Analisi II - 2020/21 - Corso di Studi in Fisica Prova scritta - 14 febbraio 2022

Esercizio 1. [4pt] Sia dato il campo scalare

$$f(x,y) = \sqrt{1 - (x-2)^2 - (y-1)^2} - \log y$$

- (a) Determinare e disegnare il dominio di f, specificando se si tratta di un insieme aperto, chiuso, limitato, compatto. Se ne determini la frontiera.
- (b) Discutere la differenziabilità di f nel punto (3/2,1); scrivere l'equazione del piano tangente al grafico di f nel punto $(3/2,1,\sqrt{3}/2)$.

Soluzione. (a) Il dominio di f è l'insieme

$$D = \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + (y-1)^2 \le 1\} \setminus \{(2,0)\}$$

la cui frontiera è la circonferenza di centro (2,1) e raggio 1. L'insieme D è limitato ma non è né aperto né chiuso in quanto i punti della circonferenza suddetta, escluso il punto (2,0) appartengono a D. Non essendo chiuso, D non è neanche compatto.

(b) f ammette derivate parziali nei punti interni di D date da

$$f_x(x,y) = \frac{2-x}{\sqrt{1-(x-2)^2-(y-1)^2}}, \qquad f_y(x,y) = \frac{1-y}{\sqrt{1-(x-2)^2-(y-1)^2}} - \frac{1}{y}.$$

Queste sono continue nell'interno di D e pertanto anche in un intorno di (3/2,1), dunque f è differenziabile in tale punto. Poiché

$$f\left(\frac{3}{2},1\right) = \frac{\sqrt{3}}{2}, \quad f_x\left(\frac{3}{2},1\right) = \frac{1}{\sqrt{3}}, \quad f_y\left(\frac{3}{2},1\right) = -1,$$

l'equazione del piano tangente richiesto è

$$z - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(x - \frac{3}{2} \right) - y + 1 \Leftrightarrow \frac{1}{\sqrt{3}} x - y - z + 1 = 0.$$

Esercizio 2. [3 pt] Calcolare, o dimostrare che non esiste, il seguente limite

$$\lim_{(x,y)\to(0,0)} \frac{1 - e^{x^2 y}}{\sqrt{x^2 + y^4}}.$$

Soluzione. Osserviamo che la funzione $f(x,y)=\frac{1-e^{x^2y}}{\sqrt{x^2+y^4}}$ è identicamente nulla lungo gli assi, quindi se il limite esiste deve valere 0. Inoltre, poiché $1-e^{x^2y}\sim -x^2y$ per $(x,y)\to (0,0)$, studiare il limite dato equivale a studiare

$$\lim_{(x,y)\to(0,0)} -\frac{x^2y}{\sqrt{x^2+y^4}}.$$

Risulta che

$$\left| -\frac{x^2 y}{\sqrt{x^2 + y^4}} \right| = \frac{x^2 |y|}{\sqrt{x^2 + y^4}} \le \frac{x^2 |y|}{\sqrt{x^2}} = |x| \cdot |y| \le \frac{1}{2} (x^2 + y^2) \to 0, \qquad (x, y) \to (0, 0).$$

Pertanto, per il teorema del confronto, il limite dato vale 0.

Esercizio 3. [3 pt] Siano $f: \mathbb{R}^3 \to \mathbb{R}^2$ definita da $f(x, y, z) = (x^2 z, \sqrt{-xy})$ e sia $g: \mathbb{R}^2 \to \mathbb{R}^2$ una funzione di classe C^1 tale che

$$J_g(3,\sqrt{2}) = \begin{pmatrix} 2 & 1\\ 0 & 1 \end{pmatrix}.$$

Dopo aver determinato il dominio della funzione $g \circ f$, se ne calcoli la matrice Jacobiana nel punto (1, -2, 3). **Soluzione.** Osserviamo che il dominio di $g \circ f$ coincide con quello di f ed è dato dall'insieme

$$D = \{(x, y, z) \in \mathbb{R}^3 : xy \le 0\}.$$

Inoltre la funzione f è di classe C^1 sull'interno di D. Infine, si ha che $f(1,-2,3)=(3,\sqrt{2})$. Pertanto, per la regola della catena, risulta $J_{g\circ f}(1,-2,3)=J_g(3,\sqrt{2})J_f(1,-2,3)$. Poiché si ha

