

21490YP

SEQUENCE LISTING

<110> Anderson, Annaliesa S.
Montgomery, Donna L.

<120> POLYPEPTIDES FOR INDUCING A PROTECTIVE
IMMUNE RESPONSE AGAINST STAPHYLOCOCCUS AUREUS

<130> 21490YP

<140> 10/589,381
<141> 2006-08-15

<150> PCT/US2005/004431
<151> 2005-02-14

<150> 60/545,447
<151> 2004-02-18

<160> 20

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 260
<212> PRT
<213> Artificial Sequence

<220>
<223> truncated derivative of sai-1

<400> 1
Met Gly Thr Gln Val Ser Gln Ala Thr Ser Gln Pro Ile Asn Phe Gln
1 5 10 15
Val Gln Lys Asp Gly Ser Ser Glu Lys Ser His Met Asp Asp Tyr Met
20 25 30
Gln His Pro Gly Lys Val Ile Lys Gln Asn Asn Lys Tyr Tyr Phe Gln
35 40 45
Thr Val Leu Asn Asn Ala Ser Phe Trp Lys Glu Tyr Lys Phe Tyr Asn
50 55 60
Ala Asn Asn Gln Glu Leu Ala Thr Thr Val Val Asn Asp Asn Lys Lys
65 70 75 80
Ala Asp Thr Arg Thr Ile Asn Val Ala Val Glu Pro Gly Tyr Lys Ser
85 90 95
Leu Thr Thr Lys Val His Ile Val Val Pro Gln Ile Asn Tyr Asn His
100 105 110
Arg Tyr Thr Thr His Leu Glu Phe Glu Lys Ala Ile Pro Thr Leu Ala
115 120 125
Asp Ala Ala Lys Pro Asn Asn Val Lys Pro Val Gln Pro Lys Pro Ala
130 135 140
Gln Pro Lys Thr Pro Thr Glu Gln Thr Lys Pro Val Gln Pro Lys Val
145 150 155 160
Glu Lys Val Lys Pro Thr Val Thr Thr Ser Lys Val Glu Asp Asn
165 170 175
His Ser Thr Lys Val Val Ser Thr Asp Thr Thr Lys Asp Gln Thr Lys
180 185 190
Thr Gln Thr Ala His Thr Val Lys Thr Ala Gln Thr Ala Gln Glu Gln
195 200 205
Asn Lys Val Gln Thr Pro Val Lys Asp Val Ala Thr Ala Lys Ser Glu
210 215 220

Ser Asn Asn Gln Ala Val Ser Asp Asn Lys Ser Gln Gln Thr Asn Lys
 225 230 235 240
 Val Thr Lys His Asn Glu Thr Pro Lys Gln Ala Ser Lys Ala Lys Glu
 245 250 255
 Leu Pro Lys Thr
 260

