AXIS, ANGLE & Rotation Matrix

BYIII

1 Composition of Rotation Matrix

Problem: Given rotation axis, a rotation angle, generate the corresponding rotation atrix.

Figure 1: Rotating a vector P about the axis U

Solution

As show in Figure 1, the axis **U** goes through the origin, a vector **P** rotates about **U** to **P**'. Let θ denotes the rotation angle, and let ϕ denotes the angle between **U** and **P**. From **U** we can define a plane $S(\text{whose normal is }\mathbf{U})$. Now we have:

$$\mathbf{U} = [u_x, u_y, u_z]^T, \\ u_x^2 + u_y^2 + u_z^2 = 1, \\ \mathbf{P} = [x, y, z]^T, \\ \mathbf{P}' = [x', y', z']^T.$$

Project **P** to **U** and S, we can get \mathbf{P}_1 and \mathbf{P}_2 :

$$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2,$$

$$\mathbf{P}_1 = (\mathbf{P} \cdot \mathbf{U})\mathbf{U},$$

$$|\mathbf{P}_1| = |\mathbf{P}|\cos\phi,$$

$$\mathbf{P}_2 = \mathbf{P} - \mathbf{P}_1,$$

$$|\mathbf{P}_2| = |\mathbf{P}|\sin\phi.$$

Notice that rotating \mathbf{P} is equivalent to firstly rotating \mathbf{P}_2 a θ angle to \mathbf{P}_2' and then combining \mathbf{P}_1 and \mathbf{P}_2' to form \mathbf{P}' . So, next step is to determine \mathbf{P}_2' .

To represent \mathbf{P}_2' , we first to establish some frame for plane S. It is convenient to choose vector \mathbf{P}_2 be the *unit vector*(though, maybe $|\mathbf{P}_2| \neq 1$) of the X axis, and some other vector

 \mathbf{P}_3 with the same length of \mathbf{P}_2 as the Y axis of plane S, which satisfies

$${\bf P}_2 \cdot {\bf P}_3 = 0,$$

 $|{\bf P}_2| = |{\bf P}_2'| = |{\bf P}_3|.$

Now, according to the rotation matrix in 2D plane, we can write:

$$\mathbf{P}_2' = \mathbf{P}_2 \cos \theta + \mathbf{P}_3 \sin \theta.$$

Then, we determine P_3 . It is true that P_3 is parallel to $P \times U$, and

$$|\mathbf{P} \times \mathbf{U}| = |\mathbf{P}| \cdot 1 \cdot \sin \phi = |\mathbf{P}_2| = |\mathbf{P}_3|.$$

So we can get:

$$\mathbf{P}_3 = \mathbf{P} \times \mathbf{U}$$
.

Combining above:

$$\mathbf{P}' = \mathbf{P}_1 + \mathbf{P}_2'$$

$$= (\mathbf{P} \cdot \mathbf{U})\mathbf{U} + [\mathbf{P} - (\mathbf{P} \cdot \mathbf{U})\mathbf{U}]\cos\theta + \mathbf{P} \times \mathbf{U}\sin\theta$$

$$= \mathbf{P}\cos\theta + (\mathbf{P} \cdot \mathbf{U})\mathbf{U}(1 - \cos\theta) + \mathbf{P} \times \mathbf{U}\sin\theta$$

Therefore, the rotatio matrix is

$$\mathbf{R} = \begin{bmatrix} u_x^2(1-\cos\theta) + \cos\theta & u_x u_y (1-\cos\theta) - u_z \sin\theta & u_x u_z (1-\cos\theta) + u_y \sin\theta \\ u_x u_y (1-\cos\theta) + u_z \sin\theta & u_y^2 (1-\cos\theta) + \cos\theta & u_y u_z (1-\cos\theta) - u_x \sin\theta \\ u_x u_z (1-\cos\theta) - u_y \sin\theta & u_y u_z (1-\cos\theta) + u_x \sin\theta & u_z^2 (1-\cos\theta) + \cos\theta \end{bmatrix}$$

Reference: Rodrigues' rotation formula

2 Decomposition

Problem: Given the rotation matrix, to extract rotation axis and the rotation angle. **Solution**

Denotes the rotation matrix as \mathbf{R} :

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$

If from the matrix **R** we find rotation axis **U** and rotation angle θ , then **R** can be rewrotten as:

$$\mathbf{R} = \begin{bmatrix} u_x^2(1-\cos\theta) + \cos\theta & u_x u_y(1-\cos\theta) - u_z \sin\theta & u_x u_z(1-\cos\theta) + u_y \sin\theta \\ u_x u_y(1-\cos\theta) + u_z \sin\theta & u_y^2(1-\cos\theta) + \cos\theta & u_y u_z(1-\cos\theta) - u_x \sin\theta \\ u_x u_z(1-\cos\theta) - u_y \sin\theta & u_y u_z(1-\cos\theta) + u_x \sin\theta & u_z^2(1-\cos\theta) + \cos\theta \end{bmatrix}.$$

Thinking matrix \mathbf{R} as a linear transformation, it just changes a vector's orientation and has nothing to do with the vector's length. So, 1 must be an eigen value of \mathbf{R} :

$$\mathbf{R}\mathbf{v} = 1 \cdot \mathbf{v}$$
.

And the eigen vector corresponding to eigen value 1 must be the rotation axis, because \mathbf{R} does not change its orientation. Therefore, let's consider the eigen value decomposition of matrix \mathbf{R} .

Consider a very simple case, **A** being the rotation matrix of rotating about the X axis by a θ angle:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}.$$

The eigen values of ${\bf A}$ are: 1, $e^{i\theta},\,e^{-i\theta}.$ Then the trace of matrix ${\bf A}$ is:

$$trA = 1 + 2\cos\theta.$$

So the rotation angle can be calculated from the trace of the rotation matrix:

$$\cos \theta = \frac{1}{2}(tr\mathbf{A} - 1).$$

For the complex formation of rotation matrix \mathbf{R} , it is the same that

$$tr\mathbf{R} = (u_x^2 + u_y^2 + u_z^2)(1 - \cos\theta) + 3\cos\theta$$
$$= 1 + 2\cos\theta.$$

Since the geometry multiplicity of eigen value 1 of rotation matrix is 1, the rotation axis can be calculated from the null space of matrix $(\mathbf{R} - \mathbf{I})$.