10. Náhodný vektor

- 10.1. Definice: Náhodný vektor. Uspořádanou n-tici (X_1, X_2, \ldots, X_n) náhodných veličin $X_i, 1 \le i \le n$, nazýváme náhodným vektorem.
- 10.2. Definice: Sdružená distribuční funkce. Je-li (X,Y) náhodný vektor, pak funkci F = F(x,y), která je definovaná předpisem

$$(\spadesuit) \qquad F(x,y) = P(X \le x, Y \le y), \ (x,y) \in \mathbf{R}^2,$$

nazýváme sdruženou distribuční funkcí náhodného vektoru <math>(X,Y).

Obr. 10.1.

Hodnota sdružené distribuční funkce F(x,y) je rovna pravděpodobnosti s jakou se hodnota náhodného vektoru (X,Y) vyskytne ve vyšrafované části roviny z obrázku Obr.10.1.

- 10.3. Věta: Vlastnosti sdružené distribuční funkce. Pro sdruženou distribuční funkci F(x,y) náhodného vektoru platí:
- a) Pro všechny hodnoty $(x,y) \in \mathbb{R}^2$ je $0 \le F(x,y) \le 1$.
- b) Funkce F(x,y) je neklesající jako funkce proměnné x a proměnné y.
- c) Je

$$\lim_{x \to -\infty} F(x, y) = \lim_{y \to -\infty} F(x, y) = 0.$$

d) Je

$$\lim_{(x,y)\to(\infty,\infty)} F(x,y) = 1.$$

e) Je

$$\lim_{y\to\infty}F(x,y)=P(X\leq x),\;x\in {\pmb R}\quad {\rm a}\quad \lim_{x\to\infty}F(x,y)=P(Y\leq y),\;y\in {\pmb R}.$$

Obr. 10.2a.

Obr. 10.2b.

Poznámka: Marginální rozdělení. Je-li (X,Y) náhodný vektor, pak jsou jeho souřadnice X a Y náhodné veličiny. Jejich rozdělení je popsáno příslušnými distribučními funkcemi. Ty se dají snadno určit ze sdružené distribuční funkce pomocí vztahů z tvrzení e) věty 10.3.

- **10.4. Definice:** Je-li (X,Y) náhodný vektor, pak rozdělení náhodných veličin X a Y se nazývá marginální rozdělení.
- 10.5. Věta: Je-li F(x,y) sdružená distribuční funkce náhodného vektoru (X,Y), pak jsou marginální distribuční funkce $F_1(x)$, resp. $F_2(y)$ náhodné veličiny X, resp Y určeny vztahy

$$F_1(x) = P(X \le x) = \lim_{y \to \infty} F(x, y), \ x \in \mathbf{R}$$

 \mathbf{a}

$$F_2(y) = P(Y \le y) = \lim_{x \to \infty} F(x, y), \ y \in \mathbf{R}.$$

Příklad: 1. Náhodný vektor (X, Y) má rozdělení určené sdruženou distribuční funkcí F(x, y), kde

$$F(x,y) = \begin{cases} 0, & x \le 0 \text{ nebo } y \le 0, \\ 1 - e^{-2x} - e^{-3y} + e^{-2x - 3y}, & x \ge 0 \text{ a } y \ge 0. \end{cases}$$

Určete marginální distribuční funkce náhodných veličin X a Y.

Řešení: Marginální distribuční funkce $F_1(x)$ a $F_2(y)$ náhodných veličin X a Y určíme z jejich vyjádření odvozených ve větě 10.5. Je

$$F_1(x) = P(X \le x) = \lim_{y \to \infty} F(x, y), \ x \in \mathbf{R}$$

 \mathbf{a}

$$F_2(y) = P(Y \le y) = \lim_{x \to \infty} F(x, y), \ y \in \mathbf{R}.$$

Protože je $\lim_{x\to\infty} \mathrm{e}^{-2x} = 0$ a $\lim_{y\to\infty} \mathrm{e}^{-3y} = 0$ dostaneme:

$$F_1(x) = \left\langle \begin{array}{cc} 0, & x \le 0, \\ 1 - e^{-2x}, & x \ge 0; \end{array} \right.$$
 a $F_2(y) = \left\langle \begin{array}{cc} 0, & y \le 0, \\ 1 - e^{-3y}, & y \ge 0; \end{array} \right.$