<210> 2
 <211> 264
 <212> PRT
 <213> S. aureus

<220>

<400> 2

Met	Gly	Thr	Gln	Val	Ser	Gln	Ala	Thr	Ser	Gln	Pro	Ile	Asn	Phe	Gln
1				5				10					15		
Val	Gln	Lys	Asp	Gly	Ser	Ser	Glu	Lys	Ser	His	Met	Asp	Asp	Tyr	Met
	20					25							30		
Gln	His	Pro	Gly	Lys	Val	Ile	Lys	Gln	Asn	Asn	Lys	Tyr	Tyr	Phe	Gln
	35					40					45				
Ala	Val	Leu	Asn	Asn	Ala	Ser	Phe	Trp	Lys	Glu	Tyr	Lys	Phe	Tyr	Asn
	50					55				60					
Ala	Asn	Asn	Gln	Glu	Leu	Ala	Thr	Thr	Val	Val	Asn	Asp	Asp	Lys	Lys
	65					70			75				80		
Ala	Asp	Thr	Arg	Thr	Ile	Asn	Val	Ala	Val	Glu	Pro	Gly	Tyr	Lys	Ser
		85					90						95		
Leu	Thr	Thr	Lys	Val	His	Ile	Val	Val	Pro	Gln	Ile	Asn	Tyr	Asn	His
		100					105						110		
Arg	Tyr	Thr	Thr	His	Leu	Glu	Phe	Glu	Lys	Ala	Ile	Pro	Thr	Leu	Ala
	115					120					125				
Asp	Ala	Ala	Lys	Pro	Asn	Asn	Val	Lys	Pro	Val	Gln	Pro	Lys	Pro	Ala
	130					135					140				
Gln	Pro	Lys	Thr	Pro	Thr	Glu	Gln	Thr	Lys	Pro	Val	Gln	Pro	Lys	Val
	145					150			155				160		
Glu	Lys	Val	Lys	Pro	Ala	Val	Thr	Ala	Pro	Ser	Lys	Asn	Glu	Asn	Arg
		165					170					175			
Gln	Thr	Thr	Lys	Val	Val	Ser	Ser	Glu	Ala	Thr	Lys	Asp	Gln	Ser	Gln
		180					185					190			
Thr	Gln	Ser	Ala	Arg	Thr	Val	Lys	Thr	Thr	Gln	Thr	Ala	Gln	Asp	Gln
	195					200					205				
Asn	Lys	Val	Gln	Thr	Pro	Val	Lys	Asp	Val	Ala	Thr	Ala	Lys	Ser	Glu
	210					215					220				
Ser	Asn	Asn	Gln	Ala	Val	Ser	Asp	Asn	Lys	Ser	Gln	Gln	Thr	Asn	Lys
	225					230			235				240		
Val	Thr	Lys	Gln	Asn	Glu	Val	His	Lys	Gln	Gly	Pro	Ser	Lys	Asp	Ser
						245			250				255		
Lys	Ala	Lys	Glu	Leu	Pro	Lys	Thr								
						260									

<210> 3
 <211> 280
 <212> PRT
 <213> Artificial Sequence

<220>

<223> amino His-tagged construct of SEQ ID NO: 1

<400> 3

Met	Gly	Ser	Ser	His	His	His	His	His	Ser	Ser	Gly	Leu	Val	Pro
1				5				10				15		

Arg Gly Ser His Met Gly Thr Gln Val Ser Gln Ala Thr Ser Gln Pro
 20 25 30
 Ile Asn Phe Gln Val Gln Lys Asp Gly Ser Ser Glu Lys Ser His Met
 35 40 45
 Asp Asp Tyr Met Gln His Pro Gly Lys Val Ile Lys Gln Asn Asn Lys
 50 55 60
 Tyr Tyr Phe Gln Thr Val Leu Asn Asn Ala Ser Phe Trp Lys Glu Tyr
 65 70 75 80
 Lys Phe Tyr Asn Ala Asn Asn Gln Glu Leu Ala Thr Thr Val Val Asn
 85 90 95
 Asp Asn Lys Lys Ala Asp Thr Arg Thr Ile Asn Val Ala Val Glu Pro
 100 105 110
 Gly Tyr Lys Ser Leu Thr Thr Lys Val His Ile Val Val Pro Gln Ile
 115 120 125
 Asn Tyr Asn His Arg Tyr Thr Thr His Leu Glu Phe Glu Lys Ala Ile
 130 135 140
 Pro Thr Leu Ala Asp Ala Ala Lys Pro Asn Asn Val Lys Pro Val Gln
 145 150 155 160
 Pro Lys Pro Ala Gln Pro Lys Thr Pro Thr Glu Gln Thr Lys Pro Val
 165 170 175
 Gln Pro Lys Val Glu Lys Val Lys Pro Thr Val Thr Thr Ser Lys
 180 185 190
 Val Glu Asp Asn His Ser Thr Lys Val Val Ser Thr Asp Thr Thr Lys
 195 200 205
 Asp Gln Thr Lys Thr Gln Thr Ala His Thr Val Lys Thr Ala Gln Thr
 210 215 220
 Ala Gln Glu Gln Asn Lys Val Gln Thr Pro Val Lys Asp Val Ala Thr
 225 230 235 240
 Ala Lys Ser Glu Ser Asn Asn Gln Ala Val Ser Asp Asn Lys Ser Gln
 245 250 255
 Gln Thr Asn Lys Val Thr Lys His Asn Glu Thr Pro Lys Gln Ala Ser
 260 265 270
 Lys Ala Lys Glu Leu Pro Lys Thr
 275 280

<210> 4
 <211> 284
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> amino His-tagged construct of SEQ ID NO: 2

<400> 4

Met	Gly	Ser	Ser	His	His	His	His	His	Ser	Ser	Gly	Leu	Val	Pro	
1									10					15	
Arg	Gly	Ser	His	Met	Gly	Thr	Gln	Val	Ser	Gln	Ala	Thr	Ser	Gln	Pro
				20				25				30			
Ile	Asn	Phe	Gln	Val	Gln	Lys	Asp	Gly	Ser	Ser	Glu	Lys	Ser	His	Met
						35		40			45				
Asp	Asp	Tyr	Met	Gln	His	Pro	Gly	Lys	Val	Ile	Lys	Gln	Asn	Asn	Lys
					50			55			60				
Tyr	Tyr	Phe	Gln	Ala	Val	Leu	Asn	Asn	Ala	Ser	Phe	Trp	Lys	Glu	Tyr
					65			70			75			80	
Lys	Phe	Tyr	Asn	Ala	Asn	Asn	Gln	Glu	Leu	Ala	Thr	Thr	Val	Val	Asn
						85			90			95			
Asp	Asp	Lys	Lys	Ala	Asp	Thr	Arg	Thr	Ile	Asn	Val	Ala	Val	Glu	Pro
						100			105			110			
Gly	Tyr	Lys	Ser	Leu	Thr	Thr	Lys	Val	His	Ile	Val	Val	Pro	Gln	Ile
						115			120			125			

Asn Tyr Asn His Arg Tyr Thr Thr His Leu Glu Phe Glu Lys Ala Ile
 130 135 140
 Pro Thr Leu Ala Asp Ala Ala Lys Pro Asn Asn Val Lys Pro Val Gln
 145 150 155 160
 Pro Lys Pro Ala Gln Pro Lys Thr Pro Thr Glu Gln Thr Lys Pro Val
 165 170 175
 Gln Pro Lys Val Glu Lys Val Lys Pro Ala Val Thr Ala Pro Ser Lys
 180 185 190
 Asn Glu Asn Arg Gln Thr Thr Lys Val Val Ser Ser Glu Ala Thr Lys
 195 200 205
 Asp Gln Ser Gln Thr Gln Ser Ala Arg Thr Val Lys Thr Thr Gln Thr
 210 215 220
 Ala Gln Asp Gln Asn Lys Val Gln Thr Pro Val Lys Asp Val Ala Thr
 225 230 235 240
 Ala Lys Ser Glu Ser Asn Asn Gln Ala Val Ser Asp Asn Lys Ser Gln
 245 250 255
 Gln Thr Asn Lys Val Thr Lys Gln Asn Glu Val His Lys Gln Gly Pro
 260 265 270
 Ser Lys Asp Ser Lys Ala Lys Glu Leu Pro Lys Thr
 275 280

