PROJECT REPORT

NATURAL DISASTERS INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

Submitted by

Team ID: PNT2022TMID26356

HEMALATHA. R ESESHWINI . BS JERUSHA PRISILLA. J JYOTHI KRISHNA .KK

BACHELOR OF ENGINEERING

In

COMPUTER SCIENCE ENGINEERING

RAJALAKSHMI INSTITUTE OF TECHNOLOGY

ANNA UNIVERSITY: CHENNAI - 600 025

NOVEMBER 2022

TABLE OF CONTENTS

1	INTRODUCTION	2
	1.1 Project overview	
	1.2 Purpose	
2	LITERATURE SURVEY	2
	2.1 Exisiting problem	
	2.2 References	
	2.3 Problem statement definition	
3	IDEATION AND PROPOSED SOLUTION	3
	3.1 Empathy Map Canvas	
	3.2 Ideation and Brainstorming	
	3.3 Proposed solution	
	3.4 Problrm Solution Fit	
4	REQUIREMENT ANALYSIS	7
	4.1 Functional requirements	
	4.2 Non-Functional requirements	
5	PROJECT DESIGN	8
	5.1 Data Flow Diagrams	
	5.2 User Stories	
	5.3 Solution and technical architecture	
6	PROJECT PLANNING AND SCHEDULING	12
	6.1 Sprint Planning and Estimation	
	6.2 Sprint Deliver Schedule	
7	CODING AND SOLUTIONING(Explain the features added in the project	ct along with code)
	7.1 Feature 1	15
	7.2 Feature 2	
8	TESTING	18
	8.1 Test cases	
	8.2 User Acceptance Testing	
9	RESULTS	19
	9.1 Performance Metrices	
10	ADVANTAGES AND DISADVANTAGES	20
	CONCLUSION	20
12	FUTURE SCOPE	20
Al	PPENDIX	21
	GITHUB	
	PROJECT DEMO	

1.INTRODUCTION

1.1 Project overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems.

1.2 Purpose

The main of the aim of the project to develop a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre-trained model and the type of disaster is identified and showcased on the OpenCV window.

2.LITERATURE SURVEY

2.1 Existing problem

Natural disasters are uncontrollable phenomena occurring yearly which cause extensive damage to lives, property and cause permanent damage to the environment. However by, using Deep Learning, real-time recognition of these disasters can help the victims and emergency response agencies during the onset of these destructive events. At present, there are still gaps in the literature regarding real-time natural disaster recognition. Flood management, which involves flood prediction, detection, mapping, evacuation, and relief activities, can be improved via the adoption of state-ofthe-art tools and technology. Thus, future efforts need to focus on combining disaster management knowledge, image processing techniques and machine learning tools to ensure effective and holistic disaster management across all phases.

2.2 References

A Review On Flood Management Technologies Related To Image Processing And Machine Learning

Author: Hafiz SulimanMunawara, Ahmed W.A.HammadaS, TravisWaller Published on: 19 Aug 2021.

2.3 Problem statement definition

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to

permanent change in the ecosystem. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images.

3.IDEATION AND PROPOSED SOLUTION

3.1 Empathy map canvas

3.2 Ideation and Brainstorming

Write down any ideas that come to mind that address your problem statement.

10 minutes

HEMALATHA R PRISILLA J Design of a classification of the control of the control

3.3 Proposed Solution

S.NO	Parameter	Description
1.	Problem	To tackle the problem of detecting natural disasters ,we
	statement(problem to	developed a multilayered deep convolutional neural
	•••	network model that classifies the natural disaster and
	be solved)	tells the intensity of natural disaster.
2.	Ideas/solution	By predicting to occurrence of natural disaster, we can
	description	save thousands of lives and take appropriate measures to
	description	reduce property damage.
3.	Novelty/Uniqueness	It finds the magnitude of impact , length of fore warming
0.		and duration of impact.

4.	Social impact/customer satisfaction	The most vulnerable are citizens and children .it can save lives of people can minimize the loss of infrastructure, finance.
5.	Business Model (Revenue model)	The government and private companies make use of this to get revenue in future
6.	Scalability of the solution	Disaster damages are measured involves examining the number of fatalities, of injuries, of people affected.

3.4 Problem Solution Fit

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Register through mobile application
		Call the given emergency number
FR-2	User Confirmation	Confirmation via Call back
		Confirmation via Text
FR-3	User Preparation	Ensure safety of all people
		Supply of canned food
FR-4	User evacuation	Waiting for evacuation team
		Take refugee in nearest safe location

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	It is easy and quick method to predict the
		disasters.
NFR-2	Security	The secure pattern shares components with
		monitor and control for logging and control access
		and for providing audit trails.
NFR-3	Reliability	It should be highly reliable.
NFR-4	Performance	It deals with the measure of the system's response
		time.
NFR-5	Availability	It can be available at the any time and we can
		access during any disasters.
NFR-6	Scalability	Disaster damages are measured involves
		examining the number of fatalities, of injuries, of
		people affected.

