Linear Algebra

DR. AHMED TAYEL

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University

ahmed.tayel@alexu.edu.eg

Outline

- 1. Introduction.
- 2. Matrix diagonalization.
- 3. Decoupling.

1. Introduction

Introduction

Suppose *D* is a diagonal matrix, say, $D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$

Then

$$D^{2} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a^{2} & 0 \\ 0 & b^{2} \end{bmatrix}$$

$$D^{3} = DD^{2} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} a^{2} & 0 \\ 0 & b^{2} \end{bmatrix} = \begin{bmatrix} a^{3} & 0 \\ 0 & b^{3} \end{bmatrix}$$

In

general,
$$D^{k} = \begin{bmatrix} a^{k} & 0 \\ 0 & b^{k} \end{bmatrix}; k \ge 1$$

Introduction

Computational advantages of diagonal matrices:

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$
 (1)
$$D^k = \begin{bmatrix} d_1^k & 0 & \cdots & 0 \\ 0 & d_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n^k \end{bmatrix}$$
 (2)
$$D^T = D$$

$$(2)D^T = D$$

$$(3)D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & \cdots & 0\\ 0 & \frac{1}{d_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{d_n} \end{bmatrix}, d_i \neq 0$$

2. Matrix diagonalization

Diagonalization

- Several applications of linear algebra require the efficient computation of A^k for large values of k.
- We can use our **eigenvalue/eigenvector** information to write a matrix A in the factored form $A = PDP^{-1}$ where D stands for a **diagonal** matrix.

Now, if A can be written in the form $A = PDP^{-1}$, A^k is easy to compute.

•
$$A^2 = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1} = PDDP^{-1} = PD^2P^{-1}$$

•
$$A^3 = (PDP^{-1})A^2 = PDP^{-1}PD^2P^{-1} = PDD^2P^{-1} = PD^3P^{-1}$$

• In general,

$$\bullet A^k = PD^k P^{-1} \quad k \ge 1.$$

$$A = P D P^{-1}$$

How to get P and D?

First \rightarrow To get D

Definition of similar matrices and related theorem.

Second \rightarrow To get P

Observe the relation

 $A = P D P^{-1}$ after getting D

$$A = P D P^{-1}$$

First \rightarrow To get D

 \blacksquare Definition: Two square matrices \boldsymbol{A} and \boldsymbol{B} are said to be **similar** if

$$A = P B P^{-1}$$
 and $B = P A P^{-1}$

■Thm: (Similar matrices have the same eigenvalues)

If A and B are similar $n \times n$ matrices, then they have the same eigenvalues.

Pf: A and B are similar
$$\Rightarrow AP = PP B P^{-1}P \text{ or } B = P^{-1}AP$$

$$|\lambda I - B| = |\lambda I - P^{-1}AP| = |P^{-1}\lambda IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P|$$

$$= |P^{-1}||\lambda I - A||P| = |P^{-1}||P|||\lambda I - A| = |P^{-1}P||\lambda I - A|$$

$$\Rightarrow = |\lambda I - A|$$

A and B have the same characteristic polynomial. Thus A and B have the same eigenvalues.

$$A = P D P^{-1}$$

First \rightarrow To get D

Now,

- \rightarrow A and D are similar matrices.
- → They have the same eigenvalues.
- $\rightarrow D$ is a diagonal matrix.
- → From last lecture, eigenvalues of diagonal or triangular matrices are the entries of their main diagonal.

If eigenvalues of A are λ_1 , λ_2 , λ_3 , ... then, D is calculated as

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

$$A = P D P^{-1}$$

Second \rightarrow To get P

• Observe the relation $A = P D P^{-1}$ after getting D

$$A P = P D P^{-1} P$$

$$A_{1} P = P D$$

$$P_{1} \qquad P_{21} \qquad P_{22} \qquad P$$

Conclusion:

Columns of P are the eigen vectors of A

Eigenvalues

$$A
ightharpoonup \lambda_1$$
 , λ_2 , λ_3 ,... , λ_n

Eigenvectors

$$v_1, v_2$$
 , v_3 ,... , v_n

$$P = \begin{bmatrix} v_1 & v_2 & v_3 & \dots & v_n \end{bmatrix}$$

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Ex: Diagonalize the matrix
$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} \lambda I - A \end{bmatrix} = \begin{bmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{bmatrix} = 0$$

