Быстрая фильтрация

Влад Шахуро

Интегральное изображение

$$S[x,y] = \sum_{i=0}^{x} \sum_{j=0}^{y} I[i,j]$$

Подсчет суммы

$$Sum = A + B - C - D$$

Сепарабельность

Фильтр сепарабельный, если его можно представить в виде двух одномерных сверток:

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{\frac{-(x+y)^2}{2\sigma^2}} = \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{y^2}{2\sigma^2}}\right)$$

Фильтруем изображение $N \times N$ ядром $K \times K$. Сложность фильтрации

обычным ядром: N^2K^2

сепарабельным ядром: N^2K

Фильтр сепарабельный \leftrightarrow ранг ядра =1

Приближение гауссовского фильтра

Размытие гауссианой с параметром σ можно приблизить применением N box-фильтров с шириной $\sigma\sqrt{12/N}$

На практике достаточно N=3. Частично-квадратичное ядро приближает гауссиану с погрешностью 3%

Не является линейным:

$$\operatorname{med} \left(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \neq \\ \operatorname{med} \left(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} \right) + \operatorname{med} \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right)$$

Фильтруем изображение $N \times N$ ядром $K \times K$:

Фильтруем изображение $N \times N$ ядром $K \times K$: быстрая сортировка: $N^2 K^2 \log K$

Фильтруем изображение $N \times N$ ядром $K \times K$:

быстрая сортировка: $N^2K^2\log K$

частичная сортировка: N^2K^2

Фильтруем изображение $N \times N$ ядром $K \times K$:

быстрая сортировка: $N^2K^2\log K$ частичная сортировка: N^2K^2

► Huang et al. 1979: N²K

► Perreault el al. 2007: N²

Huang et al. Fast Two-Dimensional Median Filtering Algorithm. 1979

- ▶ ограничиваем размер корзин 16 битами, используем векторные операции
- ▶ делим изображение на вертикальные полосы, чтобы гистограммы помещались в кэш
- ▶ поддерживаем два вида гистограмм: на 16 и 256 ячеек

Perreault, Hebert. Median Filtering in Constant Time. 2007 [2]