Második

Váraljai Péter

2016.01.01

Contents

1	Első óra					
2	Második óra					
3 3. óra						
	3.1	Fáblázatok használata	4			
		3.1.1 Oszlopok összehúzása	5			
	3.2	Elágazások	5			
	3.3	Egyéb tudnivalók	5			
	3.4		5			

Chapter 1

Első óra

Chapter 2

Második óra

Chapter 3

3. óra

3.1 Táblázatok használata

Számrendszer	Alap	Jele	Példa
Decimális	10		139
Bináris	2	b	100b
Oktális	8	0	065
Hexadecimális	16	0x vagy h	0x243, 22h
π -alapú	π	• • •	• • •

Table 3.1: A félév elején tanult számrendszerek...

A babel csomag használatával névelővel is elláthatjuk a referenciákat. Az utolsó sornál nem kell sortörést jelezni, csak ha vonalat húzunk utána....

Megjegyzés: a táblázat annál szebb, minél kevesebb a vonal és ha függőleges nincs, vagy alig észrevehető.

Megjegyzés2: további csomagok segítségével tudunk szaggatott vonalat és egyéb vastagságú vonalakat használni.

Közös oszlop						
Számrendszer	Alap	Jele	Példa			
Decimális	10		139			
Bináris	2	b	100b			
Oktális	8	0	065			
Hexadecimális	16	0x vagy h	0x243, 22h			
π -alapú	π	• • •	• • •			

3.1.1 Oszlopok összehúzása

3.2 Elágazások

$$f(n) = \begin{cases} n/2 & \text{ha } n \text{ p\'aros} \\ -(n+1)/2 & \text{ha } n \text{ p\'aratlan} \end{cases}$$
(3.1)

3.3 Egyéb tudnivalók

Órai munka: keressetek rá a neten, hogy lehet algoritmust közölni latex-ben.

3.4 Idézés

Minden tudományos munkában a felhasznált irodalmat idézzünk. Soha nem használunk fel irodalmat anélkül, hogy idéznénk. Soha. Itt egy idézet [?]. Ennyi.

Megtudtam, hogy lehet a magyar babel csomagot használni: recompile from scratch.

A fast exponentiation procedure:

 $i:=1 \ 10 \ 1 \ |expt|(2,i);$

|newline|() This text will be set flush to the right margin |expt|(x,n) z:=1; n=0 ; |odd|(n) ; This is a comment statement; n:=n/2; x:=x*x ; { n>0 }; n:=n-1; z:=z*x ; |print|(z)

¹Lábjegyzetet írunk