The Cryptographic Layer of Biometric Authentication

Keng-Yu Chen

LASEC

January 9th, 2025

Table of Contents

- Introduction
- Formalization
- Security Model
- Security Analysis
- Conclusion

Table of Contents

- Introduction
- Pormalization
- Security Model
- Security Analysis
- Conclusion

Keng-Yu Chen (LASEC)

- An error-tolerant approach to user verification.
 - A server verifies identities by comparing the *similarity*, instead of equivalence.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

- An error-tolerant approach to user verification.
 - A server verifies identities by comparing the similarity, instead of equivalence.
- Unlike password, biometrics reveal personal information and cannot be changed.
 - Privacy is more delicate.

- An error-tolerant approach to user verification.
- A server verifies identities by comparing the similarity, instead of equivalence.
- Unlike password, biometrics reveal personal information and cannot be changed.
 - Privacy is more delicate.
- Possibly non-negligible false positive/negative rates.

In this project, we formalize a biometric authenticaion scheme.

In this project, we formalize a biometric authenticaion scheme.

• We formally define a biometric authenticaion scheme.

In this project, we formalize a biometric authenticaion scheme.

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.
- We model two security notions of interest: unforgeability and indistinguishability

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.
- We model two security notions of interest: unforgeability and indistinguishability
 - Unforgeability: An adversary cannot *impersonate* the user.

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.
- We model two security notions of interest: unforgeability and indistinguishability
 - Unforgeability: An adversary cannot impersonate the user.
 - Indistinguishability: The server cannot recognize the user.

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.
- We model two security notions of interest: unforgeability and indistinguishability
 - Unforgeability: An adversary cannot impersonate the user.
 - Indistinguishability: The server cannot recognize the user.
- We analyze two instantiations from previous works.

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.
- We model two security notions of interest: unforgeability and indistinguishability
 - Unforgeability: An adversary cannot impersonate the user.
 - Indistinguishability: The server cannot *recognize* the user.
- We analyze two instantiations from previous works.
 - Function-hiding inner product functional encryption [EM23].

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.
- We model two security notions of interest: unforgeability and indistinguishability
 - Unforgeability: An adversary cannot *impersonate* the user.
 - Indistinguishability: The server cannot *recognize* the user.
- We analyze two instantiations from previous works.
 - Function-hiding inner product functional encryption [EM23].
 - Relational hash [MR14].

- We formally define a biometric authenticaion scheme.
- We add a cryptographic layer on top of the authentication scheme to preserve privacy.
- We model two security notions of interest: unforgeability and indistinguishability
 - Unforgeability: An adversary cannot *impersonate* the user.
 - Indistinguishability: The server cannot *recognize* the user.
- We analyze two instantiations from previous works.
 - Function-hiding inner product functional encryption [EM23].
 - Relational hash [MR14].

Table of Contents

- Introduction
- Pormalization
- Security Model
- Security Analysis
- Conclusion

Assume there is a family $\mathbb B$ of biometric distributions. $\mathbb B$ allows the following operations:

Assume there is a family $\mathbb B$ of biometric distributions. $\mathbb B$ allows the following operations:

• $\mathcal{B} \leftarrow \mathbb{B}$: Pick a random distribution $\mathcal{B} \in \mathbb{B}$.

Assume there is a family $\mathbb B$ of biometric distributions. $\mathbb B$ allows the following operations:

- $\mathcal{B} \leftarrow \mathbb{B}$: Pick a random distribution $\mathcal{B} \in \mathbb{B}$.
- $\mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}$: Remove \mathcal{B} from \mathbb{B} .

Assume there is a family $\mathbb B$ of biometric distributions. $\mathbb B$ allows the following operations:

- $\mathcal{B} \leftarrow \mathbb{B}$: Pick a random distribution $\mathcal{B} \in \mathbb{B}$.
- $\mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}$: Remove \mathcal{B} from \mathbb{B} .
- $\mathbf{b} \leftarrow \mathbf{\$} \mathcal{B}$: Sample a biometric template \mathbf{b} from \mathcal{B} .

Biometric Authentication Scheme (Biometric Layer)

A biometric authentication sheeme Π associated with $\mathbb B$ consists of the following algorithms.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Biometric Authentication Scheme (Biometric Layer)

A biometric authentication sheeme Π associated with $\mathbb B$ consists of the following algorithms.

• getEnroll $^{\mathcal{O}_{\mathcal{B}}}$ () \to **b**: Given oracle $\mathcal{O}_{\mathcal{B}_{1}}$ output a biometric template **b** for enrollment.

• $\mathcal{O}_{\mathcal{B}}$: When gueried, return a biometric template $\mathbf{b} \leftarrow \mathcal{B}$.

Biometric Authentication Scheme (Biometric Layer)

A biometric authentication sheeme Π associated with $\mathbb B$ consists of the following algorithms.

- getEnroll $^{\mathcal{O}_{\mathcal{B}}}() \to \mathbf{b}$: Given oracle $\mathcal{O}_{\mathcal{B}}$, output a biometric template \mathbf{b} for enrollment.
- getProbe $^{\mathcal{O}_{\mathcal{B}}}() \to \mathbf{b}'$: Given oracle $\mathcal{O}_{\mathcal{B}}$, output a biometric template \mathbf{b}' for probe.

• $\mathcal{O}_{\mathcal{B}}$: When queried, return a biometric template **b** \leftarrow \$ \mathcal{B} .

Biometric Authentication Scheme (Biometric Layer)

A biometric authentication sheeme Π associated with $\mathbb B$ consists of the following algorithms.

- getEnroll $^{\mathcal{O}_{\mathcal{B}}}() \to \mathbf{b}$: Given oracle $\mathcal{O}_{\mathcal{B}}$, output a biometric template \mathbf{b} for enrollment.
- getProbe $^{\mathcal{O}_{\mathcal{B}}}() \to \mathbf{b}'$: Given oracle $\mathcal{O}_{\mathcal{B}}$, output a biometric template \mathbf{b}' for probe.
- BioCompare(\mathbf{b}, \mathbf{b}') $\rightarrow s$: Given two templates \mathbf{b} and \mathbf{b}' , output a score s.

• $\mathcal{O}_{\mathcal{B}}$: When queried, return a biometric template $\mathbf{b} \leftarrow \mathbb{B}$.

Biometric Authentication Scheme (Biometric Layer)

A biometric authentication sheeme Π associated with $\mathbb B$ consists of the following algorithms.

- getEnroll $^{\mathcal{O}_{\mathcal{B}}}() \to \mathbf{b}$: Given oracle $\mathcal{O}_{\mathcal{B}}$, output a biometric template \mathbf{b} for enrollment.
- getProbe $^{\mathcal{O}_{\mathcal{B}}}() \to \mathbf{b}'$: Given oracle $\mathcal{O}_{\mathcal{B}}$, output a biometric template \mathbf{b}' for probe.
- BioCompare(\mathbf{b}, \mathbf{b}') $\rightarrow s$: Given two templates \mathbf{b} and \mathbf{b}' , output a score s.
- Verify(s) $\rightarrow r \in \{0,1\}$: Determine whether this is a successful authentication (r=1) or not (r=0).
- $\mathcal{O}_{\mathcal{B}}$: When gueried, return a biometric template $\mathbf{b} \leftarrow \mathcal{B}$.

Keng-Yu Chen (LASEC)

• Setup(1^{λ}) \rightarrow esk, psk, csk: Output the enrollment secret key esk, probe secret key psk, and comparison secret key csk.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

- Setup(1^{λ}) \rightarrow esk, psk, csk: Output the enrollment secret key esk, probe secret key psk, and comparison secret key csk.
- Enroll(esk, \mathbf{b}) $\rightarrow \mathbf{c}_{\mathbf{x}}$: On input a biometric template \mathbf{b} , encode it into a vector \mathbf{x} and output the enrollment message $\mathbf{c}_{\mathbf{x}}$.

- Setup(1^{λ}) \rightarrow esk, psk, csk: Output the enrollment secret key esk, probe secret key psk, and comparison secret key csk.
- Enroll(esk, \mathbf{b}) $\rightarrow \mathbf{c}_{\mathbf{x}}$: On input a biometric template \mathbf{b} , encode it into a vector \mathbf{x} and output the enrollment message $\mathbf{c}_{\mathbf{x}}$.
- Probe(psk, b') $\to c_y$: On input a biometric template b', encode it into a vector y and output the probe message c_y .

- Setup(1^{λ}) \rightarrow esk, psk, csk: Output the enrollment secret key esk, probe secret key psk, and comparison secret key csk.
- Enroll(esk, \mathbf{b}) $\rightarrow \mathbf{c}_{\mathbf{x}}$: On input a biometric template \mathbf{b} , encode it into a vector \mathbf{x} and output the enrollment message $\mathbf{c}_{\mathbf{x}}$.
- Probe(psk, b') $\to c_y$: On input a biometric template b', encode it into a vector y and output the probe message c_y .
- Compare(csk, c_x , c_y) \to s: Compare the enrollment message c_x and probe message c_y and output a score s.

Correctness

For any $\mathcal{B},\mathcal{B}'\in\mathbb{B}$,

Correctness

For any $\mathcal{B}, \mathcal{B}' \in \mathbb{B}$, let $\mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$, $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}'}}()$,

Keng-Yu Chen (LASEC)

Correctness

For any $\mathcal{B}, \mathcal{B}' \in \mathbb{B}$, let $\mathbf{b} \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$, $\mathbf{b}' \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}'}}()$, esk, psk, csk $\leftarrow \text{Setup}(1^{\lambda})$, $\mathbf{c}_{\mathbf{x}} \leftarrow \text{Enroll}(\text{esk}, \mathbf{b})$, $\mathbf{c}_{\mathbf{v}} \leftarrow \text{Probe}(\text{psk}, \mathbf{b}')$.

Correctness

For any $\mathcal{B}, \mathcal{B}' \in \mathbb{B}$, let $\mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$, $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}'}}()$, esk, psk, csk $\leftarrow \mathsf{Setup}(1^{\lambda})$, $\mathbf{c}_{\mathbf{x}} \leftarrow \mathsf{Enroll}(\mathsf{esk}, \mathbf{b})$, $\mathbf{c}_{\mathbf{v}} \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b}')$. Then

 $\mathsf{Pr}\left[\mathsf{Compare}(\mathsf{csk}, \mathbf{c_x}, \mathbf{c_y}) = \mathsf{BioCompare}(\mathbf{b}, \mathbf{b}')\right] = 1 - \mathsf{negl}.$

Correctness

For any $\mathcal{B}, \mathcal{B}' \in \mathbb{B}$, let $\mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$, $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}'}}()$, esk, psk, csk $\leftarrow \mathsf{Setup}(1^{\lambda})$, $\mathbf{c}_{\mathbf{x}} \leftarrow \mathsf{Enroll}(\mathsf{esk}, \mathbf{b})$, $\mathbf{c}_{\mathbf{v}} \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b}')$. Then

$$\mathsf{Pr}\left[\mathsf{Compare}(\mathsf{csk}, \mathbf{c_x}, \mathbf{c_y}) = \mathsf{BioCompare}(\mathbf{b}, \mathbf{b}')\right] = 1 - \mathsf{negl}.$$

Appendix - Usage Example

Table of Contents

- Introduction
- Pormalization
- Security Model
 - Unforgeability
 - Indistinguishability
- Security Analysis
- Conclusion

Keng-Yu Chen (LASEC)

Biometric Authentication

Table of Contents

- Introduction
- Pormalization
- Security Model
 - Unforgeability
 - Indistinguishability
- Security Analysis
- Conclusion

Keng-Yu Chen (LASEC)

Unforgeability

Let Π be a biometric authentication scheme. For an adversary \mathcal{A} , define $\mathsf{UF}_{\Pi \, \mathbb{R} \, \mathrm{option}}(\mathcal{A})$.

$\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}(\mathcal{A})$

- 1: $\mathcal{B} \leftarrow \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}$
- 2: esk, psk, csk \leftarrow Setup(1 $^{\lambda}$)
- 3: $\mathbf{b} \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$
- 4: $\mathbf{c}_{\mathbf{x}} \leftarrow \text{Enroll(esk}, \mathbf{b})$
- 5: $\tilde{\mathbf{z}} \leftarrow \mathcal{A}(\text{option})$
- 6: $s \leftarrow \text{Compare}(csk, \mathbf{c}_{\mathbf{x}}, \tilde{\mathbf{z}})$
- 7: **return** Verify(s)

Unforgeability

Let Π be a biometric authentication scheme. For an adversary \mathcal{A} , define $\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}(\mathcal{A})$.

$$\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}(\mathcal{A})$$

- 1: $\mathcal{B} \leftarrow \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}$
- 2: esk, psk, csk \leftarrow Setup(1 $^{\lambda}$)
- 3: $\mathbf{b} \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$
- 4: $\mathbf{c_x} \leftarrow \mathsf{Enroll}(\mathsf{esk}, \mathbf{b})$
- 5: $\tilde{\mathbf{z}} \leftarrow \mathcal{A}(\text{option})$
- 6: $s \leftarrow \mathsf{Compare}(\mathsf{csk}, \mathbf{c_x}, \tilde{\mathbf{z}})$
- 7: **return** Verify(s)

 Π is called *option-unforgeable* (option-UF) if for any PPT adversary A,

$$\mathsf{Adv}^{\mathsf{UF}}_{\Pi,\mathbb{B},\mathcal{A},\mathsf{option}} := \mathsf{Pr}[\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}(\mathcal{A}) \to 1] = \mathsf{negl}.$$

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025 13/48

• Enrollment message: c_x .

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025 14 / 48

- Enrollment message: c_x .
- Keys: esk, psk, csk.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

- Enrollment message: c_x .
- Keys: esk, psk, csk.
- Oracle $\mathcal{O}_{\mathcal{B}}$.

Keng-Yu Chen (LASEC)

- Enrollment message: c_x .
- Keys: esk, psk, csk.
- Oracle $\mathcal{O}_{\mathcal{B}}$.
- Oracle $\mathcal{O}_{\mathsf{Enroll}}(\mathsf{esk}, \cdot)$: On input \mathbf{b}' , output $\mathsf{Enroll}(\mathsf{esk}, \mathbf{b}')$.

- Enrollment message: $\mathbf{c}_{\mathbf{x}}$.
- Keys: esk, psk, csk.
- Oracle $\mathcal{O}_{\mathcal{B}}$.
- Oracle $\mathcal{O}_{\mathsf{Enroll}}(\mathsf{esk},\cdot)$: On input \mathbf{b}' , output $\mathsf{Enroll}(\mathsf{esk},\mathbf{b}')$.
- Oracle $\mathcal{O}_{\mathsf{Probe}}(\mathsf{psk}, \cdot)$: On input \mathbf{b}' , output $\mathsf{Probe}(\mathsf{psk}, \mathbf{b}')$.

Keng-Yu Chen (LASEC)

- Enrollment message: c_x .
- Keys: esk, psk, csk.
- Oracle $\mathcal{O}_{\mathcal{B}}$.
- Oracle $\mathcal{O}_{\mathsf{Enroll}}(\mathsf{esk},\cdot)$: On input \mathbf{b}' , output $\mathsf{Enroll}(\mathsf{esk},\mathbf{b}')$.
- Oracle $\mathcal{O}_{\mathsf{Probe}}(\mathsf{psk}, \cdot)$: On input \mathbf{b}' , output $\mathsf{Probe}(\mathsf{psk}, \mathbf{b}')$.

Note that some combinations of option induce a winning probability *true positive rate* or *false positive rate*.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025 14/48

True/False Positive Rates

True/False Positive Rates

$$\begin{aligned} \mathsf{TP} := \, \mathsf{Pr} \left[\begin{array}{l} \mathcal{B} \leftarrow \! \! \! \ast \, \mathbb{B} \\ \mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}() & : \mathsf{Verify}(\mathsf{BioCompare}(\mathbf{b}, \mathbf{b}')) = 1 \\ \mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}() & : \end{array} \right] \end{aligned}$$

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

True/False Positive Rates

True/False Positive Rates

$$\begin{aligned} \mathsf{TP} := \, \mathsf{Pr} \left[\begin{array}{l} \mathcal{B} \leftarrow \!\! {}^{_{\!\! S}} \mathbb{B} \\ \mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}() & : \mathsf{Verify}(\mathsf{BioCompare}(\mathbf{b}, \mathbf{b}')) = 1 \\ \mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}() & : \end{array} \right] \end{aligned}$$

$$\mathsf{FP} := \mathsf{Pr} \begin{bmatrix} \mathcal{B} \leftarrow \$ \ \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}, \mathcal{B}' \leftarrow \$ \ \mathbb{B} \\ \mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}() & : \mathsf{Verify}(\mathsf{BioCompare}(\mathbf{b}, \mathbf{b}')) = 1 \\ \mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}'}}() & : \mathsf{Verify}(\mathsf{BioCompare}(\mathbf{b}, \mathbf{b}')) = 1 \end{bmatrix}$$

Biometric Authentication Keng-Yu Chen (LASEC) January 9th, 2025 15 / 48

• psk and $\mathcal{O}_{\mathcal{B}}$ are not given at the same time.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

- psk and $\mathcal{O}_{\mathcal{B}}$ are not given at the same time.
 - A_1 has a winning probability TP.

$\mathcal{A}_1^{\mathcal{O}_{\mathcal{B}}}(\mathsf{psk})$

- 1: $\mathbf{b} \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$
- 2: $\mathbf{c_y} \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b})$
- 3: return c_y

- psk and $\mathcal{O}_{\mathcal{B}}$ are not given at the same time.
 - A_1 has a winning probability TP.
- psk is given only when FP is negligible.

```
\mathcal{A}_1^{\mathcal{O}_{\mathcal{B}}}(\mathsf{psk})
```

- 1: $\mathbf{b} \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$
- 2: $\mathbf{c_v} \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b})$
- 3: return c_y

Keng-Yu Chen (LASEC)

- psk and $\mathcal{O}_{\mathcal{B}}$ are not given at the same time.
 - A_1 has a winning probability TP.
- psk is given only when FP is negligible.
 - A_2 has a winning probability FP.

$\mathcal{A}_1^{\mathcal{O}_{\mathcal{B}}}(\mathsf{psk})$

- 1: $\mathbf{b} \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$
- 2: $\mathbf{c_v} \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b})$
- 3: return c_v

$\mathcal{A}_2(\mathsf{psk})$

- 1. B' ←s ℝ
- 2: $\mathbf{b}' \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}'}}()$
- 3: $\mathbf{c_v}' \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b}')$
- 4: return c_v

- psk and $\mathcal{O}_{\mathcal{B}}$ are not given at the same time.
 - A_1 has a winning probability TP.
- psk is given only when FP is negligible.
 - A_2 has a winning probability FP.
- When \mathcal{O}_{Probe} is given, we forbid the adversary to return an answer of \mathcal{O}_{Probe} .

$\mathcal{A}_{1}^{\mathcal{O}_{\mathcal{B}}}(\mathsf{psk})$

- 1: $\mathbf{b} \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$
- 2: $\mathbf{c_v} \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b})$
- 3: return c_v

$\mathcal{A}_2(\mathsf{psk})$

- 1. B' ←s ℝ
- 2: $\mathbf{b}' \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}'}}()$
- 3: $\mathbf{c_v}' \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b}')$
- 4: return c_v

Table of Contents

- Introduction
- Pormalization
- Security Model
 - Unforgeability
 - Indistinguishability
- Security Analysis
- Conclusion

Keng-Yu Chen (LASEC)

Indistinguishability

Let $t \geq 0$ be an integer. For an adversary A, define $\mathsf{IND}_{\Pi,\mathbb{B}}(A)$.

```
\mathsf{IND}_{\mathsf{\Pi}.\mathbb{B}}(\mathcal{A})
 1: b \leftarrow \$ \{0, 1\}
  2: \mathcal{B}^{(0)} \leftarrow \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}^{(0)}
  3: \mathcal{B}^{(1)} \leftarrow \mathbb{B}. \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}^{(1)}
  4: esk, psk, csk \leftarrow Setup(1^{\lambda})
  5: b \leftarrow getEnroll<sup>\mathcal{O}_{\mathcal{B}^{(b)}}()</sup>
  6: \mathbf{c_x} \leftarrow \mathsf{Enroll}(\mathsf{esk}, \mathbf{b})
  7: for i = 1 to t do
  8: \mathbf{b}^{\prime(i)} \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}^{(b)}}}()
  9: \mathbf{c_v}^{(i)} \leftarrow \mathsf{Probe}(\mathsf{psk}, \mathbf{b'}^{(i)})
10: \tilde{b} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathcal{B}^{(0)}}, \mathcal{O}_{\mathcal{B}^{(1)}}}(\mathsf{csk}, \mathbf{c_x}, \{\mathbf{c_y}^{(i)}\}_{i=1}^t)
11: return 1_{\tilde{b}-b}
```

Indistinguishability

• In $\mathsf{IND}_{\Pi,\mathbb{B}}(\mathcal{A})$, we model the server's knowledge about the user.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Indistinguishability

- In $IND_{\Pi,\mathbb{B}}(A)$, we model the server's knowledge about the user.
- Π is called *indistinguishable* (IND) if for any PPT adversary A,

$$\mathsf{Adv}^{\mathsf{IND}}_{\Pi,\mathbb{B},\mathcal{A}} := \left|\mathsf{Pr}[\mathsf{IND}_{\Pi,\mathbb{B}}(\mathcal{A}) \to 1] - \frac{1}{2}\right| = \mathsf{negl}.$$

Keng-Yu Chen (LASEC)

Table of Contents

- Introduction
- Pormalization
- Security Mode
- Security Analysis
 - Instantiation using fh-IPFE
 - Security of fh-IPFE
 - Security of Instantiation using fh-IPFE
- Conclusion

In this section, we will discuss

In this section, we will discuss

• Function-hiding inner product functional encryption (fh-IPFE) [Kim+16].

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

In this section, we will discuss

- Function-hiding inner product functional encryption (fh-IPFE) [Kim+16].
- An instantiation Π using an fh-IPFE [EM23].

In this section, we will discuss

- Function-hiding inner product functional encryption (fh-IPFE) [Kim+16].
- An instantiation Π using an fh-IPFE [EM23].
- UF and IND security of Π.

In this section, we will discuss

- Function-hiding inner product functional encryption (fh-IPFE) [Kim+16].
- An instantiation Π using an fh-IPFE [EM23].
- UF and IND security of Π.

In our project, we also discuss an instantiation using relational hash.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Table of Contents

- Introduction
- Pormalization
- Security Mode
- Security Analysis
 - Instantiation using fh-IPFE
 - Security of fh-IPFE
 - Security of Instantiation using fh-IPFE
- Conclusion

Function-Hiding Inner Product Functional Encryption (adapted from [Kim+16])

A function-hiding inner product functional encryption (fh-IPFE) scheme FE for a field $\mathbb F$ is composed of PPT algorithms:

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Function-Hiding Inner Product Functional Encryption (adapted from [Kim+16])

A function-hiding inner product functional encryption (fh-IPFE) scheme FE for a field \mathbb{F} is composed of PPT algorithms:

• FE.Setup(1^{λ}): Output the public parameter pp and the master secret key msk.

Function-Hiding Inner Product Functional Encryption (adapted from [Kim+16])

A function-hiding inner product functional encryption (fh-IPFE) scheme FE for a field \mathbb{F} is composed of PPT algorithms:

- FE.Setup(1^{λ}): Output the public parameter pp and the master secret key msk.
- FE.KeyGen(msk, pp, x): On input a vector $\mathbf{x} \in \mathbb{F}^k$, output the decryption key $f_{\mathbf{x}}$.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Function-Hiding Inner Product Functional Encryption (adapted from [Kim+16])

A function-hiding inner product functional encryption (fh-IPFE) scheme FE for a field \mathbb{F} is composed of PPT algorithms:

- FE.Setup(1^{λ}): Output the public parameter pp and the master secret key msk.
- FE.KeyGen(msk, pp, x): On input a vector $\mathbf{x} \in \mathbb{F}^k$, output the decryption key $f_{\mathbf{x}}$.
- FE.Enc(msk, pp, y): On input a vector $\mathbf{y} \in \mathbb{F}^k$, output the ciphertext $\mathbf{c}_{\mathbf{v}}$.

Function-Hiding Inner Product Functional Encryption (adapted from [Kim+16])

A function-hiding inner product functional encryption (fh-IPFE) scheme FE for a field \mathbb{F} is composed of PPT algorithms:

- FE.Setup(1^{λ}): Output the public parameter pp and the master secret key msk.
- FE.KeyGen(msk, pp, x): On input a vector $\mathbf{x} \in \mathbb{F}^k$, output the decryption key $f_{\mathbf{x}}$.
- FE.Enc(msk, pp. \mathbf{v}): On input a vector $\mathbf{v} \in \mathbb{F}^k$, output the ciphertext $\mathbf{c}_{\mathbf{v}}$.
- FE.Dec(pp, f_x , c_y): Output a value $z \in \mathbb{F}$ or an error symbol \perp .

Keng-Yu Chen (LASEC) Biometric Authentication 23 / 48 January 9th, 2025

Correctness

FE is *correct* if $\forall \mathbf{x}, \mathbf{y} \in \mathbb{F}^k$, let (msk, pp) \leftarrow FE.Setup(1 $^{\lambda}$), we have

$$\mathsf{Pr}\left[\mathsf{FE}.\mathsf{Dec}(\mathsf{pp},\mathsf{FE}.\mathsf{KeyGen}(\mathsf{msk},\mathsf{pp},\mathbf{x}),\mathsf{FE}.\mathsf{Enc}(\mathsf{msk},\mathsf{pp},\mathbf{y})) = \mathbf{x}\mathbf{y}^{\mathcal{T}}\right] = 1 - \mathsf{negl}.$$

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Instantiation using fh-IPFE [EM23]: Biometric Layer

• getEnroll^{$\mathcal{O}_{\mathcal{B}}$}(), getProbe^{$\mathcal{O}_{\mathcal{B}}$}(): Output vectors in $\{0, 1, \cdots, m\}^k$ for all $\mathcal{B} \in \mathbb{B}$.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Instantiation using fh-IPFE [EM23]: Biometric Layer

- getEnroll $^{\mathcal{O}_{\mathcal{B}}}()$, getProbe $^{\mathcal{O}_{\mathcal{B}}}()$: Output vectors in $\{0,1,\cdots,m\}^k$ for all $\mathcal{B}\in\mathbb{B}$.
- BioCompare $(\mathbf{b}, \mathbf{b}') \rightarrow \|\mathbf{b} \mathbf{b}'\|^2$.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Instantiation using fh-IPFE [EM23]: Biometric Layer

- getEnroll^{$\mathcal{O}_{\mathcal{B}}$}(), getProbe^{$\mathcal{O}_{\mathcal{B}}$}(): Output vectors in $\{0, 1, \dots, m\}^k$ for all $\mathcal{B} \in \mathbb{B}$.
- BioCompare $(\mathbf{b}, \mathbf{b}') \to \|\mathbf{b} \mathbf{b}'\|^2$.
- For a pre-defined real number $\tau > 0$,

$$\mathsf{Verify}(s) o egin{cases} 1 & \mathsf{if} \ \sqrt{s} \leq au \ 0 & \mathsf{if} \ \sqrt{s} > au \end{cases}.$$

Keng-Yu Chen (LASEC)

Let FE be associated with a field $\mathbb{F} = \mathbb{Z}_q$, where q is larger than the maximum possible Euclidean distance $m^2 \cdot k$.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

Let FE be associated with a field $\mathbb{F} = \mathbb{Z}_q$, where q is larger than the maximum possible Euclidean distance $m^2 \cdot k$.

- ullet Setup(1 $^{\lambda}$): Run FE.Setup(1 $^{\lambda}$) ightarrow msk, pp and output
 - esk \leftarrow (msk, pp)
 - $psk \leftarrow (msk, pp)$
 - $csk \leftarrow pp$

Let FE be associated with a field $\mathbb{F} = \mathbb{Z}_q$, where q is larger than the maximum possible Euclidean distance $m^2 \cdot k$.

- ullet Setup(1 $^{\lambda}$): Run FE.Setup(1 $^{\lambda}$) ightarrow msk, pp and output
 - esk \leftarrow (msk, pp)
 - $psk \leftarrow (msk, pp)$
 - $csk \leftarrow pp$
- Enroll(esk, **b**): On input a template vector $\mathbf{b} = (b_1, b_2, \dots, b_k)$,
 - Encode **b** as $\mathbf{x} = (x_1, x_2, \dots, x_{k+2}) = (b_1, b_2, \dots, b_k, 1, ||\mathbf{b}||^2).$
 - Run and output $\mathbf{c}_{\mathbf{x}} \leftarrow \mathsf{FE}.\mathsf{KeyGen}(\mathsf{msk},\mathsf{pp},\mathbf{x}).$

Let FE be associated with a field $\mathbb{F} = \mathbb{Z}_q$, where q is larger than the maximum possible Euclidean distance $m^2 \cdot k$.

- Setup (1^{λ}) : Run FE.Setup $(1^{\lambda}) \to \mathsf{msk}$, pp and output
 - esk \leftarrow (msk, pp)
 - $psk \leftarrow (msk, pp)$
 - $csk \leftarrow pp$
- Enroll(esk, **b**): On input a template vector $\mathbf{b} = (b_1, b_2, \dots, b_k)$,
 - Encode **b** as $\mathbf{x} = (x_1, x_2, \dots, x_{k+2}) = (b_1, b_2, \dots, b_k, 1, ||\mathbf{b}||^2).$
 - Run and output $\mathbf{c}_{\mathbf{x}} \leftarrow \mathsf{FE}.\mathsf{KeyGen}(\mathsf{msk},\mathsf{pp},\mathbf{x}).$
- Probe(psk, **b**'): On input a template vector $\mathbf{b}' = (b'_1, b'_2, \dots, b'_k)$,
 - Encode **b**' as $\mathbf{y} = (y_1, y_2, \dots, y_{k+2}) = (-2b'_1, -2b'_2, \dots, -2b'_k, \|\mathbf{b}'\|^2, 1).$
 - Run and output $\mathbf{c}_{\mathbf{y}} \leftarrow \mathsf{FE}.\mathsf{Enc}(\mathsf{msk},\mathsf{pp},\mathbf{y}).$

Let FE be associated with a field $\mathbb{F} = \mathbb{Z}_q$, where q is larger than the maximum possible Euclidean distance $m^2 \cdot k$.

- Setup (1^{λ}) : Run FE.Setup $(1^{\lambda}) \to \mathsf{msk}$, pp and output
 - esk \leftarrow (msk, pp)
 - $psk \leftarrow (msk, pp)$
 - $csk \leftarrow pp$
- Enroll(esk, **b**): On input a template vector $\mathbf{b} = (b_1, b_2, \dots, b_k)$,
 - Encode **b** as $\mathbf{x} = (x_1, x_2, \dots, x_{k+2}) = (b_1, b_2, \dots, b_k, 1, ||\mathbf{b}||^2).$
 - Run and output $\mathbf{c}_{\mathbf{x}} \leftarrow \mathsf{FE}.\mathsf{KeyGen}(\mathsf{msk},\mathsf{pp},\mathbf{x}).$
- Probe(psk, **b**'): On input a template vector $\mathbf{b}' = (b'_1, b'_2, \dots, b'_k)$,
 - Encode **b**' as $\mathbf{y} = (y_1, y_2, \dots, y_{k+2}) = (-2b'_1, -2b'_2, \dots, -2b'_k, \|\mathbf{b}'\|^2, 1).$
 - Run and output $\mathbf{c}_{\mathbf{v}} \leftarrow \mathsf{FE}.\mathsf{Enc}(\mathsf{msk},\mathsf{pp},\mathbf{y}).$
- Compare(csk, $\mathbf{c_x}$, $\mathbf{c_y}$): Run and output $s \leftarrow \mathsf{FE.Dec}(\mathsf{pp}, \mathbf{c_x}, \mathbf{c_y})$.

Instantiation using fh-IPFE [EM23]

By the correctness of FE,

$$s = \mathsf{FE.Dec}(\mathsf{pp}, \mathbf{c_x}, \mathbf{c_y}) = \mathbf{xy}^T = \sum_{i=1}^{\kappa} -2b_i b_i' + \|\mathbf{b}\|^2 + \|\mathbf{b}'\|^2 = \|\mathbf{b} - \mathbf{b}'\|^2.$$

which is equal to $BioCompare(\mathbf{b}, \mathbf{b}')$.

