Peter Smith, Introduction to Formal Logic (CUP, 2nd edition)

Exercises 18: The truth-functional conditional

- (a) Suppose we are working in a PL language where 'P' means *Putnam is a philosopher*, 'Q' means *Quine is a philosopher*, etc. Translate the following as best you can:
 - (1) If either Quine or Putnam is a philosopher, so is Russell.
 - (2) Only if Putnam is a philosopher is Russell one too.
 - (3) Quine and Russell are both philosophers only if Sellars is.
 - (4) Russell's being a philosopher is a necessary condition for Quine's being one.
 - (5) Russell's being a philosopher is a sufficient condition for Quine's being one.
 - (6) Putnam is a philosopher if and only if Quine isn't.
 - (7) Provided that Quine is a philosopher, Russell is one too.
 - (8) Quine is not a philosopher unless Russell is one.
 - (9) Only if either Putnam or Russell is a philosopher are both Quine and Sellars philosophers.
- (b) Assuming that we are dealing with a suitable PL language. Which of the following arguments ought to come out valid, assuming that ' \rightarrow ' is a reasonably good surrogate for 'if ..., then ...'? Which is tautologically valid?
 - (1) $P, (P \rightarrow Q), (Q \rightarrow R) \therefore R$
 - (2) $\neg R$, $(P \rightarrow R)$, $(Q \rightarrow P)$ $\therefore \neg Q$
 - (3) $(P \rightarrow \neg(Q \lor R)), (Q \rightarrow R), (\neg R \rightarrow P) \therefore (P \rightarrow R)$
 - (4) $(P \lor Q), (P \to R), \neg(Q \land \neg R) \therefore R$
 - (5) $(R \rightarrow (\neg P \lor Q)), (P \land \neg R) \therefore \neg (\neg R \lor Q)$
 - (6) $(\neg P \lor Q), \neg (Q \land \neg R) \therefore (P \to R)$
 - (7) $(P \land \neg R), (Q \rightarrow R) \therefore \neg (P \rightarrow Q)$
 - (8) $\neg(\neg S \rightarrow (\neg Q \land R)), (P \lor \neg \neg Q), (R \lor (S \rightarrow P)) \therefore (P \rightarrow S)$
- (c) Which of the following are true for all α, β, γ in a PL language and why? Which of the true claims correspond to true claims about the vernacular (bi)conditional?
 - (1) If $\alpha, \beta \vDash \gamma$ then $\alpha \vDash (\beta \to \gamma)$.
 - (2) $((\alpha \land \beta) \to \gamma) \equiv (\alpha \to (\beta \to \gamma)).$
 - (3) $((\alpha \lor \beta) \to \gamma) \not= ((\alpha \to \gamma) \lor (\beta \to \gamma)).$
 - (4) If $\vDash (\alpha \to \beta)$ and $\vDash (\beta \to \gamma)$, then $\vDash (\alpha \to \gamma)$.
 - (5) If $\vDash (\alpha \to \beta)$ and $\vDash (\alpha \to \neg \beta)$, then $\vDash \neg \alpha$.
 - (6) $\vDash (\alpha \leftrightarrow \alpha)$
 - (7) $(\alpha \leftrightarrow \beta) \vDash (\beta \leftrightarrow \alpha)$.
 - (8) $(\alpha \leftrightarrow \beta), (\beta \leftrightarrow \gamma) \vDash (\alpha \leftrightarrow \gamma).$
 - (9) If $\vDash \alpha \leftrightarrow \beta$ then α and β are tautologically consistent.
 - (10) If $\vDash \alpha \leftrightarrow \neg \beta$ then α and β are tautologically inconsistent.
- (d*) On alternative languages for propositional logic:
 - (1) Suppose the language PL_1 has just the connectives \rightarrow and \neg (with the same interpretation as before). Show that disjunction and conjunction can be expressed in PL_1 . Conclude that PL_1 has an expressively adequate set of built-in connectives.
 - (2) Consider too the variant language PL_2 whose only logical constants are \rightarrow and the absurdity constant \bot . Show that in PL_2 we can introduce a negation connective so that $\neg \alpha$ is shorthand for $(\alpha \rightarrow \bot)$. Conclude that PL_2 is also expressively adequate.