

(19) RÉPUBLIQUE FRANÇAISE
 INSTITUT NATIONAL
 DE LA PROPRIÉTÉ INDUSTRIELLE
 PARIS

AC
 ISAACS 3-6
 Ser. No. 10/797399
 File Date 3/10/04

(11) N° de publication : 2 747 842
 (à n'utiliser que pour les commandes de reproduction)

(21) N° d'enregistrement national : 90 07516

(51) Int Cl⁶ : H 01 Q 3/46

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 15.06.90.

(71) Demandeur(s) : THOMSON CSF RADANT — FR.

(30) Priorité :

(43) Date de la mise à disposition du public de la demande : 24.10.97 Bulletin 97/43.

(72) Inventeur(s) : CHEKROUN CLAUDE.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Ce dernier n'a pas été établi à la date de publication de la demande.

(73) Titulaire(s) : .

(60) Références à d'autres documents nationaux apparentés :

(74) Mandataire : THOMSON CSF.

(54) LENTILLE HYPERFREQUENCE MULTIBANDE ET SON APPLICATION A UNE ANTENNE A BALAYAGE ELECTRONIQUE.

(57) L'invention a pour objet une lentille hyperfréquence du type décrit dans le brevet français 2.469.808, qui soit adaptée pour fonctionner dans au moins deux bandes de fréquence.

A cet effet, chacun des canaux déphasateurs (D) de la lentille est subdivisé en au moins deux sous canaux (d_1 , d_2), chacun de ceux-ci étant affecté à l'une des bandes de fréquence de fonctionnement de la lentille. Chaque sous-canal comporte, outre des panneaux déphasateurs (P_1 , P_2) accolés, des moyens diplexeurs (4_1 , 4_2) et des moyens d'adaptation d'impédance (5_1 , 5_2) à chacune de ses extrémités.

Une telle lentille est applicable à la constitution d'une antenne à balayage électronique multibande.

LENTILLE HYPERFREQUENCE MULTIBANDE ET SON
APPLICATION A UNE ANTENNE A BALAYAGE ELECTRONIQUE

La présente invention a pour objet une lentille hyperfréquence multibande, c'est-à-dire une lentille susceptible de fonctionner dans une pluralité de bandes de fréquence. L'invention a également pour objet l'application d'une telle lentille à la constitution d'une antenne à balayage électronique.

Il est connu, pour réaliser par exemple une antenne à balayage électronique, d'utiliser une lentille hyperfréquence formée de panneaux introduisant un déphasage de l'onde électromagnétique hyperfréquence qui les traverse. Chacun de ces panneaux comporte des fils portant des diodes, parallèles les uns aux autres. La commande de l'état passant ou bloqué des diodes permet de faire varier le déphasage conféré à l'onde incidente et, par suite, d'obtenir un balayage électronique.

Une telle antenne est par exemple décrite dans le brevet français n° 2.469.808. On a illustré son principe sur la figure 1a en vue partielle éclatée et sur la figure 1b, schématiquement dans le plan du champ électrique.

Sur la figure 1a, on a représenté trois panneaux superposés, c'est-à-dire situés dans un même plan, repérés P₁, P₂ et P₃. Chacun de ces panneaux est constitué par un support diélectrique 1 sur lequel sont disposés des fils 2 parallèles, portant des diodes 3. Dans l'exemple de la figure, chacun des fils porte deux diodes, les diodes étant connectées dans le même sens. Les fils à diodes 2 sont réunis par des conducteurs 7 qui leur sont sensiblement perpendiculaires, utilisés pour la commande de l'état passant ou bloqué des diodes : dans chacun des panneaux,

toutes les diodes sont commandées simultanément et identiquement à l'aide des conducteurs 7 par des tensions suffisantes pour les rendre conductrices ou non. Les panneaux sont séparés et entourés par des plaques conductrices qui leur sont perpendiculaires, repérées P_{L1} , P_{L2} , P_{L3} , P_{L4} .

