Dé um axemplo de uma luvião discontinua e para o quel
Dé um exemplo de uma função descontínua f para o qual a oscilação w(f,x) é uma função contínua de x.
Tomamos a função laracterística:
$\chi_{\chi} = 1 \text{if } \chi \in \Omega$ $0 \text{if } \chi \notin \Omega$
Como então Xx: X -> Q é uma função des continua, assim:
Λγ: β = 312
$\chi \longrightarrow \chi_{\chi}(\chi) = \int \int M \chi \in Q$
Com = Q i uma constituto carda o posto vomui uma visinda caraca.
que é uma sola com me dida verla. Dustos formas pelo fromma
de Liberque é integrável, logo a é medida viula e sua
Como a é um conjunto ende os pontos possui uma vizinhança, que é uma sola com medida veda. Dustos forma pelo trorema de Lebesque é integrável, logo a é medida veda e sua oscilação é uma função contienua.