

Europäisches Patentamt

**European Patent Office** 

Office européen des brevets



EP 0 824 148 A2 (11)

(12)

#### **EUROPEAN PATENT APPLICATION**

(43) Date of publication: 18.02.1998 Bulletin 1998/08

(21) Application number: 97113932.4

(22) Date of filing: 13.08.1997

(51) Int. Cl.<sup>6</sup>: C12N 15/52, C12N 15/60, C12N 1/21, C12P 7/62, C12N 15/74 // (C12N1/21, C12R1:05)

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE** 

(30) Priority: 14.08.1996 JP 214509/96 25.07.1997 JP 199979/97

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant:

The Institute of Physical and Chemical Research (RIKEN)

Wako-shi, Saitama 351-01 (JP)

(72) Inventors:

· Toshiaki, Fukui, The Inst. of Phys. & Chem. Res. Wako-shi, Saitema 351-01 (JP)

· Yoshiharu, Doi, The Inst. of Phys. & Chem. Res. Wako-shi, Saltema 351-01 (JP)

(74) Representative:

Grosse, Rainer, Dipl.-Ing. et al Gleiss & Grosse Patentanwaltskanzlei. Maybachstrasse 6A 70469 Stuttgart (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

#### (54)Polyester synthase gene and process for producing polyester

The present invention relates to a polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity; a gene expression cassette comprising the polyester synthase gene and either of open reading frames located upstream and downstream of said gene; a recombinant vector comprising the gene expression cassette; a transformant transformed with the recombinant vector; and a process for producing polyester by culturing the transformant in a medium and recovering polyester from the resulting culture.

#### Description

5

10

30

55

#### Field of the Invention

The present invention relates to a polyester synthase gene, a recombinant vector containing the gene, a transformant carrying the recombinant vector, and a process for producing polyester by use of the transformant.

#### Background of the Invention

It is known that a large number of microorganisms biosynthesize poly-3-hydroxybutyrate (P(3HB)) and store it in the form of ultrafine particles as an energy source in the body. P(3HB) extracted from microorganisms is a thermoplastic polymer with a melting temperature of about 180 °C, and because of its excellent biodegradability and biocompatibility it is drawing attention as "green" plastic for preservation of the environment. Further, P(3HB) is "green" plastic which can be synthesized from regenerable carbon resources including sugars and vegetable oils by various microorganisms. However, P(3HB) is a highly crystalline polymer and thus has the problem in physical properties of inferior resistance to impact, so its practical application has never been attempted.

Recently, polyester P(3HB-co-3HH) as a random copolymer of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HH) and a process for producing the same have been studied and developed, and these are described in e.g. Japanese Patent Laid Open Publication Nos. 93049/1993 and 265065/1995 respectively. In these publications, the P(3HB-co-3HH) copolymer is produced from alkanoic acids or olive oil by fermentation with <u>Aeromonas caviae</u> isolated from soil. It is revealed that because the degree of crystallinity of the P(3HB-co-3HH) copolymer produced through fermentation is reduced with an increasing ratio of the 3HH unit in it, so that the copolymer becomes a soft polymeric material excellent in thermostability and formability and can be manufactured into strong yarn or transparent flexible film (Y. Doi, S. Kitamura, H. Abe, Macromolecules <u>28</u>, 4822-4823 (1995)). However, the yield of polyester (content of polyester in dried microorganisms) according to the processes described in Japanese Patent Laid Open Publication Nos. 93049/1993 and 265065/1995 is low, and thus there is demand for developments in a process for producing the copolymerized polyester P(3HB-co-3HH).

#### Summary of the Invention

The object of the present invention is to provide a polyester synthase gene, recombinant vectors containing the gene, transformants transformed with the recombinant vectors, and processes for producing polyester by use of the transformants.

As a result of their eager research, the present inventors succeeded in producing the polyester in high yield by cloning a polyester synthase gene and deleting one or both of open reading frames located upstream and downstream of said gene to arrive at the completion of the present invention.

That is, the present invention is a polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity. Said gene includes those containing e.g. the nucleotide sequence of SEQ ID NO:1.

Further, the present invention is a gene expression cassette comprising said polyester synthase gene and either of open reading frames located upstream and downstream of said gene. In said gene expression cassette, the open reading frame located upstream of the polyester synthase gene includes those (e.g. SEQ ID NO:3) containing DNA coding for the amino acid sequence of SEQ ID NO:4, and the open reading frame located downstream of the polyester synthase gene includes those (e.g. SEQ ID NO:5) containing DNA coding for a polypeptide containing the amino acid sequence of SEQ ID NO:6 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about enoyl-CoA hydratase activity.

Even if one or more amino acids in the amino acid sequence of SEQ ID NO:2 have undergone mutations such as deletion, replacement, addition etc., DNA coding for a polypeptide containing said amino acid sequence is also contained in the gene of the present invention insofar as the polypeptide has polyester synthase activity. For example, DNA coding for the amino acid sequence of SEQ ID NO:2 where methionine at the first position is deleted is also contained in the gene of the present invention.

Further, the present invention is recombinant vectors comprising said polyester synthase gene or said gene expression cassette.

Further, the present invention is transformants transformed with said recombinant vectors.

Further, the present invention is processes for producing polyester, wherein said transformant is cultured in a medium, and polyester is recovered from the resulting culture. Examples of such polyester are copolymers (e.g. poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) random copolymers) of 3-hydroxyalkanoic acid represented by formula 1:

$$R$$
| (I)
HO — CH — CH<sub>2</sub> — COOH

wherein R represents a hydrogen atom or a C1 to C4 alkyl group.

Brief Description of the Drawing

15

20

25

FIG. 1 shows the structure of the gene of the present invention.

FIG. 2 is a photograph showing the result of SDS-polyacrylamide gel electrophoresis.

Detailed Description of the Invention

Hereinafter, the present invention is described in detail.

(1) Cloning of Polyester synthase gene

The polyester synthase gene of the present invention is separated from a microorganism belonging to the genus Aeromonas.

First, genomic DNA is isolated from a strain having the polyester synthase gene. Such a strain includes e.g. <u>Aeromonas caviae</u>.

Any known methods can be used for preparation of genomic DNA. For example, <u>Aeromonas caviae</u> is cultured in LB medium and then its genomic DNA is prepared by the hexadecyl trimethyl ammonium bromide method (Current Protocols in Molecular Biology, vol. 1, page 2.4.3., John Wiley & Sons Inc., 1994).

The DNA obtained in this manner is partially digested with a suitable restriction enzyme (e.g. Sau3Al, BamHl, BgIII etc.) and then the DNA fragments are then dephosphorylated by treatment with alkaline phosphatase. It is ligated into a vector previously cleaved with a restriction enzyme (e.g. BamHl, BgIII etc.) to prepare a library.

Phage or plasmid capable of autonomously replicating in host microorganisms is used as the vector. The phage vector includes e.g. EMBL3, M13,  $\lambda$  gt11 etc., and the plasmid vector includes e.g. pBR322, pUC18, and pBluescript II (Stratagene). Vectors capable of autonomously replicating in 2 or more host cells such as <u>E. coli</u> and <u>Bacillus brevis</u>, as well as various shuttle vectors, can also be used. Such vectors are also cleaved with said restriction enzymes so that their fragment can be obtained.

Conventional DNA ligase is used to ligate the resulting DNA fragments into the vector fragment. The DNA fragments and the vector fragment are annealed and then ligated to produce a recombinant vector.

To introduce the recombinant vector into a host microorganism, any known methods can be used. For example, if the host microorganism is <u>E. coli</u>, the calcium method (Lederberg, E.M. et al., J. Bacteriol. <u>119</u>, 1072 (1974)) and the electroporation method (Current Protocols in Molecular Biology, vol. 1, page 1.8.4 (1994)) can be used. If phage DNA is used, the <u>in vitro</u> packaging method (Current Protocols in Molecular Biology, vol. 1, page 5.7.1 (1994)) etc. can be adopted. In the present invention, an <u>in vitro</u> packaging kit (Gigapack II, produced by Stratagene etc.) can also be used.

To obtain a DNA fragment containing the polyester synthase gene derived from <u>Aeromonas caviae</u>, a probe is then prepared. The amino acid sequences of some polyester synthase have already been known (Peoples, O.P. and Sinskey, A.J., J. Biol. Chem., <u>264</u>, 15293 (1989); Huisman, G.W. et al., J. Biol. Chem., <u>266</u>, 2191 (1991); Pieper, U. et al., FEMS Microbiol. Lett., <u>96</u>, 73 (1992) etc.). Two conserved regions are selected from these amino acid sequences, and nucleotide sequences coding them are estimated to design oligonucleotides for use as primers. Examples of such oligonucleotides include, but are not limited to, the 2 oligonucleotides 5'-CC(C/G)CC(C/G)TGGATCAA(T/C)AAGT (T/A)(T/C)TA(T/C)ATC-3' (SEQ ID NO:7) and 5'-(G/C)AGCCA (G/C)GC(G/C)GTCCA(A/G)TC(G/C)GGCCACCA-3' (SEQ ID NO:8).

Polymerase chain reaction (PCR) (Molecular Cloning, vol. 2, page 14.2 (1989)) is carried out using these oligonucleotides as primers and the genomic DNA of <u>Aeromonas caviae</u> as a template. The partial fragment of polyester synthase gene is amplified by PCR.

Then, the partially amplified fragment thus obtained is labeled with a suitable reagent and used for colony hybridization of the above genomic DNA library (Current Protocols in Molecular Biology, vol. 1, page 6.0.3 (1994)).

The E. coli is screened by colony hybridization, and a plasmid is recovered from it using the alkaline method (Cur-

rent Protocols in Molecular Biology, vol. 1, page 1.6.1 (1994)), whereby a DNA fragment containing the polyester synthase gene is obtained.

The nucleotide sequence of said DNA fragment can be determined in e.g. an automatic nucleotide sequence analyzer such as 373A DNA sequencer (Applied Biosystems) using a known method such as the Sanger method (Molecular Cloning, vol. 2, page 13.3 (1989)).

The nucleotide sequence of the polyester synthase gene of the present invention is shown in SEQ ID NO:1, and the amino acid sequence encoded by said gene is shown in SEQ ID NO:2, where some amino acids may have undergone mutations such as deletion, replacement, addition etc. insofar as a polypeptide having said amino acid sequence brings about polyester synthase activity. Further, the gene of the present invention encompasses not only the nucleotide sequence coding for the amino acid sequence of SEQ ID NO:2 but also its degenerated isomers which except for degeneracy codons, code for the same polypeptide.

The above mutations such as deletion etc. can be induced by known site-directed mutagenesis (Current Protocols in Molecular Biology, vol., 1, page 8.1.1 (1994)).

After the nucleotide sequence was determined by the means described above, the gene of the present invention can be obtained by chemical synthesis or the PCR technique using genomic DNA as a template, or by hybridization using a DNA fragment having said nucleotide sequence as a probe.

#### (2) Preparation of Transformant

5

20

The transformant of the present invention is obtained by introducing the recombinant vector of the present invention into a host compatible with the expression vector used in constructing said recombinant vector.

The host is not particularly limited insofar as it can express the target gene. Examples are bacteria such as microorganisms belonging to the genus <u>Alcaligenes</u>, microorganisms belonging to the genus <u>Pseudomonas</u>, microorganisms belonging to the genus <u>Bacillus</u>, yeasts such as the genera <u>Saccharomyces</u>, <u>Candida</u> etc., and animal cells such as COS cells, CHO cells etc.

If bacteria such as microorganisms belonging to the genus <u>Alcaligenes</u>, microorganisms belonging to the genus <u>Pseudomonas</u> etc. are used as the host, the recombinant DNA of the present invention is preferably constituted such that it contains a promoter, the DNA of the present invention, and a transcription termination sequence so as to be capable of autonomous replication in the host. The expression vector includes pLA2917 (ATCC 37355) containing replication origin RK2 and pJRD215 (ATCC 37533) containing replication origin RSF1010, which are replicated and maintained in a broad range of hosts.

The promoter may be any one if it can be expressed in the host. Examples are promoters derived from <u>E. coli</u>, phage etc., such as trp promoter, lac promoter, P<sub>L</sub> promoter, P<sub>R</sub> promoter and T7 promoter. The method of introducing the recombinant DNA into bacteria includes e.g. a method using calcium ions (Current Protocols in Molecular Biology, vol. 1, page 1.8.1 (1994)) and the electroporation method (Current Protocols in Molecular Biology, vol. 1, page 1.8.4 (1994)).

If yeast is used as the host, expression vectors such as YEp13, YCp50 etc. are used. The promoter includes e.g. gal 1 promoter, gal 10 promoter etc. To method of introducing the recombinant DNA into yeast includes e.g. the electroporation method (Methods. Enzymol., 194, 182-187 (1990)), the spheroplast method (Proc. Natl. Acad. Sci. USA, 84, 1929-1933 (1978)), the lithium acetate method (J. Bacteriol., 153, 163-168 (1983)) etc.

If animal cells are used as the host, expression vectors such as pcDNAI, pcDNAI/Amp (produced by Invitrogene) etc. are used. The method of introducing the recombinant DNA into animal cells includes e.g. the electroporation method, potassium phosphate method etc.

The nucleotide sequence determined as described above contains the polyester synthase gene as well as a plurality of open reading frames (ORFs) upstream and downstream of it. That is, the polyester synthase gene forms an operon with at least 2 ORF's under the control of a single promoter region.

The ORF's which are located respectively upstream and downstream of the polyester synthase gene are referred to hereinafter as "ORF1" and "ORF3".

It is considered that ORF1 is an open reading frame of a gene involved in accumulating polyester in the microorganism or a gene in the polyester biosynthesis system. It was revealed that ORF3 is an open reading frame of a gene coding for enoyl-CoA hydratase (particularly (R)-specific enoyl-CoA hydratase) involved in biosynthesis of polyester.

As shown in FIQ. 1, an EcoRI fragment carrying an expression regulatory region (expressed as "-35/-10" in FIQ. 1A), the polyester synthase gene, ORF1, and ORF3 was cloned in the present invention (FIQ. 1A). This fragment is designated EE32.

Then, a fragment (a gene expression cassette) is prepared by deleting ORF1 and/or ORF3 from EE32, and this cassette is introduced into a host whereby a transformant capable of efficiently producing polyester can be obtained.

In EE32, a restriction enzyme BgIII sites are introduced into regions between the expression regulatory region and the translation initiation codon of ORF1 and between the translation termination codon of ORF1 and the translation ini-

tiation codon of the polyester synthase gene, and then ORF1 is deleted from EE32 by treatment with BgIII (FIG. 1B). Similarly, a restriction enzyme BamHI sites is introduced into a region between the translation termination codon of the polyester synthase gene and ORF3, and then ORF3 is deleted by treatment with BamHI (FIG. 1C).

To delete both ORF1 and ORF3, EE32 may be subjected to the above operation of deleting ORF1 and ORF3 (FIG. 1D).

The restriction enzyme sites can be introduced by site-directed mutagenesis using synthetic oligonucleotides (Current Protocols in Molecular Biology, vol. 1, page 8.1.1 (1994)).

Each gene expression cassette thus obtained is inserted into said plasmid capable of expression (e.g. pJRD215 (ATCC 37533)) and the resulting recombinant vector is used to transform <u>Alcaligenes eutrophus PHB-4</u> (DSM541) (strain deficient in the ability to synthesize polyester). The method for this transformation includes e.g. the calcium chloride method, rubidium chloride method, low pH method, in vitro packaging method, conjugation transfer method etc.

#### (3) Production of Polyester

15

The production of polyester is carried out by culturing the transformant of the present invention in a medium, forming and accumulating the polyester of the present invention in the microorganism or in the culture, and recovering the polyester from the cultured microorganism or from the culture.

A conventional method used for culturing the host is also used to culture the transformant of the present invention. The medium for the transformant prepared from a microorganism belonging to the genus <u>Alcaligenes</u> or <u>Pseudomonas</u> as the host include a medium containing a carbon source assimilable by the microorganism, in which a nitrogen source, inorganic salts or another organic nutrition source has been limited, for example a medium in which the nutrition source has been limited to 0.01 to 0.1 %.

The carbon source is necessary for growth of the microorganism, and it is simultaneously a starting material of polyester. Examples are hydrocarbons such as glucose, fructose, sucrose, maltose etc. Further, fat and oil related substances having 2 or more carbon atoms can be used as the carbon source. The fat and oil related substances include natural fats and oils, such as corn oil, soybean oil, safflower oil, sunflower oil, olive oil, coconut oil, palm oil, rape oil, fish oil, whale oil, porcine oil and cattle oil, aliphatic acids such as acetic acid, propionic acid, butanoic acid, pentanoic acid, hexoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linolenic acid, linolic acid and myristic acid as well as esters thereof, alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, lauryl alcohol, oleyl alcohol and palmityl alcohol as well as esters thereof.

The nitrogen source includes e.g. ammonia, ammonium salts such as ammonium chloride, ammonium sulfate, ammonium phosphate etc., peptone, meat extract, yeast extract, corn steep liquor etc. The inorganic matter includes e.g. monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride etc.

Culture is carried out usually under aerobic conditions with shaking at 25 to 37 °C for more than 24 hours (e.g. 1 to 7 days) after expression is induced. During culture, antibiotics such as ampicillin, kanamycin, antipyrine, tetracycline etc. may be added to the culture. Polyester is accumulated in the microorganism by culturing it, and the polyester is then recovered.

To culture the microorganism transformed with the expression vector using an inducible promoter, its inducer can also be added to the medium. For example, isopropyl-β-D-thiogalactopyranoside (IPTG), indoleacrylic acid (IAA) etc. can be added to the medium.

To culture the transformant from animal cells as the host, use is made of a medium such as RPMI-1640 or DMEM which may be supplemented with fetal bovine serum. Culture is carried out usually in the presence of 5 % CO<sub>2</sub> at 30 to 37°C for 14 to 28 days. During culture, antibiotics such as kanamycin, penicillin etc. may be added to the medium.

In the present invention, purification of polyester can be carried out e.g. as follows:

The transformant is recovered from the culture by centrifugation, then washed with distilled water and dried. Thereafter, the dried transformant is suspended in chloroform and heated to extract polyester from it. The residues are removed by filtration. Methanol is added to this chloroform solution to precipitate polyester. After the supernatant is removed by filtration or centrifugation, the precipitates are dried to give purified polyester.

The resulting polyester is confirmed to be the desired one in a usual manner e.g. by gas chromatography, nuclear magnetic resonance etc.

The gene of the present invention contains the polyester synthase gene isolated from <u>Aeromonas caviae</u>. This synthase can synthesize a copolymer (polyester) consisting of a monomer unit 3-hydroxyalkanoic acid represented by formula I:

$$R$$
 | (I) HO — CH — CH<sub>2</sub> — COOH

wherein R represents a hydrogen atom or a C1 to C4 alkyl group. Said copolymer includes e.g. poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) random copolymer (P(3HB-co-3HH)) etc. and the transformant carrying said polyester synthase gene has the ability to produce P(3HB-co-3HH) with very high efficiency.

Conventionally, a process for producing poly-3-hydroxybutyrate (P(3HB)) or poly(3-hydroxybutyrate-co-3-hydroxy-valerate) random copolymer P(3HB-co-3HV) has been studied and developed, but such polyester has the problem in physical properties of inferior resistance to impact because it is a highly crystalline polymer.

