Exercise 3.7.2 If we use the flat spacetime coordinates

$$x^0 = c t$$
, $x^1 = r \sin\theta \cos\phi$, $x^2 = r \sin\theta \sin\phi$, $x^3 = r \cos\theta$, (3..58) what form does $g_{\mu\nu}$ take?

Solution. I used $k_1 = -c^2 k$ rather than k for my derivation. Simplifying the notation of A(r) and B(R) to just A and B, we have

$$\Rightarrow$$
 $A = c^2 - \frac{k_1}{r} = \frac{c^2 r - k_1}{r}$ and $B = \frac{c^2}{A}$.

Substituting the expressions above for *A* and *B* into the line element equation (3.51) yields

$$c^{2} \tau^{2} = \left(c^{2} - \frac{k_{1}}{r}\right) dt^{2} - c^{2} \left(c^{2} - \frac{k_{1}}{r}\right)^{-1} dr^{2} - r^{2} d\theta^{2} - r^{2} \sin^{2}\theta d\phi^{2}$$
 (3.7-1)

or, alternatively,

$$c^{2} \tau^{2} = \left(1 - \frac{k_{1}}{c^{2} r}\right) d(c t)^{2} - \left(1 - \frac{k_{1}}{c^{2} r}\right)^{-1} dr^{2} - r^{2} d\theta^{2} - r^{2} \sin^{2}\theta d\phi^{2}$$
 (3.7-2)

As $r \rightarrow \infty$, the line element approaches

$$c^{2} \tau^{2} = c^{2} dt^{2} - dr^{2} - r^{2} d\theta^{2} - r^{2} \sin^{2}\theta d\phi^{2}, \tag{3.7-3}$$

or

$$c^{2} \tau^{2} = d(c t)^{2} - dr^{2} - r^{2} d\theta^{2} - r^{2} \sin^{2}\theta d\phi^{2}, \tag{3.7-4}$$

which is the line element for spherical coordinates in flat spacetime. I express the Cartesian coordinates (3.58) as

$$x^0 = c t$$
, $x^1 = x$, $x^2 = y$, $x^3 = z$, (3.7-5)

and denote spherical coordinates to be the alternate, primed coordinate system:

$$x^{0'} = c t, \quad x^{1'} = r, \quad x^{2'} = \theta, \quad x^{3'} = \phi,$$
 (3.7-6)

where

$$x = r \sin\theta \cos\phi, \quad y = r \sin\theta \sin\phi, \quad z = r \cos\theta.$$
 (3.7-7)

Recall

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\theta = \arccos \frac{z}{r}$, $\phi = \arctan \frac{y}{x}$. (3.7-8)

From equation (3.7-2) we see that

$$g_{0'\times0'} = 1 - \frac{k_1}{c^2 r} = 1 - \frac{k_1}{c^2 \sqrt{x^2 + y^2 + z^2}}$$

$$g_{1'\times1'} = -\left(1 - \frac{k_1}{c^2 r}\right)^{-1} = -\left(1 - \frac{k_1}{c^2 \sqrt{x^2 + y^2 + z^2}}\right)^{-1}$$

$$g_{2'\times2'} = -r^2 = -\left(x^2 + y^2 + z^2\right)$$

$$g_{3'\times3'} = -r^2 \sin^2\theta = -r^2 \left(1 - \cos^2\theta\right) = -r^2 + z^2$$
(3.7-9)

and the rest are zero. We solve for the Schwarzfield covariant metric tensors using

$$g_{\mu\nu} = \Lambda_{\mu}^{\sigma'} \Lambda_{\nu}^{\rho'} g_{\sigma' \rho'} = \frac{\partial x^{\sigma'}}{\partial x^{\mu}} \frac{\partial x^{\sigma'}}{\partial x^{\nu}} g_{\sigma' \sigma'}. \tag{3.7-10}$$

Since $g_{\sigma',\rho'} = 0$ unless $\sigma' = \rho'$, this becomes

$$g_{\mu\nu} = \Lambda_{\mu}^{0'} \Lambda_{\nu}^{0'} g_{0'\times 0'} + \Lambda_{\mu}^{1'} \Lambda_{\nu}^{1'} g_{1'\times 1'} + \Lambda_{\mu}^{2'} \Lambda_{\nu}^{2'} g_{2'\times 2'} + \Lambda_{\mu}^{3'} \Lambda_{\nu}^{3'} g_{3'\times 3'}$$
(3.7-11)

$$g_{00} = \frac{\partial(c\,t)}{\partial(c\,t)} \frac{\partial(c\,t)}{\partial(c\,t)} \ g_{0'\times 0'} = (1) \ (1) \ (1 - \frac{k_1}{r}) = 1 - \frac{k_1}{r} \ , \tag{3.7-12}$$

$$g_{0i} = \frac{\partial(ct)}{\partial(ct)} \frac{\partial(ct)}{\partial x^{i}} g_{0' \times 0'} + \frac{\partial x^{1'}}{\partial(ct)} \frac{\partial x^{1'}}{\partial x^{i}} g_{1' \times 1'} + \frac{\partial x^{2'}}{\partial(ct)} \frac{\partial x^{2'}}{\partial x^{i}} g_{2' \times 2'} + \frac{\partial x^{3'}}{\partial(ct)} \frac{\partial x^{3'}}{\partial x^{i}} g_{3' \times 3'} = 0,$$

$$(3.7-13)$$

and

$$g_{ii} = \frac{\partial(ct)}{\partial x^{i}} \frac{\partial(ct)}{\partial x^{i}} g_{0' \times 0'} + \frac{\partial x^{1'}}{\partial x^{i}} \frac{\partial x^{1'}}{\partial x^{i}} g_{1' \times 1'}$$

$$+ \frac{\partial x^{2'}}{\partial x^{i}} \frac{\partial x^{2'}}{\partial x^{i}} g_{2' \times 2'} + \frac{\partial x^{3'}}{\partial x^{i}} \frac{\partial x^{3'}}{\partial x^{i}} g_{3' \times 3'}$$

$$= \frac{\partial x^{1'}}{\partial x^{i}} \frac{\partial x^{1'}}{\partial x^{i}} g_{1' \times 1'} + \frac{\partial x^{2'}}{\partial x^{i}} \frac{\partial x^{2'}}{\partial x^{i}} g_{2' \times 2'} + \frac{\partial x^{3'}}{\partial x^{i}} \frac{\partial x^{3'}}{\partial x^{i}} g_{3' \times 3'}$$

$$(3.7-14)$$

Using Mathematica to solve the change of coordinate equations (3.7-11 to 3.7-14) for $g_{\mu\nu}$ yields:

σ'	μ	$\Lambda_{\mu}^{\sigma'} = \frac{\partial x^{\sigma'}}{\partial x^{\mu}}$
0	0	1
0	1	0
0	2	0
0	0 1 2 3	1 0 0 0
1	0	0
1	1	x r
1	2	$ \frac{x}{r} $ $ \frac{y}{r} $ $ \frac{z}{r} $
1	3	z r
2	0	0
σ΄ 0 0 1 1 1 2 2	301	$\frac{x z}{r^2 \sqrt{x^2 + y^2}}$
2	2	$\frac{x z}{r^2 \sqrt{x^2 + y^2}}$ $\frac{y z}{r^2 \sqrt{x^2 + y^2}}$
2 3 3	3 0	$-\frac{\sqrt{x^2+y^2}}{r^2}$
3	0	0
	1	$-\frac{y}{x^2+y^2}$
3	2	$\frac{-\frac{x}{x^2+y^2}}{\frac{x}{x^2+y^2}}$
3	3	0

μ	ν	$\mathbf{g}_{\mu\nu} = \mathbf{\Lambda}_{\mu}^{\sigma'} \mathbf{\Lambda}_{\nu}^{\sigma'} \mathbf{g}_{\sigma'\sigma'}$
0	0	$1 - \frac{k_1}{c^2 r}$
0	1	0
0	2	0
0	3	0
1	0	0
1	1	$-1 - \frac{x^2 k_1}{r^2 (c^2 r - k_1)}$
1	2	$-\frac{xyk_{1}}{r^{2}\left(c^{2}r-k_{1}\right)}$
1	3	$-\frac{xzk_{1}}{r^{2}\left(c^{2}r-k_{1}\right)}$
2	0	0
2	1	$-\frac{xyk_{1}}{r^{2}\left(c^{2}r\!-\!k_{1}\right)}$
2	2	$-1 - \frac{y^2 k_1}{r^2 (c^2 r - k_1)}$
2	3	$-\frac{yzk_{1}}{r^{2}\left(c^{2}r-k_{1}\right)}$
3	0	0
3	1	$-\frac{xzk_{1}}{r^{2}\left(c^{2}r-k_{1}\right)}$
3	2	$-\frac{yzk_{1}}{r^{2}\left(c^{2}r-k_{1}\right)}$
3	3	$-1 - \frac{z^2 k_1}{r^2 (c^2 r - k_1)}$

(3.7-15)

Converting k_1 back to k, yields the answer to this exercise:

μ	ν	$\mathbf{g}_{\mu \nu} = \mathbf{\Lambda}_{\mu}^{\sigma'} \mathbf{\Lambda}_{\nu}^{\sigma'} \mathbf{g}_{\sigma' \sigma'}$
0	0	$1 + \frac{k}{r}$
0	1	0
0	2	0
0	3	0
1	0	0
1	1	$-1 + \frac{k x^2}{r^2 (k+r)}$
1	2	$\frac{k \times y}{r^2 (k+r)}$
1	3	$\frac{k \times z}{r^2 (k+r)}$
2	0	0
2	1	$\frac{k \times y}{r^2 (k+r)}$
2	2	$-1 + \frac{k y^2}{r^2 (k+r)}$
2	3	$\frac{k y z}{r^2 (k+r)}$
3	0	0
	1	$\frac{k \times z}{r^2 (k+r)}$
3	2	$\frac{kyz}{r^2(k+r)}$
3	3	$-1+\frac{kz^2}{r^2\;(k+r)}$