- 1. Registros
- 2. Memorias RAM
- 3. Nivel de transferencia de registros (RTL)

Resumen de biestables

	R-S	J-K	D	T	
Tabla característica	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} D & Q_{(t+1)} \\ \hline 0 & 0 \\ 1 & 1 \end{array} $	$ \begin{array}{c c} T & Q_{(t+1)} \\ \hline 0 & Q_{(t)} \\ 1 & Q(t) \end{array} $	
Tabla de excitación	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} Q_{(t)} & Q_{(t+I)} & D \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} Q_{(t)} & Q_{(t+I)} & T \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	
$\left egin{array}{c} Q_{(t+1)} \\ = \end{array} ight $	$S + R'Q_{(t)}$	$JQ_{(t)}' + K'Q_{(t)}$	D	$TQ_{(t)}' + T'Q_{(t)}$	
Símbolo	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- J Q K Q' 0	- D Q Ck Q' 0-	- T Q	

Registros

- Un biestable tiene la capacidad de almacenar 1 bit.
- Un registro (o registro paralelo) es un conjunto de n biestables que tienen en general una o más líneas comunes para la selección de una o más operaciones en todos ellos.

Registro de estado

La palabra de estado (V, C, S y Z) que resulta de una operación de una ALU debe memorizarse para que los flags sean utilizados en operaciones siguientes :

Registros de desplazamiento

- Un registro de desplazamiento traslada en forma secuencial un pulso a lo largo de una cadena de biestables.
- En cada pulso de reloj, el valor presente en la entrada en serie se copia en el primer biestable, y los contenidos de cada uno se copian en el siguiente de la cadena. El contenido del último se pierde.
- La señal de reloj es común a todos los flip-flops, por lo que deben ser de tipo M/E para que la operación descripta sea posible.

Desplazamiento con bifurcaciones condicionales

Unidad de Control simple:

Registro de desplazamiento a izquierda/derecha y carga en paralelo

Con la adición de lógica combinacional, es posible controlar el sentido del desplazamiento en el registro a derecha o izquierda. Asimismo, es factible cargar un valor binario en forma directa cada biestable, o hacer que estos queden sin cambios en cada transición del reloj.

Registros con habilitación

En sistemas con varios registros, es necesario controlar en cual de ellos se va a realizar una operación de escritura, lo que se implementa mediante una línea de habilitación H:

Para un registro de *n* bits:

Н	Do	Operación
0	Do	Mantiene el valor (lectura)
1	Di	Carga el valor de entrada (escritura)

Registros con conexión a bus

Los registros utilizados en sistemas con buses triestado, deben utilizar un separador de alta impedancia ("tri-state") en la habilitación de salida.

Para un registro de *n* bits:

Registros con conexión a bus

En los casos en los que los buses son bidireccionales (es decir actúan como entradas y salidas):

H	L/E'	Operación
1	0	Escritura desde el bus
1	1	Lectura en el bus
0	X	Sin cambios

Multiplexores de varias vías

Las n entradas del multiplexor también pueden estar constituidas por m líneas, que se seleccionan para ser presentadas en su salida, también compuestas por m líneas.

Por ejemplo, para un multiplexor cuádruple de 2x1:

Buses multiplexados y buses tri-state

La transferencia de información entre varios registros se realiza mediante dos técnicas:

- a) Bus multiplexado
- b) Bus triestado

 E: Entradas

S: Salidas

H: Habilitación

L/E': Lectura/(Escritura)'

Registro con comunicación con dos buses

Un registro como el **Separador de Memoria** (MBR, *Memory buffer register*) es un registro que puede leer en una línea (bus) y escribir en otra, y viceversa:

H	Bus	L/E'	Operación
1	0	0	Escritura desde el bus 0
1	0	1	Lectura en el bus 0
1	1	0	Escritura desde el bus 1
1	1	1	Lectura en el bus 1
0	X	X	Sin cambios

Memorias RAM

Desde el punto de vista de su esquema lógico una memoria RAM puede considerarse como un conjunto de *m* registros (*palabras*) de *n* bits, que pueden accederse (leerse o escribirse) de uno a la vez.

El acceso a cada palabra se realiza mediante un selector, que determina la seleccionada mediante su *dirección* binaria.

La operación a realizar se determina mediante un conjunto de líneas de control.

Memorias RAM

Las palabras se seleccionan mediante un conjunto de m líneas de dirección (A₀-A_m), de modo que el tiempo de acceso es igual para todas

Ubicación de la palabra de la dirección **1101**

 A_3

La selección del dispositivo y las operaciones se realizan desde un conjunto de entradas de control

Memoria de 16 palabras de 4 bits (n)

 $16 = 2^m \rightarrow m=4$

Capacidad: $2^m \times n = 64$ bits

Generalmente se organizan en matrices cuadradas de $n^{1/2} \times n^{1/2} = 8 \times 8$ bits

Las líneas de dirección se reparten:

- una parte en un decodificador para las filas de la matriz, y
- las líneas restantes seleccionan los bits en las columnas mediante multiplexores

Memorias RAM

Operaciones entre registros

Las operaciones básicas realizada sobre los datos almacenados en un registro o entre dos de estos, y que tiene la particularidad de efectuarse en un solo ciclo de reloj, se denominan *microoperaciones*.

Se pueden clasificar en 4 tipos:

- 1. De transferencia, cuando se transfieren datos de un registro a otro.
- 2. Aritméticas, cuando se realizan operaciones aritméticas en los datos de los registros.
- 3. Lógicas, cuando se realizan operaciones lógicas sobre los bits de los datos de los registros.
- 4. De desplazamiento, cuando se desplazan los datos de los registros.

Operaciones entre registros

Para el caso de una operación de transferencia entre dos registros:

Las microoperaciones se describen mediante la notación de Nivel de Transferencia de Registro (RTL, *Register Transfer Level*), que utiliza un conjunto de expresiones y sentencias particular. Así, por ejemplo, la transferencia de datos de un registro a otro será:

$$X: R2 \leftarrow R1$$

y significa que el contenido del registro R1 (fuente) se copia en el R2 (destino). El contenido del registro fuente no cambia.

Notación RTL

La notación RTL utiliza la siguiente simbología :

Para indicar los elementos que componen o están relacionados con los registros:

Y para las operaciones que pueden realizarse entre ellos:

Símbolo	Descripción	Ejemplos
Letras (y números)	Indica un registro	AR, R2, DR, IR
Paréntesis	Indica parte de un registro	R2(1), R2(7:0), AR(L)
Flecha	Indica transferencia del dato	$R1 \leftarrow R2$
Coma	Separa transferencias simultáneas	$R1 \leftarrow R2, R2 \leftarrow R1$
Corchetes	Especifica una dirección de memoria	$DR \leftarrow M[AR]$

Operación	RTL
Asignación combinaciona	1 =
Transferencia de registro	←
Suma +	+
Resta -	_
Concatenación	
AND (Bit a Bit)	^
OR (Bit a Bit)	V
XOR (Bit a Bit)	\oplus
NOT (Bit a Bit)	_
Desplazamiento lógico	
a la izquierda	sl
Desplazamiento a la derecha	sr
Vectores/registros	A(3:0)

Notación RTL

Los distintos tipos de microoperaciones se denotan como:

Microoperaciones aritméticas

Microoperaciones lógicas

Designación simbólica	Descripción	Designación simbólica	Descripción
$R0 \leftarrow R1 + R2$	El contenido de R1 más el contenido de R2 se transfiere a R0	$R0 \leftarrow \overline{R1}$	Bit a Bit lógico NOT (complemento a 1)
$R2 \leftarrow \overline{R2}$	Complemento del contenido de R2 (complemento a 1)	$R0 \leftarrow R1 \wedge R2$	Bit a Bit lógico AND (pone a 0 los bits)
$R2 \leftarrow \overline{R2} + 1$	Complemento a 2 del contenido de R2	$R0 \leftarrow R1 \lor R2$	Bit a Bit lógico OR (pone a 1 los bits)
$R0 \leftarrow R1 + \overline{R2} + 1$	R1 más el complemento a 2 de R2 se transfiere a R0 (resta)	$R0 \leftarrow R1 \oplus R2$	Bit a Bit lógico XOR (complementa bits)
$R1 \leftarrow R1 + 1$	Incrementa el contenido de R1 (cuenta ascendente)		
$R1 \leftarrow R1 - 1$	Decrementa el contenido de R1 (cuenta descendente)		

Ejemplos de desplazamientos

		Ejemplos de 8 bits		
Tipos	Designación simbólica	Fuente R2	Después de desplazar: Destino R1	
Desplazamiento a la izquierda Desplazamiento a la derecha	$R1 \leftarrow \text{sl } R2$ $R1 \leftarrow \text{sr } R2$	10011110 11100101	00111100 01110010	

En sistemas con varios registros, deben observarse reglas sencillas, como:

- Un registro no puede leerse y escribirse al mismo tiempo;
- En sistemas basados en buses, debe asegurarse que solo un registro escriba en el bus al mismo tiempo.

ALU con desplazador

Combinando un desplazador combinacional con la ALU diseñada, resulta:

Unidad Aritmética Lógica + Desplazador

Combinando las entradas de selección de ambos módulos y recodificando, se puede obtener una unidad funcional que realice todas las operaciones de acuerdo a la siguiente tabla:

S ₃	S2	S ₁	S ₀	Micro operación	Descripción
0	0	0	0	A=0	Puesta a cero de A
0	0	0	1	A+1	Incremento de A
0	0	1	0	A-1	Decremento de A
0	0	1	1	A+B	Suma aritmética de A y B
0	1	0	0	A+B+Ci	Suma aritmética de A y B y el acarreo de entrada
0	1	0	1	A+B'	Suma aritmética de A y el complemento de B (A menos B+1)
0	1	1	0	A+B'+1	Suma aritmética de A y el complemento de B más 1 (A menos B)
0	1	1	1	А	Transfiere A (de entrada a salida sin cambio)
1	0	0	0	A'	Complemento de A
1	0	0	1	A and B	Producto lógico de A y B
1	0	1	0	A or B	Suma lógica de A y B
1	0	1	1	A oexc B	Or exclusiva de A y B
1	1	0	0	sl A	Desplazamiento aritmético a la izquierda de A (A x 2)
1	1	0	1	sr A	Desplazamiento aritmético a la derecha de A (A / 2)
1	1	1	0	rl A	Rotación a la izquierda a través del acarreo de A
1	1	1	1	rr A	Rotación a la derecha a través del acarreo de A

	Desplazamiento lógico	Rotación a través del acarreo
A derecha	0 — C C	MSB LSB
A izquierda	C — — 0 — 0 — 0	MSB LSB

La operación que realiza el conjunto se determina a partir de las entradas de selección de los elementos:

- 4 para seleccionar la operación de la ALU.
- 6 para la selección de los dos registros fuente y el registro destino:
 - 2 del registro fuente 1 (MUX1)
 - 2 del registro fuente 2 (MUX2)
 - 2 del registro destino (DEC)

El conjunto de entradas de selección forma la Palabra de Control:

	F	1	F	2	R	.D	SO			
bit	9	8	7	6	5	4	3	2	1	0

Ejemplos de microoperaciones:

1. R3 ← R1+R2

Se seleccionan fuentes, destinos, y operación de la ALU:

2. R1 ← R0

El registro fuente 2 no interviene \rightarrow es irrelevante (X):

