How about Steady-State (Phasor Form) for T-lines

PHASOR Form

These are the General Coupled Telegraphy Equations in PNA SOP Forms
$$\begin{cases} \frac{d}{dz} \underline{V}_z = -(j\omega LI + RI) = -(j\omega L + R)\underline{I}_z \\ \frac{d}{dz} \underline{I}_z = -(G + j\omega C)\underline{V}_z \end{cases}$$

In here I_z and V_z are phasors

$$\frac{\partial^2}{\partial z^2} \left\{ \frac{\underline{V}_z}{\underline{I}_z} \right\} = \gamma^2 \left\{ \frac{\underline{V}_z}{\underline{I}_z} \right\}$$
 Both satisfy the same equation

$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)} = \alpha + j\beta$$

Where γ = Propagation constant α = Attenuation constant β = Phase constant

$$\underline{V}(z) = \underline{V}^{+}(z) + \underline{V}^{-}(z)$$

$$\underline{I}(z) = \underline{I}^{+}(z) + \underline{I}^{-}(z)$$

$$\underline{V}(z) = \underline{V}_0^+ e^{-\gamma z} + \underline{V}_0^- e^{+\gamma z} \quad \text{lossless} \quad \underline{V}_0^+ e^{-j\beta z} + \underline{V}_0^- e^{+j\beta z}$$

$$\underline{I}(z) = \underline{I}_0^+ e^{-\gamma z} + \underline{I}_0^- e^{+\gamma z} \quad \underline{lossless} \quad \underline{I}_0^+ e^{-j\beta z} + \underline{I}_0^- e^{+j\beta z}$$

Development of Steady-State/Phasor Formulation

- 1. Phasor Issues:
 - We assume there is ω rad/sec = $2\pi f$ as frequency of operation. This means that the phasor notation is done for one frequency.
- 2. The question arises \Rightarrow but what if we have a $\Delta\omega$? In that case, we need to look at an integrating effect of a typical phasor solution => The Fourier Treatment
- 3. In a single frequency phase, we assume all waves to be cos form.

$$A\cos(\omega t \pm \beta z)$$
 for lossless
 $Ae^{-\alpha z}\cos(\omega t - \beta z)$ for lossy

4. $Ae^{\pm i\beta z}$ $Ae^{-\alpha z}e^{\pm i\beta z} = Ae^{-\gamma z}$ are the phasor representations of the two cases

$$A\cos(\omega t \pm \beta z + \phi) \rightarrow Ae^{(\pm j\beta z + \phi)}$$

5. In phasors, we assume $e^{j\omega t}$ as the time form to get back to time domain

6. Based on our previous discussion:

 $e^{-j\beta z}$ is a +z traveling lossless propagation $\rightarrow \cos(\omega t - \beta z)$ $e^{+j\beta z}$ is a -z traveling lossless propagation \Rightarrow $\cos(\omega t + \beta z)$ $e^{-\gamma z}$ is a +z traveling lossy propagation $\rightarrow e^{-\alpha z}\cos(\omega t - \beta z)$ **dies down as $z \rightarrow +z^{**}$ $e^{+\gamma z}$ is a -z traveling lossy propagation $\rightarrow e^{+\alpha z}cos(\omega t - \beta z)$ **dies down as $z \rightarrow -z^{**}$