BS20001_Spring21_Test1

Date of Exam: 17th Feb, 2021

SplicingPoly-A tailing

Time: 1hr (2:30 pm to 3:30 pm) Total marks: 40 ONLY ONE correct answer. NO NEGATIVE marking. Choose the BEST possible answer. Backbone of DNA and RNA is covalently linked through ----- and is ----- in (1 Point) phosphodiester bond, hydrophobic phosphodiester bond, hydrophilic phosphoester bond, hydrophobic phosphoester, hydrophilic Hemoglobin and RNA polymerase are examples of (1 Point) Two of the most complex proteins present in our body. Quaternary structures of protein Proteins that are available in all of our cells Tertiary structures of protein A 990 nucleotide long Eukaryotic nascent mRNA has a 60 nucleotide long intron. But the mature mRNA available for translation is found to be 1100 nucleotide long. What may have caused the increased length of the mature mRNA? (1 Point) 5' capping Reverse transcription

4
What is a protein domain? (1 Point)
A multi-subunit protein complex
An unfolded part of a protein
The $\alpha\text{-helical}$ or $\beta\text{-pleated}$ sheet portion of a protein
Part of a protein folded into a self-contained 3D structure
5
During transcription, RNA polymerase reads the template DNA strand in (1 Point)
does not require a DNA template
in both directions
5'- 3' direction
3'- 5' direction
6
Which sugar is found in RNA? (1 Point)
Deoxyribose
Pentose
Lactose
Fructose
7
Which of the following best describes a promoter: (1 Point)
A specific DNA sequence that promotes termination of transcription
A specific DNA sequence to which RNA polymerase binds
An extracellular inducer that controls genes expression
A specific DNA sequence from where transcription starts

8
A genetic analysis of an unknown infectious agent reveals that it contains only nucleotides G, A, U and C, in the proportion 30%, 35%, 15% and 20%, respectively. Based on this information this infectious agent is most likely (1 Point)
double-stranded DNA virus
single-stranded DNA virus
single-stranded RNA virus
not enough information is provided
9
A tripeptide has (1 Point)
6 amino acids and 3 peptide bonds
3 amino acids and 2 peptide bonds
4 amino acids and 3 peptide bonds
3 amino acids and 3 peptide bonds
10
The nucleotides in DNA and RNA have three components: a sugar group, a nitrogenous base, and a phosphate group. Adjacent nucleotides in a nucleic acid are joined by a phosphodiester bond. This bond links the phosphate group of one nucleotide to which one of the following components of a neighbouring nucleotide? (1 Point)
Others
) Base
Phosphate
Sugar
11
100 template DNA molecules are PCR amplified for 25 cycles in a 100 μ l reaction mixture. How many amplified products will be there in 0.01 μ l of solution after amplification? (1 Point)
10×2^{25}
0.01×2^{25}
100×2^{25}

$\bigcirc 0.1 \times 2^{25}$
12
A new strain of bacteria was isolated from a natural hot water geyser. Comment on the expected DNA base compositions in this thermophilic organism (living in high temperatures) (1 Point)
Insufficient data
○ A+T > G+C
Equal A+T and G+C composition
G+C > A+T
13
In Sanger DNA sequencing technique, ddNTP (analogue of dNTP) is used that can terminate DNA synthesis when they get incorporated. How does that happen? (1 Point)
ddNTPs are positively charged
In ddNTPs 3'OH group is changed to –H group
ddNTPs are bulky molecules
ddNTPs have ribose sugar instead of deoxyribose
14
The coding region of a gene is 102 nucleotides long, including both start and stop codons. Which of the following would be the most likely effect of a single nucleotide deletion at position 76 in the coding region? (1 Point)
There would be changes only in the first 25 amino acids
There would be no effect on the polypeptide
There would be changes only after the first 25 amino acids
The entire amino acid sequence of the polypeptide would change
15
Peptide backbone has three torsion angles namely omega, phi and psi. However, Ramachandran map ignores one of these and plots only two. Which of the following statements gives the CORRECT reasoning for this. (1 Point)
It does not matter which two torsion angles are used to create the Ramachandran map. The same map can be created by choosing any two of the three torsion angles.

Historically only two torsion angles were discovered at that time. Hence, Ramachandran and his student used only those two torsion angles for the map.
One of the torsion angles is part of the peptide plane and in most cases has only one value. Hence, unnecessary to plot.
A two-dimensional plot can be made using only two variables. Hence one of the angles was ignored.
16
In an experiment, it was found that the value of Tm for a DNA sample is = 70° C. If that DNA sample has 45% GC at the above Tm, then what will be the value of 'Tm' if the GC% increases to 55%? (1 Point)
Increases
○ Remains same
O Decreases
Can't be predicted
17
What will be the transcript (i.e. RNA) of this gene (coding strand is underlined)? (1 Point)
(1 Point)
5' G C T C A G C <u>A T G G G G C G T A A</u> 3' 3' C G A G T C G T A C C C C C G C A T T 5'
5' GCTCAGCATGGGGGCGTAA3'
5' G C T C A G C A T G G G G G C G T A A 3' 3' C G A G T C G T A C C C C C G C A T T 5'
5' G C T C A G C A T G G G G G C G T A A 3' 3' C G A G T C G T A C C C C C G C A T T 5'
5' G C T C A G C A T G G G G C G T A A 3' 3' C G A G T C G T A C C C C C G C A T T 5'
5' G C T C A G C A T G G G G G C G T A A 3' 3' C G A G T C G T A C C C C C G C A T T 5' S'AUGGGGGCGUAA3' 3'AUGGGGGCGUAA5' 3'UACCCCCGCAUU5'
5' G C T C A G C A T G G G G G C G T A A 3' 3' C G A G T C G T A C C C C C G C A T T 5' S'AUGGGGGCGUAA3' 3'AUGGGGGCGUAA5' 3'UACCCCCGCAUU5'
5' G C T C A G C A T G G G G G C G T A A 3' 3' C G A G T C G T A C C C C C G C A T T 5' 5'AUGGGGGGCGUAA3' 3'AUGGGGGCGUAA5' 3'UACCCCCGCAUU5' 5'UACCCCCGCAUU3'
5' G C T C A G C A T G G G G G C G T A A 3' S'AUGGGGGCGUAA3' 3'AUGGGGGCGUAA5' 3'UACCCCCGCAUU5' 5'UACCCCCGCAUU3' 18 One undergrad student is repeating Anfinsen's experiment with an enzyme that has TEN cysteine residues and forms FIVE disulfide bonds. What is the total number of possible disulfide bond combinations that can be formed randomly in the denatured protein?
5' G C T C A G C A T G G G G G C G T A A 3' 3' C G A G T C G T A C C C C C G C A T T 5' 5' A U G G G G C G U A A 3' 3' U A C C C C C G C A T T 5' 18 One undergrad student is repeating Anfinsen's experiment with an enzyme that has TEN cysteine residues and forms FIVE disulfide bonds. What is the total number of possible disulfide bond combinations that can be formed randomly in the denatured protein? (1 Point)
5' G C T C A G C A T G G G G G C G T A A 3' 5' AUGGGGGCGUAA3' 3' AUGGGGGCGUAA5' 3' UACCCCCGCAUU5' 5' UACCCCCGCAUU3' 18 One undergrad student is repeating Anfinsen's experiment with an enzyme that has TEN cysteine residues and forms FIVE disulfide bonds. What is the total number of possible disulfide bond combinations that can be formed randomly in the denatured protein? (1 Point)

Which one of the following statements is correct? (1 Point)
Poly-A tailing of mRNA is a template dependent synthesis
5' end of nascent eukaryotic mRNA acquires a poly A tail
Transcription and translation occurs in the same cellular compartment in eukaryotes
Splicing removes introns from eukaryotic transcripts
20
Which of the following is in correct order of sequence as they happen in a cell: (1 Point)
Transcription, mRNA Splicing, Translation, Protein folding
Transcription, Translation, poly-adenylation Protein folding
Transcription, Translation, mRNA Splicing, Protein folding
Transcription, Translation, 5' capping of mRNA, Protein folding
21
In lac operon, if you remove the lac operator (the repressor binding site), what will be the effect on the metabolic state of the bacteria? (1 Point)
effect on the metabolic state of the bacteria?
effect on the metabolic state of the bacteria? (1 Point)
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose Lactose will never be metabolized because the enzymes will never be synthesized
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose Lactose will never be metabolized because the enzymes will never be synthesized
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose Lactose will never be metabolized because the enzymes will never be synthesized
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose Lactose will never be metabolized because the enzymes will never be synthesized
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose Lactose will never be metabolized because the enzymes will never be synthesized 22 Choose the enzyme that is not composed of protein: (1 Point)
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose Lactose will never be metabolized because the enzymes will never be synthesized 22 Choose the enzyme that is not composed of protein: (1 Point) DNA polymerase
effect on the metabolic state of the bacteria? (1 Point) RNA Polymerase will not be able to bind the promoter Glucose metabolism will be blocked Lactose metabolizing enzymes will be produced irrespective of the presence or absence of lactose Lactose will never be metabolized because the enzymes will never be synthesized 22 Choose the enzyme that is not composed of protein: (1 Point) DNA polymerase Peptidyl transferase

