

This Week in Al Midjourney 5

Image from reddit

Topics

Machine learning for image classification (recap)

- Feature extraction
- ► Linear models
- Cross-entropy loss
- ► Gradient descent

Machine Learning for Image Classification

Recall that we want to build an image classifier

- ► Should support the classes {dog, cat}
- Using the CIFAR-10 dataset (6000 images per class)
- Manual approach failed

Image from cs.toronto.edu

Machine Learning for Image Classification

Perhaps machine learning (ML) can help us

- ► ML algorithms are able to learn from data
- ► Such that performance improves with experience

Approach task as supervised ML problem:

- ► Encode class labels as one-hot vectors o
- Extract discriminative features x from images
- ▶ Train a ML model (classifier) to predict o from x
- Ensure it generalizes to unseen data

One-Hot Encodings

One-hot encodings map categorical to numerical variables

Most ML models expect numerical inputs

Represent each category by a binary vector \mathbf{o}

- In our case cat := (1,0) and dog := (0,1)
- $ightharpoonup dim(\mathbf{o})$ equals number of categories

Note that o is valid probability mass function

▶ Will become handy during training and inference

Extract feature vectors x from inputs

- ► We want to extract good features
- Better features improve model performance

Good features are usually high-level features

- Tell us something about the world depicted
- Task-specific (e.g. presence of pointy ears, whiskers)

We cannot write such high-level feature extractors

▶ But deep learning models can learn how to do so

Low-Level Features

Before deep learning there we were stuck with low-level features

- Manually designed feature extractors
- ► Encode properties about the image itself

Brightness changes at certain scale and/or orientation are popular

- ► Invariant to additive luminance changes
- Response at (certain) object borders, textured regions

This is where image processing comes in

Low-Level Features – Gabor Filters

Linear filters modeled after image processing in brain

- ▶ Respond to changes at certain frequency and orientation
- ► Deep learning models usually learn similar filters
- Applied via the convolution operation

Image from [1]

Low-Level Features

Many other such feature extractors exist (e.g. SIFT, LBP)

- ► Suffer from same problems (extract low-level features)
- So we do not care about differences

All perform poorly on real-world tasks for this reason

- Reason why we need deep learning for computer vision
- Deep learning provides high-level features

But how can an algorithm learn?

Consider the following

- \triangleright Each feature vector \mathbf{x} is a point in D-dimensional space
- ▶ We want all cat images on one side of a learned hyperplane
- ► And all dog images on the other side

Assume a hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$

- ightharpoonup x is on positive side if $o = \mathbf{w} \cdot \mathbf{x} + b > 0$
- ightharpoonup Training entails adjusting w and b

Or more generally (works for T > 2)

- ightharpoonup Learn T hyperplanes, one per class
- ▶ Want $o_t = \mathbf{w}_t \cdot \mathbf{x} + b_t \gg o_i \ \forall i \neq t$ if correct class is t

In other words we learn T binary classifiers

- Approach is called one vs all or one vs rest
- ► Most popular approach for multiclass classification

Goal of training: make hyperplanes always answer correctly

Image from cs231n.github.io

Can combine this to $\mathbf{o} = \mathbf{W}\mathbf{x} + \mathbf{b}$

- $\mathbf{W} \in \mathbb{R}^{T \times D}$ is called weight matrix
- $\mathbf{b} \in \mathbb{R}^T$ is called bias vector

Image from cs231n.github.io

Model predicts T class scores $\mathbf{o} \in \mathbb{R}^T$

► Represent confidences (scaled distances from planes)

Image from cs231n.github.io

We have just derived linear models for classification

Heard that linear models are not useful in practice?

