

Nachklausur

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2023/2024

Prof. Dr.-Ing. Sebastian Schlesinger

Aufgabe 1 (Mengen und Funktionen)

(6 Punkte)

Gegeben seien die Mengen $A = \{\{a, b, c\}, d\}$ und $B = \{a, d\}$.

- a) Geben Sie die Menge $A \cup B$ an
- **b)** Geben Sie die Menge $A \cap B$ an
- **c)** Geben Sie die Menge $A \setminus B$ an.

Aufgabe 2 (Potenzmengen)

(8 Punkte)

- a) Geben Sie die Potenzmenge $\mathcal{P}(\{1,2\})$ an.
- **b)** Geben Sie die Potenzmenge $\mathscr{P}(\mathscr{P}(\emptyset))$ an.
- **c)** Ist $\emptyset \in \mathcal{P}(\emptyset)$? Begründen Sie Ihre Antwort.
- **d)** Ist $\emptyset \subseteq \mathcal{P}(\emptyset)$? Begründen Sie Ihre Antwort.
- e) Ist $1 \in \mathcal{P}(\{1,2\})$? Begründen Sie Ihre Antwort.
- **f)** Ist $1 \subseteq \mathcal{P}(\{1,2\})$? Begründen Sie Ihre Antwort.

Aufgabe 3 (Relationen)

(10 Punkte)

Gegeben sei die Menge $A = \{1, 2, 3\}$. Es sei $R \subseteq A \times A$ mit $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$.

- **a)** Welche Eigenschaften hat die Relation *R*? (zur Auswahl stehen reflexiv, symmetrisch, antisymmetrisch, transitiv). Begründen Sie Ihre Antwort.
- **b)** Betrachten wir die Relation $S \subseteq \mathcal{P}(A) \times \mathcal{P}(A)$ mit $(X, Y) \in S \Leftrightarrow X \subseteq Y$. Zeichnen Sie die Relation S als Graphen.
- **c)** Welche Eigenschaften hat die Relation *S*? (zur Auswahl stehen reflexiv, symmetrisch, antisymmetrisch, transitiv). Begründen Sie Ihre Antwort.
- **d)** Geben Sie ein Hasse-Diagramm der Relation *S* an.
- **e)** Was sind die minimalen, kleinsten, maximalen und größten Elemente von in *S* (falls vorhanden)? Begründen Sie Ihre Antwort.

Aufgabe 4 (Mengenbeweis)

(5 Punkte)

Zeigen Sie, dass für alle Mengen A, B, C gilt: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Aufgabe 5 (Funktionen)

(4 Punkte)

Geben Sie für folgende Funktionen $f: X \to Y$ an, ob sie injektiv, surjektiv oder bijektiv sind. Begründen Sie Ihre Antwort (bzw. geben Sie ein Gegenbeispiel an)

- **a)** $f : \mathbb{R} \to [0, \infty[, f(x) = x^2]$
- **b)** $f: \mathbb{N} \to \mathbb{N}, f(n) = n+1$

Formelsammlung

Hier eine kleine Formelsammlung. Sie ist nicht vollständig, enthält aber alle wichtigen Statements / Definitionen, die man brauchen könnte.

- 1. Aussagen- und Prädikatenlogik
 - a) Distributivgesetz: $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$
 - **b)** Distributivgesetz: $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
 - c) DeMorgan: $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
 - **d)** DeMorgan: $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
 - e) Idempotenz: $A \wedge A \Leftrightarrow A$
 - **f)** Idempotenz: $A \lor A \Leftrightarrow A$
 - g) $A \wedge \neg A \Leftrightarrow \bot$
 - **h)** $A \vee \neg A \Leftrightarrow \top$
 - i) $\neg \neg A \Leftrightarrow A$
 - **j)** $\neg \forall x \in M : A(x) \Leftrightarrow \exists x \in M : \neg A(x)$
 - **k)** $\neg \exists x \in M : A(x) \Leftrightarrow \forall x \in M : \neg A(x)$
- 2. Mengen
 - **a)** Teilmenge: $A \subseteq B \Leftrightarrow \forall x \in A : x \in B$
 - **b)** Potenzmenge: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$
 - c) Vereinigung: $A \cup B = \{x \mid x \in A \lor x \in B\}$
 - **d)** Schnittmenge: $A \cap B = \{x \mid x \in A \land x \in B\}$
 - e) Differenzmenge: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
 - **f)** Distributivgesetz: $A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap C)$
 - **g)** Distributivgesetz: $A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$
 - **h)** DeMorgan: $A \setminus (B \cup C) \Leftrightarrow (A \setminus B) \cap (A \setminus C)$
 - i) DeMorgan: $A \setminus (B \cap C) \Leftrightarrow (A \setminus B) \cup (A \setminus C)$

- **j)** Es ist $\bigcup_{i \in I} A_i = \{x \mid \exists i \in I : x \in A_i\}.$
- **k)** Es ist $\bigcap_{i \in I} A_i = \{x \mid \forall i \in I : x \in A_i\}$.

3. Relationen

- a) Für Mengen M, N ist $R \subseteq M \times N$ eine Relation von M nach N.
- **b)** $R \subseteq M \times M$ ist reflexiv, wenn $\forall x \in M : (x, x) \in R$.
- c) $R \subseteq M \times M$ ist symmetrisch, wenn $\forall x, y \in M : (x, y) \in R \Rightarrow (y, x) \in R$.
- **d)** $R \subseteq M \times M$ ist antisymmetrisch, wenn $\forall x, y \in M : (x, y) \in R \land (y, x) \in R \Rightarrow x = y$.
- e) $R \subseteq M \times M$ ist transitiv, wenn $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$.
- f) $R \subseteq M \times M$ ist eine Äquivalenzrelation, wenn R reflexiv, symmetrisch und transitiv ist.
- g) $R \subseteq M \times M$ ist eine Ordnungsrelation, wenn R reflexiv, antisymmetrisch und transitiv ist.
- h) Für eine Äquivalenzrelation \sim auf M ist $[x] = \{y \in M \mid x \sim y\}$ die Äquivalenzklasse von x, $M/\sim=\{[x]\mid x\in M\}$ die Menge der Äquivalenzklassen oder Quotientenmenge von M modulo \sim . Die Menge der Äquivalenzklassen ist eine Partition von M. Umgekehrt induziert jede Partition eine Äquivalenzrelation.
- i) Für eine Ordnungsrelation \leq auf M und $X \subseteq M$ ist g ein kleinstes Element von X, wenn $\forall x \in X$: $g \leq x$, g ein minimales Element von X, wenn $\forall g' \in X : g' \leq g \Rightarrow g = g'$, maximale und größte Elemente analog.

4. Funktionen

- a) Eine Funktion $f: X \to Y$ ist eine Relation (also $f \subseteq X \times Y$), die jedem Element aus der Definitionsmenge X genau ein Element aus der Zielmenge Y zuordnet.
- **b)** f ist injektiv, wenn $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.
- c) f ist surjektiv, wenn $\forall y \in Y : \exists x \in X : f(x) = y$.
- **d)** *f* ist bijektiv, wenn *f* injektiv und surjektiv ist.
- e) Die Umkehrfunktion f^{-1} ist definiert $f^{-1}(Y) = \{x \in X \mid \exists y \in Y : y = f(x)\}$