Statistical Inference - Homework 3

Nov. 25, 2021

NOTE: Homework 3 is due Dec. 03, 2021.

- 1. Let $X = (X_1, \dots, X_n)$ be a random sample from uniform distribution $U(\theta, 2\theta)$, $0 < \theta < +\infty$. Derive the MLE of θ . Is the MLE unbiased? If not, find an unbiased estimate based on the MLE.
- 2. Let $X = (X_1, \dots, X_n)$ be a random sample from the distribution with p.d.f.

$$f(x;\theta) = \frac{1}{2\sigma} \exp\{-|x - a|/\sigma\},\,$$

where $\sigma > 0$, $-\infty < a < +\infty$. Find the MLE of a and σ .

3. Let $X = (X_1, \dots, X_n)$ be a random sample from the Weibull distribution with p.d.f.

$$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, \quad x > 0 \quad (\alpha, \beta > 0).$$

Suppose β is known, determine the MLE of α .

4. Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from the p.d.f

$$f(x) = \theta x^{\theta - 1}, \quad 0 < x < 1, 0 < \theta < \infty.$$

Find the MLE of θ , and show that is variance goes to 0 when n goes to ∞ .

- 5. Let $X = (X_1, \dots, X_n)$ be a random sample from normal distribution $N(\mu, \sigma^2)$ (both μ and σ^2 are unknown), derive the UMVUE of (1) $3\mu + 4\sigma^2$, and (2) $\mu^2/(4\sigma^2)$.
- 6. Let $X = (X_1, \dots, X_n)$ be a random sample from normal distribution $N(0, \sigma^2)$, show that

$$\hat{\sigma} = \frac{\Gamma(\frac{n}{2})}{\sqrt{2}\Gamma(\frac{n+1}{2})} \left(\sum_{i=1}^{n} X_i^2\right)^{1/2}$$

is the UMVUE of σ and determine its efficiency.

7. Let $X = (X_1, \dots, X_n)$ be a random sample from Geometric distribution:

$$P(X_1 = i) = \theta(1 - \theta)^{i-1}, i = 1, 2, \dots, 0 < \theta < 1.$$

Derive the UMVUE of θ^{-1} and θ .

8. Let $X = (X_1, \dots, X_n)$ be a random sample from Bernoulli(p). For $n \geq 4$, show that the product $X_1X_2X_3X_4$ is an unbiased estimator of p^4 , and use this factor to find the best unbiased estimator for p^4 .