P. Maurer

ENS Rennes

Recasages : 207, 213, 239.

Référence : Objectif Agrégation.

Densité des polynômes orthogonaux

Définition 1. Soit I un intervalle de \mathbb{R} . On appelle fonction de poids sur I une application ρ : $I \to \mathbb{R}$ mesurable, strictement positive, telle que :

$$\forall n \in \mathbb{N} \quad \int_{I} |x|^n \, \rho(x) \, dx < \infty$$

On note $L^2(I, \rho)$ l'espace des fonctions intégrales sur I par rapport à la mesure dont la densité est ρ par rapport à la mesure de Lebesgue.

Proposition 2. $L^2(I, \rho)$ est un espace de Hilbert muni du produit scalaire :

$$\langle f, g \rangle_{\rho} = \int_{I} f(x) \overline{g(x)} \, \rho(x) \, dx$$

Proposition 3. Il existe une unique famille $(P_n)_{n\in\mathbb{N}}$ de polynômes unitaires, orthogonaux deux à deux pour $\langle .,. \rangle_{\rho}$, tels que $\deg(P_n) = n$. Elle s'appelle la famille de polynômes orthogonaux associée à la fonction poids ρ .

Proposition 4. Soit ρ une fonction de poids. On suppose que pour tout $n \in \mathbb{N}$, $x \mapsto x^n \in L^1(I, \rho)$. Alors pour tout $p \in [1, +\infty[$ et pour tout $n \in \mathbb{N}$, $x \mapsto x^n \in L^p(I, \rho)$

Démonstration. Soit $p \in [1, +\infty[$ et $n \in \mathbb{N}$. On utilise l'inégalité de Hölder avec $p' = \frac{1}{p}$ et $q' = \frac{1}{1-p}$:

$$\begin{split} \int_{I} |x|^{np} \, \rho(x) \, dx &= \int_{I} |x^{np}| \, \rho^{p}(x) \, \rho^{1-p}(x) \, dx \\ &\leq \, \left(\int_{I} |x^{n}| \, \rho(x) \, dx \right)^{p} \! \left(\int_{I} \! \rho(x)^{(1-p) \times \frac{1}{1-p}} \, dx \right)^{1-p} \\ &= \, \left(\int_{I} |x^{n}| \, \rho(x) \, dx \right)^{p} \! \left(\int_{I} \! \rho(x) \, dx \right)^{1-p} \end{split}$$

Par hypothèse, $\int_I |x^n| \; \rho(x) \; dx < \infty$ et $\int_I \rho(x) \; dx = \int_I |x|^0 \; \rho(x) \; dx < \infty$, donc :

$$x_n \in L^p(I, \rho)$$

Théorème 5. Soit I un intervalle de \mathbb{R} et ρ une fonction de poids sur I. On suppose de plus qu'il existe $\alpha > 0$ tel que :

$$\int_{I} e^{\alpha|x|} \, \rho(x) \, dx < \infty$$

Alors la famille $(P_n)_{n\in\mathbb{N}}$ de polynômes orthogonaux associée à ρ forme une base hilbertienne de $L^2(I,\rho)$.

Démonstration.

On a donc:

- Il est clair que les polynômes $(P_n)_{n\in\mathbb{N}}$ forment une famille orthonormée de $L^2(I,\rho)$ par construction. On va montrer que cette famille est dense dans $L^2(I,\rho)$.
- Pour cela, d'après le critère de densité, il suffit de montrer que $\{P_n : n \in \mathbb{N}\}^{\perp} = \{0\}$. Soit $f \in \{P_n : n \in \mathbb{N}\}^{\perp}$. Comme P_n est de degré n, on obtient par une récurrence immédiate sur n que $\langle f, M_n \rangle = 0$, où M_n désigne le monôme de degré n.

$$\forall n \in \mathbb{N} \quad \int_{I} f(t) \, t^n \, \rho(t) = 0. \quad (1)$$

• On définit alors la fonction φ suivante :

$$\varphi \colon \left\{ \begin{array}{ll} \mathbb{R} & \to & \mathbb{C} \\ \\ x & \mapsto & \left\{ \begin{array}{ll} f(x) \ \rho(x) \ \text{si} \ x \in I \\ 0 \ \text{sinon} \end{array} \right. \right.$$

Vérifions que $\varphi \in L^1(\mathbb{R})$. On écrit :

$$\int_{\mathbb{R}} |\varphi(x)| \, dx = \int_{I} |f(x)| \sqrt{\rho(x)} \cdot \sqrt{\rho(x)} \, dx.$$

