

LM4040A, LM4040B LM4040C, LM4040D

SLOS456N - JANUARY 2005-REVISED OCTOBER 2017

LM4040 Precision Micropower Shunt Voltage Reference

Features

- Fixed Output Voltages of 2.048 V, 2.5 V, 3 V, 4.096 V, 5 V, 8.192 V, and 10 V
- Tight Output Tolerances and Low Temperature Coefficient
 - Max 0.1%, 100 ppm/°C A Grade
 - Max 0.2%, 100 ppm/°C B Grade
 - Max 0.5%, 100 ppm/°C C Grade
 - Max 1.0%, 150 ppm/°C D Grade
- Low Output Noise: 35 μV_{RMS} Typ
- Wide Operating Current Range: 45 µA Typ to 15
- Stable With All Capacitive Loads: No Output Capacitor Required
- Available in Extended Temperature Range: -40°C to 125°C

2 Applications

- **Data-Acquisition Systems**
- Power Supplies and Power-Supply Monitors
- Instrumentation and Test Equipment
- **Process Controls**
- Precision Audio
- Automotive Electronics
- **Energy Management**
- **Battery-Powered Equipment**

3 Description

The LM4040 series of shunt voltage references are versatile, easy-to-use references that cater to a vast array of applications. The 2-pin fixed-output device requires no external capacitors for operation and is stable with all capacitive loads. Additionally, the reference offers low dynamic impedance, low noise, and low temperature coefficient to ensure a stable output voltage over a wide range of operating currents and temperatures. The LM4040 uses fuse and Zener-zap reverse breakdown voltage trim during wafer sort to offer four output voltage tolerances, ranging from 0.1% (max) for the A grade to 1% (max) for the D grade. Thus, a great deal of flexibility is offered to designers in choosing the best cost-toperformance ratio for their applications.

Packaged in space-saving SC-70 and SOT-23-3 packages and requiring a minimum current of 45 µA (typ), the LM4040 also is ideal for portable applications. The LM4040xl is characterized for operation over an ambient temperature range of -40°C to 85°C. The LM4040xQ is characterized for operation over an ambient temperature range of –40°C to 125°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PIN)	BODY SIZE (NOM)		
	SOT-23 (3)	2.92 mm × 1.30 mm		
LM4040	SC70 (6)	2.00 mm × 1.25 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

	Features 1	6.17 LM4040C50I, LM4040D50I Electrical	
2	Applications 1	Characteristics	18
3	Description 1	6.18 LM4040C50Q, LM4040D50Q Electrical Characteristics	10
4	Revision History2	6.19 LM4040A82I, LM4040B82I Electrical	
5	Pin Configuration and Functions 4	Characteristics	20
6	Specifications 5	6.20 LM4040C82I, LM4040D82I Electrical	
	6.1 Absolute Maximum Ratings 5	Characteristics	21
	6.2 ESD Ratings 5	6.21 LM4040A10I, LM4040B10I Electrical Characteristics	22
	6.3 Recommended Operating Conditions 5	6.22 LM4040C10I, LM4040D10I Electrical	22
	6.4 Thermal Information	Characteristics	23
	6.5 LM4040A20I, LM4040B20I Electrical	6.23 Typical Characteristics	
	Characteristics	7 Detailed Description	25
	6.6 LM4040C20I, LM4040D20I Electrical Characteristics	7.1 Overview	
	6.7 LM4040C20Q, LM4040D20Q Electrical	7.2 Functional Block Diagram	25
	Characteristics	7.3 Feature Description	25
	6.8 LM4040A25I, LM4040B25I Electrical	7.4 Device Functional Modes	25
	Characteristics9	8 Applications and Implementation	26
	6.9 LM4040C25I, LM4040D25I Electrical	8.1 Application Information	
	Characteristics	8.2 Typical Applications	26
	6.10 LM4040C25Q, LM4040D25Q Electrical Characteristics	9 Power Supply Recommendations	29
	6.11 LM4040A30I, LM4040B30I Electrical	10 Layout	29
	Characteristics	10.1 Layout Guidelines	
	6.12 LM4040C30I, LM4040D30I Electrical	10.2 Layout Example	29
	Characteristics	11 Device and Documentation Support	30
	6.13 LM4040C30Q, LM4040D30Q Electrical	11.1 Related Links	30
	Characteristics	11.2 Trademarks	30
	Characteristics	11.3 Electrostatic Discharge Caution	30
	6.15 LM4040C41I, LM4040D41I Electrical	11.4 Glossary	30
	Characteristics	12 Mechanical, Packaging, and Orderable	
	6.16 LM4040A50I, LM4040B50I Electrical	Information	30
	Characteristics		

Changes from Revision M (January 2015) to Revision N **Page Page**

Changes from Revision L (January 2009) to Revision M

Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,

Deleted Ordering Information table.

Submit Documentation Feedback

Device Comparison Table⁽¹⁾

T _A	DEVICE GRADE	V _{KA}	ORDERABLE PART NUMBER
		2.048 V	LM4040A20I
	A grade:	2.5 V	LM4040A25I
	0.1% initial accuracy	3 V	LM4040A30I
	and	4.096 V	LM4040A41I
	100 ppm/°C temperature	5 V	LM4040A50I
	coefficient	8.192 V	LM4040A82I
-40°C to 85°C		10 V	LM4040A10I
-40°C to 85°C		2.048 V	LM4040B20I
	B grade:	2.5 V	LM4040B25I
	0.2% initial accuracy	3 V	LM4040B30I
	and	4.096 V	LM4040B41I
	100 ppm/°C temperature	5 V	LM4040B50I
	coefficient	8.192 V	LM4040B82I
		10 V	LM4040B10I
		2.048 V	LM4040C20I
	C grade:	2.5 V	LM4040C25I
	0.5% initial accuracy	3 V	LM4040C30I
-40°C to 85°C	and 100 ppm/°C temperature coefficient	4.096 V	LM4040C41I
		5 V	LM4040C50I
		8.192 V	LM4040C82I
		10 V	LM4040C10I
		2.048 V	LM4040D20I
	D grade:	2.5 V	LM4040D25I
	1.0% initial accuracy	3 V	LM4040D30I
-40°C to 85°C	and	4.096 V	LM4040D41I
	150 ppm/°C temperature	5 V	LM4040D50I
	coefficient	8.192 V	LM4040D82I
		10 V	LM4040D10I
	C grade:	2.048 V	LM4040C20Q
	0.5% initial accuracy	2.5 V	LM4040C25Q
	and	3 V	LM4040C30Q
	100 ppm/°C temperature coefficient	5 V	LM4040C50Q
-40°C to 125°C	D grade:	2.048 V	LM4040D20Q
	1.0% initial accuracy	2.5 V	LM4040D25Q
	and	3 V	LM4040D30Q
	150 ppm/°C temperature coefficient	5 V	LM4040D50Q

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

5 Pin Configuration and Functions

DBZ (SOT-23) PACKAGE (TOP VIEW)

* Pin 3 is attached to substrate and must be connected to ANODE or left open.

