Mathematik für die Informatik B -Hausaufgabenserie 2

Florian Schlösser, Henri Heyden, Ali Galip Altun stu240349, stu240825, stu242631

Aufgabe 1

Es ist zu zeigen, dass $\lim_n \frac{\sqrt{n}}{2^n} = 0$ gilt.

Hierfür werden wir den Sandwichsatz aka. Satz 2.20, anwenden.

Wir nehmen an, dass $n \in \mathbb{N}$ gilt und, dass alle in dieser Bearbeitung erwähnten Folgen wohldefiniert sind.

Für den Sandwichsatz definieren wir die folgenden Folgen:

$$(a_n)_n := \left(\frac{n}{2^n}\right)_n, (b_n)_n := \left(\frac{1}{2^n}\right)_n, (x_n)_n := \left(\frac{\sqrt{n}}{2^n}\right)_n.$$

Nun werden wir zeigen, dass $\lim_n a_n = \lim_n b_n = 0$ gilt.

In der Präsenzübung wurde gezeigt, dass (A) $\lim_n a_n = 0$ gilt,

weswegen wir nur zeigen müssen, dass (B) $\lim_n b_n = 0$ gilt damit wir den ersten Teil des Sandwichsatzes erfüllen.

Beobachte, dass $\forall n \in \mathbb{N} : 2^n = |2^n|$ gilt, da 2^n für alle $n \in \mathbb{N}$ monoton steigend ist, somit ist nach Satz 2.24 die Aussage **B** äquivalent zu $\lim_n \frac{1}{b_n} = +\infty$ Um $\lim_n \frac{1}{b_n} = \lim_n 2^n = +\infty$ zu zeigen, wenden wir Satz 2.10.c an:

$$\lim_n 2^n = +\infty \Longleftrightarrow \forall r : \exists n_0 : \forall n \ge n_0 : r < 2^n.$$

Wir wissen allgemein, dass $n \ge n_0 \Rightarrow 2^n \ge 2^{n_0}$ gilt, da wie erwähnt 2^n monoton steigend ist. Wähle r beliebig, dann setzen wir $n_0 := |r| + 1$ und wir

untersuchen die folgenden Fälle:

Hierfür setzen wir $d := n - n_0$, beobachte, $d \ge 0$ nach den gegebenen Definitionen für n und n_0 .

(1.)
$$r < 0$$
:

Dann gilt: $r < 0 < b_n$, da der minimale Wert für b_n , 1 ist.

(2.)
$$r \ge 0$$
:

Dann gilt:
$$r < b_n = 2^n = 2^{n_0+d} = 2^{|r|+1+d} = 2^{r+1+d} = 2 \cdot 2^r \cdot 2^d$$
, da $2 \cdot 2^d \ge 2$ und $r \le 2^r$

Somit wurde $\lim_{n \to \infty} \frac{1}{b_n} = +\infty$ gezeigt und damit auch (erinnere **A**), dass $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$ gilt.

Nach dem Sandwichsatz müssen wir somit nur noch zeigen, dass

 $\forall n \in \mathbb{N} : b_n \leq x_n \leq a_n$ gilt. Betrachte folgende Umformung:

$$b_n \le x_n \le a_n$$

$$\iff \frac{1}{2^n} \le \frac{\sqrt{n}}{2^n} \le \frac{n}{2^n}$$

$$\iff 1 \le \sqrt{n} \le n$$

Dies ist wahr für $n \geq 1$, was nach der Beobachtung 2.21 im Skript bedeutet, dass der Sandwichsatz vollständig anwendbar ist, wonach

$$\lim_{n} \frac{\sqrt{n}}{2^{n}} = \lim_{n} a_{n} = \lim_{n} b_{n} = 0 \text{ gilt.}$$

Aufgabe 2

Es ist zu zeigen, dass $(\frac{1}{n}\sum_{k=1}^{n}x_k)_{n\geq 1}$ konvergiert, wenn wir wissen, dass $(x_k)_{k\geq 1}$ konvergiert. Das heißt es existiert ein Limies der Folge $(\frac{1}{n}\sum_{k=1}^{n}x_k)_{n\geq 1}$, welche wir folgend m_n nennen werden, der in den reelen Zahlen liegt, wenn dieses Kriterium für die Folge $(x_k)_{k\geq 1}$ gilt.

Da $(x_k)_{k\geq 1}$ konvergiert, wissen wir nach der Definiton der Konvergenz (2.1.5), dass demnach für diese Folge ein reeler Grenzwert existiert, den wir folgend mit y bezeichnen. Wir schreiben also: $y := \lim_k x_k$.

Wir werden zeigen, dass y unser gesuchter Limes der Folge m_n ist. Hiermit würden wir wissen, dass damit der Grenzwert von m_n auch in \mathbb{R} liegt, wodurch nach der Definiton der Konvergenz die Folge m_n konvergiert.

Nach Satz 2.10.b ist hiermit zu zeigen: $\forall \epsilon > 0 : \exists n_0 : \forall n \geq n_0 : |m_n - y| < \epsilon$. Wähle ϵ beliebig größer 0. Setze $n_0 := \left\lceil \frac{n_1 \cdot t}{\epsilon} \right\rceil$. Wir werden zeigen, wie wir auf dieses n_0 kommen, und warum es sich eignet.

