Chapitre 1: Trigonométrie

Plan du chapitre

- I. Vocabulaire
- II. Relations trigonométriques
 - 1. Cosinus
 - 2. Sinus
 - 3. Tangente
 - 4. Retenir les relations
 - 5. Exemples guidés

I/ Vocabulaire

« Trigonométrie » vient des mots grecs *« trigonos »* qui signifie <u>triangle</u> et *« metron »* qui signifie <u>mesure</u>.

La trigonométrie désigne ainsi l'étude de la mesure d'angles et de longueurs dans un triangle.

I/ Vocabulaire

On considère le triangle ABC rectangle en A suivant :

Par rapport à l'angle $\widehat{\mathbf{B}}$:

- > BC est l'hypoténuse
- > AC est le côté opposé
- > AB est le côté adjacent

1/ Cosinus (Rappel)

Dans un triangle rectangle, le cosinus d'un angle aigu (mesure strictement inférieure à 90°) est égal au quotient suivant :

Longueur du côté adjacent

Longueur de l'hypoténuse

$$\cos \widehat{\mathbf{A}} = \frac{\mathbf{AB}}{\mathbf{AC}}$$

2/ Sinus

Dans un triangle rectangle, **le sinus d'un angle aigu** (mesure strictement inférieure à 90°) est égal au quotient suivant :

Longueur du côté opposé

Longueur de l'hypoténuse

$$\sin \widehat{\mathbf{A}} = \frac{\mathbf{BC}}{\mathbf{AC}}$$

3/ Tangente

Dans un triangle rectangle, **la tangente d'un angle aigu** (mesure strictement inférieure à 90°) est égal au quotient suivant :

Longueur du côté opposé

Longueur du côté adjacent

$$\tan \widehat{\mathbf{A}} = \frac{\mathbf{BC}}{\mathbf{AB}}$$

4/ Retenir les relations

S O H C A H T O A
Sinus Opposé Hypoténuse Cosinus Adjacent Hypoténuse Tangente Opposé Adjacent

Cosinus Adjacent Hypoténuse Sinus Opposé Hypoténuse Tangente Opposé Adjacen

(prononcé à la marseillaise sinon ça ne marche pas @)

5/ Exemples guidés

Exemple 1 : On considère le triangle ABC rectangle en A.

On donne BC = 8 cm et \widehat{ABC} = 50°. Calculer la longueur AB au mm près.

Etape 1: **légender** tout ce que l'on connaît

et ce que l'on cherche.

Etape 2: **en partant de l'angle**, indiquer la nature

des côtés.

Etape 3 : en déduire la formule à utiliser.

Etape 4 : calculer la grandeur demandée.

5/ Exemples guidés

Etape 3:

C A H S O H T O A

Cosinus Adjacent Hypoténuse Sinus Opposé Hypoténuse Tangente Opposé Adjacent

Etape 4: Dans le triangle ABC rectangle en A, on a : $\cos \widehat{ABC} = \frac{AB}{BC}$

$$\cos \widehat{ABC}$$
 AB $\operatorname{donc} AB = \frac{BC \times \cos \widehat{ABC}}{1} \approx 5,1$

Le côté AB mesure environ **5,1 cm**.

5/ Exemples guidés

Exemple 2 : On considère le triangle ABC rectangle en A.

On donne BC = 8 cm et AC = 6 cm. Calculer la mesure de \widehat{ABC} au degré

près.

Etape 1: **légender** tout ce que l'on connaît

et ce que l'on cherche.

Etape 2: **en partant de l'angle**, indiquer la nature

des côtés.

Etape 3 : en déduire la formule à utiliser.

Etape 4 : calculer la grandeur demandée.

5/ Exemples guidés

Etape 3:

Etape 4: Dans le triangle ABC rectangle en A, on a : $\sin \widehat{ABC} = \frac{AC}{BC}$

$$\sin \widehat{ABC} = \frac{AC}{BC} = 0,75 \text{ donc } \widehat{ABC} = \arcsin 0,75 \approx 49^{\circ}$$

L'angle \widehat{ABC} mesure environ 49°.