

THE MIND IS A MYSTERY

UNLOCKING THE SECRETS OF THE BRAIN

Rachelle Chandler Fertig

Samantha Wanek

A META-ANALYSIS

Rachelle Chandler Fertig

- •Experience in data analysis, using Excel, Python, R, and SQL
- •Dual Background:
 - •Project management, operations, logistics, marketing, communication, business metrics, sales and performance analytics for service and retail sales industries.
 - •Craniosacral Therapist specializing in the brain, central nervous system, immune, and endocrine systems with a focus on nutritionally balanced brain/body relationships.
- •Proficient with in-office and remote collaboration tools such as Slack, Teams, Microsoft 365, VPN, Trello, Zoom as well as industry-specific proprietary software systems.
- •Skilled in data and conceptual visualizations/presentations with the ability to translate intricate details into actionable takeaways.
- •Detailed, thorough and methodical work style while working either independently or in team collaboration settings.

Samantha Wanek

- •Experience in data analysis, using Python, R, and SQL.
- •Skilled in data visualization/presentation with the ability to concisely communicate complex data insights to non-technical parties.
- •Strong understandings of data ethics and privacy considerations, ensuring ethical use of data.
- •Ability to effectively collaborate with team members, including providing and actively seeking feedback from others.
- •Familiarity with remote collaboration tools, such as Slack, Zoom, and Trello, and the ability to adapt quickly to new tools and technologies.
- •Strong time management skills to prioritize tasks, manage competing deadlines, and adapt to changing priorities.

OUR BACKGROUNDS

OUR DATA AND ITS IMPORTANCE

DATA SUMMARY: 105 study participants (47 pairs) were tested across 39 essential elements.

- Our dataset includes urine test results for 20 toxic and 19 essential elements.
- The study focuses on young children with Autism Spectrum Disorder and their mothers, compared to typically developing children and their mothers.
- Most studies use blood tests, but urine measurements offer a different perspective. Urine measurements indicate the amount of a component that is leaving the body.
- Our dataset is important because it provides unique insights into the relationship between toxic and essential elements and Autism Spectrum Disorder.

A META-ANALYSIS OF A URINALYSIS

INITIAL ASSESEMENT OF THE DATASET IN R

Status	Туре	Elements (39)
ASD	Child	<data></data>
TD	Child	<data></data>
ASD	Mother	<data></data>
TD	Mother	<data></data>

Initial Analysis Objective:

- Group by + Summarize functions to create comparison groups
- Evaluate which elements have the greatest influence with ASD and TD groups

Key Observations: The data alpha-organized the elements into two groups to differentiate between Toxic and Essential elements

A META-ANALYSIS OF A URINALYSIS

ANALYTICAL OBJECTIVES:

Objective One: Is there a predictive relationship between levels of toxic and essential elements and the occurrence of ASD in children?

- Question A How well does the data predict ASD or TD in children?
- Question B Which elements are the greatest predictors of ASD or TD in children?

Objective Two: From the modeled elements, how does the urine test differ (Toxic vs Essential) for children with ASD to TD children?

• **Conclusions** – Predictive Elements - Children

Objective Three: Is there a predictive relationship between levels of toxic and essential elements and the occurrence of ASD in mothers?

- Question C How well does the data predict ASD or TD in mothers?
- Question D Which elements are the greatest predictors of ASD or TD in mothers?

Objective Four: From the modeled elements, how does the urine test differ (Toxic vs Essential) for mothers with ASD to TD mothers?

• **Conclusions** – Predictive Elements - Mothers

Objective Five: From the modeled elements, how does the urine test differ (Toxic vs Essential) for children with ASD to their ASD mothers?

Objective Six: From the modeled elements, how does the urine test differ (Toxic vs Essential) for TD children to their TD mothers?

