MMP2 Cheatsheet

Denis Titov

Kompakte Zusammenfassung: Gruppen- und Darstellungstheorie, Lie-Gruppen, Praktische Beispiele

1 Grundbegriffe

Gruppe Definition 1 Gruppe $(G,*)\colon \text{Menge mit Verknüpfung }G\times G\to G,\, (g,h)\mapsto gh$ - Assoziativität: (gh)k=g(hk) - Einselement: $\exists 1:1g=g1=g$ - g -

1.1 Wichtige Gruppen

Zyklische Gruppe C_n

Definition 2

 $C_n = \mathbb{Z}_n = \{0,1,...,n-1\}$ mit Addition modulon

Symmetrische Gruppe S_n

Definition 3

Permutationen von n Elementen, $|S_n| = n!$

Diedergruppe ${\cal D}_n$ Definition 4

Symmetrie gruppe eines $n\text{-Ecks}, \ |D_n|=2n \ D_n=\langle R,S\rangle=\{R^k,SR^k \mid k\in\{0,...,n-1\}\} \text{ mit } R^n=S^2=1, SRS=R^{-1}$

Orthogonale Gruppen

Definition 5

- $\begin{array}{l} \bullet \ O(n) = \{A \in GL(n,\mathbb{R}) \mid A^TA = \mathbb{1}\} \\ \bullet \ SO(n) = \{A \in O(n) \mid \det(A) = 1\} \\ \bullet \ U(n) = \{A \in GL(n,\mathbb{C}) \mid A^*A = \mathbb{1}\} \\ \bullet \ SU(n) = \{A \in U(n) \mid \det(A) = 1\} \end{array}$

2 Darstellungen

Darstellung

Definition 6

Gruppenhomomorphismus $\rho:G\to GL(V)$ auf Vektorraum $V\neq\{0\}$ $\rho(gh)=\rho(g)\circ\rho(h),\,\rho(\mathbb{1})=\mathbb{1}_V,\,\rho(g^{-1})=\rho(g)^{-1}$

Unitäre Darstellung

Definition 7

 $\rho(g)$ unitär für alle $g \in G \! : (\rho(g)u, \rho(g)v) = (u,v)$

Endlichdimensionale $\mathbb{C}\text{-}\mathsf{Darstellungen}$ endlicher Gruppen sind vollständig reduzibel.

Lemma von Schur

Satz 8

Seien $(\rho_1,V_1),(\rho_2,V_2)$ irreduzible Darstellungen: 1. $\varphi\in \operatorname{Hom}_{G(V_1,V_2)}\Rightarrow \varphi=0$ oder Isomorphismus 2. $\varphi\in \operatorname{Hom}_{G(V,V)}\Rightarrow \varphi=\lambda \mathbb{1}_{V}, \lambda\in\mathbb{C}$

Abelsche Gruppen

Corollary 10

Jede irreduzible endlichdimensionale $\mathbb{C}\text{-}\mathrm{Darstellung}$ abelscher Gruppen ist eindimensional.

3 Charaktere

Charakter

Definition 11

- $\begin{array}{l} \chi_{\rho}:G\to\mathbb{C},\,\chi_{\rho(g)}=\operatorname{tr}(\rho(g))\\ \bullet \ \ \text{Invariant unter Konjugation:}\,\,\chi_{\rho(hgh^{-1})}=\chi_{\rho(g)}\\ \bullet \ \ \text{Äquivalente Darstellungen haben gleiche Charaktere} \end{array}$

 $[g] = \{hgh^{-1} \mid h \in G\}$. Charakter konstant auf Konjugationsklassen. Orthogonalität der Charaktere Satz 13

 ρ, ρ' : $\left(\chi_{\rho},\chi_{\rho'}\right) =$ irreduzible Darstellungen $\frac{1}{|G|} \sum_{g \in G} \overline{\chi_{\rho(g)}} \chi_{\rho'}(g) = \begin{cases} 1 \text{ falls } \rho \equiv \rho \\ 0 \text{ sonst} \end{cases}$

