

1 TITLE OF THE INVENTION

2 VEHICLE SURROUNDINGS MONITORING APPARATUS AND TRAVELING CONTROL

3 SYSTEM INCORPORATING THE APPARATUS

4

5 BACKGROUND OF THE INVENTION

6 1. Field of the invention

7 The present invention relates to a vehicle surroundings
8 monitoring apparatus employing together a monitoring technique
9 on the base of images and a monitoring technique using radar data
10 and a traveling control system incorporating the apparatus.

11 2. Discussion of related arts

12 In recent years, such vehicle surroundings monitoring
13 apparatuses as detecting traveling circumstances in front of an
14 own vehicle by means of processing images taken by a camera mounted
15 on a vehicle and the like and detecting information about a preceding
16 vehicle traveling ahead of the own vehicle from the traveling
17 circumstances, have been proposed. Further, various traveling
18 control systems in which a follow-up control to the preceding
19 vehicle or an intervehicle distance control between the own
20 vehicle and the preceding vehicle are performed using such vehicle
21 surroundings monitoring apparatuses, have been put into practical
22 use.

23 In these vehicle surroundings monitoring apparatuses
24 sometimes the ability of recognizing the preceding vehicle and
25 the like is exacerbated due to adverse conditions such as rain,

9/18/03 ev306628334 - us
EXPRESS MAIL CERTIFICATE
Date _____ Label No. _____
I hereby certify that, on the date indicated above, this paper or
fee was deposited with the U.S. Postal Service & that it was
addressed for delivery to the Commissioner for Patents,
P.O. Box 1450, Alexandria, VA 22313-1450 by "Express Mail"
Post Office to Addressee" service.
1

Name (Print) _____ Signature _____

1 snow, fog, backlight, knighting driving and the like. Japanese
2 Patent Application Laid-open No. Toku-Kai-Hei 6-230115 discloses
3 a technology in which the intervehicle distance between an own
4 vehicle and a preceding vehicle is obtained in two ways, one is
5 processing images taken by a stereoscopic camera and the other
6 is directly detecting the distance by a millimeter wave radar.
7 The reliability of the intervehicle distances obtained in the
8 respective ways is investigated based on exterior circumstances
9 and the like and either of the intervehicle distances is selected
10 based on the reliability.

11 However, the technology disclosed in Toku-Kai-Hei
12 6-230115 has a disadvantage that since the respective
13 reliabilities of stereoscopic camera and millimeter wave radar
14 are judged simply on the basis of the external circumstances,
15 a proper intervehicle distance is rejected and wrong data are
16 adopted in some cases.

17 Further, in the prior art, since only one of the two
18 ways is adopted and the other is discarded as invalid, distance
19 data of the vehicle surroundings monitoring apparatus are not
20 efficiently used.

21

22 SUMMARY OF THE INVENTION

23 It is an object of the present invention to provide
24 a vehicle surroundings monitoring apparatus capable of
25 monitoring exterior circumstances of a vehicle with high

1 precision by efficiently utilizing both exterior information
2 based on picture images and exterior information obtained from
3 a radar and to provided a traveling control system incorporating
4 such an apparatus.

5 A vehicle surroundings monitoring apparatus for
6 monitoring exterior circumstances and detecting a preceding
7 vehicle traveling ahead of an own vehicle, comprises image solid
8 object detecting means for detecting image solid objects based
9 on image information outputted from a CCD camera, millimeter wave
10 solid object detecting means for detecting millimeter wave solid
11 objects based on signals outputted from a millimeter wave radar,
12 fusion solid object establishing means for establishing fusion
13 solid objects composed of single image solid objects, single
14 millimeter wave solid objects and a combination of the image solid
15 objects and the millimeter wave solid objects by fusing the image
16 solid objects and the millimeter wave solid objects, first
17 reliability judging means for judging a degree of reliability
18 of the fusion solid objects based on a detecting situation of
19 the respective fusion solid objects by the image solid object
20 detecting means, second reliability judging means for judging
21 a degree of reliability of the fusion solid objects based on a
22 detecting situation of the respective fusion solid objects by
23 the millimeter wave solid object detecting means and preceding
24 vehicle selecting means for selecting a preceding vehicle
25 traveling ahead of the own vehicle from the fusion solid objects

1 when it is judged that the fusion solid objects have a specified
2 level of reliability according to either of the first reliability
3 judging means and the second reliability judging means.

