חישוביות וסיבוכיות

'מועד א

פתרון לדוגמא

ד"ר יוחאי טוויטו, , ד"ר ירמיהו מילר, סמסטר א, תשפ"ה'

מסמך זה כולל פתרון לדוגמא של המבחן. הפתרונות לשאלות הינן פתרונות לדוגמא. ניתן לפתור חלק בדרכים נוספות/אחרות, מלבד הדרך המוצעת בפתרון לדוגמא.

שאלה 1: מכונת טיורינג 20 נקודות

'סעיף א

סעיף ב'הפונקציה שאותה המכונה מחשבת היא הפונקציה:

$$f(x) = x \mod 3$$
.

כלומר, המכונה מחשבת את שארית החלוקה ב-3 של המספר האונרי הנתון כקלט.

לעיף ג' הפונקציה שאותה המכונה מחשבת היא הפונקציה:

$$f(1^i \# 1^j) = 1^{|i-j|}$$
.

כלומר, המכונה מחשבת את הערך המוחלט של ההפרש בין שני מספרים $1^i, 1^j$, הנתונים בקלט. הסבר:

$$q_0$$
 1#1 \vdash q_1 #1 \vdash # $1q_1$ \vdash # q_2 1 \vdash q_0 # \vdash q_0 # \vdash acc .
$$f(1$$
#1) = 0 לכן

$$q_0$$
 11#1 \vdash q_1 1#1 \vdash ** 1#1 q_1 \vdash 1# q_2 1 \vdash ** q_{back} 1# \vdash q_0 1# \vdash q_1 # \vdash # q_1 \vdash q_2 # \vdash q_4 \vdash 1 \vdash 2 acc 1

 $i\geqslant j$ נסתכל על קלט כללי 1^i #1 j כאשר

לכן

$$f(1^i \# 1^j) = 1^{i-j} , \qquad i \geqslant j .$$
 (*1)

i < j נסתכל על קלט כללי 1^i # 1^j כאשר

לכן

$$f(1^i \# 1^j) = 1^{j-i}$$
, $i < j$. (*2)

המשוואות (1*) ו- (2*) אומרות ש:

$$f(1^{i}\#1^{j}) = 1^{|i-j|}. (*3)$$

שאלה 2: וריאציות על מכונת טיורינג 20 נקודות

TS כיוון ראשון: לכל מכונה ממודל OR קיימת מכונה שקולה ממודל

OR מכונה ממודל $M_{OR}=\left(Q^{OR},\Sigma^{OR},\Gamma^{OR},\delta^{OR},q_0^{OR},q_{\mathsf{acc}}^{OR},q_{\mathsf{rej}}^{OR}
ight)$ תהי $M_{TS}=\left(Q^{TS},\Sigma^v,\Gamma^{TS},\delta^{TS},q_0^{TS},q_{\mathsf{acc}}^{TS},q_{\mathsf{rej}}^{TS}
ight)$ ממודל $M_{TS}=M_{OR}$ מלבד פונקציית המעברים. כל הרכיבים של המכונה M_{CR} יהיו זהים לרכיבים של המכונה M_{OR} מלבד פונקציית המעברים δ^{TS} .

מעברי תנועה

:נניח ש δ^{OR} מכילה את המעבר הבא

$$\delta^{OR}\left(q,\sigma\right)=\left(p,\mathsf{move}\right)$$

:כאשר

$$p,q\in Q^{OR}\;,\qquad \sigma\in\Gamma^{OR}\;,\qquad {\rm move}\in\{L,R\}\;.$$

:אז ב- δ^{TS} נכניס את המעבר הבא

$$\delta^{TS}\left(q,\sigma
ight)=\left(p,\sigma,\mathsf{move}
ight)$$

מעברי כתיבה

:נניח ש δ^{OR} מכילה את המעבר הבא

$$\delta^{OR}\left(q,\sigma\right) = \left(p,\tau\right)$$

עמוד 4 מתוך *פ*

:כאשר

$$p,q \in Q^{OR} \; , \qquad \sigma,\tau \in \Gamma^{OR} \; .$$

אז ב- δ^{TS} נכניס את המעבר הבא:

$$\delta^{TS}\left(q,\sigma\right)=\left(p,\tau,S\right)$$

OR כיוון שני: לכל מכונה ממודל TS קיימת מכונה שקולה ממודל

.TS מכונה ממודל $M_{TS}=\left(Q^{TS},\Sigma^{TS},\Gamma^{TS},\delta^{TS},q_0^{TS},q_{\mathsf{acc}}^{TS},q_{\mathsf{rej}}^{TS}
ight)$ תהי

$$.OR$$
 ממודל $M_{OR}=\left(Q^{OR},\Sigma^{OR},\Gamma^{OR},\delta^{OR},q_0^{OR},q_{\mathsf{acc}}^{OR},q_{\mathsf{rej}}^{OR}
ight)$ ממודל

