Auxiliar 18

Profesor: Mario Riquelme H. Profesores auxiliares: Jose Chesta, Felipe Isaule

Viernes 16 de Mayo de 2014

P1. Si la amplitud de un oscilador amortiguado decrece a 1/e de su valor inicial después de n períodos, muestre que la frecuencia de este oscilador amortiguado es $[1 + \frac{1}{4\pi^2 n^2}]^{-1/2}$ veces la frecuencia del oscilador sin roce.

P2. Considere una masa sujeta a un resorte de constante elástica k. Sobre la masa además actúa el roce viscoso de la forma $F_v = -bv$. Además la masa está sujeta a una fuerza $F_d(t) = F_d cos(\omega_d t)$. Encuentra la posición en función del tiempo.

P3. Se tiene el mismo problema de la Auxiliar 16. Esta vez se pide resolver el problema transformando las ecuaciones de movimiento originales en dos ecuaciones desacopladas

 ${f P4.}$ Se tienen dos péndulos de masa m y largo b que se encuentra unidos por un resorte de constante elástica k y largo natural 0. Asumiendo que el resorte siempre se encuentra horizontal, encuentre los modos normales.