NC - No internal connection

Pin Functions

	PIN		PIN		PIN TYPE		TVDE	DESCRIPTION
NAME	DBZ	DCK	ITPE	DESCRIPTION				
CATHODE	1	3	I/O	Shunt Current/Voltage input				
ANODE	2	1	0	Common pin, normally connected to ground				
NC	_	2, 4, 5	I	No Internal Connection				
*	3	_	I	Substrate Connection				

6 Specifications

6.1 Absolute Maximum Ratings

over free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
I_Z	Continuous cathode current	-10	25	mA
T_{J}	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions on timplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
I_Z	Cathode current		(1)	15	mA
_	Free dir temperature	LM4040xxxI	-40	85	۰.
IA	Free-air temperature	LM4040xxxQ	-40	125	٠.

⁽¹⁾ See parametric tables

6.4 Thermal Information

	LM4	1040		
THERMAL METRIC ⁽¹⁾	DBZ	DCK	UNIT	
	3 PINS	5 PINS		
$R_{\theta JA}$ Junction-to-ambient thermal resistance	206	252	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 LM4040A20I, LM4040B20I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040A2	Ol	LM	UNIT		
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	I _Z = 100 μA	25°C		2.048			2.048		٧
41/	Reverse breakdown voltage	L = 100 ··· A	25°C	-2		2	-4.1		4.1	mV
ΔV_Z	tolerance	$I_Z = 100 \mu A$	Full range	-15		15	-17		17	IIIV
	Minimum cathode current		25°C		45	75		45	75	^
$I_{Z,min}$	willimum cathode current		Full range			80			80	μА
		I _Z = 10 mA	25°C		±20			±20		
	$\begin{array}{c} \text{Average temperature coefficient} \\ \alpha_{VZ} \qquad \text{of reverse breakdown voltage} \\ \end{array}$	I ₇ = 1 mA	25°C		±15			±15		ppm/°C
α _{VZ}			Full range			±100			±100	ppin/ C
		$I_Z = 100 \mu A$	25°C		±15			±15		
	Reverse breakdown voltage		25°C		0.3	0.8		0.3	0.8	
$\frac{\Delta V_Z}{\Delta I_Z}$		IZ,min < IZ < I IIIA	Full range			1			1	mV
ΔI_Z	change with cathode current change	1 m \ . . 15 m \	25°C		2.5	6		2.5	6	IIIV
	-	1 mA < I _Z < 15 mA	Full range			8			8	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.3	0.8		0.3	0.8	Ω
e _N	Wideband noise	$I_Z = 100 \mu A$, 10 Hz \le f \le 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, $T_A = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C},$ $I_Z = 100 \mu\text{A}$			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%	<u> </u>	

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.6 LM4040C20I, LM4040D20I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	14040C2	DI	LN	14040D2	01	
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V_Z	Reverse breakdown voltage	I _Z = 100 μA	25°C		2.048			2.048		V
ΔV_Z	Reverse breakdown voltage	I ₇ = 100 μA	25°C	-10		10	-20		20	mV
ΔνΖ	tolerance	12 = 100 μΑ	Full range	-23		23	-40		40	IIIV
L .	Minimum cathode current		25°C		45	75		45	75	μА
I _{Z,min}	wiinimum camode current		Full range			80			80	μА
	Average temperature coefficient of reverse breakdown voltage	I _Z = 10 mA	25°C		±20			±20		
o		I ₇ = 1 mA	25°C		±15			±15		ppm/°C
αVZ		12 - 1 1100	Full range			±100			±150	ррпі, С
		$I_Z = 100 \mu A$	25°C		±15			±15		
	Reverse breakdown voltage change with cathode current	25°C		0.3	0.8		0.3	1		
$\frac{\Delta V_Z}{\Delta I_Z}$		IZ,min < IZ < I IIIA	Full range			1			1.2	mV
ΔI_Z	change with cathode current	1 m \ . . 15 m \	25°C		2.5	6		2.5	8	IIIV
		1 mA < I _Z < 15 mA	Full range			8			10	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.3	0.9		0.3	1.1	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, $T_A = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C},$ $I_Z = 100 \mu\text{A}$			120			120		ppm
V _{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.7 LM4040C20Q, LM4040D20Q Electrical Characteristics

