

planetmath.org

Math for the people, by the people.

Chu space

Canonical name ChuSpace

Date of creation 2013-03-22 13:04:51 Last modified on 2013-03-22 13:04:51

Owner Henry (455) Last modified by Henry (455)

Numerical id 6

Author Henry (455) Entry type Definition Classification msc 03G99

Defines perp
Defines carrier
Defines cocarrier
Defines normal

Defines normal Chu space

Defines separable
Defines extensional
Defines biextensional

Defines row Column

A Chu space over a set Σ is a triple (A, r, \mathcal{X}) with $r : A \times \mathcal{X} \to \Sigma$. A is called the *carrier* and \mathcal{X} the *cocarrier*.

Although the definition is symmetrical, in practice asymmetric uses are common. In particular, often \mathcal{X} is just taken to be a set of function from \mathcal{A} to Σ , with r(a, x) = x(a) (such a Chu space is called *normal* and is abbreviated $(\mathcal{A}, \mathcal{X})$).

We define the *perp* of a Chu space $\mathcal{C} = (\mathcal{A}, r, \mathcal{X})$ to be $\mathcal{C}^{\perp} = (\mathcal{X}, r^{\vee}, \mathcal{A})$ where $r^{\vee}(x, a) = r(a, x)$.

Define \hat{r} and \check{r} to be functions defining the rows and columns of \mathcal{C} respectively, so that $\hat{r}(a): \mathcal{X} \to \Sigma$ and $\check{r}(x): \mathcal{A} \to \Sigma$ are given by $\hat{r}(a)(x) = \check{r}(x)(a) = r(a,x)$. Clearly the rows of \mathcal{C} are the columns of \mathcal{C}^{\perp} .

Using these definitions, a Chu space can be represented using a matrix.

If \hat{r} is injective then we call \mathcal{C} separable and if \check{r} is injective we call \mathcal{C} extensional. A Chu space which is both separable and extensional is biextensional.