Задача З Неоднозначность и как с ней бороться!

Часть 1. «Бревно»

1.1. Однородное бревно массой $m=20\,\mathrm{kr}$, длиной $L=2,0\,\mathrm{m}$ подвешено горизонтально на двух нитях, привязанных к нему на одинаковых расстояниях $l=\frac{L}{4}=50\,\mathrm{cm}$ от концов. Найдите силы

натяжения T_1 и T_2 нитей, удерживающих бревно. Ускорение свободного падения $g=9.8\frac{\rm M}{c^2}.$

1.2. На некотором расстоянии x от оси симметрии системы подвязали еще одну нить, так, что бревно осталось в горизонтальном положении. Найдите диапазон возможных значений силы натяжения третьей нити T_3 в этом случае. Постройте диаграмму возможных значений $T_3(\eta)$, где в качестве параметра выбрана безразмерная величина $\eta = \frac{x}{I}$, в диапазоне изменения $\eta(-\frac{1}{2}, +\frac{1}{2})$.

1.3. Как Вы убедились в пункте 1.2, решение задачи носит неоднозначный характер. Данная неоднозначность исчезает, если считать, что нити являются одинаковыми упругими пружинами с большим коэффициентом жесткости. Рассмотрите пункт 1.2 данной задачи, считая нити одинаковыми пружинами. Постройте диаграмму $T_3(x)$ в этом

случае, используя в качестве безразмерного параметра величину $au = \frac{T_3}{mg}$.

Часть 2. «Лестница»

Однородная лестница прислонена к стене и находится в равновесии под углом α к горизонту. Коэффициент трения лестницы о пол и стену $\mu = 0,40$. Обозначим через N_1 и N_2 силы нормального давления лестницы на пол

и стену, а модули действующих сил трения F_1 и F_2 соответственно.

2.3 Используя выражение для силы трения покоя $F_{mp} \leq \mu N$, получите три условия, при выполнении которых лестница будет находится в равновесии. Постройте диаграмму (в безразмерных координатах $f_1 = \frac{F_1}{mg}$ и $f_2 = \frac{F_2}{mg}$) на которой укажите области допустимых

значений этих параметров. Выделите на диаграмме множество точек, удовлетворяющих условию равновесия.

2.4 Постройте диаграмму $F_1(tg\alpha)$ возможных значений силы трения лестницы о пол в зависимости от $(tg\alpha)$.

2.5 Найдите, при каком минимальном значении угла α_{\min} лестница еще сможет оставаться в положении равновесия?

17