Анализ структуры шума при ошибках в значениях и аргументах функции

Абрамова Анастасия Николаевна, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Голяндина Н.Э. Рецензент: к.ф.-м.н., доц. Некруткин В.В.

Санкт-Петербург 2015г.

Введение: общая постановка задачи

Временной ряд $F=(f_1,\ldots,f_N)$, N — длина ряда.

u — достаточно гладкая функция.

$$f_i = u(x_i + \varepsilon_i), \qquad (X_A)$$

$$f_i = u(x_i + \varepsilon_i) + \delta_i, \qquad (X_A Y_A)$$

$$f_i = u(x_i + \varepsilon_i)(1 + \delta_i). \qquad (X_A Y_M)$$

Случайные величины $\varepsilon_i \sim N(0,\sigma_x^2), \delta_i \sim N(0,\sigma_y^2)$ и независимы в совокупности.

Задача

Необходимо оценить параметры σ_x^2 и σ_y^2 .

Введение: приближенные модели

Приближенные модели первого порядка:

$$h_i = u(x_i) + u'(x_i)\varepsilon_i, \qquad (X_A)_1$$

$$h_i = u(x_i) + u'(x_i)\varepsilon_i + \delta_i, \qquad (X_AY_A)_1$$

$$h_i = (1 + \delta_i)u(x_i) + \varepsilon_i(1 + \delta_i)u'(x_i). \qquad (X_AY_M)_1$$

Приближенные модели второго порядка:

$$g_{i} = u(x_{i}) + u'(x_{i})\varepsilon_{i} + \frac{\varepsilon_{i}^{2}}{2}u''(x_{i}), \qquad (X_{A})_{2}$$

$$g_{i} = u(x_{i}) + u'(x_{i})\varepsilon_{i} + \delta_{i} + \frac{\varepsilon_{i}^{2}}{2}u''(x_{i}), \qquad (X_{A}Y_{A})_{2}$$

$$g_{i} = (1 + \delta_{i})\left(u(x_{i}) + \varepsilon_{i}u'(x_{i}) + \frac{\varepsilon_{i}^{2}u''(x_{i})}{2}\right). \qquad (X_{A}Y_{M})_{2}$$

Шум

$$arepsilon_i \sim N(0, \sigma_x^2), \;\; \delta_i \sim N(0, \sigma_y^2), \;$$
 независимы.

Нужно: оценить параметры σ_x^2 и σ_y^2 .

Методы: метод максимального правдоподобия (ММП), взвешенный метод наименьших квадратов (ВМНК).

Было получено Федоренко (2013):

- ullet Оценки по ММП для моделей $(X_A)_1, (X_AY_A)_1$,
- ullet Оценки по ВМНК для модели $(X_A)_1, (X_AY_A)_1$ и $(X_AY_M)_1.$

Задачи данной работы:

- ullet Построить оценки σ_x^2 и σ_y^2 по ММП в моделях $(X_A)_2, (X_AY_A)_2$ и $(X_AY_M)_1.$
- ullet Для случая $x_i=i/N$ получить асимптотические (при $N o\infty$) характеристики оценок по ММП и ВМНК.

Определение

Рассмотрим регрессионное уравнение

$$Y = \mathbf{X}B + R.$$

 ${f X}$ — известная матрица N imes m, m < N, ${
m rk} {f X} = {
m m}$.

$$Y=(y_1,\ldots,y_N)^{\mathrm{T}}\in\mathbb{R}^k$$
 — случайный вектор.

$$R=(r_1,\ldots,r_N)^{\mathrm{T}}\in\mathbb{R}^k$$
 — случайный вектор, $\mathbb{E}r_i=0$, $\mathbb{E}r_i^2<\infty$,

 $B = (b_1, \dots, b_m)^{\mathrm{T}}$ — вектор неизвестных параметров, которые необходимо оценить.

Оценкой по взвешенному методу наименьших квадратов \widehat{B} называется

$$\widehat{B} = (\mathbf{X}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W}^{-1} Y,$$

rде ${f W}-{f c}$ имметричная, положительно определенная матрица.

Известно, что если $\mathbf{W}=\Sigma_R$, то оценка по ВМНК — наилучшая в классе линейных несмещенных оценок.

ВМНК: общая теория: итерационное решение

Проблема: Распределение ошибок r_i зависит от параметров B и поэтому $\mathbf{W} = \mathbf{W}_B$. Формула $\widehat{B} = (\mathbf{X}^{\mathrm{T}}\mathbf{W}_B^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{W}_B^{-1}Y$ нереализуема.

