Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Mapas de Karnaugh

RELATÓRIO DA DISCI-PLINA LABORATÓRIO DE ELETRÔNICA 1 COM O PROF. GILBERTO CUARELLI E O PROF. HAROLDO GUIBU.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

São Paulo

SUMÁRIO

1	INTRODUÇÃO TEÓRICA!!
1.1	Objetivos
1.2	Materiais e Equipamentos Utilizados
2	PROCEDIMENTOS EXPERIMENTAIS
3	QUESTÕES 10
3.1	Circuito produto
3.2	Simplificações com mapas de Karnaugh
4	CONCLUSÕES
	REFERÊNCIAS

LISTA DE FIGURAS

Figura 1 –	Mapa de Karnaugh da expressão $A = B$	7
Figura 2 –	Mapa de Karnaugh da expressão $A>B$	8
Figura 3 –	Mapa de Karnaugh da expressão $A < B$	8
Figura 4 –	Circuito Lógico A = B	9
Figura 5 –	Circuito Lógico A > B	9
Figura 6 –	Circuito Lógico A < B	9
Figura 7 –	Circuito Lógico Mintermos	0
Figura 8 –	Mapa de Karnaugh da expressão 1	0
Figura 9 –	Mapa de Karnaugh da expressão 2	1

LISTA DE TABELAS

Tabela 1 -	Tabela verdade	6
Tabela 2 –	Tabela verdade da expressão 1	11
Tabela 3 –	Tabela verdade da expressão 2	12

1 INTRODUÇÃO TEÓRICA

O mapa de Karnaugh é um método de simplificação de expressões booleanas, consistindo em um diagrama que mapeia as entradas e saídas da expressão, sendo uma forma diferente de escrever uma tabela verdade (GUIMARãES, 2019).

Os mapas são construídos utilizando o código Gray, mudando assim o valor de apenas uma váriavel de um quadro ao outro (SILVEIRA, 2011). Isso é feito pois, dessa forma podemos utilizar a simplificação da equação $AB + A\bar{B} = A(B + \bar{B}) = A$ retirada dos teoremas da álgebra de boole.

Com os mapas, reduzimos o número de termos na expressão final ao montar o mapa, agrupar termos de nível lógico 1 em posições específicas e utilizar essa simplificação.

1.1 Objetivos

Analisar e entender as etapas de desenvolvimento de circuitos lógicos combinacionais. Utilizar mapas de Karnaugh para simplificar expressões lógicas. Entender o conceito da unidade lógica de comparação.

1.2 Materiais e Equipamentos Utilizados

- 1 Circuito integrado 7400 (Porta NAND MED50)
- 1 Circuito integrado 7402 (Porta NOR MED50)
- 1 Circuito integrado 7408 (Porta AND MED50)
- 1 Circuito integrado 7432 (Porta OR MED50)
- 1 Circuito integrado 7486 (Porta XOR MED52)
- 1 Circuito integrado 74266 (Porta XNOR MED52)
- 1 Circuito integrado 7404 (Porta NOT MED52)
- 1 Fonte de alimentação DC (LEG2000)
- 1 Gerador de Sinais (LEG2000)
- LED's e resistores para monitoramento dos níveis lógicos (LEG2000)

2 PROCEDIMENTOS EXPERIMENTAIS

O único circuito proposto neste experimento é o de um comparador de magnitude. Esse tipo de circuito possui três saídas de forma que, apenas uma delas terá nível lógico 1, independente da situação.

As entradas, na montagem proposta são quatro: A_0 , A_1 , B_0 , B_1 , que representam dois números binários A e B. As saídas dependem se A é igual, maior ou menor do que B (DUENHA, 2021). A tabela 1 é a tabela verdade desse circuito e as equaçõoes 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 são as equações das três saídas do circuito.

 A_0 A_1 B_0 B_1 A > BA = BA < B $A \ge B$ $A \leq B$ $A \neq B$

Tabela 1 – Tabela verdade

$$S_{A=B} = \bar{A}_0 \bar{A}_1 \bar{B}_0 \bar{B}_1 + \bar{A}_0 A_1 \bar{B}_0 B_1 + A_0 \bar{A}_1 B_0 \bar{B}_1 + A_0 \bar{A}_1 B_0 \bar{B}_1 + A_0 A_1 B_0 B_1$$
 (2.1)

$$S_{A>B} = \bar{A}_0 A_1 \bar{B}_0 B 1 + A_0 \bar{A}_1 \bar{B}_0 \bar{B}_1 + A_0 \bar{A}_1 \bar{B}_0 B_1 + A_0 A_1 \bar{B}_0 \bar{B}_1 + A_0 A_1 \bar{B}_0 B 1 + A_0 A_1 \bar{B}_0 \bar{B}_1$$
(2.2)

$$S_{A < B} = \bar{A}_0 \bar{A}_1 \bar{B}_0 B_1 + \bar{A}_0 \bar{A}_1 B_0 \bar{B}_1 + \bar{A}_0 \bar{A}_1 B_0 B_1 + \bar{A}_0 A_1 B_0 \bar{B}_1 + \bar{A}_0 A_1 B_0 B_1 + \bar{A}_0 A_1 B_0 B_1 \quad (2.3)$$

$$S_{A \ge B} = S_{A=B} + S_{A > B} \tag{2.4}$$

$$S_{A < B} = S_{A = B} + S_{A < B} \tag{2.5}$$

$$S_{A \neq B} = \overline{S_{A=B}} \tag{2.6}$$

Podemos simplificar todas essas equações utilizando o método do mapa de Karnaugh, porém como as equações 2.4, 2.1, 2.6 dependem das outras, podemos simplificar apenas ass apresentadas primeiro, e retirar estas das versões simplificadas. Por isso, precisamos fazer apenas 3 mapas, que podem ser vistos nas figuras 1, 2 e 3.