5.PROJECT DESIGN

5.1 Data flow diagram

5.2 User Stories

User Type	Functional Requirement (Epic)	User Story Numb	User Story <i>I</i> Task	Acceptance criteria	Priori ty	Relea se
		er				
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through	I can login with my password	Medi um	Sprint-1

			Gmail			
	Login	USN-5	As a user, I can log into	I can see the dashboard	High	Sprint-1
			the	now		
			application			
			by entering			
			email &			
			password			
	Dashboard	USN-6	As a user, I	I can update	Medi	Sprint-1
			can update Disaster	now.	um	
			incidents.			
Customer		USN-7	As a user, I	I can see	Medi	Sprint-1
(Web user)			can view	Map Data.	um	
			Map Data.			
Customer	Authenticati	USN-8	As a	I can access	High	Sprint-1
Care Executive	on		Community	my account.		
			Leader, I can			
			into the			
			application			
			using my			
			password			
		USN-9	As a	I can apply	High	Sprint-1
			Community	membershi		
			Leader, I can apply for	p.		
			membership.			
User Type	Functional	User	User Story /	Acceptance	Priori	Relea
	Requirement	Story	Task	criteria	ty	se
	(Epic)	Numb				
		er				

		USN-10	As a Community Leader, I can verify Disaster.	Disaster verification	High	Sprint-1
System	Membership	USN-11	As a	I can	High	Sprint-1
Administrat or	Approval		administrato r, I can	approve membershi		
Oi			approve the	p.		
			Membership			
			application.			
	Update	USN-12	As a	I can update	High	Sprint-1
	Disaster		administrato	disaster		
	information		r, I can	information.		
			update			
			information			
			about			
	Discotor	LICNI 40	Disaster.		1 Iliania	Consider A
	Disaster verification	USN-13	As a administrato	I can verify Disaster	High	Sprint-1
	verincation		r, I can verify	Disaster		
			disaster.			
Community	Disaster	USN-14	Both are can	We can ask	Low	Sprint-2
Leader and	Queries		able to ask	Queries		•
System			disaster	about		
Administrat			queries.	disaster.		
or						
	Disaster	USN-15	Both are can	Both will	Low	Sprint-2
	Reports		able to give	give the		
			disaster	disaster		
			reports.	reports		

5.3 Solution And Technical Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- 1. Find the best tech solution to solve existing business problems.
- 2. Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- 3. Define features, development phases, and solution requirements.

Provide specifications according to which the solution is defined, managed, and delivered.

6 PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming that.	2	Low	'-HEMA R
Sprint-1	Registration	USN-2	As a user, I will receive confirmation email once I have registered for the application.	3	High	JERUSHA
Sprint-1	Login	USN-3	As a user, I adapt to logging into the system with credentials.	2	Low	ESESHWINI

Sprint-1	Designation of Region	USN-4	As a user, I can collect the dataset and select the region of interest to be monitored and analysed.	5	Medium	у у у у у у у у у у у у у у у у у у у
Sprint-2	Analysis of required phenomenon	USN-5	As a user, I can regulate certain factors influencing the action and report on past event analysis.	4	High	JYOTHI
Sprint-2	Algorithm selection	USN-6	As a user, I can choose the required algorithm for specific analysis.	4	Medium	JERUSHA
Sprint-2	Training and Testing	USN-7	As a user, I can train and test the model using the algorithm.	4	High	ESESHWINI
Sprint-3	Prediction and analysis of data	USN-8	As a user, I can predict and visualise the data effectively.	4	High	HEMA R

Sprint-3	Model building	USN-9	As a user, I can build with the web application.	8	High	ESESHWINI
Sprint-4	Report generation	USN-10	As a user, I can generate detailed report on product data analysis.	4	High	JERUSHA
Sprint-4	Model deployment	USN-11	As an administrator, I can maintain third- party services.	8	High	ЈҮОТНІ

6.2 Sprint Delivery Schedule

Sprint	Total Story	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as	Sprint Release Date (Actual)
	Points				on	
					Planned End	
					Date)	
Sprint-1	12	6 Days	24 Oct 2022	29 Oct 2022	12	29 Oct 2022
Sprint-2	12	6 Days	31 Oct 2022	05 Nov 2022	12	05 Nov 2022
Sprint-3	12	6 Days	07 Nov 2022	12 Nov 2022	12	12 Nov 2022
Sprint-4	12	6 Days	14 Nov 2022	19 Nov 2022	12	19 Nov 2022

6.3 Reports from JIRA

7 CODING AND SOLUTIONING

7.1 Feature 1

```
In [33]: from tensorflow.keras.preprocessing.image import ImageDataGenerator
 In [34]: train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,shear_range=0.2)
 In [36]: test_datagen=ImageDataGenerator(rescale=1./255)
In [38]: x_test=test_datagen.flow_from_directory(r"/content/drive/MyOrive/Disasters/dataset/test_set",target_size=(64,64), batch_size=5,color_mode='rgb',class_mode="categorical")
              Found 198 images belonging to 4 classes.
In [39]:
import numpy as np
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Conv2D,HaxPooling2D,Flatten
In [42]:
    model=Sequential()
    model.add(Conv2D(32,(3,3),activation="relu",input_shape=(64,64,3)))
    model.add(MaxPooling2D(pool_size=(2,2)))
    model.add(Conv2D(32,(3,3),activation="relu"))
    model.add(PaxPooling2D(pool_size=(2,2)))
    model.add(PaxPooling2D(pool_size=(2,2)))
    model.add(Ponse(units=128,activation="relu"))
    model.add(Ponse(units=128,activation="relu"))
    model.add(Ponse(units=128,activation="relu"))
    model.add(Ponse(units=3,activation="relu"))
    model.add(Ponse(units=3,activation="relu"))
    model.compile(loss="categorical_crossentropy",metrics=["accuracy"],optimizer='adam')
 In [43]: model.summarv()
 In [43]: model.summary()
             Model: "sequential_2"
                                 v2D) (None, 62, 62, 32)
               conv2d_1 (Conv2D)
              max_pooling2d (MaxPooling2D (None, 31, 31, 32) 0
              conv2d_2 (Conv2D) (None, 29, 29, 32) 9248
              max_pooling2d_1 (MaxPooling (None, 14, 14, 32) 0
2D)
              flatten (Flatten) (None, 6272)
dense (Dense) (None, 128)
dense_1 (Dense) (None, 4)
                                                                                  802944
                                                                                 516
             Total params: 813,604
Trainable params: 813,604
Non-trainable params: 0
  \begin{tabular}{ll} In $ [49]$: & model.fit\_generator(generator=x\_train,epochs=20,steps\_per\_epoch=len(x\_train),validation\_data=x\_test,validation\_steps=len(x\_test)) \end{tabular}
```

7.2 Feature 2

8 TESTING

8.1 Test Case

Test case ID	Feature Type	Compone	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Commnets	TC for Automation(Y/N)	BUG	Executed By
HomePage_TC_ OO1	Functional	Home Page	Verify user is able to see the home page when click on the Local host ID		Click on the local host ID. Verify Home page displayed or not	https://127.0.0.1:5000	Home page should display	Working as expected	Pass				
HomePage_TC_ OO2	UI	Home Page	Verify the UI elements in Home page		Click on the Local host ID. Averify Home page with below UI elements: a.Home b.Intro page c.Open Web Cam	https://127.0.0.1:5000	Application should show below UI elements: a.Home b.Intro page c.Open web cam	Working as expected	pass				
HomePage_TC_ OO3	· UI	Home	Verify user is able to see the some definition of natural disaster in Home.		1.Click on the local host ID 2.Click on Home 3.Verify Home with below UI elements: a.Cyclone with definition b.Earth quake with definition c.Wilde Fire with definition d.Flood with definition		Application should show below UI elements: a Cyclone with definition b Earth quake with definition c Wilde Fire with definition d Flood with definition	Working a: expected	Pass				
HomePage_TC_ OO4	UI	Intro Page	Verify user is able to see introduction in Intro page		1.Click on the local host ID 2.Click on Intro page 3.Verify Intro page with some intoduction	https://127.0.0.1:5000	Application should show Some Introduction about natura disaster	Working as expected	pass				
HomePage_TC_ OO4		Open web cam	Verify user is able to see UI elements in open web cam		Click on the local host ID Click on the Open web cam 3.Verify open web cam with bellow elements: a.Upload b.Predict	https://127.0.0.1:5000	Application should show Upload button and predict button	Working a: expected	Pass				
HomePage_TC_ OO5	UI	Upload	Verify user is able to upload an image		Click on the local host ID Click on the Open web cam click on the Upload button verify user to see images to upload in upload button Click on any image shows in upload button	https://127.0.0.1:5000	Application should upload an image	Working as expected	pass				
tome page_TC_006	UI	Predict			Click on the local host ID Click on the Open web cam S.click on the Upload button Click on the image to upload Click on the image to upload Click on the predict button Click on the predict button	https://127.0.0.1:5000	Application should show output Ima	working as expected	Fail	Output image not shows			

8.2 User Acceptance Testing

	-				
Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	6	3	2	1	12
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	12	2	4	5	23
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won'tFix	0	3	2	1	6
Totals	21	11	13	9	54

