ECE380 Digital Logic

Combinatorial Circuit Building Blocks: Multiplexers

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-1

Multiplexers

- A multiplexer (MUX) circuit has
 - A number of data inputs
 - One (or more) select inputs
 - One output
- It passes the signal value on one of its data inputs to its output based on the value(s) of the select signal(s)

s	$f(s,x_1,x_2)$
0	<i>X</i> ₁
1	<i>X</i> ₂

Electrical & Computer Engineering

Multiplexer implementations

4-input multiplexer

• A 4-input multiplexer 'selects' one of four data inputs to be output based on the values of 2 select lines

 $f=s_1's_0'w_0+s_1's_0w_1+s_1s_0'w_2+s_1s_0w_3$

Electrical & Computer Engineering

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-4

Building a 4-input MUX

• A 4-input multiplexer can be constructed using 2input multiplexers

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-5

MUX application (a 2x2 crossbar)

- A circuit with *n* inputs and *k* outputs whose function is to provide a capability to connect any input to any output is called a nxk
 - crossbar switch
 - With 2 inputs and 2 outputs, it is called a 2x2 crossbar
 - Useful in applications where it is necessary to connect one set of wires to another set of wires, where the connection pattern changes from time to time
 - Telephone switching networks are an example

Electrical & Computer Engineering

MUX application (prog. switch)

- In programmable devices (PLDs, CPLDs and FPGAs) programmable switches connect wires inside the device
 - These can be implemented with multiplexers

An FPGA logic block with programmable inputs

MUX implementation

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-7

Logic functions using MUXs

- MUXs can be used to synthesize logic functions
 - The LUT implementations use MUXs to select a (constant) value from a look-up table
- Consider the XOR function

а	b	f
0	0	0
0	1	1
1	0	1
1	1	0

Electrical & Computer Engineering

Logic functions using MUXs

• The previous XOR solution is not particularly efficient

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-9

Logic functions using MUXs

 Implement the following with a 2-input MUX and any additional logic gates

Electrical & Computer Engineering

Logic functions using MUXs

A 3-input XOR can be implemented with two 2-input MUXs

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-1

Logic functions using MUXs

• Implement the following with 2-input MUXs and any additional logic gates

X	У	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Electrical & Computer Engineering

Shannon's expansion theorem

• Any Boolean function $f(w_1,...,w_n)$ can be written in the form

$$f(w_1,...,w_n)=(w_1)'\cdot f(0,w_2,...,w_n)+(w_1)\cdot f(1,w_2,...,w_n)$$

- The expansion can be done using any of the n variables
- If $f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$
 - Expanding this in terms of w_1 gives

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + (w_1)'(w_2w_3)$$

f when $w_1 = 1$ f when $w_1 = 0$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-13

Shannon's expansion example

Electrical & Computer Engineering

Shannon's expansion example

X	У	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z$$

choose x as the expansion variable

$$f=x'(y'z'+y'z+yz)+x(y'z'+y'z)$$

$$f=x'(y'+z)+x(y')$$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 21-15

Shannon's expansion example

X	У	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z$$

choose z as the expansion variable

Electrical & Computer Engineering