A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs (Algorithms)

Payam Delgosha* and Venkat Anantharam[†] January 17, 2023

This document contains the algorithms in [DA23]. Please refer to [DA23] for more discussion as well as the proof of optimality and complexity analysis.

The table on Page 2 gives a list of the algorithms, the description for each algorithm, as well as their interdependencies.

References

[DA23] Payam Delgosha and Venkat Anantharam. A universal low complexity compression algorithm for sparse marked graphs. arXiv preprint arXiv:2301.05742, 2023.

^{*}Department of Computer Science, University of Illinois Urbana-Champaign, delgosha@illinois.edu

 $^{^\}dagger Department \quad of \quad Electrical \quad Engineering \quad and \quad Computer \quad Sciences, \quad University \quad of \quad California, \quad Berkeley, \\ \textbf{ananth@berkeley.edu}$

Algorithm	Description	Uses algorithms
1	encoding a simple marked graph (main compression algorithm)	2, 14, 4, 5, 6, 7, 8, 17, 24
2	preprocessing a simple marked graph to find its equivalent neighbor list rep-	
3	resentation compressing an array consisting of	17
4	nonnegative integers encoding star vertices (part of Algo-	3
5	rithm 1) encoding star edges (part of Algorithm 1)	
6	rithm 1) finding vertex degree profiles, i.e. the variable Deg (part of Algorithm 1)	
7	encoding Vertex Types (part of Algorithm 1) rithm 1)	3
8	finding Partition Graphs (part of Algorithm 1)	
9	decoding a simple marked graph (main decompression algorithm)	10, 11, 12, 13, 22, 27
10	decompressing an array consisting of nonnegative integers	22
11	decoding star edges	
12	decoding vertex degree profiles	10
13	finding degree sequences of partition graphs and relative vertex indexing	
14	extracting edge types for a simple marked graph	15
15	sending a message from a node to one of its neighbors	
16	computing $N_{i,j}(G)$ for a simple unmarked bipartite graph $G \in \mathcal{G}_{\vec{n}\ \vec{b}}^{(n_l,n_r)}$	18, 19
17	marked bipartite graph $G \in \mathcal{G}_{\vec{a}, \vec{b}}^{(n_l, n_r)}$ finding $f_{\vec{a}, \vec{b}}^{(n_l, n_r)}(G)$ for $G \in \mathcal{G}_{\vec{a}, \vec{b}}^{(n_l, n_r)}$	16
18	computing $\prod_{k'=0}^{k-1} (p-k's)$	
19	computing $\prod_{i'=i}^{n} v_{i'}!$ for an array v of nonnegative integers	18
20	decoding the adjacency list of a left vertex $1 \leq i \leq n_l$ given $\widetilde{N}_{i,i}$ for a	18
	simple unmarked bipartite graph $G \in \mathcal{G}_{\vec{a},\vec{b}}^{(n_l,n_r)}$	
21	decoding the adjacency list of the left vertices $i \leq v \leq j$ for $1 \leq i \leq j \leq n_l$ given $\tilde{N}_{i,j}$ for a simple unmarked bipartite graph $G \in \mathcal{G}_{\vec{n},\vec{b}}^{(n_l,n_r)}$	18, 19, 20
22	decoding for a simple unmarked bi-	19, 21
	partite graph $G \in \mathcal{G}_{\vec{a},\vec{b}}^{(n_l,n_r)}$ given $f_{\vec{a},\vec{b}}^{(n_l,n_r)}(G)$	
23	computing $N_{i,j}(G)$ for a simple un-	18
24	marked graph $G \in \mathcal{G}_{\vec{a}}^{(\tilde{n})}$ finding $f_{\vec{a}}^{(\tilde{n})}(G)$ and $\tilde{f}_{\vec{a}}^{(\tilde{n})}(G)$ for $G \in$	23
25	$\mathcal{G}_{\vec{a}}^{(n_l,n_r)}$ decoding the forward adjacency list of	18
	a vertex $1 \leq i \leq \tilde{n}$ given $\tilde{N}_{i,i}$ for a simple unmarked graph $G \in \mathcal{G}_{\vec{a}}^{(\tilde{n})}$	

26	decoding the forward adjacency list of	18, 25
	vertices $i \leq v \leq j$ given $N_{i,j}$ for a sim-	
	ple unmarked graph $G \in \mathcal{G}_{ec{a}}^{(ilde{n})}$	
27	decoding for a simple unmarked graph	19, 26
	$G \in \mathcal{G}_{\vec{a}}^{(\tilde{n})}$ given $f_{\vec{a}}^{(\tilde{n})}(G)$ and $\vec{f}_{\vec{a}}^{(\tilde{n})}(G)$	

Algorithm 1. Encoding a simple marked graph

Input:

n: number of vertices

 $G^{(n)}$: A simple marked graph $G^{(n)}$ on the vertex set [n], vertex mark set $\Theta = \{1, \ldots, |\Theta|\}$ and edge mark set $\Xi = \{1, \dots, |\Xi|\}$ given as follows:

- its vertex mark sequence $\vec{\theta}^{(n)} = (\theta_v^{(n)} : v \in [n])$, where $\theta_v^{(n)} \in \Theta$ is the mark of vertex v in
- EdgeList = (EdgeList_i: $1 \le i \le m^{(n)}$): the list of edges in $G^{(n)}$ where EdgeList_i = (v_i, w_i, x_i, x_i') for $1 \le i \le m^{(n)}$, where $m^{(n)}$ denotes the total number of edges in $G^{(n)}$, and for $1 \le i \le m^{(n)}$, the tuple (v_i, w_i, x_i, x_i') represents an edge between the vertices v_i and w_i with mark x_i towards v_i and mark x_i' towards w_i , i.e. $\xi_{G^{(n)}}(w_i, v_i) = x_i$ and $\xi_{G^{(n)}}(v_i, w_i) = x_i'$
- δ : degree threshold hyperparameter, $\delta \geq 1$
- h: depth hyperparameter, h > 1

Output:

13:

```
Output: A bit sequence in \{0,1\}^* - \emptyset representing G^{(n)} in compressed form.
```

- 1: **function** MarkedGraphEncode $(n, G^{(n)}, \delta, h)$ $Output \leftarrow empty bit sequence$ ▷ initialize the output with empty bit sequence 2: $(\vec{\theta}^{(n)}, \vec{d}^{(n)}, \vec{\gamma}^{(n)}, \vec{\tilde{\gamma}}^{(n)}, \vec{x}^{(n)}, \vec{x'}^{(n)}) \leftarrow \text{PREPROCESS}(n, \vec{\theta}^{(n)}, \text{EdgeList})$ 3: ▷ Algorithm 2, this finds the equivalent neighbor list representation $(\vec{c}, \mathsf{TCount}, \mathsf{TIsStar}, \mathsf{TMark}) \leftarrow \mathsf{EXTRACTTYPES}(n, G^{(n)}, \delta, h)$ ▶ Algorithm 14 4: Output \leftarrow Output $+ E_{\Lambda}(1 + TCount)$ ▶ use the Elias delta code to represent TCount 5: for $1 \le i \le \mathsf{TCount} \ \mathbf{do}$ 6: $Output \leftarrow Output + TlsStar(i) + TMark(i)$ \triangleright use $1 + \lfloor \log_2 |\Xi| \rfloor$ bits to encode TMark(i) 7: end for 8: ENCODESTARVERTICES ⊳ Algorithm 4 9: ENCODESTAREDGES ▶ Algorithm 5
- 10:
- $\mathsf{Deg} = (\mathsf{Deg}_v : 1 \le v \le n) \leftarrow \mathsf{Array} \ \text{of Dictionary}(\mathbb{N} \times \mathbb{N} \to \mathbb{N})$ 11:
- FINDDEG ▶ Algorithm 6 12: ENCODEVERTEXTYPES ▶ Algorithm 7
- PartitionAdjList \leftarrow Dictionary($\mathbb{N} \times \mathbb{N} \rightarrow$ Array of Array of integers) 14:
- $\mathsf{PartitionDeg} \leftarrow \mathsf{Dictionary}(\mathbb{N} \times \mathbb{N} \to \mathsf{Array} \ \mathrm{of} \ \mathrm{integers})$ 15:
- $\mathsf{PartitionIndex} = (\mathsf{PartitionIndex}_v : 1 \le v \le n) \leftarrow \mathsf{Array} \ \text{of Dictionary}(\mathbb{N} \times \mathbb{N} \to \mathbb{N})$ 16:
- **FINDPARTITIONGRAPHS** ⊳ Algorithm 8 17:
- $k \leftarrow \text{number of keys in PartitionAdjList}$ > number of partitions graphs to be encoded 18:
- Ouptut \leftarrow Output $+ \mathsf{E}_{\Delta}(k+1)$ 19:
- for $(i, i') \in \mathsf{PartitionAdjList}.\mathsf{KEYS}$ do 20:
- if i < i' then 21:
- $\mathsf{Output} \leftarrow \mathsf{Output} + i + i'$ \triangleright use $1 + \lfloor \log_2 \mathsf{TCount} \rfloor$ bits to encode i and i'22:
- $\vec{a} \leftarrow \mathsf{PartitionDeg}(i, i'), \vec{b} \leftarrow \mathsf{PartitionDeg}(i', i)$ ▶ left and right degree sequences 23:

```
f \leftarrow \text{BENCODEGRAPH}(\text{SIZE}(\vec{a}), \text{SIZE}(\vec{b}), \vec{a}, \vec{b}, \text{PartitionAdjList}(i, i'))
24:
                                                                                                                                               ▶ Algorithm 17
                       Output \leftarrow Output + \mathsf{E}_{\Delta}(1+f)
25:
                 end if
26:
                 if i = i' then
27:
                       \mathsf{Output} \leftarrow \mathsf{Output} + i + i'
                                                                                          \triangleright use 1 + \lfloor \log_2 \mathsf{TCount} \rfloor bits to encode i and i'
28:
                       \vec{a} \leftarrow \mathsf{PartitionDeg}(i, i)
                                                                                                                                          ▶ degree sequence
29:
                       (f, \tilde{f}) \leftarrow \text{EncodeGraph}(\text{Size}(\vec{a}), \vec{a}, \text{PartitionAdjList}(i, i))
30:
                                                                                                                                               ⊳ Algorithm 24
                       Output \leftarrow Output + \mathsf{E}_{\Delta}(1+f)
31:
                       Output \leftarrow Output + \mathsf{E}_{\Delta}(1 + \mathsf{SIZE}(\tilde{f}))
32:
                       for 1 \le j \le \text{Size}(\vec{\tilde{f}}) do
33:
                            Output \leftarrow Output + E_{\Delta}(1 + \tilde{f}_i)
34:
35:
                       end for
                 end if
36:
           end for
37:
38: end function
```

Algorithm 2. Preprocess a simple marked graph to find its equivalent neighbor list representation

Input:

n: number of vertices

A simple marked graph $G^{(n)}$ represented by

- its vertex mark sequence $\vec{\theta}^{(n)} = (\theta_v^{(n)} : v \in [n])$, where $\theta_v^{(n)} \in \Theta$ is the mark of vertex v in $G^{(n)}$
- EdgeList = (EdgeList_i : $1 \le i \le m^{(n)}$): the list of edges in $G^{(n)}$ where EdgeList_i = (v_i, w_i, x_i, x_i') for $1 \le i \le m^{(n)}$. Here, $m^{(n)}$ denotes the total number of edges in $G^{(n)}$, and for $1 \le i \le m^{(n)}$, the tuple (v_i, w_i, x_i, x_i') represents an edge between the vertices v_i and w_i with mark x_i towards v_i and mark x_i' towards w_i , i.e. $\xi_{G^{(n)}}(w_i, v_i) = x_i$ and $\xi_{G^{(n)}}(v_i, w_i) = x_i'$.

