COMP2211 Runway Redeclaration Group 2- Deliverable 3, Increment 2

Eren Rafet (er10g23)
Bozhang Wu (bw9n21)
Louis Townsend (lmt1n22)
Abdullah Hariry (ah4u22)
Hossameldin Tammam (htft1e22)

March 2025

Contents

1	Res	ponses to Feedback	3
	1.1	Annotations for Storyboards	3
	1.2	Increment 1 Sprint Backlog - Missing actual hours and Integration	5
	1.3	UML Diagram Improvements	6
2	Key	Design Artifacts	6
	2.1	UML Diagram	6
		2.1.1 Updated UML Diagram	7
		2.1.2 Use Case Diagram	8
	2.2	Database	9
		2.2.1 Database Structure Thought Process	9
		2.2.2 ER Diagram for the database	9
	2.3	Storyboards, Scenarios	10
3	Tes	ting	11
	3.1	Unit testing	11
	3.2		12
4	Pla	nning	13
	4.1	Progress for Increment 2	13
		4.1.1 Sprint Backlog with actual hours and integration	13
		4.1.2 Burndown criteria for tasks	13
		4.1.3 Complete Burndown Chart for Increment 2	14
	4.2	Sprint 3 Plan	15
		4.2.1 Retrospective on Sprint 2:	15
		4.2.2 Goal	15
		4.2.3 Sprint Backlog	16
		4.2.4 Day 0 Burndown Chart for Increment 3	17
\mathbf{A}	App	pendix A: Acceptance testing evidence	18

1 Responses to Feedback

1.1 Annotations for Storyboards

We included short paragraphs summarising each storyboard; however, adding annotations would provide developers and the customer with deeper insight into how the interface would function, making the storyboards easier to follow.

Figure 1: Screen that the users are presented with initially

Figure 2: Authenticated user picking an airport for the first time

Figure 3: Picking an airport from the dropdown list

Figure 4: Adding an airport via form 1/2

Figure 5: Inputting the required parameters to add runways 2/2

Figure 6: Inputting the required parameters to add runways

1.2 Increment 1 Sprint Backlog - Missing actual hours and Integration

We had not included an "actual hours" column in our previous sprint backlog, and adding this will allow us to see how we did over time in terms of successfully estimating the time it would take for each task to be completed. We did not spend that much time on testing because there was minimal implementation that could be tested.

Across the board, we underestimated the hours for each task, as highlighted in the report for the previous deliverable.

Additionally, an additional row, representing the numbers of hours it took us to resolve conflicts and put everything together, is included under the name "Integration".

Task	Estimation	Owner	Actual Hours
1: UML Design - MVC Structure	4h	All	5h
2: Import airport runway from XML	8h	Louis (Scrum	10h
		master)	
2.1: Create airport objects in XML	4h		5h
2.2: Parse XML	2h		2h
2.3: Initialise airports	2h		3h
3: Perform calculations on distances	6h	Hossam	7h
3.1: Automatically trigger calculations	1h		2h
3.2: Give option to expose calculations to user	3h		3h
3.3: Log calculations to txt file	2h		2h
4: Basic GUI	7h	Abdullah	10h
4.1: Drop down to choose airports	1h		2h
4.2: Form to create airport	1h		3h
4.3: Runway and empty distances rendering	5h		5h
5: Basic obstacle placement	4h	Andy	5h
5.1: Link obstacle placement to calculations	4h		5h
6: Creating test cases	5h	Eren	3h
6.1: Testing calculation validity	2h		1h
6.2: Testing initialization	3h		2h
7: Integration	-	All	2h

Table 1: Task Ownership Table

1.3 UML Diagram Improvements

Our updated UML diagram, now with additional details and a use-case diagram, is included in the "Key Design Artifacts" section.

2 Key Design Artifacts

2.1 UML Diagram

 \neg

Figure 7: UML Diagram with all the new additions

 ∞

2.2 Database

2.2.1 Database Structure Thought Process

The database design is centred around two primary entities that need to be stored within the application: Users and Airports. Consequently, the initial database structure consists of two main tables. Users will have attributes for username and password to facilitate authentication, as well as a role to manage access levels. Additionally, since each user must be associated with a specific airport, the Users table will reference the Airports table through a foreign key.

