(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 09.02.2000 Bulletin 2000/06
- (21) Application number: 98401944.8
- (22) Date of filing: 29.07.1998

- (51) Int. CI.⁷: **C07D 295/088**, C07C 211/08, C07D 211/04, C07D 295/185, C07D 211/62, C07D 211/70, C07D 207/20, A61K 31/13, A61K 31/40, A61K 31/495
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (71) Applicant:
 SOCIETE CIVILE BIOPROJET
 F-75003 Paris (FR)
- (72) Inventors:
 - Schwartz, Jean-Charles 75014 Paris (FR)
 - Arrang, Jean-Michel 91419 Dourdan (FR)
 - Garbarg, Monique 75017 Paris (FR)
 - Lecomte, Jeanne-Marie 75003 Paris (FR)

- Ligneau, Xavier 75013 Paris (FR)
- Schunack, Walter G. 14129 Berlin (DE)
- Stark, Holger
 12157 Berlin (DE)
- Ganellin, Charon Robin Welwyn, Hert AL6 OTD (GB)
- Leurquin, Fabien London E2 6DZ (GB)
- Sigurd, Elz
 12107 Berlin (DE)
- (74) Representative:
 Le Guen, Gérard et al
 CABINET LAVOIX
 2, place d'Estienne d'Orves
 75441 Paris Cédex 09 (FR)
- (54) Non-imidazole aryloxy (or arylthio) alkylamines as histamine H3-receptor antagonists and their therapeutic applications
- (57) Compounds of formula (I):

and their use for preparing medicaments acting as antagonists at the H₃-receptors of histamine.

Description

[0001] The present invention relates to novel aryloxy (or arylthio) alkylamines, to their preparation and to their therapeutic applications.

[0002] Antagonists of histamine H₃ receptor are known especially to increase synthesis and release of cerebral histamine. Through this mechanism, they induce an extended wakefullness, an improvement in cognitive processes, a reduction in food intake and a normalization of vestibular reflexes (Schwartz et al., Physiol. Rev., 1991, 71; 1-51).

[0003] Whence these agents are potentially useful in several central nervous system disorders such as Alzheimer disease, mood and attention alterations, cognitive deficits in psychiatric pathologies, obesity, vertigo and motion sickness.

[0004] All the H_3 receptor antagonist compounds known so far resemble histamine in possessing an imidazole ring (Ganellin et al., Ars Pharmaceutica, 1995, 36:3, 455-468; Stark et al., Drug of the Future, 1996, 21(5), 507-520).

[0005] Nevertheless, such imidazole derivatives may show drawbacks such as poor blood-brain barrier penetration and/or some hepatic and ocular toxicities. These drawbacks, which can prevent their therapeutic development, appear to be linked to the presence of an imidazole ring substituted by a hydrophobic chain.

[0006] Attempts to develop H₃ receptor antagonists without an imidazole ring have up to now been unsuccessful, the compounds being of low potency.

[0007] In this respect, non-imidazole compounds such as betahistine (J-M. Arrang et al., Eur. J. Pharmacol. 1985, 111: 72-84), phencyclidine (J-M. Arrang et al., Eur. J. Pharmacol. 1988, 157: 31-35), dimaprit (J-C Schwartz et al.,

Agents Actions 1990, 30: 13-23), clozapine (M. Kathmann et al., Psychopharmacology 1994, 116: 464-468), and sesquiterpenes (M. Takigawa et al., JP 06 345 642 (20 Dec 1994)) were suggested to display H₃-receptor antagonism but all these compounds have only very low potency.

[0008] The present invention provides new compounds, the structure of which do not contain an imidazole moiety, which are useful as histamine H_3 -receptor antagonists while avoiding the above-mentioned drawbacks of the known H_3 -antagonists.

[0009] The compounds of the invention have the following general formula (I):

$$(R^3)_{D^3}$$
 $X-C_DH_{2D}-N$ R^1 (I)

35 in which:

25

30

- C_nH_{2n} is a linear or branched hydrocarbon chain with n ranging from 2 to 8;
- X is an oxygen or sulfur atom;
- R¹ and R² may be identical or different and represent each independently
 - a lower alkyl or cycloalkyl, or taken together with the nitrogen atom to which they are attached,
 - · a saturated nitrogen-containing ring

i) N (CH₂)_m

with m ranging from 4 to 7, or

· an unsaturated nitrogen-containing ring

55

50

10

5

with p, q and r being 1 to 3 independently, such nitrogen-containing ring i) or ii) being unsubstituted or substituted by one or more lower alkyl or cycloalkyl, or carboalkoxy groups, or

- a morpholino group, or
- · a N-substituted piperazino group:

15

20

with R being a lower alkyl, an alkanoyl or an optionally substituted phenyl group;

- n₃ is an integer from 0 to 5;
- R³ represents each independently

25

30

- a halogen atom,
- a lower alkyl or cycloalkyl, a trifluoromethyl, aryl, alkoxy, aryloxy, nitro, formyl, alkanoyl, aroyl, arylalkanoyl, amino, carboxamido, cyano, alkyloximino, aryloximino, α-hydroxyalkyl, alkenyl, alkynyl, sulphamido, sulfamoyl, carboxamide, carboalkoxy, arylalkyl or oxime group,
- or taken together with the carbon atoms of the phenyl ring to which it is fused, a 5- or 6-membered saturated or unsaturated ring or a benzene ring.

[0010] The invention also relates to the addition salts which the compounds form with pharmaceutically acceptable acids. The pharmaceutically acceptable salts comprise the nontoxic salt of inorganic or organic acids. Examples of these salts include the hydrochloride, the hydrobromide or the hydrogen maleate or hydrogen oxalate.

[0011] The present invention also encompasses the hydrates of the compounds, the hydrated salts of these compounds and the polymorphic crystalline structures. When the compounds can exist in one or a number of isomeric forms according to the number of asymmetric centres in the molecule, the invention relates both to all the optical isomers and to their racemic modifications and the corresponding diastereoisomers. The separation of the diastereoisomers and/or of the optical isomers can be carried out according to methods known per se.

[0012] According to the invention, lower alkyl or cycloalkyl is intended to mean a linear or branched alkyl group containing from 1 to 6 carbon atoms, or a saturated carbocycle containing 3 to 6 carbon atoms.

[0013] Typically examples of lower alkyl are methyl, ethyl, propyl, isopropyl and butyl groups.

[0014] A preferred group of compounds according to the invention comprises those with R¹ and R² representing independently a lower alkyl group, especially an ethyl group.

[0015] Preferred compounds are also those of formula (I) in which R¹ and R² taken together with the nitrogen atom to which they are attached, form a saturated nitrogen-containing ring:

50

55

especially with m being 4, 5 or 6, optionally substituted with an alkyl group, preferably a methyl group.

[0016] Another preferred group of compounds comprises compounds (I) in which R¹ and R² taken together with the nitrogen atom to which they are attached, form an unsaturated nitrogen-containing ring:

ii) $\begin{pmatrix} (CH_2)_p & CH \\ N & \\ (CH_2)_q & CH \end{pmatrix}$

10

5

especially with p, q, and r being 1 or 2. In this group, more preferred compounds are those with p being 2 and q and r each being 1.

[0017] Typical example of -NR¹R² representing a N-substituted piperazino group is N-acetylpiperazino.

[0018] A preferred group of compounds according to the invention is the group composed of compounds of formula (I) in which X is an oxygen atom.

[0019] Another preferred group of compounds comprises compounds (I) in which $-C_nH_{2n}$ is a linear chain $-(CH_2)_n$ with n being as previously defined.

[0020] Preferred compounds are also those with n varying from 3 to 5, and with n being more preferably 3.

[0021] A sub-class of compounds according to the invention comprises the compounds of formula (I) with n₃ being zero that is those having an unsubstituted phenyl moiety.

[0022] Another group of compounds according to the invention is composed of compounds containing one or more substituents R^3 which may be identical or different. In this group, the compounds having a mono- or di-substituted (n_3 = 1 or 2) phenyl moiety are preferred and those mono-substituted with one group R^3 as defined above in para-position are particularly preferred.

[0023] Among these compounds, (n_3 being 1) R^3 is preferably a halogen atom or a cyano, nitro, alkanoyl, alkyloximino or α -hydroxyalkyl group.

[0024] Still more preferred compounds are those with R³ being CN, NO₂, COCH₃, COC₂H₅, H₃C-C=N-OH, H₃C-CH-OH.

[0025] R³ being a halogen atom may be advantageously selected from fluorine, chlorine and bromine.

[0026] R³ being an aryl group, may be especially a phenyl group.

[0027] In the other substituents R³, the aryl moiety is advantageously a phenyl moiety.

[0028] R³ being an aryloxy group may be especially a phenoxy group.

[0029] According to the invention, alkanoyl is intended to mean a group containing an alkyl moiety as defined above.

[0030] Typical examples of R³ being an alkanoyl, aroyl or arylalkanoyl group are acetyl, butyryl and propionyl groups, benzoyl group or phenylacetyl group.

[0031] Typical examples of R³ forming together with the carbon atoms of the phenyl ring to which it is fused, a saturated ring leads to 5.6.7.8-tetrahydronaphthyl or forming a benzene ring leads to a naphthyl moiety.

[0032] According to the invention, alkenyl or alkynyl group may contain advantageously from 1 to 8 carbon atoms, in particular from 1 to 6 carbon atoms and preferably 1 to 4 carbon atoms.

[0033] In carboalkoxy, carboxyamido or carboxamide groups, the hydrocarbon chain is saturated, linear or branched and contains an alkyl moiety as defined above.

[0034] In alkoxy, alkyloximino, arylalkyl or α -hydroxyalkyl group, the alkyl moiety is as previously defined also.

[0035] Particularly preferred compounds are:

45

50

1-(5-phenoxypentyl)-piperidine

1-(5-phenoxypentyl)-pyrrolidine

N-methyl-N-(5-phenoxypentyl)-ethylamine

1-(5-phenoxypentyl)-morpholine

N-(5-phenoxypentyl)-hexamethyleneimine

N-ethyl-N-(5-phenoxypentyl)-propylamine

1-(5-phenoxypentyl)-2-methyl-piperidine

1-(5-phenoxypentyl)-4-propyl-piperidine

1-(5-phenoxypentyl)-4-methyl-piperidine

1-(5-phenoxypentyl)-3-methyl-piperidine

1-acetyl-4-(5-phenoxypentyl)-piperazine

1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine

1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine

```
1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine
         4-carboethoxy-1-(5-phenoxypentyl)-piperidine
         3-carboethoxy-1-(5-phenoxypentyl)-piperidine
         1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine
         1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
5
         1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine
         1-[5-(4-methoxyphenoxy)-pentyl]-pyrrolidine
         1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine
         1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine
         1-[5-(2-naphthyloxy)-pentyl]-pyrrolidine
10
         1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine
         1-[5-(3-chlorophenoxy)-pentyl]-pyrrolidine
         1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine
         1-{5-[2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
15
         1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine
         1-(5-phenoxypentyl)-2,5-dihydropyrrole
         1-{5-[1-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
         1-(4-phenoxybutyl)-pyrrolidine
         1-(6-phenoxyhexyl)-pyrrolidine
20
         1-(5-phenylthiopentyl)-pyrrolidine
         1-(4-phenylthiobutyl)-pyrrolidine
         1-(3-phenoxypropyl)-pyrrolidine
         1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine
         1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine
         1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine
25
         1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine
        1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine
        1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine
        N-[3-(4-nitrophenoxy)-propyl]-diethylamine
        N-[3-(4-cyanophenoxy)-propyl]-diethylamine
30
        1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine
        1-{5-{4-(phenylacetyl)-phenoxyl-pentyl}-pyrrolidine
        N-[3-(4-acetylphenoxy)-propyl]-diethylamine
        1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine
        1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine
35
        1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine
        1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-pyrrolidine
        1-[5-(4-cyanophenoxy)-pentyl]-diethylamine
        1-[5-(4-cyanophenoxy)-pentyl]-piperidine
        N-[5-(4-cyanophenoxy)-pentyl]-dimethylamine
40
        N-[2-(4-cyanophenoxy)-ethyl]-diethylamine
        N-[3-(4-cyanophenoxy)-propyl]-dimethylamine
        N-[4-(4-cyanophenoxy)-butyl]-diethylamine
        N-[5-(4-cyanophenoxy)-pentyl]-dipropylamine
        1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine
45
        1-[3-(4-cyanophenoxy)-propy[]-piperidine
        N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
        N-[6-(4-cyanophenoxy)-hexyl]-diethylamine
        N-[3-(4-cyanophenoxy)-propyl]-dipropylamine
        N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
50
        4-(3-diethylaminopropoxy)-acetophenone-oxime
        1-[3-(4-acetylphenoxy)-propyl]-piperidine
        1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
        1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl-piperidine
        1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
55
        1-[3-(4-propionylphenoxy)-propyl]-piperidine
        1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-piperidine
```

1-[3-(4-formylphenoxy)-propyl]-piperidine

- 1-[3-(4-isobutyrylphenoxy)-propyl]-piperidine
- N-[3-(4-propionylphenoxy)-propyl]-diethylamine
- 1-[3-(4-butyrylphenoxy)-propyl]-piperidine
- 1-[3-(4-acetylphenoxy)-propyl]-1,2,3,6-tetrahydropyridine

[0036] More preferred compounds are:

5

10

15

20

25

30

40

45

50

55

- 1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
- N-[3-(4-cyanophenoxy)-propyl]-diethylamine
- N-[3-(4-acetylphenoxy)-propyl]-diethylamine
- 1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl)-pyrrolidine
- N-[4-(4-cyanophenoxy)-butyl]-diethylamine
- 1-[3-(4-cyanophenoxy)-propyl]-piperidine
- N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
- N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
 - 4-(3-diethylaminopropoxy)-acetophenone-oxime
 - 1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
 - 1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
 - 1-[3-(4-propionylphenoxy)-propyl]-piperidine

[0037] Compounds of formula (I) in which:

- -NR¹R² is a pyrrolidinyl group, C_nH_{2n} is a linear chain -(CH₂)_n- and n₃ is zero, X being an oxygen atom with n ranging from 3 to 5, or X being a sulfur atom with n being 4 or 5;
- -NR¹R² is a piperidinyl group, C_nH_{2n} is a linear chain -(CH₂)_n- and X is an oxygen atom, n₃ being zero with n being 2, 5 or 8 or n₃ being 1 with R³ being 4-CN and n being 5;
- -NR¹R² is a diethylamine group, X is an oxygen atom, C_nH_{2n} is a linear chain -(CH₂)_n- and n₃ is 1, R³ being 4-NO₂ or 4-COCH₃ with n being 3 or R³ being 4-CN with n being 2 to 4;
- -NR¹R² is a dimethylamine group, X is an oxygen atom, C_nH_{2n} is a linear chain -(CH₂)_n- and n³ is 1, R³ being 4-CN with n being 3,

are known in the art.