9 RESULTS

9.1 Performance Metrics

S.No.	Parameter	Values	Screenshot					
1. Model Summary		-	model.summary() Model: "sequential"					
			Layer (type)	Output Shape	Param #			
			conv2d (Conv2D)	(None, 62, 62, 32)	896			
			max_pooling2d (MaxPooling2C	(None, 31, 31, 32)	0			
			conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248			
			max_pooling2d_1 (MaxPooling 2D)	(None, 14, 14, 32)	0			
			flatten (Flatten)	(None, 6272)	0			
			dense (Dense)	(None, 128)	802944			
			dense_1 (Dense)	(None, 4)	516			
2.	Accuracy	Training Accuracy -	· loss: 0.5239 - accuracy: 0.7857 - val_loss: 0.7225 - val_accuracy: 0.7576					
		Validation Accuracy -	· loss: 0.4353 - accuracy: 0.8383	· val_loss: 0.753B - val_accura	cy: 0.7323			
			· loss: 0.3964 - accuracy: 0.8544	· val_loss: 1,0309 - val_accura	cy: 0.6364			
			· loss: 0.3662 - accuracy: 0.8787	· val_loss: 0.5903 - val_accura	cy: 0.7273			
			· loss: 0.4363 - accuracy: 0.8342	val_loss: 0.663B - val_accura	су: 0.7475			
			· loss: 0.3292 - accuracy: 0.8814	· val_loss: 0.6497 - val_accura	cy: 0.7577			

10 ADVANTAGES AND DISADVANTAGES

ADVANTAGES:-

- 1. Humans also need breaks and time offs to balance their work life and personal life. But AI can work endlessly without breaks.
- 2. With the use of various Al-based techniques, we can also anticipate today's weatherand the days ahead.
- 3. Helpful in getting life back on track..
- 4. Their Alert nature able to respond effectively and efficiently which defend the societyfrom large scale damages.

DISADVANTAGES:-

- 1. It involves huge money to be equipped.
- 2. Problems faced in life basic needs.
- 3. One application of artificial intelligence is a robot, which is displacing occupations and increasing unemployment.
- 4. Machines can perform only those tasks which they are designed or programmed to do, anything out of that they tend to crash or give irrelevant outputs which could be a major backdrop.

11 CONCLUSION

Many researchers have attempted to use different deep learning methods for detection of natural disasters. However, the detection of natural disasters by using deep learning techniques still faces various issues due to noise and serious class imbalance problems. To address these problems, we proposed a multilayered deep convolutional neural network for detection and intensity classification of natural disasters. The proposed method works in two blocks—one for detection of natural disaster occurrence and the second block is used to remove imbalanced class issues. The results were calculated as average statistical values: sensitivity, 97.54%; specificity, 98.22%; accuracy rate, 99.92%; precision, 97.79%; and F1-score, 97.97% for the proposed model. The proposed model achieved the highest accuracy as compared to other state-of-the-art methods due to its multilayered structure. The proposed model performs significantly better for natural disaster detection and classification, but in the future the model can be used for various natural disaster detection processes.

12 FUTURE SCOPE

Al -smart technology, which has enabled accurate and speedy solutions. If harnessed properly, the technology has the potential of predicting, preventing and providing response

faster than ever.Al data setups are trained to predict seismic data to analyze the patterns of earthquake occurrences, rainfall records and monitor flooding, measure the intensity hurricanes and read the geological data to understand volcanic eruptions, such systems can reduce the catastrophic impact of natural disasters. Last year, Google's Pilot project to monitor flood in India with the help of Al, was a successful one – it was a Patna project. They were able to predict floods and the regions that it would be affected due to the natural disaster with an accuracy of over 90%. It was possible owing to the combination of data from government agencies that provide on-ground information – from measuring devices placed on the spot and satellite captured images of flood-prone areas. They ran hundreds of thousands of simulations on its machine learning (ML) models to predict the flow of water.In thefuture, leveraging Al can help disaster management bodies install drones, sensors and

robots to provide accurate information about damaged buildings and landscapes, potential floods, making rescue missions safer and less time-consuming. There is a need for smart technology to be integrated within our local communities. Immediate response and tech-based solutions can help reduce the extent of damage. However, since AI is based on machine codes, there is a scope of limitations and errors. However, the amalgamation of human, empathy and alertness, could do wonders in the field of crisis management.

13 APPENDIX

Source code

Model creation

Flask app.py

```
| File | Edit | Selection | View | Go | Run | Terminal | Help | spp.py-Visual Studio Code-Insiders | File | Color | Co
```

HTML Code

```
| File | Edit Selection | View | Go | Rum | Tempinary | Nonepage |
```

GITHUB:

https://github.com/IBM-EPBL/IBM-Project-22696-1659856516

PROJECT DEMO:

https://drive.google.com/file/d/1VS_fVGbu5Z2w9hBVm01ITq-W-al5fgjJ/view?usp=share_link