

TPN°10: Grafos

Algoritmos y Estructuras de Datos II

GRAFOS

GRAFOS

GRAFOS

Problema del Camino Mínimo en un grafo con ciclos no negativos

El *problema de camino mínimo* entre dos nodos u y v consiste en encontrar un camino entre esos nodos cuyo costo sea menor o igual que el costo de cualquier otro camino entre u y v.

Algoritmo Bellman-Ford (G,A,n,D,C): grafo x matriz x ent → vector x bool

ENTRADA: G: grafo G(V,E)

n: número de vértices.

A: matriz de adyacencia con los costos.

SALIDA: D: vector de distancias especiales.

C: bool, true: indica que no existen ciclos de costo negativo

 $D(1) \leftarrow 0$ // origen vértice 1

C ← True

Para i desde 2 hasta n hacer

D(i) ← ∞

Para i desde 1 hasta n-1 hacer

Para cada arista (u,v) en E hacer // relajar

Si D(v) > (D(u) + A(u, v)) entonces $D(v) \leftarrow D(u) + A(u, v)$

lara cada arista (u.v.) on E bacor // dot

Para cada arista (u,v) en E hacer // detectar ciclo de costo negativo

Si D(v) > (D(u) + A(u, v)) entonces

C ← False // hay ciclo de costo negativo

Fin.

ITERACIÓN 0

1	2	3	4	5	6	7	8
(A,B)	(D,C)	(C,B)	(B,C)	(C,D)	(A,D)	(B,D)	(A,C)

$$\mathsf{It}_0 \qquad \mathsf{D} = \{0, \, \infty, \, \infty \,, \, \infty\}$$

Para cada arista (u,v) en E hacer // relajar
Si D(v) > (D(u) + A(u,v)) entonces
D(v)
$$\leftarrow$$
 D(u) + A(u,v)

ITERACIÓN 1

1	2	3	4	5	6	7	8
(A,B)	(D,C)	(C,B)	(B,C)	(C,D)	(A,D)	(B,D)	(A,C)

$$\mathsf{It}_0 \qquad \mathsf{D} = \{0, \, \infty, \, \infty \,, \, \infty\}$$

$$It_1$$
 D = {0, 3, 3, 2}

Para cada arista
$$(u,v)$$
 en E hacer // relajar
Si D (v) > $(D(u) + A(u,v))$ entonces
D $(v) \leftarrow D(u) + A(u,v)$

ITERACIÓN 2

1	2	3	4	5	6	7	8
(A,B)	(D,C)	(C,B)	(B,C)	(C,D)	(A,D)	(B,D)	(A,C)

$$\mathsf{It}_0 \qquad \mathsf{D} = \{0, \, \infty, \, \infty \,, \, \infty\}$$

$$It_1$$
 D = {0, 3, 3, 2}

$$It_2$$
 D = {0, 3, 3, 1}

Para cada arista
$$(u,v)$$
 en E hacer // relajar
Si D (v) > $(D(u) + A(u,v))$ entonces
D $(v) \leftarrow D(u) + A(u,v)$

ITERACIÓN 3

1	2	3	4	5	6	7	8
(A,B)	(D,C)	(C,B)	(B,C)	(C,D)	(A,D)	(B,D)	(A,C)

$$\mathsf{It}_0 \qquad \mathsf{D} = \{0, \, \infty, \, \infty \,, \, \infty\}$$

$$It_1$$
 D = {0, 3, 3, 2}

$$It_2$$
 D = {0, 3, 3, 1}

$$It_3$$
 D = {0, 3, 3, 1}

Para cada arista
$$(u,v)$$
 en E hacer // relajar
Si D $(v) > (D(u) + A(u,v))$ entonces
D $(v) \leftarrow D(u) + A(u,v)$

COMPROBAMOS QUE NO TIENE CICLOS

CLIQUE

Subgrafo completo de un grafo dado

GRAFO COMPLETO

Todos los vértices del grafo son adyacentes entre sí, es decir hay una arista entre dos vértices cualesquiera del grafo

CLIQUE MÁXIMA

Clique con el máximo número de vértices

Diseñe un algoritmo, aplicando la técnica de **Backtracking**, que reciba un grafo G y retorne el tamaño que posee la clique máxima que se puede conseguir en ese grafo.

CLIQUE MÁXIMA

 $CM = \{4,5,6,7,8\}$ # Vértices = 5

PISTA

Modificar el algoritmo de Backtracking del problema de la Mochila 0/1

```
Función mochila (i, M): tipo x peso → beneficio

// globales: n, b y p

// entrada: elementos de tipos i a n y con peso máximo M.

// salida: bmax el beneficio de la mejor carga.

bmax←0

Para k=i hasta n hacer

si p(k) ≤ M entonces

bmax← max (bmax, b(k)+mochila(k+1, M-p(k))

retorna bmax
```


Ejemplo: CLIQUE MÁXIMA

PISTA

Modificar el algoritmo de Backtracking del problema de la Mochila 0/1

Vector que contiene los vértices agregados al clique

Cantidad de vértices agregados al vector S

FUNCIÓN maxClique(i, S, b): ent ≥ 0 x Vector x ent ≥ 0 \rightarrow ent ≥ 0 Vbles. Globales:

- n: cantidad de vértices del grafo
- A: matriz de adyacencia del grafo

. . .

Invocación
maxClique(1, S, 0)

Vector que contiene los vértices agregados al clique

Cantidad de vértices agregados al vector S

CLIQUE

Todos los vértices del clique son adyacentes entre sí

Preguntas

