Práctica Dirigida 7 Análisis y Modelamiento Numérico I

Alumno:

 \blacksquare Chowdhury Gomez, Junal Johir

20200092K

Enunciado

Determina un valor aproximado del radio espectral, $\rho(A)$, de la siguiente matriz, tomando dos iteraciones del método de la potencia utilizando la norma infinita para ϕ . Usa el vector inicial $(1,1,1)^T$.

$$A = \begin{pmatrix} 2 & 0 & -1 \\ -2 & -10 & 0 \\ -1 & -1 & 4 \end{pmatrix}$$

Solución

Código en python

```
import numpy as np
   A = np.array([
3
       [2, 0, -1],
       [-2, -10, 0],
5
       [-1, -1, 4]
6
   ])
   v = np.array([1, 1, 1], dtype=float)
   def norma_infinita(v):
11
       return v / np.linalg.norm(v, ord=np.inf)
13
   # Iteracioon 1
14
   v1 = np.dot(A, v)
   v1_normalizado = norma_infinita(v1)
16
17
   # Iteraccion 2
18
   v2 = np.dot(A, v1_normalizado)
19
   v2_normalizado = norma_infinita(v2)
20
21
   #norma infinita de v2
22
   rho_A_approx = np.linalg.norm(v2, ord=np.inf)
24
   # Imprimir los resultados
25
  print("Iteracion 1: v1 =", v1)
  print("Iteracion 1: v1_normalized =", v1_normalizado)
27
   print("Iteracion 2: v2 =", v2)
  print("Iteracion 2: v2_normalized =", v2_normalizado)
   print("Estimacion del radio espectral p(A) =", rho_A_approx)
```

Salida del código

- Después de dos iteraciones del método de la potencia, la estimación del radio espectral $\rho(A)$ es aproximadamente 9.83.
- La norma infinita se utiliza para normalizar los vectores en cada iteración, lo cual facilita el proceso de convergencia hacia el valor del radio espectral.

Enunciado

Emplea el método de la potencia para la matriz y vector inicial:

$$A = \begin{pmatrix} 6 & 5 & -5 \\ 2 & 6 & -2 \\ 2 & 5 & -1 \end{pmatrix}$$
$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Realiza 100 pasos y explica la aparente convergencia en una etapa inicial y la convergencia a un valor diferente.

Solución

Código en python

```
import numpy as np
2
   # Definir la matriz A
3
   A = np.array([
4
       [6, 5, -5],
       [2, 6, -2],
6
       [2, 5, -1]
   1)
9
   # Definir el vector inicial
   x = np.array([1, 2, 3], dtype=float)
11
   # Definir una funcion para normalizar utilizando la norma infinita
   def normalize_inf(v):
14
       return v / np.linalg.norm(v, ord=np.inf)
   # Definir el numero de iteraciones
17
   num_iter = 100
18
19
   # Realizar el metodo de la potencia
20
21
   for i in range(num_iter):
       x = np.dot(A, x)
22
       x = normalize_inf(x)
   # Calcular el valor aproximado del radio espectral
25
   rho_A_approx = np.linalg.norm(np.dot(A, x), ord=np.inf) / np.linalg.norm(x, ord=np.inf)
26
27
   # Imprimir los resultados
28
   print("Vector aproximado despues de 100 iteraciones:", x)
   print("Estimacion del radio espectral p(A) =", rho_A_approx)
```

Salida del código

Vector aproximado después de 100 iteraciones: [0.53664374 - 0.83200861 - 0.13877674] Estimación del radio espectral p(A) = 9.123105625617661

- El método de la potencia se utiliza para aproximar el valor propio dominante de una matriz. Después de 100 iteraciones, el vector se aproxima a un valor propio dominante.
- En las primeras iteraciones, puede parecer que el vector converge rápidamente a un valor propio inicial, pero con más iteraciones, el vector se ajusta y converge al verdadero valor propio dominante.
- En este caso, el valor aproximado del radio espectral $\rho(A)$ es aproximadamente 9.12, lo cual es el valor propio dominante de la matriz A.

