

В

Α

S

-

S

В

-

Т

Α

N

G

Α

Ν

#####%%%%%#####

Halaman : 1 Dari 57 Halaman

Basis Bilangan Basis Bilangan

Terdapat 4 sistem bilangan yaitu:

- Bilangan Desimal (10)
- Bilangan Biner(2)
- Bilangan Oktal(8)
- Bilangan Hexadesimal(16)

Sistem Bilangan	Basis/Radix	Jml Simbol Bil.	Simbol Bilangan
Desimal _{(d)/(10)}	10 (deca=10)	10	0,1,2,3,4,5,6,7,8,9
Biner _{(b)/(2)}	2 (binary=2)	2	0,1
Oktal _{(0)/(8)}	8 (octal=8)	8	0,1,2,3,4,5,6,7
Hexadesimal _{(h)/(16)}	16 (hexa=6,deca=10)	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

101112131415

Halaman: 2 Dari 57 Halaman

Sistem Bilangan Desimal

Bilangan Desimal : Susunan bilangan yang mempunyai Basis/Radix 10, sebab sistem bilangan ini menggunakan 10 nilai koefisien yang mungkin yaitu : 0,1,2,3,4,5,6,7,8, dan 9

Bentuk nilai suatu bilangan desimal dapat berupa integer desimal (decimal integer) atau pecahan decimal (decimal fraction)

Integer Desimal adalah nilai desimal yang bulat

Absolute value: nilai mutlak dari masing-masing digit.

Position value: bobot dari masing-masing digit tergantung dari letak/ posisinya.

Interger:

Posisi digit	Position value
(dari kanan)	l obition varae
1	$10^{0} = 1$
2	$10^1 = 10$
3	$10^2 = 100$
4	$10^3 = 1000$
5	$10^4 = 10000$
Dst	dst

Pecahan:

Posisi digit	Position value
(dari kanan)	
1	$10^{-1} = 1/10$
2	$10^{-2} = 1/100$
3	$10^{-3} = 1/1000$
dst	dst

atau

10^{2}	10^{1}	10 ⁰ titik	10 ⁻¹	10-2
ratusan	puluhan	satuan desimal	sepersepuluh	seperseratus

Pecahan Desimal adalah nilai desimal yang mengandung nilai pecahan di belakang koma.

Halaman: 3 Dari 57 Halaman

Contoh 173,25 artinya:

Penjumlahan Sistem Bilangan Desimal

Pengurangan Sistem Bilangan Desimal

```
Contoh: 524 78 = ..... (10)

524
78
.....-
446
4-8=x, borrow of (pinjam) 1->10, 10+4-8=14-8=6
2 diambil 1 tinggal 1-7=x, 10+1-7=11-7=4
5-1=4
```

Perkalian Sistem Bilangan Desimal

Pembagian Sistem Bilangan Desimal

Sistem Bilangan Biner

Bilangan Biner : Susunan bilangan yang mempunyai Basis/Radix 2, sebab sistem bilangan ini menggunakan dua nilai koefisien yang mungkin yaitu : 0 dan 1

Bentuk nilai suatu bil.biner dapat berupa integer biner (binary integer) atau pecahan biner (binary fraction). **Integer Biner** adalah nilai biner yang bulat.

Halaman: 4 Dari 57 Halaman

contoh 1001 artinya:

$$1^{3}0^{2}0^{1}1^{0} = (1x2^{3}) + (0x2^{2}) + (0x2^{1}) + (1x2^{0})$$

$$= (1x8) + (0x4) + (0x2) + (1x1)$$

$$= 8 + 0 + 0 + 1$$

$$= 9_{10}$$

Position value biner

Integer :

meger.	
Posisi digit	Position value
(dari kanan)	
1	$2^0 = 1$
2	$2^1 = 2$
3	$2^2 = 4$
4	$2^3 = 8$
5	$2^4 = 16$
Dst	dst

Pecahan:

recarrair.	
Posisi digit	Position value
(dari kanan)	
1	$2^{-1} = \frac{1}{2}$
2	$2^{-2} = \frac{1}{4}$
3	$2^{-3} = 1/8$
dst	Dst

atau

Halaman: 5 Dari 57 Halaman

Pecahan biner

contoh 0.111 artinya:

Penjumlahan Sistem Bilangan Biner

Prinsip:
$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 2/2 = 0$ carry of 1 (1 sisa 0)
Contoh: $1011 + 11 = \dots (2)$
 11
 1011
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11

Pengurangan Sistem Bilangan Biner

Prinsip:
$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = 1 \text{ borrow of } 1$
Contoh: $1001 - 11 = \dots (2)$
 1001
 11
 $-----$
 $110 \longleftarrow 1 - 1 = 0$
 $0 - 1 = x, \text{ borrow of } 1 - > 2, 2 - 1 = 1$
 $-1 = x, \text{ bo } 1 - > 2, 2 - 1 = 1$

Perkalian Sistem Bilangan Biner

Prinsip:
$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$
Contoh: $101 \times 11 = \dots (2)$
 101
 11
 $---- \times$
 101
 101
 101
 101
 101
 101
 101
 101

Pembagian Sistem Bilangan Biner

Sistem Bilangan Oktal

- Bentuk nilai suatu bil.oktal dapat berupa integer octal (octal integer) atau pecahan oktal (octal fraction)
- Integer Oktal adalah nilai oktal yang bulat.

Halaman: 8 Dari 57 Halaman

Position value oktal

Posisi digit (dari kanan)	Position value
1	$8^0 = 1$
2	$8^1 = 8$
3	$8^2 = 64$
4	$8^3 = 312$
5	$8^4 = 4096$
dst	dst

Posisi digit (dari kiri)	Position value
1	8 ⁻¹ =0.125
2	8 ⁻²⁼ 0.15625
dst	Dst

Penjumlahan Sistem Bilangan Oktal

Pengurangan Sistem Bilangan Oktal

Perkalian Sistem Bilangan Oktal

Contoh:
$$56_{(8)} \times 43_{(8)} = \dots \times (8)$$

56

43

----- ×

212

3x6=18, 18/8=2 sisa 2

270

3x5=15+2=17, 17/8=2 sisa 1

----- + 4x6=24, 24/8=3 sisa 0

3112

4x5=20+3=23, 23/8=2 sisa 7

Halaman: 9 Dari 57 Halaman

Pembagian Sistem Bilangan Oktal

Cttn: Bilangan Oktal: Susunan bilangan yang mempunyai Basis/Radix8, sebab sistem bilangan ini menggunakan 8 nilai koefisien yang mungkin yaitu: 0,1,2,3,4,5,6, dan 7

Sistem Bilangan Hexadesimal

• Bentuk nilai suatu bil.hexa dapat berupa integer hexa (hexa integer) atau pecahan hexa (hexa fraction)

Halaman: 10 Dari 57 Halaman

Integer Hexa adalah nilai hexa yang bulat.

contoh: 152B(16) artinya:

$$152B_{(16)} = (1x16^{3}) + (5x16^{2}) + (2x16^{1}) + (Bx16^{0})$$

$$= (1x4096) + (5x256) + (2x16) + (11x1)$$

$$= 4096 + 1280 + 32 + 11$$

$$= 5419_{(10)}$$

M.S. Herawati SKom. MMSi

Position value Hexa

Posisi digit	Position value						
(dari kanan)							
1	$16^0 = 1$						
2	$16^1 = 16$						
3	$16^2 = 256$						
4	$16^3 = 4096$						
5	$16^4 = 65536$						
dst	dst						

Penjumlahan Sistem Bilangan Hexa

Pengurangan Sistem Bilangan Hexa

Halaman: 11 Dari 57 Halaman

Perkalian Sistem Bilangan Hexa

Cttn: Bilangan Heksadesimal: Susunan bilangan yang mempunyai Basis/Radix 16, sebab sistem bilangan ini menggunakan 16 nilai koefisien yang mungkin yaitu: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,dan F.