4

5 BRIEF DESCRIPTION OF THE DRAWINGS

6 Fig. 1 is a schematic view showing a vehicle
7 surroundings monitoring apparatus according to the present
8 invention and a traveling control system incorporating the vehicle
9 surroundings monitoring apparatus;

10 Fig. 2 is a functional block diagram of a vehicle
11 surroundings monitoring apparatus according to the present
12 invention;

13 Fig. 3 is a schematic illustration of fusion solid
14 objects; and

15 Fig. 4 is a flowchart showing a routine for recognizing
16 a preceding vehicle.

17

18 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

19 Referring now to Fig. 1, reference numeral 1 denotes
20 a vehicle (own vehicle) on which an intervehicle distance
21 automatically adjusting system (Adaptive Cruise Control: ACC)
22 2 is mounted. The ACC system 2 is constituted by a stereoscopic
23 camera (imaging means) 3, a millimeter wave transmitting and
24 receiving section (radar means) 4, a vehicle surroundings
25 monitoring apparatus 5 and a traveling control unit 6. When the

1 ACC system is set to a constant speed control mode, the vehicle
2 travels at a speed established by a vehicle driver and when the
3 system is set to a follow-up traveling control mode, the vehicle
4 travels at a speed targeted to the speed of a preceding vehicle
5 with a constant intervehicle distance to the preceding vehicle
6 maintained.

7 The stereoscopic camera 3 is composed of a pair (left
8 and right) of CCD cameras using a solid-state image component
9 such as Charge Coupled Device and the left and right cameras are
10 transversely mounted on a front ceiling of a passenger compartment
11 at a specified interval of distance, respectively. The respective
12 cameras take picture images of an exterior object from different
13 viewpoints and input image information to the vehicle surroundings
14 monitoring apparatus 5.

15 The millimeter wave transmitting and receiving section
16 4 provided at the front end of the own vehicle 1 transmits millimeter
17 wave (for example radio wave having frequency 30G Hz to 100G Hz)
18 forwardly therefrom and receives reflected millimeter wave,
19 inputting sending and receiving data to the vehicle surroundings
20 monitoring apparatus 5.

21 Further, there is provided a vehicle speed sensor 7
22 in the own vehicle 1 and the detected vehicle speed is inputted
23 to the vehicle surroundings monitoring apparatus 5 and the
24 traveling control unit 6. Further, there are provided a steering
25 wheel rotation angle sensor 8 for detecting steering wheel rotation

1 angles and a yaw rate sensor 9 for detecting yaw rates. Signals
2 indicating steering wheel rotation angles and yaw rates are
3 inputted to the vehicle surroundings monitoring apparatus 5.

4 The vehicle surroundings monitoring apparatus 5
5 comprises a stereoscopic image processing section 15 (first solid
6 object detecting means), a distance measuring section 16 (second
7 solid object detecting means), a fusion solid object
8 establishing section 17 (fusion solid object establishing means),
9 an own traveling region estimating section 18 and a preceding
10 vehicle recognizing section 19 (first and second reliability
11 judging means and preceding vehicle selecting means). In this
12 embodiment, those sections work in a coordinate system fixed to
13 the own vehicle 1 of the three-dimensional real space. That is,
14 the coordinate system is composed of X coordinate extending in
15 a widthwise direction of the own vehicle 1, Y coordinate extending
16 in a vertical direction of the own vehicle 1, Z coordinate extending
17 in a lengthwise direction of the own vehicle 1 and an origin of
18 the coordinate placed on the road surface directly underneath
19 the central point of two CCD cameras forming the stereoscopic
20 camera 3. The positive sides of X, Y and Z coordinates are
21 established in a right direction, in an upward direction and in
22 a forward direction, respectively.

