Liste Exercices et Problèmes DS DM

Table des matières

Ι	Ana	dyse 1
	I. 1	Résolution inéquation
	I. 2	Calcul ensemble de définition
	I. 3	Résolution $\lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor$
	I. 4	Etude de $I_n = \int_1^e (\ln(x))^n dx$
	I. 5	Racine de $x^3 - 6x - 9$
	I. 6	Résolution de $\sqrt{e^x - 2} \ge e^x - 4$
	I. 7	Equation trigonométrique et changement de variable
	I. 8	Equation différentielle, changement de variable
	I. 9	Suite arithmético-géométrique
		Equation rationnelle à paramètre
	I. 11	Résolution de $\left[2x - \sqrt{5x - 1}\right] = 0$
	I. 12	Equation complexe
	I. 13	Somme de nombres complexes(Pb)
	I. 14	Equations trigonométriques
	I. 15	Arctan(Pb)
	I. 16	Simplification Produit
	I. 17	Suite récurrente et césaro PB(long)
		$5u_{n+1} = \sin(u_n) \text{ (Pb)} \dots \qquad \qquad$
		$I_{n+1} = (2n+1)I_n \dots \dots$
		Suite définites implicitement $x^3 + nx - 1$ (Pb)
	I. 21	$I_n = \int_1^e (\ln(x))^n dx \qquad . \qquad \qquad . \qquad \qquad 7$
		Etude de $f(x) = \frac{e^x}{\ln(x)}$
	I. 23	Wallis - Calcul $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k^2}$ (Pb)
		I. 23. a Convergence
		I. 23. bCalcul de la limite
	I. 24	Etude de $f(x) = x + \cos\left(\frac{1}{x}\right)$
	I. 25	Calculs de limites
		Etude dérivabilité
		Fonctions k -contractante (Pb)
	I. 28	Etude de $\int_x^{x^2} \frac{dt}{\ln(t)}$. (Pb)
	I. 29	Non interversion limite intégrale
	I. 30	Etude $x \exp(\sin^2(x))$. [d'après Godillon 16-17]
	I. 31	Inégalités / récurrence
	I. 32	Fibonacci
	I. 33	Equation à paramètre
	I. 34	Partie Entière
	I. 35	Equation trigonométrique / changement de variable
	I. 36	Calcul de la dérivée de arcsin [Agro 2015]
		Somme double $\max + \inf 0 \dots 14$
	I. 38	Calcul de $\sum_{k=0}^{n} k^4$

I. 39 Formule D'inversion de somme (Pb)	15
I. 40 Etude de $f(x) = \ln\left(\sqrt{\frac{1}{2} + \sin(x)}\right)$	16
I. 41 EDL - concentration de glucose	17
I. 42 Etude de $u_{n+1} = 1 + \frac{1}{u_n}$ (Pb)	17
I. 43 Calcul de limites	
I. 44 Equation intégrale $f(x) = \int_0^{ax} f(t)dt$ (Pb)	18
I. 45 Fonction de plusieurs variables	19
I. 46 Intégrale de Gauss (D'après G2E 2019]	20
I. 47 Etude famille de fonction, intégrale, et somme (ECRICOME 2002)	20
I. 48 inéquation à paramétre - Une bien l'autre pas finie	22

I Analyse

I. 1 Résolution inéquation

Exercice 1. Résoudre pour $x \in \mathbb{R}$ l'inéquation

$$\frac{1}{x+1} \le \frac{x}{x+2}.$$

I. 2 Calcul ensemble de définition

Exercice 2. Donner l'ensemble de définition de $f(x) = \sqrt{(x^2 - 4) \ln \left(\frac{1}{x}\right)}$

I. 3 Résolution $\lfloor \sqrt{x} \rfloor = \lfloor \frac{x}{2} \rfloor$

Exercice 3. On cherche à résoudre l'équation (E) suivante, d'inconnue réelle x:

$$\left\lfloor \sqrt{x} \right\rfloor = \left\lfloor \frac{x}{2} \right\rfloor$$

- 1. Donner le domaine de définition de l'équation (E).
- 2. Ecrire un programme python qui demande à l'utilisateur un flottant x et qui renvoie True si le réel ets solution de l'équation (E) et False sinon.
- 3. Montrer que toute solution x de (E) est solution du système (S) suivant :

$$\left\{ \begin{array}{ccc} \sqrt{x} & < & \frac{x}{2} + 1 \\ \frac{x}{2} - 1 & < & \sqrt{x} \end{array} \right.$$

- 4. Résoudre le système (S).
- 5. Soit $\alpha = 2(2+\sqrt{3})$ Calculer la partie entière de α .
- 6. Pour tout $k \in [0, 7]$ déterminer si les réels de l'intervalle [k, k+1] sont solutions de (E).
- 7. Conclure.

I. 4 Etude de $I_n = \int_1^e (\ln(x))^n dx$

Exercice 4. On considère pour tout $n \in \mathbb{N}$ l'intégrale

$$I_n = \int_1^e (\ln(x))^n dx$$

- 1. (a) Démontrer que pour tout $x \in]1, e[$ et pour tout entier naturel $n \in \mathbb{N}$ on a $(\ln(x))^n (\ln(x))^{n+1} > 0$.
 - (b) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. (a) Calculer I_1 à l'aide d'une intégration par parties.
 - (b) Démontrer, toujours à l'aide d'une intégration par parties que, pour tout $n \in \mathbb{N}, I_{n+1} = e (n+1)I_n$
- 3. (a) Démontrer que pour tout $n \in \mathbb{N}$, $I_n \geq 0$.
 - (b) Démontrer que pour tout $n \in \mathbb{N}$, $(n+1)I_n \leq e$.
 - (c) En déduire la limite de $(I_n)_{n\in\mathbb{N}}$.
 - (d) Déterminer la valeur de $nI_n + (I_n + I_{n+1})$ et en déduire la limite de nI_n .

I. 5 Racine de $x^3 - 6x - 9$

Exercice 5. On cherche les racines réelles du polynôme $P(x) = x^3 - 6x - 9$.

- 1. Donner en fonction du paramètre x réel, le nombre de solutions réelles de l'équation $x=y+\frac{2}{y}$ d'inconnue $y\in\mathbb{R}^*$.
- 2. Soit $x \in \mathbb{R}$ vérifiant $|x| \geq 2\sqrt{2}$. Montrer en posant le changement de variable $x = y + \frac{2}{y}$ que :

$$P(x) = 0 \Longleftrightarrow y^6 - 9y^3 + 8 = 0$$

- 3. Résoudre l'équation $z^2 9z + 8 = 0$ d'inconnue $z \in \mathbb{R}$.
- 4. En déduire une racine du polynôme P.
- 5. Donner toutes les racines réelles du polynôme P.

