

Caracterização e predição da (in)satisfação de clientes de uma operadora de telefonia móvel

Por: Luiza Batista Laquini

Orientador: Prof. Vinícius Fernandes Soares Mota

Sumário

- 1. Introdução
- 2. Trabalhos relacionados
- 3. Análise inicial
- 4. Caracterização da (in)satisfação
- 5. Predição de detratores
- 6. Considerações finais

Introdução

Motivação

Motivação

Clientes insatisfeitos possuem maior probabilidade de romper com o serviço da telefonia, comumente chamamos isso de *churn*.

Portanto, é de interesse da TIM saber de antemão quais clientes ficarão insatisfeitos para direcionar com mais eficiência ações de retenção em cima dos mesmos.

Cenário

Dicionário de Dados:

- Disponibilizado pela operadora de telefonia TIM
- Coleta feita de julho à dezembro de 2022 (6 meses)
- 74 colunas x 46.640 linhas (CSV)
- Cada linha é um cliente de telefonia móvel
- Cada coluna é uma feature (característica)

Objetivos:

- Caracterizar a (in)satisfação » NPS
- Predizer detratores » Aprendizado de máquina

Cenário

Dicionário de Dados:

- Disponibilizado pela operadora de telefonia TIM
- Coleta feita de julho à dezembro de 2022 (6 meses)
- 74 colunas x 46.640 linhas (CSV)
- Cada linha é um cliente de telefonia móvel
- Cada coluna é uma feature (característica)

Objetivos:

- Caracterizar a (in)satisfação » NPS
- Predizer detratores » Aprendizado de máquina

Dicionário de Dados

Descrição completa das 74 colunas: apêndice A da monografia. Destaques:

CAMPO	DESCRIÇÃO	TIPO
NPS_Class	Classe NPS (detrator, neutro ou promotor)	Categórico
USERVALUEQ2_VALUE	Atribuição à nota dada (sinal, estabilidade, etc)	Categórico
ANF	DDD do cliente	Numérico
term_fabr	Marca fabricante do dispositivo móvel	Categórico
tot_chamada	Total de chamadas	Numérico
originada_perc	Percentual de chamadas originadas	Numérico
qtde_celula	Quantidade de antenas utilizadas pelo usuário	Numérico
CUSTOMER_SEGMENT	Categoria do Plano (pré, controle ou pós)	Categórico
Qtd_CRM	Interações com CRM (duvidas, reclamações, etc)	Numérico
vol_Rede_Social	Consumo de dados em redes sociais	Numérico
vol_Navegacao	Consumo de dados em navegadores	Numérico
vol_MarketPlace	Consumo de dados na loja de aplicativos	Numérico
vol_Musica	Consumo de dados em música	Numérico

Net Promoter Score (NPS)

"Em uma escala de 0 a 10, o quanto você recomendaria nossa empresa/produto/serviço para um amigo ou colega?"

NPS = % ** ** **

Pesquisa realizada

Pergunta 1 (quantitativa):

"Em uma escala de 0 a 10, o quanto você recomendaria nossa empresa/produto/serviço para um amigo ou colega?"

Pergunta 2 (qualitativa):

"Com base em que cenário a nota foi escolhida?" Opções prontas (Justificativa para a nota):

- Sinal/Cobertura
- Velocidade
- Duração pacote dados
- Plano/Bônus
- Estabilidade
- Qualidade da internet
- Planos e ofertas

