Оптимизация геологоразведочных работ с помощью ИИ

Предзащита

Димитров Владимир

Новосибирский Государственный университет

22 мая 2023 г.

(ロト 4回 ト 4 重 ト 4 重 ト · 重 · 幻 Q ()

Оглавление

- Введение
- 2 Оптимальный критерий
- Данные
- 4 Модель
- Оптимизация
- Вывод
- Список литературы

2/28

Димитров Владимир HГУ 22 мая 2023 г.

Введение

Введение

Цель работы: разработка программного обеспечения позволяющего оптимизировать параметры бурения в режиме реального времени

Объект исследования: экономические процессы в геологоразведочном производстве

Предмет исследования: экономическая оптимизация геологоразведочных работ

Задачи:

- Выбор оптимального критерия
- Первичный анализ и предобработка данных
- Создание моделей для прогнозирование целевых параметров
- Оптимизация параметров контроля

5/28

Димитров Владимир НГУ 22 мая 2023 г.

Оптимальный критерий

Оптимальный критерий

- Максимизация скорости проходки [4, 3]
- Минимизация удельной затраты энергии [2]
- Максимизация относительного критерия эффективности [4]
- Омещанный критерий [1]

7/28

 Димитров Владимир
 НГУ
 22 мая 2023 г.

Данные

Данные

- 600 тыс. наблюдений, время 5 секунд
- Данные получены за 3 месяца в течении отработки одной скважины

9/28

Димитров Владимир НГУ 22 мая 2023 г.

Данные

- 600 тыс. наблюдений, время 5 секунд
- Данные получены за 3 месяца в течении отработки одной скважины
- Параметры управления:
 - Частота вращения
 - Осевая нагрузка
 - Расход промывочной жидкости (п.ж.)
- Параметры состояния: давление п.ж., крутящий момент, глубина

9/28

 Димитров Владимир
 НГУ
 22 мая 2023 г.

Разметка и обработка данных

Была произведена разметка пластов и рейсов (рейс - процесс бурения протяженностью до 5 минут)

Данные проверялись на соответствие и на отсутствие отрицательных значений.

Обработка осуществлялась на основе критерий Z-тест, тест IQR Была произведена агрегация (1 минута, 5 минут, 10 минут)

10/28

Димитров Владимир НГУ 22 мая 2023 г.

Результаты

Название метода	Количество выбросов (%)	Время выполнения (мин.)	Ошибка (RMSE) усредненна я по пластам	Максимальн ая ошибка	Стандартно е отклонение
IQR (для всех данных)	12	1.3	0.37	0.91	0.23
IQR (для пластов)	15	5	0.41	0.8	0.28
3-сигм (для всех данных)	7,63	1	0.381	0.78	0.22
3-сигм(для пластов)	8,76	4	0.37	1.03	0.368
z- <u>score</u> (для всех данных)	10	0.3	0.32	0.68	0.19
z- <u>score</u> (для пластов)	10.03	1	0.46	1.1	0.33
Без очистки	0	0	0.56	1.6	0.52

Результаты

С точки зрения бизнес процессов, как мы видим, имеется определенная выгода предобработки данных. Этот процесс повышает общую точность и уменьшает время сходимости алгоритма

12/28

 Димитров Владимир
 НГУ
 22 мая 2023 г.

Модель

13/28

Димитров Владимир HГУ 22 мая 2023 г.

Модели машинного обучения для параметров управления

Были созданы различные модели машинного обучения для различных пластов.

Модели оптимизировались, к данным применялись техники машинного обучения.

В итоге было получено 270 моделей

Результаты

		Ошибка на трейне	Ошибка на тесте	Время	R2_трейн	R2_тест
Пласт	Модель					
0	Байесовская регрессия	8.025	9.506	0.042	0.139	0.095
	Градиентый бустинг	3.101	4.092	0.798	0.871	0.832
	Катбуст	2.729	3.863	1.004	0.900	0.851
	Лассо регрессия	8.025	9.505	0.005	0.139	0.096
	Линейная регрессия	8.025	9.507	0.040	0.139	0.095
	Решающее дерево	0.000	1.582	0.035	0.93	0.975
	Ридж регрессия	8.025	9.507	0.042	0.139	0.095
	Случайный лес	0.853	1.452	2.134	0.990	0.979

Рис. 1: Метрики качества п.у. для пласта 0

Результаты

- Пласт 0 Catboost
- Пласт 1 Random Forest
- Пласт 2 Random Forest.
- Пласт 3 Gradient Descent
- Пласт 4 Cathoost.
- Пласта 5 Cathoost

Оптимизация

 Димитров Владимир
 НГУ
 22 мая 2023 г.
 17/28

Постановка задачи

Целевая функция:

 $\max v_m$

Существует ограничение на:

- Удельный расход энергии
- Значение индекса
- Расход промывочной жидкости

Критерий остановы: число итераций или малое изменение значения целевой функции

Алгоритмы оптимизации

В работе использовались следующие алгоритмы оптимизации:

- Градиентный метод
- Метод имитации отжига
- Рой частиц

19/28

Димитров Владимир HГУ 22 мая 2023 г.

Результаты

Метод	Изменение цел. пар.	Время работы(мин.)		
Градиентный метод	3,1%	6		
PSO	5,3%	13		
Имитации отжига	4,2%	10		

Общий алгоритм

Вывод

22/28

Димитров Владимир НГУ 22 мая 2023 г.

Вывод алгоритмический

- Алгоритм обработки данных для разных типов почв
- Алгоритм оценки целевого параметра для разных типов почв
- Алгоритм условной оптимизации для разных типов почв

23/28

Димитров Владимир HГУ 22 мая 2023 г.

Вывод геологический

- общая скорость бурения, рассчитанная как средняя за рейс, увеличивается относительно тестовых данных более, чем на 7 процентов
- интервал принятия сокращается относительного того времени, которое наблюдается в тестовых наборах данных
- рабочий режим достигается быстрее и без явных осложнений
- ИИ способен определять и адекватно реагировать на изменение характеристик породы по буримости

Вывод экономический

- Снизилось время простоя оборудования на 2 процента по сравнению с тестовым набором данных
- Увеличена эффективность потребления материалов
- **3** Уменьшено потребление энергии при сохранении общей эффективности работ
- Уменьшена себестоимость геологоразведочных работ

25/28

Димитров Владимир НГУ 22 мая 2023 г.

Список литературы

Список литературы

- [1] Xuyue Chen и др. "Real-time optimization of drilling parameters based on MSE for RD". B: *Journal of Natural Gas Science and Engineering* 35 (2016), c. 686—694.
- [2] Todd Robert Hamrick. *Optimization of operating parameters for minimum MSE in drilling*. West Virginia University, 2011.
- [3] Heng Zhang и др. "Optimization and application study on targeted formation ROP". B: *Energy Reports* 6 (2020), c. 2903—2912.
- [4] Нескоромных П.С. "Методика определения оптимальных параметров режима бурения". В: *Науки о Земле и недропользование* 38.1 (2011), с. 151—158.

Спасибо за внимание!