Sur la figure 1b, on a représenté une pluralité de panneaux tels que P_1 , P_2 et P_3 , désignés ici par P , disposés dans les canaux formés par les plaques, désignées ici par P_L , prises deux à deux. L'ensemble des panneaux P d'un même canal constitue un déphaseur (D_1 , D_2 , D_3 ...). L'empilement d'une pluralité de déphaseurs constitue une lentille hyperfréquence active qui est éclairée par une source S (figure 1a), cette dernière fournissant une onde électromagnétique dont le champ électrique E est perpendiculaire aux plaques P_L . On a représenté à titre d'exemple sur la figure 1b un empilement de cinq déphaseurs ainsi que la direction du champ électrique (flèche E), de l'onde incidente (flèche 10) et de l'onde transmise (flèche 20), cette dernière étant défléchie par rapport à l'onde d'incidence.

Les panneaux P étant commandés indépendamment l'un de l'autre, il apparaît que le déphasage qu'ils confèrent à l'onde qui les traverse peut être différent d'un panneau à l'autre. En accolant une pluralité de panneaux les uns derrière les autres dans un même canal sur le trajet de l'onde hyperfréquence, on voit qu'on peut obtenir des déphasages pouvant aller de 0 à 360°, par incrément dont la valeur est liée au nombre de panneaux accolés. En empilant une pluralité de tels déphaseurs, il apparaît que l'on peut réaliser un balayage électronique dans un plan parallèle au champ électrique E.

Par ailleurs, dans certaines applications, il est nécessaire de pouvoir faire fonctionner une même antenne dans au

moins deux bandes de fréquence différentes, notamment pour les raisons suivantes :

- certaines optimisations de paramètres étant dans certains cas incompatibles, l'utilisation de plusieurs bandes de fréquence différentes permet de les réaliser séparément : c'est notamment le cas pour les questions d'ambiguïté ou de résolution, en vitesse ou en angle :

- la bande de fréquence de fonctionnement de l'antenne se trouvant ainsi plus large, la résistance de celle-ci vis-à-vis des brouilleurs en est améliorée ;

- les cibles dites furtives ne l'étant en général que dans une bande de fréquence assez étroite, l'utilisation de plusieurs bandes distinctes permet d'améliorer leur détection ;

- l'utilisation de plusieurs bandes de fréquence permet de lever des ambiguïtés dues à l'effet d'image, c'est-à-dire la formation d'une image de la cible due aux réflexions sur le sol ou sur la mer des ondes émises par l'antenne.

La présente invention a pour objet une lentille hyperfréquence du type décrit dans le brevet précité, qui soit adaptée pour pouvoir fonctionner dans au moins deux bandes de fréquence.

Plus précisément, selon l'invention, chacun des canaux déphasateurs de la lentille est subdivisé en au moins deux sous-canaux, chacun de ceux-ci étant affecté à l'une des bandes de fréquence de fonctionnement de la lentille. Chaque sous-canal comporte, outre des panneaux déphasateurs accolés, des moyens diplexeurs et des moyens d'adaptation d'impédance à chacune de ses extrémités.

D'autres objets, particularités et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les dessins

annexes, qui représentent :

- les figures 1a et 1b, déjà décrites, des schémas du dispositif objet du brevet français précité :

5 - la figure 2, une vue générale schématique d'un mode de réalisation de l'antenne multibande selon l'invention ;

- la figure 3, un mode de réalisation d'un canal déphaseur utilisé dans la structure de la figure 2 ;

- la figure 4, une variante de réalisation de la figure 3 ;

10 - les figures 5a et 5b, un mode de réalisation des moyens diplexeurs et adaptateurs utilisés dans certains des sous-canaux de la lentille selon l'invention ;

- les figures 6a et 6b, un mode de réalisation des moyens diplexeurs et adaptateurs utilisés dans d'autres sous-15 canaux de la lentille selon l'invention ;

- les figures 7a et 7b, un autre mode de réalisation des moyens diplexeurs et adaptateurs utilisés dans les sous-canaux de la lentille selon l'invention ;

- la figure 8, un autre mode de réalisation de l'antenne multibande selon l'invention.

Sur ces différentes figures, les mêmes références se rapportent aux mêmes éléments.

