Biotite: a unifying open source computational biology framework in Python

Isaac Chung, Tanmay Thakral

Kunzmann, P., Hamacher, K. Biotite: a unifying open source computational biology framework in Python. *BMC Bioinformatics* 19, 346 (2018). https://doi.org/10.1186/s12859-018-2367-z

What is Biotite?

- open-source computational biology framework in Python
- bundles sequence analysis and structural bioinformatics
- high and fast performance
- fetches relevant reading and writing files
- efficient and intuitive analysis and manipulation of their data

N-Dimensional Array (Ndarray)

- multidimensional container of items of the same type and size
- number of dimensions and shape defined by tuple of N non-negative integers

Implementation

Biotite can be divided into 4 subpackages:

- 1. Sequence
- 2. Structure
- 3. Database
- 4. Application

Sequences Subpackage

- Tools for handling classical sequences (nucleotide and protein) and also protein structures or pharmacophores
- Contains:
 - Nucleotide and protein sequences
 - Alignments
 - Visualizations

Nucleotide and protein sequences

Nucleotide and protein sequences

A

```
>>> dna = NucleotideSequence ("ATGCGCTAG")
>>> print (dna)
ATGCGCTAG
>>> print (dna.get_alphabet())
['A', 'C', 'G', 'T']
>>> print (dna.code)
[0 3 2 1 2 1 3 0 2]
>>> print (dna.reverse().complement())
CTAGCGCAT
>>> print (dna.translate(complete=True))
MR*
```

Alignments

 \mathbf{B}

```
>>> seq1 = NucleotideSequence("TACA")
>>> seq2 = NucleotideSequence("AGAT")
>>> mat = (SubstitutionMatrix.
           std_nucleotide_matrix())
. . .
>>> alignments = align_optimal(seq1, seq2, mat)
>>> ali = alignments[0]
>>> print(ali)
TACA-
-AGAT
>>> print(ali.trace)
[[0 -1]
 [ 1 0]
 [2 1]
 [ 3 2]
 [-1 \ 3]
```

Visualiser

Streptavidin

Avidin	М	v	н	Α	т	s	Р	L	L	L	L	L	L	L	s	L	Α	L	V	Α	P	G	L	S	A	R	-	-	-	-	-	-	26	5
Streptavidin	-	-	_	-	-	_	-	-	-	_	_	_	_	=	_	-	-	-	=	D	P	S	K	E	s	K	A	Q	A	Α	٧	Α	13	3
Avidin																											-				Y		58	3
Streptavidin	E	A	G	1	T	G	Т	W	Υ	N	Q	L	G	S	Т	F	1	٧	т	A	-	N	P	D	G	S	L	T	G	T	Y	E	44	ļ
								_		_				_				_				_			_				Т			_		
Avidin	T	A	V	-	T	A	T	S	N	E	1	K	E	S	P	L	H	G	T	Q	N	T	1	N	K	R	T	Q	P	T	F	G	89)
Streptavidin	S	A	V	G	N	A	E	S	R	Y	٧	L	Т	G	R	Υ	D	s	Т	P	Α	T	D	G	S	G	T	-	-	A	L	G	74	ļ
								_			_											_												
Avidin	F	T	٧	N	W	K	F	S	-	-	-	-	E	5	T	T	V	F	Т	G	Q	C	F	1	D	R	N	G	K	E	V		116	5
Streptavidin	W	T	V	A	w	K	N	N	Y	R	N	Α	Н	S	A	Т	Т	w	s	G	Q	Y	V	-	_	-	G	G	A	E	A	R	103	3
•	10000			A COLOR	0.00											of all		CHE									120							
Avidin	L	K	T	М	W	L	L	R	S	S	٧	N	D	1	G	D	D	w	K	A	T	R	V	G	1	N	1	F	T	R	L	R	148	3
Streptavidin	1	N	Т	Q	w	L	L	Т	S	G	Т	Т	-	A	A	N	A	w	K	s	T	L	V	G	н	D	т	F	Т	K	V	K	134	1
S.T.																																		
Avidin	T	0	K	F	_		- 22	_		_	_	20	_	_		_		-22	_	-	_												157	>

Database Subpackage

 Download files from RCSB Protein Database (PDB) and NCBI Entrez server (Global Query Cross-Database Search System)

Structural Subpackage

- Biomolecular structure representation
- Atom class: most basic unit of the representation of a biomolecular structure
 - Contains info about atom coordinates with length three ndarray
 - Info about annotations (eg. chain ID, residue ID, atom name)
- AtomArray represents entire structure consisting of multiple atoms
- AtomArrayStack represents multi-model structures

Application Subpackage

In this subpackage Biotite offers interfaces to external software, such as NCBI BLAST. These interfaces wrap the execution of the respective program on the local machine

Performance of implemented analysis algorithms

- RMSD: root-mean-square-deviation
- Dihedral: angle between two planes
- SASA: accessible surface area
- Align: protein or nucleotide sequences alignment

Performance of structure file input and output

- PDB: Protein Database
- mmCIF: Crystallographic Information File
- MMTF: Macromolecular Transmission Format