23
Glycine and alanine contain and chiral centre(s) respectively (1 Point)
0 1,1
○ 1,2
0, 1
○ 1,0
24
Theoretically, a vast number of different proteins can be assembled from 20 different amino acids. How many polypeptide chains are possible that are 10 amino acids long? (1 Point)
$20^{10}X10^{20}$
10^{20}
2010
20 X 10
25
In a folded protein, the nonpolar (hydrophobic) amino acids tend to be (1 Point)
hidden inside the protein
annot be predicted
distributed randomly throughout the protein
exposed on the outside of the protein

26
In an alien species, there are only 2 types of nucleotides (instead of 4 types in humans) bu codons are 4 nucleotide long. If each type of codon specifies one unique amino acid, how many possible amino acids can be coded. Also consider that they have only one stop code (1 Point)
○ 31
15
○ 63
O 7
27
Which one of the following statements is incorrect? (1 Point)
Lagging strand is synthesized from 3' to 5' direction
Lagging strand requires more primers than leading strand during replication
Okazaki fragments are observed during lagging strand synthesis
Leading strand is synthesized from 5' to 3' direction
28
Which of the following amino acids often participate in covalent bond formation through side chain? (1 Point)
Valine
Cysteine
Glycine
Alapina

29
Anfinsen's experiment showed that (1 Point)
Right combination of disulfide bonds dictate the three-dimensional structure of a protein
It is easier to win the Nobel Prize in Chemistry by Biochemists
The primary sequence of a protein can be predicted from its three-dimensional structure
The three-dimensional structure of a protein is encoded in its primary sequence
30
Formation of peptide bond is a (1 Point)
condensation reaction
hydrolysis reaction
ligation reaction
oxidation reaction
31
In classic Sanger DNA sequencing technique, four types of ddNTPs are used along with the normal dNTPs. Which of the following is the correct combination? (1 Point)
Each tube will have one type of dNTP and all four types of ddNTP
Each tube with one type of ddNTP and one type of dNTP (e.g., ddATP + dATP in tube 1, ddGTP + dGTP in tube 2 and so on)
Each tube will have one type of ddNTP and all four types of dNTP
All four ddNTPs and four dNTPs in same reaction tube
32
Following is the protein coding part of the DNA sequence of a hypothetical gene: 5' ATG GCC TAA TAC TGG TGC ACG ACG TGC GGT GTC TGC ATA TTT TAA 3' Predict what will happen to the protein product of the gene if you mutate (change) the first codon from ATG into TTG. (1 Point)
Protein length will be unaffected
Protein will be shorter in length
No protein will be synthesized

Protein will be produced but its amino acid composition will be changed
33
Metal ions such as Na+, K+ and Mg2+ interact with the following of DNA (1 Point)
Sugar group
Nitrogenous base
All of the above
Phosphate group
34
DNA present in E. coli is (1 Point)
double stranded, right-handed, circular
double stranded, right-handed, linear
single-stranded, left-handed, linear
single stranded, right-handed, circular
35
RNA is chemically less stable than DNA, because of (1 Point)
the presence of the 2'-OH group
All of the above
the extra carbon atom
the uracil base instead of the thymine
Arrange the following options in increasing order of protein structure hierarchy A: alpha-helix B: amino acid sequence C: quaternary structure D: folded structure (1 Point)
A, C, B, D
B, A, D, C

https://forms.office.com/Pages/ResponsePage.aspx?id=IrXbcQRXN0WfJWrS3NQnjRCjtbjva....

○ A, B, C, D
O B, C, A, D
_
37
What is the nature of the interaction between tRNAs and mRNAs at the translation site? (1 Point)
0.000
Updrophobic interaction
Covalent bond
Hydrogen bond
Electrostatic interaction
38
Protein secondary structures are stabilized primarily by (chose the best answer) (1 Point)
amino acid sidechains
ovan der Waal's forces
nydrogen bonds