지도학습: 회귀, 추천

이 건 명 충북대학교 소프트웨어학과

인공지능: 튜링 테스트에서 딥러닝까지

학습 내용

- 회귀 문제의 특성에 대해서 알아본다.
- 로지스틱 회귀 문제의 특성에 대해서 알아본다.
- 편향-분산 트레이드오프에 대해 알아본다.
- 추천 문제의 특성과 전략에 대해서 알아본다.

1. 회귀

- ❖ 회귀 (regression)
 - **학습 데이터에 부합**되는 **출력**값이 **실수**인 함수를 찾는 문제

$$f^*(x) = \operatorname{arg\,min}_f \sum_{i=1}^n (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i}))^2$$

- ❖ 회귀 (regression) cont.
 - 성능
 - **오차** : 예측값과 실제값의 차이
 - 테스트 데이터들에 대한 (예측값 실제값)2의 평균 또는 평균의 제곱근

$$E = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i}))^2$$

• 모델의 종류(함수의 종류)에 영향을 받음

- ❖ 경사 하강법(gradient descent method)
 - 오차 함수 E의 **그레디언트**(gradient) 반대 방향으로 조금씩 움직여 가며 최적의 파라미터를 찾으려는 방법
 - 그레디언트(gradient)
 - 각 파라미터에 대해 편미분한 벡터

$$E = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i}))^2$$

$$f(x) = ax + b$$

$$\nabla E = \left(\frac{\partial E}{\partial a}, \frac{\partial E}{\partial b}\right)$$

■ 데이터의 입력과 출력을 이용하여 각 파라미터에 대한 그레디언트를 계산하여 **파라미터를 반복적**으로 조금씩 조정

$$a \leftarrow a - \frac{\partial E}{\partial a}$$

$$b \leftarrow b - \frac{\partial E}{\partial b}$$

- ❖ 경사 하강법 cont.
 - **학습 데이터에 부합**되는 **출력**값이 되도록 **파라미터 변경**하는 일

$$E = \sum_{i} (y_i - f(x_i))^2$$

$$\nabla E = \left(\frac{\partial E}{\partial a}, \frac{\partial E}{\partial b}\right)$$

$$a^{(t+1)} \leftarrow a^{(t)} - \eta \nabla_a$$

기계학습, 이건명

■ 경사하강법 기반의 학습 알고리즘

❖ [실습] 선형회귀

import numpy as np

- 입력: 배달거리(delivery distance), 출력: 배달시간(delivery time)
- 파라미터에 대한 1차 방정식을 사용한 회귀

```
from sklearn.linear model import LinearRegression
        from matplotlib import pyplot as plt
        data = np.array([[30, 12], [150, 25], [300, 35], [400, 48], [130, 21],
                                [240, 33],[350, 46], [200, 41], [100, 20], [110, 23],
                                [190, 32], [120, 24], [130, 19], [270, 37], [255, 24]])
        plt.scatter(data[:, 0], data[:, 1]) # 데이터 위치의 산포도 출력
        plt.title("Linear Regression")
                                                                                      Linear Regression
                                                                     50
        plt.xlabel("Delivery Distance")
        plt.ylabel("Delievery Time ")
        plt.axis([0, 420, 0, 50])
                                                                    40
        x = data[:, 0].reshape(-1, 1) # 입력
                                                                  Delievery Time
        y = data[:, 1].reshape(-1, 1) # 출력
        model = LinearRegression()
                                                                    20
                                 # 모델 학습
        model.fit(x, y)
        y_pred = model.predict(x) # 예측값 계산
                                                                    10
        plt.plot(x, y_pred, color='r')
        plt.show()
                                                                           50
                                                                                100
                                                                                      150
                                                                                           200
                                                                                                250
기계학습, 이건명
                                                                                        Delivery Distance
```

300

350

400

- ❖ 회귀의 과적합(overfitting)과 부적합(underfitting)
 - 과적합
 - 지나치게 복잡한 모델(함수) 사용
 - 부적합
 - 지나치게 단순한 모델(함수) 사용

- ❖ 회귀의 과적합(overfitting) 대응 방법
 - 모델의 복잡도(model complexity)를 성능 평가에 반영

- ❖ 로지스틱 회귀 (logistic regression)
 - 학습 데이터 : $\{(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)\}$, $y_i \in \{0,1\}$: 이진 출력

■ 이진 분류(binary classification) 문제에 적용

❖ 로지스틱 회귀 (logistic regression)

- 학습 데이터 : $X = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}, y_i \in \{0, 1\}$: 이진 출력
- 로지스틱 함수를 이용하여 함수 근사

$$f(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\top} \boldsymbol{x}}}$$

그림 4.13 로지스틱 함수.

