(19) World Intellectual Property Organization International Bureau

1 COLOR BULLON IN COLOR BULLO BULLO IN LA REPUBLICA DE LO COLOR BULLO BULLO BULLO BULLO BULLO BULLO BULLO BULL

(43) International Publication Date 3 July 2003 (03.07.2003)

PCT

(10) International Publication Number WO 03/053363 A2

(51) International Patent Classification7:

A61K

- (21) International Application Number: PCT/US02/40974
- (22) International Filing Date:

19 December 2002 (19.12.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/341,947 60/411,859 19 December 2001 (19.12.2001) US 19 September 2002 (19.09.2002) US

(71) Applicant: MILLENNIUM PHARMACEUTICALS, INC. [US/US]; Sidney Street 75, Cambridge, MA 02139 (US).

(72) Inventors: GIMENO, Ruth, E.; Beverly Road 65, Wellesley, MA 02481 (US). WU, Zhidan; Tremont Street, 1575 Apt.410, Boston, MA 02120 (US). KAPELLER-LIBERMANN, Rosana; Beacon Street 86, Chestnut Hill, MA 02467 (US). HUBBARD, Brian, K.; Pickett St. 9, Beverly, MA 01915 (US).

- (74) Agent: SCHRAY, Kerri, Pollard; Millennium Pharmaceuticals, Inc., Sidney Street 75, Cambridge, MA 02139 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Z

(54) Title: HUMAN DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) FAMILY MEMBERS AND USES THEREFOR

(57) Abstract: The present invention relates to compositions and methods for the diagnosis and treatment of obesity and related metabolic disorders. The invention provides isolated nucleic acids molecules, designated DGAT2 family member nucleic acid molecules, which encode diacylglycerol acyltransferase family members. The invention also provides recombinant expression vectors containing DGAT2 family member nucleic acid molecules, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which a DGAT2 family member gene has been introduced or disrupted. The invention still further provides isolated DGAT2 family member proteins, fusion proteins, antigenic peptides and anti-DGAT2 family member antibodies. Methods of use of the provided DGAT2 family member compositions for screening, diagnostic and therapeutic methods in connection with obesity disorders are also disclosed.

HUMAN DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) FAMILY MEMBERS AND USES THEREFOR

Background of the Invention

[0001] Obesity, the most prevalent of body weight disorders, is the most important nutritional disorder in the western world, with estimates of its prevalence ranging from 30% to 50% within the middle-aged population. Obesity, defined as an excess of body fat relative to lean body mass, also contributes to other diseases. For example, this disorder is responsible for increased incidence of diseases such as coronary artery disease, hypertension, stroke, diabetes, hyperlipidemia, and some cancers (See, e.g., Nishina, P.M. et al., 1994, Metab. 43: 554-558; Grundy, S.M. & Barnett, J.P., 1990, Dis. Mon. 36: 641-731). Obesity is not merely a behavioral problem, i.e., the result of voluntary hyperphagia. Rather, the differential body composition observed between obese and normal subjects results from differences in both metabolism and neurologic/metabolic interactions. These differences seem to be, to some extent, due to differences in gene expression, and/or level of gene products or activity. The nature, however, of the genetic factors which control body composition are unknown, and attempts to identify molecules involved in such control have generally been empiric, and the parameters of body composition and/or substrate flux have not yet been identified (Friedman, J.M. et al., 1991, Mammalian Gene 1:130-144). [0002] The epidemiology of obesity strongly shows that the disorder exhibits inherited characteristics (Stunkard, 1990, N. Eng. J. Med. 322:1483). Moll et al., have reported that, in many populations, obesity seems to be controlled by a few genetic loci (Moll et al. 1991, Am. J. Hum. Gen. 49:1243). In addition, human twin studies strongly suggest a substantial genetic basis in the control of body weight, with estimates of heritability of 80-90% (Simopoulos, A.P. & Childs B., eds., 1989, in "Genetic Variation and Nutrition in Obesity", World Review of Nutrition and Diabetes 63, S. Karger, Basel, Switzerland; Borjeson, M., 1976, Acta. Paediatr. Scand. 65:279-287).

[0003] In other studies, non-obese persons who deliberately attempted to gain weight by systematically over-eating were found to be more resistant to such weight gain and able to maintain an elevated weight only by very high caloric intake. In contrast, spontaneously obese individuals are able to maintain their status with normal or only moderately elevated caloric intake. Studies of the genetics of human obesity, and of animal models of obesity

demonstrate that obesity results from complex defective regulation of both food intake, food induced energy expenditure, and of the balance between lipid and lean body anabolism.

[0004] It has now been established that the maintenance of body weight, satiety and energy expenditure is a complex process, regulated at various levels, including external and hypothalmic control of satiety, neuroendocrine and sympathetic nervous system control of metabolic processes, as well as enzymatic and transcriptional controls of utilization of glucose, and adipogenesis (Kahn, 2000, Nature Genetics 25: 6; and Palou, et al., 2000, Eur. J. Nutr. 39: 127).

[0005] It is estimated that approximately 40% of calories in the western diet are from fat. Thus, blocking absorption of a fraction of such fat would lead to weight loss. The pathways involved in fatty acid absorption in the small intestine are fairly well understood. Fatty acids are liberated from triglycerides in the lumen of the small intestine through the action of pancreatic lipase. Free fatty acids then cross the plasma membrane of the enterocytes, a transport mechanism probably utilizing FATP4, and, once in the enterocyte, are re-esterified into triacylglycerols, the major form of energy stored in adipose tissue, which are packaged into chylomicrons prior to absorption.

[0006] Although production of diacylglycerol can be accomplished through various mechanisms, the final rate-limiting step in biosynthesis of triaclyglycerol is accomplished via the enzyme diacyl glycerol acyltransferase (DGAT). Although it has been known that DGAT activity is increased in obese rodents, DGAT1 deficient mice are resistant to high fat-diet induced obesity and have increased energy expenditure (Smith, 2000, Nature Genetics 25: 87). Until recently when a second DGAT enzyme (DGAT2) was identified, it was believed a single enzyme was responsible for synthesis of triacylglycerol (Cases et al. 2001 J. Biol. Chem. 276: 38870). An understanding of regulation and maintenance of this rate limiting step of triglyceride can provide insight into the regulation of production and maintenance of energy stores and fat, and assist in the development of treatment for obesity and related disorders involving production of triacylglycerols.

[0007] Given the importance of understanding body weight homeostasis and, further, given the severity and prevalence of disorders, including obesity, which affect body weight and body composition, there exists a great need for the systematic identification of genes and regulation of genes involved in these complex processes and disorders. Such identification will provide rationales and facilitate development of specific compounds acting via modulation of metabolic activity for use in the treatment of obesity and related disorders.

Description of the Invention

[0008] The present invention is based, in part, on the discovery of novel human diacylglycerol acyltransferase 2 (DGAT2) family members, referred to herein as "60489," "112041," and "112037." The nucleotide sequence of cDNAs encoding 60489, 112041 and 112037 are shown in SEQ ID NO:7, SEQ ID NO:19, and SEQ ID NO:61 respectively; the amino acid sequences of 60489, 112041, and 112037 polypeptides are shown in SEQ ID NO:8, SEQ ID NO:20, and SEQ ID NO:62.

[0009] Additionally, the invention is based on the discovery of novel expression and regulation of human diacylglycerol acyltransferase 2 (DGAT2) family members referred to herein as "58765," "58765short," "86606," "112023," "112024," and "hDC2." The nucleotide sequence of a cDNA encoding 58765 is shown in SEQ ID NO:1, and the amino acid sequence of a 58765 polypeptide is shown in SEQ ID NO:2. The nucleotide sequence of a cDNA encoding 58765short is shown in SEQ ID NO:3, and the amino acid sequence of a 58765short polypeptide is shown in SEQ ID NO:4. The nucleotide sequence of a cDNA encoding 86606 is shown in SEQ ID NO:9, and the amino acid sequence of a 86606 polypeptide is shown in SEQ ID NO:10. The nucleotide sequence of a cDNA encoding 112023 is shown in SEQ ID NO:13, and the amino acid sequence of a 112023 polypeptide is shown in SEO ID NO:14. The nucleotide sequence of a cDNA encoding 112024 is shown in SEQ ID NO:17, and the amino acid sequence of a 112024 polypeptide is shown in SEQ ID NO:18. The nucleotide sequence of a cDNA encoding hDC2 is shown in SEQ ID NO:21, and the amino acid sequence of a hDC2 polypeptide is shown in SEQ ID NO:22. [0010] Further, the present invention provides murine gene sequences were also identified which are related to DGAT2 sequences. The murine DGAT2 orthologue sequence (m86606) is depicted in SEQ ID NO:11, and the amino acid sequence of a m86606 polypeptide is shown in SEQ ID NO:12. The murine DGAT2 family member sequence m58765 sequence is shown in SEQ ID NO:5, and the amino acid sequence of a m58765 polypeptide is shown in SEQ ID NO:6. The DGAT2 family member nucleotide sequence of m112023 is shown in SEQ ID NO:15, and the amino acid sequence of a m112023 polypeptide is shown in SEQ ID NO:16. The DGAT2 family member nucleotide sequence of mDC2 is shown in SEQ ID NO:23, and the amino acid sequence of a mDC2 polypeptide is shown in SEQ ID NO:24.

[0011] Accordingly, in one aspect, the invention features nucleic acid molecules which encode a DGAT2 family member protein or polypeptide, or a fragment thereof, e.g., a biologically active portion of the DGAT2 family member protein. In a preferred embodiment, the isolated nucleic acid molecule encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62. In other embodiments, the invention provides an isolated DGAT2 family member nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61. In still other embodiments, the invention provides nucleic acid molecules that are substantially identical (e.g., naturally occurring allelic variants) to the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61. In other embodiments, the invention provides a nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61, wherein the nucleic acid encodes a full length DGAT2 family member protein or an active fragment thereof. [0012] In a related aspect, the invention further provides nucleic acid constructs which include a DGAT2 family member nucleic acid molecule described herein. In certain embodiments, the nucleic acid molecules of the invention are operatively linked to native or heterologous regulatory sequences. Also included, are vectors and host cells containing the DGAT2 family member nucleic acid molecules of the invention e.g., vectors and host cells suitable for producing DGAT2 family member nucleic acid molecules and polypeptides. [0013] In another related aspect, the invention provides nucleic acid of DGAT2 family member-encoding nucleic acids. The fragments of the invention can be suitable as primers or hybridization probes for the detection of DGAT2 family member encoding nucleic acids. [0014] In still another related aspect, isolated nucleic acid molecules that are antisense to a DGAT2 family member encoding nucleic acid molecule are provided.

[0015] In another aspect, the invention features, DGAT2 family member polypeptides, and biologically active or antigenic fragments thereof that are useful, e.g., as reagents or targets in assays applicable to treatment and diagnosis of DGAT2 family member-mediated or related disorders. In another embodiment, the invention provides DGAT2 family member polypeptides having a DGAT2 family member activity. Preferred polypeptides are DGAT2 family member proteins including at least one acyltransferase domain, and/or plsC domain, and, preferably, having a DGAT2 family member activity, e.g., a DGAT2 family member activity as described herein.

[0016] In other embodiments, the invention provides DGAT2 family member polypeptides, e.g., a DGAT2 family member polypeptide having the amino acid sequence shown in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62; an amino acid sequence that is substantially identical to the amino acid sequence shown in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62; or an amino acid sequence encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61, wherein the nucleic acid encodes a full length DGAT2 family member protein or an active fragment thereof.

[0017] In a related aspect, the invention further provides nucleic acid constructs which include a DGAT2 family member nucleic acid molecule described herein.

[0018] In a related aspect, the invention provides DGAT2 family member polypeptides or fragments operatively linked to non-DGAT2 family member polypeptides to form fusion proteins.

[0019] In another aspect, the invention features antibodies and antigen-binding fragments thereof, that react with, or more preferably specifically bind DGAT2 family member polypeptides.

[0020] The present invention is based, at least in part, on the discovery that DGAT2 family member molecules are expressed at increased levels in adipose, liver, small intestine, colon, and kidney tissues, (see Examples 3-7 and Tables 1-8 described herein). DGAT2 family

member molecules were further found to be upregulated during adipocyte differentiation, and downregulated during exposure to starvation conditions or mice fed high fat diets (*i.e.*, under conditions that affect adipocyte metabolism) as well as in genetic models of obesity (see Example 3 and Tables 3-8).

[0021] Accordingly, the present invention provides methods for the diagnosis and treatment of metabolic and related disorders including but not limited to obesity, hyperlipidemia and other lipid disorders and diabetes.

[0022] In one aspect, the invention provides methods of screening for compounds that modulate the expression or activity of the DGAT2 family member polypeptides or nucleic acids. The method includes contacting a sample expressing a DGAT2 family member nucleic acid or polypeptide with a test compound and assaying the ability of the test compound to modulate the expression of a DGAT2 family member nucleic acid or the activity of a DGAT2 family member polypeptide.

[0023] In one embodiment, the invention provides methods for identifying a compound capable of treating a metabolic disorder, e.g., obesity, hyperlipidemia, and diabetes. The method includes assaying the ability of the compound to modulate DGAT2 family member nucleic acid expression or DGAT2 family member polypeptide activity. In one embodiment, the ability of the compound to modulate nucleic acid expression or DGAT2 family member polypeptide activity is determined by detecting modulation of lipogenesis. In another embodiment, the ability of the compound to modulate nucleic acid expression or DGAT2 family member polypeptide activity is determined by detecting modulation of triglyceride biosynthesis. In still another embodiment, the ability of the compound to modulate nucleic acid expression or DGAT2 family member polypeptide activity is determined by detecting modulation of hyperplastic growth. In yet another embodiment, the ability of the compound to modulate nucleic acid expression or DGAT2 family member polypeptide activity is determined by detecting modulation of hypertrophic growth. [0024] In another aspect, the invention provides methods for identifying a compound capable of modulating an adipocyte activity, e.g., hyperplastic growth, hypertrophic growth, or lipogenesis. The method includes contacting an adipocyte expressing a DGAT2 family member nucleic acid or polypeptide with a test compound and assaying the ability of the test compound to modulate the expression of a DGAT2 family member nucleic acid or the activity of a DGAT2 family member polypeptide.

[0025] In still another aspect, the invention provides methods for determining acyltransferase activity of a polypeptide. Such methods include combining a sample comprising an acyltransferase polypeptide with a fatty acyl coA substrate and a acylglyceride substrate under conditions suitable to carry out enzyme activity, and determining the amount of acylglycerol product formed, wherein product formation is a determination of acylglycerol-acyltransferase activity. In certain aspects, one substrate can be biotinylated and the other substrate can be radiolabeled (e.g., radiolabeled acylglyceride and biotinylated fatty acyl coA). Product formation can be determined using biotin capture and radiometric determination (eg, SPA (scintillation proximity assay)) assays. Provided acyltransferase activity methods can be used to detect any acyltransferase activity (e.g., monoacylglycerol acyltransferase, diacylglycerol acyltransferase). In particular embodiments, acyltransferase activity methods can be used to determine enzyme activity of the DGAT2 family members provided herein.

[0026] Yet another aspect includes methods for identifying compounds which modulate acyltransferase activity. The provided methods include the described methods for determining acyltransferase activity, with additional steps including contacting the sample comprising an acyltransferase polypeptide and fatty acyl coA and acylglyceride substrates with one or more test compounds. Test compounds can be added to the sample at any time before, during, or after combining the composition comprising acyltransferase and substrates. Enzyme activity is determined by measuring product formation, wherein a change in the amount of acyltransferase activity in the presence of test compound identifies a compound which modulates acyltransferase activity.

[0027] In another aspect, the invention provides methods for modulating an adipocyte activity, *e.g.*, hyperplastic growth, hypertrophic growth, or lipogenesis. The method includes contacting an adipocyte with a DGAT2 family member modulator, for example, an anti-DGAT2 family member antibody, a DGAT2 family member polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62, or a fragment thereof, a DGAT2 family member polypeptide comprising an amino acid sequence which is at least 90 percent identical to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:20,

occurring allelic variant of a polypeptide consisting of the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62, a small molecule, an antisense DGAT2 family member nucleic acid molecule, a nucleic acid molecule of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61, or a fragment thereof, or a ribozyme.

[0028] In still another aspect, the invention provides a process for modulating DGAT2 family member polypeptide or nucleic acid expression or activity, e.g. using the screened compounds. In certain embodiments, the methods involve treatment of conditions related to aberrant activity or expression of the DGAT2 family member polypeptides or nucleic acids, such as conditions involving aberrant or deficient triglyceride biosynthesis (e.g., obesity, lipid disorders).

[0029] The invention also provides assays for determining the activity of or the presence or absence of DGAT2 family member polypeptides or nucleic acid molecules in a biological sample, including for disease diagnosis. In one aspect, provided are assays for determining the presence or absence of a genetic alteration in a DGAT2 family member polypeptide or nucleic acid molecule, including for disease diagnosis.

[0030] In one embodiment, methods include identifying a nucleic acid associated with a metabolic disorder, e.g., obesity, hyperlipidemia, and diabetes.

[0031] In yet another aspect, the invention features a method for identifying a subject having an obesity disorder characterized by aberrant DGAT2 family member polypeptide activity or aberrant DGAT2 family member nucleic acid expression. The method includes contacting a sample obtained from the subject and expressing a DGAT2 family member nucleic acid or polypeptide with a test compound and assaying the ability of the test compound to modulate the expression of a DGAT2 family member nucleic acid or the activity of a DGAT2 family member polypeptide.

[0032] In yet another aspect, the invention features a method for treating a subject having a metabolic disorder, e.g., obesity, diabetes, hyperlipidemia, characterized by aberrant DGAT2 family member polypeptide activity or aberrant DGAT2 family member nucleic acid expression. The method includes administering to the subject a DGAT2 family member modulator, e.g., in a pharmaceutically acceptable formulation or by using a gene

therapy vector. Embodiments of this aspect of the invention include the DGAT2 family member modulator being any of an organic small molecule, an anti-DGAT2 family member antibody, a DGAT2 family member polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62, or a fragment thereof, a DGAT2 family member polypeptide comprising an amino acid sequence which is at least 90 percent identical to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62, an isolated naturally occurring allelic variant of a polypeptide consisting of the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62, an antisense DGAT2 family member nucleic acid molecule, a nucleic acid molecule of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61, or a fragment thereof, or a ribozyme.

[0033] The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as "DGAT2 family member" nucleic acid and polypeptide molecules, which play a role in, or function in, catalyzing the final step in the re-esterification of fatty acids to produce triglycerols, and/or play a role in production and regulation of fat and energy stores in mammals. This metabolic pathway is described in Lodish et al. (1995) Molecular Cell Biology (Scientific American Books Inc., New York, N.Y.) and Stryer Biochemistry, (W. H. Freeman, New York), the contents of which are incorporated herein by reference. In one embodiment, the DGAT2 family member molecules modulate the activity of one or more proteins involved in production of triacylglycerols, and/or production of fat stores e.g., adipose fat stores. In another embodiment, the DGAT2 family member molecules of the present invention are capable of modulating the esterification state of fatty acid molecules for the production of one or more molecules involved in adipose energy stores, as described in, for example, Lodish et al. and Stryer, supra. Additionally, the DGAT2 family members of the invention may modulate triglyceride production and energy

storage in tissues and cells including liver, small intestine, kidney, adipose, skeletal muscle, pancreas, heart, spleen, brain, hypothalamus, lung, etc.

[0034] As used herein, the term "diacylglycerol acyltransferase" "acyl-CoA:diacylglycerol acyltransferase" or "DGAT" includes a protein, polypeptide, or other non- proteinaceous molecule that is capable of modulating the esterification state of diacylglycerol (DAG) molecules. DGATs play a role in biosynthetic pathways associated with production of fat stores. For example, DGATs are involved in the regulation of biosynthesis of triacylglycerols. The enzyme reaction catalyzed by Acyl-CoA:diacylglycerol acyltransferases (DGATs) involves the coupling of an acyl-CoA (1) to a preformed diacylglycerol (2) producing one equivalent of Coenzyme A (CoA) and triacylglycerol.

Novel DGAT Sequences

[0035] The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as diacylglycerol acyltransferase 2 (DGAT2) family member protein and nucleic acid molecules, that comprise a family of molecules having certain conserved structural and functional features. The term "family" when referring to the protein and nucleic acid molecules of the invention is intended to mean two or more proteins or nucleic acid molecules having a common structural domain or motif and having sufficient amino acid or nucleotide sequence identity as defined herein. Such family members can be naturally or non-naturally occurring and can be from either the same or different species. For example, a family can contain a first protein of human origin, as well as other, distinct proteins of human origin or alternatively, can contain homologues of non-human origin. Members of a family may also have common functional characteristics.

[0036] One embodiment of the invention features diacylglycerol acyltransferase 2 (DGAT2) family member nucleic acid molecules, preferably human DGAT2 family member molecules, that were initially identified based on related sequence or protein domain

characteristic of acyl glycerol phosphate acyltransferase family of proteins. Such sequences are referred to as "DGAT2 family member" sequences indicating that the genes share sequence similarity with diacylglycerol acyltransferase 2 gene. Specifically, novel human DGAT2 family member family members, 60489, 112041, and 112037 are provided. They are highly expressed in small intestine, adipose, and liver where triglyceride synthesis occurs.

[0037] In addition, we have demonstrated tissue expression and regulation of additional human DGAT2 family member family members 86606, 58765, 112023, 112024, hDC2, as well as murine orthologues m86606, m58765, m112023, and mDC2. They are also highly expressed in tissues where triglyceride synthesis occurs, expression is regulated under conditions that change adipocyte metabolism both in vitro and in vivo. DGAT2 family member family members are therefore a candidate target to identify small molecules for the treatment of obesity, diabetes, and/or lipid disorders in humans. It is conceivable that inhibition of these genes, either individually or collectively, will lead to decreased triglyceride synthesis and fat accumulation in vivo. Inhibitors, therefore, have potentials for anti-fat absorption and can be used to treat obesity and its related disorders.

Human DGAT2 family members

[0038] The human DGAT2, (herein referred to as 86606) sequence is depicted in SEQ ID NO:9, which is approximately 2428 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1166 nucleotides (nucleotides 220-1386 of SEQ ID NO:9). The coding sequence encodes a 388 amino acid protein (SEQ ID NO:10). The molecule may have transmembrane segments from amino acids (aa) 70-93 and 100-116 as predicted by MEMSAT. Prosite program analysis was used to predict various sites within the 86606 protein. N-glycosylation sites were predicted at aa 60-63, 173-176 and 228-231. Protein kinase C phosphorylation sites were predicted at aa 23-35, 37-39, 116-118, 152-154, 182-184, and 255-257. Casein kinase II phosphorylation sites were predicted at aa 62-65, 278-281, and 351-354. N-myristoylation sites were predicted at aa 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, and 378-383. An amidation site was predicted at aa 120-123. The 86606 protein possesses a SMART plsc_2 domain, from about aa 165 to about aa 281, as predicted by HMMer, Version 2.1.1. The plsc domain is believed to function in phospholipid biosynthesis and is

characteristic of proteins having glycerolphosphate, 1-acylglycerolphosphate, or 2-acylglycerolphosphoethanolamine acyltransferase activities.

[0039] The human DGAT2 family member sequence 60489 (SEQ ID NO:7), which is approximately 1255 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1025 nucleotides (nucleotides 170-1195 of SEQ ID NO:7) The coding sequence encodes a 341 amino acid protein (SEQ ID NO:8). The molecule may have transmembrane segments from amino acids (aa) 39-63, 109-127, and 271-291 as predicted by MEMSAT. Prosite program analysis was used to predict various sites within the 60489 protein. N-glycosylation sites were predicted at aa 126-129. Protein kinase C phosphorylation sites were predicted at aa 12-14, and 255-257. Casein kinase II phosphorylation sites were predicted at aa 231-234, 304-307, and 317-320. N-myristoylation sites were predicted at aa 2-7, 73-78, 117-122, 193-198, 271-276, and 331-336. An amidation site was predicted at aa 73-76. The 60489 protein possesses a SMART plsc_2 domain, from about aa 110 to about aa 234, as predicted by HMMer, Version 2.1.1. The plsc domain is believed to function in phospholipid biosynthesis and is characteristic of proteins having glycerolphosphate, 1-acylglycerolphosphate, or 2-acylglycerolphosphoethanolamine acyltransferase activities.

[0040] The DGAT2 family member sequence 112041 (SEQ ID NO:19), which is approximately 1716 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1013 nucleotides (nucleotides 101-1114 of SEQ ID NO:19) The coding sequence encodes a 337 amino acid protein (SEQ ID NO:20). The molecule may have transmembrane segments from amino acids (aa) 21-42 as predicted by MEMSAT. Prosite program analysis was used to predict various sites within the 112041 protein. An N-glycosylation site was predicted at aa 75-78. Protein kinase C phosphorylation sites were predicted at aa 97-99, 172-174, and 252-254. Casein kinase II phosphorylation sites were predicted at aa 224-227, 235-238, and 248-251. N-myristoylation sites were predicted at aa 66-71, 115-120, 175-180, 186-191, 258-263, and 327-332. An amidation site was predicted at aa 66-69.

[0041] The human DGAT2 family member sequence 112037 (SEQ ID NO:61), is a partial sequence approximately 712 nucleotides long, contains a predicted coding sequence of about 711 nucleotides (nucleotides 2-712 of SEQ ID NO:61) The coding sequence encodes a 236 amino acid protein (SEQ ID NO:62). The molecule may have transmembrane segments from amino acids (aa) 22-42 and 49-73, as predicted by MEMSAT. Prosite

program analysis was used to predict various sites within the 112037 protein. A Protein kinase C phosphorylation sites was predicted at aa 4-6. A Casein kinase II phosphorylation sites was predicted at aa 116-119. N-myristoylation sites were predicted at aa 8-13, 26-31, 68-73, and 84-89. An amidation site was predicted at aa 156-159.

[0042] The DGAT2 family member sequence of 58765 identified two splice variant sequences including 58765 (SEQ ID NO:1), which is approximately 1005 nucleotides long, encodes a 334 amino acid protein (SEQ ID NO:2). The molecule may have dileucine motifs in the tail at about amino acids (aa) 41-42, 48-49, 180-181, and 201-202, as predicted by PSORT. The molecule may have transmembrane segments from amino acids (aa) 38-59 and 103-119 as predicted by MEMSAT. Prosite program analysis was used to predict various sites within the 86606 protein. N-glycosylation sites were predicted at aa 237-240. Protein kinase C phosphorylation sites were predicted at an 163-165. Casein kinase II phosphorylation sites were predicted at aa 163-166, 225-228, and 297-300. Nmyristoylation sites were predicted at aa 116-121, 159-164, 178-183, and 187-192. The 58765 protein possesses a SMART plsc_2 domain, from about aa 111 to about aa 228, as predicted by HMMer, Version 2.1.1. The plsc domain is believed to function in phospholipid biosynthesis and is characteristic of proteins having glycerolphosphate, 1acylglycerolphosphate, or 2-acylglycerolphosphoethanolamine acyltransferase activities. In addition, the 58765 protein possess a PFAM acyltransferase domain, from about aa 104 to about as 296, as predicted by HMMer, Version 2.1.1.

[0043] Additionally, 58765short (SEQ ID NO:3), which is approximately 855 nucleotides long, encodes a 284 amino acid protein (SEQ ID NO:4). The molecule may have transmembrane segments from amino acids (aa) 38-59 and 103-119 as predicted by MEMSAT. Dileucine motifs may be present in the tail at aa 41-42, 48-49, 180-181, and 201-202, as predicted by PSORT. Prosite program analysis was used to predict various sites within the 58765short protein. A cAMP and cGMP dependent protein kinase phosphorylation site was predicted at aa 277-280. Protein kinase C phosphorylation sites were predicted at aa 163-165, 221-223, and 258-260. Casein kinase II phosphorylation sites were predicted at aa 163-166, and 244-247. N-myristoylation sites were predicted at aa 116-121, 159-164, 178-183, 187-192, 227-232, and 238-243. An ATP/GTP binding site motif was predicted at aa 217-224.

[0044] The DGAT2 family member sequence 112023 (SEQ ID NO:13), which is approximately 1279 nucleotides long including untranslated regions, contains a predicted

methionine-initiated coding sequence of about 986 nucleotides (nucleotides 42-1028 of SEQ ID NO:13) The coding sequence encodes a 328 amino acid protein (SEQ ID NO:14. The molecule may have transmembrane segments from about amino acids (aa) 13-29, 36-54, 98-116 and 165-183 as predicted by MEMSAT. Dileucine motifs may be present in the tail at aa 15-16, as predicted by PSORT. Prosite program analysis was used to predict various sites within the 112023 protein. A protein kinase C phosphorylation site was predicted at aa 322-324. A casein kinase II phosphorylation site was predicted at aa 219-222. N-myristoylation sites were predicted at aa 62-67, 111-116, 172-177, 181-186, 257-262, and 318-323. An amidation site was predicted at aa 62-65.

[0045] The DGAT2 family member sequence 112024 (SEQ ID NO:17), which is approximately 1720 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1001 nucleotides (nucleotides 1-1002 of SEQ ID NO:17) The coding sequence encodes a 333 amino acid protein (SEQ ID NO:18). The molecule may have transmembrane segments from about amino acids (aa) 37-58, and 130-150 as predicted by MEMSAT. Dileucine motifs may be present in the tail at aa 26-27, 90-91, 170-171, and 272-273, as predicted by PSORT. An N-glycosylation sites was predicted at an 204-207. A cAMP and cGMP dependent protein kinase phosphorylation site was predicted at aa 68-71. Protein kinase C phosphorylation sites were predicted at aa 5-7, and 172-174. Casein kinase II phosphorylation sites were predicted at aa 5-8, 11-14, and 165-168. N-myristoylation sites were predicted at aa 186-191, 239-244, and 323-328. An amidation site was predicted at aa 66-69. The 112024 protein possesses a SMART plsc_2 domain, from about aa 118 to about aa 314, as predicted by HMMer, Version 2.1.1. The plsc domain is believed to function in phospholipid biosynthesis and is characteristic of proteins having glycerolphosphate, 1-acylglycerolphosphate, or 2-acylglycerolphosphoethanolamine acyltransferase activities. The 112024 protein possesses a PFAM acyltransferase domain, from about aa 103 to about aa 227, as predicted by HMMer, Version 2.1.1. [0046] The DGAT2 family member sequence hDC2 (SEQ ID NO:21), which is approximately 1093 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1004 nucleotides (nucleotides 49-1053 of SEO ID NO:21) The coding sequence encodes a 334 amino acid protein (SEQ ID NO:22). The molecule may have transmembrane segments from amino acids (aa) 19-43, 131-151 and 209-227 as predicted by MEMSAT. Prosite program analysis was used to predict various sites within the hDC2 protein. N-glycosylation sites were predicted at aa 76-79, 120-123,

124-127, and 179-182. A cAMP and cGMP dependent protein kinase phosphorylation site was predicted at aa 69-72. Protein kinase C phosphorylation sites were predicted at aa 164-166, and 275-277. Casein kinase II phosphorylation sites were predicted at aa 225-228, and 307-310. N-myristoylation sites were predicted at aa 67-72, 116-121, 177-182, and 187-192. An amidation site was predicted at aa 67-70.

[0047] In one embodiment, a DGAT2 family member molecule may include a signal sequence. As used herein, a "signal sequence" refers to a peptide of about 10-80 amino acid residues in length which occurs at the N-terminus of secretory and integral membrane proteins and which contains a majority of hydrophobic amino acid residues. For example, a signal sequence contains at least about 20-60 amino acid residues, preferably about 30-50 amino acid residues, more preferably about 37 amino acid residues, and has at least about 40-70%, preferably about 50-65%, and more preferably about 55-60% hydrophobic amino acid residues (e.g., alanine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, or proline). Such a "signal sequence", also referred to in the art as a "signal peptide", serves to direct a protein containing such a sequence to a lipid bilayer. For example, in certain embodiments, a DGAT2 family member protein may contain a signal sequence of about amino acids 1-68 of SEQ ID NO:8, 1-65 of SEQ ID NO:20, 1-55 of SEQ ID NO:2, 1-55 of SEQ ID NO:4, 1-49 of SEQ ID NO:14, 1-58 of SEQ ID NO:18, or 1-63 of SEQ ID NO:22. The "signal sequence" is cleaved during processing of the mature protein. In such embodiments, the mature DGAT2 family member protein corresponds to amino acids acids 69-341 of SEQ ID NO:8, 66-337 of SEQ ID NO:20, 56-334 of SEQ ID NO:2, 56-284 of SEQ ID NO:4, 50-112023 of SEQ ID NO:14, 59-333 of SEQ ID NO:18, or 64-334 of SEQ ID NO:22.

[0048] Based on DGAT2 family member protein sequence, cellular localization signals can be identified by methods known to one of skill in the art (e.g., PSORT Prediction). Subcellular localization of a DGAT2 family member, generated using PSORT Prediction software. Predicted transmembrane domains may be identified by ORF analysis with MEMSAT.

[0049] For general information regarding PSORT, Prosite and PFAM identifiers, PS prefix and PF prefix domain identification numbers, refer to Sonnhammer et al. (1997) *Protein* 28:405-420 and http://www.psc.edu/general/software/packages/pfam/pfam.html.
[0050] The DGAT2 family member protein contains a significant number of structural characteristics in common with members of the acyltransferase family. The term "family"

when referring to the protein and nucleic acid molecules of the invention means two or more proteins or nucleic acid molecules having a common structural domain or motif and having sufficient amino acid or nucleotide sequence homology as defined herein. Such family members can be naturally or non-naturally occurring and can be from either the same or different species. For example, a family can contain a first protein of human origin as well as other distinct proteins of human origin, or alternatively, can contain homologues of non-human origin, e.g., rat or mouse proteins. Members of a family can also have common functional characteristics.

[0051] As used herein, the term "diacylglyceroltransferase" or "DGAT" refers to a family of proteins that preferably comprise a membrane bound acyltransferase enzyme. Members of the DGAT2 family also share certain conserved amino acid residues, some of which may be determined to be critical to acyltransferase function triglyceride biosynthesis. For example, alignment of the human DGAT2 family members is depicted in Table 1 below.

TABLE 1: Sequence alignment of human DGAT2 family members

112041 (SEQ 112024 (SEQ 112023 (SEQ	ID NO:62) ID NO:8) ID NO:22) ID NO:20) ID NO:18) ID NO:16) ID NO:10)MK7 ID NO:4)	TTANYSG VI.R	GEROAEA DRS	ORSHGGP ALS	REGSGRW GTO	SSSILSA
112037 60489 DC2 112041 112024 112023 86606 58765s 58765	MKVEFAPLMAFFSMLLPSMAHS QDLFSVTWLNMVEFAPL	KTLQKQHLEA NIQLARRLQT RLNLQEGLQT KKDLKTALDV KQPSHFQS RSKVEKQLQV FMPWERRLQT FMPWERRLQT	VGAYQYVLTF VAVLQWVLSF FFVLQWIPVY FAVFQWSFSA LMLLQWPLSY ISVLQWVLSF LAVLOFVFSF	LTGP.MSIGI IFLGAIPILL LLITTTVIAV LAIFWILQPL LVLGVACSAI LALA.EICTV	LVFVLLFTSL TVMLIIHN.Y IPYFLLFSKF NLYLVVFTPY FVYLL.FTSL LMYIF.CTDC GFIALLFTRF	
112037 60489 DC2 112041 112024 112023 86606 58765s 58765	WPFSVFYLVW LFLYIPYLMW WPLAVLSLAW WPLTVLILTW WPLPVLYFAW WLIAVLYFTW WILTYNIYAAW	LYVDWDTPNQ LYFDWHTPER LTYDWNTHSQ LAFDWKTPQR LFLDWKTPER LVFDWNTPKK WYLDRDKPRQ WYLDRDKPRQ	GGRRSEWIRN GGRRSSWIKN GGRRSAWVRN GGRRFTCVRH GGRRSAWVRN GGRRSQWVRN GGRHIOAIRC	WTLWKHFKDY WTLWKYFRNY WRLWKHYSDY WCVWTHIRDY WAVWRYFRDY WTIWKYMKDY	FPIHLIKTQD FPVKLVKTHD FPLKLLKTHD FPITILKTKD FPIQLVKTHN FPISLVKTAE	· ,
112037 60489 DC2 112041 112024 112023 86606 58765s 58765	LPPDRNYVLG LDPSHNYIFG LSPKHNYIIA ICPSRNYILV LSPEHNYLMG LLTTRNYIFG LDPSRNYIAG	FHPHRVLVVG AHPHGIMCTG FHPHGIMAVG NHPHGILSFG CHPHGLFAHG VHPHGLLTFG YHPHGIMGLG FHPHGVLAVG FHPHGVLAVG	FLCNFSTESN AFGNFSVNYS VFINFATEAT WFGHFATEAS AFCNFCTEAT AFCNFSTEAT AFANLCTEST	GFSQLFPGLR DFKDLFPGFT GIARIFPSIT GFSKIFPGIT GFSKTFPGIT EVSKKFPGIR GFSSIFPGIR	PWLAVLAGLF SYLHVLPLWF PFVGTLERIF PYILTLGAFF PHLATLSWFF PYLATLAGNF PHLMMPTLWF	
112037 60489 DC2 112041 112024 112023 86606 58765s 58765	YLPVYRDYIM WCPVFREYVM WIPIVREYVM KIPFVREYLM RMPVLREYLM RAPFFRDYIM	SGGLVSFVKA SFGLCPVSRQ SVGLVSVSKK SMGVCPVSSS STGACSVSRS AKGVCSVSQP SGGICPVSRD SAGLVTSEKE SAGLVTSEKE	SLDFILSQPQ SVSYMVSKEG ALKYLLTQKG SIDFLLTHKG AINYLLSHG. TIDYLLSKNG SAAHILNRKG	LGQAVVIMVG GGNISVIVLG SGNAVVIVVG TGNMVIVVVIG TGNLVGIVVG SGNAIIIVVG GGNLLGIIVG	GAHEALYSVP GAKESLDAHP GAAEALLCRP GLAECRYSLP GVGEALQSVP GAAESLSSMP GAQEALDARP	
112037 60489 DC2 112041 112024 112023 86606 58765s 58765	GEHCLTLQKR GKFTLFIRQR GASTLFLKQR GSSTLVLKNR KTTTLILQKR GKNAVTLRNR GSFTLLLRNR	KRLVKSALEL KGFVRLALRH KGFVKIALTH KGFVKMALQT SGFVRMALQH KGFVRTALQH KGFVKLALRH KGFVRLALTH	GASLVPVYSF GASLVPVVSF GAYLVPSYSF GVPLIPAYAF GAHLVPTFTF GADLVPIYSF GYOASGKSTL	GENDIFRLKA GENELFKQTD GENEVFNQET GETDLYDQHI GETEVYDQVL GENEVYKQVI GSVG	FATGSWQHWC NPEGSWIRTV FPEGTWLRLF FTPGGFVNRF FHKDSRMYKF FEEGSWGRWV NWQGFYF	

TABLE 1 continued: Sequence alignment of human DGAT2 family members

112037 60489 DC2 112041 112024 112023 86606 58765s 58765	GGKMAE	LMGFSPCIFW IMGFALPLFH ILGLNFCTFH MVHIYPCAFY IFGFYCCVFY YIGFAPCIFH	GRGLFSATSW ARG.VFQYNF GRG.FTRGSW GRG.FTKNSW GQS.FCQGST GRGLFSSDTW	GLMTYRKAIH GFLPFNRPIT GLLPYSRPVT GLLPYSRPIV GLVPYSKPIT .LVEIFSPFT	TVVGRPIPVP TVVGRPIPVR TVVGEPLPIP TIVGEPLPMP TVVGEPLPLP TVVGEPITIP IKIIFWCLMP	
112037 60489 DC2 112041 112024 112023 86606 58765s 58765	QRLHPTEEEV QTLNPTQEQI RIKRPNQKTV KIENPSQEIV QIEKPSQEMV KLEHPTQQDI KYLEKFP	NHYHALYMTA- EELHQTYMEE DKYHALYISA AKYHTLYIDA DKYHALYMDA DLYHTMYMEA QRRLSD	LEQLFEEHKE LRKLFEEHKG LRKLFDQHKV LRKLFDQHKT LDKLFDQHKT LVKLFDKHKT LRN	RYGVPADRHL SCGVPASTCL KYGIPEHETL EYGLPETQEL KFGISETQEL HYGCSETQKL KFGLPETEVL KFNIPADQHL	TFIVLKTITEIIFFLEVN	

[0052] The percent identity of the DGAT2 family members ranges from 33% identity (e.g., 112024 and 58765s share 33% identity) to 75% identity (e.g., 58765 short and long forms share 75% identity). The majority of the full length sequences share between 44% to 51% identity (e.g., 112041 and 60489; 112023 and 60489; as well as 86606 and 58765 share 44% identity; 112041 and 112024, 112041 and 112023, 112024 and 112023, 112023 and 86606 share 51% identy) over their entire lengths. The most closely related full length human family members are 58765 and DC2, which share 52% identity over their entire lengths. [0053] In one embodiment, a DGAT2 family member protein includes at least one transmembrane domain. As used herein, the term "transmembrane domain" includes an amino acid sequence of about 15 amino acid residues in length that spans a phospholipid membrane. More preferably, a transmembrane domain includes about at least 16, 17, 18, 20, 21, 22, 23, or 24 amino acid residues and spans a phospholipid membrane. Transmembrane domains are rich in hydrophobic residues, and typically have an α-helical structure. In a preferred embodiment, at least 50%, 60%, 70%, 80%, 90%, 95% or more of the amino acids of a transmembrane domain are hydrophobic, e.g., leucines, isoleucines, tyrosines, or tryptophans. Transmembrane domains are described in, for example, http://pfam.wustl.edu/cgi-bin/getdesc?name=7tm-1, and Zagotta W.N. et al., (1996) Annual Rev. Neuronsci. 19: 235-63, the contents of which are incorporated herein by reference. [0054] In a preferred embodiment, a DGAT2 family member polypeptide or protein has at least one transmembrane domain or a region which includes at least 16, 17, 18, 20, 21, 22, 23, or 24 amino acid residues and has at least about 60%, 70% 80% 90% 95%, 99%, or

100% homology with a "transmembrane domain," e.g., at least one transmembrane domain of human DGAT2 family member.

