

October 1987 Revised January 1999

CD4511BC BCD-to-7 Segment Latch/Decoder/Driver

General Description

The CD4511BC BCD-to-seven segment latch/decoder/ driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability. Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Low logic circuit power dissipation
- High current sourcing outputs (up to 25 mA)
- Latch storage of code
- Blanking input
- Lamp test provision
- Readout blanking on all illegal input combinations
- Lamp intensity modulation capability
- Time share (multiplexing) facility
- Equivalent to Motorola MC14511

Ordering Code:

Order Number	Package Number	Package Description
CD4511BCWM	M16B	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
CD4511BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagrams

Pin Assignments for SOIC and DIP

Segment Identification

Truth Table

Inputs								0	utput	s				
LE	BI	ΙΤ	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	Х	0	Χ	Χ	Х	Χ	1	1	1	1	1	1	1	В
Х	0	1	Х	Χ	Χ	Χ	0	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	
0	1	1	1	0	1	1	0	0	0	0	0	0	0	
0	1	1	1	1	0	0	0	0	0	0	0	0	0	
0	1	1	1	1	0	1	0	0	0	0	0	0	0	
0	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	Х	Χ	Χ	Χ				*				*

Display

 $X = \mbox{Don't Care} \\ ^*\mbox{Depends upon the BCD code applied during the 0 to 1 transition of LE.}$

Absolute Maximum Ratings(Note 1)

DC Supply Voltage (V_{DD}) -0.5V to +18V Input Voltage (V_{IN}) $-0.5V \text{ to } V_{DD} +0.5V$ Storage Temperature Range (T_S) $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions

DC Supply Voltage (V_{DD}) 3V to 15V Input Voltage (V_{IN}) 0V to V_{DD} Operating Temperature Range (T_A) -40°C to $+85^{\circ}\text{C}$

Note 1: Devices should not be connected with power on.

DC Electrical Characteristics

Symbol	Parameter	Conditions	-40°C		+25°C			+85°C		Units
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent	$V_{DD} = 5V$		20			20		150	μΑ
	Supply Current	$V_{DD} = 10V$		40			40		300	μΑ
		V _{DD} = 15V		80			80		600	μΑ
V _{OL}	Output Voltage	V _{DD} = 5V		0.01		0	0.01		0.05	V
	Logical "0"	$V_{DD} = 10V$		0.01		0	0.01		0.05	V
	Level	V _{DD} = 15V		0.01		0	0.01		0.05	V
V _{OH}	Output Voltage	V _{DD} = 5V	4.1		4.1	4.57		4.1		V
	Logical "1"	$V_{DD} = 10V$	9.1		9.1	9.58		9.1		V
	Level	V _{DD} = 15V	14.1		14.1	14.59		14.1		V
V _{IL}	LOW Level	V _{DD} = 5V, V _{OUT} = 3.8V or 0.5V		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 8.8V \text{ or } 1.0V$		3.0		4	3.0		3.0	V
		V _{DD} = 15V, V _{OUT} = 13.8V or 1.5V		4.0		6	4.0		4.0	V
V _{IH}	HIGH Level	V _{DD} = 5V, V _{OUT} = 0.5V or 3.8V	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 1.0V \text{ or } 8.8V$	7.0		7.0	6		7.0		V
		V _{DD} = 15V, V _{OUT} = 1.5V or 13.8V	11.0		11.0	9		11.0		V
V _{OH}	Output	$V_{DD} = 5V$, $I_{OH} = 0$ mA	4.1		4.1	4.57		4.1		V
	(Source) Drive	$V_{DD} = 5V$, $I_{OH} = 5$ mA				4.24				V
	Voltage	$V_{DD} = 5V, I_{OH} = 10 \text{ mA}$	3.6		3.6	4.12		3.3		V
		$V_{DD} = 5V, I_{OH} = 15 \text{ mA}$				3.94				V
		$V_{DD} = 5V, I_{OH} = 20 \text{ mA}$	2.8		2.8	3.75		2.5		V
		$V_{DD} = 5V, I_{OH} = 25 \text{ mA}$				3.54				V
		$V_{DD} = 10V, I_{OH} = 0 \text{ mA}$	9.1		9.1	9.58		9.1		V
		$V_{DD} = 10V, I_{OH} = 5 \text{ mA}$				9.26				V
		$V_{DD} = 10V, I_{OH} = 10 \text{ mA}$	8.75		8.75	9.17		8.45		V
		$V_{DD} = 10V, I_{OH} = 15 \text{ mA}$				9.04				V
		$V_{DD} = 10V, I_{OH} = 20 \text{ mA}$	8.1		8.1	8.9		7.8		V
		$V_{DD} = 10V, I_{OH} = 25 \text{ mA}$				8.75				V
		$V_{DD} = 15V, I_{OH} = 0 \text{ mA}$	14.1		14.1	14.59		14.1		V
		$V_{DD} = 15V, I_{OH} = 5 \text{ mA}$				14.27				V
		$V_{DD} = 15V, I_{OH} = 10 \text{ mA}$	13.75		13.75	14.18		13.45		V
		$V_{DD} = 15V, I_{OH} = 15 \text{ mA}$				14.07				V
		$V_{DD} = 15V, I_{OH} = 20 \text{ mA}$	13.1		13.1	13.95		12.8		V
		$V_{DD} = 15V, I_{OH} = 25 \text{ mA}$				13.8				V
I _{OL}	LOW Level	$V_{DD} = 5V, V_{OL} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Output Current	$V_{DD} = 10V, V_{OL} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{OL} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V		-0.30		-10 ⁻⁵	-0.30		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} = 15V$		0.30		10 ⁻⁵	0.30	l	1.0	μА

