Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 3 ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ВАРИАНТ 12

Студент: Пышкин Никита Сергеевич, Р3213

Преподаватель:

Содержание

Цель лабораторной работы	3
Порядок выполнения лабораторной работы	
Рабочие формулы используемых методов	
Вычисление заданного интеграла	
Сравнение результатов	
Расчет относительной погрешности	
Листинг программы	
Результаты выполнения программы при различных исходных данных	
Заключение	
Janjivachae	11

Цель лабораторной работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Порядок выполнения лабораторной работы

Исхолные ланные:

- 1. Пользователь выбирает функцию, интеграл которой требуется вычислить (3-5 функций), из тех, которые предлагает программа.
- 2. Пределы интегрирования задаются пользователем.
- 3. Точность вычисления задается пользователем.
- 4. Начальное значение числа разбиения интервала интегрирования: n=4.
- 5. Ввод исходных данных осуществляется с клавиатуры.

Программная реализация задачи:

- 1. Реализовать в программе методы по выбору пользователя:
- Метод прямоугольников (3 модификации: левые, правые, средние)
- Метод трапеций
- Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- 3. Вычисление значений функции оформить в виде отдельной(ого) функции/класса.
- 4. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- 5. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

Вычислительная реализация задачи:

- 1. Вычислить интеграл, приведенный в таблице 1, точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n = 6.
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10.
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений для каждого метода.
- 6. В отчете отразить последовательные вычисления

Рабочие формулы используемых методов

Ньютона-Котеса:

Рабочая формула: $\int_a^b f(x)dx \approx \int_a^b L_n(x)dx = \sum_{i=0}^n f(x_i)c_n^i$

Метод прямоугольников:

Рабочая формула: $\int_a^b f(x)dx \approx S_n = \sum_{i=0}^n f(\xi_i) \Delta x_i$

Вычисление дельты: $h_i = h = \frac{b-a}{n} = const$

Рабочая формула для средних: $\int_a^b f(x)dx \approx \sum_{i=0}^n h_i f\left(x_{i-\frac{1}{2}}\right)$, где $x_{i-\frac{1}{2}} = \frac{x_{i-1} + x_i}{2} = x_{i-1} + \frac{h_i}{2}$

Метод трапеций:

Рабочая формула: $\int_a^b f(x)dx = \frac{1}{2}\sum_{i=1}^n h_i(y_{i-1} + y_i)$

Рабочая формула при h = const: $\frac{h}{2}(y_0 + y_n + 2\sum_{i=1}^{n-1} y_i)$

Метод Симпсона:

Рабочая формула:
$$\int_a^b f(x) = \frac{h}{3} [y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n]$$

Вычисление заданного интеграла

1) Точное вычисление

$$\int_{1}^{2} (x^{3} + 2x^{2} - 3x - 12) dx = \left(\frac{x^{4}}{4} + \frac{2x^{3}}{3} - \frac{3x^{2}}{2} - 12x\right) \Big|_{1}^{2} = -\frac{97}{12} = -8.08(3)$$

2) По формуле Ньютона-Котеса при n=6

Пусть $d = \frac{b-a}{6}$

$$\int_{1}^{2} (x^{3} + 2x^{2} - 3x - 12)dx = f(a)c_{6}^{0} + f(a+d)c_{6}^{1} + f(a+2d)c_{6}^{2} + f(a+3d)c_{6}^{3} + f(a+4d)c_{6}^{4} + f(a+5d)c_{6}^{5} + f(b)c_{6}^{6}$$

Подставим коэффициенты из таблицы:

$$f(a)\frac{41(b-a)}{840} + f\left(a + \frac{b-a}{6}\right)\frac{216(b-a)}{840} + f\left(a + \frac{b-a}{3}\right)\frac{27(b-a)}{840} + f\left(a + \frac{b-a}{2}\right)\frac{272(b-a)}{840} + f\left(a + \frac{2(b-a)}{3}\right)\frac{27(b-a)}{840} + f\left(a + \frac{5(b-a)}{6}\right)\frac{216(b-a)}{840} + f(b)\frac{41(b-a)}{840}$$

Подставим наши значения а и b:

$$f(1)\frac{41(2-1)}{840} + f\left(1 + \frac{2-1}{6}\right)\frac{216(2-1)}{840} + f\left(1 + \frac{2-1}{3}\right)\frac{27(2-1)}{840} + f\left(1 + \frac{2-1}{2}\right)\frac{272(2-1)}{840} \\ + f\left(1 + \frac{2(2-1)}{3}\right)\frac{27(2-1)}{840} + f\left(1 + \frac{5(2-1)}{6}\right)\frac{216(2-1)}{840} + f(2)\frac{41(2-1)}{840}$$

Сократим:

$$f(1)\frac{41}{840} + f\left(\frac{7}{6}\right)\frac{216}{840} + f\left(\frac{4}{3}\right)\frac{27}{840} + f\left(\frac{3}{2}\right)\frac{272}{840} + f\left(\frac{5}{3}\right)\frac{27}{840} + f\left(\frac{11}{6}\right)\frac{216}{840} + f(2)\frac{41}{840} + f(2)\frac{41}{8$$

Посчитаем:

$$-12*\frac{41}{840} + (-11.1898148)\frac{216}{840} + (-10.074)\frac{27}{840} + (-8.625)\frac{272}{840} + (-6.814)\frac{27}{840} + (-4.615740)\frac{216}{840} + (-2)\frac{41}{840} = -8.08(3)$$

3) По формуле среднего прямоугольника при n = 10

$$h_i = h = \frac{b-a}{n} = \frac{2-1}{10} = 0.1$$

Составим табличку значений:

i	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10
y_i	-12	11.549	-10.992	-10.323	-9.536	-8.625	-7.584	-6.407	-5.088	-3.621	-2
$x_{i-1/2}$		1.05	1.15	1.25	1.35	1.45	1.55	1.65	1.75	1.85	1.95
$y_{i-1/2}$		-11.787375	-11.284125	-10.671875	- 9.944625	- 9.096375	-8.121125	-7.012875	-5.765625	-4.373375	-2.830125

Вычислим результат:

$$\sum_{i=0}^{n} h_i f\left(x_{i-\frac{1}{2}}\right) = 0.1 \sum_{i=0}^{n} f\left(x_{i-\frac{1}{2}}\right) = 0.1 \sum_{i=0}^{n} y_{i-\frac{1}{2}} = -8.08875$$

4) По формуле трапеций при n = 10

$$h_i = h = \frac{b-a}{n} = \frac{2-1}{10} = 0.1$$

i	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10
y_i	-12	-11.549	-10.992	-10.323	-9.536	-8.625	-7.584	-6.407	-5.088	-3.621	-2

$$\frac{h}{2}\left(y_0 + y_n + 2\sum_{i=1}^{n-1} y_i\right) = \frac{0.1}{2}\left(-12 - 2 + 2 * (-73.725)\right) = -8.0725$$

5) По формуле Симпсона при n = 10

$$h = \frac{b-a}{n} = \frac{2-1}{10} = 0.1$$

i	0	1	2	3	4	5	6	7	8	9	10
x_i	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10
y_i	-12	-11.549	-10.992	-10.323	-9.536	-8.625	-7.584	-6.407	-5.088	-3.621	-2

$$\int_{a}^{b} f(x) = \frac{0.1}{3} \left[-12 + 4(-11.549 + (-10.323) + (-8.625) + (-6.407) + (-3.621)) + 2(-10.992 + (-9.536) + (-7.584) + (-5.088)) - 2 \right] = -8.08(3)$$

Сравнение результатов

Результат точных вычисление: -8.08(3)

Метод Ньютона-Котеса: -8.08(3) – не отличается от точных вычислений

Метод средних прямоугольников: -8.08875 — отличается от точных вычислений на ≈ -0.005416

Метод трапеций: -8.0725 – отличается от точных вычислений на ≈ 0.01083

Метод Симпсона: -8.08(3) – не отличается от точных вычислений

Расчет относительной погрешности

Метод Ньютона-Котеса: погрешности нет

Метод средних прямоугольников: $\Delta = \frac{|-8.08(3) - (-8.08875)|}{|-8.08(3)|} \approx 0.067\%$

Метод трапеций: $\Delta = \frac{|-8.08(3) - (-8.0725)|}{|-8.08(3)|} \approx 0.13\%$

Метод Симпсона: погрешности нет

Листинг программы

abstract_solve_integral_method.py:

from typing import Tuple, Callable from abc import ABC, abstractmethod

class AbstractSolveIntegralMethod(ABC):

@classmethod

@abstractmethod

def solve(cls, integral_func: Callable[[float], float], a: float,
b: float, e: float, max_iter_count: int = 10**6) -> Tuple[int, int]:
 pass

@classmethod

def _check_calc_is_end(cls, first_value: float, second_value:
float, k: int, e: float) -> bool:

```
rectangle_method.py:
```

from enum import IntEnum

from typing import Tuple, Callable

from .core import AbstractSolveIntegralMethod

class RectangleMethodType(IntEnum):

LEFT = 0

MIDDLE = 1

RIGHT = 2

class RectangleMethod(AbstractSolveIntegralMethod):

@classmethod

def solve(cls, integral_func: Callable[[float], float], a: float,
b: float, e: float, max_iter_count: int = 10**6, m_type:
RectangleMethodType = RectangleMethodType.MIDDLE) -> Tuple[int, int]:

results, n = [], 4

while len(results) < 2 or not cls._check_calc_is_end(results[2], results[-1], 2, e):</pre>

if n >= max iter count:

raise ValueError(f"He удалось найти решение с удовлетворяющей точностью за $\{max_iter_count\}$ разбиений")

h = (b - a) / n

match m type:

case RectangleMethodType.LEFT:

start = a

case RectangleMethodType.MIDDLE:

start = a + h / 2

case RectangleMethodType.RIGHT:

start = a + h

```
s += integral func(start + h * i)
            results.append(s * h)
            n += 1
        return results[-1], n
simpsons_method.py:
from typing import Tuple, Callable
from .core import AbstractSolveIntegralMethod
class SimpsonsMethod(AbstractSolveIntegralMethod):
    @classmethod
    def solve(cls, integral func: Callable[[float], float], a: float,
b: float, e: float, max iter count: int = 10**6) -> Tuple[int, int]:
        results, n = [], 4
        while len(results) < 2 or not cls. check calc is end(results[-
2], results[-1], 4, e):
            if n >= max iter count:
                raise ValueError(f"Не удалось найти решение с
удовлетворяющей точностью за {max_iter count} разбиений")
            h = (b - a) / n
            s = 0
            for i in range(n):
                result = integral_func(a + h * i)
                if i \% 2 == 0 and i != 0 and i != n - 1:
                    result *= 4
                elif i % 2 != 0 and i != 0 and i != n - 1:
                    result *= 2
                s += result
```

for i in range(n):

```
n += 2
        return results[-1], n
trapezoid_method.py:
from typing import Tuple, Callable
from .core import AbstractSolveIntegralMethod
class TrapezoidMethod(AbstractSolveIntegralMethod):
    @classmethod
    def solve(cls, integral func: Callable[[float], float], a: float,
b: float, e: float, max iter count: int = 10**6) -> Tuple[int, int]:
        results, n = [], 4
        while len(results) < 2 or not cls. check calc is end(results[-
2], results[-1], 2, e):
            if n >= max iter count:
                raise ValueError (f"Не удалось найти решение с
удовлетворяющей точностью за {max iter count} разбиений")
            h = (b - a) / n
            s = 0
            for i in range(n):
                result = integral func(a + h * i)
                if i != 0 and i != n - 1:
                    result *= 2
                s += result
            results.append(s * (h / 2))
            n += 1
        return results[-1], n
```

results.append(s * (h / 3))

Результаты выполнения программы при различных исходных данных

Пример 1:

Выберите функцию:

- 1. $x^{**2} 0.5$
- 2. x**3 4*x + 1
- 3. 2**x 4
- 4. $x^{**}3 + 2^{*}x^{**}2 3^{*}x 12$

Введите номер функции: 4

Выберите метод:

- 1. Метод прямоугольников
- 2. Метод трапеций
- 3. Метод Симпсонов

Введите номер метода: 3

Введите пределы интегрирования a b: 1 2

Введите точность вычисления: 0.0001

Результат: -8.014143886878387 (найден за 90 разбиений)

Пример 2:

Выберите функцию:

- 1. $x^{**2} 0.5$
- 2. x**3 4*x + 1
- 3.2**x 4
- 4. $x^{**}3 + 2^{*}x^{**}2 3^{*}x 12$

Введите номер функции: 2

Выберите метод:

- 1. Метод прямоугольников
- 2. Метод трапеций
- 3. Метод Симпсонов

Введите номер метода: 1

Выберите тип метода:

- 1. Метод левых прямоугольников
- 2. Метод средних прямоугольников
- 3. Метод правых прямоугольников

Введите номер метода: 3

Введите пределы интегрирования a b: 0.00001

Некорректный ввод, проверьте соответствие формату.

Введите пределы интегрирования a b: 1 5

Введите точность вычисления: 0.00001

Результат: 112.1038683431954 (найден за 2081 разбиений)

Заключение

В ходе лабораторной работы я изучил разные численные методы, их погрешности и реализовал их на языке Python.