Московский	государстве	нный униве	ерситет имен	ни М.В.	Ломоносова
Факул	ьтет вычисл	ительной ма	атематики і	и киберн	етики

Отчет о практической работе по курсу

Суперкомпьютерное моделирование и технологии

Студент: Шевляков И.А. 619/2

Содержание

1	Постановка задачи	3
2	Численные методы	4
3	Разностная схема	5
4	Алгоритм решения 4.1 Последовательный	6 6 7
5	Численные эксперименты	7

1 Постановка задачи

Область \mathcal{D} - трапеция с вершинами в точках (0,0),(0,3),(2,3),(3,0). В области \mathcal{D} решается уравнение Пуассона:

$$-\Delta u = f(x,y)$$

С оператором Лапласа

$$-\Delta u=rac{d^2u}{dx^2}+rac{d^2u}{dy^2}$$
 $f(x,y)=1\,$ в $\mathcal D$ $u(x,y)=0$ на границе $\mathcal D$

Цель: найти u, являющееся численным решением уравнения Пуассона.

2 Численные методы

Для решения задачи будет использован метод фиктивных областей. В качестве фиктивной области будет прямоугольник Π с вершинами в точках (0, 0), (0, 3), (3, 3), (3, 0), который содержит в себе область \mathcal{D} .

Фиктивная область: $\hat{D} = \prod \backslash \overline{D}$

Задача Дирихле сводится к:

$$-\frac{\partial}{\partial x}(k(x,y)\frac{\partial v}{\partial x}) - \frac{\partial}{\partial y}(k(x,y)\frac{\partial v}{\partial y}) = F(x,y) \tag{1}$$

где
$$\begin{bmatrix} k(x,y) = 1 & (x,y) \in D \\ k(x,y) = \frac{1}{\varepsilon} & (x,y) \in \hat{D} \end{bmatrix}$$

$$\begin{bmatrix} F(x,y) = 1 & (x,y) \in D \\ F(x,y) = 0 & (x,y) \in \hat{D} \end{bmatrix}$$

v(x,y) равномерно приближает решение u(x,y) для некоторого C>0:

$$\max_{(x,y)\in\overline{D}}|v(x,y) - u(x,y)| < C\varepsilon \tag{2}$$

3 Разностная схема

Данную задачу можно решить методом конечных разностей. В замыкании Π определяется сетка $\omega_h=\omega_1\times\omega_2$

$$\omega_1 = \{x_i = A_i + ih_1, i = \overline{0, M}\}\$$

$$\omega_2 = \{y_i = A_2 + jh_2, i = \overline{0, N}\}\$$

Где

$$h_1 = \frac{B_1 - A_1}{M} \quad h_2 = \frac{B_2 - A_2}{N} \tag{3}$$

Уравнение (1) аппроксимируется:

$$-\frac{1}{h_1}\left(a_{i+1j}\frac{\omega_{i+1j}-\omega_{ij}}{h_1}-a_{ij}\frac{\omega_{ij}-\omega_{i-1j}}{h_1}\right)-\frac{1}{h_2}\left(b_{ij+1}\frac{\omega_{ij}+1-\omega_{ij}}{h_2}-b_{ij}\frac{\omega_{ij}-\omega_{ij-1}}{h_2}\right)=F_{ij}$$
(4)

$$i = \overline{1, M - 1} \quad j = \overline{1, N - 1} \tag{5}$$

Левая часть:

$$a_{ij} = \frac{1}{h_2} \int_{j-\frac{1}{2}}^{j+\frac{1}{2}} k(x_{i-\frac{1}{2}}, t) dt$$
 (6)

$$b_{ij} = \frac{1}{h_1} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} k(t, y_{j-\frac{1}{2}}, t) dt$$
 (7)

Правая часть:

$$F_{ij} = \frac{1}{h_1 * h_2} \iint_{\prod_{ij}} F(x, y) dx dy; \quad \prod_{ij} = \{(x, y) : x_{i - \frac{1}{2}} \le x \le x_{i + \frac{1}{2}}, y_{j - \frac{1}{2}} \le y \le y_{j + \frac{1}{2}}\}$$
(8)

Для решения исходной задачи нужно решить полученное СЛАУ итерационным методом, например, при помощи метода скорейшего спуска.