Because degree of crystallinity is lowered by introducing 3-hydroxyhexanoate having 6 carbon atoms into a polymer chain, polyester acts as a flexible polymeric material which is also excellent in thermostability and formability, but conventional processes for producing P(3HB-co-3HH) by use of <u>Aeromonas caviae</u> (Japanese Patent Laid Open Publication Nos. 93049/1993 and 265065/1995) suffer from a low yield of polyester.

In the present invention, the P(3HB-co-3HH) copolyester can be produced in high yield.

Because the desired polyester can be obtained in a large amount using the above means, it can be used as a biodegradable material of yarn or film, various vessels etc. Further, the gene of the present invention can be used to breed a strain highly producing the P(3HB-co-3HH) copolymer polyester.

#### Examples

5

15

25

30

55

Hereinafter, the present invention is described in more detail with reference to the Examples which however are not intended to limit the scope of the present invention. [Example 1] Cloning of the Polyester synthase Gene from <u>Aeromores caviae</u>

First, a genomic DNA library was prepared from Aeromonas caviae.

Aeromonas caviae FA440 was cultured overnight in 100 ml LB medium (1 % yeast extract, 0.5 % trypton, 0.5 % sodium chloride, 0.1 % glucose, pH 7.5) at 30 °C and then genomic DNA was obtained from the microorganism using the hexadecyl trimethyl ammonium bromide method (Current Protocols in Molecular Biology, vol. 1, page 2.4.3 (1994), John Wiley & Sons Inc.).

The resulting genomic DNA was partially digested with restriction enzyme Sau3Al. The vector plasmid used was cosmid vector pLA2917 (ATCC 37355).

This plasmid was cleaved with restriction enzyme BgIII and dephosphorylated (Molecular Cloning, vol. 1, page 5.7.2 (1989), Cold Spring Harbor Laboratory) and then ligated into the partially digested genomic DNA fragment by use of DNA ligase.

E. coli S17-1 was transformed with this ligated DNA fragment by the in vitro packaging method (Current Protocols in Molecular Biology, vol. 1, page 5.7.2 (1994)) whereby a genomic DNA library from <u>Aeromonas caviae</u> was obtained.

To obtain a DNA fragment containing the polyester synthase gene from <u>Aeromonas caviae</u>, a probe was then prepared. Two well conserved regions were selected from known amino acid sequences of several polyester synthases, and nucleotide sequences coding for them were estimated, and 2 oligonucleotides 5'-CC(C/G)CC(C/G)TGGAT-CAA(T/C)AAGT (T/A)(T/C) TA(T/C)ATC-3' (SEQ ID NO:7) and 5'-(G/C)AGCCA(G/C)GTCCA(A/G)TC(G/C)GGCCACCA-3' (SEQ ID NO:8) were synthesized.

The polyester synthase gene was partially amplified by PCR using these oligonucleotides as primers and the genomic DNA from <u>Aeromonas caviae</u> as a template. PCR was carried out using 30 cycles, each consisting of reaction at 94 °C for 30 seconds, 50 °C for 30 seconds, and 72 °C for 60 seconds.

Then, this partially amplified fragment was labeled with digoxigenin using a DIG DNA labeling kit (Boehringer Mannheim) and used as a probe.

Using the probe thus obtained,  $\underline{E}$ .  $\underline{coli}$  carrying a plasmid containing the polyester synthase gene was isolated by colony hybridization from the genomic DNA library from <u>Aeromonas caviae</u>. By recovering the plasmid from the  $\underline{E}$ .  $\underline{coli}$ , a DNA fragment containing the polyester synthase gene was obtained.

The nucleotide sequence of a 3.2 kbp BgIII-EcoRI fragment from this fragment was determined by the Sanger method.

As a result, the nucleotide sequence of the 3.2 kb fragment as shown in SEQ ID NOs:9 or 10 was determined. By further examining homology to this nucleotide sequence, the polyester synthase gene containing the nucleotide sequence (1785 bp) of SEQ ID NO:1 could be identified in this 3.2 kbp nucleotide sequence.

It should be understood that insofar as the protein encoded by the polyester synthase gene of the present invention has the function of gene expression for polyester polymerization, the nucleotide sequence of said gene may have undergone mutations such as deletion, replacement, addition etc.

In a fragment having the nucleotide sequence of SEQ ID NO:9 or 10, a 405 bp gene (ORF3) and a transcription termination region located downstream of the above 1785 bp nucleotide sequence, as well as a 354 bp gene (ORF1) and an expression regulatory region located upstream thereof were identified. The nucleotide sequence of ORF1 is shown in SEQ ID NO:4; the nucleotide sequence of ORF3 in SEQ ID NO:5; and the amino acid sequence encoded by ORF3 in SEQ ID NO: 6.

ORF3 is an open reading frame of a gene coding for enoyl-CoA hydratase involved in biosynthesis of polyester. Insofar as a polypeptide having the amino acid sequence encoded by ORF3 has enoyl-CoA hydratase activity, particularly (R)-specific enoyl-CoA hydratase activity, said amino acid sequence may have undergone mutations such as deletion, replacement and addition of one or more amino acids.

In the nucleotide sequences of SEQ ID NOS:9 and 10, the expression regulatory region is located at the 1- to 383-positions and the transcription termination region at the 3010 to 3187- positions.

#### [Example 2] Preparation of Alcaligenes eutrophus Transformant

15

The BgIII-EcoRI fragment containing this expression regulatory region, ORF1, the polyester synthase gene, ORF3, and the transcriptional termination region was made EcoRI-ended by use of an EcoRI linker whereby a 3.2 kb EcoRI-EcoRI fragment (EE32 fragment) was obtained. This fragment was inserted into plasmid pJRD215 (ATCC 37533) capable of expression in microorganisms belonging to the genus Alcaligenes, and the resulting recombinant plasmid was transformed into Alcaligenes eutrophus PHB-4 (DSM 541) (strain deficient in the ability to synthesize polyester) by the conjugation transfer method, as follows:

First, the recombinant plasmid was used to transform <u>E.coli</u> S17-1 by the calcium chloride method. The recombinant <u>E.coli</u> thus obtained and <u>Alcaligenes eutrophus</u> PHB-4 were cultured overnight in 1.5 ml LB medium at 30 °C, and the respective cultures, each 0.1 ml, were combined and cultured at 30 °C for 4 hours. This microbial mixture was plated on MBF agar medium (0.9 % disodium phosphate, 0.15 % monopotassium phosphate, 0.05 % ammonium chloride, 0.5 % fructose, 1.5 % agar, 0.3 mg/ml kanamycin) and cultured at 30 °C for 5 days.

Because <u>Alcaligenes eutrophus</u> PHB-4 is rendered resistant to kanamycin by transferring the plasmid in the recombinant <u>E. coli</u> into it, the colonies grown on the MBF agar medium are a transformant of <u>Alcaligenes eutrophus</u>. One colony was isolated from these colonies so that <u>Alcaligenes eutrophus</u> AC32 (referred to hereinafter as AC32) was obtained.

AC32 has been deposited as FERM BP-6038 with the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Japan.

A restriction enzyme BgIII sites were introduced respectively into regions upstream and downstream of the ORF1 gene in the EE32 fragment by site-directed mutagenesis using a synthetic oligonucleotide (Current Protocols in Molecular Biology, vol. 1, page 8.1.1 (1994)), and an ORF1 gene-free fragment was obtained by deleting the BgIII-BgIII fragment from the EE32 fragment and then inserted into plasmid pJRD215. The resulting recombinant plasmid was used to transform <u>Alcaligenes eutrophus</u> PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC321.

Similarly, a restriction enzyme BamHI sites were introduced respectively regions upstream and downstream of the ORF3 gene in the EE32 tragment by site-directed mutagenesis, and an ORF3 gene-free tragment was obtained by deleting the BamHI-BamHI fragment from the EE32 fragment and then inserted into plasmid pJRD215. The resulting recombinant plasmid was used to transform <u>Alcaligenes eutrophus</u> PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC323.

Similarly, a restriction enzyme BgIII sites were introduced respectively regions upstream and downstream of the ORF1 gene and a restriction enzyme BamHI sites were introduced respectively regions upstream and downstream of the ORF3 gene in the EE32 fragment, and a gene fragment free of both the ORF1 and ORF3 genes was obtained by deleting the BgIII-BgIII and BamHI-BamHI fragments from the EE32 fragment and then inserted into plasmid pJRD215. The resulting recombinant plasmid was used to transform <u>Alcaligenes eutrophus</u> PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC3213.

Further, the polyester synthase gene was amplified by PCR using the EE32 fragment as a template, and the resulting amplification product was inserted into a region between an expression regulatory region and a transcription termination region in a known polyester biosynthesis operon derived from <u>Alcaligenes eutrophus</u>. PCR was carried out using 5'-AGTTCCCGCCTCGGGTGAGA-3' (SEQ ID NO: 11) and 5'-GGCATATGCGCTCATGCGGCGTCCT-3' (SEQ ID NO: 12) as primers in 30 cycles each consisting of reaction at 94 °C for 30 seconds, 55 °C for 30 seconds and 72 °C for 60 seconds.

This DNA fragment was inserted into plasmid pJRD215, and the resulting plasmid was used to transform Alcali-

genes eutrophus PHB-4 by the conjugation transfer method described above. The resulting transformant is referred to hereinafter as AC29.

[Example 3] Synthesis of Polyester by Alcaligenes eutrophus Transformants

Each of <u>Alcaligenes eutrophus</u> H16, PHB-4, AC32, AC321, AC323, AC3213 and AC29 was inoculated into 95 ml MB medium (0.9 % disodium phosphate, 0.15 % monopotassium phosphate, 0.05 % ammonium chloride) containing 1 ml of 1 % sodium octanate and incubated in a flask at 30 °C. 0.2 g/L kanamycin was contained in the mediums for strains AC32, AC321, AC323, AC3213 and AC29. 12, 24, 36 and 48 hours thereafter, 1 ml of 1 % sodium octanate was added to each medium (total amount of sodium octanate added: 0.5 g) and the microorganisms were cultured for 72 hours.

Each of strains H16 and AC3213 was inoculated into the above MB medium to which 1% olive oil, palm oil, corn oil or oleic acid had been added, and each strain was cultured at 30 °C for 72 hours in a flask. 0.2 g/L kanamycin was contained in the mediums for strain AC3213.

Each of strains H16, AC32, AC321, AC323 and AC3213 was inoculated into the above MB medium to which 1% sodium heptanoate had been added, and each strain was cultured at 30 °C in a flask. 0.2 g/L kanamycin was contained in the mediums for strains AC32, AC321, AC323 and AC3213.

While 1 ml of 1% sodium heptanoate was added to each medium (total amount of sodium heptanoate added: 0.5 g) 12, 24, 36 and 48 hours thereafter, the microorganisms were cultured for 72 hours. 444

The microorganisms were recovered by centrifugation, washed with distilled water and lyophilized, and the weight of the dried microorganisms was determined. 2 ml sulfuric acid/methanol mixture (15:85) and 2 ml chloroform were added to 10-30 mg of the dried microorganism, and the sample was sealed and heated at 100 °C for 140 minutes whereby the polyester in the microorganisms was decomposed into methylester. 1 ml distilled water was added thereto and stirred vigorously. It was left and separated into 2 layers, and the lower organic layer was removed and analyzed for its components by capillary gas chromatography through a capillary column Neutra BOND-1 (column of 25 m in length, 0.25 mm in inner diameter and 0.4 µm in liquid film thickness, manufactured by GL Science) in Shimadzu GC-14A. The temperature was raised at a rate of 8 °C/min. from an initial temperature of 100 °C. The results are shown in Tables 1, 2 and 3.

30

35

40

45

50

5

10

15

20

Table 1

| Strain Used A. <u>eutrophus</u> | Weight of Dried Microor-<br>ganism (g/l) | Polyester Comp. |          |     |  |  |  |
|---------------------------------|------------------------------------------|-----------------|----------|-----|--|--|--|
|                                 |                                          |                 | 3НВ      | знн |  |  |  |
|                                 |                                          |                 | (mole-%) |     |  |  |  |
| H16                             | 3.00                                     | 86              | 100      | 0   |  |  |  |
| PHB-4                           | 0.80                                     | 0               | -        | -   |  |  |  |
| AC32                            | 0.99                                     | 33              | 78       | 23  |  |  |  |
| AC321                           | 2.85                                     | 92              | 87       | 13  |  |  |  |
| AC323                           | 2.85                                     | 92              | 88       | 12  |  |  |  |
| AC3213                          | 3.64                                     | 96              | 85       | 15  |  |  |  |
| AC29                            | 3.20                                     | 94              | 92       | 8   |  |  |  |

Table 2

| Strain Used A.<br>eutrophus | Polyester Comp |      |    |      |      |
|-----------------------------|----------------|------|----|------|------|
|                             |                |      |    | знв  | знь  |
|                             |                |      |    | (mol | e-%) |
| H16                         | olive oil      | 4.27 | 79 | 100  | 0    |
|                             | com oil        | 3.57 | 81 | 100  | 0    |
|                             | palm oil       | 4.13 | 79 | 100  | 0    |
|                             | oleic acid     | 4.06 | 82 | 100  | 0    |
| AC3213                      | olive oil      | 3.54 | 76 | 96   | 4    |
|                             | com oil        | 3.60 | 77 | 95   | 5    |
|                             | palm oil       | 3.58 | 81 | 96   | 4    |
| •                           | oleic acid     | 2.22 | 70 | 96   | 4    |

25

55

5

10

15

20

|    |                           | Tab                                      | ie 3                                                         |                 |          |          |  |  |  |  |  |  |  |
|----|---------------------------|------------------------------------------|--------------------------------------------------------------|-----------------|----------|----------|--|--|--|--|--|--|--|
| 30 | Synt                      | thesis of Polyester Using He             | eptanoic Acid as Carbon Sc                                   | on Source       |          |          |  |  |  |  |  |  |  |
|    | Strain Used A. eutrophus  | Weight of Dried Microor-<br>ganism (g/l) | Content of Polyester in<br>Dried Microorganism<br>(weight-%) | Polyester Comp. |          |          |  |  |  |  |  |  |  |
| 35 |                           |                                          |                                                              | знв             | 3HV      | ЗННр     |  |  |  |  |  |  |  |
| •  |                           |                                          |                                                              |                 | (mole-%) |          |  |  |  |  |  |  |  |
|    | H16                       | 2.50                                     | 60                                                           | 50              | 50       | 0        |  |  |  |  |  |  |  |
|    | AC32                      | 0.77                                     | 7                                                            | 30              | 67       | 5        |  |  |  |  |  |  |  |
| 40 | AC321                     | 1.67                                     | 55                                                           | 46              | 52       | 2        |  |  |  |  |  |  |  |
|    | AC323                     | 1.27                                     | 40                                                           | 48              | 45       | 7        |  |  |  |  |  |  |  |
|    | AC3213                    | 2.76                                     | 67                                                           | 44              | 48       | 8        |  |  |  |  |  |  |  |
| 45 | 3HB: 3-hydroxybutyrate, 3 | HH: 3-hydroxyhexanoate, 3                | HHp: 3-hydroxyheptanoate                                     | •               | ·        | <u> </u> |  |  |  |  |  |  |  |

As shown in Table 1, H16 (i.e. wild-type <u>Alcaligenes eutrophus</u>) synthesized a poly(3-hydroxybutyrate) homopolymer. This is because 3HH (3-hydroxyhexanoate) having 6 carbon atoms does not serve as a substrate for the polyester synthase possessed by H16. PHB-4 (i.e. the same strain as H16 but deficient in the ability to synthesize polyester) lacks the polyester synthase and thus does not accumulate polyester. AC32 prepared by introducing into PHB-4 the EE32 fragment containing the polyester synthase gene derived from <u>Aeromonas caviae</u> accumulated the poly(3-hydroxyburylate-co-3-hydroxyhexanoate) random copolymer (P(HB-co-3HH)) containing 22 mole-% 3HH (3-hydroxyhexanoate), and this copolymer accounted for 33 % by weight of the dried microorganism.

AC321, AC323 and AC3213 accumulated P(3HB-co-3HH) containing 12 to 15 mole-% 3HH, and the copolymer accounted for 92 to 96 % by weight of the dried microorganisms. As can be seen from these results, the ability of these strains to accumulate polyester was significantly improved by deleting the ORF1 gene and/or ORF3 gene.

P(3HB-co-3HH) was also accumulated in an amount of 94 % by weight of the microorganism even in the case of

AC29 carrying the polyester synthase gene derived from <u>A. caviae</u> whose expression regulatory region and transcriptional termination region had been replaced by those derived from <u>Alcaligenes eutrophus</u>, indicating that the yield of polyester was significantly improved even using the expression regulatory region and transcriptional termination region of different origin.

When AC3213 producing polyester in the highest yield was cultured using olive oil, corn oil or palm oil as a carbon source, the microorganism accumulated P(3HB-co-3HH) containing 4 to 5 mole-% 3HH, where the copolymer accounted for 76 to 81 % by weight of the microorganism, as shown in Table 2. Even if oleic acid as an fatty acid component contained most abundantly in vegetable oils was used as a carbon source, AC3213 accumulated P(3HB-co-3HH) containing 4 mole-% 3HH, where the copolymer accounted for 70 % by weight of the microorganism. Its corresponding wild strain H16 synthesized only poly(3-hydroxybutyrate) homopolymer under the same conditions.

Alcaligenes eutrophus FA440 is reported to have accumulated 8 % by weight of P(3HB-co-3HH) by use of palmitic acid as a carbon source (Japanese Patent Laid Open Publication No. 265065/1995). On the other hand, the transformant according to the present invention has accumulated 96 % by weight of P(3HB-co-3HH) by use of octanoic acid as a carbon source and 76 to 81 % by weight of P(3HB-co-3HH) by use of extremely cheap vegetable oils as a carbon source, so the comparison therebetween indicates that the method of synthesizing P(3HB-co-3HH) by the transformant used in the present example is an extremely superior method.

When heptanoic acid was used as a carbon source, H16, that is a wild strain of <u>Alcaligenes eutrophus</u>, synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer (P(3HB-co-3HV)). This is because 3HHp (3-hydroxyheptanoate) having 7 carbon atoms does not serve as a substrate for the polyester synthase possessed by H16, AC32, derived from PHB-4 by introduction of the EE32 fragment containing the polyester synthase gene derived from <u>Aeromonas caviae</u>, accumulated poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyheptanoate) terpolymer (P(3HB-co-3HV-co-3HHp)) containing 5 mole-% 3HHp, where this copolymer accounted for 7 % by weight of the dried microorganism.

Further, each of strains AC321, AC323 and AC3213 accumulated P(3HB-co-3HV-co-3HHp) containing 2 to 8 mole-% 3HHp where the copolymer accounted for 40 to 67 % by weight of the microorganisms, indicating that the yield of polyester was significantly improved by deleting the ORF1 gene and/or ORF3 gene (Table 3).

From these results, it is concluded that copolyesters consisting of 3-hydroxyalkanoic acid with 4 to 7 carbon atoms can be synthesized using the polyester synthase derived from <u>Aeromonas caviae</u>.

