A Prezime, ime, br. indeksa:
• Pri deljenju polinoma x^4+1 sa $x-1$ nad \mathbb{R} , količnik je, a ostatak je
• Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B, +, \cdot, ', 0, 1)$: 1) $(1')' = a' \cdot 0' + a$ 2) $a + a' = 1'$ 3) $a \cdot 1' = 1'$ 4) $1 + a' = 0'$ 5) $(a')' \cdot (b')' = (a' \cdot b')'$
• Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z=-3-3i\sqrt{3}$: $Re(z)=\qquad ,\ Im(z)=\qquad ,\ z =\qquad ,\ \arg(z)=\qquad ,\ \overline{z}=\qquad .$
• Iza oznake svake od datih relacija u skupu $\{1,2,3\}$ zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija. (relacija "deli"): R S A T F $\rho = \{(1,1),(3,2),(2,1)\}$: R S A T F $\rho = \{(1,3),(1,2),(2,1)\}$: R S A T F $\rho = \{(1,1),(2,2),(3,3)\}$: R S A T F $\rho = \{(1,1),(2,2),(1,2),(2,1)\}$: R S A T F $\rho = \{(1,1),(2,2)\}$: R S A T F
• Neka su $f:(0,\infty) \to (0,\infty)$ i $g:(0,\infty) \to (0,\infty)$ definisane sa $f(x) = \frac{1}{x^2}$ i $g(x) = \ln(x+1)$. Izračunati: 1) $f^{-1}(x) =$ 2) $g^{-1}(x) =$ 3) $(f \circ g)(x) =$ 4) $(f \circ g)^{-1}(x) =$ 5) $(g^{-1} \circ f^{-1})(x) =$
• $\arg(0) = $, $\arg(-i\sqrt{3}) = $, $\arg(-\sqrt{3}) = $, $\arg(i\sqrt{3}) = $, $\arg(\sqrt{3}) = $, $\arg(-1 + \frac{1}{\sqrt{3}}) = $,
• Injektivne funkcije su: 1) $f: [-1, \infty) \to \mathbb{R}, \ f(x) = x^2 + 2x$ 2) $f: (0,1) \to \mathbb{R}, \ f(x) = \ln x$ 3) $f: (-\frac{\pi}{3}, \frac{\pi}{6}) \to (-1,1), \ f(x) = \cos x$ 4) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^7 - x^5$ 5) $f: (-\infty, 1) \to (\frac{1}{e}, \infty), \ f(x) = e^{-x^2}$ 6) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3 - 9$
• Zaokružiti broj (ili brojeve) ispred struktura koje su grupoidi, a nisu grupe. 1) $(\mathbb{N},+)$ 2) (\mathbb{N},\cdot) 3) $(\mathbb{R},+)$ 4) (\mathbb{R},\cdot) 5) $(\{-1,0,1\},\cdot)$ 6) $((0,\infty),\cdot)$

• Bijektivne funkcije su: 1) $f:(0,1) \to \mathbb{R}^-, \ f(x) = \ln x$ 2) $f:[-1,\infty) \to [-1,\infty), \ f(x) = x^2 + 2x$ 3) $f:\mathbb{R} \to [-\frac{\pi}{2}, \frac{\pi}{2}), f(x) = \operatorname{arctg} x$ 4) $f:[-1,2) \to [1,4), \ f(x) = x^2$ 5) $f:(\frac{-\pi}{6}, \frac{\pi}{3}) \to (\frac{-1}{2}, \frac{\sqrt{3}}{2}), \ f(x) = \sin x$
• $z^4 = -7 + 24i \Leftrightarrow z \in \{2+i,$
 Ako je p polinom stepena 5 nad proizvoljnim poljem F i ako ima tačno jedan koren u tom polju F, tada je p nad tim poljem F: 1) nesvodljiv 2) svodljiv 3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog Zaokružiti grupoide sa neutralnim elementom, koji nisu grupe: 1) (Z₇ \ {1,3,5},·) 2) ({f f: R→ R}, ∘) 3) (Z₇ \ {1,3,5},+) 4) ({7k k∈Z},·) 5) (R[x],·) 6) (N∪ {0},+) 7) (Z,·)
• Bar jedan najveći zajednički delitelj za polinome $3(t-2)^7(t+1)^3(t-1)^5(t+13)^3$ i $4(t-3)^2(t-15)(t-2)^3(t+1)^5$ je:
• Zaokružiti brojeve ispred algebarskih struktura koja su prsteni a nisu polja. 1) $\left(\{f_k f_k(x)=kx,k\in\mathbb{R}\},+,\circ\right)$ 2) $(\mathbb{R}^\mathbb{R},+,\cdot)$ 3) $(\mathbb{R}[t],+,\cdot)$ 4) $(\mathbb{Z}_4,+,\cdot)$ 5) $(\mathbb{Q},+,\cdot)$ 6) $(\mathbb{Z}_3,+,\cdot)$ 7) $\left(\{f f:\mathbb{R}\xrightarrow{1-1}_{na}\mathbb{R}\},+,\circ\right)$ 8) $(\mathbb{Z},+,\cdot)$
• Neka je $\mathcal{G} = (\{5^n n \in \mathbb{N}\}, \cdot)$, gde je · množenje po modulu 3. 1) \mathcal{G} je grupoid. 2) U \mathcal{G} postoji neutralni elemenat. 3) \mathcal{G} je grupa.
• Zaokružiti podgrupe grupe $(\mathbb{C} \setminus \{0\}, \cdot)$: 1) $(\{-1, 1\}, \cdot)$ 2) $((0, \infty), \cdot)$ 3) $(\{-1, i, 1, -i\}, \cdot)$ 4) $(\{z z^6 = 1, z \in \mathbb{C}\}, \cdot)$ 5) $((0, 1), \cdot)$ 6) $((-\infty, 0), \cdot)$ 7) $(\mathbb{Q} \setminus \{0\}, \cdot)$ 8) $(\{e^{i\theta} \theta \in \mathbb{R}\}, \cdot)$
• Zaokružiti oznaku polja za koje važi da je polinom $t^3 + 2t^2 + 1$ svodljiv nad njima. \mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_3 \mathbb{Z}_5
• Ako je P svodljiv polinom nad poljem $\mathbb C$ tada $dg(P) \in \{$
• Ako je P svodljiv polinom nad poljem $\mathbb R$ tada $dg(P) \in \{$

• $f \in \mathbb{R}[x]$ i $f(2e^{i\frac{\pi}{3}}) = 0$. Z	aokruži tačno: 1) $x - 1 - i\sqrt{3} \mid f$	$f(x)$ 2) $x + 1 - i\sqrt{3} f(x) $	
4) $x^2 - 2x + 4 \mid f(x);$	5) $x^2 + 2x + 4 \mid f(x);$	f) $x^2 - 2x - 4 \mid f(x);$	6) $x - 2e^{i\frac{\pi}{3}} \mid f(x)$

• Zaokružiti broj (ili brojeve) ispred jednakosti koje su tačne u skupu kompleksnih brojeva:

1)
$$z\overline{z} = |z|^2$$
 2) $\frac{z_1}{|z_1|} = \frac{z_2}{|z_2|} \Leftrightarrow (\exists k \in \mathbb{R}^+) \overline{Oz_1} = k \overline{Oz_2}$ 3) $\overline{z} \in \mathbb{R} \Rightarrow z = \overline{z}$
4) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ 5) $|z_1 + z_2| = |z_1| + |z_2|$ 6) $\arg z_1 = \arg z_2 \Leftrightarrow \frac{z_1}{|z_1|} = \frac{z_2}{|z_2|}$
7) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ 8) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ 9) $z \neq 0 \Rightarrow z^{-1} = |z|^2 \overline{z}$ 10) $|z| = 1 \Rightarrow z^{-1} = \overline{z}$

