

HAAS SERVICE AND OPERATOR MANUAL ARCHIVE

VF-Series Service Manual 96-8100 English June 1998

- This content is for illustrative purposes.
- Historic machine Service Manuals are posted here to provide information for Haas machine owners.
- Publications are intended for use only with machines built at the time of original publication.
- As machine designs change the content of these publications can become obsolete.
- You should not do mechanical or electrical machine repairs or service procedures unless you are qualified and knowledgeable about the processes.
- Only authorized personnel with the proper training and certification should do many repair procedures.

WARNING: Some mechanical and electrical service procedures can be extremely dangerous or life-threatening.

Know your skill level and abilities.

All information herein is provided as a courtesy for Haas machine owners for reference and illustrative purposes only. Haas Automation cannot be held responsible for repairs you perform. Only those services and repairs that are provided by authorized Haas Factory Outlet distributors are guaranteed.

Only an authorized Haas Factory Outlet distributor should service or repair a Haas machine that is protected by the original factory warranty. Servicing by any other party automatically voids the factory warranty.

COMMON ABBREVIATIONS USED IN HAAS MACHINES

AC Alternating Current

AMP **Ampere**

Automatic Pallet Changer APC APL Automatic Parts Loader

ASCII American Standard Code for Information Interchange

Automatic Tool Changer ATC

ATC FWD Automatic Tool Change Forward ATC REV Automatic Tool Changer Reverse

BHCS Button Head Cap Screw

CB Circuit Breaker CC Cubic Centimeter CCW Counter Clock Wise

CNC Computerized Numeric Control CNCR SPINDLE Concurrent Spindle with axis motion Cyclic Redundancy Check Digit CRC

CRT Cathode Ray Tube

CW Clock Wise DB Draw Bar DC Direct Current **DGNOS** Diagnostic DIR Directory

DNC **Direct Numerical Control**

Enable Conveyor ENA CNVR End Of Block E0B E0F End Of File

EPROM Erasable Programmable Read Only Memory

Emergency Stop E-Stop **FHCS** Flat Head Cap Screw

Foot FT FU Fuse **FWD** Forward GΑ Gauge

HHB Hex Head Bolts ΗP Horse Power

Horizontal Series Of Machining Centers HS

ID Inside Diameter

IN Inch

IOPCB Input Output Printed Circuit Board

LB Pound

Light Emitting Diode LED

LO CLNT Low Coolant LOW AIR PR Low Air Pressure

LVPS Low Voltage Power Supply

MCD RLY BRD M-Code Relay Board Manual Data Input MDI

MEM Memory

M-FIN M-Code Finished MM Millimeter MOCON Motor Control **MOTIF** Motor Interface

MSG Message

NC Numerical Control

NC Normally Closed NO Normally Open OD Outside Diameter

OPER Operator PARAM Parameter

PCB Printed Circuit Board

PGM Program

POR Power On Reset

POSIT Positions PROG Program

PSI Pounds Per Square Inch PWM Pulse Width Modulation RAM Random Access Memory

REPT RIG TAP Repeat Rigid Tap

RET Return

REV CNVR Reverse Conveyor RJH Remote Jog Handle

RPDBDN Rotary Pallet Draw Bar Down
RPDBUP Rotary Pallet Draw Bar Up
RPM Revolutions Per Minute

S Spindle Speed

SDIST Servo Distribution PCB
SFM Surface Feet Per Minute
SHCS Socket Head Cap Screw
SIO Serial Input/Output

SKBIF Serial Key Board Inter Face PCB

SP Spindle
T Tool Number
TC Tool Changer

TIR Total Indicated Runout
TNC Tool Nose Compensation
TRP Tool Release Piston

TS Tail Stock

TSC Through The Spindle Coolant
VF Vertical Mill (very first)
VF-E Vertical Mill- Extended
VMC Vertical Machining Center

1. TROUBLESHOOTING

This section is intended for use in determining the solution to a known problem. Solutions given are intended to give the individual servicing the CNC a pattern to follow in, first, determining the problem's source and, second, solving the problem.

The troubleshooting tips are organized in this section according to the area of the CNC that may be giving sign of a problem. (Ex.: Out-of round circles in drilling will be found under the heading General Machine Operation - Accuracy).

If the problem you are experiencing cannot be found under the heading you expect, please try several other possible headings. If the problem is still not found, contact Haas Automation for further details.

BEFORE YOU BEGIN:

USE COMMON SENSE

Many problems are easily overcome by correctly evaluating the situation. All machine operations are composed of a program, tools, and tooling. You must look at all three before blaming one as the fault area. If a bored hole is chattering because of an overextended boring bar, don't expect the machine to correct the fault. Don't suspect machine accuracy if the vise bends the part. Don't claim hole mis-positioning if you don't first center-drill the hole.

FIND THE PROBLEM FIRST

Many mechanics tear into things before they understand the problem, hoping that it will appear as they go. We know this from the fact that more than half of all warranty returned parts are in good working order. If the spindle doesn't turn, remember that the spindle is connected to the gear box, which is connected to the spindle motor, which is driven by the spindle drive, which is connected to the I/O BOARD, which is driven by the MOCON, which is driven by the processor. The moral here is don't replace the spindle drive if the belt is broken. Find the problem first; don't just replace the easiest part to get to.

DON'T TINKER WITH THE MACHINE

There are hundreds of parameters, wires, switches, etc., that you can change in this machine. Don't start randomly changing parts and parameters. Remember, there is a good chance that if you change something, you will incorrectly install it or break something else in the process. Consider for a moment changing the processor's board. First, you have to download all parameters, remove a dozen connectors, replace the board, reconnect and reload, and if you make one mistake or bend one tiny pin it WON'T WORK. You always need to consider the risk of accidentally damaging the machine anytime you work on it. It is cheap insurance to double-check a suspect part before physically changing it. The less work you do on the machine the better.

1.1 GENERAL MACHINE OPERATION

MACHINE NOT RUNNING

Machine cannot be powered on.

- Check input voltage to machine (see "Electrical Service").
- Check main circuit breaker at top right of electrical cabinet; switch must be at the on position.
- Check overvoltage fuses (see "Electrical Service").
- Check wiring to POWER OFF button on front control panel.
- Check wiring to AUTO OFF relay to IOPCB.
- Check connection between 24V transformer and K1 contactor
- Replace IOPCB (see "Electrical Service").
- Replace POWER PCB (see "Electrical Service").

Machine can be powered on, but turns off by itself.

- Check settings #1 and #2 for Auto Off Timer or Off at M30.
- Check alarm history for OVERVOLTAGE or OVERHEAT shutdown.
- Check AC power supply lines for intermittent supply.
- Check wiring to POWER OFF button on front control panel.
- Check connection between 24V transformer and K1 contactor.
- Replace IOPCB (see "Electrical Service").
- Check Parameter 57 for Power Off at E-STOP.
- Replace MOTIF or MOCON PCB (see "Electrical Service").

Machine turns on, keyboard beeps, but no CRT display.

- Check for green POWER LED at front of CRT.
- Check for power connections to CRT from IOPCB.
- Close doors and Zero Return machine (possible bad monitor).
- Check video cable (760) from VIDEO PCB to CRT.
- Check for lights on the processor.
- Replace CRT (see "Electrical Service").

Machine turns on, CRT works, but no keyboard keys work.

- Check keyboard cable (700B) from VIDEO to SKBIF PCB.
- Replace keypad (see "Electrical Service").
- Replace SKBIF PCB (see "Electrical Service").

♦ Constant E-Stop Condition (will not reset)

• Check Hydraulic counterbalance pressure, low pressure switches and cabling.

VIBRATION

Vibration is a subjective evaluation with perceptions varying among individuals, making it difficult to determine in mild cases if there is an actual problem. Because the VF Series uses a gear head, it will be noisier than a direct drive or belt system. In obvious cases, it is a matter of determining the source - which is not easy, since all parts rotate together and sound can be transferred readily. Vibrations also need to be distinguished from noise such as a bad bearing. We will assume that vibrations would be something that could be felt by putting your hand on the spindle covers. One crude method of measurement would be to take an indicator on a magnetic base extended 10 inches between the table and spindle housing and observe the reading of the indicator. A reading of more than .001 would indicate excessive vibration. The two common sources of noise are the spindle and axis drives. Most complaints about vibration, accuracy, and finish can be attributed to incorrect machining practices such as poor quality or damaged tooling, incorrect speeds or feeds, or poor fixturing. Before concluding that the machine is not working properly, ensure that good machining practices are being observed. These symptoms will not occur individually (Ex. A machine with backlash may vibrate heavily, yielding a bad finish.). Put all of the symptoms together to arrive at an accurate picture of the problem.

Machine vibrates while jogging the axis with the hand wheel.

• The HAAS control uses very high gain accelerations curves. This vibration as you jog is simply the servos quickly trying to follow the handle divisions. If this is a problem, try using a smaller division on the handle. You will notice the vibration more at individual clicks than when you are turning the handle faster. This is normal.

The machine vibrates excessively in a cut.

• This is a tough one to call because machining practices come into play. Generally speaking, the least rigid element of a cut is the tool because it is the smallest part. Any cutter will vibrate if pushed beyond its tensile strength. In order to eliminate the machine as the source of the problem, you need to check the spindle and the backlash of the axes as described in the following sections. Once machining practices have been eliminated as the source of vibration, observe the machine in both operation and "cutting air." Move the axes (individually) without the spindle turning and then turn the spindle without moving the axes. Isolate whether the vibration comes from the spindle head or from an axis. Isolate the source of vibration per "Spindle", "Servo Motors/Leadscrews", and "Gearbox and Spindle Motor" sections.

ACCURACY

Before you complain of an accuracy problem, please make sure you follow these simple do's and don'ts:

- Ensure that the machine has been sufficiently warmed up before cutting parts. This will eliminate mispositioning errors caused by thermal growth of the leadscrews (see "Thermal Growth" section).
- Don't ever use a wiggler test indicator for linear dimensions. They measure in an arc and have sine/cosine errors over larger distances.
- Don't use magnetic bases as accurate test stops. The high accel/decel of the axis can cause them
 to move.
- Don't attach magnetic base to the sheet metal of the spindle head or table.
- Don't mount the magnetic base on the spindle dogs.
- Don't check for accuracy/repeatability using an indicator with a long extension.
- Ensure that test indicators and stops are absolutely rigid and mounted to machined casting surfaces (e.g. spindle head casting, spindle nose, or the table).
- Don't rapid to position when checking accuracy. The indicator may get bumped and give an inaccurate reading. For best results, feed to position at 5-10 inches per minute.
- Check a suspected error with another indicator or method for verification.
- Ensure that the indicator is parallel to the axis being checked to avoid tangential reading errors.
- Center drill holes before using jobber length drills if accuracy is questioned.
- Once machining practices have been eliminated as the source of the problem, determine specifically what the machine is doing wrong.

Machine will not interpolate a round hole.

- Check that the machine is level (see "Installation" section).
- Check for backlash ("Servo Motors/Leadscrews" section).

Dored holes do not go straight through the workpiece.

- Check that the machine is level (see "Installation" section).
- Check for squareness in the Z axis.

Machine bores holes out-of-round.

- Check that the machine is level (see "Installation" section).
- Check the sweep of the machine (see "Spindle Sweep Adjustment" section).

Dored holes are out of round or out of position.

- Check for thermal growth of the leadscrew (see "Thermal Growth" section).
- The spindle is not parallel to the Z axis. Check the spindle sweep to the table and the squareness of the Z axis with a cylinder square. If available use a spindle master bar and indicate the spindle to the Z axis.

Machine mis-positions holes.

- Check for thermal growth of the leadscrew (see "Thermal Growth" section).
- Check that the machine is level (see "Installation" section).
- Check for backlash (see "Servo Motors/Leadscrews" section).
- Check the squareness of the X axis to the Y axis.

Machine leaves large steps when using a shell mill.

- Check that the machine is level (see "Installation" section).
- Check the sweep of the machine (see "Spindle Sweep Adjustment" section).
- Cutter diameter too large for depth of cut.

Boring depth inaccurate

- Check for thermal growth of the leadscrew (see "Thermal Growth" section).
- Check the hydraulic counterbalance system pressure. If pressure is low, check for:
 - > abnormal noises from counterbalance system
 - > oil leaks (esp. at fittings and at filter at top of cylinder)
 - bound cylinder

FINISH

Machining yields a poor finish.

- Check for gearbox vibration. This is the most common cause of a poor finish.
- Check for backlash ("Accuracy/Backlash" section)
- Check the condition of the tooling and the spindle.
- Check for spindle failure.
- Check the condition of the servo motors.
- Check that the is machine level.

THERMAL GROWTH

A possible source of accuracy and positioning errors is thermal growth of the leadscrew. As the machine warms up, the leadscrews expand in all three linear axes, causing accuracy and positioning errors, or inaccurate boring depths. This is especially critical in jobs that require high accuracy, machining multiple parts in one setup, or machining one part with multiple setups.

Note: On machines equipped with *linear scales*, thermal growth will not affect machine positioning or accuracy. However, it is still recommended that the machine be warmed up before cutting parts.

Note: The leadscrew will always expand away from the motor end.

VERIFY THERMAL GROWTH

There are a number of ways to verify the problem. The following procedure will verify thermal growth of the X-axis leadscrew in a machine that has not been warmed up:

- 1. Home the machine. In MDI mode, press POSIT and PAGE DOWN to the OPER page.
- 2. Jog to an offset location on the table (example: X-15.0" Y-8.0"). Select the X axis and press the ORIGIN key to zero it. Select the Y axis and zero it.
- **3.** Press the OFSET key, then scroll down to G110 (or any unused offset). Cursor to X and press PART ZERO SET twice. This will set X0, Y0 at this position.
- **4.** Enter the following program. It will start at the new zero position, rapid 10 inches in the X direction, feed the final .25 inches at 10 inches/min., and then repeat the X movement.

```
G00 G90 G110 X0 Y0;
X10.0;
G01 X10.25 F10.;
M99;
```

- 5. In order to set up the indicator, run the program in SINGLE BLOCK mode, and stop it when X is at 10.25". Set the magnetic base on the table, with the indicator tip touching the spindle housing in the X-axis, and zero it.
- **6.** Exit SINGLE BLOCK mode, and run the program for a few minutes. Enter SINGLE BLOCK mode again, stop the program when X is at 10.25", and take a final reading on the indicator. If the problem is thermal growth, the indicator will show a difference in the X position.

Note: Ensure the indicator setup is correct as described in "Accuracy" section. Errors in setup are common, and often incorrectly appear to be thermal growth.

7. A similar program can be written to test for thermal growth in the Y and Z axes, if necessary.

SOLUTIONS

Since there are many variables that affect thermal growth, such as the ambient temperature of the shop and program feed rates, it is difficult to give one solution for all problems.

Thermal growth problems can generally be eliminated by running a warm-up program for approximately 20 minutes before machining parts. The most effective warm-up is to run the current program, at an offset Z position above the part or table, with the spindle "cutting air". This will allow the leadscrews to warm up to the correct temperature and stabilize. Once the machine is at temperature, the leadscrews won't expand any further, unless they're allowed to cool down. A warm-up program should be run after each time the machine is left idle.

1.2 SPINDLE

NOT TURNING

Spindle not turning.

- If there are any alarms, refer to "Alarms" section.
- Check that the spindle turns freely when machine is off.
- If motor turns but spindle does not, see "Belt Assembly" and "Spindle Motor & Transmission" sections.
- Command spindle to turn at 1800 RPM and check spindle drive display. If display blinks "bb", check spindle orientation switch ("Spindle Orientation" section). If spindle drive does not light the RUN LED, check forward/reverse commands from IOPCB ("Electrical Service").
- Check the wiring of analog speed command from MOTIF PCB to spindle drive (cable 720).
- If spindle is still not turning, replace MOTIF PCB ("Electrical Service").
- If spindle is still not turning, replace spindle drive ("Electrical Service").
- Check for rotation of the gearbox (if applicable) or the motor (VF-0). If the motor or gearbox operates, check the drive belt ("Belt Assembly" section).
- Disconnect the drive belt. If the spindle will not turn, it is seized and must be replaced ("Spindle Assembly" section).

Note: Before using the replacement spindle, the cause of the previous failure must be determined.

Noise

Most noises attributed to the spindle actually lie in the motor/gearbox or drive belt of the machine. Isolate the sources of noise as follows:

Excessive noise coming from the spindle head area.

On VF-1 through 6 models, first determine if the noise is related to the RPM of the motor or the RPM of the spindle. For example: If the noise appears at 2000 RPM in high gear, listen for a similar noise at 500 RPM in low gear. If the same noise persists, the problem lies with the gearbox. If the noise disappears, the problem could be either the gearbox or the spindle, and further testing is necessary.

Note: The gear ratio is 1:1.25 in high gear, and 3.2:1 in low gear.

- Remove the head covers and check the machine's drive belt tension ("Tension Adjustment" section).
 - If the noise persists, turn the drive belt over on the pulleys. If the noise is significantly different, the belt is at fault. Replace the belt ("Belt Assembly" section).
 - If the noise does not change, remove the belt and go on to the next step.
- Check the pulleys for excessive runout (more than 0.003" axial or radial).
- Run the motor (VF-0) or the gearbox (VF-1, VF-2, VF-3) with the drive belt disconnected. If the noise persists, the problem lies with the gearbox/motor. If it disappears, go on to the next step.
- Check for the correct amount of lubrication to the spindle bearings (0.5-1.0 cc every two hours) in a an air mist-lubricated spindle.
 - If the spindle is not getting lubrication, correct the problem per the lube and air diagram at the back of this manual and replace the spindle ("Spindle Assembly" section).
 - > If the spindle is getting lubrication, replace the spindle ("Spindle Assembly" section).

OVERHEATING

When investigating complaints of overheating, a temperature probe must be used to accurately check the temperature at the top of the spindle taper. The temperature displayed in Diagnostics is not relevant. A machine that runs at high RPM continuously will have a much warmer spindle than a machine that runs at a lower RPM. New spindles tend to run much warmer than spindles that have already been broken in. In order to run a valid test on a new spindle, ensure that it is properly broken in.

To break in a spindle, run the following program (it will take approximately 6 hours):

N100 S300 M03 G04 P900.	G04 P900. M05	N700 S6000 M03 G04 P900.
M05	G04 P900.	M05
G04 P900.	G04 P900.	G04 P900.
N200 S1000 M03	N500 S4000 M03	G04 P900.
G04 P900.	G04 P900.	N800 S7500 M03
M05	M05	G04 P900.
G04 P900.	G04 P900.	M05
N300 S2000 M03	G04 P900.	G04 P900.
G04 P900.	N600 S5000 M03	G04 P900.
M05	G04 P900.	M99
G04 P900.	M05	
G04 P900.	G04 P900.	
N400 S3000 M03	G04 P900.	

Note: This program will step the spindle speed from 300 RPM up to either 5000 or 7500 RPM at regular intervals of time, stop the spindle and allow it to cool to room temperature, then restart it so the temperature can be monitored.

If at any time during this procedure the spindle temperature rises above 150 degrees, start the
procedure over from the beginning.

If the spindle fails this test for any reason, check the following:

Check for correct amount of lubrication.

Note: Over lubrication is a common source of overheating. Check the oil flow carefully.

- Check the drive belt tension. Too-tight belts will cause heating of the top bearing in the spindle housing.
- Ensure that the correct oil is being used (refer to "Maintenance Schedule").

STALLING / LOW TORQUE

Generally, complaints of stalling or low torque relate to incorrect tooling or machining practices. A spindle that is tending to seize will yield a poor finish machining, run very hot and very loud. Investigate machining problems before concluding the problem exists with the spindle or spindle drive.

SPINDLE DRIVE

Low line voltage may prevent the spindle from accelerating properly. If the spindle takes a long time to accelerate, slows down or stays at a speed below the commanded speed with the load meter at full load, the spindle drive and motor are overloaded. High load, low voltage, or too fast accel/decel can cause this problem.

If the spindle is accelerated and decelerated frequently, the regenerative load resistor on top of the control may heat up. If this resistor heats beyond 100°C, a thermostat will generate an "overheat" alarm.

If the regen load resistors are not connected or open, this could then result in an overvoltage alarm. The overvoltage occurs because the regenerative energy being absorbed from the motor while decelerating is turned into voltage by the spindle drive. If this problem occurs, the possible fixes are to slow the decel rate or reduce the frequency of spindle speed changes.

ORIENTATION

Spindle loses correct orientation.

Non Vector Drive

- Check alarm history, looking for spindle overload and axis overcurrent alarms. These alarms mean the machine is not being properly operated.
- Check the orientation ring for tightness. Ensure the shaft on which the ring mounts is clean and is free of grease and oil.
- Check the orientation ring for cracks near the bolt holes or near the balancing holes.
 - If there are cracks, replace the ring.
- Check the shot pin on the gearbox for binding, damage, and proper operation. Replace it if it is damaged.
- Check the switch on the shot pin against the Diagnostic display. Replace the switch if it is found to be faulty.

Vector Drive

- Check alarm history. Look for Spindle Z Fault, or Spindle Reference Missing alarms. If these alarms exist, there may be a defective spindle encoder, or a broken ground or shield connection.
- Check parameters.
- Check for a mechanical slip at the contact points of all components between the spindle and the spindle encoder

Tools Sticking In Taper

Tool sticking in the taper causes ATC to be pulled up; accompanied by a popping noise as the tool holder pops out of the spindle taper.

Note: This problem may occur after loading a cold tool into a hot spindle (a result of thermal expansion of the tool holder inside the spindle taper). It may also occur due to heavy milling, milling with long tooling, or cuts with heavy vibration. If sticking only occurs during these situations, no service is necessary. If tool is pulled out of extractors due to a tool stuck in the taper then the unclamp switch is not adjusted correctly or the switch could be bad.

- Check the condition of the tooling, verifying the taper on the tooling is ground and not turned. Look for damage to the taper caused by chips in the taper or rough handling. If the tooling is suspected, try to duplicate the symptoms with different tooling.
- Check the condition of the spindle taper. Look for damage caused by chips or damaged tooling. Also, look for damage such as deep gouges in the spindle taper caused by tool crashing.

- Duplicate the cutting conditions under which the deflection occurs, but do not execute an automatic
 tool change. Try instead to release the tool using the tool release button on the front of the spindle
 head. If sticking is observed, the deflection is not caused by improper ATC adjustment, but is a
 problem in the spindle head on the machine.
- Ensure the spindle is not running too hot.
- Check air supply.
- · Check drawbar height adjustment.

1.3 SERVO MOTORS / LEADSCREWS

NOT OPERATING

All problems that are caused by servo motor failures should also register an alarm. Check the alarm history to determine the problem's cause before any action is taken.

Servo motor is not functioning.

- Check the power cable from rear electrical cabinet to ensure connection is tight.
- Encoder is faulty or contaminated (Alarms 139-142, 153-156, 165-168, 182-185). Replace motor assembly on brushless machines, replace the encoder on brush machines.
- Open circuit in motor (Alarms 139-142, 153-156, 182-185). Replace motor assembly ("Axis Motor Removal / Installation").
- Motor has overheated, resulting in damage to the interior components (Alarms 135-138, 176).
 Replace motor assembly ("Axis Motor Removal/Installation").
- Wiring is broken, shorted, or missing shield (Alarms 153-156, 175, 182-185).
- Dust in the motor from brushes has shorted out the motor (VF-E only) (Alarms 153-156, 175, 182-185). Replace motor assembly ("Axis Motor Removal/Installation").
- Motor has overheated; no damage to the interior components. OVERHEAT alarm has been triggered.
 After thorough check of motor (DO NOT DISASSEMBLE!), take necessary steps to eliminate the
 problem and alarm to resume operation. If motor is still inoperable, replace motor assembly
 ("Axis Motor Removal/Installation").
- Check for broken or loose coupling between the servo motor and the lead screw. Replace or repair the coupling ("Axis Motor Removal/Installation")
- Check for a damaged lead screw, and replace if necessary ("Lead Screw Removal and Installation" section).

NOTE: If a lead screw fails, it is most often due to a failed bearing sleeve. When replacing the lead screw in an older machine, always replace the bearing sleeve with the current angular contact bearing sleeve ("Bearing Sleeve Removal and Installation" section).

Noise

Lead screw noise is usually caused by a lack of lubrication and is usually accompanied by heating. Other causes are misalignment, bearing sleeve damage, or ball nut damage. Check the alarm history of the machine and look for axis overcurrent and following error alarms.

Note: Do not replace lead screws or bearing sleeves without due consideration; they are extremely durable and reliable. Verify that customer complaints are not due to tooling, programming, or fixturing problems.

Servo motor noise.

- Disconnect the servo motor from the lead screw and rotate by hand. If the noise persists, replace the motor assembly ("Axis Motor Removal/Installation" section).
- Noise is caused by motor brushes (VF-E only). No problems will occur and noise should eventually go away.
- Noise is caused by bearings. Rolling, grinding sound is heard coming from the motor. ENSURE NOISE
 IS NOT COMING FROM THE BRUSHES. If bearings are making a consistently loud sound, replace the
 bearing sleeve.

Lead screw noise.

- Ensure oil is getting to the lead screw through the lubrication system (See Air and Oil Diagrams). Look for a plugged metering valve.
- Check for damage to the bearing sleeve.

Note: The current angular contact design sleeve has a fixed pre-load; it cannot be adjusted.

- Run the axis back and forth. The motor will get very hot if the bearing sleeve is damaged. If so, turn
 the axis by hand and feel for roughness in the lead screw. Loosen the clamp nuts at both ends of the
 lead screw. If the symptom disappears, replace the bearing sleeve. Be certain to check for damage
 to the lead screw shaft where the bearing sleeve is mounted.
 - ➤ If the noise persists, the lead screw is damaged and must be replaced. When replacing the lead screw in an older machine, always replace the bearing sleeve with the current angular contact design bearing sleeve.
- Check the lead screw for misalignment. If incorrect, perform alignment procedure.
- Misalignment in the lead screw itself will tend to cause the lead screw to tighten up and make excessive noise at both ends of the travel. The ballnut may get hot. Misalignment radially at the yoke where the lead screw ball nut mounts is indicated by heating up of the ball nut on the lead screw, and noise and tightness through out the travel of the lead screw. Misalignment at the yoke where the ball nut mounts is indicated by noise and tightness at both ends of the travel of the lead screw. The ball nut may get hot.

Accuracy / Backlash

Accuracy complaints are usually related to tooling, programming, or fixturing problems. Eliminate these possibilities before working on the machine.

Poor mill table-positioning accuracy.

- Check for a loose encoder on the servo motor. Also, ensure the key in the motor or the lead screw is in place and the coupling is tight (Brush machines only).
- Check parameters for that axis
- Check for backlash in the lead screw as outlined below:

INITIAL PREPARATION -

Turn the VMC ON. ZERO RET the machine and move the mill table to the approximate center of its travel in the X and Y directions. Move the spindle head to approximate center of the Z-axis travel, also.

CHECKING X-AXIS:

1. Set up a dial indicator and base on the mill table as shown in Fig. 1-1.

Figure 1-1. Dial indicator in position to check X-axis.

- 2. Set dial indicator and the "Distance to go" display in the HANDLE JOG mode to zero as follows:
 - > Zero the dial indicator.
 - > Press the MDI button on the control panel.
 - > Press the HANDLE JOG button on the control panel.

The "Distance to go" display on the lower right hand corner should read: X=0 Y=0 Z=0

- 3. Set the rate of travel to .001 on the control panel and jog the machine .010 in the positive (+) X direction. Jog back to zero (0) on the display. The dial indicator should read zero (0) \pm .0001.
- 4. Repeat Step 3 in the negative (-) direction.

TOTAL DEVIATION BETWEEN THE DIAL INDICATOR AND THE CONTROL PANEL DISPLAY SHOULD NOT EXCEED .0002.

An alternate method for checking backlash is to place the dial indicator as shown in Fig. 3-1 and manually push on the mill table in both directions. The dial indicator should return to zero after releasing the table.

Note: The servos must be on to check backlash by this method.

CHECKING Y-AXIS:

1. Set up a dial indicator and base on the mill table as shown in Fig. 1-2.

Figure 1-2. Dial indicator in position to check Y-axis.

- 2. Set dial indicator and the "Distance to go" display in the HANDLE JOG mode to zero as follows:
 - > 7ero the dial indicator.
 - > Press the MDI button on the control panel.
 - > Press the HANDLE JOG button on the control panel.

The "Distance to go" display on the lower right hand corner should read: X=0 Y=0 Z=0

- 3. Set the rate of travel to .001 on the control panel and jog the machine .010 in the positive (+) Y direction. Jog back to zero (0) on the display. The dial indicator should read zero (0) \pm .0001.
- 4. Repeat Step 3 in the negative (-) direction.

TOTAL DEVIATION BETWEEN THE DIAL INDICATOR AND THE CONTROL PANEL DISPLAY SHOULD NOT EXCEED .0002.

An alternate method for checking backlash is to place the dial indicator as shown in Fig. 1-2 and manually push on the mill table in both directions. The dial indicator should return to zero after releasing the table.

Note: The servos must be on to check backlash by this method.

CHECKING Z-AXIS:

1. Set up a dial indicator and base on the mill table as shown in Fig. 1-3.

2. Manually push up and down on the spindle head while listening for a 'clunk'. Also, watch for any rapid change in the dial indicator. Either of these indicate possible backlash.

Note: Servos must be on to check for backlash in the Z-axis.

Note: Do not mistake deflection for backlash in the system.

Figure 1-3. Dial indicator in position to check Z-axis.

If backlash is found in the system, check for the following possible causes:

- Loose SHCS attaching the ball nut to the nut housing. Tighten the SHCS as described in Mechanical Service.
- Loose SHCS attaching the nut housing to the mill table, spindle head, or saddle, depending on the axis. Tighten the SHCS as described in Mechanical Service.
- Loose clamp nut on the bearing sleeve. Tighten the SHCS on the clamp nut.
- Loose motor coupling. Tighten as described in Mechanical Service.
- Broken or loose flex plates on the motor coupling.

Note: The coupling cannot be serviced in the field and must be replaced as a unit if it is found to be defective.

- Loose SHCS attaching the bearing sleeve to the motor housing. Tighten as described in "Lead Screw Removal and Installation".
- Defective thrust bearings in the bearing sleeve. Replace the bearing sleeve as outlined in "Bearing Sleeve Removal and Installation".
- Loose SHCS attaching the axis motor to the motor housing. If the SHCS are found to be loose, inspect the motor for damage and if none is found, tighten as described in "Axis Motor Removal/Installation". If damage is found, replace the motor.
- Incorrect backlash compensation number in the parameter in the machine. Check Parameters 13, 27, and 41.
- Worn lead screw.

VIBRATION

Excessive servo motor vibration.

- If no "A" axis is present, swap the suspected bad servo motor with the "A" driver and check to see if there is a driver problem. If needed, replace the DRIVER PCB ("Electrical Service" section).
- Check all Parameters of the suspected axis against the Parameters as shipped with the machine. If there are any differences, correct those and determine how the Parameters were changed.
 PARAMETER LOCK should normally be on.
- A bad motor can cause vibration if there is an open or short in the motor. A short would normally
 cause a GROUND FAULT or OVERCURRENT alarm; check the ALARMS. An ohmmeter applied to the
 motor leads should show between 1 and 3 ohms between leads, and over 1 megohm from leads to
 chassis. If the motor is open or shorted, replace.

OVERHEATING

Servo motor overheating.

- If a motor OVERHEAT alarm occurs (ALARMS 135-138), check the Parameters for an incorrect setting. Axis flags in Parameters 1, 15, or 29 can invert the overheat switch (OVER TEMP NC).
- If the motor is actually getting hot to the touch, there is excessive load on the motor. Check the user's application for excessive load or high duty cycle. Check the lead screw for binding ("Accuracy/Backlash" section). If the motor is binding by itself, replace in accordance with "Axis Motor Removal/Installation".

Following Errors

FOLLOWING ERROR (VF-E only) or SERVO ERROR TOO LARGE alarms 103-106, 187 occur on one or more axes sporadically.

- Check DC bus voltage on diagnostics page #2 (VF-E only). Verify this voltage on the drive cards in the control panel. If it is at the low side of the recommended voltages, change the transformer tap to the next lower voltage group as explained in the Installation Manual.
- Check motor wiring for a short.
- Replace driver card ("Electrical Service").
- Replace servo motor ("Axis Motor Removal/Installation").
- Replace encoder (VF-E only)

Z-axis motor overcurrent.

Brake won't release (leadscrew won't rotate)

- Alarm not cleared
- Low counterbalance pressure
- Check Z axis parameters
- Check the lead screw for binding
- Check motor and cable for shorts
- Replace amplifier (drive card on a VF-E)

VF-6 with Z axis brake only

- Brake power fuse blown
- Brake power transformer blown
- Brake power rectifier blown
- Cabling pinched
- Brake failed

1.4 AUTOMATIC TOOL CHANGER

DEFLECTION

Deflection is usually caused by ATC misalignment, and sometimes caused by damaged or poor quality tooling, a damaged spindle taper, or a damaged drawbar or poor air supply. Before beginning any troubleshooting, observe the direction of the ATC deflection.

During a tool change, ATC appears to be pushed down.

- Check to see if pull studs on the tool holder are correct and tight.
- Check the adjustment of the "Z" offset ("Setting Parameter 64").

Note: If the offset is incorrect a tool changer crash has occured and a thorough inspection of the ATC is necessary at this time.

- Check the adjustment of the "Z" offset. Check parameters 71, 72, and 143 against the values that are in the documentation sent with the machine.
- Ensure the tool holders are held firmly in place by the extractor forks.
- Ensure the balls on the drawbar move freely in the holes in the drawbar when the tool release button is pressed. If they do not move freely, the a ATC will be pushed down about 1/4" before the tool holder is seated in the taper, resulting in damage to the roller bolts on the ATC shuttle. Replace the drawbar.
- Check Drawbar height adjustment.
- If TSC, check for excessive coolant tip wear.
- Tool holder sticking in the spindle taper causes the ATC to be pulled up as the spindle head is travelling the distance specified in parameter 71; accompanied by a popping noise as the tool holder pops out of the spindle taper.

Note: This problem may occur after loading a cold tool into a hot spindle (a result of thermal expansion of the tool holder inside the spindle taper. It may also occur in cuts with heavy vibration. If sticking occurs only during these circumstances, no service is necessary. If tool is pulled out of extractors due to a tool being stuck in the taper then the unclamp switch is not adjusted correctly or the switch could be bad.

- Check the condition of the customer's tooling, verifying the taper on the tool holder is ground and not turned. Look for damage to the taper caused by chips in the taper or rough handling. If the tooling is suspected, try to duplicate the symptoms with different tooling.
- Check the condition of the spindle taper. Look for damage caused by chips or damaged tooling.
 Also, look for damage such as deep gouges in the spindle taper caused by tool crashing. See "Spindle Assembly" section for spindle cartridge replacement.
- Duplicate the cutting conditions under which the deflection occurs, but do not execute an automatic
 tool change. Try instead to release the tool using the tool release button on the front of the spindle
 head. If sticking is observed, the deflection is not caused by improper ATC adjustment, but is a
 problem in the spindle or tool release piston. See the "Spindle Assembly" section in Mechanical
 Sevice for spindle cartridge replacement.
- Check air supply pressure it should be 85 psi (min). An air pressure drop of no more than 10 psi during tool release is acceptable. An air pressure drop greater than 10 psi is caused by a supply line restriction or an undersize supply line. Use of quick couplers (1/4") can cause restriction. Directly connecting the air hose to a barb fitting can help.

During a tool change, ATC appears to be pulled up; no popping noises.

Check the adjustment of the "Z" offset ("Setting Parameter 64" section).

Note: If the offset is incorrect, a tool changer crash has occurred, and a thorough inspection of the ATC is necessary at this time.

• Ensure the roller bolts on the shuttle of the ATC are tight against the V-guides on the ATC holding arm. If the lower right roller bolt is loose against the V-guide, the upper right bolt is probably bent. See the following section ("ATC Crashing") or "Roller Bolt Replacement", for roller bolt replacement.

Note: Bent roller bolts are a symptom of another problem with the ATC. Repair the bent roller bolt and then isolate the ATC problem.

- Check Parameter 71 against the values that are in the documentation sent with the machine.
- Ensure the balls on the drawbar move freely in the holes in the drawbar when the tool release button is pressed. If they do not move freely, the ATC will be pushed down about 1/4" before the tool holder is seated in the taper, resulting in damage to the roller bolts on the ATC shuttle. Replace drawbar.

Tool holders twist against extractor fork during a tool change.

• Check the alignment of the ATC in the X and Y axes ("Automatic Tool Changer Alignment" section).

Tool holders spin at all pockets of the ATC when the ATC shuttle retracts.

ATC is misaligned in the "Y" axis. Realign ATC ("Automatic Tool Changer Alignment" section).

Note: Observe the direction the tool holder rotates, as this will be the direction in which the "Y" axis of the ATC needs to be moved.

riangle Tool holders spin only at certain pockets of the ATC when the ATC shuttle retracts.

• Check all the extractor forks to ensure they are centered in the pocket of the ATC. Also, see above. See "Extractor Fork Replacement" section, if necessary.

Note: If the ATC shows the problem as described here, each extractor fork must be checked and centered to eliminate the possibility of the ATC being aligned against an incorrectly-centered fork.

CRASHING

Crashing of the ATC is usually a result of operator error. The most common ATC crashes are outlined as follows:

Shuttle crashes into spindle when a tool change is commanded (tool holder is in the pocket facing the spindle head).

 Rotate the carousel to an empty pocket. Refer to the Programming and Operation manual for correct operation.

Note: This crash is fairly common and is a result of operator error. If the ATC is stopped in the middle of tool change cycle, the operator must command the ATC to an empty pocket before the machine will operate correctly. Repeated crashes of this type can damage the I/O board, the slip clutch, and the shuttle motor in the ATC.

During a tool change spindle crashes into top of the tool holder after a turret rotation.

When the spindle head moves down over the top of the tool holder during a tool change, the pull stud will bind inside the drawbar bore of the spindle, forcing the ATC down, bending the upper right roller bolt on the ATC shuttle or completely breaking it off. Tool holder is not held correctly in the extractor fork, possibly held only in one side of the extractor and at an odd angle.

Check all of the extractor forks on the ATC.

During a tool change spindle crashes into top of the tool holder after a turret rotation.

The balls in the drawbar do not move freely, causing the ATC to be forced down far enough to bend the upper right roller bolt or completely break it off.

- Ensure the balls on the drawbar move freely in the holes in the drawbar when the tool release button
 is pressed. If this failure occurs, check all of the extractor forks on the ATC for damage and repair
 the spindle drawbar.
- Check drawbar height and set according to the appropriate section, if necessary.

ATC properly deposits a tool holder in the spindle, but the tools are dropped onto the machine table when the shuttle retracts.

 Inspect the balls and the Belleville springs in the drawbar. See appropriate section and replace drawbar.

The part or fixture on the mill table crashes into long tooling or into the ATC itself during a tool change.

• Program the machine to move the part out of the way of the ATC. Inspect the pocket involved in the crash for damage and replace parts as necessary.

The part or fixture on the mill table crashes into long tooling or into the ATC itself when machining.

• Either reposition the tools to remove the interference, or program the carousel to rotate long tooling out of the way of the part (USE THIS ONLY AS A LAST RESORT). CAUTION! If the carousel has to be programmed to rotate long tools clear of the part, the correct carousel position must be programmed back in before a tool change can be executed.

Note: If these crashes occur, thoroughly inspect the ATC for damage. Pay close attention to the extractor forks, the sliding covers on the ATC carousel, and the roller bolts on the ATC shuttle. See appropriate section for extractor fork replacement.

BREAKAGE

Breakage of the ATC is caused by either very hard and repeated crashes or excessive TSC coolant tip wear.

ATC shuttle is broken off of the holding plate.

 Carefully inspect the bosses on the shuttle casting (where the roller bolts mount) for damage to the threads or cracks. If any of the bosses are cracked, replace the casting. Realign the tool changer after repairing the machine.

ATC extractor forks are damaged after breakage.

• Check the condition of the mounting holes in the carousel. If the threads are damaged, they must be repaired or the carousel replaced. See appropriate section for extractor fork replacement.

Noisy Operation

To isolate noise(s) in the ATC, carefully observe the ATC in operation and look for the following:

ATC makes noise as the shuttle moves.

- Check the adjustment of the roller bolts on the ATC ("Roller Bolt Replacement" section). Loose roller
 bolts can cause the ATC to make a clunking noise when the shuttle is commanded to move. Tight
 roller bolts can cause the shuttle motor to labor excessively, possibly damaging the motor or the
 I/O board. In this case, the shuttle may also move too slowly.
- Check for damage to the trap door on the ATC cover. See appropriate section for trap door replacement.
- Check for missing plastic riders on the ATC shutter. See "ATC Trap Door Replacement" for shutter replacement.
- Ensure the guide pin mounted to the holding plate is not bent and does not scrape the ATC cover during movement. See "ATC Trap Door Replacement" for guide pin replacement.
- Listen for damage to the gear train in the shuttle motor. If the motor is found to be the source of the noise, replace the motor ("Shuttle Motor Removal" section). DO NOT try to repair the motor or to further isolate the noise in the motor. ATC makes noise during carousel rotation.
- Check to ensure the Geneva driver on the turret motor is tight and properly adjusted ("Shuttle
 - Motor Removal" section). If the Geneva driver is found to be loose, check for damage to the Geneva star. Any roughness in the slots will require that it be replaced ("Geneva Star Replacement" section).
- Check the adjustment of the Geneva driver in relation to the Geneva star ("Geneva Star Replacement" section). If the adjustment is too loose, the carousel will vibrate heavily and make a loud clanking noise during carousel rotation. If the adjustment is too tight, the turret motor will labor excessively and the carousel may appear to move erratically.

Note: If the turret motor adjustment is tight for extended periods, the turret motor, Geneva star, and the I/O board may be damaged. If the adjustment of the Geneva star appears tight at some pockets and loose at others, the problem lies with the Geneva star. Check the concentricity of the star relative to the bearing housing on the carousel assembly. If the concentricity of the star is proven to within specification and the problem still persists, the Geneva star must be replaced ("Geneva Star Replacement" section).

- Ensure the screws holding the turret motor to the mounting plate are tight ("Turret Motor Removal" section).
- Ensure the screws attaching the motor mounting plate to the shuttle casting are tight.
- Check for excessive noise in the gear train of the turret motor. See appropriate section for turret motor replacement.

Note: If the motor is found to be the source of noise, replace the motor assembly (motor, mounting plate, and Geneva driver).

DO NOT attempt to repair the motor or to further isolate the problem in the motor.

SPINDLE ORIENTATION

A switch is used to sense when the pin drops in to lock the spindle. When the pin drops the switch opens, indicating orientation is complete. The normally-closed side of this switch is wired to the spindle drive and commands it into the COAST STOP condition. This is done to make sure that the spindle motor is not powered when the pin is locking the spindle. If, during a tool change, the dogs on the spindle shaft do not align with the keys on the ATC carousel, the spindle orientation may be at fault.

The orientation of the spindle is as follows:

- 1) If the spindle is turning, it is commanded to stop,
- 2) Pause until spindle is stopped,
- 3) Spindle orientation speed is commanded forward.
- 4) Pause until spindle is at orientation speed,
- 5) Command spindle lock air solenoid active,
- 6) Pause until spindle locked status is active and stable,
- 7) If not locked after time-out time, alarm and stop.
- ATC out of orientation with the spindle. Incorrect spindle orientation will cause the ATC to crash as the shuttle moves. Alarm 113 will be generated.
 - Check the orientation of the machine.
- ATC will not run.
 - In all cases where the tool changer will not run, an alarm is generated to indicate either a shuttle
 in/out problem or a turret rotation problem. These alarms will occur either on an attempt to change
 tools (ATC FWD) or ZERO RETURN the machine (AUTO ALL AXES). Use the appropriate alarm to
 select one of the problems following:
- ATC shuttle will not move; shuttle is getting power (Command a tool change and feel for power being applied to the shuttle motor).
 - Disconnect the slip clutch arm from the ATC shuttle and ensure the shuttle can move freely. If not, appropriate section for shuttle adjustment.
 - Command a tool change with the shuttle disconnected.
 - If the shuttle cycles, check the slip clutch on the ATC. See "Shuttle Installation" section for slip clutch replacement.

Note: The slip clutch should move the shuttle with a fair amount of force, but not so much that the shuttle cannot be made to slip when holding it back by hand. If the slip clutch is frozen, replace it. It cannot be rebuilt in the field.

If the shuttle does not cycle, the motor has failed and must be replaced. Turn the motor by hand and feel for binding in the gear train in the motor.

Note: The motor uses a large amount of gear reduction and should be hard to turn by hand.

- ATC shuttle will not move; shuttle is not getting power.
 - Command a tool change feel for power being applied to the shuttle motor.
 - Check that the TC IN/TC OUT LED on the I/O PCB is illuminated when a tool change takes place.
 - If the LED lights, check the fuse FU5 on the POWER PCB or FU1 on the I/O PCB. Otherwise, replace the I/O PCB ("Electrical Service").
 - ► If the LED does not light, check cables I/O-P1-510 and I/O-P2-520.

ATC turret will not rotate; turret motor is getting power.

- Command a tool change feel for power being applied to the turret motor.
- If power is applied but the output shaft on the motor does not turn, check for binding between the turret motor assembly and the Geneva star ("Automatic Tool Changer" section). Check for damage to the Geneva star or the Geneva driver. Check for a broken turret motor ("Turret Motor Removal" section).

Note: Do not attempt to repair the motor or to further isolate the problem in the motor.

ATC turret will not rotate; turret motor is not getting power.

- Command a tool change feel for power being applied to the turret motor.
- Check that the TC CW/ TC CCW LED on the I/O PCB is illuminated when a tool change takes place.
 - ➤ If the LED lights, check the fuse FU5 on the POWER PCB or FU1 on the I/O PCB. Otherwise, replace the I/O PCB (Electrical Service).
 - ➤ If the LED does not light, check cables I/O-P1-510 and I/O-P2-520.

1.5 GEARBOX AND SPINDLE MOTOR

The gearbox cannot be serviced in the field and must be replaced as a unit. **NEVER** remove a motor from a VF-Series mill that has a gearbox, as this will damage the gearbox and void the warranty.

Noise

When investigating complaints of gearbox noise, also refer to "Spindle" troubleshooting section. Gearboxes can be damaged by failed air solenoids, gearshift cylinders, or bearings, resulting in noisy operation. While gearbox vibration can cause a poor finish on a workpiece, noisy gearbox operation may not.

Excessive or unusual noise coming from the gearbox and/or spindle motor.

Operate the machine in both high and lowgears. Monitor the gearbox for noise in both gear positions and if the pitch of the noise varies with the motor or the output shaft speed.

- If the noise only occurs in one gear throughout the entire RPM range of that gear position, the problem lies with the gearbox, and it must be replaced ("Spindle Motor & Transmission" section).
- If the noise occurs in both gear positions, disconnect the drive belt and repeat the previous step. If the noise persists, the gearbox is damaged and must be replaced, ("Spindle Motor & Transmission" section).
- With the drive belt disconnected, run the machine at 1000 RPM in high gear. Command a change of direction and listen for a banging noise in the gearbox as the machine slows to zero RPM and speeds back up to 1000 RPM in reverse. If the noise occurs, the motor has failed and the gearbox must be replaced.

GEARS WILL NOT CHANGE

Machine will not execute a gear change.

Note: Whenever a gear change problem occurs, an alarm will also occur. Refer ALARMS section to diagnose each problem before working on the machine.

When a gear change is performed, the following sequence of events occurs:

- 1) If the spindle is turning, it is commanded to stop,
- 2) Pause until spindle is stopped,
- 3) Gear change spindle speed is commanded forward,

- 4) Pause until spindle is at speed,
- 5) Command high or low gear solenoid active,
- 6) Pause until in new gear or reversal time,
- 7) Alarm and stop if max gear change time elapsed,
- 8) If not in new gear, reverse spindle direction,
- 9) Turn off high and low gear solenoids.
 - Check air supply pressure. If pressure is too low, the gears will not change.
 - Check the air solenoid assembly on the solenoid bracket (rear of gearbox). If the solenoid operates properly and the limit switches on the gearbox operate properly, the problem lies with the gear change piston. Replace the gearbox ("Spindle Motor & Transmission" section).
 - Check contactor CB4.

Low Pressure Alarm

♦ Alarm 179 (Low Pressure Transmission Oil) has been triggered.

- Check for low oil supply in reservoir.
- Check to see that pump motor is running.
- Check for an air leak in the suction side of the pump.
- Check for a bad pressure sensor.
- Check for a broken or damaged cable.
- Check for a worn pump head.

1.6 THROUGH THE SPINDLE COOLANT

COOLANT OVERFLOW

To begin troubleshooting, check the alarm history to determine the problem's cause before any action is taken.

Coolant pouring out of spindle head covers.

- Check the customer's tooling for through holes in the pull stud, holder and tool.
- Check for seal failure. If failure is found, replace the seal housing (30-3286A). Refer to the appropriate steps in "TSC-Tool Release Piston Replacement" section for procedure.
- Check that the TSC drain and purge lines are intact. If necessary, replace with 5/32" O.D. nylon tubing.
- Check for coolant flowing from a failed fitting or check valve.
- Check pre-charge pressure in accordance with TSC "Pressure Regulator Adjustment' section and reset if necessary. Low pre-charge pressure can cause coolant to dump into the spindle head.
- Ensure the coolant pump relief valve has not been tampered with (yellow paint band is intact).
- Check the coolant pump pressure (should be 300 psi. for high pressure TSC, and 140 psi. for old system), with a standard (non-TSC) tool holder in spindle. If pump pressure is above 310 psi. (above 140 psi for old system), reset the pump relief valve in accordance with the "Setting TSC Pump Relief Valve" section.

Excessive coolant flow out of drain line.

Pulsating flow through tool and drain line.

- Check pre-charge pressure in accordance with TSC "Pressure Regulator Adjustment" section. Reset precharge pressure if necessary. Low pre-charge pressure will cause heavy or pulsating flow from the drain line.
- Ensure the coolant pump relief valve has not been tampered with (yellow paint band is intact). Check the coolant pump pressure (should be 300psi. for high pressure TSC, and 140 psi. for old system), with a standard (non-TSC) tool holder in spindle. If pump pressure is above 310 psi (above 140 psi. for old system), reset pump relief valve in accordance with "Setting Pump Relief Valve" section.

Low COOLANT

Alarm 151, "Low Thru Spindle Coolant"

- Check coolant tank level.
- Check for slow coolant drainage from machine enclosure.
- Read the filter gauges and check the intake strainer to ensure there is no clogging. Read gauges with TSC running with no tool in spindle. Check coolant lines for any clogging or kinking. Clean or replace as needed.
- If received at start-up, check that the breaker hasn't tripped and that the pump is turning. Check the electrical continuity of cables.
- Check for overheating TSC motor. Single phase motors have a built in thermal cut out. Three phase TSC motors have a thermal circuit that interrupts power to the relay coil.
- For old TSC system, if the drawbar was replaced, check that the hole through the drawbar is 0.156 dia. not 0.190 dia. Replace if it is 0.190.
- Check for pressure switch failure (refer to "Testing the Coolant Pressure Switch" section), and replace if necessary. Check "LO CLNT" bit in the diagnostics display (0 = pressure on, 1= pressure off). Leaking pressure switches can also give intermittent alarms.
- Check the pump pressure with TSC running and no tool in the spindle. Normal pressure is 75-95 PSI. Replace the pump if pressure is 60 psi or less.
- Another alarm generated during TSC operation can cause this alarm.

COOLANT TIP WEAR

The carbide coolant tip should last for the life of the machine. The old bronze coolant tip should be checked every 1000 hours of TSC operation.

- � Coolant tip is wearing quickly and needs frequent replacement.
 - Check the filtration system and that the coolant is not contaminated.
 - Check pre-charge pressure (refer to the TSC Pressure Regulator Adjustment" section). Heavy wear will occur if this pressure is too high.
 - Main air supply below 85 psi can cause excessive pre-charge pressure and heavy coolant tip wear.

Note: Abrasive swarf from grinding or ceramic machining operations will cause heavy wear of TSC coolant pump, coolant tip and drawbar. This is not covered by the warranty. Notify HAAS Service Dept. if machine is being used for this application.

PRE-CHARGE FAILURE

Alarm 198, "Precharge Failure"

Note: This alarm only applies to the TSC system. This alarm does not apply to 50 taper spindle machines. If this alarm is received on a 50 taper TSC machine, check that parameter 235 is set to zero. A non-zero value will cause the control to act as a 40 taper TSC.

- Check for broken or disconnected pre-charge air line, and replace if necessary.
- Check if the "Tool Clamped" limit switch is sticking, and replace if necessary.
- Check the "Tool Clamped" limit switch adjustment (refer to "Tool Clamp/Unclamp Switch Adjustment").
- Check for low pre-charge pressure (refer to "Pressure Regulator Adjustment" section).
- Check pre-charge solenoid for proper operation.
- May be generated if another alarm occurs during TSC operation.

1.7 CHIP CONVEYOR

Chip conveyor does not turn

- Check that Parameter 209 bit switch ENA CNVR is enabled.
- Check that the front enclosure door is competely closed and door switches function properly.
 Check that hub is connected to auger with bolt.
- Check that all conveyor fuses are intact. [Single phase motor uses 2 fuses (VF-0,1/2; Three phase motor uses 3 fuse (VF-3,4,6,8)]
- Check thermal reset button on conveyor motor body.

NOTE: Thermal reset indicates further problems: Ensure conveyor is not jammed, all necessary fuses are intact, check motor connector and I/O Board conveyor relays

� Chip conveyor is moving in the wrong direction

- Toggle Parameter 209 bit switch REV CNVR to reverse direction of conveyor.
- Check I/O Board conveyor relays.

♦ Chip conveyor reverses, then shuts down

- Check that the conveyor is free of obstruction.
- Check that Parameters are at Default settings.
- Check that Discrete Input **CNVYR** (conveyor overload) cycles from 0 1 or 1 0 (0 means overload condition)

NOTE: If it does cycle check the motor for burnout or binding. If it does not cycle check the I/O board.

1.8 HYDRAULIC COUNTERBALANCE

MECHANICAL DIAGNOSIS

Important! Hydraulic counterbalance oil contains red dye for easier recognition.

Noise in the system

- Slight moan or creaking at slow speeds is normal for rubber seals.
- While Z-axis is in motion a whistle sound at tank location is normal fluid flow.
- Verify cylinder is seated correctly in counterbore. If not then reseat the cylinder.
- Bumping or grinding noise indicates a mechanical cylinder failure. Replace cylinder assembly.
- Look for galling and wear on cylinder shaft. If so replace the cylinder assembly.

System is not holding pressure and/or has an E-STOP (Alarm 107) that cannot be reset. Check for accurate pressure readings. If low then the following items need to be checked:

- Check for leaks at all cylinder fittings. If leaking then replace cylinder assembly.
- Collapse the lower Z-axis waycover and look for any red oil pooled at the bottom of the base. If so, then fittings or seals could be damaged. Replace cylinder assembly.
- Remove cylinder vent fitting. If there is red oil inside the vent cavity then the cylinder assembly needs replacement.
- Check for leaks at all hydraulic tank fittings. If leaking then tank assembly needs replacement.

Over Current alarms

- Pressure is set too high.
- Pressure is set too low.
- Too much oil has been added. (Insufficient gas volume causes large pressure rise)
- Hydraulic cylinder is binding or is misaligned. Replace cylinder assembly.
- Length of replacement cylinder incorrect.

1.9 LINEAR SCALES

Perform the "Linear Scale Alignment Check" if any of the linear scale alarms (279-290) are received.

LINEAR SCALE ALIGNMENT CHECK

Note: This procedure is only accurate if the machine is square.

- 1. Remove the right side way cover for the X-axis to gain access to it's linear scale. Remove the front way cover for the Y-axis to gain access to it's linear scale.
- 2. Access to the Z-axis linear scale is from the top of the machine. Removal of the head cover may be necessary.
- 3. Tap the encoder head lightly and note any position change indicated by the control. If there is any change, ensure that the encoder head/encoder bracket fasteners are tight.
- 4. If problems persist, check for correct gaps at each end of travel by inserting tools T-1548 and T-1549 into their respective gaps, as shown in Figure 1-4. These tools must fit without having to force them. If the tool can be moved more than 0.003", the fit is too loose.

Figure 1-4. Linear scale alignment check tools.

If the tools can be inserted in accordance with the above instructions, the linear scale is correctly aligned.

5. Check for flatness and parallelism of the linear scale(s) (with respect to the linear guide path) with a magnetic base and indicator setup. It should be possible to insert the tools correctly at both ends of travel. Runout specifications are:

Flatness: 0.005" along full travel Parallel: 0.005" along full travel

6. Note results and contact Haas Automation for further instruction. **DO NOT** attempt to align the linear scales.

1.10 AUTOMATIC PALLET CHANGER

Checking pallet repeatability on to the receiver.

- Maximum tolerance is .+/-0005.
- Pallets are not considered repeatable from one to the other. Pallets should use seperate
 offsets.
- If pallet is out of tolerance check the alignment pins on the receiver base and bushings on the bottom side of the clamp rails for damage.
- Check the height of the alignment pins on the receiver base, the top of the pin should be .450 to .490 above the receiver base.
- If the alignment pins are out of the receiver body, check the depth of the hole. Depth should be .510 to .550.

Sticking Pallet.

- Check for chips around the alignment pins or pallet clamp rail bushings.
- Check the torque on the bolts that fasten the clamp rails to the pallet. If the bolts are loose realign the pallet according to the instructions in the APC section of Mechanical Service.

APC not responding to controller commands.

- If the APC does not run but the mill does, check the APC control cable.
- Make sure the E-Stop jumper is removed and that the APC control cable is plugged into the 5th axis port tightly

Recovery from an E-Stop initiated during a pallet change

- There are 5 switches involved in the location of the pallets and chain.
 pallet switch on the receiver
 pallet switches on the APC
 chain switches on the APC
 See attached APC electrical notes.
- ** If the power to the VMC has been shut down either intentionally or by power outage, damage may occur to the APC pallet or receiver if the X or Y axes are moved in the VMC at power up.
- *** At power up the VMC should investigate the condition of the pallet and chain location and alarm if either an unknown chain location or unknown pallet location are detected.

Fig. 1

Fig. 2

Fig. 3

1.11 ELECTRICAL TROUBLESHOOTING

CAUTION! Before working on any electrical components, power off the machine and wait approximately 10 minutes. This will allow the high voltage power on the brushless amplifiers to be discharged.

