1 Mathematical preliminaries

1.1 Real vectors and matrices

1.1.1 Vectors

- $\alpha, \beta, \gamma, \dots$: scalars.
- $a_1,...,a_n,x_1,...,x_n,y_1,...,y_n$: real numbers, components of a vector, element of a set.
- \mathbb{R} : set of real numbers.
- \mathbb{R}^n : set of real column vectors.

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad x_i \in \mathbb{R}$$

• A *n*-dimensional column vector and row vector,

$$oldsymbol{a} = \left[egin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right], \quad oldsymbol{a}^{ op} = \left[a_1, a_2, \ldots, a_n \right].$$

• Properties,

1.1.2 Matrices

• $\mathbb{R}^{m \times n}$: set of $m \times n$ real matrices,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

- $\mathbb{R}^{n\times 1}$ and \mathbb{R}^n as equivalent.
- \mathbf{A}^{\top} : transpose of \mathbf{A} .

1.2 Functions

- Set $X: x \in X$.
- Function $f: X \to Y$.
- f takes values in X and gives values in Y.
 - -f(x) is the value of f at x, where $x \in X$.
- A symbol := denotes arithmetic assignment; x := y, means "x becomes y".
- A symbol \triangleq means "equals by definition".
- Example: $f: \mathbb{R}^3 \to \mathbb{R}$,

$$f(\mathbf{x}) = \frac{x_1^2 + 2\log(x_2x_3) + x_1x_2x_3}{x_2}.$$

1.3 Linear independence

• A set of vectors $\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k\}$ is said to be linearly independent if

$$\alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \dots + \alpha_k \boldsymbol{a}_k = \boldsymbol{0},$$

implies that all the scalar coefficients α_i , i = 1, ..., k, are equal to zero.

• A vector \boldsymbol{a} is said to be a <u>linear combination</u> of vectors $\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_k$ if there are scalars $\alpha_1, \dots, \alpha_k$ such that

$$\boldsymbol{a} = \alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \cdots + \alpha_k \boldsymbol{a}_k.$$

- \mathcal{V} : a subspace of \mathbb{R}^n , if \mathcal{V} is closed for vector addition and scalar multiplication.
- ▶ Proposition 2.1 A set of vectors $\{a_1, a_2, ..., a_k\}$ is <u>linearly dependent</u> if and only if one of the vectors from the set is a linear combination of the remaining vectors.
- The set of all linear combinations of a_1, a_2, \ldots, a_k is called the span of the vectors,

$$\operatorname{span}\left[\boldsymbol{a}_{1},\boldsymbol{a}_{2},\ldots,\boldsymbol{a}_{k}\right]=\left\{ \sum_{i=1}^{k}\alpha_{i}\boldsymbol{a}_{i}:\alpha_{1},\ldots,\alpha_{k}\in\mathbb{R}\right\} .$$

- Any set of linearly independent vectors $\{a_1, a_2, \dots, a_k\} \subset \mathcal{V}$, is a <u>basis</u> of the subspace \mathcal{V} , if $\mathcal{V} = \text{span}[a_1, a_2, \dots, a_k]$.
- ▶ Proposition 2.2 If $\{a_1, a_2, ..., a_k\}$ is a basis of V, then any vector a of V can be represented uniquely as

$$\boldsymbol{a} = \alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \cdots + \alpha_k \boldsymbol{a}_k$$

where $\alpha_i \in \mathbb{R}, i = 1, 2, \dots, k$.

