

Pattern Recognition Homework 5 announcement

TA: 楊証琨, Jimmy

Ph.D. student at National Taiwan Universitiy

d08922002@csie.ntu.edu.tw

Homework 5

- Deadline: June 23, Fri at 23:59.
 - 1. Code assignment (100%): implement the deep neural network by any deep learning framework, e.g. Pytorch, TensorFlow and Keras, and then train DNN model by the Cifar-10 dataset
- Submit your 1) code (.py/.ipynb) and 2) reports (.pdf) on <u>E3</u>
 - Sample Code
 - > HW5 questions
- Please follow the file naming rules <STUDENT ID>_HW5.pdf, otherwise, you will get penalty of your scores

Coding

- Write beautiful Python codes with <u>PEP8 guidelines</u> for readability. Basic requirement: use whitespace correctly!
- PEP8 online checker

```
# Recommended
def function(default_parameter=5):
    # ...

# Not recommended
def function(default_parameter = 5):
    # ...
```


Reports

- Include the implementation details and hyperparameters of your model
 - https://github.com/paperswithcode/releasing-research-code
- Include the accuracy of your model in the reports!

DO NOT MODIFY CODE BELOW!

Please screen shot your results and post it on your report

```
In [ ]: y_pred = your_model.predict(x_test)
In [14]: assert y_pred.shape == (10000,)
In [15]: y_test = np.load("y_test.npy")
    print("Accuracy of my model on test set: ", accuracy_score(y_test, y_pred))
    Accuracy of my model on test-set: 0.6769
```


Deep neural networks

- Deep neural networks are a powerful category of machine learning algorithms implemented by stacking layers of neural network
- Convolutional neural networks (CNN), which at least one layer is a convolutional layer, have had great success in certain kinds of problems, such as image recognition

Typical struture of CNN

Cifar-10 dataset

- 60,000 (50,000 training + 10,000 testing) samples, 32x32 RGB images in 10 classes
 - airplane, automobile, ship, truck, bird, cat, deer, dog, frog, horse

Leaderboard of CIFAR-10

- Baseline: accuracy over 70%
- Note that you should only train and evaluate your model on the provided dataset HERE
- DO NOT download the data from other resources.

who is the best in CIFAR-10?

92.45%

cifar.torch

CIFAR-10 49 results collected

Units: accuracy %

Classify 32x32 colour images.

Result	Method		Venue	Details
96.53%	Fractional Max-Pooling		arXiv 2015	Details
95.59%	Striving for Simplicity: The All Convolutional Net		ICLR 2015	Details
94.16%	All you need is a good init 占		ICLR 2016	Details
94%	Lessons learned from manually classifying CIFAR-10		unpublished 2011	Details
93.95%	Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree	٨	AISTATS 2016	Details
93.72%	Spatially-sparse convolutional neural networks >		arXiv 2014	
93.63%	Scalable Bayesian Optimization Using Deep Neural Networks	٨	ICML 2015	
93.57%	Deep Residual Learning for Image Recognition		arXiv 2015	Details
93.45%	Fast and Accurate Deep Network Learning by Exponential Linear Units	٨	arXiv 2015	Details
93.34%	Universum Prescription: Regularization using Unlabeled Data	٤	arXiv 2015	
93.25%	Batch-normalized Maxout Network in Network		arXiv 2015	Details
93.13%	Competitive Multi-scale Convolution		arXiv 2015	
92.91%	Recurrent Convolutional Neural Network for Object Recognition	٨	CVPR 2015	Details
92.49%	Learning Activation Functions to Improve Deep Neural Networks	٨	ICLR 2015	Details
00 450/				

unpublished

Details

Deep learning framework

- If you are a newbie in a deep learning framework, we recommend you learn Keras or Pytorch.
 - Keras: Only Few lines of code to build a CNN model
 - TensorFlow: Easy for depolyment
 - Pytorch: Flexible for research

	Keras	TensorFlow	PyTorch C	
Level of API	high-level API ¹	Both high & low level APIs	Lower-level API ²	
Speed	Slow	High	High	
Architecture	Simple, more readable and concise	Not very easy to use	Complex ³	
Debugging	No need to debug	Difficult to debugging	Good debugging capabilities	
Dataset Compatibility	Slow & Small	Fast speed & large	Fast speed & large datasets	
Popularity Rank	1	2	3	
Uniqueness	Multiple back-end support	Object Detection Functionality	Flexibility & Short Training Duration	
Created By	Not a library on its own	Created by Google	Created by Facebook ⁴	
Ease of use	User-friendly	Incomprehensive API	Integrated with Python language	
Computational graphs used	Static graphs	Static graphs	Dynamic computation graphs ⁵	

Keyword for boosting your performance

- Beat the baseline
 - CNN structure (number of filters, number of CNN layers,...)
 - Data augmentation
 - Regularization

- Score over 90%!
 - Read some paper from <u>leaderboard of Cifar-10</u>

Accelerate your training by GPU

- You may need GPU to accelerate the training of deep neural network. We provide several free GPU resources for you, some of resources need registration and limited by usage.
 - ➤ Google Colab: Free GPU usage for continuous 24 hours
 - > FloydHub: Registration for free GPU trials
 - ➤ Microsoft Azure: Registration for free GPU trials

Reference

- Convolutional Neural Networks Tutorial in PyTorch
- Building a Convolutional Neural Network (CNN) in Keras

Late Policy

- We will deduct a late penalty of 20 points per additional late day
- For example, If you get 90 points of this HW but delay for two days, your will get only 90- (20 x 2) = 50 points!

Notice

- Submit your homework on <u>E3-system</u>!
- Check your email regularly, we will mail you if there are any updates or problems of the homework
- If you have any questions or comments for the homework, please mail TAs and cc Prof. Lin
 - Prof. Lin, <u>lin@cs.nctu.edu.tw</u>
 - > TA Jimmy, d08922002@csie.ntu.edu.tw
 - ➤ TA 柏聲, bensonliu0904@gmail.com
 - ➤ TA 玉霖, <u>oscar861201@gmail.com</u>

Have fun!

