Maturitní okruh č. 16

Technika velmi vysokých kmitočtů

Jedná se o vedení, které se od sebe liší zvýšeným projevem indukčnosti, kapacity a skinefektu. Energie se ve vysokofrekvenčním vedení nešíří od zdroje k zátěži vlastním vodičem, nýbrž elektromagnetickým polem podél rozhraní dvou různých prostředí.

Využívá frekvence v rozsahu od 30 MHz do 300 MHZ.

Přenášený signál je harmonický (sinusový).

Využívá se v FM radiu, Televizním vysílání, Vojenské komunikaci, Letectví a námořnictví.

Rozbor vlastností reálného vedení zjednodušujeme na homogenní (stejnorodé) vedení. Homogenní vedení má v celé své délce stejné všechny parametry.

Elektrické vlastnosti vedení jsou dány téměř neměnnými veličinami. Tyto jsou rovnoměrně rozloženy po celém vedení. Jsou nazývány jako **Primární parametry vedení.** Primární parametry jsou pro daný typ vedení a danou frekvenci **konstantní**.

Primárními parametry jsou:

Odpor [R] Ohm $[\Omega]$

Odpor ve vysokofrekvenčním vedení není pouze dán materiálem vodiče, ale také vlivem skinefektu. To efektivně zmenšuje průřez vodiče, kterým může proudit, a tím zvyšuje odpor.

Indukčnost [L] Henry [H]/m

Indukčnost je způsobena magnetickým polem vytvořeným proudem ve vodiči. Ve vysokofrekvenčním vedení omezuje změny proudu a ovlivňuje impedanční přizpůsobení vedení. Zvyšuje také reaktanci vedení, což může vést k odrazu signálu a zkreslení. S rostoucí frekvencí roste vliv parazitní indukčnosti, zejména v delších vedeních nebo nekvalitních spojích.

Kapacita [C] Farad [F]/m

Kapacita vzniká mezi vodiči (nebo vodičem a zemí), a její hodnota je významná, protože ovlivňuje rychlost šíření signálu a přenosové charakteristiky vedení. Kapacita také přispívá k útlumu signálu, zejména na delších vzdálenostech.

Svod [G] Siemens [S]/m

Svod označuje úniky proudu přes izolační materiál mezi vodiči nebo mezi vodičem a zemí. Špatné izolační materiály nebo znečištění vedení mohou vést ke zvýšení svodových ztrát, což snižuje účinnost přenosu.

Sekundární parametry se zavádějí pro sledování přenosových parametrů homogenního vedení. Závisí na primárních vlastnostech.

Poměr napětí **U** a proudu **I** v každém bodě homogenního vedení je stálý a nazývá se **charakteristická (vlnová) impedance** vedení Z_C vyjádřená komplexním číslem.

Náhradní schéma vedení nesymetrického (nahoře) a symetrického (dole)

Typy vysokofrekvenčního vedení:

DSV

Dvojitý stíněný vodič

Vodič je obklopen dvěma vrstvami stínění.

Používá se k minimalizaci rušení a zajištění kvalitního signálu.

DNV

Dvojitý nepřerušovaný vodič

Vodič má dvě samostatné cesty pro elektrický proud.

Používá se na místech pro zajištění spolehlivosti.

DVS

Dvojitý vodič s ochranným stíněním

Dvojité stínění i ochranné vlastnosti, které pomáhají před rušením.

Na místech, kde je potřeba vysoká kvalita signálu.

VInovod:

Trubicové vedení obvykle obdělníkového tvaru.

Menší ztráty a vlnění postupuje v ose vlnovodu mnohonásobným odrazem na leštěných stěnách.

Koaxiální kabel:

Vlna se šíří uvnitř kabelu, proto se zde neuplatní žádný vliv konstrukcí.

Impedance koaxiálního vedení je 75 ohmů.

Metalická přenosová media:

1. Koaxiální kabel:

- Nejčastěji používaný ve vf vedení
- Vodič umístěný v ose válce, tvořeného druhým vodičem stíněním. Impedance určuje vnitřní průměr válce a průměr jádra – vnitřního vodiče.
- Používají se dvě charakteristické impedance koaxiálních kabelů, **50 ohm**, kdy má koaxiální kabel nejmenší výkonový útlum a je v hodný pro vedení energie od vysílačů a **70 ohm**, kdy má koaxiální kabel nejmenší napěťový útlum a je v hodný pro přivedení energie od antény do přijímače.

2. Dvoulinka:

 Dvojice vodičů ve stálém rozestupu. Impedance vedení určuje vnější průměr použitých vodičů a jejich rozestup. Ztráty vedení způsobují především dielektrické ztráty v izolaci, která udržuje konstantní geometrický tvar vedení. Energie se přenáší v prostoru okolo vodičů, dvoulinka by se měla vést vzdáleně od ostatních předmětů.

• V současnosti se dvoulinka nepoužívá.

Nemetalická přenosová media:

1. Optický kabel:

- Skleněné nebo plastové vlákno, které prostřednictvím světla přenáší signály ve směru své podélné osy.
- Každé vlákno může přenášet mnoho nezávislých signálů, každý s použitím jiné vlnové délky světla.

Vedení nakrátko - Na jeho konci je nulové napětí, je zde tedy uzel napětí a naopak kmitna proudu.

Vedení naprázdno - Na jeho konci je kmitna napětí a uzel proudu.

Místa, ve kterých je napětí nulové. Taková místa označujeme jako **uzly**, zatímco místa s největšími amplitudami označujeme jako **kmitny**.

Charakteristická impedance

Jedná se o klíčový parametr přenosových vedení.

Je definována jako poměr mezi amplitudou napětí a proudu na vedení v ideálních podmínkách, tudíž v nekonečně dlouhém a bez odrazů signálu.

Udává odpor vedení z pohledu vlny. Její značka je Z_0 a jednotka Ω .

$$Z_o = \sqrt{\frac{L}{C}}$$
 $(\Omega = \frac{H/m}{f/m})$