Formule sommatoire de Poisson

On démontre la formule sommatoire de Poisson en utilisant principalement la théorie des séries de Fourier.

[GOU20] p. 284

Théorème 1 (Formule sommatoire de Poisson). Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction de classe \mathscr{C}^1 telle que $f(x) = O\left(\frac{1}{x^2}\right)$ et $f'(x) = O\left(\frac{1}{x^2}\right)$ quand $|x| \to +\infty$. Alors :

$$\forall x \in \mathbb{R}, \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \widehat{f}(2\pi n) e^{2i\pi nx}$$

où \hat{f} désigne la transformée de Fourier de f .

Démonstration. Comme $f(x) = O\left(\frac{1}{x^2}\right)$, il existe M > 0 et A > 0 tel que

$$\forall |x| > A, |f(x)| \le \frac{M}{x^2} \tag{*}$$

Soit K > 0. On a $\forall x \in [-K, K], \forall n \in \mathbb{Z}$ tel que |n| > K + A:

$$|f(x+n)| \stackrel{(*)}{\leq} \frac{M}{(x+n)^2} \leq \frac{M}{(|n|-|x|)^2} \leq \frac{M}{(|n|-K)^2}$$

Donc $\sum_{n\in\mathbb{Z}} f(x+n)$ converge normalement sur tout segment de \mathbb{R} donc converge simplement sur \mathbb{R} . On note F la limite simple en question.

On montre de même que $\sum_{n\in\mathbb{Z}} f'(x+n)$ converge normalement sur tout segment de \mathbb{R} . Donc par le théorème de dérivation des suites de fonctions, F est de classe \mathscr{C}^1 sur tout segment de \mathbb{R} , donc sur \mathbb{R} tout entier (la continuité et la dérivabilité sont des propriétés locales).

Soit $x \in \mathbb{R}$. On a :

$$\forall N \in \mathbb{N}, \sum_{n=-N}^{N} f(x+1+n) = \sum_{n=-N-1}^{N+1} f(x+n)$$

$$\stackrel{N \longrightarrow +\infty}{\Longrightarrow} F(x+1) = F(x)$$

ie. F est 1-périodique. On peut calculer ses coefficients de Fourier. $\forall n \in \mathbb{Z}$,

$$c_n(F) = \int_0^1 F(t)e^{-2i\pi nt} dt = \int_0^1 \sum_{n=-\infty}^{+\infty} f(t+n)e^{-2i\pi nt} dt$$

Par convergence uniforme sur un segment, on peut échanger somme et intégrale :

$$c_n(F) = \sum_{n=-\infty}^{+\infty} \int_n^{n+1} f(t)e^{-2i\pi nt} dt$$

Or, la transformée de Fourier d'une fonction L_1 est convergente. On peut donc écrire :

$$c_n(F) = \int_{-\infty}^{+\infty} f(t)e^{-2i\pi nt} dt = \widehat{f}(2\pi n)$$

Comme F est de classe \mathscr{C}^1 , sa série de Fourier converge uniformément vers F. D'où le résultat. \square

Application 2 (Identité de Jacobi).

$$\forall s > 0, \sum_{n = -\infty}^{+\infty} e^{-\pi n^2 s} = \frac{1}{\sqrt{s}} \sum_{n = -\infty}^{+\infty} e^{-\frac{\pi n^2}{s}}$$

Démonstration. Soit $\alpha > 0$. On définit $G_{\alpha} : x \mapsto e^{-\alpha x^2}$ et on connaît sa transformée de Fourier :

$$\forall \xi \in \mathbb{R}, \ \widehat{G}_{\alpha}(\xi) = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\xi^2}{4\alpha}}$$

Soit s > 0. Appliquons le Théorème 1 à la fonction $G_{\pi s}$:

$$\sum_{n \in \mathbb{Z}} e^{-\pi s(x+n)^2} = \frac{1}{\sqrt{s}} \sum_{n \in \mathbb{Z}} e^{-\frac{(2\pi n)^2}{4\pi s}} e^{2i\pi nx}$$

$$\stackrel{x=0}{\Longrightarrow} \sum_{n \in \mathbb{Z}} e^{-\pi s n^2} = \frac{1}{\sqrt{s}} \sum_{n \in \mathbb{Z}} e^{-\frac{\pi n^2}{s}}$$

Bibliographie

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. $3^{\rm e}$ éd. Ellipses, 21 avr. 2020.

 $\verb|https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html|.$