Self-Assessment Quiz

Lecture 4: Mathematical Logic & Reasoning

Instructions: Answer all questions. For multiple-choice questions circle the correct option. For short answers, write concise responses.

- **Q1.** (MCQ) Which of the following is a tautology?
 - A. $p \wedge \neg p$
 - B. $p \vee \neg p$
 - C. $(p \wedge q) \wedge \neg q$
 - D. $p \to (q \land \neg q)$
- **Q2.** (MCQ) Which statement is a *contradiction*?
 - A. $p \vee q$
 - B. $p \wedge q$
 - C. $p \wedge \neg p$
 - D. $p \leftrightarrow q$
- **Q3.** The formula $(p \lor q) \land \neg (p \land q)$ is equivalent to the exclusive-or $p \oplus q$. (True / False)
- **Q4.** (Short answer) Rewrite the implication $p \to q$ using only \neg and \lor (i.e., without \to). Provide the equivalent formula.
- **Q5.** (MCQ) Which of the following is the correct translation of the English sentence: "If it is raining and cold, then I take an umbrella" into propositional logic (let r = "it is raining", c = "it is cold", u = "I take an umbrella")?
 - A. $(r \wedge c) \rightarrow u$
 - B. $r \wedge (c \rightarrow u)$
 - C. $(r \to c) \land u$
 - D. $r \to (c \land u)$
- **Q6.** (Short answer / Laws of logic) Using De Morgan's laws, transform the formula $\neg (p \land (q \lor \neg r))$ into an equivalent expression that uses only \neg , \lor , and \land (show steps or final form).
- **Q7.** (MCQ) The biconditional $p \leftrightarrow q$ is logically equivalent to:
 - A. $(p \to q) \land (q \to p)$
 - B. $(p \wedge q) \vee (\neg p \wedge \neg q)$
 - C. Both A and B
 - D. None of the above
- **Q8.** (Short proof idea) Show concisely (no full truth table required) why the formula $\neg(p \to q) \to p$ is a tautology. (Hint: replace $p \to q$ by an equivalent expression and simplify.)

- **Q9.** (Construct) Write a short truth table (list rows) for p,q and compute the truth value of $(p \land \neg q) \land (\neg p \lor q)$. Based on the table, is the formula a tautology, contradiction, or contingent?
- **Q10.** (Application) Rewrite the statement $(p \land \neg q) \to r$ using only \neg and \land (i.e., eliminate \to and \lor). Provide the equivalent formula.

Answer Key (Do not show to students until grading)

- **Q1.** B. $p \vee \neg p$ is a tautology (law of excluded middle).
- **Q2.** C. $p \land \neg p$ is a contradiction (negation law).
- **Q3.** True. $(p \lor q) \land \neg (p \land q)$ is true exactly when exactly one of p, q is true, i.e. exclusive-or.
- **Q4.** Answer: $p \rightarrow q \equiv \neg p \lor q$.
- **Q5.** A. $(r \wedge c) \rightarrow u$ is the direct translation.
- Q6. Solution (De Morgan):

$$\neg (p \land (q \lor \neg r)) \equiv \neg p \lor \neg (q \lor \neg r) \equiv \neg p \lor (\neg q \land r).$$

(One may also distribute if desired.)

Q7. C. Both representations are equivalent:

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p) \equiv (p \land q) \lor (\neg p \land \neg q).$$

Q8. Sketch: Start with $\neg(p \rightarrow q) \rightarrow p$.

$$p \to q \equiv \neg p \lor q \quad \Rightarrow \quad \neg (p \to q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q.$$

Thus $\neg(p \to q) \to p \equiv (p \land \neg q) \to p$. But $(p \land \neg q) \to p$ is always true because whenever $(p \land \neg q)$ holds then p holds; otherwise the implication is true vacuously. Hence the formula is a tautology.

Q9. Truth table rows and result:

p	q	$p \land \neg q$	$\neg p \vee q$	$(p \land \neg q) \land (\neg p \lor q)$
\overline{T}	Т	F	Τ	F
Τ	\mathbf{F}	T	\mathbf{F}	${ m F}$
\mathbf{F}	\mathbf{T}	F	${ m T}$	F
\mathbf{F}	F	F	${ m T}$	F

All rows evaluate to $\mathbf{F} \Rightarrow$ the formula is a **contradiction**.

Q10. Rewrite: $(p \land \neg q) \rightarrow r \equiv \neg (p \land \neg q) \lor r$. To use only \neg and \land (eliminate \lor) apply $a \lor b \equiv \neg (\neg a \land \neg b)$:

$$\neg (p \land \neg q) \lor r \equiv \neg (\neg \neg (p \land \neg q) \land \neg r) \equiv \neg ((p \land \neg q) \land \neg r).$$

So an equivalent using only \neg and \wedge is $\neg((p \wedge \neg q) \wedge \neg r)$.

Notes for instructor: Questions cover tautology/contradiction, truth tables, logical equivalence, De Morgan, implication elimination, biconditional, and short reasoning — matching Lecture 4 learning outcomes.