Week 3 - Advanced Data Analysis Techniques and Business Insights

1. Data Loading and Initial Cleaning

- Loaded CSV file: raw sales data.csv
- Inspected shape, columns, dtypes, nulls, and duplicates
- Cleaned data:
- ✓ Filled Seasonality Index missing values with median [Found 1 missing value]
- ✓ Normalized Churned column (Y/N/y/n → Yes/No)
- Subset sales-related columns for correlation analysis

2. Exploratory Data Analysis (EDA)

Correlation HeatMap

➤ Potential Multicollinearity: Strong correlation between Marketing_Spend and Seasonality_Index (0.94)

3. Outlier Detection & Removal:

- ➤ Used **Z-score filtering** (<3)
- ➤ Reduced data size from original to outlier-free version [Rows: 24 to 22]

4. Class Imbalance Check

- > Churned distribution showed moderate class imbalance
- Yes: 13, No: 11

5. Predictive Modelling

• Linear Regression – Total Spend Prediction

```
X = filtered_data[['Marketing_Spend', 'Seasonality_Index']]
     y = filtered_data['Total_Spend']
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
     scaler = StandardScaler()
     X train scaled = scaler.fit transform(X train)
     X_test_scaled = scaler.transform(X_test)
     lr = LinearRegression()
     lr.fit(X_train_scaled, y_train)
     y_pred = lr.predict(X_test_scaled)
     rmse = np.sqrt(root_mean_squared_error(y_test, y_pred))
     print(f"RMSE: {rmse:.2f}")
     print(f"R^2 Score: {r2_score(y_test, y_pred):.2f}")
     print(f"Regression Co-efficients:", lr.coef_, lr.intercept_)
RMSE: 21.69
R^2 Score: 0.86
Regression Co-efficients: [924.44038178 249.20229739] 3894.1176470588234
```

Peformance:

- $R^2 = 86\% \rightarrow \text{strong explanatory power in Total Spend}$
- RMSE = $21.69 \rightarrow low prediction error$
- Marketing Spend had higher impact than Seasonality Index

• Logistic Regression – Churn Prediction

Output:

```
Accuracy: 0.80
Confusion Matrix:
 [[3 0]
 [1 1]]
Classification Report:
               precision
                             recall f1-score
                                                support
           0
                   0.75
                             1.00
                                        0.86
                                                      3
           1
                   1.00
                              0.50
                                        0.67
                                                      2
    accuracy
                                        0.80
                              0.75
                                                      5
   macro avg
                   0.88
                                        0.76
weighted avg
                   0.85
                              0.80
                                        0.78
```

Performance:

- > Accuracy: 80%
- ➤ High precision and recall; solid model for churn prediction

6. Statistical Analysis for Business Insights

H₀ (Null Hypothesis): All regions have the same average Total Spend. H₁ (Alternative Hypothesis): At least one region's average Total Spend is different.

- ➤ ANOVA (Across Regions):
 - Compared the average Total Spend across multiple regions (North, South, East, West).
 - p-value $> 0.05 \rightarrow$ Can not Reject H₀ \rightarrow There is no significant difference in sales across regions.

```
# Anova test to perform sales analysis over different regions

region_1 = raw_sales_data[raw_sales_data['Region'] == 'North']['Total_Spend']
region_2 = raw_sales_data[raw_sales_data['Region'] == 'South']['Total_Spend']
region_3 = raw_sales_data[raw_sales_data['Region'] == 'East']['Total_Spend']
region_4 = raw_sales_data[raw_sales_data['Region'] == 'West']['Total_Spend']
f_statistic, p_value = f_oneway(region_1, region_2, region_3, region_4)
print(f"F-statistic: {f_statistic:.2f}, p-value: {p_value:.4f}")
if p_value < 0.05:
    print("There are significant differences in Total Spend across regions.")
else:
    print("No significant differences in Total Spend across regions.")

> 0.0s

F-statistic: 1.36, p-value: 0.2822
No significant differences in Total Spend across regions."
```

➤ Hypothesis Testing: T-test (Effect of Promotions):

H₀ (Null Hypothesis): Promotions **do not** affect Total Spend H₁ (Alternative Hypothesis): Promotions **increase** Total Spend

- Promo group: Customers with above-median Marketing Spend
- Non-promo group: Customers with median or below Marketing Spend
- P-value $> 0.05 \rightarrow$ Can not Reject H₀

> Factor Analysis:

```
# Choose relevant features
features = ['Marketing_Spend', 'Seasonality_Index', 'Purchase_Frequency', 'Total_Spend']
X = raw_sales_data[features]

# Standardize
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Apply Factor Analysis
fa = FactorAnalysis(n_components=2, random_state=42)
X_factors = fa.fit_transform(X_scaled)

# Check loadings
factor_loadings = pd.DataFrame(fa.components_.T, columns=['Factor 1', 'Factor 2'], index=features)
print(factor_loadings)
```


Observations:

- Factor 1: High loadings on Marketing Spend and Seasonality Index
 - → Represents Marketing Influence
- Factor 2: High loading on Total Spend
 - → Represents Customer Spending Power

7. Machine Learning for Customer Segmentation

• Decision Tree Classifier

Observations:

- Customers with low marketing spend (≤ 1250) are mostly Low spenders.
- High spenders often:
 - ➤ Have high marketing spend (> 1850),
 - Purchase frequently, and Vary by seasonality index.
 - K-Means Clustering

Observations:

• Random Forests

```
features = ['Marketing_Spend', 'Seasonality_Index', 'Purchase_Frequency']
   X = raw sales data[features]
   y = raw_sales_data['Churned'] # 0/1 encoded
   X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
   rf = RandomForestClassifier(n_estimators=100, random_state=42)
   rf.fit(X_train, y_train)
   y_pred_rf = rf.predict(X_test)
   print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
   print("Classification Report:\n", classification_report(y_test, y_pred_rf))
Random Forest Accuracy: 1.0
Classification Report:
               precision
                           recall f1-score support
                  1.00
                            1.00
                                      1.00
                   1.00
                            1.00
                                      1.00
   accuracy
                                      1.00
                  1.00
                            1.00
   macro avg
                                      1.00
weighted avg
                  1.00
                            1.00
                                      1.00
```

XGBoost

```
xgb = XGBClassifier(use_label_encoder=False. eval metric='logloss'. random_state=42)
        xgb.fit(X_train, y_train)
                                        Chat (CTRL + I) / Share (CTRL + L)
       y pred xgb = xgb.predict(X test)
        print("XGBoost Accuracy:", accuracy_score(y_test, y_pred_xgb))
        print("Classification Report:\n", classification_report(y_test, y_pred_xgb))
[40] 		0.1s
    XGBoost Accuracy: 1.0
    Classification Report:
                   precision
                                recall f1-score
                                                    support
               0
                       1.00
                                 1.00
                                            1.00
                       1.00
                                 1.00
                                            1.00
        accuracy
                                            1.00
                       1.00
                                 1.00
       macro avg
                                            1.00
    weighted avg
                                 1.00
                                            1.00
                       1.00
```

Summary and Business recommendations

This project involved analyzing customer sales data to understand spending behavior, churn patterns, and segment customers for targeted marketing.

After data cleaning and outlier removal, key insights from EDA revealed a strong correlation between marketing spend and seasonality.

Predictive models, including linear and logistic regression, showed strong performance, with marketing spend being a major driver of total spend and churn. Statistical tests (ANOVA, t-test) indicated no significant regional or promotional effects, though trends suggested promotional influence. Decision trees and K-means clustering effectively segmented customers into actionable groups. High-accuracy churn models (Random Forest, XGBoost) further enabled predictive targeting.

Recommendations:

- 1. Collect more data for better predictions since the test data was quite small.
- 2. Use discounts to increase spending for price-sensitive customers.
- 3. Since marketing spend is a key driver, focus on it on regions and seasons where it most impacts purchase decisions.