<210> 5

<211> 268

<212> PRT

<213> Artificial Sequence

<220>

<223> carboxyl His-tagged construct of SEQ ID NO: 1

<400> 5

Met Gly Thr Gln Val Ser Gln Ala Thr Ser Gln Pro Ile Asn Phe Gln
 1 5 10 15
 Val Gln Lys Asp Gly Ser Ser Glu Lys Ser His Met Asp Asp Tyr Met
 20 25 30
 Gln His Pro Gly Lys Val Ile Lys Gln Asn Asn Lys Tyr Tyr Phe Gln
 35 40 45
 Thr Val Leu Asn Asn Ala Ser Phe Trp Lys Glu Tyr Lys Phe Tyr Asn
 50 55 60
 Ala Asn Asn Gln Glu Leu Ala Thr Thr Val Val Asn Asp Asn Lys Lys
 65 70 75 80
 Ala Asp Thr Arg Thr Ile Asn Val Ala Val Glu Pro Gly Tyr Lys Ser
 85 90 95
 Leu Thr Thr Lys Val His Ile Val Val Pro Gln Ile Asn Tyr Asn His
 100 105 110
 Arg Tyr Thr Thr His Leu Glu Phe Glu Lys Ala Ile Pro Thr Leu Ala
 115 120 125
 Asp Ala Ala Lys Pro Asn Asn Val Lys Pro Val Gln Pro Lys Pro Ala
 130 135 140
 Gln Pro Lys Thr Pro Thr Glu Gln Thr Lys Pro Val Gln Pro Lys Val
 145 150 155 160
 Glu Lys Val Lys Pro Thr Val Thr Thr Ser Lys Val Glu Asp Asn
 165 170 175
 His Ser Thr Lys Val Val Ser Thr Asp Thr Thr Lys Asp Gln Thr Lys
 180 185 190
 Thr Gln Thr Ala His Thr Val Lys Thr Ala Gln Thr Ala Gln Glu Gln
 195 200 205
 Asn Lys Val Gln Thr Pro Val Lys Asp Val Ala Thr Ala Lys Ser Glu
 210 215 220
 Ser Asn Asn Gln Ala Val Ser Asp Asn Lys Ser Gln Gln Thr Asn Lys
 225 230 235 240

Val	Thr	Lys	His	Asn	Glu	Thr	Pro	Lys	Gln	Ala	Ser	Lys	Ala	Lys	Glu
					245				250					255	
Leu	Pro	Lys	Thr	Leu	Glu	His									
					260				265						

<210> 6
<211> 395
<212> PRT
<213> Artificial Sequence

<220>
<223> amino His-tagged construct of SEQ ID NO: 7

<400> 6																
Met	His	His	His	His	His	Ser	Ser	Gly	Leu	Val	Pro	Arg	Gly	Ser		
						5			10					15		
Gly	Met	Lys	Glu	Thr	Ala	Ala	Ala	Lys	Phe	Glu	Arg	Gln	His	Met	Asp	
						20			25					30		
Ser	Pro	Asp	Leu	Gly	Thr	Asp	Asp	Asp	Asp	Lys	Ala	Met	Gly	Thr	Lys	
						35			40					45		
His	Tyr	Leu	Asn	Ser	Lys	Tyr	Gln	Ser	Glu	Gln	Arg	Ser	Ser	Ala	Met	
						50			55					60		
Lys	Lys	Ile	Thr	Met	Gly	Thr	Ala	Ser	Ile	Ile	Leu	Gly	Ser	Leu	Val	
						65			70					80		
Tyr	Ile	Gly	Ala	Asp	Ser	Gln	Gln	Val	Asn	Ala	Ala	Thr	Glu	Ala	Thr	
						85			90					95		
Asn	Ala	Thr	Asn	Asn	Gln	Ser	Thr	Gln	Val	Ser	Gln	Ala	Thr	Ser	Gln	
						100			105					110		
Pro	Ile	Asn	Phe	Gln	Val	Gln	Lys	Asp	Gly	Ser	Ser	Glu	Lys	Ser	His	
						115			120					125		
Met	Asp	Asp	Tyr	Met	Gln	His	Pro	Gly	Lys	Val	Ile	Lys	Gln	Asn	Asn	
						130			135					140		
Lys	Tyr	Tyr	Phe	Gln	Thr	Val	Leu	Asn	Ala	Ser	Phe	Trp	Lys	Glu		
						145			150					160		
Tyr	Lys	Phe	Tyr	Asn	Ala	Asn	Asn	Gln	Glu	Leu	Ala	Thr	Thr	Val	Val	
						165			170					175		
Asn	Asp	Asn	Lys	Lys	Ala	Asp	Thr	Arg	Thr	Ile	Asn	Val	Ala	Val	Glu	
						180			185					190		
Pro	Gly	Tyr	Lys	Ser	Leu	Thr	Thr	Lys	Val	His	Ile	Val	Val	Pro	Gln	
						195			200					205		
Ile	Asn	Tyr	Asn	His	Arg	Tyr	Thr	Thr	His	Leu	Glu	Phe	Glu	Lys	Ala	
						210			215					220		
Ile	Pro	Thr	Leu	Ala	Asp	Ala	Ala	Lys	Pro	Asn	Asn	Val	Lys	Pro	Val	
						225			230					240		
Gln	Pro	Lys	Pro	Ala	Gln	Pro	Lys	Thr	Pro	Thr	Glu	Gln	Thr	Lys	Pro	
						245			250					255		
Val	Gln	Pro	Lys	Val	Glu	Lys	Val	Lys	Pro	Thr	Val	Thr	Thr	Ser		
						260			265					270		
Lys	Val	Glu	Asp	Asn	His	Ser	Thr	Lys	Val	Val	Ser	Thr	Asp	Thr	Thr	
						275			280					285		
Lys	Asp	Gln	Thr	Lys	Thr	Gln	Thr	Ala	His	Thr	Val	Lys	Thr	Ala	Gln	
						290			295					300		
Thr	Ala	Gln	Glu	Gln	Asn	Lys	Val	Gln	Thr	Pro	Val	Lys	Asp	Val	Ala	
						305			310					320		
Thr	Ala	Lys	Ser	Glu	Ser	Asn	Asn	Gln	Ala	Val	Ser	Asp	Asn	Lys	Ser	
						325			330					335		
Gln	Gln	Thr	Asn	Lys	Val	Thr	Lys	His	Asn	Glu	Thr	Pro	Lys	Gln	Ala	
						340			345					350		
Ser	Lys	Ala	Lys	Glu	Leu	Pro	Lys	Thr	Gly	Leu	Thr	Ser	Val	Asp	Asn	
						355			360					365		

