114675 394675

NASA

MEMORANDUM

LONGITUDINAL STABILITY AND CONTROL CHARACTERISTICS AT MACH NUMBERS FROM 0.70 TO 2.22 OF A TRIANGULAR WING CONFIGURATION EQUIPPED WITH A CANARD CONTROL, A TRAILING-EDGE-FLAP CONTROL, OR A CAMBERED FOREBODY

By John W. Boyd and Gene P. Menees

Ames Research Center Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

April 1959 Declassified May 29, 1961

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 4-21-59A

LONGITUDINAL STABILITY AND CONTROL CHARACTERISTICS AT MACH NUMBERS FROM 0.70 TO 2.22 OF A TRIANGULAR WING CONFIGURATION EQUIPPED WITH A CANARD CONTROL, A TRAILING-EDGE-FLAP CONTROL, OR A CAMBERED FOREBODY*

By John W. Boyd and Gene P. Menees

SUMMARY

Results of an investigation to determine the static longitudinal stability and control characteristics of an aspect-ratio-2 triangular wing and body configuration equipped with either a canard control, a trailing-edge-flap control, or a cambered forebody are presented without analysis for Mach numbers from 0.70 to 2.22. The canard surface had a triangular plan form and a ratio of exposed area to total wing area of 7.8 percent. The hinge line of the canard was in the extended wing chord plane, 0.83 wing mean aerodynamic chord ahead of the reference center of moments. The trailing-edge controls were constant-chord full-span flaps with exposed area equal to 10.7 percent of the total wing area. The cambered body was a modified Sears-Haack body with camber only ahead of the wing apex. Data are presented for various canard and flap deflections at angles of attack ranging from -6° to +18°.

INTRODUCTION

A general research program directed at the investigation of longitudinal control devices capable of achieving low trim drag and adequate maneuverability for aircraft flying at supersonic speeds is in progress at the Ames Research Center. As a part of this program, several reports have already been published showing the longitudinal and directional characteristics of configurations employing canard controls (see refs. 1 through 7).

The present report presents without analysis the longitudinal stability and control characteristics of three additional configurations. One was a triangular canard configuration supplementing the previous

^{*}Title, Unclassified

canard studies and differing from that of reference 1 in that the canard surface was slightly larger and had a shorter lever arm. A second model was equipped with a full-span trailing-edge flap to assess the relative merits of this type control compared to the canard. The third configuration incorporated camber in the forward part of the body to assess the trimming capabilities of the cambered body. The basic configuration for the canard and flap models was identical to that of reference 1 and consisted of a triangular wing of aspect ratio 2.0 and a low-aspect-ratio vertical tail mounted on a Sears-Haack body of fineness ratio 12.5. The cambered body also utilized the same wing and vertical tail as the two previous models.

NOTATION

ē	mean aerodynamic chord of wing, ft
ē _c	mean aerodynamic chord of canard, it
c_D	drag coefficient, $\frac{drag}{qS}$
c_{D_O}	drag coefficient at zero lift
$\mathtt{C}_{\underline{L}}$	lift coefficient, $\frac{\text{lift}}{\text{qS}}$
$c_{L_{lpha}}$	lift-curve slope, taken through zero angle of attack, per deg
c_{m}	pitching-moment coefficient, pitching moment qSc
$\left(\frac{\underline{L}}{\overline{D}}\right)_{\max}$	maximum lift-drag ratio
M	free-stream Mach number
q	free-stream dynamic pressure, lb/sq ft
S	wing area formed by extending the leading and trailing edges to the plane of symmetry, sq ft
α	angle of attack of wing root chord, deg
$\delta_{\rm C}$	angle of deflection of canard control surface, positive when trailing edge is down, deg
$\delta_{ extbf{f}}$	angle of deflection of flap, positive when trailing edge is down, deg

Configurations are denoted by the following letters used in combination:

B symmetrical body

Bc cambered body

C canard

V vertical tail

W wing

APPARATUS

The experimental data were obtained in the Ames 6- by 6-foot supersonic wind tunnel which is a closed-circuit variable-pressure type with a Mach number range continuous from 0.70 to 2.22. The tunnel floor and ceiling have perforations to permit transonic testing. A somewhat more detailed description of this facility may be found in reference 1.

The models were sting mounted and the forces and moments were measured with an internal, strain-gage-type, six-component balance.

MODELS

Results of investigations of three models are reported herein. Two of the models incorporated movable control surfaces in combination with an aspect-ratio-2 triangular wing, a fineness ratio 12.5 Sears-Haack body, and a low-aspect-ratio vertical tail. The other model used the same wing and vertical tail with camber in the forward part of the body. Dimensional sketches of each of the three models are shown in figures 1, 2, and 3. Both the wing and the vertical tail had NACA 0003-63 thickness distributions streamwise.

One of the control devices was an all-movable triangular canard of aspect ratio 2 hinged about the 0.35 point of the canard mean aerodynamic chord (see fig. 1(a)). The hinge line was $0.83\bar{c}$ ahead of the reference center of moments $(0.28\bar{c})$. The constant thickness canard detailed in figure 1(b) had beveled leading and trailing edges. The ratio of the area of the exposed canard panels to the total wing area was 7.8 percent and the ratio of the total areas was 18 percent. This configuration was different from that of reference 1 in that the canard was slightly larger and was mounted farther aft on the body.

The other control device was a full-span trailing-edge flap with exposed area equal to 10.7 percent of the total wing area (see fig. 2).

The third configuration tested used a modified Sears-Haack body of fineness ratio 12.5, the forward 20.25 inches of which was cambered to provide a positive trimming moment. The camber in the forward part of the body was obtained simply by displacing the nose of the body upward until it was in line with a point on the upper surface of the body at station 20.25 inches (see fig. 3). Using the line connecting these two points as the reference axis the normal Sears-Haack distribution was used to form the forward portion of the body.

All of the component parts used herein vere of solid steel construction to minimize aeroelastic effects. The surfaces were polished to give a smooth surface and were further treated to prevent corrosion.

TEST AND PROCEDURES

Range of Test Variables

Mach numbers of 0.70, 0.90, 1.00, 1.10, 1.30, 1.70, and 2.22 and angles of attack ranging from -6° to $+18^{\circ}$ were covered in the investigation. The test Reynolds number based on the wing mean aerodynamic chord was 1.84 million at Mach numbers of 1.0 and 1.10 and 3.68 million at all other Mach numbers. The smaller Reynolds number at transonic speeds was necessary because of model structural limitations. Canard deflections from 0° to 20° were investigated with the wing on and off. Flap deflections from $+4^{\circ}$ to -28° were tested. The exact control deflections are noted in tables I and II. Data were also obtained with the canard off for the wing on and off. Wires were placed on all of the models at the locations shown in figures 1, 2, and 3 to induce transition.

