### **Answers**

### Exercise 1.1

- 1. (a)  $2, \pi/3$
- (b)  $2, -2\pi/3$
- (c)  $2, -\pi/6$
- (d)  $2\sqrt{2}$ ,  $3\pi/4$  (e) 4,  $\pi/2$
- (f) 6,  $-\pi/2$
- 2. (a)  $\sqrt{5}$  cis(1.107)
- (b) 5 cis(2.21)
- (c) cis(0.93) (d)  $2 cis(\pi/6)$ 
  - $cis(\pi/6)$  (e) 4 cis(0)
- (f)  $3cis(-\pi/2)$
- 3. (a) 2i
  - (b)  $(3\sqrt{2}/2) (3\sqrt{2}/2)i$
  - (c)  $-\sqrt{3} + i$  (d) -3i
    - ) -3i (e) -1 + i
  - (f)  $-(5\sqrt{3}/2) + (5/2)i$
- 4. (a) 2-3i,  $\sqrt{13}$  cis (-0.98)
  - (b) -1 + 4i,  $\sqrt{17}$  cis (1.82)
  - (c) 3 + 5i,  $\sqrt{34}$  cis (1.03)
- 5. (a)  $a\sqrt{5}$ , 2
- (b)  $\sqrt{(a^2+1)}, -a$
- (c)  $\sqrt{(a^2+4)}$ , -2/a
- (d)  $(1/a)\sqrt{(a^2+1)}$ , a

### Exercise 1.2

- 1. (a) 6 cis  $(7\pi/12)$
- (b) 9 cis  $(-5\pi/6)$
- (c)  $20 cis (-7\pi/12)$
- (d) 10 cis  $(5\pi/6)$
- (e)  $32 cis (-3\pi/4)$
- (f) 81 cis  $(-2\pi/3)$
- (g) (1/81)  $cis(2\pi/3)$
- (h)  $(1/64) cis(\pi/2)$
- 2. (a) 2  $cis(\pi/12)$
- (b)  $2 cis (-\pi/12)$
- (c)  $2 cis (-5\pi/6)$
- (d)  $cis(\pi/2)$
- (e)  $cis(2\pi/3)$
- (f)  $(1/3) cis (-\pi/2)$
- (g) 32  $cis(\pi/2)$
- (h) 80  $cis(\pi)$
- 3. (a)  $1 \sqrt{3}i$ ,  $(1/4) (\sqrt{3}/4)i$ 
  - (b)  $(3\sqrt{2}/2) + (3\sqrt{2}/2)i$ ,  $(\sqrt{2}/6) + (\sqrt{2}/6)i$
  - (c)  $-2\sqrt{2} 2\sqrt{2}i$ ,  $(-\sqrt{2}/8) (\sqrt{2}/8)i$
  - (d)  $(5/2)(-\sqrt{3}+i)$ ,  $(-\sqrt{3}/10)+(1/10)i$
  - (e) 2, 1/2
- (f) (1/2)i, 2i
- 4. (a) 8 cis  $(-\pi/2)$ , -8i
  - (b)  $4\sqrt{2}$  cis  $(3\pi/4)$ , -4 + 4i
  - (c)  $32 cis(-\pi/3), 16 16\sqrt{3}i$
  - (d) 64 cis  $(\pi)$ , -64
  - (e) (1/64) cis (0), 1/64
  - (f) (1/64) cis  $(\pi)$ , -1/64
  - (g) (1/32) cis  $(5\pi/6)$ ,  $-(\sqrt{3})/64 + i/64$
  - (h) (1/16) cis  $(2\pi/3)$ ,  $-1/32 + (i\sqrt{3})/32$
- 5. (a)  $4\sqrt{2}cis(-\pi/4)$ , 4-4i
  - (b) 4 cis  $(\pi)$ , -4
  - (c) 2 cis  $(2\pi/3)$ ,  $-1 + \sqrt{3}i$
  - (d) 27 cis  $(\pi/2)$ , 27i
  - (e) (1/2) cis  $(-\pi/2)$ , (-1/2)i
  - (f) (4/9) cis  $(-5\pi/6)$ ,  $(2\sqrt{3}/9) (2/9)i$
  - (g)  $(ab/9) cis (-\pi/4); (ab\sqrt{2})/18 [(ab\sqrt{2})/18]i$
  - (h)  $|a/(5b)| cis (3\pi/4)$ ;
    - $(-|a|\sqrt{2})/(10|b|) + [(|a|\sqrt{2})/(10|b|)]i$
- 6. (a)  $(2\sqrt{3}/3)$  cis  $(\pi/6)$ ,  $1 + (\sqrt{3}/3)i$ 
  - (b) (16/9) cis  $(-5\pi/6)$ ,  $(-8\sqrt{3}/9) (8/9)i$
  - (c)  $(8\sqrt{3}/3)$  cis  $(-5\pi/6)$ ,  $-4 (i4\sqrt{3})/3$
  - (d)  $(1/16) cis(\pi), -1/16$
  - (e)  $(9\sqrt{3}/2)$  cis  $(\pi/6)$ ,  $(27/4) + (9\sqrt{3}/4)i$

- 6. (f)  $(9\sqrt{3}/2)$  cis  $(2\pi/3)$ ,  $(-9\sqrt{3}/4) + (27/4)i$ 
  - (g) (1024/27) cis (0), 1024/27
  - (h) (1024/27) cis (0), (1024/27)
- 7. (a)  $\overline{w} = a \operatorname{cis}(-\alpha), \ \overline{z} = b \operatorname{cis}(-\beta)$

### Exercise 1.3

1.



2.



3.



- 4. (a)  $r cis(\theta \pi)$
- (b)  $r cis(-\theta)$
- (c)  $r cis(\theta \pi/2)$
- (d)  $r cis (2\theta)$
- 2
- (0.0
- (e)  $r^2$
- (f)  $2r\cos\theta$
- (g)  $(1/r) cis (-\theta)$
- (h)  $\binom{1}{r}$  cis  $(\pi/2 \theta)$
- (i)  $r cis(\pi/2 \theta)$
- (j)  $r cis (2\theta \pi)$
- (k)  $1/r^2$
- (1)  $2r \sin \theta cis(\pi/2)$

5.



6.



7.



8.



9.



Exercise 1.4
1. (a)



(b)



(c)



(d)



(e)



(f)



1. (g)



(h)



(i)



(j)



(k)



**(l)** 



1. (m)



(n)



2. (a) 
$$x = 5$$

(b) 
$$y = -3$$

(c) 
$$x + y = 5$$

(d) 
$$xy = 3$$

$$= 3$$
 (e)  $x^2 + y^2 = 1$ 

(c) 
$$x + y = 5$$
  
(f)  $y = 4x$ 

(g) 
$$(x-2)^2 + y^2 = 16$$

(a) 
$$x = 5$$
 (b)  $y = -3$   
(d)  $xy = 3$  (e)  $x + y = 4$   
(g)  $(x - 2) + y = 16$   
(h)  $(x - 1) + (y - 1) = 4$   
(i)  $(x - 2) + (y - 3) = 4$   
(j)  $(x + 1) + (y + 2) = 16$   
(k)  $y = 1/2$  (l)  $y = x$   
(m)  $y = x$  (n)  $y = 6$ 

(i) 
$$(x-2)^2 + (y-3)^2 = 4$$

(j) 
$$(x+1)^2 + (y+2)^2 = 1$$

(k) 
$$v = 1/2$$

(1) 
$$y = x-2$$

(m) 
$$y = x$$

(n) 
$$y = (-x/3) - 1$$

3. (a)



(b)



(c)



4. (a)



6. (a)



(b)



(b)



(c)



(c)



5. (a)



(e)

(d)



(b)



(f)



(c)



7. (a)



(b)



(c)



(d)



(e)



(f)



(g)



7. (h)



8. (a)



(b)



(c)



(d)



(e)



(f)



9. (a)  $x^2 + y^2 = 1$  or y = 0



- (b)  $x^2 + y^2 = 1$  or x = 0
- (c)  $x^2 + y^2 = 4$  or y = 0



(d)  $(x-1)^2 + (y+1)^2 = 2$  except the point (2,0)



(e) 5x - 2y + 6 = 0



(f)  $x^2 + (y - 1/2)^2 = 1/4$ 



(g) y = 0



9. (h) x = 0



(i)  $(x + 4/3)^2 + (y + 1/3)^2 = (2\sqrt{2}/3)^2$ 



(j)  $(x + 5/4)^2 + (y - 19/8)^2 = 117/64$ 



- 10. (a) min  $\sqrt{2} 1$ , max  $\sqrt{2} + 1$ 
  - (b) min  $-\pi/2$  rad, max 0 rad
- 11. (a)  $0 < |z| \le 10$ 
  - (b)  $-0.64 < \arg(z) \le 2.50 \text{ rad}$
- 12. (a)  $0 < |z| \le \sqrt{2}$ 
  - (b)  $0 < \arg(z) \le \pi/4$
- 13. (a) min 1, max  $2 + \sqrt{2}$ 
  - (b) min -1.25 rad, max  $\pi/4$  rad
- 14. (a) |z-5| = |z-5i|
  - (b)  $|z (1+i)| \le 1$
  - (c)  $-\pi/4 \le \arg(z) \le \pi/4$
  - (d)  $|z-2| \le 3$  and  $|z-6| \le 3$
  - (e) |z (-3+2i)| + |z (7+2i)| = |(7+2i) (-3+2i)|
  - (f)  $|z (2+2i)| \le 8$  and  $\pi/4 \le \arg(z) \le \pi/2$

### Exercise 2.1

- 1. (a)  $cis(\pi/3), cis(\pi), cis(-\pi/3)$ 
  - (b)  $2 cis(\pi/3), 2 cis(\pi), 2 cis(-\pi/3)$
  - (c)  $\sqrt{2} cis (\pi/4), \sqrt{2} cis (3\pi/4), \sqrt{2} cis (-3\pi/4), \sqrt{2} cis (-\pi/4)$
  - (d) cis (0), cis (2 $\pi$ /5), cis (4 $\pi$ /5), cis (-4 $\pi$ /5) cis (-2 $\pi$ /5)
  - (e)  $2 cis (0), 2 cis (2\pi/5), 2 cis (4\pi/5), 2 cis (-4\pi/5), 2 cis (-2\pi/5)$
  - (f) 2 cis (0), 2 cis ( $\pi$ /3), 2 cis ( $2\pi$ /3), 2 cis ( $\pi$ ), 2 cis ( $-2\pi$ /3), 2 cis ( $-\pi$ /3)
- 2. (a) 0.9239 + 0.3827i, -0.9239 0.3827i, -0.3827 + 0.9239i, 0.3827 0.9239i
  - (b)  $\pm 0.9511 0.3090i$ ,  $\pm 0.5878 + 0.8090i$ , -i
  - (c) 1.0696 + 0.2127i, -1.0696 0.2127i-0.2127 + 1.0696i, 0.2127 - 1.0696i

- 2. (d) 1.1236 + 0.2388i, 0.1201 + 1.1424i, -1.0494 + 0.4672i, -0.7686 - 0.8536i0.5743 - 0.9948i
  - (e) 1.0548 0.3839i, 0.8599 + 0.7215i. -0.1949 + 1.1054i, -1.0548 + 0.3839i, -0.8599 - 0.7215i, 0.1949 - 1.1054i
  - (f) -1.5,  $0.75 \pm 1.2990i$
- 4.  $\pm 1$ , ( $\pm 0.5 \pm 0.8660i$ )
- 5.  $w = (-1/2) + (\sqrt{3}/2)i, w^2 = (-1/2) (\sqrt{3}/2)i,$
- 6.  $3 cis(\pi)$ ,  $3 cis(3\pi/5)$ ,  $3 cis(-3\pi/5)$ ,  $3 cis(\pi/5)$ ,  $3 cis(-\pi/5); z = -243$
- 7.  $2 cis(\pi/3), 2 cis(2\pi/3), 2 cis(\pi), 2 cis(-2\pi/3),$   $2 cis(-\pi/3), 2 cis(0); z = 64$
- 8.  $\sqrt{2} \ cis (-\pi/4), \sqrt{2} \ cis (0), \sqrt{2} \ cis (\pi/4),$  $\sqrt{2} \ cis (\pi/2), \sqrt{2} \ cis (3\pi/4), \sqrt{2} \ cis (\pi),$  $\sqrt{2} \ cis (-\pi/2), \sqrt{2} \ cis (-3\pi/4); z^8 = 16$
- 9. n = 5;  $cis(\pm \pi/5)$ ,  $cis(\pm 3\pi/5)$ ,  $cis(\pi)$
- 10. (a)  $-1/2 \pm (\sqrt{3}/2)i$ , 1
  - (b)  $\pm i$ ,  $\pm 2i$ ,  $\pm 1$
  - (c)  $-1/2 \pm (\sqrt{3}/2)i$ ,  $\pm (\sqrt{3})/2 (1/2)i$ , i
  - (d)  $\pm(\sqrt{3}/2) + (1/2)i, \pm\sqrt{3} i, -i, 2i$

### Exercise 2.2

- 3.  $\sin(\pi/6)$  repeated,  $\sin(3\pi/2)$
- 4.  $\cos(\pi/9)$ ,  $\cos(5\pi/9)$ ,  $\cos(7\pi/9)$
- 5.  $\cos(6\theta) = 32 \cos(\theta) 48 \cos(\theta)$

 $+ 18 \cos^{2}(\theta) - 1$ 

- (a)  $\cos(\pi/12)$ ,  $\cos(\pi/4)$ ,  $\cos(5\pi/12)$ ,  $\cos{(7\pi/12)}, \cos{(3\pi/4)}, \cos{(11\pi/12)}$
- (b)  $\cos^{2}(\pi/12)$ ,  $\cos^{2}(\pi/4)$ ,  $\cos^{2}(5\pi/12)$
- 6. (a)  $\cos(5\theta) = 16 \cos(\theta) 20\cos(\theta) + 5\cos(\theta)$ 
  - (b) a = 16, b = -4, c = -4, d = 1
  - (c)  $\cos(2\pi/5)$  repeated,  $\cos(4\pi/5)$  repeated

### Exercise 2.3

- 1. (a)  $2e^{i\pi}$
- (b)  $5e^{i3\pi/4}$
- (c)  $3e^{-i\pi/6}$
- (d)  $\sqrt{2}e^{-i2\pi/3}$
- 2. (a)  $e^0$
- (c)  $2e^{i\pi/3}$
- (d)  $2\sqrt{2}e^{i}$
- (e)  $2\sqrt{3}e^{-i\pi/6}$
- 3. (a)  $cis(\pi/6)$
- (b)  $cis(-5\pi/6)$
- (c)  $e cis(-\pi/4)$
- (d)  $(1/e^2) cis(\pi/3)$
- 4. (a)  $(-1/2) + i(\sqrt{3})/2$ 
  - (b)  $(-\sqrt{2})/2$ ) +  $i(\sqrt{2})/2$
  - (c)  $1/(2e) i(\sqrt{3})/(2e)$
  - (d)  $(-e^2\sqrt{3})/2 + i(e^2)/2$
- 5. (a)  $4e^{-i\pi/3}$
- (b)  $2\sqrt{2}e^{i7\pi/12}$
- (c)  $\sqrt{2}e^{-i3\pi/4}$

- 5. (e) 2
- (f)  $2e^{i\pi/2}$
- (g)  $2\sqrt{2}e^{-i7\pi/12}$
- (h)  $2\sqrt{2}e^{-i7\pi/12}$

- 6. (a)  $12e^{i2\pi/3}$  (b)  $12e^{i2\pi/3}$  (c)  $\frac{\sqrt{2}}{4}e^{i\pi/4}$  (d)  $\frac{\sqrt{2}}{4}e^{i\pi/4}$ 

  - (e)  $\sqrt{\frac{3}{2}}e^{i7\pi/12}$
- 7. (a)  $\frac{\sqrt{2}}{2}cis(\frac{\pi}{6})$  (b)  $2\sqrt{2}cis(\frac{5\pi}{6})$ 

  - (c)  $\frac{\sqrt{2}}{2} cis(-\frac{\pi}{6})$  (d)  $\frac{\sqrt{2}}{2} cis(-\frac{\pi}{6})$
  - (e)  $2\sqrt{2} cis(-\frac{5\pi}{6})$  (f)  $2\sqrt{2} cis(\frac{5\pi}{6})$
- 12. (a)  $x = 0, y = \pi$
- (b)  $x = \ln 2, y = \pi$
- (c) x = ln 2, y = 0
- (d)  $x = 0, y = \pi/2$
- (e)  $x = \ln \sqrt{2}, y = \pi/4$
- 13. (a)  $a = 0, b = \pi$
- (b)  $a = \ln 2, b = \pi$
- (c)  $a = \ln 3, b = \pi$
- 14.  $a = \ln k^2$ ,  $y = \pi$
- 15. Max Re(z) = 2, Min Im(z) = -2



