Transformaciones Lineales

Acción sobre la Base

Primero consideremos una transformación lineal T sobre \mathbb{R}^3 .

- T actúa sobre vectores $\vec{v} \in \mathbb{R}^3$.
- Cualquier $\vec{v} = (a,b,c)$ se puede puede expresar como c.l. de la base canónica. Es decir:

$$\vec{v} = a\hat{\imath} + b\hat{\jmath} + c\hat{k}$$
.

lacktriangle Como T es lineal, entonces $T(\vec{v}) = T(a\hat{\imath} + b\hat{\jmath} + c\hat{k}) = aT(\hat{\imath}) + bT(\hat{\jmath}) + cT(\hat{k}).$

Esto quiere decir que $T(\vec{v})$ es c.l. de $\{T(\hat{\imath}), T(\hat{\imath}), T(\hat{k})\}$. Es decir, c.l. de las imágenes de la base canónica.

Ejemplo 1. Consideremos la función T(x, y) =(2x-y,x+2y). Esta T.L. va de \mathbb{R}^2 en \mathbb{R}^2 . Es un ejercicio verificar que T es lineal (**). Calculemos la imagen del vector (4,5) de dos formas:

$$T(4,5) = 4T(\hat{\imath}) + 5T(\hat{\jmath})$$

= 4(2,1) + 5(-1,2)
= (8,4) + (-5,10) = (3,14).

Observación. ¡Lo importante de la T.L. es que está totalmente determinada por su acción sobre la base! Es decir, con sólo saber qué hace T con la base canónica sabemos qué hace con *cualquier* vector.

Observación. También notemos que la operación 4(2,1)+5(-1,2) es lo mismo que

$$(4,5)\begin{pmatrix} (2,1) \\ (-1,2) \end{pmatrix} = (4,5)\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \end{pmatrix}^{1}$$

de la matriz $A = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$. Por lo tanto

$$T(4,5) = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 14 \end{pmatrix}.$$

En general esto vale para cualquier transformación lineal y en cualquier dimensión. Tenemos el siguiente resultado:

Teorema 2. Si T es una T.L. entonces existe una Por lo tanto T(6,-2) = (-6,22,34)matriz A de forma que $T(\vec{x}) = A\vec{x}$.

Surge naturalmente la pregunta, ¿cómo representamos T con una matriz? ¡Usamos la base canónica!

Ejemplo 3. Consideremos la T.L. T(x, y, z) =(x-2y+z,2x-y-4z), T va de \mathbb{R}^3 en \mathbb{R}^2 . Para encontrar la matriz de T primero buscamos la imagen de la base canónica:

$$\begin{cases} T(\hat{\imath}) = T(1,0,0) = (1-0+0,2-0-0) = (1,2), \\ T(\hat{\jmath}) = (0-2+0,0-1-0) = (-2,-1), \\ T(\hat{k}) = (1,-4). \end{cases}$$

Así

$$T(x,y,z) = x(1,2) + y(-2,-1) + z(1,-4)$$

y si suponemos que la imagen de (x,y,z) es algún vector (a,b) entonces traducimos esto en un sistema lineal:

$$\begin{aligned} (a,b) &= x(1,2) + y(-2,-1) + z(1,-4) \\ &= (x-2y+z,2x-y-4z) \\ &\Rightarrow \begin{cases} a = x-2y+z \\ b = 2x-y-4z \end{aligned} \end{aligned}$$
 Convirtiendo a forma matricial, lo podemos ver como

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

■ $T(\hat{\imath}) = T(1,0) = (2(1) - (0),(1) + 2(0)) = (2,1)$ y Por lo tanto $T(x,y,z) = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, y entonces análogamente $T(\hat{\jmath}) = (-1,2)$. Entonces

concluimos que esa es la matriz de T.

Observación. La matriz de T está compuesta por las imágenes de la base canónica tomadas como columnas. Por ejemplo en el caso anterior $T(\hat{i})$ era (1,2), entonces ese vector es la primera columna de A.

Denotaremos a la matriz de una transformación lineal A, A_T ó sólo T. Otra notación más sugestiva de lo que haremos más adelante es $[T]_{\mathcal{C}}$.

