Chemistry of coordination complexes

Inorganic compounds

Simple saltsNaCl

• Addition compounds ---- formed when stoichiometric amounts of two or more stable compounds join together

Two types
 Double salts

Lose identity in solution

potassium alum K₂SO₄. Al₂(SO₄)₃. 24H₂O

Coordination compounds
 Retain identity in solution
 K₄[Fe(CN)₆]

Coordination Complex

structure consisting of a central atom or ion, bonded to a surrounding array of ligands

atom within a ligand that is directly bonded to the central atom or ion ---- **donor atom**

a ligand donates at least one pair of electrons to the central atom/ion

compounds that contain a coordination complex -----coordination compounds

Ligands

classified according to the number of donor atoms

- monodentate = 1
- bidentate = 2
- tetradentate = 4
- hexadentate = 6

chelating agents

Monodentate

 H_2O , CN^- , NH_3 , NO_2^- , SCN^- , OH^- , X^- (halides), CO, O^{2-}

- Some ligands have more than one coordination site they form chelate complexes
- number electron donation sites by which the ligand "bites" the metal is called denticity of the ligand

STRUCTURE OF METAL COMPLEXES

Werner's work

- Coordination complexes were long known although not understood e.g. <u>Prussian blue</u> and <u>copper vitriol</u>.
- The key breakthrough occurred when <u>Alfred Werner</u> proposed his theory in 1893 to predict structure of these complexes.
- His brilliance showed the way to predict right structure even before the electron is known (was discovered by Thompson in 1896)
- He proposed two different valencies for coordination complexes

Metal Complexes used by Werner

Four different cobalt ammonium complexes were known, which were used by Werner to establish his theory

Complex	Colour	early name
CoCl ₃ .6NH ₃	Yellow	<i>Luteo</i> complex
CoCl ₃ .5NH ₃	Purple	<i>Purpureo</i> complex
CoCl ₃ .4NH ₃	Green	<i>Praseo</i> complex
CoCl ₃ .4NH ₃	Violet	Violeo complex

Experiments done by Werner

Treatment with excess AgNO₃ solution: resulted in different amount of precipitated AgCl

Werner's Conclusion

central metal atom in complex has two types of valencies, Primary valency and Secondary valency.

Primary valency: nondirectional

Secondary valency: directional

(Coordination number of the complex. Number of ligand atoms coordinated to metal)

Possible structures - coordination number 6

Hexagonal

Triagonal prism

Octahedral

Number of isomers expected and found - coordination number 6

Possible structures - coordination number 4

No. of isomers expected and found – coordination number 4

Formula Tetrahedral square planar experimental

MX₂Y₂

2

trans cis

- trans structure has no dipole moment
- cis structure has dipole moment

e.g. $[Pt(NH_3)_2Cl_2]$ and $[Pd(NH_3)_2Cl_2]$

Summary of Werner's Work

The central metal atom in complex has two types of valencies, Primary valency and Secondary valency.

Primary valencies are ionizable whereas secondary valencies non-ionizable

In complexes, the ligands are projected in space about the central metal atom to give a specific shape to the complex.

Recent methods of studying complexes

Simultaneous measurement of molar conductivity and freezing point depression

Molar conductivity measurement

Depends on (a) concentration of solute

(b) number of charges on the species formed on dissolution

Molar conductivities of salt and complexes (at 0.001M concentration)

		<u> </u>	
			ohm ⁻¹ cm ² mol ⁻¹
LiCI	Li ⁺ Cl ⁻	Total of 2 charges	112.0
CaCl ₂	Ca ²⁺ 2Cl ⁻	Total of 4 charges	260.8
CoCl ₃ .5NH ₃			261.3
CoBr ₃ .5NH ₃			257.6
LaCl ₃	La ³⁺ 3Cl ⁻	Total of 6 charges	393.5
CoCl ₃ .6NH ₃			431.6
CoBr ₃ .6NH ₃			426.9

Cryoscopic measurement

- It involves measurement of how much freezing point is lowered
- Depends on the number of particles present in solution

LiCl
$$\rightarrow$$
 Li⁺ + Cl⁻ (2 particles) [(2 charges)]
MgCl₂ \rightarrow Mg²⁺ + 2Cl⁻ (3 particles) [(4 charges)]
LaCl₃ \rightarrow La³⁺ + 3Cl⁻ (4 particles) [(6 charges)]