Pembagian Sistem Bilangan Hexa

Contoh:
$$1224_{(16)}$$
: $1B_{(16)}$ =(16)
 $1B / 1224 \setminus AC$ $\rightarrow 1B$
 $10E$ A
----- \times
 144 $10E \leftarrow A \times B = 10 \times 11 = 110,110/16 = 6 \text{ sisa } 14(E)$
 144 $A \times 1 = 10 + 6 = 16,16/16 = 1 \text{ sisa } 0$
----- \times
 $144 \leftarrow C \times B = 12 \times 11 = 132,132/16 = 8 \text{ sisa } 4$
 $C \times 1 = 12 + 8 = 20,20/16 = 1 \text{ sisa } 4$

Halaman: 12 Dari 57 Halaman

Tabel Sistem Bilangan

Sistem	Basis	Himpunan/elemen Digit	Contoh
Desimal	10	{0,1,2,3,4,5,6,7,8,9}	255 ₁₀
Biner	2	{0,1}	11111111 ₂
Oktal	8	{0,1,2,3,4,5,6,7}	377 ₈
Heksadesimal	16	{0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F}	FF ₁₆
Heksadesimal	16	{0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F}	FF ₁₆

Desimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Heksa	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Biner	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Latihan:

$$3.110_2 \times 11_2 = \dots 2$$

11.
$$97_{16} \times A4_{16}$$
 =.....₁₆

KONVERSI BILANGAN

 Konversi bilangan adalah suatu proses dimana satu system bilangan dengan basis tertentu akan dijadikan bilangan dengan basis yang lain.

Konversi dari bilangan Desimal

1. Desimal ke Biner

 Yaitu dengan cara membagi bilangan desimal dengan 2 kemudian diambil sisa pembagiannya.
 45 (10) =(2)

```
45 : 2 = 22 + sisa 1

22 : 2 = 11 + sisa 0

11 : 2 = 5 + sisa 1

5 : 2 = 2 + sisa 1

2 : 2 = 1 + sisa 0

101101<sub>(2)</sub> ditulis dari bawah ke atas
```

2. Desimal ke Oktal

 Yaitu dengan cara membagi bilangan desimal dengan 8 kemudian diambil sisa pembagiannya

Halaman: 14 Dari 57 Halaman

• 385 ₍₁₀₎ =₍₈₎? 385 : 8 = 48 + sisa 1 48 : 8 = 6 + sisa 0 601 ₍₈₎

3. Desimal ke Hexadesimal

 Yaitu dengan cara membagi bilangan desimal dengan 16 kemudian diambil sisa pembagiannya

Konversi dari bilangan Biner

1. Konversi ke desimal

 Yaitu dengan cara mengalikan masing-masing bit dalam bilangan dengan position valuenya.

2. Konversi ke Oktal

 Dapat dilakukan dengan mengkonversikan tiap-tiap tiga buah digit biner yang dimulai dari bagian belakang

11010100
$$_{(2)} = \dots _{(8)}$$

11 010 100

3 2 4

 $_{0x2^{1}=0}$
 $_{1x2^{2}=4}$

M.S. Herawati SKom. MMSi

Halaman: 15 Dari 57 Halaman

3. Konversi ke Hexademial

- Dapat dilakukan dengan mengkonversikan tiap-tiap empat buah digit biner yang dimulai dari bagian belakang
- 11010100 1101 0100 D 4

Konversi dari bilangan Oktal

1. Konversi ke Desimal

 Yaitu dengan cara mengalikan masingmasing bit dalam bilangan dengan position valuenya

•
$$12_{(8)} = \dots (10)$$

$$2 \times 8^{0} = 2$$

$$1 \times 8^{1} = 8$$

$$10_{(10)}$$

2. Konversi ke Biner

 Dilakukan dengan mengkonversikan masingmasing digit octal ke tiga digit biner

Halaman: 16 Dari 57 Halaman

2 = 010

0 = 000

5 = 101

6 = 110

jadi 110101000010

3. Konversi ke Hexadesimal

 Dilakukan dengan cara merubah dari bilangan octal menjadi bilangan biner kemudian dikonversikan ke hexadesimal

$$2537_{(8)} =_{(16)}$$

 $2537_{(8)} = 010.101.011.111$
 $0101.0101.1111_{(2)} = 55F_{(16)}$

Konversi dari bilangan Hexadesimal

1. Konversi ke Desimal

 Yaitu dengan cara mengalikan masingmasing bit dalam bilangan dengan position valuenya

2. Konversi ke Oktal

 Dilakukan dengan cara merubah dari bilangan hexadesimal menjadi biner terlebih dahulu kemudian dikonversikan ke octal

Halaman: 17 Dari 57 Halaman

$$55F_{(16)} =_{(8)}$$

 $55F_{(16)} = 0101.0101.1111_{(2)}$
 $010.101.011.111_{(2)} = 2537_{(8)}$

3. Konversi ke Biner

Dilakukan dengan cara merubah semua bilangan heksa menjadi bilangan biner dengan 4 digit biner.

