Evaluating Test Utilization

Clinical Informatics Lecture

Mark A. Zaydman MD, PhD

October 21, 2021

Learning objectives

- Describe criteria for evaluating lab test utilization
- List resources for expert recommedations on lab utilization
- Demonstrate resources for monitoring test utilization at BJH/BJC

Course materials at: https://github.com/MarkZaydman/PathologyInformatics_2021.git

Why this lecture matters

- Laboratory testing represents a significant healthcare expenditures
- Inapproapriate lab utilization drives waste, additional testing, treatment, and harms
- Evaluating laboratory utilization will be an important component of your QI project

Defining appropriate laboratory utilization

- Evidence based
- Non-redundant
- Free from harm (or at least a net benefit)
- Necessary

(Adopted from choosingwisely.org/our-mission)

"The three rules of laboratory test utilization"

- 1. Stupid question gets a stupid answer
- 2. Testing is for sick people
- 3. Too many good tests is the same as one bad test

(Baird et al 2014 Biochemia Medica)

Considerations

- Right patient?
- Right test?
- Right interval?

Misutilization can manifest as overutilization or underutilization

Right patient?

- Is the patient at a reasonable risk for the disease?
- Has the diagnosis already been established?
- Is a treatment available for this patient/disease?

Right patient?

Estimating prevalence from Se, Sp, and positivity rate

$$egin{aligned} P(T^+) &= P(T^+|D^+)P(D^+) + P(T^+|D^-)P(D^-) \ P(T^+) &= P(T^+|D^+)P(D^+) + P(T^+|D^-)(1-P(D^+)) \ P(T^+) &= P(T^+|D^+)P(D^+) + P(T^+|D^-) - P(T^+|D^-)P(D^+) \ P(D^+) &= rac{P(T^+)-P(T^+|D^-)}{P(T^+|D^+)-P(T^+|D^-)} = rac{P(T^+)-(1-Sp)}{Se-(1-Sp)} \end{aligned}$$

Backcalculate pretest probability (hypothetical test)

$$egin{aligned} P(D^+) &= rac{P(T^+) - (1 - Sp)}{Se - (1 - Sp)} = rac{rac{15}{100} - (1 - 0.92)}{0.8 - (1 - 0.92)} \ &= rac{0.15 - 0.08}{0.8 - 0.08} = rac{0.07}{0.72} = 0.097 pprox 10\% \end{aligned}$$

Hypothetical test: Se=0.8, Sp=0.92

Was PF4 Ab testing ordered on the "right patients"?

(BJH data)

# PF4 (%)	2015	2016	2017**		
Total	1222 (100)	1136 (100)	238 (100)		
Positive	203 (16.6)	220 (19.4)	51 (21.4)		

Backcalculate pretest probability (HIT testing at BJH)

HIT ELISA test: Se=0.97, Sp=0.87 (Nagler et al 2016 Blood)

$$egin{aligned} P(D^+) &= rac{P(T^+) - (1 - Sp)}{Se - (1 - Sp)} = rac{rac{474}{2594} - (1 - 0.87)}{0.97 - (1 - 0.87)} \ &= rac{0.183 - 0.13}{0.97 - 0.13} = rac{0.003}{0.77} = 0.063 pprox 6.3\% \end{aligned}$$

Background HIT prevalence pprox 2.7% (Warkentin 1995 NEJM)

Expert recommendation: only test 4T Int/High (Cuker et al. 2018 ASH, Linkins et al. 2012 Chest)

4T Int/High Pretest = 22% (Cuker et al 2012 Blood)

Right test?

- Is a more accurate test available?
 - COVID-19 rapid antigen vs COVID-19 RNA PCR
- Is a cheaper test available that provides the same info?
 - Whole geneome vs HFE gene mutation (PCR)
- Is a test available that provides a result in a more suitable time frame?
 - PF4 Ab vs SRA

Right test? (ionized calcium)

The reference interval (shaded in black) is 1.18–1.38 mmol/L, and high and low critical values (1.58 mmol/L and 0.78 mmol/L) are indicated by black arrows.

Standard daily ionized calcium drove complex testing and unproven supplementation

(Baird et al 2009 Clin Chem)

Right test? (ionized calcium)

Table 1. Clinical outcomes before and after institution of reflexive iCa testing.a								
	Total discharges and deaths, n	Deaths, n	Cardiac arrests, n	Hypocalcemia, n	Tetany, n	Seizures, n		
Before reflex test intervention	36 453	1107	296	372	2	1344		
After reflex test intervention	36 811	1120	307	185	1	691		
Р		0.96	0.73	>0.001	0.62	>0.001		

^a See Materials and Methods for how diagnoses were tabulated from ICD-9 codes. Values represent total counts for the 12 months before intervention and the 12 most recent postintervention months. *P* values are from Fisher exact tests comparing the pre- and postintervention periods.

Reflex algorithm drove down overutilization without evidence of increased adverse events

(Baird et al 2009 Clin Chem)

Right interval?

- Hours
 - Blood glucose
- Days
 - White blood cell count
- Months
 - Intact immunoglobulins, HbA1C
- Years
 - Bone density
- Lifetime
 - Constitutional genetic testing

Right interval? (HbA1C testing for diabetic patients)

Figure 4. Relative frequency of HbA1c test intervals during the study period by region. •••, Calgary; ---, Edmonton; -••-, Red Deer; -•-, Wetaskiwin.

Resources for guidance on test utilization

Choosing Wisely

https://www.choosingwisely.org/clinician-lists/

Appropriate testing intervals

https://www.rcpath.org/uploads/assets/253e8950-3721-4aa2-8ddd4bd94f73040e/g147_national-minimum_retesting_intervals_in_pathology.pdf

Primary Literature

https://pubmed.ncbi.nlm.nih.gov/22315270/ https://ashpublications.org/bloodadvances/article/2/22/3360/16129/American-Society-of-Hematology-2018-guidelines-for

How to monitor test utilization?

- The process of producing a test result can involve information systems
- Monitoring this process requires a basic understanding of relevant:
 - information systems
 - data structures
 - data governance

Different types of tests have different lifecycles

Lifecycle of a test

Order
ightarrow ???
ightarrow Result in chart

- In house testing
- Interfaced sendout testing
- Noninterfaced sendout testing

In house testing

Monitoring of lab utilization may require querying different information systems

The sendout test cycle is yet more complex

Systems most relevant lab utilization QI projects

- Epic (EMR)
- Cerner (LIS)

What is in Epic

- Results
- Orders
- Notes
- Diagnoses
- A lot more

What you might need to look for elsewhere

- Instrument level data
- Logs of middleware processes
- Some lab specific data

EPIC databases and reporting

Note: Chronicles and clarity/caboodle have very different data models

Chronicles data model (hierarchical)

This architecture is optimized for fast, realtime writing of new data

Clarity/clarity data model (relational)

This architecture is good for quickly building custom views of the database

Where you can go for help with utilization monitoring

- Faculty mentor
- Informatics attending
- Submit a ticket to the informatics section (path.wustl.edu/informatics)

You don't need to be a computer scientist to complete your QI project

Protect your data!

- You will be accessing large volumes of data protected under HIPAA
- It is your responsibility to protect these data
 - Export only what is necessary for your QI project
 - Keep all HIPAA on Wash U encrypted servers
 - Do not save patient data to a local/personal device
- Ask if you have questions regarding data security

Learning objectives

- Describe criteria for evaluating lab test utilization
- List resources for expert recommedations on lab utilization
- Demonstrate resources for monitoring test utilization at BJH/BJC

Course materials at: https://github.com/MarkZaydman/PathologyInformatics_2021.git

Thank you!

Contact: zaydmanm@wustl.edu