Løsningsforslag uke 38, 2016

Teorem 5.2.1 (Skjæringssetningen). Anta at $f:[a,b] \to \mathbb{R}$ er en kontinuerlig funksjon hvor f(a) og f(b) har motsatte fortegn. Da finnes det et tall $c \in (a,b)$ slik at f(c) = 0.

Teorem 5.3.5 (Ekstremalverdisetningen). La $f:[a,b] \to \mathbb{R}$ være en kontinuerlig funksjon definert på et lukket, begrenset intervall. Da har f både maksimumsog minimumspunkter.

Oppgave 5.3.5. Anta at $f:[a,b] \to \mathbb{R}$ er kontinuerlig. Vis at verdimengden $V_f = \{f(x) \mid x \in [a,b]\}$ er et lukket, begrenset intervall.

Løsning. Ekstremalverdisetningen sier at f har et minimumspunkt x_{\min} og et maksimumspunkt x_{\max} . La $f_{\min} = f(x_{\min})$ og $f_{\max} = f(x_{\max})$. Per definisjon av ekstremalverdier har vi at $V_f \subseteq [f_{\min}, f_{\max}]$.

Hvordan viser vi at $V_f = [f_{\min}, f_{\max}]$? Det gjør vi ved å vise den omvendte inklusjonen, nemlig at $V_f \supseteq [f_{\min}, f_{\max}]$. Altså må vi vise at hvis $y \in [f_{\min}, f_{\max}]$, så er $y \in V_f$. Konkret betyr det at for hver $y \in [f_{\min}, f_{\max}]$ må vi vise at det finnes et tall $c \in [a, b]$ slik at f(c) = y.

Definer funksjonen g(x) = f(x) - y. Da er $g(x_{\min}) \leq 0$ og $g(x_{\max}) \geq 0$. Fra skjæringssetningen vet vi da at det finnes et punkt c slik at g(c) = 0. Det betyr at f(c) = y, som var det vi skulle vise.