Electronic Circuits Chapter 1: Op-Amp

Dr. Dung Trinh

Content

Introduction

- ❖ The integrated circuit operational amplifier evolved soon after development of the first bipolar integrated circuit.
- The μ A-709 was introduced by Fairchild Semiconductor in 1965 and was one of the first widely used general-purpose op-amps. The new classic μ A-741, also by Fairchild, was introduced in the late 1960s.

- ❖ In the ideal op-amp:
 - The open-loop gain A_{od} approaches infinity
 - The common-mode output signal is zero.
 - Input resistance R_i is infinite.
 - Output resistance R_o is zero.

Inverting Amplifier

One of the most widely used op-amp circuits is the inverting amplifier

Inverting op-amp circuit

Inverting op-amp equivalent circuit

The closed-loop gain:

$$A_v = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$

The input resistance:

$$R_i = R_1$$

Example 1: Using the inverting Op-amp amplifier to design the circuit such that the voltage gain is $A_v = -5$. Assume the op-amp is driven by an ideal sinusoidal source, $v_s = 0.1 \sin \omega t \ (V)$, that can supply a maximum current of $5\mu A$.

$$R_1 = 20k\Omega$$

$$R_2 = 100k\Omega$$

Inverting Amplifier – Finite Gain

We have:

$$i_1 = \frac{v_I - v_1}{R_1} \qquad i_2 = \frac{v_I - v_O}{R_2}$$

■ The output voltage is: $v_0 = -A_{od}v_1$

• We obtain:
$$i_1 = \frac{v_I - v_1}{R_1} = \frac{v_I + \frac{v_I}{A_{od}}}{R_1} = i_2 = -\frac{v_O + \frac{v_O}{A_{od}}}{R_2}$$

■ Then:
$$A_v = \frac{v_O}{v_I} = -\frac{R_2}{R_1} \frac{1}{\left[1 + \frac{1}{A_{od}} \left(1 + \frac{R_2}{R_1}\right)\right]}$$

A_{od}	A_v	Deviation (%)
10^{2}	-9.01	9.9
10^{3}	-9.89	1.1
10^{4}	-9.989	0.11
10^{5}	-9.999	0.01
10^{6}	-9.9999	0.001

Example 2: Consider an inverting op-amp with $R_1=10k\Omega$ and $R_2=100k\Omega$. Determine the closed-loop gain for: $A_{od} = 10^2$, 10^3 , 10^4 , 10^5 , and 10^6 . Calculate the percent deviation from the ideal gain.

Summing Amplifier

Using superposition theorem to analysis the summing amplifier, we obtain:

$$v_O = -\left(\frac{R_F}{R_1}v_{I1} + \frac{R_F}{R_2}v_{I2} + \frac{R_F}{R_3}v_{I3}\right)$$

• If $R_1 = R_2 = R_3$, then:

$$v_O = -\frac{R_F}{R_1}(v_{I1} + v_{I2} + v_{I3})$$

HCMUT / 2017

Non-Inverting Amplifier

Non-inverting op-amp circuit

❖ We have:

$$i_1 = \frac{0 - v_I}{R_1} \qquad i_2 = \frac{v_I - v_O}{R_2}$$

***** Because
$$i_1 = i_2$$
, then: $A_v = \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1}$

Voltage follower op-amp

• In voltage follower circuit: $R_2 = 0$

$$A_v = 1$$
 $R_i = \infty$ $R_o = 0$

Example 3: Derive the closed-loop gain of non-inverting amplifier which has a finite differential gain of A_{od} .

Current-to-Voltage Converter

Current-to-voltage converter

❖ In some situations, the output of a device or circuit is a current. An example is the output of a photodiode or photo-detector. We may need to convert this output current to an output voltage.

$$v_O = -i_2 R_F = -i_S R_F$$

Simple voltage-to-current converter

- Voltage-to-current converter: $i_2 = i_1 = \frac{v_I}{R_1}$
 - Current i₂ is independent of the load impedance or resistance R₂.
 - NOT practical as the load need to be at ground potential.