1.4 Rank of a matrix

- The maximal number of linearly independent columns of A is called the <u>rank</u> of the matrix A, denoted rank A.
- \blacktriangleright Proposition 2.3 The rank of a matrix A is invariant under the following operations:
 - rank $[\boldsymbol{a}_1, \dots, \alpha \boldsymbol{a}_k, \dots, \boldsymbol{a}_n]$ = rank $[\boldsymbol{a}_1, \dots, \boldsymbol{a}_k, \dots, \boldsymbol{a}_n], \alpha \neq 0$.
 - $-\operatorname{rank}\left[\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{k},\ldots,\boldsymbol{a}_{l},\ldots,\boldsymbol{a}_{n}\right]=\operatorname{rank}\left[\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{l},\ldots,\boldsymbol{a}_{k},\ldots,\boldsymbol{a}_{n}\right].$
 - $\operatorname{rank} \left[\boldsymbol{a}_1, \dots, \boldsymbol{a}_k + (\alpha_1 \boldsymbol{a}_1 + \dots + \alpha_n \boldsymbol{a}_n), \dots, \boldsymbol{a}_n \right] = \operatorname{rank} \left[\boldsymbol{a}_1, \dots, \boldsymbol{a}_k, \dots, \boldsymbol{a}_n \right].$
- The <u>determinant</u> of the square matrix \mathbf{A} , denoted det \mathbf{A} or $|\mathbf{A}|$. The determinant of a square matrix is a function of its columns,
 - 1. The determinant of the matrix $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$ is a linear function of each column; that is,

$$\det \begin{bmatrix} \boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}, \boldsymbol{\alpha} \boldsymbol{a}_k^{(1)} + \beta \boldsymbol{a}_k^{(2)}, \boldsymbol{a}_{k+1}, \dots, \boldsymbol{a}_n \end{bmatrix}$$

$$= \boldsymbol{\alpha} \det \begin{bmatrix} \boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}, \boldsymbol{a}_k^{(1)}, \boldsymbol{a}_{k+1}, \dots, \boldsymbol{a}_n \end{bmatrix} + \beta \det \begin{bmatrix} \boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}, \boldsymbol{a}_k^{(2)}, \boldsymbol{a}_{k+1}, \dots, \boldsymbol{a}_n \end{bmatrix}$$

for each $\alpha, \beta \in \mathbb{R}, \boldsymbol{a}_k^{(1)}, \boldsymbol{a}_k^{(2)} \in \mathbb{R}^n$.

2. If for some k we have $a_k = a_{k+1}$, then

$$\det \mathbf{A} = \det [\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_n] = \det [\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_k, \dots, \mathbf{a}_n] = 0$$

3. Let

$$oldsymbol{I}_n = [oldsymbol{e}_1, oldsymbol{e}_2, \dots, oldsymbol{e}_n] = \left[egin{array}{cccc} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{array}
ight]$$

where $\{e_1, \ldots, e_n\}$ is the natural basis for \mathbb{R}^n . Then

$$\det \boldsymbol{I}_n = 1$$

- A <u>pth-order minor</u> of an $m \times n$ matrix A, with $p \leq \min\{m, n\}$, is the determinant of a $p \times p$ matrix obtained from A by deleting m p rows and n p columns.
- ▶ Proposition 2.4 If an $m \times n$ matrix $A(m \ge n)$ has a nonzero nth-order minor, then the columns of A are linearly independent; that is, $\operatorname{rank}(A) = n$.
- The rank of a matrix is equal to the highest order of its nonzero minor(s).
- A square matrix $A \in \mathbb{R}^{n \times n}$ is nonsingular or <u>invertible</u> if rank A = n (full rank).
- A matrix is nonsingular if and only if its determinant is nonzero.

1.5 Linear equations

 \spadesuit Theorem 2.1 The system of equations Ax = b has a solution if and only if

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}[\boldsymbol{A}, \boldsymbol{b}].$$

 \spadesuit Theorem 2.2 Consider the equation Ax = b, where $A \in \mathbb{R}^{m \times n}$ and rank A = m. A solution to Ax = b can be obtained by assigning arbitrary values for n - m variables and solving for the remaining ones.

1.6 Inner product and norm

1.6.1 Real domain

- Given $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.
- Define the Euclidean inner product of x and y:

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{y} = \sum_{i=1}^{n} x_{i} y_{i}.$$

• The inner product is a real-valued function $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$,

$$-\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0, \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$$
 if and only if $\boldsymbol{x} = \boldsymbol{0}$.

$$-\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle.$$

$$-\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z
angle$$
 .

$$-\langle r\boldsymbol{x},\boldsymbol{y}\rangle = r\langle \boldsymbol{x},\boldsymbol{y}\rangle$$
 for every $r\in\mathbb{R}$.

