Counting

Theresa Migler-VonDollen

6.1 The Basics of Counting

Basic Counting Principles

Theorem (The Product Rule)

Suppose that a procedure can be broken down into a sequence of two tasks.

If there are n_1 ways to do the first task and for each of these ways of doing the first task there are n_2 ways to do the second task, then there are n_1n_2 ways to do the procedure.

Examples:

□ There are 2 roosters and 10 coops. How many ways can the roosters be assigned to coops?

We can generalize the Product Rule:

□ How many bit strings of length 7 are there?

$$\square$$
 2⁷ = 128

The Product Rule

More Examples:

- How many functions are there from a set with m elements to a set with n elements?
 - \square n^m
- \square How many one-to-one functions are there from a set with m elements to a set with n elements?
 - $n(n-1)(n-2)\cdots(n-m+1)$

The Sum Rule

Theorem (The Sum Rule)

If a task can be done either in one of n_1 ways or one of n_2 ways, where none of the n_1 ways is the same as any of the n_2 ways, then there are $n_1 + n_2$ ways to complete the task.

- □ Suppose for a recipe, you can either add one of 12 types of chocolate chips or one or 7 types of dried fruits. How many different choices for the recipe are there?
 - **1**9
- □ A child can choose a sticker from one of four boxes. The four boxes contain 34, 7, 2, and 100 stickers respectively. How many possible stickers are there to choose from?
 - **1**43

The Subtraction Rule

Theorem (The Subtraction Rule - Principle of Inclusion-Exclusion)

If a task can be done in either n_1 ways or n_2 ways, then the number of ways to complete the task is $n_1 + n_2$ minus the number of ways to do the task that are common to the two different ways.

- □ How many bit strings of length 5 are there that start with a 0 bit or end with the two bits 10?
 - There are $2^4 = 16$ bit strings of length 5 that start with 0.
 - \blacksquare There are $2^3=8$ bit strings of length 5 that end with 10.
 - There are $2^2 = 4$ bit strings that start with a 0 and end with 10.
 - Thus, there are 16 + 8 4 = 20 bit strings that start with a 0 bit or end with the two bits 10.

The Division Rule

Theorem (The Division Rule)

There are n/d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for every way w, exactly d of the n ways correspond to way w.

- □ How many different ways are there to seat five people around a circular table, where two seatings are considered the same when each person has the same left neighbor and right neighbor?
 - \Box 5!/5 = 24

6.2 The Pigeonhole Principle

The Pigeonhole Principle

Theorem (The Pigeonhole Principle)

If k is a positive integer and k + 1 or more objects are placed into k boxes, then there is at least one box containing two or more objects.

- □ Among any group of 367 people, there must be at least two with the same birthday.
 - Why?
- □ In any group of 27 English words, there must be at least two that begin with the same letter.
 - Why?
- \square A function from a set with k+1 or more elements to a set with k elements is not one-to-one.
 - Why?

The Generalized Pigeonhole Principle

Theorem (The Generalized Pigeonhole Principle)

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

- Among 50 people there are at least 5 people born in the same month.
 - Why?
- ☐ How many cards must be selected from a deck of 52 cards to guarantee that 5 cards of the same suit are chosen?
 - **1**7
 - Why?

6.3 Permutations and Combinations

Permutations

Definition

A **permutation** of a set of distinct objects is an ordered arrangement of the objects.

An ordered arrangement of r elements of a set is called an **r-permutation**.

- □ How many ways are there to select 4 students from a group of 20 students to stand in line?
 - \square 20 × 19 × 18 × 17 ways
- ☐ How many ways are there to line up all 20 students?
 - \square 20 × 19 × 18 × · · · × 2 × 1 = 20! ways

Permutations

Theorem

If n is a positive integer and r is an integer with $1 \le r \le n$, then there are

$$P(n,r) = n(n-1)(n-2)\cdots(n-r+1)$$

r-permutations of a set with n distinct elements.

Proof: Use the product rule.

Corollary

If n and r are positive integers with $0 \le r \le n$, then there are $P(n,r) = \frac{n!}{(n-r)!}$

Permutations

- □ How many permutations of ABCDEFGHIJ contain the string BIG?
 - Find the permutation of the 8 objects, namely, A, C, D, E, F, H, J, BIG.
 - **8**!
- Suppose that a shuttle driver must start at the airport, pick up 9 passengers (in any order she wishes), and drop them all off at the airport (at the same time). How many possible orders of pick ups are there?
 - **□** 9! = 362880

Combinations

Now we consider problems where order doesn't matter.

Definition

An r-combination of elements of a set is an unordered selection of r elements from the set.

Alternatively, an r-combination is a subset of some set, with r elements.

The number of r-combinations of a set with n distinct elements is denoted by C(n, r) or $\binom{n}{r}$.

- \square What is C(4,3)?
 - **4**
- □ What is C(5,2)?
 - **1**0

Combinations

Theorem

The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an integer with $0 \le r \le n$ is: $C(n,r) = \frac{n!}{r!(n-r)!}$

Proof: By the product rule.

Examples:

- □ How many possible poker hands of 5 cards can be dealt from a deck of 52 cards?
- □ How many ways are there to select 47 cards from a deck of 52 cards?

Corollary

Let n and r be nonnegative integers with $r \leq n$.

Then C(n,r) = C(n,n-r).

6.4 Binomial Coefficients and Identities

The Binomial Theorem

Theorem

Let x and y be variables and n a nonnegative integer. Then $(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$.

- □ What is the expansion of $(x + y)^4$?
- □ What is the coefficient of $x^{10}y^{13}$ in the expansion of $(x+y)^{23}$?
- □ What is the coefficient of $x^{10}y^{13}$ in the expansion of $(2x y)^{23}$?

Corollaries

Corollary

Let n be a nonnegative integer. Then $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

Corollary

Let n be a positive integer. Then

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Theorem

Let n and k be positive integers with $n \ge k$. Then $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$