16. Min Re(z) = -1/e, Max Im(z) = 1/e



### Exercise 3.1

- 1. a = 6, b = -4
- 2. k = -1
- 3. a = 2, b = 0, c = 5 4. a = -3, b = 0, c = 7
- 5. (a) (x+1)(x+2)(x+3)(x+4)
  - (b)  $(x+1)^{2}(x+2)^{2}$
  - (c) (x-1)(x-2)(x+3)

  - (d) (x+1)(x-2)(2x-1)(2x+1)(e)  $(x-1)(2x+1)(x^2+1)$
  - (f)  $(x-1)(x-2)(x^2+4)$

6. 
$$(x^3 + 3)(x - 2)(x - 1)(x + 1)$$

7. (a)



(b)



(c)





- 8. (a) -1, -2
- (b) -1, 1
- (c) -1, 0, 1, 1/3, 2
- (d) -1, -1/3, 1/2, 0, 1
- (e)  $\pm 2$ ,  $1 \pm \sqrt{2}$
- (f) -1, 2
- 9. -1, 2/3, 1/2
  - (a) -1/2, 1/3, 1/4
- (b)  $\pm \sqrt{(2/3)}, \pm \sqrt{(1/2)}$
- (c) -2/3, -1/2, 1
- (d) -1, 3/2, 2
- 10. -3, -1/2, 2
  - (a) -2, 1/2, 3
- (b)  $\pm \sqrt{2}$
- (c) -2, -1/3, 1/2
- (d) -1/2, 1/3, 2

### Exercise 3.2

- 1. (a)  $(x^2-2x+8)$ , -23; x, 8x-7
  - (b)  $3x^2/2 7x/4 39/8$ , 57/8; 3x-2, -16x+16

- 1. (c)  $-2x^{2}+4x-7/2$ , 17/2; -2x+4, -9x+9(d)  $6x^{2}+7x^{2}+16x+27$ , 64

$$6x^{2} - 5x + 26, -25x + 114$$

$$3x-4$$
,  $3x^{2}+5x+2$ 

- 2. p = 1, q = 3
- 3. p = 12/5, q = -24/5
- 4. p = -5, q = 7
- 5. p = 3, q = 5
- 6. a = 1, b = -5
- 7. a = -35, b = -23
- 8. a = 1, b = -2
- 9. p = 9, q = -2, r = -11
- 10. p = -8, q = 3, r = 9
- 11. a = 3, b = 4
- 12. a = 6, b = -7
- 13. (b) a = -3, b = -2 (c) 5(2x+3)
- 14. a = 2, b = 1, c = 3; 103

### Exercise 3.3

- 1. (a) (z-i)(z+i)(z+2)
  - (b) (z-2i)(z+2i)(z+2)
  - (c) (2z+i)(2z-i)(z-1)
  - (d) (z-(1-i))(z-(1+i))(z+4)
- 2. a = -4, b = 16; (z 4i)(z + 4i)(z 4)
- 3. a = -2, b = 4; (z-1-i)(z-1+i)(z+2)
- 4.  $a = 6, b = -15; 1 \pm 2i, \pm \sqrt{3}$
- 5. a = 16, b = 4;  $-2 \pm i$ ,  $\pm i/2$
- 6.  $a = 9, b = 2; -1 \pm \sqrt{2}i, \pm i/3$
- 7. (a)  $\pm 1, \pm i\sqrt{2}$
- (b)  $-1, 2, -1 \pm i$ (d)  $\pm 2i$ ,  $2 \pm i$
- (c) -1, 3,  $1 \pm i\sqrt{2}$ 8. (a)  $1, \pm (\sqrt{2})/2 \pm i(\sqrt{2})/2$ 
  - (b)  $\pm 1, \pm (\sqrt{2})/2 \pm i(\sqrt{2})/2$
  - (c)  $\pm 1$ ,  $\pm 1/2 \pm i(\sqrt{3})/2$
  - (d)  $\pm 1, \pm 1/2 \pm i(\sqrt{3})/2$
- 10. a = 4, b = 4, c = 49. a = 6, b = 0, c = 1

### Exercise 4.1

- 1. (a) Not an onto function.
  - (b) Not an onto function.
  - (c) Not an onto function.
  - (d) Is an onto function.
- 2. (a) Many to one function.
  - (b) Many to one function.
  - (c) One to one function.
- 3. (a) One to one function.
  - (b) Many to one function.
  - (c) One to one function.
  - (d) Many to one function.

  - (e) One to one function.
  - (f) Many to one function.
  - (g) One to one function.
  - (h) Many to one function.
  - (i) Many to one function.
  - (j) Many to one function.
- 4. (a)  $(-\infty, 3/2]$  or  $[3/2, \infty)$ 
  - (b)  $(-\infty, -2]$  or  $[-2, \infty)$

  - (c)  $(-\infty, -1)$  or  $(-1, \infty)$
  - (d) ℝ
  - (e)  $(-\infty,2]$  or  $[2,\infty)$
  - (f)  $(-\infty, 5/2]$  or  $[5/2, \infty)$

- 4. (g) [-7, -2] or [-2, 3] (h) [-2, 2] or [2, 6](i) [-2, 0] or [0, 2](j)  $(-\infty, 0]$  or  $[2, \infty)$
- 5. (a)  $[-\pi/4, \pi/4]$ (b)  $[0, 2\pi]$ 
  - (c)  $[-3\pi/4, \pi/4]$ (d)  $[0, \pi/2]$ (e)  $[-\pi, 0) \cup (0, \pi]$
  - (f)  $[-\pi/2 \tan^{2}(4/3), \pi/2 \tan^{2}(4/3)]$

### Exercise 4.2

- 1. (a) Yes (b) No
  - (c) Yes (d) No
- 2. (a) Yes (b) Yes
- (c) Yes (d) Yes
- 3. (a) Yes (b) No
- (c) Yes (d) No
- 4. (a) Yes (b) No
- (c) Yes (d) No 5. (a)  $x^{-}$
- (c) x 66. (a)  $1/x^{2}$
- - (c) (x+1)/(x+2)(d)  $(x^{2}-1)^{2}-1$
- 7. (a)  $e^{1+2x}$ (b)  $1 + 2e^{x}$
- (c)  $e^{e^x}$ (c) 3 + 4x8. (a) 1+x(b) 1/(2-x)
- (c) (x-1)/x(d) x/(2x+1)
- 9. (a) Domain for  $f: \mathbb{R}$ , Range for  $f: \mathbb{R}$ Domain for  $g: \mathbb{R} - \{0\}$ 
  - Range for  $g: \mathbb{R} \{0\}$
  - (b)  $\mathbb{R} \{5\}$
  - (c) 1/(5-x);  $\mathbb{R} \{5\}$ ,  $\mathbb{R} \{0\}$ .
- 10. (a) Domain for  $f: \mathbb{R}$ , Range for  $f: [-5, \infty)$ Domain for  $g: [-1, \infty)$ Range for  $g: [0, \infty)$ 
  - (b)  $[-1, \infty)$
  - (c) x-4;  $[-1, \infty)$ ,  $[-5, \infty)$
- 11.  $(1, \infty)$ ; x,  $(1, \infty)$ ,  $(1, \infty)$
- 12.  $(-\infty, 1] \cup [1, \infty)$ ;  $1 + |x|, (-\infty, -1] \cup [1, \infty)$ ,  $[2, \infty)$
- 13. (a)  $ln(1 + \sin x)$ ; Not a function.
  - (b)  $\sin(\ln x) + 1$ ; Is a function.  $\mathbb{R}^+$ , [0, 2]
- 14. (a)  $5^{25-x}$ ; Is a function.  $(-\infty, 25]$ ,  $\mathbb{R}^+$
- (b) 25 5; Not a function.
- 15. g(x) = x + 5
- 16. g(x) = 1/(x-2)
- 17. g(x) = -1/[2(x+1)]
- 18. f(x) = 5 x19. f(x) = 2x - 320.  $g(x) = (x-3)^{2} + 1$
- 21. g(x) = (x-1)/(3x-1)

### Exercise 4.3

- 1. (a) Yes; domain  $\mathbb{R}^+$ , range  $\mathbb{R}$ 
  - (b) No,  $[-1, \infty)$  or  $(-\infty, -1]$ ;

domain  $\mathbb{R}_0^+$ , range  $[-1, \infty)$  or  $(-\infty, -1]$ 

- 1. (c) No,  $[-1, \infty)$  or  $(-\infty, -1]$ ; domain  $(-\infty, 1]$ , range  $[-1, \infty)$  or  $(-\infty, -1]$ 
  - (d) Yes; domain  $[0, \infty)$  range  $[1, \infty)$
- 2. (a) Yes
- (b) No
- (c) No
- (d) Yes (f) Yes
- (e) Yes
- (g) Yes
- (h) Yes
- (i) No
- (j) No
- 3. (a) (x-3)/2
- (b) -(4+x)/5
- (c)  $4 \pm \sqrt{x}$
- (d)  $2 \pm \sqrt{1-x}$
- (e)  $(-5 \pm \sqrt{x})/2$ 
  - (f)  $x^{n}$
- (g) [ln(x) 1]/2
- (h)  $(e^x 1)/2$
- (i) (x-1)/x
- (j) (1-x)/(x+1)
- (k) x 1
- (1) (1 + x)/x
- 4. (a)  $x \ge -4$  or  $x \le -4$ ;
  - $f'(x) = -4 + \sqrt{x}$ , domain  $x \ge 0$ , range  $y \ge -4$ ;
  - $f^{-1}(x) = -4 \sqrt{x}$ , domain  $x \ge 0$ , range  $v \le -4$
  - (b)  $x \ge 2$  or  $x \le 2$ ;
    - $f^{-1}(x) = 2 + \sqrt{(x-1)}$ , domain  $x \ge 1$ , range  $y \ge 2$
    - $f^{-1}(x) = 2 \sqrt{(x-1)}$ , domain  $x \ge 1$ , range  $y \le 2$
  - (c)  $x \ge 0$  or  $x \le 0$ ;
    - $f^{-1}(x) = \sqrt{(x+1)}$ , domain  $x \ge -1$ , range  $y \ge 0$
    - $f^{-1}(x) = -\sqrt{(x+1)}$ , domain  $x \ge -1$ , range  $y \le 0$
  - (d)  $x \ge -1 \text{ or } x \le -1$ ;
    - $f^{-1}(x) = -1 + \sqrt{(x-1)}$ , domain  $x \ge 1$ , range  $y \ge -1$
    - $f'(x) = -1 \sqrt{(x-1)}$ , domain  $x \ge 1$ ,
    - range  $y \le -1$
  - (e)  $x \ge 0$  or  $x \le 0$ ;
    - $f^{-1}(x) = \sqrt{[(1/x) 1]}$ , domain  $0 < x \le 1$ ,
    - $f^{-1}(x) = -1\sqrt{(1/x) 1}$ , domain  $0 < x \le 1$ , range  $y \le 0$
  - (f) x > 1 or x < 1;
    - $f^{-1}(x) = 1 + \sqrt{(1/x)}$ , domain x > 0,
    - $f'(x) = 1 \sqrt{1/x}$ , domain x > 0, range y < 1
  - (g)  $-\pi/2 \le x \le \pi/2$ ;
    - $f^{-1}(x) = \sin^{-1} x$ , domain  $-1 \le x \le 1$ ,
  - range  $-\pi/2 \le y \le \pi/2$  $(h) 0 \le x \le \pi/2;$ 
    - $f'(x) = (\cos x)/2$ , domain  $-1 \le x \le 1$ , range  $0 \le y \le \pi/2$

- 4. (i)  $-\pi < x < \pi$ ; f  $(x) = \tan^{-1} x$ , domain  $\mathbb{R}$ , range  $-\pi < y < \pi$
- range -n < y < n5. (a)  $\sqrt{(1-e)}$ ;  $(-\infty, 0]$ , [0, 1)(b)  $e^{\sqrt{1-x}}$ ;  $(-\infty, 1]$ ,  $[1, \infty)$ (c)  $\ln(1-x)$ ;  $1-(\ln x)$ 6. (a) (x-1)/2; 4-1/x; (3-1/x)/27. (a) x-1; 1/x-1; 1/(x-1)-1

- 8. (a) Domain of  $f: \mathbb{R}_0^+$ . Domain of  $g: \mathbb{R}_0^+$ .
  - (b) Domain of  $f: \mathbb{R}_0^+$ . Domain of  $g: \mathbb{R}_0^+$ .
- 9. (a) Domain of  $f: (-\infty, 1]$ .

Domain of  $g: \mathbb{R}_0^+$ .

(b) Domain of  $f: (-\infty, 1]$ .

Domain of  $g: \mathbb{R}_0^+$ .

10. Domain of  $f: (-1, \infty)$ . Domain of  $g: (0, \infty)$ .

### Exercise 5.1

1. (a)



(b)



(c)



1. (d)



2. (a)



(b)



(c)



(d)



3. (a)



(b)



(c)



(d)



4. (a)



4. (b)



(c)



(d)



5. (a)



(b)



5. (c)



(d)



(e)



(f)



(g)



5. (h)



(i)



(j)



6. (a)



(b)



6. (c)



(d)



(e)



(f)



(g)



6. (h)



(i)



(j)



# Exercise 5.2 1. (a) (i)



(ii)



1. (b) (i)



(ii)



(c) (i)



(ii)



(d) (i)



1. (d) (ii)



(e) (i)





(f) (i)



(ii)



2. (a) (i)  $|f(x)| = \begin{cases} -(2x+5) & x < -2.5 \\ 2x+5 & x \ge -2.5 \end{cases}$ 



(ii)  $f(|x|) = \begin{cases} -2x+5 & x < 0 \\ 2x+5 & x \ge 0 \end{cases}$ 



(b) (i)  $|f(x)| = \begin{cases} 3-x & x < 3 \\ -(3-x) & x \ge 3 \end{cases}$ 



(ii)  $f(|x|) = \begin{cases} 3+x & x < 0 \\ 3-x & x \ge 0 \end{cases}$ 



2. (c) (i)

$$|f(x)| = \begin{cases} (x+3)(x-3) & x < -3, x > 3 \\ -(x+3)(x-3) & -3 \le x \le 3 \end{cases}$$



(ii) f(|x|) = (x+3)(x-3)



(d) (i)

$$|f(x)| = \begin{cases} x^2 - 3x - 4 & x < -1, x > 4 \\ -x^2 + 3x + 4 & -1 \le x \le 4 \end{cases}$$



(ii)  $f(|x|) = \begin{cases} x^2 + 3x - 4 & x < 0 \\ x^2 - 3x + 4 & x \ge 0 \end{cases}$ 



2. (e) (i)  $|f(x)| = \begin{cases} 4-2^x & x < 2\\ 2^x - 4 & x \ge 2 \end{cases}$ 



(ii)  $f(|x|) = \begin{cases} 2^{-x} - 4 & x < 0 \\ 2^{x} - 4 & x \ge 0 \end{cases}$ 



(f) (i)  $|f(x)| = \begin{cases} -\ln(x+2) & x < -1 \\ \ln(x+2) & x \ge -1 \end{cases}$ 



(ii)  $f(|x|) = \begin{cases} ln(-x+2) & x < 0 \\ ln(x+2) & x \ge 0 \end{cases}$ 



2. (g) (i)

$$|f(x)| = \begin{cases} -\sin x & (2n-1)\pi < x < 2n\pi \\ \sin x & 2n\pi \le x \le (2n+1)\pi \end{cases}$$



(ii)  $f(|x|) = \begin{cases} \sin(-x) & x < 0 \\ \sin(x) & x \ge 0 \end{cases}$ 



(h) (i) 
$$|f(x)| =$$

$$\begin{cases}
-\cos x & \frac{(4n+1)\pi}{2} < x < \frac{(4n+3)\pi}{2} \\
\cos x & \frac{(4n-1)\pi}{2} \le x \le \frac{(4n+1)\pi}{2}
\end{cases}$$



(ii) f(|x|) =



2. (i) (i)  $|f(x)| = \begin{cases} \sqrt{4-x} - 2 & x < 0 \\ 2 - \sqrt{4-x} & x \ge 0 \end{cases}$ 