Example,

$$\langle oldsymbol{A}oldsymbol{x},oldsymbol{x}
angle = (oldsymbol{A}oldsymbol{x})^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}^{ op}oldsymbol{x}.$$

• Define the Euclidean norm of x:

$$\|\boldsymbol{x}\| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} = \sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

- The Euclidean norm properties,
 - $-\|x\| \ge 0, \|x\| = 0$ if and only if x = 0.
 - $\|x\| = |r|\|x\|, r \in \mathbb{R}.$
 - $\|x + y\| \le \|x\| + \|y\|.$
- \spadesuit Theorem 2.3 Cauchy-Schwarz Inequality. For any two vectors \boldsymbol{x} and \boldsymbol{y} in \mathbb{R}^n , the Cauchy-Schwarz inequality holds,

$$|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \le ||\boldsymbol{x}|| ||\boldsymbol{y}||.$$

• The Euclidean norm is often referred to as the 2-norm, and denoted $\|x\|_2$. The norms above are special cases of the **p-norm**, given by

$$\|x\|_p = \begin{cases} (|x_1|^p + \dots + |x_n|^p)^{1/p} & \text{if } 1 \le p < \infty \\ \max\{|x_1|, \dots, |x_n|\} & \text{if } p = \infty \end{cases}$$

- \boldsymbol{x} and \boldsymbol{y} are orthogonal if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$.
- A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is <u>continuous</u> at x if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

4

$$\|\boldsymbol{y} - \boldsymbol{x}\| < \delta \Rightarrow \|\boldsymbol{f}(\boldsymbol{y}) - \boldsymbol{f}(\boldsymbol{x})\| < \varepsilon.$$

1.6.2 Complex domain

- An complex inner product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ to be $\sum_{i=1}^{n} x_i \bar{y}_i$ in complex vector space \mathbb{C}^n , where the bar denotes complex conjugation.
- The inner product on \mathbb{C}^n is a complex-valued function $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$
 - $-\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0, \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$.
 - $-\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \overline{\langle \boldsymbol{y}, \boldsymbol{x} \rangle}.$
 - $-\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle.$
 - $-\langle r\boldsymbol{x},\boldsymbol{y}\rangle = r\langle \boldsymbol{x},\boldsymbol{y}\rangle, \text{ where } r \in \mathbb{C}.$
- Deduction from above properties,

$$\langle \boldsymbol{x}, r_1 \boldsymbol{y} + r_2 \boldsymbol{z} \rangle = \bar{r}_1 \langle \boldsymbol{x}, \boldsymbol{y} \rangle + \bar{r}_2 \langle \boldsymbol{x}, \boldsymbol{z} \rangle.$$

• Define the Complex norm of x:

$$\|oldsymbol{x}\| = \sqrt{\langle oldsymbol{x}, oldsymbol{x}
angle} = \sqrt{oldsymbol{x}^ op oldsymbol{x}} = \sqrt{\sum_{i=1}^n x_i ar{x}_i}.$$

1.7 Linear transformations

- A function $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ is called a <u>linear transformation</u> if
 - $-\mathcal{L}(a\mathbf{x}) = a\mathcal{L}(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and $a \in \mathbb{R}$;
 - $-\mathcal{L}(\boldsymbol{x}+\boldsymbol{y}) = \mathcal{L}(\boldsymbol{x}) + \mathcal{L}(\boldsymbol{y})$ for every $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.
- Let $\{e_1, e_2, \ldots, e_n\}$ and $\{e'_1, e'_2, \ldots, e'_n\}$ be two bases for \mathbb{R}^n . Define the <u>transformation matrix</u> T from $\{e_1, e_2, \ldots, e_n\}$ to $\{e'_1, e'_2, \ldots, e'_n\}$

$$\left[egin{array}{cccc} oldsymbol{e}_1 & oldsymbol{e}_2 & \cdots & oldsymbol{e}_n \end{array}
ight] = \left[egin{array}{cccc} oldsymbol{e}'_1 & oldsymbol{e}'_2 & \cdots & oldsymbol{e}'_n \end{array}
ight] oldsymbol{T}.$$

