

Image Classification

Aram Karimi

LT2318 H21 Artificial Intelligence: Cognitive Systems

November 15th, 2020

Outline

- ▶ What is "image classification"?
- ▶ Why is "image classification" important?
- How does "image classification" work?
- "Image classification" methods Using machine
- The need for AI to understand image data
- Convolutional Neural Network (CNN)
- When do we use pre-trained image features?
- Hands-on Tutorial

What is "image classification"?

Image classification is a basic task for human, but still one of the most important tasks that computer vision engineers can tackle.

What makes image classification a very important task?

An image is a large grid of numbers between [0, 255] An image can be of size 800×600 pixels, each pixel is represented via three numbers, which provide values of RGB (red, green, blue) channels

What the computer sees

- Viewpoint
- ► Illumination

▶ Deformation

Occlusion

► Clutter

► Intraclass variation

How does Image classification work in machines?

- ▶ In digital image processing, image classification is done by automatically grouping pixels into specified categories, so-called "classes."
- ► The algorithms separate the image into different classes based on their prominent features or specific patterns

Image classification techniques are mainly divided into two categories:

- Supervised
- Unsupervised

Where is it used?

Robotics, Computer Vision, NLP, information retrieval, etc.

Representing images with "features"

- CV vs NLP features
- Visual features
 - Color, size, center, orientation, etc.
 - Invariant to transformations
- Lexical features / semantic classes
 - Labels, context
- Learned vs. pre-engineered features
 - We need to choose how to represent an image

Visual feature: color

Visual features: SIFT, HOG, SURF

- ► SIFT: Scale-Invariant Image Transform
 - Commonly used in CV
 - Extract invariant (not changeable) image features
 - Applied to grayscale images
 - Mathematically complicated, computationally heavy
 - Based on histogram of gradients, e.g. computing the gradients of each pixel in the image takes a lot of time
 - Quite slow compared to SURF
 - Does not work well with lighting changes and blur

Visual features: SIFT

Visual features: HOG(Histogram of Oriented Gradients)

- ▶ **HOG:**: compute centered horizontal and vertical gradients
 - Tries to extract contrasts in various image parts
 - Computes gradients magnitudes and their directions

The need for AI to understand image data

- Supervise learning task
 - Convolutional Neural Networks as feature extractors hierarchical layer-wise representation learning
 - Extract invariant (not changeable) image features
 - CNN is a hierarchical deep learning model which is able to model data at more and more abstract representations
 - CNN features are highly adaptive, they are trained end-to-end
 - CNN can learn features similar to SIFT and HOG from training examples alone, which is quite cool. Therefore, using CNNs minimizes feature engineering

Convolutional Neural Network (CNN)

- Used for object detection, image classification, image captioning, etc.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12). Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

Learning Feature Representation

Can we learn a hierarchy of features directly from the data insted of hard engineering?

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

CNNs: inspiration

► Hubel and Wiesel (1959, 1962, 1968): cat's visual cortex maps information in a structured and hierarchical way

Fully Connected Layer

Using Spatial Structure

Input: 2D image.

Idea: Connect patches of input to neurons in hidden layer. (Neuron connected to region of input only sees these values)

Using Spatial Structure

Input: 2D image.

Idea: Connect patches of input to neurons in hidden layer. (Neuron connected to region of input only sees these values)

Using Spatial Structure

Input: 2D image.

Idea: Connect patches of input to neurons in hidden layer. (Neuron connected to region of input only sees these values)

CNN: we want to preserve spatial structure

Convolution Layer

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

CNN: apply filter to the convolution layer

Convolution Layer

CNN: use filter to get an activation map

Convolution Layer

CNN: maps per filter

Convolution Layer

consider a second, green filter

CNN: activation maps

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

CNN: a stack of CONV, FC, POOL + activations

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Pooling layer

Single depth slice

x 1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4

max pool with 2x2 filters and stride 2

6	8	
3	4	

Finally, the raw values which are predicted output by network are converted to probabilistic values with use of soft max function.

CNN: conclusion

- ► Smaller filters, deeper architectures
- ► Tend to remove POOL and FC, keep CONV only

Example CNN network structure, VGG16

Useful Links

- PyTorch Image Classification Tutorial: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
- ► TensorFlow Image Classification Tutorial: https://www.tensorflow.org/tutorials/images/classification
- ► More recent work on CNNs: https://github.com/matterport/Mask_RCNN https://github.com/facebookresearch/detectron2
- Accuracy scores for published CNNs: Accuracy scores for published CNNs: