virtio 简介

本文首发于我的公众号 Linux云计算网络(id: cloud_dev),专注于干货分享,号内有 10T 书籍和视频资源,后台回〗 至 CONTENTS 取,欢迎大家关注,二维码文末可以扫。

1. 什么是 virtio

2. 为什么是 virtio

3. virtio 的架构

4. virtio 数据流交互机制

什么是 virtio

virtio 是一种 I/O 半虚拟化解决方案,是一套通用 I/O 设备虚拟化的程序,是对半虚拟化 Hypervisor 中的一组通用 I/O 设 套上层应用与各 Hypervisor 虚拟化设备(KVM,Xen,VMware等)之间的通信框架和编程接口,减少跨平台所带来的兼: 5. 总结: 驱动程序开发效率。

为什么是 virtio

在完全虚拟化的解决方案中, guest VM 要使用底层 host 资源,需要 Hypervisor 来截获所有的请求指令,然后模拟出这些指令的行为,这样 势必会带来很多性能上的开销。半虚拟化通过底层硬件辅助的方式,将部分没必要虚拟化的指令通过硬件来完成,Hypervisor 只负责完成部 分指令的虚拟化,要做到这点,需要 guest 来配合,guest 完成不同设备的前端驱动程序,Hypervisor 配合 guest 完成相应的后端驱动程序, 这样两者之间通过某种交互机制就可以实现高效的虚拟化过程。

由于不同 guest 前端设备其工作逻辑大同小异(如块设备、网络设备、PCI设备、balloon驱动等),单独为每个设备定义一套接口实属没有必 要,而且还要考虑扩平台的兼容性问题,另外,不同后端 Hypervisor 的实现方式也大同小异(如KVM、Xen等),这个时候,就需要一套通 用框架和标准接口(协议)来完成两者之间的交互过程,virtio 就是这样一套标准,它极大地解决了这些不通用的问题。

virtio 的架构

从总体上看,virtio 可以分为四层,包括前端 guest 中各种驱动程序模块,后端 Hypervisor (实现在Qemu上)上的处理程序模块,中间用于 前后端通信的 virtio 层和 virtio-ring 层,virtio 这一层实现的是虚拟队列接口,算是前后端通信的桥梁,而 virtio-ring 则是该桥梁的具体实现, 它实现了两个环形缓冲区,分别用于保存前端驱动程序和后端处理程序执行的信息。

严格来说,virtio 和 virtio-ring 可以看做是一层,virtio-ring 实现了 virtio 的具体通信机制和数据流程。或者这么理解可能更好,virtio 层属于控制层,负责前后端之间的通知机制(kick,notify)和控制流程,而 virtio-vring 则负责具体数据流转发。

virtio 数据流交互机制

vring 主要通过两个环形缓冲区来完成数据流的转发,如下图所示。

vring 包含三个部分,描述符数组 desc,可用的 available ring 和使用过的 used ring。

desc 用于存储一些关联的描述符,每个描述符记录一个对 buffer 的描述,available ring 则用于 guest 端表示当前有哪些描述符是可用的,而 used ring 则表示 host 端哪些描述符已经被使用。

Virtio 使用 virtqueue 来实现 I/O 机制,每个 virtqueue 就是一个承载大量数据的队列,具体使用多少个队列取决于需求,例如,virtio 网络驱动程序(virtio-net)使用两个队列(一个用于接受,另一个用于发送),而 virtio 块驱动程序(virtio-blk)仅使用一个队列。

具体的,假设 guest 要向 host 发送数据,首先,guest 通过函数 virtqueue_add_buf 将存有数据的 buffer 添加到 virtqueue 中,然后调P virtqueue_kick 函数,virtqueue_kick 调用 virtqueue_notify 函数,通过写入寄存器的方式来通知到 host。host 调用 virtqueue_get_buf 乏 virtqueue 中收到的数据。

存放数据的 buffer 是一种分散-聚集的数组,由 desc 结构来承载,如下是一种常用的 desc 的结构:

当 guest 向 virtqueue 中写数据时,实际上是向 desc 结构指向的 buffer 中填充数据,完了会更新 available ring,然后再通知 host。

当 host 收到接收数据的通知时,首先从 desc 指向的 buffer 中找到 available ring 中添加的 buffer,映射内存,同时更新 used ring,并通知 guest 接收数据完毕。

总结:

virtio 是 guest 与 host 之间通信的润滑剂,提供了一套通用框架和标准接口或协议来完成两者之间的交互过程,极大地解决了各种驱动程序和不同虚拟化解决方案之间的适配问题。

virtio 抽象了一套 vring 接口来完成 guest 和 host 之间的数据收发过程,结构新颖,接口清晰。

我的公众号 「Linux云计算网络」(id: cloud_dev) ,号内有 10T 书籍和视频资源,后台回复 「1024」 即可领取,分享的内容包括但不限于 Linux、网络、云计算虚拟化、容器Docker、OpenStack、Kubernetes、工具、SDN、OVS、DPDK、Go、Python、C/C++编程技术等内容,欢迎大家关注。

作者:公众号「Linux云计算网络」,专注于Linux、云计算、网络领域技术干货分享

出处: https://www.cnblogs.com/bakari/p/8309638.html

本站使用「署名 4.0 国际」创作共享协议,转载请在文章明显位置注明作者及出处。

分类:云计算,虚拟化 标签:虚拟化,云计算,KVM 博客园

首页

新随笔

联系 订阅

管理

«上一篇: 那些年追过的......写过的技术博客

注册用户登录后才能发表评论,请 <u>登录</u> 或 <u>注册</u>, <u>访问</u> 网站首页。

» 下一篇: DPDK NFV 性能提升

posted @ 2018-01-18 13:12 CloudDeveloper 阅读(1

≡ CONTENTS

- 1. 什么是 virtio
- 2. 为什么是 virtio
- 3. virtio 的架构
- 4. virtio 数据流交互机制

5. 总结:

Copyright © 2020 CloudDeveloper Powered by .NET Core on Kubernetes Powered By Cnblogs | Theme Silence v2.0.0