I. 6 Résolution de $\sqrt{e^x - 2} \ge e^x - 4$

Exercice 6. Donner l'ensemble de définition de

$$f(x) = \sqrt{e^x - 2}$$

Résoudre

$$f(x) \ge e^x - 4$$

I. 7 Equation trigonométrique et changement de variable

Exercice 7. 1. Résoudre l'inéquation d'inconnue y suivante :

$$\frac{y-3}{2y-3} \le 2y \quad (E_1)$$

2. En déduire les solutions sur \mathbb{R} de l'inéquation d'inconnue X:

$$\frac{\sin^2(X) - 3}{2\sin^2(X) - 3} \le 2\sin^2(X) \quad (E_2)$$

3. Finalement donner les solutions sur $[0, 2\pi]$ de l'inéquation d'inconnue x:

$$\frac{\sin^2(2x + \frac{\pi}{6}) - 3}{2\sin^2(2x + \frac{\pi}{6}) - 3} \le 2\sin^2(2x + \frac{\pi}{6}) \quad (E_3)$$

I. 8 Equation différentielle, changement de variable

Exercice 8. Le but de cet exercice est de déterminer l'ensemble S des fonctions $f:]0, +\infty[\to \mathbb{R}$ telles que :

$$f$$
 est dérivable sur $]0, +\infty[$ et $\forall t > 0, f'(t) = f(1/t)$

On fixe une fonction $f \in \mathcal{S}$ et on définit la fonction g par

$$g(x) = f(e^x)$$

- 1. Justifier que f est deux fois dérivable sur $]0,+\infty[$ et exprimer sa dérivée seconde en fonction de f.
- 2. Justifier que g est deux fois dérivable sur $\mathbb R$ et montrer que g est solution de l'équation diffrentielle suivante :

$$y'' - y' + y = 0 \quad (E)$$

- 3. Résoudre (E).
- 4. En déduire que f est de la forme

$$f(t) = A\sqrt{t}\cos\left(\frac{\sqrt{3}}{2}\ln(t)\right) + B\sqrt{t}\sin\left(\frac{\sqrt{3}}{2}\ln(t)\right)$$

où (A, B) sont deux constantes réelles.

On appelle
$$f_1(t) = \sqrt{t} \cos\left(\frac{\sqrt{3}}{2}\ln(t)\right)$$
 et $f_2(t) = \sqrt{t} \sin\left(\frac{\sqrt{3}}{2}\ln(t)\right)$

- 5. Calculer les dérivées premières de f_1 et f_2
- 6. En considérant les cas t=1 et $t=e^{\pi/\sqrt{3}}$, montrer que A et B sont solutions de

$$(S) \left\{ \begin{array}{lcl} A - B\sqrt{3} & = & 0 \\ A\sqrt{3} - 3B & = & 0 \end{array} \right.$$

- 7. Résoudre (S).
- 8. Conclure.

I. 9 Suite arithmético-géométrique

Exercice 9. Soit $(a, b) \in \mathbb{R}^2$ tels que 0 < a < b. On pose $u_0 = a, v_0 = b$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \sqrt{u_n v_n}, \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. Montrer que : $\forall n \in \mathbb{N}, 0 < u_n < v_n$.
- 2. Montrer que : $\forall n \in \mathbb{N}, v_n u_n \leq \frac{1}{2^n}(v_0 u_0)$.

I. 10 Equation rationnelle à paramètre

Exercice 10. Résoudre l'équation pour $x \in \mathbb{R}$ de paramètre a:

$$\frac{1}{x-a} \ge x$$

I. 11 Résolution de $\left[2x - \sqrt{5x - 1}\right] = 0$

Exercice 11. On considère l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\left[2x - \sqrt{5x - 1}\right] = 0 \qquad (E)$$

- 1. Déterminer le domaine de définition de (E).
- 2. Dire si les réels suivants sont solutions ou non de (E)

$$x_1 = \frac{1}{5}, x_2 = \frac{1}{2}, x_3 = 1, x_4 = 12$$

- 3. Pour tout $a \in \mathbb{R}$, rappeler un encadrement de la partie entière de a en fonction de a.
- 4. Montrer que résoudre (E) est équivalent à résoudre le système :

$$\begin{cases} \sqrt{5x-1} > 2x-1 & (E_1) \\ \sqrt{5x-1} \le 2x & (E_2) \end{cases}$$

- 5. Résoudre les deux inéquations obtenues à la question précédente.
- 6. Résoudre (E).

I. 12 Equation complexe

Exercice 12. Résoudre dans $\mathbb C$ l'équation d'inconnue z:

$$\left(\frac{z-2i}{z+2i}\right)^3 + \left(\frac{z-2i}{z+2i}\right)^2 + \left(\frac{z-2i}{z+2i}\right) + 1 = 0$$

I. 13 Somme de nombres complexes(Pb)

Exercice 13. Soit $n \in \mathbb{N}$. On définit la somme pour tout $x \in]0, 2\pi[$:

$$Z(x) = \sum_{k=0}^{n} e^{ikx}.$$

1. Montrer par récurrence que $Z(x)=\frac{1-e^{(n+1)ix}}{1-e^{ix}}$. On suppose que $n\geq 2,$ on pose :

$$S_n = \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right).$$

2. Justifier que $S_n = \sum_{k=0}^n \sin\left(\frac{k\pi}{n}\right)$.

- 3. Prouver que : $S_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)}$.
- 4. En déduire la valeur de $\tan\left(\frac{\pi}{8}\right)$.
- 5. Déterminer $\lim_{n\to\infty} \frac{S_n}{n}$.

I. 14 Equations trigonométriques

Exercice 14. Résoudre dans \mathbb{R} puis dans $[-\pi, \pi[$:

$$\cos(3x - 1) = \sin(2x) \tag{1}$$

$$\cos(3x) + \cos(2x) + \cos(-x) = 0 \tag{2}$$

$I. 15 \quad Arctan(Pb)$

Exercice 15 (Autour de arctan). 1. (a) Soit $x \in \mathbb{R}$ que vaut $\tan(\arctan(x))$?

- (b) Soit $x \in]-\pi/2,\pi/2[$, que vaut $\arctan(\tan(x))$?
- (c) Soit $x \in]\pi/2, 3\pi/2[$, que vaut $\arctan(\tan(x))$?
- (d) Soit $k \in \mathbb{Z}$, et $x \in]-\pi/2+k\pi,\pi/2+k\pi[$, que vaut $\arctan(\tan(x))$?
- 2. On rappelle que la dérivée d'un quotient $\frac{f}{g}$ vaut $\frac{f'g-fg'}{g^2}$. Montrer que pour tout x où tan est définie on a :

$$\tan'(x) = 1 + \tan^2(x).$$

3. On rappelle que la dérivée d'une composée $f \circ g$ vaut $g' \times f' \circ g$. Grâce à la formule obtenue en 1.(a) montrer que la dérivée de arctan sur $\mathbb R$ vaut

$$\arctan'(x) = \frac{1}{1+x^2}$$

4. Montrer que pour tout x > 0 on a :

$$\arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$$

5. Soit x, y deux réels positifs. Montrer que si xy < 1 alors

$$0 \le \arctan(x) + \arctan(y) < \frac{\pi}{2}$$

6. Etant donnée $(x,y) \in \mathbb{R}^2_+$, tel que xy < 1, montrer que

$$\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right), \, ^{1}$$

- 1. De manière plus générale, $\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right) + k\pi$, où :
- k = 0 si xy < 1.
- k = 1 si xy > 1, avec x et y positifs.
- k = -1 si xy > 1, avec x et y négatifs.

