Finansiering 1. Ordinær Eksamen Juni 2019.

3 timers skriftlig eksamen. d 21 Juni 2019. Alle sædvanlige hjælpemidler er tilladt. Sættet er på 2 sider og indeholder 10 delspørgsmål, der indgår med lige vægt i bedømmelsen.

Opgave 1

Betragt et marked bestående af et risikofrit aktiv med en risikofrit rente på r = 2%, samt et enkelt risikabelt aktiv A, hvis stokastiske udvikling kan beskrives ved følgende træ der beskriver priser og P-sandsynligheder

- 1.1 **Vis** at markedet er arbitragefrit men ikke komplet. (Hint: Man kan nemt finde en løsning $\psi >> 0$ til ligningssystemtet $D\psi = \pi$ hvis man sætter de første to indgange i ψ til at være ens)
- 1.2 Betragt et marked hvor du kan købe A, det risikofri aktiv samt en strike K = 100 og udløb t = 1 Call Option med A som det underliggende aktiv. Antag prisen på Call'en er $C_0 = 5$. **Vis** at dette udvidede marked er både arbitragefrit og komplet.
- 1.3 Antag at call-option fra forrige spørgsmål istedet har strike K = 93 og koster $C_0 = 8.82352941$. Vis at dette udvidede marked er arbitragefrit men ikke komplet.
- 1.4 Betragt strike K = 100 call optionen fra spørgsmål 1.2, og antag nu at du ikke kender prisen C_0 . Hvad er den størst mulige arbitragefri pris for C_0 ?

Opgave 2

Antag vi har en økonomi med 2 risikable aktiver (Aktiv 1 og Aktiv 2), hvis afkastrater er givet ved den stokastiske vektor **r**. Vi antager gennem hele opgaven følgende:

$$\mathbb{E}[\mathbf{r}] = \begin{bmatrix} \mathbb{E}[r_1] \\ \mathbb{E}[r_2] \end{bmatrix} = \begin{bmatrix} 0, 1 \\ 0, 05 \end{bmatrix}, \text{Var}[\mathbf{r}] = \mathbf{\Sigma} = \begin{bmatrix} 0, 035161 & 0, 016632 \\ 0, 016632 & 0, 019609 \end{bmatrix}$$
(1)

- 2.1 **Beregn** den globale mininumvariansportefølje. Oplys porteføljens vægte og beregn dens forventede afkast(rate) og afkastratens standardafvigelse. (Hint: jeg får den forventede afkastrate til $\mu_{GMV} = 0,05692$).
- 2.2 Antag nu vi har et risikofrit aktiv med rente μ_0 . Du får oplyst at tangensporteføljen i økonomien har en forventet afkastrate på $\mu_{tan} = 0,11015$. Beregn μ_0 og beregn tangensporteføljens vægte og standardafvigelsen på tangensporteføljens afkastrate. (Hint: det risikofri aktiv er orthogonalt på tangensporteføljen)
- 2.3 Antag nu istedet at det risikofri aktiv har en afkastrate på $\mu_0 = 0,07$. Find en efficient portefølje P med en forventet afkastrate på $\mu_P = 0,08$. Oplys P's vægte.
- 2.4 Antag fortsat $\mu_0 = 0,07$. Forklar hvorfor der i dette tilfælde *ikke* findes en efficient portefølje som kun består af risikable aktiver. (lav evt. en tegning)
- 2.5 Antag nu at de to aktivers afkastrate kan beskrives udfra følgende 'faktormodel'.

$$r_i = \mu_i + \beta_i F_m + \epsilon_i, \quad i = 1, 2 \tag{2}$$

• Hvor F_m, ϵ_1 og ϵ_2 er indbyrdes uafhængige stokastiske variable med

$$\mathbb{E}[F_m] = \mathbb{E}[\epsilon_i] = 0, \quad \forall i = 1, 2$$

Og $\sigma_{\epsilon} := \operatorname{Std}[\epsilon_1] = \operatorname{Std}[\epsilon_2]$ og $\sigma_m := \operatorname{Std}[F_m]$.

• Antag yderligere at $\beta_1 = 1, 1, \beta_2 = 0, 7, \mu_1 = 0, 1$ og $\mu_2 = 0, 05$.

Vis modellen beskrevet i (2) producerer samme forventede afkastrater som i ligning (1) og **bestem** σ_{ϵ} og σ_{m} så modellen i ligning (2) har den samme varianskovariansmatrice som den opgivet i (1).

2.6 Antag nu at F_m , ϵ_1 og ϵ_2 er indbyrdes uafhængige stokastiske variable som er binomial fordelt med $0.4 = \mathbb{P}(F_m = 0, 18)$, og $0, 6 = \mathbb{P}(F_m = -0, 12)$ samt $0, 5 = \mathbb{P}(\epsilon_1 = 0, 095) = \mathbb{P}(\epsilon_2 = 0, 095)$ og $0.5 = \mathbb{P}(\epsilon_1 = -0, 095) = \mathbb{P}(\epsilon_2 = -0, 095)$.

Disse antagelser beskriver sammen med ligning (2) og de opgivne parameterværdier fra spørgsmål 2.5 et marked i een periode $(\frac{\pi}{N+1}, \frac{D}{N+S})$ med N=2 risikable aktiver

og $S=2^3=8$ forskellige tilstande. Antag at priserne er givet ved $\pi=\begin{bmatrix}1&1\end{bmatrix}^{\top}$ dvs. række 1 og 2 i D angiver værdien af at investere 1 kr. i hhv aktiv 1 og 2, for de 8 forskellige tilstande i markedet.

Beregn payoff-matricen D og vis at (π, D) er arbitragefrit men ikke komplet.