

ANSWER KEY

DATE: 30-11-2018

COURSE									
NUCLEUS									

JEE-MAIN MOCK TEST-6 XII

TEST CODE								
7	1	2	7	8				

		- '										1			
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	2	4	1	4	3	2	3	3	1	2	3	4	4	3
Q.No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	2	3	3	2	3	3	3	1	1	1	3	2	3	2	3
Q.No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	2	4	2	2	1	3	1	1	3	1	4	4	4	1	3
Q.No.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	3	3	3	2	4	2	3	2	4	2	3	1	2	3	3
	IOP	ОС	PC	IOP	ОС	PC	IOP	ОС	PC	IOP	ОС	PC	IOP	ОС	PC
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	1	2	3	1	3	3	4	4	4	1	1	2	3	3	4
	IOP	ОС	PC	IOP	ОС	PC	IOP	ОС	PC	IOP	ос	PC	IOP	ОС	PC
Q.No.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	3	4	2	1	2	2	2	4	2	1	3	3	2	2	4
											-				

HINTS & SOLUTIONS

PHYSICS

Q.1
$$A = 2 + |T - 2|$$

for $t \le 2$

$$a = 2 - t + 2$$

$$a = 4 - t$$

$$dv = (4 - t) dt$$

$$v = 4t - t^2/2$$

at
$$t = 2$$
, $v = 6$ m/s

for
$$t > 2$$

$$a = 2 + t - 2 = t$$

$$\int_{6}^{v} dv = \int_{2}^{1} t dv$$

$$v-6 = \left[t^2 / 2\right]_2^t$$

$$v = \frac{t^2}{2} + 4$$

at
$$t = 4$$
, $v = 12 \text{ m/s}$

Q.3 Friction force on upper block is
$$f = ma$$

So work done = $ma \times 5$

Q.4
$$T = \frac{2\pi R_2}{\sqrt{\frac{GM}{R_2}}}$$

$$\Rightarrow \frac{GM}{R_2^3} = \frac{4\pi^2}{T^2}$$

$$g = \frac{GM}{R_1^2} = \frac{4\pi^2 R_2^3}{T^2 R_1^2}$$

$$\frac{1}{4\pi\epsilon_0} \left(\frac{-2Q}{PA} \right) + \frac{1}{4\pi\epsilon_0} \frac{Q}{PB} = 0$$

$$\frac{2}{PA} = \frac{1}{PB} \Rightarrow 4PB^2 - 4PB^2 = PA^2$$

$$(x = 5a)^2 + y^2 = (4a)^2$$

length of string is 8d.

$$\lambda = 36 \text{ cm}$$

frequency remains same

$$now \qquad C = \sqrt{\frac{rRT}{M}} = f\lambda$$

$$\Rightarrow \frac{\lambda}{\sqrt{T}} = constant$$

Q.7 Say speed of boat is v w.r.t. water and speed of river is C. Then, distance travelled in ground frame

$$=(c+v)\times \frac{1}{2}$$
 hour $+(v-c)\times \frac{1}{2}$ hour

- $= \mathbf{v} \times 1$ hour
- = distance travelled by boat w.r.t. river.

Q.8
$$kx_0 h = \int_0^h (bdx) \rho gx(h-x)$$

$$\Rightarrow kx_0 h$$

$$= b\rho g \int_0^h (hx - x^2) dx = b\rho g \left[h \frac{h^2}{2} - \frac{h^3}{3} \right]$$

$$\Rightarrow kx_0h = b\rho g \frac{h^3}{6} \Rightarrow x_0 = \frac{b\rho gh^2}{6k}$$

$$PE = \frac{1}{2}kx_0^2 = \frac{1}{2}k\frac{b^2\rho^2g^2h^4}{36k^2} = \frac{b^2\rho^2g^2h^4}{72k}$$

Q.9
$$T = 2\pi\sqrt{LC}$$

In SHM time from A to $\frac{A}{2}$ is $\frac{T}{6}$ so here also

it is
$$\frac{T}{6}$$
.

Q.10 Spring time period is always

$$T=2\pi\sqrt{\frac{m}{k}}$$

Q.11 Initial extension is $x = \frac{mg}{k}$

at mean position

$$F + mg = k \left(\frac{mg}{k} + y \right)$$

 $y = \frac{F}{m} = A$ (amplitude of SHM)

maximum displacement is 2A.

