Capsule Networks

By Modar Alfadly (October 2nd, 2018)

Papers

- Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton.

 "Dynamic routing between capacities."
 - "Dynamic routing between capsules."

Advances in Neural Information Processing Systems (2017)

- Hinton, Geoffrey E., Sara Sabour, and Nicholas Frosst.
 - "Matrix capsules with EM routing."

International Conference on Learning Representations (2018).

Why Convolutional Neural Networks (CNNs)?

- Spatial coherence of images
- Translation invariance
- Hierarchy of features

So, what is wrong with CNNs?

- Pooling layers
- Objects relationships
- Part-whole relationships

What is wrong with pooling? [~40 minutes of Hinton's talk]

"The pooling operation used in CNNs is a big mistake and the fact that it works so well is a disaster" -Geoffrey Hinton

Bad fit to the psychology of shape perception
 We assign intrinsic coordinate frames to objects (think homography)

What is wrong with pooling? [~40 minutes of Hinton's talk]

It gives us invariance where we want equivariance
 Small translations are fine but big ones are not (place-coded vs rate-coded)

What is wrong with pooling? [~40 minutes of Hinton's talk]

• It fails to use the underlying linear structure (Inverse Graphics)

What is wrong with pooling? [~40 minutes of Hinton's talk]

It is a poor way to do dynamic routing
 Translated pixels should be processed by the same neurons (or Capsules)

What is wrong with pooling? [~40 minutes of Hinton's talk]

"The pooling operation used in CNNs is a big mistake and the fact that it works so well is a disaster" -Geoffrey Hinton

- Bad fit to the psychology of shape perception:
 We assign intrinsic coordinate frames to objects (think homography)
- It gives us invariance where we want equivariance:
 Small translations are fine but big ones are not (place-coded vs rate-coded)
- It fails to use the underlying linear structure (Inverse Graphics)
- It is a poor way to do dynamic routing:
 Translated pixels should be processed by the same neurons (or capsules)

Pose

What is a Capsule?

- Capsules encode features as vectors that contain the pose and the activation,
 so, instead of scalar neurons, now we have vectors
- By applying learned viewpoint invariant projection,
 on the capsules of a certain layer we are projecting
 these capsules/features to the coordinate frame of the next layer (low to high)
- The projected capsules are then weighted using dynamic routing
- Finally, a non-linear activation function is applied to the weighted sum

What is a Capsule?

For example, lower capsules can be part detectors (eye, mouth, nose) and higher ones can be whole detectors (face)

Capsule vs Neurons

Capsule = New Version Neuron! vector in, vector out VS. scalar in, scalar out

Dynamic Routing (A modern Hough transform)

A chance of 1 in a million for two 6 dimensional vectors to agree on every dimension within 10%.

```
Procedure 1 Routing algorithm.

1: procedure ROUTING(\hat{\mathbf{u}}_{j|i}, r, l)

2: for all capsule i in layer l and capsule j in layer (l+1): b_{ij} \leftarrow 0.

3: for r iterations do

4: for all capsule i in layer l: \mathbf{c}_i \leftarrow \text{softmax}(\mathbf{b}_i) \triangleright softmax computes Eq. 3

5: for all capsule j in layer (l+1): \mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}

6: for all capsule j in layer (l+1): \mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j) \triangleright squash computes Eq. 1

7: for all capsule i in layer i and capsule i and capsule
```

Dynamic Routing (A modern Hough transform)

Expectation-Maximization (EM) procedure

score =
$$\sum_{i} \log p(\mathbf{x}_{i}|unifom\text{-}gauss\text{-}mixutre)$$

- $\sum_{i} \log p(\mathbf{x}_{i}|uniform)$

Loss function

Spread loss (similar to hinge loss)

Architecture

Encoder Part

Architecture

Decoder Part

Proof of Concept on MNIST

Proof of Concept on MNIST

Thank You!

See the list of references

- 1. <u>Dynamic routing between capsules [NIPS17]</u>
- 2. Matrix capsules with EM routing [ICLR18]
- 3. What is wrong with ConvNets? [Video]
- 4. Does the brain do inverse graphics? [Video]
- 5. Nice series of blogs by Max Pechyonkin
- 6. <u>Compilation of CapsNets references</u>
- 7. PyTorch Tutorial by Dulat Yerzat [Code]