Stone-Weierstrass の定理

市ノ瀬弘祐

2024年7月30日

1 前提

K は実数全体の集合 $\mathbb R$ または複素数全体の集合 $\mathbb C$ を表すものとする。

Notation 1.1 X を位相空間とするとき、X から実数全体または複素数全体の集合 K への連続関数全体の集合を C(X)、X から実数全体または複素数全体の集合 K への無限遠で消える連続関数全体の集合を $C_0(X)$ で表す。ただし、連続関数 $f\colon X\to K$ が無限遠で消えるとは、任意の正の数 ε に対して、集合 $\{x\in X\mid |f(x)|\geq \varepsilon\}$ が X のコンパクト集合となることである。

位相空間の一点コンパクト化について述べる。

X をコンパクトでない位相空間とする。 ∞ を X に含まれない点とし、 $X^* = X \cup \{\infty\}$ に以下の位相を入れたものを考える。

 $U \subset X^*$ が以下のいずれかを満たすとき、U を X^* の開集合と定義する。

- $\bullet \infty \notin U$ であり、U は X の開集合である。
- $\infty \in U$ であり、 $X^* \setminus U$ は X のコンパクト集合かつ閉集合である。

この位相で X^* はコンパクト空間となる。この空間を X の一点コンパクト化空間という。

Remark 1.2 X^* がハウスドルフ空間となるための必要十分条件は、X が局所コンパクトハウスドルフ空間であることである。

2 実係数、コンパクト空間上の場合

Theorem 2.1 X はコンパクトハウスドルフ空間とする。実数値の連続関数の代数系 C(X) の部分代数 A が次を満たすとする。

- 1. AはX上の0でない定数関数を含む。
- 2. 任意の異なる $x,y \in X$ に対して、 $f(x) \neq f(y)$ なる $f \in A$ が存在する。

このとき、A は \sup ノルム $\|\cdot\|$ に関して C(X) の中で稠密である。

3 複素係数、コンパクト空間上の場合

Theorem 3.1 X はコンパクトハウスドルフ空間とする。複素数値の連続関数の代数系 C(X) の部分代数 A が次を満たすとする。

- 1. AはX上の0でない定数関数を含む。
- 2. 任意の異なる $x, y \in X$ に対して、 $f(x) \neq f(y)$ なる $f \in A$ が存在する。

このとき、A は \sup ノルム $\|\cdot\|$ に関して C(X) の中で稠密である。

4 実係数、局所コンパクト空間上の場合

Theorem 4.1 X は局所コンパクトハウスドルフ空間とする。実数値の無限遠で消える連続関数の代数系 $C_0(X)$ の部分代数 A が次を満たすとする。

- 1. 任意の $x \in X$ に対して、 $f(x) \neq 0$ となる $f \in A$ が存在する。
- 2. 任意の異なる $x, y \in X$ に対して、 $f(x) \neq f(y)$ なる $f \in A$ が存在する。

このとき、A は sup ノルム $\|\cdot\|$ に関して $C_0(X)$ の中で稠密である。

この場合の証明は X を一点コンパクト化し、 X^* に対して Theorem 2.1 を適用させればよい。連続関数の空間と一点コンパクト化については以下の関係がある。証明は容易なため省略する。

Proposition 4.2 X を局所コンパクトハウスドルフ空間とする。また $C_0(X)$ から $C(X^*)$ への写像 φ を $(\varphi f)(x) = f(x)$ $(x \neq \infty)$, $(\varphi f)(\infty) = 0$ と定義する。このとき、 φ は単射な等長線形写像(特に連続)であり、複素係数の場合は各 $f \in C_0(X)$ に対して $\overline{\varphi f} = \varphi \bar{f}$ が成り立つ。

Proposition 4.3 (Urysohn の補題) (1) X が正規空間のとき、 $A \cap B = \emptyset$ なる X の閉集合に対して、 $f(A) = \{1\}$, $f(B) = \{0\}$ なる連続関数 $f: X \to [0,1]$ が存在する。

(2) X が局所コンパクトハウスドルフ空間であるとき、X のコンパクト集合 A に対して、 $\overline{\operatorname{supp} f} = A$ なる連続関数 $f\colon X\to [0,1]$ が存在する?????

