5.3 Зв'язність графів

5.3.1 Зв'язність простих графів

Дві вершини v і w графа називаються зв'язними, якщо у графі існує маршрут із кінцями v та w (вершина v досяжна з вершини w).

За означенням кожна вершина зв'язна сама з собою маршрутом довжиною нуль.

Граф називається **зв'язним**, якщо будь-яка пара його вершин ϵ зв'язною.

Граф називають **незв'язним**, якщо він не є зв'язним.

Незв'язний граф складається з двох або більше зв'язних підграфів (компонент зв'язності графа), кожна пара з яких не має спільних вершин.

Зв'язність — це бінарне відношення на множині вершин, яке ϵ :

- —рефлексивним;
- —симетричним;
- —транзитивним.
- \Rightarrow відношення зв'язності ϵ відношенням еквівалентності на множині вершин графу G.

Підграф, утворений всіма вершинами одного класу, називається компонентною зв'язності графу G.

Приклад. Граф G — зв'язний; граф H — незв'язний.

Лема 1

Нехай G = (V, E) — граф із p компонентами зв'язності $G_1 = (V_1, E_1), ..., G_p = (V_p, E_p)$. Тоді $V = V_1 \cup \ldots \cup V_p$, $E = E_1 \cup \ldots \cup E_n$; $V_i \cap V_j = \emptyset$, $E_i \cap E_j = \emptyset$ при $i \neq j$; $n(G_1) + ... + n(G_p) = n(G);$ $m(G_1) + \ldots + m(G_p) = m(G).$

Приклад

 Γ раф K_5

 Γ раф C_5

Числом вершинної зв'язності $\kappa(G)$ простого графу G називають найменшу кількість вершин, вилучення яких утворює незв'язний або одновершинний граф.

Нехай G — простий граф з n>1 вершинами.

Числом реберної зв'язності $\lambda(G)$ графу G називають найменшу кількість ребер, вилучення яких дає незв'язаний граф.

Приклад

число вершинної зв'язності $\kappa(G)=1$; число реберної зв'язності $\lambda(G)=3$.

Вершину u простого графу G називають **точкою 3'єднання**, якщо граф G в разі її вилучення матиме більше компонент, ніж даний граф G.

Множина ребер графу називається **розрізом**, якщо вилучення цих ребер з графу G приводить до збільшення кількості компонент зв'язності.

Якщо розріз містить одне ребро, то його називають мостом.

Граф називається **роздільним**, якщо він містить хоча б одну точку з'єднання, та **нероздільним** в іншому випадку.

Максимальні нероздільні підграфи графу називаються **блоками**.

Приклад

точки з'єднання: *v*4, *v*5 та *v*7; міст (*v*4, *v*5).

Простий граф називається t-зв'язним, якщо $\kappa(G) \ge t$, тобто, якщо вилучаючи будь-яку його t-1 вершину, не можна порушити його зв'язність, а при вилученні деяких t вершин зв'язність може порушитися.

Граф називається t-ребернозв'язним, якщо $\lambda(G) \ge t$, тобто якщо t — максимальне з таких p, що при вилученні будь-яких p-1 ребер зв'язність графу не порушується.

5.3.2 Зв'язність орієнтованих графів

Типи зв'язності орграфів:

- сильно-зв'язний;
- однобічно-зв'язний;
- слабко-зв'язний;
- незв'язний.

Орієнтований граф називається **сильно- зв'язним**, якщо для будь-яких двох його вершин v та w існує шлях в обох напрямках.

Орієнтований граф називається однобічно- зв'язним, якщо для будь-яких двох його вершин v та w існує шлях хоча б в одному напрямку.

Орієнтований граф називається **слабко- зв'язним**, якщо зв'язним є неорієнтований граф, отриманий з нього заміною орієнтованих ребер на неорієнтовані.

Якщо орієнтований граф не є зв'язним, то він називається **незв'язним**.

Приклад

Орграф ϵ сильно-зв'язним тоді й тільки тоді, коли в ньому ϵ повний цикл, тобто цикл, який проходить через всі вершини.

Орграф ϵ однобічно-зв'язним тоді й тільки тоді, коли в ньому ϵ повний шлях.

