Universidade Federal de Santa Catarina Departamento de Informática e de Estatística Curso de Ciência da Computação

Capitulo 2 Copologias de Redes de Computadores

Prof. Roberto Willrich INE - UFSC willrich@inf.ufsc.br

Da aferição do conhecimento dos alunos

Introdução

- Sistema de Comunicação
 - Um arranjo topológico de interligação dos vários nodos processadores através de enlaces (meios de transmissão)
 - Topologia: forma como os enlaces e os nós de rede estão organizados
 - Determinando os caminhos físicos
 - Um conjunto de regras com a finalidade de organizar a comunicação (protocolos)
- Objetivo do capítulo
 - Apresentação dos tipos de arranjos topológicos existentes
 - Dependentes do tipo de rede (LAN, MAN ou WAN)

Introdução

- Plano do Capítulo
 - Tipos de Linha de Comunicação
 - Modos de transmissão
 - Topologias de Redes de Longa Distância
 - Topologias de Redes Locais e Metropolitanas
 - Topologia em Estrela
 - Topologia em Anel
 - Topologia em Barramento

Linhas de Comunicação

- As ligações físicas podem ser de dois tipos
 - Ponto a ponto
 - caracterizam-se pela presença de apenas dois pontos de comunicação, um em cada extremidade do enlace ou ligação

Multiponto

 observa-se a presença de três ou mais dispositivos de comunicação com possibilidade de utilização do mesmo enlace

Linhas de Comunicação

• Tipos de Comunicação

Linhas de Comunicação

- Tipos de Comunicação
 - Unidirecional (Simplex)
 - enlace é utilizado apenas em um dos dois possíveis sentidos de transmissão

- Bidirecional Half-duplex
 - enlace é utilizado nos dois possíveis sentidos de transmissão, porém apenas um por vez

- Bidirecional Full-duplex
 - enlace é utilizado nos dois possíveis sentidos de transmissão simultaneamente

- Primeira Solução: Topologia Totalmente Ligada
 - Todas as estações são interligadas duas a duas entre si através de um caminho físico dedicado
 - Troca de mensagens entre cada par de estações se dá diretamente através de um desses enlaces
 - Enlaces utilizados poderiam ser ponto a ponto com comunicação full-duplex

 de forma a permitir a comunicação plena entre quaisquer pares de estações

- Primeira Solução: Topologia Totalmente Ligada
 - Embora essa topologia apresente maior grau de paralelismo de comunicação
 - torna-se quase sempre impraticável em redes com grande número de estações e fisicamente dispersas
 - Numa rede com N estações seriam necessárias
 - N(N-1)/2 ligações ponto a ponto para que se pudesse conectar todos os pares de estações através de linhas dedicadas
 - Custo do sistema cresceria com o quadrado do número de estações
 - tornando tal topologia economicamente inviável.

- Segunda Solução: Topologia em Anel
 - procura-se diminuir ao máximo número de enlaces
 - utiliza-se ligações ponto a ponto que operam num único sentido de transmissão (ligações simplex)
 - fazendo com que o anel apresente uma orientação ou sentido único de transmissão.
 - mensagem deverá circular pelo anel até que chegue ao módulo de destino

WANs

- Segunda Solução: Topologia em Anel
 - Fatores limitantes que inviabilizam a sua utilização
 - Aumento de pontos intermediários entre os pontos finais de comunicação
 - aumento drástico no número de ligações pelas quais uma mensagem tem que passar até chegar ao seu destino final
 - um aumento intolerável no retardo de transmissão
 - Inexistência de caminhos alternativos para o tráfego das mensagens
 - em redes geograficamente distribuídas caminhos alternativos devem ser providenciados para aumentar a confiabilidade e aumento da velocidade

- Considerando as limitações de confiabilidade e velocidade
 - é preciso criar caminhos redundantes
 - para um aumento tanto de confiabilidade quanto de desempenho através do paralelismo de comunicações,
 - sem cair na topologia totalmente ligada que possui restrições

- Terceira Solução: Topologia Parcialmente Ligada (topologia em grafo)
 - Topologia intermediária usada na maioria das redes geograficamente distribuídas
 - Possui caminhos redundantes
 - nem todas as ligações entre pares de estações estão presentes
 - caminhos alternativos existem e podem ser utilizados em caso de falhas ou congestionamento em determinadas rotas

