Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 17

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- a) 0 10010111 10010110110000000000000000
- c) 1 10000010 0011100011000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$\mathtt{BX} = \mathtt{D5E4}_{(16)}, \quad \mathtt{CX} = \mathtt{D041}_{(16)}, \quad \mathtt{DX} = \mathtt{7D84}_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& (79 - \mathtt{DX}) \wedge \mathtt{CX} \\ \mathtt{VAR2} &=& ((\mathtt{CX} + 75) \vee (\mathtt{DX} \vee \mathtt{BX})) - \mathtt{CX} \\ \mathtt{VAR3} &=& 59 + ((\mathtt{CX} + \mathtt{DX}) \vee \mathtt{BX}) \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e madhja duke e ruajtur indeksin e saj në regjistrin CX. Psh. nëse është variabla VAR2 atëherë në regjistrin CX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat tek ndërmjet numrit 19 dhe numrit 45 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin DX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $16_{(16)} + 60_{(16)}$
- b) $B7_{(16)} \wedge OE_{(16)}$
- c) $33_{(16)} \wedge 05_{(16)}$
- d) $33_{(16)} \wedge C5_{(16)}$
- e) $91_{(16)} \wedge 41_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 32 bajtëshe. Cache memoria L1 ka kapacitet prej 4096KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 16-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$A32F7DE2_{(16)}$$
, $8D88C2CA_{(16)}$, $B3C1304E_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 16-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku	w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7
$\overline{B_0}$	8E	77	EE	F6	85	BB	F6	C2
B_1	D7	1F	71	63	70	FC	3C	65
B_2	06	FE	OA	68	A2	9F	10	70
B_3	39	D5	CE	D9	CD	E5	F4	74
B_4	A8	3C	F2	EB	OD	25	C5	3F
B_5	CE	EF	3F	78	D2	EE	EO	42
B_6	32	F6	58	E9	6F	C3	02	BE
B_7	76	1A	E4	24	EE	1F	7A	92
B_8	OD	83	03	88	ЗА	D6	76	B1
B_9	C2	BF	1C	96	AЗ	02	AO	16
B_A	1B	E7	93	1C	69	70	91	C6
B_B	BO	31	5E	AD	CE	8C	07	42
B_C	65	59	DЗ	4B	64	F2	C1	AA
B_D	3E	80	7F	E2	9B	В8	F2	44
B_E	7A	D5	80	7B	63	C9	E3	53
B_F	DF	87	21	28	93	75	44	06

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?