Par ailleurs, pour simplifier, la description de l'antenne utilisant la lentille selon l'invention sera faite à l'émission, étant entendu que l'antenne fonctionne de façon classique également, à la réception.

30 La figure 2 représente donc une vue schématique générale d'un mode de réalisation d'une antenne selon l'invention, par exemple bibande.

Cette antenne est constituée par une lentille hyperfréquence L, illuminée par des moyens d'émission-réception, ou sour-

ce, S d'énergie électromagnétique hyperfréquence.

La source S comporte des moyens d'émission d'une onde hyperfréquence à une première fréquence F_1 , celle-ci pouvant varier à l'intérieur d'une bande de fréquences ΔF_1 , ainsi que des moyens d'émission d'une onde hyperfréquence à une deuxième fréquence F_2 , celle-ci pouvant de même varier à l'intérieur d'une bande de fréquences ΔF_2 . Les deux bandes ΔF_1 et ΔF_2 sont de préférence disjointes.

L'émission des fréquences F_1 et F_2 est réalisable par tous moyens connus. Dans l'exemple de réalisation illustré sur la figure 2, ils sont réalisés à l'aide de deux guides à fentes, respectivement G_1 et G_2 . Les guides sont empilés selon un axe Ox ; ils rayonnent de l'énergie selon un axe Oz (normal au précédent) par des fentes F réalisées parallèlement à un axe Oy (normal aux précédents).

La lentille L est réalisée de façon analogue à ce qui est représenté sur les figures 1, à ceci près que chacun des canaux déphaseurs D est divisé en deux sous-canaux, repérés d_1 et d_2 .

Plus précisément, la lentille L est constituée par un empilement selon l'axe Ox de canaux déphaseurs D, séparées par des plaques conductrices P_L parallèles au plan yOz. Les panneaux déphaseurs P sont disposés, dans les canaux, parallèlement au plan xOy.

La figure 3 représente de façon plus détaillée un mode de réalisation d'un canal déphaseur D de la figure 2.

Entre les deux plaques P_L délimitant le canal D est disposée une troisième plaque conductrice P_{LI} , dite plaque intermédiaire, parallèlement aux deux précédentes : la plaque P_{LI} peut être, ou non, disposée à mi-distance entre les plaques P_L : dans un mode de réalisation préféré, la plaque P_{LI} est plus petite que

les plaques P_1 , par exemple sensiblement d'une distance d_p de l'ordre d'une longueur d'onde correspondant à la fréquence de fonctionnement la plus basse, ceci pour éviter de perturber l'adaptation de la face d'entrée de la lentille L. Chacun des sous-canaux est donc délimité par l'une des plaques P_L et la plaque intermédiaire P_{LI} .

Des panneaux déphasateurs sont disposés à l'intérieur de chacun des sous-canaux et sont placés et dimensionnés pour fonctionner :

- à la fréquence F_1 pour les panneaux, repérés ici P_1 , disposés dans le sous-canal d_1 ;

- à la fréquence F_2 pour les panneaux, repérés ici P_2 , disposés dans le sous-canal d_2 .

Enfin, chacun des sous-canaux d_1 et d_2 comportent en outre, à chacune de leurs extrémités, des moyens diplexeurs (respectivement 4_1 et 4_2) et des moyens d'adaptation d'impédance (respectivement 5_1 et 5_2).

En fonctionnement, la lentille L (figure 2) est illuminée par les deux guides G_1 et G_2 , simultanément ou non. Les diplexeurs 4_1 et 4_2 ont pour fonction de n'autoriser la propagation que de l'énergie de fréquence F_1 dans le sous-canal d_1 et que de l'énergie de fréquence F_2 dans le sous-canal d_2 . A cet effet, chacun des diplexeurs 4_1 et 4_2 est un circuit hyperfréquence, de préférence réalisé sur un support diélectrique disposé parallèlement aux panneaux P_1 ou P_2 , présentant une transparence maximale pour l'une des fréquences (respectivement F_1 et F_2) et une réflectivité maximum pour l'autre fréquence (respectivement F_2 et F_1). Les adaptateurs d'impédance 5_1 et 5_2 ont pour fonction, pour chaque sous-canal, de compenser la désadaptation due à la réflexion de l'énergie sur l'autre sous-canal : ils sont de préférence réalisés de façon analogue à celle des moyens 4_1 et 4_2 , c'est-à-dire constitués par un circuit hyperfréquence sur

support diélectrique parallèle aux panneaux P_1 et P_2 .

