CS&SS 321 - Data Science and Statistics for Social Sciences

Module II - Data management and exploratory visual analysis

Ramses Llobet

Module II

- ► This module will equip students with essential data science skills in R.
- ▶ In the next quiz sections, we will cover the following topics:
 - ▶ Data frames, logical relations, and subsetting.
 - Quantile and NA data.
 - ▶ Pivoting and merging data.
 - ► Introduction to ggplot2.

▶ Think about *data* in terms of **data** *frame*.

TIDY DATA is a standard way of mapping the meaning of a dataset to its structure.

-HADLEY WICKHAM

In tidy data:

- each variable forms a column
- each observation forms a row
- each cell is a single measurement

Wickham, H. (2014). Tidy Data. Journal of Statistical Software 59 (10). DOI: 10.18637/jss.v059.i10

- ► A data frame is a special type of object in R that can store multiple vectors of data.
- ► We can create data frames using the function data.frame().

```
# vectors with student's names and grades
student <- c("Alice", "Bob", "Charlie", "Sean", "Brandy")</pre>
grades_M \leftarrow c(76, 82, 94, 45, 75)
grades_F \leftarrow c(82, 90, 89, NA, 64)
# create a df with grades
(df_new <- data.frame(student,grades_M,grades_F))</pre>
##
    student grades_M grades_F
## 1
    Alice
                  76
                           82
## 2 Bob
                 82 90
## 3 Charlie 94 89
## 4
       Sean
             45
                          NΑ
             75
```

64

5 Brandy

We can create data frames by directly writing the vectors/columns as separate elements within the data.frame() function:

```
##
    student grades_M grades_F
## 1
      Alice
                76
                         82
## 2
       Roh
                82
                         90
## 3 Charlie 94
                        89
## 4
       Sean
              45
                         NΑ
## 5 Brandy
                75
                         64
```

► To select a specific column from a data frame, use the \$ operator followed by the *name* of the column.

```
df_new$grades_M
```

```
## [1] 76 82 94 45 75
```

- ➤ To select specific rows and/or columns from a data frame, we use brackets [].
- ► If the object is a single vector, we use a single numeric value in the brackets to select an element within the vector.

```
# select element 2 from vector grade_M:
grades_M[2]
```

```
## [1] 82
```

- ▶ If the object is a matrix or data frame, we can select elements by their row and column positions.
 - ▶ Note: we input two different values separated by a comma to select the row and column

```
# select row 2 from object df:
df_{new}[2,]
##
    student grades_M grades_F
## 2
         Rob
                   82
                             90
# select column 2 from object df:
df new[,2]
## [1] 76 82 94 45 75
# select element in row 2 and column 2:
df new[2,2]
```

We can also use **characters** to select columns by their names, for example:

```
# select column name "grade M" from object df:
df new[,c("grades M")]
## [1] 76 82 94 45 75
# select columns name "student" and "grade M":
df_new[,c("student","grades_M")]
##
    student grades_M
## 1
    Alice
                76
    Bob 82
## 2
## 3 Charlie 94
           45
## 4 Sean
## 5 Brandy
           75
```

tibbles are data frames too!

- ► Another type of data frame are **tibbles**.
 - ▶ tibble() is a fancy version of data.frame().
 - ► All dplyr functions provide outputs as_tibbles.

```
as tibble(df new); class(as tibble(df new))
## # A tibble: 5 x 3
## student grades_M grades_F
## <chr> <dbl>
                      <dbl>
## 1 Alice
                76
                        82
                82
## 2 Rob
                        90
## 3 Charlie 94
                        89
## 4 Sean
              45
                        NΑ
                75
## 5 Brandy
                     64
## [1] "tbl df"
                 "tbl"
                             "data.frame"
```

Logical relations

► Logical Data Class:

- ► Represents binary values: TRUE or FALSE.
- ► Can be transformed into numeric form: TRUE becomes 1, and FALSE becomes 0.
- Useful for relational analyses and evaluating proportions of TRUE within a vector using the mean() function.
- Used to set conditional tests; useful for subsetting or create new variables.

```
3 + 5 < 10 # is 3 + 5 less than 10?
```

[1] TRUE

Logical relations

```
# select column name "grade M" from object df:
df new$grades M
## [1] 76 82 94 45 75
# Is each value greater or equal to 80?
df_new$grades_M >= 80 # the condition ">= 80" sets a logical tes
## [1] FALSE TRUE TRUE FALSE FALSE
# What proportion of TRUEs are in this vector?
mean(df_new$grades_M >= 80) # `TRUE` == 1, and `FALSE` == 0
## [1] 0.4
```

Subsetting: ifelse().

