Neuron-Matrix Documentation

Release 1.0

Hadrien Renaud-Lebret, Guillaume Bressan, Pierre Browne

CONTENTS:

1	NeuralNetwork module	1
	Processing Utilitaries 2.1 getdata module	
3 Indices and tables		
Py	ython Module Index	9

NEURALNETWORK MODULE

Python module for NeuralNetwork class.

It provides an implementation of a NeuralNetwork with utilitaries. It is NOT bounded to learning on images or even to learning on samples in different files.

```
class neuralnet.NeuralNetwork (geometry, function=<ufunc 'tanh'>, function_derivate=<function inv_cosh>, logistic_function_param=(1, 0), learning_factor=0.1, momentum=0)
```

NeuralNetwork class.

```
__call__(input_values)
```

Apply the Neural Network to the input values.

Warning DOESN'T SAVE the result for a learning after. Use apply () in this case.

Parameters input_values – as an iterable of numeric values between 0 and 1.

__init__ (geometry, function=<ufunc 'tanh'>, function_derivate=<function inv_cosh>, logistic_function_param=(1, 0), learning_factor=0.1, momentum=0) Initialisation of the NeuralNetwork.

Parameters

- **geometry** (str) string describing the format of the NeuralNetwork: '456:12:24:3' will create a network with a first layer with 456 neurons, a second with 12, a third with 24 and the last with 3.
- **function** vectorized function (see numpy.vectorize)
- function derivate its (vectorized) function
- **logistic_function_param** (tuple) (mu, x0) parameters send to :iso_fonction: and :deri_iso_fonction: slope and offset of the logistic function.

```
apply (input_values)
```

Apply the NeuralNetwork to the input values.

Parameters input_values – as an iterable of numeric values between 0 and 1.

```
backpropagation (expected_output)
```

Apply the backpropagation algorithm.

```
dist(expected_output)
```

Calc the distance of the result to the expected_output.

get_geometry()

Return self.geometry.

Returns self.geometry modified to render like the one passed as an argument of __init__ ().

Return type str

learn (sample, results, limit_iterations=50, maximal_distance=0.25)

Learning algorithm on the given examples.

First algorithm.

learn2 (sample, results, limit_iterations=50, maximal_distance=0.25)

Learning algorithm on the given examples.

Method given by Hélène Milhem here.

randomize_factors()

Randomize the transition matrix.

set_transition_matrix(matrixes)

Set the transition_matrix to the correct values.

to_json()

Return an expression of the NeuralNetwork in json.

neuralnet.deri_iso_fonction(
$$fonction, mu=1, x0=0$$
)

Creator of fonctions, affinely translated, for derivative.

Compute a isometric transform of fonction with the formulae:

$$\forall x, \text{deri}_i \text{so}_f \text{onction}(f)(x) = \mu \times f(\mu \times x + x_0)$$

Which is equivalent to, if f is the derivative of F:

$$\forall x, \text{deri}_i \text{so}_f \text{onction}(f, \mu, x_0)(x) = \frac{d}{dx} (\text{iso}_f \text{onction}(F, \mu, x_0))(x) = \mu \times \frac{dF}{dx}(\mu \times x + x_0) = \mu \times f(\mu \times x + x_0)$$

Note return the derivate of iso_fonction()

Parameters

- mu (float) muliplicative factor μ
- **x0** (floatx0) additive term x_0
- **fonction** function taking 1 numeric positionnal argument.

Returns
$$F: x \to \mu \times f(\mu \times x + x_0)$$

neuralnet.
$$inv_cosh(x)$$

Return
$$\frac{1}{\cosh(x)}$$
.

neuralnet.iso_fonction(
$$fonction$$
, $mu=1$, $x0=0$)

Creator of fonctions, linearly translated.

Compute a isometric transform of fonction with the formulae : :math: $forall\ x$, $mathrm\{iso_fonction\}(f)(x) = f(mu\ times\ x + x\ 0)$

Parameters

- \mathbf{mu} (float) $\mathbf{mutliplicative}$ factor μ
- **x0** (floatx0) additive term x_0
- **fonction** function taking 1 numeric positionnal argument.

Returns
$$F: x \to f(\mu \times x + x_0)$$

neuralnet.learning_progress_display(**args)

Display the progress of the learning algorithm.

neuralnet.alphabet

Alphabet used. The order is the most important thing. Only the \$n\$ first values are considered, where \$n\$ is the length of the alphabet.

neuralnet.default_values

CHAPTER

TWO

PROCESSSING UTILITARIES

2.1 getdata module

```
Module for neuron-matrix.
```

It does: - create a new NeuralNetwork object - randomize its transition_matrix - learn on a given dataset - test on a given dataset

getdata.default_ranges

Ranges on which it iterate by default.

2.2 fileio module

Python module for neuron-matrix.

It implements the main input/output functions used in neuron-matrix.

```
fileio.find_examples(directory, alphabet)
```

Iterate through the directory to find all processable examples and return them.

```
fileio.is_convertible_to_float(string)
```

Function that determine if a string can be safely convert to a float.

```
fileio.learn_on_folder (neurnet, directory, alphabet, learning_algo='default', **args)

Make neurnet learn on every example in the directory.
```

```
fileio.read_sample(file_text)
```

Function reading an sample in a file and returning the corresponding matrix.

Return the result as a numpy array.

fileio.save_image(matrix, file_name)

Function saving matrix as an image.

fileio.test_on_folder(neurnet, directory, alphabet, **args)

Make neurnet test every example in the directory.

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

f
fileio,5

g
getdata,5

n
neuralnet,1

INDEX

Symbols	Р		
call() (neuralnet.NeuralNetwork method), 1	procedure1() (in module getdata), 5		
init() (neuralnet.NeuralNetwork method), 1	R		
A	randomize_factors() (neuralnet.NeuralNetwork method).		
alphabet (in module neuralnet), 2 apply() (neuralnet.NeuralNetwork method), 1	read_sample() (in module fileio), 5		
В	S		
$backpropagation ()\ (neural net. Neural Network\ method),\ 1$	save_image() (in module fileio), 5		
D	set_transition_matrix() (neuralnet.NeuralNetwork method), 2		
default_ranges (in module getdata), 5	Т		
default_values (in module neuralnet), 3 deri_iso_fonction() (in module neuralnet), 2 dist() (neuralnet.NeuralNetwork method), 1	test_on_folder() (in module fileio), 6 to_json() (neuralnet.NeuralNetwork method), 2		
F			
fileio (module), 5 find_examples() (in module fileio), 5			
G			
get_data() (in module getdata), 5 get_geometry() (neuralnet.NeuralNetwork method), 1 getdata (module), 5			
I .			
inv_cosh() (in module neuralnet), 2 is_convertible_to_float() (in module fileio), 5 iso_fonction() (in module neuralnet), 2 IteratorMultiple (class in getdata), 5			
L			
learn() (neuralnet.NeuralNetwork method), 2 learn2() (neuralnet.NeuralNetwork method), 2 learn_on_folder() (in module fileio), 5 learning_progress_display() (in module neuralnet), 2			
N			
neuralnet (module), 1 NeuralNetwork (class in neuralnet), 1			