Plan du cours

I.	Activités d'introduction	1						
н.	Définition et unités	2						
III.	Déterminer l'aire d'une figure							
	1. 1ère Méthode	3						
	2 2ème Méthode	3						

I.	Activités d'introduction

H. Définition et unités

Définition

L'aire d'une "figure fermée" est la mesure de sa surface, c'est à dire de la partie recouvrant l'intérieur de cette figure.

Les mesures d'aires

km²		hm ²		dam ²		m ²		dm ²		cm ²		mm ²	
d	u	d	u	d	u	d	u	d	u	d	u	d	u

On a donc :

$$1km^2 = \dots hm^2$$

$$1hm^2 =dam^2$$

$$1 \, dam^2 = \dots m^2$$

$$1m^2 =dm^2$$

$$1dm^2 = \dots cm^2$$

$$1cm^2 = \dots mm^2$$

$$1km^2 = \dots m^2$$

$$1m^2 = \dots mm^2$$

Les unités agraires : (qui servent à évaluer la grandeur des terrains, des champs, des bois ...)

- l'hectare (ha)

$$1ha = 1hm^2$$

- l'are (a)
$$1a = 1 \, dam^2$$

$$1ca = 1m^2$$

Exercice d'application 1 -

Compléter les égalités suivantes :

$$4hm^2 =m^2$$

$$30a =dm^2$$

$$13cm^2 = \dots m^2$$

$$94.5cm^2 = \dots mm^2$$

$$1.5ha =km^2$$

$$0.0015 dam^2 = \dots m^2$$

III. Déterminer l'aire d'une figure

1. 1ère Méthode

On choisit le carreau du quadrillage comme unité d'aire.

L'aire $\mathcal A$ d'une surface quelconque est égale au nombre de carreaux du quadrillage qu'elle recouvre.

Exemple:

Sachant qu'un carré fait 1 cm de côté, quelle est l'aire du polygone ci-contre :

2. 2ème Méthode

On peut aussi utiliser une formule.

Aire du rectangle :

Le disque

Aire du disque :

Aire du carré :

Le triangle

Aire du triangle :

Avant d'effectuer les calculs, il faut vérifier que les longueurs sont exprimées dans la même unité!

Exemples :

1. Quelle est l'aire d'un carré de côté 9 cm?	
2. Quelle est l'aire d'un rectangle de longueur 2,5 cm et de largeur 1 cm?	
3. Quelle est l'aire d'un disque de 20 m de diamètre ?	

Exercice d'application 2

1. Détermine l'aire des deux surfaces grisées (Les figures ne sont pas en vraie grandeur).

