Individual Project

Topic:

Implement three algorithms to solve multiple sequence alignment (MSA) problems.

Requirements:

- Implement dynamic programming (DP) algorithm to find the optimal solution.
- Implement A-star (A*) algorithm to find the optimal solution.
- Implement genetic algorithm to find the optimal/suboptimal solution.

You need to find the best alignment that yields the least cost. Cost matrix is simple and revealed below.

	МАТСН	MISMATCH	GAP
COST	0	3	2

For multiple sequence alignment with size larger than 2, the cost is computed using sum-of-pairs (sum up all pairwise cost). Note that **GAP-GAP** alignment is considered as a **MATCH** with cost 0.

For example, given

the cost of the alignment

$$ABCD$$

$$A - CD$$

$$B - CD$$

is (0+3+3)+(0+2+2)+0+0=10.

Dataset:

There are 5 queries for pairwise alignment and 2 queries for three-sequence alignment in MSA_query.txt. Database is stored in MSA_database.txt with 100 sequences.

Tips:

- Please describe and analyze your implementation, results, running time and time complexity thoroughly in the report.
- Do not cheat.