at extended temperature range, full-range $T_A = -40$ °C to 125°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040C20	Q	LM	4040D20	Q	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V_Z	Reverse breakdown voltage	I _Z = 100 μA	25°C		2.048			2.048		V
ΔV_Z	Reverse breakdown voltage	I ₇ = 100 μA	25°C	-10		10	-20		20	mV
ΔνΖ	tolerance	12 = 100 μΑ	Full range	-30		30	-50		50	IIIV
L .	Minimum cathode current		25°C		45	75		45	75	μА
I _{Z,min}	willimum cathode current		Full range			80			80	μΑ
	Average temperature coefficient of reverse breakdown voltage	I _Z = 10 mA	25°C		±20			±20		
o		I ₇ = 1 mA	25°C		±15			±15		ppm/°C
αVZ		12 - 1 1117	Full range			±100			±150	ррпі, С
		$I_Z = 100 \mu A$	25°C		±15			±15		
		$I_{Z,min} < I_Z < 1 \text{ mA}$	25°C		0.3	0.8		0.3	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			1			1.2	mV
ΔI_Z	change with cathode current	1 mA < I _Z < 15 mA	25°C		2.5	6		2.5	8	IIIV
		T IIIA < IZ < 13 IIIA	Full range			8			10	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.3	0.9		0.3	1.1	Ω
e _N	Wideband noise	$I_Z = 100 \mu A$, 10 Hz \le f \le 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, $T_A = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C},$ $I_Z = 100 \mu\text{A}$			120			120		ppm
V _{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.8 LM4040A25I, LM4040B25I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM-	4040A2	5I	LM4040B25I			UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		2.5			2.5		V
ΔV_Z	Reverse breakdown voltage	I ₇ = 100 μA	25°C	-2.5		2.5	- 5		5	mV
ΔνΖ	tolerance	12 = 100 μΑ	Full range	-19		19	-21		21	IIIV
I	Minimum cathode current		25°C		45	75		45	75	μА
$I_{Z,min}$	wiiniinum camode current		Full range			80			80	μΑ
		I _Z = 10 mA	25°C		±20			±20		
	Average temperature coefficient of reverse breakdown voltage (1)	I ₇ = 1 mA	25°C		±15			±15		ppm/°C
α_{VZ}		IZ = 1 IIIA	Full range			±100			±100	ррпі/ С
		$I_Z = 100 \mu A$	25°C		±15			±15		
		1 -1 -1 mΛ	25°C		0.3	0.8		0.3	0.8	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage	$I_{Z,min} < I_Z < 1 \text{ mA}$	Full range			1			1	mV
ΔI_Z	change with cathode current change	1 m \ . 1 . 15 m \	25°C		2.5	6		2.5	6	IIIV
	-	1 mA < I _Z < 15 mA	Full range			8			8	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.3	0.8		0.3	0.8	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, $T_A = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C},$ $I_Z = 100 \mu\text{A}$			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.9 LM4040C25I, LM4040D25I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040C2	5I	LM	4040D2	51	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		2.5			2.5		V
۸۱/_	Reverse breakdown voltage	I ₇ = 100 μA	25°C	-12		12	-25		25	mV
ΔV_Z	tolerance	12 = 100 μΑ	Full range	-29		29	-49		49	IIIV
1	Minimum cathode current		25°C		45	75		45	75	^
$I_{Z,min}$	Willimum Cathode Current		Full range			80			80	μΑ
		I _Z = 10 mA	25°C		±20			±20		
a.	Average temperature coefficient of reverse breakdown voltage	I ₇ = 1 mA	25°C		±15			±15		ppm/°C
ανΖ	(1)	IZ = I IIIA	Full range			±100			±150	ppiii/ C
		$I_Z = 100 \mu A$	25°C		±15			±15		
		$I_{Z,min} < I_Z < 1 \text{ mA}$	25°C		0.3	8.0		0.3	1	
ΔV_Z	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			1			1.2	mV
ΔI_Z	change with cathode current	1 m \ . . 15 m \	25°C		2.5	6		2.5	8	IIIV
	-	1 mA < I _Z < 15 mA	Full range			8			10	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.3	0.9		0.3	1.1	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.10 LM4040C25Q, LM4040D25Q Electrical Characteristics

at extended temperature range, full-range $T_A = -40$ °C to 125°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM ²	1040C25	iQ	LM4	4040D25	iQ	LINUT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V_Z	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		2.5			2.5		V
41/	Reverse breakdown voltage	I - 100 ··· A	25°C	-12		12	-25		25	mV
ΔV_Z	tolerance	$I_Z = 100 \mu A$	Full range	-38		38	-63		63	IIIV
	Minimum cathode current		25°C		45	75		45	75	^
$I_{Z,min}$	Minimum cathode current		Full range			80			80	μΑ
		I _Z = 10 mA	25°C		±20			±20		
	Average temperature coefficient	1 4 0	25°C		±15			±15		/90
α_{VZ}	of reverse breakdown voltage	$I_Z = 1 \text{ mA}$	Full range			±100			±150	ppm/°C
		I _Z = 100 μA	25°C		±15			±15		
		Ι	25°C		0.3	0.8		0.3	1	
ΔV_Z	Reverse breakdown voltage	$I_{Z,min} < I_Z < 1 \text{ mA}$	Full range			1			1.2	mV
$\frac{Z}{\Delta I_Z}$	change with cathode current change	4 4 45 4	25°C		2.5	6		2.5	8	mv
	· ·	1 mA < I _Z < 15 mA	Full range			8			10	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.3	0.9		0.3	1.1	Ω
e _N	Wideband noise	$I_Z = 100 \mu A$, 10 Hz \le f \le 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.11 LM4040A30I, LM4040B30I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040A3	DI	LM	4040B3	01	LINUT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V_Z	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		3			3		V
41/	Reverse breakdown voltage	1 100 1	25°C	-3		3	-6		6	mV
ΔV_Z	tolerance	$I_Z = 100 \mu A$	Full range	-22		22	-26		26	IIIV
	Minimum cathode current		25°C		47	77		47	77	^
$I_{Z,min}$	Minimum cathode current		Full range			82			82	μА
		I _Z = 10 mA	25°C		±20			±20		
	Average temperature coefficient	1 1 m A	25°C		±15			±15		nn==/0C
αVZ	of reverse breakdown voltage	$I_Z = 1 \text{ mA}$	Full range			±100			±100	ppm/°C
		I _Z = 100 μA	25°C		±15			±15		
		Ι .1 .1	25°C		0.6	0.8		0.6	0.8	
ΔV_Z	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1 \text{ mA}$	Full range			1.1			1.1	mV
$\frac{Z}{\Delta I_Z}$	change with cathode current	1 m \ . 1 . 15 m \	25°C		2.7	6		2.7	6	IIIV
	-	1 mA < I _Z < 15 mA	Full range			9			9	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.4	0.9		0.4	0.9	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.12 LM4040C30I, LM4040D30I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040C3	Ol	LM	4040D3	Ol	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		3			3		V
۸۱/_	Reverse breakdown voltage	I ₇ = 100 μA	25°C	-15		15	-30		30	mV
ΔV_Z	tolerance	12 = 100 μΑ	Full range	-34		34	-59		59	IIIV
1	Minimum cathode current		25°C		45	77		45	77	^
$I_{Z,min}$	Willimum Cathode Current		Full range			82			82	μΑ
		$I_Z = 10 \text{ mA}$	25°C		±20			±20		
a.	Average temperature coefficient	I ₇ = 1 mA	25°C		±15			±15		ppm/°C
ανΖ	of reverse breakdown voltage	IZ = 1 IIIA	Full range			±100			±150	ppiii/ C
		$I_Z = 100 \mu A$	25°C		±15			±15		
		$I_{Z,min} < I_Z < 1 \text{ mA}$	25°C		0.4	8.0		1.4	1	
ΔV_Z	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			1.1			1.3	mV
ΔI_Z	change with cathode current	1 m \ . . 15 m \	25°C		2.7	6		2.7	8	IIIV
	-	1 mA < I _Z < 15 mA	Full range			9			11	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.4	0.9		0.4	1.2	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.13 LM4040C30Q, LM4040D30Q Electrical Characteristics

