# Importance Sampling Ratio Placement for Gradient-TD Methods

**Andy Patterson** 





# Roadmap

- Importance Sampling (warm-up)
- Off-policy TD(0) isr placement
- IS variance
- Gradient-TD placements

## Importance Sampling

Sample:  $x \sim b$ 

Estimate:  $\mathbb{E}_{\pi}[X]$ 

## Importance Sampling

Sample:  $x \sim b$ 

Estimate:  $\mathbb{E}_{\pi}[X]$ 

## Importance Sampling

Sample:  $x \sim b$ 

Estimate:  $\mathbb{E}_{\pi}[X]$ 

$$\mathbb{E}_{\pi}[X]$$

$$\mathbb{E}_{\pi}[X] \doteq \sum_{x \in X} x \pi(x)$$

$$\mathbb{E}_{\pi}[X] \doteq \sum_{x \in X} x \pi(x)$$

$$= \sum_{x \in X} x \pi(x) \frac{b(x)}{b(x)}$$

$$\mathbb{E}_{\pi}[X] \doteq \sum_{x \in X} x \pi(x)$$

$$= \sum_{x \in X} x \pi(x) \frac{b(x)}{b(x)}$$

$$= \sum_{x \in X} x \frac{\pi(x)}{b(x)} b(x)$$

$$\mathbb{E}_{\pi}[X] \doteq \sum_{x \in X} x \pi(x)$$

$$= \sum_{x \in X} x \pi(x) \frac{b(x)}{b(x)}$$
Importance sampling ratio
$$= \sum_{x \in X} x \frac{\pi(x)}{b(x)} b(x)$$

$$\mathbb{E}_{\pi}[X] \doteq \sum_{x \in X} x \pi(x)$$

$$= \sum_{x \in X} x \pi(x) \frac{b(x)}{b(x)}$$

$$= \sum_{x \in X} x \rho(x) b(x)$$

$$\mathbb{E}_{\pi}[X] = \sum_{x \in X} x \rho(x) b(x)$$

$$= \mathbb{E}_{b}[X \rho(X)]$$

$$\mathbb{E}_{\pi}[X] = \sum_{x \in X} x \rho(x) b(x)$$

$$= \mathbb{E}_{b}[X \rho(X)]$$

# Roadmap

- Importance Sampling
- Off-policy TD(0) isr placement
- IS variance
- Gradient-TD placements

# Roadmap

- Importance Sampling
- Off-policy TD(0) isr placement
- IS variance
- Gradient-TD placements

## Off-Policy TD(0)

$$\delta = \rho(r + \gamma v') - v$$

$$w \leftarrow w + \alpha \delta x$$

## Off-Policy TD(0)

$$\delta = \rho(r + \gamma v') - v$$

$$\delta = \rho(r + \gamma v') - v$$
  $\delta^+ = \rho(r + \gamma v' - v)$ 

## Off-Policy TD(0)

$$\delta = \rho(r + \gamma v') - v$$

$$\delta = \rho(r + \gamma v') - v \qquad \delta^+ = \rho(r + \gamma v' - v)$$

Precup, Sutton, Singh (2000)

Precup, Sutton, Dasgupta (2001)

Maei (2011)

van Hasselt, Mahmood, Sutton (2014)

Mahmood, van Hasselt, Sutton (2014)

td\_0:  $\delta^+ = \rho(r + \gamma v' - v)$ 

 $td_1: \delta = \rho(r + \gamma v') - v$ 



$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_b[\delta] = \mathbb{E}_b[\rho(r + \gamma v') - v]$$