Zerlegung der regulären Darstellung

 $\rho_{\rm reg}=\oplus_i \; n_i \rho^{(i)}$ mit $n_i=\dim\bigl(\rho^{(i)}\bigr) \; |G|=\sum_i n_i^2$

4 Frobenius-Formel & Young-Tableaux

Frobenius-Formel

Definition 15

Für S_n : $\chi^{\lambda(\sigma)}=\left(\prod_{(i,j)\in\lambda}h(i,j)\right)^{-1}\sum_T\prod_{k=1}^nx_k^{m_{k(T)}}$ wobei h(i,j) der Hook-Länge entspricht

5 Young-Tableaux und S.

Definition 16

Partition von n: $n=\lambda_1+\lambda_2+\ldots+\lambda_k$ mit $\lambda_1\geq\lambda_2\geq\ldots\geq\lambda_k\geq 1$ Darstellung durch Young-Diagramm mit λ_i Kästchen in Zeile i.

Standard-Young-Tableau

Definition 17

Füllung eines Young-Diagramms mit Zahlen 1,...,n,streng wachsend in Zeilen und Spalten.

Für Kästchen (i,j): $h(i,j) = \lambda_i + \lambda_j' - i - j + 1$ wobei $\lambda_j' =$ Spaltenlänge der j-ten Spalte

Anzahl Standard-Tableaux

Anzahl Standard-Tableaux für Partition $\lambda \colon f^\lambda = \frac{n!}{\prod_{\{i,j\}}} h(i,j)$

5.1 Permutationstypen

Zyklentyp

Definition 20

Permutation $\sigma\in S_n$ bestimmt durch Zyklentyp (1^m.2^m2...n^m_n) wobei m_k = Anzahl der k-Zyklen. Konjugationsklassen \longleftrightarrow Zyklentypen \leftrightarrow Partitionen.

6 Tensorprodukte

Tensorprodukt von Darstellungen Definition 21

 $(\rho_1\otimes\rho_2)(g)=\rho_1(g)\otimes\rho_2(g)\,\dim(V_1\otimes V_2)=\dim(V_1)\cdot\dim(V_2)$

Charaktere von Tensorprodukten Definition 22

 $\chi_{\rho_1\otimes\rho_2}(g)=\chi_{\rho_1}(g)\cdot\chi_{\rho_2}(g)$

7 Reduktion und Irreduzibilität

Reduzible/Irreduzible Darstellung

Definition 23

- Reduzibel: ∃ invarianter Unterraum W ⊂ V, W ≠ {0}, V
- Irreduzibel: keine nichttrivialen invarianten Unterräume
 Vollständig reduzibel: direkte Summe irred
- Vollständig
 Darstellungen Summe irreduzibler

Maschkes Satz

Satz 24

Alle Darstellungen endlicher Gruppen über $\mathbb C$ sind vollständig reduzibel.

8 Kristallgruppen und Physik

32 Punktgruppen

Definition 25

- Alle möglichen Punktsymmetrien von Kristallen: Zyklengruppen: C_h (Rotation um $2\frac{\pi}{h}$) Diedergruppen: D_n (Rotationen + Spiegelungen) Platonische Körper: T_d (Tetraeder), O_h (Oktaeder), I_h (Ikosaeder)

Anwendungen

- Molekülorbitale: Symmetrie bestimmt erlaubte Übergänge
 Kristallfeld-Aufspaltung: Entartung durch Symmetriebrechung
 Phononen: Schwingungsmoden durch Gruppentheorie klassifiziert

9 Kompakte Lie-Gruppen

Kompakte Lie-Gruppe

Definition 27

Example 26

Lie-Gruppe, die als topologischer Raum kompakt ist. Beispiele: $U(n),\,SU(n),\,SO(n),\,Sp(n)$

Weyl-Satz

Alle Darstellungen kompakter Lie-Gruppen sind vollständig reduzibel.