- 7. Soit x > 0, comparer : $\arctan\left(\frac{1}{2x^2}\right)$ et $\arctan\left(\frac{x}{x+1}\right) \arctan\left(\frac{x-1}{x}\right)$.
- 8. Simplifier

$$\sum_{k=1}^{n} \arctan\left(\frac{1}{2k^2}\right)$$

9. En déduire
$$\lim_{n\to\infty} \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right)$$
.

I. 16 Simplification Produit

Exercice 16. Simplifier

$$\prod_{k=1}^{n} \left(1 - \frac{1}{k^2} \right) \quad \text{et} \quad \prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right).$$

En déduire la valeur de $\lim_{n\to\infty} \prod_{k=2}^n \left(1-\frac{1}{k^2}\right)$

I. 17 Suite récurrente et césaro PB(long)

Exercice 17. Le but de cet exerice est l'étude de la suite (a_n) définie par $a_1 = 1$ et $\forall n \in \mathbb{N}^*, a_{n+1} = \frac{a_n(1+a_n)}{1+2a_n}$.

- 1. Etude de la limite de $(a_n)_{n\geq 1}$.
 - (a) Calculer a_2 et a_3 .
 - (b) Etudier la fonction f définie par $f(x) = \frac{x(x+1)}{1+2x}$
 - (c) Déterminer l'image directe de]0,1[par f.
 - (d) Démontrer que, $\forall n \geq 2$, on a $0 < a_n < 1$.
 - (e) Montrer que la suite $(a_n)_{n\geq 1}$ est décroissante.
 - (f) Rédoudre l'équation f(x) = x sur [0, 1].
 - (g) En déduire la limite de $(a_n)_{n>1}$.
- 2. Un résultat intermédiaire.

Soit $(u_n)_{n\geq 1}$ une suite croissante, admettant une limite ℓ en $+\infty$ et $(C_n)_{n\geq 1}$ définie par

$$C_n = \frac{1}{n} \sum_{k=1}^n u_n$$

- (a) Montrer que pour tout $n \in \mathbb{N}^*$, $C_n \leq u_n$.
- (b) Montrer que pour $(C_n)_{n\geq 1}$ est croissante.
- (c) Montrer que pour tout $n \in \mathbb{N}^*$, $2C_{2n} C_n \ge u_{n+1}$.
- (d) En déduire que $(C_n)_{n\geq 1}$ converge et donner la valeur de sa la limite en fonction de celle de $(u_n)_{n\geq 1}$.
- 3. Etude d'un équivalent de $(a_n)_{n\geq 1}$.
 - (a) Montrer que $\frac{1}{a_{n+1}} \frac{1}{a_n} = \frac{1}{1+a_n}$

- (b) On pose $u_n = \frac{1}{a_{n+1}} \frac{1}{a_n}$. Déterminer la limite de $(u_n)_{n \ge 1}$.
- (c) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- (d) En posant $C_n = \frac{1}{n} \sum_{k=1}^n u_k$, exprimer C_n en fonction de a_{n+1} et de a_1 .
- (e) Conclure à l'aide de la question 2.e que $a_n \sim \frac{1}{n}$.

I. 18 $u_{n+1} = \sin(u_n)$ (Pb)

Exercice 18. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sin(u_n) \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < \frac{\pi}{2}$.
- 2. On note $f(x) = \sin(x) x$. Montrer que pour tout $x \in \mathbb{R}_+^*$, f(x) < 0.
- 3. En déduire le sens de variation de $(u_n)_{n\in\mathbb{N}}$.
- 4. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$
- 5. Montrer que $f(x) = 0 \iff x = 0$.
- 6. Déterminer la valeur de ℓ .

Info

- 1. Ecrire une fonction qui prend en paramètre $n \in \mathbb{N}$ et qui retourne la valeur de u_n . (Pour ceux qui n'ont pas encore vu les fonctions, vous pouvez écrire un script qui demande à l'utilisateur la valeur de n souhaité et qui retourne la valeur de u_n sans les fonctions, mais bon c'est pas si différent...)
- 2. Ecrire une fonction qui prend en paramètre $e \in \mathbb{R}^+$ et qui retourne la valeur du premier terme $n_0 \in \mathbb{N}$ telle que $|u_{n_0} \ell| \le e$ et la valeur de u_{n_0} . (même remarque)

I. 19
$$I_{n+1} = (2n+1)I_n$$

Exercice 19. Soit $(I_n)_{n\in\mathbb{N}}$ la suite définie par $I_0=1$ et pour tout $n\in\mathbb{N}$, $I_{n+1}=(2n+1)I_n$. Exprimer I_n en fonction de n à l'aide uniquement de factorielle et puissance.

I. 20 Suite définites implicitement $x^3 + nx - 1$ (Pb)

Exercice 20. 1. Montrer que pour tout $n \in \mathbb{N}^*$ l'équation $x^3 + nx = 1$ admet une unique solution dans \mathbb{R}^+ . On la note x_n .

- 2. Montrer que $x_{n+1}^3 + nx_{n+1} 1 < 0$.
- 3. En déduite que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 4. Justifier que la suite est minorée par 0 et majorée par 1.
- 5. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge.
- 6. A l'aide d'un raisonement par l'absurde justifier que cette limite vaut 0.

I. 21
$$I_n = \int_1^e (\ln(x))^n dx$$

Exercice 21. On considère pour tout $n \in \mathbb{N}$ l'intégrale

$$I_n = \int_1^e (\ln(x))^n dx$$

- 1. (a) Démontrer que pour tout $x \in]1, e[$ et pour tout entier naturel $n \in \mathbb{N}$ on a $(\ln(x))^n (\ln(x))^{n+1} > 0$.
 - (b) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. (a) Calculer I_1 a l'aide d'une intégration par partie.
 - (b) Démontrer, toujours à l'aide d'une intégration par parties que, pour tout $n \in \mathbb{N}$, $I_{n+1} = e (n+1)I_n$
- 3. (a) Démontrer que pour tout $n \in \mathbb{N}$, $I_n \geq 0$.
 - (b) Démontrer que pour tout $n \in \mathbb{N}$, $(n+1)I_n \leq e$.
 - (c) En déduire la limite de $(I_n)_{n\in\mathbb{N}}$.
 - (d) Déterminer la valeur de $nI_n + (I_n + I_{n+1})$ et en déduire la limite de nI_n .

I. 22 Etude de $f(x) = \frac{e^x}{\ln(x)}$

Exercice 22. Soit f la fonction définie par

$$f(x) = \frac{e^x}{\ln(x)}$$

- 1. Donner l'ensemble de définition et de dérivation de f.
- 2. Calculer la dérivée de f en déduire que le signe de f' dépend de celui de $g(x) = \ln(x) \frac{1}{x}$
- 3. Donner l'ensemble de définition et de dérivation de g et calculer sa dérivée.
- 4. Montrer qu'il existe un unique $\alpha \in]1, +\infty[$ tel que f'(x) > 0 sur $]\alpha, +\infty[$ et f'(x) < 0 sur $]0, \alpha \cap D_f$.
- 5. Donner le tableau de variations complet de f.
- 6. Donner l'équation de la tangente à la courbe représentative de f en e.