ELECTRICAL ALARMS

Axis Drive Fault Alarm

- Blown amplifier indicated by a light at bottom of amplifier when power is on. Replace amplifier.
- Amplifier or MOCON is noise sensitive. If this is the case, the alarm can be cleared and the axis will
 run normally for a while.
 - To check an amplifier, switch the motor leads and control cables between the amplifier and the one next to it. If the same problem occurs with the other axis, the amplifier must be replaced. If the problem stays on the same axis, either the MOCON or control cable. The problem could also be the axis motor itself, with leads either shorted to each other or to ground, which is very rare.
- Amplifier faulting out for valid reason, such as overtemp, overvoltage, or +/-12 volt undervoltage condition. This usually results from running a servo intensive program, or unadjusted 12 volt power supply. Replace amplifier.

Overvoltage could occur if regen load is not coming on, but this does not usually happen. The problem could also be the axis motor itself, with leads either shorted to each other or to ground, which is very rare.

Axis Overload

• The fuse function built into the MOCON has been overloaded, due to a lot of motor accel/decels, or hitting a hard stop with the axis. This safety function protects the amplifier and motor, so find the cause and correct it. If the current program is the cause, change the program. If the axis hits a hard stop, the travel limits may be set wrong.

Phasing Error

The MOCON did not receive the proper phasing information from the motors. DO NOT RESET the
machine if this alarm occurs. Power the machine down and back up. If the problem persists, it is
probably a broken wire or faulty MOCON connectors.

Servo Error Too Large

• This alarms occurs when the difference between the commanded axis position and the actual position becomes larger the the maximum that is set in the parameter.

This condition occurs when the amplifier is blown, is not receiving the commands, or the 320 volt power source is dead. If the MOCON is not sending the correct commands to the amplifier, it is probably due to a broken wire, or a PHASING ERROR that was generated.

Axis Z Fault or Z Channel Missing

 During a self-test, the number of encoder counts was found to be incorrect. This is usually caused by a noisy environment, and not a bad encoder. Check all shields and grounds on the encoder cables and the motor leads that come into the amplifiers. An alarm for one axis can be caused by a bad grounding on the motor leads of another axis.

Axis Cable Fault

 During a self-test, the encoder cable signals were found to be invalid. This alarm is usually caused by a bad cable, or a bad connection on the motor encoder connectors. Check the cable for any breaks, and the encoder connectors at the motor controller board. Machine noise can also cause this alarm, although it is less common.

♦ Alarm 101, "MOCON Comm. Failure"

 During a self-test of communications between the MOCON and main processor, the main processor does not respond, and is suspected to be dead. This alarm is generated and the servos are stopped. Check all ribbon cable connections, and all grounding. Machine noise can also cause this alarm, although it is less common.

Alarm 157, "MOCON Watchdog Fault"

The self-test of the MOCON has failed. Replace the MOCON.

1.12 Processor Stack Diagnostic

(DISCONNECT CABLES FROM A NORMAL OPERATING SYSTEM)

Property Remove low voltage cable from the Video & Keyboard PCB

- Processors LED's are normal
- Runs fine and the CRT is Normal
- No keypad beep

♦ Remove low voltage cable from the MOTIF PCB

- Processors LED's are normal then RUN goes out
- No screen

♦ Remove the Data & or Address buss from the Video & Keyboard PCB

• Processors LED's Normal - then Run goes out

Remove the Data & or Address buss from the MOTIF PCB

• Processors LED's Normal - then Run goes out

Remove the Data & or Address buss from the Micro Processor PCB

Processors LED's - CRT and Run are out

1.13 KEYBOARD DIAGNOSTIC

Note: Refer to the "Cable Locations" section of this manual for a drawing of the Keyboard Interface PCB.

	1	2	2 3	3 4	5	; E	5 7	7 8	9	10	11
12	OFSET	SETNG Graph		A		¥	В	Н	N	Т	z
13	POSIT	PARAM DGNOS		НОМЕ	+	END	A	G	М	s	Υ
14	PRGRM CONVRS	ALARM MESGS		CLNT UP	CLNT DOWN	AUX CLNT	SHIFT	F	L	R	х
15	POWER DOWN	F4	PART ZERO SET	-Y	-X	-A					100% RAPID
16	POWER UP RESTART	F3	TOOL RELEASE	+Z	JOG LOCK	-Z		+10	+10	ccw	50% RAPID
17	RESET	F2	NEXT TOOL	+B +A	<+X	+Y		100%	100%	STOP	25% RAPID
18		F1	TOOL OFSET MESUR	CHIP FWD	CHIP STOP	CHIP REV		-10	-10	cw	5% RAPID
19	CURNT COMDS	HELP	PAGE UP			PAGE DOWN	С	-	0	U	ЕОВ
20	EDIT	MEM	MDI DNC	HANDLE JOG	ZERO RET	LIST PROG	D	J	Р	v)]
21	INSERT	SINGLE BLOCK	COOLNT	.0001 .1	AUTO ALL AXES	SELECT PROG	Е	к	a	w	1)
22	ALTER	DRY RUN	ORIENT SPNDLE	.0001 1.	ORIGIN	SEND RS232	& 7	% 4	* 1	+	CANCEL
23	DELETE	OPT STOP	ATC FWD	.01 10.	ZERO SINGL AXES	RECV RS232	@ 8	\$ 5	, 2	= 0	SPACE
24	UNDO	BLOCK DELETE	ATC REV	.01 100.	HOME G28	ERASE PROG	: 9	! 6	?	# PERIOD	WRITE

KEYBOARD GRID

The following is an example of how to troubleshoot the keypad:

Note: Keypad Diodes 1-24 correspond to chart numbers 1-24

Example

- 1. Pressing the **RESET** button will cause diodes 1 and 17 to conduct.
 - With the POWER OFF read across diode 1.
 - A typical reading is between .400-.700 ohms, note your reading.
- 2. Press and hold the **RESET** button. If the diode is conducting, the reading should drop about .03 ohms.
 - (If your reading was .486 and it dropped to .460, for a difference of .026; the diode is good)
 - The same will hold true for diode 17 in this example. If the reading stays the same or there is no change, the diode is not conducting. Pull P2 and read between pins 1 and 17.
 - Press and hold <RESET>. The meter should read a short (0 ohms) if not the keypad is bad.

2. ALARMS

Any time an alarm is present, the lower right hand corner of the screen will have a blinking "ALARM". Push the ALARM display key to view the current alarm. All alarms are displayed with a reference number and a complete description. If the RESET key is pressed, one alarm will be removed from the list of alarms. If there are more than 18 alarms, only the last 18 are displayed and the RESET must be used to see the rest. The presence of any alarm will prevent the operator from starting a program.

The **ALARMS DISPLAY** can be selected at any time by pressing the ALARM MESGS button. When there are no alarms, the display will show NO ALARM. If there are any alarms, they will be listed with the most recent alarm at the bottom of the list. The CURSOR and PAGE UP and PAGE DOWN buttons can be used to move through a large number of alarms. The CURSOR **right** and **left** buttons can be used to turn on and off the ALARM history display.

The following alarm list shows the alarm numbers, the text displayed along with the alarm, and a detailed description of the alarm, what can cause it, when it can happen, and how to correct it.

Alarm number and text:		number and text:	Possible causes:		
1	01	MOCON Comm. Failure	During a self-test of communications between the MOCON and main processor, the main processor does not respond, and is suspected to be dead. Check cable connections and grounding.		
1	02	Servos Off	Indicates that the servo motors are off, the tool changer is disabled, the coolant pump is off, and the spindle motor is stopped. Caused by EMER-GENCY STOP, motor faults, tool changer problems, or power fail.		
1	03	X Servo Error Too Large	Too much load or speed on X-axis motor. The difference between the motor position and the commanded position has exceeded a parameter. The motor may also be stalled, disconnected, or the driver failed. The servos will be turned off and a RESET must be done to restart. This alarm can be caused by problems with the driver, motor, or the slide being run into the mechanical stops.		
1	04	Y Servo Error Too Large	same as 103.		
1	05	Z Servo Error Too Large	same as 103.		
1	06	A Servo Error Too Large	same as 103.		
1	07	Emergency Off	EMERGENCY STOP button was pressed. Servos are also turned off. After the E-STOP is released, the RESET button must be pressed at least twice to correct this; once to clear the E-STOP alarm and once to clear the Servo Off alarm.		
			This alarm will also be generated if there is a low pressure condition in the hydraulic counterbalance system. In this case, the alarm will not reset until the condition has been corrected.		
1	80	X Servo Overload	Excessive load on X-axis motor. This can occur if the load on the motor over a period of several seconds or even minutes is large enough to exceed the continuous rating of the motor. The servos will be turned off when this occurs. This can be caused by running into the mechanical stops but not much past them. It can also be caused by anything that causes a very high load on the motors.		

109 110 111	Y Servo Overload Z Servo Overload A Servo Overload	same as 108. same as 108. same as 108.
112	No Interrupt	Electronics fault. Call your dealer.
113	Shuttle In Fault	Tool changer not completely to right. During a tool changer operation the tool in/out shuttle failed to get to the in position. Parameters 62 and 63 can adjust the time-out times. This alarm can be caused by anything that jams the motion of the slide or by the presence of a tool in the pocket facing the spindle. A loss of power to the tool changer can also cause this, so check CB4, relays K9-K12, and fuse F1.
114	Shuttle Out Fault	Tool changer not completely to left. During a tool change operation the tool in/out shuttle failed to get to the out position. Parameters 62 and 63 can adjust the time-out times. This alarm can be caused by anything that jams the motion of the slide or by the presence of a tool in the pocket facing the spindle. A loss of power to the tool changer can also cause this, so check CB4, relays K9-K12, and fuse F1.
115	Turret Rotate Fault	Tool carousel motor not in position. During a tool changer operation the tool turret failed to start moving or failed to stop at the right position. Parameters 60 and 61 can adjust the time-out times. This alarm can be caused by anything that jams the rotation of the turret. A loss of power to the tool changer can also cause this, so check CB4, relays K9-K12, and fuse F1.
116	Spindle Orientation Fault	Spindle did not orient correctly. During a spindle orientation function, the spindle is rotated until the lock pin drops in; but the lock pin never dropped. Parameters 66, 70, 73, and 74 can adjust the time-out times. This can be caused by a trip of circuit breaker CB4, a lack of air pressure, or too much friction with the orientation pin.
117	Spindle High Gear Fault	Gearbox did not shift into high gear. During a change to high gear, the spindle is rotated slowly while air pressure is used to move the gears but the high gear sensor was not detected in time. Parameters 67, 70 and 75 can adjust the time-out times. Check the air pressure, the solenoids circuit breaker CB4, and the spindle drive.
118	Spindle Low Gear Fault	Gearbox did not shift into low gear. During a change to low gear, the spindle is rotated slowly while air pressure is used to move the gears but the low gear sensor was not detected in time. Parameters 67, 70 and 75 can adjust the time-out times. Check the air pressure, the solenoids circuit breaker CB4, and the spindle drive.
119	Over Voltage	Incoming line voltage is above maximum. The servos will be turned off and the spindle, tool changer, and coolant pump will stop. If this condition remains for 4.5 minutes, an automatic shutdown will begin.
120	Low Air Pressure	Air pressure dropped below 80 PSI for a period defined by Parameter 76. The "Low Air Pr" alarm will appear on the screen as soon as the pressure gets low, and this alarm appears after [Parameter 76] has elapsed. Check your incoming air pressure for at least 100 PSI and ensure that the regulator is set at 85 PSI.

121	Low Lube or Low Pressure	Way lube is low or empty or there is no lube pressure or too high a pressure. Check tank at rear of mill and below control cabinet. Also check connector on the side of the control cabinet. Check that the lube lines are not blocked.
122	Regen Overheat	The control internal temperature is above 150 degrees F. This can be caused by almost anything in the control overheating. But is usually caused by overheat of the two regen resistors for servos and spindle drive. This alarm will also turn off the servos, spindle drive, coolant pump, and tool changer. One common cause of this overheat condition is an input line voltage too high. If this condition remains for 4.5 minutes, an automatic shutdown will begin.
123	Spindle Drive Fault	Overheat or failure of spindle drive or motor. The exact cause is indicated in the LED window of the spindle drive inside the control cabinet. This can be caused by a stalled motor, shorted motor, overvoltage, undervoltage, overcurrent, overheat of motor, or drive failure.
124	Low Battery	Memory batteries need replacing within 30 days. This alarm is only generated at power on and indicates that the 3.3 volt Lithium battery is below 2.5 volts. If this is not corrected within about 30 days, you may lose your stored programs, parameters, offsets, and settings.
125	Shuttle fault	Tool shuttle not initialized at power on, CYCLE START or spindle motion command. This means that the tool shuttle was not fully retracted to the Out position.
126	Gear Fault	Gearshifter is out of position when a command is given to rotate the spindle. This means that the two speed gear box is not in either high or low gear but is somewhere in between. Check the air pressure, the solenoids circuit breaker CB4, and the spindle drive.
127	No Turret Mark	Tool carousel motor not in position. The turret motor only stops in one position indicated by a switch and cam on the Geneva mechanism. This alarm is only generated at power-on. The AUTO ALL AXES button will correct this but be sure that the pocket facing the spindle afterwards does not contain a tool.
129	M Fin Fault	M-Fin was active at power on. Check the wiring to your \mathbf{M} code interfaces. This test is only performed at power-on.
130	Tool Unclamped	The tool appeared to be unclamped during spindle orientation, a gear change, a speed change, or TSC start-up. The alarm will also be generated if the tool release piston is energized during Power Up. This can be caused by a fault in the air solenoids, relays on the I/O assembly, the drawbar assembly, or in the wiring.
131	Tool Not Clamped	When clamping or powering up the machine, the Tool Release Piston is not HOME. This is a possible fault in the air solenoids, relays on the IO Assembly, the drawbar assembly, or wiring.
132	Power Down Failure	Machine did not turn off when an automatic power-down was commanded. Check wiring to POWIF card on power supply assembly, relays on the IO assembly, and the main contactor K1.

133	Spindle Locked	Shot pin did not release. This is detected when spindle motion is commanded. Check the solenoid that controls the air to the lock, relay 2-8, the wiring to the sense switch, and the switch.
134	Tool Clamp Fault	When UNCLAMPING the tool did not release from spindle when commanded. Check air pressure and solenoid circuit breaker CB4. Can also be caused by misadjustment of drawbar assembly.
135	X Motor Over Heat	Servo motor overheat. The temperature sensor in the motor indicates over 150 degrees F. This can be caused by an extended overload of the motor such as leaving the slide at the stops for several minutes.
136 137 138	Y Motor Over Heat Z Motor Over Heat A Motor Over Heat	same as 135. same as 135. same as 135.
139	X Motor Z Fault	Encoder marker pulse count failure. This alarm usually indicates that the encoder has been damaged and encoder position data is unreliable. This can also be caused by loose connectors at P1-P4.
140 141 142	Y Motor Z Fault Z Motor Z Fault A Motor Z Fault	same as 139. same as 139. same as 139.
143	Spindle Not Locked	Shot pin not fully engaged when a tool change operation is being performed. Check air pressure and solenoid circuit breaker CB4. This can also be caused by a fault in the sense switch that detects the position of the lock pin.
144	Time-out- Call Your Dealer	Time allocated for use prior to payment exceeded. Call your dealer.
145	X Limit Switch	Axis hit limit switch or switch disconnected. This is not normally possible as the stored stroke limits will stop the slides before they hit the limit switches. Check the wiring to the limit switches and connector P5 at the side of the main cabinet. Can also be caused by a loose encoder shaft at the back of the motor or coupling of motor to the screw.
146 147	Y Limit Switch Z Limit Switch	same as 145 same as 145
148	A Limit Switch	Normally disabled for rotary axis.
149	Spindle Turning	Spindle not at zero speed for tool change. A signal from spindle drive indicating that the spindle drive is stopped is not present while a tool change operation is going on.
150	Z and Tool Interlocked	Changer not at home and either the Z or A or B axis (or any combination) is not at zero. If RESET, E-STOP, or POWER OFF occurs during tool change, Z-axis motion and tool changer motion may not be safe. Check the position of the tool changer and remove the tool if possible. Re-initialize with the AUTO ALL AXES button but be sure that the pocket facing the spindle afterwards does not contain a tool.

151	Low Thru Spindle Coolant	For machines with Through the Spindle Coolant only. This alarm will shut off the spindle, feed, and pump all at once. It will turn on purge, wait for the amount of time specified in parameter 237 for the coolant to purge, and then turn off the purge. Check for low coolant tank level, any filter or intake strainer clogging, or for any kinked or clogged coolant lines. If no problems are found with any of these, and none of the coolant lines are clogged or kinked, call your dealer.
152	Self Test Fail	Control has detected an electronics fault. All motors and solenoids are shut down. This is most likely caused by a fault of the processor board stack at the top left of the control. Call your dealer.
153	X-axis Z Ch Missing	Broken wires or encoder contamination. All servos are turned off. This can also be caused by loose connectors at P1-P4.
154	Y-axis Z	same as 153.
155	Ch Missing Z-axis Z	same as 153.
156	Ch Missing A-axis Z Ch Missing	same as 153.
157	MOCON Watchdog Fault	The self-test of the MOCON has failed. Replace the MOCON.
158	Video/Keyboard PCB Failure	Internal circuit board problem. The VIDEO PCB in the processor stack is tested at power-on. This could also be caused by a short in the front panel membrane keypad. Call your dealer.
159	Keyboard Failure	Keyboard shorted or button pressed at power on. A power-on test of the membrane keypad has found a shorted button. It can also be caused by a short in the cable from the main cabinet or by holding a switch down during power-on.
160	Low Voltage	The line voltage to control is too low. This alarm occurs when the AC line voltage drops below 190 when wired for 230 volts or drops below 165 when wired for 208 volts.
161	X-Axis Drive Fault	Current in X servo motor beyond limit. Possibly caused by a stalled or overloaded motor. The servos are turned off. This can be caused by running a short distance into a mechanical stop. It can also be caused by a short in the motor or a short of one motor lead to ground.
162	Y-Axis Drive Fault	same as 161.
163	Z-Axis Drive Fault	same as 161.
164	A-Axis Drive Fault	same as 161.
165	X Zero Ret Margin Too Small	This alarm will occur if the home/limit switches move or are misadjusted. This alarm indicates that the zero return position may not be consistent from one zero return to the next. The encoder Z channel signal must occur between 1/8 and 7/8 revolution of where the home switch releases. This will not turn the servos off but will stop the zero return operation.

166	Y Zero Ret Margin Too Small	Same as 165.
167	Z Zero Ret Margin Too Small	Same as 165.
168	A Zero Ret Margin Too Small	Not normally enabled for A-axis.
169	Spindle Direction Fault	Problem with rigid tapping hardware. The spindle started turning in the wrong direction.
170	Phase Loss	Problem with incoming line voltage between legs L1 and L2. This usually indicates that there was a transient loss of input power to the machine.
171	UNUSED	
172	UNUSED	
173	Spindle Ref Signal Missing	The ${\bf Z}$ channel pulse from the spindle encoder is missing for hard tapping synchronization.
174	Tool Load Exceeded	The tool load monitor option is selected and the maximum load for a tool was exceeded in a feed. This alarm can only occur if the tool load monitor function is installed in your machine.
175	Ground Fault Detected	A ground fault condition was detected in the 115V AC supply. This can be caused by a short to ground in any of the servo motors, the tool change motors, the fans, or the oil pump.
176	Over Heat Shutdown	An overheat condition persisted for 4.5 minutes and caused an automatic shutdown.
177	Over Voltage Shutdown	An overvoltage condition persisted for 4.5 minutes and caused an automatic shutdown.
178	Divide by Zero	Software Error; Call your dealer.
179	Low Pressure Transmission Oil	Spindle coolant oil is low or low pressure condition in lines.
180	Pallet Not Clamped	The APC pallet changer was not completed for some reason (pressing Estop, reset, or feedhold), and an attempt was made to run the spindle. Run M50 pallet change to reset the machine.
182	X Cable Fault	Cable from X-axis encoder does not have valid differential signals.
183 184 185	Y Cable Fault Z Cable Fault A Cable Fault	Same as 182. Same as 182. Same as 182.
186	Spindle Not Turning	Status from spindle drive indicates it is not at speed when expected.
187	B Servo Error Too Large	Same as 103.

188 189 190 191 192 193 194	B Servo Overload B Motor Overheat B Motor Z Fault B Limit Switch B Axis Z Ch Missing B Axis Drive Fault B Zero Ret Margin Too Small	Same as 108. Same as 135. Same as 139. Same as 148. Same as 153. Same as 161. Same as 168.
195	B Cable Fault	Same as 182.
196	Coolant Spigot Failure	Spigot failed to achieve commanded location after two (2) attempts.
197	100 Hours Unpaid Bill	Call your dealer.
198	Precharge Failure	During TSC operation, the precharge failed for greater than 0.1 seconds. It will shut off the feed, spindle and pump all at once. If received, check all air lines and the air supply pressure.
199	Negative RPM	A negative spindle RPM was sensed.
201	Parameter CRC Error	Parameters lost maybe by low battery. Check for a low battery and low battery alarm.
202	Setting CRC Error	Settings lost maybe by low battery. Check for a low battery and low battery alarm.
203	Lead Screw CRC Error	Lead screw compensation tables lost maybe by low battery. Check for CRC Error low battery and low battery alarm.
204	Offset CRC Error	Offsets lost maybe by low battery. Check for a low battery and low battery alarm.
205	Programs CRC Error	Users program lost maybe by low battery. Check for a low battery and low battery alarm.
206	Internal Program Error	Possible corrupted program. Save all programs to floppy disk, delete all, then reload. Check for a low battery and low battery alarm.
207	Queue Advance Error	Software Error; Call your dealer.
208	Queue Allocation Error	Software Error; Call your dealer.
209	Queue Cutter Comp Error	Software Error; Call your dealer.
210	Insufficient Memory	Not enough memory to store users program. Check the space available in the LIST PROG mode and possibly delete some programs.
211	Odd Prog Block	Possible corrupted program. Save all programs to floppy disk, delete all, then reload.
212	Program Integrity Error	Possible corrupted program. Save all programs to floppy disk, delete all, then reload. Check for a low battery and low battery alarm.

42 —

213	Program RAM CRC Error	Electronics fault; Call your dealer.
214	No. of Programs Changed	Indicates that the number of programs disagrees with the internal variable that keeps count of the loaded programs. Call your dealer.
215	Free Memory PTR Changed	Indicates the amount of memory used by the programs counted in the system disagrees with the variable that points to free memory. Call your dealer.
217	X Axis Phasing Error	Error occurred in phasing initialization of brushless motor. This can be caused by a bad encoder, or a cabling error.
218 219 220 221 222	Y Axis Phasing Error Z Axis Phasing Error A Axis Phasing Error B Axis Phasing Error C Axis Phasing Error	Same as above.
223	Door Lock Failure	In machines equipped with safety interlocks, this alarm occurs when the control senses the door is open but it is locked. Check the door lock circuit.
224	X Transition Fault	Illegal transition of count pulses in X axis. This alarm usually indicates that the encoder has been damaged and encoder position data is unreliable. This can also be caused by loose connectors at the MOCON or MOTIF PCB.
225 226 227 228 229	Y Transition Fault Z Transition Fault A Transition Fault B Transition Fault C Transition Fault	Same as above.
231	Jog Handle Transition Fault	Same as 224.
232	Spindle Transition Fault	Same as 224.
233	Jog Handle Cable Fault	Cable from jog handle encoder does not have valid differential signals.
234	Spindle Enc. Cable Fault	Cable from spindle encoder does not have valid differential signals.
235	Spindle Z Fault	Same as 139.
236	Spindle Motor Overload	This alarm is generated in machines equipped with a Haas vector drive, if the spindle motor becomes overloaded.
237	Spindle Following Error	The error between the commanded spindle speed and the actual speed has exceeded the maximum allowable (as set in Parameter 184).
240	Empty Prog or No EOB	DNC program not found, or no end of program found.
241	Invalid Code	RS-232 load bad. Data was stored as comment. Check the program being received.
242	No End	Check input file for a number that has too many digits

243	Bad Number	Data entered is not a number.
244	Missing)	Comment must end with a ") ".
245	Unknown Code	Check input line or data from RS-232. This alarm can occur while editing data into a program or loading from RS-232.
246	String Too Long	Input line is too long. The data entry line must be shortened.
247	Cursor Data Base Error	Software Error; Call your dealer.
248	Number Range Error	Number entry is out of range.
249	Prog Data Begins Odd	Possible corrupted program. Save all programs to floppy disk, delete all, then reload.
250 251 252	Program Data Error Prog Data Struct Error Memory Overflow	Same as 249. Same as 249. Same as 249.
253	Electronics Overheat	The control box temperature has exceeded 145 degrees F. This can be caused by an electronics problem, high room temperature, or clogged air filter.
254	Spindle Overheat	This alarm is only generated in machines equipped with a Haas vector drive. The spindle temperature sensor sensed a high temperature for greater than 1.5 seconds.
257	Program Data Error	Same as 249.
258	Invalid DPRNT Format	Macro DPRNT statement not structured properly.
259	Bad Language Version	Call your dealer.
260	Bad Language CRC	Indicates FLASH memory has been corrupted or damaged.
261	Rotary CRC Error	Rotary table saved parameters (used by Settings 30, 78) have a CRC error. Indicates a loss of memory - call your dealer.
262	Parameter CRC Missing	RS-232 or floppy read of parameter had no CRC when loading from floppy or RS-232.
263	Lead Screw CRC Missing	Lead screw compensation tables have no CRC when loading from floppy or RS-232.
264	Rotary CRC Missing	Rotary table parameters have no CRC when loading from floppy or RS-232.
265	Macro Variable File	Macro variable file has a CRC error. Indicates a loss of memory.
268	CRC Error Door open @ M95 Start	Call your dealer. Generated whenever an M95 (Sleep Mode) is encountered and the door is open. The door must be closed in order to start sleep mode
270	C Servo Error Too Large	Same as 103.

271 272 273 274 275	C Servo Overload C Motor Overheat C Motor Z Fault C Limit Switch C Axis Z Ch Missing	Same as 108. Same as 135. Same as 139. Same as 145. Same as 153.
276	C Axis Drive Fault	Same as 161.
277	C Zero Ret Margin Too Small	Same as 165.
278	C Cable Fault	Same as 182.
279	X Axis Linear Scale Z Fault	Encoder marker pulse count failure. This alarm usually indicates that the encoder has been damaged and encoder position data is unreliable. This can also be caused by loose connectors at P1-P4.
280	Y Axis Linear Scale Z Fault	Same as alarm 279.
281	Z Axis Linear Scale Z Fault	Same as alarm 279.
282	A Axis Linear Scale Z Fault	Same as alarm 279.
283	X Axis Linear Scale Z Channel Missing	Broken wires or encoder contamination. All servos are turned off. This can also be caused by loose connectors at P1-P4.
284	Y Axis Linear Scale Z Channel Missing	Same as alarm 283.
285	Z Axis Linear Scale Z Channel Missing	Same as alarm 283.
286	A Axis Linear Scale Z Channel Missing	Same as alarm 283.
287	X Axis Linear Scale Cable Fault	Cable from X-axis encoder does not have valid differential signals.
288	Y Axis Linear Scale Cable Fault	Same as alarm 287.
289	Z Axis Linear Scale Cable Fault	Same as alarm 287.
290	A Axis Linear Scale Cable Fault	Same as alarm 287.
291	Low Air Volume/Pressure During ATC	An automatic tool change was not completed due to insufficient volume or pressure of compressed air. Check air supply line.
302	Invalid R In G02 or G03	Check your geometry. ${f R}$ must be less than or equal to half the distance from start to end within an accuracy of 0.0010 inches.

303	Invalid X, Y, or Z In G02 or G03	Check your geometry.
304	Invalid I, J, or K In G02 or G03	Check your geometry. Radius at start must match radius at end of arc within 0.0010 inches.
305	Invalid Q In Canned Cycle	Q in a canned cycle must be greater than zero.
306	Invalid I, J, K, or Q In Canned Cycle	${f I},{f J},{f K},{\hbox{and}}{f Q}$ in a canned cycle must be greater than zero.
307	Subroutine Nesting Too Deep	Subprogram nesting is limited to nine levels. Simplify your program.
309	Exceeded Max Feed Rate	Use a lower feed rate.
310	Invalid G Code	G code not defined and is not a macro call.
311	Unknown Code	Possible corruption of memory by low battery. Call your dealer.
312	Program End of subroutine re	eached before M99. Need an M99 to return from sub- routine.
313	No P Code In M97, M98, or G65	Must put subprogram number in P code.
314	Subprogram or Macro Not In Memory	Check that a subroutine is in memory or that a macro is defined.
315	Invalid P Code In M97, M98 or M99	The ${\bf P}$ code must be the name of a program stored in memory without a decimal point for M98 and must be a valid ${\bf N}$ number for M99.
316	X Over Travel Range	X-axis will exceed stored stroke limits. This is a parameter in negative direction and is machine zero in the positive direction. This will only occur during the operation of a user's program.
317 318	Y Over Travel Range Z Over Travel Range	same as 316. same as 316.
319	A Over Travel Range	Not normally possible with A-axis.
320	No Feed Rate Specified	Must have a valid F code for interpolation functions.
321	Auto Off Alarm	A fault turned off the servos automatically; occurs in debug mode only.
322	Sub Prog Without M99	Add an M99 code to the end of program called as a subroutine.
324	Delay Time Range Error	${f P}$ code in G04 is greater than or equal to 1000 seconds (over 999999 milliseconds).
325	Queue Full	Control problem; call your dealer.
326	G04 Without P Code	Put a Pn.n for seconds or a Pn for milliseconds.

327	No Loop For M Code Except M97, M98	L code not used here. Remove L Code.
328	Invalid Tool Number	Tool number must be between 1 and the value in Parameter 65.
329	Undefined M Code	That M code is not defined and is not a macro call.
330	Undefined Macro Call	Macro name 090nn not in memory. A macro call definition is in parameters and was accessed by user program but that macro was not loaded into memory.
331	Range Error	Number too large.
332	H and T Not Matched	This alarm is generated when Setting 15 is turned ON and an H code number in a running program does not match the tool number in the spindle. Correct the Hn codes, select the right tool, or turn off Setting 15.
333	X-Axis Disabled	Parameters have disabled this axis. Not normally possible in VF Series CNC Mill.
334 335	Y-Axis Disabled Z-Axis Disabled	same as 333. same as 333.
336	A-Axis Disabled	An attempt was made to program the A-axis while it was disabled (DISABLED bit in Parameter 43 set to 1).
337	Line Referenced By P , Not Found	Subprogram is not in memory, or P code is incorrect.
338	Invalid IJK and XYZ in G02 or G03	There is a problem with circle definition; check your geometry.
339	Multiple Codes	Only one $\mathbf{M},\mathbf{X},\mathbf{Y},\mathbf{Z},\mathbf{A},\mathbf{Q},$ etc. allowed in any block or two \mathbf{G} codes in the same group.
340	Cutter Comp Begin With G02 or G03	Select cutter compensation earlier. Cutter comp. must begin on a linear move.
341	Cutter Comp End With G02 or G03	Disable cutter comp later.
342	Cutter Comp Path Too Small	Geometry not possible. Check your geometry.
343	Display Queue Record Full	A block exists that is too long for displaying queue. Shorten title block.
344	Cutter Comp With G18 and G19	Cutter comp only allowed in XY plane (G17).
345	Diff Step Ratio On G17 Plane	Parameters 5 and 19 must be same value.
346	Diff Step Ratio On G18 Plane	Parameters 5 and 33 must be same value.

347	Diff Step Ratio On G19 Plane	Parameters 19 and 33 must be same value.
348	Motion Not Allowed In G93 Mode	This alarm is generated if the mill is in Inverse Time Feed mode, and a G12, G13, G70, G71, G72, G150, or any Group 9 motion command is issued.
349	Prog Stop W/O Cancel Cutter Comp	Cutter compensation has been cancelled without an exit move. Potential damage to part.
350	Cutter Comp Look Ahead Error	There are too many non-movement blocks between motions when cutter comp is being used. Remove some intervening blocks.
351	Invalid P Code	In a block with G103 (Block Lookahead Limit), a value between 0 and 15 must be used for the P code.
352	Aux Axis Power Off	Aux ${\bf B}$, ${\bf C}$, ${\bf U}$, ${\bf V}$, or ${\bf W}$ axis indicate servo off. Check auxiliary axes. Status from control was OFF.
353	Aux Axis No Home	A ZERO RET has not been done yet on the aux axes. Check auxiliary axes. Status from control was LOSS.
354	Aux Axis Disconnected	Aux axes not responding. Check auxiliary axes and RS-232 connections.
355	Aux Axis Position Mismatch	Mismatch between machine and aux axes position. Check aux axes and interfaces. Make sure no manual inputs occur to aux axes.
356	Aux Axis Travel Limit	Aux axes are attempting to travel past their limits.
357	Aux Axis Disabled	Aux axes are disabled.
358	Multiple Aux Axis	Can only move one auxiliary axis at a time.
359	Invalid I, J, or K In G12 or G13	Check your geometry.
360	Tool Changer Disabled	Check Parameter 57. Not a normal condition for VF Series CNC Mill.
361	Gear Change Disabled	Check Parameter 57. Not a normal condition for VF Series CNC Mill.
362	Tool Usage Alarm	Tool life limit was reached. To continue, reset the usage count in the Current Commands display and press RESET.
363	Coolant Locked Off	Override is off and program tried to turn on coolant.
364	No Circ Interp Aux Axis	Only rapid or feed is allowed with aux axes.
367	Cutter Comp Interference	G01 cannot be done with tool size.
368	Groove Too Small	Tool too big to enter cut.

369	Tool Too Big	Use a smaller tool for cut.		
370	Pocket Definition Error	Check geometry for G150.		
371	Invalid I, J, K, OR Q	Check G150.		
372	Tool Change In Canned Cycle	Tool change not allowed while canned cycle is active.		
373	Invalid Code in DNC	A code found in a DNC program could not be interpreted because of restrictions to DNC.		
374	Missing XYZA in G31 or G36	G31 skip function requires an X , Y , Z , or A move.		
375	Missing Z or H in G37	G37 automatic tool length measurement function requires H code, Z value, and tool offset enabled. X , Y , and A values not allowed.		
376	No Cutter Comp In Skip	SkipG31 and G37 functions cannot be used with cutter compensation.		
377	No Skip in Graph/Sim	Graphics mode cannot simulate skip function.		
378	Skip Signal Found	Skip signal check code was included but skip was found when it was not expected.		
379	Skip Signal Not Found	Skip signal check code was included but skip was not found when it was expected.		
380	X, Y, A, or G49 Not Allowed in G37	G37 may only specify Z-axis and must have tool offset defined.		
381	G43 or G44 Not Allowed in G36 or G136	Auto work offset probing must be done without tool offset.		
382	D Code Required in G35	A Dnn code is required in G35 in order to store the measured tool diameter.		
383	Inch Is Not Selected	G20 was specified but settings have selected metric input.		
384	Metric Is Not Selected	G21 was specified but settings have selected inches.		
385	Invalid L, P, or R Code In G10	G10 was used to changes offsets but $\boldsymbol{L},\boldsymbol{P},\text{or}\boldsymbol{R}$ code is missing or invalid.		
386	Invalid Address Format	An address AZ was used improperly.		
387	Cutter Comp Not Allowed With G103	If block buffering has been limited, Cutter comp cannot be used.		
388	Cutter Comp Not Allowed With G10	Coordinates cannot be altered while cutter comp is active. Move G10 outside of cutter comp enablement.		
389	G17, G18, G19 Illegal in G68	Planes of rotation cannot be changed while rotation is enabled.		

390	No Spindle Speed	S code has not been encountered. Add an S code.		
391	Feature Disabled	An attempt was made to use a control feature not enabled by a parameter bit. Set the parameter bit to 1.		
392	B Axis Disabled	Same as 336.		
393	Invalid Motion In G74 or G84	Rigid Tapping can only be in the Z minus G74 or G84 direction. Make sure that the distance from the initial position to the commanded Z depth is in the minus direction.		
394	B Over Travel Range	Same as 316.		
395	No G107 Rotary Axis Specified	A rotary axis must be specified in order to perform cylindrical mapping (G107).		
396	Invalid G107 Rotary Axis Specified	The rotary axis specified is not a valid axis, or has been disabled.		
397	Aux Axis In G93 Block	This alarm is generated if a G-code block specifies any form of interpolated motion that involves BOTH one or more of the regular axes (X, Y, Z, A, B, etc) AND one or more of the auxiliary axes (C, U, V, W).		
398	Aux Axis Servo Off	Aux. axis servo shut off due to a fault.		
403	RS-232 Too Many Progs	Cannot have more than 200 programs in memory.		
404	RS-232 No Program Name	Need name in programs when receiving ALL; otherwise has no way to store them.		
405	RS-232 Illegal Prog Name	Check files being loaded. Program name must be Onnnn and must be at beginning of a block.		
406	RS-232 Missing Code	A receive found bad data. Check your program. The program will be stored but the bad data is turned into a comment.		
407	RS-232 Invalid Code	Check your program. The program will be stored but the bad data is turned into a comment.		
408	RS-232 Number Range Error	Check your program. The program will be stored but the bad data is turned into a comment.		
409	RS-232 Invalid N Code	Bad Parameter or Setting data. User was loading settings or parameters and something was wrong with the data.		
410	RS-232 Invalid V Code	Bad parameter or setting data. User was loading settings or parameters and something was wrong with the data.		
411	RS-232 Empty Program	Check your program. Between % and % there was no program found.		
412	RS-232 Unexpected End of Input	Check Your Program. An ASCII EOF code was found in the input data before program receive was complete. This is a decimal code 26.		

50 **—**

413	RS-232 Load Insufficient Memory	Program received doesn't fit. Check the space available in the LIST PROG mode and possibly delete some programs.	
414	RS-232 Buffer Overflow	Data sent too fast to CNC. This alarm is not normally possible as this control can keep up with even 38400 bits per second.	
415	RS-232 Overrun	Data sent too fast to CNC. This alarm is not normally possible as this control can keep up with as much as 38400 bits per second.	
416	RS-232 Parity Error	Data received by CNC has bad parity. Check parity settings, number of data bits and speed. Also check your wiring.	
417	RS-232 Framing Error	Data received was garbled and proper framing bits were not found. One or more characters of the data will be lost. Check parity settings, number of data bits and speed.	
418	RS-232 Break	Break condition while receiving. The sending device set the line to a break condition. This might also be caused by a simple break in the cable.	
419	Invalid Function For DNC	A code found on input of a DNC program could not be interpreted.	
420	Program Number Mismatch	The ${\bf 0}$ code in the program being loaded did not match the ${\bf 0}$ code entered at the keyboard. Warning only.	
429	Flpy Dir Insufficient Memory	Floppy memory was almost full when an attempt was made to read the floppy directory.	
430	Floppy Unexpected End of Input	Check your program. An ASCII EOF code was found in the input data before program receive was complete. This is a decimal code 26.	
431	Floppy No Prog Name	Need name in programs when receiving ALL; otherwise has no way to store them.	
432	Floppy Illegal Prog Name	Check files being loaded. Program must be Onnnn and must be at the beginning of a block.	
433	Floppy Empty Prog Name	Check your program. Between % and % there was no program found.	
434	Floppy Load Insufficient Memory	Program received doesn't fit. Check the space available in the LIST PROG mode and possibly delete some programs.	
435	Floppy Abort	Could not read disk.	
436	Floppy File Not Found	Could not find floppy file.	
501	Too Many Assignments In One Block	Only one assignment "=" is allowed per block. Divide block in error into multiple blocks.	
502	[Or = Not First Term In Expressn	An expression element was found where it was not preceded by "[" or "=", that start expressions.	

503	Illegal Macro Variable Reference	A macro variable number was used that is not supported by this control, use another variable.	
504	Unbalanced Paren. In Expression	Unbalanced brackets, "[" or "]", were found in an expression. Add or delete a bracket.	
505	Value Stack Error	The macro expression value stack pointer is in error. Call your dealer.	
506	Operand Stack Error	The macro expression operand stack pointer is in error. Call your dealer.	
507	Too Few Operands On Stack	An expression operand found too few operands on the expression stack. Call your dealer.	
508	Division By Zero	A division in a macro expression attempted to divide by zero. Re-configure expression.	
509	Illegal Macro Variable Use	See "Macros" section for valid variables.	
510	Illegal Operator or Function Use	See "Macros" section for valid operators.	
511	Unbalanced Right Brackets	Number of right brackets not equal to the number of left brackets.	
512	Illegal Assignment Use	Attempted to write to a read-only macro variable.	
513	Var. Ref. Not Allowed With N Or O	Alphabetic addresses N and O cannot be combined with macro variables. Do not declare N#1, etc.	
514	Illegal Macro Address Reference	A macro variable was used incorrectly with an alpha address. Same as 513.	
515	Too Many Conditionals In a Block	Only one conditional expression is allowed in any WHILE or IF-THEN block.	
516	Illegal Conditional Or No Then	A conditional expression was found outside of an IF-THEN, WHILE, or M99 block.	
517	Exprsn. Not Allowed With N Or O	A macro expression cannot be concatenated to N or O. Do not declare $O[\#1]$, etc.	
518	Illegal Macro Exprsn Reference	An alpha address with expression, such as A[#1+#2], evaluated incorrectly. Same as 517.	
519	Term Expected	In the evaluation of a macro expression an operand was expected and not found.	
520	Operator Expected	In the evaluation of a macro expression an operator was expected and not found.	
521	Illegal Functional Parameter	An illegal value was passed to a function, such as SQRT[or ASIN[.	

52 ——

522	Illegal Assignment Var Or Value	A variable was referenced for writing. The variable referenced is read only.
523	Conditional Reqd Prior To THEN	THEN was encountered and a conditional statement was not processed in the same block.
524	END Found With No Matching DO	An END was encountered without encountering a previous matching DO. DO-END numbers must agree.
525	Var. Ref. Illegal During Movement	Variable cannot be read during axis movement.
526	Command Found On DO/END Line	A G-code command was found on a WHILE-DO or END macro block. Move the G-code to a separate block.
527	= Not Expected Or THEN Required	Only one Assignment is allowed per block, or a THEN statement is missing.
528	Parameter Precedes G65	On G65 lines all parameters must follow the G65 G-code. Place parameters after G65.
529	Illegal G65 Parameter	The addresses G, L, N, O, and P cannot be used to pass parameters.
530	Too Many I, J, or K's In G65	Only 10 occurrences of I, J, or K can occur in a G65 subroutine call. Reduce the I, J, or K count.
531	Macro Nesting Too Deep	Only four levels of macro nesting can occur. Reduce the amount of nested G65 calls.
532	Unknown Code In Pocket Pattern	Macro syntax is not allowed in a pocket pattern subroutine.
533	Macro Variable Undefined	A conditional expression evaluated to an UNDEFINED value, i.e. $\#0$. Return True or False.
534	DO Or END Already In Use	Multiple use of a DO that has not been closed by and END in the same subroutine. Use another DO number.
535	Illegal DPRNT Statement	A DPRNT statement has been formatted improperly, or DPRNT does not begin block.
536	Command Found On DPRNT Line	A G-code was included on a DPRNT block. Make two separate blocks.
537	RS-232 Abort On DPRNT	While a DPRNT statement was executing, the RS-232 communications failed.
538	Matching END Not Found	A WHILE-DO statement does not contain a matching END statement. Add the proper END statement.
539	Illegal Goto	Expression after "GOTO" not valid.

540 Macro Syntax Not Allowed A section of code was interpreted by the control where macro statement syntax is not permitted.

613 Command Not Allowed In Cutter Comp.

A command (M96, for example) in the highlighted block cannot be executed while cutter comp. is invoked.

End Of List

Note: Alarms 1000-1999 are user defined by macro programs.

1002	Unclamp Error	The pallet did not unclamp in the amount of time allowed. This can be caused by a bad air solenoid, a blocked or cinked air line, or a mechanical problem.	
1003	Clamp Error	The pallet did not clamp in the amount of time allowed by the M50 macro. This alarm is most likely caused by the VMC table not being in the correct position. This can be adjusted using the macro variables for the X position (#500, 504) as described in the "Installation" section. If the pallet is in the correct position but not clamped, push the pallet against the hard stop and run an M18.	
		If the pallet is clamped, but not correctly, run an M17 to unclamp, push the pallet to the correct position, and run an M18 to clamp the pallet. Less common causes could be that the slip clutch is slipping, the motor is at fault, an air solenoid is bad, or an air line is blocked or kinked.	
1004	Mislocated Pallet @ APC	A pallet is not in the proper place on the APC. The pallet must be pushed back against the hard stop by hand.	
1005	Pal No Conflict Rec & Ch	(Pallet Number Conflict Receiver and Pallet Changer) The incorrect pallet number is entered in macro variable #510. Run an M50 to reset this variable.	
1006	Switch Missed Pal 1	Pallet #1 did not return from the receiver to the APC in the allowable amount of time. This can be caused by the chain switch block missing the limit switch, or from another mechanical problem, such as clutch slippage.	
1007	Switch Missed Pal 2	Pallet #2 did not return from the receiver to the APC in the allowable amount of time. This can be caused by the chain switch block missing the limit switch, or another mechanical problem, such as clutch slip page.	
1008	Door Not Open	The automatic door did not open (in the allowable time) when necessary to perform an APC function. This can be caused by a bad air solenoid, a blocked or kinked air line, or a mechanical problem.	
1009	Door Not Closed	The automatic door did not close (in the allowable time) when necessary after an APC function has been performed. This can be caused by a bad air solenoid, a blocked or kinked air line, or a mechanical problem.	

1010 Missing Pallet @ Receiver

Pallet change sequence was halted because receiver switch was not activated. Pallet is either unclamped or not on the receiver. Ensure the pallet is correctly located on receiver (against hardstop) then run M18 to clamp the pallet.

1011 Unknown Chain Location

Neither Chain Location switch is tripped, so the control cannot locate the chain position. This can occur if a pallet change is interrupted for any reason, such as an alarm or an E-STOP. To correct this problem, the pallets and chain must be moved back into a recognized position, such as both pallets home or one pallet home and one on the receiver. The chain position adjustment tool must be used to rotate the chain into position. The pallets must be pushed into place by hand.

WARNING! Do not move the limit switches for any reason.

CAUTION! The pallets weigh 300 lbs. each, and can cause serious injury. Use extreme caution when moving them.

1012 Incorrect Chain Location

Chain not in position to load or unload pallets when necessary. To correct this, the mislocated pallet must be moved back into the proper position by hand.

CAUTION! The pallets weigh 300 lbs. each, and can cause serious injury. Use extreme caution when moving them.

MECHANICAL SERVICE

RECOMMENDED TORQUE VALUES FOR MACHINE FASTENERS

The following chart should be used as a reference guide for torquing machine fasteners where specified.

<u>DIAMETER</u>	<u>TORQUE</u>
1/4 - 20	15 ft. lb.
5/16 - 18	30 ft. lb.
3/8 - 16	50 ft. lb.*
M10 - 100	50 ft. lb.
M12 - 65	100 ft. lb.
1/2 - 13	80 ft. lb.
3/4 - 10	275 ft. lb.
1 - 8	450 ft. lb.

^{* 3/8-16} SHCS used on tool release piston torqued to 35 ft. lb.

1. HEAD COVERS REMOVAL / INSTALLATION

Please read this section in its entirety before attempting to remove or replace covers.

REMOVAL -

Note: This procedure is for the VF-3/4. However, the procedure varies only slightly for other models.

- 1. Power on the Vertical Machining Center (VMC).
- 2. Zero return (ZERO RET) all axes, then HANDLE JOG to center X- and Y-axes under spindle.
- 3. Protect table surface with a piece of cardboard.
- 4. Loosen the four SHCS that attach top cover to side covers, and remove.
- 5. Loosen the six SHCS that attach rear cover to side covers, and remove.
- 6. Loosen the eight SHCS that attach front cover to side covers, then carefully remove front cover from the bottom until you can disconnect the tool release cable (quick disconnect).
- 7. Loosen the seven SHCS that attach each side cover, and remove from the top side. Jog Z-axis as necessary to make screw removal easier.

CAUTION! Be careful not to run head covers into the enclosure.

Figure 1-1. View of VF-3/4 head covers.

INSTALLATION -

- 1. Protect table surface with a piece of cardboard.
- 2. Replace each side cover from the top side with seven SHCS. Jog Z-axis as necessary to make access to screws easier.

CAUTION! Be careful not to run the head covers into the enclosure.

- 3. Reconnect tool release cable, if equipped, then replace front cover from the bottom and attach with eight SHCS.
- 4. Replace rear cover, and attach to side covers with six SHCS.
- 5. Replace top cover, and attach to side covers with four SHCS.

2. TOOL RELEASE PISTON (TRP) ASSEMBLY

Please read this section in its entirety before attempting to replace tool release piston assembly.

2.1 TRP REMOVAL

Note: This procedure applies to machines with 40 taper spindles only. Refer to the following sections for 50 taper TRP replacement instructions.

- 1. If machine is equipped with Through the Spindle Coolant (TSC), place a tool holder in the spindle.
- 2. Remove cover panels from the headstock area in accordance with "Head Covers Removal and Installation".
- 3. Remove the four 3/8-16 x 1¾" SHCS holding the tool release piston assembly to the head casting.
- 4. Disconnect the air line at the lube/air panel.
- 5. Disconnect the clamp/unclamp cables (quick disconnect) and the assembly's solenoid wiring located on the solenoid bracket.
- 6. Remove the tool release air hose and precharge hose at the fitting shown in Fig. 2-1. If machine is equipped with TSC, also remove the coolant hose (wrench required).
- 7. Remove entire tool release piston assembly.

Note: Steps 8 and 9 apply only to machines with TSC.

- 8. Remove the drain and purge lines from the seal housing.
- 9. Remove the seal housing from the TRP.

Figure 2-1. Tool Release Piston with Optional TSC fitting.

Figure 2-2. Mounting location for tool release piston assembly

2.2 TRP Installation

- 1. Ensure drive belt has been properly replaced as described in "Belt Assembly" section.
- 2. Verify spindle sweep adjustment is correct (as shown in "Spindle Assembly" section) before proceeding. If not correct, re-shim as necessary.
- 3. Reinstall tool release piston assembly loosely if the machine is equipped with TSC. Otherwise tighten the four mounting bolts securely.
- 4. Reconnect the air hoses at the applicable fittings on the tool release piston assembly.
- 5. Reconnect the clamp/unclamp cables to the sides of the solenoid bracket.

Note: Steps 7 and 8 apply only to machines with TSC.

6. Connect the 5/32" drain line and 5/32" purge line to the seal housing and install the seal housing on the TRP (use Loctite on the screws). The drain line connector should point toward the rear of the machine.

Note: The drain line must run straight through the cable clamp guide on the transmission, and must not interfere with the pulley or belts. On VF-O/OE machines, the drain line must go straight down through the cable clamp on the bracket.

- 7. Apply precharge pressure several times to allow the seal to center itself with the drawbar. While holding down precharge, tighten the bolts.
- 8. Install the coolant hose. A wrench must be used, tighten snug. Do not overtighten!!
- 9. Adjust the clamp/unclamp switches in accordance with the appropriate section.
- 10. Replace the head covers.

2.3 SETTING PRE-CHARGE

Note: This procedure does not apply to machines equipped with a 50 taper spindle.

Note: Do not perform this procedure on machines equipped with Through the Spindle Coolant (TSC). It will damage the machine. Refer to the "Precharge Regulator Adjustment" section (section 16.1) and perform those adjustments.

- 1. Remove the cover panels in accordance with "Head Covers Removal and Installation". It will not be necessary to remove the rear or left side panels for this operation.
- 2. Turn the air pressure regulator down to zero (0). The knob must be pulled out to unlock before adjusting.

Note: At "0" pressure on the pre-charge regulator, the adjustment knob is out as far as it will turn.

Figure 2-3. Air pressure regulator adjustment knob.

- 3. Ensure Parameter 149, PRE-CHARGE DELAY, is set to 300. If not, set it at this time.
- 4. Execute a tool change. A banging noise will be heard as the tool release piston contacts the drawbar.
- 5. Turn the air pressure regulator $\frac{1}{2}$ turn in. Execute a tool change and listen for the noise described previously. If it is heard, repeat this step until no noise is heard. There should be no noise with or without a tool in the spindle.

CAUTION! Only increase the pressure to the point where tool changes become obviously quiet. Any further pressure increases are not beneficial. Excessive pressure to the pre-charge system will cause damage to the tool changer and tooling in the machine.

2.4 TRP REMOVAL - 50 TAPER

- 1. For TSC equipped machines, place a tool holder in the spindle.
- 2. Remove cover panels from the headstock area in accordance with "Head Covers Removal and Installation".
- 3. For TSC equipped machines the rotary union and extension tube must be removed before proceeding. **They both have left handed threads.**
- 4. Disconnect the air line at the lube/air panel.
- 5. Disconnect the clamp/unclamp cables (quick disconnect) and the assembly's solenoid wiring located on the solenoid bracket.
- 6. Remove the three tool release air hoses.
- 7. Remove the four shoulder screws holding the tool release piston assembly to the head casting. Make sure to keep all the washers and shims.
- 8. Remove entire tool release piston assembly, by sliding it forward then lifting it upward. The assembly is heavy so use great care when removing it.

2.5 TRP Installation - 50 Taper

Figure 2-4. Shim and spacer location diagram.

1. Install Nominal Shims in Fork and on TRP Spacers.

	Part No.	Description	30-0013A (NEW)	30-0013 (OLD STYLE)
Fork:	(45-0014)	0.010 Shim Washer	1 ea.	None
	(45-0015)	0.018 Shim Washer	7 ea.	5 ea.
TRP Spacers:	(45-0019)	0.093 Nylon Washer	1 ea.	1 ea.
	(45-0017)	0.010 Shim Washer	2 ea.	2 ea.
	(45-0018)	0.015 Shim Washer	3 ea.	2 ea.

(Note: TRP Spacers: the nylon washer goes on top of the shims.)

- 2. Installation is the reverse order of removal.
- 3. Set the main air regulator to 85 psi.

Note: The following two steps must be completed.

2.6 Tool Push Out Adjustment

- 1. Put tool holder in spindle.
- 2. Place machined aluminim block onto machine table. Place a clean sheet of paper under the block to protect the table.

Figure 2-5. Pushout Adjustment.

3. Jog Z-Axis down until tool holder is about 0.030 above the aluminum block. Switch to 0.001 increments. Jog down one increment at a time until no movement can be felt in the block. This is our zero point. Do not press the tool release button now, this can cause a Z-Axis overload!!

Figure 2-6. Fork shim location.

4. The Tool Push-out adjustment is 0.060 +/-0.010. Add or remove shims from the tool release fork to make adjustments. The shims come in 0.010 and 0.018 thicknesses.

Jog upward 0.060. Press and hold the tool release button, and feel for movement in the aluminum block.

- If the block is tight when the button is pressed, shims may have to be ADDED to the tool release fork.
- If the block is loose when the button is pressed, shims may have to be REMOVED from the tool release fork.

(This is the opposite of 40 taper adjustment.)

- If the alumimum block is tight at 0.060, release the button and jog the Z-Axis up 0.001 and press the tool release button again. Feel for movement in the aluminum block. Repeat this until movement is felt. Note the last position where the block was tight. If the position is 0.070 or more, add shims to the tool release fork.
- If the aluminum block is loose at 0.060, jog the Z-Axis downward 0.001 at a time and check for movement in the aluminum block. If the the position where the block becomes tight is 0.050 or less, remove shims from the tool release fork.
- 5. If shims were added to the TRP fork, add half that amount to the TRP spacers supporting the TRP. This will keep the two clearance gaps between the TRP and the rotating Spindle equal (approximately 0.095 each). If shims were removed from the TRP fork, remove half that number of shims from the TRP spacers.
- 6. Apply red grease to the shoulder bolts used to mount the TRP when the shim adjustments are complete. Use blue Loctite on the threads.

Figure 2-7. TRP shim location

2.7 SETTING TRP SWITCHES

Figure 2-8. Tool Clamp / Unclamp Switches.

1. Setting the upper switch (Tool Clamped). Push the switch in slowly until it trips, then push it little farther. Lock down the screws. Double-Check the switch by turning on the TRP a few times. The bit in the Diagnostics Page should always turn on (1) when the TRP is completely retracted.

- 2. Setting the lower switch (Tool Unclamped). Use the air pressure regulator on the back of the machine or an extra regulator placed in line.
 - a) Jog the Z-Axis to 0.030 above the aluminum block.
 - b) Put a jumper across the air switch to prevent a low pressure alarm.
 - c) Back off the air pressure to around 65 psi (75 psi for old style TRP's).
 - d) Press the tool release and check for movement in the aluminum block. Adjust the air pressure until the block is loose at 0.030 +/-0.005.
 - e) While holding the Tool Release Button push the switch in until it just trips (the bit on the Diagnostics Page should change to "1"). Lock down the screws. Double-check the switch by turning the TRP on and off a few times.
 - f) Back off the air pressure until the block is loose at 0.020 +/-0.005. Press the tool release button, the Tool Unclamped bit in Diagnostics should remain "0". If not, repeat the above steps.

3. BELT ASSEMBLY

Please read this section in its entirety before attempting to replace the drive belt.

3.1 BELT REMOVAL

Note: FOR EASIER REMOVAL, PLACE TRANSMISSION IN HIGH GEAR BEFORE BEGINNING.

1. Remove cover panels from headstock area in accordance with "Head Covers Removal and Installation".

Figure 3-1. Spindle head casting disconnect points.

- 2. Remove tool release piston assembly in accordance with "Tool Release Piston Assembly Removal".
- 3. For all VMC's except VF-0, remove the six SHCS holding the transmission to the head casting and pull the transmission forward enough ($\frac{1}{2}$ " to $\frac{3}{4}$ " max.) to allow the drive belt to be pulled upward over the spindle pulley.

4. For the VF-0, remove the four SHCS holding the mounting plate to the spindle head casting. Slide the assembly forward enough to allow the drive belt to be pulled up over the spindle pulley.

Figure 3-2. Head casting area showing belt location.

- 5. Remove the inspection cover from the bottom of the spindle head casting and carefully slide the drive belt between the sump tank and the web in the casting.
- 6. First, pull the belt up over the spindle pulley, then push the other end down to clear the shifter and pull out.

Note: DO NOT bend or kink the belt in any way; damage to the fibers in the belt may result, and the belt will fail soon after installation.

3.2 BELT INSTALLATION

1. For all VMC's except VF-0, slide the replacement belt(s) under the sump tank and onto the pulley.

Note: DO NOT wrap the belts over the pulley. The pulley can be rather sharp, and may cut the belts. DO NOT bend or kink the belt in any way; damage to the fibers in the belt may result, and the belt will fail soon after installation.

