Tabela 1: Resultado de todas as instância de entrada utilizada como avaliação da meta heurística Grasp em relação aos métodos *Greedy* e *Dynamic*.

	\mathbf{Greedy}	\mathbf{Grasp}	Dynamic
0	29636	31621	31621
1	64939	67829	67829
2	143449	143449	143449
3	28840	28840	28840
4	15785	15785	15785
5	99861	99861	99861
6	1894	1910	1940
7	714	583	741
8	9717	9581	10281
9	17523	17229	20149
10	29943	29965	30001
11	49884	49885	49885
12	49395	49398	49398
13	20880	20880	20880
14	20676	20676	20676
15	46218	44422	46281

1.5 em 0pt

RELATÓRIO DO TRABALHO 1

O trabalho foi implementado na linguagem de programação **python**, foi utilizado as seguintes bibliotecas como auxílio: *numpy*, *random*, *re*. As heurísticas implementadas foram **Greedy**, *GRASP* e o **paradigma de programação dinâmica** (para conseguir o algorimo exato).

Para análise dos resultados, foi utilizada as seguintes bibliotecas gráficas: $matplotlib\ e$ seaborn.

Como conclusão foi escrito um artigo para mostrar os experimentos realizados, resultados obtidos e o que se pode concluir da meta heurítica *GRASP*.

Para mais informações acessar: https://github.com/neemiasbsilva/ComputerTheory.