Output:

The equivalent representation of $G^{(n)}$ of the form

- $\vec{\theta}^{(n)} = (\theta_v^{(n)} : v \in [n])$ where $\theta_v^{(n)}$ denotes the vertex mark of v.
- $\vec{d}^{(n)} = (d_v^{(n)} : v \in [n])$ such that $d_v^{(n)}$ for $1 \le v \le n$ is the degree of vertex v in $G^{(n)}$.
- $\vec{\gamma}^{(n)}$: Array of Array of integers, such that for $1 \le v \le n$, the neighbors of vertex v in $G^{(n)}$ is stored in an increasing order as $1 \le \gamma_{v,1}^{(n)} < \gamma_{v,2}^{(n)} < \dots < \gamma_{v,d_v}^{(n)} \le n$.
- $\vec{\tilde{\gamma}}^{(n)}$: Array of Array of integers, such that for $1 \leq v \leq n$ and $1 \leq i \leq d_v^{(n)}$, $\tilde{\gamma}_{v,i}^{(n)}$ denotes the index of v among the neighbors of $\gamma_{v,i}^{(n)}$, so that $\gamma_{v,i}^{(n)}, \tilde{\gamma}_{v,i}^{(n)} = v$.
- $\vec{x}^{(n)}$ and $\vec{x'}^{(n)}$: Array of Array of integers, such that for $1 \leq v \leq n$ and $1 \leq i \leq d_v^{(n)}$, $x_{v,i}^{(n)}$ and $x_{v,i}^{(n)}$ denote the two edge marks corresponding to the edge connecting v to $\gamma_{v,i}^{(n)}$, so that $x_{v,i}^{(n)} = \xi_{G^{(n)}}(\gamma_{v,i}^{(n)}, v)$ and $x_{v,i}^{(n)} = \xi_{G^{(n)}}(v, \gamma_{v,i}^{(n)})$.

```
1: function PREPROCESS(n, \vec{\theta}^{(n)}, \text{EdgeList})
          \vec{d}^{(n)} \leftarrow \text{Array of integers of size } n
                                                                                                                                    \triangleright initialize \vec{d}^{(n)}
 2:
          \vec{\gamma}^{(n)}, \vec{\tilde{\gamma}}^n, \vec{x}^{(n)}, \vec{x'}^{(n)} \leftarrow \text{Array of Array of integers of size } n
                                                                                                      \triangleright initialize \vec{\gamma}^{(n)}, \vec{\tilde{\gamma}}^{n}, \vec{x}^{(n)}, and \vec{x'}^{(n)}
 3:
          for 1 \le i \le n do d_i^{(n)} \leftarrow 0
 4:
                                                                                                  ▷ initialize degree sequence with zero
 5:
          end for
 6:
          for 1 < i < m^{(n)} do
 7:
 8:
                if v_i > w_i then
                                                                 \triangleright to make sure that for all 1 \le i \le m^{(n)}, we have v_i < w_i
                     SWAP(v_i, w_i), SWAP(x_i, x_i')
 9:
10:
                end if
          end for
11:
          EdgeList ← Sort(EdgeList) ▷ sort EdgeList with respect to the lexicographic order of the pair
12:
          for 1 \le i \le m^{(n)} do
13:
               append w_i to \gamma_{v_i}^{(n)} append x_i to x_{v_i}^{(n)}, append x_i' to x_{v_i}^{(n)}
                                                                                                       \triangleright add w_i to the neighbor list of v_i
14:
                                                                                                                       ▷ append the mark pair
15:
               append 1 + d_{w_i}^{(n)} to \tilde{\gamma}_{v_i}^{(n)}
16:
         \triangleright v_i is the newly added neighbor of w_i, and its index among the neighbors of w_i should be one
     plus the number of existing neighbors of w_i, i.e. 1 + d_{w_i}^{(n)}
               append v_i to \gamma_{w_i}^{(n)}
                                                                                                       \triangleright add v_i to the neighbor list of w_i
17:
               append x_i' to x_{w_i}^{(n)}, append x_i to x_{w_i}^{(n)}
                                                                                                                       ▷ append the mark pair
18:
               append 1 + d_{v_i}^{(n)} to \tilde{\gamma}_{w_i}^{(n)}
19:
          \triangleright w_i is the newly added neighbor of v_i, and its index among the neighbors of v_i should be one
     plus the number of existing neighbors of v_i, i.e. 1 + d_{v_i}^{(n)}
               d_{v_i}^{(n)} \leftarrow d_{v_i}^{(n)} + 1, d_{w_i}^{(n)} \leftarrow d_{w_i}^{(n)} + 1
                                                                                    \triangleright add one to the number of existing neighbors
20:
21:
          return (\vec{\theta}^{(n)}, \vec{d}^{(n)}, \vec{\gamma}^{(n)}, \vec{\tilde{\gamma}}^{(n)}, \vec{x}^{(n)}, \vec{x'}^{(n)})
22:
23: end function
```

Algorithm 3. Compressing an array \vec{y} consisting of nonnegative integers

```
Input:
```

```
n: size of the array
     \vec{y} = (y_1, \dots, y_n): array of nonnegative integers
Output:
     Output: A prefix-free bit sequence in \{0,1\}^* - \emptyset representing \vec{y}
 1: function EncodeSequence(n, \vec{y})
          Output \leftarrow empty bit sequence
 2:
          K \leftarrow 0
 3:
 4:
          for 1 \le i \le n do
               K \leftarrow \max\{K, y_i\}
 5:
          end for
 6:
          K \leftarrow K + 1
                                                                                                    \triangleright y_i's are in the range [0, K-1]
 7:
          \vec{\mathsf{a}} \leftarrow \mathsf{Array} \ \mathsf{of} \ \mathsf{integers} \ \mathsf{of} \ \mathsf{size} \ n
                                                                                                                   ⊳ left degree sequence
          \vec{b} \leftarrow \text{Array of integers of size } K
                                                                                                                 ▷ right degree sequence
```

```
\vec{\gamma} \leftarrow \text{Array of Array of integers of size } n, where \vec{\gamma}_i, 1 \leq i \leq n is of size 1
                                                                                                                                      ▶ the adjacency list
10:
           for 1 \le i \le n do
11:
                 a_i \leftarrow 1
12:
                 \mathsf{b}_{1+y_i} \leftarrow \mathsf{b}_{1+y_i} + 1
13:
                 \vec{\gamma}_i \leftarrow \text{array of size 1 containing } 1 + y_i
14:
15:
           f \leftarrow \text{BENCODEGRAPH}(n, K, \vec{\mathsf{a}}, \vec{\mathsf{b}}, \vec{\gamma})
                                                                                                                                             ⊳ Algorithm 17
16:
           Output \leftarrow Output + \mathsf{E}_{\Delta}(K)
17:
           for 1 \le j \le K do
18:
                 Output \leftarrow Output + E_{\Delta}(1 + b_i)
19:
           end for
20:
           Output \leftarrow Output + \mathsf{E}_{\Delta}(1+f)
21:
22: end function
```

Algorithm 4. Encoding Star Vertices (part of Algorithm 1)

```
1: procedure EncodeStarVertices
                                                                                               \triangleright line 9 in Algorithm 1
        \vec{s} = (s_v : 1 \le v \le n) \leftarrow \text{Array of zero ones, each element initialized with zero}
 2:
        for 1 \le v \le n do
 3:
            for 1 \le k \le d_v^{(n)} do
 4:
                 (i, i') \leftarrow c_{v,k}
 5:
 6:
                 if TlsStar(i) = 1 or TlsStar(i') = 1 then
 7:
                 end if
 8:
            end for
 9:
        end for
10:
        Output \leftarrow Output + EncodeSequence(n, \vec{s})

    □ using Algorithm 3

12: end procedure
```

Algorithm 5. Encoding Star Edges (part of Algorithm 1)

```
1: procedure EncodeStarEdges
                                                                                                                     ⊳ line 10 in Algorithm 1
          for 1 \le x \le |\Xi| do
 2:
               for 1 \le x' \le |\Xi| do
 3:
                     for 1 \le v \le n do
 4:
                          if s_v = 1 then
 5:
                               for 1 \le k \le d_v^{(n)} do
 6:
                                     (i, i') \leftarrow c_{v,k}
 7:
                                    if TlsStar(i) = 1 or TlsStar(i') = 1 then
 8:
                                         if x_{v,k} = x and x'_{v,k} = x' and \gamma^{(n)}_{v,k} > v then
Output \leftarrow Output +1 + \gamma^{(n)}_{v,k} \Rightarrow \text{use } 1 + \lfloor \log_2 n \rfloor bits to represent \gamma^{(n)}_{v,k}
 9:
10:
                                          end if
11:
                                    end if
12:
                               end for
13:
```

```
 \begin{array}{lll} 14: & \mathsf{Output} \leftarrow \mathsf{Output} + 0 \\ 15: & \mathbf{end} \ \mathbf{if} \\ 16: & \mathbf{end} \ \mathbf{for} \\ 17: & \mathbf{end} \ \mathbf{for} \\ 18: & \mathbf{end} \ \mathbf{for} \\ 19: \ \mathbf{end} \ \mathbf{procedure} \\ \end{array}
```

Algorithm 6. Finding vertex degree profiles, i.e. the variable Deg (part of Algorithm 1)

```
1: procedure FINDDEG
                                                                                                  \triangleright line 12 in Algorithm 1
         for 1 \le v \le n do
 2:
             for 1 \le k \le d_v^{(n)} do
 3:
                 (i, i') \leftarrow c_{v,k}
 4:
                 if TlsStar(i) = 0 and TlsStar(i') = 0 then
 5:
                      if (i, i') \in \mathsf{Deg}_v.\mathsf{KEYS} then
 6:
 7:
                          \mathsf{Deg}_v(i,i') \leftarrow \mathsf{Deg}_v(i,i') + 1
                                                                         ▶ increment the corresponding degree value
                      else
 8:
                          \mathsf{Deg}_v.\mathsf{INSERT}((i,i'),1)
                                                                      ▶ this is the first edge observed with this type
 9:
                      end if
10:
                 end if
11:
             end for
12:
13:
        end for
14: end procedure
```

