The Contents of Visual Working Memory Bias Ensemble Perception

Ryan S. Williams¹, Jay Pratt¹, Susanne Ferber¹, & Jonathan S. Cant² Department of Psychology, University of Toronto¹ & University of Toronto Scarborough²

* *p* < .05; ** *p* < .01; *** *p* < .001

Background

- Many have examined whether focused attention is required for accurate representations of ensemble statistics (e.g. mean size)^{1,2}, with less research considering how attentional biases may interfere with ensemble judgments³
- Relying on automatic guidance by visual working memory (VWM)⁴, we examined whether attentional processes bias ensemble estimations in the absence of explicit instruction to attend to any single item in the set (Exp. 1)
- Additionally, we consider whether this bias can be accounted for by perceptual priming (Exp. 2), or strategic attentional allocation (Exp.'s 3 & 4)

General Procedure

Feature-matching subset CCW Control CW

If individuals overweight featurematching items, orientation reports should be biased towards subset mean (CCW = μ - 15°; CW = μ + 15°).

Exp. 1: Single Ensemble Duration

Shape and color equally relevant; 250 ms display duration.

Exp. 3: Short and Long Ensemble Durations

Display durations of 150 ms and 500 ms, intermixed.

Exp. 2: No Color Change

Shape, but not color, of VWM object could change at test.

Exp. 4: Low-Prevalence Color Change

Shape change 5x more likely than color change.

Conclusion

- Ensemble judgments are susceptible to biases owing to altered attentional weighting of individual elements, even in the absence of explicit instruction to attend to any single item
- As such, we argue that future models should not only consider whether focused attention is required in the formation of accurate ensemble representations, but also the contribution of feedback processes between cognitive systems