Cartan-Unteralgebra

Maximale abelsche Unteralgebra $h \subset g$. Dimension = Rang der Lie-

Wurzeln und Gewichte

Definition 30

- Wurzel: Eigenwert von ad(H) für $H \in h$
- Gewicht: Eigenwert in Darstellung
 Höchstes Gewicht: charakterisiert irreduzible Darstellung eindeutig

10 Wichtige Isomorphismen

Niedrigdimensionale Isomorphismen

Definition 31

- $SU(2) \approx Sp(1) \approx$ Einheits-Quaternionen $SO(3) \approx \frac{SU(2)}{[\pm 1]}$ (Spin-Bahn-Kopplung) $SO(4) \approx SU(2) \times SU(2)$ $SO(6) \approx SU(4)$

- Spin(3) $\approx SU(2)$, Spin(4) $\approx SU(2) \times SU(2)$

11 Formeln für Prüfung

Orthogonalitätsrelationen

Definition 32

Für endliche Gruppe G, irreduzible Darstellungen $\rho^{(i)}$: $\sum_{g \in G} \rho_{ab}^{(i)}(g) \rho_{cd}^{(j)}(g) = \hat{|G_{n_i}^{\perp}} \delta_{ij} \delta_{ac} \delta_{bd}$

Dimensionsformel

Definition 33

 $\sum_{i} (\dim \rho^{(i)})^2 = |G|$ (Anzahl Konjugationsklassen = Anzahl irreduzibler Darstellungen)

Charakterorthogonalität

Definition 34

 $\left(\chi^{(i)},\chi^{(j)}\right) = \sum_{g \in G} \overline{\chi^{(i)}(g)} \chi^{(j)} {}_{+}^{g} G| = \delta_{ij}$

12 Symmetrisches und äußeres Produkt

Symmetrisches Produkt

Definition 35

 $\begin{array}{l} S^NV = \{x \in V^{\otimes N} \mid \rho(\sigma)x = x \forall \sigma \in S_N\} \ \ \text{Basis:} \ \left[e_{i_1} \otimes \ldots \otimes e_{i_N} \mid 1 \leq i_1 \leq \ldots \leq i_N\right] \dim(S^NV) = \binom{m+N-1}{N} \text{ für } \dim(V) = m \end{array}$

 $\wedge^N \, V = \big\{ x \in V^{\otimes N} \mid \rho(\sigma) x = \mathrm{sgn}(\sigma) x \forall \sigma \in S_N \big\} \quad \text{ Basis:} \quad \left[e_{i_1} \wedge \ldots \wedge e_{i_N} \right] = 0$ $e_{i_N} \mid 1 \leq i_1 < \ldots < i_N \right] \dim(\wedge^N V) = \binom{m}{N} \text{ für } \dim(V) = m$

13 Eigenwertprobleme mit Symmetrie

erung symmetrischer Operatoren

Sei $A:V\to V$ mit $\rho(g)A=A\rho(g)$ für alle $g\in G.$ Bei Zerlegung $V=V_1\oplus\ldots\oplus V_n$ (irreduzibel): A hat höchstens n verschiedene Eigenwerte, konstant auf jeder Komponente $V_i.$

Anwendung: Kristallfeldtheorie

Satz 37

 $\label{thm:looperator} H \quad \text{kommutiert} \quad \text{mit} \quad \text{Symmetriegruppe} \\ \text{Energienive aus} \quad klassifiziert \ durch \ irreduzible \ Darstellungen.}$

14 Spektraltheorie und Quantenmechanik

Irreduzible Darstellungen der Rotationsgruppe Definition 39

SO(3): Darstellungen $D^{(l)}$ mit dim = $2l+1, l=0,1,2,\dots$ Charaktere: $\chi^{(l)}(\varphi)=\frac{\sin((2l+1)\frac{\pi}{2})}{\sin(\frac{\pi}{2})}$

Spin und SU(2)

 $SU(2)\colon$ Darstellungen $D^{(j)}$ mit $\dim=2j+1,\ j=0,\frac12,1,\frac32,\dots$ Covering: $SU(2)\to SO(3)$ mit Kern $\{\pm 1\}$

 $D^{(j_1)}\otimes D^{(j_2)}=\oplus_{J=[j_1-j_2]}^{j_1+j_2}D^{(J)}$ Koeffizienten $\langle j_1m_1,j_2m_2\mid JM\rangle$ durch Rekursion oder Tabellen.