- **가능도**(likelihood)
 - 모델이 학습 데이터를 생성할 가능성
 - $P(X) = \prod_{i=1}^{N} f(x_i)^{y_i} (1 f(x_i))^{1-y_i}$
 - $LogP = -\frac{1}{N}logP(X) = -\frac{1}{N}\sum_{i=1}^{N}(y_i log f(x_i) + (1 f(x_i))log(1 y_i))$
- 경사하강법 사용하여 학습

[실습] 로지스틱 회귀

https://drive.google.com/file/d/1Upqoz2glAYq6LByD7YjHU-9_9K4EOhOh/view

User ID	Gender	Age	EstimatedSalary	Purchased
15624510	Male	19	19000	0
15810944	Male	35	20000	0
15668575	Female	26	43000	0
15603246	Female	27	57000	0
15804002	Male	19	76000	0
15728773	Male	27	58000	0
15598044	Female	27	84000	0
15694829	Female	32	150000	1
15600575	Male	25	33000	0
15727311	Female	35	65000	0

import pandas as pd import numpy as np import matplotlib.pyplot as plt

dataset = pd.read_csv('User_Data.csv')

x = dataset.iloc[:, [2, 3]].values # 입력

y = dataset.iloc[:, 4].values # 출력

from sklearn.model_selection import train_test_split

xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size = 0.25, random_state = 0)

from sklearn.preprocessing import StandardScaler

sc_x = StandardScaler()
xtrain = sc_x.fit_transform(xtrain)
xtest = sc_x.transform(xtest)
print (xtrain[0:10, :])

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(xtrain, ytrain)
y pred = classifier.predict(xtest)

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(ytest, y_pred) print ("혼동행렬: ₩n", cm)

from sklearn.metrics import accuracy_score

print ("정확도 : ", accuracy_score(ytest, y_pred))

[[0.58164944 -0.88670699] [-0.60673761 1.46173768] [-0.01254409 -0.5677824] [-0.60673761 1.89663484] [1.37390747 -1.40858358] [1.47293972 0.99784738] [0.08648817 -0.79972756] [-0.01254409 -0.24885782] [-0.21060859 -0.5677824] [-0.21060859 -0.19087153]] 혼동행렬: [[65 3]

[8 24]] 정확도: 0.89

plt.scatter(X set[y set == j, 0], X set[y set == j, 1],

plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max())

for i, j **in** enumerate(np.unique(y_set)):

```
c = ListedColormap(('red', 'green'))(i), label = j)

plt.title('Classifier (Test set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()
```


- ❖ 회귀에서 오차의 편향과 분산 분해
 - 오차의 기대값(E(E))
 - = 편향² + 분산

```
E = (f(x) - y)^2 : 오차 f(x): 회귀 함수로 예측한 값 y: 실제 측정값
```

```
\begin{split} \mathsf{E}(E) &= \mathsf{E}[(f(x) - y)^2] \\ &= \mathsf{E}[(f(x) - E[f(x)] + \mathsf{E}[f(x)] - y)^2] \\ &= \mathsf{E}[(\mathsf{E}[f(x)] - y)^2 + 2(f(x) - \mathsf{E}[f(x)])(\mathsf{E}[f(x)] - y) + (f(x) - \mathsf{E}[f(x)])^2] \\ &= \mathsf{E}[(\mathsf{E}[f(x)] - y)^2] + \mathsf{E}[2(f(x) - \mathsf{E}[f(x)])(\mathsf{E}[f(x)] - y)] + \mathsf{E}[(f(x) - \mathsf{E}[f(x)])^2] \\ &\quad (\because \mathsf{E}[f(x)] - y = \ \ \ \ \ \ \ \ ) \\ &= (\mathsf{E}[f(x)] - y)^2 + 2(\mathsf{E}[f(x)] - y)\mathsf{E}[(f(x) - \mathsf{E}[f(x)])] + \mathsf{E}[(f(x) - \mathsf{E}[f(x)])^2] \\ &\quad (\because \mathsf{E}[(f(x) - \mathsf{E}[f(x)])] = \mathsf{E}[f(x)] - \mathsf{E}[f(x)] = 0) \\ &= (\mathsf{E}[f(x)] - y)^2 + \mathsf{E}[(f(x) - \mathsf{E}[f(x)])^2] \\ &= bias^2 + variance \end{split}
```

bias = |E[f(x)] - y| **편향**: 측정값(y)와 예측값들의 평균(E[f(x)])과의 차이 $variance = E[(f(x) - E[f(x)])^2]$ **분산**: 예측값들의 분산

■ 편향과 분산은 회귀 함수의 형태에 따라 영향을 받음

❖ 복잡도가 낮은 단순한 모델을 이용한 회귀의 반복

■ 실제 데이터와 회귀 함수의 큰 차이

• 큰 편향

■ 학습된 회귀 함수들 간의 차이 적음

수집된 학습 데이터와 학습된 회귀 모델

❖ 복잡도가 높은 복잡한 모델을 이용한 회귀의 반복

■ 실제 데이터와 회귀 함수의 작은 차이 • 작은 편향 ■ 학습된 회귀 함수들 간의 큰 차이 • 큰 분산 참값 학습 데이터 수집 대상 문제의 전체 데이터 $E(E) = (E[f(x)] - y)^{2} + E[(f(x) - E[f(x)])^{2}]$ $= bias^2 + variance$ 수집된 학습 데이터와 학습된 회귀 모델

