■ Generate Random Point in a Circle - Documentation

1. Problem Statement

Design a class Solution that generates a random point uniformly inside a circle, including points on the boundary.

Class Signature:

```
class Solution:
```

```
def __init__(self, radius: float, x_center: float, y_center: float):
...

def randPoint(self) -> List[float]:
```

Input:

- A float radius, and two floats x_center, y_center representing the circle.
- Up to 30,000 calls to randPoint().

Output:

• Each call to randPoint() returns a list [x, y] that lies within the circle.

2. Intuition

To generate points uniformly inside a circle:

- Using a square and checking if the point lies within the circle is inefficient.
- Instead, sample angle and radius in polar coordinates, then convert to Cartesian.

3. Key Observations

- Random angle $\theta \in [0, 2\pi)$
- Radius must be scaled using sqrt(random) for uniform area distribution
- Convert polar to Cartesian:
 - $\circ \quad x = x_{center} + r * \cos(\theta)$
 - $\circ \quad y = y_center + r * sin(\theta)$

4. Approach

- 1. Initialization:
 - o Store radius, x_center, and y_center.
- 2. Generating Random Point:
 - ∘ Generate random angle $\in [0, 2\pi)$
 - Generate random r = sqrt(U) * radius, where $U \in [0, 1]$
 - o Convert to Cartesian:
 - \circ x = x_center + r * cos(angle)
 - $o y = y_center + r * sin(angle)$

5. Edge Cases

- Very small or very large radius values (handled by float precision)
- Center at negative coordinates
- Points exactly on the boundary (allowed)
- High volume of calls $(30,000+) \rightarrow$ ensure performance

6. Complexity Analysis

- \square Time Complexity:
 - O(1) per call to randPoint() Constant time to compute coordinates.
- ☐ Space Complexity:
 - O(1) Only storing constants (radius, x_center, y_center)

7. Alternative Approaches

Method	Description	Pros	Cons
Rejection	Randomly pick in bounding square,	Conceptually	Inefficient (~21%
Sampling	reject if outside circle	simple	rejection rate)
D. 1		D.C.	CIL L.1
Polar	Sample angle and radius using	Efficient and	Slightly more math
Coordinates ♥	$\operatorname{sqrt}(\operatorname{U})$	uniform	involved

8. Test Cases

9. Final Thoughts

- Using polar coordinates with a scaled radius is the most optimal and mathematically correct way to uniformly sample points in a circle.
- Ensures performance even with high number of calls.
- Covers all edge cases, including boundary conditions.