

LFSAB 1201

APE Physique 1 - Mécanique Enoncés

11.1 •• A 0.120-kg, 50.0-cm-long uniform bar has a small 0.055-kg mass glued to its left end and a small 0.110-kg mass glued to the other end. The two small masses can each be treated as point masses. You want to balance this system horizontally on a fulcrum placed just under its center of gravity. How far from the left end should the fulcrum be placed?

11.5 •• Raising a Ladder. A ladder carried by a fire truck is 20.0 m long. The ladder weighs 2800 N and its center of gravity is at its center. The ladder is pivoted at one end (A) about a pin (Fig. E11.5); you can ignore the friction torque at the pin. The ladder is raised into position by a force applied by a hydraulic piston at C. Point C is 8.0 m from A, and the force \vec{F} exerted by the piston makes an angle of 40° with the ladder. What magnitude must \vec{F} have to just lift the ladder off the support bracket at B? Start with a free-body diagram of the ladder.

Figure E11.5

11.8 •• A 60.0-cm, uniform, 50.0-N shelf is supported horizontally by two vertical wires attached to the sloping ceiling (Fig. E11.8). A very small 25.0-N tool is placed on the shelf midway between the points where the wires are attached to it. Find the ten-

sion in each wire. Begin by making a free-body diagram of the shelf.

11.9 •• A 350-N, uniform, 1.50-m bar is suspended horizontally by two vertical cables at each end. Cable *A* can support a maximum tension of 500.0 N without breaking, and cable *B* can support up to 400.0 N. You want to place a small weight on this bar. (a) What is the heaviest weight you can put on without breaking either cable, and (b) where should you put this weight?

11.11 • A diving board 3.00 m long is supported at a point 1.00 m from the end, and a diver weighing 500 N stands at the free end (Fig. E11.11). The diving board is of uniform cross section and weighs 280 N. Find (a) the force at the support point and (b) the force at the left-hand end.

Figure **E11.11**

11.12 • A uniform aluminum beam 9.00 m long, weighing 300 N, rests symmetrically on two supports 5.00 m apart (Fig. E11.12). A boy weighing 600 N starts at point A and walks toward the right. (a) In the same diagram construct two graphs showing the upward forces F_A and F_B exerted on the beam at points A and B, as functions of the coordinate x of the boy. Let 1 cm = 100 N vertically, and 1 cm = 1.00 m horizontally. (b) From your diagram, how far beyond point B can the boy walk before the beam tips? (c) How far

Figure **E11.12**

from the right end of the beam should support *B* be placed so that the boy can walk just to the end of the beam without causing it to tip?

11.13 • Find the tension T in each cable and the magnitude and direction of the force exerted on the strut by the pivot in each of the arrangements in Fig. E11.13. In each case let w be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w. Start each case with a free-body diagram of the strut.

Figure **E11.13**(a) (b)

30.0°
45.0°

11.14 • The horizontal beam in Fig. E11.14 weighs 150 N, and its center of gravity is at its center. Find (a) the tension in the cable and (b) the horizontal and vertical components of the force exerted on the beam at the wall.

11.16 •• Suppose that you can lift no more than 650 N (around 150 lb) unaided. (a) How much can you lift using a 1.4-m-long wheelbarrow that weighs 80.0 N and whose center of gravity is 0.50 m from the center of the wheel (Fig. E11.16)? The center of gravity of the load carried in

the wheelbarrow is also 0.50 m from the center of the wheel. (b) Where does the force come from to enable you to lift more than 650 N using the wheelbarrow?

11.18 •• A 15,000-N crane pivots around a friction-free axle at its base and is supported by a cable making a 25° angle with the crane (Fig. E11.18). The crane is 16 m long and is not uniform, its center of gravity being 7.0 m from the axle as measured along the crane. The cable is attached 3.0 m from the upper end of the crane. When the crane is raised to 55° above the horizontal holding an

11,000-N pallet of bricks by a 2.2-m, very light cord, find (a) the tension in the cable and (b) the horizontal and vertical components of the force that the axle exerts on the crane. Start with a free-body diagram of the crane.