L'inégalité de CAUCHY-SCHWARZ donne :

$$\int_{\mathbb{R}} |\varphi(x)| \, dx \, \leq \, \left(\int_{I} |f(x)|^2 \, \rho(x) \, dx \, \right)^{\frac{1}{2}} \left(\int_{I} \rho(x) \, dx \, \right)^{\frac{1}{2}}.$$

Par hypothèse, $f \in L^2(I, \rho)$ donc $\int_I |f(x)|^2 \rho(x) dx < \infty$, et $\int_I \rho(x) dx = \int_I |x|^0 \rho(x) dx < \infty$. Ainsi, $\varphi \in L^1(\mathbb{R})$, et on peut considérer sa transformée de Fourier :

$$\forall x \in \mathbb{R} \quad \hat{\varphi}(x) = \int_{I} \varphi(t) e^{-ixt} dt.$$

• On va vérifier que $\hat{\varphi}$ se prolonge en une fonction F holomorphe sur $B_{\alpha} = \left\{ |\mathrm{Im}| < \frac{\alpha}{2} \right\}$.

En effet, pour tout $t \in I$, $z \mapsto \varphi(t) e^{-izt} \rho(t) dt$ est holomorphe par holomorphie de $z \mapsto e^{-izt}$, et de plus, pour tout $z \in B_{\alpha}$, $t \mapsto \varphi(t) e^{-izt} \rho(t)$ est mesurable et on a :

$$|\varphi(t)\,e^{-izt}| \quad = \quad e^{t\operatorname{Im}(z)}|f(t)|\,\rho(t) \quad \leq \quad e^{\alpha\,|t|/2}\,|f(t)|\,\rho(t)$$

On applique l'inégalité de Cauchy-Swcharz :

$$\int_I e^{\alpha/2|t|} \, |f(t)| \, \left(\sqrt{\rho(t)} \, \right)^2 \, \leq \left(\int_I |f(t)|^2 \, \rho(t) \, dt \right)^{1/2} \, \left(\int_I e^{\alpha \, |t|} \, \rho(t) \, dt \right)^{1/2}.$$

On obtient donc $e^{\alpha |t|/2} |f(t)| \rho(t) \in L^1(\mathbb{R})$, en utilisant l'hypothèse sur la fonction de poids ρ .

Le théorème d'holomorphie sous l'intégrale assure que $F: z \mapsto \int_I \varphi(t) e^{-izt} dt$ est une application holomorphe sur B_{α} .

• On va montrer que F est nulle sur B_{α} . Le théorème d'holomorphie sous l'intégrale assure que l'on peut dériver n fois sous le signe intégrale.

Pour tout
$$z \in B_{\alpha}$$
 et $t \in I$, on a $\frac{\partial^{n}(\varphi(t) e^{-izt})}{\partial z^{n}} = \frac{\partial^{n}(f(t)\rho(t) e^{-izt})}{\partial z^{n}} = (-i)^{n} t^{n} f(t) \rho(t) e^{-izt}$.

Donc $F^{(n)}(z) = \int_I (-i)^n t^n f(t) \rho(t) e^{-izt}$. En particulier, on a donc :

$$F^{(n)}(0) = (-i)^n \int_I t^n f(t) \rho(t) dt$$

= 0 d'après (1).

Donc F s'annule localement autour de zéro (son développement en série entière au voisinnage de zéro est nul), et B_{α} étant connexe, le théorème de prolongement analytique montre que F=0 sur B_{α} .

• Finalement, on a donc $\hat{\varphi} = 0$ sur \mathbb{R} , et φ étant intégrable, l'injectivité de la transformée de Fourier montre que $\varphi = 0$ sur \mathbb{R} , donc f = 0 sur I. On a donc bien $\{P_n : n \in \mathbb{N}\}^{\perp} = \{0\}$, et ceci conclut la preuve.

Remarque 6. On considère, sur $I =]0, +\infty[$, la fonction de poids $w(x) = x^{-\ln(x)}$. Alors les polynômes orthogonaux pour le poids w ne forment pas une base hilbertienne de $L^2(I, w)$.

En effet, la fonction f définie sur I par $f(x) = \sin(2\pi \ln(x))$ est orthogonale à tous les monômes $x \mapsto x^n$, donc la famille $(x \mapsto x^n)_{n \in \mathbb{N}}$ n'est pas totale dans $L^2(I, w)$, et il en va donc de même pour la famille des polynômes orthogonaux associée à ce poids.

Ceci illustre l'importance de la décroissance exponentielle de ρ dans le théorème 5.