Package 'Alleloscope'

October 25, 2020

2 Createobj

AssignClones_ref

Using marker regions to assign each cell into c reference subclones

Description

rhohats, the tahats, snpCoverages are n by m matrices for n cell and m marker regions. The genotypes (rho, the ta) are: $1.(0.5,0);\ 2.(0.5,1);\ 3.(1,0);\ 4.(1,0.5);\ 5.(1,1);\ 6.(1.5,0);\ 7.(1.5,1/3);\ 8.(1.5,2/3);\ 9.(1.5,1);\ 10.(2,0);\ 11.(2,1/4);\ 12.(2,2/4);\ 13.(2,3/4);\ 14.(2,4/4) 15.(2.5,0);\ 16.(2.5,1/5);\ 17.(2.5,2/5);\ 18.(2.5,3/5);\ 19.(2.5,4/5);\ 20.(2.5,1);\ 21.(3,0);\ 22.(3,1/6);\ 23.(3,2/6);\ 24.(3,3/6);\ 25.(3,4/6);\ 26.(3,5/6);\ 27.(3,6/6)$

Usage

```
AssignClones_ref(
  rhohats,
  thetahats,
  snpCoverages,
  priorCloneProbs = NULL,
  clone.genotypes,
  sigma.rho
)
```

Arguments

rhohats: n by m matrix of rho_hat values for each cell across the regions.

thetahats: n by m matrix of theta_hat values for each cell across the regions.

snpCoverages: n by m matrix of total read counts covering SNPs for each cell across the

regions.

priorCloneProbs:

A numeric vector indicating prior prior probability of each subclone.

clone.genotypes:

c by m matrix of numbers representing different genotypes for each clone

and each maker region (known from scDNA-seq).

sigma.rho: Numeric. Standard deviation of the rho_i values under normal distribu-

tion.

Createobj

Generate Alleloscope object for analysis

Description

Generate Alleloscope object for analysis

EM 3

Usage

```
Createobj(
  alt_all = NULL,
  ref_all = NULL,
  var_all = NULL,
  samplename = "sample",
  genome_assembly = "GRCh38",
  dir_path = "./",
  barcodes = NULL,
  size = NULL,
  assay = "scDNAseq"
)
```

Arguments

alt_all A SNP by cell read count matrix/ spare matrix for the alternative alleles.

ref_all A SNP by cell read count matrix/ spare matrix for the reference alleles.

samplename Sample name for the data.

genome_assembly

The genome assembly used for sequencing alignment. (ex: "GRCh38" or

"GRCh37")

dir_path Path of the output directory.

barcodes A matrix/ data.frame with barcodes for each cell in the first column.

size A numeric vector for the size (bp) of different chromosomes (with the

names indicating which chromosome from 1 to 22)

assay A character indicating the type of sequencing data. (ex: "scDNAseq" or

"scATACseq")

vcf_all A matrix/ data.frame of the vcf format for SNP information. (The length

and order are the same as nrow(alt_all) and nrow(alt_all))

Value

A Alleloscope object including the necessary information.

ΕM

Iterative phasing and theta_hat estimation

Description

Iterative phasing and theta_hat estimation

Usage

```
EM(ref_table, alt_table, max_iter = max_iter, seed = 2020)
```

Arguments

$ref_{ extsf{-}}table$	A SNP by cell read count matrix/ spare matrix for the reference alleles.
alt₋table	A SNP by cell read count matrix/ spare matrix for the alternative alleles.
$\max_{_}$ iter	An integer of maximum iteration number.
seed	An integer of random seed number for EM initialization.

Est_regions

Value

A list of estimated indicators (I_hat) for each SNP and estimated major haplotype proportion (theta_hat) for each cell in one region. I_hat is the phasing result indicating whether reference allele is on the major haplotype for each SNP. Theta_hat represents the CNV states for each cell. A cell is considered as a CNV carrier if its theta_hat depart from 0.5.

Est_regions $Perform\ EM\ iterations\ on\ the\ filtered\ cells\ with\ barcodes,\ and\ plot\ the\ results\ for\ each\ region.$

Description

Perform EM iterations on the filtered cells with barcodes, and plot the results for each region.

Usage

```
Est_regions(
   Obj_filtered = NULL,
   max_nSNP = 30000,
   plot_stat = TRUE,
   min_ncell = 20,
   rds_path = NULL,
   cont = FALSE,
   max_iter = 50,
   phases = NULL
)
```

Arguments

Obj ₋ filtered	An Alleloscope object with allele and segment information for estimating cell major haplotype proportion (theta_hat) for each region.
max_nSNP	Integer. Maximum SNP number used for estimating theta_hat for a region.
plot_stat	Logical (TRUE/ FALSE). Whether or not to plot the statistics and EM results for each region.
min_ncell	Integer. Filter out the cells with reads; min_ncells.
$rds_{\mathtt{-}}path$	The path for saving the rds files for the estimated results for each region.
cont	Logical (TRUE/FALSE). Whether or not to skip the regions with the rds files in the specified rds_path.
$\max_{_}$ iter	Integer. Maximum numbers of EM iterations.
phases	List. The estimated phase indicators (I_j) of each SNP across all regions.

