FUENTES REGULADAS DE CC

Cátedra: CIRCUITOS ELECTRÓNICOS II

Capacidades de los estudiantes al terminar esta unidad:

- Reconocer las diferencias entre referencias de tensión y reguladores para alimentación.
- Identificar los parámetros de mayor interés para la caracterización de circuitos reguladores y referencias de tensión.
- Calcular dichos parámetros en función del esquema circuital y ser capaz de especificarlos a partir de las hojas de datos.
- Conocer los fundamentos de funcionamiento de una referencia Band-gap.
- Diseñar los valores de resistores asociados a una referencia de tensión comercial del tipo TL431 para lograr una tensión dada.

Necesidad de disponer de una tensión constante independiente de perturbaciones, como por ejemplo:

- ☐ Cambios en la tensión de la red
- ☐ Cambios de carga

A) Reguladores de tensión (Aplicacion	es: alimentación de cargas de CC sensibles)
□ Rizado reducido□ Rechazo a variacio□ Rechazo a cambios	nes de la fuente primaria s de carga
Tecnología: En general basad	as en realimentación
B) Fuentes de tensión de referencia	(Aplicaciones: referencias para reguladores, instrumentos de medida, convertidores ADC/DAC, etc
□ Invariancia frente□ Bajo ruido□ Estabilidad a larg	

Tecnologías: buried zener, band gap, xFET

Diferencias: Valor de la corriente de salida Condición de carga

Puedo verla como un cuadripolo "perturbado":

¿Cómo caracterizo la "robustez" de V0 frente a perturbaciones?

$$\Delta V_{o} = \frac{\partial V_{o}}{\partial V_{i}} \bigg|_{\substack{\Delta I_{o} = 0 \\ \Delta T = 0}} \Delta V_{i} + \frac{\partial V_{o}}{\partial I_{o}} \bigg|_{\substack{\Delta V_{i} = 0 \\ \Delta T = 0}} \Delta I_{o} + \frac{\partial V_{o}}{\partial T} \bigg|_{\substack{\Delta I_{o} = 0 \\ \Delta V_{i} = 0}} \Delta T$$

$$\left. \frac{\partial V_0}{\partial V_i} \right|_{\substack{\Delta I_0 = 0 \\ \Delta T = 0}} = F_0$$

$$\left| \frac{\partial V_0}{\partial I_0} \right|_{\substack{\Delta V_i = 0 \\ \Delta T = 0}} = R_0$$

$$\left. \frac{\partial V_0}{\partial T} \right|_{\substack{\Delta I_0 = 0 \\ \Delta V_i = 0}} = K_T$$

Factor de estabilidad en temperatura

Factor de regulación Fo

$$F_0 = \frac{\Delta V_0}{\Delta V_i} \qquad \left\lfloor \frac{mV}{V} \right\rfloor$$

$$F_0 = \frac{\Delta V_0}{\Delta V_i} 100 \qquad \left\lceil \frac{\%}{V} \right\rceil$$

Resistencia de salida: R₀

$$R_0 = \frac{\Delta V_0}{\Delta I_0} \quad \left| \frac{mV}{mA} \right| \quad o \quad \left| \frac{mV}{A} \right|$$

$$R_0 = \frac{\Delta V_0}{\Delta I_0} 100 \qquad \left[\frac{\%}{mA} \right] \quad o \quad \left[\frac{\%}{A} \right]$$

Coeficiente de temperatura

$$K_{T} = \frac{\Delta V_{0}}{\Delta T} \qquad \left[\frac{mV}{^{\circ}C}\right] \qquad o \qquad \left[\frac{\mu V}{^{\circ}C}\right]$$

$$K_{T} = \frac{\frac{\Delta V_{0}}{\sqrt{V_{0}}}}{\frac{\Delta V_{0}}{\Delta T}} 100 \qquad \left[\frac{\%}{^{\circ}C}\right]$$

$$K_{T} = \frac{\frac{\Delta V_{0}}{\sqrt{V_{0}}}}{\frac{\Delta V_{0}}{\Delta T}} 10^{6} \qquad \left[\frac{ppm}{^{\circ}C}\right]$$

Clasificaciones:

Por tipo de operación del elemento de control:

□Fuentes lineales (Q en zona activa) ∠

⊗Energéticamente ineficientes

© Dinámica rápida

□Conmutadas (Q a corte y saturación)

En Electrónica de Potencia

© Eficientes

⊗ Lentas

⊗ Circuitos + complejos

⊗ Ruido

Por conexión del elemento de control:

□Serie

□Derivación (shunt)

Reguladores serie

Reguladores shunt

Y para Vi>Vz

Polarización en la parte de pendiente vertical, sin llegar a I_{max} (P_{Dis})

14

Hoja de datos 1N4733 (1W)

