Applying Iterative Design Principles to a Live Product

Name: Tibor Zahorecz Date: 11th Dec 2020

Step 1
Select KPIs

8

Evaluate Previous

Multivariate

Experiment Results

Select KPIs for Flyber Analyses

- In MVP phase I have chosen the MAU/DAU, NPS, MRR
- For the data available, which KPI(s) best match Flyber's business model? (using supplement materials: <u>link</u>)

,KPIs are quantifiable measurements or data points used to gauge your company's performance relative to some goal. For instance, a KPI could be related to your goal of increasing sales, improving the return on investment of your marketing efforts, or improving customer service.'

We have data logs available which help Flyber in the **growth** stage:

KPI 1: Acquisition: the number of new visitors in a day

KPI 2: Activation: the number of visitors who sign up for a drive

KPI 3: Retention: % churn in searh phase

Abc Flyber_event_logs.csv event_uuid	Abc Flyber_event_logs.csv user_uuid	Flyber_event_logs.csv event_time	Abc Flyber_event_l age	Abo Flyber_event_logs.csv session_uuid	Abc Flyber_event_logs.csv experiment_group	Abc Flyber_event_logs.csv user_neighborhood	Abc Flyber_event_logs.csv event_type
46e60fb9-aa35-4a19	d3deed54-1c5b-47c1	2019. 10. 11. 9:00:34	40-49	2a45992a-ff51-4fc8-b	experiment_2	Manhattan	open
9e858786-9186-4951	42e0e448-07c4-4837	2019. 10. 10. 22:55:11	50+	bd1fe39b-2f18-4561	experiment_1	Manhattan	open
980cb36b-bf49-4fb1	42e0e448-07c4-4837	2019. 10. 10. 22:55:18	50+	bd1fe39b-2f18-4561	experiment_1	Manhattan	#_of_users
204a3dfc-1460-4f21	42e0e448-07c4-4837	2019. 10. 10. 14:56:06	40-49	8caeec15-9058-452a	control	Manhattan	open
422efc1a-5eaf-4ba2	9acde266-30b5-46a5	2019. 10. 09. 23:00:54	40-49	4508f6eb-1429-4a80	experiment_3	Manhattan	open

Select KPIs for Flyber Analyses

 How would you calculate these KPI(s) using the available event data logs?

i., Acquisition: the number of new visitors in a day = nr of new user_id / event time (day)

ii., Activation: the number of visitors who sign up for a drive = nr of user_id with event type (#_of_users)

 List other KPIs that might be important to Flyber but are not calculable based on available data

Activation: The time users spend browsing the Flyber app on the first visit

Retention: The number of users who renew their trip with Flyber

Revenue: Customer Acquisition Cost (CAC), Customer lifetime value (LTV)

Describe the First Multivariate Experiment

Describe the elements tested during the multivariate experiment. You can use the image below when referencing the tests

Control

Experiment 1

Experiment 2

Experiment 3

Describe the First Multivariate Experiment

Describe the elements tested during the multivariate experiment. You can use the image below when referencing the tests

There are 2 variables in this multivariate experiment. The first one is the text field "**Tip Included**", the second one is the the **text on the CTA button** (Fly Now or Book Flight).

- Control: CTA (Book Flight) + Tip included
- Experiment 1: vs Control CTA is changed to Fly Now
- Experiment 2: vs Control without Tip included
- Experiment 3: vs Control witthout Tip included and CTA is changed to Fly Now

Provide a visual representation of the impact of the experiment on the conversion rate of users booking a flight (out of all users opening the app)

Step 1: comparing user_uuid vs records → same

Provide a visual representation of the impact of the experiment on the conversion rate of users booking a flight (out of all users opening the app)

Step 2: conversion rate

experiment conversion rate

experiment_group

event_type	control	experi	experi	experi
open	56 390	56 390	56 688	56 687
#_of_users	23 612	23 626	23 953	23 557
search	11 323	11300	11581	11 299
begin_ride	154	172	180	171

Provide a visual representation of the impact of the experiment on the conversion rate of users booking a flight (out of all users opening the app)

Step 3: Visual representation

Step 4: Analyzing by convesion stage: Begin_Ride

Determine if there was a significant difference between the experiments and control states.