at extended temperature range, full-range $T_A = -40$ °C to 125°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM4	4040C30	Q	LM4	1040D30	Q	LINUT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V_Z	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		3			3		V
41/	Reverse breakdown voltage	1 100 1	25°C	-15		15	-30		30	mV
ΔV_Z	tolerance	$I_Z = 100 \mu A$	Full range	-45		45	-75		75	IIIV
	Minimum cathode current		25°C		47	77		47	77	^
$I_{Z,min}$	Minimum cathode current		Full range			82			82	μΑ
		I _Z = 10 mA	25°C		±20			±20		
	Average temperature coefficient	1 1 m A	25°C		±15			±15		nnm/0C
αVZ	of reverse breakdown voltage	$I_Z = 1 \text{ mA}$	Full range			±100			±150	ppm/°C
		I _Z = 100 μA	25°C		±15			±15		
		Ι .1 .1	25°C		0.4	8.0		0.4	1.1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage	$I_{Z,min} < I_Z < 1 \text{ mA}$	Full range			1.1			1.3	mV
ΔI_Z	change with cathode current change	4 4 45 4	25°C		2.7	6		2.7	8	IIIV
	· ·	1 mA < I _Z < 15 mA	Full range			9			11	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.4	0.9		0.4	1.2	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.14 LM4040A41I, LM4040B41I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040A4	11	LM	4040B4	11	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	I _Z = 100 μA	25°C		4.096			4.096		٧
41/	Reverse breakdown voltage	I - 100 ··· A	25°C	-4.1		4.1	-8.2		8.2	mV
ΔV_Z	tolerance	$I_Z = 100 \mu A$	Full range	-31		31	-35		35	IIIV
	Minimum cathode current		25°C		50	83		50	83	^
$I_{Z,min}$	Willimum cathode current		Full range			88			88	μА
		I _Z = 10 mA	25°C		±30			±30		
	Average temperature coefficient	I ₇ = 1 mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage	IZ = 1 IIIA	Full range			±100			±100	ррпі/ С
		$I_Z = 100 \mu A$	25°C		±20			±20		
		I _{Z,min} < I _Z < 1 mA	25°C		0.5	0.9		0.5	0.9	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			1.2			1.2	mV
ΔI_Z	change with cathode current	1 m \ . . 15 m \	25°C		3	7		3	7	IIIV
	-	1 mA < I _Z < 15 mA	Full range			10			10	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.5	1		0.5	1	Ω
e _N	Wideband noise	$I_Z = 100 \mu A$, 10 Hz \le f \le 10 kHz	25°C		80			80		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, $T_A = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C},$ $I_Z = 100 \mu\text{A}$			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		

⁽¹⁾ The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.15 LM4040C41I, LM4040D41I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040C4	11	LM	14040D4	11	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	I _Z = 100 μA	25°C		4.096			4.096		V
ΔV_{7}	Reverse breakdown voltage	I - 100 ··· A	25°C	-20		20	-41		41	mV
ΔνΖ	tolerance	$I_Z = 100 \mu A$	Full range	-47		47	-81		81	IIIV
L .	Minimum cathode current		25°C		50	83		50	83	μА
$I_{Z,min}$	Minimum catriode current		Full range			88			88	μΑ
		$I_Z = 10 \text{ mA}$	25°C		±30			±30		
	Average temperature coefficient	I - 1 m A	25°C		±20			±20		nnm/°C
αVZ	of reverse breakdown voltage	$I_Z = 1 \text{ mA}$	Full range			±100			±150	ppm/°C
		$I_Z = 100 \mu A$	25°C		±20			±20		
		1 -1 -1 mA	25°C		0.5	0.9		0.5	1.2	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1 \text{ mA}$	Full range			1.2			1.5	mV
ΔI_Z	change with cathode current	1 mA < I ₇ < 15 mA	25°C		3	7		3	9	IIIV
	-	1 IIIA < 1 <u>7</u> < 13 IIIA	Full range			10			13	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.5	1		0.5	1.3	Ω
e _N	Wideband noise	$I_Z = 100 \mu A$, 10 Hz \le f \le 10 kHz	25°C		80			80		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, $T_A = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C},$ $I_Z = 100 \mu\text{A}$			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the \dot{A} -grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ± 2.5 V \times 0.75% = ± 19 mV.

6.16 LM4040A50I, LM4040B50I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040A5	Ol	LM	4040B5	Ol	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		5			5		V
ΔV_Z	Reverse breakdown voltage	I ₇ = 100 μA	25°C	– 5		5	-10		10	mV
ΔνΖ	tolerance	12 = 100 μΑ	Full range	-38		38	-43		43	IIIV
I	Minimum cathode current		25°C		65	89		65	89	^
$I_{Z,min}$	Willimum cathode current		Full range			95			95	μΑ
		$I_Z = 10 \text{ mA}$	25°C		±30			±30		
	Average temperature coefficient of reverse breakdown voltage	I ₇ = 1 mA	25°C		±20			±20		ppm/°C
α_{VZ}	(1)	IZ = 1 IIIA	Full range			±100			±100	ppiii/ C
		$I_Z = 100 \mu A$	25°C		±20			±20		
		$I_{Z,min} < I_Z < 1 \text{ mA}$	25°C		0.5	1		0.5	1	
ΔV_Z	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			1.4			1.4	mV
$\frac{Z}{\Delta I_Z}$	change with cathode current	1 m \ . . 15 m \	25°C		3.5	8		3.5	8	IIIV
	-	1 mA < I _Z < 15 mA	Full range			12			12	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.5	1.1		0.5	1.1	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		80			80		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.17 LM4040C50I, LM4040D50I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040C5	Ol	LM	4040D5	01	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_{Z}	Reverse breakdown voltage	$I_Z = 100 \mu A$	25°C		5			5		V
41/	Reverse breakdown voltage	1 400 4	25°C	-25		25	-50		50	mV
ΔV_Z	tolerance	$I_Z = 100 \mu A$	Full range	-58		58	-99		99	IIIV
	Minimum cathode current		25°C		65	89		65	89	4
$I_{Z,min}$	Minimum cathode current		Full range			95			95	μΑ
		I _Z = 10 mA	25°C		±30			±30		
	Average temperature coefficient	1 1 1	25°C		±20			±20		nn==/0C
ανΖ	of reverse breakdown voltage	$I_Z = 1 \text{ mA}$	Full range			±100			±150	ppm/°C
		I _Z = 100 μA	25°C		±20			±20		
		Ι . 1 . 1 Λ	25°C		0.5	1		0.5	1.3	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage	$I_{Z,min} < I_Z < 1 \text{ mA}$	Full range			1.4			1.8	mV
ΔI_Z	change with cathode current change	1 m 1 . 1 . 1 5 m 1	25°C		3.5	8		3.5	10	IIIV
	-	1 mA < I _Z < 15 mA	Full range			12			15	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.5	1.1		0.5	1.5	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		80			80		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100 μA			120			120		ppm
V _{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.18 LM4040C50Q, LM4040D50Q Electrical Characteristics

at extended temperature range, full-range $T_A = -40$ °C to 125°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM4	1040C50	Q	LM4	1040D50	Q	LINUT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V_Z	Reverse breakdown voltage	I _Z = 100 μA	25°C		5			5		V
41/	Reverse breakdown voltage	I ₇ = 100 μA	25°C	-25		25	-50		50	mV
ΔV_Z	tolerance	12 = 100 μΑ	Full range	-75		75	-125		125	IIIV
I	Minimum cathode current		25°C		65	89		65	89	
I _{Z,min}	Willimum cathode current		Full range			95			95	μΑ
		I _Z = 10 mA	25°C		±30			±30		
	Average temperature coefficient of reverse breakdown voltage	I _Z = 1 mA	25°C		±20			±20		ppm/°C
ανΖ	(1)	IZ = I IIIA	Full range			±100			±150	ррпі/ С
		$I_Z = 100 \mu A$	25°C		±20			±20		
		l .1 .1 mΛ	25°C		0.5	1		0.5	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage	$I_{Z,min} < I_Z < 1 \text{ mA}$	Full range			1.4			1.8	mV
ΔI_Z	change with cathode current change	1 mA < I ₇ < 15 mA	25°C		3.5	8		3.5	8	IIIV
	-	1 IIIA < 1 <u>7</u> < 13 IIIA	Full range			12			12	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.5	1.1		0.5	1.1	Ω
e _N	Wideband noise	I _Z = 100 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		80			80		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, $T_A = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C},$ $I_Z = 100 \mu\text{A}$			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.19 LM4040A82I, LM4040B82I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	14040A8	21	LN	14040B8	21	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	I _Z = 150 μA	25°C		8.192			8.192		V
۸۱/_	Reverse breakdown voltage	I ₇ = 150 μA	25°C	-8.2		8.2	-16		16	mV
ΔV_Z	tolerance	12 = 150 μΑ	Full range	-61		61	-70		70	IIIV
1	Minimum cathode current		25°C		67	106		67	106	^
$I_{Z,min}$	Willimum Cathode Current		Full range			110			110	μΑ
		$I_Z = 10 \text{ mA}$	25°C		±40			±40		
a.	Average temperature coefficient	I ₇ = 1 mA	25°C		±20			±20		ppm/°C
ανΖ	of reverse breakdown voltage	IZ = 1 IIIA	Full range			±100			±100	ppiii/ C
		I _Z = 150 μA	25°C		±20			±20		
		$I_{Z,min} < I_Z < 1 \text{ mA}$	25°C		0.6	1.3		0.6	1.6	
ΔV_Z	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			2.5			2.5	mV
ΔI_Z	change with cathode current	1 mA < I ₇ < 15 mA	25°C		7	10		7	10	IIIV
	-	1 IIIA < 1 <u>7</u> < 13 IIIA	Full range			18			18	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.6	1.5		0.6	1.5	Ω
e _N	Wideband noise	I _Z = 150 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		130			130		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.20 LM4040C82I, LM4040D82I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040C8	21	LN	14040D8	21	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	I _Z = 150 μA	25°C		8.192			8.192		V
۸۱/_	Reverse breakdown voltage	I ₇ = 150 μA	25°C	-41		41	-82		82	mV
ΔV_Z	tolerance	12 = 150 μΑ	Full range	-94		94	-162		162	IIIV
1	Minimum cathode current		25°C		67	106		67	111	^
$I_{Z,min}$	willimum cathode current		Full range			110			115	μΑ
		$I_Z = 10 \text{ mA}$	25°C		±40			±40		
a.	Average temperature coefficient	I ₇ = 1 mA	25°C		±20			±20		ppm/°C
ανΖ	of reverse breakdown voltage	IZ = 1 IIIA	Full range			±100			±150	ppiii/ C
		I _Z = 150 μA	25°C		±20			±20		
		$I_{Z,min} < I_Z < 1 \text{ mA}$	25°C		0.6	1.3		0.6	1.7	
ΔV_Z	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			2.5			3	mV
ΔI_Z	change with cathode current	1 m \ . . 15 m \	25°C		7	10		7	15	IIIV
	-	1 mA < I _Z < 15 mA	Full range			18			24	
Z_Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.6	1.5		0.6	1.9	Ω
e _N	Wideband noise	I _Z = 150 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		130			130		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100 ^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.21 LM4040A10I, LM4040B10I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040A1	Ol	LM	4040B1	01	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	I _Z = 150 μA	25°C		10			10		٧
41/	Reverse breakdown voltage	I ₇ = 150 μA	25°C	-10		10	-20		20	mV
ΔV_Z	tolerance	12 = 150 μΑ	Full range	–75		75	-85		85	IIIV
1	Minimum cathode current		25°C		75	120		75	120	μА
$I_{Z,min}$	Willimum Cathode Current		Full range			125			125	μА
		$I_Z = 10 \text{ mA}$	25°C		±40			±40		
	Average temperature coefficient	I ₇ = 1 mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage	IZ = 1 IIIA	Full range			±100			±100	ррпі/ С
		I _Z = 150 μA	25°C		±20			±20		
		I _{Z,min} < I _Z < 1 mA	25°C		8.0	1.5		8.0	1.5	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			3.5			3.5	mV
ΔI_Z	change with cathode current	1 mA < I ₇ < 15 mA	25°C		8	14		8	14	IIIV
	-	1 IIIA < 1 <u>7</u> < 13 IIIA	Full range			24			24	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.7	1.7		0.7	1.7	Ω
e _N	Wideband noise	I _Z = 150 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		180			180		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%	<u> </u>	

(1) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $max\Delta T = 65$ °C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.22 LM4040C10I, LM4040D10I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040C1	01	LM	4040D1	01	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V_Z	Reverse breakdown voltage	I _Z = 150 μA	25°C		10			10		٧
41/	Reverse breakdown voltage	I ₇ = 150 μA	25°C	-50		50	-100		100	mV
ΔV_Z	tolerance	12 = 150 μΑ	Full range	-115		115	-198		198	IIIV
L .	Minimum cathode current		25°C		75	120		75	130	μА
$I_{Z,min}$	Willimum Cathode Current		Full range			125			135	μА
		$I_Z = 10 \text{ mA}$	25°C		±40			±40		
a.	Average temperature coefficient	I ₇ = 1 mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage	IZ = 1 IIIA	Full range			±100			±150	ррпі/ С
		I _Z = 150 μA	25°C		±20			±20		
		I _{Z,min} < I _Z < 1 mA	25°C		0.8	1.5		0.8	2	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min < IZ < I IIIA	Full range			3.5			4	mV
ΔI_Z	change with cathode current	1 mA < I ₇ < 15 mA	25°C		8	14		8	18	IIIV
	-	1 IIIA < 1 <u>7</u> < 13 IIIA	Full range			24			29	
Z _Z	Reverse dynamic impedance	$I_Z = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_Z$	25°C		0.7	1.7		0.7	2.3	Ω
e _N	Wideband noise	I _Z = 150 μA, 10 Hz ≤ f ≤ 10 kHz	25°C		180			180		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150 μA			120			120		ppm
V_{HYST}	Thermal hysteresis (2)	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%	<u>'</u>	

⁽¹⁾ The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 65^{\circ}\text{C}$

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 65^{\circ}\text{C}$

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C} \times 100^{\circ}\text{C}$

Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{ V} \times 0.75\%$ = $\pm 19 \text{ mV}$.

6.23 Typical Characteristics

7 Detailed Description

7.1 Overview

The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4040 remains stable.

LM4040 offers several fixed reverse breakdown voltages: 2.048 V, 2.500 V, 3.000 V, 4.096 V, 5.000 V, 6.000, 8.192 V, and 10.000 V. The minimum operating current increases from 60 μ A for the LM4040-N-2.048 and LM4040-N-2.5 to 100 μ A for the 10.0-V LM4040. All versions have a maximum operating current of 15 mA.

Each reverse voltage options can be purchased with initial tolerances (at 25°C) of 0.1%, 0.2%, 0.5% and 1.0%. These reference options are denoted by A (0.1%), B (0.2%), C (0.5%) and D for (1.0%).

The LM4040xxxl devices are characterized for operation from –40°C to 85°C, and the LM4040xxxQ devices are characterized for operation from –40°C to 125°C.

7.2 Functional Block Diagram

7.3 Feature Description

A temperature compensated band gap voltage reference controls high gain amplifier and shunt pass element to maintain a nearly constant voltage between cathode and anode. Regulation occurs after a minimum current is provided to power the voltage divider and amplifier. Internal frequency compensation provides a stable loop for all capacitor loads. Floating shunt design is useful for both positive and negative regulation applications.

7.4 Device Functional Modes

7.4.1 Shunt Reference

LM4040 will operate in one mode, which is as a fixed voltage reference that cannot be adjusted. LM4040 does offer various Reverse Voltage options that have unique electrical characteristics detailed in the *Specifications* section.

In order for a proper Reverse Voltage to be developed, current must be sourced into the cathode of LM4040. The minimum current needed for proper regulation is denoted in the *Specifications* section as $I_{Z,min}$.

8 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

LM4040 is a well known industry standard device used in several applications and end equipment where a reference is required. Below describes this device being used in a data acquisition system. Analog to Digital conversion systems are the most common applications to use LM4040 due to its low reference tolerance which allows high precision in these systems.

8.2 Typical Applications

Figure 6. Data-Acquisition Circuit With LM4040x-41

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 1 as the input parameters.

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
ADC FSR (Full Scale Range)	4.096
ADC Resolution	12 Bits
Supply Voltage	5 V
Cathode Current (lk)	100 μΑ

Submit Documentation Feedback

8.2.2 Detailed Design Procedure

When using LM4040 as a comparator with reference, determine the following:

- Input voltage range
- Reference voltage accuracy
- Output logic input high and low level thresholds
- · Current source resistance

8.2.2.1 LM4040 Voltage and Accuracy Choice

When using LM4040 as a reference for an ADC, the ADC's FSR (Full Scale Range), Resolution and LSB must be determined. LSB can be determined by:

LSB=FSR/(2N-1)

With N being the resolution or Number of Bits. FSR and Resolution can be determined by the ADC's datasheet.

Vref can be determined by:

Vref=FSR+LSB

Though modern data converters use calibration techniques to compensate for any error introduced by a Vref's inaccuracy, it is best to use the highest accuracy available. This is due to errors in the calibration method that may allow some non-linearities introduced by the Vref's initial accuracy.

A good example is the LM4040x-41 that is designed to be a cost-effective voltage reference as required in 12-bit data-acquisition systems. For 12-bit systems operating from 5-V supplies (see Figure 6), the LM4040A-41 (4.096 V, 0.01%) only introduces 4 LSBs (4mV) of possible error in a system that consists of 4096 LSBs.

8.2.2.2 Cathode and Load Currents

In a typical shunt-regulator configuration (see Figure 7), an external resistor, R_S , is connected between the supply and the cathode of the LM4040. R_S must be set properly, as it sets the total current available to supply the load (I_L) and bias the LM4040 (I_Z). In all cases, I_Z must stay within a specified range for proper operation of the reference. Taking into consideration one extreme in the variation of the load and supply voltage (maximum I_L and minimum V_S), R_S must be small enough to supply the minimum I_Z required for operation of the regulator, as given by data-sheet parameters. At the other extreme, maximum V_S and minimum I_L , R_S must be large enough to limit I_Z to less than its maximum-rated value of 15 mA.

R_S is calculated according to Equation 1:

$$R_{S} = \frac{\left(V_{S} - V_{Z}\right)}{\left(I_{L} + I_{Z}\right)} \tag{1}$$

Figure 7. Shunt Regulator

8.2.2.3 Output Capacitor

The LM4040 does not require an output capacitor across cathode and anode for stability. However, if an output bypass capacitor is desired, the LM4040 is designed to be stable with all capacitive loads.

8.2.2.4 SOT-23 Connections

There is a parasitic Schottky diode connected between pins 2 and 3 of the SOT-23 packaged device. Thus, pin 3 of the SOT-23 package must be left floating or connected to pin 2.

8.2.2.5 Start-Up Characteristics

In any data conversion system, start-up characteristics are important, as to determine when it is safe begin conversion based upon a steady and settled reference value. As shown in Figure 9 it is best to allow for $>20\mu s$ from supply start-up to begin conversion.

Figure 8. Test Circuit

8.2.3 Application Curve

9 Power Supply Recommendations

In order to not exceed the maximum cathode current, be sure that the supply voltage is current limited.

For applications shunting high currents (15 mA max), pay attention to the cathode and anode trace lengths, adjusting the width of the traces to have the proper current density.

10 Layout

10.1 Layout Guidelines

Figure 10 shows an example of a PCB layout of LM4040XXXDBZ. Some key V_{ref} noise considerations are:

- Connect a low-ESR, 0.1-μF (C_L) ceramic bypass capacitor on the cathode pin node.
- Decouple other active devices in the system per the device specifications.
- Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.
- Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible and only make perpendicular crossings when absolutely necessary.

10.2 Layout Example

Figure 10. DBZ Layout example

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

Table 2. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM4040A	Click here	Click here	Click here	Click here	Click here
LM4040B	Click here	Click here	Click here	Click here	Click here
LM4040C	Click here	Click here	Click here	Click here	Click here
LM4040D	Click here	Click here	Click here	Click here	Click here

11.2 Trademarks

All trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040A10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NQ3, 4NQU)	Samples
LM4040A10IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NQ3, 4NQU)	Samples
LM4040A20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MC3, 4MCU)	Samples
LM4040A20IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MC3, 4MCU)	Samples
LM4040A20IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MC3, 4MCU)	Samples
LM4040A20IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MC3, 4MCU)	Samples
LM4040A20IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MSU	Samples
LM4040A25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NG3, 4NGU)	Samples
LM4040A25IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NG3, 4NGU)	Samples
LM4040A25IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NG3, 4NGU)	Samples
LM4040A25IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P2U	Samples
LM4040A30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M63, 4M6U)	Samples
LM4040A30IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M63, 4M6U)	Samples
LM4040A30IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M63, 4M6U)	Samples
LM4040A30IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	TBD	Call TI	Call TI	-40 to 85	(4M63, 4M6U)	Samples
LM4040A30IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P9U	Samples
LM4040A30IDCKRE4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P9U	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040A41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M23, 4M2U)	Samples
LM4040A41IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M23, 4M2U)	Samples
LM4040A41IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M23, 4M2U)	Samples
LM4040A41IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M23, 4M2U)	Samples
LM4040A41IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P4U	Samples
LM4040A50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NA3, 4NAU)	Samples
LM4040A50IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NA3, 4NAU)	Samples
LM4040A50IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NA3, 4NAU)	Samples
LM4040A50IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	N5U	Samples
LM4040A82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NL3, 4NLU)	Samples
LM4040A82IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NL3, 4NLU)	Samples
LM4040A82IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NL3, 4NLU)	Samples
LM4040A82IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PDU	Samples
LM4040B10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NR3, 4NRU)	Samples
LM4040B10IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NR3, 4NRU)	Samples
LM4040B10IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NR3, 4NRU)	Samples
LM4040B10IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PJU	Samples
LM4040B10ILPR	PREVIEW	TO-92	LP	3	2000	TBD	Call TI	Call TI	-40 to 85		

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040B20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MD3, 4MDU)	Samples
LM4040B20IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MD3, 4MDU)	Samples
LM4040B20IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MD3, 4MDU)	Samples
LM4040B20IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MD3, 4MDU)	Samples
LM4040B20IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(MTS, MTU)	Samples
LM4040B25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NH3, 4NHU)	Samples
LM4040B25IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NH3, 4NHU)	Samples
LM4040B25IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NH3, 4NHU)	Samples
LM4040B25IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NH3, 4NHU)	Samples
LM4040B25IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P3U	Samples
LM4040B30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M73, 4M7U)	Samples
LM4040B30IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M73, 4M7U)	Samples
LM4040B30IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M73, 4M7U)	Samples
LM4040B30IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PAU	Samples
LM4040B41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M33, 4M3U)	Samples
LM4040B41IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M33, 4M3U)	Samples
LM4040B41IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M33, 4M3U)	Samples
LM4040B41IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P5U	Samples

Orderable Device	Status	Package Type	U	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM4040B50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NB3, 4NBU)	Samples
LM4040B50IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NB3, 4NBU)	Samples
LM4040B50IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NB3, 4NBU)	Samples
LM4040B50IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MXU	Samples
LM4040B82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NM3, 4NMU)	Samples
LM4040C10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NS3, 4NSU)	Samples
LM4040C10IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NS3, 4NSU)	Samples
LM4040C10IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NS3, 4NSU)	Samples
LM4040C10IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PKU	Samples
LM4040C10ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC10I	Samples
LM4040C10ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC10I	Samples
LM4040C20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MQ3, 4MQU)	Samples
LM4040C20IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MQ3, 4MQU)	Samples
LM4040C20IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MQ3, 4MQU)	Samples
LM4040C20IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MVU	Samples
LM4040C20ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC20I	Samples
LM4040C20ILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC20I	Samples
LM4040C20ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC20I	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040C20QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MW3, 4MWU)	Samples
LM4040C20QDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MW3, 4MWU)	Samples
LM4040C20QDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MW3, 4MWU)	Samples
LM4040C20QDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MW3, 4MWU)	Samples
LM4040C25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MU3, 4MUU)	Samples
LM4040C25IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MU3, 4MUU)	Samples
LM4040C25IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MU3, 4MUU)	Samples
LM4040C25IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MU3, 4MUU)	Samples
LM4040C25IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MUU	Samples
LM4040C25IDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MUU	Samples
LM4040C25IDCKTE4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MUU	Samples
LM4040C25ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC25I	Samples
LM4040C25ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC25I	Samples
LM4040C25QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MA3, 4MAU)	Samples
LM4040C25QDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MA3, 4MAU)	Samples
LM4040C25QDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MA3, 4MAU)	Samples
LM4040C25QDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MA3, 4MAU)	Samples
LM4040C30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M83, 4M8U)	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
LM4040C30IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M83, 4M8U)	Sample
LM4040C30IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M83, 4M8U)	Sample
LM4040C30IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M83, 4M8U)	Sample
LM4040C30IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PBU	Sample
LM4040C30ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC30I	Sample
LM4040C30ILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC30I	Sample
LM4040C30ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC30I	Sample
LM4040C30QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NJ3, 4NJU)	Sample
LM4040C30QDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NJ3, 4NJU)	Sample
LM4040C41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M43, 4M4U)	Sample
LM4040C41IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M43, 4M4U)	Sampl
LM4040C41IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M43, 4M4U)	Sample
LM4040C41IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M43, 4M4U)	Sampl
LM4040C41IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P6U	Sampl
LM4040C41ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC41I	Sampl
LM4040C41ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC41I	Sampl
LM4040C50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NC3, 4NCU)	Sampl
LM4040C50IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NC3, 4NCU)	Sampl

