Операции с множества:

$$A \cup B = B \cup A, A \cap B = B \cap A$$

$$A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

Експеримент, възможни изходи - елементарни събития (пространство S), събития ($A \subseteq S$), вероятност.

Пример: Хвърляне на два зара. Какви са възможните изходи? Как се дефинира вероятност върху тях?

Свойства на вероятността:

$$0 \le P(A) \le 1$$

$$P(S) = 1$$

$$P(\emptyset) = 0$$

$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

$$P(A^c) = 1 - P(A)$$

$$A \subseteq B \Rightarrow P(A) \le P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$$

Пример: Секретарка напечатва n писма и n плика. В бързината тя поставя случайно във всеки плик по едно писмо. Каква е вероятността поне едно писмо да е в правилния плик? $Omc.:\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!} \xrightarrow{n \to \infty} 1 - \frac{1}{e}$.

Условна вероятност:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Пример: При хвърляне на два зара сумата от точките е нечетна. Каква е вероятността тя да е помалка от 8? *Отг.:* 2/3.

Пример: В кош има r червени и b сини топки. Каква е вероятността да изтеглим последователно червена, синя, червена топка? Ome.: $\frac{r}{r+b}\frac{b}{r+b-1}\frac{b-1}{r+b-2}\frac{r-1}{r+b-3}$.

Независимост: ако P(A|B) = P(A) то A и B са независими и P(A)P(B) = P(AB).

Пример: Стените на четиристенен зар са оцветени - едната в червено, втората в синьо и третата в зелено, а четвъртата е оцветена и с трите цвята. Независими ли са събитията да се падне всеки от цветовете? Отг.: независими две по две и зависими в съвкупност.

Пълна вероятност: ако $B_1, B_2, \dots B_n$ е разбиване на S, т.е. $B_i \cap B_j = \emptyset$ за всяко i, j и $B_1 \cup B_2 \cup \dots \cup B_n = S$, то

$$P(A) = \sum_{k=1}^{n} P(AB_k) = \sum_{k=1}^{n} P(A|B_k)P(B_k).$$

Пример: В една кутия има 60 дълги пирона и 40 къси, а в друга - 10 дълги и 15 къси. Каква е вероятността случайно избран пирон от случайно избрана кутия да е къс? Omr.: 1/2.

Формула на Бейс:

$$P(B_i|A) = \frac{P(B_iA)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_{k=1}^{n} P(A|B_k)P(B_k)}$$

Пример: Медицински тест е 90% сигурен (т.е. вероятността да е позитивен, при условие че наистина има заболяване е 0.9), а вероятността да е позитивен, при условие, че няма заболяване е 0.05. Вероятността даден човек да е болен е 1 на 10 000. Ако тестът е позитивен, каква е вероятността човекът наистина да е болен? Отг.: 0.0018

ЗАДАЧИ:

- 1. Нека разпределението на видовете кръвни групи е следното: А 41%, В 9%, АВ 4%, О 46%. Каква е вероятността кръвта на случайно избран човек да съдържа антиген А? А да съдържа антиген В? А да не съдържа нито антиген А, нито антиген В? Проучване показва, че 39% от гените, определящи Rh фактора са отрицателни. Всеки индивид наследява един ген от бащата и един ген от майката, като Rh факторът е отрицателен, когато и двата наследени гена са отрицателни. Каква е вероятността случайно избран човек да има отрицателен резус фактор? Кръвната група и резус факторът са независими. Каква е вероятността човек да е от АВ Rh- група? Отг.: 45%; 13%; 46%; 0, 39²: 0, 39²: 0, 04.
- 2. Космически кораб има два двигателя, които работят паралелно. Ако главният двигател има сигурност 95%, резервният 80%, а за цялата система сигурността е 99%, каква е вероятността и двата двигателя да са изправни? Каква е вероятността и двата двигателя да не работят? Вярно ли е, че P[pезервният двигател работи изправно] = <math>P[pезервният работи изправно| главният не работи]? Независими ли са събитията A_1 : "резервният двигател работи изправно" и A_2 : "главният двигател не работи"? Ome.: 0, 76; 0, 01; да.
- 3. Генератор на случайни числа работи по следния начин: за да се симулира генерирането на двуцифрено число, генераторът се активира два пъти за всяка от цифрите, като теоретично всяка цифра има еднаква вероятност да бъде избрана. Колко такива случайни двуцифрени числа са възможни? Колко от тях започват с 2? Колко завършват на 9? Колко започват с 2 и завършват на 9? Каква е вероятността такова число да завършва на 9, при условие, че започва с 2? *Отг.:* 100; 10; 10; 1; 1/10.
- 4. Проведен е следният експеримент за изследване на паметта: показва се запис на кола, която се движи по междуградски път. На записа няма склад. След това на човека, който е гледал записа, се задават поредица въпроси. Половината от хората са запитани "Колко бързо се движеше колата, когато мина покрай склада?". На другата половина този въпрос не е зададен. По-късно всеки е попитан "Имаше ли склад във филма?". От тези, на които е бил зададен и първия въпрос, 17% отговарят с "да", само 3% от останалите отговарят с "да". Каква е вероятността случайно избран участник в експеримента да отговори положително? Такъв отговор независим ли е от задаването на първия въпрос? Отг.: 1/10; не.
- 5. Вероятността дадена банка кръв да е дарена от платен донор е 0.67. Ако донорът е бил платен, вероятността да е заразена с хепатит е 0.0144, а ако не е платен 0.0012. Каква е вероятността случайно избрана банка да е заразена с хепатит? $Ome.: 0,0094 \approx 0.01$.
- 6. Докажете, че невъзможното събитие е независимо от всяко друго събитие.
- 7. Докажете, че ако A_1 и A_2 са независими, то и A_1 и A_2^c са независими. Също и за A_1^c и A_2^c .
- 8. Докажете, че ако две събития (с ненулева вероятност) са взаимно изключващи се, то те не са независими, както и обратното.
- 9. Дадено електронно съобщение се кодира с таен криптиращ ключ преди да бъде изпратено, но ключът може да бъде "откраднат". Нека 95% от получените съобщения са автентични. 0.1% от неавтентичните съобщения са криптирани с правилния ключ и всички автентични съобщения са кодирани с правилния ключ. Намерете вероятността едно съобщение да е автентично, при условие, че е използван правилният ключ. Отг.: 0,9995.
- 10. Три двуцифрени числа се генерират случайно, като вероятността за всяка от стойностите 00, 01, ..., 99 е една и съща. Каква е вероятността такова число да е по-малко от 50? Каква е вероятността всяко от трите числа да е по-малко от 50? *Отв.*: 1/2; 1/8.
- 11. В компютърен център има три принтера A, Б и B, които работят с различна скорост. Заявките за печат се изпращат към първия свободен принтер. Вероятностите заявка да бъде изпратена към A, Б или B са съответно 0.6, 0.3 и 0.1. Вероятността за всеки от принтерите да се "задави" и да провали печатането е 0.01, 0.05 и 0.04 съответно. Ако печатането на даден документ се прекрати, каква е вероятността това да е по вина на всеки от трите принтера? Отг.: 0.24; 0.6; 0.16.

- 12. Пресметнете вероятността от едно тесте да бъде изтеглена ръка от 13 карти, състояща се от (а) 6 пики, 4 купи, 2 кари и 1 спатия; (б) 13 карти от една боя. Каква е вероятността да има поне три попа, при условие, че ръката съдържа поне два? $Ome.: \binom{13}{6}\binom{13}{4}\binom{13}{2}\binom{13}{1}/\binom{52}{13}; 4/\binom{52}{13}; 0.1704.$
- 13. В кутия с 50 електрически крушки има 2 дефектни. Инспектор по контрол на качеството преглежда 5 крушки, които се избират случайно и без връщане. Намерете вероятността поне една от дефектните крушки да е сред петте. Колко крушки трябва да бъдат прегледани, така че тази вероятност да премине 1/2? Ome.: 15.
- 14. Двойка зарове се хвърлят докато се падне седем или осем. Докажете, че вероятността да се падне седем преди осем е 6/11. Ако заровете се хвърлят докато се паднат две седмици или шест и осем поне по веднъж, докажете, че вероятността да се падне шест и осем преди седмиците е 0.546.
- 15. Урна съдържа три червени (Ч) и седем бели (Б) топки с еднакви размери и тегло. Ако избираме последователно и с връщане като събитията "бяла топка на n-ти път" се считат за независими, какви са вероятностите за избор на следните последователности от четири опита: (а) ББЧБ, (б) ЧБББ, (в) БББЧ, (г) БЧББ. Каква е вероятността за точно една червена топка от четири опита? Отг.: 4(0.7)³(0.3).
- 16. Теглят се карти от обикновено тесте с връщане до изтеглянето на пика. Каква е вероятността да са необходими поне 4 тегления? А ако се теглят без връщане? *Ome.*: 0, 42; 0, 41.
- 17. Човек отговаря на всеки от два въпроса с по четири възможни отговора като избира случайно. Каква е вероятността и двата отговора да са верни, при условие че поне единият е верен. Omz.: 1/7.
- 18. Зар се хвърля шест пъти. Имаме съвпадение, ако на і-тия път се пада і. Каква е вероятността за поне едно съвпадение? Каква е вероятността за п-стенен зар, който се хвърля п пъти при $n \to \infty$. Ome: $1 (5/6)^6$; $1 e^{-1}$.
- 19. А хвърля зар и печели при падането на 6. Ако той не спечели, Б хвърля и печели, ако се падне 5 или 6. След това А печели на 4, 5 или 6 и т.н. Каква е вероятността за всеки играч да спечели? *Отг.*: 0.52; 0.48.
- 20. Нека C_1, C_2, C_3 са независими събития с вероятности съответно $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$. Колко е $P(C_1 \cup C_2 \cup C_3)$? *Ome.*: 3/4.
- 21. Всяко чувалче в един сандък съдържа по 25 луковици на лалета. Знае се, че 60% от чувалчетата съдържат по 5 луковици за червени и 20 за жълти лалета, а останалите по 15 за червени и 10 за жълти. Случайно се избира едно чувалче и от него една луковица. Каква е вероятността тя да е за жълто лале? При условие, че лалето е жълто, каква е вероятността да е взета от първия вид чувалчета? Отг.: 16/25; 3/4.
- 22. Играч залага 1 лев срещу b лева за това, че може да изтегли две карти от едно тесте и те да са от една боя. Намерете b, така че залогът да е справедлив? *Ome.*: 13/4.
- 23. Двоично съобщение може да има грешка (инверсия) във всеки бит с вероятност 1/4 от 0 в 1 и 1/3 от 1 в 0. Пропорцията на изпратените 0-и и 1-и е 3 : 4. Ако е получена 1, каква е вероятността да е била изпратена 1? Ако е получено съобщение 00, какво е разпределението на възможните изпратени съобщения? Отг.: .