Proof. (Theorem 4.1 の証明) $f \in A$ と任意の $\varepsilon > 0$ に対して $\|f - g\| < \varepsilon$ となる $g \in C_0(X)$ が存在することを示せばよい。 $\varphi \colon C_0(X) \to C(X^*)$ を Proposition 4.2 で定義した写像とする。

 $A^*=arphi(A)\cup\{1\colon X^* o \{1\}\}$ とすると、 $A^*\subset C(X^*)$ は Theorem 2.1 の仮定を満たす。実際、定数関数が含まれていることは明らかであり、 $x,y\in X^*$ が $x,y\in X$ なら仮定より $g(x)\neq g(y)$ なる $g\in A$ があるので、 $(\varphi g)(x)\neq (\varphi g)(y)$ となる。また $x=\infty$ の場合は、 $g(y)\neq 0$ なる $g\in A$ を選べばよい。よって Theorem 2.1 より、 $\|\varphi f-g\|_{C(X^*)}<\varepsilon$ なる $g\in C(X^*)$ が存在する。ここで $(\varphi f)(\infty)=0$ であり、 φf は X 上連続であるから、 ∞ の開近傍 U が存在して、 $\sup_{x\in U}|(\varphi f)(x)|<\varepsilon$ が成り立つ。よって $\sup_{x\in U}|g(x)|\leq \|\varphi f-g\|_{C(X^*)}+\sup_{x\in U}|(\varphi f)(x)|<2\varepsilon$ となる。 $\{\infty\}$ と $X^*\setminus U$ は閉集合であり、 X^* は

コンパクトハウスドルフ空間、特に正規空間である*1から Proposion 4.3 を使って $h(\infty)=0$ かつ $X^*\setminus U$ 上 h=1 となる連続関数 $h\colon X^*\to [0,1]$ を取ってこれる。このとき、

$$\begin{split} \|\varphi f - gh\|_{C(X^*)} & \leq \sup_{x \in U} |(\varphi f)(x) - g(x)h(x)| + \sup_{x \in X^* \backslash U} |(\varphi f)(x) - g(x)h(x)| \\ & \leq \sup_{x \in U} |(\varphi f)(x) - g(x)| + \sup_{x \in U} |(g(x) - g(x)h(x)| + \sup_{x \in X^* \backslash U} |(\varphi f)(x) - g(x)| \\ & \leq \|\varphi f - g\|_{C(X^*)} + 2 \sup_{x \in U} |g(x)| + \|\varphi f - g\|_{C(X^*)} \\ & \leq 6\varepsilon. \end{split}$$

また $(gh)(\infty)=0$ であるから $\varphi g_0=gh$ となる $g_0\in C_0(X)$ が存在する。 φ は等長写像なので、この g_0 が求める関数である。

5 複素係数、局所コンパクト空間上の場合

Theorem 5.1 X は局所コンパクトハウスドルフ空間とする。複素数値の無限遠で消える連続関数の代数 系 $C_0(X)$ の部分代数 A が次を満たすとする。

- 1. 任意の $x \in X$ に対して、 $f(x) \neq 0$ となる $f \in A$ が存在する。
- 2. 任意の異なる $x, y \in X$ に対して、 $f(x) \neq f(y)$ なる $f \in A$ が存在する。
- 3. $f \in A$ x S x, $\bar{f} \in A$ x $\bar{f} \in A$

このとき、A は sup ノルム $\|\cdot\|$ に関して C(X) の中で稠密である。

この場合も Theorem 4.1 の場合と同様なので、証明は省略する。

参考文献

- [Uch] 内田 伏一, 集合と位相, 裳華房,1986.
- [Coh] Donald L.Cohn, Measure Theory, Springer, 2013.
- [Miy] 宮島 静夫, 関数解析, 横浜図書,2005.
- [Ste] Elias M.Stein and Rami Shakarchi, COMPLEX ANALYSIS, Princeton University Press, 2003.
- [Yaj] 谷島 賢二, ルベーグ積分と関数解析, 朝倉書店,2002.
- [Ara] 新井 仁之, 新・フーリエ解析と関数解析学, 培風館,2010.
- [Ito] 伊藤 清三, ルベーグ積分入門, 裳華房,1963.

^{*1 [}Uch] の定理 22.5 の系