Artificial Intelligence in DAQ Systems (WP9.1)

AVOLIO G. FOR THE WP9.1 TEAM

Outline

Hiring and hardware procurement

Organization matters

LLM and Anomaly Detection studies (highlights)

Conclusions and outlook

Hiring and Hardware Procurement

ORIGIN hired

Contract started on Feb 2025

Hardware for Al

- GPU ordered and already delivered
 - NVIDIA RTX PRO 6000 Blackwell 96 GB
- Server to host the GPU ordered and waiting for delivery delivered yesterday

Organization Matters

Mattermost team: https://mattermost.web.cern.ch/rd-wp91

E-group: ep-dep-rnd-daq-wp91@cern.ch

Information Retrieval

Exploring LLMs and RAG Systems

A Retrieval-Augmented
Generation (RAG) system is an Al
model that combines two key
steps:

- Retrieval: It searches a large collection of documents or data to find the most relevant information based on a user's query
- Generation: It uses a language model (like GPT) to generate a natural-language response, using the retrieved information as context

11/06/2025 5

LLM - Information Retrieval

The Pipeline

LangChain

(Open-source Framework)

- Document processing, embedding creation and retrieval
- Allows integration with different models and databases

Hugging Face

(Open-source Platform)

- Provides access to thousands of pre-trained models
- Embedding creation, re-ranking and answer generation

ChromaDB

(Vector Database)

- Stores document embeddings for efficient retrieval
- Provides fast similarity search based on vector representations

LLM - Information Retrieval

The Document Re-ranking

Why re-ranking

- Documents are retrieved using a vector search
- The resulting content may be semantically close but less relevant
- A system that is good at retrieval is not necessarily good at ranking

$$recall@K = rac{TP}{TP + FN} = rac{Number \ of \ relevant \ items \ in \ K}{Total \ number \ relevant \ items}$$

K is the number of selected top documents

LLM - Information Retrieval

Matching Query and Documents

Simplified projection of a much higher-dimensional document representation

• Make it easier to visualize their semantic relationships

How are documents positioned based on their similarity to a given a query?

• The closer they are, the more relevant they are likely to be

Answer Relevancy

- Ask to the Judge to extract a list of Statements (main sentences) from the generated Answer
- Ask to the Judge to determine whether each statement is relevant to Answer the given Question

Faithfulness

- Ask to the Judge to extract a list of Claims (main sentences) from the generated Answer
- Ask to the Judge to extract a list of Truths (main sentences) from the retrieved Context
- Ask to the Judge to determine whether each Claim contradicts any fact in the retrieval context

Contextual Relevancy

 Ask to the Judge to determine whether each **Statement** in the context is relevant to answer the **Question**

LLM - Generation

Evaluating the Quality of the Answers

Use LLM as a judge

- A LLM evaluates or scores outputs from other models or systems
- Instead of generating answers, the LLM acts like a reviewer or referee by
 - Reading the input (e.g., a question, a reference answer, and a model's response)
 - Assessing the quality, accuracy, relevance, or coherence of the response
 - Providing a score, explanation, or ranking based on predefined criteria

LLM - Generation

Evaluating the Quality of the Answers

LLM - Example

Ground Truth

RAG Answer

Which website address hosts the official ALICE FLP documentation?

The official ALICE FLP documentation can be accessed at

https://aliceflp.docs.cern.ch/

The official ALICE FLP documentation is accessible at https://alice-flp.docs.cern.ch/

LLM: Mixtral-7B-Instruct-v0.2 (locally installed)

Open WebUI Interface

Anomaly Detection

Objective

 Real-time analysis of monitoring data, with timely responses to changing conditions and anomalies

Status

- Ongoing projects based on ATLAS TDAQ monitoring data
- Early detection of anomalies in the HLT farm with a hybrid approach (<u>DeepHydra</u>)
- Clustering T-DBSCAN: detects short dropout of a node
- Deep neural network: identifies long term outliers
- Time series prediction of trigger rates with an LSTMbased autoencoder architecture

Plans

- Add continuous and reinforcement learning to adapt to changing conditions
- Interface with our RAG system to provide instructions to shifters, collect feedbacks and eventually take actions

Connections Inside CERN

Started
discussions
with CERN IT
representative

Future planning

Available resources

In contact with AccGPT people to join the Al Chatbot Collaboration

Not an official service	For sure, an initiative providing a valuable platform for collaboration
Gathered more than 50 use cases at CERN	
Secure access to any large language model	Hosted in the cloud or on-premises
Support for a variety of RAG pipelines	
OpenAl subscription available	Strictly for testing purposes

Summary & Outlook

What are we exlporing

A Retrieval-Augmented Generation (RAG) system using LLMs

Anomaly detection systems using **deep neural networks** and **autoencoder-based** architectures

Toward agentic systems

RAG systems are a foundational step toward building **agentic systems** that go beyond answering questions

Capable of tool use, code execution, and autonomous actions

From answering "what should I do?" to "let me do it for you"

Ultimate goal is to achieve **full automation** of detector operation

11/06/2025 15