Q.12
$$\frac{dT}{dx} = -\frac{l}{kA}$$

Q.13
$$\omega = F \times \frac{\pi R}{2} = \mu mg \times \frac{\pi l}{2}$$

- Q.14 The cylinder will step so $f = \mu mg \cos \theta$
- Q.15 Centre of mass falls vertically down so that mass m falls at origin.

Q.16
$$H_{max} = \frac{(20)^2 \sin^2 \theta}{2g} \le 5$$

 $\Rightarrow \sin \theta \le \frac{1}{2} \Rightarrow \theta \le 30^\circ$
 $\therefore R = \frac{(20)^2 \sin 2\theta}{g} \rightarrow \text{max. for } \theta = 30^\circ$
 $\Rightarrow R_{max} = 20 \sqrt{3} \text{ m.}$

Q.17
$$T_A = T_B = T(\text{say})$$

Now $V_A = \frac{nRT}{16P_0} = V$

$$\Rightarrow V_B = V_C = \frac{nRT}{2P_0} = 8V$$
Now in $A \to C$, $16 P_0 V^{\gamma} = P_0 (8V)^{\gamma}$

$$\Rightarrow \gamma = \frac{4}{3} \Rightarrow C_V = \frac{R}{\gamma - 1} = 3R$$

Q.18 Both waves at M from P and Q are in same phase as originated.

.: Constructive interference

$$\Rightarrow I = \left(\sqrt{I_0} + \sqrt{\frac{I_0}{4}}\right)^2 = \frac{9I_0}{4}$$

Q.19 $f_{l_{max}}$ (between A and B) = 0.4 × 20 = 8 N

$$f_{2_{max}}$$
 (between B and ground) = 0.2×70
= 14 N

Assuming system,

$$A+B$$
 21 N
 $f_2 = 14 \text{N}$ $a = \frac{21-14}{7} = 1 \text{m/s}^2$

$$\therefore \qquad A \implies a = 1 \text{ m/s}^2 \Rightarrow F_{\text{net}} = 2 \text{ N}$$

∴
$$f_1 = 2 \text{ N} < f_{1_{\text{max}}} \Rightarrow \text{Assumption correct}$$

∴ $f_1 - f_2 = 2 \text{ N}$.

Q.20
$$2Sl = 1.8 \times 10^{-2} \text{ N}$$

$$\Rightarrow S = \frac{1.8 \times 10^{-2}}{2 \times 0.1} = 0.09 \text{ N/m}$$

Q.21
$$\theta \approx \frac{\delta x}{I} = \frac{1.2 \times 10^{-4}}{5 \times 10^{-2}}$$

$$\therefore \eta = \frac{F/A}{\theta} = 1.67 \times 10^{10} \text{ N/m}^2$$

Q.23 By equation of continuity, 'A' in horizontal pipe \rightarrow constant \Rightarrow v \rightarrow constant \Rightarrow same 'P' at all points.

Q.24
$$\alpha = -\omega \frac{d\omega}{d\theta} \propto \theta = -k\theta$$

$$E = \frac{1}{2} I\omega^{2} \Rightarrow \frac{dE}{d\theta} = \frac{1}{2} I \cdot 2\omega \quad \frac{d\omega}{d\theta} = -k I \theta$$
$$\therefore \int dE = -k I \int \theta \ d\theta \Rightarrow \Delta E \propto \theta^{2}$$

Q.25 On earth's surface,
$$\sigma = \frac{x \rho rg}{2}$$

In the mine,
$$\sigma = \frac{\text{yprg}_d}{2}$$

Dividing, we get
$$\frac{x}{y} = \frac{g_d}{g}$$

$$=\frac{g\left(1-\frac{d}{R}\right)}{g}=1-\frac{d}{R}$$

Hence the correct choice is (1)

