115AH HW 4

Sophie Li

April 2025

1 Problem 1

- (a) False. Linearly dept means at least ONE vector is redundant, not necessarily all the vectors. For instance, let $S = \{(0,1), (1,0), (0,-1)\}$. Thus, S is dependent since (0,1) = -1(0,-1) is redundant. However, (1,0) cannot be written as a combo of (0,1) and (0,-1) since in such a linear combo, the first component will always be 0, whereas (1,0) requires 1 to be in the first component.
- (b) False. Consider the set $S = \{(0,1), (1,0), (0,-1)\}$. The subset $\{(0,1), (1,0)\}$ is independent (since it is the standard basis). To modify this statement, we can say SUPERSETS of linearly dependent sets are independent. (i.e. if $S_1 \subseteq S_2$ and S_1 is dependent, then S_2 is dependent).
- (c) True. If all linear combos that total to 0, with vectors in S_2 , must be the trivial combination, then the same must hold for S_1 if $S_1 \subseteq S_2$.
- (d) False. This is one of the conditions for linearity, and it does not necessarily imply the other condition $T(cx) = cT(x), \forall x \in V$. (Constructing a specific counter-example is difficult, but I believe there's one such in the complex numbers).
- (e) False. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the projection onto y = 0. Projections are linear transformations. Consider $S = \{(0,1),(1,0)\}$, which is independent. But $T(S) = \{(0,0),(1,0)\}$ which is dependent since it contains 0.
- (f) False. Let $x_1 = (0, 1), x_2 = (0, 2)$. Let $y_1 = (0, 1)$ and $y_2 = (0, 3)$. There exists no linear T. Since this would mean T(0, 2) = 2T(0, 1) = (0, 2) yet we require T(0, 2) = (0, 3). (g) False. Let $V = \mathbb{R}^2$. It's known that any two non-parallel vectors form a basis here, so for instance $B_1 = \{(0, 1), (1, 0)\}$ and $B_2 = \{(0, 1), (-1, 0)\}$ are both valid bases.

2 Problem 2

Forward: Let $\{u,v\}$ be distinct vectors that are dependent. Then, by problem 4 (equivalent formulation of dependence), there exist $x \in \{u,v\}$ s.t. $x \in Span(\{u,v\}\setminus\{x\})$. WLOG let this redundant vector be u. Then, u can be written as a linear combo of distinct vectors in $\{v\}$, meaning u = kv, for some $k \in F$. This validates the conclusion.

Backwards: WLOG assume u is a scalar multiple of v, meaning u = kv, for some $k \in F$. By definition, $u \in Span(\{v\})$. Hence, u is redundant in the set $\{u, v\}$. By problem 4, then $\{u, v\}$ is dependent.

If three vectors span a plane, they are dependent. For instance, $\{(1,1,0),(1,0,0),(0,1,0)\}$ is dependent since 1(1,1,0) - 1(1,0,0) - 1(0,1,0) = 0 is a non-trivial combo. However, none of the vectors are direct scalar multiples of each other.

4 Problem 4

Forward: Let S be dependent. Then there exists a non-trivial combo equal to 0. In particular, there are distinct vectors $x_1, x_2, ..., x_k \in S$, $a_1, ..., a_k \in F$ NOT ALL 0 s.t.

$$a_1x_1 + \dots + a_kx_k = 0$$

Let us take any $a_j, 1 \leq j \leq k$ s.t. $a_i \neq 0$. Rearranging the relation, we get

$$x_j = -\frac{1}{a_j} \sum_{i=1, i \neq j}^k a_i x_i = \sum_{i=1, i \neq j}^k -\frac{a_i}{a_j} x_i$$

Hence, $x_j \in S$ and $x_j \in Span(S \setminus x_j)$ as desired.

Backward: By assumption, there exists $x \in S$ s.t. $x \in Span(\{S\} \setminus x)$. This means there exists distinct vectors $x_1, ... x_k \in \{S\} \setminus x$ where

$$x = \sum_{i=1}^{k} a_i x_k$$

Re-arranging, we get

$$x - \sum_{i=1}^{k} a_i x_k = 0$$

Since $x_1...x_k$ are distinct and all $\neq x$, the set $\{x, x_1, ..., x_k\}$ has distinct vectors. However, this linear combination of distinct vectors in S equals 0 yet is not trivial (as x has coefficient 1). As $\{x, x_1, ..., x_k\} \subseteq S$, this proves S is dependent.

