Density of States of Hodge Laplacians: Decomposition effects and Sparsification of SC

Tony Savostianov

¹RWTH, Aachen, email: a.s.savostyanov@gmail.com

Abstract:

П

Keywords: density of states, simplicial complexes, sparsification, generalized effective resistance

Introduction

Well, it would be nice to have one. You know, somewhere here, maybe...

Simplicial complexes

Sparsification of Simplicial Complex

Let \mathcal{K} be a simplicial complex with the unit weights of $\mathcal{V}_1(\mathcal{K})$, $W_1=I$. Then $L_1^\uparrow=B_2W_2^2B_2^\intercal$ and the **generalized effective resistance** is given by

$$\mathbf{r} = \operatorname{diag}\left(B_2^{\top} \left(L_1^{\uparrow}\right)^+ B_2\right) = \operatorname{diag}\left(B_2^{\top} \left(B_2 W_2^2 B_2^{\top}\right)^+ B_2\right) \tag{Eqn. 1}$$

then the sparsifying measure is defined as $\mathbf{p} \sim \mathrm{diag}\left(W_2^2\mathbf{r}\right)$ (let us temporary believe that this is correct and we do not need to touch it).

Rem .1 (on the weird-weird-weird matrix inside r) Let us take a further look at GER above. Let SVD $B_2W_2 = USV^{\top}$; then

$$(B_2W_2^2B_2^{\top})^+ = US^{+2}U^{\top}$$
 (Eqn. 2)

and $B_2 = USV^ op W_2^{-1}$. As a result,

$$B_2^{\mathsf{T}} \left(B_2 W_2^2 B_2^{\mathsf{T}} \right)^+ B_2 = W_2^{\mathsf{T}} V S S^{+2} S V^{\mathsf{T}} W_2^{-1}$$
 (Eqn. 3)

Since S and S^+ are diagonal, any permutations of $SS^{+2}S$ are allowed. Then $SS^{+2}S=SS^+$. As a result for GER:

$${f r} = {
m diag}(XX^{ op})$$
 where $X = W_2^{-1}VSS^+ = W_2^{-1}V\Pi = W_2^{-1}V_1$

where V_1 is the orthonormal basis of $\mathsf{im}\ B_2^ op$.

III References

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians: Fast, sparse, and simple. May 2016.