Typy rozdělení náhodného vektoru

- I. Diskrétní rozdělení.
- 10.6. Definice: Diskrétní rozdělení. Říkáme, že náhodný vektor (X,Y) má diskrétní rozdělení, jestliže nabývá konečně nebo spočetně mnoha diskrétních hodnot.
- 10.7. Definice: Sdružená pravděpodobnostní funkce. Jestliže má náhodný vektor (X,Y) diskrétní rozdělení, pak funkci p=p(x,y), která je definována předpisem

(4)
$$p(x,y) = P(X = x \cap Y = y), (x,y) \in \mathbb{R}^2$$

nazýváme sdruženou pravděpodobnostní funkcí náhodného vektoru <math>(X,Y).

10.8. Věta: Vlastnosti sdružené pravděpodobnostní funkce. Funkce p = p(x, y) je sdruženou pravděpodobnostní funkcí náhodného vektoru (X, Y) právě když platí:

- a) Je $0 \le p(x, y) \le 1$ pro všechny hodnoty $(x, y) \in \mathbf{R}^2$.
- b) Je $\sum_{(x,y)\in \mathbb{R}^2} p(x,y) = 1$.
- c) Existuje pouze konečná nebo spočetná množina (posloupnost) hodnot (x_i, y_k) , pro které je $P(x_i, y_k) > 0$.
- 10.9. Věta: Marginální pravděpodobnostní funkce. Je-li p(x,y) sdružená pravděpodobnostní funkce náhodného vektoru (X,Y), pak jsou marginální pravděpodobnostní funkce $p_1(x)$, resp. $p_2(y)$ náhodné veličiny X, resp Y dány vztahy:

$$p_1(x) = \sum_{y \in \mathbf{R}} p(x, y), \ x \in \mathbf{R}$$
 a $p_2(y) = \sum_{x \in \mathbf{R}} p(x, y), \ y \in \mathbf{R}.$

Tabulka pro sdruženou pravděpodobnostní funkci a marginální pravděpodobnostní funkce.

p(x,y)	x_1	x_2	 x_i	 $p_2(y)$
y_1	$p(x_1,y_1)$	$p(x_2,y_1)$	 $p(x_i, y_1)$	 $p_2(y_1)$
y_2	$p(x_1,y_2)$	$p(x_2, y_2)$	 $p(x_i,y_2)$	 $p_2(y_2)$
		• • •	 	
y_k	$p(x_1,y_k)$	$p(x_2,y_k)$	 $p(x_i, y_k)$	 $p_2(y_k)$
$p_1(x)$	$p_1(x_1)$	$p_1(x_2)$	 $p_1(x_i)$	 1

Tab. 10.1.

- 10. 10. Definice: Nezávislost náhodných veličin. Jestliže má náhodný vektor (X,Y) diskrétní rozdělení, pak říkáme, že jsou jeho souřadnice X a Y nezávislé náhodné veličiny, jestliže jsou náhodné jevy (X=x) a (Y=y) nezávislé pro všechny hodnoty $(x,y) \in \mathbb{R}^2$. V opačném případě mluvíme o závislých náhodných veličinách.
- 10.11. Věta: Podmínka nezávislosti. Je-li p(x,y) sdružená pravděpodobnostní funkce náhodného vektoru (X,Y), pak jsou náhodné veličiny X a Y nezávislé právě když pro sdruženou a marginální pravděpodobnostní funkce platí:

(
$$\heartsuit$$
) $p(x,y) = p_1(x) \cdot p_2(y), (x,y) \in \mathbf{R}^2.$

Poznámka: Pro tabulku Tab. 10.1 to znamené, že políčko (x_i, y_k) dostaneme jako součin políčka x_i a políčka y_k v marginálních pravděpodobnostních funkcích. Dá se tedy sdružená pravděpodobnostní funkce zpětně vytvořit ze svých marginálních pravděpodobnostních funkcí.

Příklad: 1. Náhodný vektor (X,Y) má diskrétní rozdělení určené sdruženou pravděpodobnostní funkcí p, která je zadána tabulkou Tab. 10.2. Určete marginální pravděpodobnostní funkce a rozhodněte, zda jsou náhodné veličiny X a Y závislé či nezávislé.

$y \setminus x$	0	1	3
-1	0,1	0,2	0,1
1	0,3	0,2	0,1

$y \setminus x$	0	1	3	$p_2(y)$
-1	0,1	0,2	0,1	0,4
1	0,3	0,2	0,1	0,6
$p_1(x)$	0,4	0,4	0,2	

Tab. 10.2.

Tab. 10.3.

Řešení: Marginální pravděpodobnostní funkce určíme pomocí vzorců z věty 10.9. Je pak

$$X: p_1(x) = \sum_{y \in \mathbf{R}} p(x, y)$$
 a $Y: p_2(y) = \sum_{x \in \mathbf{R}} p(x, y)$.

Závislost či nezávislost otestujeme z podmínky $p(x,y)=p_1(x)p_2(y)$, kterou jsme pro nezávislost náhodných veličin odvodili ve větě 10. 11. Je například p(0,-1)=0,1 a $p_1(0)p_2(-1)=0,4.0,4=0,16$. Protože jsou výsledky různé nemusíme rovnost pro další políčka z tabulky ověřovat. Náhodné veličiny X a Y jsou závislé.

Příklad: 2. Náhodný vektor (X,Y) má diskrétní rozdělení určené sdruženou pravděpodobnostní funkcí p, která je zadána tabulkou Tab. 10.4. Určete marginální pravděpodobnostní funkce a rozhodněte, zda jsou náhodné veličiny X a Y závislé či nezávislé.

$y \setminus x$	1	2	4
0	0,06	0,3	0,24
3	0,04	0,2	0,16

Tab. 10.4.

Tab. 10.5.

Řešení: Marginální pravděpodobnostní funkce určíme pomocí vzorců z věty 10.9. Je pak

$$X: p_1(x) = \sum_{y \in \mathbf{R}} p(x, y)$$
 a $Y: p_2(y) = \sum_{x \in \mathbf{R}} p(x, y)$.

Závislost či nezávislost otestujeme z podmínky $p(x,y) = p_1(x)p_2(y)$, kterou jsme pro nezávislost náhodných veličin odvodili ve větě 10. 11. Ověříme postupně zda platí rovnost pro jednotlivá políčka. Pro hodnoty v prvním řádku dostaneme:

$$0,06 = 0,6.0,1;$$
 $0,3 = 0,6.0,5;$ $0,24 = 0,6.0,4;$

v druhém řádku dostaneme

$$0,04 = 0,4.0,1;$$
 $0,2 = 0,4.0,5;$ $0,16 = 0,4.0,4.$

Protože podmínka pro nezávislost je splněna pro všechny dvojice hodnot náhodného vektoru (X,Y) z tabulky, jsou náhodné veličiny X a Y nezávislé.

II. Spojité rozdělení.

10. 12. Definice: Spojité rozdělení. Říkáme že náhodný vektor (X,Y) má spojité rozdělení jestliže pro jeho sdruženou distribuční funkci F(x,y) platí:

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv, \quad (x,y) \in \mathbf{R}^{2}.$$

Funkci f(x,y) nazýváme sdruženou hustotou náhodného vektoru (X,Y).

- 10.13. Věta: Vlastnosti sdružené hustoty. Funkce f(x,y) je sdruženou hustotu náhodného vektoru (X,Y) právě když platí:
 - 1. Je $f(x,y) \ge 0$ pro $(x,y) \in \mathbb{R}^2$.

2. Je
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$
.

Pro sdruženou hustotu f(x, y) dále platí:

3. $f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y)$ pro skoro všechna $(x,y) \in \mathbf{R}^2$.

4. Pro $A \subset \mathbf{R}^2$ je

$$P((X,Y) \in A) = \iint_A f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

10. 14. Věta: Marginální rozdělení. Jestliže má náhodný vektor (X,Y) spojité rozdělení určené sdruženou hustotu f(x,y), pak pro jeho marginální distribuční funkce platí:

$$X: F_1(x) = \int_{-\infty}^x (\int_{-\infty}^\infty f(u, y) du) dy, \quad x \in \mathbf{R};$$

$$Y: F_2(y) = \int_{-\infty}^{y} (\int_{-\infty}^{\infty} f(x, v) dv) dx, \quad y \in \mathbf{R}.$$

