PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-067802

(43) Date of publication of application: 16.03.2001

(51)Int.Cl.

G11B 20/10 G11B 20/00 G11B 20/12 HO4N 5/92

(21)Application number: 11-242204

27.08.1999

(71)Applicant: TOSHIBA CORP

(72)Inventor: KIKUCHI SHINICHI

HISATOMI SHUICHI

KURANO TOMOAKI

(54) APPARATUS AND METHOD FOR MULTI-CHANNEL RECORDING

(57)Abstract:

(22)Date of filing:

PROBLEM TO BE SOLVED: To obtain an apparatus and a method for multi-channel recording whereby a plurality of programs can be simultaneously efficiently recorded to a disc-shaped recording medium.

SOLUTION: The recording apparatus records digital data constituting a program to a disc-shaped recording medium in units of a specified data length (CDA) to be at 49 least consecutive. In this case, the apparatus has a control means for alternately recording each of digital data constituting mutually different first and second programs to the disc-shaped recording medium in units of the specified data length (CDA).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-67802 (P2001-67802A)

(43)公開日 平成13年3月16日(2001.3.16)

(51) Int.Cl.7	識別記号	FΙ		テーマコード(参考)	
G11B 20/1	0 311	G11B 20/10	0 311	5 C O 5 3	
20/0	0	20/00	0 B	5 D O 4 4	
20/1	2	20/12	2	5 D O 8 O	
H 0 4 N 5/9	2	H 0 4 N 5/92	H 0 4 N 5/92 C		
			Н	Н	
		審査請求 未	請求 請求項の数8 (OL (全28頁)	
(21)出願番号	特願平11-242204	(71) 出願人 000003078			
		株	式会社東芝		
(22)出顧日	平成11年8月27日(1999.8.27)	神	奈川県川崎市幸区堀川町	了72番地	
		(72)発明者 菊	i地 伸一		
			京都港区新橋3丁目3番		
		(72)発明者 久	・プイ・イー株式会社内 ウェギー	Ä	
		1	. 南 _ 79 :京都港区新橋 3 丁目 3 番	その日 中本人	
			・プイ・イー株式会社内		
		(74)代理人 100	, , , , , , , , ,	3	
		1 , , , ,	理士命江武彦(夕	 L6名)	
			∨ خینهم مناطع سدی۔	. v H/	
				最終頁に続く	

(54) 【発明の名称】 マルチチャンネル記録装置及び記録方法

(57)【要約】

【課題】この発明は、ディスク状記録媒体に対して、複数の番組を同時に効率よく記録することが可能となるマルチチャンネル記録装置及び記録方法を提供することを目的としている。

【解決手段】番組を構成するデジタルデータを、最低限連続しなければならない規定されたデータ長(CDA)単位で、ディスク状記録媒体に記録する記録装置において、互いに異なる第1及び第2の番組を構成する各デジタルデータを、それぞれ、規定されたデータ長(CDA)単位で、交互にディスク状記録媒体に記録する制御手段を備えている。

未使用のディスクに記録した場合の例

一部使用されている場合の例 ___

1

【特許請求の範囲】

【請求項1】 番組を構成するデジタルデータを、最低限連続しなければならない規定されたデータ長単位で、ディスク状記録媒体に記録する記録装置において、互いに異なる第1及び第2の番組を構成する各デジタルデータを、それぞれ、前記規定されたデータ長単位で、交互に前記ディスク状記録媒体に記録する制御手段を具備してなることを特徴とするマルチチャンネル記録装置。

【請求項2】 前記制御手段は、前記第1及び第2の番組を構成する各デジタルデータを、それぞれ、前記規定 10 されたデータ長単位で、交互に前記ディスク状記録媒体に記録している状態で、その記録方向に他のデータが記録されている領域が存在する場合には、該領域を飛ばして記録することを特徴とする請求項1記載のマルチチャンネル記録装置。

【請求項3】 前記制御手段は、前記ディスク状記録媒体を再生する再生手段に対して、前記第1及び第2の番組を、そのチャンネル番号順または記録開始時間の早い方から、順次自動的に再生することを指示するための情報を、前記ディスク状記録媒体に記録することを特徴とする請求項1記載のマルチチャンネル記録装置。

【請求項4】 前記制御手段は、前記ディスク状記録媒体を再生する再生手段に対して、前記第1及び第2の番組のうち、再生が要求された方の番組を再生することを指示するための情報を、前記ディスク状記録媒体に記録することを特徴とする請求項1記載のマルチチャンネル記録装置。

【請求項5】 番組を構成するデジタルデータを、最低限連続しなければならない規定されたデータ長単位で、ディスク状記録媒体に記録する記録方法において、互い 30 に異なる第1及び第2の番組を構成する各デジタルデータを、それぞれ、前記規定されたデータ長単位で、交互に前記ディスク状記録媒体に記録することを特徴とするマルチチャンネル記録方法。

【請求項6】 前記第1及び第2の番組を構成する各デジタルデータを、それぞれ、前記規定されたデータ長単位で、交互に前記ディスク状記録媒体に記録している状態で、その記録方向に他のデータが記録されている領域が存在する場合には、該領域を飛ばして記録することを特徴とする請求項5記載のマルチチャンネル記録方法。

【請求項7】 前記ディスク状記録媒体を再生する再生 手段に対して、前記第1及び第2の番組を、そのチャンネル番号順または記録開始時間の早い方から、順次自動的に再生することを指示するための情報を、前記ディスク状記録媒体に記録することを特徴とする請求項5記載のマルチチャンネル記録方法。

【請求項8】 前記ディスク状記録媒体を再生する再生 手段に対して、前記第1及び第2の番組のうち、再生が 要求された方の番組を再生することを指示するための情 報を、前記ディスク状記録媒体に記録することを特徴と 50 する請求項5記載のマルチチャンネル記録方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、例えばRTR (Real Time Recorder) - DVD (Digital Versatile Disk) 等のディスク状記録媒体に、複数の番組を同時記録するためのマルチチャンネル記録装置及び記録方法に関する

[0002]

【従来の技術】周知のように、近年では、映像や音声等のデータを記録した光ディスクを再生する動画対応の光ディスク再生装置が開発され、例えばLD(Laser Disk)やビデオCD(Compact Disk)等のように、映画ソフトやカラオケ等の目的で一般に普及している。

【0003】 この中で、現在では、国際規格化したMPEG (Moving Picture Image Coding Experts Group) 2方式を採用し、AC (Audio Compression) - 3オーディオ圧縮方式を採用したDVD規格が提案されている。

【0004】このDVD規格は、MPEG2システムレイヤにしたがって、動画圧縮方式にMPEG2、音声にAC-3オーディオ、MPEGオーディオをサポートし、さらに、字幕用としてビットマップデータをランレングス圧縮した副映像データ、早送り再生や早戻し再生等の特殊再生用コントロールデータ(ナビゲーションパック)を追加して構成されている。

【0005】さらに、このDVD規格では、コンピュータでデータを読むことができるように、ISO (International Organization for Standardization) 9660とマイクロUDF (Universal Disk Format)とをサポートしている。

【0006】また、メディア自身の規格としては、DVD-ビデオで使用しているメディアであるDVD-ROM (Read Only Memory) に続き、DVD-RAM (Rand om Access Memory) の規格 [2.6GB (Giga Bytes)] も完成し、DVD-RAMドライブもコンピュータ周辺機器として普及し始めている。

【0007】そして、現在では、このDVD-RAMを利用して、リアルタイムな記録再生を可能としたDVD 40 ビデオ規格である、RTR-DVDの規格が完成し発表されている。

