Три вида Траекторий

Ризаев Даниил 05-305

Динамические системы

Рассмотрим нормальную систему дифференциальных уравнений

$$\dot{\bar{x}} = \bar{f}(\bar{x}) \tag{1}$$

правая часть которой не зависит от переменного t

Системы дифференциальных уравнений вида (1) называются *динамическими* или *автономными*.

Предположим, что функция $\bar{f}(\bar{x})$ непрерывна на некотором открытом множестве D пространства переменных x^1,\dots,x^n и удовлетворяет условию Липпица в любом замкнутом ограниченном подмножестве D. Тогда в силу теорем существования и единственности, для любого действительного числа t_0 и для любой точки $\bar{x}_0 \in D$ будет существовать единственное решение

$$\bar{x} = \bar{\varphi}(t)$$

системы уравнений (1), удовлетворяющее условию

$$\bar{\varphi}(t_0) = \bar{x}_0$$

В пространстве переменных x^1, \ldots, x^n любое решение $\bar{x} = \bar{\varphi}(t)$ динамической системы (1) определяет кривую. Эту кривую с заданным на ней параметром t будем называть $mpaeкmopue\check{u}$. Само пространство x^1, \ldots, x^n называется ϕ азовым пространством.

Свойства решений динамических систем

1. Если $\bar{x} = \bar{\varphi}(t)$ - решение динамической системы

$$\dot{\bar{x}} = \bar{f}(\bar{x}) \tag{2}$$

то, для любого $c, \, \bar{x} = \bar{\varphi}(t+c)$ также является решением.

Доказательство. Следует из равенств

$$\frac{d}{dt}\bar{\varphi}(t+c) = \dot{\bar{\varphi}}(t+c) = \bar{f}(\bar{\varphi}(t+c))$$

2. Если $\bar{x}=\bar{\varphi}(t)$ и $\bar{x}=\bar{\psi}(t)$ - два решения системы (1) и $\bar{\varphi}(t_1)=\bar{\psi}(t_2)$, то $\bar{\psi}(t)=\bar{\varphi}(t+c)$, где $c=t_1-t_2$. Иначе говоря, если траектории $\bar{x}=\bar{\varphi}(t)$ и $\bar{x}=\bar{\psi}(t)$ имеют общую точку, то эти траектории совпадают.

Доказательство. В силу свойства 1, $\bar{x}=\bar{\varphi}(t+c)$ $(c=t_1-t_2)$ - решение системы (1), а в силу равенства $\bar{\varphi}(t_1)=\bar{\psi}(t_2),$

$$\bar{\varphi}(t_2+c) = \bar{\varphi}(t_1) = \bar{\psi}(t_2)$$

Таким образом, решения $\bar{x}=\bar{\varphi}(t+c)$ и $\bar{x}=\bar{\psi}(t)$ удовлетворяют одинаковым начальным условиям при $t=t_2$ и, в силу теоремы единственности, совпадают, т.е.

$$\bar{\varphi}(t+c) = \bar{\psi}(t)$$

3. Решения динамической системы обладают групповым свойством: если $\bar{x}=\bar{\varphi}(t,\bar{x}_0)$ - решение системы (1), удовлетворяющее начальному условию $\bar{\varphi}(0,\bar{x}_0)=\bar{x}_0$, то

$$\bar{\varphi}(t,\bar{\varphi}(s,\bar{x}_0)) = \bar{\varphi}(t+s,\bar{x}_0)$$

Доказательство. Положим $\bar{x}_1=\bar{\varphi}(s,\bar{x}_0)$. Тогда $\bar{\varphi}_1(t)=\bar{\varphi}(t,\bar{x}_1)$ - решение системы (1) и, в силу свойства $1,\,\bar{\varphi}_2=\bar{\varphi}(t+s,\bar{x}_0)$ также является решением (1); при этом

$$\bar{\varphi}_1(0) = \bar{\varphi}(0, \bar{x}_1) = \bar{x}_1,$$

$$\bar{\varphi}_2(0) = \bar{\varphi}(s, \bar{x}_0) = \bar{x}_1.$$

Таким образом, решения $\bar{\varphi}_1(t)$ и $\bar{\varphi}_2(t)$ системы уравнений (1) удовлетворяют одинаковым начальным условиям. В силу теоремы единственности $\bar{\varphi}(t) = \bar{\varphi}_2(t)$

Решение системы (1) вида $\bar{x}=a$, где a - постоянный вектор, называется положением равновесия или точкой покоя.

