Ad Soyad:	İmza:	Soru1	Soru2	Soru3	Toplam	ı
Öğrenci No:						Ì

Prof.Dr.A.Emre HARMANCI Yard.Doç.Dr.Osman Kaan EROL Dr.Berk CANBERK 27 Ekim 2011

Süre:120 dakika

BİÇİMSEL DİLLER ve OTOMATLAR 1. YILİÇİ SINAVI

SORU 1)(40 puan) Bir ASM makinasının aşağıdaki işlevleri yerine getirmesi beklenmektedir:

- a) Bir S işaretinin '1' olması ile A saklayıcısına ötelenecek sayıyı, B saklayıcısına da işaretli öteleme adedini yükleyecek ve çalışmaya başlayacaktır.
- **b)** Devre A saklayıcısında bulunan sayıyı, B saklayıcısında bulunan sayının mutlak değeri kadar sağa ya da sola öteleyecek, ve oluşacak boşlukları '0' ile dolduracaktır.
- c) B saklayıcısında bulunan sayı '+' ise sola, '-' ise sağa öteleme gerçekleşecektir. Bu sayı ikiye tümleyen gösteriminde verilmiştir.
- d) Makine işlemi bitince başa dönecektir.

Bu makinaya ilişkin ASM diyagramı ile durum diyagramını çiziniz ve denetim birimi ile veri işleme birimini tasarlayınız.

Çözüm: ASM Diyagramı

Not: N_B, B saklayıcısının negatif bayrağı(en yüksek anlamlı biti) ve Z_B, B saklayıcısının sıfır bayrağı(tüm bitlerinin veya-değili)

Ad Soyad:	İmza:	Soru1	Soru2	Soru3	Toplam
Öğrenci No:					

$$T_0 = s'T_0 + Z_BT_1$$

 $T_1 = sT_0 + Z_B' T_1$

Denetim Birimi:

Durum Geçiş Diyagramı:

Veri Makinesi:

$$\begin{split} L_A &= L_B = sT_0 & SA\breve{G}_A = Z_B'N_BT_1 \\ ART_B &= Z_B'N_BT_1 & SOL_A = Z_B'N_B'T_1 \\ AZT_B &= Z_B'N_B'T_1 & Seri_A = 0 \text{ (\"otelemede oluşacak boşluklar 0 ile doldurulacak)} \end{split}$$

Ad Soyad:	İmza:	Soru1	Soru2	Soru3	Toplam
Öğrenci No:					

A saklayıcısı olarak kullanılan ötelemeli saklayıcının iç yapısı:

	e1	e2
Değişmez	0	0
SOLA	0	1
$SA\breve{G}_A$	1	0
L_A	1	1

Ad Soyad:	İmza:	Soru1	Soru2	Soru3	Toplam
Öğrenci No:					

SORU 2)(30 puan) Kırmızı, mavi, sarı ve beyaz renkte dört düğme bir lambayı yakmak için kullanılacaktır. Lambanın yanması için düğmelerden ikisine arka arkaya basmak gerekmektedir; ancak, bu iki basıştan biri kırmızı düğmeye yapılmalıdır. Birbirini izleyen son iki basış çiftleri lambanın yanmasını sağlıyorlarsa, bu çiftler bir R bağıntısının elemanı olarak kabul edilirler.

- a) Yukarıda tanımlanan bağıntıya hangi kapanış uygulanırsa, bağıntı değişmez.
- **b)** Bu bağıntının geçişli kapanışını bulunuz.
- c) Yukarıda verilen bağıntı kaç adet ikili bağıntının bakışlı kapanışı olabilir?

Çözüm: Ardarda basılan düğmelerden son ikisi eğer lambanın yanmasını sağlıyorsa R bağıntısının bir elemanı olacağından, R bağıntısı aşağıdaki gibi yazılabilir.

		Κ	M	S	В
	K	1	1	1	1
R =	M	1	0	0	0
	S	1	0	0	0
	В	1	0	0	0

K: kırmızı düğme M: mavi düğme S: sarı düğme B: beyaz düğme

R={KK, KM, KS, KB, MK, SK, BK}

- a) Bağıntı grafından da kolayca görülebileceği gibi bu bağıntıya bakışlı kapanış uygulamak bağıntıyı değiştirmez (R = s(R))
- b) R bağıntısının geçişli kapanışına ulaşmak için bağıntının kuvvetlerini bulursak,

R² de evrensel bağıntıya ulaştığımız için daha ileri kuvvetlere bakmaya gerek kalmadı.

$$t(R) = \bigcup_{i=1}^{\infty} R^i = R^1 \cup R^2 = R \cup Evrensel bağıntı = Evrensel bağıntı$$

Ad Soyad:	İmza:	Soru1	Soru2	Soru3	Toplam
Öğrenci No:					

c) R = {KK, KM, KS, KB, MK, SK, BK} = s(X) şeklinde kaç farklı X bağıntısı olabileceğine bakıyoruz.

 $KK \in s(X) \to KK \in X$ $KM, MK \in s(X) \to KM \in X \ veya \ MK \in X \ veya \ KM, MK \in X \ \Rightarrow 3 \ \text{farklı durum}$ $KB, BK \in s(X) \to KB \in X \ veya \ BK \in X \ veya \ KB, BK \in X \ \Rightarrow 3 \ \text{farklı durum}$ $KS, SK \in s(X) \to KS \in X \ veya \ SK \in X \ veya \ KS, SK \in X \ \Rightarrow 3 \ \text{farklı durum}$

→ 3 . 3 . 3 = 27 farklı bağıntı yazılabilir

Ad Soyad:	İmza:	Soru1	Soru2	Soru3	Toplam
Öğrenci No:					

SORU 3)(30 puan) Aşağıda durum geçiş tablosu verilen sonlu durumlu makineyi

- a) Tam örtüye göre indirgeyiniz.
- **b)** Minimal kapalı örtüye göre indirgeyiniz.

	l ₁	l ₂	l ₃
Α	E/0	C/-	-/-
В	D/-	-/-	C/0
С	C/-	A/1	B/-
D	B/1	A/-	-/-
Ε	-/-	A/-	D/1

Çözüm:

	4	_					
D-E	ОК	E	3				
C-E	ОК	C-D	ОК	(2		
)	(0	K	B-C	ОК	D	
A-C	ОК)	<	B-D	ОК	ОК	Ε

a)

Tam örtü =
$$\underbrace{\{A, B, C\}}_{K}$$
, $\underbrace{\{A, C, E\}}_{L}$, $\underbrace{\{B, C, D\}}_{M}$, $\underbrace{\{C, D, E\}}_{N}$

	l ₁	l ₂	l ₃
K	N/0	K,L/1	K,M/0
L	L,N/0	K,L/1	M/1
М	M/1	K,L/1	K,M/0
N	K,M/1	K,L/1	M/1

b)

Minimal kapalı örtü =
$$\underbrace{\{A, C, E\}}_{K}$$
, $\underbrace{\{B, D\}}_{L}$

	l ₁	l ₂	l ₃
K	K/0	K/1	L/1
L	L/1	K/-	K/0