

18/09/2020

3. Algèbre relationnelle

l

Algèbre relationnelle

- Définie par Codd en Juin 1970.
- Langage d'expressions algébriques en notation fonctionnelle:
 - Les variables représentent des tables, instances de relations
 - Opérateurs (unaires, binaires, ...) sur ces tables.
- Il existe un interprète de ce langage, qui permet de calculer toute expression portant sur des tables constituées d'ensembles finis de tuples.

Algèbre relationnelle

- Ensemble d'opérateurs qui s'appliquent aux relations
- Résultat : nouvelle relation qui peut à son tour être manipulée
- L'algèbre relationnelle permet de faire des recherches dans les relations

Opérations de l'Algèbre Relationnelle

Opérations ensemblistes

et

Opérations spécifiques

Opérations binaires ensemblistes (Union, intersection, différence)

Soient **r et s deux instances d'un même schéma R**

Les trois opérations suivantes définissent des instances du même schéma R:

```
r \cup s = \{ t \mid t \in r \text{ out } \in s \}

r \cap s = \{ t \mid t \in r \text{ et } t \in s \}

r - s = \{ t \mid t \in r \text{ et } t \notin s \}
```

Ces opérations sont impossible entre deux relations qui n'ont pas le même schéma.

A

ld	Nom	Prop
122	r21	renault
145	sparc	sun
223	spike	sun
147	r19	renault

$A \cup B$

ld	Nom	Prop
122	r21	renault
145	sparc	sun
223	spike	sun
147	r19	renault
149	r18	renault

В

Id	Nom	Prop
122	r21	renault
145	sparc	sun
149	r18	renault

$A \cap B$

ld	Nom	Prop
122	r21	renault
145	sparc	sun

A-B

ld	Nom	Prop
223	spike	sun
147	r19	renault

A

ld	Nom	Prop
122	r21	renault
145	sparc	sun
223	spike	sun
147	r19	renault

	В		
ld	Nom	Ville	Prop
122	r21	Boulogne	renault
145	sparc	New York	sun
149	r18	Marseille	renault

A∪ B n'est pas défini A∩ B n'est pas défini A-B n'est pas défini

3 2018-19

Operateur ensembliste

• Produit cartesien : s'applique à deux relations n'ayant aucun attribut de même nom

A

ld	Nom	Prop
122	r21	renault
145	sparc	sun
223	spike	sun

В

ld1	Ville1	Prop1
122	Boulogne	renault
145	New York	sun

AxB

Id	Nom	Prop	Id1	Ville1	Prop1
122	r21	renault	122	Boulogne	renault
122	r21	renault	145	New York	sun
145	sparc	sun	122	Boulogne	renault
145	sparc	sun	145	New York	sun
223	spike	sun	122	Boulogne	renault
223	spike	sun	145	New York	sun

Operateur Projection

Soient R un schéma de relation et

 $A = \{A_1,, A_n\}$ un sous-ensemble d'attributs de la relation R.

La **projection** sur A **d'un tuple** † défini sur R, est le tuple $\prod_A(t) = (t.A_1:A_1, ..., t.A_n:A_n)$

La **projection** sur A de l'instance de **relation** r est l'instance de relation $\prod_A(r) = \{\prod_A(t), t \in r\}$

Exemple de projection

marque

ld	Nom	Classe	Prop
122	r21	14	renault
145	sparc	12	sun
223	spike	12	sun
147	r19	13	renault

	(marque)
I	Classe,Prop

Classe	Prop
14	renault
12	sun
13	renault

Une relation étant un ensemble de n-uplets, il n'y a jamais de doublons dans une relation.

Projection : propriétés

Soient ret s des instances de R, et A un sousensemble d'attributs de R.

$$\prod_{A}(r \cup s) = \prod_{A}(r) \cup \prod_{A}(s)$$

On n'a pas toujours:

$$\Pi_A(r \cap s) = \Pi_A(r) \cap \Pi_A(s)
\Pi_A(r - s) = \Pi_A(r) - \Pi_A(s)$$

Sélection: définition

- or une instance d'un schéma R
- A un attribut de R
- a une constante appartenant à dom(A) La sélection de r par filtrage de A sur a, est une instance du même schéma définie par :

$$\sigma_{A=a}(r) = \{t \in r \mid t.A = a\}$$

Exemple de sélection

marque

ld	Nom	Classe	Prop
128	r30	14	renault
122	r21	14	renault
145	sparc	12	sun
223	spike	12	sun
147	r19	13	renault

$\sigma_{\text{Classe=14}}(\text{marque})$

ld	Nom	Classe	Prop
128	r30	14	renault
122	r21	14	renault

Sélection: commutativité

$$\sigma_{A=a}(\sigma_{B=b}(r)) = \sigma_{B=b}(\sigma_{A=a}(r))$$

On écrit alors:

$$\sigma_{A=a,B=b}(r)$$

Sélection : Distributivité sur les opérations binaires ensemblistes

Pour tout opérateur ensembliste binaire $Op \in \{ \cap, \cup, - \}$ on a :

$$\sigma_{A=a}$$
 (r op s)= $\sigma_{A=a}$ (r) op $\sigma_{A=a}$ (s)

