s    | L   | ĸ    | F   | ٧   | H   | R   | ٥   | L          | A    | τ   | R   | ĸ    | c    | Ĺ    | -    |
|   | 2522 | GT  | GGG  | TAA  | GAAC | CTAC | CACA | ATO | CAAC | ATA | GC1 | GAC | m   | GG  | AATG       | AGC  | AGG | AA  | ct   | STA  | AGT  | 2581 |
|   | 4344 | CA  | ccc  | ATT  | CTTC | GAT  | TG   | TAC | TTO  | TAT | CC  | CTO | AAF | cc  | TTAC       | TCG  | TCC | 110 | GA   | CATO | TCA  | COOL |
| b |      | ٧   | G    | ĸ    | Ħ    | Y    | T    | 1   | K    | I   | A   | Ð   | F   | G   | н          | s    | R   | Ħ   | Ĺ    | ۲    | S    | -    |
|   |      | _   |      |      | _    |      |      | _   | _    |     |     | _   | _   |     |            |      |     | _   | _    | -    | _    |      |

# FIGURE 3D

| 2582 |     |      | ACT. | ATT.     | ACC   | GGA  | TCC. | AGG  | GCC  | ccc | CAG  | TGC | TCC  | TAT      | rcco | CTO | GA:  | TGT  | m    | GGAC  | 2641 |
|------|-----|------|------|----------|-------|------|------|------|------|-----|------|-----|------|----------|------|-----|------|------|------|-------|------|
|      |     |      | TGA: | TAA      | TGG   | CCT. | AGG  | TCO  | CGG  | cco | GTC  | ACG | AGG  | GATA     | GGG  | GA  | CTA  | CAL  | AAC  | ccro  | 2041 |
|      | G   | D    | Υ.   | Y        | R     | I    | Q    | G    | R    | A   | ٧    | L   | ₽    | 1        | R    | н   | ĸ    | S    | H    | €     | -    |
| 2642 | A   | ata: | TCT  | Lec      | TGG   | GCA. | AGT  | TCA  | CTA  | CAG | CAA  | STG | 4TG1 | GTC      | GGG  | cn  | 160  | GGT  |      | m     |      |
| 2042 |     | ATA  | SCA. | cc       | 400   | CGT  | TCA  | AGT  | GAT  | STC | in   | ACI | FACE | CAC      | cce  | CA  | VACC | cc   | ATG  | AAAC  | 2701 |
|      | s   | 1    | 1.   | Ł        | G     | κ    | F    | ٢    | τ    | A   | 2    | e   | ٧    | ¥        | A    | F   | G    | y    | τ    | L     | ~    |
| 2702 | τ   | iGG/ | GAC  | π        | (CA   | CCT  | m    | itc  | LAG! | VAC | GCC  | CTA | m    | CCA      | GCT  | cTC | AGA  | TG   | MC#  | GGTT  |      |
| 2/02 |     | CCT  | CTC  | AA       | GT    | GGA  | VAAC | AGT  | TC   | TG  | CGC  | GAT | AAG  | GGT      | CGA  | CAG | TCT  | ACI  | TGT  | CCAA  | 2761 |
|      | ¥   | ε    | T    | F        | T     | f    | С    | Q    | £    | Q   | ₽    | ۲   | s    | Q        | ٤    | s   | ٥    | E    | Q    | v     | -    |
|      | A   | TG   | GA   | TAC      | TG    | GAG! | GTT  | cn   | ccc  | AGA | VCC/ | MGG | GAG  | GCA      | GAC  | TTA | сст  | τα   | TCA  | ACCA  |      |
| 2762 |     | ACT  | CTT  | ATO      | ACC   | TCT  | CA   | GA   | GGC  | TCI | GGT  | TCC | стс  | CGT      | CTG  | AAT | GGA  | GGG  | AGT  | TGGT  | 2821 |
|      | 1   | Ε    | ĸ    | τ        | Ç     | ε    | F    | F    | R    | D   | Q    | G   | R    | Q        | τ    | Y   | ι    | P    | o    | P     | _    |
|      | GC  | CAT  | TTG  | τcc      | TG    | CTC  | TGT  | GT#  | TAF  | GCT | GAT  | CCT | CAG  | CTG      | стс  | GAG | AAG  | AGA  | TAC  | GAAG  |      |
| 2622 |     | GTA  | AAC  | AG6      | ACT   | GAG  | ACA  | CAT  | ATT  | CGA | CTA  | CGA | GTC  | GAC      | GAC  | стс | πc   | TCT  | ATG  | ctic  | 2881 |
|      | A   | 1    | С    | P        | D     | s    | ٧    | Y    | ĸ    | L   | н    | L   | s    | с        | ĸ    | R   | R    | 0    | т    | ĸ     | _    |
|      | AA  | ccg  | τœ   | CTC      | ATT   | CCA  | AGA  | AAT  | CCA  | ссτ | тст  | GCT | ссτ  | TCA      | ACA  | AGG | CGA  | CGA  | GTG  | ATGC  |      |
| 2882 | Π   | GGC  | AGG  | ←<br>GAG | TAA   | GGT  | TCT  | TTA  | GGT  | GGA | AGA  | CGA | GGA  | 4        | IGT  | rco | GCT  | GCT  | CAC  | TACG  | 2941 |
|      | ĸ   | R    | P    | s        | F     | Q    | ε    | 1    | Ħ    | L   | ı    | L   | Ł    | o        | 0    | 6   | D    | E    |      |       | _    |
|      | TG  |      |      |          |       |      |      |      |      |     |      |     |      |          | -    |     |      |      | acti | CACC  |      |
| 2942 |     |      |      | 4        |       |      | -+-  |      |      |     |      |     |      |          |      |     | 4    |      |      |       | 3001 |
|      |     |      |      |          |       |      |      |      |      |     |      |     |      |          |      |     |      |      |      |       |      |
|      | CA. | TGC  | CTA  | rco      | CAC   | TCC  | ATC: | ree. | ACA. | т.  | AAT: | CAA | acte | 246      | 1061 | ·AG | scc  | ~~~  |      | FGCT  | -    |
| 3002 | -   |      |      | ٠        |       |      | -+-  |      |      |     |      |     |      | <b>.</b> |      |     | -    |      |      |       | 3061 |
|      |     |      |      |          |       |      |      |      |      |     |      |     |      |          |      |     |      | arve |      | 1CGA  |      |
|      | TTO | cci  | тс   | m        | rcc   | TGG  | rcar | ~~   | ~~   | 70  | ΥТ.  | w   | cro  | :ACT     | CAT  | (AT |      | ~~   |      | пп    | -    |
| 3062 |     |      |      |          |       |      | ٠٠.  |      |      | _+  |      |     |      | ·        |      |     | 4    |      |      |       | 3121 |
|      |     |      |      |          |       |      |      |      |      |     |      |     |      |          | · 17 |     |      | ***  | ***  | anár. |      |
|      | 7   | TACA | TT   | 100      | 24.65 | :TA  |      |      |      |     |      |     |      |          |      |     |      |      |      |       |      |
| 3122 | -   |      |      |          |       | AT   | +    |      |      | -+- |      |     |      | 315      | 8    |     |      |      |      | •     |      |
|      | •   |      |      |          |       |      |      |      |      |     |      | iiu | Juc  |          |      |     |      |      |      |       |      |

