Send temprature and humidity data on stm32 using DHT-22

configure the stm32 cube ide as below step:

- 1. pd14 as GPIO_Output
- 2. configure time tim6 prescalor (50-1), Counter period(0xffff-1), other will not change

3. configure RCC as below

4. Clock configuration

5. This is link for main.c code we visit this side

https://controllerstech.com/temperature-measurement-using-dht22-in-stm32

6. on this site scroll down

How to use DHT22 with STM32

7.Download the zip folder for main.c code

You can help with the development by DONATING

To download the code, click **DOWNLOAD** button and view the Ad. The project

7. Note Downloaded file name

Info

You can help with the development by DONATING

To download the code, click DOWNLOAD button and view the Ad. The project

will download after the Ad is finished.

7. According to the main file of this code we will change GPIO

```
*************************************
 */
/* USER CODE END Header */
/* Includes -----*/
#include "main.h"
/* Private includes -----*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */
/* Private typedef -----*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define -----*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
                  */
/* Private macro -----
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables -----*/
TIM_HandleTypeDef htim6;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----*/
void SystemClock Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM6_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code -----*/
/* USER CODE BEGIN 0 */
void delay (uint16 t time)
{
    /* change your code here for the delay in microseconds */
     HAL TIM SET COUNTER(&htim6, 0);
    while (( HAL TIM GET COUNTER(&htim6))<time);</pre>
uint8 t Rh byte1, Rh byte2, Temp byte1, Temp byte2;
uint16 t SUM, RH, TEMP;
float Temperature = 0;
float Humidity = 0;
uint8 t Presence = 0;
void Set_Pin_Output (GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
    GPIO InitTypeDef GPIO InitStruct = {0};
    GPIO InitStruct.Pin = GPIO Pin;
    GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
    GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
```

```
HAL GPIO Init(GPIOx, &GPIO InitStruct);
}
void Set Pin Input (GPIO TypeDef *GPIOx, uint16 t GPIO Pin)
      GPIO InitTypeDef GPIO InitStruct = {0};
      GPIO InitStruct.Pin = GPIO Pin;
      GPIO InitStruct.Mode = GPIO MODE INPUT;
      GPI0_InitStruct.Pull = GPI0_PULLUP;
      HAL GPIO Init(GPIOx, &GPIO InitStruct);
#define DHT22 PORT GPI0D ❖
#define DHT22_PIN GPI0_PIN_14
void DHT22 Start (void)
{
      Set Pin Output(DHT22 PORT, DHT22 PIN); // set the pin as output
      HAL GPIO WritePin (DHT22 PORT, DHT22 PIN, 0); // pull the pin low
      delay(1200);
                   // wait for > 1ms
      HAL GPIO WritePin (DHT22 PORT, DHT22 PIN, 1); // pull the pin high
      delay (20); // wait for 30us
      Set_Pin_Input(DHT22_PORT, DHT22_PIN); // set as input
}
uint8 t DHT22_Check_Response (void)
{
      Set Pin Input(DHT22 PORT, DHT22 PIN); // set as input
      uint8 t Response = 0;
      delay (40); // wait for 40us
      if (!(HAL GPIO ReadPin (DHT22 PORT, DHT22 PIN))) // if the pin is low
           delay (80); // wait for 80us
           if ((HAL GPIO ReadPin (DHT22 PORT, DHT22 PIN))) Response = 1; // if
the pin is high, response is ok
           else Response = -1;
      }
      while ((HAL_GPIO_ReadPin (DHT22_PORT, DHT22_PIN))); // wait for the pin
to go low
      return Response;
}
uint8 t DHT22 Read (void)
      uint8 t i,j;
      for (j=0;j<8;j++)
           while (!(HAL GPIO ReadPin (DHT22 PORT, DHT22 PIN))); // wait for
the pin to go high
           delay (40); // wait for 40 us
           if (!(HAL GPIO ReadPin (DHT22 PORT, DHT22 PIN))) // if the pin is
low
            {
                 i\&= \sim (1<<(7-j)); // write 0
           else i = (1 << (7-j)); // if the pin is high, write 1
           while ((HAL GPIO ReadPin (DHT22 PORT, DHT22 PIN))); // wait for the
pin to go low
```

```
}
      return i;
}
/* USER CODE END 0 */
  * @brief The application entry point.
  * @retval int
int main(void)
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */
  /* MCU Configuration-----*/
  /* Reset of all peripherals, Initializes the Flash interface and the <a href="Systick">Systick</a>.
  HAL Init();
  /* USER CODE BEGIN Init */
  /* USER CODE END Init */
