

# BASI DI DATI IL MODELLO RELAZIONALE

Polese G. Caruccio L. Breve B.

a.a. 2023/2024

# Modelli logici dei dati

- Tre modelli logici tradizionali
  - gerarchico
  - reticolare
  - relazionale

- Più recente (e poco diffuso)
  - a oggetti

# Modelli logici, caratteristiche

- Gerarchico e reticolare
  - Utilizzano riferimenti espliciti (puntatori) fra record

- Relazionale "è basato su valori"
  - Anche i riferimenti fra dati in strutture (relazioni) diverse sono rappresentati per mezzo di valori

## Il modello relazionale

- Proposto da E. F. Codd nel 1970 per favorire l'indipendenza dei dati
- Disponibile in DBMS reali nel 1981 (non era facile implementare l'indipendenza con efficienza ed affidabilità!)
- Si basa sul concetto matematico di relazione (con una variante)
- Le relazioni hanno naturale rappresentazione per mezzo di tabelle

## Relazione: 2 accezioni

- Relazione matematica: sottoinsieme del prodotto cartesiano di insiemi
- Relazione secondo il modello relazionale dei dati

## Relazione matematica

- D<sub>1</sub>, ..., D<sub>n</sub> (n insiemi anche non distinti)
- Prodotto cartesiano  $D_1 \times ... \times D_n$ :
  - L'insieme di tutte le n-uple  $(d_1, ..., d_n)$  tali che  $d_1 \in D_1, ..., d_n \in D_n$
- Relazione matematica su D<sub>1</sub>, ..., D<sub>n</sub>:
  - Un sottoinsieme di  $D_1 \times ... \times D_n$ .
- D1, ..., Dn sono i domini della relazione

# Relazione matematica, esempio

- $D_1 = \{a, b\}$
- $D_2 = \{x, y, z\}$
- Prodotto cartesiano  $D_1 \times D_2$

| a | Х |
|---|---|
| a | У |
| a | Z |
| b | Х |
| b | у |
| b | Z |

Una relazione

$$r \subseteq D_1 \times D_2$$

| a | Х |
|---|---|
| a | Z |
| b | У |

# Relazione matematica, proprietà

- Essendo la relazione matematica un insieme, esso gode delle seguenti proprietà:
  - Non c'è ordinamento fra le n-uple (d<sub>1</sub>, ..., d<sub>n</sub>)
  - Le n-uple sono distinte
  - Ciascuna n-upla è ordinata: l' i-esimo valore proviene dall' i-esimo dominio

# Relazione matematica, esempio

## Partite ⊆ string × string × int × int

| Juve  | Lazio | 3 | 1 |
|-------|-------|---|---|
| Lazio | Milan | 2 | 0 |
| Juve  | Roma  | 0 | 2 |
| Roma  | Milan | 0 | 1 |

- Ciascuno dei domini (string ed int) ha due ruoli diversi, distinguibili attraverso la posizione:
  - La struttura è **posizionale**

# Struttura non posizionale

 A ciascun dominio si associa un nome (attributo), che ne descrive il "ruolo"

| Casa  | Fuori | RetiCasa | RetiFuori |
|-------|-------|----------|-----------|
| Juve  | Lazio | 3        | 1         |
| Lazio | Milan | 2        | 0         |
| Juve  | Roma  | 0        | 2         |
| Roma  | Milan | 0        | 1         |

## Tabelle e Relazioni

- Una tabella rappresenta una relazione se
  - I valori di ogni colonna sono fra loro omogenei (dello stesso tipo)
  - Le righe sono diverse fra loro (altrimenti non è un insieme)
  - Le intestazioni delle colonne sono diverse tra loro

- In una tabella che rappresenta una relazione
  - L'ordinamento tra le righe è irrilevante
  - L'ordinamento tra le colonne è irrilevante

## Il modello relazionale è basato su valori

• I riferimenti fra dati in relazioni diverse (es. i dati di uno studente e quelli dei suoi esami) sono rappresentati per mezzo di valori dei domini che compaiono nelle ennuple

# Riferimenti tra ennuple, esempio

#### **Studenti**

| Matricola | Cognome | Nome  | Data di nascita |
|-----------|---------|-------|-----------------|
| 6554      | Rossi   | Mario | 05/12/1978      |
| 8765      | Neri    | Paolo | 03/11/1976      |
| 9283      | Verdi   | Luisa | 12/11/1979      |
| 3456      | Rossi   | Maria | 01/02/1978      |

#### **Esami**

| Studente | Voto | Corso |
|----------|------|-------|
| 3456     | 30   | 04    |
| 3456     | 24   | 02    |
| 9283     | 28   | 01    |
| 6554     | 26   | 01    |

### Corsi

| Codice | Titolo  | Docente |
|--------|---------|---------|
| 01     | Analisi | Mario   |
| 02     | Chimica | Bruni   |
| 04     | Chimica | verdi   |



# Struttura basata su valori: vantaggi

- Indipendenza dalle strutture fisiche (si potrebbe avere anche con puntatori di alto livello) che possono cambiare dinamicamente
- Si rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione
- L'utente finale vede gli stessi dati dei programmatori
- I dati sono portabili più facilmente da un sistema ad un altro
- I puntatori sono direzionali, i valori no

## Schema di Relazione e di BD

- Nel modello relazionale i concetti di Schema (intensione) ed Istanza (estensione) di Base di Dati si traducono in:
  - Schema di relazione

Un nome **R** con un insieme di attributi  $A_1, ..., A_n$ :

$$R(A_1, ..., A_n)$$

Schema di base di dati

Insieme di schemi di relazione:

$$R = \{R_1(X_1), ..., R_k(X_k)\}$$

dove  $X_1,...,X_k$  sono insiemi di attributi

# Ennuple (Tuple) di Relazioni

- Una ennupla (su un insieme di attributi X) è una funzione che associa a ciascun attributo A in X un valore del dominio di A
- t[A] denota il valore della ennupla t sull'attributo A
- Le ennuple sono anche dette tuple

## Istanze di Relazione e di BD

- (Istanza di) **relazione** su uno schema R(X):
  - insieme r di ennuple su X
- (Istanza di) **base di dati** su uno schema  $R = \{R_1(X_1), ..., R_n(X_n)\}$ :
  - insieme di relazioni

$$r = \{r_1, ..., r_n\}$$
 (con  $r_i$  relazione su  $R_i(X_i)$ )

# Relazioni su singoli attributi

#### **Studenti**

| Matricola | Cognome | Nome  | Data di nascita |
|-----------|---------|-------|-----------------|
| 6554      | Rossi   | Mario | 05/12/1978      |
| 8765      | Neri    | Paolo | 03/11/1976      |
| 9283      | Verdi   | Luisa | 12/11/1979      |
| 3456      | Rossi   | Maria | 01/02/1978      |

#### Studenti lavoratori

**Matricola** 6554 3456

# Informazione incompleta

- Il modello relazionale impone ai dati una struttura rigida.
- Solo alcuni formati di ennuple sono ammessi: quelli che corrispondono agli schemi di relazione
- I dati disponibili possono non corrispondere al formato previsto

# Informazione incompleta: esempio

| Nome     | SecondoNome | Cognome   |
|----------|-------------|-----------|
| Franklin | Delano      | Roosevelt |
| Winston  |             | Churchill |
| Charles  |             | De Gaulle |
| Josip    |             | Stalin    |

## Informazione incompleta: soluzioni?

- Non conviene (anche se spesso si fa) usare valori del dominio (0, stringa nulla, "99", ...):
  - Potrebbero non esistere valori "non utilizzati"
  - Valori "non utilizzati" potrebbero diventare significativi
  - In fase di utilizzo (nei programmi) sarebbe necessario ogni volta tener conto del "significato" di questi valori

# Informazione incompleta nel modello relazionale

- Tecnica rudimentale ma efficace:
  - Valore nullo: denota l'assenza di un valore del dominio (e non è un valore del dominio)
- t[A], per ogni attributo A, diventa un valore del dominio dom(A) oppure il valore nullo NULL
- Si possono (e si debbono) imporre restrizioni sulla presenza di valori nulli

## Eccesso di valori nulli

#### **Studenti**

| Matricola | Cognome | Nome  | Data di nascita |
|-----------|---------|-------|-----------------|
| 6554      | Rossi   | Mario | 05/12/1978      |
| 9283      | Verdi   | Luisa | 12/11/1979      |
| NULL      | Rossi   | Maria | 01/02/1978      |

#### **Esami**

| Studente | Voto | Corso |
|----------|------|-------|
| NULL     | 30   | NULL  |
| NULL     | 24   | 02    |
| 9283     | 28   | 01    |

#### **Corsi**

| Codice | Titolo  | Docente |
|--------|---------|---------|
| 01     | Analisi | Mario   |
| 02     | NULL    | NULL    |
| 04     | Chimica | Verdi   |

# Tipi di valore nullo

- Esistono varie interpretazioni di un valore nullo, ad esempio
  - Valore sconosciuto
  - Valore inesistente
- I DBMS non distinguono i diversi tipi di valore nullo

# Vincoli di integrità

 Esistono istanze di basi di dati che, pur se sintatticamente corrette, non rappresentano informazioni possibili per l'applicazione di interesse

## Una base di dati "scorretta"

#### **Esami**

| Studente | Voto | Lode   | Corso |
|----------|------|--------|-------|
| 276545   | 32   |        | 01    |
| 276545   | 30   | e lode | 02    |
| 787643   | 27   | e lode | 03    |
| 739430   | 24   |        | 04    |

#### **Studenti**

| Matricola | Cognome | Nome  |
|-----------|---------|-------|
| 276545    | Rossi   | Mario |
| 787643    | Neri    | Piero |
| 787643    | Bianchi | Luca  |

# Vincolo di integrità

- Proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione
- Un vincolo è una funzione booleana (un predicato): associa ad ogni istanza il valore vero o falso

# Vincoli di integrità, perché?

- Descrizione più accurata della realtà
- Contributo alla "qualità dei dati"
- Utili nella progettazione (vedremo)
- Usati dai DBMS nell'esecuzione delle interrogazioni

# Vincoli di integrità, nota

 Non tutte le proprietà di interesse sono rappresentabili per mezzo di vincoli formulabili in modo esplicito

# Tipi di vincoli

- Vincoli intrarelazionali
  - Vincoli su valori (o di dominio)
  - Vincoli di ennupla
- Vincoli interrelazionali

# Violazione di vincoli, esempi

#### **Esami**

| Studente | Voto | Lode   | Corso |
|----------|------|--------|-------|
| 276545   | 32   |        | 01    |
| 276545   | 30   | e lode | 02    |
| 787643   | 27   | e lode | 03    |
| 739430   | 24   |        | 04    |

#### **Studenti**

| Matricola | Cognome | Nome  |
|-----------|---------|-------|
| 276545    | Rossi   | Mario |
| 787643    | Neri    | Piero |
| 787643    | Bianchi | Luca  |

# Vincoli di ennupla

- Esprimono condizioni sui valori di ciascuna ennupla, in modo indipendente dalle altre ennuple
- Caso particolare:
  - Vincoli di dominio che coinvolgono un solo attributo

# Sintassi ed esempi

- Una possibile sintassi:
  - Espressione booleana di atomi che confrontano valori di attributo o espressioni aritmetiche su di essi

(Voto 
$$\geq$$
 18) AND (Voto  $\leq$  30)

$$(Voto = 30) OR NOT (Lode = "e lode")$$

# Vincoli di ennupla, esempio

### Stipendi

| Impiegato | Lordo  | Ritenute | Netto  |  |
|-----------|--------|----------|--------|--|
| Rossi     | 55.000 | 12.500   | 42.500 |  |
| Neri      | 45.000 | 10.000   | 35.000 |  |
| Bruni     | 47.000 | 11.000   | 36.000 |  |

Lordo = (Ritenute + Netto)

# Identificazione di ennuple

| Matricola | Cognome | Nome  | Corso    | Data di nascita |
|-----------|---------|-------|----------|-----------------|
| 27655     | Rossi   | Mario | Ing Inf  | 05/12/1978      |
| 78763     | Rossi   | Mario | Ing Inf  | 03/11/1976      |
| 65432     | Neri    | Piero | Ing Mecc | 10/07/1979      |
| 87654     | Neri    | Mario | Ing Inf  | 03/11/1976      |
| 67653     | Rossi   | Piero | Ing Mecc | 05/12/1978      |