Q.26
$$f = M \Rightarrow M = \frac{Tesla - m^2}{Ampere}$$

 $F = qVB$

$$\Rightarrow \text{Tesla} = \frac{N}{\text{coulomb} \times (\text{meter/second})}$$

$$\frac{kg - ms^2}{Ampere \times meter} = \frac{kg - s^{-2}}{Ampere}$$

$$M = \frac{kg - m^2 s^{-2}}{Ampere^2} \Rightarrow ML^2T^{-2}A^{-2} = [M]$$

Also,
$$\frac{L}{R} = T$$

$$CR = T \Rightarrow LC = T^2$$

$$\therefore C = \frac{T^2}{L} = \frac{T^2}{M}$$

$$\Rightarrow$$
 [C] = M⁻¹T⁻²T⁴A²

Q.27 Clearly the block on the right hand side will not move

$$Mg - 2T = Ma_B$$

 $T = Ma_A = 2Ma_B$ (constraint)
 $2T = 4M a_B$
 $Mg = 5M a_B$

$$a_{B} = \frac{g}{5} = 2m/s^{2}$$
 $T_{1} = 2T = 4M \times 2 = 8 \text{ N}$
 $W = 8 \times \left(-\frac{1}{2} \times 2 \times 1^{2}\right) = -8 \text{ J}$

Q.28
$$1 \times 0.6 = v_B \times 0.3$$
, $v_B = 2$ m/s
Force = $\rho AV^2 = 10^3 (0.3)(2 \times 2) = 1.2 \times 10^3$

Q.29
$$B = 10\log_{10}\left(\frac{I}{I_0}\right)$$

$$\Rightarrow \frac{I}{I_0} = 10^{B/10}$$

$$\Rightarrow I = \frac{P}{4\pi r^2} = I_0 10^{0.1B}$$

$$\Rightarrow P = 4\pi r^2 I_0 10^{0.1} B$$

$$I_R = \frac{4\pi r^2 I_0 10^{0.1B}}{4\pi R^2} = \frac{r^2}{R^2} [I_0] 10^{0.1B}$$

Q.30 Before collision
$$\begin{aligned} v_0 &= \vec{u} \ ; \ \vec{v}_m = 0 \\ v_3 &= - \vec{u} \\ v_0 &= 0 \ ; \ v_m = \vec{u} \\ v_3 &= 3\vec{u} \end{aligned}$$
 After collision

MATHEMATICS

$$\log_4\left(\frac{3-x}{3+x}\right) = \log_4\left(\frac{1-x}{2x+1}\right)$$

$$\Rightarrow \frac{3-x}{3+x} = \frac{1-x}{2x+1}$$

$$(3-x)(2x+1) = (1-x)(3+x)$$

$$5x-2x^2+3=3-2x-x^2$$

$$x^2-7x=0 \Rightarrow x=0 \text{ or } x=7.$$
Reject $x=7$; as domain $=x \in \left(\frac{-1}{2},1\right)$.

 \therefore Only solution is x = 0.

Q.32 From the first radical sign $x^2 + y^2 \le 16$ i.e. interior of a circle with circle (0, 0) and radius 4. From the 2^{nd} radical sign $y \le |x|$

i.e. $\frac{3}{4}$ th of the circle

 $\therefore \text{ Required area} = (\pi \cdot 16) \frac{3}{4} = 12\pi. \text{ Ans.}$

Q.33 D = 0 gives m = 6,
$$\frac{2}{3}$$

Q.34 Seperable
$$\int_{0}^{y} e^{y} dy = \int_{0}^{x} (2 + \cos x) dx$$
$$\Rightarrow e^{y} - 1 = 2x + \sin x$$
For $x = \frac{\pi}{2}$, we find $y = \ln (2 + \pi)$. Ans.

Q.35 Let $y = f(x) = x^3 - 12x$ and y = -aFor f(x) = -a to have exactly one real root, we must have -a > 16 or -a < -16 $\Rightarrow a \in (-\infty, -16) \cup (16, \infty)$

Alternate: Let
$$f(x) = x^3 - 12x + a$$

 $f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$
∴ The equation $f(x) = 0$
has exactly one real root, if
 $f(-2) f(2) > 0 \Rightarrow (16 + a)(-16 + a) > 0$
 $\Rightarrow (a - 16) (a + 16) > 0$
∴ $a \in (-\infty, -16) \cup (16, \infty)$

Two possible graph of f(x). **Ans.**

Q.36
$$\sum_{r=1}^{15} r \cdot \frac{a_r}{a_{r-1}} = \sum_{r=1}^{15} r \cdot \frac{^{15}C_r}{^{15}C_{r-1}}$$
$$= \sum_{r=1}^{15} r \cdot \frac{(15)!}{(15-r)! \, r!} \times \frac{(r-1)! \, (15-r+1)!}{(15)!}$$
$$= \sum_{r=1}^{15} (16-r) = (1+2+3+......+15)$$
$$= \frac{15 \times 16}{2} = 120.$$