En outre, la lentille étant susceptible de recevoir de l'énergie sur l'une ou sur l'autre de ses faces extrêmes, chacun des sous-canaux comporte des moyens 4 (4_1 , 4_2) et 5 (5_1 , 5_2) à chacune de ses extrémités.

On a ainsi réalisé, selon l'invention, une antenne à balayage électronique dans le plan xOz , susceptible de fonctionner dans deux bandes de fréquence ΔF_1 et ΔF_2 distinctes.

Il est à noter que ce fonctionnement bibande est rendu possible de façon simple par dédoublement des canaux déphaseurs. Il est en outre extensible à un fonctionnement sur n bandes de fréquences, n pouvant être supérieur à 2, par division en n sous-canaux de chacun des canaux déphaseurs, ce type de structure à canaux déphaseurs empilés n'étant pas limité en dimensions.

En outre, la commande des panneaux déphaseurs P_1 et P_2 peut être réalisée tout à fait indépendamment, permettant ainsi de défléchir les faisceaux relatifs à chacune des fréquences dans des directions et à des instants indépendants. De plus, la commande et le fonctionnement des sous-canaux étant indépendants, le nombre de panneaux déphaseurs qu'ils contiennent peut n'être pas le même pour les sous-canaux d_1 et pour les sous-canaux d_2 .

La figure 4 représente une variante de réalisation de la figure 3, dans laquelle les moyens diplexeurs et les moyens d'adaptation d'impédance sont réalisés à l'aide d'un même circuit hyperfréquence.

Sur cette figure, on retrouve un canal déphaseur D divisé en deux sous-canaux d_1 et d_2 . Chaque sous-canal (d_1 , d_2) comporte des panneaux déphaseurs (P_1 , P_2) et, à chacune de ses extrémités, des moyens (6_1 , 6_2 respectivement) assurant à la fois les fonctions des moyens 4 et 5 de la figure 3. Comme précédemment, ces moyens diplexeurs et adactateurs sont de préférence

réalisés par un circuit hyperfréquence porté par un support diélectrique disposé parallèlement aux panneaux déphasateurs (P_1 , P_2).

La figure 5a représente un mode de réalisation des moyens diplexeurs et adaptateurs 6_1 utilisés dans le sous-canal d_1 de la lentille selon l'invention, qui est destiné à laisser passer la seule fréquence F_1 , supposée être inférieure à la fréquence F_2 .

Les moyens 6_1 comportent un substrat diélectrique 11 sur lequel sont déposées, par métallisation par exemple, deux bandes conductrices 51 et 52, sensiblement parallèles, formant iris, entre lesquelles sont connectées en parallèle des capacités 13 à l'aide de fils 12 : à titre d'exemple, les fils 12 sont également imprimés sur le substrat 11 et les capacités 13 sont formées par des dépôts conducteurs normaux aux fils 12, en vis-à-vis l'un de l'autre : dans ce dernier cas, la valeur de la capacité est fonction de la longueur c de ces dépôts conducteurs. Le substrat 11 est entouré de plaques métalliques P_L et P_{LI} , qui sont sensiblement normales à son plan.

Pour la clarté de la figure, la surface des différents conducteurs (non vus en coupe) a été pointillée.

La figure 5b représente le schéma équivalent en hyperfréquence du circuit de la figure 5a.

L'onde hyperfréquence est reçue entre deux bornes B_1 et B_2 . Elle rencontre deux capacités C_0 et C_I en série, connectées en parallèle sur ces bornes. Les capacités C_0 et C_I représentent la première, la capacité linéaire respectivement de découplage entre les bandes 51 et 52 et les plaques P_L et P_{LI} , et la seconde de l'iris 51-52 : elles sont fonction respectivement des distances D_0 entre bandes et plaques, et D_I entre les bandes 51 et 52.