Sélection: Commutativité avec la projection

$$\prod_{A} (\sigma_{A=G}(r)) = \sigma_{A=G}(\prod_{A} (r))$$

Enh šššš

Sélection étendue exemples

>
$$\sigma_{A<13}(r)$$

> $\sigma_{A<13}(r)$
> $\sigma_{A<13}(r)$
> $\sigma_{A=13}(r)$

où A et B sont deux attributs de r

Sélection étendue

Soient r(R) une instance d'un schéma R, $\{A_1,...,A_n\}$ un sous-ensemble d'attributs de R, et f une fonction **booléenne** définie sur dom (A_1) x...x dom (A_n) : La sélection de r par $f(A_1,...,A_n)$ est une instance du même schéma définie par :

$$\sigma_{f(A_1, ..., A_n)}(r)$$

= {t \in r | f(t.A₁, ..., t.A_n)}

20 2018-19

Jointure naturelle

• Contrairement aux autres opérations, elle est définie pour les tuples avant d'être définie pour les relations.

Jointure Naturelle de deux tuples

Si t1 et t2 sont deux tuples **n'ayant aucun attribut de même nom** on peut les joindre et le résultat est la concaténation des deux tuples

Sinon, on ne peut les joindre que si ils coïncident sur leurs attributs de même nom.

Jointure Naturelle de deux tuples

- Quand on peut joindre deux tuples, l'ensemble des attributs du tuple résultat est toujours l'union des deux ensembles d'attributs
- On ne duplique pas les attributs de même nom dans une jointure naturelle

Jointure Naturelle de tuples

Deux tuples $t_r(R)$ et $t_s(S)$ sont **joignables**, si et seulement si il existe un tuple $t(R \cup S)$ tel que :

$$\Pi_{R}(t) = t_{r}$$
 et $\Pi_{S}(t) = t_{s}$
Ce tuple unique est noté

$$t_r \bowtie t_s$$

Jointure Naturelle de tuples

$$(t_r \bowtie t_s)$$
 existe $\Leftrightarrow \Pi_{R \cap S} (t_r) = \Pi_{R \cap S} (t_s)$
Si $(t_r \bowtie t_s)$ existe, alors
 $\Pi_R ((t_r \bowtie t_s) = t_r \text{ et } \Pi_S ((t_r \bowtie t_s) = t_s)$

Exemples de jointure de 2 tuples

('JointNéoprène':NomProd,302:CodeProd,204.5:Prix)

M

('StéX':NomDistrib;'JointNéoprène':NomProd)

('JointNéoprène':NomProd; 302:CodeProd, 204.5:Prix, 'StéX':NomDistrib)

Exemples de jointure impossible entre 2 tuples

('JointNéoprène':NomProd,302:CodeProd,204.5:Prix)

M

('Sté X':NomDistrib,'Rondelle6x4':NomProd)

n'existe pas

Jointure Naturelle de deux instances de relation

- Toujours possible
- Ensemble (éventuellement vide) de toutes les jointures de tuple joignables
- o Notée ⋈

marque

idM	NomM	Classe	IdProp
145245	sparc	27	sun
223423	spike	27	sun
147064	renegade	24	renault

prop

IdProp	NomProp	Ville
renault	renaultSA	Boulogne
sun	sun micro	Edmonton
jeep	Jeep inc.	Detroit

prop ⋈ marque

IdProp	NomProp	Ville	IdM	NomM	Classe
renault	renaultSA	Boulogne	147064	renegade	24
sun	sun micro	Edmonton	145245	sparc	27
sun	sun micro	Edmonton	223423	spike	27

marque			
idM	NomM	Class e	IdProp
145245	sparc	27	sun
223423	spike	27	sun
147064	renegade	24	renault

prop		
IdProp	NomProp	Ville
jeep	Jeep inc.	Detroit

prop ⋈ marque

IdProp	NomProp	Ville	IdM	NomM	Classe

S'il n'y a pas de tuples joignables, le résultat est l'ensemble vide

marque			
idM	NomM	Class e	IdProp
145245	sparc	27	sun
223423	spike	27	sun
147064	renegade	24	renault

30	18/09/2020

pays		
Code	Nom	
FR	France	
US	Etats Unis	

pays⋈ marque=pays x marque

Code	Nom	IdM	NomM	Classe	idProp
FR	France	145245	sparc	27	sun
FR	France	223423	spike	27	sun
FR	France	147064	renegade	24	renault
US	Etats Unis	145245	sparc	27	sun
US	Etats Unis	223423	spike	27	sun
US	Etats Unis	147064	renegade	24	renault

Associativité de la jointure

$$r \bowtie (s \bowtie t) = (r \bowtie s) \bowtie t$$

Distributivité vis-a-vis de l'union

$$r \bowtie (s \cup t) = (r \bowtie s) \cup (r \bowtie t)$$

Jointure et produit cartésien

Si R \cap S= \varnothing alors r \bowtie s est isomorphe au produit cartésien des deux instances r et s.

