Busca Informada

Samara Ribeiro Silva

Instituto Tecnológico de Aeronáutica, Laboratório de Inteligência Artificial para Robótica Móvel (CT-213). Professor Marcos Ricardo Omena de Albuquerque Máximo, São José dos Campos, São Paulo, 22 de março de 2021.

Os algoritmos de busca utilizados foram o Dijkstra, A* e Greedy. Os algoritmos foram implementados conforme ensinado em aula, adicionando apenas a variável *closed* para indicar que o *node* já havia sido finalizado para suprir a falta de uma função para editar o *node* na fila de prioridade.

O algoritmo Dijkstra verifica o custo de todas as arestas do nó e caso o custo acumulado (custo para percorrer do ínicio até o nó em questão) do nó sucessor \mathcal{C}_s seja maior que o custo do nó analisado \mathcal{C} somado com o custo da aresta \mathcal{C}_a o custo do nó sucessor é atualizado para $\mathcal{C}_s = \mathcal{C} + \mathcal{C}_a$. Para esse laboratório não foi necessário encontrar todos os custos acumulados, portanto o programa retorna o caminho e o custo do caminho quando chega no nó objetivo. Vale ressaltar que esse algoritmo encontra a solução ótima.

Já o algoritmo A* utiliza uma estimativa de custo total do caminho utilizando uma função heurística h(n). Essa função h(n) é dependente do problema e deve ser admissível, ou seja, a estimativa ser otimista para garantir a solução ótima. A grande diferença entre o A* e o Dijkstra e o Custo do nó sucessor. Para realizar a atualização do valor do nó sucessor no A* utilizamos que o custo do nó sucessor deve ser maior que o custo acumulado do nó analisado somado com o custo da aresta e o valor da função heurística para o nó sucessor: se $C_s > C + C_a + h(n_s)$ o valor de C_s é atualizado para $C_s = C + C_a + h(n_s)$.

O algoritmo de busca Greedy encontra uma solução subótima e difere dos outros dois pois considera primeiro os nós mais promissores através de uma função heurística ou seja a valor da prioridade utilizada como critério para a saída da fila de prioridade é o valor da função heurística.

Nas figuras 1, 2 e 3 é possível observar os resultados dos algoritmos implementados com os valores do custo computacional e o custo do caminho encontrado. Na tabela 1, são mostrados os resultados dos algoritmos com n=100.

Tabela 01: Resultados obtidos após a simulação de Monte Carlos com número de repetições $n\,=\,100$.

Algoritmo	Tempo computacional (s)		Custo do caminho	
	Média	Desvio padrão	Média	Desvio padrão
Dijkstra	0. 245306	0. 245306	79. 829197	38. 570924
Greedy Search	0. 008869	0. 007524	103.34198	59. 409721
A*	0.064373	0. 063546	79. 829197	38. 570962