Algorithm 7. Encoding Vertex Types (part of Algorithm 1)

```
1: procedure EncodeVertexTypes
                                                                                                                        ⊳ line 13 in Algorithm 1
           \mathsf{VertexTypesDictionary} \leftarrow \mathsf{Dictionary}(\mathsf{Array} \ \mathrm{of} \ \mathrm{integers} \ \rightarrow \mathbb{N})
                                                                                                ▷ number of distinct vertex types found
 3:
           \vec{y} = (y_v : 1 \le v \le n) \leftarrow \text{Array of integers}
 4:
           \vec{\nu} \leftarrow \mathsf{Array} \ \mathsf{of} \ \mathsf{integers}
 5:
           for 1 \le v \le n do
 6:
                \vec{\nu} \leftarrow \emptyset
                                                                                                             \triangleright erasing \vec{\nu} to get a fresh array
 7:
               \nu_1 \leftarrow \theta_v^{(n)}
 8:
                for ((i, i'), l) \in \mathsf{Deg}_n do
 9:
                     append (i, i', l) at the end of \vec{\nu}
10:
11:
                if \vec{\nu} \notin VertexTypesDictionary.Keys then
12:
                                                                                                          ▷ a new vertex type is discovered
13:
                     VertexTypesDictionary.INSERT(\vec{\nu}, k)
14:
15:
                y_v \leftarrow \mathsf{VertexTypesDictionary}(\vec{\nu})
16:
           end for
17:
           \mathsf{Output} \leftarrow \mathsf{Output} + k
                                                       \triangleright use 1 + \lfloor \log_2 n \rfloor bits to represent the number of key-value pairs
18:
```

```
for (\vec{\nu}, i) \in VertexTypesDictionary do
19:
20:
                Output \leftarrow Output + SIZE(\vec{\nu})
                                                                                       \triangleright use 1 + \lfloor \log_2(1+3\delta) \rfloor bits to encode Size(\vec{\nu})
                for 1 \le j \le \text{Size}(\vec{\nu}) do
21:
                      \mathsf{Output} \leftarrow \mathsf{Output} + \nu_i
                                                                               \triangleright use 1 + \lfloor \log_2(|\Xi| \vee \mathsf{TCount} \vee \delta) \rfloor bits to encode \nu_i
22:
                end for
23:
                \mathsf{Output} \leftarrow \mathsf{Output} + i
                                                                                                            \triangleright use 1 + \lfloor \log_2 n \rfloor bits to encode i
24:
           end for
25:
           Output \leftarrow Output + EncodeSequence(n, \vec{y})

    □ using Algorithm 3

26:
27: end procedure
```

Algorithm 8. Finding Partition Graphs (part of Algorithm 1)

```
1: procedure FINDPARTITIONGRAPHS
                                                                                                ⊳ line 17 in Algorithm 1
        for 1 \le v \le n do
                                                                                2:
             \mathbf{for}\ ((i,i'),k)\in \mathsf{Deg}_v\ \mathbf{do}
 3:
 4:
                 if (i, i') \notin PartitionDeg.Keys then
                     PartitionIndex<sub>v</sub>.INSERT((i, i'), 1)
 5:
                     PartitionDeg.Insert((i, i'), (k)) > PartitionDeg(i, i') now becomes an array of length
 6:
    1 containing k
                 else
 7:
                     \mathsf{PartitionIndex}_v.\mathsf{INSERT}((i,i'),\mathsf{SIZE}(\mathsf{PartitionDeg}(i,i'))+1)
 8:
 9:
                     append k at the end of PartitionDeg(i, i')
                 end if
10:
            end for
11:
        end for
12:
        \mathbf{for}\ (i,i') \in \mathsf{PartitionDeg.Keys}\ \mathbf{do}
                                                                                                 ▷ initialize PartitionDeg
13:
            if i \leq i' then
14:
                 Insert key (i, i') in PartitionAdjList with value being an array of size SIZE(PartitionDeg(i, i')),
15:
    such that each element of this array is an empty array
            end if
16:
        end for
17:
                                                                        ▶ update PartitionIndex and PartitionAdjList
        for 1 \le v \le n do
18:
            for 1 \le k \le d_v^{(n)} do w \leftarrow \gamma_{v,k}^{(n)}
19:
20:
                 (i,i') \leftarrow c_{v,k}
21:
                 if TlsStar(i) = 0 and TlsStar(i') = 0 then
22:
                     p \leftarrow \mathsf{PartitionIndex}_v(i, i')
23:
                                                                                                               \triangleright index of v
                     q \leftarrow \mathsf{PartitionIndex}_w(i', i)
                                                                                                               \triangleright index of w
24:
                     if i < i' then
25:
                         append q at the end of (PartitionAdjList(i, i'))<sub>p</sub>
26:
27:
                     end if
                     if i = i' and q > p then
28:
                         append q at the end of (PartitionAdjList(i, i))<sub>p</sub>
29:
                     end if
30:
                 end if
31:
             end for
32:
```

Algorithm 9. Decoding a simple marked graph

end for

31:

```
Input: Input = f^{(n)}(G^{(n)}) for a simple marked graph G^{(n)} on the vertex set [n]. Here, f^{(n)}(G^{(n)})
      refers to the bit sequence generated by our compression procedure discussed in Algorithm 1.
Output: \widehat{G}^{(n)} a reconstruction of G^{(n)} represented in the edge list form, i.e.
           • \vec{\theta}^{(n)}: sequence of vertex marks in \hat{G}^{(n)}.
           • EdgeListDec: list of edges in \widehat{G}^{(n)}.
  1: function MarkedGraphDecode(G^{(n)})
            \mathsf{TCount} \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input}) - 1
                                                                                                         \triangleright we encode 1 + \mathsf{TCount} in Algorithm 1
  2:
            TIsStar \leftarrow Array \text{ of bits of size } TCount
  3:
            TMark ← Array of integers of size TCount
  4:
  5:
            for 1 \le i \le \mathsf{TCount} \ \mathbf{do}
                  \mathsf{TIsStar}(i) \leftarrow \mathrm{read}\ 1\ \mathrm{bit}\ \mathrm{from}\ \mathsf{Input}
  6:
                  \mathsf{TMark}(i) \leftarrow \mathrm{read}\ 1 + \lfloor \log_2 |\Xi| \rfloor \ \mathrm{bits}\ \mathrm{from}\ \mathsf{Input}
  7:
            end for
  8:
            \vec{s} \leftarrow \text{DECODESEQUENCE}(n, \text{Input})
  9:
                                                                                                ▷ decode for star vertices using Algorithm 10
10:
            \mathsf{EdgeListDec} \leftarrow \mathsf{Array} \ \mathrm{of} \ \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}
        \triangleright EdgeListDec is the decoded edge list, each index of the form (v, w, x, x'), where x = \xi_{\widehat{G}^{(n)}}(w, v)
      and x' = \xi_{\widehat{G}^{(n)}}(v, w)
            DECODESTAREDGES
                                                                                                                                                   ▶ Algorithm 11
11:
            \mathsf{Deg} = (\mathsf{Deg}_v : 1 \le v \le n) \leftarrow \mathsf{Array} \ \text{of Dictionary}(\mathbb{N} \times \mathbb{N} \to \mathbb{N})
12:
            \vec{\theta}^{(n)} \leftarrow \text{Array of integers}
13:
            DECODEVERTEXDEGREEPROFILES
                                                                                                                                                   ▶ Algorithm 12
14:
            \mathsf{PartitionDeg} \leftarrow \mathsf{Dictionary}(\mathbb{N} \times \mathbb{N} \to \mathsf{Array} \ \mathrm{of} \ \mathrm{integers})
15:
            OriginalIndex \leftarrow Dictionary(\mathbb{N} \times \mathbb{N} \to \text{Array of integers})
16:
            DECODEPARTITIONDEGORIGINALINDEX
                                                                                                                                                   ▶ Algorithm 13
17:
            K \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input}) - 1
18:

    ▷ number of partition graphs

            for 1 \le k \le K do
19:
                  i \leftarrow \text{read } 1 + \lfloor \log_2 \mathsf{TCount} \rfloor \text{ bits from Input}
20:
                  i' \leftarrow \text{read } 1 + \lfloor \log_2 \mathsf{TCount} \rfloor \text{ bits from Input}
21:
                  if i < i' then
22:
                        f \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input}) - 1
23:
                        AdjList \leftarrow BDecodeGraph(f, PartitionDeg(i, i'), PartitionDeg(i', i))
24:
                                                                                                                                                   ⊳ Algorithm 22
                  else
25:
                        \begin{array}{l} f \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input}) - 1 \\ L \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input}) - 1 \end{array}
26:
27:
                        \tilde{f} \leftarrow \text{Array of integers with size } L
28:
                         \begin{aligned} & \mathbf{for} \ 1 \leq l \leq L \ \mathbf{do} \\ & \tilde{f_l} \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input}) - 1 \end{aligned} 
29:
30:
```

```
AdjList \leftarrow GRAPHDECODE(f, \vec{\tilde{f}}, PartitionDeg(i, i))
                                                                                                                                  ⊳ Algorithm 27
32:
               end if
33:
               x \leftarrow \mathsf{TMark}(i)
34:
               x' \leftarrow \mathsf{TMark}(i')
35:
               A \leftarrow \mathsf{OriginalIndex}(i, i')
36:
               B \leftarrow \mathsf{OriginalIndex}(i', i)
37:
               for 1 \le v \le Size(AdjList) do
38:
                    v' \leftarrow A_v
39:
                     \mathbf{for}\ 1 \leq j \leq \mathrm{SIZE}(\mathsf{AdjList}_v)\ \mathbf{do}
40:
                          w \leftarrow \mathsf{AdjList}_{v,j}
41:
42:
                          w' \leftarrow B_w
                          append (v', w', x, x') at the end of EdgeListDec
43:
                     end for
44:
               end for
45:
          end for
46:
          return (\vec{\theta}^{(n)}, EdgeListDec)
47:
48: end function
```

Algorithm 10. Decompressing an array consisting of nonnegative integers

```
Input:
```

n: size of the array

Input: sequence of bits which contains the compressed form of an array generated by Algorithm 3 Output:

```
\vec{y} = (y_1, \dots, y_n): the decoded array consisting of nonnegative integers
 1: function DecodeSequence(n, Input)
           K \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input})
                                                                                                \triangleright Symbols in \vec{y} are in the range [0, K-1]
 2:
           a \leftarrow Array of nonnegative integers of size n where all elements are 1
 3:
           b \leftarrow Array of nonnegative integers of size K
 4:
           for 1 \leq j \leq K do
 5:
                \begin{array}{l} \mathbf{b}_{j} \leftarrow \mathbf{E}_{\Delta}^{-1}(\mathsf{Input}) \\ \mathbf{b}_{j} \leftarrow \mathbf{b}_{j} - 1 \end{array}
 6:
                                                                                          \triangleright We encode 1 + b_j in line 19 of Algorithm 3
 7:
           end for
 8:
           f \leftarrow \mathsf{E}_{\Delta}^{-1}(\mathsf{Input})
 9:
           f \leftarrow f - 1
10:
           \vec{\gamma}_{[1:n]} \leftarrow \text{BDecodeGraph}(f, \vec{\mathsf{a}}, \vec{\mathsf{b}})
                                                                                                                                           ▶ Algorithm 22
11:
           for 1 \le i \le n do
12:
                                                \triangleright as in line 14 of Algorithm 3, \vec{\gamma}_i is an array of size 1 containing 1+y_i
                y_i \leftarrow \gamma_{i,1} - 1
13:
           end for
14:
           return \vec{y}
15:
16: end function
```