- Qualidade das ligações
- Atendimento
- Recarga/Conta
- Outros

Trabalhos relacionados

Trabalhos relacionados

Autor	Base de dados	Metodologia	Melhor Algoritmo	Métrica Avaliadora
(HASSOUNA et al., 2015)	Operadora do Reino Unido	Predição de churn	Árvore de Decisão C5	AUC = 76.3% e Acurácia = 70.25%
(GAUR; DUBEY, 2018)	Real; Operadora não informada	Predição de churn	Gradient Boosting	AUC = 84.57%
(ULLAH et al., 2019)	GSM (sul da Ásia)	Predição de churn	Random Forest	Acurácia = 88.63%
(AHMAD; JAFAR; ALJOUMAA, 2019)	SyriaTel (Síria)	Predição de chum	Extreme Gradient Boosting	AUC = 93.30%
(COPACEANU, 2021)	Real e pública; Ope- radora não informada	Predição de churn	Árvore de Decisão	Recall = 90.7%
(MUSTAFA; LING; RAZAK, 2021)	Operadora da Malásia	Predição de churn Análise do NPS	Classification and Regression Trees (CART)	Acurácia = 98%
(MARKOULIDAKIS et al., 2020)	Pequena amostra real + grande parte gerada	Predição da classe NPS	Random Forest	F1-Sam = 79%
Presente Projeto	TIM (Brasil)	Predição de detratores Análise do NPS	Random Forest	$F1$ - $S\omega m = 61\%$

Análise inicial

Análise Inicial das respostas à pesquisa

Análise Inicial das respostas à pesquisa

Análise Inicial das respostas à pesquisa

Motivo de satisfação respondido pelos promotores

Caracterização da (in)satisfação

NPS e IDH:

E	STAD	O		REGIÃO	
Sigla	NPS	IDH	Nome	NPS médio	IDH médio
AC	0.146	0,710			
AM	0.421	0,700			
AP	0.329	0,688			
PA	0.333	0,690	Norte	0.33	0.703
RO	0.131	0,700			
RR	0.286	0,699			
ТО	0.041	0,731			
AL	0.239	0,684			
BA	0.266	0,691			
CE	0.330	0,734			
MA	0.341	0,676			
PB	0.337	0,698	Nordeste	0.294	0.702
PE	0.279	0,719			
PI	0.320	0,690			
RN	0.327	0,728			
SE	0.268	0,702			

NPS e IDH:

E	STAD	O	REGIÃO			
Sigla	NPS	IDH	Nome	NPS médio	IDH médio	
DF	0.135	0.814				
GO	0.111	0.737	Centro-Oeste	0.169	0.757	
MS	0.351	0.742	Centro-Oeste	0.109	0.757	
MT	0.247	0,736				
PR	0.191	0,769		0.174	0.777	
RS	0.151	0,771	Sul			
SC	0.156	0,792				
ES	0.209	0,771				
$_{ m MG}$	0.150	0,774	Sudeste	0.215	0.778	
RJ	0.265	0,762	Budeste	0.215	0.116	
SP	0.209	0,806				

Hipótese levantada:

Fatores sociais e demográficos como maior nível de escolaridade e maior poder econômico podem estar intimamente relacionados com expectativas mais elevadas, maiores sensibilidades a problemas ou falhas, maior consciência das alternativas de mercado e maior exigência de modo geral.

Marca fabricante do dispositivo móvel:

Marca Fabricante	Detrator	Passivo	Promotor	NPS	Percentual
lg	25.31	17.18	57.51	32.2	7.59
outros	24.57	20.42	55.01	30.44	2.45
não informado	27.97	17.85	54.18	26.21	4.9
motorola	29.28	18.54	52.18	22.91	28.04
samsung	29.68	18.58	51.74	22.07	47.04
asus	32.93	19.51	47.56	14.63	1.27
xiaomi	34.18	17.24	48.58	14.39	4.35
apple	35.09	19.93	44.98	9.89	4.36

Correlação linear entre NPS e IDH:

Caracterização com o NPS - Consumo de dados

Redes Sociais:

Consumo de Dados	Detrator	Passivo	Promotor	NPS	Percentual
Baixo Consumo	26.9	19.09	54.01	27.11	33.83
Médio Consumo	29.62	18.41	51.96	22.34	35.74
Alto Consumo	31.18	18.52	50.3	19.13	13.86
Extremo Consumo	33.13	17.37	49.51	16.38	16.57

Navegação na internet:

