Lab 1 Report Digital Forensics

Anton Fluch anf14215 Johan Bäckström jobc5829

September 21, 2017

Contents

1	Background	3
2	Exercise 1: Hashing 2.1 Exercise 1.2: Comparison of Hashing Algorithms	4 5
3	Exercise 2: File Headers 3.1 file 3.2 HexEdit 3.3 TrId 3.4 Conclusion	8
4	Exercise 3: Anti Files Forensics	11
5	Exercise 4: Acquisition	12
6	Exercise 5:	13
7	Exercise 6 - Hashing	14

1 Background

The evidence for the case where provided in a .zip file named Lab1.zip. This file produced the following hash sums:

SHA256

9 c5 d0 bf beccd 75858426 cfc 84345 e0 a 68687 b0 fc 5662 b715153 aa 88 cefd 60 fb aa 20 february 20

MD5

c4a731672747131b8b457a77178ad386

When opening the zip file the following folders and files where present:

```
Lab1
  _Exercise1_Hashing
    _erase
     erase.exe
     _hello
     hello (2)
     hello (3)
     hello (4)
     _hello.exe
   Exercise2_File_Identification
      01
      02
     03
      04
     05
     06
     07
     08
      09
     _ 10
     _ 11
     _ 12
  Exercise3_Anti_Files_Forensics
     _{\rm c.mp3}
     _Suspicious_File
  Exercise4_Acquisition
   winxp.dvi
  _Exercise5_Cracking
     _casssh.pdf
    _{
m ht.zip.tar.gpg}
     _Untitled 1.ods
     untitled.docx
     \_untitled\_hash.txt
     _{-}wallet1.dat
     _wallet2
  Exercise6_Steganography
    \_ c11.png
    _ c21.png
```

2 Exercise 1: Hashing

In order to maintain the chain of custody and to uniquely identify all files, the hash sum for SHA256 ¹ and MD5² where calculated for all the files in the folder Exercise1_Hashing. In Kali Linux³ it is possible to calculate the hash sum of a file using the bash shell ⁴. For example, if you type the command:

```
sha256sum *
```

It will calculate and display the hash sum for the SHA256 algorithm for all the files in the folder you are currently standing. This resulted in the following hash sums:

```
sha256sum *
1c4ff4e490b15b2b214f26c5654decccbcbea9eb900f88649dc7b1e42341be56 erase
1316543942a8c6cd754855500cd37068edbbd8b31c4979d2825a4e799fed6102 erase.exe
fad878bd261840a4ea4a8277c546d4f46e79bbeb60b059cee41f8b50e28d0e88 hello
1316543942a8c6cd754855500cd37068edbbd8b31c4979d2825a4e799fed6102 hello (2)
60d13913155644883f130b85eb24d778314014c9479aedb5f6323bf38ad3a451 hello (3)
1 \\ \text{c4ff4e490b15b2b214f26c5654decccbcbea9eb900f88649dc7b1e42341be56 hello (4)}
60d13913155644883f130b85eb24d778314014c9479aedb5f6323bf38ad3a451 hello.exe
md5sum *
da5c61e1edc0f18337e46418e48c1290 erase
cdc47d670159eef60916ca03a9d4a007 erase.exe
da5c61e1edc0f18337e46418e48c1290 hello
cdc47d670159eef60916ca03a9d4a007 hello (2)
cdc47d670159eef60916ca03a9d4a007 hello (3)
da5c61e1edc0f18337e46418e48c1290 hello (4)
cdc47d670159eef60916ca03a9d4a007 hello.exe
```

An efficient way for matching hash sums is also possible using the same command, but we need to provide an option to it. Using the '-c' option we can quickly check if a provided hash sum match with the file we are checking. First we need to create a new file with the hash sum for all the files in the folder:

```
sha256sum * > checksums.chk
```

This will create a new file named 'checksums.chk' which contains all the hash sums for the files in the folder. Then we run the command:

```
sha256sum -c checksums.chk
```

The output should be the following:

```
erase: OK
erase.exe: OK
hello: OK
hello (2): OK
hello (3): OK
hello (4): OK
hello.exe: OK
```

 $^{^{1}}$ https://en.wikipedia.org/wiki/SHA-2

 $^{^2 {\}tt https://en.wikipedia.org/wiki/MD5}$

https://www.kali.org/

⁴https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Which indicates that all the files currently stored in 'checksums.chk' match with all the files in the folder. Now lets say that we have a specific file of interest which we know the hash sum of and we want to find out if the file is present on a computer. This can be achieved by using the following command:

```
find . -type f -exec sha256sum {} + | grep '^SHA256SUM'
```

This will search through the specified folder recursively for correlating SHA256 sums. If we run the command:

```
find . -type f -exec sha256sum {} + | grep
'^1c4ff4e490b15b2b214f26c5654decccbcbea9eb900f88649dc7b1e42341be56'
```

Which is the SHA256 sum of the file 'erase' mentioned above. We get the output:

```
1c4ff4e490b15b2b214f26c5654decccbcbea9eb900f88649dc7b1e42341be56 ./erase 1c4ff4e490b15b2b214f26c5654decccbcbea9eb900f88649dc7b1e42341be56 ./hello (4)
```

This indicates that we found two files that both have the same SHA256 sum, 'erase' and 'hello (4)'.

