# Introduction to Machine Learning

Mahammad Valiyev 22.01.2022

## Contents and timeline

- 1. Introduction to Machine Learning and use cases in O&G (Jan 2)
- 2. Overview of Machine Learning algorithms (Jan 8)
- 3. Machine Learning Life Cycle (Jan 15)
- 4. Overview of resources, skill sets, job types, general advice (Jan 22)

## Part 4:

Overview of resources, skill sets, job types, general advice

## The big picture

#### Technical skills:

- Mathematics (including Statistics)
- Programming
- Machine/Deep Learning
- Domain knowledge

#### Non-technical skills:

- Communication (verbal & written)
- Curiosity & drive & passion

#### The Data Scientist Venn Diagram



Credit: Wikimedia

## Mathematics: Linear Algebra

- Branch of math, dealing with vectors, matrices
- Lots of applications in many engineering disciplines
- Why do you need linear algebra for ML?
  - Data for ML is represented with vectors, matrices, tensors
  - Theory for ML/DL is expressed with vectors, matrices
- Basics are enough to get started:
  - Notion of a scalar, vector, matrix, tensor
  - Basic arithmetic operations: e.g. addition, multiplication
  - Matrix multiplication properties and special matrices
  - Special operations: inverse, transpose
- Resources:
  - MIT OpenCourseWare, 18.06 SC
  - · Khan Academy, Linear Algebra

Scalar 1



Matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} + \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+9 & 2+8 & 3+7 \\ 4+6 & 5+5 & 6+4 \\ 7+3 & 8+2 & 9+1 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix}$$

## Mathematics: Multivariable Calculus

- Branch of math involving study of continuous change
- Two major branches: differential and integral

- $\lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- Multivariable calculus is extension of single variable calculus to multiple variables
- ML theory needs mostly differential calculus
- Why do you need calculus for ML?
  - Internal workings of algorithms (backpropagation for DL)
  - Optimization of objective functions
- Basics are enough to get started:
  - Notion of a derivative, partial derivative
  - Differentiation rules
  - · Calculus on vectors, e.g. gradient
- Resources:
  - MIT OpenCourseWare, 18.02 SC
  - Khan Academy, Multivariable Calculus





## Mathematics: Probability

- · Branch of math involving study and quantification of uncertainty
- · Lots of applications in science, engineering, industry for modeling and risk assessment
- Why do you need probability for ML?
  - Some algorithms are directly designed based on probabilistic laws
  - Models are trained with probabilistic frameworks
  - Models are tuned with a probabilistic framework
  - Models are evaluated with probabilistic measures
- Basics are enough to get started:
  - Notion of a probability and probability axioms
  - Conditioning and Bayes theorem
  - Idea of random variable, PDF, CDF
- Resources:
  - MIT OpenCourseWare, 6.041 SC
  - Khan Academy, Probability and Random variables



Axiom 1 :  $P(A) \le 1$ Axiom 2 : P(S) = 1

Axiom 3:  $P(A \cup B) = P(A) + P(B)$ 

if  $A \cap B = \Phi$ 

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$





### Mathematics: Statistics

- Branch of math concerning collection, analysis, interpretation, visualization of data
- 2 major subfields:
  - descriptive (summarize feature of data: e.g. mean)
  - inferential (infer properties of distribution using data: e.g. mean from sample data)
- Why do you need statistics for ML?
  - Statistics offers a collection of tools to deal with all aspects of data
    - · Collection, cleaning, visualization, modeling
  - Foundations of many models are based on statistics
  - · Statistics concepts and terminologies are used in ML
- Basics are enough to get started:
  - · Descriptive statistics (summarizing data), e.g. mean, variance
  - Data visualization techniques
- Resources:
  - Khan Academy, Statistics
  - MIT OpenCourseWare, 18.650







## Mathematics: Optimization

- Branch of math involving study of algorithms to determine maxima or minima of functions under or without constraints
- Being very applied field, there are lots of applications in science, engineering, economics
- Why do you need statistics for ML?
  - All Machine Learning problems are optimization problems
  - Each ML algorithm has its own objective/cost function
- Basics are enough to get started:
  - · Notions of objective function, maxima, minima
  - Gradient descent
- Resources
  - No open-source resource to suggest







**Model:** y(k, b) = kx + b

**Cost function:** 
$$J(k, b) = \frac{1}{2N} \sum_{i=1}^{N} ((kx_i + b) - y_i)^2$$

## Programming

- Basics of programming (a course in any programming language is okay):
  - Conditionals (if/else), loops (for, while)
  - Defining functions
  - Basic data structures: e.g., strings, lists, arrays
- Python for data analysis
  - Jupyter notebook
  - Operations with vectors and matrices: numpy
  - Data manipulation (clean, merge, reshape etc) and exploration: pandas
  - Data visualization: matplotlib
- Python for Machine Learning:
  - scikit-learn: for Machine Learning
  - Keras, Pytorch for Deep Learning
- Resources:
  - Intro to CS and Programming using Python, edx.org
  - Python for data analysis (book), Wes Mckinney
  - Keras/Pytorch documentation, <a href="https://keras.io/">https://pytorch.org/</a>



## Machine Learning algorithms

#### Supervised

- Regression
  - Linear regression and extensions (ridge, lasso)
  - K-nearest neighbors
  - Support vector machine and its extensions (kernels)
  - Decision trees and its extensions (ensemble methods)
- Classification
  - Logistic regression
  - K-nearest neighbors
  - Support vector machine and its extensions (kernels)
  - · Naïve Bayes
  - Decision trees and its extensions (ensemble methods)

#### Unsupervised

- Clustering
  - K-means
- Dimensionality reduction
  - · Principal component analysis

#### Reinforcement Learning

- **Deep Learning**: can be used for supervised, unsupervised and reinforcement learning
  - Multilayer perceptron (regression and classification)
  - Autoencoders (dimensionality reduction)
  - Convolutional neural networks (regression and classification)
  - Recurrent neural networks (regression and classification)
  - Generative adversarial neural networks (unsupervised: new data generation)
  - Transformers (regression and classification)

## Multiple levels of understanding of an algorithm

#### • Basic

- Type of ML task used to solve
- Rough idea/intuition about how algorithm works

#### Intermediate

- The gist of mathematics underlying the algorithm
- Intuition behind pros and cons of algorithm
- Application of algorithm to solve a problem using a library

#### Advanced

- The details of mathematics underlying the algorithm
- Detailed knowledge of advantages and limitations
- Implementation from scratch



Bloom's taxonomy, Credits: psianw.org

## Resources for learning Machine/Deep Learning

- Online courses (Intermediate):
  - Machine Learning Specialization, Coursera
  - Deep Learning Specialization, Coursera
- **Books** (Intermediate):
  - Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, Aurélien Géron
  - Python Machine Learning, Sebastian Raschka
  - Introduction to Statistical Learning, Gareth James et al.,
- Youtube channel:
  - GeostatsGuyLectures, Michael Pyrcz (for ML for Petroleum Engineering)







## Some types of Data Science Jobs

#### **Data Analyst:**

- Focus is mostly on data analysis & visualization and some basic predictive modeling
- Skills: basic mathematics and programming skills are needed
- Deliverable: mostly reports, presentations, dashboards

#### **Data Scientist:**

- Focus is on predictive modeling
- Skills: intermediate math and programming skills are needed
- Deliverable: mostly predictive models



Credits: towardsdatascience.com

## Recap

- 1. Introduction to Machine Learning and use cases in O&G
- 2. Overview of Machine Learning algorithms
- 3. Machine Learning Life Cycle
- 4. Overview of resources, skill sets, job types, general advice

## Thank you