Lecture 10 Note - Centroids of Composite Bodies

Textbook Chapter 9.2

What are composite bodies?

- A body made up of several smaller shapes connected together
 - These shapes are usually rectangles, triangles, semi-circles, etc...
 - If the weight and centroid of these smaller shapes are known, we can determine the centroid (centre of gravity) of the whole composite body without integration:

$$\bar{x} = \frac{\sum \tilde{x}W}{\sum W} \ \bar{y} = \frac{\sum \tilde{y}W}{\sum W} \ \bar{z} = \frac{\sum \tilde{z}W}{\sum W}$$

- o x y z are the centroid coordinates of the entire shape.
- o x y z are the centroid coordinates of EACH piece
- The way this formula works is by finding the centroid location & area/volume/etc. of one piece, multiplying them together, and then repeating this for all the other pieces and adding them up. Finally, divide this sum by the total area/volume/etc. to get the centroid of the entire shape.
- In L8 we covered centroid formulas for rectangles & triangles. For semicircles, use this image below. Check the next page for more complicated shape formulas.

How to solve composite bodies?

Use the table method combined with the formula shown above.

Component	W (lb)	\widetilde{x} (ft)	\widetilde{y} (ft)	ãW (lbft)	ỹW (lbft)
1	450	6	7	2700	3150
2	1500	18	16	27000	24000
3	600	26	3	15600	1800
4	280	30	8	8400	2240
Σ	2830			53700	31190

- If you're stuck, just visit the slides or watch the lecture. The math is straightforward.
- If you need help calculating the centroids of weird shapes, check out the next page:

Geometric Properties of Line and Area Elements Area Moment of Inertia Centroid Location Centroid Location $I_x = \frac{1}{4} r^4 \left(\theta - \frac{1}{2} \sin 2\theta \right)$ $I_{y} = \frac{1}{4} r^{4} \left(\theta + \frac{1}{2} \sin 2\theta\right)$ Circular sector area Circular arc segment $I_y = \frac{1}{16} \pi r^4$ Quarter and semicircle arcs Quarter circle area $A = \frac{1}{2}h(a+b)$ Trapezoidal area Semicircular area $\frac{3}{8}b$ Semiparabolic area Circular area A = bhExparabolic area Rectangular area $I_x = \frac{1}{36}bh^3$ $A = \frac{4}{3}ab$ Parabolic area Triangular area