5 Problem 5

Forward: Let S be independent. Then, let $S_1 \subseteq S$ be a finite subset. Let $x_1, ..., x_k \in S_1$ be distinct vectors and let $a_1, ..., a_k \in F$ be s.t.

$$a_1x_1 + \dots + a_kx_k = 0$$

 $S_1 \subseteq S$, so thus $x_1, ..., x_k \in S$. Since S is independent, then it must hold that $a_1 = a_2 ... = a_k = 0$. This shows S_1 is also independent. Since S_1 was arbitrary, this shows that every finite subset of S_1 is linearly independent.

Backwards: Assume every finite subset of S is linearly independent. Let $x_1, ..., x_k \in S$ be distinct vectors where

$$a_1x_1 + \dots + a_kx_k = 0$$

Let $S_1 = \{x_1, ..., x_k\}$. Clearly, $S_1 \subseteq S$ is finite, and thus independent by assumption. Then, we must have $a_1 = a_2 ... = a_k = 0$. This tell us for any linear combo of vectors in S that equals S, the coefficients must all be S. Thus, S is dependent.

Consider the linear combination of vectors in $S = \{v_1, ..., v_k\}$ (the set defined in the problem). Note, if $i \neq j$, then $v_i \neq v_j$. Otherwise, assuming $v_i = v_j$, then $w_i = T(v_i) = T(v_j) = w_j$ but this would contradict the w's being distinct. Thus, the vectors in S are distinct. Consider such a linear combination:

$$a_1v_1 + ... + a_kv_k = 0$$

Applying T to both sides,

$$T(a_1v_1 + \dots + a_kv_k) = T(0)$$

Applying linearity,

$$a_1T(v_1) + \dots + a_kT(v_k) = 0$$

Substituting in the w's, we get

$$a_1w_1 + \dots + a_kw_k = 0$$

Since the set $\{w_1,...,w_k\}$ is independent, then $a_1=a_2...a_k=0$, which in turn shows that $S=\{v_1,...,v_k\}$ is independent.

7 Problem 7

Forward: Let T be 1-1. Let L be a linearly indep subset of V. Let $l_1, ..., l_k \in T(L)$ be distinct. Suppose

$$a_1l_1 + \dots + a_kl_k = 0$$

By definition, $l_1 = T(x_1)$ for some $x_1 \in L$ etc etc $l_k = T(x_k), x_k \in L$. Note, since the *l*'s are distinct, the *x*'s must be too (using similar reasoning in problem 6). Hence,

$$a_1T(x_1) + ... + a_kT(x_k) = 0$$

By linearity,

$$T(a_1x_1 + \dots + a_kx_k) = 0$$

Since T is 1-1, the kernel must be trivial (as we showed in class). This implies

$$\sum_{i=1}^{k} a_i x_i = 0$$

Since L is independent by assumption and the x_i 's are distinct, this implies $a_1 = a_2 = ... = a_k = 0$. Hence, T(L) is independent for all choices of independent subsets L.

Backward: Suppose FTSOC T is not 1-1. Then, this implies the kernel is not trivial. There exists $x_0 \in V$ s.t. $x_0 \neq 0$ yet $T(x_0) = 0$. Consider the set $L = \{x_0\}$. L is independent (b/c if $ax_0 = 0$, then a = 0 or $x_0 = 0$ but here we assumed $x \neq 0$ so thus a = 0). Hence $T(L) = \{T(x_0)\} = \{0\}$ is dependent. Thus, this shows that there exists some lin. indpt set L where T(L) is not independent, completing our proof by contrapositive.

Since T is an isomorphism, it is 1-1. Since B is a basis, it is an indep subset of V. Thus, Problem 7 tells us T(B) is independent.

Since T is an isomorphism, it is onto. Let $w \in W$. Then, there exists $v \in V$ s.t. T(v) = w. Since B is a basis of V, this implies Span(B) = V. Then, there exists $x_1, ... x_k \in B$, $a_1, ... a_k \in F$ s.t.

$$v = a_1 x_1 + ... + a_k x_k$$

Applying linearity,

$$T(v) = a_1 T(x_1) + \dots + a_k T(x_k) = w$$

Thus, w is a linear combo of $T(x_1), ..., T(x_k) \in T(B)$, so $w \in Span(T(B))$ so $W \subseteq Span(T(B))$. Clearly, Span(T(B)) lies in the vector space W i.e. $Span(T(B)) \subseteq W$. Hence, Span(T(B)) = W. Since T(B) is both independent and spanning, it is a basis.

9 Problem 9

Let $E_{ij} \in M_{k \times n}(F)$ be the matrix with all entries 0's, except the entry in (i,j) is 1. Claim:

$$E = \{E_{ij} | 1 \le i \le k, 1 \le j \le n\}$$

is a basis for $M_{k\times n}(F)$.

Independent: Let $a_{ij} \in F$ for $1 \le i \le k, 1 \le j \le n$. Let us have the following linear combo:

$$\sum_{1 \le i \le k, 1 \le j \le n} a_{ij} E_{ij} = 0$$

Evaluating entry-wise, the $k \times n$ LHS matrix equals

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{k,1} & \cdots & a_{k,n} \end{bmatrix}$$

Since addition and scalar multiplication are entry-wise, it's evident that the $0 \in M_{k \times n}(F)$ is the matrix with all 0 entries. If the matrix above equals 0, then each entry must be 0. So all $a_{ij} = 0$ as desired, and E is independent.

Spanning: Let $b \in M_{k \times n}(F)$ be an arbitrary matrix with entries b_{ij} as above. Then, we WTS $b \in Span(E)$. Using the logic above, if we take coefficients $b_{ij} \in F$ for each $E_{ij} \in E$, then

$$\sum_{1 \le i \le k, 1 \le j \le n} b_{ij} E_{ij} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{k,1} & \cdots & b_{k,n} \end{bmatrix}$$

Hence, the matrix b is indeed a linear combination of our set. So $M_{k\times n}(F) \subseteq Span(E)$. Also, since $Span(E) \subseteq M_{k\times n}(F)$ since $E \subseteq$ the vector space $M_{k\times n}(F)$. Therefore, $Span(E) = M_{k\times n}(F)$ As both an independent and spanning set,

$$E = \{E_{ij} | 1 \le i \le k, 1 \le j \le n\}$$

forms a basis of $M_{k\times n}(F)$.

(a)

Showing $Span(B_1 \cup B_2) = V$: Let $v \in V$. Since $V = W_1 + W_2$, there exist $w_1 \in W_1, w_2 \in W_2$ s.t. $v = w_1 + w_2$. Since B_1 is a basis for W_1 , it spans W. There exist $x_1, x_2, ..., x_k \in B_1, a_1, ..., a_k \in F$ s.t.

$$w_1 = a_1 x_1 + \dots + a_k x_k$$

Similarly, for some $y_1, y_2, ..., y_k \in B_2, b_1, ..., b_k \in F$, we have

$$w_2 = b_1 y_1 + \dots + b_k y_k$$

Thus, for all $v \in V$, we have

$$v = (a_1x_1 + \dots + a_kx_k) + (b_1y_1 + \dots + b_ky_k)$$

so $v \in Span(B_1 \cup B_2)$ so $V \subseteq Span(B_1 \cup B_2)$. Moreover, $B_1 \subseteq W_1 \subseteq V$ and similarly $B_2 \subseteq V$ so $B_1 \cup B_2 \subseteq V$, which means $Span(B_1 \cup B_2) \subseteq V$ since V is a subspace containing $B_1 \cup B_2$. Hence, $B_1 \cup B_2$ spans V.

Showing $B_1 \cup B_2$ is independent: Let $x_1, ..., x_k \in B_1 \cup B_2$ be distinct and $a_1, ..., a_k \in F$ s.t.

$$a_1x_1 + \dots + a_kx_k = 0$$

Since each x_i belongs to B_1 or B_2 , let there be m of them in B_1 , and the remaining k-m lie in B_2 . Re-label the terms as $a_{1,1}x_{1,1}, a_{1,2}x_{1,2}, ..., a_{1,m}x_{1,m}$ for the B_1 terms and $a_{2,1}x_{2,1}, a_{2,2}x_{2,2}, ..., a_{2,k-m}x_{2,k-m}$. Since W_1 , W_2 are subspaces, they are closed under linear combination so