Algorithm 11. Decoding Star Edges

```
1: procedure DecodeStarEdges
                                                                                               ⊳ line 11 in Algorithm 9
 2:
        for 1 \le x \le |\Xi| do
            for 1 \le x' \le |\Xi| do
 3:
                 for 1 \le v \le n do
 4:
                     if s_v = 1 then
 5:
                         b \leftarrow \text{read 1 bit from Input}
 6:
                         while b \neq 0 do
 7:
                             w \leftarrow \text{read } 1 + \lfloor \log_2 n \rfloor \text{ bits from Input}
 8:
                             append (v, w, x, x') at the end of EdgeListDec
 9:
                             b \leftarrow \text{read 1 bit from Input}
10:
                         end while
11:
                     end if
12:
13:
                 end for
            end for
14:
15:
        end for
16: end procedure
```

Algorithm 12. Decoding Vertex Degree Profiles

```
1: procedure DecodeVertexDegreeProfiles
                                                                                                                          ⊳ line 14 in Algorithm 9
           VertexTypesList \leftarrow Array of Array of integers
 2:
 3:
           \vec{\nu} \leftarrow \text{Array of integers}
           K \leftarrow \text{read } 1 + \lfloor \log_2 n \rfloor \text{ bits from Input}
                                                                                                           ▷ number of distinct vertex types
 4:
           resize VertexTypesList to have K elements, each being an empty array
 5:
           for 1 \le k \le K do
 6:
                \vec{\nu} \leftarrow \emptyset
 7:
                l \leftarrow \text{read } 1 + \lfloor \log_2(1+3\delta) \rfloor \text{ bits from Input}
 8:
                                                                                                                      \triangleright number of elements in \vec{\nu}
                for 1 \leq j \leq l do
 9:
                      read 1 + \lfloor \log_2(|\Xi| \vee \mathsf{TCount} \vee \delta) \rfloor bits from Input and append to \vec{\nu}
10:
                end for
11:
                i \leftarrow \text{read } 1 + \lfloor \log_2 n \rfloor \text{ bits from Input}
12:
                VertexTypesList(i) \leftarrow \vec{\nu}
13:
14:
           end for
           \vec{y} \leftarrow \text{DECODESEQUENCE}(n, \mathsf{Input})
                                                                                                                                        ⊳ Algorithm 10
15:
           \mathsf{Deg} = (\mathsf{Deg}_v : 1 \leq v \leq n) \leftarrow \mathsf{Array} \,\, \mathsf{of} \,\, \mathsf{Dictionary}(\mathbb{N} \times \mathbb{N} \to \mathbb{N})
16:
           for 1 \le v \le n do
17:
                \vec{\nu} \leftarrow \mathsf{VertexTypesList}(y_v)
18:
                                                                                                                \triangleright decode the vertex mark of v
                \theta_v \leftarrow \nu_1
19:
                for 1 \le k \le (\text{Size}(\vec{\nu}) - 1)/3 do
20:
21:
                     i \leftarrow \nu_{1+(3k-2)}
                      i' \leftarrow \nu_{1+(3k-1)}
22:
23:
                      j \leftarrow \nu_{1+3k}
                      \mathsf{Deg}_v.\mathsf{INSERT}((i,i'),j)
24:
                end for
25:
           end for
26.
27: end procedure
```

Algorithm 13. Finding Degree Sequences of Partition Graphs and Relative Vertex Indexing

```
1: procedure DecodePartitionDegOriginalIndex
                                                                                        ⊳ line 17 in Algorithm 9
        for 1 \le v \le n do
 2:
            for ((i, i'), k) \in \mathsf{Deg}_v do
 3:
               if (i, i') \notin PartitionDeg.KEYS then
 4:
                                                          \triangleright OriginalIndex(i, i') is now an array with length 1
                    OriginalIndex.INSERT((i, i'), (v))
 5:
    containing v
                    \mathsf{PartitionDeg.Insert}((i,i'),(k)) \triangleright \mathsf{PartitionDeg}(i,i') now becomes an array of length
 6:
    1 containing k
                else
 7:
                    append v at the end of OriginalIndex(i, i')
 8:
                    append k at the end of PartitionDeg(i, i')
 9:
                end if
10:
            end for
11:
        end for
12:
13: end procedure
```

Algorithm 14. Extracting edge types for a simple marked graph

Input:

n: number of vertices

 $G^{(n)}$: A simple marked graph on the vertex set [n], vertex mark set $\Theta = \{1, \ldots, |\Theta|\}$ and edge mark set $\Xi = \{1, \ldots, |\Xi|\}$ given in its neighbor list representation. More precisely, for a vertex $1 \le v \le n$, the following are given

- $d_v^{(n)}$: the degree of vertex v
- $\theta_v^{(n)}$: the vertex mark of v
- for $1 \leq i \leq d_v^{(n)}$, the tuple $(\gamma_{v,i}^{(n)}, x_{v,i}^{(n)}, x_{v,i}^{(n)})$ where $\gamma_{v,1}^{(n)} < \gamma_{v,2}^{(n)} < \dots < \gamma_{v,d_v^{(n)}}^{(n)}$ are the neighbors of vertex v and for $1 \leq i \leq d_v^{(n)}, x_{v,i}^{(n)} = \xi_{G^{(n)}}(\gamma_{v,i}^{(n)}, v)$ and $x_{v,i}^{\prime(n)} = \xi_{G^{(n)}}(v, \gamma_{v,i}^{(n)})$.
- for $1 \le i \le d_v^{(n)}$, $\tilde{\gamma}_{v,i}^{(n)}$ which is the index of v among the neighbors of $\gamma_{v,i}^{(n)}$, i.e. $\gamma_{v,i}^{(n)}$, $\tilde{\gamma}_{v,i}^{(n)} = v$.

h: the depth parameter

 δ : the degree parameter

Output:

 $\vec{c} = (c_{v,i} : v \in [n], i \in [d_v^{(n)}])$: Array of Array of integers, where for a vertex $v \in [n]$ and $1 \le i \le d_v^{(n)}$, $c_{v,i}$ represents $\psi_{h,\delta}^{(n)}(v,\gamma_{v,i}^{(n)})$, the type of the edge between vertex v and its ith neighbor. The object $c_{v,i}$ is a pair of integers where the first component corresponds to $\tilde{t}_{h,\delta}^{(n)}(v,\gamma_{v,i}^{(n)})$ and the second corresponds to $\tilde{t}_{h,\delta}^{(n)}(\gamma_{v,i}^{(n)},v)$. More precisely, we have $c_{v,i} = (J_n(\tilde{t}_{h,\delta}^{(n)}(v,\gamma_{v,i}^{(n)})), J_n(\tilde{t}_{h,\delta}^{(n)}(\gamma_{v,i}^{(n)},v)))$ for all $v \in [n]$ and $i \in [d_v^{(n)}]$.

TCount: the number of explored messages at step h-1.

TIsStar: an Array of bits with size TCount, where for $1 \le i \le \mathsf{TCount}$, TIsStar(i) is 1 if the member of $\bar{\mathcal{F}}^{(\delta,h)}$ corresponding to integer i, i.e. $J_n^{-1}(i)$, is of the form \star_x , and TIsStar(i) = 0 otherwise. In other words, TIsStar $(i) = \mathbb{1}\left[J_n^{-1}(i) \notin \mathcal{F}^{(\delta,h)}\right]$.

TMark: an Array of integers of size TCount, where for $1 \leq i \leq \text{TCount}$, TMark(i) is the mark component associated to the member of $\bar{\mathcal{F}}^{(\delta,h)}$ corresponding to integer i, i.e. $J_n^{-1}(i)$. In other words, if TlsStar(i)=1, with $J_n^{-1}(i)=\star_x$, we have TMark(i)=x; otherwise, if TlsStar(i)=0, we have TMark $(i)=(J_n^{-1}(i))[m]$, i.e. the mark component of $J_n^{-1}(i)\in\mathcal{F}^{(\delta,h)}$.

```
1: function ExtractTypes(n, G^{(n)}, \delta, h)
           \mathsf{TDictionary} \leftarrow \mathsf{Dictionary}(\mathsf{Array} \ \mathrm{of} \ \mathrm{integers} \ \rightarrow \mathbb{N})
 2:
           \mathsf{TMark} \leftarrow \mathsf{Array} \ \mathsf{of} \ \mathsf{integers}
 3:
           TIsStar \leftarrow Array of bits
 4:
           \mathsf{T} = (\mathsf{T}_{v,i} : v \in [n], i \in [d_v^{(n)}]) \leftarrow \mathsf{Array} \text{ of Array of integers}
 5:
                                                                                                                                      ▷ array of messages
           \mathsf{TCount} \leftarrow 0
                                                                                                         ▶ Number of elements in TDictionary
 6:
           for 1 \le v \le n do
                                                                                                                     ▷ initialize messages at step 0
 7:
                 for 1 \le i \le d_v^{(n)} do
 8:
                      SENDMESSAGE(v, i, (\theta_v^{(n)}, 0, x_{v,i}^{(n)}))
 9:
                                                                                                                                             ▶ Algorithm 15
                 end for
10:
           end for
11:
           \vec{s} \leftarrow \text{Array of } \mathbb{N} \times \mathbb{N} \text{ with size } \delta
12:
           for 1 \le k \le h - 1 do
13:
14:
                 \mathsf{TCount} \leftarrow 0
                 TlsStarOld \leftarrow TlsStar
                                                                                                          > corresponding to the previous step
15:
                 T \leftarrow T
                                                                                                              \triangleright messages from the previous step
16:
                 TDictionary, TIsStar, TMark \leftarrow \emptyset
                                                                                                                          ▷ erase for the current step
17:
                 for 1 \le v \le n do
18:
                      if \overline{d}_v^{(n)} > \delta then
                                                                        ▷ in this case, all the neighbors will receive star messages
19:
                            for 1 \le i \le d_v^{(n)} do
20:
                                  SendMessage(v, i, (0, x_{v,i}^{(n)}))
                                                                                                                                             ▶ Algorithm 15
21:
                            end for
22:
                       else
23:
                            n_{\star} \leftarrow 0 > \text{number of neighbors which have sent a star message in the previous step}
24:
                            for 1 \le i \le d_v^{(n)} do
s_i \leftarrow (\tilde{\mathsf{T}}_{\gamma_{v,i}^{(n)}, \tilde{\gamma}_{v,i}^{(n)}}, x_{v,i}^{(n)})
25:
26:
                                 \begin{array}{l} \textbf{if TlsStarOld}\big(\tilde{\mathsf{T}}_{\gamma_{v,i}^{(n)},\tilde{\gamma}_{v,i}^{(n)}}\big) = 1 \textbf{ then} \\ n_{\star} \leftarrow n_{\star} + 1 \end{array}
27:
28:
                                                                                ▷ index of the neighbor who has sent a star message
29:
                                  end if
30:
                            end for
31:
                            if n_{\star} \geq 2 then
32:
                                                                                           ▶ all the neighbors will receive a star message
                                 for 1 \leq i \leq d_v^{(n)} do
33:
                                       SENDMESSAGE(v, i, (0, x_{v,i}^{(n)}))
                                                                                                                                             ⊳ Algorithm 15
34:
                                  end for
35:
                            else
36:
                                 (\pi, \tilde{s}) \leftarrow \text{SORT}(s_{[1:d_n^{(n)}]})
                                                                                                 \triangleright \tilde{s} is the sorted array such that \tilde{s}_i = s_{\pi_i}
37:
                                  \vec{t} \leftarrow \text{Array of integers with maximum size } 3 + 2\delta
38:
                                  if n_{\star} = 1 then
39:
                                      t_1 \leftarrow \theta_v^{(n)}, t_2 \leftarrow d_v^{(n)} - 1
                                                                                                \triangleright preparing \mathsf{T}_{v,i_{\star}}, the message towards i_{\star}
40:
```

```
for 1 \le i \le d_v^{(n)} do
41:
                                                if \pi_i \neq i_{\star} then
42:
                                                      append the first and the second component of \tilde{s}_i to \vec{t}
43:
                                                      SENDMESSAGE(v, i, (0, x_{v,i}^{(n)}))
                                                                                                                                                       ⊳ Algorithm 15
44:
                                                 end if
45:
                                          end for
46:
                                          append x_{v,i_{\star}}^{(n)} to \vec{t}
47:
                                          SENDMESSAGE(v, i_{\star}, \vec{t})
                                                                                                                                                       ▶ Algorithm 15
48:
                                    end if
49:
                                    if n_{\star} = 0 then
50:
                                          for 1 \le i \le d_v^{(n)} do
51:
                                                \vec{t} \leftarrow \text{Array of size } 2
52:
                                                t_1 \leftarrow \theta_v^{(n)}, t_2 \leftarrow d_v^{(n)} - 1
53:
                                                for 1 \le j \le d_v^{(n)} do
54:
                                                      if \pi_i \neq i then
55:
                                                            append the first and the second components of \tilde{s}_i to \vec{t}
56:
                                                      end if
57:
                                                 end for
58:
                                                append x_{v,i}^{(n)} to \vec{t}
59:
                                                 SENDMESSAGE(v, i, \vec{t})
                                                                                                                                                       ⊳ Algorithm 15
60:
                                          end for
61:
                                    end if
62:
                              end if
63:
                        end if
64:
                  end for
65:
            end for
66:
           for 1 \le v \le n do
for 1 \le i \le d_v^{(n)} do
for 1 \le i \le d_v^{(n)} do
if \mathsf{TlsStar}(\mathsf{T}_{v,i}) = 0 and (\mathsf{TlsStar}(\mathsf{T}_{\gamma_{v,i}^{(n)},\tilde{\gamma}_{v,i}^{(n)}}) = 1 or d_v^{(n)} > \delta or d_{\gamma_{v,i}^{(n)}}^{(n)} > \delta) then
67:
68:
69:
                              \mathtt{SendMessage}(v, i, (0, x_{v.i}^{(n)}))
                                                                                                                                                       ▶ Algorithm 15
70:
                        end if
71:
                  end for
72:
73:
           \begin{aligned} \vec{c} &= (c_{v,i} : v \in [n], i \in [d_v^{(n)}]) \leftarrow \text{Array of } \mathbb{N} \times \mathbb{N} \\ \text{for } 1 &\leq v \leq n \text{ do} \\ \text{for } 1 &\leq i \leq d_v^{(n)} \text{ do} \end{aligned}
                                                                                                                                                        ▶ type of edges
74:
75:
76:
                        c_{v,i} \leftarrow (\mathsf{T}_{v,i}, \mathsf{T}_{\gamma_{v,i}^{(n)}, \tilde{\gamma}_{v,i}^{(n)}})
77:
                  end for
78:
            end for
79:
            return (\vec{c}, TCount, TIsStar, TMark)
81: end function
```

