Homework #2

Mahan Fathi

February 18, 2022

1 Problem 1

The model error plots:

Figure 1: Experiment: cheetah_n5_arch2x250

The models corresponding to the last plot seem to be performing best. The first is trained only for a few number of iterations, i.e. 5. The second one has low network capacity, which apparently is not able to capture all the nuances of the underlying dynamics of the environment.

Figure 2: Experiment: cheetah_n500_arch1x32

Figure 3: Experiment: cheetah_n500_arch2x250

 Table 1: Problem 2 results

 cheetah
 Eval_AverageReturn
 Train_AverageReturn

 AverageReturn
 -32.15
 -167.19

Figure 4: Problem 2 plot

Performance plots:

Figure 5: Training loss for q3_cheetah

Figure 6: Model errors for q3_cheetah

Figure 7: Training loss for $q3_reacher$

Figure 8: Model errors for q3_reacher

Figure 9: Training loss for $q3_obstacles$

MPE: 0.0008743641 **ф**.700 0.10 **þ**.675 0.05 **0.650** 0.00 **0**.625 -0.05**0.600** -0.10 **∮**.575 2 2 4 6 4 6 8 8 Ö 0.7015 --0.7990 -0.7992 0.7010 --0.7994 0.7005 -0.7996 0.7000 **7**0.7998 0.6995 <u>-0.</u>8000 8 2 Ö 2 6 4 0

Figure 10: Model errors for q3_obstacles

4.1 Ensembles

Figure 11: Ablation with regards to the number of ensembles

Figure 12: Eval_AverageReturn with different number of ensembles

4.2 MPC # Action Sequences

Figure 13: Ablation with regards to the number sequence candidates

Figure 14: $Eval_AverageReturn$ with different number of sequence candidates

4.3 Horizon

Figure 15: Ablation with regards to the planning horizon

Figure 16: $Eval_AverageReturn$ with different horizons.

Figure 17: CEM compared to random actions. CEM clearly outperforms random sampling method, since directs the search using some sort of a heuristic. Moreover, more iterations in CEM leads to more accurate results and a thorough search over the planning space.