edureka!

Hadoop Administration **

Hadoop Administration

Module 6: Advanced Topics: QJM, HDFS Federation and Security

Course Topics

edureka!

✓ Module 1

- ✓ Understanding Big Data
- ✓ Hadoop Components

√ Module 2

- ✓ Different Hadoop Server Roles
- ✓ Hadoop Cluster Configuration

✓ Module 3

- √ Hadoop Cluster Planning
- ✓ Job Scheduling

✓ Module 4

- ✓ Securing your Hadoop Cluster
- ✓ Backup and Recovery

✓ Module 5

- ✓ Hadoop 2.0 New Features
- ✓ HDFS High Availability

✓ Module 6

- ✓ Quorum Journal Manager (QJM)
- √ Hadoop 2.0 YARN

✓ Module 7

- ✓ Oozie Workflow Scheduler
- ✓ Hive and Hbase Administration

✓ Module 8

- √ Hadoop Cluster Case Study
- ✓ Hadoop Implementation

Topics of the day

- Hadoop 2.0 New Features
 - **■** HDFS High Availability QJM
 - YARN and MRv2
- YARN and Hadoop ecosystem
- **YARN Components**
- Job Tracker and Job Submission
- MR Application Execution in YARN

Let's Revise

- ✓ Hadoop 1.0 Vs. Hadoop 2.0
- √ Hadoop 2.0 Cluster daemons

NN High Availability – Quorum Journal Manager

Hadoop 2.0 Server Roles

CPU

Task Tracker

Task Tracker

Task Tracker

MRv1 – Unpredictability in Large Clusters

edureka!

As the cluster size grow and reaches to 4000 Nodes

✓ Cascading Failures

✓ The DataNode failures results in a serious deterioration of the overall cluster performance because of attempts to replicate data and overload live nodes, through network flooding.

✓ Multi-tenancy

✓ As clusters increase in size, you may want to employ these clusters for a variety of models. MRv1 dedicates its nodes to Hadoop and cannot be re-purposed for other applications and workloads in an Organization. With the growing popularity and adoption of cloud computing among enterprises, this becomes more important.

✓ Terabytes and Petabytes of data in HDFS can be used only for MapReduce processing.

http://hadoop.apache.org/docs/stable2/hadoop-yarn/hadoop-yarn-site/YARN.html

Multi-tenancy - Capacity Scheduler

- ✓ Organizes jobs into queues
- ✓ Queue shares as %'s of cluster
- ✓ FIFO scheduling within each queue
- ✓ Data locality-aware Scheduling

Multi-tenancy - Capacity Scheduler

edureka!

✓ Hierarchical Queues

To manage the resource within an organization.

√ Capacity Guarantees

A fraction to the total available capacity allocated to each Queue.

✓ Security

To safeguard applications from other users.

✓ Elasticity

Resources are available in a predictable and elastic manner to queues.

✓ Multi-tenancy

Set of limit to prevent over-utilization of resources by a single application.

✓ Operability

Runtime configuration of Queues.

√ Resource-based scheduling

If needed, Applications can request more resources than the default.

Hadoop 2.0: Configure the Capacity Scheduler

✓ Edit yarn-site.xml to enable the Capacity Scheduler

Property	Value
yarn.resourcemanager.scheduler. class	org.apache.hadoop.yarn.server.resourcemanager.schedul er.capacity.CapacityScheduler

√ Configure 'queues' in capacity-scheduler.xml

The Resource Manager has two main components

- a) NameNode and SNN
- b) Scheduler and Applications Manager
- c) Manager and Application manager4

Answer: Scheduler and Applications Manager

YARN enables a user to interact with all data in multiple ways simultaneously, making Hadoop a true multi-use data platform and allowing it to take its place in a modern data architecture.

- a) True
- b) False

Hadoop Administration

Executing MapReduce Application on YARN

Job Execution

Job Tracker (Contd.)

YARN – Beyond MapReduce

YARN = Yet Another Resource Negotiator

✓ Resource Manager

- ✓ Cluster Level resource manager
- ✓ Long Life, High Quality Hardware

✓ Node Manager

- ✓ One per Data Node
- ✓ Monitors resources on Data Node

✓ Application Master

- ✓ One per application
- ✓ Short life
- ✓ Manages task /scheduling

edureka!

Application Vs. Job Execution

- ✓ MapReduce Application Execution
 - ✓ Submission
 - ✓ Initialization
 - ✓ Tasks Assignment
 - √ Tasks' Memory
 - ✓ Status Updates
 - √ Failure Recovery

edureka!

✓ Client

✓ Submit a MapReduce Application

✓ Resource Manager

- ✓ Manage the resource utilization across
- √ Hadoop Cluster

Node Manager

- ✓ Runs on each Data Node
- ✓ Creates execution container
- ✓ Monitors Container's usage

MapReduce Application Master

- Coordinates and Manages MapReduce tasks
- ✓ Negotiates with Resource Manager to schedule asks
- ✓ The tasks are started by Node Manager(s)

√ HDFS

shares resources and task's artefacts among YARN components

Hadoop 2.0: YARN Workflow

Hadoop 2.0 – In Summary

YARN was developed to overcome the following disadvantage in MRv1?

- a) Single Point of Failure of NameNode
- b) Only one version can be run in classic MapReduce
- c) Too much burden on Job Tracker

Answer: Too much burden on Job Tracker

In YARN, the functionality of Job Tracker has been replaced by which of the following YARN features:

- a) Job Scheduling
- b) Task Monitoring
- c) Resource Management
- d) Node management

Task Monitoring and Resource Management. The fundamental idea of MRv2 is to split up the two major functionalities of the Job Tracker, i.e. resource management and job scheduling/monitoring, into separate daemons. A global **Resource Manager (RM)** for resources and per-application **Application Master (AM)** for task monitoring.

In YARN, which of the following daemons takes care of the container and the resource utilization by the applications?

- a) Node Manager
- b) Job Tracker
- c) Task tracker
- d) Application Master
- e) Resource manager

Annie's Answer

edureka!

Answer: Application Master

Can we run MRv1 Jobs in a YARN enabled Hadoop Cluster?

- a) Yes
- b) No

Answer: Yes. You need recompile the Jobs in MRv2 after enabling YARN to run the Job successfully on a YARN enabled Hadoop Cluster.

Which of the following YARN daemon is responsible for launching the tasks?

- a) Task Tracker
- b) Resource Manager
- c) Application Master
- d) Application Master Server

Answer: Application Master

edureka!

Tasks for you

- Attempt the following Assignments using the documents present in the LMS:
 - Create an Apache Hadoop 2.0 Cluster using a Virtual Machine in VMPlayer or VirtualBox on AWS EC2 free tier.

edureka! Thank You

See You in Class Next Week