Simulação Numérica De Escoamentos Dispersos Em Turbomáquinas Utilizando Método De Elementos Finitos

Lucas Carvalho De Sousa Gustavo Rabello Dos Anjos

Universidade do Estado do Rio de Janeiro encarvlucas@hotmail.com

25 de Junho de 2019

Sumário

- Simulação de Escoamentos Bidimensionais com Partículas
- Escoamentos em Turbomáguinas
- Equações de Governo
 - Formulação Corrente-Vorticidade
 - Eguação de Basset-Boussinesg-Oseen (BBO)
- Métodos Numéricos

 - Método dos Elementos Finitos
 Discretização do Modelo de Escoamentos
 - Discretização do Modelo de Partículas
 - Definição das Matrizes
- Código
 - Montagem das Matrizes Globais
 - Estrutura de Uso da Biblioteca
 - Estrutura de Solução
- Validações e Resultados
 - Validações de Problemas em Sólidos
 - Validações do Modelo Corrente-Vorticidade

Introdução

Simulação de Escoamentos Bidimensionais com Partículas

Objetivos deste trabalho:

Desenvolver uma biblioteca de Python para a simulação de escoamentos particulados.

Escoamento entre placas, Hagen-Poiseuille.

Escoamentos em Turbomáquinas

Objetivos deste trabalho:

Estudar como partículas se comportam dentro de uma turbomáquina em funcionamento.

Fonte: @ BrokenSphere / Wikimedia Commons.

Equações de Governo

Formulação Corrente-Vorticidade

Hipóteses tomadas

- Fluído incompressível
- Fluído newtoniano

Equação de Navier-Stoakes

$$\frac{\partial \vec{v}_f}{\partial t} + \vec{v}_f . \vec{\nabla} \vec{v}_f = -\frac{1}{\rho_f} \vec{\nabla} p + \frac{\mu_f}{\rho_f} \nabla^2 \vec{v}_f + \vec{g}$$

Desvantagens

- Acoplamento da pressão e velocidade
- Exige elementos de ordem elevada

Formulação Corrente-Vorticidade

Equação da Vorticidade

$$\frac{\partial \vec{\omega}}{\partial t} + \vec{v}_f . \vec{\nabla} \vec{\omega} = \frac{\mu_f}{\rho_f} \nabla^2 \vec{\omega}$$

Equação da Corrente

$$\nabla^2 \psi = -\omega_z$$

Equações Auxiliares

$$\vec{v}_f = (v_{f,x}, v_{f,y})$$

$$v_{f,x} = \frac{\partial \psi}{\partial y}$$

$$v_{f,y} = -\frac{\partial \psi}{\partial x}$$

$$\omega_z = \frac{\partial v_{f,x}}{\partial y} - \frac{\partial v_{f,y}}{\partial x}$$

Equação de Basset-Boussinesq-Oseen (BBO)

Equação que representa as forças exercidas sobre as partículas. Sua expressão é a soma das forças separadamente.

Equação de Basset-Boussinesq-Oseen

$$ec{F_p} = \sum ec{F} = ec{F}_{grav} + ec{F}_{drag} + ec{F}_{lift} + ec{F}_{mass}$$

Restrição

A equação BBO é somente válida para Reynolds da partícula menores que 1. $Re_p < 1$

Reynolds de Partícula

$$Re_p = rac{
ho_p}{\mu_f} |\left(ec{v_f} - ec{v_p}
ight)|_{ extit{max}} d_p$$

Força Gravitacional

$$\vec{F}_{grav} = m_p \vec{g}$$

Força de Sustentação

$$ec{F}_{lift} = 1.61 \mu_f d_p \left(ec{v}_f - ec{v}_p \right) \sqrt{Re_G}$$

Força de Arrasto

$$\vec{F}_{drag} = 3\pi \mu_f d_p \left(\vec{v}_f - \vec{v}_p \right)$$

Força de Massa Virtual

$$ec{F}_{mass} = rac{1}{2}
ho_f V_p rac{d}{dt} \left(ec{v}_f - ec{v}_p
ight)$$

Reynolds de Cisalhamento

$$Re_G = rac{
ho_f}{\mu_f} d_p^2
abla ec{v}_f$$

Métodos Numéricos

Método dos Elementos Finitos

Domínio

Equações são definidas em um domínio Ω com contorno Γ .

