Math 210A Lecture 10 Notes

Daniel Raban

October 19, 2018

1 Images, Coimages, and Generating Sets

1.1 Images

Definition 1.1. The **image** $\operatorname{im}(f)$ of $f:A\to B$ is an object and a monomorphism $\iota:\operatorname{im}(f)\to B$ such that there exists $\pi:A\to\operatorname{im}(f)$ with $\pi\circ\iota$ and such that if $e:C\to B$ is a mononmorphism and $g:A\to C$ is such that $e\circ g=f$, then there exists a unique morphism $\psi:\operatorname{im}(f)\to C$ such that $g\circ\psi=\iota$.

Example 1.1. In Set, $f(A) = \operatorname{im}(f)$. Then $b \in F(A) \implies b = f(a)$ for some $a \in A$. Then $g(a) \in C$ is the unique element with e(g(a)) = (a) because e is a monomorphism. So $\psi(f(a)) = g(a)$.

Proposition 1.1. If C has equalizers, then $\pi: A \to \operatorname{im}(f)$ is an epimorphism.

Proof. Suppose

$$A \xrightarrow{\iota} \operatorname{im}(f) \xrightarrow{\alpha \atop \beta} D$$

commutes. Then $\alpha \circ \pi = \beta \circ \pi$,

Then there is a unique $d: \operatorname{im}(f) \to \operatorname{eq}(\alpha, \beta)$, and $c \circ d = \operatorname{id}$ and $d \circ c = \operatorname{id}$ by uniqueness. So $(\operatorname{im}(f), \operatorname{id}_{\operatorname{im}(f)})$ equalizes

$$\operatorname{im}(f) \xrightarrow{\alpha \atop \beta} D$$

so
$$\alpha = \beta$$
.

Suppose that in C, every morphism factors through an equalizer and the category has finite limits and colimits. Then $\operatorname{im}(f)$ can be defined as the equalizer of the following diagram:

$$B \xrightarrow[\iota_2]{\iota_1} B \coprod_A B$$

We get the following diagram.

1.2 Coimages

Definition 1.2. The **coimage** $\operatorname{im}(f)$ of $f:A\to B$ is an object and a monomorphism $\pi:A\to\operatorname{coim}(f)$ such that there exists $\iota:\operatorname{coim}(f)\to B$ such that $\iota\circ\pi$ and such that if $g:A\to C$ is an epinmorphism and $e:C\to B$ is such that $e\circ g=f$, then there exists a unique morphism $\theta:C\to\operatorname{coim}(f)$ such that $\theta\circ g=\pi$.

So $\iota \circ \theta \circ g = \iota \circ \pi = f = e \circ g$. Since g is an epimorphism, $i \circ \theta = e$. How are the image and coimage related?

Definition 1.3. A morphism $f: A \to B$ is **strict** if $im(f) \to coim(f)$ is an isomorphism.

In Grp, Ring, Rmod, Set, and Top, im(f) is the set theoretic image. The coimages are quitient objects (of A).

Example 1.2. In Set, $coim(f) = A/\sim$, where $a \sim a$; if $f(a) \sim f(a')$. All the morphisms are strict.

Example 1.3. In Gp, $\operatorname{coim}(f: C \to C') = G/\ker(f)$. $\operatorname{im}(f) \subseteq f(G) \leq G'$. So the image and coimage are isomorphic, which is the first isomorphism theorem.

Example 1.4. In Ring, let $\ker(f)$ be the category theoretic kernel. Then $\operatorname{coim}(f) = R/\ker(f) \xrightarrow{\sim} \operatorname{im}(f)$ by the first isomorphism theorem.

Example 1.5. In the category of left R-modules, morphisms are also strict.

1.3 Generating sets

Definition 1.4. Let $\Phi: \mathcal{C} \to \operatorname{Set}$ be a faithful functor, and let F be a left adjoint to Φ . Let $F_X = F(X)$ be the free object on X. If $X \xrightarrow{f} \Phi(A)$ for $A \in \mathcal{C}$, we get $\phi: F_X \to A$. Suppose $\operatorname{im}(\phi)$ exists. Then $\operatorname{im}(\phi)$ is called the **subobject of** A **generated by** X.

Example 1.6. In Gp, let $X \subseteq G$. Then $\langle X \rangle$ is the subgroup of G generated by X. This is $\operatorname{im}(\phi: T_X \to G)$, where $\phi(x_1^{n_1} \cdots x_r^{n_r}) = x_1^{n_1} \cdots x_r^{n_r}$. So this is $\{x_1^{n_1} \cdots x_r^{n_r} : x_1 \in X, n_i \in \mathbb{Z}, 1 \leq i \leq r, r \geq 0\}$. We claim that $\langle X \rangle$ is the smallest subgroup of G containing X, or equivalently, the intersection of all subgroups of G containing X. Indeed, this is a subgroup of G containing X, and any subgroup of G containing X must contain these words, since it must be closed under products.

Example 1.7. In Rmod, if $X \subseteq A$, $R \cdot X = \{\sum_{i=1}^{n} r_i x_i : r_i \in R, x_i \in X, 1 \le i \le n, n \ge 0\}$. So $F_X = \bigoplus_{x \in X} R_x \xrightarrow{\phi} A$, where $\phi(r \cdot x) = rx \in A$.

Example 1.8. In the category of (R, S)-bimodules, $RXS = \{\sum_{i=1}^{n} r_i x_i : r_i \in R, s_i \in S, x_i \in X, 1 \leq i \leq n, n \geq 0\}$. If we have the set of formal sums $RxS = \{\sum_{i=1}^{n} r_i x s_i : r_i \in R, s_i \in S, 1 \leq i \leq n, n \geq 0\}$ with (r+r')xs = rxs + r'xs and rx(s+s') = rxs + rxs', then the free object is $\bigoplus_{x \in X} RxS$.

Ideals uses (R, R)-subbimodules of R generated by $X \subseteq R$.

Definition 1.5. The **ideal generated by** X is $(X) = \{\sum_{i=1}^n r_i x_i r_i' : r_i, r_i' \in R, x_i \in X\}$. If $X = \{x_1, \dots, x_n\}$, then we write (x_1, \dots, x_n) .

Remark 1.1. Even if $X = \{x\}$, we still need to take sums to get (x).