ML II: Exercise 2

Tobias Graf, Philipp Rentzsch, Lina Gundelwein June 28, 2016

1 Conditional Independence

P(A) = 1st coin flip shows head

P(B) = 2nd coin flip shows head

P(C) = coin is biased (has two heads)

Table 1: C=0							
A	В	P(A C)	P(B C)	P(A,B C)			
0	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$			
0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$			
1	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$			
1	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$			

	Table 2: $C=1$							
	Α	В	P(A C)	P(B C)	P(A,B C)			
ſ	0	1	0	1	0			
	0	0	0	0	0			
	1	1	1	1	1			
	1	0	1	0	0			

$$\begin{split} P(A) &= P(A|C)P(C) + P(A|\overline{C})P(\overline{C}) \\ &= \frac{1}{2} \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{3}{4} \\ P(B) &= P(B|C)P(C) + P(B|\overline{C})P(\overline{C}) \\ &= \frac{1}{2} \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{3}{4} \\ P(A,B) &= P(A,B|C)P(C) + P(A,B|\overline{C})P(\overline{C}) \\ &= P(A|C)P(B|C)P(C) + P(A|\overline{C})P(B|\overline{C})P(\overline{C}) \\ &= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + 1 \cdot 1 \cdot \frac{1}{2} = \frac{5}{8} \\ P(A)P(B) &= \frac{9}{16} \neq P(A,B) = \frac{5}{8} \end{split}$$

2 Boy Problem

2.1 Information Theory

d is the positive Event, either Sunday or Today.

$$\frac{p(A = b \land B = b \land ((A = b \land A_d = d) \lor (B = b \land B_d = d)))}{p((A = b \land A_d = d) \lor (B = b \land B_d = d))}$$

$$= \frac{p(A = b \land B = b \land \neg (A_d = \neg d \land B_d = \neg d))}{p(\neg (\neg (A = b \land A_d = d) \land \neg (B = b \land B_d = d)))}$$

$$= \frac{\frac{1}{2} \frac{1}{2} \left(1 - \frac{C - 1}{C} \frac{C - 1}{C}\right)}{1 - \left(1 - \frac{1}{2C}\right)^2}$$

$$= \frac{\frac{1}{4} \left(1 - \frac{(C - 1)^2}{C^2}\right)}{1 - \left(1 - \frac{1}{2C}\right)^2}$$

$$= \frac{\frac{1}{4} \left(1 - \frac{(C^2 - 2C + 1)}{C^2}\right)}{\frac{1}{C} - \frac{1}{4C^2}} \quad \leftarrow \text{ expand by } \frac{C^2}{C^2}$$

$$= \frac{\frac{1}{4}(2C - 1)}{C - \frac{1}{4}}$$

$$= \frac{2C - 1}{4C - 1}$$

2.2 Numerical Evaluation

see associated Jupyter notebook.

3 Weather Forecast

a) The missing probabilities are:

$$P(t_n = \text{Cloudy}|t_{n-1} = \text{Rain}) = \frac{7}{10}$$

$$P(t_n = \text{Sunny}|t_{n-1} = \text{Sunny}) = \frac{3}{10}$$

$$P(t_n = \text{Sunny}|t_{n-1} = \text{Cloudy}) = \frac{1}{2}$$

b) Transitions as a diagram

c & d) Rain = R, Sunny = S, Cloudy = C

$$\begin{split} \vec{p}(t_1) \\ &= \begin{pmatrix} p(t_n = \mathbf{R} | t_{n-1} = \mathbf{R}) \cdot p(t_0 = \mathbf{R}) + p(t_n = \mathbf{R} | t_{n-1} = \mathbf{C}) \cdot p(t_0 = \mathbf{C}) + p(t_n = \mathbf{R} | t_{n-1} = \mathbf{S}) \cdot p(t_0 = \mathbf{S}) \\ p(t_n = \mathbf{C} | t_{n-1} = \mathbf{R}) \cdot p(t_0 = \mathbf{R}) + p(t_n = \mathbf{C} | t_{n-1} = \mathbf{C}) \cdot p(t_0 = \mathbf{C}) + p(t_n = \mathbf{C} | t_{n-1} = \mathbf{S}) \cdot p(t_0 = \mathbf{S}) \\ p(t_n = \mathbf{S} | t_{n-1} = \mathbf{R}) \cdot p(t_0 = \mathbf{R}) + p(t_n = \mathbf{S} | t_{n-1} = \mathbf{C}) \cdot p(t_0 = \mathbf{C}) + p(t_n = \mathbf{S} | t_{n-1} = \mathbf{S}) \cdot p(t_0 = \mathbf{S}) \end{pmatrix} \\ &= M \times \vec{p}(t_0) = \begin{pmatrix} 0.2 & 0.2 & 0.4 \\ 0.7 & 0.3 & 0.3 \\ 0.1 & 0.5 & 0.3 \end{pmatrix} \times \vec{p}(t_0) = \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix} \end{split}$$

e) we compute

$$\vec{p}(t_n) = M^n \times \vec{p}(t_0)$$

$$\vec{p}(t_{100}) = M^{100} \times \vec{p}(t_0) = \begin{pmatrix} 0.265625\\ 0.406250\\ 0.328125 \end{pmatrix}$$

f) for $\lim n \to \infty$, we solve the equation: $\vec{p}(t_n) = M \times \vec{p}(t_n)$ in a system of linear equations with $p(t_n = R) = r, p(t_n = C) = c, p(t_n = S) = s$:

$$\begin{split} r &= 0.2 \cdot r + 0.2 \cdot c + 0.4 \cdot s \\ c &= 0.7 \cdot r + 0.3 \cdot c + 0.3 \cdot s \\ s &= 0.1 \cdot r + 0.5 \cdot c + 0.3 \cdot s \\ 1 &= r + c + s \end{split}$$

Solving these equations results the solution equal to our result for $\vec{p}(t_{100})$ (due to rounding in e)