- ► We can use the ifelse() function to create new variables based on *conditions* from other variables.
 - 1 We set a *logical test* that evaluates to TRUE or FALSE.
 - 2 We specify what value to assign if the test is TRUE, and a different value if the test is FALSE.

```
# if test is TRUE, then "pass", otherwise, then "fail"
df_new$midterm <- ifelse(df_new$grades_M > 60, "pass", "fail")
df_new
```

```
##
     student grades_M grades_F midterm
## 1
       Alice
                    76
                              82
                                     pass
## 2
         Rob
                    82
                              90
                                     pass
## 3 Charlie
                              89
                    94
                                     pass
## 4
        Sean
                    45
                              NA
                                     fail
## 5
      Brandy
                    75
                              64
                                     pass
```

Subsetting: Base R.

► We can use *logical tests* in **vectors** within the **row element** of an object x[test ,] to subset those cases that are TRUE.

```
# In the vector midterm, what values are "pass"?
df_new$midterm=="pass"
## [1] TRUE TRUE TRUE FALSE TRUE
# subset those rows where this test is TRUE
df new[ df new$midterm=="pass" , ]
##
    student grades_M grades_F midterm
## 1
     Alice
                 76
                         82
                               pass
## 2
        Bob
            82
                         90
                               pass
## 3 Charlie
             94
                         89
                               pass
             75
## 5 Brandv
                         64
                               pass
```

Subsetting: subset()/filter().

- ➤ To subset data, we can use the functions subset() or filter().
 - ► The subset() function is part of base R, while filter() is a function from the dplyr package.
 - ► If you plan to use filter(), you need to load the tidyverse or dplyr package first.

```
# subset the df into a new one with final exam grades of above 85
subset(df new, grades F > 85)
##
     student grades M grades F midterm
        Bob
                   82
## 2
                            90
                                  pass
## 3 Charlie
                   94
                            89
                                  pass
filter(df_new, grades_F > 85) # from dplyr package
     student grades_M grades_F midterm
##
## 1
        Bob
                   82
                            90
                                  pass
## 2 Charlie
                   94
                            89
                                  pass
```

► An initial step in data science project analysis is to examine the NA values.

dat

```
##
      name age gender score
                 F
## 1
     Alice 20
                      85
       Bob 30 M
                      62
## 2
## 3 Charlie NA M
                     75
## 4
      Dave 28
                 Μ
                   80
                 F
## 5
    Eve 22
                   95
                  F
## 6
     Marta 21
                      NA
```

► The function is.na() will return a vector of logical values

```
is.na(dat)
##
        name age gender score
## [1,] FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE
## [3,] FALSE TRUE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE
## [6.] FALSE FALSE FALSE TRUE
mean(is.na(dat))
```

[1] 0.08333333

- Several packages have functions to assists the analysis of NA values.
 - ▶ function freq.na() from package questionr is an example:

```
library(questionr)
freq.na(dat)
```

```
## age 1 17
## score 1 17
## name 0 0
## gender 0 0
```

► We already know that some functions have the argument na.rm, but this is not the norm.

```
dat$score
## [1] 85 62 75 80 95 NA
mean(dat$score)
## [1] NA
mean(dat$score, na.rm = TRUE)
## [1] 79.4
```

► The na.omit() function in base R removes all rows with any NA value.

```
dat
##
       name age gender score
                     F
## 1
     Alice
             20
                          85
                         62
## 2
        Bob 30
                     М
## 3 Charlie NA
                         75
## 4
       Dave 28
                       80
## 5 Eve 22
                         95
## 6 Marta 21
                     F
                          NΑ
na.omit(dat)
```

```
## name age gender score
```

```
## 1 Alice 20 F 85
## 2 Bob 30 M 62
```

