

2)
$$f(x,y) = \frac{2x^3y}{x^6 + y^2}$$
, $(x,y) \neq (o,o)$.

(a) On the x-axis $f(x,o) = 0$.

On the y-axis $f(a,y) = 0$.

This shows that IF the limit $L = \lim_{(x,y) \to (o,o)} f(x,y)$ exists, then $L = 0$.

(b) Any such line $f(x,y) = \frac{2x^4Cx}{x^6 + C^2x^2} = \frac{2Cx^3}{x^4 + C^2} \frac{x}{x \to 0} \circ$,

Thoughthis line $f(x,y) \to 0$ as $(x,y) \to (o,o)$ along each line through the eigen.

(c) Consider the curves C , and C_2 , defined as the graphs of the functions $g(x) = x^3$ and respectively $h(x) = -x^3$.

$$f(x,x^3) = \frac{2x^2x^3}{x^6 + x^6} = \frac{2x^6}{2x^6} = \frac{1}{x} \xrightarrow{x \to 0} 1$$

$$f(x,-x^3) = \frac{2x^3(x^3)}{x^6 + (-x^3)^2} = \frac{-2x^6}{2x^6} = 1 \xrightarrow{x \to 0} 1$$

$$f(x,y) = \frac{xy^2}{x^2 + y^2} = \frac{|x|}{|x^2 + y^2|} = \frac{|x|$$

because $\frac{c}{c}$ is an indeterminate form and a version of l'Hospital's rule is not available for functions of two variables.