Exercice 1. Fonctions affines.

(4)

1. Tracer dans le plan muni d'un repère ci-dessous les représentations graphiques des fonction f (2) et g définies sur \mathbb{R} par f(x) = 2x - 3 et g(x) = 5 - 2x.

2. Déterminer les fonctions affines f et g dont les représentations graphiques sont les deux droites (2) (AB) et (CD) ci-dessous.

vg

(2)

(8)

(1)

Exercice 2. Associer chacune des trois représentations graphiques suivantes :

à l'une de ces six fonctions :

a)
$$x \mapsto -\frac{x^2}{2} + 1$$
 c) $x \mapsto 0.5x^2$ b) $x \mapsto -2x^2 + 1$ d) $x \mapsto x^2 - 1$ e) $x \mapsto x^2 + 1$ f) $x \mapsto x^2$

Exercice 3. La fonction f est définie sur \mathbb{R} par :

$$f(x) = 3x^2 - 3x - 6.$$

- 1. Donner en justifiant le tableau de variations de f. Préciser la valeur des éventuels maximum ou (2) minimum de f.
- 2. Prouver que pour tout nombre réel x, f(x) = 3(x+1)(x-2). (1,5)
- 3. Prouver que pour tout nombre réel x, $f(x) = 3[(x \frac{1}{2})^2 \frac{5}{4}].$ (1,5)
- 4. Quelle est l'image de 0 par f?
- 5. Quels sont les antécédents de 0? Faire figurer cette information dans le tableau de variations (1) de f.
- 6. Résoudre f(x) = -6. (1)

Exercice 4. ABCD est un carré de côté 12 cm. M étant un point du segment [AB], on construit le carré AMNP et le triangle rectangle isocèle PRD comme indiqué sur la figure ci-dessous.

On pose x = AM avec $x \in [0; 12]$

- 1. Exprimer en fonction de x l'aire du triangle PRD. (1)
- 2. On note f(x) l'aire en cm² de la partie hachurée.
 - a) Montrer que pour tout réel x appartenant à l'intervalle [0;12], $f(x) = \frac{3}{2}x^2 12x + 72$. (2)
 - b) Donner, en justifiant, le tableau de variation de la fonction f. (1) En déduire la valeur minimale de l'aire de la partie hachurée.
- 3. Déterminer les positions éventuelles du point M pour que l'aire de la partie hachurée soit égale (2) à la moitié de l'aire du carré ABCD.