Півшлях в орієнтованому графі — це послідовність дуг, така, що будь-які дві сусідні дуги різні й мають спільну інцидентну їм вершину.

Півшлях — це шлях без урахування орієнтації дуг.

Орграф ϵ слабко-зв'язним тоді й тільки тоді, коли в ньому ϵ повний півшлях.

5.3.3 Властивості матриць графів

Теорема 4

Нехай G — граф, $\Delta(G)$ — матриця суміжності графу G, яка відповідає заданій нумерації вершин $v_1, v_2, ..., v_n$. Тоді кількість різних шляхів довжиною k ($k \in \mathbb{N}$) з вершини v_i у вершину v_j дорівнює (i, j)-му елементу матриці Δ^k .

Приклад

$$\Delta^{2} = 2 \qquad \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
4 & 0 & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{array}{ccccccc}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}$$

$$\Delta^{4} = 2 \qquad \begin{pmatrix}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
4 & 0 & 1 & 0 & 1
\end{array}$$

Матриця відстаней $D = ||d_{ij}||$,

де $d_{ij} = d(i,j)$ — відстань від v_i до v_j , яка визначається як довжина найкоротшого маршруту з v_i у v_j .

Величина d_{ij} не визначена, якщо маршрут з v_i у v_j не існує.

Нехай граф G має матрицю суміжності Δ та матрицю відстаней D. Тоді, якщо величина d_{ij} , $i \neq j$, визначена, то вона дорівнює найменшому k, для якого елемент (i,j) в Δ^k , тобто $\delta_{ij}^{(k)}$, не дорівнює 0.

Приклад

$$\Delta^{4} = 2$$

$$\Delta^{4} = 2$$

$$3$$

$$4$$

$$\begin{pmatrix}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

1)
$$D(G) = \begin{pmatrix} 0 & 1 & \infty & \infty \\ 1 & 0 & 1 & \infty \\ \infty & \infty & 0 & 1 \\ 1 & \infty & \infty & 0 \end{pmatrix}$$
 2) $D(G) = \begin{pmatrix} 0 & 1 & 2 & \infty \\ 1 & 0 & 1 & 2 \\ 2 & \infty & 0 & 1 \\ 1 & 2 & \infty & 0 \end{pmatrix}$ 3) $D(G) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{pmatrix}$

$$D(G) = \begin{vmatrix} 1 & 0 & 1 & 2 \\ 2 & \infty & 0 & 1 \\ 1 & 2 & \infty & 0 \end{vmatrix}$$

3)
$$D(G) = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$$

Для того, щоб n-вершиний граф з матрицею суміжності Δ мав хоча б один цикл, необхідно й достатньо, щоб матриця $K = \Delta^2 + \ldots + \Delta^k$ мала хоча б один ненульовий діагональний елемент.

Матриця досяжності $R(G) = ||r_{ij}||$:

 $r_{ij}=1$, якщо v_j є досяжною з v_i ;

 $r_{ij} = 0$ в протилежному випадку.

Довільна вершина досяжна сама із себе, тому $r_{ii} = 1$ для всіх i.

Нехай Δ — матриця суміжності, R — матриці досяжності графу G з n вершинами. Тоді

$$R = B(I + \Delta + \Delta^{2} + ... + \Delta^{n-1}) = B[(I + \Delta)^{n-1}],$$

де B — булеве перетворення $(B: N \to \{0, 1\};$

$$B(x) = 0$$
, якщо $x = 0$;

$$B(x) = 1$$
, якщо $x > 0$),

I — одинична матриця.

Нехай R — матриця досяжності орграфу G, Δ — матриця суміжності. Тоді:

- 1) G сильно-зв'язний тоді й тільки тоді, коли R = J, де J матриця, елементами якої є тільки 1.
- 2) G однобічно-зв'язний тоді й тільки тоді, коли $B(R + R^{T}) = J$, де R^{T} транспонована матриця R;
- 3) G слабко-зв'язний тоді й тільки тоді, коли $B[(I+\Delta+\Delta^{\rm T})^{n-1}]=J,$ де $\Delta^{\rm T}$ транспонована матриця $\Delta.$