Integration and Roundings Sunday, April 13, 2025 5:09 PM

yulow

be used amealing for volume compution.

Body, What about general logiconaire

integration? Let If be the goal.

We can still use

St z Stor Stor Store Store

for = f for is "easy".

We reed some bounds on f simpler to

VB, \(\subsetext{K} \subsetext{K} \subsetext{RBn}...

(1) IE (||x-xoll2) & R2

(2) Lf ({1/8}) contains a ball of radius r.

(1) is weaker than $K \subseteq RBn$ supp (f) can be embounded.

CS6550 Page

supp (+) can ve emerone

(2) is smilar to $rB_n \subseteq K$. But is it reasonable?

E.g. is it the for isotropic begancine f? $f \Longrightarrow T_f \qquad |E_{T_f}(x)=0| |E_{T_f}(x|x^T)=I$ $|E(||x||^2)=N.$

We say that for Tf is a-ronded if any level set of measure of contains a ball of ladius ab.

Lema. 1. Isotopie loguncaire f is & conded.

The 1. Hit-ord-Run mixes in $\tilde{O}(n^2R^2)$ steps for (1,R)-rounded from N^2 worm start.

The 2. Ball wall mixes in $O(n^2R^2)$ from O(1)-warm start.

 $(n...m. n^2(n.n)) = (dQ_0)^2$

(Recall
$$\chi^2(Q_0,Q) = |E_Q(dQ_0-1)^2$$
 M -(van stat: $dQ_0 \in M$
 M -(van

Ronding: (iven black access to login one f, find affine transformation to put f in year isotropic position. [$\frac{1}{C} = |E(u^Tx)^T$) $\leq C$]

The $X^{(i)}$ $X^{(i)}$ $\sim f$ logarance in \mathbb{R}^{n} . $Z = \frac{1}{N} \sum_{j=1}^{N} X^{(j)}$ $A = \frac{1}{N} Z(X^{(j)} - Z)(X^{(j)} - Z)^{T}$.

 $N = O\left(\frac{n}{\varepsilon^2} \ln \frac{1}{\delta}\right)$, with puls. $\geq 1 - \delta$

(1-E) Cosf & A & (1+E) Corr(+)

Integration
ROUNDING SAMPLING

We can use the following awaling to integrate f:
- Rond f (new-isotropic)

- Restirct f to ball of radius con. K= Auto(f) (1B(0, con)

- start with fo = uniform in K.

- stad with
$$f_0 = uniform in K$$
.

$$\int_{f_i(x)} f(x) = f(x)^{a_i} \qquad a_i = \frac{1}{B} \left(1 + \frac{1}{\sqrt{n}}\right)$$

$$B = \ln \left(\frac{\max f}{\min f}\right)$$

$$\Delta_m = 1.$$

+ shapes =
$$\sqrt{n} \ln B$$

souples pur phase = $O\left(\frac{\sqrt{n} \ln B}{\epsilon^2}\right)$.

How to sand?
$$t_k = \frac{M_f}{2^{(1+\frac{1}{h})^k}}$$

- 1. Put $\chi = \{x: f(x) \geq f(x_0)/2\}$ in near-isotrofic position.
- 2. For $k=1,2,\ldots$ Calogn Put f restricted to $\{x: f(x) > t_R \}$ rear-isotropic position

 - Saple from $L(t_R)$

Hors to do (1)? Make K isotropic.

Ki = K \ 2 B.

Leva 2. If Ki is (2-) isotropic, then Kin is (2x)2-vortupic

peed to show tu

$$|E_{k_{i+1}}((u^{T}x)^{2})| = \frac{\int_{k_{i+1}}^{u^{T}}(u^{T}x)^{2}}{V_{\sigma}l(k_{i+1})} \geq \frac{\int_{k_{i}}^{u^{T}}(u^{T}x)^{2}}{2V_{\sigma}l(k_{i})} \geq \frac{1}{2} \geq \frac{1}{4}.$$

$$\mathbb{E}_{k_{i+1}}(u^{T}x)^{2}) = \int_{k_{i+1}}^{u^{T}} (u^{T}x)^{2} dx \leq 2^{\frac{1+2\pi}{3}} (u^{T}y)^{2}$$

$$= 2^{\frac{1+2\pi}{3}} (u^{T}x)^{2} dx \leq 2^{\frac{1+2\pi}{3}} (u^{T}y)^{2}$$

$$= 2^{\frac{1+2\pi}{3}} (u^{T}x)^{2} dx \leq 2^{\frac{1+2\pi}{3}} (u^{T}y)^{2}$$

$$= 2^{\frac{1+2\pi}{3}} (u^{T}x)^{2} dx \leq 2^{\frac{1+2\pi}{3}} (u^{T}y)^{2}$$

CS6550 Page (

$$\frac{2^{n}k_{i}}{Vol(k_{i+1})} = \frac{2^{n}k_{i}}{Vol(k_{i})} = \frac{2^{n}k_{i}}{Vol(k_{i})}$$

Lema 3- $0 < x < t \le M_f$ f_t : restriction of f to $\mathcal{L}_f(t)$. f_t is isotropic \Rightarrow f_s is 6-isotropic.

Rondvig.

$$\widetilde{\mathcal{G}}(n)$$
 phases

O(n) samples per phose

 $\tilde{O}(n^2)$ per sample since f_i is sortedpic and has O(1)-worm start.

 $= \widetilde{O}(n^4)$.

Integration

O(In) Souples per phase

 $O(n^3)$ per sample. f_i is well randed" $\frac{R^2}{n^2} = O(n)$.

- n+ (n4)