Explain how you would perform a t-test to determine if the experimental results had a greater impact on the booking conversion rate than the control state

In order to perform the t-test, we will first make hypothesis

- → Null hypothesis: Users do not convert better with the test state as compared to control state
- → Alternative hypothesis: Users will convert differently with the test state
- → Confidence interval: 95% confidence
- → p- value < 0.025, difference is statistically significant, the null is rejected.

Determine if there was a significant difference between the experiments and control states.

List the test results (p value) for each experiment compared to the control

Data:

T-test Analysis

experiment_gr	event_type		
control	open	56 390	
	#_of_users	23 612	
	search	11 323	
	begin_ride	154	
experiment_1	open	56 390	
	#_of_users	23 626	
	search	11 300	
	begin_ride	172	
experiment_2	open	56 688	
	#_of_users	23 953	
	search	11 581	
	begin_ride	180	
experiment_3	open	56 687	
	#_of_users	23 557	
	search	11 299	
	begin_ride	171	

Determine if there was a significant difference between the experiments and control states.

List the test results (p value) for each experiment compared to the control

Results: (using https://www.surveymonkey.com/mp/ab-testing-significance-calculator/)

Control vs Experiment 1: p value: 0.1591

Control vs Experiment 2: p value: 0.0843

Control vs Experiment 3: p value: 0.1848

Determine if there was a significant difference between the experiments and control states.

 Using the statistical significance calculator of your choice, determine which experiments, if any, had a significant result at the 95% level. Include your calculations as part of your explanation:

* see onthe above slides the calculator screenshots

 Based on your statistical significance calculations, recommend if any of the experiments should be expanded

* Result not significant for all three cases based on p value at 95% confidence level

Step 2 Funnel & Cohort Analyses

Identifying the different stages the user funnel

Based on the event types in the data provided, list the 3 or more steps a user can take from opening the app to final booking of a ride

Event_type: open, #_of_users, search, begin_ride

Identifying the different stages the user funnel

Provide a graph showing the funnel from step to step, including drop off rates.

Using data set

experiments conversion rate

experiment_group

event_type	control	experi	experi	experi
open	56 390	56 390	56 688	56 687
#_of_users	23 612	23 626	23 953	23 557
search	11 323	11300	11 581	11 299
begin_ride	154	172	180	171

experiments conversion rate

experiment_group

event_type	control	experi	experi	experi
open	0,00%	0,00%	0,00%	0,00%
#_of_users	-58,13%	-58,10%	-57,75%	-58,44%
search	-79,92%	-79,96%	-79,57%	-80,07%
begin_ride	-99,73%	-99,69%	-99,68%	-99,70%

Identifying the different stages the user funnel

Provide a graph showing the funnel from step to step, including drop off rates.

user drop off per conversion step

Identifying the different stages the user funnel

Provide a graph showing the funnel from step to step, including drop off rates.

 Identify 2 demographic attributes present in the data that allow for segment analysis

'Demographic segments group users that share the *same personal* characteristics'

Product managers use demographic segmentation to understand if personal characteristics result in different product experiences. When significant differences among different groups occur, product managers can form a hypothesis for the cause of these results and then investigate further. Such investigations often lead to discoveries about the unmet needs of the underperforming segment. These unmet needs to become opportunities to boost KPIs with targeted product changes.

Demographic attributes: age, user_neighborhood

age	
18-29	57 364
30-39	38 356
40-49	95 168
50+	176 195

10 802
73 880
257 259
18 088
7 054

For each demographic attribute, provide the number of users in each segment group

nr of user for age groups

experiment_group

age	control	experiment_1	experiment_2	experiment_3
18-29	14 350	14 083	14 613	14 318
30-39	9 570	9 635	9 641	9 5 1 0
40-49	23 363	24 036	23 768	24 001
50+	44 196	43 734	44 380	43 885

nr of user for age groups

For each demographic attribute, provide the number of users in each segment group

_	_	the state of the s
profuso	rc tor	locations
III OI USE	13101	locations

	experiment_group					
user_neighbor	control	experiment_1	experiment_2	experiment_3		
Bronx	2 683	2 748	2 723	2 648		
Brooklyn	18 362	18 574	18 687	18 257		
Manhattan	64 068	64 048	64 636	64 507		
Queens	4 547	4312	4 653	4 576		
Staten Island	1819	1806	1703	1726		

nr of users for locations

For each demographic attribute, identify the segment group with the largest number of users

segment group with the largest number of users

experiment_group /										
	control						e	xperiment_	1	
					Staten					Staten
age	Bronx	Brooklyn	Manhatt	Queens	Island	Bronx	Brooklyn	Manhatt	Queens	Island
18-29	376	2 930	10 023	730	291	434	2 900	9 825	669	255
30-39	288	2 009	6 5 6 4	545	164	330	1916	6 756	444	189
40-49	692	4 544	16 500	1141	486	657	4 940	16 833	1140	466
50+	1327	8 879	30 981	2 131	878	1327	8 818	30 634	2 059	896

user_neighborhood

experiment_2						e	xperiment_	3	
Bronx	Brooklyn	Manhatt	Queens	Staten Island	Bronx	Brooklyn	Manhatt	Queens	Staten Island
454	2 897	10 259	734	269	422	2914	10 058	702	222
275	1905	6 809	496	156	293	1847	6 721	445	204
708	4 875	16 501	1228	456	683	4824	16 765	1211	518
1 286	9 010	31 067	2 195	822	1 250	8 672	30 963	2 2 1 8	782

For each demographic attribute, identify the segment group with the largest number of users

segment group with the largest number of users

		experiment_group				
age	user_neighbor	control	experiment_1	experiment_2	experiment_3	
18-29	Bronx	•	•	•	•	
	Brooklyn					
	Manhattan					
	Queens				4.0	
	Staten Island					
30-39	Bronx					
	Brooklyn					
	Manhattan					
	Queens					
	Staten Island		•	•		
40-49	Bronx				100	
	Brooklyn	-				
	Manhattan					
	Queens					
	Staten Island	100	•	•		
50+	Bronx					
	Brooklyn					
	Manhattan					
	Queens					
	Staten Island					

Identify Opportunities for Improvement

 Perform a funnel analysis by segment for all identified demographic attributes and describe the results

Age analysis I.

Analyzing age group per Funnel drop off

	age					
event_type	18-29	30-39	40-49	50+		
open	33 878	22 760	56 256	113 261		
#_of_users	14 222	9 477	23 566	47 483		
search	9 138	6 0 1 9	15 090	15 256		
begin_ride	126	100	256	195		

Identify Opportunities for Improvement

Perform a funnel analysis by segment for all identified demographic attributes and describe the results

Age analysis II.

Analyzing age group per Funnel drop off

					event_ty	/pe			
age	experiment_gr	open	1	#_of_us	sers	search		begin_ride	
18-29	control		8 480		3 559		2 291		20
	experiment_1		8 336		3 490		2 229		28
	experiment_2		8 521		3 672		2381		39
	experiment_3		8 541		3 501		2 237	•	39
30-39	control		5 690		2 352		1 498	•	30
	experiment_1		5 742		2 384		1481		28
	experiment_2		5 706		2 3 7 8		1535		22
	experiment_3		5 622		2 363		1505		20
40-49	control		13 843		5 787	•	3 679	•	54
	experiment_1		14 196		5 982		3 790		68
	experiment_2		13 953		5 928		3 817		70
	experiment_3		14 264		5 869		3 804		64
50+	control		28 377		11 914		3 855	•	50
	experiment_1		28 116		11 770		3 800		48
	experiment_2		28 508		11 975		3 848		49
	experiment_3		28 260		11 824		3 753	•	48

Identify Opportunities for Improvement

Perform a funnel analysis by segment for all identified demographic attributes and describe the results

Age analysis III.

