

planetmath.org

Math for the people, by the people.

integral curve

Canonical name IntegralCurve

Date of creation 2013-03-22 15:16:31 Last modified on 2013-03-22 15:16:31

Owner matte (1858) Last modified by matte (1858)

Numerical id 5

Author matte (1858) Entry type Definition Classification msc 53-00 **Definition** Suppose M is a smooth manifold, and X is a smooth vector field on M. Then an **integral curve** of X through a point $x \in M$ is a curve $c \colon I \to M$, such that

$$c'(t) = (X \circ c)(t)$$
, for all t in I
 $c(0) = x$.

Here $I \subset \mathbb{R}$ is some open interval of 0, and c'(t) is the tangent vector in $T_{c(t)}M$ represented by the curve.

Suppose x^i are local coordinates for M, c^i are functions representing c in these local coordinates, and $X = X^i \frac{\partial}{\partial x^i}$. Then the condition on c is

$$\frac{dc^i}{dt}(t) = X^i \circ c(t), \quad \text{for all } t.$$