Section 4 Market Basket Analysis with Python

1. Dataset

Dataset

Market Basket Optimization

https://www.kaggle.com/roshansharma/market-basket-optimization/version/1

This dataset contains information about customers buying different grocery items at a Mall.

Load the Dataset

```
# Import Libraries
import pandas as pd
import numpy as np
# Load the Dataset
df = pd.read csv("Market Basket Optimisation.csv", header=None)
# Show the shape of the data: the number of rows and columns
df.shape
(7501, 20)
```

Show the first five rows of the dataset df.head()

	0	1	2	3	4	5	6	•••
0	shrimp	almonds	avocado	vegetables mix	green grapes	whole weat flour	yams	
1	burgers	meatballs	eggs	NaN	NaN	NaN	NaN	4
2	chutney	NaN	NaN	NaN	NaN	NaN	NaN	
3	turkey	avocado	NaN	NaN	NaN	NaN	NaN	• • •
4	mineral water	milk	energy bar	Whole wheat rice	grean tea	NaN	NaN	• • •

2. Data Pre-processing

Data Preparation

```
# Create a list of transaction
df['Transactions']= df.values.tolist()
df['Transactions']
0
    [shrimp, almonds, avocado, vegetables mix, gre...
    [burgers, meatballs, eggs, nan, nan, nan, nan, ...
    3
    [burgers, frozen vegetables, eggs, french frie...
7497
     7498
     [escalope, green tea, nan, nan, nan, nan, nan, ...
7499
7500
     [eggs, frozen smoothie, yogurt cake, low fat y...
Name: Transactions, Length: 7501, dtype: object
```

```
# Delete NaN from the transaction list
df['Transactions'] = df['Transactions'].apply(lambda x: [i for i in x if str(i) != "nan"])
df['Transactions']
     [shrimp, almonds, avocado, vegetables mix, gre...
                  [burgers, meatballs, eggs]
                            [chutney]
3
                       [turkey, avocado]
4
     [mineral water, milk, energy bar, whole wheat ...
                [butter, light mayo, fresh bread]
7496
       [burgers, frozen vegetables, eggs, french frie...
7497
                              [chicken]
7498
                       [escalope, green tea]
7499
       [eggs, frozen smoothie, yogurt cake, low fat y...
7500
Name: Transactions, Length: 7501, dtype: object
```

Convert the transaction list from a DataFrame column into a list of string transactions = list(df['Transactions'])

Count a transaction which contains burgers, meatballs, and eggs transactions.count(['burgers', 'meatballs', 'eggs'])

1

```
# Import library to count the number of permutations
from itertools import permutations
# Extract unique items.
unique_items = [item for transaction in transactions for item in transaction]
# Convert the unique item list from a string to a list
unique_item_list = list(set(unique_items))
# Compute rules.
rules = list(permutations(unique_item_list, 2))
# Print the number of rules with length 2
print(len(rules))
14280
```

Import the library for encoding from mlxtend.preprocessing import TransactionEncoder

Instantiate transaction encoder encoder = TransactionEncoder().fit(transactions)

One-hot encode itemsets by applying transform onehot = encoder.transform(transactions)

Convert one-hot encoded data to DataFrame onehot = pd.DataFrame(onehot, columns = encoder.columns_)

Show the one-hot encoded dataframe print(onehot)

asparagus	almonds	antioxydant juice	asparagus	•••
False	True	True	False	•••
False	False	False	False	•••
False	False	False	False	•••
False	False	False	False	•••
•••	•••	•••	•••	•••
False	False	False	False	•••
False	False	False	False	•••
False	False	False	False	•••
False	False	False	False	• • •
	False False False False False False False False False	False True False	False True True False	False True True False

[7501 rows x 120 columns]

3. Basic Metrics

Support

Computing Support for Single Items print(onehot.mean())

asparagus	0.000133
asparagus	0.000133

almonds 0.020397

antioxydant juice 0.008932

...

whole wheat rice 0.058526

yams 0.011465

yogurt cake 0.027330

zucchini 0.009465

Length: 120, dtype: float64

$$Support(X) = \frac{Frequency(X)}{N}$$

Define itemset that contains both eggs and ground beef onehot['eggs_&_ground beef'] = np.logical_and(onehot['eggs'], onehot['ground beef'])

Compute Support for itemset that contains both eggs and ground beef print(onehot['eggs_&_ground beef'].mean())

0.019997333688841486

Drop the column of "eggs_&_ground beef" to keep the dataset simple onehot = onehot.drop('eggs_&_ground beef', axis=1)