WANs

- Terceira Solução: Topologia Parcialmente Ligada
 - Caso em que estações sem conexão física direta desejem se comunicar
 - Mensagem é encaminhada para alguma outra estação que possa fazer a entrega da mensagem para a estação de destino
 - Processo pode se repetir várias vezes, de forma que uma mensagem pode passar por vários sistemas intermediários até ao seu destino final

Topologias das Redes Locais e Metropolitanas

- Topologia mais utilizadas
 - Barramento, anel e estrela

Topologias das Redes Locais e Metropolitanas

- Topologia Física
 - Decorre do modo como a rede se apresenta instalada no espaço a ser coberto
- Topologia Lógica
 - Decorre do modo como as estações vão se comunicar entre si
 - fazendo o fluxo de mensagem

- Topologia
 - Cada nó é interligado a um nó central (mestre) através do qual todas as mensagens devem passar
 - Todo o tráfego da rede passa por este centro

Nó Central

- Pode ter tanto função de gerência de comunicação como facilidades de processamento de dados
- Pode ter como única função o gerenciamento das comunicações
 - cuja função é chaveamento (ou comutação) entre as estações
 - comumente é um concentrador (hub) ou switch

• Hub

- Periférico que repete para todas as suas portas os pacotes que chegam
 - se a estação 1 enviar um pacote de dados para a estação 2, todas as demais estações recebem esse mesmo pacote
- Topologia fisicamente será em estrela, porém logicamente ela é uma rede de topologia de barra
 - Existe o problemas de colisão e disputa para ver qual estação utilizará o meio físico.

Switch

- Rede será fisicamente e logicamente em estrela
- Periférico com a capacidade de analisar o cabeçalho de endereçamento dos pacotes de dados
 - enviando os dados diretamente ao destino
 - sem replicá-lo desnecessariamente para todas as suas portas
- A rede torne-se mais segura e muito mais rápida
 - elimina problemas de colisão
 - duas ou mais transmissões podem ser efetuadas simultaneamente
 - desde que tenham origem e destinos diferentes

- Vantagens
 - Confiável quanto aos hospedeiros
 - apenas a estação conectada pelo cabo pára
 - Facilidade de manutenção
 - Facilidade de identificação de problemas
 - Facilidade de ampliação
 - sem a necessidade de pará-la

- Desvantagens
 - Custo
 - Necessidade de maior quantidade de cabos
 - Confiabilidade
 - Falhas no nó central ocasiona a parada total do sistema
 - Modularidade
 - configuração pode ser expandida até um certo limite imposto pelo nó central
 - Desempenho
 - desempenho é limitado pela capacidade de processamento do nó central

Topologia em Anel

- Nesta topologia
 - nós vão-se ligando uns aos outros formando um anel
 - cabo não tem início nem fim
 - cada estação funciona como repetidor
 - reforçando os sinais entre uma estação e outra
 - padrão mais conhecido é o Token Ring (IEEE 802.5) da IBM

Anel

- Vantagens
 - Baixo consumo de cabo

Regeneração do sinal em cada nó permite cobrir maiores

áreas

Topologia em Anel

Problema

- Vulnerabilidade a erros e pouca tolerância a falhas
 - erros de transmissão e processamento podem fazer com que uma mensagem continue eternamente a circular no anel
 - Controle do uso do meio pode ser perdido por falhas e pode ser difícil determinar com certeza se esse controle foi perdido

• Alternativa para contornar os problemas

- Uso de estação monitora
 - Permite iniciar o anel, enviar mensagens de teste e diagnóstico e outras tarefas de manutenção
 - Pode ser uma estação dedicada ou uma estação qualquer na rede que assuma estas funções

Topologia em Barramento

- Topologia
 - todas as estações se ligam ao mesmo meio de transmissão
 - tem uma configuração multiponto
- Características
 - Quando uma estação lança um sinal na rede
 - ele percorre em ambas as direções atingindo a todos os nós
 - Exige um mecanismo de controle de acesso ao barramento
 - uma forma de multiplexação no tempo do barramento

Topologia em Barramento

- Outras características
 - Confiabilidade
 - Melhorada usando concentradores (hubs)
 - facilita a localização e o isolamento de falhas
 - permite inserção de novas estações sem a parada do sistema

Topologia em Barramento

- Outras características
 - Escalabilidade
 - Hubs podem ser interconectados de forma a expandir a rede

