机器学习导论 (2021 春季学期)

四、决策树

主讲教师: 周志华

决策树简史

●第一个决策树算法: CLS (Concept Learning System)

[E. B. Hunt, J. Marin, and P. T. Stone's book "Experiments in Induction" published by Academic Press in 1966]

• 使决策树受到关注、成为机器学习主流技术的算法: ID3

[J. R. Quinlan's paper in a book "Expert Systems in the Micro Electronic Age" edited by D. Michie, published by Edinburgh University Press in 1979]

• 最常用的决策树算法: C4.5

[J. R. Quinlan's book "C4.5: Programs for Machine Learning" published by Morgan Kaufmann in 1993]

J. Ross Quinlan (1943 -)

决策树简史(con't)

• 可以用于回归任务的决策树算法:CART (Classification and Regression Tree)

[L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone's book "Classification and Regression Trees" published by Wadsworth in 1984]

● 基于决策树的最强大算法之一: RF (Random Forest)

[L. Breiman's MLJ'01 paper "Random Forest"]

这是一种"集成学习"方法→第8章

Leo Breiman (1928-2005)

信息增益

离散属性 a 的取值: $\{a^1, a^2, \dots, a^V\}$

 D^v : D 中在 a 上取值 = a^v 的样本集合

以属性 a 对 数据集 D 进行划分所获得的信息增益为:

增益率 (gain ratio)

信息增益: 对可取值数目较多的属性有所偏好

有明显弱点,例如:考虑将"编号"作为一个属性

增益率:
$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$

属性 a 的可能取值数目越多 (即 V 越大),则 IV(a) 的值通常就越大

基尼指数 (gini index)

$$Gini(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'}$$

反映了从 D 中随机抽取两个样例, 其类别标记不一致的概率

$$=1-\sum_{k=1}^{|\mathcal{Y}|}p_k^2$$
.

Gini(D) 越小,数据集 D 的纯度越高

属性 a 的基尼指数: $\operatorname{Gini_index}(D,a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Gini}(D^v)$

在候选属性集合中, 选取那个使划分后基尼指数最小的属性

划分选择 vs. 剪枝

研究表明: 划分选择的各种准则虽然对决策树的尺寸有较大影响, 但对泛化性能的影响很有限

例如信息增益与基尼指数产生的结果,仅在约2%的情况下不同

剪枝方法和程度对决策树泛化性能的影响更为显著

在数据带噪时甚至可能将泛化性能提升 25%

Why?

剪枝 (pruning) 是决策树对付"过拟合"的主要手段!

剪枝

为了尽可能正确分类训练样本,有可能造成分支过多 > 过拟合可通过主动去掉一些分支来降低过拟合的风险

基本策略:

- 预剪枝 (pre-pruning): 提前终止某些分支的生长
- 后剪枝 (post-pruning): 生成一棵完全树,再"回头"剪枝

剪枝过程中需评估剪枝前后决策树的优劣 → 第2章

现在我们假定使用"留出法"

数据集

训练集

表 4.2 西瓜数据集 2.0 划分出的训练集(双线上部)与验证集(双线下部)

HAS.	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
	3	乌黑	蜷缩	浊响	清晰	四陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰。	4 稍凹	软粘	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	洗的	稍糊	稍凹	硬滑	否
	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
\dashv	9	鸟黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12/	浅白	蜷缩	浊响	模糊	平坦	软粘	否否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

验证集

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅白 浅白 青绿	稍挺 硬蜷缩 蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若不划分,则根结点为叶结点,类别标记为训练样例最多的类别,若选"好瓜",则验证集中{4,5,8}被分类正确,验证集精度为 3/7 x 100% = 42.9%

(1) (好瓜) 验证集精度

划分前: 42.9%

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬缝缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若不划分,则根结点为叶结点,类别标记为训练样例最多的类别,若选"好瓜",则验证集中{4,5,8} 被分类正确,验证集精度为 3/7 x 100% = 42.9%

结点1若划分,则根据划分后结点②③④的训练样例,它们将分别标记为"好瓜""好瓜""坏瓜"。此时,验证集中编号为 {4,5,8,11,12}的样例被划分正确,验证集精度为 5/7 x 100% = 71.4%

3	<u>ک</u>	Ž
ù		
5		

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点2: 若划分,则验证集中{4,8,11,12} 被分类正确,验证集精度为 4/7 x100% = 57.1%

