Classification: Alternative Techniques

Dr. Meng Qu Rutgers University

Classification: Alternative Techniques

Rule-based Classifier

Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: $(Condition) \rightarrow y$
 - where
 - Condition is a conjunctions of attributes
 - y is the class label
 - LHS: rule antecedent or condition
 - RHS: rule consequent
 - Examples of classification rules:
 - ◆ (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No

Rule-based Classifier (Example)

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class Label
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	
human	warm-blooded	hair	yes	no	no	yes	no	Mammals
python	cold-blooded	scales	no	no	no	no	yes	Reptiles
salmon	cold-blooded	scales	no	yes	no	no	no	Fishes
whale	warm-blooded	hair	yes	yes	no	no	no	Mammals
frog	cold-blooded	none	no	$_{ m semi}$	no	yes	yes	Amphibians
komodo	cold-blooded	scales	no	no	no	yes	no	Reptiles
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	Mammals
pigeon	warm-blooded	feathers	no	no	yes	yes	no	Birds
cat	warm-blooded	fur	yes	no	no	yes	no	Mammals
guppy	cold-blooded	scales	yes	yes	no	no	no	Fishes
alligator	cold-blooded	scales	no	semi	no	yes	no	Reptiles
penguin	warm-blooded	feathers	no	semi	no	yes	no	Birds
porcupine	warm-blooded	quills	yes	no	no	yes	yes	Mammals
eel	cold-blooded	scales	no	yes	no	no	no	Fishes
salamander	cold-blooded	none	no	$_{ m semi}$	no	yes	yes	Amphibians

```
r_1: (Gives Birth = no) \land (Aerial Creature = yes) \longrightarrow Birds r_2: (Gives Birth = no) \land (Aquatic Creature = yes) \longrightarrow Fishes r_3: (Gives Birth = yes) \land (Body Temperature = warm-blooded) \longrightarrow Mammals r_4: (Gives Birth = no) \land (Aerial Creature = no) \longrightarrow Reptiles r_5: (Aquatic Creature = semi) \longrightarrow Amphibians
```

Application of Rule-Based Classifier

 A rule r covers an instance x if the attributes of the instance satisfy the condition of the rule

```
r_1: (Gives Birth = no) \land (Aerial Creature = yes) \longrightarrow Birds r_2: (Gives Birth = no) \land (Aquatic Creature = yes) \longrightarrow Fishes r_3: (Gives Birth = yes) \land (Body Temperature = warm-blooded) \longrightarrow Mammals r_4: (Gives Birth = no) \land (Aerial Creature = no) \longrightarrow Reptiles r_5: (Aquatic Creature = semi) \longrightarrow Amphibians
```

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-
	Temperature	Cover	Birth	Creature	Creature	Legs	nates
hawk	warm-blooded	feather	no	no	yes	yes	no
grizzly bear	warm-blooded	fur	yes	no	no	yes	yes

The rule r1 covers a hawk => Bird
The rule r3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
 - Fraction of records that satisfy both the antecedent and consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) → No
Coverage = 40%, Accuracy = 50%

How does Rule-based Classifier Work?

```
r_1: (Gives Birth = no) \land (Aerial Creature = yes) \longrightarrow Birds r_2: (Gives Birth = no) \land (Aquatic Creature = yes) \longrightarrow Fishes r_3: (Gives Birth = yes) \land (Body Temperature = warm-blooded) \longrightarrow Mammals r_4: (Gives Birth = no) \land (Aerial Creature = no) \longrightarrow Reptiles r_5: (Aquatic Creature = semi) \longrightarrow Amphibians
```

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-
	Temperature	Cover	Birth	Creature	Creature	Legs	nates
lemur	warm-blooded	fur	yes	no	no	yes	yes
turtle	cold-blooded	scales	no	$_{ m semi}$	no	yes	no
dogfish shark	cold-blooded	scales	yes	yes	no	no	no

A lemur triggers rule r3, so it is classified as a mammal

A turtle triggers both r4 and r5

A dogfish shark triggers none of the rules

Characteristics of Rule-Based Classifier

- Mutually exclusive rules
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule

- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule

From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive
Rule set contains as much information as the
tree