www.ti.com

24-Aug-2018

Orderable Device	Status	Package Type	Package	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM4040C50IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NC3, 4NCU)	Samples
LM4040C50IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NC3, 4NCU)	Samples
LM4040C50IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MZU	Samples
LM4040C50ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC50I	Samples
LM4040C50ILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC50I	Samples
LM4040C50ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC50I	Samples
LM4040C50QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NE3, 4NEU)	Samples
LM4040C50QDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NE3, 4NEU)	Samples
LM4040C50QDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NE3, 4NEU)	Samples
LM4040C82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NN3, 4NNU)	Samples
LM4040C82IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFU	Samples
LM4040C82ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC82I	Samples
LM4040C82ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFC82I	Samples
LM4040D10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NT3, 4NTU)	Samples
LM4040D10IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NT3, 4NTU)	Samples
LM4040D10IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PLU	Samples
LM4040D10ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD10I	Samples
LM4040D20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MV3, 4MVU)	Samples

m 24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
LM4040D20IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MV3, 4MVU)	Sample
LM4040D20IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MV3, 4MVU)	Sample
LM4040D20IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MV3, 4MVU)	Sample
LM4040D20IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MWU	Sample
LM4040D20ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD20I	Sample
LM4040D20ILPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD20I	Sample
LM4040D20QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MY3, 4MYU)	Sample
LM4040D20QDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MY3, 4MYU)	Sample
LM4040D20QDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MY3, 4MYU)	Sample
LM4040D25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ME3, 4MEU)	Sample
LM4040D25IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ME3, 4MEU)	Sample
LM4040D25IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ME3, 4MEU)	Sample
LM4040D25IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ME3, 4MEU)	Sample
LM4040D25IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MEU	Sample
LM4040D25IDCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MEU	Sample
LM4040D25IDCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MEU	Sample
LM4040D25ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD25I	Sample
LM4040D25ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD25I	Sample

www.ti.com

24-Aug-2018

Orderable Device	Status	Package Type	Package	Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM4040D25QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MB3, 4MBU)	Samples
LM4040D25QDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MB3, 4MBU)	Samples
LM4040D25QDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MB3, 4MBU)	Samples
LM4040D25QDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MB3, 4MBU)	Samples
LM4040D30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M93, 4M9U)	Samples
LM4040D30IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M93, 4M9U)	Samples
LM4040D30IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M93, 4M9U)	Samples
LM4040D30IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M93, 4M9U)	Samples
LM4040D30IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCU	Samples
LM4040D30ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD30I	Samples
LM4040D30ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD30I	Samples
LM4040D30ILPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD30I	Samples
LM4040D30QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NK3, 4NKU)	Samples
LM4040D30QDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NK3, 4NKU)	Samples
LM4040D41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M53, 4M5U)	Samples
LM4040D41IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M53, 4M5U)	Samples
LM4040D41IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M53, 4M5U)	Samples
LM4040D41IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M53, 4M5U)	Samples

www.ti.com

24-Aug-2018

Orderable Device	Status	Package Type	U	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM4040D41IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	P7U	Samples
LM4040D41ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD41I	Samples
LM4040D41ILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD41I	Samples
LM4040D41ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD41I	Samples
LM4040D50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ND3, 4NDU)	Samples
LM4040D50IDBZRG4	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ND3, 4NDU)	Samples
LM4040D50IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ND3, 4NDU)	Samples
LM4040D50IDBZTG4	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ND3, 4NDU)	Samples
LM4040D50IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M4U	Samples
LM4040D50IDCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M4U	Samples
LM4040D50ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD50I	Samples
LM4040D50ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD50I	Samples
LM4040D50ILPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD50I	Samples
LM4040D50QDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NF3, 4NFU)	Samples
LM4040D50QDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NF3, 4NFU)	Samples
LM4040D82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NP3, 4NPU)	Samples
LM4040D82IDBZT	ACTIVE	SOT-23	DBZ	3	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NP3, 4NPU)	Samples
LM4040D82IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGU	Samples

PACKAGE OPTION ADDENDUM

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040D82ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD82I	Samples
LM4040D82ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 85	NFD82I	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 9-Oct-2017

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040A10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A20IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A20IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A25IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A25IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A30IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A30IDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040A30IDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040A30IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A41IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A41IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A50IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A50IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040A82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A82IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A82IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B10IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B10IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B20IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B20IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B20IDCKR	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
LM4040B20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B25IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B25IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B30IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B30IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B41IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B41IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B50IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B50IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C10IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C10IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C20IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C20IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C20QDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040C20QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C20QDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040C20QDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C25IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C25IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C25IDCKT	SC70	DCK	5	250	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C25QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C25QDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C30IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C30IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C30QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040C30QDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C41IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C41IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C50IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C50IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C50QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C50QDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C82IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D10IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D10IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D20IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D20IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D20QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D20QDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040D20QDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D20QDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040D25IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D25IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D25IDCKT	SC70	DCK	5	250	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D25QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D25QDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D30IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D30IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D30QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D30QDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040D41IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D41IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D50IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D50IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D50QDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D50QDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D82IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D82IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040A10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A20IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A20IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A20IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040A25IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A25IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A25IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040A30IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A30IDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
LM4040A30IDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
LM4040A30IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A30IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040A41IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A41IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A41IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040A50IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A50IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A50IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040A82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040A82IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A82IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040B10IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040B10IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B20IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040B20IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040B20IDCKR	SC70	DCK	5	3000	202.0	201.0	28.0
LM4040B20IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B25IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040B25IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040B25IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B30IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040B30IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040B30IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B41IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040B41IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040B41IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B50IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040B50IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040B50IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C10IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C10IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C20IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C20IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C20IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C20QDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
LM4040C20QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C20QDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
LM4040C20QDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C25IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C25IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C25IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C25IDCKT	SC70	DCK	5	250	203.0	203.0	35.0
LM4040C25QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C25QDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C30IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C30IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C30IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C30QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C30QDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C41IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040C41IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C41IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C50IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C50IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C50IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C50QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C50QDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C82IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D10IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D10IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D20IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D20IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D20IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D20QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D20QDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
LM4040D20QDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D20QDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
LM4040D25IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D25IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D25IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D25IDCKT	SC70	DCK	5	250	203.0	203.0	35.0
LM4040D25QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D25QDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D30IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D30IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D30IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D30QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D30QDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
LM4040D41IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D41IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D41IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D50IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D50IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D50IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D50QDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D50QDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D82IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D82IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040001-2/F

TO-92 - 5.34 mm max height

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Lead dimensions are not controlled within this area.4. Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

 - a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

TO-92

TO-92

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203227/C

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-236, except minimum foot length.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.