

# **Advanced Algorithms & Data Structures**











# Complex



# Department of CSE

Jigsaw Discussion Inquiry Learning
Role Playing Active Review Sessions
Interactive Lecture (Games or Simulations)
Hands-on Technology
Case Studies

Brainstorming

ADVANCED ALGORITHMS AND DATA STRUCTURES 23CS03HF

**Topic:** 

**Closest Pair** 

Groups Evaluations

Peer Review

Informal Groups

Triad Groups

Large Group
Discussion

Think-Pair-Share

Writing (Minute Paper)

Self-assessment

Pause for reflection













#### AIM OF THE SESSION



To familiarize students with the concept of Closest Pair

#### **INSTRUCTIONAL OBJECTIVES**



This Session is designed to:

1.Demonstrate :- Closest Pair.

2.Describe :- Solving of Closest pair using Divide and Conquer

#### **LEARNING OUTCOMES**



At the end of this session, you should be able to:

- 1. Define :- Closest Pair.
- 2. Describe :- Identifying Closest pair using Divide and Conquer
- 3. Summarize:- Description about the closest pair and time complexity of closest pair





### **Closest Pair**

Given a set  $S = \{p1, p2, ..., pn\}$  of n points in the plane find the two points of S whose distance is the smallest.













## Closest Pair-Divide & Conquer

- Divide the problem into two equal-sized sub problems
- Solve those sub problems recursively
- Merge the sub problem solutions into an overall solution









#### Closest Pair-Divide & Conquer

- Assume that we have solutions for sub problems S1, S2.
- How can we merge in a time-efficient way?
  - The closest pair can consist of one point from S<sub>1</sub> and another from S<sub>2</sub>
  - Testing all posibilities requires:  $O(n/2) \cdot O(n/2) \in O(n^2)$
  - Not good enough











- Partition S, a set of points on a line, into two sets  $S_1$  and  $S_2$  at some point m such that for every point  $p \in S_1$  and  $q \in S_2$ , p < q.
- Solve Closest Pair recursively on  $S_1$  and  $S_2$
- Let  $\delta_1$  be the smallest distance in  $\bar{S}_1$  and  $\bar{\delta}_2$  in  $S_2$
- Let  $\delta$  be the smallest distance found so far:  $\delta = \min (\delta_1, \delta_2)$
- What is the closest pair in S?
  - Either  $\{p1, p2\}$  or  $\{q1, q2\}$  or some  $\{p3, q3\}$  with  $p3 \in S_1$  and  $q3 \in S_2$ .





- To find a pair {p3, q3}, Is it necessary to check all possible pairs?
   No
- How many points of S1 or S2 can lie within  $\delta$  of m?
  - Since  $\delta$  is the distance between the closest pair in either  $S_1$  or  $S_2$ , there can only be at most 1 point in each side.
  - Therefore, the number of distance computations required to check for a closest pair  $\{p3, q3\}$  with  $p3 \in S_1$  and  $q3 \in S_2$  is O(1).
- Thus, the time complexity is
  - *O*(n log n)











- Partition two dimensional set S into subsets  $S_1$  and  $S_2$  by a vertical line I at the median X coordinate of S.
- Solve the problem recursively on  $S_1$  and  $S_2$ .
- Let  $\{p1, p2\}$  be the closest pair in  $S_1$  and  $\{q1, q2\}$  in  $S_2$ .
- Let  $\delta_1$  = distance(p1,p2) and  $\delta_2$  = distance(q1,q2)
- Let  $\delta = \min(\delta_1, \delta_2)$





In order to merge we have to determine if exists a pair of points  $\{p, q\}$  where  $p \in S_1$ ,  $q \in S_2$  and distance $(p, q) < \delta$ .

If so, p and q must both be within  $\delta$  of l.

Let  $P_1$  and  $P_2$  be vertical regions of the plane of width  $\delta$  on either side of I.