ATP-

#### FTGURE 4A

```
I HILIPRMLLVLFLLLPILSSA. KAQVNPAICRYPLGMSGGQIPDEDIT 47 CCX-2
                 1 HOPEA SSULLLI VASCDACHKGHEDPAKCRYALGHOORTIPDSDIS 48 MCK-40
                48 ASSONSESTAAKYGRUDSEEGDGAHCPEIPVEPOOLKEFLOIDLHTLHFÍ 97
                49 ASSSWSOSTAARHSRI FSSDODGANCRAGSVFFKE, EETLOVOLORLHLV 97
                98 TLVGTOGRRAGGHGIEFAPHYKIHYSRDGTRWISHRHGKQVLDGKSHP 147
                98 ALVETOGRIJAGG GKEFSRSTRLRYSROGRRHHGKKORKGOEVISGHEDP 147
                148 YDIFLKDLEPPIVARFVRFIPVTDKSHNVCKRVELYGCVWLDGLVSYNAP 197
                148 EGYVLKDLGPPHVARLVRFYPRADRYMSVCLRVELTGCLKRDGLLSYTAP 197
                198 AGQQFVLPGGS11YLKDSVYDG_AVGYSHTEGLGQLTDGVSGLDDFTQTH 246
                198 VGOTMYLSEA. VYLADSTYDGHTVGGLQYGGLGQLADGVVGLDDFRKSQ 245
                247 FYHAMPGYDYVGWRNESATNGYIEINFEFDRIRNFTTHKVKCNNHFAKGV 296
                246 ELRWAPGYOYVGWSHISFSSGYVEHEFEFDRLRAFQAHQVHCHINHTILGA 295
                297 KIFKEVOC YFRSEASEWYPHAISFPLVLDDVNPSARFVTVPLHHRMASA 345
                296 RLPGGYECRERRGPANAMEGEPHRHNLGGKLGDPRARAVSVPLGGRVARF 345
                346 LQCRFLFACPHILESEISFISO.VVNNSSPALGGTFPPAPHMPPGPPPTH 394
                381 ....PHAPTTYDPHEKVDDSHTRILIGGEVALIFILLATIVITEHROFHO 426
                                                                           Transmembrane region
                427 KMLEKASRRMLDDEHTVSLSLPSDSSMFHHHRSSSPSEQGSHSTYDRIFF 476
                445 RLLSKAERRVLEEELTVHLSVPGOTILINNRPGPREP
                477 LRPDYOEPSRLIRKLPEFAPGEEESGCSG......VVKPVQPSGPEGV 518
                     PPYOFPRINGEN PHISAPCYPHOSAYSCOTHEPEKPGAPLLPPPPPHISV 52
                519 PHYAFADIVA VTGGHTYSUPAVTHOLLSGKOVAVEEFPRKLLTFKEK 56
                530 PHYAEADIVILOGVIGGHTYAVPALPPGAVEDGPPRV-DFPRSRLRFKEK 578
                569 LGEGOFGEVHLCEVEGHEKFKDKDFALDVSANOPVLVAVKMLRADANKNÁ 618
binding site
                619 RNDFLKEIKINSRLKDPHIIHLLAVCITOOPLCHITEYHENGOLHOFLSR 668
                669 HE......PPHSSSSDVRTVSYTHLKFHATOLASGEKYLSSLNFVHR 709
                679 HOLEDKAAEGAPGOGGAAGGPTISYPHLLHVAAGIASGKRYLATLNFVHR 728
                 710 DLATRHOLVÖKNYTIKIADFGHSRNLYSGÖYYRIQGRAVLPIRHMSMESİ 759
                 729 DLATRICLVGENFTIKIADFGHSRHLYAGDYYRVQGRAVLPIRIMAHECI 778
                 760 LLGKFTTASDVWAFGVTLWETFTFCQEQPYSQLSDEQVIENTGEFFRDQG 809
                 779 LHGKFTTASDWAFGVTLWEVLHLCRAQPFGOLTDEQVIENAGEFFRDOG 828
                 810 RQTYLPQPAICPDSVYKLHLSCHRRDTKHRPSFQEIHLLLLQQGDE. 855
                 629 ROUYLSRPRAPPOGLYELMLRCHSRESEORPPESOLHRFLAEDAL NTV R76
```

# Figure 4B

| Extracellular        | TM  | Ту                  | rosine kinas | se         |
|----------------------|-----|---------------------|--------------|------------|
| Discoidin i<br>motif |     | ATP-binding<br>site |              |            |
|                      |     |                     |              | CCK-2      |
| 78%                  | 87% | 100%                | 84%          | % identity |
|                      |     |                     |              |            |

#### FIGURE 5A



### FIGURE 5B



# FIGURE 5C



FIGURE 6A



FIGURE 6B



#### FIGURE 7A



darkfield

lightfield

FIGURE 78



lightfield



darkfield

**LIGNUEDR** 



lightfield





lightfield



darkfield



FIGURE 11A



darkfield

lightfield

FIGURE 11B



#### FIGURE IZA



darkfield

lightfield

FIGURE 128



FIGURE 13A





darkfield

FIGURE 13B



# FIGURE 14A

lightfield



FIGURE 14B



lightfield



FIGURE 15B



lightfield



FIGURE 16B



#### FIGURE I7A

lightfield



FIGURE 17B



#### FIGURE 18A

lightfield



FIGURE 18B





darkfield

lightfield

# FIGURE 198



lightfield



darkfield

FIGURE 208:



FIGURE 21A

lightfield



FIGURE 21B



#### SUPPLEMENTAL DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

the specification of which:

is attached hereto

with amendment(s) filed on \_

Article 19 on \_\_\_\_\_

amendment referred to above.

application:

APPLICATION SERIAL NO.

My residence, post office address and citizenship are as stated below at 201 et seq. underneath my name.

was filed in the United States on November 16, 1993 as Application Serial No. 08/153,397

(if applicable)

FILING DATE

I believe I am the original, first and sole inventor if only one name is listed at 201 below, or an original, first and joint inventor if plural names are listed at 201 et seq. below, of the subject matter which is claimed and for which a patent is sought on the invention entitled "MCK-10. A NOYEL RECEPTOR TYROSINE KINASE"

uss filed as PCT international application Serial No. \_\_\_\_\_\_ on \_\_\_\_\_ and was amended under PCT

| .56<br>I here<br>certifi | lowing the duty to disclose information.  by claim foreign priority benefits unde teste listed below and have also identifies application on which priority is claimed. | r Title 35, United States Code,<br>d below any foreign application | 8119/8172 of any foreign apt         | olication(s) for pa         | tent or inventor's |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|-----------------------------|--------------------|
| Parts<br>Parts           | EARLIEST FOREIGN APPLICAT                                                                                                                                               | ION(S), IF ANY, FILED PRI                                          | OR TO THE FILING DATE                | OF THE APPLIC               | ATION              |
| 的的                       | APPLICATION NUMBER                                                                                                                                                      | COUNTRY                                                            | DATE OF FILING<br>(day, month, year) | PRIO<br>CLAIMEI<br>35 U.S.C | RITY<br>UNDER      |
| [2]                      |                                                                                                                                                                         |                                                                    |                                      | YES 🗆                       | NO □               |
| Ŧ                        |                                                                                                                                                                         |                                                                    |                                      | YES □                       | NO 🗆               |
| grade.                   |                                                                                                                                                                         |                                                                    |                                      | YES 🗆                       | NO 🗆               |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first reargaraph of Title 35, United States Code §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal gulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this

PATENTED

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any

1. Let us Colonia Company to the protection of the protection of the 37. Code of Federal Regulations

POWER OF ATTORNEY: As a named inventor, I hereby appoint S. Leslie Misrock (Reg. No. 18872), Harry C. Jones, III (Reg. No. 20280). Berj A. Terzian (Reg. No. 20060), Gerald J. Flintoft (Reg. No. 20223), David Weild, III (Reg. No. 21094), Jonathan A. Marshall (Reg. No. 24614), Barry D. Rein (Reg. No. 22411), Stanton T. Lawrence, III (Reg. No. 25756), Isaac Jarkovsky (Reg. No. 22731, Joseph V. Colianni (Reg. No. 2619)), Charles E. Miller (Reg. No. 24746), Finiti T. Shannon (Reg. No. 24786), Finiti F. Morris (Reg. No. 24746), Gidon D. Stern (Reg. No. 27469), John J. Lauter, Jr. (Reg. No. 27476), Finiti F. Shannon (Reg. No. 247478), Frains E. Miller (Reg. No. 26764), Roys J. Radding (Reg. No. 27469), John J. Lauter, Jr. (Reg. No. 27414), Brian M. Poissant (Reg. No. 27462), Grian D. Coggo (Reg. No. 27624), Roys J. Radding (Reg. No. 28749), Stephen J. Harbulk (Reg. No. 2916), Donald J. Goodell (Reg. No. 19766), James N. Palik (Reg. No. 30173), Jon R. Stark (Reg. No. 30173), Jon R. Stark (Reg. No. 30173), Jan A. Harch (Reg. No. 30174), Jan A. Fantoneci (Reg. No. 30256), Gernlider F. Baldwrin (Reg. No. 31223), whose address is Pennie & Edmonds, 1155 Avenue of the Americas, New York, New York 10036, and each of them, my attorneys, to prosecute this application, and to transact all business in the Patent and Trademark Office connected therewith.

