

**GCE** 

**Edexcel GCE** 

Core Mathematics C3 (6665)

January 2006

advancing learning, changing lives

Mark Scheme (Results)

## January 2006 6665 Core Mathematics C3 Mark Scheme

| Question<br>Number | Scheme                                      | Ma             | rks        |
|--------------------|---------------------------------------------|----------------|------------|
| 1.                 | Shape unchanged Point                       | B1<br>B1       | (2)        |
|                    | (b) $y \uparrow (2,4)$ Shape Point          | B1<br>B1       | (2)        |
|                    | (c) $(-2,4)$ $(2,4)$ Shape $(2,4)$ $(-2,4)$ | B1<br>B1<br>B1 | (3)<br>[7] |

| Question<br>Number | Scheme                                                                                                                                                                                    | М        | arks       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| 2.                 | $x^2 - x - 2 = (x - 2)(x + 1)$ At any stage                                                                                                                                               | B1       |            |
|                    | $\frac{2x^2+3x}{(2x+3)(x-2)} = \frac{x(2x+3)}{(2x+3)(x-2)} = \frac{x}{x-2}$                                                                                                               | B1       |            |
|                    | $\frac{2x^2+3x}{(2x+3)(x-2)} - \frac{6}{x^2-x-2} = \frac{x(x+1)-6}{(x-2)(x+1)}$                                                                                                           | M1       |            |
|                    | $=\frac{x^2 + x - 6}{(x - 2)(x + 1)}$                                                                                                                                                     | A1       |            |
|                    | $=\frac{(x+3)(x-2)}{(x-2)(x+1)}$                                                                                                                                                          | M1 A     | .1         |
|                    | $=\frac{x+3}{x+1}$                                                                                                                                                                        | A1       | <b>(7)</b> |
|                    |                                                                                                                                                                                           |          | [7]        |
|                    | Alternative method                                                                                                                                                                        | D.1      |            |
|                    | $x^2 - x - 2 = (x - 2)(x + 1)$ At any stage                                                                                                                                               | B1       |            |
|                    | $\frac{(2x+3) \text{ appearing as a factor of the numerator at any stage}}{(2x+3)(x-2)} = \frac{(2x^2+3x)(x+1)-6(2x+3)}{(2x+3)(x-2)(x+1)}$                                                | B1<br>M1 |            |
|                    | $= \frac{2x^3 + 5x^2 - 9x - 18}{(2x+3)(x-2)(x+1)}$ can be implied                                                                                                                         | A1       |            |
|                    | $= \frac{(x-2)(2x^2+9x+9)}{(2x+3)(x-2)(x+1)}  \text{or}  \frac{(2x+3)(x^2+x-6)}{(2x+3)(x-2)(x+1)}  \text{or}  \frac{(x+3)(2x^2-x-6)}{(2x+3)(x-2)(x+1)}$ Any one linear factor × quadratic | M1       |            |
|                    | $= \frac{(2x+3)(x-2)(x+3)}{(2x+3)(x-2)(x+1)}$ Complete factors                                                                                                                            | A1       |            |
|                    | $=\frac{x+3}{x+1}$                                                                                                                                                                        | A1       | (7)        |
|                    |                                                                                                                                                                                           |          |            |