[0038] A subject of the invention is thus the use of these compounds as antagonists at the histamine H_3 -receptors, in particular to prepare medicaments acting as H_3 -antagonists intended for the treatments detailed below.

55 [0039] The compounds according to the invention may be prepared according to one of the following schemes 1-5:

SCHEME I (methods A, B, C, D, H and K):

5

$$\left(R^{\frac{1}{3}}\right)^{\frac{1}{1}} \times \frac{BrC_{n}H_{2n}Br}{XH} \left(R^{\frac{3}{3}}\right)^{\frac{1}{11}} \times \frac{HNR^{\frac{1}{3}}R^{2}}{XC_{n}H_{2n}Br} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{11}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}R^{2}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}R^{2}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}R^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}R^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}R^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}R^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^{\frac{3}{3}}\right)^{\frac{1}{3}}}{XC_{n}H_{2n}NR^{\frac{1}{3}}} \times \frac{R^{\frac{3}{3}}\left(R^$$

10

15

20

SCHEME 2 (methods F and L):

$$\left(R^{\frac{1}{2}}\right)^{\frac{1}{2}} OH + HOC_nH_{2n}NR^1R^2 \frac{R'OOC-N=N-COOR'}{(C_6H_5)_3P, THF, N_2} \left(R^{\frac{3}{2}}\right)^{\frac{1}{2}} OC_nH_{2n}NR^1R^2$$

25

35

40

30

SCHEME 4 (method G):

$$H_{3}C \xrightarrow{C} \underbrace{\frac{\text{LiAlH}_{4}}{\text{Et}_{2}O}} H_{3}C \xrightarrow{CH} \underbrace{OC_{n}H_{2n}NR^{1}R^{2}}$$

45

SCHEME 5 (mcthod J):

$$H_3C$$

$$\begin{array}{c}
O\\
H_2NOH; HCI\\
\hline
MeOH and H_2O
\end{array}$$

$$\begin{array}{c}
N(OH)\\
H_3C
\end{array}$$

$$OC_nH_{2n}NR^1R^2$$

$$OC_nH_{2n}NR^1R^2$$

55

50

[0040] In these schemes, R1, R2, R3, X and n are as defined in general formula (I).

[0041] Me and Et are intended to mean methyl and ethyl. .

[0042] Detailed synthesis procedures are given in the examples.

- [0043] The compounds of formula (I) according to the invention have antagonistic properties at the histamine H₃-receptors. They cause an increase in synthesis and release of cerebral histamine.
- [0044] This property makes the compounds of the invention useful derivatives in human or veterinary medicine.
- [0045] Their therapeutical applications are those known for H₃-antagonist compounds and especially relate to the central nervous system disorders such as Alzheimer disease, mood and attention alterations, cognitive deficits in psychiatric pathologies, obesity, vertigo and motion sickness.
- [0046] Therefore, the compounds of formula (I) according to the invention are advantageously used as active ingredient of medicaments which act as an antagonist of H₃-receptors of histamine, in particular of medicaments having psychotropic effects, promoting wakefullness, attention, memory and improving mood, in treatment of pathologies such as Alzheimer disease and other cognitive disorders in aged persons, depressive or simply asthenic states.
- [0047] Their nootropic effects can be useful to stimulate attention and memorization capacity in healthy humans.
- [0048] In addition, these agents can be useful in treatment of obesity, vertigo and motion sickness.
- [0049] It can also be useful to associate the compounds of the invention with other psychiatric agents such as neuroleptics to increase their efficiency and reduce their side effects.
- [0050] Application in certain form of epilepsy is also foreseen.
 - [0051] Their therapeutic applications involve also peripheral organs mainly a stimulant of secretions or gastro-intestinal motricity.
 - [0052] The compounds of the invention are particularly useful for the treatment of CNS disorders of aged persons.
 - [0053] The present invention also relates to medicaments having the above-mentioned effects comprising as active ingredient, a therapeutically effective amount of a compound of formula (I).
 - [0054] The present invention also relates to pharmaceutical compositions containing as active ingredient, a therapeutically effective amount of a compound (I) together with a pharmaceutically acceptable vehicle or excipient.
 - [0055] The medicaments or pharmaceutical compositions according to the invention can be administered via oral, parenteral or topical routes, the active ingredient being combined with a therapeutically suitable excipient or vehicle.
 - [0056] According to the invention, oral administration is advantageously used.
 - [0057] Another subject of the present invention is the use of the compounds of formula (I) for the preparation of H₃-antagonist medicaments according to the above-mentioned forms.
 - [0058] The invention further relates to the use of the compounds of formula (I) for preparing medicaments having the pre-cited effects.
- [0059] Still another subject of the invention is a method for the treatment of precited ailments comprising administering a therapeutically effective dose of a compound (I), optionally in combination with a therapeutically acceptable vehicle or excipient.
 - [0060] For each of the above-indications, the amount of the active ingredient will depend upon the condition of the patient.
- [0061] However, a suitable effective dose will be in general in the range of from 10 to 500 mg per day and of from 1 to 10 mg/day for particularly active compounds.
- [0062] These doses are given on the basis of the compound and should be adapted for the salts, hydrates or hydrated salts thereof
- [0063] The invention is now illustrated by the following examples.

EXAMPLES

[0064] The structure of the synthesized compounds and their method of preparation as well as their melting point, recrystalisation solvant and elemental analysis are summarized in the following Table I:

55

40

45

analysis (calc.)

method

FORMULA

TABLE 1:

10		
15		
20		
25		•
30		
35		
40		

1	STRUCTURE .	(recryst. solv)		
	NAME			
Ī	C ₁₆ H ₂₅ NO; C ₂ H ₂ O ₄	143-145°C	C: 64.06 (64.07)	Α
		(absolute	H: 8.09 (8.16)	
	O-(CH ₂) ₅ -N (COOH) ₃	ethanol)	N: 4/14 (4.15)	
ł	1-(5-phenoxypentyl)-piperidine hydrogen			
1	oxalate			
2	C ₁₅ H ₂₃ NO; C ₂ H ₂ O ₄	153-155°C	C: 63.06 (63.14)	A
1		(absolute	H: 7.78 (7.79)	
	(COOH) ₂	ethanol)	N: 4.42 (4.33)	
	O-(CH ₂) ₅ -N (COOH) ₂			
	1-(5-phenoxypentyl)-pyrrolidine hydrogen			4
	oxalate			
3	C ₁₄ H ₂₃ NO; C ₂ H ₂ O ₄	122-124℃	C: 61.74 (61.72)	Α
1		(absolute	H: 8.24 (8.09)	
	CH ₃ (COOE) ₂ CH ₂ CH ₃ (COOE) ₂	ethanol)	N: 4.52 (4.50)	
ł	N-methyl-N-(5-phenoxypentyl)-ethylamine			•
	hydrogen oxalate			
4	C ₁₅ H ₂ 3NO ₂ ; C ₂ H ₂ O ₄	166-168°C	C: 60.10 (60.16)	
	C15(123(NO2), C2(12/O4)	(absolute	H: 7.45 (7.31)	^
		ethanol)	N: 4.08 (4.13)	
	O-(CH ₂) ₅ N O (COOFI) ₂	emaioi)	14. 4.08 (4.13)	
	l-(5-phenoxypentyl)-morpholine hydrogen			
	oxalate			
5	C ₁₇ H ₂₇ NO; C ₂ H ₂ O ₄	132-134°C	C: 64.70 (64.93)	Α
	·	(ahsolute	H: 8.34 (8.32)	
	O-(CH ₂) ₅ -N (COOH) ₂	ethanol)	N: 3.85 (3.99)	
	N-(5-phenoxypentyl)-bexamethyleneimine			
	hydrogen oxalate		·	

		T			T _
	6	C ₁₆ H ₂₇ NO; C ₂ H ₂ O ₄	90-91°C	C: 63.60 (63.69)	В
5			(isopropyl	H: 8.81 (8.61)	1
		CH ₂ CH ₃ (COO(1) ₂	alcohol)	N: 3.97 (4.13)	
		CH ₂ CH ₂ CH ₃			
•		N-ethyl-N-(5-phenoxypentyl)-propylamine		,	
10	ı i	hydrogen oxalate		}	•
	7	C ₁₇ H ₂₇ NO; 1.1 C ₂ H ₂ O ₄	80-83°C	C: 64.15 (63.98)	В
	Ť		(isopropyl	H: 8.42 (8.17)	_
		CH3	alcohol)	N: 3.97 (3.89)	
15		1.1 (COOH) ₂		14. 5.57 (5.07)	
		-0-(CH ₂)5N 1.1 (COOH)2			
		1-(5-phenoxypentyl)-2-methyl-piperidine	T.		
		hydrogen oxalate			
20	8	C ₁₉ H ₃₁ NO; C ₂ H ₂ O ₄	165-166°C	C: 66.27 (66.46)	В
		0192-31-1-01-02-12-4	(absolute	H: 8.94 (8.76)	-
			ethanol)	N: 3.72 (3.69)	
25		0-(CH ₂) ₅ H	· · · · · · · · · · · · · · · · · · ·	11. 5.72 (5.67)	
25		1-(5-phenoxypentyl)-4-propyl-piperidine			
		hydrogen oxalate		-	
1	9		151-152℃	C: (4.97 (64.02)	
30	"	C ₁₇ H ₂₇ NO; C ₂ H ₂ O ₄		C: 64.87 (64.93)	В
			(absolute	H: 8.41 (8.32)	
	-	(COOH)2 CH3 (COOH)2	ethanol)	N: 4.01 (3.99)	·
ļ					ł
35		1-(5-phenoxypentyl)-4-methyl-piperidine			.
		hydrogen oxalate			
	10	C ₁₇ H ₂₇ NO; C ₂ H ₂ O ₄	140-141 ℃	C: 65.35 (64.93)	В
1	į	-	(isopropyl	H: 8.49 (8.32)	1
40		CH ₃	alcohol)	N: 4.00 (3.99)	ŀ
I		O-(CH2)2N COOH)2		}	ŀ
}					1
į		1-(5-phenoxypentyl)-3-methyl-piperidine			
45	\perp	hydrogen oxalate			

