Example 6

Use mathematical induction to prove that $2^n < n!$ for every integer n with $n \ge 4$. (Note that this inequality is false for n = 1, 2, and 3.)

Solution: Let P(n) be the proposition that $2^n < n!$.

BASIS STEP: To prove the inequality for $n \ge 4$ requires that the basis step be P(4). Note that P(4) is true, because $2^4 = 16 < 24 = 4!$

INDUCTIVE STEP: For the inductive step, we assume that P(k) is true for an arbitrary integer k with $k \ge 4$. That is, we assume that $2^k < k!$ for the positive integer k with $k \ge 4$. We must show that under this hypothesis, P(k+1) is also true. That is, we must show that if $2^k < k!$ for an arbitrary positive integer k where $k \ge 4$, then $2^{k+1} < (k+1)!$. We have

```
2^{k+1} = 2 \cdot 2^k by definition of exponent < 2 \cdot k! by the inductive hypothesis < (k+1)k! because 2 < k+1 = (k+1)! by definition of factorial function.
```

Example 7

An Inequality for Harmonic Numbers The harmonic numbers $H_j, j = 1, 2, 3, ...,$ are defined by

$$H_j = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{j}.$$

For instance,

$$H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}$$
.

Use mathematical induction to show that

$$H_{2^n}\geq 1+\frac{n}{2}\,,$$

whenever n is a nonnegative integer.

Example 7

$$H_{2^{k+1}} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^k} + \frac{1}{2^k + 1} + \dots + \frac{1}{2^{k+1}}$$
 by the definition of harmonic number
$$= H_{2^k} + \frac{1}{2^k + 1} + \dots + \frac{1}{2^{k+1}}$$
 by the definition of 2^k th harmonic number
$$\geq \left(1 + \frac{k}{2}\right) + \frac{1}{2^k + 1} + \dots + \frac{1}{2^{k+1}}$$
 by the inductive hypothesis
$$\geq \left(1 + \frac{k}{2}\right) + 2^k \cdot \frac{1}{2^{k+1}}$$
 because there are 2^k terms each $\geq 1/2^{k+1}$ canceling a common factor of 2^k in second term
$$= 1 + \frac{k+1}{2}.$$

Strong Induction

- 1. We will introduce another form of mathematical induction, called strong induction
- 2. The basis step of a proof by strong induction is the same as a proof of the same result using mathematical induction.
- 3. However, the inductive steps in these two proof methods are different.
- 4. In a proof by mathematical induction, the inductive step shows that if the inductive hypothesis P(k) is true, then P(k + 1) is also true.
- 5. In a proof by strong induction, the inductive step shows that if P(j) is true for all positive integers not exceeding k, then P(k + 1) is true.
- 6. Strong induction is sometimes called the second principle of mathematical induction or complete induction.

Strong Induction

Example 1

Let a_n be the sequence defined by $a_1 = 1, a_2 = 8,$ $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$ Prove that $a_n = 3 \ 2^{n-1} + 2(-1)^n$ for all $n \in N$

The solution for this problem is available in LECTURE NO. 11