解方程

二分法与不动点迭代法

胡建芳

hujf5@mail.sysu.edu.cn

计算机学院

助教

- 韦平: 计算数学方向, 博士 weip7@mail2.sysu.edu.cn
- 杨吾意:人工智能方向,硕士 yangwy33@mail2.sysu.edu.cn

■ 作业提交邮箱
nahomework@163.com

群名称:数值计算方法-讨论群

群 号: 634748851

课程简介

定理 0.4(介值定理) 设 f 是区间 [a,b] 上的一个连续函数, 那么 f 取到 f(a) 和 f(b) 之间的任一个值. 更精确地说, 如果 g 是 f(a) 和 f(b) 之间的一个数, 那么 存在一个数 $c(a \le c \le b)$ 使得 f(c) = g.

定理 0.6(中值定理) 设 f 是在区间 [a,b] 上的连续可微函数, 那么在 a 和 b 之间存在一个数 c, 使得 $f'(c) = \frac{f(b)-f(a)}{b-a}$.

怎么求 c?

课程简介

你有办法解决下列问题吗?

- 1, 计算根号11的值
- 2, 求方程 cos(x)-x=0在 [0 1]的根

课程简介

你有办法解决下列问题吗?

- 1, 计算根号11的值
- 2, 求方程 cos(x)-x=0在 [0 1]的根

坚持1个半小时不睡觉, 你就会了

■ 二分法理论依据:

定理 1.2 设 f 是区间 [a,b] 上的连续函数,满足 f(a)f(b)<0. 那么 f 在 a 和 b 之间有一个根,即存在一个数 r 满足 a< r< b 以及 f(r)=0.

图 1-1 $f(x) = x^3 + x - 1$ 的图形: 函数在 0.6 和 0.7 之间有一个根

二分法:

对分法

```
给定初始区间 [a,b], 使 f(a)f(b) < 0
while (b-a)/2 < TOL
   c = (a+b)/2
   if f(c) = 0, stop, end
   if f(a)f(c) < 0
       b = c
   else
       a = c
   end
end
最后得到的区间 [a,b] 包含一个根.
近似根是 (a+b)/2.
```

对分法: 第一步, 检查 $f(c_0)$ 的符号, 因为 $f(c_0)f(b_0) < 0$, 所以取 $a_1 = c_0, b_1 = b_0$, 并且用右半区间 $[a_1, b_1]$ 代替原区间 $[a_0, b_0]$; 第二步, 用左半区间 $[a_2, b_2]$ 代替 $[a_1, b_1]$

■ 二分法:

例 1.1 在区间 [0,1] 上, 用对分法求函数 $f(x) = x^3 + x - 1$ 的根.

i	a_i	$f(a_i)$	c_i	$f(c_i)$	b_i	$f(b_i)$
0	0.000 0	_	0.500 0	_	1.000 0	687
1	0.500 0	-	0.750 0	+	1.000 0	+
2	0.500 0	_	0.625 0	_	0.750 0	+
3	0.625 0	-	0.687 5	+	0.750 0	+
4	0.625 0	-	0.656 2	_	0.687 5	+
5	0.6562	_	0.671 9	_	0.687 5	+
.6	0.671 9	_	0.679 7		0.687 5	1004
7	0.679 7	_	0.683 6	+	0.687 5	+
8	0.679 7	_	0.681 6	-	0.683 6	+
9	0.681 6	-	0.682 6	+	0.683 6	+

■ 算法的精确度和速度:

如果 [a,b] 是初始区间, 那么 n 次对分步骤之后, 区间 $[a_n,b_n]$ 的长度是 $(b-a)/2^n$. 选取中点 $x_c = (a_n + b_n)/2$ 作为对解 r 的最好估计, 它在真解的半个区间长度之内. 总结一下, 对分法进行 n 步之后, 我们求得

解的误差 =
$$|x_c - r| < \frac{b-a}{2^{n+1}}$$
,

计算函数值的次数 = n + 2.