This is a feature which should be considered as beneficial for a forensic examiner since it means that if you suspect that a file is present on a computer you can easily find it. Even though the file name is changed the hash sums will be identical.

2.1 Exercise 1.2: Comparison of Hashing Algorithms

In this exercise the execution time of the SHA256 and the MD5 algorithm will be compared. The file that is used to compare the times can be found at http://ipv4.download.thinkbroadband.com:8080/1GB.zip And should produce the following hash sums:

```
sha256sum
5674e59283d95efe8c88770515a9bbc80cbb77cb67602389fd91def26d26aed2
md5sum
286e80b3b7420263038ab06d76774043
```

Using the 'stat' command we can get more information about the file:

```
stat 1GB.zip
    File: 1GB.zip
    Size: 1073741824    Blocks: 2097160    IO Block: 4096 regular file

Device: 801h/2049d    Inode: 13369385    Links: 1

Access: (0664/-rw-rw-r--) Uid: ( 1000/ fluchey) Gid: ( 1000/ fluchey)

Access: 2017-09-21 11:56:19.516000051 +0200

Modify: 2017-09-21 11:55:49.996055229 +0200

Change: 2017-09-21 11:55:50.100055012 +0200

Birth: -
```

If we want to measure the time it takes to compute the hash sums we can use the command 'time'.

^{*}Note that you need to replace 'SHA256SUM' with the actual hash value of the file

The 'time' command is described in more detail in the linux manual 5 .

- 'real' The total time taken for the process to execute
- 'user' The amount of CPU time spent in user mode (Outside the kernel) within the process
- $\bullet\,$ 'sys' The amount of CPU time spent in the kernel within the process

The SHA256 algorithm took a total of 6,065 seconds to run. The MD5 algorithm took a total of 1,844 seconds to run. This makes the MD5 algorithm 4,221 seconds faster.

⁵http://man7.org/linux/man-pages/man7/time.7.html

3 Exercise 2: File Headers

In the folder Exercise3_Anti_Files_Forensics a number of unidentified files where found. In order to make sure what kind of files they are we use three different tools for file identification and cross check their result.

3.1 file

In Kali Linux you can get information about files using the 'file' command. While standing in the 'Exercise2_File_Identification' folder and running the 'file *' command we get the following result:

```
file *
01: JPEG image data, JFIF standard 1.01, resolution (DPI), density 72x72,
     segment length 16, baseline, precision 8, 792x1024, frames 1
02: GIF image data, version 87a, 359 x 313
03: MS Windows 95 Internet shortcut text (URL=<a href="http://www.dc3.mil/challenge/">http://www.dc3.mil/challenge/</a>),
    ASCII text, with CRLF line terminators
04: Zip archive data, at least v2.0 to extract
05: Zip archive data, at least v2.0 to extract
06: zlib compressed data
07: RPM v3.0 bin i386/x86_64
08: MS Windows HtmlHelp Data
09: Standard MIDI data (format 1) using 21 tracks at 1/240
10: ASCII text, with CRLF line terminators
11: Composite Document File V2 Document, Little Endian, Os: Windows, Version
     5.1, Code page: 1252, Title: , Subject: , Author: , Keywords: , Comments: ,
     Template: Normal.dot, Last Saved By: Kevin Allen, Revision Number: 37, Name
     of Creating Application: Microsoft Word 11.0, Total Editing Time:
     1d+16:02:00, Last Printed: Wed Sep 11 21:29:00 2002, Create Time/Date: Fri
     Jun 30 13:29:00 2000, Last Saved Time/Date: Wed Apr 2 19:07:00 2003, Number
     of Pages: 1, Number of Words: 10971, Number of Characters: 62539, Security:
12: BitTorrent file
```

This gives us information of all the files in the folder.