(ii) (i)  $f(|x|) = \begin{cases} \sqrt{4+x} - 2 & x < 0 \\ \sqrt{4-x} - 2 & x \ge 0 \end{cases}$ 



(j) (i)  $|f(x)| = \begin{cases} e^{-2x} - 2 & x < \frac{-\ln 2}{2} \\ 2 - e^{-2x} & x \ge \frac{-\ln 2}{2} \end{cases}$ 



(ii)  $f(|x|) = \begin{cases} e^{2x} - 2 & x < 0 \\ e^{-2x} - 2 & x \ge 0 \end{cases}$ 



2. (k) (i)  $|f(x)| = \begin{cases} -1/(x-2) & x < 2\\ 1/(x-2) & x > 2 \end{cases}$ 



(ii) (i)  $f(|x|) = \begin{cases} 1/(-x-2) & x < 2\\ 1/(x-2) & x > 2 \end{cases}$ 



(j) (i)  $|f(x)| = \begin{cases} -(1/(2+x)+2) & x < -5/2 \\ 1/(2+x)+2 & x > -5/2 \end{cases}$ 



(ii)  $f(|x|) = \begin{cases} 2+1/(2-x) & x < 0 \\ 2+1/(2+x) & x > 0 \end{cases}$ 



3. (a) (i)



(ii)



(b) (i)



(ii)



(c) (i)



1. (c) (ii)



(d) (i)





4. (a) (i)



(ii)







# (ii)



(c) (i)



(ii)



(d) (i)



## 4. (d) (ii)



# **Exercise 5.3** 1. (a)



(b)



(c)



1. (d)



(e)



(f)



(g)



1. (h)



(ii)



(iii)



(b) (i) y = (x-2)/(x+2)



(iii)



2. (c) (i) y = (1 - 2x)/(x + 1) (ii)





3. (a) a = 2, b = 0, c = 1





4. (a) a = 2, b = -5, c = 1, d = 2 (b)



4. (c)



5. (a) a = 4, b = 1, c = 3, d = -2

(b)



- (c) (-1,0) (4,0)  $(0,-\frac{2}{3})$
- 6. a = k, b = -k, c = -2k, d = 4k, k is a real no.
- 7. a = 2, b = -1, c = 3, d = -1
- 8. a = -1, b = 1, c = 1, d = -2or a = 1, b = -1, c = 1, d = -2
- 9. a = 1, b = -1, c = 1, d = 2, e = 3, f = -3(ab = 1 and ad = -2)
- 10. (a) intercepts (0, 0) asymptotes x = -2, x = 2, y = 1
  - (b) a = -8
  - (c) max point (0, 0)
  - (d)



- 11. (a) intercepts (0, 0); asymptotes y = 0
  - (b) a = 1, b = 1

11. (c) min point (-1, -1/2), max point (1, 1/2)

(d)



12. (a) no intercepts; asymptotes x = 0, oblique asymptote y = 2x

(b) 
$$a = 2$$
,  $b = -800$ 

(c) min point (20, 80), max point (-20, -80)

(d)



13. (a) no intercepts

asymptotes 
$$x = 0$$
,  $x = -3$ ,  $y = 1$ 

(b) 
$$a = 1$$
,  $b = -3$  or  $a = -3$ ,  $b = 1$ 

(c) min point (3, 2/3), max point (-1, -2)

(d)



14.



15.



16.



17.



Exercise 5.4

1. (a) (i) 
$$y = x - 2/(x - 1)$$
 (iii)

(0,2) 10 (2,0) (2,0) (2,0) Oblique Asymptote

1. (b) (i) y = -x + 1 + 4/(x + 2) (iii)



(c) (i) y = x + 1 - 6/(x + 2)



(d) (i) y = x - 3 - 2/(x - 2) (iii)



2. (a) (i) y = x + 1/x



2. (b) (i) y = -x - 1 - 1/x



(c) (i) y = x + 2 + 1/(x - 2)



(d) (i)  $y = x + x/(x^2 - 1)$ 



3. (a) y = x - 4

(b) 
$$b = -4$$
,  $c = -1$ ,  $d = 4$ ,  $n = -4$ 

(c)



### Exercise 6.1

1. (a)



(b)



- 2. (a) < 10, 3, 2 > (b) < 4, -15/2, 11 >
- 3. (a)  $\pm 3\sqrt{43}$
- (b)  $10 \pm 10\sqrt{3}$
- 4. < 8, -8, 8 >
- 5. (a)  $((\sqrt{83})/83) < 5, -3, 7 >$ 
  - (b)  $-10((\sqrt{83})/83) < 5, -3, 7 >$
- 6. (a)  $\sqrt{(17/10)} < -1, 0, -3 >$ 
  - (b)  $((\sqrt{3})/(2\sqrt{17})) < 0, -1, -4 >$
- 7. (a)  $((\sqrt{59})/\sqrt{30}) < 2, -5, -1 >$ 
  - (b)  $(-10/\sqrt{17}) < -1, 0, 4 >$
- 8. (a)  $(5/\sqrt{6}) < -1, 1, 2 >$ 
  - (b)  $(-10/\sqrt{6}) < -1, 1, 2 >$
- 9.  $\pm (1/\sqrt{3}) < 1, -2, 1 >$
- 10.  $\pm 2\sqrt{6}$
- 11. 0 or 1
- 12. (a)  $\alpha = 1, \beta = -1$
- (b)  $\alpha = 1, \beta = 1$
- 14.  $\alpha = -\beta/2$
- 15.  $\alpha = 2$ ,  $\beta = 4$  or  $\alpha = 3$ ,  $\beta = 5$
- 16.  $5\alpha + 4\beta = 45$
- 17. (a) (1/3) < -3, 1, 10 >
  - (b) (1/5) < -8, 24, 52 >
- 18. < -32, -14, 65 >
- 19. (1/2) < 26, -10, -5 >
- 20. (a)  $90^{\circ}$  (b)  $35.3^{\circ}$  (c)  $85.3^{\circ}$  (d)  $52.8^{\circ}$
- 21. (a) perpendicular (b) Neither
  - (c) Parallel, opposite direction
  - (d) Parallel, same direction
- 22. (a)  $(5/\sqrt{13}) < 0$ , 3, 2 > or equivalent.
  - (b)  $(100/\sqrt{2}) < 1$ , 0, 1 > or equivalent.
  - (c)  $(10/\sqrt{5}) < 2$ , 0, 1 > or equivalent.
  - (d) (20/3) < 2, 2, 1 > or equivalent.
- 23.  $a = b = \sqrt{5}$
- 24. a = -9/8, b = 4

- 25.  $a = (\sqrt{2})/2$ ,  $b = \pm (\sqrt{2})/2$
- 27. (a) (1/3) < 2, 2, -1 > (b) < 1, 1, 1 >
- 28. (a) (-5/9) < 2, -1, -2 >
  - (b) -<0,1,2>
- 29. (1/16) < -5, 18,  $-7\sqrt{3} >$
- 30. (1/9) < -2, 16, 28 >
- 31. (a) <1,-1,1>,<0,0,0>
  - (b) <1,-1,1>,<0,0,0>
- 32. (a) < 2, 1, 3 >, < 3, -9, 1 >
  - (b) <3, -9, 1>, <2, 1, 3>
- 33. √(38/51)
- 34.  $(\sqrt{5})/6$
- 35.  $(\sqrt{2})/2$

### Exercise 6.2

- 3. (a) < 5, 4, -7 >
- (b) <-6, -15, -8>
- 4.  $[(\sqrt{3})/3] < 1, -1, 1 >$
- 5.  $(10\sqrt{3}) < 1, -1, -1 >$
- 6. (a) a=1, b=-1
- (b) m = 2, n = 2(d) a = 3, b = -4
- (c) a = 3, b = -27. 40 8.
  - 8. 4 9. 18
- 10. (a)  $(\sqrt{219})/15$
- (b)  $(\sqrt{154})/77$
- 11.  $(\sqrt{2})/10$ 
  - 12. (a)  $10\sqrt{2}$  (b)  $5\sqrt{2}$
- 13. (a)  $2\sqrt{77}$
- (b) √77

### Exercise 7.1

- 1. (a)  $r = \langle 2, 1, 0 \rangle + \lambda \langle 4, 5, -1 \rangle$ 
  - (b)  $r = \langle 0, 0, 5 \rangle + \lambda \langle 0, 2, -1 \rangle$
  - (c)  $r = \langle 1, 1, -1 \rangle + \lambda \langle 1, 2, -1 \rangle$
  - (d)  $r = \langle \sqrt{2}, 0, 1 \rangle + \lambda \langle 0, -1, 1/5 \rangle$
- 2. Equivalent answers including:
  - (a)  $r = \langle 0, -2, 0 \rangle + \lambda \langle 0, -2, -2 \rangle$
  - (b)  $r = <1, 2, 1>+\lambda <-2, -3, 3>$
  - (c)  $r = \langle 1, 2, 5 \rangle + \lambda \langle 3, 1, -2 \rangle$
  - (d)  $r = < 0.5, -0.1, 0.4 > + \lambda < 0.1, 0.4, 0.3 >$
- 3. (a)  $\lambda = 2$
- (b)  $\lambda = -5$
- 4. m = 4
- 5. m = 4
- 6. < 13, -2, 11 > is the only point not on the line
- 7. (a)  $r = <0, 3>+\lambda<1, -2>$ 
  - (b)  $r = <0, -1> + \lambda <3, 4>$
  - (c)  $r = <0, 3>+\lambda <4, -3>$
- 8. Gradient = -3; y = -3x + 6
- 9.  $x = 3 + \lambda$ ,  $y = 1 2\lambda$ ; 2x + y = 7
- 10. (a)  $r = <-1, 2, 0> + \lambda < 1, -3, 0>$ 
  - (b)  $r = \langle 1, 2, 4 \rangle + \lambda \langle 2, -1, -1 \rangle$
  - (c)  $r = <1, -4, 5> + \lambda <1, 1, 3>$
  - (d)  $r = \langle 0, 2, 10 \rangle + \lambda \langle 6, 1, 1 \rangle$
- 11. (a) (x-5)/2 = (y+2)/(-3) = (z+1)/5
  - (b) (x+1)/(-2) = y 5 = (z-3)/(-4)
  - (c) (4x-3)/2 = (3y+2)/(-2) = 4z/5
  - (d) 3(x-1)/2 = -5(y+1) = 5(z+1)/3
- 12. (a) (x+1) = (y+2)/(-3) = (z-2)/6
  - (b) (x + 1)/(-2) = (y + 5)/5 = (z 6)/(-2)
- 13. (a) x = y = z
  - (b) (x+1)/(-6) = (y-3)/(-3) = (z-4)/(8)
  - (c) (x-3) = (z+1)/(-2), y=4
  - (d) x = 10, z = -5

- 14. (a)  $r = \langle \lambda, 2 + 5\lambda, 3 2\lambda \rangle$ 
  - (b)  $r = <0, -1 \lambda, 5 + 3\lambda >$
  - (c)  $r = <(-1 3\lambda)/2, (-1 4\lambda)/2, (-5 + 5\lambda)/3>$
  - (d)  $r = \langle 1 + 5\lambda \rangle / 4$ ,  $(1 6\lambda)/3$ ,  $-(2 3\lambda)/6 \rangle$
- 15.  $r = \langle 1, 2, 3 \rangle + \lambda \langle 5, -2, 0 \rangle$  or equivalent
- 16.  $r = \langle 2, 2, -2 \rangle + \lambda \langle 1, -2, 0 \rangle$  or equivalent
- 17. (a)  $x = a + \lambda u, y = b + \lambda v, z = c + \lambda w$ 
  - (b)  $\lambda = (x a)/u = (y b)/v = (z c)/w$
- 18. (a) Lines intersect at < 13, 17, 4 >.
  - (b) Lines do not intersect.
- 19.  $m \neq -7$
- 20. m = (-3n + 22)/(n 6)
- 21. (a) 90°
- (b) 65.9°
- 22.  $r = \langle 1, 2, 1 \rangle + \lambda \langle 2, 2, 1 \rangle$  or equivalent

### Exercise 7.2

- 1. (a) -2 (b) 4 (c) -34/5 (d)  $\pm 5$
- 2. (a) No (b) No (c) Yes (d) No
- 3. (a)  $\mathbf{r} \cdot < 2, -3 > = -19$ 
  - (b)  $r \cdot < -5$ , 10 > = -50
  - (c)  $r \cdot < 10, 3 > = -16$  or equivalent
  - (d)  $r \cdot < 5, -4 > = 58$  or equivalent
- 4. (a)  $r \cdot < 6, 1 > = 17$ 
  - (b)  $r \cdot < 3, -4 > = -36$
  - (c)  $r \cdot < 8, -3 > = -81$  or equivalent
  - (d)  $r \cdot < 7, 2 > = 31$  or equivalent
- 5. (a)  $r \cdot < 1, 2 > = 20$ 
  - (b)  $\mathbf{r} \cdot < -4, 3 > = 0.7$
  - (c)  $r \cdot < 3$ , 10 > = -155 or equivalent
  - (d)  $r \cdot < -2.7, 0.8 > = 2.27$  or equivalent
- 6. (a)  $r = <0, -6> + \lambda < 2, 1>$  or equivalent
  - (b)  $r = <-2, 0> + \lambda < 8, -5>$  or equivalent
  - (c)  $r = \langle -5, 0 \rangle + \lambda \langle 4, \sqrt{3} \rangle$  or equivalent
- 7. (a) No intersection (b) No intersection
- (c) < 5, 7 >
- (d) <-2, 0>
- 8. (a)  $0^{\circ}$
- (b) 45°

### Exercise 7.3

- 1. (a) -16 (b) -9/8 (c) -3/2 (d) -6/5
- 2. (a) Only < 2, 2, 4 > is on the plane.
  - (b) Both points are not on the plane.
- 3. (a)  $\mathbf{r} \cdot < 4, 0, 3 > = 5$ 
  - (b)  $r \cdot < -3, 7, 10 > = 26$
  - (c)  $r \cdot < 1, 4, 1 > = 33$
  - (d)  $r \cdot < 4, 8, -11 > = -120$
- 4. (a)  $\mathbf{r} \cdot < -1, 0, 2 > = -11$ 
  - (b)  $r \cdot < 3, -2, -2 > = 23$
  - (c)  $r \cdot < -4, 7, 9 > = -17$
  - (d)  $r \cdot < 1, 10, -10 > = -27/4$
- 5. (a) < 0, 4, -8 >
- (b) < 8, 11, -1 >
- (c) <-1, 8, -7>
- (d) <-15/2, 5, -21/4>
- 6. Equivalent answers including:
  - (a) (i)  $r \cdot < 1, 0, 0 > = 0$ 
    - (ii)  $r = \lambda < 0, 1, 0 > + \mu < 0, 0, 1 >$
  - (b) (i)  $r \cdot < 1, 1, 1 > = 8$ 
    - (ii)  $r = \langle 1, 2, 5 \rangle + \lambda \langle 4, 0, -4 \rangle$  $+\mu < 1, -1, 0 >$

- 6. (c) (i)  $r \cdot < 1, -1, 1 > = -1$ 
  - (ii)  $r = <-2, 3, 4>+\lambda <-5, -7, -2>$  $+ \mu < 8, 0, -8 >$
  - (d) (i)  $r \cdot < -67, 11, -12 > = -254$ 
    - (ii)  $r = \langle 4, 10, 8 \rangle + \lambda \langle 2, -2, -13 \rangle$  $+\mu < -1, -5, 1 >$
- 7. Equivalent answers including:
  - (a)  $r \cdot < -4, -2, 1 > = 3$
  - (b)  $r \cdot < -11, -38, 13 > = -72$
- 8. Equivalent answers including:
  - (a)  $r \cdot < 0, 2, 1 > = -1$
  - (b)  $r \cdot < -28, 5, 21 > = 45$
- 9. (a)  $r \cdot < 2, 8, 9 > = -27$ 
  - (b)  $\mathbf{r} \cdot < -6, 3, 1 > = 11$
- 10. Equivalent answers including:
  - (a)  $r \cdot < 6, 0, 1 > = 27$
  - (b)  $r \cdot < 2, -1, 0 > = -13$
- (b) -2y = 5
- 11. (a) 3z = 5
  - (c) -2x 4y + 3z = 10
  - (d) 5x + 2y 6z = 25
- 12. (a)  $r \cdot < 1, 0, 0 > = 5$ 
  - (b)  $r \cdot < 1, 1, 0 > = 1$
  - (c)  $r \cdot < 0, 1, 1 > = 6$
  - (d)  $r \cdot < 2, -3, 4 > = 8$
- 13. < 19, -3, -21 >

### Exercise 7.4

- 1. (a)  $53.1^{\circ}$  (b)  $22.2^{\circ}$  (c)  $20.9^{\circ}$  (d)  $32.6^{\circ}$
- 2. 0.57 or 7.43
- 3. 1.05 or 19.75
- 4.  $r = <3 + 5\lambda, 2 + 2\lambda, -1 8\lambda >$
- 5. (a)  $90^{\circ}$  (b)  $90^{\circ}$  (c)  $76.1^{\circ}$  (d)  $87.9^{\circ}$
- 6. -0.79 or 58.29
- 7. -19.62 or 3.62
- 8.  $m = 2 \pm \sqrt{(n^2 + 3)}$
- 9. 55.5°
- 10.  $r \cdot < 1, -3, 0 > = -1$  or equivalent

### Exercise 7.5

1. (a)  $|r-<\frac{3}{2},4,0>|=3;$ 

$$(x-3)^2 + (y-4)^2 + z^2 = 9$$

(b) 
$$|r-<-1, 2, 2>|=5;$$
  
 $(x+1)+(y-2)+(z-2)=25$ 

(c)  $|r-<-1, 2, -5> | = \sqrt{10}$ ;

$$(x+1)^{2} + (y-2)^{2} + (z+5)^{2} = 10$$

(b)  $|r-<1, 4, -5>|_2=4;$ 

$$(x-1) + (y-4) + (z+5)^{2} = 16$$

- 2.  $2\sqrt{2}$
- 3. <1, 2, 1> or (-1/3)<11, 8, 11>
- 4. (a) Outside
- 5. (a) |r-<-1,2,-3>|=5
  - (b)  $|r < 1/2, 3/2, 1 > | = (5\sqrt{6})/6$
- 6. (a) <1, 6, 0> or (1/3)<-8, -4, 11>(b) <5, -3, -2> or (1/3)<-5, 11, 14>
- 9.  $|r-<-2,2,-3>|=\sqrt{26}$

10. (a) Circle with equation  $y^2 + z^2 = 64$ 

(b) No intersection.

