How black-box use of imputation can cause bias

Nicole Erler

Erasmus Medical Center, Rotterdam

Handling Missing Values is Easy!

Functions automatically exclude missing values:

```
## [...]
## Residual standard error: 2.305 on 69 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.09255, Adjusted R-squared: 0.02679
## F-statistic: 1.407 on 5 and 69 DF, p-value: 0.2325
```

Handling Missing Values is Easy!

Functions automatically exclude missing values:

```
## [...]
## Residual standard error: 2.305 on 69 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.09255, Adjusted R-squared: 0.02679
## F-statistic: 1.407 on 5 and 69 DF, p-value: 0.2325
```

Imputation is super easy:

```
library("mice")
imp <- mice(mydata)</pre>
```

However ...

(Imputation) methods makes certain assumptions, e.g.:

• missingness is M(C)AR

(Imputation) methods makes certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)

(Imputation) methods makes certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)
- all associations are linear
 - no interactions
 - no non-linear effects
 - no transformations

(Imputation) methods makes certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)
- all associations are linear
 - no interactions
 - no non-linear effects
 - no transformations
- compatibility of the imputation models
- congeniality (compatibility between analysis and imputation models)

(Imputation) methods makes certain assumptions, e.g.:

- missingness is M(C)AR
- the incomplete variable has a certain conditional distribution (e.g. normal)
- all associations are linear
 - no interactions
 - no non-linear effects
 - no transformations
- compatibility of the imputation models
- congeniality (compatibility between analysis and imputation models)

violation **→** bias

Literature: mis-specification in Multiple Imputation

Several authors have

- investigated robustness to mis-specification (of distribution)
 - in MI using FCS / MICE
 - in joint model MI
- and/or proposed to use
 - Tukey's gh distribution
 - Fleishman polynomials
 - GAMs (in FCS)
 - Doubly-robust weighted estimating equations (instead of MI)

Fully Bayesian Analysis & Imputation

Joint distribution

$$\underbrace{\frac{p(y \mid X, b, \theta)}{\text{analysis}}}_{\text{model}} \underbrace{\frac{p(X \mid \theta)}{\text{imputation}}}_{\text{random}} \underbrace{\frac{p(b \mid \theta)}{\text{priors}}}_{\text{random}} \underbrace{\frac{p(\theta)}{\text{priors}}}_{\text{random}}$$

Fully Bayesian Analysis & Imputation

Joint distribution

$$\underbrace{\frac{p(y \mid X, b, \theta)}{\text{analysis}}}_{\text{model}} \underbrace{\frac{p(X \mid \theta)}{\text{proposition}}}_{\text{part}} \underbrace{\frac{p(b \mid \theta)}{\text{priors}}}_{\text{priors}} \underbrace{\frac{p(\theta)}{\text{priors}}}_{\text{priors}}$$

Imputation part

$$p(x_1, \dots, x_p, X_{compl.} | \theta) = p(x_1 | X_{compl.}, \theta)$$

$$p(x_2 | X_{compl.}, x_1, \theta)$$

$$p(x_3 | X_{compl.}, x_1, x_2, \theta)$$
...

Fully Bayesian Analysis & Imputation

Joint distribution

$$\underbrace{\frac{p(y \mid X, b, \theta)}{\text{analysis}}}_{\text{model}} \underbrace{\frac{p(X \mid \theta)}{\text{proposition}}}_{\text{part}} \underbrace{\frac{p(b \mid \theta)}{\text{priors}}}_{\text{random}} \underbrace{\frac{p(\theta)}{\text{priors}}}_{\text{priors}}$$

Imputation part

$$p(x_1, \dots, x_p, X_{compl.} | \theta) = p(x_1 | X_{compl.}, \theta)$$

$$p(x_2 | X_{compl.}, x_1, \theta)$$

$$p(x_3 | X_{compl.}, x_1, x_2, \theta)$$

$$\dots$$

Software

Implemented in the R package JointAI

MICE vs JointAl

Imputation in MICE

$$p(x_1 \mid y, X_{compl.}, x_2, x_3, x_4, ..., \theta)$$

 $p(x_2 \mid y, X_{compl.}, x_1, x_3, x_4, ..., \theta)$
 $p(x_3 \mid y, X_{compl.}, x_1, x_2, x_4, ..., \theta)$
...

Imputation in JointAl

$$p(y \mid X_{compl.}, x_1, x_2, x_3, \dots, \theta)$$

$$p(x_1 \mid X_{compl.}, \theta)$$

$$p(x_2 \mid X_{compl.}, x_1, \theta)$$

$$p(x_3 \mid X_{compl.}, x_1, x_2, \theta)$$

Imputation in MICE

$$p(x_1 \mid y, X_{compl.}, x_2, x_3, x_4, \dots, \theta)$$

 $p(x_2 \mid y, X_{compl.}, x_1, x_3, x_4, \dots, \theta)$
 $p(x_3 \mid y, X_{compl.}, x_1, x_2, x_4, \dots, \theta)$
...

Imputation in JointAl

$$p(y \mid X_{compl.}, x_1, x_2, x_3, \dots, \theta)$$

$$p(x_1 \mid X_{compl.}, \theta)$$

$$p(x_2 \mid X_{compl.}, x_1, \theta)$$

$$p(x_3 \mid X_{compl.}, x_1, x_2, \theta)$$
...

No issues with

- complex outcomes, e.g.:
 - multi-level
 - survival
- congeniality
- compatibility

Imputation in MICE

$$p(x_1 \mid y, X_{compl.}, x_2, x_3, x_4, \dots, \theta) p(x_2 \mid y, X_{compl.}, x_1, x_3, x_4, \dots, \theta) p(x_3 \mid y, X_{compl.}, x_1, x_2, x_4, \dots, \theta)$$

Imputation in JointAl

$$p(y \mid X_{compl.}, x_1, x_2, x_3, \dots, \theta)$$

$$p(x_1 \mid X_{compl.}, \theta)$$

$$p(x_2 \mid X_{compl.}, x_1, \theta)$$

$$p(x_3 \mid X_{compl.}, x_1, x_2, \theta)$$

- Potential mis-specification of
 - functional form
 - conditional distribution
 - M(C)AR

Simulation Study: Quadratic Effect

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Quadratic association between covariates: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_2^2 + \dots$

Simulation Study: Quadratic Effect

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Quadratic association between covariates: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_2^2 + \dots$

Simulation Study: Logarithmic Effect

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Log-association between covariates: $x_1 \sim \alpha_0 + \alpha_1 \log(x_2) + \dots$

Simulation Study: Gamma distribution

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Gamma-distributed covariate: $x_1 \mid x_2, x_3, \ldots \sim Ga()$

Flexible Bayesian Models

We need more flexible imputation models!

Idealy: models that fit (almost) any distribution / association structure.

Ideas:

- flexible association structure: penalized splines
- flexible residual distribution: mixture of Polya-Trees

Bayesian P-Splines

Instead of $\beta_1 x_2$ we use $\sum_{\ell=1}^d \beta_\ell B_\ell(x_1)$:

Bayesian P-Splines

Instead of $\beta_1 x_2$ we use $\sum_{\ell=1}^d \frac{\beta_\ell}{\beta_\ell} B_\ell(x_1)$:

Bayesian P-Splines

Instead of $\beta_1 x_2$ we use $\sum_{\ell=1}^{3} \beta_{\ell} B_{\ell}(x_1)$:

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Quadratic association between covariates: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_2^2 + \dots$

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Quadratic association between covariates: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_2^2 + \dots$

Potential Issue:

Potential Issue:

Beta (a_0, a_0)

Beta(a₀, a₀)					
Beta(a ₁ , a ₁)		Beta(a ₁ , a ₁)			
Beta(a ₂ , a ₂) Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)	Beta(a ₂ , a ₂)		

Beta(a ₀ , a ₀)							
	Beta(a ₁ , a ₁)		Beta(a ₁ , a ₁)				
Beta(a ₂ ,	Beta(a ₂ , a ₂) Beta(a ₂		Beta(a ₂ , a ₂)	eta(a ₂ , a ₂)			
Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)			Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)		

Beta(a₀, a₀)							
Beta(a ₁ , a ₁)				Beta(a ₁ , a ₁)			
Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)	
Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)					Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)

Beta(a ₀ , a ₀)						
	Beta(a ₁ , a ₁)		Beta(a ₁ , a ₁)			
Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)	Beta(a ₂ , a ₂)	Beta(a ₂ , a ₂)		
Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)			Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)	

Beta(a₀, a₀)							
Beta(a ₁ , a ₁)				Beta(a ₁ , a ₁)			
Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)		Beta(a ₂ , a ₂)	
Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)					Beta(a ₃ , a ₃)	Beta(a ₃ , a ₃)

Practical Issues & Ideas

Potential / probable issues for practice:

- flexible fit needs observed data everywhere
- computational time

Practical Issues & Ideas

Potential / probable issues for practice:

- flexible fit needs observed data everywhere
- computational time

Ideas:

- check first if simple model fits, e.g. posterior predictive checks
 - χ^2 type of tests
 - Kolmogorov-Smirnoff test?
 - discordance tests?

Practical Issues & Ideas

Potential / probable issues for practice:

- flexible fit needs observed data everywhere
- computational time

Ideas:

- check first if simple model fits, e.g. posterior predictive checks
 - χ^2 type of tests
 - Kolmogorov-Smirnoff test?
 - discordance tests?
- feasibility checks before running the complex model

Take home message

- assumptions of imputation models can easily be violated ⇒ bias
- more flexible imputation models are needed
- semi- / non-parametric (Bayesian) methods can offer a solution
- more flexibility → more complexity → need for guidance tools

Thank you for your attention.

- ✓ n.erler@erasmusmc.nl
 - ✓ N_Erler
- NErler
- www.nerler.com

Simulation Study: Beta Distribution

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 + \dots$

Beta-distributed covariate: $x_1 \mid x_2, x_3, \ldots \sim Be()$

Simulation Study: Reverting the sequence

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Exclusion of important predictor: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_3 + \dots$

Simulation Study: Ignoring an Interaction

Analysis model: $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

Interaction between covariates: $x_1 \sim \alpha_0 + \alpha_1 x_2 + \alpha_2 x_3 + \alpha_3 x_2 x_3 + \dots$

