逻辑门及其应用

Ming Hsiung mingshone@163.com

School of Politics and Administration South China Normal University

主要内容

- 逻辑门
- 2 一个应用
- ③ 线路图设计
- 4 加法器

主要内容

- 逻辑门
- 2 一个应用
- ③ 线路图设计
- 4 加法器

一个开关设计问题

如何用两个开关各自独立地控制一盏灯(即 改变任何一个开关的状态,都会改变灯的状态), 画出线路图。

使用单刀双掷开关

使用异或门

- A、B 端都断开电流时, C 端无电流
- ullet A 端接通电流,而 B 端断开电流时,C 端有电流
- ullet A 端断开电流,而 B 端接通电流时,C 端有电流
- A、B 端都接通电流时, C 端无电流

异或门

A	B	C
1	1	0
1	0	1
0	1	1
0	0	0

A	B	$\neg A$	$A \vee B$	$A \wedge B$	$A \nleftrightarrow B$
1	1	0	1	1	0
1	0		1	0	1
0	1	1	1	0	1
0	0	1	0	0	0

说明: 1=T, 0=F

基本的逻辑门

A	B	C
1	1	1
1	0	0
0	1	0
0	0	0

A	B	C
1	1	1
1	0	1
0	1	1
0	0	0

A	$oxed{C}$
1	0
0	1

A	B	$oxed{C}$
1	1	0
1	0	1
0	1	1
0	0	0

$$C = (A \land \neg B) \lor (\neg A \land B)$$

A	B	$oxed{C}$
1	1	0
1	0	1
0	1	1
0	0	0

$$C = (A \wedge \neg B) \vee (\neg A \wedge B)$$

A	B	$oxed{C}$
1	1	0
1	0	1
0	1	1
0	0	0

$$C = (A \land \neg B) \lor (\neg A \land B)$$

异或门的等效组合

$$C = (A \land \neg B) \lor (\neg A \land B)$$

- ① 逻辑门
- ② 一个应用
- ③ 线路图设计
- 4 加法器

如何控制红绿灯

● 红: Red, 黄: Amber, 绿: Green

● 闪烁顺序: 红,红/黄,绿,黄,红,......

Level Crossing

Inputs	Lights	
XY	RAG	
0.0	100	
0 1	110	
1 0	0 0 1	
11	010	
11	010	

Level Crossing

Inp	ut	S	Li	gh	its
X	Υ		R	A	G
0	0		1	0	0
0	1		1	1	0
1	0		0	0	1
1	1		0	1	0

Level Crossing

Inputs	Lights
XΥ	RAG
0.0	100
0 1	1 1 0
1 0	0 0 1
1 1	0 1 0

主要内容

- ① 逻辑门
- 2 一个应用
- ③ 线路图设计
- 4 加法器

用逻辑门来设计线路,使得三个开关可独立 地控制一盏灯

在正常情况下,在三个单刀开关都是断开状态时,灯不亮。 所以,

● 当输入 A、B、C 都为 0 时, 输出 D 应为 0。

改变任何一个单刀开关的状态(即使得三个单刀开关之一接 通)都会使灯亮,所以,

• 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 1。

改变任何一个单刀开关的状态(即使得三个单刀开关之一接 通)都会使灯亮,所以,

• 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 1。

如果再接通三个单刀开关中先前没有的接通的一个,灯的状态又会发生改变,变为熄灭状态,即

● 当输入 A、B、C 有且仅有两个为 1 时,输出 D 应为 0。

如果再接通三个单刀开关中先前没有的接通的一个,灯的状态又会发生改变,变为熄灭状态,即

● 当输入 A、B、C 有且仅有两个为 1 时,输出 D 应为 0。

最后,当把三个单刀开关都接通,灯再一次被点亮,亦即

● 当输入 A、B、C 都为 1 时, 输出 D 应为 1。

上面的结果画在下面的表格中:

A	B	C	D
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

由此,可以得到,

 $D = (A \land B \land C) \lor (A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land C).$

上面的结果画在下面的表格中:

A	B	C	D
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

由此,可以得到,

$$D = (A \land B \land C) \lor (A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land C) \circ$$

由此,不难画出所需的逻辑门组合,如下图所示:

问题

某公司要求设计如下的保险柜:该保险柜有三把钥匙,分别由经理、会计和出纳三人掌握,他们中任何一人都无法用自己的钥匙打开保险柜,必须至少两个人的钥匙才能打开保险柜。请使用逻辑门设计保险柜的线路。

- 当输入 A、B、C 都为 0 时,输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 0。
- 当输入 A、B、C 有且仅有两个为 1 时,输出 D 应为 1。
- 当输入 A、B、C 都为 1 时,输出 D 应为 1。