► The drop_na() function from dplyr removes all rows with any NA value of a specific column.

```
drop_na(dat, score)
##
     name age gender score
    Alice 20
                  F
## 1
                      85
       Bob 30 M 62
## 2
## 3 Charlie NA M 75
      Dave 28 M 80
## 4
## 5
    Eve 22
                    95
drop_na(dat, age)
##
    name age gender score
## 1 Alice
          20
                     85
## 2
     Bob
          30 M 62
## 3
         28 M
                  80
    Dave
## 4
     Eve
          22
                     95
                     NΑ
## 5 Marta
```

► We can use ifelse() function to substitute NA values.

```
## name age gender score
## 1 Alice 20 F 85
## 2 Bob 30 M 62
## 3 Charlie NA M 75
## 4 Dave 28 M 80
## 5 Eve 22 F 95
## 6 Marta 21 F 0
```

Distributions

- ► A distribution describes how variable values are spread across possible outcomes.
 - A probability distribution represents the likelihood of specific outcomes.
 - ► A **frequency** distribution summarizes counts of **distinct** values or ranges in dataset.
- ► Continuous vs. Discrete Distributions:
 - ► Continuous distributions involve numerical variables that can take any value within a range (e.g., height, weight), while
 - ▶ **Discrete** distributions involve variables that take distinct, separate values (e.g., number of cars, number of people).

Continuous vs. Discrete Distributions

Data Generating Process

- ▶ A Data Generating Process (DGP) refers to the hypothetical or real mechanism that generates a dataset.
 - ► It is a conceptual model that describes **how** the observed data is generated or produced.
- ▶ **Distributions** represent **systematic behavior** (aka, DGP).
- ► When looking at a distributions:
 - ► think in terms of a **DGP**, and
 - ► how the data was generated.

Data Generating Process

► Two very useful pieces of information from a DGP are its **mean** and **standard deviation**.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
; $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$

where

- $ightharpoonup \bar{X}$ represents the sample mean.
- ▶ *n* is the number of **observations** in the sample.
- $ightharpoonup X_i$ represents **values** from a variable in the sample.
- ► *S* represents the **sample standard deviation**.

Data Generating Process: standard deviation

► The **standard deviation** gives us information about how spread is the data around the mean.

Reporting distributions

- ► When analyzing data, always report **descriptive statistics**.
 - ▶ Mean.
 - ► Median.
 - ► Standard deviation.
 - ► Minimum.
 - ▶ Maximum.
 - Quartiles.
- ► Note:
 - ► When comparing distributions of the same quantities, use the **median** instead of the **mean** as the reference point. Why?

► The quantile function in R can be used to calculate the values that separate a distribution into different quantiles.

```
quantile(df$grades)
##
      0% 25% 50% 75% 100%
   46.00 74.00 80.00 86.25 100.00
##
quantile(df$grades, probs = c(0.25, 0.5, 0.75))
##
    25% 50% 75%
## 74.00 80.00 86.25
summary(df$grades)
##
     Min. 1st Qu. Median Mean 3rd Qu. Max.
    46.00
           74.00 80.00 79.98
                                 86.25 100.00
##
```

- ► Visualizing quantiles.
- ▶ Use the argument probs to specify segments of the data.

- ► Visualizing quantiles: **minimum**.
- ► quantile(df\$x, probs = 0)

- ► Visualizing quantiles: 1st Quartile (Q1) or 25th Percentile.
- ► quantile(df\$x, probs = 0.25)

- ► Visualizing quantiles: 2st Quartile (Q2) or 50th Percentile or median or 5th Decile.
- ► quantile(df\$x, probs = 0.5)

- ► Visualizing quantiles: **3st Quartile (Q3)** or **75th Percentile**.
- ► quantile(df\$x, probs = 0.75)

- ➤ Visualizating quantiles: maximum or 100th percentile or 10th decile.
- ► quantile(df\$x, probs = 1)

- ► Visualizing quantiles: **deciles** (1-10).
- ▶ quantile(df\$x, probs = seq(from=0,to=1,by=0.1))

- ► Visualizing quantiles: **percentiles** (1-100).
- ▶ quantile(df\$x, probs = seq(from=0,to=1,by=0.01))

quantile and data distribution.