Phe	Ile	Ser	Thr	Val	Ala	Phe	Ala	Thr	Leu	Ala	Leu	Leu	Gly	Ser	Leu
370						375					380				
Ser	Leu	Leu	Leu	Phe	Lys	Arg	Lys	Glu	Ser	Lys					
385				390				395							

<210> 7
<211> 350
<212> PRT
<213> S. aureus

<400>	7														
Met	Thr	Lys	His	Tyr	Leu	Asn	Ser	Lys	Tyr	Gln	Ser	Glu	Gln	Arg	Ser
1									10					15	
Ser	Ala	Met	Lys	Lys	Ile	Thr	Met	Gly	Thr	Ala	Ser	Ile	Ile	Leu	Gly
								20				25		30	
Ser	Leu	Val	Tyr	Ile	Gly	Ala	Asp	Ser	Gln	Gln	Val	Asn	Ala	Ala	Thr
								35			40		45		
Glu	Ala	Thr	Asn	Ala	Thr	Asn	Asn	Gln	Ser	Thr	Gln	Val	Ser	Gln	Ala
								50			55		60		
Thr	Ser	Gln	Pro	Ile	Asn	Phe	Gln	Val	Gln	Lys	Asp	Gly	Ser	Ser	Glu
								65			70		75		80
Lys	Ser	His	Met	Asp	Asp	Tyr	Met	Gln	His	Pro	Gly	Lys	Val	Ile	Lys
								85			90		95		
Gln	Asn	Asn	Lys	Tyr	Tyr	Phe	Gln	Thr	Val	Leu	Asn	Asn	Ala	Ser	Phe
								100			105		110		
Trp	Lys	Glu	Tyr	Lys	Phe	Tyr	Asn	Ala	Asn	Asn	Gln	Glu	Leu	Ala	Thr
								115			120		125		
Thr	Val	Val	Asn	Asp	Asn	Lys	Lys	Ala	Asp	Thr	Arg	Thr	Ile	Asn	Val
								130			135		140		
Ala	Val	Glu	Pro	Gly	Tyr	Lys	Ser	Leu	Thr	Thr	Lys	Val	His	Ile	Val
								145			150		155		160
Val	Pro	Gln	Ile	Asn	Tyr	Asn	His	Arg	Tyr	Thr	Thr	His	Leu	Glu	Phe
								165			170		175		
Glu	Lys	Ala	Ile	Pro	Thr	Leu	Ala	Asp	Ala	Ala	Lys	Pro	Asn	Asn	Val
								180			185		190		
Lys	Pro	Val	Gln	Pro	Lys	Pro	Ala	Gln	Pro	Lys	Thr	Pro	Thr	Glu	Gln
								195			200		205		
Thr	Lys	Pro	Val	Gln	Pro	Lys	Val	Glu	Lys	Val	Lys	Pro	Thr	Val	Thr
								210			215		220		
Thr	Thr	Ser	Lys	Val	Glu	Asp	Asn	His	Ser	Thr	Lys	Val	Val	Ser	Thr
								225			230		235		240
Asp	Thr	Thr	Lys	Asp	Gln	Thr	Lys	Thr	Gln	Thr	Ala	His	Thr	Val	Lys
								245			250		255		
Thr	Ala	Gln	Thr	Ala	Gln	Glu	Gln	Asn	Lys	Val	Gln	Thr	Pro	Val	Lys
								260			265		270		
Asp	Val	Ala	Thr	Ala	Lys	Ser	Glu	Ser	Asn	Asn	Gln	Ala	Val	Ser	Asp
								275			280		285		
Asn	Lys	Ser	Gln	Gln	Thr	Asn	Lys	Val	Thr	Lys	His	Asn	Glu	Thr	Pro
								290			295		300		
Lys	Gln	Ala	Ser	Lys	Ala	Lys	Glu	Leu	Pro	Lys	Thr	Gly	Leu	Thr	Ser
								305			310		315		320
Val	Asp	Asn	Phe	Ile	Ser	Thr	Val	Ala	Phe	Ala	Thr	Leu	Ala	Leu	Leu
								325			330		335		
Gly	Ser	Leu	Ser	Leu	Leu	Leu	Phe	Lys	Arg	Lys	Glu	Ser	Lys		
								340			345		350		

