

TFT LCD Approval Specification

MODEL NO.: V420H1 - P13

Customer:

Approved by:								
Note:								
Approved By	TV Head Division.							
Approved By	LY Chen							
Reviewed By	QA Dept.	Product Development Div.						
Treviewed by	Kc_Ko	WT Lin						
Prepared By	LCD TV Marketing and	Product Management Div.						
гтератей бу	Wang-Yang Li	Trina Lee						

	- CONTENTS -		
	GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 MECHANICAL SPECIFICATIONS		4
	ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASE ON CMO MODUL 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL) 2.3 ELECTRICAL ABSOLUTE RATINGS	 _E V420H1-L13)	5
;	ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 RSDS CHARACTERISTICS		7
	BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL		8
	INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 COLOR DATA INPUT ASSIGNMENT		9
	INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		12
	OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		15
	PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS		18
Ç	DEFINITION OF LABELS 9.1 OPEN CELL LABEL 9.2 CARTON LABEL		19
	. PACKAGING 10.1 PACKING SPECIFICATION. 10.2 PACKING METHOD		20
11.	MECHANICAL CHARACTERISTICS		22

REVISION HISTORY

Version	Date	Page	Section	Description
Ver. 1.0	Jun. 20, 2008	All	All	The Preliminary specification was first issued.
Ver. 2.0	Oct. 28, 2008	4	1.2	Updated Cell Transparency
Ver. 2.0	Oct. 28, 2008	19	9.2	Updated Carton Label
Ver. 2.0	Oct. 28, 2008	20-21	10	Updated Packing

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13 Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420H1-P13 is a 42" TFT Liquid Crystal Display cell with driver ICs and 2ch-LVDS interface. This product supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The backlight unit is not built-in.

1.2 FEATURES

CHARACTERISTICS ITEMS	SPECIFICATIONS						
Screen Diagonal [in]	42.02						
Pixels [lines]	1920 × 1080						
Active Area [mm]	930.24(H) × 523.26(V) (42.02" diagonal)						
Sub-Pixel Pitch [mm]	0.1615(H) × 0.4845(V)						
Pixel Arrangement	RGB vertical stripe						
Weight [g]	TYP. 2150						
Physical Size [mm]	955.04(W) × 545.66(H) × 2.00(D) Typ.						
Display Mode	Transmissive mode / Normallly black						
Contrast Ratio	4000:1 Typ.						
	(Typical value measure at CMO's module)						
Glass thickness (Array / CF) [mm]	0.7 / 0.7						
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ. (CR≥20)						
	(Typical value measure at CMO's module)						
Color Chromaticity	R = (0.652, 0.327)						
	G = (0.274, 0.588)						
	B = (0.150, 0.086)						
	W= (0.307, 0.318)						
	* Please refer to "color chromaticity" on p.14						
Cell Transparency [%]	3.9% Typ.						
	(Typical value was measured at CMO's module)						
Polarizer Surface Treatment	Anti-Glare coating (Haze 25%), Hard coating (3H)						

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	2100	2150	2200	g	-
I/F connector mounting position	The mounting incli screen center with	ination of the conning \pm 0.5mm as the	ector makes the horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13

Approval

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASE ON CMO MODULE V420H1-L13)

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	ōC	(1)
Operating Ambient Temperature	T _{OP}	0	50	ōC	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90 %RH Max. (Ta \leq 40 ${}^{\circ}$ C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13

Approval

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

Storage condition: With shipping package.

Storage temperature rang: 25±5°C Storage humidity range: 50±10%RH

Shelf life: a month

2.3ELECTRICAL ABSOLUTE RATINGS

2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Symbol	Va	lue	Unit	Note
	Cymbol	Min.	Max.	Orme	11010
	V_{AA}	-0.3	17.5	V	
Power Supply Voltage	V_{GH}	-0.3	34	V	(1)
	V_{GL}	-34	0.3	V	(1)
Logic Input Voltage	V_{IN}	-0.3	3.6	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)

Doromoto	,	Cymbol		Value			
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
		V_{GH}	19.7	20.2	20.7	V	
Power Sur	only Voltago	V_{GL}	-5.8	-5.5	-5.2	V	
Power Supply Voltage		V_{AA}	15.5	16.0	16.5	V	
		V _{33V}	3.2	3.3	3.4	V	
		I_{GH}		0.02		Α	
Dower Cur	only Current	I_{GL}		0.05		Α	
rower Sup	oply Current	I _{AA}		0.9		Α	
		I _{33V}		0.45		Α	
CMOS	Input High Threshold Voltage	V _{IH}	2.7		3.3	V	
interface	Input Low Threshold Voltage	V _{IL}	0		0.7	V	

Note (1) The module should be always operated within the above ranges.