[0055] In another embodiment, a DGAT2 family member protein includes at least one "non-transmembrane domain." As used herein, "non-transmembrane domains" are domains that reside outside of the membrane. When referring to plasma membranes, non-transmembrane domains include extracellular domains (i.e., outside of the cell) and intracellular domains (i.e., within the cell). When referring to membrane-bound proteins found in intracellular organelles (e.g., mitochondria, endoplasmic reticulum, peroxisomes and microsomes), non-transmembrane domains include those domains of the protein that reside in the cytosol (i.e., the cytoplasm), the lumen of the organelle, or the matrix or the intermembrane space (the latter two relate specifically to mitochondria organelles). The C-terminal amino acid residue of a non-transmembrane domain is adjacent to an N-terminal amino acid residue of a transmembrane domain in a naturally-occurring DGAT2 family member, or DGAT2 family member-like protein.

[0056] In a preferred embodiment, a DGAT2 family member polypeptide or protein has a "non-transmembrane domain" or a region which includes at least about 1-100, preferably about 2-80, more preferably about 5-70, and even more preferably about 8-65 amino acid residues, and has at least about 60%, 70% 80% 90% 95%, 99% or 100% homology with a "non-transmembrane domain", e.g., a non-transmembrane domain of human DGAT2 family member. Preferably, a non-transmembrane domain is capable of catalytic activity. [0057] As the DGAT2 family member polypeptides of the invention may modulate DGAT2 family member-mediated activities (e.g., triglyceride synthesis), they may be useful for developing novel diagnostic and therapeutic agents for DGAT2 family member-mediated or related disorders (e.g., obesity, triglyceride deficiency), as described below. [0058] As used herein, a "DGAT2 family member activity", "biological activity of DGAT2 family member" or "functional activity of DGAT2 family member", refers to an activity exerted by a DGAT2 family member protein, polypeptide or nucleic acid molecule on e.g., a DGAT2 family member-responsive cell or on a DGAT2 family member substrate, e.g., a diacylglycerol substrate, as determined in vivo or in vitro. In one embodiment, a DGAT2 family member activity is a direct activity, such as an association with a DGAT2 family member target molecule. A "target molecule" or "binding partner" is a molecule with which a DGAT2 family member protein binds or interacts in nature (e.g., diacylglycerol, acyl-

coA). A DGAT2 family member activity can also be an indirect activity, e.g., accumulation of fat stores as result of the DGAT2 family member activity.

[0059] The DGAT2 family member molecules of the present invention are predicted to have similar biological activities as DGAT2 family members. For example, the DGAT2 family member proteins of the present invention can have one or more of the following activities: (1) regulating, sensing and/or producing triglycerides in a cell, (for example, a fat cell (e.g., an adipocyte), a liver cell (e.g., a hepatocyte), a small intestine cell); (2) interacting with (e.g., binding to) a diglyceride molecule; (3) mobilizing an intracellular molecule that participates in a triglyceride biosynthesis (e.g., diacylglycerol or acyl-coA); (4) regulating diglyceride utilization; (5) altering the structure or components of a cell (e.g., and adipocyte); and (6) modulating cell proliferation; migration, cell differentiation; and cell survival. Thus, the DGAT2 family member molecules can act as novel diagnostic targets and therapeutic agents for controlling DGAT2 family member-related disorders (e.g., obesity and related disorders). Other activities, as described below, include the ability to modulate function, survival, morphology, proliferation and/or differentiation of cells of tissues in which DGAT2 family member molecules are expressed (e.g., adipocytes).

[0060] The response mediated by a DGAT2 family member receptor protein depends on the type of cell. For example, in some cells, binding of a ligand to the receptor protein may stimulate an activity such as release of compounds, gating of a channel, cellular adhesion, migration, differentiation, etc., through phosphatidylinositol or cyclic AMP metabolism and turnover while in other cells, the binding of the ligand will produce a different result. Regardless of the cellular activity/response modulated by the protein, it is universal that the protein is a DGAT2 family member and interacts with substrate (e.g., acyl-coA, acylglycerol) to produce triacylglycerol in a cell. As used herein, a "triacylglycerol biosynthesis" or "triglyceride biosynthesis" refers to the modulation (e.g., stimulation or inhibition) of a cellular function/activity upon the binding of a substrate to the DGAT2 family member (DGAT2 family member protein). Examples of such functions include mobilization of lipid in adipocytes, production of fat stores.

[0061] Based on the above-described sequence similarities, the DGAT2 family member molecules of the present invention are predicted to have similar biological activities as diacylglycerol transferase family members. Thus, the DGAT2 family member molecules can act as novel diagnostic targets and therapeutic agents for controlling one or more of disorders associated with adipocyte differentiation and metabolism and metabolic disorders,

cardiovascular disorders, liver disorders, cellular proliferative and/or differentiative disorders, or viral diseases.

[0062] The present invention is based, at least in part, on the discovery that the DGAT2 family member nucleic acid and polypeptide molecules are expressed at high levels in adipose, liver, small intestine tissue, are regulated during conditions which affect differentiation and metabolism of adipocytes, and are downregulated in genetic animal models of obesity (see Examples and Tables described herein). Without intending to be limited by mechanism, it is believed that DGAT2 family member molecules can modulate the metabolism by (directly or indirectly) affecting the rate of lipogenesis and/or lipolysis, and production and maintenance of fat storage in mammals.

[0063] As used herein, the term "metabolic disorder" includes a disorder, disease or condition which is caused or characterized by an abnormal metabolism (i.e., the chemical changes in living cells by which energy is provided for vital processes and activities) in a subject. Metabolic disorders include diseases, disorders, or conditions associated with aberrant thermogenesis or aberrant adipose cell (e.g., brown or white adipose cell) content or function. Metabolic disorders can be characterized by a misregulation (e.g., downregulation or upregulation) of DGAT2 family member activity. Metabolic disorders can detrimentally affect cellular functions such as cellular proliferation, growth, differentiation, or migration, cellular regulation of homeostasis, inter- or intra-cellular communication; tissue function, such as liver function, muscle function, or adipocyte function; systemic responses in an organism, such as hormonal responses (e.g., insulin response). Examples of metabolic disorders include obesity, diabetes (e.g., diabetes insipidus, diabetes mellitus (type I), diabetes mellitus (type II)), endocrine abnormalities, triglyceride storage disease, Bardet-Biedl syndrome, Lawrence-Moon syndrome, and Prader-Labhart-Willi syndrome. Obesity is defined as a body mass index (BMI) of 30 kg/2m or more (National Institute of Health, Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (1998)). However, the present invention is also intended to include a disease, disorder, or condition that is characterized by a body mass index (BMI) of 25 kg/2m or more, 26 kg/2m or more, 27 kg/2m or more, 28 kg/2m or more, 29 kg/2m or more, 29.5 kg/2m or more, or 29.9 kg/2m or more, all of which are typically referred to as overweight (National Institute of Health, Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (1998)). Additional metabolic disorders include lipid disorders (e.g., familial hypercholesteroliemia, polygenic

hypercholesteroliemia, familial hypertriglyceridemia, familial lipoprotein lipase deficiency, combined hyperlipidemia, dysbetalipoproteinemia, sitosterolemia, Tangier disease, hypobetalipoproteinemia, lecithin:cholesterol acyltransferase (LCAT) deficiency, and cerebrotendinous xanthomatosis) and toxic and acquired metabolic diseases. [0064] As used herein, disorders involving the heart, or "cardiovascular disease" or a "cardiovascular disorder" includes a disease or disorder which affects the cardiovascular system, e.g., the heart, the blood vessels, and/or the blood. A cardiovascular disorder can be caused by an imbalance in arterial pressure, a malfunction of the heart, or an occlusion of a blood vessel, e.g., by a thrombus. A cardiovascular disorder includes, but is not limited to disorders such as arteriosclerosis, atherosclerosis, cardiac hypertrophy, ischemia reperfusion injury, restenosis, arterial inflammation, vascular wall remodeling, ventricular remodeling, rapid ventricular pacing, coronary microembolism, tachycardia, bradycardia, pressure overload, aortic bending, coronary artery ligation, vascular heart disease, valvular disease, including but not limited to, valvular degeneration caused by calcification, rheumatic heart disease, endocarditis, or complications of artificial valves; atrial fibrillation, long-QT syndrome, congestive heart failure, sinus node dysfunction, angina, heart failure, hypertension, atrial fibrillation, atrial flutter, pericardial disease, including but not limited to, pericardial effusion and pericarditis; cardiomyopathies, e.g., dilated cardiomyopathy or idiopathic cardiomyopathy, myocardial infarction, coronary artery disease, coronary artery spasm, ischemic disease, arrhythmia, sudden cardiac death, and cardiovascular developmental disorders (e.g., arteriovenous malformations, arteriovenous fistulae, raynaud's syndrome, neurogenic thoracic outlet syndrome, causalgia/reflex sympathetic dystrophy, hemangioma, aneurysm, cavernous angioma, aortic valve stenosis, atrial septal defects, atrioventricular canal, coarctation of the aorta, ebsteins anomaly, hypoplastic left heart syndrome, interruption of the aortic arch, mitral valve prolapse, ductus arteriosus, patent foramen ovale, partial anomalous pulmonary venous return, pulmonary atresia with ventricular septal defect, pulmonary atresia without ventricular septal defect, persistance of the fetal circulation, pulmonary valve stenosis, single ventricle, total anomalous pulmonary venous return, transposition of the great vessels, tricuspid atresia, truncus arteriosus, ventricular septal defects). A cardiovascular disease or disorder also can include an endothelial cell disorder.

[0065] As used herein, "liver disorders" which can be treated or diagnosed by methods described herein include, but are not limited to, disorders associated with an accumulation in

the liver of fibrous tissue, such as that resulting from an imbalance between production and degradation of the extracellular matrix accompanied by the collapse and condensation of preexisting fibers. The methods described herein can be used to diagnose or treat hepatocellular necrosis or injury induced by a wide variety of agents including processes which disturb homeostasis, such as an inflammatory process, tissue damage resulting from toxic injury or altered hepatic blood flow, and infections (e.g., bacterial, viral and parasitic). For example, the methods can be used for the early detection of hepatic injury, such as portal hypertension or hepatic fibrosis. In addition, the methods can be employed to detect liver fibrosis attributed to inborn errors of metabolism, for example, fibrosis resulting from a storage disorder such as Gaucher's disease (lipid abnormalities) or a glycogen storage disease, A1-antitrypsin deficiency; a disorder mediating the accumulation (e.g., storage) of an exogenous substance, for example, hemochromatosis (iron-overload syndrome) and copper storage diseases (Wilson's disease), disorders resulting in the accumulation of a toxic. metabolite (e.g., tyrosinemia, fructosemia and galactosemia) and peroxisomal disorders (e.g., Zellweger syndrome). Additionally, the methods described herein can be used for the early detection and treatment of liver injury associated with the administration of various chemicals or drugs, such as for example, methotrexate, isonizaid, oxyphenisatin, methyldopa, chlorpromazine, tolbutamide or alcohol, or which represents a hepatic manifestation of a vascular disorder such as obstruction of either the intrahepatic or extrahepatic bile flow or an alteration in hepatic circulation resulting, for example, from chronic heart failure, veno-occlusive disease, portal vein thrombosis or Budd-Chiari syndrome.

[0066] Additionally, DGAT2 family member molecules can play an important role in the etiology of certain viral diseases, including but not limited to Hepatitis B, Hepatitis C and Herpes Simplex Virus (HSV). Modulators of DGAT2 family member activity could be used to control viral diseases. The modulators can be used in the treatment and/or diagnosis of viral infected tissue or virus-associated tissue fibrosis, especially liver and liver fibrosis. Also, DGAT2 family member modulators can be used in the treatment and/or diagnosis of virus-associated carcinoma, especially hepatocellular cancer.

[0067] As used interchangeably herein, "DGAT2 family member activity," "biological activity of DGAT2 family member" or "functional activity of DGAT2 family member," includes an activity exerted by a DGAT2 family member protein, polypeptide or nucleic acid molecule on a DGAT2 family member responsive cell or tissue, e.g., adipocytes, or on

a DGAT2 family member protein substrate, e.g., diacylglycerol, as determined in vivo, or in vitro, according to standard techniques. DGAT2 family member-mediated function can include modulation of metabolism. Examples of such target molecules include proteins in the same biosynthetic path as the DGAT2 family member protein, e.g., proteins which may function upstream (including both stimulators and inhibitors of activity) or downstream of the DGAT2 family member protein in a pathway involving regulation of metabolism. The biological activities of DGAT2 family member proteins can have one or more of the following activities: 1) modulation of fat homeostasis; 2) modulation of lipogenesis (e.g., fat deposition necessary for heat insulation, mechanical cushion, and/or storage); 3) modulation of lipolysis (e.g., fat mobilization necessary as an energy source and/or for thermogenesis); and 4) modulation of adipocyte growth (e.g., hyperplastic and/or hypertrophic growth). [0068] As used herein, "metabolic activity" includes an activity exerted by an adipose cell, or an activity that takes place in an adipose cell. For example, such activities include cellular processes that contribute to the physiological role of adipose cells, such as lipogenesis and lipolysis and include, but are not limited to, cell proliferation, differentiation, growth, migration, programmed cell death, uncoupled mitochondrial respiration, and thermogenesis.

[0069] The DGAT2 family member proteins, fragments thereof, and derivatives and other variants of the sequences in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ IDNO:62 are collectively referred to as "polypeptides or proteins of the invention" or "DGAT2 family member polypeptides or proteins". Nucleic acid molecules encoding such polypeptides or proteins are collectively referred to as "nucleic acids of the invention" or "DGAT2 family member nucleic acids." DGAT2 family member molecules refer to DGAT2 family member nucleic acids, polypeptides, and antibodies.

[0070] As used herein, the term "nucleic acid molecule" includes DNA molecules (e.g., a cDNA or genomic DNA) and RNA molecules (e.g., an mRNA) and analogs of the DNA or RNA generated, e.g., by the use of nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

[0071] The term "isolated or purified nucleic acid molecule" includes nucleic acid molecules which are separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. For example, with regards to genomic DNA, the term

"isolated" includes nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and/or 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of 5' and/or 3' nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. [0072] As used herein, the term "hybridizes under stringent conditions" describes conditions for hybridization and washing. Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley. & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used. A preferred, example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50°C. Another example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 55°C. A further example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C. Preferably, stringent

hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65°C. Particularly preferred stringency conditions (and the conditions that should be used if the practitioner is uncertain about what conditions should be applied to determine if a molecule is within a hybridization limitation of the invention) are 0.5M Sodium Phosphate, 7% SDS at 65°C, followed by one or more washes at 0.2X SSC, 1% SDS at 65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID

NO:21, SEQ ID NO:23, or SEQ ID NO:61, corresponds to a naturally-occurring nucleic acid molecule.

[0073] As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

[0074] As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules which include an open reading frame encoding a DGAT2 family member protein, preferably a mammalian DGAT2 family member protein, and can further include non-coding regulatory sequences, and introns.

[0075] An "isolated" or "purified" polypeptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. In one embodiment, the language "substantially free" means preparation of DGAT2 family member protein having less than about 30%, 20%, 10% and more preferably 5% (by dry weight), of non-DGAT2 family member protein (also referred to herein as a "contaminating protein"), or of chemical precursors or non-DGAT2 family member chemicals. When the DGAT2 family member protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The invention includes isolated or purified preparations of at least 0.01, 0.1, 1.0, and 10 milligrams in dry weight.

[0076] A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of DGAT2 family member(e.g., the sequence of SEQ ID NO:7, SEQ ID NO:19, or SEQ ID NO:61 without abolishing or more preferably, without substantially altering a biological activity, whereas an "essential" amino acid residue results in such a change. For example, amino acid residues that are conserved among the polypeptides of the present invention, are predicted to be particularly unamenable to alteration.

[0077] A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine,

glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine,

leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a DGAT2 family member protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a DGAT2 family member coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for DGAT2 family member biological activity to identify mutants that retain activity. Following mutagenesis of a DGAT2 family member nucleotide sequence of the invention, the encoded protein can be expressed recombinantly and the activity of the protein can be determined. [0078] As used herein, a "biologically active portion" of a DGAT2 family member protein includes a fragment of a DGAT2 family member protein which participates in an interaction between a DGAT2 family member molecule and a non-DGAT2 family member molecule. Biologically active portions of a DGAT2 family member protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence of the DGAT2 family member protein, e.g., the amino acid sequence shown in SEQ ID NO:8, SEQ ID NO:20, or SEQ ID NO:62 which include less amino acids than the full length DGAT2 family member proteins, and exhibit at least one activity of a DGAT2 family member protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the DGAT2 family member protein, e.g., diacylglycerol acyltransferase activity. A biologically active portion of a DGAT2 family member protein can be a polypeptide which is, for example, 10, 25, 50, 100, 200 or more amino acids in length. Biologically active portions of a DGAT2 family member protein can be used as targets for developing agents which modulate a DGAT2 family member mediated activity, e.g., diacylglycerol acyltransferase activity.

[0079] Calculations of homology or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows.

[0080] To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for

comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence amino acid residues are aligned. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[0081] The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (*J. Mol. Biol.* (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used if the practitioner is uncertain about what parameters should be applied to determine if a molecule is within a sequence identity or homology limitation of the invention) is using a Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

[0082] The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

[0083] The nucleic acid and protein sequences described herein can be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and

XBLAST programs (version 2.0) of Altschul, et al., (1990) *J. Mol. Biol.* 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to DGAT2 family member nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to DGAT2 family member protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) *Nucleic Acids Res.* 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.

[0084] "Misexpression or aberrant expression", as used herein, refers to a non-wild type pattern of gene expression, at the RNA or protein level. It includes: expression at non-wild type levels, i.e., over or under expression; a pattern of expression that differs from wild type in terms of the time or stage at which the gene is expressed, e.g., increased or decreased expression (as compared with wild type) at a predetermined developmental period or stage; a pattern of expression that differs from wild type in terms of decreased expression (as compared with wild type) in a predetermined cell type or tissue type; a pattern of expression that differs from wild type in terms of the splicing size, amino acid sequence, post-transitional modification, or biological activity of the expressed polypeptide; a pattern of expression that differs from wild type in terms of the effect of an environmental stimulus or extracellular stimulus on expression of the gene, e.g., a pattern of increased or decreased expression (as compared with wild type) in the presence of an increase or decrease in the strength of the stimulus.

[0085] "Subject", as used herein, can refer to an animal, e.g., a human, or a non-human mammal, e.g., a mouse, a rat, a primate, a horse, a cow, a goat, or other animal.

[0086] A "purified preparation of cells", as used herein, refers to, in the case of plant or animal cells, an in vitro preparation of cells and not an entire intact plant or animal. In the case of cultured cells or microbial cells, it consists of a preparation of at least 10% and more preferably 50% of the subject cells.

[0087] Various aspects of the invention are described in further detail below.

Isolated Nucleic Acid Molecules

[0088] In one aspect, the invention provides, an isolated or purified, nucleic acid molecule that encodes a DGAT2 family member polypeptide described herein, e.g., a full length DGAT2 family member protein or a fragment thereof, e.g., a biologically active portion of DGAT2 family member protein. Also included is a nucleic acid fragment suitable for use as a hybridization probe, which can be used, e.g., to a identify nucleic acid molecule encoding a polypeptide of the invention, DGAT2 family member mRNA, and fragments suitable for use as primers, e.g., PCR primers for the amplification or mutation of nucleic acid molecules.

[0089] In one embodiment, an isolated nucleic acid molecule of the invention includes the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, and SEQ ID NO:61 or a portion of any of these nucleotide sequences. In one embodiment, the nucleic acid molecule includes sequences encoding the DGAT2 family member protein (e.g., "the coding region", from nucleotides 154-1194 of SEQ ID NO:7, not including the terminal codon), as well as 5' untranslated sequences (nucleotides 1-153 of SEQ ID NO:7). Alternatively, the nucleic acid molecule can include only the coding region (e.g., nucleotides 154-1194 of SEQ ID NO:7) and, e.g., no flanking sequences which normally accompany the subject sequence. In another embodiment, the nucleic acid molecule encodes a sequence corresponding to the mature protein of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:62.

[0090] In another embodiment, an isolated nucleic acid molecule of the invention includes a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61 or a portion of any of these nucleotide sequences. In other embodiments, the nucleic acid molecule of the invention is sufficiently complementary to the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61, such that it can hybridize to the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5,

SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, or SEQ ID NO:61, thereby forming a stable duplex.

[0091] In one embodiment, an isolated nucleic acid molecule of the present invention includes a nucleotide sequence which is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more homologous to the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23 or SEQ ID NO:61. In the case of an isolated nucleic acid molecule which is longer than or equivalent in length to the reference sequence, e.g., SEQ ID NO:7, SEQ ID NO:19, the comparison is made with the full length of the reference sequence. Where the isolated nucleic acid molecule is shorter than the reference sequence (e.g., shorter than SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61), the comparison is made to a segment of the reference sequence of the same length (excluding any loop required by the homology calculation).

DGAT2 family member Nucleic Acid Fragments

[0092] A nucleic acid molecule of the invention can include only a portion of the DGAT2 family member nucleic acid sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61). For example, such a nucleic acid molecule can include a fragment which can be used as a probe or primer or a fragment encoding a portion of a DGAT2 family member protein, e.g., an immunogenic or biologically active portion of a DGAT2 family member protein. A fragment can comprise: nucleotides which encode a diacylglycerol acyltransferase domain of human DGAT2 family member. The nucleotide sequences determined from the cloning of the DGAT2 family member genes allows for the generation of probes and primers designed for use in identifying and/or cloning of additional DGAT2 family member family members, or fragments thereof, as well as additional DGAT2 family member homologues, or fragments thereof, from other species.

[0093] In another embodiment, a nucleic acid includes a nucleotide sequence that includes part, or all, of the coding region and extends into either (or both) the 5' or 3' noncoding region. Other embodiments include a fragment which includes a nucleotide sequence encoding an amino acid fragment described herein. Nucleic acid fragments can encode a specific domain or site described herein or fragments thereof, particularly fragments thereof which are at least 150

amino acids in length. Fragments also include nucleic acid sequences corresponding to specific amino acid sequences described above or fragments thereof. Nucleic acid fragments should not to be construed as encompassing those fragments that may have been disclosed prior to the invention.

[0094] A nucleic acid fragment can include a sequence corresponding to a domain, region, or functional site described herein. A nucleic acid fragment can also include one or more domain, region, or functional site described herein. Thus, for example, the nucleic acid fragment can include a diacylglycerol acyltransferase domain. In a preferred embodiment the fragment is at least, 50, 100, 200, 300, 400, 500, 600, 700, or 900 base pairs in length.

[0095] DGAT2 family member probes and primers are provided. Typically a probe/primer is an isolated or purified oligonucleotide. The oligonucleotide typically includes a region of nucleotide sequence that hybridizes under stringent conditions to at least about 7, 12 or 15, preferably about 20 or 25, more preferably about 30, 35, 40, 45, 50, 55, 60, 65, or 75 consecutive nucleotides of a sense or antisense sequence of the DGAT2 family member nucleic acid sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61), or of a naturally occurring allelic variant or mutant of DGAT2 family member nucleic acid sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61).

[0096] In a preferred embodiment the nucleic acid is a probe which is at least 5 or 10, and less than 200, more preferably less than 100, or less than 50, base pairs in length. It should be identical, or differ by 1, or less than in 5 or 10 bases, from a sequence disclosed herein. If alignment is needed for this comparison the sequences should be aligned for maximum homology. "Looped" out sequences from deletions or insertions, or mismatches, are considered differences.

[0097] A probe or primer can be derived from the sense or anti-sense strand of a nucleic acid which encodes a diacylglycerol acyltransferase domain.

[0098] In another embodiment a set of primers is provided, e.g., primers suitable for use in a PCR, which can be used to amplify a selected region of a DGAT2 family member sequence, e.g., a region described herein. The primers should be at least 5, 10, or 50 base pairs in length and less than 100, or less than 200, base pairs in length. The primers should be identical, or differ by one base from a sequence disclosed herein or from a naturally occurring variant. E.g., primers suitable for amplifying all or a portion of any of the

following regions or domains described herein are provided (e.g., a diacylglycerol acyltransferase domain).

[0099] A nucleic acid fragment can encode an epitope bearing region of a polypeptide described herein.

[00100] A nucleic acid fragment encoding a "biologically active portion of a DGAT2 family member polypeptide" can be prepared by isolating a portion of the nucleotide sequence of the DGAT2 family member sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:61), which encodes a polypeptide having a DGAT2 family member biological activity (e.g., the biological activities of the DGAT2 family member proteins as described herein), expressing the encoded portion of the DGAT2 family member protein (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the DGAT2 family member protein. For example, a nucleic acid fragment encoding a biologically active portion of DGAT2 family member includes a diacylglycerol acyltransferase domain. A nucleic acid fragment encoding a biologically active portion of a DGAT2 family member polypeptide, may comprise a nucleotide sequence which is greater than 300-1200 or more nucleotides in length.

[00101] In preferred embodiments, nucleic acids include a nucleotide sequence which is about 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400 nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule of DGAT2 family member nucleic acid sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61).

DGAT2 family member Nucleic Acid Variants

[0100] The invention further encompasses nucleic acid molecules that differ from the DGAT2 family member nucleotide sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61). Such differences can be due to degeneracy of the genetic code (and result in a nucleic acid which encodes the same DGAT2 family member proteins as those encoded by the nucleotide sequence disclosed herein. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence which differs, by at least 1, but less than 5, 10, 20, 50, or 100 amino acid residues of the DGAT2 family member protein sequences provided (e.g. SEQ ID NO:8, SEQ ID NO:20, SEQ ID NO:62). If alignment is needed for this comparison the

sequences should be aligned for maximum homology. "Looped" out sequences from deletions or insertions, or mismatches, are considered differences.

[0101] Nucleic acids of the inventor can be chosen for having codons, which are preferred, or non preferred, for a particular expression system. E.g., the nucleic acid can be one in which at least one colon, at preferably at least 10%, or 20% of the codons has been altered such that the sequence is optimized for expression in E. coli, yeast, human, insect, or CHO cells.

[0102] Nucleic acid variants can be naturally occurring, such as allelic variants (same locus), homologs (different locus), and orthologs (different organism) or can be non-naturally occurring. Non-naturally occurring variants can be made by mutagenesis techniques, including those applied to polynucleotides, cells, or organisms. The variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions (as compared in the encoded product).

[0103] In a preferred embodiment, the nucleic acid differs from that of the nucleic acid sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61), e.g., as follows: by at least one but less than 10, 20, 30, or 40 nucleotides; at least one but less than 1%, 5%, 10% or 20% of the in the subject nucleic acid. If necessary for this analysis the sequences should be aligned for maximum homology. "Looped" out sequences from deletions or insertions, or mismatches, are considered differences.

[0104] Orthologs, homologs, and allelic variants can be identified using methods known in the art. These variants comprise a nucleotide sequence encoding a polypeptide that is 50%, at least about 55%, typically at least about 70-75%, more typically at least about 80-85%, and most typically at least about 90-95% or more identical to the amino acid sequences of the invention (e.g., SEQ ID NO:8, SEQ ID NO:20, SEQ ID NO:62) or a fragment of those sequences. Such nucleic acid molecules can readily be obtained as being able to hybridize under stringent conditions, to the nucleotide sequence shown in SEQ ID NO:7, SEQ ID NO:19, or SEQ ID NO:61 or a fragment of this sequence. Nucleic acid molecules corresponding to orthologs, homologs, and allelic variants of the DGAT2 family member cDNAs of the invention can further be isolated by mapping to the same chromosome or locus as the DGAT2 family member gene. Preferred variants include those that are correlated with diacylglycerol acyltransferase activity.

[0105] Allelic variants of DGAT2 family member, e.g., human DGAT2 family member, include both functional and non-functional proteins. Functional allelic variants are naturally occurring amino acid sequence variants of the DGAT2 family member protein within a population that maintain the ability to modulate the phosphorylation state of itself or another protein or polypeptide. Functional allelic variants will typically contain only conservative substitution of one or more amino acids of the DGAT2 family member amino acid sequences of the invention (e.g., SEQ ID NO:8 or SEQ ID NO:20 or SEQ ID NO:62), or substitution, deletion or insertion of non-critical residues in non-critical regions of the protein. Non-functional allelic variants are naturally-occurring amino acid sequence variants of the DGAT2 family member, e.g., human DGAT2 family member, protein within a population that do not have the ability to attach an acyl chain to a lipid precursor. Non-functional allelic variants will typically contain a non-conservative substitution, a deletion, or insertion, or premature truncation of the amino acid sequences of the invention (e.g., SEQ ID NO:8 or SEQ ID NO:20 or SEQ ID NO:62), or a substitution, insertion, or deletion in critical residues or critical regions of the protein.

[0106] Moreover, nucleic acid molecules encoding other DGAT2 family member family members and, thus, which have a nucleotide sequence which differs from the DGAT2 family member sequences of the invention (e.g., SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61) are intended to be within the scope of the invention.

Antisense Nucleic Acid Molecules, Ribozymes and Modified DGAT2 family member Nucleic Acid Molecules

[0107] In another aspect, the invention features, an isolated nucleic acid molecule which is antisense to DGAT2 family member. An "antisense" nucleic acid can include a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. The antisense nucleic acid can be complementary to an entire DGAT2 family member coding strand, or to only a portion thereof (e.g., the coding region of human DGAT2 family member corresponding to DGAT2 family member sequences of the invention, e.g., SEQ ID NO:7 SEQ ID NO:19 or SEQ ID NO:61). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding DGAT2 family member (e.g., the 5' and 3' untranslated regions).

[0108] An antisense nucleic acid can be designed such that it is complementary to the entire coding region of DGAT2 family member mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of DGAT2 family member mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of DGAT2 family member mRNA, e.g., between the -10 and +10 regions of the target gene nucleotide sequence of interest. An antisense oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length.

[0109] An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. The antisense nucleic acid also can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

[0110] The antisense nucleic acid molecules of the invention are typically administered to a subject (e.g., by direct injection at a tissue site), or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a DGAT2 family member protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or , pol III promoter are preferred.

[0111] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier et al., (1987) *Nucleic Acids. Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al., (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al., (1987) *FEBS Lett.* 215:327-330).

[0112] In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. A ribozyme having specificity for a DGAT2 family member-encoding nucleic acid can include one or more sequences complementary to the nucleotide sequence of a DGAT2 family member cDNA disclosed herein (e.g., SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61), and a sequence having known catalytic sequence responsible for mRNA cleavage (see U.S. Pat. No. 5,093,246 or Haselhoff and Gerlach, (1988) Nature 334:585-591). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a DGAT2 family member-encoding mRNA. See, e.g., Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742. Alternatively, DGAT2 family member mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) Science 261:1411-1418.

[0113] DGAT2 family member gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the DGAT2 family member (e.g., the DGAT2 family member promoter and/or enhancers) to form triple helical structures that prevent transcription of the DGAT2 family member gene in target cells. See generally, Helene, C., (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al., (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J., (1992) Bioassays 14(12):807-15. The potential sequences that can be targeted for triple helix formation can be increased by creating a so-called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

[0114] The invention also provides detectably labeled oligonucleotide primer and probe molecules. Typically, such labels are chemiluminescent, fluorescent, radioactive, or colorimetric.

[0115] A DGAT2 family member nucleic acid molecule can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup B. et al., (1996) Bioorganic & Medicinal Chemistry 4 (1): 5-23). As used herein, the terms "peptide nucleic acid" or "PNA" refers to a nucleic acid mimic, e.g., a DNA mimic, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of a PNA can allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup B. et al., (1996) supra; Perry-O'Keefe et al., Proc. Natl. Acad. Sci. 93: 14670-675.

[0116] PNAs of DGAT2 family member nucleic acid molecules can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNAs of DGAT2 family member nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as 'artificial restriction enzymes' when used in combination with other enzymes, (e.g., S1 nucleases (Hyrup B., (1996) supra)); or as probes or primers for DNA sequencing or hybridization (Hyrup B. et al., (1996) supra; Perry-O'Keefe supra). [0117] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al., (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al., (1988) Bio-Techniques 6:958-976) or intercalating agents. (See, e.g., Zon, (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered crosslinking agent, transport agent, or hybridization-triggered cleavage agent).

[0118] The invention also includes molecular beacon oligonucleotide primer and probe molecules having at least one region which is complementary to a DGAT2 family member nucleic acid of the invention, two complementary regions one having a fluorophore and one a quencher such that the molecular beacon is useful for quantitating the presence of the DGAT2 family member nucleic acid of the invention in a sample. Molecular beacon nucleic acids are described, for example, in Lizardi et al., U.S. Patent No. 5,854,033; Nazarenko et al., U.S. Patent No. 5,866,336, and Livak et al., U.S. Patent 5,876,930.

Isolated DGAT2 family member Polypeptides

[0119] In another aspect, the invention features, an isolated DGAT2 family member protein, or fragment, e.g., a biologically active portion, for use as immunogens or antigens to raise or test (or more generally to bind) anti-DGAT2 family member antibodies. DGAT2 family member protein can be isolated from cells or tissue sources using standard protein purification techniques. DGAT2 family member protein or fragments thereof can be produced by recombinant DNA techniques or synthesized chemically.

[0120] Polypeptides of the invention include those which arise as a result of the existence of multiple genes, alternative transcription events, alternative RNA splicing events, and alternative translational and postranslational events. The polypeptide can be expressed in systems, e.g., cultured cells, which result in substantially the same postranslational modifications present when expressed the polypeptide is expressed in a native cell, or in systems which result in the alteration or omission of postranslational modifications, e.g., gylcosylation or cleavage, present when expressed in a native cell.

[0121] In a preferred embodiment, a DGAT2 family member polypeptide has one or more of the following characteristics:

it has the ability to regulate, sense and/or transmit an extracellular signal into a cell; it has the ability to interact with (e.g., bind to) an extracellular signal or a cell surface receptor;

it has the ability to mobilize an intracellular molecule that participates in a signal transduction pathway (e.g., adenylate cyclase or phosphatidylinositol 4,5-bisphosphate (PIP₂), inositol 1,4,5-triphosphate (IP₃));

it has the ability to regulate polarization of the plasma membrane; it has the ability to modulate cell proliferation, cell migration, differentiation and/or cell survival;

it has the ability to modulate function, survival, morphology, proliferation and/or differentiation of cells of tissues in which DGAT2 family member molecules are expressed; it has a molecular weight (e.g., deduced molecular weight), amino acid composition or other physical characteristic of a DGAT2 family member protein of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, or SEQ ID NO:62;

it has an overall sequence similarity (identity) of at least 60%, preferably at least 70%, more preferably at least 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% or more, with a polypeptide of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:62;

it has an N-terminal domain which is preferably about 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or higher, identical to a polypeptide of SEQ ID NO:2;

it has at least one transmembrane domains which is preferably about 70%, 80%, 90%, 95% or higher, identical to a polypeptide of SEQ ID NO:2;

it has a C-terminal domain which is preferably about 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or higher, identical to a polypeptide of SEQ ID NO:2; or

it has an diacylglycerol acyltransferase domain which preferably has an overall sequence similarity of about 70%, 80%, 90% or 95% with amino acid residues 32-278 of SEQ ID NO:2.

[0122] In a preferred embodiment the DGAT2 family member protein, or fragment thereof, differs from the corresponding sequence in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:62. In one embodiment it differs by at least one but by less than 15, 10 or 5 amino acid residues. In another it differs from the corresponding sequence in SEQ ID NO:2 by at least one residue but less than 20%, 15%, 10% or 5% of the residues in it differ from the corresponding sequence in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:62. (If this comparison requires alignment the sequences should be aligned for maximum homology. "Looped" out sequences from deletions or insertions, or mismatches, are considered differences.) The differences are,

preferably, differences or changes at a non-essential residue or a conservative substitution. In a preferred embodiment the differences are not in the diacylglycerol acyltransferase domain. In another preferred embodiment one or more differences are in non-active site residues, e.g. outside of the diacylglycerol acyltransferase domain.

[0123] Other embodiments include a protein that contain one or more changes in amino acid sequence, e.g., a change in an amino acid residue which is not essential for activity. Such DGAT2 family member proteins differ in amino acid sequence from SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:62, yet retain biological activity.

[0124] In one embodiment, a biologically active portion of a DGAT2 family member protein includes an diacylglycerol acyltransferase domain. In another embodiment, a biologically active portion of a DGAT2 family member protein includes a MttB family UPF0032 domain. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native DGAT2 family member protein.

[0125] In a preferred embodiment, the DGAT2 family member protein has an amino acid sequence shown in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:62. In other embodiments, the DGAT2 family member protein is substantially identical to SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:62 and retains the functional activity of the protein of SEQ ID NO:2, as described in detail above.

Accordingly, in another embodiment, the DGAT2 family member protein is a protein which includes an amino acid sequence at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more identical to SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 or SEQ ID NO:62.

DGAT2 family member Chimeric or Fusion Proteins

[0126] In another aspect, the invention provides DGAT2 family member chimeric or fusion proteins. As used herein, a DGAT2 family member "chimeric protein" or "fusion protein"

includes a DGAT2 family member polypeptide linked to a non-DGAT2 family member polypeptide. A "non-DGAT2 family member polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the DGAT2 family member protein, e.g., a protein which is different from the DGAT2 family member protein and which is derived from the same or a different organism. The DGAT2 family member polypeptide of the fusion protein can correspond to all or a portion e.g., a fragment described herein of a DGAT2 family member amino acid sequence of the invention. In a preferred embodiment, a DGAT2 family member fusion protein includes at least one (or two) biologically active portion of a DGAT2 family member protein. The non-DGAT2 family member polypeptide can be fused to the N-terminus or C-terminus of the DGAT2 family member polypeptide.

