Limite segundo um conjunto

Definição 4

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, \mathcal{R} um subconjunto de \mathcal{D} para o qual A é ponto de acumulação. Chama-se **limite de** f **quando** X **tende para** A, **segundo o conjunto** \mathcal{R} , ao limite quando X tende para A da restrição de f a \mathcal{R} , i.e,

$$\lim_{X \to A} f(X) = \lim_{X \to A} f_{|\mathcal{R}}(X)$$

$$x \in \mathcal{R}$$

Consideremos o conjunto $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x = 0\} \setminus \{(0,0)\},$

Consideremos o conjunto $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x = 0\} \setminus \{(0,0)\},$

$$\lim_{\substack{(x,y)\to(0,0)\\x\in\mathcal{R}}}\frac{y^2}{x^2+y^2}=$$

Consideremos o conjunto $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x = 0\} \setminus \{(0,0)\},$

$$\lim_{\substack{(x,y)\to(0,0)\\x\in\mathcal{R}}}\frac{y^2}{x^2+y^2}=\lim_{y\to 0}\frac{y^2}{y^2}=$$

Consideremos o conjunto
$$\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x = 0\} \setminus \{(0,0)\},$$

$$\lim_{\substack{(x,y)\to(0,0)\\x\in\mathcal{R}}}\frac{y^2}{x^2+y^2}=\lim_{y\to 0}\frac{y^2}{y^2}=1$$

Consideremos o conjunto $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x = 0\} \setminus \{(0,0)\},$

$$\lim_{\substack{(x,y)\to(0,0)\\x\in\mathcal{R}}}\frac{y^2}{x^2+y^2}=\lim_{y\to 0}\frac{y^2}{y^2}=1$$

Do limite calculado não podemos concluir que $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2}$ existe.

Proposição 2

• Se existe algum $\mathcal{R} \subseteq \mathcal{D}$ nas condições da definição, tal que $\lim_{X \to A} f(X)$ não existe, então não existe $\lim_{X \to A} f(X)$.

$$x \in \mathcal{R}$$

Proposição 2

- Se existe algum $\mathcal{R} \subseteq \mathcal{D}$ nas condições da definição, tal que $\lim_{X \to A} f(X)$ não existe, então não existe $\lim_{X \to A} f(X)$. $X \in \mathcal{R}$
- Se existem $\mathcal{R}_1, \mathcal{R}_2 \subseteq \mathcal{D}$ nas condições da definição, tais que

$$\begin{array}{ccc} \lim & f(X) \neq & \lim & f(X), \\ X \to A & & X \to A \\ x \in \mathcal{R}_1 & & x \in \mathcal{R}_2 \end{array}$$

então não existe $\lim_{X\to A} f(X)$.

Mostre que $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ não existe.

Mostre que $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ não existe. Consideremos os conjuntos

$$\mathcal{R}_1 = \left\{ (x, y) \in \mathbb{R}^2 : y = 2x \right\}$$

$$\mathcal{R}_2 = \left\{ (x, y) \in \mathbb{R}^2 : y = 3x \right\}$$

$$\lim_{\substack{(x, y) \to (0, 0) \\ (x, y) \in \mathcal{R}_1}} \frac{x^2}{x^2 + y^2} =$$

Mostre que $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ não existe.

Consideremos os conjuntos

$$\mathcal{R}_{1} = \left\{ (x, y) \in \mathbb{R}^{2} : y = 2x \right\}$$

$$\mathcal{R}_{2} = \left\{ (x, y) \in \mathbb{R}^{2} : y = 3x \right\}$$

$$\lim_{(x, y) \to (0, 0)} \frac{x^{2}}{x^{2} + y^{2}} = \lim_{x \to 0} \frac{x^{2}}{x^{2} + 4x^{2}} = \lim_{(x, y) \in \mathcal{R}_{1}} \frac{x^{2}}{x^{2} + 4x^{2}} = \lim_{x \to 0} \frac{x^{2}}{x^{2} + 4x^{2}} = \lim_{x \to$$

Mostre que $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ não existe.

$$\mathcal{R}_{1} = \left\{ (x, y) \in \mathbb{R}^{2} : y = 2x \right\}$$

$$\mathcal{R}_{2} = \left\{ (x, y) \in \mathbb{R}^{2} : y = 3x \right\}$$

$$\lim_{(x, y) \to (0, 0)} \frac{x^{2}}{x^{2} + y^{2}} = \lim_{x \to 0} \frac{x^{2}}{x^{2} + 4x^{2}} = \frac{1}{5}.$$

$$(x, y) \in \mathcal{R}_{1}$$

$$\lim_{\begin{subarray}{c} (x,y) \to (0,0) \\ (x,y) \in \mathcal{R}_2 \end{subarray}} \frac{x^2}{x^2 + y^2} =$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_2}}\frac{x^2}{x^2+y^2}=\lim_{x\to 0}\frac{x^2}{x^2+9x^2}=$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_2}}\frac{x^2}{x^2+y^2}=\lim_{x\to0}\frac{x^2}{x^2+9x^2}=\frac{1}{10}.$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_2}}\frac{x^2}{x^2+y^2}=\lim_{x\to 0}\frac{x^2}{x^2+9x^2}=\frac{1}{10}.$$

Logo, pela proposição o limite $\lim_{(x,y)\to(0,0)}\frac{x^2}{x^2+y^2}$ não existe.

