SFH 7072

BIOFY®

Biomonitoring Sensor

Applications

 Health Monitoring (Heart Rate Monitoring, Pulse Oximetry)

Features:

- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- Multi chip package featuring two green, one red, one infrared emitter and two photodetectors
- Light Barrier to block optical crosstalk
- optimized for strong PPG signal
- Package size: (WxDxH) 7.5 mm x 3.9 mm x 0.9 mm

Ordering Information

Type Ordering Code SFH 7072 Q65112A1516

Maximum Ratings

Parameter	Symbol		Values
Operating temperature range	T _{op}	min.	-40 °C
		max.	85 °C
Storage temperature range	T _{stg}	min.	-40 °C
		max.	85 °C
ESD withstand voltage	V _{ESD}	max.	2 kV
acc. to ANSI/ESDA/JEDEC JS-001 - HBM			
Green Emitters			
Reverse voltage	V _R	max.	5 V
Forward current	I _{F (DC)}	max.	25 mA
Surge current	I _{FSM}	max.	300 mA
$t_p = 10 \ \mu s, \ D = 0$			
Red Emitter			
Reverse voltage	V_R	max.	12 V
Forward current	I _{F (DC)}	max.	40 mA
Surge current	I _{FSM}	max.	600 mA
$t_p = 100 \ \mu s, \ D = 0$			
Infrared Emitters			
Reverse voltage	V _R	max.	5 V
Forward current	I _{F (DC)}	max.	60 mA
Surge current	I _{FSM}	max.	1 A
$t_p = 100 \ \mu s, \ D = 0$			
Photodiode			
Reverse voltage	V _R	max.	16 V

Parameter	Symbol		Values
Green Emitter (single emitter)			
Peak wavelength	λ_{peak}	typ.	526 nm
$I_F = 20 \text{ mA}$			
Centroid Wavelength 6)	$\lambda_{ ext{centroid}}$	min.	520 nm
$I_F = 20 \text{ mA}$		typ.	530 nm
		max.	540 nm
Spectral bandwidth at 50% of I _{max}	Δλ	typ.	32 nm
$I_F = 20 \text{ mA}$			
Half angle	φ	typ.	± 60 °
Rise time	t _r	typ.	56 ns
I_F = 100 mA, t_p = 16 μ s, R_L = 50 Ω			
Fall time	t _f	typ.	56 ns
I_F = 100 mA, t_p = 16 μ s, R_L = 50 Ω			
Forward voltage 7)	V_{F}	typ.	3.0 V
$I_F = 20 \text{ mA}$		max.	3.4 V
Reverse current	I_R		not designed for
$V_R = 5 V$			reverse operation
Radiant intensity	l _e	typ.	3.8 mW / sr
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$			
Total radiant flux	Фе	typ.	11 mW
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$			
Temperature coefficient of brightness	TCı	typ.	-0.35 % / K
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$			
Temperature coefficient of wavelength	TC_λ	typ.	0.03 nm / K
$I_F = 20 \text{ mA}, -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$			
Temperature coefficient of voltage	TC _V	typ.	-3.6 mV / K
$I_F = 20 \text{ mA} - 10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$			

SFH 7072

Characteristics

Parameter	Symbol	Symbol	
Red Emitter			
Peak wavelength	λ_{peak}	typ.	660 nm
$I_F = 20 \text{ mA}$			
Centroid Wavelength 6)	$\lambda_{ ext{centroid}}$	min.	652 nm
$I_F = 20 \text{ mA}$		typ.	655 nm
		max.	658 nm
Spectral bandwidth at 50% of I _{max}	Δλ	typ.	17 nm
$I_F = 20 \text{ mA}$			
Half angle	φ	typ.	± 60 °
Rise time	t _r	typ.	17 ns
I_F = 100 mA, t_p = 16 μ s, R_L = 50 Ω			
Fall time	t _f	typ.	17 ns
I_F = 100 mA, t_p = 16 μ s, R_L = 50 Ω			
Forward voltage 7)	V _F	typ.	2.1 V
$I_F = 20 \text{ mA}$		max.	2.8 V
Reverse current	I_{R}		not designed for
$V_R = 12V$			reverse operation
Radiant intensity	l _e	typ.	4.8 mW / sr
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$			
Total radiant flux	Фе	typ.	14 mW
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$			
Temperature coefficient of wavelength	TC_λ	typ.	0.13 nm / K
$I_F = 20 \text{ mA}, -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$			

