Theory of LSH

Distance Measures
LS Families of Hash Functions
S-Curves
LSH for Different Distance Measures

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Distance Measures

- Generalized LSH is based on some kind of "distance" between points.
 - Similar points are "close."
 - Jaccard similarity is not a distance; 1 minus Jaccard similarity is.
- Two major classes of distance measure:
 - 1. Euclidean
 - 2. Non-Euclidean

Euclidean Vs. Non-Euclidean

- A Euclidean space has some number of realvalued dimensions and "dense" points.
 - There is a notion of "average" of two points.
 - A Euclidean distance is based on the locations of points in such a space.
- Any other space is Non-Euclidean.
 - Distance measures for non-Euclidean spaces are based on properties of points, but not their "location" in a space.

Axioms of a Distance Measure

- d is a distance measure if it is a function from pairs of points to real numbers such that:
 - 1. $d(x,y) \ge 0$.
 - 2. d(x,y) = 0 iff x = y.
 - 3. d(x,y) = d(y,x).
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Some Euclidean Distances

- L_2 norm: d(x,y) = square root of the sum of the squares of the differences between <math>x and y in each dimension.
 - The most common notion of "distance."
- L₁ norm: sum of the differences in each dimension.
 - Manhattan distance = distance if you had to travel along coordinates only.

Examples of Euclidean Distances

More Euclidean Distances

- L_{∞} norm: d(x,y) = the maximum of the differences between <math>x and y in any dimension.
- Note: the maximum is the limit as r goes to ∞ of the L_r norm: what you get by taking the r th power of the differences, summing and taking the r th root.

Non-Euclidean Distances

- Jaccard distance for sets = 1 minus Jaccard similarity.
- Cosine distance for vectors = angle between the vectors.
- Edit distance for strings = number of inserts and deletes to change one string into another.
- Hamming Distance for bit vectors = the number of positions in which they differ.

Example: Jaccard Distance

- Consider $x = \{1,2,3,4\}$ and $y = \{1,3,5\}$
- Size of intersection = 2; size of union = 5,
 Jaccard similarity (not distance) = 2/5.
- d(x,y) = 1 (Jaccard similarity) = 3/5.

Why J.D. Is a Distance Measure

- $d(x,y) \ge 0$ because $|x \cap y| \le |x \cup y|$.
- d(x,x) = 0 because $x \cap x = x \cup x$.
 - And if $x \neq y$, then the size of $x \cap y$ is strictly less than the size of $x \cup y$.
- d(x,y) = d(y,x) because union and intersection are symmetric.
- $d(x,y) \le d(x,z) + d(z,y)$ trickier next slide.

Triangle Inequality for J.D.

$$1 - \frac{|x \cap z|}{|x \cup z|} + 1 - \frac{|y \cap z|}{|y \cup z|} \ge 1 - \frac{|x \cap y|}{|x \cup y|}$$

- Remember: $|a \cap b|/|a \cup b|$ = probability that minhash(a) = minhash(b).
- Thus, 1 |a ∩b|/|a ∪b| = probability that minhash(a) ≠ minhash(b).

Triangle Inequality – (2)

- Claim: prob[minhash(x) ≠ minhash(y)] ≤ prob[minhash(x) ≠ minhash(z)] + prob[minhash(z) ≠ minhash(y)]
- Proof: whenever minhash(x) ≠ minhash(y), at least one of minhash(x) ≠ minhash(z) and minhash(z) ≠ minhash(y) must be true.

 $minhash(x) \neq minhash(z)$

 $minhash(z) \neq minhash(y)$

Cosine Distance

- Think of a point as a vector from the origin (0,0,...,0) to its location.
- Two points' vectors make an angle, whose cosine is the normalized dot-product of the vectors: $p_1.p_2/|p_2||p_1|$.
 - **Example:** $p_1 = 00111$; $p_2 = 10011$.
 - $p_1.p_2 = 2$; $|p_1| = |p_2| = \sqrt{3}$.
 - $cos(\theta) = 2/3$; θ is about 48 degrees.

Cosine-Measure Diagram

$$d(p_1, p_2) = \theta = \arccos(p_1.p_2/|p_2||p_1|)$$

Why C.D. Is a Distance Measure

- d(x,x) = 0 because arccos(1) = 0.
- $d(x,y) \ge 0$ because any two intersecting vectors make an angle in the range 0 to 180 degrees.
- d(x,y) = d(y,x) by symmetry.
- Triangle inequality: physical reasoning. If I rotate an angle from x to z and then from z to y, I can't rotate less than from x to y.

Edit Distance

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- An equivalent definition: d(x,y) = |x| + |y| -2|LCS(x,y)|.
 - LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.

Example

- x = abcde ; y = bcduve.
- Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
- Or, LCS(x,y) = bcde.
- Note: |x| + |y| 2|LCS(x,y)| = 5 + 6 2*4 = 3 = edit distance.

Why Edit Distance Is a Distance Measure

- d(x,x) = 0 because 0 edits suffice.
- $d(x,y) \ge 0$: no notion of negative edits.
- d(x,y) = d(y,x) because insert/delete are inverses of each other.
- Triangle inequality: changing x to z and then to y is one way to change x to y.

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
- **Example:** $p_1 = 10101$; $p_2 = 10011$.
- $d(p_1, p_2) = 2$ because the bit-vectors differ in the 3^{rd} and 4^{th} positions.

Why Hamming Distance Is a Distance Measure

- d(x,x) = 0 since no positions differ.
- $d(x,y) \ge 0$ since strings cannot differ in a negative number of positions.
- d(x,y) = d(y,x) by symmetry of "different from."
- Triangle inequality: changing x to z and then to y is one way to change x to y.