

Data Models and Mathematical Foundations

Pooja T S

Computer Applications

Data Models and Mathematical Foundations

Set Theory: Sets, Cartesian Products, Relations

Pooja T S

Computer Applications

PES

Introduction to Sets

- ► A **set** is a well-defined collection of distinct objects.
- Objects in a set are called elements or members.
- Notation:
 - $A = \{1, 2, 3\}$
 - "2 ∈ A" means 2 is an element of A.
 - "5 ∉ A" means 5 is not in A.
- Real-world Examples:
 - Set of vowels in English = {a,e,i,o,u}.
 - · Set of months in a year.

PES

Types of Sets - Basic

- ▶ Empty Set (\emptyset): Contains no elements. Example: $\{x x \text{ is a square root of -1 in real numbers}\}.$
- ▶ **Singleton Set**: Contains exactly one element. Example: {India}.
- ► Finite Set: Has a limited number of elements. Example: {1,2,3,4}.
- ▶ Infinite Set: Has unlimited elements. Example: {1,2,3,...}.

Types of Sets - Advanced

- ► Universal Set (U): Set containing all objects under consideration. Example: All natural numbers.
- Subset:

$$A\subseteq B\iff (\forall x\in A,x\in B)$$

- **Equal Sets**: A = B if $A \subseteq B$ and $B \subseteq A$.
- ► Power Set:

$$P(A) = \{all \text{ subsets of } A\}$$

Example: If
$$A = \{1, 2\}$$
, $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

Database and its Applications Set Membership and Standard Sets

- Membership:
 - $a \in A$ means a is an element of A
 - a ∉ A means a is not an element of A
- Standard Sets:
 - \mathbb{N} Natural numbers $\{1, 2, 3, \dots\}$
 - \mathbb{Z} Integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
 - \mathbb{Q} Rational numbers $\frac{p}{a}$, $q \neq 0$
 - ℝ Real numbers
 - ∅ Empty set
 - U Universal set
- **Example:** Is $5 \in \mathbb{N}$? Yes. Is $0 \in \mathbb{N}$? Depends on convention.

Database and its Applications Cartesian Product - Definition

For sets A and B, the Cartesian Product is:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

- Each element is an ordered pair.
- ► Size formula: $|A \times B| = |A| \cdot |B|$.

Cartesian Product - Example

- **Example:**
 - $A = \{1, 2\}, B = \{x, y, z\}$
 - $A \times B = \{(1,x),(1,y),(1,z),(2,x),(2,y),(2,z)\}$
- Note: $A \times B \neq B \times A$.

Relations - Definition

- A **relation** R from set A to set B is any subset of $A \times B$.
- If $A = \{1, 2\}, B = \{a, b\}$, then $A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$.
- Example Relation:

$$R = \{(1,a),(2,b)\} \subseteq A \times B$$

Database and its Applications Relations - Properties

- For a relation R on a set A:
 - Reflexive: $(a, a) \in R$ for all $a \in A$.
 - Symmetric: $(a,b) \in R \Rightarrow (b,a) \in R$.
 - Transitive: $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$.
 - Antisymmetric: $(a,b),(b,a) \in R \Rightarrow a = b$.
- ► These lead to **equivalence relations** and **partial orders**.

Database and its Applications Sets and Relations in Databases

- Mapping to Databases:
 - Set → Domain (e.g., set of all student IDs).
 - Cartesian Product → Possible combinations of attributes.
 - Relation → Table with rows as tuples.
- Example: Students = {Alice, Bob}, Courses = {DBMS, OS} Enrollment Relation ⊆ Students × Courses: {(Alice, DBMS), (Bob, OS)}

Database and its Applications Problem Solving - Sets and Relations

- Q1: Let $A = \{a, b\}, B = \{1, 2, 3\}$. Find $A \times B$.
 - Q2: Define a relation $R \subseteq A \times B$ such that the second element is even.
- Solution:
 - $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$
 - $R = \{(a, 2), (b, 2)\}$

Thank You

Pooja T S
Assistant Professor
Department of Computer Applications
poojats@pes.edu

080-26721983 Extn: 233