KTH Matematik

Olof Heden

Σ p	G/U	bonus

Efternamn	förnamn	pnr	årskurs

Kontrollskrivning 4A, den 7 maj 2014, kl 10.00-11.00 i SF1610 Diskret matematik för CINTE och CMETE.

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd ks n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)–5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna, använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.) **Kryssa för** om påståendena **a**)-**f**) är sanna eller falska (eller avstå)!

		\mathbf{sant}	falskt
a)	Det finns total 32 stycken Booleska funktioner i de fem variablerna x,y,z,w och $u.$		
b)	I varje Boolesk algebra gäller att $(x + xy) + \bar{x} = 1$.		
c)	I ett RSA-krypto med parametrarna $n,\ e,\ m$ och d kan m vara lika med 28.		
d)	Ett RSA-krypto med $n=123$ kan ha den dekrypterande nyckeln $d=45.$		
e)	Orden 11110101 och 00110101 kan båda tillhöra samma 1-felsrättand kod.		
f)	Det finns 1-felsrättande koder C bestående av 16 ord, samtliga av längd 15.		

poäng uppg.1
-

Namn	poäng uppg.2

2a) (1p) Om ett RSA-krypto har den offentliga nyckeln e=9 vilka möjligheter finns då för parametern n om vi kräver att $33 \le n \le 40$. (Svara bara.)

b) (1p) Skriv nedanstående Booleska funktion f(x, y, z)

$$f(x, y, z) = (\bar{x} + y) \; \bar{z}$$

på disjunktiv normalform. (Svara bara.)

c) (1p) Förklara varför matrisen **H** nedan inte kan användas som kontrollmatris (parity-check matris) till en 1-felsrättande kod.

$$\mathbf{H} = \left[\begin{array}{ccccccc} 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array} \right]$$

Namn	poäng uppg.3

3) (3p) Den 1-felsrättande koden C har kontrollmatrisen

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

- a) Ordet 110100000 tillhör inte Cmen går att rätta till ett ord \bar{c} iC.Bestäm detta ord $\bar{c}.$
 - b) Bestäm antalet ord i C.
 - c) Bestäm ett ord som koden inte klarar av att rätta.

OBS. Lösningen skall motiveras.

Namn	poäng uppg.4

4) (3p) Ett RSA krypto har de offentliga nycklarna n=33 och e=3. Dekryptera meddelandet 2.

OBS. Lösningen skall motiveras och kalkyler redovisas.

Namn	poäng uppg.5

5) (3p) Bestäm antalet Booleska funktioner g i fyra variablerna $x,\,y,\,z$ och w, dvs g=g(x,y,z,w), som satisfierar ekvationssystemet

$$(x+yz)\bar{w}g(x,y,z,w) = 0.$$

OBS. Lösningen skall motiveras.