[0127] The fusion protein can include a moiety which has a high affinity for a ligand. For example, the fusion protein can be a GST-DGAT2 family member fusion protein in which the DGAT2 family member sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of a recombinant DGAT2 family member polypeptide. Alternatively, the fusion protein can be a DGAT2 family member protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of DGAT2 family member can be increased through use of a heterologous signal sequence.

[0128] Fusion proteins can include all or a part of a serum protein, e.g., an IgG constant region, or human serum albumin.

[0129] The DGAT2 family member fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject in vivo. The DGAT2 family member fusion proteins can be used to affect the bioavailability of a DGAT2 family member substrate. DGAT2 family member fusion proteins may be useful therapeutically for the treatment of disorders caused by, for example, (i) aberrant modification or mutation of a gene encoding a DGAT2 family member protein; (ii) mis-regulation of the DGAT2 family member gene; and (iii) aberrant post-translational modification of a DGAT2 family member protein.

[0130] Moreover, the DGAT2 family member-fusion proteins of the invention can be used as immunogens to produce anti-DGAT2 family member antibodies in a subject, to purify DGAT2 family member ligands and in screening assays to identify molecules which inhibit the interaction of DGAT2 family member with a DGAT2 family member substrate.

[0131] Expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A DGAT2 family member-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the DGAT2 family member protein.

Variants of DGAT2 family member Proteins

[0132] In another aspect, the invention also features a variant of a DGAT2 family member polypeptide, e.g., which functions as an agonist (mimetics) or as an antagonist. Variants of the DGAT2 family member proteins can be generated by mutagenesis, e.g., discrete point mutation, the insertion or deletion of sequences or the truncation of a DGAT2 family member protein. An agonist of the DGAT2 family member proteins can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of a DGAT2 family member protein (e.g., diacylglycerol acyltransferase activity). An antagonist of a DGAT2 family member protein can inhibit one or more of the activities of the naturally occurring form of the DGAT2 family member protein by, for example, competitively modulating a DGAT2 family member-mediated activity of a DGAT2 family member protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Preferably, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the DGAT2 family member protein.

- [0133] Variants of a DGAT2 family member protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of a DGAT2 family member protein for agonist or antagonist activity.
- [0134] Libraries of fragments e.g., N terminal, C terminal, or internal fragments, of a DGAT2 family member protein coding sequence can be used to generate a variegated population of fragments for screening and subsequent selection of variants of a DGAT2 family member protein.
- [0135] Variants in which a cysteine residues is added or deleted or in which a residue which is glycosylated is added or deleted are particularly preferred.
- [0136] Methods for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Recursive ensemble mutagenesis (REM), a technique which enhances the

frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify DGAT2 family member variants (Arkin and Yourvan, (1992) *Proc. Natl. Acad. Sci. USA* 89:7811-7815; Delgrave et al., (1993) *Protein Engineering* 6(3):327-331).

[0137] Cell based assays can be exploited to analyze a variegated DGAT2 family member library. For example, a library of expression vectors can be transfected into a cell line, e.g., a cell line, which ordinarily responds to DGAT2 family member in a substrate-dependent manner. The transfected cells are then contacted with DGAT2 family member and the effect of the expression of the mutant on signaling by the DGAT2 family member substrate can be detected, e.g., by measuring diacylglycerol acyltransferase activity. Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively, potentiation of signaling by the DGAT2 family member substrate, and the individual clones further characterized.

[0138] In another aspect, the invention features a method of making a DGAT2 family member polypeptide, e.g., a peptide having a non-wild type activity, e.g., an antagonist, agonist, or super agonist of a naturally occurring DGAT2 family member polypeptide, e.g., a naturally occurring DGAT2 family member polypeptide. The method includes: altering the sequence of a DGAT2 family member polypeptide, e.g., altering the sequence, e.g., by substitution or deletion of one or more residues of a non-conserved region, a domain or residue disclosed herein, and testing the altered polypeptide for the desired activity.

[0139] In another aspect, the invention features a method of making a fragment or analog of a DGAT2 family member polypeptide having a biological activity of a naturally occurring DGAT2 family member polypeptide. The method includes: altering the sequence, e.g., by substitution or deletion of one or more residues, of a DGAT2 family member polypeptide, e.g., altering the sequence of a non-conserved region, or a domain or residue described herein, and testing the altered polypeptide for the desired activity.

Anti-DGAT2 family member Antibodies

[0140] In another aspect, the invention provides an anti-DGAT2 family member antibody. The term "antibody" as used herein refers to an immunoglobulin molecule or immunologically active portion thereof, i.e., an antigen-binding portion. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab)2 fragments which can be generated by treating the antibody with an enzyme such as pepsin.

[0141] The antibody can be a polyclonal, monoclonal, recombinant, e.g., a chimeric or humanized, fully human, non-human, e.g., murine, or single chain antibody. In a preferred embodiment it has effector function and can fix complement. The antibody can be coupled to a toxin or imaging agent.

[0142] A full-length DGAT2 family member protein or, antigenic peptide fragment of DGAT2 family member can be used as an immunogen or can be used to identify anti-DGAT2 family member antibodies made with other immunogens, e.g., cells, membrane preparations, and the like. The antigenic peptide of DGAT2 family member should include at least 8 amino acid residues of a DGAT2 family member amino acid sequence of the invention (e.g., the amino acid sequence shown in SEQ ID NO:8 or SEQ ID NO:20 or SEQ ID NO:62) and encompasses an epitope of DGAT2 family member. Preferably, the antigenic peptide includes at least 10 amino acid residues, more preferably at least 15 amino acid residues, even more preferably at least 20 amino acid residues, and most preferably at least 30 amino acid residues.

[0143] Fragments of DGAT2 family member polypeptides of the invention can be, e.g., as immunogens, or used to characterize the specificity of an antibody or antibodies against what are believed to be hydrophilic regions of the DGAT2 family member protein. Similarly, a fragment of DGAT2 family member proteins of the invention can be used to make an antibody against what is believed to be a hydrophobic region of the DGAT2 family member protein; a fragment of DGAT2 family can be used to make an antibody against a diacylglycerol acyltransferase region of the DGAT2 family member protein.

[0144] Antibodies reactive with, or specific for, any of these regions, or other regions or domains described herein are provided.

[0145] In a preferred embodiment the antibody fails to bind an Fc receptor, e.g. it is a type which does not support Fc receptor binding or has been modified, e.g., by deletion or other mutation, such that is does not have a functional Fc receptor binding region.

[0146] Preferred epitopes encompassed by the antigenic peptide are regions of DGAT2 family member are located on the surface of the protein, e.g., hydrophilic regions, as well as regions with high antigenicity. For example, an Emini surface probability analysis of the human DGAT2 family member protein sequence can be used to indicate the regions that have a particularly high probability of being localized to the surface of the DGAT2 family member protein and are thus likely to constitute surface residues useful for targeting antibody production. Methods to determine Emini surface probability analysis or other

methods to determine immunogenic peptides of the DGAT2 family member amino acid sequences of the invention are known in the art.

- [0147] In a preferred embodiment an antibody binds an epitope on any domain or region of any of the DGAT2 family member proteins described herein.
- [0148] Chimeric, humanized, but most preferably, completely human antibodies are desirable for applications which include repeated administration, e.g., therapeutic treatment (and some diagnostic applications) of human patients.
- [0149] Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice that are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. See, for example, Lonberg and Huszar (1995) Int. Rev. Immunol. 13:65-93); and U.S. Patent Nos. 5,625,126; 5,633,425; 5,569,825; 5,661,016; and 5,545,806. In addition, companies such as Abgenix, Inc. (Fremont, CA) and Medarex, Inc. (Princeton, NJ), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.
- [0150] Completely human antibodies that recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. This technology is described by Jespers et al. (1994) Bio/Technology 12:899-903).
- [0151] The anti-DGAT2 family member antibody can be a single chain antibody. A single-chain antibody (scFV) may be engineered (see, for example, Colcher, D. et al., Ann. NY Acad. Sci. 1999 Jun 30;880:263-80; and Reiter, Y., Clin. Cancer Res. 1996 Feb;2(2):245-52). The single chain antibody can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target DGAT2 family member protein.
- [0152] In a preferred embodiment, the antibody has reduced or no ability to bind an Fc receptor. For example, it is an isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor, e.g., it has a mutagenized or deleted Fc receptor binding region.
- [0153] An anti-DGAT2 family member antibody (e.g., monoclonal antibody) can be used to isolate DGAT2 family member proteins or complexes by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, an anti-DGAT2 family

member antibody can be used to detect DGAT2 family member protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the protein. Anti-DGAT2 family member antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance (i.e., antibody labeling). Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, \betagalactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125_L 131_L 35_S or 3_H.

[0154] An antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, e.g., maytansinol (see US Patent No. 5,208,020), CC-1065 (see US Patent Nos. 5,475,092, 5,585,499, 5,846,545) and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, CC-1065, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine, vinblastine, taxol and maytansinoids). Radioactive ions include, but are not limited to iodine, yttrium and praseodymium.

[0155] The conjugates of the invention can be used for modifying a given biological response, the therapeutic moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the therapeutic moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, α-interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophase colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.

Recombinant Expression Vectors, Host Cells and Genetically Engineered Cells [0156] In another aspect, the invention includes, vectors, preferably expression vectors, containing a nucleic acid encoding a polypeptide described herein. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked and can include a plasmid, cosmid or viral vector. The vector can be capable of autonomous replication or it can integrate into a host DNA. Viral vectors include, e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses. [0157] A vector can include a DGAT2 family member nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. Preferably the recombinant expression vector includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. The term "regulatory sequence" includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or polypeptides, including fusion proteins or polypeptides, encoded by nucleic acids as described herein (e.g., DGAT2 family member proteins, mutant forms of DGAT2 family member proteins, fusion proteins, and the like).

[0158] The recombinant expression vectors of the invention can be designed for expression of DGAT2 family member proteins in prokaryotic or eukaryotic cells. For example,

polypeptides of the invention can be expressed in E. coli, insect cells (e.g., using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

[0159] Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S., (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NI) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

[0160] Purified fusion proteins can be used in DGAT2 family member activity assays, (e.g., direct assays or competitive assays described in detail below), or to generate antibodies specific for DGAT2 family member protein(s). In a preferred embodiment, a fusion protein expressed in a retroviral expression vector of the present invention can be used to infect bone marrow cells which are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).

[0161] To maximize recombinant protein expression in *E. coli* is to express the protein in host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual

codons for each amino acid are those preferentially utilized in E. coli (Wada et al., (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

[0162] The DGAT2 family member expression vector can be a yeast expression vector, a vector for expression in insect cells, e.g., a baculovirus expression vector or a vector suitable for expression in mammalian cells.

[0163] When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.

[0164] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al., (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton, (1988) Adv. Inumunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore, (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al., (1983) Cell 33:729-740; Queen and Baltimore, (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al., (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example, the murine hox promoters (Kessel and Gruss, (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman, (1989) Genes Dev. 3:537-546).

[0165] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. Regulatory sequences (e.g., viral promoters and/or enhancers) operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the constitutive, tissue specific or cell type specific expression of antisense RNA in a variety of cell types. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, *Reviews* - *Trends in Genetics*, Vol. 1(1) 1986.

[0166] Another aspect the invention provides a host cell which includes a nucleic acid molecule described herein, e.g., a DGAT2 family member nucleic acid molecule within a recombinant expression vector or a DGAT2 family member nucleic acid molecule containing sequences which allow it to homologously recombine into a specific site of the host cell's genome. The terms "host cell" and "recombinant host cell" are used interchangeably herein. Such terms refer not only to the particular subject cell but rather also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

[0167] A host cell can be any prokaryotic or eukaryotic cell. For example, a DGAT2 family member protein can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

[0168] Vector DNA can be introduced into host cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation [0169] A host cell of the invention can be used to produce (i.e., express) a DGAT2 family member protein. Accordingly, the invention further provides methods for producing a DGAT2 family member protein using the host cells of the invention. In one embodiment, the method includes culturing the host cell of the invention (into which a recombinant expression vector encoding a DGAT2 family member protein has been introduced) in a suitable medium such that a DGAT2 family member protein is produced. In another embodiment, the method further includes isolating a DGAT2 family member protein from the medium or the host cell.

[0170] In another aspect, the invention features, a cell or purified preparation of cells which include a DGAT2 family member transgene, or which otherwise misexpress one or more DGAT2 family member molecules. The cell preparation can consist of human or non-human cells, e.g., rodent cells, e.g., mouse or rat cells, rabbit cells, or pig cells. In preferred embodiments, the cell or cells include a DGAT2 family member transgene, e.g., a heterologous form of a DGAT2 family member, e.g., a gene derived from humans (in the

case of a non-human cell). The DGAT2 family member transgene can be misexpressed, e.g., overexpressed or underexpressed. In other preferred embodiments, the cell or cells include a gene which misexpress an endogenous DGAT2 family member, e.g., a gene the expression of which is disrupted, e.g., a knockout. Such cells can serve as a model for studying disorders which are related to mutated or mis-expressed DGAT2 family member alleles or for use in drug screening.

[0171] In another aspect, the invention features, a human cell, e.g., a hematopoietic stem cell, transformed with nucleic acid which encodes a subject DGAT2 family member polypeptide.

[0172] Also provided are cells or a purified preparation thereof, e.g., human cells, in which an endogenous DGAT2 family member is under the control of a regulatory sequence that does not normally control the expression of the endogenous DGAT2 family member gene. The expression characteristics of an endogenous gene within a cell, e.g., a cell line or microorganism, can be modified by inserting a heterologous DNA regulatory element into the genome of the cell such that the inserted regulatory element is operably linked to the endogenous DGAT2 family member gene. For example, an endogenous DGAT2 family member gene, e.g., a gene which is "transcriptionally silent," e.g., not normally expressed, or expressed only at very low levels, may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell. Techniques such as targeted homologous recombinations, can be used to insert the heterologous DNA as described in, e.g., Chappel, US 5,272,071; WO 91/06667, published on May 16, 1991.

Transgenic Animals

[0173] The invention provides non-human transgenic animals. Such animals are useful for studying the function and/or activity of a DGAT2 family member protein and for identifying and/or evaluating modulators of DGAT2 family member activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. A transgene is exogenous DNA or a rearrangement, e.g., a deletion of endogenous chromosomal DNA, which preferably is integrated into or occurs in the genome of the cells of a transgenic animal. A transgene can

direct the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal, other transgenes, e.g., a knockout, reduce expression. Thus, a transgenic animal can be one in which an endogenous DGAT2 family member gene has been altered by, e.g., by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

[0174] Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to a transgene of the invention to direct expression of a DGAT2 family member protein to particular cells. A transgenic founder animal can be identified based upon the presence of a DGAT2 family member transgene in its genome and/or expression of DGAT2 family member mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding a DGAT2 family member protein can further be bred to other transgenic animals carrying other transgenes.

[0175] DGAT2 family member proteins or polypeptides can be expressed in transgenic animals or plants, e.g., a nucleic acid encoding the protein or polypeptide can be introduced into the genome of an animal. In preferred embodiments the nucleic acid is placed under the control of a tissue specific promoter, e.g., a milk or egg specific promoter, and recovered from the milk or eggs produced by the animal. Suitable animals are mice, pigs, cows, goats, and sheep.

[0176] The invention also includes a population of cells from a transgenic animal, as discussed herein.

Uses

[0177] The nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenetics); and c) methods of treatment (e.g., therapeutic and prophylactic). In particularly preferred embodiments, the compositions provided herein are used in conjunction with methods of diagnosis and treatment of metabolic disorders (e.g., obesity, hyperlipidemia, diabetes), as well as cardiovascular and liver disorders.

The isolated nucleic acid molecules of the invention can be used, for [0178] example, to express a DGAT2 family member protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect a DGAT2 family member mRNA (e.g., in a biological sample such as adipose tissue) or a genetic alteration in a DGAT2 family member gene, and to modulate DGAT2 family member activity, as described further below. The DGAT2 family member proteins can be used to treat disorders characterized by insufficient or excessive production of a DGAT2 family member substrate or production of DGAT2 family member inhibitors(e.g., an obesity disorder). In addition, the DGAT2 family member proteins can be used to screen for naturally occurring DGAT2 family member substrates, to screen for drugs or compounds which modulate DGAT2 family member activity, as well as to treat disorders characterized by insufficient or excessive production of DGAT2 family member protein or production of DGAT2 family member protein forms which have decreased, aberrant or unwanted activity compared to DGAT2 family member wild-type protein. Such disorders include those characterized by aberrant signaling or aberrant, e.g., hyperproliferative, cell growth. Moreover, the anti-DGAT2 family member antibodies of the invention can be used to detect and isolate DGAT2 family member proteins, regulate the bioavailability of DGAT2 family member proteins, and modulate DGAT2 family member activity.

[0179] A method of evaluating a compound for the ability to interact with, e.g., bind, a subject DGAT2 family member polypeptide is provided. The method includes: contacting the compound with the subject DGAT2 family member polypeptide; and evaluating ability of the compound to interact with, e.g., to bind or form a complex with the subject DGAT2 family member polypeptide. This method can be performed in vitro, e.g., in a cell free system, or *in vivo*, e.g., in a two-hybrid interaction trap assay. This method can be used to identify naturally occurring molecules which interact with subject DGAT2 family member polypeptide. It can also be used to find natural or synthetic inhibitors of subject DGAT2 family member polypeptide. Screening methods are discussed in more detail below.

Screening Assays:

[0180] The invention provides methods (also referred to herein as "screening assays") for identifying modulators, i.e., candidate or test compounds or agents (e.g., proteins, peptides, peptidomimetics, peptoids, small molecules or other drugs) which bind to DGAT2 family member proteins, have a stimulatory or inhibitory effect on, for example, DGAT2 family

member expression or DGAT2 family member activity, or have a stimulatory or inhibitory effect on, for example, the expression or activity of a DGAT2 family member substrate. Compounds thus identified can be used to modulate the activity of target gene products (e.g., DGAT2 family member genes) in a therapeutic protocol, to elaborate the biological function of the target gene product, or to identify compounds that disrupt normal target gene interactions.

[0181] The enzyme reaction catalyzed by (DGATs) involves the coupling of an acyl-CoA to a preformed diacylglycerol producing one equivalent of Coenzyme A (CoA) and triacylglycerol. Assays for DGAT activity are known in the art and can include, but are not limited to, direct detection of the products (Coenzyme A or triacylglycerol) or detection in the consumption of the substrates (diacylglycerol or acyl-CoA). Previous DGAT assays have focused on generation of a radiolabeled triacylglycerol using either a radiolabled diacylglycerol or acyl-CoA starting material. (Lardizabal, K. K., Mai, J. T., Wagner, N. W., Wyrick, A., Voelker, T., and Hawkins, D. J. J. Biol. Chem. 276 (2001) 38862-38869; Cases, S., Stone, S. J., Zhou, P., Yen, E., Tow, B., Lardizabal, K. D., Voelker, T., and Farese Jr., R. V. J. Biol. Chem. 276 (2001) 38870-38876). This is a laborious procedure involving organic extractions and separations that are not rigorously quantitative for accurate kinetic characterization of the enzyme. This procedure can be extended to a more quantitative assay wherein an aqueous reaction with radiolabeled substrate (either acyl-CoA or diacylglycerol) is followed by separation and detection using radiometric HPLC. This will allow for separation and detection of the various reaction components (as TLC does) but allow for accurate quantitation of the various reaction species. However, this approach is not amenable to high-throughput screening.

[0182] Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and liquid chromatography/mass spectrometry (LC/MS) are very sensitive techniques that do not require the use of radiolabled substrates. This has been previously employed for detection of triacylglycerols. (Hlongwane, C., Delves, I. G., Wan, L. W., and Ayorinde, F. O. Rapid Commun. Mass Spectrom. 15 (2001) 2027-2034; Ayorinde, F. O., Keith Jr. Q. L., and Wan, L. W. Rapid Commun. Mass Spectrom. 13 (199) 1762-1769; Byrdwell, W. C., Emken, E. A., Neff, W. E., Adlof, R. O. Lipids. 31 (1996) 919-935). These and related techniques will allow for quantitation of every component in the DGAT reaction.

[0183] In one aspect, a high-throughput assay for monitoring the DGAT assay relies on detection of the free thiol generated in the form of CoA. Dithiobis-(2-nitro-5-thiobenzoic acid) (DTNB) has been employed for monitoring the reaction of numerous acyltransferases including monoacylglycerol acyltransferases (MGATs). (Bierbach, H. *Digestion.* 28 (1983) 138-147). Alternatively, fluorescent thiol substrates may be utilized in assays and detected using standard fluorescent detection methods known in the art. One example of detection includes using ThioGlo (NovaBiochem). Storey, B.T., et al. 1998. Mol. Reprod. Dev. 49, 400; Wright, S.K., and Viola, R.E. 1998. Anal. Biochem. 265, 8; and Langmuir, M.E., et al. 1996. in Fluorescence Microscopy and Fluorescent Probes (Slavic, J., ed.) pp. 229-233, Plenum Press, New York.

[0184] In yet another aspect, a high throughput assay for monitoring the DGAT assay relies on detection of product generated using fluorescence resonance energy transfer (FRET) analysis. In this method, substrates (acyl coA and diacylglycerol) are each measured with an appropriate fluorophore. Formation of the resulting triglyceride may be monitored using standard FRET analysis procedures. See, e.g., Stryer L, Haugland RP. Proc Natl Acad Sci U S A 58, 719-726 (1967); and Selvin PR. Methods Enzymol 246, 300-334 (1995).

[0185] These approaches would be amenable to high-throughput screening as well as continuous assays for kinetic characterization and determination of inhibitory activity by small molecule inhibitors.

[0186] In another aspect, a high-throughput assay for monitoring the DGAT assay relies on detection of triacylglycerol product generated as a result of DGAT enzyme activity. In this method, scintillation proximity assay (SPA) technology may be utilized to monitor the acyltransferase reaction. In this method, one substrate is biotinylated (e.g., a biotinylated fatty-acyl-CoA) and combined in the reaction with radiolabeled second substrate (e.g., radiolabeled diacylglyceride, e.g., Diolein). In one aspect the biotinylated substrate can be a donor fatty acyl coA, and the radiolabeled substrate can be a radiolabeled acceptor diacylglycerol. In another aspect, the biotinylated substrate can be a biotinylated acceptor diacylglycerol and the radiolabeled second substrate can be a radiolabeled donor fatty acyl coA. Either combination may be used, and optimized to suit conditions. Either combination of substrates result in generation of a biotinylated, radiolabeled product triacylglycerol. Upon completion of the enzyme assay, product triacylglycerol generation can be determined using standard techniques for collection of biotinylated product and detection of fluorescence (e.g., SPA technology; avidin coated plates and traditional radiometric

detection). The SPA beads are a preferred method of detection in many instances, as the SPA bead (Amersham) has both avidin and a scintillant covalently attached such that when radiolabeled biotinylated substrate attaches to the beads, the isotope is already in close proximity to the scintillant, thus making the addition of scintillation fluid unnecessary. This also means that only those molecules bound to the beads represent the radioactivity of the resulting product.

[0187] As described above, this assay can be utilized to monitor an acyltransferase reaction where either the donor acyl-CoA is biotinylated and the acceptor is radiolabeled; or a reaction where the donor is radiolabeled and the acceptor is biotinylated. Thus, the present assay may be useful to monitor any acyltransferase activity in which substrates are amenable to labeling in a similar manner. Thus the present assay is applicable to each of the DGAT2 family members described herein, and may also be applied to other acyltransferase enzymes. (e.g., DGAT1). The present assay has advantages over art recognized methods of detection: the product can be captured through utilization of the biotin label (e.g., on a SPA bead) rather than laborious organic extractions; radiolabel sensitivity assay is much higher than detection of the fluorescent free CoA released; and the present methods are adaptable to high throughput screening as well as continuous assays for kinetic characterization and determination of inhibitory activity by small molecule inhibitors. Examples of the substrates and product reaction include:

Biotinylated Donor with Radiolabeled Acceptor

Biotinylated Donor Radiolabeled Acceptor

Product, detected by SPA

Biotinylated Acceptor with Radiolabeled Donor

Radiolabeled Donor Biotinylated Acceptor

Product, detected by SPA

[0188] In one embodiment, the invention provides assays for screening candidate or test compounds which are substrates of a DGAT2 family member protein or polypeptide or a biologically active portion thereof. In another embodiment, the invention provides assays

for screening candidate or test compounds which bind to or modulate the activity of a DGAT2 family member protein or polypeptide or a biologically active portion thereof. [0189] The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries [libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive] (see, e.g., Zuckermann, R.N. et al., J. Med. Chem. 1994, 37: 2678-85); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K.S. (1997) Anticancer Drug Des. 12:145).

[0190] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6909; Erb et al., (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al., (1994). J. Med. Chem. 37:2678; Cho et al., (1993) Science 261:1303; Carrell et al., (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al., (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and in Gallop et al., (1994) J. Med. Chem. 37:1233.

[0191] Libraries of compounds may be presented in solution (e.g., Houghten, (1992) Biotechniques 13:412-421), or on beads (Lam, (1991) Nature 354:82-84), chips (Fodor, (1993) Nature 364:555-556), bacteria or spores (Ladner, United States Patent No. 5,223,409), plasmids (Cull et al., (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or on phage (Scott and Smith, (1990) Science 249:386-390); (Devlin, (1990) Science 249:404-406); (Cwirla et al., (1990) Proc. Natl. Acad. Sci. 87:6378-6382); (Felici, (1991) J. Mol. Biol. 222:301-310); (Ladner supra.).

[0192] Preferred libraries of compounds for the screening methods of the invention include small molecule compounds based on natural substrates for the DGAT2 family members of the invention (e.g., acyl-CoA, diacylglycerol). Generation of small molecules and analogs based on the substrates can be produced using methods described in the references cited above, in combination with additional methods and skills known to one in the art.

[0193] In one embodiment, an assay is a cell-based assay in which a cell which expresses a DGAT2 family member protein or biologically active portion thereof is contacted with a test

compound, and the ability of the test compound to modulate DGAT2 family member activity is determined. Determining the ability of the test compound to modulate DGAT2 family member activity can be accomplished by monitoring, for example, diacylglycerol acyltransferase activity. The cell, for example, can be of mammalian origin, e.g., human. Cell homogenates, or fractions, preferably membrane containing fractions, including microsomes, can also be tested.

[0194] The ability of the test compound to modulate DGAT2 family member binding to a compound, e.g., a DGAT2 family member substrate, or to bind to DGAT2 family member can also be evaluated. This can be accomplished, for example, by coupling the compound, e.g., the substrate, with a radioisotope or enzymatic label such that binding of the compound, e.g., the substrate, to DGAT2 family member can be determined by detecting the labeled compound, e.g., substrate, in a complex. Alternatively, DGAT2 family member could be coupled with a radioisotope or enzymatic label to monitor the ability of a test compound to modulate DGAT2 family member binding to a DGAT2 family member substrate in a complex. For example, compounds (e.g., DGAT2 family member substrates) can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.

[0195] The ability of a compound (e.g., a DGAT2 family member substrate) to interact with DGAT2 family member with or without the labeling of any of the interactants can be evaluated. For example, interaction of a compound with DGAT2 family member without the labeling of either the compound or the DGAT2 family member can be measured by the change in the amount of triacylglycerol synthesis in response to contact of a compound. Changes in this triacylglycerol synthesis rate can be used as an indicator of the interaction between a compound and DGAT2 family member.

[0196] In yet another embodiment, a cell-free assay is provided in which a DGAT2 family member protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to the DGAT2 family member protein or biologically active portion thereof is evaluated. Preferred biologically active portions of the DGAT2 family member proteins to be used in assays of the present invention include fragments which participate in interactions with non-DGAT2 family member molecules,

e.g., fragments with high surface probability scores, fragments which interact with substrates of DGAT2 family members.

[0197] Soluble and/or membrane-bound forms of isolated proteins (e.g., DGAT2 family member proteins or biologically active portions thereof) can be used in the cell-free assays of the invention. When membrane-bound forms of the protein are used, it may be desirable to utilize a solubilizing agent. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton[®] X-100, Triton[®] X-114, Thesit[®], Isotridecypoly(ethylene glycol ether)_n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate.

[0198] Cell-free assays involve preparing a reaction mixture of the target gene protein and the test compound under conditions and for a time sufficient to allow the two components to interact and bind, thus forming a complex that can be removed and/or detected.

[0199] In one embodiment, assays are performed where the ability of an agent to block

[0199] In one embodiment, assays are performed where the ability of an agent to block diacylglycerol acyltransferase activity within a cell is evaluated.

[0200] The interaction between two molecules can also be detected, e.g., using fluorescence energy transfer (FET) (see, for example, Lakowicz et al., U.S. Patent No. 5,631,169; Stavrianopoulos, et al., U.S. Patent No. 4,868,103). A fluorophore label on the first, 'donor' molecule is selected such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second, 'acceptor' molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the 'donor' protein molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the 'acceptor' molecule label may be differentiated from that of the 'donor'. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the 'acceptor' molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).

[0201] In another embodiment, determining the ability of the DGAT2 family member protein to bind to a target molecule can be accomplished using real-time Biomolecular Interaction Analysis (BIA) (see, e.g., Sjolander, S. and Urbaniczky, C., (1991) Anal. Chem.

63:2338-2345 and Szabo et al., (1995) Curr. Opin. Struct. Biol. 5:699-705). "Surface plasmon resonance" or "BIA" detects biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in a detectable signal which can be used as an indication of real-time reactions between biological molecules.

[0202] In one embodiment, the target gene product or the test substance is anchored onto a solid phase. The target gene product/test compound complexes anchored on the solid phase can be detected at the end of the reaction. Preferably, the target gene product can be anchored onto a solid surface, and the test compound, (which is not anchored), can be labeled, either directly or indirectly, with detectable labels discussed herein. [0203] It may be desirable to immobilize either DGAT2 family member, an anti-DGAT2 family member antibody or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to a DGAT2 family member protein, or interaction of a DGAT2 family member protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-Stransferase/DGAT2 family member fusion proteins or glutathione-S-transferase/target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or DGAT2 family member protein, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of DGAT2 family member binding or activity determined using standard techniques.

[0204] Other techniques for immobilizing either a DGAT2 family member protein or a target molecule on matrices include using conjugation of biotin and streptavidin. Biotinylated DGAT2 family member protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).

[0205] In order to conduct the assay, the non-immobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the previously nonimmobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the immobilized component (the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody). [0206] In one embodiment, this assay is performed utilizing antibodies reactive with DGAT2 family member protein or target molecules but which do not interfere with binding of the DGAT2 family member protein to its target molecule. Such antibodies can be derivatized to the wells of the plate, and unbound target or DGAT2 family member protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the DGAT2 family member protein or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the DGAT2 family member protein or target molecule. [0207] Alternatively, cell free assays can be conducted in a liquid phase. In such an assay, the reaction products are separated from unreacted components, by any of a number of standard techniques, including but not limited to: differential centrifugation (see, for example, Rivas, G., and Minton, A.P., Trends Biochem Sci 1993 Aug; 18(8):284-7); chromatography (gel filtration chromatography, ion-exchange chromatography); electrophoresis (see, e.g., Ausubel, F. et al., eds. Current Protocols in Molecular Biology 1999, J. Wiley: New York.); and immunoprecipitation (see, for example, Ausubel, F. et al., eds. Current Protocols in Molecular Biology 1999, J. Wiley: New York). Such resins and

chromatographic techniques are known to one skilled in the art (see, e.g., Heegaard, N.H., *J Mol. Recognit.* 1998 Winter;11(1-6):141-8; Hage, D.S., and Tweed, S.A., *J. Chromatogr. B Biomed. Sci. Appl.* 1997 Oct 10;699(1-2):499-525). Further, fluorescence energy transfer may also be conveniently utilized, as described herein, to detect binding without further purification of the complex from solution.

[0208] In a preferred embodiment, the assay includes contacting the DGAT2 family member protein or biologically active portion thereof with a known compound which binds DGAT2 family member (e.g., substrate, e.g., acyl-coA, diacylglycerol) to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a DGAT2 family member protein, wherein determining the ability of the test compound to interact with a DGAT2 family member protein includes determining the ability of the test compound to preferentially bind to DGAT2 family member or biologically active portion thereof, or to modulate the activity of a target molecule, as compared to the known compound (e.g., acyl-coA, diacylglycerol). [0209] The target gene products of the invention can, in vivo, interact with one or more cellular or extracellular macromolecules, such as proteins. For the purposes of this discussion, such cellular and extracellular macromolecules are referred to herein as "binding partners." Compounds that disrupt such interactions can be useful in regulating the activity of the target gene product. Such compounds can include, but are not limited to molecules such as antibodies, peptides, and small molecules. The preferred target genes/products for use in this embodiment are the DGAT2 family member genes herein identified. In an alternative embodiment, the invention provides methods for determining the ability of the test compound to modulate the activity of a DGAT2 family member protein through modulation of the activity of a downstream effector of a DGAT2 family member target molecule. For example, the activity of the effector molecule on an appropriate target can be determined, or the binding of the effector to an appropriate target can be determined, as previously described.

[0210] To identify compounds that interfere with the interaction between the target gene product and its cellular or extracellular binding partner(s), e.g., a substrate, e.g., acyl-coA, diacylglycerol, a reaction mixture containing the target gene product and the binding partner is prepared, under conditions and for a time sufficient, to allow the two products to form complex. In order to test an inhibitory agent, the reaction mixture is provided in the presence and absence of the test compound. The test compound can be initially included in

the reaction mixture, or can be added at a time subsequent to the addition of the target gene and its cellular or extracellular binding partner. Control reaction mixtures are incubated without the test compound or with a placebo. The formation of any complexes between the target gene product and the cellular or extracellular binding partner is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the target gene product and the interactive binding partner. Additionally, complex formation within reaction mixtures containing the test compound and normal target gene product can also be compared to complex formation within reaction mixtures containing the test compound and mutant target gene product. This comparison can be important in those cases wherein it is desirable to identify compounds that disrupt interactions of mutant but not normal target gene products.

[0211] These assays can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring either the target gene product or the binding partner onto a solid phase, and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the target gene products and the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance. Alternatively, test compounds that disrupt preformed complexes, e.g., compounds with higher binding constants that displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are briefly described below.

[0212] In a heterogeneous assay system, either the target gene product or the interactive cellular or extracellular binding partner, is anchored onto a solid surface (e.g., a microtiter plate), while the non-anchored species is labeled, either directly or indirectly. The anchored species can be immobilized by non-covalent or covalent attachments. Alternatively, an immobilized antibody specific for the species to be anchored can be used to anchor the species to the solid surface.

[0213] In order to conduct the assay, the partner of the immobilized species is exposed to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will

remain immobilized on the solid surface. Where the non-immobilized species is prelabeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the initially non-immobilized species (the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds that inhibit complex formation or that disrupt preformed complexes can be detected.

[0214] Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution, and a labeled antibody specific for the other partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds that inhibit complex or that disrupt preformed complexes can be identified.

[0215] In an alternate embodiment of the invention, a homogeneous assay can be used. For example, a preformed complex of the target gene product and the interactive cellular or extracellular binding partner product is prepared in that either the target gene products or their binding partners are labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Patent No. 4,109,496 that utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the species from the preformed complex will result in the generation of a signal above background. In this way, test substances that disrupt target gene product-binding partner interaction can be identified.

[0216] In yet another aspect, the DGAT2 family member proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al., (1993) Cell 72:223-232; Madura et al., (1993) J. Biol. Chem. 268:12046-12054; Bartel et al., (1993) Biotechniques 14:920-924; Iwabuchi et al., (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with DGAT2 family member ("DGAT2 family member-binding proteins" or "DGAT2 family member-bp") and are involved in DGAT2 family member activity. Such DGAT2 family member-bps can be activators or inhibitors of signals by the DGAT2 family member

proteins or DGAT2 family member targets as, for example, downstream elements of a DGAT2 family member-mediated signaling pathway.

[0217] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a DGAT2 family member protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. (Alternatively the: DGAT2 family member protein can be the fused to the activator domain.) If the "bait" and the "prey" proteins are able to interact, in vivo, forming a DGAT2 family member-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the DGAT2 family member protein. [0218] In another embodiment, modulators of DGAT2 family member expression are identified. For example, a cell or cell free mixture is contacted with a candidate compound and the expression of DGAT2 family member mRNA or protein evaluated relative to the level of expression of DGAT2 family member mRNA or protein in the absence of the candidate compound. When expression of DGAT2 family member mRNA or protein is greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of DGAT2 family member mRNA or protein expression. Alternatively, when expression of DGAT2 family member mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of DGAT2 family membermRNA or protein expression. The level of DGAT2 family member mRNA or protein expression can be determined by methods described herein for detecting DGAT2 family

[0219] In another aspect, the invention pertains to a combination of two or more of the assays described herein. For example, a modulating agent can be identified using a cell-

member mRNA or protein.

based or a cell free assay, and the ability of the agent to modulate the activity of a DGAT2 family member protein can be confirmed *in vivo*, e.g., in an animal.

[0220] In another aspect, the methods may be combined and/or a single method may be used comparatively with various DGAT2 family members of the invention in order to identify selective inhibitors of one or more DGAT2 family members of the invention. Utilization of such combination/comparative assays will allow for the identification of selective inhibition of particular DGAT2 family member function which may be uniquely affected in one or more tissues and or disease states.

[0221] This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein (e.g., a DGAT2 family member modulating agent, an antisense DGAT2 family member nucleic acid molecule, a DGAT2 family member-specific antibody, or a DGAT2 family member-binding partner) in an appropriate animal model to determine the efficacy, toxicity, side effects, or mechanism of action, of treatment with such an agent. Furthermore, novel agents identified by the above-described screening assays can be used for treatments as described herein.

Detection Assays

[0222] Portions or fragments of the nucleic acid sequences identified herein can be used as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome e.g., to locate gene regions associated with genetic disease or to associate one or more DGAT2 family member family members with a disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.

Chromosome Mapping

[0223] The DGAT2 family member nucleotide sequences or portions thereof can be used to map the location of the DGAT2 family member genes on a chromosome. This process is called chromosome mapping. Chromosome mapping is useful in correlating the DGAT2 family member sequences with genes associated with disease.

[0224] Briefly, DGAT2 family member genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the DGAT2 family member nucleotide

sequences. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the DGAT2 family member sequences will yield an amplified fragment.

[0225] A panel of somatic cell hybrids in which each cell line contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, can allow easy mapping of individual genes to specific human chromosomes. (D'Eustachio P. et al., (1983) Science 220:919-924).

[0226] Other mapping strategies e.g., in situ hybridization (described in Fan, Y. et al., (1990) *Proc. Natl. Acad. Sci. USA*, <u>87</u>:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries can be used to map DGAT2 family member to a chromosomal location.

[0227] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases will suffice to get good results at a reasonable amount of time. For a review of this technique, see Verma et al., Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York 1988).

[0228] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

[0229] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available online through Johns Hopkins University Welch Medical Library). The relationship between a gene and a disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, for example, Egeland, J. et al., (1987) *Nature*, 325:783-787.

[0230] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the DGAT2 family member gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

Tissue Typing

[0231] DGAT2 family member sequences can be used to identify individuals from biological samples using, e.g., restriction fragment length polymorphism (RFLP). In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, the fragments separated, e.g., in a Southern blot, and probed to yield bands for identification. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).

[0232] Furthermore, the sequences of the present invention can also be used to determine the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the DGAT2 family member nucleotide sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it. Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.

