Série n°3

Cinématique du point matériel-Base de Frenet

Exercice 1

On montre que le vecteur vitesse en base de Frenet est d'expression : $\vec{V} = R \dot{\theta}(t) . \vec{u}_T$, où R est le rayon de courbure de la trajectoire curviligne.

- 1- Retrouver les expressions des composantes a_T et a_N du vecteur accélération \vec{a} dans la base de Frenet.
- 2- Utiliser ce dernier résultat pour en déduire les composantes du vecteur vitesse \vec{V} et accélération \vec{a} d'un mouvement circulaire uniforme, circulaire accéléré et circulaire décéléré, dans la base de Frenet. Faire un schéma des vecteurs \vec{V} et \vec{a} pour chacun des cas.

<u>Exercice 2</u> (Contrôle 1, 2016/2017)

Dans le repère $(O, \vec{u}_x, \vec{u}_y)$, la position d'un point M est définie à chaque instant t par les

équations horaires:
$$\begin{cases} x(t) = 2t \\ y(t) = \sqrt{4(1-t^2)} \end{cases}$$

- 1- Retrouver l'équation de la trajectoire. Préciser sa nature.
- 2- a) Déterminer les composantes cartésiennes du vecteur vitesse. Exprimer sa norme.
 - b) En déduire les composantes a_T et a_N du vecteur accélération dans la base de Frenet
- 3- a) Déterminer les composantes cartésiennes du vecteur accélération. Exprimer sa norme.
 - b) En déduire que le module du vecteur accélération est indépendant du repère d'étude.

Exercice 3

Un tracteur tirant une charrue à disque a un mouvement d'équations horaires :

$$\begin{cases} \rho(t) = \rho_0 \exp(\theta(t)) \\ \theta(t) = \omega t \end{cases}$$
 Où ρ_0 et ω sont des constantes positives ($\omega = \theta$)

- 1- Déterminer les composantes radiale V_ρ et tangentielle V_θ du vecteur vitesse en coordonnées polaires, en fonction de ρ_0 , ω et t. En déduire la norme V du vecteur vitesse.
- 2- Déterminer les composantes radiale a_{ρ} et tangentielle a_{θ} du vecteur accélération \vec{a} en coordonnées polaires. En déduire la norme a du vecteur accélération.
- 3- a) Rappeler les expressions de at et an dans la base de Frenet.
 - b) En déduire le rayon de courbure R_c(t) de cette trajectoire.