1. Sprzęt

Sterownik PLC

Seria: MELSEC IQ-F Typ: FX5UJ-24MR/ES

• Pulpit operatorski 10,4"

Seria: GOT2000

Model: GT2710-VTBA

Robot współpracujący ASSISTA

Model: RV-5AS-D Zasięg: 910 mm

Powtarzalność: ±0,03 mm

Prędkość maksymalna: 1000 mm/s (fast); 250mm/s (collaborative)

Chwytak Zimmer HRC-03

2. Funkcjonalność

Sterowanie robotem odbywa się za pomocą panelu HMI z odpowiednim interfejsem. Ponadto robot ma zaprogramowane podnoszenie, odkładanie oraz paletyzację przedmiotów. Do wyboru jest sześć możliwości:

- → pick podnoszenie przedmiotu z zadeklarowanego miejsca,
- → place rozmieszczanie przedmiotu w zadeklarowanym miejscu,
- → pick and place podniesienie i odłożenie przedmiotu w odpowiednio zadeklarowanych miejscach,
- → point to pallet rozmieszczanie przedmiotów na zadeklarowanej palecie z odpowiednio zadeklarowanego punktu,
- → pallet to point odkładanie przedmiotu w wybrane miejsce z odpowiednio zadeklarowanej palety,
- → pallet to pallet rozmieszczanie przedmiotów na zadelkarowanej palecie z innej zadeklarowanej palety.

3. Instrukcja obsługi

Należy ustawić wszystkie urządzenia w jednej podsieci. Komunikacja CC-Link IE Field Basic z PLC przez dedicated IO.

NUMERY IP										
robot	192.168.0.20 192.168.0.60									
PLC										
НМІ	192.168.0.17									
komputer	192.168.0.10									

Robot

krótki opis programów - tabela

Główny program robota: mainproject.prg,

Podprogramy robota: pickpallv2.prg, placepallv2.prg, pickprojekt.prg, placeprojekt.prg,

Program działający w tle: readposition.prg,

Program, który należy włączyć do inicjalizacji parametrów: paramset.prg,

Muszą być ustawione odpowiednie wartości parametrów aby móc wymieniać się informacjami z PLC.

Panel HMI

Główny ekran zawiera w sobie funkcjonalność panelu operatorskiego robota. Możemy obsłużyć podstawowe operacje jakie ma wykonać robot, takie jak włączanie serwonapędów, start, stop programu, reset błędów, zmianę prędkości. Dodatkowo panel wyświetla informację o tym, czy robot jest w trybie kolaboracyjnym/szybkim a także sygnalizuje włączenie trybu ręcznego. W lewej górnej części ekranu widoczna jest aktualnie wykonywanego programu. U dołu ekranu znajduje się menu przełączające ekrany.

Ekran JOG umożliwia sterowanie robotem w wybranym przez użytkownika układzie. Z prawej strony umieszczono przyciski do ręcznego sterowania narzędziem. W celu sterowania narzędziem należy w pierwszej kolejności załączyć przycisk HAND ENA. Dopiero po jego wciśnięciu chwytak będzie się otwierał/zamykał. Dodatkowy przycisk HOME umożliwia powrót robota do pozycji domowej.

Ekran alarmów przedstawia informację o aktualnym błędzie robota. Dostępna jest na nim historia alarmów. Nie jest dostępny rozszerzony opis poprzednich błędów.

Ekran PROGRAM umożliwia zmianę wykonywanego programu, a także parametryzację paletyzacji. Domyślnie wybranym programem jest program PICK AND PLACE.

PLC

Sterownik jest elementem pośrednim, komunikuje robota z panelem HMI. Komendy wysyłane z panelu operatorskiego trafiają na odpowiednie bloki funkcyjne w programie na sterowniku. Bloki te wysyłają informację do sterownika robota. Rodzaje bloków:

- → blok Robot Control obsługuje podstawowe komendy, takie jak włączanie serwonapędów, załączenie programu, reset błędów, zadaną prędkość,
- → blok Hand odpowiada za obsługę narzędzia,
- → blok JOGSimple pozwala na ręczne sterowanie robotem w wybranej przez użytkownika przestrzeni,
- → blok Robot Status umożliwia odebranie informacji zwrotnej odnośnie stanu robota, Poza tym wykorzystujemy również proste funkcje sterownika, których funkcjonalności dokładnie opisane są w programie projektu. W programie *initialization* wpisujemy domyślne parametry paletyzacji, domyślną prędkość i odpowiednie stany inicjalizujące poszczególne bloki.

4. Wykorzystywane rejestry

256 wejść bitowych **bRX** robota zostały przypisane do 16 rejestrów na sterowniku PLC: od D50 do D65. W każdym rejestrze D jest 16 sterowanych bitów.

Device Na	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0	Current Value
D50	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	9
D51	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	292
D52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
D53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D55	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0	0	5504
D56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

256 wyjść bitowych **bRY** robota zostały przypisane do 16 rejestrów na sterowniku PLC: od D66 do D81. W każdym rejestrze D jest 16 sterowanych bitów.

Device Na	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0	Current Value
D66	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	129
D67	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	128
D68	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	80
D69	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	256
D70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D74	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D76	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D79	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D81	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

128 rejestrów wejściowych **wRWr** robota zostało przypisanych do 128 rejestrów na sterowniku PLC:

128 rejestrów wyjściowych **wRWw** robota zostało przypisanych do 128 rejestrów na sterowniku PLC:

Opis użytych rejestrów w pliku rejestry.xlsx

5. Źródła:

- https://www.fasupportme.com/portal/en/kb/articles/cc-link-ief-basic-iq-r-and-cr800
- https://www.fasupportme.com/portal/en/kb/articles/cc-link-ief-basic-network-sample-forcommunicating-robot-plc-and-hmi
- https://www.fasupportme.com/portal/en/kb/articles/sample-got-screens-for-robot-cont rol-pl
- https://www.fasupportme.com/portal/en/kb/articles/sample-got-screens-for-robot-cont-rol-frseries-cr800-d-full-project