BASE DE DATOS II – LSI- 2019

REGLAS DE ASOCIACION

Lic. Nevelin Irene Salazar

Reglas de Asociación

- Permiten expresar relaciones entre items de una BD. Son aplicables a la toma de decisiones.
- Ejemplos
 - Relación en la compra de productos
 - Itinerarios más utilizados por los visitantes de páginas WEB

Reglas de Asociación

Definición

- Sea I el conjunto de ítems de una base de datos D.
- Una Regla de Asociación (RA) es una implicación de la forma

$$X \Rightarrow Y$$

donde $X \subset I$, $Y \subset I$, $Y X \cap Y = \emptyset$.

Análisis de la Canasta de Mercado

Los productos comprados por los clientes de un supermercado se representan como transacciones Tj={I1, I2, ..., Ik}

ID	Productos (o ítems)
Juan	Papas, Huevos, Jamón
María	Pan, Leche, Huevos
Luis	Pan, Leche, Papas, Huevos
Ana	Pan, Leche

Reglas de Asociación. Ejemplo

ID	Productos
Juan	Papas, Huevos, Jamón
María	Pan, Leche, Huevos
Luis	Pan, Leche, Papas, Huevos
Ana	Pan, Leche

#	Regla
1	Pan → Leche
2	Leche → Pan
3	Papas → Huevos
4	Huevos → Papas
5	Pan y Huevos → Leche
6	Leche → Huevos y Pan
7	Pan → Huevos y Leche

Problemas de las Reglas de Asociación.

- Aplicable únicamente a variables cualitativas o discretizadas.
- ¿Cómo limitamos el número de reglas? ¿Cómo hacemos manejable el proceso de procesamiento posterior?
- La respuesta esta en las métricas que usamos para medir la importancia o interés de la regla

Calidad de una regla

- Generalmente se usan tres medidas
 - Soporte
 - Confianza o precisión
 - Lift

SOPORTE

- Dada una regla, si A=>B, el soporte de la regla se define como el numero de veces que A y B aparecen juntos en una base de datos de transacciones
- Soporte puede definirse para ítems individualmente o para una regla
- El soporte nos dice qué tan importante o interesante es un conjunto de elementos en función de su número de apariciones.
- El primer requisito que podemos imponer para limitar el numero de reglas, es que las reglas tengan un soporte mínimo.

Ejemplo Soporte

Soporte(JN)=400

Soporte(JN)=400/1000=0.40

Soporte(V)=50

Soporte(V)=50/1000=0.05

Ejemplo Soporte

Soporte(JN y V)=40

Soporte(JN y V)=40/1000=0.04

Probabilidad Conjunta

CONFIANZA

- Dada una regla, si A=>B, la confianza de esta regla es el cociente del soporte de la regla y el soporte del antecedente solamente.
- ightharpoonup Confianza(A=>B) = S(A=>B)/S(A)
- El <u>soporte</u> mide la frecuencia relativa, confianza mide la fortaleza de la regla.
- La confianza nos dice qué tan probable es un consecuente cuando ha ocurrido el antecedente

Cual es la Confianza de «Vodka=>Jugo de Naranja»?

Cual es la Confianza de «Jugo de Naranja=>Vodka»?

Ejemplo Confianza

Confianza(V => JN)=S(V => JN)/S(V)=40/50=0.80

Confianza(JN = >V)=S(JN = >V)/S(JN)=40/400=0.10

Dado el siguiente ejemplo calcular:

ítems	Compró Pan	No Compró Pan	Total
Compró JN	280	120	400
No Compró JN	420	180	600
Total	700	300	1000

- Soporte(Pan)=?
- Soporte(JN)=?
- Soporte(JN=>Pan) = Soporte(Pan=>JN)=?
- Confianza(Pan=>JN)=?
- Confianza(JN=>Pan)=?