【0008】とのRTR-DVD規格は、現在発売されているDVD-ビデオ規格を元に考えられている。さらに、このRTR-DVDに対応したファイルシステムも、現在、規格作成中である。

【0009】 ことでは、リアルタイムで録画中に、ディフェクトやジャンプ発生時にも連続再生が可能なように、最低限AV (Audio Video) データが連続しなければならないデータ長単位を規定しており、これをCDA (Contiguous Data Area) と称している。

3

【0010】このCDAブロックの制限は、ディスクに連続して配置され、さらに、その長さはECC(Error Correcting Code)ブロックの正数倍になっており、CDA長は、記録レートにより変化し、基本的には、ピックアップがディスクの最内周から最外周までアクセスする時間より長い時間、バッファ内のデータがなくならない程度の時間、再生できるだけのデータ量が必要となってくる。

【0011】 このため、RTR-DVDでは、このCDAを使用した記録再生処理が規定されると考えられる。この規格では、TV(Television)放送等の記録再生を行ない、現在のVTR(Video Tape Recorder) に代わる機器へと発展していく予定である。

【0012】との場合、現在のVTRでは実現できなかった要求のうち、ディスクメディアになったことにより可能になるものがある。それが、TVの2番組以上を同時に記録したいという要求である。

[0013]

【発明が解決しようとする課題】しかしながら、現在の RTR-DVDの規格においては、複数の番組を同時に 20 記録することは想定されていない。このため、複数の番 組の記録への対応ができないという問題点がある。

【0014】そとで、との発明は上記事情を考慮してなされたもので、ディスク状記録媒体に対して、複数の番組を同時に効率よく記録することが可能となる極めて良好なマルチチャンネル記録装置及び記録方法を提供することを目的とする。

[0015]

【課題を解決するための手段】この発明に係るマルチチャンネル記録装置は、番組を構成するデジタルデータを、最低限連続しなければならない規定されたデータ長単位で、ディスク状記録媒体に記録する記録装置を対象としている。そして、互いに異なる第1及び第2の番組を構成する各デジタルデータを、それぞれ、規定されたデータ長単位で、交互にディスク状記録媒体に記録する制御手段を備えるようにしている。

【0016】また、この発明に係るマルチチャンネル記録方法は、番組を構成するデジタルデータを、最低限連続しなければならない規定されたデータ長単位で、ディスク状記録媒体に記録する記録方法を対象としている。そして、互いに異なる第1及び第2の番組を構成する各デジタルデータを、それぞれ、規定されたデータ長単位で、交互にディスク状記録媒体に記録するようにしている。

【0017】上記のような構成及び方法によれば、互いに異なる第1及び第2の番組を構成する各デジタルデータを、それぞれ、規定されたデータ長単位で、交互にディスク状記録媒体に記録するようにしたので、ディスク状記録媒体に対して、複数の番組を同時に効率よく記録することが可能となる。

[0018]

【発明の実施の形態】以下、この発明の実施の形態につ いて図面を参照して詳細に説明する。DVD-ビデオで は、通常のファイル形式でデータが保存されている。さ らに、タイトルは、例えば、映画の1本分に相当し、1 枚のディスクに、このタイトルが複数はいっている。こ のタイトルが集まったものをタイトルセットと言い、こ のタイトルセットは、複数のファイルで構成されてい る。また、記録再生DVDでは、ディスク1枚に1つの 動画用VOBS (Video Object Set) ファイルが存在 し、記録順に再生する場合に用いる再生順を記録してい るのが、オリジナルPGC (Program Chain) である。 【0019】また、DVDでは、規格毎にディレクトリ が存在しており、DVD-ビデオではVIDEO_T S、DVD-オーディオではAUDIO_TS、記録再 生DVDでは、図1に示すように、DVD_RTRとし ている。各記録データは、とのディレクトリの中に存在 している。

4

【0020】さらに、DVD-ビデオでは、1枚のディスクには、このディスクを管理するための情報としてVMGと称されるファイルが存在する。

【0021】さらに、タイトルセット(以後VTSと称する)には、このVTSを管理するための情報が、VTS情報VTSIの管理情報ファイルと、ビデオデータで構成されているビデオファイルと、VTSIのバックアップファイルとから構成されている。

【0022】また、記録再生の規格では、前記VMGの管理情報VMGIと前記VTSIとを一緒にしてVMGを構成し、ビデオデータファイルを管理している。

【0023】ビデオファイルは、図2に示すように、階層構造で管理されており、1つのVOBSは複数のVOB (Video Object) で構成されており、1つのVOBは複数のVOBU (Video Object Unit) で構成されている。また、VOBUは、複数の様々な種類のデータからなっているパックによって構成されている。1パックは、1つ以上のパケットとパックヘッダとで構成され、各ビデオデータ、オーディオデータは、このパケット内に記録されている。

【0024】 CCで、バックは、データ転送処理を行な 40 う最小単位である。さらに、論理状の処理を行なう最小 単位はセルで、論理上の処理はこのセル単位で行なわれ る。そして、データを再生する順番は、PGCで定義さ れ、このPGCには複数のPG(Program)が登録さ れ、このPGにはセルが登録されている。

【0025】また、このセルには、再生すべきVOBの番号と、そのVOB内での再生時間が登録されており、このセルの再生情報にしたがってVOBが再生されることになる。

【0026】とのPGCの構造を実際に記録してあるの 50 がPGC情報PGCIである。再生処理は、このPGC Iにしたがって行なわれ、記録時または編集時にPGC 「を作成することになる。

【0027】また、記録再生DVDでは、記録順に再生 する(VTRライクな再生処理)ための特別なPGCを オリジナルPGCと称し、このオリジナルPGCの情報 はORG_PGCIに記録されている。また、編集等に より作成されるPGCをユーザーデファインドPGCと 称し、このユーザーデファインドPGCの情報はUD_ PGCIに記録されている。

【0028】以上のことから、ORG_PGCは1ディ 10 スクに1つとなり、UD_PGCは複数存在することに なる。

【0029】図3は、光ディスク11に対してデータの 記録再生を行なう記録再生装置を示している。この記録 再生装置は、主として、A/V (Audio/Video)入力部 12、MPU (Microprocessing Unit) 部13、表示部 14、デコーダ部15、エンコーダ部16、TVチュー ナー部17、STC (System Time Clock) 部18、D (Data) - PRO (Processer) 部19、一時記憶部2 O、ディスクドライブ部21、キー入力部22、V(Vi 20 deo) ミキシング部23、フレームメモリ部24、TV 受信機25用のD/A (Digital/Analogue) 変換部2 6及びデジタル出力用の I/F (Inter/Face) 部2 7, 28を有している。

【0030】エンコーダ部16は、A/D (Analogue/ Digital) 変換部16a、ビデオエンコード部16b、 オーディオエンコード部16c、SP (Sub Picture) エンコード部16d、フォーマッタ部16e及びバッフ ァメモリ部16 fより構成されている。

【0031】デコーダ部15は、メモリ15aを内蔵し た分離部15b、ビデオデコード部15c、SPデコー ド部15d、オーディオデコード部15e、V-PRO 部15f及びスピーカ29用のD/A変換部15gより 構成されている。

【0032】ビデオ信号の流れは、以下のようになる。 まず、入力されたA/V信号は、A/D変換部16aで デジタルデータに変換される。このデジタルデータは、 各エンコード部16b, 16c, 16dに供給される。 【0033】 すなわち、ビデオデータはビデオエンコー ド部16bに入力されて、MPEG圧縮される。オーデ 40 ィオデータはオーディオエンコード部16cに入力され てAC-3圧縮またはMPEGオーディオ圧縮される。 文字放送等の文字データはSPエンコード部16 dに入 力されて、ランレングス圧縮される。

