Algebra 2B, Lista 1

Niech K będzie ciałem, R pierścieniem i $n \in \mathbb{N}$.

1. Niech $f \in R[X] \setminus \{0\}$. Udowodnić, że jeśli R jest dziedziną, to mamy

$$|\{r \in R \mid f(r) = 0\}| \le \deg(f).$$

- 2. Znaleźć przykład R i $f \in R[X]$ takiego, że $\deg(f) = 1$ i f ma nieskończenie wiele pierwiastków.
- 3. Załóżmy, że char(K)=n. Udowodnić, że istnieje najmniejsze podciało $F\subseteq K$ (F nazywamy $podciałem\ prostym\ K)$ oraz, że:
 - (a) jeśli n jest liczbą pierwszą, to $F \cong \mathbb{F}_n$,
 - (b) jeśli n=0, to $F\cong \mathbb{Q}$.
- 4. Udowodnić, że zbiór liczb algebraicznych jest przeliczalny.
- 5. Niech $z \in \mathbb{C}$. Udowodnić, że z jest liczbą algebraiczną wtedy i tylko wtedy, gdy \bar{z} (liczba sprzężona) jest liczbą algebraiczną.
- 6. Niech $v:R\setminus\{0\}\to\mathbb{N}$ będzie normą euklidesową spełniającą dla każdych $a,b\in R\setminus\{0\}$ nierówność $v(a)\leqslant v(ab),\ I$ będzie niezerowym ideałem pierwszym w R oraz $x\in I$. Udowodnić, że następujące warunki są równoważne:
 - (a) (x) = I,
 - (b) x jest nierozkładalny,
 - (c) $v(x) = \min\{v(a) \mid a \in I \setminus \{0\}\}.$
- 7. Niech $\mathbb{Q} \subseteq K$ będzie rozszerzeniem ciał. Udowodnić, że

$$G(K/\mathbb{Q}) = \operatorname{Aut}(K).$$

- 8. Udowodnić, że $G(\mathbb{C}/\mathbb{R}) = \{ \mathrm{id}_{\mathbb{C}}, \varphi \}$, gdzie φ jest sprzężeniem zespolonym.
- 9. Udowodnić, że $Aut(\mathbb{R}) = \{id_{\mathbb{R}}\}.$
- 10. Niech $a \in L$ będzie przestępny nad K i $f \in K(X) \setminus K$.
 - (a) Zdefiniować $Dom(f) \subseteq L$ i funkcję $f: Dom(f) \to L$.
 - (b) Udowodnić, że $a \in Dom(f)$ oraz że f(a) jest przestępny nad K.