- ► The **interquartile range** (IQR) is a measure of variability that represents the difference between the **first** and the **third** quartiles.
- ▶ It provides information about the spread of the middle 50% of the data.

► To create a new discrete variable, letter, with three levels (C, B, and A) based on exam scores, consider using ifelse.

```
##
      name age gender score letter
## 1
   Alice 20
            F 85 Otherwise
## 2 Bob 30 M 62
            M 75 Otherwise
## 3 Charlie NA
## 4
   Dave 28
            M 80 Otherwise
   Eve 22
            F
## 5
                    95 Otherwise
## 6
     Marta 21
                F
```

However, note that ifelse yields binary results determined by the conditional test's TRUE or FALSE.

```
##
      name age gender score letter
## 1
   Alice 20
            F 85 Otherwise
## 2 Bob 30 M 62 Otherwise
## 3 Charlie NA
            M 75
## 4
   Dave 28
            M 80
   Eve 22
            F 95 Otherwise
## 5
                     O Otherwise
## 6
     Marta 21
```

► Can we do better and use ifelse to map several characters into a vector using conditional tests?

```
##
     name age gender score letter
## 1 Alice 20
            F 85
## 2 Bob 30 M 62 Otherwise
## 3 Charlie NA M 75 Otherwise
## 4
   Dave 28
            M 80 Otherwise
## 5
   Eve 22
            F
                    95
## 6
     Marta 21
                F
                     O Otherwise
```

Yes! ifelse function can be nested on itself for multiple tests.

```
## name age gender score letter
## 1 Alice 20 F 85 A
## 2 Bob 30 M 62 C
## 3 Charlie NA M 75 B
## 4 Dave 28 M 80 B
## 5 Eve 22 F 95 A
## 6 Marta 21 F 0 C
```

More functions: nested case_when.

➤ You can use the case_when function from the dplyr package to produce the same output.

```
## name age gender score letter
## 1 Alice 20 F 85 A
## 2 Bob 30 M 62 C
## 3 Charlie NA M 75 B
## 4 Dave 28 M 80 B
## 5 Eve 22 F 95 A
## 6 Marta 21 F 0 C
```

Data class: factors

- Categorical variables can take on a limited, and usually fixed, number of different values or levels.
 - ► Voted:
 - ► Yes/No
 - ► Political parties:
 - ► Social democrat, Liberals, Conservatives, Green party, etc
 - Likert scales in survey opinions:
 - ► Strongly Agree, Agree, Disagree, Strongly Disagree
- ► However, character data type in R is used to store sequences of characters (text).

Factors

► A factor is a data structure used to represent categorical variables.

```
gender <- c("Male", "Female", "Male", "Female")</pre>
class(gender)
## [1] "character"
gender_factor <- as.factor(gender)</pre>
class(gender_factor)
```

[1] "factor"

Factors: levels

- ► Factors have levels, which are the distinct values that the categorical variable can take.
- ► The levels are determined by the unique values in the original vector.

```
# Checking levels of a factor
levels(gender_factor)
```

```
## [1] "Female" "Male"
```

Factors: Ordering Levels

By default, levels are ordered alphabetically. You can customize the order using the levels argument.

[1] "Male" "Female"

Good practice: create factor variables

- ► Some functions, especially in ggplot2 for visualization, require factors to function properly.
- It is a good practice to create new variables as factors when initiating an analysis.

