Online Load Balancing via Learned Weights

Silvio Lattanzi, **Thomas Lavastida**, Benjamin Moseley, Sergei Vassilvitskii

MAPSP 2019

Carnegie Mellon University
Tepper School of Business

Data Center Scheduling

- Jobs arrive online
- Heterogeneous servers or jobs with constraints
- Assign jobs to servers under restricted assignment
- Minimize the maximum load

Online Load Balancing w/ Restricted Assignment

- m machines
- *n* jobs that arrive online
 - N(j) = subset of feasible machines for job j
 - o p(j) = size of job j
- Load = total size of jobs assigned to a machine
- Goal: minimize max load

Online Load Balancing w/ Restricted Assignment

- Worst Case Competitive Analysis
 - For any input I:

$$\frac{ALG(I)}{OPT(I)} \le c$$

- No algorithm can be better than $\Omega(\log(m))$ competitive
- Greedy algorithm is O(log(m)) competitive
 - [Azar, Naor, and Rom 1995]

Data Center Scheduling Revisited

- Want to go beyond worst case analysis
- Access to data about past jobs
- Machine learning successful in many other settings
- Can we learn something useful from the data?

- How do we model online with learning?
- What should we use learning to predict?
- How to account for errors?

Learning and Online Algorithms

- Caching Problem [Lykouris and Vassilvitskii 2018]
- Ski Rental [Purohit et al 2018]
- Non-clairvoyant single machine scheduling [Purohit et al 2018]
- Many other works using predictions
 - Heavy hitters sketches [Hsu et al 2019]
 - Improved Bloom filters [Mitzenmacher 2018]

Model for Learning and Online Algorithms

- Abstract away exact ML model used
 - Many models may be applicable
 - Focus on quantity we want to predict
- Online Algorithm has access to predictions with some error
 - Size of predictions should be "small"
 - Ski Rental: predict number of days
 - Caching: predict next occurence of item
- Competitive ratio depends on the error
- Goal: beat log(m) when error is small

What to Predict?

- Ideas
 - Load of each machine in OPT?
 - Can pad instance so loads all the same
 - Optimal dual variables?
 - Very sensitive to small errors in the formulations we considered
- Our approach

Our Results

Theorem 1 (Machine Weights):

Let T be optimal max load. For any $\varepsilon > 0$, there exist machine weights and a rule to convert the weights to *fractional* assignments such that the resulting fractional max load is at most $(1+\varepsilon)T$.

Given predictions of the machine weights with *relative* error $\eta > 1$, there exists an online algorithm yielding *fractional* assignments for which the fractional max load is bounded by $O(\log(\eta)T)$.

Our Results

Theorem 2 (Rounding):

There exists an online algorithm that takes as input fractional assignments and outputs integer assignments for which the maximum load is bounded by $O((\log\log(m))^3T')$, where T' is maximum fractional load of the input. The algorithm is randomized and succeeds with probability > 1- 1 / m^c .

Corollary: There exists an $O((\log\log(m))^3\log(\eta))$ competitive algorithm for restricted assignment in the Online Algorithms with Learning setting

- Unit sized jobs
- We know *T* := optimal max load

Weights to Fractional Assignments

- Associate a weight to each machine
- Fractional assignment according to:

$$x_{ij}(w) = \frac{w_i}{\sum_{i' \in N(j)} w_{i'}}$$

Weights chosen to satisfy following for each machine i

$$\sum_{i} x_{ij}(w) \le (1 + \epsilon)T$$

Existence built off of [Agrawal, Zadimoghaddam, Mirrokni 2018]

Accounting for Error

Fractional assignment rule

$$x_{ij}(w) = \frac{w_i}{\sum_{i' \in N(j)} w_{i'}}$$

- ullet Say given predictions \hat{w}
- Look at relative error:

$$\eta = \max_{i} \frac{\hat{w}_i}{w_i}$$

- Assignment rule yields $O(\eta(1+\epsilon)T)$ fractional load
- Key idea: modify weights over time to get O(log(η) T) fractional load

Rounding Algorithm

- Can't use LP rounding due to [Lenstra, Shmoys, Tardos 1990]
 - Offline procedure and requires BFS
- log(m) lower bound for deterministic online rounding algos
- Standard randomized rounding?
 - Independently sample a machine according to each jobs fractional assignment
 - Loses log(*m*) factor
- Key idea (for one case): Analyze bipartite graph induced by jobs/machines
 - \circ Graph breaks up into components with log(m) machines after some random assignments
 - Apply Greedy to remaining jobs
- Result nearly optimal can't do better than $\Omega(\log\log(m))$ w/ randomization

Conclusions

- Predictions can be used to break through worst case lower bounds
- What can we say about other online problems in this setting?
- Practical implementations

Thank You!