[Example 4] Identification of Functions of ORF3

15

40

55

The ORF3 gene was amplified by PCR using the EE32 fragment as a template and then inserted into a site down-stream of T7 promoter in expression plasmid PET-3a (Novagene). PCR was carried out using 5'-GCCATATGAGCG-CACAATCCCTGGAAGTAG-3' (SEQ ID NO:13) and 5'-CTGGGATCCGCCGGTGCTTAAGGCAGCTTG-3' (SEQ ID NO:14) as primers in 25 cycles each consisting of reaction at 95 °C for 60 seconds and 68 °C for 30 seconds. The resulting plasmid was used to transform <u>E</u>. <u>coli</u> BL21 (DE3) (Novagene). The resulting transformant is designated NB3.

NB3 was cultured in LB medium at 30 °C for 4 hours, and isopropyl-β-D-thiogalactopyranoside (IPTG) was added at a final concentration of 0.4 mM to induce expression, and it was further cultured at 30 °C for 2 hours. The microorganism was recovered by centrifugation, disrupted by ultrasonication and centrifuged to give a soluble protein fraction.

As shown in Table 4, high enoyl-CoA hydratase activity was detected in the soluble fraction from the microorganism having the expression plasmid introduced into it.

#### Table 4

# Specific Activity of Enoyl-CoA Hydratase in Soluble Protein Fraction

|    |                     | (unit/mg protein) |
|----|---------------------|-------------------|
| 50 | E. coli BL21/PET-Ja | 0                 |
|    | E. coli NB3         | 1700              |

The encyl-CoA hydratase activity was determined by measuring a change in absorbance (263 nm) due to double bond hydration, using crotonyl-CoA (Sigma) as substrate (concentration: 0.25 mM). No activity was detected in <u>E. coli</u>

into which the control plasmid PET-3a free of the ORF3 gene had been introduced.

Then, the encyl-CoA hydratase protein was purified. A soluble protein fraction from NB3 was applied to an anion exchange column Q-Sepharose (Pharmacia) and eluted with a gradient of (0 to 1 M) NaCl, and a fraction with encyl-CoA hydratase activity was collected. SDS-PAGE analysis indicated that the active fraction was homogenous in electrophoresis as shown in FIG. 2. In addition, about 3-fold specific activity could be attained as shown in Table 5.

#### Table 5

# Specific Activity of Enoyl-CoA Hydratase (unit/mg protein) E. coli NB3 soluble protein fraction 1700 anion exchange column elution fraction 5100

The N-terminal amino acid sequence of the encyl-CoA hydratase protein thus purified was determined. As shown in Table 6, the determined amino acid sequence was the same except for Met in the initiation codon as the amino acid sequence deduced from the nucleotide sequence of the ORF3 gene.

#### Table 6

| Comparison between Amino Acid Sequences                           |
|-------------------------------------------------------------------|
| (unit/mg protein)                                                 |
| N-terminal amino acid sequence of                                 |
| purified enoyl-CoA hydratase: SAQSLEVGQKARLSKRFGAA (SEQ ID NO:15) |
| amino acid sequence deduced from                                  |
| ORF3 nucleotide sequence: MSAQSLEVGOKARLSKRFGAA (SEO ID NO:16)    |

40 From this, it could be confirmed that ORF3 codes for enoyl-CoA hydratase. It is considered that Met was released by post-translational modification.

Further, the stereospecificity of enoyl-CoA hydratase encoded by ORF3 was examined as follows:

By adding (S)-3-hydroxybutyryl-CoA dehydrogenase (Sigma) (final concentration: 0.2 unit/ml) and oxidized nicotinamide adenine dinucleotide (NAD+) (final concentration: 0.5 mM) to a reaction solution for activity measurement, (S)-3-hydroxybutyryl-CoA formed is oxidized to acetoacetyl-CoA by the action of the dehydrogenase if the enoyl-CoA hydratase is specific to the (S)-isomer. During this reaction, NAD+ is reduced to form NADH resulting in the generation of a specific absorption at 340 nm. If enoyl-CoA hydratase is specific to the (R)-isomer, NADH is not formed.

As shown in Table 7, the change in absorbance at 340 nm when enoyl-CoA hydratase encoded by ORF3 was used, was the same as in the case where enoyl-CoA hydratase was absent, but if commercially available (S)-specific enoyl-CoA hydratase (Sigma) was used, a change in absorbance due to formation of NADH was observed.

#### Table 7

| Change in Absorbance at 340 nm after 1 Min.     |       |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|-------|--|--|--|--|--|--|--|--|--|
| no addition of encyl-CoA hydratase              | 0.045 |  |  |  |  |  |  |  |  |  |
| ORF3-derived enoyl-CoA hydratase                | 0.047 |  |  |  |  |  |  |  |  |  |
| (S)-isomer specific enoyl-CoA hydratase (Sigma) | 0.146 |  |  |  |  |  |  |  |  |  |

From this result, it was made evident that the purified encyl-CoA hydratase is specific to the (R)-isomer. Thus, it was found that ORF3 codes for (R)-isomer specific encyl-CoA hydratase.

According to the present invention, there are provided a polyester synthase, a recombinant vector carrying the gene, a transformant carrying the recombinant vector and a process for producing polyester by use of the transformant.

The present invention is extremely useful in that the present gene codes for a polyester synthase capable of synthesizing polyester as a copolymer consisting of a monomer unit represented by 3-hydroxyalkanoic acid having 4 to 7 carbon atoms, and that the present process can synthesize a biodegradable plastic P(3HB-co-3HH) very efficiently which is excellent in thermostability and formability.

#### SEQUENCE LISTING

| 5          | (1) GENERAL INFORMATION:                                                                                                                                                                                                                                   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10         | (1) APPLICANT:  (A) NAME: THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH  (B) STREET: Hirosawa 2-1  (C) CITY: Wako-shi  (D) STATE: Saitama  (E) COUNTRY: Japan  (F) POSTAL CODE (ZIP): 351-01  (G) TELEPHONE: 81-48-467-9263  (H) TELEFAX: 81-48-462-4609 |
| 15         | (ii) TITLE OF INVENTION: POLYESTER SYNTHASE GENE AND PROCESS FOR PRODUCING POLYESTER                                                                                                                                                                       |
|            | (iii) NUMBER OF SEQUENCES: 16                                                                                                                                                                                                                              |
| 20         | (iv) COMPUTER READABLE FORM:  (A) MEDIUM TYPE: Floppy disk  (B) COMPUTER: IBM PC compatible  (C) OPERATING SYSTEM: PC-DOS/MS-DOS  (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)                                                                 |
| 25         | (v) CURRENT APPLICATION DATA: APPLICATION NUMBER: 97113932.4                                                                                                                                                                                               |
|            | <ul><li>(vi) PRIOR APPLICATION DATA:</li><li>(A) APPLICATION NUMBER: JP 214509/1996</li><li>(B) FILING DATE: 14-AUG-1996</li></ul>                                                                                                                         |
| 30         | (vi) PRIOR APPLICATION DATA:  (A) APPLICATION NUMBER: JP 199979/1997  (B) PILING DATE: 25-JUL-1997                                                                                                                                                         |
|            | (2) INFORMATION FOR SEQ ID NO: 1:                                                                                                                                                                                                                          |
| 35         | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1785 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear                                                                                                                         |
| 10         | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                          |
|            | (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:11782                                                                                                                                                                                                         |
| <b>1</b> 5 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:                                                                                                                                                                                                                   |
|            | ATG AGC CAA CCA TCT TAT GGC CCG CTG TTC GAG GCC CTG GCC CAC TAC 48  Met Ser Gln Pro Ser Tyr Gly Pro Leu Phe Glu Ala Leu Ala His Tyr  i 5 10 15                                                                                                             |
| 50         | AAT GAC AAG CTG CTG GCC ATG GCC AAG GCC CAG ACA GAG CGC ACC GCC 96 Asn Asp Lys Leu Leu Ala Met Ala Lys Ala Gln Thr Glu Arg Thr Ala 20 25 30                                                                                                                |
|            | CAG GCG CTG CAG ACC AAT CTG GAC GAT CTG GGC CAG GTG CTG GAG 144<br>Gln Ala Leu Leu Gln Thr Asn Leu Asp Asp Leu Gly Gln Val Leu Glu                                                                                                                         |

13

|    |            |       | 35    |            |            |        |            | 40         |        |         | C) C       | ccc        | 45          | እጥሮ   | A A C  | ጥሮር            | 192     |
|----|------------|-------|-------|------------|------------|--------|------------|------------|--------|---------|------------|------------|-------------|-------|--------|----------------|---------|
|    | CAG<br>Gln | GGC   | AGC   | CAG        | CAA        | CCC    | TGG        | CAG<br>Cln | LAN    | TID     | CAG        | Ala        | Cla         | Met   | Asn    | Trp .          |         |
|    | Glņ        |       | Ser   | Gln        | Gln        | Pro    | 55         | GIH        | Dea    | 116     | GIII       | 60         | <b></b>     |       |        |                | Ş.      |
| 5  |            | 50    | CAT   | CAC        | CTC        | AAG    | CTG        | ATG        | CAG    | CAC     | ACC        | CTG        | CTC         | λλλ   | AGC    | GCA            | 240     |
|    | 1.GG       | CIN   | San   | CAG<br>Gln | Leu        | Lvs    | Leu        | Met        | Gln    | His     | Thr        | Leu        | Leu         | Lys   | Ser    | Ala            |         |
|    |            |       |       |            |            | 70     |            |            |        |         | / 3        |            |             |       |        | -              |         |
|    | ·          | CAG   | CCG   | AGC        | GAG        | CCG    | GTG        | ATC        | ACC    | CCG     | GAG        | CGC        | AGC         | GAT   | CGC    | CGC            | 288     |
|    | Gly        | Gln   | Pro   | 6er        | Glu        | Pro    | Val        | Ile        | Thr    | PIO     | Glu        | Arg        | Ser         | Asp   | ura    | Arg            |         |
|    |            |       |       |            | 95         |        |            |            |        | 90      |            |            |             |       | 33     |                | 336     |
| 10 | TTC        | AAG   | GCC   | GAG        | GCC        | TGG    | AGC        | GAA        | CAA    | CCC     | ATC        | TAT        | GAC         | TAL   | Lau    | T.VB           | 330     |
|    | Phe        | Lys   | Ala   |            | λla        | Trp    | Ser        | GIU        | 105    | PIO     | Ile        | TYL        | ABD         | 110   | neu    | 272            |         |
|    |            |       |       | 100        | om o       | N.C.C  | ccc        | » CC       | CAC    | CTG     | CTG        | GCC        | TCG         |       | GAT    | GCC            | 384     |
|    | CAG        | TCC   | TAC   | CTG        | LOV        | Thr    | Ala        | Ara        | His    | Lau     | Leu        | Ala        | Ser         | Val   | Asp    | Ala            |         |
|    |            |       |       |            |            |        |            | 120        |        |         |            |            | 125         |       |        |                |         |
| 15 | CTG        | GAG   | 000   | GTC        | CCC        | CAG    | AAG        | AGC        | CGG    | GAG     | CGG        | CTG        | CGT         | TTC   | TTC    | ACC            | 432     |
| 15 | Leu        | Glu   | Gly   | Val        | Pro        | Gln    | Lys        | Ser        | Arg    | Glu     | Arg        | rea        | Arg         | Phe   | Phe    | Thr            |         |
|    |            | 1 7 0 |       |            |            |        | 135        |            |        |         |            | LAU        |             |       |        |                | 480     |
| •  | CGC        | CAG   | TAC   | GTC        | AAC        | GCC    | ATG        | GCC        | CCC    | AGC     | AAC        | TTC        | CTG         | GCC   | The    | AAC            | 400     |
|    | Arg        | Gln   | Tyr   | Val        | Asn        | λla    | Met        | Ala        | Pro    | Ser     | Asn        | Pne        | rea         | ALA   | 1111   | 160            |         |
|    | 145        |       |       |            |            | 150    |            | cmc        | CNC    | TCC     | 155<br>GAC | ccc        | CAG         | AAC   | CTG    |                | 528     |
| 20 | CCC        | GAG   | CTG   | CTC        | AAG        | CTG    | MLC        | Lau        | GAG    | SAT     | Asp        | alv        | Gln         | Asn   | Leu    | Val            |         |
|    |            |       |       |            | 165        |        |            |            |        | 170     |            |            |             |       | 113    |                |         |
|    | cec        | GG3   | CTC   | acc        | CTC        | TTG    | GCC        | GAG        | GAT    | CTG     | GAG        | CGC        | AGC         | GCC   | GAT    | CAG            | 576     |
|    | Arm        | GIV   | Len   | Ala        | Leu        | Leu    | Ala        | Glu        | Asp    | Leu     | Glu        | Arg        | Ser         | Ala   | Asp    | Gln            |         |
|    |            |       |       | 100        |            |        |            |            | 185    |         |            |            |             | 720   |        |                |         |
|    | CTC        | AAC   | ATC   | CCC        | CTG        | ACC    | GAC        | GAA        | TCC    | GCC     | TTC        | GAG        | CTC         | GGG   | CGG    | GAT            | 624     |
| 25 | Leu        | Asn   | Ile   | Arg        | Leu        | Thr    | Asp        | Glu        | Ser    | λla     | Phe        | Glu        | Leu         | GIA   | Arg    | Asp            |         |
|    |            |       | 105   |            |            |        |            | 200        |        |         |            |            | 203         |       |        |                | 672     |
|    | CTG        | GCC   | CTG   | ACC        | CCG        | GGC    | CGG        | GTG        | GTG    | CAG     | CGC<br>Arg | Thr        | Clu         | T.eu  | TVT    | Glu            | •       |
|    | Leu        |       | Leu   | Thr        | Pro        | GIA    | AIG        | vaı        | Val    | Giii    | nry        | 220        | GIU         | 200   | -1-    |                |         |
|    |            | 210   |       |            | 100        | ccc    | 215        | ACC        | GAG    | ACG     | GTG        |            | AAG         | ACA   | CCT    | GTG            | 720     |
|    | CTC        | ATT   | CAG   | TAC        | SAT        | Pro    | Thr        | Thr        | Glu    | Thr     | Val        | Gly        | Lys         | Thr   | Pro    | Val            |         |
| 30 | 225        |       |       |            |            | 220    |            |            |        |         | ∠35        |            |             |       |        | 240            |         |
|    | cmc        | АТА   | GTG   | CCG        | ccc        | ጥጥር    | ATC        | AAC        | AAG    | TAC     | TAC        | ATC        | ATG         | GAC   | ATG    | CGG            | 768     |
|    | Leu        | Ile   | Val   | Pro        | Pro        | Phe    | Ile        | Asn        | Lys    | Tyr     | Tyr        | Ile        | Met         | Asp   | Mec    | ALG            |         |
|    |            |       |       |            | 245        |        |            |            |        | 250     | )          |            |             |       | 233    |                | . 816   |
|    | CCC        | CAG   | AAC   | TCC        | CTG        | GTC    | GCC        | TGG        | cro    | GTC     | GCC        | CAG        | GGC         | CAG   | Thr    | GTA<br>Val     | . 010   |
| 35 | Pro        | Gln   | Asn   |            |            | Val    | Ala        | Trp        | 1.eu   | vai     | . Ala      | GIH        | GIA         | 270   | 1 1111 | ,,,            |         |
| 35 |            |       |       | 260        |            |        |            | ccc        | 265    | ይጥር     | : 600      | CAG        | GCC         |       |        | GAT            | 864     |
|    | TTC        | ATG   | ATC   | TCC        | TGG        | Ara    | AAN.       | Pro        | Glv    | Val     | Ala        | Gln        | Ala         | Glr   | Ile    | Asp            |         |
|    |            |       | 275   |            |            |        |            | 280        |        |         |            |            | 200         |       |        |                |         |
|    | رسار       | GAC   | CNC   | mac        | GTG        | GTG    | GAT        | GGC        | GTC    | ATC     | GCC        | GCC        | CTG         | GAC   | : 000  | GTG            | 912     |
|    | Leu        | Asp   | Asc   | Tyr        | Val        | Val    | . Asp      | Gly        | . Val  | Ile     | Ala        | Ala        | Lev         | ASI   | Gly    | v Val          |         |
| 40 |            | 200   |       |            |            |        | 795        |            |        |         |            | 300        |             |       |        |                | 960     |
|    | GAG        | GCG   | GCC   | ACC        | GGC        | GAC    | CGG        | GAG        | GTC    | CAC     | GGC        | ATC        | GGC         | TAC   | TGC    | ATC            | 300     |
|    | Glu        | Ala   | Ala   | Thr        | Gly        | Glu    | 1 Arg      | Glu        | val    | . H1 E  | 3 GIA      | TIE        | GIZ         | TY    | Cys    | 11e<br>320     |         |
|    | 305        |       |       | <b>.</b>   |            | 310    | )<br>- ~~~ | occ        | • N/D/ | · ccc   | 315<br>TCC | י<br>ריזיי | . aca       | . GCC | ; cac  | CGC            | 1008    |
|    | GGC        | GGC   | ACC   | GCC        | CTG        | TCC    | CIC        | 31=        | . Mat  | . G3 1  | y Trr      | Leu        | Ala         | Ala   | a Arc  | Arg            |         |
|    |            |       |       |            | 226        |        |            |            |        | 3.30    |            |            |             |       | ٠. د د | ,              |         |
| 45 | CAC        |       | CAC   | cec        | 325<br>GTC | CGC    | ACC        | : GCC      | . ACC  | CTC     | TTC        | AC3        | ACC         | CTC   | CTC    | GAC            | 1056    |
|    | Glr        | LVS   | Glr   | Arc        | val        | Arq    | Th         | Ala        | Th:    | Le      | u Phe      | Thi        | Thi         | . re  | ı re   | yeb            |         |
|    |            |       |       | 340        | 1          |        |            |            | 34.    | )       |            |            |             | יככ   | 3      |                | 1 - 0 - |
|    | TT         | TCC   | CAC   | CCC        | GGC        | GAG    | CT'        | GGC        | AT(    | TT      | CATO       | CAC        | GAC         | CC(   | CAT    | C ATA          | 1104    |
|    | Phe        | e Ser | Gli   | ı Pro      | G1)        | Ç Ç1ı  | Le         | ı Gly      | 7 110  | e Ph    | e Ile      | His        | GIL         | PIC   | ודד כ  | e Ile          |         |
|    |            |       | 200   | :          |            |        |            | 760        | )      |         |            |            | JO.         | ,     |        |                | . 1152  |
| 50 | GCC        | GC G  | CT    | GAG        | GCC        | CA     | A AA       | r GAC      | GC(    | AA      | . GG(      | . ATC      | . ATC       | , GA  | C G1   | G CGC          |         |
|    | Ala        |       |       | ı Gl       | ı Ala      | a Gl   | n Ası      | ı GII      | T AT   | а ГА    | S GT       | 381        | : 1761<br>) |       | , J.,  | y Arg          |         |
|    |            | 37(   | }     |            |            | · (000 | 37!        | , (um-     | 2 CT   | 2 00    | c car      | 10C        | L AG        | CT    | C TA   | с твс          | 1200    |
|    | CAG        | 3 CTC | ; GC( | . GT       | -rc        | TT     | AG         | _          | الما د | افان ني | J 3210     |            |             |       |        | - <del>-</del> |         |

