Домашнее задание № 3. Методы многомерного поиска.

<u> Цель работы:</u>

- 1. Изучение алгоритмов многомерного поиска 1-го и 2-го порядка.
- 2. Разработка программ реализации алгоритмов многомерного поиска 1-го и 2-го порядка.
- 3. Вычисление экстремумов функции.

Методические указания.

4.2.1. Метод наискорейшего градиентного спуска. Стратегия поиска.

Стратегия решения задачи состоит в построении последовательности точек $\left\{x^k\right\}$, k=0,1,..., $_{\text{Таких, что}}$ $f(x^{k+1}) < f(x^k)$, k=0,1,.... $_{\text{Точки последовательности}}$ $\left\{x^k\right\}$ вычисляются по правилу $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$, где точка x^0 задается пользователем; величина шага α^k определяется для каждого значения k из условия:

$$\varphi(\alpha^{k}) = f(x^{k} - \alpha^{k} \nabla f(x^{k})) \to \min_{\alpha^{k}}$$

Решение задачи $\alpha^{*k} = Arg \min f(x^k + \alpha^k d^k)$, где $d^k = -\nabla f(x^k)$, может осуществляться с $d\varphi(\alpha^k)$

использованием необходимого условия минимума $\dfrac{d \varphi(\alpha^k)}{d \alpha^k} = 0$ с последующей проверкой

 $\frac{d^2\varphi(\alpha^k)}{d\alpha^{k2}}\!>\!0$ достаточного условия минимума $\frac{d^2\varphi(\alpha^k)}{d\alpha^{k2}}\!>\!0$. Такой путь может быть использован либо при простой минимизирующей функции $\varphi(\alpha^k)$, либо при аппроксимации достаточно сложной функции $\varphi(\alpha^{k})=f(x^k-\alpha^k\nabla\!f(x^k))$ полиномом $P(\alpha^k)$ (как правило, второй или

 $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0$ третьей степени), и тогда условие $\frac{d^2\varphi(\alpha^k)}{d\alpha^{k^2}} > 0$ замещается условием $\frac{d^2P(\alpha^k)}{d\alpha^{k^2}} > 0$ - условием $\frac{d^2P(\alpha^k)}{d\alpha^{k^2}} > 0$.

Другой путь решения задачи $\alpha^{*k} = Arg \min f(x^k + \alpha^k d^k)$ связан с использованием $\min_{\alpha^k \in [a,b]} \varphi(\alpha^{*k}) = \min_{\alpha^k \in [a,b]} f(x^k - \alpha^k \nabla f(x^k))$ численных методов, когда ищется $\max_{\alpha^k \in [a,b]} \varphi(\alpha^{*k}) = \min_{\alpha^k \in [a,b]} f(x^k - \alpha^k \nabla f(x^k))$, т.е. с использованием методов одномерного поиска. Границы интервала $\max_{\alpha^k \in [a,b]} f(x^k - \alpha^k \nabla f(x^k))$ задаются пользователем. При этом степень близости найденного значения $\max_{\alpha^k \in [a,b]} f(x^k - \alpha^k \nabla f(x^k))$

значению α^{*k} , удовлетворяющему условиям $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0$ и $\frac{d^2\varphi(\alpha^k)}{d\alpha^{k2}} > 0$, зависит от задания интервала [a,b] и точности методов одномерной минимизации.

Построение последовательности x^k , k=0,1,..., заканчивается в точке x^k , для которой $\|\nabla f(x^k)\| < \varepsilon_1$, где $\varepsilon_1 > 0$ - заданное число, или если $k \ge M$, M - предельное число итераций, или при двукратном одновременном выполнении неравенств $\|x^{k+1}-x^k\| < \varepsilon_1, |f(x^{k+1})-f(x^k)| < \varepsilon_2$, где ε_2 - малое положительное число. Вопрос о том,

может ли точка x^k рассматриваться как найденное приближение искомой точки локального минимума x^* , решается путем дополнительного исследования.

Алгоритм.

Ш.1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, предельное число итераций M . Найти градиент

$$\nabla f(x^0) = \left[\frac{\partial f(x^0)}{\partial x_1}, \dots, \frac{\partial f(x^0)}{\partial x_n}\right]^T$$

функции в начальной точке

Ш.2. Положить k = 0.

Ш.3. Вычислить $\nabla f(x^k)$.

Ш.4. Проверить выполнение критерия окончания $\|\nabla f(x)\| < \varepsilon_1$:

- a) если неравенство выполнено, то $x^* = x^k$:
- *b*) _{если нет, то перейти на Ш.6.}

Ш.5. Проверить выполнение неравенства $k \ge M$:

- *a*) если неравенство выполнено, то $x^* = x^k$;
- *b*) если нет, то перейти на Ш.6.
- **Ш.6.** Вычислить величину шага $\alpha^{*k} = Arg \min f(x^k + \alpha^k d^k)$, где $d^k = -\nabla f(x^k)$.
- **Ш.7.** Вычислить $x^{k+1} = x^{k} \alpha^{k} \nabla f(x^{k})$.
- **Ш.8.** Проверить выполнение условий: $\|x^{k+1} x^k\| < \varepsilon_1$, $|f(x^{k+1}) f(x^k)| < \varepsilon_2$.
- a) если оба условия выполнены при текущем значении k и k = k 1, то $x^* = x^{k+1}$; расчет окончен;
- (b) если хотя бы одно из условий не выполнено, то положить k = k + 1 и перейти на Ш.3.

Замечание 3.2.

Метод наискорейшего спуска гарантирует сходимость последовательности ${x^k \choose k}$ к точке минимума для сильно выпуклых функций.

4.2.2. Метод Флетчера-Ривза и Полака-Рибьера.

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т,е. найти

такую точку $x^* \in \mathbb{R}^n$, что $f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$ на множестве допустимых решений $X \in R^n$. При предполагается использование ЭТОМ методов одномерного поиска $\alpha^{*k} = Arg \min_{\alpha^k \in \mathbb{R}^1} f(x^k + \alpha^k d^k)$ для определения величины шага в направлении поиска d^k .

Стратегия поиска.

Стратегия метода Флетчера-Ривза (FR) состоит в построении последовательности точек $\{x^k\}, k = 0,1,..., \text{ таких, что } f(x^{k+1}) < f(x^k), k = 0,1,...$. Точки последовательности $\{x^k\}$ вычисляются по правилу:

$$x^{k+1} = x^k + \alpha^k d^k, k = 0,1,...;$$
 (4.1.1.)

$$d^{k} = -\nabla f(x^{k}) + w^{k-1}d^{k-1}; (4.1.2.)$$

$$d^{0} = -\nabla f(x^{0}); \tag{4.1.3.}$$

$$w^{k-1} = \frac{\|\nabla f(x^k)\|^2}{\|\nabla f(x^{k-1})\|^2}.$$
(4.1.4.)

Точка x^0 задается пользователем, величина шага α^{*k} определяется для каждого $\alpha^{*k} = Arg \min_{\alpha^k \in \mathbb{R}^1} f(x^k + \alpha^k d^k)$ значения α^{*k} из условия . Решение задачи одномерной

 $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0, \frac{d^2\varphi(\alpha^k)}{d\alpha^{k^2}} > 0$

минимизации может осуществляться либо из условия alpha dlpha, либ численно, с использованием методов одномерной минимизации, когда решается задача:

$$\varphi(\alpha^{k}) \to \min_{\alpha^{k} \in [a,b]}. \tag{4.1.5.}$$

При численном решении задачи определения величины шага степень близости найденного значения α^k к оптимальному значению α^{*k} , удовлетворяющему условиям $\frac{d\varphi(\alpha^k)}{d\alpha^k} = 0, \frac{d^2\varphi(\alpha^k)}{d\alpha^{k^2}} > 0$, зависит от задания интервала [a,b] и точности одномерной

Вычисление величины w^{k-1} по формуле (4.1.4.) обеспечивает для квадратичной формы $f(x) = \sum_{i=1}^n \sum_{j=1}^n {}_j x_i x_j$ построение последовательности H -сопряженных направлений $d^0, d^1, \dots, d^k, \dots$, для которых $\left< d^j, H d^i \right> = 0, \ \forall i, j = 0, 1, \dots, k; i \neq j$. При этом в точках последовательности $\left| x^k \right|$ градиенты функции f(x) взаимно перпендикулярны, т.е. $\left< \nabla f(x^{k+1}), \nabla f(x^k) \right> = 0, k = 0, 1, \dots$

Для квадратичных функций f(x) с матрицей H>0 метод Флетчера-Ривза является конечным и сходится за число шагов, не превышающее n - размерность x вектора переменных.

При минимизации неквадратичных функций метод не является конечным, при этом следует отметить, что погрешность в решении задачи (4.1.5.) приводит к нарушению не только перепендикулярности градиентов, но и H-сопряженности направлений. Для неквадратичных функций, как правило, используется алгоритм Полака-Рибьеры, когда в формулах (4.1.1. – 4.1.3.) величина w^{k-1} вычисляется следующим образом:

$$w^{k-1} = \begin{cases} \frac{\left\| \nabla f(x^k) \right\|^2}{\left\| \nabla f(x^{k-1}) \right\|^2}, & k \notin J, \\ 0, & k \in J, \end{cases}$$

$$w^{k-1} = \begin{cases} \frac{\left\langle \nabla f(x^k), \left[\nabla f(x^k) - \nabla f(x^{k-1}) \right\rangle}{\left\| \nabla f(x^{k-1}) \right\|^2}, & k \notin J, \end{cases}$$

Полак-Рибьр:

где $J=\{0,n,2n,...\}$. В отличие от алгоритма Флетчера-Ривза алгоритм Полака-Рибьера предусматривает использование итерации наискорейшего спуска через каждые n шагов. Построение последовательности x^k заканчивается в точке, для которой x^k 0 - заданное число, или при x^k 1 - предельное число итераций, или при двукратном одновременном выполнении двух неравенств x^k 1 - x^k 2 - малые положительные числа. Вопрос о

том, может ли точка x^k рассматриваться как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования.

 $\mathbf{W.1.}$ Задать x^0 , ε_1 , δ_2 , ε_2 , M - предельное число итераций. Вычислить градиент $\nabla f(x^0)$

Ш.2. Положить k = 0.

III.3. Вычислить $\nabla f(x^k)$.

Ш.4. Проверить выполнение критерия окончания $\left\| \nabla f(x^k) \right\| < \varepsilon_1$:

- a) если критерий выполнен, $x^* = x^k$, расчет заканчивается;
- *b*) если нет. то перейти на Ш.5.

Ш.5. Проверить условие $k \ge M$:

- a) если неравенство выполняется, то расчет окончен и $x^* = x^k$;
- *b*) если нет, то при k=0 перейти на Ш.6., а при $k\geq 1$ перейти на Ш.7.

Ш.6. Определить $d^0 = -\nabla f(x^0)$.

Ш.7. Определить

еделить
$$w^{k-1} = \frac{\left\| \nabla f(x^k) \right\|^2}{\left\| \nabla f(x^{k-1}) \right\|^2}$$
, или $w^{k-1} = \frac{\left\| \nabla f(x^k) \right\|^2}{\left\| \nabla f(x^{k-1}) \right\|^2}$, или $w^{k-1} = \begin{cases} \frac{\left\langle \nabla f(x^k) \left[\nabla f(x^k) - \nabla f(x^{k-1}) \right\rangle}{\left\| \nabla f(x^{k-1}) \right\|^2}, & k \notin J, \\ 0, & k \in J. \end{cases}$ полак-Рибьер: $u^k = -\nabla f(x^k) + w^{k-1}d^{k-1}.$

Ш.8. Определить $d^k = -\hat{\nabla f}(x^k) + w^{k-1}d^{k-1}$.

Ш.9. Найти α^{*k} из условия $\alpha^{*k} = Arg \min_{\alpha^k \in R^1} f(x^k + \alpha^k d^k)$.

Ш.10. Вычислить $x^{k+1} = x^k + \alpha^k d^k$.

(Ш.10. Для алгоритма Полака-Рибьера: Если k=n , то переход на Ш.2)

Ш.11. Проверить выполнение условий $\|x^{k+1} - x^k\| < \delta_2$, $|f(x^{k+1}) - f(x^k)| < \varepsilon_2$:

- a) в случае выполнения обоих условий в двух последовательных итерациях с номерами $k_{ij} k - 1_{ij}$ расчет окончен, найдена точка $x^* = x^k$.
- (b) если не выполняется хотя бы одно из условий, полагаем k = k + 1 и переход на Ш.3.

4.2.3. Метод Девидона-Флетчера-Пауэлла. Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве R^n и имеющая непрерывные частные производные во всех его точках (т.е. $f(x) \in C^1(X)$, $X = R^n$).

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X=R^n$, т.е. найти такую точку $x^*\in R^n$, что $f(x^*)=\min_{x\in R^n}f(x)$

Стратегия поиска.

Стратегия метода Девидона-Флетчера-Пауэлла (DFP) состоит в построении последовательности точек $\begin{cases} x^k \\ \end{cases}$, таких, что $f(x^{k+1}) < f(x^k)$, k = 0,1,... последовательности $\begin{cases} x^k \\ \end{cases}$ вычисляются по правилу: $x^{k+1} = x^k - \alpha^{*k} G^{k+1} \nabla f(x^k)$, k = 0,1,..., (4.2.1)

$$x^{k+1} = x^k - \alpha^{*k} G^{k+1} \nabla f(x^k) \quad k = 0, 1, \dots$$
(4.2.1.)

где G^{k+1} - матрица размера $n \times n$, являющаяся аппроксимацией обратной матрицы Гессе. Она вычисляется по правилу:

$$G^{k+1} = G^k + \Delta G^k, G^0 = E, \tag{4.2.2.}$$

$$\Delta G^{k} = \frac{\Delta x^{k} (y^{k})^{T}}{(y^{k})^{T} \Delta g^{k}} - \frac{G^{k} \Delta g^{k} (G^{k} \Delta g^{k})^{T}}{(\Delta g^{k})^{T} G^{k} \Delta g^{k}}, \tag{4.2.3.}$$

THE $\Delta x^k = x^{k+1} - x^k$, $\Delta g^k = \nabla f(x^{k+1}) - f(x^k)$.

Точка x^0 задается пользователем, величина шага $lpha^{*_k}$ определяется из условия:

$$lpha^{*k} = Arg \min_{lpha^k \in [a,b]} arphi(x^k + lpha^k d^k)$$
. (4.2.4.) е задачи (4.2.4.) может выполняться как из условия $\dfrac{d\phi(lpha)}{dlpha^k} = 0$, $\dfrac{d^2\phi(lpha)}{dlpha^{k\,2}} > 0$

Решение задачи (4.2.4.) может выполняться как из условия численно, с использованием методов одномерной минимизации, когда решается задача: $\varphi(\alpha^k) \to \min_{\alpha^k \in [a,b]}$ оптимизации.

Формулы (4.2.2.), (4.2.3.) при аналитическом решении задачи (4.2.4.) обеспечивают построение последовательности $\{G^k\}$ положительно определенных матриц, таких, что $G^k \to H^{-1}(x^*)$ при $k \to \infty$. Следствием этого ДЛЯ квадратичной функции $f(x) = \frac{1}{2} \langle Hx, x \rangle + \langle b, x \rangle, H > 0$, является тот факт, что направления d^k , k = 0,1,..., будут H -сопряженными и, следовательно, алгоритм DFP сойдется не более чем за n шагов.

Для неквадратичных функций f(x) алгоритм DFP перестаёт быть конечным и его сходимость зависит от точности решения задачи (4.2.4.). Глобальную сходимость алгоритма можно гарантировать лишь при его обновлении через каждые n шагов, т.е. когда в формуле (4.2.1.):

$$G^{k+1} = \begin{cases} E, k \in J; J = [0, n, 2n, ...], \\ G^k + \Delta G^k, k \notin J. \end{cases}$$

Построение последовательности x^{*} заканчивается в точке x^{*} , для которой $\nabla f(x^k)$ < $arepsilon_1$, где $arepsilon_1$ - заданное число, или при $k \geq M$ (M - предельное число итераций), одновременном выполнении двукратном двух $\|x^{k+1} - x^k\| < \delta_2, |f(x^{k+1}) - f(x^k)| < \varepsilon_2$, где $\delta_2 > 0, \varepsilon_2 > 0$ - малые положительные числа. Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки χ^* минимума, решается путем проведения дополнительного исследования.

Ш.1. Задать x^0 , ε_1 , δ_2 , ε_2 , M - предельное число итераций. Найти градиент $\nabla f(x^0)$. **Ш.2.** Положить k=0, $G^0=E$.

Ш.3. Вычислить $\nabla f(x^k)$

Ш.4. Проверить критерий окончания $\|\nabla f(x^k)\| < \varepsilon_1$:

- a) если критерий выполнен, $x^* = x^k$, расчет заканчивается;
- *b*) Если нет, то перейти на Ш.5.

Ш.5. Проверить условие $k \ge M$:

- a) если неравенство выполняется, то расчет окончен и $x^* = x^k$;
- b) если нет, то при k=0 перейти на Ш.10., а при $k\geq 1$ перейти на Ш.6.

Ш.6. Вычислить $\Delta g^k = \nabla f(x^{k+1}) - \nabla f(x^k)$

III.7. Вычислить $\Delta x^{k} = x^{k+1} - x^{k}$

$$\Delta G^{k} = \frac{\Delta x^{k} (\Delta x^{k})^{T}}{(\Delta x^{k})^{T} \Delta g^{k}} - \frac{G^{k} \Delta g^{k} (\Delta g^{k})^{T} G^{kT}}{(\Delta g^{k})^{T} G^{k} \Delta g^{k}}$$

Ш.8. Вычислить

Ш.9. Вычислить $G^{k+1} = G^k + \Delta G^k$.

Ш.10. Определить $d^k = -G^{k+1} \nabla f(x^k)$.

Ш.11. Вычислить
$$\alpha^{*k} = Arg \min_{\alpha^k \in [a,b]} f(x^k + \alpha^k d^k)$$

Ш.12. Вычислить $x^{k+1} = x^k + \alpha^{*k} d^k$.

Ш.13. Проверить условия $||x^{k+1} - x^k|| < \delta_2$, $|f(x^{k+1}) - f(x^k)| < \varepsilon_2$.

- a) в случае выполнения обоих условий в двух последовательных итерациях с номерами k и k - 1 расчет окончен, найдена точка $x^* = x^{k+1}$.
- **b**) если не выполняется хотя бы одно из условий, полагаем k = k + 1 и переход на Ш.3.

4.2.4. Метод Бройдена-Флетчера-Гольдфарба-Шенно.(BFGS).

Обозначим

Отсюда

Такая замена обеспечивает более устойчивый процесс

поиска экстремума. Как видно из соотношений для $\boldsymbol{F}^{\mathbf{u}}_{\phantom{\mathbf{u}}}$

пересчета для DFP и BFGS взаимнообратны.

4.2.4. Метод Левенберга-Марквардта. Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве R^n и имеющая непрерывные вторые частные производные во всех его точках (т.е. $f(x) \in C^2(X)$, $X = R^n$).

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X = R^n$, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Стратегия поиска.

Стратегия метода Левенберга-Марквардта (LM) состоит в построении последовательности точек $\left\{x^k\right\}$, таких, что $f(x^{k+1}) < f(x^k)$, k = 0,1,... Точки последовательности ${x^k}$ вычисляются по правилу:

 $x^{k+1} = x^k - \left[H(x^k) + \mu^k E\right]^{-1} \nabla f(x^k), k = 0,1,...$ (4.3.1.)

где точка x^0 задается пользователем, E - единичная матрица, μ^k последовательность положительных чисел, таких, что матрица $\left[H(x^k) + \mu^k E\right]^{-1}$ положительно определена. Как правило, число μ^0 назначается как минимум на порядок больше, чем самый большой элемент матрицы $H(x^0)$, а в ряде стандартных программ

полагается $\mu^0 = 10^4$. Если $f(x^k - [H(x^k) + \mu^k E]^{-1} \nabla f(x^k)) < f(x^k)$, то $\mu^{k+1} = \frac{\mu^k}{2}$. противном случае $\mu^{k+1} = 2\mu^k$. Легко видеть, что алгоритм Левенберга-Марквардта в зависимости от величины μ^k на каждом шаге по своим свойствам приближается либо к алгоритму Ньютона, либо к алгоритму градиентного спуска.

Построение последовательности $\left\{x^k\right\}$ заканчивается, когда либо $\left\|\nabla\!f\left(x^k\right) < \varepsilon_1\right\|$, либо число итераций $k \ge M$, где \mathcal{E}_1 - малое положительное число, а M - предельное число итераций.

Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки минимума, решается путем проведения дополнительного исследования.

Алгоритм.

- **Ш.1.** Задать x^0 , ε_1 , δ_2 , ε_2 , M предельное число итераций. Найти градиент $\nabla f(x^0)$ и матрицу Γ ессе $H(x^0)$
 - **Ш.2.** Положить k = 0, $\mu^k = \mu^0$.
 - **Ш.3.** Вычислить $\nabla f(x^k)$.
 - **Ш.4.** Проверить критерий окончания $\|\nabla f(x^k)\| < \varepsilon_1$:
 - a) если критерий выполнен, $x^* = x^k$, расчет заканчивается:
 - *b*) _{если нет, то перейти на Ш.5.}
 - **Ш.5.** Проверить условие $k \ge M$:
 - *a*) если неравенство выполняется, то расчет окончен и $x^* = x^k$;
 - *b*) если нет, то перейти на Ш.6.
 - III.6. Вычислить $H(x^k)$

Ш.7. Вычислить
$$H(x^k) + \mu^k E$$
.

Ш.8. Вычислить
$$[H(x^k) + \mu^k E]^{-1}$$
.

Ш.9. Вычислить
$$d^k = -[H(x^k) + \mu^k E]^{-1} \nabla f(x^k)$$
.

Ш.10. Вычислить
$$x^{k+1} = x^k - [H(x^k) + \mu^k E]^{-1} \nabla f(x^k)$$
.

Ш.11. Проверить выполнение условия $f(x^{k+1}) < f(x^k)$:

- а) если неравенство выполняется, то перейти на Ш.12;
- *b*) если нет, перейти на Ш.13.

$$k=k+1, \mu^{k+1}=rac{\mu^k}{2}$$
 и перейти на Ш.3.

Ш.13. Положить $\mu^{k+1} = 2\mu^k$ и перейти на Ш.7.

Замечание 4.1. В окрестности точки минимума x^* метод Левенберга-Марквардта обладает скоростью сходимости, близкой к квадратичной.

Требуется найти минимум тестовой функции Розенброка:

$$f(x) = \sum_{i=1}^{n-1} \left[a(x_i^2 - x_{i+1})^2 + b(x_i - 1)^2 \right] + f_0$$

- 1. Методами сопряженных градиентов (методом Флетчера-Ривза и методом Полака-Рибьера).
- 2. Квазиньютоновским методом (Девидона-Флетчера-Пауэлла).
- 3. Методом Левенберга-Марквардта.

Замечание 4.2. В качестве методов одномерного поиска использовать любой из известных методов одномерного поиска.

Варианты задания:

1.
$$a = 50, b = 2, f_0 = 10, n = 2$$
;

2.
$$a = 150, b = 2, f_0 = 100, n = 3$$

3.
$$a = 80, b = 3, f_0 = 110, n = 2$$
;

4.
$$a = 250, b = 2, f_0 = 50, n = 2$$
;

5.
$$a = 70, b = 5, f_0 = 30, n = 3$$
;

6.
$$a = 30, b = 2, f_0 = 80, n = 4$$
;

7.
$$a = 250, b = 2, f_0 = 300, n = 2$$

8.
$$a = 158, b = 2, f_0 = 40, n = 2$$
;

9.
$$a = 500, b = 2, f_0 = 10, n = 2$$
;

10.
$$a = 350, b = 2, f_0 = 110, n = 2$$
;

11.
$$a=300, b=5, f_0=15, n=2$$
;

12.
$$a=200, b=1, f_0=25, n=2;$$

13.
$$a=100, b=15, f_0=15, n=2$$
;

$$14.a = 500, b = 5, f_0 = 35, n = 2;$$

 $15. a = 100, b = 3, f_0 = 15, n = 2;$

15.
$$a=100, b=3, f_0=13, h=2$$
;
16. $a=140, b=2, f_0=24, n=2$;

```
17. a=1000, b=10, f_0=150, n=2;

18. a=100, b=2, f_0=45, n=3;

19. a=220, b=3, f_0=12, n=2;

20. a=500, b=15, f_0=25, n=2;

21. a=30, b=3, f_0=45, n=3;

22. a=180, b=2, f_0=15, n=2;

23. a=200, b=5, f_0=48, n=3;

24. a=300, b=25, f_0=250, n=2;

25. a=10, b=250, f_0=45, n=3.
```

- 1. Найти все стационарные точки и значения функций соответствующие этим точкам.
- 2. Оценить скорость сходимости указанных алгоритмов и сравнить по времени получение результата оптимизации для разных методов.
- 3. Реализовать алгоритмы программированием на одном из языков высокого уровня (C^{++} , $C^{\#}$, Python, Haskell и др.).
- 4. Отчет представить в стандартном виде (TEX, PDF).

Требования к отчету.

- 1. Отчет должен содержать:
- 1.1. титульный лист;
- 1.2. цель работы;
- 1.3. постановку задачи;
- 1.4. проверку решения на допустимость.
- 2. Исследование выполнить с помощью написанной Вами программы с результатами в графическом виде.
- 3. Кроме текста исследования следует привести также текст исходного кода программ.
- 4. Отчет оформляется в формате PDF желательно в редакторе TEX.