$$a_{1,1}x_{1,1} + \dots + a_{1,m}x_{1,m} \in W_1$$

$$a_{2,1}x_{2,1} + \dots + a_{2,k-m}x_{2,k-m} \in W_2$$

Substituting into the linear combo $a_1x_1 + ... + a_kx_k = 0$ above, they sum to 0. By properties of internal direct sum, $0 \in V$ must have a unique representation, implying

$$a_{1,1}x_{1,1} + \dots + a_{1,m}x_{1,m} = 0$$

Since the vectors lie in B_1 , which is linearly independent, then

$$a_{1,1} = a_{1,2} = \dots = a_{1,m} = 0$$

By similar logic,

$$a_{2,1}x_{2,1} + ... + a_{2,k-m}x_{2,k-m} = 0$$

Hence

$$a_{2,1} = a_{2,2} = \dots = a_{2,k-m} = 0$$

Hence, all the coefs of the original linear combo must be 0, so $B_1 \cup B_2$ is independent. Therefore, $B_1 \cup B_2$ is a basis.

Now,

$$B_1 \cap B_2 \subseteq B_1 \subseteq W_1$$

Similarly,

$$B_1 \cap B_2 \subseteq W_2$$

Therefore,

$$B_1 \cap B_2 \subseteq W_1 \cap W_2 = \{0\}$$

Thus, either $B_1 \cap B_2 = \{0\}$ or $B_1 \cap B_2 = \emptyset$. However, $0 \notin B_1$ and $0 \notin B_2$ since bases must be linearly independent (and any set that contains 0 has non-trivial linear combos equal to 0). So the first scenario is not possible. Thus, $B_1 \cap B_2 = \emptyset$ must hold.

(b) First, we show $V = W_1 + W_2$. First, $W_1 + W_2 \subseteq V$ is obvious since both are subspaces of V. Now, let $v \in V$. Since $B_1 \cup B_2$ is a basis (and thus spanning), there are $x_1, ..., x_k \in B_1 \cup B_2$ and $a_1, ..., a_k \in F$ where

$$v = a_1 x_1 + \dots + a_k x_k$$

Using the same notation in pt (a), re-label the terms as $a_{1,1}x_{1,1}, a_{1,2}x_{1,2}, ..., a_{1,m}x_{1,m}$ for the B_1 terms and $a_{2,1}x_{2,1}, a_{2,2}x_{2,2}, ..., a_{2,k-m}x_{2,k-m}$. Special case: if m=0 then $v \in W_2$ and evidently $v \in W_1 + W_2$, so this case is trivial. The case where k=m works the same way, implying $v \in W_1$ and thus $v \in W_1 + W_2$. Now, assume m, k-m>0 (i.e. we have at least one vector from each basis). Hence,

$$v = (a_{1,1}x_{1,1} + \dots + a_{1,m}x_{1,m}) + (a_{2,1}x_{2,1} + \dots + a_{2,k-m}x_{2,k-m})$$

Clearly, the first term is in W_1 since it uses B_1 and the second term is in W_2 . Hence, $v \in W_1 + W_2$ so $V \subseteq W_1 + W_2$. This shows $V = W_1 + W_2$

Now, consider $w \in W_1 \cap W_2$. Since $w \in W_1$, then $w \in Span(B_1)$. Then, there are vectors $x_1, ..., x_k \in B_1, a_1, ..., a_k \in F$ s.t.

$$w = a_1 x_1 + \dots + a_k x_k$$

Similarly, since $w \in W_2$, we can write it as

$$w = b_1 y_1 + ... + b_m y_m$$

Equating the two and moving them to one side:

$$a_1x_1 + \dots + a_kx_k - (b_1y_1 + \dots + b_my_m) = 0$$

First, we know $x_i \neq y_j$ since $x_i \in B_1, y_j \in B_2$ but $B_1 \cap B_2 = \emptyset$. Moreover, within the x_i 's, WLOG we can assume the vectors are all distinct (since if they're not, we can collapse them into one term until the vectors are all distinct). Same with the y_j 's. Hence all these vectors are distinct. Since $B_1 \cup B_2$ is a basis of V, then it must be independent. All the x_i and y_j are in $B_1 \cup B_2$, so this implies all the coefficients must be 0. Therefore, $a_1 = a_2 = ... a_k = 0$, so

$$w = 0x_1 + \ldots + 0x_k = 0$$

Hence, $W_1 \cap W_2 \subseteq \{0\}$. Obviously, $\{0\} \subseteq W_1 \cap W_2$ as subspaces. This proves that $W_1 \cap W_2 = \{0\}$. Therefore, having shown both $V = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$, the conclusion follows.

11 Problem 11

Assume FTSOC that $Span(B\setminus\{x\})=V$, for some $x\in B$. Then, $x\in V=Span(B\setminus\{x\})$. By Problem 4, this means B must be linearly dependent, contradicting the fact that it is a basis (and thus indpt). Thus, if B is a basis, then $Span(B\setminus\{x\})\neq V$ so B is a minimal spanning set.

Let $S \subseteq V$ be a minimal spanning set. It suffices to show that S is indpt. By problem 4 (taking the contrapositive), it suffices to show that for all $x \in S$, $x \notin Span(S \setminus \{x\})$ (i.e. no redundant vectors).

Assume FTSOC that there exists $x \in S$ s.t. $x \in Span(S \setminus \{x\})$. Clearly, $Span(S \setminus \{x\}) \subseteq Span(S)$ since $S \setminus \{x\} \subseteq S$. Furthermore, we know $S \setminus \{x\} \subseteq Span(S \setminus \{x\})$ since the span of a set contains itself. By assumption, $x \in Span(S \setminus \{x\})$ or equivalently, $\{x\} \subseteq Span(S \setminus \{x\})$. This implies

$$(S \setminus \{x\}) \cup \{x\} = S \subseteq Span(S \setminus \{x\})$$

Since $Span(S \setminus \{x\})$ is a subspace containing S, then Span(S) must be a subset of it by defin of span. Thus, $Span(S) \subseteq Span(S \setminus \{x\})$. Having shown both containment directions, this implies $Span(S) = Span(S \setminus \{x\}) = V$. This contradicts S being a minimal spanning set, so our assumption that there exists a redundant vector $x \in S$ must be false.

Thus, S must have no redundant vectors, implying that is independent (again, by problem 4's contrapostive).

Since S is minimally spanning and thus independent, S must be a basis.

13 Problem 13

(a): Let

$$W_1 = \{(0, y) | y \in \mathbb{R}\}$$

$$W_2 = \{(x,0)|x \in \mathbb{R}\}$$

Clearly, $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$ since for any v = (x, y),

$$v = (0, y) + (x, 0)$$

Taking the projection onto W_1 (the y-axis), we get

$$T(v) = (0, y)$$

(b): Let

$$W_1 = \{(0, y) | y \in \mathbb{R}\}$$

$$W_2 = \{(a, a) | x \in \mathbb{R}\}$$

Clearly, $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$ since for any v = (x, y),

$$v = (0, y) + (x, 0)$$

Taking the projection onto W_1 (the y-axis), we get

$$T(v) = (0, y)$$

(b):

(a): Let $v_1, v_2 \in V, c \in F$. Let v_1 have the unique rep $v_1 = w_1 + w_2$, let $v_2 = w_1' + w_2'$. Now,

$$T(cv_1 + v_2) = T(cw_1 + w_1' + cw_2 + w_2')$$

By definition of T, this equals the component in W_1 , discarding the component in W_2 . Hence, we get

$$T((cw_1 + w_1') + (cw_2 + w_2')) = cw_1 + w_1' = cT(v_1) + T(v_2)$$

Thus T is linear.

(b): Since $W_1 = V$, it must be that $W_2 = \{0\}$. This is because if there were a non-zero $w_2 \in W_2$, then automatically, $w_2 \in W_1 \cap W_2$ but this would contradict defin of internal direct sum $(W_1 \cap W_2) = \{0\}$.

Hence, for any $v \in V$, it is represented uniquely as v + 0, where $v \in W_1$, $0 \in W_2$. Hence, T is the identity transformation where T(v) = v

(c): Since $W_1 = \{0\}$, it must be that $W_2 = V$. This is because $V = W_1 + W_2$. For any $v = w_1 + w_2$, then w_1 must be 0, so w_2 must be v. Hence, for all $v \in V$, $v \in W_2$, so $V \subseteq W_2$. Clearly, $W_2 \subseteq V$ so $W_2 = V$.

Hence, for any v = 0 + v, where $0 \in W_1$, $v \in W_2$, T(v) = 0 so T is the 0 transformation.