[0233] Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences of SEQ ID NO:7 or SEQ ID NO:19 or SEQ ID NO:61 can provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each

yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:7 or SEQ ID NO:19 or SEQ ID NO:61 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

[0234] If a panel of reagents from DGAT2 family member nucleotide sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue samples.

Use of Partial DGAT2 family member Sequences in Forensic Biology

[0235] DNA-based identification techniques can also be used in forensic biology. To make such an identification, PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample. [0236] The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions of DGAT2 family member sequence (e.g., SEQ ID NO:7, SEQ ID NO:19, or SEQ ID NO:61 (e.g., fragments derived from the noncoding regions of SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61 having a length of at least 20 bases, preferably at least 30 bases)) are particularly appropriate for this use. [0237] The DGAT2 family member nucleotide sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., a tissue containing one or more DGAT2 family member activities. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such DGAT2 family member probes can be used to identify tissue by species and/or by organ type.

[0238] In a similar fashion, these reagents, e.g., DGAT2 family member primers or probes can be used to screen tissue culture for contamination (i.e. screen for the presence of a mixture of different types of cells in a culture).

Predictive Medicine

[0239] The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual.

[0240] Generally, the invention provides, a method of determining if a subject is at risk for a disorder related to a lesion in or the misexpression of one or more genes which encode a DGAT2 family member.

[0241] Such disorders include, e.g., a disorder associated with the misexpression of DGAT2 family member, or lipid metabolism related disorder.

[0242] The method includes one or more of the following:

detecting, in a tissue of the subject, the presence or absence of a mutation which affects the expression of one or more DGAT2 family member genes, or detecting the presence or absence of a mutation in a region which controls the expression of the gene, e.g., a mutation in the 5' control region;

detecting, in a tissue of the subject, the presence or absence of a mutation which alters the structure of one or more DGAT2 family member genes;

detecting, in a tissue of the subject, the misexpression of one or more DGAT2 family member genes, at the mRNA level, e.g., detecting a non-wild type level of a mRNA; detecting, in a tissue of the subject, the misexpression of the gene, at the protein level, e.g., detecting a non-wild type level of a DGAT2 family member polypeptide.

[0243] In preferred embodiments the method includes: ascertaining the existence of at least one of: a deletion of one or more nucleotides from a DGAT2 family member gene; an insertion of one or more nucleotides into a DGAT2 family member gene, a point mutation, e.g., a substitution of one or more nucleotides of the gene, a gross chromosomal rearrangement of the gene, e.g., a translocation, inversion, or deletion.

[0244] For example, detecting the genetic lesion can include: (i) providing a probe/primer including an oligonucleotide containing a region of nucleotide sequence which hybridizes to a sense or antisense sequence from SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61 or naturally occurring mutants thereof or 5' or 3' flanking sequences naturally associated with a

DGAT2 family member gene; (ii) exposing the probe/primer to nucleic acid of the tissue; and detecting, by hybridization, e.g., *in situ* hybridization, of the probe/primer to the nucleic acid, the presence or absence of the genetic lesion.

[0245] In preferred embodiments detecting the misexpression includes ascertaining the existence of at least one of: an alteration in the level of a messenger RNA transcript of a DGAT2 family member gene; the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; or a non-wild type level of DGAT2 family member expression.

[0246] Methods of the invention can be used prenatally or to determine if a subject's offspring will be at risk for a disorder.

[0247] In preferred embodiments the method includes determining the structure of a DGAT2 family member gene, an abnormal structure being indicative of risk for the disorder. [0248] In preferred embodiments the method includes contacting a sample from the subject with an antibody to a DGAT2 family member protein or a nucleic acid, which hybridizes specifically with a DGAT2 family member gene. These and other embodiments are discussed below.

Diagnostic and Prognostic Assays

[0249] The presence, level, or absence of a DGAT2 family member protein or nucleic acid in a biological sample can be evaluated by obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting a DGAT2 family member protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes a DGAT2 family member protein such that the presence of a DGAT2 family member protein or nucleic acid is detected in the biological sample. The term "biological sample" includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. A preferred biological sample is serum. The level of expression of the DGAT2 family member gene can be measured in a number of ways, including, but not limited to: measuring the mRNA encoded by the DGAT2 family member genes; measuring the amount of protein encoded by the DGAT2 family member genes; or measuring the activity of the protein encoded by the DGAT2 family member genes.

[0250] The level of mRNA corresponding to the DGAT2 family member gene in a cell can be determined both by *in situ* and by *in vitro* formats.

[0251] The isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses and probe arrays. One preferred diagnostic method for the detection of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the mRNA encoded by the gene being detected. The nucleic acid probe can be, for example, a full-length DGAT2 family member nucleic acid, such as the nucleic acid of SEQ ID NO:7, SEQ ID NO:19, or SEQ ID NO:61 or a portion thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to DGAT2 family member mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays are described herein. [0252] In one format, mRNA (or cDNA) is immobilized on a surface and contacted with the probes, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative format, the probes are immobilized on a surface and the mRNA (or cDNA) is contacted with the probes, for example, in a two-dimensional gene chip array. A skilled artisan can adapt known mRNA detection methods for use in detecting the level of mRNA encoded by the DGAT2 family member genes.

[0253] The level of mRNA in a sample that is encoded by one of DGAT2 family member can be evaluated with nucleic acid amplification, e.g., by rtPCR (Mullis, 1987, U.S. Patent No. 4,683,202), ligase chain reaction (Barany, 1991, *Proc. Natl. Acad. Sci. USA* 88:189-193), self sustained sequence replication (Guatelli et al., 1990, *Proc. Natl. Acad. Sci. USA* 87:1874-1878), transcriptional amplification system (Kwoh et al., 1989, *Proc. Natl. Acad. Sci. USA* 86:1173-1177), Q-Beta Replicase (Lizardi et al., 1988, *Bio/Technology* 6:1197), rolling circle replication (Lizardi et al., U.S. Patent No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques known in the art. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5' or 3' regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between. In general, amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.

[0254] For in situ methods, a cell or tissue sample can be prepared/processed and immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to mRNA that encodes the DGAT2 family member gene being analyzed.

[0255] In another embodiment, the methods further contacting a control sample with a compound or agent capable of detecting DGAT2 family member mRNA, or genomic DNA, and comparing the presence of DGAT2 family member mRNA or genomic DNA in the control sample with the presence of DGAT2 family member mRNA or genomic DNA in the test sample.

[0256] A variety of methods can be used to determine the level of protein encoded by DGAT2 family member. In general, these methods include contacting an agent that selectively binds to the protein, such as an antibody with a sample, to evaluate the level of protein in the sample. In a preferred embodiment, the antibody bears a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with a detectable substance. Examples of detectable substances are provided herein.

[0257] The detection methods can be used to detect DGAT2 family member protein in a biological sample *in vitro* as well as *in vivo*. *In vitro* techniques for detection of DGAT2 family member protein include enzyme linked immunosorbent assays (ELISAs), immunoprecipitations, immunofluorescence, enzyme immunoassay (EIA), radioimmunoassay (RIA), and Western blot analysis. *In vivo* techniques for detection of DGAT2 family member protein include introducing into a subject a labeled anti-DGAT2 family member antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

[0258] In another embodiment, the methods further include contacting the control sample with a compound or agent capable of detecting DGAT2 family member protein, and comparing the presence of DGAT2 family member protein in the control sample with the presence of DGAT2 family member protein in the test sample.

[0259] The invention also includes kits for detecting the presence of DGAT2 family member in a biological sample. For example, the kit can include a compound or agent

capable of detecting DGAT2 family member protein or mRNA in a biological sample; and a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect DGAT2 family member protein or nucleic acid.

[0260] For antibody-based kits, the kit can include: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide corresponding to a marker of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.

[0261] For oligonucleotide-based kits, the kit can include: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide corresponding to a marker of the invention or (2) a pair of primers useful for amplifying a nucleic acid molecule corresponding to a marker of the invention. The kit can also includes a buffering agent, a preservative, or a protein-stabilizing agent. The kit can also includes components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained. Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package, along with instructions for interpreting the results of the assays performed using the kit.

[0262] The diagnostic methods described herein can identify subjects having, or at risk of developing, a disease or disorder associated with misexpressed or aberrant or unwanted DGAT2 family member expression or activity. As used herein, the term "unwanted" includes an unwanted phenomenon involved in a biological response such as pain or deregulated cell proliferation.

[0263] In one embodiment, a disease or disorder associated with aberrant or unwanted DGAT2 family member expression or activity is identified. A test sample is obtained from a subject and DGAT2 family member protein or nucleic acid (e.g., mRNA or genomic DNA) is evaluated, wherein the level, e.g., the presence or absence, of DGAT2 family member protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant or unwanted DGAT2 family member expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest, including a biological fluid (e.g., serum), cell sample, or tissue.

[0264] The prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant or unwanted DGAT2 family member expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a cellular growth related disorder.

[0265] The methods of the invention can also be used to detect genetic alterations in a DGAT2 family member gene, thereby determining if a subject with the altered gene is at risk for a disorder characterized by misregulation in DGAT2 family member protein activity or nucleic acid expression, such as a cellular growth related disorder. In preferred embodiments, the methods include detecting, in a sample from the subject, the presence or absence of a genetic alteration characterized by at least one of an alteration affecting the integrity of a gene encoding a DGAT2 family member-protein, or the mis-expression of the DGAT2 family member gene. For example, such genetic alterations can be detected by ascertaining the existence of at least one of 1) a deletion of one or more nucleotides from a DGAT2 family member gene; 2) an addition of one or more nucleotides to a DGAT2 family member gene; 3) a substitution of one or more nucleotides of a DGAT2 family member gene, 4) a chromosomal rearrangement of a DGAT2 family member gene; 5) an alteration in the level of a messenger RNA transcript of a DGAT2 family member gene, 6) aberrant modification of a DGAT2 family member gene, such as of the methylation pattern of the genomic DNA, 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of a DGAT2 family member gene, 8) a non-wild type level of a DGAT2 family member-protein, 9) allelic loss of a DGAT2 family member gene, and 10) inappropriate post-translational modification of a DGAT2 family member-protein.

[0266] An alteration can be detected without a probe/primer in a polymerase chain reaction, such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR), the latter of which can be particularly useful for detecting point mutations in the DGAT2 family member-gene. This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a DGAT2 family member gene under conditions such that hybridization and amplification of the DGAT2 family member-gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing

the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

[0267] Alternative amplification methods include: self sustained sequence replication (Guatelli, J.C. et al., (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D.Y. et al., (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P.M. et al., (1988) Bio-Technology 6:1197), or other nucleic acid amplification methods, followed by the detection of the amplified molecules using techniques known to those of skill in the art.

[0268] In another embodiment, mutations in a DGAT2 family member gene from a sample cell can be identified by detecting alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined, e.g., by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Patent No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. [0269] In other embodiments, genetic mutations in DGAT2 family member can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, twodimensional arrays, e.g., chip based arrays. Such arrays include a plurality of addresses, each of which is positionally distinguishable from the other. A different probe is located at each address of the plurality. The arrays can have a high density of addresses, e.g., can contain hundreds or thousands of oligonucleotides probes (Cronin, M.T. et al., (1996) Human Mutation 7: 244-255; Kozal, M.J. et al., (1996) Nature Medicine 2:753-759). For example, genetic mutations in DGAT2 family member can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, M.T. et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of

parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

[0270] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the DGAT2 family member gene and detect mutations by comparing the sequence of the sample DGAT2 family member with the corresponding wild-type (control) sequence. Automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) *Biotechniques* 19:448), including sequencing by mass spectrometry.

[0271] Other methods for detecting mutations in the DGAT2 family member gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al., (1985) Science 230:1242; Cotton et al., (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al., (1992) Methods Enzymol. 217:286-295).

[0272] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in DGAT2 family member cDNAs obtained from samples of cells. For example, the mutY enzyme of *E. coli* cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al., (1994) *Carcinogenesis* 15:1657-1662; U.S. Patent No. 5,459,039).

[0273] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in DGAT2 family member genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al., (1989) Proc. Natl. Acad. Sci. USA: 86:2766, see also Cotton, (1993) Mutat. Res. 285:125-144; and Hayashi, (1992) Genet. Anal. Tech. Appl. 9:73-79). Single-stranded DNA fragments of sample and control DGAT2 family member nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes

heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al., (1991) *Trends Genet.* 7:5).

[0274] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al., (1985) *Nature* 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner, (1987) *Biophys. Chem.* 265:12753).

[0275] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension (Saiki et al., (1986) *Nature* 324:163); Saiki et al., (1989) *Proc. Natl. Acad. Sci. USA* 86:6230).

[0276] Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al., (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3'end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner, (1993) Tibtech 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al., (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany, (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

[0277] The methods described herein may be performed, for example, by utilizing prepackaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a DGAT2 family member gene.

Use of DGAT2 family member Molecules as Surrogate Markers

[0278] The DGAT2 family member molecules of the invention are also useful as markers of disorders or disease states, as markers for precursors of disease states, as markers for predisposition of disease states, as markers of drug activity, or as markers of the pharmacogenomic profile of a subject. Using the methods described herein, the presence, absence and/or quantity of the DGAT2 family member molecules of the invention may be detected, and may be correlated with one or more biological states in vivo. For example, the DGAT2 family member molecules of the invention may serve as surrogate markers for one or more disorders or disease states or for conditions leading up to disease states. As used herein, a "surrogate marker" is an objective biochemical marker which correlates with the absence or presence of a disease or disorder, or with the progression of a disease or disorder (e.g., with the presence or absence of a tumor). The presence or quantity of such markers is independent of the disease. Therefore, these markers may serve to indicate whether a particular course of treatment is effective in lessening a disease state or disorder. Surrogate markers are of particular use when the presence or extent of a disease state or disorder is difficult to assess through standard methodologies (e.g., early stage tumors), or when an assessment of disease progression is desired before a potentially dangerous clinical endpoint is reached (e.g., an assessment of cardiovascular disease may be made using cholesterol levels as a surrogate marker, and an analysis of HIV infection may be made using HIV RNA levels as a surrogate marker, well in advance of the undesirable clinical outcomes of myocardial infarction or fully-developed AIDS). Examples of the use of surrogate markers in the art include: Koomen et al. (2000) J. Mass. Spectrom. 35: 258-264; and James (1994) AIDS Treatment News Archive 209.

[0279] The DGAT2 family member molecules of the invention are also useful as pharmacodynamic markers. As used herein, a "pharmacodynamic marker" is an objective biochemical marker which correlates specifically with drug effects. The presence or quantity of a pharmacodynamic marker is not related to the disease state or disorder for which the drug is being administered; therefore, the presence or quantity of the marker is indicative of the presence or activity of the drug in a subject. For example, a pharmacodynamic marker may be indicative of the concentration of the drug in a biological tissue, in that the marker is either expressed or transcribed or not expressed or transcribed in that tissue in relationship to the level of the drug. In this fashion, the distribution or uptake of the drug may be monitored by the pharmacodynamic marker. Similarly, the presence or

quantity of the pharmacodynamic marker may be related to the presence or quantity of the metabolic product of a drug, such that the presence or quantity of the marker is indicative of the relative breakdown rate of the drug in vivo. Pharmacodynamic markers are of particular use in increasing the sensitivity of detection of drug effects, particularly when the drug is administered in low doses. Since even a small amount of a drug may be sufficient to activate multiple rounds of marker (e.g., a DGAT2 family member marker) transcription or expression, the amplified marker may be in a quantity which is more readily detectable than the drug itself. Also, the marker may be more easily detected due to the nature of the marker itself; for example, using the methods described herein, anti-DGAT2 family member antibodies may be employed in an immune-based detection system for a DGAT2 family member protein marker, or DGAT2 family member-specific radiolabeled probes may be used to detect a DGAT2 family member mRNA marker. Furthermore, the use of a pharmacodynamic marker may offer mechanism-based prediction of risk due to drug treatment beyond the range of possible direct observations. Examples of the use of pharmacodynamic markers in the art include: Matsuda et al. US 6,033,862; Hattis et al. (1991) Env. Health Perspect. 90: 229-238; Schentag (1999) Am. J. Health-Syst. Pharm. 56 Suppl. 3: S21-S24; and Nicolau (1999) Am, J. Health-Syst. Pharm. 56 Suppl. 3: S16-S20. [0280] The DGAT2 family member molecules of the invention are also useful as pharmacogenomic markers. As used herein, a "pharmacogenomic marker" is an objective biochemical marker which correlates with a specific clinical drug response or susceptibility in a subject (see, e.g., McLeod et al. (1999) Eur. J. Cancer 35(12): 1650-1652). The presence or quantity of the pharmacogenomic marker is related to the predicted response of the subject to a specific drug or class of drugs prior to administration of the drug. By assessing the presence or quantity of one or more pharmacogenomic markers in a subject, a drug therapy which is most appropriate for the subject, or which is predicted to have a greater degree of success, may be selected. For example, based on the presence or quantity of RNA, or protein (e.g., DGAT2 family member protein or RNA) for specific tumor markers in a subject, a drug or course of treatment may be selected that is optimized for the treatment of the specific tumor likely to be present in the subject. Similarly, the presence or absence of a specific sequence mutation in DGAT2 family member DNA may correlate DGAT2 family member drug response. The use of pharmacogenomic markers therefore permits the application of the most appropriate treatment for each subject without having to administer the therapy.

Pharmaceutical Compositions

[0281] The nucleic acid and polypeptides, fragments thereof, as well as anti-DGAT2 family member antibodies (also referred to herein as "active compounds") of the invention can be incorporated into pharmaceutical compositions. Such compositions typically include the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.

[0282] A pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

[0283] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable

mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

[0284] Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0285] Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash.

Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[0286] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

[0287] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

[0288] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

[0289] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

[0290] It is advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.

[0291] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Compounds which exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such

compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

[0292] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography. [0293] As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The protein or polypeptide can be administered one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.

[0294] For antibodies, the preferred dosage is 0.1 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is

described by Cruikshank et al., ((1997) J. Acquired Imnune Deficiency Syndromes and Human Retrovirology 14:193).

[0295] The present invention encompasses agents which modulate expression or activity. An agent may, for example, be a small molecule. For example, such small molecules include, but are not limited to, peptides, peptidomimetics (e.g., peptoids), amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds. [0296] Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

[0297] An antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine,

lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

[0298] The conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alphaninterferon, betan-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophase colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.

[0299] Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.

[0300] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Patent 5,328,470) or by stereotactic injection (see e.g., Chen et al., (1994) *Proc. Natl. Acad. Sci. USA* 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

[0301] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

Methods of Treatment:

[0302] The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant or unwanted DGAT2 family member expression or activity. With regards to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from the field of pharmacogenomics. "Pharmacogenomics", as used herein, refers to the application of genomics technologies such as gene sequencing, statistical genetics, and gene expression analysis to drugs in clinical development and on the market. More specifically, the term refers the study of how a patient's genes determine his or her response to a drug (e.g., a patient's "drug response phenotype", or "drug response genotype".) Thus, another aspect of the invention provides methods for tailoring an individual's prophylactic or therapeutic treatment with either the DGAT2 family member molecules of the present invention or DGAT2 family member modulators according to that individual's drug response genotype. Pharmacogenomics allows a clinician or physician to target prophylactic or therapeutic treatments to patients who will most benefit from the treatment and to avoid treatment of patients who will experience toxic drug-related side effects.

[0303] In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant or unwanted DGAT2 family member expression or activity, by administering to the subject a DGAT2 family member or an agent which modulates expression of DGAT2 family member or at least one DGAT2 family member activity. Subjects at risk for a disease which is caused or contributed to by aberrant or unwanted DGAT2 family member expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the DGAT2 family member aberrance, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of DGAT2 family member aberrance, for example, a DGAT2 family member, DGAT2 family member agonist or DGAT2 family member antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.

[0304] It is possible that some DGAT2 family member disorders can be caused, at least in part, by an abnormal level of gene product, or by the presence of a gene product exhibiting

abnormal activity. As such, the reduction in the level and/or activity of such gene products would bring about the amelioration of disorder symptoms.

[0305] As discussed, successful treatment of DGAT2 family member disorders can be brought about by techniques that serve to inhibit the expression or activity of target gene products. For example, compounds, e.g., an agent identified using one or more assays described above, that proves to exhibit negative modulatory activity, can be used in accordance with the invention to prevent and/or ameliorate symptoms of DGAT2 family member related disorders (e.g., obesity, diabetes, triglyceride storage disorders). Such molecules can include, but are not limited to peptides, phosphopeptides, small organic or inorganic molecules, or antibodies (including, for example, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies, and FAb, F(ab')₂ and FAb expression library fragments, scFV molecules, and epitope-binding fragments thereof).

[0306] Further, antisense and ribozyme molecules that inhibit expression of the target gene can also be used in accordance with the invention to reduce the level of target gene expression, thus effectively reducing the level of target gene activity. Still further, triple helix molecules can be utilized in reducing the level of target gene activity. Antisense, ribozyme and triple helix molecules are discussed above.

[0307] It is possible that the use of antisense, ribozyme, and/or triple helix molecules to reduce or inhibit mutant gene expression can also reduce or inhibit the transcription (triple helix) and/or translation (antisense, ribozyme) of mRNA produced by normal target gene alleles, such that the concentration of normal target gene product present can be lower than is necessary for a normal phenotype. In such cases, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target gene activity can be introduced into cells via gene therapy method. Alternatively, in instances in that the target gene encodes an extracellular protein, it can be preferable to co-administer normal target gene protein into the cell or tissue in order to maintain the requisite level of cellular or tissue target gene activity.

[0308] Another method by which nucleic acid molecules may be utilized in treating or preventing a disease characterized by DGAT2 family member expression is through the use of aptamer molecules specific for DGAT2 family member protein. Aptamers are nucleic acid molecules having a tertiary structure which permits them to specifically bind to protein ligands (see, e.g., Osborne, et al., *Curr. Opin. Chem. Biol.* 1997, 1(1): 5-9; and Patel, D.J., *Curr. Opin. Chem. Biol.* 1997 Jun; 1(1):32-46). Since nucleic acid molecules may in many

cases be more conveniently introduced into target cells than therapeutic protein molecules may be, aptamers offer a method by which DGAT2 family member protein activity may be specifically decreased without the introduction of drugs or other molecules which may have pluripotent effects.

[0309] Antibodies can be generated that are both specific for target gene product and that reduce target gene product activity. Such antibodies may, therefore, by administered in instances whereby negative modulatory techniques are appropriate for the treatment of DGAT2 family member disorders. For a description of antibodies, see the Antibody section above.

[0310] In circumstances wherein injection of an animal or a human subject with a DGAT2

family member protein or epitope for stimulating antibody production is harmful to the

subject, it is possible to generate an immune response against DGAT2 family member through the use of anti-idiotypic antibodies (see, for example, Herlyn, D., Ann. Med. 1999;31(1):66-78; and Bhattacharya-Chatterjee, M., and Foon, K.A., Cancer Treat. Res. 1998;94:51-68). If an anti-idiotypic antibody is introduced into a mammal or human subject, it should stimulate the production of anti-anti-idiotypic antibodies, which should be specific to the DGAT2 family member protein. Vaccines directed to a disease characterized by DGAT2 family member expression may also be generated in this fashion. [0311] In instances where the target antigen is intracellular and whole antibodies are used, internalizing antibodies may be preferred. Lipofectin or liposomes can be used to deliver the antibody or a fragment of the Fab region that binds to the target antigen into cells. Where fragments of the antibody are used, the smallest inhibitory fragment that binds to the target antigen is preferred. For example, peptides having an amino acid sequence corresponding to the Fv region of the antibody can be used. Alternatively, single chain neutralizing antibodies that bind to intracellular target antigens can also be administered. Such single chain antibodies can be administered, for example, by expressing nucleotide sequences encoding single-chain antibodies within the target cell population (see e.g.,

[0312] The identified compounds that inhibit target gene expression, synthesis and/or activity can be administered to a patient at therapeutically effective doses to prevent, treat or ameliorate DGAT2 family member disorders. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of the disorders.

Marasco et al., (1993, Proc. Natl. Acad. Sci. USA 90:7889-7893).

[0313] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

[0314] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography. [0315] Another example of determination of effective dose for an individual is the ability to directly assay levels of "free" and "bound" compound in the serum of the test subject. Such assays may utilize antibody mimics and/or "biosensors" that have been created through molecular imprinting techniques. The compound which is able to modulate DGAT2 family member activity is used as a template, or "imprinting molecule", to spatially organize polymerizable monomers prior to their polymerization with catalytic reagents. The subsequent removal of the imprinted molecule leaves a polymer matrix which contains a repeated "negative image" of the compound and is able to selectively rebind the molecule under biological assay conditions. A detailed review of this technique can be seen in Ansell, R. J. et al., (1996) Current Opinion in Biotechnology 7:89-94 and in Shea, K.J., (1994) Trends in Polymer Science 2:166-173. Such "imprinted" affinity matrixes are amenable to ligand-binding assays, whereby the immobilized monoclonal antibody component is replaced by an appropriately imprinted matrix. An example of the use of such matrixes in

this way can be seen in Vlatakis, G. et al., (1993) *Nature* 361:645-647. Through the use of isotope-labeling, the "free" concentration of compound which modulates the expression or activity of DGAT2 family member can be readily monitored and used in calculations of IC₅₀.

[0316] Such "imprinted" affinity matrixes can also be designed to include fluorescent groups whose photon-emitting properties measurably change upon local and selective binding of target compound. These changes can be readily assayed in real time using appropriate fiberoptic devices, in turn allowing the dose in a test subject to be quickly optimized based on its individual IC₅₀. A rudimentary example of such a "biosensor" is discussed in Kriz, D. et al., (1995) Analytical Chemistry 67:2142-2144.

[0317] Another aspect of the invention pertains to methods of modulating DGAT2 family member expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the modulatory method of the invention involves contacting a cell with a DGAT2 family member or agent that modulates one or more of the activities of DGAT2 family member protein activity associated with the cell. An agent that modulates DGAT2 family member protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring target molecule of a DGAT2 family member protein (e.g., a DGAT2 family member substrate or receptor), a DGAT2 family member antibody, a DGAT2 family member agonist or antagonist, a peptidomimetic of a DGAT2 family member agonist or antagonist, or other small molecule.

[0318] In one embodiment, the agent stimulates one or more DGAT2 family member activities. Examples of such stimulatory agents include active DGAT2 family member protein and a nucleic acid molecule encoding DGAT2 family member. In another embodiment, the agent inhibits one or more DGAT2 family member activities. Examples of such inhibitory agents include antisense DGAT2 family member nucleic acid molecules, anti-DGAT2 family member antibodies, and DGAT2 family member inhibitors. These modulatory methods can be performed *in vitro* (e.g., by culturing the cell with the agent) or, alternatively, *in vivo* (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant or unwanted expression or activity of a DGAT2 family member protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) DGAT2 family member

expression or activity. In another embodiment, the method involves administering a DGAT2 family member protein or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted DGAT2 family member expression or activity.

[0319] Stimulation of DGAT2 family member activity is desirable in situations in which DGAT2 family member is abnormally downregulated and/or in which increased DGAT2 family member activity is likely to have a beneficial effect. For example, stimulation of DGAT2 family member activity is desirable in situations in which a DGAT2 family member is downregulated and/or in which increased DGAT2 family member activity is likely to have a beneficial effect. Likewise, inhibition of DGAT2 family member activity is desirable in situations in which DGAT2 family member is abnormally upregulated and/or in which decreased DGAT2 family member activity is likely to have a beneficial effect.

[0320] The DGAT2 family member molecules can act as novel diagnostic targets and therapeutic agents for controlling one or more of metabolic disorders, liver disorders, cellular proliferative and/or differentiative disorders, cardiovascular disorders, as described above.

[0321] Diseases of metabolic imbalance include, but are not limited to, obesity, lipid disorders including hyperlipidemia, and diabetes.

Pharmacogenomics

[0322] The DGAT2 family member molecules of the present invention, as well as agents, or modulators which have a stimulatory or inhibitory effect on DGAT2 family member activity (e.g., DGAT2 family member gene expression) as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) DGAT2 family member associated disorders (e.g., cellular growth related disorders) associated with aberrant or unwanted DGAT2 family member activity. In conjunction with such treatment, pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a DGAT2 family member modulator as

well as tailoring the dosage and/or therapeutic regimen of treatment with a DGAT2 family member molecule or DGAT2 family member modulator.

[0323] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, for example, Eichelbaum, M. et al. (1996) Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 and Linder, M.W. et al. (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare genetic defects or as naturally-occurring polymorphisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical complication is haemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

[0324] One pharmacogenomics approach to identifying genes that predict drug response, known as "a genome-wide association", relies primarily on a high-resolution map of the human genome consisting of already known gene-related markers (e.g., a "bi-allelic" gene marker map which consists of 60,000-100,000 polymorphic or variable sites on the human genome, each of which has two variants.) Such a high-resolution genetic map can be compared to a map of the genome of each of a statistically significant number of patients taking part in a Phase II/III drug trial to identify markers associated with a particular observed drug response or side effect. Alternatively, such a high-resolution map can be generated from a combination of some ten million known single nucleotide polymorphisms (SNPs) in the human genome. As used herein, a "SNP" is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, a SNP may occur once per every 1000 bases of DNA. A SNP may be involved in a disease process, however, the vast majority may not be disease-associated. Given a genetic map based on the occurrence of such SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome. In such a manner, treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals.

[0325] Alternatively, a method termed the "candidate gene approach", can be utilized to identify genes that predict drug response. According to this method, if a gene that encodes a

drug's target is known (e.g., a DGAT2 family member protein of the present invention), all common variants of that gene can be fairly easily identified in the population and it can be determined if having one version of the gene versus another is associated with a particular drug response.

[0326] Alternatively, a method termed the "gene expression profiling", can be utilized to identify genes that predict drug response. For example, the gene expression of an animal dosed with a drug (e.g., a DGAT2 family member molecule or DGAT2 family member modulator of the present invention) can give an indication whether gene pathways related to toxicity have been turned on.

[0327] Information generated from more than one of the above pharmacogenomics approaches can be used to determine appropriate dosage and treatment regimens for prophylactic or therapeutic treatment of an individual. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a DGAT2 family member molecule or DGAT2 family member modulator, such as a modulator identified by one of the exemplary screening assays described herein.

[0328] The present invention further provides methods for identifying new agents, or combinations, that are based on identifying agents that modulate the activity of one or more of the gene products encoded by one or more of the DGAT2 family member genes of the present invention, wherein these products may be associated with resistance of the cells to a therapeutic agent. Specifically, the activity of the proteins encoded by the DGAT2 family member genes of the present invention can be used as a basis for identifying agents for overcoming agent resistance. By blocking the activity of one or more of the resistance proteins, target cells, e.g., adipocytes, will become sensitive to treatment with an agent that the unmodified target cells were resistant to.

[0329] Monitoring the influence of agents (e.g., drugs) on the expression or activity of a DGAT2 family member protein can be applied in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase DGAT2 family member gene expression, protein levels, or upregulate DGAT2 family member activity, can be monitored in clinical trials of subjects exhibiting decreased DGAT2 family member gene expression, protein levels, or downregulated DGAT2 family member activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease DGAT2 family member gene expression, protein levels, or downregulate DGAT2

family member activity, can be monitored in clinical trials of subjects exhibiting increased DGAT2 family member gene expression, protein levels, or upregulated DGAT2 family member activity. In such clinical trials, the expression or activity of a DGAT2 family member gene, and preferably, other genes that have been implicated in, for example, a DGAT2 family member-associated disorder can be used as a "read out" or markers of the phenotype of a particular cell.

Other Embodiments

[0330] In another aspect, the invention features, a method of analyzing a plurality of capture probes. The method can be used, e.g., to analyze gene expression. The method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, e.g., a nucleic acid or peptide sequence; contacting the array with a DGAT2 family member, preferably purified, nucleic acid, preferably purified, polypeptide, preferably purified, or antibody, and thereby evaluating the plurality of capture probes. Binding, e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to one or more DGAT2 family member nucleic acids, polypeptides, or antibodies.

[0331] The capture probes can be a set of nucleic acids from a selected sample, e.g., a sample of nucleic acids derived from a control or non-stimulated tissue or cell.

[0332] The method can include contacting the DGAT2 family member nucleic acid, polypeptide, or antibody with a first array having a plurality of capture probes and a second array having a different plurality of capture probes. The results of each hybridization can be compared, e.g., to analyze differences in expression between a first and second sample. The first plurality of capture probes can be from a control sample, e.g., a wild type, normal, or non-diseased, non-stimulated, sample, e.g., a biological fluid, tissue, or cell sample. The second plurality of capture probes can be from an experimental sample, e.g., a mutant type, at risk, disease-state or disorder-state, or stimulated, sample, e.g., a biological fluid, tissue, or cell sample.

[0333] The plurality of capture probes can be a plurality of nucleic acid probes each of which specifically hybridizes, with an allele of a DGAT2 family member molecule. Such methods can be used to diagnose a subject, e.g., to evaluate risk for a disease or disorder, to

evaluate suitability of a selected treatment for a subject, to evaluate whether a subject has a disease or disorder. DGAT2 family member is associated with triglyceride biosynthesis or activity, thus it is useful for disorders associated with abnormal lipid metabolism.

[0334] The method can be used to detect SNPs, as described above.

[0335] In another aspect, the invention features, a method of analyzing a plurality of probes. The method is useful, e.g., for analyzing gene expression. The method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality having a unique capture probe, e.g., wherein the capture probes are from a cell or subject which express or mis express one or more DGAT2 family member molecules of the invention or from a cell or subject in which a DGAT2 family member mediated response has been elicited, e.g., by contact of the cell with one or more DGAT2 family member nucleic acids or proteins, or administration to the cell or subject DGAT2 family member nucleic acids or proteins; contacting the array with one or more inquiry probe, wherein an inquiry probe can be a nucleic acid, polypeptide, or antibody (which is preferably other than DGAT2 family member nucleic acid, polypeptide, or antibody); providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, e.g., wherein the capture probes are from a cell or subject which does not express DGAT2 family member (or does not express as highly as in the case of the DGAT2 family member positive plurality of capture probes) or from a cell or subject which in which a DGAT2 family member mediated response has not been elicited (or has been elicited to a lesser extent than in the first sample); contacting the array with one or more inquiry probes (which is preferably other than a DGAT2 family member nucleic acid, polypeptide, or antibody), and thereby evaluating the plurality of capture probes. Binding, e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to the nucleic acid, polypeptide, or antibody.

[0336] In another aspect, the invention features, a method of analyzing a DGAT2 family member, e.g., analyzing structure, function, or relatedness to other nucleic acid or amino acid sequences. The method includes: providing a DGAT2 family member nucleic acid or amino acid sequence; comparing the DGAT2 family member sequence with one or more

preferably a plurality of sequences from a collection of sequences, e.g., a nucleic acid or protein sequence database; to thereby analyze DGAT2 family member.

[0337] Preferred databases include GenBank™. The method can include evaluating the sequence identity between a DGAT2 family member sequence and a database sequence. The method can be performed by accessing the database at a second site, e.g., over the internet.

[0338] In another aspect, the invention features, a set of oligonucleotides, useful, e.g., for identifying SNP's, or identifying specific alleles of DGAT2 family members. The set includes a plurality of oligonucleotides, each of which has a different nucleotide at an interrogation position, e.g., an SNP or the site of a mutation. In a preferred embodiment, the oligonucleotides of the plurality identical in sequence with one another (except for differences in length). The oligonucleotides can be provided with different labels, such that an oligonucleotides which hybridizes to one allele provides a signal that is distinguishable from an oligonucleotides which hybridizes to a second allele.

[0339] This invention is further illustrated by the following examples, which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are incorporated herein by reference.

EXAMPLES

Example 1: Identification and Characterization of Human DGAT2 family member cDNAs and proteins

[0340] A number of gene sequences were identified which have homology to the DGAT2 sequences. The human DGAT2, (herein referred to as 86606) sequence is depicted in SEQ ID NO:9, which is approximately 2428 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1166 nucleotides (nucleotides 220-1386 of SEQ ID NO:9). The coding sequence encodes a 388 amino acid protein (SEQ ID NO:10).

[0341] The human DGAT2 family member sequence 60489 (SEQ ID NO:7), which is approximately 1255 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1025 nucleotides (nucleotides 170-1195 of SEQ ID NO:7) The coding sequence encodes a 341 amino acid protein (SEQ ID NO:8). [0342] The DGAT2 family member sequence 112041 (SEQ ID NO:19), which is approximately 1716 nucleotides long including untranslated regions, contains a predicted

methionine-initiated coding sequence of about 1013 nucleotides (nucleotides 101-1114 of SEQ ID NO:19) The coding sequence encodes a 337 amino acid protein (SEQ ID NO:20). [0343] The DGAT2 family member sequence 112037 (SEQ ID NO:61), which is approximately 712 nucleotides long, is a predicted partial coding sequence. The sequence encodes a 236 amino acid protein (SEQ ID NO:62).

[0344] The DGAT2 family member sequence of 58765 identified two splice variant sequences including 58765 (SEQ ID NO:1), which is approximately 1005 nucleotides long, encodes a 334 amino acid protein (SEQ ID NO:2). Additionally, 58765 short (SEQ ID NO:3), which is approximately 855 nucleotides long, encodes a 284 amino acid protein (SEQ ID NO:4).

[0345] The DGAT2 family member sequence 112023 (SEQ ID NO:13), which is approximately 1279 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 986 nucleotides (nucleotides 42-1028 of SEQ ID NO:13) The coding sequence encodes a 328 amino acid protein (SEQ ID NO:14).

[0346] The DGAT2 family member sequence 112024 (SEQ ID NO:17), which is approximately 1720 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1001 nucleotides (nucleotides 1-1002 of SEQ ID NO:17) The coding sequence encodes a 333 amino acid protein (SEQ ID NO:18).

[0347] The DGAT2 family member sequence hDC2 (SEQ ID NO:21), which is approximately 1093 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1004 nucleotides (nucleotides 49-1053 of SEQ ID NO:21) The coding sequence encodes a 334 amino acid protein (SEQ ID NO:22).

Example 2: Identification and Characterization of Murine DGAT2 family member cDNAs and proteins

[0348] A number of murine gene sequences were also identified which are related to DGAT2 sequences. The murine DGAT2 sequence (m86606) is depicted in SEQ ID NO:11, which is approximately 2262 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1166 nucleotides (nucleotides 207-1373 of SEQ ID NO:11). The coding sequence encodes a 388 amino acid protein (SEQ ID NO:12).

[0349] The murine DGAT2 family member sequence m58765 sequence (SEQ ID NO:5), which is approximately 1748 nucleotides long including untranslated regions, contains a

predicted methionine-initiated coding sequence of about 758 nucleotides (nucleotides 254-1012 of SEQ ID NO:5). The coding sequence encodes a 252 amino acid protein (SEQ ID NO:6).

[0350] The DGAT2 family member sequence m112023 (SEQ ID NO:15), which is approximately 1255 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1124 nucleotides (nucleotides 27-1151 of SEQ ID NO:15) The coding sequence encodes a 374 amino acid protein (SEQ ID NO:16). [0351] The DGAT2 family member cDNA sequence mDC2 (SEQ ID NO:23), which is approximately 1008 nucleotides encodes a 335 amino acid protein (SEQ ID NO:24).

Example 3: DGAT2 family member Gene Expression in Human and Mouse Tissues RNA samples

Human tissue samples were either purchased from Invitrogen or were prepared from samples available at Millennium. Total RNA samples from various mouse tissues were extracted from 8 week old female mice. All mice were purchased from Jackson Labs. To investigate tissue distribution of these genes, cDNAs were prepared from RNA samples prior to Taqman analysis.

