Seoul National University

M1522.001400 Introduction to Data Mining

Spring 2016, Kang

Homework 5: Frequent Itemsets (Chapter 6)

Due: May 9, 09:30 AM

Reminders

- The points of this homework add up to 100.
- Like all homeworks, this has to be done individually.
- Lead T.A.: Jinhong Jung (<u>montecast9@gmail.com</u>)
- Please type your answers in English. Illegible handwriting may get no points, at the discretion of the graders.
- If you have a question about assignments, please upload your question in eTL.
- If you want to use slipdays or consider late submission with penalties, please note that you are allowed one week to submit your assignment after the due date.

Remember that:

• Whenever you are making an assumption, please state it clearly

Suppose there are 20 items, numbered 1 to 20, and also 20 baskets, also numbered 1 to 20. Item i is in basket b if and only if i divides b with no remainder. Thus, item 1 is in all the baskets, item 2 is in all ten of the even-numbered baskets, and so on. Basket 12 consists of items {1, 2, 3, 4, 6, 12}, since these are all the integers that divide 12. Answer the following questions. [20 points]

(a) If the support threshold is 3 which items are frequent?

Answer: {1, 2, 3, 4, 5, 6}

(b) If the support threshold is 3, which pairs of items are frequent?

Answer: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,6), (3,6)

For the data of Question 1, what is the confidence of the following association rules? [25 points]

(a)
$$\{3, 5\} \rightarrow 2$$
.

Answer: 0

(b)
$$\{1, 2, 4\} \rightarrow 8$$
.

Answer: 0.4

(c)
$$\{2, 4, 5\} \rightarrow 5$$
.

Answer: 1

(d)
$$\{2, 3\} \rightarrow 6$$
.

Answer: 1

Apply the A-Priori Algorithm with support threshold 2 to the data of Question 1. Answer the following questions. [25 points]

 C_k is the set of candidate itemsets of size k – the itemsets that we must count in order to determine whether they are in fact frequent.

 L_k is the set of truly frequent itemsets of size k.

(a) Find C_2 and L_2 .

```
Answer: C_2 = \{ (x,y) | 1 \le x < y \le 10 \}

L_2 = \{ (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9), (1,10), (2,3), (2,4), (2,5), (2,6), (2,8), (2,10), (3,6), (3,9), (4,8), (5,10) \}
```

(b) Find the max number of k where L_k is not an empty set.

Answer: k = 4

Here is a collection of twelve baskets. Each contains three of the six items 1 through 6.

Suppose the support threshold is 4. On the first pass of the PCY Algorithm, we use a hash table with 11 buckets, and the set $\{i, j\}$ is hashed to bucket $i \times j \mod 11$. Answer the following questions. [30 points]

(a) Compute the support for each item and each pair of items.

Item	Support
1	4
2	6
3	8
4	8
5	6
6	4

Pair	Support	Pair	Support
1,2	2	2,6	1
1,3	3	3,4	4
1,4	2	3,5	4
1,5	1	3,6	2
1,6	0	4,5	3
2,3	3	4,6	3
2,4	4	5,6	2
2,5	2		

(b) Which pairs hash to which buckets?

Pair	Bucket Number	Pair	Bucket Number
1,2	2	2,6	1
1,3	3	3,4	1
1,4	4	3,5	4
1,5	5	3,6	7
1,6	6	4,5	9
2,3	6	4,6	2
2,4	8	5,6	8
2,5	10		

(c) Which buckets are frequent?

Answer: 1, 2, 4, 8

(d) Which pairs are counted on the second pass of the PCY Algorithm?

Answer: (2,6), (3,4), (1,2), (4,6), (1,4), (3,5), (2,4), (5,6)