1						
1-acetyl-4-(5-phenoxypentyl)-piperazine hydrogen oxalate 12 C18H29NO: 1.05 C2H2O4 154-155°C (absolute cthanol) N: 3.66 (3.79) 1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine hydrogen oxalate 13 C18H29NO: C2H2O4 154-155°C C: 65.62 (65.73) B 1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine hydrogen oxalate C18H29NO: C2H2O4 154-155°C (isopropyl alcohol) N: 3.63 (3.83) 1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine hydrogen oxalate C18H29NO: HCl 135-136°C (acetone) H: 9.79 (9.70) N: 4.28 (4.49) 1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine hydrochloride C19H29NO3; C2H2O4 149-150°C C: 61.16 (61.60) B 1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine hydrochloride C19H29NO3; C2H2O4 149-150°C C: 61.16 (61.60) B 1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine hydrochloride C19H29NO3; C2H2O4 C: 61.16 (61.60) B 1-(5-phenoxypentyl)-1-(5-phenoxypentyl)-		11	C ₁₇ H ₂₆ N ₂ O ₂ ; C ₂ H ₂ O ₄	186-188°C	C: 59.78 (59.99)	В
1-acetyl-4-(5-phenoxypentyl)-piperazine hydrogen oxalate 12		1		(absolute	H: 7.47 (7.42)	
12 C ₁₈ H ₂₉ NO; 1.05 C ₂ H ₂ O ₄ 154-155°C (absolute chanol) H: 8.61 (8.47) N: 3.66 (3.79)			O · (CH ₂)5·N NCOCH ₁ (COOH) ₂	ethanol)	N: 7.35 (7.36)	
12 C ₁₈ H ₂₉ NO; 1.05 C ₂ H ₂ O ₄ 154-155°C (absolute chanol) H: 8.61 (8.47) N: 3.66 (3.79)			1-acetyl-4-(5-phenoxypentyl)-piperazine			
12		1				
(absolute ethanol) (absolute ethanol) (b) 3.66 (3.79) 1.05 (COOH)2 1-(5-phenoxypentyl)-3,5-trans-directhyl-piperidine hydrogen oxalate 13 C18H29NO; C2H2O4 (isopropyl H: 8.64 (8.55) N: 3.63 (3.83) CH3 1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine hydrogen oxalate 14 C18H29NO; HCl CH3 1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine hydrogen oxalate 14 C18H29NO; HCl CH3 HCl (acetone) H: 8.61 (8.47) N: 3.66 (3.79) H: 8.66 (3.79) B H: 8.64 (8.55) N: 3.63 (3.83) B H: 8.64 (8.55) N: 3.63 (3.83) B H: 8.61 (6.47) N: 3.66 (3.79) B H: 8.61 (8.47) N: 3.66 (3.79) H: 8.61 (8.47) N: 3.66 (3.79) B H: 8.62 (65.73) B H: 8.64 (8.55) N: 3.63 (3.83) B H: 8.64 (8.55) N: 3.63 (3		12	 	154-155°C	C: 65.16 (65.25)	В
1-(5-phenoxypentyl)-3,5-trans-diracthyl-piperidine hydrogen oxalate 13		Ĭ		(absolute	H: 8.61 (8.47)	
1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine hydrogen oxalate 13		Į.	CH ₃	ethanol)	N: 3.66 (3.79)	٠.
1-(5-phenoxypentyl)-3,5-trans-dimethyl- piperidine hydrogen oxalate 13			O-(CH ₂) ₅ N 1.05 (COOH) ₂		ä	·
Diperidine hydrogen oxalate 154-155°C C: 65.62 (65.73) B			сн,			
13		Ì	1-(5-phenoxypentyl)-3,5-trans-dimethyl-			
(isopropyl alcohol) H: 8.64 (8.55) N: 3.63 (3.83) 1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine hydrogen oxalate 14 C ₁₈ H ₂₉ NO; HCl CH ₃ 1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine hydrochloride 15 C ₁₉ H ₂₉ NO ₃ ; C ₂ H ₂ O ₄ 149-150°C (absolute ethanol) (isopropyl alcohol) N: 3.63 (3.83) B H: 8.64 (8.55) N: 3.63 (3.83) B (acetone) H: 9.79 (9.70) N: 4.28 (4.49) B (absolute ethanol) N: 3.40 (3.42)			piperidine hydrogen oxalate			
CH ₃ alcohol) N: 3.63 (3.83) -O-(CH ₂) ₅ N (COOH) ₂ -(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine hydrogen oxalate 14 C ₁₈ H ₂₉ NO; HCl 135-136°C (acetone) H: 9.79 (9.70) -O-(CH ₂) ₅ N HCl (acetone) N: 4.28 (4.49) -O-(CH ₂) ₅ N HCl (acetone) H: 9.79 (9.70) -O-(CH ₂) ₅ N HCl (acetone) N: 4.28 (4.49) -O-(CH ₂) ₅ N C ₂ H ₂ O ₄ 149-150°C C: 61.16 (61.60) B -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ ethanol) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) (acetone) N: 3.40 (3.42) -O-(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ (acetone) (13	C ₁₈ H ₂₉ NO; C ₂ H ₂ O ₄		1	В
CCOOH)2 CH3 CCOOH)2 CH3 CCOOH)2 CH3 CCOOH)2 CH3 C C C C C C C C C			CH		1	ı
1-(5-phenoxypentyl)-3,5-cis-dimethyl- piperidine hydrogen oxalate 14				alcohol)	N: 3.63 (3.83)	ł
1-(5-phenoxypentyl)-3,5-cis-dimethyl- piperidine hydrogen oxalate 14		٠.	O-(CH ₂) ₅ N			1
piperidine hydrogen oxalate 14			CH ₃		ST.	1
14 C ₁₈ H ₂₉ NO; HCl CH ₃ I-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine hydrochloride 15 C ₁₉ H ₂₉ NO ₃ ; C ₂ H ₂ O ₄ CH ₂ O(CH ₂) ₅ N O(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ 4-carboethoxy-1-(5-phenoxypentyl)-			1-(5-phenoxypentyl)-3,5-cis-dimethyl-			
(acetone) H: 9.79 (9.70) N: 4.28 (4.49) I-(5-phenoxypentyl)-2,6-cis-dimethyl- piperidine hydrochloride C ₁₉ H ₂₉ NO ₃ ; C ₂ H ₂ O ₄ (absolute H: 9.79 (9.70) N: 4.28 (4.49) I-(5-phenoxypentyl)-2,6-cis-dimethyl- piperidine hydrochloride (absolute H: 7.76 (7.63) N: 3.40 (3.42) A-carboethoxy-1-(5-phenoxypentyl)-			piperidine hydrogen oxalate	·		
N: 4.28 (4.49) CH ₃		14	C ₁₈ H ₂₉ NO; HCl	135-136℃	C: 69.18 (69.32)	В
I-(S-phenoxypentyl)-2,6-cis-dimethyl-piperidine hydrochloride IS C ₁₉ H ₂₉ NO ₃ ; C ₂ H ₂ O ₄ 149-150°C C: 61.16 (61.60) B (absolute H: 7.76 (7.63) Proceeding (COC ₂ H ₅ (COOH) ₂ (COCH ₂) (CCH ₂) (CCCH ₂) (CCCCH ₂) (CCCH ₂) (CCCCH ₂) (CCCCH ₂) (CCCCH ₂) (CC			·	(acctone)	Н: 9.79 (9.70)	
1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine hydrochloride 15			CH ₃	•	N: 4.28 (4.49)	
1-(5-phenoxypentyl)-2,6-cis-dimethyl- piperidine hydrochloride 15			-0-(CH ₂) ₅ N BCI			4
Diperidine hydrochloride 149-150°C C: 61.16 (61.60) B			CH ₃			
15 C ₁₉ H ₂₉ NO ₃ ; C ₂ H ₂ O ₄ 149-150°C C: 61.16 (61.60) B (absolute ethanol) H: 7.76 (7.63) N: 3.40 (3.42) 4-carboethoxy-1-(5-phenoxypentyl)-	ı		1-(5-phenoxypentyl)-2,6-cis-dimethyl-			1
(absolute ethanol) (absolute ethanol) H: 7.76 (7.63) N: 3.40 (3.42) 4-carboethoxy-1-(5-phenoxypentyl)-			piperidine hydrochloride			
O:(CH ₂) ₅ N COC ₂ H ₅ (COOH) ₂ ethanol) N: 3.40 (3.42) 4-carboethoxy-1-(5-phenoxypentyl)-		15	C19H29NO3; C2H2O4	149-150°C	C: 61.16 (61.60)	В
4-carboethoxy-1-(5-phenoxypentyl)-	Į			(absolute	H: 7.76 (7.63)	1
			O-(CH ₂) ₅ N — COC ₂ H ₅ (СООИ);	ethanol)	N: 3,40 (3,42)	
piperidine hydrogen oxalate			4-carboethoxy-1-(5-phenoxypentyl)-)	1
piper table trydrogen oxalate	l		piperidine hydrogen oxalate			

16	C ₁₉ H ₂₉ NO ₃ ; C ₂ H ₂ O ₄	117-118℃	C: 61.54 (61.60)	В
		(isopropyl alcohol)	H: 7.87 (7.63)	
	COOC 2H6		N: 3.29 (3.42)	
	-O-(CH ₂) г N (соон) 2			
	3-carboethoxy-1-(5-phenoxypentyl)-piperidine			
	hydrogen oxalate			
17	C ₁₆ H ₂₃ NO; C ₂ H ₂ O ₄	177-179℃	C: 64.19 (64.46)	В
		(methanol)	H: 7.49 (7.51)	1
	O-(CH ₂) ₆ 'N (соон) ₃		N: 4.25 (4.18)	
	1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine			
	hydrogen oxalate			
18	C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ ; 0.2 H ₂ O	145-147°C	C: 54.89 (54.89)	С
		(absolute ethanol)	H: 6.68 (6,61)	
	O_2N- (COOH) ₂		N: 7.41 (7.53)	!
	O ₂ N-(CH ₂) ₆ N 0.2 H ₂ O			
	1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine hydrogen			
	oxalate	-		
19	C ₁₅ H ₂₂ CINO; C ₂ H ₂ O ₄	139-141℃	C: 57.00 (57.06)	С
		(absolute ethanol)	H: 6.63 (6.76)	
	CI-(CH ₂) ₁ -N (COOH) ₂		N: 3.79 (3.91)	1
i			Cl: 10.24 (9.91)]
	1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine hydrogen			
	oxalate	·		
20	C ₁₆ H ₂₅ NO ₂ ; C ₂ H ₂ O ₄	115-116℃	C: 61.22 (61.17)	C
	·	(absolute ethanol)	H: 7.72 (7.70)	
	$H_3 CO \longrightarrow O-(CH_2)_6-N $ (COOH) ₂	,	N: 4.03 (3.96)	
	1-[5-(4-methoxyphenoxy)-pentyl]-pyrrolidine			
	hydrogen oxalate			ļ
21	C ₁₆ H ₂₅ NO; C ₂ H ₂ O ₄	138-140°C	C: 64.05 (64.07)	C
	_	(absolute ethanol)	H: 8.00 (8.07)	
	H_3 C- $COOR_2$		N: 4.10 (4.15)	
	1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine hydrogen			
	oxalate			

	22	C ₁₆ H ₂₂ N ₂ O; 1.1 C ₂ H ₂ O ₄	129-130°C	C:'61.24 (61.16)	С
5			(absolute ethanol)	H: 6.81 (6.82)	
-		NC O-(CH ₂) ₆ N 1.1 (COOH) ₂		N: 7.95 (7.84)	
		1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine hydrogen			
10		oxalate			·
}	23	C19H25NO; C2H2O4	166-167℃	C: 67.42 (67.54)	С
•			(methanol)	H: 7.26 (7.29)	
15		O-(CH ₂) ₅ -N (COOH) ₂		N: 3.66 (3.75)	
		1-[5-(2-naphthyloxy)-pentyl]-pyrrolidine hydrogen			
		oxalate			
20	24	C ₁₉ H ₂₅ NO; 1.25 C ₂ H ₂ O ₄	160-163°C	C: 65.12 (65.22)	С
			(methanol)	H: 7.17 (7.00)	
25		O-(CH ₂) ₆ -N 1.25 (COOH) ₂	_	N: 3.52 (3.54)	
			,	·	
		1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine hydrogen			
30		oxalate			
	25	C ₁₅ H ₂₂ CINO, C ₂ H ₂ O ₄	131-132℃	C: 56.94 (57.06)	С
		_	(absolute ethanol)	H: 6.67 (6.76)	
				N: 3.74 (3.91)	
35		$ \begin{array}{c} $		Cl: 9.64 (9.91)	
		1-[5-(3-chlorophenoxy)-pentyl]-pyrrolidine hydrogen	00		
		oxalate			
40	26	C ₂₁ H ₂₇ NO; C ₂ H ₂ O ₄	, 189-190°C	C: 69.16 (69.15)	С
			(methanol)	H; 7.39 (7.32)	}
45			,	N: 3.39 (3.51)	
		1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine hydrogen			
		oxalate .			

	27	C ₁₉ H ₂₉ NO; C ₂ H ₂ O ₄	131-132°C	C: 66.73 (66.82)	С
5	,	1	(absolute ethanol)	Н: 8.37 (8.28)	
-		(COOH) ₂		N: 3.68 (3.71)	
		O-(CH ₂) ₅ N (COOH) ₂			
10	 ·	1-{5-[2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-			
		pyrrolidine hydrogen oxalate			
	28	C ₂₁ H ₂₇ NO; 1.1 C ₂ H ₂ O ₄	155-157°C	C: 68.40 (68.22)	С
_		•	(absolute ethanol)	H: 7.04 (7.21)	
15		O-(CH ₂) ₆ -N 1.1 (COOH) ₂		N: 3.45 (3.43)	
		1 (Ch ₂) ₆ (Ch ₂) ₆ (Ch ₂)			
20		\(\)			
		1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine hydrogen			
		oxalate			
25	29	C ₁₅ H ₂₁ NO; C ₂ H ₂ O ₄	140-141°C	C: 63.45 (63.54)	В
			(absolute ethanol)	H: 7.26 (7.21)	
		$O-(CH_2)_6N$ (COOH) ₂		N: 4.26 (4.36)	
30		1-(5-phenoxypentyl)-2,5-dihydropyrrole hydrogen			
		oxalate			
	30	C ₁₉ H ₂₉ NO; C ₂ H ₂ O ₄	148-149°C	C: 66.99 (66.82)	С
35			(absolute ethanol)	H: 8.47 (8.28)	
			•	N: 3.72 (3.71)	
		O-(CH ₂) ₆ -N (COOH) ₂			
40				•	
		1-{5-[1-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-			
		pyrrolidine hydrogen oxalate			
	31	C ₁₄ H ₂₁ NO; C ₂ H ₂ O ₄	143-144℃	C: 62.25 (62.12)	С
45			(absolute ethanol)	H: 7.46 (7.49)	
		(COOH)		N: 4.49 (4.53).	
		O-(CH ₂) ₄ N (COOH) ₂			
50		1-(4-phenoxybutyl)-pyrrolidine hydrogen oxalate			
			· - ·		

1-(3-phenoxypropyl)-pyrrolidine hydrogen oxalate 36 C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ 130-131°C C: 55.30 (55.43) C (absolute H: 6.55 (6.57) ethanol) N: 7.49 (7.60) 1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine hydrogen oxalate 37 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ 149-150°C C: 59.52 (59.81) C (absolute H: 7.12 (7.09) ethanol) N: 4.05 (4.10)					·	
1.1 (COOH)2		32	C ₁₆ H ₂₅ NO; 1.1 C ₂ H ₂ O ₄	146-147°C	C: 63.06 (63.10)	С
10				(absolute	H: 8.03 (7.91)	
10	5		LI (COOH)	ethanol)	N: 4.32 (4.04)	
Oxalate			-0-(CH2) 6N			
Oxalate	•		I-(6-phenoxyhexyl)-pyrrolidine hydrogen			
15	10	1				
15 S-(CH ₂) ₅ N 1.1 (COOH) ₂ ethanol) N: 4.06 (4.02) 1-(5-phenylthiopentyl)-pyrrolidine hydrogen oxalate 114-116°C (ahsolute H: 7.16 (7.12) 20 S-(CH ₂) ₄ N (COOH) ₂ ethanol) N: 4.16 (4.30) 21 S-(CH ₂) ₄ N (COOH) ₂ (ahsolute H: 7.16 (7.12) 22 1-(4-phenylthiobutyl)-pyrrolidine hydrogen oxalate (COOH) ₂ (ahsolute H: 7.14 (7.17) 23 1-(3-phenoxypropyl)-pyrrolidine hydrogen oxalate (COOH) ₂ (ahsolute H: 7.14 (7.17) 24 1-(3-phenoxypropyl)-pyrrolidine hydrogen oxalate (COOH) ₂ (absolute H: 6.55 (6.57) 25 1-(5-(3-nitrophenoxy)-pentyl]-pyrrolidine (COOH) ₂ (absolute H: 6.55 (6.57) 26 1-(5-(3-nitrophenoxy)-pentyl]-pyrrolidine (COOH) ₂ (absolute H: 7.12 (7.09) 27 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ (COOH) ₂ (absolute H: 7.12 (7.09) 28 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 29 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 20 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 20 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 20 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 21 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 22 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 23 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 24 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 25 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 26 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 27 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 28 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 29 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 20 1-(5-(4-fluorophenoxy)-pentyl]-pyrrolidine (absolute H: 7.12 (7.09) 20 1		33	C ₁₅ H ₂₃ NS: 1.1 C ₂ H ₂ O ₄	150-152°C	C: 59.52 (59.29)	С
15 S-(CH ₂) ₅ N I. (COON ₂ 1-(5-phenylthiopentyl)-pytrolidine hydrogen oxalate 34			,	(absolute	H: 7.44 (7.29)	
1-(5-phenylthiopentyl)-pyrrolidine hydrogen oxalate			(COOH)	ethanol)	N: 4.06 (4.02)	
Oxalate 34 C ₁₄ H ₂₁ NS; C ₂ H ₂ O ₄ 114-116°C (absolute H: 7.16 (7.12) ethanol) N: 4.16 (4.30) S: 9.79 (9.85) C	15		S-(CH ₂)5N		i	į
Oxalate 34 C ₁₄ H ₂₁ NS; C ₂ H ₂ O ₄ 114-116°C (absolute H: 7.16 (7.12) ethanol) N: 4.16 (4.30) S: 9.79 (9.85) C	•	1	1-(5-phenylthiopentyl)-pyrrolidine hydrogen			1
(absolute H: 7.16 (7.12) S: -(CH ₂) ₄ N (COOH) ₂ ethanol) 1-(4-phenylthiobutyl)-pyrrolidine hydrogen oxalate 35 C ₁₃ H ₁₉ NO; C ₂ H ₂ O ₄ 169-170°C C: 60.98 (61.00) C (absolute H: 7.14 (7.17) ethanol) N: 4.64 (4.74) 1-(3-phenoxypropyl)-pyrrolidine hydrogen oxalate 36 C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ 130-131°C (absolute H: 6.55 (6.57) (absolute H: 6.55 (6.57) ethanol) N: 7.49 (7.60) 40 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ 149-150°C (absolute H: 7.12 (7.09) F O ·(CH ₂) ₅ N (COOH) ₂ ethanol) N: 4.05 (4.10)						
25 26 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		34	C ₁₄ H ₂₁ NS; C ₂ H ₂ O ₄	114-116°C	C: 59.24 (59.05)	C
1-(4-phenylthiobutyl)-pyrrolidine hydrogen oxalate 169-170°C C: 60.98 (61.00) C	20		·	(absolute	Н: 7.16 (7.12)	
1-(4-phenylthiobutyl)-pyrrolidine hydrogen oxalate 169-170°C C: 60.98 (61.00) C			(COOH)	ethanol)	N: 4.16 (4.30)	
Oxalate 169-170°C C: 60.98 (61.00) C			-5-(Ch2)4N		S: 9.79 (9.85)	[
Oxalate 169-170°C C: 60.98 (61.00) C	25		1-(4-phenylthiobutyl)-pyrrolidine hydrogen		·	i
(absolute ethanol) 1-(3-phenoxypropyl)-pyrrolidine hydrogen oxalate 36			oxalate			
36 C15H22N2O3; C2H2O4 13O-131°C C: 55.30 (55.43) C 36 C2N C15H22N2O3; C2H2O4 COOH)2 C: 55.30 (55.43) C 40 C15H22FNO; C2H2O4 COOH)2 C: 55.30 (55.43) C 45 37 C15H22FNO; C2H2O4 COOH)2 C: 59.52 (59.81) C 46 C15H22FNO; C2H2O4 C: 59.52 (59.81) C 47 C15H22FNO; C2H2O4 C: 59.52 (59.81) C 48 C15H22FNO; C2H2O4 C: 59.52 (59.81) C 49 C15H22FNO; C2H2O4 C: 59.52 (59.81) C 40 C15H22FNO; C2H2O4 C: 59.52		35	C ₁₃ H ₁₉ NO; C ₂ H ₂ O ₄	169-170°C	C: 60.98 (61.00)	С
1-(3-phenoxypropyl)-pyrrolidine hydrogen oxalate 36				(absolute	H: 7.14 (7.17)	Ī
1-(3-phenoxypropyl)-pyrrolidine hydrogen oxalate 36 C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ 130-131°C (2: 55.30 (55.43) C (absolute H: 6.55 (6.57) (2.55.30 (55.43) N: 7.49 (7.60) 1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine hydrogen oxalate 37 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ 149-150°C (2: 59.52 (59.81) C (absolute H: 7.12 (7.09) N: 4.05 (4.10) 50 1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine	30		O-(CHOLN) (COOH)2	ethanol)	N: 4.64 (4.74)	
35 C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ 130-131°C C: 55.30 (55.43) C (absolute H: 6.55 (6.57) N: 7.49 (7.60) 1-[5-(3-nitrophenoxy)-pentyl]-pyπolidine hydrogen oxalate 37 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ 149-150°C C: 59.52 (59.81) C (absolute H: 7.12 (7.09) N: 4.05 (4.10)						Ī
35 C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ (absolute ethanol) 1-{5-(3-nitrophenoxy)-pentyl}-pyrrolidine hydrogen oxalate T ₁ -{5-(3-pyro)} (COOH) ₂ 37 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ C: 55.30 (55.43) C H: 6.55 (6.57) N: 7.49 (7.60) C: 59.52 (59.81) C (absolute ethanol) C: 55.30 (55.43) C H: 6.55 (6.57) N: 7.49 (7.60) N: 7.49 (7.60) C: 59.52 (59.81) C (absolute ethanol) N: 4.05 (4.10)			1-(3-phenoxypropyl)-pyrrolidine hydrogen		·	
36 C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ (absolute ethanol) H: 6.55 (6.57) N: 7.49 (7.60) 1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine hydrogen oxalate 37 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ (absolute ethanol) C: 59.52 (59.81) C (absolute H: 7.12 (7.09) Project (COOH) ₂ (absolute H: 7.12 (7.09) N: 4.05 (4.10)	05		oxalate			
O ₂ N (COOH) ₂ ethanol) N: 7.49 (7.60) I-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine hydrogen oxalate 37 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ 149-150°C C: 59.52 (59.81) C (absolute H: 7.12 (7.09) N: 4.05 (4.10) 50 I-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine	JD	36	C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄	•	'	С
Coolfy C			O.N.			1
I-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine hydrogen oxalate 149-150°C C: 59.52 (59.81) C			V2m	ethanol)	N: 7.49 (7.60)	l
hydrogen oxalate 37	40		O-(CH ₂)5N (COOH)2	•		
hydrogen oxalate 37						1
37 C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ 149-150°C C: 59.52 (59.81) C (absolute H: 7.12 (7.09) N: 4.05 (4.10) 50 1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine						I
(absolute H: 7.12 (7.09) N: 4.05 (4.10) 1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine				140 15000	0.50505000	
F—O·(CH ₂) ₅ N (COOH) ₂ ethanol) N: 4.05 (4.10) 1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine	45	37	C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄			
50 I-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine						. [
1-(5-(4-indotophenoxy)-pentyr)-pyrioname			F-(COOH) ₂ (COOH) ₂	einanoi)	N: 4.05 (4.10)	
hydrogen oxalate	50		1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine			1
			hydrogen oxalate			

38	C ₁₇ H ₂₆ N ₂ O ₃ ; C ₂ H ₂ O ₄	148-149°C	C: 57.32 (57.55)	С
	•	(absolute ethanol)	H: 7.19 (7.12)	
	,CH₅		N: 6.89 (7.07)	
	O_2N O - (CH_2) \in N $(COOH)_2$		2.1. diay (v.av)	
	1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine			
	hydrogen oxalate			
39	C17H25NO2; C2H2O4	130-134°C	C: 62.43 (62.45)	D
	$CH_3 - C$ $O \cdot (CH_2)_4 \cdot N$ (COOH) ₂	(according calabion)	N: 3.75 (3.83)	·
	1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine hydrogen			
	oxalate			
40	C ₁₅ H ₂₄ N ₂ O; 2.1 C ₂ H ₂ O ₄	120-122°C	C: 52.49 (52.72)	E ₁
		(absolute ethanol)	H: 6.74 (6.50)	
	H ₂ N-(COOH) ₂		N: 6.32 (6.40)	
	1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine		·	
			•	
41	C ₁₆ H ₂₂ N ₂ O; C ₂ H ₂ O ₄	119-120℃	C: 61.95 (62.05)	С
		(absolute ethanol)	H: 6.88 (6.94)	•
	иç	,		
	$-0-(CH_2)_{\mathfrak{g}}-N \qquad (COOH)_2$		74. 0.00 (0.04)	
	1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine hydrogen			
	oxalate			
42	C ₁₃ H ₂₀ N ₂ O ₃ ; C ₂ H ₂ O ₄	160-161°C	C: 52.46 (52.63)	F
		(absolute ethanol/	H: 6.49 (6.48)	
	O ₂ N-CH ₂) ₃ -N CH ₂ CH ₃ (COOH) ₂	methanol	N: 8.10 (8.12)	
	N-{3-(4-nitrophenoxy)-propyl}-diethylamine			
				, ,
	40	O ₂ N—O-(CH ₂) ₆ -N (COOH) ₂ 1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine hydrogen oxalate C17H25NO2; C2H2O4 CH ₂ —C—O-(CH ₂) ₆ -N (COOH) ₂ 1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine hydrogen oxalate C15H24N2O; 2.1 C2H2O4 H ₂ N—O-(CH ₂) ₆ -N 2.1 (COOH) ₂ 1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine di-(hydrogen oxalate) C16H22N2O; C2H2O4 NC O-(CH ₂) ₆ -N (COOH) ₂ 1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine hydrogen oxalate C13H20N2O3; C2H2O4 CH ₂ CH ₃	CH ₃ O ₂ N—O-(CH ₂) ₆ ·N (COOH) ₂ 1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine hydrogen oxalate 130 C _{17H25} NO ₂ ; C ₂ H ₂ O ₄ 130-134°C (absolute ethanol) CH ₃ C (absolute ethanol) CH ₄ C (absolute ethanol) 1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine hydrogen oxalate 40 C ₁₅ H ₂ 4N ₂ O; 2.1 C ₂ H ₂ O ₄ 1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine di-(hydrogen oxalate) 1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine di-(hydrogen oxalate) 1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine hydrogen oxalate 41 C ₁₃ H ₂ ON ₂ O ₃ ; C ₂ H ₂ O ₄ 119-120°C (absolute ethanol) NC (absolute ethanol) 1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine hydrogen oxalate 42 C ₁₃ H ₂ ON ₂ O ₃ ; C ₂ H ₂ O ₄ CH ₂ CH ₃ (COOH) ₂ CH ₂ CH ₃ (COOH) ₂ 1:1)	CH ₈