11. (a) Circle with equation  $y^2 + z^2 = 99/4$ 

(b) At the point (1, 0, 5)

Exercise 7.6

1. (a)  $(2\sqrt{357})/17$ 

(b)  $(\sqrt{445})/5$ 

(c)  $(3\sqrt{2310})/35$ 2. k = 7 or -13

(d)  $(3\sqrt{2})/2$ 3. k = 0 or -6

4. (b)  $\sqrt{5}$ 

5. (b)  $(2\sqrt{138})/69$ 

6. (a)  $(3\sqrt{21})/7$ 

(b)  $(13\sqrt{42})/21$ 

7. (a) 2

(b) 2 (d) 5

(c) 1 (e)  $5\sqrt{6}$ 

(f) 6

8.  $2 \pm 10\sqrt{6}$ 

9. -2/3

10. (a)  $\sqrt{10}$ 

(b)  $\sqrt{2}$ 

11. 2/3

12. 3

13. 1/3

14.  $(3\sqrt{14})/14$ 

### Exercise 8.1

1. (a) y = 0



-10

(b) x = 0



(c) y = 4



1. (d) x = -3



(e) y = -2x



(f) y = 1 - x



(g)  $y = x^2$ 



(h)  $y^2 = x$ 







(j) 
$$y = -(x-1)^3$$



(k) 
$$y = x e^x$$



(1) 
$$y = -x + 1/x$$



2. (a) 
$$x^2 + y^2 = 1$$



2. (b) 
$$x^2 + y^2/4 = 1$$



(c) 
$$x^2/4 + y^2 = 1$$



(d) 
$$x^2/9 + y^2/4 = 1$$



(e) 
$$(x-1)^2 + (y-2)^2 = 1$$



(f) 
$$(x-1)^2/4 + (y-4)^2 = 1$$



2. (g) 
$$x^2 + y^2 = 1$$





### Exercise 8.2

- 1. (a) Collide at t = 2
  - (b) Path of A:  $r = \lambda < 1, -2 >$ Path of B:  $r = \langle 2, -9 \rangle + \mu \langle 2, 1 \rangle$ Intersect at < 4, -8 >.
- 2. (a) Do not collide.
  - (b) Path of P:  $r = <0, 1>+\lambda<1, 1>$ Path of Q:  $r = <-1, 0> + \mu < 2, 3>$ Intersect at <-1, 0>.
- 3. (a) < 5 + t, 2 + t, -10 + 5t > m
  - (b) 20.8 sec
- (c) 25.0 sec
- 4. (a) a = -5, b = 10, c = -15(b) 10 am
- 5. (a) 5.1 sec and 6.1 sec after 0800 hrs
- (b) 134.4 m, 5.6 sec after 0800 hours.
- 6. (a) 563.8 m, 0.5 sec before 1 pm
  - (b) 3.9 sec before 1 pm and 2.8 sec after 1 pm
- 7. (a) OA(t) = < 100 + 10t, 90 40t, 80 + 60t > mOB(t) = < -200 + 22t, 150 - 42.4t, -80 + 66.4t > m
  - (b) Collide 25 sec after 0800 hours at < 350, -910, 1580 > m.
- 8. Collision at 6.45 am at < -5, 110, 0.8 > km
- 9. Interception at 4.30 pm at < 225, 105, 4.7 > nm
- 10. A and C will collide at 11 am at < 25, 21, 10 >.
- 11. (a)  $< x 4, y 6, z + 0.15 > \text{ms}^{-1}$ 
  - (b) < 800, -800, -40 > m
  - (c) x = 5, y = 5, z = -0.2
- 12. x = 0.49, y = 3.12, z = -0.12
- 13. (a) No intersection. (b) <-10, 5, 10>(c) < 10, 0, 4 >(d) No intersection.
- 14. The two vehicles do not collide. Their paths do not intersect.
- 15. The two vehicles do not collide. Their paths intersect at < 430, 410, 10.9 > m.

### Exercise 9.1

Please refer to Solution Manual for this text.

### Exercise 9.2

Please refer to Solution Manual for this text.

### Exercise 10.1

- 1. (a) x = 4, y = 1, z = 2
  - (b) x = 1, y = 2, z = 3
  - (c) x = 1, y = 4, z = -2
  - (d) x = 3, y = 3, z = 3
  - (e) x = 2, y = 1, z = 1
  - (f) x = -3, y = -4, z = 6

  - (g) x = 1, y = 2, z = 4
  - (h) x = -1, y = 2, z = -5(i) x = -2, y = 12, z = 2
- 2. (a) x = 5, y = 6, z = 1
  - (b) x = -2, y = 4, z = 3
  - (c) x = 1, y = 2, z = 3(d) x = 1/2, y = 1/2, z = -5/8
- 3. (a) x = 2, y = 4, z = -1
  - (b) x = 3, y = -4, z = 3
  - (c) x = 3, y = 9/2, z = 9/2
  - (d) x = 5/2, y = 1, z = 1/4
- 4. (a) x = 4/5, y = 4/5, z = 4/5
  - (b) x = 5, y = 10, z = 20
  - (c) x = -1, y = -1, z = 1/2
  - (d)  $x = \pm \sqrt{3}, y = \pm \sqrt{2}, z = \pm 1$
- 5. (a) x = 1, y = 2, z = -4

### (b) No solution.

### Exercise 10.2

- 1. A costs \$4.90, B costs \$3.90, C costs \$6.50
- 2. 15 P type, 14 Q type, 13 R type houses
- 3. 70 of A, 100 of B and 120 of C
- 4. NBL final \$32, AFL final \$18, Concert \$27
- 5. (a) 20 of P, 15 of Q, 25 of R
  - (b) 4 of P, 3 of Q, 5 of R
- 6. 10 of A, 15 of B and 18 of C
- 7. x = 70, y = 80, z = 60
- 8. x = 5, y = 1, z = 3
- 9. 500 of 0 1 years, 1700 of 2 8 years and 200 of 9 - 10 years
- 10. (a) 2 red bricks, 8 white bricks, 20 blue bricks
  - (b) 1005 of A, 620 of B, 750 of C
- 11. Any reasonable whole number for n.
- 12. (a) x = 20, y = 40, z = 50
  - (b) Loop flow between the junctions C, D and B.
  - (c) k = -11.2 litres/hour
- 13.  $\langle t+4, -t-1, t \rangle \ t \in \mathbb{R}$
- 14.  $\langle 2t + 13, t + 6, t \rangle$   $t \in \mathbb{R}$

### Exercise 10.3

- 1. (a) Equations 1 & 2 inconsistent.
  - (b) Equation 1 + Equation 2 inconsistent with Equation 3.
  - (c) Equations 1 & 2 inconsistent.
  - (d) Equation 2 Equation 1 inconsistent with Equation 3.

- 2. (a) Equations 1 & 2 are identical.
  - (b) Equation 1 Equation 2 similar to Equation 3.
  - (c) 2 × Equation 1 + Equation 2 similar to Equation 3.
  - (d) Equation 2 Equation 1 similar to Equation 3.
- 3. (a) (i)  $p \neq 0$ , q any no. (ii) p = 0,  $q \neq 1$ (iii) p = 0, q = 1
  - (b) (i)  $p \neq 3$ , q any no. (ii) p = 3,  $q \neq \frac{1}{2}$ (iii) p = 3  $q = \frac{1}{2}$
  - (c) (i)  $p \neq -1$  (ii) p = -1 (iii) p = -1
  - (i)  $p \neq 1$ ,  $p \neq -2$ ; any real number for q (ii) p = 1 and  $q \ne 1$  or p = -2 and  $q \ne 1$ 
    - (iii) p = 1 and q = 1 or p = -2 and q = 1
  - (e) (i)  $p \neq -1$  and  $p \neq -2$ 
    - (ii) p = -1
- (iii) p = -2
- (f) (i)  $p \neq 3$ (iii) p = 3
- (ii) No value for p
- 4. (a) System will always have no solutions.
  - (b) (i) System will always have solutions.
    - (ii)  $k \neq 4, k \in \mathbb{R}$ x = 19/7, y = -11/7, z = 0
    - (iii) k = 4x = (19 - t)/7, y = (5t - 11)/7 $z = t, t \in \mathbb{R}$
  - (c) (i) System will always have solutions.
    - (ii)  $k \neq 7, k \in \mathbb{R}$ x = 0, y = -1, z = 2
    - (iii) k = 7x = (14 - 7t)/19, y = (3 - 11t)/19 $z = t, t \in \mathbb{R}$
  - (d) (i)  $k \neq -5, k \in \mathbb{R}$ 
    - (ii) Not possible.
  - (iii) k = -5

$$x=1-t, y=1-t, z=t, t \in \mathbb{R}$$
  
5.  $k=5/4, 2$  6.  $a=9, b=1$ 

- - (b) Variations possible,

$$\begin{pmatrix}
1 & 3 & 1 & 16 \\
0 & -1 & -2 & -7 \\
0 & 0 & -5 & -10 \\
0 & 0 & -2 & -30+p
\end{pmatrix}$$

- (c) p = 26
- 8. (a) k=1
  - (b) k = -2

$$x_1 = -5 + 4t, x_2 = 8 - 6t, x_3 = t, x_4 = 5 - 4t$$

(c)  $k \neq 1$  and  $k \neq -2, k \in \mathbb{R}$  $x_1 = (k+1)/(1-k), x_2 = (2k+1)/(k-1),$  $x_3 = (2k-3)/(2k-2), x_4 = (k+1)/(k-1)$ 

9. 
$$\frac{1}{3}$$
 $\begin{pmatrix} 2 & 1 & 1 \\ -1 & 1 & 1 \\ -2 & -1 & 2 \end{pmatrix}$ 

### Exercise 11.1

- 1. (a)  $[(-2/\sqrt{x})]/(1-\sqrt{x})^3$ 
  - (b)  $e^{-x}/\sqrt{(1-2e^{-x})}$
  - (c)  $2(\cos x 2\sin 2x)(\sin x + \cos 2x)$
  - (d)  $1/[2(1+x)\sqrt{(1+\ln(1+x))}]$
  - (e)  $-\sec x \frac{2}{e} -\tan x$
  - (f)  $\pi \sin 2(1 + \pi x)$
  - (g)  $(-\pi \sin \pi x)/(1 + \cos \pi x)$

  - (h)  $-2(x-1) e^{-(x-1)^2}$ (i) -8x/(1-x)(j)  $(-\csc (1+\sqrt{x}))/(-2\sqrt{x})$   $(+x) = \sec (e) \tan (e)$
  - (1)  $2x 2^{1+x^2} \ln 2$
- (a)  $2x \sin \omega x + \omega x \cos \omega x$ (b)  $(1/(2\sqrt{x}))e^{\cot x} (\sqrt{x}) \csc x e^{2\cos x}$ (c)  $4(1+2x) \tan \omega x + 2\omega x (1+2x) \sec \omega x$ (d)  $2(x+1) e^{(x+1)^2} \ln \cos x 2 e^{(x+1)^2} \tan x$ (e)  $(\sin x \sin \pi x) e^{-\cos x} + (\pi \sin 2\pi x) e^{-\cos x}$ 

  - (f)  $-2 \sin 2x \sin x + (\sin 4x)/2$
  - (g)  $1/x + (\sec^2 x)/(\tan x)$
  - (h)  $-2xe^{-x^2}$   $(\ln x + 2x) + e^{-x^2}$  (1/x + 2)
  - (i)  $x \ln(1+e^x) + (x^2 e^x)/(2(1+e^x))$
  - (j) 2/x 1/(1+x)
  - (k)  $e^{1+x} [ln 2x ln (1-x)]$  $+e^{1+x}(1/x+1/(1-x)$
  - (1) 2x [ln x 2x 2 ln (1 + x)] $+x^{2}[1/x-2-2/(1+x)]$
- 3. (a)  $\frac{2x(1-2x)+2(1+x^2)}{(1-2x)^2}$ 
  - (b)  $\frac{1}{2\sqrt{x}(1+\sqrt{x})^2}$
  - (c)  $2/(1 + \cos 2x)$
  - (d)  $\frac{2e^{2x} + 4}{(1 + 2e^{-2x})^2}$
  - $\frac{e^{-2\cos x}(2\sin x 4e^{\sin x}\sin x + 2e^{\sin x}\cos x)}{(1 2e^{\sin x})^2}$

3. (f) 
$$[1 - \ln(1 + 2x)]/(1 + 2x)^2$$

(g) 
$$\frac{2x(1+e^{2x})ln(1+e^{2x})-2x^2e^{2x}}{(1+e^{2x})[ln(1+e^{2x})]^2}$$

(h) 
$$\frac{e^{\sin x}(\cos x + e^{-\cos x}\cos x - e^{-\cos x}\sin x)}{(1 + e^{-\cos x})^2}$$

(i) 
$$\frac{e^x}{(1+e^x)^2} \sec^2 \frac{e^x}{(1+e^x)}$$

(j) 
$$\frac{-e^{\left(\frac{x}{x-1}\right)}}{\left(x-1\right)^2}$$
 (k) 
$$\frac{-e^{\left(\frac{\cos x}{1+\sin x}\right)}}{(1+\sin x)}$$

(1) 
$$\frac{x(1-\ln(1+x^2))}{(1+x)^2}$$

4. (a) 
$$\frac{3}{2\sqrt{x}} + 3 + \frac{3\sqrt{x}}{2}, \frac{-3}{4x^{3/2}} + \frac{3}{4\sqrt{x}}$$

(b) 
$$\frac{e^{-x}}{2} (1 - e^{-x})^{-1/2}$$
,  $\frac{-e^{-x}}{4} (1 - e^{-x})^{-3/2} (2 - e^{-x})$ 

(c) 
$$-2 \sin 4x, -8 \cos 4x$$

(d) 
$$1/(1+x)$$
,  $-1/(1+x)^2$ 

(c) 
$$-2 \sin 4x$$
,  $-8 \cos 4x$   
(d)  $1/(1+x)$ ,  $-1/(1+x)$   
 $-\sin x$   $-\sin x$   $\cos x$ ,  $e$   $(\sin x + \cos x)$   
(f)  $2 \tan x + 2 \tan x$ ,  $2 + 8 \tan x + 6 \tan x$   
5.  $4(x+2) \cos x - (x + 4x - 1) \sin x$ 

(f) 
$$2 \tan x + 2 \tan^2 x$$
,  $2 + 8 \tan^2 x + 6 \tan^2 x$ 

5. 
$$4(x+2)\cos x - (x + 4x - 1)\sin x$$

### Exercise 11.2

1. (a) 
$$6(x-1)$$
 (b)  $-2/x$ 

(c) 
$$(x-1)/(2x^{3/2})$$
 (d)  $\pm 1/\sqrt{x}$ 

2. (a) 
$$(2t^2 - 1)/(t^2 + 1)$$
 (b)  $(6t - 1)/(6t^2 + 1)$ 

(c) 
$$(t^2 + 1)/(t^2 - 1)$$
 (d)  $(1 - t)^2/(1 - 2t)^2$ 

Exercise 11.2

1. (a) 
$$6(x-1)$$
 (b)  $-2/x$ 

(c)  $(x-1)/(2x^2)$  (d)  $\pm 1/\sqrt{x}$ 

2. (a)  $(2t-1)/(t+1)$  (b)  $(6t-1)/(6t^2+1)$ 

(c)  $(t+1)/(t-1)$  (d)  $(1-t)/(1-2t)$ 

3. (a)  $\pm x/\sqrt{(4-x)}$  (b)  $\pm (x-2)/\sqrt{(4x-x)}$  (c)  $\pm [\sqrt{(1-x)}]/x$  (d)  $-4x$ 

### Exercise 11.3

1. (a) 
$$-(2x+3y)/(3x+2y)$$

(b) 
$$(2x - y)/(x + 2y)$$

(b) 
$$(2x - y)/(x + 2y)$$
  
(c)  $(1 - y - 2xy)/(x + 2xy)$   
(d)  $-(y + 4x y y)/(x + 4y x)$   
(e)  $-(e + ye)/(e + xe - 1)$ 

(d) 
$$-(y + 4x \quad y \quad )/(x + 4y \quad x$$

(e) 
$$-(e + ye)/(e + xe - 1)$$

(f) 
$$y (4 - y - 2x \ln y)/(x^2 + xy)$$

2. (a) 
$$[2x \cos y + y \cos x]/[x^2 \sin y - \sin x]$$

(b) 
$$\frac{\sin y \sin x - e^{\cos y}}{\cos y \cos x - x \sin y e^{\cos y}}$$

2. (c) 
$$\frac{3 + y \sin xy - 4 \tan y}{4x \sec^2 y - x \sin xy}$$

(d) 
$$y/[e^{y} \sin(e^{y}) - x - \cot(y)]$$
  
(e)  $-y/[x(1+ye^{y})]$   
(f)  $-(y^{2} + 2y - 1)/[x(y+1)]$   
3. (a)  $2x(dx/dt) + 2y(dy/dt)$ 

(e) 
$$-y^{2}/[x^{2}(1+y^{2}e^{y})]$$

(f) 
$$-(y^2 + 2y - 1)/[x(y + 1)]$$

3. (a) 
$$2x (dx/dt) + 2y (dy/dt)$$

(b) 
$$\cos x (dx/dt) - \sin y (dy/dt)$$

(a) 
$$2x (dx/dt) + 2y (dy/dt)$$
  
(b)  $\cos x (dx/dt) - \sin y (dy/dt)$   
(c)  $-2e^{-2x} (dx/dt) + 0.05e^{-2x} (dy/dt)$   
(d)  $2xy (dx/dt) + x^{2} (dy/dt)$ 

(d) 
$$2xy \left(\frac{dx}{dt}\right) + x^2 \left(\frac{dy}{dt}\right)$$

(e) 
$$e^{-x} \sin \pi y (dx/dt) + \pi e^{-x} \cos \pi y (dy/dt)$$

(f) 
$$ln(1 + tan y)(dx/dt)$$

$$+ [(x \sec^2 y)/(1 + \tan y)] (dy/dt)$$
(g)  $(1/y)(dx/dt) - (x/y)(dy/dt)$ 

(g) 
$$(1/y)(dx/dt) - (x/y^2)(dy/dt)$$

(h) 
$$e^{2x}(1-e^{-y})[2(dx/dt)]$$

$$-y = -y^2 + e^{-(dy/dt)}/(1 + e^{-t})$$

$$(i) \frac{-y}{(dy/dt)} / (1 + e^{-y^2})$$

$$+ e^{-(dy/dt)} / (1 + e^{-y^2})$$

$$+ \sin x \sin y \frac{(dy/dt)}{(1 + \cos x)}$$

### Exercise 11.4

1. (a) 
$$2^x \ln(2)$$
 (b)  $x[1 + \ln x]$ 

(c) 
$$2^{2x+1}$$
 ln 2

(c) 
$$2^{2x+1} \ln 2$$
 (d)  $2x^{\ln(x)-1} \ln(x)$ 

(e) 
$$x^{\sin x} \{\cos(x) \ln(x) + [\sin(x)]/x\}$$

(f) 
$$x^{\cos x} \{ [\cos(x)]/x - \sin(x) \ln(x) \}$$

(g) 
$$(1+x)^{x} \{ ln (1+x) + x/(1+x) \}$$

(h) 
$$-(1/x)^{x}[ln(x) + 1]$$

(i) 
$$[(\ln x)^{\ln x}][\ln (\ln (x) + 1]/x$$

2. (a) 
$$2/(1-x)^2$$

(b) 
$$(x^4 + 3x^2 + 2x)/(1-x^3)^2$$

(h) 
$$-(1/x) [ln(x) + 1]$$
  
(i)  $[(lnx)^{lnx}][ln(ln(x) + 1]/x]$   
2. (a)  $2/(1-x)$   
(b)  $(x + 3x + 2x)/(1-x)$   
(c)  $(-x + 2x + 3x - 2x + 1)/(1-x)$   
(d)  $(1+x)(-2x + 6x + 4x)/(1-2x)$   
(e)  $-2(1-2x)(8-x)/(x+2)$   
(f)  $-(2+\sqrt{x})(\sqrt{x}+8)/[2\sqrt{x}(\sqrt{x}-1))]$   
(g)  $1/[(2x)(1-3x)]$   
(h)  $1/[2(1+x)(3x+4)]$   
(i)  $2x/[(1+x)(1-x)]$ 

(d) 
$$(1+x^2)(-2x^4+6x^2+4x)/(1-2x^3)^2$$

(e) 
$$-2(1-2x)(8-x)/(x+2)$$

(f) 
$$-(2 + \sqrt{x})(\sqrt{x} + 8)/[2\sqrt{x}(\sqrt{x} - 1)^4]$$

(g) 
$$1/[(2x)^{1/2}(1-3x)^{3/2}]$$

(h) 
$$1/[2(1+x)^{1/2}(3x+4)^{3/2}]$$

(i) 
$$2x/[(1+x)](1-x)$$

### Exercise 12.1

1. (a) 
$$y = -x+1$$

(b) 
$$y = -2x/3 + 2/3$$
;  $y = 2x/3 - 11/3$ 

(c) 
$$y = -x/2 + \pi/3$$

(d) 
$$y = -x/2 - 3/2$$

2. 
$$y = -x + 1$$

3. 
$$y = -12x + 3$$

4. 
$$(-2,0) & (2,-2)$$

6. 
$$(1,-1) & (-1,1)$$

- 7.  $(1, 2n\pi), (-1, (2n+1)\pi)$ &  $(0, (4n+1)\pi/2)$  for  $n \in \mathbb{Z}$

- 8. (a) y = -2 (b) x = -29. (a) x = -2 (b) y = 0
  - (b) y = 0, y = 3/2
- 10. (a)  $x = \pm \pi \sqrt{(-(4n+1))}$  for  $n \in \mathbb{Z}^{-}$ (b) y = -0.7391

### Exercise 12.2

- 1. 0.1
- 2. -2.5
- 3. (a) 3/20
- (b)  $(\sqrt{3})/10$
- (b)  $-(6\sqrt{3})/\pi$
- 4. (a)  $-(\pi\sqrt{3})/45$ 5. 2 cm s; 0.8 cms
- 6. 0.031 mms ; 0.016 mm s
- 7. 0.0025 m/min
- 8. (a)  $4\pi$  cm s
- (b)  $8\pi$  cm s
- 9. 0.032 cms ; 63.08 cm s
- 10. 0.10 m/min
- 11. -1 cm/min
- 12. 0.0019 cm/min
- 13. −0.031 ms
- 14. 0.052 ms
- 15. 0.18 ms
- 16. -22.86 m/min
- 17. 1/100 rad/sec.
- 18. -1/250 rad/sec
- 19. 2.4 cms
- 20. 50.27 cm/min
- 21. 54.66 km/min
- 22. 11.17 ms
- 23. -11.12 ms<sup>-1</sup>
- 24. 26.8 ms<sup>-1</sup>
- 25. 0.96 cm/min

### Exercise 13.1

- 1.  $x \sin(x) + \cos(x) + C$
- 2.  $e^{x} [\sin(x) + \cos(x)]/2 + C$
- 3.  $2[x \ln(x) x] + C$
- 4.  $xe^{x} e^{x} + x^{2}/2 + C$
- 5.  $\frac{1}{2}e^{x^2} + C$
- 7.  $-[e^{-x}[\sin(x) + \cos(x)]/2 + C$ 8.  $-(x^2 + 2x + 2)e^{-x} + C$ 9.  $-e^{-x}(1+x) x/2 + C$ 10.  $x/3 + x[2 \ln(x) 1]/4 + C$

- 11. (a)  $(\sqrt{x} + 1)^2 + C$  (b)  $e^x + C$ (c)  $(\sqrt{x} + 1)^2 + e^x + C$  (d)  $e^x + C$

### Exercise 13.2

- 1. (a)  $4\sqrt{x} + C$
- (b)  $3(\sqrt{x})/2 + C$
- 1. (a)  $4\sqrt{x} + C$  (b)  $3(\sqrt{x})/2 + C$ (c) -1/[4(2t+1)] + C(d) -(1-4x) + C (e) (x+1)/4 + C(f) -1/x 2/x 4/(3x) + C(g) x/7 + x/2 + x + C(h) t/7 3t/5 + t t + C2. (a) (1+x)/2 + C (b) -(1-2x)/2 + C

- 2. (c)  $-(1-x)^{3-3}/3 + C$  (d)  $4(1+x)^{3-1/2} + C$ (e) (2x+x)/8 + C (f)  $-(2x-x)^{-1/2} + C$ (g) (1-1/x)/4 + C (h)  $2(1+\sqrt{x})/5 + C$ 3. (a)  $8e^{-1/2} + C$  (b)  $-5e^{-1/2} + C$ (c)  $(e^{-1/2})/2 + C$  (d)  $-(e^{-1/2})/3 + C$ (e)  $2e^{-1/2} + 4e^{-1/2} + x + C$ 

  - (f)  $x e^x + C$
  - (g)  $(e^{2x})/2 + 4x 2e^{-2x} + C$
- (g)  $(e^{-x})^{1/2} + 4x 2e^{-x} + C$ (h)  $-(e^{-x})^{1/2} + 4x 4e^{-x} + C$ 4. (a)  $\frac{e^{2x^2}}{16} + C$  (b)  $\frac{-3e^{-x^2}}{4} + C$ 
  - (c)  $\frac{e^{1+x^2}}{2}$  + C (d)  $e^{x^2-4}$  + C
  - (e)  $\frac{e^{x^2+2x}}{2}$  + C (f)  $\frac{(1+e^x)^5}{5}$  + C

  - (h)  $(-1/8)(1+2e^{x})^{-4}$  + C

### Exercise 13.3

- 1. (a) (2/3) ln |1 + 3x| + C
  - (b) (-4/5) ln |2 5x| + C
  - (c)  $x^2/8 x + \ln|x| + C$
  - (d)  $-1/(3x) + 2 \ln |x| + 4x + (4x^2)/3 + C$
  - (e)  $x-2 \ln |x| -1/x + C$
  - (f)  $x + 3 \ln |x| 3/x 1/(2x^2) + C$
  - (g)  $(-7/6) ln |1 3x^2| + C$
  - (h)  $(-1/2) ln |2x^3 1| + C$
- 2. (a)  $(-1/2) \ln |x^2 8x| + C$ 
  - (b)  $3 \ln |x^2 + 3x| + C$
  - (c) ln |1+x| + C
  - (d)  $(-5/4) \ln |1 + 2e^{-2x}| + C$
  - (e)  $(3/4) \ln |1 + 2e^{x^2}| + C$
  - (f)  $(1/2) ln |e^{2x} + e^{-2x}| + C$
  - (g)  $6 \ln |1 + \sqrt{x}| + C$
  - (h) (-3/2) ln | 1 + 1/x | + C
  - (i) ln | ln x | + C
- 3. (a) x + C (b) x/3 + C (c) 2x/3 + C (d)  $\sqrt{x + x/2} + C$

### Exercise 13.4

- 1. (a)  $(\sin 2x)/2 + C$  (b)  $\cos(1-2t) + C$ 
  - (c)  $(\tan (1+2x))/2 + C$
  - (d)  $(-1/\pi) \ln |\cos \pi x| + C$
  - (e) (-3/2) cot (4t/3) + C
  - (f)  $(1/2) \ln |\sin 3x| + C$
  - (g)  $-((\sqrt{2})/\pi) \cot (1 + \pi t) + C$
  - (h)  $(5/3\pi) \tan (\pi x + 1) + x/3 + C$
  - (i)  $(1/(3\pi)) \cot_5 (\pi x) + x/3 + C$
- 2. (a)  $(-1/2) \cos_4 2x + C$ 
  - (b)  $(-1/4) \sin (1-x) + C$
  - (c)  $(3/2) \tan x + C$
  - (d)  $(-1/4) \cot x + C$
  - (e)  $(1 + \sin x) / 4 + C$
  - (f)  $(1-2\cos 2x)^{-3/2}$ (g)  $-(1+\cot x)^{-4/4}$ + C

  - (h)  $2(1 + \tan x)^{-1} + C$
  - (i)  $(1 + \cot 2x)^{-1}/6 + C$
- 3. (a)  $(-1/(2\pi)) \ln |1 \sin 2\pi x| + C$ 
  - (b) (-1/2) ln | 1 + cos (2x + 1) | + C
  - (c)  $(-1/2) \ln |\cos 2x \sin 2\pi x| + C$
  - (d)  $(1/2) \ln |1 + \tan 2x| + C$
  - (e)  $(-3/4) ln | 1 + 2 \cot 2x | + C$
  - (f)  $(-1/2) \ln |1 2e^{\sin x}| + C$
- 4. (a)  $(1/4) \sin^2 2x + C$ 
  - (b)  $(-1/3) \cos^2 2x + C$
  - (c)  $(1/2) \sin 2x + C$
  - (d)  $(1/4) \sin 4x + C$
  - (e)  $\ln \left| \sin 2x \right| + C$
  - (f)  $(1/2) \tan x + C$
- 5. (a)  $(1/2) \tan 2x + C$
- (b)  $(1/10) \tan 2x + C$ 
  - (c)  $(2/3)(1 + \tan x) + C$
  - (d)  $(-1/4) (1 + 2 \tan x)^{-2} + C$
  - (e)  $(\pi + \tan 2x)^{1/2} + C$
  - (f) (-1/2) ln |3-2 tan x| + C
- 6. (a)  $(-1/2) \cot 2x + C$ 
  - (b)  $(-1/(5\pi)) \cot \pi x + C$
  - (c)  $(-2/3)(1 + \cot x)$
  - (d)  $(-1/3)(1 \cot x)$
  - (e)  $(-2/3)(4+3\cot x)^{1/2}+C$
  - (f)  $-ln | 2 + \cot x | + C$
- 7. (a)  $-\cos x + C$ (b)  $(\sin 3x)/3 + C$ 
  - (c)  $(-1/\pi)$  cos  $(\pi x + \pi/6) + C$
  - (d)  $(-1/3) ln |\cos 3x| + C$

- 8. (a)  $\cos x + C$ (b)  $(\sin^2 x)/2 + C$ 
  - (c)  $-ln \left| \cos \sqrt{x} \right| + C$