ЗАДАЧИ ЗА САМОСТОЯТЕЛНА РАБОТА:

1. Картите от две тестета се обръщат едновременно една по една. Казваме, че имаме пълно съвпадение, ако едновременно обърнатите карти от двете тестета са идентични. Нека p_M е вероятността да имаме поне едно пълно съвпадение. Покажете, че $p_M = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \ldots - \frac{1}{52!}$. Покажете, че p_M е приблизително равно на $1 - e^{-1} = 0.632$.

- 2. Приблизително една трета от всички близнаци са еднояйчни, а две трети са двуяйчни. Еднояйчните близнаци винаги са от един пол като вероятността за мъжки и женски пол е еднаква, а при двуяйчните една четвърт са момичета, една четвърт са момчета и половината са смесени. Сред всички раждания близнаците са едно на 90. Определете следните събития: А = "раждат се двойка близнаци момичета", В = "раждат се еднояйчни близнаци", С = "раждат се близнаци". Кое е събитието А ∩ В ∩ С? Намерете P(A ∩ B ∩ C). Отг.: 1/540.
- 3. Две монети се хвърлят едновременно и независимо една от друга, като вероятността за "ези" на първата е u, а на втората е w. Определете $p_0 = P(0$ "ези"), $p_1 = P(1$ "ези"), $p_2 = P(2$ "ези"). Може ли да изберем u и w, така че $p_0 = p_1 = p_2$? Ome: не.
- 4. Ако P(A) = 1/3 и $P(B^c) = 1/4$, може ли A и B да са несъвместими? Om z.: не.
- 5. В шкафа има n чифта чорапи. Ако 2r чорапа са избрани случайно, каква е вероятността измежду тях да няма нито един чифт? $Ome.: \binom{n}{2r} 2^{2r} / \binom{2n}{2r}$.
- 6. В лотария се теглят дните от годината (включително 29 февруари). Каква е вероятността първите 180 изтеглени дни да са разпределени по равно между месеците на годината? Каква е вероятността първите 30 изтеглени дни да не са от месец септември? $Ome.: 0, 167.10^{-8}; \binom{336}{30} / \binom{366}{30}$.
- 7. Двама души едновременно хвърлят монети n пъти. Каква е вероятността те да хвърлят равен брой "ези"? $Om \epsilon$.: $(\frac{1}{4})^n \binom{2n}{n}$.
- 8. Двама играчи A и B хвърлят монета последователно независимо един от друг, като първия, който хвърли "ези" печели. Нека A хвърля пръв. Ако монетата е правилна, каква е вероятността да спечели A? Ако вероятността за "ези" е p, каква е вероятността A да спечели? Докажете, че за всяко p, вероятността A да спечели е по-голяма от 1/2. Ome: 2/3; $\frac{p}{1-(1-p)^2}$.
- 9. Семейство има две деца. Поне едно от тях е момче. Каква е вероятността и двете да са момчета? Ome.: 1/3.
- 10. Правилен зар се хвърля докато се падне 6. Каква е вероятността да са необходими повече от 5 хвърляния за това? Omz: $(5/6)^5$.
- 11. Стандартизиран тест съдържа 20 въпроса, всеки с по 4 възможни отговора. Ако студент отговаря случайно и независимо на всички въпроси, каква е вероятността да е отговорил правилно на поне 10 въпроса? *Отг.:* .