

Smart BallBot

HuStar 37

김수영 박효정 배수영 여동훈 이진주

2조

l 소개 및 배경

Ⅱ 구현기술

Ⅲ 프로젝트 리뷰

월 프로젝트 소개

<u></u> 객체탐지

☞ 개선 및 한계점

🕟 추진배경

🐞 자율주행

🛱 팀 소개

기대효과

ು 하드웨어

모 시연영상

Smart BallBot

테니스 공 자동 수거 로봇

떨어진 <mark>테니스 공을 자동으로 수거</mark>하여 테니스 플레이어의 운동을 지원하는 로봇

공을 수거하는 '볼퍼슨'의 일부 역할을 수행

카메라 프레임상의 최단 거리 객체를 추적함으로써 공을 수거

추진배경

① 볼키즈 부상

평균 시속 200km ~240kn

사<u>.</u> 2

사고의 위험성 감소 필요

② 코로나 장기화에 따른 개인 스포츠 시장 활성화

개인 취미활동 수요 증가

기타 용품의 니즈 발생

[영상] '시속 200km' 테니스 서브, 볼보이 복부 강타

"테니스 스포츠 이용률 증가에 따라 고객의 <mark>편의성 증대 필요</mark>"

6

기존제품

롤러형

→ 부피가 커서 보관이 어려움

Tenni bot

- → 스테이션을 휴대해야함
- → 무게 11kg

기대효과

볼퍼슨의 부상 예방

볼퍼슨의 역할을 대신함으로써 공으로 인한 사고 예방 가능

스포츠 활동의 질 향상

공을 직접 주워야 하는 <u>불편함을 해소</u>하고 충분한 연습시간을 확보함으로써 <mark>스포츠</mark> 활동의 질적 향상 가능

다양한 시장에서 성장 가능성

골프, 야구 등 기타 스포츠 종목에서의 활용가능함에 따라 <mark>사업모델로서의</mark> 성장이 기대됨

Structure

flow chart

Structure

Node Graph

객체 탐지-고려요인

1) 실시간성

- 단일 단계 검출 방법 〉 두 단계 검출 방법
- 대표적 모델 : YOLO, SSD

2) 정확도

- YOLO > SSD

3) 선행 연구

- 테니스볼 수집 로봇 관련 선행 연구 분석
- 대다수가 YOLOv3 채택

실시간성, 정확도, 선행 연구들을 고려한 결과 YOLO 채택

객체 탐지-YOLO

Class probability map

이미지를 한번 보는것만으로 Object의 종류와 위치를 추측하는 딥러닝 기반의 물체인식 알고리즘

실시간 객체 탐지 가능

성능이 가장 좋다고 증명된 YOLOv4, YOLOv5로 테스트 진행 후 최종 모델을 선정 함

YOLO 성능 비교

YOLOv4-tiny

YOLOv4

- 각 모델의 정확도 90% 이상으로 높은 성능을 나타냄
- 가장 성능이 좋은 YOLOv4를 최종 모델로 선정

객체 탐지-진행 순서

데이터 수집

동영상 촬영 후 분할 + 추가 데이터 수집 + 노이즈 데이터 추가

YOLO MARK를 통한 라벨링

이미지에 직접 Bounding Box를 그려 객체 를 포함한 Box의 좌표 지정

카메라 연동 및 최적화

카메라 연동 및 성능 향상 최적 모델 선정

자율주행-Trend

LiDar

라이다 이용 자율 주행자동차

Camera

TESLA

8대 카메라만을 이용 자율주행자동차 출시 예고

자율주행 기술에 있어 가장 잠재력 높고 중요하다고 평가받는 **라이다**를 중심으로 **장애물 회피동작 구현 뎁스카메라**를 통한 객체 탐지 및 거리 측정으로 목적지 **자동 추적기능** 구현

자율주행-Trend

관련연구 분석

탐색 주행

SLAM

┗ 실외환경의 경우, 노면이 고르지 않아 오차 누적

랜덤 주행

장애물 회피

강화학습

→ 환경에 대한 능동적, 실시간 대응 가능

LiDar를 통한 알고리즘 구현

자율주행-DQN

DQN 설명

Q-Learning + Deep Learning

- 큐테이블 대신 신경망을 사용해서 NN이 Q-value를 근사 해낼 수 있도록 학습시키는 것이다.

구현 한계점

데이터 노이즈 무기 오차 모델 효율

위와 같은 한계로 인해 최종적으로 LiDar 거리값을 통한 알고리즘을 통해 장애물 회피 구현

구현 결과

객체 추적

Object Detection

Autonomous Driving

객체<mark>의 X 좌표 값</mark>

이동 각도 설정

객체<mark>의 Depth값</mark>

탐지된 객체들 중 최단 거리에 위치한 객체

구현 결과

장애물 회피

LiDAR 거리 값 중 진행방향의 거리 값을 이용하여 실행 벽이 아닌 장애물과 벽 장애물로 두가지 분기로 나뉘어 동작

벽이 아닌 장애물 감지

장애물의 측면을 향해 회전하여 직진

벽감지

입사한 방향과 반대 방향으로 뻗어나가는 반사각을 30도로 하여 튕기는 방향으로 회전

구현 결과

객체 탐색

제자리 360도 회전

Choice!

직진 및 반사각 회전 주행

나선형 주행

평균 수거 완료 시간

2분 21초

3분 30초

하드웨어

외부 도안

내부 도안

최종 결과

한계 및 개선방향

단일 개체의 경로 계획 한계

바닥과 위치가 가까운 로봇에서 받아들이 는 데이터가 한정됨

강화학습 실적용 한계

시뮬레이션 환경과 실제 환경에서 로봇의 동작 차이

추가적인 센서와 알고리즘

성능이 더 좋은 카메라를 추가 향상된 공 탐지 모델 구현

변인에 종속되지 않는 모델

노이즈가 끼인 데이터의 오차 분산을 고려 한 학습 모델의 설계

2조소개

김수영 응용통계학과 비전팀

박효정 컴퓨터공학과 비전팀 팀장

이진주 경영학과 비전팀 팀장 자율주행팀

배수영 정보통신공학과 자율주행팀 팀장

여동훈 전자공학과 자율주행팀