I. 23 Wallis - Calcul $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k^2}$ (Pb)

Le but de ce DM est de calculer la valeur de

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2}$$

I. 23. a Convergence

On note $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

- 1. Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est monotone.
- 2. Montrer que pour tout $k \geq 2$

$$\frac{1}{k^2} \leq \frac{1}{k-1} - \frac{1}{k}$$

3. En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in[0,2]$.

I. 23. b Calcul de la limite

Pour tout $n \in \mathbb{N}$ on définit I_n et J_n par

$$I_n = \int_0^{\frac{\pi}{2}} \cos^{2n}(t)dt \quad J_n = \int_0^{\frac{\pi}{2}} t^2 \cos^{2n}(t)dt$$

- 1. Montrer que $I_0 = \frac{\pi}{2}$ et $J_0 = \frac{\pi^3}{24}$
- 2. (a) En utilisant une intégration par parties, démontrer que pour tout entier $n \ge 1$ on a :

$$I_n = \frac{2n-1}{2n} I_{n-1}$$

(on pourra utiliser que $\cos^{2n}(t) = \cos^{2n-1}(t)\cos(t)$)

(b) En déduire que

$$I_n = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$$

3. (a) En utilisant une intégration par parties, montrer que :

$$\int_0^{\frac{\pi}{2}} t \cos^{2n-1}(t) \sin(t) dt = \frac{1}{2n} I_n$$

(b) Montrer que

$$J_{n-1} - J_n = \int_0^{\frac{\pi}{2}} (t^2 \sin(t)) \cos^{2n-2}(t) \sin(t) dt$$

(c) En utilisant une intégration par parties en déduire que :

$$J_{n-1} - J_n = \frac{1}{2n-1} \left(\frac{1}{n} I_n + J_n \right)$$

(d) On désigne par $(K_n)_{n\in\mathbb{N}}$ la suite réelle définie par $K_n = \frac{J_n}{I_n}$. En utilisant la relation obtenue précédemment, montrer que :

$$\frac{J_{n-1}}{I_n} - K_n = \frac{1}{2n-1} \left(\frac{1}{n} + K_n \right)$$

puis en déduire que :

$$K_{n-1} - K_n = \frac{1}{2n^2}$$

- 4. Le but de cette question est de montrer que $K_n \to 0$
 - (a) démontrer que pour tout réel $t \in [0, \frac{\pi}{2}]$ on a :

$$t \le \frac{\pi}{2}\sin(t)$$

(b) En déduire que pour tout entier n on a :

$$0 \le J_n \le \frac{\pi^2 I_n}{8(n+1)}$$

puis que:

$$0 \le K_n \le \frac{\pi^2}{8(n+1)}$$

5. En déduire que

$$\lim_{n \to \infty} S_n = \frac{\pi^2}{6}$$

I. 24 Etude de $f(x) = x + \cos\left(\frac{1}{x}\right)$.

Exercice 23. Soit f la fonction définie pour tout x par $f(x) = x + \cos\left(\frac{1}{x}\right)$.

- 1. Donner le domaine de définiiton et de dérivabilité de f.
- 2. Pour tout $n \in \mathbb{N}^*$ donner l'équation de la tangente (T_n) à \mathcal{C}_f au point d'abscisse n.
- 3. Calculer les coordonnées de l'intersection entre (T_n) et l'axe des abscisses. On note x_n la coordonnée non nulle.
- 4. Calculer la limite de $(x_n)_{n\in\mathbb{N}}$.

I. 25 Calculs de limites

Exercice 24. Calculer les limites suivantes

- 1. $\lim_{x\to 1} \frac{x-1}{\cos(\frac{\pi x}{2})}$
- 2. $\lim_{x\to 0} \frac{x\ln(x)}{e^x-1}$
- 3. $\lim_{x \to +\infty} \frac{\ln(x^2)}{\ln(x+1)}$
- 4. $\lim_{x \to +\infty} \frac{\ln(x)e^{x^2}}{x^x}$

Exercice 25. Donner des équivalents simples de

- 1. Quand $x \to 1$ de $\frac{\ln(x)}{\sqrt{x^2-1}}$
- 2. Quand $x \to 0$ de $\frac{x \ln(x)}{e^x 1}$
- 3. Quand $n \to +\infty$ de $\sum_{k=0}^{2n} k^2 + k$

I. 26 Etude dérivabilité

Exercice 26. Etudier la continuité et la dérivabilité de

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases} \qquad g(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Ces fonctions sont-elles de classe C^1 ?

I. 27 Fonctions k-contractante (Pb)

Exercice 27. Fonctions k-contractantes.

On suppose que f est une fonction définie sur [0,1] à valeurs dans [0,1] et qu'il existe $k \in]0,1[$ tel que

$$\forall (x,y) \in [0,1]^2, |f(x) - f(y)| \le k|x - y|.$$

Une telle fonction s'appelle une fonction k-contractante.

- 1. Montrer que f est continue.
- 2. En déduire que f admet au moins un point fixe dans [0,1].

- 3. Montrer par l'absurde que ce point fixe est unique. On le note c.
- 4. On considère alors une suite $(c_n)_{n\in\mathbb{N}}$ définie par son premier terme $c_0\in[0,1]$ et par la relation de récurrence : $\forall n\in\mathbb{N},\ c_{n+1}=f(c_n)$.
 - (a) Montrer que la suite $(c_n)_{n\in\mathbb{N}}$ est bien définie.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $|c_n c| \le k^n |c_0 c|$.
 - (c) En déduire la limite de la suite $(c_n)_{n\in\mathbb{N}}$.

I. 28 Etude de $\int_x^{x^2} \frac{dt}{\ln(t)}$. (Pb)

Exercice 28. Le but de ce problème est d'étudier la fonction définie par :

$$g: x \mapsto \int_{x}^{x^2} \frac{dt}{\ln(t)}.$$

- 1. Etude globale:
 - (a) Justifier que g est bien définie sur $\mathcal{D}_g =]0, 1[\cup]1, +\infty[$.
 - (b) Montrer que g est positive sur \mathcal{D}_g .
 - (c) Justifier que g est dérivable sur \mathcal{D}_g et exprimer sa dérivée en tout point de \mathcal{D}_g .
 - (d) Montrer que g est de classe \mathcal{C}^{∞} sur \mathcal{D}_q .
 - (e) Etudier les variations de g sur \mathcal{D}_g . (les limites aux bornes ne sont pas demandées pour cette question)
- 2. Etude au voisinage de 0
 - (a) Montrer que:

$$\forall x \in]0,1[\frac{x(x-1)}{2\ln(x)} \le g(x) \le \frac{x(x-1)}{\ln(x)}$$

On fera très attention aux signes dans les inégalités.