15 Darstellungen klassischer Gruppen

GL(n) und SL(n)

Definition 42

Satz 41

 $GL(n,\mathbb{C})$: alle invertierbaren $n\times n$ Matrizen $SL(n,\mathbb{C})=\{A\in GL(n,\mathbb{C})\mid \det(A)=1\}$ Fundamentaldarstellung: Standardaktion auf

Orthogonale und unitäre Gruppen

Clebsch-Gordan-Zerlegung

Definition 43

 $O(n)=\{A\mid A^TA=1\},\quad SO(n)=O(n)\cap\{\det=1\}$ $U(n)=\{A\mid A^*A=1\},\ SU(n)=U(n)\cap\{\det=1\} \text{ Kompakt} \to \text{vollständig reduzible Darstellungen}$

Symplektische Gruppe

 $Sp(2n)=\left\{A\mid A^TJA=J\right\}$ mit $J=\begin{pmatrix}0&1_n\\-1_n&0\end{pmatrix}$ Erhält symplektische Form, wichtig in Hamiltonscher Mechanik

16 Lie-Algebren-Struktur

Lie-Klammer

Definition 45

[X,Y]=XY-YX (Kommutator) Eigenschaften: • Billmear: [aX+bY,Z]=a[X,Z]+b[Y,Z] - Antisymmetrisch: [X,Y]=-[Y,X] • Jacobi-Identität: [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0

Strukturkonstanten

Für Basis $\{X_1,...,X_n\}$ von $g{:}~\left[X_i,X_j\right] = \sum_k c_{ij}^k X_k ~c_{ij}^k$ Strukturkonstanten, bestimmen Lie-Algebra vollständi

17 Wurzelsysteme

Cartan-Zerlegung

Definition 47

Definition 48

Definition 49

Definition 50

Satz 51

 $\begin{array}{l} g = h \oplus (\oplus_{\alpha \in \Phi} g_{\alpha}) \\ \bullet \ h: \mathsf{Cartan-Unteralgebra} \ (\mathsf{maximal\ abelsch}) \\ \bullet \ \Phi: \mathsf{Wurzelsystem} \\ \bullet \ g_{\alpha} = \{X \in g \mid [H, X] = \alpha(H)X \forall H \in h\} \end{array}$

Einfache Wurzeln

Minimale Teilmenge $\Delta\subset\Phi$ mit: • Jede Wurzel ist Linearkombination mit ganzzahligen Koeffizienten gleichen Vorzeichens

• $|\Delta| = \text{Rang von } g$

18 Klassifikation einfacher Lie-Algebren

ADE-Klassifikation

Klassische Reihen:

• $A_n = sl(n+1,\mathbb{C}), \, n \geq 1$ • $B_n = so(2n+1,\mathbb{C}), \, n \geq 2$ • $C_n = sp(2n,\mathbb{C}), \, n \geq 3$ • $D_n = so(2n,\mathbb{C}), \, n \geq 3$ Ausnahme-Algebren: E_6 , E_7 , E_8 , F_4 , G_9

19 Darstellungstheorie von s l(2)

Basis von s l(2)

 $\begin{array}{l} H=\begin{pmatrix}1&0\\0&-1\end{pmatrix},E=\begin{pmatrix}0&1\\0&0\end{pmatrix},F=\begin{pmatrix}0&0\\1&0\end{pmatrix}\\ \text{Relationen:}\left[H,E\right]=2E,\left[H,F\right]=-2F,\left[E,F\right]=H \end{array}$

Irreduzible Darstellungen V_n mit dim = n+1, n=0,1,2,... Basis: $\begin{cases} v_0, v_1, ..., v_n \} \text{ mit:} \\ \bullet \ H v_k = (n-2k) v_k \\ \bullet \ E v_k = k v_{k-1} \text{ (für } k > 0) \\ \bullet \ F v_k = (n-k) v_{k+1} \text{ (für } k < n) \end{cases}$

