Order Statistics CS 5633 Analysis of Algorithms

Computer Science
University of Texas at San Antonio

October 2, 2024

Order Statistics with Divide and Conquer

Order Statistics

- ► Suppose we are given an array of *n* distinct elements. The *i*th **order statistic** is the *i*th smallest element.
 - -i = 1: minimum element -i = n: maximum element $-i = \lfloor (n+1)/2 \rfloor$: median
- ▶ Trivial algorithm: Sort the input using merge sort. Return the element at index i. Worst case running time is $\Theta(n \log n)$.
- Can we develop an algorithm which has a better worst-case running time than the trivial algorithm?

A Divide and Conquer Solution

- ► Use a randomized partitioning scheme similar to the one used in quicksort (choose a pivot and partition the elements into two sets "around" the pivot).
- ▶ Let *k* be the index of the pivot after partitioning.
- ▶ If i = k, then the pivot is the element we are looking for, and we return the pivot.
- ► If i < k, then we know that the element we are looking for is in the first subarray, and we recursively find the ith smallest element in this subarray.
- ▶ If i > k, then we now that the element we are looking for is in the second subarray, and we recursively find the element in position i k in this subarray.

A Divide and Conquer Solution cont.

► The pseudo-code of finding the i'th element in array *A*[*p* : *r*]:

Algorithm 1: DnD Order Statistics

```
Function Randomized_Select(A, p, r, i)
        if p == r then
             return A[p];// base case;
 3
        q = \text{Random Partition}(A, p, r);
        // k represents the pivot item's position after partition.:
        k = q - p + 1;
        if k == i then
             return A[q]; // we found the i'th item;
        else if i < k then
             return Randomized Select(A, p, q - 1, i); // search in the first
10
               half:
        else
11
             return Randomized Select(A, q + 1, r, i - k); // search in the first
12
               half;
```

Worst Case Run Time of Randomized_Select

- ► The non-recursive cost of each invocation,
 - − For each invocation, line 4 always requires $\Theta(n)$ or $c \cdot n$ time to execute.
- ► The recursive cost depends on the size of the sub-array at either line 10 or 12.
- ► In the worst case, we always select the smallest or largest item as the pivot.
 - And, we always have to find the target in the n-1 array.
 - That is, the execution time is, $T(n) = T(n-1) + c \cdot n$.
 - It is fairly easy to solve this equation with recursive tree, or expanding the equation or induction, which all give $T(n) = \Theta(n^2)$.

Typical Run Time of Randomized_Select

- If we choose a good pivot whose largest subarray is of size at most 9n/10:
 - − The run time is $T(n) \le T(9n/10) + c \cdot n$
 - This equation can be easily solved with master theorem case 3.
 - The final run time is then $T(n) = \Theta(n)$.
- ► This example shows that we can expect this algorithm to have a linear run time.

- ▶ The running time will depend on the sizes of the subproblems we generate. The two subarrays computed by partition will be of size (k 1, n k) for some $k \in \{1, ...n\}$.
 - Either line 10 or line 12 of Randomized_Sort is executed.
 - Therefore, the sub-problem will have a size of k-1 (line 10), or a size of n-k (line 12).
- ▶ To obtain an upper bound on the running time, we will assume that the *i*th element always falls in the larger subarray (i.e. the subproblem size will be max(k, n k)).
- ► Thus we can express the running time of the algorithm in the following way:
 - $T(n) = T(\max(k-1, n-k)) + c \cdot n.$

- ► Thus we can express the running time of the algorithm in the following way:
 - $T(n) = T(\max(k-1, n-k)) + c \cdot n$
 - The problem is, however, k could be an value between 1 and n.
- Let's define an indicator random variable to handle k.

$$I_{k} = \begin{cases} 1, & \text{if pivot is at } k \\ 0, & \text{otherwise} \end{cases}$$

► Note that, based on the slides from randomized algorithms, we have

$$E(I_k) = Pr(I_k = 1) = Pr(\text{the pivot is } k) = \frac{1}{n}$$
.

- $Pr(\text{the pivot is } k) = \frac{1}{n}$, as each item has an even chance becoming the pivot.

► The run-time can then be expressed as,

$$T(n) = \sum_{k=1}^{n} I_k \cdot T(\max(k-1, n-k)) + c \cdot .$$

► The expected run time of Randomized_Select, *E*(*T*(*n*)), is then,

$$\begin{split} E(T(n)) &= E(\sum_{k=1}^{n} I_k \cdot T(\max(k-1,n-k)) + c \cdot n) \\ &= E(\sum_{k=1}^{n} I_k \cdot T(\max(k-1,n-k))) + c \cdot n \\ &= \sum_{k=1}^{n} E(I_k) \cdot E(T(\max(k-1,n-k))) + c \cdot n \\ &= \sum_{k=1}^{n} \frac{1}{n} \cdot E(T(\max(k-1,n-k))) + c \cdot n \end{split}$$
 (1)