- (b) En déduire que g se prolonge par continuité en 0 et préciser la valeur de ce prolongement. Par la suite, on note encore g la fonction continue, prolongée en 0
- (c) Montrer que g est dérivable à droite en 0 et préciser g'(0).
- 3. Etude au voisinage de 1.
 - (a) A l'aide du théorème des accroissements finis appliquer à $h(t) = \ln(t) t$ montrer que pour tout $t \in]0,1[$:

$$0 \le \frac{\ln(t) - t + 1}{t - 1} \le \frac{1 - t}{t}$$

(b) En déduire que pour tout $t \in]0,1[$:

$$\left| \frac{\ln(t) - t + 1}{t - 1} \right| \le \left| \frac{1 - t}{t} \right|.$$

(c) Montrer de manière analogue que pour tout t > 1 on a

$$\left| \frac{\ln(t) - t + 1}{t - 1} \right| \le \left| \frac{1 - t}{t} \right|.$$

(d) En déduire qu'il existe $\eta > 0$ tel que pour tout $t \in [1 - \eta, 1 + \eta]$

$$\left| \frac{1}{\ln(t)} - \frac{1}{t-1} \right| \le 2$$

- (e) Conclure que g est prolongeable par continuité en 1.
- 4. Etude au voisinage de $+\infty$.
 - (a) Montrer que:

$$\forall x \in]1, +\infty[\quad \frac{x(x-1)}{2\ln(x)} \le g(x)$$

(b) En déduire la limite de g en $+\infty$.

I. 29 Non interversion limite intégrale

Exercice 29. Soit $x \in [0, 1]$

- 1. Calculer $\lim_{n\to+\infty} nxe^{-nx^2}$.
- 2. Calculer $I_n = \int_0^1 nx e^{-nx^2} dx$.
- 3. Calculer $\lim_{n\to+\infty} I_n$.
- 4. Que doit-on retenir de cet exercice?

I. 30 Etude $x \exp(\sin^2(x))$. [d'après Godillon 16-17]

Exercice 30. On considère la fonction suivante :

$$f: x \mapsto x \exp(\sin^2(x)).$$

- 1. Déterminer le développement limité à l'ordre 5 en 0 de f.
- 2. Justifier que f réalise une bijection de l'intervalle $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ vers un ensemble I à déterminer.
- 3. Justifier que la bijection réciproque f^{-1} de $f_{\left|\left|\right|=\frac{\pi}{2},\frac{\pi}{2}\right|}$ est de classe \mathcal{C}^{∞} sur I.
- 4. Justifier l'existence de $(a,b,c) \in \mathbb{R}^3$ tel que $f^{-1}(x) = ax + bx^3 + cx^5 + o_{x\to 0}(x^5)$.
- 5. En composant les développements limités de f^{-1} et f, déterminer les valeurs des constantes a, b et c.
- 6. Que peut-on en déduire pour la tangente à la courbe représentatitve de f^{-1} au voisinage de 0?

I. 31 Inégalités / récurrence

Exercice 31. 1. Comparer (avec une inégalité large) pour tout $n \in \mathbb{N}$, les nombres n et 3^n . (Prouver cette inégalité)

2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,\ u_1=3$ et pour tout $n\in\mathbb{N}$:

$$u_{n+2} = 3u_{n+1} - 2u_n$$

- (a) Enoncer l'inégalité triangulaire.
- (b) Montrer que : $\forall n \in \mathbb{N}, |u_n| \leq 4^n$.

I. 32 Fibonacci

Exercice 32. Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=0,\,F_1=1$ et pour tout $n\geq 0$

$$F_{n+2} = F_{n+1} + F_n$$
.

- 1. Montrer que pour tout $n \in \mathbb{N}$ on a : $\sum_{k=0}^{n} F_{2k+1} = F_{2n+2}$ et $\sum_{k=0}^{n} F_{2k} = F_{2n+1} 1$.
- 2. Montrer que pout tout $n \in \mathbb{N}$ on a $\sum_{k=0}^{n} F_k^2 = F_n F_{n+1}$.
- 3. (a) On note $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$. Montrer que $\varphi^2 = \varphi + 1$ et $\psi^2 = \psi + 1$.
 - (b) Montrer que l'expression explicite de F_n st donnée par $F_n = \frac{1}{\sqrt{5}}(\varphi^n \psi^n)$.
 - (c) En déduire que $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \varphi$.

I. 33 Equation à paramètre

Exercice 33. On note $\Delta(m) = m^2 - 8m + 12$.

1. Résoudre l'inéquation d'inconnue m:

$$\Delta(m) > 0 \tag{I_1}$$

- 2. On note $r_+(m) = \frac{m + \sqrt{\Delta(m)}}{4}$ et $r_-(m) = \frac{m \sqrt{\Delta(m)}}{4}$.
- 3. Résoudre

$$r_{+}(m) \ge 1$$
 et $r_{-}(m) \ge 1$.

4. Résoudre l'inéquation d'inconnue y et de paramètre $m \in \mathbb{R}$

$$\frac{2y^2 - \frac{3}{2}}{y - 1} \ge m \tag{I_2}$$

I. 34 Partie Entière

Exercice 34. On considère l'équation suivante d'inconnue $x \in \mathbb{R}$:

$$\left[2x - \sqrt{5x - 1}\right] = 0\tag{E}$$

- 1. Déterminer le domaine de définition de E.
- 2. Pour tout $a \in \mathbb{R}$, rappeler un encadrement de la partie entière de a en fonction de a.
- 3. Montrer que résoudre (E) revient à résoudre deux inéquations qu'on déterminera.
- 4. Résoudre les deux équations obtenues à la question précédente.
- 5. Résoudre (E).

I. 35 Equation trigonométrique / changement de variable

Exercice 35. Résoudre l'inéquation d'inconnue x:

$$\frac{\frac{1}{2}}{x - \frac{1}{2}} \le x + \frac{1}{2}$$

Résoudre sur $[0, 2\pi[$:

$$\frac{\frac{1}{2}}{\sin(x) - \frac{1}{2}} \le \sin(x) + \frac{1}{2}$$

Représenter les solutions sur le cercle trigonométrique.

I. 36 Calcul de la dérivée de arcsin [Agro 2015]

Exercice 36. 1. Que vaut $\arcsin(1/2)$ et $\arcsin(-\sqrt{2}/2)$?