RNA was prepared using the trizol method and treated with DNAse to remove contaminating genomic DNA. cDNA was synthesized using random hexamer primers. Mock cDNA synthesis in the absence of reverse transcriptase resulted in samples with no detectable PCR amplification of the control 18S gene confirming efficient removal of genomic DNA contamination. Taqman analysis was performed following the manufacturer's directions.

[0352] PCR probes were designed by PrimerExpress software (PE Biosystems) based on the respective sequences of murine and human genes. The following probes and primers were used:

86606 forward primer: CAAGCCCCTTTATTGCCACTAC (SEQ ID NO:25)

86606 reverse primer: TCCCCTTGGCAGAGAAACTG (SEQ ID NO:26)

86606 Probe: CCACGCTCGTCTAGTCCTGAAACTGCAG (SEQ ID NO:27)

m86606 forward primer: TTCCCCAGACGACAGACACTT (SEQ ID NO:28)

m86606 reverse primer: CTCTCAAGAATCCCTGGAGTCACT (SEQ ID NO:29)

m86606 Probe: ACTGCCCTTGCCCAGCTAGCCAGTACTGCCCTTGCCCAGCTAG

CCAG (SEQ ID NO:30)

hDC2 forward primer: CTATAGGAAAGCCATCCACACTGTT (SEQ ID NO:31)

hDC2 reverse primer: GGGTCGGGTTCAGAGTCTGA (SEQ ID NO:32)

hDC2Probe: TTGGCCGCCCGATCCCTGT (SEQ ID NO:33)

mDC2 forward primer: GGCTCACCCAGGAACATTCA (SEQ ID NO:34)

mDC2 reverse primer: GGTCAAGGCCATCTTAACAAACC (SEQ ID NO:35)

mDC2 Probe: CTGTGCATCCGCCAGCGCAA (SEQ ID NO:36)

112023 forward primer: GCGGCCACAAGGATGTAAA (SEQ ID NO:37)

112023 reverse primer: GAGCTACCTTGCCATCTTTTGG (SEQ ID NO:38)

112023 Probe: AGCAGGTAGACGAACAATGGCTGCAAGATCTTGCAGCCATTG

TTCGTCTACCTGCT (SEQ ID NO:39)

m112023 forward primer: CGTTGCCATGTTTTGGATTG (SEQ ID NO:40)

m112023 reverse primer: TGTTGGTAGCGGCCACAA (SEQ ID NO:41)

m112023 Probe: CAGCCATTGTTAATTTGCCTATTGTTCACACC (SEQ ID NO:42)

112024 forward primer: TCAATGCTGGCACCAAAGTG (SEQ ID NO:43)

112024 reverse primer: TGGTGAGATAGTCCCAAGAAACAG (SEQ ID NO:44)

112024 Probe: AGGCCCGTCTCCCCTAGGCTCTTC (SEQ ID NO:45)

m58765 forward primer: GGTGAGTGCCGATCACATTCT (SEQ ID NO:46)

m58765 reverse primer: CAACGATGATGGCAAGCAAGT (SEQ ID NO:47)

m58765 Probe: TCCAGGAAGGGCGGCGGCCCCCCCTTCCTGGA (SEQ ID

NO:48)

58765 forward primer: TGACCGCGCCATTTCCTA (SEQ ID NO:49)

58765 reverse primer: GATTCAGACTGGTCCAAACCCTAT (SEQ ID NO:50)

58765 Probe: TCCTTCCATGACCCTCCATTGCTCCTAG (SEQ ID NO:51)

58765s forward primer: CCTGGATCCTTCACGCTGTTAC (SEQ ID NO:52)

58765s reverse primer: AGGCTTGATACCCGTGTGTCA (SEQ ID NO:53)

58765s Probe: CGGAACCGAAAGGGCTTCGTCAGCTGACGAAGCCC

TTTCGGTTCCG (SEQ ID NO:54)

60489 forward primer: CGAGGAGGAAGTCAATCACTATCA (SEQ ID NO:55)

60489 reverse primer: TTTCCTTGTGCTCCTCGAAGA (SEQ ID NO:56)

60489 Probe: CCCTCTACATGACGGACCTGGAGCAG (SEQ ID NO:57)

112041 forward primer: GAGACCCAAGAGCTGACAATTACA (SEQ ID NO:58)

112041 reverse primer: TGGATCCCTCATGGCTTTG (SEQ ID NO:59)

112041 Probe: AACAGGAGCCACATTCCCCATTGATCA (SEQ ID NO:60)

112037 forward primer: CCTGCCTCTTCCCCAAACTC (SEQ ID NO:63)

112037 reverse primer: GAAGAAGAGGGAGATGGAACCAACA (SEQ ID NO:64)

112037 probe: CGCCACACCTGCTCATGCTGC (SEQ ID NO:65)

[0353] To allow standardization between different tissues, each sample contained two probes distinguished by different fluorescent labels, a probe for the gene of interest (e.g. 86606) as well as a probe for 18S RNA as an internal control. The threshold values at which the PCR amplification started were determined using the manufacturer's software.

[0354] The following method was used to quantitatively calculate gene expression in the tissue samples, relative to the 18S RNA expression in the same tissue. The threshold values at which the PCR amplification started were determined using the manufacturer's software.

PCR cycle number at threshold value was designated as CT. Relative expression was calculated as 2-((CTtest-CT18S) tissue of interest - (CTtest-CT18S) lowest expressing tissue in panel). Samples were run in duplicate and the averages of 2 relative expression levels that were linear to the amount of template cDNA with a slope similar to the slope for the internal control 18S were used. The resulting relative expression levels for each gene of interest were compiled and calculated in separate experiments.

TABLE 2: DGAT2 family member expression in human tissues

tissúe	86606	hDC2	112024	58765	58765 s	60489	112041	112037
adipose	1005	2642	2.124	347.0	183.7	136.5	404.8	6.801
brain	24.86	1146	1.218	8.503	28.45	6.013	235.7	3.866
heart	19.90	1389	1.266	23.37	8.462	3.451	103.4	1.431
kidney	13.38	8975	0.918	3399	1660	9950	214.6	5.684
liver	349.8	13827	1.307	30902	19076	2445	56.00	3.599
pancreas	1.014	125.4	1.219	9.563	2.629	1.091	31.04	2.464
spleen	9.242	1.086	1.390	39.34	18.71	6.291	141.1	4.114
s. intestine	22.99	48.77	2.045	1773348	60400	65083	685.2	56.54
sk. muscle	1.894	104.06	1.124	8.800	7.425	2.836	5.257	1.838

[0355] The results of expression of 86606 in human tissues by Taqman analysis showed highest levels of expression in adipose and medium level in liver and lower levels in brain,

heart, kidney and small intestine, among the nine human tissues that we have investigated. hDC2 is expressed at highest levels in liver and kidney, and at a lower level in adipose, brain and heart in human tissues tested. The expression of 112024 is very low in all the human tissues that we examined. 58765 has two splicing variants, the short form (58765short) lacks part of the C-terminus compared with the long form (58765). Both forms of 58765 are highly expressed in small intestine, as well as the liver, and at lower levels in kidney and adipose tissue. 60489 is expressed highly in small intestine as well as the kidney, and at lower levels in liver and adipose tissues. 112041 is expressed at higher levels in small intestine and adipose tissues compared with other tissues that we have investigated in human. 112037 is expressed in the small intestine, and at lower levels in adipose and kidney.

[0356] In addition to the initial nine human tissues tested, we examined expression of 58765short and 60489 in an additional panel of human tissues (Table 3). 58765short and 60489 demonstrated highest expression in small intestine (as seen in Table 2 above), as well as significant expression in colon, with lower expression in liver which is upregulated in liver fibrosis (Table 3). Tissues also tested which did not demonstrate significant expression levels include erythroid, megakaryocytes, neutrophils, activated PBMCs, hematopoietic progenitor cells (erythroid, megakaryocyte, neutrophil), synovium, macrophages, lymph node, spleen, lung (normal, COPD, and tumor), prostate (normal and tumor), breast (normal and tumor), ovary tumor, dorsal root ganglion, pancreas, nerve, hypothalamus, pituitary gland, brain cortex, spinal cord, skin, adrenal cortex, bladder, primary osteoblast, adipose, skeletal muscle, heart (normal and CHF), hemangioma, HUVEC, coronary SMC, and vessel (artery, vein, and diseased aorta) tissue.

[0357] TaqMan analysis was also performed in mouse tissues as indicated above. The mouse orthologue of 86606, m86606 is expressed highly in both white and brown adipose tissues in mouse, with lower levels of expression in liver, heart, small intestine and kidney; mDC2 is expressed at highest levels in both brown and white adipose tissues as well as kidney in mouse; m112023 is low in all tissues that we examined. Among these tissues, the relative expression level is lung>spleen>w fat, b fat>other tissues; and m58765, similar to human 58765, is highly expressed in small intestine, with lower levels of expression in kidney and adipose tissue in mouse (Table 4).

TABLE 3: DGAT2 family member expression in human tissues

Tissue Type	58765short	60489
Kidney	0.086	0.2681
Small intestine normal	4.1721	7.2641
Ovary normal	0.3739	1.6198
Colon normal	2.4466	6.1936
Colon Tumor	1.6827	6.8248
Colon IBD	0.2375	3.14
Liver normal	0.674	0.9868
Liver fibrosis	1.5919	4.3493
Tonsil normal	0.0309	0

TABLE 4: DGAT2 family member expression in mouse tissues

tissue	m86606	mDC2	m112023	m58765
brain	16.9188	4.9502	1.1598	5.0109
hypothalamus	9.71379	18.1208	1.4636	
heart	78.0162	0.5721	1.4056	233.2449
kidney	32.197	304.62	1.1728	588.3001
liver	89.0194	3.8243	1.2581	4.18738
lung	11.1751	9.003	111.3496	7.8561
spleen	1.07834	4.2266	26.6539	3.0421
s. intestine	60.3415	1.3351	5.7179	10903.28
muscle	9.37499	2.8787	1.1487	33.5309
adipoșe				0.9569
w fat	943.759	207.577	6.0579	242.4002
b fat	537.813	189.39	1.3619	137.4226

[0358] In addition to the initial nine murine tissues tested, we examined expression of m58765 in an additional panel of mouse tissues (Table 5). m58765 demonstrated highest expression in intestine and kidney (as seen in Table 4 above), (Table 5). Tissues also tested which did not demonstrate significant expression levels (0.0001 or below) include Salivary Gland/Normal/MPI1197, Hypothalamus/Normal/MET237, Spinal Cord/Normal/MET238,

Lung/Normal/MET148, Esophagus/Normal/MET143, Liver/Normal/MPI149,
Brain/Normal/MPI1195, Skin/Normal/MET067, Spleen/Normal/MET063,
Pancreas/Normal/MET192, Primary Osteoblast/Normal/MET198, ST2-0/Normal/MET199,
ST2-4/Normal/MET200, Muscle/Normal/MPI1266, and Prostate/Normal/MPI1203

TABLE 5: DGAT2 family member expression in mouse tissues

		•	
Tissue Type	m58765	Tissue Type	m58765
Intestine/Normal/MET145	0.0749	E13/Normal/MPI1229	0.0019
E10/Normal/MPI1232	0.0164	E15.5/Normal/MPI1056	0.0019
Kidney/Normal/MET146	0.0126	E16.5/Normal/MPI1017	0.0019
Placenta/Normal/MPI1228	0.0062	E13.5/Normal/MPI1039	0.0017
Heart/Normal/MET142	0.0036	Colon/Normal/MET191	0.0010
Testes/Normal/MET069	0.0053	Ovary/Normal/MPI1202	0.0009
E17.5/Normal/MPI1020	0.0049	Calveolar/Normal/MET201	0.0009
E18.5/Normal/MPI1024	0.0042	Uterus/Normal/MET236	0.0008
E19.5/Normal/MPI1067	0.0037	Stomach/Normal/MET160	0.0007
P1.5 /Normal/MPI1062	0.0032	Bladder/Normal/MET139	0.0003
E8.5 with yolk	0.0058	Adrenal	0.0003
sac/Normal/MPI1249		Gland/Normal/MPI1192	•
Diaphysis/Normal/MET202	0.0028	Breast/Normal/MPI1226	0.0002
Metaphysis/Normal/MET203	0.0021	Aorta/Normal/MET064	0.0002
Brown Fat/Normal/MET138	0.0017	White Fat/Normal/MET162	0.0002

Examples 4-7: Regulation of DGAT2 family member Expression [0359] To determine whether DGAT2 family member expression is regulated under conditions that affect adipocyte differentiation or white adipocyte metabolism, expression of DGAT2 family member was measured in cells or tissues of mice exposed to various conditions. For analyses, TaqMan analysis was performed as indicated above.

Example 4. Regulation of DGAT2 family members during adipocyte differentiation

DGAT2 family member expression during 3T3-F442A differentiation

[0360] We tested expression of m86606 during differentiation of the preadipocyte cell line

3T3-F442A. 3T3-F442A preadipocytes were grown in DMEM containing 10% Calf Serum.

Once they reached confluency (designed as day 0), they were induced to differentiate by culturing in DMEM containing 10 μ g/ml insulin, 0.5 mM isobutyl-methylxanthine, 1 μ M Dexamethasone and 10% FBS in DMEM. Forty-eight hours post-induction, cells were maintained in 10% FBS in DMEM with 2.5 μ g/ml insulin. Medium was replaced every two days. Cells were harvested at day 0 and day 10 post-induction of differentiation. Total RNA was extracted and cDNAs were made from these samples and subjected to Taqman analysis. [0361] m86606 was expressed at very low levels in preadipocytes and was dramatically upregulated during adipocyte differentiation, consistent with expression of 86606 in adipocytes rather than other cell types in the adipose tissue (Table 6).

TABLE 6: DGAT2 family member expression during 3T3-F442A differentiation

DAY	m86606	
0	1.0434	
13	139.5925	

DGAT2 family member expression in human preadipocytes and primary adipocytes [0362] Expression of 86606 and hDC2 were assessed in human preadipocytes and differentiated human adipocytes. Total RNAs of human primary adipocytes (HPA) and human subcutaneous preadipocytes (HSPA) were purchased from Zen-Bio, Inc. cDNAs were made from these samples and subjected to Taqman analysis. 86606 was expressed at very low levels in preadipocytes and dramatically upregulated during the differentiation of human primary adipocytes. hDC2 was expressed at similar levels in both pre- and primary adipocytes and did not demonstrate upregulation upon differentiation (Table 7).

TABLE 7: DGAT2 family member expression in human preadipocytes and adipocytes

tissue	86606	hDC2
HPA	1792.1694	142.5415
HSPA	3.9581	234.6578

Example 5. Regulation of DGAT2 family member in diet induced obese mice
[0363] To examine the regulation of these genes in a diet induced obesity mouse model, 6 week old C57 BL/6 male mice were fed with either a high-fat diet or a chow-diet for 24 weeks. White adipose tissues were collected from these mice for Taqman analysis. m86606

and mDC2 mRNA are down regulated in WAT from mice fed with a high fat (HF)-diet compared with mice fed with a chow-diet (Table 8).

TABLE 8: DGAT2 family member expression in WAT from mice fed varied diets

Diet	m86606	mDC2
High Fat	1.0664	1.0396
Chow	1.627	2.3457

Example 6. Regulation of DGAT2 family members in genetically obese mice

[0364] To investigate the regulation of these genes in genetic obese mouse model, white adipose tissue were collected from male, 8 week old ob/ob mice and their lean littermates for Taqman analysis. White adipose tissues were collected from these mice for Taqman analysis. mDC2 expression was considerably lower in ob/ob mice compared to wild-type control mice (Table 9). m86606 expression did not change considerably in ob/ob mice when compared to wild-type control mice.

TABLE 9: DGAT2 family member expression in WAT

from ob/ob and WT mice

genotype	mDC2	m86606
WT	9132.42	319.58
ob/ob	407.32	280.46

Example 7. Regulation of DGAT2 family member during fasting and refeeding

[0365] Stimulation of lipolysis is believed to be an effective strategy for decreasing body weight. To examine a possible role of DGAT2 family member in lipolysis we examined its expression in white adipose tissues of mice which had been fasted for 3 days. Under those conditions, lipolysis is maximally stimulated and mice rely on fatty acids released from adipose tissue as an energy source. Fasting mice for 3 days decreased m86606 and mDC2 expression in white adipose tissue. Refeeding for 1 and 2 days caused an increase compared to fasted animals (Table 10).

TABLE 10:DGAT2 family member expression in WAT during fasting and refeeding

treatment	m86606	mDC2
control	6.065	3.9457
3d starvation	1.0625	1.0396
1d refeeding	16.1175	3.5233
2d refeeding	18.1614	4.0593

Example 8: Recombinant Expression of DGAT2 family members in Bacterial Cells [0366] For expression of recombinant DGAT2 family member, a glutathione-S-transferase (GST) fusion polypeptide of a DGAT2 family member protein is expressed in *E. coli*, isolated and characterized. Specifically, a DGAT2 family member polypeptide is genetically fused to GST and this fusion polypeptide is expressed in *E. coli*, e.g., strain PEB199. Expression of the GST-DGAT2 family member fusion protein in PEB199 is induced with IPTG. The recombinant fusion polypeptide is purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography on glutathione beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial lysates, the molecular weight of the resultant fusion polypeptide is determined.

Example 9: Expression of Recombinant DGAT2 family members Protein in mammalian Cells

[0367] To express a DGAT2 family member gene in mammalian cells, for example COS cells, the pcDNA/Amp vector by Invitrogen Corporation (San Diego, CA) is used. This vector contains an SV40 origin of replication, an ampicillin resistance gene, an *E. coli* replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site. A DNA fragment encoding the entire DGAT2 family member protein of interest and an HA tag (Wilson et al. (1984) *Cell* 37:767) or a FLAG tag fused inframe to its 3' end of the fragment is cloned into the polylinker region of the vector, thereby placing the expression of the recombinant protein under the control of the CMV promoter.

[0368] To construct the plasmid, the DGAT2 family member DNA sequence is amplified by PCR using two primers. The 5' primer contains the restriction site of interest followed by approximately twenty nucleotides of the DGAT2 family member coding sequence starting from the initiation codon; the 3' end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the

last 20 nucleotides of the DGAT2 family member coding sequence. The PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CIAP enzyme (New England Biolabs, Beverly, MA). Preferably the two restriction sites chosen are different so that the DGAT2 family member gene is inserted in the correct orientation. The ligation mixture is transformed into E. coli cells (strains HB101, DH5α, SURE, available from Stratagene Cloning Systems, La Jolla, CA, can be used), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment. [0369] COS cells are subsequently transfected with the DGAT2 family memberpcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride coprecipitation methods, DEAE-dextran-mediated transfection, lipofection, or electroporation. Other suitable methods for transfecting host cells can be found in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989. The expression of the DGAT2 family member polypeptide is detected by radiolabelling (35Smethionine or ³⁵S-cysteine available from NEN, Boston, MA, can be used) and immunoprecipitation (Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988) using an HA specific monoclonal antibody. Briefly, the cells are labeled for 8 hours with ³⁵S-methionine (or 35S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% DOC, 50 mM Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS-PAGE. [0370] Alternatively, DNA containing the DGAT2 family member coding sequence is cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites. The resulting plasmid is transfected into COS cells in the manner described above, and the expression of the DGAT2 family member polypeptide is detected by radiolabelling and immunoprecipitation using a DGAT2 family member specific monoclonal antibody.

i

Example 10. Regulation of DGAT2 family members during enterocyte differentiation [0371] Caco-2 is a human intestinal cell line. Upon reach confluence, the cells express characteristics of enterocytic differentiation. During Caco-2 differentiation, triglyceride synthesis is increased (Pamela J et al Journal of Lipid Research, 1991, 32:293-304). To determine whether the expression of 58765 and 60489 are also elevated, we examined the expression of 58765 and 60489 in Caco-2 cells during differentiation.

[0372] Caco-2 cells were purchased from ATCC. They were cultured in DMEM containing 15% fetal bovine serum. The medium was changed 2-3 times per week. At day 3, the cells were at subconfluence. They reached confluence and started differentiating at day 7. At day 25, they were fully differentiated. The cells were harvested for RNA extraction at day 3 and day 25 after they were seeded. Taqman analysis was performed as described above to determine relative expression levels of 58765 and 60489 (Table 11).

[0373] Taqman data demonstrate that both 58765 and 60489 are upregulated during differentiation which correlates well with triglyceride synthesis in these cells (Table 11). This is consistent with playing a role in triglyceride biosynthesis in the small intestine.

TABLE 10:DGAT2 family member expression during enterocyte differentiation

day	58765	60489
3-1	1.86	1.22
3-2	1.13	1.11
25-1	98.36	2.79
25-2	91.13	4.02

Equivalents

[0374] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

What is claimed is:

1. An isolated nucleic acid molecule selected from the group consisting of:

- a) a nucleic acid molecule comprising a nucleotide sequence which is at least 85% identical to the nucleotide sequence of SEQ ID NO:7, SEQ ID NO:19, or SEQ ID NO:61;
- b) a nucleic acid molecule comprising a fragment of at least 300 nucleotides of the nucleotide sequence of SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61;
- a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20 and SEQ ID NO:62;
- d) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20, or SEQ ID NO:62, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62;
- e) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising a sequence consisting of SEQ ID NO:7, SEQ ID NO:19, or SEQ ID NO:61 or a complement thereof, under stringent conditions; and
- f) a nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, and SEQ ID NO:61.
- 2. The isolated nucleic acid molecule of claim 1, which is selected from the group consisting of:
- a) a nucleic acid comprising the nucleotide sequence of SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61, and
- b) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62.

3. The nucleic acid molecule of claim 1 further comprising vector nucleic acid sequences or nucleic acid sequences encoding a heterologous polypeptide.

- 4. A host cell which contains the nucleic acid molecule of claim 1.
- 5. A non-human mammalian host cell containing the nucleic acid molecule of claim 1.
 - 6. An isolated polypeptide selected from the group consisting of:
- a) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 85% identical to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61, or a complement thereof;
- b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61 or a complement thereof under stringent conditions;
- c) a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62; and
- d) a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:18, SEQ ID NO:20 and SEQ ID NO:62.
- 7. The polypeptide of claim 6 further comprising heterologous amino acid sequences.
 - 8. An antibody which selectively binds to a polypeptide of claim 6.
 - 9. A method for producing a polypeptide selected from the group consisting of:

a) a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:18, SEQ ID NO:20, and SEQ ID NO:62;

- b) a polypeptide comprising a fragment of the amino acid sequence of SEQ ID NO:8 or SEQ ID NO20:, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:8, SEQ ID NO:20, or SEQ ID NO:62;
- c) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 85% identical to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:7, SEQ ID NO:19, or SEQ ID NO:61, or a complement thereof;
- d) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:7, SEQ ID NO:19, SEQ ID NO:61, or a complement thereof under stringent conditions;

comprising culturing the host cell of claim 5 under conditions in which the nucleic acid molecule is expressed.

- 10. A method for identifying a compound which binds to a polypeptide of claim 6 comprising the steps of:
- a) contacting a polypeptide, or a cell expressing a polypeptide of claim 6 with a test compound; and
- b) determining whether the polypeptide binds to the test compound; wherein binding of the test compound to the polypeptide is detected by a method selected from the group consisting of:
- a) detection of binding by direct detecting of test compound/polypeptide binding;
 - b) detection of binding using a competition binding assay; or
- c) detection of binding using an assay for diacylglycerol acyltransferase activity.
- 11. A method for modulating the activity of a polypeptide of claim 6 comprising contacting a polypeptide or a cell expressing a polypeptide of claim 6 with a compound

which binds to the polypeptide in a sufficient concentration to modulate the activity of the polypeptide.

- 12. A method for identifying a compound which modulates the activity of a polypeptide of claim 6, comprising:
 - a) contacting a polypeptide of claim 6 with a test compound; and
- b) determining the effect of the test compound on the diacylglycerol acyltransferase activity of the polypeptide to thereby identify a compound which modulates the activity of the polypeptide.
- 13. A method for identifying a compound capable of modulating an adipocyte activity comprising:
 - a) contacting an adipocyte with a test compound; and
- b) assaying the ability of the test compound to modulate the expression of a DGAT2 family member nucleic acid or the activity of a DGAT2 family member polypeptide; and
- c) identifying a compound capable of modulating an adipocyte activity when a test compound modulates the expression of a DGAT2 family member nucleic acid or the activity of a DGAT2 family member polypeptide.
- 14. The method of claim 13, wherein said adipocyte activity comprises any one of DGAT2 family member nucleic acid expression, diacylglyceroltransferase activity, hyperplastic growth, hypertrophic growth, or lipogenesis.
- 15. A method for modulating an adipocyte activity comprising contacting an adipocyte with a DGAT2 family member modulator, thereby modulating said adipocyte activity.
- 16. The method of claim 15, wherein the DGAT2 family member modulator is selected from the group consisting of:
- a) a DGAT2 family member polypeptide comprising the amino acid sequence of SEO ID NO:8, SEQ ID NO:20, or SEQ ID NO:62, or a fragment thereof;
- b) a DGAT2 family member nucleic acid comprising the nucleotide sequence of SEQ ID NO:7, 19, 21, or a fragment thereof;
 - c) an anti-DGAT2 family member antibody; and
 - d) an organic small molecule.

17. A method of determining acyltransferase activity of a polypeptide comprising:

- a) combining a sample comprising an acyltransferase polypeptide with a first fatty acyl coA substrate and a second acylglyceride substrate under conditions suitable for enzyme activity and
- b) determining the amount of acylglycerol product formation, thereby determining acyltransferase activity,

wherein one substrate is biotinylated and the other substrate is radiolabeled, and wherein the resulting acylglycerol product is detected using biotin capture and radiometric detection.

- 18. The method of claim 17, wherein the method detects diacylglycerol acyltransferase activity or monoacylglycerol acyltransferase activity.
- 19. The method of claim 18, wherein the polypeptide comprises a DGAT2 family member polypeptide selected from the group consisting of:
- a) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 85% identical to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61, or a complement thereof;
- b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:7, SEQ ID NO:19 or SEQ ID NO:61 or a complement thereof under stringent conditions;
- e) a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:8, SEQ ID NO:20 or SEQ ID NO:62; and
- f) a polypeptide comprising the amino acid sequence selelcted from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:18, SEQ ID NO:20 and SEQ ID NO:62.
- 20. The method of claim 17, wherein product formation is detected by a scintillation proximity assay.

21. The method of claim 17, wherein the first substrate is a biotin labeled fatty acyl coA and the second substrate is a radiolabeled diacylglycerol.

- 22. The method of claim 17, wherein the first substrate is a radiolabeled fatty acyl coA and the second substrate is a biotin labeled diacylglycerol.
- 23. A method of identifying a compound which modulates the activity of an acyltransferase, comprising:
- a) combining a sample comprising an acyltransferase polypeptide with a first fatty acyl coA substrate and a second acylglyceride substrate under conditions suitable for enzyme activity;
- b) contacting the sample comprising the acyltransferase and substrates with a test compound;
- c) comparing the acyltransferase activity in the presence of compound with acyltransferase activity in the absence of compound; and
- c) determining the effect of the test compound on the acyltransferase activity, wherein acyltransferase activity is determined by the method of claim 17, and wherein a change in the amount of acyltransferase activity in the presence of test compound thereby identifies a compound which modulates activity of the acyltransferase.
- 24. A method for identifying a compound capable of treating a disorder characterized by aberrant DGAT2 family member nucleic acid expression or DGAT2 family member polypeptide activity comprising assaying the ability of the compound to modulate DGAT2 family member nucleic acid expression or DGAT2 family member polypeptide activity, thereby identifying a compound capable of treating a disorder characterized by aberrant DGAT2 family member nucleic acid expression or DGAT2 family member polypeptide activity.
- 25. The method of claim 24, wherein the disorder is a disorder associated with obesity, aberrant lipogenesis or triglyceride synthesis.
- 26. The method of claim 24, wherein the ability of the compound to modulate the activity of the DGAT2 family member polypeptide is determined by detecting the diacylglycerol acyltransferase activity.
- 27. A method for treating a subject having an obesity disorder characterized by aberrant DGAT2 family member polypeptide activity or aberrant DGAT2 family member

nucleic acid expression comprising administering to the subject a DGAT2 family member modulator, thereby treating said subject having an obesity disorder.

- 28. The method of claim 27, wherein the DGAT2 family member modulator is selected from the group consisting of:
 - a) an organic small molecule;
 - b) an anti-DGAT2 family member antibody;
- c) a DGAT2 family member polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 and SEQ ID NO:62, or a fragment thereof; and
- d) a DGAT2 family member polypeptide comprising an amino acid sequence which is at least 90 percent identical to the amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, and SEQ ID NO:62
- 29. The method of claim 27, wherein the disorder is a disorder associated with obesity, aberrant lipogenesis or triglyceride synthesis.

SEQUENCE LISTING

<110> Gimeno, Ruth
Wu, Zhidan
Kapeller-Libermann, Rosana
Hubbard, Brian K.

<120> HUMAN DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) FAMILY MEMBERS AND USES THEREFOR

<130> MPI01-263 <150> 60/341,947 <151> 2002-12-19 <150> 60/411,859 <151> 2002-09-19 <160> 65 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 1005 <212> DNA <213> human <220> <221> CDS <222> (1)...(1005) <400> 1 atg gta gag ttc gcg ccc ttg ttt atg ccg tgg gag cgc agg ctg cag Met Val Glu Phe Ala Pro Leu Phe Met Pro Trp Glu Arg Arg Leu Gln aca ctt gct gtc cta cag ttt gtc ttc tcc ttc ttg gca ctg gcc gag Thr Leu Ala Val Leu Gln Phe Val Phe Ser Phe Leu Ala Leu Ala Glu atc tgc act gtg ggc ttc ata gcc ctc ctg ttt aca aga ttc tgg ctc Ile Cys Thr Val Gly Phe Ile Ala Leu Leu Phe Thr Arg Phe Trp Leu 144 ctc act gtc ctg tat gcg gcc tgg tgg tat ctg gac cga gac aag cca Leu Thr Val Leu Tyr Ala Ala Trp Trp Tyr Leu Asp Arg Asp Lys Pro cgg cag ggg ggc cgg cac atc cag gcc atc agg tgc tgg act ata tgg Arg Gln Gly Gly Arg His Ile Gln Ala Ile Arg Cys Trp Thr Ile Trp 240 aag tac atg aag gac tat ttc ccc atc tcg ctg gtc aag act gct gag Lys Tyr Met Lys Asp Tyr Phe Pro Ile Ser Leu Val Lys Thr Ala Glu ctg gac ccc tct cgg aac tac att gcg ggc ttc cac ccc cat gga gtc 336 Leu Asp Pro Ser Arg Asn Tyr Ile Ala Gly Phe His Pro His Gly Val ctg gca gtc gga gcc ttt gcc aac ctg tgc act gag agc aca ggc ttc 384 Leu Ala Val Gly Ala Phe Ala Asn Leu Cys Thr Glu Ser Thr Gly Phe tet teg ate tte eec ggt ate ege eec cat etg atg atg etg ace ttg 432 Ser Ser Ile Phe Pro Gly Ile Arg Pro His Leu Met Met Leu Thr Leu 135 130

tgg Trp 145	ttc Phe	cgg Arg	gcc Ala	ccc Pro	ttc Phe 150	ttc Phe	aga Arg	gat Asp	tạc Tyr	atc Ile 155	atg Met	tct Ser	gca Ala	Gly ggg	ttg Leu 160	480
gtc Val	aca Thr	tca Ser	gaa Glu	aag Lys 165	gag Glu	agt Ser	gct Ala	gct Ala	cac His 170	att Ile	ctg Leu	aac Asn	agg Arg	aag Lys 175	ggt Gly	528
ggc Gly	gga Gly	aac Asn	ttg Leu 180	ctg Leu	ggc Gly	atc Ile	att Ile	gta Val 185	GJA aaa	ggt Gly	gcc Ala	cag Gln	gag Glu 190	gcc Ala	ctg Leu	576
gat Asp	gcc Ala	agg Arg 195	cct Pro	gga Gly	tcc Ser	ttc Phe	acg Thr 200	ctg Leu	tta Leu	ctg Leu	cgg Arg	aac Asn 205	cga Arg	aag Lys	ggc Gly	624
ttc Phe	gtc Val 210	agg Arg	ctc Leu	gcc Ala	ctg Leu	aca Thr 215	cac His	Gly ggg	gca Ala	ccc Pro	ctg Leu 220	gtg Val	cca Pro	atc Ile	ttc Phe	672
tcc Ser 225	ttc Phe	ggg	gag Glu	aat Asn	gac Asp 230	cta Leu	ttt Phe	gac Asp	cag Gln	att Ile 235	ccc Pro	aac Asn	tct Ser	tct Ser	ggc Gly 240	720
tcc Ser	tgg Trp	tta Leu	cgc Arg	tat Tyr 245	atc Ile	cag Gln	aat Asn	cgg Arg	ttg Leu 250	cag Gln	aag Lys	atc Ile	atg Met	ggc Gly 255	atc Ile	768
tcc Ser	ctc Leu	cca Pro	ctc Leu 260	ttt Phe	cat His	ggc	cgt Arg	ggt Gly 265	gtc Val	ttc Phe	cag Gln	tac Tyr	agc Ser 270	ttt Phe	ggt Gly	816
tta Leu	ata Ile	ccc Pro 275	Tyr	cgc Arg	cgg Arg	ccc	atc Ile 280	acc Thr	act Thr	gtg Val	gtg Val	ggg Gly 285	aag Lys	ccc Pro	atc Ile	864
gag Glu	gta Val 290	Gln	aag Lys	acg Thr	ctg Leu	cat His 295	ccc Pro	tcg Ser	gag Glu	gag Glu	gag Glu 300	Va⊥	aac Asn	cag Gln	ctg Leu	912
cac His 305	Gln	cgt Arg	tat Tyr	atc Ile	aaa Lys 310	gag Glu	ctg Leu	tgc Cys	aac Asn	ctc Leu 315	Phe	gag Glu	gcc Ala	cac His	aaa Lys 320	960
ctt Leu	aag Lys	ttc Phe	aac Asn	atc Ile 325	Pro	gct Ala	gac Asp	cag Gln	cac His 330	Leu	gag Glu	ttc Phe	tgc Cys	tga *		1005

<210> 2 <211> 334

<212> PRT

<213> human

```
Leu Asp Pro Ser Arg Asn Tyr Ile Ala Gly Phe His Pro His Gly Val
            100
                                  105
                                                        110
Leu Ala Val Gly Ala Phe Ala Asn Leu Cys Thr Glu Ser Thr Gly Phe
        115
                              120
                                                    125
Ser Ser Ile Phe Pro Gly Ile Arg Pro His Leu Met Met Leu Thr Leu
                                               140
                          135
   130
Trp Phe Arg Ala Pro Phe Phe Arg Asp Tyr Ile Met Ser Ala Gly Leu
                                           155
                    150
Val Thr Ser Glu Lys Glu Ser Ala Ala His Ile Leu Asn Arg Lys Gly
                                      .170
              165
Gly Gly Asn Leu Leu Gly Ile Ile Val Gly Gly Ala Gln Glu Ala Leu
                                  185
            180
Asp Ala Arg Pro Gly Ser Phe Thr Leu Leu Leu Arg Asn Arg Lys Gly
                              200
                                                    205
        195
Phe Val Arg Leu Ala Leu Thr His Gly Ala Pro Leu Val Pro Ile Phe
                                               220
                          215
    210
Ser Phe Gly Glu Asn Asp Leu Phe Asp Gln Ile Pro Asn Ser Ser Gly
                                          235
                     230
Ser Trp Leu Arg Tyr Ile Gln Asn Arg Leu Gln Lys Ile Met Gly Ile
                 245
                                      250
Ser Leu Pro Leu Phe His Gly Arg Gly Val Phe Gln Tyr Ser Phe Gly
                                  265
                                                        270
             260
Leu Ile Pro Tyr Arg Arg Pro Ile Thr Thr Val Val Gly Lys Pro Ile
                                                   285
                              280
        275
Glu Val Gln Lys Thr Leu His Pro Ser Glu Glu Glu Val Asn Gln Leu
                          295
                                               300
    290
His Gln Arg Tyr Ile Lys Glu Leu Cys Asn Leu Phe Glu Ala His Lys
                     310
                                         315
Leu Lys Phe Asn Ile Pro Ala Asp Gln His Leu Glu Phe Cys
<210> 3
<211> 855
<212> DNA
<213> human
<220>
<221> CDS
<222> (1)...(855)
<400> 3
atg gta gag ttc gcg ccc ttg ttt atg ccg tgg gag cgc agg ctg cag
Met Val Glu Phe Ala Pro Leu Phe Met Pro Trp Glu Arg Arg Leu Gln
aca ctt gct gtc cta cag ttt gtc ttc tcc ttc ttg gca ctg gcc gag
Thr Leu Ala Val Leu Gln Phe Val Phe Ser Phe Leu Ala Leu Ala Glu
atc tgc act gtg ggc ttc ata gcc ctc ctg ttt aca aga ttc tgg ctc Ile Cys Thr Val Gly Phe Ile Ala Leu Leu Phe Thr Arg Phe Trp Leu
                                                                        144
                               40
ctc act gtc ctg tat gcg gcc tgg tgg tat ctg gac cga gac aag cca
Leu Thr Val Leu Tyr Ala Ala Trp Trp Tyr Leu Asp Arg Asp Lys Pro
                                                                        192
```

105

240

288

cgg cag ggg ggc cgg cac atc cag gcc atc agg tgc tgg act ata tgg Arg Gln Gly Gly Arg His Ile Gln Ala Ile Arg Cys Trp Thr Ile Trp

aag tac atg aag gac tat ttc ccc atc tcg ctg gtc aag act gct gag Lys Tyr Met Lys Asp Tyr Phe Pro Ile Ser Leu Val Lys Thr Ala Glu

ctg gac ccc tct cgg aac tac att gcg ggc ttc cac ccc cat gga gtc Leu Asp Pro Ser Arg Asn Tyr Ile Ala Gly Phe His Pro His Gly Val

100

ctg Leu	gca Ala	gtc Val 115	gga Gly	gcc Ala	ttt Phe	gcc Ala	aac Asn 120	ctg Leu	tgc Cys	act Thr	gag Glu	agc Ser 125	aca Thr	ggc Gly	ttc Phe	384
tct Ser	tcg Ser 130	atc Ile	ttc Phe	ccc Pro	ggt Gly	atc Ile 135	cgc Arg	ccc Pro	cat His	ctg Leu	atg Met 140	atg Met	ccg Pro	acc Thr	ttg Leu	432
tgg Trp 145	ttc Phe	cgg Arg	gcc Ala	ccc Pro	ttc Phe 150	ttc Phe	aga Arg	gat Asp	tac Tyr	atc Ile 155	atg Met	tct Ser	gca Ala	GJÀ aaa	ttg Leu 160	480
gtc Val	aca Thr	tca Ser	gaa Glu	aag Lys 165	gag Glu	agt Ser	gct Ala	gct Ala	cac His 170	att Ile	ctg Leu	aac Asn	agg Arg	aag Lys 175	ggt Gly	528
Gly	gga Gly	aac Asn	ttg Leu 180	ctg Leu	ggc Gly	atc Ile	att Ile	gta Val 185	GJÀ aaa	ggt Gly	gcc Ala	cag Gln	gag Glu 190	gcc Ala	ctg Leu	576
gat Asp	gcc Ala	agg Arg 195	cct Pro	gga Gly	tcc Ser	ttc Phe	acg Thr 200	ctg Leu	tta Leu	ctg Leu	cgg Arg	aac Asn 205	cga Arg	aag Lys	ggc	624
ttc Phe	gtc Val 210	agg Arg	ctc Leu	gcc Ala	ctg Leu	aca Thr 215	cac His	ggg ggg	tat Tyr	caa Gln	gcc Ala 220	tct Ser	Gly	aag Lys	agc Ser	672
act Thr 225	ctg Leu	ggt Gly	tca Ser	gtt Val	ggc Gly 230	aat Asn	tgg Trp	caa Gln	gga Gly	ttt Phe 235	tat Tyr	ttt Phe	ggt Gly	Gly	aag Lys 240	720
atg Met	gca Ala	gag Glu	acg Thr	aat Asn 245	gca Ala	gat Asp	tct Ser	att Ile	ttg Leu 250	gta Val	gag Glu	att	ttc Phe	agt Ser 255	cca Pro	768
ttc Phe	aca Thr	att Ile	aag Lys 260	att Ile	ata Ile	ttt Phe	tgg Trp	tgt Cys 265	ctt Leu	atg Met	ccc Pro	aaa Lys	tac Tyr 270	cta Leu	gaa Glu	816
				cgg Arg												855

