Introduction to Computing Thoery

February 20, 2023 collected by whaleyy

Problem 1: Rice Theorem in Undecidability

Classify whether each of the following languages are recursive, recursively enumerable but not recursive, or non-recursively enumerable. Prove your answers, but you may not simply appeal to Rice's theorem.

- 1. $L_5 = \{"M" | M \text{ is a TM, and } L(M) \text{ is uncountable } \}$
- 2. $L_6 = \{"M" | TM M \text{ accepts at least two strings of different lengths}\}$

Solution for 1. L_5 is recursive. $L_5 = \phi$. Any of the languages is countable based on the finite alphabet.

Solution for 2. L_6 is recursively enumerable but not recursive.

<u>L₆ is recursively enumerable.</u> Constructing a Universal Turing Machine which takes "M" as input. In the following order, it generates strings of different lengths from 0 to infinity according to the alphabet marked as $\omega_0, \omega_1.\omega_2...$ And with the lexicographical input strings, it simulates M. When M halts on two strings of different lengths, it will halt.

- Do 1 step of M's computation on ω_0
- Do 2 steps of M's computation on ω_0 and ω_1
- Do 3 steps of M's computation on ω_0 , ω_1 and ω_2

<u>L₆ is not recursive.</u> Use the same method used to prove the Rice Theorem. If L_6 is recursive, then there is a reduction to the halting problem $H = \{"M" | M \text{ halts on } e\}$.

Assume L_6 is decidable, then for any TM, we can decide whether it belongs to L_6 . Given an TM M, construct a TM M_e with input x: if $x \neq 0, 10$, reject; else simulate M on e. $L(M_e) = \phi$ if M doesn't halt on e, else $L(M_e) = \{0, 10\}$. However, which is also another form of L_6 that is assumed recursive. Contradiction.

Recall: the proof of Rice Theorem.

Given a TM M, we construct a TM M_e with input ω . First take certain TM " M^* " which belongs to the subset of r.e. languages.

It executes as follows: first simulate M on input e, then simulate M^* on input ω .

 $L(M_e) = \phi$ if M doesn't halt on e, else $L(M_e) = L(M^*)$.

However, which is also another form of the problem to be proved. Contradiction.

Problem 2: Encoding of Language

The encoding of an object O is represented as "O". Similarly, the encoding of several objects $O_1, ..., O_k$ is represented as " O_1 "." O_2 "..." O_k ". Convert the following problems into the corresponding languages.

- 1. Given a DFA A and a string ω , does A accept ω ?
- 2. Let D be a DFA, given a string ω , does D accept ω ?
- 3. Given two DFAs A and B, is L(A) = L(B)?

```
Solution for 1. A_{DFA} = \{ "A""\omega" : A \text{ is a DFA that accepts } \omega \}
Solution for 2. A_{\omega} = \{ "\omega" : D \text{ accepts } \omega \}
```

Solution for 3. $EQ_{DFA} = \{ A^{"B} : A \text{ and } B \text{ are two DFAs, } L(A) = L(B) \}$

Pay attention to the description of **GIVEN**.

Problem 3: Reduction from SB_{DFA} **to** E_{DFA}

Let $SB_{DFA} = \{"D_1""D_2": D_1 \text{ and } D_2 \text{ are two DFAs with } L(D_1) \subset L(D_2).$ Give a reduction from SB_{DFA} to E_{DFA} .

Solution Suppose TM M_E decides E_{DFA} .

Construct a TM M that decides SB_{DFA} : $M = \text{on input "}D_1$ ":

- 1. construct a DFA D' with $L(D') = L(D_1) L(D_2) = L(D_1) \cap \neg L(D_2)$
- 2. run M_E on "D'"
- 3. output the result

the reduction $f("D_1""D_2") = "D'"$

 SB_{DFA} is decidable iff D' is decidable.

Some abbreviation of TM decision problems.

- 1. $A_{DFA} = \{"D""\omega" : D \text{ is DFA that accepts } \omega\}$
- 2. $A_{NFA} = \{"D""\omega" : D \text{ is NFA that accepts } \omega\}$
- 3. $E_{DFA} = \{ D^{\circ} : D \text{ is DFA and } L(D) = \emptyset \}$
- 4. $EQ_{DFA}=\{"A""B":A,B \text{ are DFAs and } L(A)=L(B)\}$
- 5. $A_{CFG} = \{ "G""\omega" : G \text{ is CFG that accepts } \omega \}$
- 6. $E_{CFG} = \{ "G" : G \text{ is CFG and } L(G) = \phi \}$

- 7. $ALL_{CFG} = \{ "G" : G \text{ is CFG and } L(G) = \Sigma^* \}$
- 8. $EQ_{CFG} = \{"A""B" : A, B \text{ are CFGs and } L(A) = L(B)\}$
- 9. $A_{TM} = \{"M""\omega" : M \text{ is TM that accepts } \omega\}$

Note the definition of reduction.

 $A \leq B$ implies that there is a reduction $f: \Sigma^* \to \Sigma^*$ from A to B such that for any $x \in \Sigma^*$, $x \in A \leftrightarrow f(x) \in B$

some theorem:

If A is a recursively enumerable language and $A \not\leq A$, then A is recursive.

Problem 4: Encoding and Halting Problem

Prove that exists undecidable subset of $\{1\}^*$.

Solution. We can establish a map from $\{0,1\}^*$ to $\{1\}^*$. $\forall x \in \{0,1\}^*$, f(x) = bin(x) of $1's \in \{1\}^*$ $A_{TM} = \{"M""\omega" : M \text{ is TM that accepts } \omega\}$ can also be encoded by $\{0,1\}^*$, however it's undecidable.

So there exists undecidable subset of $\{1\}^*$

Problem 5: Reduction and Regular

If $A \leq B$ and B is a regular language, does it imply that A is a regular language? **Solution** No. Consider two languages, $A = \{a^nb^n : n \geq 0\}$ and $B = \{a\}$ with $\Sigma = \{a,b\}$. Then A is not regular but recursive while B is regular. Assume TM M_A decides A Construct mapping from A to B, $\forall \omega \in \Sigma^*$

$$f(\omega) = \begin{cases} a & \omega \in A \\ b & \omega \notin A \end{cases} \tag{1}$$

To show f is recursive, construct TM M as follows:

- with input ω , simulate M_A
- if M_A accepts it, output a
- else M_A rejects it, output b

A is not necessarily regular even if $A \leq B$ and B is regual.

note on proof of reduction:

- one way, construct a TM which satisfies the sufficient and necessary transition.
- another way, find a mapping function and prove it recursive

Problem 6: Negative and Recursive

Prove: If a language L is recursively enumerable but not recursive, then $\neg L$ is not recursively enumerable.

Solution. We have the theorem L is recursive iff L and $\neg L$ is r.e.

So if L is not recursive, either L or $\neg L$ is not r.e.

Problem 7: Reduction from General-like *H* **to Certain Problem**

Prove that the following language is not recursive.

 $L = \{ M_1 M_2 K_2 : M_1 \text{ and } M_2 \text{ are two TM with } |L(M_1) \cap L(M_2)| \ge k \}$

Solution.

Consider the non-recursive problem $A = \{"M" : M \text{ halts on some strings}\}$, we reduce A to L. Construct a TM M_{all} that accepts all input. So $M \in A \leftrightarrow "M"" M_{all}"" 1" \in L$.

Problem 8: Reduction from *H* **to Certain Problem**

Prove that the following language is not recursive, but is recursively enumerable.

 $L_1 = \{"M" : M \text{ is a TM that halts on at least } 2023 \text{ strings}\}$

Solution. L_1 is not recursive. Construct a reduction from H to L_1 .

 $f("M""\omega") = M_{"M""\omega"}$

 $M_{M''''}$ run M on ω with any input u.

So there is \forall " M"" ω ", "M"" ω " $\in H \leftrightarrow M_{M''M'''}\omega$ " $\in L_1$. For H is not recursive, L_1 is not recursive.

L_1 is recursively enumerable.

We can easily construct a TM semi-deciding L_1 just like the construction we use to prove "a language is r.e. iff it is turing enumarable".

Problem 9: Reduction from *H* **to Certain Problem**

Prove that the following language is not recursively enumerable.

 $L_2 = \{"M" : M \text{ is a TM that halts on at most } 2022 \text{ strings}\}$

Solution 1. Use the same construction as Problem 8 and reduce the $\neg H$ to L_2 .