| •  |     | Leu        | Ala  | Val   | Ser      |       | Ser    | Leu  | Leu          | Arg         |      | neA | Ser        | Leu     | Тут  |             |      |
|----|-----|------------|------|-------|----------|-------|--------|------|--------------|-------------|------|-----|------------|---------|------|-------------|------|
|    | 385 |            |      |       |          | 390   |        |      |              |             | 395  |     | 200        | OB6     | 000  | 400         | 1240 |
|    | λAC | TAC        | TAC  | ATC   | GAC      | AGC   | TAC    | LAU  | LVO          | Clv         | CAG  | SOT | Pro        | Ua!     | Ala  | TTC<br>Phe: | 1248 |
| 5  | ABN | Tyr        | Tyr  | 116   | 405      | 201   | TYL    | Deu  | <b>U</b> , 3 | 410         | GIII | 361 |            | • • • • | 415  |             |      |
|    | GAT | CTG        | CTG. | CAC   |          | AAC   | AGC    | GAC  | AGC          |             | AAT  | GTG | GÇG        | GGC     | AAG  | ACC         | 1296 |
|    | Asp | Leu        | Leu  | His   | Trp      | ABN   | Ser    | увь  | Ser          | Thr         | Asn  | Val | Αĺá        | Gly     | Lys  | Thr         |      |
|    | -   |            |      | 420   |          |       |        |      | 425          |             |      |     |            | 430     |      |             |      |
|    |     | AAC        |      |       |          |       |        |      |              |             |      |     |            |         |      |             | 1344 |
|    | His | Asn        |      | Leu   | Leu      | Arg   | Arg    |      | TYT          | Leu         | Glu  | ASD |            | Leu     | Vai  | rAa         |      |
| 10 | coo | GAG        | 435  | 330   | ATC.     | ccc   | A A C  | 440  | ccc          | እጥ <b>ር</b> | CAT  | CTC | 445<br>GGC | AAC     | GTG. | AAG         | 1392 |
| •  |     | Glu        |      |       |          |       |        |      |              |             |      |     |            |         |      |             |      |
|    | 01, | 450        | 200  | _,_   |          |       | 455    |      | ,            |             |      | 460 | ,          |         |      | -4-         |      |
|    |     | CCT        |      |       |          |       |        |      |              |             |      |     |            |         |      |             | 1440 |
|    | Thr | Pro        | Val  | Leu   | Leu      |       | Ser    | Ala  | Val          | qaA         |      | His | Ile        | Ala     | Leu  |             |      |
| 15 | 465 |            |      |       |          | 470   |        |      |              |             | 475  |     |            |         |      | 480         | 1400 |
|    |     | GGC        |      |       |          |       |        |      |              |             |      |     |            |         |      |             | 1488 |
|    | GIR | Gly        | THE  | TIP   | 485      | GIA   | Mec    | nys  | rea          | 490         | GLY  | GIY | Gru        | G1      | 495  | 1110        |      |
|    | CTC | CTG        | GCG  | GAG   |          | GGC   | CAC    | ATC  | GCC          |             | ATC  | ATC | AAC        | CCG     |      | GCC         | 1536 |
|    |     | Leu        |      |       |          |       |        |      |              |             |      |     |            |         |      |             |      |
|    |     |            |      | 500   |          |       |        |      | 505          |             |      |     |            | 510     |      |             |      |
| 20 |     | AAC        |      |       |          |       |        |      |              |             |      |     |            |         |      |             | 1584 |
|    | Ala | Asn        |      | Tyr   | Gly      | Phe   | Trp    |      | Asn          | Gly         | Ala  | Glu |            | Glu     | Ser  | Pro         |      |
|    | 636 | AGC        | 515  | cmc   | 002      | ccc   | ccc    | 520  | CNC          | CNC         | ccc  | cac | 525        | TCG     | TCC  | ccc         | 1632 |
|    |     | Ser        |      |       |          |       |        |      |              |             |      |     |            |         |      |             | 1031 |
|    | 010 | 530        |      |       |          | ,     | 535    |      |              |             |      | 540 |            |         |      |             |      |
| 25 |     | ATG        |      |       |          |       |        |      |              |             |      |     |            |         |      |             | 1680 |
|    | Glu | Met        | Met  | Ģly   | Phe      |       | Gln    | Asn  | Arg          | Авр         |      | Gly | Ser        | Glu     | Pro  |             |      |
|    | 545 |            |      |       |          | 550   |        |      | ama          |             | 555  |     | ~~~        | 000     | ~~~  | 560         | 1770 |
|    |     | GCG<br>Ala |      |       |          |       |        |      |              |             |      |     |            |         |      |             | 1728 |
|    | Pro | Ala        | Arg  | VAI   | 565      | GIU   | GIU    | GLY  | Leu          | 570         | FIU  | ALG | FIU        | Gry     | 575  | 131         |      |
|    | GTC | AAG        | GTG  | CGG   |          | AAC   | ccc    | GTG  | TTT          |             | TGC  | CCA | ACA        | GAG     |      | GAC         | 1776 |
| 30 |     | Lys        |      |       |          |       |        |      |              |             |      |     |            |         |      |             |      |
|    |     |            |      | 580   |          |       |        |      | 585          |             |      |     |            | 590     |      |             |      |
|    |     | GCA        | TGA  |       |          |       |        |      |              |             |      |     |            |         |      |             | 1785 |
|    | Ala | Ala        |      |       |          |       |        |      |              |             |      |     |            |         |      |             |      |
|    |     |            |      |       |          |       |        |      |              |             |      |     |            | •       |      |             |      |
| 35 | (2) | INF        | ORMA | PTON  | FOR      | SEO   | ID 1   | NO i | 2:           |             |      |     |            |         |      |             |      |
|    | ,   |            |      |       |          | _     |        |      |              |             |      |     |            |         |      |             |      |
|    |     | (i)        | SE(  | QUEN  | CE CI    | HARA  | TER    | ISTI | CS:          |             |      |     |            |         |      |             |      |
|    |     |            |      |       |          |       |        | nino | acid         | af          |      |     |            |         |      |             |      |
|    |     |            |      |       |          | ami   |        | cid  |              |             |      |     |            |         |      |             |      |
|    |     |            |      |       |          | DEDN  |        |      |              |             |      |     |            |         |      |             |      |
| 40 |     |            | (1   | ) T   | اطال عار | OGY : | T 7114 | aaL  |              |             |      |     |            |         |      |             |      |
|    |     | (Li        | MOI  | LECUI | LE T     | YPE:  | prot   | tein |              |             |      |     |            |         |      |             |      |
|    |     | , ,        |      |       |          |       | '      |      |              |             |      |     |            |         |      |             |      |

- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
- Met Ser Gln Pro Ser Tyr Gly Pro Leu Phe Glu Ala Leu Ala His Tyr 1 5 . 10 15
  - Asn Asp Lys Leu Leu Ala Met Ala Lys Ala Gln Thr Glu Arg Thr Ala  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ Gin Ala Leu Leu Gin Thr Asn Leu Asp Asp Leu Gly Gin Val Leu Clu
    35 40 45
    Gin Gly Ser Gin Gin Pro Trp Gin Leu Ile Gin Ala Gin Met Asn Trp
    50 55 60
    Trp Gin Asp Gin Leu Lys Leu Met Gin His Thr Leu Leu Lys Ser Ala
    65 70 80

55

|   | •   |       |       |       | 95   |       |       |     | Thr        | 90    |       |       |       |       | 33    |                   |
|---|-----|-------|-------|-------|------|-------|-------|-----|------------|-------|-------|-------|-------|-------|-------|-------------------|
|   | •   |       |       | 100   |      |       |       |     | Gln<br>105 |       |       |       |       | TIO   |       |                   |
| , |     |       | 116   | Leu   |      |       |       | 120 | His        |       |       |       | 143   |       |       |                   |
|   |     | 130   | Gly   |       |      |       | 135   |     | Arg        |       |       | 140   |       |       |       |                   |
|   | 345 |       |       |       |      | 150   |       |     | Pro        |       | 155   |       |       |       |       | TOA               |
|   | Pro |       |       |       | 165  |       |       |     | Glu        | 170   |       |       |       |       | 1/2   |                   |
|   |     |       |       | 180   |      |       |       |     | Asp<br>185 |       |       |       |       | 190   |       |                   |
|   |     |       | 105   |       |      |       |       | 200 | Ser        |       |       |       | 205   |       |       |                   |
|   |     | 210   |       |       |      |       | 215   |     | val<br>Glu |       |       | 220   |       |       |       |                   |
|   | 225 |       |       |       |      | 230   |       |     |            |       | 235   |       |       |       |       | 240               |
|   |     |       |       |       | 245  |       |       |     | Lys        | 250   |       |       |       |       | 233   |                   |
|   |     |       |       | 260   |      |       |       |     | Leu<br>265 |       |       |       |       | 2/0   |       |                   |
|   |     |       | 275   |       |      |       |       | 280 | Gly<br>Val |       |       |       | 400   |       |       |                   |
|   |     | 200   |       |       |      |       | 295   |     | Val        |       |       | 300   |       |       |       |                   |
|   |     |       | Ara   | THE   | GIY  | 310   | vrā   | Gra |            |       | 315   |       | ,,    | - • - |       | 320               |
|   |     | Gly   |       |       | 325  | Ser   |       |     | Met        | 330   | Trp   |       |       |       | 223   |                   |
|   |     |       |       | 3/10  | val  |       |       |     | Thr<br>345 |       |       |       |       | 350   |       |                   |
|   |     |       | 355   |       |      |       |       | 360 | Ile        |       |       |       | 365   |       |       |                   |
|   |     | 270   |       |       |      |       | 375   |     | Ala        |       |       | 380   |       |       |       |                   |
|   | 305 |       |       |       |      | 190   |       |     |            |       | 395   |       |       |       |       | Trp<br>400<br>Phe |
|   |     |       |       |       | 1105 |       |       |     |            | 410   | •     |       |       |       | ربدت  | Thr               |
|   |     |       |       | 420   |      |       |       |     | 425        |       |       |       |       | 430   |       | Lys               |
|   |     |       | 435   | :     |      |       |       | 440 | )          |       |       |       | 440   | )     |       |                   |
|   |     | 450   | 3     |       |      |       | 455   | ,   |            |       |       | 460   |       |       |       | Lys               |
|   | 400 |       |       |       |      | 470   | 1     |     |            |       | 475   | 1     |       |       |       | 480               |
|   | Gln | Gly   |       |       | 485  |       |       |     |            | 490   | )     |       |       |       | 490   |                   |
|   |     |       |       | 500   | 1    |       |       |     | 505        | •     |       |       |       | 210   | ,     | Ala<br>Bro        |
|   |     |       | 519   | :     |      |       |       | 520 | }          |       |       |       | _ 5∠: |       |       | Pro               |
|   |     | E 3 / | ٦.    |       |      |       | 535   | 5   |            |       |       | 541   | )     |       |       | Pro Val           |
|   | 545 |       |       |       |      | 550   | )     |     |            |       | 555   | )     |       |       |       | 200               |
|   | Pro | Ala   |       |       | 565  | :     |       |     |            | 570   | 3     |       |       |       | 57:   |                   |
|   | Va) | l Ly: | e va: | 1 Arc |      | ı Ası | ) Pro | va! | 585        | e Ala | а Суі | 3 Pro | Th    | 590   | 1 G11 | дая ц             |
|   | Ala | a Ala | a     |       |      |       |       |     |            |       |       |       |       |       |       |                   |

|    | (2)        | INF        | ORMA              | TION                 | POR                  | SEQ                 | ID                   | NO:               | 3:         |                  |               |            |            |            |                  |            |               |
|----|------------|------------|-------------------|----------------------|----------------------|---------------------|----------------------|-------------------|------------|------------------|---------------|------------|------------|------------|------------------|------------|---------------|
| 5  |            | (i         | (                 | A) L<br>B) T<br>C) S | engt<br>Ype:<br>Tran |                     | 54 b<br>leic<br>ESS: | ase<br>aci<br>dou | pair<br>d  | s                |               |            | ÷          |            |                  | :          | •             |
|    |            | (ii        | ) MO              | LECU                 | LE T                 | YPE:                | AMO                  | (ge               | nomi       | c)               |               |            |            |            |                  |            |               |
| 10 |            | (ix        |                   | A) N.                | AME/                 | REY:                |                      | 51                |            |                  |               |            |            |            |                  |            |               |
|    |            | (xi        | ) SE              | QUEN                 | CE D                 | ESCR                | IPTI                 | ON:               | SEQ        | ID N             | 0: 3          | :          |            |            |                  |            |               |
| 15 | ATG<br>Met | ATG<br>Met | TAA<br>Asn        | ATG<br>Met           | GAC<br>Asp           | GTG<br>Val          | ATC<br>Ile           | AAG<br>Lys        | AGC<br>Ser | TTT<br>Phe<br>10 | ACC<br>Thr    | GAG<br>Glu | CAG<br>Gln | ATG<br>Met | CAA<br>Gln<br>15 | GGC<br>Gly | ũ <b>⊕</b> 48 |
|    | TTC        |            |                   |                      | CTC<br>Leu           |                     |                      |                   |            | CAG              |               |            | GCC<br>Ala |            | AAC<br>Asn       |            | d <b>a</b> 96 |
| 20 |            |            |                   | ACC                  | CGG                  |                     |                      |                   | GCC<br>Ala |                  |               |            | GCC        | TAC        | GCC              |            | 144           |
|    |            |            | CTC<br>Leu        |                      |                      |                     |                      | GCC<br>Ala        | GTG        |                  |               |            | CAG<br>Gln |            |                  |            | 192           |
| 25 |            | CTG<br>Leu | GCG               |                      |                      |                     | ACA                  | <b>G</b> TG       |            |                  |               | ACC        | GCC<br>Ala |            |                  |            | 240           |
|    | TCC        | CGC        |                   |                      |                      | GAT<br>ABD          |                      |                   |            |                  | CTG           |            | GCC<br>Ala |            |                  | CAG        | 288           |
| 30 |            |            |                   |                      | GAG                  | CTG                 |                      |                   |            | ACC              |               |            | GGC<br>Gly |            | AAG              | AAA<br>Lyb | 336           |
|    |            |            | GGC<br>Gly<br>115 |                      |                      | TGA                 |                      |                   |            |                  |               |            |            |            |                  |            | 354           |
| 35 |            |            |                   |                      |                      |                     |                      |                   |            |                  |               |            |            |            |                  |            |               |
|    | (2)        |            |                   | QUENC                | E CH                 | LARAC<br>I: 11      | TERI                 | STIC<br>ni no     |            | is               |               |            |            |            |                  |            |               |
| 40 |            |            | ((                | :) SI                | RANI                 | amir<br>EDNE<br>GY: | :88:                 |                   |            |                  |               |            |            |            |                  |            |               |
|    | -          |            | MOL<br>SEC        |                      |                      |                     | _                    |                   | SEQ I      | D NO             | ): <b>4</b> : |            |            |            |                  |            |               |
| 45 | 1          |            |                   |                      | 5                    |                     |                      |                   |            | 10               |               |            | Gln        |            | 15               |            |               |
|    |            |            |                   | 20                   |                      |                     |                      |                   | 25         |                  |               |            | Ala        | 30         |                  |            |               |
|    |            |            | 35                |                      |                      |                     |                      | 40                |            |                  |               |            | Ala<br>45  | - •        |                  |            |               |
| 60 |            | 50         |                   |                      |                      |                     | 55                   |                   |            |                  |               | 60         | Gln        |            |                  |            |               |
|    | Ser        | Leu        | Ala               | Ala                  | Leu                  | Gly                 | Thr                  | Val               | Gln        | Leu              | Glu           | Thr        | Ala        | Ser        | Gln              | Leu        |               |

|    | 65<br>Ser | Arg              | Gln        | Met                     |                     | 70<br>Asp      | Asp                                | Ile          | Gln        | Lys<br>90 | 75<br>Leu | ser       | Ala  | Leu        | .:<br>G1y<br>95 | 80<br>Gln |     |
|----|-----------|------------------|------------|-------------------------|---------------------|----------------|------------------------------------|--------------|------------|-----------|-----------|-----------|------|------------|-----------------|-----------|-----|
| -  | Ĝln       | Phe              |            |                         | 85<br>Glu           | Leu            | Asp                                | Val          | Leu<br>105 |           | Ala       | Asp       | Gly. | Ile<br>110 |                 | rya;      |     |
| ,  | Ser       | Thr              |            | <b>Г</b> УS             | Ala                 |                |                                    |              |            |           |           |           | ď,   |            |                 |           |     |
|    | 2) 1      | NFOR             | MATI       | ON F                    | OR S                | EQ I           | D NO                               | : 5:         |            |           |           |           |      |            |                 |           |     |
| 10 |           | (i)              | (E         | .) LE<br>!) TY<br>:) S1 | NGTH<br>PE:<br>RANI | nucl           | TERI<br>5 ba<br>eic<br>SS:<br>line | ació<br>doub | airs<br>I  | <b>;</b>  |           |           |      |            |                 |           |     |
| 15 |           | (ii)             | MOL        | .ECUI                   | E TY                | PE:            | DNA                                | (dei         | omio       | :)        |           |           |      |            |                 |           |     |
|    |           | (ix)             |            | A) N2                   | ME/                 | KEY:<br>ION: 1 | CDS                                | )2           |            |           |           |           |      |            |                 |           |     |
| 20 |           | 1-1              | SE(        | NI IPNI                 | ים שר               | ESCRI          | PTIC                               | ON 1         | SEO :      | בס מס     | ): 5:     | :         |      |            |                 |           |     |
|    |           | AGC              |            |                         |                     |                |                                    |              |            |           |           |           | CGT  | CTC        | AGC             | AAG       | 48  |
|    | Met       | AGC<br>Ser       | Al a       | Gln                     | Ser                 | Leu            | Glu                                | Val          | Gly        | Gln<br>10 | rys       | Ala       | Arg  | Leu        | Ser<br>15       | Lys       |     |
| 25 | CGG       | TTC              | GGG        | GCG                     | 5<br>GCG            | GAG            | GTA                                | GCC          | GCC        | TTC       | GCC       | GCG       | CTC  | TCG        | GAG             | GAC       | 96  |
|    | Arg       | Phe              | Gly        | Ala<br>20               | Ala                 | Glu            | Val                                | Ala          | Ala<br>25  | Phe       | λla       | Ala       | Leu  | Ser<br>30  | Glu             | ABD       |     |
|    | TTC       | AAC              | ccc        | CTG                     | CAC                 | CTG            | GAC                                | CCG          | GCC        | TTC       | GCC       | GCC       | ACC  | ACG        | GCG             | TTC       | 144 |
|    |           | Asn              | 35         |                         |                     |                |                                    | 40           |            |           |           |           | 45   |            |                 |           | 192 |
| 30 | Glu       | CGG<br>Arg<br>50 | Pro        | Ile                     | Val                 | His            | Gly<br>55                          | Met          | Leu        | Leu       | Ala       | Ser<br>60 | Leu  | Phe        | ser             | GIĀ       | 192 |
|    | CTG       | CTG              | ccc        | CAG                     | CAG                 | TTG            | CCG                                | GGC          | AAG        | GGG       | AGC       | ATC       | TAT  | CTG        | GGT             | CAA       | 240 |
|    | 6.5       | Leu              |            |                         |                     | 70             |                                    |              |            |           | 75        |           |      |            |                 | 80        |     |
| 35 | 3/2/      | CTC              | AGC        | TTC                     | AAG                 | CTG            | CCG                                | GTC          | TTT        | GTC       | GGG       | GAC       | GAG  | GTG        | ACG             | GCC       | 288 |
| 35 |           | Leu              |            |                         | 85                  |                |                                    |              |            | 90        |           |           |      |            | 95              |           |     |
|    | GAG       | GTG<br>Val       | GAG        | GTG                     | ACC                 | GCC            | CTT                                | CGC          | GAG        | GAC       | AAG       | CCC       | ATC  | GCC        | ACC<br>Thr      | CTG       | 336 |
|    |           |                  |            | 100                     |                     |                |                                    |              | 105        |           |           |           |      | 110        |                 |           |     |
|    | ACC       | ACC              | CGC        | ATC                     | TTC                 | ACC            | CAA                                | GGC          | GGC        | GCC       | CTC       | GCC       | GTG  | ACG        | GGG             | GAA       | 384 |
| 40 | Thr       | Thr              | Arg<br>115 |                         | Pne                 | Thr            | GIn                                | 120          |            | A1 a      | Leu       | A1 G      | 125  | •          | 923             | Glu       |     |
|    |           | GTG              | GTC        | AAG                     |                     |                |                                    |              |            |           |           |           |      |            |                 |           | 405 |
|    | Ala       | 130              |            | Lys                     | Leu                 | Pro            |                                    |              |            |           |           |           |      |            |                 |           |     |
| 45 | 121       | INF              | AMGO       | <b>ጥ</b> ፓ ርንእ          | FOR                 | SEO            | TD                                 | NO:          | 6:         |           |           |           |      |            |                 |           |     |
|    | 127       |                  |            |                         |                     |                |                                    |              |            |           |           |           |      |            |                 |           |     |
|    |           | (i               | ) SE       |                         |                     |                | CTER<br>34 a                       |              |            | dв        |           |           |      |            |                 |           | * * |
|    |           |                  | (          | B) T                    | YPE:                | ami            | no a                               | ciđ          |            |           |           |           |      |            |                 |           |     |
| 50 |           |                  |            |                         |                     |                | ESS:<br>lin                        |              |            |           |           |           |      |            |                 |           |     |
|    |           | (ii              | .) MC      |                         |                     |                |                                    |              | 1          |           |           |           |      |            |                 |           |     |
|    |           |                  |            |                         |                     |                |                                    |              |            |           |           |           |      |            |                 |           |     |

