WALMART

IMPORT NECESSARY LIBRARIES

In [2]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
```

In [3]:

```
df = pd.read_csv(r"C:\Users\DEEPAK\Data science\Case study\walmart_data.csv")
```

About the dataset

In [4]:

```
df.sample(6)
```

Out[4]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Ye
89323	1001747	P00040042	М	26- 35	0	С	
462587	1005241	P00216742	F	26- 35	4	А	
459534	1004715	P00270942	М	26- 35	2	В	
516106	1001483	P00147142	М	18- 25	4	В	
275457	1000454	P00193242	М	26- 35	20	С	
237031	1000560	P00193542	М	46- 50	15	С	
4							>

We can see that there are columns with User ID and product ID available in the data. We need to find out the gender wise purchase one would choose on the basis of his/her age group, gender, city category, marital status etc.

Data type, shape, count

```
In [5]:

df.shape

Out[5]:
  (550068, 10)
```

Data set has 550068 rows with 10 columns

In [6]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067
Data columns (total 10 columns):
     Column
                                 Non-Null Count
                                                  Dtype
 0
     User_ID
                                 550068 non-null int64
 1
     Product_ID
                                 550068 non-null object
 2
                                 550068 non-null object
     Gender
 3
     Age
                                 550068 non-null object
 4
     Occupation 0
                                 550068 non-null int64
 5
     City_Category
                                 550068 non-null object
     Stay_In_Current_City_Years 550068 non-null object
 7
                                 550068 non-null int64
     Marital_Status
 8
     Product_Category
                                 550068 non-null int64
                                 550068 non-null int64
     Purchase
dtypes: int64(5), object(5)
memory usage: 42.0+ MB
```

In th data set 5 columns have integer type and 5 columns have object type

Data Preprocessing

```
In [75]:
```

```
df.Product_ID=df["Product_ID"].astype("category")
df.Gender=df["Gender"].astype("category")
df.City_Category=df['City_Category'].astype("category")
df.Stay_In_Current_City_Years=df['Stay_In_Current_City_Years'].astype('category')
df.Age=df['Age'].astype('category')
```

Data preprocessing reduce the memory of the data with missing any values

Statistical Summery

In [8]:

```
df[df['Gender']=='F'].describe()
```

Out[8]:

	User_ID	Occupation	Marital_Status	Product_Category	Purchase
count	1.358090e+05	135809.000000	135809.000000	135809.000000	135809.000000
mean	1.003130e+06	6.740540	0.419619	5.717714	8734.565765
std	1.786631e+03	6.239639	0.493498	3.696752	4767.233289
min	1.000001e+06	0.000000	0.000000	1.000000	12.000000
25%	1.001569e+06	1.000000	0.000000	3.000000	5433.000000
50%	1.003159e+06	4.000000	0.000000	5.000000	7914.000000
75%	1.004765e+06	11.000000	1.000000	8.000000	11400.000000
max	1.006039e+06	20.000000	1.000000	20.000000	23959.000000

OBSERVATIONS

Some of the important conclusions that can be drawn by looking at our results are:

- 1.Exactly Female customers purchased 135809 product in walmart.
- 2. Where as the min and max purchase are 12 and 23959 nos.
- 3. Product Category 75% are in below 8.
- 4. Female Customers occupation are in dataset have 75% below with value 11.

In [9]:

```
df[df['Gender']=='M'].describe()
```

Out[9]:

	User_ID	Occupation	Marital_Status	Product_Category	Purchase
count	4.142590e+05	414259.00000	414259.000000	414259.000000	414259.00000
mean	1.002996e+06	8.51475	0.406386	5.301512	9437.52604
std	1.706494e+03	6.55379	0.491159	4.006275	5092.18621
min	1.000002e+06	0.00000	0.000000	1.000000	12.00000
25%	1.001505e+06	3.00000	0.000000	1.000000	5863.00000
50%	1.003041e+06	7.00000	0.000000	5.000000	8098.00000
75%	1.004411e+06	15.00000	1.000000	8.000000	12454.00000
max	1.006040e+06	20.00000	1.000000	20.000000	23961.00000

OBSERVATIONS

Some of the important conclusions that can be drawn by looking at our results are:

- 1.Exactly Male customers purchased 414259 product in walmart.
- 2. Where as the min and max purchase are 12 and 23961 nos.
- 3. Product Category 75% are in below 8.
- 4. Male Customers occupation are in dataset have 75% below with value 15.

Non-graphical Analysis

In [10]:

```
#Unique values in our Data Frame df.nunique()
```

Out[10]:

User_ID	5891
Product_ID	3631
Gender	2
Age	7
Occupation	21
City_Category	3
Stay_In_Current_City_Years	5
Marital_Status	2
Product_Category	20
Purchase	18105
dtype: int64	

Observation:

- There are 3631 different products.
- · There are both Marital and single customers
- · Product category are 20 different types
- · Age are classified in 7 different groups

In [11]:

```
#Are there any duplicate values?
df.duplicated().sum()
```

Out[11]:

0

There are no duplicate values in the data set.

Unique Values

In [12]:

```
list_col=['Gender','Age','Occupation','City_Category','Stay_In_Current_City_Years','Marital
for col in list_col:
   print('{} :{} ' . format(col.upper(),df[col].unique()))
GENDER :['F', 'M']
Categories (2, object): ['F', 'M']
AGE: ['0-17', '55+', '26-35', '46-50', '51-55', '36-45', '18-25']
Categories (7, object): ['0-17', '18-25', '26-35', '36-45', '46-50', '51-5
5', '55+']
OCCUPATION: [10 16 15 7 20 9 1 12 17 0 3 4 11 8 19 2 18 5 14 13 6]
CITY CATEGORY : ['A', 'C', 'B']
Categories (3, object): ['A', 'B', 'C']
STAY_IN_CURRENT_CITY_YEARS :['2', '4+', '3', '1', '0']
Categories (5, object): ['0', '1', '2', '3', '4+']
MARITAL_STATUS :[0 1]
PRODUCT_CATEGORY: [ 3 1 12 8 5 4 2 6 14 11 13 15 7 16 18 10 17 9 20
191
```

observation

-All the unique values in the Dataset

Value count

In [13]:

```
list_col=['Gender','Age','Occupation','City_Category','Stay_In_Current_City_Years','Marital
for col in list_col:
    print('{} :{} ' . format(col.upper(), df[col].value_counts()))
GENDER :M
             414259
     135809
Name: Gender, dtype: int64
              219587
AGE :26-35
36-45
         110013
18-25
          99660
46-50
          45701
51-55
          38501
55+
          21504
0-17
          15102
Name: Age, dtype: int64
OCCUPATION :4
                   72308
0
      69638
7
      59133
      47426
1
17
      40043
20
      33562
12
      31179
14
      27309
2
      26588
16
      25371
6
      20355
3
      17650
10
      12930
5
      12177
15
      12165
11
      11586
19
       8461
       7728
13
18
       6622
9
       6291
8
       1546
Name: Occupation, dtype: int64
CITY_CATEGORY :B
                     231173
C
     171175
     147720
Name: City_Category, dtype: int64
STAY_IN_CURRENT_CITY_YEARS :1
                                   193821
2
      101838
3
       95285
4+
       84726
       74398
Name: Stay_In_Current_City_Years, dtype: int64
MARITAL STATUS :0
     225337
1
Name: Marital_Status, dtype: int64
PRODUCT_CATEGORY :5
                         150933
1
      140378
8
      113925
11
       24287
2
       23864
6
       20466
3
       20213
```

15	6290			
13	5549			
10	5125			
12	3947			
7	3721			
18	3125			
20	2550			
19	1603			
14	1523			
17	578			
9	410			
Namo:	Dooduct	Catagony	d+vno.	in+61

Name: Product_Category, dtype: int64

observation

-All the value count based on the Dataset

Visual Analysis

In [14]:

```
plt.figure(figsize=(15,7))
sns.displot(x=df.Stay_In_Current_City_Years,color='orange')
sns.displot(x=df.City_Category,color='pink')
plt.show()
```

<Figure size 1080x504 with 0 Axes>

Observation

- · The customers Stay in city years by one years are high compared to all
- The city category type of B is More

In [15]:

```
plt.figure(figsize=(15,7))
sns.countplot(x=df.Age)
```

Out[15]:

<AxesSubplot:xlabel='Age', ylabel='count'>

From the above Graph

• The age between 26-35 are purchaseing more comapared to other age group of people

In [16]:

```
df.hist(by='Gender',column='Purchase',figsize=(15,7),color='red')
```

Out[16]:

Observation

- The product Purchase rate of Male is high compared to female
- The Female and Male customers Purchase between 5000 to 7000 are high
- Male Customers spending more money

In [17]:

```
df.hist(by='Gender',column='Product_Category',figsize=(15,6),color='green')
```

Out[17]:

From the above graph

• Female customers buvs more product in the Category of 5-6 localhost:8889/notebooks/Data science/Case study/Walmart/Walmart final.jpynb#Female-Confidence-Intravel

• Male customers buys more product in the category of 1-2.5

In [18]:

Observation

- The Male customers in the City category of A,B,C are more compared to Female
- The Maritual status of Female are same and Male
- The Age group of Male customers are equally spreaded and female customers are low compared to Male
- The Male customers choose high Product Category of

Heat Map

In [19]:

```
# A broader look at correlation between the columns of dataframe
# Creating a copy of the dataframe -
df_copy=df.copy()

df_copy['Gender'].replace(['Male', 'Female'], [1, 0], inplace=True)
```

In [20]:

```
plt.figure(figsize=(15,6))
sns.heatmap(df_copy.corr(), cmap="YlGnBu", annot=True)
plt.show()
```


Noteworthy Points

- 1) Product category are low correlated with purchase, which means if a customers's purchase level is high some product category
- 2) Marital status are low correlation with occupation and Product Category
- 3) From the heat map the correlation based on purchase didn't affect any other category

Pair plot

In [21]:

sns.pairplot(data=df,corner=False)

Out[21]:

<seaborn.axisgrid.PairGrid at 0x181eb920340>

Observation

- There is some corelation between Purchase and Occupation
- · User Id correlation with Purchase

Cheacking Null values

In [22]:

df.isnull().sum()	
Out[22]:	
User_ID	0
Product_ID	0
Gender	0
Age	0
Occupation	0
City_Category	0
Stay_In_Current_City_Years	0
Marital_Status	0
Product_Category	0
Purchase	0
dtype: int64	

We do not have any null values in our data set which makes it easier for us to conduct our data analysis.

Box_plot - outlier Detection

In [23]:

```
sns.boxplot(data= df,x=df.Purchase)
```

Out[23]:

<AxesSubplot:xlabel='Purchase'>

In [24]:

```
Q3 = df['Purchase'].quantile(0.75)
Q1 = df['Purchase'].quantile(0.25)
IQR = Q3-Q1
upper = Q3+(1.5*IQR).astype('int')
lower = Q1-(1.5*IQR).astype('int')
print('Upper: '+str(upper))
print('Lower: '+str(lower))
```

Upper: 21400.0 Lower: -3523.0

Are women spending more money per transaction than men? Why or Why not?

In [25]:

```
plt.figure(figsize=(20,10))
plt.subplot(1,2,1)
g = sns.countplot(x = df.Purchase, order=df.Purchase.value_counts().index[:10],hue=df.Gende
plt.title('Top 10 Purchsed Customer based on Gender')
plt.xlabel('Purchase')
plt.ylabel('Count')

plt.subplot(1,2,2)
sns.histplot(data=df,x=df.Purchase,hue=df.Gender,kde=True,bins=15)
plt.title('Purchsed Customer based on Gender')
```

Out[25]:

Text(0.5, 1.0, 'Purchsed Customer based on Gender')

observation

- 1) The Male customers are highly purchased when compared to Female
- 2) Female and Male Customers are overlaping in the purchase of 23,000.

3) Customers who buying in the top order also dominated by Male

Conclusion

Female customers didn't spend more money per transaction Based on in our Dataset

Married Vs Unmarried

In [26]:

```
plt.figure(figsize=(20,10))
plt.subplot(1,2,1)
g = sns.countplot(x = df.Purchase, order=df.Purchase.value_counts().index[:10],hue=df.Marit
plt.title('Top 10 Purchsed Customer based on Marital status')
plt.xlabel('Purchase')
plt.ylabel('Count')

plt.subplot(1,2,2)
sns.histplot(data=df,x=df.Purchase,hue=df.Marital_Status,kde=True,bins=15)
plt.title('Purchsed Customer based on Marital status')
```

Out[26]:

Text(0.5, 1.0, 'Purchsed Customer based on Marital status')

observation

- 1) The UnMarried customers purchase is high when compared to Married
- 2) Unmarried and Married Customers are overlaping in the purchase of 23,000.
- 3) Customers who buying in the top order also dominated by Unmarried

Conclusion

Unmarried customers spend more money per transaction Based on in our Dataset

Customers Based on Age

In [27]:

```
plt.figure(figsize=(20,10))
plt.subplot(1,2,1)
g = sns.countplot(x = df.Purchase, order=df.Purchase.value_counts().index[:10],hue=df.Age)
plt.title('Top 10 Purchsed Customer based on Marital status')
plt.xlabel('Purchase')
plt.ylabel('Count')

plt.subplot(1,2,2)
sns.histplot(data=df,x=df.Purchase,hue=df.Age,kde=True,bins=15)
plt.title('Purchsed Customer based on Marital status')
```

Out[27]:

Text(0.5, 1.0, 'Purchsed Customer based on Marital status')

observation

- 1) The Customers in Age of between 26-35 are purchase is high when compared to All age bins
- 2) The Age bins of all are overlaping in the purchase of 23,000.
- 3) Top customers are in Age of b/t 26-35
- 4) The age limlit of Male and Female Customers between 18 to 55 are purchased more

Conclusion

Customers in the age between 26 to 35 spend more money per transaction Based on in our Dataset

Confidence intervals and distribution of the mean of the expenses by female and male customers

```
In [202]:
```

```
mal_cus=[df[df['Gender']=='M']['Purchase'].sample(100,replace=True).mean() for i in range(1
fema_cus=[df[df['Gender']=='F']['Purchase'].sample(100,replace=True).mean() for i in range(
```

In [29]:

sns.displot(mal_cus,bins=100,kde=True)

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x181811e6490>

In [30]:

```
sns.displot(fema_cus,bins=100,kde=True)
```

Out[30]:

<seaborn.axisgrid.FacetGrid at 0x181815bcfd0>

Marital Status based on Gender

In [190]:

```
#UnMarried
age_Male_un = df[df['Gender']=='M'][['Marital_Status','Purchase']].groupby('Marital_Status'
#Married
age_Male_ma = df[df['Gender']=='M'][['Marital_Status','Purchase']].groupby('Marital_Status'
```

In [191]:

```
ma_un = [age_Male_un['Purchase'].sample(100,replace=True).mean() for i in range(1000)]
ma_Ma = [age_Male_ma['Purchase'].sample(100,replace=True).mean() for i in range(1000)]
```

In [196]:

```
#UnMarried
age_fema_un = df[df['Gender']=='F'][['Marital_Status','Purchase']].groupby('Marital_Status'
#Married
age_fema_ma = df[df['Gender']=='F'][['Marital_Status','Purchase']].groupby('Marital_Status'
```

In [197]:

```
fm_un = [age_fema_un['Purchase'].sample(100,replace=True).mean() for i in range(1000)]
fm_Ma = [age_fema_ma['Purchase'].sample(100,replace=True).mean() for i in range(1000)]
```

C.I on 99th percentile value for Purchase via bootsrapping

In [33]:

```
# Let's create r=10000 bootstrap samples, and let each bootstrap sample be of size=50
# bs_means is a list of 'r' bootstrap sample means
r = 10000
data = df[df['Gender']=='F']['Purchase']
size = 100
bs_means = np.empty(r)

for i in range(r):
    bs_sample = np.random.choice(data, size=size)
    bs_means[i] = np.mean(bs_sample)
```

In [34]:

```
plt.hist(bs_means, bins=100)
plt.show()
```


In [35]:

```
type(np.mean(bs_means))
```

Out[35]:

numpy.float64

In [36]:

```
#compute C.I on the mean given that bs_means follows Gaussian distribution: CLT
print('Mean = '+str(np.mean(bs_means).round(2)))
print('Standard Devaition = '+str(np.std(bs_means).round(2)))
```

Mean =8742.36 Standard Devaition=479.56

95% C.I on 99th percentile value for Purchase

Male confidence Intravel based on Gender

```
In [37]:
```

```
print('Lower Mean = '+str((np.mean(mal cus)-1.96*np.std(mal cus)).round(2)))
print('Upper Mean = '+str((np.mean(mal_cus)+1.96*np.std(mal_cus)).round(2)))
Lower Mean =8451.33
```

Upper Mean =10366.0

Confidence Intravel of Age

```
In [38]:
```

```
# could we just use the 2.5th percentile and 97.5th percentile value
print(np.percentile(mal_cus,2.5))
print(np.percentile(mal_cus,97.5))
```

8427.42 10373.724499999998

Male confidence Intravel of Marital status

```
In [193]:
```

```
#Married male
print('Lower Mean = '+str((np.mean(ma_Ma)-1.96*np.std(ma_Ma)).round(2)))
print('Upper Mean = '+str((np.mean(ma Ma)+1.96*np.std(ma Ma)).round(2)))
Lower Mean =8424.18
Upper Mean =10435.73
In [195]:
#Unmarried male
print('Lower Mean = '+str((np.mean(ma_un)-1.96*np.std(ma_un)).round(2)))
print('Upper Mean = '+str((np.mean(ma_un)+1.96*np.std(ma_un)).round(2)))
Lower Mean =8443.31
Upper Mean =10427.44
```

Female Confidence Intravel based on Gender

```
In [198]:
```

Upper Mean =9671.81

```
#Female CI based on gender
print('Lower Mean = '+str((np.mean(fema cus)-1.96*np.std(fema cus)).round(2)))
print('Upper Mean = '+str((np.mean(fema_cus)+1.96*np.std(fema_cus)).round(2)))
Lower Mean = 7805.02
```

Female confidence intravel of Age

In [204]:

```
# could we just use the 2.5th percentile and 97.5th percentile value
print(np.percentile(fema_cus,2.5))
print(np.percentile(fema_cus,97.5))
```

7827,403 9665.50725

Female confidence Intravel of Marital status

```
In [199]:
```

```
#Married female
print('Lower Mean = '+str((np.mean(fm_Ma)-1.96*np.std(fm_Ma)).round(2)))
print('Upper Mean = '+str((np.mean(fm_Ma)+1.96*np.std(fm_Ma)).round(2)))
Lower Mean = 7854.45
Upper Mean =9717.25
In [200]:
#Unmarried female
print('Lower Mean ='+str((np.mean(fm_un)-1.96*np.std(fm_un)).round(2)))
print('Upper Mean ='+str((np.mean(fm_un)+1.96*np.std(fm_un)).round(2)))
Lower Mean =7744.64
Upper Mean =9574.36
```

99% C.I on 99th percentile value for Purchase

Male Confidence Intravel

```
In [41]:
```

```
print('Lower Mean = '+str((np.mean(mal cus)-2.57*np.std(mal cus)).round(2)))
print('Upper Mean ='+str((np.mean(mal_cus)+2.57*np.std(mal_cus)).round(2)))
Lower Mean =8153.38
Upper Mean =10663.95
In [42]:
# could we just use the 0.05th percentile and 99.05th percentile value
print(np.percentile(mal_cus,0.005))
print(np.percentile(mal_cus,99.005))
```

7922.263861 10531.6800495

```
In [205]:
#Married male
print('Lower Mean ='+str((np.mean(ma_Ma)-2.57*np.std(ma_Ma)).round(2)))
print('Upper Mean = '+str((np.mean(ma_Ma)+2.57*np.std(ma_Ma)).round(2)))
Lower Mean =8111.16
Upper Mean =10748.75
In [206]:
#Unmarried male
print('Lower Mean ='+str((np.mean(ma_un)-2.57*np.std(ma_un)).round(2)))
print('Upper Mean ='+str((np.mean(ma_un)+2.57*np.std(ma_un)).round(2)))
Lower Mean =8134.55
Upper Mean =10736.19
Female Confidence intravel
In [43]:
print('Lower Mean ='+str((np.mean(fema_cus)-2.57*np.std(fema_cus)).round(2)))
print('Upper Mean ='+str((np.mean(fema_cus)+2.57*np.std(fema_cus)).round(2)))
Lower Mean =7514.53
Upper Mean =9962.3
In [44]:
# could we just use the 0.005th percentile and 99.05th percentile value
print(np.percentile(fema_cus,0.005))
print(np.percentile(fema_cus,99.005))
7126.4061575
9864.3671515
In [208]:
#Married female
print('Lower Mean = '+str((np.mean(fm Ma)-2.57*np.std(fm Ma)).round(2)))
print('Upper Mean ='+str((np.mean(fm_Ma)+2.57*np.std(fm_Ma)).round(2)))
Lower Mean = 7564.58
Upper Mean =10007.12
In [207]:
#Unmarried female
print('Lower Mean = '+str((np.mean(fm_un)-2.57*np.std(fm_un)).round(2)))
print('Upper Mean ='+str((np.mean(fm_un)+2.57*np.std(fm_un)).round(2)))
```

90% C.I on 99th percentile value for Purchase via bootsrapping

Lower Mean =7459.91 Upper Mean =9859.08

Male Confidence Intravel

```
In [45]:
print('Lower Mean ='+str((np.mean(mal cus)-1.64*np.std(mal cus)).round(2)))
print('Upper Mean = '+str((np.mean(mal_cus)+1.64*np.std(mal_cus)).round(2)))
Lower Mean =8607.63
Upper Mean =10209.7
In [46]:
# could we just use the 5th percentile and 95th percentile value
print(np.percentile(mal_cus,5))
print(np.percentile(mal_cus,95))
8592.591
10254.0315
In [209]:
#Married male
print('Lower Mean ='+str((np.mean(ma_Ma)-1.64*np.std(ma_Ma)).round(2)))
print('Upper Mean ='+str((np.mean(ma_Ma)+1.64*np.std(ma_Ma)).round(2)))
Lower Mean =8588.39
Upper Mean =10271.52
In [210]:
#Unmarried male
print('Lower Mean ='+str((np.mean(ma_un)-1.64*np.std(ma_un)).round(2)))
print('Upper Mean = '+str((np.mean(ma un)+1.64*np.std(ma un)).round(2)))
Lower Mean =8605.28
Upper Mean =10265.47
Female Confidence Intravel
In [47]:
print('Lower Mean ='+str((np.mean(fema cus)-1.64*np.std(fema cus)).round(2)))
print('Upper Mean ='+str((np.mean(fema_cus)+1.64*np.std(fema_cus)).round(2)))
Lower Mean = 7957.41
Upper Mean =9519.41
In [48]:
# could we just use the 5th percentile and 95th percentile value
print(np.percentile(fema cus,5))
print(np.percentile(fema cus,95))
```

7965.26150000000005

9509.3735

In [212]:

```
#Married female
print('Lower Mean ='+str((np.mean(fm_Ma)-1.64*np.std(fm_Ma)).round(2)))
print('Upper Mean ='+str((np.mean(fm_Ma)+1.64*np.std(fm_Ma)).round(2)))
```

```
Lower Mean =8006.52
Upper Mean =9565.18
```

In [211]:

```
#Unmarried female
print('Lower Mean ='+str((np.mean(fm_un)-1.64*np.std(fm_un)).round(2)))
print('Upper Mean ='+str((np.mean(fm_un)+1.64*np.std(fm_un)).round(2)))
```

```
Lower Mean =7894.0
Upper Mean =9424.99
```

Observation / Interpretation of above Confidence Interval

By definition we know the interpretation of a 90%,95%,99% confidence interval for the population mean as - If repeated random samples were taken and the 90%,95%,99% confidence interval was computed for each sample, 95% of the intervals would contain the population mean.

So in this case

- There is a 90% chance that the confidence interval of (8446.17,10094.61) contains the true population

 Mean
- There is a 95% chance that the confidence intrave of(8285.34,10255.43,) contains the true population Mean
- There is a 99% chance that the confidence interval of (7978.77,10562) contains the true population Mean.

Recommondation

- Male and Female custumers buying are Overlapping in Purchase
- · City category sales of Male and Female customers are high in A
- The customers in the Age of 26-35 are purchasing more comapred to all category
- The product category of 5-7.5 are the most selled one in Product
- Occupation are 21 different category which will not affect the purchase
- · Stay in city year of 1+ are puchasing more in our data set

In []:		
In []:		
In []:		

In []:	
In []:	
III [].	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
[].	

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	