【0034】さらに、各エンコード部16b, 16c, 16 dでは、圧縮データをパック化した場合に、1パッ クが2048バイトになるようにパケット化して、フォ ーマッタ部16eに出力している。フォーマッタ部16 eでは、各パケットをパック化し、さらに、多重化し て、1CDA貯まる毎に、D-PRO部19に出力して 50 VMGデータ領域等が必要なため、その領域を16セク

いる。

【0035】また、このとき、例えば、1GOP (Grou p of Picture) 毎にVOBUとし、そのときの切り分け 情報をバッファメモリ部16fに保存し、切り分け情報 がある程度貯まったときにMPU部13に転送して、M PU部13では、その情報をもとにタイムマップ情報を 作成する(GOP先頭割り込み等のときに送る)。

【0036】ここで、切り分け情報(VOBU情報)と しては、VOBUの大きさ、VOBU先頭から最後まで の再生時間、VOBU先頭からフレーム内符号化画像で あるIピクチャのエンドアドレス等が考えられる。ま た、上記切り分け情報を元に、直接、フォーマッタ部1 6eがタイムマップ情報を作成し、TMAPの形でMP U部13へ渡すことも考えられる。

【0037】D-PRO部19では、16パック毎にE CCブロックを形成し、エラー訂正データを付け、ディ スクドライブ部21により光ディスク11に記録してい る。ここで、ディスクドライブ部21がシーク中やトラ ックジャンプ等のためにビジィー状態の場合には、一時 記憶部20に入れられて、ディスクドライブ部21の準 備ができるまで待つことになる。また、記録再生DVD では、ビデオファイルは1ディスクに1ファイルとして

【0038】ここで、DVDを利用したリアルタイム記 録再生装置において、注意すべき点は、動画用再生デー タをアクセスする場合において、そのアクセス (シー ク) している間に、途切れないで再生を続けるために、 最低限連続するセクタが必要になってくる。

【0039】この単位をCDAという。このCDAは、 30 制限条件として、ECCブロック単位となっている。と のため、図4に示すように、CDAを管理するためのテ ーブルをファイルシステムは持つことになる。

【0040】とのCDAテーブルでは、CDAサイズは 16セクタの倍数にし、CDAテーブルに記録するCD AサイズはECCブロック数で表わしている。

【0041】さらに、初期状態では、ゾーン内の有効デ ータ領域のスタートアドレスとゾーン内の先頭CDAの スタートアドレスとを合わせる。図4では、例として、 CDAサイズを3564セクタ: 7MB (Mege Bytes) としている。

【0042】CDAテーブルは、CDAのスタートアド レスとそのときのCDAサイズ、次のCDA番号を記録 している。使用している最後のCDAには、次のCDA 番号のところに、"0 x f f f f (終了コード)"を記 録する。また、初期時には、全て"0x00"となって いる。

【0043】さらに、CDAテーブルの最後には、エン ドコードとして"0xff"を7バイトと続けている。 ただし、最初のCDAに関しては、ファイルシステムや タ単位であける必要がある。

【0044】また、初期状態のディスクでない場合には (何らかのデータが記録されている状態)、未使用な領域でCDAを構成するため、ゾーンの先頭とゾーン内の 先頭CDAスタートアドレスとが一致するとは限らない。

【0045】しかしながら、空き領域のうち、ゾーンの 先頭から16セクタの倍数のアドレスの条件で先頭CD Aのスタートアドレスは決められる。これにより、EC Cブロックの先頭とCDAの先頭とを合わせることがで 10 きる。

【0046】さらに、CDAのテーブルの後ろに、最初に記録したCDAのCDA番号、最後のCDAの使用しているデータ数が記録されている。これにより、次に記録する場合には、最後のCDAの使用しているセクタの次から記録することが可能となる。

【0047】さらに、ビデオデータを管理するためにV MG内にM_AVFITI(MovieAV File Informati on Table Information)と、再生順序を制御するために PGCIが記録され、ファイルシステムにはCDA単位 20 でデータを管理するために、AV専用ファイルエクステ ントとして予約CDAテーブルを記録している。

【0048】 これらのうち、切り分け情報によりM_A VFITIの中のTMAPI (TimeMap Information) を作成し、記録した順にPGCIを設定するのがORG _PGCIで、CDA単位で記録した内容をCDAテー ブルに反映させている。

【0049】 ことで、PGCIは、図5に示すように、VMGに含まれている。また、PGCIは、PGC_GI(PGCに含まれるPGの数、セルの数が含まれる)、PGIT[PGのタイプ:プロテクション/ノンプロテクション、PG内のセルの数、プライマリテキスト情報、アイテムテキストへのSRP(Search Pointer)番号、サムネールポインタ]、CI_SRPT(セルサーチポインタテーブル)、CIT(セル情報テーブル)で構成されている。

【0050】さらに、CITは、CI#1~#jで構成され、CIは、 C_GI (セルタイプ、VOB情報VOBIへのサーチポインタ: セルの再生すべきVOB番号、セルの再生開始時間、終了時間)と、 $C_EPI#40$ 1~#k[EP(Entry Point)タイプ(テキスト情報有り/無し)、EPO再生時間、テキスト情報)とで構成されている。

【0051】次に、VOBを再生するための情報として、図6に示すように、M_VOBIがVMGに含まれる。このM_VOBIには、TMAPIが含まれ、このTMAPIには、TMAP」の数、VOBU_ENTの数、タイムオフセット、アドレスオフセット:本VOBのビデオファイル内での先頭からファイルポインタ)、TM_ENT#1~#n(10 secおきの

VOBU_ENTの番号、time difference、VOBU アドレス:本VOBUのビデオファイル内での先頭から ファイルポインタ)、VOBU_ENT#1~#m(VOBU先頭からIピクチャの最終データまで相対アドレス、VOBUの再生時間、VOBUのサイズ)で構成されている。

8

【0052】また、CDA単位で記録を行なう場合に、 記録の終了時の処理として、CDAのアラインの仕方が 以下の2種類が考えられる。

【0053】第1に、記録終了時にCDAの途中でデータが終了し、そのときの終了地点がECCブロックの途中の場合には、ECCブロックが終了するまで、ダミーパックを記録して、ECCブロックを完結させる。ダミーパックは、MPEGシステムレイヤで定義されたダミーパケットで構成されたパックとする。

【0054】第2に、記録終了時にCDAの途中でデータが終了した場合には、CDAが終了するまでダミーパックを記録して、CDAブロックを完結させる。また、この第2の方法において、CDA長を変えて、ダミーを入れない方法も考えられる。この場合、これ以降のCDAの切り直しを行なうことも考えられる。

【0055】とこで、2番組の記録処理について、図7及び図8に示すフローチャートを参照して説明する。

【0056】1. ファイルシステムデータを読み込み、空き容量があるかどうかをチェックし、容量がない場合には、その旨を表示して終了する。

【0057】2. 空き容量がある場合には、後述する録 画前処理を行ない、書き込みアドレスを決定する。

【0058】3. エンコーダ部16に対して録画初期設 定を行なう。とのとき、フォーマッタ部16eに、PG、セル、VOBUの区切り条件を設定し、フォーマッタ部16eの方で、自動的に区切るようにする。また、前記アライン処理を行なう場合にも、フォーマッタ部16eに設定する。

【0059】4. 以下の5~11の処理をタスク毎に、 分割し、番組毎に並列処理する。

【0060】5. エンコーダ部16に録画開始命令を設定する。

【0061】6.最初の1CDA分がバッファメモリ部16f内に貯まったら、ディスクドライブ部21に書き込みアドレスと書き込み長、書き込み命令を発行する。【0062】7.切り分け情報が貯まったかどうかをチェックし、貯まっている場合には、フォーマッタ部16eより、切り分け情報を読み込む。