·	43	C ₁₄ H ₂₀ N ₂ O; C ₂ H ₂ O ₄	148-150°C	C: 59.40 (59.62)	F
_			(absolute ethanol)	H: 6.82 (6.88)	
5		CH ₂ CH ₃		N: 8.60 (8.69)	
		NC-(CH ₂) ₃ -N (COOH) ₂			
		СН2СН3			·]
		N-[3-(4-cyanophenoxy)-propyl]-diethylamine			
10		hydrogen oxalate			
	44	C22H27NO2; C2H2O4	141-142°C	C: 67.17 (67.43)	D
		•	(absolute ethanol)	H: 6.80 (6.84)	
15		$ \begin{array}{c c} & C \\ & O \\ & $		N: 3.18 (3.28)	
		1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine	'		
		hydrogen oxalate	'		
20	45	C23H29NO2; C2H2O4	177-178°C	C: 67.77 (68.01)	D
. [(absolute ethanol)	Н: 7.09 (7.08)	
i		CH ₂ ·C-(CH ₂) ₆ -N		N: 3.26 (3.17)	
25		(COOH) ²			
i		1-{5-[4-(phenylacetyl)-phenoxy]-pentyl}-pyrrolidine			
		hydrogen oxalate		<u>'</u>	
30	46	C ₁₅ H ₂₃ NO ₂ , 1.1 C ₂ H ₂ O ₄	108-110°C	C: 59.30 (59.30)	F
			(absolute ethanol)	H: 7.47 (7.29)	V
		C ₂ H ₆		N: 4.18 (4.02)	
		H ₂ C- C 1.1 (COOH) ₂			
35		•			
		N-[3-(4-acetylphenoxy)-propyl]-diethylamine			
		hydrogen oxalate			
	47	C ₁₇ H ₂₆ N ₂ O ₂ , C ₂ H ₂ O ₄	142-144℃	C: 59.67 (59.99)	С
40			(absolute ethanol)	H; 7.55 (7.42)	}
		$H_{0} \subset C - N - COOH_{2}$ $O - (CH_{2})_{6} - N \qquad (COOH)_{2}$		N: 7.25 (7.36)	
: 45		1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine			
40		hydrogen oxalate			

	48	C ₂₁ H ₂₇ NO ₂ ; C ₂ H ₂ O ₄	135-136℃	C: 66.49 (66.49)	D
_			(absolute ethanol)	H: 7.05 (7.04)	
5		$\bigcirc O \bigcirc O - (CH_2)_6 N \bigcirc (COOH)_2$		N: 3.24 (3.37)	
		1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine			
10		hydrogen oxalate			
	49	C ₂₂ H ₂₈ N ₂ O ₂ ; 1.1 C ₂ H ₂ O ₄	176-178℃	C: 64.56 (64.38)	E ₂
Ì			(absolute ethanol)	H: 6.89 (6.74)	Ì
15		O-(CH ₂) e N	·	N: 6.26 (6.20)	
		1.1 (СООН)₂			
		1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine			
		hydrogen oxalate			
20	50	C ₁₇ H ₂₇ NO ₂ ; C ₂ H ₂ O ₄	102-104℃	C: 61.89 (62.11)	G
			(absolute ethanol)	H: 7.94 (7.96)	·
25		H_3C CH O O $COOH_2$		N: 3.77 (3.81)	
		1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-			
1		pyrrolidine hydrogen oxalate	-		
	51	C ₁₆ H ₂₄ N ₂ O; C ₂ H ₂ O ₄	120-122°C	C: 61.56 (61.70)	н
30			(absolute ethanol)	H: 7.54 (7.48)	·
		NC CH ₂ CH ₃ (COOH) ₂ CH ₂ CH ₃		N: 7.87 (7.99)	
35 .		N-[5-(4-cyanophenoxy)-pentyl]-diethylamine			İ
		hydrogen oxalate			
	52	C ₁₇ H ₂₄ N ₂ O; C ₂ H ₂ O ₄	115-116°C	C: 62.62 (62.97)	н
			(absolute ethanol)	H: 7.20 (7.23)	
40		$NC \longrightarrow O^-(CH_2)_{6} N$ (COOH) ₂		N: 7.76 (7.73)	
		1-[5-(4-cyanophenoxy)-pentyl]-piperidine hydrogen			
45		oxalate			

	53	C ₁₄ H ₂₀ N ₂ O, C ₂ H ₂ O ₄	148-149°C	C: 59.68 (59.62)	н
5			(absolute ethanol)	H: 6.76 (6.88)	
,		$NC \leftarrow CH_3$ (COOH) ₂		N: 8.57 (8.69)	
		NC-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		N-[5-(4-cyanophenoxy)-pentyl]-dimethylamine			
10 .					
		hydrogen oxalate			
	54	C ₁₃ H ₁₈ N ₂ O; C ₂ H ₂ O ₄	124-125℃	C: 58,15 (58.43)	н
		au au	(absolute ethanol)	H: 6,30 (6.54)	.
15		NC CH ₂ CH ₃ (COOH) ₂	·	N: 8,95 (9.09)	.]
15		CH ₂ CH ₂			
7					
		N-[2-(4-cyanophenoxy)-ethyl]-diethylamine hydrogen			20
		oxalate			
20	55	C ₁₂ H ₁₆ N ₂ O; C ₂ H ₂ O ₄	166-167°C	C: 57.01 (57.14)	н
			(absolute ethanol/	H: 6.02 (6.16)	
		NC-(CH ₂) ₃ -N (COOH) ₂	methanol	N: 9.46 (9.52)	1
		CRL	1:1)		
<i>25</i>		N-[3-(4-cyanophenoxy)-propyl]-dimethylamine			1
					1
		hydrogen oxalate			
	56	C ₁₅ H ₂₂ N ₂ O; C ₂ H ₂ O ₄	143-145°C	C: 60,80 (60,70)	н
30		CH CH	(absolute ethanol)	H: 7.11 (7.19)	
		NC CH ₂ CH ₃ (COOH) ₂		N: 8.22 (8.33)	
	İ	СН-СН-	i		
		N-[4-(4-cyanophenoxy)-butyl]-diethylamine hydrogen			1
35		oxalate		•	
ļ	57	C ₁₈ H ₂₈ N ₂ O; C ₂ H ₂ O ₄	134-136°C	C: 63,38 (63,47)	н
] ."	2107074			"
	l	C.H.	(absolute ethanol)	H: 8.11 (7.99)	
40 .	ł	NC-(CH ₂) ₅ -N (COOH) ₂		N: 7.29 (7.40)	
		`C, H,			
	٠	N-[5-(4-cyanophenoxy)-pentyl]-dipropylamine			
0	}	hydrogen oxalate			
45					

					_
	58	C ₁₄ H ₁₈ N ₂ O; 1.1 C ₂ H ₂ O ₄	163-165°C	C: 58.95 (59.08)	н
			(absolute ethanol)	H: 6.23 (6.18)	Į.
5		C-(CH ₂) ₃ -N 1.1 (COOFI) ₂		N: 8.43 (8.51)	5
		0-(CH ₂); N			
	-	1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine hydrogen			ŧ
10		oxalate			
	59	C ₁₅ H ₂₀ N ₂ O; 1.05 C ₂ H ₂ O ₄	151-153℃	C: 60.62 (60.61)	н
		·	(absolute ethanol)	H: 6.66 (6.57)	j
15		NC-(CH ₂) ₃ -N 1.95 (COOH) ₂		N; 8.25 (8.27)	1
		1-[3-(4-cyanophenoxy)-propyl]-piperidine hydrogen			
		oxalate C ₁₆ H ₂₂ N ₂ O; 1.05 C ₂ H ₂ O ₄	124 12500	0.41.60.41.60	
20	60	C16H22N2O, 1.03 C2H2O4	124-125°C	C: 61.62 (61.60)	н
ļ		_	(absolute ethanol)	H: 6.94 (6.88)	
		NC-(CH ₂) ₃ -N 1.05 (COOH) ₂		N: 7.87 (7.94)	
25		N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine			
Ì		hydrogen oxalate			·
j	61	C ₁₇ H ₂₆ N ₂ O; C ₂ H ₂ O ₄	110-112℃	C: 62.90 (62,62)	н
20			(absolute ethanol)	H; 7.76 (7.74)	1
30		CH ₂ CH ₃		N: 7.61 (7.69)	
		NC (COOH) ₂ CH ₂ CH ₃	,		[
		N-[6-(4-cyanophenoxy)-hexyl]-diethylamine			
35		hydrogen oxalate		·	i
	62	C ₁₆ H ₂ 4N ₂ O; C ₂ H ₂ O ₄	127-128℃	C: 61.57 (61.70)	н
	02	010-2420, 02204	(absolute ethanol)	H: 7.57 (7.48)	**
		C₃H₂	(absolute cularior)	N: 7.91 (7.99)	
40		NC-(CH ₂) ₃ -N (COOH) ₂		N. 7.24 (7.22)	
	. 1	N-[3-(4-cyanophenoxy)-propyl]-dipropylamine			
	-	hydrogen oxalate			
45	63	C ₁ 5H ₂ 5NO ₂ ; C ₂ H ₂ O ₄ ; 0.5 H ₂ O	33-36°C	C: 58.15 (58.27)	G
		CH (COOR	(isopropyl alcohol)	H: 8.15 (8.05)	}
		H ₃ C. CH-CCH ₂) ₃ N, C ₂ H ₅ (COOH) ₂		N: 4.21 (4.00)	
50		HO' C ₂ H ₆ 0.5 H ₂ O			
		N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-	}		
		diethylamine hydrogen oxalate hemihydrate			

	64	C ₁₅ H ₂₄ N ₂ O ₂ ; C ₂ H ₂ O ₄	99-100°C	C: 57.26 (57.61)	1
			(absolute ethanol)	H: 7.47 (7.39)	
5		H_2G C	*	N: 7.72 (7.90)	
		4'-(3-diethylaminopropoxy)-acetophenone-oxime	·		
10		hydrogen oxalate			
	65	C ₁₆ H ₂₃ NO ₂ ; C ₂ H ₂ O ₄	159-160°C	C: 61.18 (61.52)	К
-			(absolute ethanol)	H: 7.11 (7.17)	
15		H ² C-C-(CH ²) ² -N (COOH) ³		N: 3.96 (3.99)	
		1-[3-(4-acetylphenoxy)-propyl]-piperidine hydrogen			
		oxalate			
20	66	C17H25NO2; C2H2O4	143-144°C	C: 62.11 (62.45)	K
			(absolute ethanol).	H: 7.41 (7.45)	
-		СН		N: 3.79 (3.83)	
25		H ₂ C-C (CH ₂) ₂ -N (COOH) ₂		·	
		1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine			
		hydrogen oxalate			
30	67	C ₁₈ H ₂ 7NO ₂ ; C ₂ H ₂ O ₄	171-172°C	C: 63.06 (63.31)	к
			(absolute ethanol)	H: 7.44 (7.70)	
		CH		N: 3.64 (3.69)	
35		H ₃ C-C-C-(CH ₂) ₃ -N (COOH) ₂			
		1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl-		•]
		piperidine hydrogen oxalate			
40	68	C17H25NO2; C2H2O4	160-161°C	C: 62.47 (62.45)	K
			(absolute ethanol)	Н: 7.46 (7.45)	1 1
45		H ₃ C-C-C-(CH ₂) ₃ -N -CH ₃ (COOH) ₂		N: 3.77 (3.83)	
		1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine			
		hydrogen oxalate			

69	C ₁₇ H ₂₅ NO ₂ ; C ₂ H ₂ O ₄	148-149°C	C: 62.54 (62.45)	L
	·	(absolute ethanol)	H: 7.51 (7.45)	
	C_2H_4-C $O-(CH_2)_5$ N $(COOH)_2$		N: 3.79 (3.83)	
	1-[3-(4-propionylphenoxy)-propyl]-piperidine	·		
	hydrogen oxalate	7	•	<u> </u>
70	C ₁₈ H ₂₇ NO ₂ ; C ₂ H ₂ O ₄	174-175°C	C: 63.22 (63.31)	K
		(absolute ethanol)	H: 7.60 (7.70)	1
	CH ₃		N: 3.64 (3.69)	
	H ₂ C- C- C- C- C- C- C- C- C- C- C- C- C-			
	1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-			
	piperidine hydrogen oxalate		•	
71	C ₁₅ H ₂ 1NO ₂ ; C ₂ H ₂ O ₄	152-153°C	C: 60.23 (60.52)	L
	·	(absolute ethanol)	H: 6.81 (6.87)	
	H-C-(CH ₂) ₃ -N (COOH) ₂		N:.4.15 (4.15)	
	1-[3-(4-formylphenoxy)-propyl]-piperidine hydrogen			
	oxalate			
72	C ₁₈ H ₂₇ NO ₂ ; C ₂ H ₂ O ₄	121-122℃	C: 63.02 (63.31)	L
		(absolute ethanol)	H: 7.73 (7.70)	
	H ₃ C, CH-C-C-C-C-CH ₂) ₃ -N		N: 3.66 (3.69)	
	(COOH) ₂			
	1-[3-(4-isobutyrylphenoxy)-propyl]-piperidine			1
	hydrogen oxalate			<u>. </u>
73	C ₁₆ H ₂₅ NO ₂ ; 1.5 C ₂ H ₂ O ₄	118-120°C	C: 57.27 (57.28)	L
	C.H.	(absolute ethanol)	H: 7.00 (7.08)	1
	C ₂ H ₆ - C CH ₂) ₃ -N C ₂ H ₆ C ₂ H ₆		N: 3.47 (3.52)	
	N-[3-(4-propionylphenoxy)-propyl]-diethylamine			
	hydrogen oxalate			

