TD 4 : Congruences

Arithmétique Semestre 1

Exercice 1 Soient a, b deux entiers plus grands que 1 dont les décompositions en facteurs premiers sont

$$a = \prod_{k=1}^{N} p_k^{\alpha_k}, \quad b = \prod_{k=1}^{N} p_k^{\beta_k}, \quad p_k \in \mathcal{P}, \quad \alpha_k, \ \beta_k \in \mathbb{N}.$$

Rappelons que (ou alors, on définit):

$$\mathbf{pgcd}\left(a,b\right) = \prod_{k=1}^{N} p_{k}^{\min\{\alpha_{k},\beta_{k}\}} \quad \text{et} \quad \mathbf{ppcm}\left(a,b\right) = \prod_{k=1}^{N} p_{k}^{\max\{\alpha_{k},\beta_{k}\}}.$$

- 1. Déterminer **pgcd** (40, 28) et **ppcm** (40, 28).
- 2. Montrer les propriétés suivantes :
 - (a) $\mathbf{pgcd}(a, b) \times \mathbf{ppcm}(a, b) = ab$;
 - (b) $a \mid b \iff \mathbf{ppcm}(a, b) = b$;
 - (c) pour tout $c \in \mathbb{N}^*$, **ppcm** $(ac, bc) = c \times \mathbf{ppcm}(a, b)$;
 - (d) pour tout $n \in \mathbb{N}^*$, **ppcm** $(a^n, b^n) = \mathbf{ppcm} (a, b)^n$.
- 3. La somme de deux entiers positifs est égale à 166 et leur **ppcm** est égal à 2520. Qui sont ces entiers?

Exercice 2 Soit $n \in \mathbb{N}$.

- 1. Montrer que $5^n 1$ est divisible par 12 si et seulement si n est pair.
- 2. Démontrer que $2^{4n+1} + 3^{4n+1}$ est divisible par 5.
- 3. Montrer que $n(n^2 + 5)$ est divisible par 3.
- 4. À quelle condition sur n a-t-on $7 \mid n^2 2n$?
- 5. Montrer que la somme de trois cubes consécutifs est divisible par 9.

Exercice 3 Résoudre les congruences suivantes :

Exercice 4 (Partiel 2019) L'objectif de cet exercice est de déterminer tous les couples d'entiers $(m,n) \in \mathbb{N}^2$ solutions de l'équation

$$2^m - 3^n = 1. (1)$$

- 1. Soit $(m,n) \in \mathbb{N}^2$.
 - (a) Montrer que si n est pair alors $3^n \equiv 1 \mod 8$.
 - (b) Montrer que si n est impair alors $3^n \equiv 3 \mod 8$.
- 2. Soit $(m,n) \in \mathbb{N}^2$ une solution de (1). Montrer que $m \leq 2$.
- 3. En déduire tous les couples $(m, n) \in \mathbb{N}^2$ solutions de (1).