$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ data kümesi için bu veriye en az hata (toplam hata) ile uyan bir f(x) fonksiyonu arıyoruz.

i'nci data için hata : $\epsilon_i = y_i - f(x_i) \Longrightarrow$ hataların toplamını minimum yapmak istiyoruz

 $\epsilon_i = y_i - f(x_i)$ pozitif / negatif / sıfır her türlü değeri alabilir bu nedenle

$$\sum_{i=1}^{n} \epsilon_{i} = \sum_{i=1}^{n} y_{i} - f(x_{i}) \longrightarrow \min \text{ çok anlamlı değil!!}$$

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - \hat{f}(x_i)]^2}$$
: Ortalama karesel hatan*ı*n karekökü (Root Mean Square Error: RMSE)

$$E = \sqrt{\frac{1}{n}\sum_{i=1}^{n}[y_i - \hat{f}(x_i)]^2} \rightarrow \min yapan \hat{f} fonksiyonu data için en küçük kareler yaklaşımı ile en iyi model$$

x_i	y_i	x_i	y_i
1.0	-1.945	4.2	1.582
1.2	-1.253	4.4	1.993
1.4	-1.140	4.6	2.473
1.6	-1.087	4.8	2.503
1.8	-0.760	5.0	2.322
2.0	-0.682		
2.2	-0.424		
2.4	-0.012		
2.6	-0.190		
2.8	0.452		
3.0	0.337		
3.2	0.764		
3.4	0.532		
3.6	1.073		
3.8	1.286		
4.0	1.502		

25.05.2021

x_i	y_i	x_i	y_i				0.5	3	ij	1		-	_
.0	-1.945	4.2	1.582										
1.2	-1.253	4.4	1.993										
1.4	-1.140	4.6	2.473								V 5		
1.6	-1.087	4.8	2.503				0 -				X: 2.4 Y: -0.	012	
.8	-0.760	5.0	2.322								€ ₈	<i>€</i> 9	
2.0	-0.682											J	
2.2	-0.424					>	^						
2.4	-0.012									67			
2.6	-0.190						-0.5 -		/				
.8	0.452								°6				
3.0	0.337							1/					
3.2	0.764												
3.4	0.532						-1	1	i i			1	_
3.6	1.073		n		n			1.8	2	2.2	2.4 X	2.6	
3.8	1.286	E =	$\frac{1}{n}\sum_{\epsilon}^{n}$	$^2 = \left \frac{1}{2} \right $	$\sum_{i=1}^{n} [y_i -$	- f (v.)12 →	min					
4.0	1.502	<i>L</i> –	$n \underset{i=1}{\overset{C_l}{=}} $	$-\sqrt{n}$	$\sum_{i=1}^{\lfloor y_i \rfloor}$) (×1.	/] /	116616					

25.05.2021

γ.	ν	ν	1/-
x_i	y_i	x_i	y_i
1.0	-1.945	4.2	1.582
1.2	-1.253	4.4	1.993
1.4	-1.140	4.6	2.473
1.6	-1.087	4.8	2.503
1.8	-0.760	5.0	2.322
2.0	-0.682		
2.2	-0.424		
2.4	-0.012		
2.6	-0.190		
2.8	0.452		
3.0	0.337		
3.2	0.764		
3.4	0.532		
3.6	1.073		
3.8	1.286		
4.0	1.502		

25.05.2021

Lineer Yaklaşım: (Lineer Regresyon)

f(x) = mx + b olarak önerelim \Rightarrow En iyi m ve b yi bulmaya çalışacağız.

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - f(x_i)]^2} \rightarrow minimum \ yapacak \ m \ ve \ b ?$$

$$G(b,m) = \sum_{i=1}^{n} [f(x_i) - y_i]^2 = \sum_{i=1}^{n} [mx_i + b - y_i]^2 \to min$$

$$\frac{\partial G}{\partial b} = 0 \ ve \ \frac{\partial G}{\partial m} = 0$$

$$\frac{\partial G}{\partial b} = \sum_{i=1}^{n} 2[mx_i + b - y_i] = 0 \implies \sum_{i=1}^{n} 2b + \sum_{i=1}^{n} 2x_i m = \sum_{i=1}^{n} 2y_i \implies n \cdot b + \left(\sum_{i=1}^{n} x_i\right) m = \sum_{i=1}^{n} y_i \quad (1)$$

$$\frac{\partial G}{\partial m} = \sum_{i=1}^{n} 2[mx_i + b - y_i]x_i = 0 \implies \sum_{i=1}^{n} 2x_ib + \sum_{i=1}^{n} 2x_i^2m = \sum_{i=1}^{n} 2y_ix_i \implies \left(\sum_{i=1}^{n} x_i\right)b + \left(\sum_{i=1}^{n} x_i^2\right)m = \sum_{i=1}^{n} y_ix_i \quad (2)$$

(1) ve (2) den b ve m çözülerek f(x) = mx + b bulunur.

Çözümün varlığı için sistemin determinantı sıfırdan farklı olmalı⇒

$$n\left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} x_i\right)^2 \neq 0$$

$$\begin{bmatrix} n & \left(\sum_{i=1}^{n} x_i\right) \\ \left(\sum_{i=1}^{n} x_i\right) & \left(\sum_{i=1}^{n} x_i^2\right) \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} y_i x_i \end{bmatrix}$$

1.582

1.993

2.473

2.503

2.322

4.2

4.4

4.6

4.8

5.0

x_i	y_i	
1.0	-1.945	
1.2	-1.253	
1.4	-1.140	
1.6	-1.087	
1.8	-0.760	
2.0	-0.682	
2.2	-0.424	
2.4	-0.012	
2.6	-0.190	
2.8	0.452	
3.0	0.337	
3.2	0.764	
3.4	0.532	
3.6	1.073	
3.8	1.286	
4.0	1.502	

Data Sayısı: n = 21

$$\sum_{i=1}^{n} x_i = 0.2 \sum_{j=5}^{25} j = 0.2 \times (\frac{25 \times 26}{2} - \frac{4 \times 5}{2}) = 63$$

$$\sum_{i=1}^{n} x_i^2 = 219.8$$

$$\sum_{i=1}^{n} y_i = 9,326$$

$$\sum_{i=1}^{n} x_i y_i = 60,73$$

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2} = 0.171$$

$$\begin{bmatrix} 21 & 63 \\ 63 & 219.8 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 9,326 \\ 60,73 \end{bmatrix} \Rightarrow b = -2.74605 \\ m = 1.06338$$

$$f(x) = mx + b = 1.06338x - 2.74605$$

En iyi eğri:
$$f(x) = mx + b = 1.06338x - 2.74605$$

$$f(x) = x - 2.8 \Longrightarrow E = 0.309$$

$$f(x) = 1.1x - 2.7 \implies E = 0.236$$

$$\hat{f}(x) = mx + b = 1.06338x - 2.74605 \implies E = 0.171$$

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - \hat{f}(x_i)]^2} \longrightarrow min$$

8

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ data kümesi için bu veriye en az hata (toplam hata) ile uyan bir f(x) fonksiyonu arıyoruz.

En iyi eğri: f(x) = mx + b

İsterlerimiz:

$$f(x_1) = y_1 \Longrightarrow b + mx_1 = y_1$$

$$f(x_2) = y_2 \Longrightarrow b + mx_2 = y_2$$

:

$$f(x_n) = y_n \Longrightarrow b + mx_n = y_n$$

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \Rightarrow \begin{bmatrix} [\boldsymbol{L}]_{n \times 2} \begin{bmatrix} b \\ m \end{bmatrix}_{2 \times 1} = [\boldsymbol{y}]_{n \times 1} \Rightarrow \boldsymbol{L}^T \boldsymbol{L} \begin{bmatrix} b \\ m \end{bmatrix} = \boldsymbol{L}^T \boldsymbol{y}$$

$$\begin{bmatrix} b \\ m \end{bmatrix} = (\boldsymbol{L}^T \boldsymbol{L})^{-1} \boldsymbol{L}^T \boldsymbol{y} \text{: Least Squares Solution}$$

$$\begin{bmatrix} n & \left(\sum_{i=1}^{n} x_i\right) \\ \left(\sum_{i=1}^{n} x_i\right) & \left(\sum_{i=1}^{n} x_i^2\right) \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} y_i x_i \end{bmatrix}$$

$$\boldsymbol{L}^T \boldsymbol{L} = \begin{bmatrix} 1 & 1 & & 1 \\ x_1 & x_2 & & x_n \end{bmatrix} \begin{bmatrix} 1 & & x_1 \\ 1 & & x_2 \\ & \vdots & \\ 1 & & x_n \end{bmatrix} = \begin{bmatrix} n & \left(\sum_{i=1}^n x_i\right) \\ \left(\sum_{i=1}^n x_i\right) & \left(\sum_{i=1}^n x_i^2\right) \end{bmatrix}$$

Yüksek Mertebe Eğri Uydurma

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ data kümesi için bu veriye en az hata (toplam hata) ile uyan bir f(x) fonksiyonu arıyoruz.

i'nci data için hata : $\epsilon_i = y_i - f(x_i) \Longrightarrow$ hataların toplamını minimum yapmak istiyoruz

 $\epsilon_i = y_i - f(x_i)$ pozitif / negatif / sıfır her türlü değeri alabilir bu nedenle

$$\sum_{i=1}^{n} \epsilon_{i} = \sum_{i=1}^{n} y_{i} - f(x_{i}) \rightarrow \min \text{ çok anlamlı değil!!}$$

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - \hat{f}(x_i)]^2}$$
: Ortalama karesel hatan*ı*n karekökü (Root Mean Square Error: RMSE)

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - \hat{f}(x_i)]^2} \rightarrow \min yapan \hat{f} fonksiyonu data için en küçük kareler yaklaşımı ile en iyi model$$

Yüksek Mertebe Eğri Uydurma

Lineer fonksiyon yerine çeşitli Özel Fonksiyonlar seçip bunların kombinasyonu yardımıyla bir yaklaşım yapabiliriz:

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + \dots + a_m \varphi_m(x)$$

$$\varphi_j(x); j = 1,2,...,m$$
: Seçilmiş (Baz) Fonksiyonları

$$a_i$$
; $j = 1,2,...,m$: Bilinmeyen Katsayılar

Örneğin 2. derece bir polinomla veri uydurma yapmak istersek;

$$\varphi_1(x) = 1$$
; $\varphi_2(x) = x$; $\varphi_3(x) = x^2 \Longrightarrow$

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + a_3 \varphi_3(x) = a_1 + a_2 x + a_3 x^2$$

$$E = \sqrt{\frac{1}{n}\sum_{i=1}^{n}[y_i - \hat{f}(x_i)]^2} \rightarrow \min yapan \hat{f} fonksiyonu? \Rightarrow a_j; j = 1, 2, ..., m katsayılarının belirlenmesi$$

Yüksek Mertebe Eğri Uydurma

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$
 veri kümesi

$$\varphi_1(x) = 1$$
; $\varphi_2(x) = x$; $\varphi_3(x) = x^2 \Longrightarrow$

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + a_3 \varphi_3(x) = a_1 + a_2 x + a_3 x^2$$

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - \hat{f}(x_i)]^2} \longrightarrow \min \Longrightarrow$$

$$G(a_1, a_2, a_3) = \sum_{j=1}^{n} [f(x_j) - y_j]^2 = \sum_{j=1}^{n} [a_1 \varphi_1(x_j) + a_2 \varphi_2(x_j) + a_3 \varphi_3(x_j) - y_j]^2 \to min \Longrightarrow$$

$$\frac{\partial G}{\partial a_i} = 0 \; ; i = 1,2,3$$

$$\frac{\partial G}{\partial a_1} = 0, \qquad \frac{\partial G}{\partial a_2} = 0, \qquad \frac{\partial G}{\partial a_3} = 0$$

$$\frac{\partial G}{\partial a_i} = \sum_{j=1}^n 2[a_1 \varphi_1(x_j) + a_2 \varphi_2(x_j) + a_3 \varphi_3(x_j) - y_j] \varphi_i(x_j); i = 1,2,3$$

Yüksek Mertebe Eğri Uydurma

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$
 veri kümesi

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + a_3 \varphi_3(x) = a_1 + a_2 x + a_3 x^2$$

$$\frac{\partial G}{\partial a_i} = \sum_{j=1}^n 2[a_1 \varphi_1(x_j) + a_2 \varphi_2(x_j) + a_3 \varphi_3(x_j) - y_j] \varphi_i(x_j) = 0 \; ; \; i = 1,2,3 \Longrightarrow$$

$$\left[\sum_{j=1}^{n} \varphi_{1}(x_{j})\varphi_{i}(x_{j})\right] a_{1} + \left[\sum_{j=1}^{n} \varphi_{2}(x_{j})\varphi_{i}(x_{j})\right] a_{2} + \left[\sum_{j=1}^{n} \varphi_{3}(x_{j})\varphi_{i}(x_{j})\right] a_{3} = \sum_{j=1}^{n} y_{j}\varphi_{i}(x_{j}); i = 1,2,3$$

3 denklem 3 bilinmeyen

$$\varphi_1(x) = 1$$
; $\varphi_2(x) = x$; $\varphi_3(x) = x^2 \Longrightarrow$

$$na_1 + \left(\sum_{j=1}^n x_j\right)a_2 + \left(\sum_{j=1}^n x_j^2\right)a_3 = \sum_{j=1}^n y_j$$
 (1)

$$na_{1} + \left(\sum_{j=1}^{n} x_{j}\right)a_{2} + \left(\sum_{j=1}^{n} x_{j}^{2}\right)a_{3} = \sum_{j=1}^{n} y_{j} \quad (1) \qquad \left(\sum_{j=1}^{n} x_{j}\right)a_{1} + \left(\sum_{j=1}^{n} x_{j}^{2}\right)a_{2} + \left(\sum_{j=1}^{n} x_{j}^{3}\right)a_{3} = \sum_{j=1}^{n} y_{j}x_{j} \quad (2)$$

$$\left(\sum_{j=1}^{n} x_j^2\right) a_1 + \left(\sum_{j=1}^{n} x_j^3\right) a_2 + \left(\sum_{j=1}^{n} x_j^4\right) a_3 = \sum_{j=1}^{n} y_j x_j^2 \qquad (3)$$

Yüksek Mertebe Eğri Uydurma

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$
 veri kümesi

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - \hat{f}(x_i)]^2} \longrightarrow \min \Longrightarrow$$

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + a_3 \varphi_3(x) = a_1 + a_2 x + a_3 x^2$$

$$\frac{\partial G}{\partial a_i} = \sum_{j=1}^n 2[a_1 \varphi_1(x_j) + a_2 \varphi_2(x_j) + a_3 \varphi_3(x_j) - y_j] \varphi_i(x_j) = 0 \; ; \; i = 1,2,3 \Longrightarrow$$

$$\begin{bmatrix} n & \left(\sum_{j=1}^{n} x_j\right) & \left(\sum_{j=1}^{n} x_j^2\right) \\ \left(\sum_{j=1}^{n} x_j\right) & \left(\sum_{j=1}^{n} x_j^2\right) & \left(\sum_{j=1}^{n} x_j^3\right) \\ \left(\sum_{j=1}^{n} x_j^2\right) & \left(\sum_{j=1}^{n} x_j^3\right) & \left(\sum_{j=1}^{n} x_j^4\right) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} y_j \\ \sum_{j=1}^{n} y_j x_j \\ \sum_{j=1}^{n} y_j x_j^2 \end{bmatrix}$$

14

Yüksek Mertebe Eğri Uydurma: Genel HAL

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$
 veri kümesi

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + \dots + a_m \varphi_m(x)$$

$$\varphi_j(x); j=1,2,...,m:$$
 Seçilmiş (Baz) Fonksiyonları

 a_i ; j = 1,2,...,m: Bilinmeyen Katsayılar

$$G(a_1, a_2, ..., a_m) = \sum_{j=1}^n [f(x_j) - y_j]^2 = \sum_{j=1}^n [a_1 \varphi_1(x_j) + a_2 \varphi_2(x_j) + \dots + a_m \varphi_m(x_j) - y_j]^2 \to min \Longrightarrow$$

$$\frac{\partial G}{\partial a_i} = \sum_{j=1}^n 2[a_1 \varphi_1(x_j) + a_2 \varphi_2(x_j) + \dots + a_m \varphi_m(x_j) - y_j] \varphi_i(x_j) = 0 \; ; \; i = 1, 2, \dots, m \Longrightarrow$$

$$\sum_{k=1}^{m} a_k \left[\sum_{j=1}^{n} \varphi_k(x_j) \varphi_i(x_j) \right] = \sum_{j=1}^{n} y_j \varphi_i(x_j) \; ; \; i = 1, 2, ..., m$$

 $[K]_{m \times m}[a]_{m \times 1} = [\widetilde{y}]_{m \times 1}; \quad m \times m \text{ lik bir lineer sistem}$

Yüksek Mertebe Eğri Uydurma: Örnek

 x_i

0.80

0.85

0.90

0.95

1.00

 y_i

1.152

1.265

1.380

1.575

1.857

$$\hat{f}(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$$

$$\begin{bmatrix} n & \left(\sum_{j=1}^{n} x_{j}\right) & \left(\sum_{j=1}^{n} x_{j}^{2}\right) & \left(\sum_{j=1}^{n} x_{j}^{3}\right) \\ \left(\sum_{j=1}^{n} x_{j}\right) & \left(\sum_{j=1}^{n} x_{j}^{2}\right) & \left(\sum_{j=1}^{n} x_{j}^{3}\right) & \left(\sum_{j=1}^{n} x_{j}^{4}\right) \\ \left(\sum_{j=1}^{n} x_{j}^{2}\right) & \left(\sum_{j=1}^{n} x_{j}^{3}\right) & \left(\sum_{j=1}^{n} x_{j}^{4}\right) & \left(\sum_{j=1}^{n} x_{j}^{5}\right) \\ \left(\sum_{j=1}^{n} x_{j}^{3}\right) & \left(\sum_{j=1}^{n} x_{j}^{4}\right) & \left(\sum_{j=1}^{n} x_{j}^{5}\right) & \left(\sum_{j=1}^{n} x_{j}^{6}\right) \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} y_{j} \\ \sum_{j=1}^{n} y_{j} x_{j} \\ \sum_{j=1}^{n} y_{j} x_{j}^{2} \\ \sum_{j=1}^{n} y_{j} x_{j}^{3} \end{bmatrix}$$

$$\begin{bmatrix} 21 & 10.5 & 7.175 & 5.5125 \\ 10.5 & 7.175 & 5.5125 & 4.5166 \\ 7.175 & 5.5125 & 4.5166 & 3.8541 \\ 5.5125 & 4.5166 & 3.8541 & 3.3821 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 24.118 \\ 13.234 \\ 9.4683 \\ 7.5594 \end{bmatrix}$$

$$[K]_{4\times 4}[a]_{4\times 1} = [\widehat{y}]_{4\times 1} \Longrightarrow [a] = [K]^{-1}[\widehat{y}] \Longrightarrow$$

$$\begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 0.5747 \\ 4.7259 \\ -11.1282 \\ 7.6687 \end{bmatrix}$$

	_	
x_i	y_i	
0.00	0.486	
0.05	0.866	
0.10	0.944	
0.15	1.144	
0.20	1.103	
0.25	1.202	
0.30	1.166	
0.35	1.191	
0.40	1.124	
0.45	1.095	
0.50	1.122	
0.55	1.102	
0.60	1.099	
0.65	1.017	
0.70	1.111	
0.75	1.117	

En Küçük Kareler/Eğri Uydurma (Least Squares Data Fitting): Yüksek Mertebe Eğri Uydurma: Örnek

x_i	y_i	x_i	y_i
0.00	0.486	0.80	1.152
0.05	0.866	0.85	1.265
0.10	0.944	0.90	1.380
0.15	1.144	0.95	1.575
0.20	1.103	1.00	1.857
0.25	1.202		
0.30	1.166		
0.35	1.191		
0.40	1.124		
0.45	1.095		
0.50	1.122		
0.55	1.102		
0.60	1.099		
0.65	1.017		
0.70	1.111		
0.75	1.117		

$$\hat{f}(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$$

En Küçük Kareler/Eğri Uydurma (Least Squares Data Fitting): Yüksek Mertebe Eğri Uydurma: Örnek

$$\hat{f}(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$$

$$[K]_{4\times4}[a]_{4\times1}=[\widehat{y}]_{4\times1}\Longrightarrow \qquad [a]=[K]^{-1}[\widehat{y}]\Longrightarrow$$

$$\begin{bmatrix} 21 & 10.5 & 7.175 & 5.5125 \\ 10.5 & 7.175 & 5.5125 & 4.5166 \\ 7.175 & 5.5125 & 4.5166 & 3.8541 \\ 5.5125 & 4.5166 & 3.8541 & 3.3821 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 24.118 \\ 13.234 \\ 9.4683 \\ 7.5594 \end{bmatrix}$$

$$[\mathbf{a}] = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 0.5747 \\ 4.7259 \\ -11.1282 \\ 7.6687 \end{bmatrix}$$

 $cond(K) = ||K|| ||K^{-1}|| = 220 \gg 1 K \ddot{o}t \ddot{u} Kosullu Problem (stabilite sıkıntılı!!!)$

$$\widetilde{\hat{y}} = \widehat{y} + \widehat{\delta y} = \begin{bmatrix} 24.118 \\ 13.234 \\ 9.4683 \\ 7.5594 \end{bmatrix} + \begin{bmatrix} 0.01 \\ -0.01 \\ 0.01 \\ -0.01 \end{bmatrix} \Rightarrow [a'] = \begin{bmatrix} a'_1 \\ a'_2 \\ a'_3 \\ a'_4 \end{bmatrix} = \begin{bmatrix} 0.7408 \\ 2.6825 \\ -6.1538 \\ 4.455 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}' \end{bmatrix} = \begin{bmatrix} a'_1 \\ a'_2 \\ a'_3 \\ a'_4 \end{bmatrix} = \begin{bmatrix} 0.7408 \\ 2.6825 \\ -6.1538 \\ 4.455 \end{bmatrix}$$

$$\|\widehat{\boldsymbol{\delta y}}\| = 0.01 \quad max \left\| \frac{\widehat{\boldsymbol{\delta y}}}{\widehat{\boldsymbol{y}}} \right\| = \frac{0.01}{7.5594} = 0.001322$$

