MC simulation

É. Savir

Introductio

Sampling real random

Inverse transform method

Acceptancerejection sampling Pseudorandom

Markov chains and Markov

Definitions

The ergodic theorem Markov

chain Monte-Carl

Estimation

Monte-Carlo simulation Sampling and estimation

 $\stackrel{\acute{E}.\ Savin^{1,2}}{\text{eric.savin@centrale supelec.fr}}$

¹Information Processing and Systems Dept. ONERA, France

 $^2{\rm Mechanical}$ and Environmental Engineering Dept. Centrale Supélec, France

Outline

MC simulation

Introductio

Sampling real randon variables

transform method

Acceptancerejection sampling Pseudorandom numbers

Markov chains and Markov algorithms

algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carlo

Estimation

- 1 Introduction
- 2 Sampling real random variables
 - Inverse transform method
 - Acceptance-rejection sampling
 - Pseudo-random numbers
- 3 Markov chains and Markov algorithms
 - Definitions
 - The ergodic theorem
 - Markov chain Monte-Carlo (MCMC)
- 4 Estimation

When does sampling occur?

MC simulation

E. Savii

Introduction

Sampling real random variables Inverse transform method

transform method Acceptancerejection sampling Pseudorandom numbers

chains and Markov algorithms Definitions The ergodic theorem Markov chain Monte-Carlo (MCMC)

- The i.i.d. random stiffnesses of a beam (lecture #1);
- Classical r.v.: exponential, Gamma, β , β' , log-normal... (lecture #2);
- Polynomial chaos expansion for the representation of second-order r.v. (lecture #2);
- $X \sim p_X(x) = e^{-\lambda_0 \lambda \cdot C(x)}$ derived from the MaxEnt principle (lecture #2);
- Karhunen-Loève expansion of second-order random processes (lecture #3);
- Spectral expansion of stationary second-order random processes (lecture #4).

Outline

MC simulation

Introductio

Sampling real randon variables

Inverse transform method

Acceptancerejection sampling Pseudorandom numbers

Markov chains and Markov

algorithms
Definitions
The ergodic theorem

The ergodic theorem Markov chain Monte-Carl

Estimation

- 1 Introduction
- 2 Sampling real random variables
 - Inverse transform method
 - Acceptance-rejection sampling
 - Pseudo-random numbers
- 3 Markov chains and Markov algorithms
 - Definitions
 - The ergodic theorem
 - Markov chain Monte-Carlo (MCMC)
- 4 Estimation

Inverse transform method $_{\text{Principle}}$

MC simulation

E. Savin

Introductio

Sampling real random variables

Inverse transform method

Acceptance rejection sampling Pseudo-random numbers

chains and
Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carl

Estimation

Definition

Uniform probability law $U(0,1) = \mathbf{1}_{[0,1]}(u) du$ and:

$$m_U = \underline{U} = \frac{1}{2}, \quad \sigma_U = \sqrt{\mathbb{E}\{(U - m_U)^2\}} = \frac{1}{2\sqrt{3}}.$$

Theorem

Let F be the distribution function of a continuous r.v. X. Then if $U \sim \mathcal{U}(0,1)$ the r.v. $F^{-1}(U)$ has distribution function F and the r.v. F(X) has a uniform probability law.

- $P(F^{-1}(U) \le x) = P(U \le F(x)) = \int_0^{F(x)} du = F(x).$
- $P(F(X) \le u) = P(X \le F^{-1}(u)) = F(F^{-1}(u)) = u$ with the generalized inverse (or quantile) function:

$$F^{-1}(u) = \inf\{x | F(x) \ge u\}, \quad 0 < u < 1.$$

Inverse transform method Examples

simulation

transform

method

PDF Exponential $(\sigma > 0)$

Weibull $(\sigma, k > 0)$ $\frac{k}{\sigma} (\frac{x}{\sigma})^{k-1} e^{-(\frac{x}{\sigma})^{\hat{k}}}$

 $\frac{1}{\sigma} e^{-\frac{x}{\sigma}} \mathbf{1}_{\mathbb{R}_{+}}(x)$

 $\mathbf{1}_{\mathbb{R}_{\perp}}(x)$

F $1 - e^{-\frac{x}{\sigma}}$

 $-\sigma \ln(1-U)$

Equivalent form $-\sigma \ln(U)$

 $1 - e^{-\left(\frac{x}{\sigma}\right)^k}$

 $\sigma(-\ln(1-U))^{\frac{1}{k}}$

 $\sigma(-\ln(U))^{\frac{1}{k}}$

Cauchy

 $X = F^{-1}(U)$

 $\pi[\sigma^2+(x-\mu)^2]$

 $\frac{1}{2} + \frac{1}{\pi} \arctan(\frac{x-\mu}{\sigma})$

 $\mu + \sigma \tan \pi (U - \frac{1}{2})$

 $\mu + \sigma \tan(\pi U)$

Rayleigh

 $1 - e^{-\frac{x^2}{2\sigma^2}}$

 $\sigma \sqrt{-\ln(1-U)}$

 $\sigma \sqrt{-\ln(U)}$

Gamma $(k \in \mathbb{N}^*)$ $\frac{1}{\sigma\Gamma(k)}(\frac{x}{\sigma})^{k-1} e^{-\frac{x}{\sigma}} \mathbf{1}_{\mathbb{R}_{\perp}}(x)$

