Track Properties by Tracklet Seed

Casey Pancoast

Wednesday, 19 February 2020

Overview

Graphs and Results

- Analyzed MC Samples with hybrid algorithm restricted to using particular tracklet seeds
 - 9000: 2 100 GeV single-muon & single-electron events with 2 8 GeV counterparts
 - Restricted algorithm to tracking seeds L1L2, L3L4, etc.
 - Also ran an unrestricted algorithm
 - Measured some properties
- Found performance dip for particular seeding combination
 - Was due to a bug in the tracking algorithm
 - This doesn't influence the unrestricted algorithm, though

How I Did This

- My plotting script is up on GitLab
 - Takes in outputs of L1TrackNtuplePlot.C() and overlays chosen graphs/histograms on one another (these could be "eff_eta", "resVsEta_ptRel_H_68", etc.)

η efficiency for μ : 2016 vs. 2020

NB: The previous dip in the efficiency of L5-L6 based tracks for low pseudorapidity is no longer present.

η efficiency for μ and e

res vs. |η|: z₀ for μ and e 68% of (gen - reco) distribution width for each eta

res vs. |η|: p_{T Rel} for μ and e 68% of (gen - reco) distribution width for each eta

Hey wait, what's up with that thing?

p_{T Rel} res vs. |η| (Single Muon, 10 - 100 GeV)

L2D1

L1D1

L2D1 seeds not propagating to D4

L2L3

D1D2

(Single Muon, 2-100 Ge∜)

This doesn't make sense with the tracker geometry.

Future tracker geometry "T14" that these samples ran on.

NB: The L2D1 region clearly encompasses discs 4 and 5.

So what went wrong?

There was a place in the code intended to prevent L2L3 tracks from seeding to D4 that was also preventing L2D1 tracks from seeding there. This was corrected.

How I Did This

Specialized plotting function

Workflow

- Change flags to restrict seeding layers, produce stubs and analyze
- Shove seeding-layer-restricted
 Ntuples through L1TrackNtuplePlot.
- o Then...

overlayPlot.C()

- Makes plots from different seeding layers with a plot type...
 - "eff_eta", "resVsEta_ptRel_68"
- ...a common prefix...
 - "output_TTbar_PU200_"
 - "output_SingleMu_PU0_"
- ...and a set of identifying suffixes.
 - "L1L2", "L2D2", "AllSeeds"

```
void overlayPlot(TString plot name, TString common prefix, std::vector<TString> suffixes, TString group name="") {
const int NUM SUFFIXES = suffixes.size():
THIF* h output[NUM SUFFIXES];
for (int suffix = 0; suffix < NUM SUFFIXES; suffix++) {
  TFile* file = new TFile(common prefix + suffixes(suffix) + ".root"):
  h output[suffix] = (TH1F*)file->Get(plot name);
for (int suffix = 0; suffix < NUM SUFFIXES; suffix++)
```

Conclusion

Graphs and Results

- Analyzed MC Samples from different tracklet seeding layers
- Previous low-eta dip in efficiency for L5-L6 based tracks is no longer present
- Found performance dip for L2D1 seeding combination that was to bug in code
- Otherwise, all data looks about as expected

How I Did This

- My plotting script is up on GitLab, in L1Tracker/TrackFindingTracklet/test/
- Made additional plots to show layer hits at eta
 - Haven't yet developed into function usable by others, but will

overlayPlot.C()

res vs. $|\eta|$: η for μ and e 68% of (gen - reco) distribution width for each eta

res vs. $|\eta|$: ϕ for μ and e 68% of (gen - reco) distribution width for each eta

Fewer hits here vs. other seed configs

L2D1 5 stubs

L2L3 6 stubs

L1D1 6 stubs

D1D2 6 stubs

> (Single Muon, 2-100 Ge\(\forall \)