评估对分法效率的一种较好的方法是:每计算一次函数值,精度能提高多少. 每一步或者每计算一次函数值,根的不确定度减少到原来的 1/2.

■ 算法的精确度和速度:

定义 1.3 如果误差小于 0.5×10^{-p} , 那么解精确到 p 位小数.

例 1.2 在区间 [0,1] 中用对分法求 $f(x) = \cos x - x$ 的根, 精确到 6 位小数.

首先我们决定需要进行多少步对分法. 根据 (1.1), 在 n 步之后的误差是 $(b-a)/2^{n+1}=1/2^{n+1}$. 根据精确到 p 位小数的定义, 我们需要

$$\frac{1}{2^{n+1}} < 0.5 \times 10^{-6},$$

$$n > \frac{6}{\log_{10} 2} \approx \frac{6}{0.301} = 19.9.$$

因此, 将需要 n=20 步. 用对分法进行下去, 可以得到表 1-2. 精确到 6 位小数的 近似解是 0.739~085. ■

k	a_k	$f(a_k)$	c_k	$f(c_k)$	b_k	$f(b_k)$
0	0.000 000	+	0.500 000	+	1.000 000	_
1	0.500 000	+	0.750 000	_	1.000 000	-
2	0.500 000	+	0.625 000	+	0.750 000	\sim
3	0.625 000	+	0.687 500	+	0.750 000	<u> </u>
4	0.687 500	+	0.718 750	+	0.750 000	77 -
5	0.718 750	+	0.734 375	+	0.750 000	- 11
6	0.734 375	+	0.742 188	_	0.750 000	- Fi
7	0.734 375	+	0.738 281	+	0.742 188	48
8	0.738 281	+	0.740 234	_	0.742 188	1- 10
9	0.738 281	+	0.739 258	_	0.740 234	- CE
10	0.738 281	+	0.738 770	+	0.739 258	// -
11	0.738 769	+	0.739 014	+	0.739 258	
12	0.739 013	+	0.739 136		0.739 258	_
13	0.739 013	+	0.739 075	+	0.739 136	_
14	0.739 074	+	0.739 105	_	0.739 136	-
15	0.739 074	+	0.739 090	-	0.739 105	_
16	0.739 074	+	0.739 082	+	0.739 090	_
17	0.739 082	+	0.739 086	-	0.739 090	_
18	$0.739\ 082$	+	0.739 084	+	0.739 086	-
19	0.739 084	+	0.739 085	-	0.739 086	_
20	0.739 084	+	0.739 085	_	0.739 085	_

■ 二分法缺点:

只能找到一个解 求出的解依赖于初始值

■ 函数的不动点:

定义 1.4 如果 g(r) = r, 那么实数 r 是函数 g 的一个不动点(fixed point). 数 r = 0.739~085~133~2 是函数 $g(x) = \cos x$ 的一个近似不动点. 函数 $g(x) = x^3$ 有 3 个不动点: r = -1, 0, 1.

当步数趋于无穷时,数列 x_i 可能收敛,也可能不收敛. 然而,如果 g 连续而且 x_i 收敛 (譬如收敛到数 r),那么 r 就是一个不动点.事实上,

$$g(r) = g\left(\lim_{i \to \infty} x_i\right) = \lim_{i \to \infty} g(x_i) = \lim_{i \to \infty} x_{i+1} = r.$$
 (1.3)

■ 函数的不动点:

每一个方程 f(x) = 0 都能转化成一个不动点问题 g(x) = x 吗? 转化的方式唯一吗?

