d)

Question 1

- a) $S = \{H1, H2, H3, H4, H5, H6 \\ T1, T2, T3, T4, T5, T6\}$
- b) "head & any no." = $\{H1, H2, H3, H4, H5, H6\}.$ $\Rightarrow \Pr(\text{"head & any no."}) = \frac{6}{12} = \frac{1}{2} = 0.5.$
- c) "head & six" = $\{H6\}$. $\Rightarrow \Pr(\text{"head & six"}) = \frac{1}{12} = 0.0833.$

- d) "head & even" = $\{H2, H4, H6\}$. $\Rightarrow \Pr(\text{"head & even"}) = \frac{3}{12} = \frac{1}{4} = 0.25.$
- e) "tail & greater than four" = $\{T5, T6\}$. \Rightarrow Pr("tail & greater than four.") = $\frac{2}{12} = \frac{1}{6} = 0.167$.
- f) Pr("two heads & six") = 0 as it is not possible to get HH6.

Question 2

- a) $A = \{H2, H4, H6\}.$ $B = \{H1, H2, H3, H4, H5, H6\}.$ $C = \{H5, T5\}.$ $\Pr(A) = \frac{3}{12} = \frac{1}{4} = 0.25.$
 - $Pr(A) = \frac{3}{12} = \frac{1}{4} = 0.25.$ $Pr(B) = \frac{6}{12} = \frac{1}{2} = 0.5.$ $Pr(C) = \frac{2}{12} = \frac{1}{6} = 0.1667.$
- b) $A \cap B = \{H2, H4, H6\}.$ $A \cap C = \{\}.$ $B \cap C = \{H5\}.$ $\Pr(A \cap B) = \frac{3}{12} = \frac{1}{4} = 0.25.$ $\Pr(A \cap C) = \frac{0}{12} = 0.$ $\Pr(B \cap C) = \frac{1}{12} = 0.0833.$
- c) $Pr(A \cap C) = 0 \Rightarrow A$ and C are mutually exclusive.

- d) $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$ $= \frac{3}{12} + \frac{6}{12} \frac{3}{12}$ $= \frac{6}{12} = \frac{1}{2} = 0.5.$
 - $Pr(A \cup C) = Pr(A) + Pr(C) Pr(A \cap C)$ $= \frac{3}{12} + \frac{2}{12} \frac{0}{12}$ $= \frac{5}{12} = 0.4167.$
 - $Pr(B \cup C) = Pr(B) + Pr(C) Pr(B \cap C)$ $= \frac{6}{12} + \frac{2}{12} \frac{1}{12}$ $= \frac{7}{12} = 0.5833.$
- e) $\Pr(A \text{ nor } B) = \Pr(A^c \cap B^c) = 1 \Pr(A \cup B)$ = 1 0.5= 0.5.

Question 3

- a) $Pr(RAID-0 \text{ works}) = Pr(H_1 \cap H_2) = 0.81.$
- b) Pr(RAID-0 fails) = 1 Pr(RAID-0 works)= 1 - 0.81 = 0.19.
- c) $\Pr(\text{RAID-1 works}) = \Pr(H_1 \text{ or } H_2 \text{ or both})$ $= \Pr(H_1 \cup H_2)$ $= \Pr(H_1) + \Pr(H_2)$ $- \Pr(H_1 \cap H_2)$ = 0.9 + 0.9 - 0.81= 0.99.

Pr(RAID-1 fails) = 1 - Pr(RAID-1 works)

= 1 - 0.99= 0.01.

Question 4

a) $\Pr(A)\Pr(B) = \frac{1}{4} \times \frac{1}{2}$ $= \frac{1}{8}$ $\neq \Pr(A \cap B) = \frac{1}{4}$

 $\Rightarrow A$ and B are dependent.

$$\Pr(A)\Pr(C) = \frac{1}{4} \times \frac{1}{6}$$
$$= \frac{1}{24}$$
$$\neq \Pr(A \cap C) = 0$$

 $\Rightarrow A$ and C are dependent.

$$Pr(B) Pr(C) = \frac{1}{2} \times \frac{1}{6}$$

$$= \frac{1}{12}$$

$$= Pr(B \cap C) = \frac{1}{12}$$

 $\Rightarrow B$ and C are independent.

Question 5

a) $\Pr(H_1 \cap H_2) = \Pr(H_1) \Pr(H_2) = 0.9(0.9)$ = 0.81.

b) $Pr(H_1 \cup H_2) = 0.99$ (calculated in Q3).

c)
$$\Pr(H_1^c) = 1 - \Pr(H_1) = 0.1.$$

 $\Pr(H_2^c) = 1 - \Pr(H_2) = 0.1.$

d)
$$\Pr(H_1^c \cap H_2^c) = \Pr(H_1^c) \Pr(H_2^c) = 0.1(0.1)$$

= 0.01.

e) In this case Pr(H) = 0.6. So $Pr(H^c) = 0.4$.

We want Pr(fail) = 0.01 to match performance above.

Two cheap disks: $Pr(fail) = 0.4 \times 0.4 = 0.16$. Three cheap disks: $Pr(fail) = 0.4^3 = 0.064$. Four cheap disks: $Pr(fail) = 0.4^4 = 0.0256$. Five cheap disks: $Pr(fail) = 0.4^5 = 0.01024$. Six cheap disks: $Pr(fail) = 0.4^6 = 0.0041$.

 \Rightarrow So five cheap disks provide similar performance level to two expensive disks. Six cheap disks provide *superior* performance.

Question 5(e) - alternative method

We can see from above that the general form of Pr(fail) for k cheap disks is:

$$\Pr(\text{fail}) = 0.4^k$$

We can set the above expression equal to the 0.01 (or any desired level) and solve for k.

$$0.4^{k} = 0.01$$
$$\log 0.4^{k} = \log 0.01$$
$$k \log 0.4 = \log 0.01$$
$$k = \frac{\log 0.01}{\log 0.4}$$
$$\approx 5.026,$$

i.e., roughly five disks are required (as found previously using the more laborious approach).

Question 6

- a) Mutually exclusive.
- b) Dependent.
- c) Independent.
- d) Dependent.

- e) Mutually exclusive.
- f) Dependent.
- g) Dependent.
- h) Independent.