A számításelmélet alapjai I. (Negyedik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. március 5.

Tematika

- A véges automata fogalma, a determinisztikus és a nemdeterminisztikus véges automata. A véges automata működése, közvetlen (egy lépéses) redukció, redukció fogalma, a véges automata által elfogadott (felismert) nyelv. A véges automaták állapot-átmeneti leképezésének ábrázolásai: táblázattal, állapot-átmenet diagrammal (gráffal).
- Minden nemdeterminisztikus véges automatához megadható vele azonos nyelvet meghatározó reguláris grammatika. Minden reguláris grammatikához megadható olyan véges automata, amely vele azonos nyelvet határoz meg.

Példa 1

Legyen $A=(Q,T,\delta,q_0,F)$ véges automata, ahol $Q=\{q_0,q_1,q_2,q_3\}, T=\{a,b\}, F=\{q_0\}$ és legyen $\delta(q_0,a)=q_2,$ $\delta(q_0,b)=q_1,\,\delta(q_1,a)=q_3,\,\delta(q_1,b)=q_0,\,\delta(q_2,a)=q_0,\,\delta(q_2,b)=q_3,$ $\delta(q_3,a)=q_1,\delta(q_3,b)=q_2.$ Milyen szavakat fogad el az automata? Adjuk meg az A automata átmeneti állapotainak tábláját!

Példa 1

- Az A véges automata pontosan azokat a szavakat fogadja el, amelyek páros számú a betűt és páros számú b betűt tartalmaznak.
- Az A automata átmeneti állapotainak táblája:

• Például, ha az input szó *bbabab*, az állapotok sorozata $q_0, q_1, q_0, q_2, q_3, q_1, q_0$.

Példa 2

Adjuk meg az alábbi nyelveket felismerő véges automatákat! (Adjuk meg az A automaták állapotdiagramjait!)

- Ø
- $\{a, b\}^*$

Példa 2

 $A=(Q,T,\delta,q_0,F)$ véges automata, ahol $Q=\{q_0\},\,T=\{a,b\},F=\emptyset$ és legyen $\delta(q_0,a)=\delta(q_0,b)=q_0.$

Példa 2

 $A = (Q, T, \delta, q_0, F)$ véges automata, ahol $Q = \{q_0\}, T = \{a, b\}, F = \{q_0\}$ és legyen $\delta(q_0, a) = \delta(q_0, b) = q_0$.

Példa 3

Adjuk meg az alábbi nyelveket felismerő véges automatákat! (Adjuk meg az A automaták átmeneti állapotainak tábláit és állapotdiagramjait!

- $\{a^nb^m \mid n, m \geq 0\},\$
- $\{w \in \{a,b\}^* \mid |w|_a \text{ páratlan}\},$
- $\{w \in \{a, b\}^* \mid |w|_a \equiv 1 \pmod{3}\},$

ahol $|w|_a$ az a betű előfordulásainak számát jelöli a w szóban.

Példa 3

Legyen $\{a^nb^m \mid n, m \geq 0\}$. Ekkor $A = (Q, T, \delta, q_0, F)$ véges automata, ahol $Q = \{q_0, q_1, q_2\}, T = \{a, b\}, F = \{q_0, q_1\}$ és legyen $\delta(q_0, a) = q_0, \delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_1, b) = q_1, \delta(q_2, a) = q_2, \delta(q_2, b) = q_2.$

Az A automata átmeneti állapotainak táblája:

	δ	а	Ь
ightleftarrows	q 0	q 0	q_1
\leftarrow	q_1	q ₂	q_1
	q_2	q ₂	q ₂

Példa 3

Az A automata állapotdiagramja:

Példa 3

Legyen $\{w\in\{a,b\}^*\mid |w|_a$ páratlan $\}$. Ekkor $A=(Q,T,\delta,q_0,F)$ véges automata, ahol $Q=\{q_0,q_1\}, T=\{a,b\}, F=\{q_1\}$ és legyen $\delta(q_0,a)=q_1, \ \delta(q_1,a)=q_0, \ \delta(q_i,b)=q_i, \ i=0,1.$ Az A automata átmeneti állapotainak táblája:

Példa 3

Az A automata állapotdiagramja:

Példa 3

Legyen $\{w \in \{a,b\}^* \mid |w|_a \equiv 1 \pmod{3}\}$. Ekkor $A = (Q,T,\delta,q_0,F)$ véges automata, ahol $Q = \{q_0,q_1,q_2\}, T = \{a,b\}, F = \{q_1\}$ és legyen $\delta(q_i,a) = q_{(i+1) \bmod 3}$ és $\delta(q_i,b) = q_i$, i=0,1,2. Az A automata átmeneti állapotainak táblája:

Példa 3

Az ${\it A}$ automata állapotdiagramja:

Példa 4

Adjuk meg az alábbi nyelveket felismerő véges automatákat! (Adjuk meg az A automaták átmeneti állapotainak tábláit!)