23 The stereoscopic image processing section 15 performs
24 various recognitions of lane markers, side walls, solid objects
25 and the like as follows. First, with respect to a pair of

1 stereoscopic images taken by the stereoscopic CCD camera 4, the
2 stereoscopic image processing section 15 obtains distance
3 information over the entire image from the deviation amount
4 between corresponding positions according to the principle of
5 triangulation and forms a distance image representing
6 three-dimensional distance distribution based on the distance
7 information. Then, based on the distance image, the stereoscopic
8 image processing section 15 extracts lane markers, guardrails,
9 curbs, side walls and solid objects like vehicles by performing
10 the known grouping process, the comparison of the distance image
11 with three-dimensional road profile data, side wall data such
12 as guardrails, curbs and side walls along a road and solid object
13 data such as vehicles and other data which are stored in the memory.
14 Thus extracted lane marker data, side wall data and solid object
15 data are denoted by different numbers for each kind of data,
16 respectively. Further, the solid object data are classified into
17 three kinds of objects, a backward moving object moving toward
18 the own vehicle 1, a still object in standstill and a forward
19 moving object moving in the same direction as the own vehicle
20 1 based on the relationship between the relative variation of
21 the distance from the own vehicle and the vehicle speed of the
22 own vehicle 1.

23 When an oncoming vehicle or a preceding vehicle is imaged,
24 generally, its front surface, rear surface, corner part and side
25 surface of a vehicle body are projected on picture images. The

1 stereoscopic image processing section 15 usually extracts the
2 front or rear surface as a solid object and extracts the side
3 surface as a side wall connected through the corner part with
4 the solid object. Accordingly, in case where the extracted solid
5 object is a vehicle, mostly, a sidewall connected through a corner
6 part with the solid object is recognized. In case where smear
7 or flare are recognized as a solid object by accident, there is
8 a very small chance that a side wall comes adjacent to the solid
9 object. Accordingly, there is a high possibility that the solid
10 object having two or more surfaces is a vehicle. In the stereoscopic
11 image processing section 3, if the solid object is connected to
12 the side wall through the corner part, the object is registered
13 specially as a corner-like solid object.

14 The distance measuring section 16 performs solidity
15 recognition by processing transmitting and receiving data
16 inputted from the millimeter wave transmitting and receiving
17 section 4 as follows. That is, the distance measuring section
18 16 measures the distance from the own vehicle 1 to the target
19 based on a time between the transmission of a radio wave and the
20 reception of the reflected radio wave. Then, preparing a
21 distribution diagram of distance values, if there is a portion
22 continuously having an identical distance value in the
23 distribution diagram, the portion is extracted and registered
24 as a solid object.

25 The distance measuring section 16 stores the data of

1 the solid object extracted and registered in the previous cycle
2 (this solid object will be referred to as "millimeter wave solid
3 object" hereinafter). When the distance measuring section 16
4 extracts a new solid object in the present cycle (this solid object
5 will be referred to as "detected millimeter wave solid object"
6 hereinafter), the coincidence is judged between the detected
7 millimeter wave solid object and the millimeter wave solid object.
8 That is, in the distance measuring section 16, a coincidence
9 probability P is calculated between the detected millimeter wave
10 solid object and the millimeter wave solid object. If the
11 coincidence probability P exceeds a threshold value, it is
12 judged that the detected millimeter wave solid object is identical
13 to the millimeter wave solid object. In this embodiment, the
14 coincidence probability P is obtained according to the following
15 formulas:

$$16 \quad P_z(\Delta z) = \int_{-\Delta z}^{\Delta z} 1 / (\sqrt{2\pi}\sigma_z) \times \exp [(-z^2 / (2\sigma_z^2))] dz \quad (1)$$

$$18 \quad 19 \quad P_x(\Delta x) = \int_{-\Delta x}^{\Delta x} 1 / (\sqrt{2\pi}\sigma_x) \times \exp [(-x^2 / (2\sigma_x^2))] dx \quad (2)$$