$$\mathbb{E}_b[\delta^+] = \mathbb{E}_b[\rho(r + \gamma v' - v)]$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_{b}[\delta] = \mathbb{E}_{b}[\rho(r + \gamma v') - v] \qquad \mathbb{E}_{b}[\delta^{+}] = \mathbb{E}_{b}[\rho(r + \gamma v' - v)]$$
$$= \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[v] \qquad = \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[\rho v]$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_{b}[\delta] = \mathbb{E}_{b}[\rho(r + \gamma v') - v] \qquad \mathbb{E}_{b}[\delta^{+}] = \mathbb{E}_{b}[\rho(r + \gamma v' - v)]$$
$$= \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[v] \qquad = \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[\rho v]$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_{b}[\delta] = \mathbb{E}_{b}[\rho(r + \gamma v') - v] \qquad \mathbb{E}_{b}[\delta^{+}] = \mathbb{E}_{b}[\rho(r + \gamma v' - v)]$$
$$= \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[v] \qquad = \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[\rho v]$$

$$\mathbb{E}_b[v] \quad \mathbb{E}_b[\rho v]$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_{b}[\delta] = \mathbb{E}_{b}[\rho(r + \gamma v') - v] \qquad \mathbb{E}_{b}[\delta^{+}] = \mathbb{E}_{b}[\rho(r + \gamma v' - v)]$$
$$= \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[v] \qquad = \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[\rho v]$$

$$\mathbb{E}_b[v] \stackrel{?}{=} \mathbb{E}_b[\rho v]$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_{b}[\delta] = \mathbb{E}_{b}[\rho(r + \gamma v') - v] \qquad \mathbb{E}_{b}[\delta^{+}] = \mathbb{E}_{b}[\rho(r + \gamma v' - v)]$$
$$= \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[v] \qquad = \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[\rho v]$$

$$\mathbb{E}_b[v] = \mathbb{E}_b[\rho v]$$

$$v = v\mathbb{E}_b[\rho]$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_{b}[\delta] = \mathbb{E}_{b}[\rho(r + \gamma v') - v] \qquad \mathbb{E}_{b}[\delta^{+}] = \mathbb{E}_{b}[\rho(r + \gamma v' - v)]$$
$$= \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[v] \qquad = \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[\rho v]$$

$$\mathbb{E}_{b}[v] \stackrel{?}{=} \mathbb{E}_{b}[\rho v] \qquad \mathbb{E}_{b}[\rho] = \sum \frac{\pi(x)}{b(x)}b(x)$$

$$v = v\mathbb{E}_{b}[\rho] \qquad = \sum \pi(x) = 1$$

$$\delta = \rho(r + \gamma v') - v$$

$$\delta^+ = \rho(r + \gamma v' - v)$$

$$\mathbb{E}_{b}[\delta] = \mathbb{E}_{b}[\rho(r + \gamma v') - v] \qquad \mathbb{E}_{b}[\delta^{+}] = \mathbb{E}_{b}[\rho(r + \gamma v' - v)]$$
$$= \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[v] \qquad = \mathbb{E}_{b}[\rho(r + \gamma v')] - \mathbb{E}_{b}[\rho v]$$

$$\mathbb{E}_{b}[v] \stackrel{?}{=} \mathbb{E}_{b}[\rho v]$$

$$v = v \mathbb{E}_{b}[\rho]$$

$$v = v$$

#### 5k steps



#### 50k steps



#### 500k steps



# Roadmap

- Importance Sampling
- Off-policy TD(0) isr placement
- IS variance
- Gradient-TD placements

# Roadmap

- Importance Sampling
- Off-policy TD(0) isr placement
- IS variance
- Gradient-TD placements





# **Control Variates**

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

# **Control Variates**

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

Variance Control

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$



$$X^* = X + c(Y - \mathbb{E}_b[Y])$$



$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$X \doteq \rho(r + \gamma v') - v$$

$$Y \doteq \rho v$$

$$c \doteq -1$$

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$X \doteq \rho(r + \gamma v') - v$$

$$Y \doteq \rho v$$

$$c \doteq -1$$

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$
$$= \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$X \doteq \rho(r + \gamma v') - v$$
$$Y \doteq \rho v$$

$$c \doteq -1$$

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$
$$= \rho(r + \gamma v') - v + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$X \doteq \rho(r + \gamma v') - v$$
$$Y \doteq \rho v$$

 $c \doteq -1$ 

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$X \doteq \rho(r + \gamma v') - v$$

$$Y \doteq \rho v$$

$$c \doteq -1$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$
$$= \rho(r + \gamma v') - v + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$\mathbb{E}_{\pi}[v] = v$$

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$
$$= \rho(r + \gamma v') - v + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$X \doteq \rho(r + \gamma v') - v$$
$$Y \doteq \rho v$$

 $c \doteq -1$ 

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + v - \rho v$$

$$X \doteq \rho(r + \gamma v') - v$$

$$Y \doteq \rho v$$

$$c \doteq -1$$

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + v - \rho v$$

$$= \rho(r + \gamma v') - \rho v$$

$$X \doteq \rho(r + \gamma v') - v$$

$$Y \doteq \rho v$$

$$c \doteq -1$$

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + v - \rho v$$

$$= \rho(r + \gamma v') - \rho v$$

$$= \rho(r + \gamma v' - v)$$

$$X \doteq \rho(r + \gamma v') - v$$

$$Y \doteq \rho v$$

$$c \doteq -1$$

$$X^* = X + c(Y - \mathbb{E}_b[Y])$$

$$\delta^* = \delta + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + (-1)(\rho v - \mathbb{E}_b[\rho v])$$

$$= \rho(r + \gamma v') - v + v - \rho v$$

$$= \rho(r + \gamma v') - \rho v$$

$$= \rho(r + \gamma v' - v)$$

$$= \delta^+$$

$$X \doteq \rho(r + \gamma v') - v$$

$$Y \doteq \rho v$$

$$c \doteq -1$$

# Roadmap

- Importance Sampling
- Off-policy TD(0) isr placement
- IS variance
- Gradient-TD placements

# Roadmap

- Importance Sampling
- Off-policy TD(0) isr placement
- IS variance
- Gradient-TD placements

$$\delta = \rho_t \left[ r_{t+1} + \gamma (w_t^{\mathsf{T}} x_{t+1}) - (w_t^{\mathsf{T}} x_t) \right]$$

$$z_t \leftarrow \rho_{t-1} (\gamma \lambda z_{t-1} + x_t)$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - (h_t^{\mathsf{T}} x_t) x_t \right]$$

#### TDC

$$w_{t+1} \leftarrow w_t + \alpha \left[ \delta z_t - \rho_t \gamma (1 - \lambda) (h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

$$w_{t+1} \leftarrow w_t + \alpha \left[ (h_t^{\mathsf{T}} x_t) x_t - \rho_t \gamma (1 - \lambda) (h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

$$\delta = \rho_t \left[ r_{t+1} + \gamma (w_t^\top x_{t+1}) - (w_t^\top x_t) \right]$$

$$z_t \leftarrow \rho_{t-1} (\gamma \lambda z_{t-1} + x_t)$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - (h_t^\top x_t) x_t \right]$$

#### **TDC**

$$w_{t+1} \leftarrow w_t + \alpha \left[ \delta z_t - \rho_t \gamma (1 - \lambda) (h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

$$w_{t+1} \leftarrow w_t + \alpha \left[ (h_t^{\mathsf{T}} x_t) x_t - \rho_t \gamma (1 - \lambda) (h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

$$\delta = \rho_t \left[ r_{t+1} + \gamma (w_t^\top x_{t+1}) - (w_t^\top x_t) \right]$$

$$z_t \leftarrow \rho_{t-1} (\gamma \lambda z_{t-1} + x_t)$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - (h_t^\top x_t) x_t \right]$$

#### **TDC**

$$w_{t+1} \leftarrow w_t + \alpha \left[ \delta z_t - \rho_t / (1 - \lambda)(h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

$$w_{t+1} \leftarrow w_t + \alpha \left[ (h_t^{\mathsf{T}} x_t) x_t - \rho_t / (1 - \lambda) (h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

$$\delta = \rho_t \left[ r_{t+1} + \gamma (w_t^{\mathsf{T}} x_{t+1}) - (w_t^{\mathsf{T}} x_t) \right]$$

$$z_t \leftarrow \rho_{t-1} (\gamma \lambda z_{t-1} + x_t)$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - (h_t^{\mathsf{T}} x_t) x_t \right]$$

#### **TDC**

$$w_{t+1} \leftarrow w_t + \alpha \left[ \delta z_t - \rho_t / (1 - \lambda)(h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

$$w_{t+1} \leftarrow w_t + \alpha \left[ (h_t^{\mathsf{T}} x_t) x_t - \rho_t / (1 - \lambda) (h_t^{\mathsf{T}} z_t) x_{t+1} \right]$$

1: correct as little as possible

**TDC** 

a:  $\nabla_h$ 

**b**:  $\delta_h$ 

c:  $\delta_{\!\scriptscriptstyle w}$ 

GTD2

a:  $\nabla_h$ 

**b**:  $\delta_h$ 

c:  $abla_w$ 

1: correct as little as possible

### **TDC**

a: 
$$\nabla_h$$

**b**:  $\delta_h$ 

c:  $\delta_w$ 

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - (h_t^{\mathsf{T}} x_t) x_t \right]$$

#### GTD2

a:  $\nabla_h$ 

**b**:  $\delta_h$ 

c:  $abla_w$ 

#### 1: correct as little as possible



a: 
$$\nabla_h$$

**b**:  $\delta_h$ 

TDC
$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

GTD2

a: 
$$\nabla_h$$

**b**:  $\delta_h$ 

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

$$\mathbf{b}$$
:  $\delta_h$ 

$$\mathbf{c}$$
:  $\delta_w$ 

**a:** 
$$\nabla_h$$
 
$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^\top x_t) x_t \right]$$
**b:**  $\delta_h$  
$$\delta = \rho_t \left[ r_{t+1} + \gamma (w_t^\top x_{t+1}) - (w_t^\top x_t) \right]$$

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\nabla_w$$

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

a: 
$$\nabla_h$$
b:  $\delta_h$ 
c:  $\delta_w$ 

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^\top x_t) x_t \right]$$

$$\delta = \rho_t \left[ r_{t+1} + \gamma (w_t^\top x_{t+1}) \right] - (w_t^\top x_t)$$

a: 
$$\nabla_h$$

$$\mathbf{b} \colon \delta_h$$

c: 
$$\nabla_w$$

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

**a:** 
$$\nabla_h$$
 
$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^\mathsf{T} x_t) x_t \right]$$
**b:**  $\delta_h$  
$$\delta = \rho_t \left[ r_{t+1} + \gamma (w_t^\mathsf{T} x_{t+1}) \right] - (w_t^\mathsf{T} x_t)$$

$$\delta = \rho_t [r_{t+1} + \gamma (w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$$

**C:** 
$$\delta_w$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1}) - (w_t^{\mathsf{T}} x_t)]$ 

- a:  $\nabla_h$
- **b**:  $\delta_h$

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

a: 
$$\nabla_h$$
b:  $\delta_h$ 

$$\delta = \rho_t \left[ r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1}) \right] - (w_t^{\mathsf{T}} x_t)$$
c:  $\delta_w$ 

$$\delta = \rho_t \left[ r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1}) \right] - (w_t^{\mathsf{T}} x_t)$$

$$\delta = \rho_t [r_{t+1} + \gamma (w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$$

$$\delta = \rho_t [r_{t+1} + \gamma (w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$$

- a:  $\nabla_h$
- **b**:  $\delta_h$

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

**a:** 
$$\nabla_h$$
  $h_{t+1} \leftarrow h_t + \alpha_h [\delta z_t - \rho_t (h_t \cdot x_t) x_t]$   
**b:**  $\delta_h$   $\delta = \rho_t [r_{t+1} + \gamma (w_t^\top x_{t+1})] - (w_t^\top x_t)$ 

**C:** 
$$\delta_w$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$ 

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\nabla_w$$

**a:** 
$$\nabla_h$$
  $h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - (h_t^{\mathsf{T}} x_t) x_t \right]$ 

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

$$\delta = \rho_t [r_{t+1} + \gamma (w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$$

**a:** 
$$\nabla_h$$
  $h_{t+1} \leftarrow h_t + \alpha_h [\delta z_t - \rho_t (h_t^{\top} x_t) x_t]$   
**b:**  $\delta_h$   $\delta = \rho_t [r_{t+1} + \gamma (w_t^{\top} x_{t+1})] - (w_t^{\top} x_t)$   
**c:**  $\delta_w$   $\delta = \rho_t [r_{t+1} + \gamma (w_t^{\top} x_{t+1})] - (w_t^{\top} x_t)$ 



 $\mathbf{b}$ :  $\delta_h$ 

c:  $\nabla_w$ 



#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

**b**: 
$$\delta_h^n$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^T x_{t+1})] - (w_t^T x_t)$ 

**C:** 
$$\delta_w$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^T x_{t+1})] - (w_t^T x_t)$ 

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\nabla_w$$

**a:** 
$$\nabla_h$$
  $h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^\top x_t) x_t \right]$ 

**b**: 
$$\delta_h$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1}) - (w_t^{\mathsf{T}} x_t)]$ 

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

**a:** 
$$\nabla_h$$
  $h_{t+1} \leftarrow h_t + \alpha_h [\delta z_t - \rho_t (h_t \cdot x_t) x_t]$   
**b:**  $\delta_h$   $\delta = \rho_t [r_{t+1} + \gamma (w_t \cdot x_{t+1})] - (w_t \cdot x_t)$ 

**C:** 
$$\delta_w$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$ 

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\nabla_w$$

**a:** 
$$\nabla_h$$
  $h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^\top x_t) x_t \right]$ 

**b**: 
$$\delta_h$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$ 

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^\mathsf{T} x_t) x_t \right]$$

**b**: 
$$\delta_h^n$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^T x_{t+1})] - (w_t^T x_t)$ 

**C:** 
$$\delta_w$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^T x_{t+1})] - (w_t^T x_t)$ 

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\nabla_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

**b**: 
$$\delta_h$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$ 

$$w_{t+1} \leftarrow w_t + \alpha \left[ (h_t^\top x_t) x_t - \rho_t \gamma (1 - \lambda) (h_t^\top z_t) x_{t+1} \right]$$

#### 1: correct as little as possible

#### **TDC**

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\delta_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

**b**: 
$$\delta_h^n$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^T x_{t+1})] - (w_t^T x_t)$ 

**C:** 
$$\delta_w$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^T x_{t+1})] - (w_t^T x_t)$ 

a: 
$$\nabla_h$$

**b**: 
$$\delta_h$$

c: 
$$\nabla_w$$

$$h_{t+1} \leftarrow h_t + \alpha_h \left[ \delta z_t - \rho_t (h_t^{\mathsf{T}} x_t) x_t \right]$$

**b**: 
$$\delta_h$$
  $\delta = \rho_t [r_{t+1} + \gamma(w_t^{\mathsf{T}} x_{t+1})] - (w_t^{\mathsf{T}} x_t)$ 

$$w_{t+1} \leftarrow w_t + \alpha \left[ \rho_t (h_t^\mathsf{T} x_t) x_t - \rho_t \gamma (1 - \lambda) (h_t^\mathsf{T} z_t) x_{t+1} \right]$$



**Target** Behavior

Right: 100% Right: 50%

Retreat: 0% Retreat: 50%

# **Tabular Collision**



**TDC** 

0: correct everything

1: correct as little as possible



# Binary Encoder Collision



**TDC** 

0: correct everything

1: correct as little as possible



TDC

0: correct everything

1: correct as little as possible





**Target** Behavior

Right: 100% Right: 50%

Retreat: 0% Retreat: 50%



**Target** Behavior

Right: 100% Right: 50%

Retreat: 0% Retreat: 50%



**Target** Behavior

Right: 100% Right: 25%

Retreat: 0% Retreat: 75%

TDC

0: correct everything

1: correct as little as possible





# Thanks for your time