Modeling Relative Sophistication of Problem-Solving Strategies in Early Mathematics: A Novel Hurdle Ordinal Logit Approach

Pavel Chernyavskiy² pchern@virginia.edu

Carson L. Keeter, Traci S. Kutaka, Julie Sarama, Douglas H. Clements

August 12, 2021

MOTIVATION

- Greater sophistication of problem-solving strategies linked to greater concurrent and future achievement (Geary et al., 2017; Siegler, 1988), deeper conceptual understanding (Chu et al., 2018; Siegler and Shrager, 1984)
- **Sophistication** of problem-solving strategies largely ignored in education intervention studies
 - Primary focus: correctly answering items on of an assessment
 - Item Response Theory models to analyze (e.g., 1-PL, 2-PL, Graded Response, etc.)

MOTIVATION

- Coding problem-solving behavior is **complex and time-intensive**:
 - Must establish a research-based ordinal scale for relative sophistication (here: Length-measurement Learning Trajectories; Sarama and Clements, 2009/2014)
 - Team of 4 coders strive for high (> 90%) inter-rater reliability
- Some behaviors cannot be mapped to the sophistication scale:
 - Non-codable and Non-detectable behaviors
 - Not a case of truncation or censoring
- Currently these data points are removed prior to analysis:
 - Reduces power if subjects must be excluded
 - Detrimental to psychometric functioning if items must be excluded

MOTIVATION

- Motivating dataset: early childhood intervention
 - 186 kindergarteners in a Mountain-West U.S. state
 - 26 items assessing length measurement
 - 3 experimental conditions
 - N = 186 across 16 classes in 6 schools
- Substantial potential for data loss:
 - >30% non-detectable, non-codable behaviors over experimental conditions
 - 7 of 26 items feature >50% nondetectable, non-codable behaviors

HURDLE ORDINAL LOGIT

- Proposal: model relative sophistication conditional on an instance of a detected problem-solving behavior
 - Hurdle family of statistical models

HURDLE ORDINAL LOGIT

- Outcome: Y_{ijk} denotes one of C ordered categorical responses $c=1,\ldots,C$ employed by ith subject, on the jth item, in kth classroom
 - $\pi_{ijk} =$ probability of recording a detectable, codable behavior
 - c = H denotes the case where a behavior was **not** detected
- Latent variable formulation of Cumulative Logit an attractive feature:
 - Latent variable: latent problem-solving sophistication

$$P(Y_{ijk} = c | x_{ijk}) = \begin{cases} c = H: & 1 - \pi_{ijk} | x_{ijk} \\ c \neq H: & \pi_{ijk} | x_{ijk} \times \left[P(Y_{ijk} \leq c + 1 | x_{ijk}) - P(Y_{ijk} \leq c | x_{ijk}) \right] \end{cases}$$
Ordered Cumulative Logit

HURDLE ORDINAL LOGIT

- Outcome: Y_{ijk} denotes one of C ordered categorical responses $c=1,\ldots,C$ employed by ith subject, on the jth item, in kth classroom
 - π_{ijk} = probability of recording a detectable, codable behavior
 - c = H denotes the case where a behavior was **not** detected

Probability of Detection

$$\log\left(\frac{\pi_{ijk}}{1 - \pi_{ijk}}\right) = \alpha + x'_{ijk} \gamma + u_i^* + v_j^* + w_k^*$$

$$u_{i}^{*} \sim N(0, \sigma_{u}^{*}) \quad v_{j}^{*} \sim N(0, \sigma_{v}^{*}) \quad w_{k}^{*} \sim N(0, \sigma_{w}^{*})$$

$$\{\sigma_{u}^{*}, \sigma_{v}^{*}, \sigma_{w}^{*}\} \sim N^{+}(0, 2.5)$$

$$\alpha \sim N(0, 2.5)$$

$$\mathbf{v} = \{\gamma_{1} \dots \gamma_{P}\} \sim N(0, 2.0)$$

Sophistication | Strategy Detected

$$\log\left(\frac{P(Y_{ijk} \leq c)}{P(Y_{ijk} > c)}\right) = \theta_c - \left(x'_{ijk}\boldsymbol{\beta} + u_i + v_j + w_k\right)$$

$$u_i \sim N(0, \sigma_u) \quad v_j \sim N(0, \sigma_v) \quad w_k \sim N(0, \sigma_w)$$

$$\{\sigma_u, \sigma_v, \sigma_w\} \sim N^+(0, 1.5)$$

$$\theta_c \sim N(0, 2.5)$$

$$\boldsymbol{\beta} = \{\beta_1 \dots \beta_P\} \sim N(0, 1.5)$$

ESTIMATION

- No-U-Turn Hamiltonian Monte Carlo (NUTS HMC) implemented via Stan software in R 4.0
 - 4000 samples after 1000-teration warmup across 4 MCMC chains
 - Effective Sample Size > 500 for all parameters
 - Robust MCMC sampling and convergence
- Final model selected using Leave-One-Out Information Criterion (LOOIC; Vehtari et al., 2017) and Watanabe-Akaike Information Criterion (WAIC; Watanabe, 2013)

RESULTS

• Estimated Odds Ratios (95% Credible Intervals) :

Covariates*	Detection	Greater Sophistication Detected
Learning Trajectory condition	2.20 (1.62, 2.97)	2.44 (1.58, 4.14)
Reverse condition	1.49 (1.09, 2.08)	1.80 (1.28, 2.83)
Business-As-Usual condition	ref.	ref.
Boys	1.13 (0.86, 1.48)	1.04 (0.81, 1.35)
Girls	ref.	ref.
Private school	1.19 (0.69, 2.12)	1.67 (1.16, 2.69)
Public school	ref.	ref.
*: Adjusted for pre-sophistication Rasch score		

- Hurdle component
 accounts for
 likelihood of physical
 action on objects
 (embodied cognition)
- Greater nuance for intervention efficacy

RESULTS

- Random effects allow for scoring of subjects and items:
 - Student random intercepts measure latent sophistication, similar to the Rasch score
- Example: bottom/middle/top 10 students
- Note the relatively small magnitude

RESULTS

- Random effects allow for scoring of subjects and items:
 - Item random intercepts measure latent difficulty, similar to the 1-PL difficulty parameter
- Example: items ranked by estimated latent difficulty
- Note the relatively large magnitude

CODE AND DATA AVAILABILITY

- Model estimation and predictions implemented in R functions or or and or hm fitted:
 - Available on GitHub:

- Data will be made available following an embargo
 - Toy dataset and package vignette forthcoming!