• Given a vector \boldsymbol{v} , \boldsymbol{x} is the coordinates of the vector with respect to a base $\boldsymbol{B} = \{\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n\}$ and \boldsymbol{x}' be the coordinates of the same vector with respect to a base $\boldsymbol{B}' = \{\boldsymbol{e}'_1, \boldsymbol{e}'_2, \dots, \boldsymbol{e}'_n\}$.

$$[\mathbf{v}]_{B} = x_{1}\mathbf{e}_{1} + \dots + x_{n}\mathbf{e}_{n} = [\mathbf{e}_{1}, \dots, \mathbf{e}_{n}] \mathbf{x}$$

$$[\mathbf{v}]_{B'} = x'_{1}\mathbf{e}'_{1} + \dots + x'_{n}\mathbf{e}'_{n} = [\mathbf{e}'_{1}, \dots, \mathbf{e}'_{n}] \mathbf{x}'$$

$$\mathbf{x}' = \begin{bmatrix} \mathbf{e}'_{1} & \mathbf{e}'_{2} & \cdots & \mathbf{e}'_{n} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n} \end{bmatrix} \mathbf{x} = \mathbf{T}\mathbf{x}$$

• Example, let y = Ax and y' = A'x'. Therefore,

$$y' = Ty = TAx, y' = A'x' = A'Tx$$

and hence TA = A'T, or $A = T^{-1}A'T$.

• Two $n \times n$ matrices \boldsymbol{A} and \boldsymbol{B} are <u>similar</u> if there exists a nonsingular matrix \boldsymbol{T} such that $\boldsymbol{A} = \boldsymbol{T}^{-1} \boldsymbol{B} \boldsymbol{T}$.

1.8 Eigenvalues and eigenvectors

- Let A be an $n \times n$ square matrix.
- A scalar λ (possibly complex) and a nonzero vector \boldsymbol{v} satisfying the equation $\boldsymbol{A}\boldsymbol{v}=\lambda\boldsymbol{v}$ are said to be, respectively, an eigenvalue and eigenvector of \boldsymbol{A} .
- λ is an eigenvalue of \boldsymbol{A} if and only if $\lambda \boldsymbol{I} \boldsymbol{A}$ is singular (i.e., $\det[\lambda \boldsymbol{I} \boldsymbol{A}] = 0$).
- $\det[\lambda I A]$ is called the characteristic polynomial of A,

$$\det[\lambda \mathbf{I} - \mathbf{A}] = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0.$$

 \spadesuit Theorem 3.1 Suppose that the characteristic equation $\det[\lambda \mathbf{I} - \mathbf{A}] = 0$ has n distinct roots $\lambda_1, \lambda_2, \ldots, \lambda_n$. Then, there exist n linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ such that

$$Av_i = \lambda_i v_i, \quad i = 1, 2, \dots, n.$$

- ♠ Theorem 3.2 All eigenvalues of a real symmetric matrix are real.
- \spadesuit Theorem 3.3 If real $n \times n$ matrix \boldsymbol{A} is symmetric, then a set of its eigenvectors forms an orthogonal basis for \mathbb{R}^n .

1.9 Orthogonal projections

• If \mathcal{V} is a subspace of \mathbb{R}^n , then the <u>orthogonal complement</u> of \mathcal{V} , denoted by \mathcal{V}^{\perp} , consists of all vectors that are orthogonal to every vector in \mathcal{V} ,

$$V^{\perp} = \{ \boldsymbol{x} : \boldsymbol{v}^{\top} \boldsymbol{x} = 0 \text{ for all } \boldsymbol{v} \in V \}.$$

• \mathcal{V} and \mathcal{V}^{\perp} span \mathbb{R}^n in the sense that every vector $\boldsymbol{x} \in \mathbb{R}^n$ can be represented uniquely as $\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2$, where $\boldsymbol{x}_1 \in \mathcal{V}$ and $\boldsymbol{x}_2 \in \mathcal{V}^{\perp}$.

