CS116 – LẬP TRÌNH PYTHON CHO MÁY HỌC

PYTHON CHO KHOA HỌC DỮ LIỆU

Exploratory Data Analysis

TS. Nguyễn Vinh Tiệp

NỘI DUNG

- 1. Cài đặt jupyter notebook
- 2. Đọc ghi file cơ bản
- 3. Trực quan hóa dữ liệu với Matplotlib
- 4. Thao tác trên dữ liệu với Pandas

Cài đặt Jupyter notebook

Cài đặt Jupyter Notebook trên Anaconda

conda install -c anaconda jupyter

- Khởi động Jupyter Notebook
 - > cd <Thư mục làm việc>
 - jupyter notebook

Cài đặt Jupyter notebook

Cài đặt Jupyter notebook

Tao mới file jupyter notebook

Tạo mới notebook Python 3

Không gian làm việc

Jupyter Untitled Last Checkpoint: 2 minutes ago (unsaved changes)

Đọc file văn bản

```
# Đọc toàn bộ file văn bản
# Lưu ý: 'mở' đi đôi với 'đóng'
file = open("input.txt", "r")
print(file.read())
file.close()
```

Hello world! This is another line.

Ghi file văn bản

```
# Ghi file văn bản
# Lưu ý: 'mở' đi đôi với 'đóng'
file = open("output.txt", "w")
a = [1,3,5,7,9,10]
file.write("Write array:\n")
for x in a:
    file.write('%d ' % x)
file.close()
```


- Đọc file ảnh với thư viện Pillow
 - Sử dụng khi không cần các thao tác xử lý nâng cao
- Cài đặt Pillow (nếu chưa có sẵn):

```
conda install -c anaconda pillow
```

```
from PIL import Image
import numpy as np
im = Image.open("scene.jpg")
np_im = np.array(im)
print("Kich thuoc file anh: ", np_im.shape)
```

Kich thuoc file anh: (183, 275, 3)

Ghi file ảnh với thư viện Pillow

```
from PIL import Image
# Đọc ảnh từ file
im = Image.open("scene.jpg")
# Thao tác xử Lý ảnh khác nếu cần
# .....
# Ghi ảnh với tên và định dạng khác
im.save("scene-copy.png")
```


- Đọc file ảnh với thư viện Opency
 - Sử dụng khi muốn xử lý nâng cao: lọc ảnh, rút trích đặc trưng,
 phân lớp
 - Không có mặc định trong Anaconda nên cần cài thêm:

conda install -c conda-forge opencv

Đọc file ảnh với thư viện Opency

```
import cv2
import numpy as np
bgr_im = cv2.imread("scene.jpg")
gray_im = cv2.imread("scene.jpg", 0)

print("Kich thuoc anh mau: ", bgr_im.shape)
print("Kich thuoc muc xam: ", gray_im.shape)
```


Thao tác + hiển thị + ghi file ảnh với Opency

```
# Thao tác trên ảnh như trên ma trận
gray_im[50:100, 50:100] = 0 # xóa vùng ảnh

# Hiển thị trên cửa sổ khác
window_name = 'image'
cv2.imshow(window_name, gray_im)
cv2.waitKey(0)
cv2.destroyAllWindows()

# Ghi file ảnh xuống file
cv2.imwrite('scene-cut.png', gray_im)
```


Cài thư viện Matplotlib (nếu chưa có):

```
conda install -c conda-forge matplotlib
```

Khởi tạo dữ liệu dùng numpy:

```
import matplotlib.pyplot as plt
import numpy as np

# Tạo dữ liệu hình sin
t = np.arange(0.0, 2.0, 0.05) # t lấy mẫu từ 0 đến 2, bước nhảy 0.05
s = np.sin(2 * np.pi * t) # s tính theo t: s = sin(2*pi*t)
```


- Vẽ dạng đường và điểm
 - Mặc định là dạng đường (line)
 - Tham số để vẽ điểm 'r^' □ tam giác đỏ, 'go' □ tròn xanh lá

```
# Ve dang đường và điểm
plt.plot(t, s)
plt.plot(t, s+1, 'r^')
plt.plot(t, s-1, 'go')
plt.show()
```


Cấu hình biểu đồ:

```
plt.plot(t, s)
plt.plot(t, s+1, 'r^')
plt.plot(t, s-1, 'go')
plt.title('Biểu đồ sóng dạng hình sin', fontsize=15)
plt.xlabel('Trục thời gian (t)')
plt.ylabel('Trục biên độ (s)')
plt.text(1.55, -0.4, r'$s=\mathrm{sin}(2 \pi t)$')
plt.text(1.58, 0.9, r'$s=\mathrm{sin}(2 \pi t) + 1$')
plt.text(1.55, -1.2, r'$s=\mathrm{sin}(2 \pi t) - 1$')
plt.xlim(-0.5, 2.5)
plt.ylim(-2.5, 2.5)
plt.show()
```


- Vẽ nhiều biểu đồ với hàm: subplot (<nrow><ncol><index>)
- Ví dụ: subplot (235)


```
# Vẽ ô thứ 3 trong bảng 2x3
# Biểu đồ cột
plt.subplot(233)
x = np.arange(3)
money = [1.5e5, 2.5e6, 5.5e6]
plt.bar(x, money)
plt.xticks(x, ('Cty A', 'Cty B', 'Cty C'))
                                                                                  Cty A Cty B Cty C
# Vẽ ô thứ 4 trong bảng 2x3
# Biểu đồ tròn
                                                                   USA
plt.subplot(234)
labels = 'Others', 'China', 'USA'
                                                          China
sizes = [25, 35, 40]
plt.pie(sizes, labels=labels, autopct='%1.0f%%',
        shadow=True, startangle=90)
```


Cài thư viện Pandas (nếu chưa có):

conda install -c anaconda pandas

- Tao DataFrame
 - Khai báo dữ liệu theo cột

```
import pandas as pd

df = pd.DataFrame({
    "X" : [13, 30, 'A'],
    "Y" : [15, 32, 'B'],
    "Z" : [10, 29, 'O'],
    "T" : [12, 28, 'AB']},
    index = [1, 2, 3]
)
```

	X	Y	Z	T
1	13	15	10	12
2	30	32	29	28
3	Α	В	Ο	AB

Nối dữ liệu theo chiều dọc với concat (mặc định axis=0)

```
# Nối hai data frame theo chiều dọc
df1 = pd.DataFrame({
    "X" : ['A', 'B', 'O', 'AB'],
    "Y" : [15, 12, 10, 12],
    "Z" : [30, 28, 23, 29]},
    index = [1, 2, 3, 4])
df2 = pd.DataFrame({
    "X" : ['O', 'A', 'B'],
    "Y" : [20, 21, 22],
    "Z" : [32, 30, 20],
    "T" : [1, 0, 1]},
    index = [1, 2, 3])
df_new = pd.concat([df1, df2])
```

	X	Y	Z	Т
1	Α	15	30	NaN
2	В	12	28	NaN
3	0	10	23	NaN
4	AB	12	29	NaN
1	0	20	32	1.0
2	Α	21	30	0.0
3	В	22	20	1.0

Điền giá trị khuyết với fillna(value)

	X	Υ	Z	Т
1	Α	15	30	NaN
2	В	12	28	NaN
3	0	10	23	NaN
4	AB	12	29	NaN
1	0	20	32	1.0
2	Α	21	30	0.0
3	В	22	20	1.0

Nối dữ liệu theo chiều ngang với concat (axis=1)

```
# Nối hai data frame theo chiều ngang
df1 = pd.DataFrame({
    "X" : ['A', 'B', 'O', 'AB'],
    "Y" : [15, 12, 10, 12],
    "Z" : [30, 28, 23, 29]},
   index = [1, 2, 3, 4])
df2 = pd.DataFrame({
    "U" : [0, 1, 0],
    "V" : [20, 1, 6]},
    index = [1, 2, 3])
pd.concat([df1, df2], axis=1)
```

	X	Υ	Z	U	V
1	Α	15	30	0.0	20.0
2	В	12	28	1.0	1.0
3	Ο	10	23	0.0	6.0
4	AB	12	29	NaN	NaN

Lấy tập con theo dòng

```
# Lấy tập con theo dòng
sub_df = df1[df1.Y > 10]
```


Lấy tập con theo dòng

Lấy tập con theo cột

```
# Lấy tập con gồm nhiều cột
columns = df1[['X', 'Z']]
```

```
      X
      Y
      Z

      1
      A
      15
      30

      2
      B
      12
      28

      3
      O
      10
      23

      4
      AB
      12
      29

      X
      Z

      1
      A
      30

      2
      B
      28

      3
      O
      23

      4
      AB
      29
```


