MULTIVARIATE NORMAL University standard normal distribution N(Q1): PIX) = = exp(-x2), EX)=0, valx)=1 Universate normal distribution N(H, 52): P(x) = (202), EX]=H, voxX}=52 [If X~ND, 1] atheny Y=px+o=xx~N(y, 52). If X~N(y, 52) then Y=a+6x~N(a+dy, 6252) $\frac{\text{Multive reader Standard normal of } X \sim N(0, I_{mxm}); f(x) = f(x_1, \dots, x_m) = f(x_1,$ Multivariate normal of XER" N(4,): $f(x) = f(x_1, \dots, x_m) = \frac{1}{(2\pi)^{m/2} (det \Sigma)^{1/2}} exp\left(-\frac{(x-\mu)^T \cdot \Sigma^{-1}(x-\mu)}{2}\right) \text{ where } 2$ $EX = \mu = \begin{pmatrix} f_1 \\ f_m \end{pmatrix}$ and $Var[X] = \sum = \begin{bmatrix} \sigma_1 & \sigma_1 e \\ \vdots & \sigma_m \end{bmatrix}$ (*1) In general of is = cov(x; x;) = 0 \(\frac{1}{2}\) = 3 \(\chi_1, \chi_2, \chi_3) \(\chi_1 \) = 3 \(\chi_1, \chi_2, \chi_3) \(\chi_1 \) = 3 \(\chi_1, \chi_2, \chi_3) \(\chi_1 \) = 3 \(\chi_1, \chi_2, \chi_3 \) = 3 \(\chi_1, \chi_2, \chi_3, \chi_3 \) = 3 \(\chi_1, \chi_2, \chi_3, \ch $(\star 2) |f \sigma_{ij}^{2} = 0 \; \forall i,j = \lambda_{i,...}, x_{mi} \; \text{uncorrelated} \; \frac{dn l_{i} f_{i}}{dn l_{i}} \times_{i,...}, x_{mi} \; \text{independent} = \sum f(x) = \prod_{i=1}^{m} f(x_{i}) = \prod_{i=1}^{m}$ (*3) If X~N(O, Im) => Y=H+K:X~N(H, Z=KKT) (X3) If $X \sim N(\mu, \Sigma) \Longrightarrow Y \equiv A + BX \sim N(A + B\mu, B \Sigma B^T)$ (*4) Let XERM, YERK random Wedturs. Define the (*) ERM+K, then $\sum = \operatorname{Var}\left[X\right] = \left[\left((X) - E(X)\right) \left((X) - E(X)\right)\right] = \left[X - \frac{\delta_{X_{11}}}{\delta_{Y_{1}X_{1}}} - \frac{\delta_{X_{11}}}{\delta_{Y_{11}X_{1}}}\right] = \left[X - \frac{\delta_{X_{11}}}{\delta_{Y_{11}X_{1}}} - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}}\right] = \left[X - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}} - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}}\right] = \left[X - \frac{\delta_{X_{11}X_{1}}}{\delta_{X_{11}X_{1}}} - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}}\right] = \left[X - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}} - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}}\right] = \left(X - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}} - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}}\right] = \left(X - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}} - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}}\right] = \left(X - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_{1}}} - \frac{\delta_{X_{11}X_{1}}}{\delta_{Y_{11}X_$ If \(\times \ti (x5) Many important disvision, are derived as transformation, of multi normal.