Consumo de Dados	Detrator	Passivo	Promotor	NPS	Percentual
Baixo Consumo	27.79	18.12	54.09	26.3	78.84
Médio Consumo	34.39	19.94	45.67	11.27	8.91
Alto Consumo	35.02	20.66	44.32	9.3	4.85
Extremo Consumo	38.18	19.16	42.66	4.48	7.4

Caracterização com o NPS - Consumo de dados

Música:

Consumo de Dados	Detrator	Passivo	Promotor	NPS	Percentual
Baixo Consumo	28.2	17.98	53.82	25.62	78.84
Alto Consumo	32.11	21.1	46.79	14.68	2.65
Médio Consumo	32.69	20.21	47.09	14.4	3.35
Extremo Consumo	35.1	20.25	44.65	9.54	15.16

Marketplace:

Consumo de Dados	Detrator	Passivo	Promotor	NPS	Percentual
Baixo Consumo	28.38	18.49	53.13	24.74	86.84
Médio Consumo	34.68	18.95	46.37	11.69	6.45
Alto Consumo	37.73	18.32	43.95	6.23	3.05
Extremo Consumo	39.94	17.7	42.36	2.42	3.65

Caracterização com o NPS - Consumo de dados

Hipótese levantada:

Quanto maior o consumo, maiores as chances de enfrentar problemas de sinal, estabilidade, entre outras questões que podem levar a uma experiência negativa com o serviço. Dessa forma, quanto maior o consumo, maiores as chances de o usuário se tornar um detrator.

Consumo de chamadas telefônicas:

Consumo de Chamadas	Detrator	Passivo	Promotor	NPS	Percentual
Baixo Consumo	26.78	17.82	55.4	28.61	25.62
Médio Consumo	29.92	19.29	50.79	20.87	43.56
Alto Consumo	30.77	18.48	50.76	19.99	16.69
Extremo Consumo	31.61	17.22	51.17	19.56	14.13

Situação das chamadas:

Situação Chamadas	Detrator	Passivo	Promotor	NPS	Percentual
Mais recebidas	28.28	17.28	54.44	26.16	29.46
Mais originadas	29.85	18.99	51.16	21.31	57.99
Equilibrado	30.74	18.95	50.32	19.58	12.55

Mobilidade:

Mobilidade	Detrator	Passivo	Promotor	NPS	Percentual
Baixa Mobilidade	25.21	16.78	58.01	32.8	28.3
Média Mobilidade	28.56	18.53	52.92	24.36	39.76
Alta Mobilidade	32.77	20.32	46.91	14.14	21.84
Extrema Mobilidade	38.16	19.12	42.72	4.56	10.1

Plano/Segmento de contrato:

Plano	Detrator	Passivo	Promotor	NPS	Percentual
Pré-pago	25.77	15.55	58.68	32.92	34.84
Pós-pago	30.24	20.8	48.96	18.72	32.88
Controle	32.77	19.3	47.93	15.17	32.28

Situação chamados:

Situação Chamados	Detrator	Passivo	Promotor	NPS	Percentual
Nunca abriu chamado	28.68	18.57	52.75	24.07	93.69
Já abriu pelo menos 1 chamado	41.65	17.22	41.13	-0.53	6.31

Hipóteses levantadas:

Quando o usuário utiliza muito do recurso de ligações ou quando ele se desloca mais, maiores as chances de se deparar com problemas de rede. Portanto, maiores as probabilidades de se tornarem detratores

Clientes com maior controle financeiro sobre seu plano (pré-pago) tendem a uma maior satisfação.

Usuários que abrem reclamações possivelmente tiveram experiências negativas que já afetaram negativamente a percepção deles em relação ao serviço prestado pela operadora.

Perfil do cliente

Características em que sua ocorrência pode indicar uma maior probabilidade do usuário se tornar um detrator:

- Possuir um iPhone;
- Consumir muitos dados seja em redes sociais, navegando na internet, ouvindo música, navegando na loja de aplicativos ou outros cenários;
- Realizar muitas ligações telefônicas;
- Possuir alta mobilidade;
- Possuir plano controle ou pós-pago;
- Abrir chamados ou reclamações.