Type	Nominal Zener Voltage (Note 3)	Test Current	Maximum Zener Impedance (Note 4)			Maximum Leakage		Max Surge Current 8.3ms	Temperature Coefficient @ I _{ZT}	
Number	Vz @ IzT	IZT ZZT@ IZT ZZK@ IZK IZK IR @ VR		@ V _R	Izs	♥ 12T				
	(V)	(mA)	(Ω)	(Ω)	(mA)	(µA)	(V)	(mA)	%/°C	
1N4728A	3.3	76	10	400	1.0	100	1.0	1380	-0.08 to -0.05	
1N4729A	3.6	69	10	400	1.0	100	1.0	1260	-0.08 to -0.05	
1N4730A	3.9	64	9.0	400	1.0	50	1.0	1190	-0.07 to -0.02	
1N4731A	4.3	58	9.0	400	1.0	10	1.0	1070	-0.07 to -0.01	
1N4732A	4.7	53	8.0	500	1.0	10	1.0	970	-0.03 to +0.04	
1N4733A	5.1	49	7.0	550	1.0	10	1.0	890	-0.01 to +0.04	
1N4734A	5.6	45	5.0	600	1.0	10	2.0	810	0 to +0.045	
1N4735A	6.2	41	2.0	700	1.0	10	3.0	730	+0.01 to +0.055	
1N4736A	6.8	37	3.5	700	1.0	10	4.0	660	+0.015 to +0.06	

Cálculo de Fo: modelo de pequeña señal

$$como R_L >> r_z y R_S >> r_z$$

$$F = \frac{\Delta V_0}{\Delta V_i} = \frac{r_z}{Rs + r_z} \approx \frac{r_z}{Rs}$$

Cálculo de R₀

$$R_0 = \frac{\Delta V_0}{\Delta I_0} = r_Z //Rs \cong r_Z$$

Cálculo de KT

$$K_T = \frac{\partial V_0}{\partial T} \Big|_{\substack{\Delta I_0 = 0 \ \Delta V_i = 0}}$$

Como:

$$V_0 = V_Z$$

$$K_T = \frac{dV_0}{dT} = \frac{dV_z}{dT} = K_{Tz}$$

Para estabilizar se puede jugar poniendo dos en serie (Z+Z, Z+D)

Cálculo de Rs: (Vo, Vi, Io, datos)

balance entre rd y consumo de potencia $I_{z \min} = I_{ZK}$

$$I_i = I_0 + I_{zdeseada} = \frac{V_i - V_0}{R_S}$$

$$I_{z \min} = I_{ZK}$$

$$P_{z\max}$$
 cuando lo=0 En ese caso: $I_z = \frac{V_i - V_z}{R_s}$ y $P_z = V_z I_z = V_z \left(\frac{V_i - V_z}{R_s}\right)$

Diodos de 1/2W, 1W, 5W

Mejoras: de F
$$F = \frac{\Delta V_0}{\Delta V_i} \approx \frac{r_z}{Rs}$$

Resistencia que polariza al zener

Fuente de corriente con transistor:

$$r_0 \simeq h_{fe} h_{oe}^{-1}$$

$$F \simeq \frac{r_z}{h_{fe} h_{oe}^{-1}}$$

Pero corriente de polarización está a lazo abierto!!

$$K_T = K_{Tz}$$

$$R_0 \simeq r_z$$

Me gustaría que la corriente sobre el Dz sea constante para evitar que varíe Vz cuando varía IL

m

Control de la corriente de polarización Iz: Rechazo a variaciones de lo

$$V_0 = V_Z + V_{BE}$$

El diodo se polariza desde la misma tensión que él genera

R_{BE} sensa las variaciones de lz

Mejor coeficiente de temperatura para Vz>5V

×

Control de la corriente de polarización: Variaciones de Vi

$$I_{p} = \frac{V_{i} - 2V_{\gamma} - V_{Z}}{R_{p}} \simeq cte$$

LM723

Resistor and capacitor values shown are nominal.

Referencias por salto de banda ("bandgap")

- □Los circuitos anteriores pueden compensarse en alguna medida y en un rango de temperaturas limitado
- □No podríamos lograr la compensación si quisiéramos integrar todo en un chip debido a la disipación
- □Las tensiones de alimentación de modernos Cl's tiende a disminuir

Las referencias *bandgap* se logran generando y combinando magnitudes PTAT y CTAT (*Proportional and Complementary To Absolute Temperature*) para lograr compensación en un rango amplio de temperaturas

Principio de funcionamiento

Recordemos la ecuación de una juntura pn (Si) en directa:

$$V_D = V_T \ln(I_D/I_S) \quad \text{donde:} \quad \begin{cases} V_T = \frac{kT}{q} \\ I_S = BT^3 e^{\frac{-V_{G0}}{V_T}} \end{cases} \begin{cases} B:cte \\ V_{G0} = 1,205V \ (tension\ bandgap\ Si) \end{cases}$$

el coeficiente de temperatura de V_D a V_D=0,65V y 25°C

$$K_T(V_D) \simeq -2.2 mV/{}^{\circ}C$$
 un CTAT

Cómo hacemos un PTAT?