Solution 2. Use the proved conclusion in Problem 8, so $\neg L_2$ is r.e. but not recursive. Thus, L_2 is not r.e.

Problem 10: Reduction from $\neg H$ **to Certain Problem**

Prove that the following language is not recursively enumerable.

 $L_3 = \{"M" : M \text{ is a TM such that there are at least } 2023 \text{ strings on which } M \text{ does not halt } \}$ Solution.

Consider the non r.e. problem $\neg H = \{"M""\omega" : M \text{ does not halt on } \omega\}$, we reduce $\neg H$ to L_3 . Construct recursive function $M_{M''''\omega''}$. With any input u, it runs M on ω .

"
$$M$$
"" ω " $\in \neg H \leftrightarrow M_{"M""\omega"} \in L_3$.

Since $\neg H$ is not r.e., L_3 is not r.e.

Problem 11: Reduction from $\neg H$ **to Certain Problem**

Prove that the following language is not recursively enumerable.

 $L_4 = \{ M'' : M \text{ is a TM such that there are at most } 2022 \text{ strings on which } M \text{ does not halt } \}$ Solution.

Still consider the non r.e. problem $\neg H = \{"M""\omega" : M \text{ does not halt on } \omega\}$. We reduce the $\neg H$ to L_4 .

Construct TM $M_{M''''\omega''}$ with any input u.

 $M_{"M""\omega"} = on \ input \ u:$ $run \ M \ on \ \omega$ $if \ M \ halts \ on \ \omega \ in \ u \ steps, \ loop \ for ever$ $else \ M \ does \ not \ halt \ on \ \omega \ in \ u \ steps, \ halt$

So if M halts on ω in n steps, $\exists u < n, st \ M_{"M""\omega"}$ loops forever. Then $M_{"M""\omega"}$ accepts no strings.

Else if M does not halt on ω , $M_{"M""\omega"}$ accepts all strings.

"
$$M$$
"" ω " $\in \neg H \leftrightarrow M_{"M""\omega"} \in L_4$.

Since $\neg H$ is not r.e., L_4 is not r.e.

Problem 12: Primitive Recursive

Let $f: N \to N$ be a primitive recursive function. Define $F: N \to N$ to be F(n) = f(f(...f(n)...))

where there are n compositions. For example, F(0) = f(0) and F(1) = f(f(1)). Show that F is primitive recursive.

Solution.

g(m,n)=f(f(...f(n)...)) where there is m compositions of f.

$$\begin{cases} g(0,n) = f(n) \\ g(m+1,n) = f(g(m.n)) \end{cases}$$

For f is primitive recursive, then g is primitive recursive.

$$F(n) = g(n, n) = g(id_{1,1}(n), id_{1,1}(n))$$

For q is primitive recursive, then F is primitive recursive.

Important basic functions and primitive recursive functions: $N^k \to N$

- 1. k-zero function: $zero_k(n_1,...,n_k) = 0$
- 2. jth-k identification function: $id_{k,j}(n_1,...,n_k) = n_j$
- 3. successor function: succ(n) = n + 1
- 4. plus function: plus(m, n) = m + n
- 5. mult function: $mult(m, n) = m \times n$
- 6. predecessor function: $pred(n+1) = n \ pred(0) = 0$
- 7. substraction function: $m \sim n = max\{m n, 0\}$ $m \sim 0 = m$

$$m \sim (n+1) = pred(m \sim n)$$

- 8. iszero function: iszero(0) = 1 iszero(m+1) = 0
- 9. greater than or equal function: $geq(m, n) = iszero(n \sim m)$
- 10. less than function: $lt(m,n) = 1 \sim geq(m,n)$
- 11. primitive recursive predicate: and/or/not
 - (a) $\neg p(m) = 1 \sim iszero(p(m))$
 - (b) $p(m,n) \wedge q(m,n) = 1 \sim zero(p(m,n) + q(m,n))$
 - (c) $p(m,n) \lor q(m,n) = 1 \sim iszero(p(m,n)\dot{q}(m,n))$
- 12. condition function:

$$f(n_1, ..., n_k) = \begin{cases} g(n_1, ..., n_k) & p(n_1, ..., n_k) \\ h(n_1, ..., n_k) & otherwise \end{cases}$$

