

Elektronische signalen 2

Digitaal-analoog conversie

P. Debbaut

ADC Analoog-Digitaal Converter

Binair gewogen DAC

Voorbeeld binair gewogen DAC

We willen een 3-bits binair gewogen DAC ontwerpen voor TTL-niveau.

- Een logische 0=0V
- Een logische 1=5V

De gewenste output is de volgende:

Qc	Q _b	Qa	U。
0	0	0	0V
0	0	1	1V
0	1	0	2V
0	1	1	3V
1	0	0	4V
1	0	1	5V
1	1	0	6V
1	1	1	7V

Voorbeeld binair gewogen DAC

We kiezen $R_4=R_5=R_6=40k\Omega$.

De LSB-bit Q_a krijgt een gewicht van 1/5 (5V in \Rightarrow 1V uit, 2°)

$$\frac{R_4}{R_1} = \frac{1}{5}$$

$$\rightarrow$$

$$\frac{R_4}{R_1} = \frac{1}{5}$$
 \longrightarrow $R_1 = 5. R_4 = 5.40.10^3 \Omega = 200 \text{k}\Omega$

 Q_b krijgt een gewicht van 2/5 (5V in \Rightarrow 2Vuit, 2¹)

$$\frac{R_4}{R_2} = \frac{2}{5}$$

$$\frac{R_4}{R_2} = \frac{2}{5}$$
 \longrightarrow $R_2 = \frac{5}{2}R_4 = \frac{5}{2}40.10^3\Omega = 100\text{k}\Omega$

De MSB-bit Q_c krijgt een gewicht van 4/5 (5V in \Rightarrow 4Vuit, 2^2)

$$\frac{R_4}{R_3} = \frac{4}{5}$$

$$\rightarrow$$

$$\frac{R_4}{R_3} = \frac{4}{5}$$
 \longrightarrow $R_3 = \frac{5}{4}R_4 = \frac{5}{4}40.10^3\Omega = 50\text{k}\Omega$

Voordelen binair gewogen DAC

- Eenvoudig principe
- Werkt zeer goed

Nadelen

- Groot range van weerstanden nodig
- Moeilijk hoge precisie te halen

Maar 2 waarden van weerstanden nodig!

Alleen Q_c (MSB) is hoog

$$U_o = \frac{U_{ref}}{2R} R_1 \frac{R_3}{R_2}$$

Alleen Q_b is hoog

$$U_o = \frac{U_{ref}}{4R} R_1 \frac{R_3}{R_2}$$

Alleen Q_a (LSB) is hoog

$$U_o = \frac{U_{ref}}{8R} R_1 \frac{R_3}{R_2}$$

R-2R ladder DAC7741 Burr Brown

Specificaties

- 16 bit
- output voltage swing: 10V
- linearity error ±2LSB
- LQFP-48 package
- internal reference
- parallel output
- settling time: 5µs to ±0.003 FSR