In [1]: import pandas as pd
data=pd.read\_csv("/home/placement/Downloads/fiat500.csv")

In [2]: data.describe()

Out[2]:

|       | ID          | engine_power | age_in_days | km            | previous_owners | lat         | lon         | price        |
|-------|-------------|--------------|-------------|---------------|-----------------|-------------|-------------|--------------|
| count | 1538.000000 | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000 | 1538.000000 | 1538.000000  |
| mean  | 769.500000  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 43.541361   | 11.563428   | 8576.003901  |
| std   | 444.126671  | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 2.133518    | 2.328190    | 1939.958641  |
| min   | 1.000000    | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 36.855839   | 7.245400    | 2500.000000  |
| 25%   | 385.250000  | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 41.802990   | 9.505090    | 7122.500000  |
| 50%   | 769.500000  | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 44.394096   | 11.869260   | 9000.000000  |
| 75%   | 1153.750000 | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 45.467960   | 12.769040   | 10000.000000 |
| max   | 1538.000000 | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 46.795612   | 18.365520   | 11100.000000 |

```
In [3]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1538 entries, 0 to 1537
        Data columns (total 9 columns):
             Column
                              Non-Null Count Dtype
             ID
                              1538 non-null
                                               int64
         0
             model
                              1538 non-null
                                               object
                              1538 non-null
                                               int64
             engine power
                                               int64
             age in days
                              1538 non-null
                              1538 non-null
                                               int64
             km
                             1538 non-null
                                               int64
             previous owners
             lat
                              1538 non-null
                                               float64
                              1538 non-null
                                               float64
             lon
             price
                              1538 non-null
                                               int64
        dtypes: float64(2), int64(6), object(1)
        memory usage: 108.3+ KB
In [4]: data1=data.loc[(data.previous owners==1)]
```

In [5]: data1

# Out[5]:

|      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1    | 2    | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4    | 5    | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
|      |      |        |              |             |        |                 |           |           |       |
| 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  | 5200  |
| 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  | 4600  |
| 1535 | 1536 | pop    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  | 7500  |
| 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  | 5990  |
| 1537 | 1538 | pop    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 | 7900  |

1389 rows × 9 columns

In [6]: data1=data.drop(['ID','lat','lon'],axis=1)
data1

## Out[6]:

|      | model  | engine_power | age_in_days | km     | previous_owners | price |
|------|--------|--------------|-------------|--------|-----------------|-------|
| 0    | lounge | 51           | 882         | 25000  | 1               | 8900  |
| 1    | pop    | 51           | 1186        | 32500  | 1               | 8800  |
| 2    | sport  | 74           | 4658        | 142228 | 1               | 4200  |
| 3    | lounge | 51           | 2739        | 160000 | 1               | 6000  |
| 4    | рор    | 73           | 3074        | 106880 | 1               | 5700  |
|      |        |              |             |        |                 |       |
| 1533 | sport  | 51           | 3712        | 115280 | 1               | 5200  |
| 1534 | lounge | 74           | 3835        | 112000 | 1               | 4600  |
| 1535 | рор    | 51           | 2223        | 60457  | 1               | 7500  |
| 1536 | lounge | 51           | 2557        | 80750  | 1               | 5990  |
| 1537 | pop    | 51           | 1766        | 54276  | 1               | 7900  |
|      |        |              |             |        |                 |       |

1538 rows × 6 columns

In [7]: data1=pd.get dummies(data1)