Algorithm 15. Sending a message from a node to one of its neighbors

Input:

```
v: the vertex from which the message is originated
    i: the index of the neighbor of v to whom the message is being sent, so the message is from v
    towards \gamma_{v,i}^{(n)}
    t: the message, which is an Array of integers
Output:
    updates TDictionary, TMark, TIsStar and T
 1: procedure SENDMESSAGE(v, i, t)
         if t \in \mathsf{TDictionary}.\mathsf{KEYS} then
             \mathsf{T}_{v,i} \leftarrow \mathsf{TDictionary}(t)
 3:
 4:
             \mathsf{TDictionary}.\mathsf{INSERT}(t,1+\mathsf{TCount})
 5:
 6:
             \mathsf{T}_{v,i} \leftarrow 1 + \mathsf{TCount}
             \mathsf{TCount} \leftarrow 1 + \mathsf{TCount}
 7:
             append t_{Size(t)} at the end of TMark
                                                                \triangleright the mark component is the last index in array t
 8:
             if t_1 = 0 then
                                                                \triangleright t is a star message iff its first component is zero
 9:
                 append 1 at the end of TIsStar
10:
11:
             else
                 append 0 at the end of TIsStar
12:
             end if
13:
         end if
14:
15: end procedure
```

Algorithm 16. Computing $N_{i,j}(G)$ for a simple unmarked bipartite graph $G \in \mathcal{G}_{\vec{a},\vec{b}}^{(n_l,n_r)}$

```
Input:
```

```
n_l, n_r: the number of left and right nodes, respectively
       \vec{a}: left degree sequence.
       \vec{b} = (b_v : v \in [n_r]): b_v = b_v^G(i) \text{ for } v \in [n_r]
      i,j: endpoints of the interval, such that 1 \leq i \leq j \leq n_l \vec{\gamma}_{[i:j]}^G = \vec{\gamma}_i^G, \dots, \vec{\gamma}_j^G: adjacency list of vertices i \leq v \leq j, where \vec{\gamma}_v^G = (\gamma_{v,1}^G, \dots, \gamma_{v,a_v}^G) such that
       1 \leq \gamma_{v,1}^G < \gamma_{v,2}^G < \dots < \gamma_{v,a_v}^G \leq n_r are the right nodes adjacent to the left node v in G U: Fenwick tree, where for v \in [n_r], \mathsf{U}.\mathsf{Sum}(v) = U_v^G(i) = \sum_{k=v}^{n_r} b_k^G(i)
Output:
       N_{i,j} = N_{i,j}(G)
       \vec{\mathsf{b}} = (\mathsf{b}_v : v \in [n_r]): vector \vec{\mathsf{b}} updated, so that \mathsf{b}_v = b_v^G(j+1) for v \in [n_r]
U: Fenwick tree U updated, so that for v \in [n_r], we have \mathsf{U.Sum}(v) = U_v^G(j+1) = \sum_{k=v}^{n_r} b_k^G(j+1)
       l_{i,j} = l_{i,j}^G
  1: function BCOMPUTEN(n_l, n_r, \vec{a}, \vec{b}, i, j, \vec{\gamma}_{[i:i]}^G, \mathsf{U})
                                                                                                                                                          \triangleright B stands for Bipartite
              if i = j then
  2:
  3:
                     z_i \leftarrow 0, l_i \leftarrow 1
                     for 1 \le k \le a_i do
  4:
                           c \leftarrow a_i - k + 1
                           y \leftarrow \text{ComputeProduct}(\mathsf{U}.\text{Sum}(1+\gamma_{i,k}^G),c,1) \div \text{ComputeProduct}(c,c,1)
                                                                                                                                                                            ⊳ Algorithm 18
                           z_i \leftarrow z_i + l_i \times y
  7:
                           l_i \leftarrow l_i \times \mathsf{b}_{\gamma_{i_k}^{G_i}}
```

```
\begin{aligned} \text{U.Add}(\gamma^G_{i,k},-1) \\ \text{b}_{\gamma^G_{i,k}} \leftarrow \text{b}_{\gamma^G_{i,k}} - 1 \\ \text{end for} \end{aligned}
  9:
10:
11:
                      N_{i,i} \leftarrow z_i
12:
                      return (N_{i,i}, \vec{b}, U, l_i)
13:
14:
                      k \leftarrow (i+j) \div 2
                                                                                                                                                                                    \triangleright k = |(i+j)/2|
15:
                      (N_{i,k}, \vec{\mathsf{b}}, \mathsf{U}, l_{i,k}) \leftarrow \mathrm{BComputen}(n_l, n_r, \vec{a}, \vec{\mathsf{b}}, i, k, \vec{\gamma}^G_{[i:k]}, \mathsf{U})
                                                                                                                                                               ⊳ Algorithm 16 (recursive)
16:
                      S_{k+1} \leftarrow \mathsf{U}.\mathsf{Sum}(1)
17:
                      (N_{k+1,j}, \vec{\mathbf{b}}, \mathbf{U}, l_{k+1,j}) \leftarrow \text{BComputeN}(n_l, n_r, \vec{a}, \vec{\mathbf{b}}, k+1, j, \vec{\gamma}_{[k+1:j]}^G, \mathbf{U})
18:
                                                                                                                                                                ▷ Algorithm 16 (recursive)
                      S_{i+1} \leftarrow \mathsf{U}.\mathsf{Sum}(1)
19:
                                                                                                                                                   \triangleright y = \prod_{v=k+1}^{j} a_v!, \text{ Algorithm } \frac{19}{18}
\triangleright \text{ Algorithm } \frac{18}{18}
                      y \leftarrow \text{ProdFactorial}(\vec{a}, k+1, j)
20:
                      r_{k+1,j} \leftarrow \text{ComputeProduct}(S_{k+1}, S_{k+1} - S_{j+1}, 1) \div y
21:
                      N_{i,j} \leftarrow N_{i,k} \times r_{k+1,j} + l_{i,k} \times N_{k+1,j}
22:
                      l_{i,j} \leftarrow l_{i,k} \times l_{k+1,j}
23:
                      return (N_{i,j}, \vec{b}, U, l_{i,j})
24:
25:
               end if
26: end function
```

```
Algorithm 17. Finding f_{\vec{a},\vec{b}}^{(n_l,n_r)}(G) for G \in \mathcal{G}_{\vec{a},\vec{b}}^{(n_l,n_r)}
```

```
Input:
       n_l, n_r: the number of left and right vertices, respectively
       \vec{a} = (a_i : i \in [n_l]): left degree vector
       \vec{b} = (b_i : i \in [n_r]): right degree vector (\vec{\gamma}_v^G : v \in [n_l]): adjacency list of left nodes, where \vec{\gamma}_v^G = (\gamma_{v,1}^G, \dots, \gamma_{v,a_v}^G) for v \in [n_l], such that
       1 \leq \gamma_{v,1}^G < \cdots < \gamma_{v,a_v}^G \leq n_r are the right nodes adjacent to the left node v
       \vec{f}_{\vec{a},\vec{b}}^{(n_l,n_r)}(G): an integer representing G in the compressed form
  1: function BENCODEGRAPH(n_l, n_r, \vec{a}, \vec{b}, (\vec{\gamma}_v^G : v \in [n_l]))
             \mathsf{U} \leftarrow \mathsf{Fenwick} tree initialized with array \vec{b}
                                                                                                           \triangleright U.Sum(v) = \sum_{k=v}^{n_r} b_k = U_v^G(1) for v \in [n_r]
                                                                                                                                      \triangleright \mathsf{b}_v = b_v^G(1) = b_v \text{ for } v \in [n_r]
             \vec{\mathsf{b}} \leftarrow \vec{b}
  3:
             (N_{1,n_l}, \vec{\mathbf{b}}, \mathsf{U}, l_{1,n_l}) \leftarrow \mathrm{BComputen}(n_l, n_r, \vec{a}, \vec{\mathbf{b}}, 1, n_l, \vec{\gamma}_{[1:n_l]}^G, \mathsf{U})
                                                                                                                                                     ⊳ Algorithm 16 above
  4:
                                                                                                                                     \begin{array}{c} \triangleright \ l_{1,n_l} = l_{1,n_l}^G = \prod_{j=1}^{n_r} b_j! \\ \triangleright \ \text{this means} \ N \mod l_{1,n_l} \neq 0 \end{array}
             f \leftarrow N \div l_{1,n_l}
             if f \times l_{1,n_l} < N then
  6:
                                                                                                                        \triangleright so that f = f_{\vec{n}\vec{b}}^{(n_l, n_r)}(G) = \lceil N/l_{1, n_l} \rceil
                    f \leftarrow f + 1
  7:
             end if
             return f
  9:
10: end function
```

```
Input:
    Integer p \geq 0: the first term in the product
    Integer k \geq 0: the number of terms in the product
    Integer s \ge 0: the difference between successive terms
    If k=0, return 1. If k>0 and p-(k-1)s\leq 0, return 0. If k>0 and p-(k-1)s>0, returns
    \prod_{i=0}^{k-1} (p - is).
 1: function ComputeProduct(p, k, s)
 2:
       if k = 0 then
                                                                             ⊳ product over empty set is 1
           return 1
 3:
        end if
 4:
       if p-(k-1)s \leq 0 then
 5:
           return 0
 6:
 7:
        end if
       if k = 1 then
                                                                                   ▶ there is only one term
 8:
           return p
 9:
        end if
10:
        k' \leftarrow k \div 2
                                       ▶ we compute the product by dividing the terms into two halves
11:
        L \leftarrow \text{ComputeProduct}(p, k', s)
12:
                                                                                 > product of the first half
        R \leftarrow \text{ComputeProduct}(p - k's, k - k', s)
                                                                              > product of the second half
13:
        \mathbf{return}\ L \times R
                                                        ▷ aggregate the two pieces to get the final result
14:
15: end function
```

