Decision Trees

Anmol Mishra & Jessica Torrey

Structural Overview

Decisions

Name	Country	Hair	Gender		
Jessica	US	Blonde	W		
Anmol	India	Black	M		
Suvi	Finland	Blonde	W		
Isabelle	US	Black	W		
Jed	US	Red	M		

Building a decision tree given data

What should be at the top of the tree?

Category Choice : Country Look at each parameter to determine how well it predicts if you are girl in the class

	Are you from the US?	
W? Yes: 2 No: 1 Gini Impurity = 0.44 Veighted Impurity = 0.44		W? Yes: 1 No: 1 Gini Impurity = 0.5 ed Impurity = 0.5 * % = 0.2

Total Impurity = 0.464

Name	Country	Hair	Gender		
Jessica	US	Blonde	W		
Anmol	India	Black	М		
Suvi	Finland	Blonde	W		
Isabelle	US	Black	W		
Jed	US	Red	М		

Gini Impurity for a Leaf = 1 - (the probability of "Yes")² - (the probability of "No")²

Total Impurity = 0 + 0.3 = 0.3

Gini Impurity for a Leaf = 1 - (the probability of "Yes")² - (the probability of "No")²

Total Impurity = 0 + 0.4 = 0.4

Gini Impurity for a Leaf = 1 - (the probability of "Yes")² - (the probability of "No")²

What should be at the top of the tree?

Category Choice: Hair Color Do you have red hair? W? W? Yes: 0 Yes: 3 No: 1 No: 1 Gini Impurity = 0 Gini Impurity = 0.375 Weighted Impurity = 0.375 * % = 0.3Weighted Impurity = 0 * \% = 0 Total Impurity = 0.3

Look at each parameter to determine how well it predicts if you are girl in the class

Name	Country	Hair	Gender	
Jessica	US	Blonde	W	
Anmol	India	Black	М	
Suvi	Finland	Blonde	W	
Isabelle	US	Black	W	
Jed	US	Red	M	

Gini Impurity for a Leaf = 1 - (the probability of "Yes")2 - (the probability of "No")2

Total Impurity = 0 + 0.264 = 0.264

Gini Impurity for a Leaf = 1 - (the probability of "Yes")² - (the probability of "No")²

Total Impurity = 0.2 + 0.264 = 0.464

Gini Impurity for a Leaf = 1 - (the probability of "Yes")² - (the probability of "No")²

Do you have blonde hair?

2W, 0M Yes! 2M, 1W Needs further splitting

Name	Country	Hair	Gender		
Jessica	US	Blonde	W		
Anmol	India	Black	М		
Suvi	Finland	Blonde	W		
Isabelle	US	Black	W		
Jed	US	Red	М		

possible at this stage -

W?

Yes: 1

No: 1

Are you from India?

4 questions

- Are you from US?
- Do you have black hair?
 - Do you have red hair?

Do you have blonde hair?

Yes! Country Hair Gender

Blonde

Black

Blonde

Black

Red

2W, 0M

US

India

US

US

Finland

Name

Jessica

Anmol

Suvi

Jed

Isabelle

W

Μ

W W M

1M, 0W No!

2M, 1W

Are you from India?

All 4 questions lead to same Gini Impurity. Why?

2 questions possible at this stage -

- . Do you have Black
- Do you have Red

Hair?

0W, 1M

No!

Black

Hair?

Hair?

Name Country Hair Gender US Blonde W Jessica Anmol India Black Μ Suvi Finland Blonde W US Black W Isabelle US Red Μ Jed

2W, 0M Yes! OW, 1M No! 1W,0M Yes!

2M, 1W

Alternative Decision Tree

Which tree is better?

Comments

There are two major metrics used to split Decision Trees -

- 1. Gini Index Isolates classes earlier, but may lead to more depth
- 2. Entropy More balanced trees, hence less depth

Gini Index is the more commonly used one, also the default metric used in the Scikit Learn Package on Python.

Question. Which metric would you think is more likely to generate the second tree amongst the trees we've shown?

Decision Trees: Pros and Cons

Pros:

- Easy to interpret and understand
- Easy data preparation
- Few assumptions
- Versatile

Cons:

- Overfitting
- Expensive training phase
- Optimization at current node rather than forward thinking
- Unstable (A change in data can have a drastic impact on the tree)

Confusion Matrix

Spotify Genre Classification

- "Spotify makes guesses with the use of decision trees and inputs of your playlist data"
- Suggest a song to a particular person.
 - Who would like song X?
- Assign a genre to a song.
 - Ask questions about the song to classify it
- "Using machines help us do this more objectively, and deal with way more parameters"
 - Spotipy library

Github - https://github.com/dhunstack/asmc-spotify-analysis

acousticness	danceability	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo	valence	song_title
0.399	0.748	0.465	0	5	0.294	-8.163	1	0.0869	119.872	0.412	like i need u

Sources

https://www.ibm.com/topics/decision-trees#:~:text=data%20mining%20solutions-,Decision%20Trees,internal%20nodes%20and%20leaf%20nodes.

https://jinkim0804.medium.com/spotify-decision-trees-with-music-taste-4c11a660ddc0

https://medium.com/@ashitaboyina/music-genre-classification-70ae70469403

https://en.wikipedia.org/wiki/Decision_tree

https://www.youtube.com/watch?v=_L39rN6gz7Y

https://insidelearningmachines.com/advantages_and_disadvantages_of_decision_trees/

https://www.analytixlabs.co.in/blog/decision-tree-algorithm/#Disadvantages_of_Decision_Tree