Congratulations! You passed!

Grade received 75% Latest Submission Grade 75% To pass 75% or higher

Go to next item

Given		

1/1 point

 \vec{v} = (1, 0, 7)

 \vec{w} = (0, -1, 2)

find the distance between them, $d(\vec{v}, \vec{w})$.

- \bigcirc -2
- $\bigcirc \sqrt{(23)}$
- O 5

 \bigodot Correct Correct! $d(\vec{v},\vec{w}) = \sqrt{(0-1)^2 + (-1-0)^2 + (2-7)^2}$

2. You are given the points P: (1, 0, -3) and Q: (-1,0,-3). The magnitude of the vector from P to Q is:

1/1 point

- 2
- O 3
- O -2
- **⊘** Correct

Correct! The magnitude of the vector is the distance between points P and Q, which you find by using the following: $\sqrt{((-1)-1)^2+0^2+((-3)-(-3))}=\sqrt{4}=2$

3. Select the correct statements pertaining to the dot product.

1/1 point

- ☐ The dot product of orthogonal vectors is always 1.
- The dot product of two vectors is always a scalar.
- **⊘** Correct

Correct! The dot product gives us a real number, therfore a scalar.

- The dot product of orthogonal vectors is always 0.
- Correct

Correct! Since both vectors are perpendicular to each other, the dot product is always 0.

4. Calculate the norm $\|v\|$ of the vector \vec{v} = (1, -5, 2, 0,-3) and select the correct answer.

1/1 point

- $||v|| = \sqrt{39}$
- ||v|| = 39
- $\bigcirc \ \|v\| = \sqrt{35}$
- ||v|| = 5

 \bigcirc Correct Correct! $\|v\| = \sqrt{((1^2) + (-5)^2 + 2^2 + 0^2 + (-3)^2)} = \sqrt{39}$

- $\bigcirc \begin{bmatrix} 2 \\ 5 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- $\begin{array}{c|c}
 & 1 \\
 & 0 \\
 & -2 \\
 & 0 \\
 & -1
 \end{array}$
- ⊗ Incorrect

Not quite. Review the video on finding the norm of a vector $(\underline{\text{The dot product}})$ $\ \ \, \angle$.

For a vector $\vec{v}=(x,y,z)$, the norm $\|v\|=\sqrt{(x^2)+(y^2)+(z^2)}$

6. Calculate the dot product $\vec{a} \cdot \vec{b}$ and select the correct answer.

1/1 point

$$\vec{a} = \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}, \vec{b} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$$

- $\begin{array}{c|c}
 & 12 \\
 & 0 \\
 & 3
 \end{array}$
- $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
- 15
- O 30
- ✓ Correct

Correct! By applying the formula you saw in the video $\underline{\text{The dot product}}$ [2] as follows: $\vec{a} \cdot \vec{b} = ax \cdot bx + ay \cdot by + az \cdot bz$, you have:

 $\vec{a} \cdot \vec{b} = 3 \cdot 4 + 7 \cdot 0 + 1 \cdot 3 = 12 + 0 + 3 = 15.$

7. Which of the following is the result of performing the multiplication $M_1 \cdot M_2$? Where M_1 and M_2 are given by:

0 / 1 point

- $M_1 = \begin{bmatrix} 2 & -1 \\ 3 & -3 \end{bmatrix}, M_2 = \begin{bmatrix} 5 & -2 \\ 0 & 1 \end{bmatrix}.$
- $\bigcirc \begin{bmatrix} 10 & 15 \\ -3 & -4 \end{bmatrix}$
- $\begin{bmatrix}
 10 & -5 \\
 15 & -9
 \end{bmatrix}$
- $\bigcirc \begin{bmatrix}
 10 & -3 & 1 \\
 15 & -4 & 0 \\
 1 & 0 & 1
 \end{bmatrix}$
- Ø 1-----

Check the signs in front of some of the values and try again. You can review matrix multiplication in the video Matrix Multiplication [2].

8. Calculate the dot product $\vec{w}\cdot\vec{z}$ and select the correct answer.

1/1 point

$$\vec{w} = \begin{bmatrix} -9 \\ -1 \end{bmatrix}, \vec{z} = \begin{bmatrix} -3 \\ -5 \end{bmatrix}$$

- $O\begin{bmatrix} -27 \\ -5 \end{bmatrix}$
- 32
- O 35
- O $\begin{bmatrix} 27 \\ 5 \end{bmatrix}$
- ✓ Correct

Correct! $\vec{w} \cdot \vec{z} = \begin{bmatrix} -9 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -5 \end{bmatrix} = (-9)(-3) + (-1)(-5) = 32$