$$J_f(x,y,z) = \begin{pmatrix} 2xz & 0 & x^2 \\ -\frac{y}{2\sqrt{-xy}} & -\frac{x}{2\sqrt{-xy}} & 0 \end{pmatrix} \Rightarrow J_f(1,-2,3) = \begin{pmatrix} 6 & 0 & 1 \\ \frac{1}{\sqrt{2}} & -\frac{1}{2\sqrt{2}} & 0 \end{pmatrix},$$

allora risulta

$$J_{g \circ f}(1, -2, 3) = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & 0 & 1 \\ \frac{1}{\sqrt{2}} & -\frac{1}{2\sqrt{2}} & 0 \end{pmatrix} = \begin{pmatrix} 12 + \frac{1}{\sqrt{2}} & -\frac{1}{2\sqrt{2}} & 2 \\ \frac{1}{\sqrt{2}} & -\frac{1}{2\sqrt{2}} & 0 \end{pmatrix}.$$

Esercizio 4. [4 pt] Si determinino i punti critici del campo scalare

$$f(x,y) = (x^2 + x - 2)(y + 1)e^{-y}$$

e se ne studi la natura. Ci sono punti di massimo assoluto? (Giustificare la risposta)

Soluzione. Il campo scalare f è di classe C^2 su \mathbb{R}^2 . Si ha:

$$f_x(x,y) = (2x+1)(y+1)e^{-y}, f_y(x,y) = -(x^2+x-2)ye^{-y}.$$

Pertanto, i punti critici di f si trovano risolvendo il sistema

$$\begin{cases} (2x+1)(y+1) = 0\\ (x^2+x-2)y = 0 \end{cases}.$$

Le soluzioni sono i punti A = (-1/2, 0), B = (1, -1), C = (-2, -1). Risulta

$$H_f(x,y) = \begin{pmatrix} 2(y+1)e^{-y} & -(2x+1)ye^{-y} \\ -(2x+1)ye^{-y} & (x^2+x-2)(y-1)e^{-y} \end{pmatrix}.$$

Si ha

$$H_f(-1/2,0) = \begin{pmatrix} 2 & 0\\ 0 & \frac{9}{4} \end{pmatrix}$$

che è definita positiva, dunque A è un punto di minimo locale.

$$H_f(1,-1) = \begin{pmatrix} 0 & 3e \\ 3e & 0 \end{pmatrix}$$

che ha determinante uguale a $-9e^2 < 0$. Pertanto B è un punto di sella. Infine,

$$H_f(-2, -1) = \begin{pmatrix} 0 & -3e \\ -3e & 0 \end{pmatrix}$$

che ha determinante ancora $-9e^2$. Dunque, anche C è un punto di sella.

La funzione è di classe C^2 su \mathbb{R}^2 (quindi, in particolare, di classe C^1 su \mathbb{R}^2); i punti di estremo vanno quindi ricercati tra i punti critici (teorema di Fermat) dunque non essendoci punti di massimo locale non vi sono nemmeno quelli di massimo assoluto.

Esercizio 5. [4 pt] Si consideri la superficie parametrica $r(u,v)=(u^2+v^2,u-v,e^u), (u,v)\in\mathbb{R}^2.$

- (a) Si verifichi che r è semplice;
- (b) Si dimostri che r è una superficie regolare e se ne determini il versore normale al sostegno nel punto di coordinate (4, -2, 1).

Soluzione. (a) Dati $(u_1, v_1), (u_2, v_2) \in \mathbb{R}^2$ tali che $r(u_1, v_1) = r(u_2, v_2)$, ovvero

$$\begin{cases} u_1^2 + v_1^2 = u_2^2 + v_2^2 \\ u_1 - v_1 = u_2 - v_2 \\ e^{u_1} = e^{u_2} \end{cases},$$

dalla terza relazione si ottiene che $u_1=u_2$ per l'iniettività della funzione esponenziale. Sostituendo nella seconda equazione si ottiene $v_1 = v_2$, pertanto $(u_1, v_1) = (u_2, v_2)$ e quindi r è semplice. (b) Osserviamo che r è di classe C^1 su \mathbb{R}^2 (in quanto le componenti sono di classe C^1 su \mathbb{R}^2) e che

$$J_r(u,v) = \begin{pmatrix} 2u & 2v \\ 1 & -1 \\ e^u & 0 \end{pmatrix},$$

che ha rango 2 in ogni punto. Pertanto r è una superficie regolare. Osservando che r(0,2)=(4,-2,1), risulta che

$$r_u \wedge r_v(0,2) = \begin{vmatrix} i & j & k \\ 0 & 1 & 1 \\ 4 & -1 & 0 \end{vmatrix} = (1,4,-4).$$