 $\int_0^{\frac{\pi}{\sigma}} \frac{t^{k-1}}{\Gamma(k)} e^{-t} dt$

 $-\sigma \sum_{i=1}^{k} \ln U_i$

Triangular

 $\frac{2}{\sigma}(1-\frac{x}{\sigma})\mathbf{1}_{[0,\sigma]}(x)$

 $\frac{2}{\sigma}(x-\frac{x^2}{2\sigma})\mathbf{1}_{[0,\sigma]}(x)$

 $\sigma(1-\sqrt{1-U})$

 $\sigma(1-\sqrt{U})$

MC simulation

É. Savin

Introduction

Sampling real random variables

transform method Acceptance rejection sampling Pseudorandom

Markov chains and Markov algorithms

The ergodic

theorem
Markov
chain
Monte-Carl

Estimation

■ Let $G \sim \mathcal{N}(0,1)$, the distribution function is the error function (erf), which is difficult to inverse:

$$F(g) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{g} e^{-\frac{x^2}{2}} dx.$$

■ Box-Muller algorithm: Let $U_1, U_2 \sim \mathcal{U}(0,1)$ independent and

$$G_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2),$$

 $G_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2),$

then G_1 and G_2 are i.i.d. normal r.v. $G_1, G_2 \sim \mathcal{N}(0, 1)$. By causality principle $p_G(g) = p_U(h^{-1}(g)) \det(\nabla_g h^{-1}(g))$, and the inverse of $u \mapsto h(u)$ is $h^{-1}(g) = (\exp(-\|g\|^2/2), \frac{1}{2\pi} \arctan(g_2/g_1))$.

Outline

MC simulation

Introductio

Sampling real randon variables

Inverse transforn method

Acceptance rejection sampling Pseudo-

random numbers Markov

chains and Markov algorithms

Definitions
The ergodic
theorem

theorem
Markov
chain
Monte-Carle

Estimation

- 1 Introduction
- 2 Sampling real random variables
 - Inverse transform method
 - Acceptance-rejection sampling
 - Pseudo-random numbers
- 3 Markov chains and Markov algorithms
 - Definitions
 - The ergodic theorem
 - Markov chain Monte-Carlo (MCMC)
- 4 Estimation

Rejection method

simulation

rejection sampling

- Objective: simulate $X \sim \pi(x) dx$ where $\pi(x)$ has compact support within [a, b].
- Basic algorithm for $0 < \sup_{x \in [a,b]} \pi(x) \le K$:

1 $U \sim \mathcal{U}([a,b] \times [0,K])$ a uniform r.v. on $[a,b] \times [0,K]$;

2 if $U_2 < \pi(U_1)$ then $X = U_1$, else goto 1.

Rejection method

MC simulation

Sampling real random variables

Inverse transform method Acceptance

rejection sampling Pseudorandom numbers

Markov chains and Markov algorithms

The ergodic theorem Markov chain Monte-Carlo (MCMC)

Estimation

■ Generalization for $0 < \pi(x) \le Kg(x)$ where g is a known PDF s.t. $g \approx \pi$ and $G \sim g(x) dx$ is easy to simulate:

1 $U \sim \mathcal{U}(0,1)$ and $G \sim g(x)$ independently;

 $\ \ \, \textbf{2} \ \, \textbf{if} \, \, K \times U \times g(G) < \pi(G) \,\, \textbf{then} \,\, X = G, \, \textbf{else} \,\, \textbf{goto} \,\, 1.$

■ The optimum choice $K = \sup_x \frac{\pi(x)}{g(x)}$, and K^{-1} is the probability of acceptance.

Example: simulate a normal r.v. from a Cauchy r.v.

Target: $\pi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ Proposal: $g(x) = [\pi(1+x^2)]^{-1}$, then $K = \sqrt{2\pi/e}$ and use $G = \tan(\pi U)$ with $U \sim \mathcal{U}(0,1)$.

Outline

MC simulation

É Savin

Introductio

Sampling real random variables

Inverse transform method Acceptan

Acceptance rejection sampling Pseudorandom numbers

Markov chains and Markov algorithms

Definitions
The ergodic theorem
Markov chain
Monte-Carlo

Estimation

1 Introduction

2 Sampling real random variables

- Inverse transform method
- Acceptance-rejection sampling
- Pseudo-random numbers
- 3 Markov chains and Markov algorithms
 - Definitions
 - The ergodic theorem
 - Markov chain Monte-Carlo (MCMC)
- 4 Estimation

Pseudo-random number generators PRNGs Objectives

MC simulation

Sampling real randon variables Inverse

Inverse transform method Acceptance rejection sampling Pseudorandom numbers

Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain

Generate a sequence of pseudo-random numbers of which distribution is close to $\mathcal{U}(0,1)$ with:

- good statistical properties and uniformness;
- long periods;
- efficiency vs. computational time;
- repeatability (in order to test programs);
- ease of implementation for all programming languages;
- unpredictability: it should be impossible to infer U_i from the knowledge of U_{i-1} (applications in cryptography).

$\begin{tabular}{ll} Pseudo-random number generators PRNGs \\ {\tt Linear Congruential Generator} \end{tabular}$

MC simulation

É. Savin

Introductio

real random variables Inverse transform method Acceptancerejection sampling Pseudorandom

Markov
chains and
Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carle
(MCMC)

■ Pseudo-random numbers $\{U_i\}_{0 \le i \le m-1}$ following a uniform law may be obtained by a *Linear Congruential Generator* LCG(a, b, m):

$$I_i = (aI_{i-1} + b) \mod(m), \quad I_0 = \mathtt{SEED},$$

$$U_i = \frac{I_i}{m},$$

with 0 < a < m (multiplier), $0 \le b < m$ (increment), 0 < m (modulus), $0 \le I_0 < m$ (SEED).