Aux bornes de la capacité C_I sont connectées, en série,

9

inductance L et une capacité C_{13} . Cette dernière représente la capacité 13 de la figure 5a. L'inductance L représente l'inductance des fils 12, affectée d'un facteur $\frac{a}{b}^\alpha$ où :

- a est la distance entre deux capacités 13 ;
- b est la distance entre les plaques P_L et P_{LI} ;
- α est un coefficient caractérisant l'interaction entre les fils 12.

La tension de sortie hyperfréquence est prise entre des bornes B_3 et B_4 , aux bornes des capacités C_0 et C_I .

Les valeurs C_0 , C_I , L et C_{13} sont déterminées pour que le circuit δ_1 du sous-canal d_1 :

- soit réfléchissant lorsqu'il est en présence d'une onde hyperfréquence de fréquence F_2 ;
- assure l'adaptation du sous-canal d_1 lorsqu'il est en présence d'une onde hyperfréquence de fréquence F_1 .

La condition de réflectivité du circuit s'obtient, classiquement, en écrivant que sa susceptance (B_1) tend vers l'infini pour la fréquence F_2 . La condition d'adaptation s'obtient, de façon analogue, en écrivant que la susceptance B_1 est égale, pour la fréquence F_1 , à une valeur déterminée, fonction de la distance (d_6) du circuit δ_1 à l'entrée du sous-canal, c'est-à-dire au bord de la plaque intermédiaire P_{LI} : à titre d'exemple, si la distance d_6 est sensiblement égale à $0.15\lambda_1$, on a $B_1 \approx 0.7\lambda_1$, λ_1 étant la longueur d'onde correspondant à la fréquence F_1 .

La détermination des valeurs précédentes conduit à celle des paramètres géométriques D_0 , D_I et a , la distance b étant choisie par ailleurs en fonction des caractéristiques de rayonnement souhaitées pour la lentille.

La figure 6a représente un mode de réalisation des

moyens diplexeurs et adaptateurs 6₂ utilisés dans le sous-canal d₂ de la lentille selon l'invention, destiné à laisser passer la seule fréquence F₂.

Les moyens 6₂ sont constitués de façon analogue à celle des moyens 6₁ de la figure 5a, c'est-à-dire qu'ils comportent un substrat diélectrique 11 sur lequel sont déposés, par métallisation par exemple, deux bandes conductrices 51 et 52, sensiblement parallèles, formant iris, entre lesquelles sont connectés en parallèle des fils 12, par exemple également imprimés sur le substrat 11. Le substrat 11 est entouré de plaques métalliques P_L et P_{LI}, qui sont sensiblement normales à son plan. Toutefois, contrairement au circuit 6₁, le circuit 6₂ ne comporte pas de capacité sur les fils 12.

La figure 6b représente le schéma équivalent en hyperfréquence du circuit de la figure 6a.

L'onde hyperfréquence est reçue entre les deux bornes B₁ et B₂. Elle rencontre comme précédemment les deux capacités C₀ et C_I en série.

Aux bornes de la capacité C_I est connectée l'inductance L, qui représente comme précédemment l'inductance des fils 12, affectée du facteur $\frac{a^2}{b}$.

Les valeurs C₀, C_I, et L sont déterminées de façon analogue à ce qui a été décrit précédemment, c'est-à-dire pour que le circuit 6₂ du sous-canal d₂ :

- soit réfléchissant lorsqu'il est en présence d'une onde hyperfréquence de fréquence F₁ :

- assure l'adaptation du sous-canal d₂ lorsqu'il est en présence d'une onde hyperfréquence de fréquence F₂.

La condition de réflectivité du circuit s'obtient de même en écrivant que sa susceptance (B₂) tend vers l'infini pour la fréquence F₁. La condition d'adaptation s'obtient en écrivant

que la susceptance B_2 est égale, pour la fréquence F_2 , à une valeur déterminée, fonction de la distance (d_6) du circuit δ_2 à l'entrée du sous-canal. A titre d'exemple, si la distance d_6 est de l'ordre de $0.15\lambda_2$, on a $B_2 \approx 0.7\lambda_2$, λ_2 étant la longueur d'onde correspondant à la fréquence F_2 .