Value

A "rds_list" of the estimated SNP phases (I_hat), estimated cell major haplotype proportion (theta_hat) for all regions.

Genotype 5

Genotype	Genotype each cell for each region and plot the genotypes.	

Description

Genotype each cell for each region and plot the genotypes.

$_{ m Usage}$

```
Genotype(Obj_filtered = NULL, xmax = NULL, plot_path = NULL, ref_gt = NULL)
```

Arguments

Obj_filtered An Alleloscope object with a n cell by (m region * 2) genotype_values ma-

trix and seg_table_filtered matrix. Every 2 columns in the genotype_table

matrix are (rho_hat, theta_hat) of each region.

xmax An integer for the x-axis maximum limit.

plot_path The path for saving the plot.

ref_gt A reference "genotypes" (from scDNA-seq) to help with genotype estima-

tion.

Value

A list of ggplot objects of the genotyping results for all the regions.

genotype_conf Compute confidence scores based on posterior probability y cell in a region.	or each
--	---------

Description

Compute confidence scores based on posterior probability for each cell in a region.

Usage

```
genotype\_conf(X = NULL, gt = NULL)
```

Arguments

X: A ncell by 2 dataframe. Column 1: normalized coverage (rho_hat); Col-

umn 2: theta_hat

gt: A vector of lenth ncell. The numbers represent cell-level allele-specific

copy number states.

Value

A lineage tree plot constructed using cell-level haplotype profiles across all regions.

Genotype_value

Genotype_value	Normalize coverage using identified/ specified normal cells and one normal region and generate a table with (rho_hat, theta_hat) of each cell for all regions.
	of each cent for an regions.

${\bf Description}$

rho_hat: Relative coverage change for each cell in a region theta_hat: Major haplotype proportion fir each cell in a region

Usage

```
Genotype_value(
   Obj_filtered = NULL,
   type = "tumor",
   raw_counts = NULL,
   ref_counts = NULL,
   cov_adj = 1,
   ref_gtv = NULL
)
```

Arguments

Obj_filtered	An Alleloscope object with theta_hat info in the rds_list and identified/specified normal cells and a normal region
type	Specify whethere the sample is a "tumor" or "cellline". If "type" is a "cellline", param "ref_counts" needs to be specified for normal sample.
raw_counts	(required) A large binned coverage matrix (m1 bin by n1 cell) with values being read counts for all chromosomal regions of tumor sample.
ref_counts	(required only when type = "cellline") A binned coverage matrix (m2 bin by n2 cell) with values being read counts for all chromosomal regions of normal sample. $n2$ can be 1 for bulk sample.
cov_adj	An integer for coverage adjustment for tumor cells.
ref_gtv	A reference "genotype_values" (from scDNA-seq) to help with rho_i estimation.

Value

(rho_hat, theta_hat) of each cell for all region in the "genotype_values". Every 2 columns in the genotype_table are (rho_hat, theta_hat) of each region. Each row is a cell.

Lineage_plot 7

Lineage_plot Generate genotype plot (scatter plot) for each region and sat the plot directory.	e in
--	------

Description

Generate genotype plot (scatter plot) for each region and save in the plot directory.

Usage

```
Lineage_plot(
   Obj_filtered = NULL,
   nSNP = 2000,
   clust_method = "ward.D2",
   nclust = 5,
   plot_conf = FALSE,
   plot_path = NULL
)
```

Arguments

Obj ₋ filtered	An Alleloscope object with a n cell by (m region * 2) genotype_values matrix and seg_table_filtered matrix. Every 2 columns in the genotype_values matrix are (rho_hat, theta_hat) of each region.
nSNP	An integer for the minimum number of SNPs across segments. Segments with the number of SNPs ; nSNP are excluded.
${\tt clust_method}$	Method for clustering. Please refer to the "pheatmap" function.
nclust	An integer for the number of subclones gapped in the plot.
plot_conf	Logical (TRUE/FALSE). Whether or not to plot the confidence scores under the lineage tree.
plot_path	The path for saving the plot.

Value

A lineage tree plot constructed using cell-level genotypes across all regions.

Matrix_filter	Filter object based on cell number for each SNP, SNP number for each cell, SNP variant allele frequency, and exclude the centromere and telomere regions.

Description

Filter object based on cell number for each SNP, SNP number for each cell, SNP variant allele frequency, and exclude the centromere and telomere regions.

8 Rundf_dna

Usage

```
Matrix_filter(
   Obj = NULL,
   cell_filter = 5,
   SNP_filter = 10,
   min_vaf = 0,
   max_vaf = 1,
   centro = NULL,
   telo = NULL,
   plot_stat = TRUE,
   plot_vaf = TRUE
)
```

Arguments

0bj	An Alleloscope object.
$cell_filter$	An integer of minimum cell number for SNP selection.
SNP_filter	An integer of minimum SNP number for cell selection.
min_vaf	A numerical value in the range $(0,1)$ of minimum SNP variant allele frequency in the pseudo bulk for SNP selection.
max_vaf	A numerical value in the range $(0,1)$ of mzsimum SNP variant allele frequency in the pseudo bulk for SNP selection.
centro	A Matrix/ data.frame of centromere information.
telo	A Matrix/ data.frame of telomere information.
plot_vaf	Logical (TRUE/FALSE). Whether or not to plot the variant allele frequency for the pseudo bulk for all the chromosomes.

