السلسلة رقم 3 تحضيرا لبكالوريا 2011

(إعداد الأستاذ بواب نور الدين)

(Bac Métropole Juin 2010 STL): التمرين الأول

المستوي المركب منسوب إلى معلم متعامد ومتجانس ($O; \overrightarrow{u}, \overrightarrow{v}$) .

- . $z^2 4z + 16 = 0$: (E) المعادلة \mathbb{C} المعادلة الأعداد المركبة
- $z_B = 2 + 2i\sqrt{3}$ و B اللتين لاحقتاهما $z_A = 2 2i\sqrt{3}$ و A نعتبر النقطتين A
 - . Z_B و Z_A . الطويلة وعمدة لكل من العددين المركبين م
 - $z_C = -2\sqrt{3} 2i$ لتكن C النقطة ذات اللاحقة (3 لتكن C

أ- بين أن النقط B ، A و C تنتمي إلى نفس الدائرة C يطلب تعيين مركزها ونصف قطرها . C و B ، A و النقط B و النقط الدائرة

- . $z_D = 4i$ لتكن D النقطة ذات اللاحقة D
- بيّن أن النقطة C هي صورة النقطة D بالدوران الذي مركزه O وزاويته $\dfrac{2\pi}{2}$.
- . (c) بيّن أن النقطة E صورة النقطة A بالانسحاب الذي شعاعه OB تنتمى إلى الدائرة \odot - علم النقطة E .

(Bac Amérique du Nord Juin 2010 S): التمرين الثاني:

نعتبر النقط: ($O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$) نعتبر النقط: . C(-4;0;-3) $\mathcal{B}(2;-6;5)$ $\mathcal{A}(1;-2;4)$

أ- بيّن أن النقط A ، B و C ليست في استقامية $oldsymbol{1}$

ب- بيّن أن الشعاع (1;-1;-1) هو شعاع ناظمي للمستوي (ABC) .

(ABC) جـ عين معادلة للمستوى

(ABC) أ- اكتب تمثيلا وسيطيا للمستقيم الذي يمرّ بالنقطة O و عمودي على المستوي (ABC) . . (ABC) على المستوي المسقط العمودي للنقطة O على المستوي المستوي .

. (BC) نسمي H المسقط العمودي للنقطة O على المستقيم G

.
$$\overrightarrow{BH} = t \, \overrightarrow{BC}$$
 ليكن t العدد الحقيقي الذي يحقق $t = \frac{\overrightarrow{BO} \cdot \overrightarrow{BC}}{\|\overrightarrow{BC}\|^2}$: أ- بيّن أن

. H استنتج قيمة t وإحداثيات النقطة

التمرين الثالث:

يحتوي صندوق على 5 كرات بيضاء و 2 كرات سوداء و 3 كرات حمراء (لا نميّز بينها عند اللمس) . نسحب عشوائيا وفي أن واحد أربع كرات من هذا الصندوق .

- 👤 نعتبر الحادثتين التاليتين :
- A: (الحصول على كرة حمراء واحدة فقط A
- \ast الحصول على كرة بيضاء على الأقل \ast : B
 - . $P(B) = \frac{41}{42}$ و $P(A) = \frac{1}{2}$. بيّن أن

أ- حدّد القيم التي يأخذها المتغيّر العشوائي X.

X عين قانون الاحتمال للمتغيّر العشوائي X

(Bac Polynésie Juin 2010 S): التمرين الرابع

الجزء الأول:

 $g(x) = \ln(2x) + 1 - x$: بالدالة العددية المعرفة على المجال المجال $g(x) = \ln(2x) + 1 - x$

lpha أـ بيّن أن المعادلة g(x)=0 تقبل في المجال $[1;+\infty[$ حلا وحيدا g(x)=0

 $1 + \ln(2\alpha) = 1$: ب- أثبت أن

: المعرفة بـ المتتالية (u_n) المعرفة بـ (u_n)

. $u_{n+1} = \ln(2u_n) + 1$ ، n عدد طبيعي $u_0 = 1$

نسمي (Γ) المنجني الذي معادلته $y = \ln(2x) + 1$ في المستوي المنسوب إلى معلم متعامد ومتجانس $(O; \overline{i}, \overline{j})$. ومتجانس $(D; \overline{i}, \overline{j})$. ومتجانس المنحني و u_1 ، مثل على محور الفواصل الحدود u_1 ، مثل على محور الفواصل الحدود . u_1

 $1 \le u_n \le u_{n+1} \le 3$ ، n عدد طبيعي بانه من أجل كل عدد طبيعي

lpha . lpha متقاربة نحو العدد lpha

الجزء الثاني:

. $f(x)=(x-1)e^{1-x}$: بعتبر الدالة f المعرفة على المجال المجال f بالدالة المعرفة على المجال . $(O; \overrightarrow{i}, \overrightarrow{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامّد والمتجانس البياني للدالة (C_f)

نضع: χ من أجل كل عدد حقيقي χ أكبر من أو يساوي χ ، نضع:

$$F(x) = \int_{1}^{x} f(t) dt = \int_{1}^{x} (t-1)e^{1-t} dt$$

. $[1;+\infty[$ المجال متزايدة على المجال F أ- بيّن أن الدالة

x من x من x من x من x من أجل كل عدد حقيقي x من x من x من x من x من x

$$F(x) = -x e^{1-x} + 1$$

 $\cdot [1; +\infty]$ من أجل كل عدد حقيقي x من أجل كل عدد مقيقي

 $\ln(2x) + 1 = x$ المعادلة $F(x) = \frac{1}{2}$ تكافئ المعادلة

، (C_f) عدد حقيقي أكبر من أو يساوي 1 . نسمي D_a جزء المستوي المحدد بالمنحني ax=a و x=1 الذين معادلتاهما و المستقيمين اللذين

. $D_a = \frac{1}{2}$ عيّن العدد a بحيث يكون