

AA-210 STATICS QUIZ #1 (Closed-Book)

Thursday Oct 15, 2009 (Version A)

(1-doubled-sided page of notes and calculator are allowed)

Problem 1 (20 points)

1

Given the vectors $\vec{u}=2\vec{i}-3\vec{j}$ and $\vec{v}=3\vec{i}+4\vec{j}-5\vec{k}$

(1) (5 points) Find $\vec{u} \cdot \vec{v}$ (the dot product of \vec{u} and \vec{v}) $\vec{x} \cdot \vec{y} = (2: .3) + (4. -3)$ $\vec{x} \cdot \vec{y} = -11$

(2) (5 points) Find $\vec{u} \otimes \vec{v}$ (the cross product of \vec{u} and \vec{v}).

(3) (5 points) Find the angle between the vector \vec{u} and \vec{v}

$$\Theta = \cos^{-1} \frac{u \cdot v}{|u| |v|} = \cos^{-1} \frac{-1|v|}{|v|^{2} + 3^{2} + 5^{2}} = \cos^{-1} (-.43145)$$

(4) (5 points) Find a unit vector \vec{e} that is perpendicular to both vectors \vec{u} and \vec{v} .

points) Find a unit vector e that is perpendicular to both vectors
$$u$$
 and v .

$$\frac{u \times v}{|u \times v|} = \frac{|S| + |0| + |7| k}{||S| + |10| + |7| k}$$

$$\frac{e}{|v|} = \frac{|5|}{|6|4|} + \frac{|0|}{|6|4|} + \frac{|7|}{|6|4|}$$

$$\frac{e}{|v|} = \frac{|5|}{|6|4|} + \frac{|0|}{|6|4|} + \frac{|7|}{|6|4|}$$

$$\frac{e}{|v|} = \frac{|5|}{|6|4|} + \frac{|6|}{|6|4|} + \frac{|7|}{|6|4|}$$

$$\frac{e}{|v|} = \frac{|5|}{|6|4|} + \frac{|6|}{|6|4|} + \frac{|6|}{|6|4|}$$

Problem 2 (20 points) Three concurrent forces \vec{T} , \vec{F} and \vec{W} applied at point A are in equilibrium.

Figure 1: 3-D Forces \vec{T} , \vec{F} and \vec{W} in equilibrium.

The forces \vec{T} and \vec{F} are orthogonal (i.e., perpendicular) to each other where $\vec{T} = T \left(2\vec{i} + 3\vec{j} + 5\vec{k} \right)$ (N). The weight W is 100 (N).

(1) (10 points) Find the force
$$\vec{T}$$
.

$$\vec{F}_{Z} = -\vec{W} + \vec{F}_{Z} + \vec{F}_{Z}(\cos 35.8) = 0$$

$$\vec{F}_{Z} = -\vec{W} + \vec{F}_{Z} + \vec{F}_{Z}(\cos 35.8) = 0$$

$$\vec{F}_{Z} = -\vec{W} + \vec{F}_{Z} + \vec{F}_{Z}(\cos 35.8) = 0$$

$$\vec{F}_{Z} = -\vec{F}_{Z} + \vec{F}_{Z}(\cos 35.8) = 0$$

$$\vec{F}_{Z} = -\vec{F}_{Z}(\cos 35.8) = 0$$

$$\vec{F}_{Z} = -\vec{$$

(2) (10 points) Find the force \vec{F} .

Problem 3 (10 points)

Let $\vec{u} = -2\vec{i} + 3\vec{j} - 7\vec{k}$, find a unit vector \vec{v} that is perpendicular to the vector \vec{u} and has NO component in the k-direction (i.e., $\vec{v} = v_x \vec{i} + v_y \vec{j}$).

$$\vec{x} \cdot \vec{v} = 0$$

$$= (-2 \cdot v_{x})i + (3 \cdot v_{y})j + (-1 \cdot v_{y})k$$

$$2v_{x} = 3v_{y}$$

$$v_{y} = 2$$

$$v_{y} = 2$$

$$v_{y} = 3i + 2j$$

$$v_{y} = 3i + 2j$$