<210> 8
<211> 354
<212> PRT
<213> S. aureus

<400> 8
Met Thr Lys His Tyr Leu Asn Ser Lys Tyr Gln Ser Glu Gln Arg Ser
1 5 10 15
Ser Ala Met Lys Lys Ile Thr Met Gly Thr Ala Ser Ile Ile Leu Gly
20 25 30
Ser Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val Asn Ala Ala Thr
35 40 45
Glu Ala Thr Asn Ala Thr Asn Asn Gln Ser Thr Gln Val Ser Gln Ala
50 55 60
Thr Ser Gln Pro Ile Asn Phe Gln Val Gln Lys Asp Gly Ser Ser Glu
65 70 75 80
Lys Ser His Met Asp Asp Tyr Met Gln His Pro Gly Lys Val Ile Lys
85 90 95
Gln Asn Asn Lys Tyr Tyr Phe Gln Ala Val Leu Asn Asn Ala Ser Phe
100 105 110
Trp Lys Glu Tyr Lys Phe Tyr Asn Ala Asn Asn Gln Glu Leu Ala Thr
115 120 125
Thr Val Val Asn Asp Asp Lys Lys Ala Asp Thr Arg Thr Ile Asn Val
130 135 140
Ala Val Glu Pro Gly Tyr Lys Ser Leu Thr Thr Lys Val His Ile Val
145 150 155 160
Val Pro Gln Ile Asn Tyr Asn His Arg Tyr Thr Thr His Leu Glu Phe
165 170 175
Glu Lys Ala Ile Pro Thr Leu Ala Asp Ala Ala Lys Pro Asn Asn Val
180 185 190
Lys Pro Val Gln Pro Lys Pro Ala Gln Pro Lys Thr Pro Thr Glu Gln
195 200 205
Thr Lys Pro Val Gln Pro Lys Val Glu Lys Val Lys Pro Ala Val Thr
210 215 220
Ala Pro Ser Lys Asn Glu Asn Arg Gln Thr Thr Lys Val Val Ser Ser
225 230 235 240
Glu Ala Thr Lys Asp Gln Ser Gln Thr Gln Ser Ala Arg Thr Val Lys
245 250 255
Thr Thr Gln Thr Ala Gln Asp Gln Asn Lys Val Gln Thr Pro Val Lys
260 265 270
Asp Val Ala Thr Ala Lys Ser Glu Ser Asn Asn Gln Ala Val Ser Asp
275 280 285
Asn Lys Ser Gln Gln Thr Asn Lys Val Thr Lys Gln Asn Glu Val His
290 295 300
Lys Gln Gly Pro Ser Lys Asp Ser Lys Ala Lys Glu Leu Pro Lys Thr
305 310 315 320
Gly Leu Thr Ser Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr
325 330 335
Leu Ala Leu Leu Gly Ser Leu Ser Leu Leu Leu Phe Lys Arg Lys Glu
340 345 350
Ser Lys

<210> 9
<211> 358
<212> PRT
<213> Artificial Sequence

<220>
<223> carboxyl His-tagged construct of SEQ ID NO: 7

<400> 9
Met Thr Lys His Tyr Leu Asn Ser Lys Tyr Gln Ser Glu Gln Arg Ser
1 5 10 15
Ser Ala Met Lys Lys Ile Thr Met Gly Thr Ala Ser Ile Ile Leu Gly
20 25 30

Ser Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val Asn Ala Ala Thr
 35 40 45
 Glu Ala Thr Asn Ala Thr Asn Asn Gln Ser Thr Gln Val Ser Gln Ala
 50 55 60
 Thr Ser Gln Pro Ile Asn Phe Gln Val Gln Lys Asp Gly Ser Ser Glu
 65 70 75 80
 Lys Ser His Met Asp Asp Tyr Met Gln His Pro Gly Lys Val Ile Lys
 85 90 95
 Gln Asn Asn Lys Tyr Tyr Phe Gln Thr Val Leu Asn Asn Ala Ser Phe
 100 105 110
 Trp Lys Glu Tyr Lys Phe Tyr Asn Ala Asn Asn Gln Glu Leu Ala Thr
 115 120 125
 Thr Val Val Asn Asp Asn Lys Lys Ala Asp Thr Arg Thr Ile Asn Val
 130 135 140
 Ala Val Glu Pro Gly Tyr Lys Ser Leu Thr Thr Lys Val His Ile Val
 145 150 155 160
 Val Pro Gln Ile Asn Tyr Asn His Arg Tyr Thr Thr His Leu Glu Phe
 165 170 175
 Glu Lys Ala Ile Pro Thr Leu Ala Asp Ala Ala Lys Pro Asn Asn Val
 180 185 190
 Lys Pro Val Gln Pro Lys Pro Ala Gln Pro Lys Thr Pro Thr Glu Gln
 195 200 205
 Thr Lys Pro Val Gln Pro Lys Val Glu Lys Val Lys Pro Thr Val Thr
 210 215 220
 Thr Thr Ser Lys Val Glu Asp Asn His Ser Thr Lys Val Val Ser Thr
 225 230 235 240
 Asp Thr Thr Lys Asp Gln Thr Lys Thr Gln Thr Ala His Thr Val Lys
 245 250 255
 Thr Ala Gln Thr Ala Gln Glu Gln Asn Lys Val Gln Thr Pro Val Lys
 260 265 270
 Asp Val Ala Thr Ala Lys Ser Glu Ser Asn Asn Gln Ala Val Ser Asp
 275 280 285
 Asn Lys Ser Gln Gln Thr Asn Lys Val Thr Lys His Asn Glu Thr Pro
 290 295 300
 Lys Gln Ala Ser Lys Ala Lys Glu Leu Pro Lys Thr Gly Leu Thr Ser
 305 310 315 320
 Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr Leu Ala Leu Leu
 325 330 335
 Gly Ser Leu Ser Leu Leu Phe Lys Arg Lys Glu Ser Lys Leu Glu
 340 345 350
 His His His His His
 355

