Reinforcement Learning

(Date:02-02-2022)

Lab Assignment 2

Instructor: Dr. Prabhuchandran K J

By: 211022001, 211022002, 211022005

1 Aim

To compare the performance of different bandits algorithms for Bernoulli and Normal reward distribution.

1.1 ϵ - Greedy Algorithm

In ϵ -greedy method we we choose both arm equally likely with a probability of ϵ and we will choose the arm with maximum expected reward with a probability of $1 - \epsilon$. For ϵ_t greedy it chooses $\epsilon = min(1, \frac{cK}{d^2N})$ where c is tunable and K is number of arms, d is difference of mean of best and second best arm. N is number of plays and it increases as we proceed with plays.

1.2 Upper Confidence Bound

This Algorithm picks the arm with maximum value and also balances the exploration-exploitation task by considering less played arms which could give promising returns.

1.3 Thompson Sampling

It starts sampling from Beta(1,1) and after pulls it updates it's beliefs to $Beta(W_{i,t}+1,L_{i,t}+1)$. In Bernoulli case $W_{i,t}$ is number of 1's in $n_{i,t}$ pulls of arm i and $L_{i,t}$ is number of 0's in $n_{i,t}$ pulls of arm i. This samples from the beta distribution and pulls arm with highest sample.

1.4 Reinforce

1.5 Settings

- For ϵ -Greedy $\epsilon = 0.1$, Total plays= 10k
- Arm winning probabilities For K=2, $\{0.50,0.57\}$
- Arm wining probabilities for K=5, {0.50,0.57, 0.32, 0.25,0.2}
- Arm winning probabilities for $K=10, \{0.50, 0.57, 0.32, 0.25, 0.2, 0.45, 0.35, 0.20, 0.31, 0.1\}$
- For ϵ_t greedy, c = 0.2. It is observed that more the c value greater is exploration
- For softmax, temperature was set to 0.1.
- As per observation there is a trade-off between ϵ_t and Thompson for the least cumulative regret while softmax gave highest cumulative regret among all in this setting.
- For normal distribution all the bandits have a mean $\mu = \mu_i$ and $\sigma = 1$.
 - 1. Mean for K=2, $\mu=\{0.50,0.57\}$
 - 2. Mean for K=5, μ ={0.50,0.57, 0.32, 0.25,0.2}
 - 3. Mean for K=10, μ = {0.50,0.57, 0.32, 0.25,0.2,0.45,0.35, 0.20, 0.31,0.1}

No. of plays

- Mean for K=5, μ ={0.50,0.57, 0.32, 0.25,0.2}
- μ = for K=10, {0.50,0.57, 0.32, 0.25,0.2,0.45,0.35, 0.20, 0.31,0.1}

No. of plays

• For n=10 turns.

2 Results

Simulation results with the above given parameters:

2.1 Bernoulli Distribution

No. of plays

2.2 Normal Distribution

2.3 Observations

- For the Bernoulli Distribution Thomspon sampling gives the consistent performance for all K=2, K=5, K=10.
- For the Normal Distribution ϵ -t Greddy and ϵ -Greedy Performs well.

No. of plays