Série: TSExp **SESSION: Août 2019**

Exercice1......(6 pts)

- 1)Pour tout nombre complexe z, on pose : $P(z) = z^3 3z^2 + 3z + 7$.
- a) Calcule P(-1).
- b) Détermine les réels a et b tels que, pour tout nombre complexe z, on ait :

$$P(z) = (z+1)(z^2 + az + b).$$

- c) Résous, dans \mathbb{C} , l'équation P(z) = 0.
- 2) Le plan complexe est rapporté à un repère orthonormal direct (O; \vec{u} ; \vec{v}). Unité graphique :

On désigne par A, B, C et G les points du plan d'affixes respectives : $Z_A = -1$,

$$Z_B = 2 + i\sqrt{3}, \ Z_C = 2 - i\sqrt{3} \ et \ Z_G = 3.$$

- a) Réalise une figure et place les points A, B, C et G.
- b) Calcule les distances AB, BC et AC. En déduis la nature du triangle ABC.
- c) Calcule un argument du nombre complexe $\frac{Z_A Z_C}{Z_G Z_C}$. En déduis la nature du triangle GAC.

Exercice2......(4 pts)

- 1) Soit les fonctions f et g définies sur \mathbb{R} par $f(x) = \frac{x}{1+x^2}$ et $g(x) = \frac{x^3}{1+x^2}$.
 - a) Calcule $I_1 = \int_0^1 f(x) dx$.
 - b) Soit $I_2 = \int_0^1 g(x) dx$. Calcule $I_1 + I_2$ et en déduis la valeur de I_2 .
- 2) a) Détermine trois réels a, b, c tels que pour tout u différent de $\frac{1}{2}$:

$$\frac{u^2 - 1}{2u - 1} = au + b + \frac{c}{2u - 1}.$$

b)Calcule
$$\int_{-1}^{0} \frac{x^2 - 1}{2x - 1} dx$$
.

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^3 - 4}{x^2 + 1}$, et on note \mathbb{C} sa courbe représentative dans un repère orthonormal (unité : 1cm).

- 1) On pose $g(x) = x^3 + 3x + 8$.
- a) Etudie le sens de variation de g, et montre que l'équation g(x) = 0 admet sur \mathbb{R} une unique solution α dont on donnera un encadrement d'amplitude 0,1.
- b) Précise le signe de g(x) selon les valeurs de x.
- 2) a) Calcule f'(x) et étudie le sens de variation de f.
- b) Etudie les limites de f en $+\infty$ et en $-\infty$, puis dresse le tableau de variation de f.
- 3) a) Montre qu'il existe quatre réels a, b, c et d tels que $f(x) = ax + b + \frac{cx + d}{x^2 + 1}$.
- b) En déduis que \mathbb{C} admet une asymptote oblique Δ et étudie la position de \mathbb{C} par rapport à Δ . Vérifie en particulier que \mathcal{T} rencontre Δ en un point unique \mathcal{A} .
- 4) Détermine les abscisses des points B et B' de \mathcal{T} admettant une tangente parallèle à Δ .
- 5) Vérifie que $f(\alpha) = \frac{3}{2}\alpha$; en déduis une valeur approchée de $f(\alpha)$.
- 6) Construis la courbe **C**.