<210> 4 <211> 284 <212> PRT

<213> human

<400> 4 Met Val Glu Phe Ala Pro Leu Phe Met Pro Trp Glu Arg Arg Leu Gln
1 10 15 5 15 10 Thr Leu Ala Val Leu Gln Phe Val Phe Ser Phe Leu Ala Leu Ala Glu 30 20 25 Ile Cys Thr Val Gly Phe Ile Ala Leu Leu Phe Thr Arg Phe Trp Leu 40 45 35 Leu Thr Val Leu Tyr Ala Ala Trp Trp Tyr Leu Asp Arg Asp Lys Pro 50 55 60 Arg Gln Gly Gly Arg His Ile Gln Ala Ile Arg Cys Trp Thr Ile Trp 65 70 75 80 70 Lys Tyr Met Lys Asp Tyr Phe Pro Ile Ser Leu Val Lys Thr Ala Glu 85 90 Leu Asp Pro Ser Arg Asn Tyr Ile Ala Gly Phe His Pro His Gly Val 110 105 Leu Ala Val Gly Ala Phe Ala Asn Leu Cys Thr Glu Ser Thr Gly Phe 125 120 Ser Ser Ile Phe Pro Gly Ile Arg Pro His Leu Met Met Pro Thr Leu

```
140
                         135
Trp Phe Arg Ala Pro Phe Phe Arg Asp Tyr Ile Met Ser Ala Gly Leu
                                         . 155
                     150
145
Val Thr Ser Glu Lys Glu Ser Ala Ala His Ile Leu Asn Arg Lys Gly
                165
                                      170
                                                            175
Gly Gly Asn Leu Leu Gly Ile Ile Val Gly Gly Ala Gln Glu Ala Leu
                                  185
                                                       190
            180
Asp Ala Arg Pro Gly Ser Phe Thr Leu Leu Leu Arg Asn Arg Lys Gly
                              200
                                                   205
        195
Phe Val Arg Leu Ala Leu Thr His Gly Tyr Gln Ala Ser Gly Lys Ser
                         215
                                               220
    210
Thr Leu Gly Ser Val Gly Asn Trp Gln Gly Phe Tyr Phe Gly Gly Lys
                     230
                                          235
225
Met Ala Glu Thr Asn Ala Asp Ser Ile Leu Val Glu Ile Phe Ser Pro
                                                            255
                 245
                                      250
Phe Thr Ile Lys Ile Ile Phe Trp Cys Leu Met Pro Lys Tyr Leu Glu
                                  265
            260
Lys Phe Pro Gln Arg Arg Leu Ser Asp Leu Arg Asn
                              280
<210> 5
<211> 1748
<212> DNA
<213> mus musculus
<220>
<221> CDS
<222> (254)...(1012)
<221> misc_feature
<222> (1)...(1748)
<223> n = A, T, C or G
<400> 5
ccacgcgtcc gtggagttcg ccccctgtt ggtaccatgg gagcgcaggt tacagacctt 60
cgcggtcctt cagtgggtct tctccttcct ggccttggcc cagctctgca tcgtcatctt 120
cgtaggcctc ctattcacaa ggttctggct cttctctgtc ctgtatgcca cctggtggta 180
cctggactgg gacaagccgc ggcagggagg ccggcccatc cagttettca gacgettggc 240
catatggaag tac atg aag gat tat ttc cct gtc/tct ttg gtc aag aca
Met Lys Asp Tyr Phe Pro Val Ser Leu Val Lys Thr
                                                                       337
gct gag ctg gac cct tcc cgg aac tac atc gcg ggc ttc cac ccc cat
Ala Glu Leu Asp Pro Ser Arg Asn Tyr Ile Ala Gly Phe His Pro His
                               20
gga gtc cta gca gct gga gcc ttt ctt aac ctg tgc act gaa agc acg
Gly Val Leu Ala Ala Gly Ala Phe Leu Asn Leu Cys Thr Glu Ser Thr
ggc ttt acc tcg ctt ttc ccg ggc atc cgc tcc tat ctg atg atg ctg
                                                                       433
Gly Phe Thr Ser Leu Phe Pro Gly Ile Arg Ser Tyr Leu Met Met Leu
                       50
act gtg tgg ttc cgg gcc ccc ttc ttc cga gat tac atc atg tct ggg
                                                                       481
Thr Val Trp Phe Arg Ala Pro Phe Phe Arg Asp Tyr Ile Met Ser Gly
                                        70
ggg ctg gtc tca tca gaa aag gtg agt gcc gat cac att ctg tcc agg
Gly Leu Val Ser Ser Glu Lys Val Ser Ala Asp His Ile Leu Ser Arg
                                                                       529
                                    85
                                                                       577
aag ggc ggc ggg aac ttg ctt gcc atc atc gtt ggg ggc gcg cag gag
Lys Gly Gly Asn Leu Leu Ala Ile Ile Val Gly Gly Ala Gln Glu
                                                    105
gca ctg gac gcc agg cct gga gcc tac agg ctg ctg ctg aag aat cgc
Ala Leu Asp Ala Arg Pro Gly Ala Tyr Arg Leu Leu Leu Lys Asn Arg
```

	110					115					120					
		ttc Phe														673
		tcc Ser														721
		acc Thr														769
		tcc Ser 175														817
		ctc Leu														865
		gag Glu														913
		cac His														961
		ctc Leu														1009
taa *	gtgt	ctcc	ag d	ccgga	agad	ca go	etgca	atcto	g ago	egact	gca	ggag	gtgtg	ggg		1062
ggaa cctg ctga aaag ccag gcca atac tagg acac cag	agago yteet aggto yagaa ygeet aagto ccaaa yteto ctget	ggg get to the care of the car	gcago ctcco aaact ctgto cccto agcco cccca ccaca	etect cacac cgtto cgtto catac cagaa cagaa cagag gcact	ta at to acc acc acc acc acc acc acc acc acc ac	ceto gtaat gtaat cecto cecto agat gageo agggo	ggat gtag gtag gatgo gatgo taagg taagg cagag	tto g aat a tto c tto c tto g ago g tto g aco	gaaco gaggo taaao gaggo ttct ttca gcao cctct	etge ggaa gaca stcc agat gggg cacc stac	agco aagco acco gtgo ctct tcac ctta	caaag caagg caagg caagg cgagg ctgac ctgac catgac	get of a grace	etgagagagagagagagagagagagagagagagagagaga	caagat ggtctc agatcc agggag agcacc ggggga gctatg gaggg agcgcc gaactc	1182 1242 1302 1362 1422 1482 1542 1602 1662
<212	l> 25 2> PF		ıscu]	lus										٠		
<400 Met		Asp	Tyr	Phe	Pro	Val	Ser	Leu	Val	Lys	Thr	Ala	Glu	Leu	Asp	
l Pro	Ser	Arg	Asn	5 Tyr	Ile	Ala	Gly	Phe	10 His	Pro	His	Gly	Val	15 Leu	Ala	
Ala	Gly	Ala	20 Phe	Leu	Asn	Leu		25 Thr	Glu	Ser	Thr		30 Phe	Thr	Ser	
Leu		35 Pro	Gly	Ile	Arg		40 Tyr	Ļeu	Met	Met	Leu	45 Thr	Val	Trp	Phe	
	50 Ala	Pro	Phe	Phe		55 Asp	Tyr	Ile	Met		Gly	Gly	Leu	Val		
65 Ser	Glu	Lys	Val	Ser 85	70 Ala	Asp	His	Ile	Leu 90	75 Ser	Arg	Lys	Gly	Gly 95	80 Gly	

```
Asn Leu Leu Ala Ile Ile Val Gly Gly Ala Gln Glu Ala Leu Asp Ala
                               105
           100
Arg Pro Gly Ala Tyr Arg Leu Leu Lys Asn Arg Lys.Gly Phe Ile
                           120
       115
Met Leu Ala Leu Met His Gly Ala Ala Leu Cys Ala Ile Phe Ser Phe
                                           140
                       135
   130
Gly Glu Asn Asn Leu Phe Asn Gln Val Glu Asn Thr Pro Gly Thr Trp
                   150
                                       155
145
Leu Arg Trp Ile Gln Asn Arg Leu Gln Lys Ile Met Gly Ile Ser Leu
                                                      175
                                   170
               165
Pro Leu Phe His Gly Arg Gly Val Phe Gln Tyr Ser Phe Gly Leu Met
                                                  190
                               185
           180
Pro Phe Arg Gln Pro Ile Thr Thr Ile Val Gly Lys Pro Ile Glu Val
                                               205
                           200
       195
Gln Met Thr Pro Gln Pro Ser Arg Glu Glu Val Asp Arg Leu His Gln
                       215
                                           220
Arg Tyr Ile Lys Glu Leu Cys Lys Leu Phe Glu Glu His Lys Leu Lys
                  230
                                       235
225
Phe Asn Val Pro Glu Asp Gln His Leu Glu Phe Cys
<210> 7
<211> 1263
<212> DNA
<213> human
<220>
<221> CDS
<222> (171)...(1196)
<400>7
cccactcaca cacctmmska wmrsrmgyyr myccacgcgt ccgtttgcga cttagccagg 60
cccccaaagc tgggctcctg tagggagaaa gtctgcccag gtccacatcc aagccttcat 120
cgtttgtcct ccgggttctg ggatcctgct ggaagagggg agcttctgca atg gga
                                                       Met Glv
gtt gcc aca acc ctg cag ccc cca acc act tcc aaa acc ttg cag aag
Val Ala Thr Thr Leu Gln Pro Pro Thr Thr Ser Lys Thr Leu Gln Lys
                                                                 272
cag cat cta gaa gca gtg ggc gcc tac caa tat gtg ctc act ttc ctc
Gln His Leu Glu Ala Val Gly Ala Tyr Gln Tyr Val Leu Thr Phe Leu
320
Phe Met Gly Pro Phe Phe Ser Leu Leu Val Phe Val Leu Leu Phe Thr
                                                                 368
tca ctc tgg ccc ttc tct gtt ttt tac ttg gtg tgg ctc tat gtg gac
Ser Leu Trp Pro Phe Ser Val Phe Tyr Leu Val Trp Leu Tyr Val Asp
                                     60
 tgg gac aca ccc aac caa ggt gga agg cgt tcg gag tgg ata agg aac
 Trp Asp Thr Pro Asn Gln Gly Gly Arg Arg Ser Glu Trp Ile Arg Asn
 cgg gca att tgg aga caa cta agg gat tat tat cct gtc aag ctg gtg
                                                                 464
Arg Ala Ile Trp Arg Gln Leu Arg Asp Tyr Tyr Pro Val Lys Leu Val
                             90
 aaa aca gca gag ctg ccc ccg gat cgg aac tac gtg ctg ggc gcc cac
                                                                 512 '
 Lys Thr Ala Glu Leu Pro Pro Asp Arg Asn Tyr Val Leu Gly Ala His
 cct cat ggg atc atg tgt aca ggc ttc ctc tgt aat ttc tcc acc gag
                                                                  560
 Pro His Gly Ile Met Cys Thr Gly Phe Leu Cys Asn Phe Ser Thr Glu
                                                            130
```

125

agc Ser	aat Asn	ggc	ttc Phe	tcc Ser 135	cag Gln	ctc Leu	ttc Phe	ccg Pro	ggg Gly 140	ctc Leu	cgg Arg	ccc Pro	tgg Trp	tta Leu 145	gcc Ala	608
gtg Val	ctg Leu	gct Ala	ggc Gly 150	ctc Leu	ttc Phe	tac Tyr	ctc Leu	ccg Pro 155	gtc Val	tat Tyr	cgc Arg	gac Asp	tac Tyr 160	atc Ile	atg Met	656
tcc Ser	ttt Phe	gga Gly 165	ctc Leu	tgt Cys	ccg Pro	gtg Val	agc Ser 170	cgc Arg	cag Gln	agc Ser	ctg Leu	gac Asp 175	ttc Phe	atc Ile		704
tcc Ser	cag Gln 180	ccc Pro	cag Gln	ctc Leu	ggg Gly	cag Gln 185	gcc Ala	gtg Val	gtc Val	atc Ile	atg Met 190	gtg Val	GjA aaa	ggt Gly	gcg Ala	752
cac His 195	gag Glu	gcc Ala	ctg Leu	tat Tyr	tca Ser 200	gtc Val	ccc Pro	Gly	gag Glu	cac His 205	tgc Cys	ctt Leu	acg Thr	ctc Leu	cag Gln 210	800
aag Lys	cgc Arg	aaa Lys	ggc Gly	ttc Phe 215	gtg Val	cgc Arg	ctg Leu	gcg Ala	ctg Leu 220	agg Arg	cac	egj y ggg	gcg Ala	tcc Ser 225	ctg Leu	848
gtg Val	ccc Pro	gtg Val	tac Tyr 230	tcc Ser	ttt Phe	GJÀ aaa	gag Glu	aat Asn 235	gac Asp	atc Ile	ttt Phe	aga Arg	ctt Leu 240	aag Lys	gct Ala	896
ttt Phe	gcc Ala	aca Thr 245	ggc	tcc Ser	tgg Trp	cag Gln	cat His 250	\mathtt{Trp}	tgc Cys	cag Gln	ctc Leu	acc Thr 255	ttc Phe	aag Lys	aag Lys	944
ctc Leu	atg Met 260	Gly	ttc Phe	tct Ser	cct Pro	tgc Cys 265	atc Ile	ttc Phe	tgg Trp	ggt Gly	cgc Arg 270	ggt Gly	ctc Leu	ttc Phe	tca Ser	992
gcc Ala 275	Thr	tcc Ser	tgg Trp	ggc Gly	ctg Leu 280	Leu	ccc	ttt Phe	gct Ala	gtg Val 285	Pro	atc Ile	acc Thr	act Thr	gtg Val 290	1040
gtg Val	ggc	cgc Arg	ccc Pro	atc Ile 295	Pro	gtc Val	ccc	cag Gln	cgc Arg 300	Leu	cac His	ccc Pro	acc	gag Glu 305	gag Glu	1088
gaa Glu	gtc Val	aat Asn	cac His 310	Tyr	cac His	gcc Ala	Leu	tac Tyr 315	Met	acg Thr	gcc Ala	ctg Leu	gag Glu 320	Gin	ctc Leu	1136
ttc Phe	gag Glu	gag Glu 325	His	aag Lys	gaa Glu	ago Ser	tgt Cys 330	GTA	gtc Val	ccc Pro	gct Ala	tcc Ser 335	Inr	tgc Cys	ctc Leu	1184
		: Ile		gcc	tggc	cgc	ggcc	tttc	gc t	gago	ccct	g ag	ccca	aggc	!	1236
act	gaga:	ıcct	ccac	ccac	tg t	ggac	tc									1263
<21 <21	.0> 8 .1> 3 .2> E .3> h	41	1													
Met	00> 8 Gly	} v Val	Ala		Thr	: Leu	ı Glr	ı Pro		Thi	Thr	Ser	. Lys	Thr 15	Leu	
1 Glr	ı Lys	Glr	n His 20	5 Let	ı Glı	ı Ala	a Val	l Gly 25	10 / Ala	туз	c Glr	1 Тут	7 Val		1 Thr	

```
Phe Leu Phe Met Gly Pro Phe Phe Ser Leu Leu Val Phe Val Leu Leu
        35
Phe Thr Ser Leu Trp Pro Phe Ser Val Phe Tyr Leu Val Trp Leu Tyr
                         55
                                              60
    50
Val Asp Trp Asp Thr Pro Asn Gln Gly Gly Arg Arg Ser Glu Trp Ile
                                          75
                     70
Arg Asn Arg Ala Ile Trp Arg Gln Leu Arg Asp Tyr Tyr Pro Val Lys
                                                           95
                                      90
                 85
Leu Val Lys Thr Ala Glu Leu Pro Pro Asp Arg Asn Tyr Val Leu Gly
                                                       110
                                  105
            100
Ala His Pro His Gly Ile Met Cys Thr Gly Phe Leu Cys Asn Phe Ser
                                                  125
                             120
        115
Thr Glu Ser Asn Gly Phe Ser Gln Leu Phe Pro Gly Leu Arg Pro Trp
                                              140
                         135
Leu Ala Val Leu Ala Gly Leu Phe Tyr Leu Pro Val Tyr Arg Asp Tyr
                                                               160
                                          155
                     150
Ile Met Ser Phe Gly Leu Cys Pro Val Ser Arg Gln Ser Leu Asp Phe
                                      170
                 165
Ile Leu Ser Gln Pro Gln Leu Gly Gln Ala Val Val Ile Met Val Gly
                                                       190
                                  185
             180
Gly Ala His Glu Ala Leu Tyr Ser Val Pro Gly Glu His Cys Leu Thr
                              200
        195
Leu Gln Lys Arg Lys Gly Phe Val Arg Leu Ala Leu Arg His Gly Ala
                                              220
                         215
Ser Leu Val Pro Val Tyr Ser Phe Gly Glu Asn Asp Ile Phe Arg Leu
                                          235
                     230
Lys Ala Phe Ala Thr Gly Ser Trp Gln His Trp Cys Gln Leu Thr Phe
                                      250
                 245
Lys Lys Leu Met Gly Phe Ser Pro Cys Ile Phe Trp Gly Arg Gly Leu
                                                       270
                                  265
Phe Ser Ala Thr Ser Trp Gly Leu Leu Pro Phe Ala Val Pro Ile Thr
                              280
         275
Thr Val Val Gly Arg Pro Ile Pro Val Pro Gln Arg Leu His Pro Thr
                                               300
                          295
    290
Glu Glu Glu Val Asn His Tyr His Ala Leu Tyr Met Thr Ala Leu Glu
                                          315
                     310
Gln Leu Phe Glu Glu His Lys Glu Ser Cys Gly Val Pro Ala Ser Thr
                 325
Cys Leu Thr Phe Ile
             340
 <210> 9
 <211> 2428
 <212> DNA
 <213> human
 <220>
 <221> CDS
 <222> (220) ... (1386)
 <400> 9
 agegggetge ggetgeegee tetgetgggg tetaggetgt ttetetegeg ecaccactgg 60
 ccgccggccg cagctccagg tgtcctagcc gcccagcctc gacgccgtcc cgggacccct 120
 gtgctctgcg cgaagccctg gccccggggg ccggggcatg ggccaggggc gcggggtgaa 180
 geggetteec geggggeegt gactgggegg getteagee atg aag ace etc ata
                                              Met Lys Thr Leu Ile
 gcc gcc tac tcc ggg gtc ctg cgc ggc gag cgt cag gcc gag gct gac Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu Arg Gln Ala Glu Ala Asp
 cgg agc cag cgc tct cac gga gga cct gcg ctg tcg cgc gag ggg tct
                                                                      330
 Arg Ser Gln Arg Ser His Gly Gly Pro Ala Leu Ser Arg Glu Gly Ser
                                    30
 ggg aga tgg ggc act gga tcc agc atc ctc tcc gcc ctc cag gac ctc
                                                                       378
 Gly Arg Trp Gly Thr Gly Ser Ser Ile Leu Ser Ala Leu Gln Asp Leu
```

		40					45					50				
ttc Phe	tct Ser 55	gtc Val	acc Thr	tgg Trp	ctc Leu	aat Asn 60	agg Arg	tcc Ser	aag Lys	gtg Val	gaa Glu 65	aag Lys	cag Gln	cta Leu	cag Gln	426
gtc Val 70	atc Ile	tca Ser	gtg Val	ctc Leu	cag Gln 75	tgg Trp	gtc Val	ctg Leu	tcc Ser	ttc Phe 80	ctt Leu	gta Val	ctg Leu	gga Gly	gtg Val 85	474
gcc Ala	tgc Cys	agt Ser	gcc Ala	atc Ile 90	ctc Leu	atg Met	tac Tyr	ata Ile	ttc Phe 95	tgc Cys	act Thr	gat Asp	tgc Cys	tgg Trp 100	ctc Leu	522
atc Ile	gct Ala	gtg Val	ctc Leu 105	tac Tyr	ttc Phe	act Thr	tgg Trp	ctg Leu 110	gtg Val	ttt Phe	gac Asp	tgg Trp	aac Asn 115	aca Thr	ccc Pro	570
aag Lys	aaa Lys	ggt Gly 120	ggc	agg Arg	agg Arg	tca Ser	cag Gln 125	tgg Trp	gtc Val	cga Arg	aac Asn	tgg Trp 130	gct Ala	gtg Val	tgg Trp	618
cgc Arg	tac Tyr 135	ttt Phe	cga Arg	gac Asp	tac Tyr	ttt Phe 140	ccc Pro	atc Ile	cag Gln	ctg Leu	gtg Val 145	aag Lys	aca Thr	cac His	aac Asn	666 ,
ctg Leu 150	ctg Leu	acc Thr	acc Thr	agg Arg	aac Asn 155	tat Tyr	atc Ile	ttt Phe	gga Gly	tac Tyr 160	cac His	ccc Pro	cat His	ggt Gly	atc Ile 165	714
atg Met	ggc Gly	ctg Leu	ggt Gly	gcc Ala 170	ttc Phe	tgc Cys	aac Asn	ttc Phe	agc Ser 175	aca Thr	gag Glu	gcc Ala	aca Thr	gaa Glu 180	gtg Val	762
agc Ser	aag Lys	aag Lys	ttc Phe 185	cca Pro	ggc Gly	ata Ile	cgg Arg	cct Pro 190	tac Tyr	ctg Leu	gct Ala	aca Thr	ctg Leu 195	gca Ala	Gly	810
aac Asn	ttc Phe	cga Arg 200	atg Met	cct Pro	gtg Val	ttg Leu	agg Arg 205	gag Glu	tac Tyr	ctg Leu	atg Met	tct Ser 210	gga Gly	ggt Gly	atc Ile	858
tgc Cys	cct Pro 215	gtc Val	agc Ser	cgg Arg	gac Asp	acc Thr 220	ata Ile	gac Asp	tat Tyr	ttg Leu	ctt Leu 225	tca Ser	aag Ļys	aat Asn	GJA aaa	906
agt Ser 230	ggc	aat Asn	gct Ala	atc .Ile	atc Ile 235	Ile	gtg Val	gtc Val	Gly	ggt Gly 240	Ala	gct Ala	gag Glu	tct Ser	ctg Leu 245	95 <u>.</u> 4
agc Ser	tcc Ser	atg Met	cct Pro	ggc Gly 250	aag Lys	aat Asn	gca Ala	gtc Val	acc Thr 255	Leu	cgg Arg	aac Asn	cgc Arg	aag Lys 260	GIĀ	1002
ttt Phe	gtg Val	aaa Lys	ctg Leu 265	Ala	ctg Leu	cgt Arg	cat His	gga Gly 270	Ala	gac Asp	ctg Leu	gtt Val	Pro 275	TTe	tac Tyr	1050
tcc Ser	ttt Phe	gga Gly 280	Glu	aat Asn	gaa Glu	gtg Val	tac Tyr 285	Lys	cag Gln	gtg Val	ato Ile	ttc Phe 290	GLu	gag	Gly	1098
tcc Ser	tgg Trp 295	Gly	cga Arg	tgg Trp	gtc Val	cag Gln 300	. Lys	aag Lys	ttc Phe	cag Gln	aaa Lys 305	Tyr	att Ile	ggt Gly	ttc Phe	1146
gcc Ala 310	Pro	tgo Cys	atc Ile	ttc Phe	cat His 315	Gly	cga Arg	ggc Gly	cto Leu	tto Phe 320	e Ser	tcc Ser	gac Asp	acc Thr	tgg Trp 325	1194

```
ggg ctg gtg ccc tac tcc aag ccc atc acc act gtt gtg gga gag ccc
                                                                      1242
Gly Leu Val Pro Tyr Ser Lys Pro Ile Thr Thr Val Val Gly Glu Pro
                                                                      1290
atc acc atc ccc aag ctg gag cac cca acc cag caa gac atc gac ctg
Ile Thr Ile Pro Lys Leu Glu His Pro Thr Gln Gln Asp Ile Asp Leu
                                  350
tac cac acc atg tac atg gag gcc ctg gtg aag ctc ttc gac aag cac
                                                                      1338
Tyr His Thr Met Tyr Met Glu Ala Leu Val Lys Leu Phe Asp Lys His
        360
                              365
aag acc aag ttc ggc ctc ccg gag act gag gtc ctg gag gtg aac tga
                                                                      1386
Lys Thr Lys Phe Gly Leu Pro Glu Thr Glu Val Leu Glu Val Asn
                                               385
                          380
gccagccttc ggggccaatt ccctggagga accagctgca aatcactttt ttgctctgta 1446
aatttggaag tgtcatgggt gtctgtgggt tatttaaaag aaattataac aattttgcta 1506
aaccattaca atgttaggtc ttttttaaga aggaaaaagt cagtatttca agttctttca 1566
cttccagctt gccctgttct aggtggtggc taaatctggg cctaatctgg gtggctcagc 1626
taacctctct tettecette etgaagtgae aaaggaaact eagtettett ggggaagaag 1686 gattgecatt agtgaettgg accagttaga tgatteactt tttgeceeta gggatgagag 1746
gcgaaagcca cttctcatac aagccccttt attgccacta ccccacgctc gtctagtcct 1806
gaaactgcag gaccagtttc tctgccaagg ggaggagttg gagagcacag ttgccccgtt 1866
gtgtgagggc agtagtaggc atctggaatg ctccagtttg atctcccttc tgccacccct 1926
acctcacccc tagtcactca tatcggagcc tggactggcc tccaggatga ggatgggggt 1986
ggcaatgaca ccctgcaggg gaaaggactg ccccccatgc accattgcag ggaggatgcc 2046
gccaccatga gctaggtgga gtaactggtt tttcttgggt ggctgatgac atggatgcag 2106
cacagactca gccttggcct ggagcacatg cttactggtg gcctcagttt accttcccca 2166
gatcctagat tctggatgtg aggaagagat ccctcttcag aaggggcctg gccttctgag 2226 cagcagatta gttccaaagc aggtggcccc cgaacccaag cctcacttt ctgtgccttc 2286
ctgagggggt tgggccgggg aggaaaccca acceteteet gtgtgttetg ttatetettg 2346
atgagatcat tgcaccatgt cagacttttg tatatgcctt gaaaataaat gaaagtgaga 2406
                                                                       2428
atccaaaaaa aaaaaaaaaa aa
<210> 10
<211> 388
<212> PRT
<213> human
<400> 10
Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu Arg
                                      10
Gln Ala Glu Ala Asp Arg Ser Gln Arg Ser His Gly Gly Pro Ala Leu
                                                        30
                                  25
Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser Ile Leu Ser
                                                    45
                              40
         35
Ala Leu Gln Asp Leu Phe Ser Val Thr Trp Leu Asn Arg Ser Lys Val
                                               60
                          55
Glu Lys Gln Leu Gln Val Ile Ser Val Leu Gln Trp Val Leu Ser Phe
                      70
                                           75
65
Leu Val Leu Gly Val Ala Cys Ser Ala Ile Leu Met Tyr Ile Phe Cys
                                                            95
                  85
                                       90
Thr Asp Cys Trp Leu Ile Ala Val Leu Tyr Phe Thr Trp Leu Val Phe
                                                        110
                                  105
             100
Asp Trp Asn Thr Pro Lys Lys Gly Gly Arg Arg Ser Gln Trp Val Arg
                              120
                                                    125
         115
Asn Trp Ala Val Trp Arg Tyr Phe Arg Asp Tyr Phe Pro Ile Gln Leu
                          135
                                               140
    130
Val Lys Thr His Asn Leu Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr
                      150
                                           155
                                                                 160
His Pro His Gly Ile Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr
                                       170
                                                            175
                  165
Glu Ala Thr Glu Val Ser Lys Lys Phe Pro Gly Ile Arg Pro Tyr Leu
                                                        190
                                  185
             180
Ala Thr Leu Ala Gly Asn Phe Arg Met Pro Val Leu Arg Glu Tyr Leu
                              200
                                                 . 205
         195
Met Ser Gly Gly Ile Cys Pro Val Ser Arg Asp Thr Ile Asp Tyr Leu
```

```
215
   210
Leu Ser Lys Asn Gly Ser Gly Asn Ala Ile Ile Ile Val Val Gly Gly
                                         235
                     230
225
Ala Ala Glu Ser Leu Ser Ser Met Pro Gly Lys Asn Ala Val Thr Leu
                                                          255
                245
                                     250
Arg Asn Arg Lys Gly Phe Val Lys Leu Ala Leu Arg His Gly Ala Asp
                                                      270
                                 265
            260
Leu Val Pro Ile Tyr Ser Phe Gly Glu Asn Glu Val Tyr Lys Gln Val
                                                  285
                             280
        275
Ile Phe Glu Glu Gly Ser Trp Gly Arg Trp Val Gln Lys Lys Phe Gln
                         295
                                              300
Lys Tyr Ile Gly Phe Ala Pro Cys Ile Phe His Gly Arg Gly Leu Phe
                                         315
                                                               320
                     310
305
Ser Ser Asp Thr Trp Gly Leu Val Pro Tyr Ser Lys Pro Ile Thr Thr
                                                          335
                                     330
                325
Val Val Gly Glu Pro Ile Thr Ile Pro Lys Leu Glu His Pro Thr Gln
                                 345 -
                                                      350
            340
Gln Asp Ile Asp Leu Tyr His Thr Met Tyr Met Glu Ala Leu Val Lys
                             360
        355
Leu Phe Asp Lys His Lys Thr Lys Phe Gly Leu Pro Glu Thr Glu Val
                         375
Leu Glu Val Asn
<210> 11
<211> 2262
<212> DNA
<213> mus musculus
<220>
<221> CDS
<222> (207)...(1373)
ggtggccgcg cttcgctggc tttctgctca tctagggtgg cagcggctac ctacctcagc 60
tetegecetg etgeegecae ggeetgggeg etgteeetea geteeeggag eteagegega 120
agccctggcc ccggcggccg gggcatgggt caggggcgcg gcgtgaggcg gctttctgca 180
cggccgtgac gtgcattggc ttcagc atg aag acc ctc atc gcc gcc tac tcc
                               Met Lys Thr Leu Ile Ala Ala Tyr Ser
ggg gtc ctg cgg ggt gag cgt cgg gcg gaa gct gcc cgc agc gaa aac
                                                                      281
Gly Val Leu Arg Gly Glu Arg Arg Ala Glu Ala Ala Arg Ser Glu Asn
aag aat aaa gga tot goo otg toa ogo gag ggg tot ggg oga tgg ggo
                                                                      329
Lys Asn Lys Gly Ser Ala Leu Ser Arg Glu Gly Ser Gly Arg Trp Gly
                                       35
act ggc tcc agc atc ctc tca gcc ctc caa gac atc ttc tct gtc acc
                                                                      377
Thr Gly Ser Ser Ile Leu Ser Ala Leu Gln Asp Ile Phe Ser Val Thr
                                   50
tgg ctc aac aga tct aag gtg gaa aaa cag ctg cag gtc atc tca gta
                                                                      425
Trp Leu Asn Arg Ser Lys Val Glu Lys Gln Leu Gln Val Ile Ser Val
cta caa tgg gtc cta tcc ttc ctg gtg cta gga gtg gcc tgc agt gtc
Leu Gln Trp Val Leu Ser Phe Leu Val Leu Gly Val Ala Cys Ser Val
                           80
     75
                                                                      521
atc ctc atg tac acc ttc tgc aca gac tgc tgg ctg ata gct gtg ctc
 Ile Leu Met Tyr Thr Phe Cys Thr Asp Cys Trp Leu Ile Ala Val Leu
 tac ttc acc tgg ctg gca ttt gac tgg aac acg ccc aag aaa ggt ggc
 Tyr Phe Thr Trp Leu Ala Phe Asp Trp Asn Thr Pro Lys Lys Gly Gly
                                      115
```

agg aga (Arg Arg (tcg cag Ser Gln 125	tgg g Trp V	tg cga al Arg	aac Asn	tgg Trp 130	gcc Ala	gtg Val	tgg Trp	cgc Arg	tac Tyr 135	ttc Phe	cga Arg	617
gac tac (Asp Tyr)	ttt ccc Phe Pro 140	atc c Ile G	ag ctg In Lev	gtg Val 145	aag Lys	aca Thr	cac His	aac Asn	ctg Leu 150	ctg Leu	acc Thr	acc Thr	665
agg aac Arg Asn 1	tat atc Tyr Ile	ttt g Phe G	ga tac ly Tyr 160	His	ccc Pro	cat His	ggc Gly	atc Ile 165	atg Met	ggc Gly	ctg Leu	ggt Gly	713
gcc ttc Ala Phe (170	tgt aac Cys Asn	Phe S	igc aca Ser Thr .75	gag Glu	gct Ala	act Thr	gaa Glu 180	gtc Val	agc Ser	aag Lys	aag Lys	ttt Phe 185	761
cct ggc a	ata agg Ile Arg	ccc t Pro T 190	at tto yr Lev	gct Ala	acg Thr	ttg Leu 195	gct Ala	ggt Gly	aac Asn	ttc Phe	cgg Arg 200	atg Met	809
cct gtg	ctt cgc Leú Arg 205	gag t Glu T	ac cto	atg Met	tct Ser 210	gga Gly	ggc Gly	atc Ile	tgc Cys	cct Pro 215	gtc Val	aac Asn	857
cga gac Arg Asp	acc ata Thr Ile 220	gac t Asp T	ac ttg Yr Lei	ctc Leu 225	tcc Ser	aag Lys	aat Asn	ggg Gly	agt Ser 230	ggc Gly	aat Asn	gct Ala	905
atc atc Ile Ile 235	atc gtg Ile Val	gtg g Val G	ga ggt Sly Gly 240	Ala	gct Ala	gag Glu	tcc Ser	ctg Leu 245	agc Ser	tcc Ser	atg Met	cct Pro	953
ggc aag Gly Lys 250	aac gca Asn Ala	Val T	icc cto Thr Lei 255	aag Lys	aac Asn	cgc Arg	aaa Lys 260	gly	ttt Phe	gtg Val	aag Lys	ctg Leu 265	1001
gcc ctg Ala Leu	cgc cat Arg His	gga g Gly A 270	gct gat Ala Asp	ctg Leu	gtt Val	ccc Pro 275	act Thr	tat Tyr	tcc Ser	ttt Phe	gga Gly 280	gag Glu	1049
aat gag Asn Glu		Lys C											1097
tgg gtc Trp Val	cag aag Gln Lys 300	aag t Lys F	tc cag he Glr	aag Lys 305	tat Tyr	att Ile	ggt Gly	ttc Phe	gcc Ala 310	ccc Pro	tgc Cys	atc Ile	1145
ttc cat Phe His 315	ggc cga Gly Arg	ggc c	etc tto Leu Pho 320	: Ser	tct Ser	gac Asp	acc Thr	tgg Trp 325	Gly	ctg Leu	gtg Val	ccc Pro	1193
tac tcc Tyr Ser 330	aag ccc Lys Pro	Ile I	acc acc Thr Thi 335	gtc Val	gtg Val	Gly ggg	gag Glu 340	ccc Pro	atc Ile	act Thr	gtc Val	ccc Pro 345	. 1241
aag ctg Lys Leu	gag cac Glu His	ccg a Pro 1 350	acc cag Thr Gli	, aaa Lys	gac Asp	atc Ile 355	gac Asp	ctg Leu	tac Tyr	cat His	gcc Ala 360	atg Met	1289
tac atg Tyr Met		Leu V											1337
ggc ctt Gly Leu								tga *	ccc	agcc	etc		1383

```
gegtgecage teetgggagg gacgactgea gateetttte tacegagtte ttgagtgeat 1443
tttgttctgt aaatttggaa gcgtcatggg tgtctgtggg ttatttaaaa gaaattataa 1503
tgtgttaaac cattgcaatg ttagatgttt ttttaagaag ggaagagtca gtattttaag 1563
ctcacttcta gtgtgtcctg ctcaaggtgg aggctgatat ttatgggcct tggtggtttc 1623
ttacccaccc cttctagcgt tccccagacg acagacactt ggccctggct agctgggcaa 1683
gggcagtcct tagtgactcc agggattctt gagaggcaga ggccatgtcc cacccgtggc 1743
tgcaggtcgg gttcctcgta ccaaggggag gctgagggca cagctggccc cacttgggga 1803
gggtagataa catctggact gcccggcttg ggtctctgct cctcacccta gccctcttct 1863
ccaatctgag cctacctgg cctcctgtct cctggctagg gacacggctg tcccacaggt 1923
gccgtcttgg gttatctcgc tgctgttggc tggtttcact ctggaggttg gcaccatgga 1983
cacageteag egttgetetg gegeatatee teetgageea caceeaagt etggtgtgag 2043
gaagggette tettetette acagaggtge etggetteet gtgeageaca etgggteeag 2103
gacaggagge ecceecca aaccaageet cacgtgtgtg cetttatgag gegttgggag 2163
aaagctaccc tcctgtgtat tctgttttct ccatgagatt gttgtgccat gtcacacttt 2223
tgtatattcc tagactaata aatggaaaca agaacagcc
<210> 12
<211> 388
<212> PRT
<213> mus musculus
<400> 12
Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu Arg
                                    10
                                                         15
Arg Ala Glu Ala Ala Arg Ser Glu Asn Lys Asn Lys Gly Ser Ala Leu
                                 25
            20
Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser Ile Leu Ser
                            40
Ala Leu Gln Asp Ile Phe Ser Val Thr Trp Leu Asn Arg Ser Lys Val
                        55
    50
Glu Lys Gln Leu Gln Val Ile Ser Val Leu Gln Trp Val Leu Ser Phe
                    70
Leu Val Leu Gly Val Ala Cys Ser Val Ile Leu Met Tyr Thr Phe Cys
                                     90
                85
Thr Asp Cys Trp Leu Ile Ala Val Leu Tyr Phe Thr Trp Leu Ala Phe
                                105
                                                     110
            100
Asp Trp Asn Thr Pro Lys Lys Gly Gly Arg Arg Ser Gln Trp Val Arg
                                                 125
                            120
        115
Asn Trp Ala Val Trp Arg Tyr Phe Arg Asp Tyr Phe Pro Ile Gln Leu
    130
                         135
Val Lys Thr His Asn Leu Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr
                                                             160
                                         155
                    150
His Pro His Gly Ile Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr
                                     170
                165
Glu Ala Thr Glu Val Ser Lys Lys Phe Pro Gly Ile Arg Pro Tyr Leu
                                                     190
                                 185
            180
Ala Thr Leu Ala Gly Asn Phe Arg Met Pro Val Leu Arg Glu Tyr Leu
                             200
        195
Met Ser Gly Gly Ile Cys Pro Val Asn Arg Asp Thr Ile Asp Tyr Leu
                                             220
                         215
    210
Leu Ser Lys Asn Gly Ser Gly Asn Ala Ile Ile Ile Val Val Gly Gly
                                                             240
                                         235
                     230
Ala Ala Glu Ser Leu Ser Ser Met Pro Gly Lys Asn Ala Val Thr Leu
                                     250
                245
Lys Asn Arg Lys Gly Phe Val Lys Leu Ala Leu Arg His Gly Ala Asp
                                                     270
                                 265
             260
Leu Val Pro Thr Tyr Ser Phe Gly Glu Asn Glu Val Tyr Lys Gln Val
                             280
Ile Phe Glu Glu Gly Ser Trp Gly Arg Trp Val Gln Lys Lys Phe Gln
                                             300
                         295
    290
Lys Tyr Ile Gly Phe Ala Pro Cys Ile Phe His Gly Arg Gly Leu Phe
                                         315
                     310
Ser Ser Asp Thr Trp Gly Leu Val Pro Tyr Ser Lys Pro Ile Thr Thr
                 325
                                     330
Val Val Gly Glu Pro Ile Thr Val Pro Lys Leu Glu His Pro Thr Gln
                                                      350
                                 345
Lys Asp Ile Asp Leu Tyr His Ala Met Tyr Met Glu Ala Leu Val Lys
                                                 365
         355
                             360
Leu Phe Asp Asn His Lys Thr Lys Phe Gly Leu Pro Glu Thr Glu Val
```