11.19 •• A 3.00-m-long, 240-N, uniform rod at the zoo is held in a horizontal position by two ropes at its ends (Fig. E11.19). The left rope makes an angle of 150° with the rod and the right rope makes an angle θ with the horizontal. A 90-N howler monkey (*Alouatta seniculus*) hangs motionless 0.50 m from the right end of the rod as he carefully studies you. Calculate the tensions in the two ropes and the angle θ . First make a free-body diagram of the rod.

Figure **E11.19**0.50 m

0.50 m

11.21 • A Couple. Two forces equal in magnitude and opposite in direction, acting on an object at two different points, form what is called a *couple*. Two antiparallel forces with equal magnitudes $F_1 = F_2 = 8.00 \ N$ are applied to a rod as shown in Fig. E11.21. (a) What should the distance l between the forces be if they are to provide a net torque of 6.40 N·m about the left end of the rod? (b) Is the sense of this torque clockwise or counterclockwise? (c) Repeat parts (a) and (b) for a pivot at the point on the rod where \vec{F}_2 is applied.

Figure **E11.21**

4.54 •• The two blocks in Fig. P4.54 are connected by a heavy uniform rope with a mass of 4.00 kg. An upward force of 200 N is applied as shown. (a) Draw three free-body diagrams: one for the 6.00-kg block, one for the 4.00-kg rope, and another one for the 5.00-kg block. For each force, indicate what body exerts that force. (b) What is the acceleration of the system? (c) What is the tension at the top of the heavy rope? (d) What is the tension at the midpoint of the rope?

5.31 •• You are lowering two boxes, one on top of the other, down the ramp shown in Fig. E5.31 by pulling on a rope parallel to the surface of the ramp. Both boxes move together at a constant speed of 15.0 cm/s. The coefficient of kinetic friction between the ramp and the lower box is 0.444, and the coefficient of static friction between the two boxes is 0.800. (a) What force do you need to exert to accomplish this? (b) What are the magnitude and direction of the friction force on the upper box?

Figure **E5.31**32.0

48.0

2.50 m

5.33 •• **CP Stopping Distance.** (a) If the coefficient of kinetic friction between tires and dry pavement is 0.80, what is the shortest distance in which you can stop an automobile by locking the brakes when traveling at 28.7 m/s (about 65 mi/h)? (b) On wet pavement the coefficient of kinetic friction may be only 0.25. How fast should you drive on wet pavement in order to be able to stop in the same distance as in part (a)? (*Note:* Locking the brakes is *not* the safest way to stop.)

5.46 •• The "Giant Swing" at a county fair consists of a vertical central shaft with a number of horizontal arms attached at its upper end (Fig. E5.46). Each arm supports a seat suspended from a cable 5.00 m long, the upper end of the cable being fastened to the arm at a point 3.00 m from the central shaft. (a) Find the time of one revolution of the swing if the cable supporting a seat makes an angle of 30.0° with the vertical. (b) Does the angle depend on the weight of the passenger for a given rate of revolution?

Figure E5.46

5.58 • In Fig. P5.58 a worker lifts a weight w by pulling down on a rope with a force \hat{F} . The upper pulley is attached to the ceiling by a chain, and the lower pulley is attached to the weight by another chain. In terms of w, find the tension in each chain and the magnitude of the force \vec{F} if the weight is lifted at constant speed. Include the free-body diagram or diagrams you used to determine your answers. Assume that the rope, pulleys, and chains all have negligible weights.

5.73 •• Block *A* in Fig. P5.73 weighs 2.40 N and block *B* weighs 3.60 N. The coefficient of kinetic friction between all surfaces is 0.300. Find the magnitude of the horizontal force \vec{F} necessary to drag block *B* to the left at constant speed (a) if *A* rests on *B* and moves with it (Fig. P5.73a). (b) If *A* is held at rest (Fig. P5.73b). Figure **P5.73**(a)

(b) \vec{F}

5.100 •• Accelerometer. The system shown in Fig. P5.100 can be used to measure the acceleration of the system. An observer riding on the platform measures the angle θ that the thread supporting the light ball makes with the vertical. There is no friction anywhere. (a) How is θ related to the acceleration of the system? (b) If $m_1 = 250 \text{ kg}$ and $m_2 = 1250 \text{ kg}$, what is θ ? (c) If you can vary m_1 and m_2 , what is the largest angle θ you could achieve? Explain how you need to adjust m_1 and m_2 to do this.

