代数幾何まとめノート

Fefr

2024年8月24日

目次

第1章	Scheme	5
1.1	Zariski Topology	5
1.2	Algebraic Sets	5
1.3	Sheaves	6
	1.3.1 B -sheaf	14
1.4	Ringed Topological Space	15
1.5	Schemes	18
	1.5.1 Morphism of schemes	23
	1.5.2 Projective schemes	27
付録 A	Limit	29
A.1	Inductive Limit	29
委 引		31

Scheme

第1章

1.1 Zariski Topology

 $\operatorname{Spec} A$ を幾何的な対象に昇華するために、位相を導入しよう. まず、環 A のイデアル I に対して

$$\begin{split} V(I) &= \{ \mathfrak{p} \in \operatorname{Spec} A \mid I \subset \mathfrak{p} \} \\ D(I) &= \operatorname{Spec} A \setminus V(I) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid I \not\subset \mathfrak{p} \} \end{split}$$

更に, $f \in A$ に対して

$$\begin{split} V(f) &= \{ \mathfrak{p} \in \operatorname{Spec} A \mid Af \subset \mathfrak{p} \} \\ D(f) &= \operatorname{Spec} A \setminus V(Af) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid Af \not\subset \mathfrak{p} \} \end{split}$$

と定義する. また, $Af \subset \mathfrak{p}$ より $af \in Af$ は $af \in \mathfrak{p}$ なので, a=1 とすれば $f \in \mathfrak{p}$ がわかり, イデアルの定義より,

$$V(f) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \in \mathfrak{p} \}$$

$$D(f) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p} \}$$

がわかる.次に $\{D(f)\}_{f\in A}$ を開集合族とする位相が定まることを示そう.

Proposition 1.1.1. ああああ

1.2 Algebraic Sets

A を Noether 環, I をそのイデアルとするとき $bl_I A$ は Noether 環である. $\mathrm{bl}_I A = A[It]$ に注意すると任意の元は I の生成元の集合を $\{a_1, \cdots, a_r\}$ とすると

$$\sum_{n} \left(\sum_{i} a_{i,n} a_{i} \right)^{n} t^{n} = \sum_{n} \sum_{\substack{i_{1}, \dots, i_{r} \\ i_{1} + i_{2} + \dots + i_{r} = n}} b_{i_{1}, \dots, i_{r}, n} a_{1}^{i_{1}} \cdots a_{r}^{i_{r}} t^{n}$$

なので $\varphi: A[X_1, \cdots, X_r] \to A[It]$ を $X_i \mapsto a_i$ とすると

$$\varphi(\sum_{i_1,\dots,i_r} a_{i_1,\dots,i_r} X_1^{i_1} \dots X_r^{i_r}) = \sum_{i_1,\dots,i_r} a_{i_1,\dots,i_r} a_1^{i_1} \dots a_r^{i_r}$$

$$= \sum_{n} \sum_{\substack{i_1,\dots,i_r \\ i_1+i_2+\dots+i_r=n}} a_{i_1,\dots,i_r} a_1^{i_1} \dots a_r^{i_r} t^n$$

全射準同型なので

$$A[X_1, \cdots, X_r]/\mathrm{Ker}\,\varphi \simeq A[It]$$

左辺は Noether 環なので $\mathrm{bl}_I A$ は Noether 環である. 特に

$$\operatorname{gr}_I A = \operatorname{bl}_I A / I \operatorname{bl}_I A$$

も Noether 環である.

1.3 Sheaves

Definition 1.3.1. X を位相空間とする.X 上の (アーベル群の) **前層** (presheaf) チとは

- U を任意の X の開集合に対して $\mathfrak{F}(U)$ はアーベル群. 制限写像 (restriction map) と言われる群準同型 $\rho_{U,V}:\mathfrak{F}(U)\to\mathfrak{F}(V)$ が任意の開 集合 $V \subset U$ に対して存在する.

そして次の条件を満たす.

- (2) 任意の開集合 $W \subset V \subset U$ に対して $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ となる.

 $s \in \mathfrak{F}(U)$ を U 上の \mathfrak{F} の切断 (section) という. また, $\rho_{U,V}(s) \in \mathfrak{F}(V)$ を $s|_V$ と書いて s の Vへの制限という.

また、単に \mathcal{F} 、 \mathcal{G} 、 \mathcal{H} 、... などと書いたら(前)層を表すことや、 ρ と書いたら制限写像を意味す る。また、どの $(\hat{\mathbf{n}})$ 層の制限写像かを明示するため、例えば、 $\rho_{UV}^{\mathfrak{T}}$ などと書くことがある.

Remark . $\mathcal{F}(U)$ を $\Gamma(U,\mathcal{F})$ と書くことがある. これはたぶん \mathcal{F} が複雑だったりU が複雑だったりするからである.

Definition 1.3.2. 前層牙が層 (sheaf) とは次の条件を満たすことをいう.

- (4) (Uniqueness) U を X の開集合とし $\{U_i\}_i$ をその開被覆とする. $s \in \mathcal{F}(U)$ が任意 の i に対して $s|_{U_i}=0$ ならば s=0
- (5) (Glueing local sections) 上の状況で $s_i \in \mathcal{F}(U_i)$ が $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ を満たすならば $s_i|_{U_i} = s_i$ を満たす $s_i \in \mathcal{F}(U)$ が存在する.

Remark . 牙が層ならば $\mathfrak{F}(\emptyset) = 0$ となる.

Example 1.3.1. *X* を位相空間とする.

 \mathcal{C}_X^0 を X の開集合 U に対して $U \to \mathbf{C}$ なる連続写像全体の集合 $\mathcal{C}_X^0(U)$ を対応させるものとし、制限写像を普通の制限とする.

$$\mathcal{C}_X^0(U) = \{ f : U \to \mathbf{C} \mid f \text{ is continuous} \}$$

すると, \mathcal{C}_X^0 はX上の層となる.

Proof. $V \subset U$ なる開集合 U,V に対して U 上の連続写像 $f \in \mathcal{C}_X^0(U)$ を V に制限することによって得られる V 上の連続写像を $\rho_{U,V}(f)(=f|_V)$ と書く. すると、これは \mathbf{C} 上のベクトル空間 (\mathbf{C} 上の関数空間) の準同型 $\rho_{U,V}:\mathcal{C}_X^0(U)\to\mathcal{C}_X^0(V)$ となる. つまり (\mathcal{C}_X^0,ρ) は前層となる.

また,(4) を満たすのは明らかで.(5) もすぐに成り立つことがわかる. $\{U_i\}_i$ を U の開被覆とする. $f_i \in \mathcal{C}^0_X(U_i)$ が $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ を満たすとする. するとそれらを張り合わせた関数を f とすればこれは $f \in \mathcal{C}^0_X(U)$ であり, $f|_{U_i} = f_i$ となる. よって (\mathcal{C}^0_X, ρ) は層となる. これを連続写像が成す層という.

Example 1.3.2. *X* を位相空間とする.

Aを自明でないアーベル群とする. A_X を X の空でない開集合 U に対して $A_X(U) = A$ に、空集合 \varnothing に対して $A_X(\varnothing) = 0$ に対応させるものとし、制限写像を空でない開集合 $V \subset U$ に対して $\rho_{U,V} = \operatorname{id}_A$ とし、 $\rho_{U,\varnothing} = 0$ とする.

すると, (A_X, ρ) はX上の前層にはなるが,一般に層とはならない.

Proof. 例えば,X が連結でないとすると、非交差な開集合 U,V があって $X=U\cup V$ とかける. すると $\{U,V\}$ は X の開被覆となる. $s_U\in\mathcal{A}_X(U)=A$ が $s_U|_{U\cap V}=s_U|_\varnothing=0=s_V|_{U\cap V}$ を満たすとする. このとき、任意の $s\in\mathcal{A}_X(X)=A$ で $s|_U=s|_V=s$ となり層とならない.

Example 1.3.3. (skyscraper sheaf)

X を位相空間、A をアーベル群とする。 $p\in X$ に対して $i_p:\{p\}\hookrightarrow X$ を包含写像とする。このとき $i_{p,*}A$ を

$$i_{p,*}\mathcal{A}(U) = \begin{cases} A & p \in U \\ 1 & p \notin U \end{cases}$$

と定義する。これは層になる。

Example 1.3.4. \mathfrak{F} を X 上の前層とする.このとき X の開集合 U に対して U 上の前層 $\mathfrak{F}|_U$ が $V \subset U$ なる開集合に対して $\mathfrak{F}|_U(V) = \mathfrak{F}(V)$ として定義される.これを \mathfrak{F} **の** U への制限 (restriction of \mathfrak{F} to U) という.もし \mathfrak{F} が層なら $\mathfrak{F}|_U$ も層である.

Definition 1.3.3. 位相空間 X 上の前層 \mathcal{F} と $x \in X$ に対して,x での \mathcal{F} の茎 (stalk) \mathcal{F}_x という群が定義できる.

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U)$$

ただし,U は x の開近傍をすべてを回る.U 上の切断 $s \in \mathfrak{F}(U)$ に対して $x \in U$ の茎 \mathfrak{F}_x への自然な群準同型の像を s_x と書いて,x での s の芽 (germ) という.

