Observações:

- i) Todas as questões devem estar justificadas.
- ii) As respostas devem estar na folha de respostas, por favor, coloque seu nome nela.
- iii) É terminantemente proibido o contato entre alunos, seja por via eletrônica ou não.
- iv) Somente será permitida a saída após 1(uma) hora de prova.
- 1- Considere os pontos $A = (-1,0,2), \quad B = (-2,2,-1), \quad C = (2,0,1), \quad e \quad D = (1,1,7), \text{ a reta}$

$$r_1: \begin{cases} x = 1 + 2t \\ y = 1 - 3t \\ z = 1 - 2t \end{cases}, \quad t \in \mathbb{R},$$

o plano

$$\pi : x - 2y + 4z = 1,$$

e os vetores

$$\overrightarrow{u} = (0, -2, 1), \quad \overrightarrow{v} = (-1, 2, 1) \quad e \quad \overrightarrow{w} = (-7, 3, 2).$$

- (a) [1,0] Encontre a equação paramétrica da reta s que passa por A, é paralela ao plano π e é perpendicular ao vetor \overrightarrow{u} .
- (b) [1,0] Determine a posição relativa entre r_1 e π .
- (c) [0,5] Determine a distância entre $r_1 \in \pi$.
- (d) [1,0] Existe um ponto $P \in \pi$ tal que $dist(P, r_1) = dist(r_1, \pi)$? Em caso afirmativo, exiba um tal ponto.
- (e) [0,5] Determine o ângulo (ou seno ou o cosseno do ângulo) entre r_1 e π .
- (f) [0,5] Os pontos A, B, C, D são coplanares?
- (g) [1,5] É possível escrever \overrightarrow{u} como combinação linear de \overrightarrow{v} , \overrightarrow{w} ? Geometricamente, o que sua respost significa? No caso de sua resposta ser afirmativa, escreva \overrightarrow{u} como combinação linear de \overrightarrow{v} e \overrightarrow{w} .
- 2- Considere as retas reversas $r_1: \left\{ \begin{array}{l} x=1+2t \\ y=1-3t \\ z=1-2t \end{array} \right., \quad t\in \mathbb{R}, \quad r_2: \left\{ \begin{array}{l} x=-1+t \\ y=2 \\ z=-t \end{array} \right., \quad t\in \mathbb{R}.$
 - (a) [0,5] Determine as equações dos planos paralelos π_1, π_2 tais que $r_1 \subset \pi_1$ e $r_2 \subset \pi_2$.
 - (b) [0,5] Encontre um plano π tal que $dist(\pi, \pi_1) = 3 \ dist(\pi, \pi_2)$
 - (c) [0,5] Determine a distância entre r_1 e r_2 .
 - (d) [1,5] Encontre pontos $P_1 \in r_1$ e $P_2 \in r_2$ tal que $dist(r_1, r_2) = dist(P_1, P_2)$.
 - (e) [1,0] Os pontos P_1 e P_2 do item anterior são únicos?
- 3- [1,5] O plano $\pi: x-y+4z=3$ secciona uma esfera S de raio 5 segundo um círculo de raio 4 centrado no ponto E=(0,1,1). Encontre a equação reduzida de todas tais esferas.

Boa Prova!