Sol: Recall from last lecture
$$v_1 = -1$$
 $v_2 = -2$ $v_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $v_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $v_3 = -1$ $v_4 = -1$ $v_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $v_4 = -1$ $v_4 = -1$ $v_5 = -1$ $v_6 = -1$ $v_7 = -1$ $v_$

$$= -2$$

$$= \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix}$$

$$0 = 7$$

$$-4 & 12 = 7$$

$$-4 & 12 = 7$$

$$-4 & 12 = 7$$

Can any matrix be diagonalized? "No"

$$A_{n\times n}=P\ D\ P^{-1}$$

- A is a square matrix.
- P must be invertible.
 - $|P| \neq 0$
 - Row echelon of P has a pivot in each row/column.
 - A must have n independent eigenvectors.

Condition for diagonalization

An $n \times n$ matrix can be diagonalized if it has n independent eigenvectors

■Thm:

Eigenvectors of a matrix corresponding to different (unequal) eigenvalues are independent.

- If $A_{n \times n}$ has n different eigenvalues \rightarrow Diagonalizable.
- If $A_{n \times n}$ has less than n different eigenvalues \Rightarrow Might be diagonalizable (Check the repeated eigenvalues) eigen space of a single eigenvalue could include more than one vector

Ex: Show that the following matrix is not diagonalizable.

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 trians.

eigenvalues = 1 "repeated"

$$\left|\lambda \mathbf{I} - A\right| = \begin{vmatrix} \lambda - 1 & -2 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$

Sol: Characteristic equation:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$
Eigenvalue: $\lambda_1 = 1$

$$\lambda I - A = I - A = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{Eigenvector: } p_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ Since years}$$

$$\text{Corresp. } t = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

A does not have two (n=2) linearly independent eigenvectors, so A is not diagonalizable.

Ex: (Determining whether a matrix is diagonalizable)

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & (-3) \end{bmatrix}$$
 \(\tag{7.5} = \) \(1 \) \(0 \) \(7 \)

Sol: Because *A* is a triangular matrix,

its eigenvalues are the main diagonal entries.

$$\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -3$$

These three values are distinct, so A is diagonalizable.

What is the process to find the factorization $A = PDP^{-1}$?

Step 2 Find n linearly independent eigenvectors of A.

The standard check is a standard check.

Step 3 Construct the matrix P from the eigenvectors of A.

Step 4 Construct the diagonal matrix D from the corresponding eigenvalues of A.

Ex:
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$

Find a matrix P such that $P^{-1}AP$ is diagonal.

Sol: Characteristic equation:
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & 1 \\ -1 & \lambda - 3 & -1 \\ 3 & -1 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda + 2)(\lambda - 3) = 0$$

Eigenvalues: $\lambda_1 = 2$, $\lambda_2 = -2$, $\lambda_3 = 3$

$$\lambda_{1} = 2$$

$$\Rightarrow \lambda_{1} \mathbf{I} - A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 3 & -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \Rightarrow \text{Eigenvector: } p_{1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\lambda = 2$$

$$\lambda_{2} = -2$$

$$\Rightarrow \lambda_{2} \mathbf{I} - A = \begin{bmatrix} -3 & 1 & 1 \\ -1 & -5 & -1 \\ 3 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{4}t \\ -\frac{1}{4}t \end{bmatrix} = \frac{1}{4}t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow \text{ Eigenvector: } p_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{4}t \\ -\frac{1}{4}t \\ t \end{bmatrix} = \frac{1}{4}t \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} \Rightarrow \text{Eigenvector: } p_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$

$$\lambda_{3} = 3 \Rightarrow \lambda_{3} I - A = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 3 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -t \\ t \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \Rightarrow \text{Eigenvector: } p_{3} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\text{Let } P = \begin{bmatrix} p_{1} & p_{2} & p_{3} \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 4 & 1 \end{bmatrix}$$

$$\Rightarrow D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Ex: (A diagonalizable matrix)

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Sol: Characteristic equation:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -3 & 0 \\ -3 & \lambda - 1 & 0 \\ 0 & 0 & \lambda + 2 \end{vmatrix} = (\lambda - 4)(\lambda + 2)^2 = 0$$

Eigenvalues: $\lambda_1 = 4$, $\lambda_2 = -2$, $\lambda_3 = -2$

$$(1)\lambda = 4 \Rightarrow \text{Eigenvector:} p_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$(2)\lambda = -2 \Rightarrow \text{ Eigenvector: } p_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ p_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Notes:
$$(1) P = [p_2 \quad p_1 \quad p_3] = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$(2) P = \begin{bmatrix} p_2 & p_3 & p_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Computing A^5

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$A^5 = P D^5 P^{-1}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} (4)^5 & 0 & 0 \\ 0 & (-2)^5 & 0 \\ 0 & 0 & (-2)^5 \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & -0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Decoupling

Another application for diagonalization to solve a linear system of differential equations

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of OLDEs (Decoupling)

Example

$$x^2 + 5x + 6 = 0$$

Algebric equation

Solution? (x + 2)(x + 3) = 0x = -2, -3

$$|x - 3| < 1$$

Inequality

Solution?
$$-1 < x-3 < 1$$

 $2 < x < 4$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = t \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$

Differential equation one in History.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$$

Differential equation

Ordinary

Solution?

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Differential equation More from one indep. var.

Partial

What is the solution of the differential equation?

Ex: The kinematic equation

$$v = v_0 + a t$$

$$\frac{dx}{dt} = v_o + \frac{d^2x}{dt^2} t$$

Getting rid of the differentiation

$$x = f(t)$$

Motion along a straight line

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of OLDEs (Decoupling)

Example

Ordinary linear differential equation (OLDE) "with constant coefficients"

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_3 y''' + a_2 y'' + a_1 y' + a_0 y = f(x)$$

Examples:

$$y' = 1 \Rightarrow \frac{dy}{dx} = 1$$
General subset $\Rightarrow y = x + c$

$$\Rightarrow 2 = 0 + c$$

$$\Rightarrow c = 2$$

$$\Rightarrow y = x + 2$$

Given initial conditions

There are different many techniques to solve differential equations

We will only study the simple technique of "separation of variables"

separation of variables
$$\Rightarrow$$
 helps only solving DEs in the form
$$\frac{dy}{dx} = f(x)g(y)$$

$$\frac{1}{g(y)}dy = f(x)dx$$

$$\int \frac{1}{g(y)}dy = \int f(x)dx$$

Ordinary linear differential equation (OLDE)

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of **OLDEs** (Decoupling)

Example

Ex:
$$x' = a x$$

$$\Rightarrow \frac{dx}{dt} = a x$$

$$\frac{1}{x} dx = a dt$$

$$\frac{1}{x} dx = a dt$$

$$\int \frac{1}{x} dx = \int a dt \qquad \qquad x = ce^{at}$$

$$\ln(x) = a t + \ln(c)$$

$$\ln(x) = a t + \ln(c)$$

$$\ln(x) - \ln(c) = a t$$

$$\ln\left(\frac{x}{c}\right) = a t$$

$$\frac{x}{c} = e^{a t}$$

$$x = ce^{at}$$

Solution of
$$x' = a x$$

is $x(t) = c e^{a t}$

Assume two dependent variables x(t) and y(t)

 $V = Ri + L \frac{di}{dt} + \frac{di}{dt} \times V = Ri + L \frac{di}{dt} + \frac{di}{dt} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{dy}{dt}$ - Cet i = ft $V = Ri + L \frac{di}{dt} + \frac{di}{dt} = \frac{dy}{dt} = \frac{dy}{dt}$ - Cet i = ft $V = Ri + L \frac{di}{dt} + \frac{di}{dt} = \frac{dy}{dt} = \frac{dy}{dt}$

Coupled system

Decoupled system

$$\frac{dx}{dt} = -2 x$$

$$\frac{dy}{dt} = y$$

Ordinary linear differential equation (OLDE)

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of OLDEs (Decoupling)

Example

How to decouple?

Coupled system

$$\frac{dx_1}{dt} = a x_1 + b x_2$$

$$\frac{dx_2}{dt} = c x_1 + d x_2$$

$$X' = A X$$

Diagonalizing A:

$$A = P D P^{-1}$$

$$X' = PDP^{-1}X$$

$$P^{-1}X' = P^{-1}PDP^{-1}X$$

$$P^{-1}X' = DP^{-1}X$$

$$P^{-1}X' = DP^{-1}X$$

$$Y' = DY$$

$$\begin{bmatrix} dy_1/dt \\ dy_2/dt \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Decoupled system

$$\frac{\frac{dy_1}{dt} = \lambda_1 y_1}{\frac{dy_2}{dt} = \lambda_2 y_2 \rightarrow y_2 = c_2 e^{\lambda_2 t}}$$