	74	C ₁₈ H ₂ 7NO ₂ ; C ₂ H ₂ O ₄	138-139°C	C: 63.09 (63.31)	L
5 ·			(absolute ethanol)	H: 7.78 (7.70)	
		$C_3H_7 - C$ $O-(CH_2)_3N$ $(COOH)_2$		N: 3.75 (3,69)	
10		1-[3-(4-butyrylphenoxy)-propyl]-piperidine hydrogen			
10		oxalate			
-	75	C ₁₆ H ₂₁ NO ₂ ; 1.1 C ₂ H ₂ O ₄	143-144℃	C: 61.21 (61.00)	к
		·	(absolute ethanol)	H: 6.25 (6.52)	
15		H ₂ C-C-C-CH ₂) ₃ -N		N: 4.00 (3.91)	
		1.1 (COOH)₂			
	ł	1-[3-(4-acetylphenoxy)-propyl]-1,2,3,6-			1 1
20		tetrahydropyridine hydrogen oxalate			

[0065]. Compounds 1 to 75 are prepared according to the following procedures:

METHOD A:

[0066] A solution of 1-bromo-5-phenoxypentane (1.4 to 3.5 mmol) in ten equivalents of the suitable secondary amine was heated to reflux temperature with stirring for 48 hours (compds. 1, 3 and 4), 24 hours (compd. 2) or 4 hours (compd. 5). After cooling, the excess base was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. The remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. The precipitate formed was washed with diethyl ether and recrystallised from absolute ethanol.

METHOD B:

[0067] A solution of 1-bromo-5-phenoxypentane (0.9 to 1.7 mmol) and an excess of the suitable secondary amine (2.3 to 10 equivalents) in 10 ml absolute ethanol was heated to reflux temperature with stirring for 48 hours (compd. 6) or 24 hours (compds. 7, 8, 9, 10, 11, 12&13, 14, 15, 16, 17 and 29). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. The cis and trans isomers 12 and 13 were separated by column chromatography on silica gel eluting with a solvent mixture of petroleum spirit (bp 60-80°C), diethyl ether and triethylamine in the ratio 66:33:1, and the eluent was removed under reduced pressure to leave an oil. Compounds 14 and 16 were purified by column chromatography on silica gel eluting with diethyl ether and triethylamine in the ratio 99:1, and the eluent was removed under reduced pressure to leave an oil. The oil was converted to oxalate salt (compds. 6, 7, 8, 9, 11, 12, 13, 15, 16, 17 and 29) by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents of oxalic acid in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from isopropyl alcohol (compds. 6, 7, 10, 13 and 16), absolute ethanol (compds. 8, 9, 11, 12, 15 and 29) or methanol (compd. 17). The oil was converted to hydrochloride salt (compd. 14) by adding 2N HCl. The precipitate was formed in a mixture of chloroform and diethyl ether (1:1) and recrystallised from acetone.

METHOD C:

A solution of the suitable α-bromo-ω-aryloxy alkane (0.4 to 1.4 mmol) or ω-bromoalkyl phenyl sulphide (1 mmol, compds. 33 and 34) and an excess of pyrrolidine (10 to 15 equivalents) or 3-methylpiperidine (10 equivalents,

compd. 38) in 10 ml absolute ethanol was heated to reflux temperature with stirring for 24 hours or 16 hours (compd. 47). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. The remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from absolute ethanol.

METHOD D:

10

[0069] A solution of the suitable 4'-(5-bromopentoxy)phenyl ketone (0.7 to 1 mmol, compds. 39, 44 and 45) or 1bromo, 5-(4-phenoxyphenoxy)pentane (0.6 mmol, compd. 48) and an excess of pyrrolidine (10 to 15 equivalents) in 10 ml absolute ethanol was heated to reflux temperature with stirring for 16 hours (compds. 39, 44 and 48) or 24 hours (compd. 45). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with chloroform (compds. 39, 45 and 48) or dichloromethane (compd. 44), the organic extracts dried over magnesium sulphate, filtered and concentrated under reduced pressure. The remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. The precipitate was washed with diethyl ether and recrystallised from absolute ethanol (recrystallised twice from absolute ethanol in the case of compd. 39).

20

25

30

35

METHOD E:

[0070]

- 1. The oxalate 18 was prepared according to method C. A solution of compound 18 (0.57 mmol) in 10 ml methanol and 10 ml absolute ethanol was placed with 100 mg of palladium (5%) on carbon catalyst in a two-neck round-bottom flask fitted with a balloon filled with hydrogen. The mixture was stirred vigorously at room temperature and the flask was purged of air and filled with hydrogen. After 3 hours, the catalyst was filtered off on celite and the solvent removed under reduced pressure. The residual solid was converted to oxalate salt by dissolving in methanol and adding a solution of oxalic acid (2 equivalents) in absolute ethanol. Diethyl ether was added to form a precipitate. The product was recrystallised from absolute ethanol.
- 2. To a solution of compound 40 (0.35 mmol) in pyridine vigorously stirred at 0°C was added dropwise a slight excess of benzoyl chloride (0.4 mmol). The stirring was allowed to continue 20 minutes after the end of the addition after which the mixture was placed in the refrigerator overnight (16 hours). The solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with chloroform, the organic extracts dried over magnesium sulphate, filtered and concentrated under reduced pressure. The remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. The precipitate was dissolved in methanol, filtered, and concentrated under reduced pressure the solid was recrystallised from absolute ethanol

40

METHOD F:

[0071] In a three-neck flask kept under nitrogen was placed a solution of the suitable phenol (1.6 mmol), 3-(diethylamino)propanol (1.5 mmol), and triphenyl phosphine (1.9 mmol) in 10 ml freshly distilled tetrahydrofuran. The mixture was stirred and cooled to 0°C with an ice and salt bath. A solution of diisopropyl azodicarboxylate (2 mmol) in 10 ml tetrahydrofuran was added very slowly (typically over 40 minutes) and the mixture was allowed to warm to room temperature after which it was stirred overnight at room temperature (16 hours). The solvent was then removed under reduced pressure, the residue dissolved in ethyl acetate (20 ml) and the product extracted with 2N HCI (2x10 ml). The aqueous solution was neutralised with sodium hydroxide and the product extracted with dichloromethane. After drying over magnesium sulphate and filtration, the solvent was removed under reduced pressure. The residue was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from absolute ethanol (compds. 43 and 46) or from a 1:1 mixture of methanol and absolute ethanol (compd. 42).

55

METHOD G:

[0072] A solution of the free base of compound 39 (0.6 mmol) or compound 46 (0.8 mmol) in 20 ml dry diethyl ether

was added dropwise to a stirred suspension of lithium aluminium hydride (0.6 or 0.8 mmol) in 20 ml dry diethyl ether kept under nitrogen. The mixture was stirred at room temperature under nitrogen for two hours. Ice-cold water was carefully added and the organic layer decanted. The aqueous phase was extracted with diethyl ether. The combined organic solutions were dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave a yellow oil. The oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic add in absolute ethanol. The precipitate was washed with diethyl ether and recrystallised from absolute ethanol (compd 50) or from isopropyl alcohol, giving a very hygroscopic solid (compd. 63).

METHOD H:

10

[0073] A solution of the suitable α-bromo-ω-(4-cyanophenoxy) alkane (0.5 to 0.7 mmol) and an excess of the suitable secondary amine (8 to 12 equivalents) in 10 ml absolute ethanol was heated to reflux temperature with stirring for 24 hours (compds. 54, 55, 57 and 60), 20 hours (compd. 52), 16 hours (compds. 56, 58, 59 and 61) or 8 hours (compd. 51) or was stirred at room temperature for 48 hours (compd. 53) or 24 hours (compd. 60). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. Compound 62 was purified by column chromatography on silica gel eluting with ethyl acetate, and concentrated under reduced pressure. For all the compounds of method H, the remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from absolute ethanol (two recrystallisations were required for compds. 58 and 59) or from a 1:1 mixture of methanol and absolute ethanol (compd. 55).

METHOD J:

25

[0074] A solution of compound 46 (1 mmol) in 10 ml methanol was stirred at room temperature and a solution of hydroxylamine hydrochloride (2 equivalents) in 2 ml water was added. The mixture was stirred at 50-70°C in a water bath for 20 minutes. Methanol was removed under reduced pressure. The residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. Compound 64 was purified by column chromatography on silica gel eluting with ethyl acetate, and concentrated under reduced pressure. The remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. Diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystal-lised from absolute ethanol.

35

METHOD K:

[0075] A solution of 4'-(3-bromopropoxy)acetophenone (0.8 to 1.9 mmol) and an excess of the suitable piperidine (3 to 10 equivalents) in 10 ml absolute ethanol was heated to reflux temperature with stirring for 16 hours. After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. The cis and trans isomers 67 and 70 were separated by column chromatography on silica gel eluting with a solvent mixture of diethyl ether, petroleum spirits (bp 60-80°C) and triethylamine in the ratio 66:33:1, and the eluent was removed under reduced pressure to leave an oil. Compound 75 was purified by column chromatography on silica gel eluting with chloroform and methanol (1:1), and concentrated under reduced pressure. The remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents of oxalic acid in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from absolute ethanol.

METHOD L:

[0076] In a three-neck flask kept under nitrogen was placed a solution of the suitable 4'-hydroxyphenyl ketone (0.9 to 3 mmol), 3-(1-piperidinyl)propanol (0.9 to 3 mmol), and triphenyl phosphine (1 to 3.5 mmol) in 10 ml freshly distilled tetrahydrofuran. The mixture was stirred and cooled to 0°C with an ice and salt bath. A solution of diethyl azodicarboxylate (1 to 3.6 mmol) in 10 ml tetrahydrofuran was added very slowly (typically over 40 minutes) and the mixture was allowed to warm to room temperature after which it was stirred overnight at room temperature (16 hours). The solvent was then removed under reduced pressure, the residue dissolved in ethyl acetate (20 ml) and the product extracted with 2N HCI (2x10 ml). The aqueous solution was neutralised with sodium hydroxide and the product extracted with dichlorometh-

ane. After drying over magnesium sulphate and filtration, the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel eluting with diethyl ether containing 1 % triethylamine, and concentrated under reduced pressure. The residue was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic add in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from absolute ethanol.

Pharmacological study

[0077] Interaction of compounds with the H₃ receptor are evidenced *in vitro* by the measurement of the release of neosynthesized tritiated histamine from rat cerebral cortex synaptosomes preincubated with tritiated histidine (Garbarg et al., J. Pharmacol. Exp. Ther., 1992, 263: 304-310). The H₃ potency of compounds is measured by the progressive reversal of the tritiated histamine release inhibition by the selective H₃ agonist (R)α-methylhistamine (Arrang et al., Nature, 1987, 327: 117-123).

[0078] The effects of antagonists were estimated *in vivo* by the measurement of the tele-methylhistamine level variations in the brain of mice (Garbarg et al., J. Neurochem., 1989, 53: 1724-1730). At various time after p.o. administration of the compound, the effect of the H₃ antagonist is evidenced by the increase in the telemethylhistamine level induced. This increase is compared to the maximal effect induced by the reference H₃-antagonist thioperamide given at the dose of 10 mg/kg, p.o. This allows the calculation of the ED₅₀ value for each compound which correspond to the dose responsible for an half maximal effect.