Ejemplo 4. Supongamos que $T: \mathbb{R}^2 \to \mathbb{R}^3$ es una T.L. que cumple

$$\begin{cases} T(\hat{\imath}) = (-1,3,8), \\ T(\hat{\jmath}) = (0,-2,7). \end{cases}$$

Si queremos encontrar la imagen de (6,-2) entonces formamos la matriz y multiplicamos. En este caso:

$$[T]_{\mathcal{C}} = \begin{pmatrix} -1 & 0 \\ 3 & -2 \\ 8 & 7 \end{pmatrix}$$

$$\Rightarrow T(6,-2) = \begin{pmatrix} -1 & 0 \\ 3 & -2 \\ 8 & 7 \end{pmatrix} \begin{pmatrix} 6 \\ -2 \end{pmatrix} = \begin{pmatrix} -6 \\ 22 \\ 34 \end{pmatrix}.$$

Como las T.L.'s están determinadas por su acción sobre la base, entonces podemos ver cómo actúa Tsobre los vectores por medio de su acción sobre $\hat{\imath},\hat{\jmath}$.

T.L.'s en el plano (en \mathbb{R}^2)

Para guiarnos, tomaremos vectores cuyas puntas estén en la imagen a continuación:

Los vectores del cuadro son aquellos cuyas puntas caen en el cuadro y salen desde el origen.

Reescalamiento (Elongar ó acortar)

El reescalamiento alonga o acorta. ¿Cómo se ve una matriz de un reescalamiento? ¿Adónde van \hat{i} v \hat{j} ?

Ejemplo 5. Llamemos $\vec{u} = T\hat{\imath}$, $\vec{v} = T\hat{\jmath}$, entonces en este caso $\vec{u} = (2,0)$, $\vec{v} = (0,3)$.

Armando la matriz de T obtenemos

$$[T]_{\mathcal{C}} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

Y encontramos el criterio de T por medio de $T(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

$$T(x,y) = \begin{pmatrix} 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= (2x,3y).$$

Práctica

Si las medidas iniciales del cuadro son 1×1 :

- 1. ¿Cuales son las medidas de la figura nueva?
- 2. ¿Cuál es el área la figura nueva?
- 3. ¿Cuánto vale $\det([T]_{\mathcal{C}})$?

En general un reescalamiento se representa con una matriz diagonal $\begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix}$. Su acción sobre $\hat{\imath}$ y $\hat{\jmath}$ es mandarlos a múltiplos de ellos respectivamente.

Observación. El vector (x,y) es enviado a (mx,ny). Si un vector es de la forma (x,0) entonces su imagen es (mx,0) = m(x,0). Esto quiere decir que son paralelos.

Definición. Un vector \vec{v} es <u>invariante</u> bajo una T.L. T si $T(\vec{v}) \in \text{gen}(\vec{v})$.

Por lo anterior los vectores del eje x y los del eje y son invariantes bajo reescalamientos.

Proyecciones (Justo como antes)

Ejemplo 6. Proyectamos sobre el eje x con la transformación $T(\vec{x}) = \text{Proy}_{\hat{i}}(\vec{x})$. ¿Cuál es la matriz de esta T.L.?

Práctica

¿Qué pasó con el cuadro? ¿Cuál es su área bajo la proyección? ¿Cuánto vale el determinante de T aquí?

Observación. Si $b \neq 0$, (0,b) va para cero bajo $\text{Proy}_{\hat{\imath}}$. También colapsa la cuadrícula en un solo eje. Esta es la idea de una T.L. singular.

Definición. Si T es una T.L., su núcleo es el conjunto $\ker T = \{\vec{x}: T(\vec{x}) = 0\}.$

Teorema 7. Si $A = [T]_{\mathcal{C}}$ es la representación matricial de T, entonces $\ker T = \ker A$.

Ejemplo 8. En este caso $\ker(\text{Proy}_{\hat{\imath}}) = \ker\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

El espacio de soluciones está definido por la ecuación x = 0 de forma que las soluciones son de la forma (0,y). Entonces $\ker(\text{Proy}_{\hat{i}}) = \gcd(\hat{j})$.

Definición. Una T.L. se llama singular si existe algún vector \vec{v} no nulo que es enviado a cero bajo la T.L.

Observación. En el caso de la proyección, como los (0,y) van para cero, entonces es una T.L. singular.

Definición. Una T.L. se dice <u>no-singular</u> si el único vector que manda a cero es el cero. Es decir, si $\ker T = \{0\}$.

Vale que T es no-singular $\iff \ker[T]_{\mathcal{C}} = \{0\}$ $\iff \operatorname{Nul}([T]_{\mathcal{C}}) = 0 \iff \operatorname{Rng}[T]_{\mathcal{C}}$ es completo $\iff \det[T]_{\mathcal{C}} \neq 0 \iff [T]_{\mathcal{C}}$ es invertible.

Definición. Una T.L. es <u>invertible</u> si su matriz es invertible. En este caso si $T\vec{x} = A\vec{x}$ entonces $T^{-1}\vec{x} = A^{-1}\vec{x}$.

Ejemplo 9. Si T(x,y) = (2x,3y), entonces $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$ y entonces $T^{-1}(x,y) = (x/2,y/3)$.