|    | 4        | (xi)       | SEC        | DUEN                   | CE DI                                    | SCR         | PTIC                  | )N: !         | SEQ 1     | ID NO     | ): 6: | :    |            |           | 4         |                                                         |    |
|----|----------|------------|------------|------------------------|------------------------------------------|-------------|-----------------------|---------------|-----------|-----------|-------|------|------------|-----------|-----------|---------------------------------------------------------|----|
|    | Met<br>1 | Ser        | Ala        | Gln                    | Ser<br>5                                 | Leu         | Glu                   | Val           | Gly       | Gln<br>10 | Lys   | Ala  | λrg        | Leu       |           |                                                         |    |
| 5  | Arg      | Phe        | Gly        | Ala<br>20              | Ala                                      | Glu         | Val                   | Ala           | λla<br>25 | Phe       | Ala   | Ala  | Leu        | Ser<br>30 | Glu       | Asp                                                     |    |
|    | Phe      | Asn        | Pro<br>35  |                        | His                                      | Leu         | Asp                   | Pro<br>40     |           | Phe       | Ala   | Ala  | Thr<br>45  |           | Ala       | Phe                                                     |    |
|    |          | 50         | Pro        |                        |                                          |             | 55                    |               |           |           |       | 60   |            |           |           |                                                         |    |
| 10 | 65       |            |            |                        |                                          | 70          |                       |               |           |           | 75    |      |            |           | •         | 80                                                      |    |
|    | Ser      | Leu        | 5er        | Phe                    | Lys<br>85                                | Leu         | Pro                   | Val           | Phe       | Val<br>90 | Gly   | Asp  | Glu        | Val       | Thr<br>95 | Ala                                                     |    |
|    |          |            |            | 100                    |                                          |             |                       |               | 105       |           |       |      |            | 110       |           |                                                         |    |
| 15 | Thr      | Thr        | Arg<br>115 | Ile                    | Phe                                      | Thr         | Gln                   | Gly<br>120    | Gly       | Ala       | Leu   | Ala  | Val<br>125 | Thr       | Gly       | Glu                                                     |    |
|    | λla      | Val<br>130 | Val        | Lys                    | Leu                                      | Pro         |                       |               |           |           |       |      |            |           |           |                                                         |    |
| 20 | (2)      | INFO       | RMA        | NOI                    | FOR                                      | SEQ         | ID I                  | 30:           | 7:        |           |       |      |            |           |           |                                                         |    |
| -  |          | (±)        |            |                        | CE CI<br>ENGTI                           |             |                       |               |           |           |       |      |            |           |           | Ser Lys 15 % 31n Asp Ala Phe Ser Gly 31y Gln 80 Thr Ala |    |
|    |          |            | (1         | 3) T                   | YPE:                                     | nuc         | leic                  | aci           | đ         |           |       |      |            |           |           |                                                         |    |
| 25 |          |            | (1         | ) T                    | OPOL                                     | OGY:        | line                  | ear           |           |           |       |      |            |           |           |                                                         |    |
|    |          | (ii)       |            |                        | LE T                                     |             |                       |               |           |           |       | etic | DNA        | 14        |           |                                                         |    |
|    |          | (xi)       | SEC        | QUEN                   | CE DI                                    | ESCR.       | PTI                   | : : MC        | SEQ :     | ID N      | 0: 7  | :    |            |           |           |                                                         |    |
| 30 | ccs      | CST        | GA 1       | PCAA:                  | DAKY                                     | LM A.       | PAYA'                 | rc            |           |           |       |      |            |           |           |                                                         | 27 |
|    | (2)      | INFO       | RMAT       | rion                   | FOR                                      | SEQ         | ID I                  | : 01/         | 8:        |           |       |      |            |           |           |                                                         |    |
| 35 |          | (±)        | ()<br>(I   | A) L:<br>3) T<br>C) S' | CE CI<br>ENGTI<br>YPE:<br>TRANI<br>OPOLO | nuc<br>DEDM | 7 ba:<br>leic<br>ESS: | se pa<br>acid | airs<br>d |           |       |      |            |           |           | ٠                                                       |    |
|    |          | (ii)       |            |                        | LE T                                     |             |                       |               |           |           |       | etic | AMO        |           |           |                                                         |    |
| 40 |          | (x1)       | SEC        | QUEN                   | CE DI                                    | ESCR        | IPTI (                | : NC          | SEQ       | ID N      | o: 8  | :    |            |           |           |                                                         |    |
|    | SAGO     | CASC       | cs o       | STCC                   | ARTC                                     | SG G        | CAC                   | CA            |           |           |       |      |            |           |           |                                                         | 27 |
|    | (2)      | INPO       | RMA        | rion                   | FOR                                      | SEQ         | I DI                  | : 00          | 9 1       |           |       |      |            |           |           |                                                         |    |
| 45 |          | (±)        | ()         | A) L                   | CE CI<br>ENGTI<br>YPE:                   | H: 3        | 187 1                 | oase          | pai:      | rs        |       |      |            |           |           |                                                         |    |
|    |          |            | Ċ          | 2) S'                  | POL                                      | DEDN        | ESS:                  | dou           |           |           |       | •    |            |           |           |                                                         | •• |
| 50 |          | (ii)       | моз        | LECU                   | LE T                                     | YPE:        | DNA                   | (ge           | nomi      | c)        |       |      |            |           |           |                                                         |    |
|    |          | (ix)       | FEJ        | ATUR!                  | E:                                       |             |                       |               |           |           |       |      |            |           |           | -                                                       |    |

|     | -         |           | (A)         | IAN       | ME/KI     | EY:       | CDS          | 224          |            |           |       |             |             | .3    | :    |                |            |
|-----|-----------|-----------|-------------|-----------|-----------|-----------|--------------|--------------|------------|-----------|-------|-------------|-------------|-------|------|----------------|------------|
|     |           |           | (B)         | LO        | CATI      | : NC      | 384.         | ,734         |            |           |       |             |             |       |      |                |            |
|     | <i>:</i>  | (ix)      | PEA!        | rure      | :         |           |              |              |            |           |       |             |             |       |      | 2              |            |
| 5   |           |           | (A)         | IAN (     | ME/K      | EYı       | CDS          | 261          | ,          |           |       |             |             |       |      |                |            |
|     |           |           | (B          | } LO      | CATI      | ON:       | 830.         | .261         | 1          |           |       |             | 51          |       |      |                |            |
|     |           | (ix)      | SEQ         | UENC      | E DE      | SCRI      | P710         | N: 5         | EQ I       | סמ ס      | . 9:  |             |             |       |      |                |            |
|     | NC NT     | CTCC      | <b>AC</b> C | acce.     | TGCT      | G GC      | CTGG         | GCCA         | CGC        | CGGC      | GAG ( | GCC         | AGCG        | ca a  | AGCA | ACCGA          | 60         |
| 10  | 0010      | 03.00     | ~ ~         | ACAC.     | CTTT      | ሮ አጥ      | CCCC         | ATTC         | CTT        | GGCA      | GTC ' | <b>TGAA</b> | <b>rgac</b> | GT G  | CCAG | CCTAT          | 120        |
| , • |           |           | ~ ~         |           | ccca      | CCL       | രന്ദര        | CCGC         | CGG        | ACCC      | AGT   | CCGT        | CACC        | TC T  | CUTC | TGATC          | 180<br>240 |
|     | CGCC      | TCCC      | TC G        | ACGG      | GCGT      | C GC      | TGAC<br>TCCA | ሊሌሌሌ<br>ፐፋልን | GCT        | CAAA      | CGT   | GTGT        | TTGA        | AC A  | GAGC | TGTCA<br>AAGCA | 300        |
|     | 1010      | OM N N    | 3 C 3       | CCCA      | ጥርእር      | እ ጥር      | CAGT         | ACCC         | GTA        | AGAA      | GGG   | CCGA        | TTGG        | CC C  | ACAA |                | 360        |
|     | CTGT      | TCTG      | CC G        | AACT      | GGAG      | A CC      | G AT         | G AT         | 'G AA      | T AT      | G GA  | C GT        | G AT        | CAA   | G AG | C              | 410        |
| 15  |           |           |             |           |           |           | ме           | t Me         | t AB       | n Me      | t As  | pva<br>s    | 1 11        | е гу  | 8 36 | _              |            |
|     | ттт       | ACC.      | GAG         | CAG       | ATG       | CAA       | GGC          | TTC          | GCC        | GCC       | ccc   | CTC         | ACC         | CGC   | TAC  | AAC            | 458        |
| •   | Phe       | Thr       | Glu         | Gln       | Met       | Gln       | Gly          | Phe          | Ala        | Ala       | Pro   | Leu         | Thr         | Arg   | Tyr  | ASIL           |            |
|     | • •       |           |             |           |           | 15        |              |              | CAG        |           | 20    |             |             |       |      | 23             | 506        |
|     | CAG       | CTG       | CTG         | GCC       | AGC       | AAC       | TIA          | GAA          | Gln        | Leu       | Thr   | Arg         | Leu         | Gln   | Leu  | Ala            |            |
| 20  |           |           |             |           | 3.0       |           |              |              |            | 35        |       |             |             |       | 40   |                |            |
|     | TCC       | GCC       | AAC         | GCC       | TAC       | GCC       | GAA          | CTG          | GGC        | CTC       | AAC   | CAG         | TTG         | CAG   | GCC  | GTG<br>Val     | 554        |
|     | Ser       | Ala       | Asn         |           | Tyr       | Ala       | Glu          | Leu          | Gly<br>50  | rea       | VRII  | GIN         | ren         | 55    | ara  |                |            |
|     | NGC       | AAG       | GTG         | 45<br>CAG | GAC       | ACC       | CAG          | AGC          | CTG        | GCG       | GCC   | CTG         | GGC         | ACA   | GTG  | CAA            | 602        |
|     | Ser       | Lys       | Val         | Gln       | Авр       | Thr       | Gln          | Ser          | Leu        | Ala       | λla   | Leu         | GIĀ         | Thr   | Val, | Gln            |            |
| 25  |           |           | 60          |           |           |           | ~~~          | 65           | CGC        | CNG       | ATC2  | CTC         | 70<br>(347) | GAC   | ATC  | CAG            | 650        |
|     | CTG       | GAG       | ACC         | GCC       | AGC       | Gin       | Leu          | Ser          | Arg        | Gln       | Met   | Leu         | Asp         | Asp   | Ile  | Gln            |            |
|     |           | 75        |             |           |           |           | 80           |              |            |           |       | 85          |             |       |      |                |            |
|     | AAG       |           | AGC         | GCC       | CTC       | GGC       | CAG          | CAG          | TTC        | AAG       | GAA   | GAG         | CTG         | GAT   | GTC  | CTG            | 698        |
|     |           | Leu       | Ser         | Ala       | Leu       | Gly<br>95 | Gln          | Gln          | Phe        | гав       | 100   | GIU         | ren         | мар   | Vai  | 105            |            |
| 30  | 90<br>Acc | GCA       | GAC         | GGC       | ATC       | AAG       | AAA          | AGC          | ACG        | GGC       | AAG   | GCC         | TGAT        | DAAT  | ccc  |                | 744        |
|     | Thr       | Ala       | λsp         | Gly       | Ile       | Lys       | Lys          | Ser          | Thr        | GIA       | Lys   | Ala         |             |       |      |                |            |
|     |           |           |             |           | 110       |           |              |              |            | TID       |       |             | PACCO       | age r | PAGT | rccccc         | 804        |
|     | TGG       | CTGC(     | CCG 1       | PTCG(     | GGCA(     | AG AG     | CAC          | ATG          | AGC        | CAA       | CCA   | TCT         | TAT         | GGC   |      | CIG            | 856        |
|     | CIC       | 3(3(3.1)  | 310         | JG 1 G/   | n i i     |           |              | Met          | Ser        | Gln       | Pro   | Ser         | Tyr         | Gly   | Pro  | Leu            |            |
| 35  |           |           |             |           |           |           |              | 1            |            |           | CITIC | 5           | ccc         | አጥሮ   | acc  | AAG            | 904        |
|     | TTC       | GAG       | GCC         | CTG       | GCC       | CAC       | TAC          | AAT          | GAC<br>Asp | LVR       | Leu   | Leu         | Ala         | Met   | Ala  | Lys            | J          |
|     | 1.0       |           |             |           |           | 15        |              |              |            |           | 2 ∪   |             |             |       |      | 43             |            |
|     | -         | CAG       | ACA         | GAG       | CGC       | ACC       | GCC          | CAG          | GCG        | CTG       | CTG   | CAG         | ACC         | AAT   | CTG  | GAC            | 952        |
|     | Ala       | Gln       | Thr         | Glu       |           | Thr       | Ala          | Gln          | Ala        | Leu<br>35 | Leu   | GIN         | THE         | ASII  | 40   | ABD            |            |
| 40  | СЪТ       | CTG       | GGC         | CAG       | 30<br>GTG | CTG       | GAG          | CAG          | GGC        | AGC       | CAG   | CAA         | ccc         | TGG   | CAG  | CTG            | 1000       |
|     | Asp       | Leu       | Gly         | Gln       | Val       | Leu       | Glu          | Gln          | Gly        | Ser       | Gln   | Gln         | Pro         | TIP   | Gln  | Leu            |            |
|     |           |           |             | 45        |           |           |              |              | 50         |           |       |             |             | 33    |      |                | 1048       |
|     | ATC       | CAG       | GCC         | CAG       | Mor       | AAC       | Trn          | Tro          | CAG<br>Gln | ASD       | Gln   | Leu         | Lys         | Leu   | Met  | Gln            |            |
| 45  |           |           |             |           |           |           |              | 65           |            |           |       |             | 70          |       |      |                |            |
| 45  | CAC       | ACC       | OTTO        | CTC       | AAA       | AGC       | GCA          | GGC          | CAG        | CCG       | AGC   | GAG         | CCG         | GTG   | ATC  | ACC            | 1096       |
|     | His       | Thr       | Leu         | Leu       | Lys       | Ser       | Ala<br>80    | Gly          | Gln        | PIO       | SOL   | G1 u        | PIO         | val   | TIE  | 1111           |            |
|     | ccc       | 75<br>GAG | ccc         | AGC       | GAT       | CGC       | CGC          | ጥጥር          | AAG        | GCC       | GAG   | GCC         | TGG         | AGC   | GAA  | CAA            | 1144       |
|     | Pro       | Glu       | Arg         | Ser       | Asp       | Arg       | Arg          | Phe          | Lys        | Ala       | GIU   | Ala         | Trp         | Ser   | Glu  | GIH            |            |
| 50  | 0.0       |           |             |           |           | 9.5       |              |              |            |           | 100   |             |             |       |      | IUJ            | 1192       |
|     | CCC       | ATC       | TAT         | GAC       | TAC       | CTC       | . AAG        | Gln          | Ser        | Tyr       | Leu   | Leu         | Thr         | Ala   | Arg  | CAC<br>His     |            |
|     |           |           |             |           | 110       | 1         |              |              |            | 115       |       |             |             |       | 120  | ,              |            |
|     | CTC       | CTG       | GCC         | TCG       | GTO       | GAT       | GCC          | CTG          | GAG        | GGC       | GTC   | CCC         | CAG         | AAG   | AGC  | CGG            | 1240       |