Example: $a = 7^5$, b = 0 (*Multiplicative* Congruential Generator), $m = 2^{31} - 1$ is frequently used.

For $U \in [0,1]^n$ with mutually independent components use n independent versions of U.

Pseudo-random number generators PRNGs Multiple Recursive Generator

MC simulation

E. Savin

Introductio

real random variables Inverse transform method Acceptancerejection

Acceptancerejection sampling Pseudorandom numbers

chains and
Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carlo

■ Pseudo-random numbers $\{U_i\}_{0 \le i \le m-1}$ following a uniform law may be obtained by *Multiple Recursive Generator* MRG(k, m):

$$I_i = (a_1 I_{i-1} + \dots + a_k I_{i-k}) \operatorname{mod}(m),$$

$$U_i = \frac{I_i}{m},$$

where
$$a_k \in \{-(m-1), \dots (m+1)\}.$$

- **■** Properties:
 - The period is greater than m and the maximum period is $m^k 1$ whenever m is a prime number;
 - Generalization to the multi-dimensional case.

Pseudo-random number generators PRNGs Other examples

MC simulation

É. Savi

Introduction

Sampling real random variables

transform method Acceptancerejection sampling Pseudorandom numbers

Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carl
(MCMC)

■ Combined Multiple Recursive Generator MRG32k3a (L'Écuyer 1999):

$$I_i = (1403580I_{i-2} - 810728I_{i-3}) \mod(2^{32} - 209),$$

$$J_i = (527612J_{i-1} - 1370589J_{i-3}) \mod(2^{32} - 22853),$$

$$U_i = \frac{(I_i - J_i) \mod(2^{32} - 209)}{2^{32} - 209}.$$

■ Mersenne Twister algorithm (because its period is the Mersenne number $2^{19937} - 1$, see Matsumoto-Nishimura 1997): http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Pseudo-random number generators PRNGs Other examples

MC simulation

Introduction

Sampling real random variables

Inverse transform method Acceptance rejection sampling Pseudo-

Pseudorandom numbers

Markov chains and Markov

Definitions

The ergodi

Markov chain Monte-Carl

Estimation

■ RANDU (IBM 1967):

$$I_i = 65539I_{i-1} \mod(2^{31}),$$

 $U_i = \frac{I_i}{2^{31}},$

with I_0 odd.

Outline

simulation

Definitions

- - Inverse transform method
 - Acceptance-rejection sampling
 - Pseudo-random numbers
- 3 Markov chains and Markov algorithms
 - Definitions
 - The ergodic theorem
 - Markov chain Monte-Carlo (MCMC)

Markov chains Basic definition

simulation

Definitions

Definition

- A Markov¹ chain (U_m , $m \in \mathbb{N}$) is a sequence of r.v. with values in a finite or countable set E defined by:
 - $E = \{u_0, u_1, \dots\},\$

$$P(U_{m+1} = u_{m+1}|U_0 = u_0, U_1 = u_1, ... U_m = u_m)$$

= $P(U_{m+1} = u_{m+1}|U_m = u_m), \forall m \in \mathbb{N};$

- its initial probability law $\pi_{0,i} = P(U_0 = u_i)$.
- A homogeneous Markov chain:

$$P(\boldsymbol{U}_{m+1} = \boldsymbol{u}_j | \boldsymbol{U}_m = \boldsymbol{u}_i)$$

= $P(\boldsymbol{U}_m = \boldsymbol{u}_i | \boldsymbol{U}_{m-1} = \boldsymbol{u}_i), \quad \forall m \in \mathbb{N}.$

Andreï Markov (1856–1922): Russian mathematician 🕡 🗸 🐧 🐧 👢 🦿 🗘

Markov chains Examples

simulation

Definitions

Let $(V_m, m \in \mathbb{N}^*)$ be a sequence of i.i.d. r.v. with values in F, and let $f: E \times F \to E$ be measurable. Then the sequence $(U_m, m \in \mathbb{N})$ defined by:

$$U_{m+1} = f(U_m, V_{m+1}), \quad \forall m \in \mathbb{N},$$

is an homogeneous Markov chain as soon as V_m is independent of U_0 .

Random walk in $E = \mathbb{Z}^2$:

$$U_{m+1} = U_m + V_{m+1}, \quad \forall m \in \mathbb{N},$$

with
$$V_m \in F = \{(-1,0), (0,-1), (+1,0), (0,+1)\}.$$

MCMC methods Examples

simulation

Definitions

■ Sampling a Markov chain:

- 1 $U_0 \sim \pi_0$:
- 2 repeat
 - - $U_{m-1} = u_i$
 - $U \sim \mathcal{U}(0,1)$ and find j s.t.:

$$\sum_{k=1}^{j-1} P(U_m = u_k | U_{m-1} = u_i) \le U < \sum_{k=1}^{j} P(U_m = u_k | U_{m-1} = u_i)$$

$$lacksquare U_m = oldsymbol{u}_j$$

until $m = m_{\text{final}}$.