■ 函数的不动点:

例如, 方程 $x^3 + x - 1 = 0$

能写成
$$g(x) = 1 - x^3$$

$$g(x) = \sqrt[3]{1-x}$$

$$3x^3 + x = 1 + 2x^3,$$
 $g(x) = (1 + 2x^3)/(1 + 3x^2)$ \longleftrightarrow $(3x^2 + 1)x = 1 + 2x^3,$ $x = \frac{1 + 2x^3}{1 + 3x^2},$

■ 函数的不动点:

考虑形式 $x = g(x) = 1 - x^3$, 初始点 $x_0 = 0.5$

i	x_i	i	x_i
0	0.500 000 00	7	0.999 999 96
1	0.875 000 00	8	0.000 000 12
2	0.330 078 13	9	1.000 000 00
3	0.964 037 47	10	0.000 000 00
4	0.104 054 19	11	1.000 000 00
5	0.998 873 38	12	0.000 000 00
6	0.003 376 06		

不收敛!

■ 函数的不动点:

第二种选取是
$$g(x) = \sqrt[3]{1-x}$$

i	x_i	i	x_i
0	0.500 000 00	13	0.684 544 01
1	0.793 700 53	14	0.680 737 37
2	0.590 880 11	15	0.683 464 60
3	0.742 363 93	16	0.681 512 92
4	0.636 310 20	17	0.682 910 73
5	0.713 800 81	18	0.681 910 19
6	0.659 006 15	19	0.682 626 67
7	0.698 632 61	20	0.682 113 76
8	0.670 448 50	21	0.682 481 02
9	0.690 729 12	22	0.682 218 09
10	0.676 258 92	23	0.682 406 35
11	0.686 645 54	24	0.682 271 57
12	0.679 222 34	25	0.682 368 07

收敛于0.6823左右,超过20次迭代!

■ 函数的不动点:

$$x = g(x) = (1 + 2x^3)/(1 + 3x^2)$$

i	x_i	i	x_i
0	0.500 000 00	4	0.682 327 80
1	0.714 285 71	5	0.682 327 80
2	0.683 179 72	6	0.682 327 80
3	0.682 328 42	7	0.682 327 80

收敛于0.6823左右,只需要4次迭代!

为什么有这个差别!

■ 不动点的几何原理:

$$x_{i+1} = g(x_i)$$

- (1) 垂直方向交于曲线
- (2) 水平方向 交于对角线y = x

■ 不动点的几何原理:

如果把 $e_i = |r - x_i|$ 看作在第 i 步的误差

定义 1.5 设 e_i 表示迭代法在第 i 步的误差, 如果

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i}=S<1,$$

则称这种方法满足速度是 S 的线性收敛(linear convergence).

定理 1.6 假设 g 是连续可微函数,满足 g(r) = r 及 S = |g'(r)| < 1,那么对充分接近 r 的初始估计,不动点迭代以速度 S 线性地收敛于不动点 r.

■ 不动点迭代的收敛:

定理 1.6 假设 g 是连续可微函数,满足 g(r) = r 及 S = |g'(r)| < 1,那么对充分接近 r 的初始估计,不动点迭代以速度 S 线性地收敛于不动点 r.

证 设 x_i 表示第i步迭代.根据中值定理,在 x_i 和r之间存在常数 c_i ,使得

$$x_{i+1} - r = g'(c_i)(x_i - r),$$
 (1.9)

这里我们已代入 $x_{i+1} = g(x_i)$ 及 r = g(r). 定义 $e_i = |x_i - r|$, (1.9) 就能写成

$$e_{i+1} = |g'(c_i)|e_i. (1.10)$$

如果 S = |g'(r)| 小于 1, 那么根据 g' 的连续性, 存在 r 的一个小邻域, 在其中 有 |g'(x)| < (S+1)/2. 它略大于 S 但仍小于 1. 如果 x_i 碰巧在这个邻域内, 那么 c_i 也在此邻域内 (它被夹在 x_i 和 r 之间), 所以

$$e_{i+1} \leqslant \frac{S+1}{2}e_i.$$

于是误差将在这一步和以后的每一步都以因子 (S+1)/2 或者更佳的因子减小. 这就意味着 $\lim_{i\to\infty}x_i=r$, 因此对 (1.10) 取极限得到

