Nordic probabilistic Al school Variational Inference and Optimization

Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

June 17, 2025

ProbAl - 2025

Deep Bayesian Learning - VAE

Starting-point: The factor analysis model, and an extension

$$\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{X} \, | \, \mathbf{z} \sim \mathcal{N}(oldsymbol{\mu} + \mathbf{W}^{\scriptscriptstyle\mathsf{T}} \mathbf{z}, oldsymbol{\Sigma})$$

- The FA model posits that the data \mathbf{X} can be generated from **independent factors** \mathbf{Z} pluss some sensor-noise: $\mathbf{X} \, | \, \mathbf{z} = \boldsymbol{\mu} + \mathbf{W}^\mathsf{T} \mathbf{z} + \boldsymbol{\epsilon}; \, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}).$
- Simple algorithms to find estimators $\hat{\mu}$, $\hat{\mathbf{W}}$, and $\hat{\Sigma}$, and closed form expression for $p(\mathbf{z} \mid \mathbf{x})$ (which is still a Gaussian).
- The idea is that the factors can be interpreted and used for downstream tasks.

Starting-point: The factor analysis model, and an extension

$$\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{X} \, | \, \mathbf{z} \sim \mathcal{N}(oldsymbol{\mu} + \mathbf{W}^{\scriptscriptstyle\mathsf{T}} \mathbf{z}, oldsymbol{\Sigma})$$

- The FA model posits that the data \mathbf{X} can be generated from **independent factors** \mathbf{Z} pluss some sensor-noise: $\mathbf{X} \mid \mathbf{z} = \boldsymbol{\mu} + \mathbf{W}^\mathsf{T} \mathbf{z} + \boldsymbol{\epsilon}; \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}).$
- Simple algorithms to find estimators $\hat{\mu}$, $\hat{\mathbf{W}}$, and $\hat{\mathbf{\Sigma}}$, and closed form expression for $p(\mathbf{z} \mid \mathbf{x})$ (which is still a Gaussian).
- The idea is that the factors can be **interpreted** and used for **downstream tasks**.

How do we feel about the FA model?

The good: Data is compressed into a (hopefully) interpretable low-dimensional representation.

The bad: The model is restrictive: Assumes everything is Gaussian, and that the relationship from \mathbf{Z} to \mathbf{X} has to be linear.

The Variational Auto Encoder (VAE)

Model of interest

- $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

$$p_{\omega}(\mathbf{x}_i|\mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\omega}(\mathbf{z}_i))$$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a **point estimate** for ω .

The Variational Auto Encoder (VAE)

Model of interest

- $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

$$p_{\boldsymbol{\omega}}(\mathbf{x}_i|\mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\boldsymbol{\omega}}(\mathbf{z}_i))$$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a **point estimate** for ω .

Variational Inference

• We will need $p_{\omega}(\mathbf{z}_i | \mathbf{x}_i)$ for each data-point \mathbf{x}_i :

$$p_{\boldsymbol{\omega}}(\mathbf{z}_i \mid \mathbf{x}_i) = \frac{p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \mid g_{\boldsymbol{\omega}}(\mathbf{z}_i))}{\int_{\mathbf{z}_i} p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \mid g_{\boldsymbol{\omega}}(\mathbf{z}_i)) \, d\mathbf{z}_i}.$$

• Initial plan: Fit $q(\mathbf{z}_i | \lambda_i)$ to $p_{\omega}(\mathbf{z}_i | \mathbf{x}_i)$ using variational inference.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log rac{\prod_{i=1}^N q(\mathbf{z}_i \, | \, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)}
ight].$$

- A natural model for $q(\mathbf{z}_i | \lambda_i)$ is a Gaussian with parameters $\lambda_i = \{\mu_i, \Sigma_i\}$.
- If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal Σ_i , this still gives 2Nd variational parameters to learn.
- \bullet An $\tilde{\mathbf{x}} \not\in \mathcal{D}$ at query time will be problematic.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log rac{\prod_{i=1}^N q(\mathbf{z}_i \, | \, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)}
ight].$$

- A natural model for $q(\mathbf{z}_i | \lambda_i)$ is a Gaussian with parameters $\lambda_i = \{\mu_i, \Sigma_i\}$.
- If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal Σ_i , this still gives 2Nd variational parameters to learn.
- \bullet An $\tilde{\mathbf{x}} \not\in \mathcal{D}$ at query time will be problematic.

A better plan

• Assume $g_{\omega}(\mathbf{z})$ is "smooth": if \mathbf{z}_i and \mathbf{z}_j are "close", then so are \mathbf{x}_i and \mathbf{x}_j .

 $\rightsquigarrow \lambda_i$ and λ_j should be "close" if \mathbf{x}_i and \mathbf{x}_j are "close".

- Therefore: Let's assume there exists a (smooth) function $h(\mathbf{x})$ so that $h(\mathbf{x}_i) = \lambda_i$.
- $\bullet \ h(\cdot)$ is unavailable, so represent it using a deep neural net and learn the weights.
- $h(\mathbf{x}_i)$ plays the role of an **ENCODER NETWORK**.

Amortized inference

Amortized inference:

To learn a model $h(\cdot)$, typically a deep neural network, so that $h(\mathbf{x}_i) = \lambda_i$. $h(\cdot)$ is parameterized with weights, often (abusing notation) denoted by λ .

Note! Amortized inference is useful also outside VAEs!

Benefits:

- The 2Nd parameters $\{\lambda_i\}_{i=1}^N$ are replaced by the fixed-sized vector λ .
 - $\bullet\,$ If N is large we may get a simpler learning problem.
- Smoothness of $h(\cdot)$ implies regularization.
- We only change the **parameterization**, not the model itself!

VAE: Full setup

The full VAE approach:

- $p(\mathbf{z}_i)$ is an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i|\mathbf{z}_i) \sim \text{Bernoulli}(\text{logits} = g_{\omega}(\mathbf{z}_i)),$ where g_{ω} is a DNN with weights ω .
- $q(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\lambda}) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i),$ where $\{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}$ is given by $h_{\boldsymbol{\lambda}}(\mathbf{x}_i).$ $h_{\boldsymbol{\lambda}}$ is a DNN with weights $\boldsymbol{\lambda}.$

Goal:

Learn **both** ω and λ by maximizing the ELBO:

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\omega}) = -\mathbb{E}_q \left[\log \frac{q(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\lambda})}{p_{\boldsymbol{\omega}}(\mathbf{z}, \mathbf{x} \mid \boldsymbol{\omega})} \right].$$

ELBO for VAEs

- For each \mathbf{x}_i , sample M (typically 1) ϵ -values.
- ② Calculate $\nabla_{\lambda,\omega} \mathcal{L}(\lambda,\omega)$ using the reparameterization-trick.
- Update parameters using a standard DL optimizer (like Adam).

Sidestep: Automatic Variational Inference in PPLs

- **Manual**: Define your data model $p(\mathcal{D}|\boldsymbol{\theta})$ and the prior $p(\boldsymbol{\theta})$.
- **4** Automatic : Optimize ELBO: $\lambda_{t+1} = \lambda_t + \rho \nabla_{\lambda} \mathcal{L}(\lambda_t)$ using an AutoDiff. engine.

Probabilistic Programming Languages and Box's loop

Modern PPLs relieve us of all the computational details!

Instead we can focus on ...

- Building models (define $p(\mathcal{D}|\theta)$ and $p(\theta)$) we believe in.
- Using computed results to validate/critique and iteratively refine the model.

This is known as the "build - compute - critique - repeat" - cycle.

Fun with MNIST – With simple model evaluation

- \bullet The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each x_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $X \rightsquigarrow Z$.

Fun with MNIST – With simple model evaluation

- \bullet The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each x_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $X \rightsquigarrow Z$.
- The **decoder network Z** \rightsquigarrow X is a 64 + 256 neural net with ReLU units.

 $\mathbf{z}_i: 2 \text{ dim} \xrightarrow{\mathsf{ReLU}} \mathsf{Hidden}, 64\text{-d} \xrightarrow{\mathsf{ReLU}} \mathsf{Hidden}, 256\text{-d} \xrightarrow{\mathsf{Linear}} \mathsf{logit}(\mathbf{p}_i), 784\text{-d} \longrightarrow p_{\omega}(\mathbf{x}_i \mid \mathbf{z}_i, \omega) = \mathsf{Bernoulli}\left(\mathbf{p}_i\right), 784\text{-d}$

Fun with MNIST – With simple model evaluation

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $X \rightsquigarrow Z$.
- The decoder network $Z \rightsquigarrow X$.

Next up: Model validations - Dislaimer

The next few slides show **very simple** qualitative model critiques. These checks are by no means comprehensive, and in fact quite naïve.

