Continuous Optimization

CONTENTS

- Continuous Optimization for Machine learning
 - Continuous Optimization
 - Gradient Descent
 - Step-Size
 - With Momentum
 - Stochastic Gradient Descent
 - Duality in Optimization
 - Constrained Optimization

Continuous Optimization for Machine learning

Objective of Continuous Optimization

Find the best value

Minimise / maximise an objective function

By convention, objective functions in machine learning are minimized

How can we reach the minimum value? | Main topics of Continuous Optimization

Unconstrained vs constrained optimization

Unconstrained: The variable can take on any value, there are <u>no restrictions</u>

Constrained: the variable can only take <u>on certain values</u> within a larger range

Gradient Descent

Constrained Optimization

Follow the negative gradient

Why do we need Gradient Descent in first place?

Analytic Solutions

$$f(x) = x^3 + x^2...$$

$$\frac{df(x)}{d(x)} = 0$$

Why do we need Gradient Descent in first place?

In general, we are <u>unable</u> to find analytic solutions

Consider:

- When the training set is enormous
- When no simple formulas exist.

Imagine a function with a large number of variables

Gradient Descent

Unconstrained Optimization

Follow the negative gradient

Problems:

- False/Local Minimum
- The gradient indicates the direction but we don't know how to advance

Gradient Descent: Step-Size

How to advance?

Choosing a good step-size is important

- Small → Slow
- Large → Overshoot

We only use one variable for simplicity

Gradient Descent: Step-Size

How to choose an optimal Step?

Two simple heuristics:

Value Increase Step

Value Undo and Increases Decrease Step

Gradient Descent

FORMULA:

$$x_{i+1} = x_i - \gamma_i \nabla f$$

$$(x_i)$$

What does this mean?

 x_{i}

Initial parameter

 γ_i

Step Size

 $\nabla f(x_i)$

Gradient

Gradient Descent Example

$$f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\top} \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 5 \\ 3 \end{bmatrix}^{\top} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\nabla f \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} - \begin{bmatrix} 5 \\ 3 \end{bmatrix}^{\mathsf{T}}$$

$$x_{i+1} = x_i - \gamma_i \nabla f(x_i)$$

Example with 2 variables

Gradient Descent: With Momentum

What happens when we try to reach the optimum point?

To improve the convergence we give gradient descent some <u>memory</u>

Gradient Descent: With Momentum

Memory smoothes gradient implementing a moving average.

We achieve this by creating a <u>linear combination</u> of the current and previous gradients

Resembles the movement of a heavy ball reluctant to change direction

Gradient Descent: With Momentum

FORMULA:
$$x_{i+1} = x_i - \gamma_i \nabla f(x_i) + \underline{\alpha x_i}$$

Really similar to regular gradient descent

Gradient Descent: Types

Momentum

Gradient Descent

RMSProp

AdaGrad

Adam

Computing the gradient can be very <u>time consuming</u>

How can we find a "cheap" approximation of the gradient?

We can reduce the amount of computation by taking a sum over a smaller set.

With this approach we do not know the gradient precisely, but instead only know a noisy approximation to it.

The estimate also allows us to get out of local minimums

The goal in machine learning does not necessarily need a precise estimate of the minimum of the objective function.

Stochastic gradient descent is <u>very</u> <u>effective</u> in large-scale machine learning problems

Constrained Optimization

What is a constraint?

imitation or Restriction that we impose on a function

Parameterize with a variable t

Single variable function

Lagrange Multipliers

We want to find the minimum value

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
subject to $g_i(\boldsymbol{x}) \leq 0$ for all $i = 1, ..., m$

Lagrangian

We have the lagrangian depending on two variables

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{x}) = f(\boldsymbol{x}) + \sum_{i=1}^{n} \lambda_i g_i(\boldsymbol{x}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x})$$

Find: $\max_{x,y} f(x) = \max_{x,y} [x+y]$ subject to $g(x,y) = x^2 + y^2 = 1$ $g(x,y) = x^2 + y^2 - 1 = 0$ $\Rightarrow \mathcal{L}(x,y) = f(x) + \lambda g(x)$ $= x + y + \lambda (x^2 + y^2 - 1)$

Duality in Optimization

What do we call "duality"?

Changing the set of variables that we optimize, we can redefine the problem:

We go from ... to ...

Minimization → Maximization

Maximization → Minimization

We call these two problems the **Dual** and the **Primal**

Primal→**Dual**

We get two outcomes from this framing

Weak Duality

The solutions to the primal problem will be greater or equal

$$\min_{x} \mathcal{D}(x) \le \max_{x} \mathcal{P}(x)$$

Strong Duality

The solution to the Dual and the Primal problems are the same

$$\min_{x} \mathcal{D}(x) = \max_{x} \mathcal{P}(x)$$

When creating the lagrangian we get a Primal problem

Reminder: <u>Primal</u> → <u>Dual</u>

$$\mathcal{L}(oldsymbol{\lambda}, oldsymbol{x}) = f(oldsymbol{x}) + \sum_{i=1}^m \lambda_i g_i(oldsymbol{x}) = f(oldsymbol{x}) + oldsymbol{\lambda}^T oldsymbol{g}(oldsymbol{x})$$

$$\min_{\boldsymbol{x}} \quad f(\boldsymbol{x})$$
 subject to $g_i(\boldsymbol{x}) \leqslant 0$

we can transformed it into a Dual Prob just by a change of variables:

$$\mathcal{D}(\boldsymbol{\lambda}) = \min_{x} \mathcal{L}(\mathbf{x}, \lambda)$$

$$\Rightarrow \max_{\boldsymbol{\lambda} \geq 0} \mathcal{D}(\boldsymbol{\lambda}) = \max_{\boldsymbol{\lambda}} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{x})$$

Has weak duality!

Because of the minimax inequality:

$$\max_{\boldsymbol{y}} \min_{\boldsymbol{x}} \varphi(\boldsymbol{x}, \boldsymbol{y}) \leqslant \min_{\boldsymbol{x}} \max_{\boldsymbol{y}} \varphi(\boldsymbol{x}, \boldsymbol{y})$$

Lagrangian:

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{x}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \lambda_i g_i(\boldsymbol{x}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x})$$

$$\max_{\boldsymbol{\lambda} \geq 0} D(\boldsymbol{\lambda}) = \max_{\boldsymbol{\lambda}} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{x})$$

$$\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{x}) \leq \min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{x})$$

Dual Problem

""Primal Problem""

What happens if the function is convex?

Examples:

When a optimization constrained problems has all convex functions we say is a **convex optimization problem**

Convex Optimization Problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g_i(\boldsymbol{x}) \leqslant 0$ for all $i = 1, \dots, m$

... and the functions are complex.

We get strong duality!

$$\min_{\boldsymbol{x}} \quad f(\boldsymbol{x})$$
subject to $g_i(\boldsymbol{x}) \leq 0$

$$\max_{\boldsymbol{\lambda}} \mathcal{D}(\boldsymbol{\lambda}) = \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})$$
subject to $\boldsymbol{\lambda} \geq 0$

Reminder Strong Duality:

$$\min_{x} \mathcal{D}(x) = \max_{x} \mathcal{P}(x)$$

Therefore is easier this way!

We can choose which function to optimize (the dual or primal)

A small recap

- We can use gradient descent very effectively
- Specially useful when training Neural Networks

- We can use Lagrange Multipliers to optimize with constraints
- Convex functions are easier to optimize

Thanks for your attention!