Remark.ここで、 \mathcal{F}_x は x 近傍の情報を持っていると言える.実際、

$$\mathfrak{F}_x = \bigsqcup_{x \in U_i} \mathfrak{F}(U_i) / \sim \cdots (*)$$

ここで,同値関係は

$$(t,U) \sim (s,V) \stackrel{\text{def}}{\equiv} \exists W \subset U, V, x \in W \text{ s.t. } t|_W = s|_W$$

である. ただし、(t,U) とは x の開近傍 U で $t \in \mathfrak{F}(U)$ という意味である. また (*) を見れば分かるように、 \mathfrak{F}_x の任意の元はある x 近傍 U 上の切断 $s \in \mathfrak{F}(U)$ の芽である.

Proposition 1.3.5. 層の定義の (4),(5) を次の列が完全系列であるとすることができる.

$$C^{\bullet}(\mathfrak{U},\mathfrak{F}): 0 \longrightarrow \mathfrak{F}(U) \xrightarrow{d_0} \prod_i \mathfrak{F}(U_i) \xrightarrow{d_1} \prod_i \mathfrak{F}(U_i \cap U_j)$$

ただし、 \mathcal{U} は開集合U の開被覆で $\mathcal{U} = \{U_i\}_i$.

$$d_0: s \mapsto (s|_{U_i})_i, d_1: (s_i)_i \mapsto (s_i|_{U_i \cap U_i} - s_j|_{U_i \cap U_j})_{i,j}$$

Proof.

Lemma 1.3.6. $\mathfrak F$ をX上の層とする $s,t\in\mathfrak F(X)$ が任意の $x\in X$ に対して $s_x=t_x$ ならばs=t

Proof. 差を考えれば t=0 のときを考えればいい. $s_x=0$ ($\forall x\in X$) とすると,x の開近傍 U_x があって $s|_{U_x}=0$ となる. $\{U_x\}_{x\in U_x}$ は X の開被覆なので,s=0 となる.

Definition 1.3.4. X 上の 2 つの前層 \mathcal{F} , \mathcal{G} とする. **前層の射** $\alpha: \mathcal{F} \to \mathcal{G}$ とは, X の開集合 U に対して群準同型 $\alpha(U): \mathcal{F}(U) \to \mathcal{G}(U)$ があって, 任意の開集合の組 $V \subset U$ に対して $\alpha(V) \circ \rho_{U,V}^{\mathcal{F}} = \rho_{U,V}^{\mathcal{G}} \circ \alpha(U)$ を満たすことをいう.

X の任意の開集合 U に対して $\alpha(U)$ が単射ならば α は単射であるという.(全射はうまくいかんっぽい?)

 $\alpha: \mathfrak{F} \to \mathfrak{G}$ を X 上の前層の射とする. 任意の $x \in X$ に対して α から自然に誘導される群準同型 $\alpha_x: \mathfrak{F}_x \to \mathfrak{G}_x$ で $(\alpha(U)(s))_x = \alpha_x(s_x)$ が X の任意の開集合 $U, s \in \mathfrak{F}(U), x \in U$ で成り立つものが取れる.

 α_x が任意の $x \in X$ で全射なら α が全射であるという.

Example 1.3.7. $X = \mathbb{C} \setminus \{0\}$ とし牙をX上の正則関数がなす層とし、gをX上の双正則関数のなす層とする。今,任意の開集合U と任意の $f \in \mathcal{F}(U)$ に対して $\alpha(U)(f) = \exp(f)$ で定義される層の射 $\alpha: \mathcal{F} \to \mathcal{G}$ が全射であることはよく知られている。しかし $\alpha(X): \mathcal{F}(X) \to \mathcal{G}(X)$ は全射ではない.例えば恒等写像は $\exp(f)$ と書けない.

Proposition 1.3.8. $\alpha: \mathcal{F} \to \mathcal{G}$ を X 上の層の射とする.

$$\alpha$$
 が同型 $\Leftrightarrow \alpha_x$ が同型 $(\forall x \in X)$

Theorem 1.3.9. 位相空間 X 上の前層 \mathcal{F} に対して、前層 \mathcal{F} の層化 (sheafification) \mathcal{F}^{\dagger} は存在する.

Proof. X の開集合U に対して

$$\mathfrak{F}^{\dagger}(U) = \left\{ \sigma: U \to \prod_{x \in U} \mathfrak{F}_x \,\middle|\, \forall x \in U, x \in \exists V \subset U : \text{open, } \exists s \in \mathfrak{F}(V) \text{ s.t. } \sigma(y) = s_y \ (\forall y \in V) \right\}$$

とする. ただし, σ は任意の $x \in U$ に対して $\sigma(x) \in \mathcal{F}_x$ とする. また, $V \subset U$ なる開集合に対し,

$$\begin{array}{cccc} \rho_{U,V}^{\mathcal{F}^{\dagger}} : & \mathcal{F}^{\dagger}(U) & \longrightarrow & \mathcal{F}^{\dagger}(V) \\ & & & & & & & & & \\ & & \sigma & \longmapsto & \sigma|_{V} \end{array}$$

が定義できる. 実際, 任意の $x \in V$ をとる. $V \subset U$ であり, $\sigma \in \mathcal{F}^{\dagger}(U)$ より

$$x \in \exists U_0 \subset U$$
:open, $\exists s \in \mathfrak{F}(U_0)$ s.t. $\sigma(y) = s_y \ (\forall y \in U_0)$

 $V_0 = U_0 \cap V$, $t = s|_{V_0}$ とすると任意の $y \in V_0$ に対して

$$\sigma(y) = \sigma|_V(y) = s_y$$

さらに帰納極限の定義から

$$\sigma|_V(y) = t_y$$

次に $\mathcal{F}^{\dagger}(U)$ がアーベル群, つまり $\sigma, \tau \in \mathcal{F}^{\dagger}(U)$ ならば $\sigma + \tau \in \mathcal{F}^{\dagger}(U)$ を示そう. $\sigma, \tau \in \mathcal{F}^{\dagger}(U)$ より任意の $x \in U$ に対して

$$x \in \exists U_0 \subset U : \text{open}, \exists s \in \mathcal{F}(U_0) \text{ s.t. } \sigma(y) = s_y \ (\forall y \in U_0)$$

 $x \in \exists V_0 \subset U : \text{open}, \exists t \in \mathcal{F}(V_0) \text{ s.t. } \tau(z) = t_z \ (\forall z \in V_0)$

を満たす. いま $W = U_0 \cap V_0, s' = s|_W, t' = t|_W$ とすると,

$$x \in W \subset U$$
: open, $s', t' \in \mathcal{F}(W)$ s.t. $(\sigma + \tau)(y) = \sigma(y) + \tau(y)$
= $s_y + t_y$
= $(s + t)_y \ (\forall y \in W)$

よって $\sigma + \tau \in \mathcal{F}^{\dagger}(U)$ また明らかに可換. よって $\mathcal{F}^{\dagger}(U)$ はアーベル群.

また,通常の制限で制限写像を定義しているため、5寸は前層となる.

更に層となることを示そう.

U を X の開集合とし、 $\{U_i\}_i$ をその開被覆とする。 $\sigma \in \mathcal{F}^\dagger(U)$ が任意の i に対して $\sigma|_{U_i}=0$ とする。 つまり任意の $x \in U_i$ に対して $\sigma(x)=0$ とする。 U_i は U を被覆するので結局 $\sigma=0$ となる。

次に, $\sigma_i \in \mathcal{F}^{\dagger}(U_i)$ とし, $\sigma_i|_{U_i \cap U_j} = \sigma_j|_{U_i \cap U_j}$ と仮定すると,

ただし $,x \in U_i$. すると $,\sigma$ は $\sigma_i \in \mathfrak{F}^{\dagger}(U_i)$ を張り合わせて作っているのでこれは $\sigma \in \mathfrak{F}(U)$ となることが容易にわかる。よって、 \mathfrak{F}^{\dagger} は層になる。

Proposition 1.3.10. 層化の射 $\theta: \mathfrak{F} \to \mathfrak{F}^\dagger$ に対して、その茎の射 $\theta_x: \mathfrak{F}_x \to \mathfrak{F}_x^\dagger$ は同型である。

Lemma 1.3.11. \mathfrak{F} を X 上の層とし、 \mathfrak{F}' を \mathfrak{F} の部分層とする。このとき開集合 U を $\mathfrak{F}(U)/\mathfrak{F}'(U)$ に対応させるものは前層になる。

Proof. この対応を \S とおく。 $V \subset U$ なる開集合U,V をとる。制限写像を

とすると、これは well-defined である。また、 $U \subset V \subset W$ なる開集合の組に対して

$$\rho_{U,W}^{\mathfrak{G}} = \rho_{V,W}^{\mathfrak{G}} \circ \rho_{U,V}^{\mathfrak{G}}$$

が成り立つことは制限写像の定義から明らかである。よって 5 は前層。 ■

Definition 1.3.5. Lem:??で定義した前層の層化を $\mathfrak{F}/\mathfrak{F}'$ と書いて、 **商層 (quotient shaef)** という。

Definition 1.3.6. $\alpha: \mathcal{F} \to \mathcal{G}$ を前層の射とする。このとき開集合 U に対して $U \mapsto \operatorname{Ker}(\alpha(U))$ とするものは \mathcal{F} の部分層になる。これを $\operatorname{Ker} \alpha$ と書いて、 α **の核 (kernel of** α) という。

更に、 $U \mapsto \operatorname{Im}(\alpha(U))$ は一般には前層となるので、これの層化を $\operatorname{Im} \alpha$ と書いて、 α **の 像 (image of** α) という。

また, $U \mapsto \operatorname{Coker}(\alpha(U)) = \mathfrak{G}(U)/\operatorname{Im}(\alpha(U))$ は一般には前層となるので,これの層化を $\operatorname{Coker}\alpha$ と書いて, α の余核 (cokernel of α) という.

