Języki formalne i techniki translacji

Felix Zieliński 272336

Zadanie 5 lista 2

Zadanie 5. Czy język $\{\omega\omega^R x : \omega, x \in \{0,1\}^* \land \omega, x \neq \varepsilon\}$, gdzie ω^R oznacza odwrócenie kolejności liter w słowie ω , jest regularny?

Rozwiązanie

Lemat o pompowaniu Niech L będzie językiem regularnym. Wtedy istnieje stała n taka, że jeśli z jest dowolnym słowem z L oraz $|z| \geq n$, to z możemy przedstawić w postaci z = uvw, gdzie $|uv| \leq n$ i $|v| \geq 1$ oraz uv^iw należy do L dla każdego $i \geq 0$. n w tym lemacie jest nie większe niż liczba stanów najmniejszego DFA akceptującego L.

Technicznie rzecz biorąc, słowa z języka L spełniają lemat o pompowaniu. Dlaczego? Dla założeń z polecenia:

$$\mathbf{gdy} |\omega| = 1$$

Skoro ω jest długości 1, to ω^R - jego odwrócenie - również będzie tej długości, i w dodatku $\omega = \omega^R$. Wtedy $z = \omega \omega x$, w którym $|x| \geq n-1$. Biorąc z z lematu, mamy $u = \omega \omega$ oraz |vw| = x, gdzie dowolne v spełnia $1 \leq |v| \leq n-2$. Pompujemy wtedy v: dla dowolnego i, $z' = uv^i w = \omega' \omega'^R x'$ w L, gdzie $\omega' = \omega$ oraz $x' = v^i w$. Lemat jest spełniony.

$\mathbf{gdy} \ |\omega| \geq 2$

Niech ω to będzie ab i |a|=1. Ciąg więc zaczyna się palindromem złożonym z dwóch różnych znaków: $z=abb^Rax$. Biorąc z z lematu, mamy: $u=\varepsilon$, v=a i $w=bb^Rax$. Pompując v, otrzymujemy:

dla $i=0, z'=uv^0w=uw=w$, a w z wyżej poczynionych założeń było równe bb^Rax , dalej $bb^Rax=\omega'\omega'^Rx'$ w L, gdzie $\omega'=b$ oraz x'=ax.

dla i = 1, $z' = uv^1w = uvw = z \le L$.

dla $i\geq 2,\ z'=uv^iw=v^iw=a^ibb^Rax=aaa^{i-2}bb^Rax,$ jak widać aa to palindrom, więc dalej $aaa^{i-2}bb^Rax=\omega'\omega'^Rx'$ w L, gdzie $\omega'=a$ oraz $x'=a^{i-2}bb^Rax.$

Lemat jest więc spełniony.

Mimo powyższych rozważań, twierdzę, że ten język **nie jest regularny**. Dowiodę tego używając **uogólnionej wersji lematu o pompowaniu**:

Wersja ogólna lematu o pompowaniu Niech L będzie językiem regularnym. Wtedy istnieje takie stałe $n \geq 1$, że dla dowolnego słowa z z L, gdzie $|z| \geq n$, istnieje przedstawienie w postaci z = yuvw dla każdych y pozwalających spełnić warunki: $|uvw| \geq n$, $|uv| \leq n$ oraz $|v| \geq 1$, gdzie yuw^iw będzie należeć do L dla każdego $i \geq 0$.

Ta wersja lematu o pompowaniu pozwala na udowadnianie nieregularności języków, gdy zwykły lemat o pompowaniu zawodzi. Dzięki niemu mogę pompować słowo w dowolnym jego miejscu.

Dowód Zakładam, że język L jest językiem regularnym. n,z biorę z wersji ogólnej lematu o pompowaniu. Niech $z=(10)^n(01)^n1$ - spełnia to założenia z polecenia.

Widać też, że |z| = 4n + 1 oraz że dla każdego podziału spełniającego warunki lematu z $y = (10)^n 0$, |uvw| = 2n.

Weźmy i=0. Wtedy $z'=yuv^0w$. Zakładamy, że z' jest w L - wtedy $z'=\omega'\omega'^Rx'$, gdzie w' oraz x' są niepuste.

Skoro $\omega\omega^R$ tworzą palindrom, to "w środku" muszą pojawić się dwa takie same znaki. W naszym przypadku to dwa ostatnie znaki w y: $1(01)^{n-1}00$, więc $|w'| \ge 2n$, z czego wynika, że $|z'| = |\omega'\omega'^Rx'| = 2|\omega'| + |x'| \ge 4n + 1$. A wiemy, że $|z'| = |yuv^0w| = |yuvw| - |v| = |z| - |v| \le 4n + 1 - 1 = 4n$. A więc sprzeczność!