Worksheet 03

- **1**. Let $X_1, \ldots, X_n \sim N(\mu_X, \sigma_X^2)$ be a random sample. Using the results from the handout, construct a pivot statistic T as a function of \bar{X} , S_X^2 , μ_X , and σ_X^2 that has a distribution of t(n-1). Do not simplify.
- **2**. Simplify the form of the T statistic. It should no longer have any σ_X^2 terms (in fact this is the whole point of this specific form). Try to write the solution with $(\mu \bar{X})$ in the numerator and everything else in the denominator.
- 3. Let $t_{\alpha}(k)$ be the tail probability of a T-distribution with k degrees of freedom, just as we had with z_{α} on the handout. Following the same procedure with the example on the handout, construct a confidence interval with confidence level (1α) for μ_X . Write the solution as $\bar{X} \pm \Delta$ for some Δ .

4.

We will go back to the story about the fish. Say we sample 25 fish and have a sample mean of 12.1 centimeters and a sample variance of 6 centimeters squared. Given that $t_{0.01/2}(24)$ is approximately equal to 2.797, derive the confidence interval for the mean.

5. Let $C_k \sim \chi^2(k)$ for every integer k. Use Chebychev's Inequality to show that for any $\epsilon > 0$, we have:

$$\lim_{k\to\infty} \mathbb{P}\left[|C_k/k-1|\geq \epsilon\right]=0$$

In this case we say that C_k limits in probability to 1, written as $C_k \rightarrow_P 1$.

6. Let $Y_n \to_P y$ for a constant y, f is a real-valued function that is invertable around the neighborhood of y, and X is another random variable. Then, Slutsky's Theorem says that $g(Y_n) \cdot X$ limits in probability to $g(y) \cdot X$. Use this to show that the T distribution limits to the standard normal as the degrees of freedom limit to infinity.