Выбор согласованных моделей для построения нейроинтерфейса

Кулаков Ярослав

February 2021

1 Аннотация

В работе решается задача построения нейрокомпьютерного интерфейса. Требуется предсказать трехмерную траекторию движения конечности по сигналам с коры головного мозга. Сложность задачи состоит в том, что описание исходных сигналов избыточно и сильно скоррелированно. Предлагается применить методы снижения размерности исходного пространства с согласованием моделей в скрытом пространстве. Для решения задачи используются линейные и нелинейные модели согласования. Анализируются целевое и латентное пространства, получаемые парой моделей. Экспериментальные результаты подтверждают, что предлагаемый метод повышает качество предсказаний модели.

2 Введение

Нейрокомпьютерные интерфейсы (BCI) декодируют мозговую активность, дают возможность обрабатывать ее моделями машинного обучения с целью предсказания действий с помощью извлечения полезной информации из полученных данных и представления ее в интерпретируемом человеком виде [12] [3]. Описания данных электроэнцефалограммы и электрокортикограммы высокоразмерны из-за высокой сложности мозга и большого количества информации, в каждый момент времени. Сигналы представляют
собой сильно скоррелированные временные ряды. Для получения некоррелированных, и информативных признаков, решается задача снижения размерности исходного пространства.[11] [2] [15]

В статье [7] проведены сравнения алгоритмов выбора признаков. Рассматривается алгоритм Quadratic Programming Feature Selection [7] в сравнении с LARS [10], Lasso [17], Ridge [9] и отбор признаков с генетическим алгоритмом [13].

Проводится сравнение с методами PLS, PCA[1] [16], других нелинйных моделей. При решении задачи выбора признаков, одновременно оптимизируются два функционала: минимизируется корреляция между признаками и максимизируется информативность признаков по отношению к таргету. Задача осложняется тем, что признаки и таргеты имеют разную природу. Поэтому строятся разные модели для разных пространств, а итоговая модель получается согласованием базовых.

В данной работе исследуются линейные и нелинейные модели декодирования сигналов. Оценивается качество, устойчивость и сложность рассматриваемых моделей.

В данной работе предложен устойчивый алгоритм декодирования сигнала активности мозга. Предлагаемый алгоритм состоит из этапов:

- построение латентного пространства меньшей размерности, с минимальной корреляцией признаков между собой и максимальной корреляцией признаков с предсказываемым сигналом;
- построение прогностической модели в полученном пространстве;

3 Постановка задачи

Рассматривается выборка (\mathbf{X},\mathbf{Y}) . $\mathbf{X} \in \mathbb{R}^{m \times n}, \mathbf{Y} \in \mathbb{R}^{m \times r}$, где \mathbf{X} — временные ряды электрокортикограммы, \mathbf{Y} — временные ряды положения кисти в трехмерном пространстве. Здесь m — количество временных отметок, n — число электродов, используемых для снятия сигнала, r=3 — число координат в трехмерном пространстве. Данные содержат записи о траектории движения руки в трехмерном пространстве и ECoG сигнала. Требуется построить пару согласованных моделей предсказывающую траекторию кисти Y_{t+1} , по имеющимся рядам $X_0 \dots X_{t+1}$ и $Y_0 \dots Y_t$, где $\mathbf{X_t}, \mathbf{Y_t}$ — многомерные признаковые описания активности мозга и координат в момент времени t.

3.1 Регрессия в пространстве исходных данных

Рассмотрим семейство моделей $f: \mathbf{X} \to \mathbf{Y}$, где $\mathbf{X} \in \mathbb{R}^{m \times np}$ — полученные временные ряды признаков после вейвлет преобразования, а $\mathbf{Y} \in \mathbb{R}^{m \times r}$ — ряд траектории кисти. Здесь p — количество признаков, полученных для каждого момента времени и каждого электрода вейвлет преобразованием. Ставится задача нахождения модели f^* , минимизирующей заданный функционал ошибки \mathcal{L} .

$$f^* = \operatorname*{arg\,min}_{f} \mathcal{L}(f, \mathbf{X}, \mathbf{Y}). \tag{1}$$

Будем рассматривать параметрическое семейство моделей $f(x,\theta)$, где θ — параметры модели. Тогда задача поиска модели f^* эквивалентна задаче поиска параметров θ^* :

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\theta, X, Y). \tag{2}$$

В качестве базовой модели рассматривается модель линейной регрессии: $f(\mathbf{X},\theta) = \theta^T \mathbf{X}.$

3.2 Регрессия в пространстве целевых сигналов

Рассматриваются регрессионные модели временных рядов $f: \mathbf{Y} \to \mathbf{Y}$. Тут $\mathbf{Y} \in \mathbb{R}^{m \times r}$ Для каждой координаты рассмотрим временной ряд $\{y_t\}$. Ставится задача о нахождении модели f^* , предсказывающей по последним $y_{t'-p} \dots y_{t'}$ точкам ряда значение $y_{t'+1}$ для всех $t^{'} \in \{0, \dots t\}$, минимизирующей некоторый функционал ошибки \mathcal{L} .

$$f^* = \underset{f}{\arg\min} \mathcal{L}(f, \mathbf{Y}). \tag{3}$$

Аналогично, задача поиска модели f^* эквивалентна задаче поиска параметров θ^* .

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\theta, \mathbf{Y}). \tag{4}$$

В качестве базовых предсказательных моделей используются авторегрессионная модель AR, а так же ее модифицировать (ARIMAX [14] и др).

3.3 Проблема высокой размерности и скоррелированности

Высокая размерность пространства X и линейная зависимость столбцов ведет к избыточности данных и неустойчивости моделей. Поэтому ставится задача о нахождении функций $\phi: X^n \to T^l$ и $Y^r \to U^s$, отображающих исходные пространства X,Y в скрытых пространства меньшей размерности T,U (l < n,s < r), максимизирующих ковариацию между независимой и целевой переменными в этих пространствах. Полученные матрицы являются матрицами скрытых представлений в латентном пространстве.

Определение. Назовём пространство $\mathbb{T} \subset \mathbb{R}^l$ скрытым пространством для пространства $\mathbb{X} \in \mathbb{R}^n (l \leqslant n)$, если существуют функция $\varphi_e : \mathbb{X} \to \mathbb{T}$ и

функция $\varphi_d: \mathbb{T} \to \mathbb{X}$ такие что

$$\mathbf{x} \in \mathbb{X} \quad \exists \mathbf{t} \in \mathbb{T} : \varphi_d \left(\varphi_e(\mathbf{x}) \right) = \varphi_d(\mathbf{t}) = \mathbf{x}$$

Функция $\varphi_e(\mathbf{x})$ называется функцией кодирования объекта \mathbf{x} , функция $\varphi_d(\mathbf{t})$ называется функцией декодирования.

Аналогично введём определение скрытого пространства $\mathbb{U}\subset\mathbb{R}^s$ для целевого пространства \mathbb{Y} , функции кодирования $\psi_e:\mathbb{Y}\to\mathbb{U}$ и декодирования $\psi_d:\mathbb{U}\to\mathbb{Y}$

$$\mathbf{y} \in \mathbb{Y} \quad \exists \mathbf{u} \in \mathbb{U} : \psi_d (\psi_e(\mathbf{y})) = \psi_d(\mathbf{u}) = \mathbf{y}$$

Общая схема задачи декодирования принимает вид следующей коммутативной диаграммы:

$$\mathbb{X} \subset \mathbb{R}^{n} \xrightarrow{f} \mathbb{Y} \subset \mathbb{R}^{r}$$

$$\varphi_{e} \bigvee_{l} \varphi_{d} \qquad \psi_{d} \bigvee_{l} \psi_{e}$$

$$\mathbb{T} \subset \mathbb{R}^{l} \xrightarrow{h} \mathbb{U} \subset \mathbb{R}^{s}$$
(5)

Для построения латентного пространства используется модель PLS.

3.4 Согласование моделей

Определение. Согласование моделей — метод объединения моделей, прогнозирующих целевую переменную по разным пространствам. В качестве способа согласования предсказаний двух моделей используется метод взвешенного суммирования. Имеется два предсказания координаты в момент времени $t+1-\hat{y}_{PLS,t+1}[2],\hat{y}_{AR,t+1}[4]$. Итоговое предсказание будет взве-

шенной суммой этих предсказаний.

$$\hat{y}_{t+1} = \alpha \times \hat{y}_{PLS,t+1} + (1 - \alpha) \times \hat{y}_{AR,t+1}.$$

Где α — гиперпараметр супермодели подбирается по сетке, минимизируя функционал ошибки.

3.5 Метрики

Пусть y — тестовый сегмент многомерного временного ряда координат, а \hat{y} — предсказанный. $y, \hat{y} \in \mathbb{R}^{m' \times r}$, где m' — длина сегмента. В работе выбраны следующие внешние критерии качества:

- $MSE(||y-\hat{y}||_2^2)$ Среднеквадратичная ошибка.
- $MAE(||y \hat{y}||_1)$ Среднеабсолютная ошибка.

4 Теоретическое обоснование

4.1 PLS

Псевдокод метода регрессии PLS приведен в Алгоритме 1. Алгоритм итеративно на каждом из l шагов вычисляет по одному столбцу t_k , u_k , p_k , q_k матриц \mathbf{T} , \mathbf{U} , \mathbf{P} , \mathbf{Q} соответственно. После вычисления следующего набора векторов из матриц X, Y вычитаются очередные одноранговые аппроксимации. При этом предполагается, что исходные матрицы X и Y нормированы (имеют нулевое среднее и единичное среднее отклонение).

4.2 AR, SARIMAX

Путь задан ряд $\{y_t\}$. Зафиксируем параметр p — число последних значений ряда по которым будет строиться следующее предсказание. Для каждого

Algorithm 1: Алгоритм PLS

```
Require: X, Y, l;
Ensure: T, P, Q;
 1: нормировать матрицы X и Y по столбцам
 2: инициализировать u_0 (первый столбец матрицы Y)
 3: \mathbf{X}_1 = \mathbf{X}; \mathbf{Y}_1 = \mathbf{Y}
  4: for k = 1, ..., l do
        repeat
            w_k := \mathbf{X}_k^T u_{k-1} / (u_{k-1}^T u_{k-1}); \quad w_k := \frac{w_k}{\|w_k\|}
 6:
            t_k := \mathbf{X}_k w_k
            c_k := \mathbf{Y}_k^T t_k / (t_k^T t_k); \quad c_k := \frac{c_k}{\|c_k\|}
 8:
            u_k := \mathbf{Y}_k c_k
 9:
        until t_k не стабилизируется
10:
        p_k := \mathbf{X}_k^T t_k / (t_k^T t_k), \ q_k := \mathbf{Y}_k^T t_k / (t_k^T t_k)
11:
        \mathbf{X}_{k+1} := X_k - t_k p_k^T
12:
         \mathbf{Y}_{k+1} := Y_k - t_k q_k^T
13:
14: end for
```

значения $y_t^{'}$ из обучающей части ряда выделим p предшествующих ему. По полученной матрице $X^{m,p}$ обучим линейную регрессию $X\theta=Y$, минимизируя функционал MSE.

SARIMAX [14] расширяет базовую модель авторегрессии, учитывает линейную зависимость от прошлых значений ряда и от ошибок прошлых предсказаний, и учитывает сезонность.

5 Вычислительный эксперимент

ЕСоG сигнал снимался с 64х электродов, частотой 1кГц. Чтобы сформировать тензор признаков, каждая эпоха ЕСоG была сопоставлена с временно-частотно-пространственным пространством с помощью вейвлет преобразования [5], [4]. Целью эксперимента является является анализ предлагаемой процедуры согласования.

5.1 Описание датасета

Датасет [собран А. Мотренко] состоит из 20-ти записей двух обезьян, которые пытались достать кусочек еды правой рукой. Преобразованные с помощью вейвлет преобразования данные представляют собой тензор $X \in \mathbb{R}^{T \times K \times W+1}$, где W — размерность для волновых коэффициентов преобразования. Кроме того, к данным добавлена исходная матрица временных рядов для каждого датчика. Y остается неизменной. Данные подготовлены Анастасией Мотренко и уже поделены на обучающую и тестовую выборки. Обучающая выборка имеет следующую размерность: X: (12801, 32, 27), где T=12801 — количество временных отметок, K=32 — количество электродов, W=26 — количество частот для построения коэффициентов преобразования и еще одно значение, отвечающее напряжению на датчике при фиксированоном моменте времени и номере датчика. Y: (12801, 3), соответственно для каждой отметки времени имеется три координаты позиции кисти.

Рис.0. Визуализация сигнала ECoG по одному из каналов.

5.2 Анализ модели

По сетке подобрать оптимальную размерность латеннтного пространства для алгоритма PLS. Обучить модели PLS, AR, SARIMAX, LR. Перебрать по сетке параметр альфа для согласования. Сравнить результаты.

5.3 Выполнение

После генерации признаков и применения алгоритма PLS на тренировочных данных получены следующие предсказания:

Puc.1. Предсказание координаты моделью PLS по временным рядам активности мозга ${\bf X}$

Рис.2. Предсказание координаты моделью SARIMAX.

Рис.3. Результат согласования моделей, $\alpha = 0.86$.

Рис.4. Предсказание координаты моделью AR.

Рис.5. Анализ ошибки в зависимости от коэффициента α моделей SARIMAX и PLS.

Puc.6. Анализ ошибки в зависимости от коэффициента α моделей AR и PLS.

6 Анализ ошибок

Рассматривается прогнозирование временного ряда координаты кисти, по прошлым точкам траектрии. Предлагается сравнить пять моделей — PLS в чистом виде, SARIMAX в чистом виде и их микс. А так же AR в чистом виде и его согласование с PLS. Сравнение происходит по метрикам

MSE, MAE.

	MSE	MAE
Clear PLS	791.429	18.7611
Clear SARIMAX(5)	115.063	5.49812
Mix_pls_sarimax	87.8215	5.28448
Clear AR	5.49391	1.21899
Mix_pls_ar	5.49391	1.21899

Как видно, согласование моделей SARIMAX и PLS дает лучший результат, чем каждая из них поотдельности. Модель AR сама по себе настолько хороша, что даже согласование с PLS не улучшает предсказание, а только портит. Можно сделать вывод, что простая AR лучшая модель.

7 Заключение

В ходе работы были предложены и экспериментально проверены разные модели, а так же согласование моделей. Исходя из ошибок предсказаний утверждается, что предсказание обычной авторегрессией дает гораздо меньшую ошибку чем другие модели и их объединения. Таким образом следует рассматривать вариацию задачи, когда при тестировании моделей тестовый ряд координат прошлых значений не доступен, а доступен только ряд при обучении.

Список литературы

[1] Hervé Abdi. Partial Least Squares (PLS) Regression. *Encyclopedia for research methods for the social sciences*, pages 792–795, 2003.

- [2] Adham Atyabi, Martin H. Luerssen, and David M.W. Powers. Pso-based dimension reduction of eeg recordings: Implications for subject transfer in bci. *Neurocomputing*, 119:319–331, 2013. Intelligent Processing Techniques for Semantic-based Image and Video Retrieval.
- [3] Benjamin Blankertz, Claudia Sannelli, Sebastian Halder, Eva M. Hammer, Andrea Kübler, Klaus-Robert Müller, Gabriel Curio, and Thorsten Dickhaus. Neurophysiological predictor of smr-based bci performance. NeuroImage, 51(4):1303-1309, 2010.
- [4] Zenas C Chao, Yasuo Nagasaka, and Naotaka Fujii. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Frontiers in neuroengineering, 3:3, 2010.
- [5] Andrey Eliseyev and Tetiana Aksenova. Penalized multi-way partial least squares for smooth trajectory decoding from electrocorticographic (ecog) recording. *PloS one*, 11(5):e0154878, 2016.
- [6] Aksenova T. Eliseyev A. Stable and artifact-resistant decoding of 3d hand trajectories from ecog signals using the generalized additive model. *Journal* of neural engineering., 2014.
- [7] Strijov V.V. Isachenko R.V. Quadratic programming optimization with feature selection for non-linear models. *Lobachevskii Journal of Mathematics*, pages 39(9): 1179–1187., 2018.
- [8] Aleksandr Katrutsa and Vadim Strijov. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria. Expert Systems with Applications, 76, 01 2017.
- [9] Donald W. Marquardt and Ronald D. Snee. Ridge regression in practice. The American Statistician, 29(1):3–20, 1975.

- [10] Yoan Miche, Mark van Heeswijk, Patrick Bas, Olli Simula, and Amaury Lendasse. Trop-elm: A double-regularized elm using lars and tikhonov regularization. *Neurocomputing*, 74(16):2413–2421, 2011. Advances in Extreme Learning Machine: Theory and Applications Biological Inspired Systems. Computational and Ambient Intelligence.
- [11] Strijov V.V. Motrenko A.P. Multi-way feature selection for ecog-based brain-computer interface. Expert Systems with Applications, 114(30), pages 402–413., 2018.
- [12] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on Biomedical Engineering, 51(6):1034–1043, 2004.
- [13] Feng Tan, Xuezheng Fu, Yanqing Zhang, and Anu G Bourgeois. A genetic algorithm-based method for feature subset selection. *Soft Computing*, 12(2):111–120, 2008.
- [14] Stylianos I. Vagropoulos, G. I. Chouliaras, E. G. Kardakos, C. K. Simoglou, and A. G. Bakirtzis. Comparison of sarimax, sarima, modified sarima and ann-based models for short-term pv generation forecasting, pages 1–6, 2016.
- [15] L. Vega-Escobar, A. E. Castro-Ospina, and L. Duque-Muñoz. Feature extraction schemes for bci systems. pages 1–6, 2015.
- [16] Jacob A Wegelin et al. A survey of partial least squares (pls) methods, with emphasis on the two-block case. University of Washington, Department of Statistics, Tech. Rep, 2000.
- [17] Peng Zhao and Bin Yu. Stagewise lasso. The Journal of Machine Learning Research, 8:2701–2726, 2007.

- [18] Исаченко Р.В. Выбор модели декодирования сигналов в пространствах высокой размерности. Рукопись, 2021.
- [19] Стрижов В.В. Яушев Ф.Ю., Исаченко Р.В. Модели согласования скрытого пространства в задаче прогнозирования. Системы и средства информатики, раде 31(1), 2021.