Mido la diferencia de VBE de dos transistores en serie a igual corriente pero distinta área de emisor (A1=mA2)

$$\Delta V_{\rm BE} = V_{\rm BE2} - V_{\rm BE1}$$

$$\uparrow \\
I_{C1} = I_{C2} \\
I_{S1} = mI_{S2}$$

$$\Delta V_{BE} = V_T \ln(m)$$

$$\Delta V_{BE} = V_T \ln(m)$$
 $K_T(\Delta V_{BE}) > 0$ es PTAT

Ahora debemos combinar ΔV_{BE} y V_{BE} para lograr K_T=0 PTAT CTAT

Un circuito que hace el truco (Brokaw)

Corrientes de colector iguales

$$\Delta V_{BE} = V_{BE2} - V_{BE1} = V_T \ln(m)$$

$$I_{R3} = \frac{\Delta V_{BE}}{R_3} = \frac{V_T \ln(m)}{R_3}$$

$$R_{4} \geqslant 2I_{R3}$$

$$V_{0} = V_{BE2} + 2I_{R3}R_{4} = V_{BE2} + 2\left(\frac{V_{T} \ln(m)}{R_{3}}\right)R_{4} = V_{BE2} + CV_{T}$$
28

Para anular el coef. de T:
$$K_T(V_0) = K_T(V_{BE2}) + C K_T(V_T) = 0$$

$$-2.2 mV/^{\circ} C$$

$$CK_T(V_T) = 2,2mV/^{\circ}C$$

$$C = \frac{2,2mV/^{\circ}C}{0,0862mV/^{\circ}C} = 25,5$$

$$\frac{k}{-} = 0,0862 mV / ^{\circ}C$$

Supongamos tamaño relativo: m = 8 : $(\ln 8 \approx 2)$

$$C = 25, 5 = 2 \left(\frac{\ln(m)}{R_3} \right) R_4 = \left(\frac{4}{R_3} \right) R_4$$

$$\frac{R_4}{R_3} = 6,38$$

$$\frac{R_4}{R_3} = 6,38$$

Complemento esto con el requerimiento de polarización...

TL431, "zener programable" (en realidad es un CI basado en un Band Gap)

TO-92

Ref 2. Anode 3. Cathode

esquema funcional:

fuente de referencia interna

PRODUCT DESCRIPTION

The TL431 is a 3-terminal adjustable shunt voltage regulator providing a highly accurate 1% bandgap reference. TL431 acts as an open-loop error amplifier with a 2.5V temperature compensation reference. The TL431 thermal stability, wide operating current (150mA) and temperature range (0°C to 105°C) makes it suitable for all variety of application that are looking for a low cost solution with high performance.

The output voltage may be adjusted to any value between V_{REF} and 36 volts with two external resistors. The TL431 is operating in full industrial temperature range of 0°C to 105°C. The TL431 is available in TO-92, SO-8, SOT-89 and SOT23-5 packages.

Electrical Characteristics

(TA = +25°C, unless otherwise specified)

4.5mV/2.5V=0.18% en todo el rango de T!

Parameter	Symbol	Conditions		TL431			TL431A			Unit
rarameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Reference Input Voltage	VREF	VKA=VREF, IKA=10mA		2.440	2.495	2.550	2.470	2.495	2.520	V
Deviation of Reference Input Voltage Over- Temperature (Note 1)	ΔV _{REF} / ΔT	V _K A=V _{REF} , I _K A=10mA TMIN≤TA≤TMAX		- (4.5	17	-	4.5	17	mV
Ratio of Change in Reference Input Voltage	ΔVREF/ ΔVKA	IKA	ΔVKA=10V- VREF	-	- 10	-2.7	-	-1.0	-2.7	- mV/V
to the Change in Cathode Voltage		=10mA	ΔVKA=36V- 10V	-	-0.5	-2.0	-	-0.5	-2.0	
Reference Input Current	IREF	IKA=10mA, R ₁ =10KΩ,R ₂ =∞		-	1.5	4	-	1.5	4	μА
Deviation of Reference Input Current Over Full Temperature Range	ΔI _{REF} /ΔΤ	IKA=10mA, R ₁ =10KΩ,R ₂ =∞ T _A =Full Range		-	0.4	1.2	-	0.4	1.2	μА
Minimum Cathode Cur- rent for Regulation	I _{KA(MIN)}	VKA=VREF		-	0.45	1.0	-	0.45	1.0	mA
Off - Stage Cathode Current	IKA(OFF)	VKA=36V, VREF=0		-	0.05	1.0	-	0.05	1.0	μА
Dynamic Impedance (Note 2)	ZKA	VKA=VREF, I _{KA} =1 to 100mA f≥1.0KHz		-	0.15	0.5	-	0.15	0.5	Ω

[•] TMIN= -25 °C, TMAX= +85 °C

Aplicación típica: (siempre realimentado negativamente)

Valor Vo arbitrario:

$$V_0 \simeq 2,5 \left(1 + \frac{R_2}{R_1}\right)$$

Fuente de corriente:

-corriente x Rs

-corriente toma el 431

+ corriente a la base de Qs

+ corriente al emisor de Qs compensando la merma original 33