Listing of Claims

The following listing of claims replaces all prior versions and listings of claims in the Application.

1. (Currently Amended) A method of preparing a di-, tri- and tetrasubstituted pyrrole comprising the step of:

reacting an a donor-acceptor alkoxy cyclopropane with a functionalized nitrile in the presence of an effective Lewis acid catalyst.

- 2. (Original) The method of claim 1, wherein the Lewis acid is trimethylsilyl trifluoromethanesulfonate.
- 3. (Currently Amended) The method of claim 1, wherein at least one substituent group <u>selected</u> from the group consisting of aryl group, alkyl group, and hydrogen, is selectively positioned in the cyclopropane.
- 4. (Currently Amended) The method of claim 3, wherein the position of the substituent in the resulting pyrrole is optionally at the the 4-position, the 5-position or both the 4 and 5 positions.
- 5. (Original) The method of claim 1, wherein the stereochemistry of the cyclopropane has no effect on reaction efficiency.
- 6. (Original) The method of claim 1, wherein the pyrrole preparation is compatible with at least one protective group.
- 7. (Original) The method of claim 6, wherein the protective group is optionally a silylene, a benzyl ether or an acetate.
- 8. (Original) The method of claim 1, wherein the pyrrole is unsymmetrical.
- 9. (Original) The method of claim 1, wherein the cyclopropane has a C(2) substituent that is an electron withdrawing group.
- 10. (Withdrawn) The method of claim 1, wherein the reaction is used to generate combinatorial libraries.

Application No. 10/656,867 Amendment dated January 24, 2005 Reply to Office Action dated August 24, 2004

11. (Currently Amended) A synthesis reaction comprising:

an a donor-acceptor alkoxy cyclopropane;

- an aliphatic, aromatic, branched, α,β-unsaturated, aryl, or otherwise functionalized nitrile; and a Lewis acid activator, wherein the synthesis reaction requires cycloaddition, dehydration and tautomerization.
- 12. (Original) The synthesis reaction of claim 12, wherein the cyclopropane has a substituent at C(2) that is an electron withdrawing group.
- 13. (Currently Amended) The synthesis reaction of claim 12, wherein the pyrrole if is formed without the formation of multiple constitutional isomers.
- 14. (Original) A method for the synthesis of di-, tri- and tetrasubstituted pyrroles comprising the following steps:

RO
$$R^3$$
 N₂HCCO₂Et RO R^3 H R^3 H R^3 RO R^3 N R^1 R^4 R^1 R^4 R^1 R^1 R^2 R^3 R^4 R^4 R^1 R^1 R^2 R^3 R^4 R^4

- wherein RO is a carboxylate groups; R^1 , R^2 , R^3 and R^4 are each independently aryl or alkyl groups or hydrogen; the nitrile is aliphatic, aromatic, branched, α,β -unsaturated, or otherwise functionalized; X is an ester or ketone; and Y is a Lewis acid.
- 15. (Currently Amended) The method of claim 14, wherein compound 4 is <u>an</u> unsymmetrical pyrrole.
- 16. (Currently Amended) The method recited in claim 14, wherein compound [4] 3 is a 3,4-dihydro-2H-pyrrole.

Application No. 10/656,867 Amendment dated January 24, 2005 Reply to Office Action dated August 24, 2004

17. (NEW) A method for the synthesis of di-, tri- and tetrasubstituted pyrroles comprising the following steps:

wherein RO is an alkoxy group; R¹, R², R³ and R⁴ are each independently aryl or alkyl groups or hydrogen; the nitrile is functionalized; X is an ester or ketone; and Y is a Lewis acid.