Perfil do cliente

Características em que sua ocorrência pode indicar uma maior probabilidade do usuário se tornar um promotor:

- Possuir um aparelho celular Android;
- Consumir poucos dados;
- Realizar poucas ligações telefônicas;
- Possuir baixa mobilidade;
- Possuir plano pré-pago;
- Não abrir chamados ou reclamações.

Predição de detratores

Predição de detratores

A predição de detratores nos dados de telefonia se trata de um **problema de classificação**, pois temos uma classe (Detratores) e queremos predizer se os clientes pertencem ou não a ela.

Problemas de classificação são problemas de **aprendizado supervisionado**, já que temos todos os dados rotulados.

As métricas utilizadas para avaliação do desempenho dos modelos foram a acurácia, a precisão, o recall e a f1-score. A métrica principal, que buscou ser maximizada nos modelos, foi a métrica **f1-score**, por ser considerada um equilíbrio entre precisão e recall.

Modelos escolhidos

Foram testados cinco modelos inicialmente: KNN, Regressão Logística, *Random Forest*, XGBoost e Árvore de Decisão. Entretanto, foi decidido prosseguir para a otimização de hiperparâmetros somente com os modelos Random Forest e Extreme Gradient Boosting, por terem apresentado os melhores resultados iniciais.

Todavia, os resultados aqui trazidos são do modelo *Random Forest*, que se destacou em todas as abordagens.

Primeira abordagem: conjunto completo

Acurácia: 70%

Precisão: 65%

Recall: 70%

F1-score: 60%

Segunda abordagem: extremos

Acurácia: 58%

Precisão: 64%

Recall: 58%

F1-score: 60%

Terceira abordagem: extremos estendidos

Acurácia: 57%

Precisão: 63%

Recall: 57%

F1-score: 59%

Quarta abordagem: amostras equilibradas

Acurácia: 59%

Precisão: 64%

Recall: 59%

F1-score: 61%

Quinta abordagem: três classes

- Classe 0: clientes certamente insatisfeitos que deram notas 0, 1, 2 ou 3.
- Classe 1: clientes confusos para o modelo que deram notas 4, 5, 6, 7 e 8.
- Classe 2: clientes certamente satisfeitos que deram notas 9 e 10.

Quinta abordagem: três classes

Acurácia: 40%

Precisão: 41%

Recall: 40%

F1-score: 40%

Comparativo das abordagens

${f A}{f b}{f o}{f r}{f d}{f a}{f g}{f e}{f m}$	Acurácia(%)	Precisão(%)	Recall(%)	F1- $Score(%)$
Conjunto completo	70	65	70	60
Extremos	58	64	58	60
Extremos estendidos	57	63	57	59
Amostras equilibradas	59	64	59	61
Três classes	40	41	40	40

Feature Importance

Considerações finais

Limitações e desafios

- Desbalanceamento das classes que impediu a utilização da base completa no treino dos modelos;
- Veracidade das respostas à pesquisa;
- Não conhecimento das unidades de medida das variáveis numéricas e ausência da documentação completa.

Conclusões

Foi analisado o NPS para cada variável presente no dicionário de dados. Foram selecionadas e trazidas aqui as que se destacaram.

Foram treinados diferentes algoritmos de aprendizado de máquina e o que se destacou foi o *Random Forest*. Esse obteve 61% de *f1-score* para a abordagem com amostras equilibradas

Espera-se que a TIM possa utilizar desses resultados para o sucesso do seu negócio. Entretanto, apesar do bom resultado já alcançado, melhorias ainda podem ser implementadas.

Trabalhos futuros

Sugestões para trabalhos futuros:

- Explorar outras métricas de satisfação como a CSAT e a Retention Rate;
- Calcular custos dos erros para priorizar precision ou recall;
- Obter mais dados dos detratores para um melhor balanceamento dos dados e também para que o modelo possa aprender mais sobre o alvo;
- Testar a atribuição de pesos, possível para os modelos de árvore;
- Implementar busca por outliers multivariados.

Obrigada!