Digital Image Processing 2021-2 Exam.

Check: Olyo

Student ID: 20161851 _Name: 2015

1. Explain digital image processing.

It refers to all field related to Thought that process digitaled inche of thought information using a computer

2. <u>Draw</u> output image based on Input Image using Mosaic sized 2*2 mask. (Input Image) (Output Image)

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	100	10	10	10	0	0
0	0	10	10	100	10	0	0
0	0	10	10	10	100	0	0
0	0	0	0	0	0	0	0
O	0	О	0	0	0	0	0

0	0	0	0	0	0	0	0	
Q	0	C	O	0	<i>S</i>	0	O	
0	25	27,5	5	5	2,5	0	0	
0	Zh5	32.5	32.5	32.5	5	0	0	
0	7	10	32.5	55	2715	0	0	
0	25	5	5	29.7	25	D	0	
0	2	ь	6	0	0	0	0)

- 3. Input Image-A will imitate Image-B that has each pixel with 3 bits(0-7 intensity) and 4X4 image resolution.
- A) Calculate the precedure and B) draw output images and histogram of those.
- C) Explain meaning of them.

O	ige=A	2	3	
0	1	2	3	
4	5	6	7	_
4	5	6	7	_

Image-B
6 6 4 5
6 7 7 7 5
7 7 5

Output image

0	4	4	5
\mathcal{C}	4	4	5
6	6	6	0
6	6	6	9

ref.) 7*(1/16)=0.4, 7*(2/16)=0.9, 7*(3/16)=1.3, 7*(4/16)=1.8, 7*(5/16)=2.2, 7*(6/16)=2.6, 7*(7/16)=3.1, 7*(8/16)=3.5, 7*(9/16)=3.9, 7*(10/16)=4.4, 7*(11/16)=4.8, 7*(12/16)=5.3, 7*(13/16)=5.7, 7*(14/16)=6.1, 7*(15/16)=6.6

A. B's histogram

the original is Inoge-B so we should see histogram of it

intensity.	frequency	alcumulate frot	hamalitation	now intensity
0	O	0	ь	0
1	0	0	0	Э
2	0	0	О	0
3	0	0	0	ò
3)	2	ति	1-90 = PX 17
4	4	\ 6	16	$\frac{\partial}{\partial x} x \eta = 0.9 = 1$ $\frac{\partial}{\partial x} x \eta = 2.5 = 3$
5	\ \ \ \	01	91	16×1 =44=4
6	4		16	
Π	6	16	16	10 x1 =17
J				

C. we have to copy so we should preverse intensity

	, 0	
whensity	new thensit	[4
0	0	5)
1	0	
2	0	
3	6	9 4
4	1	3 -
5	3	
6	4	1+
	7	
,	,	1234567
)		rcieve (

012345667

- 4. We have 3,000 data with 2 dimension.
- A) Explain Eigen value and Eigen Vector and draw graph of them. B) Suggest any idea when you can reduce dimension.

A. Eigen vector is a vector whose magnitude changes hut its direction does not change.

Eigen value à a magnirhade value thait converts sité

B. If we set Eigen vector, it will be one-dimensional if we only collect the data in that direction

 We have six satellite images of size 512*512, corresponding to six spectral bands; from visible blue to thermal infrared. Suggest a method that improve contrast detail of image.

The contrast of satellite image is low

E think histogram equalization is good

Method for improving detailing of image.

6. Explain your role in the final team project including team name and number.

team #2 Franko

I'm team leader, and presenter.

I almost led the communication between korean students

All of the team member participated for report, project and pots.