  /* Configure the system clock */
  SystemClock Config();
  /* USER CODE BEGIN SysInit */
  /* USER CODE END SysInit */
  /* Initialize all configured peripherals */
 MX_GPIO_Init();
MX_TIM6_Init();
  /* USER CODE BEGIN 2 */
  HAL_TIM_Base_Start(&htim6);
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
        DHT22 Start();
              Presence = DHT22_Check_Response();
              Rh_byte1 = DHT22_Read();
              Rh_byte2 = DHT22_Read ();
              Temp byte1 = DHT22 Read ();
              Temp_byte2 = DHT22_Read ();
              SUM = DHT22 Read();
              TEMP = ((Temp byte1<<8)|Temp byte2);</pre>
              RH = ((Rh byte1 << 8)|Rh byte2);
              Temperature = (float) (TEMP/10.0);
              Humidity = (float) (RH/10.0);
     // HAL Delay(1000);
```

```
/* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
 }
  /* USER CODE END 3 */
}
/**
  * @brief System Clock Configuration
  * @retval None
void SystemClock_Config(void)
 RCC OscInitTypeDef RCC OscInitStruct = {0};
 RCC ClkInitTypeDef RCC ClkInitStruct = {0};
  /** Configure the main internal regulator output voltage
   HAL RCC PWR CLK ENABLE();
 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC OscInitTypeDef structure.
 RCC OscInitStruct.OscillatorType = RCC OSCILLATORTYPE HSI;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
 RCC OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSI;
 RCC OscInitStruct.PLL.PLLM = 8;
 RCC OscInitStruct.PLL.PLLN = 50;
 RCC OscInitStruct.PLL.PLLP = RCC PLLP DIV2;
 RCC OscInitStruct.PLL.PLLQ = 4;
 if (HAL RCC OscConfig(&RCC OscInitStruct) != HAL OK)
  {
    Error Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC CLOCKTYPE PCLK1|RCC CLOCKTYPE PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
 RCC ClkInitStruct.AHBCLKDivider = RCC SYSCLK DIV1;
 RCC ClkInitStruct.APB1CLKDivider = RCC HCLK DIV2;
 RCC ClkInitStruct.APB2CLKDivider = RCC HCLK DIV1;
  if (HAL RCC ClockConfig(&RCC ClkInitStruct, FLASH LATENCY 1) != HAL OK)
    Error_Handler();
}
/**
  * @brief TIM6 Initialization Function
 * @param None
 * @retval None
static void MX_TIM6_Init(void)
  /* USER CODE BEGIN TIM6 Init 0 */
```

```
/* USER CODE END TIM6 Init 0 */
  TIM MasterConfigTypeDef sMasterConfig = {0};
  /* USER CODE BEGIN TIM6 Init 1 */
  /* USER CODE END TIM6 <u>Init</u> 1 */
  htim6.Instance = TIM6;
  htim6.Init.Prescaler = 50-1;
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim6.Init.Period = 0xffff-1;
  htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL TIM Base Init(&htim6) != HAL OK)
    Error_Handler();
  sMasterConfig.MasterOutputTrigger = TIM TRGO RESET;
  sMasterConfig.MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
    Error_Handler();
  /* USER CODE BEGIN TIM6 <u>Init</u> 2 */
  /* USER CODE END TIM6 <u>Init</u> 2 */
}
/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
static void MX_GPIO_Init(void)
  GPIO InitTypeDef GPIO InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
  /* GPIO Ports Clock Enable */
   HAL RCC GPIOH CLK ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  /*Configure GPIO pin Output Level */
  HAL GPIO WritePin(GPIOD, GPIO PIN 14, GPIO PIN RESET);
  /*Configure GPIO pin : PD14 */
  GPI0_InitStruct.Pin = GPI0_PIN_14;
  GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
  GPIO InitStruct.Pull = GPIO NOPULL;
  GPI0_InitStruct.Speed = GPI0_SPEED FREQ LOW;
  HAL_GPI0_Init(GPI0D, &GPI0_InitStruct);
/* USER CODE BEGIN MX GPIO Init 2 */
/* USER CODE END MX GPIO Init 2 */
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
```

```
/**
 * @brief This function is executed in case of error occurrence.
 * @retval None
void Error_Handler(void)
 /* USER CODE BEGIN Error Handler Debug */
 /* User can add his own implementation to report the HAL error return state */
  disable_irq();
 while (1)
  {
 }
  /* USER CODE END Error_Handler_Debug */
#ifdef USE FULL ASSERT
 * @brief Reports the name of the source file and the source line number
           where the assert param error has occurred.
 * @param file: pointer to the source file name
 * @param line: assert param error line source number
 * @retval None
void assert failed(uint8 t *file, uint32 t line)
  /* USER CODE BEGIN 6 */
 /* User can add his own implementation to report the file name and line
number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
 /* USER CODE END 6 */
#endif /* USE FULL ASSERT */
```


PD14