$$21 \quad 22 \quad P_v(\Delta v) = \int_{-\Delta v}^{\Delta v} 1 / (\sqrt{2\pi}\sigma_v) \times \exp [(-v^2 / (2\sigma_v^2))] dv \quad (3)$$

$$24 \quad 25 \quad P = P_z \times P_x \times P_v \quad (4)$$

1
2 where $P_z(\Delta Z)$ is a coincidence probability when the difference
3 between the detected millimeter wave solid object n and the
4 millimeter wave solid object m on Z coordinate is ΔZ ; where $P_x(\Delta$
5 $X)$ is a coincidence probability when the difference between the
6 detected millimeter wave solid object n and the millimeter wave
7 solid object m on X coordinate is ΔX ; where $P_v(\Delta V)$ is a
8 coincidence probability when the difference of the velocity in
9 the Z direction between the detected millimeter wave solid object
10 n and the millimeter wave solid object m is ΔV ; and $\sigma_z, \sigma_x, \sigma$
11 v are standard deviations.

12 In the distance measuring section 16, these calculations
13 are performed with respect to all combinations of the detected
14 millimeter wave solid object and the millimeter wave solid object
15 and the combination whose coincidence probability P exceeds the
16 threshold value (for example 30 %) and is largest, is selected.
17 Further, when it is judged that the detected millimeter wave solid
18 object (present one) is identical to the millimeter wave solid
19 object (previous one), the detected millimeter wave solid object
20 is updated and successively registered as the millimeter wave
21 solid object (previous one). If it is judged that the detected
22 millimeter wave solid object is not identical to the millimeter
23 wave solid object, the detected millimeter wave solid object is
24 registered as a new millimeter wave solid object and the data
25 of the previous one is erased under specified conditions.

1 The fusion solid object establishing section 17 inputs
2 information related to respective solid objects (hereinafter,
3 referred to as "image solid object") from the stereoscopic image
4 processing section 15 and also inputs information related to
5 respective millimeter wave solid objects from the distance
6 measuring section 16. Fusion solid objects are established by
7 fusing these inputted information.

8 Specifically, first, the fusion solid object
9 establishing section 17 judges the coincidence between the
10 respective image solid objects and the respective millimeter wave
11 solid objects. That is, in the fusion solid object establishing
12 section 17, the coincidence probability P is calculated for
13 respective combinations of both solid objects according to the
14 aforesaid formulas (1) to (4) using Z coordinate, X coordinate
15 and the velocity in the Z direction of the respective image solid
16 objects and Z coordinate, X coordinate and the velocity in the
17 Z direction of the respective millimeter wave solid objects. When
18 the image solid object is identical to the millimeter wave solid
19 object, the combination whose coincidence probability P is largest
20 and exceeds a specified value, is determined.

21 Then, the fusion solid object establishing section 17
22 forms respective fusion solid objects by fusing the image solid
23 objects and the millimeter wave solid objects. Referring to Fig.
24 3, fusion solid objects composed of simple image solid objects
25 are illustrated in rectangular shape, fusion solid objects

1 composed of simple millimeter wave solid objects are illustrated
2 in circular shape, and fusion solid objects composed of the
3 combination of the image solid objects and the millimeter wave
4 solid objects are illustrated in rectangular and circular shape.
5 The respective fusion solid objects include information such as
6 the distance between the fusion solid object and the own vehicle
7 1, X coordinate, velocity, width and the like of the fusion solid
8 object, and information of the state of movement of forward moving
9 objects, still objects or oncoming vehicles. In case of the fusion
10 solid object composed of the combination of the image solid object
11 and the millimeter wave solid object, information of the millimeter
12 wave solid object is introduced with top priority in establishing
13 the distance between the own vehicle 1 and the solid object,
14 information of the image solid object is introduced with top
15 priority in establishing X coordinate, information of the
16 millimeter wave solid object is introduced with top priority in
17 establishing velocity, and information of the image solid object
18 is introduced with top priority in establishing the width.