(1) PENY-240378.1

STATUS

PENDING

YES

NO 🗆

ABANDONED

| SENI        | CORRESPONDEN               | CE TO: PENNIE & EDMON<br>1155 AVENUE OF T<br>NEW YORK, N.Y. 1 | THE AMERICAS PER                 | RECT TELEPHONE CALI<br>NNIE & EDMONDS<br>2) 790-9090 | LS TO:            |
|-------------|----------------------------|---------------------------------------------------------------|----------------------------------|------------------------------------------------------|-------------------|
|             | FULL NAME<br>OF INVENTOR   | LAST NAME<br>Ullrich                                          | FIRST NAME Axel                  | MIDDLE NAME                                          |                   |
| 2<br>0<br>1 | RESIDENCE &<br>CITIZENSHIP | CITY<br>München                                               | STATE OR FOREIGN COUNTRY Germany | Germany                                              |                   |
| 1           | POST OFFICE<br>ADDRESS     | STREET Adalbertstr. 108                                       | München                          | STATE OR COUNTRY  Germany                            | ZIP CODE<br>80798 |
|             | FULL NAME<br>OF INVENTOR   | LAST NAME<br>Alves                                            | FIRST NAME<br>Frauke             | MIDDLE NAME<br>Hildegard Elisabet                    |                   |
| 2 0 2       | RESIDENCE &                | Göttingen                                                     | STATE OR FOREIGN COUNTRY Germany | Germany                                              | IP                |
| ٔ ا         | POST OFFICE<br>ADDRESS     | STREET Rohnsweg 2                                             | Göttingen                        | state or country<br>Germany                          | 37085             |
|             | FULL NAME<br>OF INVENTOR   | LAST NAME                                                     | FIRST NAME                       | MIDDLE NAME                                          |                   |
| 2 0         | RESIDENCE &                | CITY                                                          | STATE OR FOREIGN COUNTRY         | COUNTRY OF CITIZENSH                                 | ,                 |
| ,           | POST OFFICE<br>ADDRESS     | STREET                                                        | CITY                             | STATE OR COUNTRY                                     | ZIP CODE          |
|             | FULL NAME<br>OF INVENTOR   | LAST NAME                                                     | FIRST NAME                       | MIDDLE NAME                                          |                   |
| 2           | RESIDENCE &                | CITY                                                          | STATE OR FOREIGN COUNTRY         | COUNTRY OF CITIZENSE                                 |                   |
| 4           | POST OFFICE<br>ADDRESS     | STREET                                                        | СПУ                              | STATE OR COUNTRY                                     | ZIP CODE          |
| _           | FULL NAME<br>OF INVENTOR   | LAST NAME                                                     | FIRST NAME                       | MIDDLE NAME                                          |                   |
| 2           | RESIDENCE &                | CITY                                                          | STATE OR FOREIGN COUNTRY         | COUNTRY OF CITIZENS                                  |                   |
| 5           | POST OFFICE<br>ADDRESS     | STREET                                                        | CITY                             | STATE OR COUNTRY                                     | ZIP CODE          |
| ۸.          | FULL NAME<br>OF INVENTOR   | LAST NAME                                                     | FIRST NAME                       | MIDDLE NAME                                          |                   |
| 2 0 6       | RESIDENCE & CITIZENSHIP    | CITY                                                          | STATE OR POREIGN COUNTRY         | COUNTRY OF CITIZENS                                  |                   |
| 0           | POST OFFICE<br>ADDRESS     | STREET                                                        | CITY                             | STATE OR COUNTRY                                     | ZIP CODE          |

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopartize the validity of the application or any patent issuing thereon.

| SCHATURE OF INVENTOR 200  AXEU Ullich  DATE  AXEU Ullich  DATE  AXEU Ullich  DATE  DATE  BONATURE OF INVENTOR 200  Franke Hidegard Elisabeth Alves  DATE  DATE  BONATURE OF INVENTOR 200  DATE  DATE | may jeopardize the validity of the apparation | -            |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------|---------------------------|
| DATE 3/31/94 DATE 4/27/94 DATE DATE  DATE 4/27/94 DATE  DATE 4/27/94 DATE  DATE DATE  DATE                                                                                                                                                                                                                   | HXEL KUROCK                                   | Frank Alver  | SIGNATURE OF INVENTOR 208 |
| DATE                                                                                                                                                                                                                                                                                                         | DATE 3/31/94                                  | DATE 4/27/94 |                           |
|                                                                                                                                                                                                                                                                                                              |                                               | DATE         | DATS                      |

. . .

#### SEQUENCE LISTING

#### (1) GENERAL INFORMATION:

- (i) APPLICANT: Ullrich, Axel Alves, Frauke
- (ii) TITLE OF INVENTION: MCK-10, A Novel Receptor Tyrosine Kinase
- (iii) NUMBER OF SEQUENCES: 14
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: Pennie & Edmonds
  - (B) STREET: 1155 Avenue of the Americas
  - (C) CITY: New York
  - (D) STATE: New York (E) COUNTRY: U.S.A.
  - (F) ZIP: 10036-2711
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Floppy disk
    - (B) COMPUTER: IBM PC compatible
  - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
  - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 08/153,397
  - (B) FILING DATE: 16-NOV-1993
- (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
  - (A) NAME: Coruzzi, Laura A.
    (B) REGISTRATION NUMBER: 30,742
  - (C) REFERENCE/DOCKET NUMBER: 7683-031
  - (ix) TELECOMMUNICATION INFORMATION:
    - (A) TELEPHONE: (212) 790-9090
    - (B) TELEFAX: (212) 869-9741/8864
    - (C) TELEX: 66141 PENNIE
- (2) INFORMATION FOR SEQ ID NO:1:
  - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 3962 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: both
  - (ii) MOLECULE TYPE: cDNA to mRNA
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (ix) FEATURE:

| (A) NAME/KEY: C | (A) | () | ) NA | ME. | /KRY | ٠, | CDS |
|-----------------|-----|----|------|-----|------|----|-----|
|-----------------|-----|----|------|-----|------|----|-----|

(B) LOCATION: 321..3077

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

|   | CGC              | GCC               | rga <b>g</b>       | ACTO              | GGG'               | GA (             | TGGG              | BACCI             | ra ac             | BAGA               | ATCCI             | r gad              | CTGC               | BAGG              | ccc               | CGACAG           | 60  |
|---|------------------|-------------------|--------------------|-------------------|--------------------|------------------|-------------------|-------------------|-------------------|--------------------|-------------------|--------------------|--------------------|-------------------|-------------------|------------------|-----|
|   |                  |                   |                    |                   |                    |                  |                   |                   |                   |                    |                   |                    |                    |                   |                   | CGGCTC           | 120 |
|   |                  |                   |                    |                   |                    |                  |                   |                   |                   |                    |                   |                    |                    |                   |                   |                  | 120 |
|   |                  |                   |                    |                   |                    |                  |                   |                   |                   |                    |                   |                    |                    |                   |                   | CCCGCT           | 180 |
|   | CCC              | GGGT              | CGG                | ACGC              | CTG                | GT C             | TGCC              | GGGA              | A GA              | GCGA               | TGAG              | AGG                | TGTC               | TGA               | AGGI              | GGCTAT           | 240 |
|   | TCA              | CTGA              | GCG                | ATGG              | GGTI               | GG A             | CTTG              | AAGG              | IA A              | GCCA               | AGAG              | ATG                | CTGC               | ccc               | CACC              | CCCTTA           | 300 |
|   | GGC              | CCGA              | .GGG               | ATCA              | .GGAG              | CT A             | TG G<br>let G     | GA C              | CA G              | AG G               | CC C<br>la L<br>5 | TG I               | CA T<br>Ser S      | CT I              | eu L              | TG<br>eu<br>10   | 350 |
|   | CTG<br>Leu       | CTG<br>Leu        | Leu                | TTG<br>Leu        | GTG<br>Val<br>15   | Ala              | AGT<br>Ser        | GGA<br>Gly        | GAT<br>Asp        | GCT<br>Ala<br>20   | Asp               | Met                | AAG<br>Lys         | GGA<br>Gly        | CAT<br>His        | TTT<br>Phe       | 398 |
|   | GAT<br>Asp       | CCT<br>Pro        | GCC<br>Ala         | AAG<br>Lys<br>30  | TGC<br>Cys         | CGC              | TAT<br>Tyr        | GCC<br>Ala        | CTG<br>Leu<br>35  | GGC<br>Gly         | ATG<br>Met        | CAG<br>Gln         | GAC<br>Asp         | CGG<br>Arg<br>40  | ACC<br>Thr        | ATC<br>Ile       | 446 |
|   | CCA<br>Pro       | GAC<br>Asp        | AGT<br>Ser<br>45   | GAC<br>Asp        | ATC<br>Ile         | TCT              | GCT<br>Ala        | TCC<br>Ser<br>50  | AGC<br>Ser        | TCC<br>Ser         | TGG<br>Trp        | TCA<br>Ser         | GAT<br>Asp<br>55   | TCC<br>Ser        | ACT<br>Thr        | GCC<br>Ala       | 494 |
|   | GCC<br>Ala       | CGC<br>Arg<br>60  | CAC<br>His         | AGC<br>Ser        | AGG<br><b>Ar</b> g | TTG<br>Leu       | GAG<br>Glu<br>65  | AGC<br>Ser        | AGT<br>Ser        | GAC<br>Asp         | GGG<br>Gly        | GAT<br>Asp<br>70   | GGG<br>Gly         | GCC<br>Ala        | TGG<br>Trp        | TGC<br>Cys       | 542 |
| 1 | CCC<br>Pro<br>75 | GCA<br>Ala        | GGG<br>Gly         | TCG<br>Ser        | GTG<br>Val         | TTT<br>Phe<br>80 | CCC<br>Pro        | AAG<br>Lys        | GAG<br>Glu        | GAG<br>Glu         | GAG<br>Glu<br>85  | TAC<br>Tyr         | TTG<br>Leu         | CAG<br>Gln        | GTG<br>Val        | GAT<br>Asp<br>90 | 590 |
| ] | CTA<br>Leu       | CAA<br>Gln        | CGA<br><b>Ar</b> g | CTC<br>Leu        | CAC<br>His<br>95   | CTG<br>Leu       | GTG<br>Val        | GCT<br>Ala        | CTG<br>Leu        | GTG<br>Val<br>100  | GGC<br>Gly        | ACC<br>Thr         | CAG<br>Gln         | GGA<br>Gly        | CGG<br>Arg<br>105 | CAT<br>His       | 638 |
| I | GCC<br>Ala       | GGG<br>Gly        | GGC<br>Gly         | CTG<br>Leu<br>110 | GGC<br>Gly         | AAG<br>Lys       | GAG<br>Glu        | TTC<br>Phe        | TCC<br>Ser<br>115 | cgg<br><b>Ar</b> g | AGC<br>Ser        | TAC<br>Tyr         | CGG<br>Arg         | CTG<br>Leu<br>120 | CGT<br>Arg        | TAC<br>Tyr       | 686 |
| 3 | rcc<br>Ser       | CGG<br>Arg        | GAT<br>Asp<br>125  | GGT<br>Gly        | CGC<br>Arg         | CGC<br>Arg       | TGG<br>Trp        | ATG<br>Met<br>130 | ggc<br>Gly        | TGG<br>Trp         | AAG<br>Lys        | gac<br><b>A</b> sp | CGC<br>Arg<br>135  | TGG<br>Trp        | GGT<br>Gly        | CAG<br>Gln       | 734 |
| Ġ | AG<br>lu         | GTG<br>Val<br>140 | ATC<br>Ile         | TCA<br>Ser        | GGC<br>Gly         | AAT<br>Asn       | GAG<br>Glu<br>145 | GAC<br>Asp        | CCT<br>Pro        | GAG<br>Glu         | GGA<br>Gly        | GTG<br>Val<br>150  | G <b>TG</b><br>Val | CTG<br>Leu        | AAG<br>Lys        | GAC<br>Asp       | 782 |

