Résumé 11 - Espaces préhilbertiens réels

Produit scalaire

E désigne un \mathbb{R} -espace vectoriel.

Définition -

On appelle produit scalaire sur E toute application $\varphi: E \times E \to \mathbb{R}$ telle que :

• φ est une forme bilinéaire : Pour tous $x_1, x_2, y \in E$ et $\lambda \in \mathbb{R}$,

$$\varphi(\lambda x_1 + x_2, \gamma) = \lambda \varphi(x_1, \gamma) + \varphi(x_2, \gamma)$$

Pour tous x, y_1 , $y_2 \in E$ et $\lambda \in \mathbb{R}$,

$$\varphi(x, \lambda y_1 + y_2) = \lambda \varphi(x, y_1) + \varphi(x, y_2)$$

- φ est symétrique : $\forall x, y \in E, \ \varphi(x, y) = \varphi(y, x)$.
- φ est définie positive :

$$\forall x \in E, \ \varphi(x,x) \ge 0$$
 et $\varphi(x,x) = 0 \iff x = 0_E$

 (E, φ) est alors appelé espace préhilbertien réel. Si dim $E < +\infty$, E est qualifié d'espace euclidien.

Exemples fondamentaux d'espaces préhilbertiens réels :

- $E = \mathbb{R}^n$ muni du produit scalaire usuel $(x, y) \mapsto \sum_{i=1}^n x_i y_i$.
- $E = \mathbb{R}[X]$ muni de $(P,Q) \mapsto \int_0^1 PQ$.
- $E = \mathscr{C}([a,b],\mathbb{R})$ muni $de(f,g) \mapsto \int_a^b fg$.
- $E = \mathcal{M}_n(\mathbb{R})$ muni de $(A, B) \mapsto \operatorname{Tr}(B^{\top}A)$.

Théorème : Inégalité de Cauchy-Schwarz

Soit $(E, (\cdot|\cdot))$ un espace préhilbertien réel. On a alors :

$$\forall x, y \in E, \quad |(x|y)| \le ||x|| \cdot ||y||$$

Il y a égalité si et seulement si *x* et *y* sont colinéaires.

L'application $x \mapsto \sqrt{(x|x)} = ||x||$ est une norme sur E.

Identités remarquables vérifiées par la norme euclidienne :

Pour tous $x, y \in E$,

- $||x + y||^2 = ||x||^2 + ||y||^2 + 2(x|y)$.
- $||x-y||^2 = ||x||^2 + ||y||^2 2(x|y)$.
- Identité du parallélogramme :

$$||x + v||^2 + ||x - v||^2 = 2||x||^2 + 2||v||^2$$

• Identité de polarisation :

$$(x|y) = \frac{1}{4} (||x + y||^2 - ||x - y||^2)$$

Orthogonalité

\rightarrow Familles orthonormales

Soient $x, y \in E$.

- Définition

x et y sont dits orthogonaux si (x|y) = 0.

Le vecteur nul est le seul vecteur orthogonal à tous les autres

- Théorème : Pythagore

$$||x + y||^2 = ||x||^2 + ||y||^2 \iff (x|y) = 0.$$

— Définition : Familles orthogonales et orthonormales

Soit *I* un ensemble d'indices fini ou infini.

• Une famille de vecteurs $(e_i)_{i \in I}$ de E est dite orthogonale si :

$$\forall (i, j) \in I^2, \quad i \neq j \Longrightarrow (e_i | e_i) = 0.$$

• Elle est dite orthonormale si ses vecteurs sont de plus unitaires.

Cela revient à dire que pour tout $(i, j) \in I^2$, $(e_i|e_j) = \delta_{i,j}$.

Théorème

- Une famille orthogonale constituée de vecteurs non nuls est libre.
- Une famille orthonormale est libre.

- Théorème : Décomposition dans une BON -

Soient E un espace euclidien de dimension $n \in \mathbb{N}^*$ et $(e_1, ..., e_n)$ une base orthonormale de E.

$$\forall x \in E, \ x = (x|e_1)e_1 + \dots + (x|e_n)e_n = \sum_{i=1}^n (x|e_i)e_i$$

Proposition

Soient $\mathcal{B} = (e_1, ..., e_n)$ une base orthonormale de E. On considère $x, y \in E$ de coordonnées respectives $X = (x_1, ..., x_n)$ et $Y = (y_1, ..., y_n)$. On a alors :

$$(x|y) = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} (x|e_i)(y|e_i) = X^{\top} Y$$

$$||x||^2 = \sum_{i=1}^n x_i^2 = \sum_{i=1}^n (x|e_i)^2 = X^{\top}X$$

Tout espace euclidien admet une base orthonormale, que l'on peut construire à l'aide de l'algorithme d'orthonormalisation de Gram-Schmidt. On part d'une base (u_1,\ldots,u_n) quelconque de E et on construit pas à pas une base orthonormale (e_1,\ldots,e_n) en posant :

$$e'_{k} = u_{k} - \sum_{i=1}^{k-1} (u_{k}|e_{i})e_{i}$$
 puis $e_{k} = \frac{e'_{k}}{\|e'_{k}\|}$

Théorème

Soient $n \in \mathbb{N}^*$ et (u_1, \ldots, u_n) une famille libre de vecteurs de E. Il existe alors une famille orthonormale (e_1, \ldots, e_n) de E telle que :

$$Vect(e_1, \ldots, e_n) = Vect(u_1, \ldots, u_n)$$

→ Orthogonal d'une partie

Définition: Orthogonal

Soit F une partie de E. On appelle orthogonal de F l'ensemble :

$$F^{\perp} = \{ x \in E \mid \forall y \in F (x|y) = 0 \}$$

 F^{\perp} est un espace vectoriel.

Théorème

Soit F un sous-espace vectoriel de E.

- $u \in F^{\perp}$ si et seulement si u est orthogonal aux vecteurs d'une base de F.
- Si F est de dimension **finie**, $E = F \oplus F^{\perp}$.
- Si *E* est de plus un espace euclidien, $(F^{\perp})^{\perp} = F$ et :

$$\dim F^{\perp} = \dim(E) - \dim(F)$$

Corollaire : Inégalité de Bessel

Soient $(e_1, ..., e_p)$ une famille orthonormale de E et $x \in E$. Alors $\sum_{i=0}^{p} (x|e_i)^2 \le ||x||^2$.

Il y a égalité si et seulement si $x \in \text{Vect}(e_1, \dots, e_p)$.

→ Projection orthogonale et distance

Dans toute cette partie, F est supposée de dimension finie. On a $E=F\oplus F^{\perp}$.

- Définition

On appelle projection orthogonale sur F la projection sur F parallèlement à F^{\perp} .

Théorème

On note p la projection orthogonale sur F.

• p(x) est entièrement caractérisé par :

$$p(x) \in F$$
 et $x - p(x) \in F^{\perp}$

• Si $(e_1, ..., e_n)$ est une base orthonormale de F alors

$$p(x) = (x|e_1)e_1 + \cdots + (x|e_p)e_p$$

Définition -

Soit $x \in E$. On appelle distance de x à F le réel

$$d(x,F) = \inf_{u \in F} ||x - u||$$

Théorème

Soit $x \in E$. d(x, F) = ||x - p(x)|| où p est la projection orthogonale sur F.