Elementos de Processamento de Sinais: Lista de Exercícios #6

Data de entrega: Quinta, 15 de Julho, 2019

Prof. Sergio Lima Netto, Segundas e Quartas: 08:00-10:00

Vinicius Mesquita de Pinho

Questão 1

Exercício Projetar um filtro adaptativo atráves do algoritmo RLS [1] para a aplicação de identificação de sistemas.

O problema A Figura 1 apresenta o diagrama de blocos do sistema a ser implementado. O objetivo é identificar os coeficientes de um sistema desconhecido através de um filtro adaptativo. Faremos simulações com diferentes cenários.

Figura 1: Sistema para identificação de sistema.

Neste caso, x(n) é o sinal de entrada, d(n) é o sinal desejado, y(n) é a saída do filtro adaptativo e e(n) é o erro entre a saída do filtro adaptativo e o sinal desejado.

Simulações Primeiro, testei a convergência do algoritmo para diferentes valores de λ (ver [1] para conferir a dependência λ no algoritmo). Para esta, o sistema desconhecido e o filtro adaptativo tem a mesma ordem. No caso, os dois tem ordem 2. A Figura 2 mostra o MSE (em dB) para diferentes valores de μ . Neste caso foram feitas 50 rodadas do algoritmo com 800 iterações cada.

Figura 2: Curva de MSE (em dB) do algoritmo RLS.

É interessante ver que a pequena mudança entre $\lambda=0.99$ e $\lambda=0.98$ faz o algoritmo convergir em muito menos iterações. Também é válido notar o quão rápido, em termos de número de iterações, o algoritmo com $\lambda=0.4$ converge, mas para um patamar de erro maior do que o dos outros.

Agora vamos a convergência dos coeficientes, no caso em que $\lambda=0.98$ e $\lambda=0.4$. O coeficientes do sistema a ser identificado são $\mathbf{w}_o[0]=0.25$ e $\mathbf{w}_o[0]=-2$, marcados com uma linha horizontal preta. Na Figura 3 temos a evolução a cada iteração dos coeficientes para os λ supracitados. Coloquei uma figura bem grande para vermos no detalhe.

Figura 3: Variação dos coeficientes do filtro adaptativo.

Fica evidente a convergência muito mais rápida para $\lambda = 0.4$, porém com um erro superior em relação ao $\lambda = 0.98$, como já pudia ser visto na figura anterior.

Também fiz um teste acrescentando ruído no desejado, como se comporta o RLS. A Figura 4 mostra o comportamento para diferentes valores de a, onde a é a amplitude do ruído.

Figura 4: Curvas de MSE (em dB) do algoritmo RLS para diferentes valores de ruído.

Aqui é interessante ver o comportamento do MSE com o acréscimo do ruído, tendo valores de MSE obviamente cada vez maiores para maiores amplitudes do ruído aditivo.

Referências

[1] P. S. R. Diniz, Adaptive Filtering. Boston, MA: Springer US, 2013.