- 2. Ensuring the belt is properly seated, push the transmission back, tightening the belt. Pull belt forward from rear of head casting. Pull belt over spindle pulley.
- 3. Tighten the drive belt in accordance with the following section.
- 4. Set the spindle orientation in accordance with appropriate section.

Note: The following step is necessary only if the spindle or transmission was exchanged prior to belt replacement.

5. Double-check the spindle sweep to assure that nothing has moved during the previous steps. If sweep is

within tolerance, continue; if not, sweep must be readjusted.

Note: Drive belt tension must be adjusted after every installation.

3.3 Tension Adjustment

Note: The drive belt's tension should be adjusted after every service on the transmission or spindle of the machine.

- 1. Turn the machine ON. Jog the spindle head down to a level that will allow you to work on the drive belt comfortably.
- 2. Remove the cover panels from the head stock area as shown in "Head Covers Removal" section.
- 3. Remove the tool release piston assembly in accordance with appropriate section.

FOR THE VF-1 THROUGH 9

4. Loosen the six SHCS holding the transmission to the spindle head casting.

Note: Ensure the transmission is broken free by moving it slightly by hand.

- 5. Set the belt tension tool in place as shown in Figure 3-3. Mount it to the head casting by inserting the two SHCS into the two front TRP mounting holes. Tighten the SHCS finger tight.
- 6. Turn the handle until the tool is flat against the transmission casting.

Note: Ensure the transmission is straight, and not cocked, before tensioning belt.

7. Turn the handle until the edge of the tool's plunger and the outer tube are flush (see Figure 3-3). This will set the belt at the proper tension.

Note: A belt that is correctly tensioned will whine slightly, and requires approximately 12 hours of break-in time.

- 8. Check if the belt is too loose or too tight. If the belt is set too tight, the belt will whine excessively when the assembly is at speed; and if it is set too loose, it will vibrate during accelerations and decelerations.
- 9. With the tool still in place, tighten the six SHCS holding the transmission to the spindle head casting.
- 10. Loosen the two SHCS and remove the belt tension tool.

Figure 3-3. Belt tension tool.

FOR THE VF-0:

4. Loosen the four SHCS holding the motor mounting plate to the head casting.

Note: Ensure the motor is broken free by moving it slightly by hand.

- 5. Set the belt tension tool in place as shown in Figure 3-3. Mount it to the head casting by inserting the two SHCS into the two front TRP mounting holes. Tighten the SHCS finger tight.
- 6. Turn the handle until the tool is flat against the motor mounting plate.

Note: Ensure the motor is straight, and not cocked, before tensioning belt.

7. Turn the handle until the edge of the tool's plunger and the outer tube are flush (see Figure 3-3), and then 1/2 turn more. This will set the belt at the proper tension.

Note: A belt that is correctly tensioned will whine slightly, and requires approximately 12 hours of break-in time.

- 8. Check if the belt is too loose or too tight. If the belt is set too tight, the belt will whine excessively when the assembly is at speed; and if it is set too loose, it will vibrate during accelerations and decelerations.
- 9. With the tool still in place, tighten the four SHCS holding the mounting plate to the head casting.
- 10. Loosen the two SHCS and remove the belt tension tool.

4. SPINDLE ASSEMBLY

Please read this section in its entirety before attempting to replace spindle.

IMPORTANT! The current pulley is shrink-fitted onto the spindle and is not field-serviceable. It is identified by two threaded holes on top of the spindle pulley. Should any attempt to remove the pulley damage the spindle or its components, the service warranty will be voided.

Note: The drive belt's tension should be adjusted after every service on the transmission or spindle of the machine.

4.1 Spindle Cartridge Removal

- 1. Ensure the VMC is ON. You will need to raise and lower the head stock to remove the spindle. Place the cardboard on the mill table to protect the surface.
- 2. Remove cover panels from head stock area as described in "Head Covers Removal" section.
- 3. Remove the tool release piston assembly in accordance with appropriate section.
- 4. Remove the spindle drive belt from the spindle pulley as shown in previous section. It is not possible to completely remove the belt at this time.
- 5. First disconnect the oil line from the fitting at the oil injection cover, then remove the brass fitting.

Note: When replacing a new design spindle in any vertical machine, it is important to note that the cavity between the housing and the spindle cartridge will be filled with either oil or grease. An oil filled spindle is identified by the oil fill hole to the left side of the spindle head near the spindle bore as viewed from the top.

- 6. Ensure oil plug is inserted into oil injection port of spindle before removing spindle or oil may spill into the spindle cartridge.
- 7. With the 5/16" hex wrench, loosen approximately two turns the six SHCS holding the spindle to the underside of the head casting.
- 8. Place the block of wood (minimum 6" thick) on the table directly under the spindle.

Figure 4-1. Position wood block under spindle.

- 9. At the panel, go to the JOG mode and choose Z-axis. Slowly jog in the negative (-) direction until the spindle rests on the block, then remove the screws that were previously loosened (step 7).
- 10. Jog Z-axis in the positive (+) direction until spindle is half way out of the head casting.
- 11. Grasp spindle with one hand and continue to jog in Z in the positive (+) direction until it is completely free of the casting.

4.2 Spindle Cartridge Installation

Figure 4-2. Spindle cartridge.

1. Thoroughly clean all mating surfaces of both the cartridge and the head casting, lightly stone if necessary

to remove burrs or high spots.

2. Place spindle on wood block making sure both spindle dogs contact the block. Align the two 10-32 holes located on the spindle lock so they are approximately 90 degrees from the front of the spindle on the right side.

Figure 4-3. Underside view of spindle cartridge.

- 3. Slowly jog the Z-axis in the negative (-) direction until the top portion of spindle is inside of head casting. At this point, align spindle to spindle bore. While performing this operation, you must make sure the spindle cartridge is straight to the spindle bore.
- 4. If the spindle moves to one side, use a rubber mallet and/or jog in the X or Y directions to straighten it. The spindle must go in easy. If it does not, check your alignment. **Do not force it!**
- 5. Install the six SHCS and tighten down completely.
- 6. Reattach the brass fitting to the oil injection cover and connect the oil line to the fitting. **CAUTION!** Do not overtighten the fittings when replacing on the oil injection cover. Overtightening may result in damage to the spindle cartridge.

Note: If replacing copper tubing to spindle, thoroughly clean out with filtered air.

- 7. Fill the cavity between the housing and the spindle cartridge with oil. The oil fill hole is to the left side of the spindle head near the spindle bore, as viewed from the top. **WARNING!** Never pour oil into the spindle housing.
- 8. Reinstall the drive belt and adjust the tension as needed.
- 9. Reinstall the tool release piston assembly.
- 10. Check the spindle sweep, as described later in this section. Check the clamp/unclamp switch adjustment.

Note: Refer to the appropriate sections and check the spindle orientation and ATC alignment.

4.3 Drawbar Replacement

REMOVAL -

- 1. Place a tool holder with no cutter in the spindle.
- 2. Remove head cover panels as shown in "Head Covers Removal'.
- 3. Remove the tool release piston in accordance with appropriate section.
- 4. Remove the snap ring from the top of the spindle shaft.
- 5. Reinstall the tool release piston.
- 6. Remove the tool holder from the spindle.
- 7. Remove the spindle, as described earlier in this section.
- 8. Remove the drawbar from the spindle assembly.

INSTALLATION -

- 9. Thoroughly coat the replacement drawbar with grease, including the end of the shaft where the four holding balls are located.
- 10. If machine is equipped with Through the Spindle Coolant option, grease the O-rings.
- 11. Insert four new balls in the replacement drawbar and insert into the spindle shaft. Be sure that as the shaft is installed, the balls do not fall out of the bores in the drawbar.

CAUTION! Insert the drawbar gently so the O-rings are not damaged. DO NOT use a hammer to force it.

Note: Carefully inspect the spindle shaft for galling or burrs inside the spindle shaft where the end of the drawbar rides. If it is damaged, the spindle must be replaced.

- 12. Refer to appropriate section, and install the spindle cartridge. The tool release piston will have to be reinstalled at this time.
- 13. Install a tool holder with no cutter into the spindle taper.
- 14. Remove the tool release piston.
- 15. Install the snap ring on the spindle shaft.
- 16. Reinstall the tool release piston.
- 17. Finish installation of the spindle, beginning with "Spindle sweep adjustment".
- 18. Set the drawbar height, and clamp and unclamp switches as described in the following section.

CAUTION! Step 19 must be followed or damage to the ATC will result.

19. Refer to "Spindle Orientation" and set the spindle orientation.

- 20. Reinstall the head covers.
- 21. Test-run the machine and perform the necessary ATC adjustments in the "Automatic Tool Changer" section.

4.4 Spindle Sweep Adjustment

Note: The machine must be properly leveled for the spindle sweep adjustment to be accurate.

- 1. To check spindle sweep, place a .0005 indicator on a suitable holder, place on spindle nose and jog the Z-axis in the negative (-) direction enough so that you can adjust the indicator to sweep a 5" radius from the center of X and Y axes' travels. Slowly jog Z-axis in the negative (-) direction to zero out indicator.
- 2. Establish reference zero at rear of the table. Sweep the three remaining points (left, front, and right) and record the reading.

Figure 4-4. Spindle sweep area.

- 3. Shim the spindle if necessary to correct the spindle sweep to specifications.
- 4. Recheck sweep. It must be within .0005 in both X/Z and Y/Z planes, as stated in the inspection report supplied with the VMC.
- 5. Replace the Tool Release Piston Assembly in accordance with the "Tool Release Piston Assembly Installation" and "Setting Pre-Charge" sections.

5. TOOL CLAMP/UNCLAMP SWITCH ADJUSTMENT

Please read this section in its entirety before adjusting clamp/unclamp switches or setting drawbar height.

TOOLS REQUIRED

- ✓ Machined aluminum block (2" x 4" x 4")
- √ 6" flexible ruler or .020" shim
- √ 1" diameter pipe (approx. 1' long)

Note: If machine is equipped with a 50 Taper spindle, skip to Section 5.5.

5.1 Tool Clamp/Unclamp Switch Adjustment - Initial Preparation

- 1. Remove cover panels, as described in "Head Covers Removal".
- 2. Place a sheet of paper under the spindle for table protection, then place a machined block of aluminum (approximately $2" \times 4" \times 4"$) on the paper.

Figure 5-1. Placement of aluminum block under spindle.

- 3. Power on the VMC.
- 4. Insert a tool holder WITHOUT ANY TYPE OF CUTTER into the spindle taper.
- 5. Go to the HANDLE JOG mode. Choose Z-axis and set jog increments to .01.
- 6. Jog Z-axis in the negative (-) direction until the tool holder is approximately .03 from the block. At this point, stop jogging the spindle and push the TOOL RELEASE button (top left). You will notice that the tool holder comes out of the taper.

Note: The clearance from the tool holder to the block should be zero (0).

7. To accomplish this, set the jog increments to .001 and jog in the negative (-) Z direction a few increments

of the hand wheel at a time. Between these moves, push the tool release button and feel for movement by placing your finger between the tool holder and the spindle. Do this until no movement is felt. You are now at zero (0).

CAUTION! Do not jog too far in the negative (-) direction or else it will cause an overcurrent in the Z-axis.

5.2 SETTING DRAWBAR HEIGHT

- 1. Press MDI and turn hand wheel to zero (0).
- 2. Press HANDLE JOG button and set increments to .01. Jog the Z-axis in the positive (+) direction 0.100".
- 3. Press and hold the TOOL RELEASE button, grasp the block and try to move it. The block should be tight at .100 and loose at .110. If block moves at .100, jog the Z-axis in the negative (-) direction one increment at a time. Press the TOOL RELEASE button and check for movement between increments until block is tight.

Note: The increments jogged in the Z negative (-) direction are the amount of shim washers that must be added to the tool release bolt (or coolant tip for TSC). Refer to "Shim Washers" section.

4. If the block is tight at .110, move the Z-axis in the positive (+) direction one increment at a time. Press the TOOL RELEASE button and check movement between increments until block is loose.

The increments jogged in the Z positive (+) direction are the amount of shim washers that must be removed. (Refer to "Shim Washers" section).

5.3 Shim Washers

1. To add or subtract shim washers, remove tool release piston assembly ("Tool Release Piston" section) from head casting.

Note: Shims may need to be added or removed when spindle cartridge, tool release piston assembly, or drawbar is replaced. If none have been replaced, skip this section.

Figure 5-2. Tool release piston assembly (TSC shown).

- 2. Remove tool release bolt. If machine is equipped with TSC, loosen the three set screws and remove the TSC coolant tip.
- 3. Add or subtract required shim washers (See previous section for correct amount to add or remove).
- 4. Before installing tool release bolt, put a drop of serviceable (blue) Loctite® on the threads and install. If replacing TSC coolant tip, put a drop of Loctite® on the threads of the three set screws before installing.
- 5. Install tool release piston assembly in accordance with the "Tool Release Piston Installation" section and recheck settings. If within specifications, continue; if not, readjust.

5.4 Adjustment of Switches

LOWER (UNCLAMP) SWITCH -

- 1. Push the PARAM/DGNOS button (top center) twice. You are now in diagnostics mode. Look at the bottom left corner of the page and you should see DB OPN 0 (tool unclamped) and directly under that, DB CLS 1 (tool clamped). If not, push PAGE DOWN until you do. A "1" means that particular switch is being tripped. A "0" means it is not being tripped.
- 2. With the tool holder resting on the block and set at zero ("Setting Drawbar Height" section), jog Z-axis in the positive (+) direction .06.
- 3. Press the tool release button and hold it. DB OPN should change from a "0" to a "1". If it does not, slightly loosen the two $\frac{1}{4}$ -20 x $\frac{1}{2}$ " SHCS holding the unclamp switch bracket (switch on right) to the tool release assembly.

Figure 5-3. Tool release piston assembly.

4. While activating tool release, tap unclamp switch assembly towards spring retainer until it just trips. Switch must trip at .060 + /- .010.

THIS ADJUSTMENT IS VERY IMPORTANT FOR PROPER TOOL CHANGER OPERATION, AND MUST BE PROPERLY SET!

5. Check the adjustment by setting the jog handle at .06 and activating the tool release. The DB OPN signal should be a "1".

If the adjustment is not correct, adjust until it is within specifications. You may have to readjust the switch several times.

UPPER (CLAMP) SWITCH -

CAUTION! Remove the tool holder from the spindle before performing the upper (CLAMP) switch adjustment. Failure to remove it could result in damage to the tool holder, the mill table, or cause severe personal injury.

6. Place a shim (approximately .020 thick), or the flexible ruler, between the tool release piston adjustment bolt and the drawbar.

Figure 5-4. Placement of shim before checking switch adjustment.

- 7. Move the tool release piston down so the shim is pressed against the drawbar. This can be done in one of the two following ways:
 - Using the pipe as a lever, push down on the piston until it contacts the drawbar and the shim is held in place. For the VF-0: wedge a large, flat-tip screwdriver under the cooling fins of the motor and push the piston down.

IMPORTANT! Use extreme care when performing this procedure on TSC equipped machines, or the pipe fitting will break off the top of the TRP shaft.

- If machine is equipped with the "macros" option: set macro variable #1120 to 1. This will energize the pre-charge solenoid, bringing the TRP in contact with the drawbar (no prying is necessary). Press RESET to de-energize the solenoid.
- 8. While the tool release piston is down, move the switch bracket all the way in and check for "Tool UncImp" status on the CRT (DB OPN=0, DB CLS=0), and tighten the bracket bolts. If not, move the switch out until "Tool UncImp" status appears on the CRT and then tighten the bolts.

9. Check the switch several times. This is done by by moving the piston up and down to ensure that the "Tool UncImp" status appears when the piston makes contact with the shim and drawbar, and does not appear when it is in the retracted position. "Tool UncImp" status appears on the CRT display as (DB OPN=0, DB CLS=0).

Figure 5-5. Push piston down to hold shim in place.

5.5 Adjustment of Switches - 50 Taper Option

See section 2.5 TRP Installation - 50 Taper, Setting TRP Switches.

6. SPINDLE ORIENTATION

Please read this section in its entirety before attempting to orient the spindle.

Note: If machine is equipped with a vector drive, skip to the next section.

6.1 ORIENTATION - SPINDLE DRIVE WITH SHOT PIN ORIENTATION

- 1. Remove cover panels from the head stock area ("Head Covers Removal"), and tool changer front cover.
- 2. In MDI mode, press the ORIENT SPINDLE button.
- 3. Loosen the four 1/4"-20 bolts on the orientation ring. Remove two of these bolts and insert them into the two threaded holes on the ring. Evenly tighten these two bolts until the taper lock is broken.
- 4. Remove the two 1/4"-20 bolts and place them into their original holes. Tighten them finger tight, then 1/2 of a turn more. Ensure that the orientation ring is snug, but not tight.

Note: If replacing the orientation ring, clean the shaft and the ring bore thoroughly with alcohol. They must be free of grease and oil.

- 5. Set up a magnetic base with a 0.0005" indicator on the table. Zero the indicator on the spindle dog in the X- plane.
- 6. Jog the indicator across the spindle dogs and note the indicator reading. The spindle dogs should be parallel to the X axis within 0.030".

Figure 6-1. Top view of spindle orientation components.

Figure 6-2. VF-0 motor with orient ring location.

- 7. There is a 0.015"-0.030" backlash in the spindle system when it is oriented. Be certain to compensate for this backlash when performing the adjustment.
- 8. Using a 5/8" open end wrench, rotate the spindle until the appropriate alignment is attained. If the spindle is very difficult to rotate, STOP and return to Step 4.
- 9. Disconnect the main air line to the machine.
- 10. Manually turn the orientation ring and push the shot pin until it drops into the orient ring detent.
- 11. Tighten the orient screws (evenly) to 15 ft-lbs. Verify that spindle alignment has not changed.

Note: It is vital that the orient screws be tightened evenly. If not, the top of the orientation ring will run out and the ring will slip.

Note: Ensure the orientation ring has an adequate layer of grease around the circumference before starting operation.

12. Make at least 50 tool changes to test the spindle orientation.

6.2 ORIENTATION - VECTOR DRIVE

- 1. Place the machine in low gear.
- 2. Adjust Parameter 257, "SPINDL ORIENT OFSET", until the spindle dogs are parallel to the X-axis. Ensure that the dogs are within 0.030" using a dial indicator.
- 3. If the machine is equipped with a 50 taper spindle, add 5 degrees of offset (111 encoder steps) to Parameter 257 to match the tool changer arm offset.

7. SETTING PARAMETER 64 (TOOL CHANGE OFFSET)

Please read this section in its entirety before attempting to set Parameter 64.

Note: Setting 7 must be "unlocked" before setting Parameter 64.

- 1. WITHOUT a tool in the spindle taper, initiate a tool change and stop the tool changer using the EMERGENCY STOP button (when the Z-axis moves above the carousel, but before the carousel rotates). Insert a tool holder into the pocket facing the spindle.
- 2. Using a .0005 indicator and suitable 18" mag base, zero off of bottom left edge "A" of tool holder (looking directly into pocket). Move indicator to bottom right edge "B" of tool holder. Any difference between these edges should be equally divided. For example: if a difference of .002 from left side to right side edge, adjust indicator dial so that indicator reads .001 when it is on either edge. This gives you the tool offset reference.

Figure 7-1. Checking tool offset reference.

- 3. Carefully (so as not to disturb relative position) move the indicator to one side. Remove tool from the tool changer and place it in the spindle.
- 4. Press Z SIGL AXIS to zero return the Z-axis only.
- 5. Carefully (so as not to disturb relative position) place indicator under spindle and indicate on bottom left edge of the tool holder.

If spindle head is too far in the negative (-) or the positive (+) direction, go to JOG mode and choose Z-axis. Jog Z-axis in the necessary direction until it reads zero (0).

6. Push the help button twice. This will put the machine in the calculator mode.

Figure 7-2. Screen showing calculator.

7. Take the number in the Z-axis machine display (center left of page) and multiply it by Parameter 33, which is Z RATIO (STEPS/UNIT).

If Z-axis work display is negative (-), add the number to the number that you calculated to Parameter 64. If the number is positive (+), subtract it from Parameter 64.

- 8. To insert the calculated new number, place the cursor at Parameter 64, type in new number and push WRITE key. ZERO RET Z-axis to initialize the new Parameter 64.
- 9. Recheck the offset with the indicator (Steps 1-5).
- 10. Insert tool holder in spindle in spindle taper and initiate a tool change.

Note: When the Parameter 64 is changed, the tool offsets must be reset.

3.8 SPINDLE MOTOR & TRANSMISSION

Please read this section in its entirety before attempting to remove or replace transmission.

NOTE: The drive belt's tension should be adjusted after every service on the transmission or spindle.

MOTOR REMOVAL (VF-0)

- 1. Ensure the VMC is ON. You will need to raise and lower the head stock to remove the transmission. At this time, raise the Z-axis to the full up position.
- 2. Remove the cover panels from head stock area ("Head Stock Removal" section).
- 3. Remove the tool release piston assembly ("Tool Release Piston Assembly" section).
- 4. Press the POWER OFF button on the control panel and turn the main breaker off. If there is an external breaker box, turn it off and lock it out.
- 5. Disconnect the air supply from the back panel of the machine.
- 6. Disconnect all of the electrical and pneumatic lines from the solenoid bracket on top of the spindle motor assembly. Mark any connections that have not been previously labeled for reassembly.
- 7. Remove the two SHCS holding the cable carrier to the solenoid bracket and position the cable carrier so as to not interfere with removal of the motor. It may be necessary to tie the cable carrier back to the Z-axis motor to keep it in place.
- 8. If machine is equipped with Through the Spindle Coolant option, remove the pressure regulator and bracket from the old transmission and install them on the new transmission.

Figure 3-26. VF-0 with lifting eyeholes.

9. Remove the four SHCS and carefully lift the spindle motor assembly off the spindle head. Take care to not damage the drive pulley during removal.

NOTE: It is recommended that the HAAS Transmission Hoist be used in this operation (Refer to "Hoist Pre-Assembly", later in this section, for assembly and setup).

Installation (VF-0)

- 1. Carefully lower the motor assembly down to just above the spindle head casting, taking care not to damage the drive pulley or pinch the drive belt.
- 2. Place the drive belt on the motor's drive pulley and lower the motor down onto the spindle head casting.
- 3. Insert and tighten down the four SHCS attaching the motor to the spindle head casting. Adjust the drive belt as noted in "Belt Assembly" before tightening down completely.
- 4. Refer to the appropriate section and set the spindle orientation.
- 5. Check for proper orientation of the machine and be aware of any unusual noises or vibration that may occur because of incorrect belt tension.
- 6. Reattach the cable carrier to the solenoid bracket and reconnect all electrical and fluid lines. Replace any leaking or damaged lines at this time, if necessary.

NOTE: Ensure the orient ring has an adequate layer of grease around the circumference before starting operation.

Hoist Pre-Assembly

- 1. Attach the mast support to the support base, using the four $3/8-16 \times 11/4$ " SHCS, four 3/8" flat washers, four split washers, and the four 3/8-16 hex nuts. Ensure the bolts are securely tightened.
- 2. Attach the boom modification plates to the mast using the three $\frac{1}{2}$ -13 x 4 $\frac{1}{2}$ " HHB, three $\frac{1}{2}$ " split washers, three $\frac{1}{2}$ -13 hex nuts, and the three spacers.

Figure 3-27. Support base/mast support assembly.

Figure 3-28. Exploded view of boom modification plate components.

- 3. Assemble the boom assembly as follows:
 - A. Lubricate the components of the assembly:
 - 1) Using a grease brush, apply grease to the through-hole and the side surface of the pulley wheel.
 - 2) Wipe a thin coat of oil on the entire cable.
 - 3) Lubricate all clevis pins with a thin layer of grease.
 - 4) Oil all bearings on the winch and apply grease to the gear teeth.
 - B. Place the pulley wheel inside the cable guide and place this subassembly into the end of the boom. Ensure the clevis pin through-hole is toward the top of the boom and the rounded end of the cable guide is toward the outside. Slide the clevis pin through the hole and fasten with the $1/8" \times 1"$ cotter pin.
 - C. Attach the winch base to the boom with the two 3/8-16x1" SHCS, two 3/8" lock washers, and the two 3/8" hex nuts. See owner's manual for mounting for left-or right-handed operation.
 - D. Feed the free end of the cable (without hook) between the pulley and cable guide and through the inside of the boom.

Figure 3-29. Mounting cable guide and pulley wheel to boom.

- E. Attach the cable to the winch as follows:
 - 1) FOR LEFT-HAND OPERATION -

Pass the cable under the winch drum and through the hole in the drum flange. Form a loop of cable and securely anchor it in place using the tie-down clasp, carriage bolt, and hex nut. The cable must be underwound on the winch drum.

2) FOR RIGHT-HAND OPERATION -

Pass the cable between the frame rod and the countershaft of the winch, over the winch drum, and through the hole in the drum flange. Form a loop of cable and securely anchor it in place using the tie-down clasp, carriage bolt, and hex nut. The cable must be overwound on the winch drum.

- F. Ensure all hex nuts and cap nuts are securely tightened and all cotter pins are properly bent to secure them in place. Make sure all pivots and rotation points are well-lubricated and refer to the winch owner's manual for proper lubrication before operating.
- 4. Place the transmission lift fixture on top of the transmission, with the rod at each end in the two lifting eyeholes of the transmission. Tighten the fixture onto the transmission by turning the handle at the end. **Do not overtighten.**

Figure 3-30. View of transmission lift fixture.

TRANSMISSION REMOVAL

NOTE: This procedure is not for VF-O.

- 1. Ensure the VMC is ON. You will need to raise and lower the head stock to remove the transmission. At this time, raise the Z-axis to the full up position.
- 2. Remove the cover panels from head stock area ("Head Covers Removal" section).
- 3. If machine is equipped with the Through the Spindle Coolant option, remove the pressure regulator, check valve assembly, and bracket from the old transmission, so they can be installed later on new transmission.
- 4. Remove the tool release piston assembly ("Tool Release Piston" section).

- 5. Remove the six SHCS holding the transmission to the head casting. Slide the transmission forward enough to release the drive belt from the transmission and spindle pulleys.
- 6. Press the POWER OFF button on the control panel and turn the main breaker off. If there is an external breaker box, turn it off and lock it up.
- 7. Disconnect all electrical lines and air lines from the transmission solenoid bracket. Disconnect the electrical and oil lines from the oil pump. Plug the oil lines to prevent contamination. Most of the lines should be marked and identified. If not marked, do so as it is removed.

Figure 3-31. Solenoid bracket with all lines connected.

- 8. Remove the two SHCS holding the cable carrier to the solenoid bracket and position the cable carrier so as to not interfere with the transmission removal. It may be necessary to tie the cable carrier back to the Z-axis motor to keep it in place.
- 9. Remove the protective cardboard from the mill table and install the support base assembly on the table, using the four SHCS, four $\frac{1}{2}$ flat washers, and the four T-nuts.

CAUTION! Ensure the protective rubber pads on the bottom of the mounting base are in place and in good condition, or damage to the mill table may result.

Figure 3-32. Support base/mast support assembly location.

10. With the boom modification plate in place, insert the mast into the mast support. Using the two clevis pins, attach the boom to the mast.

Figure 3-33. Mounting boom assembly to mast.

11. Place the hoist directly over the transmission and attach the hook to the cradle's eye bolt.

Figure 3-34. Fully assembled hoist in position

12. Raise the transmission, ensuring the hoist is being lifted in the locking position, clearing the enclosures. Swing the boom toward the front of the machine and lower onto the wood blocks.

Figure 3-35. Lifting position for VF-1 through 4.

13. For VF-1-4: Place the hoist hook in the bar's lifting eye and place the two hooks on either end of the bar into diagonally opposite lifting holes in the motor shroud. Lift just enough to ensure the hooks are seated properly, then carefully lift the motor and transmission assembly up enough to clear the VMC. Swing the boom toward the front of the machine and lower onto the wood blocks.

TRANSMISSION INSTALLATION

- 1. If machine is equipped with Through the Spindle Coolant option, reinstall the pressure regulator, check valve assembly, and bracket. Install two cable ties on the replacement transmission as follows:
 - > Place one cable tie around the limit switch cable.
 - > Place the second cable tie through the first one, forming a loop.
 - > Tighten the first cable tie. **NOTE:** The loop of the second cable tie must allow the drain line to slip through.
- 2. Place cradle under new transmission and lift just enough to put tension on the cables.
- 3. Ensure new transmission is seated securely and lift. Only lift high enough to clear the enclosure and to swing into place.
- 4. Slowly swing boom around to center the cradle and transmission over the spindle head.

NOTE: Inspect the gearbox isolators to ensure the spacer is flush with the bushing on the underside of the housing.

- 5. Lower the transmission carefully to just above the spindle head. Place the drive belt onto the transmission pulley.
- 6. Lower the transmission into the spindle head, taking care not to crush or bind the drive belt as you lower.
- 7. Insert and tighten down the six SHCS attaching the transmission to the spindle head. If these screws include gearbox isolators, ensure the 3/8" fender washer is **NOT** touching the gearbox housing.

Figure 3-36. Gearbox isolators.

Adjust the drive belt tension as noted in "Belt Assembly" section before tightening screws down completely.

8. Reattach the cable carrier to the solenoid bracket and reconnect all electrical and fluid lines. Replace any leaking lines at this time, if necessary.

NOTE: The hoist must be disassembled before removing from the mill table. Break down the hoist by removing the boom assembly, then the mast. It will not be necessary to completely break down the hoist after the first assembly.

NOTE: Ensure the positioning ring has an adequate layer of grease around the circumference before starting operation.

3.9 AXIS MOTOR REMOVAL / INSTALLATION

Please read this section in its entirety before attempting to remove or replace the motors.

✓ Z-Axis: Cylinder shaft stop (P/N 99-7562 - VF-0 through 4, P/N 93-9962 - VF-6 through 10)

X-Axis Motor Removal

1. Turn the VMC ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.

Figure 3-37. X-axis motor and components.

- 2. Move the table to the far left position. Loosen the SHCS and remove the right way cover.
- 3. Move the table to the far right position. Loosen the SHCS and remove the left way cover.
- 4. Remove the side enclosure panels.
- 5. On the motor housing, remove the four BHCS and remove the cover plate.
- 6. Loosen the SHCS on the motor coupling at the lead screw.
- 7. Turn the machine power OFF.
- 8. On the motor housing, loosen the four SHCS and remove the motor from the housing.
- 9. Disconnect all wiring from the motor.

INSTALLATION -

1. Slide motor into motor housing, inserting the end of the lead screw in the motor coupling.

Figure 3-38. Motor coupling components.

- 2. Reinstall and tighten down the four SHCS that hold the motor to the housing.
- 3. Visually inspect the coupler flex plates to ensure they are parallel to the coupling halves.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leadscrew or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite® on the screw before inserting.)

- 4. Replace the cover plate and fasten with the four BHCS.
- 5. Move the table to the far right position. Replace the left way cover with the SHCS.
- 6. Move the table to the far left position. Replace the right way cover with the SHCS.
- 7. Reinstall the side enclosures.
- 8. Check for backlash in the X-axis lead screw (Troubleshooting section) or noisy operation.

Y-Axis Motor Removal

- 1. Turn the machine power ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
- 2. Move the table to the farthest forward position. Using a 5/32" hex wrench, remove the SHCS on the way cover at the rear of the saddle.
- 3. Slide the way cover back against the machine. Remove the two roller brackets from the base. Pull the way cover forward and off of the base.

4. If the bearings are to be serviced, move the table to the rear of its travel and remove the SHCS holding the front way covers to the saddle. Slide the way cover to the forward position.

Figure 3-39. Y-axis motor and components.

REMOVING LUBE / AIR PANEL -

- 5. Turn the machine off and disconnect all air lines to panel.
- 6. Disconnect the spindle air/lube line.
- 7. Using a 3/8" open-end hex wrench, disconnect the oil line connecting the base to the lubrication system panel.
- 8. Disconnect the two air lines from the panel (quick-disconnect fittings) by hand.
- 9. Disconnect the three connections labeled 'limit switches' and remove the cords from the panel.
- 10. Disconnect the limit switch connection and the Y-axis connection at the side of the control panel.
- 11. While holding the lube/air panel assembly at the bottom edge, loosen the two SHCS and remove the panel assembly.

CAUTION! On machines with only two SHCS, remove one screw at a time. Replace the screw to hold the cabinet in place before removing the other screw. Failure to do this will result in damage to the cabinet.

- 12. On the motor housing, remove the four and remove the cover plate.
- 13. Loosen the SHCS on the motor coupling at the lead screw.
- 14. On the motor housing, loosen the SHCS and remove the motor from the housing.

Figure 3-40. Lube/Air Panel.

INSTALLATION -

- 1. Slide motor into motor housing, inserting the end of the lead screw in the motor coupling.
- 2. Replace and tighten down the four SHCS that hold the motor to the housing.
- 3. Visually inspect the flex plates to ensure they are parallel to the coupling halves.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leads screw or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite® on the screw before inserting.)

- 4. Replace the cover plate and fasten with the four BHCS.
- 5. Replace the lube system panel with the two SHCS that mount it.
- 6. Plug in the limit switch connection and Y-axis connection at the side of the control panel.
- 7. Reconnect the three connections labeled "limit switches" to the panel.
- 8. Reconnect the two air lines to the panel, and the solenoid to the front of the panel.
- 9. Reconnect the oil line that connects the lube system panel to the base.
- 10. If the front way cover was removed, slide it back into position, and replace the SHCS that holds it to the saddle.
- 11. Move the table to the fully forward position. Replace the rear way cover.
- 12. Replace the two roller brackets onto the base.

- 13. Slide the way cover back into place, and attach to the saddle with the SHCS.
- 14. Check for backlash in the Y-axis lead screw (Troubleshooting section) or noisy operation.

Z-Axis Motor Removal

CAUTION! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH SHAFT STOP BLOCK BEFORE SERVICING ANY Z-AXIS COMPONENTS.

- 1. Turn the machine power ON. Zero return (ZERO RET) all axes and put the machine in HANDLE JOG mode.
- 2. Loosen the six SHCS that attach the rear cover to the side covers, and remove from the spindle head.

NOTE: If machine is equipped with a hydraulic counterbalance, remove entire spindle head cover for VF-0/OE/1/2, VCE 500/550/700/750, or right side spindle head cover for VF-3/4, VCE 1000/1250.

- 3. If the bearings are to be serviced, remove the three SHCS attaching the Z-axis way cover to the spindle head and slide the cover to the bottom position.
- 4. Lower the spindle head to its lowest position.
- 5. If the machine is equipped with a hydraulic counterbalance, install cylinder shaft stop (See Fig. 9-6). HANDLE JOG Z-axis up until shaft stop blocks axis.
- 6. Disconnect the electrical power.
- 7. On the motor housing, loosen the four BHCS and remove the cover plate.

Figure 3-41. Z-axis motor and components.

Figure 3-42. Z-axis motor and components for machines equipped with hydraulic counterbalance.

- 8. Loosen the SHCS on the motor coupling at the lead screw.
- 9. On the motor housing, loosen the four SHCS and remove the motor from the housing.
- 10. Disconnect the Z-axis connection from the control panel.

INSTALLATION -

- 1. Slide motor into motor housing, inserting the end of the lead screw in the motor coupling.
- 2. Replace and tighten down the four 5/16-18 x 1½" SHCS that hold the motor to the housing.
- 3. Visually inspect the flex plates to ensure they are parallel to the coupling halves.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leads screw or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite® on the screw before inserting.)

- 4. Replace the cover plate and fasten with the four BHCS.
- 5. Reconnect electrical power.
- 6. Remove shaft stop, if necessary.
- 7. If the front way cover was removed, slide it back into position, and replace the 10-32x3/8" SHCS that holds it to the saddle.
- 8. Move the table to the fully forward position. Replace the rear way cover.
- 9. Replace the two roller brackets onto the base.

- 10. Slide the way cover back into place, and attach to the saddle with the 10-32x3/8" SHCS.
- 11. Check for backlash in Z-axis lead screw (Troubleshooting section), or noisy operation.

COUPLER REPLACEMENT

1. Remove the axis motor in accordance with "Axis Motor Removal/Installation" section.

NOTE: It will not be necessary at this time to completely remove the motor. Do not disconnect the electrical components.

- 2. Completely loosen the 10-32 x ½" SHCS on the two coupling rings and remove the coupling.
- 3. For installation: Visually inspect the flex plates to ensure they are parallel to the coupling halves. Slide the new coupling onto the motor shaft until the coupling half is flush to the end of the shaft.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leads screw or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite® on the screw before inserting.)

5. Reinstall the axis motor.

Figure 3-43. Motor coupling.

3.10 LEAD SCREW REMOVAL AND INSTALLATION

Please read this section in its entirety before attempting to remove or replace the lead screws.

TOOLS REQUIRED

- \checkmark Spanner wrench (32 mm or 40/50 mm) \checkmark 2" x 4" wood block (21"-23 $\frac{1}{2}$ " long)
- ✓ Shaft lock (32 mm or 40/50 mm)
 ✓ Torque tester
- Z-Axis: Cylinder shaft stop (P/N 99-7562 VF-0 through 4, P/N 93-9962 VF-6 through 10)

NOTE: Certain steps in the following procedures apply only to 40 and 50 mm lead screws.

X-Axis Lead Screw Removal

- 1. Turn the machine ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
- 2. Remove the side enclosures.
- 3. Loosen the SHCS and remove the chip tray from the mill table.
- 4. Jog the table to the far right position. Loosen the SHCS and remove the right way cover.
- 5. Jog the table to the far left position. Loosen the SHCS and remove the left way cover.
- 6. If applicable, remove the hard stop from the bearing housing on the lead screw.

Figure 3-44. X-axis lead screw and components.

- 7. Disconnect the oil line from the ball nut.
- 8. Loosen the 10-32 x ½" SHCS and remove the clamp nut on the lead screw support bearing end.

Figure 3-45. Lead screw assembly.

9. Remove the axis motor in accordance with "X-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation. After removing motor from the housing, set it to one side.

10. Loosen the 10-32 x $\frac{1}{2}$ " SHCS and remove the clamp nut on the lead screw in the motor housing.

11. For 32 mm lead screws:

- \triangleright Loosen the six $\frac{1}{4}$ -20 x 1" SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.
- Push the mill table towards the motor end until the lead screw clears the bearing support. Remove the SHCS from the ball nut and remove the lead screw by pulling from the bearing support end.

CAUTION! DO NOT PRY THE BEARING SLEEVE AWAY FROM THE HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.

For 40 and 50 mm lead screws:

- > Loosen the SHCS that mount the bearing support to the saddle, and remove. Remove the pull pins from the bearing support.
- > Loosen the five SHCS in the ball nut and remove the lead screw by pulling from the bearing support end.

THIS PROCEDURE ASSUMES THAT THE NUT AND MOTOR HOUSING WILL NOT BE REMOVED.

INSTALLATION -

- 1. Center the mill table on the saddle.
- 2. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.

3. Insert the lead screw through the nut housing and motor housing (See Fig. 10-3), taking care not to make contact with the screw threads, which will cause possible damage.

Figure 3-46. Install lead screw from right side.

4. If 40 or 50 mm lead screw:

- Mount the bearing support to the saddle with six SHCS, but do not tighten completely. Replace the pull pins in the bearing support.
- Install the spacer ring on the motor end of the lead screw.
- Insert the 5/16-18 x 3/4" (or M10 x 25 mm) SHCS, attaching the ball nut to the nut housing, but do not tighten completely. (Place a drop of blue Loctite® on each of the SHCS before inserting.).
- Skip to Step 8.
- 5. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting on the lead screw.)

Figure 3-47. Bearing sleeve mounting location.

6. Insert the six $\frac{1}{4}$ -20 x 1" SHCS attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.) Tighten to torque specification.

CAUTION! Do not use more than one drop of Loctite®. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.

7. Move mill table as far right as possible. Insert, but DO NOT TIGHTEN, the five $\frac{1}{4}$ -20 x 1" (or $\frac{1}{4}$ -20 x $\frac{3}{4}$ ") SHCS attaching the ball nut to the nut housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.)

CAUTION! Do not run mill table pads past the end of the linear guides! If this occurs, cease all operations and contact the manufacturer at once.

- 8. The following sequence is important to ensure proper installation of the lead screw:
 - Tighten the clamp nut, hand tight, on the motor end.
 - Install and tighten clamp nut on bearing support. Ensure the nut **does not** touch the support bearing.
 - Install the shaft lock onto the bearing support end of the lead screw. This will keep the lead screw from turning while torquing the clamp nut.
 - Place a spanner wrench on the clamp nut at the motor end of the assembly.
 - Torque the clamp nut to 15 FT-LBS.

NOTE: The 40/50 mm leadscrew clamp nut should be torqued to 50 FT-LBS.

- > Tighten the clamp nut screw and mark with yellow paint on motor support end.
- Remove the shaft lock.
- Torque support mounting bolts to proper specifications.
- Loosen the clamp nut screw and clamp nut at the bearing support end and tighten to 4 IN-LBS against the bearing. Retighten the clamp screw.
- 9. For 40 and 50 mm lead screws only:

- Move the table all the way to the right. Tighten down completely the SHCS that mount the bearing support to the saddle.
- Loosen the clamp nut on the bearing support end. Adjust the nut until it seats on the bearing. Retighten the clamp nut hand-tight, then 1/8 turn more (If you have a torque screwdriver, torque the clamp nut to 4 in-lbs).
- 10. Reinstall the motor according to "Axis Motor Removal and Installation".
- 11. Check lead screw torque at bearing support end with torque tester. Jog the table all the way to the right. Check the lead screw torque again. It should be the same as the previous reading.
- 12. Reinstall the way covers and chip tray. If applicable, replace the hard stop.
- 13. Check for backlash in the lead screw ("Accuracy/Backlash" section) or noisy operation.

Y-Axis Lead Screw Removal

- 1. Turn the machine ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
- 2. If applicable, remove the hard stop from the lead screw support bearing end of the lead screw.
- 3. Disconnect the oil line at the ball nut.
- 4. Loosen the 10-32 x ½" SHCS and remove the clamp nut on the lead screw bearing support end.

Figure 3-48. Y-axis lead screw and components.

5. Remove the motor in accordance with "Y-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation. After removing motor from the housing, set it to one side.

6. Loosen the 10-32 x 1/2" SHCS and remove the clamp nut on the lead screw in the motor housing.

7. For 32 mm lead screws:

 \triangleright Loosen the six 1/4-20 x 1" SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.

CAUTION! DO NOT PRY THE BEARING SLEEVE AWAY FROM THE HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.

- > Remove the five SHCS attaching the ball nut to the nut housing.
- > Hand-turn the lead screw toward the rear of the machine until the front end of the lead screw clears the bearing by approximately six inches (6").
- > Carefully pull the lead screw forward, to the right of the support bearing, under the front way cover until the rear of the lead screw clears the nut housing. Shift the rear end of the lead screw to the right side of the nut housing and move the lead screw to the rear of the machine until it clears the front way cover. Remove lead screw from the machine.

For 40 and 50 mm lead screws:

- Loosen the SHCS that mount the bearing support to the saddle, and remove. Remove the pull pins from the bearing support.
- Loosen the five SHCS in the ball nut and remove the lead screw by pulling from the bearing support end.

Figure 3-49. Pull lead screw forward around bearing support,...

...push back into the machine, then pull out forward.

THIS PROCEDURE ASSUMES THAT THE NUT AND MOTOR HOUSING WILL NOT BE REMOVED.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.

- 2. Slide the motor end of the lead screw under the saddle, taking care not to damage the screw threads. Position the lead screw to the right side of the nut housing and slide toward the rear of the machine as far as it will go.
- 3. Pull the lead screw forward until it is against the front way covers. Place the motor end of the lead screw through the nut housing and push the lead screw toward the back of the machine until the ball nut is seated in the nut housing.

4. If 40 or 50 mm lead screw:

- Mount the bearing support to the saddle with six SHCS, but do not tighten completely. Replace the pull pins in the bearing support.
- Install the spacer ring on the motor end of the lead screw.
- Insert the 5/16-18 x 3/4" (or M10 x 25 mm) SHCS, attaching the ball nut to the nut housing, but do not tighten completely. (Place a drop of blue Loctite® on each of the SHCS before inserting.).
- Skip to Step 8.
- 5. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting on the lead screw.)

6. Insert the six $\frac{1}{4}$ -20 x 1" SHCS attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.) Tighten to torque specifications.

CAUTION! Do not use more than one drop of Loctite®. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.

7. Move mill table as far forward as possible. Insert, but DO NOT TIGHTEN, the five $1/4-20 \times 1$ " (or $1/4-20 \times 3/4$ ") SHCS attaching the ball nut to the nut housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.)

CAUTION! Do not run mill table pads past the end of the linear guides! If this occurs, cease all operations and contact the manufacturer at once.

- 8. The following sequence is important to ensure proper installation of the lead screw:
 - Tighten the clamp nut, hand tight, on the motor end.
 - Install and tighten clamp nut on bearing support. Ensure the nut **does not** touch the support bearing.
 - Install the shaft lock onto the bearing support end of the lead screw. This will keep the lead screw from turning while torquing the clamp nut.
 - > Place a spanner wrench on the clamp nut at the motor end of the assembly.
 - > Torque the clamp nut to 15 FT-LBS.

NOTE: The 40/50 mm leadscrew clamp nut should be torqued to 50 FT-LBS.

- > Tighten the clamp nut screw and mark with yellow paint.
- > Remove the shaft lock.
- > Torque support mounting bolts to proper specifications.
- Loosen the clamp nut screw and clamp nut at the bearing support end and tighten to 4 IN-LBS. against the bearing. Retighten the clamp screw.
- 9. Move the mill table to the far back position (motor end). Tighten down completely the five SHCS attaching the ball nut to the nut housing.
- 10. For 40 and 50 mm lead screws only:
 - Move the table all the way forward. Tighten down completely the SHCS that mount the bearing support to the base.
 - Loosen the clamp nut on the bearing support end. Adjust the nut until it seats on the bearing. Retighten the clamp nut hand-tight, then 1/8 turn more (If you have a torque screwdriver, torque the clamp nut to 4 in-lbs).
- 11. Reinstall the motor according to "Axis Motor Removal and Installation". If applicable, replace the hard stop from the lead screw support bearing end of the lead screw.
- 12. Check lead screw torque at bearing support end with torque tester. Jog the table all the way to the front. Check the lead screw torque again. It should be the same as the previous reading.
- 13. Check for backlash in the lead screw ("Accuracy/Backlash" section) or noisy operation.

Z-Axis Lead Screw Removal

WARNING! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH THE SHAFT STOP BLOCK. DO NOT MOVE THE SPINDLE DURING LEAD SCREW SERVICE.

- 1. Turn the machine ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
- 2. Loosen the six SHCS that attach the rear cover to the side covers, and remove from the spindle head. Remove the three SHCS attaching the Z-axis way cover to the spindle head and slide the cover to the bottom position.
- 3. Lower the spindle head to it's lowest position. Install cylinder shaft stop. Handle jog Z-axis up until the shaft stop blocks the axis.
- 4. Disconnect electrical power.
- 5. If applicable, remove the hard stop from the bearing housing on the lead screw.
- 6. Disconnect the oil line at the ball nut.
- 7. Loosen the 10-32 x ½" SHCS and remove the clamp nut on the lead screw support bearing end.
- 8. Remove the axis motor in accordance with "Z-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation. After removing motor from the housing, set it to one side.

9. Loosen the 10-32 x $\frac{1}{2}$ " SHCS and remove the clamp nut on the lead screw in the motor housing.

10. For 32 mm lead screws:

 \triangleright Loosen the six 1/4-20 x 1" SHCS and remove the bearing sleeve from the motor housing. Push on the opposite end of the lead screw to loosen.

CAUTION! DO NOT PRY THE BEARING SLEEVE AWAY FROM THE HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.

- > Hand-turn the lead screw to move the screw up until the bottom end clears the support bearing by approximately six inches (6").
- Remove the SHCS from the ball nut and lower the lead screw down and to the right of the support bearing, past the Z-axis way cover. For the VF-6, remove the lead screw from top of column.

USE EXTREME CAUTION! DO NOT DAMAGE THE THREADS ON THE LEAD SCREW.

For 40 and 50 mm lead screws:

- > Loosen the SHCS that mount the bearing support to the column, and remove. Remove the pull pins from the bearing support.
- Loosen the five SHCS in the ball nut and remove the lead screw by pulling from the bearing support end.

Figure 3-50. Z-axis lead screw and components.

INSTALLATION -

WARNING! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH SHAFT STOP BLOCK. DO NOT MOVE THE SPINDLE DURING LEAD SCREW SERVICE.

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION: MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.

2. If 40 or 50 mm lead screw:

- Insert the lead screw into the bearing support. Screw the clamp nut on a few turns.
- Insert the lead screw, with the bearing support attached, into place on the column. Ensure the lead screw goes through the ball nut housing and the bearing sleeve.
- Mount the bearing support to the column with SHCS, but do not tighten completely. Replace the pull pins in the bearing support.
- Install the spacer ring on the motor end of the lead screw.
- Hand-turn the ball nut until it comes into contact with the nut housing mounting surface. If necessary, turn the leadscrew to correctly position lube fitting of the ball nut. Insert, but DO NOT TIGHTEN, the 5/16-18 x 3/4" (or M10 x 25 mm) SHCS, attaching the ball nut to the nut housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.)
- > Skip to Step 7.
- 3. Slide the lead screw up into the nut housing and gently lower it until it is resting in the support bearing.

Figure 3-51. Reinstalling the lead screw.

- 4. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting on the lead screw.)
- 5. Insert the six $\frac{1}{4}$ -20 x 1" SHCS attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.) Tighten down completely.

CAUTION! Do not use more than one drop of Loctite®. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.

- 6. Hand-turn the ball nut until it comes into contact with the nut housing mounting surface. If necessary, turn the leadscrew to correctly position lube fitting of the ball nut. Insert, but DO NOT TIGHTEN, the five $\frac{1}{20} \times 1$ " (or $\frac{1}{4}$ -20 x $\frac{3}{4}$ ") SHCS attaching the ball nut to the nut housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.)
- 7. The following sequence is important to ensure proper installation of the lead screw:
 - Tighten the clamp nut, hand tight, on the motor end.
 - Install and tighten clamp nut on bearing support. Ensure the nut **does not** touch the support bearing. It will be used to hold the lead screw while the other end is tightened.
 - Install the shaft lock onto the bearing support end of the lead screw. This will keep the lead screw from turning while torquing the clamp nut.
 - Place a spanner wrench on the clamp nut at the motor end of the assembly.
 - Torque the clamp nut to 15 FT-LBS.

NOTE: The 40/50 mm leadscrew clamp nut should be torqued to 50 FT-LBS.

- > Tighten the clamp nut screw and mark with yellow paint.
- Remove the shaft lock.
- > Torque support mounting bolts to proper specifications.
- Loosen the clamp nut screw and clamp nut at the bearing support end and tighten to 4 IN-LBS against the bearing. Retighten the clamp screw.
- 8. Tighten down completely the five SHCS attaching the ball nut to the nut housing.

- 9. Reinstall the motor according to "Z-Axis Motor Removal and Installation". Reinstall the hard stop at the support bearing end of the lead screw.
- 10. Reconnect electrical power.
- 11. Jog the spindle down and remove the cylinder shaft stop.
- 12. For 40 and 50 mm lead screws only:
 - > Jog the spindle head towards the bearing support end.
 - > Tighten down completely the SHCS that mount the bearing support to the column.
 - Loosen the clamp nut on the bearing support end. Adjust the nut until it seats on the bearing. Retighten the clamp nut hand-tight, then 1/8 turn more (If you have a torque screwdriver, torque the clamp nut to 4 in-lbs).
- 13. Check lead screw torque at bearing support end with torque tester. Jog the the spindle head to it's highest position. Check the lead screw torque again. It should be the same as the previous reading.
- 14. Check for backlash in the lead screw ("Accuracy/Backlash" section) or noisy operation.

3.11 BEARING SLEEVE REMOVAL AND INSTALLATION

Please read this section in its entirety before attempting to remove or replace the bearing sleeve.

TOOLS REQUIRED

✓ Spanner wrench

- ✓ Pre-load fixture
- ✓ Wood block (16" long)
- Z-Axis: Cylinder shaft stop (P/N 99-7562 VF-0 through 4, P/N 93-9962 VF-6 through 10)

Note: For machines equipped with 40 or 50 mm lead screws, the lead screw must be removed in order to remove the bearing sleeve. Refer to the "Lead Screw Removal/Installation" section for instructions.

X-Axis Bearing Sleeve Removal

1. Turn the VMC ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.

Figure 3-52. X-axis lead screw and components.

- 2. Loosen the SHCS and remove the chip tray from the mill table.
- 3. Remove the axis motor in accordance with "X-Axis Motor Removal".

Note: The motor's electrical connections do not need to be removed for this operation. After removing from the motor housing, set it to one side.

- 4. Loosen the 10-32 x ½" SHCS and remove the clamp nut on the lead screw in the motor housing.
- 5. Loosen the six $\frac{1}{4}$ -20 x 1" SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.

CAUTION! DO NOT PRY THE BEARING SLEEVE AWAY FROM THE HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.

- 2. Move mill table to the far right.
- 3. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting.)

Figure 3-53. Lead screw assembly.

4. Insert the six $\frac{1}{4}$ -20 x 1" SHCS, attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.) Tighten down completely.

CAUTION! Do not use more than one drop of Loctite®. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.

- 5. Start the clamp nuts on both ends of the lead screw. Do not tighten.
- 6. Hand-turn the mill table to the far left position.
- 7. Loosen the six $\frac{1}{4}$ -20 x 1" SHCS attaching the bearing sleeve to the motor housing and retighten completely. DO NOT SKIP THIS STEP. It ensures the lead screw is installed and runs parallel and flat to the linear guides and the saddle.

Note: For the angular contact design bearing, no pre-load is necessary. Do the following:

- Tighten the clamp nut on the motor housing to 15 foot-pounds.
- Tighten the SHCS on the clamp nut.
- Tighten the clamp nut on the support bearing end of the lead screw until it contacts the bearing, then tighten further approximately 1/8 of a turn.
- Tighten the SHCS on the clamp nut.
- 8. Reinstall the axis motor in accordance with "X-Axis Motor Removal".
- 9. Reinstall the way covers and chip tray.
- 10. Check for backlash in the X-axis lead screw (Troubleshooting section) or noisy operation.

Y-Axis Bearing Sleeve Removal

- 1. Turn the VMC ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
- 2. Remove the axis motor in accordance with "Y-Axis Motor Removal".
- 3. Remove the hard stop from the bearing housing on the lead screw.
- 4. Loosen the 10-32 x ½" SHCS and remove the clamp nut from the bearing support end of the lead screw.
- 5. Loosen the six $\frac{1}{4}$ -20 x 1" SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.

CAUTION: DO NOT PRY THE BEARING SLEEVE AWAY FROM THE MOTOR HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR THE LEAD SCREW WILL RESULT.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.

2. Slide the bearing sleeve into the motor housing and start all six $\frac{1}{4}$ -20 x 1" SHCS into the motor housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.)

CAUTION! Do not use more than one drop of Loctite®. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.

- 3. Move the table to the rear of its travel.
- 4. Tighten the six ¼-20 x 1" SHCS that attach the bearing sleeve to the motor housing.
- 5. Loosely install the clamp nut on the lead screw at the motor housing end.

Note: For the angular contact design bearing, no pre-load is necessary (follow the procedure in "X-axis bearing sleeve" section).

- 6. Reinstall the axis motor.
- 7. Check for backlash in the Y-axis lead screw (Troubleshooting section) or noisy operation.

Z-Axis Bearing Sleeve Removal

WARNING! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH SHAFT STOP BLOCK BEFORE SERVICING ANY Z-AXIS COMPONENTS.

- 1. Turn the machine power ON. Zero return (ZERO RET) all axes and put the machine in HANDLE JOG mode.
- 2. Loosen the six SHCS that attach the rear cover to the side covers, and remove from the spindle head.

Note: If machine is equipped with a hydraulic counterbalance, remove entire spindle head cover for VF-0/OE/1/2, VCE 500/550/700/750, or right side spindle head cover for VF-3/4, VCE 1000/1250.

- 3. If the bearings are to be serviced, remove the three SHCS attaching the Z-axis way cover to the spindle head and slide the cover to the bottom position.
- 4. Remove the hard stop from the bearing housing on the lead screw.
- 5. Loosen the 10-32 x ½" SHCS and remove the clamp nut from the bearing support end of the lead screw.
- 6. Raise the spindle head until the bottom edge is approximately sixteen inches (16") above the mill table.
- 7. Install cylinder shaft stop. HANDLE JOG Z-axis up until shaft stop block axis.
- 8. Place the wood block beneath the spindle head and lower the spindle head until it is resting on the block.

Figure 3-54. Z-axis bearing sleeve.

9. Perform Steps 6-10 of "Z-Axis Motor Removal".

Note: The motor's electrical connections do not need to be removed for this operation. After removing from motor housing, set it to one side.

- 10. Loosen the 10-32 x ½" SHCS and remove the clamp nut from the motor housing end of the lead screw.
- 11. Loosen the six $\frac{1}{4}$ -20 x 1" SHCS and remove the bearing sleeve from the motor housing. Hand-turn the lead screw in an upward direction to push the bearing sleeve out of the motor housing.

CAUTION! DO NOT PRY THE BEARING SLEEVE AWAY FROM THE MOTOR HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR THE LEAD SCREW WILL RESULT.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.

2. Slide the bearing sleeve into the motor housing and start all six $\frac{1}{4}$ -20 x 1" SHCS into the motor housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.)

CAUTION! Do not use more than one drop of Loctite®. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.

- 3. Tighten the six ¼-20 x 1" SHCS that attach the bearing sleeve to the motor housing.
- 4. Loosely install the clamp nut on the lead screw at the motor housing end.
- 5. Reinstall the hard stop on the bearing housing end of the lead screw.

Note: For the angular contact design bearing, no pre-load is necessary. Follow the procedures as outlined in "X-Axis Bearing Sleeve" section.

- 6. Reinstall the axis motor in accordance with "Z-Axis Motor-Installation".
- 7. Remove shaft stop.
- 8. Check for backlash in the Z-axis lead screw (Troubleshooting section) or noisy operation.

3.12 AUTOMATIC TOOL CHANGER

TOOLS REQUIRED

✓ Two-jaw puller

Hydraulic jack

√ 1-2-3 Block

Cardboard

CARRIAGE CASTING REPLACEMENT

Note: If the carriage casting is damaged in a crash, it must be replaced. Look specifically for broken bosses where the roller bolts mount to the casting. If the carriage casting is broken off of the holding plate but not damaged, only the roller bolts need be replaced.