【0063】8.1CDA分のデータがバッファメモリ 部16f内に貯まったかどうかをチェックし、貯まって ない場合には10の処理に移行する。

【0064】9. 貯まった場合には、後述する録画中の CDA処理を行ない、記録アドレス、記録長、記録命令 50 をディスクドライブ部21に発行する。

【0065】10.録画を終了させるキーの操作があっ たかどうかをチェックし、中止キー入力があった場合に は、12の処理に移行する。

【0066】11.6の処理に移行する。

【0067】12.後述する録画終了処理を行なう。

【0068】この中で、録画開始時の処理について、図 9に示すフローチャートを参照して説明する。

【0069】1. ファイルシステムをチェックし、無い 場合には、ファイルシステム、DVD_RTRディレク トリを構築し、空きファイルエクステントをチェックす 10 ることにより、CDAテーブル(図4参照)を作成し、 4の処理に移行する。ととで、構築した初期状態のCD Aテーブルを、光ディスク11内のファイルシステムで 指定された領域に保存しても良い。もし、ここで保存し なくても、録画終了時において、録画内容を反映させた 形で更新された内容のCDAテーブルを保存すれば良

【0070】2. ディレクトリチェックし、DVD_R TRディレクトリが無い場合には、DVD_RTRディ レクトリを作成し、CDAテーブルを作成して4の処理 20 が必要となる。 に移行する。

【0071】3. CDAテーブルをチェックし、無い場 合には、CDAテーブルをMPU部13のワークRAM 内に構築する。

【0072】4. エラーチェックを行ない、上記の過程 でエラーを発生した場合には、「ファイルシステムでエ ラーが発生しました」と表示を行ない、終了する。

【0073】5.VMGが光ディスク11内にあるかど うかをチェックし、無い場合には、ワークRAM内にV MGテーブルを構築し、ある場合には、光ディスク11 よりVMGテーブルを読み込み、MPU部13のワーク RAM内に展開する。ととで、構築した構築した初期状 態のVMGを光ディスク11内のファイルシステムで指 定された領域にファイルとして保存しても良い。こと で、もし、保存しなくても、録画終了時に、録画内容を 反映させた形で更新された内容のVMGを保存すれば良

【0074】6. エラーチェックを行ない、エラーを発 生した場合には、「管理データの作成ができませんでし た」と表示を行ない、終了する。

【0075】7.後述する録画開始時のCDA処理を行 ない、さらに、録画を行なう場合のエンコードのアトリ ビュート情報(STI)の選択または設定処理を行な い、本処理を終了する。ただし、このSTI情報の設定 は、録画前に設定する場合と、録画終了時に設定する場 合との二通りが考えられ、ここでは録画前に設定する方 法について説明する。

【0076】さらに、録画を行なう場合のエンコードの アトリビュート情報 (STI) の選択または設定処理 は、図10に示すように、録画するアトリビュート情報 50 テーブルの作成処理について、図11に示すフローチャ

と光ディスク11に記録してあるVMG内のSTI情報 とを比較し、同じものがある場合には、そのSTI番号 をワークRAMに保存しておき、録画時のVOBに対す るSTI番号とし、同じものがない場合には、STI情 報に、録画するアトリビュート情報より、STI情報を 構築し、VMG内のSTI情報に追加し、この追加した STIの番号をワークRAMに保存しておき、録画時の VOBに対するSTI番号とするようにする。

10

【0077】ととで、STI情報とは、エンコード時の 属性情報のことで、ビデオの解像度、NTSC/PAL の選択、アスペクト比、オーディオストリームの数、S Pストリームの数、オーディオストリームのコーディン グ方式、サンプリング周波数、チャンネル数、オーディ オのビットレート等で構成されている。

【0078】CDAテーブルを構築する場合には、記録 レート、ディスクドライブ部21の平均シーク時間等に よりCDA長を変える必要があり、一概に決められない が、少なくとも、光ディスク11の最内周から最外周ま でのアクセス時間+αの間、再生を止めないだけの容量

【0079】ただし、CDA長は、ECCブロック単位 とするために、16セクタの倍数とする。また、CDA テーブルには、CDAスタートアドレス、CDA長(セ クタ数またはECCブロック数またはエンドアドレスで 表現できる)、次のCDAの番号、最初にスタートする CDA番号等を記録しても良い。

【0080】また、上記録画前の処理を行なうタイミン グは、次の3種類のタイミングが考えられる。

【0081】第1に、光ディスク11を入れたときに直 ぐに行なう方法で、この方法では、録画キーを押した 後、録画開始が直ぐに行なえるという利点があるが、光 ディスク11を入れたときに、準備の時間が若干かかる ことになる。

【0082】第2に、フォーマットキーを押したときに 行なう方法があるが、この方法だと、録画前には必ずフ ォーマットキーを押さなければならないことになる。

【0083】第3に、録画開始地に行なうという方法が あるが、この方法だと、録画キーを押した後、録画開始 まで若干のタイムラグが生じるが、その間のデータは一 40 時記憶部20に保存することが必要となってくる。

【0084】また、前述したフローチャートでは、既に CDAテーブルがある場合には、そのテーブルを使用 し、前に記録したデータの続きに記録する場合である が、リフレッシュ動作の場合には、全てのファイルを消 し、CDAテーブルのチェックを行なわずに、初期時の CDAを上書きすることも必要になる(リフレッシュキ -等を押した場合)。

【0085】さらに、初期時(全てのファイルが無く、 CDAテーブルが光ディスク11に無い場合)のCDA ートを参照して説明する。ただし、このとき、各ゾーンのデータ有効開始アドレス及びデータ有功ゾーンサイズのデータが必要となる。これは、各媒体の種類毎に決められており、今回は2.6GのDVD-RAM用のテーブルを使用している。

11

【0086】図11のフローチャートを説明するに先立って、ゾーンについて説明する。DVD-RAMディスクでは、ゾーンCLV (Constant Linear Velocity)という方式を取っている。これは、光ディスク11をゾーン毎に区切り、このゾーン内での線速度を一定にして記 10録再生を行なう方式である。

【0087】ディスクドライブ部21は、このゾーンを過ぎるたびに、光ディスク11の回転速度を変える必要がある。このため、ゾーンの切れ目がCDA内にあると、連続読み出しが保証できなくなる可能性がある。そこで、ゾーンを跨がないようにCDAを切っていくことにより、CDA内での安定した読み出しが保証されることになる。

【0088】1. 決められたCDAサイズをMPU部1 3のワークRAMに取り込み、d (CDA数) に0を取 20 り込む。

【0089】2. ゾーン数だけ以下の処理を繰り返すための準備を行なう($i=0\sim23$ の間、 $2\sim6$ までの処理をループする)。

【0090】3. dをインクリメントし、ゾーン開始アドレスをd番目CDAのスタートアドレスとし、CDAサイズをワークRAMに取り込んだサイズとし、次のCDA番号は0をセットする。さらに、addにゾーン開始アドレスを取り込む。

【0091】4. ゾーンのバック数÷CDAサイズ-1の回数だけ以下の処理を繰り返すための準備を行なう (k=ゾーンのバック数÷CDAサイズ-1の間、5,6の処理をループする)。

【0092】5. addにadd+CDAサイズを保存 する。

【0093】6. dをインクメントし、addの値をd番目CDAのスタートアドレスとし、CDAサイズをワークRAMに取り込んだサイズとし、次のCDA番号は0をセットする。

