PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA IOP224 INVESTIGACIÓN DE OPERACIONES

Tarea del Examen Parcial Primer semestre 2024

Indicaciones generales:

- Materiales o equipos a utilizar: todo tipo de apuntes.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.
- Se tendrá en cuenta la presentación.
- Entregar en Paideia hasta el Domingo 2 de junio a las 23h00.

Puntaje total: 20 puntos (peso de 0.35 en la nota del Examen Parcial).

<u>Cuestionario</u> (basado en la lectura «Partial Equilibrium and Two-sided matching model with transferable utility» del profesor Federico Echenique).

Pregunta 1. Equilibrio parcial. 12 puntos.

- 1.1 Sea \succeq una relación de preferencias racional y continua sobre \mathbb{R}^L_+ tal que existe una función de utilidad de la forma $u(x_1,...,x_L) = x_1 + \phi(x_2,...,x_L)$ que la representa. Pruebe que \succeq es cuasi lineal. Nota: revise la Definición 1.
- 1.2 Considere el problema de maximización del individuo i en el contexto del equilibrio parcial

$$\max_{(x,m)\in\mathbb{R}_{+}\times\mathbb{R}} \underbrace{v_{i}(x) + m}_{u_{i}(x,m)}$$
s. a. $px + m < I$.

Asuma que v_i' posee inversa y que $x_i^*(p) > 0$. Demuestre que $x_i^*(p) = (v_i')^{-1}(p)$. Note que estamos denotando el ingreso por I y no W (con respecto a la notación usada en el texto original).

1.3 Demuestre que

$$v_i(x_i^*(p)) + m^*(p, I) = \int_p^\infty x_i^*(s)ds + I.$$

Para esto, **puede tener en cuenta que** $x_i^* > 0$, que $\lim_{p\to\infty} px_i^*(p) \to 0$ y que $v_i(0) = 0$. Sin embargo, solo es necesario tener presente que $v \in C^2$ y que $x_i^*(p) = (v_i')^{-1}(p)$.

1.4 En relación al problema de optimización, que consiste en encontar las asignaciones Pareto Óptimas (es decir, las soluciones al siguiente problema de optimización¹)

$$\mathcal{P}_{O}: \begin{cases} \max_{x_{1},...,x_{N},m_{1},...,m_{N}} & v_{1}(x_{1}) + m_{1} \\ \text{s. a.} & v_{i}(x_{i}) + m_{i} \geq \overline{u}_{i}, \ i = 2,..., N \\ & \sum_{i=1}^{N} x_{i} \leq \sum_{i=1}^{N} \omega_{i,x} \\ & \sum_{i=1}^{N} m_{i} \leq \sum_{i=1}^{N} \omega_{i,m} \\ & x_{i} \geq 0. \end{cases}$$

explique la formulación del problema. Luego, demuestre que resolver \mathcal{P}_O es equivalente a resolver

$$\max_{x_1, \dots, x_n \ge 0} \left\{ \sum_{i=1}^N v_i(x_i) \right\}; \text{ s.a.: } : \sum_{i=1}^N x_i \le \sum_{i=1}^N \omega_{i,x}.$$

<u>Nota:</u> no tiene que resolver el problema. Por otro lado, $\omega_{i,x}$ y $\omega_{i,m}$ corresponden a dotaciones, que son simplemente cantidades del bien x (m respectivamente) que el individuo i posee inicialmente.

1.5 En relación al problema de optimización que involucra un sector de producción y permite encontrar asignaciones Pareto óptimas:

$$\mathcal{P}_{O_{1}}: \begin{cases} \max_{x_{1},...,x_{N},m_{1},...,m_{N}} & v_{1}(x_{1}) + m_{1} \\ \text{s. a.}: & v_{i}(x_{i}) + m_{i} \geq \overline{u}_{i}, \ i = 2,...,N \\ & \sum_{i=1}^{N} x_{i} \leq \sum_{i=1}^{N} \omega_{i,x} + x^{f} \\ & \sum_{i=1}^{N} m_{i} \leq \sum_{i=1}^{N} \omega_{i,m} - m^{f} \\ & (x^{f}, -m^{f}) \in Y. \end{cases}$$

demuestre que cuando $\sum_{i=1}^{N} \omega_{i,x} = 0$, resolver \mathcal{P}_{O_1} es equivalente a resolver

$$\max_{x_1,\dots,x_N\geq 0} \left\{ \sum_{i=1}^N v_i(x_i) - c\left(\sum_{i=1}^N x_i\right) \right\}.$$

Explique además la formulación de \mathcal{P}_{O_1} . En particular, determine el conjunto Y y cómo se distingue este problema de optimización de \mathcal{P}_O .

1.6 Explique por qué la condición de eficiencia de aprovisionamiento de un bien público está dada por

$$\max_{x \ge 0} \left\{ \sum_{i=1}^{N} v_i(x) - c(x) \right\}. \tag{1}$$

Finalmente, demuestre y explique por qué en el equilibrio Lindahl, la firma optimiza produciendo x^* (del bien público) y se lo vende al consumidor i al precio

$$p_i = (v_i')^{-1}(x^*).$$

¹Más adelante en el curso se estudiarán las asignaciones Pareto óptimas en el contexto del Equilibrio

Pregunta 2. Emparejamiento bilateral con transferencias de utilidad. 8 puntos.

- 2.1 Provea la definición de matching en el contexto del emparejamiento bilateral con transferencias de utilidad.
- 2.2 Explique la formulación del problema de emparejamiento

$$\begin{cases}
\max_{x_{ij}} & \sum_{i \in B} \sum_{j \in S} \alpha_{ij} x_{ij} \\
s. a.: & x_{ij} \ge 0 \\
& \sum_{j \in S} x_{ij} \le 1, \ \forall \ i \in B \\
& \sum_{i \in B} x_{ij} \le 1, \ \forall \ j \in S.
\end{cases} \tag{2}$$

En particular, explique con claridad el significado de las restricciones y la función objetivo.

2.3 Demuestre que el dual del problema² de optimización (2) es

$$\begin{cases}
\min_{(u_i, v_j)} & \sum_{i \in B} u_i + \sum_{j \in S} v_j \\
\text{s. a.} : & u_i + v_j \ge \alpha_{ij} \\
u_i, v_j \ge 0.
\end{cases}$$
(3)

2.4 Demuestre que siempre existe una solución al problema de optimización (2).

Definición 1. Preferencia cuasi lineal. Una relación de preferencias sobre $X = (-\infty, \infty) \times \mathbb{R}^{L-1}_+$ es cuasi lineal con respecto al bien 1 (conocido como bien numerario) si

- a) $\mathbf{x} \sim \mathbf{y}$, entonces $\mathbf{x} + \alpha \mathbf{e}_1 \sim \mathbf{y} + \alpha \mathbf{e}_1$ con $\mathbf{e}_1 = (1, 0, \dots, 0)$ y $\alpha \in \mathbb{R}$.
- b) $\mathbf{x} + \alpha \mathbf{e}_1 \succ \mathbf{x}, \forall \mathbf{x} \in X \ \forall \alpha > 0.$

General.

²Revise la Sección Cono Convexo y Lema de Farkas, apartado sobre programación lineal del libro texto ALOECO y la página 60 del libro Linear Programming de Robert Vanderbei publicado en Springer.