Enunciado

Un proceso de Markov puede ser descrito por una matriz cuadrada A cuyas entradas son todas positivas y la suma por columnas igual a 1. Por ejemplo, sea $P_0 = [x^(0), y^(0), z^(0)]^t$ el número de personas en una ciudad que usan las marcas X, Y y Z respectivamente. Cada mes las personas pueden cambiar de marca o continuar usando la misma. Si $AP_j = P_j$ para algún j, entonces $P_j = V$ se dice que es una distribución estacionaria para el proceso de Markov. Por lo tanto, si existen distribuciones estacionarias, $\lambda = 1$ debe ser un valor propio de A. Suponga que la probabilidad de que un usuario cambie de marca X a la Y o Z es 0.4 y 0.2 respectivamente. La probabilidad de que un usuario de la marca X cambie a la marca X o X es 0.1 y 0.1 respectivamente. La matriz de transición para este proceso es:

$$P_{k+1} = AP_k = \begin{pmatrix} 0.4 & 0.2 & 0.1 \\ 0.4 & 0.6 & 0.1 \\ 0.2 & 0.2 & 0.8 \end{pmatrix} \begin{pmatrix} x^{(k)} \\ y^{(k)} \\ z^{(k)} \end{pmatrix}$$

Solución

a) Verificar que $\lambda=1$ es un valor propio de la matriz de transición A

Para verificar que $\lambda=1$ es un valor propio de A, necesitamos resolver la ecuación $(A-I)\mathbf{v}=\mathbf{0}$, donde I es la matriz identidad:

$$A - I = \begin{pmatrix} 0.4 - 1 & 0.2 & 0.1 \\ 0.4 & 0.6 - 1 & 0.1 \\ 0.2 & 0.2 & 0.8 - 1 \end{pmatrix} = \begin{pmatrix} -0.6 & 0.2 & 0.1 \\ 0.4 & -0.4 & 0.1 \\ 0.2 & 0.2 & -0.2 \end{pmatrix}$$

Ahora, resolvemos el sistema $(A-I)\mathbf{v} = \mathbf{0}$:

$$\begin{pmatrix} -0.6 & 0.2 & 0.1\\ 0.4 & -0.4 & 0.1\\ 0.2 & 0.2 & -0.2 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

Esto nos da el sistema de ecuaciones:

$$\begin{cases} -0.6x + 0.2y + 0.1z = 0\\ 0.4x - 0.4y + 0.1z = 0\\ 0.2x + 0.2y - 0.2z = 0 \end{cases}$$

Simplificando la tercera ecuación:

$$0.2(x+y-z) = 0 \implies x+y=z$$

Sustituyendo z = x + y en las primeras dos ecuaciones:

1. -0.6x + 0.2y + 0.1(x + y) = 0 2. 0.4x - 0.4y + 0.1(x + y) = 0 Simplificamos:

1.
$$-0.5x + 0.3y = 0 \implies y = \frac{5}{3}x$$
 2. $0.5x - 0.3y = 0 \implies y = \frac{5}{3}x$ Por lo tanto, $z = x + y = x + \frac{8}{3}x = \frac{8}{3}x$.

El vector propio correspondiente a $\lambda=1$ es proporcional a:

$$\mathbf{v} = \begin{pmatrix} x \\ \frac{5}{3}x \\ \frac{8}{3}x \end{pmatrix} = x \begin{pmatrix} 1 \\ \frac{5}{3} \\ \frac{8}{3} \end{pmatrix}$$

Por lo tanto, hemos verificado que $\lambda = 1$ es un valor propio de A.

b) Determinar la distribución estacionaria para una población de 80,000

La distribución estacionaria v debe satisfacer la condición de que la suma de sus componentes sea 1:

$$\mathbf{v} = k \begin{pmatrix} 1 \\ \frac{5}{3} \\ \frac{8}{3} \end{pmatrix}$$

donde k es una constante tal que:

$$v_1 + v_2 + v_3 = 1$$

Sustituyendo v_1, v_2, v_3 :

$$k\left(1+\frac{5}{3}+\frac{8}{3}\right)=1 \implies k\left(\frac{3}{3}+\frac{5}{3}+\frac{8}{3}\right)=1 \implies k\left(\frac{16}{3}\right)=1 \implies k=\frac{3}{16}$$

Entonces, la distribución estacionaria es:

$$\mathbf{v} = \frac{3}{16} \begin{pmatrix} \frac{1}{\frac{5}{3}} \\ \frac{5}{\frac{3}{3}} \end{pmatrix} = \begin{pmatrix} \frac{3}{16} \\ \frac{5}{16} \\ \frac{8}{16} \end{pmatrix} = \begin{pmatrix} 0.1875 \\ 0.3125 \\ 0.5 \end{pmatrix}$$

Para una población de 80,000 personas, la distribución sería:

$$\begin{pmatrix} 0.1875 \times 80000 \\ 0.3125 \times 80000 \\ 0.5 \times 80000 \end{pmatrix} = \begin{pmatrix} 15000 \\ 25000 \\ 40000 \end{pmatrix}$$

- \blacksquare Hemos verificado que $\lambda = 1$ es un valor propio de la matriz de transición A.
- La distribución estacionaria para una población de 80,000 personas es: 15,000 personas usando la marca X, 25,000 personas usando la marca Y y 40,000 personas usando la marca Z.