Rules Can Be Simplified

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Initial Rule: (Refund=No) ∧ (Status=Married) → No

Simplified Rule: (Status=Married) → No

Effect of Rule Simplification

- Rules are no longer mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - ◆ Unordered rule set use voting schemes

- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class

Ordered Rule Set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

```
(Gives Birth = no) \land (Aerial Creature = yes) \longrightarrow Birds
       r_1:
              (Gives Birth = no) \land (Aquatic Creature = yes) \longrightarrow Fishes
       T_2:
              (Gives Birth = yes) \land (Body Temperature = warm-blooded) \longrightarrow Mammals
       T_3:
              (Gives Birth = no) \land (Aerial Creature = no) \longrightarrow Reptiles
       T_4:
              (Aquatic Creature = semi) \longrightarrow Amphibians
       T_5:
Name
                      Body
                                     Skin
                                              Gives
                                                        Aquatic
                                                                                  Has
                                                                                          Hiber-
                                                                      Aerial
                  Temperature
                                    Cover
                                              Birth
                                                        Creature
                                                                    Creature
                                                                                 Legs
                                                                                          nates
                  cold-blooded
turtle
                                    scales
                                                no
                                                          semi
                                                                        no
                                                                                  yes
                                                                                            _{\rm no}
```

Rule Ordering Schemes

- Rule-based ordering
 - Individual rules are ranked based on their quality/priority
- Class-based ordering
 - Rules that belong to the same class appear together

Rule-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded, Gives Birth=yes) ==> Mammals

(Body temperature=warm-blooded, Gives Birth=no) ==> Birds

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no) ==> Reptiles

(Skin Cover=scales, Aquatic Creature=yes) ==> Fishes

(Skin Cover=none) ==> Amphibians

Class-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes)
==> Birds

(Body temperature=warm-blooded, Gives Birth=no) ==> Birds

(Body temperature=warm-blooded, Gives Birth=yes) ==> Mammals

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=none) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no) ==> Reptiles

(Skin Cover=scales, Aquatic Creature=yes) ==> Fishes

Building Classification Rules

- Direct Method:
 - Extract rules directly from data
 - e.g.: RIPPER, CN2, 1R, and AQ

- Indirect Method:
 - Extract rules from other classification models (e.g. decision trees, neural networks, SVM, etc).
 - e.g: C4.5rules

Direct Method: Sequential Covering

Algorithm 1.1 Sequential covering algorithm.

```
1: Let E be the training records and A be the set of attribute-value pairs, \{(A_j, v_j)\}.
```

- 2: Let Y_o be an ordered set of classes $\{y_1, y_2, \ldots, y_k\}$.
- 3: Let $R = \{ \}$ be the initial rule list.
- 4: for each class $y \in Y_o \{y_k\}$ do
- while stopping condition is not met do
- 6: $r \leftarrow \text{Learn-One-Rule } (E, A, y).$
- 7: Remove training records from E that are covered by r.
- 8: Add r to the bottom of the rule list: $R \longrightarrow R \vee r$.
- 9: end while
- 10: end for
- 11: Insert the default rule, $\{\} \longrightarrow y_k$, to the bottom of the rule list R.

Example of Sequential Covering

(i) Original Data

(ii) Step 1

Example of Sequential Covering...

Aspects of Sequential Covering

- Rule Growing
 - Rule evaluation

Instance Elimination

Stopping Criterion

Rule Pruning

Rule Growing

Two common strategies

Rule Evaluation

 Evaluation metric determines which conjunct should be added during rule growing

- Accuracy =
$$\frac{n_c}{n}$$

- Laplace =
$$\frac{n_c + 1}{n + k}$$

- M-estimate =
$$\frac{n_c + kp}{n + k}$$

n : Number of instances covered by rule

 n_c : Number of instances of class c covered by rule

k: Number of classes

p : Prior probability

Rule Growing (Examples)

• CN2 Algorithm:

- Start from an empty conjunct: {}
- Add conjuncts that minimizes the entropy measure: {A}, {A,B}, ...
- Determine the rule consequent by taking majority class of instances covered by the rule

RIPPER Algorithm:

- Start from an empty rule: {} => class
- Add conjuncts that maximizes FOIL's information gain measure:
 - ◆ R0: {} => class (initial rule)
 - ◆ R1: {A} => class (rule after adding conjunct)
 - Gain(R0, R1) = t [log (p1/(p1+n1)) log (p0/(p0 + n0))]
 - where t: number of positive instances covered by both R0 and R1
 - p0: number of positive instances covered by R0
 - n0: number of negative instances covered by R0
 - p1: number of positive instances covered by R1
 - n1: number of negative instances covered by R1

Instance Elimination

- Why do we need to eliminate instances?
 - Otherwise, the next rule is identical to previous rule
- Why do we remove positive instances?
 - Ensure that the next rule is different
- Why do we remove negative instances?
 - Prevent underestimating accuracy of rule
 - Compare rules R2 and R3 in the diagram

Stopping Criterion and Rule Pruning

- Examples of stopping criterion:
 - If rule does not improve significantly after adding conjunct
 - If rule starts covering examples from another class
- Rule Pruning
 - Similar to post-pruning of decision trees
 - Example: using validation set (reduced error pruning)
 - Remove one of the conjuncts in the rule
 - Compare error rate on validation set before and after pruning
 - If error improves, prune the conjunct

Summary of Direct Method

Initial rule set is empty

- Repeat
 - Grow a single rule
 - Remove Instances covered by the rule
 - Prune the rule (if necessary)
 - Add rule to the current rule set

Direct Method: RIPPER

- For 2-class problem, choose one of the classes as positive class, and the other as negative class
 - Learn the rules for positive class
 - Use negative class as default
- For multi-class problem
 - Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
 - Learn the rule set for smallest class first, treat the rest as negative class
 - Repeat with next smallest class as positive class

Direct Method: RIPPER

- Rule growing:
 - Start from an empty rule: $\{\} \rightarrow +$
 - Add conjuncts as long as they improve FOIL's information gain
 - Stop when rule no longer covers negative examples
 - Prune the rule immediately using incremental reduced error pruning
 - Measure for pruning: v = (p-n)/(p+n)
 - p: number of positive examples covered by the rule in the validation set
 - n: number of negative examples covered by the rule in the validation set
 - Pruning method: delete any final sequence of conditions that maximizes v

Direct Method: RIPPER

- Building a Rule Set:
 - Use sequential covering algorithm
 - Grow a rule to cover the current set of positive examples
 - Eliminate both positive and negative examples covered by the rule
 - Each time a rule is added to the rule set, compute the new description length
 - stop adding new rules when the new description length is d bits longer than the smallest description length obtained so far

Indirect Methods

Rule Set

r1: (P=No,Q=No) ==> -

r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,R=No) ==> +

r4: (P=Yes,R=Yes,Q=No) ==> -

r5: (P=Yes,R=Yes,Q=Yes) ==> +

Indirect Method: C4.5rules

- Extract rules for every path from root to leaf nodes
- For each rule, r: $A \rightarrow y$,
 - consider alternative rule r': A' → y where A' is obtained by removing one of the conjuncts in A
 - Compare the pessimistic error rate for r against all r's
 - Prune if one of the r's has lower pessimistic error rate
 - Repeat until pessimistic error rate can no longer be improved

Indirect Method: C4.5rules

- Use class-based ordering
 - Rules that predict the same class are grouped together into the same subset
 - Compute total description length for each class
 - Classes are ordered in increasing order of their total description length

Example

Characteristics of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees

Classification: Alternative Techniques

Instance-Based Classifiers

Instance-Based Classifiers

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
		В

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1	 AtrN

Instance Based Classifiers

• Examples:

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

- Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
 - Example: Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weight the vote according to distance
 - ◆ weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

Classification: Alternative Techniques

Bayesian Classifiers

Classification: Alternative Techniques

Ensemble Methods

Ensemble Methods

 Construct a set of classifiers from the training data

 Predict class label of test records by combining the predictions made by multiple classifiers

Why Ensemble Methods work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume errors made by classifiers are uncorrelated
 - Probability that the ensemble classifier makes a wrong prediction:

General Approach

Types of Ensemble Methods

- Bayesian ensemble
 - Example: Mixture of Gaussian
- Manipulate data distribution
 - Example: Resampling method
- Manipulate input features
 - Example: Feature subset selection
- Manipulate class labels
 - Example: error-correcting output coding
- Introduce randomness into learning algorithm
 - Example: Random forests