| Question<br>Number | Scheme                                                                                                                                                                                            | Marks          |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3.                 | $\frac{dy}{dx} = \frac{1}{x}$ accept $\frac{3}{3x}$ $At x = 3, \frac{dy}{dx} = \frac{1}{3} \implies m' = -3$ Use of $mm' = -1$ $y - \ln 1 = -3(x - 3)$                                            | M1 A1 M1 M1    |
|                    | $y = -3x + 9$ Accept $y = 9 - 3x$ $\frac{dy}{dx} = \frac{1}{3x}$ leading to $y = -9x + 27$ is a maximum of M1 A0 M1 M1 A0 = 3/5                                                                   | A1 (5) [5]     |
| 4.                 | (a) (i) $\frac{d}{dx} \left( e^{3x+2} \right) = 3e^{3x+2}  \text{(or } 3e^2 e^{3x} \text{)} $ At any stage $\frac{dy}{dx} = 3x^2 e^{3x+2} + 2xe^{3x+2} $ Or equivalent                            | B1<br>M1 A1+A1 |
|                    | (ii) $\frac{d}{dx} \left(\cos\left(2x^3\right)\right) = -6x^2 \sin\left(2x^3\right)$ At any stage $\frac{dy}{dx} = \frac{-18x^3 \sin\left(2x^3\right) - 3\cos\left(2x^3\right)}{9x^2}$            | (4)<br>M1 A1   |
|                    | Alternatively using the product rule for second M1 A1 $y = (3x)^{-1} \cos(2x^{3})$ $\frac{dy}{dx} = -3(3x)^{-2} \cos(2x^{3}) - 6x^{2}(3x)^{-1} \sin(2x^{3})$ Accept equivalent unsimplified forms | M1 A1 (4)      |
|                    | (b) $1 = 8\cos(2y+6)\frac{dy}{dx}  \text{or}  \frac{dx}{dy} = 8\cos(2y+6)$ $\frac{dy}{dx} = \frac{1}{8\cos(2y+6)}$                                                                                | M1<br>M1 A1    |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8\cos\left(\arcsin\left(\frac{x}{4}\right)\right)}  \left(=\left(\pm\right)\frac{1}{2\sqrt{\left(16-x^2\right)}}\right)$                              | M1 A1 (5) [13] |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                         | Marks                        |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 5.                 | (a) $2x^{2} - 1 - \frac{4}{x} = 0$ Dividing equation by $x$ $x^{2} = \frac{1}{2} + \frac{4}{2x}$ Obtaining $x^{2} = \dots$ $x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)} $ cso                                                                                                                                                                                                            | M1<br>M1<br>A1 (3)           |
|                    | (b) $x_1 = 1.41, x_2 = 1.39, x_3 = 1.39$<br>If answers given to more than 2 dp, penalise first time then accept awrt above.                                                                                                                                                                                                                                                                    | B1, B1, B1 (3)               |
|                    | (c) Choosing $(1.3915, 1.3925)$ or a tighter interval $f(1.3915) \approx -3 \times 10^{-3}$ , $f(1.3925) \approx 7 \times 10^{-3}$ Both, awrt Change of sign (and continuity) $\Rightarrow \alpha \in (1.3915, 1.3925)$ $\Rightarrow \alpha = 1.392$ to 3 decimal places $\bigstar$ cso                                                                                                        | M1 A1 A1 (3) [9]             |
| 6.                 | (a) $R\cos\alpha = 12$ , $R\sin\alpha = 4$<br>$R = \sqrt{(12^2 + 4^2)} = \sqrt{160}$ Accept if just written down, awrt 12.6<br>$\tan\alpha = \frac{4}{12}$ , $\Rightarrow \alpha \approx 18.43^\circ$ awrt 18.4°                                                                                                                                                                               |                              |
|                    | (b) $\cos(x + \text{their } \alpha) = \frac{7}{\text{their } R}  (\approx 0.5534)$ $x + \text{their } \alpha = 56.4^{\circ} \qquad \text{awrt } 56^{\circ}$ $= \dots, 303.6^{\circ}  360^{\circ} - \text{their principal value}$ $x = 38.0^{\circ}, 285.2^{\circ} \qquad \text{Ignore solutions out of range}$ If answers given to more than 1 dp, penalise first time then accept awrt above. | M1<br>A1<br>M1<br>A1, A1 (5) |
|                    | (c)(i) minimum value is $-\sqrt{160}$ ft their $R$                                                                                                                                                                                                                                                                                                                                             | B1ft                         |
|                    | (ii) $\cos(x + \text{their } \alpha) = -1$<br>$x \approx 161.57^{\circ}$ cao                                                                                                                                                                                                                                                                                                                   | M1<br>A1 (3)<br>[12]         |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                               | Marks              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 7.                 | (a) (i) Use of $\cos 2x = \cos^2 x - \sin^2 x$ in an attempt to prove the identity.<br>$\frac{\cos 2x}{\cos x + \sin x} = \frac{\cos^2 x - \sin^2 x}{\cos x + \sin x} = \frac{(\cos x - \sin x)(\cos x + \sin x)}{\cos x + \sin x} = \cos x - \sin x $ cso                           | M1<br>A1 (2)       |
|                    | (ii) Use of $\cos 2x = 2\cos^2 x - 1$ in an attempt to prove the identity.<br>Use of $\sin 2x = 2\sin x \cos x$ in an attempt to prove the identity.<br>$\frac{1}{2}(\cos 2x - \sin 2x) = \frac{1}{2}(2\cos^2 x - 1 - 2\sin x \cos x) = \cos^2 x - \cos x \sin x - \frac{1}{2} $ cso | M1<br>M1<br>A1 (3) |
|                    | (b) $\cos\theta(\cos\theta - \sin\theta) = \frac{1}{2}$ Using (a)(i)                                                                                                                                                                                                                 | M1                 |
|                    | $\cos^{2}\theta - \cos\theta \sin\theta - \frac{1}{2} = 0$ $\frac{1}{2}(\cos 2\theta - \sin 2\theta) = 0$ Using (a)(ii)                                                                                                                                                              | M1                 |
|                    | $\cos 2\theta = \sin 2\theta *$ (c) $\tan 2\theta = 1$ $2\theta = \frac{\pi}{4}, \left(\frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}\right)$ any one correct value of $2\theta$                                                                                                    | A1 (3)<br>M1<br>A1 |
|                    | $\theta = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$ Obtaining at least 2 solutions in range The 4 correct solutions                                                                                                                                            | M1<br>A1 (4)       |
|                    | If decimals (0.393,1.963,3.534,5.105) or degrees (22.5°,112.5°,202.5°,292.5°) are given, but all 4 solutions are found, penalise one A mark only. Ignore solutions out of range.                                                                                                     | [12]               |

