These slides are by courtesy of Prof. 李稻葵 and Prof. 郑捷.

Chapter Ten

Intertemporal Choice

In this Chapter?

We apply our method of consumer choices to consumption choices over time

Saving vs borrowing

Present and Future Values

- Two periods: 1 and 2.
- Let r denote the interest rate between these two period
 - -Every consumer can give the bank \$s in period 1. In period 2, the bank gives back \$s(1+r).
 - -s > 0: saving
 - -s < 0: borrowing

Future Value

■ The future value of \$m in period 1 is

$$FV = m(1+r).$$

Present Value

■ The present value of \$m in period 2 is

$$PV = \frac{m}{1+r}$$

The Intertemporal Choice Problem

m₁ and m₂: incomes received in periods 1 and 2.

c₁ and c₂: aggregate consumption in periods 1 and 2

p₁ and p₂: aggregate price in periods 1 and 2.

Intertemporal Choice

Budget in period 1:

$$p_1c_1+s\leq m_1$$

Budget in period 2:

$$p_2c_2\leq m_2+(1+r)s$$

where s is saving in period 1.

Intertemporal Budget Constraint

Combining these two budgets, we get

$$(1+r)p_1c_1+p_2c_2 \leq (1+r)m_1+m_2$$

This is known as the intertemporal budget constraint, expressed in future value, i.e. in period 2 dollars.

Intertemporal Budget Constraint

Equivalently, we may write down the intertemporal budget constraint expressed in present value, i.e. in period 1 dollars:

$$p_1c_1 + \frac{p_2}{1+r}c_2 \leq m_1 + \frac{m_2}{1+r}$$

Intertemporal Budget Line

Inflation

 \square Define the inflation rate π as

$$1+\pi=p_2/p_1$$

 $\square \pi = 0.05$ means 5% inflation

Inflation

- We can define the amount of consumption that costs \$1 in period 1 as one "basket".
- Then price of c_1 is \$1 per basket. Price of a basket of consumption in period 2 is \$ $p_2 = 1 + \pi$.
- The budget constraint:

$$c_1 + \frac{1+\pi}{1+r}c_2 \leq m_1 + \frac{m_2}{1+r}$$

Inflation

The slope of the budget line

$$c_1 + \frac{1+\pi}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

is
$$-(1+r)/(1+\pi)$$

Real Interest Rate

Define the real interest rate

$$\rho \coloneqq \frac{r-\pi}{1+\pi}$$

We can verify

$$1 + \rho = (1 + r)/(1 + \pi)$$

■ So the slope of the intertemporal budget line is $-(1 + \rho)$

Summary

- We treat intertemporal choices as regular consumer choice problems by letting the prices be p_1 and $p_2/(1+r)$.
- Analysis can be performed as in previous chapters.
- You may skip materials after the section "Present Value: A Closer Look".