|                   | <b>L</b> eu | Leu        | Ala        | Ser<br>125 | Val        | Asp   | Ala        | Leu        | Glu<br>130 | Gly         | Val  | Pro        | Gln        | Lys:       | Ser        | Arg   |       |
|-------------------|-------------|------------|------------|------------|------------|-------|------------|------------|------------|-------------|------|------------|------------|------------|------------|-------|-------|
|                   | GAG         | CGG        | CTG        | CGT        | TTC        | TTC   | ACC        | CGC        | CAG        | TAC         | GTC  | AAC        | GCC        | ATG        | GCC        | CCC   | 1288  |
| <i>:</i> <b>5</b> | Glu         | Arg        | Leu<br>140 | Arg        | Phe        | Phe   | Thr        | Arg<br>145 | Gln        | Tyr         | Val  | ABN        | Ala<br>150 | Met        | Ala        | Prio  |       |
|                   | ACC         | AAC        | TTC        | CTG        | GCC        | ACC   | AAC        |            | GAG        | CTG         | CTC  | AAG        | CTG        | ACC.       | CTG        | GAG   | 1336  |
|                   | Ser         | Asn<br>155 | Phe        | Leu        | Ala        | Thr   | Asn<br>160 | Pro        | Glu        | Leu         | Leu  | Lys<br>165 | Ĺeu        | Thr        | Leu        | Glu   |       |
|                   | TICC        | CAC        | ccc        | CAG        | 226        | CTG   |            | CGC        | GGA        | CTG         | GCC  |            | TTG        | GCC        | GAG        | GAT   | 1384  |
|                   | Ser         | Asn        | GIV        | Gln        | ARR        | Leu   | Val        | Arg        | Gly        | Leu         | Ala  | Leu        | Leu        | λla        | Glu        | ASP   |       |
| 10                | 170         |            | 0.7        | Q          |            | 175   |            |            | •          | -           | 180  |            |            |            |            | 185   |       |
|                   | CTG         | GAG        | CGC        | AGC        | GCC        | GAT   | CAG        | CTC        | AAC        | ATC         | CGC  | CTG        | ACC        | GAC        | GAA        | TCC   | 1432  |
|                   | Leu         | Glu        | Ara        | Ser        | Ala        | ARD   | Gln        | Leu        | naA        | Ile         | Arg  | Leu        | Thr        | λεο        | Glu        | Ser   |       |
|                   |             |            |            |            | 190        |       |            |            |            | 195         | ACC  |            |            |            | 200        |       | 1480  |
|                   | GCC         | TALC       | GAG        | CTC        | 03         | 250   | OAI        | Lou        | Ala        | LAU         | Thr  | Pro        | Clv        | Ara        | Val        | val   |       |
|                   | ALS         | Pne        | GIU        |            | GLA        | AIG   | квр        | reu        | 210        | Den         | 1111 | -10        | GTA        | 215        | 141        | *41   |       |
| 15                | 22.2        |            |            | 205        | ama.       | m > m | CAC        | CTC        |            | CAG         | TAC  | AGC        | ccc        |            | ACC        | GAG   | 1528  |
|                   | CAG         | CGC        | ACC        | GAG        | Circ       | TAI   | CAG        | TAU        | 710        | Gla         | Tyr  | Ser        | Pro        | Thr        | Thr        | Glu   | 1,500 |
|                   |             |            | 220        |            |            |       |            | 225        |            |             |      |            | 230        |            |            |       |       |
|                   | ACG         | GTG        | GGC        | AAG        | ACA        | CCT   | GTG        | CTG        | ATA        | GTG         | CCG  | CCC        | TTC        | ATC        | AAC        | AAG   | 1576  |
|                   | Thr         | Val<br>235 | Gly        | ГЛВ        | Thr        | Pro   | Val<br>240 | Leu        | Ile        | Val         | Pro  | Pro<br>245 | Phe        | Ile        | Yeu        | Lys   |       |
| 20                | TAC         | TAC        | ATC        | ATG        | GAC        | ATG   | CGG        | CCC        | CAG        | AAC         | TCC  | CTG        | GTC        | GCC        | TGG        | CTG   | 1624  |
|                   | Tyr         | Tyr        | Ile        | Met        | λsp        | Met   | Arg        | Pro        | Gln        | Asn         | Ser  | Leu        | Val        | Ala        | Trp        | Leu   |       |
|                   | 250         |            |            |            |            | 255   |            |            |            |             | -260 |            |            |            |            | 265   |       |
| ,1                | GTC         | GCC        | CAG        | GGC        | CAG        | ACG   | GTA        | TTC        | ATG        | ATC         | TCC  | TGG        | CGC        | AAC        | CCG        | GGC   | 1672  |
| • •               | Val         | Ala        | Gln        | Gly        | Gln        | Thr   | Val        | Phe        | Met        | Ile         | Ser  | Trp        | λrg        | Asn        | Pro        | Gly   |       |
|                   |             |            |            |            | 270        |       |            |            |            | 275         |      |            |            |            | 280        |       |       |
| 25                | GTG         | GCC        | CAG        | GCC        | CAA        | ATC   | GAT        | CTC        | GAC        | GAC         | TAC  | GTG        | GTG        | GAT        | GGC        | GTC   | 1720  |
|                   | Val         | Ala        | Gln        | Ala<br>285 | Gln        | Ile   | Asp        | Leu        | Asp<br>290 | Asp         | Tyr  | Val        | Val        | Азр<br>295 | Gly        | Val   |       |
|                   | ATC         | GCC        | GCC        | CTG        | GAC        | GGC   | GTG        | GAG        | GCG        | GCC         | ACC  | GGC        | GAG        | CGG        | GλG        | GTG   | 1768  |
|                   | Ile         | Ala        | Ala<br>300 | Leu        | Авр        | Gly   | Val        | Glu<br>305 | Ala        | Ala         | Thr  | Gly        | Glu<br>310 | Arg        | Glu        | Val   |       |
| 30                | CAC         | GGC        | ATC        | GGC        | TAC        | TGC   | ATC        |            | GGC        | ACC         | GCC  | CTG        | TCG        | CTC        | GCC        | ATG   | 1816  |
| 30                | His         | Gly<br>315 | Ile        | Gly        | Tyr        | Сув   | 11e<br>320 | Gly        | Gly        | Thr         | Ala  | Leu<br>325 | Ser        | Leu        | Ala        | Met   |       |
|                   | GGC         | TGG        | CTG        | GCG        | GCG        | CGG   | CGC        | CAG        | AAG        | CAG         | CGG  | GTG        | CGC        | ACC        | GCC        | ACC   | 1864  |
|                   | Glv         | Trp        | Leu        | Ala        | Ala        | Arg   | Arq        | Gln        | Lys        | Gln         | λrg  | Val        | Arg        | Thr        | λla        | Thr   |       |
|                   | 330         |            |            |            |            | 335   |            |            |            |             | 340  |            |            |            |            | 345   |       |
|                   | CTG         | TTC        | ACT        | ACC        | CTG        | CTG   | GAC        | TTC        | TCC        | CAG         | ccc  | GGG        | GAG        | CTT        | GGC        | ATC   | 1912  |
| 35                | Leu         | Phe        | Thr        | Thr        | Leu<br>350 | Leu   | Asp        | Phe        | Ser        | G1n<br>355  | Pro  | G1 y       | Glu        | Leu        | Gly<br>360 | Ile   |       |
|                   | TTC         | ATC        | CÁC        | GAG        | ccc        | ATC   | ATA        | GCG        | GCG        | CTC         | GAG  | GCG        | CAA        | AAT        | GAG        | GCC   | 1960  |
|                   | Phe         | Ile        | Ris        | Glu        | Pro        | Ile   | Ile        | λla        | Ala        | Leu         | Glu  | Ala        | Gln        | Asn        | G1 u       | Ala   |       |
|                   |             |            |            | 365        |            |       |            |            | 370        |             |      |            |            | 375        |            |       |       |
|                   | AAG         | GGC        | ATC        | ATG        | GAC        | GGG   | CGC        | CAG        | CTG        | GCG         | GTC  | TCC        | TTC        | AGC        | CTG        | CTG   | 2008  |
| 40                |             |            | 380        |            |            |       |            | 385        |            |             | Val  |            | 390        |            |            |       |       |
|                   | CGG         | GAG        | AAC        | AGC        | CTC        | TAC   | TGG        | AAC        | TAC        | TAC         | ATC  | GAC        | AGC        | TAC        | CTC        | AAG . | 2056  |
|                   | Arg         | Glu<br>395 | Asn        | Ser        | Leu        | Tyr   | Trp        | Asn        | Tyr        | Tyr         | Ile  | Авр<br>405 | Ser        | Tyr        | Leu        | Lys   |       |
|                   | GGT         | CAG        | AGC        | CCG        | GTG        | GCC   | TTC        | GAT        | CTG        | CTG         | CAC  | TGG        | AAC        | λGC        | GAC        | AGC   | 2104  |
| 45                | Gly         | Gln        | Ser        | Pro        | Val        | Ala   | Phe        | Asp        | Leu        | Leu         | His  | Trp        | Asn        | Ser        | ABD        | Ser   |       |
|                   | 410         |            |            |            |            | 415   |            |            |            |             | 420  |            |            |            |            | 425   |       |
|                   | ACC         | λλΤ        | GTG        | GCG        | GGC        | AAG   | ACC        | CAC        | AAC        | AGC         | CTG  | CTG        | CGC        | CGT        | CTC        | TAC   | 2152  |
|                   | Thr         | Asn        | Vaļ        | Ala        | Gly<br>430 | Lув   | Thr        | нiв        | ХSП        | Ser<br>435  | Leu  | Ге́п       | Arg        | Arg        | Leu<br>440 | Tyr   |       |
|                   | CTG         | GAG        | እአሮ        | CAG        | CTG        | GTC   | AAG        | GGG        | GAG        |             | AAG  | ATC        | CGC        | λλC        |            | CGC   | 2200  |
|                   | Len         | Glu        | Asn        | Gln        | Leu        | Val   | Lvs        | Glv        | Glu        | Leu         | Lys  | Ile        | Ara        | Asn        | Thr        | Arg   |       |
| 50                |             |            |            | 445        |            |       |            |            | 450        |             | CTG  |            |            | 455        |            |       | 2248  |
|                   | ATC         | GAT        | CTC        | GGC        | AAG        | UTG   | AAG        | MD-        | Dro        | 010         | Leu  | LIG        | 010        | 200        | 110        | Val   | 2240  |
|                   | 116         | АВР        | 460        | GIA        | rys        | vai   | гĀg        | 465        | LIO        | ~ <b>41</b> | neu  |            | 470        | 261        | A. d       | 741   |       |
|                   |             |            |            |            |            |       |            |            |            |             |      |            |            |            |            |       |       |

|    | GAC.       | GAT   | CAC   | ATC            | GCC        | CTC    | TGG       | CAG<br>Gln  | GGC<br>G1 v | ACC<br>Thr | TGG<br>TID    | CAG<br>Gln | GGC<br>Gly                                           | ATG<br>Met | AAG<br>Lys | CTG<br>Leu       | 2296                     |
|----|------------|-------|-------|----------------|------------|--------|-----------|-------------|-------------|------------|---------------|------------|------------------------------------------------------|------------|------------|------------------|--------------------------|
|    |            |       |       |                |            |        | 4 Q O     |             |             |            |               | 4 H D      |                                                      |            |            |                  | 2344                     |
|    | Phe        | GGC   | GGG   | GAG            | CAG        | CGC    | TTC       | CTC         | CTG         | GCG        | GAG<br>Glu    | Ser        | GGC                                                  | His        | Ile        | GCC \$           | 2344                     |
| 5  |            |       |       |                |            | 105    |           |             |             |            | 500           |            |                                                      |            |            | 303              |                          |
|    |            | ATC   | ATC   | AAC            | CCG        | CCG    | GCC       | GCC         | AAC         | AAG        | TAC           | GGC        | TTC'                                                 | TGG        | CAC        | AAC              | 2392                     |
|    | Gly        | Ile   | Ile   | Asn            | Pro<br>510 | Pro    | Ala       | Ala         | Asn         | 515        | туг           | GIĀ        | Pne                                                  | пр         | 520        | ABII             |                          |
|    | GGG        | acc   | GAG   | GCC            | GNG        | AGC    | CCG       | GAG         | AGC         | TGG        | CTG           | GCA        | GGG                                                  | GCG        | ACG        | CAC              | 2440                     |
| 10 | Gly        | Ala   | Glu   | Ala            | Glu        | Ser    | Pro       | Glu         | Ser         | Trp        | Leu           | Ala        | Gly                                                  | Ala<br>535 | Thr        | HIB              |                          |
|    | CAG        | 000   | ccc   | 525<br>ECC     | ተርር        | TGG    | ccc       | GAG         | 510<br>ATG  | ATG        | GGC           | ттт        | ATC                                                  | CAG        | AAC        | CGT              | 2488                     |
|    | Gln        | Glv   | Gly   | Ser            | Trp        | Trp    | Pro       | G1 u        | Met         | Met        | Gly           | Phe        | He                                                   | Gln        | Asn        | Arg              |                          |
|    | GAC        |       | E 4 0 |                |            |        |           | 545         |             |            |               |            | 220                                                  |            |            |                  | 2536                     |
|    | GAC<br>Asp | GAA   | GGG   | TCA            | GAG        | Pro    | Val       | Pro         | Ala         | λrg        | Val           | Pro        | Glu                                                  | Gl u       | Gly        | Leu              |                          |
| 15 |            | C C C |       |                |            |        | 560       |             |             |            |               | 565        |                                                      |            |            |                  | 2584                     |
|    | GCC        | ccc   | GCC   | CCC            | GGC        | CAC    | TAT       | GTC         | AAG<br>Lvs  | GTG<br>Val | CGG<br>Arg    | .CTC       | AAC                                                  | Pro        | Val        | Phe              | 2304                     |
|    | C 70       |       |       |                |            | 575    |           |             |             |            | 580           |            |                                                      |            |            | 585              |                          |
|    | GCC        | TGC   | CCA   | ACA            | GAG        | GAG    | GAC       | GCC         | GCA         | TGA        | GCGC          | ACA        | ATCC                                                 | CTGG       | AA         |                  | 2631                     |
| 20 | Ala        |       |       |                | E 9 A      |        |           |             |             |            |               |            |                                                      |            |            |                  |                          |
| 20 | GTAG       | sGCC. | AGA   | AGGC           | CCCM       | cr c   | agca      | AGCG        | G TT        | CGGG       | GCGG          | CGG        | AGGT                                                 | AGC        | CGCC       | TTCGCC           | 2691                     |
|    | ~~~        |       | ~~~   | 2002           | COUNTY     | A A C  | CCCC      | TGCA        | CT          | GGAC       | CCGG          | CCT        | TCGC                                                 | CGC        | CACC       | ACGGCG<br>CTGGGC | 2/31                     |
|    |            |       | maa   | cccc           | CARG       | aa a   | ACCA      | ጥርጥA'       | тст         | CCGT       | CAAA          | GCC        | TCAG                                                 | CTT        | CAAG       | Crece            | 20/I                     |
|    |            |       |       | ~~~            | CCAC       | CB: C  | A CCC     | CCCA        | വരു         | CCAC       | GTGA          | CCG        | CCCT                                                 | TUG.       | CUAG       | じんしんへい           | 4771                     |
| 25 |            |       |       | m ~ 2 2        | COMC       | CCM    | TABC      | CACC        | a ac        | CCCA       | CCCA          | GGC        | ACAA                                                 | TCA        | GUU        | ACGGGG           | . 3031                   |
|    |            |       |       | - mm/3         | mman       | CC C   | CCCC      | かんしに        |             | accc       | ידידיי        | TTT        | CGGG                                                 | GCA        | ATTI       | ないしついか           | . 3777                   |
|    | GGC        | CCTT  | TCC   | CTGC           | CCCG       | CC T   | AACT      | GCCT        | x xx        | ATGG       | cccc          | CCT        | GCCG                                                 | TGT        | AGGC       | ATTCAT           | 3171                     |
|    | CCAC       | 3CTA  | GAG   | GAAT           | TC         |        |           |             |             |            |               |            |                                                      |            |            |                  | _                        |
| 30 |            |       |       |                |            |        |           |             |             |            |               |            |                                                      |            |            |                  |                          |
| •• | (2)        | INF   | ORMA  | 11ÓN           | FOR        | SEC    | ID        | NO:         | 10:         |            |               |            |                                                      |            |            |                  |                          |
|    |            | i)    | ) SE  | QUEN           | CE C       | HAR    | CTEF      | ITEI        | cs:         |            |               |            |                                                      |            |            |                  |                          |
|    |            |       |       | A) L           | engt       | 'H: 3  | 187       | base        | pai         | rs         |               |            |                                                      |            |            | •                | •                        |
| 35 |            |       |       |                |            |        |           | aci<br>dou  |             |            |               |            |                                                      |            |            | •                |                          |
|    |            |       |       | (D) 1          |            |        |           |             |             |            |               |            |                                                      |            |            |                  |                          |
|    |            |       |       |                | T E C      | wne.   | DATE      | lac         | nomi        | c)         |               |            |                                                      |            |            |                  |                          |
|    |            | (11   | ) MC  | LECL           | 175 1      | .IPE:  | DIM       | i (ge       | .110111     | ,          |               |            |                                                      |            |            |                  |                          |
|    |            |       |       |                |            |        |           |             |             |            |               |            |                                                      |            |            | -                |                          |
| 40 |            | Ki)   |       | EATUF<br>(A) l |            | KEY:   | cos       | 3           |             |            |               |            |                                                      |            |            |                  |                          |
|    |            |       |       |                |            |        |           | 113         | 012         |            |               |            |                                                      |            |            |                  |                          |
|    |            | (x    | :i) : | SEQUI          | ence       | DES    | CRIP'     | rion:       | SEC         | ] ID       | NO:           | 10:        |                                                      |            |            |                  |                          |
| 45 | AGA        | TCTC  | GAC   | CGG            | GTG        | CTG (  | CCT       | GGCC        | LA CO       | GCCG       | GCGA          | GGG        | CCAG                                                 | CGCG       | GAG        | CAACCG           | A 60                     |
| 40 | 000        | CCAC  | 2000  | CAG            | CCTT       | יידים  | ልጥሮርረ     | CC ATT      | rc c        | rtgg       | CAGIL         | _ T.G.     | JV.10                                                | MCG1       | بابان      | マストトラン           | 1 120                    |
|    | 000        | ama   | 2000  | CAC            | 2000       | 24°C ( | てつずてご     | ACAA.       | A A         | AATT       | CAAA          | CAG        | "TAAA                                                | raac       | ATT        | TCTGAT<br>TATGTC | A 240                    |
|    | mmm.       |       | 2022  | 3.00           | マベスかり      | ተጥር /  | ال عاملات | CACAI       | እጥ ራር       | CTCA.      | AACG'         | r GT       | $\mathbf{G}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$ | عممن       | AGA        | GCANGL           | V 300                    |
|    | 3.03       | COMI  |       | NOO            | 2376       | ACA '  | TGCA      | GTAC(       | C G         | raag.      | <b>AAGG</b> ( | 3 CC       | GATT                                                 | GGCC       | CAC        | AACAAC           | A 360                    |
| 50 | 3/13       | maar  |       | CORPOR         | CCCC       | 200    | הההה      | <b>ፐሮእር</b> | CC G        | CTAC       | AACC          | A GC       | TGCT                                                 | GGCC       | . AGC      | ACCGAG<br>AACATC | 6 400                    |
|    | 330        | 300   | 2020  | ccc            | നസവ        | CAG    | ርጥርር      | രസ്ത        | CG C        | caac       | GCCT          | A CG       | CCGA.                                                | ACTG       | GGC        | CTCAAC           | C 340                    |
|    |            |       |       |                |            |        |           |             |             |            |               |            |                                                      |            |            | 303000           | $\sigma = c \circ \circ$ |
|    | 3 (77)     | moor  |       | CCT            | CACC       | DAG    | CTGC      | AGGA        | CAC         | CCAG       | AGCC          | r GG       | CGGC                                                 | CCLG       | GGC        | ACAGTO<br>CTGAGO |                          |