[0079] The results are reported in the following table II:

30	

25

40

35

Ex No.	Х	n	R ¹ R ²	$R^3 (n_3 = 1)$	Ki(nM)	ED ₅₀ (mg/kg/p.o.)
18	0	5	-(CH ₂) ₄ -	p-NO ₂	39±11	1.1
43	0	3	Et, Et	p-CN	95±28	0.50
46	0	3	Et, Et	p-CH ₃ CO		0.44
50	0	5	-(CH ₂) ₄ -	p-CH ₃ CH(OH)		1.0
56	0	4	Et, Et	p-CN		1.1
59	0	3	-(CH ₂) ₅ -	p-CN		0.20
60	0	3	-(CH ₂) ₆ -	p-CN		0.64
63	O.	3	Et, Et	p-CH ₃ CH(OH)		0.34
64	0	3	Et, Et	p-CH ₃ C=N(OH)		0.8
66	0	3	-(3-Me)-(CH ₂) ₅ -	p-CH ₃ CO		0.3
68	0	3	-(4-Me)-(CH ₂) ₅ -	p-CH ₃ CO	1	0.3
69	0	3	-(CH ₂) ₅ -	p-C ₂ H ₅ CO		0.4

45 Claims

1. Compound of general formula (I) in which:

50

$$(R^3)_{R^3}$$
 $X-C_nH_{2n}-N$ R^1 (I)

C_nH_{2n} is a linear or branched hydrocarbon chain with n ranging from 2 to 8;

X is an oxygen or sulfur atom;

5

10

15

20

25

30

35

40

45

50

55

- R¹ and R² may be identical or different and represent each independently
 - a lower alkyl or cycloalkyl, or taken together with the nitrogen atom to which they are attached,
 - · a saturated nitrogen-containing ring

i) N (CH₂)_m

with m ranging from 4 to 7, or an unsaturated nitrogen-containing ring

ii) N $(CH_2)_q$ $(CH_2)_q$ $(CH_2)_q$

with p, q and r being 1 to 3 independently, such nitrogen-containing ring i) or ii) being unsubstituted or substituted by one or more lower alkyl or cycloalkyl, or carboalkoxy groups, or

- · a morpholino group, or
- a N-substituted piperazino group:

-N-R

with R being a lower alkyl, an alkanoyl or an optionally substituted phenyl group;

- n₃ is an integer from 0 to 5;
 - R³ represents each independently
 - · a halogen atom,
 - a lower alkyl or cycloalkyl, a trifluoromethyl, aryl, alkoxy, aryloxy, nitro, formyl, alkanoyl, aroyl, arylalkanoyl, amino, carboxamido, cyano, alkyloximino, aryloximino, α-hydroxyalkyl, alkenyl, alkynyl, sulphamido, sulfamoyl, carboxamide, carboalkoxy, arylalkyl or oxime group,
 - or taken together with the carbon atoms of the phenyl ring to which it is fused, a 5- or 6-membered saturated or unsaturated ring or a benzene ring,

as well as their pharmaceutically acceptable salts, their hydrates, their hydrated salts, the polymorphic crystalline structures of these compounds and their optical isomers, racemates, diastereoisomers and enantiomers, except compounds in which

- -NR¹R² is a pyrrolidinyl group, C_nH_{2n} is a linear chain -(CH₂)_n- and n₃ is zero, X being an oxygen atom with n ranging from 3 to 5, or X being a sulfur atom with n being 4 or 5;
- -NR¹R² is a piperidinyl group, C_nH_{2n} is a linear chain -(CH₂)_n- and and X is an oxygen atom, n₃ being zero with n being 2, 5 or 8 or n₃ being 1 with R³ being 4-CN and n being 5;
- -NR 1 R 2 is a diethylamine group, X is an oxygen atom, $C_{n}H_{2n}$ is a linear chain -(CH $_{2}$) $_{n}$ and n_{3} is 1, R 3 being 4-

NO₂ or 4-COCH₃ with n being 3 or R³ being 4-CN with n being 2 to 4;

- -NR¹R² is a dimethylamine group, X is an oxygen atom, C_nH_{2n} is a linear chain -(CH₂)_n- and n³ is 1, R³ being 4-CN with n being 3.
- Compound according to claim 1, in which R¹ and R² are independently a lower alkyl group.
 - 3. Compound according to claim 2, in which R1 and R2 are each an ethyl group.
- 4. Compound according to claim 1, in which -NR¹R² is a saturated nitrogen-containing ring: m being as

i) N (CH₂)

15

10

defined in claim 1.

- 20 5. Compound according to claim 4, characterized in that m is 4, 5 or 6.
 - 6. Compound according to claim 1, characterized in that -NR¹R² is an unsaturated nitrogen-containing ring:

25

30

p, q and r being as defined in claim 1, preferably p, q and r are 1 or 2, more preferably p is 2 and q and r are 1.

- Compound according to anyone of claims 4 to 6, characterized in that the nitrogen-containing ring i) or ii) is unsubstituted.
 - 8. Compound according to anyone of claim 4 to 6, characterized in that the nitrogen-containing ring i) or ii) is substituted, preferably mono-substituted with an alkyl group.

40

- 9. Compound according to claim 8, characterized in that the nitrogen-containing ring is mono-substituted with a methyl group.
- 10. Compound according to claim 1, characterized in that -NR¹R² is a morpholino group.

45

- 11. Compound according to claim 1, characterized in that -NR¹R² is a N-substituted piperazino group, preferably N-acetylpiperazino.
- 12. Compound according to anyone of claims 1 to 11, characterized in that n₃ is zero.

- 13. Compound according to anyone of claims 1 to 11, characterized in that n₃ is 1 with R³ being as defined in claim 1 and preferably in para-position.
- 14. Compound according to anyone of claims 1 to 11 and 13, characterized in that R³ is a lower alkyl, preferably a C₁-55 C₄ alkyl.
 - 15. Compound according to anyone of claims 1 to 11 and 13, characterized in that R³ is a halogen atom, a cyano, nitro, alkanoyl, alkyloximine or hydroxyalkyl, preferably CN, NO₂, COCH₃, COC₂H₅, H₃C-C=N-OH or H₃C-CHOH.

- 16. Compound according to anyone of claims 1 to 11, characterized in that R³ taken together with the carbon atoms of the phenyl group to which it is fused, form a 5- or 6- membered saturated or unsaturated ring, in particular a 5,6,7,8-tetrahydronaphthyl group.
- 5 17. Compound according to anyone of claims 1 to 11, characterized in that R³ taken together with the phenyl group to which it is fused, form a naphthyl group.
 - 18. Compound according to anyone of claims 1 to 17, characterized in that $-C_nH_{2n}$ is a linear hydrocarbon chain $(CH_2)_n$, n being as defined in claim 1.
 - 19. Compound according to anyone of claims 1 to 18, characterized in that X is an oxygen atom.
 - 20. Compound according to anyone of claims 1 to 18, characterized in that X is a sulfur atom.
- 15 21. Compound according to anyone of claims 1 to 20, characterized in that n is varying from 3 to 5 and is preferably 3.
 - 22. Compound according to anyone of claims 1 to 21, characterized in that it is one of the following compounds:

	N-methyl-N-(5-phenoxypentyl)-ethylamine
20	1-(5-phenoxypentyl)-morpholine
	N-(5-phenoxypentyl)-hexamethyleneimine
	N-ethyl-N-(5-phenoxypentyl)-propylamine
	1-(5-phenoxypentyl)-2-methyl-piperidine
	1-(5-phenoxypentyl)-4-propyl-piperidine
25	1-(5-phenoxypentyl)-4-methyl-piperidine
	1-(5-phenoxypentyl)-3-methyl-piperidine
	1-acetyl-4-(5-phenoxypentyl)-piperazine
	1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine
	1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine
30	1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine
	4-carboethoxy-1-(5-phenoxypentyl)-piperidine
	3-carboethoxy-1-(5-phenoxypentyl)-piperidine
	1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine
	1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
35	1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-methoxyphenoxy)-pentyl]-pyrrolidine
	1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine
	1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine
	1-[5-(2-naphthyloxy)-pentyl]-pyrrolidine
40	1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine
	1-[5-(3-chlorophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine
	1-{5-[2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
	1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine
45	1-(5-phenoxypentyl)-2,5-dihydropyrrole
	1-{5-[1-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
	1-(6-phenoxyhexyl)-pyrrolidine
	1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine
50	1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine
	1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine
	1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine
	1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine
55	1-{5-[4-(phenylacetyl)-phenoxy]-pentyl}-pyrrolidine
	1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine
	1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine
	LO (4 14 policum aprioriox), pentyli-bynomine

1-{5-(4-(1-hydroxyethyl)-phenoxy]-pentyl}-pyrrolidine

1-[5-(4-cyanophenoxy)-pentyl]-diethylamine

N-[5-(4-cyanophenoxy)-pentyl]-dimethylamine

N-[5-(4-cyanophenoxy)-pentyl]-dipropylamine

1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine

1-[3-(4-cyanophenoxy)-propyl]-piperidine

N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine

N-[6-(4-cyanophenoxy)-hexyl]-diethylamine

N-[3-(4-cyanophenoxy)-propyl]-dipropylamine

N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine

4-(3-diethylaminopropoxy)-acetophenone-oxime

1-[3-(4-acetylphenoxy)-propyl]-piperidine

1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine

1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl-piperidine

1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine

1-[3-(4-propionylphenoxy)-propyl]-piperidine

1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-piperidine

1-[3-(4-formylphenoxy)-propyl]-piperidine

1-[3-(4-isobutyrylphenoxy)-propyl]-piperidine

N-[3-(4-propionylphenoxy)-propyl]-diethylamine

1-[3-(4-butyrylphenoxy)-propyl]-piperidine,

1-[3-(4-acetylphenoxy)-propyi]-1,2,3,6-tetrahydropyridine

23. Compound according to anyone of claims 1 to 22, characterized in that it is one of the following compounds:

25

5

10

15

20

1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine

1-{5-{4-(1-hydroxyethyl)-phenoxy}-pentyl}-pyrrolidine

1-[3-(4-cyanophenoxy)-propyl]-piperidine

N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine

N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine

4-(3-diethylaminopropoxy)-acetophenone-oxime

1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine

1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine

1-[3-(4-propionylphenoxy)-propyl]-piperidine

35

30

- 24. Pharmaceutical composition characterized in that it comprises as active ingredient, a therapeutically effective amount of a compound according to anyone of claim 1 to 23 in combination with a pharmaceutically acceptable vehicle or excipient.
- 40 25. Medicament acting as an antagonist of the histamine H₃-receptors, characterized in that it comprises as active ingredient, an effective amount of a compound according to anyone of claims 1 to 23.
 - 26. Use of a compound of general formula (I) in which:

45

 $(R^3)_{D^3}$ $X-C_DH_{2D}-N$ R^1 (1)

50

- C_nH_{2n} is a linear or branched hydrocarbon chain with n ranging from 2 to 8;
- X is an oxygen or sulfur atom;
- R¹ and R² may be identical or different and represent each independently

- a lower alkyl or cycloalkyl, or taken together with the nitrogen atom to which they are attached,
- · a saturated nitrogen-containing ring

with m ranging from 4 to 7, or

· an unsaturated nitrogen-containing ring

20

5

10

15

with p, q and r being 1 to 3 independently, such nitrogen-containing ring i) or ii) being unsubstituted or substituted by one or more lower alkyl or cycloalkyl, or carboalkoxy groups, or

- · a morpholino group, or
- a N-substituted piperazino group:

30

35

40

55

25

with R being a lower alkyl, an alkanoyl or an optionally substituted phenyl group;

- n₃ is an integer from 0 to 5;
- R³ represents each independently
 - · a halogen atom,
 - a lower alkyl or cycloalkyl, a trifluoromethyl, aryl, alkoxy, aryloxy, nitro, formyl, alkanoyl, aroyl, arylalkanoyl, amino, carboxamido, cyano, alkyloximino, aryloximino, α-hydroxyalkyl, alkenyl, alkynyl, sulphamido, sulfamoyl, carboxamide, carboalkoxy, arylalkyl or oxime group,
 - or taken together with the carbon atoms of the phenyl ring to which it is fused, a 5- or 6-membered saturated or unsaturated ring or a benzene ring.

as well as their pharmaceutically acceptable salts, their hydrates, their hydrated salts, the polymorphic crystalline structures of these compounds and their optical isomers, racemates, diastereoisomers and enantiomers, for the preparation of a medicament acting as an antagonist of the histamine H₃-receptors.

- 27. Use according to claim 26, characterized in that compound (I) is as defined in any one of claims 2 to 21.
- 50 28. Use according to claim 26 characterized in that compound (I) is one of the following compounds:
 - 1-(5-phenoxypentyl)-piperidine
 - 1-(5-phenoxypentyl)-pyrrolidine

N-methyl-N-(5-phenoxypentyl)-ethylamine

1-(5-phenoxypentyl)-morpholine

N-(5-phenoxypentyl)-hexamethyleneimine

N-ethyl-N-(5-phenoxypentyl)-propylamine

1-(5-phenoxypentyl)-2-methyl-piperidine

	1-(5-phenoxypentyl)-4-propyl-piperidine
	1-(5-phenoxypentyl)-4-methyl-piperidine
	1-(5-phenoxypentyl)-3-methyl-piperidine
	1-acetyl-4-(5-phenoxypentyl)-piperazine
5	1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine
	1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine
	1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine
	4-carboethoxy-1-(5-phenoxypentyl)-piperidine
	3-carboethoxy-1-(5-phenoxypentyl)-piperidine
10	1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine
	1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-methoxyphenoxy)-pentyl]-pyrrolidine
	1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine
15	1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine
	1-[5-(2-naphthyloxy)-pentyl-pyrrolidine
	1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine
	1-[5-(3-chlorophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine
20	1-{5-{2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
	1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine
	1-(5-phenoxypentyl)-2,5-dihydropyrrole
	1-{5-[1-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
	1-(4-phenoxybutyl)-pyrrolidine
25	1-(6-phenoxyhexyl)-pyrrolidine
	1-(5-phenylthiopentyl)-pyrrolidine
•	1-(4-phenylthiobutyl)-pyrrolidine
	1-(3-phenoxypropyl)-pyrrolidine
	1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine
30	1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine 1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine
	1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine
	1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine
	1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine
35	N-[3-(4-nitrophenoxy)-propyl]-diethylamine
	N-[3-(4-cyanophenoxy)-propyl]-diethylamine
	1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine
	1-{5-[4-(phenylacetyl)-phenoxy]-pentyl}-pyrrolidine
	N-[3-(4-acetylphenoxy)-propyl]-diethylamine
40	1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine
	1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine
	1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine
	1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-pyrrolidine
	1-[5-(4-cyanophenoxy)-pentyl]-diethylamine
45	1-[5-(4-cyanophenoxy)-pentyl]-piperidine
	N-[5-(4-cyanophenoxy)-pentyl]-dimethylamine
	N-[2-(4-cyanophenoxy)-ethyl]-diethylamine
	N-[3-(4-cyanophenoxy)-propyl]-dimethylamine
	N-[4-(4-cyanophenoxy)-butyl]-diethylamine
50	N-[5-(4-cyanophenoxy)-pentyl]-dipropylamine
	1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine
	1-[3-(4-cyanophenoxy)-propyl]-piperidine
	N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
	N-[6-(4-cyanophenoxy)-hexyl]-diethylamine
55	N-[3-(4-cyanophenoxy)-propyl]-dipropylamine
	N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
	4-(3-diethylaminopropoxy)-acetophenone-oxime 1-[3-(4-acetylphenoxy)-propyl]-piperidine
	1-fo-(4-acetalbustioxa)-brobail-bibettonie

