Week3-5

- 1. 학습정리
 - 1. GAN
 - 1. 생성모델
 - 1. 이미지를 샘플링 하는 모델
 - 2. 어노말리 디텍션
 - 3. 입력이 주어졌을 때 확률 값을 얻어낼 수 있음 (explicit model)
 - 4 피쳐 러닝
 - 2. 파라미터 수
 - 1. 경우의 수 n
 - 2. 파라미터 수 = n-1
 - 3. 이미지에서 픽셀 하나당 RGB 각각 파라미터 255개 필요
 - 4. 필셀총 255*255*255 개의 파라미터가 필요
 - 5. 흑백 이미지는 픽셀 하나당 2개의 경우의 수
 - 6. 이미지 크기가 m이면 파라미터 수 = 2^m-1 개
 - 7. 하지만 각 픽셀이 독립적이라고 가정하면
 - 8. 파라미터 수는 n-1 개로 줄어듦
 - 9. 하지만 이렇게 하면 일반적인 이미지가 아님
 - 10. 컨디셔널 인디펜던스 사용해서 파라미터 수도 줄이면서 위의 단점도 해결
 - 3. 컨디셔널 인디펜던스

Conditional Independence

- Three important rules
 - Chain rule:

$$p(x_1, ..., x_n) = p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots p(x_n | x_1, ..., x_{n-1})$$

Bayes' rule:

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)}$$

Conditional independence:

If
$$x \perp y \mid z$$
, then $p(x \mid y, z) = p(x \mid z)$

` '

Conditional Independence

Using the chain rule,

$$p(x_1,...,x_n) = p(x_1)p(x_2 | x_1)p(x_3 | x_1,x_2)\cdots p(x_n | x_1,\cdots,x_{n-1})$$

- How many parameters?
 - $p(x_1)$: 1 parameter
 - $p(x_2|x_1)$: 2 parameters (one per $p(x_2|x_1=0)$ and one per $p(x_2|x_1=1)$)
 - $p(x_3|x_1,x_2)$: 4 parameters
 - Hence, $1 + 2 + 2^2 + \cdots + 2^{n-1} = 2^n 1$, which is the same as before.

Conditional Independence

Now, suppose $X_{i+1} \perp X_1, \dots, X_{i-1} \mid X_i$ (Markov assumption), then

$$p(x_1, ..., x_n) = p(x_1)p(x_2 | x_1)p(x_3 | x_2) \cdots p(x_n | x_{n-1})$$

• How many parameters?

$$2n - 1$$

- Hence, by leveraging the Markov assumption, we get exponential reduction on the number of parameters.
 - 1. z가 주어졌을때 x와 y가 독립적이면 y는 고려 안함
 - 2. i+1 번째 픽셀은 i번째 픽셀과만 디펜던트 하다고 가정
 - 3. 이렇게 하면 체인물에 의해 파라미터 수가 2n-1개로 줆
 - 2. 오토 리그레시브 모델
 - 1. 이전 n개의 정보들에 대해서만 디펜던트 한 모델
 - 2. 이미지에 순서를 매겨야 함
 - 3. NADE
 - 1. i번째 픽셀은 이전 i-1개의 입력에 디펜던트한 모델
 - 2. explicit 모델
 - 1. 확률분포 계산가능
 - 2. implicit 모델은 생성만 가능
 - 3. Variational Auto-encoder

Variational Auto-encoder

But how?

- 1. Variational inference
 - 1. Posterior distribution 을 찾는 것
 - 2. 내가 관심있어 하는 랜덤 변수에 대한 확률 분포
 - 3. Variational distribution 으로 posterior 을 근사해서 실제론 이걸 찾음
 - 4. 이 목적은 ELBO 를 최대화 해서 달성가능

4. GAN

- 1. 구조
 - 1. 제네레이터가 만든 것과 진짜를 비교
 - 2. 판별자는 더 잘 구분하게 학습
 - 3. 생성자는 더 잘 속이는 것을 생성하도록 학습
- 2. 장점
 - 1. 생성자와 판별자가 서로 좋아짐

2. 피어세션

- 1. 강의리뷰
 - 1. 어려웠음
 - 2. 레퍼런스로 소개된 영상 찾아볼 것
 - 3. GAN 에서 각각의 역할
- 2. 깃 리베이스
 - 1. 리베이스 실습