Поиск оценок:

$$\widehat{B}^{(i+1)} = (\mathbf{X}^{\mathrm{T}} \mathbf{W}_{\widehat{B}^{(i)}}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{W}_{\widehat{B}^{(i)}}^{-1} Y,$$

$$\lim_{i \to \infty} \widehat{B}^{(i)} = \widehat{B}^{(\infty)}.$$

ВМНК: общая теория: асимптотическая нормальность

Теорема (например, Демиденко (1981))

Рассмотрим последовательность уравнений $Y_N=\mathbf{X}_NB+R_N$, где $r_i=r_{iN}$ независимы в каждой серии и $\mathbb{E} r_i=0$, $\mathbb{E} r_i^2<\infty$,

 $\mathbf{W}_N=\mathrm{diag}(\mathbb{D}\mathrm{r}_1,\ldots,\mathbb{D}\mathrm{r}_N)$, $\det\mathbf{W}_N\neq 0$. Пусть $\overline{\mathbf{X}}_N=\mathbf{W}_N^{-1/2}\mathbf{X}_N$ сильно регулярны, то есть

$$\lim_{N \to \infty} \frac{1}{N} \mathbf{X}_N^{\mathrm{T}} \mathbf{W}_N^{-1} \mathbf{X}_N = \mathbf{A}, \tag{1}$$

где $\det \mathbf{A} \neq 0$. Если $\forall i=1,2,\ldots,m$ выполняется

$$\lim_{N \to \infty} \frac{1}{N} \max_{t=1,\dots,N} \overline{x}_{ti}^2 = 0, \tag{2}$$

то оценка ВМНК \widehat{B}_N асимптотически нормальна. Более того,

$$\lim_{N\to\infty} \sqrt{N}(\widehat{B}_N - B) \sim \mathcal{N}(0, \mathbf{A}^{-1}).$$

ВМНК: использование теории в моделях: вид оценок

Рассмотрим на примере модели $(X_{A}Y_{A})_{1}$.

Модель имеет вид $h_i = u(x_i) + u'(x_i)\varepsilon_i + \delta_i$.

Математическое ожидание $\mathbb{E}(h_i-u(x_i))^2=\sigma_x^2(u'(x_i))^2+\sigma_y^2.$

$$(h_i - u(x_i))^2 = \mathbb{E}(h_i - u(x_i))^2 + r_i,$$

$$r_i = (\varepsilon_i^2 - \sigma_x^2)(u(x_i))^2 + (\delta_i^2 - \sigma_y^2) + 2\varepsilon_i \delta_i u(x_i).$$

$$\mathbb{E}r_i = 0$$
, $\mathbb{D}r_i = 2(\sigma_x^2(u(x_i))^2 + \sigma_y^2)^2$, независимы.

Таким образом, в регрессионном уравнении для модели $(X_A Y_A)_1$ параметры имеют вид:

$$B = (\sigma_x^2, \sigma_y^2),$$

$$Y = ((h_1 - u(x_1))^2, \dots, (h_N - u(x_N))^2)^{\mathrm{T}},$$

$$\mathbf{X} = [X_1, X_2], \ X_1 = ((u'(x_1))^2, \dots, (u(x_N))^2)^{\mathrm{T}}, \ X_2 = (1, \dots, 1)^{\mathrm{T}}.$$

Весовая матрица имеет вид

$$\mathbf{W} = \operatorname{diag}(\mathbb{D}r_1, \dots, \mathbb{D}r_N).$$

ВМНК: использование теории в моделях: асимптотическая нормальность

Асимптотическая нормальность:

$$\lim_{N\to\infty}\sqrt{N}(\widehat{B}_N-B)\sim N(0,\mathbf{A}^{-1}).$$

Для приближенных моделей первого порядка были проверены условия асимптотической нормальности (1) и (2). Выпишем вид матрицы ${\bf A}$ для каждой модели.

Модель $(X_A)_1$

$$B = \sigma_x^2$$
, $\mathbf{A} = 2\sigma_x^4$.

Модель $(X_A Y_A)_1$

$$B = (\sigma_x^2, \sigma_y^2)^{\mathrm{T}}, \ \mathbf{A} = \begin{pmatrix} \int_0^1 \frac{(u'(t))^4}{\mathbb{D}r(t)} dt & \int_0^1 \frac{(u'(t))^2}{\mathbb{D}r(t)} dt \\ \int_0^1 \frac{(u'(t))^2}{\mathbb{D}r(t)} dt & \int_0^1 \frac{1}{\mathbb{D}r(t)} dt \end{pmatrix},$$

где
$$\mathbb{D}r(t) = 2(\sigma_x^2(u'(t))^2 + \sigma_y^2)^2$$
.