Identify Opportunities for Improvement

Perform a funnel analysis by segment for all identified demographic attributes and describe the results

Age analysis summary

In the 50+ age group, there is a large mass of interest (open) and finally a very low use of the service (begin_ride) can be observed. What is the reason of this age group has a high drop off rate in the conversion funnel?

While the 30-39 and 18-29 ages have a much healthier funnel, but they have a lower initial opening rate. The analysis shows that an experiment should be conducted for these two age segments. Why is the opening rate so low and how can be improved.

Identify Opportunities for Improvement

Neighborhood Analysis I.

analyzing neighborhood vs funnel drop off

user_neighborhood

event_type	Manhat	Brooklyn	Queens	Bronx	Staten Island
open	158 366	45 583	11 172	6 693	4341
#_of_users	66 471	19 059	4 628	2758	1832
search	31 948	9 103	2 257	1328	867
begin_ride	474	135	31	23	14

analyzing neighborhood vs funnel drop off

Identify Opportunities for Improvement

Neighborhood Analysis I.

analyzing neighborhood vs funnel drop off

		experiment_group				
event_type	user_neighbor	control	experiment_1	experiment_2	experiment_3	
open	Manhattan	39 407	39 413	39 688	39 858	
	Brooklyn	11 363	11 458	11 456	11 306	
	Queens	2810	2716	2 821	2 825	
	Bronx	1700	1 673	1671	1 649	
	Staten Island	1 110	1130	1052	1 049	
#_of_users	Manhattan	16 574	16 542	16 758	16 597	
	Brooklyn	4 733	4820	4 848	4 658	
	Queens	1161	1 082	1 217	1168	
	Bronx	669	727	689	673	
	Staten Island	475	455	441	461	
search	Manhattan	7 981	7 976	8 057	7 934	
	Brooklyn	2 234	2 260	2 351	2 258	
	Queens	570	507	607	573	
	Bronx	308	340	358	322	
	Staten Island	230	217	208	212	
begin_ride	Manhattan	106	117	133	118	
	Brooklyn	32	36	32	35	
	Queens	6	7	8	10	
	Bronx	6	8	5	4	
	Staten Island	4	4	2	4	

Identify Opportunities for Improvement

Neighborhood Analysis I.

analyzing neighborhood vs funnel drop off

			experimer	nt_group	
event_type	user_neighbor	control	experiment_1	experiment_2	experiment_3
open	Manhattan	0,00%	0,00%	0,00%	0,00%
	Brooklyn	-71,17%	-70,93%	-71,13%	-71,63%
	Queens	-92,87%	-93,11%	-92,89%	-92,91%
	Bronx	-95,69%	-95,76%	-95,79%	-95,86%
	Staten Island	-97,18%	-97,13%	-97,35%	-97,37%
#_of_users	Manhattan	-57,94%	-58,03%	-57,78%	-58,36%
	Brooklyn	-87,99%	-87,77%	-87,78%	-88,31%
	Queens	-97,05%	-97,25%	-96,93%	-97,07%
	Bronx	-98,30%	-98,16%	-98,26%	-98,31%
	Staten Island	-98,79%	-98,85%	-98,89%	-98,84%
search	Manhattan	-79,75%	-79,76%	-79,70%	-80,09%
	Brooklyn	-94,33%	-94,27%	-94,08%	-94,33%
	Queens	-98,55%	-98,71%	-98,47%	-98,56%
	Bronx	-99,22%	-99,14%	-99,10%	-99,19%
	Staten Island	-99,42%	-99,45%	-99,48%	-99,47%
begin_ride	Manhattan	-99,73%	-99,70%	-99,66%	-99,70%
	Brooklyn	-99,92%	-99,91%	-99,92%	-99,91%
	Queens	-99,98%	-99,98%	-99,98%	-99,97%
	Bronx	-99,98%	-99,98%	-99,99%	-99,99%
	Staten Island	-99,99%	-99,99%	-99,99%	-99,99%

Identify Opportunities for Improvement

Neighborhood Analysis II.