Establishment of structure of complexes

Formula	Cryoscopic measurement	Molar conductivity	Structure		
CoCl ₃ · 6NH ₃ CoCl ₃ · 5NH ₃ CoCl ₃ · 4NH ₃ CoCl ₃ · 3NH ₃ Co(NO ₂) ₃ · KNO ₂ · 2NH ₃ Co(NO ₂) ₃ · 2KNO ₂ · NH ₃ Co(NO ₂) ₃ · 3KNO ₂	4 particles 3 particles 2 particles 1 particle 2 particles 3 particles 4 particles	6 charges 4 charges 2 charges 0 charge 2 charges 4 charges 6 charges	[Co(NH ₃) ₆] ³⁺ 3Cl ⁻ [Co(NH ₃) ₅ Cl] ²⁺ 2Cl ⁻ [Co(NH ₃) ₄ Cl ₂] ⁺ Cl ⁻ [Co(NH ₃) ₃ Cl ₃] K ⁺ [Co(NH ₃) ₂ (NO ₂) ₄] ⁻ 2K ⁺ [Co(NH ₃)(NO ₂) ₅] ²⁻ 3K ⁺ [Co(NO ₂) ₆] ³⁻		

Other methods

Measurement of magnetic moment

Information about the number of unpaired electron spins present in a complex

Possible to decide how the electrons are arranged and which orbitals are occupied

Measurement of dipole moment

 $[Pt(NH_3)_2Cl_2]$

cis form have dipole moment trans form does not have any dipole moment

Single Crystal X-ray diffraction

most powerful and modern technique for the determination of crystal structure

Oak Ridge Thermal Ellipsoid Plot (ORTEP)

Effective Atomic Number

Sidgwick suggested that electron pairs from ligands were added until the central metal was surrounded by the same number of electrons as the next noble gas

Atom	Atomic number	Complex	Electrons lost in ion formation	Electrons gained by coordination	E	AN
Cr	24	[Cr(CO) ₆]		12	36	1
Fe	26	Fe(CN), 4-	2	12	36	
Fe	26	[Fe(CO) ₅]	0	10	36	\mu_\
Co	27	$[Co(NH_3)_6]^{3+}$	3	12	36	(Kr)
Ni	28	Ni(CO)4	0	8	36	
Cu	29	[Cu(CN) ₄] ³⁻	1 -	8	36	
Pd	46	[Pd(NH ₃) ₆] ⁴⁺	4	12	54	J(Xe)
Pt	78	[PtCl ₆] ^{2,22,13}	4	12	86	(Rn)
Fe	26	[Fe(CN) ₆] ³ -	3	12	35	S
Ni	28	$[Ni(NH_3)_6]^{2+}$	2	12	38	ion
Pd	46	[PdCl ₄] ²⁻	2	8	52	ept
Pt	78	$[Pt(NH_3)_4]^{2+}$	2	8	84	exceptions

Significant number of exceptions where the EAN is not that of a noble gas

If the original metal ion has an odd number of electrons, adding of electron pairs cannot result in noble gas structure

Tendency to attain the noble gas configuration is a significant factor but not a necessary condition for complex formation

d orbitals

Valence bond theory for coordination complexes

metal form coordination bond with the ligand

bonding is due to donation of a pair of electron of ligand to metal

Linus Carl Pauling (1901-1994)

Nobel prizes: 1954, 1962

VB theory can explain SHAPE and MAGNETIC PROPERTY of the metal complexes

Valence Bond Theory

- Metal or metal ion: Lewis acid
- Ligand: Lewis base
- Hybridization of orbitals

C.N.	Geometry	Hybrids
4	tetrahedral	sp^3
4	square planar	dsp^2
5	trigonal bipyramidal	dsp^3 or sp^3d
6	octahedral	d^2sp^3 or sp^3d^2

s, p and d orbitals mix to give hybrid orbitals with specific geometries

Octahedral Complex [Cr(NH₃)₆]³⁺

Outer orbital complex

*sp*³*d*² hybridisation octahedral

complex is paramagnetic

$$[Co(NH_3)_6]^{3+}$$

Co [Ar] $3d^7 4s^2$
Co³⁺ [Ar] $3d^6$

Inner orbital complex

complex is diamagnetic

[PtCl₄]²⁻, diamagnetic
Pt²⁺ [Xe]
$$4f^{14}$$
 $5d^8$

square planar

Limitations of VB theory

- Colour of the metal complex can not be explained
- Can not explain why the magnetic property vary with temperature

Crystal Field Theory

Proposed by Bethe and van Vleck

Interaction between metal and ligand is purely electrostatic *i.e.*, bonding is due to ion-ion attraction if ligand is ionic or ion-dipole attraction if ligand is neutral

