Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи No 6 з дисципліни «Основи програмування 1. Базові конструкції»

«Організація підпрограм»

Варіант 7

Виконав студент <u>ІП-1407 Грицина Діана Русланівна</u>	(шифр, прізвище,
ім'я, по батькові)	
Перевірив	(прізвище, ім'я, по
батькові)	

Лабораторна робота No 6

Тема: Організація підпрограм.

Мета: Набути навичок складання і використання підпрограм користувача.

Хід роботи

Задача

 Задані невід'ємні цілі числа n і m. Обчислити функцію Акермана, користуючись наступними рекурентними співвідношеннями:

$$A(n,m) = \begin{cases} m+1, & n=0\\ A(n-1,1), & n \neq 0, m=0\\ A(n-1,A(n,m-1)), & n > 0, m > 0 \end{cases}$$

Постановка задачі

Функція Акермана приймає два невід'ємних цілих числа як параметри і повертає натуральне число. Ця функція росте дуже швидко, наприклад, число A(4,4) настільки велике, що кількість цифр у запису цього числа багаторазово перевищує кількість атомів у видимій частині всесвіту.

Values of A(m, n)						
m n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n+2=2+(n+3)-3
2	3	5	7	9	11	$2n+3=2\cdot(n+3)-3$
3	5	13	29	61	125	$2^{(n+3)}-3$

Випробування коду на С++

```
#include <iostream>
using namespace std;
int akk(int m, int n){
    if(m==0){
       return n+1;
    }else if(m>0&&n==0){
       return akk(m-1, 1);
    }else if(m>0&&n>0){
        return akk(m-1, akk(m, n-1));
    }else{
        return 0;
int main() {
    int m, n;
    cout<<"Enter m";</pre>
    cin>>m;
    cout<<"Enter n";</pre>
    cin>>n;
    return akk(m,n);
```

Результат

```
Enter m3
Enter n2
Program ended with exit code: 29
```

Випробування коду на Python

```
def akk(m, n):
    if m==0:
        return n+1
    elif m>0 and n==0:
        return akk(m-1, 1)
    elif m>0 and n>0:
        return akk(m-1, akk(m, n-1))
    else:
        return 0
m = int(input("Enter m"))
n = int(input("Enter n"))
print(akk(m,n))
```

Результат

Enter m2 Enter n4 11

Висновок: Для виконання завдання було написано функцію Акермана у вигляді підпрограми. При великих значеннях п та m може виникнути переповнення стеку, тому що функція Аккермана ϵ двічі рекурсивною, один з аргументів функції ϵ таж рекурсивна функція.