ÜBUNGEN ZUR "EICHFELDTHEORIE" ABGABE: 22.06.2015

Aufgabe 18. Sei $P \to M$ ein G-Prinzipalbündel, $\omega \in \Omega^1(P, \mathfrak{g})$ eine Zusammenhangsform zu einem Prinzipalzusammenhang und $h \colon TP \to TP$ die entsprechende Projektion auf die horizontale Distribution $H \subset TP$. Man zeige, dass

$$d\omega(h(-),h(-)) = d\omega + \frac{1}{2}[\omega,\omega]$$

und folgere, dass der Zusammenhang genau dann flach ist, wenn H involutiv ist.

Aufgabe 19. Sei G eine Lie-Gruppe und $\vartheta \in \Omega^1(G,\mathfrak{g})$ die Maurer-Cartan-Form aus Aufgabe 14. Sei M eine Mannigfaltigkeit und $\omega \in \Omega^1(M,\mathfrak{g})$. Man zeige folgenden Satz von Cartan: Falls $d\omega + \frac{1}{2}[\omega,\omega] = 0$, so gibt es für jedes $(m,g) \in M \times G$ eine offene Umgebung $U \subset M$ von m und eine Abbildung $f: U \to G$, so dass gilt $f^*(\vartheta) = \omega|_U$.

Hinweis: Man kann etwa $G \to *$ als G-Prinzipalbündel vermöge der Rechtswirkung $g_0 \cdot g := g^{-1}g_0$ auffassen. Auf diesem definiert $-\mathrm{Ad}(g)\vartheta$ einen flachen Zusammenhang. Man zeige, dass dann

$$Ad(g)(-pr_2^*(\vartheta) + pr_1^*(\omega))$$

einen flachen Prinzipalzusammenhang auf dem trivialen G-Prinzipalbündel $M \times G \to M$ definiert, wobei die Wirkung durch $(m,g_0) \cdot g = (m,g^{-1}g_0)$ gegeben ist. Nach Aufgabe 18 besitzt die entsprechende horizontale Distribution H für jedes $(m,g) \in M \times G$ eine integrale Untermannigfaltigkeit N durch (m,g). Man zeige, dass die Komposition $\Phi \colon N \to M \times G \to M$ ein lokaler Diffeomorphismus ist und für eine lokale Umkehrfunktion $f \colon U \to M \times G$, die Komposition $U \to M \times G \to G$ das Gewünschte leistet.