IoT for Precision Farming

BADS7205 DATA STREAMING AND REAL TIME ANALYTICS

Overview

- Problem to be solved
- How IoT can improve business performance?
- Components
- System Overview
- Diagram
- Study and Research
- Real Diagram
- Processing Data
- Modeling
- Visualization
- Live demo
- Next Step

MEMBERS

1. Siraphop Seanbudh	6110422027
2. Pararad Tuntiprapakij	6110422031
2. I dididd i diffipiapakij	0110422001
3. Norrawit Towanabut	6110422044
4. Sapharath Vanitchtunyasub	6110422046

Problem

Lack of labor

Low productivity

Bad quality

Inaccurate estimation

How lot can improve business performance?

Reduce labor cost

productivity

Improve quality

Precision estimation

System Overview

Components

ESP32

DHT11
Temperature Sensor

LM393, Jumper, Electrode Soil Moisture Sensor

LDR Sunlight Sensor

Diagram

DHT11 **Temperature Sensor**

LM393, Jumper, **Electrode**

Soil Moisture Sensor

LDR

Web Application

Study & Research

Study

- Crop Performance / Crop Yield Predictive Analytics
- Combining IoT and Predictive Analytics in Agriculture
- Internet-of-Things (IoT)-Based Smart Agriculture
- Precision Agriculture
- IoT and agriculture data analysis for smart farm

Research

- International Journal of Innovative Research in Science, Engineering and Technology, Regional Digital Ag Lead
- Crop yield predictions high resolution statistical model for intra-season forecasts applied to corn in the US, Gro Intelligence, Inc.
- Agriculture Yield Prediction Using Predictive Analytic Techniques, IEEE
- An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning

Real Diagram

Processing Data - Workflow

Data Collection

Collected Data from Sensor to DynomoDB

- Temperature Sensor
- Soil moisture Sensor
- Sunlight Sensor

Data Preprocessing

- 1. Using python for import data from arduino to jupyter notebook
- 2. Data Cleaning and preparation

Data Modeling

Using Linear Regression for Yields Prediction

Data Visualization

Create dashboard and display on Web Application

Processing Data - I

Publish message that gathering from sensors (Temperature, Soil Moisture, Sunlight) in Arduino

Processing Data - II

Ingesting data from sensors to DynamoDB in AWS

Processing Data - III

Import data from DynamoDB and processing in python script.

```
In [95]: import boto3
         from boto3.dynamodb.conditions import Key, Attr
         import pandas as pd
         import time, os
         from datetime import datetime, timedelta, date
         dynamodb = boto3.resource('dynamodb')
         table = dynamodb.Table('NodeTable2')
In [96]: response = table.scan(
             ProjectionExpression='payload, #c',
             ExpressionAttributeNames = {'#c': 'TimeStamp'})
```

Processing Data - IV

Data Preparation: Null impution, Shifting data

	timestamp	Sunlight Sensor	Humidity Sensor	Tempurature Sensor	Soil Moisture Sensor
0	1/07/2020 22:11	1326	54.00	27.20	1054
1	1/07/2020 22:11	1310	54.00	27.20	1058
2	1/07/2020 22:12	1383	54.00	27.20	1058
3	1/07/2020 22:12	1324	54.00	27.20	1053
4	1/07/2020 22:12	1328	54.00	27.10	1051

Processing Data - V

Data Modeling: Linear Regression

```
X variable: Temperature, Soil Moisture, Sunlight
Y variable: Yield
 In [17]: lm = LinearRegression()
 In [18]: lm.fit(X_train, y_train)
 Out[18]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
                     normalize=False)
 In [19]:
           lm.intercept
 Out[19]: 14.334381090531927
```

Modeling

From previously research,

$$Prod_Lemon = 0.89 * Temp + 0.07 * DHT - 0.02 * Humidity - 25.87,$$
 (2)

$$Prod_Veg = 0.16 * Temp + 0.10 * DHT - 0.04 * Humidity - 7.29.$$
 (3)

Approach

- 1. Time series data have to shift with input by average and shift yield one month later.
- 2. Using shifted data to create linear regression model.

Refer to this data mining research, https://sci-hub.tw/10.1016/j.compag.2018.12.011. The results showed that suitable temperature for high productivity of homegrown vegetables and lemons was between 29 °C and 32 °C. Moreover, suitable humidity for high productivity of lemons was within 72–81%

Visualization

http://ec2-54-255-204-152.ap-southeast-1.compute.amazonaws.com/loT/loT/index_dashboard.php

Live Demo

Next Step

Sensor

Adding paramenter
(new sensors)
Eg.
- Soil pH Sensor
- Mineral Moisture Sensor
- Rain Detection Sensor

Analytics

Tuning model and trying other model that might more powerful than Linear Regression Eg.
-LSTM
-Catboost

Visualization

Asking user requriement to create/design other dashboard that impactful to them

Automate

Automating task
Eg.
- Sending message or
notification to
Mobile application when meet
the specific condition
- Watering the plant

Optimization

- Cost - Proportion of plant -Labor hour

THANK YOU