ВМНК: использование теории в моделях: асимптотическая нормальность

Модель $(X_A Y_M)_1$

$$B = (\sigma_y^2, \sigma_x^2(1+\sigma_y^2))^{\mathrm{T}}$$
 ,

$$\mathbf{A} = \begin{pmatrix} \int_{0}^{1} \frac{u^{4}(t)}{\mathbb{D}r(t)} dt & \int_{0}^{1} \frac{u^{2}(t)(u'(t))^{2}}{\mathbb{D}r(t)} dt \\ \int_{0}^{1} \frac{u^{2}(t)(u'(t))^{2}}{\mathbb{D}r(t)} dt & \int_{0}^{1} \frac{(u'(t))^{4}}{\mathbb{D}r(t)} dt \end{pmatrix},$$

$$\mathbb{D}r(t) = 2\sigma_x^2(1+2\sigma_y^2)^2u'^4(t) + 2\sigma_y^2u^4(t) + 4\sigma_x^2\sigma_y^2(1+3\sigma_y^2)u^2(t)u'^2(t).$$

Для вектора
$$\hat{B}_N^*=(\hat{\sigma}_{xN}^2,\hat{\sigma}_{yN}^2)^{\mathrm{T}}$$
, $B^*=(\sigma_x^2,\sigma_y^2)^{\mathrm{T}}$ получаем

$$\lim_{N \to \infty} \sqrt{N} (\widehat{B}_N^* - B^*) \sim N(0, \mathbf{G}^{-1}),$$

где

$$\mathbf{G} = \begin{pmatrix} 0 & 1 \\ 1 + \sigma_y^2 & \sigma_x^2 \end{pmatrix} \mathbf{A}^{-1} \begin{pmatrix} 0 & 1 \\ 1 + \sigma_y^2 & \sigma_x^2 \end{pmatrix}^{\mathrm{T}}.$$

Определение

Пусть $\xi=(\xi_1,\dots,\xi_N)$ — случайный вектор в евклидовом пространстве с распределением \mathcal{P}_{θ} и плотностью p_{θ} , где $\theta=(\theta_1,\dots,\theta_k)^{\mathrm{T}}\in\Theta$ — вектор неизвестных параметров, Θ — открытое подмножество \mathbb{R}^k . Функцией правдоподобия для вектора ξ называется функция N переменных

$$\mathcal{L}(z_1,\ldots,z_N\mid\theta)=p_{\theta}(z_1,\ldots,z_N).$$

Оценкой максимального правдоподобия характеристики θ называется

$$\widehat{\theta}_{\text{OMT}} = \underset{\theta \in \Theta}{\arg} \max \mathcal{L}(\xi_1, \dots, \xi_N \mid \theta).$$

Если в данном определении случайные величины $\xi_i,\ i=1,\dots,N,$ независимы в совокупности, и плотность случайной величины ξ_i обозначить за $p_{\theta,i},$ то функция правдоподобия будет иметь вид

$$\mathcal{L}(z_1,\ldots,z_N\mid heta) = \prod_{i=1}^N p_{ heta,i}(z_i),$$

ММП: функция правдоподобия для $(X_A)_2$

Теорема

Функция правдоподобия для g_i в модели $(X_A)_2$ имеет вид

$$\mathcal{L}(g_1, \dots g_N | \theta) = \prod_{i=1}^N \frac{\left(p_{\varepsilon}\left(\frac{u'(x_i) + D(g_i)}{u''(x_i)}\right) + p_{\varepsilon}\left(\frac{-u'(x_i) + D(g_i)}{u''(x_i)}\right)\right)}{D(g_i)} \mathbb{I}(g_i),$$

где

$$\mathbb{I}(g_i) = \begin{cases} 1, & \text{если } g_i \in \left(u(x_i) - \frac{u'(x_i)}{2u''(x_i)}; \infty\right), u''(x_i) > 0 \text{ или} \\ & g_i \in \left(-\infty; u(x_i) - \frac{u'(x_i)}{2u''(x_i)}\right), u''(x_i) < 0 \\ 0, & \text{иначе} \end{cases}$$

$$D(g_i) = \sqrt{(u'(x_i))^2 - 2u''(x_i)(u(x_i) - g_i)} > 0$$
 при $\mathbb{I}(g_i) = 1$.

ММП: функция правдоподобия для $(X_A Y_A)_2$

Теорема

Функция правдоподобия для g_i в модели $(X_AY_A)_2$ имеет вид:

$$\mathcal{L}(g_1,\ldots,g_N\mid \overline{\theta}) = \prod_{i=1}^N \int_{-\infty}^{\infty} p_{\delta}\left(\psi\left(g_i,s;\frac{u''(x_i)}{2},u'(x_i),u(x_i)\right)\right) p_{\varepsilon}(s) ds.$$

