

TEF668XA

Low IF Tuner High performance One-chip

Rev. 3 — 18 July 2016

Product data sheet

1. General description

The Low IF Tuner HIgh performance One-chip family TEF668XA, are single-chip radio ICs including an AM/FM radio tuner and software-defined radio signal processing. This family extends NXP Semiconductors broad, industry-proven car radio single tuner portfolio. The TEF668XA offers outstanding radio performance with the widest range of features and state of the art software algorithms at optimized system costs.

The high-end single tuner family is available in HVQFN packages occupying the smallest PCB space and is suitable for dual- and multi-layer PCBs. The radio receiver includes complete feature sets:

- FM/AM front ends
- Tuning synthesizer
- Channel filtering
- FM Channel Equalization
- FM multipath improvement
- Demodulation
- FM stereo decoding
- Weak signal processing
- Noise blanking
- RDS
- Provides an interface to a DARC demodulator/decoder

The TEF6687A and TEF6689A include an additional high-end feature, FMSI, which noticeably enhances the stereo performance of the receiver.

The tuner family can provide stereo audio in digital format on the I²S outputs and analog on the audio DAC outputs. The TEF6688A and TEF6689A support the digital radio standards HD Radio and Digital Radio Mondiale (DRM) when used with NXP Semiconductors digital radio coprocessors such as SAF356X and SAF360X.

2. Features and benefits

- Alignment free digital receiver including tuner and software-defined radio processing
- Command based high-level user interface combining high control flexibility with ease of control

Low IF Tuner High performance One-chip

- Read information with device and tuning status, reception quality and RDS data
- FM receiver with a tuning range of 65 MHz to 108 MHz covering Eastern European (OIRT), Japanese, European and US bands
- AM receiver covering LW, MW and full SW
- Fully integrated tuning system with low phase noise and fast tuning
- FM LNA with AGC
- FM Stereo Improvement algorithm FMSI (TEF6687A and TEF6689A)
- State-of-the-art FM Improved Multipath Suppression
- FM Channel Equalization
- Soft Mute on Modulation
- Stereo High Blend
- FM mixer for frequency conversion to a low IF complex signal
- AM LNA with AGC, matching active and passive antenna applications
- AM mixer for frequency conversion to a low IF complex signal (AM SW)
- High dynamic range Sigma Delta IF ADC
- Digital IF signal processing including decimation, shift to baseband, AGC control, I/Q correction, variable IF bandwidth filtering (PACS) and demodulation
- FM stereo decoding
- TEF6688A and TEF6689A baseband I²S output supporting HD Radio and DRM¹ with external digital radio coprocessor (SAF356X or SAF360X)
- Blending function for HD Radio reception (TEF6688A and TEF6689A)
- AM and FM noise blanking, Signal quality detection and weak signal processing
- Advanced RDS and RBDS demodulation and decoding
- MPX output supporting DARC demodulator
- One I²S input and one I²S output
- Two mono audio DACs
- Single 3.3 V supply voltage
- Fast mode I²C-bus (400 kHz)
- Configurable GPIO pins for RDS, Quality Status Interrupt and generic I²C-bus controlled I/O
- Qualified in accordance with AEC-Q100

3. Applications

The TEF668XA is a single tuner AM/FM receiver for automotive applications and supports analog AM/FM and HD/DRM reception (HD/DRM is supported in TEF6688A and TEF6689A only).

Additionally, due to a common technology platform, the TEF668XA can be combined with TEF701X, SAF775X and SAF360X.

TEF668XA

I. DRM includes DRM30.

Low IF Tuner High performance One-chip

4. Functionality

Table 1. Feature set

Features	TEF6686A	TEF6687A	TEF6688A	TEF6689A
Standard	'			
Digital-to-analog converters (stereo audio DAC)			1	
Audio I ² S (can be disabled or enabled)		Ye	es	
HD Radio		-	Y	es
DRM		-	Y	es
FM		Ye	es	
LW - MW		Ye	es	
SW		Ye	es	
Standard radio features				
RDS demodulator and decoder		Ye	es	
FM PACS		Ye	es	
Soft mute		Ye	es	
High cut		Ye	es	
Stereo Blend		Ye	es	
Advanced radio features				
Dynamic low cut		Ye	es	
AM IF noise blanking		Ye	es	
High-end radio features				
Improved Multipath Suppression (IMS)		Ye	es	
Channel equalizer		Ye	es	
FMSI	-	Yes	-	Yes
Soft mute on modulation		Ye	es	
High blend		Ye	es	

5. Ordering information

Table 2. Ordering information

Type number	Package	age					
	Name	Description	Version				
TEF6686AHN/V205	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads;	SOT617-3				
TEF6687AHN/V205		32 terminals; body $5 \times 5 \times 0.85 \text{ mm}^{\boxed{1}}$					
TEF6688AHN/V205							
TEF6689AHN/V205	-						

^[1] Wettable sides to allow for optical inspection.

