INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Proposal for introducing a new subject

1	Name of the Department	Mathematics
2	Name of the Subject	Galois Theory
3	LTP and Credit	3+1+0 (4 credit)
4	Status of the subject	(
	(a) Specify the Session, Semester, from	Autumn 2015-2016
	which the subject is going to be	
	offered	
	(b) Please Specify the Level of the	
	Subject	B. Tech, M.Sc, Integrated M.Sc, Ph. D.
	(c) Whether the subject will be offered	
	as compulsory or elective	Elective
	(d) The semester in which the subject	
	will be offered	
	(e) Name(s) of the Programme(s) in	Autumn
	whose curricula this subject will be	
	included	(1) 2rd competer of 2 years NA Co
		(1) 3rd semester of 2 year M.Sc.(2) 7th semester of 5 year integrated M.Sc.
		(3) Research scholars
		(4) 4 th year of B.Tech
5	Prerequisite(s) for the subject,	(1) Linear Algebra (MA30103)
	if any (Please give the subject numbers and	(2) Modern Algebra (MA41002)
	names)	
6	Objective and Contents	
	(a) Objective	To study the solvability of polynomials by using the
		Galois groups. This course will be compulsory to
		students who would like to specialize or pursue
		research in the field of pure mathematics (for
		example: Commutative Algebra, Algebraic
		Geometry, Number theory, Representation theory).
	(b) Contonts (in 100 to 150	Fields Characteristic and prints subfields Field
	(b) Contents (in 100 to 150	Fields, Characteristic and prime subfields, Field
	words)	extensions, finite, algebraic and finitely generated field extensions, Classical ruler and compass
		constructions, Splitting fields, transcendental,
		separable, normal purely inseparable extensions,
		algebraic closures. Finite fields, Cyclotomic fields,
		perfect fields, theorem of the primitive element.
		Galois groups, Fundamental Theorem of finite
		Galois Theory, Composite extensions, Examples
		(including cyclotomic extensions and extensions of
		finite fields), Cyclic extensions, determining the
		Galois group of a polynomial, solvability by radicals,

		Kummer theory. Transcendental extensions.
7	Names of the faculty members of the Department/Centers/School who have the necessary expertise and will be the willing to teach the subject (Minimum two faculty members should be willing to teach the subject)	(1) Dr. Ramakrishna Nanduri (Mathematics) (2) Dr. Bappaditya Bhowmik (Mathematics)
8	Do the contents of the subject have an overlap with any other subject offered in the Institute?	No
9	Recommended Text books/References	
	a) Theory (Text Books) b) References (Literature)	 M. Artin, Algebra, Prentice Hall of India, 1994. N. Jacobson, Basic Algebra I, 2nd Edition, Hindustan Publishing Co., 1984, W.H. Freeman, 1985. D.S. Dummit and R. M. Foote, Abstract Algebra, 2nd Edition, John Wiley, 2002. J.A. Gallian, Contemporary Abstract Algebra, 4th Edition, Narosa, 1999. Lang, Serge, Algebra, revised third edition,
		Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002.
10	Names of Departments/Centers/Schools/Programmes whose students are expected to register for this subject	Mathematics, CSE, ECE, EE, PHY

Lecture-wise Topics:

Number of Lectures	Topics
2 Lectures	Fields, Characteristic and prime subfields, Field
	extensions, finite, algebraic and finitely
	generated field extensions
2 Lectures	Classical ruler and compass constructions
2 Lectures	Splitting fields
5 Lectures	transcendental, separable, normal, purely
	inseparable extensions
1 Lecture	algebraic closures
4 Lectures	Finite fields, Cyclotomic fields, perfect fields,
	theorem of the primitive element
6 Lectures	Galois groups, Fundamental Theorem of finite

	Galois Theory
4 Lectures	Composite extensions, Examples (including cyclotomic extensions and extensions of finite fields)
5 Lectures	determining the Galois group of a polynomial
4 Lectures	solvability by radicals, Kummer theory
1 Lecture	Transcendental extensions

Total: 36 Lectures and 10 Tutorials.