

2. $L(p, \Xi) = \frac{\prod P(X_i = X_i)}{\prod P(X_i = X_i)} = (2\lambda)^{-\frac{p(n)}{2}} \cdot (\Sigma)^{-\frac{p(n)}{2}} \cdot \exp[-\frac{1}{2} \frac{\sum_{i=1}^{n} (X_i - p_i)^T}{\sum_{i=1}^{n} (X_i - p_i)}]$ (4) $log L(p, \Xi) = -\frac{\alpha_n}{2} \cdot log(p(\lambda)) - \frac{p_n}{2} \cdot log(\Sigma - \frac{1}{2} \frac{\sum_{i=1}^{n} (X_i - p_i)^T}{\sum_{i=1}^{n} (X_i - p_i)})$ = log L(M, E) = 0 () - Exi + nm = 0 () M= + Ski $\frac{1}{2} \frac{\log L(N, \Sigma)}{2} = 0 \ (=) \ -\frac{n}{2} \ \Xi^{-1} + \frac{1}{2} \frac{\Xi}{\Sigma} (\chi_i - \mu)^T \Sigma^* (\chi_i - \mu) = 0 \ \ (\exists \Sigma = \frac{1}{n} \frac{\Sigma}{\Sigma} (\chi_i - \mu)^T \mu)^T$ (b) $\hat{\beta}_n = \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_i$, $E[\hat{\beta}_i] = \frac{1}{n} E[\hat{\beta}_i] = \frac{1}{n} \sum_{i=1}^{n} E[\hat{\lambda}_i] = \frac{1}{n} \sum_{i=1}^{$ of the mean and the true mean converge, so Min is a unbiased estimate of the time mean M. (c) $\hat{\Sigma}_{n} = \frac{1}{n} \hat{\Sigma}_{n}^{2} (X_{1} - \mu)(X_{1} - \mu)^{T}$ $E[\hat{\Sigma}_{n}] = \frac{1}{n} E[\hat{\Sigma}_{n}^{2} X_{n}^{2} - 2\hat{\Sigma}_{n}^{2} X_{n}^{2} - 2\hat{\Sigma}_$ = Ex + (E(x))2 - (Em +(E(M))2) (=) = Zx - ZM = \(\frac{1}{N} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{N} \) \(\frac{1}{N} \ the covariance of the estimate and the true covariance don't converge, so In is a biased estimate of The time covariance En

Q3 Summary

MultiGaussClassify with Boston50

K=0	K=1	K=2	K=3	K=4	Mean	Std
0.326732673	0.29702970	0.0990099009	0.346534653	0.117647058	0.237390797	0.106713622
267	297	901	465	824	903	914

MultiGaussClassify with Boston75

K=0	K=1	K=2	K=3	K=4	Mean	Std
0.386138613	0.138613861	0.39603960	0.445544554	0.0392156862	0.281110463	0.161305024
861	386	396	455	745	988	613

MultiGaussClassify with Digits

K=0	K=1	K=2	K=3	K=4	Mean	Std
0.161559888	0.194986072	0.17777777	0.105849582	0.147222222	0.157479108	0.0303521755
579	423	778	173	222	635	008

LogisticRegression with Boston50

K=0	K=1	K=2	K=3	K=4	Mean	Std
0.128712871	0.108910891	0.0891089108	0.277227722	0.107843137	0.142360706	0.0685878735
287	089	911	772	255	659	016

LogisticRegression with Boston75

K=0	K=1	K=2	K=3	K=4	Mean	Std
0.0891089108	0.128712871	0.138613861	0.108910891	0.0490196078	0.102873228	0.0318471419
911	287	386	089	431	499	286

LogisticRegression with Digits

K=0	K=1	K=2	K=3	K=4	Mean	Std
0.0696378830	0.111420612	0.0444444444	0.041782729	0.0111111111	0.0556793562	0.033489091
084	813	444	805	111	365	051