Exercícios sobre Modelos Lineares

No que segue, sempre suponha que as variáveis aleatória relevantes estão definidas no mesmo espaço de probabilidade.

Exercício 1 Seja Z uma variável aleatória discreta, que toma valores no conjunto $\{z_1,\ldots,z_n\}$; e Y uma variável aleatória com segundo momento finito. Defina o vetor aleatório $X=(\mathbf{1}_{\{z_2\}}(Z),\ldots\mathbf{1}_{\{z_n\}}(Z))$. Mostre que o melhor preditor linear de Y como função de um intercepto e X é da forma:

$$\alpha_* + \delta'_* X$$

com

$$\alpha_* = \mathbb{E}[Y|Z=z_1]$$

$$\delta_j = \mathbb{E}[Y|Z=z_{j+1}] - \mathbb{E}[Y|Z=z_1]$$

onde definimos o objeto $\mathbb{E}[Y|Z=z_i]$ como:

$$\mathbb{E}[Y|Z=z_j] \coloneqq \frac{\mathbb{E}[Y\mathbf{1}_{\{z_j\}}(Z)]}{\mathbb{P}[\{Z=z_j\}]} \,.$$

. Conclua que o melhor preditor linear coincide com $\mathbb{E}[Y|Z]$.

Exercício 2 Seja h^* a função de esperança condicional de uma variável aleatória Y com segundo momento finito dado uma variável aleatória real X, i.e. $h^*(X) = \mathbb{E}[Y|X]$. Compute o melhor preditor linear de Y como função de um intercepto e X, para os casos abaixo. Ilustre graficamente a derivada de h^* comparando-a com a inclinação do melhor preditor linear, nos pontos do suporte¹ de X. Identifique as regiões onde o melhor preditor linear mais "erra" a inclinação de h^* .

a
$$h^*(x) = x^2$$
 e $X \sim U[0, 1]$.

b
$$h^*(x) = \min\{x^3, 100\} \in X \sim \text{Exponecial}(1).$$

c
$$h^*(x) = x^2 e X \sim \chi^2(1)$$
.

Exercício 3 Seja A uma matriz simétrica positiva semidefinida:

- a Mostre que os autovalores de A sempre são não negativos. Dica: Se $v \neq 0$ é um autovetor de um autovalor λ , $Av = \lambda v$.
- b Mostre que o menor autovalor de A é zero se, e somente se, existe $v \neq 0$, v'Av = 0. Dica: para suficiência, utilize a decomposição espectral de uma matriz simétrica.

 $^{^1{\}rm O}$ suporte de uma variável aleatória X é definido como o menor conjunto fechado Ctal que $\mathbb{P}[X\in C]=1.$

Exercício 4 Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, em que cada elemento $\omega \in \Omega$ corresponde a uma firma num setor de interesse, e $\mathbb{P}[A]$ denota a proporção de firmas do "tipo" A . Considere o exemplo, visto em aula, em que a função de produção no setor é $h(z,l)=zl^{\alpha},\ \alpha<1$. Suponha que, no momento da decisão de produção, uma firma $\omega\in\Omega$ na população somente observe um sinal $\xi(\omega)$ de sua produtividade. A distribuição do sinal ξ na população é denotada por \mathbb{P}_{ξ} . As firmas então escolhem l otimizando:

$$l(\omega) \in \operatorname{argmax}_{l>0} \xi(\omega) l^{\alpha} - wl$$
,

onde w denota o salário (em unidades do bem produzido pelo setor), aqui tratado como constante fixa. Após a escolha de demanda por trabalho, a produtividade de cada firma é revelada como $z(\omega)=\xi(\omega)\epsilon(\omega)$, onde o "choque" ou "surpresa" na produtividade não é antecipável com base no sinal, i.e. ξ é independente de ϵ ($\mathbb{P}_{(\xi,\epsilon)}=\mathbb{P}_{\xi}\otimes\mathbb{P}_{\epsilon}$). A produção final das firmas é dada por $Y(\omega)=z(\omega)l(\omega)$.

- a Encontre o melhor preditor linear da variável aleatória $\log(Y)$ como função de um intercepto e $\log(l)$. O coeficiente associado a $\log(l)$ coincide com α ? Por quê?
- b Suponha que, caso $Y(\omega)-wl(\omega)<0$, a firma ω não opera, e, nesse caso, a demanda por trabalho e quantidade produzida não são observadas. Calcule o melhor preditor linear nesse caso. Ele corresponde ao obtido anteriormente? Por quê?

 $^{^2}$ Em outras palavras, a incerteza capturada pelas variáveis aleatórias só se deve à amostragem no sentido clássico, e não à incerteza econômica.