In [8]: data1

Out[8]:

|      | engine_power | age_in_days | km     | previous_owners | price | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|-------|--------------|-----------|-------------|
| 0    | 51           | 882         | 25000  | 1               | 8900  | 1            | 0         | 0           |
| 1    | 51           | 1186        | 32500  | 1               | 8800  | 0            | 1         | 0           |
| 2    | 74           | 4658        | 142228 | 1               | 4200  | 0            | 0         | 1           |
| 3    | 51           | 2739        | 160000 | 1               | 6000  | 1            | 0         | 0           |
| 4    | 73           | 3074        | 106880 | 1               | 5700  | 0            | 1         | 0           |
|      |              |             |        |                 |       |              |           |             |
| 1533 | 51           | 3712        | 115280 | 1               | 5200  | 0            | 0         | 1           |
| 1534 | 74           | 3835        | 112000 | 1               | 4600  | 1            | 0         | 0           |
| 1535 | 51           | 2223        | 60457  | 1               | 7500  | 0            | 1         | 0           |
| 1536 | 51           | 2557        | 80750  | 1               | 5990  | 1            | 0         | 0           |
| 1537 | 51           | 1766        | 54276  | 1               | 7900  | 0            | 1         | 0           |

1538 rows × 8 columns

```
In [9]: y=data1['price']
x=data1.drop('price',axis=1)
```

```
In [10]: y
Out[10]: 0
                  8900
                  8800
                 4200
         3
                 6000
                  5700
                  . . .
         1533
                  5200
         1534
                 4600
         1535
                 7500
         1536
                  5990
         1537
                  7900
         Name: price, Length: 1538, dtype: int64
In [11]: from sklearn.model selection import train test split
         x train, x test, y train, y test = train test split(x,y, test size=0.33,random state=42)
In [12]: x test.head(5)
Out[12]:
```

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 481  | 51           | 3197        | 120000 | 2               | 0            | 1         | 0           |
| 76   | 62           | 2101        | 103000 | 1               | 0            | 1         | 0           |
| 1502 | 51           | 670         | 32473  | 1               | 1            | 0         | 0           |
| 669  | 51           | 913         | 29000  | 1               | 1            | 0         | 0           |
| 1409 | 51           | 762         | 18800  | 1               | 1            | 0         | 0           |

```
In [13]: x train.head(5)
Out[13]:
               engine_power age_in_days
                                        km previous_owners model_lounge model_pop model_sport
           527
                       51
                                 425 13111
                                                                                        0
           129
                        51
                                 1127 21400
                                                                                        0
           602
                       51
                                 2039 57039
                                                                                        0
           331
                       51
                                 1155 40700
                                                                                        0
           323
                        51
                                 425 16783
                                                                                        0
In [14]: y_test.head(5)
Out[14]: 481
                   7900
                   7900
          76
          1502
                   9400
          669
                   8500
          1409
                   9700
          Name: price, dtype: int64
In [15]: x train.shape
Out[15]: (1030, 7)
```

```
In [16]: y train
Out[16]: 527
                  9990
         129
                  9500
         602
                  7590
         331
                  8750
         323
                  9100
                  . . .
         1130
                  10990
                  9800
         1294
         860
                  5500
         1459
                  9990
         1126
                  8900
         Name: price, Length: 1030, dtype: int64
In [17]: #LINEAR REGRESSION
         from sklearn.linear_model import LinearRegression
         reg=LinearRegression()
         reg.fit(x train,y train)
Out[17]:
          ▼ LinearRegression
         LinearRegression()
In [18]: ypred=reg.predict(x test)
```

```
In [19]: ypred
Out[19]: array([ 5867.6503378 ,
                                   7133.70142341,
                                                   9866.35776216,
                                                                    9723.28874535,
                                   9654.07582608,
                 10039.59101162,
                                                   9673.14563045, 10118.70728123,
                                   9351.55828437, 10434.34963575, 7732.26255693,
                  9903.85952664,
                  7698.67240131,
                                   6565.95240435,
                                                   9662.90103518, 10373.20344286,
                  9599.94844451,
                                   7699.34400418,
                                                   4941.33017994, 10455.2719478,
                 10370.51555682, 10391.60424404,
                                                   7529.06622456,
                                                                    9952.37340054,
                  7006.13845729,
                                                                    6953.10376491,
                                   9000.1780961 ,
                                                   4798.36770637,
                  7810.39767825,
                                   9623.80497535.
                                                   7333.52158317,
                                                                    5229.18705519,
                  5398.21541073,
                                   5157.65652129,
                                                   8948.63632836,
                                                                    5666.62365159,
                  9822.1231461 ,
                                   8258.46551788,
                                                   6279.2040404 ,
                                                                    8457.38443276,
                  9773.86444066,
                                   6767.04074749,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                   9069.05761443,
                                                                    8866.7826029 ,
                                                   9412.68162121, 10293.69451263,
                  7058.39787506.
                                   9073.33877162,
                 10072.49011135.
                                   6748.5794244 .
                                                    9785.95841801,
                                                                    9354.09969973,
                  9507.9444386 , 10443.01608254,
                                                   9795.31884316,
                                                                    7197.84932877,
                                                   9853.90699412,
                                                                    7146.87414965,
                 10108.31707235,
                                   7009.6597206 ,
                                                                    8515.83255277,
                  6417.69133992,
                                   9996.97382441,
                                                   9781.18795953,
                                                   7768.57829985,
                  8456.30006203,
                                   6499.76668237,
                                                                    6832.86406122,
                  8347.96113362, 10439.02404036,
                                                                    8562.56562053,
                                                    7356.43463051
```

```
In [20]: Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=ypred
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(15)
```