Reduction of Data

The data presented herein have been reduced to standard coefficient form. The pitching moments were referred to the 0.28 point of the wing mean aerodynamic chord for the canard configuration and the 0.33 point of the wing mean aerodynamic chord for the flap and cambered-body configurations. The results have been adjusted to account for the following effects:

Base drag. The base pressure was measured and the data were adjusted to correspond to a base pressure equal to the free-stream static pressure.

Stream inclination.— The data were corrected for stream angle inclinations which were never greater than 0.30° throughout the Mach number range of the tests.

RESULTS

The results in this report are presented without analysis in order to expedite publication. All of the experimental data are presented in tables I through III. Selected portions of the data for each configuration are shown in figures 4 through 6.

Figure 4 presents the lift, drag, and pitching-moment characteristics with the canard on and deflected and with the canard off for three test Mach numbers. Figure 5 shows similar data for various trailing-edge-flap deflections, and figure 6 presents the lift, drag, and pitching-moment characteristics for the cambered- and symmetrical-body configurations. Summarized in figure 7 are the maximum lift-drag ratios, the lift-curve slopes, minimum drag coefficients, and the aerodynamic centers as functions of Mach number for the canard configuration at zero deflection, and for the canard off or the trailing-edge-flap configuration at zero deflection. Figure 8 summarizes these same characteristics for the cambered- and symmetrical-body configurations.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 21, 1959

REFERENCES

- 1. Boyd, John W., and Peterson, Victor L.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Longitudinal Characteristics of a Triangular Wing and Canard. NACA RM A57J15, 1958.
- 2. Peterson, Victor L., and Menees, Gene P.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Lateral-Directional Characteristics of a Triangular Wing and Canard. NACA RM A57L18, 1958.
- 3. Boyd, John W., and Peterson, Victor L.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Triangular Wing and Canard on an Extended Body. NACA RM A57K14, 1958.

- 4. Peterson, Victor L., and Menees, Gene P.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Longitudinal Characteristics of Triangular Wing and Unswept Canard. NACA RM A57K26, 1958.
- 5. Peterson, Victor L., and Boyd, John W.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Longitudinal Characteristics of Unswept Wing and Canard. NACA RM A57K27, 1958.
- 6. Hedstrom, C. Ernest, Blackaby, James R., and Peterson, Victor L.: Static Stability and Control Characteristics of a Triangular Wing and Canard Configuration at Mach Numbers From 2.58 to 3.53. NACA RM A58CO5, 1958.
- 7. Hall, Charles F., and Boyd, John W.: Effects of Canards on Airplane Performance and Stability. NACA RM A58D24, 1958.

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD

(a) BVW

М	α, deg	$\mathtt{c}_{\mathtt{L}}$	$\mathtt{c}_\mathtt{D}$	C _m	М	α, deg	$\mathtt{c}_\mathtt{L}$	c_{D}	C _m
0.70	-6.4 -4.2 -2.2 7 2 .4 1.9	-0.311 196 101 039 018 .004 .066	0.0404 .0214 .0130 .0107 .0104 .0103 .0113	.0236 .0127 .0076 .0056	1.30	6.0 8.0 10.0 12.0 14.1 16.1 18.1	0.278 .374 .470 .562 .650 .735 .809	0.0399 .0620 .0910 .1264 .1677 .2146 .2660	-0.0580 0779 0983 1175 1359 1530 1633
	5.8 7.8 9.8 11.7 13.8 15.8	.260 .368 .478 .588 .702 .808	.0103 .0317 .0538 .0844 .1210 .1681 .2225	0240	1.70	-6.3 -4.1 -2.2 7 1 .4	239 160 084 031 010 .012	.0376 .0238 .0163 .0140 .0136 .0137	.0511 .0348 .0187 .0074 .0036 0010
0.90	-6.999.6 -1.999.6 0.00	324 202 098 037 012 .010 .077 .180	.0411 .0221 .0125 .0110 .0107 .0107 .0120	.0481 .0293 .0150 .0085 .0061 .0031 0055		3.8 5.8 7.8 9.8 11.8 13.9 15.9	.143 .216 .290 .362 .430 .499 .565	.0215 .0327 .0493 .0721 .0988 .1299 .1666	0276 0429 0573 0720 0853 0980 1094 1176
	6.0 7.9 10.0 12.0 14.0	.291 .410 .540 .661 .789	.0200 .0370 .0620 .0992 .1434 .1983	0201 0361 0549 0770 0976 1253 1521	2.22	-5.9 -3.6 -1.7 3 .2 .8 2.2	185 114 057 013 .003 .022 .068	.0308 .0191 .0139 .0124 .0123 .0126	.0353 .0226 .0120 .0037 .0005 0023
1.30	-6.0 -4.0 -2.0 5 0 .6 2.1 4.0	291 189 093 026 005 .019 .087 .181	.0418 .0254 .0169 .0145 .0139 .0145 .0167	.0650 .0425 .0209 .0067 .0032 0024 0167		4.2 6.2 8.3 10.2 12.3 14.2 16.2 18.3	.129 .187 .244 .300 .357 .409 .465	.0207 .0309 .0453 .0629 .0862 .1115 .1426	0230 0336 0437 0528 0620 0687 0746 0806

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD - Continued (b) BVWC, δ_{c} = 0 $^{\!\rm O}$

М	a, deg	$\mathtt{C}_{\mathbf{L}}$	c_{D}	C _m	М	α, deg	$\mathtt{c}_\mathtt{L}$	$c_{ m D}$	C _m
0.70	-4.0 -2.1 -9 1.8 3.9 7.9 11.9 15.8 17.9	-0.252199100009037081181392621856971265207096003047101442691943 1.056	.0228 .0137 .0110 .0115 .0127 .0209 .0602 .1340 .2434 .3130 .0312 .0235 .0137 .0109 .0118 .0135 .0239 .0703 .1542	.0113 .0065 .0025 0003 0022 0067 0134 0177 0212 0224 .0235 .0183 .0090 .0012 0022 0071 0162 0359 0638 0960	1.70 2.22	4.0 8.0 12.0 16.1 18.0 -4.0 -2.0 1.99999999999999999999999999999999999	.183 .375 .566 .751 .839 160 083 005	0.0185 .0274 .0660 .1325 .2264 .2818 .0252 .0176 .0149 .0154 .0542 .1054 .1785 .2204 .0145 .0129 .0138 .0156 .0229	-0.0123 0263 0531 0764 0954 1049 .0223 .0125 .0019 0037 0087 0185 0347 0502 0623 0658 .0134 .0069 0008 0008 0045 0079 0144
1.30	-4.9 -3.9 -1.9 0	234 182 091 0 .045	.0340 .0266 .0186 .0158 .0166	.0013		8.3 12.3 16.3 18.4	.254 .368 .484 .541	.0488 .0916 .1525 .1903	0248 0332 0385 0412

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD - Continued (c) BVWC, $\delta_{\rm C}$ = 10 $^{\rm O}$