Q.37 Using LMVT, \forall some $c \in (1, 8)$ s. t. $f'(c) = \frac{f(8) - f(1)}{7} = \frac{f(8) - 3}{7} \le 1.4$ $f(8) = 9 \cdot 8 + 3 = 12.8 \text{ Ans.}$

Q.38 :
$$\int (x^9 + x^6 + x^3)(2x^6 + 3x^3 + 6)^{\frac{1}{3}} dx$$

$$= \int (x^8 + x^5 + x^2)(2x^9 + 3x^6 + 6x^3)^{\frac{1}{3}} dx$$
Let $2x^9 + 3x^6 + 6x^3 = t$

$$\Rightarrow 18(x^8 + x^5 + x^2)dx = dt$$

$$\therefore I = \int \frac{t^{1/3}}{18} dt = \frac{1}{18} \cdot \frac{t^{4/3}}{4/3} + C = \frac{1}{24} t^{4/3} + C$$

$$\therefore AB = 24 \times \frac{4}{3} = 32 \text{ Ans.}$$

Q.39 $\cos \theta + \sqrt{3} \sin \theta = 2 \sin \theta$ $\Rightarrow \cot \theta = 2 - \sqrt{3} \text{ and } \tan \theta = 2 + \sqrt{3}$ $\frac{\sin \theta - \sqrt{3} \cos \theta}{\cos \theta} = \tan \theta - \sqrt{3}$ $= 2 + \sqrt{3} - \sqrt{3} = 2$ Ans.

Q.40 Use L'Hospital's rule $\lim_{x \to \infty} \frac{(\tan^{-1} x)\sqrt{x^2 + 1}}{x}; \frac{\pi}{2} \lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x}$ $= \frac{\pi}{2}. \text{ Ans.}$

Q.41 We know that

$$\frac{\sin\theta}{\theta}$$
 and $\frac{\theta}{\tan\theta}$ both are decreasing functions

of
$$\theta$$
 in $\left(0, \frac{\pi}{2}\right)$. So maximum value, when

$$\theta \rightarrow 0$$
 is $1 + 1 = 2$ and minimum value, when

$$\theta \to \frac{\pi}{2}$$
 is $\frac{2}{\pi}$.

Q.42
$$T_n = \frac{(n+1)^2 - n}{n(n+1)} = 1 + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$S_{10} = 10 + \left(1 - \frac{1}{11}\right) = \frac{120}{11}$$
 Ans.

Q.43
$$A(a) = 2 \int_{0}^{\sqrt{1-a}} (1-x^2) - a dx = \frac{4}{3} (1-a)^{3/2}$$

$$\therefore A(0) = \frac{4}{3}$$

and
$$A\left(\frac{1}{2}\right) = \frac{4}{3}\left(\frac{1}{2}\right)^{\frac{3}{2}} \Rightarrow \frac{A(0)}{A\left(\frac{1}{2}\right)} = 2\sqrt{2}$$
.

Q.44 Use expansion.

Q.45 Replace x by (1-x), we get

$$\frac{f^2(1-x)}{f(x)} = (1-x)^3$$

$$\therefore f^3(x) = x^6 (1-x)^3 \Rightarrow f(x) = x^2 (1-x)$$

$$\Rightarrow f\left(\frac{1}{2}\right) = \frac{1}{2} \text{Ans.}$$

Q.46 Let
$$u = \frac{c}{x}$$
, so $du = \frac{-c}{x^2} dx$, so $\int_{1}^{\sqrt{c}} \frac{f(x)}{x} dx$

$$= \int_{c}^{\sqrt{c}} \frac{u f(u)}{c} \left(\frac{-x^{2}}{c}\right) du = \int_{\sqrt{c}}^{c} \frac{f(u)}{u} du$$

Therefore,
$$\int_{1}^{c} \frac{f(x)}{x} dx$$

$$= \int_{1}^{\sqrt{c}} \frac{f(x)}{x} dx + \int_{\sqrt{c}}^{c} \frac{f(u)}{u} du = 3 + 3 = 6 \text{ Ans.}$$

Q.47
$$2\alpha^3 = \alpha - 1 \Rightarrow \alpha^3 = \frac{\alpha - 1}{2}$$

$$\therefore \alpha^{3} + \beta^{3} + \gamma^{3} = \frac{1}{2} (\alpha - 1 + \beta - 1 + \gamma - 1)$$

$$=\frac{1}{2}(\alpha + \beta + \gamma - 3) = -\frac{3}{2}$$
 Ans.

