ENSEM 2ème année

Quelques rappels sur Matlab...

1 Histogramme, qq-plot

histogram(data) (de préférence) ou hist(data) : trace l'histogramme des données data. [n,edges] = histogram(data,N) : rend n les effectifs observés dans les <math>N classes, et edges les limites des N classes.

qqplot(data): trace le qq-plot (pour une loi théorique qui est la loi normale) des données data.

2 Manipulation des sommes sur les vecteurs

Soit $A = (a_i)_{i=1,\dots,n}$ un vecteur de taille n. Nous voulons calculer $\sum_{i=1}^{n} a_i^2$. Ne pas faire de boucle :

x=0; for i=1:n $x=x+a(i)\wedge 2$ end

Mais faire x=sum(a.∧2)

De même, soit $B = (b_i)_{i=1}^n$ un autre vecteur de taille n. Nous voulons calculer $\sum_{i=1}^n a_i b_i$.

x=sum(a.*b)

Nous voulons calcular $\sum_{i=1}^{n} a_i/b_i$.

x=sum(a./b)

3 Manipulation des quantiles et des probabilités

3.0.1 Loi Normale

Soit $X \sim N(\mu, \sigma)$ où σ est l'écart-type. Et ant donnée une probabilité p, nous cherchons q tel que $\mathbb{P}(X < q) = p$:

icdf('norm',p, mu,sigma)

Etant donné q, nous cherchons $\mathbb{P}(X < q)$: $\operatorname{cdf('norm',q, mu,sigma)}$

3.0.2 Loi de Student

Soit $X \sim T(n)$. Etant donnée une probabilité p, nous cherchons q tel que $\mathbb{P}(X < q) = p$:

icdf('t',p, n)

Etant donné q, nous cherchons $\mathbb{P}(X < q)$: $\operatorname{cdf('t',q, n)}$

3.0.3 Loi du χ^2

Soit $X \sim \chi^2(n)$. Et ant donnée une probabilité p, nous cherchons q tel que $\mathbb{P}(X < q) = p$:

Etant donné q, nous cherchons $\mathbb{P}(X < q)$: $\operatorname{cdf('chi2',q, n)}$

3.0.4 Loi de Fisher

Soit $X \sim F(n_1, n_2)$. Etant donnée une probabilité p, nous cherchons q tel que $\mathbb{P}(X < q) = p$:

Etant donné q, nous cherchons $\mathbb{P}(X < q)$: $\operatorname{cdf('f',q, n1,n2)}$