| CTI<br>Leu<br>155 | Gly        | Pro                   | CCC               | ATG<br>Met        | GTT<br>Val<br>160 | GCC        | CGA                   | Leu               | GTI<br>Val        | Arg        | Phe        | TAC<br>Tyr        | Pro                 | CGG<br>Arg        | GCT<br>Ala<br>170 |    | 830 |
|-------------------|------------|-----------------------|-------------------|-------------------|-------------------|------------|-----------------------|-------------------|-------------------|------------|------------|-------------------|---------------------|-------------------|-------------------|----|-----|
| GAC<br>Asp        | Arg        | Val                   | ATG<br>Met        | AGT<br>Ser<br>175 | GTC<br>Val        | TGT<br>Cys | CTG<br>Leu            | CGG               | GTA<br>Val<br>180 | Glu        | Leu        | TAT               | Gly                 | TGC<br>Cys<br>185 | Leu               |    | 878 |
| TGG<br>Trp        | AGG<br>Arg | GAT<br>Asp            | GGA<br>Gly<br>190 | CTC<br>Leu        | CTG<br>Leu        | TCT<br>Ser | TAC<br>Tyr            | ACC<br>Thr<br>195 | Ala               | CCT<br>Pro | GTG<br>Val | GGG<br>Gly        | CAG<br>Gln<br>200   | ACA<br>Thr        | ATG<br>Met        |    | 926 |
| TAT<br>Tyr        | TTA<br>Leu | TCT<br>Ser<br>205     | GAG<br>Glu        | GCC<br>Ala        | GTG<br>Val        | TAC<br>Tyr | CTC<br>Leu<br>210     | AAC<br>Asn        | GAC<br>Asp        | TCC<br>Ser | ACC<br>Thr | TAT<br>Tyr<br>215 | GAC<br>Asp          | GGA<br>Gly        | CAT<br>His        |    | 974 |
| Thr               | Val<br>220 | GGC<br>Gly            | Gly               | Leu               | Gln               | Tyr<br>225 | Gly                   | Gly               | Leu               | Gly        | Gln<br>230 | Leu               | Ala                 | Asp               | Gly               | 1  | 022 |
| Val<br>235        | Val        | GGG<br>Gly            | Leu               | Asp               | Asp<br>240        | Phe        | Arg                   | Lys               | Ser               | Gln<br>245 | Glu        | Leu               | Arg                 | Val               | Trp<br>250        | 10 | 070 |
| Pro               | Gly        | TAT<br>Tyr            | Asp               | Tyr<br>255        | Val               | Gly        | Trp                   | Ser               | Asn<br>260        | His        | Ser        | Phe               | Ser                 | Ser<br>265        | Gly               | 11 | 118 |
| Tyr               | Val        | GAG<br>Glu            | Met<br>270        | Glu               | Phe               | Glu        | Phe                   | Asp<br>275        | Arg               | Leu        | Arg        | Ala               | Phe<br>280          | Gln               | Ala               | 11 | 166 |
| ATG<br>Met        | Gln        | Val<br>285            | His               | Cys               | Asn               | Asn        | Met<br>290            | His               | Thr               | Leu        | Gly        | Ala<br>295        | Arg                 | Leu               | Pro               | 12 | :14 |
|                   | 300<br>300 | Val                   | Glu               | Cys               | Arg               | Phe<br>305 | Arg                   | Arg               | Gly               | Pro        | Ala<br>310 | Met               | Ala                 | Trp               | Glu               | 12 | 62  |
| GGG<br>Gly<br>315 | Glu        | Pro                   | Met .             | Arg               | His .<br>320      | Asn        | Leu                   | Gly               | Gly               | Asn<br>325 | Leu        | Gly               | qaA                 | Pro               | Arg<br>330        | 13 | 10  |
| GCC<br>Ala        | Arg .      | Ala                   | Val :             | Ser<br>335        | Val :             | Pro :      | Leu                   | Gly               | Gly<br>340        | Arg        | Val        | Ala               | Arg                 | Phe<br>345        | Leu               | 13 | 58  |
| CAG<br>Gln        | Cys .      | Arg                   | Phe 1             | Leu :             | Phe i             | Ala        | зіу                   | Pro<br>355        | Trp               | Leu :      | Leu        | Phe               | Ser<br>3 <b>6</b> 0 | Glu               | Ile               | 14 | 06  |
| TCC Ser           | Phe        | ATC 1<br>Ile :<br>365 | FCT (<br>Ser 1    | Asp '             | GTG (<br>Val 1    | Val 2      | AAC .<br>Asn .<br>370 | AAT<br>Asn        | TCC<br>Ser        | TCT<br>Ser | Pro .      | GCA<br>Ala<br>375 | CTG<br>Leu          | GGA<br>Gly        | GGC<br>Gly        | 14 | 54  |

٠,

|            | TTC<br>Phe<br>380 |            |            |            |            |            |            |            |            |            |            |            |            |            | AAC<br>Asn | 1502 |
|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
|            | AGC<br>Ser        |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 1550 |
|            | GAG<br>Glu        |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 1598 |
|            | CTG<br>Leu        |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 1646 |
| Trp        | CGC<br>Arg        | Arg<br>445 | Leu        | Leu        | Ser        | Lys        | Ala<br>450 | Glu        | Arg        | Arg        | Val        | Leu<br>455 | Glu        | Glu        | Glu        | 1694 |
| Leu        | ACG<br>Thr<br>460 | Val        | His        | Leu        | Ser        | Val<br>465 | Pro        | Gly        | Asp        | Thr        | Ile<br>470 | Leu        | Ile        | Asn        | Asn        | 1742 |
| Arg<br>475 | CCA<br>Pro        | Gly        | Pro        | Arg        | Glu<br>480 | Pro        | Pro        | Pro        | Tyr        | Gln<br>485 | Glu        | Pro        | Arg        | Pro        | Arg<br>490 | 1790 |
| Gly        | AAT<br>Asn        | Pro        | Pro        | His<br>495 | Ser        | Ala        | Pro        | Cys        | Val<br>500 | Pro        | Asn        | Gly        | Ser        | Ala<br>505 | Leu        | 1838 |
| Leu        | CTC<br>Leu        | ser        | Asn<br>510 | Pro        | Ala        | Tyr        | Arg        | Leu<br>515 | Leu        | Leu        | Ala        | Thr        | Tyr<br>520 | Ala        | Arg        | 1886 |
| Pro        | Pro               | Arg<br>525 | Gly        | Pro        | Gly        | Pro        | Pro<br>530 | Thr        | Pro        | Ala        | Trp        | Ala<br>535 | Lys        | Pro        | Thr        | 1934 |
| Asn        | ACC<br>Thr<br>540 | Gln        | Ala        | Tyr        | Ser        | Gly<br>545 | Asp        | Tyr        | Met        | Glu        | Pro<br>550 | Glu        | Lys        | Pro        | Gly        | 1982 |
| Ala<br>555 | CCG<br>Pro        | Leu        | Leu        | Pro        | Pro<br>560 | Pro        | Pro        | Gln        | Asn        | Ser<br>565 | Val        | Pro        | His        | Tyr        | Ala<br>570 | 2030 |
| Glu        | GCT<br>Ala        | Asp        | Ile        | Val<br>575 | Thr        | Leu        | Gln        | Gly        | Val<br>580 | Thr        | Gly        | Gly        | Asn        | Thr<br>585 | Tyr        | 2078 |
|            | GTG<br>Val        | Pro        |            |            |            |            |            |            |            |            |            |            |            |            |            | 2126 |