Q.48
$$\int e^{x} (\tan x - x + \tan^{2} x - \tan^{2} x - 2 \tan x \sec^{2} x) dx$$

$$= \int e^{x} (\tan x - x + \tan^{2} x) dx - \int e^{x} (\tan^{2} x + 2 \tan x \sec^{2} x) dx$$

$$= e^{x} (\tan x - x - \tan^{2} x) + C$$

$$f(x) = \tan x - x - \tan^{2} x$$

$$f\left(\frac{\pi}{4}\right) = \frac{-\pi}{4}.$$

Q.49
$$(e-1)e^{xy} + x^2 = e^{x^2} + y^2$$

$$(e-1) e^{xy} (xy' + y) + 2x = e^{x^2+y^2} (2x + 2yy')$$

Put x = 1 and y = 0 to get
$$\frac{dy}{dx}\Big|_{(1,0)} = 2$$
.

Q.50
$$y = (5 - x^{2/3})^{\frac{3}{2}}$$

$$\frac{dy}{dx} = \frac{-3}{2} \sqrt{(5-x^{2/3})} \left(\frac{2}{3}, \frac{1}{x^{1/3}}\right)$$

$$\frac{dy}{dx}\Big|_{M(1,8)} = \sqrt{5-1} = -2$$

When
$$x = 1, y = 8$$

tangent is
$$y-8=-2(x-1)$$

$$2x + y = 10$$

length of intercept =
$$\sqrt{100 + 25} = \sqrt{125}$$

$$\Rightarrow$$
 N = 125 Ans.

Q.51
$$\sin\left(\frac{5x}{6}\right) + \cos\left(\frac{10x}{9}\right) = 2$$

 $\sin\left(\frac{5x}{6}\right) = 1$
 $\Rightarrow \frac{5x}{6} = 2n\pi + \frac{\pi}{2} \Rightarrow x = (4n+1)\frac{3\pi}{5}, n \in I$
and $\cos\left(\frac{10x}{9}\right) = 1$

$$\Rightarrow \frac{10x}{9} = 2m\pi$$

$$\Rightarrow$$
 $x = \frac{9m\pi}{5}, m \in I$

 \therefore least common value of x is $\frac{27\pi}{5}$.

Q.52
$$l = \lim_{x \to 1} k \left(\frac{x - 1 - \ln x}{(x - 1) \ln x} \right)$$

$$x = 1 + h$$

$$l = k \lim_{h \to 0} \frac{h - \ln(1 + h)}{h^2} = \frac{k}{2}$$

$$\therefore \text{ For } \sin^{-1} \left(\frac{k}{2} \right) \text{ to exist}$$

$$-1 \le \frac{k}{2} \le 1 \Rightarrow k \in [-2, 2]$$

Number of integers is 5. Ans.

Q.53
$$\log_{\pi} x > 0 \implies x > 1$$

For $x > 1$, $\sin^{-1} \frac{2x}{1+x^2} = \pi - 2 \tan^{-1} x$
 $\log_{\frac{1}{\pi}} (\pi - 2 \tan^{-1} x + 2 \tan^{-1} x) = \log_{\frac{1}{\pi}} (\pi)$
 $= -1$ **Ans.**

Q.54
$$y_1 = e^{2\sin^{-1}x} \cdot \frac{2}{\sqrt{1-x^2}} = \frac{2y}{\sqrt{1-x^2}}$$

 $y_1^2 (1-x^2) = 4y^2$
 $y_1^2 (-2x) + (1-x^2) 2y_1y_2 = 8yy_1$
 $(1-x^2)y_2 = xy_1 + 4y$
 $\therefore \lambda = 4$. **Ans.**

XII MT-6 [JEE Main]

Q.55 Put
$$x^2 - 1 = t$$

$$I = \frac{1}{2} \int_{0}^{1} \tan^{-1} t \, dt = \frac{1}{2} \left[\tan^{-1} t \cdot t \Big|_{0}^{1} - \int_{0}^{1} \frac{t}{1 + t^{2}} \, dt \right]$$

$$I = \frac{\pi}{8} - \frac{1}{2} \cdot \frac{1}{2} \ln(2) = \frac{\pi}{8} - \frac{\ln 2}{4}$$
. Ans.

