FUNCTIONS AND GRAPHS

Department of Mathematics, FPT University

Hanoi 2021

Table of Contents

Review of Functions

Basic Classes of Functions

Transformations of Functions

Basic Classes of Functions

Transformations of Functions

Definition

A **function** f is a rule that assigns to each element x in a set D **exactly one** element, called f(x), in a set E.

The set $\bf D$ is called the domain of the function f.

The range of f is the set of all possible values of f(x) as x varies throughout the domain.

Definition

The **graph** of f is the set of all points (x,y) in the coordinate plane such that y=f(x) and x is in the domain of f.

The graph of f also allows us to picture:

- The domain of f on the x-axis.
- ullet Its range on the y-axis.

Example

The graph of a function f is shown in Figure 1.

- a) Find the values of f(1) and f(5).
- b) What is the domain and range of f?

```
Solution. a) f(1) = 3, f(5) = -0.7.
b) \mathbf{D} = [0, 7], Range(f) = [-2, 4].
```


Figure 1:

Example

The graph of a function f is shown in Figure 1.

- a) Find the values of f(1) and f(5).
- b) What is the domain and range of f?

$$\begin{array}{l} \textit{Solution.} \quad \text{a)} \ f(1) = 3, \\ f(5) = -0.7. \\ \text{b)} \ \mathbf{D} = [0, 7], \\ \text{Range}(f) = [-2, 4]. \end{array}$$

Figure 1:

Example

Find the domain and region of the functions (if it is a function).

- a) $f(n) = \sqrt{n}$ for all natural numbers n.
- b) g(x) is any real number such that larger than x.

- Algebraically (by an explicit formula)
- Visually (by a graph)
- Numerically (by a table of values)
- Verbally (by a description in words)

- Algebraically (by an explicit formula)
- Visually (by a graph)
- Numerically (by a table of values)
- Verbally (by a description in words)

- Algebraically (by an explicit formula)
- Visually (by a graph)
- Numerically (by a table of values)
- Verbally (by a description in words)

- Algebraically (by an explicit formula)
- Visually (by a graph)
- Numerically (by a table of values)
- Verbally (by a description in words)

Example

The human population of the world ${\cal P}$ depends on the time t.

Year	Population (millions)
1900	1650
1910	1750
1920	1860
1930	2070
1940	2300
1950	2560
1960	3040
1970	3710
1980	4450
1990	5280
2000	6080

- The table gives estimates of the world population P(t) at time t, for certain years.
- ullet However, for each value of the time t, there is a corresponding value of P, and we say that P is a function of t.

Example

The human population of the world P depends on the time t.

Year	Population (millions)
1900	1650
1910	1750
1920	1860
1930	2070
1940	2300
1950	2560
1960	3040
1970	3710
1980	4450
1990	5280
2000	6080

- ullet The table gives estimates of the world population P(t) at time t, for certain years.
- ullet However, for each value of the time t, there is a corresponding value of P, and we say that P is a function of t.

Example

"When you turn on a hot-water faucet, the temperature T of the water depends on how long the water has been running".

Draw a rough graph of T as a function of the time t that has elapsed since the faucet was turned on.

Example

"When you turn on a hot-water faucet, the temperature T of the water depends on how long the water has been running".

Draw a rough graph of T as a function of the time t that has elapsed since the faucet was turned on.

The Vertical Line Test

The Vertical Line Test

A curve in the xy-plane is the graph of a function of x if and only if **no** vertical line intersects the curve **more than once**.

The Vertical Line Test

The reason for the truth of the Vertical Line Test can be seen in the figure.

Increasing and Decreasing Functions

Definition

A function f is called $\it increasing$ on an interval I if:

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$ in I .

It is called decreasing on I if:

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I .

Increasing and Decreasing Functions

Example

The function f is said to be increasing on the interval [a,b], decreasing on [b,c], and increasing again on [c,d].

Increasing and Decreasing Functions

Example

The function f is said to be increasing on the interval [a,b], decreasing on [b,c], and increasing again on [c,d].