Confidence

$$Confidence(X \to Y) = \frac{freq(X, Y)}{freq(X)}$$

$$= \frac{freq(X,Y)}{N} \cdot \frac{N}{freq(X)}$$

$$= \frac{Support(X\&Y)}{Support(X)}$$

Confidence (eggs → ground beef)

```
# Compute Support for the itemsets that contains eggs and/or ground beef
sup eggs groundbeef = np.logical and(onehot['eggs'], onehot['ground beef']).mean()
sup_eggs = onehot['eggs'].mean()
sup groundbeef = onehot['ground beef'].mean()
# Compute Confidence {eggs -> ground beef}
conf_eggs_to_groundbeef = sup_eggs_groundbeef / sup_eggs
# Print Confidence {eggs -> ground beef}
print(conf eggs to groundbeef)
0.11127596439169138
```

Lift

$$Lift(X \to Y) = \frac{Confidence(X \to Y)}{Support(Y)}$$

```
# Compute Lift {eggs -> ground beef}
lift_eggs_to_groundbeef = conf_eggs_to_groundbeef / sup_groundbeef
# Print Lift {eggs -> ground beef}
print(lift_eggs_to_groundbeef)
1.1325386823637411
```

4. Apriori Algorithm

Recap: Steps for Finding Frequent Itemsets

- 1 Prepare data and set minsup
- 2 Create a list of frequent itemsets (support ≥ minsup) of length 1
- 3 Create a list of itemsets of length 2 by combining the frequent itemsets of length 1
- 4 Prune itemsets whose support is less than minsup
- 5 Create a list of itemsets of length 3 from the pruned list
- 6 Prune itemsets whose support is less than minsup
 - In the following, lengthen the itemsets and check whether "support ≥ minsup."
 - Stop the process when you cannot create a list of frequent itemset.

Recap: Association Rule Selection

• Step 1. Generate rules from frequent itemsets

• Step 2. Select rules: Confidence ≥ minconf

• Step 3. Select rules: Lift > 1.0

Frequent Itemsets

```
# Import Apriori algorithm
from mlxtend.frequent patterns import apriori
# Compute frequent itemsets
frequent_itemsets = apriori(onehot, min_support = 0.0005,
                           max_len = 4, use_colnames = True)
# Print number of itemsets
print(len(frequent itemsets))
19788
```

Print frequent itemsets print(frequent_itemsets.head())

itemsets	support	
(almonds)	0.020397	0
(antioxydant	0.008932	1
juice)	0.004666	2
(asparagus)	0.033329	3
(avocado)	0.004533	4
(babies food)		

Computing Association Rule

Rules

	antecedents	consequents	antecedent	consequent	support	confidence	lift
			support	support			
0	(almonds)	(burgers)	0.020397	0.087188	0.005199	0.254902	2.923577
1	(burgers)	(almonds)	0.087188	0.020397	0.005199	0.059633	2.923577
2	(almonds)	(chcolate)	0.020397	0.163845	0.005999	0.294118	1.795099
3	(chcolate)	(almonds)	0.163845	0.020397	0.005999	0.036615	1.795099
4	(almonds)	(eggs)	0.020397	0.179709	0.006532	0.320261	1.782108
•••							
1935	(spaghetti, olive oil)	(pancakes)	0.022930	0.095054	0.005066	0.220930	2.324260
1936	(pancakes, olive oil)	(spaghetti)	0.010799	0.174110	0.005066	0.469136	2.694478
1937	(spaghetti)	(pancakes, olive oil)	0.174110	0.010799	0.005066	0.029096	2.694478
1938	(pancakes)	(spaghetti, olive oil)	0.095054	0.022930	0.005066	0.053296	2.324260
1939	(olive oil)	(spaghetti, pancakes)	0.065858	0.025197	0.005066	0.076923	3.052910

filtered_rules = Rules[(Rules['antecedent support'] > 0.01) & (Rules['support'] > 0.009) & (Rules['confidence'] > 0.5) & (Rules['lift'] > 1.00)]

filtered_rules

	antecedents	consequents	antecedent support	consequent support
1406	(ground beef, eggs)	(mineral water)	0.019997	0.238368
1593	(ground beef, frozen vegetables)	(mineral water)	0.016931	0.238368
1737	(ground beef milk)	(mineral water)	0.021997	0.238368
	support	confidence	lift	
	0.010132	0.506667	0.005365	
	0.009199	0.543307	0.005163	
	0.011065	0.503030	0.005822	