Algorithms - 4 Divide and conquer

Algorithms - 4 Divide and conquer

Recurrence Relations

Problem - Matrix Multiplication

Problem - Integer Multiplication

Problem - Closest Pair of Points

I'th Order Statistic

Deterministic Linear Selection

Divide: into a number of subproblems that are smaller instances of the same problem

Conquer: solve subproblems recursively

Base case: if the subproblems are small enough, solve by brute force

Combine: merge subproblem solutions to give a solution to the original problem

Recurrence Relations

transform recurrence relations in to closed form - asymptotic solution

substitution- need to have a good guess

guess: the form of solution

check: mathematical induction to find the constants and show it works)

name the constant in the asymptotic notation

e.g.

Given: T(n) = 2T(n/2) + cnlogn

Guess: $T(n) \leq dn log^2 n$

Inductive hypothesis(IH):

IH: $T(k) \le dk(logk)^2$ k<n and for positive constant d, c

$$T(n) = 2T(n/2) + cnlogn \le 2d \times \frac{n}{2}(log\frac{n}{2})^2 + cnlogn$$

$$= dn(logn-log2)^2 + cnlogn$$

$$= dn(logn)^2 - 2dnlogn + dn + cnlogn$$

$$= dn (log n)^2 - (2d-c) n log n + dn$$

Since our base case is $n \ge 2 = n_0 \implies dn \le dn log n$

$$T(n) \leq dn (log n)^2 - (2d-c)n log n + dn log n$$

$$=dn(logn)^2-(d-c)nlogn$$

Only if we choose d that $d-c \ge 0 \implies d \ge c$

we can make sure that: $T(n) \leq dn(logn)^2$

There for $T(n) \leq dn \log^2 n$

if we need to prove θ , we need to prove O, Ω separatly

recursion

recursion tree:

e.g
$$T(n) = \begin{cases} 2T(\frac{n}{2}) + O(n) & else \\ O(1) & if \ n = 1 \end{cases}$$

depth	#node	node size	time complexity
0	1	n	$c \cdot n$
1	2	n/2	$c \cdot n$
i	2^i	$\mathrm{n}/2^i$	$c \cdot n$
lgn	n	n/n	$c_2 \cdot n$

So total time complexity is $c_2 n + \sum_{i=1}^{logn} c \cdot n = nlogn(n)$

master method

$$T(n) = aT(n/b) + f(n)$$

 $a = \#$ recursive calls ≥ 1 b ≥ 1
 $f(n) \ge 0$ (for divide/combine)

case	f(n)	T(n)	situation
1	$O(n^{log_b a - \epsilon})$ constant $\epsilon > 0$	$ heta(n^{log_b a})$	cost dominated by the leaves
2	$ heta(n^{log_ba}log^kn)$ constant $k\geq 0$	$\theta(n^{log_ba}log^{k+1}n)$	cost is same at each level $log_b n$ levels
3	$\Omega(n^{\log_b a + \epsilon})$ constant $\epsilon > 0$ and f(n) satisfies the regularity condition: $af(n/b) \leq cf(n)$ for some constant $c < 1$ and sufficiently large n	heta(f(n))	cot dominated by the root

simplified:

$$T(n) = aT(n/b) + heta(n^d) \ a \geq 1, b > 1, d \geq 0, assumen = b^k$$

case	f(n)	T(n)	situation
1	$log_b a > d \ \ or \ \ a > b^d$	$ heta(n^{log_b a})$	cost dominated by the leaves
2	$log_b a = d \ \ or \ \ a = b^d$	$ heta(n^d log n)$	cost is same at each level $log_b n$ levels
3	$log_b a < d \ \ or \ \ a < b^d$	$ heta(n^d)$	cot dominated by the root

simplified ++: $\theta(n^d) \rightarrow n^d$ prove:

$$T(n) = egin{cases} aT(rac{n}{b}) + n^d & else \ O(1) & if \, n = 1 \end{cases}$$

WLOG: $n = b^k$

depth	#node	node size	time complexity(non recursive cost)
0	a^0	$\frac{n}{b^0}$	$n^d=(rac{n}{b^0})^d$

depth	#node	node size	time complexity(non recursive cost)
1	a^1	$rac{n}{b^1}$	$n^d=(rac{n}{b^1})^d$
i	a^i	$\frac{n}{b^i}$	$n^d=(rac{n}{b^i})^d$
lgn	$a^k=a^{log_bn}$	$\frac{n}{k^k} = 1$	1

work for each level: $a^i(\frac{n}{b^i})^d=n^d(\frac{a}{b^d})^i$

total work : $n^d \sum_{i=0}^{log_b n} (\frac{a}{b^d})^i$

notice: $a \rightarrow$ represent the increase of subproblem, $b^d \rightarrow$ represents the decrease in cost of the subproblem

case3: $(rac{a}{b^d})^i < 1 \iff log_b a < d$

$$a=(rac{a}{b^d})^0 \leq \sum_{i=0}^{log_b n} (rac{a}{b^d})^i \leq \sum_{i=0}^{\inf} (rac{a}{b^d})^i$$

Thus
$$\sum_{i=0}^{log_b n} (rac{a}{b^d})^i = heta(1), T(n) = heta(n^d)$$

case2: $(\frac{a}{b^d})^i < 1 \iff log_b a < d$

$$T(n) = \sum_{i=0}^{\log_b n} (\frac{a}{b^d})^i = n^d \sum_{i=0}^{\log_b n} 1^i = n^d (\log_b n + 1)$$

Thus
$$T(n) = \theta(n^d log n)$$

case1:
$$(rac{a}{b^d})^i > 1 \iff log_b a > d$$

$$T(n) = n^d \sum_{i=0}^{log_b n} (rac{a}{b^d})^i \in heta(n^d rac{a^{log_b n}}{b^{dlog_b n}}) = heta(n^d rac{a^{log_b n}}{n^d}) = heta(a^{log_b n}) = heta(a^{log_b n}) = a^{log_a nlog_b a} = a^{log_a nlog_b a} = n^{log_b a})$$

Notice in first step:

sum of the geometric series, $a \neq b^d$, and $a/b^d - 1$ is a constant:

$$\sum_{i=0}^{log_b n} (a/b^d)^i = rac{(a/b^d)^{log_b n+1} - 1}{a/b^d - 1} \in heta((a/b^d)^{log_b n}))$$

Problem - Matrix Multiplication

Sol1: normally: $O(n^3)$

Sol2: Recursively compute the matrix multiplication each matrix -> 4 squares - $O(n^3)$

$$T(n) = egin{cases} 8T(rac{n}{2}) + O(n^2) & else \ O(1) & if \ n=1 \end{cases}$$
 Still $O(n^3)$

Sol3: Strassen's Matrix

we can just calculate 7 sub multiplication

$$P1 = A11(B12 - B22)$$

$$P2 = (A11 + A12)B22$$

$$P3 = (A21 + A22)B11$$

$$P4 = A22(B21 - B11)$$

$$P5 = (A11 + A22)(B11 + B22)$$

$$P6 = (A12 - A22)(B21 + B22)$$

$$P7 = (A11 - A21)(B11 + B12)$$

C11 = P5 + P4 - P2 + p6
C12 = P3 + P4
C21 = P3 + P4
C22 = P5 + P1 - P3 - P7

$$T(n) = \begin{cases} 7T(\frac{n}{2}) + O(n^2) & else\\ O(1) & if n = 1\\ n^{2.80} \le O(n^{log_27}) \le n^{2.81} \end{cases}$$

Recurrence

substitution method: guess and check method

Problem - Integer Multiplication

Problem - Closest Pair of Points

Given a set of points, find the closest pair of points

brute search: O(n^2) divide and conquer:

```
T(n) = 2T(b/2) + O(nlongn) => O(nlog^2 n)
To improve: ? just input y, not x, y
```

https://sites.math.rutgers.edu/~ajl213/CLRS/Ch33.pdf

https://people.csail.mit.edu/indyk/6.838-old/handouts/lec17.pdf http://euro.ecom.cmu.edu/people/faculty/mshamos/1976ShamosBentley.pdf https://www.cse.iitd.ac.in/~ssen/cs852/scribe/scribe2/lec.pdf

I'th Order Statistic

given an array, we want to find ith number

Deterministic Linear Selection

```
DETERMINISTICSELECT(A, n, i)
    # find the ith smallest of n items in A
    divide the elements of the input array A into groups of 5 # theta(n)
    find the medium of each group of 5 items and put them into another array B # theta(n)
    x = DETERMINISTICSELECT(B, n/4 , n/10) # T(n/5)
    partition A-{x} into two sets A1, A2 such that # theta(n)
    A1 = {k|k<x}
    A2 = {k|k>x}

# ?

if i = |A1| + 1 return x
    else
    if i < |A1| +1 return DETERMINISTICSELECT(A1, |A1|,1)
        else return DETERMINISITICSELECT(A2, |A2|, i-|A1|-1)</pre>
```

time analysis:

```
everytime we can split at least 3n/10 - 6 (don't need to check any more) T(n) \leq O(n) + T(n/5) + T(7n/10+6) T(n) = O(n)
```