A Hierarchical Model Analyzing Springbok Data

Zach White & Jialiang Mao

STA 723 Case Studies

February 14, 2017

Overview

Introduction and EDA

Model

Analysis

Monitoring programs aimed to track long-term changes in population size are crucial for applied ecological studies.

- Monitoring programs aimed to track long-term changes in population size are crucial for applied ecological studies.
- ▶ We seek to understand trends in the springbok population.

- Monitoring programs aimed to track long-term changes in population size are crucial for applied ecological studies.
- ▶ We seek to understand trends in the springbok population.
 - ► Are there systematic trends from year to year in the springbok population?
 - What about from site to site?

- Monitoring programs aimed to track long-term changes in population size are crucial for applied ecological studies.
- ▶ We seek to understand trends in the springbok population.
 - ► Are there systematic trends from year to year in the springbok population?
 - What about from site to site?
- ▶ We want to understand the abundance of springbok.
 - ► Can we estimate the overall abundance of springbok antelope based on this data?

- Monitoring programs aimed to track long-term changes in population size are crucial for applied ecological studies.
- ▶ We seek to understand trends in the springbok population.
 - ► Are there systematic trends from year to year in the springbok population?
 - What about from site to site?
- We want to understand the abundance of springbok.
 - ► Can we estimate the overall abundance of springbok antelope based on this data?
- ► Are there any covariates that affect the springbok populations living habits?

▶ The data come from aerial surveys

- ► The data come from aerial surveys
- ► The variables of interest

- ► The data come from aerial surveys
- The variables of interest
 - ▶ site: the site of each watering hole. Out of 25 watering holes studied, we have data from sites 12-21, 23, and 24.

- The data come from aerial surveys
- The variables of interest
 - ▶ site: the site of each watering hole. Out of 25 watering holes studied, we have data from sites 12-21, 23, and 24.
 - year: the year the observation was recorded. We have data from 1990-2012

- The data come from aerial surveys
- The variables of interest
 - ▶ site: the site of each watering hole. Out of 25 watering holes studied, we have data from sites 12-21, 23, and 24.
 - year: the year the observation was recorded. We have data from 1990-2012
 - date: The week of year the observation was recorded.

- The data come from aerial surveys
- The variables of interest
 - ▶ site: the site of each watering hole. Out of 25 watering holes studied, we have data from sites 12-21, 23, and 24.
 - year: the year the observation was recorded. We have data from 1990-2012
 - date: The week of year the observation was recorded.
 - hour: The number of hours past noon from the recorded date of the observation

- The data come from aerial surveys
- The variables of interest
 - ▶ site: the site of each watering hole. Out of 25 watering holes studied, we have data from sites 12-21, 23, and 24.
 - year: the year the observation was recorded. We have data from 1990-2012
 - date: The week of year the observation was recorded.
 - hour: The number of hours past noon from the recorded date of the observation
 - counts: The number of Springbok Antelope at the given watering hole.

- The data come from aerial surveys
- The variables of interest
 - ▶ site: the site of each watering hole. Out of 25 watering holes studied, we have data from sites 12-21, 23, and 24.
 - year: the year the observation was recorded. We have data from 1990-2012
 - date: The week of year the observation was recorded.
 - hour: The number of hours past noon from the recorded date of the observation
 - counts: The number of Springbok Antelope at the given watering hole.

Figure 1: HourFromNoon by site

Figure 2: Date by site

Figure 3: Data by site.

EDA

- ► Clearly, we should include both site and year in the model.
- ► For data in a given site of a given year, the larger the mean, the larger the variance.
- ▶ No clear trend may need site-year interaction.
- ▶ Whether include DATE and HourFromNoon is not clear.
- ▶ The sampling scheme changed around 1995.

DATE	14-19	20-24	25-28	28-42
Group	Α	В	C	D

Table 1: Quartiles of DATE.

