8/13/25, 9:47 PM CM

Covariance Matrix

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [18]: iris = sns.load_dataset('iris')
 iris

\bigcap	14-	Γ1	QT	
U	ИL	ΓΤ	0]	۰

•		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	•••					
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [20]: # Select only numeric columns for covariance matrix
    iris_numeric = iris.select_dtypes(include='number')
    # Compute covariance matrix
    cov_matrix = iris_numeric.cov()
    cov_matrix
```

Out[20]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	0.685694	-0.042434	1.274315	0.516271
sepal_width	-0.042434	0.189979	-0.329656	-0.121639
petal_length	1.274315	-0.329656	3.116278	1.295609
petal_width	0.516271	-0.121639	1.295609	0.581006

8/13/25, 9:47 PM CM

```
In [21]: # Plot covariance matrix heatmap
    plt.figure(figsize=(8, 6))
    sns.heatmap(cov_matrix, annot=True, fmt=".2f", cmap="viridis", center=0, square=Tru
    plt.title('Covariance Matrix Heatmap - Iris Dataset')
    plt.show()
```


Interpretation: The heatmap shows that petal length has the largest variance (3.1163), meaning it varies most among the features. The covariance between petal length & petal width (1.2956) represents that longer petals tend to come with wider petals. On the other hand, sepal width & petal length (-0.3297) has a negative covariance indicating that, wider sepals tend to have slightly shorter petals.