<210> 10

<211> 843

<212> DNA

<213> Artificial Sequence

<220>

<223> nucleic acid sequence encoding SEQ ID NO: 3

<400> 10

atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgct cggcagccat 60
 atgggcacac aagtttctca agcaacatca caaccaatta atttccaagt gcaaaaaagat 120
 ggctttaga agaagtaca catggatgac tatatgcaac accctgttaa agtaattaaa 180
 caaaataata aatatatttt ccaaaccgtg ttaaacaatg catcatctg gaaagaatac 240
 aaatttaca atgcaaacaa tcaagaatata gcaacaactg ttgttaacga taataaaaaaa 300
 gcggatacta gaacaatcaa tggtgcagtt gaacctggat ataagagctt aactactaaa 360
 gtacatattt tcgtgccaca aattaattac aatcatagat atactacgca ttggaaattt 420
 gaaaaagcaa ttcctacatt agctgacgca gcaaaaaccaa acaatgttaa accggttcaa 480
 ccaaaaccag ctcaacctaa aacacctact gagcaaacta aaccagttca acctaaagtt 540

gaaaaagtt aacctactgt aactacaaca agcaaagttg aagacaatca ctctactaaa 600
 gttgtaagta ctgacacaac aaaagatcaa actaaaacac aaactgctca tacagttaaa 660
 acagcacaaa ctgctcaaga acaaaaataaa gttcaaacac ctgttcaaaga tggtgcaaca 720
 gcgaaatctg aaagcaacaa tcaagctgta agtgataata aatcacaaca aactaacaaa 780
 gttacaaaac ataacgaaac gcctaaacaa gcatctaaag ctaaagaatt accaaaaact 840
 tga 843

<210> 11
 <211> 855
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> nucleic acid sequence encoding SEQ ID NO: 4

<400> 11
 atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cgccagccat 60
 atgggcacac aagttctca agcaacatca caaccaatta atttccaagt gcaaaaagat 120
 ggctcttcag agaagtcaca catggatgac tatatgcaac accctgtaa agtgattaaa 180
 caaaaataata aatattattt ccaagctgta ttgaacaacg catcattctg gaaagaatac 240
 aaattttaca atgcaacaa tcaagaatata gcaacaactg ttgttaacga tgataaaaaaa 300
 gctgacacta gaacaatcaa tggctgtt gaacctgggt ataagagtt aactacaaaaa 360
 gtacatattt tcgtgccaca aattaattat aatcatagat atactacgca tttagaattt 420
 gaaaaagcaa ttcctacatt agctgacgca gcaaaaaccaa acaatgttaa accggttcaa 480
 ccaaaacctg ctcaacctaa aacacctact gagcaaacga aaccaggta acctaaagtt 540
 gaaaaagtt aacctgctgt aactgcacca agcaaaaatg aaaacagaca aactacaaaaa 600
 gttgtaagta gtgaagctac aaaagatcaa agtcaaacac aaagtgcctg tacagtgaaa 660
 acaacacacaa cagctcaaga tcaaaaataaa gttcaaacac ctgttcaaaga tggtgcaaca 720
 gcgaaatctg aaagcaacaa tcaagctgta agtgacaata aatcacaaca aactaacaaa 780
 gttacaaaac aaaacaaagt tcataaacaa ggaccttcaa aagattctaa agctaaagaa 840
 ttacaaaaaa cttga 855

<210> 12
 <211> 37
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 12
 gagatataacc atgggcacaa aacattattt aaacagt 37

<210> 13
 <211> 36
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 13
 ccggcgcccc tcgagtttag attctttct tttgaa 36

<210> 14
 <211> 37
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 14		
gagatataacc atgggcacaa aacattattt aaacagt		37
<210> 15		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 15		
ccggcgcccc tcgagttatt tagattcttt tctttgaa		39
<210> 16		
<211> 41		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 16		
gagatataacc atgggcacac aagtttctca agcaacatca c		41
<210> 17		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 17		
ggtgttgctc gagagttttt ggtaattctt tagctt		36
<210> 18		
<211> 41		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 18		
gagatatcat atgggcacac aagtttctca agcaacatca c		41
<210> 19		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 19		
ggtgttgctc gagtcaagtt ttggtaatt cttagctt		39
<210> 20		
<211> 5		

<212> PRT
<213> Artificial Sequence

<220>
<223> LPXTG Motif

<220>
<221> SITE
<222> (3)...(3)
<223> Xaa = any amino acid

<400> 20
Leu Pro Xaa Thr Gly
1 5