|                         | CCCTCGGCC                                                                                                                                                                                                   | A GCAGTTO                                                                                                                                                                                                                          | AAG G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAGAGCTG                                                                                                                                          | G ATGTCCTGA                                                                                                                                                                                                                        | C CGCAGACGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATCAAGAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 720                                                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                         | CCACCCCCA                                                                                                                                                                                                   | A COCCTO                                                                                                                                                                                                                           | TAA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCCTGGCT                                                                                                                                          | CCCGTTCGG                                                                                                                                                                                                                          | G CAGCCACATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TÉCCCATGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 780                                                          |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | A GGAGAGCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| •                       |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | T GACAAGCTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 5                       | CARCCCCC                                                                                                                                                                                                    | C ACACAGO                                                                                                                                                                                                                          | CCA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCCCCACC                                                                                                                                          | C CCTCCTACCA                                                                                                                                                                                                                       | G ACCAATCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACCATCTCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
|                         | CAAGGCCCA                                                                                                                                                                                                   | G ALAGAGO                                                                                                                                                                                                                          | CCA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCACCAAA                                                                                                                                          | c coccesses                                                                                                                                                                                                                        | G ATCCAGGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACMACA ACTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1020                                                         |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C AAAAOÉGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C AAGGCCGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C ACCGCCAGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 10                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | G GAGCGGCTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 10                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | G GCCACCAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C GGACTGGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | G ACCGACGAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         | GCTCGGGCG                                                                                                                                                                                                   | G GATCTGO                                                                                                                                                                                                                          | CCC T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GACCCCGG                                                                                                                                          | G CCGGGTGGT                                                                                                                                                                                                                        | G CAGCGCACCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGCTCTATGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1500                                                         |
|                         | GCTCATTCA                                                                                                                                                                                                   | G TACAGCO                                                                                                                                                                                                                          | CGA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TACCGAGA                                                                                                                                          | C GGTGGGCAA                                                                                                                                                                                                                        | G ACACCTGTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TGATAGTGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1560                                                         |
|                         | GCCCTTCAT                                                                                                                                                                                                   | C AACAAG1                                                                                                                                                                                                                          | ACT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CATCATGG                                                                                                                                          | A CATGCGGCC                                                                                                                                                                                                                        | C CAGAACTCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TGGTCGCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1620                                                         |
| 15                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | G CGCAACCCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C ATCGCCGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C TACTGCATCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | G AAGCAGCGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | G GAGCTTGGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C AAGGGCATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C CTCTACTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 20                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | T CTGCTGCACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | G CGCCGTCTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C ATCGATCTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         | GACCCCTGT                                                                                                                                                                                                   | G CTGCTGC                                                                                                                                                                                                                          | TGT C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GGCGGTGG                                                                                                                                          | A CGATCACAT                                                                                                                                                                                                                        | C GCCCTCTGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGGGCACCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2280                                                         |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | CTGGCGGAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 25                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C TTCTGGCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C CAGGGCGGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | A GAGCCCGTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                    | C AAGGTGCGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         | CTP9************************************                                                                                                                                                                    | C CCAACAC                                                                                                                                                                                                                          | ACC A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~~~~~~~                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                         | GITIGCCIG                                                                                                                                                                                                   |                                                                                                                                                                                                                                    | acco a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGACGCCG                                                                                                                                          |                                                                                                                                                                                                                                    | CA CAA TCC C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2634                                                         |
|                         | GITIGCCIG                                                                                                                                                                                                   | c comandi                                                                                                                                                                                                                          | noo n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GGACGCCG                                                                                                                                          |                                                                                                                                                                                                                                    | CA CAA TCC C<br>la Gln Ser L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2634                                                         |
|                         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | Met Ser A<br>1                                                                                                                                                                                                                     | la Gln Ser L<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eu Glu Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
| 30                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | Met Ser A<br>1                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eu Glu Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2634                                                         |
| 30                      | GGC CAG A                                                                                                                                                                                                   | AG GCC CG                                                                                                                                                                                                                          | т стс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGC AAG                                                                                                                                           | Met Ser A<br>1<br>CGG TTC GG                                                                                                                                                                                                       | la Gln Ser L<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eu Glu Val<br>G GTA GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
| 30                      | GGC CAG A                                                                                                                                                                                                   | AG GCC CG                                                                                                                                                                                                                          | т стс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGC AAG                                                                                                                                           | Met Ser A<br>1<br>CGG TTC GG                                                                                                                                                                                                       | la Gln Ser L<br>5<br>G GCG GCG GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eu Glu Val<br>G GTA GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
| 30                      | GGC CAG AGGIN Ly                                                                                                                                                                                            | AG GCC CO                                                                                                                                                                                                                          | T CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGC AAG<br>Ser Lys<br>15                                                                                                                          | Met Ser A  1 CGG TTC GG Arg Phe G1                                                                                                                                                                                                 | la Gln Ser L<br>5<br>G GCG GCG GA<br>y Ala Ala Gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eu Glu Val<br>G GTA GCC<br>u Val Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| 30                      | GGC CAG AGGLY Gly Gln Ly 10 GCC TTC G                                                                                                                                                                       | AG GCC CC<br>ys Ala Ai                                                                                                                                                                                                             | T CTC<br>g Leu<br>C TCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGC AAG<br>Ser Lys<br>15<br>GAG GAC                                                                                                               | Met Ser A  1 CGG TTC GG Arg Phe G1 TTC AAC CC                                                                                                                                                                                      | la Gln Ser L<br>5<br>G GCG GCG GA<br>y Ala Ala Gl<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eu Glu Val<br>G GTA GCC<br>u Val Ala<br>G GAC CCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2682                                                         |
| 30                      | GGC CAG AGGLY Gly Gln Ly 10 GCC TTC G                                                                                                                                                                       | AG GCC CC<br>ys Ala Ai                                                                                                                                                                                                             | T CTC<br>g Leu<br>C TCG<br>u Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp                                                                                                    | Met Ser A  1 CGG TTC GG Arg Phe G1 TTC AAC CC                                                                                                                                                                                      | la Gln Ser L<br>5<br>G GCG GCG GA<br>y Ala Ala Gl<br>20<br>C CTG CAC CTG<br>D Leu His Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eu Glu Val<br>G GTA GCC<br>u Val Ala<br>G GAC CCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2682                                                         |
|                         | GGC CAG AGGLY Gly Gln Ly 10 GCC TTC GG Ala Phe AG                                                                                                                                                           | AG GCC CC<br>ys Ala Ar<br>CC GCG CT<br>la Ala Le                                                                                                                                                                                   | T CTC<br>g Leu<br>C TCG<br>u Ser<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp                                                                                                    | Met Ser A  1 CGG TTC GG Arg Phe G1 TTC AAC CC Phe Asn Pr                                                                                                                                                                           | la Gln Ser L<br>5<br>G GCG GCG GA<br>Y Ala Ala Gl<br>20<br>C CTG CAC CTC<br>D Leu His Let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eu Glu Val G GTA GCC u Val Ala G GAC CCG u Asp Pro 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2682                                                         |
| 30<br>95                | GGC CAG A<br>Gly Gln Ly<br>10<br>GCC TTC GG<br>Ala Phe A<br>25<br>GCC TTC GG                                                                                                                                | AG GCC CC<br>ys Ala Ar<br>CC GCG CT<br>la Ala Le<br>CC GCC AC                                                                                                                                                                      | T CTC<br>g Leu<br>C TCG<br>u Ser<br>30<br>C ACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp                                                                                                    | Met Ser A  1 CGG TTC GG Arg Phe Gl  TTC AAC CC Phe Asn Pr  3: GAG CGG CC                                                                                                                                                           | la Gln Ser L 5 G GCG GCG GAG y Ala Ala Gl 20 C CTG CAC CTG C Leu His Leg 5 C ATA GTC CAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eu Glu Val G GTA GCC u Val Ala G GAC CCG u Asp Pro 40. C GGC ATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2682<br>2730                                                 |
|                         | GGC CAG A<br>Gly Gln Ly<br>10<br>GCC TTC GG<br>Ala Phe A<br>25<br>GCC TTC GG                                                                                                                                | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th                                                                                                                                                                        | T CTC TCG TCG Ser 30 C ACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp                                                                                                    | Met Ser A  1 CGG TTC GG Arg Phe G1 TTC AAC CC Phe Asn Pr 3 GAG CGG CC Glu Arg Pro                                                                                                                                                  | la Gln Ser L<br>5<br>G GCG GCG GA<br>Y Ala Ala Gl<br>20<br>C CTG CAC CTC<br>D Leu His Let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eu Glu Val G GTA GCC U Val Ala G GAC CCG U ABP Pro 40 C GGC ATG G Gly Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2682<br>2730                                                 |
|                         | GGC CAG A<br>Gly Gln L<br>10<br>GCC TTC G<br>Ala Phe A<br>25<br>GCC TTC G<br>Ala Phe A                                                                                                                      | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th                                                                                                                                                                        | T CTC TCG TCG Su Ser 30 C ACG T Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu ASD<br>GCG TTC<br>Ala Phe                                                                              | Met Ser A  1 CGG TTC GG Arg Phe GI TTC AAC CC Phe Asn Pr  3 GAG CGG CC Glu Arg Pr  50                                                                                                                                              | la Gln Ser L 5 G GCG GCG GA y Ala Ala Gl 20 C CTG CAC CTC D Leu His Let C ATA GTC CAC TILE Val His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eu Glu Val G GTA GCC u Val Ala G GAC CCG u Asp Pro 40. C GGC ATG S Gly Met 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2682<br>2730<br>2778                                         |
|                         | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC GG Ala Phe AL CTG CTC GG                                                                                                                            | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th                                                                                                                                                                        | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp<br>GCG TTC<br>Ala Phe                                                                              | Met Ser A  1 CGG TTC GG Arg Phe GI TTC AAC CC Phe Asn Pro 3: GAG CGG CC Glu Arg Pro 50 CTG CTG GG                                                                                                                                  | la Gln Ser L  5 G GCG GCG GA  y Ala Ala Gl  20 C CTG CAC CT  0 Leu His Les  C ATA GTC CA  0 Ile Val His  C CAG CAG TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eu Glu Val G GTA GCC u Val Ala G GAC CCG u Asp Pro 40 C GGC ATG G Gly Met 55 G CCG GGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2682<br>2730                                                 |
|                         | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC GG Ala Phe AL CTG CTC GG                                                                                                                            | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th AC CC AGC CT la Ser Le                                                                                                                                                 | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp<br>GCG TTC<br>Ala Phe                                                                              | Met Ser A  1 CGG TTC GG Arg Phe Gl  TTC AAC CC Phe Asn Pr  3 GAG CGG CC Glu Arg Pc  50 CTG CTG GG Leu Leu Gl                                                                                                                       | la Gln Ser L  5 G GCG GCG GA  Y Ala Ala Gl  20 C CTG CAC CT  C Leu His Lee  5 C ATA GTC CA  C Ile Val His  C CAG CAG TTI  Y Gln Gln Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 C GGC ATG S Gly Met 55 G CCG GGC u Pro Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2682<br>2730<br>2778                                         |
|                         | GGC CAG AL Gly Gln Ly 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL                                                                                                                  | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th CC AGC CT la Ser Le                                                                                                                                                    | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp<br>GCG TTC<br>Ala Phe<br>TCC GGG<br>Ser Gly                                                        | Met Ser A  1 CGG TTC GG Arg Phe G1 TTC AAC CC Phe Asn Pr 3 GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1 65                                                                                                                       | la Gln Ser L  5 G GCG GCG GAG y Ala Ala Gl 20 C CTG CAC CTG 5 C ATA GTC CAG o Ile Val His c CAG CAG TTG y Gln Gln Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 c CCG GGC u Pro Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2682<br>2730<br>2778<br>2826                                 |
|                         | GGC CAG AL Gly Gln Ly 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC GC Leu Leu AL                                                                                                                 | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th CC AGC CT la Ser Le 60 GC ATC TA                                                                                                                                       | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp<br>GCG TTC<br>Ala Phe<br>TCC GGG<br>Ser Gly                                                        | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr 3: GAG CGG CG Glu Arg Pr 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG                                                                                                         | la Gln Ser L  5 G GCG GCG GA y Ala Ala Gl 20 C CTG CAC CTC b Leu His Let C ATA GTC CA D Ile Val His C CAG CAG TTT y Gln Gln Let TTC AAG CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 C GGC ATG S Gly Met 55 G CCG GGC u CCG GGC GCC GGC GCC GGC GCC GGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2682<br>2730<br>2778                                         |
| 95                      | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AG Lys Gly S                                                                                              | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 4 CC AGC CT la Ser Le 60 GC ATC TA er Ile Ty                                                                                                                           | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp<br>GCG TTC<br>Ala Phe<br>TCC GGG<br>Ser Gly<br>GGT CAA<br>Gly Gln                                  | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr 3: GAG CGG CG Glu Arg Pr 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG                                                                                                         | la Gln Ser L  5  G GCG GAG  y Ala Ala Gl  20  C CTG CAC CTG  beu His Leg  C ATA GTC CAG  o Ile Val His  C CAG CAG TTG  y Gln Gln Leg  TTC AAG CTG  TTC AAG CTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 C GGC ATG S Gly Met 55 G CCG GGC u CCG GGC GCC GGC GCC GGC GCC GGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2682<br>2730<br>2778<br>2826                                 |
| 95                      | GGC CAG AL Gly Gln L 10 GCC TTC GC Ala Phe AL 25 GCC TTC GC Ala Phe AL CTG CTC GC Leu Leu AL AAG GGG AC Lys Gly Sc                                                                                          | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 4 CC AGC CT la Ser Le GC ATC TA er Ile Ty 75                                                                                                                           | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGC AAG<br>Ser Lys<br>15<br>GAG GAC<br>Glu Asp<br>GCG TTC<br>Ala Phe<br>TCC GGG<br>Ser Gly<br>GGT CAA<br>Gly Gln<br>80                            | Met Ser A  1 CGG TTC GG Arg Phe GI: TTC AAC CC Phe Asn Pr  3: GAG CGG CC Glu Arg Pr  50 CTG CTG GG Leu Leu GI: 65 AGC CTC AG Ser Leu Se:                                                                                           | la Gln Ser L  5 G GCG GCG GA y Ala Ala Gl 20 C CTG CAC CTC b Leu His Lec C ATA GTC CAC o Ile Val His C CAG CAG TTC y Gln Gln Lec T TTC AAG CTC r Phe Lys Lec                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eu Glu Val G GTA GCC u Val Ala G GAC CCG u ABD Pro 40 C GGC ATG S Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2682<br>2730<br>2778<br>2826<br>2874                         |
| 95                      | GGC CAG AL Gly Gln Ly 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AG Lys Gly S TTT GTC GC                                                                                  | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 4 CC AGC CT la Ser Le 60 GC ATC TA 97 75 GG GAC GA                                                                                                                     | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu G GTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGC AAG Ser Lys 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln 80 ACG GCC                                                     | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr 3: GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG                                                                                 | la Gln Ser L  5  G GCG GCG GAG y Ala Ala Glr 20 C CTG CAC CTG C ATA GTC CAG O Ile Val His  C CAG CAG TTG y Gln Gln Leg TTC AAG CTG TTC AAG CTG TTC AAG CTG TTC AAG CTG F Ple Lys Leg 85 G GTG ACC GCG                                                                                                                                                                                                                                                                                                                                                                                                                               | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2682<br>2730<br>2778<br>2826<br>2874                         |
| 95                      | GGC CAG AL Gly Gln Ly 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AG Lys Gly S TTT GTC GC Phe Val G                                                                        | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 4 CC AGC CT la Ser Le 60 GC ATC TA 97 75 GG GAC GA                                                                                                                     | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu G GTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGC AAG Ser Lys 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln ACG GCC Thr Ala                                                | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr 3: GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG                                                                                 | la Gln Ser L  5  G GCG GCG GA  y Ala Ala Gl  20  C CTG CAC CTC  b Leu His Le  5  C ATA GTC CA  o Ile Val His  C CAG CAG TTC  y Gln Gln Le  7  C TTC AAG CTC  r Phe Lys Le  85  G GTG ACC GCC  u Val Thr Als                                                                                                                                                                                                                                                                                                                                                                                                                         | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2682<br>2730<br>2778<br>2826<br>2874                         |
| 95                      | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AG Lys Gly S TTT GTC G Phe Val G 90                                                                       | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 4 CC AGC CT la Ser Le 60 GC ATC TA er Ile Ty 75 GG GAC GA                                                                                                              | T CTC G Leu C TCG U Ser 30 C ACG r Thr 5 C TTC U Phe T CTG r Leu G GTG U Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AGC AAG Ser Lys 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln 80 ACG GCC Thr Ala 95                                          | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr  3: GAG CGG CC Glu Arg Pr  50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG Glu Val Glu                                                                   | la Gln Ser L  5  G GCG GCG GA  y Ala Ala Gl  20  C CTG CAC CTC  b Leu His Let  C ATA GTC CA  o Ile Val Hi:  C CAG CAG TTC  y Gln Gln Let  7  C TTC AAG CTC  r Phe Lys Let  85  G GTG ACC GCC  u Val Thr Al:  100                                                                                                                                                                                                                                                                                                                                                                                                                    | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 C GGC ATG S Gly Met 55 G CCG GGC u CCG GGC u CCG GCC u CCG GGC CCG G | 2682<br>2730<br>2778<br>2826<br>2874                         |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC GC Ala Phe AL 25 GCC TTC GC Ala Phe AL CTG CTC GC Leu Leu AL AAG GGG AC Lys Gly SC TTT GTC GC Phe Val GL 90 GAG GAC AL                                                      | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 4 CC AGC CT la Ser Le GC ATC TA er Ile Ty 75 GG GAC GA ly Asp Gl AG CCC AT                                                                                             | T CTC G Leu C TCG U Ser 30 C TTr 5 C TTC U Phe T CTG T Leu G GTG U Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln ACG GCC Thr Ala 95 ACC CTG                                     | Met Ser A  1 CGG TTC GG Arg Phe GI: TTC AAC CC Phe Asn Pr  3: GAG CGG CC Glu Arg Pr  50 CTG CTG GG Leu Leu GI: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG Glu Val GI: ACC ACC CG                                                        | la Gln Ser L  5  G GCG GCG GA  y Ala Ala Gl  20  C CTG CAC CTO  b Leu His Leo  C ATA GTC CAC  TILE Val His  C CAG CAG TTO  y Gln Gln Leo  TTC AAG CTC  T Phe Lys Leo  6  G GTG ACC GCC  U Val Thr Als  100  C ATC TTC ACC                                                                                                                                                                                                                                                                                                                                                                                                           | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val  C CTT CGC a Leu Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2682<br>2730<br>2778<br>2826<br>2874                         |
| 95                      | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AC Lys Gly S TTT GTC G Phe Val G 90 GAG GAC AL Glu Abp L                                                  | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 4 CC AGC CT la Ser Le GC ATC TA er Ile Ty 75 GG GAC GA ly Asp Gl AG CCC AT                                                                                             | T CTC G Leu C TCG Ser 30 C TTC TTC U Phe T CTG T Leu G GTG U Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln ACG GCC Thr Ala 95 ACC CTG Thr Leu                             | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr 3: GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG Glu Val G1: ACC ACC CG Thr Thr Acc                                              | la Gln Ser L  5  G GCG GCG GAG y Ala Ala Glr 20 C CTG CAC CTG C ATA GTC CAG O Ile Val His C CAG CAG TTG y Gln Gln Leg TTC AAG CTG T Phe Lys Leg 85 G GTG ACC GCG L Val Thr Al: 100 C ATC TTC ACG J Ile Phe Th:                                                                                                                                                                                                                                                                                                                                                                                                                      | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 G CCG GGC u Pro Gly 0 3 CCG GTC u Pro Val C CTT CGC a Leu Arg C CAA GGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2682<br>2730<br>2778<br>2826<br>2874                         |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AC Lys Gly Sc TTT GTC GC Phe Val G 90 GAG GAC AL Glu Asp Ly 105                                           | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AG CC TA la Ser Le 60 GC ATC TA er Ile Ty 75 GG GAC GA ly Asp Gl AG CCC AT                                                                                                          | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu G GTG u Val C GCC e Ala 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AGC AAG Ser Lys 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln ACG GCC Thr Ala 95 ACC CTG Thr Leu                             | Met Ser A  1 CGG TTC GG Arg Phe G1; TTC AAC CC Phe Asn Pr 3; GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1; 65 AGC CTC AG Ser Leu Se; GAG GTG GA Glu Val Glu ACC ACC CG Thr Thr Ar                                                | la Gln Ser L  5  G GCG GCG GAG y Ala Ala Glr 20 C CTG CAC CTG C ATA GTC CAG O Ile Val His C CAG CAG TTG y Gln Gln Leg T TTC AAG CTG T Phe Lys Leg G GTG ACC GCG U Val Thr Al: 100 C TTC ACC T TTC ACC T TTC ACC T TTC ACC T TTC TTC TTC TTC | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG G Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val C CTT CGC a Leu Arg C CAA GGC C GIA GGC C GGC C G G | 2682<br>2730<br>2778<br>2826<br>2874<br>2922<br>2970         |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AC Lys Gly S TTT GTC G Phe Val G 90 GAG GAC AL Glu ABP L 105 GGC GCC C                                    | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC CT AGC CT la Ser Le 60 GC ATC TA er Ile Ty 75 GG GAC GA ly Asp Gl AG CCC AT ys Pro Il                                                                                            | T CTC G Leu C TCG U Ser 30 C ACG r Thr 5 C TTC U Phe T CTG r Leu U Val 110 G ACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln 80 ACG GCC Thr Ala 95 ACC CTG Thr Leu GGG GAA                  | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr: 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG G1u Va1 G1: ACC ACC CG Thr Thr Thr Thr GCC GTG GTG                                                      | la Gln Ser L  5  G GCG GCG GA  y Ala Ala Gl  20  C CTG CAC CTC  b Leu His Leu  C ATA GTC CA  o Ile Val His  C CAG CAG TTC  y Gln Gln Leu  7  C TTC AAG CTC  r Phe Lys Leu  85  G GTG ACC GCC  100  C ATC TTC ACC  1100  C ATC TTC ACC  C AAG CTG CCC                                                                                                                                         | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 C GGC ATG G Gly Met 55 G CCG GGC u Pro Gly C CTT CGC a Leu Arg C CAA GGC r Gln Gly 120 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2682<br>2730<br>2778<br>2826<br>2874                         |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AC Lys Gly S TTT GTC G Phe Val G 90 GAG GAC AL Glu ABP L 105 GGC GCC C                                    | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC CT AGC CT la Ser Le 60 GC ATC TA er Ile Ty 75 GG GAC GA ly Asp Gl AG CCC AT ys Pro Il                                                                                            | T CTC G Leu C TCG U Ser 30 C ACG r Thr 5 C TTC U Phe T CTG r Leu U Val 110 G ACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln 80 ACG GCC Thr Ala 95 ACC CTG Thr Leu GGG GAA                  | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr: 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG G1u Va1 G1: ACC ACC CG Thr Thr Thr Thr GCC GTG GTG                                                      | la Gln Ser L  5  G GCG GCG GAG y Ala Ala Glr 20 C CTG CAC CTG C ATA GTC CAG O Ile Val His C CAG CAG TTG y Gln Gln Leg T TTC AAG CTG T Phe Lys Leg G GTG ACC GCG U Val Thr Al: 100 C TTC ACC T TTC ACC T TTC ACC T TTC ACC T TTC TTC TTC TTC | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val C CTT CGC a Leu Arg C CAA GGC c Gln Gly 120 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2682<br>2730<br>2778<br>2826<br>2874<br>2922<br>2970         |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC GC Leu Leu AL AAG GGG AC Lys Gly Sc TTT GTC GC Phe Val G 90 GAG GAC AL Glu ABP L 105 GGC GCC CC Gly Ala Le                     | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 60 CC AGC CT la Ser Le 60 GC ATC TA e CC AGC GA ly Asp GI AG CCC AT ys Pro II  TC GCC GT eu Ala Va                                                                     | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu G GTG u Val C GCC e Ala 110 G ACG 1 Thr 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln 80 ACG GCC Thr Ala 95 ACC CTG Thr Leu GGG GAA Gly Glu          | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr 3: GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG Glu Val G1: ACC ACC CG Thr Thr Arc ACC GTG GTG Ala Val Val 130                  | la Gln Ser L  5  G GCG GCG GAC y Ala Ala Glr 20 C CTG CAC CTC to Leu His Lec 5 C ATA GTC CAC o Ile Val Hi: C CAG CAG TTC y Gln Gln Lec TTC AAG CTC r Phe Lys Lec 85 G GTG ACC GCc u Val Thr Al: 100 C ATC TTC ACC g Ile Phe Th: 5 C AAG CTG CCC l Lys Leu Pro                                                                                                                                                                                                                                                                                                                                                                       | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val C CTT CGC a Leu Arg C CAA GGC c Gln Gly 120 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2682<br>2730<br>2778<br>2826<br>2874<br>2922<br>2970<br>3012 |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC GC Leu Leu AL AAG GGG AC Lys Gly Sc TTT GTC GC Phe Val G 90 GAG GAC AL Glu ABP L 105 GGC GCC CC Gly Ala Le                     | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th 60 CC AGC CT la Ser Le 60 GC ATC TA e CC AGC GA ly Asp GI AG CCC AT ys Pro II  TC GCC GT eu Ala Va                                                                     | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu G GTG u Val C GCC e Ala 110 G ACG 1 Thr 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln 80 ACG GCC Thr Ala 95 ACC CTG Thr Leu GGG GAA Gly Glu          | Met Ser A  1 CGG TTC GG Arg Phe G1: TTC AAC CC Phe Asn Pr 3: GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1: 65 AGC CTC AG Ser Leu Se: GAG GTG GAG Glu Val G1: ACC ACC CG Thr Thr Arc ACC GTG GTG Ala Val Val 130                  | la Gln Ser L  5  G GCG GCG GA  y Ala Ala Gl  20  C CTG CAC CTC  b Leu His Leu  C ATA GTC CA  o Ile Val His  C CAG CAG TTC  y Gln Gln Leu  7  C TTC AAG CTC  r Phe Lys Leu  85  G GTG ACC GCC  100  C ATC TTC ACC  1100  C ATC TTC ACC  C AAG CTG CCC                                                                                                                                         | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u Asp Pro 40 c GGC ATG s Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val C CTT CGC a Leu Arg C CAA GGC c Gln Gly 120 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2682<br>2730<br>2778<br>2826<br>2874<br>2922<br>2970<br>3012 |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln Ly 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC GC Leu Leu AL ANG GGG AC Lys Gly Sc TTT GTC GC Phe Val G 90 GAG GAC AL Glu Asp Ly 105 GGC GCC CC Gly Ala Le TAAGCACCCCC       | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AC la Ala Th CC AGC CT la Ser Le 60 GC ATC TA er Ile Ty 75 GG GAC GA ly ABp G1 AG CCC AT y6 Pro Il TC GCC GT eu Ala Va 12 G CGGCACC                                                 | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu G GTG u Val C GCC e Ala 110 G ACG 1 Thr 5 C ACG C | AGC AAG Ser Lys 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln 80 ACG GCC Thr Ala 95 ACC CTG Thr Leu GGG GAA Gly Glu CACAATCA | Met Ser A  1 CGG TTC GG Arg Phe G1; TTC AAC CC Phe Asn Pr 3; GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1; 65 AGC CTC AG; Ser Leu Se; GAG GTG GAG Glu Val G1; ACC ACC CG Thr Thr Ar; 11; GCC GTG GTG Ala Val Val 130 G CCCGGCCCC | la Gln Ser L  5  G GCG GCG GAC y Ala Ala Glr 20 C CTG CAC CTC to Leu His Lec 5 C ATA GTC CAC o Ile Val Hi: C CAG CAG TTC y Gln Gln Lec TTC AAG CTC r Phe Lys Lec 85 G GTG ACC GCc u Val Thr Al: 100 C ATC TTC ACC g Ile Phe Th: 5 C AAG CTG CCC l Lys Leu Pro                                                                                                                                                                                                                                                                                                                                                                       | eu Glu Val  G GTA GCC u Val Ala  G GAC CCG u App Pro 40 c GGC ATG G Gly Met 55 G CCG GGC u Pro Gly 0 G CCG GTC u Pro Val C CTT CGC a Leu Arg C CAA GGC T Gly C CTT CGC T | 2682<br>2730<br>2778<br>2826<br>2874<br>2922<br>2970<br>3012 |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AC Lys Gly S TTT GTC GC Phe Val G 90 GAG GAC AL Glu Asp L 105 GGC GCC CC Gly Ala L TAAGCACCGC CCGCTCCCGCT | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AG CC TI la Ser Le 60 GC ATC TA er Ile Ty 75 GG GAC GA ly ABp Gl AG CCC AT ys Pro Il TC GCC GT eu Ala Va la Va la CCC GT eu Ala Va la CCC GT eu Ala Va la CCC GT ccc GCC GT TGCCCCC | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu C GTG u Val C GCC e Ala 110 G ACG 1 Thr 5 C ACG C | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln ACG GCC Thr Ala 95 ACC CTG Thr Leu GGG GAA Gly Glu CACAATCA    | Met Ser A  1 CGG TTC GG Arg Phe G1 TTC AAC CC Phe Asn Pr 3 GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1 65 AGC CTC AG Ser Leu Sei  ACC ACC CG Thr Thr Arr 11: GCC GTG GT Ala Val 130 CCCGGGCCCC TTTGGCCCAC                       | la Gln Ser L  5  G GCG GCG GAG  y Ala Ala Glr  20  C CTG CAC CTG  c ATA GTC CAG  o Ile Val His  C CAG CAG TTG  y Gln Gln Le  TTC AAG CTG  T Phe Lys Le  G GTG ACC GCG  U Val Thr Al  100  C ATC TTC ACG  T Ile Phe Th  C AAG CTG CCC  I Lys Leu Pro  F GCCGGGCTGA  G GCCCTTTCCC                                                                                                                                                                                                                                                                                                                                                     | eu Glu Val  G GTA GCC  U Val Ala  G GAC CCG  U Asp Pro  40  C GGC ATG  G Gly Met  55  G CCG GGC  U Pro Gly  C CTT CGC  A Leu Arg  C CAA GGC  T GIY  TTGTTCTCCC  TGCCCCGCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2682<br>2730<br>2778<br>2826<br>2874<br>2922<br>2970<br>3012 |
| 95<br>40 <sub>.</sub> . | GGC CAG AL Gly Gln L 10 GCC TTC G Ala Phe AL 25 GCC TTC G Ala Phe AL CTG CTC G Leu Leu AL AAG GGG AC Lys Gly S TTT GTC GC Phe Val G 90 GAG GAC AL Glu Asp L 105 GGC GCC CC Gly Ala L TAAGCACCGC CCGCTCCCGCT | AG GCC CC ys Ala Ar CC GCG CT la Ala Le CC GCC AG CC TI la Ser Le 60 GC ATC TA er Ile Ty 75 GG GAC GA ly ABp Gl AG CCC AT ys Pro Il TC GCC GT eu Ala Va la Va la CCC GT eu Ala Va la CCC GT eu Ala Va la CCC GT ccc GCC GT TGCCCCC | T CTC g Leu C TCG u Ser 30 C ACG r Thr 5 C TTC u Phe T CTG r Leu C GTG u Val C GCC e Ala 110 G ACG 1 Thr 5 C ACG C | AGC AAG Ser Ly8 15 GAG GAC Glu Asp GCG TTC Ala Phe TCC GGG Ser Gly GGT CAA Gly Gln ACG GCC Thr Ala 95 ACC CTG Thr Leu GGG GAA Gly Glu CACAATCA    | Met Ser A  1 CGG TTC GG Arg Phe G1 TTC AAC CC Phe Asn Pr 3 GAG CGG CC Glu Arg Pr 50 CTG CTG GG Leu Leu G1 65 AGC CTC AG Ser Leu Sei  ACC ACC CG Thr Thr Arr 11: GCC GTG GT Ala Val 130 CCCGGGCCCC TTTGGCCCAC                       | la Gln Ser L  5  G GCG GCG GAG y Ala Ala Glr 20 C CTG CAC CTG C ATA GTC CAG O Ile Val His  C CAG CAG TTG y Gln Gln Leg y Gln Gln Leg G GTG ACC GCG U Val Thr Al: 100 C ATC TTC ACG J Ile Phe The C AAG CTG CCG I Lys Leu Pro                                                                                                                                                                                                                                                                                                                                                                                                        | eu Glu Val  G GTA GCC  U Val Ala  G GAC CCG  U Asp Pro  40  C GGC ATG  G Gly Met  55  G CCG GGC  U Pro Gly  C CTT CGC  A Leu Arg  C CAA GGC  T GIY  TTGTTCTCCC  TGCCCCGCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2682<br>2730<br>2778<br>2826<br>2874<br>2922<br>2970<br>3012 |

