

Artificial Neural Networks (ANNs)

- 1. A computational model inspired by the structure and function of the human brain, e.g., the perceptron *Historically*
- 2. A function mapping the input(s) vector(s) \mathbf{x} to predicted output(s) vector(s) $\mathbf{\hat{y}}$ Mathematically

$$\widehat{\boldsymbol{y}} = f(\boldsymbol{x}; \boldsymbol{\theta})$$
 with $\boldsymbol{\theta}$ being weights \boldsymbol{W} and bias \boldsymbol{b}

Deep Learning

- 1. Learning multiple levels of composition, *i.e.*, constructing complex patterns or functions by combining simpler ones
 - e.g., Deep Neural Networks (DNNs)

NNs ~ function mapping the input(s) vector(s) $m{x}$ to predicted output(s) vector(s) $m{\hat{y}}$

$$\widehat{\mathbf{y}} = f(\mathbf{x}; \boldsymbol{\theta})$$

 $\widehat{\mathbf{y}} = f(\mathbf{x}; \boldsymbol{\theta}, \mathbf{w}) = \phi(\mathbf{x}; \boldsymbol{\theta})^{\mathrm{T}} \mathbf{w}$

- ; $\widehat{m{y}}$ is a linear combination of the input features
- ; \hat{y} is a non-linear combination, with ϕ a nonlinear transformation, and w being mapping parameters (weights W and biases b)

NNs ~ function mapping the input(s) vector(s) $m{x}$ to predicted output(s) vector(s) $m{\hat{y}}$

$$\widehat{\mathbf{y}} = f(\mathbf{x}; \boldsymbol{\theta})$$

 $\widehat{\mathbf{y}} = f(\mathbf{x}; \boldsymbol{\theta}, \mathbf{w}) = \phi(\mathbf{x}; \boldsymbol{\theta})^{\mathrm{T}} \mathbf{w}$

 \hat{y} is a linear combination of the input features ; $\widehat{m{y}}$ is a non-linear combination, with $m{\phi}$ a nonlinear transformation, and \boldsymbol{w} being mapping parameters (weights

W and biases **b**)

Layers

$$egin{aligned} oldsymbol{x} \ oldsymbol{a}^l &= \phiig(oldsymbol{z}^lig) = \phiig(oldsymbol{W}^loldsymbol{a}^{l-1} + oldsymbol{b}^lig) \ oldsymbol{\widehat{y}} \end{aligned}$$

; Input layer ; Hidden layers $l=1 \dots L-1$ Propagation

Forward Propagation

NNs ~ function mapping the input(s) vector(s) \boldsymbol{x} to predicted output(s) vector(s) $\boldsymbol{\hat{y}}$

$$\widehat{\mathbf{y}} = f(\mathbf{x}; \boldsymbol{\theta})$$

 $\widehat{\mathbf{y}} = f(\mathbf{x}; \boldsymbol{\theta}, \mathbf{w}) = \phi(\mathbf{x}; \boldsymbol{\theta})^{\mathrm{T}} \mathbf{w}$

 \hat{y} is a linear combination of the input features ; $\widehat{m{y}}$ is a non-linear combination, with $m{\phi}$ a nonlinear

transformation, and \boldsymbol{w} being mapping parameters (weights \boldsymbol{W} and biases \boldsymbol{b}) to the final output

Forward propagation

$$egin{aligned} oldsymbol{x} \ oldsymbol{a}^l &= \phiig(oldsymbol{z}^lig) = \phiig(oldsymbol{W}^loldsymbol{a}^{l-1} + oldsymbol{b}^lig) \ oldsymbol{\widehat{y}} \end{aligned}$$

; Input layer ; Hidden layers $l=1\dots L-1$; Output layer L Forward Back Propagation

Backpropagation

Update \boldsymbol{w} to minimize a loss function $\mathcal{L}(\widehat{\boldsymbol{y}},\boldsymbol{y})$ (e.g., MSE, MAE, etc.)

1. At the output layer
$$\delta^L = rac{\partial \mathcal{L}}{\partial m{a}^L} \cdot m{a}^L$$

2. For Hidden layers
$$\delta^l = W^{(l+1)T} \delta^{(l+1)} \cdot a^l$$

4. Bias update:
$$b^l =$$

$$oldsymbol{W}^l\coloneqq oldsymbol{W}^l - \eta rac{\partial \mathcal{L}}{\partial oldsymbol{W}^l} \ oldsymbol{b}^l\coloneqq oldsymbol{b}^l - \eta rac{\partial \mathcal{L}}{\partial oldsymbol{b}^l}$$

Forward Propagation Input layer Hidden layers LOutput layer $z_1^1 \phi^1$ x^{in} $z_2^1 \phi^1$ $z^{out} \phi^{out}$ $z_2^2 \phi^2$ $z_N^1 \phi^1$ $z_N^2 \phi^2$ Prediction Update weigths $score > \varepsilon$ Loss Optimizer True $score \leq \varepsilon$ OK

Physics Informed Neural Networks?

PINNs ~ class of NNs that incorporate physical laws directly in the loss function to guide the learning process

- Most used case: PDE, ODE solutions
- Some applications:
 - Fluid dynamics: NS fluid flow simulations, Heat fluxes, soil hydrodynamics, ...
 - Solid mechanic: material stress and strains, ...
 - Quantum mechanic: approx. Shrödinger's equation, ...
 - Electromagnetics: solving Maxwell's equation, ...

Advantages 🔽

- Integration of physics law (constraints)
- 2. Requires less data (+incomplete datasets)
- 3. Generalization (interpolation, extrapolation)

Disadvantages X

- 1. Computer intensive (GPU)
- 2. Requires knowledge of physics
- 3. Hyperparameter sensitivity

Physics Informed Neural Networks?

PINNs ~ class of NNs that incorporate physical laws directly in the loss function to guide the learning process

But let's try to build a PINN to solve the harmonic oscillator case

https://github.com/adil-thami/PINNs

Forward Propagation