### Exercise 13.5

- 1. (a)  $[x (\sin 8x)/8]/2 + C$ 
  - (b)  $(1/4)[3x/2 (1/\pi) \sin(2\pi x)]$

$$+(1/8\pi)\sin(4\pi x)$$
] + C

- (c)  $(1/2)\{t (1/4)\sin[2(1-2t)]\}+C$
- (d)  $(1/2)\{x + [\sin(4\pi x)]/(4\pi)\} + C$
- (e)  $[-1/(2\pi)]{\cos(2\pi t) [\cos(2\pi t)]/3} + C$
- (f)  $(2/\pi)\{\sin(\pi x/2) [\sin(\pi x/2)]/3\} + C$
- (g)  $(-1/\pi)\{\cos{(\pi t)} (2/3)\cos{(\pi t)}\}$

$$+ (1/5) \cos^{3}(\pi t) + C$$

- (h)  $(-1/\pi)\{\sin(1-\pi x)-(1/3)\sin(1-\pi x)\}+C$
- (i)  $(2/\pi)\{\cos [1 (\pi x/2)]$

$$-(2/3)\cos^{3}[1-(\pi x/2)] +(1/5)\cos[1-(\pi x/2)]+C$$

2. (a)  $[1/(2\pi)] \sin (\pi t) + C$ 

or 
$$[-1/(4\pi)] \cos(2\pi t) + C$$

- (b)  $[2/(3\pi)] \sin (\pi x/2) + C$
- (c)  $[-1/(9\pi)] \cos^{2}(3\pi x) + C$
- (d)  $[1/(3\pi)] \sin (\pi x) + C$
- (e)  $(1/8) \left[x (\sin 2x)/2\right] + C_5$
- (f)  $(1/\pi)\{[\sin{(\pi t)}]/3 [\sin{(\pi t)}]/5\} + C$
- (g)  $(-1/2)\{[\cos(2x)]/3 [\cos(2x)]/5\} + C$
- (h)  $1/\cos(x) + \cos(x) + C$
- (i)  $-1/\sin(x) \sin(x) + C$

### Exercise 13.6

- 1. (a) (1+2x)/14+C
- (a) (1+2x)/14(b) -(1-2t)/3/2(c) 4(x+1)/3+C (x+1)/3+C (x+1)/3+C (x+1)/3+C (x+1)/3+C (x+1)/3+C (x+1)/3+C(d) 4(1+x)
- (e)  $-(9-4x)^{2/1/2} + C$ (f)  $4(x-8)^{-1/2} / 3 + C$ 2. (a)  $4(4+\sqrt{x})^{-5/2} / 5 16(4+\sqrt{x})^{-3/2} / 3 + C$ 
  - (b)  $2(1+x)^{5/2}/5 2(1+x)^{3/2}/3 + C$ (c)  $(-2/3)(1-x)^{-7/2}$

$$-(2/7)(1-x)^{7/2} + C$$

(d) 
$$(1/32) \left[ 2 \left( 1 + 2x \right)^{11/2} / 11 + 8 \left( 1 + 2x \right)^{9/2} / 9 + 12 \left( 1 + 2x \right)^{1/2} / 7 + 8 \left( 1 + 2x \right)^{1/2} / 5 + 2 \left( 1 + 2x \right)^{1/3} \right] + C$$

- (e) (1/4) [(2x+1) ln | 2x + 1 | + C
- (f) (x+2) 4ln |x+2| 5/(x+2) + C
- (g)  $4(4+x)^{3/2}/3 16(4+x)^{1/2} + C$
- (h)  $2(2 + \sqrt{x} 2 \ln |2 + \sqrt{x}|) + C$

3. (a) 
$$\sin x^2 + C$$

3. (a) 
$$\sin x^2 + C$$
  
(b)  $(-3\cos(x^2 + 1))/2 + C$ 

(c) 
$$(\tan (2x^2)/4 + C$$
 (d)  $-2\ln|\cos x^2| + C$ 

(e) 
$$(\sin(2x^2 + 1)/4 + C)$$

(f) 
$$(-\cos(2+x^3))/3 + C$$

(f) 
$$(-\cos(2+x^3))/3 + C$$
  
4. (a)  $(1+\sqrt{x})/2 + C$  (b)  $(1+\ln|x|)^3/3 + C$ 

(c) 
$$[2x+3+ln|2x+3|]/4+C$$

(d) 
$$1/(1-x) + 3ln |1-x| - (1-x) + C$$

(e) 
$$2(x+9)^{3/2}/3 - 16(x+9)^{1/2} + C$$
  
(f)  $2[(1+\sqrt{x})/2 - 3(1+\sqrt{x})/2]$ 

(f) 
$$2[(1 + \sqrt{x})^3/2 - 3(1 + \sqrt{x})^2/2 + 3(1 + \sqrt{x}) - \ln|1 + \sqrt{x}|] + C$$
  
(g)  $(-1/2)\cos(x^2) + C$ 

(g) 
$$(-1/2) \cos(x^2) + C$$

(h) 
$$2 \sin (\sqrt{x}) + C$$
 (i)  $\cos (1/x) + C$ 

(i) 
$$2 \sin(x) + C$$
 (i)  $\cos(1x) + C$   
(j)  $-\sin(e^x) + C$  (k)  $(1/2) \tan(x^2) + C$   
(l)  $-1/[3\tan(x^2)] + C$ 

(1) 
$$-1/[3\tan(x^3)] + C$$

1. (a) 
$$-2(4-x^2)^{1/2} + C$$

Exercise 13.7  
1. (a) 
$$-2(4-x)^{2} + C$$
  
(b)  $(-1/4)(9-4t)^{2} + C$ 

(c) 
$$\tan^{-1} x + C$$

(d) 
$$(1/15) \tan^{-1}(3x/5) + C$$

2. (a) 
$$-\cos^{-1}(x/2) + C$$

(b) 
$$(-1/2) \cos^{-1}(2x/3) + C$$

(c) 
$$\left[\sin^{-1} x + x \sqrt{(1-x^2)}\right]/2 + C$$

2. (a) 
$$-\cos^{-1}(x/2) + C$$
  
(b)  $(-1/2)\cos^{-1}(2x/3) + C$   
(c)  $[\sin^{-1}x + x\sqrt{(1-x)}]/2 + C$   
(d)  $-2\cos^{-1}(x/2) + (x\sqrt{(4-x)})/4 + C$   
(e)  $-\sqrt{(1-x)} - \sin^{-1}x + C$   
(f)  $-2\sqrt{(16-x)} - \cos^{-1}(x/4) + C$   
3. (a)  $[\tan x]/3 + [\tan x]/5 + C$   
(b)  $(2/2)[3 \tan x + 2]/2 + C$ 

(e) 
$$-\sqrt{(1-x^2)} - \sin^{-1} x + C$$

(f) 
$$-2\sqrt{(16-x^2)} - \cos^{-1}(x/4) + C$$

3. (a) 
$$[\tan^3 x]/3 + [\tan^3 x]/5 + C$$

(b) 
$$(2/3)[3 \tan x + 2]^{1/2} + C$$

### Exercise 13.8

1. (a) 
$$x-2 \ln |x+2| + C$$

(b) 
$$x/2 - (5/4) \ln |2x + 1| + C$$

(c) 
$$-3x/2 - (1/4) \ln |1 - 2x| + C$$

2. (a) 
$$(1/2) ln |(x-1)/(x+1)| + C$$

(b) 
$$(3/14) \ln |2x+1| + (2/7) \ln |x-3| + C$$

(c) 
$$(-13/24) \ln |3x+2| - (9/8) \ln |2-x| + C$$

(d) 
$$(-2/3) \ln |2x-1| + (5/3) \ln |x-2| + C$$

(e) 
$$x - (3/5) \ln |x + 2| + (8/5) \ln |x - 3| + C$$

(f) 
$$(1/2) \ln |x+1| + (1/10) \ln |x-3| - (3/5) \ln |x+2| + C$$

3. (a) 
$$\ln |x/(x-1)| - 2/(x-1) + C$$

(b) 
$$3 \ln |x| + 1/x - 3 \ln |x+1| + C$$

3. (c) 
$$3 \ln |x+1| + 1/(x+1) - 3 \ln |x+2| + C$$

(d) 
$$x - 1/[2(x-1)] + (5/4)ln|x-1|$$

$$-(1/4) \ln |x+1| + C$$

(e) 
$$3/[4(x+2)] + (3/16)ln|x-2|$$

$$+(13/16) \ln |x+2| + C$$

(f) 
$$x - 28/[3(x-3)] + (1/9)ln|x|$$
  
+ (53/9)  $ln|x-3|$  + C

4. (a) 
$$-\ln|x+1| + (1/2) \ln|x^2 + 1| + C$$

(b) 
$$-2 \ln |x+1| + \ln |x^2 + x + 1| + C$$

(c) 
$$ln|x-1| + ln|x^2 + x - 1| + C$$

### Exercise 14.1

1. (a) 
$$(1/2) ln (3/2)$$
 (b)  $-5 ln 2 + 3 ln 3$ 

(c) 
$$4 \ln 3 - 7 \ln 2$$

2. (a) 
$$1 + 5 \ln 2 - 4 \ln 3$$
 (b)  $1 + (3/2) \ln 3 - \ln 2$ 

(c) 
$$-5/2 + 3 \ln 2 + 2 \ln 3$$

3. (a) 
$$-1/2 - 3 \ln 2 + 2 \ln 3$$

(b) 
$$1/8 + (1/4) ln 2 - (1/4) ln 3$$

(c) 
$$5/4 + (3/4) \ln 2 + (1/4) \ln 3$$

4. (a) 
$$3 \ln 2$$
 (b)  $-4 \ln 2$  (c)  $2 \ln 3 - 3 \ln 2$ 

### Exercise 14.2

1. (a) 
$$2[-(2\sqrt{3})/5 + (16\sqrt{2})/15]$$

(b) 
$$2[8ln 2 - 4ln 3 - 1]$$

(c) 
$$2 - \ln 3$$

(d) 
$$-26/3 + (28\sqrt{2})/3$$

(b) 
$$\pi/18$$

### Exercise 14.3

3. (a)  $\pi/12$ 

(c) 8 (d) 
$$1/3$$
 (c)  $2(\sqrt{2}-1)$ 

(d) 
$$e^{1/2} + 1/e - 3/2$$

(c) 
$$5/3 - 2 \ln 2$$

(c) 13/6 (d) 13/6

(d) 
$$8/3 - 2\ln 3 + 2\ln 2$$

5. (a) 
$$\pi/8 + (\sqrt{3})/2 - 1$$

6. 
$$(1/2)[5 + ln (45/64)]$$

(b) 
$$(\sqrt{3})/2 + \pi/2$$

7. 4 8. 8 – 
$$\pi$$

4. (a) 2

8. 
$$8 - \pi/3$$
 9.  $9\pi/4$ 

0. (a) 
$$2.9340$$

(c) 
$$(32\sqrt{2})/3$$

13. (a) 
$$\frac{3}{4} - 2b + \frac{3}{2}b^{2}/2 - b^{3}/4$$

(b) 
$$b^{4}/4 - 3b^{2}/2 + 2b + 51/4$$
  
(c)  $b^{4}/4 - 3b^{2}/2 + 2b + 51/4$ 

(c) 
$$b/4 - 3b/2 + 2b + 51/4$$

### Exercise 14.4

- 1. (a)  $16\pi/15$ (b)  $512\pi/15$ (c)  $16\pi/15$ (f)  $\pi^{2}$ (d)  $\pi/105$
- (c) 154.57 2. (a) 3.35 (b) 342.96
- (d) 17.40 (e) 35.02 (f) 2.47
- (g) 9.42 (h) 3.35 (b) 7.33 3. (a) 1.57 (c) 0.71(d) 9.07 (e) 0.52 (f) 7.87
- (g) 113.10 (h) 201.06 (c) 724.10 (b) 37.70 4. (a) 64.72 (d) 3.14 (e) 40.74

### Exercise 15.1

- 1. (a) 1.09 error 0.7% (b) 1.069 error -1.2%
  - (c) 1.0807 error -0.16%
- 2. (a) 9.0009 error 0.01%
- (b) -68.3344 error 0.0015%
- 3. (a) 0.7469 (b) 0.3103 4. (a) 8.7733 (b) 1.4558
- 5. (a) 6.7965 (b) 1.4035

### Exercise 16.1

- 1. (a)  $y = ln |x^2 + 1| 4$ 
  - (b)  $y = (-1/2)ln|(x-1)(x+1)^3|+2$
  - (c)  $y = -4 \ln |x+1| + 5 \ln |x+2| 4 \ln 2$
  - (d)  $y = -\sin^{-1}(x)$  (e)  $y = \tan^{-1}(2x)$ (f)  $y = \sin^{-1}(x) + x\sqrt{1-x}$
- 2.  $y = -2\pi x + \sin(2\pi x)$  3.  $y = \sin^2(x) 2$ 4.  $y = -12\cos(x) + 4\cos(x) + 4$ 5. y = 6(x+1) 10(x+1) + 2

- 6.  $v = -2x + 2 \ln |2x + 1| + 2$

### Exercise 16.2

- 1. (a)  $y = 100e^{0.02t}$ (c)  $y = 202e^{t} 2$ (e)  $y = [-1 + 501e^{-1}]$
- (b)  $y = 50e^{3t}$ (d)  $y = [4 + 1196e^{-3t}]/3$ 

  - (h)  $y = (1/2)(1 + 399e^{-20t})$
- 2. dy/dt = 0.03y with y(0) = 100 000
- 3. dP/dt = P/3 with  $P(0) = 100\ 000$
- 4. 4 620 981 yrs
- 5. 194.34 yrs, 839.91 yrs
- 6. 1.33 rads
- 8. (a) 2.23%
- 7. 0.46g (b) 0.288%
- 9. (a) k = 0.06729
- (b) 22.9 min
- 10. (a) k = 0.03031
- (b) 81.3 min
- 11.  $I = 2(1 e^{-4t})$
- 12. (b) 69.31 min
- 13. (a) a = 80, b = 25
  - (b) m = 2000, n = 1500, k = 1/25
  - (c) 1.72 min
- (d)  $500 \le Q \le 2000$

- 14. (a) a = 16, b = 62.5
  - (b) m = 1 000, n = 9 000, k = -2/125
  - (c) 111.98 min
- (d)  $1000 < Q \le 10000$

### Exercise 16.3

1. (a) dP/dt = 0.2P(1 - P/1000)

$$= 0.0002P(1000 - P)$$

- (b) dP/dt = 0.1P(1 P/500)
- = 0.0002P(500 P)(c)  $dP/dt = 0.5P(1 - P/10\ 000)$ 
  - $= 0.000 \ 05P(10 \ 000 P)$
- (d) dP/dt = 0.25P(1 P/5000) $= 0.000 \ 05P(5000 - P)$
- 2. (a)  $P = 1000/(1 + 19e^{-2t})$ (b)  $P = 100/(1 + 4e^{-2t})$ 

  - (c)  $C = 50/(1 + 9e^{-0.1t})$ (d)  $\theta = 1000/(1 + 24e^{-0.05t})$
- 3. (a)  $y = 200/(1 + e^{-4t})$ 

  - (b)  $P = 100/(1 + 9e^{-t})$ (c)  $P = 50/(1 + 0.25e^{-0.5t})$ (d)  $x = 100/(1 + 4e^{-0.05t})$
- 4. (a) P = 100/(1 + 3e)
  - (b) 21.97 years
- 5. (a)  $P = 20\ 000/(1 + 99e^{-0.08t})$ 
  - (b) 181.2 years
- 6. (a)  $P = 2000/(1 + 199e^{-10t})$ 
  - (b) 3 weeks
- 7. 394 minutes to reach 49.9g/L
- 8. 11.6 days
- 9. 15.2 hours
- 10. Yes, if the company is able to attract about 338 families on its opening day.
- 11. k = 0.1099
- 12. k = 0.06592
- 13. dP/dt = 0.1P(1 P/1000]
- 14.  $y = (4e^{2t} 3)/(3 2e^{2t})$

### Exercise 16.4

- 1. (a)  $y = ln|x| + x^2/2 + A$ 
  - (b) y = A(x-1) 1
- (c)  $y = \pm \sqrt{(1 Ae^{x^2}/x^2)}$ (d)  $y = Ae^{\cos x}$ 2. (a)  $y = \sqrt{(e^x + 3)}$ (b)  $y = \ln[(1 + x^2)/2]$ (c)  $y^2/2 + y = \ln(x + 1) + 3/2$ 
  - (d)  $y = 3xe^{x-1} 1$  (e) y = x
  - (f)  $y = \pm \sqrt{1/\sin^2 x 1}$

### Exercise 16.5

1. (a) Min (1, 1); y-intercept  $\approx$  (0, 1.7)



(b) Min (1, -1); y-intercept  $\approx (0, -0.3)$ 



2. (a) (i)  $y(10) \approx 5$ 



3. (a) (i) Curve does not have an x-intercept.



(ii) When  $y = 0, x \approx -0.5$ .



- (b) y = x 1 where  $x \neq 2 \cap y \neq 1$
- 4. Slope field has zero gradient for x = 2 and infinite gradient for y = 1; hence C.
  Isocline with gradient -2 is y = -x/2 + 2
- 5. (a)



- (b) Slope field has zero gradient for x = -1, hence, A.
- (c) x = -1/2.
- 6. (a)  $y \approx 0.3$



- 7. (a) dy/dx = 1
- (b) dy/dx = -2
- (c) dy/dx = x
- (d) dy/dx = -y
- (e) dy/dx = xy
- (f) dy/dx = (x 1)/y

### Exercise 17.1

- 1. (a) -0.35 m
- (b) 0.79 s
- (c) 3.64 m
- (d) 3.99 m

- 2. (a)  $3\pi/4$  s, -14.92 ms
- (b) 4.81 ms
- 3. (a)  $0.4637 + (n\pi/2)$  sec. n = 0,1,2,3,...
  - (b) 2 ms
- 4. (a)  $-8 \text{ ms}^{-1}$ 5. (a)  $\pi/3$  s
- (c)  $0, \pi/2, \pi s$
- 6. (a) 8 ms
  - (b) 16/3 m (c) 2 ms
- 7. (a) 0
- (b) 1 sec 2t
- 8. (a)  $x = -2 + 2e^{-x}$
- (b)  $a = 8e^{-a}$
- 9. (a) -21 ms
- (b) 0, 2 m
- 10. (a) 4 ms
- (b) 1.76 ms
- 11. (a)  $-2\pi$  ms
- (b) 1/2 second
- 12. (a) 9/2 ms
- (b) 121/30 m

- 13. (a)  $v = 4(1 e^{-1})$
- (b) 4 ms
- 14. (a)  $v = -5(1 e)_{-kt}$ 
  - (b) -5 ms
- 15. (a)  $v = (g/k)(1 e^{-kt})$  (b) g/k16.  $v = (5/4)\sqrt{(1 e^{-t})}$ ; 5/4 ms -100t
- 17.  $v = 2(1 + e^{-100t})/(1 e^{-1})$ ); 2 ms
- 18.  $v = \pm (1/k)\sqrt{1 e^{-2gk^2x}}$
- 19. (a)  $v = \sqrt{(16 9x^2)}$ 
  - (b)  $-4/3 \le x \le 4/3$ ;  $0 \le v \le 4$
- 20. (a)  $v = 2\sqrt{4x x}$ 
  - (b)  $0 \le x \le 4$ ;  $0 \le v \le 4$
- 21. (a)  $v = 4/\sqrt{x}$ (b) x = (6t + 64)
- 22. (a)  $v = -2(x^2 + 1)$
- (b)  $x = -\tan(2t)$

### Exercise 17.2

- 1.  $x = 10 \sin 2t$
- 2.  $h = 5 \cos(5\pi t)$
- 3.  $y = 4 \sin (3t + \pi/6)$
- 4.  $Q = 10\sqrt{2} \sin(4\pi t \pi/4)$
- 5. (a)  $x = 3 \sin(2\pi t)$
- (b) 3 cm, 1 second
- (c)  $6\pi$  cms
- (d) 0.05, 0.45 seconds.
- 6. (a)  $x = 4 \cos(4\pi t)$ 
  - (b) 0
- (c)  $\pm 8\pi\sqrt{3}$  cms
- 7. (a)  $10 \sin(t + \pi/3)$
- (b)  $0 \le \text{speed} \le 10$ 
  - (c)  $\pm 5\sqrt{3}$  cm
- 8. (a)  $2\pi \text{ cms}^{-1}$  when t = (2n + 1) sec. at x = 0
  - (b)  $0 \text{ cms}^{-1} \text{ when } t = 2n \text{ sec. at } x = \pm 4 \text{ cm}$
  - (c) 32 cm
- 9. (a)  $2\pi/15 \text{ cms}^{-1}$ ;  $2\pi/225 \text{ cms}^{-2}$ 

  - (b) (i)  $x = \pm \sqrt{3}$  cm (ii) x = -1 cm

- 10. (a)  $\theta = 5 \sin(\pi t/12 \pi/6)$ 
  - (b) Min Temp 10 C at 8 pm
  - (c) 16 hours
- 11. (a)  $h = 0.2 \cos(\pi t/14 + \pi/3)$ 
  - (b)  $\pm 0.14 \text{ m}$
- (c) 0.14 m
- 12. (a)  $x = 0.2 \sin(\pi t/14 + \pi/2) + 0.3$
- (b) (i)  $-\pi/70$  (ii) 0 (c) 0.46 mg 13. (a) (i)  $\pm 2.27$  °C/hr (ii)  $\pm 2.61$  °C/hr
  - (b) 66.7%
- (c) 30 C
- 14. (a)  $h = 4 + 0.5 \sin(\pi t/6)$ 
  - (b) 4.5 hours
- (c) 0.13 m/hour
- 15. (a)  $x = \pm 6\sqrt{3} \sin(\sqrt{2} t + \alpha)$ 
  - (b)  $12\sqrt{3} \text{ cms}^{-2}$
- 16. (b) 100 cm
- 17. (b)  $\pm 2\pi\sqrt{105}$
- 18. (a) 2 minutes, 10
  - (b) 2 minutes, 10
- 19. (a) 2 seconds, 10 cm (b)  $\pm 3\sqrt{11}$

### Exercise 18.1

- 1. (a) < 1/t, e,  $e^{-t}$ ,  $e^{-t}$ ,  $e^{-t}$  >; < -1/t, e,  $-2e^{-t}$  +  $te^{-t}$  >
  - (b)  $< 2 \cos 2t, -2 \sin 2t, 2(1 + \tan^2 2t) >$ ;  $<-4 \sin 2t, -4 \cos 2t, 8(1 + \tan^2 2t)>$
  - (c) <-1/t, 1/(t+1), -1/(t-1) >;
  - $< 2/t^3, -2/(t+1)^3, 2/(t-1)^3 >$ (d)  $< -\pi \sin \pi t e^{-\cos \pi t}$ ,  $\pi \sin \pi t e^{-\cos \pi t}$  $\sin \pi t$   $\Rightarrow$ ;  $\pi \cos \pi t e$
- $\pi \cos \pi t e \pi \sin \pi t e$ 2. 2 + 4t; t = -1/2
  - 3.  $0 \le t \le 2\pi$
- 4.  $0, \pi/2, \pi, 3\pi/2, 2\pi$  5. n = 4
- 6.  $(2t+4t^3)/[2\sqrt{(4+t^2+t^2)}]$
- 7.  $\{\sqrt{[5(t+1)^{7}+1]}\}/(t+1)^{2}$
- 8. 4 + 6t : 4
- No solution
- 10.  $\pi/4$ ,  $3\pi/4$ ,  $5\pi/4$ ,  $7\pi/4$
- 11. (a)  $< a, 2 \sin t, 3 \cos t > + c; < 0, 2, -3 >$ 
  - (b)  $< t + \ln t, t \ln t, \ln (1 + t) > + c$ ; <1 + ln 2, 1 - ln 2, ln (3/2) >

- 13. < t t + 1, 4t + 1, t/2 >
- 14.  $< \cos \pi t, t, -1 + 2 \sin \pi t >$
- 15. <-1, t, -t>
- 16.  $<-\sin \pi t$ ,  $1-\cos \pi t$ ,  $\pi t \sin \pi t >$
- 17. 50

### Exercise 18.2

- 1. (a) < 10, 20, -8 > (b) < -8, 18, 34 >
- - (c) < 0, 0, 1 + ln 2 > (d)  $< 0, 1, \pi/4 >$

- 2. (a) < 7, -4, 150 >(b) <-101, 99, 22>
  - (c)  $< 1 + 6\pi, 1 + 2\pi, -2\pi >$
  - (d)  $< 8\pi 1, 1, 8\pi^{3} >$
- 3. (a) < 0, 0, 2 >;  $\sqrt{10}$  ms
- (d) 3.05 m
- 4. (b) 45°, 1 ms
- (c) < 0, 0, 0 >
- 5. (a) 1 sec.
- (b) 0.54 m
- - (c) 1 sec.
- 6. (a) Min of 0 cm when  $t = 2n\pi$  sec.

Max of  $2\sqrt{2}$  cms when  $t = (2n + 1)\pi$  sec.

(b)  $t = 0, \pi/2, \pi, 3\pi/2, 2\pi$  sec.

-1

- 7. (b) x-1=2-y=z-1
- 8. (a) 143.3°
- (b) 2 s, <-16/3, 3, -2>
- (c) x = t/3 4t, y = t + 1, z = -2t + 2
- 9. (a) t = 2 sec. at < 0, -4, 8 >
  - (b) 17.1°
- 10. (a) t = 1 sec. at < 2, 0, 0 >
  - (b) 10.89°

### Exercise 18.3

- 1. P: 0i + 2j,  $x^2 + y^2 = 4$  clockwise;
  - Q: 2i,  $x_2^2 + y_2^2 = 4$  anti-clockwise
  - R: 2i, x + y = 4 clockwise
- 2. (a) In the direction of the positive y-axis;  $2\pi/3$  to the positive x-axis
  - (b)  $-\pi \mathbf{j}$ (c) 1/2
- 3. (a) 1
  - (b)  $x^2 + y^2 = 1/(16\pi^2)$ ; anti-clockwise
- 4.  $\mathbf{a} \cdot \mathbf{v} = 0$  for all t.
- (b)  $4\pi i$
- (c) t = (4n + 3)/8 sec. for n = 0, 1, 2, 3, ...
- (b)  $(-\pi/4)$  **j**
- (c) t = (6n + 2)/3 sec. for n = 0, 1, 2, 3, ...
- 7. (a)  $t = n\pi$  sec. for n = 0, 1, 2, 3, ...
  - (b)  $\binom{n+1/6}{2}\pi$  sec. for n=0, 1, 2, 3, ...
  - (c)  $x_2^2 + (y-2)^2 = 1$ ; clockwise
- 8. (a)  $x^2 + y^2 = 1$ ; anti-clockwise
  - (b)  $\sqrt{2} i + \sqrt{2} j$  or  $-\sqrt{2} i \sqrt{2} j$
  - (c)  $t = (4n + 1)\pi/8$  sec. for n = 0, 1, 2, 3, ...
- 9. No collision
- 10. (a)  $0, \pi/2, \pi, 3\pi/2, 2\pi$ 
  - (b)  $\sqrt{(9-5\cos t)}$
  - (c) Max speed = 3 when  $t = \pi/2$  at (0, 2), and  $t = 3\pi/2$  at (0, -2);

Min speed = 2 when  $t = 0 \& 2\pi$  at (3, 0)

and  $t = \pi$  at (-3, 0).

10. (d)



- 11. (a)  $2\pi$
- (b)  $0, \pi/2, \pi, 3\pi/2, 2\pi$
- (c) At (0, -4) when  $t = (4n + 1)\pi/2, -3i$ ; At (0, 4) when  $t = (4n + 3)\pi/2, 3i$ ;
- (d) At (3, 0) when  $t = 2n\pi, -4j$ ; At (-3, 0) when  $t = (2n + 1)\pi, 4j$ ;
- 12. Period  $2\pi$ ;  $(x-2)^2/9 + (y-4)^2/25 = 1$
- 13. (a) 3 m
- (b)  $\pm 12\pi^{-}i$
- (c) t = n/2 sec. for n = 0, 1, 2, 3, ...
- (d) t = (4n + 3)/8 sec. for n = 0, 1, 2, 3, ...
- 14. (a)  $13\sqrt{2}/2$  cm
  - (b)  $x^2/25 + y^2/144 = 1$ , clockwise
  - (c) r = 5i for t = 2n sec. for n = 0, 1, 2, 3, ...r = -5i for t = (2n + 1) sec. n = 0, 1, 2, 3, ...
  - (d) t = (6n + 5)/6 sec. for n = 0, 1, 2, 3, ...
- 15. (a) Min 3 cms , Max 4 cms
  - (b)  $\pm 3 i$  or  $\pm 4 j$
  - (c)  $t = n\pi \sec_2$  for n = 0, 1, 2, 3, ...
- 16. (a)  $(x-1)^2/9 + (y-2)^2/16 = 1$ , anti-clockwise
  - (b)  $2\sqrt{5}$  cm or  $\sqrt{37}$  cm or  $2\sqrt{2}$  cm or  $\sqrt{5}$  cm
- 17. t = 0.64 sec. at (-2.4, 2.4),  $v_P = 1.8i + 3.2j$ ,  $v_{\rm O} = -1.2i - 0.8j$
- 18. When  $t = \pi$  sec at (1, -2);  $\pi$  radians

### Exercise 18.4

- 1. (a)  $30i + (30\sqrt{3} 9.8t)j$ , 5.6 to the horizontal

  - (b) 95.6° (c) 10.60 sec., 318 m
- 2. (a) 106.07i + 61.97j (b)  $20.7^{\circ}$ 

  - (c) 1.93 s, 5.28 s (d)  $y = x 0.0392x^2$
- 3. (a)  $< 20t, 20t 4.9t^{-} >$ 
  - (b) 45°
  - (c) < 17.25, 13.61 > when t = 0.86 sec.
  - (d) 93.7 m
- 4. (a)  $< 25\sqrt{3}, 25 9.8t >$ ;  $<25\sqrt{3}t$ ,  $25t-4.9t^{2}+150>$ 
  - (b) 8.64 sec.
  - (c)  $-54^{\circ}$  to the horizontal
  - (d) 374.3 m
- 5. (a) < 50, -9.8t >; < 50t, (100 4.9t) >
  - (b) 4.52 sec.
- (c) 225.88 m
- (d) -41.52° to the horizontal

6. (a) 13 ms (b) 2.975 m

(c) 2.75 m

(d) 9.52 ms, -58.31 to the horizontal

7. (a)  $p = 30t_0$ ,  $q = (30\sqrt{3})t_0 - 4.9t_0$ 

(b) 7.07 sec.

(c) 244.90 m up the slope of the hill

8. (a)  $y = x \tan(20^{\circ}) - 4.9x / [400 \cos(20^{\circ})]$ or  $y = -0.0139x^{2} + 0.364x$ 

(b) 18.89 m

(c) 19.10 m

(d)  $t = 0 \sec$ 

9. (a) < 8.09, -18.62 > (b) 20.30 m

(c) 20.34 m

(d) 11.5°

10. (a) 4 sec.

(b) < 72, 17.6 >

12. (b) 3/10

11. 20 sec.;  $40\sqrt{5}$  m

13. (a)  $< 3t^2 - 2, 2t >$ 

(b) < 6t, 2 >

(c) 0, 2/3

14. (a) < 20, 10 >(b) 5

(c) 106.89

15. (a) 48.01 above the horizontal

(b) 26.9 m

(c) 20 m when t = 2 sec.

(d) < 32, 0 > when t = 4 sec.

16. (a) 14 m

(b) < 14, 10 >

(c) 17.20 m

(d) 20.34 m

### Exercise 19.1

1. (a)  $\bar{X} \sim N(100, 12^{2}/20)$ 

(b) 0.3385

(c) 0.0312

2. (a)  $\bar{X} \sim N(72, 8^2/50)$ 

(b) 0.0987

(c) 0.4615

3. (a) n = 74

(b)  $70 \le n \le 79$ 

4. (a) n = 25

(b) 25 < n < 100

5. (a) 3

(b)  $\mu = 3$ ,  $\sigma = (\sqrt{3})/7$ 

(c) 3 < n < 12

6. (a) 18

(b)  $\mu = 18, \sigma = 2/\sqrt{3}$ 

(c) 48 < n < 108

7. (a) Since,  $X \sim Normal$ ,  $\bar{X} \sim N(1.7, 0.026^2)$ 

(b) 0.6497

(c) 0.9728

8. (a) Since,  $X \sim Normal$ ,

 $\bar{X} \sim N(875, 11.7^2/\sqrt{20})$ 

(b) 0.3346

(c) 0.0280

(d)  $n \ge 61$ 

9. (a) Since,  $X \sim Normal$ ,  $\overline{X} \sim N(175, 8.5206)$ 

(b) n = 90

(c) 8

(d) 1812

10. (a) Since,  $X \sim Normal$ ,  $\bar{X} \sim N(163, 9.8387^2)$ 

(b) n = 67

(c) 35

(d) 162

11. (a) 15,  $(\sqrt{42})/2$ ; 15,  $(\sqrt{42})/10$ 

(b)  $5 \le k \le 10$ 

12. (a) 95,  $(\sqrt{19})/2$ ; 95,  $(\sqrt{19})/12$ 

(b)  $3 \le k \le 18$ 

13. (a) 0.6,  $(\sqrt{57})/10$ 

(b) 0.6,  $(\sqrt{19})/20$ 

14. (a) P(X = x) = 1/8 x = 1, 2, 3, ..., 7, 8 $\mu = 4.5$ ,  $\sigma = 2.2913$ 

(b) 4.5, 0.3819

15. (a) P(X = x) = 1/6 x = 1, 2, 3, 4, 5, 6 $\mu = 3.5$ ,  $\sigma = 1.7078$ 

(b) 3.5, 0.4270

(c)  $19 \le n \le 291$ 

### Exercise 19.2

1. (a)  $\overline{X} \sim N(200, 35^2/60)$ 

(b) 0.9866

2. (a)  $\overline{X} \sim N(4.5, 1.2^2/80)$ 

(b) 0.5439

3. (a)  $\overline{X} \sim N(12, 4/3)$  (b) 1/12 (c) 0.6135

4. (a)  $\bar{X} \sim N(28, 108/49)$ 

(b) (i) 1/18 (ii) 0.4110

(c)  $n \ge 82$ 

5. (a) 12 min (b)  $\bar{X} \sim N(12, 49/90)$ 

(c) (i) 3/7 (ii) 0.08767

(d) 0.1660

6. (a) If n < 30, distribution for  $\overline{X}$  is not known, mean = 2, s.d. =  $(\sqrt{3})/(15\sqrt{n})$ .