Forma forte com as funções peso

$$\int_{\Omega} \left(\frac{\partial \vec{\omega}}{\partial t} + \vec{v}_f . \vec{\nabla} \vec{\omega} - \frac{\mu_f}{\rho_f} \nabla^2 \vec{\omega} \right) . \vec{\delta} d\Omega = 0$$

$$\int_{\Omega} \left(\nabla^2 \psi + \omega_z \right) . \vec{\phi} d\Omega = 0$$

$$\int_{\Omega} \left(\vec{v}_f - \left(\frac{\partial \psi}{\partial v}, -\frac{\partial \psi}{\partial x} \right) \right) . \vec{\xi} d\Omega = 0$$

Condições de contorno

$$\omega = \omega_{\Gamma} \text{ em } \Gamma$$
 $\psi = \psi_{\Gamma} \text{ em } \Gamma$
 $\vec{v}_{\ell} = \vec{v}_{\ell\Gamma} \text{ em } \Gamma$

 $\vec{\delta}$, $\vec{\phi}$ e $\vec{\xi}$ são as funções de peso de cada equação.

Método dos Elementos Finitos

Forma fraca

$$m_1\left(\frac{\partial \vec{\omega}}{\partial t}, \delta\right) + g_1(\vec{v}_f, \vec{\delta}) + \frac{\mu_f}{\rho_f} k_1(\vec{\omega}, \vec{\delta}) = 0$$
$$-k_2(\psi, \vec{\phi}) + m_2(\omega_z, \vec{\phi}) = 0$$
$$m_3(\vec{v}_f, \vec{\xi}) - g_3(\psi, \vec{\xi}) = 0$$

Onde:

$$m_1\left(rac{\partial ec{\omega}}{\partial t}, \delta
ight) = \int_{\Omega} rac{\partial ec{\omega}}{\partial t}. ec{\delta} d\Omega$$
 $g_1(ec{v}_f, ec{\delta}) = \int_{\Omega} ec{v}_f. ec{
abla} ec{\omega}. ec{\delta} d\Omega$ $k_1(ec{\omega}, ec{\delta}) = \int_{\Omega} ec{
abla} ec{\omega}. ec{
abla} ec{\delta} d\Omega$

$$k_{2}(\psi, \vec{\phi}) = \int_{\Omega} \vec{\nabla} \psi . \vec{\nabla} \vec{\phi} d\Omega$$

$$m_{2}(\omega_{z}, \vec{\phi}) = \int_{\Omega} \omega_{z} . \vec{\phi} d\Omega$$

$$m_{3}(\vec{v}_{f}, \vec{\xi}) = \int_{\Omega} \vec{v}_{f} . \vec{\xi} d\Omega$$

$$g_{3}(\psi, \vec{\xi}) = \int_{\Omega} \left(\frac{\partial \psi}{\partial y}, -\frac{\partial \psi}{\partial x} \right) . \vec{\xi} d\Omega$$

Discretização do Modelo de Escoamentos

Formulação de Galerkin

Funções de peso são definidas com valor igual às funções interpoladoras.

$$\omega(\vec{x}, t) = \sum_{i=1}^{n_p} \omega_i(t) N_i(\vec{x})
\psi(\vec{x}, t) = \sum_{i=1}^{n_p} \psi_i(t) N_i(\vec{x})
v_{f,x}(\vec{x}, t) = \sum_{i=1}^{n_p} v_{f,x,i}(t) N_i(\vec{x})
v_{f,y}(\vec{x}, t) = \sum_{i=1}^{n_p} v_{f,y,i}(t) N_i(\vec{x})
v_{f,y}(\vec{x}, t) = \sum_{j=1}^{n_p} v_{f,y,i}(t) N_i(\vec{x})$$

$$\delta(\vec{x}, t) = \sum_{j=1}^{n_p} \delta_i(t) N_j(\vec{x})
\phi(\vec{x}, t) = \sum_{j=1}^{n_p} \phi_i(t) N_j(\vec{x})
\xi(\vec{x}, t) = \sum_{j=1}^{n_p} \xi_i(t) N_j(\vec{x})$$

Discretização do Modelo de Escoamentos

Função de Aproximação

N(x) é a função de aproximação de cada elemento:

$$N_i(\vec{x}) = [N_1(\vec{x}), \dots, N_{n_p}(\vec{x})]$$

Matrizes locais dos elementos

Surgem os termos locais, para cada elemento e:

$$\mathbf{m^e} = \int_{\Omega^e} N_i^e N_j^e d\Omega^e$$
 $\mathbf{g_x^e} = \int_{\Omega^e} \frac{\partial N_i^e}{\partial x} N_j^e d\Omega^e$
 $\mathbf{g_y^e} = \int_{\Omega^e} \frac{\partial N_i^e}{\partial y} N_j^e d\Omega^e$

$$\mathbf{k_{xx}^e} = \int_{\Omega^e} \frac{\partial N_i^e}{\partial x} \frac{\partial N_j^e}{\partial x} d\Omega^e$$

$$\mathbf{k_{yy}^e} = \int_{\Omega^e} \frac{\partial N_i^e}{\partial y} \frac{\partial N_j^e}{\partial y} d\Omega^e$$

Discretização do Modelo de Escoamentos

Discretização no tempo

Para os termos temporais é utilizada o Método de Diferenças Finitas:

$$rac{\partial \omega}{\partial t} pprox rac{\omega(t+dt)-\omega(t)}{dt} = rac{\omega^{t_{n+1}}-\omega^{t_n}}{dt}$$

Equações na forma global

$$\begin{split} \left(\mathbf{M} v_{f,x}^{t_n} \mathbf{G_x} + v_{f,y}^{t_n} \mathbf{G_y} + \frac{\mu_f}{\rho_f} \left(\mathbf{K_{xx}} + \mathbf{K_{yy}} \right) \right) \omega^{t_{n+1}} &= \mathbf{M} \omega^{t_n} \\ \left(\mathbf{K_{xx}} + \mathbf{K_{yy}} \right) \psi &= \mathbf{M} \omega^{t_{n+1}} \\ \mathbf{M} v_{f,x}^{t_n} \omega^{t_{n+1}} &= \mathbf{G_y} \psi \\ \mathbf{M} v_{f,x}^{t_n} \omega^{t_{n+1}} &= -\mathbf{G_x} \psi \end{split}$$

Discretização do Modelo de Partículas

Equações das forças nas partículas

$$\begin{split} \vec{F}_{grav}^{t_{n}} &= m_{p}\vec{g} \\ \vec{F}_{drag}^{t_{n}} &= 3\pi \mu_{f} d_{p} \left(\vec{v}_{f}^{t_{n}} - \vec{v}_{p}^{t_{n-1}} \right) \\ \vec{F}_{lift}^{t_{n}} &= 1.61 \mu_{f} d_{p} \left(\vec{v}_{f}^{t_{n}} - \vec{v}_{p}^{t_{n-1}} \right) \sqrt{Re_{G}^{t_{n}}} \\ \vec{F}_{mass}^{t_{n}} &= \frac{1}{2} \rho_{f} V_{p} \frac{\left(\vec{v}_{f}^{t_{n}} - \vec{v}_{p}^{t_{n-1}} \right) - \left(\vec{v}_{f}^{t_{n-1}} - \vec{v}_{p}^{t_{n-2}} \right)}{dt} \end{split}$$

Reynolds específicos

$$extit{Re}_{p}^{t_n} = rac{
ho_p}{\mu_f} d_p \left| ec{v}_f^{\,t_n} - ec{v}_p^{\,t_{n-1}}
ight|_{ extit{max}} \quad extit{Re}_G^{t_n} = rac{d_p^2
ho_f}{\mu_f} \left(rac{d ec{v}_f}{d ec{r}}
ight)^{t_n}$$

Coordenadas relativas

$$\mathbf{b} \begin{cases} b_i = y_j - y_k \\ b_j = y_k - y_i \\ b_k = y_i - y_j \end{cases} \quad \mathbf{c} \begin{cases} c_i = x_k - x_j \\ c_j = x_i - x_k \\ c_k = x_j - x_i \end{cases}$$

Matrizes de Gradiente

$$\mathbf{g}_{\mathbf{x}}^{\mathbf{e}} = \frac{1}{6} \begin{bmatrix} b_i & b_j & b_k \\ b_i & b_j & b_k \\ b_i & b_j & b_k \end{bmatrix} \qquad \mathbf{g}_{\mathbf{y}}^{\mathbf{e}} = \frac{1}{6} \begin{bmatrix} c_i & c_j & c_k \\ c_i & c_j & c_k \\ c_i & c_j & c_k \end{bmatrix}$$

Elemento triangular linear.

