

Gerência de Dados na Web Edição Big Data 2013-02 Prof. Altigran Soares da Silva

Baseado nos Slides do Professor Jeffrey Ullman

Exemplo: Documentos Similares

- ■Documentos contendo texto similar
- Caso simples: documentos idênticos, caractere a caractere
- ■Caso geral: documentos similares, algumas partes iguais, não necessariamente na mesma ordem

Busca por Similaridade

- Muitos problemas de Mineração na Web consistem em encontrar conjuntos similares:
 - Classificação de páginas com conteúdo similar
 - Determinar usuários com gostos similares para filmes
 - Problema dual: filmes que tem os mesmos fans
 - Encontrar imagens de objetos relacionados
- A melhor técnica a aplicar depende:
 - Se procuramos itens altamente similares ...
 - ou procuramos itens com alguma similaridade

Exemplo: Docs. Similares (2)

- ■Dada uma coleção de documentos, por exemplo, a Web, encontrar pares de documentos com texto em comum
 - Sites espelho ou quase espelho
 - Evitar mostrar espelhos no resultado da busca
 - Detecção de Plágio
 - Artigos similares em vários sites de notícias
 - Aplicação: agrupar artigos sobre o mesmo assunto

- Minhashing: Converter grandes conjuntos para assinaturas curtas, preservando a similaridade
- ■LSH (Locality-sensitive hashing) : foco em pares de assinaturas que são provalmente similares

+Shingles (2)

- Assumimos que docs que tem muitos shingles em comum tem um texto similar, mesmo que apareça em ordem diferente
- ■Cuidados: escolher k suficientemente grande, senão a maior parte dos documentos terão todos os shingles
 - k = 5 para documentos curtos; k=10 para documentos longos

Shingles

k-shingle (ou k-grama) de um documento é uma sequencia de k caracteres que aparecem no documento

- \blacksquare k=2; doc = abcab
 - Conjunto de 2-shingles = {ab, bc, ca}
 - Bag de 2-shingles = {ab, bc, ca, ab}
- ■Um documento pode ser representado por um conjunto de k-shingles

+Shingles (3)

- ■Para comprimir shingles longos, pode-se representá-los com em um hash, por exemplo, de 4 bytes
- ■Um documento será representado por um conjunto de valores de hash de seus k-shingles.
- ■Dois documentos poderiam ter valores de hash em comum mesmo que não tivessem shingles em comum. Isso seria raro.

- Similaridade de Jaccard

■Muitos problemas de similaridade podem ser descritos como o problema de se encontrar subconjuntos com uma intersecção significativa em um conjunto universal

- **■**Exemplos:
- Documentos representados por shingles ou assinaturas de shingles
- Produtos ou clientes similares

Conjuntos e Matrizes Booleanas

- ■Linhas = elementos do conjunto universal
- ■Colunas = conjuntos
- ■Linha e, coluna S é 1 sss e ocorre em S
- Matriz tipicamente esparsa

■Sejam dois conjuntos C₁ e C₂ a similaridade de Jaccard entre C_1 e C_2 e dada por

$$\operatorname{Sim} (\mathbf{C}_1, \mathbf{C}_2) = |\mathbf{C}_1 \cap \mathbf{C}_2| / |\mathbf{C}_1 \cup \mathbf{C}_2|$$

Sim
$$(C_1, C_2) = 3/8$$

Conjuntos e Matrizes Booleanas (2)

	C_1	C_2	C_3	C ₄
p	1	0	1	0
q	1	0	0	1
r	0	1	0	1
S	0	1	0	1
t	0	1	0	1
u	1	0	1	0
٧	1	0	1	0

Similaridade entre Colunas

- ■Na realidade, pode não ser vantajoso representar os dados por um matriz booleana
- Matrizes esparsas são geralmente melhor representadas pela lista de suas posições que não têm valores zero
- Mas, conceitualmente, a matriz é uma abstração útil.

Jaccard dos conjuntos de linhas que têm 1.

- Sim (C_1, C_2)

- = 2/5 = 0.4

Similaridade entre Colunas (2)

■ Para 2 colunas C₁ e C₂, 4 tipos de linhas

	C_1	C,
a	1	1
b	1	0
С	0	1
d	0	0

■Note que: Sim $(C_1, C_2) = a/(a+b+c)$.

Similaridade entre Colunas (3)

- 1: Computar assinaturas das colunas, ou seja, sumários das colunas
- ■2: Examinar pares de assinaturas para encontrar assinaturas similares
 - Existe uma correlação entre similaridade de assinaturas e colunas
- ■3: Verificar se as colunas com assinaturas similares são realmente similares

- ■Comparar todos os pares de assinatura pode tomar muito tempo e/ou muito espaço
- Aplicação do Locality-Sensitive Hashing.
- ■Estes métodos podem gerar falsos negativos e até mesmo falsos positivos
 - Verificação adicional pode ser necessária

Minhashing

- ■Seja h(C) um função de hashing que retorna a primeira linha onde a coluna C tem valor 1, em uma permutação qualquer das linhas da matriz.
- A assinatura é construída usando várias funções diferentes deste tipo, ou seja, com várias permutações aleatórias

Assinaturas

- ■Ideia principal: usar hashing para gerar uma representação compacta ou assinatura Sig (C) de cada coluna C, tal que:
 - ■Sig(C) é compacta o suficiente para que se possa representar na MP uma assinatura de cada coluna
 - \blacksquare Sim(C₁, C₂) pode ser determinada pela "similaridade" entre Sig (C_1) e Sig (C_2) .

Exemplo Minhashing

Matriz de Entrada

1	4	3		1	0	1	(
3	2	4		1	0	0	1
1 3 7	1	7		0	1	0	1
6	3	6		0	1	0	1
2	6	1		0	1	0	1
2	7	2		1	0	1	(
4	5	5	İ	1	0	1	(

Matriz de assinaturas M

2	1	2	1
2	1	4	1
1	2	1	2

Propriedade importante

- ■A probabilidade de $h(C_1)=h(C_2)$, considerando todas as permutações de linhas é uma aproximação de $Sim(C_1, C_2)$
- ■Ambas são a /(a +b +c)!
- ■Porque?
 - Verifica as colunas permutadas C₁ e C₂ até encontrar 1.
 - Se é uma linha tipo a então $h(C_1)=h(C_2)$. Se é uma linha tipo b ou c, então não.

Similaridade de Assinaturas

A similaridade de assinaturas é fração das funções de hash em que elas concordam.

Exemplo Minhashing

Matriz de Entrada

I Iddiz de Entra								
1	4	3		1	0	1	C	
3	2	4		1	0	0	1	
7	1	7		0	1	0	1	
6	3	6		0	1	0	1	
2	6	1		0	1	0	1	
5	7	2		1	0	1	C	
4	5	5		1	0	1	C	

Matriz de Assinaturas M

2	1	2	1
2	1	4	1
1	2	1	2

Similaridades:

	1-3	2-4	1-2	3-4
Coluna	0.75	0.75	0	0
Assin.	0.67	1.00	0	0

*Assinaturas Minhashing

- ■Seja um número qualquer (ex., 100) de permutações aleatórias de linhas
- A assinatura de conjunto/coluna C, Sig(C), pode ser vista como um vector.
- Sig(C)[i] = é a primeira linha da coluna C que tem 1 na i-ésima permutação

Assinaturas Minhashing (2)

Matriz de Entrada 0 0 1 0 Elementos possíveis 0 0 0 0 0 0 0 0 0 Conjuntos

Matriz de Assinaturas M

2	1	2	1	Pe				
2	1	4	1	Permutações				
1	2	1	2	ções				
Conjuntos								

Implementação

- ■Suponha um bilhão de linhas
- ■É difícil gerar um permutação aleatória de l até l bilhão
- A representação de cada permutação aleatória demanda 1 bilhão de entradas
- Acesso às linhas nas ordens permutadas leva a thrashing
 - Thrashing = uso inadeguado da mem. virtual

Implementação – (2)

- Aproximação razoável da permutação de linhas: tomase 100 (?) funções de hashing independentes (h₁, $h_2, ..., h_n$
- Para cada coluna C e cada função h; manter uma entrada M(i,C).
- Intenção é fazer com que M(i, c) seja o menor valor de h_i(r) para o qual a coluna C tem l na linha r.
- Ou seja, h_i(r) dá a ordem das linhas na i-ésima permutação.

Implementação - (3)

para cada linha r

para cada coluna C

se C tem 1 na linha r

para cada função de hash h_i faça se $h_i(r)$ tem o valor menor que M(i, C)então $M(i, C) := h_i(r);$

Sig1 Sig2

h(1) = 11 3 g(1) = 3

Linha C1 2 3 4 5

$$h(2) = 2$$
 1 2 0 0 $h(3) = 3$ 1 2 $g(3) = 2$ 2 0 $h(4) = 4$ 1 2 $g(4) = 4$ 2 0

$$h(x) = x \mod 5$$

$$g(x) = 2x+1 \mod 5$$

g(4)=4

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

	Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
	0	1	0	0	1	1	1
[1	0	0	1	0	2	4
	2	0	1	0	1	3	2
	3	1	0	1	1	4	0
	4	0	0	1	0	0	3

	Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
-	0	1	0	0	1	1	1
	1	0	0	1	0	2	4
	2	0	1	0	1	3	2
	3	1	0	1	1	4	0
	4	0	0	1	0	0	3

	S_1	S_2	S_3	S_4	
h_1	1	∞	∞	1	h_1
h_2	1	∞	∞	1	h_2

	S_1	S_2	S_3	S_4
h_1	1	∞	2	1
h_2	1	∞	4	1

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

	S_1	S_2	S_3	S_4		S_1			
h_1	1	3	2	1	h_1	1	3	2	1
h_2	1	2	4	1	$egin{array}{c} h_1 \ h_2 \end{array}$	0	2	0	0

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

+

Row	S_1	S_2	S_3	S_4
0	1	0	0	1
1	0	0	1	0
2	0	1	0	1
3	1	0	1	1
4	0	0	1	0

 $SIM(S_1, S_4) = 2/3$

 $SIM(S_1,S_4)=1$

†Implementação (4)

- ■Em geral, os dados são fornecidos em colunas e não em linhas
- Ex., colunas = documentos, linhas = shingles.
- ■Se este for o caso, a matriz pode ser ordenada por linha
- ■Compute $h_i(r)$ será computada somente uma vez para cada linha

- Mesmo que todas as assinaturas ou objetos possam ser colocados na memória, a comparação todos os pares de assinaturas ou objetos é quadrático no número de colunas.
- ■Ex: 10⁶ colunas → 5*10¹¹ comparações
- ■Considerando que cada comparação toma l micro-segundo, a operação levaria 6 dias.

- ■Idéia Geral: Usar uma função f(x,y) que diz se x e y formam um par candidato, ou seja, um par de elementos que deve ter sua similaridade verificada
- Para matrizes minhash: Armazenar as colunas em um hashing. As colunas que caem em um mesmo elemento formam pares candidatos.

⁺ Geração de Candidatos

- ■Determinar um limiar de similaridade ■0 < s < 1
- ■Um par de colunas C,D é um *par candidato* se as suas assinaturas convergem em pelo menos um fração *s* das linhas
- ■Ou seja, M(i, C) = M(i, D) para pelo menos uma fração s dos valores de i.

⁺LSH para Assinaturas Minhashing

- ■Idea geral: gerar vários valores de hash para as colunas da matriz de assinaturas M
- Deve-se garantir que apenas colunas similares sejam armazenadas no mesmo elemento
- Pares candidatos são aqueles que ficam pelo menos uma vez no mesmo elemento.

Partição em Bandas

- Dividir a matriz M em b bandas de r linhas.
- \blacksquare Para cada banda, mapear sua parte em M de cada coluna para uma tabela hash de k elementos.
- k é tão grande quanto possível
- Pares Candidatos de colunas são aqueles mapeados para o mesmo elemento em uma ou mais bandas.
- Ajustar $b \in r$ para obter a maioria dos pares similares e poucos pares não similares.

Partição em Bandas (2)

Tabela Hash Colunas 2 e 6 são provavelmente similares. Colunas 6 e 7 são certamente diferentes. r linhas b bandas

+Partição em Bandas (3)

- ■Como a elementos suficientes, as colunas provavelmente não serão mapeadas para o mesmo elemento a não ser que elas sejam idênticas em uma banda em particular.
- Assim, assume-se se duas colunas estão mapeadas para o mesmo elemento, então elas são idênticas na banda correspondente.

- ■Suponha 100.000 colunas
- As assinaturas usam 100 inteiros
 - $4 \times 100.00 \times 100 = 40 \times 1 \text{milhão} = 40 \text{Mb}.$
- Queremos encontrar todos os pares com 80% de similaridade
- ■Existirão 5.000.000.000 de pares de assinaturas para comparar.
- Vamos usar 20 de 5 inteiros por banda

LSH - Tradeoff

- ■Número de minhashes, número de bandas, número de linhas por banda determinação as taxas de falso positivos/negativos
- ■Ex: se tivéssemos apenas 15 bandas de 5 linhas, o número de falso positivos iria cair, mas o número de falso negativos iria subir

Exemplo

- ■Suponha C1 e C2 com similaridade de 80%
- ■Probabilidade de C1 e C2 serem idênticas em uma banda em particular é (0.8)⁵ = 0.328.
- ■Probabilidade de C1, C2 não serem similares em nenhuma das 20 bandas é: (1-0.328)²⁰ = .00035
 - ou sejam, cerca 1/3000 das colunas com similaridade de 80% são falso negativos

Analysis of LSH – What We Want

Similarity *s* of two sets

Example: b = 20; r = 5

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

What b Bands of r Rows Gives You

+ LSH Summary

■Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

- Check in main memory that candidate pairs really do have similar signatures.
- ■Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.