Matrix Decomposition: SVD, and Spectral Decomposition

Dr. Shailesh Sivan

June 11, 2025

Dr. Shailesh Sivan

Matrix Decomposition : SVD, and Spectral D

Dataset as a Matrix

Let a dataset be represented as a matrix:

 $X \in \mathbb{R}^{n \times d}$ (n samples, d features)

We compute the covariance matrix:

$$C = \frac{1}{n-1} X^T X$$

Then apply spectral decomposition:

$$C = Q \Lambda Q^T$$

- Q: matrix of eigenvectors
- Λ: diagonal matrix of eigenvalues

Matrix Decomposition: Overview

- Matrix decomposition simplifies matrix operations and linear algebra problems.
- Decompositions factor a matrix into simpler components:
 - LU Decomposition (Lower-Upper)
 - QR Decomposition (Orthogonal-Triangular)
 - SVD (Singular Value Decomposition)
 - Spectral (Eigenvalue) Decomposition

Dr. Shailesh Sivan

Matrix Decomposition : SVD, and Spectral D

Significance of Eigenvectors and Eigenvalues

Eigenvectors

Indicate the directions (axes) along which the data varies the most — the principal directions.

Eigenvalues

Dr. Shailesh Sivan

Quantify the amount of variance (information) present along each eigenvector direction.

Use in PCA: Select top-k eigenvectors with highest eigenvalues for dimensionality reduction.

Geometric Interpretation

- Eigenvectors form a new coordinate system (orthogonal axes).
- Eigenvalues tell how "stretched" the data is along each axis.

$$X \rightarrow \text{rotate} \rightarrow \text{project} \rightarrow \text{reduce}$$

New representation:

$$Z = XQ_k$$

Where Q_k contains the top-k eigenvectors.

Dr. Shailesh Sivan

Matrix Decomposition: SVD, and Spectral D

Singular Value Decomposition (SVD) - Concept

For any $A \in \mathbb{R}^{m \times n}$, $A = U \Sigma V^T$

- $U \in \mathbb{R}^{m \times m}$: orthogonal, columns = left singular vectors
- $V \in \mathbb{R}^{n \times n}$: orthogonal, columns = right singular vectors
- $\Sigma \in \mathbb{R}^{m \times n}$: diagonal matrix with singular values

Summary Table

Concept	Significance	
Eigenvectors	Principal axes in feature space (directions of variance)	
Eigenvalues	Magnitude of variance in corresponding direction	
PCA	Uses top-k eigenvectors to reduce dimensionality	
Noise Filtering	Discarding low eigenvalue directions removes noise	
Compression	Low-rank approximation using leading eigenvectors	

Dr. Shailesh Sivan

Matrix Decomposition: SVD, and Spectral D

Algorithm: Steps for SVD

Given $A \in \mathbb{R}^{m \times n}$:

- Compute $A^T A \in \mathbb{R}^{n \times n}$
- 2 Find eigenvalues λ_i and eigenvectors v_i of A^TA
- 3 Singular values: $\sigma_i = \sqrt{\lambda_i}$
- 4 Right singular vectors: v_i (columns of V)
- **1** Left singular vectors: $u_i = \frac{1}{\sigma_i} A v_i$ (columns of U)
- Construct:

Dr. Shailesh Sivan

$$U = [u_1, \ldots, u_r], \quad V = [v_1, \ldots, v_r], \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r)$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \Rightarrow A^T A = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix}$$

- Eigenvalues of A^TA : $\lambda_1 = 16, \lambda_2 = 4$
- $\sigma_1 = 4$, $\sigma_2 = 2$
- Eigenvectors of $A^T A$ give V, then $U = \frac{1}{\sigma_i} A v_i$
- Final decomposition: $A = U \Sigma V^T$