- 2. Tracer le graphe de la fonction arcsin dans le plan usuel muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .
- 3. Soit $x \in [-1, 1]$, calculer $\sin(\arcsin(x))$?
- 4. Soit $x \in [-1, 1]$, montrer que $\cos(\arcsin(x)) = \sqrt{1 x^2}$. Pour tout $n \in \mathbb{N}$, on pose $f_n : x \mapsto \cos(2n\arcsin(x))$
- 5. Calculer f_0 , f_1 et f_2 .
- 6. (a) Soient a et b deux réels, exprimer $\cos(a+b) + \cos(a-b)$ uniquement en fonction de $\cos(a)$ et $\cos(b)$.
 - (b) En déduire que pour tout entier n on a :

$$\forall x \in [-1, 1], \quad f_{n+2}(x) + f_n(x) = 2(1 - 2x^2)f_{n+1}(x).$$

I. 37 Somme double $\max + info$

Exercice 37. 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2. Soit $i \in \mathbb{N}$ et $n \in \mathbb{N}$ tel que $i \leq n$. Caculer en fonction de i et n :

$$\sum_{j=i+1}^{n} j$$

3. On rappelle que l'on note $\max(i,j) = \begin{cases} i & \text{si } i \geq j \\ j & \text{sinon.} \end{cases}$ Montrer que pour tout $n \in \mathbb{N}$,

$$\sum_{i,j \in [\![1,n]\!]} \max(i,j) = \sum_{i=1}^n \frac{n^2 + i^2 + n - i}{2}$$

4. En déduire que

$$\sum_{i,j\in \llbracket 1,n\rrbracket} \max(i,j) \left(\frac{n(n+1)(4n-1)}{6}\right)$$

5. On note

$$S_k = \sum_{i,j \in [\![1,1000]\!]} \max(i^k,j^k).$$

- (a) Rappeler ce que renvoie l'instruction Python range(a,b) avec deux entiers $a,b \in \mathbb{N}$ tel que a < b.
- (b) Ecrire un script Python qui demande à l'utilsateur la valeur de k, calcul S_k et affiche le résultat.

I. 38 Calcul de $\sum_{k=0}^{n} k^4$

Exercice 38. 1. Rappeler la valeur de $R_3 = \sum_{k=0}^{n} k^3$ en fonction de $n \in \mathbb{N}$

- 2. Soit $k \in \mathbb{N}$, développer $(k+1)^5 k^5$.
- 3. A l'aide de la somme téléscopique $\sum_{k=0}^{n} (k+1)^5 k^5$ donner la valeur de $R_4 = \sum_{k=0}^{n} k^4$ en fonction de $n \in \mathbb{N}$. (On pourra garder une formule développée, malgré ce que j'ai pu dire en classe...)
- 4. Soit $x \in \mathbb{N}$, on note $R_x(n) = \sum_{k=0}^n k^x$ Ecrire une fonction Python qui prend en paramètre $n \in \mathbb{N}$ et $x \in \mathbb{N}$ et rend la valeur de $R_x(n)$
- 5. Soit $x \in \mathbb{N}$, on note $R_x(n) = \sum_{k=0}^n k^x$. Ecrire une fonction Python qui prend en paramètre $n \in \mathbb{N}$ et $x \in \mathbb{N}$, qui affiche un message d'erreur si x n'est pas un entier positif et rend la valeur de $R_x(n)$ sinon.
- 6. Montrer que les suites $a_n = \sum_{k=1}^n \frac{1}{k^2}$ et $b_n = a_n + \frac{1}{n}$ sont adjacentes.
- 7. Ecrire une fonction Python qui prend en paramètre e > 0 et qui rend le premier rang $n_0 \in \mathbb{N}$ tel que $|a_{n_0} b_{n_0}| \le e$ et la valeur de a_{n_0}

I. 39 Formule D'inversion de somme (Pb)

Exercice 39. Dans cet exercice, on considère une suite quelconque de nombres réels $(a_n)_{n\in\mathbb{N}}$, et on pose pour tout $n\in\mathbb{N}$:

$$b_n = \sum_{k=0}^n \binom{n}{k} a_k.$$

Partie I: Quelques exemples

- 1. Calculer b_n pour tout $n \in \mathbb{N}$ lorsque la suite $(a_n)_{n \in \mathbb{N}}$ est la suite constante égale à 1.
- 2. Calculer b_n pour tout $n \in \mathbb{N}$ lorsque la suite $(a_n)_{n \in \mathbb{N}}$ est définie par $a_n = \exp(n)$.

3. (a) Démontrer que, pour tout $(n \ge 1, n \ge k \ge 1)$,

$$k\binom{n}{k} = n\binom{n-1}{k-1}.$$

- (b) En déduire que : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{n}{k} k = n2^{n-1}$.
- (c) Calculer la valeur de b_n , pour tout $n \in \mathbb{N}$ lorsque la suite $(a_n)_{n \in \mathbb{N}}$ est définie par $a_n = \frac{1}{n+1}$.

Partie II: Formule d'inversion

Le but de cette partie est de montrer que la suite $(a_n)_{n\in\mathbb{N}}$ s'exprime en fonction de la suite $(b_n)_{n\in\mathbb{N}}$.

1. Montrer que pour tout $(k, n, p) \in \mathbb{N}^3$, tel que $k \leq p \leq n$ on a :

$$\binom{n+1}{p}\binom{p}{k} = \binom{n+1}{k}\binom{n+1-k}{p-k}.$$

2. Montrer que, pour tout $(k,n) \in \mathbb{N}^2$, tel que $k \leq n$ on a :

$$\sum_{i=0}^{n-k} (-1)^i \binom{n+1-k}{i} = (-1)^{n-k}.$$

3. Montrer que pour tout $n \in \mathbb{N}$ on a

$$\sum_{p=0}^{n} \sum_{k=0}^{p} \binom{n+1}{k} \binom{n+1-k}{p-k} (-1)^{p-k} b_k = \sum_{k=0}^{n} (-1)^{n-k} \binom{n+1}{k} b_k$$

- 4. Donner, pour tout $n \in \mathbb{N}$, l'expression de a_{n+1} en fonction de b_{n+1} et de $a_0, ..., a_n$.
- 5. Prouver, par récurrence forte sur n que :

$$\forall n \in \mathbb{N}, a_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} b_k.$$

6. En utilisant le résultat précédent montrer que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \binom{n}{k} k 2^k (-1)^{n-k} = 2n.$$

$$\underline{I. 40} Etude \ de \ f(x) = \ln\left(\sqrt{\frac{1}{2} + \sin(x)}\right)$$

Exercice 40. 1. Résoudre $\sin(x) \ge \frac{-1}{2}$ sur $[0, 2\pi]$, puis sur \mathbb{R}

2. Donner l'ensemble de définition et de dérivabilité de f définie par

$$f(x) = \ln\left(\sqrt{\frac{1}{2} + \sin(x)}\right)$$

- 3. Rappeler la formule de dérivée d'une composée $(f \circ g)'$.
- 4. Calculer la dérivée de f sur son ensemble de dérivabililité.
- 5. Calculer l'équation de la tangente à la courbe représentative de f en $\frac{\pi}{6}$.
- 6. On rappelle que la fonction a%b en Python renvoie le reste de la division de a par b, c'ets à dire l'unique réel r entre [0,b[tel qu'il existe $k \in \mathbb{Z}$ vérifiant a=kb+r. Cette fonction peut prendre des paramètres a,b réels, pas nécessairement entier.
 - (a) Ecrire une fonction Python reste qui prend en paramètre un réel x et qui retourne son reste modulo 2π .
 - (b) Ecrire une fonction python definition qui prend en paramètre un réel x et renvoi 1 si $x \in D_f$ et 0 sinon.
 - (c) Ecrire une fonction python f qui prend en parmètre un réel x, qui renvoie un message d'erreur si $x \notin D_f$ et retourne la valeur de f(x) sinon.