3.2 RSDS CHARACTERISTICS $(Ta = -10 \pm 85 \, {}^{\circ}C)$

Item	Symbol	Condition		Unit		
item	Symbol	Condition	Min.	Тур.	Тур. Мах.	
RSDS high input Voltage	$V_{DIFFRSDS}$	$V_{CMRSDS} = +1.2V(1)$	100	200		mV
RSDS low input Voltage	V _{DIFFRSDS}	$V_{CMRSDS} = +1.2V(1)$		-200	-100	mV
RSDS common mode input	V_{CMRSDS}	$V_{DIFFRSDS} = 200 \text{mV}$	VSSD + 0.1	Note(3)	VSSD + 1.2	V
voltage range		(2)	V33D + 0.1	Note(3)	V33D + 1.2	V
RSDS Input leakage current		D _{XX} P, D _{XX} N, CLKO,	-10		10	., Δ
nobo iriput leakage current	I _{DL}	CLPN	-10	-	10	μ A

Note (1) $V_{CMRSDS} = (VCLKP + VCLKN)/2$ or $V_{CMRSDS} = (VD_{XX}P + VD_{XX}N)/2$

Note (2) $V_{DIFFRSDS} = VCLKP - VCLKN$ or $V_{DIFFRSDS} = VD_{XX}P - VD_{XX}N$

Note (3) $V_{CMRSDS} = +1.2V(VDDD = 3.3V)$

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin assignment

CN1(XL) Connector Pin Assignment

		Description	D:	O: made al	Description
Pin	Symbol	Description	Pin	Symbol	Description
1	GM18	Gamma Power supply	41	ATP1	A-Path RSDS data latch
2	GM17	Gamma Power supply	42	POL	polarity invert
3	GM16	Gamma Power supply	43	CKV	Scan driver clock
4	GM15	Gamma Power supply	44	STV	Scan driver start pulse1
5	GM14	Gamma Power supply	45	STV R	Scan driver start pulse2
6	GM13	Gamma Power supply	46	OE	Scan driver output enable
7	GM12	Gamma Power supply	47	DRL1	Control the direction of start pulse for data
8	<u>GM11</u>	Gamma Power supply	48	GRL1	Control the direction of start pulse for scan
9	GM10	Gamma Power supply	49	GND	Ground
10	A_B3P	A-Path RSDS data signal (Blue3)	50	SIN1	Synchronization pin
11	A_B3M	A-Path RSDS data signal (Blue3)	51	SIN2	Synchronization pin
12	A_B2P	A-Path RSDS data signal (Blue2)	52	GND	Ground
13	A B2M	A-Path RSDS data signal (Blue2)	53	VDD	Logic Power supply
14	A B1P	A-Path RSDS data signal (Blue1)	54	VDD	Logic Power supply
15	A B1M	A-Path RSDS data signal (Blue1)	55	GM9	Gamma Power supply
16	A BOP	A-Path RSDS data signal (Blue0)	56	GM8	Gamma Power supply
17	A BOM	A-Path RSDS data signal (Blue0)	57	GM7	Gamma Power supply
18	A_G3P	A-Path RSDS data signal (Green3)	58	GM6	Gamma Power supply
19	A_G3M	A-Path RSDS data signal (Green3)	59	GM6	Gamma Power supply
20	A_G2P	A-Path RSDS data signal (Green2)	60	GM4	Gamma Power supply
21	A_G2M	A-Path RSDS data signal (Green2)	61	GM3	Gamma Power supply
22	A G1P	A-Path RSDS data signal (Green1)	62	GM2	Gamma Power supply
23	A G1M	A-Path RSDS data signal (Green1)	63	GM1	Gamma Power supply
24	A GOP	A-Path RSDS data signal (Green0)	64	GND	Ground
25	A G0M	A-Path RSDS data signal (Green0)	65	VAA	Driver Power supply
26	GND	Ground	66	VAA	Driver Power supply
27	A_CLKP	Data driver clock	67	GND	Ground
28	A_CLKM	Data driver clock	68	VCM	VCM Power supply
29	GND	Ground	69	VCM	VCM Power supply
30	A_R3P	A-Path RSDS data signal (Red3)	70	GND	Ground
31	A R3M	A-Path RSDS data signal (Red3)	71	VST	VST Power supply
32	A R2P	A-Path RSDS data signal (Red2)	72	VST	VST Power supply
33	A R2M	A-Path RSDS data signal (Red2)	73	GND	Ground
34	A R1P	A-Path RSDS data signal (Red1)	74	VGH	Driver Power supply
35	A_R1M	A-Path RSDS data signal (Red1)	75	VGH	Driver Power supply
36	A ROP	A-Path RSDS data signal (Red0)	76	GND	Ground
37	A_R0M	A-Path RSDS data signal (Red0)	77	VGL	Driver Power supply
38	GND	Ground	78	VGL	Driver Power supply
39	ASTH	A-Path source driver start pulse1	79	GND	Ground
40	ASTH R	A-Path source driver start pulse2	80	GND	Ground

