OBJETIVOS:

- Identificar los elementos asociados de los polígonos regulares.
- Calcular la longitud de los lados y apotemas de los polígonos regulares en función a su circunradio.
- Entender el concepto de sección aurea.
- Aplicar adecuadamente los teoremas en los problemas.

- DEFINICIÓN.
- TEOREMAS GENERALES.
- POLÍGONOS REGULARES FRECUENTES.
- SECCIÓN AUREA.

CURSO DE GEOMETRÍA

NOCIONES PREVIAS

B

 \boldsymbol{a}

 \boldsymbol{A}

Polígono equilátero

Polígono Regular

0: Centro

β: *m*∢*central*

EN POLÍGONOS REGULARES

$$m \not\leq i_n = \frac{180^{\circ}(n-2)}{n}$$

$$m \not = C_n = m \not = n = \frac{360^{\circ}}{n}$$

n: Número de lados $(n \ge 3)$

Todo polígono regular se puede inscribir y circunscribir a dos circunferencias concéntricas.

Polígono regular ABCDEGF

➤ 0: Centro del Polígono Regular

> r: Inradio

> R: Circunradio

 $ightharpoonup \overline{OH}$: Apotema $(a_p = r)$

 $\triangleright \theta_n$: Medida del ángulo central

 $\triangleright \beta$: Medida del ángulo exterior

$$\beta = \theta_n$$

 \triangleright ΔEOG : Triángulo elemental del polígono regular.

 $ightharpoonup l_n$: Longitud del lado del polígono regular

Estudiaremos las relaciones entre el lado, ángulo central, apotema y circunradio de un polígono regular

CÁLCULO DE LA LONGITUD DEL LADO Y APOTEMA DE UN POLÍGONO REGULAR

 \Box Cálculo de la longitud del lado, en el ΔCOD : elemental, aplicamos el teorema de coseno:

$$(l_n)^2 = R^2 + R^2 - 2(R)(R)\cos\theta_n$$

$$\rightarrow (l_n)^2 = 2R^2 (1 - \cos\theta_n)$$

$$l_n = R\sqrt{2(1-\cos\theta_n)} \quad ...(i)$$

 \square Cálculo de la longitud de la apotema, en el $\triangle OMB$: T. Pitágoras

$$(a_p)^2 = R^2 - \left(\frac{l_n}{2}\right)^2$$
 $\rightarrow a_p = \sqrt{R^2 - \left(\frac{l_n}{2}\right)^2}$

$$a_p = \frac{1}{2} \sqrt{4R^2 - (l_n)^2}$$
 ... (ii)

Reemplazamos (i) en (ii):

$$a_p = \frac{R}{2}\sqrt{2(1+\cos\theta_n)}$$

EXAMEN DE ADMISIÓN UNI 2017-I

Determine la longitud (en cm) del lado de un polígono regular inscrito en una circunferencia $\mathcal C$ de radio R cm, si la longitud del lado del polígono regular de doble número de lados inscrito en \mathcal{C} es $\frac{R}{2}$ cm.

A)
$$\frac{\sqrt{15}}{2}R$$
 B) $\frac{\sqrt{15}}{3}R$ C) $\frac{\sqrt{15}}{4}R$

$$B) \frac{\sqrt{15}}{3} R$$

$$C) \frac{\sqrt{15}}{4} R$$

$$D) \; \frac{\sqrt{15}}{5} R$$

$$E) \; \frac{\sqrt{15}}{6} R$$

Nota:

Para generar al polígono regular de doble número de lados inscrito en la misma circunferencia, ubicamos el punto medio de uno de los arcos que le corresponde a uno de los lados del polígono regular inicial.

RESOLUCIÓN Piden AB = x

- Sea \overline{AB} uno de los lados del polígono regular cuya longitud de lado nos piden calcular.
- Sea $m\widehat{AM} = m\widehat{MB}$ Entonces \overline{BM} , \overline{MA} , ... son los lados del polígono regular de doble número de lados. $\rightarrow BM = MA = \frac{R}{2}$
 - Trazamos el diámetro \overline{ML} y la cuerda $\overline{BL} \rightarrow AN = NB = \frac{x}{2}$
- En el $\triangle MBL$, por T. Pitágoras:

$$BL = \frac{R\sqrt{15}}{2}$$

En el $\triangle MBL$, por producto de catetos:

$$\left(\frac{R}{2}\right)\left(\frac{R\sqrt{15}}{2}\right) = \left(\frac{x}{2}\right)(2R)$$

$$\therefore x = \frac{\sqrt{15}}{4}R$$

POLÍGONOS REGULARES FRECUENTES

TRIÁNGULO REGULAR (l_3)