MC simulation

É. Savin

Introduction

Sampling real random variables

transform
method
Acceptancerejection
sampling
Pseudorandom
numbers

Markov chains and Markov algorithms

Definitions
The orgadic

theorem
Markov
chain
Monte-Carlo
(MCMC)

Estimation

■ A Markov chain is fully characterized by its initial distribution π_0 and its transition kernel $\Pi(m)$ s.t.:

$$\Pi(m) = [\pi_{ij}(m)]_{i,j \in E}, \ \pi_{ij}(m) = P(U_m = u_j | U_{m-1} = u_i).$$

Remarks:

- \blacksquare II is independent of m if the Markov chain is homogeneous.
- \blacksquare π_{ii} is not necessarily zero.
- An invariant measure (or stationary distribution) $\boldsymbol{\pi}^* = (\pi_j^*)_{j \in E}$ is s.t.:

$$\pi_j^* \ge 0, \quad \pi_j^* = \sum_{i \in F} \pi_i^* \pi_{ij}(m), \quad \forall j \in E, \ \forall m \in \mathbb{N},$$

with the normalization $\sum_{i \in E} \pi_i^* = 1$.

Markov chains Classification of the states

MC simulation

E. Savin

Introduction

real randon variables Inverse transform method Acceptancerejection sampling

Markov chains and Markov

Definitions
The ergodic theorem
Markov chain

Definition

- A Markov chain is irreducible if it is possible to reach any state from any other state.
- The state $j \in E$ is transient if, starting from it, the probability it is never reached again is non-zero; otherwise it is recurrent.
- A recurrent state is positive recurrent if the mean return time is finite: $\mathbb{E}\{\inf\{k \geq 1 | U_k = u_j\} | U_0 = u_j\} < +\infty$.
- The state $j \in E$ is aperiodic if, starting from it, it can be reached again at any subsequent time with a non-zero probability.

If $\pi_{ij} > 0 \ \forall i, j \in E$, then the MC is irreducible and aperiodic.

Outline

MC simulation

É Savin

Introductio:

Sampling real randon variables

Inverse transform method

Acceptancerejection sampling Pseudorandom numbers

Markov chains and Markov algorithms

Definitions
The ergodic
theorem
Markov

theorem
Markov
chain
Monte-Carl
(MCMC)

Estimation

- 1 Introduction
- 2 Sampling real random variables
 - Inverse transform method
 - Acceptance-rejection sampling
 - Pseudo-random numbers
- 3 Markov chains and Markov algorithms
 - Definitions
 - The ergodic theorem
 - Markov chain Monte-Carlo (MCMC)
- 4 Estimation

MC simulation

Introductio

Sampling real random variables Inverse transform method

transform method Acceptancerejection sampling Pseudorandom numbers

chains and
Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carle
(MCMC)

Theorem

- If a MC has at least one positive recurrent state, it has an invariant measure. It is unique if in addition the MC is irreducible.
- If a MC is irreducible, positive recurrent and aperiodic, then there exists a unique invariant measure π^* such that $(U_m) \xrightarrow[m \to +\infty]{\mathscr{L}} \pi^*$ independently of π_0 .
- The latter result is the convergence of the k-stage transition Π^k through the kernel Π to the invariant measure:

$$\Pi^k = [\pi_{ij}^{(k)}]_{i,j \in E}, \quad \pi_{ij}^{(k)} = P(U_{m+k} = u_j | U_m = u_i),$$

such that if $\pi_k = P(U_k = u_j)_{j \in E}$ then $\pi_k = \pi_0 \Pi^k$.

■ If π_0 is an invariant measure, then $\pi_k = \pi_0 \ \forall k \in \mathbb{N}$.

Markov chains The ergodic theorem

simulation

The ergodic theorem

Theorem

Let $(U_m, m \in \mathbb{N})$ be an irreducible, positive recurrent homogeneous MC. Then there exists an invariant measure π^* such that for all regular functions f:

$$\lim_{m \to +\infty} \mathbb{E}\{f(\boldsymbol{U}_m)\} = \lim_{m \to +\infty} \frac{1}{m} \sum_{k=0}^{m-1} f(\boldsymbol{U}_k) = \sum_{j \in E} \pi_j^* f(\boldsymbol{u}_j) \ a.s.$$

■ The ergodic theorem is an extension of the Law of Large Numbers to homogeneous MCs: let $X_1, X_2, \dots X_m$ be m i.i.d. r.v. with the same law $P_{\mathbf{X}}$, then for all regular functions f:

$$\lim_{m \to +\infty} \frac{1}{m} \sum_{k=1}^{m} f(\boldsymbol{X}_k) = \mathbb{E}\{f(\boldsymbol{X})\} = \int f(\boldsymbol{x}) P_{\boldsymbol{X}}(\mathrm{d}\boldsymbol{x}) \quad \text{a.s.}$$

■ It allows to estimate the invariant measure from one sample chain.