预剪枝决策:**禁止划分**

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 浅白 青绿	稍 矮 矮 缩 稍 蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点3: 若划分,则验证集中{4,5,8,11,12}被分类正确,验证集精度为 5/7 x100% = 71.4%

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅白 浅白 青绿	稍 梃 蜷 稍 蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

最终, 预剪枝的得到的决策树

后剪枝

先生成一棵完整的决策树,其验证集精度测得为 42.9%

首先考虑结点⑥, 若将其替换为叶结点, 根据落在其上的训练样例 {7,15} 将其标记为"好瓜", 测得验证集精度提高至 **57.1%**, 于是决定剪枝

首先考虑结点⑥, 若将其替换为叶结点, 根据落在其上的训练样例 {7,15} 将其标记为"好瓜", 测得验证集精度提高至 **57.1%**, 于是决定剪枝

然后考虑结点⑤, 若将其替换为叶结点, 根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 57.1%,可以

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 57.1%,可以不剪枝

对结点②,若将其替换为叶结点,根据落在其上的训练样例 $\{1,2,3,14\}$,将其标记为"好瓜",测得验证集精度提升至 71.4%,

决定剪枝 脐部 凹陷 稍凹 根蒂 坏瓜 乌黑 浅白 青绿 蜷缩 硬挺 稍蜷 坏瓜 好瓜 好瓜 好瓜 坏瓜 乌黑 浅白 青绿 验证集精度 好瓜 好瓜 好瓜 剪枝前: 57.1% 剪枝后: 71.4% 后剪枝决策:剪 枝

对结点③和①,先后替换为叶结点,均未测得验证集精度提升,于是不剪枝

最终, 后剪枝得到的决策树:

预剪枝 vs. 后剪枝

□ 时间开销:

- 预剪枝:测试时间开销降低,训练时间开销降低
- 后剪枝: 测试时间开销降低, 训练时间开销增加

□ 过/欠拟合风险:

- 预剪枝: 过拟合风险降低, 欠拟合风险增加
- 后剪枝: 过拟合风险降低, 欠拟合风险基本不变
- □ 泛化性能: 后剪枝 通常优于 预剪枝

连续值

基本思路:连续属性离散化

常见做法:二分法 (bi-partition)

- n 个属性值可形成 n-1 个候选划分
- 然后即可将它们当做 n-1 个离散属性值处理

缺失值

现实应用中,经常会遇到属性值"缺失"(missing)现象

仅使用无缺失的样例? → 对数据的极大浪费

使用带缺失值的样例, 需解决:

Q1: 如何进行划分属性选择?

Q2: 给定划分属性, 若样本在该属性上的值缺失, 如何进行划分?

基本思路: 样本赋权, 权重划分

一个例子

表 4.4 西瓜数据集 2.0α

纹理

脐部

触感

好瓜

敲声

仅通过无缺失值	Ī
的样例来判断划	
分属性的优劣	

	and J		110 111	PQX)	~~~	MIHE	/ILA /CS	71 /W	
	1	_	蜷缩	浊响	清晰	凹陷	硬滑	是	-
	2	乌黑	蜷缩	沉闷	清晰	凹陷	_	是	
	3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是	
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是	
	5	_	蜷缩	浊响	清晰	凹陷	硬滑	是	
	6	青绿	稍蜷	浊响	_清晰	_	软粘	是	
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是	
	8	乌黑	稍蜷	浊响		稍凹	硬滑	是	
	9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否	-
	10	青绿	硬挺	清脆	_	平坦	软粘	否	
	11	浅白	硬挺	清脆	模糊	平坦	_	否	
	12	浅白	蜷缩		模糊	平坦	软粘	否	
	13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否	
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否	
\	15	乌黑	稍蜷	浊响	清晰	_	软粘	否	
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否	
	17	青绿	_	沉闷	稍糊	稍凹	硬滑	否	

学习开始时,根结点包含样例集 D 中全部17个样例,权重均为 1

以属性 "色泽"为例,该属性上无缺失值的样例子集 \tilde{D} 包含 14 个样例,信息熵为 2

编号

色泽

根蒂

$$\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{\infty} \tilde{p}_k \log_2 \tilde{p}_k = -\left(\frac{6}{14} \log_2 \frac{6}{14} + \frac{8}{14} \log_2 \frac{8}{14}\right) = 0.985$$

