Reductions

Undecidability of the Halting Problem

The reduction technique enables us to use the undecidability of A_{TM} to prove many other languages undecidable.

A reduction always involves two computational problems. Generally speaking, the idea is to show that a solution for some problem Binduces a solution for problem A. If we know that A does not have a solution, we may deduce that B is also insolvable. In this case we say that A is reducible to B.

In the context of undecidability, to prove that a certain language \boldsymbol{L} is undecidable:

Assume by way of contradiction that L is decidable, and show that a decider for L can be used to devise a decider for A_{TM} . Since A_{TM} is undecidable, so is the language L.

Using a decider for L to construct a decider for A_{TM} , is called **reducing** A_{TM} **to** L.

Note: Once we prove that a certain language L_1 is undecidable, we can prove that some other language, say L_2 , is undecidable, by reducing L_1 to L_2 .

Schematic of a Reduction

- 1. We know that A is undecidable.
- 2. We want to prove B is undecidable.
- 3. We assume that B is decidable and use this assumption to prove that A is decidable.
- 4. We conclude that *B* is undecidable.

Note: The reduction is **from** A **to** B.

1. We know that A is undecidable.

The only undecidable language we know, so far, is A_{TM} whose undecidability was proven directly. So we pick A_{TM} to play the role of A.

2. We want to prove B is undecidable.

2. We want to prove B is undecidable.

We pick $HALT_{TM}$ to play the role of B that is: We want to prove that $HALT_{TM}$ is undecidable.

3. We assume that B is decidable and use this assumption to prove that A is decidable.

- 3. We assume that B is decidable and use this assumption to prove that A is decidable. In the following slides we assume (towards a contradiction) that $HALT_{TM}$ is decidable and use this assumption to prove that A_{TM} is decidable.
- 4. We conclude that B is undecidable.

The Halting Problem

Consider

$$HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM that halts on } w\}$$

Theorem

 $HALT_{TM}$ is undecidable.

Proof

By reducing A_{TM} to $HALT_{TM}$.

Assume by way of contradiction that $HALT_{TM}$ is decidable.

Recall that a decidable set has a *decider R*: A TM that halts on every input and either accepts or rejects, but *never loops!*

We will use the assumed decider of $HALT_{TM}$ to devise a decider for A_{TM} .

Recall the definition of A_{TM} :

$$A_{TM} = \{\langle M, w \rangle | M \text{ is a TM that accepts } w \}$$

Why is it impossible to decide A_{TM} ?

Because as long as M runs, we cannot determine whether it will eventually halt.

Well, now we can, using the decider R for

$$HALT_{TM}$$
.

Assume by way of contradiction that $HALT_{TM}$ is decidable and let R be a TM deciding it. In the next slide we present TM S that uses R as a subroutine and decides A_{TM} . Since A_{TM} is undecidable this constitutes a contradiction, so R does not exist.

Proof (cont.)

- S="On input $\langle M, w \rangle$ where M is a TM:
 - 1. Run R on input $\langle M, w \rangle$ until it halts.
 - 2. If R rejects, (i.e. M loops on w) reject.

(At this stage we know that R accepts, and we conclude that M halts on input w.)

- 3. Simulate M on w until it halts.
- 4. If M accepts accept, otherwise reject. "

Another Example

In the discussion, you saw how Diagonalization can be used to prove that $HALT_{TM}$ is not decidable.

We can use this result to prove by reduction that A_{TM} is not decidable.

Another Example

Note: Since we already know that both A_{TM} and $HALT_{TM}$ are undecidable, this new proof does not add any new information. We bring it here only for the the sake of demonstration.

- 1. We know that A is undecidable. Now we pick $HALT_{TM}$ to play the role of A.
- 2. We want to prove B is undecidable. We pick A_{TM} to play the role of B, that is: We want to prove that A_{TM} is undecidable.
- 3. We assume that B is decidable and use this assumption to prove that A is decidable.

- 3. We assume that B is decidable and use this assumption to prove that A is decidable. In the following slides we assume that A_{TM} is decidable and use this assumption to prove that $HALT_{TM}$ is decidable.
- 4. We conclude that B is undecidable.

Let R be a decider for A_{TM} . Given an input for $\left\langle M,w\right\rangle$, R can be run with this input: If R accepts, it means that $\left\langle M,w\right\rangle\in A_{TM}$. This means that M accepts on input w. In particular, M stops on input w. Therefore, a decider for $HALT_{TM}$ must accept $\left\langle M,w\right\rangle$ too.

