MatPlotLib Merkblatt

MatPlotLib und Seaborn

MatPlotLib ausgezeichnetes Visualisierungsmodul in Python. Seaborn ist eine auf Statistik spezialisierte Erweiterung von MatPlotLib.

Imports

Zusammen mit MatPlotLib und Seaborn werden häufig NumPy und Pandas zur Datenbearbeitung vor der Visualisierung verwendet.

import matplotlib.pyplot as plt import seaborn as sns import numpy as np

Datenvorbereitung

import pandas as pd

x = np.linspace(0, 5, 50)

y = np.cos(x)

z = np.sin(x)

a, b = np.mgrid[-1:1:50j, -1:1:50j]

 $data = pd.DataFrame({'x': np.arange(-10,40)},$ 'y': np.random.normal(-1,3,50)})

img = plt.imread("bild.jpg")

Figure erzeugen

fig ist eine darzustellende Graphik Figure, die mindestens eine Instanz von **Axes** (Achsen) enthält.

fig, axes = plt.subplots()

Mehrere **Axes** sind indizierbar mit [Zeile, Spalte]:

fig, four_axes = plt.subplots(nrows=2,ncols=2)

Layout

axes.margins(x=0.9,y=0.9)Padding Gleiches axes.axis('equal') Seitenverhältnis Achsen axes.set(xlim = [-1, 8.6], ylim = [-1, 8.6]begrenzen 2.5,1]) Plot und Achsen axes.set(title='Name', beschriften ylabel='Y', xlabel='X') axes.legend(loc='best') Legende erzeugen Manuelle

axes.xaxis.set(ticks=range(2,10), Marker ticklabels=['test',6.1,-2,1]) Marker axes.tick_params(

axis='y', direction='inout' Layout length=15)

fig.subplots_adjust(wspace=0.3, hspace=0.2, left=0.4, right=0.4,

top=0.9, bottom=0.2)

Achsen zu **Figure** fig.tight_layout() skalieren axes.spines['bottom'] \ Unsichtbare .set_visible(False) Achsenbegrenzung axes.spines['top'].set \ Achsenbegrenzung verschieben _position(('outward',5))

Achsenabstände

Matplotlib Plotting

Plottingvarianten

Linie axes.plot(x,y)

Scatterplot axes.scatter(x,y)

Vertikale Balken axes.bar(4,0,3], [1,6,5])

Horizontale Balken axes.barh(4,0,3], [1,6,5])

Horizontale Linie axes.axhline(0.35)

Vertikale Linie axes.avhline(0.69)

Fülle als Polygon axes.fill(x, y)

Fülle zu **y** axes.fill_between(x,y,color='yellow')

Trendpfeil an der Position axes.arrow(0,0,0.5,0.7)

Pfeile entlang Daten axes.quiver(y,z)

Boxplot axes.boxplot(y)

Histogramm axes.hist(y, color="b")

Violinplot axes.violinplot(z)

Linientyp

plt.setp(lines,color='g',linewidth=25) axes.plot(x,y)

axes.plot(x,y,ls='-')

axes.plot(x,y,'-',x**2,y**2,'-.')

Annotierung

axes.text(1, 0.6, 'Beispiel', style='italic') axes.annotate("Wichtig", textcoords='data', xy=(2, -0.5), xycoords='data', xytext=(0, -0.5),arrowprops=dict(arrowstyle=->") plt.suptitle(r'\$min y=1\$', fontsize=20,)

Seaborn

Datensätze

Seaborn beinhaltet Beispielsdatenstze, unter anderem titanic = sns.load_dataset("titanic") iris = sns.load dataset("iris")

Darstellung

Dunkler sns.set_style("darkgrid") Hintergrund sns.set style("ticks", Markergrösse {"xtick.major.size": 10,

"ytick.major.size": 4}) sns.set_context("talk", font scale=1.3

Linien- und Schriftgrösse rc={"lines.linewidth":2.8}) Farbpalette sns.set_palette("pastel",2) mit Anzahl

palette = ["#aaaaaa", "#bbbbbb"] sns.set_palette(palette)

Achsenraster

Achsenraster p = sns.FacetGrid(titanic, col="survived", row="sex")

Ein Subplot pro Kategorie p.map(plt.hist,"age")

Alle Kategorien in einem Plot sns.factorplot(x="pclass", data=titanic)

Scatterplot mit Regression sns.lmplot(x="sepal_width", y="sepal_length", hue="species", data=iris)

Paarweise Abhängigkeiten t = sns.PairGrid(iris) t = t.map(plt.scatter)

Paarweise bivariate Verteilungen sns.pairplot(iris)

Bivariater Plot mit univariatem Rand v = sns.JointGrid(x="x", y="y",data=data) v = v.plot(sns.regplot, sns.distplot)

Bivariate Verteilung sns.jointplot("sepal_length", "sepal_width", data=iris, kind='resid')

Weiteres

Kategorieplots

Barplot mit Konfidenzintervall sns.barplot(x="sex", y="survived", hue="class", data=titanic)

Anzahl Datenpunkte sns.countplot(data=titanic, x="pclass", palette="Reds d")

Layoutklasse,

Farben

Eigene

Palette

Punktplot mitKonfidenzintervall sns.pointplot(x="class", y="survived", hue="sex" data=titanic)

Boxplot mitKonfidenzintervall sns.boxplot(x="alive", y="age", hue="adult male", data=titanic)

Scatterplot sns.stripplot(x="species", y="petal_length", data=iris)

Scatterplot ohne Überlapp sns.swarmplot(x="species", y="petal_length", data=iris)

Violinenplot sns.violinplot(x="age", y="sex", hue="survived", data=titanic)

Weitere Plots

Univariate Verteilung plot = sns.distplot(data.y,) kde=False)

Regressionsplot sns.regplot(x="sepal_width", y="sepal_length", data=iris, ax=axes[0,0]

Anzeigen

plt.show() Speichern

plt.savefig('name.png') Schließen

Achsen schließen plt.cla() Figure schließen plt.clf() Plot schließen plt.close()

