Projektpräsentation

Die hard- und softwaretechnische Implementierung eines CO₂-Sensors zur Messung der Raumluftqualität

Julius Caesar, Péter Egermann, Paul Görtler, Johannes Leyrer 12.05.2022

BSZ für Elektrotechnik Dresden - IT20/2

Gliederung

Einleitung

CO₂-Grenzwerte für eine unbedenkliche Atemluft

Auswirkungen eines zu hohen CO₂-Gehaltes in der Raumluft

Hardwaretechnische Umsetzung

Softwaretechnische Umsetzung

Fazit

Einleitung

Einleitung

Habt ihr bereits Erfahrungen mit CO₂-Sensoren gemacht?

CO₂-Grenzwerte für eine

unbedenkliche Atemluft

CO₂-Grenzwerte für eine unbedenkliche Atemluft

- Atmosphäre hat 400 ppm CO₂
- ab 1000 ppm CO₂ bedenklich laut DGUV ASR A3.6
- ab 950 ppm CO₂ bedenklich laut DIN EN 16798-1

CO₂-Grenzwerte für eine unbedenkliche Atemluft

CO ₂ -Konzentration in ppm	Bewertung
<1000	hygienisch unbedenklich
1000-2000	hygienisch auffällig
>2000	hygienisch inakzeptabel

Tabelle 1: nach DGUV ASR A3.6

CO ₂ -Konzentration in ppm	Bewertung
<950	Hohe Raumluftqualität
950-1200	Mittlere Raumluftqualität
1200-1750	Mäßige Raumluftqualität
>1750	Niedrige Raumluftqualität

Tabelle 2: nach DIN EN 16798-1

Auswirkungen eines zu hohen

CO₂-Gehaltes in der Raumluft

Auswirkungen eines zu hohen CO₂-Gehaltes in der Raumluft

- verringerte Konzentrationsfähigkeit
- verringerte Leistungsfähigkeit
- Halsschmerzen
- Kopfschmerzen
- Unwohlsein
- Müdigkeit
- Hustenanfälle

Hardwaretechnische Umsetzung

Raspberry Pi 3B+

Abbildung 1: Raspberry Pi 3B+ [1]

CO₂-Sensor

Abbildung 2: TFA Dostmann AIRCO2NTROL MINI

Softwaretechnische Umsetzung

Grundlagen

- Linux-Distribution inklusive mitgelieferter Standardsoftware
- Docker
- Python
- FastAPI
- React
- Chart Is
- SQLite

Abbildung 3: Verwendete Softwarekomponenten

Zusammenspiel der Softwarekomponenten

Abbildung 4: Zusammenspiel der Softwarekomponenten

Projektpräsentation 9 / 11

Aufbau und Einrichtung der Softwarekomponenten

- Backend: Python mit FastAPI
- Frontend: React und ChartsJs
- Lese-Software: Python-Script
- Datenbank: SQLite

docker-compose - f docker-compose.yml up - d

Fazit

Fazit

Ergebnisse:

- bestätigte Relevanz der Raumluftqualität
- bestätigte Verbindung zwischen hohen CO₂-Konzentrationen und verminderter Konzentrationsfähigkeit/Produktivität
- schaffen einer kostengünstigen Möglichkeit zur selbstständigen Kontrolle der Raumluftqualität

11 / 11

Fragen?

Literaturverzeichnis i

Quellenverzeichnis

[1] Raspberry Pi 3B+. 2021. URL: https://www.notebooksbilliger.de/raspberry+pi+3+model+b+360324. abgerufen am 12.05.2022.

Danke für die Aufmerksamkeit!