

















































### **ACURÁCIA:**

$$Acur\'acia = \frac{Verdadeiro~Positivo + Verdadeiro~Negativo}{Total}$$



### **ACURÁCIA:**

$$Acurácia = \frac{Verdadeiro\ Positivo + Verdadeiro\ Negativo}{Total}$$

$$Acur$$
ácia =  $\frac{1+2}{1+2+1+2}$  = 50%



#### **ACURÁCIA:**

0.5

$$Acurácia = \frac{Verdadeiro\ Positivo + Verdadeiro\ Negativo}{Total}$$

$$Acur$$
ácia =  $\frac{1+2}{1+2+1+2}$  = 50%

accuracy\_score(y\_true, y\_pred)

from sklearn.metrics import accuracy\_score



### PRECISÃO:

$$Precis$$
ão = 
$$\frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Positivo}$$



### PRECISÃO:

$$Precis$$
ão = 
$$\frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Positivo}$$

$$Precisão = \frac{1}{1+1} = 50\%$$



#### PRECISÃO:

$$Precis\~ao = \frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Positivo}$$

$$Precisão = \frac{1}{1+1} = 50\%$$

from sklearn.metrics import precision\_score
precision\_score(y\_true, y\_pred,pos\_label='+')

0.5



#### PRECISÃO:

$$Precis$$
ão = 
$$\frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Positivo}$$

$$Precisão = \frac{1}{1+1} = 50\%$$

from sklearn.metrics import precision\_score
precision\_score(y\_true, y\_pred,pos\_label='+')

0.5



#### **RECALL:**

$$Recall = \frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Negativo}$$



#### **RECALL:**

$$Recall = \frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Negativo}$$

$$Recall = \frac{1}{1+2} = 33\%$$



#### **RECALL:**

$$Recall = \frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Negativo}$$

$$Recall = \frac{1}{1+2} = 33\%$$

from sklearn.metrics import recall\_score
recall\_score(y\_true, y\_pred,pos\_label='+')

0.3333333333333333



#### **RECALL:**

$$Recall = \frac{Verdadeiro\ Positivo}{Verdadeiro\ Positivo + Falso\ Negativo}$$

$$Recall = \frac{1}{1+2} = 33\%$$



### **AVALIANDO FRAUDES!**

Um recall de 100% é bom?



#### **AVALIANDO FRAUDES!**

### Um recall de 100% é bom?

```
# Dados
y_{true} = [0,0,0,1,1,1]
y_pred = [1,1,1,1,1,1]
from sklearn.metrics import confusion_matrix
confusion_matrix(y_true,y_pred,labels=[1,0])
array([[3, 0],
       [3, 0]], dtype=int64)
from sklearn.metrics import precision_score
precision_score(y_true,y_pred)
0.5
from sklearn.metrics import recall_score
recall_score(y_true,y_pred)
1.0
```

1: é fraude 0: não é fraude

#### **AVALIANDO FRAUDES!**

1.0

### Um recall de 100% é bom?

```
# Dados
y_{true} = [0,0,0,1,1,1]
y_pred = [1,1,1,1,1,1]
from sklearn.metrics import confusion_matrix
confusion_matrix(y_true,y_pred,labels=[1,0])
array([[3, 0],
       [3, 0]], dtype=int64)
from sklearn.metrics import precision_score
precision_score(y_true,y_pred)
0.5
from sklearn.metrics import recall_score
recall_score(y_true,y_pred)
```

+ - (SO) + 3 0 RECALL
3 PRECISÃO

MODELO

1: é fraude 0: não é fraude

### **AVALIANDO FRAUDES!**

Uma acurácia de 90% é boa?

#### **AVALIANDO FRAUDES!**

Uma acurácia de 90% é boa?

#### **AVALIANDO FRAUDES!**

CUIDADO! Essas métricas de avaliação não possuem nenhum valor sozinhas (e até podem levar a conclusões erradas). Aqui percebemos claramente a importância de sermos cientistas de dados impressionadores!