Exercício 4

Mostre que $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ não existe.

Exerciao 4 (x,y) + (0,0) $x^2 + y^2$ Consideremos os conjuntos R1 = 9 (x14) e R2: 4=0} $R_2 = d(x,y) \in \mathbb{R}^2 : y = x$ $\frac{1}{(x_1y) - 10,0)} \frac{2xy}{x^2 + y^2} = \frac{1}{x \to 0} \frac{2 \cdot x \cdot 0}{x^2 + 0^2} = 0$ (x14) ER2 $\frac{2xy}{(x_1y) \to (0,10)} = \frac{2xy}{x^2 + y^2} = \frac{2}{x \to 0} = \frac{2}{x^2 + x^2} = \frac{1}{x \to 0}$ $\frac{2xy}{x^2 + y^2} = \frac{2}{x \to 0} = \frac{2}{x^2 + x^2} = \frac{1}{x \to 0}$ Como $\frac{2xy}{(x_1y_1+10x_1)} + \frac{2xy}{x^2+y^2} + \frac{2xy}{(x_1y_1)-\xi R_2} + \frac{2xy}{x^2+y^2}$ Então, pelo prop. 2 o limite (xiy)-10,10) x2+y2 par existe. 19 1 × (00) (00) 19 × (00) (00) 100 100 100 (00)

Proposição 3

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}, \mathcal{R}_1, \mathcal{R}_2, \cdots, \mathcal{R}_k$. com $k \in \mathbb{N}$, subconjuntos de \mathcal{D} tais que A é um ponto de acumulação e $\mathcal{D} = \mathcal{R}_1 \cup \mathcal{R}_2 \cup \cdots \cup \mathcal{R}_k$. Se $\lim_{X \to A} f(X) = \ell$, para todo o $i = 1, 2 \cdots, k$, então $\lim_{X \to A} f(X) = \ell$. $X \in \mathcal{R}_i$

Proposição 3

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}, \mathcal{R}_1, \mathcal{R}_2, \cdots, \mathcal{R}_k$. com $k \in \mathbb{N}$, subconjuntos de \mathcal{D} tais que A é um ponto de acumulação e $\mathcal{D} = \mathcal{R}_1 \cup \mathcal{R}_2 \cup \cdots \cup \mathcal{R}_k$. Se $\lim_{X \to A} f(X) = \ell$, para todo o $i = 1, 2 \cdots, k$, então $\lim_{X \to A} f(X) = \ell$. $X \in \mathcal{R}_i$

Exemplo 10

Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, tal que $f(x,y) = \begin{cases} -5x^2y + 1, & \text{se } y < 0 \\ 1 + x^2 + y^2, & \text{se } y \ge 0, \end{cases}$ calcule $\lim_{(x,y)\to(0,0)} f(x,y)$

Usemos a proposição anterior Consideremos os conjuntos

Consideremos os conjuntos

$$\mathcal{R}_1 = \left\{ (x,y) \in \mathbb{R}^2 : y < 0 \right\}$$
 e $\mathcal{R}_2 = \left\{ (x,y) \in \mathbb{R}^2 : y \geq 0 \right\}$.

Consideremos os conjuntos

$$\mathcal{R}_1 = \left\{ (x, y) \in \mathbb{R}^2 : y < 0 \right\}$$
 e $\mathcal{R}_2 = \left\{ (x, y) \in \mathbb{R}^2 : y \ge 0 \right\}$.

$$\lim_{(x,y)\to(0,0)} f(x,y) = (x,y) \in \mathcal{R}_1$$

Consideremos os conjuntos

$$\mathcal{R}_1 = \left\{ (x,y) \in \mathbb{R}^2 : y < 0
ight\}$$
 e $\mathcal{R}_2 = \left\{ (x,y) \in \mathbb{R}^2 : y \geq 0
ight\}$.