I. 41 EDL - concentration de glucose

Exercice 41. En l'abscence d'apport énergétique la concentration en glucose dissout dans le sang dans le temps mesurée en heure $t \mapsto c(t)$ (en $g \cdot L^{-1}$) vérifie l'équation différentielle

$$y' + 0.01y = -0.02$$

La concentration en glucose après un repas est égale à $c_0 = 1, 2gL^{-1}$.

Donner les solutions de l'équation différentielle y' + 0.01y = -0.02.

Donner l'expression de la concentration en glucose c(t) en utilisant la condition initiale c(0) = 1.2Au bout de combien de temps après un repas la concentration en glucose dans le sang sera inférieure à $0,8gL^{-1}$?

Exprimer le résulat avec un calcul litéral, puis en donner une valeur approchée (on pourra utiliser que $\ln(7/8) \approx -0.13$)

I. 42 Etude de
$$u_{n+1} = 1 + \frac{1}{u_n}$$
 (Pb)

Exercice 42. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = 1 + \frac{1}{u_n} \end{cases}$$

- 1. Calculer u_1 .
- 2. Etudiez la fonction $f: x \mapsto 1 + \frac{1}{x}$. (Domaine de définition, limites et variations)
- 3. Résoudre f(x) = x. On note α l'unique solution dans \mathbb{R}_+^* .
- 4. Montrer que $u_1 < \alpha < 2$.
- 5. On note $I = [1, \alpha]$ et $J = [\alpha, 2]$. Montrer que $f(I) \subset J$ et $f(J) \subset I$.
- 6. On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par

$$a_n = u_{2n} \quad b_n = u_{2n+1}.$$

Enfin on note A la fonction définie pour tout x par $A(x) = f \circ f(x)$. Montrer que $a_{n+1} = A(a_n)$. On peut montrer de manière similaire que $b_{n+1} = A(b_n)$, on ne demande pas de le prouver.

- 7. Soit F une fonction réelle. Soient \mathcal{E} et \mathcal{F} deux sous-ensembles de \mathbb{R} . Montrer que si $\mathcal{E} \subset \mathcal{F}$ alors $F(\mathcal{E}) \subset F(\mathcal{F})$. En déduire que I est stable par A. De même, on pourrait montrer que J est stable par A, on ne demande pas de le prouver.
- 8. Montrer que pour tout $x \in D_f$, $A(x) x = \frac{-x^2 + x + 1}{x + 1}$
- 9. Résoudre $A(x) \ge x$ sur $]0, +\infty[$.
- 10. En déduire que $(a_n)_{n\in\mathbb{N}}$ est décroissante et $(b_n)_{n\in\mathbb{N}}$ est croissante.
- 11. Montrer que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent, calculer leur limite.
- 12. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.
- 13. (a) Ecrire une fonction Python ${\tt u}$ qui prend en paramètre un entier n et qui renvoie la valeur de u_n
 - (b) Ecrire une fonction Python limiteu qui prend en paramètre un reel $\epsilon > 0$ et qui renvoie la valeur de du premier rang $n_0 \geq 0$ tel que $|u_{n_0} \ell| \leq \epsilon$

I. 43 Calcul de limites

Exercice 43. Calculer les limites suivantes :

- 1. $\lim_{x \to +\infty} \ln(x + \sqrt{x^2 + 1}) \ln(x)$
- 2. $\lim_{x\to 0} \frac{x^x-1}{\sin(x)\ln(x^2)}$
- 3. $\lim_{x\to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{x^2-1}$

I. 44 Equation intégrale $f(x) = \int_0^{ax} f(t)dt$ (Pb)

Exercice 44. Soit $a \in]-1,1[$. On suppose l'existence d'une application f, continue sur \mathbb{R} , telle que :

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^{ax} f(t)dt.$$

- 1. Calcul des dérivées successives de f.
 - (a) Justifier l'existence d'une primitive F de f sur \mathbb{R} et écrire alors, pour tout nombre réel x, f(x) en fonction de x, a et F.
 - (b) Justifier la dérivabilité de f sur \mathbb{R} et exprimer, pour tout nombre réel x, f'(x) en fonction de x, a et f.
 - (c) Démontrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et que pour tout nombre entier naturel n, on a

$$\forall x \in \mathbb{R} \quad f^{(n)}(x) = a^{n(n+1)/2} f(a^n x).$$

- (d) En déduire, pour tout nombre entier naturel n la valeur de $f^{(n)}(0)$.
- 2. Démontrer que, pour tout nombre réel x et tout nombre entier n, on a :

$$f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

On pourra faire une récurrence et utiliser une intégration par parties

- 3. Soit A un nombre réel strictement positif.
 - (a) Justifier l'existence d'un nombre réel positif ou nul M tel que :

$$\forall x \in [-A, A], \quad |f(x)| \le M$$

et en déduire que pour tout nombre entier naturel n, on a :

$$\forall x \in [-A, A], \quad |f^{(n)}(x)| \le M$$

(b) Soit x un nombre réel apartenant à [-A,A]. Démontrer que, pour tout nombre entier naturel n, on a

$$|f(x)| \le M \frac{A^{n+1}}{(n+1)!}.$$

- (c) En déduire que f(x) = 0 pour tout $x \in [-A, A]$
- (d) Que peut-on en déduire sur la fonction f?

I. 45 Fonction de plusieurs variables

Exercice 45. 1. Soit u(x,y) la fonction définie par

$$u(x,y) = x^2 + xy + x - 2y^2 + 2y$$

et les deux sous-ensembles de de $\mathbb{R}^2,\,E$ et F définies par :

$$E = \{(x,y) \in \mathbb{R}_2 \mid -\frac{x}{2} \le y \le x+1\}$$
 $F = \{(x,y) \in \mathbb{R}_2 \mid x+1 \le y \le -\frac{x}{2}\}$

- (a) Sur un graphique soigné, représenter E et F.
- (b) En considérant à y fixé, la fonction polynômiale P(x) = u(x, y), résoudre $u(x, y) \ge 0$
- 2. Soit f la fonction définie par

$$f(x,y) = \int_0^{u(x,y)} e^{\sqrt{t}} dt.$$

- (a) Déterminer l'ensemble de définition de f.
- (b) Caculer le gradient de f.
- (c) En déduire que $\left(\frac{-2}{3}, \frac{1}{3}\right)$ est l'unique point critique de f.
- 3. (a) Calculer $f\left(\frac{-2}{3}, \frac{1}{3}\right)$.
 - (b) Montrer que $\left(\frac{-2}{3},\frac{1}{3}\right)$ est un minimum sur l'ensemble de définition de f.
 - (c) Question bonus : D'autres points réalisent ce minimum, lesquels ? Pourquoi le gradient ne s'annule pas en ces autres points ?

I. 46 Intégrale de Gauss (D'après G2E 2019]

Exercice 46 (G2E 2019). Dans cet exercice σ désigne un réel strictement positif.