Voltage-to-Current Converter

- At the inverting terminal: $\frac{v_I i_L Z_L}{R_1} = \frac{i_L Z_L v_O}{R_E}$
- At the non-inverting terminal: $\frac{v_O i_L Z_L}{R_3} = i_L + \frac{i_L Z_L}{R_2}$
- From these two equations, we obtain:

$$\frac{R_F}{R_1} \frac{i_L Z_L - v_I}{R_2} = i_L + \frac{i_L Z_L}{R_2}$$

Voltage-to-current converter

$$ightharpoonup ext{If } rac{R_F}{R_1 R_3} = rac{1}{R_2} : ext{$i_L = -v_I \left(rac{R_F}{R_1 R_3}
ight) = -rac{v_I}{R_2}}$$

Voltage-to-Current Converter

Example 4: Let $Z_L=100\Omega$, $R_1=10k\Omega$, $R_2=1k\Omega$, $R_3=1k\Omega$, and $R_F=10k\Omega$. If $v_I=-5V$, determine the load current i_L and the output voltage v_O .

$$i_L = 5mA$$

$$v_o = 6V$$

Difference Amplifier

Op-amp difference amplifier

- ❖ An ideal difference amplifier amplifies only the difference between two signals. It rejects any common signals to the two input terminals.
- ❖ For example, a microphone system amplifies an audio signal applied to one terminal of a difference amplifier, and rejects any 60 Hz noise signal or "hum" existing on both terminals

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{\frac{R_{4}}{R_{3}}}{1 + \frac{R_{4}}{R_{3}}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

$$Arr$$
 If $\frac{R_2}{R_1} = \frac{R_4}{R_2}$:

$$v_O = \frac{R_2}{R_1} (v_{I2} - v_{I1})$$

! If
$$\frac{R_2}{R_1} \neq \frac{R_4}{R_3}$$
:

$$v_{cm} = \frac{1}{2}(v_{I2} + v_{I1})$$

$$A_{cm} = \frac{v_O}{v_{cm}}$$

$$CMRR = \left| \frac{A_d}{A_{cre}} \right|$$

Difference Amplifier

Example 5: Consider the difference amplifier. Let $R_2/R_1=10$ and $R_4/R_3=11$. Determine CMRR(dB).

Instrumentation Amplifier

Instrumentation amplifier

❖ Obtain a *high input impedance* and a *high gain* in a difference amplifier with reasonable resistor values: *DIFFICULT*.

- **SOLUTION**: insert a voltage follower
- → Problem: GAIN is not easily to change.

❖ INSTRUMENTATION AMPLIFIER allows us to change the gain by changing only a single resistance value.

Instrumentation Amplifier

Instrumentation amplifier

The output of difference amplifier is:

$$v_O = \frac{R_4}{R_3}(v_{O2} - v_{O1}) = \frac{R_4}{R_3} \left(1 + 2\frac{R_2}{R_1}\right)(v_{I2} - v_{I1})$$

❖ Problems:

- 1. The common mode gain A_{cm} and the differential gain A_{id} of the first stage are equal. This means the common mode signal will be amplified and the overall CMRR will be reduced.
- 2. In order to change the overall gain, we need to vary the values of two resistance. This is not an easy task.

Solution: Disconnect point X to the ground.