Ángulo central θ_3

$$\theta_3 = \frac{360^\circ}{3}$$

$$\theta_3 = 120^{\circ}$$

Cálculo del lado l₃

En el ΔBOC , elemental, isósceles de 120°

$$l_3 = R\sqrt{3}$$

Cálculo del Apotema a_{p3}

El $\triangle OMC$ es de 30° y 60°

$$a_{p3}=\frac{R}{2}$$

NOTA: Al triángulo regular, simplemente le denominamos, triángulo equilátero.

CUADRILÁTERO REGULAR (l_4)

Ángulo Central θ_4

$$\theta_4 = \frac{360^{\circ}}{4}$$

$$\theta_4$$
= 90°

Cálculo del Lado l₄

En el $\triangle BOC$, elemental, isósceles de 45° y 45°

$$l_4 = R\sqrt{2}$$

Cálculo del Apotema a_{p4}

El $\triangle OMC$ es de 45° y 45°

$$a_{p4} = \frac{R\sqrt{2}}{2}$$

NOTA: Al cuadrilátero regular, simplemente le denominamos, cuadrado.

HEXÁGONO REGULAR (l_6)

Ángulo central θ_6

$$\theta_6 = \frac{360^{\circ}}{6}$$

$$\theta_6 = 60^{\circ}$$

Cálculo del lado l₆

En el ΔBOC , elemental, es equilátero

$$l_6 = R$$

Cálculo del apotema a_{p6}

El $\triangle OMC$ es de 30° y 60°

$$a_{p6} = \frac{R\sqrt{3}}{2}$$

OCTÁGONO REGULAR (l_8)

Ángulo central θ_8

$$\theta_8 = \frac{360^\circ}{8}$$

$$\theta_8 = 45^{\circ}$$

Cálculo del lado l₈

Por teorema en el ΔAOB , elemental:

$$\boldsymbol{l}_n = R\sqrt{2(1-\cos\theta_n)}$$

$$l_8 = R\sqrt{2(1-\cos 45^\circ)}$$

$$l_8 = R\sqrt{2 - \sqrt{2}}$$

Cálculo del apotema a_{p8}

Por teorema:

rema:
$$a_p = \frac{R}{2} \sqrt{2(1 + cos\theta_n)}$$

$$a_{p8} = \frac{R}{2}\sqrt{2(1+\cos 45^{\circ})}$$

$$a_{p8} = \frac{R}{2}\sqrt{2 + \sqrt{2}}$$

EXAMEN DE ADMISIÓN UNI 2013-II

Se colocan ocho monedas de igual radio tangentes dos a dos, tangencialmente alrededor de una moneda de mayor radio, entonces la relación entre el radio de la moneda mayor y el radio de la moneda menor es:

$$A)\frac{2}{\sqrt{2-\sqrt{2}}}-2$$

$$B)\frac{2}{\sqrt{2-\sqrt{2}}}-1$$

$$C)\frac{2}{\sqrt{2-\sqrt{2}}}-\frac{1}{2}$$

$$D)\frac{2}{\sqrt{2-\sqrt{2}}}-\frac{1}{4}$$

$$(D)\frac{2}{\sqrt{2-\sqrt{2}}}-\frac{1}{8}$$

RESOLUCIÓN Piden $\frac{R}{r}$

- Como las circunferencias son tangentes exteriores, usamos la colinealidad entre los centros y el punto de tangencia.
 - Con ello notamos que, el polígono formado es un octágono regular.

$$\rightarrow 2r = l_8$$

Sabemos: $l_8 = (R + r)\sqrt{2 - \sqrt{2}}$ 2rLado del $\Delta Elemental$

$$\rightarrow 2r - r\sqrt{2 - \sqrt{2}} = R\sqrt{2 - \sqrt{2}}$$

Operando:

$$\therefore \frac{R}{r} = \frac{2}{\sqrt{2-\sqrt{2}}} - 1$$

Ángulo central θ_{12}

$$\theta_{12} = \frac{360^{\circ}}{12}$$

$$heta_{12}=30^\circ$$

Cálculo del lado l_{12}

Por teorema en el ΔFOG , elemental:

$$\boldsymbol{l}_n = R\sqrt{2(1-\cos\theta_n)}$$

$$l_n = R\sqrt{2(1 - \cos\theta_n)}$$

$$l_{12} = R\sqrt{2(1 - \cos30^\circ)}$$

$$l_{12}=R\sqrt{2-\sqrt{3}}$$

Cálculo del apotema a_{p12}

Por teorema:

$$a_p = \frac{R}{2}\sqrt{2(1+\cos\theta_n)}$$

$$a_{p} = \frac{R}{2}\sqrt{2(1+\cos\theta_{n})}$$

$$a_{p12} = \frac{R}{2}\sqrt{2(1+\cos30^{\circ})}$$

$$a_{p12} = \frac{R}{2}\sqrt{2+\sqrt{3}}$$

$$a_{p12} = \frac{R}{2}\sqrt{2 + \sqrt{3}}$$

DIVISIÓN DE UN SEGMENTO EN MEDIA Y EXTREMA RAZÓN

Dado el segmento \overline{AB} , ubicamos P en \overline{AB} (AP > PB)P divide en media y extrema razón a \overline{AB} , cuando \overline{AP} sea media proporcional entre \overline{AB} y \overline{PB} .

De lo anterior:

$$\frac{AB}{AP} = \frac{AP}{PB} \rightarrow \frac{\ell}{x} = \frac{x}{\ell - x} \qquad x^2 + \ell x - \ell^2 = 0$$

$$x = \ell\left(\frac{\sqrt{5} - 1}{2}\right)$$

De la relación encontrada, indicamos que \overline{AP} es la sección áurea de \overline{AB} .

TENER EN CUENTA:

Si \overline{MN} es la sección áurea de \overline{PQ} , entonces:

$$\frac{MN}{PQ} = \frac{\sqrt{5} - 1}{2} = \phi'$$
 Conjugado del número de oro

Como también:

$$\frac{PQ}{MN} = \frac{\sqrt{5} + 1}{2} = \phi$$
 Número de oro

El número de oro ϕ ($\phi \approx 1,618...$) y su conjugado son sin duda alguna números muy interesantes que han despertado el interés desde los griegos de la época de Euclides y de grandes personajes de la historia, como Leonardo da Vinci, Luca Pacioli, Johannes Kepler entre otros, este valor se encuentra no sólo por meras expresiones matemáticas, sino también en la naturaleza.

CURSO DE GEOMETRÍA

EXAMEN DE ADMISIÓN UNI 2008-I

En la figura $CB = \sqrt{7}$, O centro de la circunferencia, la razón de r y BA es de \overline{AB} , determine AT.

$$A)\frac{1}{2}(\sqrt{5}-1)$$

$$B)\frac{3}{2}(\sqrt{5}-1)$$

$$C)\frac{4}{3}(\sqrt{5}-1)$$

$$D)\frac{5}{4}(\sqrt{5}-1)$$

$$E)\frac{5}{3}(\sqrt{5}-1)$$

DIVISIÓN DE UN SEGMENTO EN MEDIA Y EXTREMA RAZÓN

 $\frac{AT}{AB} = \frac{\sqrt{5} - 1}{2} = \frac{x}{3a} \qquad x = 3a \left(\frac{\sqrt{5} - 1}{2}\right)$

(i)

Notamos que debemos calcular el valor de α para encontrar el valor de x

• Como r = 2a

$$\rightarrow AC = 4a$$

 En el △ABC aplicamos el teorema de Pitágoras:

$$(4a)^2 = (3a)^2 + \sqrt{7}^2$$
$$\rightarrow a = 1$$

Reemplazamos en (i):

$$\therefore x = 3\left(\frac{\sqrt{5}-1}{2}\right)$$

VEAMOS LA PRUEBA DE LOS RESULTADOS PARA LAS LONGITUDES DE l_{10} y a_{p10}

Para ello, usaremos el triángulo elemental del decágono regular:

Cálculo de l_{10} Trazamos la bisectriz interior \overline{BL} . $\rightarrow El \Delta LBA$ es isósceles,

con ello $BL = l_{10}$, además: $OL = l_{10} \rightarrow LA = R - l_{10}$

En el $\triangle OBA$ por antiparalela:

$$(l_{10})^2 = (R - l_{10})(R) \rightarrow (l_{10})^2 + R \cdot l_{10} - R^2 = 0$$