- Ako $f:A\to B$ nije sirjektivna funkcija i $b\in B$, tada broj rešenja po $x\in A$ jednačine f(x)=b može biti (zaokruži) 0 1 2 3 ∞
- Ako $f:A\to B$ nije injektivna funkcija i $b\in B$, tada broj rešenja po $x\in A$ jednačine f(x)=b može biti (zaokruži) 0 1 2 3 ∞
- Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom polju $(F,+,\cdot)$:
 - 1) a + bc = (a + b)(a + c) 2) $(F \setminus \{0\}, +)$ je grupa 3) (F, \cdot) je grupa 4) operacija + je distributivna prema \cdot 5) $ab = 0 \Rightarrow a = 0 \lor b = 0$ 6) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ 7) $a \cdot 0 = 0$ 8) $a \cdot (-a) = -a^2$ 9) $(F \setminus \{0\}, \cdot)$ je grupa
- Funkcija $f: (\frac{\pi}{6}, \frac{2\pi}{3}) \longrightarrow (-\frac{1}{2}, \frac{\sqrt{3}}{2})$ definisana sa $f(x) = \cos x$ je: 1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna
- Navesti geometrijsku interpretaciju skupova A,B,C,D,E i sledećih kompleksnih funkcija $f:\mathbb{C}\to\mathbb{C},g:\mathbb{C}\to\mathbb{C},h:\mathbb{C}\to\mathbb{C}$ i $s:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f i g.

```
f(z) = \overline{z} \frac{1+i\sqrt{3}}{2} \text{ je } \underline{\hspace{2cm}} g(z) = ze^{i\frac{\pi}{2}} \text{ je } \underline{\hspace{2cm}} h(z) = iI_m(z) \text{ je } \underline{\hspace{2cm}} s(z) = |z| \cdot e^{i\arg z} \wedge s(0) = 0 \text{ je } \underline{\hspace{2cm}} A = \{z||z^3| = i^{16}\} \text{ je } \underline{\hspace{2cm}} B = \{z|z^3 = i^{16}\} \text{ je } \underline{\hspace{2cm}} \underline{\hspace{2cm}} C = \{z|z = -\overline{z}\} \text{ je } \underline{\hspace{2cm}} \underline{\hspace{2cm}} D = \{e^{i(\arg z - \arg(-z))}|z \in \mathbb{C} \setminus \{0\}\} \text{ je } \underline{\hspace{2cm}} \underline{\hspace{2cm}} E = \{z|iI_m(z) = iR_e(z)\} \text{ je } \underline{\hspace{2cm}} \underline{\hspace{2cm}}
```

- Neka je $\{1,2,3\}$ skup korena polinoma $f(x)=x^3+ax^2+bx+c$, gde su $a,b,c\in\mathbb{R}$. Tada skup svih mogućnosti za a je $a\in\{$ }, skup svih mogućnosti za b je $b\in\{$ } i skup svih mogućnosti za c je $c\in\{$ }.
- Neka je $A = \{1, 2, 3, 4\}$ i $B = \{1, 2, 3\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju f:

$$\left| \{ f | f : A \longrightarrow B \} \right| = \underline{\hspace{0.5cm}}, \left| \{ f | f : A \xrightarrow{1-1} B \} \right| = \underline{\hspace{0.5cm}}, \left| \{ f | f : A \rightarrow B \land f \nearrow \} \right| = \underline{\hspace{0.5cm}}, \left| \{ f | f : B \xrightarrow{na} B \} \right| = \underline{\hspace{0.5cm}}, \left| \{ f | f : A \rightarrow A \land f \nearrow \} \right| = \underline{\hspace{0.5cm}}, \left| \{ f | f : B \rightarrow A \land f \nearrow \} \right| = \underline{\hspace{0.5cm}}, \left| \{ f | f : A \xrightarrow{na} B \} \right| = \underline{\hspace{0.5cm}}.$$

• Ako je $P(x) = ax^2 + bx + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P) polinoma P je: **1)** dg(P) = 2, **2)** $dg(P) \in \{1, 2\}$, **3)** $dg(P) \in \{0, 1, 2\}$, **4)** $dg(P) \in \{0, 3, 2, 1\}$