[1] male female male female male
Levels: male female

Grammar of graphics

► A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects. (Wilkinson 2005)

Grammar of graphics in ggplot2

- ▶ ggplot2: A *layered* grammer of graphics (Wickham 2009).
 - Build a graphic from multiple layers; each consists of some geometric objects or transformation
 - ► Use + to stack up layers
- What data do you want to visualize?
 - ▶ ggplot(data = ...)
- How are variables mapped to specific aesthetic attributes?
 - ▶ aes(... = ...)
 - positions (x, y), shape, colour, size, fill, alpha, linetype, label...
 - If the value of an attribute do not vary w.r.t. some variable, don't wrap it within aes(...)
- ▶ Which geometric shapes do you use to represent the data?
 - ▶ geom_{}:
 - geom_point, geom_line, geom_ribbon, geom_polygon, geom_label...

Tidy data

- ► ggplot2 works well only with tidy data
 - ► Tidy data:
 - ► Each variable must have its own column
 - ► Each observation must have its own row
 - ► Each value must have its own cell

Intro to ggplot

- ► How to create a **scatter plot**: continuous vs. continuous variables
- ► How to create a **boxplot**: continuous vs **categorical** variables

```
summary(mtcars[,c("mpg","wt","cyl")])
```

```
##
                       wt.
                                    cyl
       mpg
   Min. :10.40 Min. :1.513
                                Min. :4.000
##
##
   1st Qu.:15.43
                 1st Qu.:2.581
                                1st Qu.:4.000
##
   Median :19.20
                 Median :3.325
                                Median :6.000
   Mean :20.09 Mean :3.217
##
                                Mean :6.188
                                3rd Qu.:8.000
##
   3rd Qu.:22.80
                 3rd Qu.:3.610
##
   Max. :33.90
                 Max. :5.424
                                Max. :8.000
```

Building a plot from scratch

Step 1: Define a basic ggplot object with x and y aesthetics

Building a plot from scratch: scatter plot

Step 2: Define a geometric shape

Building a plot from scratch: scatter plot

Note: we are not limited to have a single geometric form,

Building a plot from scratch: scatter plot

Note: we are not limited to have a single geometric form,

Building a plot from scratch: boxplot

Note: we are not limited to have a single geometric form,

- In ggplot, the color aesthetic is used to group data by a categorical or numerical variable, with each group automatically assigned a unique color.
- Customize the color aesthetic using the argument in a geom shape, you cannot manually fit colors in the aes() function because ggplot will assume that you are fiting a factor variable.
- ► Use the scale_color_manual() function to set specific colors for values in a plot by passing a named vector of colors to the values argument.
- ➤ You can create your own custom color palette with the scale_color_manual() function by specifying a named vector of colors.

► Why the following plot is not blue?

Customize the color aesthetic using the argument in a geom shape, you cannot manually fit colors in the aes() function because ggplot will assume that you are fiting a factor variable.

Built-in ggplot color palettes can be used by passing the name of the palette to the palette argument of the scale_color_() function. For instance, scale_color_brewer() can be used to apply a palette from the ColorBrewer library.

► You can customize which elements shall be colored using filter

➤ You can also fit numerical variables or manually sacle the gradient between several colors.

More on ggplot: histograms

► When defining histograms or barplots, you only need to define the x aesthetics as y becomes the relative or absolute frequencies

```
ggplot(mtcars,
          aes(x = mpg)) +
    geom_histogram()
```


More on ggplot: histograms

► To color geometries with large areas, you will need to use the fill= argument.

```
ggplot(mtcars,
          aes(x = mpg)) +
geom_histogram(fill="steelblue1")
```


More on ggplot: histograms

► The argument color will provide color in the surface of the geometry.

```
ggplot(mtcars,
    aes(x = mpg)) +
  geom_histogram(fill="steelblue1",
    color="red")
```


► For a density plots, use geom_density.

```
ggplot(mtcars,
    aes(x = mpg)) +
geom_density()
```


► For a density plots, use geom_density.

```
ggplot(mtcars,
    aes(x = mpg)) +
geom_density(fill="steelblue1")
```


- ► Geometric shapes have alpha= which controls the transparency of the geometry.
 - ▶ alpha values range from 0 (transparent) to 1 (opaque).

```
ggplot(mtcars,
        aes(x = mpg)) +
geom_density(fill="steelblue1",
        alpha=0.5)
```


