Derin Öğrenme Yöntemleriyle Video Görüntülerden Aksiyon Tanıma

Recep Furkan Koçyiğit 22501048

furkan.kocyigit@std.yildiz.edu.tr

Bilgisayar Mühendisliği Bölümü

Elektrik Elektronik Fakültesi, Yıldız Teknik Üniversitesi

Özet

Bu ödevde, içerisinde masa tenisi şutu, tenis raket sallama, yumruk atma, rafting ve sörf, kategorilerinde toplamda 2111 adet video içeren UCF-101 veri kümesinde Konvolüsyonel Sinir Ağları (3D CNN) ve Uzun-Kısa Vadeli Bellek (LSTM) ile sınıflandırma işlemi yapılmıştır. Ödev Python programlama dili kullanılarak yazılmıştır. Videodaki görüntüler eğitim süresi göz önüne alınarak 56 genişlik, 56 yüksekliğe boyutlandırılmıştır. Her iki modelin de yüksek başarı sağladığı görülmüştür. LSTM modellerinin yapısı gereği eğitim ve test işlemlerinin daha fazla zaman aldığı gözlenmiştir.

Giriş

Ödev kapsamında aşağıdaki hiper parametreler arasından en iyi başarıyı sağlayan model bulunmaya çalışılmıştır. Eğitim için 1215, validasyon için 304 ve test için 592 adet veri kullanılmıştır. Veriye bakıldığında düzgün bir dağılım gösterdiği için doğruluk (accuracy) kullanılmıştır.

- Görüntü özellikleri: 56 genişlik, 56 yükseklik, 3 kanal
- 2. Konvolüsyon Katmanı = [4]
- 3. Filtre Sayısı = [32]
- 4. Kernel Boyutu = [3x3
- 5. Dropout = [Var, Yok]
- 6. Mini Batch Boyutu = 16
- 7. Epoch = 5
- 8. Konvolüsyon Katmanı Aktivasyon Fonksiyonu = [ReLU, ELU, Sigmoid, Tanh]
- 9. Optimizasyon Algoritması = Adam
- 10. Çerçeve sayısı (Frame) = [12, 24, 36, 48]

Ödev kapsamında yapılan iş parçacıkları şu şekildedir:

 Verinin Yüklenmesi: Video isimleri bulunan eğitim ve test dosyalarından bu

- isimlerin ve kategorilerinin ödev kapsamındaki kategorilerin filtrelenerek alınması
- Her Kategori İçin Ortalama Çerçeve
 Sayısının Bulunması: Dosya ismi verilen videolar için kategori bazında ortalama çerçeve sayılarının bulunması.
- 3. Verinin Ön İşleme Aşamasının Gerçeklenmesi: Verilen video dosyasının ismi için dosyanın belirli bir çerçevede okunması ve 0-255 arasındaki bit değerlerinin normalize edilmesi, çıktılara One-Hot Encode yöntemi uygulanması ve eğitim, validasyon ve test olarak ayrılması.
- 4. Çerçeve Sayısı, Aktivasyon Fonksiyonu ve Dropout Bilgisine Göre Modellerin Oluşturulması: 3D CNN ve CNN+LSTM ağlarını parametrik olarak oluşturmak için gerekli fonksiyonların oluşturulması.
- Model Eğitiminin Görselleştirilmesi:
 Eğitilen modelin başarı ve kayıplarının
 eğitim ve validasyon için gösterilmesi
- 6. Sonuçların yazdırılması: Eğitimi tamamlanan modellerin karmaşıklık matrislerinin gösterilmesi ve doğruluk(accuracy), f1 skoru, duyarlılık(recall) ve kesinlik(precision) bilgilerini göstermek için yazılmıştır.
- 7. Hiper Parametrelere Göre Modellerin Oluşturulması Sonuçların Elde Edilmesi: Verilen hiper parametrelere için tüm kombinasyonlarına göre modeller oluşturulması.
- En İyi Modelin Eğitim Kümesi ve
 Validasyon kümesi ile Eğitilip Başarısının
 Bulunması: En iyi başarı oranına sahip
 modelin hiper parametreleri
 belirlendikten sonra model oluşturulur ve
 eğitim ve validasyon kümesinin birleşimi
 ile tekrar eğitilir. Daha sonra başarısı
 hesaplanır.