【0094】7. CDAテーブルのd+1番目にエンド 40 コード"-0xff"を7パイト記録し、その後ろに、 スタートCDA番号、エンドCDA内の最終記録アドレ ス、としてそれぞれ"0x0000"を保存する。

【0095】また、録画終了時の処理の動作について、図12に示すフローチャートに基づいて説明する。

【0096】1. 録画終了時のCDA処理を行なう。

【0097】2. フォーマッタ部16eより受け取った 切り分け情報を元にワークRAM内のVMGを更新する。

【0098】3. 再生する順番を決めるPGCIを作成 50 る。これは、ORG_PGCが録画順であるためであ

する。

【0099】4.ファイルシステム内のRTR_DVDディレクトリの下のディレクトリレコード情報にVOBSファイル(VROファイル)が存在するかどうかを調べ、ある場合には、VROファイルの情報を(記録したビデオファイルの情報に)更新し、無い場合には、そのディレクトリにVROファイルのディレクトリレコード情報を(記録したビデオファイルの情報に)追加する。【0100】5. CDAテーブルがあるかどうかを調べ、CDAテーブルが無い場合には、ワークRAM内のCDAテーブルをファイルシステムが指定した位置に記録し、CDAテーブルがある場合には、そのCDAテーブルをワークRAM内に構築したCDAテーブルに更新する。

12

【0101】6. RTR_DVDディレクトリの下のディレクトリレコード情報内に、IFOファイル(VMGファイル)があるかどうかを調べ、無い場合には、ワークRAM内に構築したVMGを空き領域に記録し、RTR_DVDディレクトリの下のディレクトリレコード情報にIFOファイルの情報を追加し、ある場合には、IFOファイルの位置にワークRAM内のVMGデータにより、IFOデータを更新し、RTR_DVDディレクトリの下のディレクトリレコード情報を更新する。

【0102】また、通常のPGCI作成処理は、以下のようになる。

【0103】1. 記録したVOBをセルに登録する。

【0104】2. 前記セルをORG_PGCIに登録し、プログラムに作成したセルを割り当てる。

始アドレスを取り込む。 【0105】さらに、この実施の形態における2番組記 【0091】4. ゾーンのバック数÷CDAサイズ-1 30 録の場合のPGCI作成処理は、図13に示すようにな

【0106】1. 記録したVOB1 (録画処理1により発生したVOB)をセル1として登録する。

【0107】2. 記録したVOB2 (録画処理2により発生したVOB)をセル2として登録する。

【0108】3. 前記セル1をプログラム1とし、セル 2をプログラム2として、ORG_PGCIに登録す z

【0109】4. PL (Play List=UD) __PGC I #1のセルにVOB1を登録し、PL__PGC I #1を構成する。

【0110】5. PL_PGCI#2のセルにVOB2 を登録し、PL_PGCI#2を構成する。

【0111】とれにより、録画順に通して再生する場合には、ORG_PGCを選択して再生し、各番組毎に再生したい場合には、各PL_PGCを選択して再生することになる。

【0112】ことで、VOB番号の付け方は、基本的には、録画開始時間の早い方に若い番号を付ける必要がある。これは、ORG、PGCが録画順であるためであ

る。また、録画開始時間が同じ場合には、番組のチャンネルが若い順や、番組タイトルのアイウエオ順、等が考えられる。

【0113】また、PL_PGCの順は、決まった規則は設けられていないため、番組の録画開始時間順、番組のチャンネル番号が若い順、番組タイトルのアイウエオ順等や上記順の組み合わせ等が考えられる。

【0114】次に、録画開始時における録画処理1のCDA処理動作について、図14に示すフローチャートにより説明する。

【0115】1. CDAテーブルよりスタートのCDA番号を読み出す。

【0116】2. スタートCDA番号が"0000"の場合には、記録したCDAが無いということなので、6の処理に移行する。

【0117】3. cda_numlで指定されたCDAの次に接続されているCDA番号を読み出し、cda_numlに取り込む。

【0118】4. cda_num1="0xffff" クし、録画処理2で使用中のものの場合には、1の処理かどうかをチェックし、イコールでない場合には、3の 20 に移行する。未使用のCDAで、録画処理2で使用して処理に移行する。 いない場合、見つけた未使用CDAのスタートアドレ

【0119】5. cda_numlで指定されたCDAのスタートアドレスとEnd addressin End CDAの値とを足したものを記録開始アドレスとし、そのときのCDAサイズからEnd address in End CDAの値を引いたものを記録サイズとし、処理を終了する。

【0120】6. CDA番号1番目のCDAスタートアドレスを記録開始アドレスとし、そのときのCDAサイズを記録サイズとし、スタートCDA番号に"0x0001"を設定し、処理を終了する。

【0121】つまり、以前に記録したデータがあればその続きから、また、記録したデータが無い場合には、CDAテーブルの先頭CDAから記録を開始するようになる。

【0122】また、録画処理1における録画中のCDA 処理の動作について、図15に示すフローチャートにより説明する。

【0123】1.最後に記録したCDA番号を取り出し、その番号以降のCDAで未使用のCDAを探し(次のCDA番号="0000")、見つからずにCDAテーブルを一周した場合には、記録できるCDAが無いので、その旨をメインルーチンに返して終了する。

【0124】2. 未使用のCDAがあった場合に、その CDAが録画処理2で使用中のCDAかどうかチェック し、録画処理2で使用中のものの場合には、1の処理に クリメントする 移行する。未使用のCDAで、録画処理2で使用してい はい場合、見つけた未使用CDAのスタートアドレス、 用のCDAを終 見つからずに とし、CDAサイズを次回記録時の記録アドレス、記録サイズ とし、CDAテーブルの中の最後に記録したCDAの項 できるCDAがの次のCDA番号の所とnow_cdalに見つけた未 50 して終了する。

使用CDA番号を設定して、との処理を終了する。

【0125】これにより、記録を終わったCDAより先のCDA(記録している方向)で、未使用のCDAに記録を行なう。このとき、録画処理2で記録中のCDAは避けるようにすることになる。ただし、未記録の領域が記録方向に無い場合には、リードインへへッドを移動して、改めて記録する方向に未記録領域が無いか検索を行なる

【0126】さらに、録画処理1における録画終了時の CDA処理の動作について、図16に示すフローチャー トにより説明する。

【0127】1. 最後に記録したCDA番号を取り出し、その番号以降のCDAで未使用のCDAを探し(次のCDA番号="0000")、見つからずにCDAテーブルを一周した場合には、記録できるCDAが無いので、その旨をメインルーチンに返して終了する。

【0128】2.未使用のCDAがあった場合には、そのCDAが録画処理2で使用中のCDAかどうかチェックし、録画処理2で使用中のものの場合には、1の処理に移行する。未使用のCDAで、録画処理2で使用していない場合、見つけた未使用CDAのスタートアドレス、記録していない残りの記録すべきデータの数を次回記録時の記録アドレス、記録サイズとし、CDAテーブルの中の最後に記録したCDAの項の次のCDA番号の所に録画処理2で記録を開始時に使用したCDA番号を設定し、さらに、CDA長の所に記録すべきデータとして、残りデータを設定し、この処理を終了する。

【0129】つまり、録画処理1の録画終了後は、最後のCDAの次は、録画処理2で発生したCDA群の先頭30 CDAにつながるように設定することになる。ただし、未記録の領域が記録方向に無い場合には、リードインへへッドを移動して、改めて記録方向に未記録領域がないか検索を行なう。