- 当输入 A、B、C 都为 0 时,输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有两个为 1 时,输出 D 应为 1。
- 当输入 *A*、*B*、*C* 都为 1 时,输出 *D* 应为 1。

- 当输入 A、B、C 都为 0 时, 输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 0。
- 当输入 A、B、C 有且仅有两个为 1 时,输出 D 应为 1。
- 当输入 *A*、*B*、*C* 都为 1 时,输出 *D* 应为 1。

- 当输入 A、B、C 都为 0 时,输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 0。
- 当输入 A、B、C 有且仅有两个为 1 时,输出 D 应为 1。
- 当输入 *A*、*B*、*C* 都为 1 时,输出 *D* 应为 1。

- 当输入 A、B、C 都为 0 时,输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有两个为 1 时,输出 D 应为 1。
- 当输入 A、B、C 都为 1 时,输出 D 应为 1。

用 $A \times B \times C$ 分别表示经理、会计和出纳的钥匙状态(1 表示钥匙入锁,0 表示钥匙不入锁),则根据保险柜开锁的要求,可确定 $A \times B \times C$ 的输入与输出 D 关系如下:

- 当输入 A、B、C 都为 0 时, 输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 0。
- 当输入 A、B、C 有且仅有两个为 1 时,输出 D 应为 1。
- 当输入 A、B、C 都为 1 时,输出 D 应为 1。

用 $A \times B \times C$ 分别表示经理、会计和出纳的钥匙状态(1 表示钥匙入锁,0 表示钥匙不入锁),则根据保险柜开锁的要求,可确定 $A \times B \times C$ 的输入与输出 D 关系如下:

- 当输入 A、B、C 都为 0 时, 输出 D 应为 0。
- 当输入 $A \times B \times C$ 有且仅有一个为 1 时,输出 D 应为 0。
- 当输入 A、B、C 有且仅有两个为 1 时,输出 D 应为 1。
- 当输入 A、B、C 都为 1 时,输出 D 应为 1。

上面的结果画在下面的表格中:

A	B	C	D
1	1	1	1
1	1		1
1	0	1	1
1	0		
	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

可以计算出,

$$D = (A \land B \land C) \lor (A \land B \land \neg C) \lor (A \land \neg B \land C) \lor (\neg A \land B \land C) \circ$$

上面的结果画在下面的表格中:

A	B	C	D
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

可以计算出,

 $D = (A \land B \land C) \lor (A \land B \land \neg C) \lor (A \land \neg B \land C) \lor (\neg A \land B \land C).$

上面的结果画在下面的表格中:

A	В	C	D
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

可以计算出,

$$D = (A \land B \land C) \lor (A \land B \land \neg C) \lor (A \land \neg B \land C) \lor (\neg A \land B \land C) \circ$$

由此,不难画出所需的逻辑门组合,如下图所示:

主要内容

- ① 逻辑门
- 2 一个应用
- 3 线路图设计
- 4 加法器

二进制加法简介

- 如同十进制有 0, 1, 2,, 9 十个数字, 二进制有两个数字:0, 1。
- 一位二进制数的加法基本规则: 0+0 = 0, 0+1= 1+0= 1, 1+1 = 10 (1 为进位)。
- 多位二进制数的加法演示:

半加法器 (half adder)

- 一位二进制数的加法基本规则可用半加法器来"封装"。
- 半加法器是如下的逻辑门组合:

Inp	uts	Outp	outs		
Α	В	s	С	$A \rightarrow \longrightarrow S$	AXOR
0	0	0	0	1 bit	B - S
1	0	1	0	half adder B → C	AND
0	1	1	0		
1	1	0	1	Schematic	Realization
	Truth	table		•	

半加法器演示: 点击 Half Adder in Wiki

全加法器(full adder)

- 全加法器将两个一位二进制数相加,并根据接收到的低位进位信号,输出和、进位输出。全加器的三个输入信号为两个加数 $A \times B$ 和低位进位 C_{in} 。全加器的输出和半加器类似,包括向高位的进位信号 C_{out} 和本位的和信号 S。
- 全加法器也是逻辑门组合,但可以用已经封装好的组合来进 行再组合即可:

A	В	Carry In	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

全加法器演示: 点 击 Full Adder in Wiki

4 位二进制数的加法器

进一步封装

4 位二进制数的一个 CPU

Nibbler 4 Bit CPU

Intel CPU

参考资料

更多的细节,请参考:

● 熊明,《逻辑:从三段论到不完全性定理》(第9章), 科学出版社,2016年

Thanks for your attention! Q & A