Faraway, Chapter 6, question #1.

Here is documentation on the sat dataset:

sat

School expenditure and test scores from USA in 1994-95

Description

The

sat

data frame has 50 rows and 7 columns. Data were collected to study the relationship between expenditures on public education and test results.

Usage

data(sat)

Format

This data frame contains the following columns:

expend

Current expenditure per pupil in average daily attendance in public elementary and secondary schools, 1994-95 (in thousands of dollars)

ratio

Average pupil/teacher ratio in public elementary and secondary schools, Fall 1994 salary

Estimated average annual salary of teachers in public elementary and secondary schools, 1994-95 (in thousands of dollars)

takers

Percentage of all eligible students taking the SAT, 1994-95

verbal

Average verbal SAT score, 1994-95

math

Average math SAT score, 1994-95

total

Average total score on the SAT, 1994-95

Source

"Getting What You Pay For: The Debate Over Equity in Public School Expenditures" D. Guber.

Journal of Statistics Education, 1999

(a) Constant Variance Assumption

```
by.math <- sat[order(sat$math),]
by.verbal <- sat[order(sat$verbal),]
by.salary <- sat[order(sat$salary),]

attach(sat)
out <- Im(total ~ expend + ratio + salary + takers)
summary(out)

Call:
Im(formula = total ~ expend + ratio + salary + takers)</pre>
Residuals:
```

```
Min 1Q Median 3Q Max -90.531 -20.855 -1.746 15.979 66.571
```

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 32.7 on 45 degrees of freedom Multiple R-squared: 0.8246, Adjusted R-squared: 0.809 F-statistic: 52.88 on 4 and 45 DF, p-value: < 2.2e-16

plot(residuals(out) ~ fitted(out), xlab="Fits", ylab="Residuals") abline(h=0)

plot(sqrt(abs(residuals(out))) ~ fitted(out), xlab="Fits", ylab=expression(sqrt(hat(epsilon))))

sumary(Im(sqrt(abs(residuals(out)))~ fitted(out)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6484524 4.0660807 1.1432 0.2586
fitted(out) -0.0001637 0.0041994 -0.0390 0.9691

n = 50, p = 2, Residual SE = 1.99717, R-Squared = 0

```
windows()
par(mfrow=c(2,2))
plot(residuals(out) ~ sat$expend, xlab="expend", ylab="Residuals")
plot(residuals(out) ~ sat$salary, xlab="salary", ylab="Residuals")
plot(residuals(out) ~ sat$ratio, xlab="ratio", ylab="Residuals")
plot(residuals(out) ~ sat$takers, xlab="takers", ylab="Residuals")
```


var.test(residuals(out)[sat\$expend<7], residuals(out)[sat\$expend>7])

F test to compare two variances

data: residuals(out)[sat\$expend < 7] and residuals(out)[sat\$expend > 7]
F = 2.0212, num df = 40, denom df = 8, p-value = 0.2947
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.5263949 5.1114419
sample estimates:
ratio of variances
2.021241

var.test(residuals(out)[sat\$salary<40], residuals(out)[sat\$salary>40])

F test to compare two variances

```
data: residuals(out)[sat$salary < 40] and residuals(out)[sat$salary > 40]
F = 2.1487, num df = 39, denom df = 9, p-value = 0.2225
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.6122021 5.2882878
sample estimates:
ratio of variances
     2.148672
var.test(residuals(out)[sat$ratio<18], residuals(out)[sat$ratio>18])
    F test to compare two variances
data: residuals(out)[sat$ratio < 18] and residuals(out)[sat$ratio > 18]
F = 0.8576, num df = 38, denom df = 10, p-value = 0.6858
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2627366 2.0645530
sample estimates:
ratio of variances
    0.8576423
var.test(residuals(out)[sat$takers<40], residuals(out)[sat$takers>40])
    F test to compare two variances
data: residuals(out)[sat$takers < 40] and residuals(out)[sat$takers > 40]
F = 1.6451, num df = 26, denom df = 22, p-value = 0.2392
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.712512 3.691978
sample estimates:
ratio of variances
     1.645067
                               (b)
                                           Normality Assumption
windows()
```

qqnorm(residuals(out), ylab="Residuals", main="Normal Probability Plot of Residuals")

par(mfrow=c(1,1))

qqline(residuals(out))

NOTE: Faraway writes that histograms and boxplots are not suitable for checking normality. While this may be true, people do it all the time!

par(mfrow=c(1,1))
qqnorm(residuals(out), ylab="Residuals", main="Normal Probability Plot of Residuals")
qqline(residuals(out))

Normal Probability Plot of Residuals

hist(residuals(out), xlab="Residuals")

Histogram of residuals(out)

boxplot(residuals(out))

shapiro.test(residuals(out))