Outline

simulation

Markov Monte-Carlo

Inverse transform method

■ Acceptance-rejection sampling

Pseudo-random numbers

3 Markov chains and Markov algorithms

Definitions

■ The ergodic theorem

■ Markov chain Monte-Carlo (MCMC)

$^{ m MC}_{ m simulation}$

E. Savin

Introduction

Sampling real randon variables

transform method Acceptancerejection sampling Pseudorandom

Markov chains and Markov algorithms

Definitions
The ergodi

Markov chain Monte-Carlo (MCMC)

Estimation

Proposition

Let $\pi(\mathbf{u}_i, \mathbf{u}_j) = p(\mathbf{u}_i, \mathbf{u}_j) + r(\mathbf{u}_i)\delta(\mathbf{u}_j - \mathbf{u}_i)$ where:

 $\mathbf{p}(\mathbf{u}_i, \mathbf{u}_i) = 0$ and a reversibility condition holds:

$$\boldsymbol{\pi}^*(\boldsymbol{u}_i)p(\boldsymbol{u}_i,\boldsymbol{u}_j) = \boldsymbol{\pi}^*(\boldsymbol{u}_j)p(\boldsymbol{u}_j,\boldsymbol{u}_i), \quad \forall i,j \in E;$$

$$r(\boldsymbol{u}_i) = 1 - \sum_{j \in E} p(\boldsymbol{u}_i, \boldsymbol{u}_j).$$

Then $\pi^*(\mathbf{u})$ is the invariant density of the MC of which transition kernel is $\mathbf{\Pi} = [\pi(\mathbf{u}_i, \mathbf{u}_j)]_{i,j \in E}$.

$$\begin{split} \sum_{i \in E} \pi^*(\boldsymbol{u}_i) \pi(\boldsymbol{u}_i, \boldsymbol{u}_j) &= \sum_{i \in E} \pi^*(\boldsymbol{u}_i) p(\boldsymbol{u}_i, \boldsymbol{u}_j) + \sum_{i \in E} \pi^*(\boldsymbol{u}_i) r(\boldsymbol{u}_i) \delta(\boldsymbol{u}_j - \boldsymbol{u}_i) \\ &= \sum_{i \in E} \pi^*(\boldsymbol{u}_j) p(\boldsymbol{u}_j, \boldsymbol{u}_i) + \pi^*(\boldsymbol{u}_j) r(\boldsymbol{u}_j) \\ &= \pi^*(\boldsymbol{u}_j) (1 - r(\boldsymbol{u}_j)) + \pi^*(\boldsymbol{u}_j) r(\boldsymbol{u}_j) \\ &= \pi^*(\boldsymbol{u}_j) \,. \end{split}$$

MCMC methods

Metropolis-Hastings algorithm (1953, 1970)

$^{ m MC}$

E. Savin

Introduction

Sampling real random variables

method
Acceptancerejection
sampling
Pseudorandom
numbers

Markov chains and Markov algorithms Definitions The ergodic theorem

Markov chain Monte-Carlo (MCMC)

- Objective: simulate $X \sim C^* \pi^*(x) dx$, $E \equiv \Omega \subseteq \mathbb{R}^n$.
- Let $q(x, y) \ge 0$ be a candidate (or instrumental or proposal) density s.t. supp $\pi^*(\cdot) \subset \text{supp } q(x, \cdot)$ and define the probability of move:

$$\alpha(\boldsymbol{x}, \boldsymbol{y}) = \min \left\{ \frac{\pi^*(\boldsymbol{y})q(\boldsymbol{y}, \boldsymbol{x})}{\pi^*(\boldsymbol{x})q(\boldsymbol{x}, \boldsymbol{y})}, 1 \right\}.$$

- 2 repeat
 - $lacksquare X_m = x_m$
 - $\mathbf{Y} \sim q(\mathbf{x}_m, \mathbf{y}) \mathrm{d}\mathbf{y}$ and $U \sim \mathcal{U}(0, 1)$
 - lacksquare if $U \leq lpha(oldsymbol{x}_m, oldsymbol{Y})$ then $oldsymbol{X}_{m+1} = oldsymbol{Y},$ else $oldsymbol{X}_{m+1} = oldsymbol{X}_m$

until $m = m_{\text{final}}$.

Assume $\pi^*(\boldsymbol{x})q(\boldsymbol{x},\boldsymbol{y}) > \pi^*(\boldsymbol{y})q(\boldsymbol{y},\boldsymbol{x})$, then $\alpha(\boldsymbol{x},\boldsymbol{y})$ is tuned so that $\alpha(\boldsymbol{x},\boldsymbol{y})q(\boldsymbol{x},\boldsymbol{y})$ satisfies the reversibility condition.

$\begin{array}{c} MCMC \ methods \\ \text{Application to the MaxEnt} \end{array}$

MC simulation

E. Savin

Introductio

Sampling real random variables

Inverse transform method Acceptancerejection sampling Pseudorandom numbers

Markov chains and Markov algorithms Definitions The ergoditheorem Markov chain

Markov chain Monte-Carlo (MCMC) ■ The MaxEnt principle leads to the non-linear optimization problem of finding $\lambda \in \mathbb{R}^{\ell}$ s.t.:

$$oldsymbol{g}(oldsymbol{\lambda}) := \int_{\mathbb{R}^n} (oldsymbol{C}(oldsymbol{x}) - \underline{oldsymbol{C}}) \, \mathrm{d} oldsymbol{x} = oldsymbol{0} \, .$$

■ By the ergodic theorem:

$$g(\lambda) \simeq \lim_{m \to +\infty} \frac{1}{m} \sum_{k=0}^{m-1} (C(X_k(\theta)) - \underline{C}),$$

and by the law of large number for $M \in \mathbb{N}$ large enough:

$$m{g}(m{\lambda}) \simeq \lim_{n_s \to +\infty} rac{1}{n_s} \sum_{k=1}^{n_s} \left(m{C}(m{X}_M(heta_k)) - \underline{m{C}}
ight) \, ,$$

where $(\boldsymbol{X}_m, m \in \mathbb{N})$ is the MC of which invariant density is $\pi^*(\boldsymbol{x}) = e^{-\boldsymbol{\lambda} \cdot (\boldsymbol{C}(\boldsymbol{x}) - \underline{\boldsymbol{C}})}$.