М	α, deg	$\mathtt{c}_{\mathtt{L}}$	$c_{ m D}$	C _m	М	a, deg	$\mathtt{C}_{\mathbf{L}}$	c_{D}	C_{m}
0.70	-6.0 -4.0 -2.1 0 .9 1.9 3.8 7.8 11.9 15.8 17.8	-0.298 190 092 007 .041 .084 .176 .404 .631 .869 .982 315 198	0.0378 .0221 .0151 .0150 .0161 .0183 .0267 .0735 .1534 .2683 .3365	0.0358 .0301 .0259 .0218 .0208 .0183 .0111 .0067 .0037 0086 0153	1.70	4.0 7.9 12.0 15.9 18.0 -6.1 -4.1 -2.1 -2.1 -9 1.9 3.9 7.8	0.177 .371 .568 .748 .830 230 154 076 001 .037 .077 .148	0.0336 .0737 .1452 .2382 .2938 .0373 .0257 .0194 .0182 .0196 .0221 .0303 .0619	-0.0084 0356 0597 0809 0887 .0507 .0411 .0305 .0206 .0151 .0090 0016 0203
1.30	-1.9 0 1.1 2.1 4.1 8.1 12.1 16.0 18.0 -5.9 -4.0 -1.9 0 1.1 2.0	095 0 .057 .103 .205 .451 .706 .946 1.058 278 187 093 004 .043	.0154 .0151 .0171 .0197 .0304 .0841 .1745 .2960 .3706 .0415 .0209 .0199 .0214 .0238	.0291 .0224 .0180 .0134 .0013 0167 0525 0945 1146 .0635 .0503 .0365 .0230 .0157 .0089	2.22	11.8 15.7 17.9 -5.7 -3.6 -1.6 .2 1.3 2.4 4.3 8.3 12.3 16.2 18.2	.440 .576 .646 164 105 041 .016 .050 .080 .141 .261 .375 .481 .535	.1146 .1853 .2309 .0289 .0205 .0164 .0163 .0179 .0203 .0280 .0567 .1015 .1604 .1973	0346 0462 0511 .0345 .0288 .0214 .0139 .0092 .0054 0024 0141 0211 0248 0258

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD - Continued (d) BVWC, δ_{C} = 20 $^{\circ}$

М	α, deg	$\mathtt{c}_{\mathtt{L}}$	$\mathtt{c}_{\mathtt{D}}$	C _m	М	α, deg	$\mathtt{c}_{\mathtt{L}}$	c_{D}	C _m
M 0.70	deg -6.1 -4.1 -2.0 -3.8 7.8 11.9 15.8 17.8 -5.9 -1.9 -1.1 -2.0 -3.9 -1.9 -3.9 -1.9 -3.9 -1.9 -3.9 -1.9 -3	-0.287 181 070 .012 .057 .098 .183 .381 .609 .871 .983 308 188 075 .021 .070 .117 .205 .427	0.0463 .0327 .0269 .0296 .0357 .0448 .0850 .1605 .2817 .3491 .0497 .0346 .0287 .0309 .0338 .0377 .0493	0.0551 .0510 .0456 .0453 .0436 .0403 .0303 .0088 0057 0239 0350 .0710 .0587 .0491 .0491 .0491 .0390 .0340 .0222 0169	M 1.30 1.70	4.0 8.0 12.0 15.9 18.0 -6.0 -4.1 -2.1 -9.9 3.9 7.8 15.8 17.8 -5.6 -3.7	0.171 .360 .559 .739 .825 215 041 065 .048 .084 .148 .293 .440 .576 .638 149 091	0.0479 .0890 .1591 .2526 .3090 .0431 .0333 .0283 .0286 .0304 .0336 .0420 .0744 .1293 .2014 .2433	0.0074 0262 0515 0729 0850 .0679 .0579 .0462 .0349 .0287 .0224 .0120 0107 0227 0345 0390 .0475 .0407
1.30	12.1 16.0 18.0 -5.9 -3.9 -1.9 0 1.1 2.0	.670 .944 1.038 274 177 083 001 .046	.1798 .3120 .3766 .0501 .0372 .0314 .0321 .0343	0422 0963 1076 .0862 .0711 .0553 .0413 .0329		-1.5 .2 1.3 2.4 4.3 8.3 12.2 16.2 18.2	.030 .061 .089 .148	.0388 .0680	.0211 .0165 .0085 0039

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD - Continued (e) BV

М	α, deg	$\mathtt{c}_\mathtt{L}$	c_{D}	C _m	М	α, deg	\mathtt{C}_{L}	c_{D}	C _m
0.90	-4.3 -2.2 7 3 1.7 3.8 5.7 7.8 9.8 11.8 17.9 -6.0 -3.9 -1.9 -1.9	-0.007 003 002 0 .001 .002 .003 .004 .007 .011 .029 .036 .043 008 004 0	0.0068 .0064 .0060 .0057 .0055 .0055 .0056 .0072 .0076 .0083 .0102 .0126 .0159	-0.0132 0095 0053 0018 0007 .0004 .0041 .0086 .0128 .0166 .0205 .0248 .0293 .0339 .0339 .0339 0136 0092 0051 0020	1.70	6.0 8.0 10.1 12.0 14.1 16.1 18.1 -6.2 -4.1 -2.1 2.1 4.8 9.8 9.8 11.8	.008 .013 .019 .027 .035 .047 .059	0.0081 .0084 .0093 .0107 .0130 .0162 .0199 .0247 .0106 .0092 .0087 .0084 .0084 .0082 .0081 .0083 .0088	.0127
1.30	.1 .5 2.0 4.1 6.0 8.0 10.1 12.1 14.1 16.1	.001 .002 .003 .005 .009 .012 .019 .024 .031 .038 .048 010 005 001 0	.0053 .0054 .0053 .0054 .0058 .0065 .0078 .0091 .0117 .0140 .0176 .0099 .0088 .0084 .0082 .0082	0002 .0007 .0041 .0090 .0128 .0170 .0209 .0255 .0301 .0352 .0412 0133 0094 0050 0017 0004 .0005	2.22	13.9 15.9 17.9 -5.7 -3.6 -1.7 2	.042 .058 .076 016 010 007 002 003 001 .005 .011 .017 .028 .041 .058 .075 .093	.0177 .0236 .0314 .0092 .0081 .0073 .0070 .0070 .0069 .0069 .0080 .0093 .0119 .0213 .0289 .0372	.0326 .0390 .0467 0113 0069 0026 .0004 .0016 .0030 .0059 .0106 .0149 .0190 .0237 .0280 .0341 .0408

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD - Continued (f) BVC, δ_c = 0 $^{\circ}$

М	α, deg	$c_{ m L}$	c_{D}	C _m	М	α, deg	$\mathtt{C}_{\mathtt{L}}$	$c_{ m D}$	C _m
0.70	-6.2 -4.1 -2.1 -8 1.8 3.9 7.8 11.8 17.9	034 019 003 .005 .010 .026 .061 .100 .139	0.0120 .0094 .0077 .0069 .0068 .0070 .0079 .0134 .0251 .0422	-0.0385 0255 0131 0015 .0044 .0109 .0239 .0501 .0785 .1075 .1194	1.70	4.0 7.9 11.9 16.0 18.0 -6.2 -4.3 -2.2 -7 1.7 3.8		.0170 .0286 .0453 .0560 .0141 .0120 .0101 .0092 .0090	.1044 0314 0220 0111 .0001 .0048 -0103
0.90	-6.1 -4.0 -2.1 0 .9 1.8 3.9 7.9 11.7 15.9	052 033 018 001 .005 .013 .069 .107 .149 .164	.0120 .0090 .0076 .0069 .0068 .0087 .0150 .0269 .0460	0396 0253 0134 0004 .0068 .0122 .0248 .0530 .0814 .1109 .1219	2.22	7.8 11.7 15.7 17.8	.049 .079 .115 .141 037 025 013	.0158 .0262 .0425 .0549 .0119 .0095 .0080 .0074	.0408 .0609 .0789 .0871 0244 0155 0066 .0025
1.30	-6.0 -4.0 -2.0 0 .9	047 031 015 001 .006	.0147 .0119 .0104 .0097 .0098	0352 0235 0118 0006 .0046		1.3 6.2 12.2 16.3 18.3	.024 .049 .079 .123	.0095 .0153 .0255 .0450	.0205 .0381 .0525 .0642

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD - Continued (g) BVC, $\delta_{\rm C}$ = 10 $^{\rm O}$

М	α, deg	CL	$\mathtt{c}_\mathtt{D}$	C_{m}	М	α, deg	$c_{ m L}$	c_{D}	C _m
0.70	-6.2 -4.1 -2.1 8 1.8 3.9 7.8 11.7 15.8 17.9	-0.003 .009 .025 .041 .051 .058 .076 .113 .141 .162 .165	0.0078 .0080 .0095 .0121 .0138 .0155 .0200 .0333 .0491 .0654 .0715	-0.0106 .0024 .0150 .0269 .0346 .0409 .0555 .0816 .1043 .1208	1.70	7.9 11.9 15.9 18.0	0.064 .093 .123 .151 .166 009 .004 .017 .029 .035 .040	0.0218 .0330 .0484 .0678 .0787 .0110 .0107 .0114 .0131 .0144 .0156	0.0466 .0670 .0890 .1111 .1221 0106 0015 .0093 .0203 .0250 .0300
1.30	-4.0 -2.0 0 .8 1.8 3.9 7.9 11.8 15.9 17.9 -4.0 0 .9 1.9	.010 .029 .046 .054 .064 .082 .120 .143 .158 .172 006 .009 .023 .037 .045	.0082 .0094 .0122 .0138 .0165 .0213 .0360 .0506 .0644 .0747 .0112 .0111 .0124 .0146 .0160	.0019 .0162 .0297 .0355 .0435 .0566 .0833 .1031 .1136 .1237 0108 0001 .0121 .0238 .0298 .0348	2.22	7.7 11.6 15.7 17.7	.077 .100 .128 .148 008 .003 .016 .027 .031 .036 .046 .069 .092 .135 .158	.0284 .0411 .0583 .0703 .0098 .0098 .0112 .0123 .0136 .0165 .0256 .0374 .0589 .0731	.0571 .0755 .0938 .1031 0080 .0011 .0103 .0186 .0232 .0272 .0360 .0510 .0670 .0799 .0874

TABLE I.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CANARD - Conclude: (h) BVC, $\delta_{\rm C}$ = 20 $^{\rm O}$

М	α, deg	$c_{ m L}$	\mathtt{C}_{D}	C_{m}	М	α, deg	$c_{ m L}$	c_{D}	C _m
0.70	-6.1 -4.1 -2.1 1 .8 1.8 3.9 7.8 11.8	0.033 .051 .067 .081 .089 .095 .111 .130	0.0157 .0191 .0235 .0289 .0323 .0354 .0431 .0563	.0289 .0414 .0538 .0609 .0669 .0793 .0958 .0984	1.70	7.9 11.8 15.8 18.1 -6.2 -4.2	.113 .130 .151 .163 .016 .029	.0531 .0690 .0862 .0969 .0162 .0178	.0798 .0989 .1147 .1242 .0074 .0158
0.90	15.8 17.9 -6.1 -4.1 -2.1 1 .8 1.8 3.9	.141 .154 .036 .053 .069 .084 .091 .098	.0745 .0833 .0162 .0196 .0248 .0300 .0334 .0367	.1096 .1190 .0177 .0292 .0415 .0539 .0596 .0660	2.22	2 .7 1.7 3.7 7.7 11.6 15.7 17.9	.051 .057 .063 .074 .090 .110 .134 .155		.0343 .0383 .0422 .0510 .0674 .0839 .1013 .1110
1.30	7.8 11.9 15.9 17.9 -6.0 -4.1 -1.9 1.8	.124 .136 .148 .164 .026 .038 .053 .065 .071	.0550 .0667 .0801 .0916 .0175 .0198 .0235 .0276 .0303 .0328	.0917 .1014 .1175 .1289 .0118 .0212 .0317 .0406 .0466		-3.7 -1.7 2.2 4.2 8.2 12.1 16.3 18.2	.025 .035 .044 .050 .054 .063 .079 .100 .143	.0156 .0176 .0204 .0224 .0242 .0285 .0390 .0528 .0765 .0897	.0136 .0222 .0295 .0333 .0379 .0451 .0604 .0744 .0916 .1002

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE TRAILING-EDGE FLAP (a) $\delta_{\bf f}$ = $^{\rm l}_{\rm t}.1^{\rm o}$

М	α, deg	$\mathtt{c}_\mathtt{L}$	$\mathtt{c}_{\mathtt{D}}$	C _m	М	α, deg	$\mathtt{C}_{\mathtt{L}}$	$c_{ m D}$	C _m
0.70	- 6.2	-0.235	0.0321	-0.0128	1.10	2.2	0.165	0.0234	-0.0490
	2	•060	.0116	 0323		6.0	.389	.0565	0922
	1.8	.148	.0148	0385		10.0	.604	.1194	1209
	5.7	. 346	.0411	0515					
	9.9	•579	.1046	0641	1.30	- 5 . 9	260	.0389	.0311
		- \ -		0		-1. 9	062	.0163	0039
0.90	-6.0	242	.0340	0118		.2	•033	.0160	0199
	-2. 0	016	.0123	0345		2.1	.125		
1	0	.082	.0129	0440		6.0	•315	•0454	0689
	2.1	.181	.0176	0519		10.1	•507	.1006	0994
	6.0	.402 .646	.0507	0748	1 70	- 6 . 2	01.77	0.21.0	0071
	10.1	•040	.1207	1038	1.70		217 066	.0348	.0274
1.00	- 5.8	296	.0439	.0242	1	-2.0 1	.014	.0166 .0148	.0024 0105
1	-1.7	049	.0177	0155		1.9	.088	.0175	0231
1	.2	•059	.0169	 0342		5.8	•238	.0370	0467
1	2.3	.181	.0230	0561		9.9	•380	.0778	 0683
	6.2	.415	.0586	0973		1 ,•,	• 500	.0119	•0000
	10.2	.645	.1294	1307	2.22	-5.7	184	.0301	.0202
				5-1		- 1.7	066	.0152	.0040
1.10	-6.0	284	.0446	.0290		•3	.009	.0133	0070
	-2.0	 059	.0193	0069		2.3	.081	.0156	0176
	.1	.056	.0184	0287	l	6.2	.197	.0334	0335
						10.3	.310	.0672	0472