► You can use the geometry geom_vline to include vertical lines and highlight points or thresholds of interest, like the mean

```
ggplot(mtcars,
    aes(x = mpg)) +
geom_density(fill="steelblue1",
    alpha=0.5) +
geom_vline(xintercept = mean(mtcars$mp)
```

► The geometry geom_vline can be customized with colors and linetype arguments.

```
ggplot(mtcars,
    aes(x = mpg)) +
geom_density(fill="steelblue1",
    alpha=0.5) +
geom_vline(xintercept = mean(mtcars$mpi
    color="red",
    linetype="dashed")
```

► You can have multiple geometries at once.

```
ggplot(mtcars,
    aes(x = mpg)) +
geom_density(fill="steelblue1",
    alpha=0.5) +
geom_vline(xintercept = mean(mtcars$mpt
    color="red",
    linetype="dashed") +
geom_vline(xintercept = median(mtcars$t
```

More on ggplot: density plots

► In the aesthetics, you can include an index factor to the group= argument to subset a geometry in different levels

More on ggplot: density plots

When doing so, make sure to provide color to all the factor levels by setting fill or color arguments in the general aesthetics aes() argument.

More on ggplot: facets

- ► When a group factor has many levels, is sometimes useful to split the plot in multiple facets using the geometries of facet_wrap or facet_grid.
 - ► Notice the syntax, requires a ~ before the factor.

Grammar of graphics in ggplot2

- ▶ Browse the most common named colors in R.
- ggplot2 is a powerful tool for creating professional visualizations.
- Search on the internet or ask ChatGPT for help with specific plot types using keywords based on geometries, such as line plots, histograms, boxplots, coefficient plots, etc.

Merging datasets

 Merging two datasets is actually more complicated than you might think

Merging datasets: key variables

```
polity <- read_csv("data/polity2.csv")</pre>
gapminder <- read csv("data/gapminder2.csv")</pre>
names(gapminder)
## [1] "cntry" "continent" "year" "lifeExp"
                                                        "pop"
                                                                    "gdpPercap"
names(polity)
## [1] "country" "year" "polity"
# with dplyr, rename()
gapminder <- gapminder %>% rename(country=cntry)
# with base R, either colnames() or names()
colnames(gapminder)[1] <- "country"</pre>
names(gapminder)
## [1] "country" "continent" "year"
                                           "lifeExp"
                                                        "gop"
                                                                    "gdpPercap"
```

Merging datasets: base R

```
dim(gapminder)
## [1] 1704
dim(polity)
## [1] 17228
                  3
merged_df <- merge(gapminder, polity,</pre>
                       by = c("country", "year"))
nrow(merged_df)
## [1] 1324
```

Merging datasets: dplyr

```
merged_data1 <- inner_join(gapminder, polity)</pre>
merged_data2 <- full_join(gapminder, polity)</pre>
merged_data3 <- left_join(gapminder, polity)</pre>
merged_data4 <- right_join(gapminder, polity)</pre>
nrow(merged_data1)
## [1] 1324
nrow(merged_data2)
## [1] 17608
nrow(merged_data3)
## [1] 1704
nrow(merged_data4)
```

[1] 17228

More functions

- ► The remaining slides feature useful functions for data management and exploratory analyses, provided for your personal reference.
- ► While not essential for completing the remaining problem sets in CS&SS 321, these functions can prove valuable for your final projects.

Save your output with ggsave

From now on, you will include a new sub-folder in your project folder that we will call **output**.

Save your output with ggsave

- ► The ggsave function is used to save a ggplot object as a file. For example, if you save a plot as "myplot.pdf", the file format will be PDF.
- ▶ By default, ggsave will save the last plot created, but you can also specify a specific plot object to save.
- ➤ You can use the width and height arguments to adjust the size of the output file.

```
ggsave("output/gincdif_dis.pdf", width = 6, height = width/1.618)
```

► So far we have been using tapply() from base R to apply a functions over variables and categories.