- Non ci sono due ennuple con lo stesso valore sull'attributo Matricola
- Non ci sono due ennuple uguali su tutti e tre gli attributi Cognome, Nome e Data di Nascita

## Chiave

 Insieme di attributi che identificano le ennuple di una relazione

#### Formalmente:

- Un insieme K di attributi è superchiave per r se r non contiene due ennuple distinte t<sub>1</sub> e t<sub>2</sub> con t<sub>1</sub>[K] = t<sub>2</sub>[K]
- K è chiave candidata per r se è una superchiave minimale per r (cioè non contiene un'altra superchiave)

## **Una chiave**

| Matricola | Cognome | Nome  | Corso    | Data di nascita |
|-----------|---------|-------|----------|-----------------|
| 27655     | Rossi   | Mario | Ing Inf  | 05/12/1978      |
| 78763     | Rossi   | Mario | Ing Inf  | 03/11/1976      |
| 65432     | Neri    | Piero | Ing Mecc | 10/07/1979      |
| 87654     | Neri    | Mario | Ing Inf  | 03/11/1976      |
| 67653     | Rossi   | Piero | Ing Mecc | 05/12/1978      |

- Matricola è una chiave candidata:
  - È superchiave
  - Contiene un solo attributo e quindi è minimale

## **Un'altra chiave**

| Matricola | Cognome | Nome  | Corso    | Data di nascita |
|-----------|---------|-------|----------|-----------------|
| 27655     | Rossi   | Mario | Ing Inf  | 05/12/1978      |
| 78763     | Rossi   | Mario | Ing Inf  | 03/11/1976      |
| 65432     | Neri    | Piero | Ing Mecc | 10/07/1979      |
| 87654     | Neri    | Mario | Ing Inf  | 03/11/1976      |
| 67653     | Rossi   | Piero | Ing Mecc | 05/12/1978      |

- Cognome, Nome, Data di nascita è un'altra chiave candidata:
  - È superchiave
  - È minimale

## Un'altra chiave?

| Matricola | Cognome | Nome  | Corso      | Data di nascita |
|-----------|---------|-------|------------|-----------------|
| 27655     | Rossi   | Mario | Ing Inf    | 05/12/1978      |
| 78763     | Rossi   | Mario | Ing Civile | 03/11/1976      |
| 65432     | Neri    | Piero | Ing Mecc   | 10/07/1979      |
| 87654     | Neri    | Mario | Ing Inf    | 03/11/1976      |
| 67653     | Rossi   | Piero | Ing Mecc   | 05/12/1978      |

- Non ci sono ennuple uguali su Cognome e Corso:
  - Cognome e Corso formano una chiave?
  - Ma è sempre vero?

# Vincoli, schemi e istanze

- I vincoli corrispondono a proprietà del mondo reale modellato dalla base di dati
- Interessano a livello di schema (con riferimento cioè a tutte le istanze)
- Ad uno schema associamo un insieme di vincoli e consideriamo corrette (valide, ammissibili) solo le istanze che soddisfano tutti i vincoli

#### **Studenti**

| Matricola | Cognome | Nome | Corso | Data di nascita |
|-----------|---------|------|-------|-----------------|
|-----------|---------|------|-------|-----------------|

chiavi candidate:

## Matricola Cognome, Nome, Nascita

| Matricola | Cognome | Nome  | Corso      | Data di nascita |
|-----------|---------|-------|------------|-----------------|
| 27655     | Rossi   | Mario | Ing Inf    | 05/12/1978      |
| 78763     | Rossi   | Mario | Ing Civile | 03/11/1976      |
| 65432     | Neri    | Piero | Ing Mecc   | 10/07/1979      |
| 87654     | Neri    | Mario | Ing Inf    | 03/11/1976      |
| 67653     | Rossi   | Piero | Ing Mecc   | 05/12/1978      |

• È corretta: soddisfa i vincoli

## Esistenza delle chiavi

- Una relazione non può contenere ennuple distinte ma uguali
- Ogni relazione ha come superchiave l'insieme degli attributi su cui è definita....
- ....e quindi ha (almeno) una chiave

# Importanza delle chiavi

- L'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati
- Le chiavi permettono di correlare i dati in relazioni diverse (modello basato su valori)

## Chiavi e valori nulli

- In presenza di valori nulli i valori della chiave non permettono
  - Di identificare le ennuple
  - Di realizzare facilmente i riferimenti da altre relazioni

| Matricola | Cognome | Nome  | Corso      | Data di nascita |
|-----------|---------|-------|------------|-----------------|
| NULL      | NULL    | Mario | Ing Inf    | 05/12/1978      |
| 78763     | Rossi   | Mario | Ing Civile | 03/11/1976      |
| 65432     | Neri    | Piero | Ing Mecc   | 10/07/1979      |
| 87654     | Neri    | Mario | Ing Inf    | NULL            |
| NULL      | Rossi   | Piero | NULL       | 05/12/1978      |

 La presenza di valori nulli nelle chiavi non deve essere permessa

# Chiave primaria

- Chiave candidata su cui non sono ammessi valori nulli
- Notazione: sottolineatura

| <u>Matricola</u> | Cognome | Nome  | Corso      | Data di nascita |
|------------------|---------|-------|------------|-----------------|
| 86765            | NULL    | Mario | Ing Inf    | 05/12/1978      |
| 78763            | Rossi   | Mario | Ing Civile | 03/11/1976      |
| 65432            | Neri    | Piero | Ing Mecc   | 10/07/1979      |
| 87654            | Neri    | Mario | Ing Inf    | NULL            |
| 43289            | Neri    | Mario | NULL       | 05/12/1978      |

# Integrità referenziale

- Informazioni in relazioni diverse sono correlate attraverso valori comuni
- In particolare, valori delle chiavi (primarie)
- Le correlazioni debbono essere "coerenti"

#### **Infrazioni**

| <u>Codice</u> | Data       | Vigile | Prov | Numero |
|---------------|------------|--------|------|--------|
| 34321         | 01/02/1995 | 3987   | MI   | 39548K |
| 53524         | 04/03/1995 | 3295   | TO   | E39548 |
| 64521         | 05/04/1996 | 3295   | PR   | 839548 |
| 73321         | 05/02/1998 | 9345   | PR   | 839548 |

## Vigili

| <u>Matricola</u> | Cognome | Nome  |
|------------------|---------|-------|
| 3987             | Rossi   | Luca  |
| 3295             | Neri    | Piero |
| 9345             | Neri    | Mario |
| 7543             | Mori    | Gino  |

#### **Infrazioni**

| <u>Codice</u> | Data       | Vigile | Prov | Numero |
|---------------|------------|--------|------|--------|
| 34321         | 01/02/1995 | 3987   | MI   | 39548K |
| 53524         | 04/03/1995 | 3295   | ТО   | E39548 |
| 64521         | 05/04/1996 | 3295   | PR   | 839548 |
| 73321         | 05/02/1998 | 9345   | PR   | 839548 |

#### **Auto**

| <u>Prov</u> | <u>Numero</u> | Cognome | Nome  |
|-------------|---------------|---------|-------|
| MI          | 39548K        | Rossi   | Mario |
| ТО          | E39548        | Rossi   | Mario |
| PR          | 839548        | Neri    | Luca  |

# Vincolo di integrità referenziale

Un vincolo di integrità referenziale
 ("Chiave esterna") fra gli attributi X di una relazione
 R<sub>1</sub> e un'altra relazione R<sub>2</sub> impone ai valori su X in R<sub>1</sub> di comparire come valori della chiave primaria di R<sub>2</sub>

# Chiave Esterna (foreign key)

 In altre parole una chiave esterna è un gruppo di attributi di una relazione che coincide con la chiave primaria di un'altra relazione dello schema di database.