Solución del ejemplo:

ítems	Compró Pan	No Compró Pan	Total
Compró JN	280	120	400
No Compró JN	420	180	600
Total	700	300	1000

- **Soporte**(Pan)=**0.70**
- **Soporte**(JN)=**0.40**
- Soporte(JN=>Pan) = Soporte(Pan=>JN)=0.28
- Confianza(Pan=>JN)=0.28/0.70=**0.40**
- Confianza(JN=>Pan)=0.28/0.40=0.70

Solución del ejemplo:

ítems	Compró Pan	No Compró Pan	Total
Compró JN	280	120	400
No Compró JN	420	180	600
Total	700	300	1000

- Soporte(Pan)=0.70
- **Soporte**(JN)=**0.40**
- Soporte(JN=>Pan) = Soporte(Pan=>JN)=0.28
- Confianza(Pan=>JN)=0.28/0.70=**0.40**
- Confianza(JN = > Pan)=0.28/0.40=0.70

LIFT

Nos dice qué tan probable es el consecuente cuando el antecedente ya ha ocurrido, teniendo en cuenta el soporte de ambos antecedentes y consecuentes

Lift(A=>B)= Soporte(A=>B) /{Soporte(A) * Soporte(B)}

- Cuantifica la relación existente entre A y B
- ► Lift = 1 o muy cerca a 1 indica que la relación es producto del azar
- Lift > 1 indica una relación realmente <u>fuerte</u> (controlado por la frecuencia con que ambos ocurren)
- Lift > 1 indica que A y B aparecen juntos con mas frecuencia de lo que indica el azar (complementos)
- Lift < 1 indica una relación realmente <u>débil</u> (controlado por la frecuencia con que ambos ocurren)
- Lift < 1 indica que A y B aparecen juntos con menos frecuencia de lo que indica el azar

Ejemplo Lift

- **Soporte**(Pan)=**0.70**
- Soporte(JN)=0.40
- Soporte(JN=>Pan) = Soporte(Pan=>JN)=0.28
- Confianza(Pan=>JN)=0.28/0.70=**0.40**
- Confianza(JN=>Pan)=0.28/0.40=0.70
- Lift(Pan=>JN)=Lift(JN=>Pan)

Soporte(Pan=>JN)/Soporte(Pan)*Soporte(JN)

0.28/(0.70*0.40)=0.28/0.28=1

Ejemplo Lift

- Soporte(JN)=0.40
- Soporte(\(\neg\))=0.05
- Soporte(JN=>V) = Soporte(V=>JN)=0.04
- Confianza(V=>JN)=0.04/0.05=0.80
- Confianza(JN=>V)=0.04/0.40=**0.10**

Soporte(Vodka=>JN)/Soporte(JN)*Soporte(V)

0.04/(0.4*0.05)=0.04/0.02=2

Aprendizaje de Reglas de Asociación

- Deben establecerse los requisitos mínimosEj: soporte > 0.02
- Aprendizaje
 - Extracción del conjunto de items que cumple con el soporte requerido.
 - Generación de las reglas a partir de estos items.

Algoritmo A priori

- Identificar los items que en forma individual cumplen con el soporte mínimo.
- Utilizar estos items para formar conjuntos de dos items que cumplen con la cobertura mínima.
- Utilizar los items anteriores para formar grupos de a tres.
- Seguir hasta que no encontrar un grupo mayor que cumpla con los requisitos.

- - Hallar los *itemsets frecuentes*: conjuntos de items que tienen mínimo soporte
 - Un subconjunto de un itemset frecuente debe ser también un itemset frecuente
 - si {AB} es un itemset frecuente, luego {A} y {B} deberian ser itemsets frecuentes
 - Iterativamente hallar los itemsets frecuentes con cardinalidad desde 1 a k (k-itemset)
 - Usar los itemsets frecuentes para generar reglas de asociación.

