MAT02025 - Amostragem 1

Conceitos básicos de probabilidade e inferência estatística: uma revisão

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021

Probabilidade

Probabilidade

Introdução

- Fenômeno aleatório: situação ou acontecimento cujos resultados não podem ser previstos com certeza.
- ► Fenômeno aleatório versus Fenômeno determinístico.
- Exemplos de fenômenos aleatórios:
 - Uma partida de futebol.
 - Eleições para presidente.
 - ▶ O preco do combustível no próximo mês.
 - ▶ Vida (duração) da bateria de um dispositivo móvel.

Espaço amostral e eventos

- Espaço amostral: é o conjunto de todos os resultados possíveis de um certo fenômeno aleatório.
 - Ele será representado pela letra grega Ω (ômega).

Espaço amostral e eventos

- Eventos: Os subconjuntos de Ω são denominados eventos e representamos pelas letras latinas maiúsculas A, B,....
 - O subconjunto vazio será denotado por ∅.
 - Dizemos que um evento ocorre quando um dos resultados que o compõem ocorre.

Probabilidade

Vamos considerar probabilidade como sendo uma função Pr(·) que atribui valores numéricos aos eventos do espaço amostral, conforme a definição a seguir.

Probabilidade

Uma função $Pr(\cdot)$ se satisfaz as condições:

- ▶ **(A1)** $0 \le \Pr(A) \le 1$, para qualquer evento $A \subset \Omega$;
- ▶ **(A2)** $Pr(\Omega) = 1$;
- ▶ **(A3)** $\Pr\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \Pr(A_i)$, com $A_i's$ disjuntos.
 - ▶ $Pr(A \cup B) = Pr(A) + Pr(B)$, com A e B disjuntos.

Probabilidade

Variáveis aleatórias

Variáveis aleatórias

Variável aleatória

Definição

Sejam $\mathcal E$ um experimento e Ω um espaço amostral associado ao experimento. Uma função X, que associe a cada elemento $\omega \in \Omega$ um número real $X(\omega)$, é denominada variável aleatória.

- Exemplo: Suponha-se que uma lâmpada tenha sido posta em um soquete.
 O experimento termina quando a lâmpada se queima.
 - Qual será um possível resultado, ω ?
 - Qual será espaço amostral consequente?
 - Qual será a variável aleatória X de interesse?
 - Quais serão os possíveis valores de X?
 - "Onde está a aleatoriedade de X"?

Variável aleatória

Definição

Uma quantidade X, associada a cada possível resultado do espaço amostral, é denominada de **variável aleatória discreta**, se assume valores num conjunto enumerável, com certa probabilidade.

Exemplo: Observa-se o sexo das crianças em famílias com três filhos.
 Denotamos m para o sexo masculino e f para o sexo feminino. Existem oito possibilidades para uma família de três filhos. Estas possibilidades são listadas no espaço amostral:

$$\Omega = \{(mmm), (mmf), (mfm), (fmm), (mff), (fmf), (ffm), (fff)\}.$$

Definimos

- X : número de crianças do sexo masculino (m).
- A cada possível resultado do espaço amostral, X associa um valor numérico

• Note que X assume valores no conjunto $\{0,1,2,3\}$ que é enumerável, portanto X é variável aleatória discreta.

- Pergunta: com qual probabilidade X assume os valores $\{0, 1, 2, 3\}$?
- Cada resultado possível do espaço amostral tem probabilidade $\frac{1}{8}$ de acontecer, então:

$$\Pr(X=0) = \Pr(fff) = \frac{1}{8}$$

 A probabilidade da variável aleatória X assumir o valor zero é a mesma probabilidade do evento (fff) ocorrer. Da mesma forma:

$$Pr(X = 1) =$$
=
=
=
 $Pr(X = 2) =$
=
 $Pr(X = 3) =$

Função discreta de probabilidade

Resumindo:

Distribuição de probabilidade

Distribuição de probabilidade

Função discreta de probabilidade

Definição

Seja X uma variável aleatória discreta e x_1, x_2, x_3, \ldots , seus diferentes valores. A função que atribui a cada valor da variável aleatória sua probabilidade é denominada de **função discreta de probabilidade** ou, simplesmente **função de probabilidade**.

Função discreta de probabilidade

• A notação a ser utilizada é:

$$Pr(X = x_i) = p(x_i) = p_i, i = 1, 2, ...$$

ou ainda,

- Uma função de probabilidade satisfaz:
 - **1** $0 < p_i < 1$
- No exemplo:

$$p_1 + p_2 + p_3 + p_4 = \Pr(X = 0) + \Pr(X = 1) + \Pr(X = 2) + \Pr(X = 3)$$

= $1/8 + 3/8 + 3/8 + 1/8 = 1$.

Exemplo: lançamento de dois dados

• Dois dados são lançados, de forma independente.

Exemplo: lancamento de dois dados

• O espaço amostral deste experimento é:

$$\Omega = \left\{ \begin{array}{llll} (1,1), & (1,2), & (1,3), & (1,4), & (1,5), & (1,6), \\ (2,1), & (2,2), & (2,3), & (2,4), & (2,5), & (2,6), \\ (3,1), & (3,2), & (3,3), & (3,4), & (3,5), & (3,6), \\ (4,1), & (4,2), & (4,3), & (4,4), & (4,5), & (4,6), \\ (5,1), & (5,2), & (5,3), & (5,4), & (5,5), & (5,6), \\ (6,1), & (6,2), & (6,3), & (6,4), & (6,5), & (6,6) \end{array} \right\}$$

• Seja X a variável soma dos dois lançamentos, ou seja, X = "face do primeiro lançamento" + "face do segundo lançamento".

Exemplo: lançamento de dois dados

 Quando o evento (1,1) ocorre, X associa a este resultado o valor 2. Da mesma forma temos:

$$\Omega = \left\{ \begin{array}{llll} (1,1), & (1,2), & (1,3), & (1,4), & (1,5), & (1,6), \\ (2,1), & (2,2), & (2,3), & (2,4), & (2,5), & (2,6), \\ (3,1), & (3,2), & (3,3), & (3,4), & (3,5), & (3,6), \\ (4,1), & (4,2), & (4,3), & (4,4), & (4,5), & (4,6), \\ (5,1), & (5,2), & (5,3), & (5,4), & (5,5), & (5,6), \\ (6,1), & (6,2), & (6,3), & (6,4), & (6,5), & (6,6) \end{array} \right\} \overset{X}{\Rightarrow} \left\{ \begin{array}{lll} 2, & 3, & 4, & 5, & 6, & 7, & 8, \\ 3, & 4, & 5, & 6, & 7, & 8, & 9, \\ 4, & 5, & 6, & 7, & 8, & 9, & 10, \\ 5, & 6, & 7, & 8, & 9, & 10, & 11, \\ 6, & 7, & 8, & 9, & 10, & 11, & 12 \end{array} \right\}$$

- *X* assume valores no conjunto {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
- A probabilidade dos possíveis resultados em Ω é $P[(1,1)] = P[(1,2)] = \ldots = P[(2,1)] = P[(2,2)] = \ldots = P[(6,6)] = 1/36.$
- P[X=2] = P[(1,1)] = 1/36, $P[X=3] = P[(1,2) \cup (2,1)] = 1/36 + 1/36 = 2/36$.

Exemplo: lançamento de dois dados

• A função de probabilidade de X é dada por:

	2											
p_i	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36	-

Exemplo: lançamento de dois dados

- Observações:
 - p_i pertence ao intervalo (0,1) para $i=1,\ldots,11$ (ex: $p_1=1/36\in(0,1)$)
 - $\sum_{i=1}^{11} p_i = p_1 + p_2 + \ldots + p_{11} = 1/36 + 2/36 + \ldots + 1/36 = 1$
 - A função de probabilidade de X satisfaz às condições 1 e 2, logo é de fato uma função de probabilidade.
- Pergunta: Qual a probabilidade da soma dos resultados dos dois lançamentos ser menor do que 6?

$$Pr(X < 6)$$
 = $Pr(X = 2) + Pr(X = 3) + Pr(X = 4) + Pr(X = 5)$
 = $p_1 + p_2 + p_3 + p_4$
 = $1/36 + 2/36 + 3/36 + 4/36 = 10/36$.

└─ Valor esperado, variância e desvio padrão

Valor esperado, variância e desvio padrão

Média

▶ A média, valor esperado ou esperança de uma variável X é dada pela expressão:

$$\mathrm{E}\left(X\right) = \sum_{i=1}^{k} x_{i} p_{i}$$

• Uma notação alternativa é representar $\mathrm{E}\left(X\right)$ por μ_{X} ou simplismente μ .

Exemplo

Considere a variável aleatória X com a seguinte função discreta de probabilidade:

Temos,

$$\mu = \sum_{i} x_i p_i = (-5) \times 0, 3 + 10 \times 0, 2 + 15 \times 0, 4 + 20 \times 0, 1 = 8, 5.$$

Variância

Seja X uma variável aleatória com Pr(X = x_i) = p_i, i = 1, 2, ..., k e média μ. A variância de X é a ponderação pelas respectivas probabilidades, dos desvios relativos à média, elevados ao quadrado, isto é,

$$\operatorname{Var}(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i.$$

- ▶ Muitas vezes, denotamos a variância por σ^2 e, se houver possibilidade de confusão, usamos σ_X^2 .
 - \blacktriangleright Extraindo a raiz quadrada da variância obtemos o **desvio-padrão** que é representado por σ ou σ_X

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{i=1}^k (x_i - \mu)^2 p_i}.$$

Variância

 Note, que pela definição da variância, concluímos que a variância é o valor esperado de uma nova variável, o desvio quadrado. Isto é,

$$Var(X) = E[(X - \mu)^2],$$

a qual pode ser convenientemente reescrita na seguinte forma

$$Var(X) = E(X^{2}) - \mu^{2} = \sum_{i=1}^{k} x_{i}^{2} p_{i} - \mu^{2}.$$

- ► Esta última expressão é bastante útil e, para não criar confusão, explicitamos os seus termos.
 - ▶ O termo $E(X^2)$ é o valor esperado da variável aleatória X^2 ;
 - $\mu^2 = (E[X])^2$ indica o quadrado do valor esperado de X.

Exemplo

Considere a variável aleatória X com a seguinte função discreta de probabilidade:

Temos,

$$E(X^2) = \sum_{i} x_i^2 p_i = (-5)^2 \times 0, 3 + 10^2 \times 0, 2 + 15^2 \times 0, 4 + 20^2 \times 0, 1 = 157, 5.$$

$$Var(X) = 157, 5 - 8, 5^2 = 157, 5 - 72, 5 = 85, 25.$$

Propriedades

Seja X uma variável aleatória e

$$Y = aX + b$$
,

então

$$E(Y) = aE(X) + b,$$

е

$$\operatorname{Var}(Y) = a^2 \operatorname{Var}(X).$$

Exercício

Considere a seguinte função discreta de probabilidade:

• A função de probabilidade de X é dada por:

X	2	3	4	5	6	7	8	9	10	11	12
Pi	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Calcule a média, a variância e o desvio padrão desta variável.

Exercício

População e amostra, estatística, parâmetro, estimador, estimativa e distribuição amostral

População e amostra, estatística, parâmetro, estimador, estimativa e distribuição amostral

População e amostra, estatística, parâmetro, estimador, estimativa e distribuição amostral

Inferência estatística

- A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população por meio de evidências fornecidas por uma amostra.
- É a amostra que contém os elementos que podem ser observados e, a partir daí, quantidades de interesse podem ser medidas.

População e amostras

População e amostra, estatística, parâmetro, estimador, estimativa e distribuição amostral

População e amostras

População e amostra, estatística, parâmetro, estimador, estimativa e distribuição amostral

População e amostras

Uma questão ...

- Uma questão que surge agora é: apesar de diferentes, podemos ter respostas próximas ou iguais nas diversas amostras?
 - A reposta é afirmativa e estará subjacente às ideias que desenvolvermos a partir desta aula.
- Podemos dizer que devido à natureza aleatória, geralmente envolvida no procedimento amostral, não podemos garantir que repetições de amostras produzam sempre resultados idênticos.
 - Assim, todas as quantidades associadas à amostra terão caráter aleatório e, portanto, devem receber tratamento probabilístico.
- Nesta aula, formalizaremos alguns conceitos relacionados a um ramo da Inferência Estatística denominado estimação.
 - Estudaremos combinações dos valores de amostras aleatórias, objetivando a obtenção de informações a respeito de características de interesse na população.
- Notação: vamos representar uma amostra de tamanho n, a ser retirada da população, por (X₁, X₂,..., X_n).

Parâmetro

Definição

As quantidades da população, em geral desconhecidas, sobre as quais temos interesse, são denominadas **parâmetros** e, usualmente, representadas por letras gregas θ , μ , σ , α , β , λ , entre outras.

Parâmetro

Exemplos

- ▶ a média de idade dos estudantes da UFRGS.
- ▶ a média de altura da população de Porto Alegre.
- a probabilidade de uma lâmpada ser produzida de maneira defeituosa em uma certa linha de fabricação.
- ▶ a média de peso de pacotes de queijo ralado.

Estimador e estimativa

Definição

A combinação dos elementos da amostra, construída com a finalidade de representar, ou estimar, um parâmetro de interesse na população, denominamos **estimador**. Em geral, denotamos os estimadores por símbolos com o acento circunflexo: $\hat{\theta}$, $\hat{\mu}$, $\hat{\sigma}$, etc. Aos valores numéricos assumidos pelos estimadores denominamos **estimativas pontuais** ou simplesemente **estimativas**.

Estimador e estimativa

Exemplos de estimadores

- $\hat{\mu}_1 = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, a média amostral, é um estimador para a média populacional.
- $\hat{\mu}_2 = X_1$, a primeira observação da amostra, é um estimador para a média populacional.
- $\hat{\mu}_3 = \frac{X_{(1)} + X_{(n)}}{2}$, a média aritmética entre o valor mínimo $(X_{(1)})$ e o valor máximo $(X_{(n)})$ da amostra, é um estimador para a média populacional.
- $\hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$ é um estimador para a variância populacional (este é chamado de **estimador "natural"** da variância populacional).
- $\hat{\sigma}_2^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ é um estimador para a variância populacional (este estimador é chamado de **variância amostral**).

Estimador e estimativa

Exemplos de estimativas

Suponha que a seguinte amostra de altura de pessoas (em metros) foi observada (1,65; 1,57; 1,72; 1,66; 1,71). Considerando os estimadores do exemplo anterior, temos as seguintes **estimativas**:

$$\hat{\mu}_1 = \frac{1,65+1,57+1,72+1,66+1,71}{5} = 1,662.$$

$$\hat{\mu}_2 = 1,65.$$

$$\hat{\mu}_3 = \frac{1,57+1,72}{2} = 1,645.$$

$$\qquad \qquad \hat{\sigma}_1^2 = \frac{(1,65-1,662)^2 + (1,57-1,662)^2 + (1,72-1,662)^2 + (1,66-1,662)^2 + (1,71-1,662)^2}{5} \approx 0,0029.$$

$$\hat{\sigma}_2^2 == \tfrac{(1,65-1,662)^2 + (1,57-1,662)^2 + (1,72-1,662)^2 + (1,66-1,662)^2 + (1,71-1,662)^2}{4} \approx 0,0036.$$

Estimador e estimativa

- Notamos que um estimador, digamos $\hat{\theta}$, é uma função das variáveis aleatórias constituintes da amostra. Logo, um estimador também é uma variável aleatória.
- A correspondente distribuição de probabilidade formará a base das argumentações probabilísticas utilizadas na extrapolação da informação da amostra para os parâmetros da população.
- Diferentes amostras (observações diferentes e/ou diferentes tamanhos) produzirão diferentes estimativas para o mesmo parâmetro.
 - ► Amostra 1: (1,65; 1,57; 1,72; 1,66; 1,71)
 - $\hat{\mu}_1^1 = \bar{X}_5 = 1,662.$
 - Amostra 2: (1,78; 1,63; 1,82; 1,54; 1,78)
 - $\hat{\mu}_1^2 = \bar{X}_5 = 1,71.$
 - ► Amostra 3: (1,78; 1,63; 1,82; 1,54; 1,78; 1,72; 1,66; 1,71)
 - $\hat{\mu}_1^3 = \bar{X}_8 = 1,705.$

Propriedades dos estimadores

- Vimos nos exemplos anteriores que mais de uma função da amostra pode ser proposta para estimar um parâmetro de interesse.
- Para facilitar a escolha entre tais estimadores, torna-se importante verificar se possuem algumas propriedades que serão definidas a seguir.

