0.1 Mer z-transform

Låt x[k] vara en diskret signal. Då är $X(z) := \sum_{k=-\infty}^{\infty} x[k]z^{-k}$.

Exempel 1.
$$\delta(k-l) \stackrel{\ddagger}{\longleftrightarrow} z^{-l}$$

Exempel 2.
$$\gamma^k u[k] \stackrel{\ddagger}{\longleftrightarrow} \frac{z}{z-\gamma}$$
 om $|z| > |\gamma|$

Exempel 3.
$$\gamma^{k-1} \stackrel{\ddagger}{\longleftrightarrow} \frac{1}{z-\gamma}$$

0.1.1 Räkneregler

$$x[k+1]u[k] \stackrel{\ddagger}{\longleftrightarrow} z(X(z) - x[0])$$
$$x[k-1] \stackrel{\ddagger}{\longleftrightarrow} \frac{1}{z}X(z)$$
$$\gamma^k x[k] \stackrel{\ddagger}{\longleftrightarrow} X(\frac{z}{\gamma})$$

$$x_1 * x_2 \stackrel{\ddagger}{\longleftrightarrow} X_1 X_2$$

Vi börjar med lite kontext. Om f(t) är en kontinuerlig signal och $D=\frac{\mathrm{d}}{\mathrm{d}t}$. Då är $Df(t)\approx\frac{f(t+h)-f(t)}{h}$ för små h. Vi definierar x[k]:=f(hk). Då är $D\approx\frac{1}{h}(E-1)$ där Ex[k]=x[k+1]. En differentialekvation är på formen Q(D)f=P(D)g vilket genom approximering som ovan ger en differensekvation $Q\left(\frac{E-1}{h}\right)x_f=P\left(\frac{E-1}{h}\right)x_g$.

0.2 Frekvenssvar

Låt y=h*x vara ett LTI-system. Förra gången såg vi att $h*z^k=H(z)\cdot z^k$. Om vi tar $z=e^{i\Omega}$ och $x[k]=e^{i\Omega k}$ får vi $h*x[k]=H(e^{i\Omega k})x[k]$. Vi brukar kalla H i den ekvationen för frekvenssvar.

0.2.1 Reell form

Låt
$$x[k] = \cos(\Omega k + \beta)$$
 där $\Omega, \beta \in \mathbb{R}$. Då är $h * x[k] = \frac{1}{2}h * e^{i(\Omega k + \beta)} + \frac{1}{2}h * e^{-i(\Omega k + \beta)} = \frac{1}{2} \left(H(e^{i\Omega})e^{j(\Omega k + \beta)} + H(e^{-i\Omega})e^{-j(\Omega k + \beta)} \right) = \{ \text{om } h \text{ reell är } H(\overline{z}) = \overline{H(z)} \} = \frac{1}{2} \left(H(e^{i\Omega})e^{j(\Omega k + \beta)} + \overline{H(e^{-i\Omega})e^{-j(\Omega k + \beta)}} \right) = \text{Re}(\left| H(e^{i\Omega}) \right| e^{i(\Omega k + \beta) + i \angle H(e^{i\Omega})}) = \left| H(e^{i\Omega}) \right| \cos(\Omega k + \beta + \angle H(e^{i\Omega})).$

0.2.2 Koppling till DFT

Om x[k] är en N-periodisk och kausal signal, d.v.s. $x[k+N] = x[k] \ \forall \ k \geq 0$ och x[k] = 0 för k < 0.

Då är $Fx[k] = \sum_{k=0}^{N-1} x[k]e^{-i\frac{2\pi}{N}kl}$.

$$\begin{array}{lll} X(z) &=& \sum_{k=0}^{\infty} x[k] z^{-k} &=& \{k = nN + m\} &=& \sum_{n=0}^{\infty} \sum_{m=0}^{N-1} x[m] z^{-nN-m} &=& \sum_{n=0}^{\infty} z^{-nN} \sum_{m=0}^{N-1} x[m] z^{-m} &=& \{\text{Geometrisk summa}\} &=& \frac{1}{1-z^{-N}} \cdot \sum_{m=0}^{N-1} x[m] z^{-m} &=& \text{Alltså \"{a}r } Fx[l] &=& (1-z^{-N}) X(z) \text{ f\"{o}r } z &=& e^{i\frac{2\pi}{N}l}. \end{array}$$

0.3 Differensekvationer

Låt $Q = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$, $P = b^nz^n + b_{n-1}z^{n-1} + \dots + b_1z + b_0$ och Ey[k] = y[k+1].

Differensekvationer kan i allmänhet skrivas $\begin{cases} Q(E)y[k] = P(E)x[k] & k \geq 0 \\ x \text{ given och } y[k] \text{ givna för } k = -n, -n+1, \dots, -2, -1 \end{cases}.$

 $Q(E)y = P(E)x \iff y[k] + a_{n-1}y[k-1] + \dots + a_1y[k-n+1] + a_0y[k-n] = b_nx[k] + b_{n-1}x[k-1] + \dots + b_1x[k-n+1] + b_0x[k-n]$ vilken vi delar upp i två ekvationer, zero-state (partikulärlösning) $(Q(E)y_0[k] = P(E)x[k]$ där $y_0[k] = 0$ och zero-input (homogenlösning) $(Q(E)y_{in}[k] = 0$ där $y_{in}[k] = y[k]$).

Exempel 4. Vi börjar med att lösa ett exempel på zero-input.

Låt $Q(z)=z^2+a_1z+a_0$, d.v.s. vi vill lösa $y[k]+a_1y[k-1]+a_0y[k-2]=0$ och vi har y[-2],y[-1] givna.

Idén är att använda z-transformen.

differensek vationen ovan ger $0 = \sum_{k=0}^{\infty} (y[k] + a_1y[k-1] + a_0y[k-2])z^{-k} = \sum_{k=0}^{\infty} y[k]z^{-k} + \sum_{k=1}^{\infty} a_1y[k-1]z^{-k} + \sum_{k=2}^{\infty} a_0y[k-2]z^{-k} + a_1y[-1]z^0 + a_0y[-2]z^0 + a_0y[-1]z^{-1} = \sum_{k=0}^{\infty} y[k]z^{-k} + \sum_{k=0}^{\infty} a_1y[k]z^{-k-1} + \sum_{k=0}^{\infty} a_0y[k]z^{-k} + a_1y[-1]z^0 + a_0y[-2]z^0 + a_0y[-1]z^{-1} = Y(z) + a_1\frac{1}{z}Y(z) + a_0\frac{1}{z^2}Y(z) = \frac{1}{z^2}(Q(z)Y(z) + (a_1y[-1] + a_0y[-2])z^2 + a_0y[-1]z) \text{ vilket ger att } Y(z) = \frac{1}{z^2}(a_1y[-1] + a_0y[-2])z^2 + a_0y[-1]z) = \frac{\alpha z^2 + \beta z}{Q(z)} \text{ (D\"{ar }} \alpha = a_1y[-1] + a_0y[-2] \text{ och }} \beta = a_0y[-1]) = \frac{\alpha z^2 + \beta z}{(z-z_+)(z-z_-)}. \text{ L\"{o}sningen f\^{a}s genom att ans\"{a}tta}$ $y[k] = \begin{cases} Az_+^k + Bz_-^k & \text{om } z_+ \neq z_- \\ Az_+^k + Bkz_+^k & \text{om } z_+ = z_- \end{cases}. A \text{ och } B \text{ hittas genom }} Az_+^{-1} + Bz_-^{-1} = y[-1] \text{ och }} Az_+^{-2} + Bz_-^{-2} = y[-2].$

 $(z_+ \text{ och } z_- \text{ är lösningar till } Q(z) = 0)$

Nu löser vi zeroinput för $Q(z)=z^2+a_1z+a_0$. För att få fram lösningen utvidgar vi x och y_0 till kausala signaler så att $Q(E)y=P(E)x\Longrightarrow Y_0(z)\left(1+\frac{a_{n-1}}{2}+\frac{a_{n-2}}{2}+\cdots+\frac{a_0}{2}\right)=X(z)\left(b_n+\frac{b_{n-1}}{2}+\frac{b_{n-2}}{2}+\cdots+\frac{b_0}{2}\right)$ vilket om vi multiplicerar med z^n ger $Q(z)Y_0(z)=P(z)X(z)$, d.v.s. $Y_0(z)=H(z)X(z)$ där $H(z)=\frac{P(z)}{Q(z)}\Longleftrightarrow y_0[k]=h*x[k]$ där h har z-transform H.

H(z) är en rationell funktion, d.v.s. kvoten av två polynom, vilket ger att man får partialbråksuppdela och algebra-a sig till termer vi vet hur man invers-z-transformerar.

Påstående 1. Om $H(z) = \frac{P(z)}{Q(z)}$ där $\deg(P) \leq \deg(Q) = n$ så är $h[k] = b_n \delta[k] + \sum_{m=1}^{M} \sum_{l=1}^{N_m} c_{l,m} k^l z_m^k$ där z_1, z_2, \ldots, z_m är nollställen till Q och $c_{l,m}$, M och N_m är godtyckliga tal.

Sats 1 (Differensekvationer och stabilitet). Som en följd av det är differensekvationen Q(E)y[k] = P(E)x[k] där $k \ge 0$ och y[k] kända då stabil, d.v.s. $y[k] \xrightarrow{k \to \infty} 0$ när $x[k] \xrightarrow{k \to \infty} 0$ om och endast om Q(z) = 0 saknar lösning med $|z| \ge 1$.

Sats 2 (Stabilitet och väldefinierade system). Ett diskret system är stabilt $\iff H(z)$ väldefinierat för $|z| \geq 1$. Det är samma sak som att H saknar poler i $|z| \geq 1$.

0.4 Poler till överföringsfunktioner

Definition 1 (Poler). Låt $H(z) = \frac{P(z)}{Q(z)}$ vara en rationell funktion på reducerad form, d.v.s. P och Q saknar gemensamma nollställen.

 $z_0 \in \mathbb{C}$ sägs vara en pol till H om $Q(z_0) = 0$.

Exempel 5. Låt $P(z) = b_1 z + b_0$ och $Q(z) = z^2 + a_1 z + a_0$. Anta också att $Q(\frac{-b_0}{b_1}) \neq 0$ och att $a_0 \neq \frac{a_1^2}{4}$ vilket ser till att P och Q inte är noll samtidigt och att $z_- \neq z_+$.

Då är $H(z)=\frac{P(z)}{Q(z)}=\frac{b_1z+b_0}{(z-z_+)(z-z_-)}$ där polerna till H är z_- och z_+ . Vad är då h, d.v.s. vad är $z^{-1}(H)$?

Vi skriver $H(z) = \frac{b_1(z-z_+)+b_1z+b_0}{(z-z_+)(z-z_-)} = \frac{b_1}{z-z_-} + \frac{b_1z_++b_0}{(z-z_+)(z-z_-)} = \{\text{Partialbråksupp delning}\}$ så att $h[k] = \left(\frac{b_1z_-+b_0}{z_--z_+}z_-^{k-1} + \frac{b_1z_++b_0}{z_+-z_-}z_+^{k-1}\right)u[k-1].$

Vi får alltså att zerostate-lösningen för $y[k+2]+a_1y[k+1]+a_0y[k]=b_1x[k+1]+b_0x[k]$ där y[-2]=y[-1]=0 ges av y=h*x där h är som ovan.

Stabilitet $\iff |z_+|, |z_-| < 1$.