Implementation Project

on

COVID-19 BIG-DATA ANALYSIS

Course: CPSC 531- Advanced Database Management

Section: 3
Team Members:

Shriya Bannikop 885196238 Debdyuti Das 886676550

PROBLEM STATEMENT

The risk of coronavirus was still increasing even after the government had taken several measures worldwide to minimise the Covid-19 spread. The transmission chain's severity was deemed broken only when no new case was reported in an area. The only way to break the transmission chain is to impose a Lockdown.

The aim of the project is to address, compare and analyse the variation in the number of COVID-19 cases in countries which imposed complete lockdown with restriction rules and observe the following trend:

- To capture the trend in the data based on the increasing number of cases
- Was imposing lockdown a right decision
- Compare countries which imposed lockdown and analyse the variation in the number of covid 19 cases

ARCHITECTURE

- Big Data Technologies utilised in Cluster created on Google Cloud Platform i.e. Dataproc
- .csv files are given as input
- Data ingestion is done into Hadoop Distributed File System (HDFS) and stored into Google Cloud Storage Bucket
- Extract Data in Hive, Spark for analysis
- Extracted data using Hive (Hive is used as ETL to connect HDFS and spark) and used Apache Spark to perform the analysis
- The output of the analysed data is visualised using Jupyter Notebook
- The files are stored back into google storage bucket

TOOLS AND TECHNOLOGIES

- Cloud Platform: Google Cloud Cluster
- Primary Storage System: Hadoop Distributed File System
- Distributed processing System: Apache spark
- ETL Tools: Apache Hive
- Visualisation: Jupyter Notebook, Google Colab

FUNCTIONALITIES

- To capture the trend in the data collected from multiple datasets based on the increasing number of cases
- To determine if imposing lockdown was a right decision
- To compare countries which imposed lockdown and analyse the variation in the number of Covid-19 cases
- Migration analysis to know the population and cases before and after lockdown

APPROACH

Before implementing with Cluster:

- 1. Download files and store in local directory
- 2. Start all daemons in HDFS using
 - hdfs namenode -format
 - start-dfs.sh
- 3. Verify if all components are running
 - jps
- 4. Move .csv files to HDFS
 - Make a directory in HDFS:
 hadoop fs -mkdir -p /home/hadoop/directory_name
 - Copy the .csv file from Local to HDFS:
 hadoop fs -put
 /home/debdyuti/bigdata/covid_19_data.csv
 /home/hadoop/directory name
 - Check if its copied:
 hadoop fs -ls /home/hadoop/directory name
- 5. Create tables in hive and use MapReduce
 - Cd \$HIVE HOME/bin
 - Open hive-CLI: hive
 - Create database:
 CREATE SCHEMA IF NOT EXISTS database_name;
 USE database name;
 - Create table:

CREATE TABLE IF NOT EXISTS
database_name.covid_details(SNo INTEGER,
ObservationDate STRING, State STRING, Country
STRING, LastUpdate STRING, Confirmed DOUBLE,
Deaths DOUBLE, Recovered DOUBLE)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

• Load Dataset from HDFS to HIVE Table:

```
LOAD DATA INPATH
```

- '/home/hadoop/directory_name/covid_19_data.csv'
 INTO TABLE database_name.covid_details ;
- To see records in the HIVE table:
 SELECT * FROM database name.covid details ;
- 6. Extract data into Spark for analysis
- 7. Read files from Spark and visualise using Google Colab

After implementing with Cluster:

- 1. Create cluster in Google Cloud Platform
- 2. Open console (SSH) on master node
- 3. Download data from internet into the Hadoop cluster (HDFS location) using wget command
- 4. Copy files from hadoop (HDFS location) into Google storage bucket using "gsutil cp migration_population.csv us-central1 gs://dyutishriya-bucketdbms/Data1;"
- 5. Using web interface analyse and data in Jupyter Notebook
- 6. Read from Google Storage Bucket. After analysis and visualisation store it back into the bucket.

STEPS TO RUN THE PROJECT

Github Location of Code:

https://github.com/Debdyuti-01/Covid-19-Big-Data-Analysis

- 1. Start the Cluster
- 2. Start demons (start-dfs command) by opening SSH shell in master node
- 3. Run the .ipynb file on jupyter notebook to check visualisations

TEST RESULTS OF SPARK ANALYSIS

• Cluster Creation:

• Bucket Creation and Loading data:

• Data Cleaning:

- Filled blank fields with 'unknown'
- Filtered data
- Converted String datatype to Date datatype of Date attribute

• Data Exploration:

- To find top 5 countries which were leading with Covid-19 cases
- Pivoted the table by Country attribute
- Total number of recovered, confirmed and death cases of Covid of top 5 leading countries

Country	max(Confirmed)	 max(Recovered)	max(Deaths)				
US	80625120	6298082	988609				
India	43042097	30974748	521751				
Brazil	30250077	17771228	662185				
France	27874269	415111	145159				
Germany	23416663	3659260	132942				
+		·	+				
only showing top 5 rows							

