MODULE 3

Sampling is useful because:

- requires less time than collecting data on every item in a population
- saves money and resources
- analyzing a sample is more practical than analyzing an entire population.

Collecting a sample is faster, more practical and less expensive than collecting data on every member of the population.

The Sampling Process steps:

- 1. Identify the target population
- 2. Select the sampling frame (list of all items in the target population)
- 3. Choose the sampling method
 - a. Probability sampling

Uses random selection to generate a sample (best chance to get representative sample)

b. Non-probability sampling

Based on convenience or personal preferences of the researcher

- 4. Determine the sample size
- 5. Collect the sample data

Four Types of probability sampling method:

1. Simple random sampling

Every member of a population is selected randomly and has an equal chance of being chosen

2. Stratified random sampling

Divide a population into groups and randomly select some members from each group

3. Cluster random sampling

Divide a population into clusters and randomly select certain clusters and include all members from the chosen clusters in the sample.

4. Systematic random sampling

Put every member of a population into ordered sequence, then choose a random starting point in the sequence an select members for your sample at regular intervals.

Sampling bias occurs when a sample is not representative of the population as a whole.

Non-probability sampling useful to develop initial understanding, not draw conclusions or make predictions.

Four types of non-probability sampling method:

1. Convenient sampling

Choose members of a population that are easy to contact or reach

2. Voluntary response sampling

Members of a population who volunteer to participate in a study

3. Snowball sampling

Researcher recruits initial participants to be in a study and ask them to recruit other people to participate in the study

4. Purposive sampling

The researcher often intentionally exclude certain groups from the sample to focus on a specific group who they think is the most relevant to their study

Point estimate uses a single value to estimate a population parameter.

Sampling distribution is a probability distribution of a sample statistic. The sample is taken and measured repeatedly to get an estimate of the population mean.

Standard error is the standard deviation of a sample statistic (in statistic). Less standard error that the sample mean is accurate estimate of the population mean.

Standard error of the mean
$$=\frac{s}{\sqrt{n}}$$

Where: s = sample standard deviation, n = sample size

Central Limit Theorem

- States that the sampling distribution of the mean approaches a normal distribution as the sample size increases.
- The pattern is true even the population has skewed distribution,
- Used to estimate population parameters for data in economics, science, business, and other field.
- In general, sample size of 30 or more is considered sufficient.

Conditions to apply central limit theorem:

• Randomization

Sample data must be selected randomly

Independence

Sample values must be independent of each other

Sample size

Sample size needs to be sufficiently large

• Requirements for precision

The larger the sample size, the more closely the sampling distribution resembles normal distribution

• The shape of the population

If the distribution is roughly bell-shaped and resembles normal distribution, the sampling distribution will close to normal distribution even with small sample size

Population proportion is the percentage of elements in a population that share a certain characteristic.

Standard error measures the variability of sample statistic. It shows how much is the sample statistic is likely to differ from the actual population proportion.

Standard error of the proportion,
$$SE(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Where: \hat{p} = population proportion, n = sample size