Algorithm 19. Computing $\prod_{i'=i}^{j} v_{i'}!$ for an array \vec{v} of nonnegative integers

```
Input:
```

 \vec{v} : array of nonnegative integers

i, j: endpoints of the interval for which the product is being computed

Output:

```
\prod_{i'=i}^{j} v_{i'}!
 1: function ProdFactorial(\vec{v}, i, j)
 2:
        if i = j then
             return ComputeProduct(v_i, v_i, 1)
                                                                               \triangleright return v_i! using Algorithm 18 above
 3:
        else
 4:
             m \leftarrow (i+j) \div 2
                                                                                    ▷ split the interval into two halves
 5:
             L \leftarrow \text{ProdFactorial}(\vec{v}, i, m)
 6:
             R \leftarrow \text{ProdFactorial}(\vec{v}, m+1, j)
 7:
             return L \times R
 8:
        end if
10: end function
```

Algorithm 20. Decoding the adjacency list of a left vertex $1 \leq i \leq n_l$ given $\widetilde{N}_{i,i}$ for a simple unmarked bipartite graph $G \in \mathcal{G}_{\vec{a},\vec{b}}^{(n_l,n_r)}$.

```
Input:
       n_l, n_r: the number of left and right nodes, respectively
       i: the index of the left node to be decoded, 1 \le i \le n_l
       \vec{a}: left degree sequence
        \vec{\mathsf{b}} = (\mathsf{b}_v : v \in [n_r]): Array of integers where \mathsf{b}_v = b_v^G(i) for 1 \leq v \leq n_r
       \widetilde{N}_{i,i}: integer satisfying N_{i,i}(G) \leq \widetilde{N}_{i,i} < N_{i,i}(G) + l_i^G
U: Fenwick tree, where for 1 \leq v \leq n_r, \mathsf{U.Sum}(v) = U_v^G(i) = \sum_{k=v}^{n_r} b_k^G(i)
Output:
        N_{i,i} = N_{i,i}(G)
       \vec{\gamma}_i: the decoded adjacency list of vertex i, so that \vec{\gamma}_i = \vec{\gamma}_i^G = (\gamma_{i,k}^G : 1 \le k \le a_i)
       \vec{\mathsf{b}} = (\mathsf{b}_v : 1 \le v \le n_r): array \vec{\mathsf{b}} updated so that \mathsf{b}_v = b_v^G(i+1) for 1 \le v \le n_r
U: Fenwick tree U updated, so that for 1 \le v \le n_r, we have U.Sum(v) = U_v^G(i+1) = \sum_{k=v}^{n_r} b_k^G(i+1)
       l_i: integer such that l_i = l_i^G
  1: function BDECODENODE(n_l, n_r, i, \vec{a}, \vec{b}, \widetilde{N}_{i.i}, \mathsf{U})
              \widetilde{z} \leftarrow N_{i,i}
  2:
              z_i \leftarrow 0, l_i \leftarrow 1
  3:
  4:
              for 1 \le k \le a_i do
                    q \leftarrow a_i - k + 1
  5:
                    L \leftarrow 1, R \leftarrow n_r
                                                                                 \triangleright L and R are the endpoints of the binary search interval
  6:
                    if k > 1 then
  7:
                          L \leftarrow 1 + \gamma_{i,k-1}
                                                                                                     \triangleright If k > 1, 1 + \gamma_{i,k-1} \le \gamma_{i,k}, so limit the search
  8:
                    end if
  9:
                    while R > L do
                                                                                                   \triangleright binary search on the interval [f,g] to find \gamma_{i,k}^G
10:
                                                                                                                             \triangleright v = \lfloor (L+R)/2 \rfloor is the midpoint
                          v \leftarrow (L+R) \div 2
11:
                          y \leftarrow \texttt{ComputeProduct}(\texttt{U}.\texttt{Sum}(1+v),q,1) \div \texttt{ComputeProduct}(q,q,1)
12:
                                                                                                                                      \triangleright y = \begin{pmatrix} U_{1+v}^{G}(i) \\ a_i - k + 1 \end{pmatrix}, \text{ Algorithm 18}
13:
                          if y \leq \tilde{z} then
                                 R \leftarrow v
                                                                                                                                              \triangleright switch to interval [L, v]
14:
                           else
15:
                                 L \leftarrow v + 1
                                                                                                                                      \triangleright switch to interval [v+1,R]
16:
                          end if
17:
                    end while
18:
                    \gamma_{i,k} \leftarrow L
19:
                    y \leftarrow \text{ComputeProduct}(\mathsf{U}.\text{Sum}(1+\gamma_{i,k}),q,1) \div \text{ComputeProduct}(q,q,1)
20:
                                                                                                                                  \triangleright y = \begin{pmatrix} U_{1+\gamma_{i,k}}^{G}(i) \\ a_{i-k+1} \end{pmatrix}, \text{ Algorithm } 18
                    \widetilde{z} \leftarrow (\widetilde{z} - y) \div \mathsf{b}_{\gamma_i k}
21:
                                                                                                                                           \triangleright here, l_i = \prod_{k'=1}^{k-1} b_{\gamma_{i_k'}^G}^G(i)
                    z_i \leftarrow z_i + l_i \times y
22:
                                                                                                                                         \triangleright l_i \text{ becomes } \prod_{k'=1}^k b_{\gamma_{i,l'}^G}^G(i)
                    l_i \leftarrow l_i \times \mathsf{b}_{\gamma_{i,k}}
23:
                    \mathsf{U}.\mathsf{Add}(\gamma_{i,k},-1)
24:
                    b_{\gamma_{i,k}} \leftarrow b_{\gamma_{i,k}} - 1
25:
              end for
26:
              N_{i,i} \leftarrow z_i
27:
              return (N_{i,i}, \vec{\gamma}_i, \mathsf{b}, \mathsf{U}, l_i)
28:
29: end function
```

Algorithm 21. Decoding the adjacency list of the left vertices $i \leq v \leq j$ for $1 \leq i \leq j \leq n_l$ given $\widetilde{N}_{i,j}$ for a simple unmarked bipartite graph $G \in \mathcal{G}_{\vec{a},\vec{b}}^{(n_l,n_r)}$.

```
Input:
       n_l, n_r: the number of left and right nodes, respectively
       1 \le i \le j \le n_l: the endpoints of the interval to be decoded
       \vec{a}: left degree sequence
       \vec{\mathsf{b}} = (\mathsf{b}_v : 1 \leq v \leq n_r) \text{ where } \mathsf{b}_v = b_v^G(i) \text{ for } 1 \leq v \leq n_r
       \begin{split} \widetilde{N}_{i,j} \colon & \text{integer satisfying } N_{i,j}(G) \leq \widetilde{N}_{i,j} < N_{i,j}(G) + l_{i,j}^G \\ \text{U: Fenwick tree, where for } 1 \leq v \leq n_r, \text{ U.Sum}(v) = U_v^G(i) = \sum_{k'=v}^{n_r} b_{k'}^G(i) \\ \text{W: Fenwick tree, where for } 1 \leq v \leq n_l, \text{ we have W.Sum}(v) = \sum_{k'=v}^{n_l} a_{k'}. \end{split}
Output:
       N_{i,j} = N_{i,j}(G)
       \vec{\gamma}_{[i:j]}: the decoded adjacency list of the vertices i \leq v \leq j, so that \vec{\gamma}_v = \vec{\gamma}_v^G for i \leq v \leq j
       \vec{\mathbf{b}} = (\mathbf{b}_v : 1 \le v \le n_r): array \vec{\mathbf{b}} updated so that \mathbf{b}_v = b_v^G(j+1) for 1 \le v \le n_r
       U: Fenwick tree U updated, so that for 1 \le v \le n_r, we have \text{U.Sum}(v) = U_v^G(j+1) = \sum_{k'=v}^{n_r} b_{k'}^G(j+1)
       1)
       l_{i,j} = l_{i,j}^G
  1: function BDECODEINTERVAL(n_l, n_r, i, j, \vec{a}, \vec{b}, \widetilde{N}_{i,j}, \mathsf{U}, \mathsf{W})
              if i = j then
  2:
                    return BDECODENODE(n_l, n_r, i, \vec{a}, \vec{b}, \widetilde{N}_{i,i}, \mathsf{U})
                                                                                                                                                                     ⊳ Algorithm 20
  3:
              else
  4:
                    k \leftarrow (i+j) \div 2
  5:
                    S_{k+1} \leftarrow \mathsf{W}.\mathsf{Sum}(k+1)
  6:
                    S_{j+1} \leftarrow \mathsf{W}.\mathsf{Sum}(j+1)
  7:
                    r_{k+1,j} \leftarrow \text{ComputeProduct}(S_{k+1}, S_{k+1} - S_{j+1}, 1) / \text{ProdFactorial}(\vec{a}, k+1, j)
  8:
                    \widetilde{N}_{i,k} \leftarrow \widetilde{N}_{i,j} \div r_{k+1,j}
  9:
                    (N_{i,k}, \vec{\gamma}_{[i,k]}, \vec{\mathbf{b}}, \mathsf{U}, l_{i,k}) \leftarrow \mathsf{BDECODEINTERVAL}(n_l, n_r, i, k, \vec{a}, \vec{\mathbf{b}}, \widetilde{N}_{i,k}, \mathsf{U}, \mathsf{W})
10:
                    \widetilde{N}_{k+1,j} \leftarrow (\widetilde{N}_{i,j} - N_{i,k} \times r_{k+1,j}) \div l_{i,k}
11:
                    (N_{k+1,j}, \vec{\gamma}_{[k+1,j]}, \vec{b}, U, l_{k+1,j}) \leftarrow \text{BDECODEINTERVAL}(n_l, n_r, k+1, j, \vec{a}, \vec{b}, \widetilde{N}_{k+1,j}, U, W)
12:
                                                                                                                                               ▶ Algorithm 21 (recursive)
                    N_{i,j} \leftarrow N_{i,k} \times r_{k+1,j} + l_{i,k} \times N_{k+1,j}
13:
                    l_{i,j} \leftarrow l_{i,k} \times l_{k+1,j}
14:
                    return (N_{i,j}, \vec{\gamma}_{[i:j]}, \vec{\mathsf{b}}, \mathsf{U}, l_{i,j})
15:
              end if
16:
17: end function
```