If however R rejects on input $\langle M, w \rangle$, a decider for $HALT_{TM}$ cannot safely reject: M may be halting on w to **reject it**. So if M rejects w, a decider for $HALT_{TM}$ **must** accept $\langle M, w \rangle$.

How can we use our decider for A_{TM} ?

The answer here is more difficult. The new decider should first modify the input TM, M, so the modified TM, M_1 , accepts, whenever TM M halts.

Since M is a part of the input, the modification must be **a part of the computation**.

Faithful to our principal "If it ain't broken don't fix it", the modified TM keeps M as a subroutine, and the idea is quite simple: Let q_{accept} and q_{reject} be the accepting and rejecting states of TM M, respectively. In the modified TM, M_1 , q_{accept} and q_{reject} are kept as ordinary states.

We continue the modification of M by adding a new accepting sate nq_{accept} . Then we add two new transitions: A transition from q_{accept} to nq_{accept} , and another transition from q_{reject} to nq_{accept} .

This completes the description of M_1 . It is not hard to verify that M_1 accepts $\it iff\ M$ halts.

The final description of a decider S for A_{TM} is:

$$S$$
="On input $\langle M, w \rangle$ where M is a TM:

- 1. Modify M as described to get M_1 .
- 2. Run R, the decider of $HALT_{TM}$ with input $\langle M_1, w \rangle$.
- 3. If *R* accepts *accept*, otherwise *reject*. "

It should be noted that modifying TM M to get M_1 , is part of TM S, the new decider for $HALT_{TM}$, and can be carried out by it.

It is not hard to see that S decides $HALT_{TM}$. Since $HALT_{TM}$ is undecidable, we conclude that A_{TM} is undecidable too.

The TM Emptiness Problem

We continue to demonstrate reductions by showing that the language E_{TM} , defined by

$$E_{TM} = \langle \langle M \rangle | M \text{ is a TM And } L(M) = \phi \rangle$$
 is undecidable.

Theorem

 E_{TM} is undecidable.

Proof Outline

The proof is by reduction **from** A_{TM} :

- 1. We know that A_{TM} is undecidable.
- 2. We want to prove E_{TM} is undecidable.
- 3. We assume toward a contradiction that E_{TM} is decidable and devise a decider for A_{TM} .
- 4. We conclude that E_{TM} is undecidable.

<u>Proof</u>

Assume by way of contradiction that E_{TM} is decidable and let R be a TM deciding it. In the next slides we devise TM S that uses R as a subroutine and decides A_{TM} .

Given an instance for A_{TM} , $\langle M, w \rangle$, we may try to run R on this instance. If R accepts, we know that $L(M) = \phi$. In particular, M does not accept w so a decider for A_{TM} must reject $\langle M, w \rangle$.

What happens if R rejects? The only conclusion we can draw is that $L(M) \neq \phi$. What we need to know though is whether $w \in L(M)$.

In order to use our decider R for $E_{T\!M}$, we once again modify the input machine M to obtain TM M_1 :

Description of M_1

We start with a TM satisfying $L(M_1) = L(M)$.

Description of M_1

Now we add a *filter* to divert all inputs but w.

TM M_1 has a *filter* that *rejects* all inputs excepts w, so the only input reaching M, is w.

Therefore, M_1 satisfies:

$$L(M_1) = \begin{cases} \{w\} \text{ if } M \text{ accepts } w \\ \phi \text{ if } M \text{ rejects } w \end{cases}$$

Here is a formal description of M_1 :

$$M_1$$
 ="On input x :

- 1. If $x \neq w$ reject.
- 2. If x = w run M on w and accept if M accepts. "

Note: M accepts w if and only if $L(M_1) \neq \phi$.

This way, if R accepts, S "can be sure" that $w \in L(M)$ and accept. Note that S gets the pair $\langle M, w \rangle$ as input, thus before S runs R, it should compute an encoding $\langle M_1 \rangle$ of M_1 . This encoding is not too hard to compute using S's input $\langle M, w \rangle$.

S="On input $\langle M, w \rangle$ where M is a TM:

- 1. Compute an encoding $\left\langle M_{1}\right\rangle$ of TM M_{1} .
- 2. Run R on input $\langle M_1 \rangle$.
- 3. If *R* rejects *accept*, otherwise *reject*.

Recall that R is a decider for E_{TM} . If R rejects the modified machine M_1 , $L(M_1) \neq \phi$, hence by the specification of M_1 , $w \in L(M)$, and a decider for A_{TM} must accept $\langle M, w \rangle$. If however R accepts, it means that $L(M_1) = \phi$, hence $w \notin L(M)$, and S must reject $\langle M, w \rangle$. QED