MPDA'18 Algorithms

Algorithm 1 Parallel Transport Method

Input: A surface Φ , represented as a triangular mesh (V,E,F)

- 1: Place a geodesic curve g_x along S such that it divides the surface completely in 2.
- 2: Divide the curve into N equally spaced points p with distance W.
- 3: Place an vector ${\bf v}$ onto p_0
- 4: Parallel transport that vector along g_x as described in [@fig:parTransProc].
- 5: for all points p_i where i = 0,...,M do
- Generate geodesic curve $+g_i$ and $-g_i$ using vector \mathbf{v}_i and $-\mathbf{v}_i$ respectively.
- Join $+g_i$ and $-g_i$ together to obtain g_i
- Add g_i to output.
- 9: end for

Output: Set of geodesic curves g_i , where i = 0, ..., M

Algorithm 2 Evolution Method

Input: A surface Φ , represented as a triangular mesh (V,E,F), a desired width W, and a starting geodesic curve g_0 .

- 1: Place a geodesic curve g_i along Φ and name it g_0 .
- 2: Divide the curve into equally N number of sample points.
- 3: for all points p_i where i = 0, ..., N do 4: Find tangent vector \mathbf{v}_i^T of g
- Rotate \mathbf{v}_i^T by $\frac{\pi}{4}$ 5:
- 6: Generate geodesic h_i^{\perp} from p_i and \mathbf{v}_q^T
- 7: end for
- 8: Compute BEST FIT GEODESIC g_{i+1}
- 9: if No best fit is found then
- 10: BREAK
- 11: end if
- 12: Make g_{i+1} the current geodesic for next iteration.

Output: Set G of geodesic curves g_i , where i = 0, ..., M

Algorithm 3 Calculate the best-fit geodesic

Input: Curve g_i , perp geodesics h^{\perp} , desired width W and an angle threshold α . 1: Obtain a point p_i at distance W from the starting point of each g_i^{\perp}

- 2: Select any point p_i as the start point and name it p_0 .
- 3: Select the tangent vector v_T of g₁[⊥] at p₀.
 4: Rotate v_T 90° around the normal of Φ at p₀.
- 5: Generate an initial geodesic g_i .
- 6: Obtain error measure ϵ as the least squares difference between the desired distance W and the actual distance D
- 7: Find the geodesic that has the least error by rotating v_T by a small amount each step.

Output: The next geodesic curve that best fits W.

Algorithm 4 Calculate the best-fit piecewise geodesic

Start from: Step ?? of Algorithm 3.

- 1: Find the largest interval I of g_{i+1} that does not exceed ϵ by a given
- 2: if g_i satisfies the ϵ for all h^{\perp} 's then 3: BREAK 4: end if

- 5: Split g_i
- 6: Remove used h^{\perp} from list.
- On end: Continue from Step ?? of Algorithm 3.

Algorithm 5 Panels: Modified Tangent-developable method

Input: The reference surface Ψ , represented as a mesh (V,E,F) and a geodesic pattern of curves $g_{0...N}$ 1: Compute the *tangent developable surfaces* Ψ_i for all surfaces $s_i \to i =$ even numbers

- 1. Compute the tangent developable surfaces \mathcal{F}_t for an attraces \mathcal{F}_t t and t and t attraces \mathcal{F}_t t and t and t attraces \mathcal{F}_t t and t and t and t attraces \mathcal{F}_t t and t
- 4: Determine points A_i(x) and B_i(x) which are the closest to geodesics s_{i-1} and s_{i+1}. This serves for trimming the surface Ψ_i.
 5: end for
- 6: Trim Ψ_i with the curve generated from all points $A_i(x)$ and $B_i(x)$ respectively. **Output:** Trimmed developable surface Ψ_i .