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability 1-(1 1/n)ⁿ of being selected

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- 1: Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- Create a bootstrap sample of size n, D_i.
- Train a base classifier C_i on the bootstrap sample D_i.
- 5: end for
- 6: C*(x) = arg max_y ∑_i δ(C_i(x) = y), {δ(·) = 1 if its argument is true, and 0 otherwise.}

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	1	7	7	7	1	1	1

- Classifier is a decision stump
 - Decision rule: x ≤ k versus x > k
 - Split point k is chosen based on entropy

Baggir	ng Rour	nd 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \implies y = -1$
Baggir	ng Rour	nd 2:									
X	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1	$x \le 0.7 \implies y = 1$
У	1	1	1	-1	-1	-1	1	1	1	1	$x > 0.7 \implies y = 1$
Baggir	ng Rour										
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	$x <= 0.35 \rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.35 \Rightarrow y = -1$
Baggir	ng Rour	nd 4:									
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x <= 0.3 \implies y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \implies y = -1$
Baggir	ng Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x <= 0.35 \rightarrow y = 1$
у	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \implies y = -1$

Baggir	ng Roun	nd 6:									
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x \le 0.75 \Rightarrow y = -1$
у	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Roun	nd 7:									
X	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \Rightarrow y = 1$
Baggir x	ng Roun	nd 8:	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	$x \le 0.75 \rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Roun	nd 9:									
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	$x <= 0.75 \rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Roun	nd 10:									
X	0.1	0.1	0.1	0.1	0.3	0.3	8.0	8.0	0.9	0.9	$x \le 0.05 \rightarrow y = 1$

Summary of Training sets:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3 Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2 Boosting (Round 3) (4) (4) 8 10 (4) 5 (4) 6 3 (4)	Original Data	1	2	3	4	5	6	7	8	9	10
	Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 3) (4) (4) 8 10 (4) 5 (4) 6 3 (4)	Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
	Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

• Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_i is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification:

$$C*(x) = \underset{y}{\operatorname{arg max}} \sum_{j=1}^{T} \alpha_{j} \delta(C_{j}(x) = y)$$

AdaBoost Algorithm

Algorithm 5.7 AdaBoost Algorithm

```
1: \mathbf{w} = \{w_i = 1/n \mid j = 1, 2, \dots, n\}. {Initialize the weights for all n instances.}
 Let k be the number of boosting rounds.
 3: for i = 1 to k do
       Create training set D_i by sampling (with replacement) from D according to w.
       Train a base classifier C_i on D_i.
 5:
       Apply C_i to all instances in the original training set, D.
      \epsilon_i = \frac{1}{n} \left[ \sum_j w_j \, \delta(C_i(x_j) \neq y_j) \right] {Calculate the weighted error}
       if \epsilon_i > 0.5 then
          \mathbf{w} = \{w_i = 1/n \mid j = 1, 2, \cdots, n\}. {Reset the weights for all n instances.}
 9:
          Go back to Step 4.
10:
11:
       end if
      \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
12:
       Update the weight of each instance according to equation (5.88).
13:
14: end for
15: C^*(\mathbf{x}) = \arg \max_y \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y).
```

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
у	1	1	1	-1	-1	7	7	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

AdaBoost Example

Training sets for the first 3 boosting rounds:

Boostir	ng Rour	nd 1:								
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostir	ng Rour	nd 2:								
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
У	1	1	1	1	1	1	1	1	1	1
Boostir	ng Rour	nd 3:								
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1

Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x = 0.1	x=0.2	x = 0.3	x=0.4	x = 0.5	x = 0.6	x=0.7	x = 0.8	x = 0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x = 1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Classification: Alternative Techniques

Imbalanced Class Problem

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line

Challenges

 Evaluation measures such as accuracy is not well-suited for imbalanced class

 Detecting the rare class is like finding needle in a haystack

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

• Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If a model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - This is misleading because the model does not detect any class 1 example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

Alternative Measures

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$
 = TPR

F - measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

Alternative Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$ = TPR
F - measure (F) = $\frac{2rp}{r+p}$ = $\frac{2a}{2a+b+c}$