| Question<br>Number | Scheme                                                                                                                | Marks                       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 8.                 | (a) $gf(x) = e^{2(2x+\ln 2)}$                                                                                         | M1                          |
|                    | $= e^{x} e^{2x}$                                                                                                      | M1                          |
|                    | $= e^{4x}e^{2\ln 2}$ $= e^{4x}e^{\ln 4}$ $= 4e^{4x}$ Give mar                                                         | k at this point, cso A1 (4) |
|                    | $ \begin{array}{ccc} &= 4e & \text{Give mar} \\ &\text{(Hence gf : } x \mapsto 4e^{4x}, & x \in \square \end{array} $ | k at this point, cso A1 (4) |
|                    | (b)                                                                                                                   |                             |
|                    | y <b>†</b>                                                                                                            |                             |
|                    |                                                                                                                       |                             |
|                    |                                                                                                                       |                             |
|                    |                                                                                                                       | Shape and point B1 (1)      |
|                    |                                                                                                                       |                             |
|                    | 4                                                                                                                     |                             |
|                    |                                                                                                                       |                             |
|                    | $O \mid x$                                                                                                            |                             |
|                    |                                                                                                                       |                             |
|                    | (c) Range is $\Box$ + Accept                                                                                          | gf $(x) > 0, y > 0$ B1 (1)  |
|                    |                                                                                                                       |                             |
|                    | $\frac{\mathrm{d}}{\mathrm{d}x} \left[ \mathrm{gf} \left( x \right) \right] = 16 \mathrm{e}^{4x}$                     |                             |
|                    |                                                                                                                       |                             |
|                    | $e^{4x} = \frac{3}{16}$                                                                                               | M1 A1                       |
|                    | $e^{4x} = \frac{3}{16}$ $4x = \ln\frac{3}{16}$                                                                        | 3.61                        |
|                    | $4x = \ln \frac{1}{16}$                                                                                               | M1                          |
|                    | $x \approx -0.418$                                                                                                    | A1 (4)                      |
|                    |                                                                                                                       | [10                         |