On détermine ainsi la valeur des paramètres géométriques D_0 , D_I et a , à b donné.

La figure 7a représente un autre mode de réalisation des moyens diplexeurs et adaptateurs utilisés dans les sous-canaux de la lentille selon l'invention.

Le circuit représenté sur la figure 7a est identique à celui de la figure 5a, sauf en ce qui concerne les capacités 13 qui sont remplacées par des diodes 14.

Lorsque, par l'intermédiaire des bandes 51 et 52, les diodes 14 sont polarisées en direct, le circuit de la figure 7a fonctionne de la même façon que celui de la figure 6a. Au contraire, lorsque les diodes 14 sont polarisées en inverse, le circuit de la figure 7a joue le même rôle que celui de la figure 5a. A l'aide d'un même type de circuit, il est alors possible de réaliser à la fois les moyens δ_1 et δ_2 .

La figure 7b représente le circuit équivalent de la figure 7a.

On y retrouve les capacités C_0 et C_I en série entre les bornes B_1 et B_2 . Aux bornes de la capacité C_I sont maintenant connectées une inductance L en série avec :

- soit une capacité C_i , en série avec une résistance R_i .

- soit une résistance R_d .

selon que la diode 14 est en sens inverse ou direct, ce qui est symbolisé par un interrupteur 20.

L'inductance L' est de la forme :

$$L' = L_0 \cdot \frac{a}{b}^{\alpha}$$

où L_0 est l'inductance de la diode 14 et du fil 12. La résistance R_i est la résistance inverse de la diode, affectée du rapport a/b . La résistance R_d est la résistance directe de la diode, affectée du même rapport. Enfin, la capacité C_i est la capacité de jonction de la diode, affectée du rapport b/a .

5

10

La détermination des paramètres s'effectue comme expliquée ci-dessus, selon que ce circuit doit constituer les moyens δ_1 ou δ_2 .

Les modes de réalisation précédemment décrits pour les moyens diplexeurs et adaptateurs présentent l'avantage d'utiliser le même type de dispositif que les panneaux déphaseurs.

15

20

Les différents panneaux, déphaseurs, diplexeurs et adaptateurs, d'un même sous-canal doivent être par exemple collés sur les plaques P_L ou P_{LI} . Dans une variante de réalisation, l'espace entre les panneaux peut être rempli d'un matériau à faible constante diélectrique, mousse polyuréthane par exemple, qui joue en outre un rôle de support mécanique : les panneaux sont alors simplement glissés dans des espaces ménagés dans la mousse.

La figure 8 représente un autre mode de réalisation de l'antenne multibande selon l'invention.

25

Cette antenne comporte une source S, ici formée de deux cornets superposés selon un axe Ox d'un repère rectangulaire Oxyz. L'un des cornets (C_1) émettant une onde de fréquence F_1 et l'autre (C_2), une onde de fréquence F_2 , toutes deux selon la direction Oz. La source S éclaire une première lentille L_1 , cons-

30

tituée par exemple comme la lentille L_1 de la figure 2, avec ses plaques P_L parallèles au plan yOz .

Parallèlement à la lentille L_1 sont disposées successivement une grille de rotation de polarisation G et une deuxième lentille L_2 .

La grille G imprime une rotation de 90° à la polarisation de l'onde émergeant de la lentille L_1 . Elle est par exemple constituée comme décrit dans un article intitulé "Broad-Band Wide-Angle Quasi-Optical Polarization Rotators" de AMITAY et SALEM, paru dans la revue "IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. AP-31, N° 1" de Janvier 1983.

La lentille L_2 est analogue à la lentille L_1 , mais tournée de 90° , c'est-à-dire que ses plaques P_L sont parallèles au plan xOz .

On a ainsi réalisé une antenne à balayage électronique selon deux plans orthogonaux et fonctionnant selon deux bandes de fréquence distinctes.

