Due 23:59 Nov 22 (Tuesday). There are 100 points in this assignment.

Submit your answers (must be typed) in pdf file to CourSys

https://coursys.sfu.ca/2022fa-cmpt-705-x1/. Submissions received after 23:59 of Nov 22 will get penalty of reducing points: 20 and 50 points deductions for submissions received at [00:00,00:10] and (00:10,00:30] of Nov 22, respectively; no points will be given to submissions after 00:30 of Nov 22.

1. (Chapter 8 Problem 4 of the text book) 20 points

A system consists of n processors and m resources; each processor requests a subset of resources. An assignment of resources to processors is to allocate each resource to at most one processor. A processor is active in an assignment if all resources it requests are allocated to it, otherwise blocked. The resource reservation problem is that given n processors, m resources, a set of requested resources for each processor, and an integer k > 0, is it possible to allocate resources to processors so that at least k processors are active. For each of the following resource reservation problems, give a polynomial time algorithm or prove it is NP-complete.

- (a) The general resource reservation problem as above.
- (b) The special case of the problem with k=2.
- (c) The special case that there are two types of resouces (e.g., hard disks and GPUs) and each processor requests at most one resource of each type.
- (d) The special case that each resource is requested by at most two processors.

Answer			

2. (Chapter 8 Problem 6 of the text book) 15 points

A CNF F on Boolean variables $x_1, ..., x_n$ is monotone if each literal in each clause of F is the form of x_i (the negation \bar{x}_i does not appear in any clause for any i). Given a monotone CNF F, the monotone satisfiability with few true variable problem asks that whether there is a satisfiable assignment for F in which at most k of $x_1, ..., x_n$ are set to 1? Prove this problem is NP-complete.

٨	-	_			-
Α	n	5	w	/е	1

3. (Chapter 8 Problem 21 of the text book) 15 points

The fully compatible configuration (FCC) problem is defined as follows: An instance of FCC consists of disjoint sets of $A_1,...,A_k$, each A_i is a set of options, and a set P of incompatible pairs (x,y), where $x\in A_i$ and $y\in A_j$ with some $1\leq i\neq j\leq k$. The FCC problem is to decide whether there is fully configuration which is a selection of one element from each A_i $(1\leq i\leq k)$ so that no pair of selected elements is in P. Prove the problem is NP-complete.

Answer

4. (Chapter 11 Problem 1 of the text book) 15 points

There are n containers 1,...,n of weights $w_1,...,w_n$ and some trucks, each truck can hold at most K units of weight (w_i and K are positive integers, $w_i \leq K$). Multiple containers can be put on a truck subject to the weight restriction K. The problem is to use a minimum number of trucks to carry all containers. A greedy algorithm for this problem as follows: start with an empty truck and put containers 1,...,j on the truck to have this truck loaded (i.e., $\sum_{1\leq i\leq j}w_i\leq K$ and $\sum_{1\leq i\leq j+1}w_i>K$); then put containers j+1,j+2,... on a new empty truck to have this truck loaded; continue this process until all containers are carried.

- (a) Give an example of a set of containers and a value K to show that the greedy algorithm above does not give an optimal solution.
- (b) Prove the greedy algorithm is a 2-approximation algorithm.

Answer	
--------	--

5. (Chapter 11 Problem 3 of the text book) 15 points

Given a set of positive integers $A = \{a_1, ..., a_n\}$, positive integer B and a subset $S \subseteq A$, $t(S) = \sum_{a_i \in S} a_i$ is called the total sum of S. A subset S is called a feasible set if $t(S) \leq B$. The maximum feasible set problem is find a feasible set S with t(S) maximized.

(a) A simple greedy algorithm works as follows:

Initially
$$S = \emptyset$$
; $t(S) = 0$;

for
$$i = 1, 2, ..., n$$
 do

if
$$t(S) + a_i \leq B$$
 then $S = S \cup \{a_i\}$ and $t(S) = t(S) + a_i$;

endfor

Give an instance that the algorithm returns a feasible set S with $t(S) < (1/2)t^*$, where t^* is the maximum total sum of a feasible set.

(b) Give an $O(n \log n)$ time (1/2)-approximate algorithm for the problem.

Answer

- 6. (Chapter 11 Problem 5 of the text book) 20 points
 - (a) Consider a load balancing problem instance of 10 machines and n jobs $S = \{1, ..., n\}$ with $1 \le t_i \le 50$ for every i and $\sum_{i=1}^n t_i \ge 3000$. Prove that the greedy algorithm discussed in class finds a solution of makespan T with $T \le (1.2)(\sum_{1 \le i \le n} t_i)/10$ for this instance.
 - (b) Implement the greedy algorithm to find a solution for the load balancing problem instance in (a) and compare the solution with the lower bound $(\sum_{1 \le i \le n} t_i)/10$ on the makespan of the instance (each t_i can be generated randomly). Submit the results of the greedy algorithm and the lower bound for some instances of about $30 \sim 50$ jobs.

Answer