- ▶ They are the standard classifier in deep learning
- Sufficient because deep learning provides great features

Linear Models

A model describes family of functions from x to o

- ▶ Particular function $f : \mathbf{x} \mapsto \mathbf{o}$ learned during training
- ► These functions are called trained models (or just models)

Model defines the hypothesis space

- Set of functions allowed as solution
- Extending family increases the model capacity (flexibility)

Linear Models Parameters

In parametric models f depends on parameters $oldsymbol{ heta}$

- We write $\mathbf{o} = f(\mathbf{x}; \boldsymbol{\theta})$
- ► Training entails finding good parameters

Linear models are parametric models with $oldsymbol{ heta} = (\mathbf{W}, \mathbf{b})$

- ▶ Number of parameters is $D \cdot T + T$
- Models in deep learning can have billions of parameters

Linear Models Limitations (x = image)

T learned templates that are matched with input images

- \triangleright Each \mathbf{w}_t encodes a template
- Matching using inner product $\mathbf{w}_t \cdot \mathbf{x}$ (plus b_t)
- ▶ Result increases with similarity of image to template

Templates learned on CIFAR-10:

Image from cs231n.github.io

Linear Models Limitations (x = image)

Most templates have clear interpretation

- ► Horse template shows something horse-like
- ▶ Most cars in training data seem to be red
- Background is very dominant (sky, grass, water)

Image from cs231n.github.io

Linear Models Limitations (x = image)

Classifier cannot properly model intraclass variation

- ► Templates merge modes of variation
- ▶ What about blue cars, planes on ground, gray horses?

What about our cats vs. dogs problem?

▶ Find out yourself during assignment 1

Image from cs231n.github.io

The Softmax Function

Predicted class scores o are not optimal

- ► Unbound, can be negative
- ► Hard to interpret, scaling is not uniform

We want \mathbf{o} to be a valid probability mass function

 $ightharpoonup o_t \geq 0$ for all t and $\sum_t o_t = 1$

The Softmax Function

Most popular function for this purpose is softmax

$$\operatorname{softmax}_{t}(\mathbf{o}) = \frac{\exp(o_{t})}{\sum_{t} \exp(o_{t})}$$

We obtain softmax((1,0,4)) $\approx (0.05,0.02,0.93)$

- Largest value is emphasized, small ones suppressed
- ► Softmax is not scale invariant

Loss Functions

But how can be learn W and b?

For training any parametric model, we need

- A loss function
- ► An optimization algorithm

Loss Functions

A loss function $L(\theta)$ (or cost or objective function)

- ▶ Measures performance of $f(\cdot; \theta)$ (lower loss is better)
- $lackbox{ On some (training) dataset } \mathcal{D} = \{(\mathbf{x}^s, \mathbf{o}^s)\}_{s=1}^S$
- ightharpoonup With respect to parameters heta

Choice of L depends on task

Most popular classification loss is cross-entropy

Loss Functions Entropy

Recall from information theory that

- Given a mass function $\mathbf{u} = (u_1, \dots, u_T)$
- ▶ The entropy of **u** is $H(\mathbf{u}) = -\sum_{t=1}^{T} u_t \log_b u_t$
- ▶ In information theory b = 2, here it does not matter

$H(\mathbf{u})$ is average information gain when sampling from \mathbf{u}

- ▶ Biased coin with $\mathbf{u} = (1,0)$ has entropy 0 ($\log_b 1 = 0$)
- ▶ Unbiased coin with $\mathbf{u} = (0.5, 0.5)$ has entropy > 0

Loss Functions Cross-Entropy

Given two probability mass functions ${\bf u}$ and ${\bf v}$ in \mathbb{R}^T

$$\mathbf{v} = (u_1, \dots, u_T)$$
 and $\mathbf{v} = (v_1, \dots, v_T)$

The cross-entropy between ${\bf u}$ and ${\bf v}$ is

$$H(\mathbf{u}, \mathbf{v}) = -\sum_{t=1}^{T} u_t \ln v_t$$

Loss Functions Cross-Entropy

Example with T=2 and $u_1=1$

- ightharpoonup The more different ${f u}$ and ${f v}$ the higher H
- lacktriangleright H measures the dissimilarity between ${f u}$ and ${f v}$

Loss Functions Cross-Entropy

Note that H can reach 0 only if any $u_t = 1$

▶ In general $H(\mathbf{u}, \mathbf{v}) = H(\mathbf{u})$ if $\mathbf{u} = \mathbf{v}$