Algoritmo A priori

```
Algoritmo Apriori (D:datos, MinC: cobertura mínima)
   i \neq 0
   Rellena_Item(C<sub>i</sub>)
  mientras C_i \neq \emptyset
      para cada x = elemento de C_i
          Si Cobertura(x) \geq MinC entonces L_i = L_i \cup x
      fin para
      C_{i+1} = Selecciona_Candidatos(L_i)
      i = i + 1
  fin mientras
   retorna C
```

Algoritmo A priori

(sop.min.=0.5)

Productos: 1-Papas; 2-Leche; 3-Huevos; 4-Jamón; 5-Pan

					_	•	·			•	
]	Data	abase D			itemset	sup.	I	items	et su	p.
		TID	Items		C_{I}	{1}	0.5	L_1	{1}		.5
		Juai	n 1 3 4		Ъ	{2}	0.75		{2}		
		Marí	a 2 3 5		can D	{3}	0.75		{3}		75
		Luis	1 2 3	5		{4 }	0.25		{5}		75
		Ana	2 5			{5}	0.75	5	[0]		
		_		-	C_2	itemset	sup		C_2	<u>items</u>	
\mathbb{I}		L_2	itemset	sup		{1 2}	0.25	Scar	ı D	{1 2}	}
			{1 3}	0.5		{1 3}	0.5	•		{1 3}	}
1			{2 3}	0.5	 ←	{1 5}	0.25			{1 5}	}
	1	4	{2 5}	0.75		{2 3}	0.5			{2 3}	}
			{3 5}	0.5		{2 5}	0.75			{2 5}	}
	W	\mathcal{N}	(0 0)	0.0	J	{3 5}	0.5			{3 5}	}
		\bigvee	C_3 items	set	C	D	ite	mset	sun		
	\mathbb{V}		10 3		Sca	$n D \longrightarrow$			0.5		19

24

Productos: 1-Papas; 2-Leche; 3-Huevos; 4-Jamón; 5-Pan

TID	Items				
	1 3 4		L_3	itemset	sup
	2 3 5	→	 	{2 3 5}	0.5
Luis	1 2 3 5			()	
Ana	2.5				

- Una vez obtenido el conjunto de items frecuentes se forman las reglas y se analizan:
- Por ejemplo
 - Pan → Leche y huevos
 - Leche y huevos → Pan

Desventajas del algoritmo A priori

- Récorre la base de datos varias veces
 - Este es el proceso más costoso.
- Genera conjuntos de items frecuentes de cardinalidad alta.
 - Dificulta la construcción de las reglas llevando a verificar sobre la base de datos muchas opciones.

- Para mejorar la búsqueda de reglas de asociación se han propuesto variantes al algoritmo básico
 - Tablas hash
 - Uso de una estructura tipo árbol Ej: Frequent Pattern Tree [Huan et al.2000]
 - Técnicas paralelización

A priori en Weka

Cargue en el panel Preprocess el archivo Golf_Nominal.csv, para determinar si se puede jugar dada unas condiciones climáticas determinadas.

Luego diríjase a la pestaña, Associate.

A priori en Weka

A priori en Weka

```
Apriori
Best rules found:

    Temperatura=baja 4 ==> Humedad=Normal 4 conf: (1) < lift: (2) > lev: (0.14) [2] conv: (2)

2. Humedad=Normal 7 ==> Temperatura=baja 4 conf:(0.57) < lift:(2)> lev:(0.14) [2] conv:(1.25)

    Humedad=alta 7 ==> Juega=No 4 conf: (0.57) < lift: (1.6) > lev: (0.11) [1] conv: (1.13)

 4. Juega=No 5 ==> Humedad=alta 4 conf:(0.8) < lift:(1.6)> lev:(0.11) [1] conv:(1.25)
 5. Ambiente=nublado 4 ==> Juega=Si 4 conf:(1) < lift:(1.56)> lev:(0.1) [1] conv:(1.43)
 6. Juega=Si 9 ==> Ambiente=nublado 4 conf:(0.44) < lift:(1.56)> lev:(0.1) [1] conv:(1.07)
 7. Humedad=Normal Viento=NO 4 ==> Juega=Si 4 conf:(1) < lift:(1.56)> lev:(0.1) [1] conv:(1.43)
 8. Juega=Si 9 ==> Humedad=Normal Viento=NO 4 conf:(0.44) < lift:(1.56)> lev:(0.1) [1] conv:(1.07)
 9. Humedad=Normal 7 ==> Juega=Si 6 conf: (0.86) < lift: (1.33) > lev: (0.11) [1] conv: (1.25)
10. Jueqa=Si 9 ==> Humedad=Normal 6 conf:(0.67) < lift:(1.33)> lev:(0.11) [1] conv:(1.13)
```

Recorre la estructura en forma recursiva determinando los conjuntos de ítems frecuentes con los que formará las reglas.

