

C3 : Analyse temporelle des systèmes asservis C3-1 : Analyse temporelle des systèmes asservis du 1er ordre

Émilien DURIF

Lycée La Martinière Monplaisir Lyon Classe de MPSI 16 Octobre 2018

- Définitions
 - Système du premier ordre
 - Exemple du cours

- Caractérisations de la réponse d'un système du premier ordre
 - Réponse à un échelon
 - Réponse à une rampe

- Définitions
 - Système du premier ordre
 - Exemple du cours

- Caractérisations de la réponse d'un système du premier ordre
 - Réponse à un échelon
 - Réponse à une rampe

Système du premier ordre

On appelle système du premier ordre tout système linéaire, continu et invariant régi par une équation différentielle du premier degré de la forme :

$$\tau \frac{ds(t)}{dt} + s(t) = K e(t).$$
 (1)

Remarque

Pour la suite du cours, on considérera que les conditions initiales de s(t) sont toujours nulles :

• pour une équation différentielle du premier ordre : s(t=0)=0 ; • pour une équation différentielle du deuxième ordre : s'(t=0)=0

Système du premier ordre

On appelle système du premier ordre tout système linéaire, continu et invariant régi par une équation différentielle du premier degré de la forme :

$$\tau \frac{ds(t)}{dt} + s(t) = K e(t).$$
 (1)

Remarque

Pour la suite du cours, on considérera que les conditions initiales de s(t) sont toujours nulles :

- pour une équation différentielle du premier ordre : s(t=0)=0 ;
- pour une équation différentielle du deuxième ordre : s'(t=0)=0

Système du premier ordre

On appelle système du premier ordre tout système linéaire, continu et invariant régi par une équation différentielle du premier degré de la forme :

$$\tau \frac{ds(t)}{dt} + s(t) = K e(t). \tag{1}$$

Remarque

Pour la suite du cours, on considérera que les conditions initiales de s(t) sont touiours nulles :

- pour une équation différentielle du premier ordre : s(t=0)=0 ;
- pour une équation différentielle du deuxième ordre : s'(t=0)=0

Propriété

La fonction de transfert de ces systèmes peut s'écrire sous la **forme canonique** suivante :

$$H(p) = \frac{K}{1 + \tau p} \tag{2}$$

où:

- τ : constante de temps (en s);
- K : gain statique (unité selon l'application)

Propriété

La fonction de transfert de ces systèmes peut s'écrire sous la forme canonique suivante :

$$H(p) = \frac{K}{1 + \tau p} \tag{2}$$

où:

- τ : constante de temps (en s);

Propriété

La fonction de transfert de ces systèmes peut s'écrire sous la forme canonique suivante :

$$H(p) = \frac{K}{1 + \tau p} \tag{2}$$

où:

• τ : constante de temps (en s);

• K : gain statique (unité selon l'application).

Émilien DURIE

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t).

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t).

On impose un échelon sur le déplacement e(t):

$$e(t = 0) = 0$$

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t).

On impose un échelon sur le déplacement e(t):

$$e(t = 0^+) = e0$$

Exemple : ressort de raideur k et amortisseur de coefficient c

Question : Comment le système va répondre?

Système oscillant

Système amorti

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t). En isolant le solide S_1 de masse (m), on obtient le bilan des actions mécaniques extérieurs suivant \overrightarrow{x} :

• Le ressort S_2 de raideur k exerce un effort de rappel donné par sa valeur algébrique suivant \overrightarrow{x} .

$$F_r = -k(s(t) - e(t)).$$

• L'amortisseur S_0 de coefficient de viscosité c exerce un effort de rappel donné par sa valeur algébrique suivant $\overrightarrow{\chi}$,

$$F_c = -c \cdot \frac{ds(t)}{dt}$$

• On néglige le poids du solide S_1 .

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t). En isolant le solide S_1 de masse (m), on obtient le bilan des actions mécaniques extérieurs suivant \overrightarrow{x} :

• Le ressort S_2 de raideur k exerce un effort de rappel donné par sa valeur algébrique suivant \overrightarrow{x} .

$$F_r = -k(s(t) - e(t)).$$

 L'amortisseur S₀ de coefficient de viscosité c exerce un effort de rappel donné par sa valeur algébrique suivant X,

$$F_c = -c \cdot \frac{ds(t)}{dt}.$$

On néglige le poids du solide S₁.

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t). En isolant le solide S_1 de masse (m), on obtient le bilan des actions mécaniques extérieurs suivant \overrightarrow{x} :

• Le ressort S_2 de raideur k exerce un effort de rappel donné par sa valeur algébrique suivant \overrightarrow{x} .

$$F_r = -k(s(t) - e(t)).$$

 L'amortisseur S₀ de coefficient de viscosité c exerce un effort de rappel donné par sa valeur algébrique suivant X,

$$F_c = -c \cdot \frac{ds(t)}{dt}$$
.