Lemma 1.3.12. $\mathfrak{F},\mathfrak{G}$ を X 上の層 \mathfrak{F}' を \mathfrak{F} の部分層 $\mathfrak{a}:\mathfrak{F}\to\mathfrak{G}$ を前層の射とする。このとき、

$$(\operatorname{Ker} \alpha)_x = \operatorname{Ker} \alpha_x$$

$$(\operatorname{Im} \alpha)_x = \operatorname{Im} \alpha_x$$

$$(\operatorname{Coker} \alpha)_x = \operatorname{Coker} \alpha_x$$

$$(\mathfrak{F}/\mathfrak{F}')_x = \mathfrak{F}_x/\mathfrak{F}'_x$$

が成り立つ。

Proof. $Q(U) = \mathcal{F}(U)/\mathcal{F}'(U)$ とおく。 このとき、アーベル群の完全列

$$0 \longrightarrow \mathfrak{F}'(U) \longrightarrow \mathfrak{F}(U) \longrightarrow \mathfrak{Q}(U) \longrightarrow 0$$

が作れる。帰納極限は完全列を完全列に移すので、また Prop:??より

$$0 \longrightarrow \varinjlim \mathcal{F}'(U) \longrightarrow \varinjlim \mathcal{F}(U) \longrightarrow \varinjlim \mathcal{Q}(U) \longrightarrow 0$$

を得る。よって

$$0 \longrightarrow \mathcal{F}'_x \longrightarrow \mathcal{F}_x \longrightarrow (\mathcal{F}/\mathcal{F}')_x \longrightarrow 0$$

したがって、

$$\mathfrak{F}_x/\mathfrak{F}_x'\simeq (\mathfrak{F}/\mathfrak{F}')_x$$

を得る。

次に

$$(\operatorname{Ker} \alpha)_x = \{ s_x \in \mathcal{F}_x \mid \alpha(U)(s) = 0, x \in U : \operatorname{open}, s \in \mathcal{F}(U) \}$$
$$= \{ s_x \in \mathcal{F}_x \mid \alpha_x(s_x) = 0, x \in U : \operatorname{open}, s \in \mathcal{F}(U) \}$$
$$= \operatorname{Ker} \alpha_x$$

を得る。同様に

$$(\operatorname{Im} \alpha)_x = \{ t_x \in \mathcal{G}_x \mid x \in \exists U : \operatorname{open}, \exists s \in \mathcal{F}(U) \text{ s.t } t = \alpha(U)(s) \}$$

$$= \{ (\alpha(U)(s))_x \in \mathcal{G}_x \mid x \in U : \operatorname{open}, s \in \mathcal{F}(U) \}$$

$$= \{ \alpha_x(s_x) \in \mathcal{G}_x \mid s_x \in \mathcal{F}_x \}$$

$$= \operatorname{Im} \alpha_x$$

を得る. また, $(\mathfrak{F}/\mathfrak{F}')_x = \mathfrak{F}_x/\mathfrak{F}'_x$ より

$$(\operatorname{Coker} \alpha)_x = (\mathfrak{G}/\operatorname{Im} \alpha)_x = \mathfrak{G}_x/\operatorname{Im} \alpha_x = \operatorname{Coker} \alpha_x$$

Definition 1.3.7. 層の列

$$\mathfrak{F} \xrightarrow{\alpha} \mathfrak{G} \xrightarrow{\beta} \mathfrak{H}$$

が完全とは、 $\operatorname{Im} \alpha = \operatorname{Ker} \beta$ が成り立つことをいう。

Proposition 1.3.13. 層の列に対して次が成り立つ。

 $\mathfrak{F}\longrightarrow\mathfrak{G}\longrightarrow\mathfrak{H}$ が完全 \Longleftrightarrow 任意の $x\in X$ に対して $\mathfrak{F}_x\longrightarrow\mathfrak{G}_x\longrightarrow\mathfrak{H}_x$ が完全

Proof. 明らか。 ■

Definition 1.3.8. X,Y を位相空間, $f:X\to Y$ を連続写像とする。このとき、X 上の層 \mathcal{F},Y 上の層 \mathcal{F} に対して、新たな Y 上の層 $f_*\mathcal{F}$ が

$$V \mapsto \mathcal{F}(f^{-1}(V))$$

によって定義できる。これを \mathcal{F} の順像 (direct image of \mathcal{F}) という。 また、

$$U \mapsto \varinjlim_{V \supset f(U)} \mathfrak{G}(V)$$

で定義できる新たな X 上の前層 f g の層化 f*g を g **の逆像 (inverse image of** g) という。

Proposition 1.3.14. 上の状況で

$$(f^*\mathfrak{G})_x = \mathfrak{G}_{f(x)} \qquad \forall x \in X$$

Proof.

$$(f^*\mathfrak{G})_x = \varinjlim_{x \in U} (f^*\mathfrak{G})(U) = \varinjlim_{x \in U} \varinjlim_{f(U) \subset V} \mathfrak{G}(V) = \mathfrak{G}_{f(x)}$$

最後の等号は明らか. ■

Remark . V を Y の開集合とする。このとき自然な単射 $i: V \rightarrow Y$ に対して

$$i^*\mathfrak{G} = \mathfrak{G}|_V$$

が成り立つ。

Proposition 1.3.15. $f: X \to Y$ を位相空間の間の連続写像とし、 \mathfrak{F} を X 上の層、 \mathfrak{G} を Y 上の層とする、このとき

$$\operatorname{Hom}_{\operatorname{Sh}(X)}(f^*\mathfrak{G},\mathfrak{F}) \simeq \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathfrak{G},f_*\mathfrak{F})$$

ただし, $\mathrm{Hom}_{\mathfrak{C}}(X,Y)$ は圏 \mathfrak{C} で $X \to Y$ なる射全体を表し, $\mathrm{Sh}(X)$ は X 上の層全体を表す.

Proof. 層化の普遍性より $\theta: f \cdot \mathcal{G} \to f^*\mathcal{G} = (f \cdot \mathcal{G})^{\dagger}$ を層化の射とすると,

$$\begin{array}{ccc} \operatorname{Hom}_{\operatorname{PreSh}(X)}(f^{\cdot}\mathfrak{G},\mathfrak{F}) & \xrightarrow{\simeq} & \operatorname{Hom}_{\operatorname{Ph}(X)}(f^{*}\mathfrak{G},\mathfrak{F}) \\ & & & & & & \\ \alpha & \longmapsto & \tilde{\alpha} \circ \theta \end{array}$$

が成り立つ. つまり

$$\operatorname{Hom}_{\operatorname{PreSh}(X)}(f^{\cdot}\mathfrak{G},\mathfrak{F}) \simeq \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathfrak{G},f_{*}\mathfrak{F})$$

を示せばいい.次にX上の開集合Uに対して

$$f \cdot \mathfrak{G}(U) = \varinjlim_{V \supset f(U)} \mathfrak{G}(V)$$

なので、 $\varphi \in \operatorname{Hom}_{\operatorname{PreSh}(X)}(f \cdot \mathfrak{G}, \mathfrak{F})$ に対して

$$\varphi(U): \varinjlim_{V \supset f(U)} \mathfrak{G}(V) \to \mathfrak{F}(U)$$

を与えることは帰納極限の定義より $f(U) \subset V$ なる開集合 V に対して

$$\psi'(V): \mathfrak{G}(V) \to \mathfrak{F}(U)$$

 $\mathcal{E} f(U) \subset V' \subset V \text{ as } \mathcal{U},$

$$\psi'(V) = \psi'(V') \circ \rho_{V,V'}^{\mathfrak{G}}$$

となるように与えることである. すなわち $\psi'(V)$ は

$$\psi(V): \mathfrak{G}(V) \to \mathfrak{F}(f^{-1}(V))$$

と $\rho_{f^{-1}(V),U}^{\mathfrak{F}}$ を合成したものである. (帰納系の選び方によらない.) したがって, $\varphi\in \operatorname{Hom}_{\operatorname{PreSh}(X)}(f^{\cdot}\mathfrak{g},\mathfrak{F})$ を与えることは, $\psi\in \operatorname{Hom}_{\operatorname{Ph}(Y)}(\mathfrak{g},f_{*}\mathfrak{F})$ を与えることと等しい. \blacksquare

Example 1.3.16. \mathfrak{F} を X 上の層とする. このとき

$$\operatorname{Supp} \mathfrak{F} = \{ x \in X \mid \mathfrak{F}_x \neq 0 \}$$

と定義して Fの台 (Supports of F)という.一般にはこれは閉集合ではない.

1.3.1 \mathfrak{B} -sheaf

 \mathfrak{B} -sheaf はアフィンスキームの構成にも必要な概念で、ラフに言えばすべての開集合 U に対して $\mathcal{F}(U)$ が定まっているものではなく、開基 \mathfrak{B} の元 U に対してだけ定まっている層を \mathfrak{B} -sheaf という.

Definition 1.3.9. 位相空間 X の開基 $\mathfrak B$ が有限交叉で閉じているとは、任意の $U,V\in\mathfrak B$ に対して $U\cap V\in\mathfrak B$ が成り立つことをいう.

Example 1.3.17. 環Aの素イデアルの集合 Spec A の基本開集合による開基 $\{D(f)\}_{f \in A}$ は有限交叉で閉じている.

Definition 1.3.10. X を位相空間. $\mathfrak B$ をその開基とする. このとき $\mathfrak F$ が $\mathfrak B$ -前層 ($\mathfrak B$ -presheaf) であるとは,

- $U \in \mathbb{B}$ に対して $\mathfrak{F}(U)$ はアーベル群.
- -V $\subset U$ \in \mathcal{B} に対して群準同型 $\rho_{U,V}$: $\mathcal{F}(U)$ \to $\mathcal{F}(V)$ が定まる.

で,

- (1) $\rho_{U,U} = \mathrm{id}_{\mathcal{F}(U)}$
- (2) 任意の開集合 $W \subset V \subset U$ に対して $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ となる.

を満たすときをいう.

Definition 1.3.11. \mathfrak{B} が有限交叉で閉じているとする. このとき \mathfrak{B} -前層が層の条件を満たすとき \mathfrak{B} -層 (\mathfrak{B} -sheaf) という.

Proposition 1.3.18. \mathfrak{F} を \mathfrak{B} -層とする.このとき,任意の開集合 V に対して

$$\mathfrak{F}(V) = \left\{ (s_U)_U \in \prod_{\substack{U \in \mathfrak{B} \\ U \subset V}} \mathfrak{F}(U) \mid \forall U, U' \in \mathfrak{B}, \ s_U|_{U \cap U'} = s_{U'}|_{U \cap U'} \right\}$$

とおく. 演算を

$$(s_U)_U + (t_U)_U = (s_U + t_U)_U$$

で定めるとアーベル群になる.

また, $V' \subset V$ に対して制限写像 $\rho_{V,V'}: \mathfrak{F}(V) \to \mathfrak{F}(V')$ を

Proposition 1.3.19. 更に、3 が有限交叉で閉じているなら、層になる.

Proof. 任意の開集合 V に対してその開被覆 $\{V_i\}_i$ を取る. ただし $V_i \in \mathfrak{B}$ とする.

Claim (4)(Uniqueness) が成立する.

 $s\in \mathfrak{F}(V)$ が任意のiに対して $s|_{V_i}=0$ とする.今定義からs=0とは $U\subset V$ なる任意の $U\in \mathfrak{B}$ に対して $s_U\in \mathfrak{F}(U)$ が0であることである.実際Vの開被覆からUの開被覆がらUの開被覆 $\{U\cap V_i\}_i\subset \mathfrak{B}$ を得る.また任意のiに対して $U\cap V_i\subset V_i$ より $s|_{V_i}|_{U\cap V_i}=s|_{U\cap V_i}=0$ となる.従って任意のiに対して $s_U|_{U\cap V_i}=0$ となる.今乎は \mathfrak{B} -sheaf なので $s_U=0$ よってs=0が分かる.

Claim (5)(Glueing local sections) が成立する.

 $s_i \in \mathfrak{F}(V_i)$ が任意の i,j に対して $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ を満たすとする. 今 $U \in \mathfrak{B}$ 成分への射影を

$$\varphi_U: \varprojlim_{U\subset V} \mathfrak{F}(U) \to \mathfrak{F}(U)$$

と書くことにすると、制限写像 $\rho_{V,V_i}=\varphi_{V_i}$ で、つまり $(s_U)_U\in \mathfrak{F}(V)$ で $(s_U)_U|_{V_i}=s_i$ なる $(s_U)_U$ があることを示せば良い、各 i に対して $V_i\subset U_i$ なる $U_i\in \mathfrak{B}$ で $s_{U_i}|_{V_i}=s_i$ なる $s_{U_i}\in \mathfrak{F}(U_i)$ があればいい、今 $U_i\subset V$ なので U の開被覆 $\{U_i\cap V_j\}_j$ が取れる.

1.4 Ringed Topological Space

Definition 1.4.1. 局所環付き空間とは位相空間 X と X 上の環の層 O_X の組 (X,O_X) で、任意の $x \in X$ に対して $O_{X,x}$ が局所環となるものをいう。また、この O_X を (X,O_X) の 構造層 (structure sheaf) という。また (X,O_X) を単に O_X と書くことがある。また、 $O_{X,x}$ の唯一の極大イデアル \mathbf{m}_x に対してその剰余体 $O_{X,x}/\mathbf{m}_x$ を X の点 x での 剰余体 (residue field of X at x) といって k(x) と書く。

Definition 1.4.2. 局所環付き空間の射とは

$$(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$$

とは連続写像 $f: X \to Y$ と環の層の射 $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ の組 $(f, f^\#)$ で、任意の $x \in X$ に対して $f_x^\#: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ は局所射となるものをいう。(つまり $f_x^\#(\mathfrak{m}_{Y,f(x)}) \subset \mathfrak{m}_{X,x}$ を満たす。)

Prop:1.3.13 より

$$f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$$

を考えることは

$$f^{\#}: f^*\mathcal{O}_Y \to \mathcal{O}_X$$

を考えることに等しい. Def:1.4.2 の $f_x^\#$ は下の式で考えている.

Definition 1.4.3. 射 $(f, f^{\#}): (X, \mathcal{O}_{X}) \to (Y, \mathcal{O}_{Y})$ が開はめ込み (open immersion) (resp. 閉はめ込み (closed immersion)) とは連続写像 f が開はめ込み (resp. 閉はめ込み) aでかつ任意の $x \in X$ に対して $f_{\#}^{\#}$ が同型 (resp. 全射) のときをいう。

 $^af:X\to Y$ が (位相的) 開 (閉) はめ込みとは X と f(X) が同相で f(X) が開 (閉) 集合のときをいう。

Definition 1.4.4. (X, O_X) を局所環付き空間とする。 \mathfrak{J} が \mathfrak{O}_X の**イデアル層 (sheaf of ideals of** \mathfrak{O}_X) とは任意の開集合 U に対して $\mathfrak{J}(U)$ が $\mathfrak{O}_X(U)$ のイデアルになっているときをいう。

Lemma 1.4.1. (X, \mathcal{O}_X) を局所環付き空間とする。 \jmath を \mathcal{O}_X のイデアル層とする。そして、

$$V(\mathfrak{J}) = \{ x \in X \mid \mathfrak{J}_x \neq \mathfrak{O}_{X,x} \}$$

とおく。(ちなみに上の諸々から $\mathcal{J}_x\subset \mathcal{O}_{X,x}$ が分かる。) $j:V(\mathcal{J})\hookrightarrow X$ を包含写像とする。すると

- V(3) は X の閉集合
- $-(V(\mathfrak{J}),j^*(\mathfrak{O}_X/\mathfrak{J}))$ は局所環付き空間

- j[#] は自然な全射

$$\mathcal{O}_X \longrightarrow \mathcal{O}_X/\mathcal{J} = j_*(j^*(\mathcal{O}_X/\mathcal{J}))$$

で $(j,j^\#):(V(\mathcal{J}),j^{-1}(\mathcal{O}_X/\mathcal{J})) o (X,\mathcal{O}_X)$ は閉はめ込みである。

Proof. Claim1. $V(\mathfrak{J})$ は X の閉集合

 $x \in X \setminus V(\mathfrak{J}) = \{x \in X \mid \mathfrak{J}_x = \mathfrak{O}_{X,x}\}$ に対して $f_x = 1$ なる x の開近傍 U と $f \in \mathfrak{J}(U)$ を とる。つまり $f|_V = 1|_V = 1$ なる x の開近傍 $V \subset U$ がある。すると任意の $y \in V$ に対して $f_y = 1 \in \mathfrak{J}_y$ となって、この y に対して $\mathfrak{J}_y = \mathfrak{O}_{X,y}$ なので $V \subset X \setminus V(\mathfrak{J})$ となって $X \setminus V(\mathfrak{J})$ が開であることがわかる。

<u>Claim2.</u> $(V(\mathfrak{J}), j^*(\mathfrak{O}_X/\mathfrak{J}))$ は局所環付き空間 任意の $x \in V(\mathfrak{J})$ に対して

$$(j^*(\mathcal{O}_X/\mathcal{J}))_x = (\mathcal{O}_X/\mathcal{J})_x = \mathcal{O}_{X,x}/\mathcal{J}_x$$

は局所環。残りは自明。■

Proposition 1.4.2. f:X o Y を局所環付き空間の閉はめ込みとする。Z を局所環付き空間 $V(\mathcal{J})$ とする。ただし、 $\mathcal{J}=\mathrm{Ker}\,f^\#\subset \mathfrak{O}_Y$. すると $X\simeq Z$ を自然な閉はめ込み $Z\hookrightarrow Y$ から得る。

Proof. まず次の完全列

$$0 \longrightarrow \mathcal{J} \longrightarrow \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X \longrightarrow 0$$

から Prop:??より任意の $y \in Y$ に対して

$$\mathcal{O}_{Y,y}/\mathcal{J}_y = (f_*\mathcal{O}_X)_y$$

を得る。よって

$$(f_* \mathcal{O}_X)_y = \begin{cases} 0 & y \in Y \setminus V(\mathcal{J}) \\ \mathcal{O}_{Y,y}/\mathcal{J}_y & y \in V(\mathcal{J}) \end{cases} \cdots (*)$$

