Prueba de evaluación

Muy importante: Escribir como máximo un folio por las dos caras

Topología. Curso 2016-17

Problema

Sea X el intervalo cerrado [-1,1] y sea

$$\mathsf{T} = \{ A \subset X \mid 0 \notin A \} \cup \{ A \subset X \mid A \supset (-1,1) \}$$

- a) Probar que (X,T) es un espacio topológico. (4 puntos)
- b) Estudiar si el espacio es de Hausdorff. (3 puntos)
- c) Calcular el interior del intervalo [0,1]. (3 puntos)

Solución

- a) Es inmediato porque
- I) \varnothing y $X \in T$ puesto que $\varnothing \in A$ y $X \in B$
- II) Sea $\{A_i\}_{i\in I}$ si todos los A_i pertenecen a A, entonces $\bigcup_{i\in I} A_i \in A$. Si existe un

 $j \in I$ tal que $A_j \in B$, entonces $\bigcup_{i \in I} A_i \in B$

- III) Sean $A_i, A_j \in T$. Si $A_i, A_j \in B$ entonces $A_i \cap A_j \in B \subset T$. Si A_i u $A_j \in A$, entonces $A_i \cap A_j \in A \subset T$
- b) No es de Hausdorff porque el 0 y 0,5 no se pueden separar por abiertos, ya que cualquier abierto del 0 contiene al 0,5.
 - c) El interior del [0,1] es (0,1].