Statistics_of_Polymer_Models

July 12, 2018

1 Statistics of Polymer Models

1.1 Nikolas Schnellbächer (created 2018-07-04)

Here explore some statistical properties of two simples polymer models. We use the freely jointed and the freely rotating chain and simulate both using random walk models. In all cases N denotes the number of chain segments and a is the segment length. For the freely rotating chain model θ is the rotation angle. In this exercise we work in two dimensions exclusively.

```
In [1]: import numpy as np
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        from scipy import stats
In [2]: # define measurement functions here
        def get_msd(X, Y, sampleLengths):
            Calculates the msd of two-dimensional trajectories.
            msd = np.zeros((len(sampleLengths),))
            for i in range(len(sampleLengths)):
                msd[i] = np.mean(np.square(X[i, :]) + np.square(Y[i, :]))
            return msd
        def FloryC(theta):
            Flory's characterictic ratio $C_{\infty}$
            return (1.0 + np.cos(theta)) / (1.0 - np.cos(theta))
In [3]: def FJC(sampleLengths, m, a = 1.0e-3, x0 = 0.0, y0 = 0.0):
            Random walk model for the freely jointed chain (FJC) in two dimensions (d = 2).
            111
```

```
nSamples = len(sampleLengths)
            iterations = (sampleLengths).astype(int)
            iterations[1:] = iterations[1:] - iterations[0:-1]
            totalIterations = np.cumsum(iterations)[-1]
            print("totalIterations = ",totalIterations)
            LOW, HIGH = 0.0, 2.0 * np.pi
            outx = np.zeros((nSamples, m))
            outy = np.zeros((nSamples, m))
            for k in range(m):
                x, y = x0, y0 # set initial position
                for j in range(nSamples):
                    for i in range(iterations[j]):
                        phi = np.random.uniform(low = LOW, high = HIGH)
                        x += a * np.cos(phi)
                        y += a * np.sin(phi)
                    outx[j, k] = x
                    outy[j, k] = y
            return outx, outy
In [4]: def FJC_{vec}(sampleLengths, m, a = 1.0e-3, x0 = 0.0, y0 = 0.0):
            Random walk model for the freely jointed chain (FJC) in two dimensions (d = 2).
            Vectorized version of the FJC algorithm.
            nSamples = len(sampleLengths)
            iterations = (sampleLengths).astype(int)
            iterations[1:] = iterations[1:] - iterations[0:-1]
            totalIterations = np.cumsum(iterations)[-1]
            print("totalIterations = ",totalIterations)
            LOW, HIGH = 0.0, 2.0 * np.pi
            outx = np.zeros((nSamples, m))
            outy = np.zeros((nSamples, m))
            x = np.ones((1, m)) * x0
            y = np.ones((1, m)) * y0
```

```
outx[0, :] = x
outy[0, :] = y

for j in range(nSamples):
    for i in range(iterations[j]):
        phis = np.random.uniform(low = LOW, high = HIGH, size = m)
        x += a * np.cos(phis)
        y += a * np.sin(phis)

        outx[j, :] = x
        outy[j, :] = y
```

return outx, outy

To understand the implementation for the FRC algorithm below recall that in two dimensions the standard rotation matrix $R(\theta)$ reads

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} . \tag{1}$$

The binary coin flip choice at each iteration then simply decides whether the current orientation is either rotated by $R_+ := R(+\theta)$ or by $R_- := R(-\theta)$. Given a starting orientation vector f we update the orientation by invoking

$$f_{i+1} = \begin{cases} R_+ \cdot f_i & \text{for } p_{\text{coin}} > 0.5\\ R_- \cdot f_i & \text{else} \end{cases}$$
 (2)

Then the position update follows immediately as

$$x_{i+1} = x_i + a \cdot f_{i+1} \,. \tag{3}$$

Here x and f are both two-dimensional position and orientation vectors, respectively.

```
outy = np.zeros((nSamples, m))
# make sure to precalculate RO and R1 outside of all the loops below!
R0 = np.matrix([[np.cos(theta), -np.sin(theta)],\
                [np.sin(theta), np.cos(theta)]])
R1 = np.matrix([[np.cos(-theta), -np.sin(-theta)],\
                [np.sin(-theta), np.cos(-theta)]])
for k in range(m):
    x = np.array([[x0], [y0]]) # set initial position
    phi = np.random.uniform(LOW, HIGH)
    ori = np.array([[np.cos(phi)],[np.sin(phi)]])
    for j in range(nSamples):
        for i in range(iterations[j]):
            flip = np.random.choice([0, 1])
            if (flip == 1):
                ori = np.dot(R1, ori)
                ori = np.dot(R0, ori)
            x += a * ori
        outx[j, k] = x[0]
        outy[j, k] = x[1]
return outx, outy
```

The implementation of the FRC function above is a very literal and explicit implementation. It is a straight forward implementation of the described formulaes and very literally implements the algorithm. This makes it clear to understand what is going on, at the expense of computational speed. Below I show you a vectorized version for the FRC model, which is much faster and hence recommended for more extensive statistical analysis of the model.

```
# initial orientation uniformly sampled in [0, 2 * Pi)
            angles[0] = np.random.uniform(0.0, 2.0 * np.pi)
            angles[1:] = theta * np.random.choice([-1.0, 1.0], N - 1)
            angles = np.cumsum(angles)
            outx[1:] = np.cumsum(a * np.cos(angles))
            outy[1:] = np.cumsum(a * np.sin(angles))
            return outx, outy
        def FRC_wrapper(sampleIndices, m, a = 1.0e-3,\
                        theta = 0.2 * np.pi, x0 = 0.0, y0 = 0.0):
            ,,,
            Wrapper function which creates m statistically
            independent realizations of the FRC model.
            xVals = np.zeros((len(sampleIndices), m))
            yVals = np.zeros((len(sampleIndices), m))
            N = sampleIndices[-1]
            for i in range(m):
                tmpX, tmpY = FRC_vecSingle(N, a, theta, x0, y0)
                xVals[:, i] = tmpX[sampleIndices]
                yVals[:, i] = tmpY[sampleIndices]
            return xVals, yVals
In [7]: def plot_trajectories(X, Y, m = 10):
            f, ax = plt.subplots(1)
            f.set_size_inches(5.5, 5.5)
            ax.set_xlabel('$x$ coordinate', fontsize = 18)
            ax.set_ylabel('$y$ coordinate', fontsize = 18)
            labelfontsize = 15.0
            for tick in ax.xaxis.get_major_ticks():
                tick.label.set_fontsize(labelfontsize)
            for tick in ax.yaxis.get_major_ticks():
                tick.label.set_fontsize(labelfontsize)
            for i in range(m):
                ax.plot(X[:, i], Y[:, i], lw = 1.0, alpha = 0.80)
            rx = np.max(X)
            ry = np.max(Y)
```

angles = np.zeros((N))

```
r = np.max([rx, ry])
ax.set_xlim(-r, r)
ax.set_ylim(-r, r)
return None
```

1.2 Assay 1 - Random walk model for the FJC

1.3 Random walk model for the FRC

```
In [12]: %%time
         np.random.seed(123456789)
         # create m = 25 FRC polymer configurations
         sampleLengths = np.arange(0.0, 501.0, 1)
         X2, Y2 = FRC(sampleLengths, m, theta = 0.1 * np.pi)
totalIterations = 500
CPU times: user 325 ms, sys: 32.1 ms, total: 357 ms
Wall time: 337 ms
In [13]: %%time
         # We repeat the same, using the vectorized version of the FRC algorithm.
         np.random.seed(223456789)
         # create m = 25 FJC polymer configurations
         sampleIndices = np.arange(0.0, 501.0, 1).astype(int)
         X2_vec, Y2_vec = FRC_wrapper(sampleIndices, m, a = 1.0e-3, theta = 0.1 * np.pi)
CPU times: user 4.88 ms, sys: 1.02 ms, total: 5.9 ms
Wall time: 5.18 ms
In \lceil 14 \rceil: m = 25
         plot_trajectories(X2, Y2, m)
```


Changing the rotation angle θ we can change the polymers persitence length l_P . The well established relation for the freely rotating chain model reads

$$l_P = -\frac{a}{\ln\left(\cos\theta\right)} \,. \tag{4}$$

1.4 Assay 2 - FJC mean-squared-end-to-end vector as a function of chain length N

Next, we analyze the mean-squared end-to-end vector as a function of segment length. The goal is of course to verify, that the well known relation

$$\langle R^2 \rangle = Na^2$$
 (5)

holds for the freely jointed chain (FJC). This is of course equivalent to

$$R = \sqrt{\langle \mathbf{R}^2 \rangle} = \sqrt{N}a. \tag{6}$$

In the first part of this section on the FJC model we will show the $\sim N$ scaling and in the second part we verify the $\sim a^2$ scaling of the MSD.

```
X_ex2, Y_ex2 = FJC(sampleLengths, m)
         print(X_ex2.shape)
         print(Y_ex2.shape)
totalIterations = 5000
(5, 1000)
(5, 1000)
CPU times: user 23.4 s, sys: 294 ms, total: 23.7 s
Wall time: 24.8 s
In [25]: %%time
         np.random.seed(123456789)
         m = 1000 # number of statistically independent configurations
         sampleLengths = np.array([10, 500, 1000, 2500, 5000])
         X_ex2_vec, Y_ex2_vec = FJC_vec(sampleLengths, m)
         print(X_ex2_vec.shape)
         print(Y_ex2_vec.shape)
totalIterations = 5000
(5, 1000)
(5, 1000)
CPU times: user 420 ms, sys: 3.91 ms, total: 423 ms
Wall time: 427 ms
```

Here you can compare the execution time of the vectorized version against the execution time of the naive implementation of the FJC model. One gets a speed up of roughly 50 times faster code.

```
color = 'CO',
                     label = r'$\langle R^2\rangle = Na^2$',
                     zorder = 1)
             ax.scatter(X, Y, color = 'k',
                        s = 80,
                        marker = 'o',
                        facecolors = 'None',
                        edgecolors = 'k',
                        linewidth = 1.5,
                        label = r'FJC (numeric)', zorder = 2)
             ax.set_xlim(-200.0, 5200.0)
             ax.set_ylim(-0.0005, 0.0062)
             leg = ax.legend(scatterpoints = 1,
                              markerscale = 1.0,
                              ncol = 1,
                              fontsize = 18)
             for i, legobj in enumerate(leg.legendHandles):
                 legobj.set_linewidth(1.5)
             leg.draw_frame(False)
             return None
In [27]: sampleLengths_ex2 = np.array([10, 500, 1000, 2500, 5000])
         msd_ex2 = get_msd(X_ex2, Y_ex2, sampleLengths_ex2)
         plot_msd_FJC(sampleLengths_ex2, msd_ex2, a = 1.0e-3)
```


1.5 Assay 3 FJC mean-squared-end-to-end vector as a function of the segment length

```
segment length 0.001
totalIterations = 2000
segment length 0.002
totalIterations = 2000
segment length 0.003
totalIterations = 2000
segment length 0.005
totalIterations = 2000
segment length 0.0075
totalIterations = 2000
segment length 0.01
totalIterations = 2000
CPU times: user 53.1 s, sys: 390 ms, total: 53.5 s
Wall time: 54.1 s
In [30]: %%time
        np.random.seed(123456789)
         m = 10000 \# we can afford 10000 here
         N = 2000
         sampleLengths_ex3 = np.array([N])
         stepSizes_ex3 = np.array([1.0e-3, 2.0e-3, 3.0e-3, 5.0e-3, 7.5e-3, 1.0e-2])
         res_ex3_vec = np.zeros((len(stepSizes_ex3)))
         for i, a in enumerate(stepSizes_ex3):
             print("segment length", a)
             tmpX, tmpY = FJC_vec(sampleLengths_ex3, m, a)
             msd = get_msd(tmpX, tmpY, sampleLengths_ex3)
             res_ex3_vec[i] = msd[0]
segment length 0.001
totalIterations = 2000
segment length 0.002
totalIterations = 2000
segment length 0.003
totalIterations = 2000
segment length 0.005
totalIterations = 2000
segment length 0.0075
totalIterations = 2000
segment length 0.01
totalIterations = 2000
CPU times: user 8.57 s, sys: 157 ms, total: 8.72 s
Wall time: 9.74 s
In [31]: def plot_msd_FJC_a(X, Y, N = 2000.0):
             f, ax = plt.subplots(1)
```

```
ax.set_xlabel('segment length $a$', fontsize = 18)
             ax.set_ylabel(r'$\langle R^2\rangle$', fontsize = 18)
             labelfontsize = 15.0
             for tick in ax.xaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             for tick in ax.yaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             xVals = np.linspace(0.0, 1.05e-2, 500)
             yVals = np.array([N * a ** 2 for a in xVals])
             ax.plot(xVals, yVals,
                     lw = 2.0, color = 'CO', label = r'$\langle R^2\rangle = Na^2$')
             ax.scatter(X, Y, color = 'k',
                        s = 80,
                        marker = 'o',
                        facecolors = 'None',
                        edgecolors = 'k',
                        linewidth = 1.5,
                        label = r'FJC (numeric)', zorder = 2)
             ax.set_xlim(0.0, 1.05e-2)
             #ax.set_ylim(-0.0005, 0.0062)
             leg = ax.legend(scatterpoints = 1,
                              markerscale = 1.0,
                              ncol = 1,
                              fontsize = 18)
             for i, legobj in enumerate(leg.legendHandles):
                 legobj.set_linewidth(1.5)
             leg.draw_frame(False)
             return None
In [32]: stepSizes_ex3 = np.array([1.0e-3, 2.0e-3, 3.0e-3, 5.0e-3, 7.5e-3, 1.0e-2])
         plot_msd_FJC_a(stepSizes_ex3, res_ex3, N = 2000.0)
```

f.set_size_inches(5.5, 4.0)

1.6 Assay 4 FRC mean-squared-end-to-end vector as a function of N

```
In [34]: %%time
         np.random.seed(923456789) # fix random seed
         m = 2000 # number of independent configurations
         sampleLengths_ex4 = np.array([10, 500, 1000, 2500, 5000])
         X_ex4, Y_ex4 = FRC(sampleLengths_ex4, m)
         np.savetxt('./assay_4_xdata.txt', X_ex4, fmt = '%.8f')
         np.savetxt('./assay_4_ydata.txt', Y_ex4, fmt = '%.8f')
totalIterations = 5000
CPU times: user 3min 6s, sys: 1.77 s, total: 3min 7s
Wall time: 3min 10s
In [36]: %%time
         # vectorized version
         np.random.seed(923456789) # fix random seed
         m = 2000 # number of independent configurations
         sampleLengths_ex4 = np.array([10, 500, 1000, 2500, 5000])
         X_ex4_vec, Y_ex4_vec = FRC_wrapper(sampleLengths_ex4, m)
CPU times: user 811 ms, sys: 10.1 ms, total: 821 ms
Wall time: 839 ms
In [37]: def plot_msd_FRC(X, Y, a = 1.0e-3, theta = 0.2 * np.pi):
             f, ax = plt.subplots(1)
             f.set_size_inches(5.5, 4.0)
             ax.set_xlabel('chain length $N$', fontsize = 18)
             ax.set_ylabel(r'$\langle R^2\rangle$', fontsize = 18)
             labelfontsize = 15.0
             for tick in ax.xaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             for tick in ax.yaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             xVals = np.linspace(0.0, 6000.0, 500)
             yVals = np.array([N * a ** 2 * FloryC(theta) for N in xVals])
             ax.plot(xVals, yVals,
                     lw = 2.0,
                     color = 'C3',
                     label = r'$\langle R^2\rangle = C_{\infty}(\theta)Na^2$',
```

```
zorder = 1)
             ax.scatter(X, Y, color = 'k',
                        s = 80,
                        marker = 'o',
                        facecolors = 'None',
                        edgecolors = 'k',
                        linewidth = 1.5,
                        zorder = 2,
                        label = r'FRC (numeric)')
             ax.set_xlim(-200.0, 5200.0)
             #ax.set_ylim(-0.0005, 0.0062)
             leg = ax.legend(scatterpoints = 1,
                              markerscale = 1.0,
                              ncol = 1,
                              fontsize = 18)
             for i, legobj in enumerate(leg.legendHandles):
                 legobj.set_linewidth(1.5)
             leg.draw_frame(False)
             return None
In [38]: file = './assay_4_xdata.txt'
        X_ex4 = np.genfromtxt(file)
         file = './assay_4_ydata.txt'
        Y_ex4 = np.genfromtxt(file)
In [39]: sampleLengths_ex4 = np.array([10, 500, 1000, 2500, 5000])
         msd_ex4 = get_msd(X_ex4, Y_ex4, sampleLengths_ex4)
         plot_msd_FRC(sampleLengths_ex4, msd_ex4)
```


In [40]: # visualization of the same result, using the vectorized FRC code
 sampleLengths_ex4 = np.array([10, 500, 1000, 2500, 5000])
 msd_ex4_vec = get_msd(X_ex4_vec, Y_ex4_vec, sampleLengths_ex4)
 plot_msd_FRC(sampleLengths_ex4, msd_ex4_vec)

The proportionalty factor here is Flory's characteristic ratio C_{∞} , which for the freely rotating chain model is

$$C_{\infty}(\theta) = \frac{1 + \cos(\theta)}{1 - \cos(\theta)}.$$
 (7)

With this, the MSD for the FRC model is of course

$$\langle \mathbf{R}^2 \rangle = C_{\infty}(\theta) N a^2 = \frac{1 + \cos(\theta)}{1 - \cos(\theta)} N a^2.$$
 (8)

1.7 Assay 5 FRC mean-squared-end-to-end vector as a function of the rotation angle θ

```
for i, theta in enumerate(thetas):
             print("theta", theta)
             tmpX, tmpY = FRC(sampleLengths_ex5, m, a = 1.0e-3, theta = theta)
             tmpMSD = get_msd(tmpX, tmpY, sampleLengths_ex5)
             res_ex5[i] = tmpMSD[0]
         np.savetxt('./assay_5_msd.txt', res_ex5, fmt = '%.8f')
theta 0.06283185307179587
totalIterations = 2000
theta 0.15707963267948966
totalIterations = 2000
theta 0.3141592653589793
totalIterations = 2000
theta 0.9424777960769379
totalIterations = 2000
theta 1.8849555921538759
totalIterations = 2000
theta 3.141592653589793
totalIterations = 2000
CPU times: user 3min 47s, sys: 2.35 s, total: 3min 49s
Wall time: 3min 54s
In [43]: file = './assay_5_msd.txt'
        res_ex5 = np.genfromtxt(file)
        print(res_ex5.shape)
(6,)
In [44]: %%time
         np.random.seed(123456789)
         m = 1000 # number of independent configurations
         N = 2000
         sampleLengths_ex5 = np.array([N])
         thetas = np.array([0.02 * np.pi, 0.05 * np.pi, \]
                            0.1 * np.pi, 0.3 * np.pi, 0.6 * np.pi, np.pi]
         res_ex5_vec = np.zeros((len(thetas)))
         for i, theta in enumerate(thetas):
             print("theta", theta)
             tmpX, tmpY = FRC_wrapper(sampleLengths_ex5, m, a = 1.0e-3, theta = theta)
             tmpMSD = get_msd(tmpX, tmpY, sampleLengths_ex5)
             res_ex5_vec[i] = tmpMSD[0]
```

```
theta 0.06283185307179587
theta 0.15707963267948966
theta 0.3141592653589793
theta 0.9424777960769379
theta 1.8849555921538759
theta 3.141592653589793
CPU times: user 1.2 s, sys: 16.4 ms, total: 1.22 s
Wall time: 1.24 s
In [45]: def plot_msd_FRC_theta(X, Y, N = 2000.0, a = 1.0e-3):
             f, ax = plt.subplots(1)
             f.set_size_inches(5.5, 4.0)
             ax.set_xlabel(r'rotation angle $\theta$', fontsize = 18)
             ax.set_ylabel(r'$\langle R^2\rangle$', fontsize = 18)
             labelfontsize = 15.0
             for tick in ax.xaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             for tick in ax.yaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             xVals = np.linspace(0.05, 1.2 * np.pi, 500)
             yVals = np.array([N * a ** 2 * FloryC(theta) for theta in xVals])
             ax.plot(xVals, yVals,
                     lw = 2.0,
                     color = 'C3',
                     label = r'$\langle R^2\rangle = C_{\infty}(\theta)Na^2$',
                     zorder = 1)
             ax.scatter(X, Y, color = 'k',
                        s = 80,
                        marker = 'o',
                        facecolors = 'None',
                        edgecolors = 'k',
                        linewidth = 1.5,
                        zorder = 2,
                        label = r'FRC (numeric)')
             ax.set_xlim(-0.1, 1.05 * np.pi)
             ax.set_ylim(-0.085, 2.0062)
             leg = ax.legend(scatterpoints = 1,
                              markerscale = 1.0,
                              ncol = 1,
                              fontsize = 18)
             for i, legobj in enumerate(leg.legendHandles):
                 legobj.set_linewidth(1.5)
```