+	+	+	+	·	+	+
fdate	lus	Spain	Italy	France	Germany	ı
+	+	+	+	·	+	+
2020-01-22	1	Θ	Θ	Θ	Θ	1
2020-01-23	1	Θ	Θ	Θ	Θ	1
2020-01-24	2	Θ	Θ	2	0	1
2020-01-25	2	Θ	Θ	3	0	1
2020-01-26	5	Θ	Θ	3	0	1
2020-01-27	5	Θ	Θ	3	1	I
2020-01-28	5	Θ	Θ	4	4	I
2020-01-29	6	Θ	Θ	5	4	I
2020-01-30	6	Θ	Θ	5	4	I
2020-01-31	8	Θ	2	5	5	1
2020-02-01	8	1	2	6	8	1
2020-02-02	8	1	2	6	10	1
2020-02-03	11	1	2	6	12	1
2020-02-04	11	1	2	6	12	1
2020-02-05	11	1	2	6	12	1
2020-02-06	12	1	2	6	12	1
2020-02-07	12	1	3	6	13	1
2020-02-08	12	1	3	11	13	l
2020-02-09	12	2	3	11	14	I
2020-02-10	12	2	3	11	14	I
2020-02-11	13	2	3	11	16	I
2020-02-12	13	2	3	11	16	I
2020-02-13	14	2	3	11	16	I
2020-02-14	14	2	3	11	16	I
2020-02-15	14	2	3	12	16	I

• Data Preparation

• Scaled values to remove outliers

Date	Country	Confirmed	Recovered	Deaths	+	view_scaled
2020-01-22	Germany	 Θ	 θ	Θ	 2020-01-22	-0.20569453723773765
2020-01-22	Spain	[Θ	Θ	Θ	2020-01-22	-0.20569453723773765
2020-01-22	Italy	[Θ	Θ	Θ	2020-01-22	-0.20569453723773765
2020-01-22	us	1	0	Θ	2020-01-22	-0.205694257821043
2020-01-22	France	0	Θ	Θ	2020-01-22	-0.20569453723773765
2020-01-23	France	0	Θ	Θ	2020-01-23	-0.20569453723773765
2020-01-23	Italy	0	Θ	Θ	2020-01-23	-0.20569453723773765
2020-01-23	Germany	0	Θ	Θ	2020-01-23	-0.20569453723773765
2020-01-23	Spain	0	Θ	Θ	2020-01-23	-0.20569453723773765
2020-01-23	us	1	Θ	Θ	2020-01-23	-0.205694257821043
2020-01-24	Spain	0	Θ	Θ	2020-01-24	-0.20569453723773765
2020-01-24	us	2	Θ	Θ	2020-01-24	-0.20569397840434836
2020-01-24	France	2	Θ	Θ	2020-01-24	-0.20569397840434836
2020-01-24	Italy	0	Θ	Θ	2020-01-24	-0.20569453723773765
2020-01-24	Germany	0	Θ	Θ	2020-01-24	-0.20569453723773765
2020-01-25	France	3	Θ	Θ	2020-01-25	-0.20569369898765372
2020-01-25	Germany	0	Θ	Θ	2020-01-25	-0.20569453723773765
2020-01-25	Spain	0	Θ	Θ	2020-01-25	-0.20569453723773765
2020-01-25	Italy	0	Θ	Θ	2020-01-25	-0.20569453723773765
2020-01-25	us	2	Θ	Θ	2020-01-25	-0.20569397840434836
2020-01-26	Spain	 0	0	Θ	2020-01-26	-0.20569453723773765
12020 01 26	Luc	l e	10		12020 01 26	0 20560214015426442

Analysis

Confirmed covid cases in year 2020 for each country

Top 10 countries sorted by maximum number of confirmed covid cases

- Total number of active cases in each country
- Top 10 countries sorted by number of active covid cases

Most 10 infected Countries

Most 10 infected Countries

- Total number of death cases in each country
- Top 10 country sorted by covid death rate

Most 10 infected Countries

Most 10 infected Countries

Plot showing the increases in cases by date(animation plot) Cases over time 2020-01-22 2020-01-30 2020-02-07 2020-02-15 2020-02-23 2020-03-02 2020-03-10 2020-03-18 2020-03-26 2020-04-03 2020-04-11 2020-04-19 2020-04-27 2020-05-05 2020-05-13 2020-05-21 2020-05-29 2020-06-06 2020-06-14 Cases over time 2020-01-22 2020-01-30 2020-02-07 2020-02-15 2020-02-23 2020-03-02 2020-03-10 2020-03-18 2020-03-26 2020-04-03 2020-04-11 2020-04-19 2020-04-27 2020-05-05 2020-05-13 2020-05-21 2020-05-29 2020-06-06 2020-06-14 Cases over time

animation_frame=2020-06-03 2020-01-22 2020-01-30 2020-02-07 2020-02-15 2020-02-12 2020-03-20 2020-03-20 2020-03-10 2020-03-16 2020-03-16 2020-03-16 2020-03-19 2020-03-19 2020-03-17 2020-03-07 2020-03-18 2020-03-10 2020-03-18 2020-03-19 2 • Top 20 countries sorted based on the total number of cases

• Line Chart of increase in 'Recovered', 'Deaths', 'Confirmed', 'Active_case'

• Comparisons Germany vs USA

• Comparing the plots for USA and Germany its is noticeable that USA(figure down) had more active cases(blue) than Germany(figure on top)

Storing data back into bucket

Data(csv files) stored in google storage bucket where subfolder is created by hadoop to save partitioned data.

Data is partitioned by hadoop into smaller chunks and saved

REFERENCES

- https://media.istockphoto.com/id/1215768524/vector/all-the-world-loc k-down-and-stay-at-home-with-cross-line-lock-down-and-physical-di stancing.jpg?s=612x612&w=0&k=20&c=IMUtLnhL9T4Du9ncS5osxslf WGG9VGNMApOyY-qG0tY=
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fdatafloq.com %2Fread%2Feverything-you-need-to-know-about-big-data-2020%2 F&psig=AOvVaw1nNAfqlgVI2UFsb8RPO47v&ust=16700176707220 00&source=images&cd=vfe&ved=0CA8QjRxqFwoTCLjkreKy2fsCFQAA AAAdAAAABAE
- https://bigdataprogrammers.com/load-csv-file-in-hive/