Test of iControl, mLock 802.15.4

To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ICON05-A2 Rev A

Test of iControl, mLock 802.15.4 to
To FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ICON05-A2 Rev A

This report supersedes: None

Applicant: iControl, Incorporated

3235 Kifer, Suite 260

Santa Clara

California, 95051 USA

Product Function: 802.15.4 Wireless Padlock

Copy No: pdf Issue Date: 17th January 2009

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 3 of 68

This page has been left intentionally blank

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 4 of 68

TABLE OF CONTENTS

AC	CREDITATIO	ON, LISTINGS and RECOGNITION	5
1.	TEST RESU	JLT CERTIFICATE	8
2.	REFERENC	ES AND MEASUREMENT UNCERTAINTY	9
		ive References	
	2.2. Test an	d Uncertainty Procedures	9
3.	PRODUCT	DETAILS AND TEST CONFIGURATIONS	10
		cal Details	
	3.2. Scope	of Test Program	11
		nent Model(s) and Serial Number(s)	
		a Details	
		and I/O Ports	
		onfigurations	
		ent Modifications	
	3.8. Deviation	ons from the Test Standard	14
4.	TEST SUM	MARY	15
5.	TEST RESU	JLTS	17
		Characteristics	
	5.1.1.	6 dB and 99 % Bandwidth	17
	5.1.2.	Peak Output Power	23
	5.1.3.	Peak Power Spectral Density	
	<i>5.1.4.</i>	Maximum Permissible Exposure	
	5.1.5.	Conducted Spurious Emissions	
	5.1.6.	Radiated Emissions	
	5.1.7.	AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
6.		APHS	
		ed Spurious Emissions - below 1 GHz	
		ed Spurious Emissions - above 1 GHz	
	6.3. Genera	Il Measurement Test Set-Up	66
7	TEST FOUL	DMENT DETAILS	67

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 5 of 68

ACCREDITATION, LISTINGS and RECOGNITION

ACCREDITITION

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

ACCREDITED LABORATORY

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 18 June 2005).

Presented this 26th day of February 2008.

President For the Accreditation Council

Certificate Number 2381.01 Valid to November 30, 2009

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 6 of 68

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC): 102167

Canada

Industry Canada: 4143A

Japan Registration

VCCI Membership Number: 2959

Radiation 3 meter site; Registration No. R-2881

• Line Conducted, Registration Nos. C-3181 & T-1470

• Emissions; Registration Nos. C-3180 & T-1469

RECOGNITION

APEC MRA (Asia-Pacific Economic Community Mutual Recognition Agreement)

Conformity Assessment Body (CAB) - MiCOM Labs

Test data generated by MiCOM Labs is accepted in the following countries under the APEC MRA.

Country	Recognition Body	Phase	CAB Identification No.	
Australia	Australian Communications and Media Authority (ACMA)	I		
Hong Kong	Office of the Telecommunication Authority (OFTA)	I		
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	I	US0159	
Singapore	Infocomm Development Authority (IDA)	ı		
Taiwan	Directorate General of Telecommunications (DGT)	I		
	Bureau of Standards, Metrology and Inspection (BSMI)			

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A **Issue Date**: 17th January 2009

Page: 7 of 68

DOCUMENT HISTORY

	Document History			
Revision	Date	Comments		
Draft				
Rev A	17 th January 2009	Initial Release		

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 8 of 68

1. TEST RESULT CERTIFICATE

Manufacturer: iControl, Incorporated Tested By: MiCOM Labs, Inc.