Asia 1977 38.438 14880372 786.1134

6 Afghanistan

► So far we have been using tapply() from base R to apply a functions over variables and categories.

```
df <- read.csv("data/gapminder.csv")</pre>
head(df)
        country continent year lifeExp pop gdpPercap
##
## 1 Afghanistan
                 Asia 1952 28.801 8425333 779.4453
                 Asia 1957 30.332 9240934 820.8530
## 2 Afghanistan
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971
## 5 Afghanistan
                 Asia 1972 36.088 13079460 739.9811
## 6 Afghanistan
                Asia 1977 38.438 14880372 786.1134
# what is the average income (qdpPercap) per continent?
tapply(df$gdpPercap,df$continent,FUN=mean)
     Africa Americas
                          Asia
##
                                 Europe
                                          Oceania
   2193.755
             7136, 110 7902, 150 14469, 476 18621, 609
##
```

- ► However, tapply() have some short comings:
 - tapply() returns output in a tabular format, but it is not in a data.frame or a tidy format, which can be inconvenient for further processing and analysis.
 - tapply() can only be used with one variable at a time, making it difficult to work with multiple variables or to create summaries of more than one variable.

- aggregate() is used for performing grouped operations on data.
- ► It allows you to split the data into groups based on one or more variables and apply a function to each group.
- ► The basic syntax of aggregate() is aggregate(formula, data, FUN), where:
 - ► formula: A formula indicating the variables to be aggregated and the grouping variables.
 - data: The data frame containing the variables.
 - ► FUN: The function to be applied to each group.

► In the this example, the formula gdpPercap ~ year returns the mean of gdpPercap for each unique year.

```
aggregate(gdpPercap ~ year,
data = gapminder,
FUN = mean)
```

```
## 1 1952 3829.259
## 2 1957 4347.034
## 3 1962 4727.467
## 4 1967 5644.276
## 5 1972 6772.800
## 6 1977 6929.658
## 7 1982 7393.556
## 8 1987 8267.596
## 9 1992 8271.349
## 10 1997 9174.090
## 11 2002 9534.104
## 12 2007 11729.335
```

➤ You can use the function cbind() to combine several variables and compute their mean by year.

```
aggregate(cbind(gdpPercap,lifeExp) ~ year
data = gapminder,
FUN = mean)
```

```
## 1 1952 4083.527 49.03691

## 2 1957 4779.593 52.17170

## 3 1962 4899.751 54.21721

## 4 1967 5288.622 56.65886

## 5 1972 6717.851 57.77570

## 6 1977 6625.197 59.08070

## 7 1982 7272.690 61.18568

## 8 1987 7885.416 63.49598

## 9 1992 7444.501 62.54807

## 10 1997 9308.846 65.17629

## 11 2002 8676.260 64.46458

## 12 2007 11337.348 66.90237
```

- ➤ You can also include more than one index variable.
- ► In this case, we estimate means for each unique combination of **continent** and **year**.

```
##
      continent year gdpPercap
                                lifeExp
## 1
         Africa 1952 1070.733 39.02677
## 2
       Americas 1952 3873,925 52,00900
## 3
           Asia 1952 6998.046 45.50209
## 4
        Europe 1952 5568.622 64.22723
## 5
        Oceania 1952 10298.086 69.25500
## 6
         Africa 1957 1427.367 41.39056
## 7
       Americas 1957
                      5106.036 57.49638
## 8
           Asia 1957
                      7003.774 50.02065
## 9
        Europe 1957
                      6872.857 66.19986
## 10
        Oceania 1957 11598.522 70.29500
## 11
         Africa 1962 1644.498 43.79219
##
   12
       Americas 1962 4088,299 57,83894
                      6749.832 52.91864
## 13
           Asia 1962
        Europe 1962 8082.578 68.09822
##
  14
        Oceania 1962 12696,452 71,08500
## 15
         Africa 1067 1008 330 /5 03000
```

- aggregate() is a part of base R, making it available without additional package dependencies.
- ► The result of aggregate() is often used for further analysis, visualization, or reporting summary statistics.
 - ► It combines very well with **ggplot**!

