Disciplina: Iniciação à Programação Linear

Segunda Atividade Avaliativa

Aluna: Cintia Izumi Shinoda

Exemplo 1: Fabricação de anéis coletores

Uma empresa fabricante de anéis coletores deseja determinar os itens que deve fabricar e os itens que deve comprar de uma fabricante externa.

I. Variáveis de decisão do problema

F_1	Quantidade de anéis do modelo 1 a ser fabricada
F_2	Quantidade de anéis do modelo 2 a ser fabricada
F_3	Quantidade de anéis do modelo 3 a ser fabricada
C_1	Quantidade de anéis do modelo 1 a ser comprada
C_2	Quantidade de anéis do modelo 2 a ser comprada
C_3	Quantidade de anéis do modelo 3 a ser comprada

II. Função objetivo do problema

A partir dos seguintes custos:

	Modelo 1	Modelo 2	Modelo 3
custo para produzir	\$ 50	\$ 83	\$ 130
custo para comprar	\$ 61	\$ 97	\$ 145

chegamos à função objetivo:

$$Min = 50F_1 + 83F_2 + 130F_3 + 61C_1 + 97C_2 + 145C_3$$

III. Restrições do problema

a) Restrições quanto às horas:

A partir das horas necessárias por unidade:

	Modelo 1	Modelo 2	Modelo 3
Horas necessárias para cabeamento / unidade	2	1,5	3
Horas necessárias para montagem / unidade	1	2	1

a1)
$$2F_1 + 1.5F_2 + 3F_3 \le 10000$$

a2)
$$1C_1 + 2C_2 + 1C_3$$

b) Restrições quanto à demanda por cada um dos modelos de anéis:

Modelo 1	Modelo 2	Modelo 3
3.000	2.000	900

b1)
$$F_1 + C_1 = 3000$$

$$b2) F_2 + C_2 = 2000$$

b3)
$$F_3 + C_3 = 900$$

c) Restrição de não negatividade: nenhuma variável do modelo pode assumir valor menor que zero:

$$F_1, F_2, F_3, C_1, C_2, C_3 \ge 0$$

IV. Inserção dos parâmetros no Solver

V. Resultados

Quantidade que deve ser produzida e quantidade que deve ser comprada de cada modelo:

	Modelo 1	Modelo 2	Modelo 3
Deve produzir	3000	550	900
Deve comprar	0	1450	0

O custo total será de \$ 453300;

As horas que serão utilizadas e que sobrarão de cabeamento e fixação:

	horas utilizadas	horas que sobrarão
Cabeamento	9525	475
Fixação	5000	0

Exemplo 2: Projeto de portfólio de renda para aposentados

Um analista financeiro deve projetar um portfólio e para isso precisa decidir os valores que deve alocar nos investimentos de uma cliente para maximização da receita.

I. Variáveis de decisão do problema

X_1	valor a ser investido em títulos da Acme Chemical
X_2	valor a ser investido em títulos da DynaStar
<i>X</i> ₃	valor a ser investido em títulos da Eagle Vision
X_4	valor a ser investido em títulos da MicroModeling
X_5	valor a ser investido em títulos da OptiPro
X_6	valor a ser investido em títulos da Sabre Systems

II. Função objetivo do problema

A partir do retorno de cada empresa:

Empresa	Retorno a.a.
Acme Chemical	8.65%
DynaStar	9.5%
Eagle Vision	10%
MicroModeling	8,75%
OptiPro	9.25%
Sabre Systems	9%

chegamos à função objetivo:

$$Max = 0.0865X_1 + 0.095X_2 + 0.10X_3 + 0.0875X_4 + 0.0925X_5 + 0.09X_6$$

- III. Restrições do problema
- a) disponibilidade de \$750000 para investir:

$$X_1 + X_2 + X_3 + X_4 + X_5 + X_6 = 750000$$

b) deve-se assegurar que não haverá investimento superior a 25% do total em qualquer investimento individual:

$$X_1 \le 187500$$
$$X_2 \le 187500$$

$$X_3 \leq 187500$$

$$X_4 \leq 187500$$

$$X_5 \leq 187500$$

$$X_6 \leq 187500$$

c) pelo menos metade do dinheiro deve ser alocada em títulos de longo prazo (≥

10 anos):

a partir da quantidade de anos para vencimento de cada empresa:

Empresa	Anos para vencimento
Acme Chemical	11
DynaStar	10
Eagle Vision	6
MicroModeling	10
OptiPro	7
Sabre Systems	13

chegamos à seguinte restrição:

$$X_1 + X_2 + X_4 + X_6 \ge 375000$$

- d) deve-se assegurar que não mais que 35% devem ser investidos em empresas com riscos mais altos (classificações abaixo de "Muito Bom" (= "Bom" ou "Regular"):
- a partir da classificação seguinte:

Empresa	Classificação do Risco
Acme Chemical	1-Excelente
DynaStar	3-Bom
Eagle Vision	4-Regular
MicroModeling	1-Excelente
OptiPro	3-Bom
Sabre Systems	2-Muito Bom

chegamos à seguinte restrição:

$$X_2 + X_3 + X_5 \le 262500$$

e) restrição de não negatividade:

$$X_1, X_2, X_3, X_4, X_5, X_6 \ge 0$$

IV. Inserção dos parâmetros no Solver

V. Resultados

A distribuição de investimentos ótima obtida foi:

Empresa	Valor
Acme Chemical	\$112500
DynaStar	\$75000
Eagle Vision	\$187000
MicroModeling	\$187500
OptiPro	\$0
Sabre Systems	\$187500