3235 Kifer, Suite 260 440 Boulder Court

Santa Clara Suite 200

California, 95051 USA Pleasanton

California, 94566, USA

EUT: Wireless Padlock Telephone: +1 925 462 0304

Model: mLockV3.2 Fax: +1 925 462 0306

S/N: N/A

Test Date(s): 19th to 31st December 2008 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part 15.247 & IC RSS-210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

CERTIFICATE #2381.01

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 9 of 68

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2007	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 10 of 68

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the iControl, mLock 802.15.4 to FCC Part 15.247
	and Industry Canada RSS-210 regulations.
Manufacturer:	
Applicant:	
	3235 Kifer, Suite 260
	Santa Clara
	California, 95051 USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	ICON05-A2 Rev A
Date EUT received:	19 th December 2008
Standard(s) applied:	
Dates of test (from - to):	19th to 31st December 2008
No of Units Tested:	Two Units
	Conducted testing, temporary SMA connector provided.
	Radiated Measurements, integral antenna connected.
Type of Equipment:	
Model:	mLockV3.2
Location for use:	Indoor/Outdoor
Declared Frequency Range(s):	2400 - 2483.5 MHz
Type of Modulation:	Per 802.15.4
Declared Nominal Average	802.11a: +17 dBm
Output Power:	
EUT Modes of Operation:	802.15.4
Transmit/Receive Operation:	Time Division Duplex
Rated Input Voltage and	Battery Operation
Current:	Nominal: 3.7 Vdc
	Minimum: 3.3 Vdc
_	Maximum: 4.1 Vdc
Operating Temperature Range:	-40 to +80°C
ITU Emission Designator:	802.15.4 – 2M5G7DFN
Frequency Stability:	±20 ppm max
Equipment Dimensions:	Padlock Closed 4" W x 6.5" L x 2" D
	Padlock Open 4" W x 7.5" L x 2" D
Weight:	1.5 lbs
Primary function of equipment:	Periodic reporting of tracking and lock status

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 11 of 68

3.2. Scope of Test Program

The scope of the test program was to test the iControl 802.15.4 wireless padlock in the frequency range 2400 - 2483.5 MHz, FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications. This equipment is intended for periodic reporting of tracking and lock status.

The unit operates via a 3.7 Vdc Lithium battery.

iControl mLock - Front

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 12 of 68

iControl mLock - Rear

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 13 of 68

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	2.4 GHz ZigBee 802,15.4	iControl, Incorporated	mLockV3.2	N/A
Support	2.4 GHz Wireless Control PCB	iControl, Incorporated	iDAC Motherboard	
Support	ac Adapter 115Vac 60Hz 9Vdc 1.3A	Unifive	US100913	302-004675
Support	Laptop	IBM	N/A	N/A

3.4. Antenna Details

- 1. 2400-2483.5 MHz
 - 3 dBi integral antenna

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. NONE

3.6. Test Configurations

Matrix of Channel test configurations.

Channel Operational Mode (802.15.4)	Frequencies (MHz)
11	2405
19	2445
26	2480

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 14 of 68

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. Spurious Emissions – Restricted Bands

There was a problem on all tested channels with the second harmonic which fell within Restricted Bands. Client reduced output power to bring the emission into compliance.

2. Upper Band Edge

As a result of an upper band-edge problem power was further reduced.

Output power levels reported in this document reflect modified levels as a result of items 1 & 2 above.

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 15 of 68

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	5.1.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	5.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.3
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.4
15.247(d) 15.205 / 15.209 A8.5 2.2 4.7	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of outband shall be at least 20 dB below the highest inband spectral density	Conducted	Complies	5.1.5

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 16 of 68

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.6
2.6 4.7	Transmitter Radiated	Emissions above 1 GHz		Complies	5.1.6.1
	Spurious Emissions Radiated Band Edge	Band-edge results Peak Emissions		Complies	5.1.6.2.
Industry Canada only RSS-Gen §4.8, §6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		N/A	5.1.6.3
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M- 1 GHz)	Radiated	Complies	5.1.6.4
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Not Applicable	5.1.7

- Note 1: Test results reported in this document relate only to the items tested
- **Note 2:** The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria
- **Note 3:** Section 3.7 'Equipment Modifications' highlights the modifications that were required to bring the product into compliance with the above test matrix

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 17 of 68

5. TEST RESULTS

5.1. Device Characteristics

5.1.1. 6 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2) Industry Canada RSS-210 §A8.2 Industry Canada RSS-Gen §4.4

Test Procedure

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

Measurement Results for 6 dB & 99% Bandwidth

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100%

Output: Modulated Carrier

Power: Maximum

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 18 of 68

Measurement Results for 6 dB and 99% Operational Bandwidth(s)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Center Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)
2,405	1.608	2.540
2,445	1.608	2.540
2,480	1.608	2.540

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 19 of 68

2,405 MHz 802.15.4 6 dB and 99% Bandwidth

Date: 23.DEC.2008 15:15:31

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 20 of 68

2,445 MHz 802.15.4 6 dB and 99% Bandwidth

Date: 23.DEC.2008 15:13:26

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 21 of 68

2,480 MHz 802.15.4 6 dB and 99% Bandwidth

Date: 23.DEC.2008 15:23:09

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 22 of 68

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 23 of 68

5.1.2. Peak Output Power

FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e) Industry Canada RSS-210 §A8.4(4)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to measure peak power over the 99 % bandwidth.

Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Maximum Antenna Gain: +3 dBi

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 24 of 68

TABLE OF RESULTS Maximum Conducted Power

Center Frequency (MHz)	99% Measurement Bandwidth (MHz)	Average Power (dBm)	Peak Power (dBm)	EIRP 3dBi Integral Antenna (dBm)
2,405	2.540	+9.95	+12.68	+15.68
2,445	2.540	+12.65	+15.04	+18.04
2,480	2.540	+10.41	+12.84	+15.84

Date:

9.JAN.2009 12:16:10

Title: iControl, mLock 802.15.4

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 25 of 68

2,405 MHz 802.15.4 Peak Power (dBm)

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 26 of 68

2,445 MHz 802.15.4 Peak Power (dBm)

Date: 9.JAN.2009 12:20:17

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 27 of 68

2,480 MHz 802.15.4 Peak Power (dBm)

Date: 9.JAN.2009 12:22:31

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 28 of 68

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

- (1) Fixed point-to-point operation:
- (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 29 of 68

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty ±1.33 dB

Traceability

Method	Test Equipment Used			
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117			

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 30 of 68

5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.247(e) Industry Canada RSS-210 §A8.2

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time ≥ span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100%

Output: Modulated Carrier

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 31 of 68

TABLE OF RESULTS

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)
2,405	2,405.18236	+2.91	+8	-5.09
2,445	2444.29058	+2.70	+8	-5.30
2,480	2480.16032	+3.21	+8	-4.79

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 32 of 68

2,405 MHz 802.15.4 Peak Power Spectral Density

Date: 19.DEC.2008 10:44:05

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 33 of 68

2,445 MHz 802.15.4 Peak Power Spectral Density

Date: 19.DEC.2008 10:55:36

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 34 of 68

2,480 MHz 802.11b Peak Power Spectral Density

Date: 19.DEC.2008 11:06:31

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 35 of 68

Specification Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB

Traceability

Method	Test Equipment Used		
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117		

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 36 of 68

5.1.4. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = 10 ^ (G (dBi)/10)

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (GHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
2.4	3	1.995	+19.73	93.4	3.85	20

^{*}Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 37 of 68

5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2 Industry Canada RSS-Gen 4.7

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100%

Output: Modulated Carrier

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 38 of 68

Conducted Band-Edge Results

Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental)	Amplitude @ Band edge (dBm)	Margin (dB)
2,405	2,400	-5.54	-28.07	-22.53
2,480	2,483.5	-5.71	-26.84	-21.13