13. remainder function: rem(m, n)

$$rem(0.n) = 0 \\ rem(m+1,n) = \begin{cases} 0 & equal(rem(m,n), pred(n)) \\ rem(m,n) + 1 & otherwise \end{cases}$$

14. division function: div(m, n)

$$div(0,n) = 0$$

$$div(m+1,n) = \begin{cases} div(m,n) + 1 & equal(rem(m,n), pred(n)) \\ div(m,n) & otherwise \end{cases}$$

Problem 13: Alphabet and Language

Judge: There is no non-empty language over ϕ .

Solution. May be false. $\{e\}$ is a language over ϕ that is non-empty.

Problem 14: Undecidability and Reduction

Judge the following languages are recursive, recursively enumerated, not recursively enumerated.

```
L_1 = \{ M'' \mid M \text{ is a } TM \text{ that accepts every palindrome over its alphabet} \}
```

$$L_2 = \{"M" | M \text{ is a } TM \text{ that accepts/halts on at most k strings } \}$$

$$L_3 = \{"M" | M \text{ is a } TM \text{ that accepts/halts on at least k strings } \}$$

$$L_4 = \{"M" | M \text{ is a } TM \text{ that accepts/halts on exactly k strings}\}$$

$$L_5 = {"M" | M \text{ is } TM \text{ that accepts all even numbers}}$$

$$L_6 = \{"M" | M \text{ is } TM \text{ that does not accept all even numbers}\}$$

$$L_7 = \{"M" | M \text{ is } TM \text{ that rejects all even numbers}\}$$

$$L_8 = \{ M'' \mid M \text{ is } TM \text{ that contains at least one sting of even number of } bs \}$$

$$L_9 = \{"M" | M \text{ is a TM and } L(M) \text{ is infinite}\}$$

$$L_{10} = \{ M_1 M_2 M_2 \text{ and } M_2 \text{ are two } TM \text{s, and } \epsilon \in L(M_1) \cup L(M_2) \}$$

$$L_{11} = \{ M_1 M_2 M_2 \text{ and } M_2 \text{ are two } TM \text{s, and } \epsilon \in L(M_1) \cap L(M_2) \}$$

$$L_{12} = \{ "M_1" "M_2" | M_1 \text{ and } "M_2" \text{ are two } TMs, \text{ and } \epsilon \in L(M_1) - L(M_2) \}$$

$$L_{13} = \{ M'' | \exists x, |x| \equiv 1 \pmod{k}, \text{ and } x \in L(M) \}$$

$$L_{14} = \{ M \mid M \text{ is a } TM \text{ such that both } L(M) \text{ and } \neg L(M) \text{ are infinite} \}$$

$$L_{15} = \{"M" | M \text{ is a } TM, \text{ and } |L(M)| \text{ is prime}\}$$

$$L_{16} = \{ "M" | \exists x \in \Sigma^*, \forall y \in L(M), xy \notin L(M) \}$$

$$L_{17} = \{ M_1 M_2 L(M_1) \le_m L(M_2) \}$$

$$L_{18} = \{ M'''' \omega'' | M \text{ is a } TM \text{ that accepts } \omega \text{ using at most } 2^{|\omega|} \text{ squares of its tape} \}$$

$$L_{19} = \{"M_1""M_2""M_3" | L(M_1) = L(M_2) \cup L(M_3)\}$$

$$L_{20} = \{ M_1 M_2 M_2 L(M_1) \subset L(M_2) \cup L(M_3) \}$$

$$L_{21} = \{ "M_1" | \exists TM's \ M_2, M_3, st \ L(M_1) \subset L(M_2) \cup L(M_3) \}$$

Solution 1. Not Recursively Enumerated. By Rice Theorem, it's easy to judge it's not recursive. To prove L_1 not recursively enumerated, we reduce the $\neg H$ to L_1 .

Notice the following construction is wrong! Because the thing we need to prove is

"M""
$$\omega$$
" $\in \neg H \leftrightarrow \tau(M) \in L_1$.

Construct TM M', with any input u. M' runs M on ω .

"
$$M$$
"" ω " $\in \neg H \to L(M') = \phi \to "M'$ " $\notin L_1$

"
$$M$$
"" ω " $\notin \neg H \to L(M') = \Sigma^* \to "M'$ " $\in L_1$

Thus, $\neg H \leq L_1$. L_1 is not recursively enumerated.

Notice, if we want inverse the conclusion. We can't say if M does not halt on ω , accept. Because, M' simulate the execution of M, if M does not halt, M' will never halt.

When we require to reduce from $\neg H$, take care of the fact that chosen M may not halt on ω , so we should limit the running steps to construct the reduction.

Construct TM M' with input ω . If ω is a palindrome, run M on ω for $|\omega|$ steps. If M has not accepted, accept, else, reject.

"
$$M$$
"" ω " $\in \neg H \to L(M') = \Sigma^* \to "M'$ " $\in L_1$

"
$$M$$
"" ω " $\notin \neg H \to L(M') \subset L_{palindrome} \to "M'$ " $\notin L_1$

Solution 2. Not Recursively Enumerated.

Prove it by reducing from the $\neg H$. Construct a TM M', with any input u, runs M with ω .

"
$$M$$
"" ω " $\in \neg H \to L(M') = \phi \to "M'$ " $\in L_2$

"M""
$$\omega$$
" $\notin \neg H \to L(M') = \Sigma^* \to "M'$ " $\notin L_2$

Thus, "M""
$$\omega$$
" $\in \neg H \leftrightarrow$ "M'" $\in L_2$

Solution 3. Recursively enumerated but not recursive.

For the proof of recursively enumerated, we can design a TM M^* , which enumerates all strings on the alphabet and gradually run M with these strings one by one. As long as M accepts more than k strings, halts.

For the proof of not recursive, we reduce from H. Construct a TM M' with any input u, run M with ω .

"
$$M$$
"" ω " $\in H \to L(M') = \Sigma^* \to "M'$ " $\in L_3$

"
$$M$$
"" ω " $\notin H \to L(M') = \phi \to$ " M' " $\notin L_3$

Thus, "M"" ω " $\in H \leftrightarrow$ "M'" $\in L_3$. L_3 in not recursive.

Solution 4. Not recursively enumerable.

To prove not r.e., reduce the $\neg H$ to L_4 . Construct a TM M', with any input u, if $u \neq \omega_1, ..., \omega_k$, accept, else run M with ω . ($\omega_1, ..., \omega_k$ are k different strings on the alphabet)

$$M''''\omega'' \in \neg H \to L(M') = \omega_1, ..., \omega_k \to |L(M')| = k \to M''' \in L_4$$

"M""
$$\omega$$
" $\notin \neq H \to L(M') = \Sigma^* \to "M'$ " $\notin L_4$

Thus, there is "M"" ω " $\in \neq H \leftrightarrow$ "M'" $\in L_4$. So L_4 is not recursively enumerated.

Solution 5. Not recursively enumerable.

The same, we reduce from $\neq H$.

Construct a TM M', with any input u, if u is even, run M on ω in |u| steps. If M does not accept ω , accept, else, loop forever.

"
$$M$$
"" ω " $\in \neq H \rightarrow L(M') = L_{even} \rightarrow "M'$ " $\in L_5$

"M""
$$\omega$$
" $\notin \neq H \rightarrow \exists |u| > |\omega| \rightarrow \exists x, x \text{ is even}, x \notin L(M') \rightarrow "M'" \notin L_5$

Thus, there is "M"" ω " $\in \neq H \leftrightarrow$ "M'" $\in L_5$. L_5 is not recursively enumerable.

Solution 6. Not recursively enumerated.

The same, we reduce from $\neq H$.

Construct a TM M', with any input u, if $u = \omega_0$, run M on ω in k steps, if M does not accept, reject, else, accept. Else, accept. (ω_0 is one of the even number, $k > |\omega|$)

"M""
$$\omega$$
" $\in \neq H \rightarrow \exists \omega_0 \in L_{even}, \omega_0 \notin L(M') \rightarrow "M'" \notin L_6$

"
$$M$$
"" ω " $\notin \neq H \to L(M') = \Sigma^* \to "M'$ " $\notin L_6$

Thus, "M"" ω " $\in \neq H \leftrightarrow$ "M'" $\in L_6$. L_6 is not recursively enumerated.

Solution 7. Not recursively enumerated.

The same, we reduce from $\neq H$.

Construct a TM M', with any input u, if u is even, run M on ω with $k(k > |\omega|)$ steps, if does not accept, reject, else accept, else reject.

"M""
$$\omega$$
" $\in \neq H \to L(M') = \phi \to$ "M'" $\in L_7$

"M""
$$\omega$$
" $\notin \neq H \to L(M') = L_{even} \to "M'$ " $\notin L_7$

Thus, "M"" ω " $\in \neq H \leftrightarrow$ "M'" $\in L_7$. L_7 is not recursively enumerated.

Solution 8. Recursively enumerated but not recursive.

For its recursively enumerated, a UTM can be constructed to enumerated all strings with even number of bs and semi-decided the language.

For its not recursive, we reduce to it from H. Construct a TM M', with any input u, if u contains even number of bs, run M on ω , else accept.

"
$$M$$
"" ω " $\in H \to L(M') = \Sigma^* \to "M'$ " $\in L_8$

"M""
$$\omega$$
" $\notin H \to L(M') = \phi \to$ "M'" $\notin L_8$

Thus,

$$M''''\omega'' \in H \Leftrightarrow M''' \in L_8$$

. L_8 is not recursive.

Solution 9. Not recursively enumerated.

The same, reduce from $\neq H$. Construct a TM M' with any input u, run M on ω .

"M""
$$\omega$$
" $\in \neq H \to L(M') = \phi \to "M'" \in L_9$

"M""
$$\omega$$
" $\notin \neq H \to L(M') = \Sigma^* \to "M'$ " $\notin L_9$

Thus, there is "M"" ω " $\in \neq H \leftrightarrow$ "M'" $\in L_9$. L_9 is not recursively enumerated.

Solution 10. Recursively enumerated but not recursive.

For L_{10} is recursively enumerated, a UTM can be designed to semi-decide this.

For L_{10} is not recursive, we reduce the H to it. Construct a TM M' with any input u, if $u = \epsilon$, run M with ω , else accept.

"
$$M$$
"" ω " $\in H \rightarrow \epsilon \in L(M') \rightarrow "M'$ "" M' " $\in L_{11}$

"
$$M$$
"" ω " $\notin H \to \epsilon \notin L(M') \to "M'$ "" M' " $\notin L_{11}$

Thus, "M"" ω " $\in H \leftrightarrow$ "M'""M'" $\in L_{10}$. L_{10} is not recursive.

Solution 11. Recursively enumerated but not recursive.

The proof is the same as L_10 .

Solution 12. Not recursively enumerated.

As the method to prove not r.e. before, we reduce from $\neq H$ to L_12 . Assume M_{all} is the TM to accept all strings($L(M_{all} = \Sigma^*)$, construct a TM M' with input u. If $u = \epsilon$, run M with ω , else accept.

"M""
$$\omega$$
" $\epsilon \neq H \rightarrow \epsilon \notin L(M') \rightarrow \epsilon \in L(M_{all}) - L(M') \rightarrow "M_{all}$ "" M' " $\epsilon \in L_{12}$

"M""
$$\omega$$
" $\notin \neq H \rightarrow \epsilon \in L(M') \rightarrow \epsilon \notin L(M_{all}) - L(M') \rightarrow "M_{all}$ "" M' " $\notin L_{12}$

Thus, there is "M"" ω " $\in \neq H \leftrightarrow$ " M_{all} ""M'" $\in L_{12}$. L_{12} is not recursively enumerable.

Solution 13. Recursively enumerated but not recursive.

For L_{13} is recursively enumerated, it can be semi-decided by some TM.

For L_{13} is not recursive. Use Rice's theorem.

$$C = \{ L \in r.e. | \exists x, |x| \equiv 1 \pmod{5} \text{ and } x \in L \}$$

Notice that $C \subset r.e.$, $C \neq \phi$ and $C \neq r.e.$

Hence, $L_C = \{ M'' | L(M) \in C \} = \{ M'' | \exists x, |x| \equiv 1 \pmod{5}, x \in L(M) \} \notin R$

Solution 14. Not recursively enumerated.

