Solution

1. 40 points - Convert the following assembly code fragments into machine code using the most efficient addressing mode available (i.e. if possible, use direct instead of extended). Represent your answer as a memory diagram beginning at address \$1000.

a. LDAB \$32 SUBB -5.Y STAR \$50

21403	50
Address	Hex Code
1000	D6
1001	32,
1002	EO
1003	E9
1004	FB
1005	5B
1007	50
1008	

b. LDD #9 **CLRA** STD 25,SP

Address	Hex Code
1000	CC
1001	00
1002	09
1003	87
1004	6C
1005	99
1007	
1008	
1008	

Register	rr
Х	00
y A	01
SP SP	10
PC	11

Postbyte for 5-bit Offset: rr0nnnn Postbytes for 9-bit Offset: 111rr00n nnnnnnn Postbytes for 16-bit Offset: 111rr010 nnnnnnnn nnnnnnnn

LDBAA # 8A ADDA # \$86 - 110001010 Basel on CCR bit definition: 10000110

> BLT count & determinal

2. 40 points - For each of the code fragments below, determine:

a. Which of the 8 simple branches (BPL, BMI, BNE, BEQ, BVC, BVS, BCC, BCS) are taken (T), not taken (NT), or cannot be determined (CBD). Note that the Bxx is used to represent a generic branch instruction.

	BPL	ВМІ	BNE	BEQ	BVC	BVS	BCC	BCS
LDAA #\$8A	-	NI		1000		_		
ADDA #\$86	NT	7	T	M	\sim 1	1	NT	T
Bxx 10	if Neo	ifn=1	if == 0	if 2=1	if V=0	1 F V=1	if c=0	if C=1,

Which of the 10 comparison branches (BHI, BHS, BLS, BLO, BGT, BGE, BLE, BLT, BNE, BEQ) are taken (T), not taken (NT), or cannot be determined (CBD). Note that the Bxx is used to represent a generic branch instruction. BGT, BGE, BLE

.MPA 4) -(M)

AACI.

	unsignal	unsignal	vasged	17 Z	+ (NBA))=0	t 1181 =0	1	IF NOY	-1
LDAA #\$A5 CMPA #\$75 Bxx 10	T if CHE	ifc=0	NT Reals	18 C=1	AT.	(T)		N. I	1820	NT if and
	BHI	BHS	BLS	BLO	BGT	BGE_	BLE/	BLT	BNE	BEQ

since we S Symeday 3. 10 points - Calculate the branch destination using a given offset of \$7F if the beginning address of a BRA instruction is \$2A81.

BRA \$ 7F

Branch destination: 2202

4. 10 points - Calculate the branch offset, and determine if it is valid to be used in a BRA Destination instruction, if the beginning address of the BRA instruction is \$2150 and the branch destination $\frac{2000}{100}$ address is \$2080.

Branch offset:

Quiz 22A8

Valid destination = 2000 ~ 2101