380 375 370 Leu Glu Val Asn 385 <210> 13 <211> 1279 <212> DNA <213> human <220> <221> CDS <222> (42)...(1028) actgttctga gatctttgcc tccctcaggc tcccgagaat c atg gct cat tcc aag 56 Met Ala His Ser Lys cag cct agt cac ttc cag agt ctg atg ctt ctg cag tgg cct ttg agc 104 Gln Pro Ser His Phe Gln Ser Leu Met Leu Leu Gln Trp Pro Leu Ser 10 tac ctt gcc atc ttt tgg atc ttg cag cca ttg ttc gtc tac ctg ctg 152 Tyr Leu Ala Ile Phe Trp Ile Leu Gln Pro Leu Phe Val Tyr Leu Leu ttt aca tcc ttg tgg ccg cta cca gtg ctt tac ttt gcc tgg ttg ttc Phe Thr Ser Leu Trp Pro Leu Pro Val Leu Tyr Phe Ala Trp Leu Phe 200 ctg gac tgg aag acc cca gag cga ggt ggc agg cgt tcg gcc tgg gta 248 Leu Asp Trp Lys Thr Pro Glu Arg Gly Gly Arg Arg Ser Ala Trp Val agg aac tgg tgt gtc tgg acc cac atc agg gac tat ttc ccc att acg Arg Asn Trp Cys Val Trp Thr His Ile Arg Asp Tyr Phe Pro Ile Thr 296 ate ctg aag aca aag gac cta tca cct gag cac aac tac ctc atg ggg 344 Ile Leu Lys Thr Lys Asp Leu Ser Pro Glu His Asn Tyr Leu Met Gly 95 gtt cac ccc cat ggc ctc ctg acc ttt ggc gcc ttc tgc aac ttc tgc Val His Pro His Gly Leu Leu Thr Phe Gly Ala Phe Cys Asn Phe Cys 392 105 act gag gcc aca ggc ttc tcg aag acc ttc cca ggc atc act cct cac Thr Glu Ala Thr Gly Phe Ser Lys Thr Phe Pro Gly Ile Thr Pro His ttg gcc aca ctg tcc tgg ttc ttc aag atc ccc ttt gtt agg gag tac 488 Leu Ala Thr Leu Ser Trp Phe Phe Lys Ile Pro Phe Val Arg Glu Tyr 140 135 ctc atg gcc aaa ggt gtg tgc tct gtg agc cag cca gcc atc aac tat Leu Met Ala Lys Gly Val Cys Ser Val Ser Gln Pro Ala Ile Asn Tyr 536 ctg ctg agc cat ggc act ggc aac ctc gtg ggc att gta gtg gga ggt Leu Leu Ser His Gly Thr Gly Asn Leu Val Gly Ile Val Val Gly Gly 584 gtg ggt gag gcc ctg caa agt gtg ccc aag acc acc ctc atc ctc 632 Val Gly Glu Ala Leu Gln Ser Val Pro Lys Thr Thr Leu Ile Leu cag aag cgc aag ggg ttc gtg cgc aca gcc ctc cag cat ggg gct cat 680 Gln Lys Arg Lys Gly Phe Val Arg Thr Ala Leu Gln His Gly Ala His

210 205 200 ctg gtc ccc acc ttc act ttt ggg gaa act gag gtg tat gat cag gtg 728 Leu Val Pro Thr Phe Thr Phe Gly Glu Thr Glu Val Tyr Asp Gln Val 220 215 ctg ttc cat aag gat agc agg atg tac aag ttc cag agc tgc ttc cgc 776 Leu Phe His Lys Asp Ser Arg Met Tyr Lys Phe Gln Ser Cys Phe Arg 235 240 cgt atc ttt ggt ttc tac tgt tgt gtc ttc tat gga caa agc ttc tgt 824 Arg Ile Phe Gly Phe Tyr Cys Cys Val Phe Tyr Gly Gln Ser Phe Cys caa ggc tcc act ggg ctc ctg cca tac tcc agg cct att gtc act gtg 872 Gln Gly Ser Thr Gly Leu Leu Pro Tyr Ser Arg Pro Ile Val Thr Val 270 gtt ggg gag cct ctg cca ctg ccc caa att gaa aag cca agc cag gag Val Gly Glu Pro Leu Pro Leu Pro Gln Ile Glu Lys Pro Ser Gln Glu 920 285 280 atg gtg gac aaa tac cat gca ctt tat atg gat gct ctg gac aaa ctg 968 Met Val Asp Lys Tyr His Ala Leu Tyr Met Asp Ala Leu Asp Lys Leu 305 295 1016 ttc gac cag cat aag acc cac tat ggc tgc tca gag acc caa aag ctg Phe Asp Gln His Lys Thr His Tyr Gly Cys Ser Glu Thr Gln Lys Leu 315 ttt ttc ctg tga atgaaggtac tgcatgccca ggagcacagg agtgcctgcc 1068 Phe Phe Leu tttgaagaag aagaatcatc tggcataacc aaagacaggc aggagatgga gggaggtata 1128 tgtggtaggg gagggcatga ggaatteett etttgeette ttgccacagg gteettacag 1188 gaaattettt etgaagaget geacaeagte atteeteaaa ggagggeatt etagtgeece 1248 tcatgctggg gcctgatgcc tgtcatcatt g <210> 14 <211> 328 <212> PRT <213> human Met Ala His Ser Lys Gln Pro Ser His Phe Gln Ser Leu Met Leu Leu 10 Gln Trp Pro Leu Ser Tyr Leu Ala Ile Phe Trp Ile Leu Gln Pro Leu 25 30 20 Phe Val Tyr Leu Leu Phe Thr Ser Leu Trp Pro Leu Pro Val Leu Tyr 40 Phe Ala Trp Leu Phe Leu Asp Trp Lys Thr Pro Glu Arg Gly Gly Arg 60 55 Arg Ser Ala Trp Val Arg Asn Trp Cys Val Trp Thr His Ile Arg Asp 80 75 70 Tyr Phe Pro Ile Thr Ile Leu Lys Thr Lys Asp Leu Ser Pro Glu His 95 90 85 Asn Tyr Leu Met Gly Val His Pro His Gly Leu Leu Thr Phe Gly Ala 110 100 105 Phe Cys Asn Phe Cys Thr Glu Ala Thr Gly Phe Ser Lys Thr Phe Pro 125 120 115 Gly Ile Thr Pro His Leu Ala Thr Leu Ser Trp Phe Phe Lys Ile Pro 140 130 135

170

155

175

Phe Val Arg Glu Tyr Leu Met Ala Lys Gly Val Cys Ser Val Ser Gln

Pro Ala Ile Asn Tyr Leu Leu Ser His Gly Thr Gly Asn Leu Val Gly

Ile Val Val Gly Gly Val Gly Glu Ala Leu Gln Ser Val Pro Lys Thr 185

150

165

180

Thr Thr Leu Ile Leu Gln Lys Arg Lys Gly Phe Val Arg Thr Ala Leu 200 195 Gln His Gly Ala His Leu Val Pro Thr Phe Thr Phe Gly Glu Thr Glu 215 210 Val Tyr Asp Gln Val Leu Phe His Lys Asp Ser Arg Met Tyr Lys Phe 235 230 Gln Ser Cys Phe Arg Arg Ile Phe Gly Phe Tyr Cys Cys Val Phe Tyr 255 245 250 Gly Gln Ser Phe Cys Gln Gly Ser Thr Gly Leu Leu Pro Tyr Ser Arg 265 Pro Ile Val Thr Val Val Gly Glu Pro Leu Pro Leu Pro Gln Ile Glu 285 275 280 Lys Pro Ser Gln Glu Met Val Asp Lys Tyr His Ala Leu Tyr Met Asp 300 295 Ala Leu Asp Lys Leu Phe Asp Gln His Lys Thr His Tyr Gly Cys Ser 310 315 Glu Thr Gln Lys Leu Phe Phe Leu 325 <210> 15

<210> 15
<211> 1255
<212> DNA
<213> mus musculus
<220>
<221> CDS
<222> (27)...(1151)

tta cag agt ctg agc ctt ctg cag tgg ccc ttg agc tac gtt gcc atg 101 Leu Gln Ser Leu Ser Leu Leu Gln Trp Pro Leu Ser Tyr Val Ala Met 10 15 20 25

ttt tgg att gtg cag cca ttg tta att tgc cta ttg ttc aca ccc ttg

Phe Trp Ile Val Gln Pro Leu Leu Ile Cys Leu Leu Phe Thr Pro Leu

30

40

tgg ccg cta cca aca gtt tac ttt gtc tgg tta ctt ctc gac tgg aag
Trp Pro Leu Pro Thr Val Tyr Phe Val Trp Leu Leu Leu Asp Trp Lys
45 50 55

act cca gat aaa ggt ggc agg cgt tca gac tgg gta cgg aac tgg aat 245
Thr Pro Asp Lys Gly Gly Arg Arg Ser Asp Trp Val Arg Asn Trp Asn
60 65 70

gtc tgg aac cac atc agg gac tat ttc ccc att aca atc ctg aag act 293
Val Trp Asn His Ile Arg Asp Tyr Phe Pro Ile Thr Ile Leu Lys Thr
75 80 85

aag gac ctg tca cct tca gag aac tac atc atg ggg gtc cac ccc mat
Lys Asp Leu Ser Pro Ser Glu Asn Tyr Ile Met Gly Val His Pro Xaa
90 95 100 105

ggt ctc ctg acc ttc ggt gcc ttc tgc aac ttc tgc act gag gcc aca 389
Gly Leu Leu Thr Phe Gly Ala Phe Cys Asn Phe Cys Thr Glu Ala Thr
110 115 120

ggc ttc tcg aag acc ttc cca ggc atc act cct ćac ttg gcc aca ctg
Gly Phe Ser Lys Thr Phe Pro Gly Ile Thr Pro His Leu Ala Thr Leu
125
130
135

tcc tgg ttc ttc aag atc ccc att att agg gac tac atc atg gcc aaa 485 Ser Trp Phe Phe Lys Ile Pro Ile Ile Arg Asp Tyr Ile Met Ala Lys 140 145 150

gga Gly	ttg Leu 155	tgt Cys	tct Ser	gtg Val	agc Ser	cag Gln 160	gca Ala	tcc Ser	atc Ile) Asp	tac Tyr 165	ctg Leu	ctg Leu	agc Ser	cat His	533
ggc Gly 170	act Thr	gga Gly	aac Asn	ctc Leu	gtg Val 175	ggc Gly	att Ile	gtc Val	gtg Val	gga Gly 180	gga Gly	gtg Val	gga Gly	gag Glu	gcc Ala 185	581
cta Leu	cag Gln	agt Ser	gtg .Val	cct Pro 190	aạc Asn	acc Thr	acc Thr	acc Thr	ctc Leu 195	ctc Leu	ctc Leu	aag Lys	aaa Lys	cgc Arg 200	aaa Lys	629
ggg Gly	ttt Phe	gtg Val	cgc Arg 205	aca Thr	gcc Ala	ctc Leu	caa Gln	cat His 210	gjλ aaa	gct Ala	cat His	ctg Leu	gtc Val 215	cct Pro	acc Thr	677
ttc Phe	acg Thr	ttc Phe 220	gga Gly	gaa Glu	aca Thr	gag Glu	gta Val 225	tat Tyr	gac Asp	cag Gln	gta Val	ctg Leu 230	ttt Phe	cat His	gag Glu	725
gat Asp	agc Ser 235	cgg Arg	atg Met	ttc Phe	aag Lys	ttc Phe 240	caa Gln	agc Ser	ctc Leu	ttt Phe	cgc Arg 245	cgg Arg	atc Ile	ttt Phe	ggt Gly	773
ttc Phe 250	tat Tyr	tgc Cys	tgt Cys	gtc Val	ttc Phe 255	tat Tyr	gga Gly	caa Gln	ggt Gly	ttc Phe 260	cat His	caa Gln	gac Asp	tgc Cys	aag Lys 265	821
gga Gly	ctc Leu	cta Leu	cca Pro	tac Tyr 270	cac	aaa Lys	ccc Pro	atc Ile	atc Ile 275	act Thr	gta Val	gtt Val	Gly	gaa Glu 280	gct Ala	869
ttg Leu	cca Pro	ctg Leu	ccc Pro 285	cag Gln	gtt Val	aaa Lys	aac Asn	cca Pro ·290	agc Ser	cca Pro	gag Glu	ata Ile	gtg Val 295	gac Asp	aaa Lys	917
tac Tyr	cat	gca Ala 300	ctc Leu	tac Tyr	atg Met	gac Asp	gcc Ala 305	ctg Leu	tac Tyr	aag Lys	ctg Leu	ttt Phe 310	Glu	cag Gln	cac His	965
atc Ile	ccg Pro 315	tta Leu	gga Gly	aaa Lys	aca Thr	gcc Ala 320	\mathtt{Trp}	gac Asp	cac His	agc Ser	ttg Leu 325	GJA āãc	atc Ile	tcc Ser	cag Gln	1013
agc Ser 330	Lys	atc Ile	ccg Pro	gtg Val	gag Glu 335	Asp	ccg Pro	atg Met	agt Ser	ctg Leu 340	Leu	tac Tyr	aac Asn	atg Met	aac Asn 345	1061
gac Asp	tgc Cys	tac Tyr	tcc Ser	aag Lys 350	Leu	aag Lys	gaa Glu	ctg Leu	atg Met 355	Pro	agc Ser	att	ccc Pro	cag Gln 360	aac Asn	1109
aag Lys	aag Lys	gca Ala	gcc Ala 365	cta Leu	caa Gln	ttt Phe	tgg Trp	ctg Leu 370	Leu	atc Ile	tgg Trp	ttg Leu	tag *			1151
caa cat	agtt tcat	gaa tgc	aact tccg	tctg tgga	aa a	aggg ctca	gatc tccg	c ca a at	ccta cctg	cagg tcaa	aac ata	tgta g	ata	aatg	cctctt	1211 1255
<21 <21	0> 1 1> 3 2> P 3> m	74 RT	uscu	lus							,					
<22	1> V 2> (1)	. (47	O) Ami	.no A	cid										

```
<400> 16
Met Ser Cys Ser Met Lys Thr Glu His Leu Gln Ser Leu Ser Leu Leu
                                    10
Gln Trp Pro Leu Ser Tyr Val Ala Met Phe Trp Ile Val Gln Pro Leu
                                25
                                                    30
           20
Leu Ile Cys Leu Leu Phe Thr Pro Leu Trp Pro Leu Pro Thr Val Tyr
                            40
        35
Phe Val Trp Leu Leu Leu Asp Trp Lys Thr Pro Asp Lys Gly Gly Arg
                        55
Arg Ser Asp Trp Val Arg Asn Trp Asn Val Trp Asn His Ile Arg Asp
                    70
Tyr Phe Pro Ile Thr Ile Leu Lys Thr Lys Asp Leu Ser Pro Ser Glu
                                   90
               85
Asn Tyr Ile Met Gly Val His Pro Xaa Gly Leu Leu Thr Phe Gly Ala
                                105
            100
Phe Cys Asn Phe Cys Thr Glu Ala Thr Gly Phe Ser Lys Thr Phe Pro
                                                125
                            120
       115
Gly Ile Thr Pro His Leu Ala Thr Leu Ser Trp Phe Phe Lys Ile Pro
                                           140
                        135
    130
Ile Ile Arg Asp Tyr Ile Met Ala Lys Gly Leu Cys Ser Val Ser Gln
                                        155
                    150
Ala Ser Ile Asp Tyr Leu Leu Ser His Gly Thr Gly Asn Leu Val Gly
                                    170
               165
Ile Val Val Gly Gly Val Gly Glu Ala Leu Gln Ser Val Pro Asn Thr
                                185
                                                     190
           180
Thr Thr Leu Leu Leu Lys Lys Arg Lys Gly Phe Val Arg Thr Ala Leu
195 200 205
Gln His Gly Ala His Leu Val Pro Thr Phe Thr Phe Gly Glu Thr Glu
                                            220
                        215
Val Tyr Asp Gln Val Leu Phe His Glu Asp Ser Arg Met Phe Lys Phe
                                         235
                    230 ·
Gln Ser Leu Phe Arg Arg Ile Phe Gly Phe Tyr Cys Cys Val Phe Tyr
                                                         255
                                    250
                245
Gly Gln Gly Phe His Gln Asp Cys Lys Gly Leu Leu Pro Tyr His Lys 260 265 270
                               265
            260
Pro Ile Ile Thr Val Val Gly Glu Ala Leu Pro Leu Pro Gln Val Lys
                                                 285
       275
                            280
Asn Pro Ser Pro Glu Ile Val Asp Lys Tyr His Ala Leu Tyr Met Asp
                                            300
                        295
Ala Leu Tyr Lys Leu Phe Glu Gln His Ile Pro Leu Gly Lys Thr Ala
                                        315
                    310
Trp Asp His Ser Leu Gly Ile Ser Gln Ser Lys Ile Pro Val Glu Asp
                                   330
                325
Pro Met Ser Leu Leu Tyr Asn Met Asn Asp Cys Tyr Ser Lys Leu Lys
                                                     350
           340
                                345
Glu Leu Met Pro Ser Ile Pro Gln Asn Lys Lys Ala Ala Leu Gln Phe
        355
                             360
Trp Leu Leu Ile Trp Leu
    370
<210> 17
<211> 1420
<212> DNA
<213> human
<220>
<221> CDS
<222> (1)...(1002)
<400> 17
atg ctc ttg ccc tct aag aag gac ctc aag act gcc ctg gat gtc ttt
                                                                   48
Met Leu Leu Pro Ser Lys Lys Asp Leu Lys Thr Ala Leu Asp Val Phe
                                                                   96
get gtt tte eag tgg tee tte agt gee ttg ett ate aca ace act gtg
Ala Val Phe Gln Trp Ser Phe Ser Ala Leu Leu Ile Thr Thr Val
                                  25
              20
```

att Ile	gct Ala	gtc Val 35	aac Asn	ctc Leu	tac Tyr	ctg Leu	gtg Val 40	gtg Val	ttc Phe	aca Thr	cca Pro	tac Tyr 45	tgg Trp	cct Pro	gtc Val	144
act Thr	gtg Val 50	ctt Leu	att Ile	ctt Leu	acc Thr	tgg Trp 55	ctg Leu	gct Ala	ttt Phe	gac Asp	tgg Trp 60	Lys	acc Thr	cct Pro	cag Gln	192
cga Arg 65	ggc Gly	ggc	cgc Arg	cgg Arg	ttt Phe 70	acc Thr	tgt Cys	gtg Val	agg Arg	cac His 75	tgg Trp	cgc Arg	ctg Leu	tgg Trp	aaa Lys 80	240
cac His	tac Tyr	agc Ser	gat Asp	tat Tyr 85	ttc Phe	cct Pro	ctc Leu	aag Lys	ctt Leu 90	ctg Leu	aag Lys	act Thr	cat His	gac Asp 95	atc Ile	288
tgc Cys	ccc Pro	agc Ser	cgc Arg 100	aac Asn	tac Tyr	atc Ile	ctc Leu	gtc Val 105	tgc Cys	cac His	cct Pro	cat His	ggg Gly 110	ctc Leu	ttt Phe	336
gcc Ala	cat His	gga Gly 115	tgg Trp	ttt Phe	ggc Gly	cac His	ttt Phe 120	gcc Ala	aca Thr	gag Glu	gcc Ala	tca Ser 125	ggc Gly	ttc Phe	tcc Ser	384
aag Lys	ata Ile 130	ttt Phe	cct Pro	ggc Gly	atc Ile	acc Thr 135	cct Pro	tac Tyr	ata Ile	ctc Leu	aca Thr 140	ctg Leu	gga Gly	gcc Ala	ttt Phe	432
ttc Phe 145	tgg Trp	atg Met	cct Pro	ttc Phe	ctc Leu 150	aga Arg	gaa Glu	tat Tyr	gta Val	atg Met 155	tct Ser	aca Thr	Gly	gcc Ala	tgc Cys 160	480
tct Ser	gtg Val	agt Ser	cga Arg	tcc Ser 165	tcc Ser	att Ile	gac Asp	ttt Phe	ctg Leu 170	ctg Leu	act Thr	cat His	aaa Lys	ggc Gly 175	aca Thr	528
ggc Gly	aac Asn	atg Met	gtc Val 180	att Ile	gtg Val	gtg Val	att Ile	ggt Gly 185	gga Gly	ctg Leu	gct Ala	gag Glu	tgc Cys 190	aga Arg	tac Tyr	576
agc Ser	ctg Leu	cca Pro 195	ggt Gly	tct Ser	tct Ser	acc Thr	ctg Leu 200	gtg Val	ttg Leu	aag Lys	aac Asn	cgg Arg 205	tct Ser	Gly	ttt Phe	624
gtg Val	cgc Arg 210	atg Met	gcc Ala	ctt Leu	cag Gln	cat His 215	ggg Gly	gtg Val	cct Pro	cta Leu	ata Ile 220	cct Pro	gcc Ala	tat Tyr	gcc Ala	672
ttt Phe 225	GJÀ aaa	gag Glu	acg Thr	gac Asp	ctc Leu 230	tat Tyr	gat Asp	cag Gln	cac His	att Ile 235	ttc Phe	act Thr	cct Pro	ggt Gly	ggc Gly 240	720
ttt Phe	gtc Val	aac Asn	cgc Arg	ttc Phe 245	cag Gln	aag Lys	tgg Trp	ttc Phe	cag Gln 250	agc Ser	atg Met	gta Val	cac His	atc Ile 255	tac Tyr	768
cct	tgt Cys	gct Ala	ttc Phe 260	tat Tyr	gga Gly	cgt Arg	ggc Gly	ttc Phe 265	acc Thr	aag Lys	aac Asn	tcc Ser	tgg Trp 270	Gly	ctt Leu	816
ctg Leu	ccc Pro	tat Tyr 275	Ser	cgg Arg	cct Pro	gta Val	acc Thr 280	acc Thr	atc Ile	gtc Val	Gly	gag Glu 285	Pro	cta Leu	cca Pro	864
atg Met	ccc Pro 290	aag Lys	att Ile	gag Glu	aat Asn	cca Pro 295	agc Ser	cag Gln	gag Glu	atc Ile	gtg Val 300	Ala	aaa Lys	tat Tyr	cac His	912

```
aca ctc tat att gat gcc cta cgt aaa ctg ttt gac cag cat aag acc
 Thr Leu Tyr Ile Asp Ala Leu Arg Lys Leu Phe Asp Gln His Lys Thr
 305
                      310
                                                                     1002
  aag ttt ggt atc tca gag acc cag gag ctg gag ata att tga
 Lys Phe Gly Ile Ser Glu Thr Gln Glu Leu Glu Ile Ile
                                      330
                  325
  cagacatece cagtaageet weameetgge tggaagetet tttetgeeet ttetttgeag 1062
  ctactggtga gatagtccca agaaacaggg aagagcctag gggagaggtg ccctgacggc 1122
  acttggtggc agcattgagg aaaaaatgga gaacattaaa agcccatctt ctgataactg 1182
  cgtgtgcacc aactactctg ttttgaaggc tctgagatgc atgtctactc cttctctaac 1242
  tgtcaaacag acceatetee eggeattgag eccatettta ggeattgagt eetgatteee 1302
  tacaggagta ggatgggcct tgaagcaagt gagatgaagt tcagcccaca acttcaagtc 1362
  atgtactttg gggcatcagc tcacctctga gccccttctt cttctatacg attgcacc 1420
  <210> 18
  <211> 333
  <212> PRT
  <213> human
  <400> 18
  Met Leu Leu Pro Ser Lys Lys Asp Leu Lys Thr Ala Leu Asp Val Phe
                                      10
  Ala Val Phe Gln Trp Ser Phe Ser Ala Leu Leu Ile Thr Thr Thr Val
                                  25
             20
  Ile Ala Val Asn Leu Tyr Leu Val Val Phe Thr Pro Tyr Trp Pro Val
                                                   45
          35.
                              40
  Thr Val Leu Ile Leu Thr Trp Leu Ala Phe Asp Trp Lys Thr Pro Gln
   · 50
                          55
                                              60
  Arg Gly Gly Arg Arg Phe Thr Cys Val Arg His Trp Arg Leu Trp Lys
                                          75
                      70
  65.
  His Tyr Ser Asp Tyr Phe Pro Leu Lys Leu Leu Lys Thr His Asp Ile
                  85
                                      90
. Cys Pro Ser Arg Asn Tyr Ile Leu Val Cys His Pro His Gly Leu Phe
                                                      110 .
             100
                                  105
  Ala His Gly Trp Phe Gly His Phe Ala Thr Glu Ala Ser Gly Phe Ser
                                                  125
          115
                              120
  Lys Ile Phe Pro Gly Ile Thr Pro Tyr Ile Leu Thr Leu Gly Ala Phe
                                              140
      130
                          135
  Phe Trp Met Pro Phe Leu Arg Glu Tyr Val Met Ser Thr Gly Ala Cys
                                          155
                      150
  Ser Val Ser Arg Ser Ser Ile Asp Phe Leu Leu Thr His Lys Gly Thr
                                                           175
                                      170
                  165
  Gly Asn Met Val Ile Val Val Ile Gly Gly Leu Ala Glu Cys Arg Tyr
                                                       190
              180
                                  185
  Ser Leu Pro Gly Ser Ser Thr Leu Val Leu Lys Asn Arg Ser Gly Phe
                                                   205
                              200
          195
  Val Arg Met Ala Leu Gln His Gly Val Pro Leu Ile Pro Ala Tyr Ala
                                              220
      210
                          215
  Phe Gly Glu Thr Asp Leu Tyr Asp Gln His Ile Phe Thr Pro Gly Gly
                                          235
                      230
  Phe Val Asn Arg Phe Gln Lys Trp Phe Gln Ser Met Val His Ile Tyr
                                       250
                                                           255
                  245
  Pro Cys Ala Phe Tyr Gly Arg Gly Phe Thr Lys Asn Ser Trp Gly Leu
                                  265
                                                       270
              260
  Leu Pro Tyr Ser Arg Pro Val Thr Thr Ile Val Gly Glu Pro Leu Pro
                                                   285
                              280
  Met Pro Lys Ile Glu Asn Pro Ser Gln Glu Ile Val Ala Lys Tyr His
                                               300
                          295
  Thr Leu Tyr Ile Asp Ala Leu Arg Lys Leu Phe Asp Gln His Lys Thr
                      310
                                          315
  Lys Phe Gly Ile Ser Glu Thr Gln Glu Leu Glu Ile Ile
                  325
                                       330
```

<210> 19 <211> 1716 <212> DNA

<213> human

<220> <221> CDS <222> (101)...(1114)

<400> 19 cacagtaaga gattatagca aagcatctat aatcaactca gcttaagaag ttttgacctt 60 ctggttaggc ttcttgccac aacagaacag caccataacc atg gct ttc ttc tcc Met Ala Phe Phe Ser cga ctg aat ctc cag gag ggc ctc caa acc ttc ttt gtt ttg caa tgg 163 Arg Leu Asn Leu Gln Glu Gly Leu Gln Thr Phe Phe Val Leu Gln Trp 15 211 atc cca gtc tat ata ttt tta gga gct att ccc att ctc ctt ata ccc Ile Pro Val Tyr Ile Phe Leu Gly Ala Ile Pro Ile Leu Leu Ile Pro 30 259 tac ttt ctg tta ttc agt aag ttc tgg ccc ttg gct gtg ctc tcc tta Tyr Phe Leu Leu Phe Ser Lys Phe Trp Pro Leu Ala Val Leu Ser Leu 307 . gcc tgg ctc acc tat gat tgg aac acc cac agt caa ggt ggc agg cgt Ala Trp Leu Thr Tyr Asp Trp Asn Thr His Ser Gln Gly Gly Arg Arg tca gct tgg gta cga aac tgg acc cta tgg aag tat ttc cga aat tac 355 Ser Ala Trp Val Arg Asn Trp Thr Leu Trp Lys Tyr Phe Arg Asn Tyr 80 ttc cca gta aag ctg gtg aag act cat gat ctt tct ccc aaa cac aac 403 Phe Pro Val Lys Leu Val Lys Thr His Asp Leu Ser Pro Lys His Asn 95 451 tac atc att gcc aat cac ccc cat ggc att ctc tct ttt ggt gtc ttc Tyr Ile Ile Ala Asn His Pro His Gly Ile Leu Ser Phe Gly Val Phe 105 499 atc aac ttt gcc act gag gcc act ggc att gct cgg att ttc cca tcc Ile Asn Phe Ala Thr Glu Ala Thr Gly Ile Ala Arg Ile Phe Pro Ser 120 547 atc act ccc ttt gta ggg acc tta gaa agg ata ttt tgg atc cca att Ile Thr Pro Phe Val Gly Thr Leu Glu Arg Ile Phe Trp Ile Pro Ile gtg cga gaa tat gtg atg tca atg ggt gtg tgc cct gtg agt agc tca Val Arg Glu Tyr Val Met Ser Met Gly Val Cys Pro Val Ser Ser Ser 595 160 155 643 gcc ttg aag tac ttg ctg acc cag aaa ggc tca ggc aat gcc gtg gtt Ala Leu Lys Tyr Leu Leu Thr Gln Lys Gly Ser Gly Asn Ala Val Val 1.80 att gtg gtg ggt gga gct gct gaa gct ctc ttg tgc cga cca gga gcc 691 Ile Val Val Gly Gly Ala Ala Glu Ala Leu Leu Cys Arg Pro Gly Ala 185 190 739 tcc act ctc ttc ctc aag cag cgt aaa ggt ttt gtg aag atg gca ctg Ser Thr Leu Phe Leu Lys Gln Arg Lys Gly Phe Val Lys Met Ala Leu 787 caa aca ggg gca tac ctt gtc cct tca tat tcc ttt ggt gag aac gaa Gln Thr Gly Ala Tyr Leu Val Pro Ser Tyr Ser Phe Gly Glu Asn Glu . 220

835

gtt ttc aat cag gag acc ttc cct gag ggc acg tgg tta agg ttg ttc

7																
230	Phe	Asn	Gln	Glu	Thr 235	Phe	Pro	Glu	Gly	Thr 240	Trp	Leu	Arg	Leu	Phe 245	
caa Gln	aaa Lys	acc Thr	ttc Phe	cag Gln 250	gac Asp	aca Thr	ttc Phe	aaa Lys	aaa Lys 255	atc Ile	ctg Leu	gga Gly	cta Leu	aat Asn 260	ttc Phe	883
tgt Cys	acc Thr	ttc Phe	cat His 265	ggc Gly	cgg Arg	ggc Gly	ttc Phe	act Thr 270	cgc Arg	gga Gly	tcc Ser	tgg Trp	ggc Gly 275	ttc Phe	ctg Leu	931
cct Pro	ttc Phe	aat Asn 280	cgg Arg	ccc Pro	att Ile	acc Thr	act Thr 285	gtt Val	gtt Val	Gly ggg	gaa Glu ,	ccc Pro 290	ctt Leu	cca Pro	att Ile	979
ccc Pro	agg Arg 295	att Ile	aag Lys	agg Arg	cca Pro	aac Asn 300	cag Gln	aag Lys	aca Thr	gta Val	gac Asp 305	aag Lys	tat Tyr	cac His	gca Ala	1027
ctc Leu 310	Tyr	atc Ile	agt Ser	gcc Ala	ctg Leu 315	cgc Arg	aag Lys	ctc Leu	ttt Phe	gac Asp 320	caa Gln	cac His	aaa Lys	gtt Val	gaa Glu 325	1075
tat Tyr	Gly	ctc Leu	cct Pro	gag Glu 330	acc Thr	caa Gln	gag Glu	ctg Leu	aca Thr 335	att Ile	aca Thr	taa *	cag	gagc	cac	1124
gaa att ggg tgt	ttcc taat aaag atca	agg aaa aac ccc	agag tcag caga ctgg	ggaa agtt gggg ttat tcac	ag at ct ag ca gg	togt goaa ggga aggg aat	aagga taga ggac caac acto	a tga g tca t gga a aca	agag ctct ggag ccag	agga ccca ggct ttgg ttct	gac agt ggc gga cct	ggct tagc gtct aaac	caa gag cag tat ctt	gcca gcag agga gaat agtt	aaagaa gaaatt gcttag gttggc cattcc caccat	1304 1364 1424 1484
cac gtc cct tac <21 <21	cttt	tag cct caa ttt 0 37 RT	gttt taca gcag cttc	agac actt acag	tt a gg g ga t	gaag aact tccq	cttt gcca tcag	a tti c aai t tg	tgga ggta tgat	acag aacc agag	gga agg ttc	tagt gacc taga	ttg tga ttg	actg gcaa	ctcttg tagctg tgcagt	1604
<pre>cac gtc cct tac <21 <21 <21 <40 Met</pre>	0> 2 .1> 3 .2> P .3> h	tag cct caa ttt 0 37 RT uman	gttt taca gcag cttc	agac actt acag tttg	tt a gg g ga t aa a	gaag aact tccg ataa	cttt gcca tcag agtt	a tt c aa t tg c ta	tgga ggta tgat gaca Gln	acag aacc agag tata	gga agg ttc aaa	tagt gacc taga aaaa	ttg tga ttg aaa	actg gcaa aa	tagctg	1604 1664
<pre>cac gtc cct tac <21 <21 <21 <40 Met</pre>	0> 2 .1> 3 .2> P .3> h	tag cct caa ttt 0 37 RT uman 0	gttt taca gcag cttc Phe Gln	agac actt acag tttg	tt a gg g ga t aa a	gaag aact tccg ataa Leu	cttt gcca tcag agtt Asn	a tt c aa t tg c ta Leu	tgga ggta tgat gaca Gln 10	acag aacc agag tata	gga agg ttc aaa	tagt gacc taga aaaa	ttga ttga ttg aaa	actg gcaa aa Thr 15	tagetg tgeagt	1604 1664
<pre>cac gtc cct tac <21 <21 <21 <10 Met 1 Phe</pre>	cettt ggtc attg 0> 2 1> 3 .2> P 3> h	tag cct caa ttt 0 37 RT uman 0 Phe Leu	gttt taca gcag cttc Phe Gln 20	agac actt acag tttg Ser 5	tt a gg g ga t aa a Arg	gaag aact tccg ataa Leu Pro	cttt gcca tcag agtt Asn Val	a tt c aa t tg c ta Leu Tyr 25	ggta ggta tgat gaca Gln 10 Ile	acag aacc agag tata Glu	gga agg ttc aaa Gly	tagt gacc taga aaaa • Leu	ttga ttga ttg aaa Glr Ala 30	actg gcaa aa Thr 15	tagetg tgeagt	1604 1664
<pre>cac gtc cct tac <21 <21 <21 <40 Met 1 Phe</pre>	cettt ggtc attg .0> 2 .1> 3 .2> P .3> h .00> 2 . Ala e Val	tag cct caa ttt 0 37 RT uman 0 Phe Leu	gttt taca gcag cttc Phe Gln 20 Ile	agac actt acag tttg Ser 5 Trp	tt agg gga taa a Arg	gaag aact tccg ataa Leu Pro Phe	cttt gcca tcag agtt Asn Val	Leu Tyr 25 Leu	ggta ggta tgat gaca Gln 10 Ile	acag aacc agag tata Glu Phe	gga agg ttc aaa Gly Leu	Leu Gly Asn	ttga ttga ttg aaa Glr Ala 30	actg gcaa aa Thr 15 a Ile	tagctg tgcagt	1604 1664
cac gtc cct tac <21 <21 <21 <1 Phe Ala	cttt ggtc attg 0> 2 1> 3 .2> P 3> h 00> 2 Ala Val	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu	gttt taca gcag cttc Phe Gln 20 Ile Ser	agac actt acag tttg Ser 5 Trp	Arg Tyr Ala	Leu Pro Phe Trp	Asn Val Leu 40	Leu Tyr 25 Leu Thr	Gln 10 Ile	acag aacc agag tata Glu Phe Ser	gga agg ttc aaa Gly Leu Lys	Leu Gly Asn	tga ttg aaa Glr Ala 30 Trr	actg gcaa aa Thr 15 116 Pro	tagctg tgcagt Phe Pro	1604 1664
cac gtc cct tac <21 <21 <40 Met 1 Phe Ala Glr 65	cettt ggtc attg 0> 2 1> 3 2> P 3> h 00> 2 Ala Val E Leu Val FO Gly	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu Gly	phe Gln 20 Ile Ser Arg	agac actt acag tttg Ser 5 Trp Pro Leu Arg	Arg Arg Arg Arg Arg Arg Arg Ala Fhe	Leu Pro Phe Trp 55 Ala	Asn Val Leu 40 Leu Trp	Leu Tyr 25 Leu Thr Val	ggaataggta gaca Gln 10 Fhe Tyr Arg	acag aacc agag tata Glu Phe Ser Asp Asp 75	gga agg ttc aaa Gly Leu Lys Trp 60 Trp	Leu Gly Phe 45 Asn Thr	Glr. Ala 30 Trr	Thr 15 116 Pro His Trr 3 Asr 95	tagctg tagcagt Phe Pro Leu Ser Ser	1604 1664
cac gtc cct tac <21 <21 <21 <1 Phe Ala Glr 65 Tyr	cettt ggtc attg 0> 2 1> 3 2> P 3 Ala Val E Val 50 Gly Fhe	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu Gly	Phe Gln 20 Ile Ser Arg	agac actt acag tttg Ser 5 Trp Pro Leu Arg Arg Arg	Arg Tyr Ala Ser 70 Phe	Leu Pro Phe Trp 55 Ala Pro	Asn Val Leu 40 Leu Trp Val	Leu Tyr 25 Leu Thr Val Lys	Gln 10 Ile Phe Tyr Arg Let 90 Asr	acag aacc agag tata Glu Phe Ser Asp 75 Val	gga agg ttc aaa Gly Leu Lys 60 Trp 60 Trp	Leu Gly Asn Thr	Gln Ala 30 Trr Thr Leu His	Thr 15 11e Pro His 1Trr Asr 95	tagctg tagctg tgcagt Phe Pro Leu Ser Lys 80 Leu	1604 1664
cac gtc cct tac <21 <211 <211 <40 Met 1 Phe Ala Glr 65 Tyr Ser	cettt. ggtc attg 0> 2 1> 3 2> P 3> h 0> 2 Ala Val 50 Gly Fhe	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu Gly Arg	Phe Gln 20 Ile Ser Arg Asn His	agac actt acag ttttg Ser 5 Pro Leu Arg Arg 85 Asn 9 Phe	Arg Ile Tyr Ala Fhe Tyr	Leu Pro Phe Trp 55 Ala Pro Ile	Asn Val Leu 40 Leu Trp Val Phe	Leu Tyr 25 Leu Thr Val Lys Ala	Gln 10 Ile Phe Tyr Arg Leu 90 Asr	Glu Fhe Asp Asp Val	Gly Leu Trp 60 Trp Lys Pro	Leu Gly Asn Thr Thr Thr	Glr Glr Ala 30 Trr Thr Let Gly	Thr Thr 116 Pro His Trr S Asr 95 VIIe	tagctg tagctg tgcagt Phe Pro Leu Ser Lys 80 Leu Leu Leu Leu	1604 1664
cac gtc cct tac <21 <211 <211 <40 Met 1 Phe Ala Glir 65 Tyr Ser Ser	cettte ggtcsattg .0> 2.1> 3.2> Photosics Value Value Value Value Value Value Photosics	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu 35 Leu 61 115 215	Phe Gln 20 Ser Arg Asn His	Ser 5 Pro Arg 85 Asn Phe	Arg Arg Ile Tyr Ala Fhe Tyr	Leu Pro Phe Trp 55 Ala Pro Ile Asr	Asn Val Leu 40 Leu 11e 120 17p	Leu Tyr 25 Leu Thr Val Lys Ala 105 Phe	Gln 10 Fhe Tyr Arg Leu 90 Asr	acag aacc agag tata Glu Phe Ser 75 Val His	gga agg ttc aaa Gly Leu Lys Trp 60 Trp 140	Leu Gly Asn Thr Thr 125	ttgattgattgattgattgattgatgatgatgatgatgat	Thr 15 116 Pro His 1 Trr S Asr 95 116 1 Ile	tagctg tagctg tgcagt Phe Pro Leu Ser D Leu Leu Leu Leu Leu R Ala	1604 1664
cac gtc cct tac <21 <21 <40 Met 1 Phe Ala Glr 65 Tyr Ser Arg	cttt.ggtcsattg 0> 2.1> 3.2> P.3.2> P.3.2> P.3.3> h 00> 2.1> 30	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu Gly can	Phe Gln 20 Ile Ser Arg Asn Val	Ser 5 Pro Arg Arg Sar 1 Pro Sar 1 Pr	Arg Arg Tyr Ala Ser Tyr Tyr Val	Leu Pro Phe Trp 55 Ala Pro Asr	Asn Val Leu 40 Leu Trp Val 11e 120 Fro	Leu Tyr 25 Leu Thr Val Lys Ala 105 Ala	Gln 10 Fhe Tyr Arg Leu 90 Asr	Glu Glu Glu Asp Asp Asp Asp Asp Asp Asp As	Gly Gly Leu Trp 60 Trp 140 151	Leu Gly Phe 45 Asn Thr 125 His Thr 125 Met	Glr. Ala 30 Trr Let Gl; Gl; Gl; Gl; Gl;	Thr 15 Ile Pro His 1 Trr S Asr 1 Ile 1 Trr 1 Asr 1 Ile 1 Arr	tagctg tagctg tgcagt Phe Pro Leu Ser No Leu Leu Ala Ile Cys 160	1604 1664
cac gtc cct tac <21 <21 <21 <1 Phe Ala Gli 65 Tyr Ser Arg Phe 14! Phe	cettte ggtcsattg .0> 2.1> 3 .2> P .3> h .00> 2: Ala .2 Val .2 Val .2 Phe .2 Phe .2 Phe .2 Phe .3 Try .5 Val	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu Gly cArg cElys cEl	Phe Gln 20 Ile Ser Asn Val	ser from Leu Arg	Arg Ga La Ga Ga La Ga Ga La Ga Ga La	Leu Pro Phe Trp 55 Ala Pro Ile Asr	Asn Val Leu 40 Leu Phe 120 Fro	Leu Tyr 25 Leu Thr Val Lys Ala 105 Ala D Phe	Gln 10 Fhe Tyr Arg Let 90 Asr Val	Glue Phe Ser Asp Val His Glue Gly Let Color	Gly Leu Lys Trp 60 Trp 140 Ser 1 Thi	Leu Gly Phe 45 Asm Thr 125 Leu Carlor Met	Gln Ala 30 Trr Let Gly Gly Gly Ly:	Thr. 15 Ile Pro His 95 YIle Val. 2 Gly	tagctg tagctg tagcagt Phe Pro Leu Ser Lys Leu Leu Ala Ile Cys 160 Ser	1604 1664
cac gtc cct tac <21 <21 <21 <40 Met 1 Phe Ala Glr 65 Tyr Ser Arg Phe 14! Pro	cettte ggtcsattg .0> 2.1> 3.2> h .2> Photo	tag cct caa ttt 0 37 RT uman 0 Phe Leu 35 Leu 35 Leu 115 ERI	Phe Gln 20 Ile Ser Arg Val Pro	agac actt acag actt acag tttg Ser 5 Trp Pro Leu 85 Asr 9 Ser 165 165 1 Val	Arg ga tagga taga a a a a a a a a a a a a	Leu Pro Phe Trp 55 Ala Pro Ile Asr 135 Arg	Asn Val Leu 40 Leu 120 Pro Glu Lys	Leu Tyr 25 Leu Thr Val Lys Ala 105 Ala 7 Tyr 185	Gln 10 Ile Phe Tyr Arg Lev 90 Asr Thr ICI TGI	acagaaccaagagtata Glu Phe Ser 75 Val His Glu LGI LGI Act	gga aggg ttc aaa Gly Leu Lys Trp 60 Trp 140 Ser 140 Ser 150 Thr	Leu Gly Phe 45 Asn Thr 125 Leu Gly	Gln Ala 30 Trr Thr Gly Gly Gly Ala 110 Gly Ala 110 His	Thrus Assumed the true of true of true of the true of true of true of true of the true of true	Phe Pro Leu Ser Lys Leu Ala Ile Cys 160 Ser	1604 1664

```
195
                            200
                                                205
Val Lys Met Ala Leu Gln Thr Gly Ala Tyr Leu Val Pro Ser Tyr Ser
                        215
                                            220
Phe Gly Glu Asn Glu Val Phe Asn Gln Glu Thr Phe Pro Glu Gly Thr
                                        235
                                                             240
                    230
Trp Leu Arg Leu Phe Gln Lys Thr Phe Gln Asp Thr Phe Lys Lys Ile
                                    250
                                                         255
                245
Leu Gly Leu Asn Phe Cys Thr Phe His Gly Arg Gly Phe Thr Arg Gly
                                265
                                                    270
            260
Ser Trp Gly Phe Leu Pro Phe Asn Arg Pro Ile Thr Thr Val Val Gly
        275
                            280
                                                285
Glu Pro Leu Pro Ile Pro Arg Ile Lys Arg Pro Asn Gln Lys Thr Val
    290
                        295
                                            300
Asp Lys Tyr His Ala Leu Tyr Ile Ser Ala Leu Arg Lys Leu Phe Asp
                                        315
                                                             320
305
                   310
Gln His Lys Val Glu Tyr Gly Leu Pro Glu Thr Gln Glu Leu Thr Ile
                                    330
                325
Thr
<210> 21
<211> 1093
<212> DNA
<213> human
<220>
<221> CDS
<222> (49)...(1053)
<400> 21
cgtgggtgca ggctgcagtg gctggcgccg tcctcgcccg gccaggcc atg aag gta
                                                     Met Lys Val
gag ttt gca ccg ctc aac atc cag ctg gcg cgg ctg cag acg gtg
                                                                   105
Glu Phe Ala Pro Leu Asn Ile Gln Leu Ala Arg Arg Leu Gln Thr Val
gcc gtg ctg cag tgg gtc ctt tct ttt ctt aca ggg ccg atg tcc att
                                                                   153
Ala Val Leu Gln Trp Val Leu Ser Phe Leu Thr Gly Pro Met Ser Ile
                     25
                                         30
gga atc act gtg atg ctg atc ata cac aac tat ttg ttc ctt tac atc
                                                                   201
Gly Ile Thr Val Met Leu Ile Ile His Asn Tyr Leu Phe Leu Tyr Ile
                                     45
cct tat ttg atg tgg ctt tac ttt gac tgg cat acc cca gag cga gga
                                                                   249
Pro Tyr Leu Met Trp Leu Tyr Phe Asp Trp His Thr Pro Glu Arg Gly
                                 60
                                                                   297
ggc agg aga tcc agc tgg atc aaa aat tgg act ctt tgg aaa cac ttt
Gly Arg Arg Ser Ser Trp Ile Lys Asn Trp Thr Leu Trp Lys His Phe
aag gac tat ttt cca att cat ctt atc aaa act caa gat ttg gat cca
                                                                   345
Lys Asp Tyr Phe Pro Ile His Leu Ile Lys Thr Gln Asp Leu Asp Pro
                                              95
                                                                   393
agt cac aac tat ata ttt ggg ttt cac ccc cat gga ata atg gca gtt
Ser His Asn Tyr Ile Phe Gly Phe His Pro His Gly Ile Met Ala Val
gga gcc ttt ggg aat ttt tct gta aat tat tct gac ttc aag gac ctg
                                                                   441
Gly Ala Phe Gly Asn Phe Ser Val Asn Tyr Ser Asp Phe Lys Asp Leu
                120
ttt cct ggc ttt act tca tat ctt cac gtg ctg cca ctt tgg ttc tgg
```