Dr. Shailesh Sivan

Matrix Decomposition : SVD, and Spectral D

June 11, 202

9 / 25

Dr. Shailesh S

Dr. Shailesh Sivan

Matrix Decomposition : SVD, and Spectral D

June 11, 2025

10/2

Step 1: SVD Decomposition

$$A = U\Sigma V^T$$

Where:

$$U = \begin{bmatrix} -0.45 & 0.58 & -0.48 & 0.50 \\ -0.52 & 0.16 & 0.82 & -0.15 \\ -0.50 & -0.64 & -0.05 & -0.57 \\ -0.59 & 0.49 & -0.14 & -0.63 \\ -0.33 & -0.07 & -0.27 & 0.90 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 12.3 & 0 & 0 & 0 \\ 0 & 5.2 & 0 & 0 \\ 0 & 0 & 2.1 & 0 \\ 0 & 0 & 0 & 1.1 \end{bmatrix}$$

$$V = \begin{bmatrix} -0.52 & 0.43 & -0.57 & -0.47 \\ -0.50 & -0.58 & 0.27 & 0.58 \\ -0.47 & 0.47 & 0.72 & -0.22 \\ -0.51 & -0.49 & -0.28 & 0.64 \end{bmatrix}$$

$A = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 3 & 2 & 5 \\ 4 & 2 & 3 & 1 \\ 3 & 5 & 4 & 2 \\ 5 & 1 & 2 & 4 \end{bmatrix}$

- Size: 5×4 (5 samples, 4 features)
- Goal: Reduce to 5×2

Step 2: Keep Top-2 Components

We retain only top 2 singular values and vectors:

 $U_2 = \text{first 2 columns of } U, \quad \Sigma_2 = \text{top-left 2} \times 2, \quad V_2 = \text{first 2 columns of } V$

$$A_{\mathsf{reduced}} = U_2 \Sigma_2 = A \cdot V_2$$

$$V_2 = \begin{bmatrix} -0.52 & 0.43 \\ -0.50 & -0.58 \\ -0.47 & 0.47 \\ -0.51 & -0.49 \end{bmatrix}$$

Step 3: Compute $A_{\text{reduced}} = A \cdot V_2$

$$A_{\text{reduced}} = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 3 & 2 & 5 \\ 4 & 2 & 3 & 1 \\ 3 & 5 & 4 & 2 \\ 5 & 1 & 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} -0.52 & 0.43 \\ -0.50 & -0.58 \\ -0.47 & 0.47 \\ -0.51 & -0.49 \end{bmatrix}$$

$$A_{\mathsf{reduced}} pprox egin{bmatrix} -5.94 & -2.67 \ -5.65 & -2.62 \ -5.16 & 1.09 \ -7.45 & -1.04 \ -5.84 & 0.17 \end{bmatrix}$$

4 D > 4 B > 4 B > B = 9000

Dr. Shailesh Sivan

Matrix Decomposition: SVD, and Spectral D

June 11, 202

13 / 25

Spectral Decomposition: Concept

Applies to symmetric matrices: $A = A^T \in \mathbb{R}^{n \times n}$

$$A = Q \Lambda Q^T$$

- Q: orthogonal matrix of eigenvectors
- Λ: diagonal matrix of eigenvalues
- Basis for many ML techniques like PCA

Final Reduced Matrix A_{reduced}

$$A_{\text{reduced}} = \begin{bmatrix} -5.94 & -2.67 \\ -5.65 & -2.62 \\ -5.16 & 1.09 \\ -7.45 & -1.04 \\ -5.84 & 0.17 \end{bmatrix}$$

- New size: 5×2
- Each sample is now represented using only 2 features
- Dimensionality reduced while preserving structure

Dr. Shailesh Sivan

Matrix Decomposition: SVD, and Spectral D

June 11, 2025

14/2

Algorithm: Steps for Spectral Decomposition

Given symmetric matrix $A \in \mathbb{R}^{n \times n}$:

- Compute eigenvalues $\lambda_1, \ldots, \lambda_n$
- **2** Compute eigenvectors $\mathbf{q}_1, \dots, \mathbf{q}_n$
- Normalize eigenvectors to unit length
- 4 Form:

$$Q = [\mathbf{q}_1 \cdots \mathbf{q}_n], \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

Oecomposition:

$$A = Q\Lambda Q^T$$

Example: Spectral Decomposition

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

- Eigenvalues: $\lambda_1 = 3, \lambda_2 = 1$
- Eigenvectors:

$$\mathbf{q}_1 = rac{1}{\sqrt{2}} egin{bmatrix} 1 \ 1 \end{bmatrix}, \quad \mathbf{q}_2 = rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \end{bmatrix}$$