Rev. 3 18 July 2016

Product data sheet

All information provided in this document is subject to legal disclaimers

© NXP Semiconductors N.V. 2016. All rights reserved

Low IF Tuner High performance One-chip

7. Pinning information

Low IF Tuner High performance One-chip

7.1 Pin description

Table 3. Pin description

Symbol	TEF6686A/ TEF6687A	TEF6688A/ TEF6689A	Pull-up or pull-down[1]	Type ^[2]	Description
	Pin	Pin			
VDDA_IFADC	1	1	n.a.	AP	IF analog supply voltage
VSSA_IFADC	2	2	n.a.	AG	IF analog ground supply voltage
VBGP	3	3	n.a.	AR	band gap reference voltage decoupling
FM_CAP	4	4	n.a.	Al	FM AGC capacitor
FM_IN_M	5	5	n.a.	Al	negative FM RF input
FM_IN_P	6	6	n.a.	Al	positive FM RF input
VDDA_RF	7	7	n.a.	AP	RF analog supply voltage
VSSA_RF	8	8	n.a.	AG	RF analog ground supply voltage
AM_IN_P	9	9	n.a.	Al	positive AM LNA input
AM_LNA_CAP	10	10	n.a.	Al	AM LNA AGC capacitor
i.c.	11	-	-	-	internally connected, leave open
DR_BL	-	11	n.a.	1	HD Radio signal FM blend
i.c.	12	-	- 0	-	internally connected, leave open
DR_WS	-	12	D	0	digital radio word select output
i.c.	13	-	-	-	internally connected, leave open
DR_BCK	-	13	D	0	digital radio bit clock output
i.c.	14	-		-	internally connected, leave open
DR_Q_DATA		14	D	0	serial data output for digital radio quadrature-phase data
i.c.	15	-	-	-	internally connected, leave open
DR_I_DATA	-	15	D	0	serial data output for digital radio in-phase data
I2S_SD_0	16	16	D	I	I ² S data
I2S_WS	17	17	D	I/O	I ² S word select input/output[3]
I2S_BCK	18	18	D	I/O	I ² S bit clock input/output[3]
I2S_SD_1	19	19	D	0	I ² S data
GPIO_3	20	20	D	I/O	general purpose input/output 0
VSSD	21	21	n.a.	G	3.3 V ground digital supply voltage
VDDD	22	22	n.a.	Р	3.3 V digital supply voltage
VSSD_IO	23	23	n.a.	G	digital input/output ground connection
SDA	24	24	n.a.	I ² C	I ² C-bus serial data input and output
SCL	25	25	n.a.	I ² C	I ² C-bus serial clock input
GPIO_2	26	26	n.a.	0	general purpose output 2
GPIO_1	27	27	n.a.	0	general purpose output 1
GPIO_0	28	28	D	I/O	general purpose input/output 0
DAC_R	29	29	n.a.	AO	right channel audio output

Low IF Tuner High performance One-chip

Table 3. Pin description ... continued

Symbol	TEF6686A/ TEF6687A		Pull-up or pull-down[1]	Type ^[2]	Description
	Pin	Pin			
DAC_L	30	30	n.a.	AO	left channel audio output
VSS	31	31	n.a.	G	ground connection
XTAL_IN	32	32	n.a.	Al	crystal oscillator input

- [1] D means internal weak pull-down of 50 k Ω ; n.a. is non-applicable.
- [2] The pin types are defined in Table 4.
- [3] Pins are either both inputs or both outputs.

Table 4. Pin type description

Туре	Description
Al	analog input pin
AG	analog ground pin
AO	analog output pin
AP	analog power pin
AR	analog reference pin
G	ground pin
I	input
I/O	input or output
I ² C	I ² C-bus pin; 3.3 V tolerant
0	output
P	power supply pin

8. Functional description

8.1 FM front end to IF ADC input

An external wideband band-pass RF filter, filters the RF input signal from the antenna. The RF filter passes the complete FM band of interest and provides impedance transformation for the antenna impedance matching.

The RF filter output signal is applied to the high dynamic range FM LNA. The integrated AGC loop controls the LNA gain. The AGC range is seven steps of 6 dB. The input impedance of the LNA remains constant over the first five AGC steps and is reduced for the last two AGC steps.

The signal from the LNA is converted to a low IF using a complex mixer which includes image rejection. The IF signal from the mixer is amplified and filtered before the IF ADC digitizes the IF signal.

Low IF Tuner High performance One-chip

8.2 AM front end to IF ADC input

An external high-pass filter and an FM frequency band reject filter are used to filter the RF input signal from the antenna. The high-pass filter attenuates 50 Hz/60 Hz signals from power supply lines. The band reject filter or FM intrusion filter attenuates the FM signals before entering the AM LNA, preventing intermodulation from two FM signals degrading AM reception.

After filtering, the RF signal is applied to the AM LNA. The gain of the AM LNA can be controlled with up to ten 6 dB steps by the integrated AGC loop. The input capacitance of the AM LNA is constant over the first seven AGC steps and is reduced for the last three AGC steps.

In AM LW and MW mode, the LNA output signal is filtered before being applied to the IF ADC. The lack of frequency conversion eliminates performance limitations due to reception of image and harmonic LO frequencies.

In AM SW mode, the LNA output signal is filtered and applied to a complex image reject mixer for frequency conversion to low IF. This IF signal is amplified and filtered before the IF ADC digitizes it.

8.3 Tuning system

The PLL tuning system provides the LO signal to drive the AM-SW and FM mixer for frequency conversion to low IF. The tuning system can tune to the US, European, Japanese, and OIRT FM bands and the full AM SW band. The tuning system combines low phase noise with fast tuning times.

8.4 IF ADC

A high dynamic range sigma-delta IF ADC digitizes the IF signal. Due to the high dynamic range, there is no need for narrowband IF filtering. The IF ADC provides two bitstreams (I and Q data) to the radio processing block.

8.5 Radio processing

Radio processing performs the following functions:

- Decimation of the IF ADC bit streams
- Shift to baseband
- AGC compensation
- Linear AGC detection and control
- I/Q error detection and correction
- Interface to terrestrial digital radio processor for HD Radio or DRM reception (TEF6688A and TEF6689A)
- Channel filtering
- AM/FM demodulation
- Ignition noise detection and correction
- FM stereo decoding with FMSI (TEF6687A and TEF6689A)
- Programmable de-emphasis

Low IF Tuner High performance One-chip

- Quality detection
- Weak signal handling
- RDS/RBDS demodulation, decoding and error correction

The output of the radio processing block is a left and right digital audio signal.

8.5.1 AM mode features

The channel filter rejects adjacent channels. The bandwidth of the channel filter can be programmed.

The AM noise blanker suppresses the ignition noise pulses. It consists of an IF noise blanker in front of the channel filter and an audio noise blanker after AM demodulation.

The following quality detectors are used to measure the quality of the signal reception:

- RSSI or field strength detection (level)
- Frequency offset detection
- AM modulation detection

The AM weak signal handling improves the signal quality in weak reception conditions and it consists of:

- · Soft mute controlled by level and modulation
- High-cut controlled by level and modulation

8.5.2 FM mode features

The TEF668XA offers the high-end features Channel Equalizer and Improved Multipath Suppression. The Channel Equalizer improves multipath reception as well as weak signal reception by using adaptive filtering.

The Improved Multipath Suppression algorithm reduces the audibility of multipath distortions.