- 1. Turn the machine power off.
- 2. Remove the left side enclosure panel of the machine.
- 3. Disconnect all cables from the carriage casting and remove any bolts holding the ATC to the holding plate.

Note: If the carriage casting has been damaged, replacement is necessary; move the ATC to a bench and remove all components from the damaged carriage casting and place in the new casting. Skip to Step 6 for replacement.

- 4. Place a piece of cardboard over the machine's table, and carefully lower the carriage casting (with carousel) onto the machine table.
- 5. If the carriage casting has crashed and/or has been broken off of the holding plate, it should be inspected for damage before going any further.
- 6. Remove any damaged roller bolts from the carriage casting. Replace with new bolts.
- 7. With a lifting device, carefully lift the ATC assembly up and onto the holding plate.

Note: Ensure the cam follower on the slip clutch engages the slot on the carriage casting.

- 8. With the ATC assembly securely supported, install the lower roller bolts and adjust in accordance with "Roller Bolt Replacement".
- 9. Repair or replace any cables damaged and adjust the ATC. Align the ATC assembly in accordance with the following sections, and set Parameter 64 in accordance with "Spindle Motor and Transmission" section.

ROLLER BOLT REPLACEMENT

- 1. Remove the shuttle motor cover from the back of the machine (VF-0, VF-1, VF-2).
- 2. Place a support under the center of the carousel.
- 3. Loosen the eccentric locks on the bottom roller bolts.

CAUTION! Ensure the ATC is securely supported, otherwise it may fall when an upper roller bolt is removed.

4. Carefully remove the damaged roller bolt from the ATC shuttle and replace with a new bolt.

Note: REPLACE ONLY ONE ROLLER BOLT AT A TIME. Carefully inspect the v-groove rollers for roughness or damage, and replace if necessary.

- 5. Tighten the eccentric locks on the bottom rollers until there is no play between the rollers and the V-guide on the ATC holding plate.
- 6. Set the tool change offset (Parameter 64) in accordance with "Setting Parameter 64" section.
- 7. Verify the ATC alignment in accordance with the following section.
- 8. Reinstall the shuttle motor cover (VF-0, VF-1, VF-2).

AUTOMATIC TOOL CHANGER (ATC) ALIGNMENT

- 1. Verify that the spindle orientation is correct (Refer to appropriate section).
- 2. Command an automatic tool change, and press EMERGENCY STOP when the shuttle is in the full in position.
- 3. Verify that the spindle dog lines up to the alignment key in the ATC, in the Y plane.

Note: If the spindle dog and alignment key do not line up, loosen the four HHB that hold the ATC holding arm to the column.

Figure 3-55. Underside showing centering measurements.

4. Move the entire tool changer until the tool alignment key lines up with the spindle dog. Tighten the four HHB.

Note: Parameter 64 must be checked, and adjusted if necessary, when the ATC is aligned.

5. Make at least 50 tool changes after the alignment is complete. Verify that the tools are being picked up squarely.

SHUTTLE STROKE ADJUSTMENT

- 6. Move the ATC away from the spindle and loosen the four HHBs in the ATC holding arm in the X-axis plane.
- 7. Push the cam follower to its full upward stroke, then push the entire ATC assembly in by pushing on the tool changer holding plate until ATC is fully engaged on the tool holder.
- 8. Ensure the extractor is making full contact on the tool flange.

Figure 3-56. Automatic Tool Changer - Mechanical Assembly (Side View)

EXTRACTOR FORK REPLACEMENT

Note: Extractor forks that do not hold the tool holders firmly, or forks that are bent, must be replaced. Damage to the ATC will result if not replaced.

- 1. With no tool holders in the spindle or in the ATC, command "ATC FWD" until the extractor fork needing replacement is facing the spindle.
- 2. Command "ATC FWD" again, but press the EMERGENCY STOP after the spindle head lifts up off the carousel

Note: At this point, the shuttle should be in and the spindle should be about $4\frac{1}{2}$ " above the carousel.

3. Loosen the SHCS that attach the damaged extractor fork to the ATC carousel.

Figure 3-57. Automatic Tool Changer - Mechanical Assembly (Top View)

- 4. With the extractor fork removed, inspect the alignment key mounted under the extractor. If it is damaged due to improper spindle orientation, replace it and correct the orientation (Refer to appropriate section) after the extractor fork has been replaced.
- 5. Put a drop of blue Loctite on each of the SHCS and attach the new extractor fork to the ATC with the SHCS. **DO NOT OVER-TORQUE!** Ensure the distance from the edge of the extractor fork to the edge of the pocket in the carousel is the same on both sides in accordance with the following section.
- 6. Test run the ATC to ensure proper operation.

SLIDING COVER REPLACEMENT

Note: If any of the sliding covers on the ATC do not slide freely or are bent in a crash, they must be replaced.

- 1. Loosen the four screws that attach the sliding panel cover to the carousel. Be careful to not lose the spring that holds the sliding cover closed or the number plate on the ATC carousel.
- 2. Inspect the cover for any galling or damage. Inspect the spring for damage.
- 3. Loosely install the two innermost screws that attach the number plate and the cover to the carousel and slide the spring into position in the slot in the ATC carousel.
- 4. Put the replacement sliding panel in place, making certain that the tongue on the panel pushes on the end of the spring.
- 5. Tighten the two rear screws completely and install the two front screws.
- 6. Ensure the sliding panel moves freely.

Note: If the sliding door is bent, determine the cause before resuming normal operation.

SHUTTLE MOTOR REMOVAL

- 1. Turn the VMC off.
- 2. Remove the cover from the tool carriage casting.
- 3. Remove the hex bolt that attaches the cam follower to the slip clutch (see Fig. 3-56).
- 4. Push the tool changer in as far as it will go.
- 5. Loosen the set screw that secures the slip clutch assembly to the shuttle motor (see Fig. 3-57).
- 6. Using a small two-jaw puller, pull the slip clutch assembly (see Fig. 3-57) off the shuttle motor shaft.
- 7. Remove the SHCS attaching the cover to the holding arm casting on the tool changer.
- 8. Remove the cover from the wire channel inside the holding arm casting and unplug the shuttle motor from the wiring harness.

Figure 3-58. Wiring harness for shuttle motor.

9. Remove the four FHCS attaching the shuttle motor to the holding plate on the tool changer. The FHCS are visible from the front of the VMC. Do not remove the HHB's holding the shuttle motor gear box together.

SHUTTLE MOTOR INSTALLATION

- 1. Install the new motor on the tool changer holding plate using the four 10-32 x $\frac{3}{4}$ " FHCS. Before inserting the FHCS, place a drop of blue Loctite® on each screw.
- 2. Reattach the shuttle motor connection to the wiring harness in the holding arm casting.
- 3. Replace the cover on the holding arm casting.

Figure 3-59. Front view of holding plate showing FHCS location.

- 4. Reattach the slip clutch assembly to the shuttle motor shaft. Before placing on the shaft, put two or three drops of red Loctite® on the slip clutch hub.
- 5. Insert and tighten down the set screw holding the slip clutch assembly to the shuttle motor shaft. Before inserting the set screw, put a drop of blue Loctite® on the set screw.
- 6. Ensure the actuating arm on the slip clutch assembly contacts the shuttle IN and OUT limit switches.
- 7. Ensure the hub of the slip clutch assembly does not interfere with the face plate on the shuttle motor.
- 8. Start the VMC and go through a performance check consisting of at least 30 tool changes, assuring correct operation.

TURRET MOTOR REMOVAL

- 1. Power on the VMC and put it in MDI mode.
- 2. Zero Return all axes (ZERO RET AUTO ALL AXES).
- 3. Press ATC FWD then the EMERGENCY STOP after the spindle head has moved during the tool change cycle. At this time, the tool changer should be at the full in position and the spindle head should be above the tool changer.
- 4. Turn the VMC power OFF.

96-8100

- 5. Remove the 10-32 SHCS from the carriage casting cover and remove the cover.
- 6. Tag both limit switch connections for reassembly, then unplug the limit switches' and the power's connections at the carriage casting.
- 7. Remove the four SHCS attaching the turret motor and mounting plate to the tool carriage casting.

Figure 3-60. Carriage casting with cover removed.

8. Carefully lift the turret motor assembly off of the tool carriage casting.

Note: The gear motor should never be disassembled and is not field-serviceable. All gear motors should be returned to Haas for evaluation and rebuilding.

INSTALLATION -

- 1. Grease the locking element and drive pin on the Geneva driver. Also, grease the teeth on the Geneva star on the ATC.
- 2. Rotate the Geneva driver until the cam depresses the limit switch on the turret motor assembly.
- 3. Place a narrow strip of paper around the locking element of the Geneva driver and install the turret motor assembly onto the casting. Be certain that the locking element of the Geneva driver is seated against the star with the paper strip acting as a shim.

Figure 3-61. Required spacing for Geneva driver.

- 4. Attach the turret motor assembly to the carriage casting with the four SHCS.
- 5. Reconnect the power and limit switch lines to the turret motor.
- 6. Power on the VMC and ZERO RETURN all axes (ZERO RET AUTO ALL AXES).
- 7. Go to MDI mode and press "T 1 ATC FWD".

Note: The machine may alarm at this time (Alarm 115 or 127). If this occurs, ZERO RETURN the Z-axis (ZERO RET - SINGL AXIS) and repeat step 8. This step may need to be repeated two times to clear all possible alarms.

- 8. Press "T 9 ATC FWD". The tool changer should go to tool nine. If the tool changer travels to tool seven, the turret motor is wired backwards. Reverse motor leads and repeat steps 7-10. Also, the turret should run quietly with no strain in the motor, banging, or vibration.
- 9. Reinstall the tool carriage casting cover.
- 10. Test the tool changer for proper operation.

GENEVA STAR REPLACEMENT

Note: If the ATC Geneva star is damaged or worn in its driven slots, it must be replaced.

- 1. Turn the machine power off.
- 2. Remove the cover from the front of the ATC shuttle.

- 3. Remove the turret motor assembly (Refer to previous section).
- 4. Place a support for the ATC under the center of the carousel.
- 5. Loosen the nut inside the carriage casting that attaches the ATC carousel assembly to the casting. There is a socket head in the top of the shaft to hold it stationary while loosening the nut.
- 6. Place the cardboard over the mill table and carefully lower the carousel until it rests on the table.
- 7. Remove the six SHCS that attach the Geneva star to the bearing housing on the ATC carousel.
- 8. Install the Tool #1 standoff on the replacement Geneva star.
- 9. Install the replacement Geneva star. Check the concentricity of the star to the shaft on the carousel assembly; it must be within 0.005". If the star is not within tolerance, loosen the SHCS and adjust the alignment until it is acceptable.
- 10. Installation is reverse of removal. Be certain to grease the perimeter of the star before installation and readjust the ATC in accordance with "Alignment Preparation" and "Shuttle Stroke Adjustment", if necessary.

ATC TRAP DOOR REPLACEMENT

Note: If the ATC tran deer is demanded in a greek, it must be replaced

- Note: If the ATC trap door is damaged in a crash, it must be replaced.
- 1. Turn the machine power off.
- 2. Remove the turret motor assembly in accordance with the previous section.
- 3. Place a support for the ATC under the center of the carousel.
- 4. Loosen the nut inside the carriage casting that attaches the ATC carousel assembly to the casting. There is a socket head in the top of the shaft to hold it stationary while loosening the nut.
- 5. Place the cardboard over the mill table and carefully lower the carousel until it rests on the table.
- 6. Remove the two SHCS that attach the guide pin for the ATC trap door to the ATC holding plate and remove the guide pin.
- 7. Slide the trap door from between the carousel cover and the shuttle casting. Be careful to not lose the two nylon washers that sandwich the trap door between the carousel cover and the shuttle casting.
- 8. Installation is reverse of removal. When installing the guide pin, ensure the mounting slot is approximately central to the mounting screws and be certain the pin does not interfere with the top of the ATC carousel cover. Grease the carousel cover where the plastic standoffs ride, the slot in the ATC shutter, the guide pin, and the nylon washers where the shutter pivots. The position of the ATC may need to be readjusted after installation.

3.13 GRID OFFSET CALCULATION

Please read this section in its entirety before attempting to set the grid offset.

GUIDELINES -

The encoder Z channel signal must occur between 1/8 and 7/8 revolution from where the home switch is released. If DISTANCE TO GO is less than 1/8 (.0295) or greater than 7/8 (.2065) of a revolution, it will alarm to "Zero Return Margin Too Small".

In ZERO RETURN mode, the DISTANCE TO GO is the amount the encoder rotated from when the switch was released until it found the Z channel signal. The ideal amount for the DISTANCE TO GO is .118 (This equals ½ of a revolution of the encoder).

SETTING THE OFFSET -

- 1. Set the grid offset to zero. (Parameter 125,126, 127, 128, or 170, depending on the axis being set.) Setting #7 (PARAMETER LOCK) must be OFF to reset grid offset.
- 2. Press ZERO RET and ZERO SINGL AXIS the axis you are setting (X, Y, Z, A, or B).
- 3. Calculate the grid offset using the following formula, and write the result in Parameter 125,126, 127, 128, or 170 (depending on the axis being set).

(DISTANCE TO GO - .118) x Ratio = Grid Offset

The Ratio (steps/unit) for the X, Y, Z, A, and B axes are the values in Parameters 5, 19, 33, 47, and 155, respectively.

4. ZERO RET the axis again to use this offset.

Note: If Z-axis grid offset is reset, Parameter 64 should be checked and adjusted accordingly.

3.14 ENCLOSURE REPLACEMENT

Please read this section in its entirety before attempting to replace the doors or windows.

TOOLS REQUIRED

✓ Trim installation tool (dull-edged knife or caulking spatula)

Door Replacement

CAUTION! If possible, have two people performing this operation, as the weight of the doors may be a factor in removal.

REMOVAL -

- 1. Turn the machine power off.
- 2. Slide the doors to the full open position.
- 3. Remove the tension springs (2) connecting the two swivel roller brackets at the top and bottom of the door.
- 4. Slide the door to the fully closed position. Loosen the two upper roller hex nuts, and disengage the upper swivel roller brackets from the top roller guide.
- 5. Lift the door from the bottom roller guide and remove.

INSTALLATION -

- 6. Ensure that the lower roller hex fasteners are wrench tight and the upper roller fasteners are finger tight in the middle of their adjusting slots. Place the door into the enclosure, and position with the lower rollers resting on the lower roller guide.
- 7. Rotate the door to the upright position, and engage the top rollers onto the top roller guide.
- 8. Replace the tension springs onto the upper and lower roller swivel brackets. Tighten the upper roller fasteners.
- 9. Verify that the door travels smoothly. If it does not:
 - Check that all roller wheels are seated and roll on their tracks.
 - If all roller wheels are seated on their tracks, it will be necessary to adjust the door travel by loosening the upper and lower roller hex fasteners.

Figure 3-62. Roller/roller guide assembly.

DOOR ADJUSTMENTS -

- 10. Close both doors and check that the vertical gap between them is uniform. If it is not:
 - > Determine which door must be adjusted.
 - Loosen the door's outer lower roller attachment and pivot the door on the inner lower roller wheel.
 - > When the door is in the desired position (the vertical gap is uniform), tighten the lower outer roller fastener.

Figure 3-63. View of vertical gap between front doors.

11. Check the gap between the door and the front panel flange, and verify it is 5/8" throughout the travel of the door. If it is not:

Loosen the door's upper roller fasteners and tilt the door forward or back, as necessary, to adjust door position.

Figure 3-64. View of gap between front of door and front panel flange.

SWITCH ADJUSTMENT -

12. Move the door to the fully closed position. Go to the "Diagnostics" page on the control panel, and ensure "DOOR S" reads "0". Move the door to the open position, and ensure "DOOR S" reads "1". If either reading is incorrect:

- Loosen the SHCS that mounts the switch actuator bracket to the top of the door. (**Note:** It is possible to access this bracket from the side window.)
- Move the bracket in its slot to the proper position and tighten the SHCS.

WINDOW REPLACEMENT

REMOVAL -

- 1. Turn the machine power off.
- 2. Move the door to the fully closed position so the window is accessible. Use a trim installation tool to pull the locking tab out of the inside of the window seal (the tab is a part of the seal).
- 3. Remove the window panel from the seal. The tool can be placed between the window panel and the seal to aid in removing the window panel.
- 4. Remove the seal from the enclosure's cutout.

Figure 3-65. Cross-section of window seal.

INSTALLATION -

- 5. Replace the seal around the enclosure's cutout, with the locking tab facing the inside of the machine.
- 6. Replace the window panel into the seal. The tool can be placed between the window panel and the seal to aid in replacing the window panel into the seal.

3.15 HYDRAULIC COUNTERBALANCE

TOOLS REQUIRED

- √ (1) 4 x 4 x 14" head support block
- ✓ Hydraulic counterbalance service kit, consists of:
 - Pressure tank with manifold assembly, prefilled with (2) quarts DTE-25 hydraulic oil
 - Hydraulic cylinder with hose attached (if necessary)

HYDRAULIC TANK REPLACEMENT

REMOVAL -

CAUTION! While performing this procedure, the spindle head may drop if the control loses power or alarms.

- $1. \ Raise \ spindle \ head \ by \ HANDLE \ JOG \ up \ to \ 14.5" \ above \ table. \ Insert \ wood \ block \ and \ lower \ head \ casting \ onto$
- it. EMERGENCY STOP the machine. Head should rest securely on table block. Power OFF VMC.

Note: DO NOT LOWER SPINDLE ONTO BLOCK.

2. Disconnect the two-pin end of the pressure sensor cable(s) to the pressure sensor(s), if tank is equipped with sensor.

Figure 3-66. Hydraulic counterbalance charge/discharge kit (shown in place to discharge system).

- 3. Remove cap to Schrader filler valve.
- 4. Ensure T-handle of the gas chuck is turned completely counterclockwise. Attach charge/discharge kit by tightening gas chuck to the Schrader valve finger tight, then wrench lightly to tighten (see Figure 3-66).

- 5. Place the CGA 580 end of charge/discharge kit into a bucket to the contain the hydraulic oil while discharging the system.
- 6. Slowly turn the T-handle clockwise until the system begins to discharge. Complete discharge may take up to 10 minutes. Verify tank gauge reads 0 psi.
- 7. Turn the T-handle completely counterclockwise and remove the charge/discharge kit from the Schrader valve.
- 8. Disconnect the hydraulic hose from the tank assembly.
- 9. Remove the tank assembly from the column by removing the four SHCS from the tank mount.

INSTALLATION -

10. Connect the hose to the tank before mounting the tank in the inverted position. This prevents hydraulic oil from spilling.

Note: For a positive seal, ensure the hose-to-tank connection is straight, and not skewed.)

- 11. Mount the tank assembly to the column with the tank mount and four SHCS. Ensure the hydraulic hose is not twisted.
- 12. Connect the two-pin end of the pressure sensor cable(s) to the pressure sensor(s).
- 13. Use cable ties to secure the cable to the hydraulic hose.

Note: For this step, use regulated dry nitrogen gas (welding grade acceptable) that accepts a right-hand thread CGA 580 fitting.

14. Attach the CGA 580 fitting end of the charge/discharge kit to the source pressure. Ensure T-handle of the gas chuck is turned completely counterclockwise. Attach charge/discharge kit by tightening gas chuck to the Schrader valve finger tight, then wrench lightly to tighten. Pressurize the system to required pressure as listed in Figure 3-67.

Note: For VF-6/8 follow installation procedure for each hydraulic tank.

Note:

96-8100

- Do not use compressed air, oxygen or flammable gas.
- > Refer to the table below and verify pressure according to machine and spindle head position.
- Verify cylinder is seated in counterbore.

	VF - 0/1/2/6/7/8/10	VF - 6/7/10 w/50T spindle	VF - 3/4
Machine at top of travel	750 psi	1150 psi	1150 psi
Machine at full travel	790 psi	1210 psi	1210 psi

Figure 3-67. Tank pressure requirements.

15. Power on the machine and zero return (ZERO RET) Z-axis only. Check for any leaks or abnormal noises. Verify tank pressure at top of travel. Remove charging system and replace valve cap.

Note: If there is an E-stop alarm that will not reset, check for correct system pressure and the correct tank assembly.

HYDRAULIC CYLINDER REPLACEMENT

REMOVAL-

- 1. Remove the hydraulic tank as described in previous section.
- 2. To gain access to the cylinder rod, remove the three SHCS holding the Z-axis way cover to the spindle head.
- 3. Remove the cotter pin and lock nuts from the threaded end of the cylinder rod.

Figure 3-68. Hydraulic Cylinder Rod Installation for VF-0 through 4 and (VF-6/8).

Note: For VF-6/8 loosen jam nut from clevis then remove the cotter pin, clevis pin, clevis and jam nut.

- 4. Remove the band clamp that holds the cylinder to the stabilizer bracket. Loosen the two SHCS that attach the bracket to the column.
- 5. Remove the hydraulic cylinder from the top of the column.

Figure 3-69. VF-Series hydraulic counterbalance - right side view.

Fig. 3-70 VF-Series hydraulic counterbalance view - left side view.

Note: Do not disassemble unit. Keep the hose attached to the cylinder.

6. Return complete assembly to HAAS Automation.

INSTALLATION-

7. Install cylinder with cylinder rod extended from top of column.

Note: Cylinder rod should pass through column bracket and spindle head bracket. Cylinder body must rest in column bracket counterbore.

8. Orient cylinder body with hydraulic hose facing away from lead screw.

Note: For VF-6/8 orient cylinder bodies with hydraulic hose facing the lead screw.

9. Install lock nuts, at threaded end of cylinder rod, wrench tight. Install safety cotter pin.

Note: For VF-6/8 install jam nut and clevis at end of cylinder rod then attach to spindle head bracket with clevis pin. Install safety cotter pin and lock the clevis by tightening jam nut.

- 10. Install the hydraulic tank as described in the previous section, but **DO NOT power up the machine**.
- 11. Power on the machine and zero return (ZERO RET) Z-axis only. Observe cylinder body for motion or abnormal noises. Check for fluid at manifold, cylinder hose connection and cylinder rod. Verify tank pressure at top of travel. Remove charging system and replace valve cap.
- 12. Install the band clamp and tighten the two SHCS that attach the stabilizer bracket to the column.
- 13. Zero return (ZERO RET) machine. HANDLE JOG Z-axis in 0.1 increments. Verify full Z travel.
- 14. Cycle Z-axis, using the following program, for five minutes and check for oil leaking at top of cylinder and cylinder rod.

G28, G54, Z-14. M99 50% Rapid

15. If Z-axis overcurrents alarm during travel, verify and correct system pressure.

Note:

- ➤ If Z-axis overcurrent alarm at top or bottom of travel, call HAAS Automation Service Department immediately for assistance.
- If fluid leaks from hydraulic fittings, check that fittings are tight.
- If leaking continues, call HAAS Automation Service Department for assistance.
- 16. Reinstall Z-axis way cover with three SHCS that hold it to the spindle head.

3.16 THROUGH THE SPINDLE COOLANT SYSTEM - ADJUSTMENTS

TOOLS REQUIRED

- ✓ Tool holder with small TSC drill or restrictor (with a small orifice #T-1461)
- ✓ TSC Gauge Kit (P/N 93-9011), includes:
 - 0-15 PSI Precharge pressure gauge
 - 0-160 PSI Purge pressure gauge (Not used on newer TSC machines)
 - 0-600 Coolant pressure gauge
 - Ball valve

Precharge Regulator Adjustment

- 1. **CAUTION!** Extreme care must be taken in making this delicate adjustment. Insert a short piece of 1/4" plastic tubing into the 0-15 psi pressure gauge. Insert the short tube into the precharge pressure regulator (located on top of the transmission) and connect the plastic precharge tube (leading to the TRP) to the pressure gauge.
- 2. Manually turn on the precharge air by pushing the plunger on the precharge solenoid valve.
- 3. Hold down the precharge solenoid valve for at least 20 seconds to allow the pressure reading to stabilize, then set the precharge pressure to 4.0 psi (± 0.4 psi). Release the solenoid and hold it down again for 20 seconds and re-check the precharge pressure. Repeat this a few times to ensure the pressure setting remains stable. Be sure the regulator adjustment knob is securely locked in place.
- 4. Remove the pressure gauge and short 1/4" hose. Reattach the precharge tube to the regulator.

PRIMING THE TSC SYSTEM

Note: When machine is ready to operate, with coolant in the coolant tank, prime the Through the Spindle Coolant (TSC) system according to the following procedure. This procedure should also be performed whenever the pump has sucked in air (e.g. low coolant).

50 Taper TSC (old system)

- 1. With no tool in the spindle, switch to MDI mode.
- 2. Close the programmable coolant (p-Cool) and lock line shut-off valves.
- 3. Press the COOLNT key to turn on the main coolant pump; this will prime the TSC pump.
- 4. Wait 20-30 seconds for the TSC pump to fill.
- 5. Press the AUX CLNT key to turn on the TSC. Wait for coolant to flow from the spindle at full force.
- 6. Press the reset key to shut off the system. The TSC system will continue to hold it's prime after this.

High pressure TSC 40 and 50 taper

- 1. With no tool in the spindle, switch to MDI mode.
- 2. Press the AUX CLNT button to turn on TSC. Wait for coolant to flow from the spindle.
- 3. Allow coolant to flow for at least one minute.
- 4. Press the AUX CLNT button again to turn off TSC.

CHECKING PUMP PRESSURE

Note: If the coolant pressure with no tool in the spindle is 60 psi or less, replace the pump assembly (30-3281A). Old Tsc system uses pump head (93-3280B).

1. Insert the 0-600 psi coolant pressure gauge into the coolant line between the coolant filters and the TSC pump hose. Use wrenches to tighten the fittings snug. DO NOT OVERTIGHTEN!!

- 2. With no tool in the spindle, prime the TSC system as described above.
- 3. Insert a standard (no through hole in pull stud) tool holder into the spindle.
- 4. Turn on TSC.
- 5. Check for leaks while TSC is still running. Shut off TSC.
- 6. Remove pressure gauge and reconnect the pump to the machine.

If the pump relief valve has been changed, adjust the relief valve in the following manner:

- 1. Remove the sealing cap from the pump relief valve. Loosen the lock nut.
- 2. Start with the pressure below 300 psi. Adjust the pressure relief valve until the pressure on the gauge rises to 300 psi. Tighten the lock nut, and replace the sealing cap. Setting range is 280-300psi.
- 3. Mark across the pump and sealing cap with a paint marker. This will indicate any future tampering.

Testing the Coolant Pressure Switch

- 1. Insert the ball valve and pressure gauge into the TSC pump outlet. The ball valve must be *between* the pump and pressure gauge. Connect the other end to the machine. For high pressure TSC, the connectors must be tightened snug with wrenches. DO NOT OVERTIGHTEN.
- 2. Run TSC system for one minute to purge air
- 3. Insert a TSC type tool holder (with a small TSC drill or restrictor) in the spindle. **CAUTION!** Changing tools after running TSC can cause coolant to spray out. Wear safety glasses.

WARNING! Do not put your hands in the high pressure coolant stream as coolant and particles can be blown into your skin.

- 4. Set Parameter 236 to 100.
- 5. Turn on TSC. Test low coolant pressure switch by slowly shutting off the ball valve in the coolant line (pump should shut off at 40 psi +/- 5 psi). If the switch is outside this range, replace the switch.

Note: Test the electrical continuity of the pressure switch cable and the control function by shorting the leads of the cable. The "LO CLNT" bit on the Diagnostics page should change from "1" to "0". Check this before replacing the pressure switch.

5. Reset Parameter 236 to 1000.

3.17 AIR/OIL LINE DIAGRAM

THROUGH THE SPINDLE COOLANT SYSTEM FLOW DIAGRAM

THROUGH SPINDLE COOLANT (TSC) WARNINGS !!

- TSC REQUIRES TOOL HOLDER WITH THROUGH HOLE IN PULL STUD AND TOOL, FAILURE TO DO SO CAN FLOOD SPINDLE HEAD WITH COOLANT.
- 2. DO NOT RUN TSC WITH LOW COOLANT LEVEL IN TANK.
- WEAR SAFETY GLASSES WHEN MANUALLY CHANGING TSC TOOLS. COOLANT CAN SPRAY DUT.

THROUGH SPINDLE COOLANT ALARMS

- LOW THRU SPINDLE COOLANT (ALARM 151):
 CAUSE: COOLANT PRESSURE IN SYSTEM FELL BELOW 40 PSI.
 A) CHECK FOR LOW COOLANT IN TANK, B) CHECK DIRT INDICATORS ON BOTH FILTERS, C) PRESS RESET AND RUN TSC AGAIN TO PURGE AIR FROM SYSTEM.
- PRE-CHARGE FAILURE (ALARM 198):
 CAUSES: TOOL RELEASE PISTON DID NOT MOVE DOWN WHEN COMMANDED OR IT MOVED UP DURING TSC OPERATION.
 A) CHECK FOR LOW AIR SUPPLY PRESSURE, B) CHECK FOR T.R.P. FAILURE.

THROUGH SPINDLE COOLANT (TSC) MAINTENANCE SCHEDULE

- 1, TOP-OFF COOLANT TANK DAILY (EVERY 8 HOUR SHIFT) DURING HEAVY TSC USAGE.
- CHECK GAGE (CZ) ON 100 MICRON FLITER WITH TSC SYSTEM RUNNING AND NO TOOL IN SPINDLE. CHANGE ELEMENT WHEN THE INDICATOR REACHES THE RED ZONE. USE 100 MICRON FILTER ELEMENT (58-6045) OR COMMERCIALLY AVAILABLE EQUIVALENT.
- CLEAN PUMP INTAKE FILTER WHEN INDICATOR (G1) IS IN RED ZONE. RESET WITH BUTTON.

<u>SPECIAL INSTRUCTIONS:</u> AFTER CHANGING OR CLEANING FILTER ELEMENTS, RUN ISC SYSTEM WITH NO TOOL IN SPINDLE FOR AT LEAST ONE MINUTE TO PURCE AIR.

ADJUSTABLE TSC PARAMETER: PARAMETER 237 (TSC CLNT LINE PURGE) MINIMUM (DEFAULT) VALUE IS 2500, NO MAXIMUM LIMIT.

WARNING!

THE TSC PUMP IS A PRECISION GEAR PUMP AND WILL WEAR OUT FASTER AND LOSE PRESSURE IF ABRASIVE PARTICLES ARE PRESENT IN THE COOLANT.

WHEN MACHINING CASTINGS, SAND FROM THE CASTING PROCESS AND THE ABRASIVE PROPERTIES OF CAST ALUMINUM AND CAST IRON WILL SHORTEN PUMP LIFE UNLESS A SPECIAL FILTER IS USED IN ADDITION TO THE 100 MESH SUCTION FILTER. CONTACT HAAS FOR RECOMMENDATIONS.

MACHINING OF CERAMICS AND THE LIKE VOIDS ALL WARRANTY CLAIMS FOR WEAR AND IS DONE ENTIRELY AT CUTOMER'S RISK. INCREASED MAINTENANCE SCHEDULES ARE ABSOLUTELY REQUIRED WITH ABRASIVE SWARF. THE COOLANT MUST BE CHANGED MORE OFTEN AND THE TANK THOROUGHLY CLEANED OF SEDIMENT ON THE BOTTOM. A LARGER COOLANT TANK IS RECOMMENDED. SHORTENED PUMP LIFE, REDUCTION OF PRESSURE AND INCREASED MAINTENANCE ARE NORMAL AND TO BE EXPECTED IN ABRASIVE ENVIRONMENTS AND IS NOT COVERED BY WARRANTY.

THROUGH THE SPINDLE COOLANT SYSTEM FLOW DIAGRAM TAPER SPINDLE

THROUGH SPINDLE COOLANT (TSC) WARNINGS!

- TSC REQUIRES TOOL HOLDER WITH HOLE THROUGH PULL STUD AND TOOL FAILURE TO USE PROPER TOOLING CAN DAMAGE PUMP.
- 2. DO NOT RUN TSC WITH LOW COOLANT LEVEL IN TANK.
- 3. WEAR SAFETY GLASSES WHEN MANUALLY CHANGING TSC TOOLS. COOLANT CAN SPRAY OUT!

THROUGH SPINDLE COOLANT ALARMS

- LOW THRU SPINDLE COOLANT (ALARM 151): CAUSE: COOLANT PRESSURE IN SYSTEM FELL BELOW 40 PSI.
 - A) CHECK FOR LOW COOLANT LEVEL IN TANK
 - B) CHECK GAGES ON BOTH FILTERS
 - C) CHECK HOSES FOR KINKS OR DAMAGE AND THAT ALL CONNECTIONS ARE TIGHT.
- 2. PRE-CHARGE FAILURE (ALARM 198) DOES NOT APPLY TO THIS SYSTEM.

THROUGH SPINDLE COOLANT (TSC) MAINTENANCE SCHEDULE

- 1. TOP OFF COOLANT TANK BEFORE EACH SHIFT DURING HEAVY TSC USAGE.
- CHECK GAGE (G2) ON TSC FILTER WITH NO TOOL IN SPINDLE AND TSC RUNNING. CHANGE ELEMENT WHEN THE INDICATOR IS IN THE YELLOW ZONE. USE 2D MICRON FILTER ELEMENT (58-6046) OR COMMERCIALLY AVAILABLE EQUIVALENT.
- 3. CLEAN INTAKE FILTER WHEN SUCTION GAGE (G1) IS IN THE RED ZONE,

AFTER CHANGING OR CLEANING FILTER ELEMENTS, RUN TSC SYSTEM WITH NO TOOL IN SPINDLE FOR AT LEAST ONE MINUTE TO PURGE AIR. SPECIAL INSTRUCTIONS:

ADJUSTABLE PARAMETER: PARAMETER 237 (TSC CLNT LINE PURGE) MINIMUM (DEFAULT) VALUE IS 2500, NO MAXIMUM LIMIT.

WARNING!

THE TSC PUMP IS A PRECISION GEAR PUMP AND WILL WEAR OUT FASTER AND LOSE PRESSURE IF ABRASIVE PARTICLES ARE PRESENT IN THE COOLANT.

WHEN MACHINING CASTINGS, SAND FROM THE CASTING PROCESS AND THE ABRASIVE PROPERTIES OF CAST ALUMINUM AND CAST IRON WILL SHORTEN PUMP LIFE UNLESS A SPECIAL FILTER IS USED IN ADDITION TO THE 100 MESH SUCTION FILTER. CONTACT HAAS FOR RECOMMENDATIONS.

MACHINING OF CERAMICS AND THE LIKE VOIDS ALL WARRANTY CLAIMS FOR WEAR AND IS DONE ENTIRELY AT CUTOMER'S RISK. INCREASED MAINTENANCE SCHEDULES ARE ABSOLUTELY REQUIRED WITH ABRASIVE SWARF. THE COOLANT MUST BE CHANGED MORE OFTEN AND THE TANK THOROUGHLY CLEANED OF SEDIMENT ON THE BOTTOM. A LARGER COOLANT TANK IS RECOMMENDED. SHORTENED PUMP LIFE, REDUCTION OF PRESSURE AND INCREASED MAINTENANCE ARE NORMAL AND TO BE EXPECTED IN ABRASIVE ENVIRONMENTS AND IS NOT COVERED BY WARRANTY.

3.18 AUTOMATIC PALLET CHANGER (APC)

PALLET REPLACEMENT

TOOLS REQUIRED:

✓ Hoist

✓ Straps or Chains

✓ Eyebolts (2)

CAUTION! Be careful when changing out pallets, each pallet weighs approx. 300lbs.

Note: Pallets that have been replaced must be re-aligned to the receiver. Pallets shipped with the VMC from the factory have been machined perpendicular to the spindle. It is recommended that replacement pallets be machined after aligning them to the reciever.

- 1. Remove the old pallet from the APC using the supplied eyebolts and a hoist.
- 2. Set the new pallet on the APC, aligning the roller grooves on the bottom of the pallet with the rollers on the APC.
- 3. Loosen the clamp rail bolts on the new pallet (the bolts should be snug and not overtight).
- 4. Run new pallet into the receiver. Clamp and unclamp the pallet a few times (this will allow the pallet to center on the guide pins). Torque the clamp rail bolts to 50 FT-LB while the pallet is clamped to the receiver.

Figure 3-71 Pallet Replacement

IMPORTANT! New pallets should be machined on the VMC in order for them to be perpendicular to spindle.

PALLET CLAMP RAIL REPLACEMENT

TOOLS REQUIRED:

✓ Hoist

✓ Straps or Chains

Eyebolts (2)

Note: This procedure must be performed with the pallets on the APC.

- 1. Loosen the clamp rail bolts.
- 2. Screw the eyebolts into place and lift the pallet carefully.
- 3. Remove the clamp rails from the pallets.

Figure 3-72

- 4. Verify the condition of the wipers and determine if they need replacing.
- 5. Re-install the new rails leaving the bolts loose.
- 6. Carefully place the pallet back onto the APC using the hoist.
- 7. Position the pallet back onto the receiver and clamp/unclamp the pallet several times to allow the rails to center themselves on to the guide pins.
- 8. Finish torquing the clamp rail bolts.

ALIGNMENT PIN REPLACEMENT

TOOLS REQUIRED:

- Hoist
- Straps or Chains Eyebolts (2)

CAUTION! Be careful when changing out pallets, each weighs approx. 300lbs.

Note: The receiver must removed in order to access the alignment pins.

- 1. Both pallets must be on the APC in order to access the receiver.
- 2. Position the receiver to the front of the machine.
- 3. Disconnect the air from the machine.

Figure 18-3 Alignment Pin Removal

- 3. Remove the six (6) receiver mounting bolts.
- 4. Use a hoist and the two eyebolts supplied with the APC, lift the receiver off the table.
- 5. Use a punch to remove the alignment pins.
- 6. Install the new pins using a brass hammer. The pins should bottom out in the holes. Pin height from the base of the receiver to the top of the pin should be within .450 to .490.
- 7. Position the receiver back onto the table.
- 8. Install the six mounting bolts.

- 9. Reconnect the air to the machine.
- 10. Postion a pallet onto the receiver and clamp/unclamp the pallet to the receiver several times. Check for the pallets sticking during this process. If the pallets are sticking, loosen the clamp rail bolts and clamp/unclamp the pallet several times to center the alignment pin to the rails.

Note: Because the receiver was been removed from the VMC, any tooling on the pallets must be re-aligned.

DRIVE PIN REPLACEMENT

Note: If the drive pin assembly is damaged due to a crash or from excessive wear, all components should be checked for damage and replaced.

Note: The chain must be loosene in order to remove the entire drive pin assembly.

- 1. Power off the machine.
- 2. Remove the drive pin retaining clip.

Figure 3-73 Drive Pin Assembly

- 3. Remove 1/4" washer.
- 4. The cam follower is lightly pressed onto the pin. The spacer should slide off easily.

LOOSENING THE CHAIN.

5. Remove the two screws that mount the coverplate over the sprocket located at the far end of the APC as shown.

Figure 3-74 Loosening Chain Sprocket

- 6. Loosen the 4 bolts that mount the sprocket bracket to the casting.
- 7. Loosen the chain sprocket tensioner screw slightly.
- 8. At this point there should be enough slack in the chain to slide the drive pin out.
- 9. Re-assemble the drive pin assembly according to the assembly drawing below.
- 10. Re-tension the chain in the reverse order.

4. ELECTRICAL SERVICE

4.1 SOLENOIDS

Please read this section in its entirety before attempting to replace any solenoid assemblies.

AIR SOLENOID ASSEMBLY

REMOVAL -

- 1. Turn machine power on and raise spindle head to uppermost position. Turn power off.
- 2. Remove spindle head covers (Mechanical Service).
- 3. Remove air supply from machine.
- 4. Disconnect all air lines going to and from the air solenoid assembly on the bottom rear of the solenoid bracket. Do not remove the fittings --- remove the lines from the fittings.
- 5. Disconnect the two leads to the low air pressure sensor.
- 6. Unplug the wiring leading to the plug marked on the solenoid bracket as "880 FROM I/O PCB TO SOLENOID VALVES" and the plug marked "SPARE".

Figure 4-1. Air solenoid assembly.

7. Remove the SHCS holding the assembly to the bracket and remove the assembly.

INSTALLATION:

- 8. Replace the air solenoid assembly and attach to the bracket with the SHCS previously removed. Tighten securely.
- 9. Reconnect all air lines at this time, ensuring that all connections are tight and do not leak.
- 10. Reconnect the two leads to the low air pressure sensor.
- 11. Reconnect the wiring to the plugs on the solenoid bracket (see Step 6).
- 12. Reconnect air supply to the machine.

Tool Release Piston Assembly Air Solenoid

- 1. Turn machine power on and raise spindle head to uppermost position. Turn power off.
- 2. Remove spindle head covers (Mechanical Service).
- 3. Remove air supply from machine.
- 4. Remove the tool release piston assembly (Mechanical Service).
- 5. Unscrew the air solenoid assembly from the tool release piston assembly, taking care to not disturb the position of the clamp/unclamp switches.
- 6. Unscrew the air solenoid from the air solenoid assembly.

Figure 4-2. Tool release piston assembly with air solenoid assembly.

- 7. Install the new air solenoid on the air solenoid assembly. Reinstall the air solenoid assembly onto the tool release piston assembly. Take care to not disturb the position of the clamp/unclamp switches.
- 8. Reinstall the tool release piston assembly (Mechanical Service).
- 9. Ensure all air lines are reconnected to their proper fitting!

SPINDLE LUBE AIR SOLENOID

1. Turn the machine power off and remove the air supply from the machine.

Figure 4-3. Front side of lube/air panel.

- 2. Disconnect the air lines from the spindle lube air solenoid assembly.
- 3. Unplug the electrical leads at the quick-disconnect. You will have to slide the wiring channel cover back to disconnect the leads.

Figure 4-4. Top view of spindle lube/air solenoid assembly.

4. Unscrew the assembly from the T-fitting.

Figure 4-5. Top view of spindle lube/air solenoid assembly.

- 5. Replace the assembly, ensuring it is approximately horizontal to the floor, and tighten fittings securely.
- 6. Reconnect all air lines.
- 7. Reconnect wiring leads at the quick-disconnect in the wiring channel. Slide cover back into place.
- 8. Restore air supply to the machine.

4.2 LINE VOLTAGE ADJUSTMENTS

Please read this section in its entirety before attempting to adjust the line voltage.

TOOLS REQUIRED

- ✓ Large flat tip screwdriver
- ✓ Digital voltmeter

ADJUSTING VOLTAGE -

Note: The machine must have air pressure at the air gauge or an interlock will prevent it from powering up.

CAUTION! Working with the electrical services required for the VMC can be extremely hazardous. The electrical power must be off and steps must be taken to ensure that it will not be turned on while you are working with it. In most cases this means turning off a circuit breaker in a panel and then locking the panel door. However, if your connection is different or you are not sure how to do this, check with the appropriate personnel in your organization or otherwise obtain the necessary help BEFORE you continue.

WARNING! The electrical panel should be closed and the three screws on the door should be secured at all times except during installation and service. At those times, only qualified electricians should have access to the panel. When the main circuit breaker is on, there is high voltage throughout the electrical panel (including the circuit boards and logic circuits) and some components operate at high temperatures. Therefore extreme caution is required.

Figure 4-6. Control cabinet general overview.

1. Hook up the three power lines to the terminal on top of the main switch at upper right of electrical panel and the separate ground line to the ground bus to the left of the terminals.

WARNING! Through the Spindle Coolant (TSC) pump is a three phase pump and MUST BE PHASED CORRECTLY! Improper phasing will cause damage to the TSC pump and void the warranty. Refer to the TSC start up section.

Figure 4-7. Power lines; hookup location.

Note: Make sure that the service wires actually go into the terminal-block clamps. [It is easy to miss the clamp and tighten the screw. The connection looks fine but the machine runs intermittently or has other problems, such as servo overloads.] To check, simply pull on the wires after the screws are tightened.

2. After the line voltage is connected to the machine, make sure that main circuit breaker (at top-right of rear cabinet) is off (rotate the shaft that connects to the breaker counterclockwise until it snaps off). Turn on the power at the source. Using an accurate digital voltmeter and appropriate safety procedures, measure the voltage between all three pair phases at the main circuit breaker and write down the readings. The voltage must be between 195 and 260 volts.

Note: wide voltage fluctuations are common in many industrial areas; you need to know the minimum and maximum voltage which will be supplied to the machine while it is in operation. U.S. National Electrical Code specifies that machines should operate with a variation of +5% to -5% around an average supply voltage. If problems with the line voltage occur, or low line voltage is suspected, an external transformer may be required. If you suspect voltage problems, the voltage should be checked every hour or two during a typical day to make sure that it does not fluctuate more than +5% or -5% from an average.

Figure 4-8. Transformer connections.

CAUTION! Make sure that the main breaker is set to OFF and the power is off at your supply panel BEFORE you change the transformer connections. Make sure that all three black wires are moved to the correct terminal block and that they are tight.

3. Check the connections on the transformer at the bottom-right corner of the rear cabinet. The three black wires labeled 74, 75, and 76 must be moved to the terminal block triple which corresponds to the average voltage measured in Step 2 above. There are four positions for the input power to this transformer. The input voltage range for each terminal block is as follows:

Figure 4-9a. Transformer with 354-488V

Figure 4-9b Transformer with 195-260V range

- 4. Set the main switch to on (rotate the shaft that engages the handle on the panel door clockwise until it snaps into the on position). Check for evidence of problems, such as the smell of overheating components or smoke. If such problems are indicated, set the main switch to off immediately and call the factory before proceeding.
- 5. After the power is on, measure the voltage across the upper terminals on the contactor K1 (located below the main circuit breaker. It should be the same as the measurements where the input power connects to the main breaker. If there are any.

Figure 4-10. Measure voltage here. problems, call the factory.

- 6. Check the DC voltage displayed in the second page of Diagnostic data on the CRT. It is labeled DC BUS. This voltage must be between 150 and 175 volts. If the voltage is outside these limits, turn off the power and recheck the incoming power and the transformer wiring (repeat steps 2 and 3). If the voltage is still incorrect, turn off the power and call the factory.
- 7. Turn off the power (rotate the shaft that engages the handle on the panel door counterclockwise until it snaps into the off position). Also, set the main switch handle on the panel door to off. (Both the handle and the switch must be set to off before the door can be closed). Close the door, screw the screws into place, and turn the power back on.

4.3 FUSE REPLACEMENT

Please read this section in its entirety before attempting to replace any fuses.

OVERVOLTAGE FUSES

WARNING! The electrical panel will have residual voltage, even after power has been shut off and/or disconnected. Never work inside this cabinet until the small red CHARGE light on the servo drive assembly goes out. The servo drive assembly is on the left side of the main control cabinet and about halfway down. This light is at the top of the circuit card at the center of the assembly. Until this light goes out, there are dangerous voltages in the assembly EVEN WHEN POWER IS SHUT OFF.

- 1. Turn machine power off.
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.

Figure 4-11. Unscrew the three screws to open the cabinet door. (Control cabinets may require a key)

3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.

- 4. On the POWER SUPPLY board there are three fuses located in a row at the upper right of the board; these are the overvoltage fuses. An orange light will be on to indicate the blown fuse(s).
- 5. Using a flat tip screwdriver, turn the fuse(s) counterclockwise to remove and replace the blown fuse(s) with ones having the same type and rating (½ amp, type AGC, 250V).

CAUTION! When the left fuse is blown, it is still possible to operate the machine, thereby making an overvoltage situation possible. VERIFY absolute voltage to the machine does not exceed 260 volts.

OPERATOR'S LAMP FUSE

- 1. Turn the main switch (upper right of electrical cabinet) to the off position.
- 2. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.
- 3. The Operator's Lamp Fuse is located at the lower left of the Power Supply Board. An orange light will be on to indicate the blown fuse.

Figure 4-12. Power supply board; fuse locations.

4. Using a flat tip screwdriver, turn the fuse counterclockwise to remove and replace the blown fuse with ones having the same type and rating (operator's lamp:½ amp, type AGC, 250V).

SERVO DRIVER & SDIST FUSES

- 1. Turn the main switch (upper right of electrical cabinet) to the off position.
- 2. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.
- 3. On the SERVO DRIVE ASSEMBLY, there are three fuses on the SDIST panel, and three individual fuses on each of the SERVO DRIVE boards (See Fig. 4-13; the F3 fuses are not shown).
- 4. On the SDIST panel, use a flat tip screwdriver to turn the fuse(s) counterclockwise to remove. Replace the blown fuse(s) with ones having the same type and rating (FU1, FU2: ½ amp, type AGC, 250V; FU3: 5 amp, type ABC, 250V).
- 5. On each of the SERVO DRIVER boards, the fuses (F1, F2, F3) may be replaced by simply pulling out the fuses by hand and replacing with fuses of the same type and rating (F1, F2: 20 amp, type ABC, 250V; F3: 10 amp, type ABC, 250V).

Figure 4-13. Servo Drive Assembly; fuse locations

4.4 PCB REPLACEMENT

Please read this section in its entirety before attempting to replace any PCBs.

MICROPROCESSOR, MOCON (MOTIF) & VIDEO / KEYBOARD

Note: The arrangement of these boards may differ from the order of replacement that follows. The steps for replacement will only differ in which board may need to be removed before getting to the necessary board.

WARNING! The electrical panel will have residual voltage, even after power has been shut off and/or disconnected. Never work inside this cabinet until the small red CHARGE light(s) on the servo amplifiers (servo drive assembly for brush machines) goes out. The servo drive assembly is on the left side of the main control cabinet and about halfway down. This light is at the top of the circuit card at the center of the assembly. Until this light goes out, there are dangerous voltages in the assembly EVEN WHEN POWER IS SHUT OFF.

MOCON (or MOTIF) BOARD -

Note: Refer to "Cable Locations" for a diagram of this board.

- 1. Turn machine power off.
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.
- 3. Loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo amplifiers (servo drive assembly on brush machines) goes out before beginning any work inside the electrical cabinet.
- 4. Disconnect all leads to the Motor Controller (MOCON), or Motor Interface (MOTIF) board (for brush machines). Ensure all cables are properly labeled for reconnecting later.
- 5. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until all standoffs have been removed.

Note: If the VIDEO / KEYBOARD or PROCESSOR boards need replacing, please skip the next step.

- Replace the MOCON (or MOTIF) board, attaching it to the VIDEO / KEYBOARD (beneath the MOCON / MOTIF board) with the standoffs.
- 7. Reconnect all leads (previously removed) to their proper connections.

VIDEO / KEYBOARD -

Note: Refer to "Cable Locations" for a diagram of this board.

- 8. Remove the MOCON (or MOTIF) board as described in Steps 1-5.
- Disconnect all leads to the Video / Keyboard. Ensure all cables are properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the Video / Keyboard.

10. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until all standoffs have been removed.

Note: If the PROCESSOR board need replacing, please skip the next step.

- 11. Replace the Video / Keyboard, attaching it to the PROCESSOR board (beneath the Video / Keyboard) with the standoffs.
- 12. Reconnect all leads (previously removed) to their proper connections.

PROCESSOR BOARD -

Note: Refer to "Cable Locations" for a diagram of this board.

- 13. Remove the MOCON (or MOTIF) board as described in Steps 1-5, and the Video / Keyboard as described in Steps 8-9.
- 14. Disconnect all leads to the Processor (68020) board. Ensure all cables are properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the 68030 board.
- 15. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until all standoffs have been removed.
- 16. Replace the Processor (68030) board, attaching it to the electrical cabinet (beneath the 68030 board) with the standoffs.
- 17. Reconnect all leads (previously removed) to their proper connections.

SERVO DRIVER & SDIST

WARNING! The electrical panel will have residual voltage, even after power has been shut off and/or disconnected. Never work inside this cabinet until the small red CHARGE light on the servo drive assembly goes out. The servo drive assembly is on the left side of the main control cabinet and about halfway down. This light is at the top of the circuit card at the center of the assembly. Until this light goes out, there are dangerous voltages in the assembly EVEN WHEN POWER IS SHUT OFF.

- 1. Turn machine power off.
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.
- 3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.

SDIST BOARD -

Note: Refer to "Cable Locations" for a diagram of this board.

4. Disconnect all leads to the Servo Distribution (SDIST) board. Ensure all cables are clearly marked for reconnecting later.

Note: The connection labeled "860A" on the board should be used for the cable marked "860B". Some boards, the connection for cable 920 has been incorrectly marked as "1030". Please note its location for future reference.

Note: On some SDIST boards, there may be cables attached to the capacitors with a plastic strap. This will have to be cut off and the cables moved aside in order to remove the board. It will be necessary to replace this strap after the board is replaced.

- 5. After all cables have been disconnected, remove the eight screws attaching the board to the cabinet. Take care to hold the board in place until all screws have been removed.
- 6. Replace the SDIST board, attaching it with the eight screws previously removed, using one of the screws as a grounding connection.
- 7. Reconnect all leads (previously removed) to their proper connection.

SERVO DRIVER BOARDS -

Note: Refer to "Cable Locations" for a diagram of this board.

- 1. Follow all precautions noted previously before working in the electrical cabinet.
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.
- 3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.
- 4. Disconnect all leads to the Servo Driver (DRIVER) board that you wish to replace. Ensure all cables are properly labeled for reconnecting later.

Note: When replacing any DRIVER board, it will be necessary to disconnect all leads on all DRIVER boards in order to remove or replace the board.

- 5. Remove the board by first removing the two screws that fasten it to the cabinet. Take care to hold the board in place until both screws have been removed.
- 6. Replace the DRIVER board, attaching it to the cabinet with the two screws previously removed.
- 7. Reconnect all leads to all boards at this time. Ensure the red and black leads go to the appropriate connections.

I/O BOARD

Note: Refer to "Cable Locations" for a diagram of this board.

- 1. Follow all precautions noted previously before working in the electrical cabinet.
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.
- 3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.
- 4. Disconnect all leads to the Input/Output board and move aside for removal. Ensure all cables are properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the I/O board.

- 5. Remove the board by first removing the twelve screws that fasten it to the cabinet. Take care to hold the board in place until all screws have been removed.
- 6. Replace the I/O board, attaching it to the cabinet with the twelve screws previously removed.
- 7. Reconnect all leads to the I/O board at this time.

Power & Low Voltage Supply

POWER BOARD -

Note: Refer to "Cable Locations" for a diagram of this board.

- 1. Follow all precautions noted previously before working in the electrical cabinet (See warning at beginning of "Servo Driver & SDIST" section).
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.
- 3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.
- 4. Disconnect all leads to the Power Distribution (POWER) board and move aside for removal. Ensure all cables are properly labeled for reconnecting later. The illustration on the following page shows all cable numbers and the locations on the POWER board.
- 5. After all cables have been disconnected, remove the seven screws holding the POWER board to the cabinet and remove the board. Take care to hold the POWER board in place until all screws have been removed.

Note: If you need to replace the LOW VOLTAGE POWER SUPPLY board, please skip the next step.

- 6. Replace the POWER board, attaching it with the seven screws previously removed. Don't forget to use the lower left screw for a ground connection.
- 7. Reconnect all cables to the POWER board at their proper location.

LOW VOLTAGE POWER SUPPLY -

- 8. Remove the Power Distribution (POWER) board as described in Steps 1-5.
- 9. Disconnect all leads to the Low Voltage Power Supply (LVPS) board. Ensure all cables are properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the LVPS board.
- 10. After all cables have been disconnected, unscrew the two standoffs at the bottom of the board. Unscrew the remaining two screws at the top of the LVPS board, taking care to hold the board in place until all screws have been removed.
- 11. Replace the LVPS board, attaching it to the cabinet with the two screws and two standoffs previously removed.
- 12. Replace the POWER board as described in Steps 6-7.

RS-232

Note: Refer to "Cable Locations" for a diagram of this board.

- Follow all precautions noted previously before working in the electrical cabinet (See warning at beginning of "Servo Driver & SDIST" section).
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.
- Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.

Note: It is suggested to make use of a step ladder high enough to allow you to work from the top of the electrical cabinet. It will be necessary, when replacing the RS-232 board, to work from the inside and outside of the cabinet at the same time.

4. On the left side of the cabinet, at the top of the side panel are two serial port connections labeled "SERIAL PORT #1" and "SERIAL PORT #2", SERIAL PORT #1 being the upper connection.

* Serial interface replaces cable 700 with cable 700B.

Figure 4-14. RS-232 wiring pictorial (with serial keyboard).

- To remove the RS-232 board, unscrew the two hex screws (on the exterior of the cabinet) holding the connector to the cabinet. From the inside of the cabinet, pull the connector through the panel, and disconnect the cable.
- 6. Replace the RS-232 board by first connecting the appropriate cable to the board (850 to SERIAL PORT #1, 850A to SERIAL PORT #2, then inserting the board (cable side up) through the left side panel. Attach with the two hex screws previously removed. Ensure the board for Serial Port #1 is the upper connector and the board for Serial Port #2 is the lower connector.
- 7. Replace the Serial Keyboard Interface (KBIF) board, using the four screws previously removed, starting at the top right. Attach the screw and standoff loosely, then all other screws and standoffs, until all are mounted. Tighten down completely.
- 8. Reconnect all cables to the Serial KBIF board at their proper locations.

4.5. FRONT PANEL

Please read this section in its entirety before attempting to replace any component of the control panel.

CRT ASSEMBLY REPLACEMENT

- 1. Turn the power off and disconnect power to the machine.
- 2. Remove the screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
- 3. At this time, remove the end cap on the support arm and unplug the white cable at the connection inside, then unplug the black cable at the connection in the control panel. It may be necessary to cut straps off the black cable's connector to unplug.
- 4. Unscrew the four hex nuts on the bottom row of the CRT bracket and remove, along with the washers. Set aside in a safe place.
- While holding up the CRT assembly, remove the four hex nuts on the top row of the CRT bracket, along with the washers.

CAUTION! Take extreme care to not drop or damage the CRT assembly when removing from the control panel.

- 6. CAREFULLY pull the CRT assembly out toward the rear until it is clear of the control panel and all wiring. Set CRT assembly down in a safe place so as not to damage.
- 7. Replace by sliding the new assembly onto the eight bolts (four each on top and bottom). Starting with the bottom right, place the washers and hex nuts on the bolts to hold in place. Refer to Fig. 4-15 for the order of replacement. Once all washers have been attached and nuts have been hand-tightened, tighten down completely with the socket.

Figure 4-15. Interior of control panel (rear).

- 8. Plug the black cable and white cable into the matching cables. Feed the white cable through the opening in the top of the control panel.
- 9. Replace the back cover panel and attach with the four screws previously removed.

JOG HANDLE REPLACEMENT

The JOG handle is actually a 100-line-per-revolution encoder. We use 100 steps per revolution to move one of the servo axes. If no axis is selected for jogging, turning of the crank has no effect. When the axis being moved reaches its travel limits, the handle inputs will be ignored in the direction that would exceed the travel limits.

Parameter 57 can be used to reverse the direction of operation of the handle.

- 1. Turn the machine power off.
- 2. Remove the screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
- 3. Unplug the cable leading to the jog handle encoder. **IMPORTANT!** The blank pin side of the connector must face as shown in Fig. 4-16 when reconnecting; otherwise, damage may occur to the machine.

Figure 4-16. Jog handle encoder.

4. Using the 5/64" allen wrench, loosen the two screws holding the knob to the control panel and remove.

Figure 4-17. Jog Handle removal

Figure 4-18. Jog Handle wiring diagram

- 5. Remove the three screws holding the jog handle encoder to the control panel and remove.
- 6. Replacement is reverse of removal. Keep in mind the important notice in Step 3.

SWITCH REPLACEMENT

Note: This section is applicable for the POWER ON, POWER OFF, EMERGENCY STOP, CYCLE START, and FEED HOLD switches.

- 1. Turn the machine power off.
- 2. Remove the four screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
- 3. Disconnect all leads to the switch's connectors. Ensure all leads are properly marked for reconnecting later. Refer to Fig. 4-15 for proper locations.
- 4. Unscrew the two small set screws, one on top and one on the bottom, and turn the switch counterclockwise to loosen. Separate from the front portion and pull out.
- 5. For replacement, screw the front and rear portions together (reverse of removal) and tighten down the two small set screws when the switch is properly positioned.

Note: The POWER ON, POWER OFF, and EMERGENCY STOP switches must all have the connectors on the bottom of the switch.

6. Reconnect all leads to the correct switch.

SPINDLE LOAD METER REPLACEMENT

- 1. Turn the power off and disconnect power to the machine.
- 2. Remove the four screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
- 3. Disconnect the two leads at the back of the spindle load meter assembly. Ensure the two leads are properly marked for reconnecting later.
- 4. Unscrew the four screws that hold the spindle load meter assembly to the control panel. Take care to hold the assembly in place until all screws have been removed. Remove the assembly.
- 5. Installation is reverse of removal. Ensure leads go the correct location.

KEYPAD REPLACEMENT

- 1. Turn the power off and disconnect power to the machine.
- 2. Remove the four screws holding the rear cover panel to the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
- 3. Remove all switches, spindle load meter, and the jog handle as described in the previous sections.
- 4. Unplug the keypad's 24-pin ribbon cable from the Keyboard Interface board.
- Remove the screws from the front of the control panel. Take care to hold the front cover panel and bezel spacer in place until all screws have been removed. Remove the two pieces and set aside in a safe place.
- 6. Using a flat, blunt tool, such as putty knife, pry the keypad away from the control panel. Pull the ribbon cable through the opening in the control to remove.
- 7. To replace, first put the bezel spacer in place and fasten temporarily with screws in the top corners.

Figure 4-19. Keypad installation.

- 8. Insert the ribbon cable through the opening in the control panel and place the keypad in the upper right corner of the lower opening and press to the control panel to mount. Plug the ribbon cable into the Keyboard Interface board, taking care to not bend the pins on the board.
- 9. While holding the bezel spacer in place, remove the two screws holding the spacer, put the front cover panel in place, and fasten with all screws previously removed.
- 10. Reinstall all switches, spindle load meter, and the jog handle as described in the previous sections.
- 11. Replace the rear cover panel and fasten with the screws that were previously removed.

SERIAL KEYBOARD INTERFACE (KBIF)

Note: Refer to "Cable Locations" for a diagram of this board.

- 1. Follow all precautions noted previously before working in the control cabinet (See warning at beginning of Section 5).
- 2. Turn the main switch (upper right of electrical cabinet) to the off position.
- 3. Remove the four screws on the back of the control box, then remove the cover panel. Take care to hold the panel in place until all screws have been removed.
- 4. Disconnect all leads to the Serial Keyboard Interface (KBIF) board. Ensure all cables are properly labeled for reconnecting later.
- 5. After all cables have been disconnected, unscrew the four screws holding the Serial KBIF board to the control box. Take care to hold the board in place until all screws have been removed. Place the screws and standoffs aside for later use.
- 6. Replace the Serial KBIF board, using the four screws previously removed, starting at the top right. Attach the screw and standoff loosely, then all other screws and standoffs, until all are mounted. Tighten down completely.
- 7. Reconnect all cables to the Serial KBIF board at their proper locations.

4.6 SPINDLE ENCODER REPLACEMENT

Please read this section in its entirety before attempting to remove or replace encoder.

REMOVAL -

- 1. Turn machine power on. Raise or lower spindle head to a position that will allow you to easily work on the encoder (must be above the enclosures). Turn machine off.
- 2. Remove head covers (Mechanical Service).
- 3. Disconnect the encoder cable at the top of the encoder.
- 4. Unscrew and remove the four 10-32 screws holding the encoder to the four standoffs (VF-1, VF-2, VF-3,VF-4) or mounting bracket (VF-0). Remove the encoder, leaving the belt on the pulley at the orient ring.

INSTALLATION -

If you wish to install an encoder on a machine start at step 5; if this is just a replacement, skip to step 13.

Please note the differences in installation between the VF-0, VF-1, VF-2, and the VF-3, VF-4.

- 5. For the VF-1, VF-2, and VF-3, VF-4, put some blue Loctite on the threads of the four set screws and screw approximately halfway into the standoffs. Screw the hex end of the set screws into the standoffs.
- 6. Screw the standoffs into the four holes located at the rear of the transmission's top plate.
- 7. For the VF-0, place the mounting bracket in place. Fasten to the top plate with the four screws and four lock washers.
- 8. Place the 18-tooth pulley onto the pulley bushing and tighten down. Place the SHCS through the center axis of the pulley.
- 9. Screw this assembly into the spindle orientation ring.

Figure 4-20. Spindle encoder installation (VF-1/VF-2).

- 10. Place the 36-tooth pulley onto the encoder, making the top of the pulley flush with the end of the shaft. Tighten down with the 5/64" hex wrench.
- 11. Unscrew the four screws and remove the cover panel on the box at the base of the flexible tube.
- 12. Feed the encoder cable through the flexible tube and connect at the plug in the box on top of the electrical cabinet.

Figure 4-21. VF-0 encoder installation.

- 13. Place the belt on the 36-tooth pulley, then loop over the 18-tooth pulley. Place the encoder assembly on the four standoffs (mounting bracket on the VF-0) and attach with the four 10-32 SHCS, placing the #10 lock washers between the socket head and the encoder base.
- 14. Connect the encoder cable to the encoder assembly.

5. TECHNICAL REFERENCE

5.1 TOOL CHANGER

The tool changer is an all electric fixed shuttle type. Tools are always loaded through the spindle and should never be installed directly in the carousel in order to avoid crashes. The pocket open to the spindle must always be empty in the retracted position. All wiring to the tool changer goes through connector P6 on the side of the control cabinet.

CAUTION! If machine is equipped with the optional 50 taper spindle, follow these guidelines:

- > 25 lb. maximum per tool, and 300 lb. maximum total tool weight.
- > Extremely heavy tool weights should be distributed evenly.

CAUTION! If machine is equipped with the 20 or 32 pocket tool changer, follow these guidelines:

- > 12 lb. maximum per tool (200 lb. maximum total tool weight for 32 pocket tool changer).
- > Extremely heavy tool weights should be distributed evenly.
- Ensure there is adequate clearance between tools in the tool changer before running an automatic operation. This distance is 3.6" for 20 pocket, and is 3.4" for 32 pocket.

Low air pressure or insufficient volume will reduce the pressure applied to the tool unclamp piston and will slow down tool change time or will not release the tool.

If the shuttle should become jammed, the control will automatically come to an alarm state. To correct this, push the EMERGENCY STOP button and remove the cause of the jam. Push the RESET key to clear any alarms. Press "Tool Changer Restore" button, to automatically reset the tool changer after a crash. Never put your hands near the tool changer when powered unless the EMERGENCY STOP button is pressed.

FU1 on the I/O PCB or the Power PCB is a fuse for the tool changer motors. It might be blown by an overload or jam of the tool changer. Operation of the tool changer can also be interrupted by problems with the tool clamp/unclamp and the spindle orientation mechanism. Problems with them can be caused by low air pressure or a blown solenoid circuit breaker CB4.

When a tool change operation is performed, the following sequence of events occurs:

- 1) Z axis moves up to machine zero.
- 2) If the spindle is turning, it is commanded to stop; coolant stopped.
- 3) Spindle oriented to Tool Changer,
- 4) Turn TSC pump off, (optional)
- 5) Turn purge on and off (optional)
- 6) Pre-charge is on (40 taper spindle only),
- 7) Shuttle moves in to release tool,
- 8) Tool unclamps,
- 9) Z axis moves up.
- 10) Tool Changer rotates.
- 11) Z axis moves down,
- 12) Tool clamps,
- 13) Pre-charge off (40 taper spindle only),
- 14) Shuttle moves out.

PULL STUDS

The tool holders used are CT #40 taper, V flange, commonly called "CT 40". For the 50 taper spindle option, the tool holders used are CT #50 taper, V flange, commonly called "CT 50". Use A "45 Degree, P40T Type 1 (P50T Type 1 for 50 taper) inch threads" pull stud built to JMTBA standard "MAS 403-1982". This pull stud is characterized by a long shaft and a 45° shoulder under the head. Do not use the short shaft or pull studs with a sharp right angle (90°) head as they will not work and will cause serious damage. If the machine is equipped with the optional BT tool changer, use BT tooling only. **Pull studs are available through HAAS.**

Tool holders and pull studs must be in good condition and tightened together with wrenches or they may stick in the spindle taper. Clean the tool tapers with a lightly-oiled rag to leave a film to prevent rusting. Tools that make a loud bang when being released indicate a problem and should be checked before serious damage to the shuttle occurs. When the TOOL RELEASE button is pressed, the tool should be pushed out of the spindle by a small amount (approximately .07"). This is an indication that the pull stud is correctly touching the release mechanism.

Tool Changer Lubrication

Place lubricating grease on the outside edge of the guide rails of the tool changer and run through all tools.

SHUTTLE IN/OUT MOTOR

A DC brush motor is used to move the tool changer assembly towards and away from the spindle. This is called the shuttle. The motor is geared down to a low RPM and then connected to an arm that rotates through 180° and pushes the shuttle in and out.

Note: This motor should never be disassembled.

Turret Rotation Motor

A DC brush motor is used to rotate the tool turret between tool changes. This motor is geared down to a low RPM and connected to a Geneva mechanism. Each 1/2 revolution of the Geneva mechanism moves the tool turret one tool position forward or backward.

Note: This motor should never be disassembled.

5.2 TOOL CLAMP/UNCLAMP

The tool holder drawbar is held clamped by spring pressure. Air pressure is used to release the tool clamp. When the tool is unclamped, air is directed down the center of the spindle to clear the taper of water, oil, or chips. Tool unclamp can be commanded from a program (but this is quite dangerous), from the keyboard, and from the button on the front of the spindle head. The two manual buttons only operate in MDI or JOG modes.

Tool Clamp/Unclamp Air Solenoids

A single solenoid controls the air pressure to release the tool clamp. This corresponds to relay K15. When the relay is activated, 115V AC is applied to the solenoid. This applies air pressure to release the tool. Relay K15 is on the I/O PCB. Circuit breaker CB4 will interrupt power to this solenoid.

TOOL CLAMP/UNCLAMP SENSE SWITCHES

There are two switches used to sense the position of the tool clamping mechanism. They are both normally closed and one will activate at the end of travel during unclamping and the other during clamping. When both switches are closed, it indicates that the draw bar is between positions.

A tool change operation will wait until the unclamped switch is sensed before the Z-axis pulls up from the tool. This prevents any possibility of breaking the tool changer or its support mounts.

The diagnostic display can be used to display the status of the relay outputs and the switch inputs.

The Precharge and Through the Spindle Coolant system applies low air pressure and releases the clamped switch (with 40 taper spindle only).

REMOTE TOOL UNCLAMP SWITCH

The Remote Tool Unclamp switch is mounted on the front of the cover to the spindle head. It operates the same as the button on the keyboard. It must be held for $\frac{1}{2}$ second before the tool will be released and the tool will remain released for $\frac{1}{2}$ second after the button is released.

While the tool is unclamped, air is forced down the spindle to clear chips, oil, or coolant away from the tool holder.

5.3 SPINDLE OPERATION

Spindle speed functions are controlled primarily by the **S** address code. The **S** address specifies RPM in integer values from 1 to maximum spindle speed (Parameter 131). NOT TO BE CHANGED BY USER! When using the Through the Spindle Coolant option, the maximum spindle speed is 7500 RPM (5000 RPM for 50 taper spindles).

Speeds from S1 to the Parameter 142 value (usually 1200) will automatically select low gear and speeds above Parameter 142 will select high gear. Two **M** codes, M41 and M42 can be used to override the gear selection. M41 for low gear and M42 for high gear. Low gear operation above S1250 is not recommended. High gear operation below S100 may lack torque or speed accuracy. Spindle speed accuracy is best at the higher speeds and in low gear.

If there is no gear box in your machine (VF-0/E/0E) the gear box is disabled by parameters, it is always in high gear, and M41 and M42 commands are ignored.

The spindle is hardened and ground to the precise tool holder dimensions providing an excellent fit to the holder.

SPINDLE ORIENTATION

Orientation of the spindle is automatically performed for tool changes and can be programmed with M19. Orientation is performed by turning the spindle slowly until an air pressure driven pin drops into a detent and locks the spindle in place. This pin is located behind the spindle motor and above the gear box. If the spindle is oriented and locked, commanding spindle forward or reverse will release the lock.

On machines equipped with a **Haas vector drive**, orientation is performed electrically and no shot pin or solenoid is required for locking the motor in place. Orientation of the spindle is automatically performed for tool changes and can be programmed with M19 commands. Orientation is performed by turning the spindle until the encoder reference is reached, the spindle motor holds the spindle locked in position. If the spindle is orientated and locked, commanding spindle forward or reverse will release the lock.

SPINDLE ORIENTATION LUBRICATION

The spindle orientation mechanism does not require regular lubrication.

SPINDLE ORIENTATION AIR SOLENOID (WITH SHOT PIN)

A solenoid controls the air valve supplying pressure to the orientation lock pin. The diagnostic display can be used to display the status of the relay output and the switch inputs. Circuit breaker CB4 will interrupt power to this solenoid.

SPINDLE ORIENTATION SEQUENCE

When spindle orientation is commanded, the following sequence of operations occurs:

- 1) If the spindle is turning, it is commanded to stop,
- 2) Pause until spindle is stopped,
- 3) Spindle orientation speed is commanded forward,
- 4) Pause until spindle is at orientation speed,
- 5) (Vector drive only) Spindle encoder rotates past a reference mark.
- 6) **(Vector drive only)** The spindle drive stops and holds the spindle position at a parameter distance from the reference mark,
- 7) Command spindle lock air solenoid active,
- 8) Pause until spindle locked status is active and stable,
- 9) If not locked after time-out time, alarm and stop.

5.4 CONTROL PANEL

Figure 5-1. Control cabinet general overview.

Figure 5-2. Connectors on side of control cabinet.

5.5 SERVOS BRUSH / BRUSHLESS

Servo Encoders

Haas machines are equipped with brushless motors, which provides for better performance, and no maintenance. In addition to the performance differences, these machines differ from brush type machines, which have already been discussed, in the following areas:

The brushless motors have 8192 line encoders built in, which result in differences in acceleration parameters 7, 21,35,49 and 157. The exponential accel/decel time is set by parameters 115, 116 and 168. "In Position" parameters 101, 102, 103, 104 and 165 also affect brushless motors.

The motor controller board has a dedicated processor which does all the servo control algorithm.

There is no servo distribution board anymore, therefore there is no CHARGE light present. Care should still be taken however, since there are high voltages present on the amplifiers, even when power is shut off. The high voltage comes from the spindle drive, which does have a CHARGE light.

The servo drive cards are replaced by Brushless Servo Amplifiers, and are controlled differently.

A low voltage power supply card is added to the servo drive assembly to supply the low voltage requirement to the amplifiers.

The CNC software is version 9.xx.

The user interface and motion profiling have not changed however, and the user should not see any functional differences between a brush type machine and a brushless machine.

SERVO CHARACTERISTICS

Servo characteristics are explained in detail in the previous chapter. The following is an example of how to achieve 130 inches/minute.

The exponential accel/decel time constant is set by Parameters 113, 114, 115, 116 and 168. It has units of 0.0001 seconds. The speed limit at which exponential accel/decel is not available is defined by the relationship between Parameters 7 and 113 (for the X-axis). Thus if Parameter 7 is 8000000 steps/sec/sec and Parameter 113 is 375 (0.0375 seconds); the maximum velocity for accurate interpolation should be:

$8000000 \times 0.0375 = 300000 \text{ steps/second}$

For an 8192 line encoder and 6 mm screw, this would be:

60 x 300000 / 138718 = 130 inches/minute

SERVO AMPLIFIERS

The brushless servo amplifier is a PWM based current source. The PWM outputs control the current to a three phase brushless motor. The PWM frequency is 16 KHz. The amplifiers are current limited to 30 amps peak. However there are fuse limits both in hardware and software to protect the amplifiers and motors from over current. The nominal voltage for these amplifiers is 320 volts. Therefore the peak power is about 9600 watts or 13 H.P. The amplifiers also have short circuit and over temperature and over heat protection.

There is a 10 amp supply fuse for failure protection. This fuse is relatively slow, therefore it can handle the 30 amp peak. Actual continues current limit to the motor is controlled by software.

Commands to the amplifier are \pm 7-5 volts current in two legs of the motor and a digital enable signal. A signal from the amplifier indicates drive fault or sustained high current in stalled motor.

The connectors on the amplifiers are:

+H.V.	+320 volts DC
-H.V.	320 volts return
Α	motor lead phase A
В	motor lead phase B
C	motor lead phase C
J1	Three pin Molex connector used for +/-12 and GND.
J2	Eight pin Molex connector used for input signals.

5.6 INPUT/OUTPUT ASSEMBLY

The IOPCB contains a circuit for electronically turning the tool changer power on and off. This prevents any arcing of the tool changer relays and increases their life tremendously. This includes an adjustable current limit to the tool changer. Potentiometer R45 adjusts the current limit to the tool changer motors. R45 should be set to limit current to between four and six amps.

The IOPCB also contains a circuit for sensing a ground fault condition of the servo power supply. If more than 0.5 amps is detected flowing through the grounding connection of the 160V DC buss, a ground fault alarm is generated and the control will turn off servos and stop.

Relay K6 is for the coolant pump 230V AC It is a plug-in type and is double-pole. Relays K9 through K12 are also plug in types for controlling the tool changer.

The Input/Output Assembly consists of a single printer circuit board called the IOPCB.

The connectors on the IOPCB are:

- P1 16-pin relay drivers from MOCON 1 to 8 (510)
- P2 16-pin relay drivers from MOCON 9 to 16 (520)
- P3 16-pin relay drivers from MOCON 17 to 24 (M21-M24) (540)
- P4 34-pin inputs to MOCON (550)
- P5 Servo power on relay 1-1 (110)
- P6 230V AC from CB3 (930)
- P7 230V AC to coolant pump (940)
- P8 Auto-off relay 1-7 (170)
- P9 Spindle drive commands (710)
- P10 Spindle fan and oil pump 115V AC (300)
- P12 115V AC to spindle head solenoids (880A)
- P13 Tool changer status inputs (820)
- P14 Low TSC(900)
- P15 Spindle head status inputs (890)
- P16 Emergency stop input (770)
- P17 Low Lube input (960)
- P18 Over Voltage Input (970)
- P19 Low Air Input (950)
- P20 Overheat input (830)
- P21 Spindle drive status inputs (780)
- P22 M-FIN input (100)
- P23 Remote Unclamp input (tool release) (190)
- P24 Spare 2 (790)
- P25 Spare 3 (200)
- P26 Spare terminals for M21 to M24
- P27 Door lock (1040)
- P28 115V AC from CB4 (910)
- P29 A-axis brake solenoid output (390)
- P30 Tool changer shuttle motor output (810A)
- P31 230 VAC for Chip Conveyor (160)
- P33 115V AC three-phase input from power supply assembly (90)
- P34 115V AC to CRT (90A)
- P35 115V AC to heat exchanger (90B)
- P36 115V AC to CB4 (90C)
- P37 115V AC spare (870)
- P38 Door open (1050)

- P39 Tool changer turret motor output (810)
- P40 (770A) A/B
- P43 Ground fault sense signal input (1060) Axis Brake
- P44 5TH axis brake (319)
- P45 HTC Shuttle
- P46 Chip Conveyor (140)
- P47 Skip input signal (1070)
- P48 spare 1
- P49 spare 2
- P50 Spigot Motor (200)
- P51 16 PIN Relay drivers 17-24 (530)
- P52 spare 1
- P53 Spigot Sense (180)
- P54 Servo Brake (350)
- P55 Red/green lights (280)
- P56 Thru spindle coolant pump (940A)
- P57 115V spare
- P58 115V spare

5.7 TWO-SPEED GEAR TRANSMISSION

The spindle head contains a two-speed gear transmission. The spindle motor is directly coupled to the transmission and the transmission is cog belt-coupled to the spindle.

GEAR BOX LUBRICATION

Gear Box: Mobil DTE 25 oil.

The gear box uses an oil sump and is cooled by gear oil. The VF-0/E/0E does not have a gearbox and is air-cooled.

GEAR BOX AIR SOLENOIDS

There is a double solenoid valve controlling air to the gear box shifter. This solenoid sends air to select either the high gear or the low gear. When power is removed from the solenoids, the valve remains in its last state. Air is always required to ensure the gears are held in either high of low gear. Circuit breaker CB4 will interrupt power to these solenoids. Power is left on the solenoid which is commanded last.

On machines equipped with a **50 taper spindle**, an electric motor drives the gearbox shifter into high or low gear.

GEAR BOX SENSE SWITCHES

There are two switches in the gear box used to sense the position of the gears. One switch indicates HIGH by opening and the other indicates LOW by opening. Between gears, both switches are closed indicating a between-gear condition. The diagnostic display shows the status of these switches and the CURNT COMDS display shows which gear is selected. If the switches indicate that the gear box is between gears, the display will indicate "No Gear".

GEAR CHANGE SEQUENCE

When a gear change is performed, the following sequence of events occurs:

- 1) If the spindle is turning, it is commanded to stop,
- 2) Pause until spindle is stopped,
- 3) Gear change spindle speed is commanded forward,
- 4) Pause until spindle is at speed,
- 5) Command high or low gear solenoid active,
- 6) Pause until in new gear or reversal time,
- 7) Alarm and stop if max gear change time elapsed,
- 8) If not in new gear, reverse spindle direction,
- 9) Turn off high and low gear solenoids

5.8 CONTROL PANEL

JOG HANDLE

The JOG handle is actually a 100-line-per-revolution encoder. We use 100 steps per revolution to move one of the servo axes. If no axis is selected for jogging, turning of the crank has no effect. When the axis being moved reaches its travel limits, the handle inputs will be ignored in the direction that would exceed the travel limits.

Parameter 57 can be used to reverse the direction of operation of the handle.

Power On/Off Switches

The POWER ON switch engages the main contactor. The on switch applies power to the contactor coil and the contactor thereafter maintains power to its coil. The POWER OFF switch interrupts power to the contactor coil and will always turn power off. POWER ON is a normally open switch and POWER OFF is normally closed. The maximum voltage on the POWER ON and POWER OFF switches is 24V AC and this voltage is present any time the main circuit breaker is on.

SPINDLE LOAD METER

The Load meter measures the load on the spindle motor as a percentage of the rated continuous power of the motor. There is a slight delay between a load and the actual reflection of the meter. The eighth A-to-D input also provides a measure of the spindle load for cutter wear detection. The second page of diagnostic data will display % of spindle load. The meter should agree with this display within 5%. The spindle drive display #7 should also agree with the load meter within 5%.

There are different types of spindle drive that are used in the control. They are all equivalent in performance but are adjusted differently.

EMERGENCY STOP SWITCH

The EMERGENCY STOP switch is normally closed. If the switch opens or is broken, power to the servos will be removed instantly. This will also shut off the tool changer, spindle drive, and coolant pump. The EMERGENCY STOP switch will shut down motion even if the switch opens for as little 0.005 seconds.

Be careful of the fact that Parameter 57 contains a status switch that, if set, will cause the control to be powered down when EMERGENCY STOP is pressed.

You should not normally stop a tool change with EMERGENCY STOP as this will leave the tool changer in an abnormal position that takes special action to correct.

Note that tool changer alarms can be easily corrected by first correcting any mechanical problem, pressing RESET until the alarms are clear, selecting ZERO RETURN mode, and selecting "AUTO ALL AXES".

If the shuttle should become jammed, the control will automatically come to an alarm state. To correct this, push the EMERGENCY STOP button and remove the cause of the jam. Push the RESET key to clear any alarms. Push the ZERO RETURN and the AUTO ALL AXES keys to reset the Z-axis and tool changer. Never put your hands near the tool changer when powered unless the EMERGENCY STOP button is pressed.

KEYBOARD BEEPER

There is a speaker inside the control panel that is used as an audible response to pressing keyboard buttons and as a warning beeper. The beeper is a one kHz signal that sounds for about 0.1 seconds when any keypad key, CYCLE START, or FEED HOLD is pressed. The beeper also sounds for longer periods when an auto-shut down is about to occur and when the "BEEP AT M30" setting is selected.

If the beeper is not audible when buttons are pressed, the problem could be in the keypad, keyboard interface PCB or in the speaker. Check that the problem occurs with more than one button and check that the speaker volume is not turned down.

5.9 MICROPROCESSOR ASSEMBLY

The microprocessor assembly is in the rear cabinet at the top left position. It contains three large boards. They are: microprocessor, the keyboard and the MOCON. All three boards of the processor assembly receive power from the low voltage power supply. The three PCB's are interconnected by a local buss on dual 50-pin connectors. At power-on of the control, some diagnostic tests are performed on the processor assembly and any problems found will generate alarms 157 or 158. In addition, while the control is operating, it continually tests itself and a self test failure will generate Alarm 152.

MICROPROCESSOR PCB (68ECO30)

The Microprocessor PCB contains the 68ECO30 processor running at 40 MHz, one 128K EPROM; between 256K and 8MB of CMOS RAM and between 512K and 1MB of FAST STATIC RAM. It also contains a dual serial port, a five year battery to backup RAM, buffering to the system buss, and eight system status LED's.

Two ports on this board are used to set the point at which an NMI* is generated during power down and the point at which RESET* is generated during power down.

The eight LED's are used to diagnose internal processor problems. As the system completes power up testing, the lights are turned on sequentially to indicate the completion of a step. The lights and meanings are:

+5V +5V logic power supply is present. (Normally On)

If this light does not come on, check the low voltage power supply and check that all three phases of 230V input power are present.

HALT Processor halted in catastrophic fault. (Normally Off)

If this light comes on, there is a serious problem with the processor PCB. Check that the EPROM is plugged in. Test the card with the buss connectors off.

POR Power-on-reset complete. (Normally On)

If this light does not come on, there is a serious problem with the processor PCB. Check that the EPROM is plugged in. Test the card with the buss connectors off.

SIO Serial I/O initialization complete. (Normally On)

If this light does not come on, there is a problem with the serial ports. Disconnect anything on the external RS-232 and test again.

MSG Power-on serial I/O message output complete. (Normally On)

If this light does not come on, there is a problem with serial I/O or interrupts. Disconnect anything on the external RS-232 and test again.

CRT CRT/VIDEO initialization complete. (Normally On)

If this light does not come on, there is a problem communicating with the VIDEO PCB. Check the buss connectors and ensure the VIDEO PCB is getting power.

PGM Program signature found in memory. (Normally On)

If this light does not come on, it means that the main CNC program package was not found in memory or that the auto-start switch was not set. Check that switch S1-1 is on and the EPROM is plugged in.

RUN Program Running Without Fault Exception. (Normally On)

If this light does not come on or goes out after coming on, there is a problem with the microprocessor or the software running in it. Check all of the buss connectors to the other two PCB's and ensure all three cards are getting power.

There 1 two-position DIP switch on the processor PCB labeled S1. Switch S1-1 must be ON to auto-start the CNC operational program. If S1-1 is OFF, the PGM light will remain off.

Switch S2-1 is used to enable FLASH. If it is disabled it will not be possible to write to FLASH.

The processor connectors are:

- J1 Address buss
- J2 Data buss
- J4 Serial port #1 (for upload/download/DNC) (850)
- J5 Serial port #2 (for auxiliary 5th axis) (850A)
- J3 Power connector
- J6 Battery

MEMORY RETENTION BATTERY

The memory retention battery is initially soldered into the processor PCB. This is a 3.3V Lithium battery that maintains the contents of CMOS RAM during power off periods. Prior to this battery being unusable, an alarm will be generated indicating low battery. If the battery is replaced within 30 days, no data will be lost. The battery is not needed when the machine is powered on. Connector J6 on the processor PCB can be used to connect an external battery.

VIDEO KEYBOARD WITH FLOPPY

The VIDEO and KB PCB generates the video data signals for the monitor and the scanning signals for the keyboard. In addition, the keyboard beeper is generated on this board. There is a single jumper on this board used to select inverse video. The video PCB connectors are:

P1 LOW VOLTAGE POWER SUPPLY PCB (860)

P3* KEYBOARD INFO. (700)

P4 ADDRESS BUSS P5 DATA BUSS

P10 FLOPPY DR. POWER

P11	SPARE
P12	FLOPPY DR. SIGNAL
P13	VIDEO SIGNAL (760)
J9	RS422 B
J13	SERIAL DATA (850)

Motor Interface PCB (MOTIF)

The Motor Interface PCB provides all of the interfaces to motors and discrete inputs and outputs. It contains a single pot R54 to adjust the output of the D-A converter. The MOTIF PCB connectors are:

- P1 Data buss P2 X drive cont P3 Y drive cont
- P2 X drive control and overcurrent sense (610)
- P3 Y drive control and overcurrent sense (620)
- P4 Z drive control and overcurrent sense (630)
- P5 A drive control and overcurrent sense (640)
- P6 X-axis encoder, Z, home, and overheat (660)
- P7 Y-axis encoder, Z, home, and overheat (670)
- P8 Z-axis encoder, Z, home, and overheat (680)
- P9 A-axis encoder, Z, home, and overheat (690)
- P10 32 discrete inputs (550)
- P11 Relay drives 1 to 8 (510)
- P12 Relay drives 9 to 16 (520)
- P13 Relay drives 17 to 24 (530)
- P14 Relay drives 25 to 32 (540)
- P15 Power connector (+5,+12+)
- P16 D-to-A output and -12V DC (720)
- P17 A-to-D inputs for DC buss voltage (980)
- P18 Jog Crank input and aux 1,2 (750)
- P19 Address buss
- P20 Spindle encoder inputs (1000)
- P21 A-to-D input for spindle temperature (1020)
- P22 A-to-D input for spindle load monitor (730B)
- P24 Home switch inputs X, Y, Z (990)

Motor Controller (MOCON) - Brushless

The brushless machining centers are equipped with a microprocessor based brushless motor controller board (MOCON) that replaces the motor interface in the brush type controls. It runs in parallel with the main processor, receiving servo commands and closing the servo loop around the servo motors.

In addition to controlling the servos and detecting servo faults, the motor controller board, (MOCON), is also in charge of processing discrete inputs, driving the I/O board relays, commanding the spindle and processing the jog handle input. Another significant feature is that it controls 6 axes, so there is no need for an additional board for a 5 axis machine.

- P1 Data Buss
- P2 X amplifier control and fault sensing (610)
- P3 Y amplifier control and fault sensing (620)
- P4 Z amplifier control and fault sensing (630)
- P5 A amplifier control and fault sensing (640)
- P32 B amplifier control and fault sensing (640B)
- P33 C amplifier control and fault sensing (640C)
- P6 X encoder input (660)

- P7 Y encoder input (670)
- P8 Z encoder input (680)
- P9 A encoder input (690)
- P30 B encoder input (690B)
- P31 C encoder input (690C)
- P18 Jog encoder input (750)
- P20 Spindle encoder input (1000)
- P10 Inputs from I/O board (550)
- P11 I/O relays K1-8 (510)
- P12 I/O relays K9-16 (520)
- P13 I/O relays K17-24 (530)
- P14 I/O relays K25-32 (540)
- P15 Low Voltage Power (860)
- P16 Spindle command output (720)
- P19 Address bus
- P24 Axis home switches (990)

5.10 SPINDLE DRIVE ASSEMBLY

The spindle drive is located in the main cabinet on the right side and halfway down. It operates from three-phase 200 to 240V AC. It has a 10 (or 20) H.P. continuous rating, and a 15 (or 30) H.P. one-minute rating. The spindle drive is protected by CB1. Never work on the spindle drive until the small red CHARGE light goes out. Until this light goes out, there are dangerous voltages inside the drive, even when power is shut off.

For all other data on the spindle drive, refer to the supplied documentation for your drive.

HAAS VECTOR DRIVE

The Haas vector drive is a current amplifier controlled by the Mocon software, using the C axis output. The vector drive parameters are a part of the machine parameters and are accessible through the Haas front panel. The spindle encoder is used for the closed loop control and spindle orientation, as well as rigid tapping if the option is available. Spindle speed is very accurate, since this is a closed loop control and the torque output at low speeds is superior to non vector drive spindles.

5.11 RESISTOR ASSEMBLY

The Resistor Assembly is located on top of the control cabinet. It contains the servo and spindle drive regen load resistors.

Spindle Drive Regen Resistor

A resistor bank is used by the spindle drive to dissipate excess power caused by the regenerative effects of decelerating the spindle motor. If the spindle motor is accelerated and decelerated again in rapid succession repeatedly, this resistor will get hot. In addition, if the line voltage into the control is above 255V, this resistor will begin to heat. This resistor is overtemp protected at 100° C. At that temperature, an alarm is generated and the control will begin an automatic shutdown. If the resistor is removed from the circuit, an alarm may subsequently occur because of an overvoltage condition inside the spindle drive.

SERVO DRIVE REGEN RESISTOR

A 25-ohm, 300-watt resistor is used by the brush-type servo drives to dissipate excess power caused by the effects of decelerating the servo motors. If the servo motors are accelerated and decelerated again in rapid succession repeatedly, this resistor will get hot. In addition, if the line voltage into the control is above 255V, this resistor will begin to heat. This resistor is overtemp protected at 100°C. At that temperature, an automatic control shutdown is begun. If that resistor is removed from the circuit, an alarm may subsequently occur because of an overvoltage condition for the servo buss.

OVERHEAT SENSE SWITCH

There is an over-temperature sense switch mounted near the above-mentioned regen resistors. This sensor is a normally-closed switch that opens at about 100° C. It will generate an alarm and all motion will stop. After thirty seconds of an overheat condition, an automatic shutdown will occur in the control.

5.12 POWER SUPPLY ASSEMBLY

All power to the control passes through the power supply assembly. It is located on the upper right corner of the control cabinet.

Main Circuit Breaker CB1

Circuit breaker CB1 (see chart for ratings) is primarily used to protect the spindle drive and to shut off all power to the control. The locking On/Off handle on the outside of the control cabinet will shut this breaker off when it is unlocked. A trip of this breaker indicates a SERIOUS overload problem and should not be reset without investigating the cause of the trip. The full circuit breaker ratings are listed in the following chart.

CIRCUIT BE	REAKER (CB1) AMP	RATING
HP RATING	195-260 VAC	354-488 VAC
20 - 15	40 AMP	20 AMP
40 - 30	80 AMP	40 AMP

Main Contactor K1

Main contactor K1 is used to turn the control on and off. The POWER ON switch applies power to the coil of K1 and after it is energized, auxiliary contacts on K1 continues to apply power to the coil. The POWER OFF switch on the front panel will always remove power from this contactor.

When the main contactor is off, the only power used by the control is supplied through two $\frac{1}{2}$ amp fuses to the circuit that activates the contactor. An overvoltage or lightning strike will blow these fuses and shut off the main contactor.

The power to operate the main contactor is supplied from a 24V AC control transformer that is primary fused at $\frac{1}{2}$ amp. This ensures that the only circuit powered when the machine is turned off is this transformer and only low voltage is present at the front panel on/off switches.

Low Voltage Power Supply

The low voltage power supply provides +5V DC, +12V DC, and -12V DC to all of the logic sections of the control. It operates from 115V AC nominal input power. It will continue to operate correctly over a 90V AC to 133V AC range.

Power PCB (POWER)

The low voltage power distribution and high voltage fuses and circuit breakers are mounted on a circuit board called the POWER PCB. The following connectors are on it:

- P1 Brings incoming 230 VAC (460 VAC) 3-phase from main breaker.
- P2 On/Off connections to front panel (740)
- P3 Coil and aux connections to contactor K1
- P4 Auto-off connection to IOPCB (170)
- P5 Primary and secondary connections to transformer T5.
- P6 230V AC from CB3 to coolant pump (930)
- P7 115V AC from CB4 to IOPCB for solenoids (910)
- P8 115V AC from IOPCB to CB4 for solenoids (90)
- P9 +5/+12/-12 GND from low volt supply to logic boards (to MOCON) (860).
- P10 +5/+12/Gnd from low volt supply to logic boards (860)
- P11 +5/+12/Gnd form low volt supply to logic boards (860)
- P12 +5/+12/Gnd form low volt supply to logic boards (860)
- P13 +5/+12/Gnd form low volt supply to logic boards (860)
- P14 12V AC to operator's lamp switch (800A) (not used)
- P15 230V AC from main transformer to CB3 (70)
- P16 Low voltage power from power supply (not used)
- P17 +12V DC option connector (to MCD relay board) (860A)
- P18 Not used
- P19 Primary and Secondary connections to worklight transformer T4 (290) (not used)
- P20 115V AC to low voltage power supply
- P21 -12V DC option connector
- P22 -12V DC option connector (to MOTIF)
- P23 230 VAC from main transformer to CB5 (70A)
- P24 230 VAC from CB3 to TSC coolant pump (930A)
- P26 +5/+12/-12/ GND from low volt supply to logic boards (to processor) (860)
- P27 +5/+12/-12/ GND from low volt supply to logic boards (860)
- P28 +5/+12/-12 GND low volt power from power supply
- P29 +5/-5 GND low volt power from power supply
- P30 12V AC to operator's light (800) (not used)
- P31 +12V option connector (to stack fan)(860A)
- TB1 115VAC 3-phase from main transformer (94,95,96)
- TB2 115 VAC 3-phase to IOPCB (91,92,93)

SECONDARY CIRCUIT BREAKERS

Three more circuit breakers are on the Power supply assembly.

CB2 controls the 3-phase 115volt distribution. It can be tripped only if there is a short in the control cables or on the IOPCB.

CB3 controls the power to coolant pump only. It can be blown by an overload of the coolant pump motor or a short in the wiring to the motor.

CB4 controls the 115V AC to the air solenoids, 4th axis brake, and the oiler. It is never expected to trip. If it does trip, it is likely caused by a short circuit in the wiring on the I/O assembly or the wiring to the solenoids on the spindle head.

CB5 Controls power to the TSC coolant pump only. It can be tripped by an overload of the TSC coolant pump motor or a short in the wiring to the motor.

Power-Up Low Voltage Control Transformer (T5)

The low voltage control transformer, T5, supplies power to the coil of the main contactor K1. It guarantees that the maximum voltage leaving the Power Supply assembly when power is off is 12V AC to earth ground. It is connected via P5 to the POWER PCB.

5.13 POWER TRANSFORMER ASSEMBLY (T1)

The power transformer assembly is used to convert three-phase 354/488V to three-phase 230V and 115V and is primarily used by the servo drives. The video monitor, solenoids, fans, and oiler also use 115V AC. This transformer's maximum input voltage is 440V @ 60 Hertz, and 240V @ 50 Hertz. It is located in the main cabinet in the lower right corner. It is rated at 12KVA and its primary is protected to the figures listed in the preceding table.

This transformer has five high voltage connections that allow for a range of inputs from 354V to 488V. The transformer has a 230 volt secondary to supply three- phase to the spindle drives.

Fig. 5-3a Transformer with 354-488V range

Fig. 5-3b Transformer with 195-260V range

PRIMARY CONNECTION TO T1

Input power to T1 is supplied through CB1, the 40 amp three-phase main circuit breaker. Three-phase 195-260 VAC (354-488 VAC) to T1 is connected to the appropriate tap on T1.

VOLTAGE SELECTION TAPS

There are five labeled plastic terminal blocks for high voltage. Each block has three connections for wires labeled 74, 75, and 76. Follow the instructions printed on the transformer.

SECONDARY CONNECTION TO T1

The secondary output from T1 is 115V AC three-phase CB2 protects the secondary of transformer T1 and is rated at 25 amps.

5.14 FUSES

Brush Motors

The servo drive (DRIVER) cards have three fuses on each of the X, Y, Z, and A PCB's (F1, F2, F3). If these fuses are ever blown, the associated motor will stop. This will only happen if there is a failure of the drive card and the user should never attempt to replace these fuses.

The POWER PCB contains three ½-amp fuses located at the top right (FU1, FU2, FU3). If the machine is subject to a severe overvoltage or a lightning strike, these fuses will blow and turn off all of the power. Replace these fuses only with the same type and ratings. The two fuses FU4 and FU6 are not used.

On the servo drive assembly, there is a printed circuit board (SDIST) containing three one-amp fuses (FU1, FU2, FU3). Two of these fuses protect the contactor and small transformers. They are never expected to blow. The third fuse protects the regen load circuit load from shorts.

F	USE NAME	TYPE	RATING	VOLTAGE (amps)	LOCATION	
F	U1	AGC	1/2	250V	POWER pcb,	upper right
FI	U2	AGC	1/2	250V	II II	
FI	U3	AGC	1/2	250V	н н	
(not used) La	amp	AGC	1/2	250V	II .	lower left
` fl	U1 .	AGC	1/2	250V	SDIST pcb,	right center
FI	U2	AGC	1/2	250V	" "	
FI	U3	AGC	5	250V	II .	top center
F ⁻	1	ABC	20	250V	SDRIVER pcb's (>	(, Y, Z, A)
F:	2	ABC	20	250V	" '	,
F:	3	ABC	10	250V	II .	
FI	U1	ABC	5	250V	I/O PCB	
FI	U2	ABC	5	250V	I/O PCB	
FI	U3	ABC	5	250V	I/O PCB	
FI	U4	ABC	5	250V	I/O PCB	

Brushless Motors

Each brushless amplifier contains a fuse, which will only blow if there is a failure of the amplifier. The user should never attempt to replace these fuses.

The POWER PCB contains three ½-amp fuses located at the top right (FU1, FU2, FU3). If the machine is subject to a severe overvoltage or a lightning strike, these fuses will blow and turn off all of the power. Replace these fuses only with the same type and ratings. The two fuses FU4 and FU6 are not used.

	FUSE NAME	TYPE	RATING	VOLTAGE (amps)	LOCATION
	FU1	AGC	1/2	250V	POWER pcb, upper right
	FU2	AGC	1/2	250V	п
	FU3	AGC	1/2	250V	п
(not used)	Lamp	AGC	1/2	250V	" lower left
	FU1	ABC	5	250V	I/O PCB
	FU2	ABC	5	250V	I/O PCB
	FU3	ABC	5	250V	I/O PCB
	FU4	ABC	5	250V	I/O PCB
	F1	ABC	15	250V	Amplifier (X,Y,Z,A,B)

5.15 SPARE USER M CODE INTERFACE

The M code interface uses outputs M21-23 and one discrete input circuit. M codes M21 through M23 will activate relays labelled M21-23. These relay contacts are isolated from all other circuits and may switch up to 120V AC at one amp. The relays are SPDT. WARNING! Power circuits and inductive loads must have snubber protection.

Note: If the optional M code relay board is installed, relays M21-28 become available on the secondary board. These relays will be controlled by outputs M21-28.

The M-FIN circuit is a normally open circuit that is made active by bringing it to ground. The one M-FIN applies to all eight of the user M codes.

The timing of a user M function must begin with all circuits inactive, that is, all circuits open. The timing is as follows:

The Diagnostic Data display page may be used to observe the state of these signals.

M FUNCTION RELAYS

The IOPCB contains three relays (M21-M23) and the optional M code relay board contains eight (M21-M28), either one of these groups of relays may be available to the user. M21 is already wired out to P12 at the side of the control cabinet. This is a four-pin DIN connector and includes the M-FIN signal.

Note: If the optional M code relay board is installed, the relays on the IOPCB are to be left unused.

M-FIN DISCRETE INPUT

The M-FIN discrete input is a low voltage circuit. When the circuit is open, there is +12V DC at this signal. When this line is brought to ground, there will be about 10 milliamps of current. M-FIN is discrete input #10 and is wired from input #10 on the Inputs PCB on the Input/Output Assembly. The return line for grounding the circuit should also be picked up from that PCB. For reliability, these two wires should be routed in a shielded cable where the shield is grounded at one end only. The diagnostic display will show this signal a "1" when the circuit is open and a "0" when this circuit is grounded.

TURNING M FUNCTIONS ON AND OFF

The M code relays can also be separately turned on and off using M codes M51- M53 and M61- M63. M51 to M53 will turn on one of the relays and M61 to M63 will turn the relays off. M51 and M61 correspond to M21, etc.

Note: If the M code relay board is installed M51-M58 will turn on the relays and M61- M68 will turn off the relays. M51 and M61 correspond to M21, etc. on the M code relay board.

WIRING THE RELAYS

The relays are marked on both the IOPCB and the M code relay board, with their respective terminals forward of them. If the optional M code relay board is installed then the connections on the IOPCB are to be left unused as they are replaced by the relays on the optional board. Refer to the figures below, and the Probe Option figure in the Electrical Diagrams section for the terminal labeling. Maximum voltage for the relays is 125 VAC with a maximum amperage of 3 amps.

WARNING! Power circuits and inductive loads must have snubber protection.

IOPCB Relays

M Code Relay Board

CAUTION! If a screw terminal is already in use **DO NOT** connect anything else to it. Call you dealer.

Relay M24 on the IOPCB is reserved for Through the Spindle Coolant (AUXCLT).

5.16 LUBRICATION SYSTEM

The lubrication system is a resistance type system which forces oil through metering units at each of the 16 lubricating points within the machine. The system uses one metering unit at each of the lubricating points: one for each linear guide pad, one for each lead screw and one for spindle lubrication. A single oil pump is used to lubricate the system. The pump is powered only when the spindle and/or an axis moves. Once powered the pump cycles approximately 3.0 cc of oil every 30 minutes throughout the oil lines to the lube points. Every lube point receives approximately 1/16 of oil. The control monitors this system through an internal level switch in the reservoir and external pressure switch on the lube panel.

LOW LUBRICATION AND LOW PRESSURE SENSE SWITCHES

There is a low lube sense switch in the oil tank. When the oil is low, an alarm will be generated. This alarm will not occur until the end of a program is reached. There is also an lube pressure switch that senses the lube pressure. Parameter 117 controls the lube pressure check. If Parameter 117 is not zero, the lube pressure is checked for cycling high within that period. Parameter 117 has units of , 1/50 seconds; so 30 minutes gives a value of 90000. Parameter 57, bit "Oiler on/off", indicates the lube pump is only powered when the spindle fan is powered. The lube pressure is only checked when the pump is on.

5.17 SWITCHES

LAMP ON/OFF SWITCH

An on/off switch is supplied for the operator's lamp. It is located on the side of the control cabinet below all of the motor connectors.

Door Open Sense Switch

The DOOR OPEN sense switch is a magnetic reed switch type and consists of two switches; one on each half of the enclosure front doors. These switches are normally closed and wired in series. When the doors open, one or both of these switches will open and the machine will stop with a "Door Hold" function. When the door is closed again, operation will continue normally.

The wiring for the door switches is routed through the front panel support arm and down through the top of the enclosure.

If the doors are open, you will not be able to start a program. Door Hold will not stop a tool change operation or a tapping operation, and will not turn off the coolant pump. Also, if the doors are open, the spindle speed will be limited to 750 RPM.

The Door Hold function can be temporarily disabled with by turning Setting 51 **on**, if Parameter 57 bits DOOR STOP SP and SAFETY CIRC are set to zero, but this setting will return to OFF when the control is turned off.

LIMIT SWITCHES

Note: There are a number of limit switches located on the VMC, and some are difficult to reach. Ensure the problem is the switch before beginning removal procedures. The following is a list of all switches, their general location, and a functional description:

CLAMP/UNCLAMP SWITCHES

[Tool Release Piston Assembly (2)]

There are two switches used to sense the position of the tool clamping mechanism. They are both normally closed and one will activate at the end of travel during unclamping and the other during clamping. When both switches are closed, it indicates that the draw bar is between positions.

A tool change operation will wait until the unclamped switch is sensed before the Z-axis pulls up from the tool. This prevents any possibility of breaking the tool changer or its support mounts.

The diagnostic display can be used to display the status of the relay outputs and the switch inputs.

SPINDLE ORIENT SWITCH

[Top rear of transmission]

Note: This switch does not exist on machines that have a Vector Drive.

A normally-open switch that is held closed is used to sense when the pin drops in to lock the spindle. When the pin drops the switch opens, indicating orientation is complete.

The normally-closed side of the same switch that is held open, is wired to the spindle drive and commands it into a "Coast Stop" condition. This is done to ensure the spindle motor is not powered when the pin is locking the spindle.

X, Y, AND Z LIMIT SWITCHES

Prior to performing an POWER UP/RESTART or an AUTO ALL AXES operation, there are no travel limits. Thus, you can jog into the hard stops in either direction for X, Y, or Z. After a ZERO RETURN has been performed, the travel limits will operate unless an axis hits the limit switch. When the limit switch is hit, the zero returned condition is reset and an AUTO ALL AXES must be done again. This is to ensure that if you hit the limit switch, you can still move the servo back away from it.

The limit switches are normally closed. When a search for zero operation is being performed, the X, Y, and Z axes will move towards the limit switch unless it is already active (open); then they will move away from the switch until it closes again; then they will continue to move until the encoder Z channel is found. This position is machine zero.

Auto search for zero in the Z-axis is followed by a rapid move from the limit switch position down to the tool change position. This makes the Z-axis a little different from the other axes. The position found with the limit switch is not machine zero but is the position used to pull tools out of the spindle. Machine zero for Z is below this by Parameter 64. Be careful during the Z zero search and stay clear of that rapid move.

What Can Go Wrong With Limit Switches?

If the machine is operated without connector P5, a LOW LUBE and DOOR OPEN alarm will be generated. In addition, the Home search will not stop at the limit switch and will instead run into the physical stops on each axis.

If the switch is damaged and permanently open, the zero search for that axis will move in the negative direction at about 0.5 in/min until it reaches the physical travel stops at the opposite end of travel.

If the switch is damaged and permanently closed, the zero search for that axis will move at about 10 in/min in the positive direction until it reaches the physical stops.

If the switch opens or a wire breaks after the zero search completes, an alarm is generated, the servos are turned off, and all motion stops. The control will operate as though the zero search was never performed. The RESET can be used to turn servos on but you can jog that axis only slowly.

TOOL CHANGER POSITION SWITCHES

[Inside of Tool Carriage (2)]

GENEVA WHEEL POSITION MARK

The turret rotation mechanism has a switch mounted so that it is activated for about 30° of travel of the Geneva mechanism. When activated, this switch indicates that the turret is centered on a tool position. This switch is normally closed. The diagnostic display will show this status of this input switch as "TC MRK". A "1" indicates the Geneva wheel is in position.

TOOL #1 SENSE SWITCH

The tool rotation turret has a switch that is activated when tool one is in position or facing towards the spindle. At POWER ON this switch can indicate that tool #1 is in the spindle. If this switch is not active at power-on, the first tool change will rotate the turret until the switch engages and then move to the selected tool. The diagnostic display will show this status of this input switch as "TOOL #1". A "1" indicates that tool #1 is in position.

SHUTTLE IN/OUT SWITCHES

[Tool Changer Holding Plate (2)]

Two switches are used to sense the position of the tool changer shuttle and the arm that moves it. One switch is activated when the shuttle is moved full travel inward and one is activated when it is full travel outward. These switches are normally closed so that both will be closed between in and out. The diagnostic display will show this status of this input switch. A "1" indicates the associated switch is activated or open.

TRANSMISSION HIGH/LOW GEAR POSITION SWITCHES

[Bottom of Gearbox Assembly (2)]

On machines with a two-speed transmission, there are two switches in the gear box used to sense the position of the gears. One switch indicates HIGH by opening and the other indicates LOW by opening. Between gears, both switches are closed indicating a between-gear condition. The diagnostic display shows the status of these switches and the CURNT COMDS display shows which gear is selected. If the switches indicate that the gear box is between gears, the display will indicate "No Gear".

Note: The Transmission High/Low Gear Position Switches are located at the bottom of the Gearbox Assembly and are extremely difficult to reach. Removal of this assembly is necessary to replace these switches. See Mechanical Service, for Spindle Motor and Transmission removal.

5.18 HYDRAULIC COUNTERBALANCE

The spindle head weight is balanced by the upward pull of a hydraulic cylinder. The hydraulic oil forces the piston to retract into the cylinder body. The oil is then pressurized by a nitrogen reservoir. The system is self contained and passive (no pump is required to maintain the lift). Normal Z-Axis of the gas/oil counter balance has the initial pressure to balance the weight at full system volume, plus an additional 50-75 psi overcharge for longevity.

5.19 DIAGNOSTIC DATA

The ALARM / MSGS display is the most important source of diagnostic data. At any time after the machine completes its power-up sequence, it will either perform a requested function or stop with an alarm. Refer to Section 2.5 for a complete list of alarms, their possible causes, and some corrective action.

If there is an electronics problem, the controller may not complete the power-up sequence and the CRT will remain blank. In this case, there are two sources of diagnostic data; these are the audible beeper and the LED's on the processor PCB. If the audible beeper is alternating a ½ second beep, there is a problem with the main control program stored in EPROM's on the processor PCB. If any of the processor electronics cannot be accessed correctly, the LED's on the processor PCB will or will not be lit.

If the machine powers up but has a fault in one of its power supplies, it may not be possible to flag an alarm condition. If this happens, all motors will be kept off and the top left corner of the CRT will have the message:

POWER FAILURE ALARM

and all other functions of the control will be locked out.

When the machine is operating normally, a second push of the PARAM/DGNOS key will select the diagnostics display page. The PAGE UP and PAGE DOWN keys are then used to select one of two different displays. These are for diagnostic purposes only and the user will not normally need them. The diagnostic data consists of discrete input signals, discrete output relays and several internal control signals. Each can have the value of 0 or 1. In addition, there are up to three analog data displays and an optional spindle RPM display. Their number and functions are described in the following section.

5.20 DISCRETE INPUTS / OUTPUTS

The inputs/outputs that are followed by an asterisk (*) are active when equal to zero (0).

DISCRETE INPUTS

#	Name	Description	#	Name	Description
1000	TC IN	Tool Changer In	1016	spare	
1001	TC OUT	Tool Changer Out	1017	spare	
1002	T ONE	At Tool One	1018	spare	
1003	LO CNT	Low Coolant	1019	spare	
1004	TC MRK	T.C. Geneva Mark	1020	LO OIL	Spindle/GB coolant low
1005	SP HIG	Spindle In High	1021	spare1	
1006	SP LOW	Spindle In Low	1022	spare2	
1007	EM STP	Emergency Stop	1023	spare3	
1008	DOOR S	Door Open Switch	1024	UNCLA*	Remote tool unclamp
1009	M-FIN*	Not M Func Finish	1025	LOPHSE	Low voltage in phase 1
1010	OVERVT	Not Over Voltage	1026	spare4	
1011	LO AIR	Low Air Pressure	1027	spare5	
1012	LO LUB	Low Lube Oil	1028	GR FLT	Ground fault
1013	OVRHT	Not Over Heat	1029	SKIP	Skip Signal
1014	DB OPN	Tool Unclamped	1030	SPIGOT	
1015	DB CLS	Tool Clamped	1031	CNVEYR	Conveyor overload

DISCRETE OUTPUTS

#	Name	Description	#	Name	Description
1100	SRV PO	Servo Power On	1116	SPGCW	Spigot clockwise
1101	spare		1117	SPGCCW	Spigot counter/clockwise
1102	spare		1118	spare	
1103	spare		1119	PURGE	TSC Purge
1104	4TH BK	4th Axis Brk Rel	1120	PRE-CH	Pre-charge
1105	COOLNT	Coolant Pump	1121	HTC SH	Horizontal T.C. shuttle
1106	AUT OF	Auto Turn Off	1122	5TH BK	5th Axis Brake
1107	SP FAN	Spind Motor Fan	1123	DOOR L	Door Lock
1108	TC IN	Tool Changer In	1124	M21	
1109	TC OUT	Tool Changer Out	1125	M22	
1110	TC CW	Tool Changer CW	1126	M23	
1111	TC CCW	Tool Changer CCW	1127	AUXCLT	Auxiliary Coolant
1112	SP HIG	Spindle High Gear	1128	GRNBCN	Red beacon worklight
1113	SP LOW	Spindle Low Gear	1129	REDBCN	Red beacon worklight
1114	T UNCL	Tool Unclamped	1130	CNVENA	Conveyor enabled
1115	spare		1131	CNVREV	Conveyor reverse

The inputs are numbered the same as the connections on the inputs printed circuit board.

Note: If the machine is equipped with an APC the following inputs and outputs will change:

1009 Pallet Clamped SW	1121 PAL Clamp
1021 Door SW	1122 Door
1022 Pin #1 CLR	1125 APC Motor
1023 Pin #2 CLR	1126 Beeper
1026 PAL #2 Home	•

1027 PAL #1 Home

The second page of diagnostic data is displayed using the PAGE UP and PAGE DOWN keys. It contains:

INPUTS 2

Name	Description	Name	Description	Name	Description
X Z CH Y Z CH Z Z CH A Z CH B Z CH	X-axis Z Channel Y-axis Z Channel Z-axis Z Channel A-axis Z Channel B-axis Z Channel	X OVRH Y OVRH Z OVRH A OVRH B OVRH	X Motor Overheat Y Motor Overheat Z Motor Overheat A Motor Overheat B Motor Overheat	X CABL Y CABL Z CABL A CABL B CABL	Broken cable to X encoder Broken cable to Y encoder Broken cable to Z encoder Broken cable to A encoder Broken cable to B encoder
X HOME Y HOME Z HOME A HOME B HOME	X-axis Home/Lim Switch Y-axis Home Z-axis Home A-axis Home B-axis Home	X DRVF Y DRVF Z DRVF A DRVF B DRVF	X-axis drive fault Y-axis drive fault Z-axis drive fault A-axis drive fault B-axis drive fault	SZ CH	Spindle Z Channel

The following inputs and outputs pertain to the Haas Vector Drive. If it is not enabled, these will display a value of *. Otherwise, it will display a 1 or 0.