 $p_{arepsilon}$ — плотность распределения $\mathcal{N}(0,\sigma_x^2)$, p_{δ} — плотность распределения $\mathcal{N}(0,\sigma_y^2)$,

$$\psi(y, s; a, b, c) = y - as^2 - bs - c.$$

ММП: функция правдоподобия для $(X_A Y_M)_1$

Теорема

Функция правдоподобия для h_i модели в модели $(X_AY_M)_1$ имеет вид:

$$\mathcal{L}(h_1,\ldots,h_N\mid \overline{\theta}) = \prod_{i=1}^N \frac{1}{|u'(x_i)|} \int\limits_{-\infty}^{\infty} \frac{p_{\delta}(s)}{|(1+s)|} p_{\varepsilon}(\varphi(h_i,s;u(x_i),u'(x_i))) ds.$$

 $p_{arepsilon}-$ плотность распределения $\mathcal{N}(0,\sigma_x^2),$ $p_{\delta}-$ плотность распределения $\mathcal{N}(0,\sigma_y^2),$

$$\varphi(y, s; a, b) = \frac{y - a(1+s)}{|b|(1+s)}.$$

ММП: численные аспекты вычисления функций правдоподобия

Задача: аппроксимировать интеграл

$$\int_{-\infty}^{\infty} s(x)t(x) \, dx < \infty,$$

где $s(x) \underset{x \to \infty}{\longrightarrow} 0$, $t(x) \underset{x \to \infty}{\longrightarrow} 0$.

f O Если s(x)t(x)< au на ${f K}(au)$, то существует монотонная функция $\lambda(au)$:

$$\left| \int_{K(\tau)} s(x)t(x) \, dx \right| < \lambda(\tau) = \epsilon.$$

 $oldsymbol{\Theta} \ \mathbf{K}(au) = \mathbf{K}^{(s)}(au) \cap \mathbf{K}^{(t)}(au)$, где $s(x) < \sqrt{ au}$ на $\mathbf{K}^{(s)}(au)$, $t(x) < \sqrt{ au}$ на $\mathbf{K}^{(t)}(au)$.

Таким образом: фиксируем ϵ и по ним находим $\mathbf{K}^{(s)}(\lambda^{-1/2}(\epsilon))$, $\mathbf{K}^{(t)}(\lambda^{-1/2}(\epsilon))$ и пересекаем их.

Основные результаты численных экспериментов

В ходе численных экспериментов на модельных примерах были получены следующие результаты:

- **3** для данных $(X_A)_2$, (X_A) оценки по ММП в $(X_A)_2 <_{\mathsf{bias}}$ оценки по ММП $(X_A)_1$; оценки по ММП $(X_A)_2 <_{\mathsf{rmse}}$ оценки по ММП $(X_A)_1$;
- ② для данных $(X_A Y_A)_2$, $(X_A Y_A)$ оценки по ММП в $(X_A Y_A)_2 <_{\mathsf{bias}}$ оценки по ММП $(X_A Y_A)_1$; оценки по ММП в $(X_A Y_A)_2 \approx_{\mathsf{rmse}}$ оценки по ММП $(X_A Y_A)_1$;
- ullet для данных $(X_A Y_M)_1$, $(X_A Y_M)$ оценки по ММП в $(X_A Y_M)_1 pprox_{
 m bias}$ оценок по ВМНК $(X_A Y_M)_1 pprox 0$; оценки по ММП в $(X_A Y_M)_1 <_{
 m rmse}$ оценок по ВМНК $(X_A Y_M)_1$.

Модельный пример для $(X_A Y_M)$

Данные: измерения активности генов. Предполагается, что подчиняются модели $(X_A Y_M)$.

Реальные данные

Модель
$$(X_A Y_M)_1$$
 $\sigma_x^2=0.6,~\sigma_y^2=0.02,~$ функция u

Результаты в модельном примере для $(X_A Y_M)$

В приведенных ниже таблицах смещения не значимы.

Для параметра $\sigma_x^2=0.6.$

	bias	rmse
OBMHK	$-1.7 \cdot 10^{-2}$	0.2
ОМП	$-4.6 \cdot 10^{-3}$	0.17
p-level		0.0004

Для параметра $\sigma_y^2 = 0.02$.

	bias	rmse
OBMHK	$2 \cdot 10^{-4}$	0.003
ОМП	$-1.5 \cdot 10^{-5}$	0.002
p-level		0.0005

Заключение: полученные результаты

Таким образом, в работе были рассмотрены методы оценок неизвестных параметров для моделей (X_A) , (X_AY_A) , (X_AY_M) .

- lacktriangle Была доказана асимптотическая нормальность оценок по ВМНК в моделях $(X_A)_1, (X_AY_A)_1, (X_AY_M)_1.$
- ullet Были построены оценки по ММП в моделях $(X_A)_2$, $(X_AY_A)_2$, $(X_AY_M)_1$.
- ullet Построенные методы были реализованы на языке ${f R}$. На модельных примерах было продемонстрировано, что ошибки полученных оценок меньше, чем ошибки оценок, предложенных ранее.