Construcción – Paso 1

Ordenar los ítems según su frecuencia. Luego utilizar este orden para reescribir los ejemplos.

TID	Items
Juan	1 3 4
María	2 3 5
Luis	1 2 3 5
Ana	2 5

Item	#
1	2
2	3
3	3
4	1
5	3

Construcción – Paso 1

Ordenar los ítems según su frecuencia. Luego utilizar este orden para reescribir los ejemplos.

TID	Items
Juan	1 3 4
María	2 3 5
Luis	1 2 3 5
Ana	2 5

Item	#
2	3
3	3
5	3
1	2
4	1

Construcción – Paso 1

Ordenar los ítems según su frecuencia. Luego utilizar este orden para reescribir los ejemplos.

TID	Items						
Juan	1 3 4						
María	2 3 5						
Luis	1 2 3 5						
Ana	2 5						

Item	#	
2	3	
3	3	
5	3	
1	2	
4	1	

TID	Items			
Juan	3 1			
María	2 3 5			
Luis	2 3 5 1			
Ana	2 5			

Construcción – Paso 2

 A partir de los ejemplos ordenados se construye el árbol

TID	Items			
Juan	3 1			
María	2 3 5			
Luis	2 3 5 1			
Ana	2 5			

Raíz

2:3

3:2

5:2

1:1

Construcción – Paso 3

 $\{1,3\} \rightarrow \text{frecuencia 2}$

 $\{2,5\} \rightarrow \text{frecuencia } 3$

{2,3,5} → frecuencia 2

¿Otros pares con frecuencia 2?

5:1

FP-Growth con Weka

Abrir el archivo Compras.xlsx

ID	Papas	Leche	Huevos	Jamon	Pan
Juan	1	0	1	1	0
Maria	0	1	1	0	1
Luis	1	1	1	0	1
Ana	0	1	0	0	1

Abrir con Weka el archivo Compras.xlsx

F	Relation: WekaExcel							
۱	No.	1: ID	2: Papas	3: Leche	4: Huevos	5: Jamon	6: Pan	
I		Nominal	Numeric	Numeric	Numeric	Numeric	Numeric	
ı		Juan	1.0	0.0	1.0	1.0	0.0	
	2	Maria	0.0	1.0	1.0	0.0	1.0	
	3	Luis	1.0	1.0	1.0	0.0	1.0	
	4	Ana	0.0	1.0	0.0	0.0	1.0	

Borrar el atributo ID

FP-Growth con Weka

Luego convertir a binario

Numeric To Binary

P-Growth con Weka

P-Growth con Weka

FP-Growth con Weka

Ejercicio 3 – Titanic.arff

Vamos a estudiar ahora los datos del hundimiento del Titanic. Los datos se encuentran en el archivo "titanic.arff" y corresponden a las características de los 2.201 pasajeros del Titanic. Estos datos son reales y se han obtenido de: "Report on the Loss of the 'Titanic' (S.S.)" (1990), British Board of Trade Inquiry Report_ (reprint), Gloucester, UK: Allan Sutton Publishing. Para este ejemplo sólo se van a considerar cuatro variables:

- Clase (0 = tripulación, 1 = primera, 2 = segunda, 3 = tercera)
- Edad (1 = adulto, 0 = niño)
- Sexo (1 = hombre, 0 = mujer)
- Sobrevivió (1 = sí, 0 = no)

Analizar e interpretar que reglas de asociación podemos extraer de estos atributos.