5.115 •• On the ride "Spindletop" at the amusement park Six Flags Over Texas, people stood against the inner wall of a hollow vertical cylinder with radius 2.5 m. The cylinder started to rotate, and when it reached a constant rotation rate of 0.60 rev/s, the floor on which people were standing dropped about 0.5 m. The people remained pinned against the wall. (a) Draw a force diagram for a person on this ride, after the floor has dropped. (b) What minimum coefficient of static friction is required if the person on the ride is not to slide downward to the new position of the floor? (c) Does your answer in part (b) depend on the mass of the passenger? (*Note:* When the ride is over, the cylinder is slowly brought to rest. As it slows down, people slide down the walls to the floor.)

6.29 • Stopping Distance. A car is traveling on a level road with speed v_0 at the instant when the brakes lock, so that the tires slide rather than roll. (a) Use the work–energy theorem to calculate the minimum stopping distance of the car in terms of v_0 , g, and the coefficient of kinetic friction μ_k between the tires and the road. (b) By what factor would the minimum stopping distance change if (i) the coefficient of kinetic friction were doubled, or (ii) the initial speed were doubled, or (iii) both the coefficient of kinetic friction and the initial speed were doubled?

6.87 •• Consider the system shown in Fig. P6.86. The rope and pulley have negligible mass, and the pulley is frictionless. Initially the 6.00-kg block is moving downward and the 8.00-kg block is moving to the right, both with a speed of 0.900 m/s. The blocks come to rest after moving 2.00 m. Use the work—energy theorem to calculate the coefficient of kinetic friction between the 8.00-kg block and the tabletop.

7.19 •• A spring of negligible mass has force constant k = 1600 N/m. (a) How far must the spring be compressed for 3.20 J of potential energy to be stored in it? (b) You place the spring vertically with one end on the floor. You then drop a 1.20-kg book onto it from a height of 0.80 m above the top of the spring. Find the maximum distance the spring will be compressed.

7.49 •• A 15.0-kg stone slides down a snow-covered hill (Fig. P7.49), leaving point *A* with a speed of 10.0 m/s. There is no friction on the hill between points *A* and *B*, but there is friction on the level ground at the bottom of the hill, between *B* and the wall. After entering the rough horizontal

region, the stone travels 100 m and then runs into a very long, light spring with force constant 2.00 N/m. The coefficients of kinetic and static friction between the stone and the horizontal ground are 0.20 and 0.80, respectively. (a) What is the speed of the stone when it reaches point B? (b) How far will the stone compress the spring? (c) Will the stone move again after it has been stopped by the spring?

13.65 • Falling Hammer. A hammer with mass m is dropped from rest from a height h above the earth's surface. This height is not necessarily small compared with the radius $R_{\rm E}$ of the earth. If you ignore air resistance, derive an expression for the speed v of the hammer when it reaches the surface of the earth. Your expression should involve h, $R_{\rm E}$, and $m_{\rm E}$, the mass of the earth.

13.51 • Geosynchronous Satellites. Many satellites are moving in a circle in the earth's equatorial plane. They are at such a height above the earth's surface that they always remain above the same point. (a) Find the altitude of these satellites above the earth's surface. (Such an orbit is said to be *geosynchronous*.) (b) Explain, with a sketch, why the radio signals from these satellites cannot directly reach receivers on earth that are north of 81.3° N latitude.

13.9 •• A particle of mass 3m is located 1.00 m from a particle of mass m. (a) Where should you put a third mass M so that the net gravitational force on M due to the two masses is exactly zero? (b) Is the equilibrium of M at this point stable or unstable (i) for points along the line connecting m and 3m, and (ii) for points along the line passing through M and perpendicular to the line connecting m and 3m?

13.62 •• The 0.100-kg sphere in Fig. P13.62 is released from rest at the position shown in the sketch, with its center 0.400 m from the center of the 5.00-kg mass. Assume that the only forces on the 0.100-kg sphere are the gravitational forces exerted by the other two spheres and that the 5.00-kg and 10.0-kg spheres are held in place at their initial positions. What is the speed of the 0.100-kg sphere when it has moved 0.400 m to the right from its initial position?