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - TPR = TP/(TP+FN), FPR = FP/(TN+FP)
 - Performance of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks,
 Bayesian classifiers, k-nearest neighbors, SVM

Example: Decision Trees

Decision Tree

ROC Curve Example

$\alpha =$	0.3	Predicted Class		
		Class o	Class +	
Actual	Class o	645	209	
Class	Class +	298	948	

$\alpha =$	0.7	Predicted Class		
		Class o	Class +	
Actual	Class o	181	673	
Class	Class +	78	1168	

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	score(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces continuous-valued output for each test instance score(+|A)
- Sort the instances according to score(+|A) in decreasing order
- Apply threshold at each unique value of score(+|A)
- Count the number of TP, FP, TN, FN at each threshold
 - •TPR = TP/(TP+FN)
 - •FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Handling Class Imbalanced Problem

- Class-based ordering (e.g. RIPPER)
 - Rules for rare class have higher priority

- Cost-sensitive classification
 - Misclassifying rare class as majority class is more expensive than misclassifying majority as rare class

Sampling-based approaches

Cost Matrix

	PREDICTED CLASS					
ACTUAL		Class=Yes	Class=No			
CLASS	Class=Yes	f(Yes, Yes)	f(Yes,No)			
	Class=No	f(No, Yes)	f(No, No)			

C(i,j): Cost of misclassifying class i example as class j

Cost Matrix	PREDICTED CLASS					
ACTUAL CLASS	C(i, j)	Class=Yes	Class=No			
	Class=Yes	C(Yes, Yes)	C(Yes, No)			
	Class=No	C(No, Yes)	C(No, No)			

$$Cost = \sum C(i, j) \times f(i, j)$$

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
ACTUAL CLASS	C(i,j)	+	-		
	+	-1	100		
	-	1	0		

Model M ₁	PREDICTED CLASS				
ACTUAL CLASS		+	-		
	+	150	40		
	-	60	250		

Model M ₂	PREDICTED CLASS				
ACTUAL CLASS		+	-		
	+	250	45		
	-	5	200		

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost Sensitive Classification

- Example: Bayesian classifer
 - Given a test record x:
 - Compute p(i|x) for each class i
 - Decision rule: classify node as class k if

$$k = \arg\max_{i} p(i \mid x)$$

- For 2-class, classify x as + if p(+|x) > p(-|x)
 - This decision rule implicitly assumes that
 C(+|+) = C(-|-) = 0 and C(+|-) = C(-|+)

Cost Sensitive Classification

- General decision rule:
 - Classify test record x as class k if

$$k = \underset{j}{\operatorname{arg\,min}} \sum_{i} p(i \mid x) \times C(i, j)$$

- 2-class:
 - Cost(+) = p(+|x) C(+,+) + p(-|x) C(-,+)
 - Cost(-) = p(+|x) C(+,-) + p(-|x) C(-,-)
 - Decision rule: classify x as + if Cost(+) < Cost(-)

• if
$$C(+,+) = C(-,-) = 0$$
:
$$p(+ \mid x) > \frac{C(-,+)}{C(-,+) + C(+,-)}$$

Sampling-based Approaches

- Modify the distribution of training data so that rare class is well-represented in training set
 - Undersample the majority class
 - Oversample the rare class

Advantages and disadvantages

DNN vs. GMM

Gaussian mixture models (GMM) for speech recognition

Task	GMM WER	<u>DNN</u> (%)	Research Group
Switchboard	27.4	18.5	Microsoft
YouTube	52.3	47.6	Google
Broadcast News	17.2	14.9	IBM

Table 1. Word error rate (WER) for three speech recognition tasks. GMM, Gaussian mixture models. DNN, deep neural nets. Data provided by Brian Kingsbury from IBM.

Big Data Learning

- Deep Neural Networks
 - 5 to 7 hidden layers for a typical DNN for speech recognition, with about 1000 units per layer
 - Tens of millions of parameters to be optimized
 - Training requires up to 1000 hours, on the order of 100 million training examples, two weeks on a super machine.

Big Data Learning — Future Development

- Large Scale
- Stochasticity
- Nonlinearity
- Parallelism
- Good Generalization
- Good Interpretation if possible