Conducted Spurious Emissions at the 2,400 MHz Band Edge

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 39 of 68

Conducted Spurious Emissions at the 2,483.5 MHz Band Edge

Date: 23.DEC.2008 15:39:36

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 40 of 68

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2,405	30		-37.31	-7.26	-30.05
2,445		26,000	-37.31	-6.26	-31.05
2,480			-37.53	-6.92	-30.61

2,405 MHz Conducted Spurious Emissions 30 to 26,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 41 of 68

2,445 MHz Conducted Spurious Emissions 30 to 26,000 MHz

Date: 19.DEC.2008 11:21:15

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 42 of 68

2,480 MHz Conducted Spurious Emissions 30 to 26,000 MHz

Date: 19.DEC.2008 11:14:04

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 43 of 68

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
2,400 MHz	2,483.5 MHz	≥ 20 dB

§15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
Measurement uncertainty	±2.37 dB

Traceability

Method	Test Equipment Used
Measurements were made per work	0088, 0158, 0193, 0252, 0313, 0314, 0070,
instruction WI-05 'Measurement of	0116, 0117.
Spurious Emissions'	

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 44 of 68

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Radiated Spurious Emissions (above 1 GHz)

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 45 of 68

For example:

Given receiver input reading of $51.5~dB_{\mu}V$; Antenna Factor of 8.5~dB; Cable Loss of 1.3~dB; Falloff Factor of 0~dB, an Amplifier Gain of 26~dB and Notch Filter Loss of 1~dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$

Ambient conditions.

Temperature: 17 to 23°C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100%

Output: Modulated Carrier

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 46 of 68

Radiated Spurious Emissions above 1 GHz

Test Setup - 802.15.4

Channel 11 (2,405 MHz) Integral Antenna 3 dBi

TABLE OF RESULTS

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2404.519	404.519 64.19 12.96 32.35			109.49	Peak [Scan]	Н	N/A	N/A	N/A	N/A		Pk Emission
2388.07615	Powe	ar Sattina :	= 237	49.50	Peak Max	V			74	-24.50	Pass	Band Edge
2390.000	1 000	Power Setting = 237			Average Max	V			54	-17.45	Pass	Band Edge
4810.994	61.22	4.46	-8.73	56.94	Peak Max	V	151	206	74	-17.06	Pass	RB
4810.994	53.39	4.46	-8.73	49.12	Average Max	V	151	206	54	-4.88	Pass	RB

Pk Emission – Peak Emission Band-edge – Restricted Bands RB – Restricted Band NRB – Non-Restricted Band

Plot identifies peak emissions only

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 47 of 68

Band Edge Emission for 802.15.4 – 2,405 MHz

Date: 31.DEC.2008 16:45:50

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 48 of 68

Test Setup - 802.15.4

Channel 19 (2,445 MHz) Integral Antenna 3 dBi

TABLE OF RESULTS

Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass	Comments
MHz	dBuV	Loss	dB	dBuV	Type		cm	Deg	dBuV	dB	/Fail	
2444.55	56.66	12.97	32.37	102.00	Peak [Scan]	Н	N/A	N/A	N/A	N/A		Pk Emission
4888.987	61.36	4.52	-8.73	57.15	Peak Max	V	98	195	74	-16.85	Pass	RB
4888.987	53.78	4.52	-8.73	49.58	Average Max	V	98	195	54	-4.42	Pass	RB

Pk Emission – Peak Emission Band-edge – Restricted Bands RB – Restricted Band NRB – Non-Restricted Band

Plot identifies peak emissions only

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 49 of 68

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 50 of 68

Test Setup - 802.15.4

Channel 26 (2,480 MHz) Integral Antenna 3 dBi

TABLE OF RESULTS

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2479.603	56.22	12.99	32.39	101.6	Peak [Scan]	Н	N/A	N/A	N/A	N/A	N/A	Pk Emission
2483.500	Powe	er Setting =	- 227	60.54	Peak Max	V	-	1	74	-13.46	Pass	Band Edge
2483.500	FOWE	or Setting -	- 231	53.61	Average Max	V	-	-	54	-0.39	Pass	Band Edge
4958.921	64.6	4.58	-8.74	60.45	Peak Max	Н	103	260	74	-13.55	Pass	RB
7441.377	54.96	5.47	-3.57	56.86	Peak Max	Н	107	270	74	-17.14	Pass	RB
4958.921	57.61	4.58	-8.74	53.46	Average Max	Н	103	260	54	-0.54	Pass	RB
7441.377	45.8	5.47	-3.57	47.7	Average Max	Н	107	270	54	-6.3	Pass	RB

Pk Emission – Peak Emission Band-edge – Restricted Bands RB – Restricted Band NRB – Non-Restricted Band

Radiated Emissions Template: 18 Amp RE 1-18 GHz Mitec 30 Aug Filename: k:\compliance management\control\con05 - mlock\test program\north america\15.247

Plot identifies peak emissions only

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 51 of 68

Band Edge Emission for 802.15.4 – 2,480 MHz

Date: 2.JAN.2009 08:40:57

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 52 of 68

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 53 of 68

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
Wicabaroment amountainty	1.0 db

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 54 of 68

5.1.6.2. Receiver Radiated Spurious Emissions (above 1 GHz)

Industry Canada RSS-Gen §4.8, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 55 of 68

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

This test is not applicable for FCC certification

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 56 of 68

Receiver Radiated Spurious Emissions above 1 GHz

TABLE OF RESULTS –

	Freq. (MHz)	Pol. (H/V)	Raw Reading (dBμV/m)	Correction Factor (dB)	Corrected Field Strength (dB _µ V/m)	Limit (dBμV/m)	Margin (dB)
1							

No Receiver Spurious Emissions were observed above 1 GHz

Radiated Emissions

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 57 of 68

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

(a) If a radiated measurement is made, all spurious emissions hall comply with the limits of Table 1.

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Tracousinty					
Method	Test Equipment Used				
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312				

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 58 of 68

5.1.6.3. Radiated Spurious Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Test Measurement Set up

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 59 of 68

For example:

Given a Receiver input reading of $51.5 dB_{\mu}V$; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

Measurement Results for Spurious Emissions (30 MHz – 1 GHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters:

Frequency: 2,405 MHz Power Level: Maximum

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 60 of 68

TABLE OF RESULTS - 115VAC 60 Hz

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB
36.997	45.73	3.52	-20.59	28.65	Quasi Max	V	137	176	40	-11.35
76.341	41.54	3.94	-32.34	13.14	Quasi Max	Н	154	14	40	-26.86
63.629	41.77	3.85	-31.79	13.82	Quasi Max	Н	133	274	40	-26.18
509.117	34.72	6.05	-25.16	15.61	Quasi Max	Н	204	158	46	-30.39
554.335	33.11	6.26	-24.38	14.99	Quasi Max	Н	201	255	46	-31.01
611.276	33.12	6.43	-23.78	15.77	Quasi Max	V	164	263	46	-30.23

Radiated Spurious Emissions 30 MHz to 1 GHz

Radiated Emissions Template: 30-3GHz Filename: k:\compliance management\control\con05 - mlock\test program\north america\15.247

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 61 of 68

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 62 of 68

5.1.7. AC Wireline Conducted Emissions (150 kHz - 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test is not applicable as the device is battery operated

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 63 of 68

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0193, 0190, 0293, 0307

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 64 of 68

6. PHOTOGRAPHS

6.1. Radiated Spurious Emissions - below 1 GHz

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 65 of 68

6.2. Radiated Spurious Emissions - above 1 GHz

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 66 of 68

6.3. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: ICON05-A2 Rev A Issue Date: 17th January 2009

Page: 67 of 68

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics		001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs		
0338	Antenna	Sunol Sciences	JB-3	A052907

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304

Fax: 1.925.462.0306 www.micomlabs.com