

The Magnificent Seven Challenges & Opportunities in Domain-Specific Accelerator Design for Autonomous Systems

Sabrina M. Neuman*
Boston University
sneuman@bu.edu

Brian Plancher*
Barnard College, Columbia University
bplancher@barnard.edu

Vijay Janapa Reddi* Harvard University vj@eecs.harvard.edu

Autonomous Systems Robotics is a **Big** and **Embodied** space

Sensors

Actuators

Autonomous Systems can do amazing things ...

Autonomous Systems can do amazing things ...

... but they still have a long way to go!

... but they still have a long way to go!

Grandia, Ruben, et al. "Perceptive locomor model-predictive control." *IEEE Transaction*

One Major Challenge:
Computational
Performance!

Dynamics (youtube.com/watch?v=-e1_QhJ1EhQ) rkour (youtube.com/watch?v=tF4DML7FIWk)

Unfortunately, we have reached the limits of technology scaling and on-chip power density...

48 Years of Processor Trends

Clock Speed (MHz)

Single Thread Performance (SpecINT)

...resulting in a need to leverage parallelism...

48 Years of Processor Trends

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp https://github.com/karlrupp/microprocessor-trend-data

...and move toward specialized accelerators!

Dynamics Gradient Latency

S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, V. Janapa Reddi. Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators Parameterized by Robot Morphology. ASPLOS 2021.

...and move toward specialized accelerators!

Interest in Accelerators for Autonomous Systems is Growing!

Computing Keywords: Accelerator & Robot | Autonomous System | UAV | Drone | Autonomous Vehicle | Self-Driving, in DAC, ISCA, MICRO, HPCA, and ASPLOS. Robotics Keywords: ASIC | FPGA, in ICRA, IROS, RSS, and RA-L.

Interest in Accelerators for Autonomous Systems is Growing!

Computing Keywords: Accelerator & Robot | Autonomous System | UAV | Drone | Autonomous Vehicle | Self-Driving, in DAC, ISCA, MICRO, HPCA, and ASPLOS. Robotics Keywords: ASIC | FPGA, in ICRA, IROS, RSS, and RA-L.

The Magnificent Seven

Challenges & Opportunities in Domain-Specific Accelerator Design for Autonomous Systems

- 1 Build Bridges: Engage with Domain Experts
- 2 Measure Twice, Cut Once: Metrics Matter
- 3 "Widgetism": Avoid Over-Specialization
- 4 Pump the Brakes: Do Not Always Accelerate
- **5** Chips and Salsa: Acceleration Beyond ASICs
- 6 Forest vs. Trees: Take an End-to-End View
- Design Global: Sustainability and Impact

Pitfall: Interact with domains exclusively through benchmarks published in computer systems, without input from domain experts.

Robotics is a Big and Embodied space

Robotics is a Big and Embodied space

Sensors

Robotics is a Big and Embodied space

Build Bridges: Engage with Domain Experts

Pitfall: A cycle of pick one slow algorithm, lower it to an ASIC, repeat.

Pitfall: Focus on ASICs, leaving software, GPUs, and FPGAs behind.

Software Performance
Engineering can get you
pretty far!

GPUs give you the flexibility to quickly iterate plus improved performance!

What happens when we scale robot complexity and consider multiple parallel computations of robot physics?

Forward Dynamics Gradient Multiple Computation Latency

IIWA CPU

IIWA GPU

"Widgetism": Avoid Over-Specialization Chips and Salsa: Acceleration Beyond ASICs

Forward Dynamics Gradient Multiple Computation Latency

Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Approach

Zhengdong Zhang*, Amr Suleiman*, Luca Carlone, Vivienne Sze, Sertac Karaman Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Emails: {zhangzd,suleiman,lcarlone,sze,sertac}@mit.edu, Website: http://navion.mit.edu

*These authors contributed equally to this work

Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones

Amr Suleiman, Member, IEEE, Zhengdong Zhang, Student Member, IEEE, Luca Carlone, Member, IEEE Sertac Karaman, Member, IEEE and Vivienne Sze, Senior Member, IEEE

Fundamental Graph
Operations and
Linear Algebra WILL
be highly portable!

Transition to industry and real impact is a challenge!

GPUs in robots is a **VERY NEW** thing!

The Magnificent Seven

Challenges & Opportunities in Domain-Specific Accelerator Design for Autonomous Systems

- **1** Build Bridges: Engage with Domain Experts
- 2 Measure Twice, Cut Once: Metrics Matter
- 3 "Widgetism": Avoid Over-Specialization
- Pump the Brakes: Do Not Always Accelerate
- **5** Chips and Salsa: Acceleration Beyond ASICs
- 6 Forest vs. Trees: Take an End-to-End View
- Design Global: Sustainability and Impact

4 Pump the Brakes: Do Not Always Accelerate

Pitfall: Assume accelerators always improve total system performance.

Pitfall: A narrow scope: acceleration begins and ends with compute.

Pump the Brakes: Do Not Always Accelerate Forest vs. Trees: Take an End-to-End View

Pump the Brakes: Do Not Always Accelerate Forest vs. Trees: Take an End-to-End View

Amdahl's Law

speedup(
$$f$$
, n) = $\frac{1}{(1-f)+f/n}$

f = fraction of the program that is parallelizable n = parallel processors

(a) Scanning.

(b) Aerial Photography.

(c) Package Delivery.

(d) 3D Mapping.

What about I/O?

I/O Matters
A LOT!

S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, V. Janapa Reddi. Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators Parameterized by Robot Morphology. ASPLOS 2021.

S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, V. Janapa Reddi. Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators Parameterized by Robot Morphology. ASPLOS 2021.

S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, V. Janapa Reddi. Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators Parameterized by Robot Morphology. ASPLOS 2021.

Pitfall: Only focus on improving throughput or energy-delay product.

Roofline Model for UAVs: A Bottleneck Analysis Tool for Onboard Compute Characterization of Autonomous Unmanned Aerial Vehicles

"All models are wrong, but some are useful." - George Box

Srivatsan Krishnan[†] Zishen Wan^{*†} Kshitij Bhardwaj[∓] Ninad Jadhav[†] Aleksandra Faust[§] Vijay Janapa Reddi[†]

†Harvard University [‡]Lawrence Livermore National Lab §Google Brain Research

The Magnificent Seven

Challenges & Opportunities in Domain-Specific Accelerator Design for Autonomous Systems

- 1 Build Bridges: Engage with Domain Experts
- 2 Measure Twice, Cut Once: Metrics Matter
- 3 "Widgetism": Avoid Over-Specialization
- **4** Pump the Brakes: Do Not Always Accelerate
- **5** Chips and Salsa: Acceleration Beyond ASICs
- **6** Forest vs. Trees: Take an End-to-End View
- Design Global: Sustainability and Impact

Design Global: Sustainability and Impact

Pitfall: Design compute in isolation from its global and societal impact.

Design Global: Sustainability and Impact

Design Global: Sustainability and Impact

TABLE 1. FAR for CS and engineering subfields based on prior work and including our result for robotics [1], [3], [4] (data from 2017 to 2023).

FIELD	FAR (%)
CS education	42
Human-computer interaction	26
CS overall average	16–26
Knowledge systems	19
Software engineering and languages	14
Artificial intelligence	12
Robotics	11-12 (our analysis)
Computer systems	10
Theory and algorithms	8

As has been noted in related works, this kind of methodology has many flaws and does not take into account much of the nuance in gender, including issues of bias, misperception, and nonbinary identities [7], [8]. However, we hope that this initial study will help add to the robotics community's understanding of the current state of gender diversity and, at a minimum, provide directionally correct data to help with future diversity, equity, and inclusion efforts.

The Magnificent Seven

Challenges & Opportunities in Domain-Specific Accelerator Design for Autonomous Systems

1 Build Bridges: Engage with Domain Experts

tion

celerate

ASICs

- 2 Measure Twice Cut Once: Metrics Matter
- 3 "Widg€
- Pump t So What Can We Do?
- Chips a
- 6 Forest vs. πees. τακε απ επα-το-επα View
- Design Global: Sustainability and Impact

The Magnificent Seven Challenges & Opportunities in Domain-Specific

Accelerator Design for Autonomous Systems

Future Directions and Opportunities

- A Enabling Technologies and Methodologies
- **B** Fostering a Robust Research Ecosystem
- © Sustainable & Responsible Hardware Design

Enabling Technologies and Methodologies

Opportunity: Reduce Complexity and Timeto-Market with Agile Design Tools and **End-to-End Simulation Environments**

A Enabling Technologies and Methodologies

Enabling Technologies and Methodologies

B Fostering a Robust Research Ecosystem

Opportunity: Increase Cross-Domain Collaborations and Develop Open Source Resources and Benchmarks

B Fostering a Robust Research Ecosystem

We'll be at MICRO 2024!

B Fostering a Robust Research Ecosystem

Víctor Mayoral-Vilches^{1,2}, Jason Jabbour³, Yu-Shun Hsiao³, Zishen Wan⁴, Martiño Crespo-Álvarez¹, Matthew Stewart³, Juan Manuel Reina-Muñoz¹, Prateek Nagras¹, Gaurav Vikhe¹, Mohammad Bakhshalipour⁵, Martin Pinzger², Stefan Rass^{6,2}, Smruti Panigrahi⁷, Giulio Corradi⁸, Niladri Roy⁹, Phillip B. Gibbons⁵, Sabrina M. Neuman¹⁰, Brian Plancher¹¹, Vijay Janapa Reddi³

Opportunity: Strategically Develop Reusable Designs and Deployments for Full-Lifecycle Sustainability

A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze. Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odeometry Accelerator for Autonomous Navigation of Nano Drones. JSSC. 2019.

DOI:10.1145/3608473

Assessing the environmental impacts of machine learning on microcontrollers.

BY SHVETANK PRAKASH, MATTHEW STEWART, COLBY BANBURY, MARK MAZUMDER, PETE WARDEN, BRIAN PLANCHER, AND VIJAY JANAPA REDDI

Is TinyML Sustainable?

Lets Keep Building Accelerators for Autonomous Systems!

Computing Keywords: Accelerator & Robot | Autonomous System | UAV | Drone | Autonomous Vehicle | Self-Driving, in DAC, ISCA, MICRO, HPCA, and ASPLOS. Robotics Keywords: ASIC | FPGA, in ICRA, IROS, RSS, and RA-L.

The Magnificent Seven

Challenges & Opportunities in Domain-Specific Accelerator Design for Autonomous Systems

- 1 Build Bridges: Engage with Domain Experts
- 2 Measure Twice, Cut Once: Metrics Matter
- 3 "Widgetism": Avoid Over-Specialization
- Pump the Brakes: Do Not Always Accelerate
- Chips and Salsa: Acceleration Beyond ASICs
- 6 Forest vs. Trees: Take an End-to-End View
- Design Global: Sustainability and Impact

Sabrina M. Neuman*
Boston University
sneuman@bu.edu

Brian Plancher*
Barnard College, Columbia University
bplancher@barnard.edu

Vijay Janapa Reddi* Harvard University vj@eecs.harvard.edu