• Decomposition:

$$A = Q\Lambda Q^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}^T$$

4 D > 4 B > 4 B > B = 9000

Dr. Shailesh Sivan

Matrix Decomposition : SVD, and Spectral D

June 11, 202

17 / 2

Spectral Decomposition

$$A = Q \Lambda Q^T$$

Where:

- Q: matrix of eigenvectors
- Λ: diagonal matrix of eigenvalues

Assume:

$$\Lambda = \begin{bmatrix} 8.1 & 0 & 0 & 0 \\ 0 & 3.2 & 0 & 0 \\ 0 & 0 & 2.1 & 0 \\ 0 & 0 & 0 & 0.6 \end{bmatrix} \quad Q = \begin{bmatrix} 0.5 & -0.4 & 0.6 & -0.5 \\ 0.3 & 0.8 & -0.2 & -0.4 \\ 0.7 & -0.2 & -0.6 & -0.3 \\ 0.4 & 0.3 & 0.5 & 0.7 \end{bmatrix}$$

Original Symmetric Matrix A

$$A = \begin{bmatrix} 4 & 1 & 2 & 0 \\ 1 & 3 & 0 & 1 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

- $A \in \mathbb{R}^{4 \times 4}$, real symmetric
- Spectral decomposition is applicable

Dr. Shailesh Sivai

Matrix Decomposition: SVD, and Spectral D

June 11, 2025

18 /

Dimensionality Reduction (4D to 2D)

We choose the top 2 eigenvectors corresponding to the 2 largest eigenvalues:

$$Q_2 = \begin{bmatrix} 0.5 & -0.4 \\ 0.3 & 0.8 \\ 0.7 & -0.2 \\ 0.4 & 0.3 \end{bmatrix}$$

$$A_{\text{reduced}} = X \cdot Q_2$$

Let sample matrix X be:

$$X = \begin{bmatrix} 2 & 1 & 3 & 2 \\ 1 & 2 & 2 & 1 \\ 3 & 3 & 1 & 2 \end{bmatrix}$$

Matrix Decomposition: SVD, and Spectral D

Then A_{reduced} is a 3 \times 2 matrix.

Compute Reduced Matrix

$$A_{\text{reduced}} = \begin{bmatrix} 2 & 1 & 3 & 2 \\ 1 & 2 & 2 & 1 \\ 3 & 3 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0.5 & -0.4 \\ 0.3 & 0.8 \\ 0.7 & -0.2 \\ 0.4 & 0.3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3.9 & -0.4 \\ 3.0 & 0.6 \\ 3.8 & 1.0 \end{bmatrix}$$

- Each row is now a 2D representation of original 4D sample
- Major variance preserved by top eigenvectors

Dr. Shailesh Sivan

Matrix Decomposition: SVD, and Spectral D

Summary

Dr. Shailesh Sivan

Decomposition	Input	Output
SVD	Any matrix	$A = U\Sigma V^T$
Spectral	Symmetric matrix	$A = Q \Lambda Q^T$

Summary

<ロ > ← □ Matrix Decomposition : SVD, and Spectral D

• Spectral decomposition works only for symmetric matrices

- Eigenvectors form a new feature space
- Dimensionality reduction achieved by projecting data on top eigenvectors
- Result: Fewer features with minimal information loss

Dr. Shailesh Sivan

Matrix Decomposition : SVD, and Spectral D

Significance of Matrix Decompositions in ML and Data Science

Dimensionality Reduction:

- SVD and PCA reduce high-dimensional data to fewer components while preserving variance.
- Noise Reduction and Denoising:
 - Low-rank approximations from SVD remove noise in data.
- Data Compression:
 - Use top singular values to compress large datasets or images (e.g., JPEG compression).
- Latent Semantic Analysis (LSA):
 - SVD helps uncover latent structures in text data for topic modeling and document similarity.

Significance of Matrix Decompositions in ML and Data Science

- Recommendation Systems:
 - Matrix factorization (via SVD) is used in collaborative filtering (e.g., Netflix algorithm).
- Eigenfaces in Facial Recognition:
 - PCA is used to identify key patterns in face images for classification.
- Feature Extraction and Engineering:
 - Decompositions help extract dominant features from raw data.
- Solving Linear Systems and Inversion:
 - LU, QR, and SVD are used in efficient numerical solutions and stability.

Dr. Shailesh Sivan

Matrix Decomposition : SVD, and Spectral D

June 11, 2025

25 / 25