Bei der folgenden Umformung ist zu beachten, dass mit n_1 der Mindestwertindex der Folge $(x_k)_k$ ist, sodass diese das Epsilon Kriterium erfüllt:

$$|m_n - y| \qquad | \text{Einsetzen in } m_n$$

$$= \left| -y + \frac{1}{n} \sum_{k=1}^n x_k \right| \qquad | \text{Def. Inverses}$$

$$= \left| n \cdot \frac{1}{n} \cdot (-y) + \frac{1}{n} \sum_{k=1}^n x_k \right| \qquad | n \cdot y = \sum_{k=1}^n y$$

$$= \left| \frac{1}{n} \cdot \sum_{k=1}^n (x_k - y) \right| \qquad | \frac{1}{n} \text{ positiv, da } n > 0$$

$$= \frac{1}{n} \cdot \left| \sum_{k=1}^n (x_k - y) \right| \qquad | \text{Dreiecksungleichung (Satz 2.2.6)}$$

$$\leq \frac{1}{n} \cdot \sum_{k=1}^{n} |x_k - y| \qquad | \text{ Spalte die Summe am Punkt } n_1$$

$$= \frac{1}{n} \cdot \sum_{k=1}^{n_1 - 1} |x_k - y| + \frac{1}{n} \cdot \sum_{k=n_1}^{n} |x_k - y| \qquad | \text{ beobachte } |x_k - y| < \epsilon$$

$$< \frac{1}{n} \cdot \sum_{k=1}^{n_1 - 1} |x_k - y| + \frac{1}{n} \cdot \sum_{k=n_1}^{n} \epsilon$$

$$\leq \frac{1}{n} \cdot \sum_{k=1}^{n_1 - 1} |x_k - y| + \frac{1}{n} \cdot \sum_{k=1}^{n} \epsilon$$

$$\leq \frac{1}{n} \cdot \sum_{k=1}^{n_1 - 1} |x_k - y| + \epsilon$$

Beobachte, dass die Summe aus endlich vielen Summanden besteht. Von diesen Summanden existiert ein Maximum.

Wir nennen es t mit $t := max\{|x_{\alpha} - y| | \alpha \in [1, n_1]_{\mathbb{N}}\}$, dann gilt:

$$\frac{1}{n} \cdot \sum_{k=1}^{n_1-1} |x_k - y| + \epsilon \quad | \text{ Setze t ein und erweitere die Summe bis auf } n_1 \text{ statt } n_1 - 1$$

$$\leq \frac{1}{n} \cdot \sum_{k=1}^{n_1} t + \epsilon \qquad \qquad | \text{ Löse die Summe auf}$$

$$= \frac{n_1 \cdot t}{n} + \epsilon$$

Wir werden nun zeigen, dass $\frac{n_1 \cdot t}{n} \leq \epsilon$ gilt, wenn $n_0 := \left\lceil \frac{n_1 \cdot t}{\epsilon} \right\rceil$ gesetzt ist. Wir Betrachten $n := n_0$:

$$\frac{n_1 \cdot t}{n}$$

$$= \frac{n_1 \cdot t}{n_0}$$

$$= \frac{n_1 \cdot t}{\left(\frac{n_1 \cdot t}{\epsilon}\right)}$$
| Setze n_0 ein
| Bruchrechnung

$$= \frac{\epsilon \cdot n_1 \cdot t}{n_1 \cdot t}$$
 | Bruchrechnung
$$= \epsilon$$

Da es hier gilt, gilt $\frac{n_1 \cdot t}{n} \leq \epsilon$ auch für $n > n_0$, da dann $\frac{n_1 \cdot t}{n} < \frac{n_1 \cdot t}{n_0}$ gilt. Insgesamt gilt damit: $\frac{n_1 \cdot t}{n} + \epsilon \leq 2 \cdot \epsilon$.

Hierdurch haben wir gezeigt, dass $|m_n - y| < 2 \cdot \epsilon$ gilt. Nun beobachte, dass nach der Definiton des Epsilon Kriterium's $|m_n - y| < \epsilon$ gelten soll, angenommen $\epsilon > 0$ gelte. Beobachte aber, dass angenommen $\epsilon_1 > 0$ gelte, dass dann mit $2 \cdot \epsilon_1$ alle Zahlen die durch alleine $\epsilon_0 > 0$ darstellbar sind, auch durch $2 \cdot \epsilon_1$ darstellbar sind, es werden nur unterschiedliche Eingabewerte für die beiden ϵ gewählt mit $\epsilon_1 = \frac{\epsilon_0}{2}$, angenommen $\epsilon_0 = 2 \cdot \epsilon_1$ sollte gelten.

Durch diese Beobachtung ließe sich sogar zeigen, dass man das Epsilon Kriterium erweitern kann, sodass man nur ein positives Vielfaches von ϵ größer haben müsse (mit $\epsilon > 0$ beliebig) für die Differenz zwischen Limes und Folge, was wir aber nicht tun werden, weil wir uns hier nur das doppelte Vielfache von ϵ interessieren und dies schon gezeigt wurde.

Damit erfüllt die Folge $m_n - y$ das "2-fache Epsilon Kriterium", das heißt $\forall \epsilon > 0 : \exists n_0 : \forall n \geq n_0 : |m_n - y| < 2 \cdot \epsilon$ gilt mit y als dem Limes der Folge $(x_k)_{k \geq n_1}$.

Damit wissen wir, dass die Folge $(m_n)_{n\geq n_0}$ konvergiert zu y.