Haas Vector Drive Enabled Spindle Forward Spindle Reverse Spindle Lock Commanded Spindle at Speed Spindle Stopped Spindle Fault Spindle is Locked Spindle Overheat Spindle Cable
Spindle Cable

ANALOG DATA

Name	Description
DC BUSS	Voltage from Haas Vector Drive (if equipped)
uP TEMP	Microprocessor enclosure temperature (displayed only when Parameter 278 bit "uP ENCL TEMP" is set
	to 1).
SP LOAD	Spindle load in %
SP SPEED	Spindle RPM CW or CCW
RUN TIME	Total machine run time
TOOL CHANGES	Number of tool changes
VER X.XXX	Software version number
YY/MM/DD	Today's date
MDL VF	Machine model

6. PARAMETERS

Parameters are seldom-modified values that change the operation of the machine. These include servo motor types, gear ratios, speeds, stored stroke limits, lead screw compensations, motor control delays and macro call selections. These are all rarely changed by the user and should be protected from being changed by the parameter lock setting. If you need to change parameters, contact HAAS or your dealer. Parameters are protected from being changed by Setting 7.

The Settings page lists some parameters that the user may need to change during normal operation and these are simply called "Settings". Under normal conditions, the parameter displays should not be modified. A complete list of the parameters is provided here.

The PAGE UP, PAGE DOWN, up and down cursor keys, and the jog handle can be used to scroll through the parameter display screens in the control. The left and right cursor keys are used to scroll through the bits in a single parameter.

PARAMETER LIST

Parameter 1 X SWITCHES

Parameter 1 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

REV ENCODER Used to reverse the direction of encoder data.

REV POWER Used to reverse direction of power to motor.

REV PHASING Used to reverse motor phasing.
DISABLED Used to disable any axis.

Z CH ONLY
AIR BRAKE
DISABLE Z T
SERVO HIST
INV HOME SW
Uith A only, indicates that no home switch.
With A only, indicates that air brake is used.
Disables encoder Z test (for testing only).
Graph of servo error (for diagnostics only).
Inverted home switch (N.C. switch).
Inverted Z channel (normally high).

CIRC. WRAP. (Future Option - Not Yet Implemented) With A only, causes 360 wrap to

return to 0.

NO I IN BRAK With **A** only, removes **I** feedback when brake is active.

LOW PASS +1X Adds 1 term to low pass filter.
LOW PASS +2X Adds two terms to low pass filter.

OVER TEMP NC Selects a normally closed overheat sensor in motor.

CABLE TEST Enables test of encoder signals and cabling.

Z TEST HIST History plot of Z channel test data.

SCALE FACT/X If set to 1, the scale ratio is interpreted as divided by

X; where X depends on bits SCALE/X LO and SCALE/X HI.

INVIS AXIS
ROT ALM LMSW
ROT TRVL LIM
Used to create an invisible axis.
Rotary alarms at the limit switch.
Rotary travel limits are used.

UNDEFINED UNDEFINED UNDEFINED

TORQUE ONLY
3 EREV/MREV
2 EREV/MREV
NON MUX PHAS
For HAAS only.
For HAAS only.
Not currently used.

		HMOTOR RDISPL	This bit changes the display from degrees to inches (or
	SCALE	:/X L0	millimeters) on the A and B axes. With SCALE/X HI bit, determines the scale factor used in bit
	SCALE	Z/X HI	SCALE FACT/X, With SCALE/X LO bit, determines the scale factor used in bit SCALE FACT/X. See below:
			HI LO 0 0 3 0 1 5 1 0 7 1 1 9
Parameter	2	X	P GAIN Proportional gain in servo loop.
Parameter	3	Χ	D GAIN Derivative gain in servo loop.
Parameter	4	Χ	I GAIN Integral gain in servo loop.
Parameter	5	X	RATIO (STEPS/UNIT) The number of steps of the encoder per unit of travel. Encoder steps supply four (4) times their line count per revolution. Thus, an 8192 line encoder and a 6mm pitch screw give: 8192 x 4 x 25.4 / 6 = 138718
Parameter	6	X	MAXTRAVEL (STEPS) Max negative direction of travel from machine zero in encoder steps. Does not apply to A-axis. Thus a 20 inch travel, 8192 line encoder and 6 mm pitch screw give: 20.0 x 138718 = 2774360
Parameter	7	X	ACCELERATION Maximum acceleration of axis in steps per second per second.
Parameter	8	X	MAX SPEED Max speed for this axis in steps per second.
Parameter	9	X	MAXERROR Max error allowed in servo loop before alarm is generated. Units are encoder steps.
Parameter	10	Χ	FUSE LEVEL Fuse level in % of max power to motor. Applies only when motor in motion.
Parameter	11	X	BACKEMF Back EMF of motor in volts per 1000 RPM times 10. Thus a 63 volt/KRPM motor gives 630.
Parameter	12	X	STEPS/REVOLUTION Encoder steps per revolution of motor. Thus, an 8192 line encoder gives: 8192 x 4 = 32768

Parameter	13	Χ	BACKLASH Backlash correction in encoder steps.
Parameter	14	Χ	DEAD ZONE Dead zone correction for driver electronics. Units are 0.0000001 seconds.
Parameter	15	Υ	SWITCHES See Parameter 1 for description.
Parameter	16	Υ	P GAIN See Parameter 2 for description.
Parameter	17	Υ	D GAIN See Parameter 3 for description.
Parameter	18	Υ	I GAIN See Parameter 4 for description.
Parameter	19	Υ	RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	20	Υ	MAXTRAVEL (STEPS) See Parameter 6 for description.
Parameter	21	Υ	ACCELERATION See Parameter 7 for description.
Parameter	22	Υ	MAX SPEED See Parameter 8 for description.
Parameter	23	Υ	MAX ERROR See Parameter 9 for description.
Parameter	24	Υ	FUSE LEVEL See Parameter 10 for description.
Parameter	25	Υ	BACKEMF See Parameter 11 for description.
Parameter	26	Υ	STEPS/REVOLUTION See Parameter 12 for description.
Parameter	27	Υ	BACKLASH See Parameter 13 for description.
Parameter	28	Υ	DEAD ZONE See Parameter 14 for description.
Parameter	29	Z	SWITCHES See Parameter 1 for description.
Parameter	30	Z	P GAIN See Parameter 2 for description.

Parameter	31	Z	D GAIN See Parameter 3 for description.
Parameter	32	Z	I GAIN See Parameter 4 for description.
Parameter	33	Z	RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	34	Z	MAX TRAVEL (STEPS) See Parameter 6 for description.
Parameter	35	Z	ACCELERATION See Parameter 7 for description.
Parameter	36	Z	MAX SPEED See Parameter 8 for description.
Parameter	37	Z	MAX ERROR See Parameter 9 for description.
Parameter	38	Z	FUSE LEVEL See Parameter 10 for description.
Parameter	39	Z	BACKEMF See Parameter 11 for description.
Parameter	40	Z	STEPS/REVOLUTION See Parameter 12 for description.
Parameter	41	Z	BACKLASH See Parameter 13 for description.
Parameter	42	Z	DEAD ZONE See Parameter 14 for description.
Parameter	43	Α	SWITCHES See Parameter 1 for description AND make sure that this parameter is set to enable the fourth axis before you try to enable the fourth axis from settings.
Parameter	44	Α	P GAIN See Parameter 2 for description.
Parameter	45	Α	D GAIN See Parameter 3 for description.
Parameter	46	Α	I GAIN See Parameter 4 for description.
Parameter	47	Α	RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	48	Α	MAX TRAVEL (STEPS) See Parameter 6 for description.

Parameter	49	Α	ACCELERATION See Parameter 7 for description.
Parameter	50	Α	MAX SPEED See Parameter 8 for description.
Parameter	51	Α	MAX ERROR See Parameter 9 for description.
Parameter	52	Α	FUSE LEVEL See Parameter 10 for description.
Parameter	53	Α	BACKEMF See Parameter 11 for description.
Parameter	54	Α	STEPS/REVOLUTION See Parameter 12 for description
Parameter	55	Α	BACKLASH See Parameter 13 for description.
Parameter	56	Α	DEAD ZONE See Parameter 14 for description.

Parameters 57 through 128 are used to control other machine dependent functions. They are:

COMMON SWITCH 1 Parameter 57

> Parameter 57 is a collection of general purpose single bit flags used to turn some functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

REV CRANK Reverses direction of jog handle. DISABLE T.C. Disables tool changer operations. DISABLE G.B. Disables gear box functions.

POF AT E-STP Stops spindle then turns the power off at EMERGENCY STOP

RIGID TAP Indicates hardware option for rigid tap. **REV SPIN ENC** Reverses sense direction of spindle encoder.

REPT RIG TAP Selects repeatable rigid tapping.

EX ST MD CHG Selects exact stop in moves when mode changes.

SAFETY CIRC. This enables safety hardware, if machine is so equipped. SP DR LIN AC Selects linear deceleration for rigid tapping. 0 is quadratic.

PH LOSS DET When enabled, will detect a phase loss. Enables coolant spigot control and display. COOLANT SPGT OVER T IS NC Selects control over temp sensor as N.C.

SKIP OVERSHT Causes Skip (G31) to act like Fanuc and overshoot sense point.

Non-inverted spindle stopped status. NONINV SP ST Spindle load monitor option is enabled. SP LOAD MONI SP TEMP MONI

Spindle temperature monitor option is enabled.

ENAROT & SC Enables rotation and scaling. **ENABLE DNC** Enables DNC selection from MDI. **ENABLE BGEDT** Enables BACKGROUND EDIT mode. **ENA GRND FLT** Enables ground fault detector.

KEYBD SHIFT Enables use of keyboard with shift functions.

ENABLE MACRO Enables macro functions.

INVERT SKIP Invert sense of skip to active low=closed.

HANDLE CURSR Enable use of jog handle to move cursor.

NEG WORK OFS Selects use of work offsets in negative direction.

SPIN COOLANT Enables spindle low oil pressure detection.

ENA QUIKCODE Enables conversational programming.

OILER ON/OFF Enables oiler power when servos or spindle is in motion.

NC OVER VOLT UNUSED

Inverts sense of over voltage signal.

DOOR STOP SP Enables functions to stop spindle and manual operations at door switch.

Parameter 58 LEAD COMPENS SHIFT

Shift factor when applying lead screw compensation. Lead screw compensation is based on a table of 256 offsets; each +\-127 encoder steps. A single entry in the table applies over a distance equal to two raised to this parameter power encoder steps.

Parameter 59 MAX FEED RATE (INCH)

Maximum feed rate in inches per minute.

Parameter 60 TURRET START DELAY

Maximum delay allowed in start of tool turret. Units are milliseconds. After this time, an

alarm is generated.

Parameter 61 TURRET STOP DELAY

Maximum delay allowed in motion of tool turret. Units are milliseconds. After this time,

an alarm is generated.

Parameter 62 SHUTTLE START DELAY

Maximum delay allowed in start of tool shuttle. Units are milliseconds. After this time,

an alarm is generated.

Parameter 63 SHUTTLE STOP DELAY

Maximum delay allowed in motion of tool shuttle. Units are milliseconds. After this time,

an alarm is generated.

Parameter 64 Z TOOL CHANGE OFFSET

On Vertical mills: For Z-axis; displacement from home switch to tool change

position and machine zero. About 4.6 inches, so for an 8192 line encoder this

gives:

 $4.6 \times 138718 = 638103$

On Horizontal mills, this parameter is not used. It should be set to zero.

Parameter 65 NUMBER OF TOOLS

Number of tool positions in tool changer. This number must be set to the machine's

configuration. The maximum number of tool positions is 32.

Parameter 66 SPINDLE ORI DELAY

Maximum delay allowed when orienting spindle. Units are milliseconds. After this time,

an alarm is generated.

Parameter 67 GEAR CHANGE DELAY

Maximum delay allowed when changing gears. Units are milliseconds. After

this time, an alarm is generated.

Parameter DRAW BAR MAX DELAY 68

Maximum delay allowed when clamping and unclamping tool. Units are milliseconds.

After this, time an alarm is generated.

Parameter 69 A AIR BRAKE DELAY

Delay provided for air to release from brake on A-axis prior to moving. Units

are milliseconds.

Parameter 70 MIN SPIN DELAY TIME

Minimum delay time in program after commanding new spindle speed and before

proceeding. Units are milliseconds.

DRAW BAR OFFSET Parameter 71

Offset provided in motion of Z-axis to accommodate the tool pushing out of the spindle

when unclamping tool. Units are encoder steps.

72 DRAW BAR Z VEL UNCL Parameter

Speed of motion in Z-axis to accommodate tool pushing out of the spindle when

unclamping tool. Units are encoder steps per second.

73 Parameter SP HIGH G/MIN SPEED

Command speed used to rotate spindle motor when orienting spindle in high gear. Units

are maximum spindle RPM divided by 4096. This parameter is not used in machines

equipped with a Haas vector drive.

Parameter 74 SP LOW G/MIN SPEED

Command speed used to rotate spindle motor when orienting spindle in low gear. Units

are maximum spindle RPM divided by 4096. This parameter is not used in machines

equipped with a Haas vector drive.

Parameter 75 **GEAR CHANGE SPEED**

Command speed used to rotate spindle motor when changing gears. Units are maximum

spindle RPM divided by 4096.

Parameter 76 LOW AIR DELAY

Delay allowed after sensing low air pressure before alarm is generated. Alarm skipped if

air pressure returns before delay. Units are 1/50 seconds.

Parameter 77 SP LOCK SETTLE TIME

Required time in milliseconds that the spindle lock must be in place and stable before

spindle orientation is considered complete.

78 GEAR CH REV TIME Parameter

Time in milliseconds before motor direction is reversed while in a gear change.

Parameter 79 SPINDLE STEPS/REV

Sets the number of encoder steps per revolution of the spindle. Applies only to rigid

tapping option.

Parameter 80 MAX SPIN DELAY TIME

The maximum delay time control will wait for spindle to get to commanded speed or to

get to zero speed. Units are milliseconds.

Parameter	81	M MACRO CALL 09000 M code that will call 09000. Zero causes no call.
Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter	82 83 84 85 86 87 88 89 90	M MACRO CALL 09001 same as 81 M MACRO CALL 09002 same as 81 M MACRO CALL 09003 same as 81 M MACRO CALL 09004 same as 81 M MACRO CALL 09005 same as 81 M MACRO CALL 09006 same as 81 M MACRO CALL 09007 same as 81 M MACRO CALL 09008 same as 81 M MACRO CALL 09008 same as 81 M MACRO CALL 09009 same as 81 G MACRO CALL 09010 G code that will call 09010. Zero causes no call.
Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter	92 93 94 95 96 97 98 99 100	G MACRO CALL 09011 same as 91 G MACRO CALL 09012 same as 91 G MACRO CALL 09013 same as 91 G MACRO CALL 09014 same as 91 G MACRO CALL 09015 same as 91 G MACRO CALL 09016 same as 91 G MACRO CALL 09017 same as 91 G MACRO CALL 09018 same as 91 G MACRO CALL 09018 same as 91 G MACRO CALL 09019 same as 91
Parameter	101	IN POSITION LIMIT X How close motor must be to endpoint before any move is considered complete when not in exact stop (G09 or G61). Units are encoder steps.
Parameter	102	IN POSITION LIMIT Y Same definition as Parameter 101.
Parameter	103	IN POSITION LIMIT Z Same definition as Parameter 101.
Parameter	104	IN POSITION LIMIT A Same definition as Parameter 101.
Parameter	105	X MAX CURRENT Fuse level in % of max power to motor. Applies only when motor is stopped.
Parameter	106	Y MAX CURRENT Same definition as Parameter 105.
Parameter	107	Z MAX CURRENT Same definition as Parameter 105.
Parameter	108	A MAX CURRENT Same definition as Parameter 105.
Parameter	109	D*D GAIN FOR X Second derivative gain in servo loop.

Parameter	110	D*D GAIN FOR Y Second derivative gain in servo loop.
Parameter	111	D*D GAIN FOR Z Second derivative gain in servo loop.
Parameter	112	D*D GAIN FOR A Second derivative gain in servo loop.
Parameter	113	X ACC/DEC T CONST Exponential acceleration time constant. Units are 1/10000 seconds. This parameter provides for a constant ratio between profiling lag and servo velocity. It is also the ratio between velocity and acceleration.
Parameter	114	Y ACC/DEC T CONST Same definition as Parameter 113
Parameter	115	Z ACC/DEC T CONST Same definition as Parameter 113
Parameter	116	A ACC/DEC T CONST Same definition as Parameter 113
Parameter	117	LUB CYCLE TIME If this is set nonzero, it is the cycle time for the lube pump and the Lube pressure switch option is checked for cycling in this time. It is in units of 1/50 seconds.
Parameter	118	SPINDLE REV TIME Time in milliseconds to reverse spindle motor.
Parameter	119	SPINDLE DECEL DELAY Time in milliseconds to decelerate spindle motor.
Parameter	120	SPINDLE ACC/DECEL Accel/decel time constant in steps/ms/ms for spindle motor.
Parameter	121	X PHASE OFFSET The motor phase offset for X motor. This is arbitrary units.
Parameter	122	Y PHASE OFFSET See Parameter 121 for description.
Parameter	123	Z PHASE OFFSET See Parameter 121 for description.
Parameter	124	A PHASE OFFSET See Parameter 121 for description.
Parameter	125	X GRID OFFSET This parameter shifts the effective position of the encoder Z pulse. It can correct for a positioning error of the motor or home switch.
Parameter	126	Y GRID OFFSET See Parameter 125 for description.

Parameter	127	Z GRID OFFSET
i aiaiiiotoi	161	

See Parameter 125 for description.

Parameter 128 A GRID OFFSET

See Parameter 125 for description.

Parameter 129 GEAR CH SETTLE TIME

Gear change settle time. This is the number of one millisecond samples that the gear status must be stable before considered in gear.

Parameter 130 GEAR STROKE DELAY

This parameter controls the delay time to the gear change solenoids when performing a gear change.

Parameter 131 MAX SPINDLE RPM

This is the maximum RPM available to the spindle. When this speed is programmed, the D-to-A output will be +10V and the spindle drive must be calibrated to provide this.

Parameter 132 YTHERMAL COMP. COEF.

This is the coefficient of heating of the lead screw and is used to decrease or shorten the screw length.

Parameter 133 Z THERMAL COMP. COEF.

This is the coefficient of heating of the lead screw and is used to decrease or shorten the screw length.

Parameter 134 X EXACT STOP DIST. Parameter 135 Y EXACT STOP DIST. Parameter 136 Z EXACT STOP DIST. Parameter 137 A EXACT STOP DIST.

These parameters control how close each axis must be to its end point when exact stop is programmed. They apply only in G09 and G64. They are in units of encoder steps. A value of 34 would give 34/138718 = 0.00025 inch.

Note: To change the values of parameters 134-137 permanently the machine must be rebooted.

Parameter	138	X FRICTION FACTOR
Parameter	139	Y FRICTION FACTOR
Parameter	140	Z FRICTION FACTOR
Parameter	141	A FRICTION FACTOR

These parameters compensate for friction on each of the four axes. The units are in 0.004V.

Parameter 142 HIGH/LOW GEAR CHANG

This parameter sets the spindle speed at which an automatic gear change is performed. Below this parameter, low gear is the default; above this, high gear is the default.

Parameter 143 DRAW BAR Z VEL CLMP

This parameter sets the speed of the Z-axis motion that compensates for tool motion during tool clamping. Units are in encoder steps per second.

Parameter	144	RIG TAP FINISH DIST This parameter sets the finish tolerance for determining the end point of a rigid tapping operation. Units are encoder counts.
Parameter Parameter Parameter Parameter	145 146 147 148	X ACCEL FEED FORWARD Y ACCEL FEED FORWARD Z ACCEL FEED FORWARD A ACCEL FEED FORWARD These parameters set the feed forward gain for the axis servo. They have no units.
Parameter	149	PRE-CHARGE DELAY This parameter sets the delay time from pre-charge to tool release. Units are milliseconds.
Parameter	150	MAX SP RPM LOW GEAR Max spindle RPM in low gear.
Parameter	151	B SWITCHES See Parameter 1 for description.
Parameter	152	B P GAIN See Parameter 2 for description.
Parameter	153	B D GAIN See Parameter 3 for description.
Parameter	154	B I GAIN See Parameter 4 for description.
Parameter	155	B RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	156	B MAX TRAVEL (STEPS) See Parameter 6 for description.
Parameter	157	B ACCELERATION See Parameter 7 for description.
Parameter	158	B MAX SPEED See Parameter 8 for description.
Parameter	159	B MAX ERROR See Parameter 9 for description.
Parameter	160	B FUSE LEVEL See Parameter 10 for description.
Parameter	161	B BACK EMF See Parameter 11 for description.
Parameter	162	B STEPS/REVOLUTION See Parameter 12 for description.

Parameter	163	B BACKLASH See Parameter 13 for description.
Parameter	164	B DEAD ZONE See Parameter 14 for description.
Parameter	165	IN POSITION LIMIT B Same definition as Parameter 101.
Parameter	166	B MAX CURRENT Same definition as Parameter 105.
Parameter	167	D*D GAIN FOR B Second derivative gain in servo loop.
Parameter	168	B ACC/DEC T CONST Same definition as Parameter 113.
Parameter	169	B PHASE OFFSET See Parameter 121 for description.
Parameter	170	B GRID OFFSET See Parameter 125 for description.
Parameter	171	B EXACT STOP DIST. See Parameters 134 for description.
Parameter	172	B FRICTION FACTOR See Parameter 138 for description.
Parameter	173	B ACCEL FEED FORWARD Same description as Parameter 145.
Parameter	174	SPINDLE B TEMP. COEF. This parameter controls the amount of correction to the B-axis in response to heating of the spindle head. It is 10 times the number of encoder steps per degree F.
Parameter	175	B AIR BRAKE DELAY Delay provided for air to release from brake on B-axis prior to moving. Units are milliseconds.

Note: The C-axis parameters (176-200) are used to control the Haas Vector Drive. Parameter 278 bit HAAS VECT DR must be set to 1 for these parameters to be available.

Parameter 176 C SWITCHES

See Parameter 1 for description.

Parameter 177 C P GAIN

See Parameter 2 for description.

Parameter 178 C D GAIN

206 -

See Parameter 3 for description.

Parameter	179	C I GAIN See Parameter 4 for description.
Parameter	180	C SLIP GAIN The value that the slip rate would assume at maximum speed and maximum current.
Parameter	181	C MIN SLIP The minimum value allowed for the slip rate.
Parameter	182	C ACCELERATION See Parameter 7 for description.
Parameter	183	C MAX FREQ The frequency at which the motor will be run when maximum spindle RPM is commanded.
Parameter	184	C MAX ERROR The maximum allowable error (in Hz) between commanded spindle speed and actual speed. If set to zero, it will default to 1/4 of Parameter 183.
Parameter	185	C FUSE LEVEL See Parameter 10 for description.
Parameter	186	C DECELERATION Maximum deceleration of axis in encoder steps per second per second.
Parameter	187	C HIGH GEAR STEPS/REV The number of encoder steps per revolution of the motor when the transmission is in high gear. If the machine does not have a transmission, this is simply the number of encoder steps per revolution of the motor.
Parameter	188	C ORIENT GAIN The proportional gain used in the position control loop when performing a spindle orientation.
Parameter	189	C BASE FREQ This is the rated frequency of the motor.
Parameter	190	C HI SP CURR LIM At speeds higher than the base frequency, the maximum current that is applied to the motor must be reduced.
Parameter	191	C MAX CURRENT Same definition as Parameter 105.
Parameter	192	C MAG CURRENT This is the magnetization component of the current in the motor, also called the flux or field current.
Parameter	193	C SPIN ORIENT MARGIN When a spindle orientation is done, if the actual position of the spindle is within this value (plus or minus), the spindle will be considered locked. Otherwise, the spindle will not be locked.

Parameter	194	SPINDLE STOP FREQ The spindle is considered to be stopped (discrete input SP ST*=0) when the speed drops below this value. Units are encoder steps/millisecond.
Parameter	195	C START/STOP DELAY This delay is used at the start of motion to magnetize the rotor before accelera tion starts.
Parameter	196	C ACCEL LIMIT LOAD This is the % load limit during acceleration.
Parameter	197	SWITCH FREQUENCY.Unit:Hz. This is the frequency at which the spindle motor windings are switched. Note that there is a hysteresis band around this point, defined by parameter 198.
Parameter	198	SWITCH HYSTERESIS. UNIT:Hz. This defines the \pm hysteresis band around parameter 197. For example if par. 197 is 85 Hz, and par. 198 is 5Hz, the switching will take place at 90Hz when the spindle is speeding up, and at 80 Hz when the spindle is slowing down.
Parameter	199	PRE-SWITCH DELAY. UNIT: ms. This is the amount of time allowed for the current in the motor to drop before the winding change contactors are switched.
Parameter	200	POST- SWITCH DELAY. UNIT: ms This is the amount of time allowed for the contactors to stabilize after a switch is commanded, before current is applied to the motor.
Parameter	201	X THERMAL COMP. COEF. This is the coefficient of heating of the lead screw and is used to shorten the screw length.
Parameter	202	X AIR BRAKE DELAY This parameter is not used.
Parameter	203	Y AIR BRAKE DELAY This parameter is not used.
Parameter	204	Z AIR BRAKE DELAY This parameter is not used.
Parameter	205	A SPINDLE TEMP. COEF. This parameter controls the amount of correction to the A-axis in response to heating of the spindle head. It is 10 times the number of encoder steps per degree F.
Parameter	206	SPIGOT POSITIONS Maximum number of spigot positions.
Parameter	207	SPIGOT TIMEOUT (MS) Maximum timeout allowed for spigot to traverse one spigot location.
Parameter	208	SPIN. FAN OFF DELAY Delay for turning the spindle fan off after the spindle has been turned off.

Parameter	209	COMMON SWITCH 2
		Parameter 209 is a collection of general purpose single bit flags used to turn some
		functions on and off. The left and right cursor arrows are used to select the function being
		changed. All values are 0 or 1 only. The function names are:

HORIZONTAL When set to (1), the control identifies the machine as a horizontal mill. The control will then make the necessary adjustments, such as enabling the horizontal tool changer.

RST STOPS T.C. Tool changer can be stopped with RESET button. UNUSED

ENA CONVEYOR Enables chip conveyor, if machine is so equipped.

50% RPD KBD When (1) the control will support the new style keyboards with the 50% rapid traverse

key. For controls without a 50% rapid keypad set this bit to (0).

FRONT DOOR When enabled the control will look for an additional door switch and will generate an

operator message.

TC Z NO HOME In Horizontal mills only. This bit prevents Z-axis motion to machine zero prior to a tool

change.

M36 AUTO MOT In Horizontal only. When set to (1), an M36 rotates the A-axis after the PART READY

button is pressed.

AUX AXIS TC In Horizontal mills only. When enabled, means the tool changer carousel is driven by

an aux. axis.

SPIGOT KEY INV When (1) the commands to the conveyor motor are reversed so that forward becomes

reverse. If the conveyor is wired incorrectly, this bit can be set so that the conveyor runs

in the proper direction.

T SUBROUTINE Reserved for future use.

SPIN Y ENCDR For Lathe only. When enabled, spindle encoder input is to the Y-axis.

REV CONVEYOR Reverses the direction of the chip conveyor.

M27-M28 CONVYR Usually the chip conveyor motor and direction relays are attached to the user relays M21

and M22. When this bit is set, the control expects to see the conveyor hooked up to M27

and M28.

RESERVED

GREEN BEACON When (1) user relay M25 is used to flash a beacon. If the control is in a reset state, the

beacon will be off. If the control is running normally, the beacon will be steadily on. If the control is in a M00, M01, M02, M30 feedhold, or single block state, then the beacon

will flash.

RED BEACON When (1) user relay M26 is used to flash a beacon. The beacon flashes if the control is

experiencing an alarm or emergency stop condition.

CONVY DR OVRD When (1) the conveyor will continue to run with the door open. When (0) the conveyor

will stop when the door is open, but will resume when the door is closed. For safety it

is recommended that the bit be set to (0).

DSBL CLNT IN If set to 1 low coolant input will not be used.

DSC INP PR Discrete pallet rotate/part ready; inputs enabled if set to 1.

RMT TOOLS RLS If set to 1, allows use of remote tool release button on spindle head.

FLOPPY ENABL If set to 1, enables the optional floppy drive.

TCR KEYPAD If set to 1, enables tool changer restore button on keypad.

MCD RLY BRD If set to 1, adds 8 additional relays, for a total of 40. These additional relays (M21-M28)

become available on a secondary board, and are shown on the discrete outputs page.

TSC ENABLE When set to 1, "DSBL CLNT IN" bit is ignored, M24, M54 and M64 are disabled, and TSC

will operate. When set to zero, the control functions normally.

AUX JOG NACC Does not allow accumulation on auxiliary axis jog.

ALISM PRGRST Alias M codes during program restart.

DSBL JOG TST Disables the encoder test for the jog handle.

AIR DR @ M24 Used on horizontal mills only. UNDEFINED

P RDY @ Y160 Used on horizontal mills only.

SPNDL NOWAIT When (1), the machine will not wait for the spindle to come up to speed

immediately after an M03 or M04 command. Instead, it will check and/or wait for the spindle to come up to speed immediately before the next interpolated motion is initiated. This bit does not affect rigid tapping or the TSC option.

Parameter 210 X TOOL CHANGE OFFSET

This parameter is not used.

Parameter 211 Y TOOL CHANGE OFFSET

On Horizontal mills: For Y-axis; displacement from the home position to tool

change position.

On Vertical mills, this parameter is not used.

Parameter 212 A TOOL CHANGE OFFSET

This parameter is not used.

Parameter 213 B TOOL CHANGE OFFSET

This parameter is not used.

Parameter 214 D:Y CURRENT RATIO %. UNIT: %.

This defines the ratio between the two winding configurations. This default winding is

Y, and the parameters are set for the Y winding. This number is used to adjust the

parameters for the delta winding when the windings are switched.

Parameter 215 CAROUSEL OFFSET

Parameter used to align tool 1 of tool changing carousel precisely. Units are encoder

steps.

Parameter 216 CNVYR RELAY DELAY

Delay time in 1/50 seconds required on conveyor relays before another action can be

commanded. Default is 5.

Parameter	217	CNVYR IGNORE OC TIM Amount of time in 1/50 seconds before overcurrent is checked after conveyor motor is turned on. Default is 50.
Parameter	218	CONVYR RETRY REV TIM Amount of time that the conveyor is reversed in 1/50 seconds after overcurrent is sensed. Default is 200.
Parameter	219	CONVYR RETRY LIMIT Number of times that the conveyor will cycle through the reverse/forward sequencing when an overcurrent is sensed before the conveyor will shut down. An overcurrent is sensed when chips jam the conveyor. By reversing and then forwarding the conveyor, the chip jam may be broken. Default is 3.
Parameter	220	CONVYR RETRY TIMEOUT Amount of time in 1/50 seconds between consecutive overcurrents in which the overcurrents is considered another retry. If this amount of time passes between overcurrents, then the retry count is set to (0). Default is 1500, 30 seconds.
Parameter	221	MAX TIME NO DISPLAY The maximum time (in 1/50 sec.) between screen updates.
Parameter	222	ROTARY AXIS INCRMNT For Horizontal mills only. This parameter sets the degrees of rotation of the A- axis at an M36 or Pallet Rotate.
Parameter	223	AIR TC DOOR DELAY For Horizontal mills only. This parameter sets the delay to open the tool changer door (in milliseconds). If the tool changer does not have a pneumatic door, this parameter is set to zero.
Parameter	224	ROT AXIS ZERO OFSET This parameter shifts the zero point of A for a wheel fixture or tombstone.
Parameter	225	MAX ROT AXIS ALLOW For Horizontal mills with a wheel fixture only. This parameter sets the maximum rotation (in degrees) allowed before stopping at front door.
Parameter	226	EDITOR CLIPBOARD This parameter assigns a program number (nnnn) to the contents of the clipboard.
Parameter	227	FLOPPY DIR NAME This parameter sets the program numbers to store in the floppy directory.
Parameter	228	QUICKCODE FILE This parameter set the program numbers to store in the Quickcode definition.
Parameter	229	X LEAD COMP 10E9 This parameter sets the X-axis lead screw compensation signed parts per

billion.

Parameter	230	Y LEAD COMP 10E9 This parameter sets the Y-axis lead screw compensation signed parts per billion.
Parameter	231	Z LEAD COMP 10E9 This parameter sets the Z-axis lead screw compensation signed parts per billion.
Parameter	232	A LEAD COMP 10E9 This parameter sets the A-axis lead screw compensation signed parts per billion.
Parameter	233	B LEAD COMP 10E9 This parameter sets the B-axis lead screw compensation signed parts per billion.
Parameter	234	C RESERVED
Parameter	235	TSC PISTON SEAT With the 50 TSC option, the amount of time given for the piston to seat during system start-up. The default is 500 milliseconds. If machine has a 50 Taper spindle and the TSC option, this parameter must be set to 0 .
Parameter	236	TSC LOW PR FLT After the TSC system has stabilized following startup, Alarm 151 is generated if coolant pressure falls below 40 psi for the amount of time set in this parameter. The default is 1000 milliseconds.
Parameter	237	TSC CLNT LINE PURGE The amount of time given for the coolant to purge when the TSC system is shut off. This parameter may be increased by the user to a higher value to help purge coolant from small orifice tooling. The minimum (default) value is 2500 millisec onds.
Parameter	238	MAX TSC SPINDLE RPM When TSC is enabled and in use, this parameter limits the maximum spindle speed. Default value is 7500 RPM. On 50 taper machines, TSC can be run at the maximum speed of 5000 RPM
Parameter	239	SPNDL ENC STEPS/REV This parameter sets the number of encoder steps per revolution of the spindle encoder.
Parameter	240	C AXIS MAX TRAVEL This parameter sets the C-axis maximum travel in the positive direction.
Parameter	241	U AXIS MAX TRAVEL This parameter sets the U-axis maximum travel in the positive direction.
Parameter	242	V AXIS MAX TRAVEL This parameter sets the V-axis maximum travel in the positive direction.
Parameter	243	W AXIS MAX TRAVEL This parameter sets the W-axis maximum travel in the positive direction.

Parameter	244	C AXIS MIN TRAVEL
i aranneter	444	

This parameter sets the C-axis minimum travel in the negative direction.

Parameter 245 U AXIS MIN TRAVEL

This parameter sets the U-axis minimum travel in the negative direction.

Parameter 246 V AXIS MIN TRAVEL

This parameter sets the V-axis minimum travel in the negative direction.

Parameter 247 W AXIS MIN TRAVEL

This parameter sets the W-axis minimum travel in the negative direction.

CONVEYOR TIMEOUT Parameter 255

The amount of time (in minutes) the conveyor will operate without any machine motion or keyboard action. After this time, the conveyor will automatically shut

off.

PALLET LOCK INPUT Parameter 256

Used in horizontal mills only.

SPINDL ORIENT OFSET 257 Parameter

If the machine is equipped with a spindle vector drive (as set in bit 7 of Parameter 278), this bit sets the spindle orientation offset. The offset is the number of encoder steps between the Z pulse and the correct spindle orient-

ation position.

LS PER INCH Parameter 258

The number of steps on the linear scale per inch of travel.

259 LS PER REV Parameter

The number of steps between Z pulses on the linear scale.

Parameter 266 X SWITCHES

Parameter 266 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

X LIN SCALE EN Used to enable linear scales for the X axis. X INVRT LN SCL Used to invert the X-axis linear scale. X DSBL LS ZTST Used to disable the linear scale Z test.

X ZERO AXIS TC Used to return axis to zero prior to tool change.

X 2ND HOME BTN Used to move axis to coordinate specified in Work Ofset G129 Used to negate the direction of thermal compensation

X NEG COMP DIR X DELAY AXIS 0 Used with an APL to ensure X axis is zeroed before A axis of APL

Y SWITCHES 267

Parameter

Parameter 267 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

Y LIN SCALE EN Used to enable linear scales for the Y axis. Y INVRT LN SCL Used to invert the Y-axis linear scale. Y DSBL LS ZTST Used to disable the linear scale Z test.

Y ZERO AXIS TC Used to return axis to zero prior to tool change.

Y 2ND HOME BTN Used to move axis to coordinate specified in Work Ofset G129
Y NEG COMP DIR Used to negate the direction of thermal compensation

Y DELAY AXIS 0 Used with an APL to ensure Y axis is zeroed before A axis of APL

Parameter 268 Z SWITCHES

Parameter 268 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

Z LIN SCALE EN Used to enable linear scales for the Z axis.
Z INVRT LN SCL Used to invert the Z-axis linear scale.
Z DSBL LS ZTST Used to disable the linear scale Z test.

Z ZERO AXIS TC Used to return axis to zero prior to tool change.

Z 2ND HOME BTN Used to move axis to coordinate specified in Work Offset G129

Z NEG COMP DIR Used to negate the direction of thermal compensation

Z DELAY AXIS 0 Used with an APL to ensure Z axis is zeroed before A axis of APL

Parameter 269 A SWITCHES

Parameter 269 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

A LIN SCALE EN

A INVRT LN SCL

A DSBL LS ZTST

Used to enable linear scales for the A axis.

Used to invert the A-axis linear scale.

Used to disable the linear scale Z test.

A ZERO AXIS TC Used to return axis to zero prior to tool change.

A 2ND HOME BTN Used to move axis to coordinate specified in Work OPffset G129
A DELAY AXIS 0 Used with an APL to ensure A axis is zeroed before A axis of APL

Parameter 270 B SWITCHES

Parameter 269 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

B LIN SCALE EN Used to enable linear scales for the B axis.
B INVRT LN SCL Used to invert the B-axis linear scale.
B DSBL LS ZTST Used to disable the linear scale Z test.

B ZERO AXIS TC Used to return axis to zero prior to tool change.

B 2ND HOME BTN Used to move axis to coordinate specified in Work Offset G129
B DELAY AXIS 0 Used with an APL to ensure B axis is zeroed before A axis of APL

Parameter 271 C SWITCHES

Parameter 271 is a collection of single-bit flags used to turn servo related functions on and off. This parameter is not used when machine is equipped with a Haas vector drive. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

C LIN SCALE EN Used to enable linear scales for the C axis.
C INVRT LN SCL Used to invert the C-axis linear scale.
C DSBL LS ZTST Used to disable the linear scale Z test.

C ZERO AXIS TC Used to return axis to zero prior to tool change.

C 2ND HOME BTN Used to move axis to coordinate specified in Work Offset G129 C DELAY AXIS 0 Used with an APL to ensure C axis is zeroed before A axis of APL

Parameter 272 X THERM COMP T. CONST

This parameter is the thermal compensation time constant, and is the time constant governing the rate of cool down of the screw.

Parameter 273 Y THERM COMP T. CONST

This parameter is the thermal compensation time constant, and is the time

constant governing the rate of cool down of the screw.

Parameter 274 Z THERM COMP T. CONST

This parameter is the thermal compensation time constant, and is the time

constant governing the rate of cool down of the screw.

Parameter 278 COMMON SWITCH 3

Parameter 278 is a collection of general purpose single bit flags used to turn some functions on and off. This bit will cause the machine to use discrete outputs 21 and 26 to command the shuttle to move in and out. On mills with the Air Driven Shuttle it must be set to 1. On all other mills it must be set to 0. The left and right cursor arrows are used to select the function being changed. All

values are 0 or 1 only. The function names are:

INVERT G.B. This bit allows an alternate gearbox configuration. It inverts the sense of the

gearbox inputs. Used for 50 taper option.

DPR SERIAL Causes the main serial inputs/outputs to go through the floppy video board.

CK PALLET IN This bit is used on horizontal mills only.

CK HIDN VAR This bit is used on horizontal mills only.

DISPLAY ACT When set to 1, displays the actual spindle speed on the Current Commands

display page.

TSC PRG ENBL Enables purge output on TSC option.

RESERVED Reserved for later use.

SPND DRV LCK This bit must be set to 1 if machine is equipped with a non-Haas vector spindle

drive. This bit will must be set to 1 if the machine has a 50 taper

spindle or a non-Haas vector drive.

RESERVED Reserved for later use.

CNCR SPINDLE (Concurrent Spindle) When set to 1, the spindle will be commanded to start

concurrently with other commands in the same block. In the following example,

with this bit set to 1, the spindle will start at the same time as the feed:

G1 X-1. F1. S7500 M3;

RESERVED Reserved for later use.

HAAS VECT DR (Haas Vector Drive) This bit must be set to 1 if machine is equipped with a HAAS

vector spindle drive. When set to 1, voltage to the Haas vector drive is

displayed in the diagnostics display as DC BUSS.

UP ENCL TEMP	(Microprocessor Enclosure Temperature) When set to 1, the enclosure temperature will be displayed on INPUTS2 screen of the diagnostics display.
HAAS RJH	(Haas Remote Jog Handle) This bit must be set to 1 if the machine is equipped with a Haas 5-Axis Remote Jog Handle.
SPIN TEMP NC AIR DRV SHTL	(Spindle Temperature Sensor Normally Closed) This bit specifies the type (normally open or normally closed) of the spindle temperature sensor. This bit should be set to 1 for machines with a Haas vector drive, and 0 for machines that do not have a vector drive. This bit will cause the machine to use discrete outputs 21 and 26 to command
AIII DIIV SIIIL	the shuttle to move in and out. On mills with the Air Driven Shuttle it must be set to 1. On all other mills it must be set to 0.
GIMBAL SPNDL	This bit will cause the machine to check that the Z,A and B axes are at zero before a tool change is started. If one is not , alarm 150 will be generated. On mills with the gimbaled Spindle it must be set to 1. On all other mills it must be set to 0.
NO MFIN CKPU	When this bit is set, it will prevent checking of MFIN at power-up. It should be set for 1 for all machines that have the new Haas Automatic Pallet Changer attached, and 0 for all other machines.
D:Y SWITCH ENABLE	This bit enables the switching of spindle motor windings, provided the hardware is installed, and the proper parameters are set. If this switch is set, but bit 19 is not, then the winding switching will only be done when the spindle is at rest, depending on the target speed of the spindle.
D:Y SW ON FLY	This bit enables switching on the fly, as the spindle motor is accelerating or decelerating through the switch point. If bit 18 is not set, this switch will be ignored.
5 AX TOFS -X	This bit is used with the G143 (modal 5 axes tool length compensation) on machines with a Gimbaled Spindle. If it is set to 1, this means that when the corresponding rotary axes is moved, the sign of the X Position must be inverted. Normally, this bit should be set to 0.
5 AX TOFS -Y	This bit is used with the G143 (modal 5 axes tool length compensation) on machines with a Gimbaled Spindle. If it is set to 1, this means that when the corresponding rotary axes is moved, the sign of the Y Position must be inverted. Normally, this bit should be set to 0.
5 AX A MOV B	This bit is used with the G143 (modal 5 axes tool length compensation) on machines with a Gimbaled Spindle. The B axes normally moves the A axes, but if this is not true, this bit can be set to change which is the inner axes. Normally, this bit should be set to 0.
SAFETY INVERT	This bit supports the CE door interlock that locks when power is turned off. For machines that have the regular door lock that locks when power is applied, this bit must be set to 0. For machines that have the inverted door lock, this bit must be set to 1.

Parameter 279 X MAX 3rd DERIV

This parameter supports S-curve. It is initialized to 25000000 and can be altered as needed. In order to ensure the desired effect, the minimum value that the control will use is:

11700* ACCELERATION / ACC / DEC T CONST

If the parameter is set to a lower value, the control will instead use the value computed using the above formula.

Parameter 280 Y MAX 3rd DERIV

See parameter 279 for description

Parameter 281 Z MAX 3rd DERIV

See parameter 279 for description

Parameter 282 A MAX 3rd DERIV

See parameter 279 for description

Parameter 283 B MAX 3rd DERIV

See parameter 279 for description

Parameter 284 C MAX 3rd DERIV

See parameter 279 for description

Parameter 294 MIN BUSS VOLTAGE

This parameter specifies the minimum Haas Vector Drive buss voltage. When a Haas Vector Drive is installed, it should be set to 200 volts. Otherwise, it should be set to zero. Alarm 160 will be generated if the voltage falls below this value.

Parameter 295 SHTL SETTLE TIME

This is for the air driven shuttle (used on the VR series mills). This parameter allows settling time for the shuttle after it has moved toward the spindle and before a tool change is performed. It should be set to approximately half a second (500) on all mills with the Air Driven Shuttle. This may very. All other mills can be set to 0 as they are unaffected by it.

Parameter 296 MAX OVER VOLT TIME

Specifies the amount of time (in 50ths of a second) that an overvoltage condition (alarm 119 OVER VOLTAGE) will be tolerated before the automatic shut down process is started.

Parameter 298 MAX FEED (DEG/MIN)

This parameter specifies the maximum rotary feed rate in degrees per minute. Any attempt at cutting faster than this will result in "LIM" being displayed next to the FEED message on the Program Command Check screen.

On mills with a Gimbaled Spindle, this parameter must be set to 200. For all other mills, this bit should be set to 99999.

Parameter 297 MAX OVERHEAT TIME

Specifies the amount of time (in 50ths of a second) that an overheat condition (alarm 122 REGEN OVERHEAT) will be tolerated before the automatic shut down process is started.

Parameter 299 AUTOFEED-STEP-UP

This parameter works with the AUTOFEED feature. It specifies the feed rate step-

up percentage per second and should initially be set to 10.

Parameter 300 AUTOFEED STEP-DOWN

This parameter works with the AUTOFEED feature. It specifies the feed rate step-

down percentage per second and should initially be set to 20.

Parameter 301 AUTOFEED-MIN-LIMIT

This parameter works with the AUTOFEED feature. It specifies the minimum

allowable feed rate override percentage that the AUTOFEED feature can use and

should initially be set to 1.

LEAD SCREW COMPENSATION

Separate lead screw compensation is provided for each of the \mathbf{X} , \mathbf{Y} , and \mathbf{Z} axes. The operator-entered compensation values are spaced at 0.5 inch intervals within the machine coordinate system. The compensation values are entered in inches with a resolution of 0.0001 inch. The operator entered values are used to interpolate into a table of 256 entries. The spacing between two entries in the table of 256 is defined by Parameter 58. The entered values are limited to +/-127 encoder steps; so the limit in inches is dependent on Parameters 5, 19, and 33.

Note that the first entry corresponds to machine position zero and subsequent entries are for increasingly negative positions in the machine coordinate system. The user should not ever need to adjust the lead screw compensation tables.

ELECTRONIC THERMAL COMPENSATION

When ballscrews rotate they generate heat. Heat causes the ballscrews to expand. In constant duty cycles as in mold making the resultant ball screw growth can lead to cutting errors on the next morning start up. Haas' new ETC algorithm can accurately model this heating and cooling effect and electronically expand and contract the screw to give near glass scale accuracy and consistency.

This compensation is based on a model of the lead screw which calculates heating based on the distance traveled and the torque applied to the motor. This compensation does not correct for thermal growth due to changes in ambient temperature or due to part expansion.

Electronic thermal compensation works by estimating the heating of the screw based on the total amount of travel over its length and including the amount of torque applied to the screw. This heat is then turned into a thermal coefficient of expansion and the position of the axis is multiplied by the coefficient to get a correction amount.

The compensation time constant is on the order of 20 to 50 minutes to lose half of the heat in the screw. If the machine is turned off when there is some compensation applied (due to motion and heating of screw), when the machine is turned back on, the compensation will be adjusted by the clock indicated elapsed time. Thus a real time clock is required for this compensation to work if the machine is turned off for less than 2 hours.

7. MAINTENANCE SCHEDULE

The following is a list of required regular maintenance for the HAAS VF-Series Vertical Machining Centers. Listed are the frequency of service, capacities, and type of fluids required. These required specifications must be followed in order to keep your machine in good working order and protect your warranty.

INTERVAL	MAINTENANCE PERFORMED
DAILY	 ✓ Check coolant level every eight hour shift (especially during heavy TSC usage). ✓ Check way lube lubrication tank level. ✓ Clean chips from way covers and bottom pan. ✓ Clean chips from tool changer. ✓ Wipe spindle taper with a clean cloth rag and apply light oil.
WEEKLY	 ✓ Check Through the Spindle Coolant (TSC) filters. Clean or replace element if needed. ✓ Check automatic dump air line's water trap for proper operation. ✓ On machines with the TSC option, clean the chip basket on the coolant tank. Remove the tank cover and remove any sediment inside the tank. Be careful to disconnect the coolant pump from the controller and POWER OFF the control before working on the coolant tank. Do this MONTHLY for machines without the TSC option. ✓ Check air gauge/regulator for 85 psi. ✓ For machines with the TSC option, place a dab of grease on the V-flange of tools. Do this MONTHLY for machines without the TSC option. ✓ Check air filter at top of spindle motor. ✓ Clean exterior surfaces with mild cleaner. DO NOT use solvents. ✓ Check the hydraulic counterbalance pressure according to the machine's specifications.
MONTHLY	 ✓ Check oil level in gear box. For 40 taper spindles: Remove inspection cover beneath spindle head. Add oil slowly from top until oil begins dripping from overflow tube at bottom of sump tank. For 50 taper spindles: Check oil level in sightglass. Add from side of gearbox if necessary. ✓ Inspect way covers for proper operation and lubricate with light oil, if necessary. ✓ Dump the oil drain bucket. ✓ Place a dab of grease on the outside edge of the guide rails of the tool changer and run through all tools.
SIX MONTHS	 ✓ Replace coolant and thoroughly clean the coolant tank. ✓ Check all hoses and lubrication lines for cracking.
ANNUALLY	 ✓ Replace the gearbox oil. Drain the oil from the bottom of the gearbox. Remove inspection cover beneath spindle head. Add oil slowly from top until oil begins dripping from overflow tube at bottom of sump tank. For 50 taper spindles, add oil from the side of the transmission. ✓ Check oil filter and clean out residue at bottom of filter. ✓ Replace air filter on control box every (2) years.

LUBRICATION CHART

SYSTEM:	WAY LUBE AND PNEUMATICS	TRANSMISSION	COOLANT TANK
LOCATION	Under the control panel at the rear of the machine	Above the spindle head	Rear of machine
DESCRIPTION	Piston pump with 30-minute cycle time. Pump is only on when spindle is turning or when axis is moving.		
LUBRICATES	Linear guides and ball nuts	Transmission only	
QUANTITY	1.5 QT. Tank	40 taper 2-QT 50 taper 36 OZ.	40 Gallons 80 Gallons (VF 6 -10)
LUBRICANT	Mobil Vactra #2	Mobil DTE 25	Water soluble, synthetic

TSC MAINTENANCE

- Check dirt indicator on 100 micron filter with TSC system running and no tool in the spindle. Change element when the indicator reaches the red zone.
- Clean pump intake filter when indicator is in red zone. Reset indicator with button. All intake filters can be cleaned with a wire brush.
- On the High Pressure System and old 40 taper system, after changing or cleaning filter elements, run TSC system with no tool in spindle for at least one minute to prime system. On old 50 taper TSC system, close the P-cool and lock line shutoff valves and run the normal coolant pump to prime the TSC system.

Figure 1. TSC coolant pump assembly.

Figure 2. Cleaning the intake filter.

CHECKING DRAWBAR HEIGHT

New TSC systems have carbide tips and carbide tipped drawbars. The coolant tip should last the life of the machine. On old TSC systems that have a bronze coolant tip the drawbar height must be checked every 6 months or 1000 hours of TSC system use. This is done to check for wear on the Coolant Tip.

CAUTION! Failure to check coolant tip wear regularly will result in tool changer damage.

Tools Required

- ✓ Machined aluminum block (2" x 4" x 4")
- ✓ Tool holder (without a tool)
- 1. Place a sheet of paper under the spindle for table protection, then place a machined block of aluminum (approximately $2" \times 4" \times 4"$) on the paper (Figure 3).
- 2. POWER ON the VMC. Insert a tool holder WITHOUT ANY TYPE OF CUTTER into the spindle taper.
- 3. Go to the HANDLE JOG mode. Choose Z-axis and set jog increments to .01.
- 4. Jog Z-axis in the negative (-) direction until the tool holder is approximately .03 from the block. At this point, stop jogging the spindle and push the TOOL RELEASE button. You will notice that the tool holder comes out of the taper.

Figure 3. Placement of aluminum block under spindle.

Figure 4. Coolant Tip (TSC machines only).

5. The clearance from the tool holder to the block should be zero (0). To accomplish this, set the jog increments to .001 and jog in the negative (-) Z direction a few increments of the hand wheel at a time. Between these moves, push the tool release button and feel for movement by placing your finger between the tool holder and the spindle. Do this until no movement is felt. You are now at zero (0).

CAUTION! Do not jog too far in the negative (-) direction or it will cause an overcurrent in the Z-axis

- 6. Press MDI and turn hand wheel to zero (0). Press HANDLE JOG button. Jog the Z-axis in the positive (+) direction 0.100".
- 7. Press and hold the TOOL RELEASE button, grasp the block and try to move it. The block should be tight at .100 and loose at .110.
- > If block moves at .100, jog the Z-axis in the negative (-) direction one increment at a time. Press the TOOL RELEASE button and check for movement between increments until block is tight.
- > If the block is tight at 0.070 or less, the Coolant Tip (Figure 4) must be replaced. Replace coolant tip and seal housing at the same time (TSC Service Kit 93-9000A).

8. PCB'S, CABLE LOCATIONS AND BOARD DIAGRAMS

MICRO PROCESSOR PCB - P/N 32-3091 CABLE CONNECTIONS

PROC. PLUG #	CABLE #	SIGNAL NAME	⇒ то ⇒	LOCATION	PLUG #
ADDRESS		ADDRESS BUSS		VIDEO	
& DATA		DATA BUSS		MOTIF PCB	
P3	860	LOW VOLTAGE		POWER SUPPLY PCB	
P6	N/A	EXTERNAL BATTERY		(EXT. BATTERY)	
PORT 1	850	SERIAL PORT #1		SERIAL PORT #1	
PORT 2	850A	SERIAL PORT #2		SERIAL PORT #2	

BRUSHLESS SERVO AMPLIFIER - P/N 32-5550B CABLE CONNECTIONS

MOCON PLUG #	CABLE #	SIGNAL NAME	⇔ TO ⇔	LOCATION	PLUG #
P TB A, B, C P TB -HV +HV	570 610	LOW VOLTAGE MOTOR DRIVE X DRIVE SIGNAL 320VDC		L. V. POWER SUPPLY X SERVO MOTOR MOCON PCB SPINDLE DRIVE	 P2
Y AXIS AMP					
P TB A, B, C P TB -HV +HV	580 ————————————————————————————————————	LOW VOLTAGE MOTOR DRIVE Y DRIVE SIGNAL 320VDC		L. V. POWER SUPPLY Y SERVO MOTOR MOCON PCB SPINDLE DRIVE	P3
Z AXIS AMP					
P TB A, B, C P TB -HV +HV	590 630	LOW VOLTAGE MOTOR DRIVE Z DRIVE SIGNAL 320VDC		L. V. POWER SUPPLY Z SERVO MOTOR MOCON PCB SPINDLE DRIVE	P4
A AXIS AMP					
P TB A, B, C P TB -HV +HV	640	LOW VOLTAGE MOTOR DRIVE A DRIVE SIGNAL 320VDC		L. V. POWER SUPPLY A SERVO MOTOR MOCON PCB SPINDLE DRIVE	P5

POWER PCB 32-5010 CABLE CONNECTIONS

PLUG #	CABLE #	SIGNAL NAME	⇒ TO ⇒	LOCATION	PLUG #
P1		190-260VAC INPU	Г	CB1	
P3		K1 COIL	•	K1 CONTACTOR	
P4	170	AUTO OFF		I/O PCB	P8
P5	PRI-SEC	PRI-SEC/T5		T5	
P6	930	230VAC/COOLANT	PLIMP	I/O PCB	P6
P7	910	115VAC CB/SOLE		I/O PCB	P28
P8	90	115VAC/T1	TOID	I/O PCB	P36
P9	860	LOW VOLTAGE		POWER	
P10	860	LOW VOLTAGE		POWER	
P11	860	LOW VOLTAGE		POWER	
P12	860	LOW VOLTAGE		POWER	
P13	860	LOW VOLTAGE		POWER	
P14	800A				
P15	70	230VAC/K1 CONTA	ACTORS	K1 CONTACTOR	
P17	860A	I/O +12VDC	1010110	POWER	
P19	290	230VAC/T4		T4	
P21	PORT 1&2	-12VDC PORT 1 &	2	PROCESSOR PCB	Р3
P22		-12VDC	_		
P24	SPARE	SPARE		SPARE	N/A
P26	860	LOW VOLTAGE		POWER	
P27	860	LOW VOLTAGE		POWER	
P30	800				
P31	860A	+12VDC		POWER	
TB1		115VAC IN		T1 - SECONDARY	
TB2		115VAC OUT		TI GEOGRAPIAN	
POWER ON	N/OFF	740 POWER ON/O	FF	ON/OFF SWITCH	

I/O PCB - P/N 32-3080 CABLE CONNECTIONS

1 /O DI 110 #	CARLE #	⇒ то ⇒	LOCATION	PLUG #
I/O PLUG #	CABLE #	□/ 10 □/		
P1	510		MOCON PCB	P11
P2	520		MOCON PCB	P12
P3	540		MOCON PCB	P14
P4	550		MOCON PCB	P10
P5	110		SERVO POWER ON	
P6	930		POWER PCB	P6
P7	940		COOL PUMP	
P8	170		POWER PCB	P4
P9	710		SPINDLE DRIVE	
P10	300		SP.FAN/GEAR BOX	
P11			SPIN LOCK I/F	
P12	880A		SPINDLE HEAD	
P13	820		TOOL CHANGER	
P14	900		TSC PUMP (LOW TSC)	
P15	890		SPINDLE HEAD	
P16	770		E-STOP SWITCH	
P17	960		AIR/OIL (LOW OIL)	
P18	970		NOT USED	N/A
P19	950		AIR/OIL (LOW)	
P20	830		REGEN RESISTORS (OVERH)	
P21	780		SPINDLE DRIVE	
P22	100		(EXTERNAL) M-FIN	
P23	190		SHOT PIN	
P24	790		SPARE 2	N/A
P25	240		SPARE 3	N/A
P26	M21-24		(EXTERNAL)	
P27	1040		DOOR LOCK	
P28	910		POWER PCB	P7
P29	390		(EXTERNAL)	
P30	810A		SHUTTLE MOTOR	
P31	160		CHIP CONVEYOR	
P33	90		T1	
P34	90A		CRT	
P35	90B		FANS (HEAT EXCHANGE)	
P36	90C		POWER PCB	P8
P37	870		115 VAC SPARE	
P38	1050		DOOR SWITCH	
P39	810		TURRET MOTOR	
P40	770A		HYD PRESSURE TANK	
P42	300		LUBE OIL PUMP	
P43	1060		NOT USED	N/A
P44	319		5TH BRAKE	
P45			HTC	
P46	140		CHIP CONVEYOR	
P47	1070		(EXTERNAL)	
P48			SPARE 1	
P49			SPARE 2	
P50	200		COOLANT TANK	
P51	530		MOCON PCB	P13
P52			SPARE 1	
P53	180		SPIGOT SENSE	
P54	350		SERVO BRAKE (TSC)	
P55	280		RED/GREEN LTS	
P56	940A		TSC PUMP COOL	
P57	910D		WORK LIGHT	
P58	SPARE		115 VAC SPARE	
P59	OI / MIL		GB /IF	
P60	930A		TSC 230 IN	
P61	770B		E-STOP C	
LOT	I I UD		L-STUP U	

SERIAL KEYBOARD INTERFACE PCB WITH HANDLE JOG P/N 32-4030 CABLE CONNECTIONS

PLUG#	CABLE#	⇔ TO ⇔	LOCATION	PLUG#
P1	700B		PROCESSOR	850
P2			KEYPAD	
P3	700A		CYCLE START/	
			HOLD SWITCHES	
P4	730		SP LOAD METER	
P5			SPEAKER	
P6			AUX FPANEL	
J1			JOG HANDLE	
J2			REMOTE JOG HANDLE	
J3	750		MOCON	P18
J5			(MIKRON ONLY)	
J7			EXTERNAL KEYBOARD	
J12	860C		FT. PANEL FAN	

^{*} See "Keyboard Diagnostic" section of this manual for Troubleshooting information.