Instantiation using fh-IPFE [EM23]

By the correctness of FE,

$$s = \mathsf{FE.Dec}(\mathsf{pp}, \mathbf{c_x}, \mathbf{c_y}) = \mathbf{xy}^T = \sum_{i=1}^k -2b_i b_i' + \|\mathbf{b}\|^2 + \|\mathbf{b}'\|^2 = \|\mathbf{b} - \mathbf{b}'\|^2.$$

which is equal to $BioCompare(\mathbf{b}, \mathbf{b}')$.

Note that in this instantiation,

Instantiation using fh-IPFE [EM23]

By the correctness of FE,

$$s = \text{FE.Dec}(pp, \mathbf{c_x}, \mathbf{c_y}) = \mathbf{xy}^T = \sum_{i=1}^k -2b_i b_i' + \|\mathbf{b}\|^2 + \|\mathbf{b}'\|^2 = \|\mathbf{b} - \mathbf{b}'\|^2.$$

which is equal to $BioCompare(\mathbf{b}, \mathbf{b}')$.

Note that in this instantiation,

• esk = psk.

Instantiation using fh-IPFE [EM23]

By the correctness of FE,

$$s = \text{FE.Dec}(pp, \mathbf{c_x}, \mathbf{c_y}) = \mathbf{xy}^T = \sum_{i=1}^k -2b_i b_i' + \|\mathbf{b}\|^2 + \|\mathbf{b}'\|^2 = \|\mathbf{b} - \mathbf{b}'\|^2.$$

which is equal to $BioCompare(\mathbf{b}, \mathbf{b}')$.

Note that in this instantiation,

- \bullet esk = psk.
- \bullet csk = pp, the public parameter of FE. Therefore, we offer csk for all adversaries.

Table of Contents

- Introduction
- Pormalization
- Security Model
- Security Analysis
 - Instantiation using fh-IPFE
 - Security of fh-IPFE
 - Security of Instantiation using fh-IPFE
- Conclusion

Given an fh-IPFE scheme FE, define the fh-IND game [Kim+16].

```
\begin{array}{l} \mathsf{fh\text{-}IND}_{\mathsf{FE}}(\mathcal{A}) \\ 1: \ b \leftarrow \$ \ \{0,1\} \\ 2: \ \mathsf{msk}, \mathsf{pp} \leftarrow \mathsf{FE}.\mathsf{Setup}(1^\lambda) \\ 3: \ \tilde{b} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathsf{KeyGen}},\mathcal{O}_{\mathsf{Enc}}}(\mathsf{pp}) \\ 4: \ \mathbf{return} \ \ 1_{\tilde{b}=b} \end{array}
```

- $\mathcal{O}_{\mathsf{KeyGen}}(\cdot,\cdot)$: On input pair $(\mathbf{x}^{(0)},\mathbf{x}^{(1)})$, output FE.KeyGen(msk, pp, $\mathbf{x}^{(b)}$).
- $\mathcal{O}_{\mathsf{Enc}}(\cdot,\cdot)$: On input pair $(\mathbf{y}^{(0)},\mathbf{y}^{(1)})$, output FE.Enc(msk, pp, $\mathbf{y}^{(b)})$.

Given an fh-IPFE scheme FE, define the fh-IND game [Kim+16].

$$\begin{array}{l} \mathsf{fh\text{-}IND}_{\mathsf{FE}}(\mathcal{A}) \\ 1: \ b \leftarrow \$ \ \{0,1\} \\ 2: \ \mathsf{msk}, \mathsf{pp} \leftarrow \mathsf{FE}.\mathsf{Setup}(1^{\lambda}) \\ 3: \ \tilde{b} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathsf{KeyGen}},\mathcal{O}_{\mathsf{Enc}}}(\mathsf{pp}) \\ 4: \ \mathbf{return} \ \ 1_{\tilde{b}=b} \end{array}$$

- $\mathcal{O}_{\mathsf{KeyGen}}(\cdot,\cdot)$: On input pair $(\mathbf{x}^{(0)},\mathbf{x}^{(1)})$, output FE.KeyGen(msk, pp, $\mathbf{x}^{(b)}$).
- $\mathcal{O}_{\mathsf{Enc}}(\cdot,\cdot)$: On input pair $(\mathbf{y}^{(0)},\mathbf{y}^{(1)})$, output FE.Enc(msk, pp, $\mathbf{y}^{(b)})$.

A trivial adversary can ask $\mathcal{O}_{\mathsf{KeyGen}}(\mathbf{x}^{(0)},\mathbf{x}^{(1)})$ and $\mathcal{O}_{\mathsf{Enc}}(\mathbf{y}^{(0)},\mathbf{y}^{(1)})$ such that

$$\mathbf{x}^{(0)}\mathbf{y}^{(0)}^{T} \neq \mathbf{x}^{(1)}\mathbf{y}^{(1)}^{T}.$$

Admissible Adversary

Let \mathcal{A} be an adversary in an fh-IND game, and let $(\mathbf{x}_1^{(0)}, \mathbf{x}_1^{(1)}), \cdots, (\mathbf{x}_{\mathcal{O}_{\nu}}^{(0)}, \mathbf{x}_{\mathcal{O}_{\nu}}^{(1)})$ be its queries to $\mathcal{O}_{\mathsf{KeyGen}}$ and $(\mathbf{y}_1^{(0)}, \mathbf{y}_1^{(1)}), \cdots, (\mathbf{y}_{O_F}^{(0)}, \mathbf{y}_{O_F}^{(1)})$ be its queries to $\mathcal{O}_{\mathsf{Enc}}$.

Admissible Adversary

Let \mathcal{A} be an adversary in an fh-IND game, and let $(\mathbf{x}_1^{(0)}, \mathbf{x}_1^{(1)}), \cdots, (\mathbf{x}_{O_{\mathcal{C}}}^{(0)}, \mathbf{x}_{O_{\mathcal{C}}}^{(1)})$ be its queries to

 $\mathcal{O}_{\mathsf{KeyGen}}$ and $(\mathbf{y}_1^{(0)}, \mathbf{y}_1^{(1)}), \cdots, (\mathbf{y}_{O_F}^{(0)}, \mathbf{y}_{O_F}^{(1)})$ be its queries to $\mathcal{O}_{\mathsf{Enc}}$.

We say \mathcal{A} is admissible if $\forall i \in [Q_K], \forall j \in [Q_F]$.

$$\mathbf{x}_{i}^{(0)}\mathbf{y}_{j}^{(0)}^{T} = \mathbf{x}_{i}^{(1)}\mathbf{y}_{j}^{(1)}^{T}.$$

Admissible Adversary

Let \mathcal{A} be an adversary in an fh-IND game, and let $(\mathbf{x}_1^{(0)}, \mathbf{x}_1^{(1)}), \cdots, (\mathbf{x}_{Q_K}^{(0)}, \mathbf{x}_{Q_K}^{(1)})$ be its queries to $\mathcal{O}_{\mathsf{KeyGen}}$ and $(\mathbf{y}_1^{(0)}, \mathbf{y}_1^{(1)}), \cdots, (\mathbf{y}_{Q_F}^{(0)}, \mathbf{y}_{Q_F}^{(1)})$ be its queries to $\mathcal{O}_{\mathsf{Enc}}$.

We say \mathcal{A} is admissible if $\forall i \in [Q_K], \forall j \in [Q_E]$,

$$\mathbf{x}_{i}^{(0)}\mathbf{y}_{i}^{(0)}^{T} = \mathbf{x}_{i}^{(1)}\mathbf{y}_{i}^{(1)}^{T}.$$

fh-IND Security

FE is called *fh-IND* secure if for any admissible adversary A,

$$\mathsf{Adv}^{\mathsf{fh\text{-}IND}}_{\mathsf{FE},\mathcal{A}} := \left| \mathsf{Pr}[\mathsf{fh\text{-}IND}_{\mathsf{FE}}(\mathcal{A}) \to 1] - \frac{1}{2} \right| = \mathsf{negl}.$$

fh-IND Security

- fh-IND security is the standard notion of an fh-IPFE scheme.
 - Constructions in [DDM15; TAO16; Kim+16] are proven fh-IND.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

fh-IND Security

- fh-IND security is the standard notion of an fh-IPFE scheme.
 - Constructions in [DDM15; TAO16; Kim+16] are proven fh-IND.
- However, fh-IND security is not sufficient for the UF security of Π .
 - We found that the instantiation Π using [Kim+16] is not option-UF for any option.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

fh-IND Security

- fh-IND security is the standard notion of an fh-IPFE scheme.
 - Constructions in [DDM15; TAO16; Kim+16] are proven fh-IND.
- However, fh-IND security is not sufficient for the UF security of Π .
 - We found that the instantiation Π using [Kim+16] is not option-UF for any option.
- For this, we define another extra security notion of FE: RUF Security.

Let $\gamma \geq 0$ be a real number and $\mathbb{F} = \mathbb{Z}_q$ for a prime number q. Define the RUF game.

$$\mathsf{RUF}^{\mathcal{O},\gamma}_\mathsf{FE}(\mathcal{A})$$

- 1: $\mathbf{r} \leftarrow \mathbb{F}^k$
- 2: $\mathsf{msk}, \mathsf{pp} \leftarrow \mathsf{FE}.\mathsf{Setup}(1^{\lambda})$
- 3: $\mathbf{c} \leftarrow \mathsf{FE}.\mathsf{KeyGen}(\mathsf{msk},\mathsf{pp},\mathbf{r})$
- 4: $\tilde{\mathbf{z}} \leftarrow \mathcal{A}^{\mathcal{O}}(\mathsf{pp}, \mathbf{c})$
- 5: $s \leftarrow \mathsf{FE.Dec}(\mathsf{pp}, \mathbf{c}, \tilde{\mathbf{z}})$
- 6: return $1_{s < \gamma}$

Oracle \mathcal{O} can be nothing or include

- $\mathcal{O}'_{\text{KeyGen}}(\cdot)$: On input \mathbf{x}' , output FE.KeyGen(msk, pp, \mathbf{x}').
- $\mathcal{O}'_{\mathsf{Enc}}(\cdot)$: On input \mathbf{y}' , output FE.Enc(msk, pp, \mathbf{y}').

- We forbid the adversary to return $\tilde{\mathbf{z}}$ that is an answer of $\mathcal{O}'_{\mathsf{Enc}}(\cdot)$.
 - Otherwise, returning $\mathcal{O}_{\mathsf{Enc}}'(\mathbf{0})$ wins with probability 1.

Keng-Yu Chen (LASEC)

- We forbid the adversary to return $\tilde{\mathbf{z}}$ that is an answer of $\mathcal{O}'_{\mathsf{Enc}}(\cdot)$.
 - Otherwise, returning $\mathcal{O}'_{\mathsf{Fnc}}(\mathbf{0})$ wins with probability 1.