Identify Opportunities for Improvement

Neighborhood Analysis summary

Manhattan has the largest nr of usage of the service, Brooklyn come after it.

Drop off calculation: State of Island has the lowest #_nr_user drop off rate (57.80%), in the search pahe Manhattan has the lowest nr (79.83%) and Bronx has the best begin_ride rate 99.66%.

Analysing by experiements: by the largest nr of usage Manhattan experiment_2 has the best conversion rate and Bronx experiment_1

		Manhattan					
event_type	control ex	periment_1ex	periment_2 ex	periment_3			
open	0,00%	0,00%	0,00%	0,00%			
#_of_users	-57,94%	-58,03%	-57,78%	-58,36%			
search	-79,75%	-79,76%	-79,70%	-80,09%			
begin_ride	-99,73%	-99,70%	-99,66%	-99,70%			
	<						
		Bron	x				
	control ex	periment_1ex	periment_2 ex	periment_3			
	0,00%	0,00%	0,00%	0,00%			
	-60,65%	-56,55%	-58,77%	-59,19%			
	-81,88%	-79,68%	-78,58%	-80,47%			
	-99,65%	-99,52%	-99,70%	-99,76%			

Identify Opportunities for Improvement

Neighborhood & Age funnel drop analysis

Age & Neighborhood funnel drop analysis

			event_ty	pe	
age	user_neighbor	open	#_of_users	search	begin_ride
18-29	Manhattan	23 708	9 944	6 418	· 95
	Brooklyn	6 894	• 2903	• 1824	· 20
	Queens	1647	• 709	· 474	. 5
	Bronx	· 1003	· 413	· 267	. 3
	Staten Island	· 626	• 253	• 155	. 3
30-39	Manhattan	15 892	6 645	 4 244 	· 69
	Brooklyn	 4 587 	• 1900	· 1171	• 19
	Queens	· 1146	• 466	· 312	• 6
	Bronx	· 715	· 285	• 182	. 4
	Staten Island	· 420	• 181	• 110	. 2
40-49	Manhattan	39 341	16 502	1 0 576	· 180
	Brooklyn	11361	4740	3 031	• 51
	Queens	• 2797	· 1162	• 751	• 10
	Bronx	• 1631	• 669	· 430	· 10
	Staten Island	· 1126	· 493	• 302	• 5
50+	Manhattan	79 425	33 380	10710	· 130
	Brooklyn	22 741	9 5 1 6	3077	· 45
	Queens	 5 582 	 2 291 	• 720	· 10
	Bronx	 3 344 	· 1391	· 449	. 6
	Staten Island	• 2169	• 905	• 300	. 4

Identify Opportunities for Improvement

Neighborhood & Age funnel drop analysis

Age & Neighborhood funnel drop analysis by percent total

		event_type				
age	user_neighbor	open	#_of_users	search	begin_ride	
18-29	Manhattan	59,03%	24,76%	15,98%	0,24%	
	Brooklyn	59,22%	24,94%	15,67%	0,17%	
	Queens	58,10%	25,01%	16,72%	0,18%	
	Bronx	59,49%	24,50%	15,84%	0,18%	
	Staten Island	60,37%	24,40%	14,95%	0,29%	
30-39	Manhattan	59,19%	24,75%	15,81%	0,26%	
	Brooklyn	59,75%	24,75%	15,25%	0,25%	
	Queens	59,38%	24,15%	16,17%	0,31%	
	Bronx	60,29%	24,03%	15,35%	0,34%	
	Staten Island	58,91%	25,39%	15,43%	0,28%	
40-49	Manhattan	59,07%	24,78%	15,88%	0,27%	
	Brooklyn	59,22%	24,71%	15,80%	0,27%	
	Queens	59,26%	24,62%	15,91%	0,21%	
	Bronx	59,53%	24,42%	15,69%	0,36%	
	Staten Island	58,46%	25,60%	15,68%	0,26%	
50+	Manhattan	64,24%	27,00%	8,66%	0,11%	
	Brooklyn	64,28%	26,90%	8,70%	0,13%	
	Queens	64,88%	26,63%	8,37%	0,12%	
	Bronx	64,43%	26,80%	8,65%	0,12%	
	Staten Island	64,21%	26,79%	8,88%	0,12%	

Segment Analysis of Funnel

Identify Opportunities for Improvement

Neighborhood & Age Analysis summary

Younger generations have got lower drop off rate in search phase, and here we are loosing 50+ genreration.

In Bronx at the age goup of 30-39, 40-49 we have the highest begin_ride %.

Step 3 Hypothesis & Next Steps

In this stage I use learnings from Udacity lecture: Integrate Data into Iterative Design (video)

First, analyzing usage data, conversion funnels, and other quantitative data collected can reveal users or areas that are under- and overperforming.

Next, upon seeing areas for improvement via quantitative analysis, product managers then turn to user interviews or other qualitative data techniques to understand why such trends might be occurring.

Read **user interviews** to understand "why" any funnel under-performance seen in Step 2 might occur

In the user interview log file we can see 50+ age group over represented but it is in line with quantitative data logs (open rate).

Recognized behaviour patterns:

- Calling a service (taxi)
- Use assistant to drive their car
- Tell a phone (voice command) to call a service

Hypothesis behind the patterns:

- poor eyesight in older age | bad UX of the app
- entrenched habits like calling a dispatcher
- uses the phone to make calls and not booking service

List your hypothesis for what customer need is being under-served

In this stage I use learnings from Udacity lecture: **Jobs to Be Done Framework**

The Jobs to Be Done Framework pushes product managers to consider what job people are hiring their product to do. This job goes beyond the simple actions a user takes and instead examines the motivations and goals a customer is trying to achieve.

Core functional job: this is the direct result that job executor is trying to achieve by using a product. Note: it should be motivations and goals a customer is trying to achieve, regardless of what tools they use. → Being from A to B as fast as possible fast and safe (detailed in the next slides)

Related jobs: these are jobs done either before, during, or following the execution of the core functional job. By understanding related jobs, you can find opportunities to add additional features to the product that helps customers.

Emotional job: this is how the job executor wants to feel or be perceived after finishing the core functional job. → super cool to fly and arrive to destination, gives credits in society

<u>video</u>

List your hypothesis for what customer need is being under-served

Step 1: Define: defines goals and the resources needed for achieving goals. In this step, product managers can improve their product by making planning simpler for the user.

- → flyber user realizes she needs to be in Manhattan in 25 minutes for the next meeting. She wants to avoid traffic jam.
- → feature makes planning simpler: syncronize user calendar with flyber app and give signals when to start trip based on traffic. Save user addresses and favourite places make planning easier.

Step 2: Locate: gathers everything needed to accomplish a job, whether physical tools or information.

A product manager can innovate in this step by making it easier for a user to gather everything they need in one place.

- → user checks the traffic situation, calls his cab service for estimated time to arrive, check google maps
- → feature makes easier gathering information: comparing ETA and costs based on taxi, uber, own car and flyber

Step 3: Prepare: sets up the environment to do a job.

To make improvements, product managers can reduce required set up or provide guidance that allows users to prepare more quickly.

- → user prepares his mobile for booking, his car for driving
- → feature helps to prepare more quickly: voice command for route planning, virtual assistant for complete execution

List your hypothesis for what customer need is being under-served

Step 4: Confirm: a final check to make sure the job is ready to do.

Product manager can innovate by giving users easy ways to confirm their readiness for a job.