Shapiro-Wilk normality test

data: residuals(out) W = 0.9769, p-value = 0.4304

library(nortest)

Warning message: package 'nortest' was built under R version 3.1.0 ad.test(residuals(out))

Anderson-Darling normality test

data: residuals(out) A = 0.3424, p-value = 0.4783

(c) Leverages

```
hatv <- hatvalues(out)
head(hatv)

1 2 3 4 5 6
0.09537668 0.18030612 0.04931612 0.05382878 0.28211791 0.03014533
sum(hatv)
[1] 5
states <- row.names(sat)
halfnorm(hatv, labs=states, ylab="Leverage Values")
```


qqnorm(rstandard(out))
abline(0,1)

Theoretical Quantiles

shapiro.test(rstandard(out))

Shapiro-Wilk normality test

data: rstandard(out) W = 0.9802, p-value = 0.5607

(d) Outliers

```
Use studentized residuals (also called jackknife residuals, or cross-validated residuals) here...

asdf <- rstudent(out)

asdf[which.max(abs(asdf))]

48

-3.124428

qt(0.05/(50*2), 44)

##### Bonferroni adjustment... 44 = n-p-1 = 50 -5-1 (n=# of records, p=#of model parameters)

[1] -3.525801
```

Conclude the 48th record (West Virginia) is not an outlier.

(e) Influential Points

```
cook <- cooks.distance(out)
halfnorm(cook, 3, labs=states, ylab="Cook's Distances")</pre>
```


Utah seems to have high leverage in the predictor space. Observe the effect of its exclusion on our model:

```
Original model output:
```

```
sumary(out)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1045.97154 52.86976 19.7839 < 2.2e-16
expend 4.46259 10.54653 0.4231 0.6742
ratio -3.62423 3.21542 -1.1271 0.2657
```

Also compare using summary(). The sumary() command (with just one m) comes from the faraway package.

(f) Structure of Relationship Between Predictors and Response

Definitely if you don't have too many predictor variables, you should try plotting the response vs each variable individually first- this is a good exploratory first step.

```
> windows()
> par(mfrow=c(2,2))
> plot(total ~ expend)
> plot(total ~ ratio)
> plot(total ~ salary)
```


Also

```
windows()
par(mfrow=c(2,2))
plot(out)
```


Partial regression/added variable plots... check the takers variable...

```
windows()
par(mfrow=c(1,1))
d <- residuals(lm(total ~ expend + ratio + salary))
m <- residuals(lm(takers ~ expend + ratio + salary))
plot(d ~ m, xlab = "takers residuals", ylab="total residuals")</pre>
```


No sign of non-linearity here. These partial regression/added variable plots allow us to examine the marginal effects of predictor variables on the response after the other predictor variables have been removed. These plots indicate how a predictor variable tracks with the response versus the other variables.

For instance, try examining the added value/marginal effects of "ratio".

```
windows()
par(mfrow=c(1,1))
d2 <- residuals(Im(total ~ expend + salary + takers))
m2 <- residuals(Im(ratio ~ expend + salary + takers))
plot(d2 ~ m2, xlab = "ratio residuals", ylab="total residuals")</pre>
```


There is no real sign of linearity here, and so there is evidence that the ratio variable is not so important.

Partial residual plots are alternatives to added variable/partial regression plots.

```
windows()
par(mfrow=c(2,2))
termplot(out, partial.resid=TRUE, terms=1)
termplot(out, partial.resid=TRUE, terms=2)
termplot(out, partial.resid=TRUE, terms=3)
termplot(out, partial.resid=TRUE, terms=4)
```


Could be two groups in the takers variable...let's investigate...

(Intercept) 5.856e-11

```
mod1 <- Im(total ~ expend + ratio + salary + takers, subset=(takers < 40))
mod2 <- Im(total ~ expend + ratio + salary + takers, subset=(takers > 40))

sumary(mod1)
Estimate Std. Error t value
(Intercept) 993.71775 84.50099 11.7598
expend 7.75814 16.43287 0.4721
ratio 1.42514 4.61109 0.3091
salary 1.02926 3.30577 0.3114
takers -5.52423 0.87061 -6.3452
Pr(>|t|)
```

```
expend
        0.6415
ratio
        0.7602
salary
        0.7585
takers
      2.194e-06
n = 27, p = 5, Residual SE = 30.95358, R-Squared = 0.66
sumary(mod2)
      Estimate Std. Error t value
(Intercept) 801.43294 105.67734 7.5838
expend 11.14438 10.83593 1.0285
ratio
        3.91474 4.86273 0.8051
        -0.63544 2.71903 -0.2337
salary
takers
        Pr(>|t|)
(Intercept) 5.201e-07
expend
        0.3174
ratio
        0.4313
salary
      0.8179
takers
       0.7388
n = 23, p = 5, Residual SE = 23.74271, R-Squared = 0.26
```