Reduce to L_{14} from $\neg H$. Construct a TM M', with any input u, if |u| is even, run M on ω , else accept.

"M""
$$\omega$$
" $\in \neg H \to L(M') = strings \ of \ even \ length, $\neg L(M') = strings \ of \ odd \ length \to "M'" \in L_{14}$$

"
$$M$$
"" ω " $\notin \neg H \to L(M') = \Sigma^*, \neg L(M') = \phi \to "M'$ " $\notin L_{14}$

Thus, there is "M"" ω " $\in \neg H \leftrightarrow$ "M'" $\in L_{14}$. L_{14} is not recursively enumerated.

Solution 15. Not recursively enumerated.

Reduce to L_{15} from $\neg H$. Construct a TM M', with any input u, if u is the 1st and 2nd strings of all the strings over the alphabet in lexicographic order, run M with ω , else if u is the 3rd and 4th strings of it, accept, else, reject.

$$"M""\omega" \in \neg H \to |L(M')| = 2 \to "M'" \in L_{15}$$

$$"M""\omega" \notin \neg H \to |L(M')| = 4 \to "M'" \notin L_{15}$$

Thus, there is "M"" ω " $\in \neg H \leftrightarrow$ "M'" $\in L_{15}$. L_{15} is not recursively enumerated.

Solution 16. Not recursively enumerated.

Reduce to L_{16} from $\neg H$. Construct a TM M' with any input u, run M on ω .

$$"M""\omega" \in \neg H \to L(M') = \phi \to "M'" \in L_{16}$$

"M""
$$\omega$$
" $\notin \neg H \to L(M') = \Sigma^* \to "M'$ " $\notin L_{16}$

Thus, there is "M"" ω " $\in \neg H \leftrightarrow$ "M'" $\in L_{16}$. L_{16} is not recursively enumerated.

Solution 17. Not recursively enumerated.

Reduce to L_{17} from $\neg H$. Assume M_0 is the TM that $L(M_0) = \phi$, construct a TM M_1 with any input u, run M on ω . If M halts on ω , run M' on u.

$$M'''' \omega'' \in \neg H \to L(M_1) = \phi \to M_1''' M_0'' \in L_17(\phi \leq_m \phi)$$

$$"M""\omega" \notin \neg H \to L(M_1) = H \to "M_1""M_0" \notin L_{17}$$

Thus, there is "M"" ω " $\in \neg H \leftrightarrow$ " M_1 "" M_0 " $\in L_{17}$. L_{17} is not recursively enumerated.

Solution 18. Recursive.

Construct TM to decide this, for the maximum execution configurations is limited.

Solution 19. Not recursively enumerated.

Reduce to L_{19} from $EQ_{TM} = \{ M_1 M_2 | L(M_1) = L(M_2) \}$. Take M_3 as $L(M_3) = \phi$. Since EQ_{TM} is not recursively enumerated, L_{19} is also not recursively enumerated.

Solution 20. Not recursively enumerated.

Reduce to L_{20} from $\neg H$. Let M_2 and M_3 be TMs with $L(M_2) = L(M_3) = \phi$. Construct TM M_1 , with any input u, run M with ω .

$$"M""\omega" \in \neg H \to L(M_1) = \phi \to L(M_1) \subset L(M_2) \cup L(M_3) \to "M_1""M_2""M_3" \in L_{20}$$

$$M'''' \omega'' \notin \neg H \to L(M_1) = \Sigma^* \to L(M_1) \not\subset L(M_2) \cup L(M_3) \to M_1''' M_2''' M_3'' \notin L_{20}$$

Thus, there is "M"" ω " $\in \neg H \leftrightarrow "M_1$ "" M_2 "" M_3 " $\in L_{20}$. L_{20} is not recursively enumerated. **Solution 21. Recursive.**

All TMs satisfy this property.