Marginální náhodné veličiny X a Y mají spojité rozdělení a pro jejich hustoty platí:

$$X: f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y, \quad x \in \mathbf{R};$$

$$Y: f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx, \quad y \in \mathbf{R}.$$

- 10.15. Definice: Marginální hustoty. Hustoty $f_1(x)$ a $f_2(y)$ z věty 10. 14 se nazývají marginální.
- **10.16. Definice: Nezávislost náhodných veličin.** Říkáme, že jsou náhodné veličiny X a Y nezávislé, jestliže jsou náhodné jevy

$$(X \le x)$$
 a $(Y \le y)$

nezávislé pro všechny hodnoty x a y z \mathbf{R} . V opačném případě nazýváme náhodné veličiny závislými.

10. 17. Věta: Podmínka pro nezávislost. Náhodné veličiny X a Y jsou nezávislé právě když platí:

$$F(x,y) = F_1(x) \cdot F_2(y)$$
 pro $(x,y) \in \mathbf{R}^2$,

kde F(x,y) je sdružená distribuční funkce náhodného vektoru (X,Y) a $F_1(x)$, resp. $F_2(y)$, jsou marginální distribuční funkce náhodné veličiny X, resp. Y.

10. 18. Věta: Spojitě rozdělené náhodné veličiny X a Y jsou nezávislé právě když pro jejich marginální a sdruženou hustotu platí:

$$f(x,y) = f_1(x)f_2(y), (x,y) \in \mathbf{R}^2.$$

- **10. 19. Věta:** Pro náhodné veličiny X a Y platí:
- 1. E(X + Y) = E(X) + E(Y).
- 2. Jsou-li náhodné veličiny X a Y nezávislé, pak platí: E(XY) = E(X)E(Y).

Poznámka: Pro náhodné veličiny X a Y sledujeme často jejich závislost a podobně jako u vlastností jedné náhodné veličiny se ji snažíme popsat číselnou hodnotou. Činíme tak pomocí koeficientů kovariance a korelace.

10.20. Definice: Koeficient kovariance. Je-li (X,Y) náhodný vektor, pak koeficientem kovariance náhodných veličin X a Y nazýváme číslo

$$C(X,Y) = E((X - E(X))(Y - E(Y))).$$

- 10.21. Věta: Vlastnosti kovariance. Pro koeficient kovariance náhodných veličin X a Y platí:
 - a) C(X, X) = D(X).
 - b) C(X, Y) = C(Y, X).
 - c) C(X, Y) = E(XY) E(X)E(Y).
 - d) Jsou-li náhodné veličiny X a Y nezávislé, pak C(X,Y)=0.
 - e) Je-li $C(X,Y) \neq 0$, pak jsou náhodné veličiny X a Y jsou závislé.
 - f) C(X, aX + b) = aD(X).

Poznámka: K popisu závislosti náhodných veličin používáme normovaný koeficient, který je odvozen z koeficientu kovariance.

10.22. Definice: Koeficient korelace. Pro náhodné veličiny X a Y nazýváme koeficientem korelace číslo

$$\rho(X,Y) = \frac{C(X,Y)}{\sqrt{D(X)D(Y)}}.$$

10.23. Věta: Vlastnosti koeficientu korelace. Pro koeficient korelace náhodných veličin X a Y platí:

- a) $\rho(X, X) = 1$;
- b) $\rho(X, Y) = \rho(Y, X);$
- c) Je-li $\rho(X,Y) \neq 0$, pak jsou náhodné veličiny X a Y závislé.
- d) Pro nezávislé náhodné veličiny X a Y je $\rho(X,Y)=0$.
- e) $\rho(X, aX + b) = sgn \, a = \frac{a}{|a|};$
- f) $|\rho(X,Y)| \le 1$;
- g) $\rho(X,Y) = \pm 1 \Leftrightarrow Y = aX + b$.

Poznámka: Z vlastností f) a g) plyne, že koeficient korelace je vlastně mírou lineární závislosti náhodných veličin. O náhodných veličinách X a Y, pro které je $\rho(X,Y)=0$ mluvíme jako o nekorelovaných náhodných veličinách. Ty nemusí být nutně nezávislé. Shoda nastává pouze u náhodných veličin, které mají normální rozdělení.