CS 561, HW 1

Ryan Scherbarth, University of New Mexico

1. Is
$$3^{n+1} = O(3^n)$$
? Is $3^{2n} = O(3^n)$?

(a)

Show that: $3^{n+1} \le c * 3^n$ for all n, c > 0

Base Case, n = 0:

$$3^{(0)+1} \le c * 3^{(0)}$$

$$3 \le c * 1$$

$$c = 3$$

Inductive Hypothesis: $3^{j+1} \le c * 3^j$ for all j > 0

$$3^{(j+1)+1} \le c * 3^{(j+1)}$$

$$3*3^{j+1} \le c*3^{j+1}$$

$$3 \le c$$

Therefore, with proof by induction we have shown that

$$f(n) = 3^{n+1}$$
 is bounded by $O(3^n) \ \forall (n,c) > 0$.

(b)

Show that: $3^{2n} \le c * 3^n$ for all n, c > 0

$$3^{2n} = (3^n)^2$$

$$(3^n)^2 \le c * 3^n$$

$$3^n \le c$$

Since C can not be simplified to a constant value,

$$3^{2n} \neq O(3^n)$$

2. Prove that $\log n! = \Theta(n \log n)$ and that $n! = \omega(2^n)$ and $n! = o(n^n)$

Show that $\log(n!) = O(n \log(n))$

$$\log(n!) = \sum_{i=1}^{n} \log(i)$$

$$\sum_{i=1}^{n} \log(i) \le n \log(n), \forall i \le n$$

$$\log(n!) = O(n\log(n))$$

Now, show that $\log(n!) = \Omega(n \log(n))$

$$\log(n!) = \sum_{i=1}^{n} \log(i)$$

$$= \int_{1}^{n} \log(x) dx$$

$$= n \log(n) - n - (1log(1) - 1)$$

$$\sum_{i=1}^{n} \log(i) \ge n \log(n) - n + 1$$

$$\log(n!) \ge n\log(n) - n + 1$$

$$\log(n!) = \Omega(n\log(n))$$

$$\Omega(n\log(n)) = O(n\log(n)) \equiv \Theta(n\log(n))$$

(b)

Prove that $n! = \omega(2^n)$

Show that For any positive c,

there exists a positive n_0 s.t. $0 \le c * 2^n < n!$ for all $n \ge n_0$.

The inequality holds iff;

$$\frac{n!}{2^n} > 1$$

To find our n_0 , we can set the inequality $\frac{n!}{2^n} > 1$.

$$\frac{n!}{2^n} = \prod_{i=1}^n \frac{i}{2}$$

Therefore, the inequality is increasing for all $n \geq 2$, Therefore;

For
$$n_0 = 2$$
, $n! = \omega(2^n)$

(c)

Prove $n! = o(n^n)$

Show that for any positive c,

there exists a positive n_0 s.t. $0 \le n! < c * n^n$ for all $n \ge n_0$.

The inequality holds iff;

$$\frac{n!}{n^n} < c * \frac{n^n}{n^n}$$

$$n!$$

 $\frac{n!}{n^n} < 1$

To find our n_0 , we can set the inequality $\frac{n!}{n^n} > 1$. Since $\frac{n!}{n^n} \leq 1$ for n > 1, we can see that n^n is increasing asymptotically quicker than n! for any point greater than n = 1, therefore;

For
$$n_0 = 1$$
, $n! = o(n^n)$

3. Problem 3-3 (Ordering by Asymptotic Growth Rates)

$$\begin{split} 2^{2^{n+1}} > 2^{2^n} > (n+1)! > n! > e^n > n*2^n > 2^n > (\frac{3}{2})^n > n^{\lg(\lg(n))} \geq \dots \\ (\lg(n))^{\lg(n)} > (\lg(n))! > n^3 > 4^{\lg(n)} \geq n^2 > n\lg(n) \geq 2^{\lg(n)} > \dots \\ (\sqrt{(2)})^{\lg(n)} > 2^{\sqrt{2\lg(n)}} > \lg^2(n) > \ln(n) > \sqrt{\lg(n)} > \ln(\ln(n)) > \dots \\ 2^{\lg*n} > \lg*(\lg(n)) \geq \lg*n > \lg(\lg*n) > 1 \geq n^{\frac{1}{\lg(n)}} \end{split}$$

4. Assume you have functions f and g, such that f(n) is O(g(n)). For each of the following statements, decide whether you think it is true or false and give either a proof or a counterexample

(a) $\log_2 f(n)$ is $O(\log_2 g(n))$

Prove that there exists some c>0 s.t. $f(n) \leq c*g(n)$ for all $n\geq 0$.

$$f(n) \leq C * g(n)$$

$$log(f(n)) \leq log(C * g(n))$$

$$log(f(n)) \leq log(C) + log(g(n))$$

$$log(f(n)) \leq log(g(n))$$

Therefore;

$$log(f(n)) = O(log(g(n))$$

(b) $2^{f(n)}$ is $O(2^{g(n)})$

Let $f(n) = \log(n)$, and $g(n) = \sqrt{n}$;

$$2^{\log(n)} \le 2^{c*\sqrt{n}}$$
$$2^{f(n)} = n$$
$$2^{g(n)} = 2^{\sqrt{n}}$$

Therefore;

$$2^{f(n)} \neq O(2^{g(n)})$$

(c) $f(n)^2$ is $O(g(n)^2)$

$$f(n)^2 \le (c * g(n))^2$$

$$f(n)^2 \le c^2 * g(n)^2$$

Therefore,

$$f(n)^2 = O(g(n)^2)$$