Chapter 1: roadmap

- ◆ What *is* the Internet?
- ♦ What *is* a protocol?
- ◆ Network edge: hosts, access network,
- ◆ Network core: packet/circuit switching
- ◆Performance: loss, delay, throughput
- **♦** Security
- Protocol layers, service models
- History

How do packet loss and delay occur?

packets queue in router buffers

- packets queue, wait for turn
- arrival rate to link (temporarily) exceeds output link capacity: packet loss

Packet delay: four sources

d_{proc}: nodal processing

- check bit errors
- determine output link
- typically < msec

 d_{queue} : queueing delay

- time waiting at output link for transmis sion
- depends on congestion level of router

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link transmission rate (bps)

$$\frac{d_{trans}}{d_{trans}} = L R$$

$$\frac{d_{trans}}{d_{trans}} \text{ and } \frac{d_{prop}}{d_{trans}}$$

$$\frac{d_{trans}}{d_{trans}} = L R$$

d_{prop} : propagation delay:

- d. length of physical link
- s. propagation speed (~2x10⁸ m/sec)

$$\bullet d_{\text{prop}} = d/s$$

* Check out the online interactive exercises: http://gaia.cs.umass.edu/kurose_ross

Chapter 1: roadmap

- ◆ What *is* the Internet?
- ◆ What *is* a protocol?
- ◆ Network edge: hosts, access network, physical media
- ◆ Network core: packet/circuit switching, internet structure
- ◆ Performance: loss, delay, throughput
- **♦**Security
- Protocol layers, service models
- **♦** History

Protocol "layers" and reference models

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Example: organization of air travel

ticket (purchase)	ticketing service	ticket (complain)	
baggage (check)	baggage service	baggage (claim)	
gates (load)	gate service	gates (unload)	
runway takeoff	runway service	runway landing	
airplane routing	routing service	airplane routing	

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Q: describe in words the service provided in each layer above

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change in layer's service implementation: transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?
- layering in other complex systems?

Internet protocol stack

- application: supporting network applications
 - IMAP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802. I I (WiFi), PPP
- physical: bits "on the wire"

application
transport
network
link
physical

ISO/OSI reference model

Two layers not found in Internet protocol stack!

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

The seven layer OSI/ISO reference model

Chapter 1: roadmap

- ◆ What *is* the Internet?
- ◆What *is* a protocol?
- ◆ Network edge: hosts, access network,
- ◆ Network core: packet/circuit switching
- ◆ Performance: loss, delay, throughput
- **♦** Security
- Protocol layers, service models
- History

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: Baran packet-switching in military nets
- 1967:ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

THE ARPA NETWORK

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best-effort service model
- stateless routing
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for nameto-IP-address translation
- 1985: ftp protocol defined
- 1988:TCP congestion control

- new national networks: CSnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

NSFNET T1 Network 1991

1990, 2000s: commercialization, the Web, new applications

- early 1990s: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990s: commercialization of the Web

late 1990s – 2000s:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2005-present: more new applications, Internet is "everywhere"

- ~18B devices attached to Internet (2017)
 - rise of smartphones (iPhone: 2007)
- aggressive deployment of broadband access
- increasing ubiquity of high-speed wireless access: 4G/5G,WiFi
- emergence of online social networks:
- Facebook: ~ 2.5 billion users
- service providers (Google, FB, Microsoft) create their own networks
 - bypass commercial Internet to connect "close" to end user, providing "instantaneous" access to search, video content, ...
- enterprises run their services in "cloud" (e.g., Amazon Web Services, Microsoft Azure)