Definition

If a function f satisfies:

$$f(-x) = f(x)$$
, for all x in **D**

then f is called an **even function**.

The geometric significance of an even function is that its graph is symmetric with respect to the y-axis.

Definition

If a function f satisfies:

$$f(-x) = f(x)$$
, for all x in **D**

then f is called an **even function**.

The geometric significance of an even function is that its graph is $symmetric\ with$ respect to the y-axis.

Definition

If a function f satisfies:

$$f(-x) = f(x)$$
, for all x in **D**

then f is called an **even function**.

The geometric significance of an even function is that its graph is symmetric with respect to the y-axis.

Definition

If a function f satisfies:

$$f(-x) = f(x)$$
, for all x in **D**

then f is called an **even function**.

The geometric significance of an even function is that its graph is *symmetric with* respect to the y-axis.

Symmetry: Odd function

Definition

If a function f satisfies:

$$f(-x) = -f(x)$$
, for all x in **D**

then f is called an **odd function**.

The graph of an odd function is symmetric about the origin

Symmetry: Odd function

Definition

If a function f satisfies:

$$f(-x) = -f(x)$$
, for all x in **D**

then f is called an **odd function**.

The graph of an odd function is symmetric about the origin.

Symmetry: Odd function

Definition

If a function f satisfies:

$$f(-x) = -f(x)$$
, for all x in **D**

then f is called an **odd function**.

The graph of an odd function is symmetric about the origin.

Quiz questions

Choose one correct answer (TRUE or FALSE) for each statement.

- If f is a function then f(x+2) = f(x) + f(2).
- ② If f(s) = f(t) then s = t.
- ① Let f be a function. We can find s and t such that s=t and f(s) is not equal to f(t).

Quiz questions

Choose one correct answer (TRUE or FALSE) for each statement.

- If f is a function then f(x+2) = f(x) + f(2).
- ① Let f be a function. We can find s and t such that s=t and f(s) is not equal to f(t).

Quiz questions

Choose one correct answer (TRUE or FALSE) for each statement.

- If f is a function then f(x+2) = f(x) + f(2).
- **Q** Let f be a function. We can find s and t such that s=t and f(s) is not equal to f(t).

Combinations of Functions

• Combining Functions with Mathematical Operations

$$(f+g)(x) = f(x) + g(x)$$

Sum

2
$$(f-q)(x) = f(x) - q(x)$$

Difference

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Product

• Function composition $(g \circ f)(x) = g(f(x))$.

Combinations of Functions

- Combining Functions with Mathematical Operations
 - (f+q)(x) = f(x) + q(x)

Sum

2 (f-q)(x) = f(x) - q(x)

Difference

 $(f \cdot g)(x) = f(x) \cdot g(x)$

Product

• Function composition $(g \circ f)(x) = g(f(x))$.

Combinations of Functions

• Combining Functions with Mathematical Operations

$$(f-g)(x) = f(x) - g(x)$$
 Difference

$$(f \cdot g)(x) = f(x) \cdot g(x)$$
 Product

• Function composition $(g \circ f)(x) = g(f(x))$.

Examples

1 If f and g are functions, then $f \circ g = g \circ f$.

A. True

B. False

2. Let f and g are functions described by below table

1			4	5	
		1		1	
	5			4	

 $f \circ g(3)$ is

Α. 5

C. 2

B. 1

D. None of the others

Examples

1. If f and g are functions, then $f \circ g = g \circ f$.

A. True

B. False

2. Let f and g are functions described by below table

x	1	2	3	4	5	6
f(x)	3	2	1	0	1	2
g(x)	6	5	2	3	4	6

 $f \circ g(3)$ is

A. 5

C. 2

B. 1

D. None of the others.

Combining Functions

Examples

3. Let
$$h(x) = (f \circ g)(x)$$
.

a) If
$$g(x) = x - 1$$
 and $h(x) = 3x + 2$ then $f(x)$ is:

A.
$$3x + 3$$

B.
$$3x + 4$$

$$C. 3x + 1$$

D. None of them.

b) If
$$h(x) = 3x + 2$$
 and $f(x) = x - 1$ then $g(x)$ is:

A.
$$3x +$$

B.
$$3x + 4$$

C.
$$3x +$$

D. None of them.

Combining Functions

Examples

- 3. Let $h(x) = (f \circ g)(x)$.
- a) If g(x) = x 1 and h(x) = 3x + 2 then f(x) is:
 - A. 3x + 3

B. 3x + 4

C. 3x + 1

D. None of them.

- b) If h(x) = 3x + 2 and f(x) = x 1 then g(x) is:
 - A. 3x + 3

B. 3x + 4

C. 3x + 1

D. None of them.

Combining Functions

Examples

3. Let
$$h(x) = (f \circ g)(x)$$
.

- a) If g(x) = x 1 and h(x) = 3x + 2 then f(x) is:
 - A. 3x + 3

B. 3x + 4

C. 3x + 1

D. None of them.

- b) If h(x) = 3x + 2 and f(x) = x 1 then g(x) is:
 - A. 3x + 3

B. 3x + 4

C. 3x + 1

D. None of them.

Table of Contents

Review of Functions

2 Basic Classes of Functions

Transformations of Functions

Basic Classes of Functions

- Algebraic Functions
 - Linear Functions
 - 2 Power Functions
 - Polynomials
 - Rational Functions
- Transcendental Functions
 - Trigonometric Functions
 - ② Exponential Functions
 - Openity of the second of th
- Piecewise-defined Functions

Basic Classes of Functions

- Algebraic Functions
 - Linear Functions
 - Power Functions
 - Polynomials
 - Rational Functions
- Transcendental Functions
 - Trigonometric Functions
 - ② Exponential Functions
 - Logarithmic Functions
- Piecewise-defined Functions

Basic Classes of Functions

- Algebraic Functions
 - Linear Functions
 - Power Functions
 - Polynomials
 - Rational Functions
- Transcendental Functions
 - Trigonometric Functions
 - 2 Exponential Functions
 - Logarithmic Functions
- Piecewise-defined Functions

Linear Functions

When we say that y is a *linear function* of x, we mean that the graph of the function is a *line*.

So, we can use the slope-intercept form of the equation of a line to write a formula for the function as

$$y = f(x) = mx + b,$$

where m is the slope of the line and b is the y-intercept.

For any linear function, the slope $\dfrac{y_2-y_1}{x_2-x_1}$ is independent of the choice of points (x_1,y_1) and (x_2,y_2) on the line.

Linear Functions

When we say that y is a *linear function* of x, we mean that the graph of the function is a *line*.

So, we can use the slope-intercept form of the equation of a line to write a formula for the function as

$$y = f(x) = mx + b,$$

where m is the slope of the line and b is the y-intercept.

For any linear function, the slope $\dfrac{y_2-y_1}{x_2-x_1}$ is independent of the choice of points (x_1,y_1) and (x_2,y_2) on the line.

Power Functions

A function of the form $f(x) = x^a$, where a is constant, is called a **power function**.

Polynomial Functions

A funtion P is called a **polynomial** if

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

where n is a nonnegative integer and the numbers $a_0, a_1, a_2, \cdots, a_n$ are constants called the coefficients of the polynomial.

$$y = x^4 - 3x^2 + x$$

$$y = 3x^5 - 25x^3 + 60x$$

Rational Functions

A rational function f is a ratio of two polynomials

$$f(x) = \frac{P(x)}{Q(x)},$$

where P and Q are polynomials.

The domain consists of all value of x such that $Q(x) \neq 0$.

Trigonometric Functions

$$f(x) = \sin x,$$

$$g(x) = \cos x$$

$$D=(-\infty,\infty)$$

$$R = [-1, 1]$$

$$\sin(x + k2\pi) = \sin x, \qquad \cos(x + k2\pi) = \cos x, \qquad k \in \mathbb{Z}$$

(b) $a(x) = \cos x$

Trigonometric Functions

$$\tan x = \frac{\sin x}{\cos x}$$

$$x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$$

$$R=(-\infty,+\infty)$$

$$\tan(x + k\pi) = \tan x, \qquad k \in \mathbb{Z}$$

Trigonometric Functions

The reciprocals of the sine, cosine, and tangent functions are

$$\csc x = \frac{1}{\sin x}$$
$$\sec x = \frac{1}{\cos x}$$
$$\cot x = \frac{1}{\tan x}$$

Exponential Functions

The exponential functions are the functions of the form

$$f(x) = a^x,$$

where the base a is a positive constant.

The graphs of $y=2^x$ and $y=(0.5)^x$ are shown. In both cases, the domain is $\mathbf{D}=\mathbb{R}$ and the range is $\mathbf{R} = (0, +\infty)$.

(a)
$$y = 2^x$$

(b)
$$y = (0.5)^x$$

Exponential Functions

The logarithmic functions

$$f(x) = \log_a x,$$

where the base a is a positive constant, are the inverse functions of the exponential functions.

The figure shows the graphs of four logarithmic functions with various bases.

Piecewise-defined Functions

Example

$$f(x) = \left\{ \begin{array}{ll} x+3 & x<1 \\ (x-2)^2 & x\geq 1 \end{array} \right. \text{ is a piecewise-defined function}$$

Table of Contents

Review of Functions

2 Basic Classes of Functions

Transformations of Functions

Transformations of f $(c > 0)$	Effect on the graph of f
f(x) + c	Vertical shift up c units
f(x)-c	Vertical shift down \overline{c} units
f(x+c)	Shift left by c units
f(x-c)	Shift right by c units
cf(x)	Vertical stretch if $c > 1$;
	vertical compression if $0 < c < 1$
f(cx)	Horizontal stretch if $c > 1$;
	Horizontal compression if $0 < c < 1$
-f(x)	Reflection about the x-axis
f(-x)	Reflection about the y-axis

Example

Suppose c > 0.

To obtain

the graph of y = f(x) + c, shift the graph of y = f(x) a distance c units upward.

To obtain the

graph of y = f(x) - c, shift the graph of y = f(x) a distance c units downward.

To obtain the

graph of y = f(x + c), shift the graph of y = f(x) a distance c units to the left.

To obtain the

graph of y = f(x - c), shift the graph of y = f(x) a distance c units to the right.

Example

Suppose c > 0.

To obtain

the graph of y = f(x) + c, shift the graph of y = f(x) a distance c units upward.

To obtain the

graph of y = f(x) - c, shift the graph of y = f(x) a distance c units downward.

To obtain the

graph of y = f(x + c), shift the graph of y = f(x) a distance c units to the left.

To obtain the

graph of y = f(x - c), shift the graph of y = f(x) a distance c units to the right.

Example

Suppose c > 0.

To obtain

the graph of y = f(x) + c, shift the graph of y = f(x) a distance c units upward.

To obtain the

graph of y = f(x) - c, shift the graph of y = f(x) a distance c units downward.

To obtain the

graph of y = f(x + c), shift the graph of y = f(x) a distance c units to the left.

To obtain the graph of y=f(x-c), shift the graph of y=f(x) a distance c units to the right

Example

Suppose c > 0.

To obtain

the graph of y = f(x) + c, shift the graph of y = f(x) a distance c units upward.

To obtain the

graph of y = f(x) - c, shift the graph of y = f(x) a distance c units downward.

To obtain the

graph of y=f(x+c), shift the graph of y=f(x) a distance c units to the left.

To obtain the

graph of y=f(x-c), shift the graph of y=f(x) a distance c units to the right.

Example

Suppose c > 1.

To obtain

the graph of y=cf(x), stretch the graph of y=f(x) vertically by a factor of c.

To obtain the graph of $y=\frac{1}{c}f(x)$, compress the graph of y=f(x) vertically by a factor of c. To obtain the

graph of y = f(cx), compress the graph of y = f(x) horizontally by a factor of c.