- $\{(ab)^n \mid n \geq 0\}.$
- $\{a^{5n+3} \mid n \ge 0\}.$
- $\{w \in \{a,b\}^* \mid w \text{ a-val kezdődik vagy } b\text{-vel végződik}\}.$
- $\{a\}^* \cup \{b\}^*$.

Példa 4

Legyen $\{(ab)^n \mid n \geq 0\}$. Ekkor $A = (Q, T, \delta, q_0, F)$ véges automata, ahol $Q = \{q_0, q_1, q_2\}, T = \{a, b\}, F = \{q_0\}$ és legyen $\delta(q_0, a) = q_1, \delta(q_0, b) = q_2, \delta(q_1, a) = q_2, \delta(q_1, b) = q_0, \delta(q_2, a) = q_2, \delta(q_2, b) = q_2.$

Az A automata átmeneti állapotainak táblája:

	δ	а	b
ightleftarrows	q 0	q_1	q ₂
	q_1	q ₂	q 0
	q ₂	q_2	q ₂

Példa 4

Legyen $\{a^{5n+3}\mid n\geq 0\}$. Ekkor $A=(Q,T,\delta,q_0,F)$ véges automata, ahol $Q=\{q_0,q_1,q_2,q_3,q_4\}, T=\{a\},F=\{q_3\}$ és legyen $\delta(q_0,a)=q_1,$ $\delta(q_1,a)=q_2,$ $\delta(q_2,a)=q_3,$ $\delta(q_3,a)=q_4$ és $\delta(q_4,a)=q_0.$ Az A automata átmeneti állapotainak táblája:

Példa 4

Legyen $\{w \in \{a,b\}^* \mid w \text{ a-val kezdődik vagy } b\text{-vel végződik}\}$. Ekkor $A = (Q,T,\delta,q_0,F)$ véges automata, ahol $Q = \{q_0,q_a,q_b,q\}, T = \{a,b\}, F = \{q_a,q_b\}$ és legyen $\delta(q_0,a) = q_a, \delta(q_0,b) = q_b, \ \delta(q_a,a) = q_a, \delta(q_a,b) = q_a, \delta(q_b,b) = q_b, \ \delta(q,a) = q, \delta(q,b) = q_b.$ Az A automata átmeneti állapotainak táblája:

	δ	а	b
\rightarrow	q 0	q _a	q_b
\leftarrow	q _a	q _a	q _a
\leftarrow	q_b	q	q_b
	q	q	q_b

Példa 4

Legyen $\{a\}^* \cup \{b\}^*$. Ekkor $A = (Q, T, \delta, q_0, F)$ véges automata, ahol $Q = \{q_0, q_a, q_b, q_t\}, T = \{a, b\}, F = \{q_0, q_a, q_b\}$ és legyen $\delta(q_0, a) = q_a, \delta(q_0, b) = q_b, \ \delta(q_a, a) = q_a, \delta(q_a, b) = q_t, \ \delta(q_b, a) = q_t, \delta(q_b, b) = q_b, \ \delta(q_t, a) = q_t, \delta(q_t, b) = q_t.$ Az A automata átmeneti állapotainak táblája:

	δ	а	Ь
ightleftarrows	q 0	q _a	q_b
\leftarrow	q _a	qa	q _t
\leftarrow	q_b	qt	q_b
	q_t	q _t	q _t

Példa 5

Adjunk meg az alábbi nyelveket felismerő véges automatákat! (Adjuk meg az A automaták átmeneti állapotainak tábláit!)

- $\{w \in \{a,b\}^* \mid |w|_a \text{ páros}\}$,
- $\{w \in \{a, b\}^* \mid |w| = 4\}$,
- $\{w \in \{a, b\}^* \mid |w| \geq 3\}$,
- $\{w \in \{a,b\}^* \mid w = uab, u \in \{a,b\}^*\},$
- {a, ab, abb, c, cb, cab},
- $\{a, b\}^*abba\{a, b\}^*$.

Példa 5

Legyen $\{w \in \{a,b\}^* \mid |w|_a \text{ páros}\}$. Ekkor $A=(Q,T,\delta,q_0,F)$ véges automata, ahol $Q=\{q_0,q_1\}, T=\{a,b\}, F=\{q_0\}$ és legyen $\delta(q_0,a)=q_1, \, \delta(q_1,a)=q_0, \, \delta(q_i,b)=q_i, \, i=0,1.$ Az A automata átmeneti állapotainak táblája:

Példa 5

Legyen $\{w \in \{a,b\}^* \mid |w|=4\}$. Ekkor $A=(Q,T,\delta,q_0,F)$ véges automata, ahol $Q=\{q_0,q_1,q_2,q_3,q_4,q_5\}, T=\{a,b\}, F=\{q_4\}$ és legyen $\delta(q_i,a)=q_{i+1}, \ \delta(q_i,b)=q_{i+1}, \ i=0,1,2,3,4, \ \delta(q_5,a)=q_5, \ \delta(q_5,b)=q_5.$ Az A automata átmeneti állapotainak táblája:

	δ	а	b
\rightarrow	q 0	q_1	q_1
	q_1	q ₂	q 2
	q_2	q ₃	q 3
	q 3	q 4	q 4
\leftarrow	q 4	q 5	q 5
	q 5	q 5	q 5

Példa 5

Legyen $\{w \in \{a,b\}^* \mid |w| \geq 3\}$. Ekkor $A = (Q,T,\delta,q_0,F)$ véges automata, ahol $Q = \{q_0,q_1,q_2,q_3\}, T = \{a,b\}, F = \{q_3\}$ és legyen $\delta(q_i,a) = q_{i+1}, \ \delta(q_i,b) = q_{i+1}, \ i = 0,1,2, \ \delta(q_3,a) = q_3, \ \delta(q_3,b) = q_3.$ Az A automata átmeneti állapotainak táblája:

Példa 5

Legyen $\{w \in \{a,b\}^* \mid w = uab, u \in \{a,b\}^*\}$. Ekkor $A = (Q,T,\delta,q_0,F)$ véges automata, ahol $Q = \{q_0,q_1,q_2\}, T = \{a,b\}, F = \{q_2\}$ és legyen $\delta(q_0,a) = q_1, \ \delta(q_0,b) = q_0, \ \delta(q_1,a) = q_1, \ \delta(q_1,b) = q_2, \ \delta(q_2,a) = q_1, \ \delta(q_2,b) = q_0$. Az A automata átmeneti állapotainak táblája:

Példa 5

Legyen $\{a, ab, abb, c, cb, cab\}$. Ekkor $A = (Q, T, \delta, q_0, F)$ véges automata, ahol $Q = \{q_0, q_a, q_c, q_{ab}, q_{ca}, q_{cb}, q_{abb}, q_{cab}, q\}$, $T = \{a, b, c\}$, $F = \{q_a, q_c, q_{ab}, q_{cb}, q_{abb}, q_{cab}\}$ és legyen $\delta(q_0, a) = q_a$, $\delta(q_0, b) = q$, $\delta(q_0, c) = q_c$, $\delta(q_a, a) = q$, $\delta(q_a, b) = q_{ab}$, $\delta(q_a, c) = q$, $\delta(q_c, a) = q_{ca}$, $\delta(q_c, b) = q_{cb}$, $\delta(q_c, c) = q$, $\delta(q_{ab}, a) = q$, $\delta(q_{ab}, b) = q_{abb}$, $\delta(q_{ab}, c) = q$, $\delta(q_{ca}, a) = q$, $\delta(q_{ca}, b) = q_{cab}$, $\delta(q_{ca}, c) = q$, $\delta(q_{cb}, a) = q$, $\delta(q_{cb}, b) = q$, $\delta(q_{cb}, b) = q$, $\delta(q_{cab}, a) = q$, $\delta(q_{cab}, a) = q$, $\delta(q_{cab}, b) = q$, $\delta(q_{cab}, c) = q$,

Példa 5

Az A automata átmeneti állapotainak táblája:

	δ	а	b	С
\rightarrow	q 0	q _a	q	q _c
\leftarrow	q _a	q	q _{ab}	q
\leftarrow	q_c	q _{ca}	q_{cb}	q
\leftarrow	q _{ab}	q	q _{abb}	q
	q _{ca}	q	q _{cab}	q
\leftarrow	q_{cb}	q	q	q
\leftarrow	q _{abb}	q	q	q
\leftarrow	q _{cab}	q	q	q
	q	q	q	q

Példa 5

Legyen $\{a,b\}^*abba\{a,b\}^*$. Ekkor $A=(Q,T,\delta,q_0,F)$ véges automata, ahol $Q=\{q_0,q_a,q_{ab},q_{abb},q_{abba}\},T=\{a,b\},F=\{q_{abba}\}$ és legyen $\delta(q_0,a)=q_a,\ \delta(q_0,b)=q_0,\ \delta(q_a,a)=q_a,\ \delta(q_a,b)=q_{abb},\ \delta(q_{abb},a)=q_{abba},\ \delta(q_{abb},b)=q_0,\ \delta(q_{abba},a)=q_{abba},\ \delta(q_{abba},b)=q_{abba}.$ Az A automata átmeneti állapotainak táblája:

	δ	а	Ь
\rightarrow	q 0	q _a	q_0
	q _a	q _a	q _{ab}
	q _{ab}	q _a	q _{abb}
	q _{abb}	q _{abba}	q 0
\leftarrow	q _{abba}	q _{abba}	q _{abba}