

Página 1 Fecha

NOVIEMBRE 2023

Lugar y Fecha: Buenos Aires, 01 de Septiembre de 2023	Vigencia:	Nº Páginas:	Revisión (5)
	01/11/2023	6	Edición (6)

REALIZADO POR: Farmacéutica Andrea Campos	
REVISADO POR: Gerardo González	Allow 1
REVISADO POR: Daniel Lomlomdjian	
APROBADO POR Andrés Ohanessian	1 m

Página	
2	_
Fecha	
OCTUBRE	

1. OBJETIVO

Establecer la metodología apropiada para proceder al llenado de cilindros de oxigeno medicinal gaseoso

2. APLICACIÓN

Este procedimiento aplica a todos los envases medicinales que hayan pasado satisfactoriamente las etapas de recepción de envases vacíos y se encuentren en condiciones para ser llenados con Oxígeno Medicinal

3. RESPONSABILIDADES

Es responsabilidad de Gerencia, Gerencia Técnica, Gerencia Logística y Distribución, supervisor y personal de Fraccionamiento y Laboratorio de Control de Calidad, cumplir y hacer cumplir este procedimiento

4. DEFINICIONES:

No Aplica

5. DESARROLLO:

Para realizar esta maniobra, el operario deberá utilizar los siguientes elementos de Protección Personal (EPP): Casco de seguridad, protector auditivo, protector facial / gafas de seguridad, ropa de trabajo, guantes específicos para la tarea y calzado de seguridad con puntera de acero. Además deberán revisar que tanto en el sector como en los envases no haya restos de grasas/aceites para evitar incendios y verificar que el área debe estar en condiciones óptimas para realizar la maniobra de llenado de termos (Ej. Camiones estacionados, tareas de mantenimiento edilicio, etc)

5.1 LLENADO

Proceder al llenado de cilindros según IT-GCC-023 LLENADO DE ENVASES DE OXÍGENO MEDICINAL GASEOSO, IT-GCC-024 LLENADO DE MOCHILAS DE OXIGENO MEDICINAL

Página 3 Fecha

OCTUBRE

NOTA: Los envases que no hayan pasado satisfactoriamente las operaciones descriptas en los IT mencionados anteriormente pasaran a ser cilindros observados. A los envases que hayan pasado satisfactoriamente las operaciones descriptas en los IT mencionados anteriormente, se les harán los análisis de calidad correspondientes tal como se describen en el procedimiento (PON-GCC-008 ENSAYOS DE MEDICION Y CONTROL)

5.2 ETIQUETADO

Si el resultado del análisis realizado es aprobado por control de Calidad se procederá a colocar la etiqueta identificatoria del estado de APROBADO. Se colocan una por cada cilindro en la tulipa u ojiva

5.3 ROTULADO

Se procederá a rotular a cada uno de los cilindros que se les haya removido el rótulo ilegible o en mal estado en la etapa de Revisión de Cilindros. Previo al pegado, se limpiará la superficie del envase para que se adhiera mejor. Se coloca un rótulo en cada cilindro

5.4 PRECINTADO

Se colocarán los precintos de seguridad termo contraíbles sobre la válvula.

5.5 UBICACIÓN

Se ubicarán en todas las áreas permitidas correspondientes a "CILINDROS APROBADOS"

Todas estas acciones serán registradas en el ISOFORM Nº 015

6. REFERENCIAS

ITA-GCC-023 LLENADO DE CILINDROS MEDICINALES ITA-GCC-024 LLENADO DE MOCHILAS MEDICINALES PON-GCC-008 ENSAYOS DE MEDICION Y CONTROL

7. ANEXOS

ISOFORM N° 015 Planilla de llenado de cilindros

Página	
4	
Fecha	
OCTUBRE	

CUADRO "A":

CASO A: HACIENDO PURGAS SUCESIVAS (sin hacer vacío)

PURGA	% DE DISMINUCION DE UN GAS (DISTINTO AL GAS A ENVASAR)	TENOR DE IMPUREZAS FINALES A :			
		125 kg/cm²	150 kg/cm ²		
A 7 kg/cm ²					
1° PURGA	12,5000 %	0,0920 %	0,08270 %		
2° PURGA	1,5620 %	0,01240 %	0,01030 %		
3° PURGA	0,1963 %	0,00155 %	0,00103 %		
A 3 kg/cm ²					
° PURGA 25,00 %		0,1980 %	0,165 %		
2° PURGA	6,25 %	0,0496 %	0,0411 %		
3° PURGA	PURGA 1,56 %		0,0103 %		

CASO B: HACIENDO VACIO

VACIO DE 759 mm Hg	0,136 %	11 VPM	10 VPM
VACIO DE 755 mm Hg VACIO DE 750 mm	0,679 %	54 VPM	45 VPM
Hg	1,359 %	107 VPM	90 VPM

CASO C: HACIENDO VACIO Y PURGA

VACIO DE 759 mm Hg + 1 PURGA DE 3 kg/cm ²	0,034 %	3 VPM	2,5 VPM
VACIO DE 759 mm Hg + 1 PURGA DE 7 kg/cm ²	0,017 %	1,3 VPM	.1 VPM
VACIO DE 755 mm Hg + 1 PURGA DE 7 kg/cm ²	0,085 %	7 VPM	6 VPM
VACIO DE 755 mm Hg + 2	0,042 %	4 VPM	3 VPM

5
Fecha

PURGAS DE 3 kg/cm ²			
VACIO DE 755 mm Hg + 1 PURGA DE 0,5 kg/cm ²	0,453 %	36 VPM	30 VPM
VACIO DE 755 mm Hg + 2 PURGAS DE 0,5 kg/cm ²	0,302 %	24 VPM	20 VPU
VACIO DE 750 mm Hg + 1 PURGA DE 0,2 kg/cm ² + 2" VACIO A 750 mm Hg	1,132 % 0,0154 %	90 VPM 1,5 VPM	75 VPM 1 VPM

Página 6 Fecha

OCTUBRE

CUADRO "B"

Para ajustar la presión de llenado según la temperatura y que el cilindro contenga la carga correcta se utiliza el gráfico de Presión en función de la Temperatura.

LOS VALORES DESTACADOS CORRESPONDEN A LAS PRESIONES DE LLENADO EN PLANTA

T(°C)	-10	-5	0	5	10	15	20	25	30	35	40
	109	113	116	119	122	125	128	131	134	137	140
	118	121	124	128	131	135	138	142	145	148	152
PRESIONES Kg/cm²	131	135	139	142	146	150	153	157	160	164	168
PRESI Kg	151	156	161	166	170	175	180	184	189	194	199
	173	178	184	190	195	200	206	212	217	222	228
	216	222	229	236	243	250	257	264	271	278	284

CON UNA TEMPERATURA BASE DE 15°C A LA QUE CORRESPONDERAN LOS VALORES de 125, 150 Y 200 kg/cm².