2. รูปแสดงระบบเบรกไฮรดรอลิกของรถยนต์อาศัยข้อมูลในรูป

- 2.1.จงหา แรงที่กระทำต่อลูกสูบ A
- (ตอบ 100 N)
- 2.2.จงหาความดันในของเหลวที่ B
- (ตอบ 10⁵ Pa)
- 2.3.จงหาความดันในของเหลวที่ C
- (ตอบ 10⁵ Pa)
- 2.4.จงหาแรงที่กระทำต่อจานเบรก
- (ตอบ 200 N)

$$P = \frac{F}{A}$$

$$P = \frac{100}{0.001}$$

$$= \frac{100}{0.001}$$

$$P = \frac{F}{A}$$

$$P = \frac{200}{0.002}$$

$$= 105 \text{ Pa}$$

Step ความรู้ที่ 14 : แรงลอยตัว และหลักของอาร์คิมีคิส(Archimedis Prinple)

•แรงลอยตัว (Budyant Force) คือ แรงที่ดันวัตถุขึ้นเหนือผิว ของเหลว เขียนแผนด้วย "F_B"

• หลักของอาร์คิมิคิส (Archimedis Principle) กล่าวว่า "วัตถุใดๆ ที่จมอยู่ในของเหลว จะมีแรงลอยตัวกระทำกับวัตถุ โดยแรง ลอยตัวมีค่าเท่ากับขนาดน้ำหนักของของเหลวที่ถูกวัตถุแทนที่ (ส่วนที่วัตถุ จม)" แรงลอยตัวค่าเท่ากับขนาดน้ำหนักของของเหลวที่ถูกวัตถุแทนที่ ของเหลวที่ถูกวัตถุแทนที่

 $F_B = mg_{\text{ของเหลวที่ถูกแทนที่}}$ $F_B = \rho_a V_{\text{จม}} g$; แทน $m_{\text{ของเหลว}} = \rho_a V_{\text{จม}}$

ρ_a = แทน ความหนาแน่นของของเหลว
 V_{au}= แทน ปริมาตรส่วนที่วัตถุจมลงไปในของเหลว
 F_B = แทน แรงลอยตัว มีทิศขึ้น (Î) เสมอ

<u>ปรากฏการณ์การลอยการจมกับความหนาแน่นของวัตถุและความหนาแน่นของเหลว</u>

- 1. แรงลอยตัว: แรงลอยตัวคือแรงที่กระทำจากของเหลว (เช่น น้ำ) ต่อวัตถุที่จม อยู่ในของเหลว แรงนี้ทำให้วัตถุมีแนวโน้มที่จะลอยขึ้นถ้าหากแรงลอยตัว มากกว่าแรงโน้มถ่วงของวัตถุ
- 2. ความหนาแน่นเฉลี่ย: ความหนาแน่นเฉลี่ยของวัตถุที่อยู่ในของเหลวเป็น ปัจจัยสำคัญที่กำหนดว่าวัตถุนั้นจะลอยหรือจม เหล็กมีความหนาแน่นสูงกว่าน้ำ มาก ทำให้เมื่ออยู่ในน้ำ เหล็กจะจมลงเพราะแรงโน้มถ่วงมีมากกว่าแรงลอยตัว
- 3. การกระจายน้ำหนักและปริมาตร: เรือเหล็กถูกออกแบบให้มีรูปร่างที่ กระจายน้ำหนักของเรือไปยังพื้นที่มาก ทำให้เรือเหล็กมีปริมาตรมากขึ้นและ ความหนาแน่นเฉลี่ยลดลงจนต่ำกว่าความหนาแน่นของน้ำ การที่ความหนาแน่น เฉลี่ยของเรือต่ำกว่าน้ำทำให้แรงลอยตัวที่กระทำต่อเรือมีมากพอที่จะทำให้เรือ ลอยอยู่บนผิวน้ำ

คำถาม: ปกติเหล็กจมน้ำ แต่ทำไม เรือที่ทำด้วยเหล็กจึงสามารถลอยน้ำได้ ตอบ: ในการผลิตเรือจะทำให้ด้านในเรือกลวงเพื่อเพิ่มปริมาตร(V เพิ่ม) ทำให้ความหนาแน่นของเรือน้อยกว่าน้ำ เรือจึงลอยน้ำได้

Note. วัตถุจะจมลงในของเหลวหรือไม่ให้<u>ดที่ความหนาแน่นนะครับ</u> ไม่ใช่ดูที่น้ำหนัก

<u>พิสูจน์</u>

สมการ $F_B = \rho_a V_{a\mu} g$ แรงดันของของเหลว จะกระทำตั้งฉาก กับวัตถุในทุกทิศทาง และขนาดของแรงดันจะขึ้นกับระยะความลึก

พิจารณาวัตถุรูปลูกบาศก**์**จมอยู่ในของเหลวมีความหนาแน่น ho

• แรงในแนวราบที่กระทำต่อวัตถุจะหักลางกันหมดจะเหลือเฉพาะ แรงลัพอ์ในแนวดิ่งเท่านั้น

พิจา ร ณาที่ฝาบน	พิจา ว ณาที่ฝาล ่ าง	หาผลลัพธ์ (∑ F)
$P_1 = P_a + \rho g h_1$	$P_2 = P_a + \rho g h_2$	$\sum \mathbf{F}_{\hat{\mathbf{n}}_{3}} = \mathbf{F}_{2} - \mathbf{F}_{1}$
$\operatorname{M} F : F_1 = PA$	หา $F_2: F_2 = PA$	$= [P_a + \rho g h_2] A - [P_a + \rho g h_1] A$
$= [P_a + \rho g h_1] A$	$= [P_a + \rho g h_2] A$	$= \rho_g (h_2 - h_1) A$
$\therefore F_1 = [P_a + \rho g h_1] A$	$\therefore F_2 = [P_a + \rho g h_2] A$	= pghA
		$= \rho_g V_{\eta \mu}$
		$\therefore \sum F = \rho_a V_{yy} g$

หมายเหตุ : แรงลัพธ์ที่กระทำในแนวดิ่งนี้จะมีทิศชี้ขึ้นในแนวดิ่ง เพื่อคอยยกวัตถุขึ้น ซึ่งแรงลัพธ์นี้ก็คือ แรงลอยตัวนั่นเอง ∑ F = $ho_a V_{_{q_{a}}}$ g

EXAM :9	Step 1. จับประเด็นให้ได้ว่าโจทย์เขาให้อะไรมา? แล้วเขาถามอะไรเรา?
แรงลอยตัว	Step 2. วาดรูป
	Step 3. โจทย์ถามอะไรตั้งสมการนั้นก่อน ตัวแปรใดยังไม่รู้ให้()ค้างไว้

Ex1.จากรูปจงหาว่าแรงลอยตัวมีค่าเท่าไร?