The FMSI feature is available for the TEF6687A and TEF6689A and offers significant improved FM stereo performance. Conventional receivers blend from stereo to mono at medium signal levels of 40 dB $_{\mu}$ V to avoid the FM stereo noise being audible. With FMSI, the stereo to mono blend is extended down to very weak signal levels of 10 dB $_{\mu}$ V without excessive stereo noise.

The channel filter rejects adjacent channels. The FM PACS algorithm dynamically controls the variable bandwidth of the channel filter. The bandwidth depends on the adjacent channel conditions and properties of the desired signal such as modulation and signal strength. The noise blanker detects and suppresses ignition noise pulses.

The following quality detectors are used to measure the quality of the signal reception:

- RSSI or field strength detection (level)
- Frequency offset detection
- Multipath and adjacent channel detection by USN detection
- Multipath detection by WAM detection
- Frequency deviation by modulation detection

TEF668XA

Low IF Tuner High performance One-chip

Stereo pilot detection

The FM weak signal handling improves the signal quality under weak signal and multipath conditions and it consists of:

- Soft mute controlled by level, USN and WAM
- High cut/Low cut controlled by level, USN, WAM and modulation
- Stereo blend controlled by level, USN, WAM and modulation
- Stereo high blend controlled by level, USN, WAM and modulation

8.5.3 RDS/RBDS

An RDS demodulator and RDS decoder processes the data received from RDS and RBDS transmissions with excellent RDS sensitivity.

8.5.3.1 RDS demodulator

The RDS demodulator includes optimized filtering and linear signal processing that allows very good RDS sensitivity. The MPX signal is filtered for selection of the 57 kHz RDS signal and data shaping. The RDS demodulator data is fed into the RDS decoder for further processing. To support available software stacks, the RDS demodulator data can also be read directly via the I²C-bus or GPIO pins.

8.5.3.2 RDS decoder

The RDS decoder provides synchronization to the block and group structure of the demodulated RDS data stream. When synchronized, the decoder delivers data in a fixed ABCD group order for easy software handling. In the background, synchronization search continues for fast correction on bit slip or other synchronization errors. Extended error detection and correction are included.

An I²C register indicates the availability of a new group. An interrupt signal 'data available' can be provided on a GPIO pin.

'Data available' is indicated whenever a new group is received (that is at reception of block D). For fast PI code reception, at synchronization start 'data available' is flagged on reception of the first PI code, such as block A or block C'.

8.5.3.3 RDS full search

TEF668XA includes the special FULL SEARCH feature for improved RDS sensitivity reception. FULL SEARCH is an optimized RDS channel demodulation and decoder system. It uses soft decision and soft error detection techniques to achieve an improvement of RDS sensitivity at equal or better quality of output data compared to conventional RDS decoder systems.

8.5.4 Digital radio interface

For HD Radio and DRM reception (TEF6688A and TEF6689A), the baseband signal is output to an external digital radio coprocessor, such as the NXP Semiconductors SAF356X or SAF360X. The baseband I²S output includes a Bit Clock (BCK), Word Select (WS) and the in-phase and quadrature-phase data signals (I-data and Q-data).

8.6 Audio input

One I²S audio input is available supporting sample rates 44.1 kHz and 48 kHz.

Low IF Tuner High performance One-chip

8.7 Audio processing

The audio processing block has the following features:

- Volume control including mute
- HD Radio blending (TEF6688A and TEF6689A)

8.8 Audio output

The audio output includes two mono DACs and one I²S audio output supporting sample rates 44.1 kHz and 48 kHz.

8.9 Crystal oscillator and external clock interface

In a stand-alone AM/FM application, a crystal oscillator provides the reference clock for the TEF668XA system. The crystal oscillator can be used with a fundamental mode crystal with a frequency of 4.000 MHz, 9.216 MHz, 12.000 MHz or 55.46667 MHz.

Instead of the stand-alone operation with a dedicated crystal, the TEF668XA can also operate on an external supplied clock reference of 55.46667 MHz.

8.10 I²C-bus interface

The TEF668XA is controlled with the I²C-bus interface. The I²C-bus interface supports the fast mode of 400 kbit/s in accordance with the I²C-bus specification.

The voltage levels on GPIO_2 pin define the I²C-bus address selection during power-up. The I²C-bus address is C8h (default) or can be configured to be CAh. The I²C-bus address selection table is defined in the application note Ref. 7

A logic 0 requires a 10 k Ω pull-down resistor to connect to ground. For a logic 1, the pin must be connected to the 3.3 V supply voltage by a 10 k Ω pull-up resistor.

9. I²C-bus protocol

The user manual Ref. 8 describes the software control interface for the TEF668XA.

9.1 Write mode

Standard write transmissions consist of an I²C-bus start condition and an 8-bit hardware device address for write as defined by the I²C-bus standard. Next, an 8-bit module identifier for FM, AM, audio, system and other parts. An 8-bit command identifier and an 8-bit parameter index, followed by one or more 16-bit parameters, indicates control

Writing data to inactive modules is supported and this data is stored. Stored data is used upon activation of the module.

9.2 Read mode

Standard read transmissions from the TEF668XA consist of writing a read request followed by the actual read transmission to obtain data.

Remark: The I²C-bus standard does not allow read addressing within a read transmission.

TEF668XA

Low IF Tuner High performance One-chip

Received data or status information is read using special Get commands that include an index setting similar to Write definitions. Write definitions are required for reading large data blocks and for future expansion

A command with index 0 returns the module and command value. These commands are useful to allow for instances where requested data cannot be returned in time due to internal data handling delays.

In special cases, Get commands with index 0 or 1 require data to be read from the start. Read data with index is useful to read data blocks of a particular size, in case read buffers have limited size.

10. Overview of commands

The TEF668XA devices have an I²C bus interface for control. The user manual Ref. 8 describes the TEF668XA control interface and provides an overview of available write and read commands with parameter and data definitions.