Algorithm 22. Decoding for a simple unmarked bipartite graph $G \in \mathcal{G}_{\vec{a},\vec{b}}^{(n_l,n_r)}$ given $f_{\vec{a},\vec{b}}^{(n_l,n_r)}(G)$

Input:

```
f: integer, which is f_{\vec{q}\ \vec{b}}^{(n_l,n_r)}(G) for the graph G that was given to the encoder during the compres-
      sion phase
      \vec{a}: array of left degrees
      \vec{b}: array of right degrees
Output:
      \vec{\gamma}_{[1:n_l]}: adjacency list of left nodes such that \vec{\gamma}_v = \vec{\gamma}_v^G = (\gamma_{v,1}^G < \cdots < \gamma_{v,a_v}^G) for 1 \le v \le n_l
  1: function BDECODEGRAPH(f, \vec{a}, \vec{b})
            n_l \leftarrow \text{Size}(\vec{a})
  2:
            n_r \leftarrow \text{Size}(\vec{b})
  3:
           c \leftarrow \text{PRODFACTORIAL}(\vec{b}, 1, n_r)
                                                                                                             \triangleright c = \prod_{i=1}^{n_r} b_i! using Algorithm 19
           \widetilde{N}_{1,n_l} \leftarrow f \times c
            U \leftarrow \text{Fenwick tree initialized with array } \vec{b}
            W \leftarrow Fenwick tree initialized with array \vec{a}
  7:
           (N_{1,n_l}, \vec{\gamma}_{[1:n_l]}, \vec{b}, \mathsf{U}, l_{1,n_l}) \leftarrow \mathrm{BDECODEINTERVAL}(n_l, n_r, 1, n_l, \vec{a}, \vec{b}, \widetilde{N}_{1,n_l}, \mathsf{U}, \mathsf{W})
                                                                                                                                          ⊳ Algorithm 21
           return \vec{\gamma}_{[1:n_l]}
10:
11: end function
Algorithm 23. Computing N_{i,j}(G) for a simple unmarked graph G \in \mathcal{G}_{\vec{a}}^{(\tilde{n})}
Input:
      \tilde{n}: number of nodes
```

```
i, j: endpoints of the interval, such that 1 \leq i \leq j \leq \tilde{n}
     \vec{\mathsf{a}} = (\mathsf{a}_v : 1 \le v \le \tilde{n}) \text{ where } \mathbf{a}_v = a_v^G(i) \text{ for } i \le v \le \tilde{n} \vec{\gamma}_i^G, \dots, \vec{\gamma}_j^G: forward adjacency list of vertices i \le v \le j, where \vec{\gamma}_v^G = (\vec{\gamma}_{v,1}^G, \dots, \vec{\gamma}_{v,\hat{a}_v^G}^G) such that
     v < \gamma_{v,1}^G < \dots < \gamma_{v,\hat{\alpha}_v^G}^G \le \tilde{n} are the neighbors of v in G with index greater than v
     U: Fenwick tree, where for i \leq v \leq \tilde{n}, U.Sum(v) = U_v^G(i) = \sum_{k=0}^{\tilde{n}} a_k^G(i)
     I: an integer specifying the interval [i, j]
    \vec{\tilde{f}} = (\tilde{f}_p : 0 \le p \le \lfloor 16\tilde{n}/\log^2 \tilde{n} \rfloor): array of integers where if j - i + 1 > \lfloor \log_2 \tilde{n} \rfloor^2, \tilde{f}_I = S_{k+1}^G with k = \lfloor (i+j)/2 \rfloor and I being the index corresponding to the interval [i,j] as above
     N_{i,j} = N_{i,j}(G)
     \vec{\mathsf{a}} = (\mathsf{a}_v : 1 \leq v \leq \tilde{n}): vector \vec{\mathsf{a}} updated, so that \mathsf{a}_v = a_v^G(j+1) for j+1 \leq v \leq \tilde{n}
U: Fenwick tree U updated, so that for j+1 \leq v \leq \tilde{n}, we have \mathsf{U}.\mathsf{SUM}(v) = U_v^G(j+1) = 0
    \begin{array}{l} \sum_{k=v}^{\tilde{n}} a_k^G(j+1) \\ l_{i,j} = l_{i,j}^G \end{array}
     \vec{\tilde{f}}: array \vec{\tilde{f}} updated, so that if j-i+1>\lfloor\log_2{\tilde{n}}\rfloor^2,~\tilde{f}_I=S_{k+1}^G with k=\lfloor(i+j)/2\rfloor and I being
     the index corresponding to the interval [i, j] as above
1: function ComputeN(\tilde{n}, \vec{\mathsf{a}}, i, j, \vec{\gamma}^G_{[i:j]}, \mathsf{U}, I, \hat{f})
            if i = j then
2:
                   z_i \leftarrow 0, l_i \leftarrow 1
3:
                   for 1 \le k \le a_i do
4:
                          y \leftarrow \text{ComputeProduct}(\mathsf{U}.\text{Sum}(1 + \gamma_{i,k}^G), \mathsf{a}_i - k + 1, 1)
                                                                                                                                                                                ⊳ Algorithm 18
```

```
\begin{aligned} z_i &\leftarrow z_i + l_i \times y \\ c &\leftarrow (\mathsf{a}_i - k + 1) \times \mathsf{a}_{\gamma_{i,k}^G} \end{aligned}
  6:
  7:
  8:
                                 \mathbf{a}_{\gamma_{i,k}^G} \leftarrow \mathbf{a}_{\gamma_{i,k}^G} - 1 \mathbf{U}.\mathrm{Add}(\gamma_{i,k}^G, -1)
  9:
10:
                         end for
11:
                         N_{i,i} \leftarrow z_i
12:
                         return (N_{i,i}, \vec{\mathsf{a}}, \mathsf{U}, l_i, \tilde{\tilde{f}})
13:
14:
                         k \leftarrow (i+j) \div 2
15:
                         (N_{i,k},\vec{\mathsf{a}},\mathsf{U},l_{i,k},\vec{\tilde{f}}) \leftarrow \mathtt{ComputeN}(\tilde{n},\vec{\mathsf{a}},i,k,\vec{\gamma}^G_{[i:k]},\mathsf{U},2I,\vec{\tilde{f}})
16:
                        S_{k+1} \leftarrow \mathsf{U}.\mathsf{SUM}(k+1)
if j = i+1 > \lfloor \log_2 \tilde{n} \rfloor^2 then
17:
18:
                        \tilde{f}_I \leftarrow S_{k+1} end if
19:
20:
                         (N_{k+1,j},\vec{\mathsf{a}},\mathsf{U},l_{k+1,j},\vec{\tilde{f}}) \leftarrow \mathsf{ComputeN}(\tilde{n},\vec{\mathsf{a}},k+1,j,\vec{\gamma}^G_{[k+1:j]},\mathsf{U},2I+1,\vec{\tilde{f}})
21:
                         S_{j+1} \leftarrow \mathsf{U}.\mathsf{Sum}(j+1)
22:
                         r_{k+1,j} \leftarrow \text{ComputeProduct}(S_{k+1} - 1, (S_{k+1} - S_{j+1})/2, 2)
                                                                                                                                                                                                                    ⊳ Algorithm 18
23:
                         N_{i,j} \leftarrow N_{i,k} \times r_{k+1,j} + l_{i,k} \times N_{k+1,j}
24:
                         l_{i,j} \leftarrow l_{i,k} \times l_{k+1,j}
25:
                         return (N_{i,j}, \vec{\mathsf{a}}, \mathsf{U}, l_{i,j}, \tilde{f})
26:
                 end if
27:
28: end function
```

```
Algorithm 24. Finding f_{\vec{a}}^{(\tilde{n})}(G) and \vec{f}_{\vec{a}}^{(\tilde{n})}(G) for G \in \mathcal{G}_{\vec{a}}^{(n_l, n_r)}
```

```
Input:
```

 \tilde{n} : number of nodes

```
\vec{a} = (a_v : 1 \le v \le \tilde{n}): degree vector
      \vec{\gamma}^G = (\vec{\gamma}_v^G : 1 \leq v \leq \tilde{n}): forward adjacency list where \vec{\gamma}_v^G = (\gamma_{v,1}^G < \cdots < \gamma_{v,\hat{a}_v}^G) is the forward
       adjacency list of node v
Output:
       f = f_{\vec{q}}^{(\tilde{n})}(G)
       \vec{\tilde{f}} = (\tilde{f}_i : 1 \le i \le \lfloor 16\tilde{n}/\log^2 \tilde{n} \rfloor): Array of integers such that \tilde{f}_i = \tilde{f}_{\vec{a},i}^{(n)}(G)
  1: function EncodeGraph(\tilde{n}, \vec{a}, \vec{\gamma}^G)
              U \leftarrow Fenwick tree initialized with array \vec{a}
              \tilde{f} \leftarrow \text{Array of integers with length } |16\tilde{n}/\log^2 \tilde{n}|
                                                                                                                                                   \triangleright a_i^G(1) = a_i \text{ for } 1 < i < \tilde{n}
             (N_{1,\tilde{n}}, \vec{\mathsf{a}}, \mathsf{U}, l_{1,\tilde{n}}, \vec{\tilde{f}}) \leftarrow \mathrm{ComputeN}(\tilde{n}, \vec{a}, 1, \tilde{n}, \vec{\gamma}_{[1:\tilde{n}]}^G, \mathsf{U}, 1, \vec{\tilde{f}})
                                                                                                                                                             ▶ Algorithm 23 above
             f \leftarrow N \div l_{1,\tilde{n}}
             if f \times l_{1,\tilde{n}} < N then
                                                                                                                                             \triangleright this means N \mod l_{1,\tilde{n}} \neq 0
  7:
                     f \leftarrow f + 1
                                                                                                                                                           \triangleright so that f = \lceil N/l_{1,\tilde{n}} \rceil
  8:
             end if
  9:
```

```
10: return (f, \tilde{\tilde{f}}) 11: end function
```

