ny batxillerat

Repàs global FÍSICA

Repàs de tot el curs de 1r de batxillerat. Basat en el projecte "Física en Context"

Continguts

<u>01</u>

més at, més ràpid, més fort

Forces, lleis de Newton, impulsos, cinemàtica

Els transports

Conservació del moviment, treball, energies, calor,xocs

03

Natura I esports

Moviment en 2 dimensions, molles

04

Satèl·lits

Moviment circular, electricitat

Més alt, més ràpid, més fort

Forces, lleis de Newton, impulsos, cinemàtica

LLEIS DE NEWTON

Inercia

Tot cos continua igual mentre no se li apliqui una força.

Força i acceleració

L'acceleració d'un cos és proporcional a la força que actua sobre aquest.

Acció-Reacció

Tota acció té reacció igual i oposada.

$$f_f = \mu N$$

Força de fregament (estàtic o cinemàtic)

$$\vec{F} = m \frac{\Delta \vec{v}}{\Delta t}$$

2ª llei de Newton en funció de la velocitat

$$p = mv$$

Moment lineal

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$$

2ª llei de Newton en funció del moment lineal

$$\vec{I} = \Delta \vec{p}$$

Formula impuls

Força de fregament

Tipus de moviment

Uniforme

Seguix sempre una mateixa velocitat, per tant, no presenta acceleració

Accelerat

Segeuix un moviment accelerat amb una velocitat variable. L'acceleració és sempre constant

Moviment

Desplaçament

$$x = x_o + v\Delta t$$

$$x = x_0 + v_o\Delta t + \frac{1}{2}a\Delta t^2$$

Velocitat

$$v = v_o + a\Delta t$$
$$v = \frac{\Delta x}{\Delta t}$$

Acceleració

$$a = \frac{\Delta v}{\Delta t}$$

Els transports

Conservació del moviment, treball, energies, calor,xocs

Conservació del moviment

Treball

 $W = F\Delta x cos(\theta)$ (angle entre força i moviment)

Tipus d'energies

Cinètica

Potencial

Calorífica

Energia associada al moviment

Energia associada a l'alçada Energia associada a la calor

$$E_c = \frac{1}{2}mv^2$$

$$P = \frac{W}{\Delta t}$$

 $E_p = mgh$

$$W_F = W_{total} = \Delta E_c$$

$$Q = mC_p \Delta T$$

$$\Delta E = Q + W = 0$$

Conservació de l'energia mecànica

$$E_m = E_p + E_c$$

$$E_{m,o}=E_{m,f}$$

El treball associat a aquesta energia s'anomena **no conservatiu**.

Xocs

INELÀSTIC

En aquest tipus de xocs hi ha una pèrdua d'energia cinètica

ELÀSTIC

En aquest tipus de xocs es compleix que l'energia cinètica és invariable

Natura i esports

Moviment en 2 dimensions, molles

MOVIMENT EN 2 DIMENSIONS

Si el sistema està en equilibri:

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$$

MOLLES

$$F = k\Delta x$$

$$E_{el} = \frac{1}{2}k\Delta x^2$$

Satèl·lits

Moviment circular, electricitat

r = radi

v = velocitat lineal

 $\Delta\theta$ = desplaçament angular

 Δs = desplaçament lineal

Freqüència i període

 $f = \frac{1}{T}$

Velocitat i període

 $\alpha = \frac{v^2}{r} = \omega^2 \cdot r$

 $v = \frac{2\pi}{T}$

Desplaçament angular

$$\Delta\theta = \frac{\Delta s}{r}$$

Velocitat $\omega = \frac{\Delta \theta}{\Delta t}$

Equacions del moviment

Desplaçament lineal

Velocitat lineal

 $s = \Delta\theta \cdot r$

 $v = \omega \cdot r$

Acceleració centrípeta

Acceleració

Acceleració tangencial
$$a_t = \alpha \cdot r$$

$$\theta = \theta_o + \omega \Delta t$$
 $\omega = \omega_o + \alpha \Delta t$ $\theta = \theta_o + \omega_o \Delta t + \frac{1}{2} \alpha \Delta t^2$