Approval

CN1(XR) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	VSCM	VSCM Power supply	41	BSTH_R	B-Path source driver start pulse2
2	GND	Ground	42	BSTH	B-Path source driver start pulse1
3	VGL	Driver Power supply	43	GND	Ground
4	VGL	Driver Power supply	44	B_B3P	B-Path RSDS data signal (Blue3)
5	GND	Ground	45	B_B3M	B-Path RSDS data signal (Blue3)
6	VGH	Driver Power supply	46	B_B2P	B-Path RSDS data signal (Blue2)
7	VGH	Driver Power supply	47	B_B2M	B-Path RSDS data signal (Blue2)
8	GND	Ground	48	B_B1P	B-Path RSDS data signal (Blue1)
9	VST	VST Power supply	49	B_B1M	B-Path RSDS data signal (Blue1)
10	VST	VST Power supply	50	B_B0P	B-Path RSDS data signal (Blue0)
11	GND	Ground	51	B_B0M	B-Path RSDS data signal (Blue0)
12	VCM	VCM Power supply	52	B_G3P	B-Path RSDS data signal (Green3)
13	VCM	VCM Power supply	53	B_G3M	B-Path RSDS data signal (Green3)
14	GND	Ground	54	B_G2P	B-Path RSDS data signal (Green2)
15	VAA	Driver Power supply	55	B_G2M	B-Path RSDS data signal (Green2)
16	VAA	Driver Power supply	56	B_G1P	B-Path RSDS data signal (Green 1)
17	GND	Ground	57	B_G1M	B-Path RSDS data signal (Green1)
18	GM18	Gamma Power supply	58	B_G0P	B-Path RSDS data signal (Green0)
19	GM17	Gamma Power supply	59	B_G0M	B-Path RSDS data signal (Green0)
20	GM16	Gamma Power supply	60	GND	Ground
		,			
21	GM15	Gamma Power supply	61	B CLKP	Data driver clock
22	GM14	Gamma Power supply	62	B CLKM	Data driver clock
23	GM13	Gamma Power supply	63	GND	Ground
24	GM12	Gamma Power supply	64	B R3P	B-Path RSDS data signal (Red3)
25	GM11	Gamma Power supply	65	B R3M	B-Path RSDS data signal (Red3)
26	GM10	Gamma Power supply	66	B R2P	B-Path RSDS data signal (Red2)
27	VDD	Logic Power supply	67	B R2M	B-Path RSDS data signal (Red2)
28	VDD	Logic Power supply	68	B R1P	B-Path RSDS data signal (Red1)
29	GND	Ground	69	B R1M	B-Path RSDS data signal (Red1)
30	SIN2	Synchronization pin	70	B R0P	B-Path RSDS data signal (Red0)
31	SIN1	Synchronization pin	71	B R0M	B-Path RSDS data signal (Red0)
32	GND	Ground	72	GM9	Gamma Power supply
33	GRL1	Control the direction of start pulse	73	GM8	Gamma Power supply
34	DRL1	Control the direction of start pulse	74	GM7	Gamma Power supply
35	OE	Scan driver output enable	75	GM6	Gamma Power supply
36	STV_R	Scan driver start pulse2	76	GM6	Gamma Power supply
37	STV	Scan driver start pulse1	77	GM4	Gamma Power supply
38	CKV	Scan driver clock	78	GM3	Gamma Power supply
39	POL	polarity invert	79	GM2	Gamma Power supply
40	BTP1	B-Path RSDS data latch	80	GM1	Gamma Power supply
.0	2111	2 : a : 1020 data latori		CIVI I	Gamma i ottoi ouppiy

Note (1) CN1 · 2 Connector Part No.:501559-8010, Molex connector or equal.

