

Biomedical Imaging

& Analysis

Lecture 2, Part 1. Fall 2014

Image Formation & Visualization (I): MRI & k-Space

[Text: Joseph P. Hornak, The Basics of MRI

http://www.cis.rit.edu/htbooks/mri/inside.htm]

Prahlad G Menon, PhD

Assistant Professor

Sun Yat-sen University - Carnegie Mellon University (SYSU-CMU)

Joint Institute of Engineering

How is the course organized

- Image Formation
- Basic Image Processing
 - Linear filtering
 - Singular Value Decomposition & Image Compression (Gilbert Strang)
 - Invariance
 - Applications in Machine Vision & Feature Extraction
 - Feature Classification
- Advanced Image Processing Topics
 - Shape Analysis, Registration, Mutual Information
 - Optical Flow & Physics based image processing / Regularization
 - Shape and Appearance Models

Image Formation & Visualization

- System's model of an Imaging Device.
- Noise formation and propagation.
- Signal to Noise v/s Contrast to Noise
 - Image bit depth
 - Windowing & Leveling
- Software for Image Visualization
 - ImageJ, ITK-SNAP, Paraview
- Physics of Imaging
 - X-ray & CT
 - Tomographic Reconstruction Techniques
 - Fluoroscopy
 - MRI
 - Optical Imaging
 - Resolution limits
 - Point Spread Functions

Biomedical Imaging == Medical images + Biological Images

Data: Rosalind Franklyn

X-ray diffraction image of DNA crystals Watson, Crick, Wilkins (Nobel 1962)

X-ray image of the hand Röntgen (1901) / Cormack & Hounsfield (1979)

Electron microscopy of red blood cells Ruska (1986)

MRI of a head Lauterbur / Mansfield (2003)

Biological vs Medical Imaging

Different modalities

- Bioimaging mostly cellular and molecular level.
- Medical imaging mostly tissue and organ level
- Different techniques & objectives; Some shared principles
 - Medical image analysis is technically more mature.
- There is a growing trend of convergence of these objectives
 - E.g. molecular imaging using MRI with SPIOs...

Examples of Medical Imaging

3D rendering of tumor for surgical planning (MRI)

Tumor Metastasis localization (PET)

fMRI of whole brain activation:

Examples of Biological Imaging

Instantaneous 3D

Confocal Microscopy

Light Microscopy (2D + time)

4D Confocal Microscopy

(3D + time)

^--- ZebraFish Vasculature:Fluorescent Epithelial Cell Nuclei, Filaments and RBCs.

Life Sciences are unthinkable without Imaging: Assessment of biological processes with minimal perturbation of the system

Medical Image Formation: Ultrasound, CT & MRI

Topic (total: 3-4 lectures)	Contents
Introduction	Signal to Noise v/s Contrast to Noise – equivalents of resolution limits. Electrical Imaging Ultrasound imaging Basis of x-ray imaging Interactions of photons with matter/Radioprotection
X-ray imaging	X-ray imaging (fluoroscopy & computed tomography) Tomographic Reconstruction & Filtered Back Projection. Emission computed tomography (SPECT) Positron emission tomography (PET) Contrast agents & Tracer dynamics
Magnetic resonance Basics	Basis of magnetic resonance effect T_1 and T_2 relaxation Spectroscopy Echo formation
Magnetic resonance II Advanced topics and contrast mechanisms	Elements of image formation – More Pulse Sequences fMRI: Biophysics of BOLD Contrast agents for MRI Diffusion tensor imaging

Biological Image Formation: Optical Systems

<i>Topic</i> (total: 1-2 lectures)	Contents
Introduction	Light Microscopy: basic image formation principles. System's model of an Optical System. Optical Resolution – Rayleigh Limit
Microscopy	Sources of Noise + System's modeling of noise Fluorescence Microscopy Bit depth and image storage Optimizing optical image formation – the Nyquist sampling limit.
Other Optical Imaging Methods	Practical constraints of light microscopy Optical Coherence Tomography
Advanced topics	Breaking the Rayleigh Limit: - Super-resolution - Confocal Microscopy

Pixels, Voxels, Contrast and Resolution

Imaging:

Localized measurement of a **contrast generating** biophysical effect in body/organ of living system

- What is measured:
 - Pixels
 - Voxels
 - Noise affect Contrast
- 2D Image=nxm matrix of pixels
 Pixel = picture element
 Image stack = set of 2D images
 representing a volume.
- 3D image=kxnxm matrix of voxels

Voxel = volume element.

What is Contrast?

- Contrast = difference in signal between tissues one wishes to distinguish or 'resolve', in a given image.
- Contrast-to-noise Ability to distinguish tissue features against noise.

Increased resolution comes at the price of decreased contrast and therefore sensitivity to detection of tiny features:

Resolution

Sensitivity/Contrast

Signal-to-noise v/s Contrast-to-noise

- Signal-to-noise ratio (SNR)
- SNR provides a means to estimate the precision with which the signal S is measured
 - S: signal (or measurement variable)
 - σ: standard deviation of its measurement

$$SNR = \frac{S}{\sigma}$$

When is it is possible to have excellent SNR but poor CNR ..?

To discriminate two signals S_1 and S_2 we need more than just good signal to noise ratio. The ability to discriminate the two is assessed using the contrast to noise ratio...

Contrast-to-noise ratio (CNR)

 S_1 and S_2 : two signals (or measurement variable) of two different tissues,

 σ : standard deviation of their independent measurement (assumed here to be identical and statistically independent)

$$CNR = \frac{S_1 - S_2}{\sigma}$$

CNR provides a means to estimate the precision with which S_1 can be discriminated from S_2

Optimizing SNR

- It is possible to optimize SNR by performing N repeated measurements S_i.
- Eg: 4 measurements improve the precision by two-fold.
- The precision of the average <S>=∑S_i/N depends on the square root law

•
$$S_i = S + \varepsilon_i$$

• where $\langle \varepsilon_i^2 \rangle = \sigma^2$, $\langle \varepsilon_i \rangle = 0$.

If S is the true signal (unknown):

•
$$<$$
S $>=$ $\sum S_i/N=$ S $+$ $\sum \epsilon_i/N$

$$\Delta S \equiv \langle S \rangle - S = \frac{\sum \varepsilon_i}{N}$$

$$\Delta S^2 = \frac{\left(\sum \varepsilon_i\right)^2}{N^2}$$

$$\langle \varepsilon_{i} \varepsilon_{j} \rangle = 0, \ i \neq j$$

$$\Delta S^{2} = \frac{\left(\sum_{i} \varepsilon_{i}^{2}\right)}{N^{2}} + \frac{\left(\sum_{i \neq j} \varepsilon_{i} \varepsilon_{j}\right)}{N^{2}}$$

$$\langle \Delta S^2 \rangle = \frac{\sum \langle \varepsilon_i^2 \rangle}{N^2} = \frac{N\sigma^2}{N^2} = \frac{\sigma^2}{N}$$

$$\langle \Delta S \rangle = \frac{\sigma}{\sqrt{N}}$$

The Problem..?

- Results in increased measurement time.

Statistical Selection of Features

$$I_{max} - I_{BG} \ge Q \cdot \sigma_{\Delta I}$$
?

Q: selection quantile

Optimizing CNR?

Optimizing contrast = choice of experimental parameters (e.g. protocol) to maximize the difference in two tissue signals S_1 and S_2 . complex and empirical procedure some effects can be predicted/calculated, if the signal behavior can be modeled.

Error propagation calculation

Let the signal S be a function S(k,t) k is a tissue property (signal decay rate) t an experimental parameter (such as time).

Approach:

- 1.Determine dS/dk
- 2.Find t₀ where dS/dk is maximal by taking derivative rel. to t

Example:
$$S(k,t) = S_0 e^{-kt}$$

$$\frac{dS(k,t)}{dk} = -S_0 t e^{-kt}$$
 Maximum is where derivative

with respect to t is zero

$$\frac{d}{dt} \left(-S_0 t e^{-kt} \right) = 0$$

$$= -S_0 e^{-kt} + S_0 k t e^{-kt}$$

$$= -S_0 e^{-kt} \left(1 - kt \right) = 0$$

$$t_0 = 1/k$$

For an exponentially decaying signal, the optimal time of measurement is equal to 1/decay rate

How critical is the choice of t_0 ?

Physics of Imaging

- Multiple aspects of imaging are influenced by physics
 - Signal Source
 - Contrast generation
 - Motion compensation/tracking
 - Blood flow
 - Artifacts
 - Image generation
 - Field of view
 - Tissue heating
 - Radiation
 - Intervention options
 - Limiting factors
 - **—** ...

MRI: Physics meets Clinic (Part I)

Working Principles:

- Nuclear Magnetic Resonance (NMR): Magnetism, precession of magnetic moments.
- Nuclear magnetic fields moments: Essentially all MRI is hydrogen (proton) imaging.
- Spin orientation and spin state transitions & Larmor frequency. For most atoms, the net nuclear spin is zero.

Pulse Sequences:

- RF pulses & NMR signal
- T1 & T2 relaxation
- Spin echo formation
- Contrast mechanisms
- MRI scanners and imaging

References

- Joseph P. Hornak, The Basics of MRI
 - http://www.cis.rit.edu/htbooks/mri/
- Online MRI simulator (brainweb)
 - http://www.bic.mni.mcgill.ca/brain web/
- Hobbie, Roth, Intermediate physics for medicine and biology.

History

- Block, Purcell (Nobel prize winners 1952) credited with discovering nuclear magnetic resonance (NMR) phenomenon in 1946.
- Between 1950~1970, NMR was used mostly in chemical and molecular analysis.
- In 1973 P. Lauterbur (Nobel prize 2003) demonstrated MRI on test tube samples.

MRI: Physics meets Clinic (Part I)

What kinds of nuclei can be used for NMR?

- Protons & neutrons are filled in nuclear orbitals by spin to minimize the nuclear energy. The nucleus has
 - 2 properties:
 - Spin & Charge
- Nuclei are made of protons and neutrons
 - Both have spin ½
 - Protons have charge
- Pairs of spins tend to cancel, so only atoms with an odd number of protons or neutrons have spin:
 - Good nuclear choices for magnetic resonance are: ${}^{1}H_{1}$, ${}^{13}C_{6}$, ${}^{19}F_{9}$, ${}^{23}Na_{11}$, ${}^{31}P_{15}$

An Introduction to MRI Physics and Analysis , Michael Jay Schillaci, PhD

• Hydrogen is the most abundant atom in the body (H_2O) and the majority of hydrogen is in water.

MRI: Physics meets Clinic (Part I) Working Principles...

Three main ideas:

- 1. Magnetic moments of unpaired protons or neutrons and their interaction with an applied magnetic field → Nuclear Magnetic Interaction.
- 2. A resonance is created in system (by an external RF source) and detection of the same by Faraday's law → **Resonance**
- 3. Mathematical reconstruction of an image → Imaging