To obtain the graph of $y=f\left(\frac{1}{c}x\right)$, stretch the graph of y=f(x) horizontally by a factor of c. To obtain the graph of y=-f(x), reflect the graph of y=f(x) about the x-axis. To obtain the graph of y=f(-x), reflect

Example

Suppose c > 1.

To obtain

the graph of y = cf(x), stretch the graph of y = f(x) vertically by a factor of c.

To obtain the

graph of $y = \frac{1}{c}f(x)$, compress the graph of y = f(x) vertically by a factor of c.

To obtain the graph of y = f(cx), compress the graph of y = f(x) horizontally by a factor of

To obtain the graph of $y=f\left(\frac{1}{c}x\right)$, stretch the graph of y=f(x) horizontally by a factor of x. To obtain the graph of y=-f(x), reflectively.

To obtain the graph of y = f(-x), reflect

Example

Suppose c > 1.

 ${\sf To\ obtain}$

the graph of y=cf(x), stretch the graph of y=f(x) vertically by a factor of c.

To obtain the

graph of $y = \frac{1}{c}f(x)$, compress the graph of y = f(x) vertically by a factor of c.

To obtain the

graph of y = f(cx), compress the graph of y = f(x) horizontally by a factor of c.

To obtain the graph of $y=f\left(\frac{1}{c}x\right)$, stretch the graph of y=f(x) horizontally by a factor of c. To obtain the graph of y=-f(x), reflect the graph of y=f(x) about the x-axis. To obtain the graph of y=f(x) about the x-axis.

Example

Suppose c>1. To obtain the graph of y=cf(x), stretch the graph of y=f(x) vertically by a factor of c. To obtain the 1

graph of $y = \frac{1}{c}f(x)$, compress the graph of y = f(x) vertically by a factor of c. To obtain the

graph of y=f(cx), compress the graph of y=f(x) horizontally by a factor of c.

To obtain the graph of $y=f\Big(\frac{1}{c}x\Big)$, stretch the graph of y=f(x) horizontally by a factor of c.

To obtain the graph of y=-f(x), reflect the graph of y=f(x) about the x-axis. To obtain the graph of y=f(-x), reflect

Example

Suppose c>1. To obtain the graph of y=cf(x), stretch the graph of y=f(x) vertically by a factor of c.

To obtain the graph of $y=\frac{1}{c}f(x)$, compress the graph of y=f(x) vertically by a factor of c.

graph of y=f(cx), compress the graph of y=f(x) horizontally by a factor of c.

To obtain the graph of $y=f\left(\frac{1}{c}x\right)$, stretch the graph of y=f(x) horizontally by a factor of c. To obtain the graph of y=-f(x), reflect the graph of y=f(x) about the x-axis.

To obtain the graph of y = f(-x), reflect the graph of y = f(x) about the y-axis.

Example

Suppose c>1. To obtain the graph of y=cf(x), stretch the graph of y=f(x) vertically by a factor of c.

To obtain the graph of $y=\frac{1}{c}f(x)$, compress the graph of y=f(x) vertically by a factor of c.

To obtain the graph of y=f(cx), compress the graph of y=f(x) horizontally by a factor of c.

To obtain the graph of $y=f\left(\frac{1}{c}x\right)$, stretch the graph of y=f(x) horizontally by a factor of c. To obtain the graph of y=-f(x), reflect the graph of y=f(x) about the x-axis.

To obtain the graph of y = f(-x), reflect the graph of y = f(x) about the y-axis.

Example

Suppose that the graph of f is given.

Describe how the graph of the function f(x-2)+2 can be obtained from the graph of f. Select the correct answer.

- A. Shift the graph 2 units to the left and 2 units down.
- B. Shift the graph 2 units to the right and 2 units down.
- C. Shift the graph 2 units to the left and 2 units up.
- D. Shift the graph 2 units to the right and 2 units up.
- E. None of these

THANK YOU!