En Küçük Kareler/Eğri Uydurma (Least Squares Data Fitting): Yüksek Mertebe Eğri Uydurma: Örnek

x_i	y_i	x_i
0.00	0.486	0.80
0.05	0.866	0.85
0.10	0.944	0.90
0.15	1.144	0.95
0.20	1.103	1.00
0.25	1.202	
0.30	1.166	
0.35	1.191	
0.40	1.124	
0.45	1.095	
0.50	1.122	
0.55	1.102	
0.60	1.099	
0.65	1.017	
0.70	1.111	
0.75	1.117	

 y_i

1.152

1.265

1.380

1.575

1.857

$$\hat{f}(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$$

Yüksek Mertebe Eğri Uydurma: Genel HAL

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$
 veri kümesi

$$x_1, x_2, \dots x_n \in [\alpha, \beta]$$

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + \dots + a_m \varphi_m(x)$$

$$\varphi_j(x)$$
; $j = 1,2,...,m$: Seçilmiş (Baz) Fonksiyonları

$$\sum_{k=1}^{m} a_k \left[\sum_{j=1}^{n} \varphi_k(x_j) \varphi_i(x_j) \right] = \sum_{j=1}^{n} y_j \varphi_i(x_j) ; i = 1, 2, ..., m$$
 $a_j ; j = 1, 2, ..., m : Bilinmeyen Katsayılar$

$$\varphi_j(x) = T_{j-1}\left(\frac{2x - \alpha - \beta}{\beta - \alpha}\right); \ \alpha \le x \le \beta; j = 1, 2, ... m; \ \textit{Modifive Chebyshev Polinomlar1} \Longrightarrow$$

$$\varphi_1(x) = T_0(2x - 1) = 1$$

$$\varphi_2(x) = T_1(2x - 1) = 2x - 1$$

$$\varphi_3(x) = T_2(2x - 1) = 2(2x - 1)^2 - 1$$

$$\varphi_4(x) = T_3(2x - 1) = 4(2x - 1)^3 - 3(2x - 1)$$

Yüksek Mertebe Eğri Uydurma: Chebyshev Polinomları

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + a_3 \varphi_3(x) + a_4 \varphi_4(x)$$

$$\varphi_1(x) = T_0(2x - 1) = 1$$

$$\varphi_2(x) = T_1(2x - 1) = 2x - 1$$

$$\varphi_3(x) = T_2(2x - 1) = 2(2x - 1)^2 - 1$$

$$\varphi_4(x) = T_3(2x - 1) = 4(2x - 1)^3 - 3(2x - 1)$$

$$[K]_{4\times4}[a]_{4\times1} = [\widehat{y}]_{4\times1} \Longrightarrow \qquad [a] = [K]^{-1}[\widehat{y}] \Longrightarrow$$

$$\begin{bmatrix} 21 & 0 & -5.6 & 0 \\ 0 & 7.7 & 0 & -2.8336 \\ -5.6 & 0 & 10.4664 & 0 \\ 0 & -2.8336 & 0 & 11.0105 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 24.118 \\ 2.351 \\ -6.011 \\ 1.5235 \end{bmatrix} \Rightarrow \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 1.1609 \\ 0.3935 \\ 0.0468 \\ 0.2396 \end{bmatrix}$$

$$[\mathbf{a}] = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 1.1609 \\ 0.3935 \\ 0.0468 \\ 0.2396 \end{bmatrix}$$

 $cond(K) = ||K|| ||K^{-1}|| = 4.8 \approx 1$ (well conditioned)

Yüksek Mertebe Eğri Uydurma: Chebyshev Polinomları

$$\hat{f}(x) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + a_3 \varphi_3(x) + a_4 \varphi_4(x)$$

$$\varphi_{j}(x) = T_{j-1}\left(\frac{2x - \alpha - \beta}{\beta - \alpha}\right); \ \alpha \leq x \leq \beta; j = 1, 2, \dots m;$$

$$Modifive\ Chebyshev\ Polinomlari \Longrightarrow$$

$$\varphi_1(x) = T_0(2x - 1) = 1$$

$$\varphi_2(x) = T_1(2x - 1) = 2x - 1$$

$$\varphi_3(x) = T_2(2x - 1) = 2(2x - 1)^2 - 1$$

$$\varphi_4(x) = T_3(2x-1) = 4(2x-1)^3 - 3(2x-1)$$

$$E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - \hat{f}(x_i)]^2}$$

22