Esercizi di Calcolo Scientifico

Indice

1	Prima esercitazione		
	1.1	Esercizio 1	2
	1.2	Esercizio 2	2
	1.3	Esercizio 3	5
2	Esercitazione 19 Marzo 2019		
	2.1	Esame 13 Feb 2017	8

1 Prima esercitazione

1.1 Esercizio 1

Testo dell'esercizio e primi 3 punti.

d) Dato $g = \frac{7}{5}$, verifica $y \neq \mathcal{F}$ e determina $\hat{y} = fl(y) \in \mathcal{F}$.

$$y = \frac{7}{5} = 1.4$$

$$y = (1.\overline{0110})_2$$

Ha rappresentazione infinita, quindi $\notin \mathcal{F}$.

$$y=2^1\cdot (0.1\overline{0110})_2$$
 $(t+1)$ esima cifra $f(y)=2^1\cdot (0.1011)_2$

e) Calcola $z = \tilde{x} + 2\tilde{y} \in \tilde{z} = \tilde{x}fl(t)2\tilde{y}$.

$$\tilde{x} = 2^{-2} \cdot (0.1101)_2, \qquad \tilde{y} = 2^1 \cdot (0.1011)_2$$

$$\tilde{x} + 2\tilde{y} = 2^{-2} \cdot (0.1101)_2 + 2^2 \cdot (0.1011)_2$$

$$= 2^2 \cdot (0.00001101)_2 + 2^2 \cdot (0.1011)_2$$

$$= 2^2 \cdot (0.10111101)_2 \quad \text{numero in aritmetica esatta}$$

Sappiamo che $\tilde{z} = fl(z)$

$$0.1011 + 0.0001 = 0.1100$$

Quindi
$$\tilde{z} = fl(z) = 2^2 \cdot (0.1100)_2$$

Analisi degli errori

Errore inerente Relativo al condizionamento. Quando l'errore è sensibile al problema che abbiamo sui dati, quanto il problema amplifica gli errori in input.

Errore algoritmico Relativo alla stabilità. Differenza tra il risultato in aritmetica esatta e in aritmetica di macchina. Un algoritmo è stabile quando l'errore algoritmico è molto minore di quello della macchina.

1.2 Esercizio 2

Si vuole calcolare y = f(x).

a) Definsci l'errore inerente e il condizionamento.

$$condizionamento = \frac{|err_{relativo}(output)|}{|err_{relativo}(intput)|}$$

b) Studia il condizionamento di $f(x) = \frac{2+x^2}{x^2-2}$.

Utilizzando Taylor si può scrivere

$$\operatorname{cond}_{f}(x) = \frac{|x| \cdot |f'(x)|}{f|x|}$$
$$f'(x) = \frac{2x(x^{2} - 2) - 2x(2 + x^{2})}{(x^{2} - 2)^{2}} = \frac{-8x}{(x^{2} - 2)^{2}}$$

$$\operatorname{cond}_{f}(x) = \frac{|x| \cdot \left| \frac{8x}{(x^{2} - 2)^{2}} \right|}{\left| \frac{2 + x^{2}}{x^{2} - 2} \right|}$$

$$= \frac{|x| \cdot |8x|}{(x^{2} - 2)^{2}} \cdot \frac{|x^{2} - 2|}{2 + x^{2}}$$

$$= \frac{8x^{2}}{(x^{2} - 2)^{2}|x^{2} - 2|}$$

A questo punto bisogna dire se è ben condizionato o mal condizionato. Il problema è mal condizionato se $x^2 \simeq 2$, ovvero $x \simeq \sqrt{2}$ (e quindi tende a $+\infty$), ben condizionato altrimenti.

- c) Definsci l'errore algoritmico e il concetto di stabilità.
- d) Studia la stabilità dell'algoritmo che valuta f(x) nel punto x (ovvero per quali valori di x l'algoritmo è stabile o meno).

Si intendono le seguenti operazioni elementari:

Il delta di un'operazione generica (δ_{op}) si calcola

$$\delta_{op} = \frac{|y(op)z - y(fl(op))z|}{|y(op)z|}$$

Ipotesi $|\delta_{op}| \leq u$. Si fa il primo addendo fratto il risultato dell'addizione:

$$c(x \to x^2) = \frac{x \cdot 2x}{x^2} = 2$$

$$c(y \to y + 2) = \frac{y \cdot 1}{y + 2} = \frac{y}{y + 2}$$

$$c\left(y \to \frac{y}{z}\right) = \frac{y \cdot \frac{1}{z}}{\frac{y}{z}} = \frac{\frac{y}{z}}{\frac{y}{z}} = 1$$

$$c\left(z \to \frac{y}{z}\right) = \frac{z \cdot \left(-\frac{y}{z^2}\right)}{\frac{y}{z}} = \frac{-y \cdot z}{z^2} = \frac{z}{y} = -1$$

$$x^2$$

$$err_{alg} = \delta_{/} + 1\left(\delta_{+} + \frac{x^{2}}{x^{2} + 2} \cdot (\delta_{*} + 2\delta)\right)$$

$$\delta_{/} - 1\left(\delta_{-} + \frac{x^{2}}{x^{2} - 2} \cdot (\delta_{*} + 2\delta)\right)$$

$$\Rightarrow |err_{alg}| = |\delta_{/}| + |\delta_{+}| + \frac{x^{2}}{x^{2} + 2} \cdot (|\delta_{*}| + 2|\delta|)$$

$$|\delta_{/}| + |\delta_{-}| + \frac{x^{2}}{x^{2} - 2} \cdot (|\delta_{*}| + 2|\delta|)$$

$$|err_{alg}| \le u + u + u + 2u + u + \frac{x^{2}}{|x^{2} - 2|} \cdot 3u = 6u + \frac{x^{2}}{|x^{2} - 2|} \cdot 3u$$

Vogliamo evitare che il denominatore ($|x^2-2|$) si annulli. Quindi l'algoritmo è instabile se $x^2\simeq 2$, cioè $x\simeq \sqrt{2}$ o $x\simeq -\sqrt{2}$, stabile altrimenti.

e) Studia il condizionamento di $g(x)=\sqrt{f(x)}$ e la stabilità dell'algoritmo che valuta g(x) in x. Sappiamo che $g(x)=\sqrt{\frac{2+x^2}{x^2-2}}$.

$$cond_g(x) = \frac{|x| \cdot |g'(x)|}{|g(x)|}$$
$$g'(x) = \frac{f'(x)}{2g(x)} = \frac{f'(x)}{2\sqrt{f(x)}}$$
$$\Rightarrow cond_g(x) = \frac{|x| \cdot \frac{|f'(x)|}{2\sqrt{f(x)}}}{\sqrt{f(x)}} = \frac{|x| \cdot |f'(x)|}{2 \cdot |f(x)|} = \frac{1}{2}$$

Se questo è piccolo, anche g lo è, quindi g è condizionato anche quando questo lo è. La funzione g(x) è ben condizionata quando lo è f(x).

$$\begin{split} c(y \to \sqrt{y}) &= \frac{y \cdot \frac{1}{2\sqrt{y}}}{\sqrt{y}} = \frac{y}{2|y|} \\ |c(y \to \sqrt{y})| &= \frac{1}{2} \cdot \frac{|y|}{|y|} = \frac{1}{2} \\ err_{alg}(g) &= \delta_{\sqrt{}} + \frac{f(x)}{2|f(x)|} \cdot err_{alg}(f) \\ \Rightarrow |err_{alg}(g)| &\leq u + \frac{1}{2}|err_{alg}(f)| \end{split}$$

L'algoritmo di calcolo g è stabile quando lo è quello che calcola f, cioè quando $x^2 \not\simeq 2$.

1.3 Esercizio 3

Sia $\mathcal{F} = \mathcal{F}$ (2, t, p_{min} , p_{max}) con arrotondamento.

a) Determina i parametri sapendo che $p_{max} = t$, \mathcal{F} contiene 64 elementi positivi, e $real_{max} = 15$.

$$\mathcal{F} = \{0\} \cup \{\pm (d_1 B^{-1} + \dots + d_t B^{-t}) B^p \mid \begin{cases} 1 \le d_1 \le B - 1 \\ 0 \le d_2, \dots, d_t \le B - 1 \\ -p_{min} \le p \le p_{max} \end{cases}$$

$$(B-1)B^{t-1}(p_{min}+p_{max}+1)=64 \Rightarrow 2^{t-1}(p_{min}+t+1)=64$$

$$real_{max} = B^{p_{max}}(B-1)(B^{-1} + \dots + B^{-t})$$

$$= B^{p_{max}}(1 - B^{-t})$$

$$= 2^{t}(1 - 2^{-t})$$

$$= 2^{t} - 1$$

$$\Rightarrow 2^{t} = 16$$

$$\Rightarrow t = 4, \ p_{max} = t = 4$$

$$2^{3}(p_{min} + 5) = 64$$

$$p_{min} + 5 = \frac{64}{8} = 8$$

$$p_{min} = 3$$

b) Dopo aver definito la precisione di macchina, determina quella di \mathcal{F} .

Nel caso di arrotondamento, $u = \frac{B^{1-t}}{2}$. Nel caso di \mathcal{F} , $u = \frac{2^{1-4}}{2} = \frac{2^{-3}}{2} = 2^{-4}$.

c) Dato $x = \frac{1}{5}$, verifica $x \neq \mathcal{F}$ e trova $fl(x) \in \mathcal{F}$.

$$\tilde{x} = fl(x) = 2^{-2}(0.1101)_2$$

Come prima, perché abbiamo lo stesso numero di cifre della mantissa, abbiamo la stessa rappresentazione.

d) Dato $y = \frac{1}{3}$, verifica $y \notin \mathcal{F}$ e determina fl(y).

Abbiamo $y = 0.\overline{3}$

$$\begin{array}{c|cc}
0.\overline{3} & 0 \\
0.\overline{6} & 0 \\
1.\overline{3} & 1 \\
0.\overline{6} & 0
\end{array}$$

$$\Rightarrow y = (0.\overline{01})_2 \notin \mathcal{F}$$
$$= (0.010101...)_2$$

Scrivere con 0 prima della virgola ma con 1 come prima cifra decimale \Rightarrow spostare tutto di una cifra a sinistra \Rightarrow

$$y = 2^{-1}(0.101010...)_2$$
$$= 2^{-1}(0.\overline{10})_2$$

$$fl(y) = 2^{-1}(0.1011)_2$$

e) Calcola x+y=z e determina $\tilde{z}=fl(z).$

$$z = x + y = \frac{1}{3} + \frac{1}{5} = \frac{8}{15}$$

$$z = (0.\overline{1000})_2$$

= $(0.10001000...)_2$
 $\tilde{z} = (0.1001)_2$

- e) Calcola $\tilde{\omega} = \tilde{x}fl(\bigoplus)\tilde{y}$ e trova la relazione tra $\tilde{\omega}$ e \tilde{z} .
- f) Definisci i numeri denormalizzati. Quali sono quelli per \mathcal{F} ?

 I numeri denormalizati sono numeri che non fanno parte dell'insieme originario.

$$\mathcal{G} = \{ \pm (d_2 \cdot 2^{-2} + d_3 \cdot 2^{-3} + d_4 \cdot 2^{-4}) \cdot 2^{-3} \mid d_2, d_3, d_4 \in \{0, 1\} \}$$

2 Esercitazione 19 Marzo 2019

$2.1\quad Esame\ 13\ Feb\ 2017$

Esercizio 1) B = 2, numero di elementi positivi = 64.

$$64 = (B-1)B^{t-1}(1+p_{min}+p_{max})$$

$$64 = 2^{t-1}(1 + p_{min} + p_{max})$$