Phe Pro Gly Phe Thr Ser Tyr Leu His Val Leu Pro Leu Trp Phe Trp

140 145 tgt cct gtc ttt cga gaa tat gtg atg agt gtt ggg ctg gtt tca gtt Cys Pro Val Phe Arg Glu Tyr Val Met Ser Val Gly Leu Val Ser Val 537 tcc aag aaa agt gtg tcc tac atg gta agc aag gag gga ggt gga aac 585 Ser Lys Lys Ser Val Ser Tyr Met Val Ser Lys Glu Gly Gly Asn atc tct gtc att gtc ctt ggg ggt gca aaa gaa tca ctg gat gct cat 633 Ile Ser Val Ile Val Leu Gly Gly Ala Lys Glu Ser Leu Asp Ala His 185 190 cct gga aag ttc act ctg ttc atc cgc cag cgg aaa gga ttt gtt aaa 681 Pro Gly Lys Phe Thr Leu Phe Ile Arg Gln Arg Lys Gly Phe Val Lys 200 205 att gct ttg acc cat ggc gcc tct ctg gtc cca gtg gtt tct ttt ggt Ile Ala Leu Thr His Gly Ala Ser Leu Val Pro Val Val Ser Phe Gly 729 215 gaa aat gaa ctg ttt aaa caa act gac aac cct gaa gga tca tgg att 777 Glu Asn Glu Leu Phe Lys Gln Thr Asp Asn Pro Glu Gly Ser Trp Ile 235 aga act gtt cag aat aaa ctg cag aag atc atg ggg ttt gct ttg ccc 825 Arg Thr Val Gln Asn Lys Leu Gln Lys Ile Met Gly Phe Ala Leu Pro 250 255 ctg ttt cat gcc agg gga gtt ttt cag tac aat ttt ggc cta atg acc Leu Phe His Ala Arg Gly Val Phe Gln Tyr Asn Phe Gly Leu Met Thr 265 270 tat agg aaa gcc atc cac act gtt gtt ggc cgc ccg atc cct gtt cgt Tyr Arg Lys Ala Ile His Thr Val Val Gly Arg Pro Ile Pro Val Arg 280 285 cag act ctg aac ccg acc cag gag cag att gag gag tta cat cag acc Gln Thr Leu Asn Pro Thr Gln Glu Gln Ile Glu Glu Leu His Gln Thr 295 300 tat atg gag gaa ctt agg aaa ttg ttt gag gaa cac aaa gga aag tat 1017 Tyr Met Glu Glu Leu Arg Lys Leu Phe Glu Glu His Lys Gly Lys Tyr 315 ggc att cca gag cac gag act ctt gtt tta aaa tga cttgactata 1063 Gly Ile Pro Glu His Glu Thr Leu Val Leu Lys * 330 aaaaaaaatt aaaaaataaa aataaatgac 1093 <210> 22 <211> 334 <212> PRT <213> human <400> 22 Met Lys Val Glu Phe Ala Pro Leu Asn Ile Gln Leu Ala Arg Arg Leu 10 Gln Thr Val Ala Val Leu Gln Trp Val Leu Ser Phe Leu Thr Gly Pro 20 25 Met Ser Ile Gly Ile Thr Val Met Leu Ile Ile His Asn Tyr Leu Phe 35 40 Leu Tyr Ile Pro Tyr Leu Met Trp Leu Tyr Phe Asp Trp His Thr Pro 50 55 60 Glu Arg Gly Gly Arg Arg Ser Ser Trp Ile Lys Asn Trp Thr Leu Trp 75 70 Lys His Phe Lys Asp Tyr Phe Pro Ile His Leu Ile Lys Thr Gln Asp

```
85
                                      90
Leu Asp Pro Ser His Asn Tyr Ile Phe Gly Phe His Pro His Gly Ile
                                  105
Met Ala Val Gly Ala Phe Gly Asn Phe Ser Val Asn Tyr Ser Asp Phe
                             120
Lys Asp Leu Phe Pro Gly Phe Thr Ser Tyr Leu His Val Leu Pro Leu
    130
                         135
                                              140
Trp Phe Trp Cys Pro Val Phe Arg Glu Tyr Val Met Ser Val Gly Leu
                    150
                                          155
                                                                160
Val Ser Val Ser Lys Lys Ser Val Ser Tyr Met Val Ser Lys Glu Gly
                 165
                                      170
                                                           175
Gly Gly Asn Ile Ser Val Ile Val Leu Gly Gly Ala Lys Glu Ser Leu
            180
                                  185
                                                       190
Asp Ala His Pro Gly Lys Phe Thr Leu Phe Ile Arg Gln Arg Lys Gly
        195
                             200
                                                   205
Phe Val Lys Ile Ala Leu Thr His Gly Ala Ser Leu Val Pro Val Val
    210
                        . 215
                                               220
Ser Phe Gly Glu Asn Glu Leu Phe Lys Gln Thr Asp Asn Pro Glu Gly
225
                     230
                                          235
Ser Trp Ile Arg Thr Val Gln Asn Lys Leu Gln Lys Ile Met Gly Phe
                 245
                                      250
                                                           255
Ala Leu Pro Leu Phe His Ala Arg Gly Val Phe Gln Tyr Asn Phe Gly
            260
                                  265
                                                       270
Leu Met Thr Tyr Arg Lys Ala Ile His Thr Val Val Gly Arg Pro Ile
        275
                             280
                                                   285
Pro Val Arg Gln Thr Leu Asn Pro Thr Gln Glu Gln Ile Glu Glu Leu
    290
                         295
                                              300
His Gln Thr Tyr Met Glu Glu Leu Arg Lys Leu Phe Glu Glu His Lys
                     310
                                          315
Gly Lys Tyr Gly Ile Pro Glu His Glu Thr Leu Val Leu Lys
                 325
                                      330
<210> 23
<211> 1008
<212> DNA
<213> mus musculus
<220>
<221> CDS
<222> (1)...(1008)
<400> 23
atg atg gtc gag ttc gcg cca ctc aac acc ccg ctg gca cgg tgc cta
Met Met Val Glu Phe Ala Pro Leu Asn Thr Pro Leu Ala Arg Cys Leu
                 -5
cag acc gct gcg gtg ctg cag tgg gtc ctg tcc ttc ctc ctg ctc gtg Gln Thr Ala Ala Val Leu Gln Trp Val Leu Ser Phe Leu Leu Leu Val
```

cag gtg tgc att gga att atg gtg atg ctg gtc ctg tac aac tat tgg 144 Gln Val Cys Ile Gly Ile Met Val Met Leu Val Leu Tyr Asn Tyr Trp ttc ctt tac atc cca tat ctg gtc tgg ttt tac tat gac tgg aga acc 192 Phe Leu Tyr Ile Pro Tyr Leu Val Trp Phe Tyr Tyr Asp Trp Arg Thr 55 cca gag caa gga ggc aga aga tgg aac tgg gtc caa agc tgg cct gtg 240 Pro Glu Gln Gly Gly Arg Arg Trp Asn Trp Val Gln Ser Trp Pro Val tgg aag tat ttt aag gag tat ttt cca atc tgt ctt gtc aaa acg cag 288 Trp Lys Tyr Phe Lys Glu Tyr Phe Pro Ile Cys Leu Val Lys Thr Gln 85 gat ttg gat ccg ggt cac aat tat ata ttt ggg ttt cac cct cat gga Asp Leu Asp Pro Gly His Asn Tyr Ile Phe Gly Phe His Pro His Gly

26

48

			100					105		•			110			
				gga Gly												384
				ttt Phe												432
			_	ttc Phe	_	_		_	_		_	_	_			480
				tct Ser 165												528
gga Gly	ggt Gly	ggc	aat Asn 180	gtc Val	tca Ser	atc Ile	att Ile	gtc Val 185	ctc Leu	gga Gly	ggt Gly	gca Ala	aag Lys 190	gag Glu	gcg Ala	576
				cca Pro		Thr										624
ggg Gly	ttt Phe 210	gtt Val	aag Lys	atg Met	gcc Ala	ttg Leu 215	acc Thr	cat His	ggt Gly	gcc Ala	agt Ser 220	ttg Leu	gtt Val	cca Pro	gta Val	672
				gaa Glu												720
			Leu	cga Arg 245												768
				ctg Leu												816
				tat Tyr												864
atc Ile	cct Pro 290	gtt Val	cag Gln	cag Gln	att Ile	ctg Leu 295	aac Asn	ccg Pro	acc. Thr	tca Ser	gag Glu 300	cag Gln	att Ile	gaa Glu	gag Glu	912
				tac Tyr												960
				ggg Gly 325											taa *	1008

<210> 24 <211> 335 <212> PRT <213> mus musculus

^{1 5 10 15}Gln Thr Ala Ala Val Leu Gln Trp Val Leu Ser Phe Leu Leu Val

```
Gln Val Cys Ile Gly Ile Met Val Met Leu Val Leu Tyr Asn Tyr Trp
                           40
                                                45
Phe Leu Tyr Ile Pro Tyr Leu Val Trp Phe Tyr Tyr Asp Trp Arg Thr
                                            60
                        55
Pro Glu Gln Gly Gly Arg Arg Trp Asn Trp Val Gln Ser Trp Pro Val 65 70 75 80
Trp Lys Tyr Phe Lys Glu Tyr Phe Pro Ile Cys Leu Val Lys Thr Gln
               85
                                    90
Asp Leu Asp Pro Gly His Asn Tyr Ile Phe Gly Phe His Pro His Gly
                               105
            100
Ile Phe Val Pro Gly Ala Phe Gly Asn Phe Cys Thr Lys Tyr Ser Asp
115 120 125
      115
Phe Lys Leu Phe Pro Gly Phe Thr Ser Tyr Leu His Val Ala Lys
                       135
Ile Trp Phe Cys Phe Pro Leu Phe Arg Glu Tyr Leu Met Ser Asn Gly
                                        155
                   150
Pro Val Ser Val Ser Lys Glu Ser Leu Ser His Val Leu Ser Lys Asp
                                    170
                165
Gly Gly Asn Val Ser Ile Ile Val Leu Gly Gly Ala Lys Glu Ala
180 185
                               185
Leu Glu Ala His Pro Gly Thr Phe Thr Leu Cys Ile Arg Gln Arg Lys
                                                205
                             200
        195
Gly Phe Val Lys Met Ala Leu Thr His Gly Ala Ser Leu Val Pro Val
                                            220
                        215
Phe Ser Phe Gly Glu Asn Asp Leu Tyr Lys Gln Ile Asn Asn Pro Lys
                                       235
                    230
Gly Ser Trp Leu Arg Thr Ile Gln Asp Ala Met Tyr Asp Ser Met Gly
245 250 255
              245
Val Ala Leu Pro Leu Ile Tyr Ala Arg Gly Ile Phe Gln His Tyr Phe
260 265 270
Gly Ile Met Pro Tyr Arg Lys Leu Ile Tyr Thr Val Val Gly Arg Pro
                                                 285
                            280
Ile Pro Val Gln Gln Ile Leu Asn Pro Thr Ser Glu Gln Ile Glu Glu 290 295 300
                         295
 290
Leu His Gln Thr Tyr Leu Glu Glu Leu Lys Lys Leu Phe Asn Glu His 305 310 315
                    310
Lys Gly Lys Tyr Gly Ile Pro Glu His Glu Thr Leu Val Phe Lys
                 325
                                     330
<210> 25
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> 86606 forward primer
<400> 25
                                                                     22
caageceett tattgecact ac
<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> 86606 reverse primer
```

<400> 26
tccccttggc agagaaactg

<210> 27 <211> 28 <212> DNA <213> Artificial Sequence 20

<220> <223> 86606 probe	
<400> 27 ccacgctcgt ctagtcctga aactgcag :	28
<210> 28 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> m86606 forward primer	
<400> 28 ttccccagac gacagacact t	21
<210> 29 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> m86606 reverse primer	
<400> 29 ctctcaagaa tccctggagt cact	24
<210> 30 <211> 47 <212> DNA <213> Artificial Sequence	
<220> <223> m86606 probe	
<400> 30 actgcccttg cccagctagc cagtactgcc cttgcccagc tagccag	47
<210> 31 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> hDC2 forward primer	
<400> 31 ctataggaaa gccatccaca ctgtt	25
<210> 32 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> hDC2 reverse primer	
<400> 32 gggtcgggtt cagagtctga	20
<210> 33	

WO 03/053363	PCT/US02/40974
--------------	----------------

<211> 19 <212> DNA <213> Artificial Sequence				
<220> <223> hDC2 probe				
<400> 33 ttggccgccc gatccctgt		٥		19
<210> 34 <211> 20 <212> DNA <213> Artificial Sequence				
<220> <223> 101188 forward primer				
<400> 34 ggctcaccca ggaacattca				20
<210> 35 <211> 23 <212> DNA <213> Artificial Sequence				
<220> <223> 101188 reverse primer				
<400> 35 ggtcaaggcc atcttaacaa acc				23
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence			·	
<220> <223> 101188 probe				
<400> 36 ctgtgcatcc gccagcgcaa		•		20
<210> 37 <211> 19 <212> DNA <213> Artificial Sequence				
<220> <223> 112023 forward primer				
<400> 37 gcggccacaa ggatgtaaa				19
<210> 38 <211> 22 <212> DNA <213> Artificial Sequence	·			
<220> <223> 112023 reverse primer				

<400> 38

gagctácctt gccatctttt gg	•		2	2
<210> 39 <211> 56 <212> DNA <213> Artificial Sequence				
<220> <223> 112023 probe				
<400> 39 agcaggtaga cgaacaatgg ctgcaag	atc ttgcagccat	tgttcgtcta	cctgct 5	6
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence				
<220> <223> m112023 forward primer				
<400> 40 cgttgccatg ttttggattg	-		2	20
<210> 41 <211> 18 <212> DNA <213> Artificial Sequence				
<220> <223> m112023 reverse primer	,			
<400> 41 tgttggtagc ggccacaa				18
<210> 42 <211> 32 <212> DNA <213> Artificial Sequence				
<220> <223> m112023 probe				
<400> 42 cagccattgt taatttgcct attgtto	caca cc			32
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence				
<220> <223> 112024 forward primer	·			
<400> 43 tcaatgctgg caccaaagtg				20
<210> 44 <211> 24 <212> DNA <213> Artificial Sequence				
<220> <223> 112024 reverse primer				

<400> 44 tggtgagata gtcccaagaa acag	24
<210> 45 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> 112024 probe	
<400> 45 aggcccgtct cccctaggct cttc	24
<210> 46 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> m58765 forward primer	
<400> 46 ggtgagtgcc gatcacattc t	21
<210> 47 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> m58765 reverse primer	
<400> 47 caacgatgat ggcaagcaag t	21
<210> 48 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> m58765 probe	
<400> 48 tccaggaagg gcggcgggcc cgccgccctt cctgga	36
<210> 49 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> 58765 forward primer	
<400> 49 tgaccgcgcc atttccta	18
<210> 50 <211> 24 <212> DNA <213> Artificial Sequence	
<2205	

WO 03/053363	PCT/US02/40974
<223> 58765 reverse primer	
<400> 50 gattcagact ggtccaaacc ctat	. 24
<210> 51 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> 58765 probe	
<400> 51 tccttccatg accetecatt getectag	28
<210> 52 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> 58765 short forward primer	
<400> 52 cctggatcct tcacgctgtt ac	22
<210> 53 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> 58765 short reverse primer	
<400> 53 aggcttgata cccgtgtgtc a	21
<210> 54 <211> 46 <212> DNA <213> Artificial Sequence	
<220> <223> 58765 short probe	
<400> 54 cggaaccgaa agggcttcgt cagctgacga agccctttcg gttccg	46
<210> 55 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> 60489 forward primer	J
<400> 55 cgaggaggaa gtcaatcact atca	24
<210> 56 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> 60489 reverse primer	

<400> 56

tttccttgtg ctcctcgaag a	21
<210> 57 <211> 26 <212> DNA <213> Artificial Sequence	
<220>	
<400> 57 ccctctacat gacggacctg gagcag	26
<210> 58 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> 112041 forward primer	,
<400> 58 gagacccaag agctgacaat taca	24
<210> 59 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> 112041 reverse primer	•
<400> 59 tggatcctc atggctttg	19
<210> 60 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> 112041 probe	
<400> 60 aacaggagcc acattcccca ttgatca	27
<210> 61 <211> 712 <212> DNA <213> human	
<220> <221> CDS <222> (2)(712)	
<pre><400> 61 g cta gtt aaa act gca aag ttg ggc acc tcc tgg aac tac ctc ttt Leu Val Lys Thr Ala Lys Leu Gly Thr Ser Trp Asn Tyr Leu Phe 1</pre>	gac 49 Asp
ttc cac cct cac agg gtc ctg gtc gtg gga gcc ttc gcc aac ttc tg Phe His Pro His Arg Val Leu Val Val Gly Ala Phe Ala Asn Phe Cy 20 25 30	c 97 s
aca gag ccc acg ggc tgc tcc tgc ctc ttc ccc aaa ctc ccg cca ca Thr Glu Pro Thr Gly Cys Ser Cys Leu Phe Pro Lys Leu Pro Pro Hi 35 40	c 145 s
ctg ctc atg ctg cct tgt tgg ttc cat ctc ctc ttc ttc cag gac ta	c 193

Leu	Leu 50	Met	Leu	Pro	Cys	Trp 55	Phe	His	Leu	Leu	Phe 60	Phe	Gln	Asp	Tyr	
atc Ile 65	atg Met	tca Ser	ggt Gly	ggt Gly	ttg Leu 70	gtc Val	tcc Ser	ttt Phe	gtc Val	aag Lys 75	gcc Ala	ccg Pro	ctg Leu	cct Pro	cag Gln 80	241
tgg Trp	tgg Trp	cca Pro	ggt Gly	ggc Gly 85	tgt Cys	cct Pro	ggc Gly	gtg Val	gga Gly 90	Gly ggg	ccc Pro	ctg Leu	cag Gln	gcg Ala 95	ctg Leu	289
gag Glu	gca Ala	aaa Lys	ccc Pro 100	gga Gly	caa Gln	ctg Leu	agc Ser	ttg Leu 105	ccg Pro	att Ile	cgg Arg	aat Asn	cag Gln 110	aag Lys	aga Arg	337
ttg Leu	gtt Val	aag Lys 115	tca Ser	gct Ala	ctg Leu	gaa Glu	ctc Leu 120	ggg Gly	gag Glu	aat Asn	gag Glu	ctc Leu 125	ttc Phe	cag Gln	cag Gln	385
ttc Phe	ccg Pro 130	aac Asn	ccg Pro	cag Gln	agc Ser	tcg Ser 135	tgg Trp	gtg Val	cag Gln	agg Arg	acg Thr 140	cag Gln	gag Glu	gct Ala	ctg Leu	433
cgt Arg 145	Pro	ctg Leu	cta Leu	agc Ser	gtg Val 150	gcc Ala	ctg Leu	cag Gln	ьeu	ttc Phe 155	ctg Leu	ggc Gly	cgc	cgg Arg	ggc Gly 160	481
ctc Leu	ccg Pro	ctg Leu	ccc	ttc Phe 165	cgc Arg	gcg Ala	ccc Pro	atc Ile	cgc Arg 170	acc Thr	gta Val	gtg Val	ggg	tcg Ser 175	ALU	529
att Ile	ccc Pro	gtg Val	cag Gln 180	Gln	agc Ser	ccc Pro	ccg Pro	ccc Pro 185	Ser	ccg Pro	gcc Ala	cag Gln	gtg Val 190	. Asp	acg Thr	577
ctg Lev	caa Gln	gcg Ala 195	ı Arg	tac Tyr	gtg Val	ggg	cga Arg 200	ren	acg Thr	cag Gln	r ctc	ttc Phe 205	Git	gag Glu	cac His	625
caç Glr	g gcg Ala 210	Arg	tat Tyr	ggt Gly	gtc Val	ccc Pro 215	Ala	gac Asp	aga Arg	cac His	ctg Leu 220	ı vaı	ctc Lev	acg Thr	gag Glu	67,3
gcg Ala 225	a Arg	r ccc	acc Thr	gcc Ala	tgg Trp 230	Pro	cgc Arg	cto Lev	tco Ser	gct Ala 235	ggg Gly	tga *	Ĺ			712
<2: <2:	10> 6 11> 2 12> 1 13> 1	236 PRT	n													
<4!	00> 6	52 1 Lv:	s Thi	r Ala	a Lys	s Lei	ı Gly	/ Thi	r Sei	r Trj	p Ası	тут	Le	ı Phe	e Asp	
1				- 5					ΤU				a As	10	e Cys	
		u Pr	20				Cy	25					30		o His	
Le		35 u Me	t Le	u Pro	э Су	s Tri	40 Phe	e Hi	s Le	ı Le	u Pho		e Gl	n As	ġ Tyr	
65					70	u Va				/ 2	s Ala				o Gln 80	
Tr	p Tr			X 5					20						a Leu	
			10	o Gl				10	5				1.1	U	s Arg	
Le	u Va	l Ly	s Se	r Al	a Le	u Gl	u Le	u Gl	y Gl	u As	n Gl	u Lei	u Ph	e Gl	n Gln	•

		115					120					125		_		
	120	Asn				135				Arg	T#0					
1 4 5	Pro				150					Phe 155					700	
Leu				165					T/0	Thr				1/3		
			1 2 0	Gln				1.85		Pro			TAO			
		105	Arg				200			Gln		200				
Gln	Ala 210	Arg	Tyr	Gly	Val	Pro 215	Ala	Asp	Arg	His	Leu 220	Val	Leu	Thr	Glu	
Ala 225	Arg	Pro	Thr	Ala	Trp 230		Arg	Leu	Ser	Ala 235	Gly					
<21:	0> 6 1> 2 2> D 3> A	0 NA	icia	l Se	quen	ce										
<22 <22		1203	7 fo	rwar	d pr	imer				٠.						
	0> 6 gcct		cccc	aaac	tc						-					20
<21 <21	0> 6 1> 2 2> D 3> A	4 NA	icia	l Se	quen	.ce		٠.								
<22 <22	-	.1203	7 re	vers	e pr	imer	.									79.
	0> 6 gaag		agat	.ggaz	icc a	aca									,	24
<21 <21	.0> 6 .1> 2 .2> I .3> A	21 DNA	icia	ıl Se	equer	ıce										
<22 <22		11203	37 pr	obe			1									
)0> (acto	catgo	etg (21

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 3 July 2003 (03.07.2003)

(10) International Publication Number WO 2003/053363 A3

- A61K 38/52. (51) International Patent Classification7: 39/395, C07H 21/04, C12P 21/02, C12N 9/10, 5/06
- (21) International Application Number:

PCT/US2002/040974

(22) International Filing Date:

19 December 2002 (19.12.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

19 December 2001 (19.12.2001)

60/341,947 60/411,859

19 September 2002 (19.09.2002)

- (71) Applicant: MILLENNIUM PHARMACEUTICALS, INC. [US/US]; Sidney Street 75, Cambridge, MA 02139 (US).
- (72) Inventors: GIMENO, Ruth, E.; Beverly Road 65, Wellesley, MA 02481 (US). WU, Zhidan; Tremont Street, 1575 Apt.410, Boston, MA 02120 (US). KAPELLER-LIBERMANN, Rosana; Beacon Street 86, Chestnut Hill, MA 02467 (US). HUBBARD, Brian, K.; Pickett St. 9, Beverly, MA 01915 (US).

- (74) Agent: SCHRAY, Kerri, Pollard; Millennium Pharmaceuticals, Inc., Sidney Street 75, Cambridge, MA 02139 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 29 April 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HUMAN DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) FAMILY MEMBERS AND USES THEREFOR

(57) Abstract: The present invention relates to compositions and methods for the diagnosis and treatment of obesity and related metabolic disorders. The invention provides isolated nucleic acids molecules, designated DGAT2 family member nucleic acid molecules, which encode diacylglycerol acyltransferase family members. The invention also provides recombinant expression vectors containing DGAT2 family member nucleic acid molecules, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which a DGAT2 family member gene has been introduced or disrupted. The invention still further provides isolated DGAT2 family member proteins, fusion proteins, antigenic peptides and anti-DGAT2 family member antibodies. Methods of use of the provided DGAT2 family member compositions for screening, diagnostic and therapeutic methods in connection with obesity disorders are also disclosed.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/40974

IPC(7) US CL	SIFICATION OF SUBJECT MATTER : A61K 38/52, 39/395; C07H 21/04; C12P 21/02 : 424/94.5; 435/69.1, 193, 325, 320.1; 536/23.2 International Patent Classification (IPC) or to both na							
	DS SEARCHED	LIONAL CIAC	Mildution and A C					
	cumentation searched (classification system followed b 24/94.5; 435/69.1, 193, 325, 320.1; 536/23.2	y classifica	ation symbols)					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) US and commercial sequence data bases; STN and West.							
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where a			Relevant to claim No.				
X	WO 00/05367 A2 (SAGAMI CHEMICAL RESEAF (03.02.2000), see the entire document. Sequence ali Nos. 1 & 2 and Accession Nos. AAA15987 & AAY WO patent is attached herewith. SEQ ID NO: 1 and ID NO: 2 and AAY94889 are also 100% identical.	gnments be 94889 resp I AAA1598	tween Applicants' SEQ ID ectively, disclosed in the	1-7, 9-12				
Y,P	US 2002/0119138 A1 (CASES et al.) 29 August 2002 (29.08.2002), see the entire document, especially SEQ ID Nos. 15 and 16. Applicants' SEQ ID NO: 1 (DNA) is 97.3% identical to SEQ ID NO: 15 disclosed in the cited document, and Applicants' SEQ ID NO: 2 is 98% identical to the amino acid sequence of SEQ ID NO: 16 (or diacylglycerol O-acyltransferase 2- alpha) disclosed in the cited document.							
	,		·					
Further	documents are listed in the continuation of Box C.		See patent family annex.					
* S ₁	pecial categories of cited documents:	"T"	later document published after the inter date and not in conflict with the applica	mational filing date or priority				
	defining the general state of the art which is not considered to be lar relevance	"X"	principle or theory underlying the inver- document of particular relevance; the c	ntion				
	plication or patent published on or after the international filing date		considered novel or cannot be consider when the document is taken alone					
	which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	"Y"	document of particular relevance; the considered to involve an inventive step combined with one or more other such	when the document is				
"O" document	referring to an oral disclosure, use, exhibition or other means		being obvious to a person skilled in the	art				
	published prior to the international filing date but later than the ate claimed	* &*	document member of the same patent f	amily				
Date of the ac	ctual completion of the international search	Date of n	nailing of the international searc	h report				
		19	NOV 2003					
Mail Com P.O.	15 October 2003 (15.10.2003) Name and mailing address of the ISA/US Mail Stop PCT, Atm: ISA/US Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450							
	. (703)305-3230							

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US02/40974

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7 & 9-12 (all in-part) with reference to SEQ ID Nos. 1 & 2 Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

PCT/	US02.	/40974

INTERNATIONAL SEARCH REPORT

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 1, the encoded protein of SEQ ID NO: 2 [human diacylglycerol acyltransferase 2 (DGAT2)], vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group II, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 3, the encoded protein of SEQ ID NO: 4, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group III, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 5, the encoded protein of SEQ ID NO: 6, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group IV, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 7, the encoded protein of SEQ ID NO: 8, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein,

Group V, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 11, the encoded protein of SEQ ID NO: 12, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group VI, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 13, the encoded protein of SEQ ID NO: 14, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group VII, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 15, the encoded protein of SEQ ID NO: 16, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group VIII, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 17, the encoded protein of SEQ ID NO: 18, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group IX, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 19, the encoded protein of SEQ ID NO: 20, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group X, claim(s) 1-7 & 9-12 (all in-part), drawn to isolated nucleic acid of SEQ ID NO: 61, the encoded protein of SEQ ID NO: 62, vector, host cell and method of making the protein, identifying compound and modulating the activity of the protein.

Group XI, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 2.

Group XII, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 4.

Group XIII, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEO ID NO: 6.

Group XIV, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 8.

Group XV, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 12.

Group XVI, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 14.

Group XVII, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEO ID NO: 16.

Group XVIII, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 18.

Group XIX, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 20.

Group XX, claim(s) 8 (in-part), drawn to antibody which selectively binds to the protein of SEQ ID NO: 62.

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US02/40974

INTERNATIONAL SEARCH REPORT

Group XXI, claim(s) 13-14, drawn to a method of identifying a compound capable of modulating adipocyte activity.

Group XXII, claim(s) 15-16 (all in-part), drawn to method of modulating adipocyte activity comprising contacting an adipocyte with a DGAT2 modulator of SEQ ID NO: 8 or that encoded by SEQ ID NO: 7.

Group XXIII, claim(s) 15-16 (all in-part), drawn to method of modulating adipocyte activity comprising contacting an adipocyte with a DGAT2 modulator of SEQ ID NO: 20 or that encoded by SEQ ID NO: 19.

Group XXIV, claim(s) 15-16 (all in-part), drawn to method of modulating adipocyte activity comprising contacting an adipocyte with a DGAT2 modulator of SEQ ID NO: 62 or that encoded by SEQ ID NO: 61.

Group XXV, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 2 or a method of identifying a compound capable of treating a disorder.

Group XXVI, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 4, or a method of identifying a compound capable of treating a disorder.

Group XXVII, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 6 or a method of identifying a compound capable of treating a disorder.

Group XXVIII, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 8 or a method of identifying a compound capable of treating a disorder.

Group XXIX, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 12 or a method of identifying a compound capable of treating a disorder.

Group XXX, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 14 or a method of identifying a compound capable of treating a disorder.

Group XXXI, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 16 or a method of identifying a compound capable of treating a disorder.

Group XXXII, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 18 or a method of identifying a compound capable of treating a disorder.

Group XXXIII, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 20 or a method of identifying a compound capable of treating a disorder.

Group XXXIV, claim(s) 17-29 (all in-part), drawn to method of determining acyltransferase activity of a polypeptide, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 62 or a method of identifying a compound capable of treating a disorder.

The inventions listed as Groups I-XXXIV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group I has a special technical feature of the nucleotide sequence of nucleotide sequence of SEQ ID NO: 1 encoding the amino acid sequence of SEQ ID NO: 2, which groups II-XXXIV do not share; similarly Groups II-X, each has a special technical feature of the nucleotide sequence of nucleotide sequence of SEQ ID NO: 3, 5, 7, 11, 13, 15, 17, 19 & 61 encoding the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 12, 14, 16, 18, 20 & 62 respectively which Groups I and XI-XXXIV do not share; Groups XI-XX, each has a special technical feature of an antibody against SEQ ID NO: 2, 4, 6, 8, 12, 14, 16, 18, 20 & 62, which Groups I-X and XXI-XXXIV do not share; Groups XXI-XXXIV employ amino acid or nucleic acid sequences SE Q ID Nos. 1-8, 11-20 & 61-62 in different methods, however, in view of 37 CFR 1.475 (b), when claims corresponding to different categories of invention are present then only (3) applies and additional methods of use are deemed to lack unity. For the same reason the various sequences listed above which are structurally diverse and differ in level of activities, are distinct when employed in the methods of use, are therefore deemed to lack unity.