20 Quantenfeldtheorie-Verbindungen

Gauge-Theorien

Definition 53

 ${\rm ISO}(1,3)=SO^+(1,3)\otimes \mathbb{R}^{1,3} \ \ ({\rm Lorentz\text{-}Gruppe} \ \ \fbox{?} \ \ {\rm Translationen})$ Darstellungen klassifizieren Elementarteilchen (Masse, Spin)

• $SU(3)_C$: Starke Wechselwirkung (QCD) • $SU(2)_L \times U(1)_Y$: Elektroschwache Theorie • SU(5) oder SO(10): Grand Unified Theories

21 Computertechniken Charaktertafel berechnen

Definition 54

Konjugationsklassen bestimmen
 Dimensionen durch ∑, n_i² = |G|

Orthogonalitätsrelationen nutzen
 Produktzahlen prüfen

Projektionsoperatoren

Für irreduzible Darstellung $\rho^{(i)}\colon\thinspace P^{(i)}=\left(\frac{n_i}{\mid}G\mid\right)\sum_{g\in G}\chi^{(i)}(g^{-1})\rho(g)$ Projiziert auf isotypische Komponente

MMP2 Cheatsheet

22 Wichtige Identitäten

Anzahl Bahnen unter Gruppenaktion: $|\frac{X}{G}| = \left(\frac{1}{\Gamma}G|\right)\sum_{g \in G}|X^g|$ wobei $X^g = \{x \in X \mid gx = x\}$

Für Untergruppe $H \subset G: (\chi|_H, \psi)_H = (\chi, \operatorname{Ind}_H^G \psi)_G$

Satz 58

Gruppenalgebra $\mathbb{C}[G]$ ist halbeinfach $\Longleftrightarrow \operatorname{char}(\mathbb{C}) \nmid |G|$

Pauli-Matrizen und su(2)

Definition 59

$$\begin{split} \sigma_1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ \left[\sigma_i, \sigma_j\right] &= 2i\varepsilon_{ijk}\sigma_k \ su(2) = \operatorname{span}\{i\sigma_1, i\sigma_2, i\sigma_3\} \end{split}$$

$$\begin{bmatrix} \sigma_i, \sigma_j \end{bmatrix} = 2i\varepsilon_{ijk}\sigma_k \ su(2) = \operatorname{span}\{i\sigma_1, i\sigma_2, i\sigma_3\}$$

Wichtige Lie-Algebren

Definition 60

•
$$sl(n) = \{X \mid tr(X) = 0\}$$

• $so(n) = \{X \mid X^T = -X\}$ (schiefsymmetrisch)

•
$$sl(n) = \{X \mid tr(X) = 0\}$$

• $so(n) = \{X \mid X^T = -X\}$ (schiefsymmetrisch)

$$\begin{array}{l} \bullet \ sl(n) = \{X \mid \operatorname{tr}(X) = 0\} \\ \bullet \ so(n) = \{X \mid X^T = -X\} \text{ (schiefsymmetrisch)} \\ \bullet \ su(n) = \{X \mid X^* = -X, \operatorname{tr}(X) = 0\} \text{ (anti-hermitesch, spurlos)} \end{array}$$

23 Praktische Beispiele & Rechnungen

23.1 Young-Tableaux berechnen

Young-Tableau für S_4

Example 61

Partition
$$\lambda = (3,1)$$
 von 4:

Farthon
$$\lambda = (3,1)$$
 von 4.

 \square Hook-Längen: h(1,1)=3, h(1,2)=2, h(1,3)=1, h(2,1)=1 Anzahl Standard-Tableaux: $f^{(3,1)}=\frac{44}{3\cdot 2\cdot 1\cdot 1}=\frac{24}{6}=4$ Standard-Tableaux: 1 2 3 | 1 2 4 | 1 3 4 | 2 3 4 4 | 3 | 2 3 4 4 | 3 6 1 2 4 1 1 3 4 1 2 6 3 4 1 3 4 1 2 6 3 4 1 3 4 1 2 6 3 4 1 3 4 1 2 6 3 4 1 3 4 1 2 6 3 4 1 3 4 1 2 6 3 4 1 3 4 1 3 4 1 2 6 3 4 1

