	$\int_0^3 \sqrt{x^2 + 3} dx$	
a) Approximate the definite integral with	3.0	
1/4*(3sqrt(3)+sqrt(13)+4+	The mapezola halo and $n=0$.	
b) Approximate the definite integral with 1/6*(3sqrt(3)+2sqrt(13)+4	h Simpson's Rule and $n=6$.	
(1 point)		
Use the Error Bound to find the least pe	ossible value of N for which $Error(S_N) \leq 1 \times 10^{-9}$ in a	pproximating
$\int_0^1 5e^{x^2} dx$		
using the result that		
	$Error(S_N) \le \frac{K_4(b-a)^5}{180N^4},$	
where K_4 is the least upper bound for	all absolute values of the fourth derivatives of the function	$5e^{x^2}$ on the interval $[a, b]$.
N = 276		
Hint:		
(1 point)	.4	
	$\int_2^4 23x^2 dx$	
a) Approximate the definite integral with	h the Trapezoid Rule and $n=4$.	
1725/4		
b) Approximate the definite integral wit	th Simpson's Rule and $n=4$.	
1288/3		
c) Find the exact value of the integral.		
(1 point)		
	$\int_{-\infty}^{2} 1$.	
	$\int_{-2}^2 \frac{1}{\sin x + 4} dx$	
a) Approximate the definite integral with 1/3*(1/(sin(-2)+4)+2/(sin(-4)	h the Trapezoid Rule and $n = 6$.	
70 (1/(011/2)11)12/(011/		
b) Approximate the definite integral with 2/9*(1/(sin(-2)+4)+4/(sin(h Simpson's Rule and $n=6$.	
(1 point) Find the area of the region		
	$R = \{(x, y) \mid x \ge 1, \ 0 \le y \le 1/x\}$	
Note: If the surface area is infinite, type	a infinity.	
Area = infinity		
4 0		
(1 point) Consider the integral		
Consider the integral	∫ ∞	
	$\int_{-\infty}^{\infty} 10e^{- x } dx$	
If the integral is divergent, type an uppor	er-case "D". Otherwise, evaluate the integral.	
If the integral is divergent, type an uppo	er-case *D*. Otherwise, evaluate the integral.	
20	er-case "D". Otherwise, evaluate the integral.	
(1 point)	er-case "D". Otherwise, evaluate the integral.	ent.
(1 point) Use the Comparison Theorem to determ	mine whether the following integral is convergent or diverg	ent.
(1 point) Use the Comparison Theorem to determ	mine whether the following integral is convergent or diverg	ent.
(1 point) Use the Comparison Theorem to determ $ \text{Convergent \updownarrow 1.} \int_1^\infty \frac{4x}{\sqrt{1+x^6}} $	mine whether the following integral is convergent or diverg dx	ent.
(1 point) Use the Comparison Theorem to determ Convergent $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	mine whether the following integral is convergent or diverg dx	correct
(1 point) Use the Comparison Theorem to determ $ \text{Convergent \updownarrow 1.} \int_1^\infty \frac{4x}{\sqrt{1+x^6}} $	mine whether the following integral is convergent or diverg dx	
(1 point) Use the Comparison Theorem to determ to determ to $\frac{4x}{\sqrt{1+x^6}}$	mine whether the following integral is convergent or diverg dx	correct
(1 point) Use the Comparison Theorem to determ to Convergent $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	mine whether the following integral is convergent or diverg dx (-1	correct

(1 point)

(a) Find the values of \boldsymbol{p} for which the following integral converges:

$$\int_0^1 x^p \ln(x) \, dx$$

Input your answer by writing it as an interval. Enter brackets or parentheses in the first and fourth blanks as appropriate, and enter the interval endpoints in the second and third blanks. Use INF and NINF (in upper-case letters) for positive and negative infinity if needed. If the improper integral diverges for all p, type an upper-case "D" in every blank.

Values of p are in the interval (-1 , INF)

For the values of p at which the integral converges, evaluate it. Integral = $-1/(p+2)^2$