במעברים בהן המכונה M_{TS} כותבת אות וגם זזה ימינה או שמאלה ,לא יתכן מעבר שקול יחיד במכונה ממודל במעברים בחלק מהמעברים במכונה M_{TS} לשני מעברים עוקבים במכונה M_{OR} . במעבר הראשון נכתוב אות ובמעבר השני נבצע את התזוזה.

 q^R ו- q^L ו- q^L ו- ייחודיים מצבי ביניים חדשים, שיחברו בין המעברים לכלמצב נגדיר שני מצבי ביניים ייחודיים כלומר:

$$Q^{OR} = Q^{TS} \cup \left\{ q^L \mid q \in Q^{TS} \right\} \cup \left\{ q^R \mid q \in Q^{TS} \right\} .$$

נגדיר כעת את δ^{OR} תוך שימוש במצבי ביניים.

מצבי הביניים תמיד יבצעו תזוזה שמאלה או ימינה בלבד, לכל אות שבסרט. פורמלית:

$$\begin{aligned} &\forall q \in Q^{TS} \ , \ \sigma \in \Gamma^{TS} : \quad \delta^{OR} \left(q^R, \sigma \right) = \left(q, R \right) \, , \\ &\forall q \in Q^{TS} \ , \ \sigma \in \Gamma^{TS} : \quad \delta^{OR} \left(q^L, \sigma \right) = \left(q, L \right) \, . \end{aligned}$$

עבור מעברים בהן מתבצעת כתיבה ותנועה, נגדיר את δ^{OR} תוך שימוש במצבי ביניים.

בהינתן מעבר עם תנועה ימינה:

$$\delta^{TS}(q,\sigma) = (p,\tau,R) .$$

:כאשר

$$q, p \in Q^{TS}$$
, $\sigma, \tau \in \Gamma^{TS}$

אז ב- δ^{OR} נכניס את המעבר הבא:

$$\delta^{OR}\left(q,\sigma\right) = \left(p^R,\tau\right) \ .$$

באופן דומה, בהינתן מעבר עם תנועה שמאלה:

$$\delta^{TS}\left(q,\sigma\right)=\left(p,\tau,L\right)\,.$$

:כאשר

$$q,p \in Q^{TS} \ , \qquad \sigma,\tau \in \Gamma^{TS}$$

:אז ב- δ^{OR} נכניס את המעבר הבא

$$\delta^{OR}\left(q,\sigma\right) = \left(p^{L},\tau\right) \ .$$

במעברים בהם המכונה M_{TS} אינה מבצעת תנועה (נשארת במקום) לא נשתמש במצבי הביניים. כלומר, בהינתן מעבר בו המכונה נשארת במקום:

$$\delta^{TS}(q,\sigma) = (p,\tau,S)$$

:כאשר

$$q,p \in Q^{TS} \ , \qquad \sigma,\tau \in \Gamma^{TS}$$

אז ב δ^{OR} נכניס את המעבר הבא:

$$\delta^{OR}\left(q,\sigma\right)=\left(p,\tau\right).$$

שאלה 3: התזה של צ'רץ' טיורינג 20 נקודות

:סעיף א $^{\prime}$ השפה שהדקדוק G יוצר היא

$$L(G) = \{ a^n b^n c^n \mid n \in \mathbb{N} \}$$

'סעיף ב

$$L(G) = \{ w \in \Sigma^* \mid \#_a(w) = \#_b(w) = \#_c(w) \}$$

.c אותיות .b, אותיות .a, אותיות של מספר בהן מספר בהן המילים בהן כלומר

שאלה 4: אי-כריעות 20 נקודות

נתון: השפה $L_{M_1\cup M_2}$ מוגדרת:

$$L_{M_1 \cup M_2} = \{ \langle M_1, M_2, w \rangle \mid w \in L(M_1) \cup L(M_2) \}$$

. לפחות. $L(M_2)$ או $L(M_1)$ השפה שייך לאחת השפות $\langle M_1, M_2, w
angle$ לפחות. ז"א $L(M_1)$ השפה שכוללת כל המחרוזות

בריך להוכיח: קיימת רדוקציה התאמה בין השפה A_{TM} לשפה בדוקציה התאמה בין כלומר להוכיח:

$$A_{TM} \leqslant L_{M_1 \cup M_2}$$
.