Algorithm 25. Decoding the forward adjacency list of a vertex $1 \leq i \leq \tilde{n}$ given $\tilde{N}_{i,i}$ for a simple unmarked graph $G \in \mathcal{G}_{\overline{d}}^{(\tilde{n})}$

```
Input:
       \tilde{n}: number of nodes in the graph
       1 \leq i \leq \tilde{n}: the index of the node to be decoded
       \widetilde{N_{i,i}}: integer satisfying N_{i,i}(G) \leq \widetilde{N}_{i,i} < N_{i,i}(G) + l_i^G \vec{\mathsf{a}} = (\mathsf{a}_v : 1 \leq v \leq \widetilde{n}), where \mathsf{a}_v = a_v^G(i) for i \leq v \leq \widetilde{n}
       U: Fenwick tree, where for i \le v \le \tilde{n}, U.SuM(v) = U_v^G(i) = \sum_{k=v}^{\tilde{n}} a_k^G(i)
Output:
       N_{i,i} = N_{i,i}(G).
       \vec{\gamma}_i = (\gamma_{i,k} : 1 \leq k \leq \hat{a}_i^G): forward adjacency list of the graph for vertex i, such that \gamma_{i,k} = \gamma_{i,k}^G for
       \vec{\mathsf{a}} = (\mathsf{a}_v : 1 \leq v \leq \tilde{n}): vector \vec{\mathsf{a}} updated, so that \mathsf{a}_v = a_v^G(i+1) for i < v \leq \tilde{n}.
       U: Fenwick tree U updated, so that for i+1 \le v \le \tilde{n}, we have U.Sum(v) = \sum_{k=v}^{\tilde{n}} a_k^G(i+1)
  1: function DECODENODE(\tilde{n}, i, \tilde{N}_{i,i}, \vec{\mathsf{a}}, \mathsf{U})
             \widetilde{z} \leftarrow \widetilde{N}_{i,i}
  2:
             l_i \leftarrow 1
  3:
             z_i \leftarrow 0
  4:
             for 1 \le k \le a_i do
  5:
                    if k = 1 then
  6:
                          L \leftarrow i + 1
                                                                                                         \triangleright we do a binary search on the interval [L, R]
  7:
  8:
                    else
                                                                                                                                                 \triangleright since \gamma_{i,k-1}^G + 1 \le \gamma_{i,k}^G
                          L \leftarrow \gamma_{i,k-1} + 1
  9:
                    end if
10:
                                                                                                                                          \triangleright \text{ since } \gamma_{i,k}^G \leq \tilde{n} \\ \triangleright \text{ binary search to find } \gamma_{i,k}
                    R \leftarrow \tilde{n}
11:
                    while R > L do
12:
                          v \leftarrow (L+R) \div 2
13:
                          if ComputeProduct(U.Sum(1+v), a_i - k + 1, 1) \leq \tilde{z} then
14:
                                                                                                                                                                  ⊳ Algorithm 18
                                                                                                                                                               \triangleright switch to [L, v]
                                 R \leftarrow v
15:
                          else
16:
                                                                                                                                                       \triangleright switch to [v+1,R]
                                 L \leftarrow v + 1
17:
                          end if
18:
                    end while
                                                                                                       \triangleright when the loop is over, we have L = R = \gamma_{i,k}^G
19:
20:
                    \gamma_{i,k} \leftarrow L
                                                                                                                                               \triangleright y = (U_{1+\gamma_{i,k}^G}^G(i))_{\hat{a}_i^G-k+1}
\triangleright \text{Algorithm } \frac{18}{}
                    y \leftarrow \text{ComputeProduct}(\mathsf{U}.\text{Sum}(1+\gamma_{i,k}), \mathsf{a}_i-k+1, 1)
21:
                    z_i \leftarrow z_i + l_i \times y
22:
                                                                                                                                              \triangleright c = (\hat{a}_i^G - k + 1) a_{\gamma_{i,k}^G}^G(i)
\triangleright \text{ updating } l_i
                    c \leftarrow (\mathsf{a}_i - k + 1) \times \mathsf{a}_{\gamma_{i,k}}
23:
                    l_i \leftarrow l_i \times c
24:
```

```
\triangleright updating \vec{a}
25:
                     \mathsf{a}_{\gamma_{i,k}} \leftarrow \mathsf{a}_{\gamma_{i,k}} - 1
                     \mathsf{U}.\mathsf{Add}(\gamma_{i,k},-1)
                                                                                                                                                       ▶ updating the Fenwick tree
26:
                     \widetilde{z} \leftarrow \widetilde{z} - y
                                                                                                                                     \triangleright subtracting the contribution of \gamma_{i,k}
27:
                     \widetilde{z} \leftarrow \widetilde{z} \div c
                                                                                                                              \triangleright \widetilde{z} is updated so that it becomes \widetilde{z}_{i,k+1}
28:
              end for
29:
              N_{i,i} \leftarrow z_i
30:
               return (N_{i,i}, \vec{\gamma}_i, \vec{a}, U, l_i)
32: end function
```

Algorithm 26. Decoding the forward adjacency list of vertices $i \leq v \leq j$ given $\widetilde{N}_{i,j}$ for a simple unmarked graph $G \in \mathcal{G}_{\vec{\sigma}}^{(\tilde{n})}$

```
Input:
```

```
\tilde{n}: number of nodes in the graph
       1 \le i \le j \le \tilde{n}: the interval to be decoded
      \widetilde{N}_{i,j}: integer satisfying N_{i,j}(G) \leq \widetilde{N}_{i,j} < N_{i,j}(G) + l_{i,j}^G
      \vec{\mathsf{a}} = (\mathsf{a}_v : 1 \le v \le \tilde{n}) \text{ where } \mathsf{a}_v = a_v^G(i) \text{ for } i \le v \le \tilde{n}
      U: Fenwick tree, where for i \leq v \leq \tilde{n}, U.Sum(v) = U_v^G(i) = \sum_{k=v}^{\tilde{n}} a_k^G(i)
      I: an integer specifying the interval [i, j]
      S_{j+1}: which is S_{j+1}^G = \sum_{k=j+1}^{\tilde{n}} a_k^G(j+1)
      \tilde{\tilde{f}} = (\tilde{f}_p : 0 \le p \le \lfloor 16\tilde{n}/\log^2 \tilde{n} \rfloor): array of integers where if j - i + 1 > \lfloor \log_2 \tilde{n} \rfloor^2, \tilde{f}_I = S_{k+1}^G with
      k = \lfloor (i+j)/2 \rfloor and I being the index corresponding to the interval [i,j] as above
Output:
      N_{i,j} = N_{i,j}(G).
      \vec{\gamma}_i, \dots, \vec{\gamma}_j: forward adjacency list of vertices in the interval [i,j], such that \vec{\gamma}_v = (\gamma_{v,k} : 1 \le k \le \hat{a}_v^G)
      where \gamma_{v,k} = \gamma_{v,k}^G for i \leq v \leq j and 1 \leq k \leq \hat{a}_v^G
      \vec{\mathsf{a}} = (\mathsf{a}_v : 1 \le v \le \tilde{n}): array \vec{\mathsf{a}} updated, so that \mathsf{a}_v = a_v^G(j+1) for j+1 \le v \le \tilde{n}.
U: Fenwick tree U updated, so that for j+1 \le v \le \tilde{n}, we have \mathsf{U}.\mathsf{Sum}(v) = U_v^G(j+1) = 0
      \sum_{k=v}^{\tilde{n}} a_k^G(j+1). \\ l_{i,j} = l_{i,j}^G.
 1: function DecodeInterval(\tilde{n}, i, j, \tilde{N}_{i,j}, \vec{\mathsf{a}}, \mathsf{U}, I, S_{j+1}, \tilde{f})
             if i = j then
  2:
                   (N_{i,i}, \vec{\gamma}_i, \vec{\mathsf{a}}, \mathsf{U}, l_i) \leftarrow \mathsf{DECODENODE}(\tilde{n}, i, \widetilde{N}_{i,i}, \vec{\mathsf{a}}, U)
                                                                                                                                                           ⊳ Algorithm 25
  3:
                   return (N_{i,i}, \vec{\gamma}_i, \vec{\mathsf{a}}, \mathsf{U}, l_i)
  4:
             end if
  5:
            if j - i + 1 > \lfloor \log_2 \tilde{n} \rfloor^2 then
  6:
                                                                                                                                     \triangleright specifying the midpoint k
                  k \leftarrow (i+j) \div 2
  7:
                   S_{k+1} \leftarrow \tilde{f}_I
  8:
             else
  9:
10:
                   S_{k+1} \leftarrow \mathsf{U}.\mathsf{Sum}(i) - 2\mathsf{a}_i
11:
12:
             r_{k+1,j} \leftarrow \text{ComputeProduct}(S_{k+1} - 1, (S_{k+1} - S_{j+1})/2, 2)
                                                                                                                                                           ▶ Algorithm 18
                                                                             \triangleright finding N_{i,k} for the left interval [i,k] and decoding [i,k]:
```

Algorithm 27. Decoding for a simple unmarked graph $G \in \mathcal{G}_{\vec{a}}^{(\tilde{n})}$ given $f_{\vec{a}}^{(\tilde{n})}(G)$ and $\vec{f}_{\vec{a}}^{(\tilde{n})}(G)$

Input:

f: integer, which is $f_{\vec{a}}^{(\tilde{n})}(G)$ for the target graph $G \in \mathcal{G}_{\vec{a}}^{(\tilde{n})}$ which was given to encoder during the compression phase

 $\vec{\tilde{f}} = (\tilde{f}_i : 1 \leq i \leq \lfloor 16\tilde{n}/\log^2 \tilde{n} \rfloor)$: Array of integers, where $\tilde{f}_i = \tilde{f}_{\vec{a},i}^{(\tilde{n})}(G)$ for $1 \leq i \leq \lfloor 16\tilde{n}/\log^2 \tilde{n} \rfloor$ \vec{a} : array of vertex degrees

Output:

 $\vec{\gamma}_{[1:\tilde{n}]}$: the decoded forward adjacency list such that $\vec{\gamma}_v = \vec{\gamma}_v^G = (v < \gamma_{v,1}^G < \dots < \gamma_{v,\hat{a}_v^G}^G)$ for $1 \le v \le \tilde{n}$

- 1: **function** GraphDecode (f, \tilde{f}, \vec{a})
- 2: $\tilde{n} \leftarrow \text{Size}(\vec{a})$
- 3: $c \leftarrow \text{ProdFactorial}(\vec{a}, 1, \tilde{n})$

⊳ Algorithm 19

- 4: $\widetilde{N}_{1,\tilde{n}} \leftarrow f \times c$
- 5: U \leftarrow Fenwick tree initialized with array \vec{a}
- 6: $\vec{a} \leftarrow \vec{a}$

$$\triangleright a_v^G(1) = a_v \text{ for } 1 \le v \le \tilde{n}$$

7: $(N_{1,\tilde{n}}, \vec{\gamma}_{[1:\tilde{n}]}, \vec{\mathsf{a}}, \mathsf{U}, l_{1,\tilde{n}}) \leftarrow \mathsf{DecodeInterval}(\tilde{n}, 1, \tilde{n}, \widetilde{N}_{1,\tilde{n}}, \vec{\mathsf{a}}, \mathsf{U}, 0, \vec{\tilde{f}})$

⊳ Algorithm 26

- 8: **return** $\vec{\gamma}_{[1:\tilde{n}]}$
- 9: end function