

Universidad Tecnológica Nacional Facultad Regional Villa María Ingeniería en Sistemas de la Información Sintaxis y Semántica de los Lenguajes TRABAJO PRÁCTICO N°4

Profesores:

Ing. Mario Rinaldi Ing. Jorge Palombarini (J.T.P.) Grupo L

Alumnos:

- Comba, Enzo (enzo_comba@hotmail.com) (13648)
- Mairone, Nicolás (mairone.nicolas@gmail.com) (13672)
- Pereyra, Bruno (pizzi686@gmail.com) (12206)
- Cerutti, Alejo (alejocerutti4@gmail.com) (13503)

1. Obtener los NFA-e que representan las siguientes expresiones regulares.

a.
$$(0 \cup 1)^*000(0 \cup 1)^*$$

b.
$$(((00)^*(11)) \cup 01)^*$$

c. Ø*

d $_{\Delta}$. (ab \cup aab \cup aba)*

e. (a \cup b)* aabab

1a)

Transición redundante

1c)

1d)

1e)

2. Utilizando el procedimiento visto en clase, convertir los siguientes autómatas en expresiones regulares.

2)a

No acepta b solamente y deberia

2)b

Deberia aceptar ab solamente y no lo hace

2)c

d ∆)

2)d

2)e

2h)

3. Dados los siguientes autómatas A (Izquierda) y B (Derecha)

a. Diseñar el autómata que representa A U B, A.B y A*

A U B

AB

A*

4 Δ. Dadas las siguientes Grillas, imagine un robot que se encuentra inicialmente en la posición S de alguna de ellas (no se conoce a priori en cuál), y que tiene como objetivo llegar a cualquiera de las posiciones G, efectuando una serie de movimientos MOVS={arriba, abajo, izquierda, derecha}. Teniendo en cuenta que:

- Estando en una cierta posición, el robot puede realizar sólo un movimiento a la vez, tomado el mismo de MOVS, y que el efecto de cada movimiento, según el elegido, es el cambio a otra posición adyacente dentro de la grilla.
- El robot NO PUEDE traspasar paredes (Celdas negras). Si el movimiento seleccionado lo lleva a chocar con una pared, el efecto de la acción es que permanece en la posición en la que se encuentra.
- Existen celdas especiales (B,D y C), que producen el efecto de que al encontrarse en B/D/C, el
 robot produce una réplica de sí mismo en las celdas etiquetadas con B1/D1/C1. El robot original
 no desaparece de la grilla, por lo cual podría haber varios robots en una grilla dada, incluso en
 la misma celda.
- a) Plantee UN Autómata Finito que permita determinar si, para una secuencia general de acciones llevada a cabo en alguna de las grillas, algún robot llegará a cumplir su objetivo, sin importar en cual Grilla haya iniciado su camino y en cuál lo haya completado. Se debe tener en cuenta que por ejemplo podrían existir trayectorias que sean exitosas en ambas grillas, o sólo en una de ellas, o en ninguna de las dos. Su autómata debe ser lo suficientemente genérico para contemplar dichas situaciones.
- b) ¿Qué "lenguaje" reconoce el autómata planteado?

a)

b)

El lenguaje que reconoce es: {W/W reconoce las cadenas que empiezan en alguna de las dos grillas en S y que termine en G}

- * 5. Diseñe un AF de dos estados q reconozca el lenguaje representado por a*b*
 - a) Dibuje su diagrama de transiciones.
 - b) Defínalo formalmente: (5-upla y tabla de transiciones)

a)

- b) La descripción formal para M1 es $(Q, \Sigma, \delta, q0, \varepsilon)$ donde
 - 1. $Q = \{q0, q1\},\$
 - 2. $\Sigma = \{a, b\}$
 - 3. δ está dado por

	a	b	3
q0	q0	-	q1
q1	-	q1	-

- 4. q0 es el estado inicial, y
- 5. $F = \{q0, q1\}$
- 6. Δ Dado el siguiente autómata, construya el lenguaje que este acepte y la expresión regular que lo genera.

El lenguaje que acepta es: L= $\{w \mid w \text{ empieza con } (x(xUy)y)^*U((x(xUy)y)^*xy), \text{ seguido de } (x)^*, y \text{ termina con } x \text{ si antes de } (x)^* \text{ hay } xy \text{ y posteriormente la cantidad de } x \text{ en } (x)^* \text{ tiene que ser par, si } x \text{ si antes de } (x)^* \text{ tiene que ser par, si } x \text{ si antes de } (x)^* \text{ tiene que ser par, si } x \text{ tiene que se$

es impar termina con y. Termina con y si antes de $(x)^*$ hay x(xUy)y y posteriormente la cantidad de x en $(x)^*$ tiene que ser par, si es impar termina con x. }

Falta la expresion regular realizada.