

MITx: 14.310x Data Analysis for Social Scientists

Heli

Bookmarks

- Module 1: The Basics of R and Introduction to the Course
- ► Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data,
 Ethics, and Kernel
 Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing > Assessing and Deriving Estimators > Method of Moments - Quiz

Method of Moments - Quiz

☐ Bookmark this page

Question 1

1.0/1.0 point (graded)

In this lecture segment, we hear 3 ways to derive estimators: 1) the method of moments, 2) maximum likelihood estimation, and 3) dreaming them up. Which of the following estimators for θ from a $U[0,\theta]$ distribution is derived using the method of moments?

- a. Random sample
- b. 2 times the sample mean
- \circ c. N^{th} order statistic
- \circ d. $(N-1)^{th}$ order statistic

Explanation

As shown in the lecture segment, estimating θ using the sample mean is a method derived using the method of moments. We equate the first population moment with the first sample moment and solve for the parameter. On the other hand, the n^{th} order statistic is an estimator derived using maximum

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation
- ▼ Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing

<u>Assessing and Deriving</u> Estimators

Finger Exercises due Nov 14, 2016 at 05:00 IST

<u>Confidence Intervals and</u> <u>Hypothesis Testing</u>

Finger Exercises due Nov 14, 2016 at 05:00 IST

Module 7: Homework

<u>Homework due Nov 07, 2016 at 05:00 IST</u>

likelihood estimation.

Submit

You have used 1 of 2 attempts

Question 2

1.0/1.0 point (graded)

What is the first population moment of a $U[0,\theta]$ distribution?

lacksquare a. $oldsymbol{ heta}$

 \bullet b. $\frac{\theta}{2}$

 \circ c. $rac{1}{n}\sum_{i=1}^n X_i$

 \circ d. $rac{2}{n}\sum_{i=1}^n X_i$

Explanation

The first population moment is E[X], which is $\frac{\theta}{2}$ for a $U[0,\theta]$ distribution. (c) is the sample mean, which is the first sample moment.

Exit Survey

Submit

You have used 1 of 2 attempts

Question 3

1.0/1.0 point (graded)

Which of the following is the second sample moment?

- \circ a. $rac{2}{n}\sum_{i=1}^n X_i$
- \circ b. $rac{1}{n^2}\sum_{i=1}^n X_i$
- lacksquare c. $rac{1}{n}\sum_{i=1}^n {X_i}^2$ 🗸
- \circ d. $rac{1}{2}(\sum_{i=1}^n X_i)^2$

Explanation

The sample moments are defined by $\frac{1}{n}\sum_{i=1}^n X_i$, $\frac{1}{n}\sum_{i=1}^n X_i^2$, $\frac{1}{n}\sum_{i=1}^n X_i^3$, ... The population moments, on the other hand, are defined by expectations and can be expressed as functions of the parameters E[X], $E[X^2]$, $E[X^3]$,

Discussion **Show Discussion Topic:** Module 7 / Method of Moments - Quiz

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