Loss Functions Cross-Entropy Loss

To utilize the cross-entropy for classifier training we

- Let u be our one-hot encoded class labels
- ► Let v be the predicted softmax class scores

H measures how dissimilar true and predicted probabilities are

▶ How well the classifier performs on a single sample

Note that $H(\mathbf{u}, \mathbf{v})$ depends only on u_t and v_t

 $ightharpoonup u_t = 1$ so all other u_k are 0

Loss Functions Cross-Entropy Loss

On this basis we calculate the cross-entropy loss on ${\mathcal D}$ as

$$L(\boldsymbol{\theta}) = \frac{1}{S} \sum_{s=1}^{S} H(\mathbf{o}^{s}, \operatorname{softmax}(f(\mathbf{x}^{s}; \boldsymbol{\theta})))$$

Average cross-entropy over some dataset ${\mathcal D}$

lackbox How good our classifier performs on $\mathcal D$ on average

We now know how to compute $L(\boldsymbol{\theta})$ for classification

Need a way to minimize $L(\theta)$

- Maximizes the training set classification performance
- And hopefully also validation/test performance (more later)

 $L(\boldsymbol{\theta})$ is not linear in $\boldsymbol{\theta}$

- ► Need a nonlinear optimization algorithm
- ► Gradient descent is popular choice in deep learning

Assume terrain corresponds to $L(\theta)$ with $\dim(\theta) = 2$

How do I get from location θ to location of minimum $\hat{\theta}$?

Without actually seeing $L(\theta)$?

Feel slope with feet, step in direction that feels steepest

► Again and again until ground feels flat

Iterative Optimization algorithm

In every iteration we

- ▶ Compute gradient $\theta' = \nabla L(\theta)$
- ▶ Update parameters $\theta = \theta \alpha \theta'$

Hyperparameter $\alpha > 0$ is called learning rate

▶ Final step size is $\alpha \| \boldsymbol{\theta}' \|$

Let $f(x_1, \ldots, x_n)$ be a differentiable, real-valued function

The partial derivative f_{x_i} of f with respect to x_i

ls also a real-valued function $f_{x_i}(x_1,\ldots,x_n)$

 $f_{x_i}(\mathbf{x})$ encodes

- ightharpoonup How fast f changes with argument x_i
- ► At some location x

Gradient ∇f is vector of all partial derivatives of f

- $\triangleright \nabla f = (f_{x_1}, \dots, f_{x_n})$
- ightharpoonup Vector-valued function $\mathbb{R}^n\mapsto\mathbb{R}^n$

$$\nabla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}), \dots, f_{x_n}(\mathbf{x}))$$
 encodes

- \blacktriangleright How fast f changes with all arguments $x_1 \cdots x_n$
- At some location x

 $\nabla f(\mathbf{x})$ specifies how f changes locally at \mathbf{x}

- ▶ Points in direction of greatest increase
- ► Norm equals magnitude of increase

Exactly what we need to minimize L

- ▶ Compute direction of greatest increase $\nabla L(\theta)$
- ► Move in the opposite direction

Must stop if $\nabla L(\boldsymbol{\theta}) \approx \mathbf{0}$ (if norm is close to 0)

- ▶ No information where to go next
- ▶ L is flat at current location
- lacksquare The case if we are at $\hat{m{ heta}}$ (but not only then)

Simple and general algorithm

- Requires only that f is differentiable and real-valued
- Efficient (requires only first derivatives)

Several (possible) limitations

- ightharpoonup Performs poorly for many f
- But works remarkably well with deep learning models

In a later lecture we will cover

- Various improvements to gradient descent training
- ightharpoonup How to compute ∇L efficiently

Machine Learning for Image Classification

Image from cs231n.github.io

Machine Learning for Image Classification

We factorized machine learning into basic blocks

Output shape, model, loss function, optimizer

Flexible approach that (hopefully) makes things clearer

- ▶ Different problem? Change output shape and loss function
- ► Want more capacity? Change the model
- Optimization not going well? Change optimizer

Bibliography

[1] Prince. Computer Vision Models. 2012.

