DATA CONDITIONING

(MD-MLG) METROWEST DEVELOPERS – MACHINE LEARNING GROUP

FEATURE SCALING

- Scaling data provides a more efficient way for the ML algorithms to achieve an optimal solution faster.
- Gradient descent algorithms may spend more time 'bouncing' around trying to find a solution with unscaled data- then when the data is scaled.

SCALING

If the feature data is scaled, the contour of the cost function might be minimized- thus the gradient can assume a straighter path and achieve an optimal point faster. (Hopefully a global minimum)

FEATURE SCALING COMMON OPTIONS

- Normalization (min-max scaling)
 - Values are shifted and rescaled with a range of 0-1
- Standardization
 - Values are centered around a mean of 0
 - Much less affected by outliers.

SCIKIT-LEARN SCALING

• http://scikit-

learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

ONE HOT ENCODE

- What: Used to transform categorical features into a format that is digestible by machine learning algorithms.
- List of Trades: Plumber, Electrician, Carpenter, Mason
- Many times, especially in code, developers will assign each an ordinal value to be used in an enumeration.
 - 1 Plumber
 - 2 Electrician
 - 3 Carpenter
 - 4 Mason
- The ordinal number associated with each category holds no meaning in a machine learning context.

ONE HOT TRADE

Create a feature for each category vote

Plumber	Electrician	Carpenter	Mason
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

ONE HOT ALTERNATIVE

- There are alternatives to One Hot encoding that doesn't blow out dimensionality of features.
- Binary coding can be used with acceptable results.

Trade	Feature 1	Feature 2	Feature 3
Plumber	0	0	1
Electrician	0	1	0
Carpenter	0	1	1
Mason	1	0	0
HVAC	1	0	1
Landscaper	1	1	0
Roofer	1	1	1

MISSING DATA

- Drop Row
- Median Value Replacement
- Drop Column

DROP ROW (ANY NAN)

Row	Feature A	Feature B
1	6.5	3.2
2	NaN	3.0
3	7.9	1.2

Pandas.DataFrame.dropna

df.dropna(axis=0, how='any')

Row	Feature A	Feature B
1	6.5	3.2
2	7.9	1.2

DROP ROW (ALL NAN)

Row	Feature A	Feature B
1	6.5	NaN
2	NaN	NaN
3	7.9	1.2

Pandas.DataFrame.dropna

df.dropna(axis=0, how='all')

Row	Feature A	Feature B
1	6.5	3.2
2	7.9	1.2

DROP COLUMN (ANY NAN)

Row	Feature A	Feature B
1	6.5	4.2
2	NaN	5.5
3	7.9	1.2

Pandas.DataFrame.dropna

df.dropna(axis=1, how='any')

Row	Feature B
1	4.2
2	5.5
3	1.2

DROP COLUMN (ANY NAN)

Row	Feature A	Feature B
1	NaN	4.2
2	NaN	5.5
3	NaN	Nan

Pandas.DataFrame.dropna

df.dropna(axis=1, how='all')

Row	Feature B
1	4.2
2	5.5
3	NaN

Feature B column remains because NOT 'all' entries are undefined.

PANDAS.DATAFRAME

- Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).
- Supported Operations:
 - Indexing, Iteration
 - Reindexing, Selection, Label Manipulation
 - Reshaping, Sorting, Transposing
 - Combining, Joining, Merging
 - Plotting
 - Serialization, IO, Conversion

FILLING NAN DATA

Row	Feature A	Feature B
1	NaN	4.2
2	NaN	5.5
3	NaN	Nan

Pandas.DataFrame.fillna

df.fillna(0, inplace=True)

Row	Feature A	Feature B
1	0	4.2
2	0	5.5
3	0	0

^{*}The median value can be calculated for the column and used to fill NaN.

