

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

Name:	Prerna Sunil Jadhav		
Sap Id:	60004220127		
Class:	T. Y. B. Tech (Computer Engineering)		
Course:	Advance Algorithm Laboratory		
Course Code:	DJ19CEL602		
Experiment No.:	01-B		

AIM: Perform Amortized Analysis of Multipop / Dynamic Tables / Binary Counter using Aggregate, Accounting and Potential method. (Amortized Analysis)

1B) Amortized Analysis (Accounting method)

CODE:

```
def accounting(n):
    size=1
    total=0
    dcost=0
    icost=0
    bank=0
   print("Elements\tDoubling Copying Cost\tInsertion Cost\tTotal
Cost\tBank\t\tSize")
    for i in range(1,n+1):
        icost=1
        if i>size:
            size*=2
            dcost=i-1
        total=icost+dcost
        bank+=(3-total)
        print(i,"\t\t",dcost,"\t\t",icost,"\t",total,"\t\t",bank,"\t\t",si
ze)
        icost=0
        dcost=0
n=int(input("Enter number of elements:"))
print("Accounting method")
accounting(n)
class AccountingStack:
   def init (self):
```

SVKM

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

```
self.stack=[]
        self.cost=0
        self.balance=0
    def push(self,item):
        self.stack.append(item)
        self.cost+=1
        self.balance+=1
        self.printstack()
    def pop(self):
        self.stack.pop()
        self.cost+=1
        self.balance-=1
        self.printstack()
    def multipop(self,k):
        for i in range(k):
            self.pop()
    def printstack(self):
        print(self.stack,"\nBalance",self.balance,"\n")
s=AccountingStack()
s.push(1)
s.push(2)
s.push(3)
s.pop()
s.printstack()
s.multipop(2)
print("Amortized cost= ",s.cost/6)
```


Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Academic Year: 2022-2023

OUTPUT:

ts/BTech/Docs/6th Sem/AA/Code/Accounting.py"							
Enter number of elements:10							
Accounting meth							
Elements	Doubling Copying Cost	Insertion Cost			Size		
1	0	1	1	2	1		
2	1	1	2	3	2		
3	2	1	3	3	4		
4 5 6	0	1	1	5 3	4		
5	4	1	5	3	8		
	0	1	1	5 7	8		
7	0	1	1		8		
8	0	1	1	9	8		
9	8	1	9	3	16		
10	0	1	1	5	16		
[1]							
Balance 1							
[1, 2]							
Balance 2							
[1, 2, 3]							
Balance 3							
[1, 2]							
Balance 2							
[1, 2]							
Balance 2							
[1]							
Balance 1							
[]							
Balance 0							
Amortized cost=	= 1.0						

CONCLUSION: Hence we studied amortized analysis-Accounting method.