Meta-Analysis Conclusions

A META-ANALYSIS OF A URINALYSIS

ANALYSIS APPROACH:

Questions & Objectives Setup:

- Clean, Standardize, Subset and Subgroup the data
 - In Subgroup:
 - Create a binary logistics regression model to evaluate the effectiveness of the data to predict the ASD / TD status
 - Run a binary stepwise-regression to evaluate which elements have the greatest influence over predicting ASD or TD
 - Assess multicollinearity by Variance Influence Factor
 - Run descriptive statistics for modeled elements

	SUBSET	SUBGROUP 1	SUBGROUP 2
1	Child	childToxic ASD	childToxic TD
2	Cilliu	childEssential ASD	childEssential TD
3	Mothor	motherToxic ASD	motherToxic TD
4	Mother	motherEssential ASD	motherEssential TD
5	ID Number	childToxic ASD (paired)	motherToxic ASD
6	ID Number	childToxic TD (paired)	motherToxic TD

- Compare subgroups to extrapolate meta-analysis
 - Identify highest-influence elements per subgroup
 - Define highest-influence elements for ASD / TD
 - Review elements for developmental influence
 - Understand the impact of these elements on ASD

OBJECTIVE ONE

QUESTION A: How well does the data predict ASD or TD in children?

	SUBSET	SUBGROUPS	SIGNIFICANT ELEMENTS	BORDERLINE SIGNIFICANT	ACCURACY
1	Child	childToxic ASD + childToxic TD	Tungsten		85%
2	Child	childEssential ASD + childEssential TD	Sulfur, Magnesium		87%

QUESTION B: Which elements are the greatest predictors of ASD or TD in children?

	SUBSET	SUBGROUPS	SIGNIFICANT ELEMENTS	BORDERLINE	ACCURACY	OVERALL MODEL
1		childToxic ASD	Gadolinium	Mercury	27%	Significant
2	Child	childToxic TD	Tin	Tungsten	21 /0	Significant
3	Offilia	childEssential ASD	Potassium	Boron	45%	Cignificant
4		childEssential TD	Sulfur	Calcium, Magnesium, Zinc	40%	Significant

CONCLUSIONS - PREDICTIVE RELATIONSHIPS

CONCLUSIONS - PREDICTIVE ELEMENTS

Descriptive Statistics for Subgroup: Means Comparison

childToxic						
Status	Gadolinium	Mercury	Tin	Tungsten		
ASD	1.57	0.1240	1.53	.0257		
TD	0.00005	0.0002	3.00	0.411		

	childEssential						
Status	Boron	Calcium	Magnesium	Potassium	Sulfur	Zinc	
ASD	3.64	157.09	202.33	77.62	848.57	0.057	
TD	3.44	174.19	225.50	66.73	1322.69	0.744	

Sum Comparison

CONCLUSIONS:

MEANS Identifies which elements are predictive for either ASD or TD.

SUM ASD children do in fact have higher toxicity and lower essential elements, except for Tin and Tungsten.

OBJECTIVE THREE

QUESTION A: How well does the data predict ASD or TD in mothers?

	SUBSET	SUBGROUPS	SIGNIFICANT ELEMENTS	BORDERLINE SIGNIFICANT	ACCURACY
1	Mothor	motherToxic ASD + motherToxic TD	Lead, Tungsten	Barium, Uranium	78%
2	Mother	motherEssential ASD + motherEssential TD	Molybdenum		74%

QUESTION B: Which elements are the greatest predictors of ASD or TD in mothers?

	SUBSET	SUBGROUPS	SIGNIFICANT ELEMENTS	BORDERLINE	ACCURACY	OVERALL MODEL
1		motherToxic ASD	Cadmium	Uranium	35%	Cignificant
2	Mother	motherToxic TD	Gadolinium, Lead, Thallium	Barium, Beryllium	3370	Significant
3	Mother	motherEssential ASD	Molybdenum, Phosphorus		100/	Not Cianificant
4		motherEssential TD	Iron		12%	Not-Significant

CONCLUSIONS - PREDICTIVE RELATIONSHIPS

CONCLUSIONS - PREDICTIVE ELEMENTS

Descriptive Statistics for Subgroup: Means Comparison

	motherToxic						
Status	Cadmium	Gadolinium	Lead	Thallium			
ASD	0.56	-0.096	-0.476	-0.240			
TD	0.23	-0.098	-0.508	-0.536			

	motherEssential						
Status	Iron	Molybdenum	Phosphorus				
ASD	-0.152	-0.634	-0.592				
TD	-0.780	-0.429	-0.443				

Sum Comparison

motherToxic

motherEssential

CONCLUSIONS:

MEANS Identifies which elements are predictive for either ASD or TD.