を得る。f(X) は Y の閉集合なので $x \in Y \setminus f(X)$ の開近傍 U で

$$f(X) \cap U = \emptyset$$

となるものがとれる。よって

$$f_* \mathcal{O}_X(U) = \mathcal{O}_X(f^{-1}(U)) = \mathcal{O}_X(\varnothing) = 0$$

したがって、

$$(f_* \mathcal{O}_X)_x = 0$$

また、 $x \in f(X)$ の開近傍U に対してfでの引き戻し $f^{-1}(U)$ はy = f(x) の開近傍である。これをV とおく。逆に、f は閉はめ込みなので、X はf(X) と同相なので X に自

然にYの相対位相が入る。つまり、任意の $x \in X$ の開近傍Uに対して $y = f(x) \in Y$ の開近傍Vが存在して $f^{-1}(V)$ とかける。よって、

$$(f_* \mathcal{O}_X)_x = \varinjlim_{U \ni x} f_* \mathcal{O}_X(U) = \varinjlim_{U \ni x} \mathcal{O}_X(f^{-1}(U)) = \varinjlim_{V \ni y} \mathcal{O}_X(V) = \mathcal{O}_{X,y}$$

つまり、

$$(f_* \mathcal{O}_X)_y = \begin{cases} 0 & y \in Y \setminus f(X) \\ \mathcal{O}_{X,x} & y = f(x) \end{cases}$$

(*)と比較すれば

$$V(\mathfrak{J}) = f(X)$$

が分かる。なので、 $j:Z\hookrightarrow Y$ を包含写像とすると、f から誘導される同相写像 $g:X\to Z$ に対して

$$f = j \circ g$$

で、

$$j_* \mathcal{O}_Z = \mathcal{O}_Y / \mathcal{J} \simeq f_* \mathcal{O}_X$$

がわかる。容易に

$$f_* \mathcal{O}_X = j_* g_* \mathcal{O}_X$$

が分かるので

$$\mathcal{O}_Z = (j^{-1} \circ j)_* \mathcal{O}_Z = (j^{-1})_* j_* \mathcal{O}_Z \simeq (j^{-1})_* j_* g_* \mathcal{O}_X = (j^{-1} \circ j)_* g_* \mathcal{O}_X = g_* \mathcal{O}_X$$

である。よって、g は局所環付き空間の同型射である。 $f=j\circ g$ が局所環付き空間の射であることを確認するのは読者に委ねる。 \blacksquare

1.5 Schemes

後できちんとした定義を述べるが、スキーム (scheme) とは局所環付き空間で局所的にはアフィンスキーム (affine scheme) とみれる空間のことである. すなわち、先にアフィンスキームを定義せねばなるまい.

Proposition 1.5.1. A を環、X = Spec A とする。このとき以下が成り立つ。

- (1) \mathcal{O}_X' を環の \mathfrak{B} -層とする。 \mathcal{O}_X' が誘導する X 上の層 \mathcal{O}_X は $\mathcal{O}_X(X)=A$ となる。
- (2) 任意の $\mathfrak{p}\in X$ に対して、 \mathbf{X} の \mathfrak{g} なの標準的な同型がある。特に、 (X,\mathfrak{O}_X) は局所環付き空間になる。

Proof. まず、開集合 U=X について Uniquness 条件を確認する. ほかの基本開集合も同様に示される. $U_i=$

Definition 1.5.1. 上で定義した局所環付き空間 $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ を **アフィンスキーム** (affine scheme) という.

Example 1.5.2. 環 R に対して $\mathbf{A}_R^n := \operatorname{Spec} R[X_1, \cdots, X_n]$ とおく. これを R 上の相対 次元 n のアフィン空間 (affine space of relative dimension n over R) という. もち ろん $(\mathbf{A}_R^n, \mathcal{O}_{\mathbf{A}_R^n})$ はアフィンスキーム

Lemma 1.5.3. A を整域とし K をその商体とする、素イデアル 0 に対応する X= Spec A の点を ξ とする、このとき

$$\mathcal{O}_{X,\xi} = K$$

が成り立つ. さらに,任意の空でない開集合 $U\subset X$ と $\xi\in U$ に対して標準的な準同型

$$\mathcal{O}_X(U) \to \mathcal{O}_{X,\xi}$$

は単射となる. 開集合の組 $V \subset U$ に対して制限

$$\mathcal{O}_X(U) \to \mathcal{O}_X(V)$$

は単射となる.

Proof. Prop:1.5.1(2) より

$$\mathcal{O}_{X,\xi} = A_{\xi} = K$$

を得る.

U = D(f) とすると、 $O_X(U) = A_f \subset K$. 一般に

$$U = \bigcup_{i} D(f_i)$$

と置く. $s\in \mathcal{O}_X(U)$ を飛ばすと $0\in K$ になるとする. 各開被覆 $D(f_i)\subset U$ への制限を考えると

$$s|_{D(f_i)} = 0$$

が任意のiで成り立つので、s=0である.よって $\mathcal{O}_X(U)\to\mathcal{O}_{X,\xi}\subset K$ は単射. 開集合の組 $\xi\in V\subset U$ に対して制限 $\mathcal{O}_X(U)\to\mathcal{O}_X(V)$ に対して帰納極限の定義より図式

が可換となるので、制限は単射である. ■

Lemma 1.5.4. $X=\operatorname{Spec} A$ をアフィンスキームとし, $g\in A$ をとる.このとき開集合 D(g) は X から誘導される局所環付き空間で $\operatorname{Spec} A_g$ に同型なアフィンスキームになる.

Proof. $Y = \operatorname{Spec} A_g$ と置く.局所化と素イデアルの対応より標準的な開はめ込み

$$i:Y\to X$$

がある $(\operatorname{Im} i = D(q))$

 $D(h) \subset D(g)$ とする. $A \stackrel{\varphi}{\to} A_g$ とする. また $\varphi(h) = \bar{h}$ と置く. このとき標準的な同型

$$\mathcal{O}_X(D(h)) = A_h \simeq (A_g)_{\bar{h}} = \mathcal{O}_Y(D(\bar{h})) = i_* \mathcal{O}_Y(D(h))$$

 $\{D(h)\}_h$ は D(g) の開基となるので、i は (Y, \mathcal{O}_Y) から $(D(g), \mathcal{O}_X|_{D(g)}) \subset (X, \mathcal{O}_X)$ への同型を誘導する.(Refer to Exercises 2.7)

Definition 1.5.2. スキーム (scheme) とは局所環付き空間 (X, O_X) で開被覆 $\{U_i\}_i$ に対して $(U_i, O_X|_{U_i})$ がアフィンスキームになるものが存在するときをいう。また $O_X(U)$ の元は (やや不適切であるが) U 上の正則関数 (regular functions on U) という。しかし,層の関数としての側面をよく表している。(Refer to Exercises 3.4 and Proposition 4.4)

明らかにアフィンスキームはスキームである. また,局所環付き空間 X が開被覆 $\{U_i\}_i$ に対して $(U_i, \mathcal{O}_X|_{U_i})$ がスキームだったら X はスキームである. 逆に次の命題が従う.

Proposition 1.5.5. X をスキームとする.このとき任意の開集合 $U\subset X$ に対して局所環付き空間 $(U, \mathcal{O}_X|_U)$ はまたスキームになる.

Proof. 定義より $X = \bigcup_i U_i$ で U_i は開集合で,アフィンスキームになるものがある. $U \cap U_i$ がスキームとなることを示せば十分である. \blacksquare

Definition 1.5.3. X をスキームとする. U を X の開集合とする. スキーム $(U, \mathcal{O}_X|_U)$ を X の 開部分スキーム (open subscheme) 更に $(U, \mathcal{O}_X|_U)$ がアフィンスキームになるとき U を **アフィン**開集合 (affine open subset) という.

以下, Xの開集合Uはスキームの構造が与えられているとする.

Definition 1.5.4. $X & z + - \Delta, f \in O_X(X) & z = \delta.$

$$X_f := \{ x \in X \mid f_x \in \mathcal{O}_{X,x}^{\times} \}$$

ただし, A^{\times} は A の単元群である. (Liu の Definition 3.11. では*の記号を用いている.)

次の条件を考えよう.

X は有限アフィン開被覆 $\{U_i\}_i$ があって $U_i \cap U_j$ はまた有限アフィン開被覆を持つ.

便宜上この条件を条件Aと呼称する.

Proposition 1.5.6. X をスキームとし $f \in \mathcal{O}_X(X)$ とする.このとき X_f は X の開集合で,更に,X が条件 A を満たすなら,制限 $\mathcal{O}_X(X) \to \mathcal{O}_X(X_f)$ は同型

$$\mathcal{O}_X(X)_f \simeq \mathcal{O}_X(X_f)$$

を誘導する.

Proof. $x \in X_f$ とする. x の開近傍 U と $g \in \mathcal{O}_X(U)$ があって, $f_x g_x = 1$ を満たすものがある. $f_x g_x = (fg)_x$ よりある x の開近傍 $V \subset U$ があって $fg|_V = 1$ を満たす.したがって, $V \subset X_f$ となる.よって X_f は開集合である.