(i)

|  | GAT<br>Asp        |  |  |  |  |  |  |  | 2174 |
|--|-------------------|--|--|--|--|--|--|--|------|
|  | CAG<br>Gln<br>620 |  |  |  |  |  |  |  | 2222 |
|  | GTC<br>Val        |  |  |  |  |  |  |  | 2270 |
|  | GTA<br>Val        |  |  |  |  |  |  |  | 2318 |
|  | TCC<br>Ser        |  |  |  |  |  |  |  | 2366 |
|  | AGG<br>Arg        |  |  |  |  |  |  |  | 2414 |
|  | GAC<br>Asp<br>700 |  |  |  |  |  |  |  | 2462 |
|  | AAC<br>Asn        |  |  |  |  |  |  |  | 2510 |
|  | GCC<br>Ala        |  |  |  |  |  |  |  | 2558 |
|  | ATG<br>Met        |  |  |  |  |  |  |  | 2606 |
|  | GCC<br>Ala        |  |  |  |  |  |  |  | 2654 |
|  | GTT<br>Val<br>780 |  |  |  |  |  |  |  | 2702 |
|  | AAC<br>Asn        |  |  |  |  |  |  |  | 2750 |
|  | CCC<br>Pro        |  |  |  |  |  |  |  | 2798 |

|      |      |      | AGT<br>Ser<br>830 |      |      |      |       |     |              |     |               |      |       |       |            | , 28 | 346         |
|------|------|------|-------------------|------|------|------|-------|-----|--------------|-----|---------------|------|-------|-------|------------|------|-------------|
|      |      |      | TGT<br>Cys        |      |      |      |       |     |              |     |               |      |       |       | CAG<br>Gln | 28   | 394         |
|      |      |      | AAC<br>Asn        |      |      |      |       |     |              |     |               |      |       |       |            | 25   | 942         |
|      |      |      | CGG<br>Arg        |      |      |      |       |     |              |     |               |      |       |       |            | 25   | 990         |
|      |      |      | TGG<br>Trp        |      |      |      |       |     |              |     |               |      |       |       |            | 30   | 38          |
|      |      |      | TTC<br>Phe<br>910 |      |      |      |       |     |              |     |               |      | TGA   | ATCAC | CAC        | 30   | 87          |
| ATC  | AGCT | GC C | CCTC              | CCTC | A GO | GAGI | GATC  | CAG | GGG <i>I</i> | AGC | CAGI          | GAC  | CT I  | AAA!  | CAAGAG     | 31   | L <b>47</b> |
| GACA | CAAT | GG C | CACCI             | CTGC | C CI | TCCC | CTCC  | CGF | CAGO         | CCA | TCAC          | CTCI | raa 1 | AGAC  | EGCAGT     | 32   | 07          |
| GAG  | CTGC | AG G | TGGG              | CTG  | G CC | CACC | CAGG  | GAG | CTG          | TGC | CCCI          | TCTC | ccc c | CTTCC | CTGGAC     | 32   | 67          |
| ACAC | TCTC | AT G | TCCC              | CTTC | C TO | TTCT | TCCI  | TCC | TAGA         | AGC | CCCI          | GTC  | CC C  | CACCO | CAGCTG     | 33   | 27          |
| GTCC | TGTG | GA I | GGGA              | TCCT | C TO | CACC | CTCC  | TCT | AGCC         | ATC | CCTI          | GGG  | AA (  | GGT   | GGGAG      | 3.3  | 87          |
| raaa | DATA | GA I | AGAC              | ACTO | G AC | ATGG | CCCA  | TTC | GAGC         | ACC | TGGG          | ccc  | CAC T | rggac | CAACAC     | 34   | 47          |
| TGAT | TCCI | GG A | GAGG              | TGGC | T GC | GCCC | CAGC  | TTC | TCTC         | TCC | CT <b>G</b> T | CAC  | CA C  | TGG#  | CCCCA      | 35   | 07          |
| CTG  | CTGA | GA A | TCTC              | GGGG | T GA | GGAG | GACA  | AGA | AGGA         | GAG | GAAA          | ATGT | TT (  | CTTC  | TGCCT      | 3.5  | 67          |
| GCTC | CTGT | AC I | TGTC              | CTCA | G CI | TGGG | CTTC  | TTC | CTCC         | TCC | ATCA          | CCTG | AA I  | CACT  | GGACC      | 3 6  | 27          |
| TGGG | GGTA | GC C | CCGC              | CCCA | G CC | CTCA | GTCA  | ccc | CCAC         | TTC | CCAC          | TTGC | AG T  | CTTC  | TAGCT      | 36   | 87          |
| AGAA | CTTC | TC I | AAGC              | CTAT | A CG | TTTC | TGTG  | GAG | AAAT         | TAT | TGGG          | OTTA | GG C  | GGA   | AGAGG      | 37   | 47          |
| GAGC | AACG | GC C | CATA              | GCCI | T GG | GGTI | 'GGAC | ATC | TCTA         | GTG | TAGC          | TGCC | AC A  | TTGF  | TTTTT      | 38   | 07          |
| CTAT | AATC | AC I | TGGG              | GTTI | G TA | CATI | TTTG  | GGG | GGAG         | AGA | CACA          | GATI | TT 1  | TACAC | TAATA      | 38   | 67          |
| TATO | GACC | TA G | CTTG              | AGGC | ra a | TTTA | ATCC  | CCI | GCAC         | TAG | GCAG          | GTA  | TA A  | TAA   | GGTTG      | 3 9  | 27          |
| AGTT | TTCC | AC A | AAAA              | AAAA | A AA | AAAA | CCGG  | LAA | TC           |     |               |      |       |       |            | 39   | 62          |

#### (2) INFORMATION FOR SEQ ID NO:2:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 919 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- ·--/
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Gly Pro Glu Ala Leu Ser Ser Leu Leu Leu Leu Leu Leu Val Ala 1 5 10 15
- Ser Gly Asp Ala Asp Met Lys Gly His Phe Asp Pro Ala Lys Cys Arg 20 25 30
- Tyr Ala Leu Gly Met Gln Asp Arg Thr Ile Pro Asp Ser Asp Ile Ser
- Ala Ser Ser Ser Trp Ser Asp Ser Thr Ala Ala Arg His Ser Arg Leu
  50 55 60
- Glu Ser Ser Asp Gly Asp Gly Ala Trp Cys Pro Ala Gly Ser Val Phe 65 70 75 80
- Pro Lys Glu Glu Glu Tyr Leu Gln Val Asp Leu Gln Arg Leu His Leu  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$
- Val Ala Leu Val Gly Thr Gln Gly Arg His Ala Gly Gly Leu Gly Lys
- Glu Phe Ser Arg Ser Tyr Arg Leu Arg Tyr Ser Arg Asp Gly Arg Arg 115 120 125
- Trp Met Gly Trp Lys Asp Arg Trp Gly Gln Glu Val Ile Ser Gly Asn 130 135 140
- Glu Asp Pro Glu Gly Val Val Leu Lys Asp Leu Gly Pro Pro Met Val 145 \$150\$
- Ala Arg Leu Val Arg Phe Tyr Pro Arg Ala Asp Arg Val Met Ser Val
  165 170 175
- Cys Leu Arg Val Glu Leu Tyr Gly Cys Leu Trp Arg Asp Gly Leu Leu 180  $\cdot$  185 190
- Ser Tyr Thr Ala Pro Val Gly Gln Thr Met Tyr Leu Ser Glu Ala Val 195 200 205
- Tyr Leu Asn Asp Ser Thr Tyr Asp Gly His Thr Val Gly Gly Leu Gln 210 215 220
- Tyr Gly Gly Leu Gly Gln Leu Ala Asp Gly Val Val Gly Leu Asp Asp 225 230 235 240
- Phe Arg Lys Ser Gln Glu Leu Arg Val Trp Pro Gly Tyr Asp Tyr Val 245 250 250
- Gly Trp Ser Asn His Ser Phe Ser Ser Gly Tyr Val Glu Met Glu Phe 260 265 270