Division r ÷s

Une relation sur R-S qui regroupe toutes les éléments de R-S qui dans R sont associés à tous les éléments de S

Quels sont les athlètes qui ont participé à toutes les épreuves ?

Athlète	Epreuve
Pierre	200 m
Pierre	400 m
Pierre	800 m
Paul	400 m
Jean	200 m

Epreuve			
200 m			
400 m			
800 m			

Athlète Pierre

r(Athlète, Epreuve) ÷ s(Epreuve)

Division (définition)

Soient r(R) et s(S) deux instances de relations, avec $S \subset R$

Le quotient de r par s est la relation définie sur le schéma Q=R-S par:

$$r \div s = \{ t_q \in \pi_Q(r) \mid \forall t_s \in s, t_q \bowtie t_s \in r \}$$

 $r \div s$ est le plus grand ensemble q de $\pi_Q(r)$ tel que (q \bowtie s) \subset r.

Division (propriété)

La division s'exprime en fonction des opérateurs précédents :

$$r \div s = \pi_{Q}(r) - \pi_{Q}((\pi_{Q}(r) \bowtie s) - r)$$

$$OU$$

$$r \div s = \pi_{Q}(r) - \pi_{Q}((\pi_{Q}(r) \times s) - r)$$

Division (exemple)

Existe il une société qui possède toutes les marques de la classe 14?

```
\begin{split} & \prod_{\text{IdProp, IdM}} (\text{marque}) \div \prod_{\text{IdM}} (\sigma_{\text{Classe=14}}(\text{marque})) \\ & = \prod_{\text{IdProp}} (\text{marque}) \ - \\ & \prod_{\text{IdProp}} [\prod_{\text{IdProp,IdM}} (\sigma_{\text{Classe=14}}(\text{marque})) \\ & - \prod_{\text{IdProp,IdM}} (\sigma_{\text{Classe=14}}(\text{marque})) \ ] \end{split}
```


Renommage des attributs

Le renommage de A en B dans une instance r(R) est une instance du schéma $R'=R-\{A\}\cup\{B\}$ notée

$$\delta_{A\leftarrow B}(r)$$

On peut étendre ce renommage, sous réserve de ne pas créer de collisions de noms, à plusieurs attributs.

$$\delta_{A1,...An\leftarrow B1,....Bn}(r)$$

Pourquoi renommer

Parce qu'on ne dispose que de la jointure naturelle, qui dépend de l'homonymie des attributs

prop = {IdProp, NomProp, Pays, Ville}
enreg={NumEnr, IdM, Date, Deposant}

"noms de propriétaires ayant déposé au moins une marque avant le 15 janvier 91"
I'attribut Deposant de ENREG et l'attribut IdProp de PROP correspondent à la même notion, mais ne portent pas le même nom

 $\Pi_{\text{NomProp}}(\delta_{\text{Deposant}\leftarrow \text{IdProp}}(\sigma_{\text{Date}<910115}(\text{enreg})) \\ \bowtie \text{prop}))$

Exemples de requêtes en algèbre relationnelle

employes(nomEmploye, ville, rue)

entreprises (nomEntreprise, ville, rue)

travaille(nomEmploye, nomEntreprise, salaire)

Trouver les noms de tous les employés qui travaillent pour « Banquissimo »

```
\prod_{nomEmploye} ( \sigma_{	ext{nomEntreprise="@Banquissimo"}} (travaille)
```


Trouver les villes dans lesquelles résident au moins un des employés qui travaillent pour "Banquissimo"

```
\sigma_{	ext{nomEntreprise}=\text{``Banquissimo''}} (travaille)

\omega_{	ext{employe}}
```


Trouver les noms des employés qui travaillent dans leur ville de résidence

```
NomEmployé
                    (travaille
                     employe
        \prod_{NomEntreprise,ville} (entreprises)
```


Nom des entreprises localisées dans au moins deux villes différentes

```
InomEntreprise
                         \sigma_{\text{ville} <> \text{ville} 2} [
                                          entreprises
                                          \delta_{\text{ville}\leftarrow\text{ville}2.\ \text{rue}\leftarrow\text{rue}2} (entreprises)
```


Nom des entreprises localisées dans au moins deux villes différentes

```
InomEntreprise
                        \sigma_{\text{ville} <> \text{ville} 2}
                        \prod_{NomEntreprise, ville} (entreprises)
                        \delta_{\text{ville}\leftarrow \text{ville}2}(\prod_{\textit{NomEntreprise},\textit{ville}}(\text{entreprises}))
```


Trouver les noms des villes dans lesquelles toutes les entreprises sont implantées

```
\Pi_{\text{nomEntreprise, ville}} (entreprises) ÷ \Pi_{\text{ville}} (entreprises)
```


Pour en savoir plus

- https://fr.wikipedia.org/wiki/Alg%C3%A8bre_r elationnelle