Q.56 Graph of
$$y = 4 \cos^{-1}(-|x|)$$

From the graph it is

Clear that $k \in (2\pi, 4\pi]$

∴ integral values of k are 7, 8, 9, 10, 11, 12

Q.57 We have

$$\frac{dV}{dt} = 2 \quad \Rightarrow \quad \frac{d}{dt} \left(\frac{1}{3} \pi r^3 \right) = 2$$

[Here r = h, as $\theta = 45^{\circ}$]

$$\Rightarrow \pi r^2 \frac{dr}{dt} = 2 \Rightarrow \frac{dr}{dt} = \frac{2}{\pi r^2} \dots (1)$$

Now, perimeter = $2\pi r = p$ (let)

$$\Rightarrow \frac{d}{dt} (2\pi r) = 2\pi \left(\frac{2}{\pi r^2}\right) = \frac{4}{r^2} \dots (2)$$

(Using equation (1))

When h = 2 meters $\Rightarrow r = 2$ meters

Hence
$$\frac{dp}{dt} = \frac{4}{4} = 1$$
 m/sec. **Ans.**

Q.58 Here,
$$T_n = n (2n)^2 = 4n^3$$

$$\therefore S_{10} = \sum_{n=1}^{10} T_n = 4 \sum_{n=1}^{10} n^3$$

$$= 4\left(\frac{10\times11}{2}\right)^2 = 4\times(55)^2 = (2\times55)^2$$
$$= (110)^2 = 12100. \text{ Ans.}$$

Q.59
$$g'(4) = \frac{1}{f'(1)} = \frac{1}{13} = \frac{a}{b}$$

So, a = 1 and b = 13Hence, (a + b) = 14 Ans.

Q.60
$$g(x) =$$

$$f(|x|) = \begin{cases} -\sin(x^3) + x^3 + 1; & -\infty < x \le -1 \\ -\sin(x^3) - x^3 - 1; & -1 \le x < 0 \\ \sin(x^3) + x^3 - 1; & 0 \le x < 1 \\ \sin(x^3) - x^3 + 1; & 1 \le x < \infty \end{cases}$$

 \therefore g(x) is non-derivable at x = -1, 1.

CHEMISTRY

Q.61
$$[Pt(NH_3)_2Cl_2]$$

 $x + 0 + (-2) = 0$

NH₃ (Ammine)–Neutral ligand

- $Cl^-(Chloride) \rightarrow Anionic ligand$ * Oxidation state of Pt = +2
- * It is a neutral complex \rightarrow

CMI name - Platinum

- * Ligands are named alphabetically
- * Naming of complex →

Diamminedichloridoplatinum(II)

Q.62
$$\frac{2}{3}$$
 $\frac{O}{4}$ $\frac{H}{1}$ $\frac{6}{3}$ $\frac{7}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

(2E, 5R)-5-methylhept-2-en-4-one.

- Q.63 Theory based
- Q.64 $[Pd(C_6H_5)_2(SCN)_2] \longleftrightarrow$ $[Pd(C_6H_5)_2(NCS)_2]$ SCN → Thiocynato $NCS \rightarrow Isothiocynato$

In both complexes Pd is co-ordinated by ambidentate ligands it shows linkage isomerism.

Q.65 (a)
$$\longrightarrow$$
 Give isocyanide test

(b)
$$Me-C-NH_2$$
 Amide functional group

not give isocyanide test

- (d) Me NH₂ \longrightarrow 1°-Amine give isocyanide test
- Q.66 Theory based
- Q.67 Ethane-1, 2-diamine

$$\begin{array}{c|c} H_2C & NH_2 \\ \downarrow & \\ H_2C & NH_2 \end{array}$$

- It is a neutral ligand
- Bidentate ligand
- Chelating ligand

Planar

Q.69
$$2d\sin\theta = n\lambda$$

 $2d\sin 30^{\circ} = 227 \times 1$

$$d = \frac{227}{2 \times \sin 30^{\circ}} = \frac{227}{2 \times \frac{1}{2}} = 227 \text{ pm}$$

