Importing needed modules

Importing fastf1 API which enables us to access f1 data. matplotlib package allows us to plot the graphs

```
In [1]: import fastf1
from matplotlib import pyplot as plt
```

Cache folder

By enabling cache folder, all the data will be stored in this folder. If data is already available in cache folder, data will be imported from here. The data is stored in pkl format.

```
In [2]: fastf1.Cache.enable_cache(r'C:\Users\harsh\jupyter\f1_data_analysis\cache')
```

Loading session

Loading the session is the first thing to do to work with data.

```
In [3]: session = fastf1.get_session(2023, "Bahrain", "Q")
    session.load()
```

4/27/23, 9:07 PM f1 data analysis first plot

```
NumExpr defaulting to 8 threads.
utils
               INFO
               INFO
                        Loading data for Bahrain Grand Prix - Qualifying [v2.3.0]
core
               INFO
                        Using cached data for driver info
api
api
               INFO
                        Using cached data for timing data
api
               INFO
                        Using cached data for timing app data
core
               INFO
                        Processing timing data...
                        Using cached data for session status data
api
               INFO
                        Using cached data for track status data
               INFO
api
                        Using cached data for car data
api
               INFO
api
               INFO
                        Using cached data for position data
                        Using cached data for weather data
api
               INFO
                        Using cached data for race control messages
api
               INFO
                        Finished loading data for 20 drivers: ['1', '11', '16', '55', '14', '63', '44', '18', '31', '27', '4',
               INFO
core
'77', '24', '22', '23', '2', '20', '81', '21', '10']
```

Loading car data

Using laps method in session, we get the car data.

```
In [4]: #picking the fastest laps of the drivers using pick_fastest method
    ver_lap = session.laps.pick_driver('VER').pick_fastest()
    per_lap = session.laps.pick_driver('PER').pick_fastest()

In [5]: #using get_car_data method, we can get the lap telemetry data.
    ver_car_data = ver_lap.get_car_data()
    per_car_data = per_lap.get_car_data()
    ver_car_data
```

Out[5]:		Date	RPM	Speed	nGear	Throttle	Brake	DRS	Source	Time	SessionTime
	0	2023-03-04 16:07:26.056	10575	296	8	100	False	12	car	0 days 00:00:00.295000	0 days 01:22:25.059000
	1	2023-03-04 16:07:26.377	10695	298	8	100	False	12	car	0 days 00:00:00.616000	0 days 01:22:25.380000
	2	2023-03-04 16:07:26.777	10759	302	8	100	False	12	car	0 days 00:00:01.016000	0 days 01:22:25.780000
	3	2023-03-04 16:07:27.177	10853	305	8	100	False	12	car	0 days 00:00:01.416000	0 days 01:22:26.180000
	4	2023-03-04 16:07:27.377	10909	307	8	100	False	12	car	0 days 00:00:01.616000	0 days 01:22:26.380000
	•••										
	313	2023-03-04 16:08:54.337	11154	279	7	100	False	12	car	0 days 00:01:28.576000	0 days 01:23:53.340000
	314	2023-03-04 16:08:54.737	11280	284	7	100	False	12	car	0 days 00:01:28.976000	0 days 01:23:53.740000
	315	2023-03-04 16:08:54.977	11373	288	7	100	False	12	car	0 days 00:01:29.216000	0 days 01:23:53.980000
	316	2023-03-04 16:08:55.177	11478	290	7	100	False	12	car	0 days 00:01:29.416000	0 days 01:23:54.180000
	317	2023-03-04 16:08:55.456	11564	293	7	100	False	12	car	0 days 00:01:29.695000	0 days 01:23:54.459000

318 rows × 10 columns

4/27/23, 9:07 PM

```
In [6]: # add_distance method will add the distance column to the telemetry data
    ver_car_data = ver_lap.get_car_data().add_distance()
    per_car_data = per_lap.get_car_data().add_distance()
    ver_car_data
```

4/27/23, 9:07 PM f1 data analysis first plot

\cap		+	Γ	6	٦
U	и	L	L	U	J

	Date	RPM	Speed	nGear	Throttle	Brake	DRS	Source	Time	SessionTime	Distance
0	2023-03-04 16:07:26.056	10575	296	8	100	False	12	car	0 days 00:00:00.295000	0 days 01:22:25.059000	24.255556
1	2023-03-04 16:07:26.377	10695	298	8	100	False	12	car	0 days 00:00:00.616000	0 days 01:22:25.380000	50.827222
2	2023-03-04 16:07:26.777	10759	302	8	100	False	12	car	0 days 00:00:01.016000	0 days 01:22:25.780000	84.382778
3	2023-03-04 16:07:27.177	10853	305	8	100	False	12	car	0 days 00:00:01.416000	0 days 01:22:26.180000	118.271667
4	2023-03-04 16:07:27.377	10909	307	8	100	False	12	car	0 days 00:00:01.616000	0 days 01:22:26.380000	135.327222
•••											
313	2023-03-04 16:08:54.337	11154	279	7	100	False	12	car	0 days 00:01:28.576000	0 days 01:23:53.340000	5275.855833
314	2023-03-04 16:08:54.737	11280	284	7	100	False	12	car	0 days 00:01:28.976000	0 days 01:23:53.740000	5307.411389
315	2023-03-04 16:08:54.977	11373	288	7	100	False	12	car	0 days 00:01:29.216000	0 days 01:23:53.980000	5326.611389
316	2023-03-04 16:08:55.177	11478	290	7	100	False	12	car	0 days 00:01:29.416000	0 days 01:23:54.180000	5342.722500
317	2023-03-04 16:08:55.456	11564	293	7	100	False	12	car	0 days 00:01:29.695000	0 days 01:23:54.459000	5365.430000

318 rows × 11 columns

Plotting speed traces

Speed traces can be plotted using matplotlib packages.

In []: