Chi-Squared Test

Chi-square Test

 There are two types of chi-square tests. Both use the chi-square statistic and distribution for different purposes

Types of Chi-Square Test

- Goodness of Fit
 - Determines if a sample data matches a population
- Test of Independance
 - Compares two variables in a contingency table to see if they are related.
 - Tests to see whether distributions of categorical variables differ from each another.

Problem Statement

Q. Is the Marks obtained by the students depended on Gender as per the given Data

_	Science	Math	Art
Male	20	30	15
Female	20	15	30

Null Hypothesis and Alternate Hypothesis

- Null Hypothesis
 - Two Categorical Variables are independent
 - H0: Marks independant of Gender
- AlternateHypothesis
 - Two Categorical Variables are dependant
 - H0: Marks dependant of Gender

Import Libraries and Create a dataframe

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
```

df=pd.DataFrame([[20,30,15],[20,15,30]])
df

		0	1	2
0)	20	30	15
1		20	15	30

Calculate the Expected Matrix

```
Expectedvalue = \frac{Row_{total} * column_{total}}{Total}
```

```
rowtotal=df.iloc[0,:].sum()
coltotal=df.iloc[:,0].sum()
total=np.sum(df.sum(axis=0))
print("Row total",rowtotal)
print("Col total",coltotal)
print("Total",total)
```

```
nrows,ncols=df.shape
print("No of rows ",nrows)
print("No of cols ",ncols)
```

```
No of rows 2
No of cols 3
```

```
Row total 65
Col total 40
Total 130
```

Expected Matrix

```
Exp=np.zeros(shape=(nrows,ncols))
for i in range(nrows):
    for j in range(ncols):
        rowtotal=df.iloc[i,:].sum()
        coltotal=df.iloc[:,j].sum()
        Exp[i,j]=(rowtotal*coltotal/total)
print("Expected Matrix")
print(Exp)
```

```
Expected Matrix
[[20. 22.5 22.5]
[20. 22.5 22.5]]
```

Chi Statistics

```
Chi - Statistics = \sum \frac{(Observed - Expected)^2}{Expected}
```

```
Observed Matrix
[[20 30 15]
[20 15 30]]
```

```
Expected Matrix
[[20. 22.5 22.5]
[20. 22.5 22.5]]
```

```
chistatistics=np.sum((Obs-Exp)**2/Exp)
print("The Chi-Statistics is ",chistatistics)
```

The Chi-Statistics is 10.0

Degree of Freedom

```
dof=(nrows-1)*(ncols-1)
print("Degree of Freedom is ",dof)
```

Degree of Freedom is 2

Critical Value

```
from scipy.stats import chi2
```

```
chicritical=chi2.ppf(1-0.05,dof)
print("Chi square critical value ",chicritical)
```

Chi square critical value 5.991464547107979

Plot the Findings

Chi-Square test using Inbuilt chi2_contingency in scipy

Chi-squared test using chi2_contingency method

```
from scipy.stats import chi2_contingency
```

```
chistatistics,pvalue,dof,expected=chi2_contingency(df)
print("Chi Statistics ",chistatistics)
print("pvalue",pvalue)
print("Degree of Freedom",dof)
print("Expected value\n",pd.DataFrame(expected))
print("Observed Value\n",pd.DataFrame(df))
```

Output of the code

```
Chi Statistics 10.0
pvalue 0.006737946999085468
Degree of Freedom 2
Expected value
0 20.0 22.5 22.5
1 20.0 22.5 22.5
Observed Value
    0
0 20 30 15
1 20 15 30
```

IF FREQUECIES ARE GIVEN

Consider the following scenario

```
oFreq=[3,4,2,7] # Observed Frequency
eFreq=[4,3,3,5] # Expected Frequency
```

from scipy.stats import chisquare