Resolviendo:
$$: l_{10} = \frac{R}{2}(\sqrt{5} - 1) ...(i)$$

Cálculo de a_{p10}

$$a_p = \frac{1}{2} \sqrt{4R^2 - (l_n)^2}$$

Por teorema sabemos:
$$a_p = \frac{1}{2} \sqrt{4R^2 - (l_n)^2} \rightarrow a_{p10} = \frac{1}{2} \sqrt{4R^2 - (l_{10})^2} \dots (ii)$$

Reemplazamos (i) en (ii):

$$\therefore a_{p10} = \frac{R}{4} (\sqrt{10 + 2\sqrt{5}})$$

Nota:

De
$$(i)$$
 $\frac{l_{10}}{R} = \frac{\sqrt{5} - 1}{2}$

De (i) $\frac{l_{10}}{R} = \frac{\sqrt{5}-1}{2}$ El lado de un decágono regular es la sección áurea de su circunradio.

VEAMOS LA PRUEBA DE LOS RESULTADOS PARA LAS LONGITUDES DE $l_{5}\ y\ a_{p5}$

Para ello, usaremos el triángulo elemental del pentágono regular:

R72° 72° $\overline{L} R - \overline{l}_{10}$ l_{10}

Cálculo de l₅

Trazamos la ceviana interior \overline{BL} . Tal que OB = BL = R

Notamos que el ΔOBL es el elemental del decágono regular de circunradio R.

Con ello tenemos que $OL = l_{10} \rightarrow LA = R - l_{10}$

En el $\triangle OBL$:

$$(l_5)^2 = R^2 + (R)(R - l_{10}) \dots (i)$$

Pero:
$$l_{10} = \frac{R}{2}(\sqrt{5} - 1)$$

Reemplazamos en (i):

$$\therefore l_5 = \frac{R}{2} \sqrt{10 - 2\sqrt{5}} \dots (ii)$$

Cálculo de a_{p10}

$$a_p = \frac{1}{2} \sqrt{4R^2 - (l_n)^2}$$

Por teorema sabemos:
$$a_p = \frac{1}{2} \sqrt{4R^2 - (l_n)^2} \rightarrow a_{p5} = \frac{1}{2} \sqrt{4R^2 - (l_5)^2} \dots (iii)$$

Reemplazamos (ii) en (iii):
$$a_{p5} = \frac{R}{4}(\sqrt{5} + 1)$$

TRIÁNGULOS ELEMENTALES

ΔElemental del triángulo regular

ΔElemental del cuadrilátero regular

ΔElemental del pentágono regular

ΔElemental del hexágono regular

ΔElemental del octágono regular

 Δ Elemental del decágono regular $\frac{1}{36}$

TEOREMAS ADICIONALES

Tener presente también a estos triángulos, ya que tienen cierta frecuencia en problemas que involucren a polígonos regulares.

PENTÁGONO REGULAR

La longitud del lado de un pentágono regular es igual a la longitud de la sección áurea de su diagonal.

De manera práctica:

$$\frac{a}{d} = \frac{\sqrt{5} - 1}{2}$$

También:

$$d=a\bigg(\!\frac{\sqrt{5}+1}{2}\!\bigg)$$

Si l_{10} , l_6 y l_5 representan las longitudes de los lados del decágono, hexágono y pentágono (todos regulares) con el mismo circunradio.

Se cumple:

$$\theta = 90^{\circ}$$

$$\leftrightarrow (l_{10})^2 + (l_6)^2 = (l_5)^2$$

Triángulo que cumple el teorema de Pitágoras

 ι_{5}

CURSO DE GEOMETRÍA

POLÍGONOS REGULARES

EXAMEN DE ADMISIÓN UNI 2019-II

En la figura O es el centro de la semicircunferencia. Además, P y N son puntos de tangencia. Calcule PR.

$$A)\frac{k}{2}\sqrt{10-\sqrt{20}}$$

$$(B)\frac{k}{3}\sqrt{10-\sqrt{20}}$$

$$C)\frac{k}{2}\sqrt{15-\sqrt{20}}$$

$$(A)\frac{k}{4}\sqrt{15-\sqrt{20}}$$

$$E)\frac{k}{2}\sqrt{10+\sqrt{20}}$$

RECUERDA:

$$l_5 = \frac{R}{2}\sqrt{10-2\sqrt{5}}$$

En el $\triangle RMP$: Los catetos son: $RM = l_{10}$, $MP = l_{6}$ Entonces se trata del triángulo rectángulo donde la longitud de su hipotenusa es $\rightarrow x = l_{5}$ igual a l_{5}

$$\therefore x = \frac{k}{2} \sqrt{10 - 2\sqrt{5}}$$