Lấy tập con theo cột

```
# Lấy tập con của một cột
colX = df1.X
# hoặc
colX = df1['X']
```

```
      X
      Y
      Z

      1
      A
      15
      30

      2
      B
      2
      B

      2
      B
      3
      0

      4
      AB
      Name: X, dtype: object
```


Tạo mới cột

stocks['value'] = stocks.close*stocks.volume

	date	symbol	open	high	low	close	volume	value
0	2019-03-01	AMZN	1655.13	1674.26	1651.00	1671.73	4974877	8.316651e+09
1	2019-03-04	AMZN	1685.00	1709.43	1674.36	1696.17	6167358	1.046089e+10
2	2019-03-05	AMZN	1702.95	1707.80	1689.01	1692.43	3681522	6.230718e+09
3	2019-03-06	AMZN	1695.97	1697.75	1668.28	1668.95	3996001	6.669126e+09
4	2019-03-07	AMZN	1667.37	1669.75	1620.51	1625.95	4957017	8.059862e+09

Vẽ biểu đồ với plot

<matplotlib.axes._subplots.AxesSubplot at 0x2545b11a7c0>

Vẽ biểu đồ với plot

```
df.plot.scatter(x='Y', y='Z')
```

<matplotlib.axes._subplots.AxesSubplot at 0x2545b1bc730>

- Tạo DataFrame
 - Load dữ liệu từ file csv (bảng)

```
stocks = pd.read_csv('stocks.csv')
```

	date	symbol	open	high	low	close	volume
0	2019-03-01	AMZN	1655.13	1674.26	1651.00	1671.73	4974877
1	2019-03-04	AMZN	1685.00	1709.43	1674.36	1696.17	6167358
2	2019-03-05	AMZN	1702.95	1707.80	1689.01	1692.43	3681522
3	2019-03-06	AMZN	1695.97	1697.75	1668.28	1668.95	3996001

• Quy ước:

Chỉ mục (index)

Cột (column)

		date	symbol	open	high	low	close	volume
	0	2019-03-01	AMZN	1655.13	1674.26	1651.00	1671.73	4974877
	1	2019-03-04	AMZN	1685.00	1709.43	1674.36	1696.17	6167358
	2	2019-03-05	AMZN	1702.95	1707.80	1689.01	1692.43	3681522
	3	2019-03-06	AMZN	1695.97	1697.75	1668.28	1668.95	3996001
1								

Mẫu quan sát (observation)

Cột dữ liệu (Variable)

Gom nhóm dữ liệu với phương thức pivot

```
stocks.pivot(index='date', columns='symbol', values='close')
```

symbol	AAPL	AMZN	GOOG
date			
2019-03-01	174.97	1671.73	1140.99
2019-03-04	175.85	1696.17	1147.80
2019-03-05	175.53	1692.43	1162.03
2019-03-06	174.52	1668.95	1157.86
2019-03-07	172.50	1625.95	1143.30

Gom nhóm dữ liệu với phương thức pivot

```
stocks.pivot(index='date', columns='symbol', values=['close', 'volume'])
```

	close			volume		
symbol	AAPL	AMZN	GOOG	AAPL	AMZN	GOOG
date						
2019-03-01	174.97	1671.73	1140.99	25886167.0	4974877.0	1450316.0
2019-03-04	175.85	1696.17	1147.80	27436203.0	6167358.0	1446047.0
2019-03-05	175.53	1692.43	1162.03	19737419.0	3681522.0	1443174.0
2019-03-06	174.52	1668.95	1157.86	20810384.0	3996001.0	1099289.0
2019-03-07	172.50	1625.95	1143.30	24796374.0	4957017.0	1166559.0

Gom nhóm dữ liệu với phương thức pivot_table

	close	volume
symbol		
AAPL	174.674	23733309.4
AMZN	1671.046	4755355.0
GOOG	1150.396	1321077.0

QUIZ & CÂU HỞI