- → user checks things before starting her trip: meeting notes, laptops, her children present, clothes...
- → feature helps this phase: Based on the user's calendar entry, the app analyzes the type of appointment and gives a forecast of what tools are needed for the appointment. Eg. if she has a business meeting the app will remind the user to bring her laptop and notes.

Step 5: Execute: begins to carry out a job.

A product manager improves this step by removing blockers and ensuring their product is intuitive to use.

- → user call the service or book the trip
- → features: voice command, ,press one button', clear instruction (visible)

Step 6: Monitor: checks whether the job is being successfully carried out. For this step, product managers can innovate by giving users more information about progress towards their goal.

- → user monitor the progress: in time?, no danger?, traffic changed?...
- → features: show the ETA, progress on map vs cab & uber, show traffic changes

List your hypothesis for what customer need is being under-served

Step 7: Modify: make changes or adjustments to improve the outcomes of the job. To improve a product in this step, a product manager should reduce the number of modifications a user has to make when executing a job.

- → user can change the destination or stop picking up her partner
- → feature: options if destination changed (next flyber drop off station with continuing uber pick up)

Step 8: Conclude: finishes executing the job.

To improve a product in this step, product managers can decrease the work needed to conclude a job.

- → user arrives her destination in good mood, fresh with pride
- → features: payment without delay (not transactional one)

Emotional Needs Served

A flyber user has emotional need for feeling safer and winner. Showing others that they are rich, tech-driven people.

Case Studies: Customer Empathy with Jobs to Be Done: The UBER Case, Build Products That Solve Real Problems With This Lightweight JTBD Framework

Tony Ulwick - Put Jobs-To-Be-Done Theory Into Practice With Outcome-Driven Innovation

List your hypothesis for what customer need is being under-served

Tony Ulwick – <u>Put Jobs-To-Be-Done Theory Into Practice With Outcome-Driven</u> Innovation

THE JOBS-TO-BE-DONE NEEDS FRAMEWORK

ON AVERAGE A MARKET MAY APPEAR WELL SERVED

But the average customer does not exist. There are always segments of customers with different unmet outcomes.

DISCOVER HIDDEN SEGMENTS OF OPPORTUNITY

Outcome-Based Segmentation reveals under- and overserved segments, their size, and which outcomes to target for growth.

List your hypothesis for what customer need is being under-served

Simple planning: syncronize user calendar with flyber app and give signals when to start trip based on traffic. Save user addresses and favourite places make planning easier.

Makes easier gathering information: comparing ETA and costs based on taxi, uber, own car and flyber

Prepare the trip more quickly: voice command for route planning, virtual assistant for complete execution

Booking: voice command, ,press one button', clear instruction (visible)

Prioritization

RICE framework

R (Reach): the number of people or customers a feature is expected to be used by, in a set time period. (Qualitative log data 50+ age / location)

I (Impact): measures the effect a new feature is expected to have on KPIs such as conversion rate or customer satisfaction. (data log conversion funnal drop off)

C (Confidence): describes how sure you are that your estimates are correct. The more data you have about reach, impact, and effort, the more confident you would be.

E (Effort): the amount of time it will take to make a feature go live, from design to engineering to QA and launch. The effort can be measured in person-mor which means the work one person can do in a number of months.

How to do it: <u>link</u>

Provide 3 or more quotes as evidence for this hypothesis

'Honestly, I thought about using Flyber to suprise my grandson or granddaughter with a visit to one of their sporting games. Luckily my daughter was around to help me book the ride. I usually just use **Uber because it remembers my addresses and has all my favorite places saved, so I guess I always just open that up since it is so convenient and saves me time**. Though now that I say that, I really should use Flyber again since it would save more time when it comes to fighting traffic!'

,If the timing isn't different, I'll take a taxi or uber to save money. ,

,I just hail a taxi or tell my phone to call a cab to go to a certain address (I'm always on the phone, so I just use voice commands with my phone most of the time)'

,I have a personal car service on call. My assistant books Flyber whenever I'd be travelling during peak NYC traffic hours. Time is money and Flyber saves me time! But I let my assistant actually book the Flyber because the first few times I tried booking, the instructions were too small.'