• On néglige le poids du solide S_1 .

Exemple : ressort de raideur k et amortisseur de coefficient c

• En appliquant le Principe Fondamental de la Dynamique suivant la direction \overrightarrow{x} , on obtient :

$$F_r + Fc = m \frac{d^2s(t)}{dt^2}.$$

• En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t). \tag{3}$$

• Cette équation différentielle de degré 1 caractérise un système du premier ordre.

• On considère que les conditions initiales sont nulles (s(t=0)=0).

Exemple : ressort de raideur k et amortisseur de coefficient c

• En appliquant le Principe Fondamental de la Dynamique suivant la direction \overrightarrow{x} , on obtient :

$$F_r + F_c = m \frac{d^2s(t)}{dt^2}.$$

 \bullet En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

• Cette équation différentielle de degré 1 caractérise un système du premier ordre.

• On considère que les conditions initiales sont nulles (s(t=0)=0).

Exemple : ressort de raideur k et amortisseur de coefficient c

ullet En appliquant le Principe Fondamental de la Dynamique suivant la direction \overrightarrow{x} , on obtient :

$$F_r + Fc = m \frac{d^2s(t)}{dt^2}.$$

 \bullet En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

- Cette équation différentielle de degré 1 caractérise un système du premier ordre.
- On considère que les conditions initiales sont nulles (s(t=0)=0).

Exemple : ressort de raideur k et amortisseur de coefficient c

ullet En appliquant le Principe Fondamental de la Dynamique suivant la direction \overrightarrow{x} , on obtient :

$$F_r + Fc = m \frac{d^2s(t)}{dt^2}.$$

• En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

- Cette équation différentielle de degré 1 caractérise un système du premier ordre.
- On considère que les conditions initiales sont nulles (s(t = 0) = 0).

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p)$$

On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p};$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p}$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Émilien DURIF

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p}$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p}$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Émilien DURIE

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

· On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p};$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p}$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Émilien DURIE

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

· On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p};$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p};$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Émilien DURIF

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

On obtient alors.

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p};$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p};$$

- On peut alors identifier la forme canonique avec les coefficients :
 - $\tau = \frac{c}{k}$ K = 1

Plan

- Définitions
 - Système du premier ordre
 - Exemple du cours

- 2 Caractérisations de la réponse d'un système du premier ordre
 - Réponse à un échelon
 - Réponse à une rampe

Émilien DURIF 11/2:

Réponse indicielle

$$e(t) = e_0 \cdot u(t).$$

Si $e_0 = 1$, la réponse e(t) est appelée **réponse indicielle**.

Équation de la réponse

On cherche à calculer s(t) à partir de H(p) et E(p):

$$E(p) = \frac{e_0}{p}$$

$$S(p) = H(p) \cdot E(p)$$

$$= \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t)$$

• On en déduit :

Réponse à un échelor

La réponse d'un système du 1^{er} ordre à un échelon est de la forme

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t). \tag{4}$$

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t)$$

• On en déduit :

Réponse à un échelor

La réponse d'un système du 1^{er} ordre à un échelon est de la forme

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t). \tag{4}$$

Émilien DURIF 13,

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau}\right) \cdot u(t)$$

• On en déduit :

Réponse à un échelor

La réponse d'un système du 1^{er} ordre à un échelon est de la forme

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t). \tag{4}$$

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t)$$

• On en déduit :

Réponse à un échelon

La réponse d'un système du 1^{er} ordre à un échelon est de la forme :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t).$$
 (4)

Au voisinage de $+\infty$:

$$\lim_{t\to+\infty} s(t) = \dots$$

$$\lim_{t\to 0} s(t) = \dots$$

$$\lim_{t \to +\infty} s(t) = \lim_{p \to 0} p \cdot S(p)$$

$$= Ke_0$$

$$\lim_{t \to +\infty} \frac{ds(t)}{dt} = \lim_{p \to 0} p^2 \cdot S(p)$$

$$= 0$$

$$\lim_{t \to 0} s(t) = \lim_{p \to +\infty} p \cdot S(p)$$

$$= 0$$

$$\lim_{t \to 0} \frac{ds(t)}{dt} = \lim_{p \to +\infty} p^2 \cdot S(p)$$

$$= \frac{K \cdot e_0}{e^{-\frac{t}{2}}}$$

Propriétés

- La réponse indicielle à un système du 1^{er} ordre possède :
 - ullet une asymptote horizontale au voisinage de $+\infty$ d'ordonnée à l'origine $K\cdot e_0$,
 - une tangente à l'origine de coefficient directeur $\frac{K \cdot e_0}{\tau}$.
- La rapidité d'une réponse à un échelon pour un premier ordre est quantifiée par le temps de réponse à 5% (noté t_r) :

$$t_r \approx 3 \ \tau.$$
 (5)

• La Précision de la réponse à un échelon peut être indiquée par l'erreur statique, noté ε_s . Elle s'obtient en recherchant l'écart au voisinage de $+\infty$:

$$\varepsilon_{s} = \lim_{t \to +\infty} \left(e(t) - s(t) \right) \tag{6}$$

• L'erreur statique ε_s d'un système du 1^{er} ordre de **gain unitaire** soumis à un échelon est nulle :

$$\varepsilon_s = 0.$$
 (7)

Émilien DURIF 15,

Définitions Caractérisations de la réponse d'un système du premier ordre

Système du premier ordre : caractérisation de la réponse à un échelon

Démonstration de la rapidité

Calculons le temps de réponse à 5% pour un premier ordre

Émilien DURIF 16/23

Démonstration de la rapidité

$$s_{(t_r)} = K e_0 \left(1 - e^{-t_r/\tau} \right) = 0,95 \ K e_0$$

 $\Leftrightarrow t_r = -\tau \ln(0,05)$

avec $ln(0.05) \approx -3$.

Émilien DURIF 16/23

Démonstration de la précision

Pour illustrer cela, prenons un gain K=1. D'après le raisonnement suivant :

Démonstration de la précision

$$\varepsilon_{s} = \lim_{t \to +\infty} (e(t) - s(t)) = \lim_{p \to 0} p \cdot (E(p) - H(p) \cdot E(p))$$

$$= \lim_{p \to 0} p \cdot E(p) \left(1 - \frac{1}{1 + \tau p} \right) = \lim_{p \to 0} p \cdot \frac{e_{0}}{p} \left(1 - \frac{1}{1 + \tau p} \right)$$

$$= \lim_{p \to 0} e_{0} \left(1 - \frac{1}{1} \right) = 0$$

Attention

Verifier l'homogénéité!!!

$$\varepsilon_s = \lim_{t \to +\infty} \left(K \ e(t) - s(t) \right). \tag{8}$$

Dans tous les cas

$$\varepsilon_s = 0.$$

(9)

Définitions Caractérisations de la réponse d'un système du premier ordre

Système du premier ordre : caractérisation de la réponse à un échelon

Réponse à une rampe :

Dans ce cas, l'entrée est une rampe :

$$e(t) = a t u(t)$$

Équation de la réponse

On cherche à calculer s(t) à partir de H(p) et E(p):

$$E(p) = \frac{a}{p^2}$$

$$S(p) = H(p)E(p) = \left(\frac{K}{1+\tau p}\right)\frac{a}{p^2} = K \ a\left(\frac{1}{p^2} - \frac{\tau}{p} + \frac{\tau^2}{1+\tau p}\right)$$

Après transformée inverse, on obtient :

La réponse d'un système du 1^{er} ordre soumis à une rampe est de la forme :

$$s(t) = K a \left(t + \tau \left(e^{-t/\tau} - 1\right)\right) u(t). \tag{10}$$

Au voisinage de $+\infty$:

$$\lim_{t\to+\infty} s(t) = \dots$$

Au voisinage de 0 :

$$\lim_{t\to 0} s(t) = \dots$$

Émilien DURIF 21/2:

Au voisinage de $+\infty$:

$$\lim_{t \to +\infty} s(t) = \lim_{p \to 0} p S(p)$$

$$= \lim_{p \to 0} \frac{K a}{p (1 + \tau p)}$$

$$= +\infty$$

$$\lim_{t \to +\infty} \frac{ds(t)}{dt} = K \ a$$

Au voisinage de 0 :

$$\lim_{t \to 0} s(t) = \lim_{p \to +\infty} p \ S(p)$$

$$= \lim_{p \to +\infty} \frac{K \ a}{p (1 + \tau p)}$$

$$= 0$$

$$\lim_{p \to +\infty} \frac{ds(t)}{dt} = 0$$

Émilien DURIF 21,

Propriétés

- une tangente horizontale au voisinage de 0,
- une asymptote oblique, de coefficient directeur K a.

Émilien DURIF

Propriétés

- ullet La réponse d'un système du 1^{er} ordre à une rampe possède :
 - une tangente horizontale au voisinage de 0.
 - une asymptote oblique, de coefficient directeur K a car une asymptote oblique d'équation $y_{(t)} = a (t \tau)$ au voisinage de $+\infty$.
- • Précision : Pour K = 1, on trouve :

$$\varepsilon_{V} = a \, \tau. \tag{11}$$

• • Rapidité : La rapidité d'une réponse à une rampe d'un système du 1^{er} ordre peut se caractériser par un **retard de traînage** r_t :

$$r_t = \tau. \tag{12}$$

Émilien DURIF 23/2: