

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN R-423 — COMPLEMENTOS DE MATEMÁTICA II

Nombre y Apellido:

Examen Parcial 2

- **Ej. 1.** Sea G un grupo y H un subgrupo de G. Se dice que H es un subgrupo característico de G si para cada automorfismo $\varphi: G \to G$ se verifica que $\varphi(H) \subset H$.
 - a) Probar que si H es un subgrupo característico de un grupo G entonces $H \triangleleft G$. Sugerencia. Probar primero que para cada $a \in G$, $f_a : G \to G$ tal que $f_a(g) = aga^{-1}$ es un automorfismo de G.
 - b) Sea H un subgrupo característico de un grupo G y sea $\varphi: G \to G$ un automorfismo. Probar que φ se induce a un automorfismo $\overline{\varphi}: G/H \to G/H$ y que la asignación $\varphi \mapsto \overline{\varphi}$ es un homomorfismo de Aut(G) en Aut(G/H).
 - c) Considerar el grupo producto $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. Encontrar un subgrupo normal de G que no sea un subgrupo característico (lo que prueba que la recíproca del item **a** es falsa).
- **Ej. 2.** Sea Rel tal que ob Rel es la clase de todos los conjuntos y mor Rel son las relaciones entre conjuntos, es decir, $\mathcal{R} \in \text{Hom}(A, B)$ si \mathcal{R} es una relación binaria de A en B. La composición de morfismos es la composición de relaciones. Dando por sabido que la composición de relaciones es asociativa:
 - a) Dar explicitamente las funciones dom, codom y el morfismo identidad id_A para cada objeto A de Rel y probar que Rel es una categoría.
 - b) Determinar, si existen, los objetos iniciales, terminales y nulos de Rel.
 - c) Determinar qué morfismos son isomorfismos en Rel.
- **Ej. 3.** Determinar si las siguientes afirmaciones son verdaderas o falsas, justificando adecuadamente la respuesta.
 - a) Un anillo es un conjunto R con dos operaciones denotadas + y \cdot tales que (R,+) es un grupo abeliano, cuyo neutro se denota por 0, (R,\cdot) es un semigrupo, y vale

$$(a+b) \cdot c = a \cdot c + b \cdot c, \quad c \cdot (a+b) = c \cdot a + c \cdot b$$

para cada $a, b, c \in R$. Si $(R, +, \cdot)$ es un anillo, 0 es un elemento absorvente de (R, \cdot) .

- b) Sea $f: G \to G$ un homomorfismo de grupos y sea $x \in G$ un elemento de orden finito. Entonces el orden de f(x) divide al orden de x.
- c) Sea M un monoide y \mathscr{C}_M la categoría asociada. En \mathscr{C}_M existen ecualizadores de todo par de morfismos.
- d) Si \mathscr{C} es una categoría con coproductos, entonces $A + B \simeq B + A$.