Conclusion: Some Universal Problems of Undecidability

For DFA:

1. $A_{DFA} = \{"D""\omega" | D \text{ is a DFA and } D \text{ accepts } \omega\}$ Recursive

- 2. $\neg A_{DFA} = \{"D""\omega" | D \text{ is a DFA and } D \text{ deos not accepts } \omega\}$ Recursive
- 3. $E_{DFA} = \{"D" | D \text{ is a DFA and } L(D) = \phi\}$ Recursive
- 4. $\neg E_{DFA} = \{"D" | D \text{ is a DFA and } L(D) \neq \phi\}$ **Recursive**
- 5. $EQ_{DFA} = \{"D_1""D_2" | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$ **Recursive**
- 6. $\neg EQ_{DFA} = \{"D_1""D_2" | D_1, D_2 \text{ are DFAs and } L(D_1) \neq L(D_2)\}$ Recursive
- 7. $ALL_{DFA} = \{"D" | D \text{ is a DFA and } L(D) = \Sigma^*\}$ **Recursive**
- 8. $\neg ALL_{DFA} = \{"D" | D \text{ is a DFA and } L(D) \neq \Sigma^{\star}\}$ **Recursive**

For NFA:

Since NFA can be converted to DFAs, all the problems are the same as DFAs. **For CFG:**

- 1. $A_{CFG} = \{ "G""\omega" | G \text{ is CFG and } G \text{ accepts } \omega \}$ Recursive
- 2. $\neq A_{CFG} = \{ "G""\omega" | G \text{ is CFG and } G \text{ does not accepts } \omega \}$ Recursive
- 3. $E_{CFG} = \{ "G" | G \text{ is CFG and } L(G) = \phi \}$ **Recursive**
- 4. $\neg E_{CFG} = \{ \text{``}G\text{'''} | G \text{ is CFG and } L(G) \neq \phi \}$ **Recursive**
- 5. $EQ_{CFG} = \{ G_1 G_2 | G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}$ Not Recursively Enumerated
- 6. $\neg EQ_{CFG}=\{"G_1""G_2"|G_1,G_2 \text{ are CFGs and } L(G_1)\neq L(G_2)\}$ Recursively Enumerated but Not Recursive
- 7. $ALL_{CFG} = \{ "G" | G \text{ is CFG and } L(G) = \Sigma^{\star} \}$ Not Recursively Enumerated
- 8. $\neg ALL_{CFG} = \{ "G" | G \text{ is CFG and } L(G) \neq \Sigma^* \}$ Recursively Enumerated but Not Recursive

For TM:

- 1. $A_{TM} = \{"M""\omega" | M \text{ is a TM and } M \text{ accepts } \omega\}$ **Recursively Enumerated but Not Recursive**
- 2. $\neg A_{TM} = \{ "M""\omega" | M \text{ is a TM and } M \text{ does not accept } \omega \}$ Not Recursively Enumerated
- 3. $E_{TM} = \{ M'' | M \text{ is a TM and } L(M) = \phi \}$ Not Recursively Enumerated
- 4. $\neg E_{TM} = \{"M" | M \text{ is a TM and } L(M) \neq \phi\}$ Recursively Enumerated but not Recursive
- 5. $EQ_{TM} = \{"M_1""M_2"|M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Not Recursively Enumerated
- 6. $\neg EQ_{TM} = \{"M_1""M_2"|M_1, M_2 \text{ are TMs and } L(M_1) \neq L(M_2)\}$ Not Recursively Enumerated
- 7. $ALL_{TM} = \{"M" | M \text{ is a TM and } L(M) = \Sigma^*\}$ Not Recursively Enumerated
- 8. $\neg ALL_{TM} = \{"M" | M \text{ is a TM and } L(M) \neq \Sigma^{\star}\}$ Not Recursively Enumerated

Problem 15: CFL, CFG and Pumping Theorem

Judge whether the following languages are CFLs.

	Recursive	R.E.	Not R.E.	Not Co-R.E.
A_DFA	X			
~A_DFA	X			
E_DFA	X			
~E_DFA	X			
EQ_DFA	X			
~EQ_DFA	X			
ALL_DFA	X			
~ALL_DFA	X			
A_CFG	X			
~A_CFG	X			
E_CFG	X			
~E_CFG	X			
EQ_CFG			X	
~EQ_CFG		X		
ALL_CFG			X	
~ALL_CFG		X		
$A_{-}TM$		X		
$^{\sim}A_{-}TM$			X	
E_TM			X	
~E_TM		X		
EQ_TM				X
~EQ_TM				X
ALL_TM				X
~ALL_TM				X