

16TH EUROPEAN CONFERENCE ON

COMPUTER VISION

WWW.ECCV2020.EU

Black-Box Face Recovery from Identity Features

Anton Razzhigaev^{1,2}, Klim Kireev^{1,2}, Edgar Kaziahmedov^{1,2}, Nurislam Tursynbek^{1,2}, Aleksandr Petiushko^{1,3}

Huawei¹, Skoltech², MSU³

Face recognition pipeline

Idea of face recovery

Novelty of our approach

Table 1: Comparison table

Algorithm	Target model	Setting	Dataset-free
Ours	Arcface output	Black-Box	+
NBNet[19]	FaceNet output	Black-Box	-
Cole et. al. [3]	FaceNet intermediate features	White-box	-
CNN[34]	FaceNet output features	White-box	-
Gradient wrt input [18]	Any classifier output	White-box	+

- The **key point** of the proposed algorithm is that it **reconstructs not just faces but** recognizable **identities** without any prior knowledge about how faces look like
- It is not just face generator, it is a way to reveal appearance of a person from the face embedding

Algorithm

Original

Algorithm 1 Face recovery algorithm

INPUT: target face embedding y, black-box model M, loss function L, $N_{queries}$

- 1: $X \leftarrow 0$
- 2: Initialize G_0
- 3: for $i \leftarrow 0$ to $N_{queries}$ do:
- 4: Allocate image batch **X**
- 5: Sample batch **G** of random gaussians
- 6: $\mathbf{X}_j = X + G_0 + \mathbf{G}_j$
- 7: $\mathbf{y}' = M(\mathbf{X})$
- 8: ind = $\operatorname{argmin}\left(L(\mathbf{y}_i', y)\right)$
- 9: $X \leftarrow X + \mathbf{G}_{\text{ind}}$
- 10: $G_0 \leftarrow 0.99 \cdot G_0$
- 11: $i \leftarrow i + \text{batchsize}$
- 12: end for
- 13: $X \leftarrow X + G_0$

OUTPUT: reconstructed face X

$$L(y, y') = \lambda \cdot (\|y\| - \|y'\|)^2 - s(y, y'),$$

where,

s - cosine similarity function,

||y|| - L₂ norm of the target embedding,

||y'|| - L₂ norm of the embedding of

a reconstructed image,

 $\lambda = 0.0025$, empirically found hyperparameter

Different initialization techniques

Original

Initialization with an optimal
Gaussian blob leads to the proper
proportions of the reconstructed face,
but requires a norm of the face
embedding in the loss

Initialization with a random face leads to a collapse to a shape of the initial face, but does not require norm of the embedding in the loss

Function space for "drawing"

$$G(x,y) = A \cdot \exp \frac{(x-x_0)^2}{2\sigma_1^2} \exp \frac{(y-y_0)^2}{2\sigma_2^2}$$

x,y - pixel coordinates in the image, x_0,y_0 - coordinates of a center of gaussian, σ_1,σ_2 - vertical and horizontal standard deviations, A - amplitude

Gaussian 2D functions:

- 1. Semi-local
- 2. Frequency control through σ

Evaluation

- Attacking: ArcFace network
- Evaluating: using an "independent critic" FaceNet network

Symmetry VS asymmetry VS color

Best results with symmetry and black & white constraints

Identity features do not contain much information about color

Pairwise similarity for grayscale and color faces

Comparison with others

Our method:

- produces less realistic faces,
- but more likely preserves identity of a person which correlates with similarities of "independent critic" network

NBNet: Mai, G., Cao, K., Yuen, P.C., Jain, A.K.: *On the reconstruction of face images from deep face templates*. IEEE transactions on pattern analysis and machine intelligence, 2018

Comparison with others

Method	ArcFace	FaceNet	# of queries
(Ours) Symmetric gauss, LFW (wb)	0.92	0.46	300 k
(Ours) Asymmetric gauss, LFW (wb)	0.85	0.42	400k
NBNet, LFW (RGB)	0.25	0.34	3M
NBNet, LFW (wb)	0.19	0.27	3M
(Ours) Symmetric gauss, MS1M-ArcFace (wb)	0.91	0.44	300 k
NBNet, MS1M-ArcFace (RGB)	0.26	0.38	3M
NBNet, MS1M-ArcFace (wb)	0.20	0.32	3M

Table 2: Average cosine similarity by ArcFace and FaceNet (independent critic) between embedding of a reconstructed image and embedding of target image for subsets of 1000 images from LFW and MS1M-ArcFace and corresponding number of queries.

Conclusions

- We demonstrate that it is possible to recover recognizable faces
 from deep feature vectors of a face-recognition model in a black-box
 mode with no prior knowledge.
- The proposed method outperforms current solutions in terms of the average cosine similarity of embeddings produced by the attacked model and an independent critic.
- The proposed method requires a significantly smaller number of queries compared to previous solutions and does not need prior information such as proper training dataset.