Parameter	Symbol		Values	
Infrared Emitter				
Peak wavelength	λ_{peak}	typ.	950 nm	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$				
Centroid Wavelength 6)	$\lambda_{ ext{centroid}}$	min.	930 nm	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$		typ.	940 nm	
		max.	950 nm	
Spectral bandwidth at 50% of I _{max}	Δλ	typ.	42 nm	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$				
Half angle	φ	typ.	± 60 °	
Rise time (10% and 90%)	t _r	typ.	16 ns	
I_F = 100 mA, t_p = 16 μ s, R_L = 50 Ω				
Fall time (10% and 90%)	t _f	typ.	16 ns	
I_F = 100 mA, t_p = 16 μ s, R_L = 50 Ω				
Forward voltage 7)	V _F	typ.	1.3 V	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$		max.	1.8 V	
Reverse current	I _R		Not designed for	
$V_R = 5 V$			reverse operation	
Radiant intensity	le	typ	3.9 mW / sr	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$				
Total radiant flux	Фе	typ.	11 mW	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$				
Temperature coefficient brightness	TCı	typ.	0.3 % / K	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$				
Temperature coefficient of wavelength	TC _{λ}	typ.	0.25 nm / K	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$				
Temperature coefficient of voltage	TC _V	typ.	-0.8 mV / K	
$I_F = 20 \text{ mA}, t_p = 20 \text{ ms}$				

arameter Symbol		Values	
Broadband Detector			
Wavelength of max. sensitivity	λ _{S max}	typ.	960 nm
Spectral range of sensitivity	λ _{10%}	typ.	410 1100 nm
Photocurrent	l _P	typ.	0.4 μΑ
E_e = 0.1 mW/cm ² , λ = 530 nm, V_R = 5 V			
Photocurrent	l _P	typ.	0.6 μΑ
E_e = 0.1 mW/cm ² , λ = 655 nm, V_R = 5 V			
Photocurrent	l _P	typ.	1.1 µA
E_e = 0.1 mW/cm ² , λ = 940 nm, V_R = 5 V			
Radiation sensitive area	А	typ.	0.88 mm ²
Dimensions of radiant sensitive area	LxW	typ.	0.89 x 0.89
			mm x mm
Half angle	φ	typ.	± 60 °
Dark current	I _R	typ.	0.05 nA
$V_R = 5 V, E = 0$		max.	10 nA
Open-circuit voltage	Vo	typ.	211 mV
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 530 \text{nm}$			
Open-circuit voltage	Vo	typ.	249 mV
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 655 \text{nm}$			
Open-circuit voltage	Vo	typ.	266 mV
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 940 \text{nm}$			
Short-circuit current	Isc	typ.	0.4 μΑ
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 530 \text{nm}$			
Short-circuit current	Isc	typ.	0.6 μΑ
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 655 \text{nm}$			
Short-circuit current	Isc	typ.	1.1 μΑ
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 940 \text{nm}$			
Rise time	t_r	typ.	0.75 µs
$V_R = 5 \text{ V}, R_L = 50 \Omega, \lambda = 940 \text{ nm}$			
Fall time	t_f	typ.	0.75 µs
$V_R = 5 \text{ V}, R_L = 50 \Omega, \lambda = 940 \text{ nm}$			
Forward voltage	V _F	typ	1.16 V
$I_F = 100 \text{ mA}, E = 0$			
Capacitance	C ₀	typ.	4.2 pF
$V_R = 5 V, f = 1 MHz, E = 0$			

Parameter	Symbol		Values
IR-Cut Detector			
Wavelength of max. sensitivity	λ _{S max}	typ.	635 nm
Spectral range of sensitivity	λ _{10%}	typ.	402 694 nm
Photocurrent	l _P	typ.	1.1 µA
E_e = 0.1 mW/cm ² , λ = 530 nm, V_R = 5 V			
Radiation sensitive area	А	typ.	3.46 mm ²
Dimensions of radiant sensitive area	LxW	typ.	1.29 x 2.69
			mm x mm
Half angle	φ	typ.	± 57 °
Dark current	I _R	typ.	0.4 nA
$V_{R} = 5 \text{ V}, E_{e} = 0$		max.	2 nA
Open-circuit voltage	Vo	typ.	390 mV
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 530 \text{nm}$			
Short-circuit current	I _{SC}	typ.	1.1 µA
$E_e = 0.1 \text{ mW/cm}^2$, $\lambda = 530 \text{nm}$			
Rise time	t_r	typ.	40 ns
V_R = 5 V, R_L = 50 Ω , λ = 530 nm			
Fall time	t_f	typ.	40 ns
V_R = 5 V, R_L = 50 Ω , λ = 530 nm			
Forward voltage	V _F	typ	0.84 V
$I_F = 10 \text{ mA}, E = 0$			
Capacitance	C ₀	typ.	55 pF
$V_R = 5 \text{ V}, f = 1 \text{ MHz}, E = 0$			

Relative Spectral Emission 1), 2)

• true green: $I_{e,rel} = f(\lambda)$; $I_F = 20$ mA; $t_p = 20$ ms

Relative Spectral Emission 1), 2)

• hyper red: $I_{e,rel} = f(\lambda)$; $I_F = 20 \text{ mA}$; $t_p = 20 \text{ ms}$

Relative Spectral Emission 1), 2)

• infrared (940 nm): $I_{\rm e,rel}$ = f (λ); $I_{\rm F}$ = 20 mA; $t_{\rm p}$ = 20 ms

Radiation Characteristics 1), 2)

true green/ hyper red/ infrared: $I_{e,rel} = f(\phi)$

Relative Spectral Sensitivity 1), 2)

■ photodiode BB: S_{rel} = f(λ)

Relative Spectral Sensitivity 1), 2)

■ photodiode IR-Cut: $S_{rel} = f(\lambda)$

Directional Characteristics 1), 2)

photodiode broadband/ IR-cut: $S_{rel} = f(\phi)$; $\lambda = 530 \text{ nm}$

Forward current 1), 2)

• true green: $I_F = f(V_F)$; single pulse; $t_D = 100 \mu s$

Forward current 1), 2)

• hyper red: $I_F = f(V_F)$; single pulse; $t_p = 100 \mu s$

Forward current 1), 2)

• infrared (940 nm): $I_F = f(V_F)$; s.p.; $t_p = 100 \ \mu s$

Relative Total Radiant Flux 1), 2)

• true green: $\Phi_{\rm e}/\Phi_{\rm e}(20{\rm mA})$ = f (I_F); single pulse; t_p = 25 $\mu {\rm s}$

Relative Total Radiant Flux 1), 2)

Relative Total Radiant Flux 1), 2)

• hyper red: $\Phi_e/\Phi_e(20\text{mA}) = f(I_F)$; single pulse; $t_D = 25 \mu \text{s}$ infrared (940 nm): $\Phi_e/\Phi_e(20\text{mA}) = f(I_F)$; s. p.; $t_D = 25 \mu \text{s}$

Photocurrent 1), 2)

■ photodiode BB: $I_p = f(E_e)$; $\lambda = parameter$; $V_R = 5 \text{ V}$

Photocurrent 1), 2)

■ photodiode IR-Cut: $I_p = f(E_e)$; $\lambda = 530 \text{ nm}$; $V_R = 5 \text{ V}$

Dark Current 1), 2)

■ photodiode BB: $I_R = f(V_R)$; E = 0

Dark Current 1), 2)

■ photodiode IR-Cut: $I_R = f(V_R)$; E = 0

Capacitance 1), 2)

■ photodiode BB: $C = f(V_R)$; f = 1MHz; E = 0

Capacitance 1), 2)