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE TRAILING-EDGE FLAP - Continued (b) $\delta_{\bf f}$ = 00

1.2 -1.97 .0216 .0155 .0155 .22 -1.01 .0130 .0085 .0085 .0724 .0719	М	a, deg	$c_{ m L}$	c_{D}	C _m	М	a, deg	$\mathtt{c}_{\mathtt{L}}$	c_{D}	Cm
1.2 -1.97 .0216 .0155 .0155 .22 -1.01 .0130 .0085 .0085 .0724 .0719	0.70					1.10		0.213	0.0279	-0.0326
7 039 .0108 .0060 10.1 .544 .1043 0821 .003 .0103 .0004 11.1 .740 .1938 11950 .0990 .12.1 .637 .1450 0990 .12.1 .637 .1450 .0990 .12.1 .637 .1450 .0990 .139 .164 .0182 0062 .062 .0163 .0004 .161 .0182 .0064 .161 .841 .2513 .1348 .11954 .0182 .0062 .0183 .130 -6.0 .292 .0420 .0530 .0454 .0182 .0240 .117 .0844 .0240 .0298 .2.0 .0.294 .0170 .0175 .13.8 .702 .1662 .0365 5 .026 .0445 .0056 .15.8 .8607 .2224 .0339 .0 .055 .0193 .0026 .178 .0056 .178 .0183 .1904 .0016 .0026 .0017 .0175 .0016 .0016 .0026 .0017 .0016 .0026 .0016 .0026 .0016 .0026 .0016 .002					.0155	l			.0469	0532
2 018 0.104 0.050 12.1 6.37 1.450 0990 1.93 0.0044 14.1 7.40 1.938 -1.195 1.194 1.938 -1.195 1.398 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.938 -1.194 1.934 -1.194 1.934 -1.194 1.934 -1.194 1.934 -1.194 1.105 1.104 1.104 1.104 1.105 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.105 1.104	1		1							
1.4						1			.1043	
1.9				l		1	12.1			
3.9										
5.8 .259 .0316 .0.023 .0.089 9.8 .477 .0844 .0.0240 .1.10 .1.139 .0254 .0345 .0.114 .0.0240 .1.17 .587 .1210 .0.0298 .2.00 .0.040 .0.139 .0.0298 .2.00 .0.030 .0.021 .0.0530 .0.021 .0.0530 .0.021 .0.0530 .0.021 .0.0530 .0.021 .0.0530 .0.029 .0.021 .0.0530 .0.029 .0.021 .0.022 .0.0231 .0.0221 .0.0203 .0.020						l		(32) T++0		
7.8		5.8			1 1	1	10.1	• 724	• 2103	
9.8	1					1.30	-6.0	292	.0420	.0530
11.7 .587 .1210 .0298 .20 094 .0170 .0175 .158 .807 .2224 .0389 0 .005 .0139 .0029 .0029 .178 .918 .2860 .0417 .6 .019 .0145 .0010 .0175 .0216 .019 .0145 .0010 .0216 .0225 .0210 .06 .130 .0246 .0225 .0210 .06 .130 .0246 .0225 .0210 .06 .278 .0399 .0453 .0619 .0609 .19 .0013 .0107 .0055 .12.0 .561 .1262 .0916 .0013 .0076 .013 .0107 .0055 .12.0 .561 .1262 .0916 .0019 .0609 .0767 .0175 .2146 .1191 .0199 .0121 .0199 .0121 .181 .509 .2661 .1276 .0916 .0217 .0019				.0844						.0345
15.8	į į	11.7	•587		0298	ŀ	-2.0			.0175
17.8						İ	 5			.0056
0.90										.0029
0.90		17.8	•918	•2860	0417			.019		
-3.9		60	205	01.7.7	0000					
1.9	10.90							.130		
6	1									
0013 .0107 .0055 12.0 .561 .12620916 .6 .009 .0106 .0039 14.1 .650 .16781062 .2.0 .076 .0119 .0019 16.1 .735 .21461191 .6.0 .2.1 .2.0 .2.1 .2.2 .2.2 .2.6611276 .2.2 .2.661 .2.276 .2.2 .2.2 .2.63 .2.24 .2.2 .2.2 .2.3 .2.24 .2.2 .2.2 .								450		
1.00	1			l			12.0			
2.0							14.1			
1.00		2.0				ŀ				1191
1.00			.179	.0199	0121		18.1		.2661	1276
10.0										
12.0					0361	1.70				
14.0					0527				0239	
16.0	1								.01.64	
1.00 -5.8 347 .0484 .0603 3.8 .143 .0216 0087 -3.8 223 .0296 .0406 5.8 .215 .0327 0330 -1.8 110 .0175 .0213 7.8 .239 .0494 0443 0553 .22 007 .0154 .0046 11.8 .429 .0988 0657 .7 .024 .0155 .0008 13.9 .429 .1299 0754 .22 .103 .0177 0112 15.9 .54 .1665 0831 .42 .222 .0287 0312 17.9 .626 .2063 0883 .459 .0768 0517 .82 .459 .0768 0517 .22 .586 .1586 1065 -1.7 577 .0139 .0097 .122 .686 .1586 1065 -1.7 577 .0139 .0097 .14.2 .793 .2091 1234 3 613 .0124 .0034 .16.3 .898 .2706 1400 .22 .638 .0162 .0166 .2657 -2.0 106 .0125 .0237 .8 .221 .0126 0013 .0099 .226 .137 .0309 .0273 .226 .226 .137 .0309 .0273 .226 .226 .0123 .0009 .226 .0123 .0009 .2273 .226 .226 .0123 .0009 .2273 .226 .226 .226 .227										1000
1.00 -5.8 347 .0484 .0603 3.8 .143 .0216 0212 087 38 223 .0296 .0406 5.8 .215 .0327 0330 -1.8 110 .0175 .0213 7.8 .289 .0494 0443 38 310 .0149 .0096 9.8 .51 .0721 0553 0577 .024 .0155 .0008 13.9 .429 .0298 0657 0754 .22 .103 .0177 0112 15.9 .54 .1665 0831 4.2 .222 .0287 0312 17.9 .626 .2063 0883 0577 10.3 .579 .1153 0897 12.2 .586 .1586 1065 -1.114 .0191 .0176 12.2 .586 .1586 1065 -1.67 -1.7 57 .0139 .0097 14.2 .793 .2091 1234 3 114 .0191 .0176 .1663 .898 .2706 1400 .2 .022 .0123 .0009 18.2 .989 .3323 1537 .8 .21 .0126 0013 .0076 .22 .0582 .129 .0207 0172 .20 .106 .0195 .0237 .8 .21 .0126 .0082 .14 .0295 .0437 .62 .137 .0309 .0227 .0329 .0227 .0172 .20 106 .0195 .0237 .8 .245 .0456 .0362 .0456 .1062 .0166 .0166 .0072 .230 .0629 0394 .0625 .14 .0082 .0062 .0456 .0062 .0456 .0062 .0456 .0062 .0062 .00456 .0062 .00456 .0062	1	10.0	• 5±3	•2021	1104					
1.00										
-3.8	1.00	-5.8	347	.0484	.0603	İ	3.8			0212
3 031 .0149 .0096 9.8 .351 .0721 0553 .2 007 .0154 .0046 11.8 .429 .0988 0657 .7 .024 .0155 .0008 13.9 .439 .1299 0754 2.2 .103 .0177 0112 15.9 .554 .1665 0831 4.2 .222 .0287 0312 17.9 .626 .2063 0883 .459 .0768 0705 2.22 -5.9 136 .0309 .0273 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0312 .0097 .122 .686 .1586 1065 -1.7 057 .0139 .0097 .14.2 .793 .2091 1234 3 013 .0124 .0034 .16.3 .398 .2706 1400 .2 .022 .0123 .0009 .18.2 .989 .3323 1537 .8 .021 .0126 0013 .0145 .0082 .129 .0207 0172 .22 .058 .0145 .0082 .129 .0207 .0172 .22 .0207 .0172 .22 .0207 .0172 .22 .0207 .0172 .22 .0207 .0172 .22 .0207 .0172 .22 .0207 .0253 .0257 .22 .230 .0629 .0394 .11 004 .0160 .0072 .0123 .336 .0862 0456 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .0456 .0862 .		-3.8								0330
1.10 -6.0 -334 .0484 .0625 .1.10 -6.0 334 .0484 .0625 .2.2 .0.287 .0.234 .0.245 .0.253 .0.245 .0.253 .0.247 .0.246 .0.253 .0.247 .0.253 .0.247 .0.28 .0.262 .0.267 .0.237 .0.248 .0.262						ļ	7.8	.239	.0494	0443
1.10	1					ŀ				
2.2						ŀ				
4.2								499		
6.3 .345 .0491 0517 2.22 -5.9 136 .0309 .0273 .0309	ŀ					1				
8.2 .459		6.3				l	11.9	•C 20	.2003	0003
10.3	1		459			2.22	-5.9	136	.0309	.0273
12.2					0897					.0176
14.2		12.2		.1586	1065					
16.3					1234					.0034
1.10		16.3	.898			1	.2			.0009
1.10		18.2	•989	•3323	1537			•C 5T		0013
-4.0 216 .0295 .0437 6.2 .137 .0309 0253 .200 .106 .0195 .0237 8.3 .245 .0453 0327 .4 .028 .0162 .0116 10.2 .330 .0629 0394 .1 004 .0160 .0072 12.3 .356 .0862 0456	1, ,,	6.0	221	O): O).	0605					
-2.0	1									
4028 .0162 .0116 10.2 .300 .06290394 -1004 .0160 .0072 12.3 .356 .08620456										
12.3 .356 .08620456						}				
					.0072			356		0456
	1 1			.0163			14.2	. 439	.1115	0502
2.1 .101 .01850108 16.2 .454 .14220531			.101					454		
18.3 .519 .17760574							18.3			

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE TRAILING-EDGE FLAP - Continued (c) δ_f = -4.2°

М	a, deg	$\mathtt{c}_\mathtt{L}$	c_{D}	C _m	М	a, deg	\mathtt{C}_{L}	c_{D}	C_{m}
0.70	-2.2 3 1.8 5.7 9.8 13.8 17.9	-0.393 178 090 .002 .195 .405 .637 .856 194 094 .005 .226	0.0505 .0170 .0118 .0103 .0254 .0715 .1528 .2668	.0286	1.10	10.0 14.1 18.1 -6.0 -1.9 .1 2.1 6.0 10.0 14.1 18.1	0.501 .691 .874 318 120 031 .059 .249 .438 .621 .786	0.0974 .1810 .2928 .0464 .0186 .0152 .0162 .0371 .0850 .1595 .2562	0890
	10.1	.470417167054 .060 .296 .522 .739 .935390153050 .063 .281	.0884 .0592 .0239 .0190 .0173 .0454 .1050 .1971 .3157 .0564 .0232 .0182	0143 .1017 .0547 .0348 .0145 0260 0574 0902 1186 .0991 .0533 .0334 .0128 0271		-6.2 -2.2 1.9 5.8 13.8 17.8 -5.6 -2.3 14.3 18.4	255 100 026 .048 .200 .343 .477 .606 189 065 006 .054 .174 .286 .392 .501	.0410 .0178 .0146 .0154 .0312 .0685 .1229 .1968 .0320 .0148 .0126 .0141 .0292 .0601 .1075 .1709	.0519 .0262 .0130 .0009 0223 0443 0637 0766 .0332 .0159 .0070 0016 0176 0313 0406 0475

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE TRAILING-EDGE FLAP - Continued (d) $\delta_{\bf f}$ = -8.2°

М	α, deg	$\mathtt{c}_{\mathtt{L}}$	c_{D}	C _m	М	α, deg	$\mathtt{c}_\mathtt{L}$	$c_{ m D}$	C _m
0.70	-6.3 -2.3 2	-0.466 254 158 067	0.0626 .0237 .0154 .0115	0.0917 .0761 .0682 .0621	1.10	10.0 14.1 18.1	0.461 .667 .844		-0.0303 0671 0905
	5.8 9.8 13.9 17.3	.120 .333 .568 .760	.0214 .0620 .1389 .2379	.0498 .0381 .0273 .0255	1.30	-6.0 -2.0 -2.0 2.5	359 157 066 .030 .216	.0181	.0958 .0572 .0405 .0235 0095
0.90	-6.1 -2.0 0 2.1	504 267 166 075	.0687 .0262 .0178 .0138	.1235 .0944 .0838 .0748		10.0 14.1 18.1	•414 •598 •765	.0825	0425 0712 0931
	6.0 10.0 14.0 18.1	.138 .388 .642 .805	.0269 .0781 .1671 .2703		1.70	-6.2.2.2.3.3.5.3.5.	273 122 044 .026	.0458 .0217 .0170 .0170	.0646 .0389 .0256 .0132 0128
1.00	-5.8 -1.8 -2	490 250 127 005	.0720 .0301 .0226 .0206	.1363 .1004 .0772 .0534		9.8 13.9 17.9	•328 •469 •598	.0669	0343 0543 0672
	6.2 10.2 14.2 18.3	.243 .485 .702 .906	.0437 .1018 .1902 .3073	.0091 0303 0621 0916	2.22	-5.3 -1.7 2.2 6.3	204 080 016 .044 .166	.0359 .0173 .0140 .0152 .0294	.0421 .0243 .0150 .0057
1.10	-6.1 -1.9 .1 2.1	458 216 109 .004	.0703 .0299 .0223 .0210	.1316 .0870 .0686 .0459		10.3 14.3 18.3	.279 .389 .498	.0595	0255 0353 0418

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE TRAILING-EDGE FLAP - Continued (e) $\delta_{\mbox{\scriptsize f}}$ = -12.3°

М	α, deg	$\mathtt{c}_{\mathtt{L}}$	c_{D}	C _m	М	α, deg	$c_{ m L}$	c_{D}	C _m
0.70	-6.3	-0.535	0.0767	0.1232	1.10		0.188	0.0424	0.0305
ļ	-2. 3	323 226	.0330 .0220	.1075 .0983	1	10.0	•417 •631	.0923 .1733	0049 0471
	1.9	 220	.0159	.0903	1	18.0	.809		 0471
	5.8	•045	.0191	.0808	1	TO•0	•009	•410-	0005
}	9.8	.260	.0548	.0701	1.30	-6.1	392	.0645	.1174
ļ	13.8	.484	.1229	.0587		-2.0	188	.0301	•
	17.8	.675	.2161	.0554		0	096	.0235	.0609
1						2.1	005	.0217	
0.90	-6.1	 550	.0816	.1525		6.0	.189	.0375	.0085
	-2.0	 315	•0357	.1242		10.0	. 385	.0809	0256
	.1	218	.0255	.1121		14.1	•571	.1515	0559
	2.1	129	.0191	.1034		18.0	•736	.2428	0780
1	6.0	.078	.0285	.0841	, 70	6 2	206	0505	0765
1	14.0	•331 •598	.0752 .1610	.0560 .0116	1.70	-6.3 -2.2	296 139	.0535 .0267	
1	18.1	•757	.2591	.0026	1	1	060	.0210	
1	,	•121	•	•0020		1.9	.012	.0200	.0244
1.00	- 5 . 9	526	.0867	.1602		5 . 8	.164	.0325	0015
	-1.8	295	.0408	.1291		9.8	.314	.0666	0252
	.1	188	.0310	.1127		13.9	.452	.1200	0441
	2.3	067	.0270	.0895		17.9	•579	.1905	05 68
	6.2	•194	.0452	.0378					
	10.2	•441	.1002	0028	2.22	- 5.8	 215	.0411	.0495
	14.2	.664	.1861	0419		-1.7	091	.0207	.0316
	18.2	.860	.2962	0702	<u> </u>	.3	029	.0172	.0226
1.10	-6.0	4981	.0823	.1569		2.3 6.3	.030	.0175	.0135 0042
1 10	-0.0 -2.0	4 90 2 66	.0406	.1185		10.3	.152 .265	.0299 .0584	0186
	.1	1 58	.0313	.0984		14.3	•373	.1023	0276
	2.0	047	.0262	.0773		18.3	.479	.1631	0338

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE TRAILING-EDGE FLAP - Continued (f) $\delta_{\bf f}$ = -20.3°

М	a, deg	\mathtt{C}_{L}	c_{D}	C _m	М	a, deg	$\mathtt{c}_{\mathtt{L}}$	c_{D}	C _m
1.00	0.2 2.3 6.2 10.2 14.3 18.3	-0.282 179 .079 .358 .600 .802	0.0525 .0445 .0536 .1033 .1834 .2911	•0984	1.70	14.1 18.1 -6.2 -2.2	0.331 .527 .698 328	.2388 .0701 .0398	0.0072 0283 0532 .1000 .0729
1.10	.1 2.1 6.0 10.0 14.1 18.1	251 137 .100 .343 .568 .755	.0511 .0432 .0511 .0945 .1709	.1463 .1259 .0777 .0374 0098		1.0 5.0 9.7 13.0 17.0	098 019 .130 .279 .424 .551	.0328 .0298 .0392 .0680 .1189	.0597 .0458 .0196 0053 0275 0403
1.30	-6.1 -2.0 .1 2.0 6.0	454 249 155 064 .128	.0881 .0476 .0380 .0336 .0446	.1563 .1152 .0973 .0802 .0450	2.22	-5.8 -1.7 2.3 6.3 14.4 18.0	241 111 053 .009 .132 .362 .461	.0553 .0314 .0266 .0252 .0347 .1032 .1589	.0667 .0469 .0378 .0278 .0090 0184 0235

TABLE II.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE TRAILING-EDGE FLAP - Concluded (g) $\delta_{\mbox{\scriptsize f}}$ = -28.3°

М	α, deg	${\tt c}_{\tt L}$	$c_{ m D}$	C _m	М	α, deg	c_{L}	$\mathtt{c}_{\mathtt{D}}$	C _m
1.00	0.2	-0.330			1.30				
	2.2 6.2	241 0	.0678 .0688	.1730		14.0 18.1		.1509 .2377	0042 0290
	10.2			.0866 .0285	1.70	1			
	18.2	•732		.0012		1.9 5.8		.0460	.0368
1.10	0 2.0	309 213		.1731 .1598		9.9 13.9	1	.1208	.0109 0128
	6.0	.032 .270	.0658 .1043			17.9	•531	.1879	0266
	14.1 18.1	.510 .694			2.22	.4 2.3	068 010	.0366 .0342	
1.30	.1	 213		·		6.3	.112	.0409	.0210
ال و الدار	2.1 6.0	110 .078	.0472	.1054		14.3	.342		0086

TABLE III.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CAMBERED BODY

(a) BVW

М	a, deg	c _L	c_{D}	C _m	М	a, deg	$c_{ m L}$	$c_{ m D}$	C _m
0.70	-6.4 -4.2		0.0404	0.0227	1.10		0.213	0.0279	-0.0326
	-2.2	197 101	.0216	.0155		6.1 8.1	•330 •446	.0469	0532 0719
1	7	039	.0108	.0060][10.1	544	.1043	0821
	2	018	.0104	.0050		12.1	.637	.1450	0990
	1 .4	.003	.0103	.0044		14.1	.740	.1938	1195
	1.9 3.9	.066 .164	.0113 .0182	0062	il .	16.1	.841	.2513	1348
	5.8	.259	.0316	0123		TO.T	.924	.3103	1474
	7.8	.368	.0537	0189	1.30	-6.0	292	.0420	.0530
	9.8	.477	.0844	0240		-4.0	1 Â9	.0254	.0345
	11.7	•587	.1210	0298	ll.	-2.0	C 94	.0170	.0175
	13.8 15.8	.702 .807	.1682 .2224	0365		5	c26	.0145	.0056
	17.8	.918	.2860	0389 0417		0.6	CD5 .C19	.0139 .0145	.0029 0010
	-, •-	-				2.1	.c37	.0167	0125
0.90		325	.0411	.0338	11	4.0	.130	.0246	0287
	-3.9	204	.0222	.0210		6.0	.278	•0399	0453
1	-1.9 6	099 038	.0126	.0113]	8.0	•373	.0619	0609
	0	 013	.0111	.0069 .0055	l	10.0 12.0	.469 .561	.0909 .1262	0767
	.6	.009	.0106	.0039	ŀ	14.1	.650	.1678	0916 1062
	2.0	.076	.0119	0019		16.1	•735	2146	1191
	4.0	.179	.0199	0121		18.1	.859.	.2661	1276
	6.0	.291	•0370	0231					
	7.9 10.0	•409 •540	.0618 .0992	0361 0527	1.70	-6.3 -4.1	239 150	.0377 .0239	.0409
	12.0	.660	.1433	0675	ļ	-2.2	 035	.0239	.0279 .0154
1	14.0	. 788	.1981	0888	1	7	031	.0140	.0065
	16.0	•913	.2627	1104	ļ	1	010	.0136	.0034
					I	-4	.012	.0137	0
1.00	-5. 8	347	.0484	.0603		1.8 3.8	.054	.0152	0087
1.00	-3. 8	 223	.0296	.0406		5.8	.1+3 .2.5	.0216 .0327	0212 0330
	-1.8	110	.0175	.0213	1	7.8	239	.0494	044
	 3	031	.0149	.0096		9.8	.351	.0721	0553
ŀ	.2	007	.0154	.0046		11.8	.4 29	•0988	0657
1	2.2	.024 .103	.0155 .0177	.0008 0112		13.9 15.9	•4 39 •534	.1299 .1665	0754
	4.2	.222	.0287	0312		17.9	.6:6	.2063	0831 0883
	6.3	.345	.0491	0517		- -	i		•••••
	8.2	•459	.0768	0705	2.22	- 5.9	1 36	.0309	.0273
	10.3 12.2	•579 686	.1153	0897		-3. 6	1.4	.0191	.0176
	14.2	.686 .793	.1586 .2091	1065 1234		-1.7 3	057 0.3	.0139	.0097
	16.3	.898	.2706	1400]	3	.0.2	.0124 .0123	.0034
	18.2	•989	3323	1537		.8	0:1	.0126	0013
, ,			a 1 01			2.2	.058	.0145	0082
1.10	-6.0 -4.0	33 ¹ 4	.0484 .0295	.0625		4.2	•129	.0207	0172
	-2.0	216 106	.0295	.0437 .0237		6.2 8.3	.1 37 .2-5	.0309	0253 0327
	4	028	.0162	.0116		10.2	300	.0629	0327
	.1	004	.0160	.0072		12.3	•3 i6	.0862	0456
	.6	.024	.0163	.0020		14.2	4119	.1115	0502
	2.1	.101	.0185	0108		16.2	464	.1422	0531
لـــــا						18.3	•59	.1776	0574

TABLE III.- AERODYNAMIC CHARACTERISTICS OF THE CONFIGURATION WITH THE CAMBERED BODY - Concluded (b) $\rm B_{\mbox{\scriptsize c}}VW$

М	a, deg	$\mathtt{C}_{\mathbf{L}}$	c_{D}	C _m	М	α, deg	$\mathtt{c}_\mathtt{L}$	c_{D}	C _m
0.70	-6.3 -4.3 -2.2 8	-0.312 203 101 037	0.0402 .0227 .0136 .0111	0.0305 .0230 .0158 .0110	1.10	6.0 7.9 10.1 14.1	0.328 .455 .559	0.0469 .0739 .1099 .2030	0712 0798
	.3 1.8 3.7 5.8 7.7 9.7 13.8	.008 .078 .172 .281 .383 .495		0156 0204	1.30	-6.1 -4.1 -2.0 6	.943 290 192 090 028	.3222 .0424 .0266 .0175 .0153 .0151	1369 .0573 .0403 .0219 .0106 .0013
0.90	-6.1 -3.9 -2.0 4 -5	330 206 104 028 .020 .096	.0421 .0226 .0131 .0108 .0106	.0069		2.0 4.1 6.1 8.1 9.9 14.0	.095 .196 .289 .383 .466 .647	.0176 .0261 .0426 .0655 .0917 .1704	0103 0271 0419 0561 0677 0913
	4.0 6.0 8.1 10.0 14.1	.208 .317 .455 .566 .823	.0224 .0399 .0703 .1046 .2104	0126 0231 0402 0528 0915	1.70	-6.2 -4.1 -2.2 6 .3 1.8	233 157 082 024 .012 .070	.0371 .0243 .0171 .0148 .0139 .0159	.0462 .0336 .0209 .0109 .0053
1.00	-5.8 -3.7 -1.8 3 7 2.2	345 218 104 025 .031 .118 .240	.0476 .0283 .0191 .0176 .0152 .0198	.0045 0116		3.8 5.9 7.8 9.9 13.9 17.9	.145 .224 .293 .368 .503 .634	.0228 .0356 .0527 .0762 .1367	0165 0275 0361 0447 0544 0604
	6.2 8.2 10.3 14.3 18.3	.366 .484 .601 .820	.0521 .0818 .1206 .2205 .3463	0532 0714 0886 1191 1451	2.22	-5.9 -3.7 -1.7 3 .7 2.3	111 046 003 .027 .078	.0298 .0200 .0142 .0133 .0135	.0339 .0249 .0156 .0097 .0056
1.10	-6.0 -4.0 -1.9 6 .3 2.1 4.0	338 215 109 037 .019 .108 .219	.0502 .0309 .0200 .0188 .0166 .0206 .0294	.0705 .0488 .0308 .0168 .0076 0082		4.2 6.2 8.3 10.3 14.4 18.2	.137 .192 .252 .308 .420 .525	.0229 .0335 .0490 .0691 .1217 .1882	0084 0138 0181 0206 0266 0336

Figure 1.- Details and dimensions of canard model.

(b) Details of canard surface.

Figure 1.- Concluded.

Figure 2.- Details and dimensions of flap model.

Figure 3.- Details and dimensions of cambered body model.

Figure h .- Lift, drag, and pitching-moment characteristics of the canard model.

Figure $^{\downarrow}$.- Continued.

Figure 5.- Lift, drag, and pitching-moment characteristics of the flap model.

Figure 5.- Continued.

Figure 5.- Concluded.

Figure 6.- Lift, drag, and pitching-moment characteristics of the cambered- and symmetrical-body models.

Figure 6.- Continued.

Figure 6.- Concluded.

Figure 7.- Variation with Mach number of maximum lift-drag ratios, lift-curve slopes, minimum drag coefficients, and aerodynamic center locations for canard on and off.

Figure 8.- Variation with Mach number of maximum lift-drag ratios, lift-curve slopes, minimum drag coefficients, and aerodynamic center locations for the cambered- and symmetrical-body configurations.

NASA - Langley Field, Va. A-231