Of Eld= Eldx+p] = AE[x]+ P
$Cov[y] = Cov[Ax+b] - ACov[x]A^{T} = AZA^{T}$
As. Ely = > yp(x)
$\geq (Ax+b)P(x)$ $\therefore y=Ax+b$
$A \ge x P_r(x) + b \ge P_r(x)$
AE[x] +b(1) = AE[x]+b Hence proved
Now. $Cov[y] = Cov[Ax+b]$ = $E[Ax+b-4][Ax+b-4]E$ = $E[Ax(Ax)^T] - E[Ax][E[Ax]^T$
= E[AXATXT] - E[AX]E[ATXT]
$= A \left[E[XX^{T} - E[X] E[X^{T}] A^{T} \right]$ $= A \left[COV[X] A^{T} - E[X] E[X^{T}] A^{T} \right]$ $= COV[X] = E[XX^{T}] - E[X^{T}]$
$(proved) = A Z A^T$
: Belove Covaçance matrix is also denoted by Sigma.