

Exercise 1. Consider the next Neural Network illustrated in the Figure below,

and assume that our input data is x = (1, 2) and the target is y = 1.

- 1. Perform the forward phase.
- 2. Suppose that learn rate $\eta = 1$. Update all the weights once via back-propagation, using
 - (a) the mean absolute function.
 - (b) the mean square function.
 - (c) the log-likelihood objective function.
- 3. Compare the obtained results
- 4. implement your computation into a jupyter notebook.

Exercise 2. *In this exercise we recall the basic logic operation*

x_1	x_2	y	x_1	x_2	y	x_1	x_2	y	x_1	x_2	y		x_1	x_2	y
0	0	0	0	0	0	0	0	1	0	0	1	-	0	0	0
0	1	0	0	1	1	0	1	1	0	1	0		0	1	1
1	0	0	1	0	1	1	0	1	1	0	0		1	0	1
1	1	1	1	1	1	1	1	0	1	1	0		1	1	0
(AND)			(OR)			(NAND)			(NOR)				(XOR)		

- *I.* We look forward to create simple networks learning these logic operation.
- 1. Start with $w_1 = w_2 = 0.5$ and b = -1. Perform two iteration of network update using back-propagation of learning AND and OR operations with a learning rate $\eta = 0.5$.

- 2. Change the learning rate to $\eta = 0.05$ and compare the results.
- 3. Now, repeat the same thing for NAND and NOR.
- *4. Explore the results for XOR.*
- II. Now we add one hidden layer into the networks

Repeat the same questions in the first part and make some conclusions.

Implement all the computation into jupyter notebooks.