- ▶ Next, we need to treat max(k-1, n-k).
 - if $k > \lceil \frac{n}{2} \rceil$, $\max(k-1, n-k) = k-1$
 - if $k \leqslant \lceil \frac{\tilde{n}}{2} \rceil$, $\max(k-1, n-k) = n-k$
 - Considering we are just partitioning the array, the above two cases are actually equivalent.
 - Therefore, we can use the first case to estimate the second case.
- If only the first case is considered,

$$E(T(n)) = \sum_{k=1}^{n} \frac{1}{n} \cdot E(T(\max(k-1, n-k))) + c \cdot n$$

$$= \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n} 2 \cdot \frac{1}{n} \cdot E(T(k-1)) + c \cdot n$$

$$= \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} 2 \cdot \frac{1}{n} \cdot E(T(k)) + c \cdot n$$
(2)

- Now E(T(n)) is represented with an equation that does not require any special operators.
- ▶ We can now prove E(T(n)) = O(n) with induction.
 - Clearly, when n = 2, $E(T(2)) = T(1) + 2 \cdot c <= d \cdot 2(d > 4c)$
 - Assume E(T(k)) = O(k) for any k < n. For E(T(n)), we have,

$$E(T(n)) = \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} \frac{2}{n} \cdot E(T(k)) + c \cdot n \leq \frac{2}{n} \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} d \cdot k + c \cdot n$$

$$= \frac{2}{n} (\sum_{k=1}^{n-1} d \cdot k - \sum_{k=1}^{k=\lfloor \frac{n}{2} \rfloor - 1} d \cdot k) + c \cdot n$$

$$<= \frac{2}{n} (\frac{dn(n-1)}{2} - \frac{dn(n-1)}{8}) + c \cdot n$$

$$= dn - d - \frac{dn}{4} + \frac{d}{4} + c \cdot n <= d \cdot n(d > 4c)$$
(3)

Stable Order Statistics

Worst-case Order Statistics

- ▶ The randomized algorithm described is excellent in practice (linear expected running time); however, the worst case running time ($\Theta(n^2)$) is slower than the trivial algorithm.
- ▶ Is it possible to obtain an algorithm whose worst-case running time is better than the $\Theta(n \log n)$ running time of merge sort?
- Answer is yes [Blum, Floyd, Pratt, Rivest, and Tarjan 1973].
- ► The idea is to recursively generate a good pivot.

Stable Order Statistics

- ► The stable order statistics algorithm SELECT has the following steps:
 - 1. Partition the *n* items into groups each with 5 items. There are $\lceil \frac{n}{5} \rceil$ groups.
 - Find the median for each group with any sorting algorithm.
 Note that since the number of items per group is fixed (five), the run time of finding the median of a group is constant.
 - 3. Recursively used SELECT to find the median x of the $\lceil \frac{n}{5} \rceil$ medians from Step 2.
 - 4. Partition the array with *x*. If *x* is the *i*'th item, then return *x*. Otherwise, use SELECT to recursively find the *i*'th item in the corresponding sub-array.

An Illustration of the SELECT Algorithm

Illustration of SELECT:

Run Time of the SELECT Algorithm

- ightharpoonup Let the run time be T(n).
 - − Step 1 takes $\Theta(n)$ time to partition the array.
 - Step 2 takes $\Theta(n)$ time, since there are $\Theta(\lceil \frac{n}{5} \rceil)$ groups, and sorting one 5-item group takes constant time.
 - Step 3 recursively calls SELECT with $\lceil \frac{n}{5} \rceil$ items. Therefore, step 3 takes $T(\lceil \frac{n}{5} \rceil)$ time.
 - Step 4 partitions the array with $\Theta(n)$ time.
 - Step 5 recursively calls SELECT on one of the sub-arrays.
 Let m be the size of the largest sub-array, the run time of Step 5 is then T(m). To determine m,
 - About half of the $\lceil \frac{n}{5} \rceil$ groups have medians larger than x. These groups have at least 3 items larger that x.
 - ► For the group that contains *x*, there are at least two items larger than *x*.
 - ► Therefore, the number of elements larger than x is at least $3(\frac{1}{2} \lceil \frac{n}{5} \rceil) + 2 \geqslant \frac{3n}{10} + 2$

Run Time of the SELECT Algorithm cont.

- ightharpoonup Let the run time be T(n).
 - Step 5 recursively calls SELECT on one of the sub-arrays.
 Let m be the size of the largest sub-array, the run time of Step 5 is then T(m). To determine m,
 - About half of the $\lceil \frac{n}{5} \rceil$ groups have medians larger than x. These groups have at least 3 items larger that x.
 - ► For the group that contains *x*, there are at least two items larger than *x*.
 - ► Therefore, the number of items larger than x is at least $3(\frac{1}{2}[\frac{n}{5}]) + 2 = \frac{3n}{10} + 2$
 - ► The number of items less than x is at most $n \frac{3n}{10} + 2 = \frac{7n}{10} 2$. That is, m is at most $\frac{7n}{10} 2$.
 - Summing the time of all steps, we have $T(n) = T(\lceil \frac{n}{2} \rceil) + T(\frac{7n}{2} 2) + \Theta(n)$.
 - It is fairly easy to prove that T(n) = O(n) with induction.

The Intuition Behind SELECT and Randomized_Select

- Clearly, finding the i'th item does not require sorting the whole array. Therefore, the run time of order statistics algorithm should be much smaller than O(n lg n).
 - SELECT algorithm better demonstrates this fact by limiting the sorting within each five-item group.
- ► SELECT also achieves better partitioning by cleverly using the median of medians.
 - Note that, when partitioning the array with x, many items are guaranteed to be smaller than x, and do not need to be compared with x again.