Clasificación supervisada de textos de ficción usando bosques aleatorios

Lic. Santiago García Sánchez

Mg. Diego Marfetán Molina

Mg. Marcos Miguel Prunello

Introducción

- **Aprendizaje automático /** *machine learning*: Estudio y aplicación de algoritmos que descubren patrones presentes en datos provistos como entrada.
 - Aprendizaje no supervisado: Variables explicativas X1, X2... Xn
 - Aprendizaje supervisado: Variables explicativas X1, X2... Xn y variable respuesta Y
- Clasificación de textos: Proceso por el cual documentos son asignados a categorías.
 - Documento: Unidad de datos textuales (libro, noticia, e-mail, etc.)
 - Corpus: Conjunto de documentos.

Objetivos

• **Objetivo principal**: Construir un clasificador que permita categorizar obras de ficción en español dentro de géneros literarios predeterminados.

- Objetivos secundarios:
 - Plantear distintos escenarios de análisis y evaluar el desempeño del algoritmo en cada uno de ellos.
 - Determinar qué géneros presentaron un mayor % de unidades correctamente clasificadas.
 - Calcular qué variables resultaron más importantes para el proceso de clasificación.

Metodología

- Conjunto de datos:
 - Obras de ficción en español o traducidas.
 - <u>Fuentes</u>: 9 sitios web con libros sin derechos de autor.
 - Se recolectan con
- rvest

- Etiquetado:
 - Se toma la etiqueta más frecuente de

Análisis de textos

> Preprocesamiento:

- Importar los textos al software.
- Limpieza de los documentos.
- Conversión a minúsculas:

•
$$\{A, B, ... Z\}$$
 $\longrightarrow \{a, b, ... z\}$

- Eliminar palabras no deseadas:
 - Preposiciones, conjunciones, artículos, etc.

> Lematización:

{amigo, amiga, amigos, amigas} → amigo {alto, alta, altos, altas} → alto

{hago, haces, hacemos....} → hacer

> Segmentación / tokenización:

- <u>Token</u>: Unidad significativa de texto:
 - Caracteres.
 - Palabras.
 - *n*-gramas (Secuencia de *n* palabras consecutivas)

Segmentación en palabras / unigramas:

Segmentación en bigramas:

Análisis de textos

> Construcción de atributos:

❖ Primer enfoque: <u>Frecuencia de términos (T.F. o F.T.)</u>: Frecuencia absoluta del término *t* en el documento *d*:

- $tf(t, d) = f_d(t)$
- Enfoque bolsa de palabras (bag of words):

"Hay un perro, un gato y un pez"

Palabra	Frecuencia
Un	3
Hay	1
Perro	1
Gato	1
Y	1
Pez	1

Análisis de textos

- > Construcción de atributos:
- * Segundo enfoque: Frecuencia de término frecuencia inversa de documento (TF-IDF):
 - tf-idf(t,d) = tftd x idft
 - Donde: $idf_t = \ln(\frac{n^{\circ} \text{ total de documentos en el corpus}}{n^{\circ} \text{ de documentos que contienen a t}})$
 - Mayores valores —> Términos muy frecuentes en unos pocos documentos.
 - Menores valores —> Términos que aparecen en muchos documentos o con baja frecuencia.

> Filtro:

- Se piensa que los nombres propios pueden llevar al sobreajuste del modelo.
- Se recurre al diccionario de la RAE eliminando términos que no figuren en él.
- Para cada escenario, se añade una variante en la que se aplicó el filtro.

> Total: 8 escenarios.

Escenario	Tokenización	Estadística	Filtro
A	Unigramas	Frecuencia	No
В	Bigramas	Frecuencia	No
С	Unigramas	TF-IDF	No
D	Bigramas	TF-IDF	No
Е	Unigramas	Frecuencia	Si
F	Bigramas	Frecuencia	Si
G	Unigramas	TF-IDF	Si
Н	Bigramas	TF-IDF	Si

	Token 1	Token 2	:	Token n
Documento 1	Estadística	Estadística		Estadística
Documento 2	Estadística	Estadística		Estadística
Documento m	Estadística	Estadística		Estadística

Aprendizaje automático

Árboles de decisión

< 27 >= 17 < 17 crimen < 22 >= 22 Ficción histórica Aventura Policial Romance

Bosques aleatorios

Aprendizaje automático

Árboles de decisión

- Algoritmo utilizado: CART
 - Intenta minimizar el índice de Gini:

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- ✓ Rápido, flexible, robusto y fácil de interpretar.
- X Peor desempeño comparado a otras técnicas.

Aprendizaje automático

• Mejora la técnica anterior al combinar los resultados de múltiples árboles.

- ✓ Muy buen desempeño en clasificación.
- X Más complejo y lento de entrenar.
- X Más difícil de interpretar.
 - Se recurre al índice de Gini.

Bosques aleatorios

Resultados

Escenario	Árboles de decisión		Bosques aleatorios	
	Kappa	Precisión	Kappa	Precisión
A	0,33	43%	0,57	64%
В	0,30	41%	0,41	51%
С	0,16	30%	0,51	59%
D	0,24	37%	0,39	50%
E	0,23	36%	0,58	64%
F	0,21	35%	0,38	48%
G	0,33	43%	0,42	52%
Н	0,24	37%	0,36	47%

		Unigramas	Bigramas
Sin	Frecuencia	64%	51%
filtro	TF-IDF	59%	50%
Con	Frecuencia	64%	48%
filtro	TF-IDF	52%	47%

Resultados

Conclusiones

- Se logró el objetivo de plantear un modelo para clasificar automáticamente textos de ficción.
 - La mayor precisión alcanzada fue 64%.
- Corpus conformado por 746 obras de ficción pertenecientes a 7 géneros.
- Ocho escenarios de análisis, mejores resultados en general con unigramas, frecuencia de términos y sin filtrar nombres propios.
 - Los bosques aleatorios presentaron resultados muy superiores a los árboles de decisión.
- Precisión muy distinta según clase, variando entre 26% y 82%.

Conclusiones

- En futuras investigaciones, se podrían aplicar nuevos métodos al mismo conjunto de datos y contrastar los resultados.
 - Ejemplos:
 - O Nuevos enfoques: Análisis de sentimientos.
 - O Nuevas técnicas: Boosting.

Bibliografía y código

https://github.com/SGS2000/tesina-bosques-aleatorios