

Neural correlates of referential processing: Event-related potentials for ambiguity versus resolution

Les Sikos, Harm Brouwer, and Matthew W. Crocker

Department of Language Science and Technology, Saarland University, Germany · Cluster of Excellence MMCI, Saarland University, Germany

Introduction

- Successful language comprehension involves establishing reference
- Referential ambiguities (1a) have most commonly been shown to elicit a sustained negativity (Nref effect) relative to controls (1b) [1-3]
 - 1a. David shot at John as <u>he.</u>.. 1b. David shot at Linda as <u>he.</u>..
- Greater ambiguity due to contextual bias (as measured by offline referential Cloze task) is associated with larger amplitude Nref effects [4]
- Previous work has also found substantial individual differences in ERP responses to referential ambiguity, with some participants showing a late positive component (LPC effect) instead of Nref effects [5-6]
- ERP effects of ambiguity can persist for 1 second or more beyond the point of disambiguation [3], and to date no ERP marker of successful reference resolution has been reported (but see [7])

Nref effect Fz -2 uV 2 uV Pz -2 uV 2 uV LPC LPC LPC

Figure modified from [3]. *Top*: Difference waves (ambiguity–control) for participants that show Nref effects (left) versus LPC effects (right); *Bottom*: Corresponding scalp distributions within indicated time windows.

Research Questions

• Do Nref and LPC effects in such contexts simply index referential ambiguity, or are they sensitive to the *degree* of ambiguity (i.e., to referential entropy)?

3ref > 2ref > 1ref

Can we detect an ERP correlate for successful reference resolution?

References

- 1. Van Berkum, Brown & Hagoort. (1999). JML.
- 2. Van Berkum, Brown, Hagoort & Zwitserlood. (2003). Psychophysiology.
- 3. Van Berkum, Koornneef, Otten & Nieuwland. (2007). Brain Research.
- 4. Nieuwland & Van Berkum. (2006). Brain Research.
- 5. Nieuwland & Van Berkum. (2008). *Brain and Language*.
- 6. Sikos, Tomlinson, Heins & Grodner. (in prep.).
- 7. Brodbeck, Gwilliams & Pylkkänen. (2015). Frontiers in Psychology.
- 8. Brouwer, Fitz & Hoeks. (2012). *Brain Research*.
- 9. Burkhardt. (2007). NeuroReport.

Methods

Ist der <u>Ball</u>, der <u>gepunktet</u> ist, auf der rechten Seite? (Is the <u>ball</u> that is <u>dotted</u> on the right?)

Figure 1. Example Stimulus. Experimental question (top) and Filler question (bottom). Target words underlined.

Trial Procedure

- Participants previewed displays (self-paced, min 3000 ms)
- Participants then maintained fixation while a Yes/No question was presented visually, word by word, in center of screen (SOA: 500 ms, ISI: 100 ms)
- Objects remained visible peripherally during trial to minimize working memory load
- Feedback was given after each response (Correct, Incorrect)

EEG Recording and Analysis

- 26-channel actiCAP, BrainAmps DC amplifier (Brain Products)
- Bandpass filter: 0.03-40 Hz
- Re-referenced to average mastoids
- ERPs analyzed separately at onset of noun (e.g., ball) and disambiguation (e.g., dotted) within 500-1000 ms window

Results and Discussion

 \rightarrow No

Behavioral Results

given trial

• 120 trials in total

Participants

Design

Participants were highly accurate resolving the correct referent (M = 0.98)

30 right-handed native German speakers (24 female)

Each experimental item paired a question (Figure 1,

question (Figure 1, bottom) with the same displays

to ensure a 50% likelihood that either object type

(e.g., ball or ovenmitt) would be the target on any

top) with three visual displays (1ref, 2ref, 3ref)

which manipulated referential entropy

• Filler conditions (F1, F2, F3) paired a different

6 counterbalanced lists (Latin Square design)

Mean age: 24.0 (range 19 to 31)

-	Accuracy								
	1-ref	2-ref	3-ref	f1	f2	f3			
	0.99	0.98	0.98	0.99	0.95	0.99			

Individual Differences in ERP Response

- Consistent with [5], examination of singlesubject ERP effects revealed individual differences in whether ambiguous anaphors elicited an Nref effect or LPC effect relative to unambiguous controls
- Participants were divided into two groups based on the sign of mean difference between ambiguity and control at posterior channels (500-1600 ms) for each subject

Statistical Results

		Ambiguity Effects		Resolution Effects		
	Cond	Cond x AP	Cond	Cond x AP		
2-1 3-1	n.s.	.048 * .003 **	.000 *** .000 ***	.085 · .053 ·		
3-2	n.s.	.068 ·	n.s.	n.s.		
2-1 3-1 3-2	.008** .002** n.s.	.011 * .018 * n.s.	.000 *** .003 ** n.s.	n.s. .064 · n.s.		
2-1 3-1 3-2	.003** .002** n.s.	n.s. n.s. .058 ·	.004 ** .062 · n.s.	n.s. n.s. n.s.		
	3-1 3-2 2-1 3-1 3-2 2-1 3-1	Cond 2-1	Cond Cond x AP 2-1	Cond Cond x AP Cond 2-1 n.s. .048 * .000 *** 3-1 n.s. .003 ** .000 *** 3-2 n.s. .068 · n.s. 2-1 .008** .011 * .000 *** 3-1 .002** .018 * .003 ** 3-2 n.s. n.s. n.s. 2-1 .003** n.s. .004 ** 3-1 .002** n.s. .062 ·		

Ambiguity Effects Ball ("bell") All participants (n=30) 2ref-tref 3ref-tref 2ref-tref 3ref-tref 3ref-tref 3ref-tref 2ref-tref 3ref-tref 3ref-tref 3ref-tref 2ref-tref 3ref-tref 3ref-tr

Ambiguity Effects

- Regardless of which ambiguity effect was elicited, both 2ref and 3ref conditions elicited an ambiguity response relative to controls
- However, the magnitude of these effects did not reliably differ between 2ref and 3ref conditions
- This pattern of results suggests that electrophysiological responses to referential ambiguity—whether Nref or LPC—are not sensitive to the degree of ambiguity per se, but instead index ambiguity itself

Resolution Effects

- Disambiguation was associated with similar magnitude, widely distributed positivities for both ambiguous conditions relative to control
- This finding is consistent with previous work showing P600 effects for updating the mental representation of what is being communicated [8-9]

Conclusions

 These results help inform our under-standing of referential processing and serve to constrain future computational models of such processing

Next Steps

We are currently running linguistic version

Figure 2. ERP Results. Difference waves (filtered for presentation purpose only: 5 Hz high cut-off, 48 dB/oct) and corresponding scalp distributions within 500-1000 ms time window.