Glu Phe Asp Arg Leu Arg Ala Phe Gln Ala Met Gln Val His Cys Asn 285

Asn Met His Thr Leu Gly Ala Arg Leu Pro Gly Gly Val Glu Cys Arg 290 295

Phe Arg Arg Gly Pro Ala Met Ala Trp Glu Gly Glu Pro Met Arg His

As n Leu Gly Gly As n Leu Gly As p Pro Arg Ala Arg Ala Val Ser Val 325 330 335

Pro Leu Gly Gly Arg Val Ala Arg Phe Leu Gln Cys Arg Phe Leu Phe \$340\$ \$345\$ \$350

Ala Gly Pro Trp Leu Leu Phe Ser Glu Ile Ser Phe Ile Ser Asp Val\$355\$

Val Asn Asn Ser Ser Pro Ala Leu Gly Gly Thr Phe Pro Pro Ala Pro 370 \$370\$

Trp Trp Pro Pro Gly Pro Pro Pro Thr Asn Phe Ser Ser Leu Glu Leu

Glu Pro Arg Gly Gln Gln Pro Val Ala Lys Ala Glu Gly Ser Pro Thr 405 410 410

Ala Ile Leu Ile Gly Cys Leu Val Ala Ile Ile Leu Leu Leu Leu Leu 420 425 430

Ile Ile Ala Leu Met Leu Trp Arg Leu His Trp Arg Arg Leu Leu Ser 435 440 445

Lys Ala Glu Arg Arg Val Leu Glu Glu Glu Leu Thr Val His Leu Ser 450 460

Val Pro Gly Asp Thr Ile Leu Ile Asn Asn Arg Pro Gly Pro Arg Glu 465 470 475 480

Pro Pro Pro Tyr Gln Glu Pro Arg Pro Arg Gly Aşn Pro Pro His Ser 485 490 495

Ala Pro Cys Val Pro Asn Gly Ser Ala Leu Leu Leu Ser Asn Pro Ala 500 505 510

Tyr Arg Leu Leu Leu Ala Thr Tyr Ala Arg Pro Pro Arg Gly Pro Gly 515 520 525

Pro Pro Thr Pro Ala Trp Ala Lys Pro Thr Asn Thr Gln Ala Tyr Ser  $530 \hspace{1.5cm} 535 \hspace{1.5cm} 540 \hspace{1.5cm}$ 

Gly Asp Tyr Met Glu Pro Glu Lys Pro Gly Ala Pro Leu Leu Pro 90545 550 555

Pro Pro Gln Asn Ser Val Pro His Tyr Ala Glu Ala Asp Ile Val Thr 565 570 575

Pro Leu Asn Val Arg Lys Gly His Pro Leu Leu Val Ala Val Lys Ile 645 650 655

Leu Arg Pro Asp Ala Thr Lys Asn Ala Ser Phe Ser Leu Phe Ser Arg  $_{660}$   $_{665}$   $_{670}$ 

Asn Asp Phe Leu Lys Glu Val Lys Ile Met Ser Arg Leu Lys Asp Pro 675 680 685

Asn Ile Ile Arg Leu Leu Gly Val Cys Val Gln Asp Asp Pro Leu Cys 690 695 700

Met Ile Thr Asp Tyr Met Glu Asn Gly Asp Leu Asn Gln Phe Leu Ser 705  $\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}715\phantom{\bigg|}715\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710\phantom{\bigg|}710$ 

Ala His Gln Leu Glu Asp Lys Ala Ala Glu Gly Ala Pro Gly Asp Gly 725 730 735

Gln Ala Ala Gln Gly Pro Thr Ile Ser Tyr Pro Met Leu Leu His Val $740 \ \ 745 \ \ 750$ 

Ala Ala Gln Ile Ala Ser Gly Met Arg Tyr Leu Ala Thr Leu As<br/>n Phe $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765 \hspace{1.5cm}$ 

Val His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly Glu Asn Phe  $770 \ \ 775 \ \ 780$ 

Thr Ile Lys Ile Ala Asp Phe Gly Met Ser Arg Asn Leu Tyr Ala Gly 785 790 795 800

Asp Tyr Tyr Arg Val Gln Gly Arg Ala Val Leu Pro Ile Arg Trp Met 805 810 815

Ala Trp Glu Cys Ile Leu Met Gly Lys Phe Thr Thr Ala Ser Asp Val 820 825 830

Trp Ala Phe Gly Val Thr Leu Trp Glu Val Leu Met Leu Cys Arg Ala 835 840 845

Gln Pro Phe Gly Gln Leu Thr Asp Glu Gln Val Ile Glu Asn Ala Gly 850 855

Glu Phe Phe Arg Asp Gln Gly Arg Gln Val Tyr Leu Ser Arg Pro Pro 865 870 870

Ala Cys Pro Gln Gly Leu Tyr Glu Leu Met Leu Arg Cys Trp Ser Arg 885 890 895

Glu Ser Glu Gln Arg Pro Pro Phe Ser Gln Leu His Arg Phe Leu Ala 900 905 910

Glu Asp Ala Leu Asn Thr Val 915

- (2) INFORMATION FOR SEQ ID NO:3:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 3157 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: both
    - (D) TOPOLOGY: both
  - (ii) MOLECULE TYPE: cDNA to mRNA
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
      - (B) LOCATION: 370..2934
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

| TTTCTTGCTC ATCTTGGAGA CTGTGCAATC CCAGATTAAC TACAAACAGA GAAGAGCTGG                                                          | 120 |
|----------------------------------------------------------------------------------------------------------------------------|-----|
| RGATAGCTCC AGAGCTCAGA GAAAGGAGGT CTCTTTACAA GAAGTCTGGC TCTCAAAGCC                                                          | 180 |
| CCATCAAGG GAGACCTACA AGTTGCCTGG GGTTCAGTGC TCTAGAAAGT TCCAAGGTTT                                                           | 240 |
| ETGGCTTGAA TTATTCTAAA GAAGCTGAAA TAATTGAAGA GAAGCAGAGG CCAGCTGTTT                                                          | 300 |
| TTGAGGATCC TGCTCCACAG AGAATGCTCT GCACCCGTTG ATACTCCAGT TCCAACACCA                                                          | 360 |
| CCTTCTGAG ATG ATC CTG ATT CCC AGA ATG CTC TTG GTG CTG TTC CTG  Met Ile Leu Ile Pro Arg Met Leu Leu Val Leu Phe Leu  1 5 10 | 408 |
| CTG CTG CCT ATC TTG AGT TCT GCA AAA GCT CAG GTT AAT CCA GCT ATA                                                            | 456 |

60

504

552

| CIG | CIG | CCI | HIC | 110 | AGI | 101 | OCA | nnn | GC I | CAG | GII | LILLI | CCH | GCI | uiu |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-------|-----|-----|-----|--|
| Leu | Leu | Pro | Ile | Leu | Ser | Ser | Ala | Lys | Ala  | Gln | Val | Asn   | Pro | Ala | Ile |  |
|     | 15  |     |     |     |     | 20  |     |     |      |     | 25  |       |     |     |     |  |
|     |     |     |     |     |     |     |     |     |      |     |     |       |     |     |     |  |

GCACGAGCGG CACGAGTCCA TGATCTCTTT CCATCCTCCC TTTCCTGTTT GCTCACTTCT

TGC CGC TAT CCT CTG GGC ATG TCA GGA GGC CAG ATT CCA GAT GAG GAC Cys Arg Tyr Pro Leu Gly Met Ser Gly Gly Gln Ile Pro Asp Glu Asp 30 40 45