See, e.g., D. Blei (2014): "Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models" and A. Gelman et al. (2020): "Bayesian workflow" for how it **should** be done.

Trying to reconstruct $\mathbf x$ by $\mathbb{E}_{p_{m{ heta}}}\left[\mathbf X\,|\, \mathbf Z = \mathbb{E}_{q_{\lambda}}\left[\mathbf Z\,|\, \mathbf x ight] ight]$

An initial indication of performance:

- For some \mathbf{x}_0 , calculate $\mathbf{z}_0 \leftarrow \mathbb{E}_{q_\lambda} \left[\mathbf{Z} \, | \, \mathbf{X} = \mathbf{x}_0 \right]$
- $\mathbf{2} \ \dots \ \text{and} \ \tilde{\mathbf{x}} \leftarrow \mathbb{E}_{p_{\theta}} \left[\mathbf{X} \, | \, \mathbf{Z} = \mathbf{z}_0 \right].$
- **3** Compare \mathbf{x}_0 and $\tilde{\mathbf{x}}$ visually.

Test-set examples

Training examples (at end of training)

The picture manifold $-\mathbb{E}_{p_{\omega}}\left[\mathbf{X}\,|\,\mathbf{z}\right]$ for different values of \mathbf{z}

Using a VAE for generation

- The VAE is a **deep generative model** albeit not a fancy one.
- Process: Sample $\mathbf{Z}_0 \sim p(\mathbf{z})$, then sample an $\mathbf{X} \sim p_{\omega}(\mathbf{x} \mid \mathbf{z}_0)$.

```
19999994999999
 1777994444444999
 1777774444444499
 1377775444499999
 188888888888999
 188888888833388
- 1-8-8-8-8-8-3-3-3-5-0- ►
 1 8 8 8 5 5 5 8 3 3 3 3 3 5 0 Z
 1885555533333550
 1 85555533333850
 155550008332280
 155666666122220
 150666666122220
 222666666122222
```

Generative ability, shown through $\mathbb{E}_{\mathbf{x} \sim p_{ol}} [\mathbf{X} \mid \mathbf{z}]$ for different values of \mathbf{z} .

11

Code Task: VAEs in Pyro

Code Task: VAEs in Pyro

- Learn how a VAE is coded in Pryo.
- We provide a VAE with a linear decoder.
- Exercise (summary):
 - Define a Non-Linear Decoder, e.g., an MLP with a hidden layer and non-linearities (e.g. Relu).
 - Explore the latent space when moving from linear to non-linear decoders with different capacity.
- Notebook:

Evening/students_VAE.ipynb.

Conclusions

- Bayesian Machine Learning
 - Represents unobserved quantities using distributions
 - \bullet Models **epistemic** uncertainty using $p(\boldsymbol{\theta} \,|\, \mathcal{D})$

- Bayesian Machine Learning
- Variational inference
 - **Provides** $q(\theta \mid \lambda)$: A distributional approximation to $p(\theta \mid D)$
 - Objective: $\arg\min_{\lambda} \mathrm{KL}\left(q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})||p(\boldsymbol{\theta} \,|\, \mathcal{D})\right) \Leftrightarrow \arg\max_{\lambda} \mathcal{L}\left(q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})\right)$
 - Mean-field: Divide and conquer strategy for high-dimensional posteriors
 - Main caveat: $q(\theta \mid \lambda)$ underestimates the uncertainty of $p(\theta \mid \mathcal{D})$

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
 - Analytic expressions for some models (i.e., conjugate exponential family)
 - CAVI is very efficient and stable if it can be used
 - In principle requires manual derivation of updating equations
 - There are tools to help (using variational message passing)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
 - Provides the tools for VI over arbitrary probabilistic models
 - Directly integrates with the tools of deep learning
 - Automatic differentiation, sampling from standard distributions, and SGD
 - Sampling to approximate expectations: Beware of the variance!

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages
 - PPLs fuel the "build compute critique repeat" cycle through
 - ease and flexibility of modelling
 - powerful inference engines
 - efficient model evaluations
 - Many available tools (Pyro, TF Probability, Infer.net, Turing.jl, ...)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages
- What's next?
 - The "VI toolbox" is reaching maturity
 - From only a research area to almost a prerequisite for Probabilistic Al
 - ... yet there are still things to explore further!
 - Today's material should suffice to read (and write!) Prob-Al papers