Q.70 $\text{KMnO}_4 \rightarrow \text{Purple} - \text{due to charge transfer}$ $\text{Ag}_2\text{C}_2\text{O}_4 \rightarrow \text{Colourless}$ **XII MT-6** [JEE Main]

$$TiCl_4 \rightarrow Colourless$$

 $Cu_2Cl_2 \rightarrow Colourless$

Q.71 Glucose and Fructose are monosaccharides than show mutarotation

Q.72
$$K_{\text{saturated solution}} = 2.06 \times 10^{-6} \text{ ohm}^{-1} \text{ cm}^{-1}$$
 $K_{\text{water}} = 4.1 \times 10^{-7} \text{ ohm}^{-1} \text{ cm}^{-1}$
 $K_{\text{CO}_2[\text{Fe}(\text{CN})_6]} = K_{\text{sol}} - K_{\text{H}_2\text{O}}$
 $= 2.06 \times 10^{-6} - 0.41 \times 10^{-6}$
 $= 1.65 \times 10^{-6} \text{ ohm}^{-1} \text{ cm}^{-1}$
 $\Lambda_m^0 \left[\text{Co}_2(\text{Fe}(\text{CN})_6)\right] = 2\Lambda_m^0 \left(\text{Co}^{2+}\right) + \Lambda_m^0 \left[\text{Fe}(\text{CN})_6\right]^{-4}$
 $= 2 \times 86 + 444$
 $= 616 \text{ ohm}^{-1} \text{ cm}^{-1} \text{ mol}^{-1}$
For SSS
 $\Lambda_m^0 = \Lambda_m$
 $\Lambda_m = \frac{K \times 1000}{M}$
 $M = 0.267 \times 10^{-6} \times 1000$
 M
 $M = 0.267 \times 10^{-5}$
S or $M = 2.67 \times 10^{-6}$

Q.73 (1) Pu (Atomic no. 94) \rightarrow [Rn], 5f⁶, 6d⁰, 7s² (2) Am (Atomic no. 95) \rightarrow [Rn], 5f⁷, 6d⁰, 7s² (3) Cm (Atomic no. 96) \rightarrow [Rn], 5f⁷, 6d¹, 7s² (4) Bk (Atomic no. 97) \rightarrow [Rn], 5f⁹, 6d⁰, 7s² Q.74

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Q.75
$$k_{obs} = \left(\frac{k_1}{k_2}\right)^{1/2} \cdot k_3$$

$$= \left(\frac{A_1 e^{-E_1/RT_1}}{A_2 e^{-E_2/RT_2}}\right) \left(A_3 e^{-E_3/RT}\right)$$

$$= \left(\frac{A_1}{A_2}\right)^{1/2} \cdot A_3 \left[e^{\frac{-E_1+E_2}{RT}}\right]^{1/2} e^{-E_3/RT}$$

$$= \left(\frac{A_1}{A_2}\right)^{1/2} \cdot A_3 \left[e^{\frac{-\left(\frac{1}{2}(E_1-E_2)+E_3\right)}{RT}}\right]$$

Comparing with Ae-Ea/RT

$$E_a = E_3 + \frac{1}{2}(E_1 - E_2)$$

Q.76
$$\operatorname{Fe}^{3+} + \operatorname{H}_2\operatorname{O}_2 / \operatorname{OH}^- \longrightarrow \operatorname{Fe}^{2+} + \operatorname{O}_2$$

 $\operatorname{Mn}^{2+} + \operatorname{H}_2\operatorname{O}_2 / \operatorname{OH}^- \longrightarrow \operatorname{Mn}^{4+}\operatorname{O}_2 + \operatorname{H}_2\operatorname{O}_2$

$$-m$$
 O
 O
 $-m$

Increasing rate of reaction with HNO₃ / H_2SO_4 is (i) < (ii) < (iii)

Q.78 Let γ , β and γ be the angle of rotation of sucrose, glucose and fructose per mol respectively.

