Math 235 Section 8 Exercise Sheet 2

February 24, 2023

1 Basis Practice

For each of the following sets, find a basis. Prove that you found a basis (demonstrate that the two conditions hold).

1. The image of the matrix

$$\begin{pmatrix} 1 & -2 & 0 \\ 6 & -6 & -12 \\ 1 & 1 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

2. The kernel of the function

$$T(x_1, x_2, x_3) = \begin{pmatrix} x_1 + x_2 \\ x_1 + x_2 \end{pmatrix}$$

3. The subset of \mathbb{R}^5 defined by the intersection of the two hyperplanes with equations:

2 Applications of Linear Algebra: The Heat Equation

A graph is built out of vertices and edges. Here's a game we can play on a graph:

- To start, put a heat value (real number) on every vertex. This is the input data.
- Vertices send their heat to their neighbors, splitting it equally. That is, if a vertex u has neighbors w_1, \ldots, w_k , add $\frac{1}{k}$ times the old heat of u to the new heat of w_1 , and to the new heat of w_2 , and so on through w_k .
- Output the new heat values.

This game is *linear*: the new heat values are a linear function of the old heat values. Think of the game as a function T, from old heats to new heats. Here is an example of playing the game, on a specific graph:

Let's analyze how the game works for this specific graph:

1. If x_1, \ldots, x_5 are arbitrary input heat values for vertices 1-5, and y_1, \ldots, y_5 are the corresponding output heat values, write down the equations for T so that

$$T\left(\begin{pmatrix} x_1\\x_2\\x_3\\x_4\\x_5\end{pmatrix}\right) = \begin{pmatrix} y_1\\y_2\\y_3\\y_4\\y_5\end{pmatrix}.$$

- 2. Consider the set V_1 of vectors \vec{v} such that $T(\vec{v}) = \vec{v}$. Find a basis for V_1 , and show what happens when I use those vectors to play the game. Hint: $T(\vec{v}) = \vec{v}$ is another linear equation, saying $T(\vec{v}) \vec{v} = 0$. Write the equations out, and solve the system.
- 3. Consider the set $V_{-1/2}$ of vectors \vec{v} such that $T(\vec{v}) = -\frac{1}{2}\vec{v}$. Find a basis for $V_{-1/2}$, and show what happens when I use those vectors to play the game.