ATC ACA GCT TCC AGT CAG TGG TCA GAG TCC ACA GCT GCC AAA TAT GGA Ile Thr Ala Ser Gln Trp Ser Glu Ser Thr Ala Ala Lys Tyr Gly 50 55

| AG<br>Ar          | G CT                 | G GAG                | Ser<br>65         | Glu        | GAA<br>Glu       | GGG<br>Gly        | GAT<br>Asr       | GGA<br>Gly<br>70 | Ala        | TGG<br>Trp        | TG(        | C CCT            | GA0<br>Glu<br>75 | ı Ile      | CCA<br>Pro         | 600  |
|-------------------|----------------------|----------------------|-------------------|------------|------------------|-------------------|------------------|------------------|------------|-------------------|------------|------------------|------------------|------------|--------------------|------|
| GT<br>Va          | G GA                 | A CCT<br>1 Pro<br>80 | Asp               | GAC<br>Asp | CTG<br>Leu       | AAG<br>Lys        | GAG<br>Glu<br>85 | Phe              | CTG<br>Leu | CAG<br>Gln        | ATT<br>Ile | GAC<br>Asp<br>90 | Leu              | CAC<br>His | ACC<br>Thr         | 648  |
| Le                | C CAT<br>u His<br>95 | 5 Ph∈                | ATC<br>: Ile      | ACT        | Leu              | GTG<br>Val<br>100 | GGG<br>Gly       | ACC              | CAG<br>Gln | GGG<br>Gly        | Arg        | His              | GCA<br>Ala       | GGA<br>Gly | GGT                | 696  |
| Hi:               | s Gly                | / Ile                | GAG<br>Glu        | Phe        | Ala<br>115       | Pro               | Met              | Tyr              | Lys        | Ile<br>120        | Asn        | Tyr              | Ser              | Arg        | <b>As</b> p<br>125 | 744  |
| Gly               | / Thr                | Arg                  | TGG               | 11e<br>130 | Ser              | Trp               | Arg              | Asn              | Arg<br>135 | His               | Gly        | Lys              | Gln              | Val<br>140 | Leu                | 792  |
| Ası               | Gly                  | Asn                  | AGT<br>Ser<br>145 | Asn        | Pro              | Tyr               | Asp              | Ile<br>150       | Phe        | Leu               | Lys        | Asp              | Leu<br>155       | Glu        | Pro                | 840  |
| Pro               | Ile                  | Val<br>160           | GCC<br>Ala        | Arg        | Phe              | Val               | Arg<br>165       | Phe              | Ile        | Pro               | Val        | Thr<br>170       | Asp              | His        | Ser                | 888  |
| Met               | Asn<br>175           | Val                  | TGT<br>Cys        | Met        | Arg              | Val<br>180        | Glu              | Leu              | Tyr        | Gly               | Cys<br>185 | Val              | Trp              | Leu        | Asp                | 936  |
| Gly<br>190        | Leu                  | Val                  | TCT<br>Ser        | Tyr        | Asn<br>195       | Ala               | Pro              | Ala              | Gly        | Gln<br>200        | Gln        | Phe              | Val              | Leu        | Pro<br>205         | 984  |
| Gly               | Gly                  | Ser                  | ATC<br>Ile        | 11e<br>210 | Tyr              | Leu               | Asn              | Asp              | Ser<br>215 | Val               | Tyr        | Asp              | Gly              | Ala<br>220 | Val                | 1032 |
| GIA               | Tyr                  | Ser                  | Met<br>225        | Thr        | Glu              | Gly               | Leu              | Gly<br>230       | Gln        | Leu               | Thr        | Asp              | Gly<br>235       | Val        | Ser                | 1080 |
| Gly               | Leu                  | Asp<br>240           | GAT<br>Asp        | Phe        | Thr              | Gln               | Thr<br>245       | His              | Glu        | Tyr               | His        | Val<br>250       | Trp              | Pro        | Gly                | 1128 |
| Tyr               | Asp<br>255           | Tyr                  | GTG<br>Val        | Gly        | Trp              | Arg<br>260        | Asn              | Glu              | Ser        | Ala               | Thr<br>265 | Asn              | Gly              | Tyr        | Ile                | 1176 |
| GAG<br>Glu<br>270 | ATC<br>Ile           | ATG<br>Met           | TTT<br>Phe        | Glu        | TTT Phe .<br>275 | GAC<br>Asp        | CGC<br>Arg       | ATC .            | Arg .      | AAT<br>Asn<br>280 | TTC<br>Phe | ACT<br>Thr       | ACC<br>Thr       | Met        | AAG<br>Lys<br>285  | 1224 |

|            | CAC<br>His        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | , 1 | 272 |
|------------|-------------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|-----|-----|
|            | CAG<br>Gln        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 320 |
|            | TCC<br>Ser        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 368 |
|            | ACG<br>Thr<br>335 |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 416 |
|            | CAT<br>His        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 464 |
|            | GAT<br>Asp        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 512 |
|            | GCA<br>Ala        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 560 |
|            | CGG<br>Arg        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 608 |
| Ala        | ATC<br>Ile<br>415 | Ile        | Val | Ile | Ile        | Leu<br>420 | Trp        | Arg | Gln | Phe        | Trp<br>425 | Gln        | Lys | Met | Leu        |     | 656 |
| Glu<br>430 | AAG<br>Lys        | Ala        | Ser | Arg | Arg<br>435 | Met        | Leu        | Asp | Asp | Glu<br>440 | Met        | Thr        | Val | Ser | Leu<br>445 | 1   | 704 |
|            | CTG<br>Leu        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 752 |
|            | AGT<br>Ser        |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 800 |
| Arg        | CCT<br>Pro        | Asp<br>480 | Tyr | Gln | Glu        | Pro        | Ser<br>485 | Arg | Leu | Ile        | Arg        | Lys<br>490 | Leu | Pro | Glu        | 1   | 848 |
|            | GCT<br>Ala<br>495 |            |     |     |            |            |            |     |     |            |            |            |     |     |            | 1   | 896 |

|  | CAG<br>Gln        |  |  |  |  |  |  |  | 1944 |
|--|-------------------|--|--|--|--|--|--|--|------|
|  | GTG<br>Val        |  |  |  |  |  |  |  | 1992 |
|  | GTC<br>Val        |  |  |  |  |  |  |  | 2040 |
|  | CCC<br>Pro        |  |  |  |  |  |  |  | 2088 |
|  | GGG<br>Gly<br>575 |  |  |  |  |  |  |  | 2136 |
|  | AAA<br>Lys        |  |  |  |  |  |  |  | 2184 |
|  | GTG<br>Val        |  |  |  |  |  |  |  | 2232 |
|  | CTT<br>Leu        |  |  |  |  |  |  |  | 2280 |
|  | CAT<br>His        |  |  |  |  |  |  |  | 2328 |
|  | GAA<br>Glu<br>655 |  |  |  |  |  |  |  | 2376 |
|  | CCC<br>Pro        |  |  |  |  |  |  |  | 2424 |
|  | CTG<br>Leu        |  |  |  |  |  |  |  | 2472 |
|  | TCT<br>Ser        |  |  |  |  |  |  |  | 2520 |
|  | GGT<br>Gly        |  |  |  |  |  |  |  | 2568 |

|      |      |      |       |      |            |      |      |     |       |      |      |       | GCA<br>Ala        |      |       | 2616 |
|------|------|------|-------|------|------------|------|------|-----|-------|------|------|-------|-------------------|------|-------|------|
|      |      |      |       |      |            |      |      |     |       |      |      |       | AAG<br>Lys        |      |       | 2664 |
|      |      |      |       |      |            |      |      |     |       |      |      |       | GAG<br>Glu        |      |       | 2712 |
|      |      |      |       |      |            |      |      |     |       |      |      |       | GAA<br>Glu<br>795 |      |       | 2760 |
|      |      |      |       |      |            |      |      |     |       |      |      |       | CAG<br>Gln        |      |       | 2808 |
|      |      |      |       |      |            |      |      |     |       |      |      |       | CTG<br>Leu        |      |       | 2856 |
|      |      |      |       |      |            |      |      |     |       |      |      |       | CAA<br>Gln        |      |       | 2904 |
|      |      |      |       |      | CAA<br>Gln |      |      |     |       | TGAT | GCT  | FTC # | AGTGC             | CTG  | BC .  | 2954 |
| CATO | TTC  | TA C | GGCT  | CAGO | T CC       | TCCC | TACA | AGA | CCTA  | CCA  | CTC  | ACCCZ | TG C              | CTAT | GCCAC | 3014 |
| TCCA | TCTG | GA C | CATTI | AATO | A AF       | CTGA | GAGA | CAG | AGGC  | TTG  | TTTC | CTT   | GC C              | CTCI | TTTCC | 3074 |
| TGGT | CACC | cc c | ACTO  | CCTA | C CC       | CTGA | CTCA | TAT | TATAC | TTT  | TTTT | TTTT  | AC A              | TTA  | AGAAC | 3134 |
| TAAA | AAAA | AA A | AAA   | AAAA | G GC       | G    |      |     |       |      |      |       |                   |      |       | 3157 |

- (2) INFORMATION FOR SEQ ID NO:4:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 855 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ile Leu Ile Pro Arg Met Leu Leu Val Leu Phe Leu Leu Leu Pro 1 5 10 15