Explain the electronic spectra and magnetism of the transition metal complexes

Assumptions

- The ligands are considered as point charges
- ❖ There is no overlap between metal and ligand orbitals
- **❖** All the *d* orbitals on the metal have same energy in the free atom. The ligands destroy the degeneracy of these orbitals

Approach of ligands in an octahedral complex

To the metal ion, it looks like negative charges (electrons) are approaching

Splitting of *d*-orbitals in an octahedral field

In an isolated gaseous metal ion, the five d orbitals are degenerate

If a spherically symmetrical field of negative charges surrounds the metal ion, the d orbitals remain degenerate ----- energy of the orbitals is raised because of the repulsion between the field and the electrons on the metal

Energy level of d orbitals in an octahedral field

Approach of six ligands along x, y, z, -x, -y and -z directions will increase the energy of the d_{x2-y2} and d_{z2} orbitals (which point along the axes) much more than it increases the energy of the d_{xy} , d_{yz} and d_{xz} orbitals (which point between the axes)

Rather than referring to the energy level of an isolated metal atom, the weighted mean of these two sets of perturbed orbitals is taken as the zero ------ Baricentre

Difference in energy between the two d levels is given either of the symbols Δ_o or 10Dq

 e_g orbitals are $0.6\Delta_o$ above the average level and t_{2g} orbitals are $0.4\Delta_o$ below the average

Colour of the complexes

d-d transition gives a single broad peak with maxima at 20300 cm⁻¹

value of Δ_0 is 243 kJ/mol (1 kJ/mol = 83.7 cm⁻¹)

convenient way of measuring Δ_{o}

UV-visible absorption spectrum of [Ti(H₂O)₆]³⁺

Crystal Field Stabilization Energy (CFSE)

CFSE is obtained from Δ_o

For $[Ti(H_2O)_6]^{3+}$ the single electron is situated at the t_{2g} level CFSE = $-0.4 \times \Delta_0$ = $-0.4 \times 243 = -97$ kJ/mol

For [Cr(CN)₆]³⁻ what is CFSE if it absorbs at 26280 cm⁻¹?

All three electrons are situated at the t_{2g} level

CFSE =
$$-3 \times 0.4 \times \Delta_0$$

= $-3 \times 0.4 \times 26280 \times 83.7 = -376.77 \text{ kJ/mol}$

CFSE_{Oh} =
$$(-n_{(t2g)} \times 0.4 + n_{(eg)} \times 0.6) \times \Delta_0$$

Magnitude of Δ_0

Depends on following major factors

- Nature of the ligands
- Charge on the central metal ion
- ➤ Whether the metal is in the 1st, 2nd or 3rd row of transition elements

Nature of the ligands

Crystal field splitting of various ligands with same metal ion

Complex	Absorption peak					
	(cm ⁻¹)	(kJ mol ⁻¹)				
[Cr ^{III} Cl ₆] ³⁻ [Cr ^{III} (H ₂ O) ₆] ³⁺ [Cr ^{III} (NH ₃) ₆] ³⁺ [Cr ^{III} (CN) ₆] ³⁻	13 640 17 830 21 680 26 280	163 213 259 314				

Spectrochemical series

Possible to arrange ligands in a series that reflects their ability to split the d-orbitals

```
Weak field ligands I^- < Br^- < S^{2-} < Cl^- < NO_3^- < F^- < OH^-
```

- < EtOH < oxalate < H₂O < EDTA < (NH₃ and pyridine)
- < en < dipyridyl < o-phenanthroline < NO₂⁻ < CN⁻
- < CO Strong field ligands

Ligands which cause only a small degree of crystal field splitting
--- weak field ligands

order remain practically constant for different metals

pattern of increasing o donation

Halide donors < O donors < N donors < C donors

Charge on the central metal ion

Table 7.9 Crystal field splittings for hexa-aqua complexes of M2+ and M3+

Oxidat state	tion	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
(+II)	Electronic configuration	d ²	d^3	ď⁴	d ⁵	ď	d ⁷	ď ⁸	d°
	Δ_o in cm ⁻¹ Δ_o in kJ mol ⁻¹	-	12 600 151	13 900 (166)	7 800 93	10 400 124	9300 111	8500 102	12 600 (151)
(+III)	Electronic configuration	d¹	d^2	d^3	d⁴	d ⁵	d ⁶	d ⁷	ď
	Δ_o in cm ⁻¹ Δ_o in kJ mol ⁻¹	20 300 243	18 900 226	17 830 213	21 000 (251)	13 700 164	18 600 222	-	-

Values for d^4 and d^9 are approximate because of tetragonal distortion.

