NOIP 模拟赛 Day1

BLUESKY007

题目名称	中位串	染色	抛硬币
可执行文件名	midstr	color	coin
输入文件名	midstr.in	color.in	coin.in
输出文件名	midstr.out	color.out	coin.out
时间限制	2s	2s	3s
内存限制	256M	256M	256M
测试点数目	20	20	50
每个测试点分数	5	5	2
是否子任务评测	否	否	否
测试点有无部分分 无		无	无
结果比较方式		全文比较	
题目类型	传统	传统	传统

注:提交时不需要建立子目录,栈限制与空间限制相同,评测时**不开** c++11 和 O2 优化,全文比较时忽略多余空格和制表符。

1 中位串 (midstr)

1.1 题目描述

可爱的 BLUESKY007 有两个长度为 n 的字符串 s,t, s 的字典序严格 小于 t, 保证字典序在 s,t 之间(含 s,t)的字符串个数为奇数。

定义两个字符串 s,t 的中位串为: 按字典序从小到大列出所有长度为 n 且字典序在 s 和 t 之间(含 s,t)的字符串,其中位于中间位置的字符串。例如 s=ax,t=bb 时,所有字典序在 s,t 之间的字符串为 [ax,ay,az,ba,bb],其中位于中间位置的字符串为 az。

BLUESKY007 想知道 s 和 t 的中位串,但她非常懒,并不想自己亲自解决,所以她找到了你来帮忙解决。

1.2 输入格式

从文件 midstr.in 中读入数据。

第一行包含一个正整数 n,表示字符串的长度。

第二行包含一个长度为 n 的字符串,表示字符串 s。

第三行包含一个长度为 n 的字符串,表示字符串 t。

1.3 输出格式

输出到文件 midstr.out 中。

输出一个长度为 n 的字符串,表示 s 和 t 的中位串。

1.4 样例 1 输入

2

ax

bb

1.5 样例 1 输出

az

1.6 样例 2

见选手目录下的 *midstr2.in* 与 *midstr2.ans*。

1.7 数据范围

对于 30% 的数据, $n \le 12$ 。

对于 60% 的数据, $n \le 10^3$ 。

对于 100% 的数据, $n \le 2 \cdot 10^5$ 。

2 染色 (color)

2.1 题目描述

BLUESKY007 得到了一个长度为 n 的数列,她准备拿这个数列搞事情。

定义一个数列 b_1, b_2, \dots, b_n 为回文数列当且仅当该数列满足 $\forall i \in [0, n-1], b_{l+i} = b_{r-i}$ 。

BLUESKY007 非常在意一个数列的优美程度,但她判断一个数列是否优美的标准会随着心情的变化而改变。如果她的心情非常愉悦,那么数列中不存在长度 > 1 且为奇数的回文子串就是优美的。如果她的心情非常自闭,那么数列中不存在长度 > 1 且为偶数的回文子串就是优美的。

这个长度为 n 的数列中所有的数本应在 [1,k] 之间。但由于保存不善,有一些位置上的数变成了 0。BLUESKY007 想知道,以她当时的判断标准,原数列有多少种可能是优美的。由于答案可能会很大,所以你只需要告诉她答案对 998244353 取模后的结果即可。

