Introduction to Reinforcement Learning

2025. 1st semester

Prof. Taeyoon Kim

- Affiliation: Dept. of Mobile System Engineering, Dankook Univ.
- Education
 - Received B.S., M.S., and Ph.D. in Dept. of Electrical & Electronic Engineering, Korea Univ.
- Career
 - Researcher in R&D center of Hyundai motors company
- Research Interests
 - Mobile Network and Communication tech.
 - Connected Swarm Intelligence
- Contact
 - 301 in International Studies building (국제 관)
 - Email: 2000kty@dankook.ac.kr

.

Lecture Plan

- Lecture material
 - Lecture slides will be provided
- Performance evaluation
 - Attendance: 10%
 - Assignment : 10%
 - Exam: 80% (Mid-term: 40, Final: 40)
- Lecture Method
 - offline

What is Machine Learning?

• "Learning is any process by which a system improves performance from experience." -- Herbert Simon

- Definition by Tom Mitchell (1998):
 - Machine Learning is the study of algorithms that
 - *▶* improve their performance P
 - > at some task T
 - *>* with experience *E*.
 - A well-defined learning task is given by $\langle P, T, E \rangle$.

Traditional Programming

Machine Learning

When Do We Use Machine Learning?

- ML is used when:
- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

- Learning isn't always useful:
- There is no need to "learn" to calculate payroll

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Some more examples of tasks that are best solved by using a learning algorithm

Recognizing patterns:

- Facial identities or facial expressions
- Handwritten or spoken words
- Medical images

Generating patterns:

- Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual paderns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

.

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging software
- [Your favorite area]

1 1 1 1

Samuel's Checkers-Player

- "Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed."
 - Arthur Samuel (1959)

Improve on task T, with respect to performance metric P, based on experience E

Dfining the Learning Task

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver
- T: Categorize email messages as spam or legitimate
- P: Percentage of email messages correctly classified
- E: Database of emails, some with human-given labels

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x

— y is real-valued == regression

Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x
 - y is categorical == classification

Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x
- y is categorical == classification

1 1 1 1 1

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

Tumor Size

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

•

Unsupervised Learning

- Given x1, x2, ..., xn (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Unsupervised Learning

Genomics application: group individuals by genetic similarity

.

Organize computing clusters

Market segmentation 단국대학교

Unsupervised Learning

Social network analysis

Astronomical data analysis

Unsupervised Learning

- Independent component analysis
 - separate a combined signal into its original sources

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states → actions that tells you what to do in a given state

Examples:

- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2, K

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state : S_{t+1}

1 1 1 1

Reinforcement Learning