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_1}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\}} -5x^2y + 1 =$$

Consideremos os conjuntos

$$\mathcal{R}_1 = \left\{ (x,y) \in \mathbb{R}^2 : y < 0 \right\} \text{ e } \mathcal{R}_2 = \left\{ (x,y) \in \mathbb{R}^2 : y \geq 0 \right\}.$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_1}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)}} -5x^2y + 1 = 1$$

Consideremos os conjuntos

$$\mathcal{R}_1 = \left\{ (x,y) \in \mathbb{R}^2 : y < 0 \right\} \text{ e } \mathcal{R}_2 = \left\{ (x,y) \in \mathbb{R}^2 : y \geq 0 \right\}.$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_1}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\}} -5x^2y + 1 = 1$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = (x,y) \in \mathcal{R}_2$$

Consideremos os conjuntos

$$\mathcal{R}_1 = \left\{ (x,y) \in \mathbb{R}^2 : y < 0 \right\}$$
 e $\mathcal{R}_2 = \left\{ (x,y) \in \mathbb{R}^2 : y \geq 0 \right\}$.

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_1}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\}} -5x^2y + 1 = 1$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_2}}f(x,y)=\lim_{\substack{(x,y)\to(0,0)\\}}1+x^2+y^2=$$

Consideremos os conjuntos

$$\mathcal{R}_1 = \{(x,y) \in \mathbb{R}^2 : y < 0\} \text{ e } \mathcal{R}_2 = \{(x,y) \in \mathbb{R}^2 : y \geq 0\}.$$

Temos,

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_1}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\}} -5x^2y + 1 = 1$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_2}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\}} 1 + x^2 + y^2 = 1$$

Pela proposição anterior, $\lim_{(x,y)\to(0,0)} f(x,y) = 1$.

Proposição 4 (Infinitésimo por limitada)

Sejam $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$, A um ponto de acumulação de \mathcal{D} . Se $\lim_{X\to A}f(X)=0$ e se g é uma função limitada em $\mathcal{D}\cap B_r(A)$, para algum r>0, então $\lim_{X\to A}f(X)g(X)=0$.

Proposição 4 (Infinitésimo por limitada)

Sejam $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$, A um ponto de acumulação de \mathcal{D} . Se $\lim_{X\to A}f(X)=0$ e se g é uma função limitada em $\mathcal{D}\cap B_r(A)$, para algum r>0, então $\lim_{X\to A}f(X)g(X)=0$.

Proposição 5 (Mudança de variável)

Sejam $f,u:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$, e g uma função real de variável real tal que f(X)=g(u(X)). Se $\lim_{X\to A}u(X)=c$ e $\lim_{z\to c}g(z)=\ell$, então

$$\lim_{X\to A} f(X) = \lim_{z\to c} g(z) = \ell.$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

$$f(x,y) = \frac{e^{x-y}-1}{y-x}, z = u(x,y) = x-y \ e \ g(z) = \frac{e^z-1}{-z}.$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

$$f(x,y) = \frac{e^{x-y}-1}{y-x}, z = u(x,y) = x-y \ e \ g(z) = \frac{e^z-1}{-z}.$$

Temos
$$\lim_{(x,y)\to(1,1)} u(x,y) = 0$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

$$f(x,y) = \frac{e^{x-y}-1}{y-x}, z = u(x,y) = x-y \ e \ g(z) = \frac{e^z-1}{-z}.$$

Temos
$$\lim_{(x,y)\to(1,1)} u(x,y) = 0$$
 e $\lim_{z\to 0} g(z) = -1$, logo

$$\lim_{(x,y)\to(1,1)}f(x,y)=$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

$$f(x,y) = \frac{e^{x-y}-1}{y-x}, z = u(x,y) = x-y \ e \ g(z) = \frac{e^z-1}{-z}.$$

Temos
$$\lim_{(x,y)\to(1,1)} u(x,y) = 0$$
 e $\lim_{z\to 0} g(z) = -1$, logo

$$\lim_{(x,y)\to(1,1)} f(x,y) = \lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x} =$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

$$f(x,y) = \frac{e^{x-y}-1}{y-x}, z = u(x,y) = x-y \ e \ g(z) = \frac{e^z-1}{-z}.$$

Temos
$$\lim_{(x,y)\to(1,1)} u(x,y) = 0$$
 e $\lim_{z\to 0} g(z) = -1$, logo

$$\lim_{(x,y)\to(1,1)} f(x,y) = \lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x} = \lim_{z\to 0} g(z) =$$

Calcular
$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

Vamos aplicar a proposição 5, considerando

$$f(x,y) = \frac{e^{x-y}-1}{y-x}, z = u(x,y) = x-y \ e \ g(z) = \frac{e^z-1}{-z}.$$

Temos $\lim_{(x,y)\to(1,1)} u(x,y) = 0$ e $\lim_{z\to 0} g(z) = -1$, logo

$$\lim_{(x,y)\to(1,1)} f(x,y) = \lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x} = \lim_{z\to 0} g(z) = \lim_{z\to 0} \frac{e^z-1}{-z} = -1.$$