הגדרת הרדוקציה:

בהינתן $\langle M,w
angle$ קלט של $\langle M_1,M_2,w
angle$ ניצור $\langle A_{TM}$ ניצור $\langle M,w
angle$ קלט של

$$\langle M, w \rangle \in A_{TM} \quad \Rightarrow \quad \langle M_1, M_2, w \rangle \in L_{M_1 \cup M_2} ,$$

 $\langle M, w \rangle \notin A_{TM} \quad \Rightarrow \quad \langle M_1, M_2, w \rangle \notin L_{M_1 \cup M_2} .$

נגדיר את פונקציית הרוקציה באופן הבא:

".rej
$$\leftarrow M_1 \; x$$
 על כל קלט" $= M_1$

$$\boldsymbol{x}$$
 על כל קלט: $\boldsymbol{y} = M_2$

. על w ועונה כמוה M מריצה Φ

נכונות הרדוקציה:

$$\langle M,w \rangle \in A_{TM}$$
 אם

$$w \in L(M) \Leftarrow$$

$$w \in L(M_2) \Leftarrow$$

$$w \in L(M_2) \cup \emptyset \Leftarrow$$

$$w \in L(M_2) \cup L(M_1) \Leftarrow$$

$$\langle M_1, M_2, w \rangle \in L_{M_1 \cup M_2} \Leftarrow$$

⇒ כיוון

$$\langle M,w
angle
otin A_{TM}$$
 אם

$$.w \notin L(M) \Leftarrow$$

$$.w \notin L(M_2) \Leftarrow$$

.(
$$\oslash$$
 וגם M_1 היא $w \notin L(M_1)$ וגם $w \notin L(M_2)$

$$\langle M_1, M_2, w \rangle \notin L_{M_1 \cup M_2} \Leftarrow$$

שאלה 5: סיבוכיות זמן 20 נקודות

פונקצית הרדוקציה:

(VC) נגדיר פונקצית הרדוקציה f שבהינתן זוג $G,k > \in IS$, (הקלט של $G,k > \in IS$, יוצרת שבהינתן שבהינתן זוג אשר מקיימת את התנאי:

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in VC \ .$$
 (*2)

הפונקציית הרדוקציה מוגדרת כך שהתנאים הבאים מתקיימים:

עמוד 7 מתוך 9

$$G=(V,E)$$
 בהינתן הגרף $G=(V,E)$, אז הגרף $G=(V,E)$ בהינתן הגרף (1

$$.k' = |V| - k$$
 (2

נכונות הרדוקציה

$$.\langle G,k\rangle$$
 \in IS \Leftrightarrow $\langle G',k'\rangle$ \in VC :כעת נוכיח שמתקיים

⇒ כיוון

$$.k$$
 בהינתן גרף $G=(V,E)$ ושלם . $\langle G,k
angle \in IS$ נניח כי

- $|S|\geqslant k$ מכיל קבוצה בלתי תלוייה S בגודל מכיל קבוצה בלתי ה
 - $.(u_1,u_2)\notin E$ אם $u_1,u_2\in S$ אם \Leftarrow .G -כלומר, כל שני קדקודים ב- S לא מחוברים בצלע ב-
 - ⇒ השלילה הלוגית של הגרירה הזאת:

$$u_2 \notin S$$
 או $u_1 \notin S$ אז $(u_1, u_2) \in E$ אם

$$.u_{2}\in Vackslash S$$
 או $u_{1}\in Vackslash S$ אז $(u_{1},u_{2})\in E$ אם eq

.Gשל קודקודים כיסוי היא $V \backslash S$ התת-קבוצה \leftarrow

$$|V \backslash S| \leqslant |V| - k$$
 לכן $|V \backslash S| = |V| - S$ -1 ו

תר. לכל היותר אכיסוי קודקודים ע בגודל בגודל לכל היותר מכיל כיסוי קודקודים $G'=G \Leftarrow$

$$\langle G', k' \rangle \in VC \Leftarrow$$

\Rightarrow כיוון

$$.k'$$
 בהינתן גרף G' ושלם

$$\langle G',k'
angle \in VC$$
 נניח כי

- $|U|\leqslant k'$ מכיל כיסוי קדקודים U בגודל מכיל היותר: G'=(V,E)
 - $.u_{2}\in U$ או $u_{1}\in U$ אז $(u_{1},u_{2})\in E$ אם \Leftarrow
 - ⇒ השלילה הלוגית של הגרירה הזאת:

$$(u_1,u_2)
otin E$$
 אם $u_1
otin U_1$ וגם $u_1
otin U_1$ אם $u_2
otin U_1$ וגם

⇒ השלילה הלוגית של הגרירה הזאת:

$$.(u_1,u_2)\notin E$$
 אז $u_2\in Vackslash U$ אם $u_1\in Vackslash U$

התת-קבוצה S=Vackslash U התת-קבוצה בלתי היא \Leftarrow

$$|S|\geqslant |V|-k'$$
 אז $|U|\leqslant k'$ -1 $|S|=|V|-|U|$

- ת. לפחות אכיל קבוצה אור בלתי תלויה אור בגודל קבוצה בלתי לפחות מכיל קבוצה בלתי תלויה G'=G
 - $\langle G, k \rangle \in IS \Leftarrow$