Whether the metal is in the 1st, 2nd or 3rd row of transition elements

Table 7.10 Δ_{α} crystal field splittings in one group

	cm-1	kJ mol ⁻¹
[Co(NH ₃) ₆] ³⁺	24 800	296
[Co(NH ₃) ₆] ³⁺ [Rh(NH ₃) ₆] ³⁺ [Ir(NH ₃) ₆] ³⁺	34 000 41 000	406 490

Distribution of electrons

Crystal Field Stabilization: Weak Field and Strong Field

For d^4 two configuration are possible (i) $t_{2g}^3 e_g^1$ or (ii) $t_{2g}^4 e_g^0$

Which arrangement occurs for any particular complex depends on whether the energy to promote an electron to the upper e_g level (crystal field splitting Δ_o) is greater than the energy to pair electrons (P) in the lower t_{2g} level

In weak field

CFSE = $-3x0.4x\Delta_0 + 1x0.6x\Delta_0 = -0.6 \Delta_0$

In strong field

CFSE = $-4x0.4x\Delta_0 = -1.6\Delta_0$ Total SE = $-1.6\Delta_0 + P$

P = pairing energy

Pairing energy

Depends on two factors

(i) Electronic repulsion in metal *d*-orbitals forcing two electrons to occupy same orbital (ii) Exchange energy to reverse the spin

For a given metal ion P is constant

CFSE and pairing energy for some complexes

Complex	Configuration	Δ _e (cm ⁻¹)	P (cm ⁻¹)	Predicted	Found
[Fe ^{II} (H ₂ O) ₆] ²⁺	d ⁶	10 400	17 600	high spin	high spin
[Fe ^{II} (CN) ₆] ⁴⁻	d ⁶	32 850	17 600	low spin	low spin
[Co ^{III} F ₆] ³⁻	d ⁷	13 000	21 000	high spin	high spin
[Co ^{III} (NH ₃) ₆] ³⁺	d ⁷	23 000	21 000	low spin	low spin

CFSE and electronic arrangement of octahedral complexes

Number Arrangement in weak ligand field Arrangement in strong					strong li	gand field		
of d electrons	t _{2g}	e,	CFSE Δ _o	Spin only magnetic moment µ(D)	t _{2g}	eg	CFSE Δ _o	Spin only magnetic moment µ(D)
d^1	† T		-0.4	1.73	[T]		-0.4	1.73
d^2	<u>†]† </u>		-0.8	2.83	f It]		-0.8	2.83
d^3	1 1 1		-1.2	3.87	t t t		-1.2	3.87
d ⁴	[†]† <u> </u> †	†	-1.2 +0.6 = -0.6	4.90	1111		-1.6	2.83
d ⁵	111	<u>†]† </u>	-1.2 +1.2 = -0.0	5.92	[1][1]		-2.0	1.73
d ⁶	1111	1 1	-1.6 + 1.2 = -0.4	4.90	[1][1][1]		-2.4	0.00
d7	11[11]	<u>i</u>	-2.0 +1.2 = -0.8	3.87	11 11 11	Ţ.	-2.4 + 0.6 = -1.8	1.73
d^8	11 11 11	li ii	-2.4 +1.2	2.83	[1][1][1]	1 1	-2.4 +1.2	2.83
ď	11 11 11	111	-2.4 + 1.8 = -0.6	1.73	11 11 11	11]1	$\begin{bmatrix} -2.4 \\ +1.8 \\ = -0.4 \end{bmatrix}$	1.73
d ¹⁰	11 11 11		-2.4 +2.4 = 0.0	0.00	11 11 11	11 11	$ \begin{array}{r} -2.4 \\ +2.4 \\ = 0.0 \end{array} $	0.00

Magnetism

If there is n number of unpaired electrons, spin only magnetic moment,

$$\mu_S = \sqrt{n(n+2)}$$

Spin only moment is valid for 1st row transition elements

Temperature dependence is explained by spin-orbit coupling

Co3+ octahedral complex with strong field ligands

Co3+ octahedral complex with weak field ligands

Effects of Crystal Field Splitting

<u>Lattice energies</u> of metal complexes vary due to crystal field stabilization

Lattice energies of the metal halides (MX₂) of the first transition series. Vertical bars indicates uncertainties in experimental value

Effects of Crystal Field Splitting contd....

Enthalpy of hydration

Enthalpies of hydration for M²⁺

Effects of Crystal Field Splitting contd....

Octahedral ionic radii of M²⁺ vary with crystal field splitting

Effects of Crystal Field Splitting contd....