- ❖ 편향-분산 트레이드오프(bias-variance tradeoff)
 - 편향 (bias)
 - 단순한 모델로 잘못 가정을 할 때 발생하는 크게 발생
 - **부적합**(underfitting) 문제 초래
 - 분산 (variance)
 - 복잡한 모델 사용에 따라 학습 데이터에 내재된 작은 변동 (fluctuation) 때문에 발생
 - 큰 잡음(noise)까지 학습하는 **과적합**(overfitting) 문제 초래

- ❖ 편향-분산 트레이드오프(bias-variance tradeoff) cont.
 - 모델 복잡도 증가
 - 편향 감소, 분산 증가
 - 모델 복잡도 감소
 - 편향 증가, 분산 감소
 - 편향과 분산 **동시 축소 어려움**
 - 적합한 복잡도의 모델 선택

큰 편향 작은 분산

중간 편향 중간 분산

작은 편향 큰 분산

2. 추천

- ❖ 추천 (recommendation)
 - 개인별로 맞춤형 정보를 제공하려는 기술
 - 사용자에게 맞춤형 정보를 제공하여 정보 검색의 부하를 줄여주는 역할
 - 추천 데이터
 - 희소 행렬(sparse matrix) 형태
 - 많은 원소가 비어 있음
 - 비어 있는 부분을 채우는 것이 추천에 해당

							고객						
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
영화	3	2	4		1	2		3		4	3	5	
0-1	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

추천

❖ 추천 기법

- 내용 기반 추천(content-based recommendation)
 - 고객이 이전에 높게 평가했던 것과 유사한 내용을 갖는 대상을 추천
- **협력 필터링**(collaborative filtering)
 - 사용자간 협력 필터링(user-user collaborative filtering)
 - 추천 대상 사용자와 비슷한 평가를 한 사용자 집합 이용
 - 항목간 협력 필터링(item-item collaborative filtering)
 - 항목간의 유사도를 구하여 유사 항목을 선택
- 은닉 요소 모델(latent factor model)
 - 행렬 분해에 기반한 방법

							고객																							
		1	2	3	4	5	6	7	8	9	10	11	12				요소							77	객					
-	1	1		3			5			5		4			Ì	.1	4	.2	1,1	2	.3	.5	-2	5	.8	4	.3	1,4	2,4	2
	2			5	4			4			2	1	3			5	.6	.5	8	.7	,5	1.4	.3	1	1,4	2.9	7	1,2	-,1	.5
	3	2	4		1	2		3		4	3	5		_ ,	영	-,2	.3	.5	2,1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	4
-	4		2	4		5			4			2		≈ :	화	1,1	2,1	.3												
	5			4	3	4	2					2	5		j	7	2,1	-2												
	6	1		3		3			2			4			1	-1	.7	.3												

Quiz

- ❖ 회귀에 대한 설명으로 옳지 않는 것을 선택하시오.
 - ① 회귀에서는 출력값이 실수인 함수를 찾는다.
 - ② 회귀에서는 오차의 제곱합을 목적함수로 사용할 수 있다.
 - ③ 복잡도가 높은 함수를 사용하면 부적합 문제가 발생할 수 있다.
 - ④ 목적함수에 모델 복잡도 항을 포함시키면 부적합 학습을 피할 수 있다.
- ❖ 로지스틱 회귀에 대한 설명으로 옳지 않은 것을 선택하시오.
 - ① 출력이 1 또는 0인 이진 분류 문제에 적용되는 기법이다.
 - ② 로지스틱 회귀의 결과로 학습되는 모델의 출력은 구간 (0,1) 사이의 값이다.
 - ③ 로지스틱 회귀 모델의 목적함수로는 교차 엔트로피가 사용될 수 있다.
 - ④ 교차 엔트로피의 값은 클 수록 바람직하기 때문에 경사 상승법을 사용하여 학습한다.

Quiz

- ❖ 편향-분산 트레이드오프에 대한 설명으로 옳지 않는 것을 선택하시으.
 - ① 편향은 학습 알고리즘에서 선택한 모델이 너무 단순할 때 크게 발생한다.
 - ② 분산은 학습 모델이 복잡해질 때 커지는 경향이 있다.
 - ③ 학습을 할 때 편향이 크더라도 분산이 작으면 좋은 모델이다.
 - ④ 과적합이 된 모델인 경우 분산이 커지는 경향을 보인다.

- ❖ 추천에 트레이드오프에 대한 설명으로 옳지 않는 것을 선택하시오.
 - ① 추천 데이터는 희소 행렬 행태를 가지며, 이런 희소 행렬의 비어있는 곳을 채우는 것이 추천에서 해야 할 일이다.
 - ② 고객이 이전에 높게 평가했던 것과 유사한 내용을 갖는 대상을 추천하는 것을 내용기반 추천이라고 한다.
 - ③ 추천 대상 사용자와 비슷한 평가를 한 사용자 집합을 찾아 이들의 추천 정보를 이용하는 것을 사용자가 협력 필터링이라고 한다.
 - ④ 희소행렬을 행렬의 곱으로 근사하는 방법으로 항목 간의 유사도를 결정하여 추천하는 기법을 은닉 요소 기반 기법이라고 한다.