Во всех задачах ускорение свободного падения считать равным $g = 9.81 \frac{M}{c^2}$

Задание 1. «Разминка»

1.1 Лампочка.

Сопротивление лампочки накаливания существенно изменяется, в зависимости от яркости свечения, т.е. от величины проходящего через неё Ha рис.1.1 приведена тока. зависимость. Лампочку включают последовательно c нагрузкой, сопротивление которой равно $R = 30O_M$ и источником напряжения U = 20B. Определите силу тока в цепи.

1.2 «Виброход» Горизонтальная лента
транспортера движется так, что каждую секунду ($\tau = 1,0c$) ее скорость практически
мгновенно
изменяет свое направление на
противоположное, при движении ленты в
каждом направлении модуль скорости
равен $V = 1,0\frac{M}{c}$. График зависимости
скорости ленты от времени показан на
рисунке. На ленту положили брусок.
Поверхности бруска и ленты таковы, что

коэффициент трения между ними зависит

от направления относительного движения («по шерсти и против шерсти»). При движении бруска влево относительно ленты, коэффициент трения равен $\mu_1 = 0,30$, при движении вправо относительно ленты коэффициент трения равен $\mu_2 = 0,40$. Найдите среднюю скорость движения бруска относительно поверхности земли за промежуток времени,

значительно превышающий период колебаний ленты транспортера.

1.3 «Переменная теплоемкость»

Теплоемкость некоторого тела линейно изменяется от $C_1=2.0\frac{\kappa \not\square \varkappa c}{rpa\partial}$ до $C_2=4.0\frac{\kappa \not\square \varkappa c}{rpa\partial}$

при изменении его температуры от $t_1=20^{\circ}C$ до $t_1=100^{\circ}C$. Тело, находящееся при температуре $t_1=20^{\circ}C$, поместили в нагреватель постоянной мощности $P=1,0\,\kappa Bm$ (вся эта теплота идет на нагревание бруска). Найдите зависимость температуры тела от времени.

¹ Мгновенно изменить скорость движения тела невозможно, однако в данном случае считается, что время изменения скорости значительно меньше одной секунды.

² Не удивляйтесь: теплоемкость может изменяться по разным причинам, например, из-за плавления, протекания химических реакций и т.д.