Department of Information Technology, B. P. Poddar Institute of Management and Technology

Leveraging Generative Al for Medical Data Prediction

Under the Guidance of:

Dr. Gitosree Khan

Presented by:

Abhishek Saha

Sougata Seth

Sarbasish Chowdhury

Ayush Kumar Pandey

TABLE OF CONTENTS

O1. Introduction and Motivation

O2. Problem Statement & Objectives

03. Proposed Methodology

04. Experiments & Results

05. Comparative Analysis

06. Future Scope & Conclusion

Introduction & Motivation

Why This Project?

- **l.** Healthcare needs intelligent systems for early diagnosis, decision support, and personalized treatment.
- 2. Traditional models struggle with the **complexity and variability** of medical data.

Our Solution:

LLMs can understand medical text and answer clinical questions.

We fine-tuned **Meta-Llama-3.1-8B-Instruct-bnb-4bit** for **medical QA** using:

- → Supervised Fine-Tuning (SFT)
- → Reinforcement Learning (PPO)
- → Efficient tuning via **LoRA** and **4-bit quantization**

Problem Statement:

General LLMs fall short in medicine

- Trained on general language, not clinical data
- Tend to hallucinate or give incomplete medical answers

Full fine-tuning is resource-intensive

- Needs high-end
 GPUs/TPUs
- Not feasible for academic or clinical labs with limited infrastructure

Our Need

- A domain-specific, accurate, and resource-efficient medical LLM
- One that works on consumer hardware (like RTX 3070Ti)

Our Objective

Adapt

a general LLM (Meta-LLaMA 3.1 8B instruct) to medical question answering

Improve accuracy using a two-stage training pipeline:

Stage 1: Supervised Fine-Tuning (SFT)
Stage 2: Reinforcement Learning (PPO)

Minimize compute & memory using:

- 4-bit quantization
- LoRA (Low-Rank Adaptation)

Deploy

locally on consumer-grade GPUs (e.g., RTX 3070Ti)

Dataset Overview

MedQA (USMLE)

• • •

- 12,723 clinical MCQs
- US medical licensing exam
- Focus on deep clinical reasoning

MedMCQA (NEET PG/AIIMS)

. . .

- 94,000+ questions
- Indian postgraduate exam dataset
- Covers 21 subjects,2.4k topics
- Sampled 50,000 for training

Architecture Overview

End-to-End Pipeline:

- 1. Data Ingestion
 - → Load MedQA & MedMCQA
- 2. Preprocessing
 - → Prompt formatting & tokenization
- 3. Base Model Loading
 - → Meta-LLaMA-3.1-8B (4-bit)
- 4. Training
 - → Stage 1: SFT
 - → Stage 2: PPO
- 5. Deployment
 - → Python CLI using **Ilama-cpp**

Fig 1. Architecture Overview

Base Model, LoRA & QLoRA

Meta-LLaMA-3.1-8B (4-bit)

- 1. Open-source LLM from Meta
- 2. 8B parameters
- Loaded using 4-bit quantization (bitsandbytes)

LoRA + QLoRA for Efficient Training

- 1. LoRA (Low-Rank Adaptation): fine-tune only attention sublayers (q_proj, k_proj)
- 2. QLoRA: a quantization-aware variant of LoRA
 - a. Fnables LoRA on 4-bit models
 - b. Uses paged optimizers & NF4 quantization
 - C. Ideal for consumer GPUs

Configuration:

- 1. Rank = 16
- 2. Alpha = 8
- 3. Target Modules = q_proj, k_proj

```
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model
# 1. Load the 4-bit quantized base model
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
model = AutoModelForCausalLM.from_pretrained(
    load in 4bit=True,
    bnb 4bit use double quant=True,
    device map="auto"
# 2. Configure QLoRA (LoRA on 4-bit)
lora_config = LoraConfig(
    lora_alpha=8,
    target_modules=["q_proj", "k_proj"],
    bias="none",
    task_type="CAUSAL_LM"
model = get_peft_model(model, lora_config)
# 3. Verify trainable parameters
model.print_trainable_parameters()
```

Fig 2. Example snippet

Supervised Fine-Tuning (SFT)

Training Config:

Batch size = 1 + 8-step accumulation; Epochs = 5; Learning rate = 3×10^{-6} ; FP16 + gradient checkpointing

- Data: MedQA + MedMCQA prompts
- Outcome: ~62% accuracy post-SFT

Fig 3. Prompt Template

PPO - Reinforcement Learning Stage

Purpose:

- Refine the model's medical reasoning after SFT
- Reward correct answers, penalize wrong ones

PPO Config:

- Reward signal:
 - o 1.0 → Correct
 - O 0.1 → Incorrect
- Epochs: 2
- Batch size: 2
- Clip range (ε): 0.2
- Learning rate: 5 × 10⁻⁶

```
def calculate_medical_accuracy_reward(self, response: str, correct_answer: str, question: str) -> float:
   """Calculate reward based on medical accuracy"""
   response clean = response.strip().upper()
   correct clean = correct answer.strip().upper()
   if correct_clean in response_clean:
       base_reward = 1.0
       answer match = re.search(r'[ABCD]', response clean)
       if answer match and answer match.group() == correct clean:
           base_reward = 1.0
           base_reward = 0.1
   return base_reward
def calculate_medical_quality_reward(self, response: str, question: str) -> float:
   """Calculate reward based on medical response quality""
   response_lower = response.lower()
   quality_score = 0.0
   # Evidence-based language bonus
   evidence_count = sum(1 for keyword in self.medical_keywords['high_reward']
                      if keyword in response_lower)
   quality_score += min(evidence_count * 0.1, 0.3)
   safety count = sum(1 for keyword in self.medical keywords['safety critical']
                    if keyword in response lower
   quality_score += min(safety_count * 0.15, 0.2)
   question lower = question.lower()
   for specialty, keywords in self.specialty_knowledge.items():
       if any(keyword in question lower for keyword in keywords):
           specialty_mentions = sum(1 for keyword in keywords if keyword in response_lower)
           quality_score += min(specialty_mentions * 0.05, 0.15)
   # Length appropriateness (not too short, not too verbose)
   response_length = len(response.split())
   if 10 <= response_length <= 100:
       quality_score += 0.1
   elif response_length < 5:
       quality_score -= 0.2
   elif response_length > 200:
       quality_score -= 0.1
   return min(quality score, 1.0)
```

Fig 4. Accuracy and quality reward functions

Training Metrics & Graphs

Key Observations:

- Training loss decreases smoothly to ~1.4
- **Validation loss** remains stable → no overfitting
- **Learning rate** follows cosine decay → smooth convergence
- **Gradient norms** stable around 0.2–0.3 → numerically safe training

Fig 5. Learning Rate

Fig 6. Training Loss

Question:

Which vitamin deficiency causes scurvy?

SFT Answer:

"Scurvy is caused by a deficiency of Vitamin C."

PPO Answer:

"Scurvy is caused by a deficiency of Vitamin C, a water-soluble vitamin essential for collagen synthesis. Deficiency leads to fatigue, gum bleeding, and poor wound healing."

Fig 7. PPO improves all key metrics, enhancing model accuracy and consistency

Comparative Analysis

Model	Size	Accuracy	Hardware	Method	Open Source
MedLLM (Ours)	8B	~64%	RTX 3070Ti	SFT + PPO + QLoRA	▼ Yes
Med42	70B	~72%	A100	LoRA (SFT)	▼ Yes
Med-PaLM 2	540B	86.5%	TPU Pods	RLHF	X No
HuatuoGPT	8B	~70%	High-end GPU	SFT + PPO	☑ Partial

Table 1. Comparison

Future Scope

Conclusion

- MedLLM adapts Meta-LLaMA-3.1 to the medical domain
- Efficient training using 4-bit QLoRA and consumer GPU (RTX 3070Ti)
- Achieved ~64% accuracy with 2-stage finetuning (SFT + PPO)
- Fully **open-source** and locally deployable
- Paves the way for clinical AI that is lightweight, explainable, and accessible

References

- Hu et al., Med42: LoRA-based Fine-Tuning of Medical LLMs arXiv:2404.14779, 2024
- Touvron et al., LLaMA: Open and Efficient Foundation Language Models arXiv:2302.13971, Meta Al
- Dettmers et al., QLoRA: Efficient Finetuning of Quantized LLMs arXiv:2305.14314, HuggingFace
- Schulman et al., Proximal Policy Optimization Algorithms (PPO) arXiv:1707.06347, OpenAl
- HuatuoGPT: Tuning and Evaluating Medical LLMs in Chinese arXiv:2304.06975, 2023
- MedQA & MedMCQA Datasets
 - USMLE-based MCQs: https://github.com/jind11/MedQA
 - Indian NEET-PG MCQs: <a href="https://github.com/medmcga/med

