Alexander M. Long

Post Doctoral Researcher P-27 LANSCE Weapons Physics Los Alamos National Laboratory

(813) 857 6979

alexanderlong.github.io

alexlong@lanl.gov

Skills.

General Overview

Programming Languages

Modeling

Awards -

National Honorary Fraternity of the Society for Physics Students 2007 **Guenter Schwarz Memorial Scholar** Award 2008

Notre Dame Graduate School Professional Development Award 2014 **Nuclear Science Laboratory's Cornelius** P. Browne Memorial Award 2016

Education

2009 - 2016 **Ph.D., Physics** (GPA: 3.7/4.0)

University of Notre Dame

2004 - 2009 **B.S., Physics with Honors** (GPA: 3.4/4.0)

Florida State University

Research Experience (selected)

Aug 2016 -**Weapons Neutron Research Facility** Present

LANSCE @ Los Alamos Investigating Neutron-Induced Charged-Particle Emission Cross-Sections using Low Energy (N,Z) (LENZ) at WNR/LANSCE.

- Developing digital Data Acquisition systems and analyzers for the LENZ experimental program.
- Preforming measurements of gas production reactions, (n,p) and (n,α) , on structural materials for next generation nuclear reactors and fusion devices. Specific measurements performed to date: ⁵⁶Fe(n, α)⁵³Cr, ⁵⁵Mn(n,p)⁵⁵Cr, and ³⁵Cl(n,p)³⁵S.

Aua 2009 -**Nuclear Structure Laboratory** Jul 2016

General research assistant collaborating in many research projects throughout the Nuclear Structure Laboratory.

- · Performed neutron background measurements using moderated ³He proportional counters at various underground sites for the underground accelerator project, CASPAR.
- Worked on the reconstruction of the supersonic helium jet gas target system, HIPPO, at the NSL for future (α, γ) measurements with the St. George recoil separator.
- Participated in three commissioning experiments for the 4π summing NaI(Tl) detector (SuN) currently stationed at the NSCL.

Aug 2010 -**Research Center for Nuclear Physics** Jul 2015

RCNP @ University of Osaka

Visiting Researcher: Performed several nuclear spectroscopy experiments using the Grand Raiden Magnetic Spectrograph.

- Performed indirect measurements of the $^{45}V(p,\gamma)^{46}Cr$ reaction rate by probing posible resonance states in ⁴⁶Cr through 50 Cr $(\alpha, ^{8}$ He $)^{46}$ Cr reaction measurements. The 45 V $(p, \gamma)^{46}$ Cr reaction is believed to influence $^{44}\mathrm{Ti}$ synthesis in core collapse super novae.
- · Investigated a possible neutron sources for the s-process by performing indirect measurement of the $^{22}Ne(\alpha,\gamma)$ and $^{22}Ne(\alpha,n)$ reaction rates. Sub- and near neutron-threshold levels in ²⁶Mg were precisely measured using the 22 Ne(α,α'), 22 Ne(6 Li,d), and 25 Mg(\vec{d} ,p) reactions.

Aug 2012 -Jul 2016

iThemba Laboratory for Accelerator Based Science Visiting Researcher: Performed several nuclear spectroscopy exper-

iments using the K600 Magnetic Spectrograph.

- Investigated important (α,p) reaction rates along the αp -process path in Type 1 X-ray Bursts by probing α -capture resonance states in 18 Ne, 30 S, and 38 Ca through the (p,t) reactions measurements.
- Indirectly measured the $^{44}\text{Ti}(\alpha,p)^{47}\text{V}$ reaction rate by probing α capture resonance states in ⁴⁸Cr using ⁵⁰Cr(p,t)⁴⁸Cr reaction measurements. The strength of the $^{44}\text{Ti}(\alpha,p)^{47}\text{V}$ reaction is through to heavily influence ⁴⁴Ti synthesis in core collapse super novae.

Publications (selected)

'An indirect study of the stellar 34 Ar $(\alpha,p)^{37}$ K reaction rate through 40 Ca(p,t) 38 Ca reaction measurements' A.M. Long et. al., PRC 95, 055803 (2017)

'A study of α -unbound levels in 34 Ar using 36 Ar(p,t) 34 Ar reaction measurements and its implication on the astrophysical ${}^{30}S(\alpha,p){}^{33}Cl$ reaction rate'. A.M. Long et. al. Submitted to PRC: Dec 2017