CHAPTER 02

Straight Line

Locus

It is the path or curve traced by a moving point satisfying the given condition.

Equation of Locus The equation of locus of a point is the algebraic relation which is satisfied by the coordinates of every point on the locus of the point.

Shifting of Origin

Let P(x, y) is the point with respect to the origin O. Now, the origin O(0, 0) is shifted to a new point say O'(h, k), then the coordinates of same point P with respect to the new origin O' be P'(x', y') in such a way that

Hence, if the origin is shifted to point (h, k) without rotation of axes, then the new equation of the curve can be obtained by putting (x + h) and (y + k) in place of x and y, respectively.

Straight Line

A straight line defined as the curve which is such that the segment joining any two points on it lies wholly on it.

Inclination of a Line

An angle θ made by the line with positive *X*-axis in anti-clockwise direction is called inclination of a line.

When $\theta = 0^{\circ}$, then line is parallel to *X*-axis (horizontal line).

When $\theta = 90^{\circ}$, then line is perpendicular to *X*-axis, i.e. parallel to *Y*-axis (vertical line).

Slope of a Line

The trigonometrical tangent of the angle that a line makes with the positive direction of X-axis in anti-clockwise sense, is called the slope or gradient of the line. The slope of a line is generally denoted by m.

- The slope of X-axis is $m = \tan 0^\circ = 0$
- The slope of Y-axis is m = tan 90°, which is not defined.

Angle between Intersecting Lines

The angle θ between the lines having slopes m_1 and m_2 is given by $\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$.

Perpendicular Lines

If two lines of slopes m_1 and m_2 are perpendicular, then the angle θ between them is 90°.

$$\cot \theta = 0 \implies \frac{1 + m_1 m_2}{m_1 - m_2} = 0 \implies m_1 \cdot m_2 = -1$$

Thus, when two lines are perpendicular, the product of their slopes is –I.

If m is the slope of a line, then the slope of a line perpendicular to it is $\left(-\frac{1}{m}\right)$.

28

Equation of Line in Standard Forms

There are various forms of equation of line as follows

Slope Intercept Form

- The equation of a line having slope m and making an intercept c on Y-axis is y = mx + c.
- The equation of line having slope m and making an intercept d on X-axis is y = m(x-d).

Point Slope Form

The equation of a line which passes through the point (x_1, y_1) and has the slope m, is

$$y - y_1 = m(x - x_1)$$

Two Points Form

The equation of a line passing through two points (x_1, y_1) and (x_2, y_2) is $(y - y_1) = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1)$.

Double Intercept Form of a Line

The equation of a line which cuts-off intercepts a and brespectively from X and Y-axes, is $\frac{x}{a} + \frac{y}{b} = 1$. $(a, b \neq 0)$.

Normal Form

The equation of the straight line upon which the length of the perpendicular from the origin is p and this perpendicular makes an angle α with the positive direction of X-axis is

$$x\cos\alpha + y\sin\alpha = p$$
, where $0 < \alpha < 2\pi$.

Note The equations of straight lines which pass through a point (x_1, y_1) and make an angle α with the straight line y = mx + c are $y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)$

$$y = mx + c \operatorname{are} y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)$$

General form of Equation of a Line

An equation of the form Ax + By + C = 0, where A, B, C are equal constants and atleast one of A and B is non-zero, is called general linear equation or general equation of a line.

If $B \neq 0$, then Ax + By + C = 0 can be written as

$$y = \frac{-A}{B}x - \frac{C}{B}$$
 or $y = mx + c$...(i)

where, slope $(m) = -\frac{A}{R}$ and y-intercept $(c) = \frac{-C}{R}$

If $C \neq 0$, then Ax + By + C = 0 can be written as

$$\frac{x}{\frac{-C}{A}} + \frac{y}{\frac{-C}{B}} = 1 \text{ or } \frac{x}{a} + \frac{y}{b} = 1$$

where, X-intercept is $-\frac{C}{A}$ if $A \neq 0$

and Y-intercept is $-\frac{C}{B}$ if $B \neq 0$

- If A = 0, then the line is parallel to the X-axis.
- If B = 0, then the line is parallel to the Y-axis.

Point of Intersection of Lines

The coordinates of the point of intersection of two intersecting lines can be obtained by solving their equations simultaneously.

Distance of the Origin from a Line

The perpendicular distance of the origin from the line

$$ax + by + c = 0$$
 is given by $p = \frac{c}{\sqrt{a^2 + b^2}}$

The Distance of the Point (x_1, y_1) from a Line

The distance of the point $P(x_1, y_1)$ from line

$$ax + by + c = 0$$
 is given by $p = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$

The Distance between Two Parallel Line

The distance between the parallel lines $ax + by + c_1 = 0$

and
$$ax + by + c_2 = 0$$
 is given by $p = \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|$