一个例子

令 \tilde{D}^1 , \tilde{D}^2 , \tilde{D}^3 分别表示在属性"色泽"上取值为"青绿""乌黑"以及"浅白"的样本子集,有

$$\operatorname{Ent}(\tilde{D}^{1}) = -\left(\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right) = 1.000 \quad \operatorname{Ent}(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(\tilde{D}^{3}) = -\left(\frac{0}{4}\log_{2}\frac{0}{4} + \frac{4}{4}\log_{2}\frac{4}{4}\right) = 0.000$$

因此,样本子集 \tilde{D} 上属性"色泽"的信息增益为

$$Gain(\tilde{D}, 色泽) = Ent(\tilde{D}) - \sum_{v=1}^{3} \tilde{r}_v Ent(\tilde{D}^v)$$
 无缺失值样例中属性 a 取值为 v 的占比
$$= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$$

$$= 0.306$$

于是, 样本集 D 上属性 "色泽"的信息增益为

$$Gain(D, 色泽) = \rho \times Gain(\tilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252$$
 无缺失值样例占比

一个例子

类似地可计算出所有属性在数据集上的信息增益

Gain(D, 色泽) = 0.252

Gain(D, 根蒂) = 0.171

Gain(D, 敲声) = 0.145

Gain(D, 纹理) = 0.424

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

■ 进入"纹理=清晰"分支

样本权重在各子结点仍为1

在 "纹理"上出现缺失值, 样本 8, 10 同时进入三个 分支,三分支上的权重分 别为 7/15,5/15,3/15

编号 色泽 根蒂 該声 纹理 脐部 触感 好瓜 1 建缩 浊响 清晰 凹陷 硬滑 是 2 透端 汽闷 清晰 凹陷 一 是 3 通過 一 一 世路 一 上 4 通過 一 上 <								
2 乌黑 蜷缩 沉闷 清晰 凹陷 一 3 乌黑 蜷缩 一 间陷 硬滑 是 4 青绿 蜷缩 浊响 清晰 凹陷 硬滑 是 5 蜷缩 浊响 清晰 一 收料 具 6 青绿 独响 八河 稍期 科凹 软粘 是 7 乌黑 稍蜷 浊响 一 村凹 破滑 上 8 乌黑 相蜷 浊响 一 村間 四個滑 否 9 乌黑 一 沉闷 稍糊 四個滑 否 10 青绿 硬挺 清脆 平坦 本 11 浅白 蜷缩 一 模糊 平坦 本 12 浅白 蜡缩 浊响 稍糊 四陷 硬滑 否 13 一 稍蜷 浊响 稍糊 四陷 硬滑 否 14 浅白 稍蜷 浊响 清晰 一 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
3 乌黑 蜷缩 — 清晰 凹陷 硬滑 是	1	<i></i>	蜷缩	浊响	清晰	凹陷	硬滑	是
4 青绿 蜷缩 沉闷 清晰 凹陷 硬滑 是 5 蜷缩 浊响 清晰 凹陷 硬滑 是 6 青绿 稍蜷 浊响 稍糊 稍凹 软粘 是 7 乌黑 稍蜷 浊响 一 稍凹 较粘 是 8 乌黑 イ 流闷 稍糊 种凹 硬滑 否 9 乌黑 - 沉闷 稍糊 平坦 软粘 否 10 青绿 硬挺 清脆 平坦 东 否 11 浅白 蜷缩 - 模糊 平坦 东 12 浅白 蜷缩 - 模糊 四陷 硬滑 否 13 - 稍蜷 浊响 稍糊 四陷 硬滑 否 14 浅白 稍蜷 浊响 清晰 - 软粘 否 15 乌黑 稍蜷 浊响 清晰 平坦 硬滑 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑	2	乌黑	蜷缩	沉闷	清晰	凹陷		是
5 - 蜷缩 浊响 清晰 凹陷 硬滑 是 6 青绿 襁蜷 浊响 稍糊 稍凹 软粘 是 7 乌黑 稍蜷 浊响 一 稍凹 软粘 是 8 乌黑 一 沉闷 稍糊 稍凹 硬滑 否 9 乌黑 - 沉闷 稍糊 平坦 软粘 否 10 青绿 硬挺 清脆 平坦 软粘 否 11 浅白 蜷缩 - 模糊 平坦 软粘 否 12 浅白 卷缩 一 稍糊 凹陷 硬滑 否 13 - 稍蜷 浊响 稍糊 凹陷 硬滑 否 14 浅白 稍蜷 浊响 清晰 - 软粘 否 15 乌黑 稍蜷 浊响 清晰 - 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	3	鸟黑	蜷缩		清晰	凹陷	硬滑	是
6 青绿 稍蜷 浊响 清晰 — 软粘 是 7 乌黑 稍蜷 浊响 稍糊 稍凹 较粘 是 8 乌黑 桶 浊响 一 稍凹 硬滑 是 9 乌黑 一 沉闷 稍糊 稍凹 硬滑 否 10 青绿 硬挺 清脆 一 平坦 软粘 否 11 浅白 蜷缩 一 模糊 平坦 软粘 否 12 浅白 蜷缩 一 模糊 四陷 硬滑 否 13 一 稍蜷 浊响 稍糊 四陷 硬滑 否 14 浅白 稍蜷 浊响 清晰 一 软粘 否 15 乌黑 稍蜷 浊响 清晰 一 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	
7 乌黑 稍蜷 浊响 稍糊 稍凹 软粘 是 8 乌黑 梢蜷 浊响 一 梢凹 硬滑 左 9 乌黑 一 沉闷 稍糊 稍凹 硬滑 否 10 青绿 硬挺 清脆 平坦 软粘 否 11 浅白 砂挺 清脆 平坦 软粘 否 12 浅白 蜷缩 一 模糊 平坦 软粘 否 13 一 稍蜷 浊响 稍糊 凹陷 硬滑 否 14 浅白 稍蜷 浊响 清晰 一 软粘 否 15 乌黑 稍蜷 浊响 模糊 平坦 硬滑 16 浅白 蜷缩 浊响 模糊 平坦 硬滑						凹陷		
8 乌黑 梢蜷 浊响 一 梢凹 硬滑 是 9 乌黑 一 沉闷 稍糊 稍凹 硬滑 否 10 青绿 硬挺 清脆 一 平坦 软粘 否 11 浅白 砂挺 清脆 平坦 小 否 12 浅白 蜷缩 一 模糊 平坦 软粘 否 13 一 稍蜷 浊响 稍糊 凹陷 硬滑 否 14 浅白 稍蜷 浊响 清晰 一 软粘 否 15 乌黑 稍蜷 浊响 清晰 一 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	6			浊响		_	10 - 11 -	
9 乌黑 - 沉闷 稍糊 稍凹 硬滑 否 10 青绿 硬挺 清脆 - 平坦 软粘 否 11 浅白 硬挺 清脆 平坦 - 否 12 浅白 蜷缩 - 模糊 平坦 软粘 否 13 - 稍蜷 浊响 稍糊 凹陷 硬滑 否 14 浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 否 15 乌黑 稍蜷 浊响 清晰 - 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	177				稍糊			
10 青绿 硬挺 清脆 — 平坦 软粘 否 11 浅白 硬挺 清脆 模糊 平坦 一 否 12 浅白 蜷缩 — 模糊 平坦 软粘 否 13 — 稍蜷 浊响 稍糊 凹陷 硬滑 否 14 浅白 稍蜷 浊响 消晰 — 软粘 否 15 乌黑 稍蜷 浊响 清晰 — 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
11 浅白 硬挺 清脆 模糊 平坦 一 否 12 浅白 蜷缩 - 模糊 平坦 软粘 否 13 - 梢蜷 浊响 稍糊 凹陷 硬滑 否 14 浅白 梢蜷 沈闷 稍糊 凹陷 硬滑 否 15 乌黑 稍蜷 浊响 清晰 - 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
12 浅白 蜷缩 - 模糊 平坦 软粘 否 13 - 稍蜷 浊响 稍糊 凹陷 硬滑 否 14 浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 否 15 乌黑 稍蜷 浊响 清晰 - 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	10	青绿	硬挺	清脆	_	-	软粘	否
13 - 梢蜷 浊响 梢糊 凹陷 硬滑 否 14 浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 否 15 乌黑 稍蜷 浊响 清晰 - 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	11	浅白	硬挺	清脆	15 4 1 5 4	平坦	-	否
14 浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 否 15 乌黑 稍蜷 浊响 清晰 - 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	12	浅白	蜷缩	_		. –	软粘	否
15 乌黑 梢蜷 浊响 清晰 - 软粘 否 16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否	13	_						
16 浅白 蜷缩 浊响 模糊 平坦 硬滑 否						凹陷		
	15	乌黑		浊响	清晰	_		否
17 青绿 -			蜷缩					
	17	青绿		沉闷	稍糊	稍凹	硬滑	否

权重划分

从"树"到"规则"

- 一棵决策树对应于一个"规则集"
- 每个从根结点到叶结点的分支路径对应于一条规则

- IF (纹理=清晰) ∧ (密度≤0.381)
 THEN 坏瓜
- IF (纹理=清晰) / (密度>0.381)
 THEN 好瓜
- IF (纹理=稍糊) ^ (触感=硬滑) THEN 坏瓜
- IF (纹理=稍糊) ^ (触感=软粘) THEN 好瓜
- IF (纹理=模糊) THEN 坏瓜

好处:

- □改善可理解性
- □进一步提升泛化能力

由于转化过程中通常会进行前件合并、泛化等操作例如 C4.5Rule 的泛化能力通常优于 C4.5决策树

轴平行划分

单变量决策树: 在每个非叶结点仅考虑一个划分属性

产生"轴平行"分类面

轴平行 vs. 倾斜

当学习任务所对应的分类边界很复杂时,需要非常多段划分才能获得较好的近似

多变量(multivariate)决策树

多变量决策树:每个非叶结点不仅考虑一个属性

例如"斜决策树" (oblique decision tree) 不是为每个非叶结点寻找最优划分属性,而是建立一个线性分类器

更复杂的"混合决策树"甚至可以在结点嵌入神经网络或其他非线性模型

前往第五站

机器学习导论 (2021 春季学期)

六、支持向量机

主讲教师: 周志华

线性分类器回顾

在样本空间中寻找一个超平面,将不同类别的样本分开

线性分类器回顾

将训练样本分开的超平面可能有很多,哪一个更好呢?

"正中间"的: 鲁棒性最好, 泛化能力最强

间隔(margin)与支持向量(support vector)

超平面方程: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$

支持向量机基本型

最大间隔: 寻找参数 \boldsymbol{w} 和 b , 使得 γ 最大

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,max}} \frac{2}{\|\boldsymbol{w}\|}$$
s.t. $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \ge 1, \ i = 1, 2, \dots, m.$

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b) \ge 1, \ i = 1, 2, \dots, m.$

凸二次规划问题, 能用优化计算包求解, 但可以有更高效的办法

对偶问题

拉格朗日乘子法

■第一步:引入拉格朗日乘子 $\alpha_i \geq 0$ 得到拉格朗日函数

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{m} \alpha_i \left(1 - y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_i + b)\right)$$

■第二步: 令 $L(\boldsymbol{w},b,\boldsymbol{\alpha})$ 对 \boldsymbol{w} 和 b 的偏导为零可得

$$\boldsymbol{w} = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i , \quad 0 = \sum_{i=1}^{m} \alpha_i y_i$$

□ 第三步: 回代可得

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0 , \quad \alpha_i \geqslant 0 , \quad i = 1, 2, \dots, m$$

解的特性

最终模型:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i^{\top} \boldsymbol{x} + b$$

KKT条件:

$$\begin{cases} \alpha_i \ge 0; \\ 1 - y_i f(\boldsymbol{x}_i) \le 0; \\ \alpha_i (1 - y_i f(\boldsymbol{x}_i)) = 0. \end{cases}$$
 必有 $\alpha_i = 0$ 或 $y_i f(\boldsymbol{x}_i) = 1$

解的稀疏性: 训练完成后, 最终模型仅与支持向量有关

支持向量机(Support Vector Machine, SVM) 因此而得名

求解方法 - SMO

基本思路:不断执行如下两个步骤直至收敛

- 第一步:选取一对需更新的变量 α_i 和 α_j
- ullet 第二步:固定 $lpha_i$ 和 $lpha_j$ 以外的参数,求解对偶问题更新 $lpha_i$ 和 $lpha_j$

仅考虑 α_i 和 α_j 时,对偶问题的约束 $0=\sum_{i=1}^m \alpha_i y_i$ 变为

$$\alpha_i y_i + \alpha_j y_j = c , \quad \alpha_i \geqslant 0 , \quad \alpha_j \geqslant 0$$

用 α_i 表示 α_i ,代入对偶问题

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$
 有闭式解!

对任意支持向量 (\boldsymbol{x}_s,y_s) 有 $y_sf(\boldsymbol{x}_s)=1$,由此可解出 b

为提高鲁棒性, 通常使用所有支持向量求解的平均值