Matriz de Massa

$$\mathbf{m^e} = \frac{A^e}{12} \begin{bmatrix} 2 & 1 & 1\\ 1 & 2 & 1\\ 1 & 1 & 2 \end{bmatrix}$$

Matrizes de Rigidez

$$\mathbf{m}^{\mathbf{e}} = \frac{A^{\mathbf{e}}}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \quad \mathbf{k}^{\mathbf{e}}_{xx} = \frac{t_{h}}{4A} \begin{bmatrix} b_{i}b_{i} & b_{j}b_{i} & b_{k}b_{i} \\ b_{i}b_{j} & b_{j}b_{j} & b_{k}b_{j} \\ b_{i}b_{k} & b_{j}b_{k} & b_{k}b_{k} \end{bmatrix} \quad \mathbf{k}^{\mathbf{e}}_{yy} = \frac{t_{h}}{4A} \begin{bmatrix} c_{i}c_{i} & c_{j}c_{i} & c_{k}c_{i} \\ c_{i}c_{j} & c_{j}c_{j} & c_{k}c_{j} \\ c_{i}c_{k} & c_{j}c_{k} & c_{k}c_{k} \end{bmatrix}$$

Código

Montagem das Matrizes Globais

Algoritmo de montagem

$$\mathbf{m}_{e_n} = \begin{bmatrix} m_{ii} & m_{ij} & m_{ik} \\ m_{ji} & m_{jj} & m_{jk} \\ m_{ki} & m_{kj} & m_{kk} \end{bmatrix} \xrightarrow{\underset{l=i,j,k}{\text{loop}}} \mathbf{M} = \begin{bmatrix} M_{0,0} & M_{0,1} & \dots & M_{0,n_p} \\ M_{1,0} & \ddots & & M_{1,n_p} \\ \vdots & & & \vdots \\ M_{n_p,0} & & & M_{l,q} + m_{l,q} \end{bmatrix} \xrightarrow{\underset{l=i,j,k}{\text{loop}}} \mathbf{M}$$

```
# Loop em cada elemento na lista da malha
for elem in malha.ien:
    x = malha.x[elem] # = [x_i, x_j, x_k]
    y = malha.y[elem] # = [y_i, y_j, y_k]

# Criação das matrizes locais
...

# Registro das matrizes locais nas matrizes globais
for i in range(3):
    for j in range(3):
        kx_global[elem[i], elem[j]] += k_x[i][j]
        ky_global[elem[i], elem[j]] += k_y[i][j]
        m_global[elem[i], elem[j]] += m[i][j]
        gx_global[elem[i], elem[j]] += m[i][j]
```

gv_global[elem[i], elem[j]] += g_v[i][j]

Estrutura de Uso da Biblioteca

Exemplo de uso da biblioteca # Importação da biblioteca import TccLib # Importação da malha ou coordenadas de uma nova malha = TccLib.Mesh("arquivo_da_malha.msh") # ou malha = TccLib.Mesh([coordenadas (x, v)]

malha.add_particle(propriedades da partícula)

Adição de partículas

```
# Definição das condições de contorno
malha.new_boundary_condition("nome da propriedade",
                [indices dos nós].
                [valor da condição no nó],
                [1 para Dirichlet ou 0 para Neumann])
# Chamada para a função de solução
v_x, v_y = TccLib.solve_velocity_field(malha)
# Loop de movimentação das partículas
for t in time list:
   TccLib.move_particles(malha, (v_x, v_y))
```

Estrutura de Solução

Algoritmo de solução do sistema de corrente-vorticidade.

Algoritmo de solução da posição das partículas.

Validações e Resultados

Validações de Problemas em Sólidos

Condições de contorno em uma placa sólida.

Comparação do resultado permanente.

Resultado da simulação na placa.

Comparação do resultado transiente.

Validações de Problemas em Sólidos

Placa com geração de calor.

Comparação do resultado permanente.

Resultado da simulação na placa.

Comparação do resultado transiente.

Validações de Problemas em Sólidos

Placa com fluxo e geração de calor.

Comparação do resultado permanente.

Resultado da simulação na placa.

Comparação do resultado transiente.

Validações do Modelo Corrente-Vorticidade

Escoamento entre placas estacionárias (Poiseuille). Comparação com solução analítica.

Escoamento entre placas em movimento (Couette). Comparação com solução analítica.

Agradecimentos

Muito Obrigado!