更に、V が動くにつれて f の逆元 $g\in \mathcal{O}_X(V)$ を張り合わせると $f|_{X_f}$ の $\mathcal{O}_X(X_f)$ での逆元を得る

詳しく言えば、 X_f の上のV を集めた開被覆 $\{V_i\}_i$ を取り、 $fg_i|_{V_i}=1$ なる $g_i\in \mathcal{O}_X(V_i)$ を考えれば任意のi,j に対して

$$fg_i|_{V_i\cap V_j}=1=fg_j|_{V_i\cap V_j}$$

より

(左辺)
$$-$$
 (右辺) $= fg_i|_{V_i \cap V_j} - fg_j|_{V_i \cap V_j}$
 $= f|_{V_i \cap V_j} (g_i|_{V_i \cap V_j} - g_j|_{V_i \cap V_j})$
 $= 0$

また, $f|_{V_i}$ は単元なので逆元 $(f|_{V_i})^{-1}$ がある. また,

$$f|_{V_i \cap V_i} = (f|_{V_i})|_{V_i \cap V_i}$$

なので,

$$f|_{V_{i} \cap V_{j}}((f|_{V_{i}})^{-1}|_{V_{i} \cap V_{j}}) = (f|_{V_{i}})|_{V_{i} \cap V_{j}}((f|_{V_{i}})^{-1}|_{V_{i} \cap V_{j}})$$

$$= ((f|_{V_{i}})(f|_{V_{i}})^{-1})|_{V_{i} \cap V_{j}}$$

$$= 1$$

よって $f|_{V_i \cap V_i}$ はまた単元で $g_i|_{V_i \cap V_i} = g_j|_{V_i \cap V_i}$ を得る.

 \mathfrak{O}_X は層なので、貼り合わせ条件より $g|_{V_i}=g_i$ なる $g\in \mathfrak{O}_X(X_f)$ がある.この g が $f|_{X_f}$ の逆元になっている.

よって制限 $\mathcal{O}_X(X) \to \mathcal{O}_X(X_f)$ から準同型

$$\alpha: \mathcal{O}_X(X)_f \to \mathcal{O}_X(X_f); \frac{x}{f^n} \mapsto \rho_{X,X_f}(x)f^{-n} = \rho_{X,X_f}(x)g^n$$

を誘導する. $(\mathcal{O}_X(X)$ は環なので $\mathcal{O}_X(X)_f$ は $\{f^n\}_{n\in\mathbb{N}}$ での局所化であることに注意しよう.) ここで条件 A を仮定すれば、X は有限アフィン開被覆 $\mathcal{U}=\{U_i\}_i$ を持つ. よって、

$$X_f = \bigcup_i U_i \cap X_f = \bigcup_i V_i = \bigcup_i D(f|_{U_i})$$

ここで、 $U_i = \operatorname{Spec} A_i$ とすると

$$U_i \cap X_f = \{ x \in X \cap \operatorname{Spec} A_i \mid f_x \in \mathcal{O}_{X,x}^{\times} \}$$

$$= \{ x \in \operatorname{Spec} A_i \mid f_x \in \mathcal{O}_{X,x}^{\times} \}$$

$$= \{ x \in \operatorname{Spec} A_i \mid f_x \in (\mathcal{O}_X |_{\operatorname{Spec} A_i,x})^{\times} \}$$

$$= \{ \mathfrak{p} \in \operatorname{Spec} A_i \mid f_{\mathfrak{p}} \in A_{i,\mathfrak{p}}^{\times} \}$$

ここで、素イデアルの局所化 $A_{\mathfrak{p}}$ が局所環でその極大イデアルが $A_{\mathfrak{p}} \setminus A_{\mathfrak{p}}^{\times} = \mathfrak{p} A_{\mathfrak{p}}$ となることに注意すると

$$\{\mathfrak{p} \in \operatorname{Spec} A_i \mid f_{\mathfrak{p}} \in A_{i,\mathfrak{p}}^{\times}\} = \{\mathfrak{p} \in \operatorname{Spec} A_i \mid f_{\mathfrak{p}} \notin \mathfrak{p} A_{i,\mathfrak{p}}\}$$

$$= \{\}$$

Lem:1.5.3 \sharp \mathfrak{d} $\mathfrak{d}_X(U_i)_f = \mathfrak{d}_X(V_i)$

今以下の完全系列を得る.

$$C^{\bullet}(\mathcal{U}, \mathcal{O}_X): 0 \longrightarrow \mathcal{O}_X(X) \xrightarrow{d_0} \bigoplus_i \mathcal{O}_X(U_i) \xrightarrow{d_1} \bigoplus_{i,j} \mathcal{O}_X(U_i \cap U_j)$$

ただし $d_0: s \mapsto (s|_{U_i})_i, d_1: (s_i)_i \mapsto (s_i|_{U_i \cap U_j} - s_j|_{U_i \cap U_j})_{i,j}$ とする. (有限個なら直積 \prod と直和 \bigoplus は同じ)

次にテンソルをとることは左完全関手なので $C^{\bullet}(\mathfrak{U},\mathfrak{O}_X)\otimes_{\mathfrak{O}_X(X)}\mathfrak{O}_X(X)_f$ はまた、完全列である. よってこれは次の可換図式を与える.

$$0 \longrightarrow \mathcal{O}_X(X)_f \longrightarrow \bigoplus_i \mathcal{O}_X(U_i)_f \longrightarrow \bigoplus_{i,j} \mathcal{O}_X(U_i \cap U_j)_f$$

$$0 \longrightarrow \mathcal{O}_X(X_f) \longrightarrow \bigoplus_i \mathcal{O}_X(V_i) \longrightarrow \bigoplus_{i,j} \mathcal{O}_X(V_i \cap V_j)$$

1.5.1 Morphism of schemes

Definition 1.5.5. $f: X \to Y$ がスキームの射 (morphism of schemes) とは局所環付き空間としての射とする.

環の射 $\varphi: A \to B$ が誘導する射 $\operatorname{Spec} B \to \operatorname{Spec} A$ を φ^a と書くことにする. つまり $\mathfrak{p} \in \operatorname{Spec} B$ に対して $\varphi^a(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$

Proposition 1.5.7. $\varphi:A\to B$ を環の射とする. このとき

$$(\varphi^a, (\varphi^a)^\#) : \operatorname{Spec} B \to \operatorname{Spec} A$$

は $(\varphi^a)^\#(\operatorname{Spec} A) = \varphi$ を満たすスキームの射である.

Proof. $X = \operatorname{Spec} B, Y = \operatorname{Spec} A$ と置く. 任意の $f \in A$ に対して

$$(\varphi^a)^{-1}(D(f)) = D(\varphi(f))$$

が成り立ち,実際

$$(\varphi^{a})^{-1}(D(f)) = \{ \mathfrak{p} \in X \mid \varphi^{a}(\mathfrak{p}) \in D(f) \}$$

$$= \{ \mathfrak{p} \in X \mid f \notin \varphi^{a}(\mathfrak{p}) \}$$

$$= \{ \mathfrak{p} \in X \mid f \notin \varphi^{-1}(\mathfrak{p}) \}$$

$$= \{ \mathfrak{p} \in X \mid \varphi(f) \notin \mathfrak{p} \}$$

$$= D(\varphi(f))$$

である. φ から誘導される環の射

$$(\varphi^a)^\#(D(f)): \mathfrak{O}_Y(D(f)) = A_f \to B_{\varphi(f)} = \mathfrak{O}_X(D(\varphi(f))) = (\varphi^a)_* \mathfrak{O}_X(D(f))$$

これは制限写像と可換 (compatible という意味で) になる. よって層の射

$$(\varphi^a)^\#: \mathcal{O}_Y \to \varphi^a_* \mathcal{O}_X$$

に拡張できる. 更に、任意の $\mathfrak{q} \in X$ に対して φ から誘導される環の射

$$(\varphi^a)^\#_{\mathfrak{q}}:A_{\varphi^a(\mathfrak{q})}\to B_{\mathfrak{q}}$$

は局所射で,実際

$$\begin{split} (\varphi^a)^\#_{\mathfrak{q}}(\varphi^a(\mathfrak{q})A_{\varphi^a(\mathfrak{q})}) &= \{\varphi(a)/\varphi(p) \mid a \in \varphi^a(\mathfrak{q}), p \notin \varphi^a(\mathfrak{q})\} \\ &= \{\varphi(a)/\varphi(p) \mid \varphi(a) \in \mathfrak{q}, \varphi(p) \notin \mathfrak{q}\} \\ &\subset \{b/q \mid b \in \mathfrak{q}, q \notin \mathfrak{q}\} \\ &= \mathfrak{q}B_{\mathfrak{q}} \end{split}$$

よって $(\varphi^a, (\varphi^a)^\#)$ は局所環付き空間の射になる. 構成により

$$(\varphi^a)^{\#}(Y): \mathfrak{O}_Y(Y) = A \to B = \mathfrak{O}_X(X) = (\varphi^a)_* \mathfrak{O}_X(Y)$$

で $(\varphi^a)^\#(Y) = \varphi$ を満たす. \blacksquare

Example 1.5.8. A を環とする. $f \in A$ に対して $\varphi: A \to A_f$ を自然な射とする. よって Prop:1.5.7 より $\varphi^a: \operatorname{Spec} A_f \to \operatorname{Spec} A$ はアフィンスキームの射で、 $\operatorname{Spec} A_f \simeq D(f)$ で、 $D(f) \to \operatorname{Spec} A$ は開はめ込みである.