VIDEO & KEYBOARD PCB W/ FLOPPY DRIVE P/N 32-3201A CABLE CONNECTIONS

VIDEO PLUG #	CABLE #	SIGNAL NAME	\Rightarrow TO \Rightarrow	LOCATION	PLUG #
P1	860	LOW VOLTAGE		POWER SUPPLY PCB	
J3*	700	KEYBOARD INFO.		KEYBOARD INT.	
J4		ADDRESS BUSS		MICRO PROC. PCB	
J5		DATA BUSS		MOTIF PCB	
J10		FLOPPY DR. POW	ER	FLOPPY DRIVE	
J11		SPARE		N/A	N/A
J12		FLOPPY DR. SIGN	AL	FLOPPY DRIVE	
P13	760	VIDEO SIGNAL		CRT	
J9		RS422 B		N/A	N/A
J13	850	SERIAL DATA		N/A	J1

^{*} Not used with Serial Keyboard Interface

VIDEO & KEYBOARD PCB - P/N 32-3200 **CABLE CONNECTIONS**

VIDEO P	LUG # CAI	BLE # SIGNAL N	NAME	LOCATION	PLUG #
ADDRES	S & —	— ADDRESS	BUSS	MICRO PROC. PCE	
DATA	-	— DATA BUS	SS	MOTIF PCB	·
P1	86	60 LOW VOL	TAGE	POWER SUPPLY P	CB ——
P13	76	SO VIDEO SI	GNAL	CRT	
P4	70	OO KEYBOAF	D INFO	KEYBOARD INT	

MOCON PCB - P/N 32-4023 **CABLE CONNECTIONS**

P1 —— DATA BUSS VIDEO PCB	
MICRO PROC. PCB	
P2 610 X DRIVE SIGNAL X SERVO DRIVE AMP.	Р
P3 620 Y DRIVE SIGNAL Y SERVO DRIVE AMP.	Р
P4 630 Z DRIVE SIGNAL Z SERVO DRIVE AMP.	Р
P5 640 A DRIVE SIGNAL A SERVO DRIVE AMP.	Р
P32 640B B DRIVE SIGNAL B SERVO DRIVE AMP.	Р
P6 660 X ENCODER INPUT X ENCODER	
P7 670 Y ENCODER INPUT Y ENCODER	
P8 680 Z ENCODER INPUT Z ENCODER	
P9 690 A ENCODER INPUT A ENCODER	
P30 690B B ENCODER INPUT B ENCODER	
P10 550 MOTIF INPUTS/	
I/O OUTPUTS I/O PCB	P4
P11 510 I/O RELAYS 1-8 I/O PCB	P1
P12 520 I/O RELAYS 9-16 I/O PCB	P2
P13 530 I/O RELAYS 17-24 I/O PCB	P51
P14 540 I/O RELAYS 25-32 I/O PCB	P3
P15 860 LOW VOLTAGE POWER SUPPLY PCB	
P16 720 SP. LOAD METER LOAD METER	
P17 640C VCTR CR CUR. CMDS. SPINDLE DRIVE	J3
P18 750 JOG INFO JOG HANDLE	
P19 ADDRESS BUSS VIDEO PCB	
MICRO PROC. PCB	
P20 1000 SP. ENCODER OUTPUT SPINDLE ENCODER	
P21 980 VOLTAGE MONITOR N/A	N/A
P22 730B SP. DRIVE LOAD SPINDLE DRIVE	
P24 990 HOME SENSORS X, Y & Z LIMIT	
P33 640C VCTR DR CUR. CMD. SPINDLE DRIVE	

MOTIF PCB - P/N 32-4020 **CABLE CONNECTIONS**

MOTIF					
PLUG #	CABLE #	SIGNAL NAME	\Rightarrow to \Rightarrow	LOCATION	PLUG #
ADDRESS		ADDRESS BUSS		VIDEO PCB	
& DATA		DATA BUSS		MICRO PROC. PCB	
P2	610	X DRIVE SIGNAL		X SERVO DRIVE	P3
P3	620	Y DRIVE SIGNAL		Y SERVO DRIVE	Р3
P4	630	Z DRIVE SIGNAL		Z SERVO DRIVE	Р3
P5	640	A DRIVE SIGNAL		A SERVO DRIVE	P3
P6	660	X ENCODER OUTPU	Т	X ENCODER	
P7	670	Y ENCODER OUTPU	Т	Y ENCODER	
P8	680	Z ENCODER OUTPU	Т	Z ENCODER	
P9	690	A ENCODER OUTPU	Т	A ENCODER	
P10	550	MOTIF INPUTS / I/O	OUTPUTS	I/O PCB	P4
P11	510	I/O RELAYS 1-8		I/O PCB	P1
P12	520	I/O RELAYS 9-16		I/O PCB	P2
P13	530	I/O RELAYS 17-24		I/O PCB	P51
P14	540	I/O RELAYS 25-32		I/O PCB	P3
P15	860	LOW VOLTAGE		POWER SUPPLY PCB	
P16	720	SP. SPEED COMMA	ND	SPINDLE DRIVE	
P17	980	VOLTAGE MONITOR		SDIST PCB	P9
P18	750	JOG INFO.		JOG HANDLE	
P20	1000	SP. ENCODER OUTF	TU	SPINDLE ENCODER	
P21	1020	SP. TEMP		SPINDLE	
P22	730B	SP. DRIVE LOAD		SPINDLE DRIVE	
P24	990	HOME SENSORS		X, Y & Z LIMIT SW.	

SERVO DISTRIBUTION (SDIST) PCB - P/N 32-5020 CABLE CONNECTIONS

I/O					
PLUG #	CABLE #	SIGNAL NAME	\Rightarrow TO \Rightarrow	LOCATION	PLUG #
P1	570	X DRIVER LOW VO	OLTAGE	X SERVO DRIVER	P1
P2	580	Y DRIVER LOW VO	DLTAGE	Y SERVO DRIVER	P1
P3	590	Z DRIVER LOW VO	DLTAGE	Z SERVO DRIVER	P1
P4	600	A DRIVER LOW VO	DLTAGE	A SERVO DRIVER	P1
P5	860A	12VDC		POWER SUPPLY PCB	
P7	FAN	FAN VOLTAGE		FAN (SERVO)	
P8	80	160VDC		I/O PCB	P32
P9	980	VOLTAGE MONITO	R	MOTIF PCB	P17
P10	920	REGEN RESISTOR	RS	REGEN RESISTORS	
P11	110	SERVO POWER		I/O PCB	P5
P12	970	OV V		I/O PCB	P18
P13	1060	GND FAULT		I/O PCB	P43
TB1	N/A	115VAC FROM T1	-	T1	
TB2	N/A	160VDC TO AMPS	S.	SERVO DRIVERS	P8

SERVO DRIVER PCBs - P/N 32-4070 **CABLE CONNECTIONS**

I/0 PLUG #	CABLE #	SIGNAL NAME	⇔ то ⇔	LOCATION	PLUG #
X AXIS P1 P2 P3 P8	570 ————————————————————————————————————	LOW VOLTAGE MOTOR DRIVE X DRIVE SIGNAL +160VDC		SDIST PCB X SERVO MOTOR MOTIF PCB SDIST PCB	P1 ——— P2 TB2
P1 P2 P3 P8	580 ————————————————————————————————————	LOW VOLTAGE MOTOR DRIVE X DRIVE SIGNAL +160VDC		SDIST PCB Y SERVO MOTOR MOTIF PCB SDIST PCB	P2 —— P3 TB2
P1 P2 P3 P8	590 ————————————————————————————————————	LOW VOLTAGE MOTOR DRIVE X DRIVE SIGNAL +160VDC		SDIST PCB Z SERVO MOTOR MOTIF PCB SDIST PCB	P3 —— P4 TB2
P1 P2 P3 P8	640	LOW VOLTAGE MOTOR DRIVE X DRIVE SIGNAL +160VDC		SDIST PCB A SERVO MOTOR MOTIF PCB SDIST PCB	P4 ——- P5 TB2

RS-232 PORT #1 PCB - P/N 32-4090 CABLE CONNECTIONS

PLUG #	CABLE #	⇒ TO ⇒	LOCATION	PLUG #
P1 INTERNAL	850		VIDEO & KEYBOARD	J13
J1 EXTERNAL				

SPINDLE LOCK PCB - P/N 32-3095 CABLE CONNECTIONS

PLUG #	CABLE #	⇒ TO ⇒	LOCATION	PLUG #
P1	890		I/O PCB	P15
P2	520		I/O PCB	P2
P3			VECT DRV	

CABLE CONNECTIONS

PLUG #	CABLE #	\Rightarrow TO \Rightarrow	LOCATION	PLUG #
D.4	0005		10 000	D4.0
P1	880B		IO PCB	P12
P2	90		POWER PCB	P8
P3	410		GEAR BOX	
P4	350		IO PCB	P54
TB2	340		HYDRAULIC MTR	
TB3	70		MAIN TRANSFORMER	
			(VECTOR DRIVE UNIT)	

Y-DELTA SWITCH ASSEMBLY P/N 32-5850A

CABLE LOCATION DIAGRAM

9. CABLE LIST

JUNE 1998

WIRE/ Terminal Number	FUNCTION NAME:
	INCOMING POWER 195-260 VAC (353-488 VAC OPTIONAL)
L1 L2 L3	INCOMING 195-260VAC, PHASE 1, TO CB1-1 INCOMING 195-260VAC, PHASE 2, TO CB1-2 INCOMING 195-260VAC, PHASE 3, TO CB1-3
71 72 73	PROTECTED 195-260 VAC FROM MAIN CB1-4 TO K1-1 PROTECTED 195-260 VAC FROM MAIN CB1-5 TO K1-2 PROTECTED 195-260 VAC FROM MAIN CB1-6 TO K1-3
74 75 76	195-260 VAC FROM K1-4 TO XFORMER T1 195-260 VAC FROM K1-5 TO XFORMER T1 195-260 VAC FROM K1-6 TO XFORMER T1
77 78 79	230VAC PHASE 1 , FROM XFORMER T1 TO VECTOR / CHIP CONV 230VAC PHASE 2 , FROM XFORMER T1 TO VECTOR / CHIP CONV 230VAC PHASE 3 , FROM XFORMER T1 TO VECTOR / CHIP CONV
90 115 VA 91 92 93 94	AC FROM TB2 (CB2 OUTPUT) TO IOPCB P33 - (3 + SHIELD) STEPPED-DOWN 115 VAC (FROM XFRMER T1) #18 STEPPED-DOWN 115 VAC (FROM XFRMER T1) #18 STEPPED-DOWN 115 VAC (FROM XFRMER T1) #18 SHIELD DRAIN
115 VA 94 95 96	AC FROM XFORMER T1 TO TB1 (CB2 INPUT) STEPPED-DOWN 115 VAC (FROM XFORMER T1) STEPPED-DOWN 115 VAC (FROM XFORMER T1) STEPPED-DOWN 115 VAC (FROM XFORMER T1)
91A	AC TO CRT - (2 + SHIELD) LEG 1 #16 LEG 2 #16 SHIELD DRAIN
90B115 VA 91B 92B 93B	AC TO HEAT EXCHANGER - (2 + SHIELD) LEG 1 #16 LEG 2 #16 SHIELD DRAIN
90C115 VA 91C 92C 93C	AC TO CB4 - (2 + SHIELD) LEG 1 #16 LEG 2 #16 SHIELD DRAIN


```
100 M-FIN (IOASM TO SIDE OF BOX) - (2 + SHIELD)
101
          SIGNAL #20
102
          COMMON #20
          SIGNAL #20
101
          COMMON #20
102
103
          SHIELD DRAIN
140 230 VAC 3PH POWER TO CHIP CONVEYOR MOTOR (5 + SHIELD)
141
          PHASE A 230VAC
142
          PHASE B 230VAC
143
          PHASE C 230VAC
144
          STARTING WINDING 230VAC
145
          STARTING WINDING 230VAC
          SHIELD DRAIN
146
1603PH 230VAC TO CHIP CONVEYOR CONTROLLER (3 + SHIELD)
161
          PHASE A 230VAC
162
          PHASE B 230VAC
163
          PHASE C 230VAC
164
          SHIELD DRAIN
170 AUTO OFF FUNCTION - (2 + SHIELD)
171
          UNSWITCHED LEG 1 #20
172
          SWITCHED LEG 2 #20
173
          SHIELD DRAIN
180 COOLANT SPIGOT DETENT SWITCH (2 + SHIELD)
181
          SIGNAL
182
          COMMON
183
          SHIELD DRAIN
190 UNCLAMP FROM SPINDLE HEAD TO IOASM
191
          INPUT 25
192
          DIGITAL RETURN
200 COOLANT SPIGOT MOTOR (12VDC)
201
          MOTOR +
202
          MOTOR -
210
          DATA CABLE TO 3" FLOPPY DISK DRIVE (40 PINS)
220 SERVO BRAKE 115VAC - (2 + SHIELD)
221
          115VAC COMMON
222
          115VAC SWITCHED
223
          SHIELD DRAIN
2305'th AXIS BRAKE
240 SPARE INPUTS FROM IOPCB P25
250 SPARE OUTPUTS FROM IOPCB P45
260 K210 CABLING FOR EC
```

270 K111 CABLING FOR EC


```
280 RED/GREEN STATUS LIGHT WIRING (3+ SHIELD)
281
          RED LAMP 115VAC
282
          GREEN LAMP 115VAC
          COMMON 115VAC
283
284
          SHIELD DRAIN
300115VAC TO SPINDLE MOTOR FAN/OIL PUMP/OILER (2 + SHIELD)
          LEG 1 115VAC PROTECTED #18
301
          LEG 2 115VAC PROTECTED #18
302
303
          SHIELD DRAIN
350 SERVO BRAKE RELEASE 115VAC - (2 + SHIELD)
351
          LEG 1 COMMON
          LEG 2 SWITCHED
352
353
          SHIELD DRAIN
360-389
          RESERVED
390115VAC TO 4'TH AXIS BRAKE (LATHE PART DOOR) - (2 + SHIELD)
391
          LEG 1 COMMON
392
          LEG 2 SWITCHED
          SHIELD DRAIN
393
410-483
          RESERVED
490 ALL BRUSHLESS AXIS SERVO MOTOR DRIVE POWER CABLE
491
         A PHASE
492
          B PHASE
493
          C PHASE
          GROUND
494
490A
             A AXIS MOTOR POWER
              BAXIS MOTOR POWER
490B
490X
             X AXIS MOTOR POWER
490Y
             Y AXIS MOTOR POWER
490Z
             Z AXIS MOTOR POWER
500 OVERTEMP SENSOR FROM SPINDLE MOTOR - (2 + SHIELD)
501
          OVERTEMP WIRE 1 #20 (N.C.)
502
          OVERTEMP WIRE 2 #20
503
          SHIELD DRAIN
510 RELAY CARD 1 DRIVE CABLE - 16 WIRE RIBBON #24
520 RELAY CARD 2 DRIVE CABLE - 16 WIRE RIBBON #24
530 RELAY CARD 3 DRIVE CABLE - 16 WIRE RIBBON #24
540 RELAY CARD 4 DRIVE CABLE - 16 WIRE RIBBON #24
550 INPUTS CARD CABLE (MOTIF-P10) 34 WIRE RIBBON #24
610 X AXIS HAAS AMPLIFIER CABLE TO MOTOR CONTROLLER BOARD
```

(MOTOR CONTROLLER BOARD SIDE CONNECTION)

+A CHANNEL

ANALOG GROUND

610-1

610-2


```
610-3
              +B CHANNEL
610 - 4
              ANALOG GROUND
610-5
              ENABLE
              LOGIC GROUND
610-6
610-7
              FAULT
610-8
              LOGIC GROUND
              NOT USED
610-9
              SHIELD/ANALOG GROUND
610-10
620 Y AXIS HAAS AMPLIFIER CABLE TO MOTOR CONTROLLER BOARD
          (SAME AS 610-1 THRU 610-10)
630 Z AXIS HAAS AMPLIFIER CABLE TO MOTOR CONTROLLER BOARD
          (SAME AS 610-1 THRU 610-10)
640A
          A AXIS HAAS AMPLIFIER CABLE TO MOTOR CONTROLLER BOARD
          (SAME AS 610-1 THRU 610-10)
640B
          B AXIS HAAS AMPLIFIER CABLE TO MOTOR CONTROLLER BOARD
          (SAME AS 610-1 THRU 610-10)
640C
          C AXIS HAAS VECTOR CURRENT COMMAND CABLE TO MOTOR CONTROLLER BD.
          (SAME AS 610-1 THRU 610-10)
650 THREE PHASE POWER TO SPINDLE MOTOR - (3 + SHIELD)
651
          LEG 1 OF 230VAC
652
          LEG 2
653
          LEG 3
654
          SHIELD DRAIN
650A
          THREE PHASE POWER TO SPINDLE MOTOR - (3 + SHIELD)
651A
              LEG 1 OF 230VAC
              LEG 2
652A
              LEG 3
653A
654A
              SHIELD DRAIN
650B
          THREE PHASE POWER TO SPINDLE MOTOR - (3 + SHIELD)
              LEG 1 OF 230VAC
651B
              LEG 2
652B
653B
              LEG 3
654B
              SHIELD DRAIN
660 X-ENCODER CABLE (ALL #24)
660-1
              LOGIC RETURN (D GROUND)
660-2
              ENCODER A CHANNEL
660 - 3
              ENCODER B CHANNEL
660-4
              +5 VDC
660 - 5
              ENCODER Z CHANNEL (OR C)
660-6
              HOME/LIMIT SW
              OVERHEAT SWITCH
660-7
660-8
              ENCODER A*
              ENCODER B*
660-9
660-10
              ENCODER Z* (OR C*)
660-11
              X HALL A (NOT USED)
660-12
              X HALL B (NOT USED)
```

660-13

X HALL C (NOT USED)

660-14 660-15 660-16				
670 Y-AXIS	ENCODER CABLE (SAME AS 660-1 THRU 660-16)			
680 Z-AXIS	ENCODER CABLE (SAME AS 660-1 THRU 660-16)			
690 A-AXIS	ENCODER CABLE (SAME AS 660-1 THRU 660-16)			
690B	B-AXIS ENCODER CABLE (SAME AS 660-1 THRU 660-16)			
690C	C-AXIS ENCODER CABLE (SAME AS 660-1 THRU 660-16)			
700 KEYBOARD CABLE - 34 WIRE RIBBON WITH IDC (FROM VIDEO P4 TO KBIF P1)				
710 FORWA 711 712 713 714 715	ARD/REVERSE/RESET TO SPINDLE - (4 + SHIELD) (BRUSH SYSTEMS) FORWARD COMMAND (CN1-19 TO IO P9-3) REVERSE COMMAND (CN1-19 TO IO P9-3) RESET COMMAND (CN1-21 TO IO P9-2) COMMON (CN1-14 TO IO P9-1) SHIELD DRAIN			
720 ANALO 721 722 723	G SPEED COMMAND TO SPINDLE - (2 + SHIELD) (BRUSH SYSTEMS) 0 TO +10 VOLTS SPEED COMMAND (SPINDLE DRIVE CN1-1) #24 SPEED COMMAND REFERENCE (A GROUND) (CN1-17) #24 SHIELD DRAIN			
730 POWEF 731 732 723	R METER FROM SPINDLE DRIVE TO KBIF - (2 + SHIELD) (BRUSH SYSTEMS) METER + (SPINDLE DRIVE CN1-5 TO KBIF) #24 METER - (CN1-6 TO KBIF) #24 SHILD DRAIN			
730A 733 734 734	POWER METER FROM KBIF TO METER - (2 + SHIELD) METER + AFTER TRIM POT (KBIF TO METER) #24 METER - AFTER TRIM POT (KBIF TO METER) #24 METER - AFTER TRIM POT (KBIF TO METER) #24			
730B 731 732	ANALOG SIGNAL FROM SPINDLE DRIVE LOAD MONITOR(BRUSH SYSTEMS) SIGNAL 05V GROUND			
740 POWEF 741 742 743 744 745	R ON/OFF CABLE TO FRONT PANEL - (4 + SHIELD) POWER ON SWITCH LEG 1 (24 VAC) #24 POWER ON SWITCH LEG 2 #24 N.O. POWER OFF SWITCH LEG 1 (24 VAC) #24 POWER OFF SWITCH LEG 2 #24 N.C. SHIELD DRAIN			


```
750 JOG-CRANK DATA CABLE (REM JOG SIDE CONNECTION) - (4 + SHIELD) (ALL #28)
          (CABLE NUMBER 33-5750)
              LOGIC RETURN (D GROUND) OVDC
750-1
750-2
              ENCODER A CHANNEL
              ENCODER B CHANNEL
750-3
750-4
              +5 VDC
750-5
              N/C
750-6
              X-AXIS
750-7
              Y-AXIS
750-8
              N/C
750-9
              N/C
750-10
              N/C
750-11
              Z-AXIS
750-12
              A-AXIS
750-13
              X 10
750-14
              X 1
750-15
              SHIELD DRAIN
              N/C
750-16
              CYCLE START
750-2
750-4
              D GROUND
750-6
              FEED HOLD
760 MONITOR VIDEO DATA CABLE - (9 + SHIELD) (ALL #24)
          (FROM VIDEO P3 TO CRT)
770 EMERGENCY STOP INPUT CABLE - SHIELD +2
771
          SIGNAL (INPUT 8) #20
772
          RETURN (D GROUND) (65) #20
772
          RETURN (D GROUND) (65) #20
770A
          SECOND E-STOP INPUT FOR HORIZONTAL
770B
          THIRD E-STOP INPUT FOR APC (REMOTE CONTROL PANEL)
780 STATUS CABLE FROM SPINDLE DRIVE - (4 + SHIELD)
                                                    (BRUSH SYSTEMS)
781
          +12 VDC (SPINDLE DRIVE CN1-25) #24
782
          FAULT (INPUT 18 TO CN1-24) #24
          AT SPEED (INPUT 20 TO CN1-23) #24
783
784
          STOPPED (INPUT 19 TO CN1-22) #24
785
          SHIELD DRAIN
790 SPARE INPUTS FROM IOPCB P24
791
          SPARE 1
792
          SPARE 2
793
          COMMON
810 TOOL CHANGER MOTORS - (2 + SHIELD) #20
811
          TURRET MOTOR + (IO P30-2 TO P6-J) #14
812
          TURRET MOTOR - (IO P30-1 TO P6-I) #14
812
          SHIELD DRAIN
          TOOL CHANGER MOTORS - (2 + SHIELD) #20
810A
          SHUTTLE MOTOR - (IO P30-4 TO P6-A) #14
813
814
          SHUTTLE MOTOR + (IO P30-3 TO P6-B) #14
          SHIELD DRAIN
812
```



```
820 TOOL CHANGER STATUS - (7 + SHIELD)7
          LOGIC RETURN (D GROUND) (P6-F/H/L/M) #24
821
822
          GENEVA MARK (INPUT 5 TO P6-G) #24 (LATHE PART DOOR)
          TOOL #1 (INPUT 3 TO P6-E) #24
823
          SHUTTLE IN (INPUT 1 TO P6-C) #24 (LATHE TURRET CLAMPED)
824
825
          SHUTTLE OUT (INPUT 2 TO P6-D) #24 (LATHE TURRET UNCLAMPED)
          SHUTTLE IN (INPUT 1 TO P6-C) #24 (LATHE TURRET CLAMPED)
826
          SHIELD DRAIN
827
830 OVERHEAT THERMOSTAT - (2 + SHIELD)
831
          OVERHEAT SIGNAL (INPUT 14) #20
832
          OVERHEAT RETURN (D GROUND) (65) #20
833
          SHIELD DRAIN
840 CIRCUIT BREAKER FOR 160 VDC - SHIELD +2
841
          LEG 1 (TO 81) #14
842
          LEG 2 #14
          SHIELD DRAIN
843
850 SERIAL PORT #1 TO SERIAL KEYBOARD INTERFACE CABLE (16 WIRE RIBBON #24)
850A
          SERIAL PORT #2 INTERFACE CABLE (16 WIRE RIBBON #24)
860+12V/+5V/Gnd POWER CABLES - 6 WIRE (all #18)
861
          +12 VOLTS
862
          -12 VOLTS FROM LOW V SUPPLY TO 68020 PCB
863
          +5 VOLTS
864
          -5 VOLTS
          LOGIC POWER RETURN (D GROUND)
865
866
          POWER GOOD SIGNAL FROM SUPPLY
860A
          12 VOLT POWER TO IOPCB - SHIELD +2
          +12 VOLTS
861
          LOGIC POWER RETURN (D GROUND)
862
860B
          +5 POWER TO 3" FLOPPY DRIVE
860C
          +5,+12,-12 POWER TO 68030
870115VAC TO OILER - (2 + SHIELD)
871
          115VAC LEG 1 #18
872
          115VAC LEG 2 #18
873
          SHIELD DRAIN
A088
          HIGH/LOW GEAR UNCLAMP/LOCK SOLENOID POWER - SHIELD +6
881
          115 VAC SOLENOID COMMON (IO P12-5) #18
          HIGH GEAR SOLENOID (IO P12-4) #18
882
883
          LOW GEAR SOLENOID (IO P12-3) #18
          TOOL UNCLAMP SOLENOID (IO P12-2) #18
884
          SPINDLE LOCK SOLENOID (IO P12-1) #18
885
886
          PRE-CHARGE SOLENOID #18 (IO P12-7)
          SHIELD DRAIN
887
880B
          TRANSMISSION HIGH/LOW GEAR SOLENOIDS FOR LATHE
          115 VAC SOLENOID COMMON (IO P12-5) #18
881
882
          HIGH GEAR SOLENOID (IO P12-4) #18
```



```
883
          LOW GEAR SOLENOID (IO P12-3) #18
884
          SHIELD DRAIN
890 SPINDLE STATUS SWITCHES (6 + SHIELD)
          SIGNAL RETURN (D GROUND) (65) #24
891
892
          HIGH GEAR (INPUT 6) #24
893
          LOW GEAR (INPUT 7) #24
          TOOL UNCLAMPED (INPUT 15) #24
894
895
          TOOL CLAMPED (INPUT 16) #24
896
          SPINDLE LOCKED (INPUT 17) #24
897
          SHIELD DRAIN
900 LOW COOLANT STATUS - (2 + SHIELD)
          LOW COOLANT SIGNAL (INPUT 4 TO P7-C) #20
901
902
          LOW COOLANT RETURN (D GROUND) (65 TO P7-D) #20
903
          SHIELD DRAIN
910115 VAC CIRCUIT BREAKER TO SOLENOIDS - (2 + SHIELD)
911
          LEG 1 #18
          LEG 2 #18
912
913
          SHIELD DRAIN
910A
              115VAC FROM CB4 ON MAIN POWER DIST.
910B
              115VAC TO SERVO FAN
              115VAC TO DELTA/WYE COIL
910C
910D
              115VAC TO WORK LIGHT
920 REGENERATIVE LOAD RESISTOR FOR SERVO - (2 + SHIELD)
                                                          (BRUSH SYSTEMS)
          LEG 1 #18
921
922
          LEG 2 #18
923
          SHIELD DRAIN
930 FUSED 230 VAC FOR COOLANT PUMP - (2 + SHIELD)
931
          LEG 1 #14
          LEG 2 #14
932
933
          SHIELD DRAIN
940230 VAC TO COOLANT PUMP - (2 + SHIELD)
941
          LEG 1 (P7-A) #14
942
          LEG 2 (P7-F) #14
943
          SHIELD DRAIN
950 LOW AIR PRESSURE SENSOR - (3 + SHIELD)
          LOW AIR SIGNAL (INPUT 12) #20
951
952
          LOW AIR/OIL RETURN (D GROUND) (65) #20
953
          LOW OIL PRESSURE SWITCH FOR VERTICAL TRANSMISSION #20
          SHIELD DRAIN
954
950A
          LOW HYDRAULIC PRESSURE SWITCH FOR LATHE - (2 + SHIELD)
          LOW HYDRAULIC RETURN (D GROUND) (65) #20
952
          LOW HYD PRESSURE SWITCH FOR VERTICAL TRANSMISSION #20
953
          SHIELD DRAIN
954
960 LOW LUB/DOOR OPEN SENSORS - (4 + SHIELD)
          LOW LUB SIGNAL (INPUT 13) #24
961
962
          LOW LUB RETURN (D GROUND) (65) #24
```


963 964 965	DOOR OPEN SIGNAL (INPUT 9) #24 (OBSOLETE OPTION) DOOR OPEN RETURN (D GROUND) (65) #24 (OBSOLETE OPTION) SHIELD DRAIN
970 LOW V 971 972 973	OLTAGE SENSOR - (2 + SHIELD) LOW VOL SIGNAL (INPUT 11 FROM PMON P9-3) #24 LOW VOL RETURN (D GROUND) (PMON P9-4) #24 SHIELD DRAIN
980 VOLTA 981 982 983	GE MONITOR - (2 + SHIELD) VOLTAGE MONITOR 0 TO +5 (PMON P9-1 / MOTIF P17-1) #24 VOLTAGE MON RET (A GND) (PMON P9-2 / MOTIF P17-2) #24 VOLTAGE MON RET (A GND) (PMON P9-2 / MOTIF P17-2) #24
990 HOME 991 992 993 994 995	SENSORS - (4 + SHIELD) X HOME SWITCH (MOTIF P24-2 TO P5-B) #24 Y HOME SWITCH (MOTIF P24-3 TO P5-D) #24 (LATHE TAIL STOCK) Z HOME SWITCH (MOTIF P24-4 TO P5-L) #24 HOME SWITCH RETURN (MOTIF P24-1 TO P5-C) #24 SHIELD DRAIN
1000 1001 1002 1003 1004 1005 1006	SPINDLE ENCODER CABLE - (5 + SHIELD) (LATHE TAIL STOCK)(BRUSH SYSTEMS) LOGIC RETURN (D GROUND) (TO MOTIF P20-1) #24 ENCODER A CHANNEL (TO MOTIF P20-2) #24 ENCODER B CHANNEL (TO MOTIF P20-3) #24 +5 VDC (TO MOTIF P20-4) #24 ENCODER Z CHANNEL (TO MOTIF P20-5) #24 SHIELD DRAIN
1020 1021 1022 1023 1024	SPINDLE TEMPERATURE SENSOR CABLE - (3 + SHIELD) SIGNAL ANALOG RETURN +5 VOLTS TO SENSOR SHIELD GROUND
1030 1031 1032 1033	SPINDLE LOAD RESISTOR - (2 + SHIELD) REGEN LOAD RESISTOR FOR SPINDLE DRIVE (B1) #18 REGEN LOAD RESISTOR FOR SPINDLE DRIVE (B2) #18 SHIELD DRAIN
1040 1041 1042	Y160 (MIKRON DOOR LOCK OR HORIZONTAL PART READY LAMP) SWITCHED RELAY CONTACT SWITCHED RELAY CONTACT
1050 1051 1052 1053	DOOR SWITCH WIRING THRU SUPPORT ARM - (2 + SHIELD) DOOR OPEN SIGNAL (INPUT 9) #24 DOOR OPEN RETURN (D GROUND) (65) #24 SHIELD DRAIN
1060 1061 1062	GROUND FAULT DETECTION SENSE INPUT + INPUT FROM SENSE RESISTOR - INPUT FROM SENSE RESISTOR
1070 1071 1072 1073	SKIP INPUT FROM SENSOR - (2 + SHIELD) LOGIC COMMON SKIP SIGNAL SHIELD DRAIN

ELECTRICAL WIRING DIAGRAMS

ITEM DESCRIPTION	PAGE #	ITEM DESCRIPTION	PAGE #
CNC LAYOUT	А	RELAY COIL DRIVERS, IOPCB	8-11
SYSTEM BLOCK DIAGRAM	B,C	SPINDLE DRIVE UNIT	12
CABLE INTERCONNECT DIAGRAM	D,E	AXIS MOTOR & ENCODER	14,15
SERVO SYSTEM	1	CABINET CONNECTORS	16
MAIN TRANSFORMER	2,3	TOOL CHANGE MOTORS	17
CNC UNIT	4	CHIP CONVEYOR/SPIGOT MOTOR	18
115VAC CIRCUITS	5	OPERATOR PENDANT	19
INPUTS IOPCB	6,7	ELECTRICAL SYMBOLS	21

CONTROL LAYOUT DIAGRAM

6/98 HAAS AUTOMATION VF SERIES PAGE A

96-8100 -

- 283

ELECTRICAL SYMBOLS

6/98 HAAS AUTOMATION VF SERIES PAGE 21

ASSEMBLY DRAWINGS

__*-|||*||45^{_}__ **— 289**

70 001	7 A TAAL		
30 - 001	5 // 1 / 1 / 1 / 1	RFLFASE	

ITEM	QTY,	PART NO.	DESCRIPTION	ITEM	QTY.	PART NO.	DESCRIPTION
1.	4 EA.	20-0013A	SPACER, FORK, SPINDLE	19.	8 EA.	45-0017	WASHER STL .625X1.239X.01
2.	4 EA.	20-0014A	SPACER, TRP	20.	12 EA.	45-0018	WASHER STL .625X1.239X.015
3.	1 EA.	20-0015	FORK, LIFT, SPINDLE	21.	4 EA.	45-0019	WASHER NYLON .625X1.25X.093
4.	1 EA.	20-0016B	SWITCH TRIP	22.	8 EA.	45-0046	WASHER, SAE, 5/8
5.	1 EA.	20-0017A	SUB PLATE, TRP 50T	23.	4 EA.	45-16390	WASHER,1/4 ID X5/8 OD SAE
6.	1 EA.	20-0018A	SHAFT, TRP 50T	24.	6 EA.	48-1662	PIN, DOWEL 1/2 X 1"
7.	2 EA.	20-0019A	PISTON, TRP 50T	25.	4 EA.	49-0003	SHLDR SCR HX HD 5/8X3-1/2
8.	1 EA.	20-0020A	SPACER, LOWER, TRP 50T	26.	1 EA.	52-0003	SHAFT CLAMP, 1 1/4-7
9.	1 EA.	20-0021B	SPACER, UPPER, TRP 50T	27.	4 EA.	57-0027	O-RING 2-121 BUNA
10.	2 EA.	20-0022A	HOUSING, TRP 50T	28.	2 EA.	57-0092	O-RING 2-448 BUNA
11.	2 EA.	25-0009	SWITCH MOUNTING BRACKET	29.	3 EA.	57-0095	O-RING 2-327 VITON
12.	2 EA.	32-2013	TELEMECH. 44 IN. CABLE ASSY	30.	1 EA.	58-1627	1/8-27 PIPE PLUG
13.	8 EA.	40-0006	SHCS, 1/2-13 X 5	31.	3 EA.	58-1695	CONN, ELBOW 1/2 PUSH-1/4MP SVL
*14.	4 EA.	40-0007	SHCS, 1/2-13 X 3 1/2	32.	1 EA.	58-3050	ELBOW 1/4 NYLON TUBING
15.	4 EA.	40-1632	SHCS, 1/4-20 X 1/2"	33.	1 EA.	58-3631	REDUCER BUSH 1/2M-1/8F
16.	4 EA.	40-1800	SHCS, 8-32 X 3/4"	34.	4 EA.	59-0016	SPRING, COMPRESSION
17.	4 EA.	45-0014	WASHER STL .505X1.00X.01	35.	1 EA.	59-0049	SPRING, COMPRESSION
18.	28 EA.	45-0015	WASHER STL .505X1.00X.018	36.	4 EA.	40-16627	SHCS, 1/2-13 X 3 1/2

50 Taper Tool Release Piston

290 — 96-8100

IT	QTY	PART_NO	TITLE
1	1	20-9193	CAROUSEL SUPPORT PLATE
2	1	20-9324	CAROUSEL, 32 TOOL
3	32	22-7067F	KEY, EXTRACTOR
4	64	22-9256	BUSHING, EXTRACTOR
5	64	22-9574A	CT-EXTRACTOR
6	32	24-2010A	COMPRESSION SPRING
7	32	24-9257	SPRING, EXTRACTOR
8	32	25-7249	SLIDING PANEL
9	32	25-9328	32 TOOL SLIDING PANEL COVER
10	1	25-9333	NUMBER RING, 32 T/C
11	8	40-1500	SHCS, 5/16-18 X 1"
12	64	40-16095	SHCS, 10-32 x 1/4"
13	64	40-1697	SHCS, 1/4-20 x 3/4"
14	64	40-1704	FHCS, 10-32 x 1/4"
15	64	45-0045	WASHER, BLK HARD 1/4" x 1/8" THK.
16	32	48-0004	SPRING PIN, 3/8" x 1"

32 Tool Carousel Assembly (CT)

292 –

QTY	PART_NO	TITLE
1	20-9193	CAROUSEL SUPPORT PLATE
1	20-9324	CAROUSEL, 32 TOOL
32	22-7067F	KEY, EXTRACTOR
64	22-7166A	EXTRACTOR, BT-40 TOOL CHN
64	22-9256	BUSHING, EXTRACTOR
32	24-2010A	COMPRESSION SPRING
32	24-9257	SPRING, EXTRACTOR
32	25-7249	SLIDING PANEL
32	25-9328	32 TOOL SLIDING PANEL COVER
1	25-9333	NUMBER RING, 32 T/C
8	40-1500	SHCS, 5/16-18 X 1"
64	40-16095	SHCS, 10-32 x 1/4"
64	40-1697	SHCS, 1/4-20 x 3/4"
64	40-1704	FHCS, 10-32 x 1/4"
64	45-0045	WASHER, BLK HARD 1/4" x 1/8" THK.
32	48-0004	SPRING PIN, 3/8" x 1"
	1 1 32 64 64 32 32 32 32 32 1 8 64 64 64 64	1 20-9193 1 20-9324 32 22-7067F 64 22-7166A 64 22-9256 32 24-2010A 32 24-9257 32 25-7249 32 25-9328 1 25-9333 8 40-1500 64 40-16095 64 40-1697 64 40-1704 64 45-0045

32 Tool Carousel Assembly (BT)

Tool Changer Assembly VF-3/4

30-0008 TOOL CHANGER ASSEMBLY, 32 TOOL, VF-3,4

IT	QTY	PART NO	TITLE
1	1	20-7035G	VERTICAL AXLE
2	1	20-7038A	BEARING HOUSING
3	1	20-7475	ARM, SLIP CLUTCH
4	1	20-7476	HUB, SLIP CLUTCH
5	1	20-9008	TOOL HOLDING ARM
6	1	20-9325	32 TOOL GENEVA STAR, 2 PIN
7	1	20-9326	TOOL CARRIAGE, MACHINING
8	1	20-9330	32 T/C HOLDING PLATE
9	1	22-2065	LOCATING PIN
10	1	22-7034	SPACER, CAM FOLLOWER
11	2	22-7106	'V' TRACK, T/C
12	3	22-7163	RIDER, TRAP DOOR
13	1	22-7255A	TOOL #1 STAND OFF
14	2	22-7263	SWITCH MOUNTING BLOCK
15	1	22-7477	PRESSURE PLATE
16	1	25-7036	CAP, TOOL CHANGER
17	1	25-7162	CONNECTOR BRACKET
18	1	25-7168	DOOR OPENER BRACKET
19	1	25-9085	CONDUIT MTG PLATE
20	1	25-9329	DOOR T/C COVER
21	1	25-9331	TOOL CHANGER COVER
22	1	25-9334	SHUTTLE COVER PLATE
23	2	26-7239	SPACER RING
24	1	29-7612	CT TOOLING DECAL
25	1	30-0005	GENEVA DRIVER ASSY
26	1	30-0006	CAROUSEL ASSY, 32 TOOL
27	1	32-1800	SHUTTLE MOTOR ASSY
28	2	32-2010	24" LIMIT SWITCH
29	1	32-7011	CONDUIT ASSY, T/C
30	1	32-7611	CONDUIT ASSY, TOOL CARRIAGE
31	6	40-1500	SHCS, 5/16-18 x 1"
32	1	40-16091	BHCS, 10-32 x 1"
33	3	40-1632	SHCS, 1/4-20 x 1/2"
34 35	6 6	40-1669	BHCS, 8-32 x 3/8" SHCS, 5/16-18 x 2"
36	10	40-1676 40-1697	SHCS, 1/4-20 x 3/4"
37	4	40-1803	SHCS, 8-32 x 1 1/4"
38	12	40-1850	SHCS, 10-32 x 1 1/4 SHCS, 10-32 x 3/8"
39	4	40-1970	FHCS, 1/4-28 x 1"
40	8	40-1980	BHCS, 1/4-20 x 1/2"
41	4	40-2000	SHCS, 1/4-20 x 5/8"
42	4	43-1602	HHB, 1/2-13 x 3"
43	5	43-7000	HHB, 5/16-18 x 1 3/4"
44	1	44-1710	SSS, CUP PT 1/4-20 x 3/8"
45	i	45-0050	WASHER, 5702-313-120
46	17	45-1600	WASHER, SPLIT LOCK, 5/16 MED.
47	1	45-1725	WASHER, FLAT CUT 3/4"

IT	QTY	PART NO	TITLE
48	4	45-1740	WASHER, BLACH HARD 1/2"
49	10		WASHER, SPLIT LOCK 1/4" MED.
50	2	45-2020	WASHER, NYLON
51	1	46-1705	LOCK-NUT, ELASTIC, 3/4-10
52	1	48-0005	PIN, DOWEL 3/16 x 3/8"
53	1	48-0019	PIN, DOWEL 1/4 x 5/8"
54	1	48-0020	PIN, DOWEL 1/4 x 1"
55		48-1750	PIN, DOWEL 1/2 x 1 1/2"
56		51-0010	BEARING DEEP GROOVE
57		51-0012	BEARING LOCK NUT, BH-06
58	1	51-6000	BEARING LOCK NUT, NT-05
59		54-0010	CAM FOLLOWER, TOOL CHANGER
60		54-0020	BUSHING, GUIDE WHEEL
61		54-0030	GUIDE WHEEL
62		54-0040	STANDARD BUSHING, GD. WHEEL
63	2	55-0010	SPRING WASHER, B2500-080
64	1	57-9139	GASKET, TOOL HOLD ARM
65	1	57-9335	SHUTTLE COVER GASKET
66	6	63-1031	CABLE CLAMP, 1/4"
67	1	70-0050	PLT4S-M CABLE TIES
68	1	75-15721	MOLEX BSNG. 2 PIN MALE
69	1	78-1996	SPLIT FLEX TUBING 1/2" I.D.
70	1.75'	79-1000	WIRE CHANNEL, 1" x 2"
71	1.70'	79-1001	COVER, 1" WIRE CHANNEL

Tool Changer Assembly VF-6..10

30-0009 TOOL CHANGER ASSEMBLY, 32 TOOL, VF-6...10

IT	QTY	PART NO	TITLE
1	2	20-0031	ADJ. SWITCH BLOCK
2	1	20-7035G	VERTICAL AXLE
3	1	20-7038A	BEARING HOUSING
4	1	20-7475	ARM, SLIP CLUTCH
5	1	20-7476	HUB, SLIP CLUTCH
6	1	20-9325	32 TOOL GENEVA STAR, 2 PIN
7	1	20-9326	TOOL CARRIAGE, MACHINING
8	1	20-9330	32 T/C HOLDING PLATE
9	1	20-9834	TOOL CHANGER CLUTCH ARM
10	1	22-2065	LOCATING PIN
11	1	22-7034	SPACER, CAM FOLLOWER
12	2	22-7106	'V' TRACK, T/C
13	4	22-7163	RIDER, TRAP DOOR
14	1	22-7255A	TOOL #1 STAND OFF
15	1 1	22-7477	PRESSURE PLATE HOLDING ARM
16 17	1	22-9805 25-0014	BRACE
18	1	25-7036	CAP, TOOL CHANGER
19	1	25-7162	CONNECTOR BRACKET
20	1	25-7168	DOOR OPENER BRACKET
21	1	25-9329	DOOR T/C COVER
22	1	25-9331	TOOL CHANGER COVER
23	1	25-9334	SHUTTLE COVER PLATE
24	1	25-9912	CONDUIT MOUNTING PLATE, VF-6C
25	2	26-7239	SPACER RING
26	1	29-7612	CT TOOLING DECAL
27	1	30-0005	GENEVA DRIVER ASSY
28	1	30-0006	CAROUSEL ASSY, 32 TOOL
29	1	32-1800	SHUTTLE MOTOR ASSY
30	2	32-2013	TELMECH 44" CABLE ASS'Y
31	1	32-7012B	MOLDED ATC CABLE ASSY
32	1	32-7611	CONDUIT ASSY, TOOL CARRIAGE
33	6	40-1500	SHCS, 5/16-18 X 1"
34	1	40-16091	BHCS, 10-32 x 1"
35	8	40-1632	SHCS, 1/4-20 x 1/2"
36	6	40-1669	BHCS, 8-32 x 3/8"
37	6	40-1676	SHCS, 5/16-18 x 2"
38	10	40-1697	SHCS, 1/4-20 x 3/4"
39	8	40-1800	SHCS, 8-32 X 3/4" LG.
40	4	40-1830	HHB, 1/2-13 x 1 3/4"
41	12	40-1850	SHCS, 10-32 x 3/8"
42	4	40-1970	FHCS, 1/4-28 x 1"
43	8	40-1980	BHCS, 1/4-20 x 1/2"
44 45	13 5	40-2000	SHCS, 1/4-20 x 5/8"
45 46	5 1	43-7000 44-1710	HHB, 5/16-18 x 1 3/4" SSS, CUP PT 1/4-20 x 3/8"
46 47	9		WASHER, BLK HRD, 1/4 X 1/8 THK
4/	9	45-0045	WASHEN, DLK HND, 1/4 X 1/8 1HK

30-0009 TOOL CHANGER ASSEMBLY, 32 TOOL, VF-6...10

ITEM	PART	DESCRIPTION	QTY
96	58-3657	1/4 FEMALE 1/8 MALE ADPT	1
97	58-7357	TOP PLATE TUBE - A	1
98	58-7358A	OP PLATE TUBE - B	1
99	58-7377	AIR REG / SOLENOID TUBE	1
100	58-7635	LOW GEAR TUBE VF-3	1
101	58-7636	HIGH GEAR TUBE VF-3	1
102	58-9114B	TRANS FILL TUBE	1
103	59-0027	HOSE CLAMP 1/2 HOSE	1
104	59-0046	SOUNDCOAT SHROUD RT/LT	2
105	59-1482	NYLON FINISH PLUG, 13/16	2
106	59-2040	CABLE CLAMP, 7/16	2
107	59-4006	HOSE CRIMP, 35/64	1
108	59-7130	PROTECTIVE STRIP	0.5FT
109	60-1810	SHAFT ENCODER 2000 LINE	1
110	62-3010	SPINDLE MTR, 10 HP	1
111	63-0001	NYLON CABLE CLAMP 1/2	2
112	63-1031	CABLE CLAMP 1/4	1
113	70-0020	PLT1.5M CABLE TIES	25
114	76-2420	CRIMP RING, 12-10 10 STUD	3
115	77-8001	WIRE NUT, IDEAL #30-076	1

96-8100

Spindle Assembly VF 50 Taper

50 Taper Tool Changer Assembly

30-0015 TOOL CHANGER ASSEMBLY, 50 TAPER

ITEM	QTY	PART NO	TITLE
1	1	20-7035G	VERTICAL AXLE
2	1	20-7038A	BEARING HOUSING
3	1	20-7475	ARM, SLIP CLUTCH
4	1	20-7476	HUB, SLIP CLUTCH
5	1	20-9008	TOOL HOLDING ARM
6	i	20-9325	32 TOOL GENEVA STAR, 2 PIN
7	1	20-9326	TOOL CARRIAGE, MACHINING
8	i	20-9330	32 T/C HOLDING PLATE
9	i	22-2065	LOCATING PIN
10	1	22-7034	SPACER, CAM FOLLOWER
11	2	22-7106	'V' TRACK, T/C
12	3	22-7163	RIDER, TRAP DOOR
13	1	22-7255A	TOOL #1 STAND OFF
14	2	22-7263	SWITCH MOUNTING BLOCK
15	1	22-7477	PRESSURE PLATE
16	i	25-7036	CAP, TOOL CHANGER
17	i	25-7162	CONNECTOR BRACKET
18	i	25-7168	DOOR OPENER BRACKET
19	i	25-9085	CONDUIT MTG PLATE
20	i	25-9329	DOOR T/C COVER
21	i	25-9331	TOOL CHANGER COVER
22	i	25-9334	SHUTTLE COVER PLATE
23	2	26-7239	SPACER RING
24	1	29-7612	CT TOOLING DECAL
25	i	30-0005	GENEVA DRIVER ASSY
26	i	30-0006	CAROUSEL ASSY, 32 TOOL
27	1	32-1800	SHUTTLE MOTOR ASSY
28	2	32-2010	24" LIMIT SWITCH
29	1	32-7011	CONDUIT ASSY, T/C
30	1	32-7611	CONDUIT ASSY, TOOL CARRIAGE
31	6	40-1500	SHCS, 5/16-18 x 1"
32	1	40-16091	BHCS, 10-32 x 1"
33	3	40-1632	SHCS, 1/4-20 x 1/2"
34	6	40-1669	BHCS, 8-32 x 3/8"
35	6	40-1676	SHCS, 5/16-18 x 2"
36	10	40-1697	SHCS, 1/4-20 x 3/4"
37	4	40-1803	SHCS, 8-32 x 1 1/4"
38	12	40-1850	SHCS, 10-32 x 3/8"
39	4	40-1970	FHCS, 1/4-28 x 1"
40	8	40-1980	BHCS, 1/4-20 x 1/2"
41	4	40-2000	SHCS, 1/4-20 x 5/8"
42	4	43-1602	HHB, 1/2-13 x 3"
43	5	43-7000	HHB, 5/16-18 x 1 3/4"
44	1	44-1710	SSS, CUP PT 1/4-20 x 3/8"
45	1	45-0050	WASHER, 5702-313-120
46	17	45-1600	WASHER, SPLIT LOCK, 5/16 MED.
47	1	45-1725	WASHER, FLAT CUT 3/4"
48	4	45-1740	WASHER, BLACH HARD 1/2"

ITEM	QTY	PART NO	TITLE
49	10	45-1800	WASHER, SPLIT LOCK 1/4" MED.
50	2	45-2020	WASHER, NYLON
51	1	46-1705	LOCK-NUT, ELASTIC, 3/4-10
52	1	48-0005	PIN, DOWEL 3/16 x 3/8"
53	1	48-0019	PIN, DOWEL 1/4 x 5/8"
54	1	48-0020	PIN, DOWEL 1/4 x 1"
55	2	48-1750	PIN, DOWEL 1/2 x 1 1/2"
56	2	51-0010	BEARING DEEP GROOVE
57	1	51-0012	BEARING LOCK NUT, BH-06
58	1	51-6000	BEARING LOCK NUT, NT-05
59	1	54-0010	CAM FOLLOWER, TOOL CHANGER
60	2	54-0020	BUSHING, GUIDE WHEEL
61	4	54-0030	GUIDE WHEEL
62	2	54-0040	STANDARD BUSHING, GD. WHEEL
63	2	55-0010	SPRING WASHER, B2500-080
64	1	57-9139	GASKET, TOOL HOLD ARM
65	1	57-9335	SHUTTLE COVER GASKET
66	6	63-1031	CABLE CLAMP, 1/4"
67	1	70-0050	PLT4S-M CABLE TIES
68	1	75-15721	MOLEX BSNG. 2 PIN MALE
69	1	78-1996	SPLIT FLEX TUBING 1/2" I.D.
70	1.75'	79-1000	WIRE CHANNEL, 1" x 2"
71	1.70'	79-1001	COVER, 1" WIRE CHANNEL

50T CAROUSEL ASSEMBLY - CT

ITEM	QTY	DWG. NO.	DESCRIPTION
1	1	20-9296	50 TAPER CAROUSEL - 20 TOOL
2	40	20-9297	EXTRACTION FINGER 50 TAPER
3	20	20-9298	ALIGNMENT KEY 50 TAPER
4	40	22-9256	BUSHING, EXTRACTOR,
5	20	24-9257	SPRING, EXTRACTOR, VF-ALL
6	1	25-9349	20 TOOL NUMBER RING 50 T
7	5	40-16095	SHCS, 10-32 X 1/4
8	40	40-1631	SHCS,1/4-20 X 3/8
9	40	40-1860	SHCS, 1/4-20 X 7/8
10	40	45-0045	WSHR, BLK HRD 1/4 X 1/8 THK

50 Taper Carousel Assembly (CT)

30-0018A BALLSCREW ASS'Y 40mm

ITEM	<u>QTY</u>	PART NO.	<u>TITLE</u>
<u> 2</u> 1.	1	20-0146	SNAP LOCK RING BMPR
<u>A</u> 2.	1	20-0148	SNAP LOCK RING BMPR
 3.	1	20-0151	MOTOR MOUNT 40/50mm BS MACH.
4.	1	20-0152	BEARING HOUSING 40/50mm BS MACH
5.	1	20-9213	SPACER RING 40mm BALL SCREW
, 6.	1	30-1222	BALL SCREW SUPPORT BEARING ASSY
<u> </u>	6	40-1715	SHCS, 5/16-18 X 1 1/2"
8.	4	51-0007	BEARING, DEEP GROOVE
9.	2	51-0008	BEARING LOCKNUT TCN-06-F

BALL SCREW ASS'Y	BALL SCREW "A"	APPLICATION
30-0018A BS ASS'Y 40mm (1.57) X 71.935	24-9961B BALLSCR 40mm (1.57) X 71.935	VF-6,8 (X)
30-0053 BS ASS'Y 40mm (1.57) X 57.897	24-0003 BALLSCR 40mm (1.57) X 57.897	HL-5,6 (Z)
30-1212A BS ASS'Y 40mm (1.57) X 47.711	24-9960B BALLSCR 40mm (1.57) X 47.711	VF-6,7,8,10,11 VR-11 (Y) (Z)
30-1211A BS ASS'Y 40mm (1.57) X 90.859	24-9970B BALLSCR 40mm (1.57) X 90.859	VF-7,9 (X)
30-0303 BS ASS'Y 40mm (1.57) X 57.897	24-0003 BALLSCR 40mm (1.57) X 57.897	VF-5/50 (X)
30-0302 BS ASS'Y 40mm (1.57) X 32.696	24-0006 BALLSCR 40mm (1.57) X 32.696	VF-5/50 (Y) (Z)

 $\stackrel{\triangle}{\triangle}$ FOR 30-0303 & 30-0302 USE 40-1667 SHCS, 5/16-18 X 1 1/4 $\stackrel{\triangle}{\triangle}$ FOR 30-0053 ONLY

VF-6/8 (X-Axis) Lead Screw Assembly

30-00	37 BALL SCI	REW ASS'Y 50mm_ VF-10B,11B, VR-11B	
ITEM	PART NO	DESCRIPTION	QTY
1	20-0151	MTR MOUNT 40/50MM BS MACH	1
2	20-0152	BRNG HSNG 40/50MM BS MACH	1
3	20-9213	SPACER RING 40MM BALLSCRW	1
4	24-0002C	X-AXIS BALLSCREW VF-10	1
5	30-1222	BALL SCREW SUPP BRNG ASSY	1
6	40-1715	SHCS, 5/16-18 X 1 1/2	6
7	51-0007	BEARING DEEP GROOVE	4
8	51-0008	BEARING LOCK NUT TON-06-E	2

VF-10 Leadscrew

ITEM	QTY	PART NO.	TITLE
1 2 3	1 1 1	20-0150 20-9215 20-9218	NUT HOUSING 40/50mm BS MACH Y-AXIS BUMPER BRG END Y-AXIS BUMPER MTR END
4	1	20-9800	BASE, MACHINING
5	34	22-7458	CAM, LINEAR GUIDE
6	1	25-7267	Y-AXIS MOUNTING BRACKET
7	1	25-9203	COVER PLATE MOTOR MOUNT
8	1	30-1212A	LEAD SCREW Y-AXIS
9	1	30-7420A	BASE OIL LINE ASSEMBLY
10	1	32-5056	LIMIT SWITCH ASSEMBLY
11	5	40-0011	MSHCS M10 X 25mm
12	2	40-16413	MSHCS, M3 X 5
13	34	40-1660	SHCS, 1/2-13 X 1 1/2
14	6	40-1712	SHCS, 5/16-18 X 1 1/4
15	14	40-1715	SHCS, 5/16-18 X 1 1/2
16	6	40-1750	BHCS, 10-32 X 3/8
17	2	40-1950	SHCS, 10-32 X 3/4
18	20	45-1600	WASHER, LOCK
19		50-9010	LINEAR GUIDE, X-AXIS VF-3
20	1	57-0075	O-RING 2-021 BUNA
21	1	57-0080	O-RING 2-023 BUNA
22		58-1560	ADPT 1/8 M BSPT TO 5/16 F
23	1	58-3031	BANJO ELBOW 5/16 F X M6 M
24		59-2033	1/2" CONDUIT STRAP
25		62-0013	SERVO MOTOR YASKAWA
26	.05	99-4521	ELECTRICAL GREASE