To get
$$X \rightarrow P^{-1}X = Y$$

$$X = P Y$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$= \begin{bmatrix} p_{11} \\ p_{21} \end{bmatrix} + \begin{bmatrix} p_{12} \\ p_{22} \end{bmatrix} = \begin{bmatrix} p_{12} \\ p_{23} \end{bmatrix}$$

$$X = \sum_{i=1}^{n} c_i e^{\lambda_i t} p_i$$

Ordinary linear differential equation (OLDE)

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of **OLDEs (Decoupling)**

Example

e:
$$x'_1 = x_1 - x_2 - x_3$$
 $x_1(0) = 0$
 $x'_2 = x_1 + 3x_2 + x_3$ $x_2(0) = -1$
 $x'_3 = -3x_1 + x_2 - x_3$ $x_3(0) = 10$

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix} \rightarrow |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & 1 \\ -1 & \lambda - 3 & -1 \\ 3 & -1 & \lambda + 1 \end{vmatrix} = 0 \rightarrow \lambda = 2, -2, 3$$

$$\lambda I - A$$
Eigenvector

Eigenvector

$$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$

$$\rightarrow$$

$$\lambda = 3$$

$$\lambda = 3$$

 $\rightarrow \lambda = 2$

$$\rightarrow \lambda = 3$$

Converting Coupled system of OLDEs to decoupled system of **OLDEs (Decoupling)**

Example

Example:
$$x'_1 = x_1 - x_2 - x_3$$
 $x_1(0) = 0$
(Cont.) $x'_2 = x_1 + 3x_2 + x_3$ $x_2(0) = -1$
 $x'_3 = -3x_1 + x_2 - x_3$ $x_3(0) = 10$

$$x_1(0) = 0$$

$$x_2(0) = -1$$

$$X = \sum_{i=1}^{n} c_i e^{\lambda_i t} p_i$$

$$\lambda_1 = 2 \qquad \lambda_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad p$$

$$X = \sum_{i=1}^{n} c_i e^{\lambda_i t} p_i$$

$$\lambda_1 = 2 \qquad \lambda_2 = -2 \qquad \lambda_3 = 3$$

$$p_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \qquad p_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad p_3 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 :

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c_1 e^{2t} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \qquad x_1(t) = -c_1 e^{2t} + c_2 e^{-2t} - c_3 e^{3t} \\ x_2(t) = -c_2 e^{-2t} + c_3 e^{3t} \\ x_3(t) = c_1 e^{2t} + 4c_2 e^{-2t} + c_3 e^{3t}$$

$$x_1(t) = -c_1 e^{2t} + c_2 e^{-2t} - c_3 e^{3t}$$

$$x_2(t) = -c_2 e^{-2t} + c_3 e^{3t}$$

$$x_3(t) = c_1 e^{2t} + 4c_2 e^{-2t} + c_3 e^{3t}$$

Method of separation of variables to solve OLDE

Converting Coupled system of OLDEs to decoupled system of **OLDEs** (Decoupling)

Example

Example: (Cont.)

$$x'_{1} = x_{1} - x_{2} - x_{3}$$

$$x'_{2} = x_{1} + 3x_{2} + x_{3}$$

$$x'_{3} = -3x_{1} + x_{2} - x_{3}$$

General solve.

$$x_1(t) = -c_1 e^{2t} + c_2 e^{-2t} - c_3 e^{3t}$$

$$x_2(t) = -c_2 e^{-2t} + c_3 e^{3t}$$

$$x_3(t) = c_1 e^{2t} + 4c_2 e^{-2t} + c_3 e^{3t}$$

particular/specific solz.

$$x_1(t) = -e^{2t} + 2e^{-2t} - e^{3t}$$

$$x_2(t) = -2e^{-2t} + e^{3t}$$

$$x_3(t) = e^{2t} + 8e^{-2t} + e^{3t}$$

$$x_1(0) = 0 = -c_1 + c_2 - c_3$$

$$x_2(0) = -1 = -c_2 + c_3$$

$$x_3(0) = 10 = c_1 + 4c_2 + c_3$$

System of linear equations in

$$c_1$$
, c_2 , and c_3

$$c_1 = 1$$
 , $c_2 = 2$, $c_3 = 1$

Find the dimension & hasis of the space spanned by the set of vectors

C (13-12-24 13 11+13 2+2-5+1

$$S = \{t^3 - 2t^2 + 3t, t^3 - 4t + 3, 2t^2 + 5t - 1\}$$