

Introduction to Inverse Problem in Imaging

EC 522 Computational Optical Imaging

Lei Tian

Admins

- » HW 2 is posted
 - » Due 2/21 (Wednesday; after Presidents' day break)

Mathematical tools & road map

- » Vector space (IIP Appx A)
 - » Key idea: think about the imaging signals as a <u>vector</u>
- » Linear operator (IIP Appx B)
 - » Key idea: think about imaging process as a linear transformation, i.e. a linear operator
 - » Later, we will perform discretization and convert the operator into a <u>matrix</u>

Linear operator

Linear operator

» Linear operator $A: \mathcal{X} \to \mathcal{Y}$ satisfies

» $A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 A(f_1) + \alpha_2 A(f_2)$, for any complex numbers α_1 and α_2

» Additivity: $A(f_1 + f_2) = A(f_1) + A(f_2)$

» Scalability: $A(\alpha f) = \alpha A(f)$

Range space*

- » The *Range space* of a linear operator $A: \mathcal{R}(A)$
 - » The set of all elements $g \in \mathcal{Y}$ from Af = g

$$\mathcal{R}(A) = \{g = Af \notin \mathcal{Y}, f \in \mathcal{X}\}$$

Null space *

- » The **null space** of a linear operator $A: \mathcal{N}(A)$
 - » The set of all elements $f \in \mathcal{X}$ such that Af = 0

$$\mathcal{N}(A) = \{ f \in \mathcal{X}, Af = 0 \}$$

Implication of Null space

Adjoint operator *

- » The *adjoint* operator $A^*(or A^H)$ of a linear and bounded operator A
 - » $A^*: \mathcal{Y} \to \mathcal{X}$ is the adjoint of $A: \mathcal{X} \to \mathcal{Y}$, when

$$\langle Ax, y \rangle_{\mathcal{Y}} = \langle x, A^*y \rangle_{\mathcal{X}}$$
 for every $x \in \mathcal{X}, y \in \mathcal{Y}$

» Generalization of the **Hermitian transpose** (complex x conjugate transpose) of a matrix

Hermitian / adjoint – can be used interchangeably https://en.wikipedia.org/wiki/Hermitian_adjoint

Example: DFT

$$g(m) = \sum_{n=0}^{N-1} f(n) e^{-i2\pi \frac{m \cdot n}{N}}$$

$$(A\times,y7y=C\times,A^*y7x$$

(P,y7y = 2 P*(m), y(m) $= \sum_{m=0}^{N-1} \left(\sum_{n=0}^{N-1} x(n) \cdot e^{-\frac{1}{N} x(n)} \right)^{\frac{1}{N}} y(n)$ $= \left(\frac{N-1}{2} \left$ F-1. Hn)= ([n]

Example: deconvolution

$$Af(x) = \int_{-v}^{\infty} f(x) \cdot h(x-x') = g(x)$$

Spectral reprentation

Adjoint of a convolution operator

» Adjoint of convolution operator A*

$$(A^*g)(x) = K^*(-x) * g(x)$$

$$= \int K^*(x'-x)g(x')dx'$$

» Spectral representation

$$(A^*g)(x) = \int \widetilde{K}^*(u) \, \widetilde{g}(u) e^{i2\pi x u} du$$
Proof?

Side note:

- I found it is easier to work with $u = \omega/2\pi$ in FT and IFT, the textbook uses ω .
- Throughout the lecture, we will use the definition in the u-space.

Geometric relation between null space and

Example: Relation between range and null space of a convolution operator

A is a convolution operator

$$f_1 \in \mathcal{R}(A)$$

$$f_2 \in \mathcal{N}(A)$$

»
$$f_1 \perp f_2$$

and
$$\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$$

Why?

Relation between range and null space of a convolution operator

A is a convolution operator

»
$$f_1 \in \mathcal{R}(A)$$
 Only contain frequency component $u \in \mathcal{B}$

»
$$f_2 \in \mathcal{N}(A)$$
 Only contain frequency component $u \notin \mathcal{B}$

»
$$f_1 \perp f_2$$
 and $\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$

Self-adjoint operator.

» If $A = A^*$, A is self-adjoint or Hermitian

$$\Rightarrow$$
 $A = A^{*}$

Properties of Adjoint operator

» The adjoint A* is unique

$$\Rightarrow$$
» $(A^*)^* = A$

$$(AA^{*})^{*} = (A^{*})^{*} \cdot A^{*}$$

- ♠» The operators AA* and A*A are self-adjoint
 - » If A is invertible, $(A^{-1})^* = (A^*)^{-1}$

$$\Rightarrow$$
)» (A+B)* = A*+B*

$$\Rightarrow$$
 " (BA)* = A*B*

Unitary operator

» A is unitary if and only if

ry if and only if
$$A^{-1} = A^*$$
 or $A^*A = I$

» If A is unitary, then $||Ax||^2 = ||x||^2$

Unitary operator

- » Preserve geometry (lengths and angles) when mapping one vector space to another
- » A bounded linear operator $A: \mathcal{X} \to \mathcal{Y}$ is unitary, when
 - » A is invertible
 - » A preserves inner product

$$\langle f, h \rangle_{\mathcal{X}} = \langle Af, Ah \rangle_{\mathcal{Y}}$$
, for every $f, h \in \mathcal{X}$

a generalized Parovel's Thm.

Eigenvector and eigenvalue of a linear operator

» An **eigenvector** of a linear operator $A: H \rightarrow H$ is a nonzero vector $v \in H$, such that

»
$$\lambda \in \mathbb{C}$$
 is the **eigenvalue**.

Example: convolution operator

PSF
$$h(x) \leftarrow 1$$
 Transfer. function (TF)

 $f(x) = e^{i2\pi i u x}$
 $f(x) = e^{i2\pi i u x}$
 $f(x) = \int f(x') \cdot h(x-x') dx'$
 $f(x) = \int h(x') \cdot e^{i2\pi i u x} e^{i2\pi i u x}$
 $f(x) = \int h(x') \cdot e^{i2\pi i u x} e^{i2\pi i u x}$
 $f(x) = \int h(x') \cdot e^{i2\pi i u x} e^{i2\pi i u x}$
 $f(x) = \int h(x') \cdot e^{i2\pi i u x} e^{i2\pi i u x}$
 $f(x) = \int h(x') \cdot e^{i2\pi i u x} e^{i2\pi i u x}$

Example of convolution operator: microscopes

- » Range and null space?
- » Adjoint operator?
- » Inverse operator?

Example: motion blur

- » What are Object space ${\mathcal X}$ and image space ${\mathcal Y}$?
- » What is the operator A? linear?
- » Find an element in the null space?
 - » What's the implication of this?

Example of Shift-invariant system: holography

Transfer function $H(u, v) = e^{i2\pi z/\lambda} \exp\{-i\lambda z(u^2 + v^2)\}$

complex PSF

- » Range and null space?
- » Adjoint operator?
- » Inverse operator?

Application: back-propagation using adjoint operator = inverse operator!?

Transfer function $H(u, v) = e^{i2\pi z/\lambda} \exp\{-i\lambda z(u^2 + v^2)\}$