Homework 3

ELEN0071 University of Liège, Spring 2019

Due: Wednesday 29/05/2019 11:59pm

Instructions: Name your homework report LastName1_LastName2_LastName3_homework3.pdf (in alphabetical order). Submit your homework report on the Montefiore submission platform (http://submit.montefiore.ulg.ac.be).

1. Noise filtering. Consider the following noisy signal

$$x_{\rm ns}[n] = x[n] + v[n]$$

where $x[n] = \cos(20\pi t) + 0.5\cos(40\pi t + 1.4) + 0.8\cos(120\pi t + 0.7)$ and v[n] is an arbitrary noise. The file hw3_noisy_signal.mat contains $x_{\rm ns}[n]$ and x[n], which are sampled at 1000 Hz.

The goal is to design a filter to remove the noise from $x_{ns}[n]$ without distortion, i.e., the filtered signal and the original signal should have the same "shape" $(x_{filt}[n] = Gx[n - n_0])$.

- (a) Plot x[n] and $x_{ns}[n]$ in the same axis (range: [N/2-200, N/2+200] where N is the length of x[n]).
- (b) Plot the single-sided amplitude spectrum of the noisy signal $x_{ns}[n]$.
- (c) Determine the approximate frequency range of the noise v[n].
- (d) Design a filter to remove the noise from $x_{ns}[n]$ preserving the shape of the signal (i.e., without distortion). Explain clearly your filter design procedure.
- (e) Plot the single-sided amplitude spectrum of the filtered signal $(x_{\text{filt}}[n])$.
- (f) Plot x[n] and $x_{\text{filt}}[n]$ in the same axis (range: [N/2-200, N/2+200] where N is the length of x[n]).