Template Week 1 – Bits & Bytes

Student number:571755

Assignment 1.1: Bits & Bytes intro

What are Bits & Bytes?

- Een bit is de kleinste eenheid van digitale informatie: een 0 of 1.
- Een byte bestaat uit 8 bits en wordt gebruikt om gegevens op te slaan, zoals een teken of een getal.

What is a nibble?

Een nibble is een halve byte, oftewel 4 bits

What relationship does a nibble have with a hexadecimal value?

Een hexadecimaal cijfer (0-9, A-F) kan precies worden weergegeven met een nibble (4 bits). Bijvoorbeeld:

Binair: 1010

• Hexadecimaal: A

Why is it wise to display binary data as hexadecimal values?

Hexadecimaal is compacter en makkelijker te lezen dan binaire gegevens. In plaats van lange reeksen van 0's en 1's, kun je dezelfde waarde in kortere tekens schrijven.

What kind of relationship does a byte have with a hexadecimal value?

Een byte (8 bits) kan worden weergegeven met twee hexadecimale cijfers. Bijvoorbeeld:

Binair: 11010110

• Hexadecimaal: D6

An IPv4 subnet is 32-bit, show with a calculation why this is the case.

Een IPv4-adres bestaat uit 4 bytes (bijvoorbeeld 192.168.1.1).

- 1 byte = 8 bits.
- 4 bytes = 4 × 8= 324
 Daarom is een IPv4-subnet 32-bits lang.

Assignment 1.2: Your favourite colour

Hexadecimal colour code:

De RGB-waarde van donkerblauw met de hex-code #00008B is:

RGB(0, 0, 139)

- R (rood): 0 → Geen rood aanwezig.
- **G (groen): 0** → Geen groen aanwezig.
- **B (blauw): 139** → Een sterke hoeveelheid blauw.

Dit geeft de kleur donkerblauw in het RGB-kleursysteem.

Assignment 1.3: Manipulating binary data

Colour	Colour code hexadecimaal (RGB)	Big Endian	Little Endian
RED	#FF0000	FF 00 00	00 00 FF
GREEN	#00FF00	00 FF 00	00 FF 00
BLUE	#0000FF	00 00 FF	FF 00 00
WHITE	#FFFFF	FF FF FF	FF FF FF
Favourite (previous assignment)	#00008B	00 00 8B	8B 00 00

Screenshot modified BMP file in hex editor:

Bonus point assignment – week 1

Convert your student number to a hexadecimal number and a binary number.

Explain in detail that the calculation is correct. Use the PowerPoint slides of week 1.

We delen het getal herhaaldelijk door 2 en noteren de resten totdat de uitkomst 0 is.

- 1. **571755 ÷ 2** = 285877, rest = 1
- 2. **285877** ÷ **2** = 142938, rest = 1
- 3. **142938** \div **2** = 71469, rest = 0
- 4. **71469** ÷ **2** = 35734, rest = 1
- 5. **35734** ÷ **2** = 17867, rest = 0
- 6. **17867** ÷ **2** = 8933, rest = 1
- 7. **8933** \div **2** = 4466, rest = 1
- 8. **4466** ÷ **2** = 2233, rest = 0
- 9. **2233** \div **2** = 1116, rest = 1
- 10. **1116** ÷ **2** = 558, rest = 0
- 11. **558** \div **2** = 279, rest = 0
- 12. **279** ÷ **2** = 139, rest = 1
- 13. **139** \div **2** = 69, rest = 1
- 14. **69** \div **2** = 34, rest = 1
- 15. **34** ÷ **2** = 17, rest = 0
- 16. **17** ÷ **2** = 8, rest = 1
- 17. $8 \div 2 = 4$, rest = 0
- 18. $4 \div 2 = 2$, rest = 0
- 19. $2 \div 2 = 1$, rest = 0
- 20. **1** ÷ **2** = 0, rest = 1

De resten van onder naar boven:

571755 (decimaal) = 10001011001001111011 (binair)

We delen het getal herhaaldelijk door 16 en noteren de resten totdat de uitkomst 0 is. De resten worden weergegeven als hexadecimale cijfers (0–9, A–F).

- 1. **571755** ÷ **16** = 35734, rest = $11 \rightarrow B$
- 2. **35734** ÷ **16** = 2233, rest = $6 \rightarrow 6$
- 3. **2233** ÷ **16** = 139, rest = $9 \rightarrow 9$

```
4. 139 ÷ 16 = 8, rest = 11 \rightarrow B
```

5.
$$8 \div 16 = 0$$
, rest = $8 \rightarrow 8$

De resten van onder naar boven:

571755 (decimaal) = 8B96B (hexadecimaal)

Uitleg van calculation:

Binaire controle:

De binaire waarde kan worden gecontroleerd door de machten van 2 op te tellen: $10001011001001111011 = 219+216+215+213+211+210+27+25+24+23+21+2010001011001001111011 = 2^{19} + 2^{16} + 2^{15} + 2^{13} + 2^{11} + 2^{10} + 2^{7} + 2^{5} + 2^{4} + 2^{1} +$

De som hiervan geeft 571755.

Hexadecimale controle:

De hexadecimale waarde **8B96B** betekent: $(8\times164)+(11\times163)+(9\times162)+(6\times161)+(11\times160)(8 \times 16^4) + (11 \times 16^3) + (9 \times 16^4) + (11 \times 16^3) + (11 \times 16^4) + (11 \times 16^4$

Dit is gelijk aan 571755.

Ready? Save this file and export it as a pdf file with the name: week1.pdf