

2026

Kinemahia - - .

Motion in a straight line

PHYSICS

Lecture - 05

By - Saleem Ahmed Sir

Todays Goal

- tunning point
- u, a, Avrg acc, inst-acc.

$$\Rightarrow x = \frac{t^3}{3} - 3t^2 + 9t + 10$$

$$501$$
 $v = \frac{dx}{dt} = \frac{3t^2}{3} - 6t + 9 + 0$

$$V = t^2 + 9 - 6t = (t - 3)^2$$

Kisi bhi cheez ka squam hamesha positive État hou

.

tuning uso

Ruka > U = 0 No tuning point

* Tuning point pan U=0

* But Agar V=0 to janui Nahi ki vo turning point ho.

L ** Tuning point maltab -> v=0 hona chaige and v' ka sign change hona chahige. (9, x ka Nahi)

By

Acceleration

- Rate of change of Velocity.
- Avry Acc = < a> = Change in velocity

(No tuning point)

① Avegacc. from
$$t=0$$
 to $t=2$ sec $t=0$, $v_i=10$ $t=2$, $v_f=12+8+10=30$

$$\langle \vec{a} \rangle = \frac{\vec{V_f} - \vec{V_i}}{5m^2} = \frac{30 - 10}{2 - 0} = 10$$

(b) find acc at
$$t=2$$

$$a = \frac{du}{dt} = 6t + 4$$

$$t=2$$
 $a = 6x2+4 = 16$

© find initial velocity 8 initial acc t=0, u=10 $a=\frac{du}{dt}=6t+4$

$x = t^3 + t^2 + 6t + 10$

$$\Rightarrow a = \frac{dv}{dx} = 6t + 2$$

$$t=2$$
, $w=3x^2+2x^2+6=22$
 $t=2$, $q=6x^2+2=14$

find initial position, initial velocity initial acc

$$t=0$$
, $x=10$
 $t=0$, $y=3x^2+2x+6=6$
 $t=0$, $y=6$
 $q=0+2=2$

$9 x = t^3 + t^2 + 6t + 10$

find avry velocity and avry acc from t=0 --- st=2 sec.

Avry Velocity =
$$\frac{x_f - x_i}{time} = \frac{34 - 10}{2 - 6} = 12$$

$$t=2$$
, $x_f = 8+4+12+10=34$

Avrg acc =
$$\frac{V_f - V_i}{6m}$$
 = $\frac{22 - 6}{2 - 6}$

$$t=0, V_i = 6$$
 $t=2, V_f = 12+4+6 = 22$

$$t=0$$
, $x_i = 10$
 $t=2$, $x_f = 16 + 12 + 8 + 10$

$$t=0$$
, $v=4$
 $t=2$, $v=24+12+4$
 $=40$

$$Q = 2t^3 + 3t^2 + 4t + 10$$

$$v = 6t^2 + 6t + 4$$

$$c = 2, v = 24 + 12 + 4$$

$$c = 12t + 6$$

2
$$t=0 \longrightarrow t=2$$

 $< \text{Velocity} > = \frac{x_f - x_i}{h_{im}} = \frac{46 - 10}{2} = 18$

$$\langle acc \rangle = \frac{40-4}{2} = 18$$

$$2 = t^3 - 6t^2 + 60t + 10$$

find velocity when acc become zero.

I find acc when to become zuro

$$x = 2t^3 - 15t^2 + 36t + 11$$

$$501$$
 $V = 6t^2 - 30t + 36$
 $a = 12t - 30$

$$t = 3$$
, $t = 3$
 $t^{2} - 5t + 6 = 0$
 $(t-3)(t-2) = 0$
 $t = 3$, $t = 3$

$$t=2$$
, $\alpha=12x2-30=-6$
 $t=3$ $\alpha=12x3-30=6$

a If a is decreasing => v will decrease (Falm)

join it & for SKC BOOK

Home work

- KPP - 13 (Pls solve 1-50 ques)

Discorrim Medio will be provided

Imp ques in KPP 13 =) (23-26) 27,28,31,37,40, must toy 45, 41,

que No => 52 Ke Bad Mat toy kaina)

DPP