- $x = x_1 + x_2$ is the orthogonal decomposition of x with respect to V. x_1 and x_2 are orthogonal projections of x onto the subspaces V and V^{\perp} , respectively.
- We write $\mathbb{R}^n = \mathcal{V} \oplus \mathcal{V}^{\perp}$ and say that \mathbb{R}^n is a <u>direct sum</u> of \mathcal{V} and \mathcal{V}^{\perp} .
- A linear transformation P is an orthogonal projector onto V if for all $x \in \mathbb{R}^n$ we have $Px \in V$ and $x Px \in V^{\perp}$.
- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, the range, or image of \mathbf{A} is

$$\mathcal{R}(\mathbf{A}) \triangleq \{\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}$$
. That's column space.

The nullspace, or <u>kernel</u> of \boldsymbol{A} is

$$\mathcal{H}(\mathbf{A}) \triangleq \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0} \}$$
.

 $\mathcal{R}(\mathbf{A})$ and $\mathcal{N}(\mathbf{A})$ are subspaces.

- ♠ Theorem 3.4 $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{\top})$ and $\mathcal{N}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{A}^{\top})$ (That's row space. Together, four fundamental spaces in Linear Algebra.)
- If P is an orthogonal projector onto V, then Px = x for all $x \in V$, and $\mathcal{R}(P) = V$.
- \spadesuit Theorem 03.05: A matrix P is an orthogonal projector if and only if $P^2 = P = P^T$.

1.10 Symmetric matrices

- Q is symmetric if $Q = Q^{\top}$.
- A symmetric matrix Q is said to be <u>positive definite</u> if $x^{\top}Qx > 0$ for all nonzero vectors x.
- It is positive semi-definite if $x^{\top}Qx \geq 0$ for all x.
- Similarly, negative definite and negative semi-definite, if $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x} < 0$ for all nonzero vectors \mathbf{x} , or $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \leq 0$ for all \mathbf{x} , respectively.
- For an $n \times n$ symmetric real matrix \mathbf{Q} ,

$$oldsymbol{Q}$$
 positive-definite $\iff oldsymbol{x}^{ op} oldsymbol{Q} oldsymbol{x} > 0$ for all $oldsymbol{x} \in \mathbb{R}^n ackslash oldsymbol{Q}$ positive semi-definite $\iff oldsymbol{x}^{ op} oldsymbol{Q} oldsymbol{x} \geq 0$ for all $oldsymbol{x} \in \mathbb{R}^n ackslash \{oldsymbol{0}\}$ $oldsymbol{Q}$ negative semi-definite $\iff oldsymbol{x}^{ op} oldsymbol{Q} oldsymbol{x} \leq 0$ for all $oldsymbol{x} \in \mathbb{R}^n$

• For an $n \times n$ Hermitian complex matrix Q,

$$oldsymbol{Q}$$
 positive-definite $, oldsymbol{Q} \succ 0 \iff oldsymbol{x}^{\top} oldsymbol{Q} oldsymbol{x} > 0 \text{ for all } oldsymbol{x} \in \mathbb{C}^n ackslash \{oldsymbol{0}\}$
 $oldsymbol{Q}$ positive semi-definite $, oldsymbol{Q} \succeq 0 \iff oldsymbol{x}^{\top} oldsymbol{Q} oldsymbol{x} \geq 0 \text{ for all } oldsymbol{x} \in \mathbb{C}^n ackslash \{oldsymbol{0}\}$
 $oldsymbol{Q}$ negative semi-definite $, oldsymbol{Q} \preceq 0 \iff oldsymbol{x}^{\top} oldsymbol{Q} oldsymbol{x} \leq 0 \text{ for all } oldsymbol{x} \in \mathbb{C}^n ackslash$

1.11 Quadratic functions

• $f: \mathbb{R}^n \to \mathbb{R}$ is a quadratic function if

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c,$$

where Q is symmetric.