Ile Leu Ser Ser Ala Lys Ala Gln Val Asn Pro Ala Ile Cys Arg Tyr \$20\$

- Pro Leu Gly Met Ser Gly Gly Gln Ile Pro Asp Glu Asp Ile Thr Ala  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$
- Ser Ser Gln Trp Ser Glu Ser Thr Ala Ala Lys Tyr Gly Arg Leu Asp 50 60
- Ser Glu Glu Gly Asp Gly Ala Trp Cys Pro Glu Ile Pro Val Glu Pro 65 70 75 80
- Asp Asp Leu Lys Glu Phe Leu Gln Ile Asp Leu His Thr Leu His Phe 85 90 95
- Glu Phe Ala Pro Met Tyr Lys Ile Asn Tyr Ser Arg Asp Gly Thr Arg 115 120 125
- Trp Ile Ser Trp Arg Asn Arg His Gly Lys Gln Val Leu Asp Gly Asn 130 135 140
- Ser Asn Pro Tyr Asp Ile Phe Leu Lys Asp Leu Glu Pro Pro Ile Val
- Ala Arg Phe Val Arg Phe Ile Pro Val Thr Asp His Ser Met Asn Val 165 170 175
- Cys Met Arg Val Glu Leu Tyr Gly Cys Val Trp Leu Asp Gly Leu Val 180 \$185\$
- Ser Tyr Asn Ala Pro Ala Gly Gln Gln Phe Val Leu Pro Gly Gly Ser 195 \$200\$
- Ile Ile Tyr Leu Asn Asp Ser Val Tyr Asp Gly Ala Val Gly Tyr Ser 210 \$215\$
- Met Thr Glu Gly Leu Gly Gln Leu Thr Asp Gly Val Ser Gly Leu Asp 225 230 235 240
- Asp Phe Thr Gln Thr His Glu Tyr His Val Trp Pro Gly Tyr Asp Tyr 245 250 255
- Val Gly Trp Arg Asn Glu Ser Ala Thr Asn Gly Tyr Ile Glu Ile Met 260 265 270
- Phe Glu Phe Asp Arg Ile Arg Asn Phe Thr Thr Met Lys Val His Cys  $275 \hspace{1.5cm} 280 \hspace{1.5cm} 280 \hspace{1.5cm} 285 \hspace{1.5cm}$
- Asn Asn Met Phe Ala Lys Gly Val Lys Ile Phe Lys Glu Val Gln Cys 290 295 300
- Tyr Phe Arg Ser Glu Ala Ser Glu Trp Glu Pro Asn Ala Ile Ser Phe 305 310 315
- Pro Leu Val Leu Asp Asp Val Asn Pro Ser Ala Arg Phe Val Thr Val 325 330 335

Pro Leu His His Arg Met Ala Ser Ala Ile Lys Cys Gln Tyr His Phe 340 345 350 350

Ala Asp Thr Trp Met Met Phe Ser Glu Ile Thr Phe Gln Ser Asp Ala 355 360 365

Ala Met Tyr Asn Asn Ser Glu Ala Leu Pro Thr Ser Pro Met Ala Pro 370 375 380

Thr Thr Tyr Asp Pro Met Leu Lys Val Asp Asp Ser Asn Thr Arg Ile 385  $\phantom{\bigg|}$  390  $\phantom{\bigg|}$  395  $\phantom{\bigg|}$  400

Leu Ile Gly Cys Leu Val Ala Ile Ile Phe Ile Leu Leu Ala Ile Ile
405 410 415

Val Ile Ile Leu Trp Arg Gln Phe Trp Gln Lys Met Leu Glu Lys Ala 420 425 430

Ser Arg Arg Met Leu Asp Asp Glu Met Thr Val Ser Leu Ser Leu Pro \$435\$

Ser Asp Ser Ser Met Phe Asn Asn Asn Arg Ser Ser Ser Pro Ser Glu
450 460

Gln Gly Ser Asn Ser Thr Tyr Asp Arg Ile Phe Pro Leu Arg Pro Asp 465 470 475

Tyr Gln Glu Pro Ser Arg Leu Ile Arg Lys Leu Pro Glu Phe Ala Pro 485 490 495

Gly Glu Glu Glu Ser Gly Cys Ser Gly Val Val Lys Pro Val Gln Pro 500 505 510

Ser Gly Pro Glu Gly Val Pro His Tyr Ala Glu Ala Asp Ile Val Asn 515 520 525

Met Asp Leu Leu Ser Gly Lys Asp Val Ala Val Glu Glu Phe Pro Arg 545 550 555 560

Lys Leu Leu Thr Phe Lys Glu Lys Leu Gly Glu Gly Gln Phe Gly Glu 565 570 575

Phe Ala Leu Asp Val Ser Ala Asn Gln Pro Val Leu Val Ala Val Lys 595 600 605

Met Leu Arg Ala Asp Ala Asn Lys Asn Ala Arg Asn Asp Phe Leu Lys 610 615 620

Glu Ile Lys Ile Met Ser Arg Leu Lys Asp Pro Asn Ile Ile His Leu 625 630 635 640 Leu Ser Val Cys Ile Thr Asp Asp Pro Leu Cys Met Ile Thr Glu Tyr 645 650 655

Met Glu Asn Gly Asp Leu Asn Gln Phe Leu Ser Arg His Glu Pro Pro

Asn Ser Ser Ser Ser Asp Val Arg Thr Val Ser Tyr Thr Asn Leu Lys 675 680 685

Phe Met Ala Thr Gln Ile Ala Ser Gly Met Lys Tyr Leu Ser Ser Leu 690 695 700

Asn Phe Val His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly Lys 705 710 715 720

Asn Tyr Thr Ile Lys Ile Ala Asp Phe Gly Met Ser Arg Asn Leu Tyr 725 730 735

Ser Gly Asp Tyr Tyr Arg Ile Gln Gly Arg Ala Val Leu Pro Ile Arg  $740 \hspace{1.5cm} 745 \hspace{1.5cm} 750$ 

Trp Met Ser Trp Glu Ser Ile Leu Leu Gly Lys Phe Thr Thr Ala Ser 755 760 765

Asp Val Trp Ala Phe Gly Val Thr Leu Trp Glu Thr Phe Thr Phe Cys

Gln Glu Gln Pro Tyr Ser Gln Leu Ser Asp Glu Gln Val Ile Glu Asn 785 790 795 800

Thr Gly Glu Phe Phe Arg Asp Gln Gly Arg Gln Thr Tyr Leu Pro Gln 805 810 815

Pro Ala Ile Cys Pro Asp Ser Val Tyr Lys Leu Met Leu Ser Cys Trp 820 825

Arg Arg Asp Thr Lys Asn Arg Pro Ser Phe Gln Glu Ile His Leu Leu 835 840 845

Leu Leu Gln Gln Gly Asp Glu

- (2) INFORMATION FOR SEQ ID NO:5:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 4 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: peptide
  - (ix) FEATURE:
    - (A) NAME/KEY: Modified-site
    - (B) LOCATION: :
  - (D) OTHER INFORMATION: /note= "Ala can be enchanged for any amino  $\operatorname{acid}^{\mathtt{u}}$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
Asn Pro Ala Tyr

- (2) INFORMATION FOR SEQ ID NO:6:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 amino acids
    - (B) TYPE: amino acid
      (D) TOPOLOGY: unknown

  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Thr Tyr Ala Xaa Pro Xaa Xaa Xaa Pro Gly 1 5 10

- (2) INFORMATION FOR SEQ ID NO:7:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 6 amino acids (B) TYPE: amino acid
    - (D) TOPOLOGY: unknown
    - (b) 10F0L0G1: dilkilowii
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:7:

His Arg Asp Leu Ala Ala 1 5

- (2) INFORMATION FOR SEQ ID NO:8:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 28 base pairs
      - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
      - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA
  - (--, moderne rile; bill
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGAATTCCCA YMGNRAYYTN RCNRCNMG

(2) INFORMATION FOR SEQ ID NO:9:

28

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 6 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (ix) FEATURE:
  - (A) NAME/KEY: Modified-site
  - (B) LOCATION: 6
- (D) OTHER INFORMATION: /note= "Xaa can be either Phe or  $\ensuremath{\mathsf{Tyr}}\xspace$  "
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Ser Asp Val Trp Ser Xaa 1 5

- (2) INFORMATION FOR SEO ID NO:10:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 26 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
      (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:10:

GGAATTCCYW YNSWGGTNTG SAGNST

26

- (2) INFORMATION FOR SEQ ID NO:11:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 19 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Arg Thr Ile

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 19 amino acids
  - (B) TYPE: amino acid
    (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Asn Thr Val

- (2) INFORMATION FOR SEO ID NO:13:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 14 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Pro Ala Met Ala Trp Glu Gly Glu Pro Met Arg His Asn Leu

- (2) INFORMATION FOR SEQ ID NO:14:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 17 amino acids
      - (B) TYPE: amino acid
      - (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:14:

Cys Trp Ser Arg Glu Ser Glu Gln Arg Pro Pro Phe Ser Gln Leu His 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Arg