- ► **Reshaping** a data frame is a crucial skill in data science that enables you to perform various necessary tasks efficiently.
- ► There are two main types of data structures: **long** and **wide** formats.
- ► Long format is the preferred structure for most R functions and packages, including ggplot2. It is **tidy data** that is easy to manipulate and analyze.
- ► Although not tidy, wide format can be useful for presenting tables to audiences as it conveys more information in a smaller space. However, it is not ideal for data analysis.

long vs wide

country	year	metric	pivot_wider(names_from = "year", names_prefix = "yr", values_from = "metric")				
Х	1960	10					
х	1970	13	<u></u>				
х	2010	15		country	yr1960	yr1970	yr2010
у	1960	20		х	10	13	15
у	1970	23		у	20	23	25
у	2010	25		Z	30	33	35
z	1960	30	pivot_longer(cols = yr1960:yr2010, names_to = "year",				
Z	1970	33					
Z	2010	35	names_prefix = "yr" values_to = "metric")				

► The pivot_ functions allow you to **reshape** data frames from long to wide or vice versa, which can be useful for data wrangling and visualization purposes.

```
# Create example data
(df <- data.frame(
  id = c(1, 2, 3),
    treatment = c("A", "B", "C"),
  day1 = c(10, 15, 12),
  day2 = c(12, 16, 18),
  day3 = c(8, 14, 10)
))</pre>
```

```
## id treatment day1 day2 day3
## 1 1 A 10 12 8
## 2 2 B 15 16 14
## 3 3 C 12 18 10
```

- pivot_longer() is used to convert a wide data frame to a long format by stacking columns into rows.
- ➤ You must specify which **columns** to pivot, the **names** for the new columns, and the name of the column to store the **values**.

```
## # A tibble: 9 x 4
# Use pivot longer() to reshape
                                                   id treatment day
                                                                       result
# the data from wide to long
                                                <dbl> <chr>
                                          ##
                                                                 <chr>
                                                                        <dbl>
                                          ## 1
                                                    1 A
                                                                 day1
                                                                            10
df_long <-
                                          ## 2
                                                    1 A
                                                                 day2
                                                                            12
  pivot longer(df,
                                          ## 3
                                                    1 A
                                                                 day3
                                                                            8
                cols = starts with("dav")
                                          ## 4
                                                    2 B
                                                                 day1
                                                                            15
                names to = "day",
                                          ## 5
                                                    2 B
                                                                 day2
                                                                            16
                values to = "result")
                                          ## 6
                                                    2 B
                                                                 day3
                                                                            14
df_long
                                                    3 C
                                                                 day1
                                                                            12
                                          ## 7
                                          ## 8
                                                    3 C
                                                                 day2
                                                                            18
                                                    3 C
                                          ## 9
                                                                 day3
                                                                            10
```

while pivot_wider() does the opposite by spreading rows into columns.

pivot_wider() takes similar arguments, but also requires specifying which column to use for the column names and which column to use for the values in the new columns.

```
## # A tibble: 3 x 5
       id treatment
                   day1 day2 day3
##
    <dbl> <chr>
                  <dbl> <dbl> <dbl>
    1 A
## 1
                     10
                          12
                                8
## 2 2 B
                    15
                          16
                               14
## 3 3 C
                     12
                          18
                               10
```

Function: stargazer()

- ► To present results from several linear models in a output table, use the function stargazer().
 - ► In the RMarkdown, you will need to set the code chunk option results='asis'

```
library(stargazer)
m1 <- lm(mpg ~ hp, data=mtcars)
m2 <- lm(mpg ~ hp + cyl, data=mtcars)</pre>
```

Function: stargazer()

stargazer(m1,m2,header = FALSE,type="latex") # type="text" for R console

Table 1:

	Dependent variable:			
	mpg			
	(1)	(2)		
hp	-0.068*** (0.010)	-0.019 (0.015)		
cyl		-2.265*** (0.576)		
Constant	30.099*** (1.634)	36.908*** (2.191)		
Observations R^2 Adjusted R^2	32 0.602 0.589	32 0.741 0.723		

CS&SS 321 - Data Science and Statistics for Social Sciences