Encuentre los valores propios de

a)
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 4 & 3 & 2 & 1 \\ 3 & 4 & 3 & 2 \\ 2 & 3 & 4 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 2.75 & -0.25 & -0.75 & 1.25 \\ -0.25 & 2.75 & 1.25 & -0.75 \\ -0.75 & 1.25 & 2.75 & -0.25 \\ 1.25 & -0.75 & -0.25 & 2.75 \end{pmatrix}$$

d)
$$D = \begin{pmatrix} 3.6 & 4.4 & 0.8 & -1.6 & -2.8 \\ 4.4 & 2.6 & 1.2 & -0.4 & 0.8 \\ 0.8 & 1.2 & 0.8 & -4.0 & -2.8 \\ -1.6 & -0.4 & -4.0 & 1.2 & 2.0 \\ -2.8 & 0.8 & -2.8 & 2.0 & 1.8 \end{pmatrix}$$

Solución

Código en Python

```
import numpy as np
   A = np.array([[3, 2, 1],
                    [2, 3, 2],
                    [1, 2, 3]]),
5
   B = np.array([[4, 3, 2, 1], [3, 4, 3, 2],
                    [2, 3, 4, 3],
                    [1, 2, 3, 4]]),
   C = np.array([[2.75, -0.25, -0.75, 1.25],
                    [-0.25, 2.75, 1.25, -0.75],
[-0.75, 1.25, 2.75, -0.25],
[1.25, -0.75, -0.25, 2.75]]),
12
13
14
   D = np.array([[3.6, 4.4, 0.8, -1.6, -2.8], [4.4, 2.6, 1.2, -0.4, 0.8],
16
                     [0.8, 1.2, 0.8, -4.0, -2.8],
18
                    [-1.6, -0.4, -4.0, 1.2, 2.0],
[-2.8, 0.8, -2.8, 2.0, 1.8]])
19
20
   print(f"Matriz A = {A} \n valores propios: {np.linalg.eigvals(A)} \n
   print(f"Matriz B = {B} \n valores propios: {np.linalg.eigvals(B)} \n
        ----")
   print(f"Matriz C = {C} \n valores propios: {np.linalg.eigvals(C)} \n
   print(f"Matriz D = {D} \n valores propios: {np.linalg.eigvals(D)} \n
```

Salida del código

- a) Los valores propios de A son aproximadamente 6,372, 2 y 0,628.
- b) Los valores propios de B son aproximadamente 11,099, 3,414, 0,901 y 0,586.
- c) Los valores propios de C son 5, 3, 1 y 2.
- d) Los valores propios de D son 10, 5, 1, -4 y -2.

Pseudo código

Análisis

Inicialmente, v se asigna el valor de c_{i-1} . Luego, en un bucle que va desde j=i hasta j=n, v se actualiza en cada iteración de la siguiente manera:

$$v \leftarrow v \times x + c_j$$

Ejemplo

Supongamos:

- c = [1, 2, 3, 4, 5]
- i = 2
- n=4
- x = 10

Inicialmente, v se asigna $c_{i-1} = c_1 = 2$. Iteramos desde j = i = 2 hasta j = n = 4:

$$\begin{split} j &= 2: v = v \times x + c_j = 2 \times 10 + 3 = 20 + 3 = 23 \\ j &= 3: v = v \times x + c_j = 23 \times 10 + 4 = 230 + 4 = 234 \\ j &= 4: v = v \times x + c_j = 234 \times 10 + 5 = 2340 + 5 = 2345 \end{split}$$

El valor final de v después de la iteración es 2345.

Conclusión

El valor final de v después de ejecutar el pseudo código es el resultado de una serie de actualizaciones en la forma:

$$v = v \times x + c_i$$

donde j varía desde i hasta n.