1.)
$$E(x) = 1$$
 $G(x) = 0.2$
 $A \cdot \{0.5 < x < 4.53\}$
 $P(A) = ?$

P($|X - E(x)| > \emptyset > 0$
 $P(|X - E(x)| > 0$
 $P(|X - E(x)|$

4.)
$$E(x) = 25$$
 $G(x) = 4.5$
 $P \ge 0.9$

$$P(|X - E(x)| < E) > 1 - \frac{P(x)}{E^2}$$

$$O_1 = \frac{1 - \frac{4.5^2}{E^2}}{O_1 = 0.9}$$

$$-14.23 < x - E(x) < 14.23$$

$$10.779 < x < 39.23$$
5.) $E(x) = 1$

$$G(x) = 0.4$$

$$A = \frac{1}{2}x < 3\frac{1}{2} > 0.95$$

$$P(|X - E(x)| < E) > 1 - \frac{G^2(x)}{E^2} = 1 - \frac{0.4^2}{4} = 0.96$$

$$x < E + E(x) \ge E + E(x) = 3$$

$$x < 3$$

$$E = 3 - 1$$

$$E = 2$$
6.) $P(|X - E(x)| < 3G > 1 - \frac{G^2}{E^2} = 1 - \frac{G^2}{(36)^2} = 1 - \frac{1}{9} = 0.989$

$$E(x) = \emptyset$$

$$F(x) = \emptyset$$

$$F$$

SLUŽBENA RJEŠENJA:

§ 9. Konvergencija nizova slučajnih varijabli

- 1. P(A) > 0.84.
- 2. $P\{X > a\} < \frac{E(X)}{a}$, nejednakost Markova.
- 3. $P(A) = P\{|X E(X)| < 2\} \geqslant 0.96$.
- 4. 10.8 39.2 km/h.
- 5. Primjeni Čebiševljevu nejednakost, $P(A) \ge 0.96$.
- **6.** 0.889, 0.997.
- 12. $\frac{2(1-\cos t)}{t^2}$.
- **13.** $\vartheta(t) = \left\{ \begin{array}{ll} 0, & |t| > 1 \\ 1 |t|, & |t| \leqslant 1 \end{array} \right.$
- **14.** $\vartheta(t) = \frac{e^{it\pi} + 1}{2(1-t^2)}, \ E(X) = \frac{\pi}{2},$
- $D(X)=\frac{\pi^2-8}{4}.$
- **15.** $\vartheta_X(t) = \frac{1}{1-it}, \ E(X^n) = n!.$
- 16. 0, za neparni n; $1 \cdot 3 \cdots (n-1)$ za parni n.
- **17.** $\vartheta_X(t) = \frac{e^{it}}{1+t^2}$, E(X) = 1.
- 18. $\frac{b}{\pi[b^2+(x-a)^2]}$.
- **20.** $P\{X = \pm k\} = \frac{1}{2}a_k$, $P\{X = 0\} = a_0$.
- 21. $\frac{9}{32}$.
- **22.** $\theta_Y(t) = \frac{1}{2} + \frac{1}{4}e^{2it} + \frac{1}{4}e^{6it}$
- 24. Iskoristi Bochnerov teorem
- **25.** Razvij u red po ϑ i primjeni prethodni zadatak.
- 26. Iskoristi Bochnerov teorem.

LITERATURA:

- [1] Neven Elezović: Slučajne varijable, Element 2010.godine
- [2] Wikipedia, Chebyshev's inequality: http://en.wikipedia.org/wiki/Chebyshev's_inequality
- [3] Portal znanstvenih časopisa RH: Čebiševljeva nejednakost: http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=6639
- [4] Wikipedia, Markov's inequality: http://en.wikipedia.org/wiki/Markov%27s_inequality
- [5] Grad.hr: Zakon velikih brojeva: http://www.grad.hr/vera/webnastava/vjerojatnostistatistika/html/VISch10.html
- [6] Wikipedia, Central Limit Theorem (CLT) http://en.wikipedia.org/wiki/Central_limit_theorem
- [7] PMF, Vjerojatnost i matematička statistika, predavanja: Centralni granični teorem (CGT)