

Artificial Intelligence

Hai Thi Tuyet Nguyen

Outline

CHAPTER 1: INTRODUCTION (CHAPTER 1)

CHAPTER 2: INTELLIGENT AGENTS (CHAPTER 2)

CHAPTER 3: SOLVING PROBLEMS BY SEARCHING (CHAPTER 3)

CHAPTER 4: INFORMED SEARCH (CHAPTER 3)

CHAPTER 5: LOGICAL AGENT (CHAPTER 7)

CHAPTER 6: FIRST-ORDER LOGIC (CHAPTER 8, 9)

CHAPTER 7: QUANTIFYING UNCERTAINTY(CHAPTER 13)

CHAPTER 8: PROBABILISTIC REASONING (CHAPTER 14)

CHAPTER 9: LEARNING FROM EXAMPLES (CHAPTER 18)

CHAPTER 9: LEARNING FROM EXAMPLES

- 9.1 Forms Of Learning
- 9.2 Supervised Learning
- 9.3 Learning Decision Trees
- 9.4 Evaluating And Choosing The Best
- Hypothesis
- 9.5 Regression And Classification With Linear
- Models
- 9.6 Artificial Neural Networks

9.1 Forms Of Learning

Learning agents

Learning element

Design of learning element is dictated by

- what type of performance element is used
 - E.g., logical agent
- how that functional component is represented
 - o E.g., state transition model
- which functional component is to be learned
 - E.g., logic language
- what kind of feedback is available
 - E.g., outcome

9.1 Forms Of Learning

- What feedback is available to learn from: it depends on three types of feedback
 - In **reinforcement learning** the agent learns from a series of reinforcements rewards or punishments.
 - E.g.: the points for a win at the end of a chess game tells the agent it did something right.
 - In **unsupervised learning** the agent learns patterns in the input even though no explicit feedback is supplied.
 - E.g.: a taxi agent might gradually develop a concept of "good traffic days" and "bad traffic days" without ever being given labeled examples of each by a teacher.
 - In **supervised learning** the agent observes some example input—output pairs and learns a function that maps from input to output.

• The task of supervised learning:

Given a **training set** of N example input—output pairs

$$(x_1,y_1), (x_2,y_2),...(x_N,y_N)$$
, where each y_i was generated by an unknown function $y = f(x)$,

```
Problem: find a hypothesis h such that h \approx f given a training set of examples
```

Inductive learning method

Inductive learning method

Inductive learning method

Inductive learning method

Inductive learning method

Construct/adjust h to agree with f on training set (h is **consistent** if it agrees with f on all examples)

Ockham's razor: maximize a combination of consistency and simplicity

- To measure the accuracy of a hypothesis h, we give it a **test set** of examples that are distinct from the training set.
- A hypothesis **generalizes** h well if it correctly predicts the value of y for novel examples.

- Types of supervised learning:
 - Classification: y is one of a finite set of values (e.g., sunny, cloudy or rainy)
 - Regression: y is a number, the learning problem is called regression.

9.3 Learning Decision Trees

9.3 The decision tree representation

A decision tree represents a function that takes as input a vector of attribute values and returns a "decision"—a single output value.

9.3 The decision tree representation

A decision tree reaches its decision by performing a sequence of tests.

- Each internal node: a test of the values of the attribute, A_i
- The branches from the node: the values of the attribute, $A_i = v_{ik}$.
- Each leaf node: a value to be returned by the function.

Expressiveness of decision trees: Goal \Leftrightarrow (Path₁ \vee Path₂ \vee ···)

9.3 Inducing decision trees from examples

Build a decision tree to decide whether to wait for a table at a restaurant with the following attributes:

- 1. Alternate: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays.
- 4. Hungry: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
- 9. Type: the kind of restaurant (French, Italian, Thai, or burger).
- 10. WaitEstimate: the wait estimated by the host (0–10 minutes, 10–30, 30–60, or >60).

9.3 Attribute-based representations

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

9.3 Inducing decision trees from examples

9.3 Decision tree learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

if examples is empty then return PLURALITY-VALUE(parent_examples)

else if attributes is empty then return PLURALITY-VALUE(examples)

else if all *examples* have the same classification then return the classification

• PLURALITY-VALUE: selects the most common output value among a set of examples.

function DECISION-TREE-LEARNING(examples, attributes, parent_examples) **returns** a tree

```
else A \leftarrow \operatorname{argmax}_{a \in attributes} \text{ Importance}(a, examples) \\ tree \leftarrow \text{ a new decision tree with root test } A \\ \text{for each value } v_k \text{ of } A \text{ do} \\ exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\} \\ subtree \leftarrow \text{Decision-Tree-Learning}(exs, attributes - A, examples) \\ \text{add a branch to } tree \text{ with label } (A = v_k) \text{ and subtree } subtree \\ \text{return } tree
```

(a)

- Idea: a good attribute splits the examples into subsets that are "all positive" or "all negative"
- Patrons? is a better choice—gives information about the classification

(b)

24

- The more clueless I am about the answer initially, the more information is contained in the answer
- Scale: 1 bit = an answer to Boolean question with prior probability (0.5, 0.5)
- Information in an answer or entropy of the prior when prior probability is $\langle P_1, \ldots, P_n \rangle$:

$$H(\langle P_1, \dots, P_n \rangle) = \sum_{i=1}^n -P_i \log_2 P_i$$

Suppose we have p positive and n negative examples at the root

⇒ bits needed to classify a new example

$$H(\langle p/(p+n), n/(p+n)\rangle)$$

An attribute splits the examples E into subsets E_i , each E_i has p_i positive and n_i negative examples

⇒ bits needed to classify a new example

$$H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$$

 \Rightarrow expected number of bits per example over all branches:

$$\sum_i \frac{p_i + n_i}{p+n} H(\langle p_i/(p_i + n_i), n_i/(p_i + n_i) \rangle)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

⇒ choose the attribute that minimizes the remaining information needed

$$\begin{split} &\frac{2}{12}H(<0,1>) + \frac{4}{12}H(<1,0>) + \frac{6}{12}H(<\frac{2}{6},\frac{4}{6}>) \\ &= -\frac{1}{2}(\frac{1}{3}log_2\frac{1}{3} + \frac{2}{3}log_2\frac{2}{3}) \\ &= 0.4591 \end{split}$$

$$\sum_i \frac{p_i + n_i}{p+n} H(\langle p_i/(p_i + n_i), n_i/(p_i + n_i) \rangle)$$

• Decision tree learned from the 12 examples:

Predict label of new example: X13

Performance measurement

- How do we know that $h \approx f$?
 - Try h on a new test set of examples
 - (use same distribution over example space as training set)
- Learning curve = % correct on test set as a function of training set size

9.3 Broadening the applicability of decision trees

- Overfitting: the model corresponds too closely or exactly to a particular set of data,
 it fails to fit to additional data or predict future observations
 - o For decision trees, a technique called decision tree pruning combats overfitting
- Missing data: not all the attribute values will be known for every example
- Multivalued attributes: an attribute has many possible values
- Continuous and integer-valued input attributes: find the split point that gives the highest information gain

- We want to learn a hypothesis that fits the future data best.
- "Best fit":
 - the **error rate** of a hypothesis:
 - the proportion of mistakes it makes
 - the proportion of times that $h(x) \neq y$ for an (x, y) example.
 - Lowest error rate on a new data

- Rather large number of examples: split examples into 3 sets:
 - o training set: train h
 - o validation set (development set): choose the best h
 - test set: evaluate h on the unseen data

- Small number of examples: k-fold cross-validation
 - \circ split the data into k equal subsets
 - o perform k rounds of learning
 - on each round:
 - 1/k of the data is held out as a test set,
 - the remaining examples are used as training data

- Break up data into 10 folds
 - Equal positive and negative inside each fold?
- For each fold
 - O Choose the fold as a temporary test set
 - Train on 9 folds, compute performance on the test fold
- Report average performance of the 10 runs

9.4 Model selection

An algorithm to select the model that has the lowest error rate on validation data by

- building models of increasing complexity
- choosing the one with best empirical error rate on validation data.

9.4 From error rates to loss

- It is traditional to express utilities by a loss function.
- The loss function $L(x, y, \hat{y})$ is defined as the amount of utility lost by predicting $h(x) = \hat{y}$ when the correct answer is f(x) = y:

$$L(x, y, \hat{y}) = Utility(\text{result of using } y \text{ given an input } x)$$
 $- Utility(\text{result of using } \hat{y} \text{ given an input } x)$

```
Absolute value loss: L_1(y,\hat{y}) = |y - \hat{y}|

Squared error loss: L_2(y,\hat{y}) = (y - \hat{y})^2

0/1 loss: L_{0/1}(y,\hat{y}) = 0 if y = \hat{y}, else 1
```

NONPARAMETRIC MODELS

NONPARAMETRIC MODELS

- A learning model that summarizes data with a set of parameters of fixed size (independent of the number of training examples) is called a **parametric model**.
- A **nonparametric model** is one that cannot be characterized by a bounded set of parameters.

- Given a query x_q , find the k examples that are nearest to x_q .
- NN (k, x_q) to denote the set of k nearest neighbors.
- Classification:
 - $\circ \quad \text{find } NN(k, x_a)$
 - o take the plurality vote of the neighbors
- Regression
 - \circ find NN(k, x_q)
 - o take the mean or median of the k neighbors
- 5-nearest-neighbors decision boundary is good; higher k would underfit.
- Cross-validation can be used to select the best value of k.

Distance metric:

Minkowski distance or L^p norm

$$L^p(\mathbf{x}_j, \mathbf{x}_q) = (\sum_i |x_{j,i} - x_{q,i}|^p)^{1/p}$$

With p = 2 this is Euclidean distance and with p = 1 it is Manhattan distance

$$(|\mathbf{x}_{11} - \mathbf{x}_{21}|^2 + |\mathbf{x}_{12} - \mathbf{x}_{22}|^2)^{\frac{1}{2}}$$

 $(|\mathbf{x}_{11} - \mathbf{x}_{21}|^1 + |\mathbf{x}_{12} - \mathbf{x}_{22}|^1)^1$

d(A, B)

$$((x_A - x_B)^2 + (y_A - y_B)^2)^{1/2}$$

- Low-dimensional spaces with plenty of data, nearest neighbors works very well.
- High-dimensional spaces: the nearest neighbors are usually not very near!
- kNN algorithm:
 - Input: given a set of N examples and a query x_{g} ,
 - $\circ \quad \text{Output: NN } (k, x_q)$
 - o kNN algorithm:
 - iterate through the examples
 - measure the distance to xq from each one
 - keep the best k.

Predict label of new example: X13

Example	Attributes								Target		
•	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
**	-	_	_				_	_	- , .	00 00	

$$L^{2}(X_{13}, X_{1}) = (|0-0|^{2} + |0-1|^{2} + |0-2|^{2} + |3-1|^{2})^{1/2} = 3$$

 $L^{2}(X_{13}, X_{2})$

- Naive Bayes is a probabilistic classifier
- Given a document d, out of all classes $c \in C$, the classifier returns the class \hat{c} which has the maximum posterior probability given the document.

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d)$$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d)$$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)}$$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

Without loss of generality, we can represent a document d as a set of features f_1 , f_2 ,..., f_n :

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$

$$\stackrel{\text{likelihood}}{\text{index}} \text{ prior}$$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(f_1, f_2,, f_n|c) P(c)$$

- 1st assumption: position doesn't matter.
- 2nd assumption, Naive Bayes assumption: this is the conditional independence assumption that the probabilities $P(f_i|c)$ are independent given the class c

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \overbrace{P(f_1, f_2,, f_n | c)}^{\text{likelihood}} \overbrace{P(c)}^{\text{prior}}$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{f \in F} P(f | c)$$

• Apply the naive Bayes classifier to text, each word in the documents as a feature

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{f \in F} P(f|c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i \in positions} P(w_i|c)$$

Boolean Multinomial Naïve Bayes: Learning

• Calculate $P(c_j)$ terms • For each c_j in C do $docs_j \leftarrow$ all docs with class $=c_j$

- $P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$
- From training corpus, extract Vocabulary
 Remove duplicates in each doc:
 For each word type w in doc;
 Retain only a single instance of w

Boolean Multinomial Naïve Bayes: Learning

• Calculate $P(w_k | c_j)$ terms $Text_j \leftarrow \text{single doc containing all } docs_j$ For each word w_k in Vocabulary $n_k \leftarrow \# \text{ of occurrences of } w_k \text{ in } Text_j$

$$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

Boolean Multinomial Naïve Bayes: Testing

- First remove all duplicate words from *d*
- Then compute NB using the same equation:

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(w_{i} \mid c_{j})$$

Let's do a worked sentiment example!

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

An Example with add-1 smoothing

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

1. Prior from training:

$$\widehat{P}(c_j) = \frac{N_{c_j}}{N_{total}}$$
 $P(-) = 3/5$ $P(+) = 2/5$

2. Drop "with"

An Example with add-1 smoothing

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

3. Likelihoods from training:

$$p(w_i|c) = \frac{count(w_i, c) + 1}{(\sum_{w \in V} count(w, c)) + |V|}$$

$$P(\text{``predictable''}|-) = \frac{1+1}{14+20} \qquad P(\text{``predictable''}|+) = \frac{0+1}{9+20}$$

$$P(\text{``no''}|-) = \frac{1+1}{14+20} \qquad P(\text{``no''}|+) = \frac{0+1}{9+20}$$

$$P(\text{``fun''}|-) = \frac{0+1}{14+20} \qquad P(\text{``fun''}|+) = \frac{1+1}{9+20}$$

An Example with add-1 smoothing

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

4. Scoring the test set:

$$P(-)P(S|-) = \frac{3}{5} \times \frac{2 \times 2 \times 1}{34^3} = 6.1 \times 10^{-5}$$

$$P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{29^3} = 3.2 \times 10^{-5}$$

Example		Attributes									Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	<i>T</i>	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	<i>T</i>	T	T	T	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

X13 = [T, T, F, F, Full, \$\$, F, F, Thai, 10-30]