VF-10 Base

VF-10 Column

ITEM	QTY	DWG. NO.	TITLE
1.	1	20-0150	NUT HOUSING 40/50 mm BS
2.	1	20-9216	Z-AXIS BUMPER MTR END 40MM
3.	1	20-9217	Z-AXIS BUMPER SPRT END 40MM
4.	1	20-9801	COLUMN, MACHINED
5.	1	20-9802	SPINDLE HEAD, MACHINED
6.	34	22-7458	CAM, LINEAR GUIDE
7. 8.	2 2	22-9826A 22-9927	COUNTER WEIGHT HEAD BRACKET CYL. BRKT. COUNTER BALANCE
o. 9.	1	25-7267	Y-AXIS MOUNTING BRACKET
10.	2	25-7560B	HYD. FLUID TANK MOUNT
11.	1	25-9813	WAY COVER
12.	2	25-9929	STABILIZER BRKT. HYD. CYL.
13.	1	30-1211A	BL LEADSCREW ASSEMBLY Z AXIS
14.	1	30-3250A	FLUID TANK ASSEMBLY
15.	2	30-3980A	HYD. CYLINDER ASSEMBLY
16.	1	30-7400	COLMUMN OIL LINE ASSEMBLY
17.	1	32-2050	TELEMECHANIQUE ASSEMBLY
18.	15	40-1628	SHCS, 1/4-20 X 1/4
19.	14	40-16372	SHCS, 3/8-16 X 1 1/2
20.	12	40-16391	SHCS, 3/8-16 X 1/2
21.	2	40-16413	MSHCS, M3 X 5
22. 23.	16 34	40-1655 40-1660	MSHCS, M12 X 65 SHCS, 1/2-13 X 1 1/2
23. 24.	6	40-1712	SHCS, 5/16-18 X 1 1/4
25.	2	40-1750	BHCS, 10-32 X .38
26.	24	40-2021	FHCS, 1/4-20 X 3"
27.	11	45-0045	WASHER, BLACK HARD 1/4 X 1/8 THK
28.	6	45-1600	WASHER, LOCK 5/16
29.	12	45-1665	WASHER, FLAT 3/8 I.D.
30.	14	45-1681	WASHER, SPLIT LOCK 3/8 MED.
31.	15	45-1800	WASHER, SPLIT LOCK 1/4 MED.
32.	2	46-1810	JAM NUT, HEX 3/8-24
33.	6	48-0045	PIN, PULL 3/8 X 1 1/2
34.	2	48-1699	PIN, DOWEL 5/8 X 2 1/4
35.	4	50-0001	LINEAR GUIDE
36. 37.	1 1	57-0075 57-0080	O-RING 2-021 BUNA O-RING 2-023 BUNA
37. 38.	4	58-1560	ADPT 1/8 M BSPT TO 5/16 F
39.	1	58-3031	BANJO ELBOW 5/16 F X M6 M
40.	34	59-2033	1/2" CONDUIT STRAP
41.	2	59-4002	HOSE CLAMP
42.	6	59-4016	HYD. HOSE CLAMP
43.	2	59-9829	CLEVIS COUNTER WEIGHT
44.	1	62-0013	SERVO MOTOR YASKAWA
45.	.05	99-4521	ELECTRICAL GREASE

ITEM	QTY	DWG. NO.	TITLE
1.	1	20-0150	NUT HOUSING 40/50 mm BS
2.	1	20-0153	SADDLE, VF-10 MACHINED
3.	1	20-0154	TABLE, VF-10 MACHINED
4.	2	20-0156	BUMPER, 1" 40 & 50 mm LD SCREW
5.	86	22-7458	CAM, LINEAR GUIDE
6.	1	25-7459	TRIP BRACKET, TABLE
7.	1	25-9219	LIMIT SWITCH BRACKET X- AXIS
8.		25-9220	TRIP BRACKET X-AXIS
9.	1	30-0036	X-AXIS OIL LINE ASSEMBLY
10.	1	30-0037	BL LEADSCREW ASSEMBLY X AXIS
11.	1	32-2051	LIMIT SWITCH X HOME
		40-16372	SHCS, 3/8-16 X 1 1/2
13.		40-16413	MSHCS, M3 X 5
14.		40-16455	SHCS, 10-32 X .88
15.		40-1660	SHCS, 1/2-13 X 1 1/2
		40-1712	SHCS, 5/16-18 X 1 1/4
17.		40-1750	BHCS, 10-32 X .38
18.		45-1600	WASHER, LOCK
19.		45-1681	WASHER, SPLIT LOCK
20.		48-0045	PULL PIN 3/8 X 1 1/2
21.		50-0001	LINEAR GUIDE
22.		57-0075	O-RING 2-021 BUNA
23.	1	57-0080	O-RING 2-023 BUNA
24.		58-1560	ADPT 1/8 M BSPT TO 5/16 F
25.	1	58-3031	BANJO ELBOW 5/16 F X M6 M
		59-2033	1/2" CONDUIT STRAP
27.	1	62-0013	SERVO MOTOR YASKAWA
28.	.05	99-4521	ELECTRICAL GREASE

VF-10 Saddle

96-8100 — 309

APC Assembly

1. 3 14-7068 CASTING, LEVEL PAD 2. 1 20-0046 SUPPORT, IDLER SPROCKET 3. 2 20-0048 DRIVE LEG, APC 4. 2 20-0049 DETENT, APC 5. 1 20-0050 SUPPORT, MOTOR, APC 6. 2 20-0051 GUIDE, CHAIN, APC 7. 1 20-0052 TENSIONER BLOCK 8. 2 20-0053 PALLET 9. 4 20-0054 CLAMPING RAIL 10. 1 20-0067 IDLER SPROCKET 11. 1 20-0060 JOURNAL, IDLER SPROCKET 12. 2 20-0065 FRICTION BLOCK 13. 2 20-0066 PALLET STOP, APC 14. 4 20-0071 WIPER, APC 15. 1 20-0193 BASE, MACHINED 16. 1 25-0066 SHIELD, SPLASH, LOW PROFILE 17. 3 25-0072 LEG, APC 18. 2 25-0077 PALLET, SKIRT, REAR 19. 1 25-0082 SWITCH BRACKET, CHAIN, LOW 20. 1 25-0085 SWITCH BRACKET, CHAIN, LOW 21. 2 25-0095 PALLET DRIP PAN 22. 4 25-0100 BRACKET, WIPER 23. 1 25-0101 SWITCH BRACKET, CHAIN, HIGH 24. 1 25-0102 SWITCH BRACKET, CHAIN, HIGH 25. 2 25-0105 PALLET SKIRT, FRONT 26. 1 30-0054 CHAIN ASSEMBLY, APC 27. 1 30-0055 SLIP CLUTCH ASSEMBLY 28. 1 32-1800 SHUTTLE MOTOR, 507-01-110AH 29. 8 40-0017 FHCS, 5/16-18 X 3/4" 30. 8 40-16081 BHCS, 6-32 X 5/16" 31. 1 40-1614 SHCS, 1/4-20 X 1" 33. 4 40-1636 SHCS, 3/8-16 X 1 1/4 34. 13 40-1654 SHCS, 1/4-20 X 1" 35. 4 40-1667 SHCS, 5/16-18 X 1 1/4 36. 124 40-1703 FHCS, 1/4-20 X 1" 36. 124 40-1703 FHCS, 1/4-20 X 1" 37. 8 40-1850 SHCS, 1/3-21 X 1" 38. 8 40-18081 SHCS, 1/2-13 X 1" 39. 2 40-1950 SHCS, 1/3-23 X 3/8" 39. 2 40-1950 SHCS, 1/3-23 X 3/4" 30. 32 40-1961 SHCS, 3/8-16 X 2 " 41. 4 40-1970 FHCS, 1/4-20 X 1" 42. 3 40-1866 WASHER, FLAT 1/2 LD. 44. 12 45-1666 WASHER, FLAT 1/2 LD. 45. 1 46-1625 NUT, HEX, BLACK OX, 1/4-20 46. 20 48-0012 DOWEL PIN, 12mm X 30 mm LG. 47. 32 49-16201 BHCS, 10-32 X 3/8 48. 4 51-0300 BLARING, RADIAL12 X 32 X 10MM 49. 2 51-2836 BEARING, RADIAL12 X 32 X 10MM 50. 2 59-1057 BUMPER, PALLET	ITEM	QTY.	PART NO.	TITLE
35.	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 31. 32. 33. 34. 35. 36. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	3 1 2 2 1 2 4 1 1 1 2 2 4 1 1 1 2 4 1 1 1 1	14-7068 20-0046 20-0049 20-0050 20-0051 20-0052 20-0053 20-0054 20-0066 20-0066 20-0071 20-0193 25-0066 25-0072 25-0072 25-0085 25-0100 25-0101 25-0102 25-0105 30-0054 30-0055 32-1800 40-0017 40-16081 40-1614 40-1617 40-1636	CASTING, LEVEL PAD SUPPORT, IDLER SPROCKET DRIVE LEG, APC DETENT, APC SUPPORT, MOTOR, APC GUIDE, CHAIN, APC TENSIONER BLOCK PALLET CLAMPING RAIL IDLER SPROCKET JOURNAL, IDLER SPROCKET FRICTION BLOCK PALLET STOP, APC WIPER, APC BASE, MACHINED SHIELD, SPLASH, LOW PROFILE LEG, APC PALLET, SKIRT, REAR SWITCH BRACKET, CHAIN, LOW SWITCH BRACKET, ARM #1 PALLET DRIP PAN BRACKET, WIPER SWITCH BRACKET ARM #2 SWITCH BRACKET, CHAIN, HIGH PALLET SKIRT, FRONT CHAIN ASSEMBLY, APC SLIP CLUTCH ASSEMBLY SHUTTLE MOTOR, 507-01-110AH FHCS, 5/16-18 X 3/4" BHCS, 6-32 X 5/16" SHCS, 1/4-20 X 1 1/4 FHCS, 1/4-20 X 1 1/4 FHCS, 3/8-16 X 1 1/4
29. 8	24.	1	25-0102	SWITCH BRACKET, CHAIN, HIGH
	25.	2	25-0105	PALLET SKIRT, FRONT
	26.	1	30-0054	CHAIN ASSEMBLY, APC
30. 8 40-16081 BHCS, 6-32 X 5/16" 31. 1 40-1614 SHCS, 1/4-20 X 1 1/4 32. 2 40-1617 FHCS, 1/4-20 X 1" 33. 4 40-1636 SHCS, 3/8-16 X 1 1/4 34. 13 40-1654 SHCS, 1/2-13 X 1" 35. 4 40-1667 SHCS, 5/16-18 X 1 1/4 36. 124 40-1703 FHCS, 10-32 X 1/2 37. 8 40-1850 SHCS, 10-32 X 3/8" 38. 8 40-1920 FHCS, 1/4-20 X 5/8 39. 2 40-1950 SHCS, 10-32 X 3/4 40. 32 40-1961 SHCS, 3/8-16 X 2" 41. 4 40-1970 FHCS, 1/4-28 X 1" 42. 3 40-1981 FBHCS, 1/4-20 X 1/2 43. 3 44-1700 SSS, CUP PT. 3/4-10 X 4:" 44. 12 45-1666 WASHER, FLAT 1/2 I.D. 45. 1 46-1625 NUT, HEX, BLACK 0X, 1/4-20 46. 20 48-0012 DOWEL PIN, 12mm X 30 mm LG. 47. 32 49-16201 BHCS, 10-32 X .38 48. 4 51-0300 BUSHING, DRILL .6260 I.D. 49. 2 51-2836 BEARING, RADIAL, #60052RS 50. 20 51-4000 BEARING, RADIAL12 X 32 X 10MM 51. 1 56-0085 RETAINING RING 5100-100	25.	2	25-0105	PALLET SKIRT, FRONT
	26.	1	30-0054	CHAIN ASSEMBLY, APC
	27.	1	30-0055	SLIP CLUTCH ASSEMBLY
	28.	1	32-1800	SHUTTLE MOTOR, 507-01-110AH
35.	30.	8	40-16081	BHCS, 6-32 X 5/16"
	31.	1	40-1614	SHCS, 1/4-20 X 1 1/4
	32.	2	40-1617	FHCS, 1/4-20 X 1"
	33.	4	40-1636	SHCS, 3/8-16 X 1 1/4
40. 32 40-1961 SHCS, 3/8-16 X 2" 41. 4 40-1970 FHCS, 1/4-28 X 1" 42. 3 40-1981 FBHCS, 1/4-20 X 1/2 43. 3 44-1700 SSS, CUP PT. 3/4-10 X 4:" 44. 12 45-1666 WASHER, FLAT 1/2 I.D. 45. 1 46-1625 NUT, HEX, BLACK OX, 1/4-20 46. 20 48-0012 DOWEL PIN, 12mm X 30 mm LG. 47. 32 49-16201 BHCS, 10-32 X .38 48. 4 51-0300 BUSHING, DRILL .6260 I.D. 49. 2 51-2836 BEARING, RADIAL, #60052RS 50. 20 51-4000 BEARING, RADIAL12 X 32 X 10MM 51. 1 56-0085 RETAINING RING 5100-100	35.	4	40-1667	SHCS, 5/16-18 X 1 1/4
	36.	124	40-1703	FHCS, 10-32 X 1/2
	37.	8	40-1850	SHCS, 10-32 X 3/8"
	38.	8	40-1920	FHCS, 1/4-20 X 5/8
46. 20 48-0012 DOWEL PIN, 12mm X 30 mm LG. 47. 32 49-16201 BHCS, 10-32 X .38 48. 4 51-0300 BUSHING, DRILL .6260 I.D. 49. 2 51-2836 BEARING, RADIAL, #60052RS 50. 20 51-4000 BEARING, RADIAL12 X 32 X 10MM 51. 1 56-0085 RETAINING RING 5100-100	40. 41. 42. 43. 44.	32 4 3 3	40-1961 40-1970 40-1981 44-1700 45-1666	SHCS, 3/8-16 X 2" FHCS, 1/4-28 X 1" FBHCS, 1/4-20 X 1/2 SSS, CUP PT. 3/4-10 X 4:" WASHER, FLAT 1/2 I.D.
	46.	20	48-0012	DOWEL PIN, 12mm X 30 mm LG.
	47.	32	49-16201	BHCS, 10-32 X .38
	48.	4	51-0300	BUSHING, DRILL .6260 I.D.
	49.	2	51-2836	BEARING, RADIAL, #60052RS
	50.	20	51-4000	BEARING, RADIAL12 X 32 X 10MM
	51.	1	56-0085	RETAINING RING 5100-100

- 1 30-1100 LEAD SCREW ASSEMBLY
- 2 30-7524 BASE OIL LINE ASSEMBLY
- 3 32-1600 Y AXIS MOTOR ASSEMBLY
- 4 32-2030 TELEMECHANIQUE SWITCH ASSEMBLY

- 1 30-1100 LEAD SCREW ASSEMBLY 2 30-7525 COLUMN OIL LINE ASSEMBLY 3 32-2040 TELEMECHANIQUE SWITCH ASSEMBLY

VF-1 Column

1 - 30-1100 - LEAD SCREW ASSEMBLY

2 - 30-7523 - SADDLE OIL LINE ASSEMBLY
3 - 32-1400 - X AXIS MOTOR ASSEMBLY
4 - 32-2050 - TELEMECHANIQUE SWITCH ASSEMBLY

VF-1 Saddle

30-1100A BALL SCREW ASSEMBLY 32mm

1. 2. 3. 4.	1 1	PART NO. 20-7009 20-7010A 30-1221 40-0008	TITLE BEARING HOUSING MOTOR MOUNTING BALL SCREW SUPP. BRNG ASSY
5. 6. 7.	2 1	51-2012 51-2025 51-2025	SHCS, 1/2-20 X 3/4" W/PATCH BEARING LOCKNUT BEARING, FAFNIR RADIAL #304PF PLUG

		BALL S	CREW ASS'Y			BALL SC	CREW "A"	SNAP LOCK RING BMPR "B"	APPLICATION
	30-1100A	BS ASS'Y	32mm (1.26	S) X 25.650	24-7146	BALLSCR	32mm (1.26) X 25.650	NONE	HL-5,6,VF-1,2,0 (X)
	30-0116	BS ASS'Y	32mm (1.20	6) X 33.268	24-9013	BALLSCR	32mm (1.26) X 33.268	20-0142 SNAP LOCK RING BMPR 6.0	0 HL-1,2 (Z)
	30-0117	BS ASS'Y	32mm (1.26	S) X 48.228	24-9012	BALLSCR	32mm (1.26) X 48.228	20-0143 SNAP LOCK RING BMPR 7.0	0 HL-3,4 (Z)
	30-0118	BS ASS'Y	32mm (1.26	S) X 25.650	24-0118	BALLSCR	32mm (1.26) X 25.650	20-0141 SNAP LOCK RING BMPR 4.0	0 HL-5,6 (X)
	30-1110A	BS ASS'Y	32mm (1.20	S) X 35.650	24-7147	BALLSCR	32mm (1.26) X 35.650	NONE	VF-2, OEB (X)
	30-1200A	BS ASS'Y	32mm (1.26	S) X 48.228	24-9012	BALLSCR	32mm (1.26) X 48.228	NONE	VF-3 (Y) (Z)
	30-1210A	BS ASS'Y	32mm (1.26	S) X 33.268	24-9013	BALLSCR	32mm (1.26) X 33.268	NONE H	S-1,1R,1RP,2RP,VF-3,4 (Y) (Z)
\triangle	30-1295A	BS ASS'Y	32mm (1.26	S) X 16.475	24-8765	BALLSCR	32mm (1.26) X 16.475	NONE	HL-3,4 (X)
\triangle	30-1290A	BS ASS'Y	32mm (1.26	S) X 13.525	24-9548	BALLSCR	32mm (1.26) X 13.525	NONE	HL-1,2 (X)

ADD ITEM 7 (THESE ASSEMBLIES ONLY)

VF-1 Leadscrew

30-1215 COUPLING ASSEMBLY

<u>ITEM</u>	QTY	PART No.	TITLE
1	1	20-0105A	COUPLER, SERVO BRUSHLESS
2	1	20-7615	COUPLER, SERVO DRIVE BRUSHLESS
3	1	51-2014	BEARING LOCKNUT, CL18F
4	1	51-2019	CLAMP COLLAR 1 1/4 BORE
5	1	56-0065	SNAP RING, (5100-112)
6	1	56-0076	SNAP RING 5100-125
7	1	59-2060	FLEXPAK FOR AJ05

	WHERE USED
PART NO.	DESCRIPTION
50T-10	50 TAPER OPTION VF-10
50T-6	50 TAPER OPTION VF-6
50T-7	50 TAPER OPTION VF-7
50T-8/9/11	50 TAPER OPTION VF-8/9/11
93-8015	50 T AXS MTR UPGRD W/4AXIS

30-1219 COUPLING ASSEMBLY

<u>ITEM</u>	QTY	PART No.	TITLE
1	2	20 - 7615	COUPLER, SERVO DRIVE BRUSHLESS
2	2	51 - 2014	BEARING LOCKNUT, CL18F
3	2	56-0065	SNAP RING, (5100-112)
4	1	59-2060	FLEXPAK FOR AJ05

		WHERE	USED	APPLICATION
30-0018A	BS	ASSY	Ø40mm(1.57) x 71.94	VF-6B, 8B (X)
30-0053	BS	ASSY	Ø40mm(1.57) x 57.90	HL-5, 6 (Z)
30-1211A	BS	ASSY	Ø40mm(1.57) x 90.86	VF-7B, 9B (X)
30-1212A	BS	ASSY	Ø40mm(1.57) x 47.71	VF-6B, 7B, 8B, 9B, 10B, 11B & VR-11B (Y) (Z)
30-0302	BS	ASSY	Ø40mm(1.57) x 32.70	VF-5/50 (Y) (Z)
30-0303	BS	ASSY	Ø40mm(1.57) x 57.90	VF - 5/50(X)

30-1220A COUPLING ASSEMBLY

<u>ITEM</u>	QTY	PART No.	TITLE
1	1	20-7403	COUPLING, SERVO DRIVE
2	1	20-7615	COUPLER, BRUSHLESS
3	2	51-2014	BEARING LOCKNUT, CL18F
4	2	56-0065	SNAP RING, (5100-112)
5	1	59-2060	FLEXPAK FOR AJ05

WHERE			USED	APPLICATION		
30-0116	BS	ASSY	ø32mm(1.26) x	33.27	HL-1, 2 (Z)	
30-0117	BS	ASSY	ø32mm(1.26) x	48.23	HL-3, 4 (Z)	
30-0118	BS	ASSY	ø32mm(1.26) x	25.65	HL-5, 6 (X)	
30-1110A	BS	ASSY	ø32mm(1.26) x	35.65	VF-0EB, 2B (X)	
30-1200A	BS	ASSY	ø32mm(1.26) x	48.23	VF-3B, (X) (Z)	
30-1210A	BS	ASSY	ø32mm(1.26) X	33.27	VF-3B, 4B, HL-1, 2 (Y) (Z)	
30-1270A	BS	ASSY	ø32mm(1.26) x	58.47	VF-4B(X)	
30-1290A	BS	ASSY	ø32mm(1.26) ×	: 13.53	HL-1, 2 (X)	
30-1295A	BS	ASSY	ø32mm(1.26) ×	: 16.78	HL-3, 4 (X)	
30-1100A	BS	ASSY	ø32mm(1,26) x	25.65	HL-5,6, VF-1,2,0	

30-1220P COUPLING ASSEMBLY

<u>ITEM</u>	QTY	PART No.	TITLE
1	1	20-7403	COUPLING, SERVO DRIVE
2	2	51 - 2014	BEARING LOCKNUT, CL18F
3	2	56-0065	SNAP RING, (5100-112)
4	1	59-2060	FLEXPAK FOR AJ05

	WHERE	USED	APPLICATION
30-1100E	BS ASSY	ø32mm(1.26) x 25.65	VF-E, $EXT(X)(Y)(Z)$
30-1110E	BS ASSY	ø32mm(1.26) x 35.65	VF-EXT (X)

_*-|:||*45⁻____

30-1225A LEADSCREW COUPLING ASSY

ITEM QTY PART No. TITLE

20-0105A COUPLING SERVO/BRUSHLESS

51-2019 CLAMP COLLAR 1 1/4 BORE 56-0076 SNAP RING 5100-125 59-2060 FLEXPAK FOR AJ05 2

WHERE USED				APPLICATION			
30-0037	BS ASSY	ø50mm(1.97)	X	129.42	VF-10B,	11B,	VR-11B (X)

1 - 30-1200 - LEAD SCREW ASSEMBLY 2 - 30-7420 - BASE OIL LINE ASSEMBLY 3 - 32 - 5056 - LIMIT SWITCH ASSEMBLY

VF-8 Base

1 - 30-1200 - LEAD SCREW ASSEMBLY 2 - 30-7400 - COLUMN OIL LINE ASSEMBLY

3 - 32-1780 - Z AXIS MOTOR ASSEMBLY 4 - 32-2050 - TELEMECHANIQUE SWITCH ASSEMBLY

- 1 30-1240 LEAD SCREW ASSEMBLY 2 30-7410 SADDLE OIL LINE ASSEMBLY 3 32-1406 X AXIS MOTOR ASSEMBLY 4 32-2051 TELEMECHANIQUE SWITCH ASSEMBLY

VF-8 Saddle

1 - 30-1200 - LEAD SCREW ASSEMBLY 2 - 30-7420 - BASE OIL LINE ASSEMBLY 3 - 32-1780 - Z AXIS MOTOR ASSEMBLY 4 - 32-5056 - LIMIT SWITCH ASSEMBLY

VF-6 Base

1 - 30-1200 - LEAD SCREW ASSEMBLY

2 - 30-7400 - COLUMN OIL LINE ASSEMBLY 3 - 32-1780 - Z AXIS MOTOR ASSEMBLY 4 - 32-2050 - TELEMECHANIQUE SWITCH ASSEMBLY

1 - 30-1240 - LEAD SCREW ASSEMBLY

2 - 30-7410 - SADDLE OIL LINE ASSEMBLY

3 - 32-1406 - X AXIS MOTOR ASSEMBLY

4 - 32-2051 - TELEMECHANIQUE SWITCH ASSEMBLY

VF-6 Saddle

2

18. 58-3618

19. 58-3670

20. 58-3685

20-7043A PISTON TRP RECTANGLE

5. 25-7050B SWITCH MNT., TOOL RELEASE 6. 29-7397 LABEL, TOOL RELEASE PISTON 7. 32-2010 24 LIMIT SWITCH

SPRING RETAINER TRP 30DEG

SHAFT TRP

20-7044C

22-7045A

1/4 STRÉET ELBOW, 90 DEG

21. 58-3727A 1/4 NPT X 4 NIPPLE BRASS 22. 59-2760 COMP. SPRING/LARGE WIRE 23. 59-2832B QUICK EXHAUST 1/4

1/4 NPT M - 1/8 F REDUCER 1/4NPT M-3/8 TUBE-SVL LBO

30-3293C TOOL RELEASE PISTON ASSY-TSCHP

30-3293C TOOL RELEASE PISTON ASSY-TSCHP

ITEM	PART NO.	DESCRIPTION	QTY
16 17 18 19 20 21 22 23 24 25 26 27 28	20-7626 20-7627A 20-7630A 22-7045A 25-7050B 29-7397 30-3286A 32-2010 32-5620 40-1632 40-1800 44-1614 45-0040 45-2000 56-0040 57-2156 58-0028 58-0032 58-2046 58-2165 58-2265 58-3614 58-3614 58-3618 58-3670 58-3685 58-3727A	1/4 F-1/8 M STREET ELBOW 1/4 STREET ELBOW, 90 DEG 1/4 NPT M - 1/8 F REDUCEF 1/4NPT M-3/8 TUBE-SVL LBC 1/4 NPT X 4 NIPPLE BRASS COMP. SPRING/LARGE WIRE	1 1 1 1 1 1 1 2 1 4 8 3 4 5 2 3 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1

ITEM	QTY	/ PART NO.	DESCRIPTION	ITEM	QTY	PART NO.	DESCRIPTION
1	1	20-7016B	SPINDLE HOUSING	10	4	40-1610	SHCS 1/4-20 X 1
2	1	20-7018L	SPINDLE SHAFT	11	6	40-16385	SHCS 5/16-18 X 3/4
3	1	20-7022C	SPINDLE CAP TAPERED	12	2	51-0021	BEARING 6010 OPEN
4	1	20 - 7373	1 7/8 PULLEY	13	1	51-1012	BRNG DUPLEX MD 36MM SPCR
5	1	20-7442C	OIL INJECTION COVER	14	1	55-0020	WAVE WASHER W3118-035
6	1	20 - 7530	LOCK, 60MM BEARING	15	1	56-0075	SNAP RING N5000-131
7	1	20 - 7531	50MM LOCK 7500 SPINDLE	16	1	57-2984	O-RING 2-158 VITON
8	1	24-4200	BRONZE FILTER ELEMENT	17	1	57-2990	O-RING 2-348 BUNA
9	1	30-3410D	DRAWBAR ASSY HIGH CLAMP	18	1	58-1627	1/8-27 PIPE PLUG

VF Series Spindle 7.5 K

- 1 32-1800 SHUTTLE MOTOR ASSEMBLY
- 2 32-1900A GENEVA DRIVER ASSEMBLY
- 3 32-2010 TELEMECHANIQUE SWITCH ASSEMBLY
- 4 32-7011 TOOL CHANGER CONDUIT ASSEMBLY

20 Pocket Tool Changer

1 - 30-1210 - LEAD SCREW ASSEMBLY 2 - 32-1600 - MOTOR ASSEMBLY 3 - 32-2031 - TELEMECHANIQUE SWITCH ASSEMBLY 4 - 30-7526 - BASE OIL LINE ASSEMBLY

VF-3 Base

- 1 30-1210 LEAD SCREW ASSEMBLY 2 32-7528 COLUMN OIL LINE ASSEMBLY 3 32-2041 TELEMECHANIQUE SWITCH ASSEMBLY

1 - 30-1200 - LEAD SCREW ASSEMBLY

2 - 30-1401 - MOTOR ASSEMBLY

3 - 30-7527 - SADDLE OIL LINE ASSEMBLY

4 - 32-2050 - TELEMECHANIQUE SWITCH ASSEMBLY

VF-3 Saddle

30-3905G SPINDLE ASSY, 7.5K TSCHP CARB.

ITEM	QTY	PART NO.	DESCRIPTION	ITEM	QTY	PART NO.	DESCRIPTION
1	1	20-7016B	SPINDLE HOUSING	11	6	40-16385	SHCS 5/16-18 X 3/4
2	1	20-7018L	SPINDLE SHAFT	12	2	44-1698	SSS 1/2-13 X 3/4
3	1	20-7022C	SPINDLE CAP TAPERED	13	2	51-0021	BEARING 6010 OPEN
4	1	20 - 7373	1 7/8 PULLEY	14	1	51-1012	BRNG DUPLEX MD 36MM SPCR
5	1	20-7442C	OIL INJECTION COVER	15	1	55-0020	WAVE WASHER W3118-035
6	1	20 - 7530	LOCK 60MM BEARING	16	1	56-0075	SNAP RING N5000-131
7	1	20 - 7531	50MM LOCK 7500 SPINDLE	17	1	57-2984	O-RING 2-158 VITON
8	1	24-4200	BRONZE FILTER ELEMENT	18	1	57-2990	O-RING 2-348 BUNA
9	1	30-3415F	DRAWBAR ASSY HC TSCHP C	ARB19	1	58-1627	1/8-27 PIPE PLUG
10	4	40-1610	SHCS 1/4-20 X 1				

30-3910E 10K SPINDLE ASSEMBLY

ITEM	QTY	PART NO.	DESCRIPTION	ITEM	QTY	PART NO.	DESCRIPTION
1	1	20-7016B	SPINDLE HOUSING	10	4	40-1610	SHCS 1/4-20 X 1
2	1	20-7018L	SPINDLE SHAFT	11	6		
3	1	20-7022C	SPINDLE CAP TAPERED	12	1	51-1002	LT ANG CONT DUPLEX
4	1	20 - 7373	1 7/8 PULLEY	13	1	51-1012A	BRNG DUPLEX LT 36MM SPCR
5	1	20-7442C	OIL INJECTION COVER	14	1	56-0075	SNAP RING N5000-131
6	1	20 - 7530	LOCK 60MM BEARING	15	1	57-2984	O-RING 2-158 VITON
7	1	20 - 7532	LOCK 50MM ANG CNTACT BRNG	16	1	57-2990	O-RING 2-348 BUNA
8	1	24-4200	BRONZE FILTER ELEMENT	17	1	58-1627	1/8-27 PIPE PLUG
9	1	30-3410D	DRAWBAR ASSY HIGH CLAMP				

30-3911D 10K/12K SPINDLE ASSEMBLY

ITEM	QTY	PART NO.	DESCRIPTION	ITEM	QTY	PART NO.	DESCRIPTION
1	1	20-7016B	SPINDLE HOUSING	9	4	40-1610	SHCS 1/4-20 X 1
2	1	20-7018L	SPINDLE SHAFT	10	6	40-16385	SHCS 5/16-18 X 3/4
3	1	20-7022C	SPINDLE CAP TAPERED	11	1	51-1002	LT ANG CONT DUPLEX
4	1	20-7442C	OIL INJECTION COVER	12	1	51-1012A	BRNG DUPLEX LT 36MM SPCR
5	1	20 - 7530	LOCK, 60MM BEARING	13	1	56-0075	SNAP RING N5000-131
6	1	20 - 7532	LOCK 50MM ANG CNTACT BRNG	14	1	57-2984	O-RING 2-158 VITON
7	1	20 - 7539	28 TOOTH PULLEY MOD	15	1	57-2990	O-RING 2-348 BUNA
8	1	30-3410D	DRAWBAR ASSY HIGH CLAMP	16	1	58-1627	1/8-27 PIPE PLUG

30-3915G SPINDLE ASSEMBLY, 10K,TSCHP CARB.

ITEM	QTY	PART NO.	DESCRIPTION	ITEM	QTY	PART NO.	DESCRIPTION
1	1	20-7016B	SPINDLE HOUSING	10	4	40-1610	SHCS 1/4-20 X 1
2	1	20-7018L	SPINDLE SHAFT	11	6	40-16385	SHCS 5/16-18 X 3/4
3	1	20-7022C	SPINDLE CAP TAPERED	12	2	44-1698	SSS 1/2-13 X 3/4
4	1	20-7373	1 7/8 PULLEY	13	1	51-1002	LT ANG CONT DUPLEX
5	1	20-7442C	OIL INJECTION COVER	14	1	51-1012A	BRNG DUPLEX LT 36MM SPCR
6	1	20-7530	LOCK 60MM BEARING	15	1	56-0075	SNAP RING N5000-131
7	1	20-7532	LOCK 50MM ANG CNTACT BRNG	16	1	57-2984	O-RING 2-158 VITON
8	1	24-4200	BRONZE FILTER ELEMENT	17	1	57-2990	O-RING 2-348 BUNA
9	1	30-3415F	DRAWBAR ASSY HC TSCHP CARE	3 18	1	58-1627	1/8-27 PIPE PLUG

30-3916F SPINDLE ASSY, VFO, 10K, TSCHP CARB.

ITEM QTY	PART NO.	DESCRIPTION	ITEM QTY	PART NO.	DESCRIPTION
1 1	20-7016B	SPINDLE HOUSING	10 4	40-1610	SHCS 1/4-20 X 1
2 1	20-7018L	SPINDLE SHAFT	11 6	40-16385	SHCS 5/16-18 X 3/4
3 1	20-7022C	SPINDLE CAP TAPERED	12 1	51-1002	LT ANG CONT DUPLEX
4 1	20-7442C	OIL INJECTION COVER	13 1	51-1012A	BRNG DUPLEX LT 36MM SPCR
5 1	20 - 7530	LOCK 60MM BEARING	14 1	56-0075	SNAP RING N5000-131
6 1	20 - 7532	LOCK 50MM ANG CNTACT BRNG	15 1	57-2984	O-RING 2-158 VITON
7 1	20 - 7539	28 TOOTH PULLEY MOD	16 1	57-2990	O-RING 2-348 BUNA
8 1	24-4200	BRONZE FILTER ELEMENT	17 1	58-1627	1/8-27 PIPE PLUG
9 1	30-3415F	DRAWBAR ASSY HC TSCHP CAR	PR		

VF-3/4 Gearbox Assembly 15 HP

340 _______ 96-8100

30-5500A TRANS ASSY VF 15HP VD

ITEM	QTY	PART	DESCRIPTION	ITEM	QTY	PART	DESCRIPTION
1*	1	20-0064	"REMOVED" ADAPTER ENCODER PULLEY	60	3	45-1700	WASHER, INTERNAL LOCK #8
2	1	20-7011D	HOLICING CEADDON MACHINING	C1	3	45-1740	WASHER, BLACK HARD 1/2
3	1	20-7062	BRG FORK, GEAR CLUSTER TRANSFER SHAFT 1 1/8 SPROCKET	62	6	45-1851	WASHER TRANS
4	1	20-7064	TRANSFER SHAFT	63	4	46-1617	NUT, HEX 8-32
5	1	20-7374	1 1/8 SPROCKET	6.4	1	46-1654	NUT, HEX 7/16-20
			I I/O SPRUCKEI	04			
6	1	20-7430A	OIL CATCH PAN	65	2	48-0020	PIN, DOWEL 1/4 X 1
7	1	20-7435	OILER PLATE	66	1	48-0050	PIN, DOWEL 1/8 X 7/16
8	1	20-9125A	MOTOR SHAFT GEAR	67	2	51-2031	BRNG. RADIAL OPEN 6303
9	1	20-9126	TOP PLATE GEARBOX	68	1	51-2032	BRNG. RADIAL OPEN 6205
10	4	22-7260	ENCODER STANDOFF	69	1	51-2033	BRNG. RADIAL OPEN 6306
11	2	22-7376	SPROCKET FLANGE	70	1	51-2034	BRNG. RADIAL OPEN 6005
12	1	22-7445A	DRAIN TUBE DRY SUMP	71	1	51-2041	BRNG LOCKNUT BH-05
13	1	22-7446	PICK UP TUBE DRY SUMP	72*	1	54-1013	"REMOVED" DRIVE SPROCKET .250 RTAP
14	1	22-7487	OIL FILL CAP MODIFIED	73	1	54-2125	DRIVE BELT HTD 300-3M-09
15	12	22-7520A	ISOLATOR TRANS	74	1	54-7127	DRIVE SPROCKET,375 RTAP
16	6	22-7521B	SPACER TRANS	75	2	55-0035	SPRING WASHER, BS-204
17	1	25-0107	MOTOR SHROUD VMC	76	2	55-0036	SPRING WASHER, BS-205
18	1	25-0108	FAN BRACKET MOTOR SHROUD	77	3	56-0060	SNAP RING, N5100-66
19	i	25-7264	CMITCH MOUNTING DRACKET	70	1	56-0070	
			SWITCH MOUNTING BRACKET	70	1		SNAP RING N5000-187
20	1	25-7336	SOLENOID MOUNTING BRACKET	79		56-2087	SNAP RING, N5000-206
21	1	25-7433	SUMP BRACKET	80	1	57-0001	OIL SEAL
22	1	25-7434	SOLENOID MOUNTING BRACKET SUMP BRACKET SUMP TANK SHROUD CAUTION DECAL TRANSMISSION MOTOR LABEL	81	1	57-0002	OIL SEAL
23	1	29-0022	SHROUD CAUTION DECAL	82	1	57-0006	O-RING 2-328 BUNA
24	1	29-7399	TRANSMISSION MOTOR LABEL	83	1	57-0013	V-RING SEAL CR 400280
25	1	29-9128	LABEL, TRANSMISSION	84	2	57-0058	O-RING, 2-014 BUNA
26	1	30-3130C	SHIFTER ASSY	85	1	57-0105	QUAD RING, Q4-114 VITON
27	1	30-3146	AIR SOLENOID ASSY MAC TP	86	1	57-7573A	TRANS MOTOR GASKET
28	1	30-3260B	OIL GEAR PUMP ASSY	87	2	58-16752	90 DEG. COMPRESSION TILT
29	1	30-3270A	PRECHARGE REGULATOR ASSY RTAP ENCODER CABLE 24 LIMIT SWITCH TELMECH. 30 IN CABLE ASSY SOLENOID BRKT CABLE ASSY GRND STRP SPNDL MTR SHRD TRANSFER GFAR ASSY	88		T 58-2001	POLYU HOSE 1/20D X 3/8ID
30	i	32-1455D	RTAP ENCODER CABLE	89		58-2020	3/8 OD NATURAL TUBING
31	i	32-2010	24 LIMIT SWITCH	90	1	58-2065	COUPLING, 1/4NPT
32	1	32-2011	TELMECH 30 IN CARLE ASSY	01	2	58-2070	1/4NPT MALE TO 3/8 COMP
33	1	33-3200	COLENOID DON'T CADLE ASSI	0.0	4	58-2100	
			SOURCED COND. MED CUDD	92			SLEEVE LUBE ASSY
34	1	33-5008	TRANSFER OF AR ACCY	93	4	58-2110	SLEEVE NUTS LUBE ASSY
35	1	35-7065A			1	58-2745	MAGNETIC OIL PLUG
36	1	35-7170A	DRIVE SHAFT ASSY	95	1	58-3616	3/8 90 DEG.ELBOW 1/4 NPT
37	1	36-3035	SPINDLE FAN ASSY	96	1	58-3657	1/4 FEMALE 1/8 MALE ADPT
38	2	40-1602	FHCS, 1/4-28 X 5/8	97	1	58-7357	TOP PLATE TUBE - A
39	1	40-1628	SHCS, 1/4-20 X 1/4	98	1	58-7358A	TOP PLATE TUBE - B
40	1	40-1630	SHCS, 1/4-20 X 5/16	99	1	58-7377	AIR REG / SOLENOID TUBE
41	12	40-1632	SHCS 1/4-20 X 1/2	100	1	58-7635	LOW GEAR TUBE
42	8	40-16385	SHCS 5/16-18 X 3/4	101	1	58-7636	HIGH GEAR TUBE
43	4	40-16413	MSHCS, M3 X 5	102	1	58-9114B	TRANS FILL TUBE
44	2	40-1644	SHCS, 10-32 X 1 1/2	103	1	59-0027	HOSE CLAMP 1/2 HOSE
45	4	40-1645	SHCS 10-32 X 5/8	104	2	59-0046	SOUNDCOAT SHROUD RT/LT
46	5	40-16455	SHCS, 10-32 X 7/8 "REMOVED" BHCS, 8-32 X 3/8 SHCS, 10-32 X 2 "REMOVED" SHCS 8-32 X 3/4 HHB. 1/2-13 X 1 3/4	105	4	59-1482	NYLON FINISH PLUG, 13/16 (FINAL ASSEMBLY)
47*	4	40-1669	"PEMOVED" BHCS 8-32 Y 3/8	106	2	59-2040	CABLE CLAMP, 7/16
48	4		SUCS 10 30 V 2	100	1	59-4006	
40 49*	1	40-1700	3003, 10-32 X Z	107	I O E E T		HOSE CRIMP, 35/64
		40-1800	KEMUVED SHUS 8-32 X 3/4	108	° 0.5FT		"REMOVED" PROTECTIVE STRIP
50	3	40-1830	····-, ·/ = ··· · · -/ ·			60-1810	SHAFT ENCODER 2000 LINE
51	7	40-1850	SHCS 10-32 X 3/8	110	1	62-3010	SPINDLE MTR, 10 HP
52	4	40-1981	FBHCS 1/4-20 X 1/2	111	2	63-0001	NYLON CABLE CLAMP 1/2
53	3	41-1500	PPHS, 8-32 X 3/8	112	1	63-1031	CABLE CLAMP 1/4
54	4	44-0003	SSS HALF DOG PT 1/4-20X1	113	25	70-0020	PLT1.5M CABLE TIES
55*	4	45-0040	"REMOVED" WASHER BLK HARD 1/4 A325	114	3	76-2420	CRIMP RING, 12-10 10 STUD
56	4	45-1600	WASHER SPLIT LOCK 5/16MED	115	1	77-8001	WIRE NUT, IDEAL #30-076
57*	1	45-1603	"REMOVED" WASHER, SPLIT LOCK #8 MED.	116	1	20-0125	DRIVE SPROCKET ENCODER
58	4	45-1620	WASHER SPLIT LOCK #10 MED	*117	4	57-0049	"REMOVE" RUBBER STUD BUMPER
59	1	45-1682	WASHER, SPLIT LOCK 7/16MED	118	4	46-1625	NUT HEX BLK OX 1/4-20
		.0 .002	,,,	119		45-1800	WASHER SPLIT LOCK 1/4 MED
				113	,	10 1000	MINORIEN OF ELL FOOK I/ T WILD

30-5520A TRANS ASSY VF HT10K VD

VF-3/4 Gearbox Assembly HT10K

30-5520A TRANS ASSY VE HT10K	VD	

			10 1050V 11/VIA2 V221 AI	THITON	VU		
ITEM	QTY	PART	DESCRIPTION	ITEM	QTY	PART	DESCRIPTION
1*	1	20-0064	"REMOYED" ADAPTER ENCODER PULLEY	60	3	45-1700	WASHER, INTERNAL LOCK #8
2	1	20-7011D	HOUSING GEARBOX MACHINING	61	3	45-1740	WASHER, BLACK HARD 1/2
3	1	20-7062	BRG FORK, GEAR CLUSTER	62	6	45-1851	WASHER TRANS
4	1	20-7064	TRANSFER SHAFT	63	4	46-1617	NUT, HEX 8-32
5	1	20-7374	1 1/8 SPROCKET	64	1	46-1654	NUT, HEX 7/16-20
6	1	20-7430A	OIL CATCH PAN	65	2	48-0020	PIN, DOWEL 1/4 X 1
7	1	20-7435	OILER PLATE	66	1	48-0050	PIN, DOWEL 1/8 X 7/16
8	1	20-9125A	MOTOR SHAFT GEAR	67	2	51-2031	BRNG, RADIAL OPEN 6303
9	1	20-9126	TOP PLATE GEARBOX	68	1	51-2032	BRNG. RADIAL OPEN 6205
10	4	22-7260	ENCODER STANDOFF	69	1	51-2033	BRNG. RADIAL OPEN 6306
11	2	22-7376	SPROCKET FLANGE	70	1	51-2034	BRNG. RADIAL OPEN 6005
12	1	22-7445A	DRAIN TUBE DRY SUMP	71	1	51-2041	BRNG LOCKNUT BH-05
13	1	22-7446	PICK UP TUBE DRY SUMP	72*	1	54-1013	"REMOVED" DRIVE SPROCKET .250 RTAP
14	1	22-7487	OIL FILL CAP MODIFIED	73	1	54-2125	DRIVE BELT HTD 300-3M-09
15	12	22-7520A	ISOLATOR TRANS	74	1	54-7127	DRIVE SPROCKET.375 RTAP
16	6	22-7520A 22-7521B	SPACER TRANS	75	2	55-0035	SPRING WASHER, BS-204
17	1	25-0107	MOTOR SHROUD VMC	76	2	55-0036	SPRING WASHER, BS-205
18	1	25-0108	FAN BRACKET MOTOR SHROUD	77	3	56-0060	SNAP RING, N5100-66
19	1	25-7264	SWITCH MOUNTING BRACKET	78	1	56-0070	SNAP RING N5000-187
20	1	25-7336	SOLENOID MOUNTING BRACKET	79	1	56-2087	SNAP RING, N5000-206
21	1	25-7433	SUMP BRACKET	80	1	57-0001	OIL SEAL
22	1	25-7434	SUMP TANK	81	1	57-0002	OIL SEAL
23	1	29-0022	SHROUD CAUTION DECAL	82	1	57-0006	O-RING 2-328 BUNA
24	1	29-7399	TRANSMISSION MOTOR LABEL	83	1	57-0013	V-RING SEAL CR 400280
25	1	29-9128	LABEL, TRANSMISSION	84	2	57-0058	O-RING, 2-014 BUNA
26	1	30-3130C	SHIFTER ASSY	85	1	57-0105	QUAD RING, Q4-114 VITON
27	1	30-3146	AIR SOLENOID ASSY MAC TP	86	1	57-7573A	TRANS MOTOR GASKET
28	1	30-3260B	OIL GEAR PUMP ASSY	87	2	58-16752	90 DEG. COMPRESSION TILT
29	1	30-3270A	PRECHARGE REGULATOR ASSY	88		58-2001	
							POLYU HOSE 1/20D X 3/8ID
30	1	32-1455D	RTAP ENCODER CABLE	89		58-2020	3/8 OD NATURAL TUBING
31	1	32-2010	24 LIMIT SWITCH	90	1	58-2065	COUPLING, 1/4NPT
32	1	32-2011	TELMECH. 30 IN CABLE ASSY	91	2	58-2070	1/4NPT MALE TO 3/8 COMP
33	1	33-3200	SOLENOID BRKT CABLE ASSY	92	4	58-2100	SLEEVE LUBE ASSY
34	1	33-5008	GRND STRP SPNDL MTR SHRD	93	4	58-2110	SLEEVE NUTS LUBE ASSY
35	1	35-7065A	TRANSFER GEAR ASSY	94	1	58-2745	MAGNETIC OIL PLUG
36	1	35-7170A		95	1	58-3616	
			DRIVE SHAFT ASSY				3/8 90 DEG.ELBOW 1/4 NPT
37	1	36-3035	SPINDLE FAN ASSY	96	1	58-3657	1/4 FEMALE 1/8 MALE ADPT
38	2	40-1602	FHCS, 1/4-28 X 5/8	97	1	58-7357	TOP PLATE TUBE - A
39	1	40-1628	SHCS, 1/4-20 X 1/4	98	1	58-7358A	TOP PLATE TUBE - B
40	1	40-1630	SHCS, 1/4-20 X 5/16	99	1	58-7377	AIR REG / SOLENOID TUBE
41	12	40-1632	SHCS 1/4-20 X 1/2	100	1	58-7635	LOW GEAR TUBE VF-3
42	8	40-16385	SHCS 5/16-18 X 3/4	101	1	58-7636	HIGH GEAR TUBE VF-3
43	4	40-16413	MSHCS, M3 X 5	102	i	58-9114B	TRANS FILL TUBE
44	2	40-1644	SHCS, 10-32 X 1 1/2	103	1	59-0027	HOSE CLAMP 1/2 HOSE
45	4	40-1645	SHCS, 10-32 X 5/8	104	2	59-0046	SOUNDCOAT SHROUD RT/LT
46	5	40-16455	SHCS, 10-32 X 7/8	105	4	59-1482	NYLON FINISH PLUG, 13/16
47*	4	40-1669	"REMOVED" BHCS, 8-32 X 3/8	106	2	59-2040	CABLE CLAMP, 7/16
48	4	40-1700	SHCS, 10-32 X 2	107	1	59-4006	HOSE CRIMP, 35/64
49*	1	40-1800	"REMOVED" SHCS 8-32 X 3/4	108*		59-7130	"REMOVED" PROTECTIVE STRIP
50	3			109	1		
		40-1830	HHB, 1/2-13 X 1 3/4			60-1810	SHAFT ENCODER 2000 LINE
51	7	40-1850	SHCS 10-32 X 3/8	110	1	36-3078	10K 10HP MOTOR KIT
52	4	40-1981	FBHCS 1/4-20 X 1/2	111	2	63-0001	NYLON CABLE CLAMP 1/2
53	3	41-1500	PPHS, 8-32 X 3/8	112	1	63-1031	CABLE CLAMP 1/4
54	4	44-0003	SSS HALF DOG PT 1/4-20X1	113	25	70-0020	PLT1,5M CABLE TIES
55*	4	45-0040	"REMOVED" WASHER BLK HARD 1/4 A325	114	3	76-2420	CRIMP RING, 12-10 10 STUD
56	4	45-1600	WASHER SPLIT LOCK 5/16MED	115	1	77-8001	WIRE NUT, IDEAL #30-076
57*	1	45-1603	"REMOVED" WASHER, SPLIT LOCK #8 MED.	116	1	20-0125	DRIVE SPROCKET ENCODER
58	4	45-1620	WASHER SPLIT LOCK #10 MED	117	4	57-0049	RUBBER STUD BUMPER
59	1	45-1682	WASHER,SPLIT LOCK 7/16MED	118	4	46-1625	NUT HEX BLK OX 1/4-20
				119	4	45-1800	WASHER SPLIT LOCK 1/4 MED

VF-3/4 Gearbox Assembly HT10K TSC

30-5525A TRANS ASSY VF HT10K VDTSC

ITEM	QTY	PART	DESCRIPTION	ITEM	QTY	PART	DESCRIPTION
1*	1	20-0064	"REMOVED" ADAPTER ENCODER PULLEY	61	3	45-1740	WASHER, BLACK HARD 1/2
2	i	20-7011D	HOUSING GEARBOX MACHINING	62	6	45-1851	WASHER TRANS
3	1	20-7062	BRG FORK, GEAR CLUSTER	63	4	46-1617	NUT, HEX 8-32
4	i	20-7064	TRANSFER SHAFT	64	1	46-1654	NUT, HEX 7/16-20
5	i	20-7374	1 1/8 SPROCKET	65	2	48-0020	PIN, DOWEL 1/4 X 1
6	i	20-7430A	OIL CATCH PAN	66	1	48-0050	PIN, DOWEL 1/8 X 7/16
7	i	20-7435	OILER PLATE	67	2	51-2031	BRNG. RADIAL OPEN 6303
8	1	20-9125A	MOTOR SHAFT GEAR	68	1	51-2032	BRNG. RADIAL OPEN 6205
9	1	20-9126	TOP PLATE GEARBOX	69	1	51-2033	BRNG. RADIAL OPEN 6306
10	4	22-7260	ENCODER STANDOFF	70	1	51-2034	BRNG. RADIAL OPEN 6005
11	2	22-7376	SPROCKET FLANGE	71	1	51-2041	BRNG LOCKNUT BH-05
12	1	22-7445A	DRAIN TUBE DRY SUMP	72*	1	54-1013	"REMOVED" DRIVE SPROCKET .250 RTAP
13	1	22-7446	PICK UP TUBE DRY SUMP	73	1	54-2125	DRIVE BELT HTD 300-3M-09
14	1	22-7487	OIL FILL CAP MODIFIED	74	1	54-7127	DRIVE SPROCKET.375 RTAP
15	12	22-7520A	ISOLATOR TRANS	75	2	55-0035	SPRING WASHER, BS-204
16	6	22-7521B	SPACER TRANS	76	2	55-0036	SPRING WASHER, BS-205
17	1	25-0107	MOTOR SHROUD VMC	77	3	56-0060	SNAP RING, N5100-66
18	1	25-0108	FAN BRACKET MOTOR SHROUD	78	1	56-0070	SNAP RING N5000-187
19	1	25-7264	SWITCH MOUNTING BRACKET	79	1	56-2087	SNAP RING, N5000-206
20 21	1 1	25-7336 25-7433	SOLENOID MOUNTING BRACKET SUMP BRACKET	80 81	1	57-0001 57-0002	OIL SEAL OIL SEAL
22	1	25-7433	SUMP TANK	82	1	57-0002	O-RING 2-328 BUNA
23	1	29-0022	SHROUD CAUTION DECAL	83	1	57-0003	V-RING SEAL CR 400280
24	i	29-7399	TRANSMISSION MOTOR LABEL	84	2	57-0058	O-RING, 2-014 BUNA
25	i	29-9128	LABEL, TRANSMISSION	85	1	57-0105	QUAD RING, Q4-114 VITON
26	1	30-3130C	SHIFTER ASSY	86	1	57-7573A	TRANS MOTOR GASKET
27	1	30-3146	AIR SOLENOID ASSY MAC TP	87	2	58-16752	90 DEG. COMPRESSION TILT
28	1	30-3260B	OIL GEAR PUMP ASSY	88	5.75F1	Γ 58−2001	POLYU HOSE 1/20D X 3/8ID
29	1	30-3270A	PRECHARGE REGULATOR ASSY	89	2.5FT	58-2020	3/8 OD NATURAL TUBING
30	1	32-1455D	RTAP ENCODER CABLE	90	1	58-2065	COUPLING, 1/4NPT
31	1	32-2010	24 LIMIT SWITCH	91	2	58-2070	1/4NPT MALE TO 3/8 COMP
32	1	32-2011	TELMECH, 30 IN CABLE ASSY	92	4	58-2100	SLEEVE LUBE ASSY
33	1	33-3200	SOLENOID BRKT CABLE ASSY	93	4	58-2110 58-2745	SLEEVE NUTS LUBE ASSY
34 35	1 1	33-5008 35-7065A	GRND STRP SPNDL MTR SHRD TRANSFER GEAR ASSY	94 95	1	58-3616	MAGNETIC OIL PLUG 3/8 90 DEG.ELBOW 1/4 NPT
36	1	35-7003A 35-7170A	DRIVE SHAFT ASSY	96	1	58-3657	1/4 FEMALE 1/8 MALE ADPT
37	i	36-3035	SPINDLE FAN ASSY	97	1	58-7357	TOP PLATE TUBE - A
38	2	40-1602	FHCS, 1/4-28 X 5/8	98	1	58-7358A	TOP PLATE TUBE - B
39	1	40-1628	SHCS, 1/4-20 X 1/4	99	1	58-7377	AIR REG / SOLENOID TUBE
40	1	40-1630	SHCS, 1/4-20 X 5/16	100	1	58-7635	LOW GEAR TUBE VF-3
41	12	40-1632	SHCS 1/4-20 X 1/2	101	1	58-7636	HIGH GEAR TUBE VF-3
42	8	40-16385	SHCS 5/16-18 X 3/4	102	1	58-9114B	TRANS FILL TUBE
43	4	40-16413	MSHCS, M3 X 5	103	1	59-0027	HOSE CLAMP 1/2 HOSE
44	2	40-1644	SHCS, 10-32 X 1 1/2	104	2	59-0046	SOUNDCOAT SHROUD RT/LT
45	4	40-1645	SHCS, 10-32 X 5/8	105	4	59-1482	NYLON FINISH PLUG, 13/16 (FINAL ASSEMBLY)
46	5	40-16455	SHCS, 10-32 X 7/8	106	2	59-2040	CABLE CLAMP, 7/16
47* 48	4 4	40-1669 40-1700	"REMOVED" BHCS, 8-32 X 3/8 SHCS, 10-32 X 2	107 108*	1 0.500	59-4006 59-7130	HOSE CRIMP, 35/64 "REMOVED" PROTECTIVE STRIP
49*	1	40-1700	"REMOVED" SHCS 8-32 X 3/4	109	1	60-1810	SHAFT ENCODER 2000 LINE
50	3	40-1830	HHB, 1/2-13 X 1 3/4	110	1	36-3078	10K 10HP MOTOR KIT
51	7	40-1850	SHCS 10-32 X 3/8	111	2	63-0001	NYLON CABLE CLAMP 1/2
52	4	40-1981	FBHCS 1/4-20 X 1/2	112	1	63-1031	CABLE CLAMP 1/4
53	3	41-1500	PPHS, 8-32 X 3/8	113	25	70-0020	PLT1.5M CABLE TIES
54	4	44-0003	SSS HALF DOG PT 1/4-20X1	114	3	76-2420	CRIMP RING, 12-10 10 STUD
55*	4	45-0040	"REMOVED" WASHER BLK HARD 1/4 A325	115	1	77-8001	WIRE NUT, IDEAL #30-076
56	4	45-1600	WASHER SPLIT LOCK 5/16MED	116	1	30-3276	PURGE SOLENOID VALVE ASSY
57*	1	45-1603	"REMOVED" WASHER, SPLIT LOCK #8 MED.	117	1	20-0125	DRIVE SPROCKET ENCODER
58	4	45-1620	WASHER SPLIT LOCK #10 MED	118	4	57-0049	RUBBER STUD BUMPER
59 60	1 3	45-1682 45-1700	WASHER,SPLIT LOCK 7/16MED WASHER, INTERNAL LOCK #8	119 120	4 4	46-1625 45-1800	NUT HEX BLK OX 1/4-20 WASHER SPLIT LOCK 1/4 MED
υU	J	75-1700	MASHEN, INTENNAL LOOK #0	120	7	7J-1000	MASHER SEEL FOOK 1/4 MED

VF-Series Hydraulic Couterbalance System