ESTADÍSTICA

PARAMETROS A ESTIMAR	VARIABLE A UTILIZAR	LIMITES DEL INTERVALO
μ (conocida σ²)	$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	$\bar{x} \pm z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$
μ (desconocida σ²)	$t_{n-1} = \frac{\overline{x} - \mu}{\sqrt[S]{\sqrt{n}}}$	$\bar{x} \pm t_{(n-1;1-\alpha/2)} \sqrt[S]{n}$
σ^2	$\chi^{2}_{n-1} = \frac{(n-1)s^{2}}{\sigma^{2}}$	$LI = \frac{(n-1)s^{2}}{\chi^{2}_{(n-1)(1-\alpha/2)}} \qquad LS = \frac{(n-1)s^{2}}{\chi^{2}_{(n-1)(\alpha/2)}}$
σ_1^2 / σ_2^2	$F_{(n_1-1)(n_2-1)} = \frac{s_1^2}{\sigma_1^2}$ s_2^2 / σ_2^2	$LI = \frac{(n-1)s^{2}}{\chi^{2}_{(n-1)(1-\alpha/2)}} \qquad LS = \frac{(n-1)s^{2}}{\chi^{2}_{(n-1)(\alpha/2)}}$ $LI = \frac{s_{1}^{2}}{s_{2}^{2}F_{(n-1)(n-2)(1-\alpha/2)}} \qquad LS = \frac{s_{1}^{2}}{s_{2}^{2}F_{(n-1)(n-2)(\alpha/2)}}$
π	$z = \frac{p - \pi}{\sqrt{\frac{p(1-p)}{n}}}$	$p \pm z_{(1-\alpha/2)} \sqrt{\frac{p(1-p)}{n}}$

ESTADÍSTICA

PARAMETROS A ESTIMAR	VARIABLE A UTILIZAR	LIMITES DEL INTERVALO
μ_1 - μ_2 Poblaciones normales muestras independientes con σ^2_1 y σ^2_2 conocidas	$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$(\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$
μ_1 - μ_2 Poblaciones normales muestras independientes con σ^{1}_{2} = σ^{2}_{2} = σ^{2} desconocidas	$t_{n_1+n_2-2} = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_a \sqrt{\frac{1}{n_1} + \frac{1}{n_1}}}$ $(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2$	$(\bar{x}_1 - \bar{x}_2) \pm t_{n_1 + n_2 - 2; \alpha/2} s_a \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
μ _d Poblaciones normales Muestras dependientes σ ² _d desconocida	$s^{2}_{a} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$ $t_{n-1} = \frac{\overline{d} - \mu_{d}}{s_{d} / \sqrt{n}}$	$\bar{d} \pm t_{n_1 - 1; \frac{\alpha}{2}} \frac{S_d}{\sqrt{n}}$