2.2 输入格式

从文件 color.in 中读入数据。

第一行三个整数 n, k, m,表示数列的长度,数列中数的上界和当时的心情。心情为 0 表示非常自闭,心情为 1 表示非常愉悦。

第二行 n 个正整数 a_1, a_2, \dots, a_n ,表示现在的数列。

2.3 输出格式

输出到文件 *color.out* 中。 输出一个正整数表示答案。

2.4 样例 1 输入

5 2 1

10012

2.5 样例 1 输出

0

2.6 样例 2

见选手目录下的 color2.in 与 color2.ans。

2.7 样例 3

见选手目录下的 color3.in 与 color3.ans。

2.8 样例 4

见选手目录下的 color4.in 与 color4.ans。

2.9 样例 5

见选手目录下的 color5.in 与 color5.ans。

2.10 数据范围

对于所有的数据, $2 \le n, k \le 2 \cdot 10^5, 0 \le a_i \le k$

测试点编号	n	k	m	特殊限制
1,2	=20	=4		0 的个数不超过 10
3				$\forall i \in [2, n], a_i = 0$
4	$=10^{3}$	$\leq 10^{3}$	=0	$\forall i \in [2, n-1], a_i = 0$
5				$\forall t \in [2, n-1], a_i = 0$
6,7	$=2\cdot 10^5$	$\leq 2 \cdot 10^5$		无 无
8~11	=20	=4		0 的个数不超过 10
12~14	$=10^{3}$	$\leq 10^{3}$	=1	无
15~20	$=2 \cdot 10^5$	$\leq 2 \cdot 10^5$		

3 抛硬币 (coin)

3.1 题目描述

可爱的 BLUESKY007 最近找到了一个非常有趣的颓废项目——抛硬币。可是一直颓废也不好,因为这样会没有学上,所以 BLUESKY007 打算给自己定一个目标,当抛连续 n 次硬币都朝上时,她就停止颓废去卓越。

但是 BLUESKY007 抛的硬币并不是一般的硬币,而是一枚神奇的硬币,这枚硬币在抛出后有 $\frac{a}{b}$ (保证 $\gcd(a,b)=1$) 的概率朝上,有 $1-\frac{a}{b}$ 的概率朝下。

BLUESKY007 不知道应该将 n 定为多少才合适,因为 n 如果非常大,她就会颓的时间过长,如果 n 非常小,她就会没得颓。所以她希望通过知道对于不同的 n 期望抛硬币的次数,来决定 n 的最优取值。但 BLUESKY007 一心只想颓废,并不想自己算,所以请你帮助可爱的 BLUESKY007 求出期望次数,以便她能合理的安排时间。

为了避免精度误差,你只需要输出期望对 p (保证 $\gcd(a,p) = \gcd(b,p) = \gcd(a \cdot b^{-1} \mod p, p) = 1$) 取模后的结果。设期望可以表示为 $\frac{c}{d}$,则输出 $c \cdot d^{-1} \mod p$ 的结果即可。

期望的定义:在概率论和统计学中,数学期望 (mean) (或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。(摘自百度百科)

3.2 输入格式

从文件 coin.in 中读入数据。

第一行包含三个正整数 a,b,p,表示硬币朝上的概率和取模数。

第二行包含一个正整数 t,表示询问次数。

第三行到第 t+2 行,每行一个正整数 n_i ,第 i+2 行表示第 i 组询问。

3.3 输出格式

输出到文件 coin.out 中。

输出共 t 行。每行一个整数表示答案, 第 i 行表示第 i 次询问的答案。

3.4 样例 1 输入

1 2 998244353

1

1

3.5 样例 1 输出

2

3.6 样例 1 解释

第一次有 $\frac{1}{2}$ 的概率是正面,然后结束,贡献为 $1 \cdot \frac{1}{2} = \frac{1}{2}$,否则有 $\frac{1}{2}$ 概率反面,第二次有 $\frac{1}{2}$ 概率抛出正面,然后结束,贡献为 $2 \cdot \frac{1}{4} = \frac{2}{4}$,同理第三次结束有 $\frac{1}{8}$ 概率,贡献是 $\frac{3}{8} \cdots$ 。所以期望等于 $\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \cdots = (\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots) + (\frac{1}{4} + \frac{1}{8} + \cdots) = 1 + \frac{1}{2} + \frac{1}{4} + \cdots = 2$, $2 \mod 998244353 \equiv 2$ 。

3.7 样例 2

见选手目录下的 *coin2.in* 与 *coin2.ans*。

3.8 数据范围

对于所有的数据, $0 \le n \le 10^{18}, 1 \le t \le 10^5, 1 \le a < b < p \le 998244353$ 。

9902440000				
测试点编号	n	t	2a = b	p 是质数
1~7	$\sum n \le 10^7$			是
8~10			是	否
11~15	$\leq 10^{18}$	$\leq 10^{5}$		
16~20	≥ 10	≥ 10°		是
21~23	$\sum n \le 10^7$		否	上
24~30				否
31~50	$\leq 10^{18}$	$\leq 10^5$		