Regarding Airports, each airport can accommodate multiple runways, and each runway is further divided into more than one logical runways. To accurately represent this structure, two additional tables are derived from the Airports table, resulting in a total of four tables in the database. Both the Runways and LogicalRunways tables reference the Airports table.

This design removes redundancy and the foreign key constraints ensure referential integrity. E.g., if an airport goes defunct, all associated users (workers) will be automatically removed from the database, along with any related runways, maintaining data consistency and preventing orphaned records.

2.2.2 ER Diagram for the database

Figure 9: ER Diagram for the database of our tool $\,$

2.3 Storyboards, Scenarios

Our storyboards and scenarios were designed with the entire app structure in mind, envisioning the final product. As a result, they align well with both our current implementation and future plans, requiring no major changes or additions. They are available in the previous documentations.

3 Testing

3.1 Unit testing

What we were testing	Method of Test	Expected Result	Results of Test	Evidence	
what we were testing	Method of Test	Expected Result	Results of Test	Evidence	
				✓ CalculatorTest (uk.ac.soton.group2seg)) 866 ms
				testTakingOffAwayFromObstacle()	846 ms
				testLandingOverObstacle()	9 ms
				testLandingTowardsObstacle()	6 ms
				testTakingOffTowardsObstacle()	5 ms
Testing Calculations According to Project Specs	JUnit tests for LDA, TORA, TODA, ASDA under different obstacle placements	Calculated values should match expected values from project specifications	As expected		
				✓ LoginTest (uk.ac.soton.group2seg)	806 ms
				√ testHashPassword()	806 ms
Password hashing	JUnit test for password hashing method	Hashed password should not be null and should differ from plain text	As expected		
r assword nashing	Joint test for password nashing method	riasned password should not be nun and should diner from plain text	As expected		
				✓ LoginTest (uk.ac.soton.group2seg)	969 ms
				√ testCheckPasswordCorrect()	969 ms
Correct password verification	JUnit test for password checking method	Correct password should match stored hash	As expected		
				✓ ✓ LoginTest (uk.ac.soton.group2seg)	1 sec 117 ms
				√ testCheckPasswordIncorrect()	1 sec 117 ms
				v	
Incorrect password rejection	JUnit test for password checking with wrong input	Incorrect password should not match stored hash	As expected		
				LoginTest (uk.ac.soton.group2seg)	878 ms
				✓ usernameUniquenessTest()	878 ms
Username uniqueness detection	JUnit test querying database for existing username	System should detect non-unique username	As expected		
•				✓ ✓ LoginTest (uk.ac.soton.group2seg)	837 ms
				✓ inValidAirportInput()	837 ms
				"ITV allu All portitiput()	03/1115
Invalid airport input handling	JUnit test with a non-existent airport code	System should reject invalid input	As expected		

Table 2: JUnit Test Table

3.2 Acceptance testing

User Story	Test	Result
As ATC I want to be able to check the valid-	Calculation breakdowns can be	Pass
ity of calculations to maintain safety	viewed and are valid	
As a user I want to see obstacles on the run-	Obstacles are rendered around	Pass
way when they cause a redeclaration	the runway	
As ATC I want to see available distances on	Distance lines are rendered to	Pass
the screen	scale on the screen	
As ground crew I want to be able to report	An obstacle can be added to the	Pass
obstructions on the runway	runway strip	
As a user I want to be able to add a new	Airports can be added from	Pass
airport	within the application	
As a regulator I want an error log so I can	Error logs are generated and ac-	Pass
check system integrity	cessible	
As a regulator I want calculation logs so I	Calculation logs are generated	Pass
can check system validity	and accessible	
As ground crew I want predefined obstacles	A predefined list of obstacles is	Pass
list so I can quickly add an obstacle to the	available for selection	
system		
As ATC I want to see distances for each run-	Distances are displayed sepa-	Pass
way separately to ensure I only see relevant	rately for each runway	
information		