If  $n \ge 30$ , by the CLT,  $\overline{X} \sim \text{Normal}$ mean = 2, s.d. =  $(\sqrt{3})/(15\sqrt{n})$ .

(b) (i) 0.6824 (ii) 0.8068

The prob. of an event occurring increases as sample size n increases.

(c)  $n \ge 134$ 

(d) 0.9145

7. (a) (i) 0.8286 (ii) 0.9584

(b) n = 240

8. (a) (i) 0.7558 (ii) 0.8364

(b) 127.4 min.

9. (a) (i) 0.4115 (ii) 0.4718

(b) 87.2 min. (b) 0.1490

10. (a)  $\bar{X} \sim N(0.15, 51/2000)$ (c) 29

11. (a)  $\overline{X} \sim N(11/2, 33/200)$ 

(b) (i) 3/10 (ii) 0.8907

(c) 89

12. (a)  $\overline{X} \sim N(7, 91/1000)$ 

(b) (i) 0.3556 (ii) 0.4995 (c) 50

13. (a) P(X = x) = 1/8 for x = 1, 2, 3, ..., 7, 8

(b)  $\overline{X} \sim N(9/2, 7/48)$  (c) 0.9048 (d) 0.7042

14. (a) P(X = x) = 1/6 for x = 1, 2, 3, 4, 5, 6Mean = 7/2

(b)  $X \sim N(7/2, 5/84)$  (c) 0.0202 (d)  $n \ge 12$ 

15. (a) 5,  $3(\sqrt{2})/2$ 

(b) 5, 3/10

(c) 0.9044

(d) 0.6408

16. (a) 
$$P(X = x) = \frac{\binom{7}{x} \binom{3}{3-x}}{\binom{10}{3}}$$
 for  $x = 0, 1, 2, 3$ 

Mean = 21/10

(b)  $\bar{X} \sim N(21/10, 49/5000)$  (c) 0.1562

# Exercise 19.3

1. (a)  $\overline{X} \sim N(20, 0.3)$  (b) N(20, 0.3)

2. (a)  $\overline{X} \sim N(100, (7\sqrt{2}/10)^2)$ 

(b) N(100,  $(7\sqrt{2}/10)^{-}$ )

3.  $\bar{X} \sim N(50, 1/2)$ 

4. (a)  $\bar{X} \sim N(3, 9/400)$  (b) N(3, 9/400)

5. (a)  $\overline{X} \sim N(2, 1/250)$  (b) N(2, 1/250)

- 6. (a) 15,  $(5\sqrt{3})/3$
- (b)  $\bar{X} \sim N(15, 5/48)$
- (b) N(15, 5/48)
- 7. (a)  $0, (\sqrt{15})/5$
- (b) N(0, 1/200)

### Exercise 20.1

- 1. (a) 59.54, 5.7844
- (b) 59.54, 5.7844
- 2. (a) 13.5, 8.7115
- (b) N(13.5, 1.1246)
- 3.  $\overline{X} \sim N(100, 9/8); N(100, 9/8)$
- 4.  $\bar{X} \sim N(10, 1/5000); N(10, 1/5000)$
- 5. (a) 1,  $(\sqrt{30})/6$ ;  $\overline{X} \sim N(1, (\sqrt{30}/60)^2)$ 
  - (b) N(0, 1)
- 6. (a) 5,  $(5\sqrt{3})/3$ ;  $\bar{X} \sim N(5, (\sqrt{3}/6)^2)$ 
  - (b) N(0, 1); approx. N(0, 1)
- 7. (a) 1.1, 0.9434, 0.9595
  - (b) 0.5708
- 8. (a) 11.4, 5.1743, 5.2628
  - (b) 0.9367

### Exercise 20.2

- 1. (a)  $\overline{X} \sim N(33.7, 1.0733^2)$ 
  - (b) (i)  $33.7 \pm 2.76$  (ii)  $33.7 \pm 1.88$
  - (c)  $n \ge 23$
- 2. (a)  $\overline{X} \sim N(201.4, 3.525^2)$ 
  - (b) (i)  $201.4 \pm 5.80$  (ii)  $201.4 \pm 7.65$
  - (c)  $n \ge 48$
- 3. (a)  $\overline{X} \sim N(5.4, 0.12^2)$ 
  - (b) (i)  $5.4 \pm 0.24$  (ii)  $5.4 \pm 0.34$
  - (c)  $n \ge 98$
- 4. (a) (i)  $20.7 \pm 0.57$  (ii)  $20.7 \pm 1.14$ 
  - (b)  $n \ge 46$
- 5. (a) (i) 0.3341 (ii) 0.01606
  - (b) (i)  $485 \pm 5.76$  (ii)  $485 \pm 6.13$
  - (c)  $n \ge 25$

10. (a) 1.645

- 6. (a) 0.9431 (b)  $125 \pm 4.89$  (c)  $n \ge 28$
- 7. (a) 0.1030 (b)  $12 \pm 1.55$  (c) 79.4%
- 8. (a) 0.9605 (b)  $2.5 \pm 0.089$  (c) 88.6%
- 9. (a)  $183 \pm 1.18$  (b) 90.4% (c)  $n \ge 60$
- (b)  $29.8 \le \mu \le 30.2$ 11. (a)  $9.993 \le \mu \le 10.007$ 
  - $9.991 \le \mu \le 10.009$

  - $9.988 \le \mu \le 10.012$
  - (b) No cause.
- 12. (a)  $999.81 \le \mu \le 1000.19$ 
  - $999.77 \le \mu \le 1000.23$
  - $999.70 \le \mu \le 1000.3$
  - (b) No cause.

### Exercise 20.3

- 1. Significant at 10%, 5% and 1% levels.
- 2. Significant at 10% and 5% but not at 1%.
- 3. Significant at 10%, 8% and 2% levels.
- 4. (a) Significant at 5% level.
  - (b) 15.7%
- 5. (a) 5.9% (b) (i)  $n \ge 55$  (ii)  $n \ge 39$
- 6. (a) 2.5% (b) (i)  $n \ge 107$  (ii)  $n \ge 62$

# Index

| absolute value functions               | differentiation, 152                   |
|----------------------------------------|----------------------------------------|
| graph of, 68                           | applications, 164                      |
| angle                                  | exponential functions, 152             |
| between line and plane, 112            | implicit, 158                          |
| between two planes, 113                | logarithmic, 162                       |
| between two vectors, 85                | logarithmic functions, 152             |
| · · · · · · · · · · · · · · · · · · ·  |                                        |
| anti-differentiation, 172              | parametric function, 156               |
| area, trapped between two curves, 199  | rules, 152                             |
| asymptotes, 74                         | trigonometric functions, 152           |
| oblique, 82                            |                                        |
|                                        | echelon form, 138                      |
| Cartesian                              | elementary row operations, 138         |
| equation of line, 101                  | elliptical motion, 261                 |
| equation of plane, 107                 | computed institution, 201              |
| equation of circle, 115                | Factor Thousan 22                      |
|                                        | Factor Theorem, 32                     |
| Central Limit Theorem, 272, 276        | functions, 45                          |
| circular motion, 261                   | codomain, 45                           |
| Complex Conjugate Root Theorem, 41     | composition of, 49                     |
| complex numbers, 1                     | domain, 45                             |
| Argand diagram, 1, 7                   | inverse, 57                            |
| argument, 2                            | many to one, 45                        |
| Cartesian form, 1                      | one to one, 45                         |
| cis form, 2                            | onto, 45                               |
| conjugate, 2                           | range, 45                              |
| exponential form, 26                   | Fundamental Theorem of Algebra, 19     |
| locus, 11                              | Fundamental Theorem of Calculus, 173   |
|                                        | Tundamental Theorem of Calculus, 1/3   |
| modulus, 2                             | G 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| nth roots, 21                          | Gaussian elimination method, 137       |
| ordered pair, 2                        | geometric proofs, using vectors, 129   |
| polar form, 2                          | geometry in 3D space, 133              |
| roots, 2                               | gradient function, 164                 |
| trigonmetry, 23                        | graphs of                              |
| confidence intervals for µ, 294        | absolute value functions, 68           |
| critical region, 304                   | inverses, 63                           |
| •••••••••••••••••••••••••••••••••••••• | rational functions, 74                 |
| de Moivre's Theorem, 4                 | reciprocals, 64                        |
| differential equations, 214            | recipiocais, 04                        |
|                                        | Harrisida Carra van Marka d. 105       |
| $\frac{dy}{dx} = f(x)$ , 214           | Heaviside Cover-up Method, 195         |
| $dx$ $\int (x)^{2} dx$                 |                                        |
| $d^2$ r 2                              | integrals                              |
| $\frac{d^2x}{dt^2} = -\omega^2 x, 245$ | standard, 173                          |
| dt                                     | trigonometric, 178                     |
| $\frac{dy}{dt} = ay + b$ , 216         | integration,                           |
| $\frac{d}{dt} - dy + b$ , 210          | change of variable, 185, 197           |
| du                                     | definite, 196                          |
| $\frac{dy}{dt} = ay(b-y), 222$         | partial fractions, 191, 196            |
| dt                                     | trigonometric substituion, 189         |
| $\frac{dy}{dx} = f(x) g(y), 228$       | interval estimate for μ, 294           |
| $\frac{1}{dx} = f(x)g(y), 228$         | • •                                    |
| separation of variables, 216           | isoclines, 235                         |
| separation of variables, 210           | 11 . 6                                 |
|                                        | level of significance, 304             |
|                                        | logistic differential equation, 222    |
|                                        | logistic function, 222                 |
|                                        |                                        |

Matrices,

| augmented, 137                      | acceleration, 256          |
|-------------------------------------|----------------------------|
| Motion in a plane                   | angle between, 85          |
| circular motion, 260                | cross product, 94          |
| elliptical motion, 260              | components, 84             |
| projectile motion, 266              | direction, 84              |
| ,                                   | direction cosines, 85      |
|                                     | displacement, 256          |
| Numerical integration, 208          | magnitude, 84              |
| mid point rule, 209                 | normal, 95                 |
| rectangular rules, 208              | parallel, 85               |
| Simpson's rule, 212                 | perpendicular, 2           |
| Trapezium rule, 210                 | position, 84               |
| •                                   | projection, 85             |
| partial fractions, 191              | proofs, 129                |
| piecewise defined functions, 68, 70 | scalar product, 85         |
| poles, 74                           | unit, 85                   |
| point estimate for μ, 288           | velocity, 256              |
| polynomial division, 37             | vector equation            |
| projectile motion, 266              | of line, 98                |
| •                                   | of plane, 107              |
| rational functions, 74              | of sphere, 115             |
| rectilinear motion, 239             | scalar product, 105        |
| related rates, 166                  | vector functions, 122, 253 |
| Remainder Theorem, 35               | derivatives, 253           |
|                                     | integrals, 253             |
| sampling distribution               | volume of revolution, 203  |
| of sample means, 272, 289           |                            |
| simulations, 283                    | zeros, 32                  |
| scalar product                      |                            |
| equation of line, 105               |                            |
| scalar projection, 85               |                            |
| separation of variables, 216        |                            |
| shortest distance between           |                            |
| point and line, 118                 |                            |
| point and plane, 119                |                            |
| simple harmonic motion, 246         |                            |
| systems of linear equations, 136    |                            |
| existence of solutions, 145         |                            |
| Gaussian elimination method, 137    |                            |
| infinite solutions, 146             |                            |
| no solution, 147                    |                            |
| unique solution, 137, 146           |                            |
|                                     |                            |
|                                     |                            |
|                                     |                            |

vectors

## The following titles are available from Academic Group Pty Ltd:

### ACADEMIC ASSOCIATES STUDY GUIDES

### Year 11

Accounting & Finance Year 11 ATAR Course Study Guide
Biology Year 11 ATAR Course Study Guide
Chemistry Year 11 ATAR Course Study Guide
Economics Year 11 ATAR Course Study Guide
Human Biology Year 11 ATAR Course Study Guide
Mathematics Applications Year 11 ATAR Course Study Guide
Mathematics Methods Year 11 ATAR Course Study Guide
Mathematics Specialist Year 11 ATAR Course Study Guide
Physics Year 11 ATAR Course Study Guide
Psychology Year 11 ATAR Course Study Guide

### Year 12

Accounting & Finance Year 12 ATAR Course Study Guide
Biology Year 12 ATAR Course Study Guide
Chemistry Year 12 ATAR Course Study Guide
Economics Year 12 ATAR Course Study Guide
Human Biology Year 12 ATAR Course Study Guide
Mathematics Applications Year 12 ATAR Course Study Guide
Mathematics Methods Year 12 ATAR Course Study Guide
Mathematics Specialist Year 12 ATAR Course Study Guide
Physics Year 12 ATAR Course Study Guide
Physics Year 12 ATAR Course Study Guide
Psychology Year 12 ATAR Course Study Guide

# ACADEMIC ASSOCIATES Educational Publishers



### ACADEMIC TASK FORCE REVISION SERIES

### Year 11

Chemistry Year 11 ATAR Course Revision Series Mathematics Applications Year 11 ATAR Course Revision Series Mathematical Methods Year 11 ATAR Course Revision Series Mathematics Specialist Year 11 ATAR Course Revision Series Physics Year 11 ATAR Course Revision Series

### Year 12

Chemistry Year 12 ATAR Course Revision Series Mathematics Applications Year 12 ATAR Course Revision Series Mathematical Methods Year 12 ATAR Course Revision Series Mathematics Specialist Year 12 ATAR Course Revision Series Physics Year 12 ATAR Course Revision Series



### **ACHIEVE SUCCESS AT SCHOOL**

### ATAR COURSE TEXTBOOKS

Mathematical Methods Year 11 Mathematics Specialist Year 11 Mathematical Methods Year 12 Mathematics Specialist Year 12



### **CREELMAN EXAM QUESTIONS**

### Year 12

Accounting & Finance
Biological Sciences
Chemistry
Economics
Geography
Human Biological Sciences
Mathematics
Mathematics

Mathematics Specialist Physics

Politics and Law



# ATAR HELP

If you have found this Guide useful and would like more help please contact ACADEMIC TASK FORCE for information about ACADEMIC GROUP Programs.



- ATAR Course Revision programs in January, April, July and October Holidays.
- Special Study Skills and Essay Writing Courses.
- Weekend small group classes for ongoing help throughout the year.
- ATAR Master Classes for teaching extension.
- Individual tuition in your home.

Ensure your ATAR Success through ACADEMIC TASK FORCE programs.



Enrol in our courses at <u>www.academictaskforce.com.au</u>

# Want to be kept up to date about upcoming courses?

Email <a href="mailto:learn@academictaskforce.com.au">learn@academictaskforce.com.au</a> and tell us your name and address and we will add you to our loyalty member's mailout where you can receive notice of Early Bird enrolment discounts and all our upcoming courses.



Follow us on Facebook for exam and study tips

Visit <u>www.academictaskforce.com.au</u> for insider tips from our specialist ATAR course exam markers and teachers in our <u>video blogs</u> series.

**Contact Us:** 

ACADEMIC TASK FORCE

PO Box 627, APPLECROSS WA 6953

Phone:

(08) 9314 9500

**Email:** 

learn@academictaskforce.com.au