On considère les trois fonctions définies respectivement sur \mathbb{R} , \mathbb{R} et \mathbb{R}^* par :

$$f_{\sigma}(x) = \begin{cases} 0 & \text{si } x \le 0, \\ \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} & \text{si } x > 0 \end{cases} \quad g(x) = xe^{-x}, \quad h(x) = \frac{2}{ex}$$

 \mathcal{C}_{σ} désigne la courbe représentative de f_{σ} et \mathcal{H} la courbe représentative de h

- 1. Soit $I_{\sigma}(t) = \int_{0}^{t} f_{\sigma}(x) dx$. Calculer $I_{\sigma}(t)$ pour tout $t \geq 0$ et en déduire la limite $\lim_{t \to \infty} I_{\sigma}(t)$ L'année prochaine, on dira que f_{σ} est une fonction de densité.
- 2. f_{σ} est-elle continue?
- 3. (a) Démontrer que g admet un maximum que l'on déterminera.
 - (b) En déduire que :

$$\forall x \in \mathbb{R}_+^*, \quad f_{\sigma}(x) \le h(x).$$

(c) Etudier le cas d'égalité dans l'inégalité précédente puis montrer que pour tout $\sigma \in \mathbb{R}_+^*$, les courbes \mathcal{C}_{σ} et \mathcal{H} ont une tangente commune dont on donnera une équation cartésienne.

I. 47 Etude famille de fonction, intégrale, et somme (ECRICOME 2002)

Exercice 47. On considère la famille de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définies sur $]-1,+\infty[$ par :

$$f_n(x) = x^n \ln(1+x).$$

A- Étude des fonctions f_n .

Soit $n \in \mathbb{N}^*$. On note h_n la fonction définie sur $]-1,+\infty[$ par :

$$h_n(x) = n \ln(1+x) + \frac{x}{1+x}.$$

- 1. Étudier le sens de variation des fonctions h_n .
- 2. Calculer $h_n(0)$, puis en déduire le signe de h_n
- 3. Étude du cas particulier n=1.
 - (a) Après avoir justifié la dérivabilité de f_1 sur $]-1,+\infty[$, exprimer $f'_1(x)$ en fonction de $h_1(x)$.
 - (b) En déduire les variations de la fonction f_1 sur $]-1,+\infty[$.
- 4. Soit $n \in \mathbb{N}^* \setminus \{1\}$.
 - (a) Justifier la dérivabilité de f_n sur $]-1,+\infty[$ et exprimer $f'_n(x)$ en fonction de $h_n(x)$.
 - (b) En déduire les variations de f_n sur $]-1,+\infty[$. (On distinguera les cas n pair et n impair). On précisera les limites aux bornes sans étudier les branches infinies.

B- Étude d'une suite.

On considère la suite $(U_n)_{n\in\mathbb{N}^*}$ définie par :

$$U_n = \int_0^1 f_n(x) \, dx.$$

- 1. Calcul de U_1 .
 - (a) Prouver l'existence de trois réels a, b, c tels que :

$$\forall x \in [0,1], \quad \frac{x^2}{x+1} = ax + b + \frac{c}{x+1}.$$

(b) En déduire la valeur de l'intégrale :

$$\int_0^1 \frac{x^2}{x+1} \, dx.$$

- (c) Montrer que $U_1 = \frac{1}{4}$.
- 2. Convergence de la suite $(U_n)_{n\in\mathbb{N}^*}$
 - (a) Montrer que la suite $(U_n)_{n\in\mathbb{N}^*}$ est monotone.
 - (b) Justifier la convergence de la suite $(U_n)_{n\in\mathbb{N}^*}$. (On ne demande pas sa limite.)
 - (c) Démontrer que :

$$\forall n \in \mathbb{N}^*, \quad 0 \leqslant U_n \leqslant \frac{\ln 2}{n+1}.$$

- (d) En déduire la limite de la suite $(U_n)_{n\in\mathbb{N}^*}$.
- 3. Calcul de U_n pour $n \ge 2$

Pour $x \in [0,1]$ et $n \in \mathbb{N}^* \setminus \{1\}$, on pose :

$$S_n(x) = 1 - x + x^2 + \dots + (-1)^n x^n = \sum_{k=0}^n (-1)^k x^k.$$

(a) Montrer que:

$$S_n(x) = \frac{1}{1+x} + \frac{(-1)^n x^{n+1}}{1+x}.$$

(b) En déduire que :

$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \ln 2 + (-1)^n \int_0^1 \frac{x^{n+1}}{1+x} \, dx.$$

(c) En utilisant une intégration par parties dans le calcul de U_n , montrer que :

$$U_n = \frac{\ln 2}{n+1} + \frac{(-1)^n}{n+1} \left[\ln 2 - \left(1 - \frac{1}{2} + \dots + \frac{(-1)^k}{k+1} + \dots + \frac{(-1)^n}{n+1} \right) \right].$$

I. 48 inéquation à paramétre - Une bien l'autre pas finie

Exercice 48. On considère l'inéquation (E_a) de paramètre $a \in \mathbb{R}$ suivante :

$$\frac{2x+a}{x-4a} \le \frac{x}{x-2a} \quad (E_a)$$

1. Donner l'ensemble des solutions pour a=0

Pour la suite on suppose que $a \neq 0$.

- 2. Donner le domaine de définition de (E_a) en fonction de a.
- 3. Résoudre pour a > 0 l'inéquation : $(x 4a)(x 2a) \ge 0$.
- 4. Résoudre pour a > 0 l'inéquation : $x^2 + ax 2a^2 \ge 0$.
- 5. En déduire pour a > 0 les solutions de (E_a) .
- 6. Faire de même avec a < 0.

Exercice 49. On considère l'équation (E_a) de paramètre $a \in \mathbb{R}$ suivante :

$$\sqrt{x+a^2} = \frac{a^2}{x-a} \quad (E_a)$$

On note S_a l'ensemble des solutions de (E_a)

- 1. (a) Determiner \mathcal{C} l'ensemble des solutions de l'inéquation d'inconnue $a \in \mathbb{R}, -a^2 \leq a$.
 - (b) Déterminer en fonction de $a \in \mathbb{R}$ l'ensemble de définition \mathcal{D}_a de l'équation (E_a) .
 - (c) Résoudre l'équation (E_0) .
 - (d) A quelle condition sur $a \in \mathbb{R}$, le nombre 0 est il solution de (E_a) ? (En d'autres termes, déterminer l'ensemble des $a \in \mathbb{R}$ tel que $0 \in \mathcal{S}_a$)
- 2. Résoudre pour $x \in \mathcal{D}_a$ et en fonction de $a \in \mathbb{R}$ l'inéquation :

$$\frac{a^2}{x-a} < 0$$

(On distinguera les cas $a \in \mathcal{C}$ et $a \notin \mathcal{C}$)

- 3. En déduire que $S_a \subset]a, +\infty[$.
- 4. Montrer que pour tout x > a,

$$(E_a) \iff x^2 + (a^2 - 2a)x + (a^2 - 2a^3) = 0$$

5. Soit Δ_a le discriminant du polynôme $x^2 + (a^2 - 2a)x + (a^2 - 2a^3)$. Montrer que

$$\Delta_a = a^3(a+4)$$

- 6. En déduire une expression simple de l'ensemble $P = \{a > 0 \mid \Delta_a \geq 0\}$
- 7. Résoudre finalement (E_a) en fonction de a (On suppose toujours a > 0)