Approval

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

	data inputi		Data Signal																						
	Color				Re								G	reer							Βlι				
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6		G4	G3	G2	G1	G0	B7	B6	B5	B4	ВЗ			B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: <	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷		:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
liteu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	13	:) :	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
000	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	: ◀			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:		\cdot	/ :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
Signal	Item	Зуппоот	IVIIII.	iyρ.	iviax.	Offic	Note	
	Frequency	1/Tc	60	74	80	MHz	-	
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	-	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	ı	ps	-	
LVD3 neceiver Data	Hold Time	Tlvhd	600	-	1	ps	-	
Vertical Active Display Term	Frame Rate	Fr5	47	50	53	Hz	(1)	
		Fr6	57	60	63	Hz	(1)	
	Total	Tv	1115	1125	1135	Th	Tv=Tvd+Tvb	
	Display	Tvd	1080	1080	1080	Th	-	
	Blank	Tvb	35	45	55	Th	-	
	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb	
Horizontal Active Display Term	Display	Thd	960	960	960	Тс	-	
	Blank	Thb	90	140	190	Tc	-	

Note (1) (ODSEL) = (H), (L). Please refer to 5.1 for detail information.

Note (2) Since the module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

LVDS INPUT INTERFACE TIMING DIAGRAM

Approval

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13

Approval

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	12	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Lamp Current	l _L	9.5±0.5	mA			
Oscillating Frequency (Inverter)	F _W	42.5±3	KHz			
Vertical Frame Rate	Fr	60	Hz			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iten	า	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Red		Rcx			0.652		ı	
Color Chromaticity Blu	neu	Rcy		Typ - 0.03	0.327	Typ + 0.03	-	(0),(5)
	Green	Gcx	0.00.0		0.274		1	
		Gcy	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.588		ı	
	Blue	Всх	CS-1000T Standard light source "C"		0.150		-	
		Всу	Standard light source o		0.086		1	
	White	Wcx			0.307		-	
	vvriite	Wcy			0.318		-	
Center Transmittance		T%	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	-	4.1	-	%	(1), (7)
Contrast Ratio		CR	With CMO Module	3000	4000	-	-	(1), (3)
Response Time		Gray to gray	θ_x =0°, θ_Y =0° With CMO Module @60Hz	•	6.5	12	ms	(4)
White Variation		δW	θ_x =0°, θ_Y =0° With CMO Module	ı	1	1.3	1	(1), (6)
	Horizontal	θ_{x} +		80	88	•	Deg.	
Viewing Angle	HUHZUHIAI	θ_{x} -	CR≥20	80	88	•		(1), (2)
	Vertical	θ_{Y} +	With CMO Module	80	88	-		
	vertical	θ _Y -		80	88	-		

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:

- 1. Measure Module's and BLU's spectrums. W, R, G, B are with signal input. BLU(for V420H1-L13) is supplied by CMO.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"
- Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages.
- Note (2) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

15

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13 Approval

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (1), where CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (4) Definition of Gray to Gray Switching Time:

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (7) Definition of Transmittance (T%):

Module is without signal input.

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into the user's system cab be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture came into or contacted the product, because moisture may damage the product when it is operation.
- (8) When storing modules as spares for a long time, the following precaution is necessary.
- (a)Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- (9) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slowly.

8.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13 Approval

9. DEFINITION OF LABELS

9.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

CHI MEI OPTOELECTRONICS	RoHS
PO.NO	
Model Name	
Carton ID.	Quantities

- Model Name: V420H1-P13 (a)
- (b) Carton ID: CMO internal control
- Quantities: 9 pcs (c)

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13 Approval

10. PACKAGING

10.1 PACKING SPECIFICATIONS

(1) 9 PCS LCD TV Panels / 1 Box

(2) Box dimensions: 1204 (L) X 796 (W) X 194 (H)

(3) Weight: approximately 33 Kg

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

Figure.10-1 packing method

Approval

Sea & Land Transportation

Air Transportation

Figure.10-2 packing method

Issue Date: Oct. 28, 2008 Model No.: V420H1-P13 **Approval**

11. MECHANICAL CHARACTERISTICS