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i}=\lim_{i\to\infty}|g'(c_i)|=|g'(r)|=S.$$

■ 不动点迭代的收敛:

定理 1.6 解释了在前面的 $f(x) = x^3 + x - 1 = 0$ 的不动点迭代中所发生的事情. 我们知道, 根 $r \approx 0.682$ 3. 对于 $g(x) = 1 - x^3$, 导数是 $g'(x) = -3x^2$. 在根 r 附近, FPI 相当于 $e_{i+1} \approx Se_i$, 这里的 $S = |g'(r)| = |-3(0.682\ 3)^2| \approx 1.396\ 6 > 1$, 所以误差增大, 因此不可能收敛. 这种在 e_{i+1} 和 e_i 之间的误差关系仅在 r 附近成立, 但它确实表示对 r 可能出现不收敛性.

对于第二种选择, $g(x) = \sqrt[3]{1-x}$, 导数 $g'(x) = \frac{1}{3}(1-x)^{\frac{-2}{3}}(-1)$, 以及 $K = |(1-0.682\ 3)^{-\frac{2}{3}}/3| \approx 0.716 < 1$. 定理 16 意味着收敛, 与我们前面的计算一致.

对于第三种选择, $g(x) = (1 + 2x^3)/(1 + 3x^2)$, 导数

$$g'(x) = \frac{6x^2(1+3x^2) - (1+2x^3)6x}{(1+3x^2)^2} = \frac{6x(x^3+x-1)}{(1+3x^2)^2},$$

因此 S = |g'(r)| = 0, 这是能取到的最小的 S, 这就导致了图 1-3c 中显示的非常快的收敛.

■ 不动点迭代的收敛:

迭代过程的收敛性

定理1. 设迭代函数 $\varphi(x)$ 在[a,b]上连续,且满足

- (1) $\exists x \in [a,b]$ 时, $a \leq \varphi(x) \leq b$;
- (2) 存在一正数L,满足0 < L < 1,且 $\forall x \in [a,b]$,有

$$|\varphi'(x)| \le L \qquad ----(5)$$

则 \mathbf{l}^o . 方程 $\mathbf{x} = \varphi(\mathbf{x})$ 在 $[\mathbf{a}, \mathbf{b}]$ 内有唯一解 \mathbf{x}^*

 2° .对于任意初值 $x_0 \in [a,b]$,迭代法 $x_{k+1} = \varphi(x_k)$ 均收敛于 x^*

$$3^{o}$$
. $|x_{k}-x^{*}| \leq \frac{L}{1-L}|x_{k}-x_{k-1}|$ (局部收敛性) -----(6)

4°.
$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|$$
 (7)

不动点定理

■ 生活中的不动点定理:

如果你不停地搅拌一杯咖啡,保证咖啡不泼洒出来 ,那么杯内的咖啡必然存 在一点保持不动。

■ 不动点迭代的应用:

例 1.6 用 FPI 计算 $\sqrt{2}$.

$$x_{i+1} = rac{x_i + rac{2}{x_i}}{2}$$

■ 不动点迭代停止准则:

误差小于一个阈值时,说明收敛,停止迭代。 对一组容限 TOL, 可以要求绝对误差停止准则

$$|x_{i+1} - x_i| < \text{TOL},$$

或者在解不是太接近于零的情形, 可以要求相对误差停止准则

$$\frac{|x_{i+1}-x_i|}{|x_{i+1}|} < \text{TOL}.$$

混合的绝对/相对停止准则

$$\frac{|x_{i+1} - x_i|}{\max(|x_{i+1}|, \theta)} < \text{TOL}$$

作业

■ 作业:

用不动点迭代, 求以下方程的解, 精确到 8 位小数:

(a)
$$x^5 + x = 1$$
; (b) $\sin x = 6x + 5$; (c) $\ln x + x^2 = 3$.

群名称:数值计算方法-讨论群

群号: 634748851

基础知识

THE END