Low IF Tuner High performance One-chip

11. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA(RF)3V3}	RF analog supply voltage (3.3 V)	on pin VDDA_RF	-0.5	+3.9	V
V _{DDA(IF)3V3}	IF analog supply voltage (3.3 V)	on pin VDDA_IFADC	-0.5	+3.9	V
V _{DDD(3V3)}	digital supply voltage (3.3 V)	on pin VDDD	-0.5	+3.9	V
$\Delta V_{DD(3V3-3V3)}$	supply voltage difference between two 3.3 V supplies	between pins VDDA_IFADC and VDDA_RF	-0.3	+0.3	V
V _i	input voltage		-0.5	$+V_{DDD(3V3)} + 0.3$	V
l _{lu}	latch-up current	all supply voltages below the maximum value	-100	+100	mA
V _{lu}	latch-up voltage	[2]	-	$1.5 \times V_{DDD(3V3)}$	V
T _{stg}	storage temperature	[3]	-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
Tj	junction temperature		-40	+125	°C
V _{ESD}	electrostatic discharge voltage	human body model [4]	-2000	+2000	V
		charged-device model [5]			
		corner pins	-750	+750	V
		other pins	-500	+500	V
P _{tot}	total power dissipation	$V_{DDA(RF)3V3} = 3.5 \text{ V};$ $V_{DDA(IF)3V3} = 3.5 \text{ V};$ $V_{DDD(3V3)} = 3.5 \text{ V}$	-	780	mW

- [1] In accordance with AEC-Q100-004.
- [2] All pins except XTAL_IN.
- [3] Long exposure to very low or high temperatures may affect product reliability.
- [4] Class H2 according to AEC-Q100-002 Rev-D.
- [5] Class C4B according to AEC-Q100-011 Rev-C.

12. Thermal characteristics

Table 6. Thermal characteristics

The performance parameters are specified with center pin soldered to the board

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	HVQFN32 dual-layer board [1]	50	K/W
		HVQFN32 four-layer board	30	K/W

^[1] Simulation result assuming a dual layer board with a copper thickness of 35 μm; size: 50 mm × 50 mm. Exposed die pad soldered to thermal landing pattern. Thermal landing pattern connected to a large ground plane on the bottom layer by multiple thermal vias. Copper coverages 25 % (top layer) and 90 % (bottom layer).

Low IF Tuner High performance One-chip

13. Static characteristics

Table 7. Voltage and current characteristics

Typical current values are measured using typical silicon at an ambient temperature of 25 °C and typical power supply voltages. Maximum current values are measured using worst case silicon measured at an ambient temperature of 85 °C and maximum power supply voltages.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply volta	ge					1
V _{DDA(RF)3V3}	RF analog supply voltage (3.3 V)	on pin VDDA_RF	3.0	3.3	3.5	V
V _{DDA(IF)3V3}	IF analog supply voltage (3.3 V)	on pin VDDA_IFADC	3.0	3.3	3.5	V
V _{DDD(3V3)}	digital supply voltage (3.3 V)	on pin VDDD	3.0	3.3	3.5	V
Current in Fl	M mode					'
I _{DDA(RF)}	RF analog supply current	on pin VDDA_RF	33	37	42	mA
I _{DDA(IF)}	IF analog supply current	on pin VDDA_IFADC	81	94	110	mA
I _{DDD}	digital supply current	on pin VDDD	30	42	70	mA
Current in A	M - MW/LW mode		7			'
I _{DDA(RF)}	RF analog supply current	on pin VDDA_RF	34	40	48	mA
I _{DDA(IF)}	IF analog supply current	on pin VDDA_IFADC	63	74	86	mA
I _{DDD}	digital supply current	on pin VDDD	30	35	70	mA
Current in St	andby mode					'
I _{DDA(RF)}	RF analog supply current	on pin VDDA_RF	0	0.3	2	mA
I _{DDA(IF)}	IF analog supply current	on pin VDDA_IFADC	25	37	45	mA
I _{DDD}	digital supply current	on pin VDDD	15	27	60	mA

14. Dynamic characteristics

14.1 Audio processing and DAC

Table 8. Dynamic characteristics for audio processing and audio DAC

 $V_{DDA(RF)(3V3)} = 3.3 \text{ V}; V_{DDA(IF)(3V3)} = 3.3 \text{ V}; V_{DDD(3V3)} = 3.3 \text{ V}; f_s = 44.1 \text{ kHz}; T_{amb} = 25 ^{\circ}\text{C}; all AC values are given in RMS; unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Audio proce	essing	·			1	
G _{aud}	audio gain		-60	-	+24	dB
α_{mute}	mute attenuation		-	-	-80	dB
Audio DAC					,	
Vo	output voltage	at 0 dBFS digital input; $R_L = 20 \text{ k}\Omega$	870	910	950	mV
R _o	output resistance		-	-	1	kΩ
$\alpha_{o(unb)(ch-ch)}$	output unbalance between channels		-0.2	-	+0.2	dB
(THD+N)/S	total harmonic distortion plus noise-to-signal ratio	0 dBFS with unweighted 20 Hz to 20 kHz audio filter; $R_L = 20 \text{ k}\Omega$	-	-	-70	dB
		-60 dBFS with A-weighted audio filter; R _L = 20 kΩ	-	-	-27	dB
$V_{n(o)(RMS)}$	RMS output noise voltage	in-band noise on idle channel, A-weighted	-	-	36	μV

TEF668XA

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

Low IF Tuner High performance One-chip

Table 8. Dynamic characteristics for audio processing and audio DAC ...continued

 $V_{DDA(RF)(3V3)} = 3.3 \text{ V; } V_{DDA(IF)(3V3)} = 3.3 \text{ V; } V_{DDD(3V3)} = 3.3 \text{ V; } f_s = 44.1 \text{ kHz; } T_{amb} = 25 \text{ °C; all AC values are given in RMS; unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\alpha_{ extsf{cs}}$	channel separation		70	-	-	dB
PSRR	power supply rejection ratio	f _{ripple} = 1 kHz; V _{supply} (ripple)/V _{audio(ripple)}	50	-	-	dB
R_L	load resistance		20	-	-	kΩ
f _{resp}	frequency response	–3 dB corner frequency related to f_{AF}= 1 kHz	100	-	-	kHz
		low audio	-	-	20	Hz
		high audio	18	-	-	kHz

