Algorithm and Data Structure Analysis (ADSA)

Hashing (2)

In previous lecture...

Previous Lecture: Symbols

- *S* = associative array
- t = hash table
- N = number of potential keys = |S|
- m = number of possible hash function values= |t|
- n = number of elements

Previous Lecture: Associative Arrays

- insert(x) is O(1)
- remove(x) is O(1)
- find(x) is O(1)

Problem: number of possible keys is MASSIVE.

How large is the table for a direct-address hashing?

- a) n
- b) N
- c) N^2
- d) n/|N|

Previous Lecture: Hashing with chaining

Use hash function h(key(e)) to obtain index of element e in hash table t

What is the worst case performance for insert operation for hashing with chaining?

- a) $\Theta(n)$
- b) O(m)
- c) O(nlogn)
- d) O(1)

What is the worst case performance for search operation for hashing with chaining?

- a) $\Theta(n)$
- b) O(1+n/m)
- c) O(logn)
- d) O(1)

What is the expected execution time for search operation for hashing with chaining?

- a) $\Theta(n)$
- b) O(1)
- c) O(1+n/m)
- d) O(logn)

What is the worst case performance for remove operation for hashing with chaining?

- a) $\Theta(n)$
- b) O(logn)
- c) O(1+n/m)
- d) O(m)

a) O(n)

- a) O(n)
- b) O(nlogn)

- a) O(n)
- b) O(nlogn)
- c) O(n+m)

- a) O(n)
- b) O(nlogn)
- c) O(n+m)
- d) O(m)

Previous Lecture: Average Case Analysis for Hashing with Chaining

Theorem: If n elements are stored in a hash table t with m entries using hashing with chaining and a random hash function is used, the expected execution time of remove or find is O(1+n/m).

Note: a random hash function maps *e* to all *m* table entries with the same probability.

Universal Hashing

Theorem 4.1 is unsatisfactory, as the class of "all hash functions" is too big to be useful: $|H|=m^N$, thus it requires $N \log m$ bits to specify a function in H.

This drawback can be overcome with much smaller classes of hash functions, and their members can be specified in constant space.

Universal Hashing

Definition 4.2 Let c be a positive constant. A family H of functions from Key to 0..m-1 is called c-universal if any two distinct keys collide with a probability of at most c/m:

$$\forall x, y \in Key, x \neq y$$
:

$$\left|\left\{h\in H:h(x)=h(y)\right\}\right|\leq \frac{c}{m}|H|$$

Or, for a random
$$h \in H$$
: $prob(h(x) = h(y)) \le \frac{c}{m}$

Universal Hashing

Theorem 4.3 If n elements are stored in a hash table with m entries using hashing with chaining and a random hash function from a c-universal family is used, the expected execution time of remove or find is O(1+cn/m).

Proof

Follows the proof of Theorem 4.1.

Proof:

Execution time for remove and find is constant time plus the time scanning the list t[h(k)].

Let the random variable X be the length of the list t[h(k)], and let E[X] be the expected length of the list.

Thus the *expected* execution time = O(1 + E[X]).

Proof (continued):

Let S be the set of n elements contained in t.

For each $e \in S$, let X_e be an indicator variable which indicates whether e hashes to the same value as k.

ie: **if** h(key(e)) = h(k) **then** $X_e = 1$ **else** $X_e = 0$.

$$X = \sum_{e \in S} X_e$$

(ie how many e's are in table entry h(key(e)))

Proof (continued):

$$E[X] = E\left[\sum_{e \in S} X_e\right]$$

$$= \sum_{e \in S} E[X_e]$$

$$= \sum_{e \in S} prob(X_e = 1)$$

Proof (continued):

$$E[X] = \sum_{e \in S} prob(X_e = 1)$$
 (From last slide)

$$= \sum_{e \in S} c / m$$

$$= c \cdot n/m$$

(As function h is chosen uniformly from a c-universal class:

$$prob(X_e = 1) \le c/m$$

(Because n elements in S)

Proof (continued):

Expected execution time =
$$O(1 + E[X])$$
,
 $E[X] = c \cdot n/m$

Thus the expected execution time for remove and find under hashing with chaining is $O(1 + c \cdot n/m)$.

