Department of Mathematics Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 07

1. Let A be an $n \times n$ matrix and α be a scalar. Find the eigenvalues of $A - \alpha I$ in terms of eigenvalues of A. Further show that A and $A - \alpha I$ have the same eigenvectors.

2. Let *A* be an $n \times n$ matrix. Show that:

a) If A is projection $(A^2 = A)$, then eigenvalues of A are either 0 or 1.

b) If A is nilpotent $(A^m = 0 \text{ for some } m \ge 1)$, then all eigenvalues of A are 0.

3. In the above question, check whether the matrix is diagonalizable or not.

4. Find the minimal and characteristic polynomial of the following matrices

$$(a) \left[\begin{array}{cc} 1 & 1 \\ 4 & 1 \end{array} \right]$$

(b)
$$\begin{bmatrix} -1 & 1 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6 \end{bmatrix}$$

5. Construct a basis of \mathbb{R}^3 consisting of eigenvectors of the following matrices

(a)
$$\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$

6. Using the characteristic equation, find the A^{100} for the matrices given in previous question.

7. Let λ be the only eigenvalue of A. Then prove that A is diagonalizable if and only if $A = \lambda I$.

8. Using the Cayley-Hamilton theorem find the inverse of the following matrices, if exists.

$$\begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & 0 \\
2 & 2 & 3
\end{bmatrix}$$

$$b \begin{bmatrix} 7 & -5 & 15 \\ 6 & -4 & 15 \\ 0 & 0 & 1 \end{bmatrix}.$$

9. Let V be an inner product space and $u, v \in V$. Then show that $||u+v|| \le ||u|| + ||v||$

1

- 10. Let *V* be inner product space. Then prove that for $v \in V$, $\langle v, v \rangle \in \mathbb{R}$
- 11. Show that the norm of a vector in a vector space V has the following three properties
 - (a) ||v|| > 0 and ||v|| = 0 if and only if v = 0.
 - (b) $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in \mathbb{R}$ and $v \in V$.

(c) $||v+w|| \le ||v|| + ||w||$ for all $v, w \in V$. Note that $||\cdot|| = <\cdot, \cdot>^{1/2}$, where $<\cdot, \cdot>$ is an inner product defined on V.

- 12. Let $\mathbb{R}_3(x)$ be a vector space of all polynomials of degree at most 3. Then check that $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$ is an inner product on $\mathbb{R}_3(x)$.
- 13. Let \mathbb{R}^n be an inner product space of row vectors and \mathbb{R}^n be $n \times n$ matrix. For $x, y \in \mathbb{R}^n$, define $\langle x, y \rangle = xy^t$. Then show that $\langle xA, y \rangle = \langle x, yA^t \rangle$.
- 14. Let z_1, \dots, z_n be a set of complex numbers. The using Cauchy-Schwartz inequality prove that $(z_1 + z_2 + \dots + z_n)^2 \le n(z_1^2 + \dots + z_n^2)$.
- 15. Let V be a rear inner product space and $u, v \in V$. Then show that

$$\langle u + v, u - v \rangle = ||u||^2 - ||v||^2.$$

16. Let V be a rear inner product space and $u, v \in V$. Find the condition that on u and v such that $(u+v) \perp (u-v)$.