Course 2: Supervised Learning

Summary

Last session

- What is not Al?
- Al definition
- 3 Applications
- Open issues

Today's session

- Learning from labeled examples
- Challenges of supervised learning

Notations

Notations

Notations

Vector space (\mathbb{R}^d)

Machine learning

To learn is to **generalize** (\neq memorize),

- Regression
- Classification
- Need of an expert
- Tons of applications:
 - Pattern recognition
 - Detection
 - Prediction..

Machine learning

To learn is to **generalize** (\neq memorize),

- Regression
- Classification
- Need of an expert,
- Tons of applications:
 - Pattern recognition,
 - Detection,
 - Prediction...

Machine learning

To learn is to **generalize** (\neq memorize),

- Regression
- Classification
- Need of an expert,
- Tons of applications:
 - Pattern recognition,
 - Detection,
 - Prediction...

Machine learning

To learn is to **generalize** (\neq memorize),

- Regression
- Classification
- Need of an expert,
- Tons of applications:
 - Pattern recognition,
 - Detection,
 - Prediction...

Machine learning

To learn is to **generalize** (\neq memorize),

- Regression
- Classification
- Need of an expert,
- Tons of applications:
 - Pattern recognition,
 - Detection,
 - Prediction...

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires a priori, constraints.

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires a priori, constraints.

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires a priori, constraints.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

Bias/variance trade-off

IMT-Atlantique

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

Bias/variance trade-off

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

Crossvalidation

- To quantify overfitting, split training dataset in two parts:
 - A first part is used to train,
 - 2 A second part is used to validate,

Curse of dimensionality

- Geometry is not intuitive in high dimension,
- Efficient methods in 2D are not necessarily still valid.

$$V_d^s = \frac{\pi^{d/2} R^d}{\Gamma(d/2+1)}$$
 versus $V_d^c = (2R)^d$

Curse of dimensionality

- Geometry is not intuitive in high dimension,
- Efficient methods in 2D are not necessarily still valid.

Riemannian manifolds

Linear separability and need for embedding

Computation time

Example on ImageNet, simply going through all images:

- $n = 10.000.000, d \approx 1.000.000,$
- ho pprox pprox pprox pprox elementary operations,
- \sim 2h45 on a modern processor.

Scalability

- Finding the best solution to a problem would be feasible with unlimited computation time,
- But searching through the space of possible functions is often untractable,
- Solutions must be computationally reasonable, which is the true challenge today.

Computation time

Example on ImageNet, simply going through all images:

- $n = 10.000.000, d \approx 1.000.000,$
- $ho pprox 10^{13}$ elementary operations,
- ightharpoonup pprox 2h45 on a modern processor.

Scalability

- Finding the best solution to a problem would be feasible with unlimited computation time,
- But searching through the space of possible functions is often untractable,
- Solutions must be computationally reasonable, which is the true challenge today.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Consider for example lines to shatter set of points with d = 2.

×

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors it is able to shatter in any possible way.

Open Questions

Interpretability

Source: "Understanding Neural Networks Through Deep Visualization"

Few examples

Source: "How to grow a mind: statistics, structure, and abstraction"

Other open questions

- Incremental learning
- Irregular domains
- Choice of hyperparameters...

Open Questions

Interpretability

Source: "Understanding Neural Networks Through Deep Visualization"

Few examples

Source: "How to grow a mind: statistics, structure, and abstraction"

Other open questions

- Incremental learning
- Irregular domains
- Choice of hyperparameters...

Open Questions

Interpretability

Source: "Understanding Neural Networks Through Deep Visualization"

Few examples

Source: "How to grow a mind: statistics, structure, and abstraction"

Other open questions

- Incremental learning
- Irregular domains
- Choice of hyperparameters...

Non-symmetric PyRat without walls / mud

Both players follow a deterministic greedy algorithm.

Supervised learning - predict the outcome of a game from the start configuration.

Expected accuracy of a random classifier?

Lab Session 2 and assignments for Session 3

TP Supervised Learning (TP1)

- Generating PyRat Datasets
- Basics of machine learning using sklearn
- Tests on PyRat datasets using a naive approach

Project 1 (P1)

You will be assigned a supervised learning method. You have to prepare a Jupyter Notebook on this method, including:

- A brief description of the theory behind the method,
- Basic tests on simulated data to show the influence of parameters and hyperparameters
- Advanced tests and analysis on your own PyRat Datasets

During Session 3 you will have 7 minutes to present your notebook.