【0130】また、録画処理2における録画開始、及び録画中のCDA処理の動作について、図17に示すフローチャートにより説明する。

【0131】1. 録画開始かどうかをチェックし、開始時には、録画処理1で記録中のCDA番号を録画処理2の最後に記録したCDA番号(now_cda2←now_cda1)とする。

【0132】2. 最後に記録したCDA番号を読み出す (cda_num2←now_cda2)。

【0133】3.次のCDAから未使用かどうかを調べるために、そのCDA番号(cda_num2)をインクリメントする。

【0134】4. cda_num2以降のCDAで未使用のCDAを探し(次のCDA番号= "0000")、見つからずにCDAテーブルを一周した場合には、記録できるCDAが無いので、その旨をメイブルーチンに返して終了する

【0135】5. 未使用のCDAがあった場合に、その CDAが録画処理1で使用中のCDAかどうかチェック し、録画処理1で使用中のものの場合には、3の処理に 移行する。未使用のCDAで、録画処理1で使用してい ない場合、見つけた未使用CDAのスタートアドレス、 CDAサイズを次回記録時の記録アドレス、記録サイズ とし、CDAテーブルの中の最後に記録したCDAの項 の次のCDA番号の所とnow_cda2に見つけた未 使用CDA番号を設定して、との処理を終了する。

【0136】つまり、記録を終わったCDAより先のC 10 て、図21に示すフローチャートにより説明する。 DA(記録している方向)で、未使用のCDAに記録を 行なう。このとき、録画処理1で記録中のCDAは避け るようにすることになる。ただし、未記録の領域が記録 方向に無い場合には、リードインへへッドを移動して、 改めて記録方向に未記録領域が無いか検索を行なう。

【0137】また、録画処理2における録画終了時のC DA処理の動作について、図18に示すフローチャート により説明する。

【0138】1. 最後に記録したCDA番号を取り出す (cda_num2←now_cda2).

【0139】2. cda_num2で示される番組以降 のCDAで未使用のCDAを探し(次のCDA番号= "0000")、見つからずにСDAテーブルを一周し た場合には、記録できるCDAが無いので、その旨をメ インルーチンに返して終了する。

【0140】3. 未使用のCDAがあった場合には、そ のCDAが録画処理1で使用中のCDAかどうかチェッ クし、録画処理1で使用中のものの場合には、2の処理 に移行する。

【0141】4. 見つけた未使用のCDAのスタートア ドレス、記録していない残りの記録すべきデータの数を 次回記録時の記録アドレス、記録サイズとし、CDAテ ーブルの中の最後に記録したCDAの項の次のCDA番 号の所に終了コードとして"0 x f f f f"を設定し、 さらに、End Address in End CDAに記録すべき残り データ数を設定し、この処理を終了する。

【0142】これらのCDA処理により、図19

(a), (b) に示されるように、録画処理1で記録し たCDAと録画処理2で記録したCDAは、CDA単位 で交互に記録されるようになる。ただし、途中、他の使 40 用されたCDAは飛ばして記録することになる。

【0143】これにより、録画処理1で発生したVOB をVOB1とし、録画処理2で発生したVOBをVOB 2として、各切り分け情報より TMAPIをそれぞれ作

【0144】また、論理的なイメージとしては、図20 に示すように、録画順の再生を行なうために用意された ORG_PGC上では、録画処理1で発生したVOBを PG1とし、録画処理2で発生したVOBをPG2とし て登録し、再生の順番を決める。

【0145】さらに、各番組の再生用として、UD_P GC(ユーザーが自由に再生順番を決めるために用意さ れたPGC群)に、それぞれの録画処理で発生されたV OBを別々に登録する。これにより、希望する番組を再 生したい場合には、目的の番組の属するUD_PGCを 指定することにより、再生が可能となる。また、2番組 同時に再生可能なセットの場合には、この2つのUD_ PGCを動じに再生することにより可能となる。

16

【0146】さらに、再生時のデータ処理動作につい

【0147】1. ディスクチェックし、リライタブルデ ィスク (R, RW, RAM) かどうかをチェックし、リ ライタブルディスクでない場合には、その旨を返して終 了する。

【0148】2、ディスクのファイルシステムを読み出 し、ボリュームストラクチャがあるかどうかをチェック し、無い場合には、「録画されていません」と表示して 終了する。

【0149】3. DVD_RTRディレクトリがあるか 20 どうかをチェックし、無い場合には、「録画がされてい ません」と表示して終了する。

【0150】4. CDAテーブルがあるかどうかをチェ ックし、無い場合には、「録画がされていません」と表 示して終了する。

【0151】5. VROファイルがあるかどうかをチェ ックし、無い場合には、「録画がされていません」と表 示して終了する。

【0152】6、VMGファイルを読み込み、再生する プログラム、セルを決定し(ユーザーに選ばせ)、再生 30 開始するファイルポインタ(論理アドレス)を決定す る。ことで、記録順の再生を選択した場合には、ORG **__PGCIにしたがって再生を行ない、番組毎の再生を** 行なう場合には、再生したい番組に相当する番号のUD __PGCにしたがって再生を行なう。また、2番組同時 に再生したい場合には、UD_PGC1, 2を選択し、 以下の処理をタスク毎に時分割で処理を行なうことによ り可能となる。

【0153】7. 後述する再生開始時のCDA処理を行 なう。

【0154】8. 各デコード部の初期設定を行なう。

【0155】9. 後述するセルの再生処理を行ない、再 生終了かどうかをチェックし、終了の場合には、エラー チェックを行ない、エラーの場合には、その旨を表示 し、エラーでない場合には再生終了処理を行ない、この 動作を終了する。

【0156】10.PGCIより次のセルを決定し、各 デコード部の設定が変更されたかどうかをチェックし、 変更された場合には、次のシーケンスエンコード(VO Bの終了時)に各デコード部の設定が変更されるよう

50 に、各デコード部に変更属性を設定する。

【0157】11. ビデオデコード部15cへの設定 (解像度等)が変更されたかどうかをチェックし、変更 された場合には、セル(VOB)の最後のシーケンスエ ンコードの後、デコード部への設定変更が行なわれるよ ろにデコード部へ変更された属性を設定する。

【0158】12.シームレス接続かどうかをチェック し、シームレス接続の場合には、ビデオデコード部15 cの動作モードをフリーランモード(STCにしたがっ てデコード及び表示を行なうのではなく、ビデオの同期 信号にしたがってデコード及び表示するモード)になる 10 ように設定し、シームレス接続中フラグセットし、9の 処理に施行する。

【0159】また、セルの再生処理動作について、図2 2に示すフローチャートにより説明する。

【0160】1. PGCI、TMAPIにより、セルの 開始ファイルポインタ(論理ブロックアドレス)、終了 アドレスファイルポインタ(論理アドレスブロック)を 決定し、読み出しFPとしてセルの開始FPを代入し、 残りセル長に最終ファイルポインタより開始ファイルポ インタを引いた値を設定する。

【0161】2. 後述する再生中のCDA処理を実行 し、開始ファイルポインタより読み出しアドレス、読み 出しサイズを決定する。

【0162】3.読み出すCDAサイズと残りセル長と を比べ、残りセル長が大きい場合には、残りセル長に残 りセル長より読み出すCDAサイズを引いた値を設定す る。小さい場合には、読み出し長を残りセル長にセット し、残りセル長を0にセットする。

【0163】4. 読み出し長をCDAの長さに設定。

ドレス、読み出し長、読み出し命令を設定する。

【0165】6. 転送が開始したかどうかをチェック し、転送が開始しない場合には、開始するまで待つ。

【0166】7. 読み出しFPに、読み出しFPと5の 処理で設定した読み出し長を足したものを代入し、シー ムレス接続中かどうかをチェックし、シームレス接続中 の場合には、デコード部を通常モードに移行させ、SC Rを読み込む。

【0167】8. 転送が終了したかどうかをチェック し、終了した場合には、残りセル長をチェックし、"0 0"でない場合には、2の処理に移行し、"00"の場 合には、この処理を終了する。

【0168】9、転送が終了していない場合には、キー 入力をチェックし、特殊再生を行なう場合には、その方 向をセットし、TMAPIを利用して読み出しFPを計 算して、特殊再生時のCDA処理を行ない、この処理を 終了する。そうでない場合は、8の処理に移行する。特 殊再生の目的FPは、一定の時間を飛ばすようにTMA PIよりFPを求める。また、このとき、一定時間でな く、一定のVOBUを飛ばしてFPを求める方法も考え 50

られる。このとき、セルの最後まで行ったときは、PG CIにより、次のセル情報を読み出し、セルが使用して いるVOB番号よりTMAPIを選択して1 VOBに1 TMAPIが存在する)、同じように読み出しFPを求 める。また、セルがなくなれば、そこで終了とする。

18

【0169】ととで、再生開始時のCDA処理動作につ いて、図23に示すフローチャートにより説明する。

【0170】1.最初に記録しているCDA番号を読み 出し、cda_numに取り込み、read_pt(読 み出しポインタ)、old_pt(1つ前の読み出しポ インタ)を0にセットする。

【0171】2. 最初に記録しているCDA番号が"0 x0000" かどうかをチェックし、"0x0000" の場合には、「再生するデータがありません」と表示し て、この処理を終了する。

【0172】3. read_ptにda_numで示 されるCDAのCDA長とread_ptの内容を足し たものを入れる。

【0173】4. read_fp[読み出す目的のファ イルポインタ(LBN)]の値とread_ptの値を 比べ、read_fpの方が大きい場合には、old_ ptにread_ptへ代入し、old_cda(1つ 前のCDA)にcda_numを代入し、次のCDA番 号をcda_numに代入し、3の処理に移行する。

【0174】5. read_ptとread_fpが等 しい場合には、cda_numで示されるCDAの開始 アドレスを読み出しアドレス、CDA長を読み出しサイ ズとして、この処理を終了する。

【0175】6. read_ptよりread_fpが 【0 1 6 4 】 5 . ディスクドライブ部 2 1 へ読み出しア 30 小さい場合には、 o 1 d _ c d a を目的 C D A とし、 o 1 d _ c d a で示されるC D A の開始アドレスを読み出 しアドレス、CDA長を読み出しサイズとして、この処 理を終了する。

> 【0176】さらに、再生中のCDA処理動作につい て、図24に示すフローチャートにより説明する。

【0177】1. cda_numにnow_cdaの値 を代入し、次のCDA番号を決定し(cda_numに cda_table[5:6] [cda_num-1] を代入)、read_ptをold_ptに代入する。 【0178】2. read_ptにcda_numで示 されるCDAのCDA長とread_ptの内容を足し たものを入れる。

【0179】3. end_fp [読み出し終了目的のフ ァイルポインタ (LBN)]の値とread_ptの値 を比べ、read_ptの方が大きい場合は4の処理に 移行し、小さい場合は5の処理に移行する。

【0180】4. cda_numで示されるCDAの開 始アドレスを読み出しアドレス、CAD長を読み出しサ イズとし、6の処理に移行する。

【 0 1 8 1 】 5 . c d a __ n u m で示される C D A の開

始アドレスを読み出しアドレス、CDA長より、end __p t より 1 つ前の読み出しポインタを引いた値を引い たものを読み出しサイズとし、FILE_ENDを引数 として、この処理を終了する。

【0182】6. 最終CDAかどうかをチェックし、最 終CDAの場合には、読み出しサイズをEnd Address in End CDAを読み出しサイズとし、引数をEND_C DAとして、この処理を終了する。

【0183】7. その他の場合には、読み出しサイズを CDAサイズとして、この処理を終了する。

【0184】また、特殊再生時のCDA処理動作につい て、図25(a), (b) に示すフローチャートにより 説明する。

【0185】1. cda_numにnow_cdaの値 を代入し、次のCDA番号を決定し(cda_numに cda_table [5:6] [cda_num-1] を代入)、read_ptをold_ptに代入する。 【0186】2. 読み出し方向を調べ、FFの場合には 3の処理に移行し、FRの場合には7の処理に移行す

【0187】3. read_ptとread_fp(読 み出し目的FP)を比較し、read_fpが大きい場 合には、次のCDAのCDA長を番号をread_pt に足し、最後のCDAかどうかを調べ、最後の場合に は、END_VOBを引数として、この処理を終了し、 それ以外の場合は、3の処理に移行する。

【0188】4. read fpが等しい場合には、そ のときのCDAのスタートアドレスを読み出しアドレス とし、CDAサイズを読み出しサイズとする。

【0189】5. 読み出しサイズと I のエンドアドレス 30 を比較し、読み出しサイズが小さい場合には、ディスク ドライブ部21へ読み出しコマンドを出し、データ読み 込み終了後、「のエンドアドレスより読み出しサイズを 引いて【のエンドアドレスとし、次のCDAのスタート アドレス、CDAサイズを読み出しアドレス、読み出し サイズとして、5の処理に移行される。

【0190】6. エンドアドレスが小さい場合は、読み 出しサイズを「のエンドアドレスとし、ディスクドライ ブ部21へ読み出し命令を出力し、この処理を終了す

【0191】7. 1つ前のCDAを探し(現在のcda _numの値が跳び先CDAと一致するCDA)、発見 できれば、read_ptより見つけたCDAのCDA 長を引いた値をread_ptへ代入し、そのread _ptとread_fpを比較し、read_ptが大 きい場合には、cda_numにold_cdaを代入 し、7の処理に移行する。

【0192】8. 等しい場合には、4の処理に移行し、 小さい場合には、6の処理に移行する。

【0193】9.CDAが見つからないでCDAテーブ 50 【発明の効果】以上詳述したようにこの発明によれば、

ルを一周探した場合には、END_VOBを引数とし て、この処理を終了する。

【0194】また、このCDAテーブルでは、消去や編 集等を行なった場合に、CDA単位で行なう場合には、 問題なく対応できる。

【0195】しかしながら、ユーザーは時間にしたがっ て(ビデオフレーム単位で)編集することが自然であ り、可能性が高い。このため、CDA単位での編集とは ならない場合がある。よって、消去や編集の単位をVO 10 BU単位で行ない、フレーム単位で行なう場合には、V OBU内で表示開始フレームをずらして対応する。

【0196】そとで、消去等の場合には、CDA単位で 通常行ない、それ以下の単位には、CDA長を減らした り、CDAスタートアドレスをずらせることで対応する ことになる。

【0197】しかしながら、このようにして、CDAテ ーブルの変更を繰り返すと、効率が悪くなっていく。と のため、編集消去を繰り返すと一定の間隔(期間)で、 CDAテーブルの整理を行ない、未使用でCDA長が連 20 続している部分を見つけ、そこを新たなCDAに設定す る作業が必要になってくる。

【0198】その行なうタイミングとしては、以下の2 種類が考えられる。

【0199】第1に、消去編集を行ない、CDAテープ ルを一定の回数書き替えを行なったことをトリガとす る。

【0200】第2に、一定の時間が経過し、空いた時間 に自動的に行なう。

【0201】また、エンコーダ部16は、図26及び図 27に示すように、2つの形態が考えられる。

【0202】第1は、図26に示すように、同時に記録 できる番組の数分だけビデオエンコード部、オーディオ エンコード部を持つやり方である。この方法は、簡単で あるが、回路規模が大きくなる。