leg.draw_frame(False)
return None


```
In [48]: def plot_msd_FRC_theta_LOG(X, Y, N = 2000.0, a = 1.0e-3):
             f, ax = plt.subplots(1)
             f.set_size_inches(5.5, 4.0)
             ax.set_xlabel(r'rotation angle $\theta$', fontsize = 18)
             ax.set_ylabel(r'$\langle R^2\rangle$', fontsize = 18)
             labelfontsize = 15.0
             for tick in ax.xaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             for tick in ax.yaxis.get_major_ticks():
                 tick.label.set_fontsize(labelfontsize)
             xVals = np.linspace(0.01, 1.2 * np.pi, 500)
             yVals = np.array([N * a ** 2 * FloryC(theta) for theta in xVals])
             ax.plot(xVals, yVals,
                     lw = 2.0,
                     color = 'C3',
                     label = r'$\langle R^2\rangle = C_{\infty}(\theta)Na^2$',
                     zorder = 1)
             ax.scatter(X, Y, color = 'k',
                        s = 80,
                        marker = 'o',
```

```
facecolors = 'None',
                        edgecolors = 'k',
                        linewidth = 1.5,
                        zorder = 2,
                        label = r'FRC (numeric)')
             ax.set_xlim(-0.1, 1.05 * np.pi)
             ax.set_ylim(1.0e-9, 5.1)
             ax.set_yscale('log')
             leg = ax.legend(scatterpoints = 1,
                              markerscale = 1.0,
                              ncol = 1,
                              fontsize = 18)
             for i, legobj in enumerate(leg.legendHandles):
                 legobj.set_linewidth(1.5)
             leg.draw_frame(False)
             return None
In [49]: %%time
         np.random.seed(123456789)
        m = 10000 # number of independent configurations
         N = 2000
         sampleLengths_ex6 = np.array([N])
         thetas = np.array([0.02 * np.pi, 0.05 * np.pi, \]
                            0.1 * np.pi, 0.2 * np.pi, 0.3 * np.pi, 0.4 * np.pi,
                            0.5 * np.pi, 0.6 * np.pi, 0.7 * np.pi, 0.8 * np.pi,
                            0.9 * np.pi, 0.95 * np.pi, 0.98 * np.pi, 0.99 * np.pi]
         res_ex6_vec = np.zeros((len(thetas)))
         for i, theta in enumerate(thetas):
             print("theta", theta)
             tmpX, tmpY = FRC_wrapper(sampleLengths_ex6, m, a = 1.0e-3, theta = theta)
             tmpMSD = get_msd(tmpX, tmpY, sampleLengths_ex6)
             res_ex6_vec[i] = tmpMSD[0]
theta 0.06283185307179587
theta 0.15707963267948966
theta 0.3141592653589793
theta 0.6283185307179586
theta 0.9424777960769379
theta 1.2566370614359172
theta 1.5707963267948966
theta 1.8849555921538759
```

theta 2.199114857512855 theta 2.5132741228718345 theta 2.827433388230814 theta 2.9845130209103035 theta 3.078760800517997 theta 3.1101767270538954 CPU times: user 26.6 s, sys: 191 ms, total: 26.7 s Wall time: 27.1 s