23.2 Charaktertafel berechnen

D_3 Charaktertafel

Example 62

$$\begin{array}{l} D_3 = \{e, r, r^2, s, sr, sr^2\}, & |D_3| = 6 & \text{Konjugationsklassen:} \\ [e], [r, r^2], [s, sr, sr^2] \ 3 & \text{irreduzible Darstellungen mit } n_1^2 + n_2^2 + n_3^2 = 6 \\ 0 \to n_1 = n_2 = 1, n_3 = 2 \\ ||[e]|[r, r^2]] \ [s, sr, sr^2] \ ||-|-|-|-|||\rho_1| \ 1 \ ||1| \ ||\rho_2| \ 1 \ ||1| \ -1||\rho_3| \\ ||2| \ -1| \ 0 \ || \end{array}$$

23.3 Schur-Lemma anwenden

Schur für C_n

Example 63

 C_n abelsch \to alle irreduziblen Darstellungen eindimensional $\rho_k:C_n\to\mathbb{C}^*,\ \rho_{k(g)}=\omega^k$ mit $\omega=e^{\{2\pi\frac{i}{n}\}}$ Für $\varphi\in\mathrm{Hom}_{C_n}(\mathbb{C},\mathbb{C})\colon \varphi\left(\rho_{k(g)}z\right)=\rho_{k(g)}\varphi(z)\to\varphi(\omega^kz)=\omega^k\varphi(z)\to\varphi=\lambda\mathbb{1}$

23.4 Charakterformel nutzen

Orthogonalität prüfen

Example 64

Für D_3 : $(\chi_1,\chi_3) = \frac{1}{6}[1 \cdot 2 \cdot 1 + 1 \cdot (-1) \cdot 2 + 1 \cdot 0 \cdot 3] = 0$ \checkmark $(\chi_3,\chi_3) = \frac{1}{6}[2^2 \cdot 1 + (-1)^2 \cdot 2 + 0^2 \cdot 3] = \frac{6}{6} = 1$ \checkmark

23.5 Lie-Algebren berechnen

su(2) Struktur

Example 65

Basis: $\begin{array}{ll} X_1=i\frac{\sigma_1}{2}, X_2=i\frac{\sigma_2}{2}, X_3=i\frac{\sigma_3}{2} & [X_i,X_j]=\varepsilon_{ijk}X_k\\ \text{Strukturkonstanten:} \ c_{12}=1, c_{23}=1, c_{23}^2=1 \ \text{Cartan:} \ h=\text{span}\{X_3\},\\ \text{Wurzeln:} \ \alpha=\pm 2 \ su(2)=h\oplus g_\alpha\oplus g_{-\alpha} \end{array}$

23.6 Tensorprodukte

Tensorprodukt-Zerlegung

Example 66

$$\begin{array}{ll} SU(2): & D^{(\frac{1}{2})} \otimes D^{(\frac{1}{2})} = D^{(0)} \oplus D^{(1)} & \mathrm{Charaktere:} & \chi^{(\frac{1}{2})}(\theta) = 2\cos\left(\frac{\theta}{2}\right) \\ \chi^{(\frac{1}{2})} \cdot \chi^{(\frac{1}{2})} = 4\cos^2\left(\frac{\theta}{2}\right) = 2(1+\cos\theta) = 2 + 2\cos\theta = \chi^{(0)} + \chi^{(1)} \checkmark \end{array}$$

Clebsch-Gordan

Example 67

$$\begin{array}{c} j_1 = \frac{1}{2}, j_2 = \frac{1}{2}; \ |\frac{1}{2}, \frac{1}{2}\rangle \otimes |\frac{1}{2}, \frac{1}{2}\rangle = |1, 1\rangle \ \ \text{(Triplett)} \ \oplus |0, 0\rangle \ \ \text{(Singulett)} \\ |1, 1\rangle = |\uparrow\uparrow\rangle \ |0, 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \end{array}$$

