Podsumowanie projektu - Wyjaśnialne Uczenie Maszynowe

Grupa III

Wojciech Celej, Daria Ilina, Zuzanna Opała, Olaf Skrabacz, Julia Tonkiewicz, Piotr Wawrzyniak, Mateusz Zakrzewski

Pomysł:

Stwórzmy *super model* wykorzystujący wszystkie parametry i podzielmy go na dwa mniejsze modele

Główne problemy

Co właściwie ma przewidywać ten model?

- naturalne wydają się kliknięcia lub inne tego rodzaje wskaźniki
- nowe danych: wiemy tylko co było kliknięte, a nie wiemy zupełnie czemu
- **stare dane**: nieaktualne marki i generalnie nie do końca łączące się kolumny, ale <u>dużo więcej informacji</u>, na przykład o nieklikniętych produktach

Jak uprościć problem do prostej struktury kilku zmiennych i SQL?

- stworzenie dobrego rankingu wymaga raczej bardziej skomplikowanej struktury
- w części modelu oceniającej produkt możemy korzystać tylko ze zmiennych mało różnicujących: kategoria, marka, cena

Główne problemy

Co właściwie ma przewidywać ten model?

- naturalne wydają się kliknięcia lub inne tego rodzaje wskaźniki
- nowe danych: wiemy tylko co było kliknięte, a nie wiemy zupełnie czemu
- **stare dane**: nieaktualne marki i generalnie nie do końca łączące się kolumny, ale <u>dużo więcej informacji</u>, na przykład o nieklikniętych produktach

Jak uprościć problem do prostej struktury kilku zmiennych i SQL?

- stworzenie dobrego rankingu wymaga raczej bardziej skomplikowanej struktury
- w części modelu oceniającej produkt możemy korzystać tylko ze zmiennych mało różnicujących: kategoria, marka, cena

Główne problemy

Co właściwie ma przewidywać ten model?

- naturalne wydają się kliknięcia lub inne tego rodzaje wskaźniki
- nowe danych: wiemy tylko co było kliknięte, a nie wiemy zupełnie czemu
- **stare dane**: nieaktualne marki i generalnie nie do końca łączące się kolumny, ale <u>dużo więcej informacji</u>, na przykład o nieklikniętych produktach

Jak uprościć problem do prostej struktury kilku zmiennych i SQL?

- stworzenie dobrego rankingu wymaga raczej bardziej skomplikowanej struktury
- w części modelu oceniającej produkt możemy korzystać tylko ze zmiennych mało różnicujących: kategoria, marka, cena

Bazowy model

Klasyfikacja użytkownika

Prawdopodobieństwo kliknięcia produktu

Basket - wskaźnik należący do przedziału <0, 1>; Sieć uczy się kompresować dane o użytkowniku w taki sposób aby ten wskaźnik dawał możliwie dużo podczas predykcji - w przypadku tej sieci intuicja zgadzała się z uzyskanymi wynikami. Sieć osiągnęła identyczne rezultaty co metody wykorzystujące do predykcji wszystkie parametry.

USER FEATURES

Model osiągnął takie same wyniki co model wykorzystujący wszystkie parametry do predykcji

Model zgodny z wymaganiami

Klasyfikacja użytkownika - aproksymacja

Aproksymacja cechy "basket" wyznaczonej przez sieć neuronową za pomocą drzewa.

Prawdopodobieństwo kliknięcia produktu

FEATURES FOR BASKETS

Bazując na stałym współczynniku "basket" tworzymy prosty model

Wyjaśnienie modelu

SHAP Values

stare podejście

nowe podejście

Istotność zmiennych na podstawie SHAP

Wykres PDP + CP dla zmiennej *price*

Wykresy Break Down dla najwyżej ocenionej próbki

Wykresy Break Down dla najniżej ocenionej próbki

Stosunek kliknięć do liczby ofert w danej cenie

Podsumowanie

- nasz model składał się z dwóch części różniących się jedną wartością dla poszczególnych koszyków
- użyliśmy starych danych które pozwalały przewidywać kliknięcia
- głównym aspektem, na który patrzył model była cena i procent przeceny

Co mogliśmy zrobić lepiej

- stworzyć bardziej skomplikowany model niż liniowy
- jakoś użyć informacji o marce (może encoding na innym zadaniu jako, że informacji o klikaniu w nowych danych nie było)