2. Sdělovací metalická vedení, primární parametry

Telekomunikační vedení je Homogenní

- a. Pasivní prvky součástky které mění elektrickou energii na jakoukoliv jinou energii, např. tepelnou. V schématu mají vždy šipky napětí a proudu stejný směr
- Aktivní prvky součástky, které se chovají jako zdroj => mění jakoukoli jinou energii na

Parametry vedení (platí pro primární i sekundární):

- Primární x Sekundární
- Ovlivňují signál
 Základní vlastnosti vedení o délce 1km

- <u>Skinefekt:</u>
 Vlivem mag. Indukce [*B*] uvnitř vodiče dochází k vedení proudu jen po povrchu vodiče.
 - Hloubka vniku (pokles proudu na hodnotu 1/e) lze určit podle vztahu:

Obvod se soustředěnými parametry - Všechny sledované veličiny jsou pouze funkcí času =>

Obvod s rozprostřenými parametry - Všechny sledované veličiny nejsou funkcí jenom času, ale i funkcí vlnové délky šíření elektro mag pole.

Obvody lineární - obsahuje prvky jejichž VA charakteristika je pouze lineární Obvody nelineární - To samé akorát nelineární

Primární parametry vedení:

Označení	Význam	Jednotka
R	Měrný odpor	Ω/km
L	Měrná Indukčnost	mH/km
С	Měrná kapacita	nF/km
G	Měrný svod	μS/km

Měrná indukčnost:

- Vznik el.mag pole kolem vodičů
- Napěťové ztráty
- Závisí na vzdálenosti mezi vodiči
- Působí proti proudovým ztrátám

Pupinační cívky: zvětšení indukčnosti kabelového vedení sériovým zapojením indukčních cívek do vedení o pravidelných vzdálenostech

Vysoká frekvence = vysoký útlum a nízká reaktance

U nadzemních vedení je kapacita velmi malá, kdežto kapacita u podzemních vedení se pohybuje v desítkách pF na km

- Měrný svod:

 Převrácená hodnota izolačního odporu Převrácená hodnota iz
 Kvalita izolace vodičů
- Proudové ztrátyNadzemní x Podzemní vedení
- U nadzemních vedení za sucha G₀ = 0,1µS na km a za deště G₀ = 0,5µS na km

$$G/l = \frac{\pi\sigma}{\ln{-\frac{a}{r}}}$$