If  $\{p, q\}$  exists, p must be within  $P_1$  and q within  $P_2$ .  $S_1$  For d=1, there was at most one candidate point for p and one for q.

For d = 2, every point in  $S_1$  and  $S_2$  may be a candidate, as long as each is within  $\delta$  of I, which implies:  $O(n/2) \cdot O(n/2) = O(n^2)$ 





- For a point p in P<sub>1</sub>, which portion of P<sub>2</sub> should be checked?
- We only need to check the points that are within  $\delta$  of p.
- Thus we can limit the portion of P2.
- The points to consider for a point p must lie within  $\delta \times 2\delta$  rectangle R.
- At most, how many points are there in rectangle R?











How many points are there in rectangle *R*?

Since no two points can be closer than  $\delta$ , there can only be at most 6 points

Therefore,  $6 \cdot O(n/2) \in O(n)$ 

Thus, the time complexity is  $O(n \log n)$ 



How do we know which 6 points to check?











How do we know which 6 points to check?

- Project p and all the points of  $S_2$  within  $P_2$  onto I.
- Only the points within  $\delta$  of p in the y projection need to be considered (max of 6 points).
- After sorting the points on y coordinate we can find the points by scanning the sorted lists. Points are sorted by y coordinates only once.
- To <u>prevent</u> resorting in O(n log n) in each merge, two previously sorted lists are merged in O(n).

Time Complexity: O(n log n)











#### **SUMMARY**

#### **Sort Points:**

Sort all points based on their x-coordinates.

- · Divide:
  - Split the points into two halves, P<sub>1</sub> (left) and P<sub>R</sub> (right), based on the midpoint of the x-coordinates.p
- · Conquer:

Recursively find the closest pair in  $P_1$  and  $P_R$ . Compute the smallest distance ( $\delta$ ) from these two halves.

- · Combine:
- •Identify points in a vertical strip centered at the midpoint within a distance  $\delta$  from the dividing line.
- •Sort the points in the strip by y-coordinates and calculate distances between points within the strip.
- •Update  $\delta$  if a closer pair is found in the strip.
- Return the Closest Pair:

The minimum of the closest distances in  $P_L$ ,  $P_R$ , and the strip is the result.











### **SELF-ASSESSMENT QUESTIONS**

In the Divide and Conquer approach, which of the following is the first step?

- Divide the points into two halves
- Sort the points based on their x-coordinates
- Recursively find the closest pair in both halves
- (d) Sort the points based on their y-coordinates

In the Closest Pair Problem, the Euclidean distance between two points  $(x_1,y_1)$  and  $(x_2,y_2)$  is calculated as:

(a) 
$$(x_1 - x_2)^2 + (y_1 - y_2)^2$$

(a) 
$$(x_1 - x_2)^2 + (y_1 - y_2)^2$$
  
(b)  $\sqrt{((x_1 - x_2)^2 + (y_1 - y_2)^2)}$ 

(a) 
$$(x_1 - x_2) + (y_1 - y_2)$$

(b) None











### **TERMINAL QUESTIONS**

- 1. What is the Closest Pair Problem in computational geometry? Explain the goal and significance of solving this problem.
- 2. In the Divide and Conquer approach, how do you combine the solutions from the subproblems (i.e., after splitting the set of points into two halves)?











#### REFERENCES FOR FURTHER LEARNING OF THE SESSION

#### **Reference Books:**

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein., 3rd, 2009, The MIT Press.
- 2 Algorithm Design Manual, Steven S. Skiena., 2nd, 2008, Springer.
- 3 Data Structures and Algorithms in Python, Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser., 2nd, 2013, Wiley.
- 4 The Art of Computer Programming, Donald E. Knuth, 3rd, 1997, Addison-Wesley Professiona.

#### **MOOCS:**

- 1. https://www.coursera.org/specializations/algorithms?=
- 2.https://www.coursera.org/learn/dynamic-programming-greedy-algorithms#modules











# **THANK YOU**

