### Out[20]:

|    | index | price | predicted    | ID |
|----|-------|-------|--------------|----|
| 0  | 481   | 7900  | 5867.650338  | 0  |
| 1  | 76    | 7900  | 7133.701423  | 1  |
| 2  | 1502  | 9400  | 9866.357762  | 2  |
| 3  | 669   | 8500  | 9723.288745  | 3  |
| 4  | 1409  | 9700  | 10039.591012 | 4  |
| 5  | 1414  | 9900  | 9654.075826  | 5  |
| 6  | 1089  | 9900  | 9673.145630  | 6  |
| 7  | 1507  | 9950  | 10118.707281 | 7  |
| 8  | 970   | 10700 | 9903.859527  | 8  |
| 9  | 1198  | 8999  | 9351.558284  | 9  |
| 10 | 1088  | 9890  | 10434.349636 | 10 |
| 11 | 576   | 7990  | 7732.262557  | 11 |
| 12 | 965   | 7380  | 7698.672401  | 12 |
| 13 | 1488  | 6800  | 6565.952404  | 13 |
| 14 | 1432  | 8900  | 9662.901035  | 14 |

```
In [21]: Results['diff']=Results.apply(lambda row: row.price-row.predicted,axis=1)
```

In [22]: Results

# Out[22]:

| index | price                                                              | predicted                                                                            | ID                                                                                                                                                                                                                                                                                                                                                                                  | diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 481   | 7900                                                               | 5867.650338                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                   | 2032.349662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76    | 7900                                                               | 7133.701423                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                   | 766.298577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1502  | 9400                                                               | 9866.357762                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                   | -466.357762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 669   | 8500                                                               | 9723.288745                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                   | -1223.288745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1409  | 9700                                                               | 10039.591012                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                   | -339.591012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                    |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 291   | 10900                                                              | 10032.665135                                                                         | 503                                                                                                                                                                                                                                                                                                                                                                                 | 867.334865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 596   | 5699                                                               | 6281.536277                                                                          | 504                                                                                                                                                                                                                                                                                                                                                                                 | -582.536277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1489  | 9500                                                               | 9986.327508                                                                          | 505                                                                                                                                                                                                                                                                                                                                                                                 | -486.327508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1436  | 6990                                                               | 8381.517020                                                                          | 506                                                                                                                                                                                                                                                                                                                                                                                 | -1391.517020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 575   | 10900                                                              | 10371.142553                                                                         | 507                                                                                                                                                                                                                                                                                                                                                                                 | 528.857447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 481<br>76<br>1502<br>669<br>1409<br><br>291<br>596<br>1489<br>1436 | 481 7900 76 7900 1502 9400 669 8500 1409 9700 291 10900 596 5699 1489 9500 1436 6990 | 481       7900       5867.650338         76       7900       7133.701423         1502       9400       9866.357762         669       8500       9723.288745         1409       9700       10039.591012              291       10900       10032.665135         596       5699       6281.536277         1489       9500       9986.327508         1436       6990       8381.517020 | 481         7900         5867.650338         0           76         7900         7133.701423         1           1502         9400         9866.357762         2           669         8500         9723.288745         3           1409         9700         10039.591012         4                 291         10900         10032.665135         503           596         5699         6281.536277         504           1489         9500         9986.327508         505           1436         6990         8381.517020         506 |