Calcular
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - 4xy^2}{x^2 + y^2}$$

Exemplo 12, (a) cy) $\rightarrow (0,0)$ $\frac{x^3 - 4 \times y^2}{x^2 + y^2}$ $\frac{1}{(x_1y_1) + (0_10)} \frac{x^3 - 4xy^2}{x^2 + y^2} = \frac{1}{(x_1y_1) + (0_10)} \frac{x^3}{x^2 + y^2} + \frac{4xy^2}{x^2 + y^2}$ $(x_1y) \rightarrow (0,0) \quad x^2 + y^2 \quad (x_1y) \rightarrow (0,0) \quad y^2 + y^2 \quad (x_1y) \rightarrow (0,0) \quad y^2 + y^2 \quad (x_1y) \rightarrow (0,0) \quad (x$ $0 < \chi^2 \le \chi^2 + y^2$ $0 < \frac{\chi^2}{\chi^2 + y^2} \le 1$ $\frac{1}{(x,y)\to (0,0)} \frac{-4\times y^2}{x^2+y^2} = \frac{1}{(x,y)\to (0,0)} \frac{-4\times y^2}{x^2+y^2} = 0.$ $\frac{1}{(x,y)\to (0,0)} \frac{1}{(x^2+y^2)} \frac{y^2}{(x^2+y^2)} = 0.$ $\frac{1}{(x,y)\to (0,0)} \frac{1}{(x^2+y^2)} \frac{y^2}{(x^2+y^2)} = 0.$

 $\frac{1}{(x,y)+(0,0)} \frac{x^{2}-4xy^{2}}{x^{2}+y^{2}} = \frac{1}{(x,y)+(0,0)} \frac{x^{3}}{x^{2}+y^{2}} + \frac{1}{(x,y)+(0,0)} \frac{-4xy^{2}}{x^{2}+y^{2}} = 0+0=0.$

Definição 5

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $P \in \mathcal{D}$. Se P é um ponto de acumulação de \mathcal{D} , f diz-se **contínua em P**, se $\lim_{X \to P} f(X) = f(P)$.

Definição 5

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $P \in \mathcal{D}$. Se P é um ponto de acumulação de \mathcal{D} , f diz-se **contínua em P**, se $\lim_{X \to P} f(X) = f(P)$.

Caso P seja ponto isolado de \mathcal{D} , consideramos que f é contínua em P. Ao conjunto de pontos onde f é contínua chamamos domínio de continuidade de f.

Definição 5

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $P \in \mathcal{D}$. Se P é um ponto de acumulação de \mathcal{D} , f diz-se **contínua em P**, se $\lim_{X \to P} f(X) = f(P)$.

Caso P seja ponto isolado de \mathcal{D} , consideramos que f é contínua em P. Ao conjunto de pontos onde f é contínua chamamos domínio de continuidade de f.

Proposição 6

Se $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$ são funções continuas em $P\in\mathcal{D}$ e $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}$, tal que $f(\mathcal{D})\subseteq I$, é contínua em f(P), então

- \bullet f + g, $fg \ e \ \lambda f$, $\lambda \in \mathbb{R}$, são contínuas em P.
- ② $\frac{f}{g}$ é contínua em P, desde que $g(P) \neq 0$.
- **3** $\alpha \circ f$ é contínua em P.

Verificar que

$$f(x,y) = \begin{cases} \frac{x^2 - yx}{x^2 - y^2} & x \neq \pm y \\ \frac{1}{4}(x + y), & x = \pm y \end{cases}$$

é contínua em (1,1).

Exemplo 13,

Veryroor que
$$f(x,y) = \sqrt{\frac{x^2 - yx}{x^2 - y^2}} \times \pm \pm y$$
 e continua eu (1,1) $\frac{1}{4}(x+y)$, $x = \pm y$

Para que
$$f$$
 seja continua em $(1,1)$ devenos verificar que $f(x,y) \rightarrow (0,1)$ $f(x,y) = f(1,1)$

•
$$f(1,1) = \frac{1}{4}(1+1) = \frac{2}{4} = \frac{1}{2}$$

Consideremos os conjuntos.

Ri=
$$d(x,y) \in \mathbb{R}^2$$
: $x=\pm y$ e $R_2 = d(x,y) \in \mathbb{R}^2$: $x \neq \pm y$ e

Pelo piop. 3, como
$$R_1 UR_2 = R^2$$
 (domínio do jungão j) e,

Pelo prop. 3, (0110)

L'
$$f(x,y) = \frac{1}{2} = \lim_{(x,y) \in \mathbb{R}_2} f(x,y)$$

(xy) els (