# Vincolo di integrità referenziale, esempio

- Vincoli di integrità referenziale fra:
  - L'attributo Vigile della relazione INFRAZIONI e la relazione VIGILI
  - Gli attributi Prov e Numero di INFRAZIONI e la relazione AUTO

## Violazione di vincolo di integrità referenziale

#### Infrazioni

| <u>Codice</u> | Data       | Vigile | Prov | Numero |
|---------------|------------|--------|------|--------|
| 34321         | 01/02/1995 | 3987   | MI   | 39548K |
| 53524         | 04/03/1995 | 3295   | TO   | E39548 |
| 64521         | 05/04/1996 | 3295   | PR   | 839548 |
| 73321         | 05/02/1998 | 9345   | PR   | 839548 |

#### **Auto**

| <u>Prov</u> | <u>Numero</u> | Cognome | Nome  |
|-------------|---------------|---------|-------|
| MI          | E39548        | Rossi   | Mario |
| ТО          | F34268        | Rossi   | Mario |
| PR          | 839548        | Neri    | Luca  |

# Vincoli di integrità referenziale: commenti

- Giocano un ruolo fondamentale nel concetto di "modello basato su valori"
- In presenza di valori nulli i vincoli possono essere resi meno restrittivi

 Sono possibili meccanismi per il supporto alla loro gestione ("azioni" compensative a seguito di violazioni)

Attenzione ai vincoli su più attributi



## Integrità referenziale e valori nulli

## **Impigati**

| <u>Matricola</u> | Cognome | Progetto |
|------------------|---------|----------|
| 34321            | Rossi   | IDEA     |
| 53524            | Neri    | XYZ      |
| 64521            | Verdi   | NULL     |
| 73321            | Bianchi | IDEA     |

#### **Progetti**

| <u>Codice</u> | Inizio  | Durata | Costo |
|---------------|---------|--------|-------|
| IDEA          | 01/2000 | 36     | 200   |
| XYZ           | 07/2001 | 24     | 120   |
| вон           | 09/2001 | 24     | 150   |



## Azioni compensative del DBMS

- Esempio:
  - Viene eliminata una ennupla causando una violazione
- Comportamento "standard" del DBMS:
  - Rifiuto dell'operazione
- Azioni compensative del DBMS:
  - Eliminazione in cascata
  - Introduzione di valori nulli

## Eliminazione in cascata

### **Impigati**

| <u>Matricola</u> | Cognome | Progetto |
|------------------|---------|----------|
| 34321            | Rossi   | IDEA     |
| 53524            | Neri    | XYZ      |
| 64521            | Verdi   | NULL     |
| 73321            | Bianchi | IDEA     |

## **Progetti**

| <u>Codice</u> | Inizio  | Durata | Costo |
|---------------|---------|--------|-------|
| IDEA          | 01/2000 | 36     | 200   |
| XYZ           | 07/2001 | 24     | 120   |
| вон           | 09/2001 | 24     | 150   |

## Introduzione di valori nulli

### **Impigati**

| <u>Matricola</u> | Cognome | Progetto |
|------------------|---------|----------|
| 34321            | Rossi   | IDEA     |
| 53524            | Neri    | NULL     |
| 64521            | Verdi   | NULL     |
| 73321            | Bianchi | IDEA     |

#### **Progetti**

| <u>Codice</u> | Inizio  | Durata | Costo |
|---------------|---------|--------|-------|
| IDEA          | 01/2000 | 36     | 200   |
| XYZ           | 07/2001 | 24     | 120   |
| ВОН           | 09/2001 | 24     | 150   |



# Vincoli multipli su più attributi

#### **Incidenti**

| <u>Codice</u> | Data       | ProvA | NumeroA | ProvB | NumeroB |
|---------------|------------|-------|---------|-------|---------|
| 34321         | 01/02/1995 | TO    | E39548  | MI    | 39548K  |
| 64521         | 05/04/1996 | PR    | 839548  | TO    | E39548  |

#### **Auto**

| <u>Prov</u> | <u>Numero</u> | Cognome | Nome  |
|-------------|---------------|---------|-------|
| MI          | 39548K        | Rossi   | Mario |
| TO          | E39548        | Rossi   | Mario |
| PR          | 839548        | Neri    | Luca  |

# Ordine Attributi in Vincoli Multipli

- Vincoli di integrità referenziale fra:
  - Gli attributi ProvA e NumeroA di INCIDENTI e la relazione AUTO
  - Gli attributi ProvB e NumeroB di INCIDENTI e la relazione AUTO
- L'ordine degli attributi è significativo



Grazie per l'attenzione