Date: 5/09/25 YOUVA NAME: AAYANK SINGHAI ROLLNO: MT 2025 001 MTECH USE 1" SEMESTER

ASSIGNMENT 1 - AIT 512 Maths for ML

Consider the vectors $\vec{n_1}, \dots, \vec{n_L}, L > 1, \vec{n_i} \in \mathbb{R}^{n \times 1} \ \forall i$ and the centraid vector $\vec{n} = 1$ $(\vec{n}, t - 1 + \vec{n})$

Q1)

An

Consider another vertor 3 ERMA L i) Show that it is only for $\vec{3} = \vec{n}$ does the sum $\vec{J} = \vec{\geq} ||\vec{n}|^2 - \vec{3}||^2$ have the smallest value?

Note I that $||\cdot||^2$ is the square of the 2-norm

of any vertor

J= E|| n - = || = E || n; - \(\overline{\pi} + \overline{\pi} - \overline{\gamma} || \\ \overline{\gamma} - \overline{\gamma} - \overline{\gamma} || \\ \overline{\gamma} - \overline{\gamma} - \ove

 $= \frac{1}{2} \left[\frac{1}{|\vec{x}|} (\vec{x}_1 - \vec{x}_2) + (\vec{x}_1 - \vec{x}_2) \right]^2$ $= \frac{1}{2} \left[\frac{1}{|\vec{x}|} (\vec{x}_1 - \vec{x}_2) + (\vec{x}_1 - \vec{x}_2) \right]^2$ $= \frac{1}{2} \left[\frac{1}{|\vec{x}|} (\vec{x}_1 - \vec{x}_2) + (\vec{x}_1 - \vec{x}_2) \right]^2$ S Wing the squared norm property

[|a+b||^2 = ||a||^2 + 2a^Tb + ||b||^2

 $= \frac{||\vec{n}||^2 + 2(|\vec{n}| - \vec{n})||^2 + 2(|\vec{n}| - \vec{n})||^2}{(2)} (|\vec{n}| - |\vec{n}| - |\vec{n}||^2)$ It is constant wit summation &

for @ \(\int \land{1/\pi} \rightarrow \land{1/p} is constant wet \(\int \rightarrow \text{Hence simplified to}\)

を 11元-3112 = L 11元-3112 2 ((() () () () () () () () for (2) $\xi(\vec{n}_i - \vec{n}) = (\xi \vec{n}_i) - (\xi \vec{n})$: Eni = Lni (and to controid) Heme E(n; -n) = Ln - Ln =0 Now; $J = \frac{2|\vec{n} - \vec{n}|^2 + \frac{2|\vec{n} - \vec{j}|^2}{|\vec{n} - \vec{j}|^2 + \frac{2|\vec{n} - \vec{j}|^2}{|\vec{n} - \vec{j}|^2} + \frac{2|\vec{n} - \vec{j}|^2}{|\vec{n} - \vec{j}|^2 + \frac{2|\vec{n} - \vec{j}|^2}{|\vec{n} - \vec{j}|^2 + \frac{2|\vec{n} - \vec{j}|^2}{|\vec{n} - \vec{j}|^2 + \frac{2|\vec{n} - \vec{j}|^2}{|\vec{n} - \vec{j}|^2} + \frac{2|\vec{n} - \vec{j}|^2}{|\vec{n} - \vec{j}|^2}$ Since 11 = 3/12 > 0 (always non-negative) $||\overrightarrow{n}-\overrightarrow{z}||^2=0 \Rightarrow |\overrightarrow{n}-\overrightarrow{z}|=0$ $\Rightarrow |\overrightarrow{z}|=\overline{n} \quad (Henne proved)$

It is generally used in K-means unstering as centrald is the point considered to have least mean square distance from all the points. Let the vectors n? , n'm & n'm be such that they can Q2) the partitioned into exactly two subset chaters, G, and Grz, where representative vectors are 3, 32, near. Let some vertors ni EG; what would be the sign of difference $||n|^2 - 3^2 ||^2 - ||n|^2 - 3^2 ||^2$ what would be the sign

In which application would this sum he used?

ji)

Aus:

of this difference if it? 662? Can you now state a classification rule, of the form \vec{x} \vec{x} verter nx belongs to 6, or 62?

The idea of Unitering is to select a darka postnot hostych Arelongs to the Unater where center is closest to

Am:

than to to 22. || n; - z; || < || n; -z; | ||n; -3|| < ||n; -32||2

 $||\vec{n}_i - \vec{3}_i||^2 - ||\vec{n}_i - \vec{3}_i||^2 < 0$ Henre will be megative.

3/ Ri EGz, i.e. Ri is closer to central 32 than at is to z. 11/11 - 32 1 < 1/21 - 31) 1/7; -321/2 < 1/7; -3/1/2

||n: -3112 - ||n: -3112 > 0

Home will be positive. Classification rule: Expanding the norms

 $||\vec{n}_{i} - \vec{3}_{2}||^{2} - ||\vec{n}_{i} - \vec{3}_{i}||^{2} = ||\vec{n}_{i}||^{2} - 23^{2}_{2}\vec{n}_{i} + ||\vec{3}_{2}||^{2} - ||\vec{n}_{i}||^{2} + 23^{2}_{1}\vec{n}_{i} - ||\vec{3}_{i}||^{2}$ = -2(32-31) 2 + 132112 - 131112

	MIWEF	3 S
	Prign No.	
	Onto:	AVUOY
Heme; $\omega = -2(32 - 31)$ $v = 32 ^2 - 31 ^2$		
V = [13/1] - [13/1]	regional residente processor, un que responsable anticidado de comencia de consecuciones de consecuciones de c	
·		
21 Wrik + V LO then nik E G,		
21 Wrik + v 20, then nk (= 9,		
y winn tv = 0, rik lies on deuts	i'm boundary	1
Equidistant from	lioth centroid	3 -
V		
Consider the vertors $\vec{n_1}, \dots, \vec{n_L}$ L>1;	i' G RAZI Hi	and
another velter 2 GRAXI The vertex 5		

1

(2)

(a) Consider the vertors \vec{n}_i , \vec{n}_i L>1 \vec{n}_i \in $R^{n>1}$ $\forall i$ and another vertor \vec{z} \in $R^{n\times 1}$. The vertor \vec{n}_i is the distance reasont neighbors to \vec{z} if $||\vec{z}| - \vec{n}_i||^2 \le ||\vec{z}| - \vec{n}_i||^2$ if $||\vec{z}||^2 = ||\vec{z}||^2 = ||$

(2n) = (2n) =

The a simple numerical ex. where the distance nearest neighbour is not the same as the angle nearest neighbours. Let \vec{n}_i be $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, \vec{n}_i be $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ and $\vec{3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (alculating distance nearest neighbour

Laterdating Angle Nearest Neighbour (ANN):

ANN for \vec{n} , \vec{n} ,

= (05 / (1)

A

Ti = 45°

ANN for $\overline{n_2}$ $Y_1 = \omega_3' \left(\frac{\overline{n_2} \cdot \overline{3}}{||\overline{n_2}||||||3||} \right) = \omega_3' \left(\frac{1}{2\sqrt{2}} \right) = \omega_3' \left(\frac{1}{\sqrt{2}} \right)$ $= \omega_3' \left(\frac{1}{||\overline{n_2}|||||3||} \right)$ $= \omega_3' \left(\frac{1}{\sqrt{2}} \right)$ $= \omega_3' \left(\frac{1}{\sqrt{2}} \right)$ $= \omega_3' \left(\frac{1}{\sqrt{2}} \right)$

y = 45° (2)Suppose the verton no one normalized, show that in the

case, the distance nearest neighbour and the angle negrest neighbour are always the same. Let assume that ||3:1|=1 for x=1,2,3,..., no AW

 $\|\vec{n} - \vec{3}\|$ $\leq \|\vec{n} - \vec{3}\|$ 11x -311 5 11x -3112

 $||\vec{n}||^2 - 2\vec{n}^T\vec{j}| + ||\vec{j}||^2 \leq ||\vec{j}||^2 - 2\vec{n}^T\vec{j}| + ||\vec{j}||^2$ (ancelling | |n|12 from both sides and |3:112 and |3:112 are both one. $-2n^{T}\vec{z}_{i} \leqslant -2n^{T}\vec{z}_{i}^{*}$

: 1/3/1/=1/3/1/=1 are $\cos\left(\frac{\vec{n}^{T}\vec{3}\vec{j}}{\|\vec{n}\|\|\vec{3}\vec{j}\|}\right) \leq are \cos\left(\frac{\vec{n}^{T}\vec{3}\vec{j}}{\|\vec{n}\|\|\vec{3}\vec{j}\|}\right)$ $L(\vec{n},\vec{3}) \leq L(\vec{n},\vec{3})$ if $a \geq b$ then aricas (a) & aricas (b) Consider the n vectors \vec{n} . $\in R^{n \times 1}$, $\vec{u} = 1, \ldots, n$, where Q4) the vectors in are of the type Volg the Gram-Schmidt algorithm, examine if the vectors ni, form an independent set suppose the algorithm, does not terminate early, what other property do those vectors have? Applying Gram - Submidt algo

at = [0], a = [1], an = [1] Am km orthogonal vertor (vn) = 9k - \(\frac{\k^{-1}}{2} \) (an \(\gamma_{ij} \) \(q_j \) Orthogonal vertor (gr) = Vk $V_1 = Q_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} | V_1 | = \int_1^2 + o^2 + ... + o^2 = 1$ (1)

	Page No.:
	Onte: YOUVA
Q5)	A questionnaire in a magazine has 30 questions, broken into
	two sets of 15 questions. Someone taking the quartomaine
	answers each question with 'Rarely', 'Sometimes', or 'Often'
	The answers are recorded as a 30 -vertor of with
	ai = 1, 2, 3, if question is is answered 'Rarely', Isometimes'
	or Ofton' resp.
	Express the total since is in the form of s = 2 to v
	where W is a 30-vector and 'v' is seeled.
Anno!	It is given that:
	rarely (1) -> 0 points
	Sometimes (2) -> 1 points
	aften (3) -> 2 points
	Here points are awarded on index value of each question
#	ire for i= 1,2,3,, 15.
	ai = 2 sometimes -> 1 point
	2 2 4

ai = 3 often -> 2 point ai = ranely > 0 point

for index range i=16,..., 70

#

of = 2 Sometimes -> 2 point often > 4 point a; = 7

We want to farmulate sure in the equation:

ai = 1 rarely -> 0 point

S = WTa + V.

here It fi (ai) = Yi ai + Pi

for 1=1,2, 15

9; = 1

Page No.:

$$2\gamma + \beta = 1$$
 — (2)

 $3\gamma + \beta = 2$ — (3)

Subtracting 3 from 2

 $2\gamma + \beta = 1$

(4)

(5)

 $\gamma = 1$

here $\gamma = 1$

fi (a_i) = $\gamma = 1$

for $\gamma = 1$
 $\gamma = 1$

fi(ai) =
$$a_{i}^{*}-1$$
 on substituting

for $j = 16,17,... > 0$
 $4+\beta=0$
 $a_{i}=1$
 $2+\beta=2-9$
 $a_{i}=2$
 $3+\beta=4-9$
 $a_{i}=3$

fi(ai) = 2ai -2 (ale score s = \(\xi_1 - 1 \) + \(\xi_2 \) (291 - 2)

$$S = \underbrace{\underbrace{\underbrace{\xi}}_{a_i} + 2\underbrace{\xi}_{a_i} - (15_{x_1} + 15x_2)}_{i=1}$$

$$\underbrace{\underbrace{(any awivy}_{i=1} \underbrace{w_i M_i}_{s} = \underbrace{\widetilde{w}^{T} \widetilde{a}^{T}}_{i=1} + V$$

$$\underbrace{Wl gut'}_{v} = -145$$

$$\underbrace{w^{T} a}_{i=1} = \underbrace{\underbrace{\xi}_{a_i}}_{i=1} + 2\underbrace{\xi}_{a_i}$$

$$\underbrace{\tilde{w}^{T} a}_{i=1} = \underbrace{\tilde{w}^{T} a^{T}}_{i=1} + 2\underbrace{\xi}_{a_i}$$

Supp (5) = WTa - 45 $w_i = \begin{cases} 1 & i=1,2,...15 \\ 2 & i=16,17,...30 \end{cases}$ (1) if every am is cometimes $\frac{277}{5} = 15 \times 2 + 2 \times 15 \times 2$ = 90 5 = 90 - 1945 = 45(s= Wa-v)

S = 45 - 45 = 0

0

PF every am is often ZTa = 15x3 + 15x2x3 (3)

 $\frac{3 \text{ m}}{5 = 135}$ 5 = 135 - 45 = 90_ X ___

if every and is varely is a = 15x1 + 75x2 = 45