Table 3: Acceptance testing. See appendices for evidence

4 Planning

4.1 Progress for Increment 2

4.1.1 Sprint Backlog with actual hours and integration

Task	Estimation	Owner	Actual Hours
1: Predefined obstacle list	6h	Abdullah	3h
1.1: Implement obstacle dropdown	2h		1h
1.2: Implement obstacle placement using dropdown	-4h		2h
2: Runway visualisation	14h	Louis	11h
2.1: Render cleared and graded area	4h		2h
2.2: Add lines to scale for declared distances	4h		6h
2.3: Lines update on obstacle placement	2h		1h
2.4: Rendering obstacles	4h		2h
3: Implementing multi-user login	15h	Eren &	11h
		Hossam	
3.1: Design user database	5h		4h
3.2: Store users with roles (e.g. admin, viewer)	2h		1h
3.3: Design login page	4h		3h
3.4: Implement login function	4h		3h
4: Logging	4h	Hossam	4h
		(Scrum	
		Master)	
4.1: Logging calculations to a txt file	2h		2h
4.2: Debug logging	2h		2h
5: Notifications	6h	Andy	6h
5.1: Incorrect input popup box	2h		2h
5.2: Invalid password popup	2h		2h
5.3: Invalid obstacle popup	2h		2h
6: Integration	2h	Everyone	1h

Table 4: Task Ownership Table

4.1.2 Burndown criteria for tasks

We ensured that the following criteria were met before removing a task from the burndown chart:

- Comprehensive test coverage that take into account many scenarios, with all the tests passing.
- The development team agrees that any code written for related tasks (if applicable) can be easily integrated.
- The customer is satisfied with the implementation(product) and believes it delivers value.

4.1.3 Complete Burndown Chart for Increment 2

Figure 10: Chart for tracking task completion

4.2 Sprint 3 Plan

4.2.1 Retrospective on Sprint 2:

In Sprint 2, we finally moved past the design phase, which meant everyone could focus purely on coding without having to revisit old decisions. Since the core features were already in place, building on top of them felt much easier and more natural. We did encounter some challenges when integrating different parts of the system, but team discussions and debugging sessions helped us to work through them. Testing became more important at this stage, as we started catching edge cases that needed fixing. On the bright side, communication and collaboration improved greatly and task distribution was much smoother, making the whole sprint run more efficiently.

4.2.2 Goal

The main target for sprint 3 is to implement the final bits of functionality that we are yet to implement from our product backlog e.g., side-on visualisation. Once all core functionality is in place, we will develop a comprehensive user guide detailing existing issues (if any) and providing solutions to potential problems users may encounter while using the product.

Additionally, since no tasks have been carried over to this sprint and we have more time than usual, we will take the opportunity to refine and enhance the user interface. We will also explore the possibility of implementing extensions to further improve the user experience.

4.2.3 Sprint Backlog

Task	Owner	Estimation	Actual Hours
1: Admin dashboard back-end	Eren (Scrum master)	10h	
1.1: SQL queries to edit and add users		5h	
1.2: Modifying access levels based on roles		5h	
2: Finalise views	Louis	10h - 14h	
2.1: Debug top down view		2h	
2.2: Implement side on view		8h	
2.3: (EXTENSION) Pan and zoom views		4h	
3: Help documentation	Andy	10h	
3.1: Writing documentation		5h	
3.2: Implementing documentation within application		5h	
4: Information exporting	Abdullah	14h	
4.1: Exporting airport and obstacle details as XML		7h	
4.2: Exporting visualisations and calculations in PDF		7h	
5: General graphics and UI improvements	Hossam	9h-11h	
5.1: Improve usability		2h	
5.2: User(role)-specific application views		7h	
5.3: (EXTENSION) Colour blindness views		3h	
6: Integration	All	4h	

Table 5: Task Ownership Table for Increment 3

4.2.4 Day 0 Burndown Chart for Increment 3

Figure 11: Increment 3 Day 0 Chart

A Appendix A: Acceptance testing evidence

Figure 12: Runway view after adding an obstacle

This view shows how distance lines are shown graphically, as well as recalculated. Furthermore, the calculation breakdown is visible on the right side of the screen

Figure 13: Obstacle adding form

Figure 14: Airport adding form

Figure 15: Calculation Logs

Figure 16: Predefined Obstacle Form