19 Then, after the new fusion solid objects are established,
20 the fusion solid object establishing section 17 makes a
21 coincidence judgment between the newly established fusion solid
22 object and the fusion solid object previously registered. In case
23 of the fusion solid object having coincidence, the fusion solid
24 object is continued to be registered and in case of the fusion
25 solid object having no coincidence, the new fusion solid object

1 is registered and the previous fusion solid object is erased.

2 The own traveling region estimating section 18 inputs
3 signals indicative of vehicle speeds from the vehicle speed sensor
4 , signals indicative of steering wheel rotation angles from the
5 steering wheel rotation angle sensor 8 and signals indicative
6 of yaw rates from the yaw rate sensor 9, respectively and at the
7 same time inputs lane marker data, side wall data and the like
8 from the stereoscopic image processing section 15, estimating
9 own traveling regions from the own traveling path and the width
10 of lane.

11 In the own traveling region estimating section 18, the
12 traveling path of the own vehicle is estimated according to the
13 following four methods:

14 **Method A: Estimation of traveling path based on lane markers**

15 In case where both or either of left and right lane
16 markers data are obtained and the profile of the lane on which
17 the own vehicle 1 travels can be estimated from these lane markers
18 data, the traveling path of the own vehicle is formed in parallel
19 with the lane markers in consideration of the width of the own
20 vehicle 1 and the position of the own vehicle 1 in the present
21 lane.

22 **Method B: Estimation of traveling path based on side wall data
23 such as guardrails, curbs and the like**

24 In case where both or either of left and right side
25 walls data are obtained and the profile of the lane on which the

1 own vehicle 1 travels can be estimated from these side walls data,
2 the traveling path of the own vehicle is formed in parallel with
3 the side walls in consideration of the width of the own vehicle
4 1 and the position of the own vehicle 1 in the present lane.
5 Method C: Estimation of traveling path based on a trace of the
6 preceding vehicle

7 The traveling path of the own vehicle 1 is estimated
8 based on the past traveling trace of the preceding vehicle.

9 **Method D: Estimation of path based on the trace of the own vehicle**

10 The path of the own vehicle 1 is estimated based on
11 the traveling conditions such as yaw rate γ , vehicle speed V and
12 steering wheel angle θ_H of the own vehicle 1 according to the
13 following steps:

14 First, it is judged whether or not the yaw rate sensor
15 9 is effective. If it is effective, the present turning curvature
16 C_{ua} is calculated according to the following formula (5).

17 $C_{ua} = \gamma / V$ (5)

18 On the other hand, if the yaw rate sensor 9 is ineffective,
19 it is judged whether or not the vehicle is steered at a steering
20 angle δ more than a prescribed angle (for example 0.57 radian)
21 obtained from the steering wheel angle θ_H . In case where the vehicle
22 is steered at a steering angle more than 0.57 radian, the present
23 turning curvature C_{ua} is calculated according to the following
24 formulas (2), (3) using the steering angle δ and the vehicle speed
25 V of the own vehicle 1:

$$Re = (1 + A \cdot V^2) \cdot (L / \delta) \quad (6)$$

$$C_{ua} = 1/Re \quad (7)$$

3 where R_e is turning radius; A is stability factor of the vehicle;
4 and L is wheelbase of the vehicle.

Further, if the steering angle is smaller than 0.57 radian, the present turning curvature is set to 0 (in a straightforward traveling condition).

8 Then, an average turning curvature is calculated from
 9 the sum of thus obtained present turning curvature C_{ua} and a
 10 turning curvature for a past prescribed time (for example, 0.3
 11 seconds) and the traveling path of the own vehicle is estimated.

12 Even in case where the yaw rate sensor 9 is effective
13 and the turning curvature Cua is calculated according to the formula
14 (5), if the steering angle δ is smaller than 0.57 radian, the
15 present turning curvature Cua may be corrected to 0
16 (straightforward traveling condition).

17 Thus, after the traveling path of the own vehicle is
18 estimated, the own traveling region 18 calculates the width of
19 the lane on which the own vehicle 1 travels.

20 Specifically, in the own traveling region estimating
21 section 18, in case where the own traveling path is estimated
22 according to the method A and the stereoscopic image processing
23 section 15 recognizes both of the left and right lane markers,
24 the space of left and right lane markers is established to be
25 the present lane width. On the other hand, in case where the own

1 traveling path is estimated according to the method A and the
2 stereoscopic image processing section 15 recognizes either of
3 the left and right lane markers, an average lane width is
4 established to be the present lane width. Further, in case where
5 the own traveling path is estimated according to either of the
6 methods B, C or D, the lane width 2.2 meters which are established
7 in consideration of modern road situations and the like, is
8 established to be the present lane width. Further, in the own
9 traveling region estimating section 18, after the establishment
10 of the present lane width is completed, the average lane width
11 is calculated from the lane widths accumulated for the past 10
12 seconds within the range between 3.5 meters and 2.2 meters. Thus,
13 the traveling region of the own vehicle 1 is estimated.

14 The preceding vehicle recognizing section 19
15 investigates the reliability as the millimeter wave fusion solid
16 object and the reliability as the image fusion solid object for
17 the respective fusion solid objects moving forward and the
18 intrusion of these respective fusion solid objects into the own
19 traveling region. In case where at least either of these
20 reliabilities has a specified reliability or more and there are
21 fusion solid objects intruding successively into the own traveling
22 region for more than specified time, a forwardmoving object nearest
23 to the own vehicle 1 is selected as a preceding vehicle from these
24 fusion solid objects.

25 The routine for recognizing the preceding vehicle will

1 be described according to the flowchart shown in Fig. 4. The routine
2 is executed every specified time. First, at a step S101, a solid
3 object is selected from the respective fusion solid object
4 established in the fusion solid object establishing section 17.
5 In this embodiment, the fusion solid objects are selected in the
6 order of their proximity from the own vehicle 1.

7 The program goes to a step S102 where the preceding
8 vehicle recognizing section 19 investigates whether or not the
9 fusion solid object presently selected is a forward moving solid
10 object which moves in the same forward direction as the own vehicle
11 1. If it is judged that the fusion solid object presently selected
12 is a forward moving object, the program goes to a step S103 and
13 if it is judged that the fusion solid object is not a forward
14 moving object, the program goes to a step S107.

15 In case where the program goes from the step S102 to
16 the step S103, the preceding vehicle recognizing section 19
17 investigates whether or not the present fusion solid object is
18 a millimeter wave-related fusion solid object, that is, either
19 a single millimeter wave fusion solid object and/or a combination
20 of the millimeter wave fusion solid object and the image fusion
21 solid object. In case where the present fusion solid object is
22 the millimeter wave- related fusion solid object, the program
23 goes to a step S104 in which a millimeter wave registration counter
24 Cm is incremented by one ($Cm \leftarrow Cm + 1$) and then goes to a step
25 S105. On the other hand, in case where it is judged at the step

1 S103 that the present fusion solid object is not a millimeter
2 wave-related fusion solid object, the program goes to a step S105.

3 The program going from the step S103 or the step S104
4 to the step S105, the preceding vehicle recognizing section 19
5 investigates whether or not the present fusion solid object is
6 a corner-related fusion solid object, that is, either a single
7 image fusion solid object or a combination of the millimeter wave
8 fusion solid object and the image fusion solid object and the
9 image solid object constituting the fusion solid object is
10 registered as a corner-like solid object. If it is judged that
11 the present fusion solid object is a corner-related fusion solid
12 object, the program goes to a step S106 where a corner-like
13 registration counter is incremented by one ($Cc \leftarrow Cc + 1$) and goes
14 to a step S107. On the other hand, if it is judged that the present
15 fusion solid object is not a corner-related fusion solid object,
16 the program goes to a step S107.

17 When the program goes from the steps S102, S105 or S106
18 to the step S107, the preceding vehicle recognizing section 19
19 checks whether or not all fusion solid objects are selected. If
20 it is judged that all of the fusion solid objects have not yet
21 selected, the program returns to the step S101 and if it is judged
22 that all of the fusion solid objects have selected, the program
23 goes to S108.

24 At the step S108, the preceding vehicle recognizing
25 section 19 selects a specified forward moving object from

1 respective fusion solid objects that are judged to be the forward
2 moving objects at the step S102. The selection of the specified
3 forward moving object is performed in the order of their proximity
4 from the own vehicle 1.

5 Then, the program goes to a step S109 where it is checked
6 whether or not the presently selected forward moving object
7 intrudes into the own traveling region. If it is judged that the
8 presently selected forward moving object intrudes into the own
9 traveling region, the program goes to a step S110 where an intrusion
10 counter Ci for counting the number of intrusion into the own
11 traveling region is incremented by one ($Ci \leftarrow Ci + 1$) and then
12 the program goes to a step S112. On the other hand, if it is judged
13 that the presently selected forward moving object does not intrude
14 into the own traveling region, the program goes to a step S111
15 where the intrusion counter Ci is cleared ($Ci \leftarrow 0$) and the program
16 goes to a step S115.

17 When the program goes from the 110 to the step S112,
18 the preceding vehicle recognizing section 19 investigates whether
19 or not the intrusion counter Ci for the forward moving object
20 is larger than a preestablished threshold value Ci1. That is,
21 it is investigated whether or not the present forward moving object
22 intrudes into the own traveling region successively for more than
23 a specified time. If it is judged at the step S112 that the intrusion
24 counter Ci is larger than the threshold value Ci1, the program
25 goes to a step S113 and if it is judged that the intrusion counter

1 Ci is smaller than the threshold value Cil, the program goes to
2 a step S115.

3 When the program goes from the step S112 to a step S113,
4 the preceding vehicle recognizing section 19 investigates whether
5 or not the present forward moving object has a higher degree of
6 the reliability with respect to the actual existence than a
7 preestablished degree of reliability by checking whether or not
8 the millimeter wave registration counter Cm is larger than a
9 preestablished threshold value Cml. That is, the preceding vehicle
10 recognizing section 19 investigates whether or not the forward
11 moving object has a higher degree of the reliability with respect
12 to the actual existence than a preestablished degree of reliability
13 by investigating whether or not the present forward moving object
14 coincides with the millimeter wave fusion solid object with higher
15 frequency than specified. Then, in case where the millimeter wave
16 counter Cm is larger than the threshold value Cml, the program
17 goes to a step S116 and in case where the millimeter wave counter
18 Cm is smaller than the threshold value Cml, the program goes to
19 a step S115.

20 When the program goes from a step S113 to a step S114,
21 the preceding vehicle recognizing section 19 investigates whether
22 or not the forward moving object has a higher degree of the
23 reliability with respect to the actual existence than a
24 preestablished degree of reliability by investigating whether
25 or not the corner-like registration counter Cc for the present

1 forward moving object is larger than a preestablished threshold
2 value Cc1. That is, the preceding vehicle recognizing section
3 19 investigates whether or not the forward moving object has a
4 higher degree of the reliability with respect to the actual
5 existence than a preestablished degree of reliability based on
6 the image solid object by investigating whether or not the present
7 forward moving object coincides with the corner-like solid object
8 with a larger frequency than specified. Further, at the step S114,
9 in case where the corner-like registration counter Cc is larger
10 than the threshold value Cc1, the program goes to a step S116
11 and in case where the corner-like registration counter Cc is
12 smaller than the threshold value Cc1, the program goes to the
13 step S115.

14 Then, when the program goes from the steps S113 or S114
15 to the step S116, the preceding vehicle recognizing section 19
16 registers the present forward moving object as a preceding vehicle,
17 the program leaving the routine.

18 On the other hand, in case where the program goes from
19 the steps S111, S112 or S113 to the step S115, the preceding vehicle
20 recognizing section 19 investigates whether or not all forward
21 moving objects have been selected. If it is judged that all of
22 the forward moving objects have not yet been selected, the program
23 returns to the step S108 and if it is judged that all of the forward
24 moving objects have been selected, the program leaves the routine
25 without performing the registration of the preceding vehicle.

1 The traveling control unit 6 has a function of the
2 constant speed traveling control for maintaining the vehicle speed
3 at a speed established by the manual input of a vehicle driver
4 and also has a function of the follow-up traveling control for
5 maintaining the intervehicle distance between the own vehicle
6 and the preceding vehicle at a constant distance. Further, the
7 control unit 6 is connected with a constant speed traveling switch
8 10, the vehicle surroundings monitoring apparatus 5 and the vehicle
9 speed sensor 7. Further, the constant speed traveling switch 10
10 includes a plurality of switches connected to an operating lever
11 provided at the side face of a steering column tube.

12 The constant speed traveling switch 10 is constituted
13 by a coast switch for changing the target vehicle speed in a
14 descending direction, a resume switch for changing the target
15 vehicle speed in an ascending direction and the like. Further,
16 there is provided a main switch (not shown) for turning the
17 traveling control on or off in the vicinity of the operating lever.

18 When the driver turns the main switch on and establishes
19 the operating lever to a desired speed, a signal is inputted from
20 the constant speed traveling switch 10 to the traveling control
21 unit 6. The traveling control unit 6 drives a throttle actuator
22 11 based on the signal so as to control the opening angle of a
23 throttle valve 12. As a result, the own vehicle travels
24 automatically at a constant speed.

25 Further, when the vehicle surroundings monitoring

1 apparatus 5 judges that the preceding vehicle travels at a lower
2 speed than that established in the traveling control unit 6 of
3 the own vehicle 1, the traveling control unit 6 automatically
4 changes over the control mode from the constant speed traveling
5 control to the follow-up traveling control in which the own vehicle
6 1 travels with a constant intervehicle distance held.

7 When the traveling control transfers to the follow-up
8 control, the traveling control unit 6 establishes an appropriate
9 target intervehicle distance between the own vehicle 1 and the
10 preceding vehicle on the basis of the intervehicle distance
11 obtained by the vehicle surroundings monitoring apparatus 5, a
12 calculated vehicle speed of the preceding vehicle, and a vehicle
13 speed detected by the vehicle speed sensor 7. The traveling control
14 unit 6 outputs a drive signal to the throttle actuator 11 and
15 adjusts the opening angle of the throttle valve 12 such that the
16 intervehicle distance between the own vehicle 1 and the preceding
17 vehicle agrees with the target intervehicle distance.

18 According to the embodiment of the present invention,
19 the vehicle surroundings monitoring apparatus 5 establishes
20 fusion solid objects composed of single image fusion solid objects,
21 single millimeter wave fusion solid objects, or combinations of
22 the image fusion solid object and the millimeter wave fusion solid
23 object. Further, the vehicle surroundings monitoring apparatus
24 5 investigates the reliability of respective fusion solid objects
25 coinciding with the image solid object and the reliability of

1 respective fusion solid objects coinciding with the millimeter
2 wave solid object. Then, if either of these reliabilities exceeds
3 a reliability respectively established, the fusion solid object
4 is selected as a preceding vehicle. Thus, since both image means
5 and radar means are used concurrently, more accurate surroundings
6 monitoring can be performed.

7 Further, since the reliability of the respective fusion
8 solid objects is performed based on the number of registrations
9 as a corner-like solid object or based on the number of detection
10 as a millimeter wave solid object, the preceding vehicle can be
11 selected with high accuracy.

12 The entire contents of Japanese Patent Application No.
13 Tokugan 2002-278129 filed September 24, 2002, is incorporated
14 herein by reference.

15 While the present invention has been disclosed in terms
16 of the preferred embodiment in order to facilitate better
17 understanding of the invention, it should be appreciated that
18 the invention can be embodied in various ways without departing
19 from the principle of the invention. Therefore, the invention
20 should be understood to include all possible embodiments which
21 can be embodied without departing from the principle of the
22 invention set out in the appended claims.

23