When does estimation occur?

MC simulation

É. Savin

Introduction

Sampling real random variables

Inverse transform method

Acceptancerejection sampling Pseudorandom numbers

Markov chains and Markov

Definitions
The ergodic theorem

Markov chain Monte-Carlo

Estimation

Parametrization of e.g. Gamma or
$$\beta$$
 distributions (Lamé's moduli, Poisson's coefficient):

■ If $X \sim \Gamma(k, \frac{1}{\sigma})$ then

$$\underline{X} = k\sigma$$
, $\sigma_X^2 = k\sigma^2$, $s_X = \frac{2}{\sqrt{k}}$, $\kappa_X = \frac{6}{k}$, etc.

• If $X \sim \beta(k, \frac{1}{\sigma})$ then

$$\underline{X} = \frac{k\sigma}{1+k\sigma}, \ \sigma_X^2 = \frac{k\sigma^2}{(1+k\sigma)^2(1+\sigma+k\sigma)}, \ etc.$$

• $p_{\mathbf{X}}(\mathbf{x}) = e^{-\lambda_0 - \lambda \cdot C(\mathbf{x})}$ where (λ_0, λ) depend on \underline{C} .

Estimator

Punctual & sequential estimation

MCsimulation

É. Savin

Introduction

Sampling real random variables

transform method Acceptancerejection sampling Pseudorandom numbers

chains and
Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carlo

Estimation

random numbers Markov chains and Markov algorithms Let $X(\theta)$ be a second order r.v. defined on $(\Omega_{\theta}, \mathcal{E}, P)$ with values in $\Omega_X \subseteq \mathbb{R}^n$ and probability distribution $P_X(\mathrm{d}x; \nu)$ depending on (deterministic) parameters $\nu \in \Theta \subseteq \mathbb{R}^p$.

- Sequential or continuous estimation: estimate ν from M independent realizations $\boldsymbol{x}^{(m)} = \boldsymbol{X}(\theta_m), \ \theta_m \in \Omega_{\theta}, \ 1 \leq m \leq M;$
- Punctual estimation: M = 1.
- An estimation is a (measurable) rule $x_M \mapsto \hat{\nu}_M(x_M)$, $x_M = (x^{(1)}, \dots x^{(M)})$, for calculating the *estimate* $\hat{\nu}_M(x_M)$. The corresponding *estimator* is the r.v. $\hat{\nu}_M(X_M)$.
- The estimation error is $\epsilon_M(X_M) = \hat{\nu}_M(X_M) \nu$.
- Two classes of methods for building estimators:
 (i) method of moments and (ii) maximum likelihood.

Estimator Characterizing an estimator

simulation

Sampling

variables
Inverse
transform
method
Acceptance-

Acceptancerejection sampling Pseudorandom numbers

Markov algorithms Definitions The ergodic theorem Markov chain

Estimation

Definition

- The bias of the estimator $\mathbf{b}_M(\boldsymbol{\nu}) = \mathbb{E}\{\boldsymbol{\epsilon}_M(\boldsymbol{X}_M)\}$. It is unbiased if $\mathbf{b}_M = \mathbf{0} \ \forall M$, or asymptotically unbiased if $\lim_{M \to +\infty} \mathbf{b}_M = \mathbf{0}$.
- The dispersion of the estimator:

$$egin{aligned} oldsymbol{V}_M(oldsymbol{
u}) &= \mathbb{E}\{oldsymbol{\epsilon}_M(oldsymbol{X}_M)\otimesoldsymbol{\epsilon}_M(oldsymbol{X}_M)\} \ &= \mathbf{C}_{\hat{oldsymbol{
u}}_M} + oldsymbol{b}_M(oldsymbol{
u})\otimesoldsymbol{b}_M(oldsymbol{
u}) \,. \end{aligned}$$

The lower $\operatorname{Tr} \mathbf{C}_{\hat{\boldsymbol{\nu}}_M}$ is, the more efficient it is.

■ The symmetric, positive Fisher information matrix:

$$[\mathcal{I}_M(\boldsymbol{\nu})] = \mathbb{E}\{\boldsymbol{\nabla}_{\boldsymbol{\nu}} \ln \mathcal{L}(\boldsymbol{\nu}|\boldsymbol{X}_M) \otimes \boldsymbol{\nabla}_{\boldsymbol{\nu}} \ln \mathcal{L}(\boldsymbol{\nu}|\boldsymbol{X}_M)\}\,,$$

for
$$\mathcal{L}(\boldsymbol{\nu}|\boldsymbol{x}_M) := \prod_{m=1}^M p_{\boldsymbol{X}}(\boldsymbol{x}^{(m)}; \boldsymbol{\nu}), \ p_{\boldsymbol{X}} = \frac{\mathrm{d}P_{\boldsymbol{X}}}{\mathrm{d}\boldsymbol{x}}.$$

Cramér-Rao inequality and efficiency

MC simulation

E. Savir

Introductio

real randon variables Inverse transform method Acceptancerejection

numbers

Markov

chains and

Markov

algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carlo

Estimation

Theorem

The Cramér-Rao inequality for the j-th parameter:

$$[\boldsymbol{V}_{M}(\boldsymbol{\nu})]_{jj} = \mathbb{E}\{\epsilon_{M,j}^{2}(\boldsymbol{X}_{M})\} \geq \frac{\left(1 + \partial_{\nu_{j}}b_{M,j}(\boldsymbol{\nu})\right)^{2}}{[\mathcal{I}_{M}(\boldsymbol{\nu})]_{jj}},$$

with an equality iff $\partial_{\nu_j} \ln \mathcal{L}(\boldsymbol{\nu}|\boldsymbol{x}_M) = \varphi_j(\boldsymbol{\nu}) \epsilon_{M,j}(\boldsymbol{x}_M)$.