3.2 HexEdit

On windows we can use the tool HexEdit⁶ to get information about the files in hexadecimal form. We can then identify the hexadecimal header of the file and check on the website of Gary Kessler⁷ for a matching file header. Doing this we get the following result:

⁶http://hexedit.com/

⁷http://www.garykessler.net/library/file_sigs.html

Figure 1: File 01

	Match	Ext	Туре	Pts
•	38.1%	JPG	JFIF JPEG Bitmap	4003/3
	28.6%	JPG	JPEG Bitmap	3000/1
	23.8%	MP3	MP3 audio (ID3 v1.x tag)	2500/1/1
	9.5%	MP3	MP3 audio	1000/1

File	Header	Description
01	FF D8	Generic JPEGimage file
02	47 49 46 38 37 61	GIF87a (Graphics interchange
		format file)
03	-	No match on website using
		header. It is possible to see in
		HexEdit that it is some kind of
		Internet shortcut
04	50 4B 03 04	ZIP (PKZIP archive file)
05	50 4B 03 04	ZIP (PKZIP archive file)
06	78 01 63 60	No match on website using
		header
07	ED AB EE DB	RPM (Redhat Package manager
		file)
08	49 54 53 46	CHI, CHM (Microsoft Compiled
		HTML Help File)
09	4D 54 68 64	MID, MIDI (Musical Instrument
		Digital Interface (MIDI) sound
		file)
10	-	No match on website using
		header. It is possible to see in
		HexEdit that it is a README
		file for Microsoft File Checksum
1.1	Do CE 11 E0 A1 D1 1A E1	integrity Verifier V2.05
11	D0 CF 11 E0 A1 B1 1A E1	An Object Linking and Em-
		bedding (OLE) Compound File
		(CF) (i.e., OLECF) file format,
		known as Compound Binary File format by Microsoft, used by Mi-
		crosoft Office 97-2003 applica-
		tions (Word, Powerpoint, Excel,
		Wizard).
12		No match on website using
12		header. In HexEdit you can see
		a description about a torrent file
		a description about a torrent me

3.3 TrId

 $\rm Tr Id Net^8$ is another tool which presents it's findings in a GUI. Below are the result for all the files.

⁸http://mark0.net/soft-tridnet-e.html

	Match	Ext	Туре	Pts
•	60.0%	GIF	GIF87a Bitmap	6001/2
	30.0%	GIF	GIF Bitmap (generic)	3000/1
	10.0%	BS/BIN	PrintFox (C64) bitmap	1000/1

Figure 2: File 02

	Match	Ext	Туре	Pts
•	91.7%	URL	Windows URL shortcut	11000/1/2
	8.3%	INI	Generic INI configuration	1000/1

Figure 3: File 03

	Match	Ext	Туре	Pts
•	100.0%	ZIP	ZIP compressed archive	4000/1

Figure 4: File 04

	Match	Ext	Туре	Pts
>	66.6%	XPI	Mozilla Firefox browser extension	8000/1/
	33.3%	ZIP	ZIP compressed archive	4000/1
	0.1%	CEL	Autodesk FLIC Image File (extensions: flc, fli, cel)	7/3

Figure 5: File 05

	Match	Ext	Туре	Pts
•	50.0%	DMG	Disk Image (Macintosh)	1000/1
	50.0%	XMI	XMill compressed XML	1000/1

Figure 6: File 06

	Match	Ext	Туре	Pts
>	100.0%	RPM	RPM Package (generic)	4000/1

Figure 7: File 07

	Match	Ext	Туре	Pts
F	100.0%	CHM	Windows HELP File	4000/1

Figure 8: File 08

	Match	Ext	Туре	Pts
•	100.0%	MID	MIDI Music	9008/4

Figure 9: File 09

Figure 10: File 10

	Match	Ext	Туре	Pts
•	36.0%	DOC	Microsoft Word document	32000/1/3
	33.7%	XLS	Microsoft Excel sheet	30000/1/2
	21.3%	DOC	Microsoft Word document (old ver.)	19000/1/2
	9.0%		Generic OLE2 / Multistream Compound File	8000/1

Figure 11: File 11

	Match	Ext	Туре	Pts
•	57.7%	TORRENT	BitTorrent Link (Trackerless)	15000/1/4
	42.3%	TORRENT	BitTorrent Link	11000/1

Figure 12: File 12

3.4 Conclusion

After identifying the file types with the three tools mentioned above, the files where opened with the corresponding program for further examination. The following table presents the conclusion of the findings:

File	Description		
01	JPEG image of a hangar filled with airplanes		
02	GIF image of a generator or a motor		
03	A windows shortcut for URL address containing http://www.		
	dc3.mil/challenge		
04	ZIP archive containing the tool EXIF.exe and documentation		
05	ZIP archive containing Chrome plugin and install files		
06	ZLIb archive - unknown contents		
07	Red hat package manager archive		
08	Nvidia control panel help file		
09	MIDI file with the song Carmina Burana - O Fortuna		
10	README file about Microsoft Check File Integrity Verifier		
11	OLE file with a README about the tool Robocopy		
12	.torrent file for Ubuntu ISO (AMD64 version)		

4 Exercise 3: Anti Files Forensics

5 Exercise 4: Acquisition

6 Exercise 5:

7 Exercise 6 - Hashing