Quiz 5

Started: Nov 12 at 11:31am

Quiz Instructions

Question 1 1 pts

Given $\mathbf{x} \in R^3$, what is the corresponding mapping function $\phi(\mathbf{x})$ for the kernel function $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y}) = (1 + \mathbf{x}^T \mathbf{y})^2$.

(A)
$$\phi(\mathbf{x}) = [1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3]$$

(B)
$$\phi(\mathbf{x}) = [1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1^2, x_2^2, x_3^2]$$

(C)
$$\phi(\mathbf{x}) = [1, 2x_1, 2x_2, 2x_3, 2x_1x_2, 2x_1x_3, 2x_2x_3, x_1^2, x_2^2, x_3^2]$$

(D)
$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3, x_1^2, x_2^2, x_3^2]$$

 \bigcirc A

○ B

 \bigcirc C

O D

Question 2 1 pts

Which of the following statements about kernels are true?

- (A) After applying the mapping function $\phi(\mathbf{x}) = [\mathbf{x}, \mathbf{x}^2]$, the data always become linearly separable.
- (B) $\mathbf{x}, \mathbf{y} \in R^2, K(\mathbf{x}, \mathbf{y}) = (1 + 8\mathbf{x}^T\mathbf{y})^2$ is a valid kernel.
- (C) Let $K(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$. Computing the inner product between $\phi(\mathbf{x})$ and $\phi(\mathbf{y})$ using kernel function $K(\mathbf{x}, \mathbf{y})$ is always slower than directly estimating from $\phi(\mathbf{x})^T \phi(\mathbf{y})$.
- (D) A kernel function may allow us to map feature vectors in to another space where the data is linearly separable.

Select all that apply

_ A			
□В			
_ C			
_ D			

select all that apply A B C	Question 3	1 p	ots
□ A□ B			
□ A□ B			
□ A□ B			
ПВ	select all that apply		
	A		
_ C	□В		
	_ C		
_ D	_ D		

Question 4	1 pts

As we see in the lecture, Soft SVM identifies a hyper-plane $\mathbf{w}^T\mathbf{x} + b = 0$ by solving the following optimization problem.

$$\min_{w,b,\xi_i} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C \cdot \sum_{i=1}^N \xi_i$$

$$s.t \ \forall i, \ y(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$

 $\xi_i \ge 0$

Let $\mathbf{w} = [-1, -1]$ and b = 1 are the solution of the above optimization problem. Given two positive data points $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (1,0)$, $y_1 = y_2 = 1$, what are their corresponding slack variables ξ_1 and ξ_2 , respectively?

- (A) $\xi_1 = 0, \, \xi_2 = 0.5$
- (B) $\xi_1 = 0, \, \xi_2 = 1$
- (C) $\xi_1 = 1, \, \xi_2 = 0$
- (D) $\xi_1 = 1, \, \xi_2 = 0.5$
- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D

Question 5 1 pts

Assume you have datapoints and labels as $X=\{[0,0],[0,3],[-1,1],[3,0],[3,-1],[0,-3]\}$ and $Y=\{-1,-1,-1,1,1,1\}$.

We train a hard SVM classifier as shown in below.

What is w1? (round to 2 decimal places)

w1 = ____

Question 6 1 pts

Follow the previous question. What is w2? (round to 2 decimal places)

w2= ____

Question 7 1 pts

What is b? (round to 2 decimal places)

b= ____

Not saved

Submit Quiz