Vício

Um estimador $\hat{\theta}$ é **não viciado** ou **não viesado** para um parâmetro θ se

$$\mathrm{E}\left[\hat{\theta}\right] = \theta.$$

Em outras palavras, um estimador é não viciado se o seu valor esperado coincide com o parâmetro de interesse.

Propriedades dos estimadores

- Implícita à definição de vício, está a ideia de podermos retirar diversas amostras da população de interesse.
- Na figura abaixo, os estimadores $\hat{\theta}_1$ e $\hat{\theta}_2$ são não viciados para θ , enquanto que $\hat{\theta}_3$ é um estimador viciado para θ .

- Vimos que estimadores s\u00e3o fun\u00f3\u00f3e de vari\u00e1veis aleat\u00f3rias e, portanto, eles tamb\u00e9m s\u00e3o vari\u00e1veis aleat\u00f3rias.
- Neste momento, vamos estudar a distribuição de probabilidade de alguns dos estimadores mais utilizados.
 - As distribuições de probabilidade de estimadores são chamadas distribuições amostrais.
- A partir das distribuições amostrais descreveremos a incerteza com respeito às nossas estimativas.

 Consideremos, inicialmente, o caso em que conseguimos calcular facilmente a função de probabilidade dos estimadores de interesse.

Exemplo

- ▶ Um jogo consiste em lançar uma moeda honesta 3 vezes.
- Para cada lançamento, se sair cara você ganha um ponto, caso saia coroa, você perde um ponto.
 - ▶ Podemos modelar essa situação através de uma variável X que, em uma população, pode assumir os valores −1 e 1, com probabilidades iguais.

$$\begin{array}{c|cc} x & -1 & 1 \\ \hline \Pr(X = x) & 1/2 & 1/2 \end{array}$$

▶ Se observarmos a amostra (-1,1,-1), temos

$$\bar{x} = \frac{-1+1-1}{3} = -1/3;$$

$$s^2 = \frac{(-1-(-1/3))^2 + (1-(-1/3))^2 + (-1-(-1/3))^2}{(3-1)} = 4/3$$

▶ Se considerarmos outra amostra (-1,1,1), temos

$$\bar{x} = \frac{-1+1+1}{3} = 1/3;$$

$$s^2 = \frac{(-1-1/3)^2 + (1-1/3)^2 + (1-1/3)^2}{(3-1)} = 4/3$$

 Assim, considerando todas as possíveis amostras, teríamos a seguinte tabela:

(X_1, X_2, X_3)	probabilidade	\bar{X}	S^2
(-1, -1, -1)	1/8	-1	0
(-1, -1, +1)	1/8	-1/3	4/3
(-1, +1, -1)	1/8	-1/3	4/3
(-1, +1, +1)	1/8	1/3	4/3
(+1,-1,-1)	1/8	-1/3	4/3
(+1, -1, +1)	1/8	1/3	4/3
(+1, +1, -1)	1/8	1/3	4/3
(+1, +1, +1)	1/8	1	0

 Com base na tabela anterior, podemos construir as distribuições amostrais de X̄ e S²:

е

► Ainda.

$$E[\bar{X}] = (-1) \times 1/8 + (-1/3) \times 3/8 + 1/3 \times 3/8 + 1 \times 1/8 = 0$$

е

$$E[S^2] = 0 \times 1/4 + 4/3 \times 3/4 = 1$$

como já esperado, pois \bar{X} e S^2 são **não viciados** para a média e variância populacional, respectivamente.

Para casa

- Revisar os tópicos discutidos nesta aula.
 - Ler os capítulos 5, 6, 10 e 11 do Livro "Estatística Básica" (disponível no Sabi+).
- Revisar as aulas 01-06.

¹Morettin, P. A. e Bussab, W. O. **Estatística Básica**, Saraiva, 2010.

Próxima aula

► Propriedades e variâncias dos estimadores.

Por hoje é só!

Bons estudos!

