5

What is claimed is

1. A process for preparing an optically active 5-hydroxy-3-ketoester of the formula **A1** or **A2**

$$R^{1,\cdots}$$
 R^2 OR^3

10

15

A1 or **A2**

or one of the tautomers thereof,

wherein R^1 and R^2 independently of each other represent hydrogen or a group which is selected from among C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_6 - C_{10} -aryl and C_1 - C_8 -alkylene- C_6 - C_{10} -aryl, optionally with one, two or three substituents, selected from among hydroxy, halogen, C_1 - C_4 -alkoxy and CF_3 , where R^1 and R^2 do not simultaneously have the same meaning, and

 R^3 denotes a group selected from among C_1 - C_8 -alkyl, C_1 - C_4 -Haloalkyl, C_6 - C_{10} -aryl- C_1 - C_8 -alkylene and trihydrocarbylsilyl, characterised in that a

20 racemic mixture of a 5-hydroxy-3-ketoester of formula A

wherein R¹, R² and R³ are as hereinbefore defined,

is resolved into the two enantiomeric 5-hydroxy-3-ketoester <u>A1</u> and <u>A2</u> by preparative high performance liquid chromatography (HPLC) over a chiral carrier material.

- 5 **2**. The process according to claim 1, wherein the two separate enantiomeric 5-hydroxy-3-ketoesters <u>A1</u> and <u>A2</u> are each obtained in an enantiomer excess of at least 95%.
- 3. The process according to claim 1, wherein R¹ and R² independently of each other are selected from the group consisting of methyl, ethyl, propyl, butyl, phenyl, benzyl, phenylethyl and phenylpropyl, optionally with a substituent selected from the group consisting of hydroxy, fluorine, chlorine, bromine, methoxy, ethoxy and CF₃.
- 15 **4.** The process according to claim 1, wherein R³ is selected from the group consisting of methyl, ethyl, propyl, butyl and benzyl.
 - 5. The process according to claim 1, wherein R¹ denotes 2-phenylethyl and R² denote propyl or R¹ denotes propyl and R² denotes 2-phenylethyl.
 - 6. The process according to claim 1, wherein R³ denotes tert.-butyl or ethyl.
 - **7.** The process according to claim 5, wherein R¹ denotes 2-phenylethyl, R² denotes propyl and R³ denotes ethyl or tert.-butyl.
 - **8.** The process according to claim 1, wherein chemically modified polysaccharide is used as the chiral carrier material.
- 9. The process according to claim 8, wherein the chemically modified30 polysaccharide is a polysaccharide which contains one or more optically active groups chemically bound.
 - **10.** The proces according to claim 8, wherein the polysaccharide is selected from the group consisting of dextrin, cyclodextrin, starch, amylose and cellulose.

20

25

- 11. The process according to claim 8, wherein the carrier material is selected from the group consisting of tris(3,5-dimethylphenylcarbamate)-amylose, tris[(S)-α-methylbenzylcarbamate]-amylose, tris(3,5-dimethylphenylcarbamate)-cellulose, tris(4-methylbenzoate)-cellulose, cellulosetriacetate, cellulosetribenzoate, tris(phenylcarbamate)-cellulose, tris(4-chlorophenylcarbamate)-cellulose,
 cellulosetricinnamate and cellulosetribenzoate.
 - **12.** The process according to claim 8, wherein tris(3,5-dimethylphenylcarbamate)-amylose or tris(3,5-dimethylphenylcarbamate)-cellulose is used as the carrier material.
 - **13.** The process according to claim 1, wherein the preparative HPLC is used in the form of SMB (Simulated Moving Bed) chromatography.
 - 14. A method for preparing an optically active dihydropyrone of formula B

$$\mathbb{R}^{1,\ldots,2}$$

20

25

15

or one of the tautomers thereof,

wherein R^1 and R^2 independently of each another denote hydrogen or a group selected from among C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_6 - C_{10} -aryl and C_1 - C_8 -alkylene- C_6 - C_{10} -aryl, optionally with one, two or three substituents, selected from among hydroxy, halogen, C_1 - C_4 -alkoxy and CF_3 , wherein R^1 and R^2 do not simultaneously have the same meaning, wherein an optically active 5-hydroxy-3-ketoester of formula $\underline{\bf A1}$ or $\underline{\bf A2}$

$$R^{1,\cdots}$$
 R^2 OR^3

5 <u>A1</u> or <u>A2</u>

is cyclised according to methods known $per\ se$ to form an optically active dihydropyrone of formula $\underline{\mathbf{B}}$.

10 **15.** The method of claim 14 wherein the dihydropyrone of formula **B** is tipranavir.