■ photodiode IR-Cut: $C = f(V_R)$; f = 1MHz; E = 0

Max. Permissible Forward Current

• true green: $I_{F,max} = f(T_A)$

Max. Permissible Forward Current

• hyper red: $I_{F,max} = f(T_A)$

Max. Permissible Forward Current

• infrared (940 nm): $I_{F,max} = f(T_A)$

Permissible Pulse Handling Capability

• true green: $I_F = f(t_p)$; D = parameter; $T_A = 25$ °C

Permissible Pulse Handling Capability

• hyper red: I_F = f (t_p); D = parameter; T_A = 25°C

Permissible Pulse Handling Capability

• infrared (940 nm): $I_F = f(t_p)$; D = parameter; $T_A = 25$ °C

Permissible Pulse Handling Capability

• true green: $I_F = f(t_p)$; D = parameter; $T_A = 85$ °C

Permissible Pulse Handling Capability

• hyper red: $I_F = f(t_p)$; D = parameter; $T_A = 85$ °C

Permissible Pulse Handling Capability

• infrared (940 nm): I_F = f (t_o); D = parameter; T_A = 85°C

Dimensional Drawing 3)

C63062-A4325-A1..-01

Further Information:

Approximate Weight: 44.0 mg

Pin	Description
1	PD1 (BB) Cathode
2	PD1 (BB) Anode
3	PD2 (IR-Cut) Cathode
4	IR LED Anode
5	Green 1 LED Anode
6	Green 1 LED Cathode
7	Red LED Anode
8	Red LED Cathode
9	IR LED Cathode
10	PD2 (IR-Cut) Anode
11	Green 2 LED Anode
12	Green 2 LED Cathode

Recommended Solder Pad 3)

Component Location on Pad

E062.3010.217-01

Reflow Soldering Profile

Product complies to MSL Level 4 acc. to JEDEC J-STD-020E

Profile Feature	Symbol	Pb	Pb-Free (SnAgCu) Assembly		
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat*)	'		2	3	K/s
25 °C to 150 °C					
Time t _s	t_s	60	100	120	S
T_{Smin} to T_{Smax}					
Ramp-up rate to peak*)			2	3	K/s
T_{Smax} to T_{P}					
Liquidus temperature	T_{L}		217		°C
Time above liquidus temperature	$t_{\scriptscriptstyle \perp}$		80	100	S
Peak temperature	T_{P}		245	260	°C
Time within 5 °C of the specified peak	t _P	10	20	30	S
temperature T _P - 5 K					
Ramp-down rate*			3	6	K/s
T _P to 100 °C					
Time				480	S
25 °C to T _P					

All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Taping 3)

C63062-A4325-B2 -02

Tape and Reel 4)

Reel Dimensions

Α	W	N_{min}	W ₁	$W_{2\text{max}}$	Pieces per PU
180 mm	16 + 0.3 / - 0.1 mm	60/100 mm	16.4 + 2 mm	22.4 mm	1500

Barcode-Product-Label (BPL)

Dry Packing Process and Materials 3)

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on the OSRAM OS website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

OSRAM OS products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using OSRAM OS components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and buyer and /or customer will analyze and coordinate the customer-specific request between OSRAM OS and buyer and/or customer.

Glossary

- 1) Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- 2) **Testing temperature:** TA = 25°C (unless otherwise specified)
- 3) **Tolerance of Measure:** Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- 4) Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.
- 5) **Reverse Operation:** This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
- 6) Wavelength: The wavelengths are measured with a tolerance of ±1 nm.
- 7) Forward Voltage: The forward voltages are measured with a tolerance of ±0.1 V.
- 8) Brightness: The brightness values are measured with a tolerance of ±11%.
- 9) **Photocurrent:** The photocurrent values are measured (by irradiating the devices with a homogenous light source and applying a voltage to the device) with a tolerance of ±11 %.

SFH 7072

Revision	Revision History			
Version	Date	Change		
1.1	2019-04-24	Characteristics		
1.2	2020-07-10	Derating (Diagrams) Schematic Transportation Box Dimensions of Transportation Box		
1.3	2021-04-27	Characteristics New Layout		
1.4	2021-08-12	Features		

Published by OSRAM Opto Semiconductors G Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