(2) INFORMATION FOR SEQ ID NO: 11:

|    | (i) SEQUENCE CHARACTERISTICS:                                                      |     |
|----|------------------------------------------------------------------------------------|-----|
|    | (A) LENGTH: 25 base pairs                                                          |     |
|    | (B) TYPE: nucleic acid                                                             | 5   |
| _  | (C) STRANDEDNESS: single                                                           | 4   |
| 5  | (D) TOPOLOGY: linear                                                               |     |
|    | and a said                                                                         |     |
|    | (ii) MOLECULE TYPE: other nucleic acid<br>(A) DESCRIPTION: /desc = "synthetic DNA" |     |
|    | (A) DESCRIPTION: / desc = Synthetic Div                                            |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:                                          |     |
| 10 | (XI) BEQUENCE DESCRIPTION: DEG 12 HOT DOT                                          |     |
| 10 | AGTTCCCGCC TCGGGTGTGG GTGAA                                                        |     |
|    | AGIICCCGGG IOOGIATA                                                                |     |
|    |                                                                                    |     |
|    | (2) INFORMATION FOR SEQ ID NO: 12:                                                 |     |
|    |                                                                                    |     |
| 15 | (i) SEQUENCE CHARACTERISTICS:                                                      |     |
|    | (A) LENGTH: 25 base pairs                                                          |     |
|    | (B) TYPE: nucleic acid (C) STRANDEDNESS: single                                    |     |
|    | (C) STRANDEDNESS: Bligita<br>(D) TOPOLOGY: linear                                  |     |
|    | (b) Torobodi. Timedi                                                               |     |
|    | (ii) MOLECULE TYPE: other nucleic acid                                             |     |
| 20 | (A) DESCRIPTION: /desc = "synthetic DNA"                                           |     |
|    |                                                                                    |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:                                          |     |
|    |                                                                                    |     |
|    | GGCATATGCG CTCATGCGGC GTCCT 25                                                     |     |
|    |                                                                                    | -   |
| 25 | (2) INFORMATION FOR SEQ ID NO: 13:                                                 |     |
|    | (2) INFORMATION FOR ODE 12 1151                                                    |     |
|    | (i) SEQUENCE CHARACTERISTICS:                                                      |     |
|    | (A) LENGTH: 30 base pairs                                                          |     |
|    | (B) TYPE: nucleic acid                                                             |     |
| 30 | (C) STRANDEDNESS: Bingle                                                           |     |
| 30 | (D) TOPOLOGY: linear                                                               |     |
|    | (ii) MOLECULE TYPE: other nucleic acid                                             |     |
|    | (A) DESCRIPTION: /desc = "synthetic DNA"                                           |     |
|    | (A) DEDUCTION , TOTAL                                                              |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:                                          |     |
| 35 |                                                                                    | ٠.  |
|    | GCCATATGAG CGCACAATCC CTGGAAGTAG                                                   | 30  |
|    | •                                                                                  |     |
|    | (2) INFORMATION FOR SEQ ID NO: 14:                                                 |     |
|    | (2) INFORMATION FOR SEG 15 No. 111                                                 |     |
| 40 | (i) SEQUENCE CHARACTERISTICS:                                                      |     |
| 40 | (A) LENGTH: 30 base pairs                                                          |     |
|    | (B) TYPE: nucleic acid                                                             |     |
|    | (C) STRANDEDNESS: single                                                           |     |
|    | (D) TOPOLOGY: linear                                                               |     |
|    | (ii) MOLECULE TYPE: other nucleic acid                                             |     |
| 45 | (A) DESCRIPTION: /desc = "synthetic DNA"                                           |     |
|    | (A) DEBCALLIZON: 1 dad -                                                           |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:                                          |     |
|    |                                                                                    | 2.0 |
|    | CTGGGATCCG CCGGTGCTTA AGGCAGCTTG                                                   | 30  |
|    |                                                                                    |     |
| 50 | (2) THEORYSMICH FOR CRO ID NO. 15:                                                 |     |
|    | (2) INFORMATION FOR SEQ ID NO: 15:                                                 |     |
|    | (i) SEQUENCE CHARACTERISTICS:                                                      |     |
|    | ·                                                                                  |     |
|    |                                                                                    |     |

(A) LENGTH: 20 amino acids ٠; (B) TYPE: amino acid (C) STRANDEDNESS: 5 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide . (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: 10 Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala 20 15 (2) INFORMATION FOR SEQ ID NO: 16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid 20 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16: Met Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys 10 Arg Phe Gly Ala Ala 30 20

#### Claims

35

40

- A polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity.
  - 2. A polyester synthase gene comprising the nucleotide sequence of SEQ ID NO:1.
- A gene expression cassette comprising the polyester synthase gene of claims 1 or 2 and either of open reading frames located upstream and downstream of said gene.
  - The gene expression cassette according to claim 3, wherein the open reading frame located upstream of the polyester synthase gene comprises DNA coding for the amino acid sequence of SEQ ID NO:4.
- 50 The gene expression cassette according to claim 3, wherein the open reading frame located upstream of the polyester synthase gene comprises the nucleotide sequence of SEQ ID NO:3.
  - 6. The gene expression cassette according to claim 3, wherein the open reading frame located downstream of the polyester synthase gene comprises DNA coding for a polypeptide containing the amino acid sequence of SEQ ID NO:6 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about enoyl-CoA hydratase activity.
  - 7. The gene expression cassette according to claim 3, wherein the open reading frame located downstream of the

polyester synthase gene comprises the nucleotide sequence of SEQ ID NO:5.

- 8. A recombinant vector comprising the polyester synthase gene of claim 1 or 2 or the gene expression cassette of any one of claims 3 to 7.
- 9. A transformant transformed with the recombinant vector of claim 8.

5

10

15

20

25

30

35

40

45

50

55

- 10. A process for producing polyester, wherein the transformant of claim 9 is cultured in a medium and polyester is recovered from the resulting culture.
- 11. The process for producing polyester according to claim 10, wherein the polyester is a copolymer of 3-hydroxyalkanoic acid represented by formula 1:

$$R$$
 $|$ 
 $HO - CH - CH_2 - COOH$ 

wherein R represents a hydrogen atom or a C1 to C4 alkyl group.

12. The process for producing polyester according to claim 10, wherein the polyester is a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) random copolymer.

## FIG. 1A









# FIG.2

M 1 2



Lane M: molecular-weight marker

Lane 1: soluble-protein fraction from NB3

Lane 2: active fraction eluted from the anion

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS

☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING

☐ GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

☐ OTHER

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)