23.7 Irreduzible Darstellungen finden

S_3 Darstellungen

Example 68

1. Triviale:
$$\rho_1(\sigma)=1$$
 für alle σ 2. Vorzeichen: $\rho_2(\sigma)=\mathrm{sgn}(\sigma)$ 3. Standard: $\rho_3:S_3\to GL(2,\mathbb{C})$ durch Permutation von (x,y,z) mit $x+y+z=0$ $\rho_3((12))=\begin{pmatrix} \frac{1}{2}&\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}$

24 Formeltabelle & Schnellreferenz

24.1 Charakterformeln kompakt

 $\sum_{i} \left(\dim \rho^{(i)}\right)^{2} = |G| \bullet \left(\chi^{(i)}, \chi^{(j)}\right) = \delta_{ij} \bullet \chi(g^{-1}) = \overline{\chi(g)} \bullet \chi(hgh^{-1}) = \chi(g)$

24.2 Wichtige Gruppen-Ordnungen

 $|S_n|=n!$. $|A_n|=\frac{n!}{2}$. $|D_n|=2n$. $|GL(n,q)|=\prod_{i=0}^{n-1} \left(q^n-q^i\right)$. $|SL(n,q)| = |GL(n,q)\frac{\perp}{q-1}$

24.3 Standard-Darstellungen

 $S_3\colon 1,1,2\bullet S_4\colon 1,1,2,3,3\bullet D_3\colon 1,1,2\bullet D_4\colon 1,1,1,1,2\bullet SU(2)\colon D^{(j)},$ dim = $2j+1\bullet SO(3)\colon D^{(l)},$ dim = 2l+1

24.4 Clebsch-Gordan Regeln

 $j_1\otimes j_2=|j_1-j_2|\oplus |j_1-j_2|+1\oplus \ldots \oplus j_1+j_2-1\oplus j_1+j_2\quad l\otimes l=0\oplus 1\oplus \ldots \oplus 2l$ (für ganzzahlige l)24.5 Lie-Algebren Dimensionen

$\dim(sl(n)) = n^2 - 1 \quad \bullet \quad \dim(so(n)) = \frac{n(n-1)}{2} \quad \bullet \quad \dim(su(n)) = n^2 - 1 \quad \bullet$ $\dim(sp(2n)) = n(2n+1)$

24.6 Young-Tableaux Quickfacts Hook-Länge: $h(i,j) = \lambda_i + \lambda_j' - i - j + 1$ • Anzahl: $\frac{n!}{\Pi}h(i,j)$ • Inhalt: c(i,j) = j - i

24.7 Tensor-Identitäten

 $(A\otimes B)\otimes C=A\otimes (B\otimes C)$ • $\dim(V\otimes W)=\dim(V)\dim(W)$ • $\mathrm{tr}(A\otimes B)=\mathrm{tr}(A)\;\mathrm{tr}(B)$

24.8 Exponential-Tricks

 $\stackrel{\cdot}{\exp(A) \exp(B)} = \exp(A+B) \text{ (falls } [A,B] = 0) \cdot \det(\exp(A)) = \exp(\operatorname{tr}(A)) \\ \cdot \exp(PAP^{-1}) = P \exp(A)P^{-1}$

24.9 Kompakte Gruppen

Alle Darstellungen vollständig reduzibel • Unitäre Darstellungen existieren • overline $\{\rho\}\cong \rho$ für reelle Gruppen

24.10 Kristallgruppen (32 Punktgruppen)

 $\begin{array}{l} C_1, C_i, C_2, C_s, C_{2h}, D_2, C_{2v}, D_{2h}, C_4, S_4, C_{4h}, D_4, C_{4v}, D_{2d}, D_{4h}, \\ C_3, C_{3i}, D_3, C_{3v}, D_{3d}, C_6, C_{3h}, C_{6h}, D_6, C_{6v}, D_{3h}, D_{6h}, T, T_h, O, T_d, O_h \end{array}$

24.11 Nützliche Matrizen

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \bullet \tau_x = (\sigma_x, 0), \ \tau_y = (\sigma_y, 0), \ \tau_z = \langle \sigma_y, 0 \rangle$$

24.12 Schur-Orthogonalität

$$\sum_{g \in G} \overline{\rho_{ab}^{(i)}(g)} \rho_{cd}^{(j)}(g) = |G \frac{|}{n_i} \delta_{ij} \delta_{ac} \delta_{bd}$$