【0203】第2は、図27に示すように、同時に記録 できる番組の数分だけフレームメモリ部を持ち、1組の ビデオエンコード部とオーディオエンコード部を持ち、 一定の量づつ(1フレームまたは1GOP毎)エンコー ドを行ない、番組を切り替えてエンコード処理を行なう 40 方法である。この方法の場合、番組毎にワークメモリを 持ち、番組エンコード処理を切り替える毎に使用するワ ークメモリも切り替えることにより、エンコード処理を 時分割で行なえるようになる。この方法は、エンコード 処理が複雑になるが、回路規模が比較的小さくて済むと とになる。

【0204】なお、この発明は上記した実施の形態に限 定されるものではなく、この外その要旨を逸脱しない範 囲で種々変形して実施することができる。

[0205]

2 ----

21

ディスク状記録媒体に対して、複数の番組を同時に効率 よく記録することが可能となる極めて良好なマルチチャ ンネル記録装置及び記録方法を提供することができる。 【図面の簡単な説明】

【図1】との発明に係るマルチチャンネル記録装置及び 記録方法の実施の形態を示すもので、RTR-DVDディレクトリ構造を説明するために示す図。

【図2】同実施の形態におけるVOBSの階層構造を説明するために示す図。

【図3】同実施の形態における記録再生装置を説明する 10 めに示すフローチャート。 ために示すブロック構成図。 【図22】同実施の形態に

【図4】同実施の形態におけるCDAテーブルを説明するために示す図。

【図5】同実施の形態におけるC_EPIを説明するために示す図。

【図6】同実施の形態における $VOBU_ENT$ を説明するために示す図。

【図7】同実施の形態における録画動作を説明するため に示すウローチャート。

【図8】同実施の形態における録画時の割り込み動作を 20 明するために示すブロック構成図。 説明するために示すフローチャート。 【図27】同実施例におけるエンコ

【図9】同実施の形態における録画前処理動作を説明するために示すフローチャート。

【図10】同実施の形態におけるSTI選択及び設定処 理動作を説明するために示すフローチャート。

【図11】同実施の形態における初期時のCDAテーブル作成処理動作を説明するために示すフローチャート。

【図12】同実施の形態における録画後処理動作を説明 するために示すフローチャート。

【図13】同実施の形態における録画終了時のPGCI 作成動作を説明するために示すフローチャート。

【図14】同実施の形態における録画処理1における録画開始時のCDA処理動作を説明するために示すフローチャート。

【図15】同実施の形態における録画処理1における録画中のCDA処理動作を説明するために示すフローチャート。

【図16】同実施の形態における録画処理1における録画終了時のCDA処理動作を説明するために示すフローチャート。

【図17】同実施の形態における録画処理2における録画開始及び録画中のCDA処理動作を説明するために示

すフローチャート。

【図18】同実施の形態における録画処理2における録 画終了時のCDA処理動作を説明するために示すフロー チャート。

【図19】同実施の形態における2番組記録時のCDA 単位の物理記録イメージを説明するために示す図。

【図20】同実施の形態における論理構成イメージを説明するために示す図。 ___

【図21】同実施の形態における再生動作を説明するために示すフローチャート.

【図22】同実施の形態におけるセル再生時の処理動作 を説明するために示すフローチャート。

【図23】同実施の形態における再生開始時のCDA処理動作を説明するために示すフローチャート。

【図24】同実施の形態における再生中のCDA処理動作を説明するために示すフローチャート。

【図25】同実施の形態における特殊再生時のCDA処理動作を説明するために示すフローチャート。

【図26】同実施例におけるエンコーダ部の他の例を説明するために示すブロック構成図。

【図27】同実施例におけるエンコーダ部のさらに他の 例を説明するために示すブロック構成図。

【符号の説明】

11…光ディスク、

12…A/V入力部、

13 ··· MPU部、

14…表示部、

15…デコーダ部、

16…エンコーダ部、

30 17…TVチューナー部、

18…STC部、

19…D-PRO部、

20…一時記憶部、

21…ディスクドライブ部、

22…キー入力部、

23…Vミキシング部、

24…フレームメモリ部、

25…TV受信機、

26…D/A変換部、

40 27, 28… I/F部、

29…スピーカ。

【図1】

【図2】

【図3】

【図4】

	Byte Number	CDA25-171-12:30'11	CD46(3, -30, 4)	大のCDA業長・20・41
_	0	CDA1:0323e0(h)		
y			0e00(h)	0002(h)
	7	CDA2:0331e0(h)	0e00(h)	0003(h)
ソーンの				
l _	35	CDA6:0369e0(h)	0e00(h)	0007(h)
ソーン1	42	CDA7:037d90(h)	OeO0(h)	0008(h)
	•••		•••	
	91	CDA14:03df90(h)	0e00(h)	D00F(h)
	2121	CDA304:158dd@(h)	De00(h)	0131(h)
ゾーン23				
L	2247	CDA322:1689d0(h)	0a00(h)	0000(h)
	2254	fffff(h)	ffff(h)	ffff(h)

Byte Number	stert CDA Number (2bytes)	Byte Number	End address in End CDA (2bytes)
2261	0001(h)	2263	0001(h)

start CDA Numberの番号のCDAよりVDBSを開始し、次のCDA番号により、CDAの 繋がりをたどる。 次のCDA番号が00の場合には、そこで、VDBSアパルは終了とする。 オれ以降のCDAは未使用となる。(VOBSアパルは、1diskに17パルである。) ちらに、End address in End CDAは最後CDA内での記録したデーカがの最終かい (CDA先輩からのRSN)である

【図5】

【図13】

【図10】

【図7】

【図11】

【図12】

【図15】

【図26】

【図27】

【図14】

【図16】

【図17】

【図18】

【図21】

【図22】

【図23】 読み出しアドレスとし、CDA サイズより オアセット値を引いた値を読み出しサイズとする 取り出しCDAの先頭が、レスに目的のファイル read_size ← cda_table[3:4][old_cda-1] * 16-(read_fp-old_pt) now_cdaに取り出したCDA 番号を設定 read_add+-cda_table[0:2][old_cda-1]+(read_fp-old_pt) 取り出しCDAの先頭アドレスを読み出しアドレスとし、 再生デ-9無し すってかまでのオルかをつけ、 Return (error) now_cdaに取り出したCDA番号を設定 now_cda←old_cda CDA サイズを読み出しサイズとする 記録されたCDAはあるか? CDAサイズの累積が目的のファイルポインタ (論理アドレス)を越えたか? read_pt - read_pt + cda_table[3:4][cda_num - 1] YES 使用している最初のCDA番号を取り出す read_add+-oda_table[0:2][oda_num-1] read_size ← cda_table[3:4][cda_num – 1] read_addより再生開始するよう設定 cda_num←79-hCDA番号 再生開始時のCDA処理 now_cda ←cda_num old cda ←cda_num CDAサイズを累積 read pt:read fp cda num==0 old_cda ←0 read_pt←0 Ž old_pt+0 Return cda_num + cda_table[5:6][cda_num - 1] YES old cda-cda num cda num ==0xfff 目的VOBU無し old pt+read pt 次のCDAの設定 £ Return (error)

【図24】

【図25】

フロントページの続き

(72)発明者 蔵野 智昭

神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町工場内 Fターム(参考) 5C053 FA23 GA06 GA11 GB15 GB21

GB37 HA29 KA24 LA06 LA07

5D044 AB06 AB07 BC01 BC04 CC04

DE14 DE24 EF05

5D080 AA07 BA02 BA03 CA03 DA06

GA01 GA25