Pertanto, il versore normale richiesto è

$$N(0,2) = \frac{1}{\sqrt{33}}(1,4,-4).$$

Esercizio 6. [4 pt] Calcolare

$$\iint_A x^2 \log y \, dx \, dy,$$

con

$$A = \left\{ (x, y) \in \mathbb{R}^2 : x \ge \frac{1}{\sqrt{2}}, \ x \le y \le \frac{1}{x} \right\}.$$

Soluzione. L'insieme A è la regione compresa tra l'iperbole di equazione y=1/x, la retta $x=1/\sqrt{2}$ e la bisettrice del primo e del terzo quadrante. Si tratta di un insieme y-semplice, precisamente

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \frac{1}{\sqrt{2}} \le x \le 1, x \le y \le \frac{1}{x} \right\}.$$

Pertanto, si ha:

$$\iint_A x^2 \log y \, dx \, dy = \int_{\frac{1}{\sqrt{2}}}^1 x^2 \int_x^{\frac{1}{x}} \log y \, dy = \int_{\frac{1}{\sqrt{2}}}^1 x^2 \left[y \log y - y \right]_x^{\frac{1}{x}}$$

$$= \int_{\frac{1}{\sqrt{2}}}^1 \left[-(x+x^3) \log x - x + x^3 \right] \, dx$$

$$= \left[-\left(\frac{x^2}{2} + \frac{x^4}{4}\right) \log x \right]_{\frac{1}{\sqrt{2}}}^1 + \int_{\frac{1}{\sqrt{2}}}^1 \left(-\frac{x}{2} + \frac{5x^3}{4} \right) \, dx = -\frac{5}{32} \log 2 + \frac{7}{64}.$$

Esercizio 7. [4 pt] Calcolare la massa di un solido con densità di massa $\mu(x,y,z)=|x|$ che occupa la regione

$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 1 + 2y\}.$$

Soluzione. La massa del solido è data per definizione dall'integrale triplo

$$\iiint_{\Lambda} |x| \, dx dy dz.$$

Quest'ultimo si può calcolare integrando per fili. Si ha:

$$\iiint_A |x| \, dx dy dz = \iint_C |x| \left(\int_{x^2 + y^2}^{1 + 2y} dz \right) \, dx dy = \iint_C |x| (1 + 2y - x^2 - y^2) \, dx dy,$$

dove

$$C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 + 2y\} = \{(x,y) \in \mathbb{R}^2 : x^2 + (y-1)^2 \le 2\}.$$

Utilizzando il cambiamento di coordinate $x=\rho\cos\theta, y=1+\rho\sin\theta,$ si ottiene

$$\iiint_A |x| \, dx dy dz = \int_0^{\sqrt{2}} \int_0^{2\pi} \rho^2 |\cos \theta| (2 - \rho^2) \, d\theta d\rho = \int_0^{\sqrt{2}} (2\rho^2 - \rho^4) \, d\rho \cdot \int_0^{2\pi} |\cos \theta| \, d\theta = \frac{32}{15} \sqrt{2}.$$

Esercizio 8. [4 pt] Studiare la convergenza semplice ed assoluta della serie seguente:

$$\sum_{n\geq 1} (-1)^n \left(\cos(n^\alpha) - 1\right),\,$$

al variare del parametro $\alpha \in \mathbb{R}$.

Soluzione. Osserviamo prima di tutto che per $\alpha \geq 0$, la successione $a_n = \cos(n^{\alpha}) - 1$ non tende a 0 per $n \to \infty$, dunque la serie non converge neanche semplicemente. Per $\alpha < 0$ la condizione necessaria per la convergenza è invece soddisfatta. Per quanto riguarda la convergenza assoluta osserviamo che

$$|(-1)^n \cos(n^{\alpha}) - 1| = 1 - \cos(n^{\alpha}) \sim \frac{1}{2} n^{2\alpha} = \frac{1}{2n^{-2\alpha}}.$$

Per confronto asintotico con la serie armonica generalizzata, risulta quindi che la serie data converge assolutamente se e solo se $\alpha < -1/2$. Per quanto riguarda la convergenza semplice, si osserva che per $\alpha < 0$, la serie è una serie di Leibniz in quanto $0 < n^{\alpha} < 1$ per ogni n e la funzione $f(x) = \cos x$ è decrescente nell'intervallo (0,1), pertanto la serie converge semplicemente per ogni $\alpha < 0$. In conclusione la serie converge semplicemente per $\alpha < 0$ e assolutamente per $\alpha < -\frac{1}{2}$.