0	0	X	X	0	1	0	1	1	1
F	1	F	2	R	D	SO			

3. R0 ← sl R3 Se desplaza R3 y se guarda en R0

R3 debe entrar como Fuente 1, ya que la operación de desplazamiento se realiza sobre le operando A de la ALU. La siguiente opción es incorrecta:

	1	1	X	X	0	0	1	1	0	0
•	F1		F2		RD		SO			

X	Х	1	1	0	0	1	1	0	0
F1		F	2	R	D		S	0	

Un diseño basado en buses, que utiliza:

- Dos registros temporales (TA y TB) que almacenan los datos que va a operar la ALU;
- Dos registros de uso general, RO y R1;
- Una unidad de memoria (= varios registros de uso general) comunicada vía los registros MAR (direcciones), y MBR (datos)

El Ck está conectado a todos los registros

CS	R/W′	Н	L/E′	Bus	Н	Н	L/E′	Н	L/E′	Н	Н	S3	S2	S1	S0
М	MEM		MBR		MAR	R	.0	R		TA	ТВ		S	()	

Palabra de control

Н	L/E'	Operación					
1	0	Escritura desde el bus					
1	1	Lectura en el bus					
0	X	Sin cambios					
	bu	$ \begin{array}{c cccc} H & & & & & \\ L/E' & & & R \nabla \\ \hline Ck & D_i/D_o & & & \\ \hline n & & & & \\ \end{array} $					

H	Bus	L/E'	Operación
1	0	0	Escritura desde el bus 0
1	0	1	Lectura en el bus 0
1	1	0	Escritura desde el bus 1
1	1	1	Lectura en el bus 1
0	X	X	Sin cambios
			29

Ejemplos de operaciones internas de la UP

1. Cargar el contenido de RO en R1

La transferencia es directa a través del bus \rightarrow el resto de los registros y la ALU no intervienen. \rightarrow R1 \leftarrow R0

En este caso, la operación entre registros es directa y puede realizarse con una sola microoperación.

Sin embargo, existen operaciones que deben descomponerse en varias microoperaciones.

- Desplazar a la derecha R1 y guardarlo en R0 Es necesario
 - a) Cargar R1 a TA (no TB; la operación sr se realiza sobre el operando A de la ALU).
 - b) Realizar el desplazamiento y almacenar en RO

- 3. Sumar R0 y R1 y guardar el resultado en R1
 - Es necesario
 - a) Cargar RO a TA;
 - b) Cargar R1 a TB;
 - c) Realizar la suma y almacenar en R1

4. Restar el contenido de la posición de memoria cuya dirección está en R0 con el contenido de R1 y guardar el resultado en R1:

t1: MAR \leftarrow R0

t2: MBR \leftarrow M[MAR], TB \leftarrow R1

Como MBR ← M[MAR] y TB ← R1 se realizan sobre buses distintos, pueden ocurrir simultáneamente

t3: $TA \leftarrow MBR$

t4: R1 ← TA - TB

Repaso conceptual

- 1. ¿Qué es un registro paralelo? En los ejemplos vistos, ¿qué función cumplen las líneas de control H y L/E'?
- 2. Desde el punto de vista lógico, ¿qué puede considerarse una memoria RAM? ¿Qué es la capacidad de la memoria y cómo se calcula?
- 3. ¿Qué función cumplen las líneas de dirección y las líneas de datos en una RAM? Enumere sus principales líneas de control.
- 4. ¿Qué es una microinstrucción? ¿Qué tipos existen?
- 5. ¿Cómo se representan las microinstrucciones mediante el RTL? De ejemplos para cada tipo de microinstrucción.
- 6. ¿Cuál es el concepto de *palabra de control*? De ejemplos de ellas en las Unidades de Procesamiento vistas

Lecturas recomendadas

 Mano M., Kime, C. - Fundamentos de diseño lógico y de computadoras - 3º Ed. -Prentice Hall. Año 2000.

 \rightarrow Capítulos 5-7-9-10