Value

A Alleloscope object after the filtering.

Rundf_dna

Run all steps for scDNA-seq data

Description

Run all steps for scDNA-seq data

Usage

```
Rundf_dna(
   alt_all = NULL,
   ref_all = NULL,
   var_all = NULL,
   samplename = "sample",
   genome_assembly = "GRCh38",
   dir_path = "./",
   barcodes = NULL,
   size = NULL,
```

Rundf_dna 9

```
assay = "scDNAseq",
raw_counts = NULL,
ref_counts = NULL,
type = "tumor",
cell_filter = 5,
SNP_filter = 10,
min_vaf = 0,
max_vaf = 1
```

Arguments

A SNP by cell read count matrix/ spare matrix for the alternative alleles. alt_all ref_all A SNP by cell read count matrix/ spare matrix for the reference alleles. Sample name for the data. samplename

genome_assembly

The genome assembly used for sequencing alignment. (ex: "GRCh38" or "GRCh37")

dir_path Path of the output directory.

barcodes A matrix/ data.frame with barcodes for each cell in the first column.

A numeric vector for the size (bp) of different chromosomes (with the size

names indicating which chromosome from 1 to 22)

assay A character indicating the type of sequencing data. (ex: "scDNAseq" or

"scATACseq")

A large binned coverage matrix (m1 bin by n1 cell) for all chromosomal raw_counts

regions of tumor sample.

ref_counts A large binned coverage matrix (m2 bin by n2 cell) for all chromosomal

regions of normal sample.

Specify whethere the sample is a "tumor" or "cellline". If "type" is a type

"cellline", param "ref_counts" needs to be specified for normal sample.

cell_filter An integer of minimum cell number for SNP selection.

SNP_filter An integer of minimum SNP number for cell selection.

min_vaf A numerical value in the range (0,1) of minimum SNP variant allele fre-

quency in the pseudo bulk for SNP selection.

A numerical value in the range (0,1) of mzsimum SNP variant allele fremax_vaf

quency in the pseudo bulk for SNP selection.

vcf_all A matrix/data.frame of the vcf format for SNP information. (The length

and order are the same as nrow(alt_all) and nrow(alt_all))

Value

A Alleloscope object including the necessary information.

10 Segments_filter

Segmentation	HMM segmentation based on coverage matrix for paired tumor
	and normal sample.

Description

If there is no paired normal, other normal sample with the same genome coordinate also works.

Usage

```
Segmentation(
  Obj_filtered = NULL,
  raw_counts = NULL,
  ref_counts = NULL,
  plot_seg = TRUE
)
```

Arguments

Obj_filtered An Alleloscope object.

raw_counts A binned coverage matrix (m1 bin by n1 cell) with values being read

counts in DNA sequencing data for all chromosomal regions of tumor

sample. n1 can be 1 for bulk sample.

ref_counts A binned coverage matrix (m2 bin by n2 cell) with values being read

counts in DNA sequencing data for all chromosomal regions of normal sample. n2 can be 1 for bulk sample. Numbers of bins (rows) should be

the same in the paired chromosomal regions for the paired samples

plot_seg Logical (TRUE/FALSE). Whether or not to plot the segmentation result.

Value

A Alleloscope object with "seg_table" added.

Segments_filter Select the segments in the "seg_table" with more than nSNP

Description

Select the segments in the "seg_table" with more than nSNP

Usage

```
Segments_filter(Obj_filtered = NULL, nSNP = 2000)
```

Arguments

Obj_filtered An Alleloscope object with SNP info and raw segmentation table "seg_table".

nSNP An integer of minimum number of SNPs for region selection.

Select_normal 11

Value

A Alleloscope object with "seg_table_filtered" added.

Select_normal Identify candidate normal cells and normal regions for cell coverage normalization	Select_normal	Identify candidate normal cells and normal regions for cell coverage normalization
--	---------------	--

Description

Identify candidate normal cells and normal regions for cell coverage normalization

Usage

```
Select_normal(Obj_filtered = NULL, raw_counts = NULL, cell_nclust = 5)
```

Arguments

Obj_filtered An Alleloscope object with major haplotype proportion (theta_hat) for

each cell of each region in the "rds_list".

raw_counts A large binned coverage matrix (bin by cell) with values being read counts

for all chromosomal regions of tumor sample.

Value

A Alleloscope object with a "select_normal" list added. A "select_normal" list includes "barcode_normal": Barcodes of the identified normal cells in the tumor sample. "region_normal": A vector of ordered potential normal regions for selection. (1st is the most possible.) "region_normal_rank": A table with the potential "normal regions" for the k clusters from hierarchical clustering. "k_normal": An integer indicates the kth cluster that is idenfied as "normal cells"