• If the matrix Q is not symmetric, we can always replace it with the symmetric

$$oldsymbol{Q}_0 = oldsymbol{Q}_0^T = rac{1}{2} \left(oldsymbol{Q} + oldsymbol{Q}^T
ight) \ oldsymbol{x}^T oldsymbol{Q} oldsymbol{x} = oldsymbol{x}^T oldsymbol{Q} oldsymbol{x} = oldsymbol{x}^T oldsymbol{Q} oldsymbol{x} + rac{1}{2} oldsymbol{Q}^T
ight) oldsymbol{x}$$

• The leading principal minors of matrix Q are,

$$\Delta_1 = q_{11}, \quad \Delta_2 = \det \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}, \Delta_3 = \det \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix}, \dots$$

- ♠ Theorem 3.6 Sylvester's Criterion. A quadratic form (Q is symmetric) $x^{\top}Qx$, $Q = Q^{\top}$, is positive definite if and only if the leading principal minors of Q are positive.
- A necessary condition for a real quadratic form to be positive semi-definite is that the leading principal minors be nonnegative. However, it is not a sufficient condition.
- A real quadratic form is positive semi-definite if and only if all principal minors are nonnegative.
- \spadesuit Theorem 3.7 A symmetric matrix Q is positive definite (or positive semidefinite) if and only if all eigenvalues of Q are positive (or nonnegative).
- If Q is positive definite, then f is a parabolic "bowl".

- Quadratics simplify optimization, offering a clear structure for minimum or maximum solutions.
- Near optimal points, objective functions often resemble quadratics.
- Algorithms are more transparent when tested on quadratics.
- Insights from quadratic algorithm analysis extend to broader algorithmic applications.

1.12 Matrix norm

- The norm of a matrix A, denoted by ||A||, satisfies
 - 1. $\|A\| > 0$ if $A \neq O$, and $\|O\| = 0$, where O is a matrix with all entries equal to zero.
 - 2. $||c\mathbf{A}|| = |c|||\mathbf{A}||$, for any $c \in \mathbb{R}$.
 - 3. $\|A + B\| \le \|A\| + \|B\|$.
- For $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, an example of a matrix norm is the Frobenius norm, defined as

$$\|\mathbf{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n (a_{ij})^2\right)^{1/2}$$

- Note that the Frobenius norm is equivalent to the Euclidean norm on $\mathbb{R}^{m\times n}$.
- For this course, only consider matrix norms satisfying the addition condition:
 - 4. $||AB|| \le ||A|| ||B||$.
- The Frobenius norm satisfies condition 4, $\|AB\|_F \leq \|A\|_F \|B\|_F$.
- Let $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ be vector norms on \mathbb{R}^n and \mathbb{R}^m , respectively. The matrix norm is induced by, or is compatible with, the given vector norms if for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and any vector $\mathbf{x} \in \mathbb{R}^n$, the following inequality is satisfied:

$$\|Ax\|_{(m)} \leq \|A\| \|x\|_{(n)}.$$

• An induced matrix norm as

$$\|m{A}\| = \max_{\|m{x}\|_{(n)}=1} \|m{A}m{x}\|_{(m)}.$$

- For each matrix A the maximum $\max_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\|$ is attainable; that is, a vector \boldsymbol{x}_0 exists such that $\|\boldsymbol{x}_0\| = 1$ and $\|\boldsymbol{A}\boldsymbol{x}_0\| = \|\boldsymbol{A}\|$.
- ♠ Theorem 3.8: Let

$$\|oldsymbol{x}\| = \left(\sum_{k=1}^n |x_k|^2\right)^{1/2} = \sqrt{\langle oldsymbol{x}, oldsymbol{x}
angle}$$

the matrix norm induced by this vector norm is

$$\|\boldsymbol{A}\| = \sqrt{\lambda_1}$$

where λ_1 is the largest eigenvalue of the matrix $\boldsymbol{A}^{\top}\boldsymbol{A}$.

• Rayleigh's Inequality: If an $n \times n$ matrix P is real symmetric positive definite, then

$$\lambda_{\min}(\boldsymbol{P}) \|\boldsymbol{x}\|^2 \leq \boldsymbol{x}^T \boldsymbol{P} \boldsymbol{x} \leq \lambda_{\max}(\boldsymbol{P}) \|\boldsymbol{x}\|^2$$

where $\lambda_{\min}(\mathbf{P})$ denotes the smallest eigenvalue of \mathbf{P} , and $\lambda_{\max}(\mathbf{P})$ denotes the largest eigenvalue of \mathbf{P} .

[Ref]:

Edwin K.P. Chong, Stanislaw H. Żak, "PART I MATHEMATICAL REVIEW" in "An introduction to optimization", 4th Edition, John Wiley and Sons, Inc. 2013.