AtCoder Beginner Contest 101

Problema C: Minimization

Prof. Edson Alves - UnB/FGA

AtCoder Beginner Contest 101 -

Problem C: Minimization

Problema

There is a sequence of length $N: A_1, A_2, \ldots, A_N$. Initially, this sequence is a permutation of $1, 2, \ldots, N$.

On this sequence, Snuke can perform the following operation:

 \cdot Choose K consecutive elements in the sequence. Then, replace the value of each chosen element with the minimum value among the chosen elements.

Snuke would like to make all the elements in this sequence equal by repeating the operation above some number of times. Find the minimum number of operations required. It can be proved that, under the constraints of this problem, this objective is always achievable.

1

Entrada e saída

Constraints

- $\cdot \ 2 \leq K \leq N \leq 100000$
- $\cdot A_1, A_2, \ldots, A_N$ is a permutation of $1, 2, \ldots, N$

Input

Input is given from Standard Input in the following format:

$$\begin{array}{ccccc}
N & K \\
A_1 & A_2 & \dots & A_N
\end{array}$$

Output

Print the minimum number of operations required.

Exemplo de entradas e saídas

Exemplo de Entrada

- 4 3
- 2 3 1 4
- 3 3
- 1 2 3
- 8 3
- 7 3 1 8 4 6 2 5

Exemplo de Saída

2

1

4

Solução

- \cdot O primeiro fato a ser observado é que é possível modificar, a cada operação, no máximo K-1 elementos
- · O segundo fato importante é que o elemento mínimo da sequência é sempre o número 1 (um)
- Deve ficar claro que o objetivo não é realizar as operações, mas sim contar o mínimo necessário para completar a transformação
- · Do primeiro fato apresentado segue que são necessárias pelo menos

$$\left\lceil \frac{N-1}{K-1} \right\rceil$$

operações, pois é preciso modificar os N-1 elementos restantes, K-1 por vez

Solução

- Observe também que a sequência de intervalos $I_0,I_1,\dots,I_{\left\lceil \frac{N-1}{K-1}-1 \right\rceil}$ cobre toda a sequência, onde

$$I_i = i(K-1) + 1, i(K-1) + 2, \dots, i(K-1) + K$$

- \cdot Com esta divisão da sequência, localize o intervalo I_k que contém o elemento 1
- Então aplique k operações nos intervalos I_k, I_{k-1}, \dots, I_0 , nesta ordem
- Agora aplique a operação nos intervalos $I_{k+1},I_{k+1},\dots,I_{\left\lceil \frac{N-1}{K-1}-1 \right\rceil}$
- Logo, é possível finalizar o processo com $\left\lceil \frac{N-1}{K-1} \right\rceil$ operações

Solução AC

```
1#include <iostream>
₃ using namespace std;
5 int main()
6 {
      ios::sync_with_stdio(false);
8
      int N, K;
9
      cin >> N >> K;
10
      auto ans = (N - 1 + K - 2)/(K - 1);
12
      cout << ans << '\n';</pre>
14
15
      return 0;
16
17 }
```