Example 1.5.9. X をスキームとする. $x \in X$ に対して標準的な射 $\operatorname{Spec} \mathcal{O}_{X,x} \to X$ がある. 実際 $x \in U$ なるアフィン開集合に対して標準的な射 $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$ から誘導される射 $\operatorname{Spec} \mathcal{O}_{X,x} \to \operatorname{Spec} \mathcal{O}_X(U) = U$ がとれる. また $U \hookrightarrow X$ は自然に開はめ込みだと見れるので射 $\operatorname{Spec} \mathcal{O}_{X,x} \to X$ を得る. これは U の選び方に依らない.

Lemma 1.5.10. A を環とし、I をそのイデアルとする. このとき、スキームの射

$$i: \operatorname{Spec} A/I \to \operatorname{Spec} A$$

が自然な射影 $\varphi:A \to A/I$ によって誘導される. i は $\mathrm{Im}\,i=V(I)$ へのスキームの閉はめ込みである. 更に,任意の $\mathrm{Spec}\,A$ の基本開集合 D(f) に対して

$$(\operatorname{Ker} i^{\#})(D(f)) = I \otimes_A A_f$$

が成り立つ.

Proof. i が閉はめ込みであることはよい.次に、任意の Spec A の基本開集合 D(f) に対して先ほどみたように、標準的な全射

$$\mathcal{O}_{\operatorname{Spec} A}(D(f)) = A_f \to (A/I)_{\varphi(f)} = i_* \mathcal{O}_{\operatorname{Spec} A/I}(D(f))$$

がある.これにより、 $i^{\#}$ の全射性と、

$$(\operatorname{Ker} i^{\#})(D(f)) = \operatorname{Ker} (i^{\#}(D(f)))$$

$$= \operatorname{Ker} (A_f \to (A/I)_{\varphi(f)})$$

$$= I_f$$

$$= I \otimes_A A_f$$

がわかる. ■

Example 1.5.11. X をスキームとする. $x \in X$ に対して k(x) は点 x での X の剰余体であった. (Def:1.4.1 を参照.) このとき標準的な全射 $\mathcal{O}_{X,x} \to k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ は閉はめ込み $\operatorname{Spec} k(x) \to \operatorname{Spec} \mathcal{O}_{X,x}$ を誘導する. $\operatorname{Ex:1.5.9}$ より射 $\mathcal{O}_{X,x} \to X$ がある. よって射 $\operatorname{Spec} k(x) \to X$ を得る. この射は $\operatorname{Spec} k(x)$ の唯一の点を $x \in X$ に送る射である.

Definition 1.5.6. Z を X の閉集合とする. このとき Z が **閉部分スキーム** (closed subscheme) とは包含写像 $j:Z\to X$ が閉はめ込み

$$(j, j^{\#}): (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$$

となるときをいう.

Proposition 1.5.12. $X=\operatorname{Spec} A$ をアフィンスキームとする. $j:Z\to X$ をスキームの閉はめ込みとする. このとき, Z はアフィンスキームで, あるイデアル $J\subset A$ が唯一存在して j は同型 $Z\stackrel{\simeq}{\longrightarrow}\operatorname{Spec} A/J$ を誘導する.

Definition 1.5.7. S をスキームとする. このとき X が S-スキーム (S-scheme) または S 上のスキーム (scheme over S) とはスキームの射 $\pi: X \to S$ が与えられているときをいう. この π を 構造射 (structural morphism, structure morphism) , S を 基底スキーム (base scheme) という. $S = \operatorname{Spec} A$ のときまた X を A-スキーム (A-scheme) または A 上のスキーム (scheme over A) という. このとき A を基底環 (base ring)

Definition 1.5.8. $\pi: X \to S, \rho: Y \to S$ を S 上のスキームとする. このとき S-スキームの射 (morphism of S-scheme) $f: X \to Y$ とは f がスキームの射で $\rho \circ f = \pi$ を満たすことをいう.

スキーム X,Y に対して

$$\operatorname{Hom}_{\mathbf{Sch}}(X,Y) := \{ f : X \to Y \mid f \text{ is morphism of schemes} \}$$

また、環 A, B に対して

$$\operatorname{Hom}_{\mathbf{Ring}}(A,B) := \{ f : A \to B \mid f \text{ is morphism of rings} \}$$

とおく. このとき標準的な写像

$$\rho: \operatorname{Hom}_{\mathbf{Sch}}(X,Y) \to \operatorname{Hom}_{\mathbf{Ring}}(\mathfrak{O}_Y(Y), \mathfrak{O}_X(X))$$

がある. 実際 $(f, f^{\#}) \in \operatorname{Hom}_{\mathbf{Sch}}(X, Y)$ とすると

$$f^{\#}(Y): \mathcal{O}_{Y}(Y) \to f_{*}\mathcal{O}_{X}(Y) = \mathcal{O}_{X}(f^{-1}(Y)) = \mathcal{O}_{X}(X)$$

がある.

Definition 1.5.9. $\pi: X \to S$ を S 上のスキームとする. X **の切断 (section of** X**)** とは S 上のスキームの射 $\sigma: S \to X$ で $\pi \circ \sigma = \operatorname{id}_S$ となるときをいう. X の切断の集合を $X(S)(S = \operatorname{Spec} A$ のときは X(A)) とかく.

Example 1.5.13. X を体k上のスキームとする. このとき

$$X(k) = \{x \in X \mid k(x) = k\}$$

実際 $\sigma \in X(k)$ をとる. $\mathcal{O}_{\operatorname{Spec} k,(0)} = k_{(0)} = k$ より

$$\sigma_{(0)}^{\#}: \mathcal{O}_{X,\sigma((0))} \to \mathcal{O}_{\operatorname{Spec} k,(0)} = k$$

で、

Definition 1.5.10. X を体 k 上のスキームとする. 上の例より X(k) の点を X **の** k-有理点 (k-rational points of X) という.

Remark . Y を X の開 (閉) 部分スキームとする. 任意の点 $y \in Y$ に対してその点での剰余体は \mathcal{O}_Y で考えたときと \mathcal{O}_X で考えたときの二種類が考えられるがこれらは同型である. よって X を体 k 上のスキームとすると $Y(k) = X(k) \cap Y$ である.

Lemma 1.5.14. S をスキームとする、 $\{X_i\}_i$ をS 上のスキームの族とする、 X_{ij} を X_i の開部分スキームとして $f_{ii}=\operatorname{id}_{X_i},\ f_{ij}(X_{ij}\cap X_{ik})=X_{ji}\cap X_{jk}$ と $f_{ik}=f_{jk}\circ f_{ij}$ が $X_{ij}\cap X_{ik}$ 上で成り立つ S スキームの同型射 $f_{ij}:X_{ij}\xrightarrow{\simeq}X_{ji}$ が与えられているとき,ある S 上のスキーム X が同型を除いて唯一存在して以下を満たす.

開はめ込み
$$g_i:X_i o X$$
 があって X_{ij} 上で $g_i=g_j\circ f_{ij}$ で $X=\bigcup_i g_i(X_i)$

Proof. 先にXを構成しそれが条件を満たすことを確認する.

$$X = \coprod_{i} X_{i} / \sim$$

とおく. ここで

$$x \sim y \stackrel{\text{def}}{\equiv} x \in X_i, y \in X_j, y = f_{ij}(x)$$

と定義する. また X に商位相を入れる. 包含写像 $g_i:X_i\hookrightarrow X$ は位相的開はめ込みで $g_i=g_j\circ f_{ij}$ を満たす. $U_i=g_i(X_i)$ と置いて $\mathfrak{O}_{U_i}=g_{i*}\mathfrak{O}_X$ とおくと

$$\mathcal{O}_{U_i}|_{U_i \cap U_j} = \mathcal{O}_{U_j}|_{U_i \cap U_j}$$

を満たす. 実際

$$\mathfrak{O}_{U_i}|_{U_i \cap U_j} = (g_{i_*} \mathfrak{O}_X)|_{U_i \cap U_j}
= ((g_j \circ f_{ij})_* \mathfrak{O}_X)|_{U_i \cap U_j}
= (g_{j_*} f_{ij_*} \mathfrak{O}_X)|_{U_i \cap U_j}$$

1.5.2 Projective schemes

まず初めに次数環

$$A = \bigoplus_{n \in \mathbf{N}} A_n$$

を固定する. ここでイデアル $I \subset A$ が斉次イデアルとは

$$I = \bigoplus_{n \in \mathbf{N}} (I \cap A_n)$$

のときをいう. ここで

$$A/I = \bigoplus_{n \in \mathbf{N}} A_n / \bigoplus_{n \in \mathbf{N}} (I \cap A_n)$$

だが

とするとこれは全準同型で単射性は $(x_i)_i+I=(y_i)_i+I$ とすると $(x_i)_i-(y_i)_i=(x_i-y_i)_i\in I$ と $x_i\in A_i$ より $x_i-y_i\in I\cap A_i$ でこれは単射であることを意味する. よって,

$$A/I = \bigoplus_{n \in \mathbf{N}} A_n/(I \cap A_n)$$

である. ここで $\operatorname{Proj} A$ を次のように定義しよう.

 $\operatorname{Proj} A := \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \ \text{は斉次イデアルで} \ A_+ \notin \mathfrak{p} \}$

とおく. ただし

$$A_+ := \bigoplus_{n > 0} A_n$$

である. あとで $\operatorname{Proj} A$ にスキームの構造が入ることを示そう.