Figure **P13.62**

13.44 •• A uniform sphere with mass 60.0 kg is held with its center at the origin, and a second uniform sphere with mass 80.0 kg is held with its center at the point x = 0, y = 3.00 m. (a) What are the magnitude and direction of the net gravitational force due to these objects on a third uniform sphere with mass 0.500 kg placed at the point x = 4.00 m, y = 0? (b) Where, other than infinitely far away, could the third sphere be placed such that the net gravitational force acting on it from the other two spheres is equal to zero?

13.79 ••• A 5000-kg spacecraft is in a circular orbit 2000 km above the surface of Mars. How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4000 km above the surface?

14.34 •• A mass m is attached to a spring of force constant 75 N/m and allowed to oscillate. Figure E14.34 shows a graph of its velocity v_x as a function of time t. Find (a) the period, (b) the frequency, and (c) the angular frequency of this motion. (d) What is the amplitude (in cm), and at what times does the mass reach this position? (e) Find the maximum acceleration of the mass and the times at which it occurs. (f) What is the mass m?

Figure **E14.34**

14.72 ••• **CP** A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall (Fig. P14.72). A second block with mass m rests on top of the first block. The coefficient of static friction between the blocks is μ_s . Find the *maximum* amplitude of oscillation such that the top block will not slip on the bottom block.

Figure **P14.72**

14.35 • Inside a NASA test vehicle, a 3.50-kg ball is pulled along by a horizontal ideal spring fixed to a friction-free table. The force constant of the spring is 225 N/m. The vehicle has a steady acceleration of 5.00 m/s^2 , and the ball is not oscillating. Suddenly, when the vehicle's speed has reached 45.0 m/s, its engines turn off, thus eliminating its acceleration but not its velocity. Find (a) the amplitude and (b) the frequency of the resulting oscillations of the ball. (c) What will be the ball's maximum speed relative to the vehicle?

8.7 • Force of a Golf Swing. A 0.0450-kg golf ball initially at rest is given a speed of 25.0 m/s when a club strikes. If the club and ball are in contact for 2.00 ms, what average force acts on the

ball? Is the effect of the ball's weight during the time of contact significant? Why or why not?

8.31 •• Asteroid Collision. Two asteroids of equal mass in the asteroid belt between Mars and Jupiter collide with a glancing blow. Asteroid A, which was initially traveling at 40.0 m/s, is deflected 30.0° from its original direction, while asteroid B,

which was initially at rest, travels at 45.0° to the original direction of A (Fig. E8.31). (a) Find the speed of each asteroid after the collision. (b) What fraction of the original kinetic energy of asteroid A dissipates during this collision?

A 40.0 m/s A 30.0° A 45.0°

8.83 • A rifle bullet with mass 8.00 g strikes and embeds itself in a block with mass 0.992 kg that rests on a frictionless, horizontal surface and is attached to a coil spring (Fig. P8.83).

The impact compresses the spring 15.0 cm. Calibration of the spring shows that a force of 0.750 N is required to compress the spring 0.250 cm. (a) Find the magnitude of the block's velocity just after impact. (b) What was the initial speed of the bullet?

8.86 •• **CP** Two identical masses are released from rest in a smooth hemispherical bowl of radius *R* from the positions shown in Fig. P8.86. You can ignore friction between the masses and the surface of the bowl. If they stick together when they collide, how high above the bottom of the bowl will the masses go after colliding?

14.78 ••• **CP Tarzan to the Rescue!** Tarzan spies a 35-kg chimpanzee in severe danger, so he swings to the rescue. He adjusts his strong, but very light, vine so that he will first come to rest 4.0 s after beginning his swing, at which time his vine makes a 12° angle with the vertical. (a) How long is Tarzan's vine, assuming that he swings at the bottom end of it? (b) What are the frequency and amplitude (in degrees) of Tarzan's swing? (c) Just as he passes through the lowest point in his swing, Tarzan nabs the chimp from the ground and sweeps him out of the jaws of danger. If Tarzan's mass is 65 kg, find the frequency and amplitude (in degrees) of the swing with Tarzan holding onto the grateful chimp.