## EE115 Lab 4

## **Buddy Ugwumba**

1. Compute and plot " $P_{\mathrm{uK}}$  versus K" and "1 -  $P_{\mathrm{uK}}$  versus K" for various  $\beta$ 

```
clf
%various beta
beta = 0:0.1:10;
K = 100;
n = 1:1:K+1;
uK_t = besselj(0,beta);
% For Loop
for i = n
    value = besselj(i,beta);
    P_uk = uK_t.^2 + 2*(value.^2);
    hold on
    plot(n, P_uk)
end
title('P_{uK} vs. K')
hold off
```



figure

```
for i = n
    value = besselj(i,beta);
    P_uk = uK_t.^2 + 2*(value.^2);
    P_uK = 1 - P_uk;
    hold on
    plot(n, P_uK)
end
title('1 - P_{uK} vs. K')
```



1. Explain why 1 -  $P_{\rm uK}$  is the poower of the error function  $u(t)-u_{\rm K}(t)$ 

The total power of u(t), which is the complex envelope of  $u_{\rm FM}(t)$ , is equal to 1. The limit, as K approaches infinity, of the fourier series expansion of  $u_K(t)$  is also one. Therefore, the total power minus the power of various integer multiples of the same complex envelope (given the condition that we neglect all orders when |n| > K) gives us the error function  $u(t) - u_K(t)$ .

2. Explain why the bandwidth of u(t) is approximately equal to  $B_m = f_m(\beta + 1)$ .

The bandwidth of  $u(t)=B_u$  if  $J_n(\beta)$  for |n|>K can all be neglected.  $B_u=\mathrm{Kf}_m=\mathrm{KB}_m$ . Performing algebra we get  $B_m=f_m$ . This leaves us with the equation  $W=2f_m(\beta+1)$ . Since we are only interested in the positive values of spectrum, we divide the bandwidth by 2. Therefore, the bandwidth of  $u(t)=f_m(\beta+1)$ .