任意の斉次イデアルI⊂Aに対して

$$V_+(I) := \{ \mathfrak{p} \in \operatorname{Proj} A \mid I \subset \mathfrak{p} \}$$

と定義する. このとき

$$\bigcap_{\mu} V_{+}(I_{\mu}) = V_{+}(\sum_{\mu} I_{\mu}) \tag{1.1}$$

$$V_{+}(I) \cup V_{+}(J) = V_{+}(I \cap J)$$
 (1.2)

$$V_{+}(A) = \emptyset \tag{1.3}$$

$$V_{+}(0) = \operatorname{Proj} A \tag{1.4}$$

が成り立つ. 実際(1.1)から示そう.

$$I_{\lambda} \subset \sum_{\mu} I_{\mu}$$

なので

$$V_+(\sum_{\mu} I_{\mu}) \subset V_+(I_{\lambda})$$

である. よって

$$V_{+}(\sum_{\mu}I_{\mu})\subset\bigcap_{\mu}V_{+}(I_{\mu})$$

逆に $\mathfrak{p} \in \bigcap V_+(I_\mu)$ とすると任意の μ に対して $I_\mu \subset \mathfrak{p}$ なので $\sum I_\mu \subset \mathfrak{p}$ が成り立ち逆の包含関係もわかる.

(1.2) は $\mathfrak{p}\in V_+(I)$ なら $I\subset\mathfrak{p}$ なので $I\cap J\subset\mathfrak{p}$ だから $V_+(I)\subset V_+(I\cap J)$ で同様に $V_+(J)\subset V_+(I\cap J)$ なので

$$V_+(I) \cup V_+(J) \subset V_+(I \cap J)$$

逆に $\mathfrak{p} \in V_+(I \cap J)$ なら $I \cap J \subset \mathfrak{p}$ で $I \not\subset \mathfrak{p}$ なら $a \in I$ かつ $a \notin \mathfrak{p}$ なる元がある. しかし、任意 の $b \in J$ に対して $ab \in I \cap J$ なので $ab \in \mathfrak{p}$ で今 $a \notin \mathfrak{p}$ なので $b \in \mathfrak{p}$ である. よって $J \subset \mathfrak{p}$ なので $V_+(I \cap J) \subset V_+(J)$ だから逆の包含関係もわかる. 残り二つは自明である.

Spec の場合と同様に Proj A にも $\{V_+(I)\}_I$ を閉集合族とする位相を入れることにする. この位相を同様に Zariski 位相ということにする.

I を A の任意のイデアルとすると、I に伴う斉次イデアル $I^h = \bigoplus (I \cap A_n)$ (ここで h 乗ではなく単なる記号であることに注意) が定義できる.

Lemma 1.5.15. I, J を次数環 A のイデアルとする. このとき以下が成り立つ.

- (1) I が素イデアルならそれに伴う斉次イデアル I^h も素イデアル.
- (2) I と J が斉次イデアルとする.このとき

$$V_{+}(I) \subset V_{+}(J) \Leftrightarrow J \cap A_{+} \subset \sqrt{I}$$

(3) $\operatorname{Proj} A = \emptyset \Leftrightarrow A_+$ が冪零

Proof. (1)I を素イデアルとする. $a,b \in A$ が $ab \in I^h$ で $a,b \notin I^h$ を満たすとする. 斉 次元に分解すると

$$a = \sum_{i=0}^{n} a_i, \quad b = \sum_{j=0}^{m} b_j, \quad a_n, b_n \in A_n$$

Limit

第A章

A.1 Inductive Limit

とりあえず、帰納極限だけ述べる.射影極限は双対概念なのでまぁ頑張って.

Definition A.1.1.(帰納系の定義)

 (Λ, \leq) を順序集合、 \mathscr{C} を圏とする. 各 $\lambda \in \Lambda$ に対し、 $X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ が与えられ、 $\lambda \leq \mu$ に対して射 $\varphi_{\mu,\lambda}: X_{\lambda} \to X_{\mu}$ があって次を満たすとき、 $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を 順系 (direct system) または帰納系 (inductive system) という. しばし $\varphi_{\mu,\lambda}$ を省略して $\{X_{\lambda}\}_{\lambda \in \Lambda}$ や $\{X_{\lambda}\}_{\lambda}$ で表す.

- 任意の $\lambda \in \Lambda$ に対して $\varphi_{\lambda,\lambda} = \mathrm{id}_{X_{\lambda}}$
- $\lambda \leq \mu \leq \nu$ なる任意の $\lambda, \mu, \nu \in \Lambda$ に対して $\varphi_{\nu,\lambda} = \varphi_{\nu,\mu} \circ \varphi_{\mu,\lambda}$

Example A.1.1. 位相空間 X の開集合族 $\{U\}_U$ に対して

$$U \leq V \stackrel{\mathrm{def}}{\equiv} V \subset U$$

と定義する. そして, \mathbf{AGrp} をアーベル群の成す圏, \mathfrak{F} を X 上の前層とする. すると, 各 開集合 U に対し, $\mathfrak{F}(U) \in \mathrm{Ob}(\mathbf{AGrp})$ で, 前層の定義からアーベル群と制限写像との組 $\{\mathfrak{F}(U), \rho_{U,V}\}$ は帰納系となる. 前層の定義は $\mathrm{Def:}1.3.1$ を参照.

Definition A.1.2.(帰納系の射の定義)

 Λ を順序集合. $\{X_{\lambda}, \varphi_{\lambda,\mu}\}, \{Y_{\lambda}, \psi_{\lambda,\mu}\}$ を Λ 上の圏 $\mathscr C$ における帰納系とする. このとき $\{X_{\lambda}\}$ から $\{Y_{\lambda}\}$ への射とは $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$ なる射の族 $\{f_{\lambda}\}$ で, 任意の $\lambda \leq \mu$ に対して $\psi_{\lambda,\mu} \circ f_{\mu} = f_{\lambda} \circ \varphi_{\lambda,\mu}$ となるものを言う.

30 付録 A. LIMIT

Definition A.1.3. \mathscr{C} を圏とし, Λ を順序集合とする. $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を \mathscr{C} の帰納系とする. このとき $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ の 順極限 (direct limit) または帰納的極限 (inductive limit) または帰納極限とは、 \mathscr{C} の対象 $\lim_{\lambda \in \Lambda} X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ と射の族 $\{\varphi_{\lambda}: X_{\lambda} \to \lim_{\lambda \in \Lambda} X_{\lambda}\}_{\lambda \in \Lambda}$ の組 $\{\lim_{\lambda \in \Lambda} X_{\lambda}, \varphi_{\lambda}\}$ で、次の条件を満たすものをいう.

- $-\lambda \leq \mu$ に対して $\varphi_{\mu} \circ \varphi_{\mu,\lambda} = \varphi_{\lambda}$
- $\lambda \leq \mu$ に対して $f_{\mu} \circ \varphi_{\mu,\lambda} = f_{\lambda}$ を満たす任意の射の族 $\{f_{\lambda}: X_{\lambda} \to Y\}_{\lambda \in \Lambda}$ に対して, $f: \lim_{\lambda \in \Lambda} X_{\lambda} \to Y$ が一意に存在して

$$f \circ \varphi_{\lambda} = f_{\lambda} \quad (\forall \lambda \in \Lambda)$$

を満たす.

Remark. 一般の圏では帰納極限や射影極限は存在するとは限らない. しかし, 存在するとすれば, 同型を除いて一意である.

Proposition A.1.2. 帰納極限は存在すれば,同型を除いて一意である.

Proof. 証明は後で書く. ■

索引

第A章

Α		
\overline{A} -scheme/scheme over A		
affine open subset		
affine scheme		
<u>B</u>		
B -presheaf14		
B -sheaf		
base ring		
base scheme		
С		
<u>C</u> closed subscheme		
ciosed subscheme		
G		
germ8		
801		
1		
inductive limit/direct limit30		
inductive system/direct system		
morphism29		
F		
<u>L</u>		
locally ringed space		
closed immersion		
morphism		
open immersion		
•		
0		
open subscheme		
<u>P</u>		
presheaf		
morphism9		
cokernel		
image11		
kernel		
Q		
·		
quotient sheaf		
R		
rational points		
regular function		
residue field at point		
restriction of \mathcal{F} to U		
resultation of J to C		
S		
S-scheme/scheme over S		
morphism		

scheme
morphism23
section
sheaf
direct image
inverse image
support
sheafification
skyscraper sheaf
stalk
structural morphism
structure sheaf
structure shear
あ
アフィン開集合
アフィンスキーム19
イデアル層
A-スキーム/ A 上のスキーム
S - Z + $-\Delta/S$ \pm 0 Z + $-\Delta$
の射
チの <i>U</i> への制限
か
開部分スキーム
基底環
基底スキーム 25
帰納極限/順極限 30
帰納系/順系29
の [′] 射 29
局所環付き空間 16
開はめ込み16
の射16
閉はめ込み16
茎8
構造射 25
構造層
<u> </u>
商層
スキーム
の射
正則関数 20
切断6, 26
前層
の射g
の核11
の像 11
の余核 11
の層化c

32 索引

層	7
の逆像	13
の順像	12
の台	
た	
点での剰余体	$\dots \dots 16$
は	
第-前層	
第-層	
閉部分スキーム	
747	
<u></u> \$	
摩天楼層	8
芽	
<i>A</i>	
や	
有理占	