Projection theorems and the Fourier spectrum

Ana E. de Orellana University of St Andrews aedo1@st-andrews.ac.uk

Joint work with Jonathan Fraser

Workshop on the Geometry of Deterministic and Random Fractals II

Motivation

Theorem (Marstrand projection theorem)

For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathrm{H}} P_e(X) = \min\{\dim_{\mathrm{H}} X, 1\}$.

Motivation

Theorem (Marstrand projection theorem)

For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathrm{H}} P_e(X) = \min\{\dim_{\mathrm{H}} X, 1\}$.

Almost all means that

$$\mathcal{L}^{d-1}(\{e \in S^{d-1} : \dim_{\mathbf{H}} P_e(X) < \min\{\dim_{\mathbf{H}} X, 1\}\}) = 0.$$

Motivation

Theorem (Marstrand projection theorem)

For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathrm{H}} P_e(X) = \min\{\dim_{\mathrm{H}} X, 1\}$.

Almost all means that

$$\mathcal{L}^{d-1}(\{e \in S^{d-1} : \dim_{\mathbf{H}} P_e(X) < \min\{\dim_{\mathbf{H}} X, 1\}\}) = 0.$$

We want to study for $u \in [0, \min\{\dim_{\mathrm{H}} X, 1\}]$,

$$\dim_{\mathbf{H}} \{ e \in S^{d-1} : \dim_{\mathbf{H}} P_e(X) < u \}.$$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kauffman '68:

$$\dim_{\mathbf{H}} \{ e \in S^1 : \dim_{\mathbf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_H X$.

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kauffman '68:

$$\dim_{\mathbf{H}} \{ e \in S^1 : \dim_{\mathbf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_{\mathrm{H}} X$.

Bourgain '10 and Oberlin '12 proved that

$$\dim_{\mathbf{H}} \{ e \in S^1 : \dim_{\mathbf{H}} P_e(X) < \dim_{\mathbf{H}} X/2 \} = 0.$$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kauffman '68:

$$\dim_{\mathbf{H}} \{ e \in S^1 : \dim_{\mathbf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_{\mathrm{H}} X$.

Bourgain '10 and Oberlin '12 proved that

$$\dim_{\mathrm{H}} \{ e \in S^1 : \dim_{\mathrm{H}} P_e(X) < \dim_{\mathrm{H}} X/2 \} = 0.$$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kauffman '68:

$$\dim_{\mathbf{H}} \{ e \in S^1 : \dim_{\mathbf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_{\mathrm{H}} X$.

Bourgain '10 and Oberlin '12 proved that

$$\dim_{\mathbf{H}} \{ e \in S^1 : \dim_{\mathbf{H}} P_e(X) < \dim_{\mathbf{H}} X/2 \} = 0.$$

 $\begin{aligned} & \min\{0, 2u - \dim_{\mathrm{H}} X\} \\ & \text{Conjectured by Oberlin} \\ & \text{Proved by Ren-Wang '23} \end{aligned}$

Given
$$X \subseteq \mathbb{R}^d$$
,

$$\dim_{\mathrm{F}} X = \sup \big\{ s \in [0,d] : \exists \mu \text{ finite on } X \text{ with } \sup_{z} \big| \widehat{\mu}(z) \big|^2 |z|^s < \infty \big\}.$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$,

Given
$$X \subseteq \mathbb{R}^d$$
,

$$\dim_{\mathrm{F}} X = \sup \big\{ s \in [0,d] : \exists \mu \text{ finite on } X \text{ with } \sup_{z} \big| \widehat{\mu}(z) \big|^2 |z|^s < \infty \big\}.$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$, and for all $e \in S^{d-1}$,

$$\dim_{\mathbf{F}} P_e(X) \geqslant \min\{1, \dim_{\mathbf{F}} X\}$$

Given $X \subseteq \mathbb{R}^d$,

$$\dim_{\mathcal{F}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup_{z} \left| \widehat{\mu}(z) \right|^{2} |z|^{s} < \infty \right\}.$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$, and for all $e \in S^{d-1}$,

$$\dim_{\mathbf{F}} P_e(X) \geqslant \min\{1, \dim_{\mathbf{F}} X\}$$

So if $\dim_{\mathrm{H}} X \leqslant 1$, then

$$\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{F}} P_e(X) \leqslant \dim_{\mathrm{H}} P_e(X) \leqslant \dim_{\mathrm{H}} X$$

Given $X \subseteq \mathbb{R}^d$,

$$\dim_{\mathrm{F}} X = \sup \big\{ s \in [0,d] : \exists \mu \text{ finite on } X \text{ with } \sup_{z} \big| \widehat{\mu}(z) \big|^2 |z|^s < \infty \big\}.$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$, and for all $e \in S^{d-1}$,

$$\dim_{\mathbf{F}} P_e(X) \geqslant \min\{1, \dim_{\mathbf{F}} X\}$$

So if $\dim_{\mathrm{H}} X \leqslant 1$, then

$$\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{F}} P_e(X) \leqslant \dim_{\mathrm{H}} P_e(X) \leqslant \dim_{\mathrm{H}} X$$

and if $\dim_{\mathrm{F}} X = \dim_{\mathrm{H}} X$, there are no exceptions.

Given $X \subseteq \mathbb{R}^d$,

$$\dim_{\mathrm{F}} X = \sup \big\{ s \in [0,d] : \exists \mu \text{ finite on } X \text{ with } \sup_{z} \big| \widehat{\mu}(z) \big|^2 |z|^s < \infty \big\}.$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$, and for all $e \in S^{d-1}$,

$$\dim_{\mathbf{F}} P_e(X) \geqslant \min\{1, \dim_{\mathbf{F}} X\}$$

So if $\dim_{\mathbf{H}} X \leq 1$, then

$$\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{F}} P_e(X) \leqslant \dim_{\mathrm{H}} P_e(X) \leqslant \dim_{\mathrm{H}} X$$

and if $\dim_{\mathrm{F}} X = \dim_{\mathrm{H}} X$, there are no exceptions.

More generally, if $u \leqslant \dim_{\mathrm{F}} X$,

$${e \in S^{d-1} : \dim_{\mathbf{H}} P_e(X) < u} = \varnothing.$$

Question

Can we use Fourier decay to get better estimates?

Given
$$X \subseteq \mathbb{R}^d$$
 and $\theta \in (0,1]$

$$\dim_{\mathrm{F}}^{\theta}X = \sup\bigg\{s \in [0,d]: \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left|\widehat{\mu}(z)\right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta}-d} \, dz < \infty\bigg\}.$$

Given $X \subseteq \mathbb{R}^d$ and $\theta \in [0,1]$

 $\dim_{\mathrm{F}}^{\theta} X =$ Fourier decay of measures on X (in a weighted L^p sense).

Given $X \subseteq \mathbb{R}^d$ and $\theta \in [0,1]$

 $\dim_{\mathrm{F}}^{\theta} X =$ Fourier decay of measures on X (in a weighted L^p sense).

Given $X \subseteq \mathbb{R}^d$ and $\theta \in [0,1]$

 $\dim_{\mathrm{F}}^{\theta}X$ = Fourier decay of measures on X (in a weighted L^p sense).

- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- For each $\theta \in [0,1]$, $\dim_F X \leqslant \dim_F^{\theta} X \leqslant \dim_H X$.
- $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in [0,1]$

 $\dim_{\mathrm{F}}^{\theta}X$ = Fourier decay of measures on X (in a weighted L^p sense).

- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- For each $\theta \in [0,1]$, $\dim_F X \leqslant \dim_F^\theta X \leqslant \dim_H X$.
- $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.
- For almost all $e \in S^{d-1}$, $\dim_F^{\theta} P_e(X) \geqslant \min\{1, \dim_F^{\theta} X\}$.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in [0,1]$

 $\dim_{\mathrm{F}}^{\theta}X$ = Fourier decay of measures on X (in a weighted L^p sense).

- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- For each $\theta \in [0,1]$, $\dim_F X \leqslant \dim_F^{\theta} X \leqslant \dim_H X$.
- $\dim_{\mathrm{F}}^0 X = \dim_{\mathrm{F}} X$ and $\dim_{\mathrm{F}}^1 X = \dim_{\mathrm{H}} X$.
- For almost all $e \in S^{d-1}$, $\dim_F^{\theta} P_e(X) \geqslant \min\{1, \dim_F^{\theta} X\}$.
- For all $e \in S^{d-1}$, $\dim_F^{\theta} P_e(X) \geqslant \min\{1, \dim_F^{\theta} X (d-1)\theta\}$.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in [0,1]$

 $\dim_{\mathrm{F}}^{\theta}X$ = Fourier decay of measures on X (in a weighted L^p sense).

Some facts about the Fourier spectrum:

- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- For each $\theta \in [0,1]$, $\dim_F X \leqslant \dim_F^\theta X \leqslant \dim_H X$.
- $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.
- For almost all $e \in S^{d-1}$, $\dim_F^{\theta} P_e(X) \geqslant \min\{1, \dim_F^{\theta} X\}$.
- For all $e \in S^{d-1}$, $\dim_{\mathcal{F}}^{\theta} P_e(X) \geqslant \min\{1, \dim_{\mathcal{F}}^{\theta} X (d-1)\theta\}$.

Theorem (Fraser-dO, 2024+)

Let $X \subset \mathbb{R}^d$ be a Borel set. If $u \leqslant \sup_{\theta \in [0,1]} (\dim_{\mathcal{F}}^{\theta} X - (d-1)\theta)$, then

$$\{e: S^{d-1}: \dim_{\mathbf{H}} P_e(X) < u\} = \varnothing.$$

Exceptional set estimates

$$\begin{split} \text{Let } X \subseteq \mathbb{R}^d, \text{ for } u \in [0, \min\{\dim_{\mathbf{H}} X, 1\}], \\ \dim_{\mathbf{H}} \{e \in S^{d-1} : \dim_{\mathbf{H}} P_e(X) < u\} \\ \leqslant \begin{cases} 2u - \dim_{\mathbf{H}} X, & \text{if } d = 2, \\ d - 2 + u, & \text{if } \dim_{\mathbf{H}} X \leqslant 1, & \text{(Mattila '15)}; \\ d - 1 - \dim_{\mathbf{H}} X + u, & \text{if } \dim_{\mathbf{H}} X \geqslant 1, & \text{(Peres-Schlag '00)}. \end{cases} \end{split}$$

Exceptional set estimates

$$\begin{split} \text{Let } X \subseteq \mathbb{R}^d \text{, for } u \in [0, \min\{\dim_{\mathbf{H}} X, 1\}], \\ \dim_{\mathbf{H}} \{e \in S^{d-1} : \dim_{\mathbf{H}} P_e(X) < u\} \\ \leqslant \begin{cases} 2u - \dim_{\mathbf{H}} X, & \text{if } d = 2, \\ d - 2 + u, & \text{if } \dim_{\mathbf{H}} X \leqslant 1, \\ d - 1 - \dim_{\mathbf{H}} X + u, & \text{if } \dim_{\mathbf{H}} X \geqslant 1, \end{cases} & \text{(Mattila '15)}; \\ \end{cases} \end{split}$$

Theorem (Fraser-dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ be a Borel set. Then for all $u \in [0,1]$,

$$\dim_{\mathbf{H}} \{ e \in S^{d-1} : \dim_{\mathbf{H}} P_e(X) < u \} \leq \max \left\{ 0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbf{F}}^{\theta} X}{\theta} \right\}.$$

Better estimates - \mathbb{R}^2

We can improve Ren–Wang's bounds if $\dim_{\mathrm{F}}^{\theta} X$ intersects the shaded region.

Better estimates - Higher dimensions

If $X \subseteq \mathbb{R}^d$ with $d \geqslant 3$

We can improve Mattila's or Peres–Schlag's bounds if $\dim_F^\theta X$ intersects the shaded region.

An example on \mathbb{R}^3

Let E_{α} , E_{β} and E_{γ} be three middle $(1-2\alpha), (1-2\beta)$ and $(1-2\gamma)$ Cantor sets, respectively. Define $X=E_{\alpha}\times E_{\beta}\times E_{\gamma}$.

Köszönöm!

(Thank you!)