Instrumentation Amplifier

Voltages and currents in instrumentation amplifier

The output of difference amplifier is:

• The current in resistor R_1 and R_2 is

$$i_1 = \frac{v_{I1} - v_{I2}}{R_1}$$

The output voltages of op-amps are:

$$v_{O1} = v_{I1} + i_1 R_2 = \left(1 + \frac{R_2}{R_1}\right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$

$$v_{O2} = v_{I2} - i_1 R_2 = \left(1 + \frac{R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}$$

$$v_O = \frac{R_4}{R_2}(v_{O2} - v_{O1}) = \frac{R_4}{R_2}\left(1 + 2\frac{R_2}{R_1}\right)(v_{I2} - v_{I1})$$

- **The overall gain does not depend on the matching between the two resistors.**
- ❖ v₀₁ and v₀₂ are equal if equal voltages appear at the negative terminal of A₁ and A₂

Instrumentation Amplifier

Example 6: Consider the instrumentation amplifier circuit. Assume that $R_4=2R_3$ so that the difference amplifier gain is 2. Determine the range required for resistor R_1 to realize a differential gain adjustable from 5 to 500. Assume that R_1 is a variable resistor varying from R_{1f} to $R_{1f}+100k\Omega$

$$R_{1f} = 0.606k\Omega$$

$$R_2 = 75.5k\Omega$$

Integrator and Differentiator

 $v_{I} \circ \bigvee_{=}^{C_{2}} v_{C} + \bigvee_{=}^{C_{2}} v_{O}$

Generalized inverting amplifier

Op-amp integrator

• Op-amp integrator:
$$v_O = -\frac{v_I}{SR_1C_2}$$

• Op-amp differentiator:
$$v_O = -v_I s R_2 C_1$$

Op-amp differentiator

Reading: Microelectronics, Circuit Analysis and Design, D.A. Neamen, 4th edition, p621-670

Integrator and Differentiator

Example 7: Find the output produced by an integrator in response to an input pulse of 1V height and 1ms width. Let $R=10k\Omega$ and C=10nF. If the integrator is shunted by a $1M\Omega$ resistor. How will the response be modified.

Comparator

 \diamond When v_2 is slightly greater than v_1 :

The output is driven to a high saturated state V_H

 \diamond When v_2 is slightly less than v_1 :

The output is driven to a low saturated state V_L

 \clubsuit The transition region occurs when the difference input voltage in the range $[-\delta, \delta]$

Example: if the open-loop voltage gain is 10^5 and the difference between the two stage is $(V_H - V_L) = 10V$ then $2\delta = \frac{(V_H - V_L)}{G} = \frac{10}{10^5} = 10^{-4}(V)$.

Comparator

For input bias current compensation

For input bias current compensation

Using the superposition, we obtain:

$$v_{+} = \frac{R_{1}}{R_{1} + R_{2}} V_{REF} + \frac{R_{2}}{R_{1} + R_{2}} v_{I}$$

The ideal crossover voltage occur:

$$v_+ = 0 \leftrightarrow v_I = -\frac{R_1}{R_2} V_{REF}$$

Comparator

- Figure above shows a comparator circuit for street lights control applications.
- \diamond During night, $v_I < V_{REF}$: v_o to a high saturated state V_S , transistor turns on.
- \diamond During day, $v_I > V_{REF}$: v_o to a low saturated state $-V_S$, transistor turns off.
- ❖ With a variable light source, such as clouds causing the light fluctuate over a short period of time → This causes the light off and on for a short period of time. Solution: Schmitt trigger.

Inverting Schmitt Trigger

Using the positive feedback, we obtain:

$$v_{+} = \frac{R_1}{R_1 + R_2} v_o$$

- v_+ is NOT a constant, rather, it is a function of v_o .
- \diamond Assume that the output of the comparator is in one state, namely $v_o = V_H$. Then:

$$v_{+} = V_{TH} = \frac{R_1}{R_1 + R_2} V_H$$

• When v_I is less than v_+ , the output remain the high state. When v_I is greater than V_{TH} . Then: $v_o = V_L$ and:

$$v_{+} = V_{TL} = \frac{R_1}{R_1 + R_2} V_L$$

Other Schmitt Trigger Configurations

Non-Inverting Schmitt Trigger

Schmitt Trigger circuit with Applied reference voltage

Q&A

