

UNIVERSITY OF GHANA

(All rights reserved)

BACHELOR OF SCIENCE IN ENGINEERING

SECOND SEMESTER EXAMINATIONS, 2012/2013

CPEN 202 COMPUTER SYSTEMS DESIGN (2 Credits)

INSTRUCTION:

Answer ANY five (5) questions in your answer booklet.

TIME ALLOWED: TWO (2) HOURS

Q1.	(i)	With the help of a truth table, find the minimum-cost realization of the	
		function $f = x_1x_2 + x_2x_3$. Implement the function using tw	o two-input AND-
		Gates, an Inverter and an OR-Gate.	[8 Marks]
	(ii)	Explain how Component and Signal are used to code the c	ircuit Q1(i).
			[4 Marks]
	(iii)	Write a VHDL code to implement Q1(i).	[8 Marks]
Q2.	(i)	A warning light is to glow when the mains switch is ON provided that either switches X_1 and X_2 , or X_3 and X_4 , are turned on. Assuming that logics 1 or 0 are produced when a switch is closed and opened respectively, design a	
	· · · · ·	minimal logic circuit to produce logic 1 signal when the lig	
	(ii)	Redesign Q2 (i) using NAND-Gates.	[4 Marks]
	(iii)	Implement Q2 (ii) in VHDL.	[8 Marks]
Q3.	(i)	From first principles, design a full Adder.	[5 Marks]
	(ii)	Illustrate how a 4-bit full Adder may be constructed.	[5 Marks]
	(iii)	Write a VHDL code to implement the 4-bit full Adder.	[10 Marks]
Q4.	(i)	Draw and label clearly the general block diagram of a synchronous sequential	
		machine.	[4 Marks]
	(ii)	Design the circuit for a sequential machine to detect 1110.	[15 Marks]
	(iii)	Name the type of sequential machine you have designed.	[1 Mark]
Q5.	(i)	List any five (5) Programmable Logic Devices (PLDs).	[5 Marks]
	(ii)	Using $f_1 = x_1 x_2 \overline{x_3} + \overline{x_1} x_2 x_3$ and $f_2 = \overline{x_1} \overline{x_2} + x_1 x_2 x_3$ design an appropriate	
		Programmable Logic Device (PLD) for these functions.	[10 marks]
	(iii)	Which PLD listed in Q5(i) can handle larger circuits.	[2 Marks]
	(iv)	Name any two (2) limitations of programmable switches.	[2 Marks]
	(v)	Name the custom chips used to reduce design costs.	[1 Mark]
Q6.	(i)	Define glitch as it appears in Timing Hazards.	[2 Marks]
	(ii)	With an example, explain how a Static-1 Hazard can be ave	•
	(iii)	Prove that $f = xz + yz$ is a Static-1 Hazard and suggest how this can be	
	, ,	corrected	[10 Marks]

EXAMINER: PROSPER AFRITTE

Page 1 of 2

(iv) With the help of a well-labeled diagram explain what is meant by *Dynamic Hazard*? [3 Marks]