14.2 Radio characteristics

Table 9. Dynamic characteristics for tuning system

 $V_{DDA(RF)(3V3)} = 3.3 \text{ V}; V_{DDA(IF)(3V3)} = 3.3 \text{ V}; V_{DDD(3V3)} = 3.3 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}; all AC values are RMS; unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Crystal o	Crystal oscillator								
f _{nom}	nominal frequency		-	4.000	-	MHz			
			-	9.216	-	MHz			
			->	12.000	-	MHz			
			-	55.46667	-	MHz			
Clock int	erface								
f _{clk(ext)}	external clock frequency		-	55.46667	-	MHz			
V _{i(osc)}	oscillator input voltage	peak-to-peak	200	400	-	mV			

Table 10. FM radio characteristics

f = 98.1 MHz, $\Delta f = 22.5$ kHz, $f_{AF} = 1$ kHz, $50~\mu s$ de-emphasis, IEC tuner filter $75~\Omega/-6$ dB dummy antenna. All signals in RMS at input dummy unless otherwise specified. Analog audio output at pins DAC_L and DAC_R.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RF}	RF frequency	FM tuning range	65	-	108	MHz
V _{i(sens)}	input sensitivity voltage	V _{i(RF)} for 26 dB SNR; channel equalizer on	-	-4	0	dBμV
(S+N)/N	S+N)/N signal plus noise-to-noise ratio	$V_{i(RF)}$ = 50 dB μ V to 120 dB μ V; mono	60	68	-	dB
		$V_{i(RF)}$ = 60 dB μ V to 120 dB μ V; stereo	56	60	-	dB
$\alpha_{\text{sup}(AM)}$	AM suppression	$m = 30 \%$; $f_{AF} = 1 \text{ kHz}$; $V_{i(RF)} = 40 \text{ dB}\mu\text{V}$ to 120 dB μV	58	68	-	dB
THD	total harmonic distortion	f_{AF} = 1 kHz; $V_{i(RF)}$ = 20 dB μ V to 120 dB μ V				
		$\Delta f = 75 \text{ kHz}; \text{ mono}$	-	0.01	0.1	%
l		$\Delta f = 67.5 \text{ kHz}$; stereo; L _{out} only	-	0.1	0.3	%

Low IF Tuner High performance One-chip

Table 10. FM radio characteristics ...continued

f = 98.1 MHz, $\Delta f = 22.5$ kHz, $f_{AF} = 1$ kHz, $50~\mu s$ de-emphasis, IEC tuner filter $75~\Omega/-6$ dB dummy antenna. All signals in RMS at input dummy unless otherwise specified. Analog audio output at pins DAC_L and DAC_R.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
S	selectivity	$\begin{split} &V_{RF(wanted)} = 20 \text{ dB}\mu\text{V};\\ &\Delta f_{(wanted)} = 22.5 \text{ kHz for 0 dB reference};\\ &f_{AF(wanted)} = 1 \text{ kHz};\\ &f_{RF(unw)} = f_{RF(wanted)} \pm \Delta f_{RF};\\ &\Delta f_{(unw)} = 22.5 \text{ kHz};\\ &f_{AF(unw)} = 1 \text{ kHz};\\ &\text{increase } V_{RF(unw)} \text{ until SNR} = 26 \text{ dB};\\ &S = V_{RF(unw)} / V_{RF(wanted)};\\ &\text{channel equalizer on} \end{split}$				
		$\Delta f_{RF} = 100 \text{ kHz}$	60	67	-	dB
		$\Delta f_{RF} = 200 \text{ kHz}$	70	77	-	dB
IP3	third-order intercept point	$\Delta f_{RF(unw)1} = \pm 400 \text{ kHz};$ $\Delta f_{RF(unw)2} = \pm 800 \text{ kHz}$	115	120	-	dΒμV
IP2	second-order intercept point	$f_{RF(unw)1} = 50 \text{ MHz};$ $f_{RF(unw)2} = 48 \text{ MHz}$	160	180	-	dBμV
V _{i(RF)AGC(start)}	start AGC RF input voltage	highest setting	-	92	-	dΒμV
		lowest setting	-	84	-	dΒμV
$\alpha_{\text{cr}(\text{AGC})}$	AGC control range	internal AGC	-	40	-	dB
		external AGC	-	6	-	dB
$\alpha_{ extsf{cs}}$	channel separation	Δf = 67.5 kHz; f_{AF} = 1 kHz; Δf_{pilot} = 7.5 kHz				
		$V_{i(RF)} = 20 \text{ dB}\mu\text{V}$; FMSI enabled [1]	-	30	-	dB
		$V_{i(RF)}$ = 60 dB μ V to 120 dB μ V	45	-	-	dB
S _{RDS}	RDS sensitivity	$\Delta f_{RDS} = 2 \text{ kHz; stereo;}$ $\Delta f_{FM} = 22.5 \text{ kHz; } L = R; f_{AF} = 1 \text{ kHz}$				
		50 % correct blocks without error correction	-	14	18	dΒμV
		95 % correct blocks without error correction	-	17	21	dΒμV
Vo	output voltage	$V_{RF} = 60 \text{ dB}\mu\text{V}$	-	120	-	mV
		DARC output; $V_{RF} = 60 \text{ dB}\mu\text{V}$	-	150	-	mV

^[1] Only applicable for TEF6687A and TEF6689A.

Table 11. AM radio characteristics

f = 990 kHz; m = 30 %; $f_{AF} = 1 \text{ kHz}$; IEC tuner filter 15 pF/60 pF dummy antenna. All signal levels in RMS at input dummy; unless otherwise specified. Analog audio output at pins DAC_L and DAC_R.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RF}	RF frequency	AM (LW) tuning range	144	-	288	kHz
		AM (MW) tuning range	522	-	1710	kHz
		AM (SW) tuning range	2.3	-	27.0	MHz
V _{i(sens)}	input sensitivity voltage	$S/N = 26 dB$; $B_{aud} = 2 kHz$; $f_{RF} = 990 kHz$; $m = 30 \%$; $f_{AF} = 400 Hz$	-	34	37	dΒμV
(S+N)/N	signal plus noise-to-noise ratio	$V_{i(RF)} = 74 \text{ dB}\mu\text{V}$	60	65	-	dB

TEF668XA

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

Low IF Tuner High performance One-chip

Table 11. AM radio characteristics ...continued

 $f = 990 \; kHz; \; m = 30 \; \%; \; f_{AF} = 1 \; kHz; \; IEC \; tuner \; filter \; 15 \; pF/60 \; pF \; dummy \; antenna. \; All \; signal \; levels \; in \; RMS \; at input \; dummy; \; unless otherwise specified. \; Analog \; audio \; output \; at \; pins \; DAC_L \; and \; DAC_R.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	$V_{i(RF)} = 50 \text{ dB}\mu\text{V}$ to 120 dB μV				
		f _{AF} = 1 kHz; m = 80 %	-	0.1	0.3	%
		f _{AF} = 400 Hz; m = 80 %	-	0.1	0.3	%
		f _{AF} = 100 Hz; m = 80 %	-	0.1	0.5	%
S _{stat} static selectivity	static selectivity	single signal; $\Delta f_{RF} = 10 \text{ kHz}$; $f_{tune} \pm 10 \text{ kHz}$	70	80	-	dB
		single signal; $\Delta f_{RF} = 20 \text{ kHz}$; $f_{tune} \pm 20 \text{ kHz}$	80	-	-	dB
IP3	third-order intercept point	$\Delta f_{RF(unw)1} = 40 \text{ kHz};$ $\Delta f_{RF(unw)2} = 80 \text{ kHz}$	130	133	-	dBμV
		$\Delta f_{RF(unw)1} = 300 \text{ kHz};$ $\Delta f_{RF(unw)2} = 600 \text{ kHz}$	130	133	-	dBμV
IP2	second-order intercept point	f _{RF(wanted)} = 1400 kHz; f _{RF(unw)1} = 600 kHz; f _{RF(unw)2} = 800 kHz	160	170	-	dBμV
Vo	output voltage	$V_{RF} = 60 \text{ dB}\mu\text{V}$	-	100	-	mV

14.3 General purpose

Table 12. Interface definition GPIO

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Output si	gnaling (3V3)					
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	2.4	-	V _{DDD(3V3)}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	-	-	0.4	V
I _{OSH}	HIGH-level short-circuit output current	output connected to ground	-	-	90	mA
I _{OSL}	LOW-level short-circuit output current	output connected to V _{DDD(IO)3V3}	-	-	87	mA
Input sigr	naling (3V3)					
V _{IH}	HIGH-level input voltage		2.0	-	V _{DDD(3V3)}	V
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
V _{hys}	hysteresis voltage		$0.1 \times V_{DDD(3V3)}$	-	-	V
Ci	input capacitance		-	8	-	pF

14.4 I²C-bus interface

Table 13. Interface definition I²C-bus

The PC-bus interface supports the fast mode of 400 kbit/s in accordance with the PC-bus specification; see Ref. 1

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input 3.3 V	signaling					
V_{IH}	HIGH-level input voltage		$0.7 \times V_{DDD(3V3)}$	-	V _{DDD(3V3)}	V
V_{IL}	LOW-level input voltage		-	-	$0.3 \times V_{DDD(3V3)}$	V
V_{hys}	hysteresis voltage		$0.1 \times V_{DDD(3V3)}$	-	-	V

TEF668XA

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

17 of 34

Low IF Tuner High performance One-chip

14.5 Digital radio interface

Table 14. Interface definition DR I²S

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DR_WS a	and DR_BCK in CMOS 3V3	mode				
t _{cy(clk)}	clock cycle time	BCK, WS and 2 data signals				
		f _(clk) = 10.4 MHz	-	96.15	-	ns
		f _(clk) = 10.8 MHz	-	92.59	-	ns
		BCK, WS and 1 data signal				
		$f_{(clk)} = 20.8 \text{ MHz}$	-	48.08	-	ns
		f _(Clk) = 21.6 MHz	-	46.3	-	ns
δ	duty cycle		-	50	-	%
t _{su(WS)}	WS set-up time		20	-	-	ns
t _{h(WS)}	WS hold time		20	-	-	ns
V _{OH}	HIGH-level output voltage	$I_{OH} = 3 \text{ mA}$; $C_L = 50 \text{ pF}$; $R_L = 1 \text{ M}\Omega$	2.2	-	V _{DDD(3V3)}	V
V _{OL}	LOW-level output voltage	$I_{OH} = 3 \text{ mA}$; $C_L = 50 \text{ pF}$; $R_L = 1 \text{ M}\Omega$				
		DR_Q_DATA and DR_I_DATA in CMOS 3V3 mode	-	-	0.6	V
		DR_Q_DATA_OUT and DR_I_DATA_OUT in open-drain mode	-	-	0.8	V
t _{r(clk)}	clock rise time	$I_{OH} = 3 \text{ mA}$; $C_L = 50 \text{ pF}$; $R_L = 1 \text{ M}\Omega$				
		f _(Clk) = 10.4 MHz or 10.8 MHz	-	-	20	ns
		f _(Clk) = 20.8 MHz or 21.6 MHz	-	-	10	ns
t _{f(clk)}	clock fall time	$I_{OH} = 3 \text{ mA}$; $C_L = 50 \text{ pF}$; $R_L = 1 \text{ M}\Omega$				
		f _(Clk) = 10.4 MHz or 10.8 MHz	-	-	20	ns
		f _(Clk) = 20.8 MHz or 21.6 MHz	-	-	10	ns
t _r	rise time	for both WS and DATA signals; $I_{OH} = 3$ mA; $C_L = 50$ pF; $R_L = 1$ M Ω	-	-	20	ns
t _f	fall time	for both WS and DATA signals; $I_{OL} = 3$ mA; $C_L = 50$ pF; $R_L = 1$ M Ω	-	-	20	ns

Low IF Tuner High performance One-chip

Table 14. Interface definition DR I²S ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{SU;DAT}	data set-up time	f _(clk) = 10.4 MHz or 10.8 MHz	20	-	-	ns
		f _(clk) = 20.8 MHz or 21.6 MHz	5	-	-	ns
t _{HD;DAT}	data hold time		20	-	-	ns
Output si	gnaling (current mode)					
I _{OH}	HIGH-level output current	[1]	22	-	760	μΑ
I _{OL}	LOW-level output current	[1]	-22	-	-760	μΑ
Input sign	naling (current mode)					
I _{IH}	HIGH-level input current		100	-	-	μΑ
I _{IL}	LOW-level input current		-100	-	-	μΑ
Ci	input capacitance	4	-	8	-	pF

^[1] The values for min and max define the typical value range of the hardware. The firmware sets the actual value for this parameter, depending on use case.

14.6 I²S-bus interface

Table 15. Interface definition I²S

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I ² S			<u>'</u>			
t _{cy(clk)}	clock cycle time	$f_s = 44.1 \text{ kHz}$	-	354.31	-	ns
t _{BCLKH}	BCLK HIGH time		$0.35 \times t_{cy(clk)}$	-	-	ns
t _{BCLKL}	BCLK LOW time		$0.35 \times t_{cy(clk)}$	-	-	ns
δ	duty cycle		-	50	-	%
t _{su(WS)}	WS set-up time		$0.2 \times t_{\text{cy(clk)}}$	-	-	ns
t _{h(WS)}	WS hold time		$0.2 \times t_{\text{cy(clk)}}$	-	-	ns
Output si	gnaling (3V3)		<u>'</u>			
V _{OH}	HIGH-level output voltage	$I_{OH} = 3 \text{ mA}; C_L = 50 \text{ pF}$	V _{DDD(3V3)} -0.4	-	V _{DDD(3V3)}	V
V _{OL}	LOW-level output voltage	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF}$	0	-	0.4	V
t _r	rise time	$I_{OH} = 3 \text{ mA}; C_L = 50 \text{ pF}$	-	-	$0.15 \times t_{\text{cy(clk)}}$	ns
t _f	fall time	$I_{OH} = 3 \text{ mA}; C_L = 50 \text{ pF}$	-	-	$0.15 \times t_{cy(clk)}$	ns
t _{d(clk-WS)}	clock to WS delay time		-	-	$0.15 \times t_{cy(clk)}$	ns
t _{d(clk-data)}	clock to data delay time		-	-	$0.15 \times t_{\text{cy(clk)}}$	ns
Input sign	naling (3V3)		·		•	

Low IF Tuner High performance One-chip

Table 15. Interface definition I²S ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IH}	HIGH-level input voltage		2.0	-	V _{DDD(3V3)}	V
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
V _{hys}	hysteresis voltage		$0.1 \times V_{DDD(3V3)}$	-	-	V
R _{pu(weak)}	weak pull-up resistance	I/O configured with pull-up	-	50	-	kΩ
R _{pd(weak)}	weak pull-down resistance	I/O configured with pull-down	-	50	-	kΩ
Ci	input capacitance		-	8	-	pF
t _{SU;DAT}	data set-up time		$0.2 \times t_{cy(clk)}$	-	-	ns
t _{HD;DAT}	data hold time		$0.2 \times t_{cy(clk)}$	-	-	ns
Output si	gnaling (current mode)					
I _{OH}	HIGH-level output current	(1)	22	-	760	μΑ
I _{OL}	LOW-level output current	ū	-22		-760	μΑ
Input sign	naling (current mode)					
I _{IH}	HIGH-level input current	WS and BCK	100	->	-	μΑ
I _{IL}	LOW-level input current	WS and BCK	-100	-	-	μΑ
C _i	input capacitance			8	-	pF

^[1] The values for min and max define the typical value range of the hardware. The firmware sets the actual value for this parameter, depending on use case.

14.7 Digital radio blend

Low IF Tuner High performance One-chip

Table 16. Interface definition DR_BL

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input sigr	naling (3V3)					
V_{IH}	HIGH-level input voltage		2.0	-	V _{DDD(3V3)}	V
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
V _{hys}	hysteresis voltage		$0.1 \times V_{DDD(3V3)}$	-	-	V
Ci	input capacitance		-	8	-	pF

Low IF Tuner High performance One-chip

Table 17. List of components for Figure 7

Symbol	Туре	Series	Manufacturer
L1	C2012C-R27J	C2012C	Sagami
L2	#A1313AN-0004GGH	5CCEG	Toko
L3	C2012C-R82J	C2012C	Sagami
L4	LLM2520-3R3K	LLM2520	Toko
L5	C2012C-R27J	C2012C	Sagami
X1[1]	AV55460001 (55.46667 MHz)	AV	TXC
	IC255466CC1B (55.46667 MHz)	DSX321G	KDS

^[1] For other crystal frequencies, refer to Application note AN11821.

Table 18. DC operating points

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDD(3V3)} = 3.3 \text{ V}; T_{amb} = 25 \text{ °C}; unless otherwise specified.}$

Symbol	Pin	Unloaded DC voltage (V)			
		Min Typ		Max	
VDDA_IFADC	1	external 3.3			
VSSA_IFADC	2	external GN	D		
VBGP	3	2.42	2.55	2.67	
FM_CAP (FM mode)	4		1.27	-	
FM_CAP (AM mode)	4	-	1.54	-	
FM_IN_M (FM mode)	5	1.15	1.27	1.45	
FM_IN_M (AM mode)	5	-	1.54	-	
FM_IN_P (FM mode)	6	1.15	1.27	1.45	
FM_IN_P (AM mode)	6	-	1.54	-	
VDDA_RF	7	external 3.3		,	
VSSA_RF	8	external GN	D		
AM_IN_P (FM mode)	9	-	0	-	
AM_IN_P (AM mode)	9	-	1.13	-	
AM_LNA_CAP (FM mode)	10	-	0	-	
AM_LNA_CAP (AM mode)	10	1.09	1.13	1.18	
VSSD	21	external GN	D	,	
VDDD	22	external 3.3			
VSSD_IO	23	external GN	D		
DAC_L	29	-	1.48	-	
DAC_R	30	-	1.48	-	
VSS	31	external GND			
XTAL_IN	32	-	2.8	-	

Low IF Tuner High performance One-chip

16. Test information

16.1 Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard *Q100 - Failure mechanism based stress test qualification for integrated circuits*, and is suitable for use in automotive applications.

17. Package information

No tracks are permitted on the PCB top layer beneath the pin 1 marker. Refer to Ref. 7 for more detailed information about package and PCB layout guidelines.

Low IF Tuner High performance One-chip

18. Package outline

Fig 8. Package outline SOT617-3 (HVQFN32)

TEF668XA

Low IF Tuner High performance One-chip

Fig 9. Soldering footprint SOT617-3 (HVQFN32)

Low IF Tuner High performance One-chip

19. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

19.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

19.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

19.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

Low IF Tuner High performance One-chip

19.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 10</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 19 and 20

Table 19. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 20. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm³)		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 10.

Low IF Tuner High performance One-chip

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

20. Abbreviations

Table 21. Abbreviations

Acronym	Description
AC	Alternating Current
ADC	Analog-to-Digital Converter
AEC	Automotive Electronics Council
AGC	Automatic Gain Control
AM	Amplitude Modulation
ВСК	Bit ClocK
DAC	Digital-to-Analog Converter
DARC	DAta Radio Channel
DRM	Digital Radio Mondiale
ESD	ElectroStatic Discharge
FM	Frequency Modulation
FMSI	FM Stereo Improvement
GPIO	General Purpose Input/Output
HBM	Human Body Model
I ² C-bus	Inter-IC bus
I ² S	Inter-IC Sound
IC	Integrated Circuit
IEC	International Electrotechnical Commission
IF	Intermediate Frequency

Low IF Tuner High performance One-chip

Table 21. Abbreviations ... continued

Acronym	Description
I/O	Input/Output
I/Q	In-phase/Quadrature-(phase
JEDEC	Joint Electron Device Engineering Council
JEITA	Japan Electronics and Information Technology Industries Association
LNA	Low-Noise Amplifier
LO	Local Oscillator
LW	Long Wave
MPX	FM-Multiplex Signal
MSL	Moisture Sensitivity Level
MW	Medium Wave
OIRT	International Radio and Television Organisation (Organisation Internationale de Radiodiffusion et de Télévision)
PACS	Precision Adjacent Channel Suppression
PCB	Printed-Circuit Board
PI	Program Identification
PLL	Phase-Locked Loop
RBDS	Radio Broadcast Data System
RDS	Radio Data System
RF	Radio Frequency
RMS	Root Mean Square
RSSI	Received Signal Strength Indicator
SNR	Signal-to-Noise Ratio
SW	Short Wave
US	United States (of America)
USN	UltraSonic Noise
WAM	Wideband AM
WS	Word Select

21. Glossary

HD Radio[™] — Technology upgrades broadcast radio from analog to digital

Low IF Tuner High performance One-chip

22. References

- [1] UM10204; I²C-bus specification and user manual v.5 Official I²C Standard Document (available from NXP Semiconductors, International Marketing and Sales)
- [2] IEC 60134 Absolute Maximum Rating System
- [3] AEC-Q100-004 Automotive Electronics Council IC Latch-Up Test
- [4] AEC-Q100-002 Automotive Electronics Council Human Body Model (HBM) Electrostatic Discharge (ESD) Test
- [5] AEC-Q100-011 Automotive Electronics Council Charged Device Model (CDM) Electrostatic Discharge (ESD) Test
- [6] Application note AN10365 Surface mount reflow soldering
- [7] Application note AN11821 TEF668XA V205 Application note
- [8] TEF668XA User Manual Technical information

23. Revision history

Table 22. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TEF668XA v.3	20160718	Product data sheet	-	TEF668XA v.2
TEF668XA v.2	20160429	Preliminary data sheet	-	TEF668XA v.1
TEF668XA v.1	20151012	Objective data sheet	-	-

Low IF Tuner High performance One-chip

24. Legal information

24.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

24.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

24.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

TEF668XA

Low IF Tuner High performance One-chip

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

24.4 Licenses

ICs with HD Radio functionality

NXP Semiconductors ICs with HD Radio functionality are manufactured under license from iBiquity Digital Corporation. Sale or distribution of equipment that includes this device requires a license, which may be obtained at: iBiquity Digital Corporation, 6711 Columbia Gateway Drive, Suite 500, Columbia MD 21046, USA. Telephone: +1 (443) 539 4290, fax: +1 (443) 539 4291, e-mail: info@ibiquity.com.

24.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

HD Radio — is a trademark of iBiquity Digital Corporation.

HD Radio — logo is a registered trademark of iBiquity Digital Corporation.

25. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TEF668XA **NXP Semiconductors Low IF Tuner High performance One-chip**

> 18 19 19.

26. Contents

1	General description	. 1
2	Features and benefits	. 1
3	Applications	. 2
4	Functionality	. 3
5	Ordering information	
6	Block diagram	
7	Pinning information	
7.1	Pin description	
8	Functional description	
8.1	FM front end to IF ADC input	
8.2	AM front end to IF ADC input	
8.3	Tuning system	. 8
8.4	IF ADC	
8.5	Radio processing	
8.5.1	AM mode features	
8.5.2 8.5.3	FM mode features	_
8.5.3.1	RDS demodulator	10
8.5.3.2	RDS decoder	10
8.5.3.3	RDS full search	10
8.5.4	Digital radio interface	10
8.6	Audio input	10
8.7	Audio processing	11
8.8	Audio output	11
8.9	Crystal oscillator and external clock interface.	11
8.10	I ² C-bus interface	11
9	I ² C-bus protocol	11
9.1 9.2	Write mode	11
-	Read mode	11
10	Overview of commands	12
11	Limiting values	13
12	Thermal characteristics	13
13	Static characteristics	14
14	Dynamic characteristics	14
14.1	Audio processing and DAC	14
14.2 14.3	Radio characteristics	
14.3	General purpose	
14.5	Digital radio interface	18
14.6	I ² S-bus interface	19
14.7	Digital radio blend	20
15	Application information	22
16	Test information	24
16.1	Quality information	24
17	Package information	24

18	Package outline	25
19	Soldering of SMD packages	27
19.1	Introduction to soldering	27
19.2	Wave and reflow soldering	27
19.3	Wave soldering	27
19.4	Reflow soldering	28
20	Abbreviations	29
21	Glossary	30
22	References	31
23	Revision history	31
24	Legal information	32
24.1	Data sheet status	32
24.2	Definitions	32
24.3	Disclaimers	32
24.4	Licenses	33
24.5	Trademarks	33
25	Contact information	33
26	Contents	34

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

All rights reserved.