1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl-piperidine
1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
1-[3-(4-propionylphenoxy)-propyl]-piperidine
1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-piperidine
1-[3-(4-formylphenoxy)-propyl]-piperidine
1-[3-(4-isobutyrylphenoxy)-propyl]-piperidine
N-[3-(4-propionylphenoxy)-propyl]-diethylamine

1-[3-(4-acetylphenoxy)-propyl]-1,2,3,6-tetrahydropyridine

1-[3-(4-butyrylphenoxy)-propyl]-piperidine

29. Use according to claim 26, characterized in that compound (i) is one of the following compounds:

1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
N-[3-(4-cyanophenoxy)-propyl]-diethylamine
N-[3-(4-acetylphenoxy)-propyl]-diethylamine
1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-pyrrolidine
N-[4-(4-cyanophenoxy)-butyl]-diethylamine
1-[3-(4-cyanophenoxy)-propyl]-piperidine
N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
4-(3-diethylaminopropoxy)-acetophenone-oxime
1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine

- 30. Medicament according to anyone of claims 25 to 29, for the treatment of central nervous system disorders, in particular Alzheimer disease, mood and attention alterations, cognitive deficits in psychiatric pathologies, obesity, vertigo and motion sickness.
- 31. Medicament according to anyone of claims 25 to 29, having psychotropic effects, promoting wakefulness, attention, memory and improving mood, intended to be used in particular in the treatment of Alzheimer disease and other cognitive disorders in aged persons, depressive or asthenic states.
- 35. Medicament according to anyone of claims 25 to 29, having nootropic effects, intended to be used in particular in treatment to stimulate attention and memorization capacity.
 - 33. Medicament according to anyone of claims 25 to 29, for the treatment of obesity, vertigo and motion sickness.
- 40 34. Medicament according to anyone of claims 25 to 29, for the treatment of CNS disorders, in particular of aged persons

33

45

5

Application Number

which under Rule 45 of the European Patent Convention EP 98 40 1944 shall be considered, for the purposes of subsequent proceedings, as the European search report

	DOCUMENTS CONSIDE	RED TO BE RELEVANT		
Category	Citation of document with ind of relevant passag		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IntCl.6)
(GB 1 512 880 A (MITS 1 June 1978 * examples; table I		1-24	C07D295/088 C07C211/08 C07D211/04 C07D295/185
(DE 12 69 134 B (VEB RODLEBEN) 18 Decembe * examples 1-5 *	DEUTSCHES HYDRIERWERK r 1962	1-24	C07D211/62 C07D211/70 C07D207/20 A61K31/13
(US 3 947 434 A (SPEN 30 March 1976 * examples LXXIXA,B	•	1-24	A61K31/40 A61K31/445 A61K31/495
(US 4 751 302 A (IBUK 14 June 1988 * tables 5-2,5-3 *	I TADAYUKI ET AL)	1-24	
	GB 924 961 A (THE WE LIMITED) 1 May 1963 * table II *	LLCOME FOUNDATION	1-24	
X	US 3 312 696 A (TURB * claim 1; examples	ANTI L.) 4 April 1967 1-20 *	1-24	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	·	-/		C07C A61K
	MPLETE SEARCH			
not comp be carried Claims se	ily with the EPC to such an extent that a d out, or can only be carried out partially, earched completely:	oplication, or one or more of its claims, does meaningful search into the state of the art of for these claims.	v/do annot	
	earched incompletely : ot searched :			
Reason	for the limitation of the search:			
see	sheet C			
	•			
	Place of search	Date of completion of the search		Examiner
	MUNICH	7 December 1998	Ju	ntunen, A
X:pa Y:pa doo	CATEGORY OF CITED DOCUMENTS rticularly relevant if taken alone rticularly relevant if combined with anoth cument of the same category thnological background	L: document cited t	cument, but pub te in the application or other reasons	lished on, or
О:ло	n-written disclosure ermediate document	& : member of the s . document	ame patent fami	ly, corresponding

EP 98 40 1944

	DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.CI.6)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Х	DE 26 24 261 A (BOTTU FA) 16 December 1976 * page 4; example 10 *	1-24	
X	US 2 870 151 A (WRIGHT H.B. AND MOORE M.B.) 20 January 1959 * examples I-XII *	1-24	
X	DE 965 813 C (ABBOTT LABORATORIES) 19 June 1957 * examples 1-5,7 *	1-24	
X	LITTMANN E. R. AND MARVEL C. S.: "Cyclic Quaternary Ammonium Salts from Halogenated Aliphatic Tertiary Amines" J.AMER.CHEM.SOC., vol. 52, 1930, pages 287-294, XP002084866 * page 289 - page 290 *	1-24	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
X	KIKUMOTO R. ET AL.: "Synthesis and Antidepressant Activity of Substituted (gamma-Aminoalkoxy)benzene Derivatives" J.MED.CHEM., vol. 24, no. 2, 1981, pages 145-148, XP000565653 * table 1 *	1-26	
X	SHADBOLT R. S. ET AL.: "Some Aryloxyalkylamines, N-Arylethylenediamines and Related Compounds as Anorectic Agents" J.MED.CHEM., vol. 14, no. 9, 1971, pages 836-842, XP002084867 * table 1 *	1-24	
	-/		
	· · · · ·		
			=

Application Number

EP 98 40 1944

	DOCUMENTS CONSIDERED TO BE RELEVANT	ANT CLASSIFICATION OF APPLICATION (Into		
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim		
X	WALSH D. A. ET AL.: "Synthesis and Antiallergy Activity of 4-(Diarylhydroxymethyl)-1-[3-(aryloxy)propyl]piperidines and Structurally Related Compounds" J.MED.CHEM., vol. 32, no. 1, 1989, pages 105-118, XP002084868 * tables I-III *	1-24	,	
x	SOHDA T ET AL: "STUDIES ON ANTIDIABETIC AGENTS. SYNTHESIS OF 5-4-(1-METHYLCYCLOHEXYLMETHOXY)-BENZYL)THIAZ OLIDINE-2,4-DIONE (ADD-3878) AND ITS DERIVATIVES" CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 30, no. 10, 1982, pages 3580-3600, XP002046259 * table VIII *	1-24	TECHNICAL FI SEARCHED	ELDS (Int.Cl.6)
X	CHABRIER P. ET AL.: "Nouveaux carbamates doués d'activité anesthésique locale" BULL.SOC.CHIM.FR.,1955, pages 1353-1357, XP002084869 * table IV *	1-24		•
X	MARQUET J. ET AL.: "Topologically Controlled Coulombic Interactions, a New Tool in the Developing of Novel Reactivity. Photochemical and Electrochemical Cleavage of Phenyl Alkyl Ethers" J.ORG.CHEM., vol. 60, no. 12, 1995, pages 3814-3825, XP002084870 * table 1 *	1-24		
	-/			

BEST AVAILABLE COPY

Application Number

EP 98 40 1944

1	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CI.6)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	CASANOVAS AM. ET AL.: "Etude des relations structure-activté d'une série d'anesthésiques locaux" EUR.J.MED.CHEMCHIM.THER., vol. 17, no. 4, 1982, pages 333-337, XP002084871 * page 334 *	1-24	
x	KIKUMOTO R ET AL: "SYNTHESES AND PLATELET AGGREGATION INHIBITORY AND ANTITHROMBOTIC PROPERTIES OF 2- (OMEGA-AMINOALKOXY)PHENYLETHYLBENZENES" JOURNAL OF MEDICINAL CHEMISTRY, vol. 33, no. 6, June 1990, pages 1818-1823, XP000673455 * tables I-III *	1-24	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
X	CHENEY L.C. ET AL.: "Alkylaminoalkyl Ethers of the Benzylphenols" J.AMER.CHEM.SOC., vol. 71, 1949, pages 60-64, XP002086293 * page 60; table I *	1-26	
A	STARK H. ET AL.: "Developments of Histamine H3-receptor Antagonists" DRUGS OF THE FUTURE, vol. 21, no. 5, 1996, pages 507-520, XP002084872 * page 507 *	1-34	*
	y		
	*		

INCOMPLETE SEARCH SHEET C

Application Number EP 98 40 1944

Claim(s) searched incompletely: 1-34

Reason for the limitation of the search:

The search on the final compounds of a restricted subset of formula I (R1 and R2= a lower alkyl, a saturated N-containing ring, a morpholino group, a N-substituted piperazino group as defined in claim 1) and their histamine H3-receptor antagonistic activity revealed already a vast amount of novelty destroying compounds with respect to claim 1 of the present application. Therefore the search had to be limited to the compounds of claims 2 and 5 encompassed by the above defined subset, and to the activity thereof.

Despite the above limitation to the two groups of compounds the search revealed too many relevant documents and/or compounds so that the search report shall not be considered complete.

BEST AVAILABLE COPY

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 40 1944

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-12-1998

	ent document n search repo		Publication date		Patent family member(s)	Publication date
GB 1	512880	Α	01-06-1978	JP	1233459 C	26-09-1984
				JР	52000248 A	05-01-1977
		•		JР	59008265 B	23-02-1984
				ÜS	4024282 A	17-05-1977
				CH	623301 A	29-05-198
				DE	2627227 ·A	30-12-1976
				DK	276276 A,B,	20-12-1976
				FR	2315913 A	28-01-1977
				NL	7606668 A,B,	21-12-1976
				SE	430156 B	24-10-1983
				SE SE		
					7607013 A	20-12-1970
				US	4071559 A	31-01-1978
				JP	1258356 C	29-03-198
				JP	52033635 A	14-03-1977
				JP	59035386 B	28-08-1984
•		•		US	4061776 A	06-12-1977
		•		JP	1283612 C	27-09-198
				JP	52033658 A	14-03-197
				JP	60006349 B	18-02-198
				US	4091114 A	23-05-1978
				JP	1323708 C	27-06-1980
				JР	52057133 A	11-05-197
	•			JP	60048507 B	28-10-198
				ÜS	4060612 A	29-11-197
				BE	848612 A	23-05-197
				JP	1356666 C	13-01-198
				JР	52065254 A	30-05-1977
				JР	61020536 B	22-05-1980
				ÜS	4060641 A	29-11-197
				JP	1256359 C	12-03-198
				JР	52085156 A	15-07-197
	٠.			JP	59031492 B	02-08-1984
				US	4100299 A	11-07-1978
DE 13	269134	В		NONE		
US 39	947434	Α	30-03-1976	US .	3919238 A	11-11-197
			•	AU	475718 B	02-09-197
				AU	6523674 A	04-09-197
				BE	816003 A	06-12-1974
				DE	2427409 A	09-01-197
				DK	301974 A.B.	03-02-197
			•	FR	2232313 A	03-01-197
				GB	1398508 A	25-06-197
				IL	44141 A	31-08-1976
				JP	50019777 A	01-03-1975

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 40 1944

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-12-1998

Patent document cited in search repo	rt	Publication date	Patent family member(s)	Publication date
US 3947434	A		NL 7404135 A SE 391925 B SE 7405652 A ZA 7400683 A	10-12-197 07-03-197 09-12-197 24-09-197
US 4751302	Α	14-06-1988	JP 58159471 A JP 58159472 A JP 58159473 A JP 58159474 A JP 58159475 A JP 58159476 A JP 58159477 A EP 0090972 A US 4533731 A	21-09-198 21-09-198 21-09-198 21-09-198 21-09-198 21-09-198 21-09-198 12-10-198 06-08-198
GB 924961	A	•	BE 588558 A CH 361005 A CH 395126 A CH 436259 A DE 1238485 B FR 558 M FR 84256 E FR 1421206 A GB 824853 A GB 921978 A LU 38374 A NL 129619 C NL 249341 A	05-05-196 09-03-196
US 3312696	Α	04-04-1967	NONE	
DE 2624261	Α	16-12-1976	FR 2313042 A FR 2349332 A BE 842453 A CH 597192 A GB 1513092 A	31-12-197 25-11-197 01-10-197 31-03-197 07-06-197
US 2870151	Α		NONE	
DE 965813	С.		NONE	

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	BLURRED OR ILLEGIBLE TEXT OR DRAWING SKEWED/SLANTED IMAGES
	□ SKEWED/SLANTED IMAGES
•	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.