Figura 1 – Mapa de Karnaugh da expressão A=B

		B_0B_1			
		00	01	11	10
	00	1	0	0	0
4.4.	01	0	1	0	0
A_0A_1	11	0	0	1	0
	10	0	0	0	1

 B_0B_1 A_0A_1

Figura 2 – Mapa de Karnaugh da expressão A>B

Fonte: Elaborada pelos autores

Figura 3 – Mapa de Karnaugh da expressão A < B

		B_0B_1			
		00	01	11	10
	00	0	1	1	1
A_0A_1	01	0	0	1	1
Аолт	11	0	0	0	0
	10	0	0	1	0

Fonte: Elaborada pelos autores

Com isso, podemos simplificar as equações 2.2 e 2.3 transformando elas, respectivamente, nas equações 2.8 e 2.7. A equação 2.1 não pode ser mais simplificada, já que não há nenhum agrupamento possível a partir do mapa de Karnaugh.

$$S_{A>B} = A_1 \bar{B}_0 \bar{B}_1 + A_0 A_1 \bar{B}_1 + A_0 \bar{B}_0 \tag{2.7}$$

$$S_{A < B} = \bar{A}_0 \bar{A}_1 B_1 + \bar{A}_1 B_0 B_1 + \bar{A}_0 B_0 \tag{2.8}$$

Os circuitos lógicos combinacionais que representam as expressões das equações 2.1, 2.7, 2.8, podem ser vistos, respectivamente, nas figuras 4, 6 e 5. Os outros três circuitos

podem ser montados como uma combinação simples desses três, como já foi descrito nas equações $2.4,\,2.5$ e 2.6.

Figura 4 – Circuito Lógico A = B

Fonte: Elaborada pelos autores

Figura 5 – Circuito Lógico A > B

Fonte: Elaborada pelos autores

Figura 6 – Circuito Lógico A < B

3 QUESTÕES

3.1 Circuito produto

Como o circuito desejado é basicamente o produto das duas entradas, ou seja, P=AB, ele é basicamente uma porta do tipo AND como visível na figura 7.

Figura 7 – Circuito Lógico Mintermos

Fonte: Elaborada pelos autores

3.2 Simplificações com mapas de Karnaugh

1. $f(A, B, C, D) = \Pi_M(0, 5, 7, 13, 14, 15)$

A tabela 2 é a tabela verdade da expressão desejada, já a figura 8 é o mapa de karnaugh dessa expressão, já com os agrupamentos. Esses agrupamentos foram utilizados para produzir a equação simplificada evidenciada na equação 3.1.

Figura 8 – Mapa de Karnaugh da expressão 1

Capítulo 3. Questões 11

В $\overline{\mathbf{C}}$ $\overline{\mathbf{D}}$ Α

Tabela 2 – Tabela verdade da expressão 1

Fonte: Elaborada pelos autores

$$S = ABD + \bar{A}\bar{B}C + \bar{A}\bar{B}D + \bar{A}B\bar{D} + BC\bar{D}$$
(3.1)

2.
$$f(A, B, C, D) = \sum_{m} (1, 4, 7, 10, 13) + d(5, 14, 15)$$

A tabela 3 é a tabela verdade da expressão desejada, já a figura 9 é o mapa de karnaugh dessa expressão, já com os agrupamentos. Esses agrupamentos foram utilizados para produzir a equação simplificada evidenciada na equação 3.2.

Figura 9 – Mapa de Karnaugh da expressão 2

Capítulo 3. Questões

Tabela 3 – Tabela verdade da expressão 2

A	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	X
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1 0
1	0	1	1	
1	1	0	0	0
1	1	0	1	1
1	1	1	0	X
1	1	1	1	X

$$S = AC\bar{D} + \bar{A}B\bar{C} + \bar{A}\bar{C}D + BD \tag{3.2}$$

4 CONCLUSÕES

Neste experimento trabalhamos bastante com o método de simplificação de expressões booleanas dos mapas de Karnaugh. Esse método pode se tornar muit complexo para casos com muitas (mais de 6) variáveis, porém é muito poderoso, sendo assim muito utilizado.

Além do estudo prático desse método, aplicamos ele para a construção de um circuito lógic combinacional, o circuito de um comparador de magnitude de 2 bits, que basicamente compara os valores de dois números de 2 bits.

É interessante perceber que, assim como esperado, as tabelas verdades de todos os circuitos simplificados são iguais aquelas obtidas antes da simplificação, isso evidencia duas coisas. A primeira é que não houve erros na etapa da simplificação, por isso sempre é útil fazer essa comparação. A segunda é a importância e solidez das técnicas da álgebra de boole já que, todos os métodos de simplificação, algébricos ou não, utilizam dos teoremas desse ramo de estudos.

REFERÊNCIAS

DUENHA, L. Circuitos Combinacionais. 2021. Acesso em: 4 de fev. de 2021. Citado na página 6.

GUIMARÃES, F. Mapa de Karnaugh – Aula 6.1 – ED. 2019. Citado na página 5.

SILVEIRA, D. D. Circuitos Lógicos-Prof. Daniel D. Silveira Circuitos Lógicos Simplificação de circuitos lógicos Mapa de Karnaugh. 2011. Citado na página 5.