508 rows × 5 columns

```
In [23]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

### Out[23]: []



```
In [28]: import warnings
warnings.filterwarnings('ignore')
```

```
In [29]: #RIDGE REGRESSION
         from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha = [1e-15, 1e-\overline{10}, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20, 30]
         ridge = Ridge()
         parameters = {'alpha': alpha}
         ridge regressor = GridSearchCV(ridge, parameters)
         ridge regressor.fit(x train, y train)
Out[29]:
           ▶ GridSearchCV
           ► estimator: Ridge
                ► Ridge
In [30]: ridge regressor.best params
Out[30]: {'alpha': 30}
In [31]: ridge=Ridge(alpha=30)
         ridge.fit(x train,y train)
         y pred ridge=ridge.predict(x test)
In [32]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(y pred ridge,y test)
         Ridge Error
Out[32]: 579521.7970897449
```

```
In [33]: Results=pd.DataFrame(columns=['Actual','Predicted'])
    Results['Actual']=y_test
    Results['Predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

### Out[33]:

|   | index | Actual | Predicted    | ID |
|---|-------|--------|--------------|----|
| 0 | 481   | 7900   | 5869.741155  | 0  |
| 1 | 76    | 7900   | 7149.563327  | 1  |
| 2 | 1502  | 9400   | 9862.785355  | 2  |
| 3 | 669   | 8500   | 9719.283532  | 3  |
| 4 | 1409  | 9700   | 10035.895686 | 4  |
| 5 | 1414  | 9900   | 9650.311090  | 5  |
| 6 | 1089  | 9900   | 9669.183317  | 6  |
| 7 | 1507  | 9950   | 10115.128380 | 7  |
| 8 | 970   | 10700  | 9900.241944  | 8  |
| 9 | 1198  | 8999   | 9347.080772  | 9  |

```
In [34]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='Predicted',data=Results.head(50))
plt.plot()
```

## Out[34]: []



```
In [35]: #ELASTIC REGRESSION
         from sklearn.linear model import ElasticNet
         from sklearn.model selection import GridSearchCV
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train,y train)
Out[35]:
                GridSearchCV
           ► estimator: ElasticNet
                ► ElasticNet
In [36]: elastic regressor.best params
Out[36]: {'alpha': 0.01}
In [37]: elastic=ElasticNet(alpha=.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [38]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[38]: 0.841688021120299
```

```
In [39]: Results=pd.DataFrame(columns=['Actual','Predicted'])
    Results['Actual']=y_test
    Results['Predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

### Out[39]:

|   | index | Actual | Predicted    | ID |
|---|-------|--------|--------------|----|
| 0 | 481   | 7900   | 5869.741155  | 0  |
| 1 | 76    | 7900   | 7149.563327  | 1  |
| 2 | 1502  | 9400   | 9862.785355  | 2  |
| 3 | 669   | 8500   | 9719.283532  | 3  |
| 4 | 1409  | 9700   | 10035.895686 | 4  |
| 5 | 1414  | 9900   | 9650.311090  | 5  |
| 6 | 1089  | 9900   | 9669.183317  | 6  |
| 7 | 1507  | 9950   | 10115.128380 | 7  |
| 8 | 970   | 10700  | 9900.241944  | 8  |
| 9 | 1198  | 8999   | 9347.080772  | 9  |

```
In [40]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='Predicted',data=Results.head(50))
plt.plot()
```

### Out[40]: []



In [ ]: