

Il tuo partner per la Formazione e la Trasformazione digitale della tua azienda

Note			

SPRING AI

GENERATIVE ARTIFICIAL INTELLIGENCE CON JAVA

Simone Scannapieco

Corso avanzato per Venis S.p.A, Venezia, Italia

Novembre 2025

Note		

LLM IN CONTESTI BUSINESS RIASSUNTO DELLE PUNTATE PRECEDENTI

- Praticamente impossibile pre-addestrare un LLM (a meno che tu non sia Google, OpenAl, Mistral, Anthropic e pochissimi altri)
- Utilizzare un LLM per scopi personali è un conto, adottarli in un contesto business significa scontrarsi con problematiche di natura etica, legale ed economica
- Oli LLM saranno sempre più bravi a modellare la comprensione del linguaggio...
 - ② ... ma come usarli per task specifici o con conoscenza che a loro manca?!

👺 Simone Scannapieco

Spring AI - Corso avanzato

m Venis S.p.A, Venezia, IT

Note		

FINE-TUNING DEFINIZIONE

Ν	ot	e
	\mathbf{c}	·

ADDESTRAMENTO NEURALE APPROCCI PRINCIPALI

- Full learning
 - Creare una architettura neurale da zero...
 - ... oppure scegliere una architettura in letteratura (per i meno sadici)
 - Addestramento da zero (a partire da pesi e bias random)
- Transfer learning
 - Sfruttare una rete neurale giá addestrata su un altro insieme di dati di addestramento
 - Modificare solo alcuni strati (solitamente gli ultimi) per addestrare la rete per i propri scopi

Computer vision	Full learning	Transfer learning
Numero dati addestramento	10 ³ −10 ⁶	10 ²
Computazione	Intensiva (GPU)	Media (CPU-GPU)
Tempo di addestramento	Giorni−settimane	Ore-giorni
Accuratezza del modello	Alta	Variabile

Note			
	_		

FINE-TUNING IL DNA DEL DL NON MENTE...

- ChatGPT parla del fine-tuning per LLM come sinonimo di transfer learning
- Si parla di full fine-tuning quando nessuno strato viene congelato
- Diverse tecniche per quanto riguarda il "transfer tuning"
 - Multi-Level Fine-Tuning (MLFT)
 - Parameter Efficient Fine-Tuning (PEFT)
 - Low-Rank Adaptation (LoRA)
 - Adapter Training
 - **(2)** ...

m Venis S.p.A, Venezia, IT

Note		

7/12

m Venis S.p.A, Venezia, IT

- O Possibile eseguire full fine-tuning su LLM pre-addestrate di dimensioni "contenute". . .
- . . . facendo attenzione a non esagerare. . .
- . . . e possibilmente, ottimizzando il processo decidendo la precisione dei parametri del modello (ovvero, quantizzandolo)

- Ouantizzazione a float16 e bfloat16 usati maggiormente per addestramento
- bfloat16 generalmente preferito a float16

Simone Scannapieco

- Addestramento a float32 riservato alle big companies
- Ouantizzazioni inferiori disponibili (int8, int4), ma consigliate solo per inferenza

Spring AI - Corso avanzato

Note ______

- [©]jeremy jouvance@GoPenAl
- 🜖 A favore del peso del modello in memoria e ai tempi di addestramento. . .
- 🜖 . . . a scapito dell'accuratezza in fase di inferenza
- O Tradeoff fra risorse e prestazioni dettato anche dalla strategia adottata
 - Ouantizzazione terminato il processo di addestramento (Post Training Quantization PTQ)
 - Quantizzazione durante l'addestramento (Quantization-Aware Training (QAT))

Spring AI - Corso avanzato

m Venis S.p.A, Venezia, IT

Ν	ote
	-

Note			

Prodotto scalare

Il prodotto scalare di matrice
$$(n \times r) A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nr} \end{bmatrix}$$
 e matrice $(r \times m)$

$$B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{r1} & b_{r2} & \dots & b_{rm} \end{bmatrix}$$
é la matrice $(n \times m)$

$$A \cdot B = \begin{bmatrix} a_{11} * b_{11} + \ldots + a_{1r} * b_{r1} & \ldots & a_{11} * b_{1m} + \ldots + a_{1r} * b_{rm} \\ \vdots & \vdots & \vdots \\ a_{n1} * b_{11} + \ldots + a_{nr} * b_{r1} & \ldots & a_{n1} * b_{1m} + \ldots + a_{nr} * b_{rm} \end{bmatrix}$$

- In pratica, fissato r, LoRA computa A e B tale per cui $\Delta W = A \cdot B$
- Ma perché é così potente?!

Simone Scannapieco

Spring AI - Corso avanzato

m Venis S.p.A, Venezia, IT

Note	Ν	ot	e
------	---	----	---

n

Esempio LoRA

$$\Delta W = \begin{bmatrix} 5 & 1 & -1 & 3 & 4 \\ 15 & 3 & -3 & 9 & 12 \\ 35 & 7 & -7 & 21 & 28 \\ -20 & -4 & 4 & -12 & -16 \\ 10 & 2 & -2 & 6 & 8 \end{bmatrix} \xrightarrow{\mathsf{LORA}(r = 1)} \mathsf{A} = \begin{bmatrix} 1 \\ 3 \\ 7 \\ -4 \\ 2 \end{bmatrix}, \, \mathsf{B} = \begin{bmatrix} 5 & 1 & -1 & 3 & 4 \end{bmatrix}$$

- Numero parametri da salvare?
 - ♠ ∆W: 25
 - ♠ A e B (totale): 10
 - Risparmio spazio: 40%
- ♦ La backpropagation opera direttamente sulle rappresentazioni di A e B!
- ⚠ Metodo di approssimazione, quindi a scapito della accuracy del modello

Simone Scannapieco

Spring AI - Corso avanzato

m Venis S.p.A, Venezia, IT

Note			

- Decomposizione LoRA + Quantization. . .
- 😜 ... tutto qui.

Simone Scannapieco

Spring AI - Corso avanzato

m Venis S.p.A, Venezia, IT

N	ot	e
---	----	---