$$C_{12}H_{22}O_{11} + H_{2}O \xrightarrow{H^{\oplus}} C_{6}H_{12}O_{6}^{+}$$

$$C_{6}H_{22}O_{6}^{-}$$

$$t = 0 \quad a \qquad 0$$

$$\Rightarrow a.\alpha = r_{0}....(1)$$

$$t = 50\% c_{0} \frac{a}{a} - \frac{a}{a} \qquad \frac{a}{a}$$

$$t = 50\% \ a - \frac{a}{2} = \frac{a}{2}$$
 $\frac{a}{2}$

$$\Rightarrow \frac{a}{2}(\alpha + \beta + \gamma) = r_1 \quad ...(2)$$

$$t = \infty \quad 0 \quad a \quad a$$

$$\Rightarrow a (\beta + \gamma) = r_{\infty}$$

$$\frac{a}{2}(\alpha + \beta + \gamma) = r_1$$

$$a\alpha + a(\beta + \gamma) = 2r_1$$

$$r_0 + r_\infty = 2r_1$$

$$r_0 = 2r_1 - r_\infty$$

Q.79 (1) Haematite(Fe_2O_3)

 \rightarrow Oxides ore is directly reduced by carbon (Fe₂O₃ + 3C \longrightarrow 2Fe + CO \uparrow)

(2) Chalcocite(Cu₂S)

(3) Iron pyrites (FeS₂)

(4) Sphalerite (ZnS)

Sulphide ores are roasted first converted to oxide and then reduced by coke.

Q.80 p-nitrophenol
$$\stackrel{\text{OH}}{\longleftrightarrow}$$
 $\stackrel{\text{NO}_2}{\longleftrightarrow}$

p-nitrophenol and o-nitrophenol are separated by Steam distillation

Q.81 AgNO₃ + KCl
20 ml 25 ml
1M xM

$$20 \times 1 \times 1 = 25 \times x \times 1$$

m or M = $25 = \frac{20}{25} = \frac{4}{5} = 0.8$
 $\Delta T_f = K_f .m.i$
 $\Delta T_f = (1.86) (0.8) (2)$
 $\Delta T_f = 3.2$ Ans

Q.82 (1)
$$\operatorname{Fe_2O_3} + 3\operatorname{CO} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO_2}$$

(In reduction zone)
(2) $\operatorname{FeO} + \operatorname{SiO_2} \longrightarrow \operatorname{FeSiO_3}$
(No reaction in blast furnance)
(3) $\operatorname{FeO} + 3\operatorname{C} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO}$
(In combustion zone)
(4) $\operatorname{CaO} + \operatorname{SiO_2} \longrightarrow \operatorname{CaSiO_3}$
(Slag formation)

If one C have OH and OR than hemiacetals. If one C have OR and OR than acetal.

Q.84 Given:
Weight of PVC: W = 4 gm
Volume of solution, V = 1L
Osmotic pressure,
$$\pi = 6 \times 10^{-4}$$
Temperature (T) = 300 K
 π V= nRT

$$(6 \times 10^{-4}) \times 1 = \frac{4}{M} \times 0.0821 \times 300$$

$$M = \frac{4}{6 \times 10^{-4}} \times 0.0821 \times 300$$

$$M = 1.6 \times 10^{5}$$

Q.85 This type of method of purification is used in Mond's process.

$$Ni(impure) + CO(reagent) \xrightarrow{\Delta} Ni(CO)_4$$

$$Ni(CO)_4 \xrightarrow{\Delta} \frac{Ni}{(Pure)} + CO \uparrow$$

Q.86 (1)
$$Me \longrightarrow Give Iodoform Test$$

(2)
$$Ph - CH = CH - CH - Me \longrightarrow$$

OH

Give Iodoform Test

$$\begin{array}{c} \text{OH} \\ \text{CH}_2 = \text{CH} \longrightarrow \\ \end{array}$$

$$(3)$$

In capable to show Iodoform Test

$$(4) \bigcirc D \longrightarrow CH_2 - C - Me \longrightarrow Give$$

Iodoform Test

Q.87
$$A(g) + 2B(g) \rightarrow C(g) + D(g)$$

0.6 0.8 0 0
0.6 - x 0.8 - 2x x x
[0.4] [0.4] x = 0.2
 $R_1 = K[A][B]$
= $K[0.8][0.8]^2$

$$R_2 = K [0.6] [0.4]^2$$

$$\frac{R_2}{R_1} = \frac{K[0.6][0.4]^2}{K[0.8][0.8]^2} = \frac{3}{16} \text{ Ans.}$$

Q.88
$$I_2 + Na_2CO_3 \xrightarrow{\Delta} NaI(X) + NaIO_3(Y)$$

 $Y = NaIO_3(Oxidising agent)$
It will not oxidise $Cr_2O_7^{2-}$ in basic medium.

$$Q.89$$

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Q.90 Theory based