Decision Trees, Entropy, Gini Impurity, and Information Gain

1. Decision Trees - Big Picture

A **Decision Tree** is like a flowchart:

- Each **node** → a question/split about a feature.
- Each **branch** → the outcome of that question.
- Each leaf → a final decision (class or prediction).

The tree keeps **splitting data** into purer subsets until:

- All samples in a node belong to one class, or
- A stopping condition is reached (max depth, min samples, etc.).

The goal:

Choose splits that make the data in each branch as pure (homogeneous) as possible.

2. Geometric Intuition

Imagine a 2D feature space (like Height vs. Weight).

- Decision Trees split this space into rectangular regions by drawing straight horizontal/vertical lines.
- Each split reduces uncertainty about the class labels.
- For example:
 - 1. First split: "Is Height > 170 cm?" → divides into tall vs. short groups.
 - 2. Second split (on the "short" group): "Is Weight < 60 kg?" → further refines.

The process is recursive — every new split tries to isolate points of the same class.

3. How Decision Trees Decide Where to Split

The algorithm looks at all possible features and possible split points.

For each possible split, it calculates a **score** that measures how "good" the split is.

That score comes from metrics like:

4. Entropy

Meaning:

Entropy measures **disorder/randomness** in a set.

- If all examples in a set are of the same class → Entropy = 0 (pure).
- If classes are perfectly mixed → Entropy is maximum.
- More knowledge -> less entropy

Formula:

$$Entropy(S) = -\sum_{i=1}^n p_i \log_2(p_i)$$

Where:

- p_i = proportion of class i in the set S
- The log is base 2 (measured in bits)

Example:

Dataset: 4 apples, 4 oranges

- $p_{apple} = 4/8 = 0.5$
- $p_{orange} = 0.5$

$$Entropy = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1$$

Max entropy → fully mixed.

5. Gini Impurity

Meaning:

Probability of **randomly picking the wrong class** if you randomly label an item according to the class distribution.

Formula:

$$Gini(S) = 1 - \sum_{i=1}^n p_i^2$$

Example:

Same 4 apples, 4 oranges:

$$Gini = 1 - (0.5^2 + 0.5^2) = 0.5$$

Lower Gini → purer node.

Key Difference:

- Entropy uses logarithm → more sensitive to changes in probabilities.
- Gini is simpler computationally and often works just as well.

6. Information Gain

Purpose:

Measures how much uncertainty is reduced after a split.

Formula:

$$Information \ Gain = Entropy(Parent) - \sum_{k} rac{|S_k|}{|S|} \cdot Entropy(S_k)$$

Where:

- S_k are subsets after the split
- Weighted average ensures bigger subsets count more.

Interpretation:

High Information Gain → split made subsets much purer.

7. Handling Numerical Data

- For continuous values (e.g., "Age"), we test splits like:
 - o Age ≤ 30 vs Age > 30
- Try many thresholds → choose the one with best score (highest IG or lowest Gini).

8. Advantages

- Easy to interpret & visualize
- No feature scaling needed
- Handles numerical & categorical data
- Captures non-linear relationships

9. Disadvantages

- Prone to overfitting (fix with pruning, max depth)
- Unstable (small changes in data can change tree)
- Greedy splitting → may miss global optimum

10. CART

- CART = Classification and Regression Trees
- For classification → often uses Gini Impurity
- For regression → uses variance reduction (MSE)

11. Type of Errors in Context

While not specific to trees, misclassification errors still apply:

- Type 1 Error (False Positive): Predict "Yes" when actual is "No"
- Type 2 Error (False Negative): Predict "No" when actual is "Yes"

Core Memory Hook:

- Entropy = disorder, log-based
- Gini = misclassification probability
- Information Gain = reduction in disorder
- Trees = keep splitting until pure or limit reached