DROP COLUMNS

Row	Feature A	Feature B
1	2.3	4.2
2	8.1	5.5
3	NaN	3.0

Pandas.DataFrame.drop

df.drop("Feature A", axis=1)

Row	Feature B
1	4.2
2	5.5
3	0

TENSORFLOW AND NAN VALUES

- Different parts of TensorFlow treat them differently.
 - Float computations typically propagate them.
 - Some Int conversions (internally) treat them as 0.
 - Python parts of TensorFlow with Int computations often raise an "Nan" exception.

NUMPY

- A scientific computing package for Python providing a multidimensional array object and supporting routines.
 - mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation

NUMPY ARRAY CREATION

• At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays of homogeneous data types, with many operations being performed in compiled code for performance.

NUMPY ARRAY ATTRIBUTES

- The link below provides an interactive python prompt associated with examples.
- https://www.datacamp.com/community
 /tutorials/python-numpy-tutorial

```
In [1]: print(my_array)
[[1 2 3 4]
[5 6 7 8]]Click to add text
In [2]: print(my_array.strides)
(32, 8)
In [3]: print(my_array.dtype)
int64
In [4]: print(my_array.shape)
(2, 4)
In [5]: print(my_array.data)
<memory at 0x7f214d1b82d0>
```

NUMPY ARRAY ATTRIBUTES

print(my_array.nbytes)

```
# Print the number of `my_array`'s dimensions
print(my array.ndim)
# Print the number of `my_array`'s elements
                                                               C CONTIGUOUS: True
print(my_array.size)
                                                               F CONTIGUOUS: False
                                                               OWNDATA: True
# Print information about `my_array`'s memory layout
                                                               WRITEABLE: True
print(my_array.flags)
                                                               ALIGNED: True
                                                               UPDATEIFCOPY: False
# Print the length of one array element in bytes
print(my_array.itemsize)
# Print the total consumed bytes by `my_array`'s elements
```

NUMPY BROADCASTING

Broadcasting is the mechanism by which Numpy can perform numerical

operations across arrays of different sizes.

Here arrays of the SAME size are added.

```
# Initialize `x`
x = np.ones((3,4))
# Check shape of `x`
print(x.shape)
# Initialize `y`
y = np.random.random((3,4))
# Check shape of `y`
print(y.shape)
# Add `x` and `y`
x + y
```

DIMENSION OF 1

x - y

Broadcast operations also succeed if one dimension is 1.

```
# Initialize `x`
x = np.ones((3,4))
# Check shape of `x`
print(x.shape)
                                                         (3, 4)
# Initialize `y`
                                                          (4,)
y = np.arange(4)
                                                         Out[1]:
                                                         array([[ 1., 0., -1., -2.],
# Check shape of `y`
                                                             [ 1., 0., -1., -2.],
print(y.shape)
                                                             [ 1., 0., -1., -2.]])
# Subtract `x` and `y`
```

NUMPY LOAD FROM FILE

• genfromtxt – method skips the first 'header' row and maps any NaN input to a value of -99.

```
# Sample text file data, where first row is a header:
# Value1 Value2 Value3
# 0.2839 0.3536 0.3661
# 0.1392 0.5875 NA
# 0.1581 0.2049 0.8628
# NA 0.5801 0.2038
# 0.5913 0.4367 0.7710

load_an_array = np.genfromtxt('data.txt', skip_header=1, filling_values=-99)
```

NUMPY SAVE TO FILE

• savetxt – creates a file named 'result.txt' with the contents of array 'x' inserting a delimiter of a comma between values.

np.savetxt(result.txt', x, delimiter=',')

CUSTOM TRANSFORMER

```
from sklearn.base import BaseEstimator, TransformerMixin
my_class_variable = false
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
   def __init__(self, pass_parameter = True): # no *args or **kargs
        self.new_pass_parameter = pass_parameter
   def fit(self, X, y=None):
        return self # nothing else to do
   def transform(self, X, y=None):
        if self.new_pass_parameter:
            bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
            return np.c_[X, rooms_per_household, population_per_household,
                         bedrooms per room]
        else:
            return np.c_[X, rooms_per_household, population_per_household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
    housing_extra_attribs = attr_adder.transform(housing.values)d text
```