Share your hypothesis using the following format:

We believe [observed quantitative effect] Because [hypothesized user "why"] And that by [general change/opportunity for Flyber to improve] for [targeted cohort] we will see [expected effect]

We believe the age 50+ user group high drop off rate in booking (search) phase because difficult for them to use our app's booking feature and by voice control (voice to text and auto-fill feature) for this age group we will see the same drop off rate as younger age groups.

Suggest 2 or more features that would match your hypothesis and determine a plan for multivariate testing, including describing the control and experimental conditions

- Voice control (voice to text)
- Auto-fill function

Determine who should be exposed to the experimental changes

,on the next slides'

List any additional metrics that would be helpful to collect from your suggested features

,on the next slides'

Instrumentation

Product managers do not always run experiments on all users, but may focus on a particular type of users. This means you need to instrument and collect information on the right type of users and ensure that they are part of the experiment.

- It is vitally important to track which test state a user is
 assigned. This enables you to analyze the difference in results
 among experiment groups and to ensure the same test state
 is shown to the same user until the experiment is over.
- The final thing to track during an experiment is the *conversion* rate. It is the percentage of users who successfully performed the desired action in each experiment group. The key to choosing the correct conversion rate is to choose one that relates to the important, long term impact you wish your experiment to drive. This may often be a product or feature KPI.

Track User Actions During Testing

- We need to track the number of unique visitors to the page where they will be testing the new design.
- We will need to track whether a user sees the control or the experimental design on the page.
- We will also likely want to track the device and browser that the visitor is using in case the designs perform differently across device types.
- Finally, to know which page is more effective, they will need to track whether the visitor takes the desired action of using the social linking feature

Ensure Unbiased Control & Test Groups

- When running experiments, you must make sure that users in the control
 and the test/experiment group share the same characteristics. That way,
 you can ensure the differences among experiment groups is caused by
 the change of the product, not by different user characteristics. → in our
 expirement we should be careful with demographic (age 50+) and
 locations characteristics.
- First, you need to determine what type of user you are testing and make sure these target users are put into both the control and experiment groups. → age 50+
- In addition to everyone being a target user, you need to make sure other user characteristics such as age, race, income are balanced between the control and experiment groups.
- A great way to get a balance of user characteristics among the groups is to randomize who is in the control and who is in the experiment group.

Calculate & Respond to Test Results

The results experiments can be evaluated by a **T-Test**. A T-test compares the means of two groups to see whether the difference in the means is large enough that it is probably not due to random chance. In the case of an A/B or multivariate test, the T-test helps us understand whether any differences observed in the conversion rate are significant and are likely due to the change we made.

- Step 1: state the null hypothesis. The null hypothesis represents the idea that the control state is not different from a test state, which is what we want to reject. A generic null hypothesis would be: customers convert the same with the test state compared to the control state. → In our case in this will be the control state. No changes will be added here that is the current product state.
- Step 2: state the alternative hypothesis. The alternative hypothesis is the one you want to accept. A generic alternative hypothesis would be: customers will convert differently with this change. → Here we will add the two new features with several experiments
- Step 3: set a confidence threshold. Product managers almost universally user a 95% confidence level, which means a 95% chance that the result appears statistically valid and a 5% chance that the result is an error.
- Step 4: run the A/B or multivariate experiment.
- Step 5: perform a T-test. After you get the result from your experiment, you need to perform a T-test to see if the differences you see in the experiment are significant. To perform a T-test, you will need to know:
 - The number of users in the control group and in each test group
 - The number of conversions in each group
 - The confidence threshold from step 3
 - Decide if the T-test is a one-tailed or two-tailed test. A two-tailed test means you assume the experiment conversion rate is different from the control, maybe worse OR better.

Appendix

Raw Data

Additional Info

You could include supporting or additional information that can support your previous slides but isn't necessary for every person to see that looks at your slides.