Mutual Information

Hiroki Sayama sayama@binghamton.edu

Relationship between multiple probabilistic systems

- Self-information was defined for an individual event
- Information entropy was defined for a single probabilistic system

 How can we capture the relationship between <u>multiple</u> probabilistic systems using information measurements?

Multiple variables

- · X: A butterfly in Brazil flaps its wings, or not
- · Y: A tornado appears in Texas, or not

Considering multiple variables simultaneously

- · X: A butterfly in Brazil flaps its wings, or not
- · Y: A tornado appears in Texas, or not

Considering their relationship means considering their composites

XY:

A butterfly in Brazil flaps its wings and a tornado appears in Texas, or A butterfly in Brazil flaps its wings and a tornado does <u>not</u> appear in Texas, or A butterfly in Brazil does <u>not</u> flap its wings and a tornado appears in Texas, or A butterfly in Brazil does <u>not</u> flap its wings and a tornado does <u>not</u> appear in Texas

Considering multiple variables simultaneously

Composite events

```
\cdot X : \{ x_1, x_2 \}
\cdot XY : \{ (x_1, y_1), 
                         (This works even if the
          (x_1, y_2),
                         numbers of events are
          (x_2, y_1),
                         not the same between
                         X and Y)
          (x_2, y_2) }
```

Product probability space

- Prob. space X: $\{x_1, x_2\}$, $\{p(x_1), p(x_2)\}$
- Prob. space Y: $\{y_1, y_2\}, \{p(y_1), p(y_2)\}$

Product probability space XY:

```
\{(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2)\},\
\{p(x_1, y_1), p(x_1, y_2), p(x_2, y_1), p(x_2, y_2)\}
```

*Composite events

Probability of composite events

· Probability of composite event (x, y):

$$p(x, y) = p(y, x)$$

= $p(x | y) p(y)$
= $p(y | x) p(x)$

p(x | y): Conditional probability for x to occur when y already occurred

Some important properties

$$\cdot p(x) = \Sigma_y p(x, y)$$

•
$$p(y) = \Sigma_x p(x, y)$$

$$\cdot p(x \mid y) = p(x)$$

$$\cdot P(y \mid x) = p(y)$$

if X and Y are independent from each other

Exercise: Bayes' theorem

- Define p(x | y) using p(y | x) and p(x)
 - Use the following formula as needed

```
p(x) = \Sigma_{y} p(x, y)
p(y) = \Sigma_{x} p(x, y)
p(x, y) = p(x) p(y | x)
= p(y) p(x | y)
```

- Using the data given on the right, calculate:
 - p(Rays)
 - p(Rays, Dodgers)
 - p(Rays | Dodgers)
 - p(Dodgers | Rays)

Year	X (American)	Y (National)
2001	Yankees	Diamondbacks
2002	Angels	Giants
2003	Yankees	Marlins
2004	Red Sox	Cardinals
2005	White Sox	Astros
2006	Tigers	Cardinals
2007	Red Sox	Rockies
2008	Rays	Phillies
2009	Yankees	Phillies
2010	Rangers	Giants
2011	Rangers	Cardinals
2012	Tigers	Giants
2013	Red Sox	Cardinals
2014	Royals	Giants
2015	Royals	Mets
2016	Indians	Cubs
2017	Astros	Dodgers
2018	Red Sox	Dodgers
2019	Astros	Nationals
2020	Rays	Dodgers

Information Entropy and Multiple Probability Spaces

Joint entropy

Entropy of product probability space
 XY:

$$H(XY) = - \Sigma_x \Sigma_y p(x, y) \log p(x, y)$$

- \cdot H(XY) = H(YX)
- If X and Y are independent:

$$H(XY) = H(X) + H(Y)$$

If Y completely depends on X:

$$H(XY) = H(X) (>= H(Y))$$

 Using the data given on the right, calculate the joint entropy H(XY)

> Data is available on myCourses in csv format

Year	X (American)	Y (National)
2001	Yankees	Diamondbacks
2002	Angels	Giants
2003	Yankees	Marlins
2004	Red Sox	Cardinals
2005	White Sox	Astros
2006	Tigers	Cardinals
2007	Red Sox	Rockies
2008	Rays	Phillies
2009	Yankees	Phillies
2010	Rangers	Giants
2011	Rangers	Cardinals
2012	Tigers	Giants
2013	Red Sox	Cardinals
2014	Royals	Giants
2015	Royals	Mets
2016	Indians	Cubs
2017	Astros	Dodgers
2018	Red Sox	Dodgers
2019	Astros	Nationals
2020	Rays	Dodgers

Conditional entropy

 Expected entropy of Y when a specific event occurred in X:

$$H(Y \mid X) = \Sigma_{x} p(x) H(Y \mid X=x)$$

$$= - \Sigma_{x} p(x) \Sigma_{y} p(y \mid x) \log p(y \mid x)$$

$$= - \Sigma_{x} \Sigma_{y} p(y, x) \log p(y \mid x)$$

If X and Y are independent:

$$H(Y \mid X) = H(Y)$$

• If Y completely depends on X:

$$H(Y \mid X) = 0$$

 Using the data given on the right, calculate the conditional entropy H(Y | X)

Year	X (American)	Y (National)
2001	Yankees	Diamondbacks
2002	Angels	Giants
2003	Yankees	Marlins
2004	Red Sox	Cardinals
2005	White Sox	Astros
2006	Tigers	Cardinals
2007	Red Sox	Rockies
2008	Rays	Phillies
2009	Yankees	Phillies
2010	Rangers	Giants
2011	Rangers	Cardinals
2012	Tigers	Giants
2013	Red Sox	Cardinals
2014	Royals	Giants
2015	Royals	Mets
2016	Indians	Cubs
2017	Astros	Dodgers
2018	Red Sox	Dodgers
2019	Astros	Nationals
2020	Rays	Dodgers

· Prove the following:

$$H(Y \mid X) = H(YX) - H(X)$$

Mutual Information

Mutual information

- Conditional entropy measures how much ambiguity still remains on Y after observing an event on X
- Average reduction of ambiguity on Y by one observation on X is written as:

$$I(Y; X) = H(Y) - H(Y \mid X)$$

Mutual information

Intuitive meaning of I(Y; X)

Symmetry of mutual information

$$I(Y; X) = H(Y) - H(Y | X)$$

= $H(Y) + H(X) - H(YX)$
= $H(X) + H(Y) - H(XY)$
= $I(X; Y)$

Mutual information is symmetric in terms of X and Y

Symmetry of mutual information

 Using the data given on the right, calculate the mutual information I(X; Y)

Year	X (American)	Y (National)
2001	Yankees	Diamondbacks
2002	Angels	Giants
2003	Yankees	Marlins
2004	Red Sox	Cardinals
2005	White Sox	Astros
2006	Tigers	Cardinals
2007	Red Sox	Rockies
2008	Rays	Phillies
2009	Yankees	Phillies
2010	Rangers	Giants
2011	Rangers	Cardinals
2012	Tigers	Giants
2013	Red Sox	Cardinals
2014	Royals	Giants
2015	Royals	Mets
2016	Indians	Cubs
2017	Astros	Dodgers
2018	Red Sox	Dodgers
2019	Astros	Nationals
2020	Rays	Dodgers

- · Prove the following:
 - If X and Y are independent:

$$I(X; Y) = 0$$

- If Y completely depends on X:

$$I(X; Y) = H(Y)$$

Use of mutual information

- Mutual information can be used to measure how much correlation exists between two subsystems in a complex system
 - Traditional statistical correlation only works for quantitative measures and detects only linear relationships
 - Mutual information works for qualitative measures (discrete, categorical) and nonlinear relationships as well

- Choose two discrete variables that may be influencing each other
 - E.g., people's first name initials vs. last name initials
- Obtain data about their values
- Calculate mutual information between them

 Calculate the mutual information between the first letter of a word (X) and its case (Y) for all the words on the top page of English Wikipedia

FYI: Pointwise mutual information

```
pmi(x; y)
= - log p(x) - log p(y) + log p(x,y)
= log \frac{p(x,y)}{p(x) p(y)}
```

 PMI measures the association between two single events (it can be either positive or negative)

Mutual Information for Continuous Variables

Definition of mutual information

$$I(Y; X) = H(Y) - H(Y | X)$$

= $H(Y) + H(X) - H(YX)$
= $H(X) + H(Y) - H(XY)$
= $I(X; Y)$

... holds for continuous variables

 $I(Y; X) = H_{dif}(Y) - H_{dif}(Y \mid X)$

$$= H_{dif}(Y) + H_{dif}(X) - H_{dif}(YX)$$

$$= H_{dif}(X) + H_{dif}(Y) - H_{dif}(XY)$$

$$= I(X; Y)$$

$$H_{dif}(Y \mid X) = -\int_{x} \int_{y} pdf(y, x) log pdf(y \mid x) dx dy$$

$$pdf(y \mid x) = pdf(y, x) / p(x)$$

$$p(x) = \int_{y'} pdf(y', x) dy'$$

$$H_{dif}(XY) = -\int_{x} \int_{y} pdf(x, y) log pdf(x, y) dx dy$$

31

Note on mutual information for continuous variables

$$I(Y; X) = H_{dif}(Y) - H_{dif}(Y \mid X)$$

- · Both H_{dif} originally contained the same "infinity" term, which cancel out
 - → No infinity is ignored in the definition of I(Y; X)
 - → The value of I(Y; X) has actual meaning; the amount of information shared between X and Y
 - \rightarrow I(Y; X) is always non-negative

Calculating mutual information from data points of continuous values

- Create a smooth PDF using, e.g.,
 Gaussian kernel method
- · Calculate

$$I(Y; X) = H_{dif}(Y) + H_{dif}(X) - H_{dif}(YX)$$

- Choose two continuous variables that may be influencing each other
 - E.g., people's height vs. latitude of their addresses
- Obtain data about their values
- · Calculate mutual information between them

Mutual information as a tool to detect nonlinear correlation

 Mutual information can detect nonlinear correlations that simple correlation metrics cannot

FYI: Kullback-Leibler divergence

$$D_{KL}(p(x) || q(x))$$

= $(-\int_{x} p(x) \log q(x) dx) - H_{dif}(p(x))$

- This measures how distribution p(x) is different from q(x)
- · It is known that:

$$I(X; Y) = D_{KL}(p(x, y) || p(x)p(y))$$

Mutual Information tells you how p(x, y) is different from a hypothetical PDF with independent X and Y

· Prove this:

$$I(X; Y) = D_{KL}(p(x, y) || p(x)p(y))$$