Math 6020, Graduate Algebra, Fall 2024, Homework 4

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

- 1. Suppose H, K are groups and $\phi: H \to Aut(K)$ is a homomorphism.
 - (a) Show that $Z(K \times H) = Z(K) \times Z(H)$.
 - (b) Give an example of H, K, ϕ with $Z(H) \neq (e) \neq Z(K)$ but $Z(K \rtimes_{\phi} H) = (e)$.
- 2. Show that $GL_2(\mathbb{F}_2) \cong S_3$.
- 3. Suppose G is a group with subgroups K, H, N with $H \triangleleft K$.
 - (a) Show that $(H \cap N) \triangleleft (K \cap N)$.
 - (b) Show that if $K \subset N_G(N)$ then $HN \triangleleft KN$.
- 4. Let G be a finite group with p|G|, and $P \in Syl_p(G)$. Show $n_p = [G : N_G(P)]$ where $n_p = |Syl_p(G)|$.
- 5. Recall for H < G, we define $core(H) = \bigcap_{g \in G} gHg^{-1}$.

Suppose that |G| = mn with n > m! and that $H_1, H_2 < G$ with $|H_1| = |H_2| = n$. Show that $H_1 \cap core(H_2) \neq (e)$.

hint: consider the action of H_1 on the left cosets of H_2

6. (easier counting problem)

Let G be a group of order 30. Show that either G has a normal subgroup of order 3 or a normal subgroup of order 5.

7. (trickier counting problem with various cases)

Let G be a group of order 90 which contains an element of order 9. Show that either G has a normal subgroup of order 3 or a normal subgroup of order 5.

8. Let $\mathcal{H}:(e)=H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n=G$ be a chief series for a group G. Recall that this means \mathcal{H} is a composition series for G considered as an X-group with X=G acting by conjugation.

Consider the homomorphism

$$inn: G \to Aut(G)$$

given by $inn(g)(h) = ghg^{-1}$.

- (a) Show that $N \triangleleft G$ with $H_i < N < H_{i+1}$ implies $N = H_i$ or $N = H_{i+1}$.
- (b) Show that we have a well defined homomorphism $inn^i: G \to Aut(H_i/H_{i-1})$ given by $inn^i(g)(hH_{i-1}) = ghg^{-1}H_{i-1}$.
- (c) Let $K_{\mathcal{H}} = \bigcap_i ker(inn^i)$. We use this notation to emphasize that, a priori, the definition of $K_{\mathcal{H}}$ depends on the chosen chief series. Show that this is not the case: that is, if \mathcal{H}' is any other chief series for G, we have $K_{\mathcal{H}} = K_{\mathcal{H}'}$.
- (d) Show that $K_{\mathcal{H}}$ is nilpotent.
- 9. Suppose G is a group with $|G| = pq^a r^b$ where p < q < r are prime numbers. Let $P \in Syl_p(G), Q \in Syl_q(G), R \in Syl_r(G)$. Show that if $R \subset N_G(Q)$ then $Q \triangleleft G$.
- 10. (this one takes a bit of work)

Suppose G is a group with |G| = pqr with p < q < r prime numbers and with

$$q \equiv 1 \pmod{p}$$
 and $r \not\equiv 1 \pmod{p}$.

Show that either $G = P \dot{\rtimes} (R \dot{\rtimes} Q)$ or $G = (P \dot{\rtimes} R) \dot{\rtimes} Q$ or $G = R \dot{\rtimes} (Q \dot{\rtimes} P)$.

- 11. The octahedron is a 3-dimensional polytope with 8 triangular faces. It has the property that its group G of symmetries acts transitively on these triangular faces, and further, for each symmetry σ of a triangular face F, we can find an element $\tilde{\sigma} \in G$ such that $\tilde{\sigma}$ takes F to itself while performing σ on F. Find |G|.
- 12. The icositetrachoron is a 4-dimensional polytope with 24 3-dimensional faces each of which is a 3-dimensional solid octahedra (these each have 8 2-dimensional faces). The symmetry group G of this polytope acts transitively on these 3-dimensional octahedral faces. Furthermore, for each face F and every symmetry σ of F, we can find an element $\tilde{\sigma} \in G$ such that $\tilde{\sigma}$ takes F to itself while performing σ on F. Find |G|.

13.	Suppose we are given finite G groups $A \triangleleft B$ (recall this means that G acts on each of these as automorphisms), and suppose that $ G $ is relatively prime to $ A $. Show that every G -fixed element of B/A is the image of a G -fixed element of B .
	hint: this problem uses group cohomology and the long exact cohomology sequence

14. Suppose we are given finite G modules $A \triangleleft B$ (recall this means that A and B are Abelian groups and that G acts on each of these as automorphisms), and suppose that |G| is prime to |A|. Show that every crossed homomorphism $\phi: G \to B$ has image which lies in A.

hint: this problem uses group cohomology and the long exact cohomology sequence