Очевидно, что если $\bar{x}=a$ - положение равновесия, то f(a)=0, и наоборот, если f(a)=0, то $\bar{x}=a$ - положение равновесия.

Множество периодов решения Д.С.

Пусть $\bar{x}=\bar{\varphi}(t)$ - решение динамической системы (1), определенное при $-\infty < t < +\infty$. Число c называется периодом решения $\bar{x}=\bar{\varphi}(t)$, если $\bar{\varphi}(t+c)=\bar{\varphi}(t)$ при всех t.

Обозначим F множество всех периодов решения $\bar{x} = \bar{\varphi}(t)$ (это множество непусто, так как $0 \in F$). Докажем следующие свойства множества F.

1. Если $c \in F$, то $-c \in F$.

Доказательство. Так как c - период, то $\bar{\varphi}(t+c) = \bar{\varphi}(t)$. Заменяя в этом равенстве t на t-c, получим $\bar{\varphi}(t) = \bar{\varphi}(t-c)$, т.е. -c является периодом.

2. Если $c_1 \in F$, $c_2 \in F$, то $c_1 + c_2 \in F$.

Доказательство. Следует из равенств

$$\bar{\varphi}(t+c_1+c_2) = \bar{\varphi}(t+c_1) = \bar{\varphi}(t)$$

 $3. \ F$ - замкнутое множество.

 $\ensuremath{\mathcal{A}}$ оказательство. Пусть c_n - сходящаяся последовательность периодов и $\lim_{n \to \infty} c_n = c_0$. Тогда в силу непрерывности имеем

$$\bar{\varphi}(t+c_0) = \bar{\varphi}(t+\lim_{n\to\infty} c_n) = \lim_{n\to\infty} \bar{\varphi}(t+c_n) = \bar{\varphi}(t)$$

Таким образом $c_0 \in F$, и, следовательно, F - замкнутое множество. \square

Виды траекторий

Теорема. Пусть траектория $\bar{x} = \bar{\varphi}(t)$ динамической системы (1) сама себя пересекает. Тогда решение $\bar{\varphi}(t)$ может быть продолжено на интервал $-\infty < t < +\infty$ и имеет место одна из следующих возможностей:

- 1. $\bar{\varphi}(t) = a$, т.е. решение $\bar{\varphi}(t)$ является положением равновесия;
- 2. существует такое число T>0, что $\bar{\varphi}(t+T)=\bar{\varphi}(t)$ при всех t, но при $0<|t_1-t_2|< T,\, \bar{\varphi}(t_1)\neq \bar{\varphi}(t_2)$

в случае 2 решение $\bar{x}=\bar{\varphi}(t)$ называется nepuoduческим, а его траектория - замкнутой траекторией или циклом.

Доказательство. Пусть решение $\bar{x}=\bar{\varphi}(t)$ опреелено при a< t< b. По предположению траектория решение сама себя пересекает, т.е. сущствуют такие $t_1,t_2\in(a,b),\ (t_1>t_2)$ что $\bar{\varphi}(t_1)=\bar{\varphi}(t_2)$

В силу свойства 2 решений динамических систем,

$$\bar{\varphi}(t) = \bar{\varphi}(t+c) \tag{3}$$

где $c=t_1-t_2>0$. Функция $\bar{x}=\bar{\varphi}(t+c)$ является решением системы (1), определенным при a-c< t< b-c, и, кроме того в силу (2), эти решения совпадают на общей части их областей определения, т.е. при a< t< b-c. Следовательно, решение

$$\bar{x} = \bar{\psi}(t) = \begin{cases} \bar{\varphi}(t), & a < t < b, \\ \bar{\varphi}(t+c), & a - c < t \le a, \end{cases}$$

$$(4)$$

является продолжением решения $\bar{x} = \bar{\varphi}(t)$ на интервал (a-c,b). Последовательно повторяя описанную процедуру, получим продолжение решения $\bar{x} = \bar{\varphi}(t)$, определенное на интервале $(-\infty,b)$.

С помощью равенства $\bar{\varphi}(t) = \bar{\varphi}(t-c)$, которое получается из (2) заменой t на t-c, получим продолжение решения $\bar{x} = \bar{\varphi}(t)$ с интервала $(-\infty, b)$ на всю числовую ось $(-\infty, +\infty)$.

Итак решение $\bar{x}=\bar{\varphi}(t)$ можно считать определенным при $-\infty < t < +\infty$, причем, как ясно из самого способа продолжения, постоянная $c=t_1-t_2>0$ является периодом этого решения.

Пусть F - множество периодов решения $\bar{x} = \bar{\varphi}(t)$. Могут представится две возможности:

- а) F содержит сколь угодно малые положительные числа,
- б) в F найдется наименьшее положительное число T.

В случае а) существует сходящаяся к нулю последовательность положительных периодов c_n . Пусть t - произвольное действительное число. Дробные части

$$\alpha_n = \frac{t}{c_n} - \left[\frac{t}{c_n}\right]$$

чисел $\frac{t}{c_n}$ образуют ограниченную последовательность, а так как $c_n \to 0$, то

$$\lim_{n \to \infty} \left\{ t - \left[\frac{t}{c_n} \right] \right\} = \lim_{n \to \infty} (\alpha_n c_n) = 0$$

Числа $\left[\frac{t}{c_n}\right]c_n$, будучи целыми кратными периодов c_n , сами являются периодами решения $\bar{\varphi}(t)$. Поэтому

$$\bar{\varphi}(t) = \bar{\varphi}\left(t - \left[\frac{t}{c_n}\right]c_n\right)$$

переходя в равенстве (3) к пределу при $n \to \infty$, получим

$$\bar{\varphi}(t) = \lim_{n \to \infty} \bar{\varphi}\left(t - \left[\frac{t}{c_n}\right]c_n\right) = \bar{\varphi}\left(\lim_{n \to \infty} \left(t - \left[\frac{t}{c_n}\right]c_n\right)\right) = \bar{\varphi}(0)$$

Таким образом, решение $\bar{x} = \bar{\varphi}(t)$ в случае а) является положением равновесия.

В случае б)

$$\bar{\varphi}(t+T) = \bar{\varphi}(t)$$

Покажем, что $\bar{\varphi}(t_1) \neq \bar{\varphi}(t_2)$ при $0 < |t_1 - t_2| < T$. Предположим противное. Тогда найдутся такие t_1, t_2 ($0 < |t_1 - t_2| < T$), что $\bar{\varphi}(t_1) = \bar{\varphi}(t_2)$. В силу свойства $2, \bar{\varphi}(t) = \bar{\varphi}(t+c)$, где $c = t_1 - t_2 \neq 0$. Таким образом, $c = t_1 - t_2$ служит периодом решения $\bar{\varphi}(t)$. В силу свойства 1 множества F, положительное число $|t_1 - t_2| = \pm c$ также является периодом, а это противоречит предположению, что T - наименьший положительный период решения $\bar{\varphi}(t)$.

Из доказанной теоремы непосредственно получаем следующее

Следствие. Траектория любого непродолжаемого решения динамической системы (1) может быть либо положением равновесия, либо замкнутой траекторией, либо траекторией без самопересечений.