Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z ćwiczenia laboratoryjnego nr 3,5

Radosław Pietkun, Jakub Gruszecki, Wojciech Rokicki

Spis treści

1.	Spra	awdzenie możliwość sterowania i pomiaru oraz wyznaczenie punktu pracy
	1.1.	Przykładowe sterowanie wraz z odczytem pomiarów
		1.1.1. Implementacja
	1.2.	Punkt pracy
		1.2.1. Implementacja
2.	Wyz	znaczenie odpowiedzi skokowych oraz badanie właściwości obiektu
	2.1.	Odpowiedzi skokowe
	2.2.	Właściwości statyczne obiektu
	2.3.	Wzmocnienia statyczne

1. Sprawdzenie możliwość sterowania i pomiaru oraz wyznaczenie punktu pracy

1.1. Przykładowe sterowanie wraz z odczytem pomiarów

Podczas testu będziemy zmieniać sygnały sterujące w następujący sposób:

$$G1 = 100 \land G2 = 0, \text{ dla } k \in <0, 10)$$

$$G1 = 100 \land G2 = 100, \text{ dla } k \in <10, 50)$$

$$G1 = 20 \land G2 = 20, \text{ dla } k \in <50, 100)$$

$$G1 = 25 \land G2 = 15, \text{ dla } k \geqslant 100$$

Jak widzimy mamy możliwość sterowania i pomiaru w komunikacji ze stanowiskiem.

1.1.1. Implementacja

Do przetestowania możliwości sterowania i pomiaru w komunikacji ze stanowiskiem użyto skryptu zad1_1.m.

Rys. 1.1. Sprawdzenie możliwość sterowania i pomiaru w komunikacji ze stanowiskiem

1.2. Punkt pracy

Jako punkt pracy wybraliśmy: G1 = 18, G2 = 23. Dla powyższego punktu pracy pomiary z czujników wynoszą: T1 = 75,43, T3 = 84,64.

1.2.1. Implementacja

Do wyznaczenia wartości temperatury, odczytanej z czujnika, wykorzystano skrypt zad1_2.m.

Rys. 1.2. Punkt pracy

2. Wyznaczenie odpowiedzi skokowych oraz badanie właściwości obiektu

2.1. Odpowiedzi skokowe

W celu uzyskania odpowiedzi skokowych zostały przeprowadzone symulacje dla różnych skoków wartości sterowania G1 i G2 z punktu pracy. Wymagało to doprowadzenia obiektu do punktu pracy po czym zmiany wartości jedego z wejść.

Poniżej zostały przedstawione wykresy odpowiedzi skokowych dla różnych zmian, wartości sterowania G1 i G2.

2.2. Właściwości statyczne obiektu

Możemy zauważyć że właściwości statyczne obiektu są w przybliżeniu liniowe dla wartości sterowania w przedziałach $G1 \in \{0,35\}, G2 \in \{0,50\}$.

Rys. 2.1. Skok sygnału sterowania G1z 18 na 8 z punktu pracy

Rys. 2.2. Skok sygnału sterowania G1z 18 na 28 z punktu pracy

Rys. 2.3. Skok sygnału sterowania G1z 18 na 38 z punktu pracy

Rys. 2.4. Skok sygnału sterowania G2z 23 na 13 z punktu pracy

Rys. 2.5. Skok sygnału sterowania G2z 23 na 33 z punktu pracy

Rys. 2.6. Skok sygnału sterowania G2z 23 na 43 z punktu pracy

Rys. 2.7. Odpowiedź skokowa obiektu dla wyjścia $T1\,$

Rys. 2.8. Odpowiedź skokowa obiektu dla wyjścia T3

Rys. 2.9. Charakterystyka statyczna obiektu dla wyjścia $T3\,$

Rys. 2.10. Charakterystyka statyczna obiektu dla wyjścia T3

2.3. Wzmocnienia statyczne

Wzmocnienie statyczne G1 dla T1

$$K_{G1}^{T1} = \frac{T1(G1^{\max}, g_2) - T1(G1^{\min}, g_2)}{G1^{\max} - G1^{\min}} = \frac{103,6224 - 0,2797}{35 - 0} = 2,9527$$
(2.1)

Wzmocnienie statyczne G2 dla T1

$$K_{G2}^{T1} = \frac{T1(g_1, G2^{\max}) - T1(g_1, G2^{\min})}{G2^{\max} - G2^{\min}} = \frac{47,0235 - 0,2685}{50 - 0} = 0,9351$$
 (2.2)

Wzmocnienie statyczne G1 dla T3

$$K_{G1}^{T3} = \frac{T3(G1^{\max}, g_2) - T3(G1^{\min}, g_2)}{G1^{\max} - G1^{\min}} = \frac{33,1517 - 0,2797}{35 - 0} = 0,9392$$
 (2.3)

Wzmocnienie statyczne G2 dla T3

$$K_{G2}^{T3} = \frac{T3(g_1, G2^{\max}) - T_3(g_1, G2^{\min})}{G2^{\max} - G2^{\min}} = \frac{146,9235 - 0,2685}{50 - 0} = 2,9331$$
 (2.4)

2.4. Implementacja

Do zrealizowania zadania użyte zostały skrypty zad2.m(skrypt wyznaczający odpowiedzi skokowe oraz wyliczający charakterystykę statyczną) i extractingDataFromFig.m(skrypt pozyskujący).