Yöntem

En başarılı 3D CNN ağı 4 konvolüsyon katmanı, 32 adet filtre içermekte, kernel boyutu 3x3, aktivasyon fonksiyonu ReLU ve dropout içermeyen, 2 adet Max Pooling katmanı içeren ve 24 çerçeveye sahip görüntülerle eğitilen model olmuştur. Modele Max Pooling işlemi uygulandığında başarının arttığı ve parametre sayısının azalmasından dolayı işlem maliyetinin de azaldığı görülmüştür. Modelin blok diyagramı aşağıdaki gibidir:

En başarılı CNN+LSTM ağı 4 konvolüsyon katmanı, 32 adet filtre içermekte, kernel boyutu 3x3, aktivasyon fonksiyonu Tanh ve dropout içeren, 2 adet Max Pooling katmanı içeren ve 12 çerçeveye sahip görüntülerle eğitilen model olmuştur. Modelin blok diyagramı aşağıdaki gibidir:

Uygulama

UCF-101 veri kümesinde istenilen 5 kategori için toplamda 1519 adet eğitim, 592 adeti test verisidir. Eğitim ve test kümesindeki kategori dağılım aşağıda verilmiştir:

Eğitim ve test verilerinde her kategori için ortalama çerçeve sayıları aşağıda verilmiştir:

```
Ortalama frame sayıları

for category in categories:
    print(category + " : " + str(round(train[train["label"] -- category].num_frames.mean())))

    v     00x

TableTennisShot : 172
TennisShing : 161
Punch : 273
Rafting : 186
Surfing : 198

for category in categories:
    print(category + " : " + str(round(test[test["label"] -- category].num_frames.mean())))

    v     00x

TableTennisShot : 148
TennisShing : 154
Punch : 266
Rafting : 202
Surfing : 208
```

Validasyon verisi ile yapılan testler sonucunda modellerin başarısı aşağıda verilmiştir:

Model No ▼ N			Dropout 💌	Accuracy	F1 ▼
62 Is		tanh	True	0.9835526315789473	0.9803850509984156
35 c		relu	False	0.9802631578947368	0.9776994198265866
3 c		relu	False	0.9802631578947368	0.9766886828530641
64 Is		tanh	False	0.9736842105263158	0.9711488405374986
50 Is		relu	True	0.9703947368421053	0.9683217049176127
55 c		elu	False	0.9703947368421053	0.9662735516291516
34 Is		relu	True	0.9638157894736842	0.9611849227176397
53 c		elu	True	0.9671052631578947	0.960410520384516
40 Is		elu	False	0.9671052631578947	0.9592647658208444
54 15		elu	True	0.9605263157894737	0.9588475690931499
30 Is		tanh relu	True True	0.9572368421052632 0.9539473684210527	0.9507596756432557 0.950163342445412
46 ls		tanh	True	0.9539473684210527	0.9491356561644082
40 IS		elu	True	0.95723684210527	0.9491330301044082
52 ls		relu	False	0.9572368421052632	0.9468986921816477
56 Is		elu	False	0.9342105263157895	0.9286181821255065
19 0		relu	False	0.930921052631579	0.9265103575343095
		relu	True	0.9342105263157895	0.9224393576376952
38 Is		elu	True	0.930921052631579	0.922187354979117
49 c		relu	True	0.9210526315789473	0.9157593467930486
18 ls		relu	True	0.9243421052631579	0.9111830723200199
20 15		relu	False	0.9177631578947368	0.9079619168294528
48 Is		tanh	False	0.9078947368421053	0.9006780454203671
23 c		elu	False	0.9078947368421053	0.8983173753159728
14		tanh	True	0.9013157894736842	0.8929164776361216
33 c		relu	True	0.8881578947368421	0.8801510042515537
		elu	False	0.881578947368421	0.8715321939210773
1 c	nn 48	relu	True	0.819078947368421	0.8216330091601594
32 ls	stm 36	tanh	False	0.8289473684210527	0.8202816061453511
22 ls	stm 36	elu	True	0.8223684210526315	0.814199309840259
51 c	nn 12	relu	False	0.8026315789473685	0.8058901458159189
6 ls	stm 48	elu	True	0.8125	0.7919915914045468
4 15	stm 48	relu	False	0.7861842105263158	0.7557002116043974
36 ls	stm 24	relu	False	0.7730263157894737	0.7544878073549027
24 ls		elu	False	0.6644736842105263	0.6074366651312759
21 c	nn 36	elu	True	0.5822368421052632	0.5012607152074858
5 a	nn 48	elu	True	0.2532894736842105	0.08083989501312336
7 c		elu	False	0.2532894736842105	0.08083989501312336
9 c		sigmoid	True	0.2532894736842105	0.08083989501312336
10 ls		sigmoid	True	0.2532894736842105	0.08083989501312336
11 c		sigmoid	False	0.2532894736842105	0.08083989501312336
12 ls		sigmoid	False	0.2532894736842105	0.08083989501312336
13 c		tanh	True	0.2532894736842105	0.08083989501312336
25 c		sigmoid	True	0.2532894736842105	0.08083989501312336
26 Is		sigmoid	True	0.2532894736842105	0.08083989501312336
27 c		sigmoid	False	0.2532894736842105	0.08083989501312336
29 c		tanh	True True	0.2532894736842105 0.2532894736842105	0.08083989501312336 0.08083989501312336
41 C		sigmoid	False	0.2532894736842105	0.08083989501312336
43 C		sigmoid	False	0.2532894736842105	0.08083989501312336
57 c		sigmoid	True	0.2532894736842105	0.08083989501312336
58 19		sigmoid	True	0.2532894736842105	0.08083989501312336
59 c		sigmoid	False	0.2532894736842105	0.08083989501312336
61 0		tanh	True	0.2532894736842105	0.08083989501312336
15 c		tanh	False	0.24342105263157895	0.0783068783068783
16 15		tanh	False	0.24342105263157895	0.0783068783068783
28 Is		sigmoid	False	0.24342105263157895	0.0783068783068783
31 c		tanh	False	0.24342105263157895	0.0783068783068783
39 c		elu	False	0.24342105263157895	0.0783068783068783
42 ls		sigmoid	True	0.24342105263157895	0.0783068783068783
45 c		tanh	True	0.24342105263157895	0.0783068783068783
47 c		tanh	False	0.24342105263157895	0.0783068783068783
60 Is	stm 12	sigmoid	False	0.24342105263157895	0.0783068783068783
63 c		tanh	False	0.24342105263157895	

Tabloya bakıldığında aktivasyon fonksiyonu Sigmoid ve Tanh olan modellerin öğrenme konusunda diğer aktivasyon fonksiyonlarından başarısız olduğu görülmektedir. Ayrıca 48 çerçeve sayısına sahip görüntülerle eğitilen modellerin genel olarak daha düşük başarıya sahip olduğu görülmüştür. Tabloya bakarak dropout bilgisinin başarıda bir artışa ya da kayba sebep olduğu söylenemez. Aynı şekilde 3D CNN ve CNN+LSTM modellerinin de başarısı için kesin olarak birbirlerine üstünlüğü olduğu söylenemez.

3D CNN Modeli

En iyi parametrelere sahip 3D CNN ağının eğitim grafiği aşağıdaki gibidir:

Burada eğitim ve validasyon başarılarının 1' e geldiği görülmektedir. Eğitim süresi 230,78 saniye sürmüştür. Test verisiyle test edildiğine başarı oranı %100 bulunmuştur. Punch kategorisine ait 4 farklı rastgele örnekle elde edilen sonuçlar şu şekildedir:

4 farklı örneğe baktığımızda da modelin kesin olarak doğru bildiği görülmektedir. Rafting kategorisine ait 4 farklı rastgele seçilen örneğe ait sonuçlar şu şekildedir:

Burada da modelin raftingi kesin olarak bildiği görülmektedir. Sörf kategorisine ait 4 farklı rastgele seçilen resim aşağıdaki gibidir:

Burada ikinci seçilen resmin %1 oranında rafting kategorisine ait olduğunu %99 oranında sörf olarak doğru tahmin ettiği, diğer örnekler için de %100 oranında doğru tahmin ettiği görülmektedir. Masa tenisi kategorisine ait 4 farklı rastgele seçilen örneklere ait sonuçlar şe şekildedir:

Burada da tüm örnekleri mutlak kesinlikle doğru tahmin ettiği görülmektedir. Tenis raketi sallama kategorisine ait 4 farklı rasgele seçilen örneğe ait sonuçlar aşağıdaki gibidir:

Burada da mutlak kesinlikle modelin doğru tahmin ettiği görülmektedir. 3D CNN modeline ait karmaşıklık matrisi aşağıdaki gibidir:

Karmaşıklık matrisine bakarak modelin mükemmel bir şekilde öğrendiği görülmektedir. Hiçbir test örneği için yanlış tahminde bulunmadığı görülmektedir.

CNN+LSTM Modeli

En iyi parametrelere sahip CNN+LSTM ağının eğitim grafiği aşağıdaki gibidir:

Burada eğitim ve validasyon başarılarının 1' e geldiği görülmektedir. Eğitim süresi 84,85 saniye sürmüştür. Test verisiyle test edildiğine başarı oranı %99.8 bulunmuştur. Punch kategorisine ait 4 farklı rastgele örnekle elde edilen sonuçlar şu şekildedir:

4 farklı örneğe baktığımızda da modelin kesin olarak doğru bildiği görülmektedir. Rafting kategorisine ait 4 farklı rastgele seçilen örneğe ait sonuçlar şu şekildedir:

Burada son resim hariç diğer resimleri kesin olarak doğru tahmin ettiği son resimde ise tenis raketi sallama kategorisinin %10' luk bir dorğuluk payı olduğu görülmektedir. Sörf kategorisine ait 4 farklı rastgele seçilen resim aşağıdaki gibidir:

Burada 4 örneği de kesin olarak doğru tahmin ettiği görülmektedir. Masa tenisi şutu kategorisine ait 4 farklı rastgele seçilen örneklere ait sonuçlar şe şekildedir:

Burada da modelin kesin olarak doğru tahminde bulunduğu görülmektedir. Tenis raketi sallama kategorisine ait 4 farklı rasgele seçilen örneğe ait sonuçlar aşağıdaki gibidir:

Burada da mutlak kesinlikle modelin doğru tahmin ettiği görülmektedir. CNN+LSTM modeline ait karmaşıklık matrisi aşağıdaki gibidir:

Karmaşıklık matrisine bakarak modelin mükemmel bir şekilde öğrendiği görülmektedir. Hiçbir test örneği için yanlış tahminde bulunmadığı görülmektedir.

Sonuç

Hiper parametrelerin başarı üzerindeki etkisine baktığımızda aktivasyon fonksiyonu Sigmoid ve Tanh seçildiğinde en düşük başarıya sebep olduğu görülmektedir. Buna Vanishing gradient probleminin neden olduğu düşünülmektedir. Bu sorun, geriye doğru yayılım sırasında, ağın ilk katmanlarına doğru gradyanın giderek azalması veya sıfıra yaklaşması durumunda ortaya çıkar. Bu durum, bu katmanların güncellenmesi ve öğrenmesi zorlaştırır veya imkansız hale getirir.

Her iki modelinde çok iyi başarı oranları ortaya koyduğu görülmektedir. Aynı çerçeve sayısına sahip 3D CNN modellerinin CNN+LSTM modellerinden daha kısa sürede eğitimini tamamladığı görülmüştür. Bunun nedeninin LSTM doğası gereği daha fazla hesaplama karmaşıklığına sahip olması olduğu görülmüştür. Eğer iki modelden biri seçilecekse, eğitim ve test sürelerinin daha az olmasından dolayı 3D CNN daha makul bir tercih olacaktır.