Алгоритм решения 4

4.1 Последовательный

Для численного решения задачи необходимо вычислить значения коэффициентов a_{ij}, b_{ij}, F_{ij}

Значения a_{ij}, b_{ij} считаются аналитически, если соответствующие им отрезки $(x_{i-\frac{1}{2}},y_{j-\frac{1}{2}})$ - $(x_{i-\frac{1}{2}},y_{j+\frac{1}{2}})$ и $(x_{i-\frac{1}{2}},y_{j-\frac{1}{2}})$ - $(x_{i+\frac{1}{2}},y_{j-\frac{1}{2}})$ выходят за границу \mathcal{D} F_{ij} считается как $h_1*h_2*S_{ij}$, где $S_{ij}=mes(\prod_{ij}\cap D)$

Прямоугольник в текущей итерации может занять 6 позиций относительно трапеции:

- все вершины внутри трапеции 1 вариант
- внутри трапеции 3 вершины 1 вариант
- внутри трапеции 2 вершины 2 варианта
- внутри трапеции 1 вершина 1 вариант
- никакая вершина не в трапеции 1 вариант

4.2 Параллельный

Для параллельных вычислений используется OpenMP, а именно:

- 1) директива pragma omp parallel for для обычного цикла.
- 2) директива pragma omp parallel for collapse(2) для вложенного цикла

Помимо OpenMP для параллельности использовался механизм MPI: сетка разбивалась на подсетки (в зависимости от числа процессов), на которых параллельно решалась поставленная задача. Использовались директивы MPI_* библиотеки mpi.h.

Также была был выполнен эксперимент с реализацией MPI+GPU. В этом случае поверх кода MPI использовались следующие директвы:

- pragma acc data сору копирование на устройство.
- pragma acc parallel loop при распараллеливании циклов. Если цикл двойной использался суффикс collapse(2).
- pragma acc update self обновление хоста.
- pragma acc update device обновление на устройстве.

5 Численные эксперименты

Вычисления проводились на комплексе Polus.

В качестве погрешности для останова был взял параметр $\delta=1e-7$. Для теста на сетке MxN=160x180 - параметр $\delta=5*(1e-8)$

Параметр $\varepsilon = \max(h_1, h_2)^2$

Рассчеты были проведены на сгущающихся сетках (M,N) со значениями (10,10), (20,20), (40,40), (80,90), (160,180)

Число нитей	Размер сетки М х N	Число итераций	Время (сек)	Ускорение
1	10x10	1578	0.0025679	1
1	20x20	22336	0.156556	1
1	40x40	248324	11.3963	1
4	40x40	248324	6.34567	1.795917
16	40x40	248324	5.90423	1.930192

Дла следующих таблиц параметр $\delta = 9e - 8$ OMP:

Число нитей	Размер сетки М х N	Число итераций	Время (сек)	Ускорение
1	80x90	2196576	897.983	1
2	80x90	2196576	1380.891	0.650
4	80x90	2196576	495.589	1.812
8	80x90	2196576	273.397	3.284
16	80x90	2196576	164.081	5.473
1	160x180	377170	601.213	1
4	160x180	377170	324.259	3.684052
8	160x180	377170	168.863	6.575054
16	160x180	377170	90.447	6.647
32	160x180	377170	130.653	4.601

MPI:				
Количество				
MPI				
процессов	Размер сетки М х N	Число итераций	Время (сек)	Ускорение
1	80x90	2196576	1236.829	1
2	80x90	2196576	637.877	1.938
4	80x90	2196576	329.42	3.754

377170

377170

377170

854.711

324.259

221.473

2.635

3.859

160x180

160x180 160x180

OMP+MPI:

OWII WII I.					
Количество МРІ процессов	Число нитей	Размер сетки М х N	Число итераций	Время (сек)	Ускорение
1	1	80x90	2196576	897.983	1
2	1	80x90	2196576	1528.171	0.587
2	2	80x90	2196576	533.754	1.682
2	4	80x90	2196576	306.260	2.932
2	8	80x90	2196576	265.169	3.386
1	1	160x180	377170	601.213	1
4	1	160x180	377170	347.509	1.730
4	2	160x180	377170	175.196	3.431
4	4	160x180	377170	221.473	2.714
4	8	160x180	-	-	-

По неизвестным причинам на 4 процессах и 8 нитях происходит слишком сильное замедление работы программы, из-за чего выполнение на polus идет >3 часов. Было протестировано на компиляторах mpic++, mpiCC, mpicxx, mpixlC.

MPI+GPU:

Для реализации MPI+GPU использовался пакет OpenACC. Тесты проводились на решетке $160\mathrm{x}180$.

МРІ процессы	GPU	Размер сетки М х N	Время (сек)
1	1	160x180	177.753
2	2	160x180	133.371

Графики, отображающие зависимость ускорения от числа нитей ОМР:

Графики, отображающие зависимость ускорения от числа процессов МРІ:

Графики, отображающие зависимость ускорения от числа процессов MPI х числа нитей OpenMP:

Визуализация полученного решения (в виде изолиний):

Из результатов видно, что реализация через MPI+GPU позволяет получить наименьшее время выполнения.