9 A F
$$_{(16)}$$
 = $_{(2)}$
9 A F $_{(16)}$ = 1001.1010.111 $_{(2)}$

Salah satu metoda yang dipergunakan dalam pengurangan pada komputer yang ditransformasikan menjadi penjumlahan adalah dengan menggunakan *minus-radiks-komplemen satu* atau *komplemen radiks*. Komplemen di dalam sistem desimal, secara berurutan disebut dengan *komplemen sembilan* dan *komplemen sepuluh* sedangkan komplemen di dalam sistem biner disebut dengan *komplemen satu* dan *komplemen dua*).

Komplemen sembilan dari bilangan desimal diperoleh dengan mengurangkan masing masing digit desimal tersebut ke bilangan 9, sedangkan komplemen sepuluh adalah komplemen sembilan ditambah 1

Contoh:

Analogi yang bisa diambil dari perhitungan komplemen di atas adalah, komplemen satu dari bilangan biner diperoleh dengan jalan mengurangkan masing-masing digit biner tersebut ke bilangan 1, atau dengan bahasa sederhananya mengubah masing-masing 0 menjadi 1 atau sebaliknya mengubah masing-masing 1 menjadi 0. Sedangkan komplemen dua adalah satu plus satu.

Halaman: 18 Dari 57 Halaman

Contoh:

Bilangan Biner	110011	101010	011100
Komplemen Satu	001100	010101	100011
Komplemen Dua	001101	010110	100100

Pengurangan biner 110001 - 1010 akan kita telaah pada contoh di bawah ini!

110001	110001	110001
001010	110101	110110
	+	+
100111	100111	1100111
		dihilangkan!

Alasan teoritis mengapa cara komplemen ini dilakukan, dapat dijelaskan dengan memperhatikan sebuah *speedometer* mobil/motor dengan empat digit sedang membaca nol!

ı	_	_	_	_	_	_
	U	U	U	U	U	U

Jika sekarang kita tambahkan -1 pada pembacaan tersebut; yakni jika *speedometer* kita putar kembali 1 mil, maka pembacaan akan berubah menjadi!

9	9	9	9	9	9
---	---	---	---	---	---

Lihat contoh

Bilangan Desimal	123	651	914 —
Komplemen Sembilan	876	348	085
Komplemen Sepuluh	877	349	086 → ditambah dengan 1

Perhatikan hubungan diantara bilangan dan komplemennya adalah simetris. Jadi, dengan memperhatikan contoh di atas, komplemen 9 dari 123 adalah 876 dengan simple menjadikan jumlahnya=9 (1+8=9, 2+7=9, 3+6=9)! Sementara komplemen 10 didapat dengan menambahkan 1 pada komplemen 9, berarti 876+1=877

Pengurangan desimal dapat dilaksanakan dengan penjumlahan komplemen sembilan plus satu, atau penjumlahan dari komplemen sepuluh!

Aritmatika Biner Aritmatika Biner

- Operasi aritmatika untuk bilangan biner dilakukan dengan cara hampir sama dengan operasi aritmatika untuk bilangan desimal. Penjumlahan, pengurangan, perkalian dan pembagian dilakukan digit per digit.
- Kelebihan nilai suatu digit pada proses penjumlahan dan perkalian akan menjadi bawaan (carry) yang nantinya ditambahkan pada digit sebelah kirinya.

Penjumlahan

Aturan dasar penjumlahan pada sistem bilangan biner :

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0, simpan (carry) 1

Penjumlahan Desimal

	10 ³ (1000)	10 ² (100)	10 ¹ (10)	10 ⁰ (1)
		8 3	2 3	3 8
Simpan (carry)	1		1	
Jumlah	1	1	6	1

Penjumlahan Biner

<u> </u>	2 ⁵ 32	2 ⁴ 16	2 ³	2 ² 4	2 ¹	201
		1	1	0	0 1	1
Simpan (carry)	1	1		1	1	
Jumlah	1	1	0	1	0	0

Halaman : 20 Dari 57 Halaman

Bit Bertanda

Bit 0 menyatakan bilangan positif Bit 1 menyatakan bilangan negatif

Komplemen ke 2

Metode untuk menyatakan bit bertanda digunakan sistem komplement kedua (2's complement form)

Komplemen ke 1

Biner 0 diubah menjadi 1 Biner 1 diubah menjadi 0

Misal:

1	0	1	1	0	1	0
0	1	0	0	1	0	1

Biner Awal

Komplemen pertama

Halaman: 21 Dari 57 Halaman

Membuat Komplemen ke 2

- 1. Ubah bit awal menjadi komplemen pertama
- 2. Tambahkan 1 pada bit terakhir (LSB)

Misal

1	0	1	1	0	1
0	1	0	0	1	0
					1
0	1	0	0	1	1

Biner Awal = 45

Komplemen 1

Tambah 1 pada LSB

Komplemen 2

Menyatakan Bilangan Bertanda dengan Komplemen ke 2

- 1. Apabila bilangannya positif, magnitude dinyatakan dengan biner aslinya dan bit tanda (0) diletakkan di depan MSB.
- 2. Apabila bilangannya negatif, magnitude dinyatakan dalam bentuk komplemen ke 2 dan bit tanda (1) diletakkan di depan MSB

Negasi

Operasi mengubah sebuah bilangan negatif menjadi bilangan positif ekuivalennya, atau mengubah bilangan positif menadi bilangan negatif ekuivalennya.

Hal tersebut dilakukan dengan meng-komplemenkan ke 2 dari biner yang dikehendaki Misal : negasi dari + 9 adalah - 9

M.S. Herawati SKom. MMSi Halaman : 22 Dari 57 Halaman

- + 9 = 01001 Biner awal
- 9 = 10111 Negasi (Komplemen ke 2)
- + 9 = 01001 Di negasi lagi

Penjumlahan di Sistem Komplemen ke 2

Dua bilangan positif — Dilakukan secara langsung.

Misal: penjumlahan +9 dan +4

Bit tanda ikut dalam operasi penjumlahan

Bilangan positif dan sebuah bilangan negatif yang lebih kecil

Misal: penjumlahan +9 dan -4.

Bilangan -4 diperoleh dari komplemen ke dua dari +4

Bilangan positif dan sebuah bilangan negatif yang lebih Besar

Misal: penjumlahan -9 dan +4.

Bilangan -9 diperoleh dari komplemen ke dua dari +9

-9	\rightarrow	1	0	1	1	1		
+4	\rightarrow	0	0	1	0	0		
		1	1	0	1	1		
			Bit tanda ikut dalam operasi penju lahan					

M.S. Herawati SKom. MMSi

Halaman : 23 Dari 57 Halaman

Dua Bilangan Negatif

Misal: penjumlahan -9 dan -4.

Bilangan -9 dan - 4 masing - masing diperoleh dari komplemen ke dua dari +9 dan -4

Operasi Pengurangan

Aturan Umum

0 - 0 = 0

1 - 0 = 1

1 - 1 = 0

0 - 1 = 1, pinjam 1

Misal

1	1	1	0	
1	0	1	1	
		1	1	Pinjam
0	0	1	1	Hasil

Operasi Pengurangan

Operasi pengurangan melibatkan komplemen ke 2 pada dasarnya melibatkan operasi penjumlahan tidak berbeda dengan contoh - contoh operasi penjumlahan sebelumnya.

Prosedur pengurangan

- 1. Negasikan pengurang.
- 2. Tambahkan pada yang dikurangi
- 3. Hasil penjumlahan merupakan selisih antara pengurang dan yang dikurangi

M.S. Herawati SKom. MMSi

Halaman : 24 Dari 57 Halaman

Misal: +9 dikurangi +4

+9 → 01001 +4 → 00100 -

Operasi tersebut akan memberikan hasil yang sama dengan operasi

	Ţ						
	1	0	0	1	0	1	
-4	\rightarrow	1	1	1	0	0	
+9	\rightarrow	0	1	0	0	1	

Carry diabaikan, hasilnya adalah 00101 (= +5)

Perkalian Biner

Perkalian biner dilakukan sebagaimana perkalian desimal

Halaman: 25 Dari 57 Halaman

TUGAS

Halaman: 26 Dari 57 Halaman

- · Kerjakan operasi matematis berikut
- a. 10010 + 10001
- b. 00100 + 00111
- c. 10111 00101
- d. 10011 x 01110
- e. 10001 x 10111