C-universal families

For practical purposes: find c-universal families that are easy to construct and evaluate.

We will describe a simple and quite practical 1universal family in detail...

Assumptions

- keys are bit strings of fixed length
- •table size *m* is a prime number

Why prime? Arithmetic modulo prime is nice: the set $\mathbb{Z}_m = \{0,...,m-1\}$ of numbers modulo m forms a field.

A field is a set with special elements 0 and 1, and with addition and multiplication operators, satisfying certain axioms (associative & commutative & distributive properties, existence of neutral elements, ...)

Let $w = \lfloor \log m \rfloor$.

We subdivide the keys into pieces of w bits each (total k pieces). We interpret each piece as an integer in the range $0..2^w-1$ and keys as k-tuples of such integers.

For a key x, we write $x=(x_1,...x_k)$ to denote its partition into pieces. Each x_i lies in $0...2^w-1$.

We can now define our class of hash functions.

For each $\mathbf{a} = (a_1, ..., a_k) \in \{0..m-1\}^k$, we define a function h_a from Key to 0..m-1 as follows.

Let $\mathbf{x} = (x_1, ..., x_k)$ be a key and let $\mathbf{a} \cdot \mathbf{x} = \sum_{i=1}^{\infty} a_i x_i$ denote the scalar product of \mathbf{a} and \mathbf{x} .

Then $h_a(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} \mod m$.

Example

Let m=17, k=4. Then w=4 and we view keys as 4-tuples in the range 0..15, for example x=(11,7,4,3).

A hash function is specified by a 4-tuple of integers in the range 0..16, for example a = (2,4,7,16).

Then $h_a(\mathbf{x}) = (2 \cdot 11 + 4 \cdot 7 + 7 \cdot 4 + 16 \cdot 3) \mod 17 = 7$.

Theorem 4.4

$$H = \{ h_a: a \in \{0..m-1\}^k \}$$

is a 1-universal family of hash functions, if *m* is prime.

In other words, the scalar product between a tuple representation of a key and a random vector modulo m defines a good hash function.

Proof

Proof of Theorem 4.4:

Consider two keys

$$x = (x_1, \dots, x_k) \text{ and } y = (y_1, \dots, y_k)$$

Consider the number of choices of a such that

$$h_a(x) = h_a(y)$$

- Fix index j such that $x_j \neq y_j$
- Implies $(x_j y_j) \neq 0 \pmod{m}$

• Equation $a_j(x_j-y_j)=b(mod\ m), b\in Z_m$ has unique solution

$$a_j = (x_j - y_j)^{-1}b \pmod{m}$$

Claim: For each choice of the $a_i, i \neq j$, there is exactly one choice of a_j such that

$$h_a(x) = h_a(y)$$

$$h_{\mathbf{a}}(\mathbf{x}) = h_{\mathbf{a}}(\mathbf{y}) \Leftrightarrow \sum_{1 \le i \le k} a_i x_i \equiv \sum_{1 \le i \le k} a_i y_i \qquad (\text{mod } m)$$

$$\Leftrightarrow a_j (x_j - y_j) \equiv \sum_{i \ne j} a_i (y_i - x_i) \qquad (\text{mod } m)$$

$$\Leftrightarrow a_j \equiv (y_j - x_j)^{-1} \sum_{i \ne j} a_i (x_i - y_i) \pmod{m} .$$

 m^{k-1} ways to choose a_i with $i \neq j$ and for each such choice there is a unique choice of a_j .

In total m^k choice which implies

$$\operatorname{prob}(h_{\mathbf{a}}(x) = h_{\mathbf{a}}(\mathbf{y})) = \frac{m^{k-1}}{m^k} = \frac{1}{m}$$

Is it a serious restriction?

At first glance: yes.

- The user has to provide appropriate primes.
- •While growing/shrinking: how to obtain new prime numbers for the new value of *m*?

Easy solution: consult a table of primes.

Analytical solution: not much harder.

From number theory:

- there is an infinite number of primes
- for any integer k there is a prime in the interval $[k^3,(k+1)^3]$

So, if we are aiming for a table size of about m, we determine k such that $k^3 \le m \le (k+1)^3$ and then search for a prime in this interval.

How does this search work?

Any nonprime in the interval must have a divisor which is at most $\sqrt{(k+1)^3} = (k+1)^{3/2}$.

We therefore iterate over the numbers from 2 to $(k+1)^{3/2}$, and for each such j remove its multiples in $[k^3,(k+1)^3]$.

For each fixed j, this takes time $((k+1)^3-k^3)/j=O(k^2/j)$.

The total time required is

$$\sum_{j \le (k+1)^{3/2}} O\left(\frac{k^2}{j}\right) = k^2 \sum_{j \le (k+1)^{3/2}} O\left(\frac{1}{j}\right)$$

$$= O(k^2 \ln((k+1)^{3/2})) = O(k^2 \ln k) = o(m)$$

and hence is negligible compared with the cost of initializing a table of size m.

Alternative Approach to Hashing

Hashing with chaining is a closed hashing approach.

- Closed hashing: handles collision by storing all elements with the same hashed key in one table entry.
- Open hashing: handles collision by storing subsequent elements with the same hashed key in different table entries.

Hashing with Linear Probing

- Hashing with Linear Probing is an open hashing approach.
- All unused entries in t are set to \perp .
- When inserting, on a collision insert the element to the next free entry.

What if the last entry is used?

Hashing with Linear Probing

- Trivial fix: allow more entries
- Make table t size m + m' instead of m. Choose m' < m.
- Is this a good fix? Is there a better way?

Insert(e)

- insert(e: Element)
 - 1. Get index i = h(key(e))
 - 2. If $t[i] == \bot$, store e at t[i]
 - 3. If t[i] is not empty, increase i by 1 and go to step 2.

Find(k)

- find(*k*: Key)
 - 1. Get index i = h(k)
 - 2. If $t[i] == \bot$, return not found
 - 3. If element e at t[i] has key(e) == k, return found. Else increase i by 1 and go to step 2.

eg Find(ABBA) 0 (letter a) Boa Boa Boa Cobra Cobra L not found

Remove(k)

- Can't remove the element with key(e) == k and replace it with \bot .
 - If we replace element e1 at t[i] with \bot , how do we find an element e2 with the same h(k)?

 Instead, first remove the element with key(e) == k and then fix the invariant.

Remove(k)

- remove(k: Key)
 - 1. Get index i = h(k)

```
2. If t[i] == \bot, return
search (k)
```

- 3. If element e at t[i] has key(e) != k, increase i by 1 and go to step 2.
- 4. Set $t[i] = \bot$

5. Set index
$$j = i+1$$

6. If
$$t[j] == \bot$$
, return

- 7. If h(t[j]) > i, increase j by 1
- 8. Else set t[i] = t[j] and $t[j] = \bot$
- 9. Set i = j and go to step 5.

Example Inserts

Insert(Classic)

Example: Remove(Cobra)

Algorithm and Data Structure Analysis

Chaining vs. Linear Probing

Argumentation depends on the intended use and many technical parameters:

Chaining Linear probing

+ referential integrity + use of contiguous memory

waste of space
 gets slower as table fills up

A fair comparison must be based on space consumption, not only on the runtime.

Experimental results: so small differences that implementation details, used compiler, OS, ... matter.

Algorithm and Data Structure Analysis