24.13 Burnside-Lemma

$$|\frac{X}{G}| = \frac{1}{i}G|\sum_{g \in G}|X^g| \text{ wobei } X^g = \{x \mid gx = x\}$$

24.14 Wurzelsvstem-Basics

Einfache Wurzeln bilden Basis • Positive/negative Wurzeln • Weyl-Gruppe permutiert Wurzeln • Gewichte = Darstellungstheorie

24.15 Casimir-Operatoren

SU(2): $C_2=J_1^2+J_2^2+J_3^2$ • Eigenwert: j(j+1)• SO(3): $L^2=L_x^2+L_y^2+L_z^2$, Eigenwert: l(l+1)

24.16 Projektionsformeln

Projektion auf irred. Komp.: $P^{(i)} = \frac{n_i}{|}G|\sum_{g \in G}\chi^{(i)}(g^{-1})\rho(g)$ Multiplizität: $m_i = \left(\chi, \chi^{(i)}\right)$

24.17 Quick-Tests

Irreduzibel? \to $(\chi,\chi)=1$ • Abelsch? \to Alle irred. eindimensional • Einfach? \to Nur [G,G]=G oder = $\{1\}$

24.18 Darstellungen klassischer Gruppen

GL(n): Alle polynomial Darst. • SL(n): Spurlos • O(n): Orthogonal-erhaltend • Sp(2n): Symplektisch-erhaltend

24.19 Induzierte Darstellungen $\operatorname{Ind}_H^G \rho(g) = \sum_i \rho \left(t_i^{-1} g t_j\right)$ falls $g \in t_j H t_j^{-1} \bullet \dim \left(\operatorname{Ind}_H^G \rho\right) = [G:H] \dim(\rho)$

24.20 Frobenius-Reziprozität $(\chi|_H,\psi) = \left(\chi, \mathrm{Ind}_H^G \psi\right) \bullet \mathrm{Res}_H^G \mathrm{Ind}_H^G \rho = \sum_{g \in \frac{G}{H}} \rho^g$

24.21 Exam Survival Kit

Charaktertafel-Algorithmus: 1) Konjugationsklassen \rightarrow 2) $\sum n_i^2 = |G| \rightarrow$ 3) Orthogonalität \rightarrow 4) Prüfung \checkmark Irreduzibel-Test: $(\chi, \chi) = 1$ \checkmark Aquivalenz: $(\chi_1, \chi_2) = 1$ \checkmark Multiplizität: $m_i = (\chi, \chi^{(i)})$ Young-Tableaux: Hook = rechts + unten + 1, Anzahl = $\frac{n!}{11}$ hooks,

Young-Tableaux: rious – recins – similar Charakter via Tabloids Tensor-Zerlegung: $x_1 \chi_2 = \sum_i a_i \chi^{(i)}$ mit $a_i = (\chi_1 \chi_2, \chi^{(i)})$ Lie-Tricks: [X,Y] = XY - YX, $\exp(X) \exp(Y) \exp(Y - X) \exp(-Y) \exp(Y - X)$ mixtgruppe \rightarrow irred. Darst. \rightarrow Aufspaltung, Selection rules: $\Gamma_i \otimes \Gamma_j \supset \Gamma_{\text{total}}$ or $\Gamma_i = |j_i - j_o| \oplus \dots \oplus j_1 + j_2$, Multiplizität meist 1

Clebsch-Gordan: $j_1 = j_2 = [j_1 - j_2] \oplus ... \oplus j_1 + j_2$. Multiplizität meist 1 Schur anwenden: Irreduzibel + φ kommutiert $\to \varphi = \lambda 1$, Verschiedene

Schur anwenden: Heddender v. F. ... Darst. $\rightarrow \varphi = 0$ Casimir berechnen: Quadratische Operatoren kommutieren mit allen, Eigenwerte klassifizieren Prüfungsstrategie: Symmetrie erkennen \rightarrow Gruppe identifizieren \rightarrow Darstellungen \rightarrow Aufspaltung/Entartung