RUF Security

FE is called O-RUF secure for a real number γ if for any adversary A.

$$\mathsf{Adv}^{\mathsf{RUF},\mathcal{O},\gamma}_{\mathsf{FE},\mathcal{A}} := \mathsf{Pr}[\mathsf{RUF}^{\mathcal{O},\gamma}_{\mathsf{FE}}(\mathcal{A}) \to 1] = \mathsf{negl}.$$

We say FE is RUF secure if it is $\{\mathcal{O}'_{KevGen}, \mathcal{O}'_{Enc}\}$ -RUF secure.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

• RUF security is a new notion of an fh-IPFE scheme.

- RUF security is a new notion of an fh-IPFE scheme.
- In our project, we provide two theorems to obtain RUF security.

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

- RUF security is a new notion of an fh-IPFE scheme.
- In our project, we provide two theorems to obtain RUF security.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

- RUF security is a new notion of an fh-IPFE scheme.
- In our project, we provide two theorems to obtain RUF security.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KeyGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Theorem

Given an sEUF-CMA digital signature scheme Sig and any fh-IPFE FE, we can obtain an fh-IPFE FE' that is RUF for any γ .

- RUF security is a new notion of an fh-IPFE scheme.
- In our project, we provide two theorems to obtain RUF security.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Theorem

Given an sEUF-CMA digital signature scheme Sig and any fh-IPFE FE, we can obtain an fh-IPFE FE' that is RUF for any γ .

We provide details in Appendix - Achievability of RUF Security.

Table of Contents

- Introduction
- Pormalization
- Security Mode
- Security Analysis
 - Instantiation using fh-IPFE
 - Security of fh-IPFE
 - Security of Instantiation using fh-IPFE
- Conclusion

January 9th, 2025

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biometric authentication scheme instantiated by an fh-IPFE FE.

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biometric authentication scheme instantiated by an fh-IPFE FE. In our project, we show

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biometric authentication scheme instantiated by an fh-IPFE FE. In our project, we show

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{KeyGen} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{Enroll}\}$ -UF.

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biometric authentication scheme instantiated by an fh-IPFE FE. In our project, we show

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{KeyGen} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{Enroll}\}$ -UF.

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{Enc} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}$ -UF.

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biometric authentication scheme instantiated by an fh-IPFE FE. In our project, we show

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{KeyGen} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{Enroll}\}$ -UF.

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{Enc} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}$ -UF.

Theorem

For any distribution family $\mathbb B$ satisfying some "reasonable conditions", if FE is fh-IND, then Π is IND.

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biomtric authentication scheme instantiated by an fh-IPFE FE. In our project, we show

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{KeyGen} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{Enroll}\}$ -UF.

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{Enc} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}$ -UF.

Theorem

For any distribution family $\mathbb B$ satisfying some "reasonable conditions", if FE is fh-IND, then Π is IND.

$\{\boldsymbol{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Enroll}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

38 / 48

$\{\boldsymbol{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Enroll}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

• If the challenge bit b=0, $\mathcal R$ simulates a $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}(\mathcal A)$ game.

38 / 48

Keng-Yu Chen (LASEC)

$\{\boldsymbol{c_x}, \mathsf{csk}, \mathcal{O_B}, \mathcal{O}_{\mathsf{Enroll}}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- If the challenge bit b=0, $\mathcal R$ simulates a $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}(\mathcal A)$ game.
- If the challenge bit b=1, $\mathcal R$ simulates a $\mathsf{RUF}_\mathsf{FE}^{\mathcal O'_\mathsf{KeyGen},\gamma}(\mathcal A')$ game, for some $\mathcal A'$.

$\{\boldsymbol{c_x}, \mathsf{csk}, \mathcal{O_B}, \mathcal{O}_{\mathsf{Enroll}}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- If the challenge bit b=0, $\mathcal R$ simulates a $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}(\mathcal A)$ game.
- If the challenge bit b=1, $\mathcal R$ simulates a $\mathsf{RUF}_\mathsf{FE}^{\mathcal O'_\mathsf{KeyGen},\gamma}(\mathcal A')$ game, for some $\mathcal A'$.
- Advantage of \mathcal{R} is bounded by the difference between advantages of \mathcal{A} and \mathcal{A}' ,

$\{\boldsymbol{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Enroll}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- If the challenge bit b=0, $\mathcal R$ simulates a $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}(\mathcal A)$ game.
- If the challenge bit b=1, $\mathcal R$ simulates a $\mathsf{RUF}_\mathsf{FE}^{\mathcal O'_\mathsf{KeyGen},\gamma}(\mathcal A')$ game, for some $\mathcal A'$.
- ullet Advantage of ${\mathcal R}$ is bounded by the difference between advantages of ${\mathcal A}$ and ${\mathcal A}'$, and

$$\mathsf{Adv}^{\mathsf{UF}}_{\Pi,\mathbb{B},\mathcal{A},\mathsf{option}} \leq 4 \cdot \mathsf{Adv}^{\mathsf{fh\text{-}IND}}_{\mathsf{FE},\mathcal{R}} + \mathsf{Adv}^{\mathsf{RUF},\mathcal{O}'_{\mathsf{KeyGen}},\gamma}_{\mathsf{FE},\mathcal{A'}} = \mathsf{negl}.$$

January 9th, 2025

Keng-Yu Chen (LASEC) Biometric Authentication

$\{\boldsymbol{c_x}, \mathsf{csk}, \mathcal{O_B}, \mathcal{O}_{\mathsf{Enroll}}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- If the challenge bit b=0, $\mathcal R$ simulates a $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}(\mathcal A)$ game.
- If the challenge bit b=1, $\mathcal R$ simulates a $\mathsf{RUF}_\mathsf{FE}^{\mathcal O'_\mathsf{KeyGen},\gamma}(\mathcal A')$ game, for some $\mathcal A'$.
- ullet Advantage of ${\cal R}$ is bounded by the difference between advantages of ${\cal A}$ and ${\cal A}'$, and

$$\mathsf{Adv}^{\mathsf{UF}}_{\Pi,\mathbb{B},\mathcal{A},\mathsf{option}} \leq 4 \cdot \mathsf{Adv}^{\mathsf{fh\text{-}IND}}_{\mathsf{FE},\mathcal{R}} + \mathsf{Adv}^{\mathsf{RUF},\mathcal{O}'_{\mathsf{KeyGen}},\gamma}_{\mathsf{FE},\mathcal{A'}} = \mathsf{negl}.$$

• $\mathcal{O}_{\mathsf{Enroll}}$ is "encoding + FE.KeyGen". We can simulate $\mathcal{O}_{\mathsf{Enroll}}$ by $\mathcal{O}_{\mathsf{KeyGen}}$ in fh-IND game and $\mathcal{O}'_{\mathsf{KeyGen}}$ in RUF game.

$\{c_x, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{Enroll}\}$ -UF

Proof Sketch

Given an adversary A in the UF_{Π , \mathbb{B} ,option game, we build a reduction adversary \mathcal{R} in the} fh-IND game such that:

- If the challenge bit b=0, \mathcal{R} simulates a $\mathsf{UF}_{\Pi,\mathbb{R},\mathsf{option}}(\mathcal{A})$ game.
- If the challenge bit b=1, \mathcal{R} simulates a RUF $_{\mathsf{FF}}^{\mathcal{O}'_{\mathsf{KeyGen}},\gamma}(\mathcal{A}')$ game, for some \mathcal{A}' .
- Advantage of \mathcal{R} is bounded by the difference between advantages of \mathcal{A} and \mathcal{A}' , and

$$\mathsf{Adv}^{\mathsf{UF}}_{\Pi,\mathbb{B},\mathcal{A},\mathsf{option}} \leq 4 \cdot \mathsf{Adv}^{\mathsf{fh-IND}}_{\mathsf{FE},\mathcal{R}} + \mathsf{Adv}^{\mathsf{RUF},\mathcal{O}'_{\mathsf{KeyGen}},\gamma}_{\mathsf{FE},\mathcal{A'}} = \mathsf{negl}.$$

- \bullet $\mathcal{O}_{\mathsf{Enroll}}$ is "encoding + FE.KeyGen". We can simulate $\mathcal{O}_{\mathsf{Enroll}}$ by $\mathcal{O}_{\mathsf{KevGen}}$ in fh-IND game and $\mathcal{O}'_{\mathsf{KevGen}}$ in RUF game.
- \mathcal{R} never calls $\mathcal{O}_{\mathsf{Enc}}$, so it is an admissible adversary.

Keng-Yu Chen (LASEC) Biometric Authentication

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biomtric authentication scheme instantiated by an fh-IPFE FE. In our project, we show

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{KeyGen} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{Enroll}\}$ -UF.

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{Enc} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}$ -UF.

Theorem

For any distribution family $\mathbb B$ satisfying some "reasonable conditions", if FE is fh-IND, then Π is IND.

$\{\boldsymbol{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

$\{\boldsymbol{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- If the challenge bit b=0, $\mathcal R$ simulates a $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}(\mathcal A)$ game.
- If the challenge bit b=1, \mathcal{R} simulates a $\mathsf{RUF}_{\mathsf{FE}}^{\mathcal{O}'_{\mathsf{Enc}},\gamma}(\mathcal{A}')$ game, for some \mathcal{A}' .

$\{\boldsymbol{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- If the challenge bit b=0, \mathcal{R} simulates a $\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}(\mathcal{A})$ game.
- If the challenge bit b=1, \mathcal{R} simulates a $\mathsf{RUF}_{\mathsf{FF}}^{\mathcal{O}'_{\mathsf{Enc}},\gamma}(\mathcal{A}')$ game, for some \mathcal{A}' .
- ullet To let ${\mathcal R}$ be admissible, we cannot directly simulate ${\mathcal O}_{\mathsf{Probe}}$ by ${\mathcal O}_{\mathsf{Enc}}.$
 - \mathcal{R} uses $\mathcal{O}_{\mathsf{KeyGen}}(\mathbf{x}, \mathbf{r})$, \mathbf{x} from $\mathcal{O}_{\mathcal{B}}$ and $\mathbf{r} \leftarrow \mathbb{Z}_q^{k+2}$, to prepare \mathbf{c} for \mathcal{A} and \mathcal{A}' .
 - For any query $\mathcal{O}_{\mathsf{Enc}}(\mathbf{y}',\mathbf{y}'')$, it must satisfy $\mathbf{xy'}^T = \mathbf{xy''}^T$.

$\{\boldsymbol{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}\text{-}\mathsf{UF}$

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{UF}_{\Pi,\mathbb B,\mathsf{option}}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- If the challenge bit b=0, \mathcal{R} simulates a $\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}(\mathcal{A})$ game.
- If the challenge bit b=1, \mathcal{R} simulates a $\mathsf{RUF}_{\mathsf{FF}}^{\mathcal{O}'_{\mathsf{Enc}},\gamma}(\mathcal{A}')$ game, for some \mathcal{A}' .
- ullet To let ${\mathcal R}$ be admissible, we cannot directly simulate ${\mathcal O}_{\mathsf{Probe}}$ by ${\mathcal O}_{\mathsf{Enc}}.$
 - \mathcal{R} uses $\mathcal{O}_{\mathsf{KeyGen}}(\mathbf{x}, \mathbf{r})$, \mathbf{x} from $\mathcal{O}_{\mathcal{B}}$ and $\mathbf{r} \leftarrow \mathbb{Z}_q^{k+2}$, to prepare \mathbf{c} for \mathcal{A} and \mathcal{A}' .
 - For any query $\mathcal{O}_{\mathsf{Enc}}(\mathbf{y}',\mathbf{y}'')$, it must satisfy $\mathbf{x}\mathbf{y}'^T = \mathbf{x}\mathbf{y}''^T$.
- We simulate $\mathcal{O}_{\mathsf{Probe}}(\mathsf{psk},\mathbf{b}')$ by
 - Encode **b**' to $\mathbf{y}' = (-2b_1', \cdots, -2b_k', \|\mathbf{b}'\|^2, 1)$
 - Compute $d \leftarrow \mathbf{x} \mathbf{y'}^T$ and find a vector $\mathbf{y''}$ such that $\mathbf{r} \mathbf{y''}^T = d$
 - $\mathcal{O}_{\mathsf{Enc}}(\mathbf{y}',\mathbf{y}'')$.

• \mathcal{R} is now admissible, but then we have to simulate this tweaked $\mathcal{O}_{\mathsf{Probe}}$ in $\mathsf{RUF}_{\mathsf{FE}}^{\mathcal{O}'_{\mathsf{Enc}},\gamma}(\mathcal{A}')$.

- \mathcal{R} is now admissible, but then we have to simulate this tweaked $\mathcal{O}_{\mathsf{Probe}}$ in $\mathsf{RUF}_{\mathsf{FF}}^{\mathcal{O}'_{\mathsf{Enc}},\gamma}(\mathcal{A}')$.
- Advantage of \mathcal{R} is bounded by the difference between advantages of \mathcal{A} and \mathcal{A}' , and

$$\mathsf{Adv}^{\mathsf{UF}}_{\mathsf{\Pi},\mathbb{B},\mathcal{A},\mathsf{option}} \leq 4 \cdot \mathsf{Adv}^{\mathsf{fh\text{-}IND}}_{\mathsf{FE},\mathcal{R}} + \mathsf{Adv}^{\mathsf{RUF},\mathcal{O}'_{\mathsf{Enc}},\gamma}_{\mathsf{FE},\mathcal{A'}} + \frac{k+2}{q^{k+2}-1} + \frac{1}{q^{k+2}} = \mathsf{negI}.$$

Security of Instantiation using fh-IPFE

For the rest of this section, let Π be a biomtric authentication scheme instantiated by an fh-IPFE FE. In our project, we show

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{KeyGen} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Enroll}\}$ -UF.

Theorem

For any distribution family \mathbb{B} , if FE is fh-IND and \mathcal{O}'_{Enc} -RUF for a $\gamma \geq \tau^2$, then Π is $\{\mathbf{c_x}, csk, \mathcal{O_B}, \mathcal{O}_{Probe}\}$ -UF.

Theorem

For any distribution family $\mathbb B$ satisfying some "reasonable conditions", if FE is fh-IND, then Π is IND.

IND

Assumption 1

Let t be an integer. Assume that for any distribution $\mathcal{B} \in \mathbb{B}$, the following distribution is identical.

$$\mathcal{D}_{\mathcal{B}}(t) := \left(\mathsf{BioCompare}(\mathbf{b}, \mathbf{b}^{(1)}), \mathsf{BioCompare}(\mathbf{b}, \mathbf{b}^{(2)}), \cdots, \mathsf{BioCompare}(\mathbf{b}, \mathbf{b}^{(t)})\right)$$

where $\mathbf{b} \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$ and $\mathbf{b}^{(i)} \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$ for all $i \in [t]$.

IND

Assumption 1

Let t be an integer. Assume that for any distribution $\mathcal{B} \in \mathbb{B}$, the following distribution is identical.

$$\mathcal{D}_{\mathcal{B}}(t) := \left(\mathsf{BioCompare}(\mathbf{b}, \mathbf{b}^{(1)}), \mathsf{BioCompare}(\mathbf{b}, \mathbf{b}^{(2)}), \cdots, \mathsf{BioCompare}(\mathbf{b}, \mathbf{b}^{(t)})\right)$$

where $\mathbf{b} \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$ and $\mathbf{b}^{(i)} \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$ for all $i \in [t]$.

Note that indistinguishability of $\mathcal{D}_{\mathcal{B}}(t)$ for $\mathcal{B} \in \mathbb{B}$ is a necessary condition to achieve IND security because

$$\left(\mathsf{Compare}(\mathsf{csk}, \mathbf{c_x}, \mathbf{c_y}^{(1)}), \cdots, \mathsf{Compare}(\mathsf{csk}, \mathbf{c_x}, \mathbf{c_y}^{(t)})\right) = \mathcal{D}_{\mathcal{B}^{(b)}}(t)$$

where b is the challenge bit.

IND

Theorem

For any distribution family $\mathbb B$ satisfying Assumption 1 and having a true positive rate $TP>\frac{1}{\mathsf{poly}}$, if FE is fh-IND, then Π is IND.

IND

Theorem

For any distribution family $\mathbb B$ satisfying Assumption 1 and having a true positive rate $TP>\frac{1}{\text{poly}}$, if FE is fh-IND, then Π is IND.

Proof Sketch.

Given an adversary $\mathcal A$ in the IND $_{\Pi,\mathbb B}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

IND

Theorem

For any distribution family $\mathbb B$ satisfying Assumption 1 and having a true positive rate $TP>\frac{1}{\mathsf{poly}}$, if FE is fh-IND, then Π is IND.

Proof Sketch.

Given an adversary $\mathcal A$ in the IND_{$\Pi,\mathbb B$} game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

• \mathcal{R} first samples $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$.

IND

Theorem

For any distribution family $\mathbb B$ satisfying Assumption 1 and having a true positive rate $TP>\frac{1}{\text{poly}}$, if FE is fh-IND, then Π is IND.

Proof Sketch.

Given an adversary $\mathcal A$ in the IND_{$\Pi,\mathbb B$} game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- \mathcal{R} first samples $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$.
- $\bullet \ \mathcal{R} \ \text{then calls} \ \boldsymbol{c_x} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\boldsymbol{x^{(0)}}, \boldsymbol{x^{(1)}}) \text{, where } \boldsymbol{x^{(0)}} \ \text{and} \ \boldsymbol{x^{(1)}} \ \text{are created from} \ \mathcal{B}^{(0)} \ \text{and} \ \mathcal{B}^{(1)}.$

IND

Theorem

For any distribution family $\mathbb B$ satisfying Assumption 1 and having a true positive rate $TP>\frac{1}{\text{poly}}$, if FE is fh-IND, then Π is IND.

Proof Sketch.

Given an adversary $\mathcal A$ in the IND_{$\Pi,\mathbb B$} game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- \mathcal{R} first samples $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$.
- ullet \mathcal{R} then calls $\mathbf{c_x} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{x^{(0)}},\mathbf{x^{(1)}})$, where $\mathbf{x^{(0)}}$ and $\mathbf{x^{(1)}}$ are created from $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$.
- \mathcal{R} prepares $\mathbf{y}^{(0)}$ and $\mathbf{y}^{(1)}$ from $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$ in a way that, $\mathbf{x}^{(0)}\mathbf{y}^{(0)}^T = \mathbf{x}^{(1)}\mathbf{y}^{(1)}^T$, and calls $\mathbf{c}_{\mathbf{v}} \leftarrow \mathcal{O}_{\mathsf{Enc}}(\mathbf{y}^{(0)}, \mathbf{y}^{(1)})$.

Theorem

For any distribution family $\mathbb B$ satisfying Assumption 1 and having a true positive rate $TP>\frac{1}{\text{poly}}$, if FE is fh-IND, then Π is IND.

Proof Sketch.

Given an adversary $\mathcal A$ in the $\mathsf{IND}_{\Pi,\mathbb B}$ game, we build a reduction adversary $\mathcal R$ in the fh-IND game such that:

- \mathcal{R} first samples $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$.
- ullet \mathcal{R} then calls $\mathbf{c_x} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{x}^{(0)}, \mathbf{x}^{(1)})$, where $\mathbf{x}^{(0)}$ and $\mathbf{x}^{(1)}$ are created from $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$.
- \mathcal{R} prepares $\mathbf{y}^{(0)}$ and $\mathbf{y}^{(1)}$ from $\mathcal{B}^{(0)}$ and $\mathcal{B}^{(1)}$ in a way that, $\mathbf{x}^{(0)}\mathbf{y}^{(0)} = \mathbf{x}^{(1)}\mathbf{y}^{(1)}$, and calls $\mathbf{c}_{\mathbf{v}} \leftarrow \mathcal{O}_{\mathsf{Enc}}(\mathbf{y}^{(0)}, \mathbf{y}^{(1)})$.
- By Assumption 1, $\mathbf{y}^{(0)}$ and $\mathbf{y}^{(1)}$ still follow the correct distribution.

.

Table of Contents

- Introduction
- 2 Formalization
- Security Model
- Security Analysis
- Conclusion

In this project,

• We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.

46 / 48

In this project,

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $UF_{\Pi,\mathbb{B},option}$ game and $IND_{\Pi,\mathbb{B}}$ game.

46 / 48

In this project,

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $UF_{\Pi,\mathbb{B},option}$ game and $IND_{\Pi,\mathbb{B}}$ game.
 - UF_{ILB option} game models the ability of an adversary to impersonate the user.

46 / 48

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $UF_{\Pi,\mathbb{B},option}$ game and $IND_{\Pi,\mathbb{B}}$ game.
 - $UF_{\Pi,\mathbb{B},option}$ game models the ability of an adversary to impersonate the user.
 - $IND_{\Pi,\mathbb{B}}$ game models the ability of the server to recognize the user.

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}$ game and $\mathsf{IND}_{\Pi,\mathbb{B}}$ game.
 - $\mathsf{UF}_{\Pi,\mathbb{B},\mathsf{option}}$ game models the ability of an adversary to impersonate the user.
 - $\mathsf{IND}_{\Pi,\mathbb{B}}$ game models the ability of the server to recognize the user.
- We introduce two instantiations using fh-IPFE and relational hash.

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $UF_{\Pi,\mathbb{B},option}$ game and $IND_{\Pi,\mathbb{B}}$ game.
 - $UF_{\Pi,\mathbb{B},option}$ game models the ability of an adversary to impersonate the user.
 - $\mathsf{IND}_{\Pi,\mathbb{B}}$ game models the ability of the server to recognize the user.
- We introduce two instantiations using fh-IPFE and relational hash.
 - In the presentation, we focus on fh-IPFE-based instantiation.

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $UF_{\Pi,\mathbb{B},option}$ game and $IND_{\Pi,\mathbb{B}}$ game.
 - $UF_{\Pi,\mathbb{B},option}$ game models the ability of an adversary to impersonate the user.
 - $\mathsf{IND}_{\Pi,\mathbb{B}}$ game models the ability of the server to recognize the user.
- We introduce two instantiations using fh-IPFE and relational hash.
 - In the presentation, we focus on fh-IPFE-based instantiation.
 - We introduce fh-IND and RUF security of fh-IPFE.

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $UF_{\Pi,\mathbb{B},option}$ game and $IND_{\Pi,\mathbb{B}}$ game.
 - $UF_{\Pi,\mathbb{B},option}$ game models the ability of an adversary to impersonate the user.
 - IND_{□,B} game models the ability of the server to recognize the user.
- We introduce two instantiations using fh-IPFE and relational hash.
 - In the presentation, we focus on fh-IPFE-based instantiation.
 - We introduce fh-IND and RUF security of fh-IPFE.
 - We provide two theorems to achieve RUF security.

- We provide a framework of a biometric authentication scheme with a cryptographic layer to preserve privacy.
- We define $UF_{\Pi,\mathbb{B},option}$ game and $IND_{\Pi,\mathbb{B}}$ game.
 - $UF_{\Pi,\mathbb{B},option}$ game models the ability of an adversary to impersonate the user.
 - $\mathsf{IND}_{\Pi,\mathbb{B}}$ game models the ability of the server to recognize the user.
- We introduce two instantiations using fh-IPFE and relational hash.
 - In the presentation, we focus on fh-IPFE-based instantiation.
 - We introduce fh-IND and RUF security of fh-IPFE.
 - We provide two theorems to achieve RUF security.
- We show that how an fh-IPFE-based instantiation can be $\{c_x, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{\mathsf{Enroll}}\}$ -UF, $\{c_x, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{\mathsf{Probe}}\}$ -UF, and IND.

• We can consider other two oracles in option in the $UF_{\Pi,\mathbb{B},option}$ game:

- We can consider other two oracles in option in the $UF_{\Pi,\mathbb{B},option}$ game:
 - $\mathcal{O}'_{\mathsf{Enroll}}(\cdot)$: On input esk', first sample $\mathbf{b}' \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Enroll}(\mathsf{esk}', \mathbf{b}')$.
 - $\mathcal{O}'_{\mathsf{Probe}}(\cdot)$: On input psk', first sample $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Probe}(\mathsf{psk}', \mathbf{b}')$.

- We can consider other two oracles in option in the $UF_{\Pi,\mathbb{B},option}$ game:
 - $\mathcal{O}'_{\mathsf{Enroll}}(\cdot)$: On input esk', first sample $\mathbf{b}' \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Enroll}(\mathsf{esk}', \mathbf{b}')$.
 - $\mathcal{O}'_{\mathsf{Probe}}(\cdot)$: On input psk', first sample $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Probe}(\mathsf{psk}', \mathbf{b}')$.

This models a scenario when an adversary can set illegal keys to do bad things.

- We can consider other two oracles in option in the $UF_{\Pi,\mathbb{R},option}$ game:
 - $\mathcal{O}'_{\mathsf{Enroll}}(\cdot)$: On input esk', first sample $\mathbf{b}' \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Enroll}(\mathsf{esk}', \mathbf{b}')$.
 - $\mathcal{O}'_{\mathsf{Probe}}(\cdot)$: On input psk', first sample $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Probe}(\mathsf{psk}', \mathbf{b}')$.

This models a scenario when an adversary can set illegal keys to do bad things.

• Analyses of other instantiations of a biometric authentication scheme.

Discussion and Future Work

- We can consider other two oracles in option in the $UF_{\Pi,\mathbb{B},option}$ game:
 - $\mathcal{O}'_{\mathsf{Enroll}}(\cdot)$: On input esk', first sample $\mathbf{b}' \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Enroll}(\mathsf{esk}', \mathbf{b}')$.
 - $\mathcal{O}'_{\mathsf{Probe}}(\cdot)$: On input psk', first sample $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Probe}(\mathsf{psk}', \mathbf{b}')$.

This models a scenario when an adversary can set illegal keys to do bad things.

- Analyses of other instantiations of a biometric authentication scheme.
 - Two-input Inner Product Functional Encryption.
 - Fuzzy Extractor.
 - Homomorphic Encryption.

Discussion and Future Work

- We can consider other two oracles in option in the $UF_{\Pi,\mathbb{B},option}$ game:
 - $\mathcal{O}'_{\mathsf{Enroll}}(\cdot)$: On input esk', first sample $\mathbf{b}' \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Enroll}(\mathsf{esk}', \mathbf{b}')$.
 - $\mathcal{O}'_{\mathsf{Probe}}(\cdot)$: On input psk', first sample $\mathbf{b}' \leftarrow \mathsf{getProbe}^{\mathcal{O}_{\mathcal{B}}}()$ and output $\mathsf{Probe}(\mathsf{psk}', \mathbf{b}')$.

This models a scenario when an adversary can set illegal keys to do bad things.

- Analyses of other instantiations of a biometric authentication scheme.
 - Two-input Inner Product Functional Encryption.
 - Fuzzy Extractor.
 - Homomorphic Encryption.

Some of them have different structures from our framework, such as a challenge-based protocol.

Reference I

- [MR14] Avradip Mandal and Arnab Roy. *Relational Hash*. Cryptology ePrint Archive, Paper 2014/394. 2014. URL: https://eprint.iacr.org/2014/394.
- [DDM15] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional Encryption for Inner Product with Full Function Privacy. Cryptology ePrint Archive, Paper 2015/1255. 2015. URL: https://eprint.iacr.org/2015/1255.
- [Kim+16] Sam Kim et al. Function-Hiding Inner Product Encryption is Practical. Cryptology ePrint Archive, Paper 2016/440. 2016. URL: https://eprint.iacr.org/2016/440.
- [TAO16] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. "Efficient Functional Encryption for Inner-Product Values with Full-Hiding Security". In: Information Security. Ed. by Matt Bishop and Anderson C A Nascimento. Cham: Springer International Publishing, 2016, pp. 408–425. ISBN: 978-3-319-45871-7.
- [EM23] Johannes Ernst and Aikaterini Mitrokotsa. A Framework for UC Secure Privacy Preserving Biometric Authentication using Efficient Functional Encryption. Cryptology ePrint Archive, Paper 2023/481. 2023. URL: https://eprint.iacr.org/2023/481.

Table of Contents

- O Appendix Usage Example
- Appendix Achievability of RUF Security
- Appendix Reductions on Proving Security of fh-IPFE-based Schemes

Keng-Yu Chen (LASEC) Biometric Authentication January 9th, 2025

$$\mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$$

$$\mathbf{b} \leftarrow \mathsf{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()$$

Scanner

Device

Server

Device

Server

Device

Server

Keng-Yu Chen (LASEC)

Server

Table of Contents

- O Appendix Usage Example
- Appendix Achievability of RUF Security
- Appendix Reductions on Proving Security of fh-IPFE-based Schemes

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Given a RUF $\mathcal{O}'_{\text{KeyGen}}$ adversary \mathcal{A} , consider the following fh-IND adversary:

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Given a $\mathsf{RUF}^{\mathcal{O}'_{\mathsf{KeyGen}},\gamma}$ adversary \mathcal{A} , consider the following fh-IND adversary:

• Run $\mathbf{c} \leftarrow \mathcal{O}_{\mathsf{KevGen}}(\mathbf{r}^{(0)}, \mathbf{r}^{(1)})$, where $\mathbf{r}^{(0)}, \mathbf{r}^{(1)} \leftarrow_{\$} \mathbb{F}^k$.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Given a $\mathsf{RUF}^{\mathcal{O}'_{\mathsf{KeyGen}},\gamma}$ adversary \mathcal{A} , consider the following fh-IND adversary:

- **1** Run $\mathbf{c} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{r}^{(0)}, \mathbf{r}^{(1)})$, where $\mathbf{r}^{(0)}, \mathbf{r}^{(1)} \leftarrow_{\$} \mathbb{F}^k$.
- ② Run $\tilde{\mathbf{z}} \leftarrow \mathbf{A}^{\mathcal{O}'_{\mathsf{KeyGen}}}(\mathsf{pp}, \mathbf{c}).$

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Given a $\mathsf{RUF}^{\mathcal{O}'_{\mathsf{KeyGen}},\gamma}$ adversary \mathcal{A} , consider the following fh-IND adversary:

- **1** Let $\tilde{\mathbf{z}}$ be encryption of $\mathbf{v} \neq \mathbf{0}$.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Given a $\mathsf{RUF}^{\mathcal{O}'_{\mathsf{KeyGen}},\gamma}$ adversary \mathcal{A} , consider the following fh-IND adversary:

- Run $\mathbf{c} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{r}^{(0)}, \mathbf{r}^{(1)})$, where $\mathbf{r}^{(0)}, \mathbf{r}^{(1)} \leftarrow_{\$} \mathbb{F}^k$.
- ② Run $\tilde{\mathbf{z}} \leftarrow \mathbf{A}^{\mathcal{O}'_{\mathsf{KeyGen}}}(\mathsf{pp}, \mathbf{c}).$
- **1** Let $\tilde{\mathbf{z}}$ be encryption of $\mathbf{v} \neq \mathbf{0}$.
- **1** Sun $\mathbf{c}_i \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{r}^{(0)}, \mathbf{r}_i)$, where $\mathbf{r}_i \leftarrow \mathbb{F}^k$.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Given a $\mathsf{RUF}^{\mathcal{O}'_{\mathsf{KeyGen}},\gamma}$ adversary \mathcal{A} , consider the following fh-IND adversary:

- **1** Run $\mathbf{c} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{r}^{(0)}, \mathbf{r}^{(1)})$, where $\mathbf{r}^{(0)}, \mathbf{r}^{(1)} \leftarrow_{\$} \mathbb{F}^k$.
- **2** Run $\tilde{\mathbf{z}} \leftarrow \mathbf{A}^{\mathcal{O}'_{\mathsf{KeyGen}}}(\mathsf{pp}, \mathbf{c}).$
- **1** Let $\tilde{\mathbf{z}}$ be encryption of $\mathbf{v} \neq \mathbf{0}$.
- **1** Run $\mathbf{c}_i \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{r}^{(0)}, \mathbf{r}_i)$, where $\mathbf{r}_i \leftarrow \mathbb{F}^k$.
- If FE.Dec(pp, $\mathbf{c}_i, \tilde{\mathbf{z}}$) $\leq \gamma$ for all i, return $\tilde{b} = 0$. Otherwise, return $\tilde{b} \leftarrow \$ \{0, 1\}$.

Theorem

If FE is fh-IND, and if the RUF adversary can only return $\tilde{\mathbf{z}}$ that is an encryption of a nonzero vector, then FE is $\mathcal{O}'_{\mathsf{KevGen}}$ -RUF for any $\gamma \leq \|\mathbb{F}\|$.

Given a $\mathsf{RUF}^{\mathcal{O}'_{\mathsf{KeyGen}},\gamma}$ adversary \mathcal{A} , consider the following fh-IND adversary:

- Run $\mathbf{c} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{r}^{(0)}, \mathbf{r}^{(1)})$, where $\mathbf{r}^{(0)}, \mathbf{r}^{(1)} \leftarrow_{\$} \mathbb{F}^k$.
- **1** Let $\tilde{\mathbf{z}}$ be encryption of $\mathbf{v} \neq \mathbf{0}$.
- **③** Run $\mathbf{c}_i \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{r}^{(0)}, \mathbf{r}_i)$, where $\mathbf{r}_i \leftarrow \mathbb{F}^k$.
- If FE.Dec(pp, $\mathbf{c}_i, \tilde{\mathbf{z}}$) $\leq \gamma$ for all i, return $\tilde{b} = 0$. Otherwise, return $\tilde{b} \leftarrow \$ \{0, 1\}$.
- ① If b = 0 and \mathcal{A} wins, FE.Dec(pp, $\mathbf{c}_i, \tilde{\mathbf{z}}) \leq \gamma$ for all i. Otherwise, FE.Dec(pp, $\mathbf{c}_i, \tilde{\mathbf{z}}) \leq \gamma$ is a random number in $\{0, 1, \dots, q-1\}$.

Theorem

Theorem

Given an sEUF-CMA digital signature scheme Sig and any fh-IPFE FE, we can obtain an fh-IPFE FE' that is RUF for any γ .

• FE'.Setup(1^{λ}): Run FE.Setup(1^{λ}) \rightarrow (msk, pp) and Sig.KeyGen(1^{λ}) \rightarrow (sk_{Sig}, pk_{Sig}). Output msk' = (msk, sk_{Sig}) and pp' = (pp, pk_{Sig}).

Theorem

- FE'.Setup(1^{λ}): Run FE.Setup(1^{λ}) \rightarrow (msk, pp) and Sig.KeyGen(1^{λ}) \rightarrow (sk_{Sig}, pk_{Sig}). Output msk' = (msk, sk_{Sig}) and pp' = (pp, pk_{Sig}).
- FE'.KeyGen(msk', x): Run and output $f_x \leftarrow$ FE.Enc(msk, x).

Theorem

- FE'.Setup(1^{λ}): Run FE.Setup(1^{λ}) \rightarrow (msk, pp) and Sig.KeyGen(1^{λ}) \rightarrow (sk_{Sig}, pk_{Sig}). Output msk' = (msk, sk_{Sig}) and pp' = (pp, pk_{Sig}).
- FE'.KeyGen(msk', x): Run and output $f_x \leftarrow \text{FE.Enc}(\text{msk}, x)$.
- FE'.Enc(msk', y): Run FE.Enc(msk, y) \rightarrow c_y and sign c_y by Sig.Sign(sk_{Sig}, c_y) \rightarrow σ . Output c_y' = (c_y, σ).

Theorem

- FE'.Setup(1^{λ}): Run FE.Setup(1^{λ}) \rightarrow (msk, pp) and Sig.KeyGen(1^{λ}) \rightarrow (sk_{Sig}, pk_{Sig}). Output msk' = (msk, sk_{Sig}) and pp' = (pp, pk_{Sig}).
- FE'.KeyGen(msk', x): Run and output $f_x \leftarrow \text{FE.Enc}(\text{msk}, x)$.
- FE'.Enc(msk', y): Run FE.Enc(msk, y) \rightarrow c_y and sign c_y by Sig.Sign(sk_{Sig}, c_y) \rightarrow σ . Output c_y' = (c_y, σ).
- FE'.Dec(pp', $f_{\mathbf{x}}$, $\mathbf{c_y}'$): Output FE.Dec(pp, $f_{\mathbf{x}}$, $\mathbf{c_y}$) if Sig.Verify(pk_{Sig}, $\mathbf{c_y}$, σ) \rightarrow 1. Otherwise, output \perp .

Theorem

Given an sEUF-CMA digital signature scheme Sig and any fh-IPFE FE, we can obtain an fh-IPFE FE' that is RUF for any γ .

- FE'.Setup(1 $^{\lambda}$): Run FE.Setup(1 $^{\lambda}$) \rightarrow (msk, pp) and Sig.KeyGen(1 $^{\lambda}$) \rightarrow (sk_{Sig}, pk_{Sig}). Output msk' = (msk, sk_{Sig}) and pp' = (pp, pk_{Sig}).
- FE'.KeyGen(msk', x): Run and output $f_x \leftarrow \text{FE.Enc}(\text{msk}, x)$.
- FE'.Enc(msk', y): Run FE.Enc(msk, y) \rightarrow c_y and sign c_y by Sig.Sign(sk_{Sig}, c_y) \rightarrow σ . Output c_y' = (c_y, σ).
- FE'.Dec(pp', $f_{\mathbf{x}}, \mathbf{c_y}'$): Output FE.Dec(pp, $f_{\mathbf{x}}, \mathbf{c_y}$) if Sig.Verify(pk_{Sig}, $\mathbf{c_y}, \sigma$) \rightarrow 1. Otherwise, output \perp .

If an adverary can find $\tilde{\mathbf{z}}$ such that $\mathsf{FE}'.\mathsf{Dec}(\mathsf{pp}',\mathbf{c},\tilde{\mathbf{z}}) \neq \bot$, it can forge a signature.

Table of Contents

- O Appendix Usage Example
- Appendix Achievability of RUF Security
- Appendix Reductions on Proving Security of fh-IPFE-based Schemes

Reduction on proving $\{\boldsymbol{c_x}, \mathsf{csk}, \mathcal{O_B}, \mathcal{O}_{\mathsf{Enroll}}\}\text{-}\mathsf{UF}$

```
\mathcal{R}^{\mathcal{O}_{\mathsf{KeyGen}},\mathcal{O}_{\mathsf{Enc}}}(\mathsf{pp})
   1: \mathcal{B} \leftarrow \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}
   2: \mathbf{b} = (b_1, \dots, b_k) \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()
   3: \mathbf{x} \leftarrow (b_1, \dots, b_k, 1, ||\mathbf{b}||^2)
    4. \mathbf{r} \leftarrow \mathbb{R}^{k+2}
   5: \mathbf{c} \leftarrow \mathcal{O}_{\mathsf{KevGen}}(\mathbf{x}, \mathbf{r})
   6: \tilde{\mathbf{z}} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathcal{B}}, \mathcal{O}_{\mathsf{Enroll}}}(\mathbf{c}, \mathsf{pp})
   7: s \leftarrow \mathsf{FE.Dec}(\mathsf{pp}, \mathbf{c}, \tilde{\mathbf{z}})
   8: if Verify(s) = 1 then
               return \tilde{b}=0
 10: else
             return \tilde{b} \leftarrow \$ \{0,1\}
 11:
```

Reduction on proving $\{c_x, csk, \mathcal{O}_{\mathcal{B}}, \mathcal{O}_{Probe}\}$ -UF

```
\mathcal{R}^{\mathcal{O}_{\mathsf{KeyGen}},\mathcal{O}_{\mathsf{Enc}}}(\mathsf{pp})
   1: \mathcal{B} \leftarrow \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}
  2: \mathbf{b} = (b_1, \dots, b_k) \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}}}()
  3: \mathbf{x} \leftarrow (b_1, \dots, b_k, 1, ||\mathbf{b}||^2)
   4. \mathbf{r} \leftarrow \mathbb{R}^{k+2}
   5: \mathbf{c} \leftarrow \mathcal{O}_{\mathsf{KevGen}}(\mathbf{x}, \mathbf{r})
  6: \tilde{\mathbf{z}} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathcal{B}}, \mathcal{O}_{\mathsf{Probe}}}(\mathbf{c}, \mathsf{pp})
   7: if \tilde{\mathbf{z}} is equal to any output of \mathcal{O}_{Probe} then
   g٠
                 return 丄
   9: s \leftarrow \mathsf{FE.Dec}(\mathsf{pp}, \mathbf{c}, \tilde{\mathbf{z}})
10: if Verify(s) = 1 then
            return \tilde{b}=0
12: else
                 return \tilde{b} \leftarrow \$ \{0, 1\}
13:
```

Reduction on proving IND

```
\mathcal{R}^{\mathcal{O}_{\mathsf{KeyGen}},\mathcal{O}_{\mathsf{Enc}}}(\mathsf{pp})
   1: \mathcal{B}^{(0)} \leftarrow \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}^{(0)}
   2: \mathcal{B}^{(1)} \leftarrow \mathbb{B}, \mathbb{B} \leftarrow \mathbb{B} \setminus \mathcal{B}^{(1)}
   3: \mathbf{b}^{(0)} \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}^{(0)}}}()
   4: \mathbf{x}^{(0)} \leftarrow (b_1^{(0)}, \cdots, b_L^{(0)}, 1, ||\mathbf{b}^{(0)}||^2)
   5: \mathbf{b}^{(1)} \leftarrow \text{getEnroll}^{\mathcal{O}_{\mathcal{B}^{(1)}}}()
   6: \mathbf{x}^{(1)} \leftarrow (b_1^{(1)}, \cdots, b_{\ell}^{(1)}, 1, \|\mathbf{b}^{(1)}\|^2)
   7: \mathbf{c}_{\mathbf{x}} \leftarrow \mathcal{O}_{\mathsf{KeyGen}}(\mathbf{x}^{(0)}, \mathbf{x}^{(1)})
   8. for i = 1 to t do
   9: \mathbf{b}'^{(0)} \leftarrow \text{getProbe}^{\mathcal{O}_{\mathcal{B}^{(0)}}}
```

```
10: \mathbf{y}^{(0)} \leftarrow (-2b_1'^{(0)}, \cdots, -2b_k'^{(0)}, \|\mathbf{b}'^{(0)}\|^2, 1)
11: \mathbf{repeat}
12: \mathbf{b}'^{(1)} \leftarrow \mathbf{getProbe}^{\mathcal{O}_{\mathcal{B}^{(1)}}}()
13: \mathbf{y}^{(1)} \leftarrow (-2b_1'^{(1)}, \cdots, -2b_k'^{(1)}, \|\mathbf{b}'^{(1)}\|^2, 1)
14: \mathbf{until} \ \mathbf{x}^{(0)} \mathbf{y}^{(0)} = \mathbf{x}^{(1)} \mathbf{y}^{(1)}^T
15: \mathbf{c}_{\mathbf{y}}^{(i)} \leftarrow \mathcal{O}_{\mathsf{Enc}}(\mathbf{y}^{(0)}, \mathbf{y}^{(1)})
16: \tilde{b} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathcal{B}^{(0)}}, \mathcal{O}_{\mathcal{B}^{(1)}}}(\mathbf{pp}, \mathbf{c_x}, \{\mathbf{c_y}^{(i)}\}_{i=1}^t)
17: \mathbf{return} \ \tilde{b}
```