EDA

Let Y_{ijt} , d_{ijt} , h_{ijt} denote the j-th counts, date and HourFromNoon at site i in year t, respectively.

$$Y_{ijt} \sim \text{Poi}(\mu_{ijt})$$

Model 1: $\log(\mu_{ijt}) = \mu + \alpha_i + \beta_t$

Model 2: $\log(\mu_{ijt}) = \mu + \alpha_i + \beta_t + \nu_{it}$

Model 3: $\log(\mu_{ijt}) = \mu + \alpha_i + \beta_t + \nu_{it} + \gamma d_{ijt} + \delta h_{ijt}$

	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
1	1026	10380.63			
2	894	5287.14	132	5093.50	0.0000
3	892	4901.69	2	385.44	0.0000

Table 2: ANOVA.

Model based on the sampling scheme

Let Y_{ijt} , d_{ijt} , h_{ijt} denote the j-th counts, date and HourFromNoon at site i in year t, respectively.

$$egin{aligned} N_{it} &\sim \mathrm{Poi}(\mu_{it}) \ Y_{ijt} &\sim \mathrm{Binom}(N_{it}, p_{ijt}) \ g(p_{ijt}) &= \mu + lpha_i + eta_t + \gamma d_{ijt} + \delta h_{ijt} \end{aligned}$$

where g is some link function.

- ▶ The inference is cumbersome. (need to marginalize out N_{it} .)
- With limited data points in each site each year, it is hard to quantify the uncertainty.

Bayesian hierarchical log linear model

$$\begin{aligned} Y_{ijt} &\sim \operatorname{Poi}(\mu_{ijt}) \\ \log(\mu_{ijt}) &= \mu + \alpha_i + \beta_t + \gamma d_{ijt} + \delta h_{ijt} \\ \alpha_j &\stackrel{\text{i.i.d.}}{\sim} N(\mu_\alpha, \sigma_\alpha^2) \\ \beta_t &\stackrel{\text{i.i.d.}}{\sim} N(\mu_\beta, \sigma_\beta^2) \end{aligned}$$

let $\alpha_1=\beta_1=0$ for identifiability. Use flat priors for μ,γ,δ , $\mu_\alpha,\mu_\beta,\sigma^2_\alpha,\sigma^2_\beta$.

Model with interaction

$$\begin{aligned} Y_{ijt} &\sim \operatorname{Poi}(\mu_{ijt}) \\ \log(\mu_{ijt}) &= \mu + \alpha_i + \beta_t + \nu_{it} + \gamma d_{ijt} + \delta h_{ijt} \\ \alpha_j &\stackrel{\text{i.i.d.}}{\sim} N(\mu_{\alpha}, \sigma_{\alpha}^2) \\ \beta_t &\stackrel{\text{i.i.d.}}{\sim} N(\mu_{\beta}, \sigma_{\beta}^2) \\ \nu_{it} &\stackrel{\text{i.i.d.}}{\sim} N(\mu_{\nu}, \sigma_{\nu}^2) \end{aligned}$$

let $\alpha_1 = \beta_1 = 0$ for identifiability. Use flat priors for μ, γ, δ , $\mu_{\alpha}, \mu_{\beta}, \mu_{\nu}, \sigma_{\alpha}^2, \sigma_{\beta}^2, \sigma_{\nu}^2$.

MCMC diagnostic

We run the chain for N=20000, with a burn-in B=5000.

- ► Traceplots.
- Geweke.

Overdispersion?

Figure 4: Data vs estimated.

Residuals

Figure 5: Residuals (without interaction)

Residuals

Figure 6: Residuals (with interaction)

Posterior summaries

Figure 7: Posterior samples. (Up: with interaction; Bottom: without interaction.)

Posterior summaries

Figure 8: Posterior samples. (Up: with interaction; Bottom: without interaction.)

Model Fitting

Figure 9: Posterior means.

Time Series

- ▶ No clear trend. (We have site-year interactions in our model.)
- ► Two time-relevant covariates. Different sampling schedule each year. How to define the time unit?

Conclusion

- Are there systematic trends from year to year in the springbok population?
 - Without the interaction, there does seem to be a semi-consistent negative trend.
 - ▶ With the interaction, there may be a cyclical trend.
- What about from site to site?
 - Under both models, sites 5 and 9 seem to be associated with higher springbok levels.
- ► Can we estimate the overall abundance of springbok antelope based on this data?
 - Under our model, this is not possible. However, if we were to use the other possible model we discuss, it could be possible.
- ► Are there any covariates that affect the springbok populations living habits?
 - Under both models, date and hour both have an impact.