• An estimator is *efficient* if it minimizes its dispersion, thus iff the above condition holds, or:

$$\mathbb{E}\{\partial_{\nu_j} \ln \mathcal{L}(\boldsymbol{\nu}|\boldsymbol{X}_M)\} = \varphi_j(\boldsymbol{\nu})b_{M,j}(\boldsymbol{\nu}).$$

■ If it is unbiased $[V_M(\nu)]_{jj} \ge [\mathcal{I}_M(\nu)]_{jj}^{-1}$ (Cramér-Rao lower bound) and

$$\mathbb{E}\{\partial_{\nu_i} \ln \mathcal{L}(\boldsymbol{\nu}|\boldsymbol{X}_M)\} = 0.$$

Maximum likelihood method ML estimator

MC simulation

E. Savir

Introductio

Sampling real random variables

transform method Acceptancerejection sampling Pseudorandom numbers

Markov chains and Markov algorithms Definitions The ergodic theorem Markov chain Monte-Carlo

Estimation

Definition

■ Consider the following estimate $\hat{\ell}(\boldsymbol{\nu})$ of the expected log-likelihood $\ell(\boldsymbol{\nu}) = \mathbb{E}\{\ln p_{\boldsymbol{X}}(\boldsymbol{X}; \boldsymbol{\nu})\}$ of a single observation:

$$\hat{\ell}(oldsymbol{
u}) = rac{1}{M} \ln \mathcal{L}(oldsymbol{
u} | oldsymbol{x}_M)$$
 .

■ The maximum likelihood (ML) estimator of ν is:

$$\hat{\boldsymbol{\nu}}_{\mathrm{ML}}(\boldsymbol{X}_{M}) = \arg\max_{\boldsymbol{\nu} \in \Theta} \hat{\ell}(\boldsymbol{\nu}).$$

The likelihood equations relative to the realizations x_M :

$$\partial_{\nu_j} \ln \mathcal{L}(\boldsymbol{\nu}|\boldsymbol{x}_M) = \sum_{m=1}^{M} \partial_{\nu_j} \ln p_{\boldsymbol{X}}(\boldsymbol{x}^{(m)}; \boldsymbol{\nu}) = 0, \quad 1 \leq j \leq p.$$

$\begin{array}{c} {\rm Maximum\ likelihood\ method} \\ {\rm Properties\ of\ the\ MLE} \end{array}$

MC simulation

E. Savin

Introductio

Sampling real random variables Inverse transform method Acceptancerejection sampling Pseudorandom numbers

Markov
chains and
Markov
algorithms
Definitions
The ergodic
theorem
Markov
chain
Monte-Carle

■ Consistency: assume $p_{\mathbf{X}}(\cdot; \boldsymbol{\nu}_1) \neq p_{\mathbf{X}}(\cdot; \boldsymbol{\nu}_2)$ iff $\boldsymbol{\nu}_1 \neq \boldsymbol{\nu}_2$, the MLE is asymptotically unbiased and:

$$\hat{\boldsymbol{\nu}}_{\mathrm{ML}}(\boldsymbol{X}_{M}) \overset{\mathscr{P}}{\underset{M \to +\infty}{\longrightarrow}} \boldsymbol{\nu}$$
.

■ Asymptotic normality:

$$\sqrt{M} \left(\hat{\boldsymbol{\nu}}_{\mathrm{ML}}(\boldsymbol{X}_{M}) - \boldsymbol{\nu} \right) \xrightarrow[M \to +\infty]{\mathscr{L}} \mathcal{N} \left(0, [\mathcal{I}_{1}(\boldsymbol{\nu})]^{-1} \right) .$$

- Efficiency: it achieves the Cramér-Rao lower bound asymptotically. Conversely, if an efficient unbiased estimator exists, then it is the MLE and it is unique.
- Functional invariance: $\varphi(\hat{\boldsymbol{\nu}}_{\mathrm{ML}})$ is the MLE of $\varphi(\boldsymbol{\nu})$.

Maximum likelihood method Example #1

simulation

E. Savin

Introductio

real random variables
Inverse
transform
method
Acceptancerejection
sampling

Markov chains and Markov

Definitions
The ergodic theorem
Markov chain
Monte-Carlo

Estimation

Consider $X \sim \mathcal{N}(\mu, \sigma^2)$ in \mathbb{R} , *i.e.* $p_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$, with $\nu_1 = \mu$ and $\nu_2 = \sigma^2$.

■ The likelihood function is:

$$\mathcal{L}(\boldsymbol{\nu}|x_M) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{M}{2}} \exp\left(-\frac{1}{2\sigma^2}\sum_{m=1}^M \left(x^{(m)} - \mu\right)^2\right).$$

■ The ML estimator is:

$$\hat{\mu}_{\mathrm{ML}}(X_M) = \frac{1}{M} \sum_{m=1}^{M} X^{(m)},$$

$$\hat{\sigma}_{\mathrm{ML}}^{2}(X_{M}) = \frac{1}{M} \sum_{m=1}^{M} \left(X^{(m)} - \frac{1}{M} \sum_{m=1}^{M} X^{(n)} \right)^{2}.$$

Then $b_{M,1} = 0$, $b_{M,2} = -\frac{\sigma^2}{M}$, but is asymptotically unbiased.