AC Electrical Characteristics (Note 2) $T_A=25^\circ C \text{ and } C_L=50 \text{ pF, typical temperature coefficient for all values of V}_{DD}=0.3\%/\circ C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
C _{IN}	Input Capacitance	V _{IN} = 0		5.0	7.5	pF
t _r	Output Rise Time	$V_{DD} = 5V$		40	80	ns
	(Figure 1a)	$V_{DD} = 10V$		30	60	ns
		$V_{DD} = 15V$		25	50	ns
t _f	Output Fall Time	$V_{DD} = 5V$		125	250	ns
	(Figure 1a)	$V_{DD} = 10V$		75	150	ns
		$V_{DD} = 15V$		65	130	ns
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		640	1280	ns
	(Data) (Figure 1a)	V _{DD} = 10V		250	500	ns
		$V_{DD} = 15V$		175	350	ns
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		720	1440	ns
	(Data) (Figure 1a)	$V_{DD} = 10V$		290	580	ns
		$V_{DD} = 15V$		195	400	ns
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		320	640	ns
	(Blank) (Figure 1a)	V _{DD} = 10V		130	260	ns
		$V_{DD} = 15V$		100	200	ns
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		485	970	ns
	(Blank) (Figure 1a)	V _{DD} = 10V		200	400	ns
		$V_{DD} = 15V$		160	320	ns
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		313	625	ns
	(Lamp Test) (Figure 1a)	V _{DD} = 10V		125	250	ns
		$V_{DD} = 15V$		90	180	ns
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		313	625	ns
	(Lamp Test) (Figure 1 a)	V _{DD} = 10V		125	250	ns
		$V_{DD} = 15V$		90	180	ns
t _{SETUP}	Setup Time	$V_{DD} = 5V$	180	90		ns
	(Figure 1b)	V _{DD} = 10V	76	38		ns
		$V_{DD} = 15V$	40	20		ns
t _{HOLD}	Hold Time	$V_{DD} = 5V$	0	-90		ns
	(Figure 1b)	$V_{DD} = 10V$	0	-38		ns
		$V_{DD} = 15V$	0	-20		ns
PW _{LE}	Minimum Latch Enable	$V_{DD} = 5V$	520	260		ns
	Pulse Width (Figure 1 c)	$V_{DD} = 10V$	220	110		ns
		V _{DD} = 15V	130	65		ns

Note 2: AC Parameters are guaranteed by DC correlated testing.

Typical Applications Light Emitting Diode (LED) Readout COMMON ANODE LED COMMON Cathode Led Gas Discharge Readout Liquid Crystal (LC) Readout APPROPRIATE VOLTAGE EXCITATION (SQUARE WAVE, VSS TO VDD) voo MM74C86 Direct DC drive of LC's not recommended for life of LC readouts. Incandescent Readout Fluorescent Readout DIRECT (LOW BRIGHTNESS) vss **A filament pre-warm resistor is recommended to reduce filament thermal shock and increase the effective cold resistance of the filament.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com