La description faite ci-dessus l'a été bien entendu à titre d'exemple non limitatif. C'est ainsi par exemple que l'antenne a été représentée comme formée par une lentille éclairée par des moyens distincts formant source, mais que ces derniers peuvent être intégrés à chacun des sous-canaux : ils peuvent être constitués par exemple par une ligne dite "serpent" disposée dans chaque canal. Les moyens 4, 5 ou 6 ne sont alors plus nécessaires du côté de la ligne serpent, celle-ci assurant l'adaptation.

RE V E N D I C A T I O N S

1. Lentille hyperfréquence susceptible de recevoir une onde électromagnétique se propageant selon une première direction (Oz), la lentille comportant une pluralité de canaux déphaseurs (D) emboilés selon une deuxième direction (Ox), normale à la première, et séparés les uns des autres par des plaques conductrices (P_1), perpendiculaires à la deuxième direction (Ox), chacun des canaux comportant une pluralité de panneaux déphaseurs (P), disposés perpendiculairement à la première direction (Oz), chacun des panneaux (P) portant des fils conducteurs (2) parallèles à la deuxième direction (Ox) et portant des diodes (3), la commande de l'état passant ou bloqué des diodes d'un panneau permettant de faire varier le déphasage provoqué par le panneau sur l'onde qui le traverse : la lentille étant caractérisée par le fait que chacun des canaux est divisé en au moins deux sous-canaux (d_1 , d_2) à l'aide d'une plaque conductrice intermédiaire (P_{LI}), disposée entre deux plaques et parallèlement à celles-ci, les sous-canaux comportant chacun une pluralité de panneaux déphaseurs (P_1 , P_2) agencés pour fonctionner à au moins deux fréquences (F_1 , F_2) respectivement, et, de part et d'autre des panneaux déphaseurs sur le trajet de l'onde électromagnétique, des moyens diplexeurs et des moyens d'adaptation d'impédance.

2. Lentille selon la revendication 1, caractérisée par le fait que les moyens diplexeurs (4) sont réalisés chacun à l'aide d'un circuit hyperfréquence.

3. Lentille selon la revendication 1, caractérisée par le fait que les moyens d'adaptation d'impédance (5) sont réalisés chacun à l'aide d'un circuit hyperfréquence.

4. Lentille selon la revendication 1, caractérisée par le fait que les moyens diolexeurs et les moyens d'adaptation d'impédance sont réalisés à l'aide d'un même circuit hyperfréquence (δ_1 , δ_2).

5 5. Lentille selon la revendication 4, caractérisée par le fait que chacun des circuits hyperfréquences de celui (d_1) des sous-canaux fonctionnant à la fréquence la plus basse (F_1) est réalisé sur un support diélectrique placé parallèlement aux panneaux déphaseurs et comporte des fils conducteurs (12) sensiblement parallèles à la deuxième direction (0_x), portant des capacités (13) et réunis entre eux par des bandes conductrices (51, 52) qui leur sont sensiblement perpendiculaires.

15 6. Lentille selon la revendication 4, caractérisée par le fait que chacun des circuits hyperfréquences de celui (d_2) des sous-canaux fonctionnant à la fréquence la plus haute (F_2) est réalisé sur un support diélectrique placé parallèlement aux panneaux déphaseurs et comporte des fils conducteurs (12) sensiblement parallèles à la deuxième direction (0_x), réunis entre eux par des bandes conductrices (51, 52) qui leur sont sensiblement perpendiculaires.

25 7. Lentille selon l'une des revendications précédentes, caractérisée par le fait que les plaques conductrices intermédiaires (P_{II}) sont plus petites que les plaques conductrices (P_L) selon la première direction (0_z).

30 8. Lentille selon la revendication 4, caractérisée par le fait que chacun des circuits hyperfréquences est disposé à une distance (d_3) prédéfinie du bord de la plaque intermédiaire, qui

1/8

FIG.1a

2747842

2 / 8

FIG.1b

2747842

3 / 8

FIG. 2

2747842

4/8

FIG.3

FIG.4

5 / 8

FIG.5a

FIG.5b

6/8

FIG.6a

FIG.6b

2747842

FIG.7a

FIG.7b

2747842

8/8

FIG.8

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.