Maximum likelihood method Example #2

simulation

E. Savii

Introductio

Sampling real randon variables

Inverse transform method Acceptancerejection sampling Pseudorandom numbers

Markov chains and Markov algorithms

Definitions
The ergodic theorem
Markov chain
Monte-Carlo (MCMC)

Estimation

Consider $X \sim \Gamma(k, \frac{1}{\sigma})$ on \mathbb{R}_+ with $\nu = \sigma$:

$$p_X(x) = \frac{1}{\sigma\Gamma(k)} \left(\frac{x}{\sigma}\right)^{k-1} e^{-\frac{x}{\sigma}} \mathbf{1}_{\mathbb{R}_+}(x),$$

then $\underline{X} = k\sigma = k\nu$.

■ The log-likelihood function is:

$$\frac{\ln \mathcal{L}(\nu|x_M)}{M} = \frac{k-1}{M} \sum_{m=1}^M \ln x^{(m)} - \frac{1}{\sigma M} \sum_{m=1}^M x^{(m)} - k \ln \sigma - \ln \Gamma(k).$$

■ The (unbiased) ML estimator is:

$$k\hat{\sigma}_{\rm ML}(X_M) = \frac{1}{M} \sum_{m=1}^{M} X^{(m)}$$
.

Maximum likelihood method $_{\text{Example }\#2}$

MC simulation

E. Savin

Introductio

variables
Inverse
transform
method
Acceptancerejection
sampling
Pseudorandom

chains and Markov algorithms Definitions The ergodi

Definitions
The ergodic theorem
Markov chain
Monte-Carlo

Estimation

Consider the same law but now $\nu_1 = \sigma$ and $\nu_2 = k$, thus $\underline{X} = k\sigma = \nu_1\nu_2$ and $\sigma_X^2 = k\sigma^2 = \nu_1^2\nu_2$.

- The log-likelihood function is unchanged.
- But $\hat{\sigma}_{\text{ML}}$ and \hat{k}_{ML} are given by a system of non-linear equations:

$$\hat{k}_{\text{ML}}(X_M)\hat{\sigma}_{\text{ML}}(X_M) = \frac{1}{M} \sum_{m=1}^{M} X^{(m)},$$

$$\psi_0(\hat{k}_{\text{ML}}(X_M)) = \frac{1}{M} \sum_{m=1}^{M} \ln\left(\frac{X^{(m)}}{\hat{\sigma}_{\text{ML}}(X_M)}\right),$$

where $z \mapsto \psi_0(z) = (\ln \Gamma(z))'$ is the diGamma function.

Exhaustive estimator Definition

simulation

Estimation

- The probability law of the estimator $\hat{\nu}_M(X_M)$ should depend on ν if it is used to retrieve some information on the parameters.
- It is called *exhaustive* if it conserves the information on ν contained in the sample x_M , i.e.

$$P(X_M|\hat{\boldsymbol{\nu}}_M(X_M) = \hat{\boldsymbol{\nu}})$$
 does not depend on $\boldsymbol{\nu}$.

Definition

 $\hat{\boldsymbol{\nu}}_{M}(\boldsymbol{X}_{M})$ is exhaustive iff $\mathcal{L}(\boldsymbol{\nu}|\boldsymbol{x}_{M}) = \rho_{t}(\boldsymbol{x}_{M}|\hat{\boldsymbol{\nu}})g(\hat{\boldsymbol{\nu}};\boldsymbol{\nu}),$ where ρ_t is the conditional PDF of X_M provided that $\hat{\boldsymbol{\nu}}_M(\boldsymbol{X}_M) = \hat{\boldsymbol{\nu}}$, and g is its PDF.

Exhaustive estimator Characterization

MC simulation

É. Savi

Introductio

Sampling real randor variables

Inverse transform method

Acceptance rejection sampling Pseudorandom numbers

Markov chains and Markov

Definitions

theorem Markov chain

chain Monte-Carl (MCMC)

Estimation

Theorem

A sample X_M s.t. supp p_X does not depend on ν admits an exhaustive estimator iff:

$$p_{\mathbf{X}}(\mathbf{x}; \boldsymbol{\nu}) = e^{a(\mathbf{x})\alpha(\boldsymbol{\nu}) + b(\mathbf{x}) + \beta(\boldsymbol{\nu})}$$
.

Further reading...

MC simulation

É. Savin

Introduction

Sampling real random variables

transform method Acceptancerejection sampling Pseudorandom numbers

chains and Markov algorithms Definitions The ergodic theorem Markov chain Monte-Carlo (MCMC)

Estimation

- P. Brémaud: Markov Chains: Gibbs Fields, Monte-Carlo Simulation, and Queues, Springer (2008);
- L. Devroye: Non Uniform Random Variate Generation, Springer-Verlag (1986); Available at http://luc.devroye.org/rnbookindex.html;
- O. Häggström: Finite Markov Chains and Algorithmic Applications, London Mathematical Society Student Texts (2002);
- P.K. McKeown: Stochastic Simulation in Physics, Springer (1997);
- S.P. Meyn & R.L. Tweedie: Markov Chains and Stochastic Stability, Springer-Verlag (1993); Re-compiled version as of 2005 available at http://probability.ca/MT.