SUM ASD mothers do in fact have higher toxicity and lower essential elements, except for Iron.

'Mother'

OBJECTIVE FIVE

CONCLUSION: Tin and Tungsten mostly influence ASD children. Mercury is present in 8 out of 47 pairs (17%) with uneven distribution between children and mothers. Gadolinium is dominantly present in one child (2%) of the ASD participants.

CONCLUSION: Most children have higher amounts of all essential elements compared to their mothers.

OBJECTIVE SIX

CONCLUSION: Gadolinium influences both **TD** children and mothers. Tin and Tungsten mostly influence children. Mercury is not present in **TD** children and is only present in 7 out of 58 mothers (12%).

conclusion: Most TD children have higher amounts of all essential elements compared to their mothers. Three TD children are missing all essential elements which might explain the variance in the model accuracy.

OBJECTIVE SEVEN

childMotherEssential

CONCLUSION: ASD and TD children have higher levels of Toxic and Essential Elements except for Mercury, which is higher in both ASD and TD mothers

SUMMARIES & CONCLUSIONS

- The significant elements identified for the toxic elements were Tungsten and Lead and for the essential elements they
 were Sulfur, Magnesium, and Molybdenum.
- Additional elements emerged as significant predictors of ASD for both toxic and essential element models in each subgroup, but with lower model accuracy.
 - Children: Significant predictors in the toxic element model were Gadolinium, Tin, and Mercury, and in the essential element model were Potassium, Boron, Calcium, and Zinc.
 - Mothers: Significant predictors in the toxic element model were Cadmium, Gadolinium, Lead, and Thallium, and in the essential element model were Iron, Molybdenum, and Phosphorus.
- Tungsten, Sulfur, and Magnesium were significant predictor elements for children, while Tungsten, Lead, and
 Molybdenum were significant for mothers. Notably, Tungsten was the only element that was significant in both groups.
- The *accuracy* of the data in *predicting ASD* was comparatively higher in **children** (85-87%) than in **mothers** (74-78%).
- The most *challenging* aspect of the project was balancing the need to **subset** the **data** by dependent and independent variables *without compromising* the sample size required for predictive and stepwise regression analysis.
- With more time we would compare urinalysis results to recommended levels of toxic and essential elements for children and mothers to identify patterns of nutrient deficiency/sufficiency, as well as investigate the role of individual toxic/essential elements in childhood development to provide actionable feedback for mothers of children with ASD.

CREDITS

We would like to use this space to provide a *special thanks* to the following people who helped us along the way in completing this project:

- Instructor, Joseph Raetano -
- Data Science Instructor, Margaret Martinez -
- Data Science Mentors, Kendra Rhoades & Julie Boucher

The source of the brain image is:

Elisa Riva, Brain Mind, Pixaby, Feb. 13, 2017.

The source of the downloadable dataset is:

 Qureshi, Fatir (2020), "Data for: Urinary Essential Elements of Young Children with Autism Spectrum Disorder and their Mothers", Mendeley Data, V1, doi: 10.17632/79fk29dvk6.1

The source of the article containing the data is:

Fatir Qureshi, James Adams, Devon Coleman, David Quig, Juergen Hahn, Urinary essential elements of young children with autism spectrum disorder and their mothers, Research in Autism Spectrum Disorders, Volume 72, 2020, 101518, ISSN 1750-9467, https://doi.org/10.1016/j.rasd.2020.101518.

THANK YOU FOR JOINING US TODAY

FLOOR OPEN TO QUESTIONS